From e92731b91a0c1ee278e980ba1f7295d16f2e0d36 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Tue, 5 Mar 2019 13:13:19 +0100 Subject: [PATCH 001/403] Initial commit of McStasScript tool for creating and running McStas instrments from python scripts The classes are located in the McStasScript.py file. A demonstration can be found in demonstration.py An early version of the documentation is included, McStasScript_documentation.pdf Current functionality Add input parameters Add declare variables Add code to initialize section Add components to trace section Set properties of components: parameters, position, rotation Generate parts of the instrument to include in current projects Generate full instrument file Simulate full instrument file and return data objects Plot data objects --- McStasScript.py | 830 +++++++++++++++++++++++++++++++++ McStasScript_documentation.pdf | Bin 0 -> 134169 bytes demonstration.py | 86 ++++ 3 files changed, 916 insertions(+) create mode 100644 McStasScript.py create mode 100644 McStasScript_documentation.pdf create mode 100644 demonstration.py diff --git a/McStasScript.py b/McStasScript.py new file mode 100644 index 00000000..2a4ab8c8 --- /dev/null +++ b/McStasScript.py @@ -0,0 +1,830 @@ +# McStasScript classes written by Mads Bertelsen, ESS, DMSC + +from __future__ import print_function +import datetime +import os +import time +import numpy as np +import matplotlib +import matplotlib.pyplot as plt +from matplotlib.colors import BoundaryNorm +from matplotlib.ticker import MaxNLocator + +try: # check whether python knows about 'basestring' + basestring +except NameError: # no, it doesn't (it's Python3); use 'str' instead + basestring=str + + +class mcstas_data: + def __init__(self,*args,**kwargs): + # Name of data set (usually filename + self.name = str(args[0]) + # three basic arrays as first + self.Intensity = args[1] + self.Error = args[2] + self.Ncount = args[3] + + self.dimension=[] # size of the data, list with a number per dimension s + self.limits=[] # limits on the data to be used for plotting + self.parameters={} # parameters used in McStas simulation + + self.xlabel="" + self.ylabel="" + self.title="" + + if "dimension" in kwargs: + self.dimension = kwargs["dimension"] + else: + raise NameError("ERROR: Initialization of mcstas_data done without dimension for data set named " + self.name + "!") + + if type(self.dimension) == int: + if "xaxis" in kwargs: + self.xaxis = kwargs["xaxis"] + else: + raise NameError("ERROR: Initialization of mcstas_data done with 1d data, but without xaxis" + self.name + "!") + + if "limits" in kwargs: + self.limits = kwargs["limits"] + else: + raise NameError("ERROR: Initialization of mcstas_data done without limits for data set named " + self.name + "!") + + if "parameters" in kwargs: + self.limits = kwargs["parameters"] + + + # Methods xlabel, ylabel and title as they might not be found + def set_xlabel(self,*args): + self.xlabel = args[0] + + def set_ylabel(self,*args): + self.ylabel = args[0] + + def set_title(self,*args): + self.title = args[0] + + +class managed_mcrun: + def __init__(self,*args,**kwargs): + self.name_of_instrumentfile = args[0] + + self.data_folder_name = "" + self.ncount = 1E6 # number of rays to + self.parameters = {} + self.mpi=1 + self.custom_flags = "" + self.mcrun_path = kwargs["mcrun_path"] # mcrun_path always in kwargs + + + if "foldername" in kwargs: + self.data_folder_name = kwargs["foldername"] + + if "ncount" in kwargs: + self.ncount = kwargs["ncount"] + + if "parameters" in kwargs: + self.parameters = kwargs["parameters"] + + if "mpi" in kwargs: + self.mpi = kwargs["mpi"] + + if "custom_flags" in kwargs: + self.custom_flags = kwargs["custom_flags"] + + def run_simulation(self): + option_string = "-c -n " + str(self.ncount) + " --mpi=" + str(self.mpi) + " " + if len(self.data_folder_name) > 0: + option_string = option_string + "-d " + self.data_folder_name + + parameter_string = "" + for key,val in self.parameters.items(): + parameter_string = parameter_string + " " + str(key) + "=" + str(val) + + #os.system("mcstas-2.5-environment") + + #mcrun_path = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin/mcrun" + + if self.mcrun_path[-1] == "\\" or self.mcrun_path[-1] == "/": + mcrun_full_path = self.mcrun_path + "mcrun" + else: + mcrun_full_path = self.mcrun_path + "/mcrun" + + os.system(mcrun_full_path + " " + option_string + " " + self.custom_flags + " " + self.name_of_instrumentfile + " " + parameter_string) + + # Assume the script will continue when the os.system call has concluded. Is there a way to ensure this? + # can use subprocess from spawn* if more controll is needed over the spawned process, including a timeout + + time.sleep(2) # sleep 2 seconds to make sure data is written to disk before trying to open + + # find all data files in generated folder + files_in_folder = os.listdir(self.data_folder_name) + + # create a list for data instances to return + results = [] + + # load the data into the list + for file in files_in_folder: + # Find data dimension, labels and axis + # Find lines with these variable names + + filename = self.data_folder_name + "/" + file + + variable_list = ["type", "title", "xlabel", "ylabel", "xlimits", "xylimits"] + located_variable_lines = {} + + f = open(filename,"r") + fl = f.readlines() + + # Need to check if this is a data file written by McStas + for line in fl: + for word in variable_list: + if word in line: + located_variable_lines[word]=line + + f.close() + + if not fl[0] == "# Format: McCode with text headers\n": + print("Decided not to read file named " + filename) + else: + print("Decided to read file named " + filename) + #print(located_variable_lines) + + # Need to remove the variable name and end of line break + for key in located_variable_lines: + string = located_variable_lines[key] + located_variable_lines[key] = string[len(key)+4:-1] + + limits=[] + dimension=[] + type_string = located_variable_lines["type"] + if "1d" in type_string: + # extract number of pixels + dimension = int(type_string[9:-1]) + print(dimension) + + # extract the limits of each direction + temp_str = located_variable_lines["xlimits"] + limits_string = temp_str.split() + for limit in limits_string: + limits.append(float(limit)) + + else: + # extract number of pixels in each direction + type_strings = type_string.split(",") + temp_str = type_strings[0] + dimension.append(int(temp_str[9:])) + temp_str = type_strings[1] + dimension.append(int(temp_str[1:-1])) + + # extract the limits of each direction + temp_str = located_variable_lines["xylimits"] + limits_string = temp_str.split() + for limit in limits_string: + limits.append(float(limit)) + + # Loads bulk data from file + # Does not seem to get the meta data + data = np.loadtxt(filename) + + # split data into intensity, error and ncount + if type(dimension) == int: + xaxis = data.T[0,:] # not used in data yet + Intensity = data.T[1,:] + Error = data.T[2,:] + Ncount = data.T[3,:] + + elif len(dimension) == 2: + xaxis = [] # assume evenly binned in 2d + Intensity = data.T[:,0:dimension[1]-1] + Error = data.T[:,dimension[1]:2*dimension[1]-1] + Ncount = data.T[:,2*dimension[1]:3*dimension[1]-1] + + else: + # probably just not a McStas file then + raise NameError("ERROR: Could not load dimensionality of data in file named " + str(file) + "!") + # should probably just skip this file + + # The data is saved as a mcstas_data object + result = mcstas_data(file,Intensity,Error,Ncount,xaxis=xaxis,dimension=dimension,limits=limits) + + # Set optional fields + if "xlabel" in located_variable_lines: + result.set_xlabel(located_variable_lines["xlabel"]) + if "ylabel" in located_variable_lines: + result.set_ylabel(located_variable_lines["ylabel"]) + if "title" in located_variable_lines: + result.set_title(located_variable_lines["title"]) + + results.append(result) + + return results + + +class make_plot: + def __init__(self,*args,**kwargs): + data_list = args[0] + + # Relevant options: + # select colormap + # show / hide colorbar + # custom title / label + # color of 1d plot + # overlay several 1d + # log scale (orders of magnitude) + # compare several 1d + # compare 2D + + self.log = False + if "log" in kwargs: + if not kwargs["log"] == 0: + self.log = True + + self.orders_of_magnitude=300 + if "max_orders_of_mag" in kwargs: + self.orders_of_magnitude=kwargs["max_orders_of_mag"] + + if not isinstance(data_list,mcstas_data): + print("number of elements in data list = " + str(len(data_list))) + else: + # Only a single element, put it in a list for easier syntax later + data_list = [data_list] + for data in data_list: + print("Plotting data with name " + data.name) + if type(data.dimension) == int: + fig = plt.figure(0) + + #print(data.T) + x = data.xaxis + y = data.Intensity + y_err = data.Error + + plt.errorbar(x, y, yerr=y_err) + + plt.xlim(data.limits[0],data.limits[1]) + + # Add a title + plt.title(data.title) + + # Add axis labels + plt.xlabel(data.xlabel) + plt.ylabel(data.ylabel) + + elif len(data.dimension) == 2: + + # Split the data into intensity, error and ncount + Intensity = data.Intensity + Error = data.Error + Ncount = data.Ncount + + # Select to plot the intensity + #to_plot = np.log(Intensity) + + if self.log: + min_value = np.min(Intensity[np.nonzero(Intensity)]) + min_value = np.log10(min_value) + + to_plot = np.log10(Intensity) + + max_value = to_plot.max() + + if max_value - min_value > self.orders_of_magnitude: + min_value = max_value - self.orders_of_magnitude + else: + to_plot = Intensity + min_value = to_plot.min() + max_value = to_plot.max() + + # Check the size of the array to be plotted + #print(to_plot.shape) + + # Set the axis (might be switched?) + X=np.linspace(data.limits[0],data.limits[1],data.dimension[0]+1) + Y=np.linspace(data.limits[2],data.limits[3],data.dimension[1]) + + # Create a meshgrid for both x and y + y, x = np.meshgrid(Y,X) + + + # Generate information on necessary colorrange + levels = MaxNLocator(nbins=150).tick_values(min_value, max_value) + #levels = MaxNLocator(nbins=150).tick_values(to_plot.max()-12, to_plot.max()) + + # Select colormap + cmap = plt.get_cmap('hot') + norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) + + # Create the figure + fig, (ax0) = plt.subplots() + + # Plot the data on the meshgrids + im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) + + # Add the colorbar + fig.colorbar(im, ax=ax0) + + # Add a title + ax0.set_title(data.title) + + # Add axis labels + plt.xlabel(data.xlabel) + plt.ylabel(data.ylabel) + + else: + print("Error, dimension not read correctly") + + plt.show() + + +class parameter_variable: + def __init__(self,*args,**kwargs): + if len(args) == 1: + self.type = "" + self.name = str(args[0]) + if len(args) == 2: + self.type = args[0] + " " + self.name = str(args[1]) + + if "value" in kwargs: + self.value_set = 1 + self.value = kwargs["value"] + else: + self.value_set = 0 + + if "comment" in kwargs: + self.comment = "// " + kwargs["comment"] + else: + self.comment = "" + + # could check for allowed types + # they are int, double, string, are there more? + + def write_parameter(self,fo,stop_character): + fo.write("%s%s" % (self.type, self.name)) + if self.value_set == 1: + if isinstance(self.value,int): + fo.write(" = %d" % self.value) + elif isinstance(self.value,float): + fo.write(" = %G" % self.value) + else: + fo.write(" = %s" % str(self.value)) + fo.write(stop_character) + fo.write(self.comment) + fo.write("\n") + +class declare_variable: + def __init__(self,*args,**kwargs): + self.type = args[0] + self.name = str(args[1]) + if "value" in kwargs: + self.value_set = 1 + self.value = kwargs["value"] + else: + self.value_set = 0 + if "array" in kwargs: + self.vector = kwargs["array"] + else: + self.vector = 0 + + if "comment" in kwargs: + self.comment = " // " + kwargs["comment"] + else: + self.comment = "" + + def write_line(self,fo): + if self.value_set == 0 and self.vector == 0: + fo.write("%s %s;%s" % (self.type, self.name,self.comment)) + if self.value_set == 1 and self.vector == 0: + if self.type == "int": + fo.write("%s %s = %d;%s" % (self.type, self.name, self.value, self.comment)) + else: + fo.write("%s %s = %G;%s" % (self.type, self.name, self.value,self.comment)) + if self.value_set == 0 and self.vector != 0: + fo.write("%s %s[%d];%s" % (self.type, self.name, self.vector, self.comment)) + if self.value_set == 1 and self.vector != 0: + fo.write("%s %s[%d] = {" % (self.type, self.name, self.vector)) + for i in range(0,len(self.value)-1): + fo.write("%G," % self.value[i]) + fo.write("%G};%s" % (self.value[-1], self.comment)) + + +class component: + def __init__(self,*args,**kwargs): + # Defines a McStas component with name and component name as first inputs + self.name = args[0] + self.component_name = args[1] + + # Possible to give AT and ROTATED including AT_RELATIVE / ROTATED_RELATIVE + # RELATIVE keyword also exists and sets both AT_RELATIVE and ROTATED_RELATIVE + if "AT" in kwargs: + self.AT_data = kwargs["AT"] + else: + self.AT_data = [0,0,0] + # need to check if AT_RELATIVE is a string + if "AT_RELATIVE" in kwargs: + self.AT_relative = "RELATIVE " + kwargs["AT_RELATIVE"] + else: + self.AT_relative = "ABSOLUTE" + + # If rotated is never mentioned, why print it? How does this influence McStas? + if "ROTATED" in kwargs: + self.ROTATED_data = kwargs["AT"] + else: + self.ROTATED_data = [0,0,0] + # need to check if ROTATED_RELATIVE is a string + if "ROTATED_RELATIVE" in kwargs: + self.ROTATED_relative = kwargs["ROTATED_RELATIVE"] + else: + self.ROTATED_relative = "ABSOLUTE" + + # need to check if RELATIVE is a string + if "RELATIVE" in kwargs: + self.AT_relative = "RELATIVE " + kwargs["RELATIVE"] + self.ROTATED_relative = "RELATIVE " + kwargs["RELATIVE"] + + # possible to have a c comment + if "comment" in kwargs: + self.comment = kwargs["comment"] + else: + self.comment = "" + + # initialize a dictionary + self.component_parameters = {} + + # possible to store a preference for wehter this component should + # be in a include file or directly in the instrument? + + # method for setting AT and AT_RELATIVE after initialization + def set_AT(self,at_list,**kwargs): + self.AT_data=at_list + if "RELATIVE" in kwargs: + relative_name = kwargs["RELATIVE"] + if relative_name == "ABSOLUTE": + self.AT_relative = relative_name + else: + self.AT_relative = "RELATIVE " + relative_name + + # method for setting ROTATED and ROTATED_RELATIVE after initialization + def set_ROTATED(self,rotated_list,**kwargs): + self.ROTATED_data=rotated_list + if "RELATIVE" in kwargs: + relative_name = kwargs["RELATIVE"] + if relative_name == "ABSOLUTE": + self.ROTATED_relative = relative_name + else: + self.ROTATED_relative = "RELATIVE " + relative_name + + # method for setting RELATIVE after initialization + def set_RELATIVE(self,relative_name): + if relative_name == "ABSOLUTE": + self.AT_relative = relative_name + self.ROTATED_relative = relative_name + else: + self.AT_relative = "RELATIVE " + relative_name + self.ROTATED_relative = "RELATIVE " + relative_name + + # method that adds a parameter name / value pair to dictionary + def set_parameters(self,dict_input): + self.component_parameters.update(dict_input) + + # method that sets a comment to be written to instrument file + def set_comment(self,string): + self.comment = string + + # method that writes component to file + def write_component(self,fo): + parameters_per_line = 2 # write comma separated parameters, up to 2 per line + # could use a character limit on lines instead + parameters_written = 0 # internal parameter + number_of_parameters = len(self.component_parameters) # internal parameter + + # write comment if present + if len(self.comment) > 1: + fo.write("// %s\n" % (str(self.comment))) + + # write component name and component type + fo.write("COMPONENT %s = %s(" % (self.name, self.component_name)) + + if number_of_parameters == 0: + fo.write(")\n") # if there are no parameters, close the component immediately + else: + fo.write("\n") # if there are parameters to be written, start a new line + + for key,val in self.component_parameters.items(): + if isinstance(val,float): # check if value is a number + fo.write(" %s = %G" % (str(key),val)) # Small or large numbers written in scientific format + else: + fo.write(" %s = %s" % (str(key),str(val))) + parameters_written = parameters_written + 1 + if parameters_written < number_of_parameters: + fo.write(",") # comma between parameters + if parameters_written%parameters_per_line == 0: + fo.write("\n") + else: + fo.write(")\n") # end paranthesis after last parameter + + # Need to add WHEN section here + # Need to add JUMP section here + # write AT and ROTATED section + fo.write("AT (%s,%s,%s)" % (str(self.AT_data[0]),str(self.AT_data[1]),str(self.AT_data[2]))) + fo.write(" %s\n" % self.AT_relative) + fo.write("ROTATED (%s,%s,%s)" % (str(self.ROTATED_data[0]),str(self.ROTATED_data[1]),str(self.ROTATED_data[2]))) + fo.write(" %s\n\n" % self.ROTATED_relative) + # Need to add EXTEND section here + + # print component long + def print_long(self): + print("// " + self.comment) + print("COMPONENT " + str(self.name) + " = " + str(self.component_name)) + for key,val in self.component_parameters.items(): + print(" ",key,"=",val) + print("AT",self.AT_data,self.AT_relative) + print("ROTATED",self.ROTATED_data,self.ROTATED_relative) + + # print component short + def print_short(self,**kwargs): + if "longest_name" in kwargs: + print("test") + print(str(self.name)+" "*(3+kwargs["longest_name"]-len(self.name)),end='') + print(str(self.component_name),"\tAT",self.AT_data,self.AT_relative,"ROTATED",self.ROTATED_data,self.ROTATED_relative) + else: + print(str(self.name),"=",str(self.component_name),"\tAT",self.AT_data,self.AT_relative,"ROTATED",self.ROTATED_data,self.ROTATED_relative) + + +class McStas_instr: + def __init__(self,name,**kwargs): + self.name = name + + if "author" in kwargs: + self.author = kwargs["author"] + else: + self.author = "Python McStas Instrument Generator" + + if "origin" in kwargs: + self.origin = kwargs["origin"] + else: + self.origin = "ESS DMSC" + + if "mcrun_path" in kwargs: + self.mcrun_path = kwargs["mcrun_path"] + else: + self.mcrun_path = "" + + self.parameter_list = [] + self.declare_list = [] + self.initialize_section = "// Start of initialize for generated " + name + "\n" + self.trace_section = "// Start of trace section for generated " + name + "\n" + # handle components + self.component_list = [] # list of components (have to be ordered) + self.component_name_list = [] # list of component names + + def add_parameter(self,*args,**kwargs): + # type of variable, name of variable, options described in declare_parameter class + self.parameter_list.append(parameter_variable(*args,**kwargs)) + + def add_declare_var(self,*args,**kwargs): + # type of variable, name of variable, options described in declare_variable class + self.declare_list.append(declare_variable(*args,**kwargs)) + + def append_initialize(self,string): + self.initialize_section = self.initialize_section + string + "\n" + + def append_initialize_no_new_line(self,string): + self.initialize_section = self.initialize_section + string + + # Need to handle trace string differently when components also exists + # A) Could have trace string as a component attribute and set it before / after + # B) Could have trace string as a McStas_instr attribute and still attach placement to components + # C) Could have trace string as a different object and place it in component_list, but have a write function named as the component write function? + + def append_trace(self,string): + self.trace_section = self.trace_section + string + "\n" + + def append_trace_no_new_line(self,string): + self.trace_section = self.trace_section + string + + # methods for creating new components and modifiying existing components + def add_component(self,*args,**kwargs): + if args[0] in self.component_name_list: + raise NameError("Component name \"" + str(args[0]) + "\" used twice, McStas does not allow this. Rename or remove one instance of this name.") + + if "after" in kwargs: # insert component after component with this name + if kwargs["after"] not in self.component_name_list: + raise NameError("Trying to add a component after a component named \"" + str(kwargs["after"]) + "\", but a component with that name was not found.") + + new_index = self.component_name_list.index(kwargs["after"]) + self.component_list.insert(new_index+1,component(*args,**kwargs)) + self.component_name_list.insert(new_index+1,args[0]) + elif "before" in kwargs: # insret component after component with this name + if kwargs["before"] not in self.component_name_list: + raise NameError("Trying to add a component before a component named \"" + str(kwargs["before"]) + "\", but a component with that name was not found.") + + new_index = self.component_name_list.index(kwargs["before"]) + self.component_list.insert(new_index,component(*args,**kwargs)) + self.component_name_list.insert(new_index,args[0]) + else: + self.component_list.append(component(*args,**kwargs)) + self.component_name_list.append(args[0]) + + def get_component(self,name): + if name in self.component_name_list: + index = self.component_name_list.index(name) + return self.component_list[index] + else: + raise NameError("No component was found with name \"" + str(name) + "\"!") + + def get_last_component(self): + return self.component_list[-1] + + def set_component_parameter(self,name,input_dict): + component = self.get_component(name) + component.set_parameters(input_dict) + + def set_component_AT(self,name,at_list,**kwargs): + component = self.get_component(name) + component.set_AT(at_list,**kwargs) + + def set_component_ROTATED(self,name,rotated_list,**kwargs): + component = self.get_component(name) + component.set_ROTATED(rotated_list,**kwargs) + + def set_component_RELATIVE(self,name,relative): + component = self.get_component(name) + component.set_RELATIVE(relative) + + def set_component_comment(self,name,string): + component = self.get_component(name) + component.set_comment(string) + + def print_component(self,name): + component = self.get_component(name) + component.print_long() + + def print_component_short(self,name): + component = self.get_component(name) + component.print_short() + + def print_components(self): + + longest_name = len(max(self.component_name_list,key=len)) + + # Investigate how this could have been done in a better way + # Find longest field for each type of data printed + component_type_list = [] + at_x_list = [] + at_y_list = [] + at_z_list = [] + at_relative_list = [] + rotated_x_list = [] + rotated_y_list = [] + rotated_z_list = [] + rotated_relative_list = [] + for component in self.component_list: + component_type_list.append(component.component_name) + at_x_list.append(str(component.AT_data[0])) + at_y_list.append(str(component.AT_data[1])) + at_z_list.append(str(component.AT_data[2])) + at_relative_list.append(component.AT_relative) + rotated_x_list.append(str(component.ROTATED_data[0])) + rotated_y_list.append(str(component.ROTATED_data[1])) + rotated_z_list.append(str(component.ROTATED_data[2])) + rotated_relative_list.append(component.ROTATED_relative) + + longest_component_name = len(max(component_type_list,key=len)) + longest_at_x_name = len(max(at_x_list,key=len)) + longest_at_y_name = len(max(at_y_list,key=len)) + longest_at_z_name = len(max(at_z_list,key=len)) + longest_at_relative_name = len(max(at_relative_list,key=len)) + longest_rotated_x_name = len(max(rotated_x_list,key=len)) + longest_rotated_y_name = len(max(rotated_y_list,key=len)) + longest_rotated_z_name = len(max(rotated_z_list,key=len)) + longest_rotated_relative_name = len(max(rotated_relative_list,key=len)) + + # Have longest field for each type, use ljust to align all columns + for component in self.component_list: + print(str(component.name).ljust(longest_name+2),end=' ') + print(str(component.component_name).ljust(longest_component_name+2),end=' ') + print("AT ",str(component.AT_data).ljust(longest_at_x_name+longest_at_y_name+longest_at_z_name+11),end='') + print(component.AT_relative.ljust(longest_at_relative_name+2),end=' ') + print("ROTATED ",str(component.ROTATED_data).ljust(longest_rotated_x_name+longest_rotated_y_name+longest_rotated_z_name+11),end='') + print(component.ROTATED_relative) + #print("") + + def write_c_files(self): + # method for writing c files that can be included in instruments + + path = os.getcwd() + path = path + "/generated_includes" + if not os.path.isdir(path): + try: + os.mkdir(path) + except OSError: + print ("Creation of the directory %s failed" % path) + + fo = open("./generated_includes/" + self.name + "_declare.c","w") + fo.write("// declare section for %s \n" % self.name) + fo.close() + fo = open("./generated_includes/" + self.name + "_declare.c","a") + for dec_line in self.declare_list: + dec_line.write_line(fo) + fo.write("\n") + fo.close() + + fo = open("./generated_includes/" + self.name + "_initialize.c","w") + fo.write(self.initialize_section) + fo.close() + + fo = open("./generated_includes/" + self.name + "_trace.c","w") + fo.write(self.trace_section) + fo.close() + + fo = open("./generated_includes/" + self.name + "_component_trace.c","w") + for component in self.component_list: + component.write_component(fo) + fo.close() + + # Method that writes full instrument file. + def write_full_instrument(self): + # method for writing an instrument file + # could either use generated includes or write everything out + # will probably create an option to choose between these methods later + + # Create file identifier + fo = open(self.name + ".instr","w") + + # Write quick doc start + fo.write("/" + "*"*80 + "\n") + fo.write("* \n") + fo.write("* McStas, neutron ray-tracing package\n") + fo.write("* Copyright (C) 1997-2008, All rights reserved\n") + fo.write("* Risoe National Laboratory, Roskilde, Denmark\n") + fo.write("* Institut Laue Langevin, Grenoble, France\n") + fo.write("* \n") + fo.write("* This file was written by the Python McStas Instrument Generator \n") + fo.write("* which was written by Mads Bertelsen in 2019 while employed at \n") + fo.write("* the European Spallation Source Data Management and Software Center\n") + fo.write("* \n") + fo.write("* Instrument %s\n" % self.name) + fo.write("* \n") + fo.write("* %Identification\n") # Could allow the user to insert these + fo.write("* Written by: %s\n" % self.author) + fo.write("* Date: %s\n" % datetime.datetime.now().strftime("%H:%M:%S on %B %d, %Y")) + fo.write("* Origin: %s\n" % self.origin) + fo.write("* %INSTRUMENT_SITE: Generated_instruments\n") + fo.write("* \n") + fo.write("* \n") + fo.write("* %Parameters\n") + # Add description of parameters here + fo.write("* \n") + fo.write("* %End \n") + fo.write("*"*80 + "/\n") + fo.write("\n") + fo.write("DEFINE INSTRUMENT %s (" % self.name) + fo.write("\n") + # Add loop that inserts parameters here + for variable in self.parameter_list[0:-1]: + variable.write_parameter(fo,",") + if len(self.parameter_list) > 0: + self.parameter_list[-1].write_parameter(fo," ") + fo.write(")\n") + fo.write("\n") + + # Write declare + fo.write("DECLARE \n %{\n") + for dec_line in self.declare_list: + dec_line.write_line(fo) + fo.write("\n") + fo.write("%}\n\n") + + # Write initialize + fo.write("INITIALIZE \n %{\n") + fo.write(self.initialize_section) + # Alternatively hide everything in include + # fo.write("%include "generated_includes/" + self.name + "_initialize.c") + fo.write("%}\n\n") + + # Write trace + fo.write("TRACE \n") + for component in self.component_list: + component.write_component(fo) + + # Write finally (no finally possible yet) + + # End instrument file + fo.write("\nEND\n") + + def run_full_instrument(self,*args,**kwargs): + # Write the instrument file + self.write_full_instrument() + + # Make sure mcrun path is in kwargs + if not "mcrun_path" in kwargs: + kwargs["mcrun_path"] = self.mcrun_path + + # Set up the simulation + simulation = managed_mcrun(self.name + ".instr",**kwargs) + + # Run the simulation and return data + return simulation.run_simulation() + + + diff --git a/McStasScript_documentation.pdf b/McStasScript_documentation.pdf new file mode 100644 index 0000000000000000000000000000000000000000..457b3b296c4449289b7166deca54460a7e692624 GIT binary patch literal 134169 zcmd42bC6|UwWdA!yF>@;?6NkS~ zD+4DJ5fdX@V*u2$@*^Whni{l<*%U|3-BA z7f_u4GdT2;B7|BzCMImAMn)WL9EL_l#-=Prj3$ii#zw5{CM=xB#+>X-d^~JM?93cY zjHYa?CI;-RoJJh1h9)MQtjwGo2BxM)Y$kj<|D?dt$-%_H8pbWd$k14S$4uW)U!Mb- zIF-A{$_R1P4R&G*G&X~aP|+MBr4wDGjnjW*hf*MpQ2=;AHDkJG;02J)uZ{t_FHa8a z00*7@PeT7&!2b_Y`#%Hq|7#oOKT`gmgpxNfGjSyRON##}iGNk4uz{0-m95#o@q~%> z-%9s?S))pXjEpS*y_6Xl|AS@!BgOjq|KvAoq6e0wn*oYR061lGq6fsdjt2vFS$&rwW z{aCOq*}>>9Y|Q__^4Ie( z*#3d?-!c0q?tjAkzr^gn@t%o^o%P=du{NpsD}J2~xof&w|4>9l18NHh!PEZIbUD31 z5odZb9aP4FM3q8{h%)-~dOi|@RPjjKG;DPNUyM*7XZtf37+%f=TJFnzIQ#eZ*0%S1 zW=-h9gr<4id$0)h6cas)CDT!X%+>gT@SD-C&&d0;s9JW=B>nSukSHBe8l^QUox=oG zs#T%^7mB^4?o)bY9Gkb6v+&}BN;oyjU`6w&s>e_xR5CNwNFs#WaKj%bnrQ|bVg({`795iTcjLZZ1lZP>@!PAM97Q|Xu#f2gEU`_IoV z2=hi2^HwCviX=YTDaaTsdx-v zh*`Fm(e+vLO?6O&n^+guti>B5&A)wnGum7buDRDPas+10VX~F>t!mAJ%icfD4K0 zOG|`Eqlz`2P&CN&XL=jjnc^EM=uRycq3*JrxD8|=wUt;FifdnZ_P|>%pKb`Xvx?h; zM;Q^+zz?T^O`G$ouZcda^Zo+BwhAuL-cuC)p&~ z2|)fxZFHQ@mfA7Vj#(f<0Tl3=Z2TfT2(uVPp-vCWGH_1~Y&GoewAu3z0aFX2$#UsXa8b(_s5cl|N${fwfLykmH2CdR!WU0vM#%tk9rKQxsj$ph;7XEbyRLzEwE` z99;3BjZzLx(V%~ji#AUc%Q6%%y)Kx@pH$qJ1{d07$}#uXsbJ-CEEsH56BCi_+a$^* z9srd(;6Wplc8wLsIzp? zJ6e#X&X;GDab^$(Xo`bOiTWfeHTv@ER6CR<1=-h*m1jYZZbDG0dx(NXzv|HK-D zJ&g%DrfHh{Ca9@8i2R&@;8|kc+Et2f&JzM4Io&^0M1n_iJJCyWqd^Uvm%eEn03|)?q!v=Q%gC)6#%I z4$1&;T490iBPV}G8i##$G-UmtV{c0b_O$1s+lN~Pr9N(DgE_&plxXB|f;}*)3eT2b z)#%I5c$?&nh!39DaQEJgRB8qXFt9cRa$#KN8E39Ej?=OOVAyZ$x8+t2F@V8d zOs+DBbAo>*0T1+HVI7+vPf*)-q#n}IvN7MNx~WMDJqN0M3i^S=hy+@dMh%u}ry-kL z0R+hA8O zIhFzbVqJiFPLvE5Tln5OKe`?^1!|Au`CzjA%g*Jw^hX+IGfFGH&~7m}>CSH(H&}=L zShRb_vML>@q=SA{Oo4<~=V1c6S+Y-q`bn!drI$~>54xS$IE@vyrFFqxy33A~^;}pl zBJ_Gh#am7{>K_n(w?=MPy5&2SGJkSm(^NiKS9+~|=f5#7fTVquW?ztY%rAUVIFo-m z`LbvH;t$^D`M~eHru-0kYV{=X5~hqqw4CYVBwN(p{N`1+JL=nN zSM`9_ayH%2{z!Xi{`uXFO+!NNV%pIR%Y=zz`>HEA?421um-Ya+6wQa3GX4+|nL{n% zw{23(sW`t20iOGWtfKOyDJla66y_9AG`mXw^Tv=3UKYt#0ZF*MhNzK3rph0V_0y`x zn-tcg9?ahb#9z**E)DRy78H*ZaD;C6;Q;tJU}xuWw!21=5X-%2le2L{0L6+d201L! z+vrp4emO+^_A{)11et56!C*pdX7t_W7sQ8tGn3brIpjRVQ*ID${6M>DqHD%NK|iws zC+%YSwTL_N#a+Sqe)wOSb*6v%&;Ns7iII?zh5hd#h7s7SD;vKZ**}o3i2WqO-t`ii;__l)|3Gnq9XxwsFlRf$kapv!rX$XAy9pjLw!>d z6Y<=lC9u{t&~LVUc}vht9RWm!ZvY}mhM#E_J)0!+GDa3M7;KDdJ!FkN&`Qhes@sc( z2Jl5ih1WN+P{u28oaq(eFJEM40eldMwjB9i0=S(Sf=g^w^y44rC<2y(kox=k`vxB< z@Q98;T>dl@JwT+)YB)Ll<6-EgPe5=X;7})Lk9w59!L7A*@Lo04d3bnICULb>h^ChM zoFae_V#?tJ@J>LSTp%?;eAr>-*&Kns7O|LNSOw-G4(^h5Kn)Mi431#IIxsH;(FJP8 ze+A&IAfLdxY2fA%6+_9}gZ=p?rv4Ju2m9z`2VygA0u;Y642sY3Q4CUf1_^OjlGJ^H{w(e4w29Q~Shq(v*^opbI z*OR2$onGVQXgmwzpRwWV5C>4wm8SS!sqm`;qEl5>#pj~~nt=v-Xs9uG&D5PAM|v3^ zeOmvR^UIF@Ie?`9I0rU^U<~f%p8L|0(h3S(HDx2fpZ)Fh!7gNA1gidrMjQA@z!DMj zF#CeuG-pxo-fDi`6&7=6_ZQ}^i8h<`LaAg1xzbw1OI)V=*a4s3d&g1_}SfzbU+Mu z2c}u}N1N8_3wd16rE*)?6afTOg@`U^yBWqeG&1oK;6)#AV({$X*wR697yaXfiQ~Jo z0Cfe#@YS<#rL_gvbZW{}m!g7R$nba%`u3lo-{lxT*v*cU&A;-SlEuCQzqRoMa>!>uOx%GDi4ZNcFxKpqeu^FRHn0=1 z{OT-@mmNN+zt}i+364sUQp?2a*!3b!dMiY5bQTYLQgjNum_0VL1T_>{=WcxR+=h%N zc|7fONhqZ3=pEh5Hhcsn85xjH%X{yNmhD;-bg8MF*}PkLm9^>CrWemYIJE0RZTuyHAwf7$NEd-4i-*6!?Zu z7+_2!voe<4=x^$yF9U?=^A2_wO<5wz89E%DzPV-)fKL~++Jy6fDNXgrrR9d|)k-D> zBQfLdz{6KTAe6q#)}KwcE+u^0NKg=r@k7{#)*834@xIqM;V=S|^tAY!d1j+$CzXs! zTbj=o+T<+=$6lFj^IPzf@ZWla&MG9zCZr7b$Uf8-VYBEW8Y{LwSq$beQ3~|%E(2EV zK~CU%|FGBom`jsde~w=xkV-T*Xrge%DDHeP;ZmZRG8|>KbZVZf`mDIjcyTbUy+xS4 ziKFu_!`B$_BDM{%?OW`Rva#QOp1nAkAkcPz@b1og-e^iaUD=8FO%i+Wb{)bNN0UN5 z+HO}ioE!PQ$?N$0Z9X5D@?Lla)YyVnv3yEG^34%tzkjG#K3!JLY6L6a^phv`6*2CV z>pr9i4Fu^K554jbuQr2=Afbd%=e19G7R89dK3eRe{k#Vvh{v)%6z$O{%=J$(Jd+=% z6YxO2)+44Z)w}dS4x&8-PkEsLNzjDiQgF8^c2u`Xq)2I-7mBZQO;zR92tJSQZNi+y zh(znjEpVFCHXs=)xo3sgf^0 zunFj%W)I9qLYY_oM-l0X@-J8H!0|Nxi{@oiTp(L3E2~ANBCp`N&1%{9Bv4@YfOx+}OezDI& z=9jwUEz@%T=xNPcg)PG9gf|cTuh*!Jke|Aqc)a*zQTehb66W(=LB4@LGo6+Cbx8KB zl}`4J7v-c_ommQu1j772BK$R8Yux!~r!$FK`_dja9@IguaiXpw@i(k;#U3Rb;W$^+ z(KtF!IhKG-q{|dd0j-eR#z>Nr9W`NFc7}9mrJRKwPb4jj(~qbW?c_d4T-K)gG|!et z{dgzf`#bS~*^?DIE1GTQLoH&k{wVap3)%V082Gb%Cjb0g{0(+qdiY*t(*GCiY`@%P%R8BcBw6rIqm7N-T zP!E4@p>%bBgm6R1-?|~R13lGiLv!%u3PPg8xyFL7uIx~?q^T}O6Kdqoo^b@`8o!{I zI7FQTL5ewPd>Z+yZ2BeiEufl7r_Vh=U5 zcZ$_AT2?qzl#&mVp&5nbL@U)=Z7SPPgwA5_Ip>iFY|lBf8*Goay%-An43M5|n2t53 zyuB>nWug%M7{g#1AYZ54`8(&A2RoR!hjgXM%al|eR5i*C$s;uNN#49jIV1d3B*LmP zvSeAUS93-*N4orc1dZU%K3qofe`?WV(XZ;tm`#O$AxS`v{4s>wtT&!Uj-Qqn<3D94TozB7N~`l zrYdX%VuFf@&=9ag_2->rLS1W`vfpINa($%}(b4&8F9QL>jJU#$cO19WmvEOp3uw|UR8@K^pZ z?3)fDjD@A+;`^qy|)N9Vgq)(jo$n^ow?dK?J#svOuj zZq#$|3FC!Uz=qIKab<%^#o69YbeN-hipMR+RURzZJzz{$R@}L-Ia)1VwU85Qnp^-r zyu#uY_egXH;R7tnK7aVtF2%)RHX*WHbQDD>SpKN>M+vvGu$&-F2M+N{MeR^Adt_GM zA5EhrgfH1*va-GbN_r^H^0bq-JhC;nt{va$nS_XdANT&LWZ$;%LsF+olNC<56G#8*>YR7pl!yim9omgUzIjk_-S*_@>xA;odk5V;pBz@%i+r6nyDrgCK9Kc z@p;C%1BIzUb&{@1+MMq`kK1ZsK-?w|fJSLJW3nm3`*>vuE4o166ZT#H`#rQ;Wh;#1 z6y@WYjubtUToKCCTnJQ`qD%g5nkoP`J$uOIl+-scl`NsP&&KD}&a2#uP0Pf~;&i2z z-t`56q(yU|-6NjIDJmq*8>cAHWWNhnUGoazC#K9s9yay^G^_Vs59WJB>5lKuI9d$d zcd{Pc0KK|+meEred{iL8hAU*x=Tuv-rihrH&vMm(G9Z_mSt_5kOO!HYE-oWt%tpay0$*9;BzKSS{q>cZ z$Ayp!Hfs1j=ld9t%k`><4iN{oU*gH_31b9y(3`0)suAUfz67QzA&3V4Y4ai?*bRDv zt7;>d@&^&WpyVIHP!os~+WQFR*vclodc-8Nb}eA^mMb`}YtuTcTSpo&<0E$BErU_S z(`Y-`^kXI3ng&&oa*3z^?69al_i(;4@KqkJVdQ!&?n%nFiZ|WHDK$Q$YSvBhvB}O^>d1(ggP2Vf`?L zYqy$a%qu1L%Fe?()8k~E&o^t8DxpcA!wtEJO1h$x=GG_-{H5bNDUdPOzHG)Y!#jra zGj*f^a>+2>d`wA%H#`fME?(DL8J!dJ?QTgZU;wOXRDTQaa;Z;PNq=MAMVq}2+E|9( zU)%-vuI-hZqX>=&d11*u%|@+ok+5tVR|JAR08Xmc%EFA)b!M?g_*ulXtQo#*|Jge!kFc)5; z5uhf~1eVsxyM5(d=!YIU?U9?I!xj1WFQApS(u;4Z5Y;e}qFF^vc{_PZ^YiyYTS%(t zqV>5djWZ;(b?q_VU|VoqlDPj^D|bg&<`J;_dHbmMpZFSRnp54$OMW- z1w}6!>9xV3;RkN*WTQJ)^b@spULuRIW22j-@VH7}?N}*cm6t{1>1u`+O$nl#NZgnp zH_{R{b9qjFb6~TsHAB=$yAl4woM|jd`lEcbMRpCoB$1pIGRA7wtbi@r94?n$D5v%8eXc+Txk7_;RbW7fP#k~o~-Pcr`x{zXtkK^jOk;#1`+FlA(W3q%XHvy zJ-j8W27#S0J4({;cQy3r*~>Is9;DYkqfl-!7p2*`OsUUSk;^xxSQ~|Rm=f_})X_tW z>q5=Re%K%GN-42N-PS1LNcXg@Ra)=yLLt2!Nl85>tyJtdce0iWEV=K^ld+~#s3LWA z;xO#snj$rka)^lcOen+JRWlC-0)GtEIcn^V$>cbWdD&*CT80+gIhWTJJ3{BB1@u5Q zWQ$zLhN(Ebm#R!ZU`N*;`j!g!-1%`8xwZ|lX4^t$MZ5ykji%n&#u&=C#SnlpW+@WspH1>1dv;Jmt$xI^x z+VoD9TQ4CezT2_Qp&G7P6X=~#6=f{ns7&X{$sjh#@NzMZ?i(0<4&@c#0@Qt){^HK) z%A_|-37hN=VV63cIfJjz3ArdDmlyLrr2RqaFg~%}FiBHbLcG=G)x8wfTR}dp+|Yqk z5bbc?1>)#OTFxhL9O+=9ASh7X)o>%SU;)%fWR{7HnlrUmVoV2c5?%NaYb}H{BM*R1 zjm+C$3{WgzCeuoD4ZV_+{bdWc-o;L@%Sr1FQkt(Ev&}U=O5Q@ldj$tY2xd;=qB^S6 zf>bn!!O>R=$CynDaL)Q)lsnNI2=(yP!zwZiWVpHY3WCTQizp|$o{YrC{@4j8^OGZf z*d8CXqF*`LgLO^uYxbZ8;0?~*S1^}_KSwa%8ZKW5hEm;_v=lw=!5(gwd@tUMI14AZonO&-bqzdHE1sg%ede}p)U-y*T#2G`sAa4>Vq>ebSa}9@=8Rx({ zCfF@&S**~BcM~*T4ra^ugrFKR#-Lr4}UTxLTdNQrVBI$8wZ z9i^b8W=F8ro8stsH#NSof@?45x6zz>jk{DxKr{TIvYM)sL!z!WYDMDySOsi@MeIlF|kRg|-YS5a<^()-E$nutDTAh8sq7VYi?Pq-_PAM-w zMue-KJL!Dj(s!svM_x0FZGB{V0tHo93lDm1UTzjd9tNIxyrOMCCh`%w!K)~Ngp)Dx zS4Qx&bp+6}oSMbU4ar8RL;eZ!m;Ln7%t68soyf0Gc)!ynImDyA4V%;ubm=yY?j$Sf zuu;O%6C)4xN&u|k6}ugz&f8%LwHmG5V~Ld+00stKx`MLWs4Y+Dn7qo*0k$LLN;GVS8|Y?l#DRPLhw5@S0fS zt|!>GNM8JrR!AuM6X#C+fH-=QQ^~OYrvt1Fr)npm(JPi~GM*ipo;-8m_Jc?xbngU7 zRTzIbbSGIjOjgFDiQ@1K?&5iTCN4WV3%a?54@+q?S<0w zeTpP`wqKnn4CwA!uYN4c6sCy}k3-NKk+%G1$v~L4>cfbrPo1ZB-gjAg#gC}_{^ep< z8}MdDN1J4a`GQ|RsH;a&`?BR_`=ZI>sO9_DZ^eY)!vwW|k79%wRq2_jE8i4hKh)%A zF+Z<%N;PuCE&+ACX~=?FeE_~xi{knhcTyoQwLlod;N%N3x+T|v_`R;HOA`t?W0JJP z#5TQbHOr-&;07~pXlCQ#>pcnyqG&QKDtx_aSF2;oWBh1CphPOPTj43+TPiyw=86~S zD^T)}cA{1ln93c+v5>VXK=G&h@EcWJIZ}T%<-XQclUPHsCY7;?bLaTQssKQK(MEWz zF+Xe_9&ok=Lh>Y=Gfvvb9y3^`8Sd9_yCH<6kQzNpQg}2b_<=X0~pv zs5ebtma^5C`z3vp6e1=%#$)Vaw_Di*MUz-dDq`D!o9v}d+2_x+L&R{ajR((O+i8E; zh*ISh8O5GRkzrd4h2s-`vavjv$(7w zvkQ0szC#^5p8Au)I%CB7zRwy%rbQRL91vlt!a0;#=3fvhriNUT7-(a2DdEKp2RTyl zf}p{MoirDTNk?6b;k6YRdPz)OXvh$?hjLah@gy%VR2o67GmCuq+dx?NIdDWoE?q+F z{$h=lO`I#VK>!I`MHh(i7m;k_d1U}^I;GT!lN7=QWL@HZ+bKW$FN=1 zZjCJ8Yi$WAGS0Q?J9v0>ZuB9iun+Xq2PAxm5AWP(hGQgzVW`*@^NJXANuimf=Oot9 z(lvY**|1ZTA9E)DNuk4_tB!fD-g)s@GkMergUg{MHmXslw}2&&-CD6L$GUZeM{bqY zrtkp9wxy{T#dQjpf=oyUn=cU`K2fr*n|PADEzOI(W7t|9|JzOZX09PAy-CT;Yz5^S zPwKou=`-EsY!W@oS5u0C2k zL3QK%()G0P<7-^rVTkEA;NAKg?n_A)$ZcP9gG)~-hfB|HMzfkP0WSnisE3Q34SQPU z*FS1+Y;V$s>{QEgKCgA)kaT{!-jPeFGa5ZOkpN1A-Hs{-7M$ypqh+RJTXfydcj)`O zJ2N5FWD{HBq3%lRea;vu2D-ws_s~tknu`Wu?FwmUI16gimCt=g&nUe4pS2lB0*ip@ z<$e7p3N`0X_)}ZXtHK+`m^;RuFtL(2TJB~LJ=xXwX1W;r=4Aj_uI8j%ZOaVv?K*+8 zo-SJ+hHs%T(|-O};=Q@+&6$U^S6}GWx5LUKwHxotNc;KnPhIj+uMdoq;|dwB^E}|P z?kL{6+IWL=LUMx!9cHS12?CS!S}yFx*QU==2 zX?A)Wq#{%(Iv80??NLKmMnAW9g}2u-&Na~QsK3oY@H2T;;{)@BOv@YuV}vsidZh4l z_LQM%g^}f)%lARa{zxeK55WAfF3E~*t~mwIzL^I*WOjBbN_QG&->-8wPnt$)gKV{R z-X_e3Fe_dk7P~i-^p7w`_Vmd(;AHr^lV3)lyQ825b8SW z>!%Qt5+R>cl}=Vgy%leCbFsmB|0-lWr$uCJ^hUQ?8Nw2#Yxj}drGn71aP;(egdn@q zNdF4}lz!49u7D(gB8r9lGrLww>me3^>6HSD8X8aJW0PqFLYN6R6*AU)%6pM|`scP~ z8YJwRd2xE`X4tpPa%JdGT$yz_4wPRSVhwVX-9F*vHW44EBO_K4Q4yBR}f;ZRr3_OyQ9t6)9_|BJWH(xMVCNg z@v6*bo8nWd0|tRFtvIlkM}5t1J%7T5gZCiA;{Cd7S!j?xdHZNNOdbC-MFfTHb-KTQ zn>qnxnWx)GL@E!d3(Ji{JbNnMAyI(Yb^Nr|kIeJOZI*~w7Ii)xE~XoFq%`4-lOlz_dBWK+JOEFJM`_`;)7EXw(X^fW2=e_#+FW(B4XR*Cub4CW zwPblEWc3g+n3``zchcOgvmEDIaCVe*UnsTjvBwAm+qdUCj$5>ZNaSgy(*L{-i7J!n zXvN&@Dke5fBuQJV(@~?XeYF_?9^#ExhDRFWh)&Ze-lpgu^!~V%DDQzPd6oWSUF`os_b=yll3OLnlgGNb+v^wI!u}^fo;O%t7#!qG0E+vgp&mw*l z!XC5UiDd`Juj)!;Vc;%^c=1nKFpok?NZr^pAr&j0R#r7wmn|SD7+iR#w6d@M#Km*n zki~sUE2!&h%2cQEL=?B9;LS*s2RE-dm;vs!sR9Ic4q;)Ai5~M9%|15fi@zBjHB(_b zri6Rw6!C;hL;AE{Uqc!@_(U?>3frsdA+rfZKCu}ScR(zebf{xwf zg!G|fCNcfVXxn{|^tSztdeWqv{K>E7=9&Fpbs3!hrpx%3%2m$LLdnVczbh@67#Z3B zH?nnELgv4UU@>zC$GSu1vNf$FSCa@G1m`i|4 z1|vYw?F{K#5SY((cfHSSjy}zDJUkXMZ)|C5URpdimk%3clmy%gQT~)h#KuR-6@-ot zh}2z?aw`l_A;$b!fj$dv5GjGKt6DOq*2jfOP+5~BPW~G~NCW&*fg;#HUS3ygmn!#< zOCM#f;bGvsP$3nR*$!TWo$3k91s8b(Ware6d;v~%mbO1GDH=WO(vz6vGfqs{WKdN8 zXuAFKpePV3qma9~qf{r53elIkFPOV{BJvPi`A|70_0?U-4gjBdD8qzdU*$c{JK+4j z4p~g>Be+5GdkFsluK@v~_s3-+KCOxA=rgeo*o&>M82Yp4NRB`{CXOr`OC~CWXCJRu zr;o#{T}KA;=i+dadQVo35JWdk&&NA2#!l;_9}gk0-u$CXFs9VeS5s*S&8+G`WiN@m zal`ZBM;4*Ed*+qve7FP|xUtqcYY+=;R_V^`nzknEg$C=>1pHV8-#|^nJGXM;(+p=_EO3u?25Xh65Q$nEPyI>5kk!$8 z*@#;z=GbKh{S7`P%T*1X+}-|sH~0D;wE>zlJj_G!N@0hbsu|S9@=Wofk)V#FwV7t| z;~uLPbW%%unh*3z7q`*v`)ZJgL-}gu_7!aXC+t#9YjhD!u>0Lt7Xb4cKsDba)N;zD zh4ih!;9+4)m$I9@`KN2{YccBwEVmV=Xl^Leb(w|#dQch6fR0ZSK~tb2aerlHXICNO z6`=psx_}7}b+Ok(@>-l|9&?|3G_WW8k!`biVAfWjYQ6yJd@!qiQJ*ohp=bH)Wl297Vf1b(TI z5MivsHn4n`hyR#O-N#QSP-{pvTxg1>#9!El$pl^kk}eCW?_=}NDAw@U^Uo(C=0u4x zOfzWjiyaWRFvA*4of;SToU+HQ1DjQj+SO3*v^BN98ZlC?Ja<=m?AGE;|A|8h@X#}_ z5CXFf$LCo&t5?NoiFSZ^EAfS;GnR&nWLw&Sk!-aih-8a&Z~^JcqePKuCn_Jx6Yz_lPNEn1s_YK9Uj(G(Qb6cM!ml85goH+drnrQ0wS%-(gfW0O zRHKORNj*1{3A<2yN^$6rs)*fMg0yR;?T-gj3vwww8us$2L$@;rf@SD+VaZ=9kyp{B zDp-5X&}1C`irDF_;19Ukz(^v+hpSv*y6~kI*{FSdeWl-|h9Z`fL{S^EZNl6jm5Qz2wvDKUbt%!8;#Do!rrAtS#(#d>un~3m8dEGJ1cj28mf{ zP7=L^ilwR&L{GFi4+bZyvP)roq^Z7M1^==i+*PUi4z$3G%Az(HSi;vV=CSrm6O#MM zMR{c@*mKIX{e0_`YBu)7P)bZ^8!F36HJeJ9XE`Cx)6N-q%z^NDTu(B8aI&J-z@a|3 zi>VLIgfV*z*JWie+0=(h>CUmL82iBFPSZRe8l(l15va`Fv>?eev^!^!vto55cM5X% z+g+Bu6wI}HbM&(L@!<}JUKQV`PlwP^U0rA&|kgx9;LVK<- zPWs}xkni=Qhl&UEg8R20yxM6l8A#mN-78f6>z9%j8G2J)S2iZo-}bDA zG9%_66KHKhQ$9L%Cz}1?=nlBkrj{3htSs=F7O(&Km%K*%LwFECXzJni_uw7xy(pb< z&8)3aj+rgxyFTtd!TjM(?A}n4TG!_cF%93<6Gun_P_?1%leu}|bu31|^zXEG<8%lE znSt163ysWtnl3WCW}5}wGih)btTybWM&V>tepnjMFso(AV`1RkHK>iq#>+|fTxAX+Q?w#y+(b`|%Y{Hg6ZpSZc{5IS~q57r_?c0uHym>XMJA52cxjf!) zydDGq-SCU&{Fi2h`Jc~r{*OeYOicfL9{8UkQbsmbHs=2{|6N7O$j-se{O@hcTEyc& zGSa1>AE16aSLoQTvo}e;zuC55k|AyG%YXtvPgXH8$ zTVJ#L?iU^a26OVzLjmXN7j{~DY)?VJL9fs{m)0#9gb<2nI?K?5oT;g5y{aC~uRMq!OV zb!RbugUi>lvO#jTe#^m7=`xd(bK8iCsi~Duk6S0vEcG8Z;i(iz&e0(umes7 z`ig^%fzqKyQO!p*TTy?UYd534MVr=9@@bJMF~Vux7e=nCdoPw~YCx?TjPQmg|4 z=Z=}|&M^5t6o7nr-UUj*O8HK|+MWfFGBv+)WB#_Xvb2V5uxD@n`#O}h83Y)0zyvE} zBjW@}04Kg1*H1O7>H1axBc~N@=45mCx)Kz4Pe=-Ar@aqw?#SZ8(Cp}7Y{%04_Uq@q zp7~a^#>9}wz|tDF@%{nS^YWL-B%Z*~_3_oz%k_9;L#=b;?FT|?+ImXL7is^%YLvp{ z(8d-P3F(_{_A_Ym#RE;Dn_z{U!+KG>U~4d^rZ`#aOfgWiYF zH~f(e5MI&qlMw{N=i}=&f9Eqib8Ta-!}tEzGa571F9~Q%ikUC1J3wS#Uy}`x+}m^o zkVn$=1dyreU+Ltq8JX|%_mKiv+P5cxG{CUXO4=G&`+M!`o%7RdobLMyxD0>*#kvD< z99{2nrGpZ9ES_~vuDdXCN$ZrzygqvIo!DOp47EoU$8gEJ_O<@G3(npu=>U|way+0z#ZZD5GiY1J)h3` z7umoOLIB#&a1P*zJV3~g9*QTuJ$(>{ux}z$p!@*>LtqA}FCtZ-`~?C-PzI@QA{U_i z3xYi$hOy7w=d(M&NoQLhAoRYoZI8gCy7(h_>%8asYdHIn z-sx5RPxnRB6#RDx!1eVG!As5d3BfDb_6xyl+29qy3&Zg7ug~xkGIcv~<)ici-{O8N z?z^V@SN$h_T_@!FSM;lQxeH+8dhBv*c=L(C?EdS`xZxYJ%l4C?FJ-&=>ZSNY56l7h z(@6OGD(V_x^jpuHE{A13zEyLeL<p&Gu$d7fqvQ!hKrXC3 z<_(82ED$FCAr1X_jQz46 zHG(7lIDc0%Xh=X0d@Y@npTp;NSrQ5>JU07$4i8_#w)=oNDiRbt>B0RO9}J0*?dVd) zHPatmTFOZvezp{SV@`)Hrk_a;sep!xQ-y0g+H*cIat2In?4SqK%D;@0D%`iHW8el? zs$*z|emT%JEMUW^F@8|V;3k+Xv5#!KgRD@BOxBi$AViiQV`C=o=$5GEx(W z@jwc;jl`a2@%Hqx77XhtXH4sys4u1i2eO9nt9F$Q?2yVhSC^Fhq(etG>ZmNZ6l_F1 ztqGee#f;De`iCL&-z0y|E;9VqbLp|~<@2$0z6La#t{vNHQ?JADPHM{s;261~HiZIM znmNaAypiWuDqF#*m%+(P!J?^Hfg;t?+5dPGJ=Ra$Nn60Zuv88+mx*Yxp>Q}CSNp4K zc!528kq+h9!*e7t7}~Q1C%jdB|5(_tNgC2pN~^;++(f9tr?9?c5wfH=vRcoX$*%qK z2UcubBD&Kj;$x%Sj&_klw5hjCb+Xr!HbI)hCB!%)MA7_2^VsszPf`_^%bOqLj_u{Y z@r6`?Q=q#coJn|- z)pLtSlV=eUX}9i`g(^ba*#Fk^!1z`VUCifw0s`MJ5k4<~?cMWksLHo3*4Vz<(5LPp z)cUBRE0fVnT~Uc;%C9Af|E;DLYL_;zo_(2r=9LWKE4I__kHAtB``D4&0hP|*(I5Y@ z5gf*)oqBc>ShR0hgh!`oo%`xBWouyL}FT|E+-p6ZT6Tz8mcuRaoGF)fGakrW)#C88W;JuaZCA-z-ou%;tnxY58&ide~L14I#SK9o1c(8Dg)C9XxU zYXh20tchJSq1)?oU7yRj`B+xJ+Y^N;T2X7ebN`j-f+a$Q!Sm6DJccLJkCtl$ZE!j- zQ^QP%G-dCrTB5t>(HUiJx4`!mvg~6w$0e3ksT@tde3apgpTENjyep93NxX4%*0y}} z+8OeTQzQN6GhRxYh%en|!;0)p!Lqf&bE2}cdu(F%*>V+{UQ3$*g53Ff1I0z#XGgn5 zG$56OB!Qf^3F))nNH>8g@c9H))`RbsY;kj#mz*pZTiY7kpijarLf$XSI6oowq&MsRtN5~xoOcKCywImO&p0z5ZJDU7z_k!1M+ zGf3lx_aX>awfFL-3vL`DdBN7V^dQ(0f|rYfTIqwyzS8uRS~#Ci&KL98Fb0@&$08{i z&$UN&ZQHhO+qP}nwr$(CZQIuW zRi!E!B!kR*a;lEHclX*SPjW0LBu@#d{vami%=nrkgH$>AuwWM@TfJ{XSO~Evp{KeQ zS;N_ASs|pOs$!$h_gxct$Y<3XHe>9*1(~;7JA*0Q-V6Tt+3~+IzUR9a9jh?oZ1f# zhSQ+u|ME0~uLEN%3x8?Y{$?7g=^W7$K)vtzDHr%&s8O4u(#M0}F|uMa{zC|#6+p@#a`;Vq3- zdIj5oy5gK*BB4?r%-^Al9p9-F*>TFUE+G8Hr$a@VQR=0`1eZ{Idb!=AnH2f1^_)IEoQ`x{}fDvBV99i8ZqFmj(+-inO66 z@4};FLVMFW6LmfxgC$b zk39J#qbb_)bjo`CI@NbO8-Vg-Gs_i2stYRtI~%y(4285=h{+O}TZPJ0RrT+gWUQ4$ zvLy&B?IghGy$U?e+-$!=7tSR^^_9%+>-rTOR!?NCDbCPQqn#>AzvY8aN+*mVFSy+( z#CeFczPRL}Vhhpg#4tuat`wFYMwC1QYGnU8P^=HzC`ML80Bn+3O@VDhUdP3*2Z(u_ zA=w~Gt*_eY^uzvCH*foBk~j6_a2DuPR=V3uE_<*~X^a}T3$3c13ii(lTL5lP-`?K- z0!4j(22^zBaBfm8If*~OJ~Z2Hbfgwy$CFr7L zDBc=`MY|b0k?-Ce6frnP7ig+zK+)hs(B>L*NHwEmzth~%o0Hywpzhm2OrAM z3&f4K9Bp>{3F=G7jA;E_+owoACpzT2$ya$&iwI#xpKe48Fb?Q>^+`t3XvJdINdbzV zq{`pwka|9w$Hwh+4FyXU*QeM4N+}DlZA1C&ZNet;2GrP(=8>UrllsH5(7jCTnigpx zc_qC*3Y-ZjqAEFCIg+_08$vNSA~7|Ny?UCTUd9f+;oVRf!hmLbo`C!r+;^<5e@g~! z8f2l3>}o2dm)L=3)GBZyj~pAG_SJN6_bnRWyE|Jl(c4)fXS~h|q=P`ec8}@~5Y{jG zZ6)*(HGpZM{&7H|l-pQi+l%;IC%p-u0>@r^G_}o&_2tzED!MgXI9UP3pO06+EaB%y z=+PH3uQMI|vqX(!aEgfkra|yFt4RpB4?-?7E#zGdrIkPVGTp{AHP!$76jBxE3 z>IfCh+-Njvf%m#zDg>yH0(EoMn(s1eIUBGf7afVjLWNe(jcl8!+q=eoFQXwwP*RwzPVc{BrmWM`o`xSh8U5>A#4Wwk3 z&1jT3k4x6@EqdJkW0~v$0#8zW>ns(6PqbC1ACy98ea%DZ|IYZ}{%@fCOgxG;^$6=> z-Aw*0J$0c>F(${CUmV<-(vc1P&x3*E@P1QR*Nb8{^6MLvgpbLOCXrBV*2|#7+@D2h z*|C56zRI>Vs0s4#6Lc=eBk5nSz?TI(X?9KffN^BQNsRZV^f6CDjKOTt6!$4LiMOcwVY}^1!Hxl=n<;=V%3{+W1hH=jBzd`-0g5_PHH(EYmr$G)@>axENWZvJ@Vb1 zn!}Rh59suF3*>ELHm;y%4V~0jv!qIrQD_1n-8wrm)gqoKEMxTTZ1hpI5^b2xcR0Z6 zk$;qzSF!2R;mYQ~38~BjXC`vOpB8F#Lf)3iRO^6_)Ij}p-Ds|~``coC;(LGP)x+F) z(qv$CZt0jLA=+*UsZb6*@KYNv^cEaT*l-Hox~488nUS4lp)`t<4VLUT=W(gU3&llZ zg6sw?dKwG&45}#j92mwBnNpl6^{bU~cbTqSu@KKb8IBO4>6IHH>lt;uLDZ_HH}|43 z&rOK)KyumicsWrA&#_9eiP{b%^)r)a@0%Y{HE`Sw(Yr8D3FiS5LD7!@#FIh-Bqiy7 zQ8QsGJW3z@8tO>hH%nSA%?}%5I)AzAWvl$m+}FFeDc*4zkpCk&^vcMwUPeLdsWvZT zowozR`kRqa-NAiYcgzqcsc%nZQlIZd|QsmDoWu}~Eb!4J(?FG6gqh0?!Y>#faD+a1AK(P?F<0nA=;jlgam< ztYgaBVnB1S@VHiiH9$VPx|=h)1*e`x{DiE3$5QMLz8=$LxKB}Sapce*iebd-F_6G8 zE?=O$C!$+RO#4@LS1g2~_}IZnvj@JDo;K^7wF~$D(0~yJHR8C|aVK`=K7xsE%kQy^$HFFON zTZ*mk-vSDA`wexVbHNz1ypfX%q$d{?Fc^Y`CA;2rK=z-@worf(l&$SgIgp5p&kD@) z)6o~9uq4C)>t+}9GuV*B@W4L=ohEzpNQk18dra6(JPNMBiFOeVK$^Acd~s`P*xw`J zs$?DJLJ&EpxA43^wC&H6oxcNA$Nn4qe|-&92~|H}M<+~BDRUOTZkN(cvup=n;iUc< z$$g6<>hj8617iU}xSO#_*{xiXa7pSWRBgq<{t7Bo4NVW2xQOqh=0hEM{x)?zjU+lS zYF;Upsm#8rCB1`puM-%K{kk4~Vo}3JT}&mgtviTNeQmk+V4Vo7{Kk+9gT|}Cr*Am- zzPieYQciokmn7=6%~5Vk1o)c)M6S^v2t9@c2hz9>m7NqLTs5#A@+N>wK*y8O4C*;{ zHBpSfA$Y+h>w#EcK^lJ5G+gH(?W4i;J98;FiL)xgxvum-ru;rq1h1J$3bgzPublRL ztdiKKqt{OZcDKw#HZ3x^Zh(fm`BIC+V!||{=6gxAzcm_2;3lS&%LP1r)KD@ip`*Jk zwE?5FBaZr(gVBSrdkEejc|Fhtiw!~I<$+H(&mCPg*cN89i1Y~h`F23W?gn4vw_;!) zZ*Eki6gBhvFt^o0KK_%*ZX-pFb0Iy^_!_#pOy%ZS&0G}oS!2jv=^xk2wLmsJQP}24 z^#(Y;7y6D;20AFrgH_c1fV9uxZIZG`DPYwpmcj&`11{rkxRb4q*u+V$bS_@n z5^@{pi=D}-0YRRyKOaVFj+uN-vnVJchsd@VZFXnQLPm614kM~H>W~$FeCnOO9dW zB)iTXPjZQl4C0)|*4G&tTy^0*k#U`eP1RD?U7N8QDkQhu;aFFj2uGxFjx)~kRJ_1k zKeoedcQNH6*TE-|&b%{@h}?*zmgJYH(XApa5eZzd{smsd3C~WTu3mWt8g<5 zW1}1iSTg}eLX@B|-vh&U!{7{pGROzzVX9{R^%kOYwwHUQ2os%(nt z?LNZF-=!Z&wze{UQ~82U75~mrt`)SvS>RP(1kWd7U6itM0Rt@rvLyl^%c5xenys4m zV{7m|OI_5K)2=$AW+|lF(g47RIIx%H zbn@&{O^@{>+6VdvbgSPYgy=JU^I*EIwK^P%>+Dm%X-bR$S9c#8SoWz~cX-&GX1`HY zM{BI(2(V33$G%i$U0Al31drRF&Q%pBvb^8;^(Zx``5*MAr1}+v+Hdi0oL-GDNhpR< zhj^P-d2sLSc3?U!<-^?F=`&k!13KauSZ-}Aca3;Kq<~2wjz{!gvnxkNe7E00GI(te zx#=~-$ID?>D`)Voq_HnQD?)}Tsz;%Au|+to5#?-~VN6{+ez6OfZk4JF+&9P<7rFQd$4r~S zOUL4+$5By#kTzL?K=a0Ph$^hj;07t*qW1jUyIXKnfsw{FE8j)DzLCy>`ZVwtWl~kz zs6cFLK%KQT-og|pP<-7K?Ae(Olj8#Ek@1U}zyU=$!97#}QdIxsFWuL_#jSZsHN{v? z)ipMQTSY(vVcfYRD_fqZNE4_{^{q!k&GlJ$J$ha!9>3^Kd&xzj^c}Ha;^jj(4lc3- zD@rPV+Y`u70;=OL`G_HBgGDeK%=*pCI3r7?9RFayIMM!aD&bmQm&}ruWHKiP6MDV7 zg$%y(@NqMk`gy~5(uEV)jqCYgB8K_yIDjG+oXTOgHpstc8L!$pwTcidc-$M0dZLZr z>zjoV-FpnEc$@oj%8ffqL>T9p&dpxbQP}#ND4)7Cz>K37& zae5%{d5DCS*zoGSTE6v3ms#3a!!J2BGusB`%o%>yCecg6iGR!B6m-^7{TyqSn~!RT z!+Zb^gDj`h(XGJAd~vnxD5GCrADdR)E3@j=>J;wic2)R6S*S`3rnS`( z16}gjaSqcH0>;o5E=CgM!bRb+XdY3eL#tZv9HCo?l3RXZFlg-Kanvt}W0JAL9@hdL)fK}<6jiqd@u&!tbd&fIO*E+QjW?Rk0ILkt z$R}b>QAnvpFZyGghy=2RQ_nvluFa81edO)gmbY-wLXz0ECR#pfB`~b}w~-Ymf*#g^L+>$JTYw&>6il*<$2cKeQB<>K-wxeGDog5c~jXVDI?KguTRqKLnuTXdIc`G}X;R|2n>sWMO9;?WFg3UOr}qPn+-3 z6lLcDbUbd7MyHR34HU(TGp7e0lO{gJoi$=KfpJiYDs*|cJyHxLiUZ$%jlv3)7+%2& z^>t+x-HYXWp2l%B0^<8vh=AgQxYvk7j~>|@x_MX^JE`63jQ~W*P`*n7)2<#-mq>D< zF(^Ys!yc24kk$>0J9#YUUD6^JJz0Gu0{ut60Wyr=Yu62K8wp2y?`~O{q=l8Se#L@M?D9NsFxuo^ZT3K!b|4l4+2N0n3>pyy$ zDz+vn!pt%XI+a?vq0Bd6Z>g}#b!{ExMB!~xCw!p}Xr)8b(o>vO0eOh0dCaL%=!8~T ztminiDYL>{`P<4eaUSXDPP0>G!STr74Xb=bPF9d)jJRg(o>R=DyF|&;H@YHhi~B5b z>`$(C3lU53@l=IXNvOE)<0C@(k*w**cjs0Q!Lw+ zB0mDQ@-@ROJ(1_uc8Tv%e!S@BeQs?(1YfWhVEO&Y;UN6|OEniVi{C+!3cIJm)d57l z34sY+(ccMNB3siW#We(PUTr478C9CDdoq13=&`cFDyAx7E&GXyTAl>yP4*c$E7qJzwSM~s4;&T(kvY8=anN#*sK8^r7jdy#+Qa+~WY-Pi@u(u^g{3Kk_i zlTE_iwe=;;w5n{kyZks1yC3i(2FdjFZWNO@&1kh~IRd{F5lck?*xbLL{8}j+VM>iSsxf7Yk!jROh^(a0Ro9*@MvP7*wFy0_ zj<>%;nYm50!e7K!_85K7mxDaBU)7LO*lM1?_g;*5fxcQYDCIakO+qy_ zZLgCeD?{QEDl`JbpwN}fB}Y^wD-+nuF7nZqIY(?{s8ThboaoBbV}aOc5b^cTSjz!H z&cD-TUXFaI-7=|K(xl;i>ja{fvuL+1)b1F-m{?-Soo({g!ZZ^|M$IIVqt zANWLr;@w9pxQ!FJzCu9oRoYgksDL9|zoVv2KpO*o-_nb0;|+iI>EZQW9m_z>pYm+l zw#BY^q^E9wi$80GWCA=SOxG}oy!25*55_jM(2He?4crfsDzSY$>8ty0Cb)i)2E?iU zLt^=T6_jJj^|+#(I=oOy@a#o@Pvo~Q-lo)nu9-kZF%@i{U^BBd0lfX4Gr~ZmRJlH3 zII$EcE4@q^iCS3pf(~US`A5C=h>^kqoxJ%?10+sOUYMo$rd~!JSYp!xL6?Z#YdkajkF#)VJ&W987Fs5zS9mH|(e!S& zJX#%e-PsMvfQSF=`4#_)2>Sf5pTO_GF&4_xPP2Y4s8FYMn>%5qid#k|xd1Txg!4_H z4d1uci(_*y9N}6S7pTZ|z$7CH_ZLpmHDVH*W#pY&TPJR}>ikdk0(P1V^=DsgBR~G| zp*srNxz-ga*HKp2419ao!Uc78I{0`7Q3;v;$Oa2q2Ekwv* zP5}?e*D|h@e>2@S%gT6=!hR?^9)jN`g?GZxLx>_0W1}Su=>Qg-&~-;)&(aw)ON4(4 z;Di#r)*^f#;K)_>yU@!kTMRzAi%o3{f4ZdCQTNE0lUr6_4aQ# zCjTI#!)TGHPEHpezEUVY+Xa3}jZx0*E;vAQIlIl^S4EM`l6=5RbUB2Sfg-;h8Z%Mi@t(G1UPHSR2<-KEymeNKs zU)2zUOy_-0(0XHfz}R+NUP4z|c(-CJw@C|7+NKZ45Bmo=3- zmCHW%gND%LY14-!)SRZi*CI>RSa8&YFC!gB{6hM4!X`QRq3~|%4NrVDO?*pxrqt#3 zrbeK-6A{-cXYFoa9Vhhoq)~!ifr2P#AWS)$+hW4kL~5%yYgbfa<_59bDMIow&#V-Y zksguk9TB8ulB)jrb%ygZtEV$eQ#ZadqRe6?LwV&Z49QKFyq*$rCR=eYk0TFyY3znc zRGL0lzp~7-{AgFd<4E8nQ1i=*7t-5A6dUDLQQc8XrNY6|Va$44a$5}%qcjUlrJ^=O zN8CepDjw1Ae~U*rCy@b>j)k8Akrhux3%%wxY7p+bv=5ToWKWUnND4WfQrKDx;C*OHhG zwcL;0T6eqy59fi@4Sv(2fcj9xtFn@Bvp*5{p?Zuk(EE|qf{u6-O_(Y zS&JV;^$E0%6eq{a)q+%r_rp6JW`LgDBd;aJp@aO_us4_Ib^W2e9&@DwMO42KrCn{m{ee6s6HSHjS|xXxC2uFRCkZ3 zk-@oKbOeeiXP1}x2Vr)gnVsl{5psIh^V8W&@6V|UtFYU@2Z^*z*Kadq>#1k2m@;?x zM@#?|!@M95C$BJcvYZ1ma5jhYNiclTkx$x>>Fe591Ae6?^ zbQAFGv^v_nwRU1-euRoZ8$5~HArScVIhkMt>;NTqj+SZxZj>|ow*SHzS%BblC3<=E zcbUk&P#6G{1>@elIK6+UE-h3#nu=lJD@;OxWiUGa zK{~M)(g2hR4$%>Pndo3XIGobx^%^`-5NxMvt# z(wBUZ0`!DFCxj^@b#PcXh(UO^<$AQbv^wAs#Pu{tEZ0TZ>}~F-kP%Y}HW#v)b)6-z=(}>Qan4c&hY$OhnrP2BvA<#y?#emle^RI5|0* z+cIKmcLgAwTv%1%__8+`8B4Itr7pDk4`9H*Duye3$MZ zgj1dRZU?$(J@@iRW&t<4x3?y-l}sG9o@4laVOm+kIlbX#UhB!u z23^;r`r9XD5_Q3k5mr)s>zNIjKkN;l7RhAxcrs4k2*;tPQT8xSj`(YmDf_OuJ%`r( zG>Lo(6y^BT?7H9*ia+GMQ76$R&LIv!{r#b z&DF+q3`nt+>k(h}X^DFAeVK^PvS5J?I8FU+gqE7R5x2^R$mM@fg z`8e(9$7-IV12TLAg=YG-1R>Kc4zKXJS7F_D{)Z(qq!sIOXj_^HZjVqkezd2+VJlk$ z{DY}0p4{rOzRgyY7KLN`Gze`_y_h1aJk_*pF$B}o837hevXqXEjZ$9hqA$Ts`!nksDn%g692Ww*7 zbOKC$ga7?izv}ud33B9mww!clOonF+y$~^CN(?u;`@E0tO)11$dX=hS$FV0YwqB^~ z6xUmh-Bo0&W$7e8#It@(EF;Y&v$LSp)k^pOs~6^SUogLa+U?32>TpyX%Q=;0kK1_939H;1=iygN%OW&3 z4J2}oxfdhAAAuY$y-Wfopu#dp?)N$N`@#zJg8dy-Ot#+3_s`xDkjUmw(d}BRwxr0q zQyi=$IaJ#3ti=+y-!9PNRV=G<V+*JZdEq zBl-Ij`{6kSqhAA!Ab}$=;eDS#_L z1oq6N;&~+Fsc>B=rKwZpxpvm8QP%0?AyC1Uzx;N2Vm4B`B%>9o&J%FIg^2ND8{ozg z3r7_D+^0~@|>buume zXukF4MgkFNlOQ2D7BD9r7A73b{X4}F24yup9&?$54Upq{K5J>7y^f#Ob4(cBGtMgD zTA9}9B9y(YF?y-*Bgc#JVB#SWgF5{3aW>^B@2_;?sbF@Gkm!rltN&WO9@$~95tIz+ zr+WiQ3%VW|N8InBLLzN=s)#2AKgOOCOn%0EjbGEUAd-oQ{{mJ4E12FlBJe2%d4 zgNY_%X-Gc8X>|LdClr=1EGm+XAj-dA4Zi$A%@=z=53gC8=cX=<{C=H4RFnPv7|ZJO zn7CvYc#KZVmZ^OS_FcHLeHC_ypv}5#{4S`Dusw31kHIF{8Ua{x8&#&=S`N&wqH+g? zNFz>y!s>g+7m^}x3G%&oDBB}u(T`v}TVhUB3I|~cSmu=T6{;cQSlDQN?{D0Y1fy$G zTXN6d<;s%Dkg^$d9kCPc3}C2kgfQN6cLyTCx{vh9 z2WwpePDi6KzABkFHN+iRg}$ue^gZ1biZ&-Y+UhU(@v_uTKVy?6*l6oD(?%-X=nboE znQ>mWj8~dFEB+R;_QXtvVL21Tp+lZKAzlburM}J-As157oplnTS?7$h)k)?M(fMc% z=53#I^R0ZfstySt#IpaV3#QyRwfZ8I4zWrxRa*9rWWxh8sP;XeKvoCQfKZ5$bz^E4 z%`iaAa-h<>Kw~M`-75B^vL+jp7r$-7938|Qf|jSg&f0#c5to~TVQFBdFB=nr8NX(t z1)`oYr=3UT7TVuybT?2z2JWpyfrrL{YbX8Bxne9!>uI=z{N(;ICr5|c>G!yeh?|22 zEI|;G4P5&IkF2mMbmRmlJIhijIH%FS0sY@0dcrW&5PX0-DC!5{r|z*(nT=eSv2HXL zZGYFyy|RB!Ws7LCpWV6%bMS)jTKq?OOV+&StK@1l|oHq4+%Ob;ngW zLlDJJ4w#*=^7iXn2*nUXs>Ug5zm(Su(pPQ*X9-IV`#G-Qh6*|EaZkuFK z&U0P3wqArt2Ej?s>@AwvyW?BZf&2#i+yEjcD5KY|4;@_*wAZy zj4C7{s`nD}-C^ti>x5VXo7LV!1f8$BOCwuLL0HHn2vwLmc3KqQO0?{uNe-6BbL!uE z(curY3dYK&ha{sUox6NbKQABY#gQT??iO56f;{!C1-mL%dS;MD$=;$>d@3_fKH>LB&d>t3jWF@8b z-UMoz4I|CxeznC_2Ga4)85D#%{i1ru@f&Fs-O9QUC|O0q512q>yb!Mfp4$7-ydxEd zh!GNHeCNB_Py`$!En^na>=IF=Lp|g1-`+^PTtKVGI;NP5%VdH zjyI|W$V26Kt~k~wF}le}U3j4DwE&SYr5p4V{?%0+eAKb#Il%`V!5n12;zfIQ=4@9eVY30|Q3J%pcco@EnR`pf6&IWTmkQ+)cC-KQB@6Bu^Vb(>n{QCtl zvUGv81(&1)69n56mdk8jbX_1lZ`7H?l%l^vSyUGmK4s?N+b>tr@&HBjL_~0Gas^FT z1n#MN(^m{m%Zrw#mYD?r|K~jvC)#tT$MxWmO7NaPFx_Ccg>17Q{M8k8$92uunw)M4 zYbi?UdBIxN@imy5jYr#~+2*R6A8SiDB+;n+jD=|*F3J$p&%M|X8&>hd$fLnI8M;kr zfEqXFE8!Eg3?)|YN6}mQbR$dp=oovIkVcH7M9$3uGpQA+-7Yk=;dV)P1Oa2=zgBz~ zizs&}F-Gkh4CH>XY6)m9Uf8)YK0Ag8K}poj%;kgwmjRau&BBW?@G_mPEXcHQn@5Y* zRFG=|?ayH}_OzzatQh!v?)4_N9?#e;SVClo!ENauK4(0VrEXQ!3U@1H{r-8+mDP$& zj!KmeUvy{>AXCP=(UVFl$CCTOjP9vfDyaKr|Xs-BLoZ2lAhYx|s4gEx@{qTb332FlUyFsHtO zdRxcO>i=kV#Az1wR*&z3cUupEd4Zu6C0=LN5~=f4IlC!P8NwlwU3_16G-pdsb`@!# z3wR(~SG|J(1gFBj+1`=YfPODq>*4y6n#U(o=S|h5(CsjMLmb@_t80!cYweD9y}cEe zOQ0`ir5uCj5UlUE#Zbh_bqK*wTdyp!)@6}?QWr&TV~R>_S6m7t!CJp93Ok$~GNny$ zE9?&x*nQsLPGHWbKG9Bvo^gi=KW!?Ufn(2GVv%4MaM02#6TMx}sj>tRak^}k53}3S z;Jb6g)4drp$1~Qy!SxvPJxDU!mNg1D{U6J$lA(2H@()&ZweJ6+&6>Xrg+LD7CIQ}b z&@gQ9a|wk&DDWOKCG$h`T^apcAlpEj>M-xiVY)3q1)y|-mht?%D>MPd9J-?JqzTKz zamyC;jc>jrm_@S3LVN+tIU`So4oAGluEdy$i(DY9Bk1&En21XHv+D%3wh(fsuFyk_ zV2m8|9JTH`37>D<5sZP^iYJr+Jf}HhJObwpaMBpWgD;AB#~nF+$&OD03{z1raMSjT zEQ{*mE&*|BJk|ajxqk+llx2k-jk{zWoUU)7S6!zTE?V^tG3COX-UIlm zdzZ%UOnK^ey-IZU%3yqy^=~#nodAi^4-Zndz)BL#4QHF@!mB#G^h~0cE@|LxPm`n_ zSH-ALdGE3#gXP=YJL8aQ(k)Q)PSxp%v#}5olson#s8H+gR##dKnR8)j+|XiY;3BIr z(A8D`yH*|dhw#@!?qa9w#d2{B(_IhjsPZZdDQ=KzF3^~*al&C3)HFJtHzZz1oQ!ZR(eC9S-L>;1ijV;no}VaJZcE^m1dSs1GmG!I-9M~= z*k_xwpzVAUk2Cu=x-!_Zm$QnM#F2*h>=?JtQ&Bt_0>cn_e3A#mt+s%(odSzetPhgF zz1y1G40M&|r@-BCT}B{#>UVCmdD*+~@fiG&Kf0|Jy37X^>wmjPlUQ{GYH23?Y<)Ezv+{{ z><}a~Ld^%>wa9$quuOU~GYld-)tPD^D5!u`Onm>r4^wS@xRa`og&hCt zES_u7)&r?}s-w>PAviEV)*Zq4>#{Qz1?jtBP*Qw;6gkGEpjV}LU`8ovFuvS8aqv$1 zZv~$D^NbW?#KF2_w4MT9Dl;Sz78Hu4vREV-JtFIVktY{d|MO{l&~SHj8BOqeA->*%Vfd&ahNrZKS${m?>m)=xjL)vkn6AIzRcB+wwTli{j{zC>%FUuDzuc=WJ?z(W!@2W&!?%uj6!QsGFfnjJz26*C01Gr}(7UPHO^WyUtk+fpEBSGlfo z2TH5m!`Ct6mlC+3;vmXlTS&32T|p5}q2WprwfKe{Q(N}8ec#cXoC14p$3MBOv%z1$WMEj4i<-a1gBTMWqr@y4ybAX zD}*>7Kavzvv2+>dc-|KeA$jZjt;^j2=hr4VrT|5xH+{qF%qjIae2^9Ny}YM{CG(jK z58S9=9>3r;OVXx3HC6}{Ulh^^ZF;S1MkQ~!CrLUyb%D`nqhU@&aofx?`ndU*F9c>} zXtJ-0`6p~@QdjP(1zz6I3)$V%YPJ3rqOgVWX)}mBt~W`HJr9+`#;6FhLFOl_I=f)& zWG;kaW1o%k%f{k0AOpGi_b~!3iW)3h4SCK8gN~@Rr<$&w098>SQslOd5a0fNP=(ci z-8FtFp-w$23-YTJqM5~>WR|i*p8Rn2?Wqcu;K&WLW%KqlbJ07{Xtl*~N@6(`wvbqd zPu!tYlqs42a?5ZAK%hp>ul`OetO;Ors^Fo7mTR?0@`b`!W8v$vC|(F99pT(zFby8D zI0A`}Jd5X6feAE^WA|{F37AVK^Z9Fh$dM{pHnrYf5u-DNE^)}Hqe{^UB&1GLvJIdt zZ~!eZLA~i0w$bT+c|>1x40T4Eac=a`;Q5bE*2m|Bm>&2b-&!6CXtQPuGtUg{TT{qY zKf$Ep>ZQ;K9jS>C$t;=WpI(_XkQk*YZK4rwR@@B6EyB1*N+pdvJx*>>nd!_`_8EXv6bPAK= zBAK&x-wM^#3b9YlkEN!Ip?5*H^w!PSh$)`?@9E_!+sFwOt1$W4nnBN>lCMRi*i7z! z{a`8%n;@gV(J2=aP>0xf>fopxWC>&%%%^-|fh?s>)~uYBu^uZ1gNy7+J)HATs&f2z zVJ04w)5V{e@R`h+&4Rj*rS3ERg$e_U3+Vu<#CEZl!I9!*nao9Qm%B}VCq*u{Xsi3+ z4=BOQ&2xWzfD$0BUnq|dq9OiCRk}2=V|)dKT}zx*^Oj+Kmv#VdUzz?4fJfW?+TCL7 zC-fvTqeW@W-N?T$H<%kpBoJZyX!CV4yd#61R=IP#u7_+_+j|C5RErh>A`fbw{zJwS zqa{a*qY&86^v8-}Y2aMA;NF{I2W`Z#x?a5|*L>l|Iq*m30wS$6Fl!dB+~Emq04Fnj zo@20aHX}nwuY8vUwUvT!Soj;Lx1f?6gfQ@m>5=s)qXzDPh*EqDiyQl?S1Go9uur!% zA;pMl5u1qilUuvlE)LK`CRQztV9Od)k=Zie3yk&+tMkSazo!Ga&jgar&ndSHIsMD2 z;Wx<7-X$xMGq;+VNGSsE&`xij$m1=%K+Abz3)w7TA~SdNq+BhJc@sC%#rdqdr$PDs z7`XjX9`e;A0D;C@#++Mb<>9bk4Ljx10hD_H-#Z8oOJ5<%FZos)*iFNB$j~?P=ZwrXnfsCGP{kkA^mdd((@OjXKyE+ct5#$tf!12qWHF zt^`EHLXL(k#!Ka7N&d|xpGna2lHI?U&A&V!4ytP@oHL6|Q#Oi#PV$(ba!fR(0yj{w zAK>*Q1r|eHD3ow1^%h6rf(bdJ5#btjgo#C^^^{QX?XOZ2m}io0u!*VJ%}33$WPd$heLJ*q9$_ph@W!Mus90CTuX=1isYoZL zVZYT-izb109O!cXS7bntO!!^O{K7Q2Y{8EU;+^7&@6P`;m9=Ti0}8aCEFQzzobl}; zpp(}q7IJ3*)Si0!V++VlbJ=roWob|Vsmx2aFcZP&JK&(4smvdzG2Xoo#rPLj$m8zC zo&5_-mOqEyiB*8|d@uB?Z#E?b+?YKkuxp9&UyIgjy0851_XksfqSFkRbf)c*q^*W; zxlYi`Y?ph65+3A}s+lH|bxW$;wh!`O{-dY|&=oP-vEcMH&R3L8ne0)^qpR$fHla@9 zAh|8HOJD1)38QaXShI*UKsy*em4(Q!I!Pf@It57A#`Y=mo1TYfW9~7 z)b6GA0pGJq!rpYmvl7*nr!?z&2nW+qjZCQ1_%S?SEBeS%f;?RVq&pTN@Xpwn1> zbUTZ&Ga}ms#DenX+gfiz``din;wSHH#ROXGd2z-B2sFx zZw33+f)Oi)b9Qd5Z#wx63kWBgpZ^ddwLJeeATu+Aj(2SUqi+C6U+>6ZZ^ys@oQ{sx z{xdQ^8;AYJ;@m)$yaY{yDNTv$i%hurc>q0_Fr>N5{b6Xjcc|2M3tnSV=Q6gTA7Y!7};?>mi)N8wZ~E2Ulcn{$Pjscc0S8(gJM%GxJ&`^Eb5qvIorn zad(mr^zBCN(G^z#3Pk<~(?LswRrD~1w)FQ@{x@~T*8EMQ_GL9yO=BGp=_-rrr$YtM8TTJXrZaAZvGuc^Gn-fRQIB$e z?DX4Bl0nOeE2&R4IwJ;0|NPwi9PrIy94{Ppf8@C#ij@D&50=3{V0U%)V+izKAs4=X zc^2We4#~s}m>%MX==MBk$&@HyeE9;M0t~V!%+J2KS8{W zRX+lF8!LZ7?YxGT|AlJ9{N=;bivAbaA{rYys@fmN7FzLy$1&x1>?il*hm3a|^B1(v z8;G%`;g|jXC$6sXm$<(EE%ClaPM`h_>{|@-Yw@c$K5$~B@r&;L-2W^W2~S#zTI z@b$p>9rhWN@q_mgR`)XoJ@MLyIW_rgcj4ETauSrnGyiZj@&vE+>Ni1s{mUG8Qp607 z#$}ctk?`UNu5b7$|5HRJ{hv_wbFl%gLY5yh;+KcArN_#zw$De5Cy>ocd-W&(o_}I& zbN(FX%IH)7ne=*uYHZKy2J(C4&O7Pq+VmARBnFe_*B=+!^$YAv@AL(n!PmX>2go<* z_1|il*Pq}!;>2_L$NH3h)?^H?58oFI&ir;>@YbgP_WgP~0{GqX8MYq-a~R~}O>E@1 zgj(j!*gAh8do>z;Vvs30>rBR6)5wI+@03+A0JCD<1oy(c;@4b9$o-&e|Mhz2Fs})P zwGxxJ@Ot%~k5S0owGGn97{E!RW<#vJ91R^VR6yan_i?&ceQ5=-1-VKlov^pt6H=ZQ z@U*{3w6DFS)%*_tIY7q0j)g4jD;-p^%fP>s&Cq>Qi_-Nko+HaO%ACh0hH|FEhoMHj zbVr)|eK(7mJ^4;39Y+J_bNY>?&`W!ZIr?$lbG=-Z*{KVM6h|8yAN)7!*fhD9@KKU9 z)}mKQ;o88Gdoyn#VfH85vzrF~6{j$596jCLGBEgF8cjtRyjY!T^gDKa)>3u(~b7ZS28cRVu%p9o``_$r-r zYd6q;^9KLm)9um%CEXMi2vhq7J9Y5F{ylrfT_RV>cJRmNv2(#4Mu4X*gMC z5Ud)VtTdF{-9ld~qA1f~%>WqVBa}!OkX_z+3iP4cn4~LZG({G%T%sU4?iv&dl&!ZZ zAw+4UDtgG}zFHCK2@q-LG7$1!FAk_!_8K@6fAy)}sjidx15Adc&l?^R^z_T+}x{E@f;Cn_q6^ z1Z`Fv`@u9cR9B}94C5FG+;AkFV8ZK<n70s?7~hFLG^Tv0nc>vQLUO|bCx)tG=xchlj*Pq(GzfK`Fjl}IOD z|6Zykulk~{>IGxqz&H|@aTEW?wVd>$T(%Zt`B;pr7yBl5;)3o&F96Ij+hI73m<5OL z9y~Eqbw*2ueoY4Z*DzH#EtbTHjF(}Uh_{pYP8asc9B_O%@?j7c21jOWk(`;#EYYaSGxT113@4S=#qO(IIddPj z=Y~ssYEI}JJ9Szsb(ccUl! zZl7(TR8QR66As!)b4=uQMVitJCRP;g7A6G?HJIHAk2oEOWKCu&cR$;meBEPGXNVdS z<`b;BeL5pzjPKUUwex%=J$szGAM_*ZtLU5_#&Fx-*k=A>SJt};sMLQIkTM@dayiNs zwmBDv!s2dVLWEgLGJz=_@?gIY=vvtT;ER7M3Bs1OWmCC!BQK>pnXRtMlJI;e;rfNm zH$)M?M>+P|CiP-2|5U%=wWojzKulo*mvuFsx50q4XejC;A0n1J{bkc9*r+idQh{Ai zVY6mL#<-jUN&RGyb^_g(o3NR{VEVf^)4H8ZQH(j4n?PNNN<~Oe9Mv zfAc=mny1ohv%{CN$N6Ya`kE&^H6^%UUd0AQ8PHgJ;lkVlmF^c}^#x6_*jaET zHx&(Cr#*4h#xeA(v&Yc~w0|%WP?zluenYK_k)s(jviA$&@men%gY~aaV!=F8SLa#E zZ5t1pMf`+XsX(ugwPiuu#>x3(fgtd-Hze3Bn@^W-OORN6>q$oZK{eOtIVG+`-9Orz z(%P)DJ9EWorsCT=QPWY`eA4`=?)K}WA*&J-R`u9dzz?n+2lc|H;;}+Nypx{QS)P+g zbh<5~XIwW7bVdGQ0rvu)Y?dd^muQsBGDrA`!o0FTS9#HnNI3}(E>bC3i#PHFp(V4= z+qTy19-yJpurcBa4cELfu=^*9;{^)QLPFRht|1A&8#C5<eT=ACtCCLx!K zvP=Yfp-Flj)_j#EW+S&m8e@QSX~DTX5Et7VPjswy9loD9m5AW$-VYuc4tw1KH+LLV ztsMzCy>&LR%JH?M1PoNXZ2h(7B#DOm?aO07N&+DS>qfNcb0&i|P8a$c7n<|kW#XqB zex6HOU(ezCX)-vw)~d}Mckm&`6sG``g&`bN4JL8-$@96Ru=;VH`BwXI9~p*H!i0FConm|6&NND(FKJn9JMlCN zOWVC7*CN-c_BSW4P*4hk-3o$Fr;aNckKFQ!g{MPKv%d!u8wmxWOal=z^zb#-gUOj$ z-B3%dJ>d^X=a@Av&}!Y*g9lC(xQyQO_lXsXve8DyHF~MVQNOG+6d8DwMJd(5h7Bj` zDt+(yEKXgvW}%9C_3cPc9&l%(pD$++SP-H@rdlW8BEu0=1w*5px^SxFSeX7Yr1iTW z?M%x7=+joSgojWVdB3C;s`zvZHz5wHCYE=4^A>eED-+l?k0cpIQQN=|s;wkAfh4uO zVsLetTAZZnm^R^RqJxU_68 zCOiyfk|12|Vb17O8eBz#JieEVc*ExErJhx~(MFH$udkSA2C`N8Utm@Z3)FH!oBO?9 z!cbjzE@U^?S`PA96K9ZG_&>oxY>@4BTAXYHxy5r?&Ey-j6u_zO+k6Hxl%U z^H_j~ArcWGjP$}XhN0K+)&6;UL2$r`WedM$WFKtiq?lqtN;j>0S2Z!0PA4U}o3`JJ zp}m@*hWSLCIP(QIa7nA7*k*3aM9^?B4;=gAuv&s1Dqp@{1!se$RyVyTDJ}A1g`bh@oV0iz6)_AGsS(PAIKu6X>BW4l4 zWm~>^Ie6HX)Fqz%p#$~6lr)igX3Qr4z*T0?&&(m+D*SrW;KTra9`VzR^0w3+Lx~pA znO~=JhjTnZ!l}Q>pPNvbl+rE<&z(j|q->wEupYj$u%UJ5 ziF=)X&Z1T(cP*P-aTUbo!TBosMFccjbZZ4t!)M=;X9mlH;I01UTq2(hgT(U_QF0AD zzoD|d1tra9QYgvI;zOh{XQ_gUHdx=GdHQ87yeq*aTZ|u$Nyz%Qr?zYUJusg-6kc|n zh2$aWWIx#^MJ5YC>Th7`=?AZxp~p9T&B7dr;rV7jP(5{4A|o8Samfzs``NulSQXa< z$Dep)-Kk_B7lQjE&v%xpE97V9V?*IJ!#5si6&wl#z2@KCd(IHjHI{yj5vPy%-+Dp zVNprT&^+W_Ck#i70Qa>dxC8ng{*|ePs;b;ctK`ZR>pmXxq$(2L!GYns zXSzY-V530Zu9Pu|po%1U67M@?Tl_f$(A5@%6U{$UJOEF3SG}f;rT@mTLWs!2qivV_ zYL*5)%a|zN{Sq=Mz-UtLZ6SP{!PJLkGb#OKv}kabSfVrurQ(pnRL*G{dX7+2L+#b) z<*uQzNvp5nn;yL1+#;Ff_#lyF$3>)qB@UQgF;I>mjm0FZ28&a+T3(i`1}xszV6OO;1}zj));X`fTQx-c^)I=G%gsx>=T>dwh%CMM=T6Sbx*Wz*nm#W%`r!->MHtejvMrTR!O+9=}V+TKQt^e6+I(4Geph7zioXR+qs0>Vhyih zs;~{ye-`EUv4^5LFfB9VGAG47JX}aKcZ8K%E^h_sGu< zgMs-T5K@#$?`@XIY_i2=QeDOkKHla8U8HfIqC046lRdF+tymK@D6U1i^5wcNI4t;_AF=P#@9U0qaG~)N z5;}F?Hq>p*@}KH2F~eGx&v!0YAW?zJ#pD zASv&By>r;9OrXVev~@sF_a&S<9%JEEX=J-Z-pDkVX0@$jBPh#`81~z8u^Mcf=k$%) zFSBvOz35n%dhwj;RNh`R%_oobrn2%WuqWy^upzU%cUA#S<}W?5tR<3Z<9X?e*J*m) zQx38~yV{HtwX>VA2=|5Y@lzc9r&I$4H>r}gu~}d(B^5#(#K&HuAuhd?L0v)R`<*18yHCpQTC0Mqs)Z6xvWi_PoBYl? zQG9+VkPb3Qad&#(`{*lQLVcF?<^Dn_UO8&SCD9I1e(d zJb4KPnnh`ZZjHQBx74-d-1zMjVV8g^_nF|5_yyLX{5w3fie~pZV-0UPRjc`y#sZXo zJF984xM-t!%qsm-ohlfWo(kkN9YL_Io6jpPe3-U;lNiR72IEcaUuo0s1;^BxlvVKnxRFEVmQokZ<$z<6gF3_VT74OI}E}XX0$okeWGg?jE9o} zm*9xmC9d#RnhFIwD0|umXkU9ec?Sphl}U1J)bu3-DUJR*5RjXHN&GEEPp3mrPXMPO8RO;^6* zj7hup(8>^cgTh|d2Ty)i--wOPfJ=EvR|=}vS=-=M>(=DPg9unz6)>i`BipKhJ(F); z6INm43V8_Zt^@s6mPOpV(3eqXcBFdTw!WulRI1Sr1GP$7OHB%ha)T;=IHJOch)UQE z)3j2y2NDwCiH?8EF^d%~)lni&(jU|yP%ROIN!svjAjA-ZsJR@z`m#Z~h?3%Al7?k-gh=5I%^-lf^GW zI~Xpx%_UabK)feaOR zgPGRJAI`(SEEOUpBy0s!&Ma8f9vEO_q~0Z68SXleoEX&Bh|7C%^kM}YH@c3Rgx+36 z{K`*W?Tf~h=30{>=A}jxzRs@k^WUJY*uJRERw4hCfQ~A%ZHoRC#Rsj8cduAJ?kE`# zy*z}!WaJwCL&wgYSBfLC6IGEO;zb!s-gpY~8eE#d(mBb;%mcR7!$*yiwve}lLc^;J za3C-tL#0+a_#M$+WYGo6EHQ5dkvQ<<-*Q95UDVqsER%qSST&8zPb6fYL#=_fRQGVf zhtpBZ`|=q~G*nNiV!2#H3C%P*zKV_Xnj&sNiC=*AotbBx+53(rZ2ml=Ef(9Ks}1TR z4tk9iOyq3&pZXH_Lej&A$~bki4B25&ZinN^qj(D>8M@w#IZ zsFf8SiS}dskeP&}E-!}~{wC}wUA{O%h+@Qvc^^ED`YZD_XS`aq6teoI1xq82!t%}D zuiI&{UHIiHtn7uRO%>Z}?a|09EQ^)Sl^j^BUpQS60k%0ph_|8_6Tgk|>{Hb>1$eS9 z;7^Lq^>#!G`>~2|rk=h)WbBJ^JfXX@y}?iR>%&gqCKWUQt|;X{ zd*^g>w886L3^1OXCsOuc`WcQ9E`KpXC>60=LakpjUud5{jHG0lVCRt_aK{<$QHL$a zYIqSyLK>Vl!h?3=a- zl$;iK1i^kP97~TYtx34s^a~$dW=zWlE*L5cV_2;;Fb$qT|E{cGAmoB+cl485=2vA9 z&Lpu?&_1g@9hHm(dY7l8ZM^CQQ2QJ_$*$GJ@PZ6RQYoYDMfJXl+~#aY^%l^VhOYWw zb_s^hsVO3Izan~IhC07fKjse`Pu|=zpy)qt<$X>&>ztnHGRWciDk0>vtvl7to(}jd zS3E)EkZ2^wQcp%vECmfab`N81WrTYhi)OX}zd|6Hb3AYCdi_hKtPQ78=k3Q@kb(3mo(Af-E zy@vWrRf(6*-bz*CK}iNNv=Q2tHTm`JE&B-~JwYFt}w?(7kb4PUR(Oo|$d zLW60qCk|OfS~EpONV2TgKpG!sfNFTe)4W&sdV^)5?va+Cs+u9iE5VI;zFyU})f%ud zv2q!mMLLmZ*A#3R&F_%vUeC6pfkp$@`R%hkzjXT<1R}z`v4<9dS6DZ%OJ3ergrZ8I zjXT)H8KLAd?6@M3@u$tfQ-YP#jU1u@{5^^^bt`TnPmQKJ;!3%^IK~Q}hhOm&kK3lh zzFvRI7bP_3tcsvKXgEY>9TWr5q)Zmgl5!WqfP&w*V%Q}T;) zbQi2KVUb77t76f(w2QQ470*%hVY`ff(yR@2^F1p&RIGs>8|>!D+C+y$7w4D0djRlg ziaB=f9~N{Hk#!}`?CV*3D)$cBcCA3_i~Q_tUZ*y2$D7BS$ZkERH8lHyTT=6Q*C;wQ z+*UkN7hQs#ikAb|C=Z&hTEUw1rSe({Z#?MOSGQx==>{lq0W`I-03z3xN$cQ`kX~JB z%`+^C=^q5sMcl!GE*yzGRT?_wJ%$t?g5c$?4M2uR_PVV4-&wR#w~FFzQ$u_F-mbd< ze-HYUP!WvNPWm(M8Kp>=D>5+6LQPll@il$gz_9dNeNnuT+~-fLX$R3GUzF92wLACl zQ$f(m2b{IO`ELyLJzR)M!%a#&jYOsw4(oe!#4k0@)^gjTO{ECB0(nv5tKlM34_V4g zs(BhN`94bx^o4l742rfHmnTDp)UvAC@pw)gVfvcT+;8^p_&wk*2suMV@OruI$;a5@ zy@2Y1!EMMKtSsJoq0Gy_zbdw%(A z<<9}mRVC}T7v>zOqA6}tbWa#G^z&j@JC`D^gNq_Dl!Iajlg^&p9PM5)KS_R5{7RYGJlrzQx62H6c|CryCccX-*SeB!OSMNs#h zNy>I_O$%LB?Buo|E1Fv2nnHjD$!^S~Jv@O$m+c)xhg1x{WaW&Ps8;WnIOp)bF~e~{ zB5V~gNnHNR_A7@#8iYuh+Sgyss+Kzz@1Sj39>gjAqyWgDS!zjXhq5XQH9O(e893Z6 zCkn7D*@zC$M(zgEg3yP6lx@bBte)~}ofuywuT2G3^Z}yO7Lne}hawXeeY58EU7HpU z{=u)BsoP2k{>#|teV%YUo;(dpyFc>5hw5M(fSZM8d+lW@57&at0}@REd_>aktVvz=f87w7t)=xVpZs{7Z}6IKv{PI0(LQ4>mw`nbeak=N1W~P)q`E>3g+7aO)+j%Prw0s zQp|48r`Az&&J_{4u4~ujGqE^2JIo<%c?e98%nc&H_L}zMS=JB@2q~#x<-#PIJNMI4 zI?c{CHLoWWg^sqzrj;*S*gcUfNCtV}24P?!lPfNtF7BJ=0O)w3VTCSdC+p=UEBd*S z&g72%Fv)rB;oC8Ry-g_shG5h7NIySYCo-PWCuR2}jBdIF4QA`3R#g*o8@C|C*9y!! zNOai3L~r<@(4f!M!s2|N4U+l{Jg+pN#>6aBH*7F<9>po~iOsvNL_eaN)anVh=jw3x zWS$W6c*bVDKBGddOW-VOXBKOn|FK#C3rn2kD}5@SPs5xt|B{DVyK#gDX<&6;`p(&} zKkin&9tPL(`-JY5rS)kyS4S5A>K3`C{%7)T`7l{j9@GzQWM}S*Nl7XLp7!wtJrQj6 z{d!}QEXe3n7=8F{d2y?z&TRu~kG@BS#L;JR70`r}{QSkABd_O4`RyLrYzjoLw;U!t z$JG>Hi|(Ax^jWXEXW$LeFz7cX^US}3Y$MJ|Q2b<|+*-KOAW!c_6W-m=4~Y?tTk0_-TM{)Q~bTF-eO?3Zyl9k|1K`Q zaMqCXYps3%yl93lj$lXx)nAcM@BE!hnHoqv(_~E*36@Hm@uf0hIBk<&t%5Du|iPgyk(74o%o5L(;1@5l$J zrD=ZepYHQAqh6iGf}eS`Ff^J!-5B?#5-==7Mh!;RFDM!1+Zkx3-MqvHJ*mItqaf75 z^sutc9(O~#Xn8#t5@@d3kw1#5g)Xl?U4PF*c8A{rdF@6fQ$XH=qH|UC@S;2<;L89F zPx#jUWa!)YnZri_Zsk zGxl)d2TIFYC_QzVrfc%!zlIZsM`iDXPumUp7S1Kh<-@5Ouc+(h%6i*-7npULKG!?V z6>+gUnddj}=!Oq0)?ccUSF8f^%3T?Go^Z$1 zOhkOJ!yN2)ozS%+3!toOZXV5Q?mUuN8dHOp=qb0qC+Epbp#CRPrK@}@?QLYdQR8~FD24&8Thq~#Qi>6kJjVA+?e`Bf~tzpdcz_v zYkWrCFAVM#t^t0nX=MnreNNL*kiPRO0&M0^p{k+?QEJKfZg4FF?C4F~?5$c~zsxF4 zFYPUJL8DN{2KM&k!mFQw;JNiKzZi0CQ>tIrv0R3uYXIC-gA*9kB2rTQt{JJTU<#Ojo z?$6lZFukGqVmG8od8AB#!O+W6D~ExOYIB#IS>P^SwJng2&XS1U)}{k!H4t+X*q0Z~ zEbyp;8`a_R=1NDoz=PaJDS{_K$<)8SZsxWg{8F&dHGxvp$iOlu5EJ~BRn<6KYnpt| zaCL(o$dOuTx#I7lmG87I=GSxnk|th6!dsA#K`ZTubE!TPDZ+e=$NS219bZtKu6F0xR@<>h&z=)a@UlB$qb`{&9a5Bcc-I-iZ+*zQ zAv{LILA?HEoid00%hA)IO4X)+VxaEFH}B)2A6axg-@a>_Dzl`HA+UQ|Hs;>1PERba zwuXVlRJe#(8J1ACBqMLgmvD=9tOT^yjPq3>U{*k4xRcu|#KfNSKH^HINAOGW^-^@Y zYU?7KzulXaK5-K>!njR{wNJZtdBBo4d1XnXv%)DU*(ym`FLQg#J9BxQ)Ka&f3GCy=|^7I0J(S8`;Q_5>PP9VoX`)_lJXe)X@|da=cQ>DQMLailoK&r%;3rck!Fj_t|-Gf+&4(*-Ciciu)sMQ;3mlN z#OxZajZL>!M@nEK*g|XBG=*-#1k}vWu?rRt@o=VdkU|DhPXR^o*8-YZ+Kaf@1j7(< zgPD_F|N0>Uf6GqathZYE&U}M|%-vX6!-i?DZkZ;&(!f1V6dWt->7rn*GjB- zXC6Oilc(wqN!vdr;eypE!mH)^I`etzNYp^iXn5p&QTO{2TA&qSL<3{7-ezx|!)H^b zaDa{44K0uIM4)Q`F0|FE*^1~(nz3iuDYy0;hpr zF#EBWFNUaG&zgyc`7TuRYbUTBu~_r{{)XCui;(5`+w#B=M(AH=_sp>^-x!b+5ilZI z4vRk-%w86q{&p?^8jLdt8S|j04-8OxL~fu0WV8@v*I=|dOb>P@Ah`Actx|!3giLen zw<{9~%{NVThswwE+n6oIPeBd(13;0d)%REov1^pg z@T{YradlIsN|8G%*H%z;Il;5lzKk_+?MmFiY3_>Jg_?-K=~{#w#5ULUqN=VC0to&? zXq0D>BCt}M(-$F~g~sW`N*UOs{UwI0`h+A=cKgTb2^^i6cPr)}R#;X>k5VbY+~N1r zSI~i7St#v(4jSWO;yo?8rc>R^b;K|95AsXOj_m99rkaxRl`>%>@6H4IUYIk}(M)pT zVFy@(WPRIeI40n-U+g|ZhQo6A8@LQ~LPsf7JU4YjKuFsgj~=}ipdm2z!w!ek3re8Y z*;lk6vnA=h&;cwncwKFj(nW+AvFA&(YBrTt${&31y~Oy3Byx5{ObkyG++B z>Fz%mm$h`|uKJYmzB<`;5@4I{bG$b+A0n}G?+c&Yj5p;2{MnKKmfTg6&fs54`Itjf zrm<#2yNM>Z0%?EQleQb;a@|QIXMt}(H|$spxj?R7=VnK``JbUz?}Q^>NYPLVXv{Pz zFZLGE-;C3ZZ{sy6(^kgncUmrR)#MIBMD}AVGj%E>c?aI{t}v%9Cg2olWXsN*eNTv+ zw~=RgRTIjH)b1Y3PKf$ur0Z2rBZ+3Vm``NACu_@w<3{wN#)N;B9{6^xN3Zm47?wFz zNl7^a`!c!YB2mnOM~dl5g8MN94h5IYmOdjUtK&$9gAj;!gH6m+>ro>v9;>3r@L4W& zVybxTwv#=fy|x_78D#U`0Zpf^m{uHyZ;pb>*iN9LW`=5@dUPbqvue+AQ+m&MdGdE6 z9l?*WpZuh3b|eM5K$%6gI1T*uAat`MfoPV@uvXm~n9mZkZEXH| z2%ySe__*^r!pM^dX;pWKh)Sr)35|ajF}oaV$gd$O6F0OB_+9*p0!@H~VS3-^0V@+C zmH0s^Qxo9XGvXbhDxaA}`r^OdSMn&~_KR!evFSkP$eMr`0`a+Np*&sLn0}7?+l-m# z!H;TVCWu9NGabp=nE;hJVF$$jo8; zeAPK2A)iPAqGku%?^&$xBH{FGy>G778Om<-)#fzQm%B&bDPfEfLT?X2?iEu<$2WNO zct65DX)&tI=!8(&N){O4jr-oYo#T<&+m}8uEHu~pwj@`N%|E*g;TQ+k&{^1UH~4CSZj2yKP5%3zZECKWE_oYrr)TG@A|Vh*-Vuz^n*(mM z6HP49ecbnaN@|YE4%ETXu&F2$McNT`Pu#$2HvsVlV7?5G8vtnB?Z5Qq27k>Jf z{JyDm{#-HL8`q@q2d#eN6dQr$&FmzQ1MG3}zs0*@t=ku#C*8l^cse0KuS9dO1|ky6 z6}_v(BM*{3!+_0{ymCM1&h&ypKkU`a)Z;EWI9V^*lnzBsa-o|UVQmx9jH0NB&9O*B zOIoJqsPPj`H5#{NQ6T`|4w~)2baW*^eCdA3r*~tbJqtnJKDau) ziow~E1}Kkl*}BJ!*pVUhO7&m-sKOneY6dmHN+wAK8G`u^&3-tO{I)=*^*WfcD28y! z7T`7<14_7AyH{Ds$?r0-FnQeO%6#bGa^>PbN!lKsJ;6zXL~4b?+-5nP#nbiV!hEbK zZO;cPHAY$w>$@FFC3*$_Tk;*``=nOpJHtU$$?t&Lu!EJe@~7DfN9T;B$Qu4vfBs2H$RP<+$Pbr$gxf(p`$8ZURHhs7VHNE$f^eu;=+>B_^Vw!;RT6*?2NESN% zGbFcP@_?*LX4uOnHGj42FY9Y`vM{@aOGECPRW5B-5R>Y070lH2{$W*nSCa?Q^~gMy zxpE*UCIeJ6o7aKFCKZmYi_s7R1T};!x&y&;Q7nda_VR37r$qPTS~kK+3lkI6w9IyP z=(d+2=aIJsVAcfW{L&$T5Q)X?td|2)&-W3ej}jE4w3^3UZ^B3cwW*`mR>LKrfVhHN z9CukA917@Y zla16e;`#KO3+|^V=^Bddw1HtGVjJ~8?=D(U(5RWeu;*J&Reo!JPmY+HV28J#ES# zA~nszsH+09EXv;Spl#FzkRcq<2%|{kxJD{;d9u0{_{faZtC2^YCj)`jouRH?2swLj z+{eF{aP^+G02opAg^*ZF;Xchj^NBi<$7Dp145Jl8ZxuewUV=}ekLjM8~KjX0$RmEr((T{oH7z%seFEp zRR^@COM)Cc%DaxC5rFCF;HP+}+Ey${rCmCOhsIOq4&7hfWEB4XB_(RU@~rXOlp z8%m4o1+Z00fMqN?unSR|Dmfk~93Wap4(=~0v`l-oDR-1qm%NDL6Tqh@G`LS>^Cq#Y zYs)e48=8MbP(`{z4i{V~47ys4M^r-~L`d~@_lq%{^Ww?t_S`rk6u|^JNobvl)}?(m z6Vyayqf*I;F{CfP8i@C?YRIux`u>mJqS(6QyBP&q(Shd^2q;gWnO>_Jw2{z84!<=;v~y8>`qMU*_m*? z8>xeI_Gj&9M5SVzO)j3c?Stse7&Kp%$@4+F5#$?rx|8gLQ#j}FVRQn~cV#*}qdjbc zfqzrBb4|i%h;5Z$h(`zVK1&BgQMhn;UVkF?d67}RM_$gZGu@qgQ?Fb( zw0=0*|C5v*mhukD?t2cKtTFNTZ_9nI`i)l7Z4Lt(2%I@Krc$;=zg5wzNwE>EEFSQv zypF`>i5VvNM4IYArF6sj;l-(3+YKh1Z#R7E#M*@&D^XC5Y_~$!xs|u&I$OT$PT={m zdzz7vhPxDenh%8C>HO{{Q7`&+DcKOGGU5Aa+yW?L!ix+mNW;xm8CGL4T=b2Z?#?+JT{3g`hEUHR z$AFq~vUhVjaiqJ$FcugQqn{j|>38~ly0I4vi4j(SL`&}*>8*ppc_2gT9R)oxV8+?^ zw*p@cXtP)SBd6W!xMxfo)K&bVCI8J!z?wH<9c&o{NP>1Fd8pR{wfv`fH9#Q=o zd7DuH{PMQN$_73Da;=FAgE4eNyasZ_1R@1efL6U)5juK`hyA6PKDoq@RN%sWDmCY` z1HA@srbz9p{GIkEC%F^m{U>)?-G|cFE}35YNylKVp)!{^S5f32CD}p2is4ly1F+!x z;4xrWu{x*f{s(y3ph(*%+n6hX+BLm3(45>z=~mDRTZ5cl&O>7$fyJYSb1x`ozv~dY zEy3m0?efv_$bkhFCus+sXZO$=Ow`|_Kt<_UjHBNCzwJAsu-q&KVkQf`%Z&0a892Xx zt}5YCJ83kk)SdKjC{7DNtplQ|ava`iNv#ze2-lr zT#7oHTDl4=7Y-Vsr-5ClmiQWfYD|*tgShLtG`gN%-xswc+Q|_R=o) zx=L_f+akejQ!pMp#M|Iq7E2AgR;33uJ43_*WWN%X0mOGpp4fi#Il_QF^(IzgV?$Qd zL&~X+@^05`Id&^to!4qK7T$3Dn5u}*9`k#PwHMvsa{@9O9zn6Q0wqpsvvv2lnpQT0 zK@DvQrveTp3iGzP#;9s)+kFWB)UG{Z|T^m=+gxO-$mFswXcakG_YUtbTnYK)7M z?K3{_Y3JWq^p0wY%{g9mzY`?iTwG@o(alWv9_})O~q9) zv6R2e-ljIw(Dk@O<~Wx!r3!1VX}~CfQHNSKpQ+%tF)2pIPKG&V{rN{C9NJK1I~@KS z4pFfLZ!{?T6}f(y;)c@a=!?C+96bCDSqQ;yrb**av$-h<`RLUTI*{nmJaAm2$JYYg&bc6xGWpgi^)*g*`XJQ{}|ehZL# zjI1Jb-WLq>J_rX$uAk~Ww$CzsO4P(8ma>wTYPftjX~)?Z$%jr~XuLnW%)jr*1^ek2 zu3gz%x1QMk%jS0Q`bDUhh?2rrg@kBu_(IM#+$seZgg4o}y(-nsG2{EpVNOZqsxx0~ z%S?mbC|Pt8KKhh%=7krMq!Y$oMBbA(QLZ3bzu+1?ZR9x=ALADCK60GTM6J*Y>}3RF zvA~+zlR@X)FvLW-dv*}oyPngHtL}hl6E6XUPMwB8;K-fP!~sEp4?3CUuT3Ify2h8_f6(E9B;A*!%Q9bHK>NiX8&^6ZD|mqs&>FrrWeyRw-Lx!N!iM+!Dg-H{=|ZvNz9 zJzmERy^+sQr~|X>w1*WI;Gk7D@;Kg3vvboderFw{vwXpM1%Ie#2h^ zLT(A~h!4s$E98y1^lVvRHgtsJipgTJtrNW(O&|mBNXKpX`24m!EBjsn4tA{^)w(Um zp=EDtqzfVc8)qqym3{JJxLC=PObMuL9CG|@b%;vVU-8H2`1qshzHb%{D0d=~QHsWS zqNm))VI>fYQ8A6z3dI&v_owS~VJceIf4+KfOwdVxr0#S{OE<(#u%*LgBp4CzS3NXJ zs{a2L%~Ze?_~K==e9{2LtI}zTUE|{N#Mku4C2Rz=@ZI$JCgChoBXwE)f$R~#PB%Ls z_>nd^|18T$i#YD(_O-L(pPN|P-P(Sv|H`ZPJ(eF3R#}8czt+RCS+9&V09-)!`o=Z~ z#3+qxQC%-QLcv1)a(_`DzO04TMyT`gE?i{;p_vmYg5|z}a^`;A`MSaI3Zp(*c;`G` z-yw~#DDbYV{9}d3SK7ACicb{X(a8!E922Q4G=8F_Wk%-F7-Y{(1XKGEAh307aIv zoYW>d14A$NYP0voVrV2xP5X_uFiEkM{Tab{JB(TEZ5JPPcSHF-uZ_qTi#8A@N5}b4 zzBlst(2HF#7az>bh%Xty1~jHO$cZvWpjP=8D;^`0`R@7^dg{vHhAm9&j|LX{hN}6DNXsc zem3IVRpw}t31WlSo65Bi*q|C9aH={&7L46PkmzpoCg8Sh+qP}H`?k&7wr$(CZQHhO zo44`r-_*=vYBrO_sY<@8R5r;X-#O0_O#$B_+)bsy761(5l)fkUf2TN2x+SOFj=_hiTeh355^E9bB6c_u>lH_MGE+zJu zF>m!qgYykXs98%@DL0<@@f3dVA)QffEL;zbQh~Q*yXPErMO>b}-pVf<`5g4Kiby2W z8vEL;93+rGksumCph$4qIiE@yzECA4B5pyiH*}F3eK-h%r!X)W8RV0AXR!=G0ZO6D zf#V0_Qjm{fLsI9W*WIZykquVdJ$SLU;X~*)B zW5GGZ@rTlrgfT1s8By8NATPdDN!Yxhmtje6yQ0X>u+2tC_AM^yS*H56c~JzWjP@%^ zUHbWf8R}C)Ad#R#1JMXE&PYjDF=jZ1#Qxx2)o0P(;i$F1R~)iTu8YVTKW@8$8D{Ya zDcR1Tg5Q$Rl?<37d!t(Zwx;Fq`m`1phs;Z@;*&|`sd*=%8JL^R2djN3AYf{DULj45 zR&96BTO@BrBYp9F%o%HZeWF?{W8zjmVf>Z12e#_Zkdn z^}j0UH07K`l=$biI;G#Q@0NrS!y2nIG(c38U8re1KHhE@TCrL>$n;m_G)(btu>QBFAv^O?VFvo(THp(G9(lm+EzH zw)rVRlH2orbG|9%pSD^w8VS)2(*&?J!#l*r%RP+v0Rrfvy97qiU0^c4fnmndTMw@0 z%x@?0@V-?sD$1b{awmc4OgFT|-V6J36A91t@HcQllRg?81yN$p8SnW4O3ywxj%%o` zjFmC=I%XTRevNr#-`yC+8-W!Q~X(`Z0m73~NcpnhZ4tt|1Tn^A?AB)U0WQ8!?c zX7A)_Sf`W61W)M%kVexUc$z@Mkt5I;cTo`Jl|tFQdp+{aH~6N|UT;VRVaOfPynIaf zm&48xhsEZXwxt#RwY+X0F8NC%*|!o7nxn}N2Gf|IKWRI&B80}P!V92eFdn}lUIPvB zuPI;--LT&MNF&lj(PRGS>tEQ6>?8Ei5|H!vd|i)?iEN2R-Lq?z+1ZTqDCuQtEsi8(2Nftfwmr7B@sMtLmCzsX(7NG?A6&^f`GtnqYig^ z{)}NX7dqKU(d{xjyktB)(X6Lz=~p!AuHm-Jo$-KQNokR6X59|W-_q{aRBmd3c7kHc z5ZC=fJtcVnpw!9)Jy-?EtNpO^T)|kqS-2rr^(Xj06S7JPvX%)a_nesf;mMAMyp<~6 zhVI{?BxIC7mB-Vb=&L^F(#R3@66}koy%+hpQ{STIxCV2y6!oN7;!TGBLh<2)Q)Z=u z;Vqb%MiUR&4X4Bv!^5MA#9E4ur8pdBC`Bh3@Z75jvXoUee1<)XUs9sD39M73S!9#p zV(e|o$!8B?P8>&y#(x!6A8(dtS`p>dud^$N+zNmfnentcuM{sLt6^s9mr8hVb2EmH zfRi&?(E9tZ3pi$-dPYRmPgq?pqcA3{o*LtO+uf+~I4=|hEPBJ%Dd+rpK!OGZ>7b8S z66Ad2ZVUdwjfNGr;_Gk|8F$yQr70Pa>f8abL--}{p}6B-SjKVpl>kb4K< zs@*7K$nZQb$~`4SS?Q(7U)ZYZw=%gN7^1KY^rJfMb!}GrU%!E2-tybr;C*-5GC?bw z?DYd#I+k-iG3oej*DqwnsdgR*JOxnQg{e18glPza)gqwKk6=V}Zz_~jkwe5eGN;EJ zaBkOus}QdB8q3=!HiZ_~D1z$h1)AM-2?fuMAxY;q04nF>_8r-W=j21=>*~;cP;9MjcRP29fG6$!-Jw3C_35fWVuVp4<_JCu7|;NT*Yk(}1(06hWo?rm6h~ z7t7ZANt?KH8Z6D883#*1&u6cPo*fi$V=+ySN?J4~8Ni^c2uNfK0cvm%Gw&_RY%G#> z+t!uPc(+F8ft0U)-sP430^axML~AREl^?p6cRZW=(G&dbVDGT5$5=nnV_}z&WpNxh zmQ-%O9N&)7R&$+t1NJ)C{$CquWx`+FmMlX$eahAJJuaEGE3@c_Xtchw$?eeU1eJ88 z<-0`sz}LmwW0k$Y}=%A18h}E zclOB(gCMYGsiT*Xmxay}P-s)lxsaR8pC7S=AtKgjO}vhCXj>XzR(156P{?Bs;+^A( zV;;utR=}uB{a~6fV;F5K7Nsou@DpZEvzoprlNE5CaV+ia{InmB*JfuxrB=DK+`$9r zT-$Ec^ZkzGG42L@RtFo$+%UGQt(^HCr&lvO_@NG_9Tj(H;@C7PT*rpuY!(!8U15yT`Xy%|Le@oPD}Qc& zHurN(cwwnIFb5oz+eC{#(HyeQ`4^#*ojQg)`^S* z;2MB{%`B2a;LJUz*8pIXu2KkXh^E!X`tj~L;%v08{NYcj114OtP6@6+Almj z**`oSG$l)WdSMvs&6bg-9c*rVePJi&6d$ZWPJlQSK0PgdGBmrZ8&_at8LV##O8;cf z;N-}_5U7rU(f%hkzZ)4|U}|i70fk@|Ag;a@m}@X0a)aBAOCv+8&8z4=Hy3~k`7Z!7 zJNs`Zz!u;@ivYPaGBLMbS9~Ps+zWAGcs#7Y^3D*_*}=OWVc8pvwlk0F|DKQjC#Po{70 zh835W8<(9QFw+#55>sDRgNuv4G8?n=GpHoAf34%85HGP)IA=imW`>3bN2b8PqNV^m zGW1CAK&3kuz)!L9xAf<{e{E}EH*nuoA!J@{G3MPN^vdS?7%YUHy#wfn$B**;E<{Q? zrv6`x10V*l46Tj+@9=Lzu#B&0ez@K71>n5FCq~aHfRbLmpZDTdM%|JZ7q%SVsUPQ_ zsD}rl2F;2lU)N9k?69zI@V?BPWLSaOff<;+lLH{T24+C7AMS{R_~YJ6{f|Q`Yco^$ zz3}Kb{Z`*x{^efRK&-pndXy{v5HyIq59Y%TnJXDGeBZR6T=FkHx*uQQ?>|XD zn^8Zv0VLYLEkVU4AF1Czg=`JYP4}Oz{i9PI9bQwtU0KI zqo(QVzFRmm_{i_{sCP#8-`vG*+2P&ide|caGk^>Z4onY0CLb6iXf7^(?2n^V89=<> ztb+hzVBDUm@aTQwo;?7}p5$x2a!G->eH5RmXSTl}CCYywWz_!yDHX5a55O2Ae!%US z05M3v2}}VBkMM_p^pidU)d8axd=aqy6n}BbGSQd+%FTb}`@gdPU%BTGyDUU2{>3Rf zCw>)6o#$W0vgQTc+xXAVuTp9G`Kwg2{^Z4a<^EEY{7(M?l_n#;bKuA$a$;mFeX*s( zQ^&Dc&-@R)uZR2*v2$cUf>!vTK3n-Mz5_q3L{TNbq$H%@k3T+gAH-*^+msCcSLT;L z{)y?2pD!itPg~_T*ae(@`d)oy`~K z^uDV6U?2Gf|GoMHDv$?02jb#9z7xbgR6$sDnJK1pf0Y5(#m z@`$q0Uk7scx1S+mgG_?v?I*`tf`%^&-t2T=>No-(6H+L9)HJPH7tzt;JXU zOEc5WVa&0y2C~;$hTMp4DczDqwt&XiN$zT;oMs(U)&+;6f|nIj`$Rcb z>Rx77huJ@0Txit7Rg_>g8J3v0=0L}0+`>~-%dr`qeU6eyvx{oYfxWJ}*9QNQ^MKVI zlUL4w)nq=PO2eRp9e(w(J_srBh((D&904~Ks%Kcw<{T>P6ZIuvYjY^ZfAFIwK=HeRpP~3WVJ%Z`IBYNIYBBbBXf|?jHiGO*B>2oo3_5zvrXYOUG^^4>GoDPl|g&p{4-)zozbufmzqkEWJ>UjA*EyH;>kW*LUHJwVrR1xICnYk zH1!0hs>?{p&^a>&9r7fXYbJ&NeO7TmE?V+krW1;@a%p^rgmGDA+cvSDOkJy5>=5}S z#cE`z%}g$;GLTk8Dm*vcGQS2}B=m(_*79u);dng#J_6-)hvpD68igF=I| z6$Wo4g)Wk)`rT$TK2w(t`|~Ib^gdy+EeCp5VL2o{;2{`2^}tCJ+fGBfmkyZ|XmXxL ztmYN)v-p>+%>#bOhajcOrRCPZ8VELCq+r-4L7 zTT(Dt-!dh>p|@DV|0ELAn>R}c0Y{#mis{~x1)a(^b#dFOh9NY(>tJNsz>K3+vH&*f zmFWLe7JPb6&9#-r_j6VG;JD%S=C@hva3CiVq67}+Ki%d{nVrx7<2Wq#RDZg6jt zQlaoE)?iyE4$**&H$1~NIeQ85=1KdvPU2oJ&(~3&jJ-sWBbLjRs+&pM3;?X65sEia zfVUy{2X*0*2QBjpZIJM|K$cYgtLGXj+AyuWvJi)sFzf;P%VlL1jIL=(1O43906rs} zr~&r?){zL+&Z-$y32g1@73>)F5 zU;d?LicmoGxb%!E;7cReofvubHVe;CK!IgGE(!1)^RzeO@~|371!IzNE{QvZECFrS zg48<}8aE6Tk0D_uA>`kNc@W;ak{H}i4&Bf=82J-izQTtE?kyu|MTG1}jt~Nt%s(|qPjLUi5LDMDTzlK3L5b~+m z)mDLt2DAi=7!?(DoF#^2H(mYct1@p1=|tzlEl8(^rCf$7)U_z z$_OSRF1s+1AviUK;M{q_lClsH={|l8lE+t#u2xcTWQEI|mYU6Xr>i3@%~uVH9lDBT zXQ{8e|yLgX$HW1vDC@*=nPF1k!H+@!ueaB*_ev|k;~cvPmoEB2JXUaW*2mpPVmxF#6a6E(Jtcex-mI=6e}fGQpuQo732${Z9oB+Q{3 zFV~pgU!%R3T%;IBr-b49k6-cYH0<@lGq!SqS!}yW8~b^9&&qu zk0M{97k*CsI^Z^;*j`4eqj@d4P~Z;OG2SAI;Yc&ib#bSv{At7%`2E}5^#TR4s$Up+ z0oqX~h&P3@Rs3O3(>hz`>s3BCR!z$bFTC6-(Xg@eZDRXhNl5I6aM~_k+?Rsv6UWQ; z-ulG_!%b0lc4DSRseV3~RIOS&UIFB=cr3+D)zX_@u(9Pp=kA&ciV<5pJNfYu;y(QL zXOWcltx!1TQYpS7rp(hOd@B00e6I$4DSxN)(kL^YrTA?U7&W#NM~>~(gL@{?+4P`Y z^bbmsgn}0RRGOV2vkj?Pz>i%ZXJ%L;WDSTF)zPfRJktUW=&x9n;E55^7)6`6ld&ZqmRKwa0h? z3G#4ejU>;)XS3nm%60==%8P~OKsJUe&`1|12N`QZR%?&OGql`@?N;6^FFWa}boL4$|AH4z@#yvQ2iNaBYDs-~M z_f=Gi#jdMH@_J1E(pHe(wCW(qvu!9xoMsG~AgSR!5@LUdhzSwaF>wcndjh9GVpW?x zt>4T~I?!+kuj`%1feS8jx7u`uMtlzE4-BX5hITpv9-k|=U6p^{yi)Uw-sAfNq0fVY zqM2y3+6Mi?`E<+DEl>8^d(*~ps*hCliiFJo+;IXfla19Stt+#i_;QwT8dURS{znt3 zvruF;zH7twTA_#!&MDC|Erzx6~H_1oi2E05y1<6fVUev z1BFo+=J9C|#7Dv~UtxP3cX zwVx{sTr{s6$t8tJJR>ZVS!0U6FCtZUj&mZub(K6iUp8wYe4};+nbkfW@he!e<*Esa zoGv|6kb7O|8VT40@&iTmoDntX_tWEOl-~IGv$FJ>mX#Oq1Yw2crZmX zR@XqzY5Lf5*eJwqJxK9<{U0rtM$MHSUsQ~wK$$}N{YYsMDu~)3SBzCO0r+Q!n^(}) zmfhJ4B2w=2#31aR5d=R9r5D3sKupcl2gm(wg{^281rBn>k_pXdYO_S*0gKbXTDtCReHAb^AvI+eS0zP{?7?nlag_y3wn5l9qCEazY-(Tt$smHxLwOkql5oYMJFGP z{WubHSG_c(3kF~nPiul2`^kMpCEN0;5PDh`f39<4N0g-^N|K~PS45JV^F z2LcAz1!K)^@%xIb7M*Ors&R`HUsfKbe6U%%{pNG>&V7-;h}$o4hXcVq$n>2Abgyd@ zpb35sEdvcjEu>C%%PZb41@4+@z`d?(U4RP`V2c4uMZe~0Vx{S;S9q#?%7(~dPDsWVlJ!YhnK}V)m5U+(+w*N_=5!XJ!0&tURodvl=MFBAm}S}ps~o5 z(4)PB9E6Hge;#f3Yq3P;8qHprkl^F}6!=$%etXY6{V?qh)OC&sx<}pv@AQCAIM0yE zWQbB=qWmPBVnq!+6OXHU7zM*q#Jx}9)I`jkUo6jP-n2{r?&tycp`(V}f!dh%b>><_ zdq-j zIM97E)iai2zIvzNv*TG)yDFDGTT}79o#`I0*?$&^!SZf&2#Mis>wH!?;n5|D+{Dh% zjKX!t{f?Bum8_mOCd3mC1+R|fp9IV9Lz1^?o~-fCt(k^ z5cK4q+|*}-UML9c*h+|tAQQ;kuIk%Q1n^?ZyQ!~w^fg=^j$kKz!py(8ZZ=wkfnTU~ z!ZYMnSykpQ5){WckMoqbHd>cgD1A1(LX6M@PdK?I{1$GdmMmA9P1@yH9x1r3GV*5Kcj@yiG_zD@khHQ7M;cdrn4zmjI{6Gzu_9P z^`ch!93QCUtDiy`-8P%=^xQe&j&r@h9zUkPYJhI|fwiffF053t8;BRhLwBP@{m#yk=SM-*Jojs&4l%cLVRMO7xc6((7lF6DG6%YN^>iEqQ^N z>ZCJuwXhx+s`x&vl9B}KZSMPj_rc~g&Uj3DV26EyXonSZN8qY^5g^fNCX8v++ZeK} zbZ>M2wM+cA_vL_Efdbdfi|PpX$OfiT>%F`DSpVpMm(C9skS;MWH_TDI`cuqB#s3@W zoKe>juLwx8W-2M0snXu3Ay^lcb@z1=Il90dh99m+`B6ZlZ7WF80U0bfI2LCVV2D1J zd(bB9l)NWNQZB)^5AI5hr)Qfv=psib?)h&{`7}L4 zrMQ48!DiJi!zi6}_2H(Nr@)1u*crEyRc1ytCV-24?v=Z2L_qZ=oQ>^>`=Jla-_g+% zKsN75<)ph?k?FW{n|eMsvM`fe?1J7-i>FS7W+v1Xv-kz`7!62ZztsNoWfs2`BnC$q?L#!rQTwYEABfh0t{?)8g2 z9+XW?CLSK~BKS%k@TJ`x%!O(_n>@-LQ1h%#U$aGSRy5xsN_H%(4Kse2IeS*bT8FZg zK^5dFgr0)2Jf1QI?T)ZxbBCewl z$r;@A*~2l4wG}E18kJ2NM~yM+V>T^e>Y&r=z<14gW-uahcz~T#06(1TUVB9cIS+>> zi;7tI4*fci1TX(q?#P_&(BH_x9hqz+qN29xp@pimYybNAY)QnzRyD6c9oB^H-3#oG zDKQo&%JJYFm|Sg^!TK#ePk1nw9=*N4oU|(6ag}h?_^w1TZnNIek1^3_W+VNO2>=Ua|yA!+A5;GD)T>^%6HN1DA?4)d^ zoAV8nbvmF$XF#|VmjCxlK|I2A4$R6Ik1kK2v=O_7j7zcR;mhWMNfw{qq@x2*zE9`z zbyVEXz=C@>d&pQgRVd;ZY3~D?QU9XhVd}zS%;>LL@{xW;=L6Z&TLH7!p3k<$XM>UW!{=2;%#Wyi6SOTZv zlayp=>l_;w1M&K8%i&*rBr~@Ju3W8=bZjKr4ml_ks)Kx!tJE_mFB?d&AQ&;c_vqKw ztoEnMq%0;?IviL`czcAfd?#t0Z*N#0F|Xtlx^U64hKcHk zZCH^|45P)Ad)4tBqy5csjXXe!Ov9ZO@>!WVYOCi%7Zn`@&X-%)JHc;^v z_F*dh*|CsvMUEkd!O&QZ*AN-#L;4#q+1;@z4yl#|bV_mkHY8)UmYd~3g$QyV&9g46 zcnHrI2y)Qu{6-rImg@&>E_Q@-b1RPL z6V=4=k|0{t-?6gjf=`lnj`beRh7UsKRN?8kLBt9sp$$H$qkj-klSA0@P6*)#T$6ccRffxr}8;|N0Xzt=Bf2bA-eDJO)lRaNE^#xhQLZRWUx#2C+P_zB(?Wj6CQ(?aTrQJztAD4RH6igyz1#!LUOAYDuLVT1 z5jit4$FAtR-k}>12@QU9W>^eE{02(1lcu)b^=?FG@d!58d>{DI@B=bytD6&cAtMqS zz@B2_Lw7Oy(m)H*T0F;8tVLaKX(V3E{J6u}q_t24o~LTsw)a5Zt_z73KJ68muzPaS zd)o}^;B`tE_C16goyHw(0@M&DZ%#e7q<)HYQ;r_@*1`MI1%phh^}-1v_2TC(mDZOI zuag@Gw(PbLCwCqO&sC?)Olt(J{rTkVDV`DvsVeN-k%%z& z%usd^I5!mmH5{?_TC!#AJHI^w7a`q@)!{l1cyQEGAl|9x9gd!+NUhM6-8jVgQwMKr z%vq|aA_Nox;Bb-2_e3SwnwM}2@?w6`O51ii+^Q)+8a1qp0+u9(8;EeUwX7uE@ks8@ zaIAm~g-=il&t3aL0*+4<;0gH5fCr9D_v}TxLEX^?`2>@mIH{qjeGEiLEUXI z>|Zv;VLQwy(RL#FxlB_h1#P*@ik2v6C~y#>?aOE*z||xZ#C1X{zla!Esw$LbCv7`> zxSr2_4%j%}-@0(iX*K9Rj;7p{dc-A;iji;kDDgJ&ItjB>I<9 zl-3Y8V4P@bBZ~KAs!TZRe?^rAF_=r%Of1vApwXVpXPL1h*}Mj^p)lQG_C_OGp1vq4 zFQ@*PYvJaaM4Xtka;oYD|K70>^%3}+p_jY8Vm+YVdj7V(W7L*7CkVBVnRsKXB2N4D zTc#o>24WfYO?fvu-r!6d7QD4m-j>su^;pnNNGQpn-Yvs?8s6YfT2t{ff4l+ej&V)7 zkzD2F#QZDBvC;n>my!;3=R~wf?S}h7QhtI7!9WQlxn#@6Xl7SPdW2+Eh4*yK%C9jE z(bfsAw9Z0SvG1-G{D>jup)9i%CukX)CU~3fShA zBZ#+{Eh zFF*%1$~3h3HjS{UHU?;p{da~Rhm=PBk!6v-ZlHsoHGVBMsyc&!qrISU@l|P zBO#c0>-J=1X$fHd$Ll5`L@%fRoL!Ih&G_*)^F>YIkN5yvu|HAr?c?AS?+^;&xp zh+9$50V7*VjnhbYPtX}Rc1F8Wv;ulE4#hHW{tqgXVLP^zo6}^am5-ep<;fMY2*wn+ zG@b{R#nrDB$>}=gu#WQ9xk@tj@o^j;aUe3sJ!2{3sO(8k5w@U9%wR?}>iTVKV04qY zpoUz7cF~cR*QvhNv1JpO*J$HU&H|>yW_?CLn`)-cTDQ!CsKkC+hMvz=jkcBw#l=MZ zO(O_fw#Gqcr^6X3}kV46X3Ud*~oFk&m^SVuM;+kj^P}X8!XvjhX3?49)`-4GAc5 z_XABUwk}}b$8(l_;m++RfZ}Qd852oNP%(Gi`BtC39>X%`!Vt}b28$*j0hsq7>|31o^F zFfCf9O(IJ9TpH++WX3SAmM!7Px$D@z#3eHv>^=MdD0V)^koJi58o9XXC(5e}-E|xe zCP}L=oayVK^7G)V4D_BFB(6$qdoF`bp5%b+oX5`%$w-nC94C(;u|$JdJMW~)iut!S$-~iu)4C;AQdmN;RpNa|F=Ff4mV5UTo@&{&tWPE zRJ{Tx^c5duN^QzhRD|aqOs7S9{m7?A{C+PlWi;at-Xz?`j~3xc_DqyE@8UJlI$a5* zE%De$J;Zn%Xl7a18`ibksv>UaIy=T}Z$#f6sE54nx9mvb=u@q?k&9&3?{4cFFb3Cq zNxXN~vhb(;k%%D=mSu!ADJEmUf}s4eXG*{wI~|CWzSx zJiy%2g^?iUvu7`Y0A?h=3wE{kkOBRK9le@L2=zQ;4ZEXQ^Q>dKo|NvsNP+O z_;vkNh`5CtMN0liux|w-!5qUUw*k13i!YzXiZgRI31OOpW6Oi6a_mnf}w3SpY>p<+3O2n0) zW;5hoRE@rx1FVvUonBGO^?LMYE>Yp5cUBW7SP?1rCuw~uIS?~1X>TFM#T2HHvAerA<<0ypj9`&0c0O? z{ezlvGd$Nnl31-_M}osKS}0DG-MHdURXNrhLMlZK5u?{X-4mIbMw@*eO@n4&j8Cs} zifE zc;=`Gib7#-m9f>6I0dCtd?7V|*}X^TWqE-wGHbKrI4VhICFPh-Npua{VKVAPM1rme zG_kw#TP?kwJDw@xn)U?7ETF<;e4kG9nAwxejL;M+k{__SiXYeRZC$?ge#|j@!*Aze zmIMQvOf!DMGkazm^7&hcqtX-Yn1M)gI-E$=Gs;~Sm zdW<{Y?6e`J6i8&XndB5I;-p$lF7cGx9N>T7d7`h^ew_9(d0JTw^b5L`U z;xN1uJ)~`Xy`_hz_upoC%}-CFytnxC6At&dc)uRfEN2Ve+Eov%he-oI&Mr`z7EjwSt=T|kv4Earm8np+@#D%$v z&^Go1otpZ}4U2k>Vu#c{XruE6q(9Zq!OT}<-~DZb?@^jzko>`5KFjs$)<^v=_m~TQ zGz)k;u41X_qkLNCwEB69J3n|>ijuI;%x1ur0~!O##~~9JHi3CJrj!|J!eO!DH+viu zD-yh#d5VpUv9LxqkWT}@0m~?6&YTdNvXyF09Ai6~1&p>fm&`=QHPw(A$hxrK zxFc61rtk5>5-XR7oNXJhyZ#k!i`hcBLGv_$%mNerHDAbfS(_^v8}$NOo^Zfbo`sOK zHSGK;4+x^gd(hR;zsHrkz6WmiN3WKUy^?s5Oq>}s4q&K3*J$S)T=9M+ zd`RrD?c9dl2Tn?8bgDt*4n`KUnHjnqY9YJu2F4?fph7besd2>XntJRO%b~(_KcwD8 z%qW&q@^^5k3Xs-(EZ>m#`sey5pQhqZeQhYMBRMK-qv>gAFiyX^T<>aUeLi4{U+8N-ITQ#>FD-4ZP&TM6@2`QTE5SQ}HLxk5arv_>g|1N&>h7H% zd~7b?^z?KciNOJf#PY9M!3%ml;3oM@3}hc3yW}CBpoiaVvT`<3)HjFux}#%EFiW33 zW$P*rLN%#}@lrrL#+!{8(D1w6d~zu>J5`K5pr3l0F3120tE=P?zoO?bf}CZzdB+Qu zHh}^pS|USECE}c{DTS<(=qcy4WlqbMKC&GL+?3d`dn!!XF-X<}PAV`~JL6k8rt)M6 zmcwf!Fn?5~MZ*iRPCqd|f9qRY}7?a{#|Gho;DhWmd!bYPl?G9hxe zExRbQ?Tr($ebwb=7~q~bOmLay)EcAdGXAg>xoS(qClj_cjGYD2a=3EZukJVsfX}yR zm&r$-uUdJJ8i%7p?7n9TPl$5e- zRL=_I#IiUDkPvrDiZuh1rPKVEzZRDTsl-b?=4%Hqporqlqs_t7ou<`9R5mj_-3`0;s?&GN#@TZ#U z0JVG|Y?RN(G{;_+4g#<4+`}c^7zhR2y#{~P)+rPWBsN)VMcs;S&6}3-(!aqyubq%W z-K6_)+LVOP$ApN^B(-oM#&nU_5rvr{N@AnQ>t0m&u!-lbCrsuFn6tJvS0l{%Nosn( zL@drPj?(Cx*5RrF(HtVOAKAYsNx$K6#Uz!PIv6fry4E$spbWjxFi=D$D0tPDS@}$; z#hdu(Rn=)B7ccH?(gR6&=itOVSxj!bX(s-auv5)9j#{8RY$y4W((YgVR&i+<&^9p! zNoLhU!;i1-754cae}SGME{F~si*;S8{fj28pMPMdo-sjip*JoM8vj)d12ott7oQdT z*Ggs-#_LZE$c$c>Gro4^n->lGHanV(No^V9&NDi@G-mMj+C*Dz+oLxdPsA>s%VaLS zJJ!5Aqxvm|L3zltISTWR-U{fvMX$BR7$)a~vC$Em#LZW^)Mb z1r!CyX_!2-dzD>0fZ)Kj(-@>_!B!Bm$xgUh=&ROl0)xK0Q>TWQvR#Yj!_g6w&B9Hc z)rUoH#dAX`2&s0A(nF3?RX8c9udrwl!UPT@tD+u9ZSx1qi+RkOZFziI##7LTdM zVyelu{t7&$m;$PYxcoZ`xM&87{|;~ltk&)dd|#FROs{chY-*;gUj{9_k@hqGg^C6> zFdm|l7Mnl3RUY&o@Uz#IlNFqqDJr4m9@jFqT_ieTtMUMe(0Y-dGYa_rV_SeLB`HuZ zw7E#iW5?uw9g=c?1W}ZM(4JYAQO}C^f$;teE)9`lzqud)NgXszX5mfw4ioHSJ1>8M z#49P@2!PEzY}*tEjtdL1b`WDU>Ee18V`s~n)5nf4q2i^)3%$RVzbz>J29aVrKS^cC zM}K51=pTnI`{!xTwx@YHQ7(`7T#VSO%4X!J{FD_ZI#$s97;?4!?ijsIaOFcYxEM#+-Cm4AkhW+&-4TIUV zs#N`uW^OJ!J-}5MBt&8HwR@QyL#rvl!DqHLp4{hk0j16iv;|x!a(SOlB5*u{Z_9dr zvqC1vNb>@Ik?tl3Big{T*YSoSOVp3J-WxE$-#b%9G6}N6>%PcQJ-AAKQpC~?Ul}3r z%-0>{Q~|Hx7*|DaSbrIx{p|tK|Kn)8^q3TV2CJ+`rdy1fRP^222iKjBoEm{}-qA0v z)WXS!lc<=T;!&S%(6Ha|sBNKy8U7e;-}<~auIqumQ-%d-0+DoWD2|0ED2_z&Hai4k z)KDw~o8i9}es6&n))FgnBHl(~@7(u1Q!pWCawtg_vY_Bie~i=PX5fEMsCk0wQ?~w` ztB5xb%-2~29Jh7u8uQPxcK+%!XmuG45AsTMDeg~71q^mT70m|)R=|@+C6+4@DYlNp z^HT!L+>WEfBD3Eq*+56?*`YyxP;Cca?(7MsKnp6QZ3su^uzcQXz{&+;L5vTp?f)=# zPr-r&VU~ceZQHhO8-3N+wr$(CZQHhO+qSl6b|-cw_GOXgU=QAG5o%ZUT zeMJq{xj$OvNr)cAo7X@3*g=NP?+x9RW_j6S9-tQ_$>_%s@u*xs5lgWPHX__w>#(DH za>QiRf7V+?pccU5&@mX{j&iPv2*Vy_zcDRfgy+SU`oWG?v{NZW}j*Esr3h=YzT?Pyx+>{O=tDeDT_bWDJHQJ1uA2f_szuQMi3 zPw!h2LfgVKkYaUbvo&mJa@z_tg%w^)h>iGO2a8aBquaLBx;5<#Z3fSyldjs&w3~OU zp_qG#uBUk{Ku*D2aapz|1hdb}D?+(Q(sE_g)RC1nUmfq#eSDnN9gsL?Xk~=3HiXSM zDOsKiUyRn#J%WPDRHv7J)GSQC{RgZ=p%MB>zrwy+R{t4;V`G?+n$v8(E>PeG4GP2y z@GKyfA`SdJB6cMcco6u3ppx^niy_7QOqSjdvY0~pj8Gn^TwbPzKd$b!0XD#9=6%W_ z@wd+_t}=+FQa1PX*o6+5!F`-+dWj1*(}0!cZ@8lcOI0E+&M`ms%>^ zHh}(Nh|eWEGUQX|93}Vdi4^yppDXDB!s7ZbeJEB7m0bIS3ywIF#Adk3gY(C!LDEi) zz=2|)b+LTc=|t3ut+t--a9@xt4$_`-@P+#ovbx^S(dzVzW?9C9Rs1KOlAJ~8Rc z3$pR6NbH`9g_(LYZac28#%89eoN4|+K~vxDaReo88}Sip$nFv|Tlp8GBxME!3%wR1 z5;qV)5X=Ydcruj_^w`;)a&H>UoyGBIV&@ue>hCg7l0T10^!*9&LK*7!Jid1OP^Kin z6loLJtGb}Adk@!6fI?hxwp@xwSfCi-`B=O6Ix4*|uqy{& z1k2+$GVy8qxYp~BHru4W{C49ETfzZLI=c!jgVL>vcpfA?M%RP{t6k7J8FZ9d)T@*y zCrHa}&s~4NH-0mO(pNvcjr1|(rB4%cV@)iy0DsqmWX%M~qHpF*kMb@nJ8a`J>rNq) zYtU--d;*AM(EFw&9tN%VaSCzI(hp9&xcsfJhuj>!HvctgF6Tq`!fYKD#xU8-u+=?3 zp*;zfqY|kdj-*cl@8j5OcVP>s-z*=6rTEj9d~2!DX}&6W;%MIZsrEi!=dzFAcWL;b z+U_!uXf2U7fJc@JX>#Me*YC}46-aAz1jF{@KO!cnP_1(SX)s| zK{ZJT(+1ov+*!wd;GA_9h?dzYSo|O!L1Hcl^C=e8hwnX>cidg7bD*u;w==*V)i84j zM$e%Rw@pk{`y|Aq(pWc6?DyNUVN}ph5@nd9L0Cze{BW_J@%+bS*@URcgnXN}wi%1= zrzaDjP;Do6b9go)8_~6kS2rQeu}4-R8fCMu{Sa$$kT?z!{szoj7_<3;rIM|}_GpOX zz!yzhxuF%EV^OgotQ=VIKw(tbYE-ez6P8xuIyztz7u9G_?9RkAbJ!4Cv?G{p9W{A3 zcL|mW4{^@-o#}be_2F-}QuzkGaWxPnr6E$G-h8_6BS_+)ksLx*C&AQ))J zC1Q3K8mC>sJYwT{cf5m&b#{S42X=1O%^1;lTs_NIwv9E`6yB?<7waJe7mSn^okk>) ztkrU6Lxg2VFpD5X@>VGbnT^`AW3kb6I%Us$4?h6H93Nb!vkfDmH1Evu*UYGre(B7wN$v9vyvtrIUpV~#+3JL}WwfM?eJe!8z{?(U{hV~ApK8Trc zigx+(Y+V&JH?Fh2_ie)5v|q9sZLKglo5h)Dn>_pgoy69g7f|sCq2O52(z7iNEsuvs zxX7H2x%Ry)cLG^||0W@vQ)rGMMP>z;>@k{7k+Od9%%-m52UBc`UTu&cVx>2e<`rezrEZ^ zAl(X(m*CUVZiJXPBSBQ$H0i;QNz0%Z$%kWgiXNesV6q^xu1D9^7n?&4V+R-jnN=6B z0@~!1(DhISPbD4ld5OX2d~B@4mKy)uM=L*Tqr^lGCv<~847VH+h#>A&OI-F!ajn1Z z5xIBRCKWI6-aG4I>M!+A9;8(fGKu%^N~2P9H8RBNuszfm{K;&lLPC<}4Q>^hM`?7Y z5=foY$M|bpCuMmVA&Duu#oqU=?m9I>pb{5kj71j`TzstJ_u&WUR(2RUuM!Jdhhfg- zlXw32^2&QMZv3H7SZl8_@Mx=6XirQqqOZlD(vOeb=hetB>?4n7T&>Q3A0trV+Nd%)(7Q35UH0x*nEzt+-VHTiuE0IE8YOy;IaGWnqt<7YRmrfcQ?T zR^!xbXNcg3>4#S$uN-?R}di8syt-``jxK=OekwQpL8to)ZI9;vn=BxKpVyO;-5E~D(DYO5$+@yKI zrmp=>N7m{~FEC{?W2Zcu0VDnPG8|&-$vRCULmiFKYBh-O|2x&0X33 zm%5U&I1oxHhPYmf(97=#t;R$@K*6`?K%zv9OY;)ZcxM30yq~bVK@|%62%{AuTSy^0 zTUjNhu@E80$%7B%SZ)To=wW^k~`uwM{Y;6Nv@^+{ZaIVM>R z>2>0}&L3$CqTs?BbpXQTTc#D02~#X6V4ktK_kOiq#yJWa11!VJ)GAA*I-Ai^`<0Dr z@0Olg@Q5l>FAV{+3`UdacN?B^QVt80P#Oox&WdLK*YC_Z3n6Tp!DCs%%A%Hk=k<)# zudR{gBO=aqtAAHZO}&ibOFe-7gYf&gaG2hTZ7cHw8FxOMp8Y`u81qDM=mm_?ASu@b zp?E9q#tKoPloMSS;*R^M?2%B%L8S(~2?2As8?N8%w)@w~`*pKF?az3R?qFMmc`%69 zpze$VVlAw_p|l`r%&4w^L4e@C?{Ry+LN+zBz(Zv~KG%#I#|pu9*r~j4OB`^KX5u1@ z;qM={9f;Ry#v!xf9+qVy82TW(&1=~Op?>fo^who-4_?sEuMRr7_91UZ3>FkwnnU^irT3Bvw^?OCuOOH4QR*U8MMnOxp_E$R?Y0QE(oomgC>uTzI@(mV7^HIvEXhuba=w>aAO%HoOcbP73 zidsBFp@sn97fcBz(0llzTm-;c+JKJDu#U{)<=xx5ZhTKH(6kO17&MvVO03$AQ3_Ly zT+qO|pKUzdr|X@;h^vj7+tc`TM>m)*1gC?ovh4HChAV$(swwhHgYlmug17lHM)$#< zlFE*+eDedf!Y9l-QO33oc6soSb_a~$kOvizfRT}i#B6OQF@(@bRgU~qg@D&><$d5E z`=mh%r&Fd0JV(Il9OQ0h1B^!wHnY5NX|~DBR}r1b{*d9ctCx z`kSdHdW-%MLmMvhAPHaE<`D+(i>L z`^lx0wO{uWBl9WDa|wG1sIH%K{I0P<4I<;v_r|HgfA}0qN{t776*Bd#IP~t=epIlE zg{5(ct(c|2@lDJic#yIefxq$x6ga6HrvBZrOCzWkYT2nBM~V=?W^GjGrWIHwjDGpD zct~{X%rZqJ5>vKvdNpBz7+^x&_0c0bUxucL1o(P>2rvcC-9GbwHt!r0i$zfX>SEk& z%p1?~z@N4WbzI2o5nerc7d6e;7H)?BEdLO#&ZzaJvRVbCMr*kZ^I35-+WB&apV)u? zt0>l5o?X*vDexzoeoX{gso*pVBR>`0y0J!@*M@6-pE4s#OdbYc?GFC>9>#{(pu}1= z4ZK9RXo!G%D~!nK4cg?Q05wZCw0i+gv; z@7Ts1^8K`GhnJ)Pdk@{T)GHnyV!c~&Vc=SaXaO7xv$&Bk&c_hHpo}bDw^2#dl`(Gy zAL}Jw*g&z#?X z8=4<8IAK=C_M>mQ-Q2)DVvMi{_Foqw0MmC1b$WnKGPi7=L)Va#Z{6@c>#?km?1zwx zZG}x{EomH-6cT!?b%?7n12(weWg&kiZCsu$W*dMSicTo zy_g`^-GpBRw+!cXrvw+1@`ug{Sv(ps{N%e~H!E_d=~PkAlW8|^JMlHhtiiY#KH}?p z!mEPI*ZC;9U5=gCh00#!R*X>yI|s2sL}Y%PBWXnJ8WSLyj)a2z4yjw~KvR+mMzRDU zbl^dNA|SbI&7eyxPw9a`(Ph)gnWejb#3Y(x7~>gDilkAMhsO1p@M?z8_f=76HDey` zt{+&uzv}E}iKrPlE8z2b#=Ikx8Ur~2&rR}QXm4C_d58S96YdaUjOUlso#H4piIUCE z?N36K?~RCExFr>x8K*uJ5=KeYUMZ|40Le)9n^J5%L9b`01=!whOJ^zCPx31$qc)@w)DZ8)|epRlyZpx6$xMTOgI&R zLw7!5KoGwB@^ifC5%vsZI6`cZ1=%Mqb%LiY5P_->iau*YzY8)n4&;8XGSh~#vxk#F zMc95x`P}^rw_@S<2UO%YV9*q#yLnw47_i_kS|*sHZ138Mi~1N~mkn*~Z@(Q&p6y$L zeKaXKEhWtgqPy0y9)miukB}~Vjt%KB#n?GG2QplmGpK?!Ba>I^b!%KlfrEjXO6Qd) zWP!F<(w|kfQ*Xu>e}xZIh=*WD8#2Q#)FIk!hAAaghXy1%e}^8rYTp*uN{P%#mjVUB zXi9JC>BPLQ*%PgRfYCgjIXRUurxF0b9C7!5$tj2wk}Y~8amRprWAABx=Rl>=?3_~x z(dqkTvU0R&O_?%Gd^$8ZdFYGwcL43Dd;>3$2k2j)GSP*(e>Vkj#{vBB3ue$>3jvUW$~%bm=%O;MZCcnK_Cpo|D*F`em^8WLauC8{Bzf z2GxV1g?JvWcnH*uCWiSft2sRKsEUu@4S&9@Er`pdOjo<4&J2&xXFkYb$`e z)ZwL5=(z`Kh@86(3H%HbtmdoLpq2UD(UHX|QzfNHf{5_D2>oFe7%FjXm)8vv?KFUA z9OzJ1ter(D#%%CImIks5GuprRiWOW)K;wH`14%ESP+eDysmPjTWZGtJ&C};zO~;a( z2w1?jj;dM2lqrz7&Xa2r&Z58ySzI`%wl{7BH$Bfoh<)d10A+A2itQc4D63<$PfaX0 zFjqSacBTy?=s%V*XT1CEIg7l3pni%{Lhk2|iaS5=BL_EVz!g_;4ZIKD<7qndYOz@& zja)YD(DbkTH4zupOE~*`=q@3%LuA(8=?_)SZiS%i&T@J=pekITyQ&-|TEeaZ_JsBR z>J~|NW>}gX#ip#%>@W{=;qYKwcR?bBv`zR*;Mbey?TQ|YVBus@IOZB1!ijnaVu7Oz zQ^8bMhds)wCBH)5A<*-9VT~eomO&Pb`U*}<=AAL($Fx@QeI0{rk)c!}oa~ZVO?1mZ zTQFlk)D)G#P}cnbAS{VnwAUQ8V~U6d!o_fEsxzMVdR% z1aq#y&)*RkdiA7)5yNkc2S{%G6d!0yp~ibFS}#cLB=!k;vP{O{&-!Ngo8mJajOL@m z>>brDvHf++CPVJMaB_DBvY@|f*-{q7j?h?%ypT4OBQpV>+MIt>u&D6!K&UQz8ec0B zTIi^VFcFeF8$$i6F}@7MI%u#wW@Cw~$Y}#y&$69${~mb7k|%6@ju4(u9qA!~(y~*4oA=PO;0@gbk)oADhCiT_$jYry5x-wS z6-y;ary4J)?BR6bxH6Liqm}5m6qObTvjm-{e^spb@ukTT;Sh2l6A*3T+$0?SLhfNO z6Px~_oCAnVX;=Nr)bIswiUYhV9Lm5b8aon?eR9O zhwZ_&A(~Sm>sZHKa^G@7%^x?t3m7oq>msSw##LP%KmLb=(%dZ3O)ef4VrP5?YnQA6 ze=3r&D(K#j1QfApNk`7kMaqI{f17kBQs8joENF4<@Bhaz=2EH8Hx#ps+8SZ1=o(-SO+U6Q5d-Vk_8R>V})}k4Wxu$`r zgFzJ&8g-*X-b-t%KGB~=R=+Yb9vMD?#=?&v6m_5thkM4#1A|1A{mAdp%GXJGjdlvG z@nv4VEfO;VdYkm~b4Cs;o3TCabKh+oA^O8;=$@hYe;R=bk{%ov9kYfKj43K``H>;K=JSp(2JQ{IT<_rds^u` z8H*Sj+8P=ESMMJq0V69T<9|&|1neyAoc}fb_j*7M7Eadx(GD2h3aX59fyO3N8Xy5d z!7wB-I0w71O-c&G(1*ax0JBX=s~x~1QJT~w5#dw{NEFS2v|DzX<2d{M+uUP2t-*Zj zDgp>6?C@acF9O(b!4&|25Ecs!azF|I^qeOlK8BwJU~n&_xh8<_ohAq3DORhHC+< za0*n`r;nfplt;6*4h`7cEL>poK8x6AFbuVah=_Rbb`2Nj5#fd;;*!kLVhJ3qcKH0M`KaO@&SX z_zL7*8v`8>A`e{g(-Z zyJJA{N6(dE3DGK?=`EWBBafgO7NGFrvyw}V8e|FceBv0&`AdcHwU(ibY;v&5cwbHq z0b?O~PtC_c0b~ej*_r-k*U;IopI491cZN+Nt$Df@scJi`{aIfDojt5!OBanIY!815 zEdT_9}!>(6yUz8;qV7lYjzUzL38{OTI~4t^bp1sY%Nd9?@iE}pbQ@fU#*TC z#80G6@XPB*^WHYxFBDu4wpj>>hOk8eqo03Xkzwd0HY$S$=mL@fFh6V*7~uQk%bQ8q zei94L@#$mq>(#CuRT=f!xp~bO{i{_<4D1H-ZvO}rki#8R000jUk6cT`XevjKvuKCaA z@o(&QZ^4%?#82-#MH?sA&q~ABpI_f5J@T@`Rb3Ah-R(Gvo612&Y=BQ)CE>ALXO+;u z!rNItYL!tSg)RbECYNun$oVx;3i4siXej2!uc1`FcHg?tClJAcO?x$Sy6{kbiQpg~ z__!98RX7TGgiX=bSd!m4L>_hy12!7Zh6F0Vg zx*&b9zx0^S?5)&8xX&hE(RYOiD4D-0?f_d7+#pB2UIG+Dz(4Xb`T(u$Aot*JYU8Rl z5Fi%&zDh{TvA<)zy66x?$OfVe{J^b9(9N~b*4(x6K4<;yKZ*uOZ8m8$6X(paX0Dwi z1G4(nGf+CBSyH7iFI$=)M6(VLM*cS&rk%xrukMx!FPphNYA29fhnKdHCnFReV$iL{ zm%EF5{0B>(4f~$g2bKs&e(M1{%;_Q+%l6Xd+FXDUxszPc@MgkC1vo`o6;$#)f2 z0nDoWBP?Y`P-&*=yt3ndfk#FChMm59l0421T<-j)PbqSw{@H!D;$FY^ zSB!SbNx=~b*oiWnTqeybl=J05e2Ag^pL&wU%S!K|3X#Rsp(aF6s*8$caFqrPX+DDq zSMzwojn~W3_aU)anhyygUZfI?qFWgE&WxkN^R92Fq8S~OuMhm^4dzna$mWx{+S$KN zDK1)${HHu2HeZOR(~eiU#T=)20Q8zt`Yfz!#78oXUQGFsf1;Vo6dc|-6@R(<$wDVL zRt%J-nd+szWH~T>f|0}Pv(o1jEF(*ROAFo`&P})V7qIAutB{-3Mpwtv_wTWm22xw- zUEP}PzeIX_sk>VDJt-%>Gcz+6@BBYbm-GS-v+s*`{;mfa>qOS{aj>%Y#2X(px1u=U z*Wa&&l^TCagPLuQGOuWtjw}m3mE%xkCr#W^w9#Cw!(cL7nmcSsO_%5b$+%c4f=gClWJI6k9?=5)%6&w=5ArNYfwvuKHX3|Ha1to^rRcGSV)+kCs z+mU&#);jvklpG+%luOJPUzJ5Q`W$33l+qQqx#LBGp`258k? z&aYie5ax^Pp<5(I!dG{ZT?;IXFX4b}h}uxQ8$Fsq72C-SkD0)Ia|LIztVi zqx`X4_0|MZp@B8CMI<|9@n7!?tS3VbNfh$!+#C-tbl$bHRYYiURg)P-6Vm$3b+RR^ zcr5vN*pTh5?vPH8BvNaOOYnLVR!DI*SieF(X@20>PHB&q;TJe+(AM<9kdyEE0H%WP zvX^t4RGIieMr)ZmR}rW8G;%!H6R{9-BY?gzzQr#Q3Ed*1nn& zwJmtf;LnD*hr-O1S}I@-AJfyn!9sYQ5RU@zh3-r02E&I0T(LVqE=Cmt}!^9y_D zp{OHxbiUS=D^0@E0+>wnbrNH&M%b67$ zmvby5X`$Xd>%RRg*^AzyPy zrv;|=5sA6II^*bkgJtFhY_2mv`BU0Ar8YY_LNPYwnq6`f^qEPFuxkl+d0oH@vpv<> zD+B$Krocib#ey`1`IO1aL}h!D4Ag?C+|sja5PhJ!ENKII7c6l_8>5%1ex_u7atwsSEpFp$$fKtdt#ka>Od&&DljCp3qATk{ z!stL}!wMek971l#UoT@T5Bl6n{CZsv^3`9RfX)SZ9}Y^2;p30sUbO%_&mCEE{$@6p$NV|o1!cK0haV!qB7w)@ez{9*I$;U(@b z!5l8glfXBcm~`XL1y_C{oDZET+sTbFQ&31Psx;APQP1LmD=&QSx)D#mNam60h4bIH z6U|gr+4!h2>~+oAJ`BWw$Yk0tbb$$ZQye1Bwlk8#47UpI#7>K(bLqb~v13Ub24f`T z2LmyNc=ix%B!&!ilh3U9gjY*L({{z{pzO*X$~$3Rnz~m}yTtH&yp8Ckr!Ggd^b(iv z9m|vg+o^vxjXf>>a@Jyh^|E1etw^Q+z9(OlC7;``#E@;PxJbSkb>-&jT&!TeKgj=y zzY=#qrr8axW*`%Nd0fyYY*f}?$Lr*p4GvB@zvNr#L)Jppq@ax-cl|PcV1;Tvo9Tp4 z%GrR6+GCnn0_IOxB!kcmLN5{EKP71;xy8|4N2A?Qk@>fgltJrgA5A2y8Dv17v;wX? zI+|VxtYdq&MUlXMc?Y`>&&9Ow`d7yk*Vy$^76F3+djt!-jdevk4P+Tz$plGiRz_`; z1U~Tbh(l*w>+%|G8IUVs@j0&%LV1*~XC051?19h7eag3DEpE7It5;B+D_u-05D5*Y zc@{-2Ez{eu<1Eisn#o+O%`!#Do2YKdTh2;ujc!Kc4$nN!q2>K0?0ea9PucXa=NK@u zX+hl@n;i!H`Z-~40ya^rRyiQ+{Q82CbXZ}>wiOQKpmlGLq#c#jXeZV@WdrJE%jk`m z0Udwlf2OLsYbl6Vxt4!IW}ijzm7Fpz-ffy*7@6uenmq<2}b-Xo+P2rq9mH$W3O#NmVm|H^=Py zBOUETa4J79qNk~K7P_4TuR!Fz-EqF@Ogtg;@rHjji^l*Ka*1c^BnCnti)6roBqyQ3 zWaQLVq0yD6qD*CDGvoZy;kVJaZ3wfga)jA1)> zvj6A)=wJ9xuSif$Ca?1q<^ymYiXH+bIm?E#W_vq#h!@WQs}VMztm&*d;(OHCS_-EL zBr0=W-`c){j-K-cKAgQvScaieWTEG6|)|I?9Of)VbFsAAYQfLVV~YS+aQg(LWvSYs?F=F_k_9^ zzWM^+QW8q%LFF}{w?Kur4zygeJzacTXrw~Sh#Cu{8d8D+?k-tJ17 z{i7d;tI^^URq#PeIG_at#T2c)E0@a&pK`9I^YNdsbIBG-+8M_F1xYIsCS!wWEdyp% z-ERaFB11X8zD$c4Oz9_(lN7pQwthi6(=z#&eKM1YM$Blbfob~S`Eo|lIFkjX54z}6 zW-IH%+$#a5FZ9iLD?WI!!jen`09;ZpWH#d3Ce=Bvrd}kFmZ2V>GE!x(GuB1K^DDVa zg@V>QeO38T+&3Kv>szSU8k=yw1{eQ@lP*Dj486*>hLDu%Wz=cvVrY_Q>n4yDul9Di z$=!Lks4L{;qNG(Eray}7YW+R5GAuFDRG&W7g+r3DC%4ONg2z1Hgcb!r-_kZ_LmM*9 z&o|mgwl~!SlPWy}tey`+LM?P?Sg20bskiBAmC)41y%*W+Y`i#hk49!*zE}H zJ8vB8c-8lipqxI~B)0vYKXQPgo8w8AvnsT$kwJVt_KYM}QiMe#p0P`i4L61b$iXTjD8MxY|5uC)#x%-jCov_r=njJwZ%cx%tjLIVjc7O9j$>{USnsEfR7** zd2&ycX5$N1SZW_}k{Z?~49)=!Gf1-A}=p+K-FYs3BZ6s2v?o+>0&*2`EJy zm{spgJT2*!2?E^Qdj~W=G-CRUMlZ_t&4VcI_6H*y^k)3(2F7&-487dM)`N@^EQKDEHdkT>U;1)Cu3hf+Gc z)B-q(EO7&`c2lp$0%=F zzLW>^blptLAhx)!IxZWz(8wD*0D}X;Z)waQ8a}ITX_elq|Lj*X5eLGJbVbfqPp8vf zsJ(-m44+zkzc+#s=}HjQ#i1twMM0DX&rUrwA`o#bj!u0gBppM#*y>}n2BA#(bmcrO zb4ZikSlu!}gNvHfn;_JJ@4MRf^MIzQ(7}IqI7Pk+2Qp@drXF=qVA{5xT&z9gbnL;4 zR4ky2hO2?Y%F+{U9k$=-yManU$C2AUJ+J);G%_YOpc{2xKYFR3G)vUp3lZ>dq!|85 zV&~>!HjpQ5i3WL_w$|7&sI@@1{$sMp+;<2QYuxU^!1HJiJl{A~7{7O=*I*WXfE+kK zy)mp7T(|(tlJiO~QB&01YJG$lYbeS1ZqywiuBYn5c4BEE!VFtSK zHgriIE9Piv%0NSxV9)6S2gS(!b;d%5>&4^c`9X|brH&y=g2^1c@8||bg(;WiReQA) zI^b*IBOTu~<}EImqi!313;6gw=UFLErjzVcgOa0F>gse?VR6wB#>mhj$<{G=4WH=% znTkP=hc0!b@PK#kehDKN;HBJ@iqC5ky?9Tj$Yjs%>m3c(dRRjh4L!6VF%fOcN%SFl znq*iqoxT=9I(*hHRk~@Riqfk>N&Jom7P`D$=fV_%*`{%GP3kAHC248>64s^aAKrl0 z&g1kD?>;=m*6@+1#3U`YL-tY@Y=bBl7wHP2T@3f(3gcAl$3Wkehn?rR?%x6~I)D9y zn%Sa$=^8C#zd-vTrabZm4weBwS%^K!hK!mIl`9pet-lScb)I?=VR=lIOu&4|-a@x5 zua}YR1GwaOB52iK^x4%nU1`U>HNa0x35Xt zA^)YowWCI?p{U{Sd;8}vk@18ZoU04!P#(?Qj;w6r>0ag0YvlmAJPm(#VoJ(S#(rzm z(AmRG>qxFBcOsoIu#k6K0d*u?!-5_Ojy7fgN@}>a4!5vglj&-P$cXxxsTstdh zKD)=Jj}kU|ZD_c3Uol;eDzP9{^z^Z~OR@Win`6^}ej4BK0>yR49)(0W0QA^9){lhl zhvDL!ldKnQpzAnIhYq!I9cdcTha)R(eo}7gG_~B?5D1a2;^t0l1Pg?;7OVbx_k)r>*@tG``4vuw6e(a5_$7+jRCgE6`ekv#_DJwmwZqvFzBC^A$(=C~8h z&U^VHv>MFs@#V0wYB8i`=N*3wx*Te~5>!!j;;;LXcCW|u7{=0207JaR`mPbSl9A-DUD04|D-3N2t9ewzki zeq&mDvFK5*A=<0)rpr+zuT>clWAFTM8{D)h^lPJ3s*xo%NYA4FaiSQCh|s9neY;~8 zG@GnueA*eU-e_DddUZ+Xca$A6fBqnF?(v%o{>!@(3nRF;pn2_>>jtxqvg#Ed1lC#7 zWWotbxqgN#`p33$8Nb?}_$GUAE~m5Fcg_jA5-Ge$W9<9m`%~pTHdA*0o|e`3KI zi#m$ZVK)?-x|*=ZJnfl;ga?a7Ge|sx_5t~9F83L&c6+;!(HqeHKJ}b|nEB3n+w+vV z!5ld_-d#-P};hAfq!ex+K5f6-S-WH3hN z@;=jD&k4LP6Dk#iZr6ywWRDI{oD7bMPpqXj=%dx5#6O*3XVRG=RmXjuLmU53;_U>* zO3NOj9an;1%#0?BI}bV3C&<>vNfm`{D=tkl)uK{eq<-vW?uHsd`EMirAr;Hs`{Ky= zG+795KtMIF2EJhnH{g^~kvtvQf;Z^QVa4(wYXE$D*sFEzZSsw!3yn6`L!(iK9m>$rM0~iE?*k~eQ8yQbjgu<# z$^}CtRNTB|azX7li838TY& z5}c!o|HlY)E6R0y+$8=G=SUvVSImw_2V6~q>n1WIXw}ih*bqFm6r#vL>tnqBl{1Ne zwhn~p^#g(Rs>tcw1cw(D-Z@iS9vE3|?9_|(HM8JTZzI0NUY{r0e2$j>VaZC?oqvC8 z(rw|eR*@t;m~`^qN<+sE+C93)6b5mcb;X%}a=sLBhvo4YH&3phMS$rgOE(a3ST1w` zv6(qAQR2ngru(uOy&Gg)l?}QTiY-{sBf9`>-*_wYxo)MCNakvv{(?|OTusuFqY|Z2 z9Y&`Ze{fQY;%)Y#Kp?i6Wpn;n!?`7pziYuVv?UG%DH zf%uBeP@Um;&kXo(EVMo0v~olT2)+nMw~h;Mrm_GSDJ88l5VfzFRV)R@OpR^!{l$=p zFXT8OyN=H{tmUZkVorvdK*W|jlw-V>wme$Y#{Hw;2f)st z!f&=w<;Im~=V&e3=9Md(2Su@{TyrQWqwB+I0-wtG$ZS{Fy>i954tC6skw5$HA9W3L zztC#96lDA{LNDWOoa?7(*z1RYjI%LbzOwG8W`esKST)sI2w3;X%(pU3HLXfps~}!) zaHSyq(qRLSllkzwKyILTb9#=hp6)#lSdz%V)NR`$L~e`fnr29~H1{zDN1iO{lIu^7 zEkXr;`A6E^sE*mxEBZHMlw79C>U+AKnnKYXLYw5MS^NcjBdV4Hs8^3kPadit9PL+Z z>s7y%Bk@wXqS$^m00Nb#0|v8|eC_9puphuBdOgQ7V?MdNM4s!5C(D8-@>bh{n9`{p z;hPAC2MwAnvB1U>H0(mJ4x~lT0bR8a+fqE(e({XX_!k420*m|{CY6Q#qUihrq9(>b zPC6_M!dI)~$Fgh7n9ubJJ?~;CwW8IN4Rg)E98?W2R!5B2p_|LFs*i zBn~vQwG5A0Iv#kmZ`l&kWh;|1Dv?l{&udT>XMidPur}ej932TD7um<}Tx&gP(r@Ff z`P`Z@F?=}r^Q4jLKHPX{RAXyd_%c>a@?#Wa$60Ij?xJP=2*uH}wIW`JwZ2Sa`o9*y z(}vN<@l%=Xdm`$?r0Tur|FXjAdc?>dBWUfh0-=qg^Mf`rD~3zl@r7y)Ipr+aaSz)A z4Vt9uc3?KX>>z+1d0Y)e4Q{Vara0bqW@O$-g~>pA zE4T`s0P^k%Fnp6?^zOM2!GFk4CR%bleDKA(=C}GH9q;NM3%3;RXlYr^fxVrFmC7CQ zlPCMdSD;5*BSv1-U{!POTH9?unPK_#L?PA)i<{7-ij^SM)V-mEBKcp}K@Mdo>*OJW z$-9|k^_Dvxh=@*j;qnIL(!y1WHX`p|!4P`D1tk3Vli)RX8y$}0EJzg_D?uOt)4&xjxKA5()lrn+`+0D7V>Hmt*@)vxph z@H;-Nz|f)^m4rDR1?@Nl)+F3a2|7qQ#gz7rIdLY`G4EHg zS1Blm=^M9ZXhw>7Hp19Tek%*)h*gF{71jI&DqKT#nvh>~0GC8vf{sGW3%mYTW*lR4QKAXB6O1yXqera z)=ZC>+H;&(uE+tgwP;x;wp)m>o1L00HsT*-6@Dk2^8PTo3YCmbxvf5Ww2A3b#P4i( zN&DNsfcy?Y`u}e{gXRA_p27Jqc=3PvMpgzk=KmW1dp?7ajfsQde+D#OK^3w#8%AM) z`?s~h;QRj(huhhLVE-IPNCYh*JJ--Xtbd3jcmKX|uH()6=gw`V$8H9diO+Vo$G0c% z_9Z2SWU}&k@bs1J6zP>9-P06|3=e>!JFB?~8UQjfH83(VG!JPp*4*&Qm+#eG64r^_ zjDRP?EI*M*_EfYspOwJ~9lrm=3xQu$C9PjNYTs1<;MDlw5Qv_>!NE_ifG0VgUs^r( z9L#?*j^OFsgGv$q!8iiaR%`LS{9_#bW=mKAOl)lAI(%utAvV*w0cE2F0o)DIsU16G zasT;kfE6z#0*>gjzsU#8xyg}{!0^O{ot@nO$^@AMyAz86U~&6!&kR5n7+u+19hljH zzf_n6`qyT@_=_3)lz^71{APY#$~H9H+OWCPf%#xs1e6@(9!HVX;?moZ_Y7VADw=Qv z=KFD;ZuQ!I!RG*f9610?z)pTkK4&j_kpKmMHLR>GENoBpU>-mMXaLa!G#&j4f^Y&O zL!oi|FpOT*^6IM_zeha`*$wlm>&M0WdW*1uNrI9ANAOX9O8HEc$nydtnFE>UUTU#0 zf2AJnrw$016+OAR9pfUIzjQx_{Nzqb@K0~X-*Q7Ofg4=G-GAZL0R&CZe3SK0{yC0t zKwKRe(vjcfCxalrtHHRV&n|VY z0Drxb^lzY>7=GUZUR~H+n8DjP+A}^qei!e1A#?sgj$ka#fN5!(K!SI^roRlCnqQgx zIlahpz=JosBb>N>l_a*84E(PcNH5D)e_~lLw z_!d9S0OtGMKJ)lTIhOnf<;dUq*_-n9d->4Y@YT!q@vB0zZ(;dK|9k2S{`LD7eeKth z^Bewlrlpn|OBvVtn+7`f3%ktn`+7E!nF*+U{Zp&9G5ltT6(pE~k1IPnHPScqV#__J z4s@n(Qv%||*!ajqN9rg(@T))#~H={5gnEP7h~rXBT5%->)p0(+qP}&wr$(CZQI&y z+qP}nIQ=L0;U?$hyo_Y7%vI~HYE?4k_%hNxKP%G#qM-3TQ)5Z|Vllk|P@iRQeRX!H-q4_CX+U|d!R{tQ9LHQ}1+Zuq-Oa91U{}FBL2}kNB|6%hsQuw5^X8=G? z{w|5lqV!!5lU?cwhv_YQX7j$xyZcYxboamU4|>iDK@)q<3|$v~5I4l8V?V~OZ%%ur zv*s@GMxphXf53de8(*=02zU89@d9Xm*^Fz|-~M=FA2YkLkX64WqxG+FUVV!m!zt(a z?uJr+^i;lveYv%K4t(WL?BTr)>s(h}nYb|G{9RjlT-fy!`tx*6&-Oyk7Ob1m!gd5xUjudK zR)#=oSGtpFq%VZo8PguTw23m}$R!Vpc;wls|7!<8zE0nW_1P5W(|^0$wkiysGBT{& zOGKCo>{^@!FxGDnI$?^Q{&Cu;J{fPI+t{i$9E4>2H`r~afZ@`El2P23@7THik?l-8 zCbp#LtZVKJAhhK)?g!3*fdvydF*FnbjxbM=wWLm>NX5;yLL#&0MZ@f#B28@nn8rXq z+~3X9swD~ryE%@}&MWE=*EPk7D$aL#(3{GV0XnI8{TzP4OXdaJegzKkX|>N?Grm$# zfH;GndTG1tb9voDl?{K0KQu0a<#_udm1 zmh<>}oOwi|)^_O?jp8J#@-Wu?fS`@9eTP(^7EXkCxnA7BkqvT+R2#WOzFpB-be3`pgRzjC=855U*5ckQ z9jzu$K&IkB2|+ZF#$w5HSvKtP!ysRpe5juOPlmL}AHgVBUofwq+eFUG7u~V%(`chv zqf-{{qP`jW65w%^`=A)^T%aRUML?9TV*a{>g38#qwhi^xLCR}=H@YU3rZ9zzFinQH#*zCL3;Jorf8kjD5l ztg2>I18s2^Tky899lu?Tfr#pNp%<}f9Tv-Ef1@Z@Qx~!-li$zzaPbMp6K*Cf->qmPg7JFdU*mPVUX-deOUC*IJf|i~VfhCS^!&87lc{-@~sCS{t zFh1-a<%Aqt+38-4UinVWE~-|c>mbO-#s1u(>j|a4U5$>9`D1zZ@Nm1XoeD)_$=&zt zb&tPx9?I_*=GKMijdxCnOvbdDh$wgHA|o8)!3-B{5buAc6YQGsaO+|tx*Pi)l3yK8 z5kV+>>x6F{Wb1b7+Bxbwp;+ni7M9PJ9rcB^@Ur64Q`Pw(Zm5Q9>rC7$Da-;p=L&E? zwGNk}P?lbs15Lv~9R$1xfi(aL7jW|7Bh`$;cs5%>ZgJmoK$)~H6eSWHK zrc(sci+wOcT~cE#skspq-=S=s-G%c3G3lDw2aQHw<%CAnuNJ#%JP3ook~tOH4IUUs zhtCgq&FnTHLmlqYeHW|$02P~=Qz3#BsRNt4I_u8R^Z&p)VZ--y;>Cv?UBzC!RKS${ zit9`v6DZi!huSb(9SrS3iBxE&ozqD-zCNL=80Suj2FIm|pQnhy^TYiSJ*{EK)*=T@ zum6YK?;nyvkRd&eQti8GBw-ps)ww8^X52%8?#r9Fux-5cK|YGLivLS^AftXG($~~1 z*Hl5ZEHXOlYWk5sTwk+e+f5~PZLxD}LXT{G9X_i(##0a8T&Jtz*OyGq!#`9677w~# z_5t;T8?5%Z*Qc~wVx?lBZ^(3Txsiwe)_cswi%;s@hW_M^ms;w6?;pD(5R;oqKIb0< z`@ZF?6@ljV-*~vTkw?4128Z|Zk5|hZ!I9<@h+Z>a_dAFWORGhh&y*+t(OhdM5oPaEE7tdfEvsYo+qfq(FtAmw5P!8~$#`AYxf6F4mqD0iyuHp@LjV~49{5?VLM8KioZHgjRwY!lgdrLvpH1j1 zS=%kOwMMNn46HM0AnD}n{W&)$J{+Llfs;)bokA=Eg2w}ho`?yCKuS7{VlndMB4S)p zk(W(2fQupgv-4ltd(e}_wyJz#?s=)UkfG*xDN->t7#}-jlGY9YZ*v=ylR-F} zlrex{y6&!9oQKLS%bonM*63le*auWAQX$zr%(#~wS;FA=b;rMMb3GNVE1d#rOn-;v zSneoZtw98Wko`(}t#4_V{q%Lkw&9y7kv>VC1v8u!?ySSHW?nZXp-|Ct6&H)o)av1T zis1nR-e*dkUhU&Pra~BxNl!A<-_Z|k4J#+r1ZwT9Kt~uOHDai?U4fFN15q=LNQAC| z;DT6%=)EQF%a8Nf?Ac=X**oVinAlpw0CWUD21}{j^eJVkhx)maA3CxR+bE0=GEPrk ztI#w{&AR8TaM;IK$m^ElE7a`WRIIlWrBoJkJLgtmowsZyMPUO#B5(Dm;#+rpQ>XF%}3KD znIbkMsgq4C$L3Zo%q){r`7nRQ_`T#{m}6*k3p1z18CjU(Kj|40QXkcP2dI5LuK6Dt z-_zP5t~uL5=TDWKw76mrn*oyS%kLpIku)bKGvy7c0`Sqi_1zy$V2O4~iCqWiKp3{N z0BqC?{UvsmgLwv)TG76SLWMA_k9oPgQMPr--2dhJHf@$>$|op>M!5QJ)~z&QlSm2+ z%$?owshtJcZCZYJ^<%cc>a?+G5+$5|%>yKHYLqB5-jXHD3gZT%pUkAJL%z|;qQaD1 zzjpZOQgH=}j05Y7-23wXRcQO9)B(n5Oga(en&i%A)z`c#B+5iOoHb0Xy0b>-0n zcTQWGWJ^$8CvX;u_@D|B+E+D?9f5^XBpV}hh&}i{n?jo0M%Vo3Zr1|!{0H~dg6Wr8 zbQ9T3$`yeKfn*Qmq^WV8du^B8nyR#0EGCxy4<|JnS{%g3C8z0$CN9CM!E_rZ`C%Pv z{CTZQsrZTBA9CG(_{U&6gRGaS`xb(U4pdnXpv{q9v8y$Y0(uy>`}?Z~^KTO74f5X~ zW9J}?=V5XpN-ZXEeQ_d)y>}Dnk&^xx3nmM`Jar>7QF1yxhw}~KrOsm|LS7=QfM)-F zM<+gu7m@-5@PbNlJ+Pt#QX6#32>^j0N_&r5mJlw3sdUc(4T&@Bi$-DbkP%WYZHD2|r6F&55^6 z`Yz`KgbDV%zKedkC2qETqIjbXTQof$M`+q2I&dL^PG?&VtVbfr5dT$AoP5;L`7j^7 zqjBD`=xvTYSx5jGM^1FUwHdf)rhgy%3-o;|98w0NSY_}<+O(5_Kpyo!>IS5O+1N&u z?v_3kU?#?d(crM9Ef*%CRuU=0MJV)fhes=K-`3xVf za=WbIQjCow@m-msi<0-fqCJ z7*5i#Iy{RSGmf*ZOvcHuTBKf|=J5B*;sg`LU0(b<+RAc6q3eEpJa+qgeX{?uT~*yD zX;dQ)raSnX|33HqE{h4oSbBiRWLhZKqooAHz^rDRU)B0|tU;EdTkMDoy;Od~IMsoq3G0g3O*Yy}mkx=2RgwRizYL?@>}@w$69C(YR!Hc#$qGw-vy@^Hwe+7lQHyf5MzZZZR#hVQZ)%G z%v}l2U|;h~SIKgAfLEpP^;M`1vPN7e{#hJ1OjHe8Pu=xsX=5f(k179?=OKzlM36K` zUN|8s_!*L8d|p|Om&5B0Q#IMJ&>EXFX=M&rlEY< zj6D8q2T{v*L^N2&h&_VR7IS!$)=v9$C6}m2O^K~-TLDL*`I6Kkzhd{F*mzFOFAl78 zK<~pD@ktnjD*}1Y*nfyxi52q}4r%uk2t zU=`V~H~f=y8r&Z4*OlVl)@Gh80h=L4FNtzZM*&bI%g9qW6BD+mi2#e&knakR+L&fz zIfpUYc{97c7UWwfyzS>&I5Z zevRoI22aH`iyI=erm~ryO@cq5FV@0^H}@E@zX)7Gtzur_gWn$3H1QVy;gs!uJ(;?{ z9&aUOPU>(E|CBkVYT&uP1A%0V$Z$7p^Z1WTaKyuk>LwY|MUuHr1FYWH;+Ab0vi)o0 z%bN^(ZmsIFn)o)ZHBscLsf-94aMkNJbOg0lf5I(Fgni7Iqj30qmcL{7Wu)AQOzR0? zz;LpSBXqCwadz7sk}Gv()m*ug)*HkOB!` zt-WtodCuT*pUNm4mcoQ33ml#SRo#*_TDt&9mv^UOIfKa|viW&Wc+Phg;0sz{3B~a< z>29)U>K@qp^w!i;#j2?UH;Y)8zLNbOJ>4tMGif<(@up(F{JS7r13^9iZ|1S~L% zni(L77tykjzpS(CeTy>55eO48XA+j|WLGm6VsL#68B_aCW}KIpedud*;k?b1{P?qE z2Z0mtibhdQUX91cfm=I%NlC+0HK1_i#xPZiS-gI5(HX)h6DpO>_|Q_Z3PJD)2|+Vy z2B*+!%oFf}yHCa6(k3}ZuIpv~A`qCzKv##I#kcCR0n8&=9F z4Q1V1vQVLJOa!1Zo^!Z|OY}%M82iLsaiPOH#SdQ?$Qs4b+vAg`6~lf$8aq%L6M@@F z4j&1SF0U*v5e)!N*I-gPUchA(78bDgtcqG@A}wCfhQy`@8@4NL&<_0$ZfXc&KyLM} zj+d6qqI7IN&qG6fQ4>{8tr~fU3Zf9Wx;jnKwJf3RU{;9q-7C53<_J^vSs$C2$mS-V zETKB8=`0zPzsP9!g&hC}(8pafG3>7TjuV)LIr!PLOC2gUj?5!z@fH{FT}h`P4od`9 zex?1|L<|``QddyIWD()m4}SHTTd3+6|4d5ewRT(;>F2osg|Nm<*x&4J$|jga2uHG} zGMF>>tVak$iW<04?eQ@Jp~bFCqO9Pcmgw=1a%A5Skno4RiY>!@j>QeB4g%zFc`9QP zEQ8^i;t{#?IAPVKD!JzdjeJi~CNDpz@`1HNJLdt{o}Qg_Q~b(ioWT()@Ry2fpecI+ zT7=CCG)a3#84{bL)dJYc>-UmmaYA3eRWH|3UQ#rI-^C+mMZ0_so0sx0&z)(NI{JrOJx>sS^xPpJ@7S|4tx0ugEVM^0ATjTcv;xK zmY6>C)Uc2>rlNbqcPJD_z@3bevZZ4=zPDct8ApnKcgl^ipu>UTWoZ3A?`DAj70#-@ zlP^ApdaQ#qrEQa2hD4mlK}{HR{(@(?VHmQ4_qlve)5X^t_f{;vweH7;OKQa|%}UI? zI_gnK(%Goy6tscq$WT0m_7vQQNY_L%8)IK+Xi(Oei>Je;CZc0Gks-ZJW^`?cSG%$+ zM~4B2f#D{<%c!Q}%RcSGpRdR@HzY(|@F9)B{K*G2uF#I_O$Kv1I`8hWnHwcui+_e5 zXG_S%qQ(A2xn|d>NeF4&`;2MGr2H8;}M(G zv2sa$^Qp_3*2kYi$UC=NY6jgcUo5=yoVj&`6m5y)%L`OIcALQ2<6r!UKP^7OOD?Gc zAxv1K)lZ=WAdvzl_T#&}n>yB}R%6DWl}!#}EHEf<1oqFMRR^A<7iw=P(k( zOh_TTyE`5LQe;|xq&a%V(@kLPV;x`0L|^=2k+Jeb2+$&o<-$U7woeAPU%R#3{9~L~ z>1kq?(Hl^B;f#5*h|9yZuSqi(O6ghgW{0-E*qR&As7}VlcV5Za7+^+;dak#quDxAgR%ATEj1q z;LEdxUY9B6$bfflpez5wu4e#s6Q$Qk$9NCB7G&%1H1Z0R#76hG+4ms*j7UCQ4Y@xa z+|zY0M)-_zYv)=-Y^xz3x>f=0nE5%|fKsiXBSs%t=v?viD|W&1Y8lvEAUvy0H)T!O zh1LF=Oq0{6Gs$LPMGPMZtZgf(x&E752Bnn{V@M}i#c9BU_D+)2*M80|j#nze$b<@} z7v2{<$JIzCEKu9_%24#tef(_xR9|*_Qq&_{Uveze>BBD}S-kE>D}iZX#j4e#!Y*pwJGbSzGHM-Q$sVkH7et@~ zB%aTb_~Y)YHRK_D2Nb*HUR9)<;t{eMQaIEd=iRY^EZf;zhjKV22^K?nh9LhMZX*7q zyMh>jmc#8{Bh1IOU4A;9q9;ZTz!CSJ%(UcSo6O503q5o7PiWy|*b^vFW;r8V2Vty* zKGo>T<05H&wZWZtK_%f9IZ7y2=4`b;I)1}8&PQ zYyyii%6cnqazcG$mQz-I5NPr5P3FqBX7n&jNsr;W4GY%z3+IL!lDiSD;%_)eiUwi9 zUAxiN4M7`$cHWVIfo;G+cTf?5FE4U|jTdk`8Eb3qetOP(5?qKZ3qt)FH->vA2gMRg z+Y*OprotPUmGmrr^6?VGl}b#MY^;yU6T*Or1j`+|MGnJ|5#9DY@d=2;Yb48SpFjL(XN2IBjj{ydGz;cVujL({^nn^^tAdi32sI&MBco_b>A? zFA4?qQ~`83f3x#SoM`-l+{`{xWwWrxNJ@0~UXI6R-D`1*v+4KBrn`qch4r=!?h)1i zs{Lk)1gyg@sQ5@eeCuS`Er+?Lm|R|lbMJp_W|_4R8*|H1(7JuMo7q6Qm#&5vuvI;8 z7R;FcCM>jL9pAdN-()uO(Y9kUtyRtKK+CY*u+^j|nsx=BhdELHk|N4ZkI=q33e;tq zvVi2eW`a!HFG?e}vI9BCMR8kX5EqLVCu;Q#Q!LJ3t||M6SFB?t8E!e+4~TglH(pfJ z9T|G{ERtcbG`zmOmD;wdBzKOsXw>prWK5`GwZVK=sp2*;>Cor`buzJxIf^&TRq1sW&_xAnPG!c|i5I3TlHP{*#^*23u@;W$JqsQu7e@b+wH7UUE1eI@MyY8`9I49 z4^0|1qAz0y3yfJoxn4PF4J6_jGW7H1%==$Z^lXZWK#o)<=&O(=f|^CQQMD}HD~OlV zdB0b^^o)t`X*G>)8IAfa{#2aLgxF-<@#;6g0Q=dWhS$$1fmfS%1SQO%jzM*wx2nqC zc8$X{Qcwj}b>hyQ<{M&O3af?h2I~Affq+U;Y-1Zs7JJmAb(v!mF{F8Irci_}OmFV- zPx;A=XHK9LhxvX=w?8GQ)c<*uC1rcBe*)GT)peo6Qy&BQ)6%9x=QQ0sv9cZpdC|pC z5Z)vX)dSpcj6t@o#2M}nTb%%3yZsJWyZ~YH0 z#<$w}Jb0vMMYV_l#eE;TRyAMXj69F)=gC*PtCpUkl~X#!Ze$8u<-jQ~gVg|@%8ycM1@4C)B{}7a&PLr4z>fG@1X~+lv>FPDEJPg|b zM0C5tiV~Mwe3?Y7jpF6rUmFvFI0Vim7iYtIHKKWyC9Vkbj3I)W!fIbhY++&94q7e; zB8;OeewBa0O|+GGQkvaWAyiAWaC1uHG{kV;v^Kkke>EoX$Td8T9D?SHVCwCQNPjvWv z(@eIw789b`Ju3g`Vn3&k+u3=<1~&DtTpa^Hqd){> zh}#6^QqML}Ouqlok3MU9SY$mA3m$qD)dO91_Wi*o`aou1;}JrMx)<7yzFdCfT!NX7 z2Cg)9&GnR$h zIitXcJbbF7a0_$BSkIe<5$t0qa*2@p#3|nsmRXbAhwtGo%&TepQRn3CJ{r4f{$fQk z)(v(aBG6TLTBA1CT7g|}6@w{l43&cgV|IyH-412$vBBSzWB91)#BKAl>NJB2Ae@;x zX5JZbfvD8ss%{=APY;_oqYg=A(HtoGhcey6UC=v9<(GZRg3S&#XQWQ0t$4V%j7g$9 zZPmZ-HGjMVpz&e=K=PqMIxt>BS}bVU_re`NP88NA(c52ra*RF6U%(QrNSiNCX&EtTC z7GNfmDJ-3dB^)iVBLYh>JT;_9b8&YgdlI}P@X%8zJZ7p;~Q4ljEh6TU8NR0qT;&fI;N ztwKc$&U=lCOX8taqQ<++iY16UBy6>gfoZ~)cBy7Br zQxHFkUEjmNZh?$li{D5^xZ~9eq66_uxE@RH8$nhVljZ_B93jM=D)J6Q>;nj@U^ zzNRo0d)ow`=mBke8F~Q2uKa8sCg@lHND1)cz=rs+JHy~i*psAO_3~(vBfzTyhMj{5 zNeSgIqyru`>YPXb!RmOGWsT|KwohJQB*tLan1F;K0%IlWOW({@-0;x?sqpNRij_Ck zVkMPq4YOb*DNVC8d+E^|`^6_>N#?SJeH&1WTn)L467#% zL&`O!&k`miP&hH{ZVyrF8W;uu10@(EJdo0Dm+afcePta8$w)9q-c#V#!C&f0YDzj= zTLk0BGUE-ajVGI5At-nO;ANcx>*h&qM6_#dx0dR}MKJw@Vgp||7E~f5SnUV(_M@=9HgEnke1EO@ zhyl;<;`pnw7AArxulkFiL}jNWg9A2%lF;=Z=l$dU6c;CBh!D$c7>K76OC7+LUk!^1 zQaV0TWtd+3eN{ZBv9w<~W9hUbrBAatX9=t6iWsQQNr#4dYM#1g84|-e#^%o}rk07V zE~#!lwroE`*M9ekxo~?7%U4vm@AY;_t9u*6QaWu~@pM|O2w91)wbfFV-f>J>E1UH$ zuhJ+}hUTp#mZ2>-7MSh~10xlu1Bb9lXBRPUA=jG590oVE+SbW|zggJF zg68H7`}_E|2Vgnf>U~8FCZmjVLUatq8N=9rXMcn{y*WNU*<^nwsFX{Lx^|T*4L&wR*p!hgkWpLMZJU%p42)V&_G>qB-pq%0#xxP`JYP0$$ zzJ!EF3^Z$Ysppzq=KQ^TR2EFuD%D=2Xmf@j!JA9cF2*?;P}|p)ldUIk*3B(Q!m!5e z{(f$@BCI3=$lw7!BNHSIBCTXw6F9bSi$qzw0YLEA1+F3y@;wd4l&*ikc%tTv5}?jl z3Wv8(n2%zYQ~tzVW1J8}$L#4&9^gQLuQQOBkMvT1d1H{pYFPdanG%&2L$L7bPnzFL zNvWX8x#f;5fb^lAwdtNH$!J39Wnqy|EswrFX1I06FNag$2d6|Ih=exGpAo3Y` z@L*zky$+0lCcJnks&!7U6>HNHzSlUb4%T55c&XaSH<;eunk}IZPIHhcY;U%m14&B+ z$cJ&4DVW}I3IyVs@PeZ@>r{hH#Jbu&5+g=m=V;G#apNVb#jDe{aBv|hR zJ_*GF$167^gN-+sb>m!L2i(U>Vb*w+yt(k{K}~1|=*vx-(T)9N@76yR4O%4!WYEv3 z6C?N0_%A4z8V;2ZUOajf_5<0-j0gJJHJ^iJy4Zuh2$fU1ePg^Xq^9vk*3V+{O|>8? zF#$@medw;s$dlfv@@G6T0w(9^s=fz18cb75)!zJ!_cECI%!J^-Q^*p@g_3!?G;2pC zm6FV+q*~GFG#+4aX`jgY8+qPi{Li zI!`1m=oB0_vFND+euwhT3mBmUb$6}joGO+HV>8Fjt@}^}Dn^OH!9@(@NlhhiS%FDj? zY1;&#?>3T{m;`ozdNy55QalfgU<9@dX6qwK!X^17D@%YZLQAu}@qz|SxwxLOV1{~4 zMSu&h=oNG<#nO$EPn=|Gaism3Le{MX;Bbwfnu7hmFrLfm;t+M5ByHyUG{UbQbdEgk z;@A#+`<5S5RMy#A|B9mw?g(gtt5}`d`2&UI=XJCZKPkQL%1`Ss2$X(6S+D`AcU=>LDXsGRjCI?;XjnXck?xW^^|O?xW@$^`3`ygp!csyHxtw)m`l(D) zmd00d#xy#j#Kuhv*Z{kNVYTsr5i}wKQL6~e!tA&P_}>~(Md?SBz{)l50Fv$7c!iEyGrEbeQ&0&nh`()3x0%p-yvEG@=_(xd(EE$2HB1bEbMoq+)&PM7A6Hy z7Wc$kyj=yg=AC^o5;fKma`YxChgkLS-eE6c>q)-7M-Z^@?N@=B!?T;~^$}iWO&3Na zUP|B9pK-B-j%}K9Y4HhR%raRxj(@i1ym6@i>}(@2td6oU6p zX+dInE4*MPac`6+AC9!j@?(u(>RoM>YVMnZr%tH|CLbAEN1#N%eJMrR6uh?KT*t!V ztCdY-YOz4h%Z}BcM-%pq+CO!Zm$Lpnxi#X=o*RZ>8d95pX8D^7?J|Dnw`_S+y_cMN z-eGqz^s;KI=lghzK4<}XoYtVBlc}h@%HC_ak%N}GTQo(Wx<0E-@XVSgRn(!YZy#@F zE;#auBPF0VR*$Um<>_BSk>TO5qStPEG+SQ9c|}S6(#s05%WeRD4<}nyA5tP8VjC%m z*JRSQ5FTtC%OhlIC^C`f&)HvD2r)=tZGOf}Z7usly88N- zJ#xP~`x9FRg}fAa8oMSIEk_*>srv|hdpj7gM#hV9C$-65Q;p`C)%!x1wph8+a%T7S z@bi}k}Kw+MLed5PAVe>+9X%=S^DFa zS6$^`3%pi}1)@|JyO9!Gs@N~`g%&@av`I5X4QFzfaD%d?&bT>)2%j;2(6%)2sr5Ht ziE~&gR`jR?s9JGZw)9HZtkNTZeF;F5tcw6L_Cv8I+(qB$U)Z)U>laW?QarQ7g8i4~ z`Z9*F#x?9C9^9%#j;aOm2iO~Kloh>hYEEY8^ZiTVV!t|xu8@+Pq6zkjnP%H6OjYz~ z?Vrw_ty`&E*BujRk^LUp*ojFPZEh3Sfv%!VmbzhEk;*GY+UW?ZCPg1edB%E^xFb|e zBzWjXoy+D#kja>A6({B-fK$xpUQ^K*l!S|fry6n4y@kJ-C9M#}Wxm)ZA&82cz(@KA zkOBfZa~9lA0k!l`c=)W&#l?9+Q459UP{}bU@CpP0y0uvN^~ih|f+_@jZb$C+Q$k zV>F`U23S7vN4*Rv5v1cUW%#V))BqkCfz7Rp;74E5?#^V;uc>3Ph+en65#L`r=n-yC zgvxIkW#-JJFt%lk#=drU75H-98(%ajYi@f^1vgr-WM5kTY0)&t8zqkWPT$m?9@S%P z{6h>MiZ9WAX;;2rIX}$uC$dRP${-qQ{gn)!r)ejSbxUges@1cZx8I6%Y*H~?bt_${8 zfyvEE`Z+LcAV@i|QoFX2Qrhzb_3!j1E}JUhCb$Alzu7ylg=u%R6;qad!QVaw?p1Cu zGzbBf!|IL^YnvD|KfMQf8b$jjA3-mdUn382#A0Kxh);^!HeJLbXqT}Q!eHG9J~r%mHvt*E(5;DFgZI%yhJTnVDCJg6 z6-|Fd*HpnX$wwz1iU6 zW0>$LZuekc=u5TAvU_Ug%9*ASMLjwbm%%Od^)vkj0lv z%M7x*SDLc5a4IY*jd4aSxa@x#OKRU2plr7l))bjF(P4ceI_f85QKiXLE79?t#2$72 z7*g+*@_r|I)-Nu#mlr@w?SuSt^d9ofoh)mQ_wwcMES2Y-Zi!T!9GT%h8SZcs`BrZ zk1U^IBw{mv=>Vwt&6)Z9H$*vKL)|g?7DGZ3-|2!oeQ2O~$#K1b40|94)6EIJaMJ#F z%xS}xl+SJbzaozQbv<~hUCJqSynnBE-jv1c7xxi%62kj#WuIi-u6<>L0pBm!P#%Gu0tPqK0DdI4P z750CK`F&jZ2q1i+w>p-LopjmlE<3x$%-+{9fmMP7XJ-C1-`t-z$0>7y9^?s&wth56 zo$;D6$yTYxJjJwdQEn~28<}T<+eWY~jhe7;-(=kAC2& zSa`@OJ@u5F`}6gu9nmIK1x7YWRZ_uL`y1!B`;doQ5zkbaAiXdwv}X>&Xh*G zj#QPnz7%KAW8aw9zj^bw^a%XsIEOP!IL`7+7_VQ+;$3Q+?TlRG+! z@qE#;ZidLm`Szj_oS3klQ`oaBuBZnw@&#)EXToK>+No zZ)UlyL7IGLASsKkik)ZoO@sl6WNlkuOZ!cFuGNOY=7U8P4s*A;WhO+3Pl&}ym|fm& zX$C(Y2m^&a?j9k5fDN4GqE4#n&Zbs25Do{n$k7t;h;Y19r_NjDEdiaKS7N>aa1LS0 zyEb@!lCI3AU$YdRgq<4#7tiqvI3Gi29;zlP_Df||l%hO|oarMfk|U!qN7duY0N}Si zrVrhz1qb5$S&YFBj0O+M*iupO%ePc0F*;)*IWD_bWJ2ehy?47?SB@X~dxd7=X6I(< zq?28eDm(Gdl${WhkmH;F!&sSdI(6a!1=9Afi$WEDKPjJp*CPk5Q?=TBPU6ibm`vFA zKh1xQLL`mu+O|WF;J&U`scJ29+w5BKyPd*G-R3V=%!yV3BM+-4=}5=_urGu7dJIx+ zUr4K$x_)He3#i!!CN|IIi2K5W6uzyG_&$gh`fVWq#}V_ zwI-xV#;OY0XBKH9ro`YMoEegTX6e8W2m^-*@QA|DA}ngQ3UJ8<%|HNU@y0Zla6G)? zP@vUaFvl|Z4H;(Y1dW($19qeT{t;6FH{A<_GXMP*I`>B9jWCAdpj*dqwa%)ES0x(s z)^C3-Ft74Yw0!v-KC0Q@sInVyMP4#NJs>)_*p9>fdl4*%H_oT{DE z<8gMc6u&YL7dGUeoYXo_h%lKVqP=uUyACS^zwUab1+Et0@T!s6>XT0?S0g_hMCx_b1d796d-VRa+|`Kr zdbwk$RPl5<7d*`R^r{tXHeEI8Pf=k70aKSQXeesju)+2~wt7l*qhbF!OW$|+A9zKN z?H=hjl6?H6A1~Su7EG5oD31Vwh=9hBBhpK-Ql90gqBV5$qOP8lt`3fs!#AaOgSLDT z;{-@WwH42+W*aH(IrM6DwTGENm>9E9T~^w=><4lXgW4y<6wgsX=0F?e*5kM8Bv>e$ zt457!+3G*o)O1moY+Yp^UHddf=k5M30dfAwGC`F}q`=3TVjVdO9-UZ{o+%@pn-XpH9Zu z$Xs90)(v0tx2DHuW%%VYa4_O)X9q)LM||f0LIHlaD!JSJ zG9KjhO^yEx1^7MnKNiG)-TwzB1U@tU?}LB0IXXEQ>sv#*tzT(LIbyLPc7Lc!Uximi zz<1(>V!Ko(OqE!`Wwu(tHNzR&6W22mqc|9?eO$EQp*w^W;3Au;gW(Z#o0QCL@v~v} zf{mXyBrNgmjC#)dc6vV?(1|Kbh973tZ0jfqs0xS@R99|KSGXqj$Yp0unq;1(`%ikg zdoS2OW8y7ZzW125n@lZjRroqCRNJCXHGKF}*|5rxI&3dzPI(LSc79z=&DidIK8XT^ zHYg_FDFlsbnOjyq3}w3F8L-_J$BbN@?N%8YVMw5b?4 zoOpVKPB8H((eitIaMq-|u<6#=R#uwPPRb*5B)sM>5@m9|DQ>ucap`%UHBVjb7&WSK zr_0vTCbD&gatGm-q9CJ(KAxD+dS!NY>3`3mM4p&^5t0y~)w`5d*SA)gDB;khF%4aB zLY-HDl0p~zJU$OtxTb7z)ULh3GU~d{0*2u(_t{q4`@H{JXx^Zm+Z2FZ-m@DsNf=G!CjH08VuzGL}R0@J|qxp|R1is89&|ok8kdV3_|0ud-^aA_<+d%&U5o8zt=Cmst6i>tZ^!M`>H1YumR}q0u1mHE zWfDD6rq5uWtYE75yQ`gaTObg6;fe!6iE7WfnJkP5+~ij#Q*CRXUB4yP+jYR8`kMh>rgq*TI-)zQz47ouO+rP9X>qoH8vYdNlw%6+_Uk% z^M!Pe!;s`vrdWNRdicIeKMPCm4eOO}-gSwuL9Sw7K$OntRs*NO-F=*m^l4J+|HIi= zz}C?;+1l64%*@Qpj4`tvGgHhA@ioLuF*7qWGc&UtGcz;1e5>8nuKxF)Rx6EKGu_iQ zEw$8|bE@jp#bR42V-8z%Znrnq*>jBk28Q3&6R-RMam(OGQ^Xja*4OhG1cl31zjXuL z^Bz+zAmT15RQh;gsh_oPR{5bmL&ojTELz9hhV7X z$&h$W^swTmL$z|?y3C$3|L&R*i1m=MzH0kKzgMh*Qdh1I*9h6w+#IF>At|Hr9qFOq zDu&47VmsTx`@a1i!J?EFN+qN zD@q}t^jc0P&4IFyoQ{GWGYMydN_@631ftKL_U(#yY%;c%G&yLw%lVIO8;LKhz%PUk zgSjueQwC(O@Jl(b=&NT8Y`9gaiIXpiMO`z+8`g_b)Jl@E2TylBAz?sdLFC+*(u> zt?WmpqoW5mYFCaqisgqV2^uW~4Dz8{7GLuHK zi1G*!qF|A6>M(NX>Nu4i&gJ>J6{vK1ZkVGJEOlcxi&1g&7ZJjvfdF^d``NV}d^90BUKsps95f<014fN= zIO27oWF;!kSkdUmGjHvAOgA+jtFBf9T2WYnsGx5Jzm~MlvXD?yyB;~8hN)Qix#U6D z&sSzwFVg4_apU&iJ~DDrgNNR*P8!ttgtIYzRX^3Z*>_rcgX*EM*0+TD*+#>UMIp*5 zcDx2wzpr(wCjD0Q1dFD1L#D%a>5rO15E80hPjbI|%>6OeD}B?HeBboB&@g#h*S?!P zY}+fkva-_soe4>0LC2%f_oOVvO2G%{O z*CueG8u5;UX&H%CMo9m<$Cs-Gx42<$do)Ck3f-WLHRQ-7t58bh< z%YN}3@7Ad^zzz4xh)!<&bR0wZ_ZId2zdHX9e z;v#JIqRhUqTsdS_788^<&OI(se#LPHcz8O$_4JKa4`*x0NdagZ|934yvL#e#tH_3e z{EVM9^UxxJ$CCw>H^jlUT}u46_9owY^TYgq{D30K3#bG|yGqj|qi-f~mA@4&7J%wL znq+3&Z1u=%vc(nrn=~9}3lj&QG0)BwcUqmU-aNPvU|ayHh&vRny>KSPav)rx2obwl0o;WfLJD^&5=MiBEZTh1Ga~TCZXEPg?{&UGF4mI6 z?qz<#hL>88C}Y%JkB3tadYlX;5E`{_%>$Z3$fgM1*R&4{ys+vOk-&YRBYfRK>iR0CE>BmvHNbZEvU`8f7Y+R|$}8+6NxkS9?f zpc^^JB_?pbvF=qL+e^@&u_tFsqE!efuuDA-Op_=JLR4yU8*&;=dIJe0hIw#^6m?B( zza(55SopdfF0I87K!Y~WYb<=qimEJbKnV@0v^^s$4Gyl541T-!(o&S5q2X?E%{NeIqp{tg*Mla|KWzTuKIn@J zUMvsJBA0qn%W%(%1+h@hfNh+-s8$kjK01oa>?&m2t}pid29^kK_5}R{i#O^Y6=%w8 zDbv(HChRmKbi+P4^Xg)7h1mZdJ(npMgpfHuh+mCEe;~{TDpx~30dIbu^1YiOuSc>e zQ8FhwV80*(8KBO!a|>ui1ub*+@Zr+%?6`T33J%Ecnl24m$MFXES)Ns|A+rb^_sKQ| zFY0qEKgYDRi)F}EllgR0c8BRYN z@UqO#?xEnTBPk5jq(#eLF0|h$u2fj)w)V^+h>G0IU(jF*wymt|Ze$EJquiS3{ixezjeOoT*OewpojlU8tAr7`|l{|StV zc)6IwAc8R?y?f`(mJyZsjs}idmNxycn|4)l9BYp+v$$7j@jmy7KvvQ=c-Jjfth|ha z|Gm1I`T54v66wHP%cp-?xbM%P0Ugu6&_H{FB=E=gqyth z`R{v{DO5{2DXsmq*cBcOK|^#&H_J7QuS{$=pKB?u?L-HpjL7KGspX$1P7e(R>wONY zmo@vyiFJQ#e7j%sTGgd89eRWSH}Nb3vJcCF30t^FxhxhHn1-wB_b%%9JKo=9g2l#HrJ4UJ~J%dbyxU!GZ?fSt2Kxh_T>T#yDeB5FB37&n}?_bMh*S|rhUwj1F&XbW3 z1BQ3y*C(sj-vtpHJMk2P1e0ob`TOxiJNvPTD*U5Ak+v$h)Bc5h_=hd{4@TfW*@u6$ z3ICVu1IPb|efS?r9ul*0GxPj6_F)oV&v~8uva`F-S@Bk`^7hTd?lQMi-o0%(ee*}X z@5!S`W1@Kd=ZLJ6(Bm?ZuypkPNSHb$k76;UgfcNm90)YfD1IC!{rx?%(d_i0-~%Q8 z)~Rm!_N=ALPjGK0S^jw-Jj{$%eNFzb++wAu^;>0{10vC}OsXPd*2fbRN-yUt5$`6y zXtn0iw0=jDQ=Y1QWom|jT%=qf3o!ay>RkNY;J!&;arTtos)*0cn!L|x6!ZtrH=Mg` z(tBMw3*9#I;=D_NN$)5;+OZQkkL-f^RCM0aoY|87HqCvtic&3b-KiSx<^FupABT-5s3*Gd6dx2=8n=nLMW8R!mH$@7JWUZ9_H|Y|} zm*Enoi~*i`?q9rOp1GolHMi1_sT6z`albtIG75W=4=9JE z(e&EqvHigj#RRab3B%TYuN%e})KkwACcX#P5`$nbf}horC~JFZjivrrNWJWttR?KR zpB(CtMKUM*{oIV$>HHxwONd>;r04LTd-pQ&ymmyPf}^@{C;bWQ`vRY#H14CTE2SEv zTf@Gj+*|99QS>d7*?*POZFcbFNn)c@8|c+#g?|+TAfdrOyg$39%0N#><;OD8v29|} z++`Gzqg9>?E&NOwwZ?wI*HrwDde_zD7$G^(t{Xd}Lq?3t&vPI)s2c?GWAzmyCTxir zk{8Gc92XNx-c6qJ8rEtbozWyb2)rkD3>(;afbi}KVr+1{BQ#hA7syaEa#E-Rhm3t! z7fQ8`3`$vtk&yA|K~mGw&g50~57c1zH>%tSep=`<+(}BWF*@0@qVYE7kvwGks~Lr< zQJ=vQQaE%?q>mZ@W-4i`1mtNUkeQhMgcF|cnka)^XaYRk+I7BnJ!wbjb?;6G<09|X zm96(O{Z1)$cza$cnE1-LHT|COvde=Sitbnwl|T}13Ei7x0y6B&I=!@T&ttgOVeq4G zKCdSiENrG_;jO&ew_*Iub`&_2=1dYBm+Qmb<7)&EKmnbO_te&@+J&c( z`~gO;`I#$gTa;=EJ8_a(@vX$zV6~@|svu~}*2vxXH{qxm z%7 z5p(tJl<@YKk$Jm%`+JHPfYOnExpht~HE`O)=ncsEbKmXyGsh#^UTDy9c@yER>O~lO zz(DXZI#7){;I+^en;I5=5U`qk!R;nG`AzV(Zi_tYi@`>I3nQ`+w?w=a~amZ^4EbifDa>u{$L5RFR#fHw=%^(DBvnz;zgCH?&Gh>7Lv+3fHB7&z_ zvW6p0`6rWxC*wDi9VsLCpgRgir-v6$4LYK6wz4^HEO5H=MyE>_Ga?2^jA9MTLv8Fk zZny|GI(kQX<1LtiL-z{LuTewm7HLR1szPV!Q0xkWa7mzZ^#*|VlSik+w%|a3B-A-N zP6VL^*YYC(p+t zGom_DwW+mTC?MH^O760cFr69&@8vHqP9UJz( z;OgLRKKRhtPXE}H&>gNtQ$tDqx9;JE8^I914(^(TNGip#@lv!=o}nVqncy?|rDuaA z33b1OY-X2Xt+{8JvVe>nJ$u|&wr+v1XkgaY;t{(&B1-Zr+*jD@xYgW1pD$;V6u zQsHPlZ-QF^&S;b>z1p3_Sq3Q2?atyD*9Sc`Ss5SfnK)+mdhPZuNa3 z<`P>x=NArf?7eIiGx>k@DcBtcg=I@YzFG6IEBZHhzlUUcwjGGMRFYL^Qq51q7kUC{ z*Guaz)Kc;EgSA-!8oyW53kj1Xnct4ftqkcnZjgKMAf1!`oLLL7+xe=ixxX2fmruI2 zwm4SBuj7O>B7#w?Xc->vXt7S@Vz&0HE|XeB3s1TIX5$hG^KAf`iz;6E`#Ut;`sfN3 za(;>3pI1_qtbIMUXK}&)li{>nK$A@(dyMq01OJhRF4$=L7&-u`8mN$oUb&Ll>u8zs zYlcv~h2;k}PebLM&#W4oS48|HewhZ9L3KEfikF0acoEreD{5ls_K00T5fPePFziNZay{)|HZnnbI%atQ7<0*Y`U z5@E@0QlUjv5!2S1AWAWV0eo=ab>P9@Cw5Xoj1G287${Xc^_weGiV+ z8y!M4VvX>7DS4sHiCD??N!*;MDK0orl6dE-sZZ5127Ch^+W=+M!ZKt{fcD5}MgCdu z*VdU{M6VnPo>OOq-Klh_NleBM^Bz>7V++EInG(9%-vH93z1+<)KmUG>+jlL|4J}c4 zXn~cV6rUACzSbd5t}axXN44%nv8B$Zrfx+wrF9ug72LI%FfF||m!O>H$s_R_DVPng zkz{Jy$upx#S+cZ;YWsV+f;U6pc2rj=+G0W2qyxw#!O$$DKu_{igsz2SndF*e`t|ht z@F9j0EoDdf!MccfYFQ*^_acalwg&mBq8jwg-RW=dJj2;s&v*WteZ2N)u2(n;uS7`? zm$POc^J9wWiMuZJcvWJb>RM*E1N&5mjyF)Xwry%zMP_@~=)iJ;V$ytLj@UxjjU5F+ z5O44rDcW@lMYc~a+S4h_4HAy4PP&p6rCLJ8XCSsp4DFu8E!&u!NS|J;7KV|s7z_DE zBf?A94SjNOF#wTMAjx2^hXMl!!@#R$QO$=)@sxyQTDi9xwD0;9 zx^R5U3suc$jYB75t?$0^*M$w--OAeTZ+K+i?538)+CNXO6G3-IT^79@n;t$a?ixBF zR2~&MY(;H-83wlSVZKV3XS7T>eB|v%9ze4-(tq&S zpOXA&xzpn$woVutWT5KXYm0FzH5Q&>BM`RQOyPKGZksraa>iDoISn4DxN$HJ!tKU& zVvPG{T$_4pnu)~I2+0~K@U3#2tS$;;BCC~ZUF#S2p6}{VA4H>k=j-U4aPO|wJFRFw zHE-&CI#9*tXWUPWfl0xjn_043^e7~f5J;lpoE9o7H~GDit=`n1x!zC`4<&`EJKg>tzsmN$At%kd+}$8NrLf4 z%_<}&J*LYu{@oD&GpSu|m!fwvLIgaM)lGYPx{m#wJ*;qmykWyBQvw=WB9XQ$HJ0gh zX$j(_>czuHv=Gd$COC3Ysv z7wf=w3NTuhTmbp9qITx&xPxvnt$gRHzAmBwV+lSkH#bBEyw+pgz?yi*Ly@l8w+;-2 z6TiCyH-8^nXNRVX$w|s`%fLIGg^RcHjtLfT(bIjOrZj%t>Si}G$%EUkqOw?{y!5D zsT@P+Q{Xj)y4;As>s~ORyX6CKWgprEx*$zD`yJRY=%}z#cLr~KM;b4J8_mL|(FMcO z&;B)@rKv1)LLB`go>Vkk3tqFe4I-TZp|(1{9D;+vZ0*7qB*;?;dZsfNf!zEIDbWJC z8^K&DiPN1P(!Hfj)nN!dbI9|XJ?A1q&tJS9-tMfM7EG!utn5Ed?J_AYE)}D7$1aF-%P-!`9ha4! zXu3@9RWIAFwNxF4l?YfCil&o%+!PJP2)@m7T`cp_lXAikLG2mEDiRV3!a2s#Mp&zs z24`}A8C=NEn`t!56|q@zh)R>UcOtY$si@xe_TeYD7=lfKyms$o0-^~{tY3JGqbaBu_R_=W?}npp!@=FJbJI?X48P=Tn4g@$43aT z&pi4_?^c^GV;(ta#0phedC9rNz*pD7mRYTcA+s9y{c$Cy-3XjVi$YM1eksrtW1PKx z+VZg<fKfNSZz`^`%lo_u<;-qspw`P#FCuTUedl2t(v1Ofyt`{w)x^@%@BFYXq z%DbF6_qU)m5@YQJi0k}{j}?~~!>taqiip!-=L^R_%u?iB%1v3-;iTUofb9|l`oQkV ziZ-NQ6pz%_U-x9yq941AJ)}SwH(^8)5J-+(ug*2%aDw7`8Mg0g5+6aT9(U2HjD_fy z99fE412_HfA$x7=0K41LY8GiTTN}bLrAGYP4l||mgV7*C36S|)gM`ttjNm0=)$?H1 z15SHU-*0YjBzeJ0R5`h@W+{;HOH%`N8St|Esk72UYzzo2eS~v}M)*dOPY?Oiv_m{T zaaKmc1#OLK2e?H!8QHM0FX%;3??z)F?`;`a>i(uk>kU+j4#t_>Xr3Sm2mbu~zMa;j zCTDLCWKMsGmwDp(q2ix>EE48A06f82BEdz8^_v*!qhzwW?BUj^jk((5i(y`D?RT^x zyhG%_S#NFC6)+cFLMas?Pw6^zrrOHRy!}!+kd*oImi%QGav@7&PPH3WzOZRhvF==3 zd3$_lq2Ezck;Yr<;+Sdr@cnFY8mt>vo$VXbJ~(6e5jI#oS)vxI#)M*#%=9M22J0+z zMlLLk)#;Lq1-maNah`$vFQ}CWYu~dP@;54NkZt~0m~@6OfuoJBK~0~&*%lv)SzPet z*~jdSkWGdi{!AU>9i(Sry=5sMKSylwhW-3uPyr{j<@o&_xmk~dRU!kFC7`8&Sk#7C z3T-N2K+FDbCiIkfH20*hyCh5@BCe03AvxModdoGORx$gDIwJtY-1*3`7eD|UB&5Z8 zAX4ILDE2o(wE%NP4Hn2rU73A&sFUKV@K!6|2v{i*Unf15e1yTYPV`&elIwa2 zQ`V2x^~wU(f>MG4${oT|^P-e*kbu*+n!mViw3=x)$sw0(mnXPOO*BqB%O|Y({5*Y! znC{+PMb^X}|69mS;iLZM0jZeGhtqXj>yxVI&_!W34m}MSfC+*G>FS%25+$HLA$!!E zj~725FSO2Dhy{?V<#(RwY7|rWK)X-3E;s9c` z-b=cAcFr1(T6r;e&MJ#ql_%88WSo6?huw`STAl2nJuWU4r@^9DgUZA_yKKeE%)N(HaRMYtOrlF`1BdC4{ znToWBKg1wD4z)@KiuHyzKms$XO$bg~msJZ&E~Y}DH!mNIGY5|F z$PpATMor@M<$L z@}f7UxybeA2mCw;JpkL~y0$eOn`JI=Zm>wNBHmT+sq2&(JW`4+{>vGhs=vuw8Q~WM zW$1S9{q_^*lp1?ysOoi?_f1h${Z`vbJ#~lzem*z;pa(T+)t2aaQDpY=!3TUoXGT+Y zKReZA2cECjPJASKlF~5a0XbRkbpuQF39}8_qs1RWGmBg`2xgZm|4zLg>#zYGVxb+~ zeEN#!BB2WzY!8$k6OeJ?^*pKXt2Cv^PJ3T$#Sr%h`WM1Xt(4o>dXYE|Qt(G&P_I}= z;1wz7#{77r@GQKz!Q3^3*nQ1ZBi+$6LtAf0OxNr$TYMaTchlbuh&G4w@yuKmYZqgU zzcp|(xO`fGQ+|ae_NstZfR%uyfGZ*D*}xbBOS!p4rF~eD8kI}VMf=`*lvL<_@1(jv43|n1Cxtk+hUMm1`ICKp zBkYiM4@N&Y&Cx`>VeQVv9IT=E|Hyw2q?PwhV+b@a*Icqi=&J0(?h3>@(h2Fq--wO0 zZ2ffG$F^hDS$#*lR^T@@Tp3aAb8)T#2oOWMzj+nMr>JJ&GZbynkCBvr=hd#*2bE=R}H zbgf_4MMwXQ|NQ%#AvqXpqCjdIu_~@<*()mtUg{}&s$hiBx$b6vsY0N)V%UD((Pm&- zV~q}bEop&5!s5bPkrEmy+BK^-y)SOxWS!O^^x$Kl1ohyIvMnf*yE6n4ofuh^K9^cW zmZjf34BI`#g|uucIygt1p2Va?SH$qOiV8xB zVpFrsU!f_9i)4T#TNuih02*x@qVRM~K2PoS>p2!2?csrI;iw(w5KpzwU*0ZCRS~Cx zoG<=4W>i$;jc!QtXUMB-$mc5xTBx&XouH8YM$#jC%v9pDK}@1S@U%@Rb)aHf`(C{w z;;_HsBT^au9ORo!map#F>M#89Nl|cG&CB{TUB-z6>8x!GIi9y^KE*#TkV~;6jDm%V zSRHcb6>9vhq!BaYprEw0*B4P74GMoC+Sn_Z1f{~V&`PT*MP7!panNHobJPH3l@yL< zeNIxwfSm~vm>X=_@8xMdr`4HW3~52>&8=8j7!BKpXfaEmNZ_2YvIL7%Q2LTk!znM% zJjH2cy{^{pi+Xa9zuNg?xrIxxwwQ+?K5bEc82^l)o;8@!%!ds5+NCdKwDI;TlrFuB zY>*1-E=RaeS2G=kpxKN~Zz~i>6et2TE(L|JQDLK0Wo91Rxi*edVs?me#f4m<*mg+` z2r$7^#l>h*0KOLI#AZ+r#wi)Tf+@zA)`_>Xrv{i<&M{-dWEYJtIPIp$ithAG*IKc< zIz-ROunrF5H_-i6i3Fb^&)p7i*o#wwhAd{z3I-rK$cP@GX2>Lyt5u;ZQ_7cYgPyTN z90jBFyWqk~MarXm-$yc@T#bU-Bl*zf>mImV9hen_{CP2LKPy1^ z^?b(gJg?v_Au!DNqsKk_s$0Ktc89aIobhU`Ez(b8UHrG(-OwZN z3GCFhS{CX%_mhCa6)IHcU&Y6-0%O3_iRK4gB6^CP5yWH2kzp`jO(4WB{5M&L;g!27 zda9o*zZBU$?ytUmbzNU2`Z4ic1%_R0!{4~PGK*w|33}Rp%$U4W75bi3u;I+b&|-Zz1YC|@`8-I<@Tnyh&?d*Xj6^n8AKYs zsbzb2Ffjz`IMS%!eQRJ)F`)jE`CA~tPgUL>PxEYDR3BGtpfp!uS#T3{(%=QU_d|CU zS3=jD;F}*CdvXw4Z=wuG0zb%A$Haavc|V;CP5*51d3=}J@e-{uj6B!Vf9UX6@R`2p zX+Y{6m$~xwYinuMLkeE=TsJ@}IP>eofhQ@26f+CF()8Pykc^o1YSV=m)ct%v-*tj= z(e1}>!aKH|nXpF7eT#zAs|FFI_~EB!ur*Z<0f6BMaNabi{9A?^S09e%HDdN}%*66| z`E$&T6QM=DuI*>Y!|{gJa1`Rzq*KD?bW!<(_XA01S@KzE z{r%R#g)!>zdlcU1u)6`2{$uwW8muvsP9@vKTA(GwIYgt#sU8w=ocNqYfEu%7byiGi z!Bqq);M-6p^{J=>WdqY$9~(`C5=ntsc=C>@Rgn)4V}t2h!cL!qxf%{*q=m-cTOD&T z9L5ausid90Z-=fpi~tLfq#e?rxbAP4z`^iq;$KF6DS3$4AoBr^20^eC zB2kHzrExh!F3L!-4cJ<`6nd63#<}nqhEUd;!LV>T74Xn-vT{keecFc}IOv24DNJG# zAQTz}{p?T#MY`Hp{{AGo3%@`FFvFE{DUNIFJgJpT+A81>tSchr8zGM(|E>i{=qwQo zQ6jQk%c{#gV^Ri>rO!+?=CC93`-N2(T*j zxTvnK8R2+(VV&x=@_gZ)=`_b1tqQ3W9BuY@B3%H%yT^)gkZJ_;%^-`ttk~H zQ|L4JmUaay_NUV__g^3xGcS7IDgaWGGnbol zFxLnH;XS{$5i2vn`;d4R&6R9sP$UoM@#l}fc}>9tr)x|agMFX43TDnRTZ8}-SKx2y zgfz21<9X?$LNjrCE_UY}36bfu@M362;S?B>KQ?@(lUDd$eJEkCe|>N2LHZhe{glF% z8fg4wiXQ*s8#$5#6n254{tZO+?+xIToqP5hFeQlR1+&iROdm4Ei61;cn|6dqge3#c zWO95wrK|`JCrT$aF`4wab?&jeIB3#v)3ec!LI~<3LAa0a|Vi*+FYfmuDj=b>4 z5-Xi~@s=823|oSc$Z3hkk4WV}wlw75AGM`{GG{|MHbdD!Yj`DYcPyhr0{p>+9}TMZ z$`$j$4~=o=w@Uk~4Qg)cvd-7EtgZ?xwBjWH;L5aKQ1(7Upn~Obqw$SOU(dF9it@?8 zhPlO|tZbf}{>bI2mqc^u*_3dLGZzi9n&Y=Am;P}E-e7$@c1oHesc^gyE! z#;qJkekCW9 zYR$Hrd@+8_s(NR}@LIZ8S^)Ud>Zo@SLnsE?6`cW+C?VOUqT540_Vze50 zN->RaEg%sI_I{icQ))T?B+u6aRDOW{W|Dn)Wwv;Bx6O;Ru&mQ;Eh9n!LJSvP;i*Oe zVS)?xf!f{dn0)3l!hdN7nNV10D&P&moc06~6kJv?1MxW3pI$O~0#BZTq@;kr^M_8( za*+UYZv?2;HzD|rlkWZvyot`f4W^X#fsMg=`h2i;`iyB_UZm*cP&jg=>U^|G*}M(_ zNms!EF$pb4B^~)*3P?IP!q^)D<_}wI6IHzQwUvd-xMmgZLs4)=FJ7GKJN&cz z$gud}RJXr&a*jeupx4PMIp6rU;K@5B3aC+M?>IkAqh>ysjNlOm8jBNwVf z10v6E$KoU4n+i;Dwx&*I5iI!v7Kou2gyssd9+KO+K*Xfc9#)7mC&TEQ+ODvWZjr1U zEUSan5wwk^h0ics&jTP30{Q6g2|0HsLFXr;xIq>lPSj7xplTqgx|LIEKfAzXc}kWq ze2F!oXM7nZ=W7I{+E}G$^LVIpJe!_bfVy^x)k}H32qUyPy_2FC&o6vbc8l?&Z4aS4 zoLJ3ppV^qzjv20d&Gl9-aK|n0MmTEL`55f6t@z|*-?DrFQ?^SHyNypVvG6d*a*kEq zeq@nyg7p}}|EzX_RYN9ko(keo10Fn{I%Wd!2Rv5&HDmqXmc1Yj;;lCVY*nb*Aan`l zgnC?%YOy^IM->fOdff$CGm@o(bDBCFpjLbxiY1|lX_T4|JlJ*F==yy5vv$R)hl5Ux z)uS*Cp@qj9AWi$NJehq_j*;5&_O4vR6v**;wJBqyKw?Afq?FGQ$n5NXnp7n(|| zth%>mx0<>edJV!kc{{5N4nc(MH`F}yKOUYGpIL-SU|KOw;M}Lg&Hqb_ zn-K+j6lZ0YeVYNRWlYCDT_d0;yXB|=kwI(94l-4i$J_w9Xm2Js$r9C7aFk)#Vzo%m zSu^;q08KGW=aCBrO~K`2;f@rvFG$I~u7uNPk9_2w(+rkS0M>~k`+22Uvh8VbA1n@! zABxS5%u)hMI7FW$$)at+fW^`(Xf%+&b1V59BF}gR5I3z|Y9|}R(o__0YS=R`Me&AvLwsfApq@Lxh;BG?t&S3>Le<>Xy=_ruI0gpdZ6UycH zpTdX@0X^_EG4r(ki+Ox^Cw&X2O;e|zcU25Wu9QcUNg00U63rvHM`Rh5Wfp$JHAtEd}nZzQcbhi{Ry5_7)< z$YnF}N1TDq7vo11nI^~F%~Wo(*jF;g8_?IoQ&KHB@T(L%=7^|mstB1}M?~k2P@$L6 zLMwJ;$tnSPu>q7j60->yG9!-rF|wCa zgfsPp3rN@L*x%m-ruWC0IBX^j9=20DB!n)_M0UbR&< zLds$JdzR8ac&ixdt00xd_wYX+ME>Mv{wmC>a<6O#4CK6Qfy#yI7V9F;dkm-W0zK*4 zaOSC%dN_&D#QN&3U3Jj)Jwya9qWh|w{;Il9$%FsIk2hbzPBh^BN|7(Sr+O6}(v$mY z(-~+l&vz~Bng*4wE~ENeVZ0QIvCSjdgf=^8E=k6ylxdF>oh|E+0%_T$-la%2^jGcP zZg~?PYCPdlAjZuu-9hLIFOR(&tRQZI1N>-G0_2$L05puS;?A3xsWqPz6aHXA+2 zWd7>?^a8M|XU^bsmV2?X%(0C(y=^!qhW*cF%ciU)R6?-;tZ~|;?{e{~B(f}d^#^_f zUe;UelE4mQ03hN5PO=B1G!HpbjJndqYMBKK4uBK{2PjAKTR((02m;Hix4J@B?UPBf zgCgUtsVW$k>KLOGw4qd>cr^|Wo268_AKn^4du}wqF83w7V%6{O&wt*VB{c`~P)m_e zo$L`fZ$Ssi*s{wn)}rnJ=`N~EBj{Fxh8hyZ=C1v1|OE_ z9}!U#GF*m*wlhp9=KEX1?iHC0&>jlfbXs?Nn2Oaw(k-4KBQ;Fdy}7G&sA?dSz<9-uO(XuX?i#AJQz1P;u=3e0V~8SL`X zp3^i>r@hhT$6TRJJRbg}F~ztT@Of4l(HO-P@^16$7Rz7n3rbERK=)sOI?sOr&;JS3 zS^mip{$IxJ{yWJ3zq$zj&F=pQs&g`P{C6KA{;J*H$c=B8C^Rwql zcq#`nar;}(Z_Dp+VNTT61Xs(&W#u&G0uB6WOT1$Wgad-o8k(A#%d_g}*}96)`-;`i zN_B>m{SpdoXQTO9T*Cry)tZ2;12h&#r`;CwwdYaW2iUjB>xq*vFK>-e64 z#2e3HTj1sMhQ+*L+4Rlr3H$LWUWIQ!GM5XPC=UyYQ1`@%WuR$rxpQtlLeh=!{%@#} z<5XzloIU%S-em*m%-PlTozKN_rMdq7`&Ea6hcuYNFaRwXMb2<6H#CF#7C)tfA?ve0 zu(}v)srSK?IOIy9tNmJ6BjV(jQk8XW&0=IY1;+QkaX{=;I4TjRnA?u3i)t>~HoqXE zF}@36$Up8Ml6&-I>~)9-Rguf<%`KRTLxo3&2WMqu2Onc{_WqiO#;-c_(8~lg+!eJ! zszDgROQbjQ(puBL?hr<2{2(r5SIt_%JZ*{Sdh=I2bhx9#Rsv<)9F)>T8x4@cY0L0| z`%Y^I^qo>4VmM&4fe>F=|s|Z6Bmv{q}f~C%FiBhVO+k& zuM=gVk0LTiP-LZOg)!@&mpc`$!_oNK=}jvWW9uLEG|}fptc@Of(65b;Y_d_F(Gwwn zF4H4oBU5<+To8Os-z&X&9ns8)1_+l?gA_yqK*CW#i3uG1c_Ca2uqFWg77MBKJqSkg zSB)+O80Z3jzN?nw{Z^i1F;Vo-Qwi{Y7Ys5MwU&_(AjY`j7-k3rm+y`CfiPV@9~n&g z%tUyEi{LX!RX;L$(w-`igB{Ko3+nobgQjC+ZbUQvD`AbzYQC$6Xm-IUvCl-by%Ikn&In;3Y17CMwvH(eX&78Gk!$x*&nIBy=yP|8sUMj zE>RYL9#Fa-p82(6Fsq-!`5@t8Q|aoIN8aM83`jfZ^qPbv(D~zsK5@3@SkOf zE=pn62)d)O3z4})>u0}(vB^spm4Vcw7(J9mFKE8)G#BkTPv(CB=e*aSRun z&=cV&Zl$QF>TWdEHq0{_jMn%Yc1<@27x;7|(TH)WH_}MfkkG>=K7&7E{c1Q!_4K zMns)r!)g2a@}1ZAE{dS)&U(t#=eIyK2XrZGoNZl~8D3c+s)Z38JW(?Wk|t=9_gotF z7^Q+6<5IU3*eV89u12qT01h(9=mmBI41i*jM* z?7Tn^;?mkhysiDFf9V%VU15G8EUtMaz8)e7&T^_&AQ6}7x<{Nze5dMBbWBLf!ShV9 zoFRB8#!zS9W2HT;UqZcL1Iy_-aKjNIfn*z~B{cu`vu(T?kfsI#!pRVsL9Dw;A8S5` z2v1|enH2!==X%Jv+(cOT#jA{!1ssg;I>pkvyN0Z!aZ}xj9=P6htGBEs>TS7LdcIeT z@T|vsvi?(f`m@$|H$1@+mHs!88Kbv-&K!g+4y_{zDcb9 ziS79VLwO~L8V1gQkse9>hcJNC`c=B{1Iw$R3hI&zzmmhB<0dk}yPz$P6HpPYqL&6` zNa~Eb_^Sq-dB47_e7%VbSKMo6dxsob2I6PoB9EjZHDe$R=_`9bZjF^ZHpxH;E#q}9 zieXX9rd(lZ(*@-`d2N?=MbkJnbo^8+Z%&faq(<|JWC#++M-v`oN&AZW))BL2{bUOy z7%sL^5BaZ;JfBq9`W`LAabkKd{M4zlE`^eg4;BThCHo-^Y+F?yUvYn{okt9<^P7?6 z6MZ!Tv4E@&mrF#~Gt_+sWFhf##(rWZwfo0aC+yM3t&M@euD0VNm&nTt8W z21jYyWymvHsCpx;X;s4$Fp3FZ&$1QJnp;kUr^PZureh^%fJzN^<2LVl7G35ZalqP% zrfJE!Uc?u{o=Koxbq!-MnS57dQ=BJi0zc|O(i%E~%z?)GPzQ#0kQEtzxD|n5%-Tfd zY&Ck40oxg9i1fXAgEi%ogcfGve#a}1`xTdu#j*WYXGyC#5>k`bNd5&BBA1F{x{1w0zsHi`S;gB#i zmbxVjv{eeYkv0I(*qJ0j+yK%}o!}3>{kcktY)Hzx{Rb6!iP=C>9@)@PAItw5wIP}j z;9s4jOzKf2H_J~B4Lc!B4GJ2!9G)jnSr}Q?4IZ>>2%pA^Ow1rUOBtVo`ipwabPm`s zBatqbH+>wg^^I4l+zdqcVw83Bo|sM!#~v~kqbrmP11biHbyI}O`g2(W0O(-SE*eE| z(JzyWH)4&YnKy+M`c6G>>S1~?#-0ku?oYO2H3Qo-yZz1+i)prSPfY)}8#ereRlaBz zQZo-8TxV2b0)|lIU9=n=T+3PnorS7}FEY85mEQr?tV|Biqfsu=YA=;h)od-Gh5B#n z|4)l6*I4%e?Gb!7CJe0k`;1M6a#cL$(+&qFcIZQ&IJ=1gBm4tZJ-V(`M5#CYkso#*lgm zMd2_tH{sksep>TBCsnsIf}Q29^o<($#wiJPZIROzuowr=!?hjc|FrfFK(>TS)@a-2 z={{}Swr$(Ct<$z`+qQAqwr$&g-+yM}&BVR);>L?tv1`Y!sQOU3t14<`u3TBO;ejFg zU@r8z5E=k%bt>%OefxKJwsu`Q-1I_gQ0?=K7{!%$x3vt|1Ch%0RZWn zy_SfYN-=y{_i_Kia>l`#sgJKf7>N|PR9&|xarKiI58Kng!@NDlmiE%ROK@UWo(l(0 z0V5WSAn?~JB3u`z0I0YIIv3cXGCl@ODK)Y_B=5&1UsNV_>?Q-|f-UR$VY4lm3hqnJ z(HTMaywl&qJ;-l@IUC^ETdnbKjl zRd72ffk7Q}%~Uoc_rIrhO|0D|k$H4zG=kUIolD5M_;Ij-)3a(Y_c3NxrHhKQ#$?r{ zi$=7$SS%!<699{B)H1UYGV^c}Tw0HB6}L>k&!7T&v@V}s8orH;hQCJt z@_Z!B21#z*oxFot*1o;W?+RL`??dWjY;^fBr403Yg^FwR1&9Ydk}RcoKC&#;70(fJjcuMCDDi;%OCc~}d3Lg!C@Ou*dm4%FVdfAff$@Iyi zI1KHU2+cug0J-1*Cr(pJ;Q(^IUxMS!?VV}i7AfW|nl`RFe-YxqaGBf4#!*asAoyw4 z`aCUzQx6<4O6*!BC4f^<6Gd7|w`nrCIxw-w`q;$aYhO}b3VeNlCcbbB#n$Hk3Chy{ zO98AOrK^7r%QF8b=>2aBSpNXW|6A1g|MvUuU|9xsdY1ozWhXJm9e(((KVj!XA>}GM zH(oe)t7ez@&2n*K#_F*jzN<#Q^_4<=N}zh*nzj`A1wA*f>LoA;^pKHM^JX5>7 zz2ePY4f==F`+AUHGI~BjCZmnju8>}Kgh5l=%S#x#<;#m>Um8^R3s#5?6g9~G)_|j? zSL@61kS-1FRwrt;-<4h@6-^Cby0O-2|3AXcLx=4zYG2)S?Un7t8liXPRp^q4k+dN} zPKN`V29U51-QmRq7?8nBL4ci;kg(Eya{JevkcK^fPbvfpB6Hh^JSZC}! ze^B5)$-K0s$AYw+<;Xo_A+J-6%0@&5Q~&0OXP5$X_&D2N z78O~&^TA+e2EN&i0rYZ%qBEbLfw683RFUD2!Ub4nrt(!<{M*{VGRHO<=@S=))g{=N z#DKLfK??0=z*RV8tMV!L$hZ<@G#19D7JOV6aLcUt&NW0HXq>)IZV-=#?bcQnqPajW zUyUwFn-9f9ES9eeEc<{7B3`Bz>mh+KiYmtsc2qg;eXkN`sJEjc6bN<|Ykmr`7Q#^; zvU_N!IWH&#V2wg#R)EK^DW9+ao;~*_yNM;1=2SZqxQkr}dkFq5>>hO&2v6r5DiA_T zdPb1nZlEbIXg1$?EjNd{G9o>%0*Pq@4`r$3?<||e9Qrkrv*XPstZa>JE`D=+>lnbo zyjQ{Un91`5KkB~0xCXJqNB=dN-$5?pv4v|r#~PUxih2^z{D=HXF28mfVmebMlD56Q zm1nLrW!B&OAp#gzcbjxmshp0A&D7qv%3y3wfOFJqW)PYlafsE{8&R#6AsSu}jp!kP zgE|@iiu?n9zrnv@SX8fBj=1CqnWf$6W-1rlxmckI<}u`kP64 zr$z=bPm4O4CGq`bd*mDc>w53|2o#_Pqbekd56*1Qk0lOxMoV5XX8Q}e6}SZtgLV%o zGmDirQ=e~3he;61zTVwl^mfo{P_^=IVURW}^sZScSDA+WNLlmI+ks=T2AX)>L*|GY z89*xFf^+wtE9Xc`4O<^0uD`Uyg|%~HKn*uf3JXR+9H$uEaGQkGaVbZ0Bop*A0c+#9 zVK>j;+J0VH`V_HOv&cJesP72-_5NhJ+NW%Gx+?f#i_lp z7-2T<`9AOpd`$wfp8pFRr`LK@m=&002Tlvkj_j3RaD)ZRDVks5x5=MTir7CM+57@L z=&=&msQ?AhwHIa=@dcnrF1b4h;@=82!8lZPX!Ree^UV*p7BGdkpnGOFd5;{_fP#VB z=;TiQ*T9*n^YhWeSVJY|T^-S#RDnD+3e5J+hJ{O)8igRRIGs4Ly=e1*V7$)GJ+@&5 zE4ai6C$9a8ycZqSGWh6pUw=d{n)iS9g9Hi!AHUN&F(U99r21cS43o2!Z)3{_gun%? z>u+2CL1!erB8;Akdvl2-Zzk7Re|~)IE{e$*Nl=_NVZMC`%|$WOgP2|es!5|eW3L1F z0zZbv1C*&3kIJ~*#Nm#DK6)S-^5BZxlZFa@H?>iSWn-J9D9{aK1I*T;B!Cm(+k6Z` zxH0J|gV$$1-tD9j4;9_93g{)ul&^OZ$DHwDB)*{6;)RvM?UBp8!a=3j!p)V&!|)gr zz50`S912?APly~t;yJvV_}~m+2XE-_BZw64$LrX3#|XrhtbA}swz++D*|W%JqAn0DBzZ#mTLkR2}Npd_7y*a zdIH)k8}ma<+)>GZjZ}`yLl40IbZCtC_3-meM=_;9MF>1N#BQOF5?Ib4N*&o8X-b|< zpAPxHXZQY*6$InNDad}YIcad(2@^vM0C&(**|MmtS)z&mOUZfCuESi#NqnZJyg9pg zwk2`dpQ%^-%Ns?iQlu4UTC6o`R_YHj}E8NS?ZxYx@`TBy0@9z+%+Ci%j^zC>s5=KdN z{24T310H$(ems^^rnO|>U@(|n&XYti<2%LU zl8uc*<9|Zy{`jFXF3tJFM*l)H+0K zN+{6=rKHBW+SAk2r)0~c*Zn1!aT1SP;#!k?QA=5r_?CiNgoaZdL zm2Tw@O3}1d*$?|ZcSX5sd6Ew_`u3A;S(JOWpdX6>hGVOWXTqc|5ozb#x-(jJ&J^1w zaqe~tUSHpyf9&&7Fy-$R5`AKcRoGza>hRVZk1=RRvCJF--AGgh$oaa0KRS$&5W_AS z0M@kd=zt+V2}8FBRh)22%f9>cq(pv}lKT45HfX+Y~YxE5$%1^)~U{-rt%{l6e%_=Bu=CwW;M*G=eYdp%5<%5f3RA^BYHzw$v_EQbb0aQTDC@s& zAGK2(X3HKBWH?%WUa+GIL7jb=H7_%=}3z|6gDf_^3yOvsH zDkMp(wNQNX1~fxc)AB?=KlAG!zR%DMysUdbBz;w1f-ML2am<~qD;Fvzb)APT>j3VV z?8A?@uUpj|p8+zKOi0TBBNQT+8Yq^*1PG+7|gCp}3bOJCmal*u@Em zMe8?&c4e$xM?_#Sh?3?{t=A6)Jt6k0L1xh+E4P*uPx6Hgs?8R*`9QgT# ztFM{_jE5=pTUkm7+}^EAjWicH1W{m+0VE_ys=r%r{&GF^UFPJTgtJsb-*Q7?`tFJq z25Dw$<)%lJfS2YIdoqzJn&^?hyV)fkJFw+fWHLhxXF#bKS=*gJC?K7IJI+M$lI662 zf6n_QFiXs(JgSBr&Vn-e>QGW1{swGa(qh)*bsN8`odFe`;9-7*hq^pl%40l9t_%Q^ zK;9Qx`;dwRDwkA-G@nII31Pf3Z@_1{oDQvdK*_rC$AxW3)3Ef8=Mvxu6%k?)lFa~% zNm_brw*CU%ni3SY~WU*S2~OPe`; z4W1vdOhAvdtnd44^kRy{OABDitbi*d{#jRHfGspQ0OpUpCq3kmeIVfHuh;udz7ZA( zd%C#~q;37pXySiEy!-z1d)Tc`@Is1v4DOesAc$7zG4vQ)fTooqe~P}L(+I>y$!aVX zVGv|%Z0rYJx`TX>_qtpq5aW4a17wy>Ns%B!u^<7x~AmK ztWHVj7YWo`k4xK1JG@w@3QtG)7Gd(CysR8cgdAiYfRczmeoVmFaE*Fm!1?o1=lL0a zD)$4sHJLAMsap1)yiSuD4k&!I4Bc-k9GA+O_O}%f1|A~_(F&H-DWonemzQ|afZrxu zEDdb>3%pX~9j!w-zk4{Hs`L>qIi7|yla9vU#X6#hi_7g#D=e-iUE=qDfh&lAn3E`kBb9pEL^=ep!%yhlY~!Q{u=koQnxDH4?f2q6bu6f zox*rGBP}_1m1xhKBFi8dap00^LQO1i1&47L3@6|slYV!Zc*z#?zyY=zL1B!%Hloq% z0+j({XQ#w+&<^14&{Y>|Op8B~Y=THmL_=%EF^>xrnlKR=t=dFSlYbK6#Lq(RUcB`v zR+64M%7JZpP%O^D1*$sf;hg7>@Gv+Y#VJ#3FyG=>>Z7jq*RPw8&zclnn3+W6$w4MR zFpc=I20(5=XidKB`kluJK9SGtP$Oy~xIgHoR>AKZt{zFfUo-Q{Nu2IiZF>5~K5_LHo;q5b>_9 z9H7HOe5l2*|#}%Vx`sts~dEiD~$adj;+kmAN|AHqjO@D;)hc(a5_dj2l z^N{u)3g?Guf595F-zxU+Kc|Rh6yKo3WD+>3G(6Fk)6r0JNa6JmQNjw*6r) zZ`E`XaxRQjQHTE72dP-w;&`~n^C8&()I%`L+E5}qJQBLU-SH$W^VLT@L{ZrJ(o7A) zd5>Au;Q>Aj&I94mE+KWxEmzD%vtF9RNE35w6hD5?C`RXX;{33n*^~u-+golkc9;z* z2{@Afojs7YHoKT+1Znnw+l{KM{m*YH|1w?w$9wqy)q%OK$}@FKebJi-{M(x1r9H`(s}e(&OgA_LqU!_=I{e~5vsAy>-8p5RVT9^5x*-YmXY z9jALjYx*9>mAH?Ha?ffw1I?0KD8XDMFrb|3>JLAL%FL)q zUQ+vSv*N9+v*h=sYEKcG|r%vQ9!pM07U0tr7BfUv%mD zT5!c@SRC!6JR8>Hm}2#p&>W=-4y#K(-RUy=v+XKOy*tX>1~zJmdS}$hdO7h9=J46o zrp7=~%poteO(q!O0M^ZLbSGw7wdeKXV$^3i%Iieusx!9qP;;CgAC9afPAqN_%T|6I z>J-;Zt?t~`WiHGkS2p(@9DwvZ8}*Rbme}?oZp8SyD{1XbU-uuweXtI(+~rS**#>^x z1@sCL0~ZMjH&F};Ocn3(5f=nuuG@^4JM8YrTko&KyC>1S-$R#??PcIj8r;14^BEqv zM*Mi=hOu@rGJ_{IHzTsFuG{@;AGp7=X0LnQEbu@ByuN>L?dkGve%_e*8{7S&e$N=S zGsUrShj{jM%3$1pJ_aKyhmw^UNKeRM45TIkaV9_|KqW+7!7c0ULquf@VySgj3Uxa3 z0%&Z?*RO)zSUq~RYq~!noiG$`y?~`w)-~$5JwB_pXl8~7qpTXA{0moDB~DMf>usNk z0CM1iuhzCD+9ipS2uP3mj$XEh9$3&E;cfrRvjEfl(eS|3rOy+iDPi8cPru{M&ePr- zds6u27_#s6(;0U>h(N68E>Q zN}>_k(bGh`yGLAJgF+Sqo`41ks~odcWN->Mthh| z6og}qNv}9f{EbM>lA*OjrN`=vlKnLf6thZ+kuxnfc5*ju{qJ@r=;wrcRo#UGj)L<) z!b|#sNL5clB{9ByU{t9c;WnEu`zS_u#UM88L^&e_ySbC_OIkEjU%*O}E~)?g(EFFE zg7p7xuHe6bX8*u?|0^{6casI#80r28GP72eo-bg5>F(+ACrn$d-Qj~6xs+;|?_z0b z1_w{v0lQdWne6_2OrnaLc^@s@|%&aGTOd zYC6m#J160UTfKg*mdmhKE+hGF-eBpV@QvAFUDsYeSQ2K#*F22wQC%8%{>?xEZrl4* z`+EO!dB0pfSzdmUPU249P^BQ;WV15EU;tdz^=#1Owkj=l7B2+k3W znOEc;yf7cAw60Ccnvy0!_&n=o1^@;s0v|vb`z^|CrWch$qP031kMms7Ex$mK;4d;B z(7eG-5@HG+uix^ivMy@@|>fCL((`9CG}*?Zj*efvslu)pIj65_KDG;9S#M^?Lu#HzKTL$+B& z6rb|+`}VnFx=&-{Xm5-aHd@Zc_SKqOYN<=W#bpBqCk$75KuNpIcK9@`5X5p99(zm$(^_oZ^uoMqx)&2R&O-^4J;X3~xCA}GYO$n!Nq|GzE|8Ml zJ?jPX3h@bB$f12Z;K8(y$N40eMLHC3m0aqcvA^{&0G#8T&1xWfV8p5_TM&xjwJ2W5 zD?MWw01cB`w*RI4+IM!mzwUeS@LK)P_xyin9sj>*1<~WtGqE!MmvRsT9t$%o+kb8S z<1YU%Ng-Bdw*ToziE;y1N?4y`k>)ET#9Q=xz$t&&Dtsm(4g~lUiw8-Ja;of+5RKOb zAr=>{09q)C9=j!kfPlc?b8@@kIsN(F)NN~Ab+9?j#pr1=&B&>)Z#v7mr|QJFBDjEH zhr%nzCkB;UX=nt90t5jW1_1#HiCow4TTq_v?=~A^2l*f{q;PN1S3uqcAYdL{DilNz z{u$nmA9yw$fE)+_N(zvK7$hWMU{D~@Hwgh(Apiv)Z7DFHD8LN>Uw9zUf-bi{ZC2+ zl&^IR5HP}x4SqW&lq(Rsz)v3l^OoKWO`f&D& zo)AdMGEcT=>FEY7g9?di76y=Y3n$W+wR5M+G9D zWk0DM0B;{klc?ePH+AW*=?#6kgqzA!{_K|T{kd|xd3u@M1Ad*+5R=eNl{ zKW71!a{zb2J{Xf}fC{uA{LZ%pe94GNK!!U3zo#9(FYmq;Uu(#|D`vhq37KVoU9@DK z)AoNGg17POpYXy&I&jOUlF#t#nE-xmD>44nEvNvt_w#7~Y*9uA?UxE5*nliB^T{ps zi#^e0Ln#A${KIx4D6eCp$56!pfEUk%0vnH~X9xxX#g9<#7dk-kFn}Ln zf53^Vp)i0y9#OFg*&OOT__6NrHXA|#5x*zG3MwQp{x>ih(r_;h9vujnz0fB()gAa( z#kuc(>Mt9)R?<7xo0!hNY#f|a{4Z)cDS6)--|b%rq3|G5OuPXAk|AxKFqS=~%0@Rw z+gN?N>X(r+jVBREg7y>e-(1P3XP8CyiH%qzO>v22P1ibr;j7#b3$w#{8Q$c z@8s3Wz0V~?KR^SvWwzM(Q?U^qWDJpH3zo^@5@1sQUR2&xvMElORQD6N3peXpp=!Gl zv``a21KRk-Gdd(YfhlDg=p6G*Aw#1zD=)+j3EsI$z*oS?8cHYBS!R;Xyf_v;skPgl zI9I$(jv4Nm}>eU0&NmZO%8?Fe|Rg{*t`4?<$@B2vLWz+Ie+oD6$@9wQuWBs*XbWPFUa#s)222NEMFY}Gt`t+g^_Obi%Q zHE*Q<49>%&inJU;-vQ5=POUXs2v~ZuTK2$f@2sw+!X0vb3+d&(1zyF}lL5rLY3{Sm zvw-a$sP{f0#Ep?@wiVa3-I4Mjp?Gn@9Yh{e&Q>mCi8gCIo)w!yhiaCZ6H>ChR7PW6 zhR4o2m99r2prR*5Z&}$Dm6Yc>FF>J1Zx)`JIQHnsJ|7W8aqBv5B$#eIe+3T7t%Jqe zuR{Nl$fwidGoJgt4x1t58AHggFYvqSLq^iHLqU5AoNQLeY~E*YF*<(8=q7G(!l8Q( zK7miOynY1!9(%ug#CMa&nrnhpwKAqYP`JcJ8mxMq$9H5we-(E+_15DSXqFs_yjRH~q|+mWC7I%BD$) z{PWDG=MW(=DgZIYu~uv0Uymjkgpfj99Q#D`T&U6I_e7%H+hK%Vj8=f;21DdoFex3& zKgD+2;g{l$Fv6cj?eDYd@cT&0me>V50f4$U>^AnHYoFITZv?nJQ0eDkJ;Ia(?Pol^ zTieYno`bna`Sbp`#`x_D9!RrN@@8>#pVc#3x{qS-8g82^t%oYklI#M6lQ9rt=Zxa6 zo^~+}6`KiDJ+S-^_Achdo++brlFW~-2Y3y{`cTIYoT6tQU>DVEvgsjz)==1jr+U#R zEZm=TCCW#D+z9oF#?Y7i;`fGZX!_|yXh+P2$ZGaivaqr~13Df7kLlb+=%yV|&W|lJ z_y)?U&!JjEVeg)2=IE-Ry81@l&?YtOXiIc_w!7~aWA{R+Eykoc8qPOUA^~MVt36T4 zvR#Xm6kDXS4_{tud_OG^0FYLdC3X=1+d zs4X<2V?p@bc_h%8D9_w^N4KeGXxH%R z^C}WD5d+hr12N6!r2G_m#uSO@^3Hs!z?-Fp@8fVX5%sB9 z;T{9lYnrG&Lz@k>vQkN-v5JHXbon#ZP$}zrQ1TjT4;OtY4_ccDW9o2QnByU@v)Nqq z65MfpMvNQ_jZ0I5^K_K~%6= zbgB$yx(rB8;{@KDXg$c0-br{L$1i02W3_djT+8{LRolo+D1xv@!U3gow zRNBM$;_=iA%k8Dm9>(4ir-Xt;Q?ua3yJ9J1KB1WFDzXM7=FZI&y$|iAu{*AL@59Q9 zfI>6NwQkwv1L_e(AhGym878xY-Ozd8^pLEezK?(b{I!U~(SnPjS}tPdX3J4kyFnyk z8Qj8=fl~tT@wB7*F@hU}G8kM7dft$w-|^x=fGu2gIcKAPt=2$v)J6ZxCNH$CC1*_d z6oy5!tYQFarcLRK91>c`l^ot3mlW-g@wvF1#eaXhCv!x4>2x~>wUWm$e^qocXkW*i zub$xOG3mEUmlLmTLwN)^LW&o`t5j@`=_Uk~T%oiVcE;FwkM?-etO3WTF|kNjB@_u_ z{^4Iemvz@w!tE!%rw)z^T+^TvyTCTM+`x)+8CebOLHw+moshR;_igb@oN>DEWHVH& zBOiI6dfN(ta_}o@`iEqZlu6QX;EFiqK>0^o)zhPNR8|GeEvH<)Eaw8uWl$Bh;Xav4KcAsY1!KMge?gC+k;-twf=K=@VN6@f%E&pK3CoDZ=J=}CWe&)qH`=Rc*~u1^t@kd?E4PalU1uhSoW#q-!yW6inCMHsZJDhz zMJwpQp+P|-QDCfJ)3a2)76R-l7&_!SiyZDN%uv`R!22HfFXO0j z-rqsn$C$843BS+uBB>I+bc*NTMzdM-UhO1ew4A8*h1~c8LFvQ}A4!6Y+?9rJdY&P? z7C|89T$xsB;g384t6mn@AdkDDOgjouE-k>Oq&|PNZwJ7Ogo~CVjyxm3HFm;gChu)H zy7{pv72*Ri(#y9MY`!}Wt`*P5$Zmgiw%ZZ5!2(Cct2JzY5%p>qq^zjey!Y>*Cep|H z417MS>vG*A00J^#h{90o;iUVGv$5a#zmKCC=GpfFs*I)q%Te~sG}Yf}M~*A#8RO#v zYyC}W7Wf36Kid?YtwDO?KQsaBxaihbbj9hkN@JwWr@cVqH_s39;LL&Ek=~5BYLIAC z9YiU2kbU$PtMBlP!jv^$U2Z>wsS$+lA`g*o1^G}x93rYNFd~zM9UyfqtI1k-0KQaL z;36DflZs{|v|r$kAH~WwLO0hT;XPx?`8Axo2Yu+mG&Ky9r;{deNYj z$6M;9m_k!+63MJ^@<~_|SFQu;^7Ok%6m?qaU-!B-(~`1kk6EpviL9s#*>K~e#0u;f zooH;>giUStE-w5vF@ymu^+dKWj2D6J+o|^qWl}Fj5%1T%lJiT}Upek5NgBk|UAOh` zVjEj(&)m^Zjg<T3MH-Jc4SsTd90}{NpE8u4Of2X1tNkQ zc|+afj2rU!ezdKZQQN<*-FlKF^?km?lW8Ga+XVAOQv~NP&9~+p*&UNxY|LY61)&P) zFclhdDieywFgelNp0_*ZWJot-`E?IYJmUQnemt_{9B&{JZ}9eV?XW{#@^rf?2b0y| z=}U1NjU4Dkf22i%GYF%Kv1-6Rja5Y6 z!?Uwp8DwX07ZkoWGHQ0DK@(KKnMYB$L>$|_1;&ihFTf<*8&+KQ5-}TTy*78KW+zo_ z*|fUi@I}MtRax%VhT8ui`4AY;Jm>bR`sf_uiK#pjV08@O$n>KeKZh=D`AbGSfALID zB~0}pE;BU#1vQ{P0y+oAJ0a3A?8+eGAM&g^>~ALvZ4JPW^Vr@^%dud1l(U~kzTRCca zl7HCrGEDzPfpif*j zf_`d;eVuq+a&`Ry_lKZy@Qj5b)Vp!8M1cBmTIe|+Ij?rX#Q}&J$^DSlG2}is1~;wB zXanQX>N>LsWZR*2Tp>S`;41uQAWo{Z5!iX^p7}83wCZZZZE?f&h1bFA+C(13VOiR- zNy`MCb!%?coYfPH8;lWhBB`Z*OeTCf?`m_o)Q|iSZ@+eDdOkkhMtvujh7Bpmar$R5G>6L}C ztrE-93EYgi@eW+%T+;03jU`uE+zU zj5et?;@c34?HOK-?F*R{{CvL3iW)pQL#<>`cy{Ng@khv4X@skoT#$E!7D_ zm^vdM?jWbR2Q&4|h+OA=Ph+iFG1g)na^5iEIL@GSQ^gV8@r@P87a=9bj;{fcYkh3* zd7y9PSV&|j7*lB_?KO?b2`BxdLRbwCl(IHUn;xg*@FM1?n>yG7qN=({xXa_N+z{5t zQYwb1tcazk@$17Q?1!JZ#&oD8LL(eZ%Ix?ZxF4Wx9bO1$0d9I-9GZQ1Q|}U5w&Hj@ z;yMTxzHD-ld!;i@)~%h{E#dhu%F2)Dlq6xP9>_*wOA%>zJ`Ybva<))^?0qWhSCZO8 z=F=g4Xxmmen*;xr)M0%!K}KoQ2gb}NFHo`^T^)085|WqpE#Izb?KIM|5wnZJa(77q2xZda+VC(;#mD6|zOykUb-)yf9Jzs8f&?pjlbGm}_dS z?F2Sm=?rFkI5aIrO2=Y2v%yH1OKE72cy2<3qlx&du7G$a#=bY<3G<*kM=FC~>yh zToNrpXM)_j)~!}GDopR<&pt=%XS;$vD_x}R8GTP4Lo`Hwy76m#wJmOnB{)clq`c22 zdUm$;&4?Lk9|`wh)y`63pYqF-=bO!466@UhX<-p@4?a3vcd}%|SK%5Jb(!sC?ckui zV~;4|E6(vug2}Gpa>P-NIxl&M^YEvdAeYOe9?{NHi=`ofgFexB?G`pr8RBE?#o&oO zK(R5p4=h>Xxda&$zRhT@N2`j+D351a^pS_B5KA=7rs%{10LAPmi{Kl&*!Uchh}!rJM3tAR17J2eaNsS|K7d} zY(VTuBQ^#izd8xv%&f7P4lx>M;c+{+Ia&(PLsgiyLiaGBeEY4x#ofF=TP{FPr7=!0 zyFXCLl7YOPiSrqYQtqg9c^vOzn)FG30FjOQ*F{+rM~V{u8oXv?W8wYDcstr5w041; zeW1p@NJ=qNg8{``(s7DAEkP! zGt)aD;DFw8CDOt181G`fOTtB+Rx32aTO`kc%{ z@QR_#Wuz>r)`v8-GPY6)w z5ZrWBSBTmsA)96;#-HQN?3|E~GW7#A;cjT=!P%!q-j+0+NqnSF7~%Vm*eYxmX42Gm-s_X0-U)8uv->4yiw#ns=o z!O!`d++$kKp}OQdlum+dI=sl@<9?4Y!Ud62Egq|B{_w4?Ae*q@G|9)hs``YpfZH5{N^bE2Dj{h6L*5y@FMw{n4~B6IL|vnuH$n{? zcyty|)=-q{DSy<@8|1pqYmmkBxjeeJH9>nPNojT#B%q@!lHeU34V55so{XM}$rP!t zj94jYets53nYQQ43s}%!C4Bt#x0R@y zF29rC^wpZx9fJ~g^VUu9H7>Pd$fCNp4Z$DUL6*AzZ-f?7`k<6dAoRC{O^0p!^d*Tn zt%Nb{+3vjgx3snki!gH)p`zn~LPl}76+wD znm}a=&Kk{_WXI!d6pijcTU_^f!bh3*=>!B=(^A(|Eyw0=NFKc*oI~PadSbHwn8?WB zX@tUdo#kAVb{#qo-1udiZ$h@&`JWhd4yhi>TnD*$QGTE>_9G0+l5qQJ7t?+v_?aaQ zP|Ps*_q4%P=+29n&C%>IOS-c#6glOYx;H=e`anj1wmf{;MB_z%I~DigA~{ZdT#T%) z4^8Cl@k|CI*zEpwn2$BnKZ@8`V5`m~$~Sd_#)vv1=(5uOQ5{d*qwqqdnv}?5)zHCf z3lxiuwp?esPpx>i4NTIj-iml8>i(4gX)6F}58R~;*LYy4rG*~?(E@sm;tuCT&K^1n ziqx94M8Nx%`)Ms2BC5t7;NS-W+iDuu^$L**&s`G=L)@y+mdk{;+_(a)X&mermEyzZ zKolXfGkl~Mn>Z2tq^#{jMsejaTa;$e^01^DDFkawtYUprmSv6Uv%z+ytqbg8dObQ0 z3oD+YBd+U5DiB4^3g|N?kS$K*PnzTAQl%j`aYS6So9%*6>><|~ z&(o8ABxC&;OG$J@YldA%d?(?QSrgd>ibyo=;(0U^4a_CHzq^voxwfxAc14+O5CaH$ z*^Vx5oIHv(ulLT40Y~OzM&#wAvkoWVIkUMr144@*5D!`gf7x;Rv~V}BzPu6yu$#S# zs+jzpvvHg&GSi>zIQWFOk;F{10Nd7~GIZ~B^|D6bW)LypVp?Lm>6{PQ*$Npp+#hBE zY$^?YHLUZT=h(H@8ViVfR$0AI%wb>So~LDoq2cQ;*)8O;B^#5|^Kq^)YD+u530@#V z8P``Ria9n?gHKYkE_d9_whrA~C%K*2a)N+n)|2*B1#9CJk(rc!Mla^|3FwivM1-&hg<5agq=>=ju$> zKJo?FLT{h?r(iI{Kk{z>E0I>v!C2qP+}1|ur)~@$nGgp99X&f8BONn6106d9qXs!1 z?f*T()&Y-9$yn`YQ`*+(e?L}ENmz|W#M#QqK;OpZrydQNl9{<9-p|L*$mFLv6`qQ* zgX7O=c#JgkO!Um`3@psl3^Xj%^fXL#G(Qv+t$z%HCuQzpjQ2AURxNToOFMlhGe={6 zJeU7$$wI?G!}v1~IR{%KXTyJt@gIHvS06vSlpOT!?2L_ms^REcIU4_iRq|tlf1EJG ze@|Hc500Lig0ac}6V_(>Y4fit>HJ4U9XWjmYezgTt{ Date: Tue, 5 Mar 2019 13:21:23 +0100 Subject: [PATCH 002/403] Create README.md --- README.md | 4 ++++ 1 file changed, 4 insertions(+) create mode 100644 README.md diff --git a/README.md b/README.md new file mode 100644 index 00000000..2bcd92f2 --- /dev/null +++ b/README.md @@ -0,0 +1,4 @@ +# McStasScript +McStas API for creating and running McStas instruments from python scripting + +Prototype for an API that allow interaction with McStas through an interface like Jupyter Notebooks created under WP5 of PaNOSC. From b25d7fb01b03a6f528453625e56f096017fb24e2 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Thu, 7 Mar 2019 14:30:10 +0100 Subject: [PATCH 003/403] Corrected typos: McStasScript.py typo caused a bug where AT_data overwrote ROTATED_data Demonstration.py had wrong unit cell volume for material --- McStasScript.py | 167 ++++++++++++++++++++++++++++++++++++++++++++++- demonstration.py | 2 +- 2 files changed, 167 insertions(+), 2 deletions(-) diff --git a/McStasScript.py b/McStasScript.py index 2a4ab8c8..97c09feb 100644 --- a/McStasScript.py +++ b/McStasScript.py @@ -4,6 +4,7 @@ import datetime import os import time +import math import numpy as np import matplotlib import matplotlib.pyplot as plt @@ -334,6 +335,170 @@ def __init__(self,*args,**kwargs): plt.show() +class make_sub_plot: + def __init__(self,*args,**kwargs): + data_list = args[0] + + if not isinstance(data_list,mcstas_data): + print("number of elements in data list = " + str(len(data_list))) + else: + # Only a single element, put it in a list for easier syntax later + data_list = [data_list] + + number_of_plots = len(data_list) + + # Relevant options: + # select colormap + # show / hide colorbar + # custom title / label + # color of 1d plot + # overlay several 1d + # log scale (o$rders of magnitude) + # compare several 1d + # compare 2D + + #fig = plt.figure(figsize=(20,10)) + + self.log = False*number_of_plots + if "log" in kwargs: + if isinstance(kwargs["log"],list): + if not len(kwargs["log"]) == number_of_plots: + raise IndexError("Length of list given for log logic does not match number of ") + else: + self.log = kwargs["log"] + for element in self.log: + if not isinstance(element, bool): + if not element == 0: + element = True + + # Need to handle max orders of mag as log + self.orders_of_magnitude=300 + if "max_orders_of_mag" in kwargs: + self.orders_of_magnitude=kwargs["max_orders_of_mag"] + + if "max_orders_of_mag_list" in kwargs: + self.orders_of_magnitude_list=kwargs["max_orders_of_mag_list"] + self.list_orders_of_mag = True + else: + self.list_orders_of_mag = False + + + # Find reasonable grid size for the number of plots + dim1 = math.ceil(math.sqrt(number_of_plots)) + dim2 = math.ceil(number_of_plots/dim1) + + fig, ax = plt.subplots(dim1,dim2,figsize=(15,8)) + n_plot = 0 + n_row = 0 + index = -1 + for data in data_list: + index = index + 1 + if n_plot < dim1: + #print((n_plot,n_row)) + ax0 = ax[n_plot,n_row] + else: + n_plot = n_plot - dim1 + n_row = n_row + 1 + #print((n_plot,n_row)) + ax0 = ax[n_plot,n_row] + + n_plot = n_plot + 1 + print("Plotting data with name " + data.name) + + if type(data.dimension) == int: + #fig = plt.figure(0) + #plt.subplot(dim1, dim2, n_plot) + + #print(data.T) + x = data.xaxis + y = data.Intensity + y_err = data.Error + + ax0.errorbar(x, y, yerr=y_err) + + #ax0.xlim(data.limits[0],data.limits[1]) + + # Add a title + #ax0.title(data.title) + + # Add axis labels + #ax0.xlabel(data.xlabel) + #ax0.ylabel(data.ylabel) + + elif len(data.dimension) == 2: + + # Split the data into intensity, error and ncount + Intensity = data.Intensity + Error = data.Error + Ncount = data.Ncount + + # Select to plot the intensity + #to_plot = np.log(Intensity) + + if self.log: + min_value = np.min(Intensity[np.nonzero(Intensity)]) + min_value = np.log10(min_value) + + to_plot = np.log10(Intensity) + + max_value = to_plot.max() + + if self.list_orders_of_mag: + this_orders_of_mag = self.orders_of_magnitude_list[index] + else: + this_orders_of_mag = self.orders_of_magnitude + + if max_value - min_value > this_orders_of_mag: + min_value = max_value - this_orders_of_mag + else: + to_plot = Intensity + min_value = to_plot.min() + max_value = to_plot.max() + + # Check the size of the array to be plotted + #print(to_plot.shape) + + # Set the axis (might be switched?) + X=np.linspace(data.limits[0],data.limits[1],data.dimension[0]+1) + Y=np.linspace(data.limits[2],data.limits[3],data.dimension[1]) + + # Create a meshgrid for both x and y + y, x = np.meshgrid(Y,X) + + + # Generate information on necessary colorrange + levels = MaxNLocator(nbins=150).tick_values(min_value, max_value) + #levels = MaxNLocator(nbins=150).tick_values(to_plot.max()-12, to_plot.max()) + + # Select colormap + cmap = plt.get_cmap('jet') + norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) + + # Create the figure + #fig, (ax0) = plt.subplots() + + #fig, ax0 = plt.subplot(dim1, dim2, n_plot) + + # Plot the data on the meshgrids + #im = plt.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) + ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) + + + # Add the colorbar + #fig.colorbar(im, ax=ax0) + + # Add a title + ax0.set_title(data.title) + + # Add axis labels + plt.xlabel(data.xlabel) + plt.ylabel(data.ylabel) + + else: + print("Error, dimension not read correctly") + + plt.show() + class parameter_variable: def __init__(self,*args,**kwargs): @@ -427,7 +592,7 @@ def __init__(self,*args,**kwargs): # If rotated is never mentioned, why print it? How does this influence McStas? if "ROTATED" in kwargs: - self.ROTATED_data = kwargs["AT"] + self.ROTATED_data = kwargs["ROTATED"] else: self.ROTATED_data = [0,0,0] # need to check if ROTATED_RELATIVE is a string diff --git a/demonstration.py b/demonstration.py index e8253627..953ddb08 100644 --- a/demonstration.py +++ b/demonstration.py @@ -18,7 +18,7 @@ instr.set_component_parameter("Cu_powder",{"reflections" : "\"Cu.laz\""}) instr.add_component("Cu","Union_make_material") -instr.set_component_parameter("Cu",{"my_absorption" : "100*4*3.78/66.4", "process_string" : "\"Cu_incoherent,Cu_powder\""}) +instr.set_component_parameter("Cu",{"my_absorption" : "100*4*3.78/55.4", "process_string" : "\"Cu_incoherent,Cu_powder\""}) # Set neutron source instr.add_component("source","Source_div",AT=[0,0,0]) From 801fe47cf6c2594c56bd08a9a4fb839af5304a86 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Thu, 7 Mar 2019 15:54:19 +0100 Subject: [PATCH 004/403] Added support for subplots which are a more natural choice for most applications. Currently log scale is controlled through a bool list given to the make_sub_plot command, but this should probably be part of the data object instead. The demonstration file is updated in order to take advantage of the new subplot feature --- McStasScript.py | 114 +++++++++++++++++++++++++++-------------------- demonstration.py | 2 +- 2 files changed, 66 insertions(+), 50 deletions(-) diff --git a/McStasScript.py b/McStasScript.py index 97c09feb..3a3c721e 100644 --- a/McStasScript.py +++ b/McStasScript.py @@ -104,11 +104,13 @@ def run_simulation(self): #os.system("mcstas-2.5-environment") #mcrun_path = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin/mcrun" - - if self.mcrun_path[-1] == "\\" or self.mcrun_path[-1] == "/": - mcrun_full_path = self.mcrun_path + "mcrun" + if len(self.mcrun_path) > 1: + if self.mcrun_path[-1] == "\\" or self.mcrun_path[-1] == "/": + mcrun_full_path = self.mcrun_path + "mcrun" + else: + mcrun_full_path = self.mcrun_path + "/mcrun" else: - mcrun_full_path = self.mcrun_path + "/mcrun" + mcrun_full_path = self.mcrun_path + "mcrun" os.system(mcrun_full_path + " " + option_string + " " + self.custom_flags + " " + self.name_of_instrumentfile + " " + parameter_string) @@ -358,51 +360,55 @@ def __init__(self,*args,**kwargs): # compare 2D #fig = plt.figure(figsize=(20,10)) - - self.log = False*number_of_plots + + # instead of passing this information here, it should just be a property of the data + self.log = [False]*number_of_plots if "log" in kwargs: if isinstance(kwargs["log"],list): if not len(kwargs["log"]) == number_of_plots: - raise IndexError("Length of list given for log logic does not match number of ") + raise IndexError("Length of list given for log logic does not match number of data elements") else: self.log = kwargs["log"] for element in self.log: if not isinstance(element, bool): if not element == 0: element = True - - # Need to handle max orders of mag as log - self.orders_of_magnitude=300 - if "max_orders_of_mag" in kwargs: - self.orders_of_magnitude=kwargs["max_orders_of_mag"] - - if "max_orders_of_mag_list" in kwargs: - self.orders_of_magnitude_list=kwargs["max_orders_of_mag_list"] - self.list_orders_of_mag = True - else: - self.list_orders_of_mag = False + elif isinstance(kwargs["log"],bool): + if kwargs["log"] == True: + self.log = [True]*number_of_plots + elif isinstance(kwargs["log"],int): + if kwargs["log"] == 1: + self.log = [True]*number_of_plots + else: + raise NameError("log keyword Argument in make_sub_plot not understood. Needs to be int, [1/0], bool [True/False] or array of same length as data.") + + self.orders_of_mag=[300] * number_of_plots + if "max_orders_of_mag" in kwargs: + if isinstance(kwargs["max_orders_of_mag"],list): + if not len(kwargs["max_orders_of_mag"]) == number_of_plots: + raise IndexError("Length of list given for max_orders_of_mag does not match number of data elements") + else: + self.orders_of_mag = kwargs["max_orders_of_mag"] + else: + if isinstance(kwargs["max_orders_of_mag"],float) or isinstance(kwargs["max_orders_of_mag"],int): + self.orders_of_magnitude=[kwargs["max_orders_of_mag"]]*number_of_plots + else: + raise TypeError("max_orders_of_mag need to be of type float or int") # Find reasonable grid size for the number of plots - dim1 = math.ceil(math.sqrt(number_of_plots)) - dim2 = math.ceil(number_of_plots/dim1) + dim2 = math.ceil(math.sqrt(number_of_plots)) + dim1 = math.ceil(number_of_plots/dim2) - fig, ax = plt.subplots(dim1,dim2,figsize=(15,8)) - n_plot = 0 - n_row = 0 + fig, axs = plt.subplots(dim1,dim2,figsize=(13,7)) + axs = np.array(axs) + ax = axs.reshape(-1) + index = -1 for data in data_list: index = index + 1 - if n_plot < dim1: - #print((n_plot,n_row)) - ax0 = ax[n_plot,n_row] - else: - n_plot = n_plot - dim1 - n_row = n_row + 1 - #print((n_plot,n_row)) - ax0 = ax[n_plot,n_row] + ax0 = ax[index] - n_plot = n_plot + 1 print("Plotting data with name " + data.name) if type(data.dimension) == int: @@ -414,16 +420,20 @@ def __init__(self,*args,**kwargs): y = data.Intensity y_err = data.Error + ax0.errorbar(x, y, yerr=y_err) - #ax0.xlim(data.limits[0],data.limits[1]) + if self.log[index]: + ax0.set_yscale("log",nonposy='clip') + + ax0.set_xlim(data.limits[0],data.limits[1]) # Add a title #ax0.title(data.title) # Add axis labels - #ax0.xlabel(data.xlabel) - #ax0.ylabel(data.ylabel) + ax0.set_xlabel(data.xlabel) + ax0.set_ylabel(data.ylabel) elif len(data.dimension) == 2: @@ -435,21 +445,19 @@ def __init__(self,*args,**kwargs): # Select to plot the intensity #to_plot = np.log(Intensity) - if self.log: + if self.log[index]: min_value = np.min(Intensity[np.nonzero(Intensity)]) min_value = np.log10(min_value) - to_plot = np.log10(Intensity) - - max_value = to_plot.max() + #to_plot = np.log10(Intensity) + to_plot = Intensity - if self.list_orders_of_mag: - this_orders_of_mag = self.orders_of_magnitude_list[index] - else: - this_orders_of_mag = self.orders_of_magnitude + max_value = np.log10(to_plot.max()) - if max_value - min_value > this_orders_of_mag: - min_value = max_value - this_orders_of_mag + if max_value - min_value > self.orders_of_mag[index]: + min_value = max_value - self.orders_of_mag[index] + min_value = 10.0 ** min_value + max_value = 10.0 ** max_value else: to_plot = Intensity min_value = to_plot.min() @@ -481,18 +489,26 @@ def __init__(self,*args,**kwargs): # Plot the data on the meshgrids #im = plt.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) - ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) + if self.log[index]: + im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=matplotlib.colors.LogNorm(vmin=min_value,vmax=max_value)) + else: + im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) + def fmt(x, pos): + a, b = '{:.2e}'.format(x).split('e') + b = int(b) + return r'${} \times 10^{{{}}}$'.format(a, b) + # Add the colorbar - #fig.colorbar(im, ax=ax0) + fig.colorbar(im, ax=ax0, format=matplotlib.ticker.FuncFormatter(fmt)) # Add a title ax0.set_title(data.title) # Add axis labels - plt.xlabel(data.xlabel) - plt.ylabel(data.ylabel) + ax0.set_xlabel(data.xlabel) + ax0.set_ylabel(data.ylabel) else: print("Error, dimension not read correctly") diff --git a/demonstration.py b/demonstration.py index 953ddb08..a7cb6a21 100644 --- a/demonstration.py +++ b/demonstration.py @@ -81,6 +81,6 @@ data = instr.run_full_instrument(foldername="demonstration8",parameters={"energy":600},mpi=10,ncount=5E7) # Plot the resulting data on a logarithmic scale -plot = McStas_class.make_plot(data,log=1,max_orders_of_mag=10) +plot = McStasScript.make_sub_plot(data,log=1,max_orders_of_mag=[5,10,2,2]) From 5915ffb6250787fb5119d0d8e4845d42808dffd6 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Thu, 7 Mar 2019 16:05:32 +0100 Subject: [PATCH 005/403] Update of documentation to include make_sub_plots --- McStasScript_documentation.pdf | Bin 134169 -> 135598 bytes 1 file changed, 0 insertions(+), 0 deletions(-) diff --git a/McStasScript_documentation.pdf b/McStasScript_documentation.pdf index 457b3b296c4449289b7166deca54460a7e692624..9dd1efd6885be47e514ae84d17e47c0112ca2fb4 100644 GIT binary patch delta 33991 zcmZ6yV{9&7(Dqx~cJJD@+g;o4u5G)$Yh%~gwQU=_wr$(i`+xF2CpqV=tW2&o$(l^E zKCH5mCuA7| zRIH%VyK%)jc!EcFX@nD5@?h!taswmpezt`Se2qD5 zE6gt=ISn|64@9i;6=n&9dh6ZsmK&h``+LDcm>Q-MEQD1Ktshj@&z2i%Gjdi>Du-NlLT@XKy)X~YQl z@Uev~e2A8xF|R?IV4^W*T8Xfb5kc;?=FlRu{%E&^sJ@`dph6j??T}Rc7-Pd$;65bL z;VSuhjToC49fOsmO-hh7V5w(I$2zUnz>(-htQ|3>0b@1qaU~JydWzKdtLUg4=Umh$ zL91>u9l!#ON}ojbwN(RU)vRvSj!FYmlFh{`6&OW82Jb$rye5m%hLp=VPB30ohoDZF zj&)@uysz^X?htYf!KhzaE2-0GrmIGk(`!Wz**v@&qyd&O^3R3<_*V5VPP52rp1f8G zbz0VV3l}`VWlGe%`Q1hU^ZB(fDkEHjppqGaYIaLUqQ0`E;*%}J9p#W9&q6>(S5@(l zkL$Yl34jbrz;S%1_v49~e8%(B_o}b{Jir0j5R3WGqHt`Hm!WjPpr7yDk|}Q1Aww)W z3t?0wGa7nKemnS#2E^8hThZ7=JU+9kLPen0$0%LgpcE@!ZLQFvyZ{8>j2Z8fMPwh} zMusy>6JAu*AnJmM@M;r<00OYnH?Nd84$?XlnHWqu6kV?{3d3wm9fffS#2lgan#FS# zk$Vi*>O8hiZt3cR(_xnA54s0mUSw83S%j~(ab6e)ZA?G4Fi#XZyTPp0J%86jb}5@&oC?PBDqCRT^*iF%c>P6Cq-k%{v2`r#o8q{S26h+tyPZUx!2s z2hVhhI@ceLiJ5ESf};e|q81pSWk#=>8DT~*xTCU^|2e{%+*|R!+u)}zrWwG^rYRPZ z$0mp&zx@K?#!_q0KSi_o8VR}TQ(0k7@9yHEor z&_RoL*k;TMVhqR6ih!#-T|e1W6kQMtV05|sP>X&AxSCKonTOBEn(L0omGD&us+_tr;P|VA>8Z*oH^}mHJonG4LR zV!nbSufi@BY>ICl#&aGFYBi&}vP4nXaih!*(NX4Fs*Xj3U_c@X$vzX!FR!4(_{OX- z&hYeY$wQ?%qfeCQ8W`U)A>$xTr|zy^9Z-(bcaokfB1%{}XGTg{>X3Z7gG_=7l2NCB zZBzJQpQz7cGa(Bp5d06}lUJ~6Ssjcu5fq3bUuQTIjIM}B_!tn@=HTiW*c9l_RUf;( z0+cvaTM{h$Qo!@QD5_hp)~*93Gd|ZRQ31i7c(?YbBkmH#RT+$tW8*mHL*h(pjrziL zP0s^Cm3U6LkG@R;h$sl2dicq*leT@WUv7AnE~>3d4RJ?R=G?B)x$TfU3R~Opc~Z

WMDoB-F7=?*z9&nGlzNDHt=u^iapYTXf16R?(fOnUP0*MKWaM0lh0 zrZrkD6(CFTB`uZ=^VAYAR^3mvGtAL7FV-;g#1t(SmO_+$wqmxSLiI!WMBbeCi7Il@ ze-5_626fy5?nk4|T4NIO1N#)kltU$zBVH^b6~7ck63GnLO5Y0hZNIAf@}L$?`1+{O zqd(^tS=It<-r1@~=ncl%s@-9F1}BShtfiVfKy?>x5t!yU$gJp3+EQy!pAP*aH3q~3 z;}q3ql^CD5_v!t1#z<8~sVSP~ATItTrUOheaXveq%C4u z`WJBz9ZOP*HYq9CD{N2Qx05Ry07niBQd9Hfub1GiswjqQ7Gn3=1!un{1~mQ%AmHo( zc%*`ggz0%|km_lR5xO9E+ib^lIX)mf9B1y$$Mb9{Ye9#@RH~a57$MJH-^aFHuOX_A zum^(_Fw$W~x=x~>y?m9nS%NLM!r%LThQ0fK(8-jtl9zzNJ9?SFT~z zoK{=F+L>t&nOJ?VE&OvojgZa3f^rH0bc#2pvC{Axe;J`9y}rLQZ1H5o8LPbO(u^I6 zAISt8MlF{A@YJBS<}ZnXNLIV^gzlg`h?naKKZLvAIAlDAY-7_jJcNO9B~}Q7VPkgV z&E!6-I3z;&!TZM63z;(z?vevW6Z0m^Aa&G_{^LHQsGWi zA-o2Of`?j(Fowsd?PWrS8*$Q^_kkm#oN8E{aWTW>e#gMtfm3>%F-$>a9)w$mj}J6*T?$q}~5Xv`qSLS~KVT zqWJvA@yE6fP1L47ySU0TgmyzYVdG0S`W=x(|4J?xE<73}0^$!dvt@(X)gsNDEYcVS zq^xa6EWX}JT=`S$XpGBrnmcX7&EUdQ!r?jC{;2voHFzWVNi@i0tITK$Y`^<9$QsLP zud@n_4ADv&s~a&Jo|4yI7+{FJo3Ut!Ip#PBHTcuN>M8IHCwM&(lCWIlPF*)V0d?Eg4?opr+_r9g-O&}Iq!D> zBH|aqYEOfNSEE|tWs!sc@U7b7d(09)4g)1qm%8C3dWA|zL!@)MTQSSz*P7c-#Vwd< z1;mEcQAuvaz)8dF7~;=^VdE3nd=ou3E5-{>Su8M^AMJ4_k1k`}Ws=VlGTi#@Va-j{ zhK-V*y$sIV#42?i@aKzZGI-v^%--~WE3W^PgRwOnD>tC=8L^!NjFl~^o{0mv<$%wH z2JGz(iud5w((_LeRt7X&usbDDI^k{5d;&J`bz^PY=XvGdS9W|IJ!q`5sqJSw!@;{6 z$(*?dGjDTJ*3mFVVZPu6_UuF$=xYsQ*v*A117a zhrtfiUa-zqro)SO6EcPTXoNVbiOiUB3m>K(e&QdWmo>U1cosb17yB41oH-rx&2*+> zD~A?H#cPT{qU1vKv2|qrzE$;_|J&o~;VJ6cax%Wu4vuk*X4ySW)d zAKxx>JqJ8ZWDcV6*q=HN$InNIm|p*TvxB|-;laAQui%khf}Xyzk9qc@(=e-6b38SB zvo&O0BH}IqZy!0Jr)II0377muxc8OJM&|?HDYy`F3ASt*%BFGaLn* z_98cP8o`DaOM6vX^>KkILyb7lWQ?eLlQ5S+7zbHV<3P(UY|bIsw)r=X9qw@N*4j@= z|Bug;n?&2Nt)@v7G%X|3&{Oe1u*?OJj2-xUFlkp>v zK2?nz7%>Ef%&UizcKm`ID`bN$Ma7g~gd$LzdlUxEfhCj|0hdpZ&qxTglFSp?m>%=7 zLS=>Ly#lc-bf5-`$+@NR*1+>Sm;SMRje|Owb1?%;_0|hSd`ft%c(x<@eM-Hs2?Y^j z6^4j(p1=R9RLRAROiUM3Iw%zu;UvoQswUivA!FLM7m^EuI6r8|&S}FHfk&md9Pj+< zq;xjjWh1)G*D;Mr0x-jk3gXIw$reKbw4Uorh7DB9G=>1B;q+J{A6Wq6OniO(sx2{q zw8)3%vAmC8zUIV=T4#1AT}VB>i@Kj{)$X5&#2U*gN+|pNUb2V~$9I{j_KXsMA?^I_^CB!BRb=R_MkOZ}eBNN#^X;&g{ zO7ejFsR=`2vzCNO;M+Kc7U{LcOZ=7K;R_0-kE)m=xYkS=5Z9uaO<|+GSWcf)HjAd8 z@?|nRYh@sZLnM58!?hP}95yyT3{=)C6uaa4z*7MZyqgIbHH~>;R0QxKPGHDT>7lBT zB9qaJdqVDlc&NVx7?FZ*x&ugji-hMTOwq8&Q&kt!ZMPHk3UCH;{?V%v`&7*;;Kt6A zSsMP+dW)mU)Boi6CN)`7V+vTfnx zXsp~4ISqmO+eC1GZHk6}#H&mwmm-5wa-^qVs6P>D1Vr{vdxW3^@YW38rUkP^ zYHV;UHL56W%%nYAfqfHgm%eDdzE~lV1u0Dfe8`*)C_@a0Pd#~5PubF?$5$Nt3 zh^I#u+Uq3l<@=@~9us&A-b{->iocKar3EI=9J;(U`jQxoiN5K4lkSX?dC@B#isg*C zc#+shM;-FL*~0;et>5f{{;hw~?qw8?e0Y*p?j^S69IScLT=H7)TlD2luMIr%&*`iF}g?jVs>I0AV9Nuul8pejz_wBux~Lw*ES} z`y}&azv3oyXW!nY9o)F0dAU)v;IIvP`wNekqgZnh3*SREWy&c41iHGw4tPS&FRnNM zrc}K?l=ZSk4+ws7D>oB+y$r2Z4SUji&`c8?1@}|;7Q^H+P@ddem}~Uf==h8538tMq ztbIbAK0SpPy?)uVlHr80oDRertQ7s>)__jmo#eBs? zp-bQ9T~d|>3_9(Z{C1REo`_Q09eSwufL!wb`X1-)Z;Sp|NdaJKsy3o0h zH(X*JUN)^M0n(S=Wy{~SZi;1}E97uHj3&DePYp*;!|GR|_v?uFKoI$5Ih#f*Zj1~d z_kSGe|1ufY|KJicC)@vXWCQ$%l>V32u>KDm`u|Xpm=;JSg7p@LDD=&(%-!q%_I1Bi z*6`NvAlbTI6#BN#&Q7S8T}DtMpBons=j$K!8%%Zicp8)OOqc2sfV!Fy3Tr(FSkwkE zC<{jmC&LSr)Onn~3dG!;Q^MR_!xIip9iGZ&7x?cM<6Ib85?&YOh8T(zNm#U$E2Aub z;cs>p0}SBG7SYfMyw35y!SRlj4O}ZD!|Quwb~z9mV0~(A1op=SLTV!@Anq1}w8i}z z3CsLg!NKVJgf3t`9jb3&a8UfGl}{Kr3Uz8|WD5f}ip!e;ZnsT}hpz*!W*f^8pm6;o zF7h?EIW`uT7CE-GlrlFvoG`cCACntKv}?U*ilhX^3r46HKpD^r2Q`Yn4)RkTgPH@D zXKlat8m~9Byg0Tr3ku_juBD3uE)wTJGz~z{1K(xf78aMm`mczE_%fmYhzA7<>* z)-gAH%Dxca^hVGN1Nrdr@Hf_1af3D)gv~)z;cWoIB6_KFV^fhthA^ye6SK4HbI(&d zvqQ53>$9g*yEl`Fp!>gMKn7dEepGV`>w`nHlgJ7SL!S&NSii&{md#lHL`GD{BBC4~ z!u)9Z7hoX?AGEe~vVFNUXaIn^ntx7!0p*aR{~l{e<+85Q7lpB&r-f@V7A$f2gM;EnI{%jKxAk=dLN9XIcU(&)Hfwm=6CQ8(oX*XVjghtlhcPDW)GQ=hU0VDqwb49sOpN^A;C4MW)y!u+X3$7*o{_hhZB2glLk(E{P$+yr4nG7oqG zHd5p1d{V(5@6@OORCPgSgvNT@&VXp{Z!>SIKNeh;AU{(S4j-IN!XQsKxIh0U`)xm; z`|p4F&w!nuKZvge^uV81+@BrTNIqTNpX!ot-Jc(2{BYP0MheHQV)i>MUKTDYN zX7@*nhZ`h^-l5VG%=N=33{)-#pj*m?-KXod4Wg z|Cks2Zr~B=&wsMumTBLALi~=)JG$l*zgt}MEq1%0@>{}TZppu}_4K@VPS-Vd=aeC5 zxi{iO-r^O%+synCzuRqKw10LL?)AATo%buX@r&-qLg-t)OBw$sdUXfQw^P*4f8mFN zRE`qZ*9y`H+}nU)2K|YS4}GilU)Z^w+I&O?zNXFZxAJWm%pP$OPZ)q*?7a6*+GP`d z8v@ywKfrsAY`*zETEj9sH!^w!h|i#_Qsr zgLxd6=IqAsXFjlU>DhzTVY=m~*q?6ry7fJF^7@Jp;%kMazVTD?eJA|iGu8ys>FqOc z`^#wjt#xwXIezf1((k#qdppzQ#`Xe&ou%R1K@cmIYl--`nU_uC!Oi&hFX1$yj?p{w z>(^)QPy7!CVo4iO$p<0o?fEyt-K%voXI2l8Zx$MdC*Jn;@4egMy-#Rgo9+qX+iIU0 zV9eCt)(zs@*zK?X64s928S7^80wDx`!#){krqwqN>e^&~`|E9AH~;hle^fxgwgQH4 zWgl9GiG%1XgLQ7`LSgi9-ACTcsognLEOGeL2-dTR6O589X?vim_%`7v5ZwxE?4y-; zU>KA5eZFlgLJ{p0l&rn(-;0S$`I|SudbuOFgc5#K%Sz&5;{J%JJI-9JZOa0;cHkOd zyF@cdH?}kIwOOzawwpBvs!M83&Dc%-HLYrcRH61X$Jj-abq=Y12DGCH3S)RSUzimT z#BMC-X10{f9qcV;8!7driw;hAyWwm4`tr z4x-9HZ( z!||lD@0qDv|1?S?nDc6NyFbtaDZBUcif1st1*>i>@f*de57o;G=>LAu=?G?#+sZwP zf{UFVr?a*EJEW{V#q$Q9mbhv?!n;Xbr$}hOENOi#W!MveKS&Ovv0)lvhIv`PtH$z-5GB6dY!1h8$imBSaUrRDGpGb&Xy4^Cv)(v~QDX z-eUjII`x?B?>GjdN}aSMO^7SV9Jb&FEq+ubS=+nHhvE^RLQVU4uqFAYH?4zZjLe!A)Oj|4x{1X9)69kG~!gQhi0 z_MpWWGMBFI5&Bo#+L?!GzPz7~_{I9P2t?CU;xvrudZO3AY3FKDRBxo&GaeYj@E3?q z<0$3)PvMCD`?Dm_a3Z+q*j;Od(BCx#idz?yj6u*{27|MQ`#mia#ISMJ7!j{D0!KGe zT3dOYN{*_5T|!2jbrT1wEMBLsmetP@M!=1k*Clf%v*2l|_QN94#<;BWSP!rXIUV+aFu1=GmehiiCW*B!bdzkm_igf>J8N>YEU`89fS zd;);{YNi4gof&;Rb~(ea)!-u?P5N9Jn6h#O-FpS@*)3*U6{q4Ng@UsYwl3RUN|_=d zanq7()-b(4gdaM*9V09hQn}O)O}v7b>jLW@usai~JOHk!##T-jZf$O!unCoOB;sXa zsznFpP!8Om_F)vZPfZfYeVZr%Heb*#9S(3AmCudeh>nc-mBujUAHZcjYyA4-kuzI2 zaU#9ML#ny&M43I(i<4cMbo&sb`#rrQE2BzFXPojGzEeD$p|#B5FM+Vs{w0opOR_6n zKRo8w-05#LR2u<-bmf~PZzvz4{^N4D-3z=dL-mOXuGLGZS{TiCm~aRaxg0lf`g36R zWW2^ELmeh@qD&hUc?Q}&-fB`x8ikWC_xgnSr{S^3(s>=$=@4x9u%#wASulX5M-nIT zay^vn0BXDvpm6?2B~`@aAKLYE!iV?N)|!&=ZDotRmb!fppQ|HM%_3SdxHvm^ybX>L z%x)pI6Z-E?nYs+rw{Blcab}tTD?MN{QA;TPpo6iWgq+ewSBKN};ie2~#*bX!PHC~X zXt6ILPk;jtVyYS6%rA0Hu=`ZM$b4`<#a(sJauYm`Hgtr|+_B8a?IEy1JY$EL8itfG zNhCChPkvr0{R%T~O`1qZDvT4G;TVSE!|`=scV5p;!B?Z{$6ky0SF&(t5O z@2PwoKAJ4nC>d+xDVwySJpo3CR2?G63zdAhj3Z|uN3?0MCJ%$2Q%cwT`CcO1@6Vm@1_?Asn7%M_OS$(`-${NoNOK}-cS<9u^^SG|;k z@OUI+31woR2(HwX){!%;jrz4Q^tYJe6p zTl7U}RbsMJ=@v|O*JK%lT&Or($cKXeyHcxsc?lsWadclhqV`(e`iGTn%eK?b5<4wi z{ks_M7=8X1c)1lv^`|#5^pu}bo2~x338GF-g;ODx?Wl|L-qd0Y)GM-q4Z$>m&{{UPo2+S z7m$Nx@}oflZ;FW`xKm6#L!NR@xLZ!D*(w(ssbBMZ!TO?ym~oE4w6RTu{@pN4HMX7d z8`dTzu0Jv>9G0z}HZ_CImo)aB+9kz-g?XbWP)h!Kr$(XZYF&)lzePNIn{kh35$dSh5sr4FQNv+}F{*=b z2qfuMQZg&v$hMJf(vWhn!2IxT!?nAVo%s?To4#|!%3KQP z?ihM+Yk^6?#E37!N6DmGBx$^_*YOIU6elMUILi9DCjpf{qWb)9SY65<)5Fr<8=r@D zWj)KbzU_FJu1w2`mLTOLATY0D0ij%NGp}Rk)yYBtrnOX^`V4jz*(?aqq>}y$)RrwJ zsvxn~r#zP`my67*GSkAT+vA;%0HyAl#VCpobmdtZLTU~8sI||CPW>kHHEQm`WZ)<4 zBoa`$DpJ~czaX3qK)WZ*ym$Y#XRvCtNZ=MLm_8JUF3B=_e=WJqV&rGQNZdTgtoM13 z6zbsvOdPs00^B(}jsTD(y4lWxROApyCk*noaWJvHzKPJ4O)0zpDbbag{f35-1Qi8x z(`JOv5vMR4m6Yl8^<2&b^;xP(O)D`7rmUzHNxM-k=!eJ!NUYjX3N6{q6zz12$bt$@ zX5!o5uZ6`BNTgL!jv(dmkU`vw@{Af4qR2hKs}8yFO)<46DIcOIP^XTOhE^joK>vVj zpp!w&$dVLf!CJi{&N7+1i=bUyY7=AZ(j@^Y@Ee=b0`+`&JRP;FUKCDx;YcP6N)W!G zcJ{;VkNNc}q%5H)ybm+=v_V*ztVjr`u6~(kQatoXOz@4E=!~6hGT!=BZ_A4tkLn~a zt*yakEfODkNmuZ~Tc1|Pm7AJHkfN)Qy*i*Mcu@$;1I8F}{ieHy%d?x?T++Z|GclbO z>LM?;VMwygVGGGNY;_V`=tC+}zI7iODNmPFtw+V$(5nJ{GB{a>?M1>o?Awah|M zYK=4aL3Y(ZPVa2mKH{{3!c4+BGgt=Xa?r%kXTs!s(tC$C&6_`u^f^fS0}G%b&A|8OzK+OUV zu>3yo%lZKor=p;36_XtyR9&z3&5X)rqO-Q6?fGFmL2}YqhG^F(g7^^I+|PL4?O_t-9axQlNI_3BDY{cCmM1UoC`?SoaD3tU>odGzmg1s@HOK z-X8w^5Dhiz#~!+qe20$mBH>CX$Hr~qa7`BwgU26LJu zoS^j^mJ()*^hTz)Zl}M0Of3&!IhaBxNINJwNbhyRX?luhZ&!iNU`m%RSAyaFmMTPF z!;}k`?Ky+cNT9wsdqXZ5{>8QT@M!B;b%8r8H$B4{6yd9PUSX4`g$O0AGcs{^s_~1w zHce9)o}R^(am)6VvSW6d>GL%wkWTI<{c(6VX-pS>a^Dq`EXM=8Itrb1;SD(G&yG)_ z6v6^8_yyu+eF{MPfTlVtM^61=MbaY&lsc>&zC_dJ%VU_u{@pbQb3eiA+s!M4hdFr3 zemj%&pqIt%k+ZhmftNb<-hndGQ3@cU3VkIUGk4=(#0i$$h)3UinIF94FdY9d@iZ)C zp`eGm$HIkQ{PDi)Dl4ZQ&B^4-&&VS&L_KVh0GXrHWojVCbhU$E^rNRVi{0WcGs*fY z1#3}9-j7iHjPLI0n!*XHiZ2-!dty9!ycl{9OfO@to5d zZ>@l~w~)gvxu!?7@8c!fggxm!!s?|@aFh;K+svmi6*DB>?SAD(S@Dd2?`EZY?K5-6 zZ**Hpr|y?bjY`0;5Y{O>CF-`oyg0$~GpSHTP5tK70vx&fF#&X}5Ig=nd>q)@v%*G; z6aIXgG*r%dW+i`rup&?g3yurSdtCIel>w!HQuM`$|c^;LY%J6vLn7bm@-!-v2#hWm>D;aI-_c~&d3`o-`IJ9@XcXg;X%caY?rKF|q zgET#t?|1g#-8TBcGUFi`Yhqcrp?lz;;eHZ-j8|S*#0zrm9~#hz#hBUbj)!oERwbeR zD4I^v$!v!{>WzrdKG9KSGVlU(8lpn47$F+cp0qsw-mukH_4`|2RqO^Y1cAl1&JS@_~7rDmYFZHFt& zCQEAmhyn##Nt0|*3GYS@wjfAi_z0pULSZHU!5N7PBZp~~J>r9(uYrc&6?ZoaE zX&-UT4()X%W~CDE4ENyzMPZ~haI za#`pKmz4S^F{l(4z7o3ng2KrGmYqJi{|K<@SZAUkzVysrXk)689;Ei=0l!+Q15XeK8W-zts z)mt)ffz?aH8XC1i>%;Glz5?9HqbtR{XQRMFY%BTKA)-(xS_OGa4e62c8<(^Wl508sViv$3$lWi z)!TfLv9nM^KG9PCUq0Osgi{Sd)yuN*Dv{Zyj*5q5shp0+cNoACcZ(Ng_SHM<9DLtj z4Ua4)kk(q)I;?MbXZ$|7h?nF`_f^G{bZsMXAN-y<@rO%9@`fE8IE8_VatOHGuw%VL z88inscH`cA);Og$qcaXPf{RL+pJ2IJ8G84Zt9W`su*;sX*r-A<8{e`5&uo%lVjBxm z{x{G%v+1aB#WKM5iO9EFR45_)m->X&irDuwRpTBP_>q)pDKzMF1j-^d02~fiinrE6 zp?e!W8@5LUJ=Q#ko0f6e=KM!uO~_$@xwh=n-8#~&*14)}EU#;^s?R`h@?Zk8Tc@+X z^I!5acToZ8RBY%kZ={N}%?K`poj}Ti4=a^P71++ST?wE!jA(}aUsQFNJ5?}P!s>U_ z)N}5Ku>X!@|U4L zHjMo^b=+lM)4NqxU)1XI%>A(noEJ0k`O7>S#d-oK$0UBV5A&;Cwq~z{j{M%zFgYjm z`IwJ&;w`}bf5=(Ma<9XJMYhx_p@TiU`r=j$ceSxzX>y+8m7c+vqgapqDqQ_j^HZ%j9`B#((r~3U>YzyEOp{Ue zoOQ{2w#Cd?&Y1Srb*+VqT5?k;>e6blvHe##9&>@@F5k=|N7j>X5s*{|{M?~(mj=S3 zuJymYTy|#rPnj+v;^W)@eSipBp29o4EP*JRt0&^C?BWxwqnyD!uWEWLg~wL?z;+kMOr53OWUMUU`9u=M)HDQ8I6jy`cNG%A3y?50V~ zFWeKD!@HhF&I=akde{xcd92li?(E{6a1f`K&|S_kZVo37m?sfSBM#Z(d+DS7%5K}t zqW>CpM1nsRT?)Z#hq$VJR(Y`Yk7v@WF83L7`{YP? zCT2w(1SOjmR%YW~EtX`hr0ZTU{mghPtJ`A7zs}FSH?#`&(xmvIgqB3Up&wXEooN1or9du6v9_53&SyvzjK#2DzL@Cj))d4J38ai&*39-e7- z)(*3ykpA*5Nd_EwJHh_tZ}aJsn?8_uwyFGsBW@K=K&uvohJXxIIou<4+MhWX9V%-}rf+A0IVtOJ`z|PF%#m%u za<=3$xg#9rOr4p-{7x#;1#GChJee3lVnc&F&4~$ib7tKQmAxOzHQh<1*j)N2RF1>B z$xQ1>W<4j0JEDHyYE3#ADz^rw8Oiks*_dSVg9-NQj<@6=#mZdf%0(ZA4T1o9M;D|D z5BVBc!-S3tw(K9Q;N;u3BzeugT5VFDmI?1kCw{+?%ms%6aMbgJ1me4>H zEf|T>WLoP4T$e5ZM*D8dwO9>!7h2VZqx2hh%2w_@yAu6(-sv;1OT3c$qfk`3j+c_>@s^-1SSGL9M-bu{^BU!PHjabd>s= z8=YFq$4^nM7x4(a!%daVYZFr)mX`W!QmCM%# z)s&Rd&bEZkJ+m|z&a>*BvKU$?YK#A9yXkg9-G;l^hVnU&NM(xvp#;!x)zaq`8cwO* z5J!u?o1xJ&mgvHz-#$-71@2~fNv}?j44^67jNPwff-3N5mYYuO!tXROM~8VTuz=Mf=*&CCMe5185Or1a$imP)3eaJ(F_G?!1tI-J0 zh1cre=N)VVdPgn<9k!xilEqt`7MBQA;8tytRnXBhAZLi|STP_z*QTM^FK&FTRWU}y zs_4*%@h7gdREPd*3+dGeB}*QWeY8_bGny6VUR~m|`cX4$m2dEKRSbQ$=;U&za-B`N zGtchZ%A164sK1mR z=BTP-mx$g#BDLiorhQS1Q~pvPxKn-wB(zmq$+&B&g=iG~=m0nGd@S5Jfyds~<(dZC=&QQgj>-^Wh}W=C%>6 z&}7LjsYDA7yqK4{{oP%mwwE>~V3@jV&>Yc%af|2txMte^lKp^Vt}>1rX6L|S{OA5F z@P$qt?+t(KY@mt%Pn021g%I_cX7g>+%|bW}kbor3!bYw!XZQ9gcBhxmID)HF<*tz= z5peXC7(=!E*cZEf=Gv}y{n-En>@a)n9hLwv7p`e4FRN-Q#7A$YXZ za6;-?gRX!I#`T8;6Meb8s)y)=O5I5tpGYom%bk%n&a@&ucS^&~gq5DcZq#pnX3Dq@ zSRImbBVmZPNG#X7Wlp=TC>lpE8BeK}g_7VC-&-3o(iY99wT&Tic{S>Dg?<_rD?%zO z{@>h-XSU>@hMRSw4Bk9`|1dsItk~G}pX*M^Gc=|i+Xwldl?SfBPqQ~X(mP&x6aH&2 zTcwXZgHy>U61{rwB_`Xh#z}N9begcZzzH}p`W{kP!XBqsB8Pw#_up&V-{J@9gcFRX zv(ONQ)iJ4GAeOrLypielfn6C2f37`64x?HKyZ313jC^1mwmcRY2T)c2+Vsa}56+<* z9ph^+sZSyB&*wH~?=mLK&Ko0U$57n!DGlf9IS4ICDZo3NZ^i=isL7=AV!p0Zffr6? z;LRWZQgdyVV01Y>MzXur(tDe&@;_N=`0AXZbzM$=GM zG8_DHUXgdsu@ekF(UR7sTj+jk4CL>9y_`$pADBs`9+x&v#-^D2!F0j|%XQrt@i0+FvU7(XIBZsdWPZpoLJQ@0x*aQ`J?^{`T z;`upHir*He|l$t~_51zJ)%_@h*KS4mb1{gi5V;FP$ z4aP+KExUvRQHl9z_U z1ju2U2DE63_$H1(7yP|bp*_pI9*_ll=dM=HQTN~s(V6eStM>f##Kn52hEV7Ld1nBD-5Xsvb@gP zt{(|#FL+gzrJ>^B`kVBN1;1yOv2Q2bxC?tdPI3@CX)=L@x${V4;NoRHmvIR{q%6b- zqsVY?d5Z2Mj ztR%Ol(J;jj99}>Zd>pPakx-DK?IgX4bJfwmceN4f{2_^JZ|GhQ^t!~z>5(Z;|40Yf z9D*Bx0&Wi+rS5YFDEsafD(6p?^4mq0LBW+6ax61&B~HVwD%`> z<0!20r^QMof+?t_xOVl2a{5Dov#blu1}?3&QVR3s9$&juq$*|TqwTLnQaY#FmIJB- zv}^g33!XGAELS8M3vlEl4kJ3_NZU%8bQm88rS)ca4?JXWEGXsC!Ke&yzjReneM#@C zoRqK$vCgDgpv0I!?eF>&Hn#aZBJJ|(Vg)u91MjfrUHww`pSndtc-x`s0jrM5$Hnpc zyFp4Iad{rUzE{E2C81#p1spDJaJ4$uAF!}lVMq4yA^MLm`ryXkmFK*iTT%2tcBE3Alz{Kh){J=+4;NXhM zt;dQ%w78er;ftGQ8(?igH}b=5B9M4fR2myU1l$6 zf?4O;pZq8sR4hp9*jJ#cVui`C14-)5oN+>fKHrTMG1Wb!wnYr*w-yz%i(U%*;+*}Y zHZ_b5+~-!tu2-^LRqI-&;TsH$g*?O?Lu*hh)i7k>rGHN*qfdpNFuA#5yhOEJ#F zvKHNx zl5ANKEx8soBnU^IcZKnJmS`X5Wy=zc(F*`Umf#iRI!1ZMlUS3D2Uy5S;UK2kyA`4u zyPS^qHz#eie3is*%3t3$?+*1=?Gvp^>)CgTmpADnoecuIDE+5$%$kr~XR^&o=3Y@h zpIG~$B@4~zDwNrb?>Hqj$z*fGnR5+*X>Q$Tszmh1IdLTe?Y)AqXHPI@C!Nz^RwFyo zt`0EJ`mI=Uf2>*3^;o1HTZ^c38swj^kdlMTNG$;kBDc?6{T!0nvI$u z(F|?R!isIn@0KL$p)tGixmduOP8d0_v>l|H8=kkldC7NllPtHJlbnAyG#AN0R}0ww z4IY*v8xSkvcy7EQo{(3FaA?hU@jHW6JVKUUrAos=w2c3TSrFarI7ZGz=Af8wdK2r< zFe;}#YgokK4@Qp0&Q1u81`XsT*2m-%-^|%ZS$WVc`Jt)F{>1Pm(9sLn+?XuEH+t$7 z<-!v0vk3cW#t!m3Nmdk-yR!XP|G%H+%u`5^P+&SJ@kraIW*MCrXh7|HRx;aOF9Sxi zJ&BeHO0uXkp7r}$X?Wa6GJ|gzYU5FukBA;Rd-}FLJwqSV#u=4zVAyR&Ub68^sY|KM z_Tm!7>NbWB31cL&%b#w?VMLo(TX)X{ZhzE1Z$ZuqNoxv%9^@X4KZHGi_p<~iJT5fI zyp6|)|A(q;2+~C9mTlX%ZQHhO+y2_NZQJ&=ZFf)Gw&&e=yMI%WQ77UoYITs68CBIV z8;KQjZw32HX~`i+!=(A8rF7E)#wpc3^x@fyX&a@?FO zT{2}Ta{9YN12r}dbSVc8<}>Sb^%Z-}p^v4LEd|jKju6TXLv#`b+tVbr`S^n%NbU+T zBNh?x9vCSIh-R~W*9msTV3Pv8-)x=qd0?dJ9Z=0l26BfIdlAN*nC@~A%VlzL-_EiGXm*ouq|nn3iP*4QEgpEa=hpfkvdpb zU(7G-w=STms>Id5E_KLXh}1UB`NKrc<)-v9`INZ;;AEb6y&ZbS=p%e>(pf1(NF5C< zi6X}%uSb>98jAHlkR;#Pi@`|Bgp3O>8JluJ-K}+O*pUvy92iNCA{A49@FITVw)w4TM@$aJ#;s{JKiI5QI2V}7<1n!}yxcJ`T*t5Boz zIthy(`5%`}d=}-+861u}nIA8PLLHRcAKI7n&OJT`zu@3txx*^9EG;bfNNI*f1Ko3X z5_$Cm(I;K^-!@H^Cc)hDA{FSVqS1FVxP~IQ2ll0`bKquOy3o)Iwn0uYBI=Tappqm3 zxfX-lhP_P6xFyMkpqn%0S>_Km^SHj%*q{05h*QGZ&o5oZ`89hWA*M@~`ZGhixLl zP4Jsgn}RUL5cs_k;pLf%qi^S%$$%4qW9q-7jbbV+LOy*hdf}CR-<8Alohk7_i#thz z+iQ1m-MeqHc3iJ~yN3nwYapv6Zb`7lx(^P5`f|~AZM|lymRbi$*g>=pD|;kAmv7h% z*cK>(*O*Fcr`Yw4(x=N3f|HkkJ^Cs89p7KIKX+mv>)JnYdyV^41-fyN+Rak_of@bi zaILB^Rc(O|4(OZtwaib8zey$zF25g_g9q*vl6T7QT-`Cr2M6WX#bdXLtt}KOnlj^f z4_nM6Z`+>M6XA}q0TmMNb!_IhN9K*>1!iNi#gWd1$w@FDg#GJ#RB}9k&y@k5f*$&? zBP&}VJ*r9C;ojP#DtH&a*6Pq~27n!OPgl=PZ0I6Kj2qc(EYYl!KnSGI5|0pz9Ven! z1FsfFzEY+ifsI5+d3&BA-dtLh7(|Xt5|7{Cw~z%b-d zI>8#JNb$o)DGPJ~Zd0i=05t^o{An^-F~myG=O&*!JRGVe_-!)`(>gTSt=8 zh|7Zv#9@<&-$oX`h>4TGw70g4_m<)c-2ysaoZc8yP!{7U@6;8aMe2;AIeZ-QMn`3+ z>Ukzzrm>v3L@@;YT#tSIJ*u*zzAD+uw@U@03qh~LI_Wlo|3cy4WsF{~Lk2c;7>-3< zb+^faEwTs!9W+2D_&SVPPx#1i?Pr)tRl)+v3Eg^jzVlFw3W3MDwkxT!XVvLk)-ow( zuYQw(5cmeaatc7dKo&aKMC!m2FUn{T(u;77_t9NqZk z>_$Q!HLvW^rtrefeE>eR+pyy!Ekby9%=Y@c?@n=l66%PCa3iC5kuiB=X^#u->|nG^ zbzTji;D`GN$e>)8P(<9_#NPz60>u8`)7dDmSO5>Q?OXix`>LT+$~erbn3i!0e{17c zO+0Fz5bfwxvSzvCO#%96^P3H)D_VG^oCoA&lP`1w!%`~on3jsV2$e@Q{e&HW#x{qZ!=<@00>02p?~^Ej=G{fW{z#E! zkT2U}ql%c8za?yY*nO13YR=a)lkg<63J4C~bCG+xbzy2O#N0_SmW>G_V62WoKMUQ5ht7I9`1PQEq|CVENjl$k{bBr z*ulp`&`!@VXxE{4ED#!P_L)I4r%dxG#=$h;mGM$G2Y;pa>IF{wy-ZF4pNG-l+?Sfl zX^ZDKQEjzECbzd%0+-6$UNLihp_&4a>2miG{i$p6k=EcW9dfgISB!RDP+LQhb_rqK z11q3P-i9A-;g_o5!VsRJq7}ZO3Ew@R$Dlj(Z_M6!cV4AN5{i=JSjf7|h-s3m2nHA+ z<3_O?+x;*R4FAXY{_5b?!Q(|VZKb5xvVI5TahCGfbb8zmg6i>>+hw5m#u^vE__s|X zPJ_5EA6_itBiRAnH)Y=p`oUxfNKS4U=GVQXRhl#QoBGgX^6fJ$2C1tn4_CjBR16>!DfRmbdR@xe6E!^sbSuttU*Ju^iXQL zYPI&e&w)wt-h>8N(3HGz)v@lU$}*szC;FCJftWzIkAASb~<2bjD-IH!OB zVtrn)kgw9vk}>wwO%2jVFUS!JYl+|+O%Ju8Pd*ST&Y!|FZw$`kCX`@+#p%LOkDh;A|cvnbLj;#e8z&1*{|VC ztc)cu52EBOnt4>wY&$=okI_&MEf%(V_`y=TdvhwG_F7LN%SJAv@NMdh#u-UpAviNO zshD|pwj1F_ZlX$rFRawKEh&Z(!$@6o>AqTb2nNJyot^(|W1d%F+G)8++gj?WDzIIw z3BJduMn49imbx0rf^R{n-zs9? zuNiDW)IG3ew{#4z!vR}O!4{a6jYs#Ii5^D6Jd*iyjy0LHF zUoYrKTJ^kXK!XZ^fB7SyaIDBTd?j#_w_f#4n0>E0kM0GtXR3*V6XxyR^xY+Ec%%h! zKS2a-adkE}=kvue@pfX5du5s#5a@3FK4eGXaowjD*}P4CI^|joqbS)AK+Bu%mhlZO z@>-p*#dQ_IVDdo`gB^0S3Kj>B!411QpcEOK5m{K)7^VS0#=VoIU2f)WPRZAuEO*h5 zFvDYrd4EXxt~W6$s3dXPHB(l4n6t@|W}R*fFZ6&GB0Oi(mjXA@F=z5!)QX1rfd1T+ zrXLgHr{Bg4toRGItIhS!&n1q*n#h=JETr_W{wrTbUjqIEuZ~cx5B)TUK^iB({LGG7 z3i(4t^*aZ+`OeCrcG=1f{lisHv-jy;D(+9@+HwLqI;hdCflOt~k3_+9D^|sx%1|_C zg~tM(3p(yo;7w90-N^Iwj8BDLv??S5)eDk>UY-qO^n#k9nKwkr^08pO6NvYzVWNM6 zmcPfbp9gMr9P`Hx%5-vZ`))RKEPYzx#LA5zfe#TN$qJZtt6nGF9E7E?Yh~$4N7|cRbOq#QxD zv&#+0za-*6f_TnyyI;pDfm$G72(ALNR8+*YoyJGOf2*(DtcG?Ah<(nmo(Yk3%eXj; z7<&S@9Hpeo=&DQ(rK7uAgHj8xl^>OB&K(ucvrsKW^?VA>M<57vcAeV24!qIDPte=E zrrg>dZ;v5jlY-6umzp&qY(FPGo6dPhg-OL zM;o9KI@%#**4&Hc0~6yk(5z|G5p0DA*x?|magxbGWHwJg!qAK0E?Y&6;wAF3R@209 z`^n)wk9C~ZqLDYh4}EGMPsXpG(VW&CF28k0N}c+oN4*`CbRvVgX~bJ#Hrgz=^d$in zah7>udy1ByjL))%^h;Vu(^;~5WFbcBqPG!d2m6nvmYp9|d>ZdvhCjcy&%|yxf9H*=qoud#8t>V^m6X$a(LPxE zesL~LVW-3ITZ4jug0bx+PM+SVRM+~vci90XyW~m z*_P!>5j}LU)LB8S6=>o2?`8(T zD43_tks0U?vj=$!R6M6CbcBOtSfC4ypZaaR`pYXEq;Fn|PmTpy+@}M4H;rJ7j{_NH z6vBIUUcHtSpMh{aW%1NY4)|40J~t9jlCkXlpxqKnJxq~#76OC&1ED9k_`Khcva1MNZsRU&R@&FOU&(REfU-Ut(3#k6Mos| z_x*!K2i0E+poyHxEgZS!y3`5S15QQXX~f%@Db}XlcxYl~>vS^O-&p~@xWc9m z&5aNK?SxJ*(SNqAO^?hpUbAYzwvF#Hw(j=Tax1S}So+g4bgKX}i%e3--IUb9Sb0?N znGk3h>Ud@I=6Sd>-1PAQdvv_`gLrc8sn!#*RAu&!YVIefjI3m1Q;n&`ddLGkm{?wG zTgRzVulvH{^&2=9S)&kQY zdD8&BA14~aK&TX?DufF3Qej`0I{MZu2wunKfL|OMo*#aD_a`gwUC4_C7Wn}NAk*-$ zHeTE|X;Xk@YaGNM=CBl9CKb-ryqx7iZW;Qlg->L}n-q;=;o|I>Q8^pDy zSe?R=tZGR9c1Ejl-|Rt2*kliGOJ|xUyjh(;m~y7gg2I@bk__U*n(Idn0dJ?8VaR4( zZG-=y^$vR#Oy32@;;oAVpF7VLWJd#d4o*ZQAUvBhRWm(UqpT7 zD(QgLV?B^P?N7{ZYw19D((JPZ6FgasbEmLpc!9|^9@ko~asP8!lQ_-4H+>dMMNe;( zcw!C1vDeG|*U3&Lm7B^E=pnt7B^>5H+2xP6CahB;rmwq`+k3GW1j}0D(b!|$w4krd z-!-3lHAY-5LyC6rMMC#r<)-IO#W>h%8tia;RbkIj> zH7w|u0OrdhVy_@c1Vss3ope1)439RC<>7GL%ws8f=Epf9vEpY<{7@|;LnggQOs2l= z6#XTo4nmrD#c-(4?`?6u%?IGmDD1-OUp+f%S#fs^VA%a<|M<>TxAR)*m@L^ht>Xc# zO1d~C0TMYB>)hy`bc?X9f-v3$SAV?dFRVz$O3f5=-rggw$-LR9xxxtwadD@Y-jZ+V z_i1lvMxNm74U}nN#XIP4OyS+YoEjcX!?1{eVMj{%L|@0le|AQ#phodOr1A_t>9h2G ze+HB4@8HDcp+eW&zIoVIgpfNcl4Ag;!}@+Awku&&GKR80>^-y2h0+yNil^{oUCXeY zD5?egTOB7!0Tk{`dPjaw3G)-X&{<@0K7>or^C}JPlyah3(AC}HX*TSOgIGNfeU`pl zDv8b29^d-Wmb2V>Fw*3yJUy)vNWb>Gfn-%IMb>^1H>3DsmbLd;Nz-xRT=oF!ikZ7^ z#EUvdai?gCO;PgxFxY5rHYq$pdOOtO+46zF14M-_0g9Y zfy-BoBV#uHGCJm4ia-bHGFX6Nw^(`KCnptwe``Tc{T(zHepWooU*giZZjq6&qoTYx z*R92=5=F(xC3S4f@ZX25x4{4r9x>$y7H#o#lAQcxuz-435q6{CVFfQ2dgue)8U3_# zwtQcYSS)Vhcday|Z|-X)ve#ftZeUq32B}#)QG@eu!UH0c`I9!1(q{nec|2t++#xp+ zbs3AE$y1wvbPXqLf2hz}OuNs5 zdrx%ivBa$Lf#I((21O=-)svv| zaZ0?toX+u2mIrIhl$FtwpYcQm<2qefpYwi)>ALOmFQhd$Y zb(AOG_?_z{Egk@!_DeFj7|X%+^7;Ex@2+`Y%TOBGY48SY-mHxb8NweE0czHBlC0Cv z4neDKWqyp{%j)w=^+B7K+77rAUGHKod=pm4Jol5{k+*UF8QW)2q!IVFV5Y+@v@d8Y z)VXhmy;4kBg{f{s^0E`|k`r5K3W^k9DY8<(ODy}N287;roDqx9{XjhrS6&Y{=mHRr4hNYrJ=>*j{2_2pMq06jCo6urO{A9F@AphcqvA2!@6q zhoM6ZuJnSs9xFIm;^wBZsXnpTB#&q-wd04!^z(#bK} zWS`!|zt@MxBD)j-hU#qQnkRYRtMcU%C_;Cy`9ns&=m`q5!Hcs^Uo zxR_=vMXu`E_MBq-E&-{EMizCvVOx1_w-^zPLg%5<3LD%e~&3#l?LG3 z)h2_5s>j6U1j>&1dR>J%xD+9a(oT_vpNdyP!g~%gVlpal*aWibl_~U&{>QnZ_9>7& z%R0=8GQb;wdD0wn{&VUMB70aXi$}h|WR{rRd5A3uja%?G9^{+uF%QwSJk}%{SiIiI z!eYe&jrI^G`Vu38%@l+XK|7u#+yD?BI8GRDN(`(~6+O_WMg*)_LLR0qyi^e%zM8DT z`tvd|9mWx(J*@F$9&^jHM`Le`DL#&);OjHoRmDaM&@W=%PJ+4%fu7u9 zj2Uu~Z^L8J6wwi+R{L!$mE;))221i3kZ`r)R6u~qeYIwYZS`s31UV?bVB!Z(_-@ni z`e+fEO;@&Ts7O;KX`ykI#X56sfz%OUy&A�y0;Vl|~b6;Oj3k zLlUZ7+Jb(LJj7M{TVJB@x(NBCL*fu)V^#gNu3%9!r!zf_`ZFNsI5cH6^!KZZnEr@O zqE%_GC&K&6=;@2p$!)F^UjfH(N|)4i+Cmzwvx9-omT+b#eDDLTu70kZkj!sv1A+T> z`)!9WxPK@Pje7wj4NX`M>h<`D?#|^eD^w1j*P%xj&b7f1o-T!9IWO^Y&c*H_CM4Kq zDNw)@|7LyEFf`!9%i3s&z=fd9&LK$#$*H^OoHjw;Dsg-q=)GO7$6#MRj9OvOBS%!F z#GDm)k6EJfj-Kh0T61)Q3cJ)NJ8)>e_d#f5OzX=M{<*C|WlB&nG8Ylq!5=QX>Z#lp zAZJ0F3T_d|k1}pR_e?ons2hm|F+_u`&4ZtvOCMpyCkudWl~mvTjtlpdYomkV!qt5r zNgEML0}e}tvX{b1>?Pz-Y5CVGsmah(``3z5>FhBQs*``N&>_)BEf3yJ6y)FC7{CQy zr6`rEa)WOW4jIZhoq^^WOXG%q6CuU>43R2tdy+4KE21vSzW!h0QXQ_RX&igsRNMZm zwGZzh-3b8iW_f>e(=I0JHa-j|yKxCN;ltTrZCSYApL6J0ipb`uucYQq;jzls1i?Nv zcgSZVRn*cqHyat9`?&R;{c^spq)|*%m{scCa#yFQO6+pZO`*3(fG4-x2J(a&LtUccU6X8IupNjxQz z4=dQ(JYYAL;XrrT=|I}5D5NhJmJ%fGg)F?csMFsOC~w@zO)=GgZAgssuVQ&dwU&BI zWglRM+Bbah4OQ4Jr)?$_=o&r|6?KXd0P;&)l5e?U!XN2x)WVi(uL|jZl4N5b?i|kn z&4+-Z-JCFU1_+vS!PrM3O0Nvgjcbq!efVPS9_xPtvSnCv7T{wo_n`BgBth<&->)31 z9~n}uO0&7rx#zd&Ag2-NJhlC2kdKA?*Odt@s+sr+I z@@Llfq40H`D9EyI6d&Wop)$SJ0IM`rQ+S;wz)S_f52(!|Hb_@3BZ#L|6v5|rUZUY7 z!QsVbU+sF`rYJ8!c1fR1M-Y9KrSbXa+(AGLtXv0RWo2gj9~r}0Jy}=M4&?qT%|;g- z^}0qcL4>Xmb4uqlRrEWJlg0;QvAEXOkHpC&&Bunfb)fJ=CA2n`j68pY^j27u3h0W&YN>-Ozyt2i=D?59=7-e|Yp6)G-^%ypbR@?ITSUmr#R4I<+Tu#7IQ!bwlk1 zTK;;xh9dS%s9XHlc6ZZ0HOA>&9@JD|L6~}Wx?zbLcCv}gBN{H=nFEm1-LbXwF=J^9 zICaZU7whwuC<~^yZ?5}u2ueV2`h(Zfq(vXhpL*JSd3+CwvsHY?dCO1@Td*hb1F9Sj*WQh zo>(fxji$d`k(jH1xDdp7KPM^ocMVMB@&Mf**aH#fgVb)V%zt{fhZ-aZ!-HyF;T$7Y zXJfzB#<>l_SQ?s>Lf$3XmnrnLvz$k{Dr_h@>&tQa_i#6MF9C+Z(kQ=-66z6-uEt)y zd&^Y}v@XVBF|C`VIb!Pn$?=qB*F42kHp2*rOQjfwQ1XC_=-?)`;*+W!!)T#_KGjb9 z|I1VE8Qj-U3y1KeGTMc0Mby_oq|Ets)g*WXv1%bInhg$ZrnKf%T8_$#f zjP4?B3KrNv3S}l!S~*ceLuwd)o9xcfyQ5mUQYz|yWCSSs`TaCiQ)sx8gza1V_92gb zMa2Py#?99%kxKjh)6XSK>YaN+tqqm{ES5jTq;{YU{M_3i+4zApq*Wmb?KX>k;g5YUfxa*KP|O_=S)AY*^j#| z+>0w{Xak(gPD>-xz7iUYE{{=D7dZjgS9dW5l`C@djD9w^k9QRRUOzn30GJIx@2k@i zc3{qf7zkP!+<~XfY`aXal(l)K5oW#7vQT-L4d27Udj>CI8a9qkkMSyl*DJ6R-gXC! z!BdanN)l9-(Y^9#Hx{b?3SZM*i}IdQr+rF57J$iW-}0jt6{OlV zoSZjTU)|kZ=JxBhI1Yqk21pJr%lIz7nA9gH5_5Ms&1pEz$~%Yz`)v*_89~sUVdEeX z)c{;Ka+?zAd1fiyQ1n)HmS{7>{e-3QC1rbJ*TxGlnhpI|BoNw4&ZYB$9_xW1{B{}6 ze_69<=JzfW#TVexYd=MX`yEf&oQqxwPF(_ZQ@MG^ttve_n3yrWlxC$8`5scs zYc<@)BBuxq+v2tLi?Hx@J+r&L_bHz(-vHo$g?dl3yFRcO7!x6>B}%?&DQMYk+BX5=5$xveKf6BA26#{%o?JSI7xSVbO|?~9yX8IoIT=Hv zrW>uukS|Vx0z!CEMJo2SQGY#@@ta|EDBC$5Ew z4p1o#s}n4s)D;m)46rcoxn?3UV?fg=928D<8XIJ=aP9L=aM~RI<4EN-CB!5g9p|Y#ka1;^-1B{ec^)ByHik2yeW`f_8-QMOyd+J6+$> z1S!32Lo0mnIK)|~EMD7!)B?Y36C23cpb8y+W#=DdSp1O4pb`uoZm|ixHULvHi8lsV zS(q7h`XURYI3AR;)vPjXh?**8ybhLam@##_vyK)9Zg1$iJRKCWK}HD%g_oE9f3cB? zpfat-M3P3dX&Gt~*(R6AYAze&v~eg&0y+_oNfkQVSS7mAW~pd2*(N#{uh}g*%zY1T z8)JSK!gP~OqyKQUIOG5zzD$dQ;($CRg&K;G%jTdI^}nnN*vQ(^Csec+)alF6-prEp zxx&@e+%^Zb;~8{Nb1)}{c@Bi!ElMYD$Yb+)#t+)tMuf* z6kxVkbCYezZF_Up7ct5z^Rf+iUac01R*3roI?ZhPD@6rv;O+qDqSC78pme5}i{m!_ zt96L@cQ_+vXpp%k#xQFko4W6xgT?7;+j$nskU0tUi^Vaosr@DBm)l^xPD z(*2F*Zp^^~8nZ5IfAv?Bznq*&2?r59O)u?3eI(756(M>;EX8orBmLo^n2-Ym)NuYS z*7f+2mResRWfA}`snc1&1)ozg!4%MJnOkk88C%#!dTlTg;ax|Wrg z>878amu;cZLMj&G)l6bkTTx>`%-T=HR?C-GKL-(`Dad*3N^+Bz7MG@Lh3;`q0-051 zK+85Q;^qKA@&z|-*!aVkP_LE@??i5?YkTQu*DSg5=C$T2Cc!8RRVW6jmFkN85~)D) zg-bU+-lAO%qu82{UBz=AQT%+0cCyH*GJSeC|kar-?Vi|OwVj`OFaDhsyPMz;gdqgSd>RvDqvWrn0^G)~6`HTF!4 zoXWb}^V8VkhVreywBNVa%FlOfXLIzOgq88BEQjao(#c@v^0lCxB@T3^8dD2eU>7y3 zt}^g*dlV)4y`i^HDzcjVm7I8$?gGae8z=@&(m|rVpw>8b@Ff z1*-kdZsoH))f>)ms{IHf>uB&0#cYs!#bl0}I|!%t4um$h2a2xiCNA+)uq|VuSOUc3 z%Y_v1exvun#P3w>pD9J+Z#NN&|IquOGT8%eq@(vpM}AX_JzcOfI5GNCeqeycqxTvQ z9U+Cp9SO03D$nirXR(op!q=LC#Ka=e$`KOP-svskx~X)vrUX@&mPgD;OKpQ z#~YY5K3`bcNX1Y=riPX0`23QU7i47G80d4yf>`E4LeX{q9T^L#2HI(28)Ui#cb&MIxbd7+l9qC& zC>jO3Bqx3`(*_akv-*7ZjcSO7?~YM8oywzK*5PWY;&!r1LsK9w)( z{gIBW>k$V^|CeUttC+etoPpnd;-6BF=B&EBsoRaVj7dDJ==QE8sj$-1hr2ghHY(Wo z<0i>mX#|W&iiKS(zjH_{eFzyHXdq^3s7tD@^2iuJ_1s8EcT&TY{9 z;sEtuK20ksfYB45S;QI_x(n%X`RUXL2b|@%6OogL3a8TOoS^NSZrpL7(Y$(dj)0l& z9{Mkf-fcE?)bMJ(^^{PT=iDuuKHb$npp!X|rY*#aJ+p_qtAb6vWo%K**o-B1(&baR zbg`Gyuk98xo=1OUzipP`NmWblNk7$h5x+ff`lubZ0T!Vo&`~`|Oh#-!m6Zc=1WJ25 zxPT9fJn@lwnei-YL%1)It%GlCG=uYv-vMYyayI0;9=vD<;~^a|WviCGvV$~>?U4eVMLAN&?ih+!=P0k9Ydm_rDio7t2zBg@ z`}j4^{$l-$(iE$BkMjA)B4LjmbY8PIZabv1fJwSv_0qszIwu#*=^br8Pu`JvH;sWm zQncQP-rX1v^w?Vq1TyxA9V=FYAS1aHN{V3ole0bi%Gi5E%J&?Y595M5V^B#{ww8^t z$PiosjjZ^vw_V!Ks*ocGkt#TQ&6(oVqL$yCDx8vF75f#<++Y>jhqK)oxDF8ZjmW)2 zfNV}J`J8hPj*~p~CZ6+)4W83};xDfF830>5_6rEaLT)tKu+wM2T z2or>nz{OU~(phdh@bbRXtX7vvRBwlW8;rc{Ti$&ncj$V}JF2qO>NVi4)$6+ks>XRW zeA$^s!(3;KM}@rf_2W;FXKd+F!LLg(jG>fIkk2p3!Wdx-F&&cE#){&-%GNCL0rI@D zeVRRQQ${I{9t@B{(VTezeZWpP`-;D+uaFiDP^+|-;nfV76b&U=BL+I;ylNQyw> zf$ZK0H6ajLE{a)oc>`?$L8`hsB5Fwd-LgMevJ%Zgzz(~>YQvPr)C<6s+2|2{4->9n!{|ivHskxZ`{CEP^Xjwd z_QU+h+Z!N9P}KVdY1rk%)Fqv0_D{VUG6mBK_48>J^i}WJgNATlx=dRCG`9S}Vsti% z&wyl{)G3LrWEJ}ZnWb=~m;9Jr`!r@b> zg2rpzY1w&M0I*vGsOtSuI9;uHg!59k&}b=DpM18y2xqo7F%yvO7Vb@@o15W0U9g(s z1c^hsNQe?2B_FcKXsYZQBuVt~$PTH7=Hs4LHe{XNWOWYriOq}gRYcpmQY~Ns2lrGk~xhd7ZEn ze4nAR^rJaQOh_vmc1LyId|!TU`|D4lWfUz$b{jZPk{%&?PUv5z^Y(2!GYDLp`Stu| zpygYmO0xr9+l9AOp=v$&T4GAs(&QAq@wmj*53o^l3}XSLJ%a!U4oh2Udb4cwbnjZDF51xxU)Xx|{sRogU+P1!Q2p%L6WkD&POe1@?Nw)rZDDX(> zc2npuuddgy7yur7dHV?u827poo#1??@N64sI>EfMa3aLpE%adobvn!$N=-)=Ms7sb)@=0hyS53UbOG_9`X~6L!T?bAE;jAb*MlKK@PqdgHCGZV zo~VqNdLa6aWs~u&pL`0w`OJ4-hC-GH-8Ukuc4Hl@J#%o2*UVdn%dS<$O-U}VGg;6?n-f@ zY`flVXt_pBf*s5>!Ejwz_YW%N0+5wJ*#e_Uythazzvs-5U?GVALxe`;>duHf{I8s2 z=H&XHa;{Hv(q)?qsqc!`tF&5z$s1WhA+QKB}mO;dubJI%z@{K8Gsxw%-f}S6od`~8O z+$nczg&x4B0kx6zBUgEpCsKmJ?c9Mb!Xru6bokCS@R0sOLn=XYuH6GeE&&;3#wDGq zX}6WA+FP59g|T>>t!#!QC_nn5xOA#-*N?rkM3zD{7I^()(ff3T3L@p(|o%Grxb zSmd&=(k_Gp5iFp_MA2?s@;};kW-culQCYXo$$Z%oXaK#{Ke@=32Ks`E+9M#+V+cjx zkLE;ZqGX4V7>mu5oMyf1QYa4-pXSKE=H$j?kyxg5HiQMB(Ui>&5~HrbaNX^WK8b-# zQL_rqNB!#T8}8lIPc+nULgNy|GDO&cppdK>C7Ip?aG@fVP=C+tyKQtCpY5H8DIzK3 zzTLSDj{$Y6GBv6Rn9nK0pmD(OtE8N4pB`n~_5Sf}VK&cI zJb4mqE7Bb{t(NQb$wgfLac%krX!$Y-RzhTRg@CEvp<)B{td{r9Hyqm}a~@G5H;Un- z;<~)axTu7+>E96w>Die$-@1mKJ@uY?i*ZX*FH#XFY9#XTefR_356=LX-+%-vzw3aZ zKkN(c6mXY5g&UH8=+7e*5QDU7r9bg$L|ef z<45km49HI5mUekL&ZpZ(?#*cTkzN1bfl{-C-q=Z)ps zq;Gax-*(lrHSdpC!1u*6+v!0Ef3j;AZi!FzeB9i|mFtLS->o^VFV#Ksm%U_3AG6_c zRZ-`CLF8}#WJ68&qQB*6m8{Lg?Z z0n99H|GTF9kA9g@!hsaOV;<^AA6ZCCx5r>__*ShBz zD^hbt$}2g+*z5QE_w2?d#F-K9_oFfGk)k3Yfk2sgBAIj6nf1LJOf(x+dxTfc$&f0( zAH1hC3g#k(^b+5{pj=$ZW zuuR-*s81VN0fA0B!s%KYbn4o=8&RW% zSw>{hnpLi(Q%NGhW~F6S)sY$&hIjIiZrgQZt8-BSA1gYqy&Uj$-(a8IHuxx>056R- z(AH;e4mnrFIs!LMKVb#P7?Exoeka2E=g=1AASKR2M+vp2BHwLEa`!t+a^XK$B>H`*tcmsO3 z1Wo-F5SD3iL>q_Da{940TSJA=XrpV5a5!R=(>(`N(;`3PSVBECeOCv7kzG`6wB`(f9qB2dOj}ldI*K= zi&vDrS2TDHix_a6>tdd!kPg?72nAm7ePrv6Xv*}6qVTX~idHMqX&D*nlzPU$6PRjU zby>X2_6w=9cuyZps#GZTc^c@bUq=ukp<6gI4fyw&_3(|zkz$!^^70O5{7M;>ST97g zl0ZyCsU{1))8XXcfAQ^|(+nM|JOVggtR6+BjF@`cjZn9ABb0?$C8LZ!|H1UozNCi= zNsn;n-)CMwlb8HA95F{i(X}6MNFuH4=v!%yN9D(5BWmPi^%5uQw5$@sH0sJ#+12&F zKu~J+^UN5s&l_E3^)P-UVrSA%ayoxnIl1`@*oMH4D$|R9e}i)t)*%VG4G@MS6$Ucm zseyYX(J9ZkEtaQq6U-uwyO6G!#>0Rg7VKoGUoxVoQM|eW-yl)C=vk^178Q&B0&y%$ zWEEPO7wm-UIP0*n$@cH-nva8W`t;_<(|<@4<)&HWywO-pN;+x=<~q7 zNpH}%W6}HYf4Y9;Rg=+Jga~Ao?!rGBZeFy4hzqLbRqFZ_@IHGUC(fkyH#jLMd(ICz zxVe|ZI_azoFWieW371p?RmOp{q-8k*TN9n|LSimw<;-D}5V%=ln+}+*R?JxKo>}To zi$N=UEDRWZt12b|Sus37&di{Xa4dIaXbOkM}=8c6q-y*HNQqa>Y5F%o(*SS#!myB zVmf-=5AG&B_(xvgbcf!Cmg{kIlhXV=>+q2$jRfoE+8NU<=Sx>Oh@Z<3Ia!eI50IiF*7+gGdE&kH)Jz4HZnOgG-Wt2G&wdnF=jI~ zK0IY)H(@eiF)%nWWn^MuGGRC{H8wM1Fk>_^Fl1pjHZ?w7AU-|{b98cLVQmU{oMU1D z0VYPqW^D#0AS(w%3J8HnMlhRS6CuvSizIFf7S9E<^ zgM^ixotulN&WI9J|G$QpLG%5Y`3FxP zgAdH)ht&woOP!sGm6efE{P#QK2t{T6D(5e#;J{is5t>!R4k8j13nRZKXc<>9R%~sG zxPaUM(Nk(mk^8uxdVHzK+Zr5|Ei@IzMj#;S*ff(#G7uF2H|PIpWNk`UK53l`t$U`% z=ukpa2WATd+1L5fVmb4#8ve{wCb*&tg%*t*DQ(>6^}iS>O0^>ei^$alA}JD)yzS3? zP$Xp!SmiJ8kzA|ot?gg$*|iY|le*T4?_m;n(`?M>wrod#6|W`^#NSMBe~-RDOa1_I zL#LRZze6RNP%~)lDVba*>C)}~81tb!%NjgoRwZ)%(sLJIe9(-dM<1$e8PoC^Zo)0` z7?NstQ@)?Vx1q$wWlho{BS`AEGHb@fwWM3c8|#dt7_^`d<~Z%}D3suHlO`dZztcx} ztm~3v(6&&BPYZ%c8FT*p?1r*#(zFKJP-!bugczrx<8g_geE$8|q{e7~V>izj!5ru= z2tZqIbIz6z6L3OKB8nwcjBHpOD(+=Y`{MLeIcBA(X%yg>ZlfPHblxkWSF zivz|cbXLO12vZ6w9C26ZoGPn__+@8BgWqfZ=`L!Blk3vDb%eu|g|}~Srke}mwfFkP zu0R4zXG1nEws=K;DNhayAw)2ss5d`QI|J=gZmO53^>V|?P*xixP~KWl*#XyIgwq?n zy9f@2+z!gmtC-i09)}8 z`(sCzu&kkik4N`cb>zMO-`hp;uvd?~>5w%F#9CiP@GMM(@PX7*bD;y^fvNsMJq5S5 zyGpqi8WVCD-e>T1XCSioc!2;K!=I59g+U8GrZ3@W%sse8|Mpy@O&&}W9R3lxI!=w?G$9SvZKLI6F-oP{Qn$yt+ zwK#J2G8EKY<*mm>w?~=jf$)$S{C=cjjbB#m85vmKZP-)lR0Ui_-T;fQiF#3-% z+9M~95{qC7zwW^okzf7kB_I5CCmmSv^z%!J&^P^9ut)Z)s>rMWq~03ojAV^ICxL!uRHjuQ#riO*|5n=>rx)ip9kUbq2iyf7{=J;p?8RIU}>u$k!0#@ zq|zJE--IlE{+{^2P&i{*7{ScWy@U4%sTse=V>MAOv6Ox_8NtW{tX{;Pw*DkF!s|$J z2B`Zvy;a=}~LGHW**b$;N_xQ>7{I0796mq2y2>lXn_d}Pc7LpU82NNvh=!Ou5wa& zUlvy6kgd!YE*6mFW#nJ>osMTTQ7eE4~vtmG}}t!hg2E&{?8dFp!E zx9YUSH4%1Ukig^I{|#D?c)9Dg7^-I)ux!qM9EIijpFLl9YZ(MdshyBCKv(MRGuh|= z6%ki@WG-admN0+f+=QdhJ8WS2Jm+V3TN)Gr^3VqbGm8EiJn{->W$-xX#z8j>x%Rbo z;?4LjdVP3R(i#y|HChwT$VtYGBs+srY6@%xRFA!oCpn~UM1KghMS1saq|>vwKtQx3 zQ;QR@&${zv@SK((fFgY3y)C!#NCC!sP4BKBv-uie?#V$_!~(E~MfF?(0-^2OF@~tX z(XyG)n6`y^8Z!@uN*dOI%cu-ywN5RrMVASe*Iy{G%`=8ie2(#A;eL{>U1QVv=LLj? zg9nGxB}5i7SF+K{%X=M!*5643?B<<;bmKEkaq}F5!X*ZPbzZC@E?3mvx-ga@9t}pX z>-kWs%FE8>xxz;VP78V)v)FD4B;^iZ<=}&l>Fr%Ev} zA0b2YgL9?N-v8e>_63N7zxvz@>W=k=KRRzJxtl+Cmb`G-w!jBb|26H0*i#$ePci(C ztBWJY{SMa{pU);v8-rpy+s{k2sK5CwsO@yrzty4T1FPq5v7!Hw@zO&6-Gj$KLG5AD z*@D1^gYWoiAUg6ZJ83@S0dXl#2q$ggAvz|HUM67MypC7x-!2qn{u7#}=98|ZA`D2R zTX6B*Dl_?w2^W$Qs-r5Zctw^hU?u|2)$zGezPEbBh}TbzvbW|HO4wPGIg0*T%Ye&(=HThI4& zzt3)tJGA_T`f2k`4nzKl716<1 z?hr;hX`R4b@KHBHcTK|=ituW4vGX0dOyN+^y0PI=!O#U^8Vsm_qeE$qLGR{| z(Val6#$6h`;Or7gs6g=*!sMMa)O4e{0Kfmim?V$*YwYpfffn|6D&gQAAr4XBLj?`` z4T_MyKQ2>?3F%GF#GOffAY5#9$1|Tj$MA$OvGL?E*s{?fKmYc7b^AEH+I3BOXTbx0 z36HVCSD%J+IIM{*!fXq-+ASQ+ZUR8y9;ceImd6q%d7O3#m?`0=T=#IhUKiA z1M#umc&#cO>W`kz(?H4ybWNOLF3J|5X^mHIJka>Nbh)~*i@zsG=;q$Yr!H7`R)Bpt zNj>tAS1XIYM1?I$G6vjrtS;L!X~JjKhDmN|Pxpa2<>EH3WB&&<%5dS23g=3$ffH`I z<~641W`zBos|&#T2B;C5f>}##s+dSukYY9$+cbL~?z05`9v25okz7rOF^5Sf zLzFGc6H{tcz_pVXSqu$lDZCbPoDfq(U};Sn?)e6;I?)Sf|q=y1?UI|2ugAUbKk+z8VqGxjy0h5$vCA zP6M~)MCOLZ>%UR%ONa~CLN|p*Me8&~F+bvu(RBfGudvD%s82Orq9%tH9uVXbZ6K~D zy@ODUV~_#06Ej}mP5_PunpAuV`cf$)!CH-HZ2PW)^f8ydPn1dgqcPoNp*fD0Xki~N z8*~Xop**~ypDQSw8?9t=RB*&)(d3?-$ktDTf>60E_35jw>}Puls}YtJV#?%vv{$yGy{By3&$n*rmg7$>Wn@f_5lWnNbLk`nwv*BV z9lRmOJjjp74HW+lPF8+2@@UWR;uyiQVb2`{h~0L^Q_cMtwB9_cY6%Z)-V81OB0}}R zvO+ZYn-^r+hIi*}@>cAQluyC#th|-D%OE^!Hpebo9v|-Dn6-$0_x~imCd{3Xc2WLK z{(NZqTIEO9le9e{{;Kgsk~?;MC(|7-JeGQ=oiqBwg>2@atuwxfLh>%gk3FQvv&oMg z=+PUM_oghltI8U)^(J>L=5ETG;GNa;)?+TdhkvcmA1%^fx<12i%j!;@ST*ye#9!5C zJk#asnL5n&qXv?$520V*vBma0;oOX*^P%4x#tzjEm__$*KLqtNJhD*v@p@M12G%cW zpRbiIIqd>pry&uQsh1yzrMsx7%(w&rz|9r5|7EqXtj16*qvS41`nFCY=K!TYqP**1 z6Wg=_Z@+G%h{rV<8LIFjgUqivEvu(0Q|GhT`V}(dT|Z~W@*Y2Lc^N%)ce!IM+6ZSj z4_4a5{acR-E(DQD)Vj6Za6#o-(xbPLqys~m%(I95F*n7f5!CkB8VMeL)g4{ z9T-&l8W#lRLky*BNHEY#c)a(be!@4qwnjT{xm4)+xcdYbDEOymLtSp&h&S9KYS&O2 zIR&6=$JnRx@*(V8jC&c_Y3sr76bG>cbIuhTo&B^}WcSRq483R5;W1uq+)Ize&#C&b zHJfGE&J{Y-d6dmL{5X}%X#fXuz;=oflp6 zk2h}(fIYV`OSfX|vIWbl^nmQ%4e-164A0K@`}Q&0`hs5fO$~VH?XS~rHsi^lbr6*| zeVc5e(|yxM^lvA!-n^RDA3hFiULNl^T@L{uH^S0+4LCd)=>Qkc{{}W}B&KiCp67o>-O71&byeN>GpGZdq_qQ` z04!jqI_}p~8}<9fcg0pkb%C!!uIW@8*1@1$`9pv4)36AvFF!WmV*y1)WOxy(cM{I% zXvg^Iz}N(=mW9>%J1)Nq9a&^@bZQ=hWCkR@t_7TLATer<--}NtL$B5E?`v)@2pzf& z2s<}7^=8ioXn!*xLM@L@&hOuu5Cu8=L|zz?fGD!KHHdby_i9L5`of^EPvC`vyScfE z8*P`3dyzc}S$Ya`mBNGtf|w!bsa=^WZ?7Pc}Iobnrs%HoF`{s{KOgQYRFnZgk zv$wQB-udcSK~DK9F>3h_O)mC$2I1Xo*I`@;hho9xy|M4ND_kg05d&%8xzwMAOy2x&-tMcY_$~G8yO68CsqyxsrEg@iz1?rJr}J|JYvt2XU2$idpB|Z` z$*t*gTh|)9FisGqnZ4x|IVNQqErm!#ol+hfJ*p?{(6Q~!P~O7S8d{^?v-#s(3v`y9 zo%NG>bHpND8`vP2CPsf{#=J3g{^Boc1+pW$P7U#g`=>!!TwK`hg3aG>D6l*{{JHN( z=rX_rzc>d#q@ehHQ<1TIrG2|W*nO#2dX$ob2zzNhQcoNQL5(n8gLpur3jh>sf7J`* zJt&sQZ)j&WP#nrH5(|*R1L8q2qvW?BZP4g>00rM)^$7W`RPyP6!%o3g7iS?+Zu9%~E}f+7Uzk-pFqT`oB5JqKm)%iDCV}1BlUk zVLocSCKZT3Gd}|W;vyxG>e{ynf;2)+#TA{T7_XR+1gdnDe^>zf>RLfUKQzbR4I*X#}I82rhD zXF2fQUaFv`^zX2$oUXq z&(7HLT`XIFghl21)6T_jHF2uMST&0`SMevZ^ea)%dA=8Zw=3SO!g^862ms8 zJrDk>=1wc}Th1L`S8QGx3tppDza|5V8h*sZ+v)(U$UPn{3V9^bWSF5z9hZBU;_v8B z5l4r8DGm&3t81hc&KUqmNgBw+wH9bA+1Oyt*on75oSH+^)qVmbp>VdMZiErn3>9Uc`}5r=AR|uG9Sfgyp|J!_p_teVRz7w% zf$FU}jDXoKZYDdCcboS{*HCn_s+5unn>SO`B~Ny-dP4mDqml>qpDiGCo=z&w$*1!b z8qQ~z?byh9GyRhtiPaQ+mFQG@iPd$y1Ga|_93HK0P$uOPl%0M(xKI9Dk2qDIApRI$I1P*c))!kKS zHZUAnMM|F|oaEbpXN|2WGhY20`&tOR+@UPUZNBTV!YOn;yVkWl{N43uw~9^FU-LvU zzfDRz=Fi|YBjc9AqNVHl2k0bKeV%Z}Rd$HKM1mt2K-M-GNhZ~sg!OkDZCjru zH&sM@ZrbCtcCYaq^}T)o34(euZn;HdydJAvgEK9hp9HOGZaFOD=BI7G=KM-3Mkfq!7D9%8x1x9E8!J zJI3Ler$~(mo<~|- zYp+VdSWI5G>VcI443tb2sTDaGUTC<3SAL$c635{^=X{hn2gj&gbv;)%7I5sVg1FR+ zFztwWzqHZ{{>b95RY>9=67*_^%>aDAy8o42`m7fqP{ae`iB#PF#1&+W7KymGKBXq+AB^L3;yS?(c}i3Z9>lhedqx@JVkC(ne;Y%$3mnR$0=ha*_v=W>Hgv4srKMNrmHZgaC_6i3idM-(y5ThA-DuBW&2#b zFIpxCL|+yU%vgR^nzrZN95$RHm!sh2Y(T$js}F?tiy6OCQ|`y7vG@QTdxJOoy4c|q zg7Zg-qonw*k#pWg-nyLgbJ(UH>Ww;hlFm3!5Wzm~oKe(S#9R)78`)k^3wd$yJm_Xf z1v=^C)DWYM=o4BplIWg z$kNQ&c1w4iZRgaEUPpinh#|tgJ&$MtRk%VoTVg;}Ee^l73eE5S&!@hM{JLE`MV@1Q z8R`^k@Hj=a;DH$TU1V&i_)l|hXru>d8Z=I=nd7?k{Nz0ymx$V)IRd1RzutE1?(nFO z5yC+cv|aFS2jF9~MUKnLkLwp&zA-yOKVXamFfeqJ9F|+*pLl_XYmP2us^^}oR*qvM zw902Rd=~KbBWQ(eyiR!oh25m5lf>iT>IbVIx@aAR63YplYmS#Houskp8cK_{K4#3O zH>WgM;LEYM;b(5nVddytPnK}$hZ1LWC91OKPxvC4%sw^SZ_Mj31hutkEL5N;BwH@xq_^#?3W@0yf$9JX&+aLV zUtc36qG9$G2=XdX8@*P*{s*e!S5x+eAhf~f{B}60T$pZ_ihm-Upe`Ize}dsk-a__c zwD%OcD6Hw}q1W%>4R#Zaszn8!Jlrb3*Wkeh?tzP2o-DwHv)(Zcrf4qHN0yWcDFvHm z#UwB~ruD%eiMc(8E30p8Rm72}Qw~a1kMX)0@-u1&yI9$jCgfgZ62lKM4C~gPw=DbA ztyQU>fBd&h9-(IVsf~WdXQ1HRuXNE9>qtTPJ)-TnX*itPaGww3U?B>YekbHth*P3p zD_5B|glvF1Ym?!c{Ak>b>!%iY)w<|diclni@KD=kjAkES7PMqu7n(;3n{-BaCcDlg zb8lp-!7T51Ld!CBOuk~)e8gJK5;~`II_hVLZ1Y7U95qvVrYQfa*d-dcIqVyT9gF zid&SSm>;oQ70?2q2Hxaw6RQ%?DyXtFnU<1o4Tc}?)SK1WpL3i(x)?qJvt0*KG*|aS z&jV=CUD^ULagu`+3YmAK4VA(xxCXU@nd`A?IA@wVI3+dCt2(B&q1)A!TE6=3SlK)3)_8$qxNuWa<6@O z)$qrI%0y%qV6IA72P2r{U?h$RxARCv?H3F$HsuTo@2phuWRu6bUZ6+E7ez&Wz5=?e zW;_}c|E`8JxTyL!?YN)u>qZ@k-}&$Hj%OeLJ2XlB5;x#N(B=xot~7L z4tPw=nvjjBoHrygX-`j{dc)yIyEZDwiEwJ3Zg2@0EbkCva2`Wr@2r!D^}qqG6lh7* zg57;y_`Ot?j$Uz>+&^c2P6t--LI~*Hy>%=57#F*cRoiP^ostJ(_)E&-;{Cl3aV)P> z5IT`AAQFEPq)dTh1+5o@6FX(4J~@51Xaav1CJNHwI*;tpW8%ehnidO9*vBsLmY7ni z|KlX}eT3)uNr#`cJW1ggdft`zz|bcLl0<-C zdB$XZyhE=w^ML<$dN6$Nu{~PJ!;>eVm!_%m!4xYB$*T;3>IQ#D!h$$&rn@P9Tb|YY zGuyv%%sK_&6kyATnqk^)It8dZb|q|3H=mI9`$M|XnL9|Bo>#^p6a8J9`|JNUQ@S}V zF8%T-@YYQO@9|ve1f7?G`WLwH7i7^ZslwvfFCtYrWliE=PH5wYK^5+lmMYAMC&CGA zQZA?Mo1gV6-9?ha!xbk7^qma-Eo$7dVOkIeocu210OT`#keS4!*gfFvq6DKM*O$lG z^;{&Axx%nhDkge=I|=>SZq(L2$2`RN4R@I%f$fubCpgvrJ3?SkV7C`ow&NwvHh znN7e`JDi5)A@cTj;pBMijenfLNZyn}AmPX!|Guk^(w^3+{$=J$eL@P^==W~czZu{P zL83f!CELHZ{hrw(B^@Y#kwfp$U%uB=qAqkNSxO%s{Lr!*nps+#tkO?DA6a41mB9f6 zYsm;|R_PRyyBS3B(vj(=ED^V*l$W=Ouh%yxw-m1vXBML`E}K=h!R+exgzw`dTvve> zomY=5;Gp7zc@`J-tr@PUT#8Yi@2G|&QC&I>9oHFc|YcP={8t zdt4irPTUv0I8=TRu{;xld48Bu(0Aqw*E+-=`;(tC8s5mhxs|_RQT8H;wc71^12v*K z&`Nu$Rw%pFeE|^C7$=c)rky5?(6>XpjkFM77_Xladewqf+Lkn0_t za@9j9s~51|bYtkvi*%Ul2X+58^;r#eB@C`l?{;QiU3$@>wVjUzHs#E2H<+NbnWVS= zmLg^aZt_9spsCoe{a(W4DmQ znO}23<0ob`SgGF($L%ZO-`>jW9o+4p+sb0Yg;pTFZst$oM3#-7mgB>MAC$$B|}5fm?!uHpq)^kMPL`r_<`WIe%My>wA^Y4-t_sHnuX!QN8$4#78Gg?^2Xe+nk^Z zN&&1`$SP)PwDszU)<$RDd>%!O%=3p6M;Ow+6)@;Kiqf>hhKLS~#+wG3V2|eRwJN&( z*^#9vli}Kh_M|5=bj%#^P$HG~eVL9nAVI9F08z3Nxvt&X}F_1ZsZZIdgX*5t8tFDG%}D0EL@SPFwc;iWv1iXn*#D$$VbO$m z2xX>WElZ${NKJ|uq%?mJGIZ4BH~_MFj1)~Du|~hmq$N)7b=d6zEAG<+kx@ha+`J;h5q!7$OFz-`2pF>H z$i;84FM}wE@~@Q+thn|AOkKRusn#OPYZ~vG={h=hFAq-^B&;1Z^9r;P&ADFvpnh18 zm*{KP zz3!;(gUSzA;bc6^n2}54%uKN`S)kY}hogTGA2?0h+_>cy*wIjG6LIXTkbea!PAFD* zxnIHAr-NE|1V+f=1$;dfB%n;?AS`_f7zp&rn{rz#cogaGKdtYXX8}U~6Rs`-`M*03 zFQenX`{%v8xI;%H=)zEU3Bn=zCCgCfzWx%@jtq|dAq@*)QNT<%8|Z^QSJ01}J=UdSI`!Y-k@WliYz)*`7{S;CPvCJ;P3#&IU`1#OF{z=2OH^E|&i2m56*p&uxjrX{&al7k?arn*wX|GM zCs^2vtM+5dS`P3;kEKSy(OFK=k?8M5vk9E&YG0Rz)k+3Crn!6>RIppg&2phbg}99o zSXETrM-~c#*lTisVT?j>|6!Tdn9)s^BB=7(X5*q!I2R~x`v6WbBzdLh`G%N_AL-uI zLg4#AH-5MviWO}$S{hUELGjA7+O1pvM#`QlJ{3QJS`M&@tqH*$yu-jv3?|^jyKPi2 z$%8?^YPMl)j|d?dN)IKjlSuo33UbO4Glk-$6ltJBga zaq)Zx1*-5V_a@mAsNzO#63znt<7P?!lvd;q!u2Fn27&08PBZiI-aO<)=A!#a@ib*P z!kVy5B6Jd6d3N{lmi97LdFEOai?F_(GKXgB6E2y;3iUFD)1r0fj=IeN7B6DT zFDh~S=&0wq3DU*ym^A!r5IrW1Kg1lYJ{(ZCq90w*K1RDL!;XJx7kuhOKxfo@;)RfV z^8Y25)|-y}GdCV;(Q7_l=`69>7 zO>v+-31#+?rF1W7b}|xfD01bwc*6{s+Z;xUlyAao_nZUWJ7_MD?lAlnft{vGuL3k? zHw^NA*CIQb@s_A+h=E0dxSVAQJ&Fd+bwan@MxPyOSHJYdwV z`~%-C+Fk?U@7Xl_Z3rV|n@QBC3P58A4P%+dlAa`Q7@#8cO}9~my8#eQAty~;QbX3)d)qn34XE5FU|+MX3JIunPMubPeaO8qv2{askGL6B=rig9!zf#_=Dmd`nrmbZ5^iiapsM z8Eu64`K-Dok=U#sQfj5{M8%z}5K;O5-u}L(rxHqnht~=uy6sWBJ-~ROvLuaDrwAf0 zH6yH}w81iHt6z>RssN~E1D{+{MT3QK+y;UG#TtT+=uXNczPVpZQ1Vy;-umB$KEWM_ z*ja2wnHI^lU#7&SL&rRslPj*n6T0>RaVDCp@<)2s?08a6KA(NaL3PI|ch?RMSY4-%J7 z4*!fNt{6B={(Pc25hl11w!!sppR5LI1ye|!B!dP;olo2RxBm7`x3IHID!-~f)1<8q z$FIiV2{$qw>59ROFI;CWIGLyfTk#`n*#=nVP#<9xBBfbVY7b^wpZW+;}Yp(}WTU!vTAAVPfp@unqr`(2&FJ|}GnNPYfWLse+KVV3( zq0>B;;!gB`8v;C0OtDD}_oU`c9gMe!!#@bWP)K;#1wX2A^>fK;OH@%Wg6Oa6(}rD3 z307dasqo__a8_%aDPXQ8efv!vX?2dHkbNPiy|`JOO0Wu;sd!XNe+j?QnGZQ}rCc5V zQCoW3x>BE5qKafqK}r+2mF+7;tynpO!+x1b+X@K2^lHfC=tV@`!UtQ*Rd2-QZ}by}fx% zot*}{6It;ia@onGGUzltwXbxeV~be^|r$nm5FwW-sGUlAutO&M1-`pLP*0z;Qu4{cK4r3I1Fecg$C+`@S z^f$IO+ENH@f2&;3dU4T_ZF+uodRcUxRz&kp#PmH6@b*!BaM2c|DxaB|5T5%u@bHX} zJTei^=k#YAa3}v_R%7YF9{7m-p+39*ry8K27_GEK@_m2(>8b6Wyf3Ty62Ccm9DUhd zn&&1w$}qQ9u2jhJ8D5e(_5Nt`Do2wQggM8-9^0zwQC%Cvf}um)W}cbT z8*6GnZLK3R0|Kx_VoQde%u`?dL-6IVBc~msj-;@~f>}Pz?I#&}vDLTQrErfsfCA#= z?2N|ScrmEEg^}0CInm1TL}F9OXMBGq(^yqFQi5OdaEpFIvoJr zDBdZI73oX$NR~F|;WyqgRRN|ia}PAo53(KxS=tu%gm-SYXh@rQ&Wy4g#UplNscHYys^-bQ)-7>%mGA`_a7u=;24Vnz8r{;&y-2U*&FEkxqFA4c^^NZO!_R%#IQXCMry|mI`01*I z4;~v#_-jm|!d*FvEMp}+!ZL6PQVo4scM&RW?M0K4KO6#-qms|SqJTcLWrU=17LH9p z66Ot6x!f!xwFWNrh3%(oOV?jDb*XeH$tN@;&YRJpxCCKT(J@$vnIk-=5FLsY3^aEs z7+XzdLQhbSzcPFN@Sr+$%N#9N20@D9??K^#-5l5&wg_xX-fzQT zb(88uZl3BRuP~F6O#=x7c3r~8u)XMYcUtOA$b9bSU`aJ(4X@kJk+N}N}u zbgDWMrq4gR#xr$I*L!^$2P~mjAD)#|UvS3JHM$&vd!OV)jrDe@^RN|d%u!Evu}eR# zU`meOt=8287apWPbrH1`RE+JUKa!$QI0N5VQnw6mUhvSGZGd-h9zGOyOb`fX@G{}a zm>ZVfak343Mz_S6RhKSt_xO+BG!Gi!(+7XyXjEpGSzCO`Q!q-T=Tq|+y}QMp7UzYc zvew%VqmvbuQVyBaBvAu5x7rkXSF{AwXmdEueB>xq8)nf?z z#pqXGE9q;rZaA!P2-NSzI&J%dK95`6d4Gm^B4Eo?Dm8sXNY9GVC{K0kn+Q);7V(kY z65O_5r~l7k==hmKP~MdVZAO}ScwEHQ4iC+ejG%6wY6EK=qNxMyL;qXS6NY6OT)&Jv zFU-1Pg;pca=vHO{tE0m?JDFK^6>J8&0pb_o@WrsjYl67U()m7b>l)&AK)KhyY%#*% zIe;OEU1Yqk`V-wLYketWtxiPG7YV%5w-A=Gnp;@oVs}06g1$6R@K`6EfE{_AMO!02 ztVYmxVeLbt`FZzA)k%tY(BH$7LDX+-o_;V?AIv%D*#BCuB9GHj00PzeHTYui{eJ1D z_m1ED-mf`yr#L|(lVBQ)2OMs|GsZoK5RmReBZkEf-^{JwzT>5Z$EF)VZ)fGOoStUN zp%-(CsAoOk2`;pxkQ+n2tggdvwjC@?_ebmbha1gtO#KQCR}RsVj|WVzpzuT%m>N?o z0{s(|wany^YQaW(B5E|rJYJa|GuA&U6-+`<1Mhn~O1!yEdM697@-VCSR2Tla17^gN zDUmN+30|LNUSwTD>c8xr`rbS_E#}ZC{he-Vb%-MiAH}?D9`%6Rj4e*whiVo`HH(4+ z+gj4B(l$9q#Z*7dKctsYPUkOR%yno#iEJ1=kl`5&{#R+=5S$AWt{L05ZQHhO+x8dR zwrwXT$%%1d+qUib=Pst|u4mKLUDe&Yu6p}@6kf4n(h~3iSN6hK|HY+5TybgZaD}!( zV|#xMGF=1N1*(lp1&c433$PWrMoVtIcYg?QxO_7-G;k$_1RjWm91-{%7jKST@$4(#SaT4eLpwr{4&F81X3B&?_}43-fI6pJ z&CCb(skill0+_h2Rss1tZVoHdU5=N3ym)C7Bv`6FCj3+?(aoM(1YnoSNIj<~cUrmh zk>@(-rNV*RTW!IKMYbM%QjN9Roz%`XRVYWa9A)4()iCqoUk$3?gm72sd`*(hd9r8~ z2M)RySDDq~j0rKB4ZpTGGVtr857#!F168nX+e4k_Y?gux&{CLTLU`gb$7fa0Xo+LU z)?_R7)RRg|BkpYe2RI9%=knxsUfppOf}C&Ht5l3RU$yfeGZwEfmNCmIj1Zr0v?o0X zoX1FyD1tT$o-sl373F&r)PJF8ETd%HDX-wvuA3FbOJH*mA}4mQb|6P28&MYcQD6+| z)e`}dbilR)+^kKW!x+nw_mHPnjRrGecvJWafZ#gsN{F%{0~8E=p|0ZE$JkGdr~a*} zT?XBGhok`ySh{+`yGHn_xPdtNoWq3$A$w4y;Tm+`8f^EaD^EwwS8f!Y?o>M6rHPgv zv7AU;hN$n`J#Yx@wUShKZHz$CK<^W%84G4u=!3L>AZ=9rC$&nrtQZ1a-ML3dy)hOE zzIzS(ZfI001`MXO+Uv&Nif_$ZRPr;vAv~|0ki*<$1#ml*N6p8Fi_fIC^B~9fP&Sf8 zS|Us1VkjD1R0nWK7Op2x76@6fceK?Z%>_#9_`gIi&M%J98Cf*qYk<%lB6A)&zo^K* z;qk<$R$922EMIyyHpin4ztAyJ#Uv~FHB{OKOlTyT0|E?d8+B337I!uoL8Sci@#3GX zC%3(HQf#E0)Qikw7pM>akbTSO4XpmCc{C5|nVW&7u^VC#Ce`(c2K(qr=?h z#E>&@08}#XJY#aoVux+7O>{PNKKgU;Meh=LOcpSDB4O}$Vz1Y`Q3E}r~-cSESbFVWazx+o3 zmsVgkz0lQ|QQbUW3kQFqF??~5C>z>Nb_{_l1WdU|<5eMre<3aozz|*7d7aW^X z4vb8$OmTABbw?x6JDrk(}EHpyXkTSA=(wfYC@j9uAHpk z%}mjVEcbd=a_pioh}u;JOGPw^{hm=F0tSv9fv!|!!2K}hVyKT@(>}YT6*Ps>R6#JF z*_P4I%JxABG>4Xk$#LI2kU(S(S|@V}rT`;E`?&7Q-(X29$~Qs~GY{JiWg+9DBJ5qH zSgi*5zGb+1@>Yxq<4foS=}98*uT^ggD#ub*xb9Cf*@|%=c}hmdk;_4adb58r0e)`O z%j3NlqYiib(j=^Q9pJF`-4S)ej%E?t_{%YHy&u-$&MM}$si$6GG=#FaI zOV;cOIChTsb0G%eWPa{450707d0bY>ras7#Hh$!haGQ2D>L0SKZI!17_)0^>Xlwwd zm&tz^_2qbktd3@r`}`i@v^gP;0N{mEkN4?RBG)6t&fNDmJ5)-nOh3>U*}s$!BpU?I z`u=bfDMr!PdxOS=duQq>=Am{3e=qXY53bUllyMBARz`_@iwuUi)gY_6#?>*K*I&kG z|KpJuX}UTtJ*LK;!K)fl7?h!>mi~0~BmB)m&4@-i?;4O)Y3CNeOHs~C2lzDQ88`1Y zKk8YlU`IX1Id?qojT`u2?o{Fcn?t2un@Hji2uq?+z0D58nKqZn!Dk1pMcrEyM7Af0 zok(_)IlK2i&lFE6m>)`0gfA%hGalphdKm}Z6YHFy2UM;<7bp|Vg9>z)f+lXAd&Ym- zHq2jrg|04R5I|pvFC}WG1FGS0gKOzNsBnUxv}!Txah+d5{-?@Pd51l$qTYjkqphh**=ML?YM6g-QzXmgRVykqHev=bn6Dqn|SG%gZ^Y9BP(8Q?LmQT+m z1@_X^p$8KgL&T>E0O`kNHe|@%YIHx9J)xVf$uKY4(zbs<@WI9#%_+08`j2*rH+|80L)PKrtsM(<;!zXi*W{q zM=&rs+Kh^ix+Q71jAgtq7{mdxukf$7bt?Z5IGAQ+=5#x*i?7lnqgVcKahVfi>2M#g= zZfc$Tgfr2WRG24~nJu=EbX{_Di~e3l+kxw*fiX1+-Q;U0y-SFo3S?A>b`D~Gm=f~H zj}8Yky2mPf`=TU%7ZphRfU$Z0M`x61fJtlk!G}a11*CGAZt~%&xHU^VNf5bE?Xxdd z?YfRP9~sY$O%jYsc~T5+KybiSH!Db zg$+kW0i-ug{ZR3!=!Xg;w;`G|FpcZ~?L*0ti3q$)jc$;P#xBb8!5tw<>}N8B%QWC^@CF(~PTX7BHEq2IG3(wN;~^LHy`D^nX~?7|0Io`;cg z*JqS+j>AXEH%Y*lqs<7>PLEux;!M$TMgh2!0aCu=X2ItDHLkT@slI~gQ)|%qb+Gq` z_1qY0Wy}3HfiwyQKHRm8Lywj`1kv$XBxH#SxBuz=on&{DQktCC9JXza*be0fHt4oP z>0A{P0~icwne?WA{lxx5iiW%>SwDS6RW8tm@U06b!Z2;!sx#caoMB1K(GUZ#Crp_) z0eX+uzA5uMHB)&K{*1!%Nut}Ygrdr5ykG`@3=ulU0E|(QTnc1EgZkuh0r6R^3-U>; zD4f2^B{@bjUOS$z=2n&&+?he4p;O;~5{b$?HybEkVQDV_Xg^HaPTV!Uqs8} zH*!gt`}p?jj}F`9070j5rY+InC4*h1_9590Wda{EKC^3LqSYSQ{A>nlJ=#@jz{v^9 za_4i8*7wG5wn*0MhrgLImZI!wN*i5zDCl+?qJ{XSj^{#n++i62jp{q?YytKX&o!S`|zbRXQ-VM#oTvm8g`^ApCC za1}a<=HY18Bzcd#?MY0eUy zkxL_fr-X+7Nw`IgxnZIN;P>0Mc}zG^8f}EDSyWY)@^G<<`TWOY*@C3if^wU_p$&)O zr#AF`CZ;Jc6YRnJFOEb`wp#c>CG2EH>k? zT~Re20cT^!v22Un{(FCOb%aNfEaMlC7A56FPs4NkR2#Hy_tUsOK*0MYHiLbz?(}AR zqejll#o%@-o=0v0oc~R7QMb=4HtE7G$i4YT@}1bk_Lb*gk26K^s^Q0e2*m>@qsO2V zLn3dtoYNd_+ZDzpOqI4(0Y>4Vx$IhIHl0P?``#-EgtP~$2X@!(W(QVwBadkaL!-y( z8F2GU@`Z|V49~|730a!eIIxOKUg_=_clV)eLb?JlC+QRc%uw=5X6wjfhLJ8)*Uu~Q z6_p>0;F7TINETc*tm zt3bir(mW!2L3J}uNAp82`_=9O!%_+*(#K2V-&nilYvy-{r!f@C1N zwfcBd!Tu^iUqVjHdJ$vejfT?j(q)A`rY?hHr5*ljRQ8Fmg^&l6_dL3;yVx9d`FDT? zlv8{0Dx^LG<5QkJNr?dh#K!jh0Kfe^(uonX8v0)rRk-#S%>8uoMxIwr=*S z);-E(IQ>sxPJ2wa#&c3xm>r&yUQp(L-{EagF9I%gLBU*lA;lxWE_okyaBk;>mH#TW zpm!MQPC0oObg!tkC+8&?@r1MX8jpyvYKQRzV1W~VE&G&xeEfS}hx)=f`gq3E;jZ-< zgI@Br&<>BjQfk=$>Y3!&w_dZU;9XTs;c?M6GeRy8?HuPjgRJ^FjaW$d2u2W2V0nMZIJEXX?S#k)mlH zpeW||wVE+vcssHd`MC(uBnyB3{LxMQMIIpRW;P$k4ny=eWPoOynMQ%CF zqs~+DxXJW`&sfvSLN(@D$g=7JRwUY$O$h?}CGX$xOOZpNX<&Z#4^B#i(Lg9>v`$DS zQfbzk0=27U=St+L~`~X z|MDd+*gjw8yQcr<4isCmSaDLH%|MWU`&xS6>o)~sAFSe9F1xwvD&~GQ(2}{_?U%L$ zp>OG5dlszh9_4Y#*c^zYmqA^xMH>}$Mbu$q9-t9AbD>ZpCuaJI>AW+6q(%B2sO0J~>Sg&0CO+VXX{ww?tL%5dPKrVWj9~QxUPIapW+CJmc zcciq`^mR->&O^i)MMQBu;nI>a{aH=#VTxohyOOKZe|U<&G@QUVQ*i8jb)JQy!IF7L z!_Mks*n8QhKh}dS$8ISYM}Nf|@8sbM7S1UQy;R6~JN;trS$MRMNaI7f`Vcz+0dkz8@ zVlEWJV-zySfTms(hT*Ti`&WVvqn6^ika*lr3qh2bO+xd%7;a=26JZ~oM2<`52FW7XGL@U3kHJleUIP!6~3vH3mG8?_PJ)(@~;Ha zfRo1mw%i3DWhOBiV2*hIsP96$PB#vnoA|IS7tPcU_1C(AQyAul5XwmNOZnh+{lOA1 z)Yq#(xc*a%)GLW;2`3dhTd1A^TygzPx=%ao(?oL&XDO3Kq2v0bFOe*oZl;e4(BP9}o*G(=kxzVx}_-(R!{2n3XitHTD%4Dv1-ImQ&Y_ zjSV-hzCVlxFmT4#E3uiHH7ie120@D9p`VnHvH5TW1&) zT}hiEqKgTvl|mp9B`yuxUIT436Md!0Vj&wI^I*we`c-=J+zCuDxz8zQz1|Hnw5G3BxiTeGt3hIWh`-#!{bk@1#y<~LHPX$5GgwSTOaoBtFj4%}e zm+}hpA%IejksX)O9mkJ4PMN4IKB*n63?!k26%-#z-XiE%(V!AHZS&NBlD~cg`8f|)suH|%j|8@HpI`W5AnL}1^|uS zDljcZ`)y>vikI2Wmp9_X{g++HISvfQwAn22`e?gfrOAnv{tNh7*HT62D_%oPzHPxXxv zr@k%Pvz#TJbkQ?opk!~0cXui9*ufh5{j_$6pR5>n57V;3F9{K9{jc)E;I#qC0wfN0 zSqpJufGJ^dB}I~9i>kOMbKwjj&P$Ofz(l##>$Ii)_}^`?_9ofk$UaZ`m?J;3S{+*; z$N(h+st%K<=IJU<2JQ_UfNhWQFRUPTSn{l#<46DWA8Qlq=zqk$@S(q}KrG+wv{}Ih zX}t1I4LH6>F9FQKKD z^)>G1@E!mjcy+h7^wg9F5A&3&y^UmNoy&UQCd+P!j=BKFe~K`JR7Lz4JYu2qxB42_ zI=Hih3GGFOKgw|J6{s}wW;nktfXF^wBWB!pql1Xazm4-Pa{*ew231u}C`y2_hsEf!w2+ zB%C@EU^%YD!h$XtTk9ZG(n@CXMBxmOp}=Bb1#4~KOKeYBAs}&;(`h*sfL#>{sn&Sr zBxZ|JS#-7Gabp&O`eDp{4fI*v_=mge2R8q&MyFX4T4wHQ#KPWx{?V!}A>6>{7DX@g zHy-%>!$JDVcgS$&^Gn)piPX9zX;$aXC*f-MW~3gx(#q~FYK*K<($4Mx2J*!qygZ^L zHsjz_y?>#l`XH|#slnNP0EUslnr!5VJsYCg2{LrxwN_B6-~AISDr*!4R_x3+nD)W_ zmmESx*iyhYA+nt^gy&G$J^Q|C)KS?a^LP`Eni;WMZ6>RBJsq2 zfyx~@<90snx9-ZP{DuD0gBu$zo?{|nNzO|CK=02I&=c;Wv!*x^z*5F)Jb6{xCge?@ zAIZaVr#uqxK>Ayaz`O;ik3e90P(OiC4xiD2B?F*GILkew!{{I=hiK}^Z1OVX;!O>E zHDi2`hUIO1gr0b0zZX4|_fh#7@T3|E4D=5xzlom_jDeB+L{id5_)2Ll8AMKcz``c) zR`7?u%W%5CMKr_-Ak#Ma0!j9zs0M?&$rRFY=%eD~_IL827o!ju`U6aO-W23<1;qgb7LX?kmvsqF2;6gy{&mT^?+ow89OM zzE}*VDKze^6Z0p8$3LR1?BKtcD#GZ-(XgM!@`^R&+UfS5l@VJd#~7s~A3pn^FJV@O0h~i4+{bi{V(3R!&iK;w029Frxc0I2i`a6-QrCqFt)jV9IN^&6 z2X)ToEs&Pyg-8kST+QH2uB8cm|F9|>Ih-?6s!Xgk55wH)Lx~2C<*b?SetXYiZlGwN zVpUNGcw-aK&-*DMO`7o~l{`c4!}j=E5B=I5mdIn4O}li1YJM#w#f_5Bv<|(c;FM2ihq)ndiVIn^PaaNb|NVi?X$EAnDF)YRKt=HV_}9?Tmr z$YfBqiC>8V`wIO%F%yt%+-yqzdB%lvqaT9V;2FYIvotp1j!ArUy)iVFVbk`p5p2+WxxbkfZcpIJr9m11uQt z+O}7Qaw4_Vpe|$%=gUn%X0#O@6)!6NJP>QkpC&a(MU=QIBTa-C%!bpx>WnXgun(Cm z|8ua#SLSvAZDQNby?+n6Vk;CiKSzp6u8Z-JLh)v6!8jp*VBPs9zIhR2g$a}<+8u4A z7`4T`MQh(F#xH#6UGRr(g-X}U2T%|W8lLFqf$H7{jxNFAzI>r zu8Kx*bSz!PSm8=a5SAuHTt+tm^KoBu;(bUXv7#aE)n4O$auVq@b#Qq90VFQ6hir=X zAOk;A?UDKmRqUDGl>Xbf=S&yJ1#FQP`1b#t+l%u0yp0&)`tWRs=U2Vax>gtllRmiBVtx~)clF*@c#%FMLDVhnVVu)))?@h_Tkz1Dx6r4O{ zY*_ZU$!B7O4mZw17uQa(0d;f;sk!#0x1?N@ajYZU=Xd9BXmHcTio$^G*m#|_Hd;yo?))X{e5m3qx3yoY}=n!pk}_8$&$D`R2d_Y zg$0{vX6MwPa+Afrz7U~g7lPbF`)P~bUGk*&m1iYg`^%+N<9Bj5fQ)z&ByKph$j*%# zO262sywV!?8n+P@o|!XX^yxAq@45?o3i9vBtwk$3Yh4p@7n52R4B8f#!k3N?V-l4` z_P|OCJ~;uQmXeQ9G;NR#mwV=#1CtcA{h05un%7B1oj+7KIHP3fUC3KvzVqa7MDhse@>crz{w7hk5h!ypUVG+qBa&*Mslu@~}- zj}2LaP?@>PwaXmwm_YTx!H%|{;NP#Ungk;1-h21WGopcQKo*4ZY)JLOn>zbIRC5|u zO>9S+oEp}S{areV9gPW0YvIp$pNFq+xsjkU1rDwlfAO|3z7miA-!i2yxim|rt+xaX z9~TUO5Kq$|$jLmjIco1HMmp{kj$uIw5xfQ>u@$VOn~zB9nj`x!=zU25N~=TC5C!Q_ zU5h=mzGaptn96>Fe1|hJuyP%Mg`1hzS@zAyjH2f3w zp}Y3(Zrd_OxVmV|CWC`_w$QWp|6dbW8x;k?rWNEBLs7Q;B`k!dKKE-W|Uv7#ws!wkT^Q z{p`Kz(gQ#CbjvRdLXnM2ga=!M4am~kd(3QUE+?@ccMkiML-EZ?PS0dzSF@WxF2p`n zFTN#T{$-uGumqx4$Z~+E&E@s9Q;yf?X0J_^@0v2Nf^#IUmf~5>3pRFV z!ws%pe&T@^1citPNyI4^ABsTmf8+@Pa=WkQ&GKV{PPJ*4CVP%)AXl?JL*-OwGGW0H zKnxo>g@lElgGN*!&9y_f=w%{U$3=nCD<0}5&A4JrTsS>0Pcq94u*=uQ;i{y>`a=LV zH#_Lvegd$c7Yvj2;vAfPYp8~Ta2z4fDmxuOZTVkk3&#T2bZkIU9Nu5i)-)EpO&Lm9 zFB87f5l4-0rDxW)Ftdp$F0Js>rjUDffa)jT2z97=_9nGSG6ufapQ;GmC2Hk*Oj*Wa z7y)vrVna~HCmb;8Dy>8x8KiM^C1Hq@+DZRMjVM#2Jq@u?h?_*~bEu67p6ZDGV<+83 zQ86HUG%~9aB4J(SlqJagg%8DTJgF?V#<|da{3iHg$X{{qxQ9?gCP1V}1S91IfTXy~ zL|0kVYO(cJX#st0Ony-V8pi<<##SxZT``Y6@@KAK&!0$29(fnmvURJnu(6f(iu<(Fqzm8;T`vz8-`^@9^rKKN7ia&iAOZTAbU#Tp-(5i zq5eWVYzb}|l{9KsBCj|><>)fIn+`+aP+Ie{LB)`NR;4WjNtpqbhd~qPuW(BSpPPwV zz(=KJtIo}>zsX1HSW*+4M*q7U;kfW0)*4P}%w%=S^%(V;(9pkhKx$P2p#No4-)m4n zF4Ch<=Scm0+a3EQ{<%H)Jpl*m!>)^n6GE^$2;@itozqiRP1yZ`?F8*0!e%@`$<53 z1=~9>s>`1v_v@DVhmH)K;J-hft=0!r&Ck|_KkbkUcF5bW?w?*5UqB2fzC7pd>V_lD zC%ry~-au~1KsO8jKoa!ZZ;Nw+QtTn=~8GOw%O3hWhi?0|Gfe^B3 zylWqX$x3-c8o!YA;So#SPOY=~`uyBmmXI@+qB?8Ae*Y9%h-PI3HM;@Qki~St-30Ul zc?wGetk5hSmvg;Mz#j*D@!xwuX4-@`r>7bIx#Wf9}DKU)V0?s#}B|#7o+J25e zy0hr3LNsPS-S1(Lj+ET93+X4zRc>~Z#+eIXCBI_U6NHx|>{H6UAwZ|uAuN<9!uFYv zya~!YjRdbABt=c2@EzSxeR2nKf_Sii2!zZ4#d#kC2AeKr!Uh71Xq>PVM&gS$MgT+n zkv|qnM6w1zWPu6`x7v#%fWb=`nhP`K{;7RO8dysN9neuSDgYg@#_(F9=^37*f)qhA zVzI*jb2`%YA?N1OFDOATT$RhltLwi+NGsD+8Hi$(Z6M1HbWb;szSbhZjWwn?stgN7 z+P0uh4=rh#RG~X(>PsoXSQvUAI<5?Z3kT0D!H5QkUZs|4$w-a1pvelqku;OZNY9o| zDZ_#fP=uReBeh!4$Tp=W$yqiHxZHIS!-7n;a@!Q;f;Z%pV8G1$V~}lP+H%#7F5|Wo zkZod{f+LZnZ*9CImn2}rTlY>ku`bK}r$Sc;E@nppD`LcA%NhsT@!!b}k*kz4EidPq z7BqmYFR;U^xiHk!1DyiISnZ@T>=68aH<}auJpDH^(afmOk%A77aN8K8g;ujj(#N*P zT2iMoXG4D;IDLNQg~7S;igI6VPn(?gz$K6aAsltob}XywR_GFAsku)(bz5t=NzXM@ zx96A7cciX*9A|WGP9IlsEPwm0Xz0R50O-&=XihIgoy0FewHm|SmY3@;9d3d(2ePK3 zSA}CE+$$823}=a!D>qKu6LA{f=h%h2svH(ZW{U6zeCiWlrzy}=l{E6#SgPXs$BVZ( zh63`MZ%nTxdV&cjO;vWnG>+x@t_7rL_0S0Zam= zx^zX60%t{ZEb-jcpxijrlWN*7od?m3%HhCrIIL;DXIRGqCXpiqP}bcxLFV7kC#Lzc zm7;PlqqKjTaxHyT6=f+#T{5N}deqRq+&;IA+3X0fw|^<%W0jjrVt#)k*cylJA~1K8 zAt+d7wTb62%uNK8jR%Q1D%m#D0f2A_xP9KUR0!1kHNSoegn^FeZ0<*p0anWD*x7N= zkiE&h@=4j&R!HV7OxT$UpW2=I^wBmt8sMGQCvapJcG}mP5CAMK)Dh zNOc-r;&o-z7{f9$lRTZ78JaWll`)(Ck<7V?FQSjBQ0;TyBq20zPwqM80+`~{udK&= zbDgadwP?eWGe2_ZJS4q%ZB~|+B=Z~;^im(;>_%zlj+zk0XBOBF6V-qyO$>nP zbGgctR9hGGI-|hLoX7BPu)c<7Y<&eZ<=2g&R@=&k%Y%iWo9K)o>trCY#(^@0=6?ge zKS9iTH|mSIJt11OPH94n0NL`~Ws_D-_>8yJ3@4FI@%!0b|FT6T-B*=nFSrgdkq1_5 z=11@pwNq^M@E3%rBO*eWOe0L|o9v)?i+OqS<=5A(-ikh1LAcOXcmjx=c2)o4X&7zI ztU&tzCKNPwGOazps9H9v2jV{#uBq3pP78s@-+yzhO7hQ_4C0Z%0eE)m1g0#SQc?CU z?R(-i7cB7|QWx%b5RHwUg(tqBMKk{0pfIOa*hLLzu8;0~2$+L+mn$qFF^$FLfL(5? z1Y^RPiLvZs0O8Gwj}Ms&Q?T^<&?Sjy#4Zm#Yt3zx$n!^V%2y#@GSzf}cWevb z+4z|TiTfw3@zY0h0qRV7hXQJGjtI0MoP!|{Gt?u3Zh+*-29tLb)&zBfy;yaFBiG3r z48usO`mJCE%dFZqx5Q~Ybmy4JC-%$IA_YM5(4u=1*dsD|1?i>q_A$kx;Em*-ajIk> z2$RH(0!TvFi${7LRO=+|R!)HwkN3%jV0}jSE5X}Q74)KPU^uftHtz^+Fn&rhhBkq# z08FgR|GOO5nReZ5N9p@)*n1M2<|7{FbUG`_H8f@xo;OrnuyzX$B< z1Eqp%Ym{b6`!wGDUDN++BrJ@%;-GE*H9%|ndigjQk*#KxiAqa0U*-G{ZD)X^4xOsU zT+jLXH0H33K6OtZp9HKbo%LLQeq1kv6&1mYb}-E7FXh#Q&uMFL^KzCJAV(296yg3Vxoo8uw+AkjV(2bkUpUD;|;L zxY~YSaifbtp>GG(x~EyF^>*H4riguLaLb1&J8TDT6V2f*`tR@&sMq{(Y_(EJL9 zw8PRf3dFy@3L77P&M^$VZTdi^{nTGWtcDHnEL?1=m#U`yy^LBl06wrdM4ar}v}-uM z0A{V2l2-slDg&^Qh7Gv(Gf2bFlhANq>Un@x3r2hm>0QAB0uDqUX@YYecjrrmZUjVe5hE;_c8J(B1u}%vfuYV=xsK1z=K=wC0D+_8-qW+Xcn}Zv5oyHq!P+GgwtF!KSf^W&(|U>k$G}H z^>HoyXaEP=^t($%b@T_QeMN^=pWl7*x_%B!c#4np2@(40e5HW-G_^VqTnhC-WaCpN z3b;~Q70O~BH7%6+)}o1!?P@lx?h!5LR*(nRh^}engTOV=2|6;=GBlS79-F-U#C-D= zqCG8kk&u0|eHqE#S+YLuZM3k*ZFCWyfKzoY1)xGEPAJ>eCd!Cst|xn(#B-?JcCJd8 z-;1$QjVqYf1Q-{g3D+z^wZ!%rO+?YRMRJ(-0*m|hMPaSobM1b0H10F#=(9)&xPQ6u zglgk*!B<5{Ug)}401Qilreo(2DUm9INjOJt!>J|#lEz3X8CAXmbW$FMoR7Zf$x86G z48Tv60miC2mo(pzLoBu2s@!$s(K5Iucj`P0NyRnvCrsBU@8tG|$jw>a%I#>FQYAHLQ-cM*)Z_?MIQEh9SU~ZKL|C}l=r{dNTqNq{?lF|H z6PNWr86Wxn=YR82uO`teIsOR*ELTx5fL`P&>;zYcuAQoIhOw#J7}Qq9dLkZa7<6Z1 z;ull4i*lI%rcx~k>t$&Rbe=;+nJ7!SC?B|`sNmqLD9On?bgzL}KyVtSuI$~sK}F;b z1M5!JPf$r!X()43xMJ0|HCFmv~HHl#2gpi5R2JQa>SzcFqE-#2P0sK$g z_EZ4IO0E0@WrH>=0&v851twfN0*~6cu8%b^76CIT$r_H#8I-?x9&gE#A-EQN94%bN zOM-IL-JK%^xP82Cb;d~7JTIfUX(yAPQr&Un<<-vTH8wZX9!VRQL-)DpU^lsn3u$|^ zGBb4&vazXPN;1KJM8Z`ECY&OQ0gfMYI;{qz3>-NgP-zIcGS_LqaXIpkGO?jszEevX z=7$4MglZ@#?yt@T&d7L(NC6Sje?B)Yuaf$kZy+(VfU6G)0x55=`d5Rngxw#AF?72I z*y{;hpC}pDB8eZ(kUY7XuMs8M`$0#?KuGi+dw@`T$imP-sKvSbSVQ2h0UuMDDpZOT z&@_zug+B}#o3y+Jtsx`>HiJn?Ag!hAk0x~gbm!8D>8sz9uxt(Mq5}~Ng25rM;V@~; z_j9t+3)jgG{Auz`(vgR**`~ClLe~gb_aO*Eu5y|8SIJi#agJQz>ycC@s2gKi{jShi zu=n;VY=@nI9*#W?VJ7s10kKq5WJ(e`dTXvleBiL8si+wB7Dl?l(?Dl|HcF4uohOO1 z%IER9exFoNepsON26yznH3_}}@=kX7A*SJsk}f!Spqv(d2ZEsEsEv){55O22 z2?mh`63nDXy9$HIfH6(^N!56TLFU&>0fezPs(l2&A5eMKe~_swvtNA(=Kk(+<_o{=3uNjg#<#(8HxnvQxg?ERmO(Ef>D)$ce`K26@CWDM`%iW-rDKG zcpq`lSQ!%T&5|b{S*4i#&fK4tbldVE@B6DACXVx= zWr4?vfAfd3;5X)%v&^8ao(Ox<)%7z-PX2F6!1cd7bbmEBT{bz8{9iTil5(r8l0l@; z=kwOAS=ukH)1-Or35`&anNGyPiFtoMZ%ii5*cx-=7DZ`YxK`ymc^B!QEA{B~YkT3A z-7k`@{%iyOn-U{OP+g1%Ra8Bss>qmJPCH}Np8!nx#YRZgS9k*blOhMs@`Q5jx5xsu z8XmiAA;Z}!=8N4r0FKcEZD9)+y-c$^`gF6BbT@nS{CZn!s3gvapVl@ToOlT5b~L6N zJEPX?W_daKD+29ps(al9S9YW|!GG-uMOlJG!ZMDX;w1DLzPU!jg`Mj{xM#k6{s#mg z`9&`J5vd)i-DAR-$xTnn#=C*uAk#yLZmGi6Z>aeeVZtR$K#hcnhYXFEB(@BWhX3T4 z2a-77ea_nhesAo(|IhKmi)0b*$aQR26{MREzo7AAjt`-kFwvxGqEmvx@L9v%m?Ed= z?x5BeAy(e}ZNHZd5qOB-FYeBPq2TuSomH^86Bhkv&bX5$frB^HtFK!Q>lW-O1X(qV zqQX#iN)Br%fSwG@odlf(ofLhIu&RFm8J#PPqtRV0((S?zsI{%wxDI}6{p8)L?eUCq z%2d4b3Z7ow(5(CZ^rGITogEQ^wr+CzA3|xJG&AGAzjG!M*iitn)}I~8zp`klz|82M zm{kXup(X7x{?1swB{)aykZO(>L;m^uf^6rPq)x7(F=lZCK6o6663-pU`>KlvV^#f8mVR&CofZ7-abi1Eh>2| zL?SvA08S-#yV&pyet2&M&zw4Q)aJ!Pt!qW`u)bn7s=(THA8k~B0A4hz-gDxe7W~AFq zCh0<$z`*Opl2CZrYvHuPr3PbDW&$7zTdEBaEyX&E#qGKz0)?4H*uI`ip{w)Uf8@MLmd@<7b7nZ z>yLDwvZHcPt_>Fb(hSLW5)CV+ zYW6O*KI?C4&bI_G>>3qj?u`8S>Aj52xLs_puPKk3hD#+pC6__sE5@QIbuVHS2>>Ao zy3FoqhwZmRG&7=dFo#XDf-#c)!fC`6J%*VdP_=1~%na8{;7R}&E7Sk_Y}l*IFP3n? z_4f4zlV+_q?g>GSUCVVW{^jUshlEVsgScAanC|_4PNPej=A8!j*9v$tmQGzKr)@FZ zktq_y-xUC;>uW5J)bG?>dClmgwH+5xT~hEOtlz%ZE9Ka$S5f@7Z*g?f021~%H}yA< z04w5L#Jb1veVQvnuedBUkdFN?jqi_d*N>~!)791g0hr#@Ep;m5ZI0{X4akgc_6{KP zq6j%O9k|OU^In-d??}SS#Gb^Ni(s|U@#ot)R5bSB6X9nW*jVB2fK>Ir2K>I9lkhL^ znB@^~$pkcH{5>~szUH6gSiZ==q>@uf0429YN|}s@q3o6C{6}7TG~t$6_u_<@%0JBQ z-osHmq#9TF67rV6bC5?XSA0yIS++b#e!W;ejt=*zFrPTIEO*9u<1WxOV6nvJl4kJ?DKH`5rnw=Yp_&Da4+`GsvNQC(G#!q7b7e-xkw{^y?N_s7Y4vOUi(=-#ytcKwgLY zlW>`on0u&YCnP?$-b*4;s}mFYk4;SZxxgS`z!S%N7N0v0*zb+e4rwZO#{qTr@I_t5 zqSu=;2JG~B%tFmQ7a;rtQDB+i0G6wh0H;yDvSZ@F{Z59g-sQA*sr z2rWwS7~9(A8vF>a! Date: Tue, 12 Mar 2019 14:10:42 +0100 Subject: [PATCH 006/403] This update adds some functionallity and has reworked the routine for loading data. Now the data is stored in the order that it appears in the mccode.sim file, which is more intuitive as it matches the order of the instrument file. The plots now also appear in the same order as the instrument file. Added support for advanced McStas keywords: WHEN EXTEND JUMP GROUP Added support for finally section. --- McStasScript.py | 463 ++++++++++++++++++++++++++++++------------------ 1 file changed, 291 insertions(+), 172 deletions(-) diff --git a/McStasScript.py b/McStasScript.py index 3a3c721e..049babc8 100644 --- a/McStasScript.py +++ b/McStasScript.py @@ -10,60 +10,107 @@ import matplotlib.pyplot as plt from matplotlib.colors import BoundaryNorm from matplotlib.ticker import MaxNLocator +from openpyxl.worksheet import dimensions +from boto.ec2.autoscale import limits try: # check whether python knows about 'basestring' basestring except NameError: # no, it doesn't (it's Python3); use 'str' instead basestring=str - - + +class mcstas_meta_data: + def __init__(self,*args,**kwargs): + self.info = {} + + def add_info(self,key,value): + self.info[key] = value + + def extract_info(self): + + + if "type" in self.info: + # extract dimension + type = self.info["type"] + if "array_1d" in type: + self.dimension = int(type[9:-2]) + if "array_2d" in type: + self.dimension=[] + type_strings = self.info["type"].split(",") + temp_str = type_strings[0] + self.dimension.append(int(temp_str[9:])) + temp_str = type_strings[1] + self.dimension.append(int(temp_str[1:-2])) + else: + raise NameError("No type in mccode data section!") + + if "component" in self.info: + self.component_name = self.info["component"].rstrip() + + if "filename" in self.info: + self.filename = self.info["filename"].rstrip() + else: + raise NameError("No filename found in mccode data section!") + + self.limits = [] + if "xylimits" in self.info: + # find the four numbers + temp_str = self.info["xylimits"] + limits_string = temp_str.split() + for limit in limits_string: + self.limits.append(float(limit)) + + if "xlimits" in self.info: + # find the four numbers + temp_str = self.info["xlimits"] + limits_string = temp_str.split() + for limit in limits_string: + self.limits.append(float(limit)) + + if "xlabel" in self.info: + self.xlabel = self.info["xlabel"].rstrip() + if "ylabel" in self.info: + self.ylabel = self.info["ylabel"].rstrip() + if "title" in self.info: + self.title = self.info["title"].rstrip() + + def set_title(self,string): + self.title = string + + def set_xlabel(self,string): + self.xlabel = string + + def set_ylabel(self,string): + self.ylabel = string + + + class mcstas_data: def __init__(self,*args,**kwargs): - # Name of data set (usually filename - self.name = str(args[0]) + # attatch meta data + self.metadata = args[0] + # get name from metadata + self.name = self.metadata.component_name # three basic arrays as first self.Intensity = args[1] self.Error = args[2] self.Ncount = args[3] - self.dimension=[] # size of the data, list with a number per dimension s - self.limits=[] # limits on the data to be used for plotting - self.parameters={} # parameters used in McStas simulation - - self.xlabel="" - self.ylabel="" - self.title="" - - if "dimension" in kwargs: - self.dimension = kwargs["dimension"] - else: - raise NameError("ERROR: Initialization of mcstas_data done without dimension for data set named " + self.name + "!") - - if type(self.dimension) == int: + if type(self.metadata.dimension) == int: if "xaxis" in kwargs: self.xaxis = kwargs["xaxis"] else: raise NameError("ERROR: Initialization of mcstas_data done with 1d data, but without xaxis" + self.name + "!") - if "limits" in kwargs: - self.limits = kwargs["limits"] - else: - raise NameError("ERROR: Initialization of mcstas_data done without limits for data set named " + self.name + "!") + # Methods xlabel, ylabel and title as they might not be found + def set_xlabel(self,string): + self.metadata.set_xlabel(string) - if "parameters" in kwargs: - self.limits = kwargs["parameters"] - + def set_ylabel(self,string): + self.metadata.set_ylabel(string) - # Methods xlabel, ylabel and title as they might not be found - def set_xlabel(self,*args): - self.xlabel = args[0] - - def set_ylabel(self,*args): - self.ylabel = args[0] + def set_title(self,string): + self.metadata.set_title(string) - def set_title(self,*args): - self.title = args[0] - class managed_mcrun: def __init__(self,*args,**kwargs): @@ -117,112 +164,75 @@ def run_simulation(self): # Assume the script will continue when the os.system call has concluded. Is there a way to ensure this? # can use subprocess from spawn* if more controll is needed over the spawned process, including a timeout - time.sleep(2) # sleep 2 seconds to make sure data is written to disk before trying to open + time.sleep(1) # sleep 1 second to make sure data is written to disk before trying to open # find all data files in generated folder files_in_folder = os.listdir(self.data_folder_name) + # raise an error if mccode.sim is not available + if not "mccode.sim" in files_in_folder: + raise NameError("mccode.sim not written to output folder.") + + f = open(self.data_folder_name + "/mccode.sim","r") + #fl = f.readlines() + + metadata_list = [] + in_data = False + + for lines in f: + # Could read other details about run + + if lines == "end data\n": + # current data object done, write to list + current_object.extract_info() + metadata_list.append(current_object) + in_data = False + + if in_data: + # break info into key and info + colon_index = lines.index(":") + key = lines[2:colon_index] + value = lines[colon_index+2:] + current_object.add_info(key, value) + + if lines == "begin data\n": + # new data object + current_object = mcstas_meta_data() + in_data = True + + + f.close() + # create a list for data instances to return results = [] - # load the data into the list - for file in files_in_folder: - # Find data dimension, labels and axis - # Find lines with these variable names - - filename = self.data_folder_name + "/" + file + for metadata in metadata_list: + data = np.loadtxt(self.data_folder_name + "/" + metadata.filename.rstrip()) + + # split data into intensity, error and ncount + if type(metadata.dimension) == int: + xaxis = data.T[0,:] + Intensity = data.T[1,:] + Error = data.T[2,:] + Ncount = data.T[3,:] + + elif len(metadata.dimension) == 2: + xaxis = [] # assume evenly binned in 2d + Intensity = data.T[:,0:metadata.dimension[1]-1] + Error = data.T[:,metadata.dimension[1]:2*metadata.dimension[1]-1] + Ncount = data.T[:,2*metadata.dimension[1]:3*metadata.dimension[1]-1] + else: + raise NameError("Dimension not read correctly in data set connected to monitor named " + metadata.component_name) - variable_list = ["type", "title", "xlabel", "ylabel", "xlimits", "xylimits"] - located_variable_lines = {} + # The data is saved as a mcstas_data object + result = mcstas_data(metadata,Intensity,Error,Ncount,xaxis=xaxis) - f = open(filename,"r") - fl = f.readlines() + results.append(result) - # Need to check if this is a data file written by McStas - for line in fl: - for word in variable_list: - if word in line: - located_variable_lines[word]=line - f.close() - - if not fl[0] == "# Format: McCode with text headers\n": - print("Decided not to read file named " + filename) - else: - print("Decided to read file named " + filename) - #print(located_variable_lines) - - # Need to remove the variable name and end of line break - for key in located_variable_lines: - string = located_variable_lines[key] - located_variable_lines[key] = string[len(key)+4:-1] - - limits=[] - dimension=[] - type_string = located_variable_lines["type"] - if "1d" in type_string: - # extract number of pixels - dimension = int(type_string[9:-1]) - print(dimension) - - # extract the limits of each direction - temp_str = located_variable_lines["xlimits"] - limits_string = temp_str.split() - for limit in limits_string: - limits.append(float(limit)) - - else: - # extract number of pixels in each direction - type_strings = type_string.split(",") - temp_str = type_strings[0] - dimension.append(int(temp_str[9:])) - temp_str = type_strings[1] - dimension.append(int(temp_str[1:-1])) - - # extract the limits of each direction - temp_str = located_variable_lines["xylimits"] - limits_string = temp_str.split() - for limit in limits_string: - limits.append(float(limit)) - - # Loads bulk data from file - # Does not seem to get the meta data - data = np.loadtxt(filename) - - # split data into intensity, error and ncount - if type(dimension) == int: - xaxis = data.T[0,:] # not used in data yet - Intensity = data.T[1,:] - Error = data.T[2,:] - Ncount = data.T[3,:] - - elif len(dimension) == 2: - xaxis = [] # assume evenly binned in 2d - Intensity = data.T[:,0:dimension[1]-1] - Error = data.T[:,dimension[1]:2*dimension[1]-1] - Ncount = data.T[:,2*dimension[1]:3*dimension[1]-1] - - else: - # probably just not a McStas file then - raise NameError("ERROR: Could not load dimensionality of data in file named " + str(file) + "!") - # should probably just skip this file - - # The data is saved as a mcstas_data object - result = mcstas_data(file,Intensity,Error,Ncount,xaxis=xaxis,dimension=dimension,limits=limits) - - # Set optional fields - if "xlabel" in located_variable_lines: - result.set_xlabel(located_variable_lines["xlabel"]) - if "ylabel" in located_variable_lines: - result.set_ylabel(located_variable_lines["ylabel"]) - if "title" in located_variable_lines: - result.set_title(located_variable_lines["title"]) - - results.append(result) - + return results - class make_plot: def __init__(self,*args,**kwargs): data_list = args[0] @@ -237,23 +247,55 @@ def __init__(self,*args,**kwargs): # compare several 1d # compare 2D - self.log = False - if "log" in kwargs: - if not kwargs["log"] == 0: - self.log = True + if isinstance(data_list,mcstas_data): + # Only a single element, put it in a list for easier syntax later + data_list = [data_list] - self.orders_of_magnitude=300 + number_of_plots = len(data_list) + + self.log = [False]*number_of_plots + if "log" in kwargs: + if isinstance(kwargs["log"],list): + if not len(kwargs["log"]) == number_of_plots: + raise IndexError("Length of list given for log logic does not match number of data elements") + else: + self.log = kwargs["log"] + for element in self.log: + if not isinstance(element, bool): + if not element == 0: + element = True + elif isinstance(kwargs["log"],bool): + if kwargs["log"] == True: + self.log = [True]*number_of_plots + elif isinstance(kwargs["log"],int): + if kwargs["log"] == 1: + self.log = [True]*number_of_plots + else: + raise NameError("log keyword Argument in make_sub_plot not understood. Needs to be int, [1/0], bool [True/False] or array of same length as data.") + + + self.orders_of_mag=[300] * number_of_plots if "max_orders_of_mag" in kwargs: - self.orders_of_magnitude=kwargs["max_orders_of_mag"] + if isinstance(kwargs["max_orders_of_mag"],list): + if not len(kwargs["max_orders_of_mag"]) == number_of_plots: + raise IndexError("Length of list given for max_orders_of_mag does not match number of data elements") + else: + self.orders_of_mag = kwargs["max_orders_of_mag"] + else: + if isinstance(kwargs["max_orders_of_mag"],float) or isinstance(kwargs["max_orders_of_mag"],int): + self.orders_of_magnitude=[kwargs["max_orders_of_mag"]]*number_of_plots + else: + raise TypeError("max_orders_of_mag need to be of type float or int") - if not isinstance(data_list,mcstas_data): - print("number of elements in data list = " + str(len(data_list))) - else: - # Only a single element, put it in a list for easier syntax later - data_list = [data_list] + + print("number of elements in data list = " + str(len(data_list))) + + index = -1 for data in data_list: - print("Plotting data with name " + data.name) - if type(data.dimension) == int: + index = index + 1 + + print("Plotting data with name " + data.metadata.component_name) + if type(data.metadata.dimension) == int: fig = plt.figure(0) #print(data.T) @@ -263,16 +305,16 @@ def __init__(self,*args,**kwargs): plt.errorbar(x, y, yerr=y_err) - plt.xlim(data.limits[0],data.limits[1]) + plt.xlim(data.metadata.limits[0],data.metadata.limits[1]) # Add a title - plt.title(data.title) + plt.title(data.metadata.title) # Add axis labels - plt.xlabel(data.xlabel) - plt.ylabel(data.ylabel) + plt.xlabel(data.metadata.xlabel) + plt.ylabel(data.metadata.ylabel) - elif len(data.dimension) == 2: + elif len(data.metadata.dimension) == 2: # Split the data into intensity, error and ncount Intensity = data.Intensity @@ -282,7 +324,7 @@ def __init__(self,*args,**kwargs): # Select to plot the intensity #to_plot = np.log(Intensity) - if self.log: + if self.log[index]: min_value = np.min(Intensity[np.nonzero(Intensity)]) min_value = np.log10(min_value) @@ -290,8 +332,8 @@ def __init__(self,*args,**kwargs): max_value = to_plot.max() - if max_value - min_value > self.orders_of_magnitude: - min_value = max_value - self.orders_of_magnitude + if max_value - min_value > self.orders_of_mag[index]: + min_value = max_value - self.orders_of_mag[index] else: to_plot = Intensity min_value = to_plot.min() @@ -301,8 +343,8 @@ def __init__(self,*args,**kwargs): #print(to_plot.shape) # Set the axis (might be switched?) - X=np.linspace(data.limits[0],data.limits[1],data.dimension[0]+1) - Y=np.linspace(data.limits[2],data.limits[3],data.dimension[1]) + X=np.linspace(data.metadata.limits[0],data.metadata.limits[1],data.metadata.dimension[0]+1) + Y=np.linspace(data.metadata.limits[2],data.metadata.limits[3],data.metadata.dimension[1]) # Create a meshgrid for both x and y y, x = np.meshgrid(Y,X) @@ -326,11 +368,11 @@ def __init__(self,*args,**kwargs): fig.colorbar(im, ax=ax0) # Add a title - ax0.set_title(data.title) + ax0.set_title(data.metadata.title) # Add axis labels - plt.xlabel(data.xlabel) - plt.ylabel(data.ylabel) + plt.xlabel(data.metadata.xlabel) + plt.ylabel(data.metadata.ylabel) else: print("Error, dimension not read correctly") @@ -409,9 +451,9 @@ def __init__(self,*args,**kwargs): index = index + 1 ax0 = ax[index] - print("Plotting data with name " + data.name) + print("Plotting data with name " + data.metadata.component_name) - if type(data.dimension) == int: + if type(data.metadata.dimension) == int: #fig = plt.figure(0) #plt.subplot(dim1, dim2, n_plot) @@ -426,16 +468,16 @@ def __init__(self,*args,**kwargs): if self.log[index]: ax0.set_yscale("log",nonposy='clip') - ax0.set_xlim(data.limits[0],data.limits[1]) + ax0.set_xlim(data.metadata.limits[0],data.metadata.limits[1]) # Add a title #ax0.title(data.title) # Add axis labels - ax0.set_xlabel(data.xlabel) - ax0.set_ylabel(data.ylabel) + ax0.set_xlabel(data.metadata.xlabel) + ax0.set_ylabel(data.metadata.ylabel) - elif len(data.dimension) == 2: + elif len(data.metadata.dimension) == 2: # Split the data into intensity, error and ncount Intensity = data.Intensity @@ -467,8 +509,8 @@ def __init__(self,*args,**kwargs): #print(to_plot.shape) # Set the axis (might be switched?) - X=np.linspace(data.limits[0],data.limits[1],data.dimension[0]+1) - Y=np.linspace(data.limits[2],data.limits[3],data.dimension[1]) + X=np.linspace(data.metadata.limits[0],data.metadata.limits[1],data.metadata.dimension[0]+1) + Y=np.linspace(data.metadata.limits[2],data.metadata.limits[3],data.metadata.dimension[1]) # Create a meshgrid for both x and y y, x = np.meshgrid(Y,X) @@ -504,11 +546,11 @@ def fmt(x, pos): fig.colorbar(im, ax=ax0, format=matplotlib.ticker.FuncFormatter(fmt)) # Add a title - ax0.set_title(data.title) + ax0.set_title(data.metadata.title) # Add axis labels - ax0.set_xlabel(data.xlabel) - ax0.set_ylabel(data.ylabel) + ax0.set_xlabel(data.metadata.xlabel) + ax0.set_ylabel(data.metadata.ylabel) else: print("Error, dimension not read correctly") @@ -622,6 +664,26 @@ def __init__(self,*args,**kwargs): self.AT_relative = "RELATIVE " + kwargs["RELATIVE"] self.ROTATED_relative = "RELATIVE " + kwargs["RELATIVE"] + if "WHEN" in kwargs: + self.WHEN = "WHEN (" + kwargs["WHEN"] + ")\n" + else: + self.WHEN = "" + + if "EXTEND" in kwargs: + self.EXTEND = kwargs["EXTEND"] + else: + self.EXTEND = "" + + if "GROUP" in kwargs: + self.GROUP = kwargs["GRPUP"] + else: + self.GROUP = "" + + if "JUMP" in kwargs: + self.JUMP = kwargs["JUMP"] + else: + self.JUMP = "" + # possible to have a c comment if "comment" in kwargs: self.comment = kwargs["comment"] @@ -666,6 +728,18 @@ def set_RELATIVE(self,relative_name): # method that adds a parameter name / value pair to dictionary def set_parameters(self,dict_input): self.component_parameters.update(dict_input) + + def set_WHEN(self,string): + self.WHEN = string + + def set_GROUP(self,string): + self.GROUP = string + + def set_JUMP(self,string): + self.JUMP = string + + def append_EXTEND(self,string): + self.EXTEND = self.EXTEND + string + "\n" # method that sets a comment to be written to instrument file def set_comment(self,string): @@ -699,18 +773,36 @@ def write_component(self,fo): if parameters_written < number_of_parameters: fo.write(",") # comma between parameters if parameters_written%parameters_per_line == 0: - fo.write("\n") + fo .write("\n") else: fo.write(")\n") # end paranthesis after last parameter - - # Need to add WHEN section here + + # Optional WHEN section + if not self.WHEN == "": + fo.write("WHEN(%s)\n" % self.WHEN) # Need to add JUMP section here + # write AT and ROTATED section fo.write("AT (%s,%s,%s)" % (str(self.AT_data[0]),str(self.AT_data[1]),str(self.AT_data[2]))) fo.write(" %s\n" % self.AT_relative) fo.write("ROTATED (%s,%s,%s)" % (str(self.ROTATED_data[0]),str(self.ROTATED_data[1]),str(self.ROTATED_data[2]))) - fo.write(" %s\n\n" % self.ROTATED_relative) - # Need to add EXTEND section here + fo.write(" %s\n" % self.ROTATED_relative) + + if not self.GROUP == "": + fo.write("GROUP %s\n" % self.GROUP) + + # Optional EXTEND section + if not self.EXTEND == "": + fo.write("EXTEND %{\n") + fo.write("%s" % self.EXTEND) + fo.write("%}\n") + + if not self.JUMP == "": + fo.write("JUMP %s\n" % self.JUMP) + + # Leave a new line between components for readability + fo.write("\n") + # print component long def print_long(self): @@ -754,6 +846,7 @@ def __init__(self,name,**kwargs): self.declare_list = [] self.initialize_section = "// Start of initialize for generated " + name + "\n" self.trace_section = "// Start of trace section for generated " + name + "\n" + self.finally_section = "// Start of finally for generated " + name + "\n" # handle components self.component_list = [] # list of components (have to be ordered) self.component_name_list = [] # list of component names @@ -771,6 +864,12 @@ def append_initialize(self,string): def append_initialize_no_new_line(self,string): self.initialize_section = self.initialize_section + string + + def append_finally(self,string): + self.finally_section = self.finally_section + string + "\n" + + def append_finally_no_new_line(self,string): + self.finally_section = self.finally_section + string # Need to handle trace string differently when components also exists # A) Could have trace string as a component attribute and set it before / after @@ -831,6 +930,22 @@ def set_component_ROTATED(self,name,rotated_list,**kwargs): def set_component_RELATIVE(self,name,relative): component = self.get_component(name) component.set_RELATIVE(relative) + + def set_component_WHEN(self,name,WHEN): + component = self.get_component(name) + component.set_WHEN(WHEN) + + def append_component_EXTEND(self,name,EXTEND): + component = self.get_component(name) + component.append_EXTEND(EXTEND) + + def set_component_GROUP(self,name,GROUP): + component = self.get_component(name) + component.set_GROUP(GROUP) + + def set_component_JUMP(self,name,JUMP): + component = self.get_component(name) + component.set_JUMP(JUMP) def set_component_comment(self,name,string): component = self.get_component(name) @@ -970,14 +1085,14 @@ def write_full_instrument(self): fo.write("\n") # Write declare - fo.write("DECLARE \n %{\n") + fo.write("DECLARE \n%{\n") for dec_line in self.declare_list: dec_line.write_line(fo) fo.write("\n") fo.write("%}\n\n") # Write initialize - fo.write("INITIALIZE \n %{\n") + fo.write("INITIALIZE \n%{\n") fo.write(self.initialize_section) # Alternatively hide everything in include # fo.write("%include "generated_includes/" + self.name + "_initialize.c") @@ -988,7 +1103,11 @@ def write_full_instrument(self): for component in self.component_list: component.write_component(fo) - # Write finally (no finally possible yet) + # Write finally + fo.write("FINALLY \n%{\n") + fo.write(self.finally_section) + # Alternatively hide everything in include + fo.write("%}\n") # End instrument file fo.write("\nEND\n") From 7c71b1b70a3d9354a84375644e0ab514c494317b Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Tue, 12 Mar 2019 16:35:39 +0100 Subject: [PATCH 007/403] Moved plotting options from input to plot command to attributes in the data. mcstas_data now contains mcstas_meta_data class plot_options class and the raw data as numpy arrays Intensity Error Ncount Two functions were added to aid in finding the correct data from the array returned by a simulation: name_search that finds the data set for a given monitor name_plot_options that allows direct input of plot options given the monitor name The documentation was updated to reflect the recent changes. --- McStasScript.py | 120 ++++++++++++++++++++------------- McStasScript_documentation.pdf | Bin 135598 -> 147913 bytes 2 files changed, 74 insertions(+), 46 deletions(-) diff --git a/McStasScript.py b/McStasScript.py index 049babc8..8a38e171 100644 --- a/McStasScript.py +++ b/McStasScript.py @@ -12,6 +12,7 @@ from matplotlib.ticker import MaxNLocator from openpyxl.worksheet import dimensions from boto.ec2.autoscale import limits +#from builtins import False, True try: # check whether python knows about 'basestring' basestring @@ -82,7 +83,31 @@ def set_xlabel(self,string): def set_ylabel(self,string): self.ylabel = string - +class mcstas_plot_options: + def __init__(self,*args,**kwargs): + # settings for plotting this data set + self.log = False + self.orders_of_mag = 300 + self.colormap = "jet" + + def set_options(self,**kwargs): + if "log" in kwargs: + log_input = kwargs["log"] + if type(log_input) == int: + if log_input == 0: + self.log = False + else: + self.log = True + elif type(log_input) == bool: + self.log = log_input + else: + raise NameError("Log input must be either Int or Bool.") + + if "orders_of_mag" in kwargs: + self.orders_of_mag = kwargs["orders_of_mag"] + + if "colormap" in kwargs: + self.colormap = kwargs["colormap"] class mcstas_data: def __init__(self,*args,**kwargs): @@ -100,8 +125,10 @@ def __init__(self,*args,**kwargs): self.xaxis = kwargs["xaxis"] else: raise NameError("ERROR: Initialization of mcstas_data done with 1d data, but without xaxis" + self.name + "!") + + self.plot_options = mcstas_plot_options() - # Methods xlabel, ylabel and title as they might not be found + # Methods xlabel, ylabel and title as they might not be found def set_xlabel(self,string): self.metadata.set_xlabel(string) @@ -111,6 +138,32 @@ def set_ylabel(self,string): def set_title(self,string): self.metadata.set_title(string) + def set_plot_options(self,**kwargs): + self.plot_options.set_options(**kwargs) + + +def name_search(name,data_list): + if not type(data_list[0]) == mcstas_data: + raise InputError("name_search function needs objects of type mcstas_data as input.") + + list_result = [x for x in data_list if x.metadata.component_name == name] + + if len(list_result) == 1: + return list_result[0] + else: + raise NameError("More than one match for the name search") + +def name_plot_options(name,data_list,*args,**kwargs): + if not type(data_list[0]) == mcstas_data: + raise InputError("name_search function needs objects of type mcstas_data as input.") + + list_result = [x for x in data_list if x.metadata.component_name == name] + + if len(list_result) == 1: + list_result[0].set_plot_options(**kwargs) + else: + raise NameError("More than one match for the name search") + class managed_mcrun: def __init__(self,*args,**kwargs): @@ -305,6 +358,9 @@ def __init__(self,*args,**kwargs): plt.errorbar(x, y, yerr=y_err) + if data.plot_options.log: + ax0.set_yscale("log",nonposy='clip') + plt.xlim(data.metadata.limits[0],data.metadata.limits[1]) # Add a title @@ -324,7 +380,7 @@ def __init__(self,*args,**kwargs): # Select to plot the intensity #to_plot = np.log(Intensity) - if self.log[index]: + if data.plot_options.log: min_value = np.min(Intensity[np.nonzero(Intensity)]) min_value = np.log10(min_value) @@ -332,8 +388,8 @@ def __init__(self,*args,**kwargs): max_value = to_plot.max() - if max_value - min_value > self.orders_of_mag[index]: - min_value = max_value - self.orders_of_mag[index] + if max_value - min_value > data.plot_options.orders_of_mag: + min_value = max_value - data.plot_options.orders_of_mag else: to_plot = Intensity min_value = to_plot.min() @@ -362,7 +418,11 @@ def __init__(self,*args,**kwargs): fig, (ax0) = plt.subplots() # Plot the data on the meshgrids - im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) + #im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) + if data.plot_options.log: + im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=matplotlib.colors.LogNorm(vmin=min_value,vmax=max_value)) + else: + im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) # Add the colorbar fig.colorbar(im, ax=ax0) @@ -403,40 +463,6 @@ def __init__(self,*args,**kwargs): #fig = plt.figure(figsize=(20,10)) - # instead of passing this information here, it should just be a property of the data - self.log = [False]*number_of_plots - if "log" in kwargs: - if isinstance(kwargs["log"],list): - if not len(kwargs["log"]) == number_of_plots: - raise IndexError("Length of list given for log logic does not match number of data elements") - else: - self.log = kwargs["log"] - for element in self.log: - if not isinstance(element, bool): - if not element == 0: - element = True - elif isinstance(kwargs["log"],bool): - if kwargs["log"] == True: - self.log = [True]*number_of_plots - elif isinstance(kwargs["log"],int): - if kwargs["log"] == 1: - self.log = [True]*number_of_plots - else: - raise NameError("log keyword Argument in make_sub_plot not understood. Needs to be int, [1/0], bool [True/False] or array of same length as data.") - - - self.orders_of_mag=[300] * number_of_plots - if "max_orders_of_mag" in kwargs: - if isinstance(kwargs["max_orders_of_mag"],list): - if not len(kwargs["max_orders_of_mag"]) == number_of_plots: - raise IndexError("Length of list given for max_orders_of_mag does not match number of data elements") - else: - self.orders_of_mag = kwargs["max_orders_of_mag"] - else: - if isinstance(kwargs["max_orders_of_mag"],float) or isinstance(kwargs["max_orders_of_mag"],int): - self.orders_of_magnitude=[kwargs["max_orders_of_mag"]]*number_of_plots - else: - raise TypeError("max_orders_of_mag need to be of type float or int") # Find reasonable grid size for the number of plots dim2 = math.ceil(math.sqrt(number_of_plots)) @@ -465,7 +491,7 @@ def __init__(self,*args,**kwargs): ax0.errorbar(x, y, yerr=y_err) - if self.log[index]: + if data.plot_options.log: ax0.set_yscale("log",nonposy='clip') ax0.set_xlim(data.metadata.limits[0],data.metadata.limits[1]) @@ -487,7 +513,7 @@ def __init__(self,*args,**kwargs): # Select to plot the intensity #to_plot = np.log(Intensity) - if self.log[index]: + if data.plot_options.log: min_value = np.min(Intensity[np.nonzero(Intensity)]) min_value = np.log10(min_value) @@ -496,8 +522,8 @@ def __init__(self,*args,**kwargs): max_value = np.log10(to_plot.max()) - if max_value - min_value > self.orders_of_mag[index]: - min_value = max_value - self.orders_of_mag[index] + if max_value - min_value > data.plot_options.orders_of_mag: + min_value = max_value - data.plot_options.orders_of_mag min_value = 10.0 ** min_value max_value = 10.0 ** max_value else: @@ -521,7 +547,9 @@ def __init__(self,*args,**kwargs): #levels = MaxNLocator(nbins=150).tick_values(to_plot.max()-12, to_plot.max()) # Select colormap - cmap = plt.get_cmap('jet') + #cmap = plt.get_cmap('jet') + cmap = plt.get_cmap(data.plot_options.colormap) + norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) # Create the figure @@ -531,7 +559,7 @@ def __init__(self,*args,**kwargs): # Plot the data on the meshgrids #im = plt.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) - if self.log[index]: + if data.plot_options.log: im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=matplotlib.colors.LogNorm(vmin=min_value,vmax=max_value)) else: im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) diff --git a/McStasScript_documentation.pdf b/McStasScript_documentation.pdf index 9dd1efd6885be47e514ae84d17e47c0112ca2fb4..e0cb18f76e72c0be75291e6b26b46c4b7f4265c5 100644 GIT binary patch delta 98947 zcmZ6xV{o8d&@CF<=ESz`nb^j}wv8vYIk9cqwmtF0wv+RI_ncF8@9kf`d)4k*yLNTe zs#RT62s0i8i%OyRQ=EZ?kpqsR_qpH;j+G+;m4Ka{i-(1cm`RdYhnR<*jhL00l~|XU zNr9M^hnVRXF$*&b8w(dPlRPmC3o(-_F$+5vI}dw;fg3m+D`y%p3K&tst2V$v%)#~h?$9%iJ6q`?Oljjx&HS-#nQ`^n2VE`NzuvF?SFUSApZXalhjXQ9ex%= zV>UK!W*&B9V?$$ZLoQ=h9&TepPBUg6V`C#DQ!YV%QzKIoGj3ycRugVc7Gq;mHst?^ zvvISSu(BDlFtanWCGCL{a;EvOj}Rx`V*JU5Cgq_JE?Pif&cyuL!4ouA=PjJbQU*Gt zo;BMy^a7N^Yhr^RI8cCU=)u-BvV+lqCioLz!TmqX?TxJ9`1${1ZD?-lOw7fR5(^5#IlDNS8rs5nWEmS67#JBC=*{*`_4Tbx5RZXC z8gR0K!^e-`fs_UA2|KA|4-$odNu0tK5P}J5zNQ!W7hE9R0pGed%&?Ugt1iARxamsjcBm z?M(g;i~q9!Vb7Xo&Si`5(G+(#_@mt#?;x~)yeq3H?gJF_kt26(Qs2I-9SKq zawI)M6aiVVrAgHf(bjAQZo}doE)p-IJ^9e%zr-uY=}}{)4B2a1Ft=HceH%CuJ&D@G zr`2IB7u+w!BV109`hFH2mgAg>d82CAP5mKeho+%VBKzE`feL6=vusDDQIyHWDisJv zLb!ScZyAN>X^H{*$Iy)OUIR7;r!%%z!W)qG2`B)UJR?K z?(hk>mnsThe-h(r2I>164Y8{Tci16(a>V@!3pV%Rs1e85T}89lvrUvaD}(p%5_Ad- zDiOddOJGN)hjnO+W9rDD4@&APb|ftkV?h-+3S?n--(8Q)d+&;6_k48(H=B^+V74dn z9CpN!5Vz98#_5aRTNZ#q?f|9YApzvNQB%u1e7BAeH^80t?V#Bc*gPN-6yy+= z>cm4>a3HBA90QNwbD~P_;QeljVwcu`5eBR0R_wDATl=`~81`IRIvsIJfoJJ0fYb+q zqWXw4-IJ8MJ4y-ZvVyO+KBBIO{4(5w6d>h&sVlg1wm|}i>r1slL8**3l}4|R9tMte zDtME>HAC+-)QEn!)JC4bp_m^bFca}wPF6(ScJ46}l9B4Dw*4+Q~&eec-zTqrLbkUwz#Fjm;pg%F6aPK5%~)+wlkg@?o`F>k+Z)` zw#`+>Je9aeTl?mA{jDmk&t%kSQ_V(Euslo%GYtq{Qssnf@p-ctP?r4YyqRgCo_MfK zS|e(tm@C^h^oXPABc=DLq__8uRgVMQ@b8nTPf^aNzM_H@>5os>K%#;)bx^%aw)5FW z8!^!_e+V900k`ai57D`2c#l8j!o0qQz}n(Q-}b*|A9;KfUKMj)O8PD@*!Do<04>s4 zh=Y}C;{+B^ol`ihL@}Q}x2Dh#X4wrJO!)FY%5IqO6n~Da2;tYh)p>%Q+zH{0{~VfO z!dL!rJ@+|-aJI@;0Cb^ZW_WYGi2ti(;HFkjpbY0DANXOyli<2n`c#mICDN|e-^8C) z`oQr_6zLqQ6yLrXrzl`Hb!&&K(bI>i>L06~r_Y~f!DYr{o@bqL{CndqHB02_o+!^4 zgcU7wrQiMiPlHDder@rQw$#cJ2fH$>BE{(M!I>$lmqjOVg;Gsbf(Tou>bnsI*0I-{ypny*_yPZM0)vwJBBy z(LYl)8^^fUx}coY^GdsfU6BuPDI%t{NQbgMvG0Z<<3j2zv%p$gZ$k|%C{{Q2#m(`0 z2_0UYeh;24U?1V9%|HZX&TVWnUWE~igaZiwiX8ep((PH3UGG26Zi9}a*JXuXkX51` z-|{Y~n4&omGvsEwn9inHp>&$F@sw%rdGw|eP^3$q5|z@ohlb=U3*ydQ&qp{H%`)ky zy5)fo#XoVKNQ{Z8!)^$9_r^bq-W(Hpc(pJb`-$Db+A z9kBo5_q_Lv<7XJPFBrAyc z*`KUXOnM_C@1IzhEKR<+%28mKU^W&f=6z2o921$vc&1bwXXEw)_X^^h4n_WRe?=1n z^t%LK>)|$BuYC6j&?jo%)kCmxlquH4<>|OSRWSwAh865ya-lP;vExfj+vD@wMulxZ z@c$*`0Z_W*syW8nB6QrUlex1s_}ZB)hWR3DbNDiiOHct90H|-p!e^3>A73L3k{wCn zJYrH16BaltGe=r}5GXbvPt3+m%p`8<6SchexED-S4Y3+HIcF)vHsMQQ%0#(Rm7QRQqvkH zDo()Yz}g1ZN#oQ8FAs<_RiWzjXJYpIhojF2gag>);)X$rn33WZMA>zD5~b9?DUw6P zb5TA4dk<^qtF8%}p6fS`? zqUgpVOzbS2qV15_H$)w~n91JEuur}qDh5kIrxf=}&2>fa6czE{V0CUuIV6!Jq=p-GHEN8{b|8lL>&!swmCMORyybx zTyE2{^?5#w%8f&2KI>se6tfs_(ql$6wji7IYCc@0Dy4!RO}?&Rx4m#0TU6;*2Z}GV z$HA8Za+xGF*l^%8mKzX8!*2U=)uS7nao7ee5gEW&&BUMw&%IVE7)Ppx$Is|u*SW&@ zHqDtxVn@yI1FBM0EK)~onzaZjS!4CL)`11$Y6g9l>@e@0-Z#|J-Ouh}owk0A&K%&nBgBwSvc9!+(>_pUt8AhMlNTN?Gn%loMT* z6%=;p6|^Ysuj^gwP|^`qjJB7L6d?}ZNSoUM6E4MNP$&&W&q48)(T?$~!#I4$P=YF{ z#2U>%PExV5O{__V1A=T5Mm?;MePFEo-z^eVQJcx5+^RyfC6*e0{IT_s1&H%q)bhh? z6h-b%WC!ei{vvD!#aCMrPz2dpjP1w^C>bl60%@5Q1Vh|#ldmcMHAa8ZL}!8TD@I~e z!FSTecr!+_b|Zv$Au*c*LjTxC%B3o?aKFLj>5^X<+>ZE%xrE0SDGr^0i1rccZO=I5 z)&*xAg~g5)?l-^(}>jaxMTMU5~9uTyL(+#C4 zv5O#zFwjZct)$fyYb#7jY_WkSnTr`gJ)&m3vB8@R4!9h(jU0_)0;VMv&8NnZ(2s4R z=Kee&BAE3Wnr89$OEL;R4iKb?Y@jp)2$PsCiyZw$(3wQYBK2N0I#L0GvHSU8q8G=td4 z4GjrnI1yQS10gYf0n4Oe=W4|cXzFk-raw)$@K6cWTE-Tpo|RL#ZAp|YPTG2}_9)q{ z>Al2%;Di__Q};C1l28!zUQji0;!5PhgBc{<23zbO>!3 zadjei28j}-LnYIefxRC)EaGconA4tpL<_weVn4q+H(1&b9Zj2S;d=S!=Pk>r!YIPz z%Su=iSo{mI1%R$&VnM(YQy#&MHZv_NE?Fli$Sq5;d~}?w($VPBvUDxP;ID(d--?oP zoZ0iN0mL}6Vsq#g!;5{bvhSK8tl$KiPm0=V-S{X-5qHiCYesDgzu%$(dr#W0(9wf?G&KHKzB`p*(a37fG8VCy0F_>XzzCYhR@cA;l*CuJACiJUA@jo%|(l4JUlevZwL4C<}>m6{9-0R?@TI(u#Ia>K(=Go_CpnuftAH^v+*EsKwhsIEY6L^`~JC)ZtsLh z;vh+-wNvD7=7)k_T8o=DwOOcRZf~Z-GZ)HL!iViNeZ3T?#!=(+e%djz^3Qu%zhiCb zTpih+5A)3BQ)j^a?TJJ{Ec_itH1vuKxX)>K&A}BnYpC;VvfO5CK3V@5txL)2UwSVy zUpDtlym!q;3E0r?kr2JWM?yMi8?)8J~#)qZU!oB-=5SJdgaQ%JL z(3yo{wEyi9 z{f{a3f9)bx7H&@N|F`Jbh;D^cB-m(RjOOcyor&MQ`Y-H)Iy=d^K?5NWudezj+B*M> zd$U~Mt8u~S@5*huiqO}Mo-4gA>*e?a>WVqo^bLG)VEFR#_sO3V+;&h>rwQ3;5OHxV zFL7}*2v$}#8EpLB-eDM%Ghr%o8E?KT04JOqH0HN3s}dP@e0Ekhq435sRNoMofzh$q z{;rt`1T!0}(`Q_MH#(Q_(%AF@2C)Qkd`l}hFIjxV8lMNRR)$WSzs1)vo&Q2GT;I^} zu*f?T;O-yKFgLz1G=@ZM{?7=s36doPXB|ZKLXJLwG3OgIFmZKYcsL+4pnq#CdwXmp zeS3R6D>o8r*Y4B^R1u07Jo~SIiGME~)ENFc*mq6zj{t-`E5p-|*5AY1Q^Q+hurMI7 zHuQ4-ZZpKl8hk2w=pa9l6cZ95skuQezc^DrflYs`o9k_mKPTy5=vO=20Axecds<^c zL_~LWP(pTTaW+ri)B+TYB1&4Z`>jJhB+h#Jm#KxxferE}fL!EbtyJTj0I zL!_!o#T!?b@M0JA+KZYS&?l|(nU`kov4Ee<0q z3!)-}j_uDf_jdtlPr)S~$Kr_#im)dMD25geLuL1t1sUo6`ns1xX4flua^uVaroLT! z5bi3@Dk5pw0gaFUL~mU;bYEs{3aaqv)Ci2hoAnsCu)fbXUvxpjVejHgSZ#84x`6-r zwT+1FTW<8$mjFoew;mF0A26EO3N6QgBK>=8C(HBPUEG`#oFu#gz8l3;PYwO?=yq zeY=b9*Kl%vE316Te19w9uWN63d~JfTH`OraLB=;iR|jl;b1s8?bvHQ)tH@|}pLeEcGwm+Fz-apUtM6scyo*yv-+jYcN3wPb|LDkeak9 zSMn+caoH2Ul|e-^?{|`o+$e#k5}+D~4WF-XY6>RDv8|8~v$&C{vXimSN7nRRn0 z{w3%SC_*BD0`D(!hHM1MEcq=$?3OMBGsO4~9k6!zMU2w@d6<4|2H?(U;n{} z|G_nP|G{eC|G^vo1AhkzU*G{K;kx(#H6JSdgbtvO`67-lz9oVgmbh~PkZX!+Cr zk zlYl}xLg}7=OMxb*HpV2}3vG-;Oq?Mzob;GD)H{HE9e4D~4qo&&c4 z0_(WV?FZ0J)X!4s!*1eD1$A(yW!|uVJs6syb=n?uZfmf4c z_VE>sHxTIZ2vHvy@V7lndMrJq(#Hh@Q714!NGV_bJk<-zJPS4Xog20$_1TtG=g`DJI9M;T zF;!1T8|Y%+X%d*aX_N?gs0>FGNBm9RmaIqfqx@%Ux*A$P+N$a$p8=HCm0Qm`8no_ttVjc!1?PcO7 z@(i{`p@H5tQ`&%nhpdigbo2(0HMg}(24QZaC73qfbNGmTcZtttanE^m;-$aS+c4RS z?@q4!``?~+T{!L+LjIII`a5AxHLI# z_v2`k(=+p4|B0MhY~IC<+oAuIym<%)Y`$c8;QQseoyWm!X~lpYc?%*7HC}~}!e(JM zB-2$Bg>r!j#%q*QH|u{QKrqS+zTkDMO${_~ZLbv(bc(|k4msICQbfLOBQwIwUGs=#Nt=&BOSUc&epU59*193=x`KU)%Y0UAFmh^tsr ziuK>3P~#uuf%I%^qgL6`s!f@fJ^*c^y;*;T{;n+29O+(Pi>EmaGqjZv8dC}jhSpGn zRNzTlaI)0*QI+Nk9b!0^;cH-oKx z{XIfN-k+)%@42Ruf#;iT@;e<#D@SGdXI~zJO8q&x?gU^>S?YVu?-+ix{UIAZ=CVpS z3+|Gc`K*blxh3hcfN)iu;ao9eO{ZV?_9RPsi?a$VQ~R%o=#aG;XHwkgZ`b;&BifM* zQ3oiBe0pq9d9J3z>lF$5f?8>l$%%%ELo8Ie-=beKPU0;m9Qr&~>X?NXG3mqak`ELT zG1P_Wsy=|bI!Cpiu~<^t>fYx?bwv{U+fl3({n!JFn-}MGE)F`3j*V4eM%FCH;P)w} z7n49>rs%oVHI>H5-=Kr$BfPXkOx{8H>2_u~0M`E3|Cs~3cGIxPR=(dobDsB6q3QzA$*)rB3qK^LxhzYd#I8*4{ z?~H(sgVTx$1lZaz(i$>?9?-}(!ij`c^>S?Z*U}E2YeGnuzAzI?NiD7Kt#Mol0$CK!xp*`ljx}Nxg~|r^3ghh_1p7X1hdwyQ%+lxNTaFszdz4J zRcQwr5WKr6*34~iC`fTd+s~g*Ir%ZS2eX0j;s zn8Ia{u6sC$hG09st`*mcbhO};sclW`#{t$M#}g-OF>9~34Esu-@f5a^rw`D!4T?#i zKadq6xuJNCGtLYxh~8`MlN)Fg)G&AKw|dM3NI}9Z4hXhWZ+duNb%umEMmml3{gB_x zB#jSZpxu#GJ96Lch%KHHvLO|mbmxIF+XZ+HTa3v(T4#(#h0f%N@D7twA-HZ<@z|1` zH4@_BQSW9G2*JAF5s>e~y4mI=ov!RQZ{Vz6Azez7>b zmN=C=Z2~HBQ`EaKerK_v?P`eT#K0sa;e>)$x@tJBre(nCrjW-1+JhG57zAKe76iXEVkUfQwOBY;vw zgC$vKH;~O?!L4!VSkUiW$g*Yf^XfP{ZqIvs#;eLC7pt=`|2=!>PhcSH_7%v<7-SD?WEs>x*W}eiuEjPa;#5&-GuPaXIlCO4>|piQ1!fCoyYq z)1>Marb@QMEULuGL;&Tx$M2-_b+Fd2bLo=lv^Q0jIe%vg(>*eUZ>gklhC=M`R#72$ z`SCMfOYBW`XG?b-56hU&m#R^_d?D9`TD(~TnWc%d`QY0;&MA!Ie+?l7Eh9VAb8bL+ zkJTmbj}F~mVs3i1P|o+fC8he0F5FSop!U6JzZMyQoKKo5Yw_^;s z@c`>Czwc)5oG?9%@e}50sbKzy6*CW8C7)M)4EFwyQ-sD59`TrWD~Fv3u(Vt6t1GII zK-uVgr5HOaN0)B3P%yFCM0@Gw8^a*j4r!r|o8fX9b$YdWrb48LLs0h;sCK7N{d-Z> zF;(lsOjB+nT42v2S>;IHCF^cc530$|n?=5vAfTsu86HCNHQ^avJ3mr^3&wbV*UE^8 zYSn&+vBb2;ZKgoduduBA7zAZ1O@q0pr2x%c#Y zB-KUK zdQbthwZDl2R_ZKj)rbt?Yy-qR0c8c&2o=^Ie#`KAT6dV7)Rw|xF)uT+Y=kjQDW%OF z@^1>Hk12u$hJo7E#~FlpbJX4`8v96rx?~HXwwrTR8^_oY8SZCJC?|BfB&XAQT6p|*7Xt4kJdg#L<;~a@T zqo1wGg-ZwT*aB>thmiIUjAltMHMo>ngi(psC=dwA7gIEroCyPxHP}~$(QT54DXjzV z$WseUR;a(>7}pF_cqt0-{${OJL%8*mv;uTpHk~lzVvFOXn-t=du)_FNhUfSYOqs?b z%kQQJ&%-xAanaP|varTs!fJHuz`gxG^+;->ZGY}6aMztGI)x+l(@o#zmYgBHrhIAU z0>dc7;FWJ$d+V5)7iAqM{=2f`XTH~ms9c@DW+9?I6qyTsd zRnT)MS8KZ{$>s3WbAq5+lDK$O(akdh=~jfC>eI2dl2 z`~m*RF=g6p>Q;7)hr!T0r;Z$q*fL!1vZhIcbK+UbLC~68xagbwGd(>`w#ax{`kgtu zj2aWy80GuRlgst%9-6>@RdCrv1c1uwlbZ+3n>-yfEiiL_gCS#PD20TNc^tdahM&Ys z{s3K%AYow;Suwz{1KOu2$4Hcm`rSSKmZ59{^nhjQ4}? zhYY%NO3M1diWH^{rvU%Ih?HE<=QQQY8vmX0DN6UD?ga$=H+%@EmSWjH2sQF?bkCi9 zor9S?e>*pWES!MTeSH|0*5yhWO|RORi4aMC0iD)%rcz60Hd#q00meM^UYxke?&%PF z)<3TeRa7N}$k-3|Kq9sLPk?TxlsU;cCpepAWl7Qd(YL+Q-eT#jJZ?b(;ZHhMBiSsQsqWvKo*eR(E>;!8_c!)5u4xD{F z+zg%JZK)qdeGlXto@t+y^l>WWcq!}2g2rHmi@7$b>8zl8_DV~xVC z#D|_Dnp?;gEM$PT zcONg=W-;aB&rSKzTzTqyjTiX0lNJHJgav**?4D1#!OvV82Z=r8*Jc9T|`=je4O!8+94 zJ8Cy5XBA53nt?1uWY}N!*KNiHsj?9UDfc8Aptquo7Lubb6g!qI{9N3r=br38lUC$z?<+P_lxh0b6ARB=`Y(>Arq83 znxxB?%Gc+{B1=+u=M)_w`JCI2Tiw6tB14mHw4}^81_!Y z)`!#co?w+x!|85XL|d$J{7lG2`qq|ONYgbSFix9ZHOT%kql;6Bm55^_;_FJADu*L| zU^6EF^5(c@0Jh-Oi~^$Mv?h6Xx{xrm&&QFhvRz9<*HER{bz-acaPfVH@4gOV2}84ewv$X zL5T?vrL7#MvBVm-i)-obTJ&*@Q)zne5&j>!_=OQ#H4$p!Z8BBS^YUrqc)CT#h5+tM zSOezvtREV0c`c;dp4W*QM}O0uify*}SIsJXofHsk(r7QSygr+Qax7AuLd8_jS4ST^ zSDmWy#^6f9!{)^%@|PxW!k4y<*ze0x|BDb+{n!07tuco^u3FS^=m>$V0e+=cQkzB4 zuPN3~(P~1O5%Wv1bjgriUpd)$taKFKnx4=D}%!P&c55IKa>(vjkNF^X%1O5l^m)r)=` z^fF=&3Dm1Od|O#Dj&FVGxvP*TlRq zxf8z0l%gb0(m8IR8yb2ug8lkF&fX^G=c>%4ckSR)(q^_g@SVY$GsZ`ZswnB+FAm1X zE>?2*So``#z*)_b5qb*xZ@@4!i+&HHi@)Hd523S3hehtG81|B{`5i@bW*UaVxN z>-+@DyZ@m6GGyGhqW=5WCza@(Oop;z_RIuc?S{Ra9atHY%p@2kySoYg@=fU-1Kj|v z&2JK9ePA_EBE`h#Ea&`H%i1r`YptWB(EfMTJUn!xtd^J@+{+P?3h?A09D;ev;K!#) zq>?jK-la21m&+v-{86Za78hTh4AVm*rkTeCmW>ILwI$=eb_8eok7K_Sf$qnnMIHj- z)klSR&qR&UKZ_8>2#Dd;9~U_(rE$&ZDr82-Q}F1Ckp#U$>S)!pbHi9MPvQEZm#>+utyclON5;NXypKnl_5)4)&K z5_aGeNu+k)a*y|9sxjYrq{6-?IE;i)s{z?WTh2>;I7xSoA^w+c?Z34+>bkVK%qQE_ z1K7liSt>%9(*rf1ziA>>ny8k$B+gp6>F{=j{@W_~mP;pWD?ooGW(!i(t4(G7R9>~_ zd2fw~^;BBeGl4<+la$(U!NQRblFr|6<0#Mvzq{E~!LnzPtjWCHisdJz2dF@2B*dn~ z2Fk(m)LZ4WelofcNmy9E{(mYm>dnwlFF57yQe2^(ZW!iJ%_$0|TWxPUkoYUS$ao>! zdOyJ?V)Y5(#DNqu?ZiB@;?RT75{;MFT9(ucy`>U5B|xgrkFL%-TJUWIx>C-eR+ICL z92dHiTe!{O0!z2T_`08NIAJcJMiTk40D;V&71S4!M$Y6g@x=NHc4z;zazrX~c2hQg zPZw+r9VaPYneOWQwqL|#8*_x8#Qb!yv^GzF@)6a22iOkXONU?|s<1He%g=kevVLqX z@d$<&%tFxFN|Q4*&hwVSoG`_gvM5=&O{pzb!*+m|CID4$Ey-~#z23xkd~ufK)V%Ox zSgnlWKI774O=vtMeI~yME($?Rb~rP`sUOVWLKsN^4m@}9FD89HT;-9}e5wmq>s?j9 zI!xcy06H>$v_cn`+}Hc#jVyYrq4T;R_SXRzl1LKsBi%7oE1@I08SZ9U8r4U5nN+CX zA;ag{g_%>1+u!&oNDK$6oP*rT&X^a1Q*&?TZ{*D8n~0uxK^ z4+kllxa*|H%tB11@2pN8K&Rh0xh{0L)MXrad@W2cHm=BQBx(J^-w z_kAvJJP`dFhv*TOe$Ck8*ysX9I4r+^KW0WYaITFYz!fs%KDmSxVinxkHE{HsfOTf+ zls-lLYGHvP-Pgm96mobuo;#_P*1zn$M8%{-epsv{3~0BtV2NSBTS|p0;S+L5S!iaf zxOgbh4v(t*Y%KeVq{)l-8J36EG;cPegVS_P6+VOs$&(K;;vImzx}oo_^S^{6pC^-7 zT6{IBaGB!{>$WC!is=q}`-Q4Bz>j1L95MWSTUP-_mSm?14>sOS+}$3o61fC5BWzj% zApR>eGC=2GIR`(cFVqFJy~#XB7e=G4*n$9QGS?&)d-8OHctll{knSrZL-k<7%hx*0 z#N@^*#O(LdPYf(kZw|vg-i6RponZ1wD~_h|Jp~8ES?-KyCx9p%;el`gXh2tUPUfZv zCaGPW+*rXAIZ@_K&8$b4~%J%79ujNI?2#W^T3A%FtRNe>;_*<*j*V*z2D(hJ*PIH700H7u1WPh4gX0L#g64P56#i882`&B(fZ)%_%;abVGeE(n3GG0<;@yH4*t1zB9>; z3DNOXvh?4sK>G@5j+W{>b5}(~SJIiAEA0=8|8Ci@wnNww-&Ga@mMI%^K?bP?^o@t{ zD`Q<4wPkO&H6kuXb!v?P2*`ij$`97TR)Se2L1y}o2{T3V(}%@% zWp!W+6qQ!l6>Qau{Q(PAS~)Jj#B5txy?0=wjA3THWyeTQ6|&eJL~Wg8)*ZABV@aSt zf%^9=s!}vucHNwYrFy@-cXu%D>>T#i>lE9TgGMG0soYQvXgt2fn=_r+VpZocR>wPlQ3O0Fo}Dy4EYg}lc+&dhAfs^f zSp%Yq1w(V#h&Z+}I7tbGC`rhOUMCCC1^E7rN|@PWzVo-VeUhpvTP0-lgc=yXr!5fEaLP_vv%Zs zc5r`zF0wKHJ#_nVM*sF}N!1p>I_td3gsK(1+CsWrhjm`U!VR7BvcEpgC0&rkg*qf2 zeuWVN*2)zWmM!+$T7|$nH>8?uL@0%D{nZhsNHik3?3J*+OxsqgC#coR(@*+}0#f*U zLQzI`D@`rEavQGpEn;%ZrwXJu`L+LceQgj>)JAb5itieKNt{3LDUu=w0;oMcQCBdTc?`=&!Y&hkNkUeQh7Ds3sSI-f37s+Nc#E-EQY87LP*X zd6XWw3Ux2^4`UzdN?PNrPe~&q>c^|7pE-lpG2fL>%$`YJl>l@QH&M-P3Z^%&R6xdS z^6BaEc#R7zHiv{t_;dC7|LqKSqoB8=jP~ zj;qcdyLC8Ja~3h{w>3W>L(|*NQ(yg*-eANh ze@_Khsfaln&=q8qG96pwx$-0+A6LWtIm!f;_D z^%0Ws;ny#Od)bwQQd*ida)SGJN&5reus5BDs&5W2z-JkwepI-vC9k09ll%&T$LqS%9-gi58#;FD4C3*96xtvfOWYUy4%s)@~bF;hFk zUF3DTxi%$Vt5G-+DRXPvv)4vujAg!}v@4F{w#R?iJD(k%#)YfIrHYR)MNa2cHZRTb!_d5(DT3k(~TXcoYI<=S<|i7l7*MP^2xv7~JPYg3c! zF?JoTKwsG7LR_TNCr%*4{ba?EjWQKQ+Bvj;PdqZX;$-jXsw`$*QXRrWeG=KK7={-d z)zo}6#v6|Db?eaG(ZbK*D3GSnXd3Fa*t_IAeMN6rG50kGcEnq-+uzbzr~dpiDP)?} z>1o3o7os~^v%a;oPCS@WJ`1ynqAq8z{*^8G`! zvgwaFzPiyGq>2`|ur^Rx>$=8mxHulz^_Ov6V*k)J?_059Y%D`xDSrruzLD{KvPWm# zRctNQy-C#qpyyyvg%=>HI9^@2tM<#adai?#)YD(61mA6{pwr*f1IG}?TfUpYCezE; z%GnT|=xC9?mwL>>!O;EKSsJGWxfGJzXfkeWQk_ArId91{Wl*I|4X_$qdYe|aSJYyW z0u)1#hXEGsW6>JwHp?w>uy5m92nJFWRgrwZP zB2kFXB3|gL78^Dc-DW%_WCmyNc;Y2e1SLzDqlllv;qm?q+A7KM<-ZXHO!XcWao-&p z6&+cCNSBL3t`T4~uxq>!T&+&L-J4bABDu^?@CmhZ*+U_slaSs|i&xqJ7HyZ*9CEk#RiR>4t7_+{uVe?vU!hi{|8bP`O0R_Fo5` z{v^YC(kF&_fmCMX#?r=Hvs`cOF=58WWa%t`H0|POS)c1tJy-_vn3OVY_}b0(lRLcI zK-L-w1T#Nsf9!lu$Adoe(xnvrP<)ASxx~Zm!}dbtO9q4OIPLhF7Wp-3xol@^mjT6j z4lVy>3fh}Go)k%+551lWgHY-1A}nB&o9{xa6l!Vvd?x;|)D-`TNSqt=&b|YtYoO2&V6?GiyFmUH-aW>V}(sZ8g*M4;>V?B)k)e;==rFS0y~HJu>^np zW;OZFqn?}E`xdYM)C0fFpXmf^r6%{pRF98iN{%V>T`KOSH`?-LDE)NUC|gp`#w8(x+Z%k%H3OjZSvQ?c@K-DNzW!I zrI;D^YOZpe1&C2hW%KqPZ^J&I?dh{@xJtNR3vQXMaIbPi3zrNxwZKQ7{_9B4c{p^D zZ@whr1tH45^TF+Zk#$eOfp)>VfMauF+qR8~oe3tkJ#q5Iwr$(CHL;C}Z71j7yXst= zIyYUl*43(7m)-rmk}w*!R(XwBO@V#xR*C3jnK?LV9o<$;KUH8D0?cpJrL71(<$S+O zd8$r*Ikf zw7EWNh=D8Tkk3)p8!4d~Q%kpB0?>7mITF%ts`XkV(FwlON@;q}PF`u|KeV^V(wcL( zjY>{ZPvu$o(MFTrE|?t_1s}Q$)6CYJgZr5A=IT0UVm|IXfJF()U7wgRvZ#_~dH_50eI`Y!lm!o!1WZR~cIaG4MP^MR1%Ku(6z)rT;XvmvKF zT2VIvkk>J*H9E@tz8b!7>5y&Ic`;L_2fKEbiMug9f&9n0pH=DgXNCjDL6XvE*(c@j zf$)RG6&30R7p92jy2x&^Ngt`2x9*-i;SMZ0D)!>N0N&JMe_QIa^?@RHm>EY+ZuH1N z&fec}DXYP95VR)gYa0?(Gqcb+rck-eddC|Qjkuj>jcUHpHDFUS4uCR%mu z+VTXM+0qO-A+PBY2noNX-5Pa44xw|&hZU8Mw>{N+CMlLnIQzz>^B0;%Eu4K4c(Q?|HiUp3jj}-Zr zEBHyc6X=8EBzw*N3_uS)*JxwFtuZF`iH??}`qmN6s(p+CvZVhSJm)lrjX%glptWji%g zmC+gd__&ZGP~(hAKd&OvN9%U^NFeMp);~J15AFpbHa$l-YsoDQ+--jE`aMA+_J<^; zrKC-#9c#uMfOD3-AL}exh9J@jLYaKaTav-BNRvZOBuLHF=$Br3@6Zm!Gurn4TB{7C z0%GTw>!sXSLW3)GrJDJw66w1)W2RIvd?rb^3l7}w;i!>Q-~%HHSxO?^c#$E9Nm9cF zIDA*iv}=-DWes+V#V{490K9_(Ohv!&bXm**>1-1DCn^`aaYNN1hvi)%i78oq>*c{f z3>~4wZ*R7On)upMrAE=7YH~NEOxt*6z)J=c8$&@SU>|c_x{ao5_8G5_Y`?60*9z%` zp;1U_9-UB(M``g3N!c;V{bhvgp5#;S%+s6Od29m;4{Cq2NrSE~Za)N`g0iOSnTPf# z=YWs5^x+@n1~F^ZHXTkLr0qbw<-o&{2lzc-xX}mk7}ZoG?ZDUwPbh}LI-NaZKnj&! zo!GGE>~dME)=`S*{W>MI`kJ+r;-lCo9rR~B)1QqvD^B+#=%!@I1FUu1eZe-X46(kyxp_!qjgVrL|&}<801I;o*Cw&kev7aS~4|p={ z8Kc(&Z9@9>bFx!j%C|xmjuf~fzEpCUm{v;HRoK2~Bd-?e*O@D^o=8KeP5p#GMzY$T z>nUYr2#GN|T*5hbt86>QfP_wWW+~YT!VC@tq;)R)sCl5PlvKM(KRF`cQlX;zGu5!^ zUP7mtk(yX9bGD$UuD$=`sNBt;nhjg|vg@GkMV(Dt%;h!FRf??_Ios{aLfnQbCjj(? z7!WEPemx@i$IZkn%h*|f1AlGh!*s+~`8&r*1rl?!VhdzT(*qM#jRm8>b(Z)K!HJDH*$d*Yg<$se&6+79Fg?Y`Qzq zMeFj9{@p4!K!gOD%qSfsK0bEb%wYQ*ZW4>7%VaS<79|)0u~uFwQDy&2K`1vteel1K;SXa}kdcmafbVHM1$^83s~@lM#o0dv+QKbg3T zlt>2PZ|=jnH;HXT;Y9hQ#>AdD+j4h>{fwmJ%1d1K#Dv=X*D9sjdGkcNkgoRAPA&)q zu|&VC|J&^Eem>_L^YrQR`5?LJlvvWvvi;8$j|_g3yIFYzR7ioQi0*m+|9YN$YS%3r z&GBvLt)}4d*~S8k<2erXo*+ z2}_Eaaj|)EGq*DZw^*XNtAcO(N7#}acCZ%HH-DUXPu>^-tYf$+hA3s{U)p0u6DiHS z){@p==Y!L3TEGBpZv&`&{cIw*zz4?^sKnS04jg_bZ6*MG~TXa=V&ab*0+<6?~ z*!L=MpbZhgI^x;-hwrp5+&>elG67+HkYt#P$+vZ{tX+v~#dcS8sZ6q@`H{FQSKu4^ zZw@$txyNx0g5&Yo?Jzl&aMCBYNLUbca&Z{47I{#V9576Vz7w_))kEa`d_Mo|82%ei z0KN6@3f)H`!Z>Cx(al-BYt(8I6G^8RPJk7A|1cj|zcC+x*g{qucU`Oro5tPlZc212 zuOa7N^LEqaDQQhmRf3#Vh1`-M=L#(J-Se7Knb!a-iiip`?`b_>Chfec!$ucV<}h)w z;Gsj^B2nG}SJOODX1+(5Xp*5Jn0`(}(h$-NDtEOMH1&I=?4mEh2-5<1pGFhYu-^)7 z@s@#qtARjowGcGX5^Y=+M;_qz1& zoUMXEhi!HV(EEe2CshP>Aw zlq)!fed#_4zUc+LN!D%IYa!^VuCnJ4I3~P9yE2^eoULfIG96Ef4~GJ$Vz$omm;zvG zz%MOqWpI(a(v~&F>~LgU_QPMa_q%S{^Ys*i<7IHv`5R(biqtUpt5#Oi=WmA=)v^l| zSnWFs?H8#3_T-H(w>iDSz3b1`$u0I0aO=5{X6krz*k64|T6ZUDi4Y=2m{Tx0_WH;F z4c%lGN}?Ruy#Kc_VOrYK+D7iOL$hB97)l{52$I-r?Rb+R3o)aB+4`cODYTlk_b)q0`}|S4P7d;7<6rvEiLKoJBDw%PUES`?4&Ahy;X#@qJS+l0Da5EMNC7q8}> z+I$10ppVUd-rd*f@w@shFEhY9`OM@GV{)fFj+Av?)Ks;%N40`3Ie{B)0=JV*!0PI- zSYBt6J;$VNQCZJc`Zq)>z zG$fwQMJ$U#c9Z6w2}(f}E~(ryj0Ird;OG9!W>*kZSfSB$tG#M2<1gT6oKV;qlKP zw9qKnOvWLWid%~$Bl-U728*j**eM0H%Lw`7qd(S9cw^*q8MobABuKz@KKAn^P}4k; z+WMx|7-h@i?%MlYk{>By4V%Qw0e?27=Fqdc_SaTgN|>~@Zs4V4%ShSn4qrDC#APfI zw~@~R6)JWJtSqjzf#K+jgkYJq+Hu}<^H~Bu)L~@waGXqiq^YN zE*&?x;=(f*bGhqBnM_HE9+^faPT!MyNUy-x=Hw<&#FeBti?ZU6W^@QP_>*djq+CqR z;pez0d&X@2KW-u?zUEm79OsCK3rKmX$kkMWHK%3^KB@VW%G7P3HvIP;b7L*~EFD*p zEKpCN_Sm#PWX*H7O?w{?(?((+R}7O-zGT1UY~~o|-IF0MnQA-ms>}(;Id${I&xxsN zD48i(bZQ8SwTvxU?#hIO;qId`>#xU+GMe3lr(Y#dLgeOUUh-JHaQ9JlEs8bJCFa4- z_V&~BxZ44pDHR-GW@{0_)Tuc%#kyij4N!3LOgV2Z{F=Nvj z`IuFzWP)>0mnn4l9x5`qUHg3YWU2t8Ks!yg(!IOYNLC)MevpxLs6h$#mt+^NbOdHx z|A$-hvcveZULOVKL4M$g@e%k30h?XE*VoigVsl0oiUx{ zZLc`2Ir=;>LA;8wiVm}P`(@dc>7LedRh}1Lo)_StT3y2v>Y@$$mo|;RDr7*z><}bR zQ8M!!aqq6-0|Avq=|t|HJ-I_F*bZ@jDMT zp=4ClVO73Y@o;k|nf6mt$r>0tv=x0Tn0dU<+O{Sg?<^XzGMm+8tA$3-MJV4ojMS_q zhL!QA+e){uTkd)o+E>>ZRl@=?9=<>*S>>+0{5#K(puz52is(;~pTtay9Hkkak1mnp zwLVb5IO-8y_sH9Slk#g^^;V-SuQiv4(yt**GzTnpsaL;;NRCeryJc%;hax8B*5GQK zpk?tUm(G4+Bcov#3y^@6#~&gBPEPdiE|mit;2H?MwTX4M5-= zjt}W`@+#iMMKJZ9IVuTg{-N5b$ybkskF;_CNCkTsCjLxmg=^^ZSV4D8lV!ZwvR*H` zQ%^43_zuoz&JYWXrY(@B{BQ-r=T3)|h2s*Kowye&8QJ6IeK8pxXMTcr5 zoLt*7^ZJ|zD8{xlh(2hY9}n;Qp+%b2bAO+`!j28PHyAQz>cvc=osKX=y3L3EVNn#m(SmF6DO8-rZdJ^%;=?JX9G1JykH}jwMm_{Iqhw z`G2f!x!lIKDNj0fPYNq@NpEG5dG^Vop z>A$k>OrW7*amp>{-9fPeRe@0z)EI}yh6(#G-JF^KSBVpr z@V~10N=MglcgyA*>x}%OZGwx6@+BSi*x)Y?LJ`HfY*7WANzuf+#7HuS)T~(mkpWs5 zawIQfbW*6m=jv0oT_#oNZjgRn!u08V;*!O6CUGE5^%p{8u2 z-@R?zi!n`{@df+J&_dgDx||-VEO%zCe{t5{^fb#+$z-fvapK&I^*QC+s=O<0G8Z`@ zJA0q2ZX6A1Jl>Xw@|f6ug*=D@7|r;QFtY=UQAzjGA8N_3_vTMZ_#P~hAbw+TP9Csk z!PtQfdfYp_gk}jd=i1yJa6AwIiXFRlvJW%(lIKVVt8HV^(>Ad<4CN14$q#D_SpRWJ ztK-O%3vrCAnfU*@a>Ru=(`zj0V#+Ptp1E}l!KD*nqI?!I9@SPjT7j++GReVpff8q7L#tiRd(8dO@H)ew4SsA~Q%GaO0 zcu+eG&PM`*4k%txzoTW~ZzCD2X-_-?qpIE){OVI0rXHhl&-;VJJ=6!mtao=eEvBh3Kem9zN| zRc@4)vf(O6+obpTXWNxw`iX1v5`iZi7oPpU%timGZvdm6>S8gE7v^^fH%ukAks6j8YDSsH_&1~n7Tfzde*h>wbZu{BxIEpsG= zOV@{TOMw}{*Aw4-p7O>UL}3+U%quy92K%wv2fKgR7wKUURfo5BZDLXtvN7l;2=uOw z1xLjD#SQ%y>NlG6ft1_w~VuM zJtCj|AyhC~x}D&`X4!UlK*{HU&lFH(rtMkh^lb*H$!q*D>UnE>K&TnCL`I{i$D|4R z@7v8VdAyn0{SCi{B!ciObsHb;UpZFF3z+^khRcM!AJAq_Djr~8$46Qs4|zBE-?99S zb*yA|tDk@3Oo7x9U;S-{$h1W{Mh)pXP6BvkVr%f(VCBW&0}&QlKZg!WDO#-;#N_>BMSWZh9;zRSMZAe5sx4%NG)LP14ZnYj%kyojGd zp{$Td%Z6F%T+@x_>H3cpkd{6u$Cj~A{3X?64gx$jf4qc%BC;A6RStAeAm>D?xb>1% zVdNcFE>OguF)%0U`E}g*q7-cWAy(OlUvB|mdHiT6&t235E~B{I4_c}YT6Z$?LS#m# zWK08Yy{4E&UZ8)6ml@JAPwh(XIErfQq4ECw0k~Gk9AmGNhBF&Xc2cBoih*osb(eu;tFG%~SNcIg1eE18sE?%+1MFPZj@N&dzh zNW~L6T=5BMGB5mz9y|AwyWIfV6&UbZJ$OCJ1U+=`;&1<~?2yEYU+Xi?t*A)dNj6K72I(11C{Q%oEs7CqA8>fSl}Z$@4RC5UDU%{ng^V)p**+gz~F+3Ql0}NRh$G&AH~#-m+|H_a|A69`?DY`$#E9`39Qr#wQHxBle9~A-2kCrLHFfm@m#uk z4-srv9v6P@sKrGxWYXwWHxb*GrB0U*;r1k!IGJB^zs-6OrewhG%iFxW8&CL{B>cDQ z9$5SNi`rLaqEyOH11Xd`LJ!xIpKTR}e?NN4JsqUiAiAj z{&}289<`biU*D{xm|7?+Qe0u^OtC@^kIG9zQ-UfY-(_@mDGVUQD6SBH zOzG#W?P6@dUv4kvZP83Q?2arqie73+r)W>ukvV`CJ_L-NX2g*9aNxe+Z#%iONNC39 zJS{K3FESgoRnQf|S=7Ym=JH<*ASCaScqc|wxBfqJU_*8!VPCrH;rpmP9%i$g_ zx{71!fo(_XoqMmks12Gla3~Kfh%Af^CDFu?NGVB%`vjhjRAK`yM}8lKx094FP^%O99NYO&@O-%-(RHbQ zbmtIwg8+3z`t1`I=0}fXkPe&zTA>_E(Dnt%_Ex)kR~*!CdL~a_xhOI1rXh<|)kfjP z$>BTCZ!N=%Xvm7QRtbF9-F4gfJWD*f+tYI6-L^Z(XT)6oyYglMs`km+AMDHa^fi`~ z7y=7@MmLdQ&lk&@!Y`Suju4+e1LLwyS@YB|5dj5fn8^t_Q#Z8XXVS7Q-7ewSqDHLM zAKWTAd+`A}7($QPPXV*9|&d zA{+$twV}wgAy*x2_kRBGY0k$Ihl0|8d(n)Ze6jm$X-n?O(*?WM9NnBhe59lHU~jDDm9K(fQjyQjJSc~ zKJ8OnDV)SWwkdM$GFUyaFwt|ao`9xzBKk5ZutmIl>rHqQTaKBH5aZpLhJKV&9kztT z&LZ+ZP3Ot0=D7ZRt8N(M!7k!dmc%CdrNfcW@@vSChR>V|2_la>mY*S6QgrRf1EAOz z=U;<}A^pt+sLBWqhrn#O)o!ZwaYJyQkvBNwH>^CIz+lDxbHu8Ku~%_eH+^qXi=tF9 z9}Ac;T=7XYGo}_3TSrlPF9)meg3DDTCsCDhv&7HhUUfboT$zX&I7}BSIU9v!Fd9ww zLXoylHSRi;bYdY10ET)0i>ugAdmd)lp^><6pqr zn6BsAttiDMsasgIG1=`0d%C;6iE9})259cmf$4D)y7*R2WG1^}L;bB?X*(s@l|JX6 zUGo?g@LmXkBy16eOD56I*5AxJRSPmYuF+EW-Qj2Xo!GQ8SsDDS)DA2Nz@ngdsTqk8 zo3Q>hO|>2QHVr@;*5`-ZxB(2&-xZw4i4c3gFHnp*z$zg~weX zQx!EJ#M+cc1AqRbxBWv20R3;aD`G(igM+c-;X1OmKL+)K9|E4t&#<%3GLuIkEQX8k zFMVr@N4YKjO8uqEV!DAL7RlNx_Kek7R}p(LrGiOqb`+g)8u)&M&7W)vlW?(I)3ILO z6U5`OtFgQwnjY9IUQ5>F;=^l=kucnEtF1soqMoIfA&nH#gS%Nwz&!+2udL&{?+46D zm{=&SINzBXXI6~RB87Ehqiw`^!m~gK$!>!x550_i6YN)O5$Q?PPZkx7hCq6r5(q5U0Vs%t136no+0b955N%DOl&?+t*HqiVSN?| zc__%d5T;7R;9$}VC_KG-N?Q_l z(woAAHA*<`=tiWg*!PjS=+<#Bq0PL!*ge3iifn;b$fh-TOK|&+;(Wz@4 z!~=&(z85mrf_3oTB6N&4Q|U$&F6{xor9H9m-x3VPMlFI}MC7d#SiwIT;-{~Xv3~Po zCO4SvkIz0%c21i(PgJ~HRuZCTPI2r>1m{wlFlO&Q(z6*9&q z^5kc@XAT?uo-LsXfM({% zIFcM{b|=F_BM?&oy$*YBk0|(k#AcUdc=%!p~x( zxfa{=+AaQ4@{x3!wlm==Sx|B6z~7%J!@m(F3AhMK-eq^vU12no3_8yqM_uUAP$w>B zlGpWZdfcPU6{*_YFzH?b{czMg?bXBF^u1^Xx=XiYE2oLPau*tvT;yr+m`9fU{^jnYsr>>i;WR5z6a`)Uxg0Z1-S05w@E~W1&kD0AiM3aeaTQl>7acR7{gmWhztdh& z2c+u@Fjq{iCVQsX9QB0_~x~J_4kI>Z2k+kWYIul)}?Q^>jTi>mO zrNyVP8z8uUYFmMECT(J8tROTN!(Hq4Q&XGS6Bw_+ijx->y#b!DSZ4BMNAMsc>{ADyz-s&N zGYXYKzLo=|b6f?th6#9zV*GEgA z)Zyi9m5_Pgyz?Y@^iv<%53u>j0FFjwZ_74fEY*rLc8DHf0?k$JQdl?T(J_t1xD<`u%ccNel{ZW=yp*-!dKAUg=uXDWSy zdw}!l??20bLQs}0=rq8jb5wUpcf7^h&y*RrQ$FqLDA43?ygAzGkj#iTf?`-44^@Jr zH41ROixXd5ISV!AnE1;g7s-oTZ1H9#oZ^T1D+9%Ja`s^EctzQm4qk<8G|x&h;!7G^ zg18xVK#yO^K_SU}5@GHEn8+Ms(p>*^%`UGqZlD3a5}r~}JR{@D5#@&yDh0ZRYYWQ_ zdlYGYiRn*g`_P7EMu2-K>BlHw?e_hB8!QZWhCuffC_R~gFU@((V_1pms%hdD=IJLc z1s{mCyLC?im+nkN0*MVTm?}I-vixjA?=K(HcPT#Ae#FJU@EN)QjC%bYerixse8Z93 z?xe7lOoxQx`C+iYduvvEQ16-Lc(ywK*#{*Z!j0sB)g`#y>?YeJmdD9G z+Z$sgvjGuzAQ=-PyG^0~J=MwMhZ%?7(&Kk&qISeTj; zUl!{lNwT74!W?B5*zU^a1mjxPi1X?~Xc&aHjBl->-a0IKf+fj9GLsh5X~o(9rvt82 z(AA&;snpn0QO#r`#^!s&v)a_sLS!%`wnotlq62qz#R6Z8F6C}Zjaf}N+#rdB_myZs zjylgE)Fi;&Kx1ek%>I{LmgnD@5B~_6fHRRvHpcE(ewXny(3_AKEiUhD0izcpOM||= z+b}3yGdedS8&-qMR84Y}aCc&On{nT01i_FraTr?*y0Q!b+N!02^DtZ(9BLLo;^we| zddnP-u@dFu*}ndEy2{gODuCj|J@Fj!888pQ*+(7`xTb~ID~L(zmNc=$PzxSR=q7;m zi}+4rZyh(l$P#Y^9XdpVKs=06J$mp?;b)rQYpx8U!Z_d9pHoov7H&)mZ(D>47Xz8s zaf@zbWVRL=FhrnjZe{$hGK&JU%pKh+=Fp0=N%EgD z3jy1|#nHwW>+{r3^}hL^Gh10x;3b!9{I?wwy=cM;fwaVRL>Q3fi~BFkh>VR%SWYB4 z7^81$YGiC`3QkcZ-|o}~{G$~+M-=Vk#KaPM|1;D-jcj)8RhQE4--lhP0W{cH$0~^C zDhPd67rjo`)D*}sGqap;mL}(akYRZ3+8JQz*q{xr#Cd4^!D-pup@qfm!S`Mn->3zETiZk2)j_0#Ptn`@flx?$NSeEud-|b{Jur!p;Zb$E0c09vvUp?%Zh?Th z9Yh?uGAMR8*UR-&mK;9AWp*}pHofhaRs3l!^EJJ!pWN_;jjcbiIn_(=8Ct6gL`K)b zRsX~DIG`PPu_>(g4P}->tlHR{!ThJ*d>%xLw++N}=-c*=G2okw4Vo96J1srE-F+2Q z7#d`DYbfBf_U4T6sSlvh`ufr9wtHY|Z;s6DWe;{@YzgK49q{bL>I4avMWE{^sQ0b* z!4+U`2%4sy!3`eef0RP}A~d%%EZo?8`@YAg4RnA%r0tl;LiT;E91Hb6?2Jw>BAFcA zj(+GLPZp6;6%tp7KD&*6&xJ>Qu5Zc*+U_rC>9rqSe<7s_$!W{|K zuoAQJfz0d-_cT5TL3VzRViGEmSCl~fRKXYFq@?S_uepr+5 zv>9Mq-yDM=l#+4T_nq*&-2y~@>Dgo-`cxC+pawr)WgocqA(+FzM07wX>xIJb`pCba zZ$Z+?zXIFRK;`~dnU(%uWmfuI#0G>iT_}v8kNh3FdxiA*f6DiN1t_@ruNJ)gPkA63 z`qYcOBYMcueMI)0sd<9#HvdnW-EOr05V>CC_|AL2&<19`TrY)A1Ujbyl$p-rIid$U z%Ma-8d!q{r6C*@#z+x)vdu;8C?Az=2SD`zy?H$q3m)_NTwADM+hd%hA$s6)Z4#*49 ziy*RG-*?350Pry#vPSe`XZM8sk~)7E%eSFF`>4pD(hI=}JOJq%?c85vZ=L?HLc3nw zm_P+kx-u}hz5mJbYJAJs_yO(Bw0cH#lPz-&^tmzGeu3_^*MI(`yO#S1pSrz*^W4b= zPIkPS-&LnN8@GV+oy_|0LSJOF?=RYbuk*B3tuF@P^IFWvYsM7W#T)qiGMsp2N-y3L zLON!8!~b&cPCVE(I!5?km)4!0{<;FFo48X*Sje6J5*1zn>c(#Et{%SBJ{;W@zo<6f zlPCY#?7@7D>U6msUzj~3hdv|e{P(1A*H38g$~5-^+Cu2c{u zG_K7(bIk4xysmBhq=S?TYNil1eA^M^u@40`HnK`PFii1X?w@w$p@_EfYL;GizF+vY zyv-X>y*FrH4h_4lQd=OX_#}ZHH#yHhWMHeAABPFNdn&y|Odvd0gA?IM_wU{$uPx!z zJI%4pnh8COQv3nuQ>GA$=rTpnVK(&kk@UtkBEu}4Fu~b^+|I(O%}s?ubH$$cv5|%T zcl@7?7@ntgbtC*!o;4|zjl6#j;tx*ue~4`7#mXyth7)=x52ruB>9t*Pr?5r>TP!`6 znL|d-!k6upWuDjW?v}#REaS4#p_35dG-x=@+qBsRzvVJO26H@m{+sGzbRJ(ax)85T zGI%X98B`z5kLYXMxKGnP_5hKMRGHd9k5jx@Q$LF5@TqV>*h z(!kphu{JvuXhSWsIKS6xnxlLUU^=u_DDXDy3(~VWlbpZOO+7kfE<@datdnoq)mhtb zjxS=)fbgdmA^y?Hm^gNrQW^|`E0jUcL&i`VTrGlQc+%*5d1Vig z@lX-i0?PIBUguwEJEamm&lO)0fq#Y21jcQ-x|$YB88-XZ5zD4LH?wOWus+GpY%pZ0 zT_o|)(8lQ2ILOv8e|trk`iLq%vMQhsi{O;T?$DBPyfa^DXTgVn;(zo>tL++gs&1Oy zE={=c*Wd1X8vvEf|0;I=@o?_0rHFKi!W}^HYYK|ys<(H!0-;OA@|hs#g#aqF_4htW z%*~$1NeuN4HKjE|s*eoAVvp#M&%=pBY;dN8GdL36W?dbMWCNNr zluYqL7|&xtLIkDj@3rJ`!U4L2X&&`e#twFJa7I7%l720emD`E{z{eof_mrgo7)_}~ z%Bi(c=EG_o5m`p?{_#=HX}O^~Fpnoued{`J(wXyhwWq{R7JE|1#s0rwiv zCMm^s`Obv@tbe)=^r@nOc}*55^9<#vB@Lq2BKY*NoFn(p2SefYdlII_ZoeP{=k)CX5zfF;76mW z$Yx!&q~!<-@80WII56OEk}H9aI7Y?0jppwE#2q*N9Hl1btFHO?Mk2Po#-;0C64h!V_hFHsxC^g`6t?ixbfh(X4qm0 zwYFiscf=CD*r`D}Dw}3^E*R}*Um z&(~}eHSxr*%}S@#cCCrdOLf))iGyq-r*%5j^hbUnyiyBZ|8=Ud{^ZC5kI(yEIyF$m zNrJIXHe!#uvmwjD%#_jCD`?Fw!A_AfDRYEG#0f&R2)y7~!+ptSqnf=qvq0`|a2YbX zLhNw?%vEHrXAlFflAt%Leca)O%S`aJ?|1qeE?46<2kU|)&7$$f7Anp*7W?8|H2zT0 z^@!~YYmQAx3>R2W@G-xy=4LYSg{AhhG{NDMT&(xtn`ew!I?0VVp`e(J1!bcVkoX6x zRnPlcIk@*ST2@F`vna1&xPoCu#nI$){+QAOXW8_=)>oXXv_1b+YDg?ghCV2t(3dDI zH#uXbBP@ZmcHL;GDi2R-(QC)`ConiSg zXe$j`dBX3C2WYB2dhz$0$4Xx#WLn+z1IcLlk4JNbD!PhV_gW zG2g+djFI`|QAt(}KXNRgf#+5f+*0B$=GWaQO8y^x*-(nCGmO##n{#>J6g_5ul~D+W zG~_8nUf&F+!X;Rx1;v}dsdn>IV0j<*Eo2h|(}>}zdwohI(vanqB5Z+V6Dj2>Q-I*0 zx;;7CE{3c=m`&s&2nCPHI{$uuxB!~M--Nat@4Fg&9Oq8@PbPWc0DA+L-8iLw1`OND z9CyCTSTm8>e~Ft4oTd()aK?T>B5UXe_a{vZQ9t-+*c9QRT?6iqAR-rA^}l63iBTY~ zXc1n*S|OMd-F%6cT5NGNrdT5j0-X1AAf@~L`WVe1g93}cQx^?DiWlSuEViqTR!*f7 zi!Xmmvh(qQCOQ`HZ?Itao-q_{Ix%h7L9Y)V8p;c&Ckz)=jVW1a>vrY=A}qYI)=w^3 z&^0WJCCQry3#%fUpUu!(=(r|j5}mLgHyQ9w;9(LndzAn#rKqfwHH}681OP;!H2pD z99ogws(fbe*^w+K6WkYpVz9&AN|sQX5%lT=2>hS;D$yYw!(`hP(biasc>U(MH=#IP zEKXka4^90$;$<$zi+|x*92zfWCloW{VP&4$3&o}>jY6s$d45lwvV1mwC2!&%@{%rs ztA)ZE(l=Pbu!p?>>e$i?V1>jaujfKB!UiFX0H*T86ZF6sBSDA*^64EZ07g*ANQCQ>k2JLMRS_3nNqnk&3K zB*O&4a4HzbL$3a1d}5xGslRviB5W4*8!#fJYAEM|Tr(LqK;gW6*=Ub_r zI|*8*MSJE08+@Km$IfE?a^=k$I*VbZ;BD$nvEY`dvG>oQRn`deNko{x@Mm#akD7%I zvR9-LaXC($2B&d;MQ>voi^UveC@G7ltB9(UZf+Y&G$5(i73-}t}|6)#Z;psBQ{xAP0+gpT& z1T>z2c+nytB9h-NHk`U8i#2ItSbfrfyGaU3T|Ixd1IbI=CFoKYOYU@$h{IoVyj*_W zUIB_V8(~S-MQr2s2S~w}Q3rOS5ts2#CyfuD7w+*G43A8pxf&gbv?{~_rW_hFfO}Dw zM4@C71n4>F5RKhb)A^KgLwW?g)yP!`79^yj^R@DvbI zut3>J#3#su65=}}`J*v_Ki{%gSv>o_eYFDae(OwzDB z1DzA|aMB%8;QJ0giI?*}h0fmnxMYl65nV=^WXg=|kTxo`?*=g*c^hyH*^oa8i77ZY zWUzVt>>`yW^A-p0=E>8*D}%JYK0?$Yy5{sZ`;rnWOu>l!nkEz4`rRK&xE|l6gHBhAa@z*WLOhsg}pMJOl9Gq z#51Th0X<#=MOdJ7B4L%O*eA6`XJGUrfCuJg@>#Ap^#g=gRfEcxvV?tcGf`Ynb%)yN zfcmwc%ciTnsWmv!kNA-k`3|R;(Sx*`LoVMYicOM=d|4qbO9p5j-)z{$XK2LeMe|~1 zLH*prYwEui&m{r+q#?ILQKYdxKEk9d_Lo7yP_1+BEzS(y;bSFYmG5Pudo;6(z?UvK z!e($UtZa&^I_;rrldmcL;*zUvDN^YEQGP8$=M`3oZ@XVZ+Dz(k@=O(-7~3)vR~mLw zFEj}X(yJebiq1XkY%r_-bs=w>`jlsy_JRE#X^zy*^2~grUy;@C?JAb=1fkc0<9%Vx zFPkndm0yneZtOkF6fKgEOIUJN=>>EkRT><0YMZ294Xll?#m4+s2 zbGB@&xvA|mXrrq@SKZ*0|1ch>frx>f0$*d_PPWRk9W5UiBi%~Iljbbvsl$u_q5&U~!b1rwoy_7E8v4iVwDbLMhs+)hmjB#?8B${CsjUhLKfc%WJQb_{p zf4C$1b`f~oOhz2H%bkSSrajh-^CqE-n`4O)I)6YklKxQQ;2S|W_XLWYL9%(*1_x0| zbCR|Voe*KfyGXXKXO=}o~4zsOZL_i)HWLFb2Z1n z-o1sdEWYGMpe!hm_IKze`ud~Un@aQXQCma*%x)2F}~_c&iXMo!84CH@^1lfNdgfP zii1ce3HiLe^iMg>ntb!56*_fK$uvHr7aUAoZLkky{4Z7C<5vj6;ilo7`agI$mIYbr zrBj0bY*fTDkE_er0Qz*bK4|2HxFxLZgZCee@GdICZM*uIsM#?y!7-b5>Ij)aC4#^eAbWHd!NMxpNFv_Kc^YJ) zX`?3X!#nFrV1#W!p)A$MU2{N@H?7kx3$r))ad5L;IP_Zg;6j5B@lck;Bglug54AH1 zaxxz_Pv^Qt9j27nZ+#l)JV5>(f?|H@-uWV7Qm=}iO1}rYTj^I*@aqxgC8h4tGs(_V zbRrXV3D~qc;1LNWR&nOxrGb+QR=g~iOZsb^r;n+{)D3TCq)K-P*Od-S*TIC5&%M!q zs8pHz;@(8{@(IsnJQZDaH?+CQ+2;|b>F_vJ->6Cz_r9bK3zdxn2}qn zWEmFnY7#E`O5q0m3971GV|ZF%9V|hJL*t3@EnRm_^wQ->5QstQ?pr}fq%$1UTWz)J zOPl##dDddsyU#d^q96+TK%z(5zDst&oS>x2}E_1sj5ngo3&BwtkOaC!EI{Et4>$@5*OtNX)KpNutqUkc*Z4IdD%QBjn9!W&=1P2QKb6@gTunX1JI%n5ysX zwsigR{7Qy%tvm`#6$x4E5^~og*~f?g@x>54PIG@1eYFMdp||DOK7`%A&iNyyKC{gZ zgWUO(ZpyMQf^{@A7TY^fA}An6^f2z(@2ljTZZb29swmHV%Ibb#2E|y1{li;H%#x2S zE_7+2j{zyfll`PYRM!Y9Ivk_7psFIs6&VG*2uDcbZAw))u;-kVFV|ay>g$Su!q?2;#es;B2UcD!+H7G zt`*$nYOb<8Bi;cg@vrzf|!=^E!3V<+S6p^zCE8 z8GVV!km7h}AS4Xk*Tz+=p;(&LM?@>s?PHze97J;_u2--3z=%K`W_SepGu6rTozfDS zM)Ex#Kol2UWqRQ0->+#WJAbE)*pQ_7lsAmM$96!g|%y;`dzcj+y!>aRmWXwN<4 z=m4K%I20{95jzIoKtq`c2<=Ha&DC2cB~dhZ28rgk2;1~}$+&mO98mA4u#{aWOWiRr zzz1O>T790R>6{u0Z#$)DrVkz=x&6giT$IM`1x)1O=6b^*W*gdmOuz!eI>A%XFVs9f zm1UxH8@X=anhFC(&(WAEc)92RGl8Ox7BI1`?^0A*u{{D~DHCgf;iq}10W&b|P!l0g zP-?_x*3l{Ea;Xr)Inasq2sh62t0oSz;amqqNhnu!Txf9u0brR4zCb+8RAC=DGx=7l zTbGpxSF=0A-^iZcE-hwpnq~1Rhot!1tq$Ci{YW@n~)0zjpIljRbkvDO=qAt}#h^7^ftQB>ob+(QWFE*1-{_}r* zs4MXY43xFYi3V7jWT8()t#{DFC9P5oa8NRiw(rgzHR(elXog8Y?`V5HN)60IF1@LF zG8c_>I@=J7VR=WdbFlNl@ps-Twj$x=gh9yHflRMJO}v)e3p3# z=VXhg)ir&*zov8F_`DPX_9sE*k2QUmB$5I`AXu&`i?=Z?Q}qJku+KuXlsmc-^7B*n zrBvmwX?knmrMT8iyOj%C;l8P0Jh%F<8{P1ngcQ(D1Z2@GK(V~tB z;XgMB_5^orIB*OVBO#~gb5h%jr0^>xThJxYvC>MSvqkvek8d5A(w~zWGFjL7kqnQ58$AUs0*|5gXn3>Css!wOVql;Av=z7z1nz4 zwMHwWyx`f~`$VS>0xUDw5)}T zJ#y8_8Z~Rv(9_OvA%S-?*PX0l7uFr$fuJN;>|7BFM5!gS<*|fS+q`t@n21CzPa%%X@hs-+e1^3EONhSJpt&y=v5F)liVz9Wa-6* zWO`MTMLW)~L8Da8PcGy2zOlysQ7?#BApEthunSLS69q)8S8l(9{^+?4?ZQLKE*kmf|NX~iT zvz*$|XIC?X765!8oNo6uQCg_>;lt{kCCV)Y}`tktQ_vcf8 z&%JMUw7p1}6Je>EZ9b%p0d$hR`&#kjWnQ^PoXhaDT@0b2C~7bwgXy%^QP5gd!Z+=k zzYpfX!i{+KZ!D$1Sd;eh(E2t>dIiUif9_(H76tC2GPG4Kr-+tIDJH<@f}j(O+a+0* zZz~Q7bWZ^4ISvWE@?x-!p83eA{;t!rG?LcP`~o=c&aM8KamA9*hNK$fUkGET0ywx{ zTX`C6%3w{x5SK=A<%3cjG_n?YX1dRPC~Q#xp3A9}v*35k%O>y{Katc@M-Xv=^^jnq z^BHdxO)i<{4(l)}9BpwQn_8OH5x5m{BMrcSg&QDhsMV^^l>$me~N!sfrlRc z3sCSjmp0zXbVU3nx<`Ustu_6_=(iT*>?Ji5TQtF4i(80C!D+J2%@4*xtdOTadzEgm zVR?TOh!(k(AHI19c2PXQ-Sy0Sl(0CY1qZimK&CmyM1G&G;4V^AQc64NtU}& zJe)Z-wFYxMtC4e^EzY!1xng(CRNN?<`sVPGqL=5Y8H1P`;&n@@crCCl;}9#hCre-W zmxNw_A@MZ9_KO}4*)Il>LUV5~Rnu?>?5CPtYK!!yR;EnfJdZMiPkT@1YQP|RGR3L~ ziO2;T8~I8@#Fd4E_YJjn;1;+uG4P7fE@-c0!q=2j+H*Ry(gC5vVs5`xM;6T!1H$8z z<$vt!S#xvIe{OS<UC*2h6@)4kTuTeU1jcZLk(9aa^B5%+tpNj zJB2v8{wa)>$PyJ!;+H+oSn9#c=12wk7Ji-7a)R)0{1L^LjG-@?jN~L39HF*?p7tS` z-Ylv=#eUd2=ZHUY6q&K|nC7ZI`y^=E1YmE9?GD9rfWN#&p3q5H18rg7w|c5bId*tc zDZ8)N>P6SQ^-$?cX{!JtY}UUEel4Sj0D4~B3+8k5FWJFq9n%|vcVGrqx_*e#ZZ7w5OJ3RB4~qwW8>mVM zD?+c_@i|I)zoqF)FPGxJ5|yO zS&lR|vUcNvPoEMMsG6~UtkQ_b8;XX0K?)SVI`}=64JT&yG}aVl*}txZUvfni41Tjq z&%fzdl8tFw+0vT2DT;1*RQ=ONfj=pvMSf>t{-7@rsL_EBHB-`aguOro>RIE9?!SHV zq@BbUlCvvd8Yr7qYwmWk#U*jN?`TGHRu`fHb!Km@Fbe)2| zmc*ftKuxXsBq#%~1#RWxJKD4Jke}eGOQ8#yk{q*&k8sT%0`ZaPMnv&d0ANYt8Js)q zk|^VefcGOa?~G1nJZYs#LHSzJ*n1O+;(9P2e>g@Gp44)m%^ddo(bd04sxrlGp*z85 z{a0~nVGT69=MDr<_EIM9ee$h}_)i@A@Yp*<00rTX`GhJ6S?YXyYjn`gt8Z~Km~*AK zNfoJ2H|lust{{-Uf$8Sr5Nn3dvYMcQEBV8YDilM)YWb)*W$(3KaggkFK0fHT5>=b} z@Bwwr?o&zYa&v7==HHusByhIkw(C0d;L+cadzx^M0;up12ON2N>fDO?7T=$n-geNS zfDf1Xkz03Gi0C~-Hx0kJWi+w0Yt6($gm0`WwWSCgrp|}!5akSU*?4ebmULYCv3t@l zY#`jYBBD_$Q*Z$y+;?>#@Tsn3P?t*U*eYg>T&l)s#a2#gLzme`U7_b$D)By@Zm`&? zXi1_!cf>gwC`$C;$8+WgJ{2S7c~;6sfEZDpoj*ZJTQ|-P3bba@E+3`*Qg@E4)fyxh z2swwcOczjuX;HD+FX`!b9WeRtSbX|T~ggo=hU#xqt@c_fks*}V7DS7({VtiXxZ%px2og*!dyp7)n zWDn1)OQ%?UnSXg}%fjHTFT^GhfFEX$XH$5e(LJRWq!pj3em3ir5BtG@jjDF=+t!7v zN}#QYJey-@diX)6zDt??0cv}%!G9p6lkM^9%F201x*SK!?72STVtBkr@5I}3W6SAV zK_QjwB1iPB2<~i&ozY6?DOPsJ3WL*!b$g)Ozg}#`7ts@yl`8#-7zTPR;6Qiw@1r}r zUHqC2J6Mx@$yVQ3-r$7S3st@Ll0Kr`n4PBh1A##xj@q0ZmotaiXwi2!Z4yWsI596CE%=qH-PYZk{DH*1{6>XSgm zcM-M{`l3`=p+TN60Y~t-<_ab=elEV0Cej6#qyk1J|pD=ED8>dqach4>1l{Jw$d*80fCLNpcB7fL4Ep2Qlg=G&MC~ z50)mmcqfnMLjwJ6x~!OHF^^FMk56eb*og3iqBO?V+LtYYE;Tr|BP}3XLkPve(Gl)s zw-%Pgd-*7yf)aD#?=bJ^PxfC9fiip^!j#KC&1up(U>L9sCDYVA4^^T&QCtXjy8$XhSE-e!)U`zfGMGuGDe`da8h~j0GLW6^qx=*1_TAa z8egs4e!ZGPrWsNeEq}ztNZAo~42q_i!bNa=ugtn>#NcdguDs{9zh)RB?^1jcURj+k zFOzoV^4Mxc&0iOx@5b#PLnQy+69uUZ32c`o84VN4SsMUpcC>AWI1?#cdUD*Du5F#T4tx=P|B zU7-*9o&Q+pdAdw^*`a;-UuP@z_yxg>pt=FxoCkDr$OPW5YaK4% z(31_HZ$GI%fdIc;3Ol)@(7E9$*AeyNQ%icrybqA2IjQ0Z*eo+*o6J)J-QqAFkCp>> zkgogveczezf;~~5vE*uG!cZui1GLI-y?M(Y=Wip(!A=KsDQpchxV?`Je{#9vJxl!O z+IrVJHgwBbq0^4bn8~x=Fa}eN-Uxym8Ht~2afx$t0i!xaO^zdm3T&Gz-J!8xhI2PL zJg4(^J=>Q*k+^_`0>=`N9uXwF-+3pTuPDj?1_7)cBa>Sz?}M5or4~w9_gcU6DzUnW z_z5+sePLqUiG|Ci7(?O{mVmjq+F!{F^1} zetY#L^$a;{OX2DmSU;PL;WXN-xEbW-EAJHj>BVkQo%am4JE+M_td@fGn~vjoW=@gh zw+9r;y*v+hE<-o06!1zxp>nW^uIb|r4~{~SgI?vBbF!tWTtaUXh|7Qfz5VeMZbbNceh-U)Cor-}jtul)GiJU05y#B%()x*iGBWBr$D zG4g6>ZBSPBXuyFj*?yoI<@mV=gWIY|SWUG|?8>LMd%EJN*cix6vriBrjGPvk$`mFe z&W#mjmV_Sg4KKDlDyufbqqqkLSUbAf=N}zk`n~z3Lo4X8AppH0ka<)8nmx)mM z4%NQ*)7gc3nIlDv3y$YBh2yv;GfEre4T1`&TC4-d3d9c+4a&x`dRBq7_BdUj))QJQ z-6YrYQTRW3<^RHik;Wa<2K&r&ifJn#w=LDYq}nSF7EcG4+$;sg<1VYo-dva=X6duZ9Iw2B|2eE*4BSY(1}tY++^5 zRhM_6T4Y9wO9^)-GVt=6lv2g^+5BGA<;aVDAQFh1?mhpyn1>ZPH!oP{?blec4*Jq& zBPf_VXi+rity?KxGY}$Go={$BLXH_~y4MIyP&Xs9p399Tw;Hwp%yzzyOo0|v9?D?5 zeeo2Y>#TK3l22<~c>t|g;`xRiY5LjwKqoade&mDv?4FUk3m|FO4ow|OMW{!o8p>BZ zSE#097|PyX0O=z<6n+!@SNb`dK?TQRALst}bFO_@87xVg6@E5*qAaAH_2Pn)5f^uU z-3{BWp7qF#?u|(`-yU2&yl=(`l=7YBnwNnHShmD0*rZ-Vi)oiSzIVcDg+XRMNs~2^ zZ^^2TC#57*AW)9oLHQzANM}_>7y}+nEr6g}llzKC7*}@0s`ntkk0=o~ew)Z=Cb$s# zH5)558pDf%s~;&6V5ehL)OFoV1UE1cpc(R*eB?|A+0YI`6N}@EeC(d4m48-@kj_!l zv>71%9np}E-dM5tIRr`~Xz`aV$6G5}(KY-KSdQywpb2QT z<^ybFUZZ@R`s(Lw{`AC!>$f^la$;w4Ydkg4_d7zjjFY183THbAP>(ibl&+ovHov_z z>=DQg2Z8g8lTCdQ@?MDPb2w@z8~&>N(h;qlHH$)m)M>Wh;cz0}lB*n1C~)E~79R+6 zkMKg|#7BR~6O_?SkVJsdtk&M@fT9~#w`A@JGd?hA1mVOSHv-$dOm_HSx@$H$;7PKJ zcv^0}r{kZknDOb(`KdE#RW6vV51;ydLoMPS1Bj=)wHuvu(N9_a8)eSok0<;u#U-GK z98)RE)@BvPiuS%Rx<>T}5uA3#e&2MsM&-rWjpvfD?9x9AoWJr@h3D=*or>88daz=w zAtembh3m16c4)_>_xLRaH!-hl*UBdDpRl)FTM(>iV=>0AD4Za4^Yiw<3A)89e59gW zqJV)NRsGt)$BC@IEG@?cviv*U!P0wHMvzr>e|mSqHK|DPnA?vM9+hbu)awHJg(?#6 z)$NL`;5r-H4cYn?u9gPq3?FBnw4XN(BXg|Q$gTlDAo!N|#c+;Jju^mWACub`-PR7h z?^O^8Hb4E^++#CcAGKf8y@nT3&_x~`?tl}dFT>F7^Da)IBAFz!h}?KX$69-5DKPBt zxO+N^EOd$32jyvIV^Df2isL2k;|v@xGr{mE1p&mrW1N6vFui;n~Ht5hUq2Y z^!U`Y4C@I+>tt^eHhB<42FD)ZX)FP#hqa10psSxAQitM+Y#O&*PUu-!#K;y!n_{27 zgFKLa!EnFn;HcNHoqxQ8x7}DWP5==whUa65vG;Q32po{XKU(QKg>Ck&k$eL8WVc3G z1^UAv*k%(+Ho(aJNLd*)&eotAehbeSG&aT9z<%8z*KNONu5w^d*#R+EUZ+ajyXoJ3 zs4^~#^hY}>+L-k8c7s_0@nkxYzW-oC+07Nr0&myh?j^=Bzeka?nF{mq7y~v#YN`ma zFW?NVT@a^}$E#C&6kkHhxj@Bj`;X&O6`wNw$^wK-6huryny{nu>5FGU{P@~Lf*_>L zwfd+W?oHP9nCt6UR{7U7ZbU)9DUTA#kd82R+kup}EAu{${)PU4ZrG)?-|?YhDZ$gh zZhx8N77TZ@W9(Bp%mhDAGzKv9pzVw3IW!lMX$=Qf$qQ{CkHW!KaA9ZgueWk}*pSsG+ZMUzuipIKvu`Mg9?!lvlrvJ6dR)A6Xn zRM~K|OP5K9^iR80#$8=$s_&9%3g!TP?j=uJf-mv(Te*~Og*6etR`R5uyP2&{aj{@< zDn>;`?CKY}683Yx9;mJd@z^hX+}Rs=zXQ3oA>>#J`HER`R10~hQg*ZXQyOcD5E7Uo zg+Ok;vRd$qov?e^qHPw-x3LIr`hAN&dZWNSNeJdDj98?8(^6Shvr0}O|q5}klrooQNao6fgXFN$MyHM>*>ZZ`q8FPFFIe_A3dA7j2)iLq5Id6iQ zO59P6=aA5Oa(lAiLfkPptI!8ej-$1=yJ%_jDx=AtQz>UnfI7DNJyuLIsI>VakL0$s zW=fy74a63W$s;W6J3VN7F}S1vN6N>uADMFb2%79Zv(^$#Es@8|2+7b^*wevg3IT~! z)Fz!Rvct?15uoR-h-Zo+I6S)qJ)F{zd}}TzSI;(qF^*(otyZi*_fj|;Wzxl`iJ{AZiHOvuj{Zw*dyUc zPbdf8)8q36as$e^Z&wue>iu#C^7kG(N0n6zq!Wf>AAmvOxQ;nWpvg#s2&+o*5pC5N z)Q_b_VzHsM%87cuvP!ROfx!G8>Z&{srraY?*sH|Zrj6|R+Bb-}UENxRWX8Bk6pl_! zdijaAuwpq5)O-2MuH=J!t>ge*3Cx(d-OYy6&oI0#zCQgFT*g|W^(V6pG2#d7p>zcD{<%{l>JnnyAa3g5f-9 zXn`f?+cSRDmj?NZ8ALfBrL-XkY6QCG$-SFtYq8lLJ_^c-8i<}2vC7J=3$-BK@6xT1 zj)%X`s<=o;5i*AA`MUsOW(Zy4ym9W4;+zgc7jWs4(GDPO(fx6m=ypP~;JqDZp^!u; z6g;8mKHS*d-0J&wzvmL`tfq95$vt{(tniyHgR0|xG=6@29L+*vE}?2_INdHjH(=ag zYmb0>a4ttMZ);#B$MNsb$LQm>^HdH0wn$u%0lhG{Kiu{>%!1Q=K-ZJb2?b>MC-Dh) zGax4(RnVagf;JJCnR^;5_o%kzpPAL4$m^QO>~o2EwFTDTN%Z4-NLj_or}l0n=BP1h3ZLwI(h;)&zsdLQX z(_>S|hvc^rHFx|C_Mcl7)4vJ^GHhYQ!T?*xEOJ-!qTnS3_x5PjzAr-N%dJ>|a&E&(H)CE2qH7ZnR<=!| z3)upn*=vQt*UJPCD)J29UphYpMQj5)+yd92N5Ezm{XpL`w_uhS&_29q90rO&2!N&2 zG&(%}k1h4Q_$*@z{u5J4q3knh2jM`lPO@;3r|0}?)(ni^aYwmaI14Lka9(J0<7D{E zqaKy|)waTz2e^oz@ENr;A%tR*u2*y%e%@tcKMG|*$(w;@JW}6WA`;@xkstW~V zMczwwbE_{Vw5r%bA0`pev}{-AU&eX8JmQH(+2O5y165giY9>z1d@+z7(rd@qE9xi# ztS_+2o^9NIm(Yo%e>{PK8Q^7~DC&qIUTD9H3deLdf6?>rG^*)1x#~5f8pnBm4M!S_ zX`aVowCG`_zt3{d&{J%%mLMnN5o%vEfAU0& z=#GB}?iz4K{RzV>CtYYd3994;BfCqz@#mQ;3;c*6&ySF`mz_VQWdW!xTLoJb;`E^n z#e}xx^Clj8!oviVgiJ@cQs;?(8`>h6=V^1AV#Z2Tf4r`BP2_BNOn2PsVg4|GYWRhR zj1#ZbMd=Ing{f4|O=q(~HLx+cUMQm~wC_sOb4+1kBbE!iATIKn(1@7kiohe01JSrg zI__0DiVR2JouB2ik^p?_3OT;HOC0eH{hvf$D7Fs|Po`1{2N#vYoez}wL(#{-tT^0x z-=gJ>Wd*QHgFGbXW4rPRCgDV|HEuuMXhZS$$sC5cR=A6Vko=b$yoTl>Pb=h49x>wD zE$x!dP(yGN@qdUDh-1ziBv4P%l%-45S9KrkHAv*V3TeefU;>(0c8qIFpEv~g3K5!- zZ3!LAccYlaimiovM>S-Fn$-C6q$a{^iX-~>4GV$k$DEh~+{=FIsmQR$Zw`M|%wXHn z0;b@XIBC61nj~msjJWCZw@X>tzP-V2`e&*| zW^dtWD$Y(mR{%ep9ZBgvEp%_;1cdki34oW6R4LMmfqyotv70PMH$hr)e;brpK4=4V*rjJK7ZT?kw z27b&t4DJc7&B}e&1e$`JxT7ty;H1s9v=DYvl!7DtU!wdZCLk1uqD%BB~x9jBT~4m<2#NfM;ueak!We7Nd8bZ zR>2Z*6{|&>xXt4V9W*LoUFfT+VCF6sePGQUw?k#X-MGi+mv4Iz1L8CFY^$%xOa&wR_fuC&CcuEw5VdLFLLW5T)3@c{8I>f6yW*04^p{s^usQyZjM8ISN_HV%i$aoHtMmc9_h1t^bw+S?8tA@R z)f9Iceuq5_-$Spz5S-hR%?rpnJbf7tPlP|=^Lry)x3$a)mLnaVL@Lru1HrQ(r~y*J zb<=?n+gqe`bhIiMYzkZnkTZZ1LG$&{4QRr-X(G|~tXP>g3MDhI8WgWZ@2I&Pgsx+p zH;F=Djm~GA3cSPd`i0_02W2!heh_cXsPBA+(kv$)bXir0M!;mNG^{yj``xTw>RRJH zKS6KEQn>Tj7@r{+N-&|L8r?kny4DtFS3)v4ly9faN~*+&wrw z3f{+!wHLcUn%e=C_70{dxoRO_)+|h%KKW>;o!0=&nRPifL2<8$mw%sK1&-yCcY(Bw zHvD#VmE#r8*zt2S$5H^8&|}l8{+9~~nNZ$eF6_~0?pFl4eLW-Ba~R4bV1*NImjBf= zI4c87KUa>Vb6u&~RSTV4#iMG<;`LITJtbPge5KX{UpoFCF8sUYr)HX$X4$WjhAMje zR7T->H^B$G8n+Tw2jgx6JE63~A{uz^+keiU@JqAZ5 zpvF}Qf>}(~fx;QjG%+FLKI<2+_V1>qHPsW?DaAxlA6#9y=q*lq3d|Y7Rcpmz5FzHe zg-?vB?{sR*2?Yk#P6`z*R_;v9wQrkjcrRVED%0A&Ji7nRvKBTTGrOM@Fd50a- z{@tgPWZI760oid2DT5|G9Dv8o!ZO)82C*upSuLYJoik@(MzioXkEDa)HOCE9l{`V7 zJK~VXYjjC~DqqBWb*K*aPv)X$*0VVRDZ`xyCa{FWb7WpjvQBw^R)+68iZyaxc~v{B0pAWU-KKK> zTPW647mhdh8fACKRKje2xol)9S1SYx9qfI!DCB`1K29X|s?n9LntRXVa!dD22t>IK zY_jUq3XY>vQ3+A}w;Xo3Mot?{a(wCi{tC#k?&Q5C!{s&L&p=1yeSCbdchE+k`9`M4 zXZleOH0I7NlZ3&a9$9NhkEz-FIT%b=?U}3Za>t-}!$p=AQY5Wwhot3MAopH;sVxRO zrtVeQo?`K_f3o2wE4Wjq<6SBgOd9d>g+c6ks0LUfdOgI4vC*$yA?Cpy_%uE~OsgaP zu2Hd|V5j2%V$ZuQ!v)!VQ;wvKG=zewJ*{)cp;G^gfBBdCCwXGqjMK^HEj^}vA40K7 zH$h~_6p`X7)8euTa41qYzFgf4FaIKB(HbJDyRupObm^g7Y@Rw>EG*1xOSs73RSx{A zeEW0d2B!A@&`k?-SDyI+Tkt%&2yDts9^V_>|s{qLG(mv%;99dZc*^Q zgd3?H0OrvyrKYwG3mJN!!fhGjI|X|z@3^k?%y8Qwo4Mp>l5azbJlE+zdp+ZzkqobuqH!e!%Cy4u^914-m_G79VdupUocnAK?iG^AFdrX zQtppH#KaZWGp_$WPkP*MEe4~kByWkY`P zeb5CrhM}b1S3B=dE-{qG`vO*Mf~na2rC~UPUFj038@2w8drYo$OZ8sWa9j#J(PIe` zAS+&XKCe@u93|kG&S*h0edLLPUVxG$SH){OEni(7EVjE=uDP5~U>;CMPr%ffZ;L zAwo%$2zm!WC+*E6&W8{|^20J)srW$;ppzX>Yk2>+?kcyVYk3@Oy}N0opuJ_D+kMrV z{RToEW4Q)Veqik5jpXx^FID^`^y$s1K<1K6&(*j#6BkbM@^iCD8FU4VGsvX7YZMA> zP7{kY@i_<)>$HiM_84|&tdo2w8pO+a_4~3&aVt!A%Sl$XN~}lgkBt>b5U1`H07nwz33{s`6HR$8{ly|RlU0eWMcW>a6l|l1GU9^{-y+~_wVk3w;2Hv3j*BmV- zQjvg<1FLW_A*B3WG9l`x)m|-s0pVkFSs~JI&pPcR8fw03)&gNliOj>Q1H-&^Vfbur*bi? z%5i%arKcqmSG2;P*jMhxyM6YfF|L!i(3luI zd7Z}EW1?fZ!h6zx>&Em}CmZSXgHQ{%{tZz>c43<=g zxt{Yt8SSqXM9ll{x`)Ipknp2Zm%Y~e*$y59+y_)zTh>=fYFXtWEw={(2VG%ucH#A# zE!aIRgK|SuJK@dk(sTh>OwjUT%0A4;P-udp>M#zY-aR*nuPzekxOmSsl;YC3g;cI@ zujqF*H1$!G9)(0G&xRL^L8@y5vOn9Lg~__e3E1VSVa;jLlvH6gz_KssqnhP?Lq|KT zN2{@70F?g-ab5QAy__lf@ttod;%cY0{SNQILzgp+05ToYkif?cw^|h2+B9A-?b1OV zSV7>l{}i+IJiesTG)+esoFU!HnUmk~NtVtxHJ|7PMz^+x4LKwW-^k8|yrFd>)P>6ajn0|3m8dG9LB*ENzeEL$WI*gY| zeaIOB-?}CjNxI^DtQ}%)+S@otY}gNJ-68AG#cNja1STB=3-~x{a00=75TICGy#B6_Mo6p&==MP$o$QWVH}PK)sRgZT{RBbR?3E$osy46M};h zo3(&sAF)ZxqP_t?LQy)hm*}mM!1L_ z*KHPkJDa+z%K+QgtgTo|zxmh%31S$oYcrb(puj;jbHcb!cnH6Gbc)K+Rwe9A(N&~5EDK751UoV04N7L=))KP z<#bV!G0G+|y_Fz&-qkUOr{!VN6_l1$7dl-)F`^gyj6=xqJ;S@LPHTSS00GfeC+P}K zUZY{9mG8s%%GqPtU|fubfZ zs$Bi5CftXJ#G=GSjP2^9>aCefY)o_hyH8`*EIdCkd?hn|`As^8FIF;xbHzXRcOdO; zWM7zJiM62vMy}I?e!bRT8{cY*k{(AR&3!mDOJaWB!TVS(RET<8KlL&LlaN5g3)fsv z{WwC)^V#|VHhMyW@_#fg=Z>hUm{b6Gicn#71A9Qz`IuVLA~)SyhUI@D5iKhVeDUhY z2_gOAaI3->FvLBV^^5@5H$Plr1rhKfI82U^>~F*0fU=BT2}v~DSr=lU(ZY;qj7nT^ zKHxFbl`AhVMp&MmBY2DSV}qQUy{&M^Tq~D}y}=S0iLqCF_?Uz66T7KJ1#(bvyF1Auvzzmv>xU`|vy4ZTt%r2`w zvBLz4zeczz2;Riv*RKDBFzuViU;hE+5v@5_{$gXMf0iwF?6D5s)Z>)oPAgda+=q0G zyV`|HVu1S5DHHpn8^)W|-^e=VPo3ZZ*7vdZy{WKDwamnw7*(*6(nC&wftcyJrQlo+ zqC9>`5DxDeGOvjz3u5qY7fjj^x>6#ikG~Z+C-MrBzTCAKqPl&*i|som1Sg{>DDB2f zMGg%e9Z}zBIy9JnJvn+TuC8W~%4ue*rJ0Se)nP>iN+ZP^;xLX4fgu&~Sild1-R4Tf4#Aa%Q7ZJ0;SKF)8AFr(&m+oRVDbnYBzNs zvpgUf&PZ6a=dIO(B!N7HgWe*aBbOJH9)z*(j^|b4UjQdU5RpFZZU=e%JwCQ+y+Qkf zu2&bteYp{NFrCCU)lk0YLuaL2@v$ zvi;BS|K>q5bFy$U|GzxQCrBmz^|>%O@Lv6(^}fIV=fVerp!^4ev~}|IM7l&~@F5%( z*!t4^tE<-Q{l_QT-)G{I8&K*}0jCr5bARJ-YU(lD&CS8Vq50o5%^tB9 z9q0=noN$(|0fmuCkwsOJ%-eN|pp8%*6kiN6n3)jyb`CrDjNyqn6-`-zMKIg*M)t;L zCTI7*2L_i`22idu@bk%t5#pOT8$JNd`ulFMa?mdUJP>gDexU8`>9m`pvHruSAuu5! zC#Ey7COotTyJw+q4T6Z0M*i&lQVxNsp8b<{re|&R(zP?NDloJqaL2M|YYqXV5DXS1 zcpCOgKQAevD73Q)ttKh-!H|9Kqh<1lIcfz5Zgq7feT9ct_^U*5rEhlN_zu|MKmPo1 zsW=RWUZ7$pDe?5I1>O@Mb|Wol_{Pw{yx zE?q%bRYycQ<#dbuYnhtL>Im_=(AWfWhN+PW1Pkjp1H_K*9whJUujFRW?iSDSS9MA~ zdkeVJyX@r=_lIQTS+`HX`xdwe=<`;m*@Xb_GKA1)*=);+_Hm2=05HD;4o}@_?_X!P z-5xK1{ry*!)WYD}tE1pcH`pie4#k1FMDP{+e6IKXXqq~{;Vm0-{R_9!;A}pB*#twaEU}SoO~CxP;kCaqFRg z33M6@XwJ@m5pEp;@z~maUE>tsYZ(vLJcvuOM<4cm-eH_0@DBJb~SEUnCwNIoE`{ATyEg zX)9PDZYDqkiV)>zcsht1DiDD!MEMe~1?n~jL?8%J-h~4KccY&L)4ncWg`Uns1EGzKOkruL~ysDq65U($WQ4eY=+JKE=Ks zs*j_;0`tmDZ;{@UZC|0kNTL8Q!Go+1a6wPbFKB*?)jSh{~DEH(dx$NrP3zl>)6 zAC0q&rd?3ocgTNJ`pXG8ZTwd|=JNcXy#FV!|H&t#e=B89Q`TR>jXcY13Ey#ABj z$GE*0y^GKP#y9`uPjR7v`~A_&k3R3&euutnIuS5#NbL zXEm3cHq5=F234PAV`7@IP{4u(=j6a(lKoO8YHE_H*D!ME0%U_$PQrj&5){q*eQtZF z=mc|5tCnb-6%$H?w|n#{gHwjPWX^|QaTu~P01lI6;}&Jm&1($bbuB4Zz{ZTVUSzwt zGIOj3&+PQCkA+E3!(H9{PA)WF^?T(p_r4^JnaseMOEZP<;_Oi${|i?@sJ|UI!|XFM znMY#XY@VhJ!Rc*=*%g0Kxzu8fIe1!T^VzP`33UK`OH(DK-0>T zlb!>P%_mP*xuEhIl*K#GxMz4eO(sj0#>%d1 z=O2T00k;*O9i+SwY?)8^s0X@?)d1sC!-S?(qE(W0P|bf-r7ITg)%l|nQY{LjBc>?) z*~y$xHsc&LXk;H1U+q`zvsD8=k%Yp1C`ZRcU^#YzStX44^?s;ilCjf2X`t&~E9+4xWg@-!U99mzxA`1J)J!PAH{^VDf zo5NPc0wHXdA~MTuzUg&|l=Ip~VQ_=#1O}39<^)o_G2)J2wu*F_3;4)`=qm!%zL*w$ zq%@@!X6txY!&eAk{(8mQSMz-RdezPGuGCBacxJhAPq!(Shz4$*tkY}{K2L%@E`{mu}i=`GCd8(T4V$y zCU2H(K&CGy1Aj)?8p3cU?_HG(pFOcx z<;j1*hzK7r1MAYiu`omA1z|HcI~0~o>=j7h4F~H~#x!tcYidRHrZyF997@>0)_EbV z%xhs!cKVH4J6v&7iVp%kFA|zoqe>dNeCWevRInpKAI$`0e#~J6j_6w34;7$pM((wv z3*sJ3=zw5`K|>khBHHparJ%*<$9`P-MY4bR1VznLRm1X!vjkEfXuTVv0{a={Ho&`g zKEd)zS{>CKkm!k*h~3EG!;$PUhi)}&V?o~uM=MwsYpl&N^z#%{rJqWL2aOhsYZk^0 zf{$n5xXJwt$`=Mr+gk}{MM6pwN+e*9(m8E1qc*}2Sn0#bwA<#3`!$=@-euYQ%*THf z&>&HPo+BVu@@-c`zFSHPb)ZdAF0vbIgqX@#Oop`%EZQ* zlm(`kjJUb1@OJ>(Z-f~`S8aZ%&~=0yp*ahn?VxIcY-L^=nl8b-jXFa-N#=iRO@WO+ zFsq5W*OwX-#x7+`?uL0L*)h$mT5ptek2NO)CybGD>fAd(kNhEHHE;2*5Km!YdUJUp z1?T8&&C(mhONklCL_tXixLrH_ZN@ZY7!bbn1|Glk%CN~~n-6{s)<|HcP9`eIL~$p*b2*3)gm-yHBD9?qYwcjG1iTp_p|~ zC70D5*1YZqE9r+!w+V}f-3Fgz-UOC;Q@s#C)vf zc3V7h6vSKTpk4CO@alhbpN4G)L#;7+KPmN&roID&HGQ+BV`is#<>ng?EHPqXU(%t@ ztOxxdaK=h8;ICI3k9+{UAxLUdr>b&ax5gt`oc=YEqt(;O8I~;?bmNk?lFq2KT8FY#2)U+wYVChr3#;a!HtVA`yD7QD(pZ6^@Ik7d7*nW34RI{}J) zWU-PHpUmDUf1}hpcVsVV7t@7VVl$uGH${;3)Syi;cHL*cq2kjOYI@Brtb4Io71r#{ zZe+jQhTxalSA2i?VT8VKWXY4j@(E3kKcJ@KKyhsN^$Muo*?VT+?u>{b_e=PbXsR1k zNkX4hI^wzyq5OI^(~!-5b2M!*a>Ls9O{we*5-j6`6wECFCna^BDO|SIZ7I)=vY&l9 zYd|Rw210ljC6$;Tzj2?yHF-%VIX6O`ut43rgx(D)XPJKi4f=k?{g~DllP5$kgi?J^ zmY#eKi5%LKT&O)FTE3VI-t~LmvwcWwRk3^rZjBjCCj^hDDkv0Uo#I$TKQC!=Y$EF@ zrbI)6K=QHB)Rq%NEnjD0FvV)pR)VN6%98LTQZQ7|HNbUcwST(9Mf6cjmWu`%ao&1d zYSKT+g4};;&e|tWT&&5CVSiNG^I-Ug_x_aZe79sRhCet0utQ+>W7JRoIYjM;`h& z3+_ep=lD-fWlWGRs!hdX(J{kl=*qoD^&@s)!Rmk8f^-$|?%66Pi|EBzvx49vik?4e z*w))NJCfM5&4J$}t^0J6c=xCX$Ltrpes|PdpgW;15AG)dlPzKZ*;^OyTZ^L&6N+7u z3A3drc-Z>&C5R2APJxZUH0-v_aU|7h$@t0?U-sLt#k2m$ChbSNF`8u7{cefTk~<5TW6W(_M$l7kuNLtJlX+N?(d{olDKQ8X%6udgX+{vgK8-+-%{T?Q}nrfWRQ0 zNFv3d3TCx|g4^y%-hAm$owuOX!MoeSDd=hK$i{>dJhP{xQ)0%n9OC6y5SwH49+*Jr zIEN3UhfuC07l4HNr9PjBoStw6BkA1elz$^X7i)CllIbQB!mO+Wly8F;AAa%3dA>+#zOGzCGz_{ zCDoa6*N%UHI=W);7>)#-Cge?Ebn$;Elc;F1?D22=03iwn%I9-M)#5s6OB*8fu!njH zTu%-rQm#o?SuEuUq>)(*d%R^>hb1&8DlSICWuxw&8cniCgIA=1#v3|B_x!m^WmAK=6NWYR`Je zvsV!#B?0?Yui=(ldsv<24c}7FQ~@ikwelgmGa=e3J*8tJ67p%Tes41o@ca^tDU-L* zq`doeZc~$+Gj9Zsx{NlL_(uGh9qvf~VOU+#l_7t1NqlCw2U)}E88#}fRy zwBn#WD67HvrZ(ymL}s%Z>GVc4WsjPS6N^NQ2%|Djyh_`4KwOxBByE2$XD;)Sf$mtM zf%~lRT<$NhqzkyTeAA4<$O-Lbu&}43N{XbCERhf*QZv4}+>MP27)r7hRNgj>xn5#8 z(`>#*P?}aZx!jYUkhJW_t0O96u|!CnZ_bzEe?Xx5cH;I#1~~}k#byFUFI6@a^kR{V zaN-1#zCg=0jo!acoyUJ4(!Q#yC-Tb~Ew1V3da~0rqk0ADZu;1K(SS8CJ>!{th-}f*6T8XTOlB)7zMJAbQynWlHP89%~R%wPw_kA zK(yPwq3{9`(%SVpvfO!kJxlXD&oT!24D6ae_%aUbt`Nl6xB<~#u-kCR8_BoZ+g8cM zz(pASB!T|oVnEU){VVd^h+w@r&d+0J`Il(r8ifigyEI&!xbU( zz1XkurmJ=du0wwZXo|zS@&RQD!NaUJ)KbnXy5oXFsiS&tOcweu&4@)k<+-PmF7J-w zv+s*FVq`_liPs95q(pC(ox%ey-A>#ybzff<8`So!Zy~XpQjE&L-`oYkZZ-L&E#8hJ ztU90N)L||{Ei@4{#P=aj#9nBAoa2PG{jNvaD)l>Lr09PvcxBM{tQxqb7#_mleg1CB z2cHkSYZ8XYgRXH+clsFY_G`JEXt?=uZU)lr{L!B)wlMYvaTo{nM}Qp!tAe$N6APn% zn*E+ucP^~aCGoi-SXqqxMEzh?0aKULGspQR!~BI0@r?uFj{I!I-~R@F=S^Qhpp3qd*#UPUEQE1 zS8+KT!_`w75Jq2mBKQGWG8)LB{+8RVr2rR{ChC8JZGrUyU$Yccj>ToF<4}psJganW zGjC-2Ug#^PXxM_suFpoBEC8^xR)!#iY{nF(qLyMGjw~Ly!I=52bQY5XSt0XNpG-!* z`R6g3EOX6tzAISZ@6S7y3}seYj-oz8=zL%b*iRUoqL9N2n@a*&lE=bl{(inz(JoW; zr8$4{H%b*dI>VChb8mvu%J(}`5iX7y++wPoiH$_+d{)V8rT%&^#xK{uBgGMyR@LA= z+a&DOj%i)kP(VYb?K#>Q6_V06%IbjQ<@b>5k{Jtt^KcPBJ9Gsm&)gg*Ch}!-uhQr5 zu|=XsHsd_zpO%-dy>WLB*KW)lk_v3pRK|Y_Tb)uUVNF?SrKP~JL3H4lqIg4O>{Ra8 z!JHb9;4mfk*w}`C_Zfn0+)p7<7v6q91O+C3oPSyWE?Am7ul zdK@iu{b#%^@rAiJxa)ZFpM)S2_!h$*sYD>$n<#8H@kn2L zh85pJW)MNcu`DSHTCE=XiDue8=NW%;w-lA}OOKDS9LI=wa|i{lb)bb(KY+3^on#qS z-l=mo=4(4TlI z8-wiaIXlp&D*K|nsdTw;MSSz-#3!P+-klux68pN+kv0^&%gkLvG~KGT`lDhsd}~}+ zYS>Fm>+(Kb7n#y{ya|pwn0TW>Px6)0#{RxLdrZR9Q-^z!{DXhgTX}9wJGGj)RKGNU z;0wk5k^&69du$rL+_WtT%6dGhKV2M1(U@Lw6Xm-un{o%cBC|w31#zHxblfpohsN*+ z*P~A)t(XR{bP@yu4SFneCUWz!f{*F$nZB8bmA*2H70FR_9a9};LT1Evd0f0Cs*Z&A zTr=AYeOyD4f#`o?Z~J>(gk>&HMM7dHskMh^YQVT5GO62<7}kPLc-3x~{gxB6t!rzE z9xL#Tt=&Y0q>xOYp1j%o^0qGP-tTaXSP!4KgS-5Gs`wR^Z9!H-S&zQ2xv zgE`)@PR^Us4{NGqg3NLB+1n&l+wf}dv9?0;ME1u|1r2|5y<^bFOIuYM5)5W1^t^#H zdI2kE?0~P*zLm4hsv_>c+#(y@20IX}EKKv+5zKmm-EA<*<9p-!vY~l9HX%dRSzDtC z*SOskw9ym9C-ym-tj=FTnZ0cXOaZpTO!sGZ z^&G84JS~6V{^N-lo-|RuwEfiWyMrq-ARd7=%#{$2$sK})q#rA&`7x*< z=S$sDK5ShS_M{aWcc@~wh*pYey02d&BofrJCZWn7>HO;6VXY!6I%L(del&glAI!ux z)&tt8!`@YO#0-znHQna}l#lateU(C>quiN`ZOMN(zIWCl(B>$sO1)>cV)dn`R!-+V z)OTXC*gYDYWN@G`Uztl4NLwTGrsAeH*s>z_=6r(Y$ zfrx+Cf<6K&?PxqKI&|6S#^5+Pi%c!yu|LjWn6Z0S-#uB30Sj$7b}yh@pj$Vxi0;w>!$EPikVyovo4Cj~XZp$*};BdcHK zwQ5}DE}ntZY}lT`w{FF-!UX+EF=!R$;BLiGO=${pT^5a*cX%}AJxv5{ z0Zw1^30ur_xb)50lVse%lE$XUgg{l5E7a(Mqs{BIqDyVlT;>e7l}whFonHAy|H<3&13P*(jm z+ez@klm6~ayH;#*x8p7txQb&=;aaKc{w5v5$gH)EqSd>bIw0I6{`}|xA0e)u-7NeS z^@_Go6u0BcEZ$yU9dutVUoPS+REvKn@Of;)je2?PiC_@^@e5El zmvn4S7pV=}Rj24=4A42}}@WzjvP$CCt&M zYnbI>@iiJ*4;HxfYbSpV!mb&SPVO9>^hQX1L%~Iwa6br`ZJnM{Aj*#VQ^N{>wmQIs zdm7Uxgd3zeO5DD+5>9gJ?)Vz$mGcOZFH)?ykZu#1l7yeW=&&%10;iuh54pz>aJ;O^_A4GU zvRmK)Pc|0vcVoFR{JXT2CL*;sq)EAzsl2bDS|?URvO$Ea_W}$3o5mteyTdMYobb?L zavcgJf~w66mY1yZR6>{`LSp2yH&8md3-=ULuS<;;J28iUXSykrJ0u?7KRg^BXUuIjpr_xqu#%XL`jE;>P;ReewMYSC&W zS+69C5V2>JG72&Gzi;poM0Vt9OcU&nQ^4k)Q}NNu?I1L~PE&h7W_6yRVG!HR^AK;uZ? zCK;o#6g)3E69o6mdwPi?;4xrVBpzTUQzu-y?_k4`z9eyaYH6R4+N7Vz`AMCCzP^=Y z!xpBq&DkS0=qE-hgnkk4p#EO_rtF#7o+PjVg(NUHpmI_QO0(Xp?z#P9?rE&3j2 zPMAeS6K#LbW&Oc2Hiz&Y0mSGP*L;Rkt&9!uK%&pBLUhV*0yN6p zI;n{fBL(b*a5Gt7wU@->?pn&_T0-;@6(L)r8NYw<Ti zY_#Gv&=CmBIyAJvL)HEGhxmo8^>`biHWNI)_KlWxh+)Ei->3 zxHWByWXE&xJW5A5O55Qs9mV1H z98(fyAHbSq13qe93PUeRig( z?(4bMES(rU9c#$c3w2gY?H@#rc;5qt=3C)b(+A8~)2N&*e4hJG3 zQ?3-!F?tI%Cer8!@4+vUez?$nZ7zjIlxtY}RaBSbZhPRpfm?{CFW4F`G(e#&L~3q0 zn7+2O)G8-z&A1^I!(%8FD?xwGc_~4+&8aNFM}t&^M{&2|W7GNvX7!waC$S$pyew%a zPGiw*8U2h5%Dn7IHJ%WoZ(pvQuI6jR-EqdvY`Eg< zBI*LC=F?VWu}M~QMc`0j3z^pJHOQ7{W;Ko-!gy5G(&~!IWtMge;1z#^-|c+WIn8f6 zdp1-zjrBq^ZymvdzKSxi6rsxA2^FI$P(46I&ByI&lTxoX#XqsUhgsj9x3gth?wb=L zIitwfU*G+=R&5S!Rnn!C9UYma<@b!JhF8fOB37sZ2;|x; z(agnN=?h`scfI^7Zv5s9j>DYOqh*lF@(AJr4OF!74}?K|9w9N9+`NJoh)8x2G05-C zqki&kP35%T0!xD5UhCPlSyqf3{GtsSQtd|CCbkA8fPE*Duo{2T5|;13%mbExt{(SH zIF*Er)nShG6Dub)nbq7lcMSJ-{t0}pWso)hn*^ zLw#+NjqSQxmRf(-2a(fEYsL{TQ}|lHZNm-|^AwYmOOh+Y^THx1ih#?fR&J#awUfHo z>tnbEQjRIwoo!m6a>_FmXQI=AX`~JHEwlnXA7+pzc$A2$T*e>=J95}xz57er zSLvs%AN}%I#&AbbnWe5EU8bwnHV%R6mEK{2Y5UO=_soB;eM^}phYkX!Hmxfu2h+j? zKgS3+ab-apzLgO-<$kDvU{XFsr?2~d_f6eruj^G+M*#iEqV4W#^;>;J+{LYo*}4}D zK@iHgrC#Q@KZ`OPCY+; zE2toBz!rbU^5|awd9j9r`CE$!?FF3<|20D zht;m3;M3y=YPIsONjzQ}NF11rP39NnLW$p@i0LJQi}JhSkfX2n(@*Kp;p?*EDA_m| zJZWWN6_gBLuJYakaj{n?W6NIkgDq9!et!MABtCyfYf7I-2fulCr%G=3Jt(@=s;G?2 zt}e_+?VJg^0*)Y@Iz9;NDV#Ge5!E!jG^eJm+KXwD$*aQw#jPb-*~<(pS0c4rQP#r_ zYh08@f;8pYt~D%6!NZOr2FUa4+u9g6?YfjWwvytxR3UByTdr_{7Y={pVf>mF-QMi@ z8LNNB{q8{;ZNB8t#?_cR#vZ2n%f!fqQ8w72q)U7eDlhlQO(>?kk;k*H8~vya=;cjf zCGYLJ?4tA0Pt%$E+Q|>q=L><3iX-pYSGMC@2OlXanE$nj+_FIc>p#; ztm=z1!^3|3)&|OwmZQca&`2}0_mVOC!jXR)WTU&{;luGAf`!Q3~(FHA3E$wWebX{4>(qT844&$wIFOQ^W$v!GqAS(oWptYvcXn)q=G=o~f zwyl5x?swzFHaaA2oN(zeG=zfjzNCNk zc`+&}Mr^i&$malZ&h=8Er4)iCIeV1xbn{f@(UJ4+w@Ly(qm=mj+w8VCHr(WJY*WjH zQ8NZ3g5pl1O9B9br+|H~OExoC8pv5{qBN2Q@{ZbrURCQ=MOUA5YE%WPt>)bM}h$n6z3w{4ES*4khh1{Q^Nc>*8cLh4L|@V@7C z40&6Zo0^*9XB0*?Au?8UNLqxI6%M;Ti)SD;?{_QiJ-m^p61A7}ly(v)pf=-$s9pk~ z$=F9YJ5cxK;SQF2u!jD|+$?clfa-;h5pWrtsh4nFU`?qna(kQaoL?;^&-Z@^k&Yyg zi8`(y(oh%PmO||lk93G@%9=@8E0Wh|;@#E#BGmm+s7seCEw3Xuh=+1Cu3O0zHeV%h z&SIS7Kt}`62xxg;5ZyaPN&&)04Q%-FH;DGG>+;rbJHgk=@c~Wc2ttFVr|EyE9Z1)< z{S~k%&YQ#9nT|5JJ9ynU%R0Ka_Iq;cQtl~EGY2U+*Hg$ZI4-wWvxI-#`nd;`MH%1F z91>THs=-UGoFCFEtBHbtramAAhjN{7iDNPtc1yR5McUNB`Q= z-V){Y9%bU4x%H64;M{)@w`6H)#puSC;<`=sz3MLt$uS#O7S6n zwQ`5=PdLDQQ*L`t!F|O>Es=wB>OWsP;;>2=3Cvjoc`r`B*eav`iCOHyvWEC07Tw_+ zsK*9jR~5qyQ3_^c#LoQsQ{!*%0Lt|Zj7*EhA4!gNoN4IIBQAf_tN3X{m3_O5-Oho% zh~Y;`0emO>=g2%qG!jZL5->PFD}H$8z{x}8{?xK_zv=m1NB z5sKthv2APHGa-LU;&fulfx7xpmA{nDtjx;w^PmtF&wQw-m)6Mg0*}Au9{vf@*x(1_ zN!CX$_EiS5d&OG`2#9>)I$IU`4S2BeS*-S@x_||$S`z&!j^`57ikgM@l0Td%jv}Xj?96@9 z)XBW0T*66s+E%N7<42-j(KR=G2whmTSa@>64{vun+7j$-0 zC}{_1>g;%^$eV6MLqCq3S&MZj84Ii&&6e@5Iwu^+INtHwez%_H5~;zGV1< z6)$Qy@{)hY`erIa4fS)^DVytyHhq1l{nj&WOUE8 z5Q07~cKreFAnRvRM;T&uDUrwE+&&9b)%4i9+^EUk&kpp6*RK%ztLt55GxHE^zQ%_$ zKVBFUb#D)5o*cdWK(HtIBw2!2ru}|2i`HOJW=wxVHpcTV>q3{*1?eRiy}fQ034$Z6 z14dO5DB@V*PvS-%*D!no#DG^>hP^Xn3CFWJvRo@#wC( zcrt&7YDV265)Q{+mndgVF47aNvF2P#2{E7i+X%9P)uBfkY=05!>_P1Pgabzg7Duj_ zhAi)9%z7oyiFG$*@JAbcg2H8!YPg%$mBr+Un|~;Yc(Lb7yWo<@Z2fp_J|T0R5B5!V zXL$=2g~G?-WqJ<+{%9`ipc#QX&gw>2EMI>Xc&YdW%RVWym4^d8r0H2O71}@)<^B$e9jjZYZL0lUk$tB-hV;ZZk`hsYNzm$nvnM$}QO^d%s(-vwlk zJf6(tOUu?WM>yqNdRBzh#!@}^Z(%O-Qq1?XW_3U}nG-_RA}g`JNwYROj)Y@b`BQ&e z)%8}#NG(D#OkBQQe&P@npv;tAUj{mNulPs#M2TL#Q++o!^bo00_>@R1$8Zl^(A8Ru zMq{PK_AlY&d_oBBbAjPPXl{|gY!sVmk4btHP|bBlVc|W}USFwT$9sEB5bet_+qmFO zkkGps3yQ!Zm(^Ki^t^yg(U5>}hN6Gan87tF9dvEG{`7rdt1HgL2|QtM!1vBW(YFU; zK30kpnyw#hRaAj_gk4)pXduqIX>}_SEXw*_vamW~604OQi{!L|d(KZVp=J~OII^I9U)Ek%jJ``w-p<;Gn>*Aw%pSumXkvZf}`=wXqgV1g5q2Txh4hM2ffZKIZ-;_k~V3O(xk`6j3FFF#)1>h&8|z5!Bh!3Bq*lB)QJ21c37cuLq`dj@Hv2A z3_bW%g-e4+l|J%eQFnhv>H=!Qm>7pT6S}!`YSWlsl%Aw<7Z;SLQ%*7nAat7= z8j6^X1=lHTaCd%Kr#JN{W+^;HO=ORX zg2OJR8D6CI{B(bX5A=BGSdMK69HP4YEFORbs;BTp*v1Db-~+I~OzQ`+1l&eiA1Sb` zf?ii13?p=x1Eyzq4K!}~i@xmOX)@ZAbm9u&8ssu=?VgSazai>uB9drfP<2z;?PE$` z<6R^5-d?=pWh9z0FxJU09!ZQ3Pi{Iy4iSwoTe@%>Yx#eP4{Md^DY0W;@9 z)`dW&_Jn_0dB&^(C4T+cTgmfskL`_^wulELiBOg#(5!KBQbi-wh~sA@EtG3t-*BO& z@#U6dh~3egY++YgdBR7YE$We#q9^>dC~~YDbKURXerAWl2-p+tuJsdUoRV`jmOeCE zEk;u-5W+}Ff(Br#9QAzR-)=yM=(+mXLKR>7CB1*K86zcQ8~`I06401%v@Xx4X7MhO zB!0pZ@QIyrYHmFYQp8X9==cdbT(vfDria>+$buT}w%oAh-+FgmL}jOX@$al`$I_oP z+0*6?C*Qp7;G_Gz>_E69%)Oa$%YbpALK4Zp7XP%UCP?aMM4)34VMS7-HE1kA3y77_ z&4GVw<~Kxk>f3X34V6&}EQgg}UzVprZIot`*`~Kkv}b!BHR^+Z8;RjlfW?dq`rQ+m znitGP{)3vDu;)C;@6>EPm6iyj!G;!`p=tz~RPx z;}Ev1U$YdIWzAm)>tRPh*mqcLhAUj1*Pm}et1l*f4bp?@7JsAGcw{oy%@QUa$@*wv zrO}^*M!suCA0W1sulBd&z{Wms?%3^uxUFdCwTD#MShH=O7V=pkT^|$&#OPzbp%H(U zm^Z`xRN(QR!h|)=^bDBVDE+XlM%X&_LW>83{BZ^uugFn;S*`gi;@q4zyfkAVJocj? zQi;aQO8qyNrQYvxzTpAdtc4B}i9L$98v75SHS@HD78>O6%tHidZ#0OZliz;E;RTV< zITqIw2qgyo+ZgFr@3uU7s;L6IOND;|uj&M#0`EihjN0#Z0VKSkSGZ9FZ}88cc^GYV zd?x`XJx*Ey1@s^Gk1nK|guxR0BYVH_XQ&$ab*)~19Wm!~syG_+p*sMAZxuTxzv{is z?-=vBID29}i*|PsTu}Xpy3yGMZ`y<^DVuDl;lN901e?G;FpT1*yGFozd|Q7vsYFmq zd!n#i^$ic+k!f*#3^1UZy`K|BHk;g~EpMj%(kdijebNRl@1}vI33eczCvzS3oAspq zT6HI_#B?S0+W0HPvX~D5`CHF)PlGybK#AkduI75Femax;$8nykae%@bi}4HlnAA<5 z4!UiQtS3+`ZRG0Uyjn1I0_1;zvwQ?3)LSEDZihnTdo0*&uBgRf)1g}d!O1~CP>Bph z(WN%>fYeD&Mb{CGG_)3|h2apzA%Er_t90+0&dWbl(8C zQ^Tz}=HmHH8gD)uvB|xXK^aHmjHVlJ6~u8C^qmeksg!?d#|8L%cn&PR zB?Fm7Igv_zPeFud@-DkHDmf^78s67pYn%FYlq}h8IxQ-`c6TQ=wCin}B6#5B#P6Qz zHF1IXOnS^$UOr#kpQ){5;OdAbOH*(&f~vB(5^demp>BTpnF_9vBub0P`gA1w2sVHK z_vCMa`*c01+MTC{{R)5ig5MX`kSP>zS(Y=z5}{4m=Ncf~BuJB4viHmHj*;8sn@R!DC2+i_GPPMD}#nHGQSok z)6H1>?xQVp=L4|*03wx9Slk2km#h8hnjL+9aeG%_a$n8oVa`t&5qQGf`5 z#*`2`njL?T5TsO8zd=(?F~eJWX(^Erf-#74oJM&$?&w^k1f-c!Lm%@jnR`CN0%c_z zFRfQh7KKHwxzJ!on}Wn9y{* zI3d0&*odzw>i6$F9qrlHLM;zCfj4%oSv*ZJxw?NiB(g!-+={`=b1Z1>+tDaC8b|nN zys?oW+LF2GUIagZ10YxGr!FgX?yttfcRuQxXO z@j8EI)kO>U$ay`*R8G+gY9Q!yHxPfCa^LVV7;2?2g;}c^_vM>O5Xc&prPL&H4aGHH z5)x&*#T#5c{<%Dgo~kR^_hY9njjbI6Q%lYQimPW&JPwE)i0p$MgX z&JUV?J!z&!5sC2f?i4$h_VU!zSQwACDN^7?sGX_ZsA#&=izMo{-}IpnENY#Hrb*in zydoZHdiV{jr@khkd?Ti;=M6aAL2^8;cC3RYVa~Cm*hzmS_`wcYHgcFN=QT@vW5js1#y9F@+!M<#Vnax9yIY=vk-k$8Xp`B_u|nq^Q5WDkp}(k2(;V^uq#%D9jCIm(3$ zsxJdOOXhQsa~&HG&kCgAnL{%Jbg;t2Yw_Yo6Xd5W75;D$vfr27(Qgdznt&wj=mP9m zXpAmv_2^`4?~6(M?zN+*FCnm8?MfGa-=o2d1?s`HFJlzwHt}OR0`a9i#0kff>Xbp4+Mi)#XTnnTS$lxiQzwZV~fVn;*U&< zRVx2ht8P7eV0M(^F3b8&_Kl&fw_8^VZ#N(czdeJh%FKKiN~HybQi_Til9fHe(~ZuSM>(6lwtB9rB3ZBLS!7U8Sh@wYV@>1whr8&nLF~C z_e+1QL^4!=JfR`Hc6^UcvJ(el-mrt+1QTUGo;6H~8ab3b8;^0(#k%Qm9s1%3>wjo7 z0X46KvJH`=>hYl=zZri6-h5w$n}6q^RwCPnT3BsPVwR?F)^kDrHNP3DU0^!}J41^^ zBVckM@@FUpFByz|y%7~-xhs4>_K@MmfS|zKnH(Xzi6!`+R z%Ik^?Ai^sjMiJqx+?0ovr|P7E7+%N(G)8_;**H9x3pqy6er1BK&H!!AoF#-C>QIR`tD~;X{#hCPT-|%EhKm96y>$ z6g4OY(Lj3k8GEXX}+s|Jcj{Fp~O8^hyTZZT1vp}{%}DH1}tDb3a^^KDuLMkPE3 z`=wp4Pgngczsr9cucieC=;SdQ5+j~};Y3fuLBY_A?G-ll3Qo(xK!lNUw_t6Ju$t!T zrdDlNwJZ8@Hdn7q>nXif(ESK|Az!h)ahfHDvf}ap zG8w;$?Nz6s2tqoU-U#u~d9gJp>;ESL0{#8sQL8}de@Q+t`{=rfBUxJLG`L;f%OEPj%MU@0%{xNGba zc|H|v3rrsVesc-)DzvdAl!HuMXM-`EODCYbkxN8MrQ{JmgsD7EaniRNJcCbkVvEH}Tipq^x(gwn33hEU zx!bV$Q|D?S>thUR?B)FV#1HgAPervH&^9tq(0oMZ)oinKa>9SdJd&X6OqNe7+P6*c z8U^y4@}pKz$-bVfPCib4nFAOr%m#*QTZ>Uao52D4r>tVDP|qtYdHNi^nYvchrY{h* zUX*_ji|;bYl8mcF)6X_YWtvXG_R4Vmlw3{~if+bu;yW61SP=ft&V~z`qyUj37Qh1-_ zlo9^&C}lg)X-Rv~7&e{zKimqrGKZdp8F2`wBbOS30Z#!nmwlrFEw`700Z zi`yB;A83hp$0;RUNGi7T*LN37>PU(AkfC#LZcYF}aIyOXu)A0QEV)cr^6fL$rgk=5jXY(xn9@?dWMSD%?;~&*sAWG@H$(&}j~ZMy1!Iq@ZL?$ujVAc0NFl8=pz* z1J6Q#DTMItJC-cr<#!;c^e*`js;&}|d56qa$!owfNIw$BDv*Ycr7uVAcTer;spGpE z75=$nUl^bM#xx@sGw5aDCUafS-8@2vByZnvzRQO#10a zswVy0QC~QTeWtN*P5R-;#+W0FASY9SAHR5i$|aSI6=z(-%j6q8y+yhv5$6#k=&6kS{{M8syg@e;M*^_`Nzx&=G3ZW(HoI0yLd5 z$aIwcIa3C@N$K>>aVQv@K8H@$4!(vY%nbhd@=239Zd9FPa9~Zeu48jzn-km4#LmRF zZS6Rjcw*bOZD(TJPA0}AC*Q3)Rrmbs-CfnY`cHR1tJiv81@at|>XLi2VcS<+U@)rV z{sLI3Ry);?eG_x&=Dg(9bqJr)d)+I#$tpsj9?{WCrlBAPAK!4Zx(FLO=dh=2q~gSJ zW?;^J%e-~BR8Wjjj%_+_HD%Bk4nb&)x?DJJw-iRCnVI`Js~2DwhkqFi{t(Ydwa|tl z;B4?F-xmi0!IxS>A{se$#=}&niFJ-scnR>INDGLh;1OC(x6LG;gnyuj%_C4G#Oc^r zjr)fmzSd8u)H4VungtLMbEbl@(qpt_Fm%yUqY-aZyJ7el>--ciA-#;_PM!>b4Ckr- zAQZz$77J;#-BAL&ah)|yo-mSHwMD}ova!HnjRXhN^-SVK#I}VTJ}hy4u)J=-tN{Fa za}Y6zM_lJ0qxJKdSa%;^>MV8N1@=#yDujUB%-COtNX*TWPc1v$#-nuQchRUW#ue zXH;MMbQMZJ6ceD^GnBHGjKFeHnE-Toh8XRdtdIB~flx5w`o8~OORfQaK~c~|1$|vb z#~lRLPx1UAs=#hNneoW#{ z${x5J>u7H(5<9(YYnS>wx$W8?2l}N*(u@UCvMDIL?j@wekt~67GnW00=*2Z`Hm0+! zcCn!QwF$i$J^NX01Le8*HrhbfOSNUk z_Wk815nGecqNc1dT&Mqt7j!WQfr~-x$&N9|Tm>`=$lK991Sqr&57up07*;LPyAN3A zZY_!udM{@Jvxox{Qv^148wkE90%$7Sv;=6G$B_SI<=jPb;gIy6&4oI1=%2IHVO%>yM#!d2>yDh}$8&MXwz03#szHHm-J zi=K>zmc%a1cUWUjbjTbW0t!edn8c_&kmBLq`tN~XIHdF-_+95*pws#y8_x!MM3Fe z62IC*ze(YwHf#+4Yl21-{nuUlUmKMYN(vEE0B(Rua=l^v$;DnHC;A_|s60o(BAQmyS_xOeo4$oM)EQqvm;}0F&zKa6n;$H&ikF5Uo7L%H8_NDjDZtE5GZM>mt zI=0P=e<``-4UHv3`DA6?;Ld0GD|w4i&(b=&&b^K%!BZPVk0z&z`vsgnKY)?d*wz7y z&D8I-$N}EiU_(}eFw+Hg32chn>oRS&W?BD^-!CLmdy~`n5nefkU-iV+l4$LUujCS% z?Z1Uy`d0bLpuH~V#%E7!dh zCPNNIgX)uu+oIha4(bN@u>paX&2`?1`nKx7wItsLFQDea>buq=|IQEV>mFTKoH__p zN8?!3kMe&bhJeSl^{{6;uGPsR{HI75Rl|IWBtxx@HB>)wbdSmV#BEX~FQ}6QpLid! zm8dKJZT^oQ9a3T~h4Juu-KtG>Q(?5yyG08SNRRlWK>4IqZWQ2MDh+@ld!}S;2#5al zQ-&{s#%s9=Oe8;IIGc)~-RVWjsFB{5uBF{x_9VzmsO>tRtBJG{#hc9oyJR+=&-j`0 zUErwVyxgLA@HELv#V9E&?X>wt-Ur zcB=x?p+6Nv!Nv?X)8ieT)tUM*Au}zRk0}q#K%_+5tDHttQ5nEjcz~ag72@@cp2Yn& z7)Klm!Au@5MYTaTW)to<^3)!@3Nd}(x{PPlT4*9Z#!j&qS5_d_1-aRVS!=Mw!JpBm z@k|JG_vbjjdxi+wpU_9$e}v!jPf2~Qu5IzRH-FaSs%mOD2;xANYjXWWflBi+f>XV7 z*n5S5bD=(*cL8kitHB&7)v>ID6d#Nke z=b89+?x1N&@|VY8owk&+K+?DiYyAusMjT6YTIR@Xj0w}h&4xW4iPKjeV5i{zGIa2; zrg?GcENwaUh>_l8Mfmj{R13ejOnTdhR3+5i?IgRuF9FCs*sT7e#fE8SLwB*FkvhVG z8GGP=@)kAJXZYe+Y0Qv`{ExtBH$QT5zs}T>pn8Wns4w*hE>_#vkV^&Dvdu1{z3A!1 zYhEwpgtjvkA#p|5;^yeWQ>pS4F+_j~yLELbl7UFx2Dy8JN;P_pt5tYWG8qRG3u$EP zD+ZlgqydD9-PTpziDNB8>y0-jFkk1-dxV4Zq{AVo$Qre!-MZ+?iZ@Zpn|dc}_Qi6Y zR^`4;@>6yFTtV%=E^Kk=vs0;ZWJ4j>@Js83d-5;vVOgeYbI(;=Oo*x^wihWyYb7G1 z$;p2MH3}UHF2YMtlfw}XP@m$l+;c#MQ>YkYW&lzaZjx81Pc5YsR5mn{9GS+bc81$0 zaRiQv^ByZuIWOx<&loS){hbic)v=i{C@3f{Z(Z!1@tGW=y2~5c4sE=I$3nm13x7)~ za6Tk*bY0<|eDn*`%p1C;!u}$-fLSX(%f<}7CK|8@mo;Uq36 z1%T%+zUQv^cfA*so|J?z{C7RHcfBWwK=RzoP`{e=zuph9;P(CjLgl2`bf~f`S1m9- z=Qr!q28sfT7oV}|-VWB;U(T)B{BQ@*Etlx=?$voa{zmcET_zpf$Dq`+$hMRv z@6q{>|LZDQ` zMtxW4=W`=(ROmx`Ok`wd@vC8pZ{Rn(R`3vOp6oh{4(-l2yz7Vh(p$QqVNv)M(u2Mv zIPgkApIXivL#Ez*&Rc_{;3(dvV%MWWab@Y!bp~|KL1j)@2Ml>g(;1f8NbMpO#IRcbgn+Ri>;2u#nPR;|jIFVfhKxw74l(pM zG}ZNwEgSb&^Pn!R=6`P$`3yH8Aq%H3R~Abeij_&%TD+aQ>rvMt1MkN;;DWFwfl0$A zwFK>VKsY0wWeR=4|06$}=`YwTFZhBz7B2Sx1ACX+GS2IxsNHYswT}>Ln){xD%1J?- zb-G(?(P%aG+#bHY@o|G%a3(^d&4175`T2=KBMPZwE1Amh!~6LDoP1Rdo__o}D40Mc z>hc`!h=*i7V{lr~iD}l_612Gx%z?$8kT5zp7J(c<6e_8*+8JPn~NWFeFTkl0KrTvN5S3ci73f1(F~xW;&Zze z3kI(?d>hC*4em1dd;T^}vAeX?0=j7|*HKuURUm-`9RaQ+f`Sb$AX;S9=!dvmw5`eB zqNjpQzlB-XFJMx-O395#;O{It58#hez9W&d|L6R-Ngr9t-RunUDA#2l9YXke$8ICl z{Rd>%XS&sdu<;kjN6u?#_hm-W`5lIe24Q-nkiU$EvZ27O#3RPzRLc(~+teb+l8>tr zG8Ogum`hwM2FD=u{U&MMb5aC11aFI;421ow0OLP zc+FH|j8w%?)hV8*!Im`4a*YMc@J0*xSkM>3K+(khkI1AVD!som+T z?T?$0@p?n-^8L|ts;3vcH`)Jp-24YMS{QPxCNTSU3~r~zmlgdBe&KEfb|@+W^U09t zs>zSF)(>8Oh=0j`_H~m+yQglle10{D-dwrZb^?DZhm&yKo|^gZY%Xz1LrPHpQR z_q_69Dgo!DH@^vI*9SZXJ;s!O$yl!akD)-g8%XlyPLH4?s?!tVPt*t+4Bl9zA%yCp z3qWc}bkz2ACthzuQAzpMvR7MX$d*r73_uL&!*%Ldj=QKK39=r&)DX=;8=S@c>r#%x zWA)Ij(q=Ebei*sTLavfR4YD&J2AfG!`y++#B!^P4<xM{D%4)jGOD(xE#i?@HXzO8( zrD=;7YjjT9)0G)d(ZllOO*b-YyNo-$QKUq#>2DNO2#P@&&&~EAA$mL5oXlq}NF;`} zVBil(&Ot^%VqAC|WAjQ4)&nGdKmpTCuxIiWW}e_GOeFGOi1u!BC|w0Q>n-F;;7akhWMyAA zuj%}j+$&aEN-#mZBu$gA&sY^_<8EZmOIzaLmR&SaQgFXTUlsBmn$nHvJ_UwnbIdP) z*2kE*?!)*Rz&qtkHe8efxS|kB)Ar?ypu0gUY%>@FnRlTBze*Bzw%x$AT$k{RTC}G8 zGN{tx8+DZA(ON3b(8lwu#<|()pk?5TvXV76%Zf5*a*&S@oP^SRoivQSBIgHHrEJ(TaM72wl`obRxB5|HB+YD5 zsP-qRc-K_>_d=-AU58NGWNf57`ld<#qiZooJZ7KY;X9kO&%m3PM!&l~Lo&2>MDh0)XW5r-?^*^NxE*Lcpp&#_$xX{|9iA3;Iax=NA=JEI4cL_{YS# zUBKcs^W!s@dpBq}H2e_;nFT0SEXbHisQgYZ$uoXA6GZlcR))-tPQzR38@o!q4tr2 zac*)H?S3TwAyL2qrhrH+T^ij3-PD(6XON+ZNU)54`UH~RPH&D9Z%dd{bcKX{>be=? z5(8z^c@EC8@F%%v#DnEQh3Q%s>-a5rQAks{j&*$GibqMT6?!pJcU_f=Q;yZ6oC-xl zK&^F;$e2j*9r#MC?1INjB@U>d#q4o6P+3JXpn{8n&YkDkyWYFdoD)T!q(&CSQ8&$h zzysy_>D5`rU~X`^*yxR4%x!t>3v-6|#xkw}5xU0ih0@FM|7w1}--y3|({SkiIMx zLf&SDn}@T2voQ5nUeGFXVss9~wVacqtewxOV6_t6w|LB=TH*-^pV<}p;x&0$lkwoVmxG;v*LrfCSqo38qi z98=K6Rb!1)^Xbj^p|IX8#q|80+vM|Z&S_hqS`z8PJ%jGABxB zKmdySKN10UWhwso+*`-3C!^bv9lt>RD?1#nFAuNxix_tY|0CrQrT|FAAnt{XQvypPfc}2t82AvOUi2MONkkq;DH(h zXAKrAr}!<)@6jjEhk(26zg<`p#XC3}4~O)v6>xjIt`50V%GHlHbB=>Dw7eZrkg5+jKnSUIN-pL<=JeuFx)9 znL^?BzMg)Oy-#;QRbIWW6Cz4XT96UsDP$AoS*U;5yu<_C9x)gACqozrKFW@UnPP8Je}jjjfr7yk4tk@>a5z33RKIIlk?ejNfT%g%7@mHJ z;*jo{RV2%(i9#7B;y*fUPQ&WIZ{nOt(-sL-Oym+HhHc&&{(APJf65MgfWPl=n;@i?9fr8J>Qs(D) zLNLj*(nbcFvz$*3*u${^2h?aiWxLxvtknKBC9cz$Aw+7?4w~pUf=%2InWjr-H1ncS z74?a*v3ofPJ=uX@#fyyf)E+l~oD<7JjCGEv(H=dM*`bS49k|;Uw1h4!>Zu`$#ik$g z5&OY4ooYiZGm2!O^XkUuio$Nb(i8cM-4AUPc?|Be3*>@;o+NHyjSbApBZdR<$0mbB z#t%mrw9TOX$$x#ktt-+cHFVed|DL}EZQQl=bOx4ktzcKjqWa~B>s~#3YyRYL#-HnJ zej|O(_!)NV#;qmis>J^Db$=BXeog*!4anjs8Dw{gnyE+-0Iuo-qrNkD1;-!$){`Vfn{(li^ zQ%5s_v<=lSM_>54EF8PBJrw>!q@)*30-kY3Ls8oEXS_oDRZQ9M*TWq=G=vSWBnbsumFdF{YIuZ zT#JMka@ZEB)Sa!40H)$+8FMHiV8}8Po&<3!VPS{|N)BO|xirSsH3elR~a}%-WMK83mmb@PKK#`;dTAIoDTg@l4 zUk7c9x0s^FaM!h_d0Ggpk3lH={I>v~;WCTv+LJ%LfryjL3-<#}(UXHz@W)c}{_ zPfx>0(p1HLcQ7vcS(_t0>Sg`b;Y4n&B;K?^zIp*v|Ty0}{gJv9>l zat#rCjoIF>e&eX+vkoY0S-B8{RZh4?{OSoM^TvQkiKP6o#F?mFUHtHK(vr!zE-+J^ zz!@`zna-H07|z)X6{l%UMnBAwfeG0}iyr6ZpKvzLSmIyZYS+V*ZVb#khb{no(yBI!~FW2p;E*Lz?P z_!$%!dS!Fi1Ja?HQt{ta7og3nWUD0qNDb*^bErLgP{2{<GBERo2{Ai)rP3G>0KvgLFFl8RE&2TdpjA%}G$yv4SJ-=hqF9M^%_eE;5{6=-b_Y(+t+Tq#orCBu-d^T?qdkf{RWS zG^rB_3dx|_#6|E?1l5$Y5T>+KLkqCX9)Sb*nluH4R}88h{_C+T6kEop=h2t>wNPmB zqdN~&q2H@?de}%2vgWt_{)XeGn2b@0E)HMI1Cu-2xGg>f{ylbsX72dZKW!uE>*kvB zy`Hv^Xw3C(8Skx|>~-YRW~??^5jH<9Pgup%-J1GTl`&KlmyeV+d6a|yj^6aEQMxir zVcJV=h@t921u+9F7;4*q!8T5F{J^n?5X)7u5a$H5y7ue*cF`gF%?_WZ`8xBa_2-?%$aQS?%CYC}I!2d`84xaJ zv7nZ)h;oTgk1+#TpzeH2hTtH?a{MX2X^`I38e~wEea~0^N(elcJ}*A4t$O!iwlI?SsrW@eotq5iO3$Q)Rm`TC2N+)qMeUz zF=ZY=TSMlS9$3|#1RE?AM{LkNF&tPTT?OG9DSPeH-i(OUTT7mdp%pNt>5=YW zf+ox21ll9NaAFwCesUvHqF-nG8_B1K#p$5TL~pn4(9Yp%w9+nHWpD(2F@;5Rep*BM z=PbW98I7Lpt!^f$DmyJGvoey{Xx39`WRjbKg8BSH29E>-4NJ--Zmirwb`1<=fs*s! zxUW~m-q#-&?pZsNxQK(GohhX7)RvSkCrHk+{}@iVOQ<9%t6?LSwHp_ol(FgHb+Y_L z#_C>?LhMVoN%-|qZL!daX78xHK9-iGcusU~;=^vo(U^WXLaMZo<(d1Z6fXL^ARROT zg2~IuR*66E1^Nuzmh6iLOm;{UuF&U7xYKQU=iD)P^(0t|nc07p@h@1IrYh~BFZ8yj z^!`R-pIG^<6rDQLs807?xdi>p&@JNX9ndPY1wn}@iF}Ei_-XyOrn4@KJX!81HX37v>|n5Bf~6R9`=d>pt?@OWSXBNNg)*Y&MYF}@`nU`uqdxNGihDX z`mL07mQRifT}JUGS4eP?SyL}*-fP_(l-UUP*(}xA=A^x{ruNX zV-aquJ^Pt3)I_gTn4LIo*7^=8*a0230f?#;H%y#j{ho`^Is%6=+j!?};k!z^^`z3q0!9{sSM@dd`P-_Qz-@ql@n1Z3_Ot|!Bt}lB;_kT-+)^m$!Yr zT8_cdp9@Ck6b-vJ%|wUv2?A+#XNIyhnKp-yl;ulDdg4Urr=&J|qIdd?Zp5}CAq-g( zfk=71VqaRSgE0P#8eO7O{JG%hMa+#>{3RkV#mpMJM;8MH+I6eH{py-9fNjQq)y^Jn zW^>nE;cqWCYe>kUb9%)@TaEUJYoeEUeUJsr)@CM4u-u#ol$|nm&7R;Vs&{+P=z=&8 zzoPKk3Y*9e{d~bzP?wb-b0t~Zvbb9#2soLkjc@8i*J+{jC9A?O+0l8vf^7PtPTq(( zI-*wsh$7Z7GSKqD)5$H%z}(z)9CyYH?xkUpf9Iy*6lz8`>Itqx#4i@GOW5V2BNUnQ zU)>Dt4JH1N7P4F!{6jE2ksgFXHTdDRAh$kpGpPKG&3mF=dq2}u-{T0 z#XId$uJ@G#R%)>E3@_4d1WxoO9#&-=;0#)RH4MF-XyeL*KDCT^0@NGF3baYk_Uq8X zM4vi;BxubZUTjq6W;gp)KmiNA@6KR5J#xp(V4pTd9KAqBdJV(}abm_0$%|5?@ippH z_mHq#K!?2}d56C{X4t37C0M}6_HjcS{6O{woxeb%V93u}@rxWA^aCVIV>BDYQ^^GX ziZE5=%9ar|td%d5gC7RWy(~n_=_%0JLYFH$NFHw|a?wb{^1_GCvkp_0Fz&4$Q4hKJ zXh#sNR*fL<`@D_##=INHm<6`EZm~|0zx8IThG{m8YU!!uinS+csI4}Qc+d&M7+AAb|Cn0nW=6|m22&NB|Z>JR_Sg?bB`ch8iG1C8?Z7=AXD_C35Dzab{I ze~-YMx$^0ideKrFe=8z16GlJ5d;i9GV0wG%g?rtjoOC|q#qrDD*Fw;8IFRKi+SsbO zH9cl_0`jhWhEuLdXHJsr_gL33M&zo*!E|;_u;3%8XyR1kJIMWHxr;An+0FTG`vb4t z^%do!hZ@J}7Qo;IWxK7ypngb;v6YC(!#luKVYd3OlKZCwA4!B&mlfv2oz9a~XOo)w z-4j{7wppQ{JP|I_u;MpF*o3Z`FsOfDCE`@B#SL{MS#I8`#%J!rZ2x;%^-@bz*_JV^ zmF04UgA<<6s$)g%QRxxU?pMxJQrzzV`Vm)l^>A($k zuOQ`x<%cy?PYv>wBbVBin2zdV0)NFM49}hbq~Wt}Q@w6KlCbIXVHG#3Gsq@$$3W&T z(DP$JKjvQs4p~{&fPp4=nvJ67D_+`aqrAZA0c`ND>v*X^P5IKMho+(T{{Bbwky4Jy z1&mE6n?tzwN$Dj7od1^T?5~T-DTS<*7pt z$2WI&MPsd4^K+>tK76&^HV(Oe4xppR{mB6Jub?xX6{w@(DZtwB|u+;yu}hHt=_ zvOYCZ1NO<|UOi)<)o`A&JK8xIBYEEmvezEViPEwxf5wee`p=VsGI<;h6?S~DgVJQe z9VhDkKD48vYH|7L0B2&RlOJn^(H?kL!nX-0@IbP3Ij1m!#X9cbGGb4;OzY8bV27Ri z^wy{=iiJ*FDP(lLNB_Qy`bUtjGdpfKPQDB1M*9P$`-z-#kW1y9;Rwr-cwDrD z?LWiC#C?p}m{ZI5vsnAB(mCkRPVobjw4aU(8S#>wV%19rX0fxkMw^$;H5*B=YunQn z?+(m7^DU%vO8C$2*v~|gAiS`kh|0XhD$vbeQBPPT!GaWp9#DdWb3{Ubm7Dv2z1CQW z*}2(R|M%1Vy1J#EInOzmev= zuL%k(?vY4yRY8>^N?i&im6W_tTZK1|GkrgRDsS~A>FzYo;;uVjvZLE!tJ9i1*CMtt zsEh8QRG1i57)27hcgzxDq`m)R37kvL&;kMfSKKRdFbghJ-<}IC z3LR2uq!>sOVJlc4sZebz`g06A38!F4MmY2aVd;061rbsMY>*O`Z->#L zygY`Eo*#Y?PNJTGzk$>k?|aWiK!hC=8$O)ym-&zeRVp3>8TuX^n~2CRQ{|JOh{FVz zVI4IM35kM&f^azA50qbSiTk_IUj23QLZaAEp^yHn;EdW(XTo1%idtw84q(w)JE_}H zWQE{MXn~=ij&SN+=%KwkI)ua*h8DyOyniHBpi5%|N&JEUS3mIQ000RZ1{31*`v%eV zgpk7^qd5$Ego~&!%9cYg*&om=IPkNIQy8PJ+IJzC{*P}kjzh$bA1KH$8yH4m;P12q zV5%x?AR-O~AE(IR;sZ(=QN&PJUaJLvOtCkZD@ZSre%skGL12QnRw_WogbF(zU(w&2 zw=%#KQuRLp_G6$iweGDp10SH$qY$9(0LZ-ROHf}K$mbGwf2|O6+#mreEHm*W0nA+> z53DXF)8mgmKb*c4D;?yIZfbJ46Mt*)BV>2~T|ba+>~Ls=aB)HZm$#3S-JEYA2vBPS zc^bI{lc+Hu@4P(nh|bUS`$w^%U$!ekT(1EExnJHFJ=v8G2n`aXI$fWLpX^2?;Br3+ z=qb7d=|3k*3xn^$Ug5%Fz#)T&goKzRRlz)n|9%#{m?nNEoqp>6UISNO z)_1!Cw*5axkQ{?Lygr3@O5Z>twZV1C?Ql>&5!r+OZRzT!^1lbH1KR9$C>uP~r1*}B zm>`jGfnvbq3bED!!&~ms1O*a-jtN5bXqQ-Q6c=&Sk`IDSl+C(Z7I# zgC&jA$b?5(ZV>zf`U^@2NlOQt`oP08Wj6-Y9ORvh>mC$0dg3DzqjeIP=y}A4x(gHr zB`S$iJXJh?{S#B5C2pn=u&9KSe>q9!Y#1>6&05(e=d5)~xn4={s__x6DYnai-TD|{ z;HP*hcz=27=>Cp)5xtcU4R&F59&_RLO9cyBol?aIS<_BVsdW|85`RMGN}=95Y*8}n$3 z-8STI7=OFRqEP`nIE4{UX;69xZ;&>E<>u@VH6mtTqxD#DUx+D zywz&_C+i2nD?H(^GfpzxNCjVg>(qUQRuQQtmfHMuZ!)v8Hv_$fla6WsD%u9TxF(p+ zd{^&&=5!Q@y>oyWvHz^#$np|TiWNvPpWh}aEX^5Uw}15KwV9J$5h0x~8_=k>QDbT3 z|C6aDc90Iu*RU2WQhIs^B6ZpYuKz_M`J2=76xEhb>DXfUa+Nbi1C{!2V+9GewSOvp zSg7e%*2k8t&jsj5FUKcM`{M!i3q9i{19BJVd){Zy8inX_{GYdG>Mj=eK?dFnRpn`i zTcf_s((hv4op4?KB~;$R_cd?72|P$aVk2@_66kXp=-+K}2|*T5MDGu-TrKBs86<84 z@&%lH+G5|a1P|6&@4=hIHqnL2%tJ}1RBSt4g1WPO#P2V^v&ApS7~TNT74|MF>h~Db zS?`b*=B@iRkn=bQp*G}HgKpFeS4|j$H?j-N3VvN{N+ft;bg4ycGYx{ z9pWX3Zy}qIb4Rc46qxhzAqgKlhVe%P4cZs_IJfHQcTRc?B5oXUPm4^iQha%36q)Of z{k*o>bzU>&lxzo&Ki`3;o`mTGiib^^f|KVp4QRJ+eS$p=Vc`wP=5w2gMK7@1hD(=- z?=9Y=cl~#IqZ|u?@CTW%U0e9qF;BnA{5j@-&6ZMBhDV;{2_l~982HQ^j^n~`XVrt= zGj~M1rrKRplOeccb!gb`8Njh4c0LREol04nIrL$Up=Lh^RN@0g4h7GUQKK2b5Gf*l z=NcUc7uNyj>?p`|E$VTFNIO9ZQM$eUyI2hPUPk4_x^SU{0k2vbhj>M- z-9s3wn~2yfGYL9`wAy^!?@NuuR77IDU2_&X&xR;3Q-4^!jilgE`jWw|*P&o8hYWmG1$g6Pd{PUod-S|YS6k$ zb=c(Cel?Xyuew8~_GR;nGxkwJ*a7yFUP^ftQrYOP7!0IS%0z_=%f+K`y!@tkE9*Vd zOl}p@cKRvDrCZ53}>ATtAfR7LTooL2C5zeIU( z%V+?DCyx4mXt0As@Nd>({@tsoOLMUTkrZh-sI*wuNZ2u8m#x$k5|23@ehGK7*__*n zFNKbb)y+A7CW4N*tAL$|bP$Q@DtzAdj14&f23n|4H;vO!&! zutu}{m0cmBtMKOHTlm@|w=h9et`8;~ra3@SSdbNBby{s0ZNbHo{&z{D2kL#PevZ}! zx>jQlalwHYwAhIQ37ow@9<%zaylb|Pnu=Myfz$l+ZweRP;pxZPQT~KcT=NrU^6d-IOWSPM=Sxx-HUfYb zTbxO}l6PDK!a}qIKl73Sj#yNV_wjwd?CTq&pHV+LthsZ+Z$r|H0zb8jUfhbxBzCi$ z=3MSBt7^7l)dzP^Dx?lPg7Sg$wVU>c>Fzz1RAM&OiEriq@?YPs)HIcQoX^P#^E^Q?FVz zRGuV5E(13Y=gygx|M@Vv4*{z}P#i*nv4RxC%kAaC`xZ0lwu%M|2Z0nXTMUak*eFxTG4 z>t_6(v>D&dnelni{CHnDwHNZSLVx6I&!lk_yDAsj5`tYI&NZ=dr?1a@Um-dH2D$F6 zF8U?>bW8OHl1L7z`J{0N3IIU6b#oeu_+02g+KVRnVROzLi7NP;k4sn}IMK&l+Ogig zZ#{|EL-SaA9q*z+#4XS^K`h-~e`%~8C#Rhz>TWKF5_evTa=Ns6Hzoa)7f!ZBp)0(o za&bkdidj*JEqvAPx7KT7W>?`i+#Cb=pRODff2Y7DE(0Y*qR!`JU8jNJq0Xtse?DL% z?kTL@Z*rW*Qqq}87o7dFrWL*d5wh-h3YL&Am6{9g99cbRb^LeKd=eyoNGR1^<)*R^ z@L~LlyQutiXT~>5tIDw+$Go4&Xd2NO!HA8?V<0)(9;a6Y8Yc82hre5l%x~lq88_{Y zb>uYhT7nlS7cuqgeP;&(B78loItx+IqAt)1aBt?6JU5F{aW>y?Divy?9;!%a6seA^ zt3`X3(`(_}y>4LgYyG@v-Jt~Vo(`r~_BAG(vSSGxNpj>NX737{AZ$9yF=HWNXlJy# zFH|bSR3TpY6uur))zOsf7-F0gY57T(`>-P9-{}_1#d?r4(*a-xqjWk`Pyo)47^%L0 z1qw9&Y3{v#U8VK>L>wM-yp6N_`(h5PVuuT#^~AM;JB{uduW#{`+9f7y36s4_{`2zM z+tu48+9q4!JANn=ON$f+d|-L&6_;x7&C}Vn(!tP)|4i z!Gxvf@Ryhu6>66s|P^L2UFXhd=d-kT(>)2 zT#@FkG_=k6ZYphCMtB>+!Z!FEmAacNz9ZA`HIK!Ta=T@ju8NN6x+S}S%U?&Zl=v_) z8oyj2evxf&tNY{#!cGRUZhXfnnJ_`X61<#Bqbe*-rcZ_L}7*2#+} zQRci`di%%zHepOS(+k-K_{w;ZG6EXykRrOhqdeVBVTGt<*6_grjH;Yu7tO}cNfn#! z-mU#Jla?)PkE>VqIKT#9Kkq72LkJl{5=&d(f)bd2V@~`>UmEwX^+}*F^or zPmQEJjF)iAYLZK+uN`$%teQMu!s}G|+Uq=g40)||k;YQr# zKp!)kC(CLXo1)^P^JC}T1^KoT{l=~haW82s{Z)er%?c-uZ`-fYX=+E4|s)nDXY*)i`LdTt0b6NRYRm z`JXkh;O1fe4o4@z+fzO5WN98gwmNmm_t@F0lj~(NFk#hDeCby*J98gglxoQ$NCVIq z>fpL^=jFLvJ?uqIFg4D-wK+G?mBBQ(mnH{F$Mq3}lJG|;K12e*@SG{?p0VcU3$_EZ5#kyWuP zs8o~|E9MZ$+*f;eY17MU9!(nsZ*F#HO&r7fQ7_sFaK}AvZgbk9Ar`}3GkByaR;xGi zOEpPuoYpt3SofSfh|Ej@@trfo(*+Q*sI?TG>y0dvj(z{`5Dk8J7?t zr5^td9{juUyqE;^{L76pI^q!r@St0)mJ|^`qi9uHNV7D_%0t*6~WK3Uj90wbN#!4ZgbT+LW10M zwOa20{eg8+zvhhfw|vAJSexYL)g z+}A&`Qy(@nOHG^t78$r<8-BEXjp!LUp~^{T_xR%zLAD}OC{%9+>tZ+Q!VO*)J`Z)eNUwvqjPMMjN@mhX0+^tf$h zzLwmCviR;;f#8YhxBBm0SbX{IX4*0C?=Q)Z7v4^XB`=5%E#M1`%HcO!_0il*?5@bk zoyIry6er>#E}H+WwA<~lM%N-(AJBHuC=6?6W29RV>iQy=fM2E;G4oFFYt(&jj89Zrv}YR1n_18-`0Q9HnGuZw)=tl)m5tdT6z;HP2M*ln{rtD z)??AAn)~3e1N*P>6}u51WC*czV=0|gG%u!IHb(k<>?B^vU-~(cIyr3pnwDOgA_B4k z_jl!RvkhFGizJ>JW$i$!g4lskrbFrQb#HC5* zQSB5grKP=1M^!iP-~W~TG9WS9V|u@GDf}Z0<`(s91Bm3abkQ!R^<=)V^&3+@8^Ah9^8;&AB%tm8)Ahqx5ISx?%5#Orj97RW0X1^*&T_k|2U&-l zWc)P0B!=z*?r(O9^l|BN)T2vlzSv{NuZ|o`m1lX1qYdhN3QQf?6hVMJQQ&?%opJm0j@G;@7 zcS_fpv8db1)fR;XJGRzX#fl|9-=Wm2(?TSy_??w)8O!cvIJoSPe%3u2->KJhBbL`2%CpB>}+ZSHBQFyKv!!3?>E+1$QA^sh)4U0lx>P|pua5s&*L z8pTe;YD3jPv~5sijDoaw^gngIV{|4_v@IIjwmY^uwr$(C^~JVr+qOHlZL8y?lb3^W z?>OV!_ov3LU4N=-kE%V_nrqF;Yqj!~`J7uPDu_T%$r$6qoKWvqJEbu#A({SF&OhfG zZq)^tV)mbpzx^@NKxEb}VYS|1@(Fm{;y&|ea=;%X@O)~DBmn7|>Ed-#xK`Gf42k$jAL%GVM&T&%q@B5z{9 z$*@ikm7wfm^NNE7@A!MaZ=)~yy5l(OWY3_aoOJo4F-wKuKrY}X!Vo0aq1H# z)#b;CAyxD<=hUF;v*6^T{9z7wk33eSmDnZroZC`~=dSf<;0o9>ue}1)tQF(xQIk-B zr%E5&xk{A;OFMVw9EJ4YkQZ}T*fq}1q4>Io>N3HAznwl!+gqM+`D8NaoV>{m7CqiE^cTOp>OILaEPM+BnxAd49j9=S7C6X9kv*(8gOMfdeu6#f!f_P(=yQs@gu_yfV z4;x`V+N6nu-q_Cl>m0^8!C*I3m0}Rb(WnA)Ni9%mEHN5O=K6FRta|7JtB3G+`5Sm* z(v;z+Fw@z^$<)vm=4WJYWCg>-m}b}qj1J6{CKv=v`J-0iaso^b%#^eTPYxhr=3r<2 z9~|4U_OA10JF?%b{=hjZo3q#*?(h(Av1OuOX-9Fy;<-#Bq*$TtjASv5lA{m67qcs$ zjx1Z|DImw4^O2`Lp@Jz+ zN0M8B$_#X}t~^qG$48D9?BV9XS-9@^c+Sz!f@A|*f~)u$7v?si&+xjmrDg$EG?`Rz>1sy>lU+A^5dYa47Tmrx(}$WjFvA&%>W1z>4=Ld8&d z1zP}Pujq3YkymcLZ#t~?Q^JmY)?hduxZnm7uW480Y~l|GvgkkGiP6t5gbku!*hf$} z7UNPA0E}H6;eezMCNXKp+2ExLy297GC#A;mjU(j%w z!h9pObHV&AM=^)5>u99W(AOk-;;gsB(}l4XIS4HA4at+_DWY(u<3iHj%-+jMyGarv z+C$L<%`#2Hf3{zBhK1=%-^zc4oSR%BO$tgUDNiZ17c>@f^VsY7MCFSn*M z0N@YR;y@&%X4_w&^DVnL#F1>3*-*#Z4DT|jI8h+<8BLYo7UR6yX8NfU;Hr}` zx&n`LEwMkmLe$uJuv7)z7U<7GsyA1ssn7)qSt*gDWIM{wDtQaKi*0bcU@%~?v7ll= zSte^h_kl(N&`AOho95IF6~d#0V6wiM015Tgx_ZGAZk$CEokguxwUKPT(ri%=adXVi zsteQPDm54d6dDx50O`)S_5xtIQxPyT;1>rG;#=-ccRl*ax9-eER9Dnvc!#RGWtZhu z+n^}9IheE1mDFaCqCg8UecueY!~&67XTG2!jxJL5nzA~>oW|eAIVE#;cF|-8oz>##thNmV^$Yej3=HBrS2#JOPL}oH(h9Px877>uK1>bnnlwt zn4*ybYW|y4qKv_M8patWte~()01ab^flj3N7P^EU7)W75kJ~0m&K!`o1Q^9JpEgj9 zfMJFer)UG6kjCEAn`#U!-YJZhGpT@qYGxNQkQZXZRtb=P{#qN<5u0A$*dx4SBjnIO zQ=poEUuy9ohDzm2F#NnPnDh$gq`=a9k&XEQOB@~fDvA}GE$S>7ra{C50K@f&M(k@1 z-~nH_35@r~A)))BY+E=HP;+UdYoQG>U}Q;ckb~n7^%wCq1uWH<`g{fublkLhOE#!^ zE{Y4+i0Hs}92FAvATv|pW2a|R5XV}ZQdJvArIdeG*xte>@#1|W5dSpSm2L5@{Y#hr zI!UIC|6|S36})f0-W1682b73L&-Lm<6xr;vl(9LI^6)(@sgK`Fwukq^%9^Rn=ZH=e z4%pEtjx@%`A&Oi!@)rsEcLp#G92-#QA|mSi=~%$5ZCgt?{o5%RS@P?y#x^q_)}pqq zqTqzOul$3hQcSU+vP(p0D^34gj7-n@pwfWLTKCJnIJkh5M?8%+6+mpS)rpSnEUOl7 zo0%T8@~gwhA~Hw(QbAVoIzH;B6O{TWR-08@W%A9mI3PjMJqwNXM`F7E(~Ex!NrSjL z95EEz>iGWkksyPZ){7AVLq4y1X9f-&RgRd$d{}QufdvwoSJC-D|6S>U;#%m|nQS)G zF;K)3+*INMlpQ7jsV=mA>EsWBMfG$DH4As{AIpL!A$NDRGlO+kBREiwSu)y)2w*=y zEeqQ_USb_TNlkHVE4#m(DRKyoYFcOr*T-O5vyNymCBIUnCcG-E5kLeZbz+>PEd7EX zoWkhaP>+}Kpi*$d9zuJAH(%17ewOxF_Gf85#etEjZpi`RBb|?+OuOg{tD2s&fCzk@ zzng4do1YxtbU&0RuVOq`Zc)nL+LBD?BW2sw<-9P^PQD##^ZWX$;&%%iBY8>T35!o5 zdk^aKP_urjfO9y=FxNh}d^IsE)+#=yf-I|1_I3d-Bi!mQZ)b6;Kf&`wQ}`v}G}ph~ zM+I1?a=-xd^v>pJNRBr)fv*`Su^+qH+>kqx68U#(;bDzQ@hePB!5ts#k`}lc$^l^( z`_~h#Il(4)W?Dd)pB8yJ!G<9z6`9J(J4T%XaHrO6)9CD-JCO=b1GHcX|B$8Z(iNY{ zgU5f9&bX>TTwjh9ykKx=b9jRjFpuU-B9_*RS|tL$qk2ZTH^i2b=_s}5OO5185*zs} z*A?92P=Q`RE)uea<{VNZGwn0Si9Y1o&&t*#yKP&u~GAn@3%ile|l8Ol)L;Zq03+{BU$LO#h2WF$f(O#RAxv z*t)oqgYW$^0r4hxFn|U72Z|;Ckqud^2-FnjU|LTGmTFK$EsUA~2!xEhV`8=`$PGCn zB=$r}JdALBv){kacX=5P&<5w)gTtS`tf?hs(-6!@8NF`NPR!N3R&vfx+(REIuV5`& zU}sfh-v7k1s5Z^Dhm#Y3IEBvih5^j!Gzjr#15M*EGWXIqwY^ubs8>B~Mj-J88%xA7 z`8K-27id1*ouXE~V&u_(?u|q@I@A#%GMG@}j}Hx?X0w$yrhN2R!@-72#IzNKg?$e? zREP-_c{mW~6?RMy-G2H>YhHPjy=W6bQnuk9NAo?7JmK%y>(XBOZHCj-!vSnSNBhZK zU!?=3nPl6>myj9^c*GMd2lEzes9Eq3W~=PlKs^*-BmjK70a|Ph6nM)o4ey(rK5Qfw+4%v7|`rpJ3s zi*Ht9r5ipJ4rD{G{h+vcDS&-(vFC{q6XYdmbj(*z9=(F5fs+2ZpzBOaA$+K8`penJ z>x7tF<~uQt*Swj@Uw#fpLt|0~$4+|R*tmORm#^cE*`uAcna@vT-4K!6Ve(6%c5S|j z7}c?Pvy0rZjFxIquP_IGdXydmM?-HERgk+2?*#f3lzTRq`;^&VNcyLiacAfJ&VH8@ zXkVi+T^Uoj=_g*Z|DYgQ>S%g?i9u5+uKzpcBvMC`TRF}llbVGrX$a24!r^ipRQ(!_ zqh~*@icf`x3J?$d!fp+z^N;)n2XZu>`acjnEnx;2J0wk@i2uUDMpvVvi6CVgv@nOMw8g=3GF z@JA{PAk%Mg8FvCO7NW;$tk`fbA`Q+vy_m$eZI^j@O%kyF=sUZgqSB5ltE3J(_K81n{J-a zKQAn8`?w0by1Q-~BE0vOW^w`N*0Jk$=?d`+lrNQb)fmE6FkWk;s4~6e?!5qcRVq;h z5aP&hZrK1UTI@gijnO}YyNWpFw>bivKX;@iQ^4g!lmi|3!>0fr{$g9V3rCB;_Nvb# zo2t0xclewh;(czg1DFe+>9<|}im5e6Ek-P9-Po$V-~PxJgRL}yx`l_NCwKxlE$u`j zSnXWX1zQA)mg%$iX?^*??=_6eGfZ4Q zjNKB^%BAu8z3dS-D|F=*5Uy0tw3P}X7_xBtzPqCSz?6m_fHAv(tIf-YBjfVv>&rUF z*@g9#ZzSOMY@ljR5t`gkBuz-XBm*U^%l;f{~v~9*7&i%w*ZLfP#8OlgcHPS$%v$>(QTn*e()WO9rpIFlQ

ns>;fBQ0Fs#>^L_c+#{+3`Dhqxg1~rJ4sH$c~RY7(BZocN+>W^0KbDUs{ ze%RkyAKCjaH_q%1sTozdKl-KN+=)!{j#31($lgE_Falmb+acvyDm?S8uiOVHIHHm2 z#p@sR@}SBFg@uIAo|tc+44*e+^@NTB?kQ15_cm0XX%I)R4EqfEZYDa4rSjzD5(Og4 zb&2Gw%wjX>TckoomP=EadgXxSi#cvsW5Cq@cVWPu>nRF`uAW}XR-*dz9HG?O)XORt z&$$%n4$P)0BR$ir#GkdwR(M?o+M=ls3 z2O9+-34CxMGEfi!u00S}gbN9VbnwvGa+ac4+`-aKnsW&n2`;bJQYCJpqGIFGTu@Q) zQNr07S!3-Fv)2MD_JIerQbFsrz zhs;@)I#WT6x(uu*Q}JVJNc>8OuWqSRprtdX%rV>{7gGxNph|#agK;Ip!0X*|-XZ^S z-Sb1v4UisP09C-4|f;$N3m7u@_H|Egy4Vuvp+V9e)>) z?{UQ(&kG?*n-DXfHtqyhd`L(GD4fWY(tUpK4D&>2e6@H33s49ezK3+o-RHJ`?$&eF zt6R-oz7)+>ZH8Arc`};|^oU`b39x>*l@Oh=QREAOlj|r^1`^Iw zo{35Poqz3-z&hT-{@jTk#yoqGlJf)9F)4y!J$O%}`Z0LHf59y!SPXgRD4UDn{|=UI zQzz+rX>gML6Tb_)Q>p#{M@em(Ar&-Dj>M&h%wCZkFIAG6OV>D&SNAbDT)1? z;T^SGVZ#(Tof0xl8*asL;7$U&lDxXtE|{re^&T%a?aU9hgvj9w_Xu zxz`^f3c|3e;v7RgooL2Ydd6vhX`=AScdgPbHL)S>bpl4G6m|r|efV53C9p?03Q%Gl zCALcnt@BoH02k!~-kLkMtJ#vHuw+_FyjtK(inSC(927iDfB7*bbp#TELblmI2C9xp zYV}~tzZ#K2Z%E3Fk_OB({ucR%D{%9*WePGE;v`~;KXp)?_tXek+&Uis`C|LNctd^- zkHB{@XhubY%;$n|DzCpo==3%`c5@qn02h@Q%h8lS=eaMmWRMl*B((HNBvAp?hY<+f zTI}0&5D!MQsB4_9o%W~O@qz035C$hR0ZB`VoX1YtwQW%&0&Qx{s9T<$Eg0SUoC1+p zi&Y|8AoB8+DC@pll zUKtl=@U0qb##1jul)7zyv)(G@{PPYd>6mbc1+3QR)4|Yd+M~nY@>@jyPKijcACg}I zBC%HfY5b9Pe-mP4?nRWw;Bxc5`s4v;pm0lO!ayv_MD|cF%fI;m~g@7?ILrC)!!D*yEEQwu(f_U<{pe8Pds(%u5A1Cc;%#99^*CX=}&OxJe=Y16Ef3r z9Qt6g;@eWm&nG0jdY4$Lb(DhrU{U|yxXE|Ryf-Ty<;X-C$_t9jL`nIX;5DSR8=)xD zP{Yv(Z{>9ryL7(*QGD3-V`z``GXdZlZg?^~zO*RFYRNXtiOt?v8|CMuInVlM@x27E zyAI7OU?;;rK7InOqPAcfImMmHp#?y{bA?^0uG0}uJeQa4)Io7Xyyo`yX|W_l_Y1Mb z)y@vKjg#@vA!q#Ki!yj6B)V%C_j*GRvX>eqN?iS9l@gdG;l#71gTE z6E&|zgW{s?W^YhujOvpxf-~nfoHb*905XJ(-kqOK0YX#1hQTBe?Y4c!%tftSdG|Ll zg5`#7s45n%vX8Goh~@sXsz&wwc-pz93P(C{;(>2AzGeeGRcVhK!FYfS{$=UqG0J!b z5phprY8E6wAz8XIT4hWoi;~YFg7TaX+?IV)6d)}9K~OBoqkF?cuFTB9h*r;u=C zUqL}3!!-wo;2zq46#t$9jmn%?pMA8jpIr$xDU~FPC1%_U86>RE&&p`*AueYLr;oB6 zN$}gY%Z|#MU!Qh?+cC6s(bkJuerP@6*bBezY8nI3RH_>z8ZwHN=t$BLK5nv9jY+3L zg=nJ2`kiTylvKc$AuWyY0Jf6H+P}2l?m9^q^aO~O3JfYf#F?_5P2P=&=%T9@b?BTM z8q)T6|5w5}hZugjU8skQ=|?&3{n>1^Gw!?(898i`P<+aT!jaiI=(KlO8`Dk6v76B^ zplk&A4XLH6a-XsdKR~}8YH4+Ss4Gn?W2o2prL@O(AMk6()2n???eAej7h`3^&JQj3K%#*j40V3=#RDNJV_Et8&M=ih6-M^pfUtV zu_&dM35tyn@y`@15uMA=^)t3kl9fb+B`a)ypix0=`vc@^s>5lZ#zD;c(gUvEpIh;- zR}ckN-1GgzEF1dVLcM5$1!pqBnz2AcH^GW+r`5qMTiSnmXPPOa>CqzNcSx>G3}EAh ziu#!jH0qQ|vTPnmp#%-!eh{64CQ$1xPz3>@Z6S(GN8Q37om9zKA)=p9$zcD_BLss) zS_QMMpiXiH^R>W#9N|l~)_uUXMqEva_LiAd%{ZW<(kdFa@VQPtpdVbQatrMS`Ytn5 zTiImUvg94D7p1YA_L5cr*TT0uBgP4@rfFyMrFDOHfog_Gkkh29F8V$`l3MxTqA%$vFV9@HY7N5E}jTMzD*W@q5!8=e0IfCwpwyKlPdi)6#MVm8oWq#xFZ zy!d-Rtb%az2Rh%WJ1zPoI~IBRzOvD^{Dp|&@Ow5~8c1B$DQoPP4Ca$r(jaIqN4f}U zv^Td?WQPJqK9E`s5OF|RlHgU26hh1)sP>%yt|?=+5aadW+!!vHrD^8>B07&njRobZ2wIg{pMi$pK+_!kMto2O7H29^r48lDAZ2e z5T4oZr0w-endw;H$rFJ|mnq%IrFa#i?~iM-AQY-e#FS$d1aBl@A)wBA0e8SQ(QK~? z&&LPum%!U<)bCq9$^__vKqls{_L=M{yq9R}BwZcTyazz@lPUnvst|e#j_$kcQz2am z(8)y}xC=JQB47cKX>AKT>y|sW~)J+TFkJw8pPcb`=rG=`!NaNPj#^Y!U>KHtOyQp`!5Vm&gb@r*^C z05n+0C0KBY-Jc0sQ8q9yj)H4N&Ig{uRNe2vW%MdEDFmva44P?03rn4tk#A@}-$NZN zt*TqR?%>_ePfV3ZN;y1=61_ZkJKwWO0S*;IEzBme3cqX*1cTaRq)Na{`A@e|vMn0G z4nh_mgP7r}-`JDNPoDJ{-Rq2=gxx-QHnJ~bn1!6nnFE&RYU;*2Uw-H@!2UiG+qKFs zhE&V^qehDHvPxZA4ekbl$`wyLd_~#&vDfq;$q;~nSkW|zE0=a~d)Xb{Xy*a>cW|oS zadzaa#u;9Hu@kYlvni=R3P$uiFbyCdBxy!8H~Be^D#rx4*}2q3*(^jXCF$?-Hp+fx zWMF$oahuaeo(oEL_5L}d2sb1KlO*5;MrfKZfPLeW!5Q4oDZC%c7Gn3BGNa_n0#z-F2qQopk93}Z4>ua15Dx$b(a zh<1&*@7-CqtRCWb-e4=0e@TjfsTB04afpz>$4Im;DRh;`-6MFA?W#WHHs z4kJ!}s2EKm7Q2u^R9)1+tul3Kg(2#lh|#*Ms*&4-Z=j63mSqIIDelxiH?}D{Fnw&e z!$s&MANj?SL<>a32?db3!fZbneNy?F7~C3lTk|mIm*o^urMRF-*`z@L@q4+xgW7z6 zkevFWbu+>}Ktm#=Bi=YqHNYGmNOcEMa=PQ?Ttto~xNB#z_~1Alb7)i+arA5el)49O zL)>z<;{FvbT6zs&>W4;4A7d)mu{w4TTHj8xMngDw07UOk0SPD@?L~^>u1{}Tu8DAv z6_wt?GaBN;XyyRNl?z;Y4&Flf_e2>wF2-gkbpnr$<*Oy1Fd#$?GEWUrDRhtLA~yM1 z#zOZ1TmIfXN@gKx{BFwL|D4hQ5mD_)F9ttNk=TU~e16i#=Umx~@;?%)CiB5c=M zER6DrJoJxv%LYI=I{m@!uFBt0c&*y)+Sjv%*%X`Bu%3$ zb^A)UqU)408RjCEO=j78xoeUIJ9oHVh1<7Et_;&|rva|)bZdXhiU?5YXEtJaOK@SC z5y8YOFDZ4Iz;B`~n;7`A`5yv6c`LW1UC zPZB)jAOiN=5uwh82aII=ZpcJKG+u^`n_AwQ+W}y8JUD4PmOMrw8-_+aC{Y0|HZf*E zw#QyO1kHhtA;eH*Ud@Lq>IG$*!v~HD3={>+LazraA_fb4cmGZF0E|Q>(B#NsM)}Zf zl?s)Uy}2zzb*gMO-oZo%EZgOiJj9@6GzgRFeqUY0iq`Bqk}QLrq=3NxLG`_L)w|`G zz5$S0{bCaSi*bAS#^DyYr_-quw(?4cD5Eov$+m`=e;U9u?!dA$Ru^Sgo|@&MF80<; zHGdm4)nCDgIgDtmLo5Tn&I_5bZXka7t`$DES$>{)qn59ss7UaxMZ|b&34C&&ysb?B z$9i-gTSl~je30!&4>-)}Zj0Ic33@Faq!qv#%!wOu=T%G?Wi_~@W?+GX4mi$g0~<21JsT=I?~1bxqT1dHvVYW{JqrnW=8zr$}el{J{$ZMOTkM& zRzZMSXYbejzB#>Irw)QLDPy9PHK>JOEK$>Re7Ib-YT7zDMA+1*uw!aJv@|AzE++A~ zvOZY_z*knY(hr{~#i_ffFhhUe9BG+xnNc(QhA9Ea0{=hPq$DcJ91lgcU)N`1oVa?tPnj|a=X-n)0N7oI~vT7v;<-xt{J)5>^yDRjh)zaorJ|r zKhFK|fcgBMLT|&ssIy3;#+bThHFPe=d4J)~RrjU;W!pnpM=E7b;b=o?H+9ZNHN0f4!&fW+dK>7xSu-K@xRK*0g{gWhd0Z@1P-^hw2c!uh9uAjQhkaZhcCW7% z(oQahO`H#6W2R$M&2p>EpijK3F!8BWFDpP!il#ivm*%$lx;KVP%y2ibU9-;K|T z!)t0*G8DsU;&@(US5hhKvAy`Ec@ZG~(LNYt@6bJoHhx)tgrP$R|FlLG{f-*g7d{=?=?}>y$!Y`6C80+K(UT={Gt~{^3{ezOF zy<{BgA;7`v)?+m|6-*0&UKTnqER3$!R{_0majOh6og}t2x#x}ed=E|smQ)hDohI2K zBFs8&PODF|yvVKp1Px>=dVZv-KozruxdL4YKbSn~qQ8O`{F2emK5o1jguO3Vq8PhB zN#%(CAe%iGCE^|_FalOaUji>19}@<#6pZBR1^|t$^sN#rghEdp#YPq5aKnc(r;}1k zy)3RWE-OJWTt)4hSd=dW_>gWAz*T^Wfwa4%ZygedyL`F7$8QTCH`Wp1Ww7y{oE&z_ z61 zoeL0n5*%7y0Lv2=o@gY9@L@!XSl~CF0#F%k%^7v^fft|qz!z~0Hh@QTA*!wXEgzaD z11#a&9x*{baMG8x+_4#Dr?PA4K}u0azBm|b(52+bf}7@>A!--ozIF>NwbEQ4NG!M- z=21s1V#1Qsy@(pM~~UCA?R0l`u= zY>j(#RgT_p()|=6-N8QaMCubNU!mZ2nlZWJCR7bUf8|iJ>jFor>V>z|g^mHEGPBG6 z2dfDJltdb`-jwl``iez+7({B1ATbjrWbK|kq*BwkDqK5eX?-7a%$>BrR{y|hi=^TC z{Tf+#VF}tb9T&-lNhKv{)RS*W08*C0e9k%*U8I4EfelDTZ#2k$iLm5HbIsh zV|avtYM8xv5^IcKGQObVCd08I8{HlaYD z?E~74`rEdM)3AMvP;|E!vb($tganGh?47rffsn@SBL=e5BN#8+@v*TF;k};5Yi`@V zKY>HlcTU>CUeP9Q8_HlENtUZrrL~r=2?!5VO2O`Kj3dbh|Z zox~MQ%XRilm*6zUEW@=B0g9NRYt}3A((DSry4ddUwy6IGlt0UO2OqfP{w_=qkuqUm zAuvtLBf55z1Ek&R%pb9DM!h}2Fj?wVxUVApy`ZyMN{JlQ1#A>m;4fbqk{hC_GAW+= z7is(xX;hG{dzDu(2T2av;X2^OHS*jq1=PhkjE1Wk$(aD{Hii^}fbuX)e5GMu7JTUp z3?ONJ5z-1EzF=uKt>?I`d~ld{yMnXG^CmmdV8;L|{U{LzZ$Wj~f;n9GRhTW!1ymGE zA=T}X%?NC)Oy+bbU`hvxTk?bH(Y5Ns=^v?$GORo(ZAiO2VSlDbMa}~PZXf>GYune> zFmd3BL*ySoI^`z?7+#l0q+o`EG=x4yXbstf+*~MYq>M{j6KTL|tadygMytm?2iip0bRcpMsT!$TKWCvg%f%~!Y; z9wgM^hf+u1@L_ujx&tw-|MK`pG*MXnsUtv?4r2@ACbsC*ba1lf%cwxWi75$M$p=ad z42n+hWLWq@u2{5h)`6=zq#E-qC_18{6!O=VQHy*y7uU)5R`?i%UZWL}_THQIU5x_^ zQ=>#givfA`XaA=UTI2iV3*DUtF5y;)dC%;FgQEYn))Yf}9}-pDOgJdqs2)B|{;iBN z!~YIb*{LlQWFtDjfj)hRTuq`IF!<(kNm&x#m8(G!2^gCmo{m3jmdS0|dfal!>$_P} znfJ^4P7u{XR!j0ReZxA)-=v|M5=9bkhemyt8FqvQ#Fz~ySOlv8WN3XeLE56iOTOL9 zl`6~+@s?!w-oOoJVkH@uoUb-+7KdYjDgSlant2k2i7{By+YOrMGxD~Ci5Z}EU6vKa zk}3F|!DKP07)rbDjL~<()N|b}9Mk*xfgA-PzA8;cjvmw;&B8W!9?4}>0vF6hm+sg7 z);qEX5c=z8#zKCA2VEla32a*+WHO90ULfg!Ul+Z;Z?FUwLBA|KB|E@Bh+%#=Hln1Q0Q?a{Ny>)Dg{1r%iSw z-xu{e#mowWt?)@>uGCGJOmOZ}H6zF{VL`H?xAH=D1!I}Z#l;pQ z^BC>Jz?uJO#THNZbl>oJ;}QmvJIH{Z$L3!qkF{=7(}}ch^T@mK>%3aQzcgk|uE&ed z#B=;R9aKYEpzlH}pkOrrpDJlPifcd%EPfSLmIn`u9S;$nZlJi1{6@7#7{c!0RsGbg zfRkY?1?FieH2yc^uc||gZ`*%2b1eaaX<<9v<=c%R+ml%qU6FK;u4j6*=4ZKxp=6Cw z4_WNiK8&YPP4eb&p_YRvG|;Eyib}{;rj0r|J-*^ec%%LP6o*lH9a3PD*kOP&W>4p5 z>T#>_yk#)j{9iSPxg(vH#4?Gc#MG~IdPSF;5Jx%pph}v#)E|lu@Ow$Z#6h&p^Dy)-1V&xB*<~ zs9+%KohvoEi}8X&SEXuY#J+$o2Z|h@OmMbCpgl$zS)A3KICx07=qQo-WJZZ*(1C>D zNEfVZV#XObLn^RLDI;*iyIk3tY+AVqhdohGVd8n?+9_gN<-XJe!xZkQp<(RfiIQuYVa_U6bM|iC8WP~MF#Cy|)qXlA6vNF_={jta`QvVun ziLKVeark1(3*vB*-*N%p1jC=7b#HM>O~IfMrRS7Zsi}f+OBGH8ph6Ui5n0N}42cSt1cMD=ym^Ti#@h?2+;(!ZK|MEdqx= zf+AuCIzVuE5pMl7pyiDcPQ0}MFvUI<&OdToX&uPq;kL zjJVdb0|_47L%l7uNZl-r5ZYD8QN2q*3F&C3&&*FAr6bjwi>vd;(Fe8_lJ~P-mcQNb zMdu=Y~N{M%P+qg=L=vS7236R_vpuwQO#P-fmo0%g>}6%W5Z^x|9I1_P$4> z`pDu?=%{ZpBeLwco5$oOoYGTh41_RTH&zTL$Mphy&e^wPU0a89dNfDW{tkaMv!TF>vYc(TCjLNGtdM&jWPqq6j?cfh>#{ffw%_)(MLwNooZ7>VSf-qG zp1aeSRUEKawbz$0$2{#>414Me{X4E&*2}tdmfhBt5-RA>+p*%=ie;U7hZypZHd=?L zZy~H*Hn=;w(!6o2g5n5-kkANqg^UvvOtl=NSqy~y-*;F!^WVtEuQfzTOyj{pK7f}? zA9V0OpSSyjKvM@Sx~?0nn~kt6!mzBI&@2GO)}M@0yqgqfQh7rfi=zC*CD+h;w!&mg zp#+gXK;RRgXltASAgUIi+K{3sHQ9(rw!bR0sYoYl{kU?kdA#5ssA1V_3Mw8HS-tz} z7EHI*w;FQJOoq3V}`wJRo%9;UEmdR&pB;N1uf<5{DeX3VxkE(H&zYrCP_In!QV`mk3#BXHYKSL z5)zBUe)bzZiiKI?z?aE8FZfwVTENCByXe?{p%qe_Gmp6|V7qyfl=o#G3fr;qsiS+p z1Wie6(6v3OMy*F*n-p=JjR0kjsYq%#TUOm^rv>i5gFwMyo~=Ln>+n2XM;d$+c4OVf zqc%YFFklu@1crNaA_J*Zu19Ekx^|+vf0=LbX%BS&2&O+W$|s>h_I;S3!69)+ttTD2 zc|wDeW??jVW7TtqoJ|8M@NDG8Dzy6Z>a_Mdw}bW9aYyW%BP(Ru1OX)6F~BzMxQuv> z3^cl!Y=sl|-WFJ;V1p66m4URyjsCoWokYJ4uP0{po{Z47Ab_MZn+VP2O#4T%YC;e$ zyZv4wFRR9Ekw#j5QPqDjM` zyMyRd(IE;~>~Dk4t){@);`SK}E7)6w-3U^|uL?e?k!wOe3$+1bMy(=B9yr-WBDk8} z4+tC*-a3EDJ@J0P7=oS3&3AvgBu#X<=ya}N4JmTEu4lxbU;?ncLUWBYr89CfIi;wx z)pQXNEnn=gkeA@VVQegv`@Y~r^Rsgq)9!iCutQ2m8~cjiM5K{evoh zxviSuKH=DCqvXJsS#xJDTZ5+|`O6$EE5Pl;k=3H1Poo%9?b)<0J)=n;>p7?xJfaag zI5^UWTFyxVv&A2+X6J*T3#Y^%l2PR%^s7lwc*KWKN&@yd;ZT51e{C#E8CC7uMmN5Y zb!?=tvv!Y;^Lpq3 zG%zb!^%7`g|CRm2YeD3{na+0e!y5~AB{X)TBBfNZc*fiRP5MwPCOIm%SzBPGhJVOD zKXYN|mIXN6sk07LLR9asLWnhU!2C%whez|wme}i!&R~*L@^Z-tn#0d!zT#LA9o8?g#+purzlI*p)1y}H#q7rM(J1N zn8G4SdwczVkat_fO8R%m9EQJ*nK?O( z4cW~YIgO2tj7)#?@t7K!nwW7Ivof1-urnDOo3i|f7PD|LnJ}{$GBL6;vZU=HfnbQ= z6v4^B!9{ZtDG5M{F#E6j^dTK|H%c6A5Gj!Z(t4>ScZ0RdU=z~&^eg4m^HAcLU)f1ltX1^@s6 delta 86703 zcmZU)V|3s@6z5&rwr$&;+Q!tjtzT{1Zf9z@Q`?@}*3@>p|9y7%Jj$z^8=QNSy!f6^ zlJOAO+7cL4O64DtjI2zYaFo5z#b0o2Y)PmD?ChMJygVe#(j-4gcv(3~Sb2F#^hubN zNZ7bYm?cPfd0GE+GAoj>vXC&Vld!ULvhs2#8GAsGz_GC>t$PD(BplrTbAXJ4g(C?Y z3keH}DhacyqoW%M8^`~us9F1%lW_5pFe|&5d;G5%cu4*~g<0kY$xi_u7EWGPc3y6F zZWCi}Gj>icHePlPa~>8BUM?P13w9160dq5MV>V+}79Lh}Gn4-;9%L3yE_M?ZQw~-Z zGh=Qp&Xhe+LN5M3J5!W#FM_EV@T6Q55>;!c%x>Ht9lRl9yR;(7tc9=)`~^W#x8K{s zM*0Y`;&~7t0x)m|8Iq!44k<=p-B@t{SLlu=HgEz0|AlRAY3@qG#gmc*P7KPK(g02l z{LdwkH+Qgfvm#+-bxe=cl>kwU6Gbgu1P3d?gE>;IifFJ_7EeB!7$QU{puB2SKH>gw*Yqj>P@s$Rws( zi90GFL7s$}+|(pO->>QuCP`#b0*@0qeI8EC6|$ZlzgGPW{*pK%8)2~|E{XtgrQSv| zfrI{j^Gjy9xrdB#=&Xd%Q7mZau|@6RvzicFC+?-=lL`1NYKoOX-tS}d@q^NAcy)Ec ziwc4e{IlkKkCst={2N&=tj&1Q(SxW9q9Uu!l!6GIeucmI;vsFqkcq)$!qD|fqA|?3 zG*Fm^K`apJu2{Y15P8O7t^WaW_3}%X=Uk3+M2YC0{Do1u{p68;HYSDPoOH4MG$Opw z=p2SOdK_tnHzCySr87+bNSfc&F@J&T98|p{-P} z$i1B<5ZVD$mx?|{*;0Ee z-*y}QHGXIX@~~_D2rXn6!cf?LhHz&sKXu=lKj;a@foV1;ZsyVQSG8n{Go^E-P}oK2 zPrhv+A-M&v9KO0x11Hfz%XZjj&5L7=CeBJ%ce=jws42T37QpBW1fUlEi*dD}^0N=0 zj%7 zLKuX>^dIB2$0*qgEa^Y|ghpRPTr1g?UOi3bJsH(&$9~EYMPtX0u{g#=TWG5}l@fvx zNlNvZYJGYKA0{;AhI2(^Zc801&l`WBJk`SZ{T4O})^hId>eU56IZxk6doGEnVC7wy zsN`rui{uZo2`Wj)oQM8Q2QAs*pl zK-gG-YhYkgqPtYT@Ae8(;Z$!)vhGX&+l!{Y@owunP&VgxdlVNG+DUM4k3QllS6Y?D z7(F(LXE`L!w$TI{N;0*)4un(_xZvLVHVGi2A$S|$r+%OO+1D0x$E$KxYg=lJKdQFi zaf>Nvhul%z+D<5xW?6}5q&nf89g*R+OQ0Nz;MAVwaPqG_6+-)ir{~`Ls0;vDnpr`@trKTIExC+c*Aj0 z{BX`}eid52NAU+$C@tx&^{M~W64X6z`A+PQAh~@%m3D)!@A9keX=O~#e zSnFR*28xK6z)LGcc;n3GH99O+*0KvaELoQ6B|fbB?;01FqbokF5thkmIxH;3Xoozd zJR`-L`-(}Ra9-y`4Y~9`5Bp%F25vFWgYjma2`R;aLz+_Bp|a``9~P0Sf0`1hRF+$n zUnR%3fAw8OaH|%4Lv+|t;=l7;8$ouTJT+tVMw2|X?r=TBlSO&9Us}8xt~{bJE%A`K zF&}ilY(RZG435+p5f4n#)LK+yeP7>Z_S>1F)RX|}Y1)?Kxh>n*?DW&K^Z>h~mNc80 z+s(rQZ$+Pdsf!wBMI($cV(*j_(hPcCgqIP+PNnp>vCoO_9(F7s^lCy&&Ra7KQuT#TxFFTB|1^Js6d*+LY0g;h-3m<;oCo4HidK~6o zKXZYgNClpTKKAVfO>qr`Js70G(GF{}by9=8<;#rCa%}k(f!?<>?A^D6PUf_g!Xym7 zv5TVR8t07GIn_eaUvC*I8Fj^Mo!JhM$u)O6BHwp22zi{WD5nt42^O^0n*I~dqf}&9 zceh5ZUQ9USRkvMQaia;N*7@@A=5GB zA9gLHLl_u0V#RP6b{2QOY@V~qLn4H4yf19M(0N0VE_on^m@iefFu|q%F@(CPTYZ@- zadhsv^Ok<#BYTP(cd{DcC0HCh%vzKwB36Ab8#2O}i{7FS91-PI)AEd)1*YID78bAv zr}8{woQBFi;&_1QD$^OdfYDyK@G4JP{)NCCpl8IWK$7?asVT^UcN&Z7p)^Q=pgQ_^ z?&%c_^yi3%cjmf`m|8G*3H#u3a{zxWu?6__&AK5h4;MZW_?(ws^y}&EBnClNSA?37 z+4~3G{&%uf%2)H61=lC##}`fjwha)LtV45lepzS)?T&K7&YxD#Ma0+7t~?)wLs*UF{^VB-S~Z;4+^U%-HfUy7HEDdJVQesJ%=NUJHE? z4KmxQFqyUAei`PD=eE~d2StTyr;OK+nvYB?=qwB{M%~U@HpU)v9)uYt_5-V4f=_Tl zSCgSh%cYL>w|9s9S@}*Vhsr_39L_v*flTTs(99|t=5-nv>cJp|EJGc}B~6ASyTg+_ zR=qpLWZ|vM;x;OU`hkdup9rfxjgsC?>LnMYl7g=_mS5vm`0*Gh**|F-PhwW6g*8Px zXS$VgO~uyScPekd#48~-thJ8H3n~Xr8ehf{zweEj9>M-LGhnk}JmdV1140DQ9%c*a zvnE`p_^lu#Y+moz+{JC#sTeqZ!}*w6r>~PFelkym{5AdmixHkCP^5Iy6mJN`lu~9a za8@?<4B{$KY(SBOor8o~(%QxKKfTDs`u|c=mpWUH_}pkfZ*OpdCy%yXK#GV8N#i+( za|)F+-UjUl$p-$t!KKLzl>a4w7or@qtM=jaON1=z|hWtcO#GOHrDtLP5AA zCnvNCTY5c8^*KczO7-e4C*9xbkb4MS0200T;)GK}-bY6!7n*}=@ z!8k{(Bxzn@eto}L>d?c(y~S_GyZT93iCLA$0=~NwnX&Hg2Rl%E!8+TR56|CB$rX!Y z5aOvPvtuVLeVKOzh`)WG*XUWOpMS-eH~DhvM51`<`aa(Iv3A=Z!#_kKd~%Gl!CBBF zU(aMKwQ*{LRKBDMCQB{E9NR? zZg+vBWY<~bVaXua@MdkV&Zs#qHe;-n08Gb;x;F_62t;s@l{62u?Zf9CQ|(&xaqMwN zdbifT%lp55AKfMYjM!BOC2VAE;jzm!u+jXT)$VPZ2 z+>m}iD{*U>D%oI7O?MAahH?cA>Nu3L5n?R$o6B5FkuKmI(3nSy@SjKusil)>wGf@9 zW2Knck`ANh4(5(}*&zGD*g!;xDJ0Vsr<={kw~z}UkUdt99vCwQh5pqDBkK@@94}#q z{e_CDun0wz;qWGz)Fx-m2EYmLeV&vyxc*q1oc{E&Cg;H!lf zaQT&J_Yx0vGVf{*mhPh$g!q{BQ2As}q<>1Yun7ebYaNb=^si|DMY)Qb1(}#W_Sc|v zc%-v9?~A%fFNUnypS{om7{tGW_8eTc+>vN#y zwBf|c;5U-y^L+83QGqfGPauAp6va4NarG_!G|*qCQ_cy~3H0motTr2?7|8#e!)8Ei zL8vr_bc}OEXBHR)Z~Ilyl5%0CS*Ppu_oVm9TbdA#s4AXwh=4Wk;6mW=y&#$-+;!Pta z7KcG9+9f}LTkdx})qyv2VdLg;Z;Z-7Uc^ZZS!z90buwgf1_>|7T@X)=*Fa-3&`l2# zQomA>zmjHXSQP1MiJa?cqY~cxku-2x2>e&tQRrz+v?uT(V zZ%hVz8z+IjNh(D=an%vrSPOHj(()yO;sUEw>&M%%>YrME+ScwRsr@-E6Q06)(ey}l zE}zVR`k>Q;9xQq5(;VNCHT)um58k|tvmrc~V#aGv!mr8yPD6wYrn9%4Tct|W3_iy0>$}B3W(VpVr{$!+45V^$mNFm1?b9mcU%yQ}R!SVFy(u{G__B=(7 zO|)Hx()ETi#bj2b3{CK13wA)3m?RS+vT_Oba^)w?Cu&!U_ch$>m=^w|Dq)x z7kmxb%t$y&xQp_m1CnPCU0<90NDaruUvAZFj8(@+a7Lp6!Wp?bX7I+%CMIG#O3fcd`Ii zW4rERi``e|B>$`E7pd@s(%mco8|8_0+7~Z|{A8IjSvJ-tc5wSa?#FS-L+-(`y-hc` zaY_4ptz^k*7yOz7kC(4hdmabhLp^QAB?!2=!VY*r{#{&gB$-z8epk`U9XlWp<56iL z_I@5-tse1W@T8p~I11^f=`DjPU<9a6uFowrdu??CME8U;PVUz}piUnjLyccP9oWcm z!dXuT5)4;L6L~bDGk2%>?XHd${GGWD6i3c{Ca~Im$bacDA8+(S5ufm9&#Wwg*x3-a zF7XeDE`DT)f_Ec>*D%K$@5Z}0`(bq;HMe?1-(@|X>ic(e2OB9JIX#iM%za{edXPMX3%9RC{K5s(|>c~JP0`Kz4Db?JqOHE zPeL{Ny?*)p)f;E0VVkk6ZUZ{1y0X!~eSBQoHvisJcqB{B-cCXPdj0E~wk&Aa>A>v2 zqtg0Fl-};xL$eng8iUI8HO}#Q(}qOm!sqw$ zSDm}k?~fG!>G?7jfv<_uT!Z}v7xmTZ z@zBf=`o{QB=4z`wHM*&Z-gy+hR5_BHTVs9G(N{!JB>CLjt2mX- z>4!13r6qi#M*|c~14!m-dlt_hTwKtp*jT-9Q>&9PL=;Z978cO4dGOLpyC6j;Gcu1S zqIfKe;~8S>uM<=eYk5ec{r&yI&kTTHWDM%m%Gk~dK9Svx3wqtpjDxEg>h~({Pmnyp zFM0^dy7s0fL2mGnoE-e_qB!*Kyb@etOvb+Hfi;3c1UE3g4lo4}023jRyBYLLA6Jk7 zS7d2(;LNc-IEoi2M!Vj0ncV9=u?(}DI)a1 z+qzjGzsD~&BPy?^Wt8|H$YTzvk8KTarJCNs{Fb6-uscDzDK<5Sm}6~X1{3euay>u-iO6TsQGu#GrAyln!2?}tzmb3Y0;w&q_Q zbotG-1oGA0>>`2=kDc>fljg$pp$$R$ll}a=d451x_L;VBES{xs!J>D7$QiX${SJ+(Ro zeRdurjzruYerSlH5_tv?Sp$Q%muFrFA#YUjk^2^BP_OFH%`L%MU_L3|@EZX6dEy~Z zBb3(=9#Dj000lcx^g=i?1h$Xl7Mc|thvJ(A3nXNb_#sK@82N3C`W@Q;Fy%c&=x+R5 zl=v0nD+J)d1x1Jk=A?v9nb`c-R}bO45SdBx zzm6@E@!=zyeF@y*75BuvlfWUM^a)@PAI5!$tO^C=Zs-8HFW=JII^W5ws~<8iD>N*b zAK(F{5MS0`hGYFlraE6Zeh+;QO3}zvD^3;W_2NxV zJUE^KZD~g#X@YaN2gCQsYEQs8!^Iaz!chqaG&a9wVN}v10BvOQruY&%B3iq`6vU#rLQLo1$}fdSX7;BK2_9_z^=~Op2UuoKT%HhL2VO!G z9v)5a5ra|)89-k`c;^>*0E_E8c$RS2);Fl|fbW0#a;)AXwXAYH zUfNk7%W!X%X`6JsqW0x^5d_R4_)8$I69S zdOR51pRa%;^6KUDs(Sw!#2w-xn{veS$BB&YxJdBNqs*U`$BdfzFop|yfKa_*vadIF zdd^=h=IswseoSbhA@0;_s zYqwt7S_OOrh7>+N@dx+6RgU(I8(RyyOzuw&&Yt}Ic6|{!X-^@KQr0dYsY8BkQHd@3vcgZ3!kik zllPfdMHX9oA#5$H68$TtNgK8OIXtlkvju`YDOKzD=K2WNvaH?eM_JsxAl-3W0`*P0 z*S9NF%b!w`*GVi4gg&ywUoH|e({B!hMwGN^@CLgK@~3__cIINJQihWCM_+lK_!`Ga z&!~s#N7><-CUU61=6j5GMjLEeO_u%`r-92jdNYsr7VpmJWr)Ih+E;&vH3|QAcrdNC z*YYZa5FHaSNT8bJ(T1d+cO-UD@AVnP{HiW~OO)Dghy2?K@UZvDaqxA^{WI4u`Z=|} z0UMe6N%% z3kD}k%f@8}Z#}nzjn>HEDZma{0Arf{LYL=e%RL9&Lw)ZqT>b^4+`_C({}SJZ?r$nqhJUW9S;gh8T*6t$B1TP^$6rsyR|Ow!{qSifI;%ra^EH$Wx_p z67{#e;U0?CGfU~sIV7+e^omLNuJAD6Qfu01Nq<n{)4F7ycW@td0k zC_~`R0*!?=-Dj}0=f0I_LvN8=h{@azA;-|+5W-%Q;Ju%NLtX0^Ji-AE%%&4Xp3%U0 z!jZ^7zw1AHZd!-t=GmjYd#?F@i4Z!XZ$pFm>zjuMGzSB2Q+K)LRA6A%N#Q!oXL>69 zg6FQlNsvPQ&C^n5puFe8-hfhD*-@ZI&{CQ-wf?t3C1u@PaqT}y)7?HEva^wIt13NSSK`)_a5+C4#Zv-)cU^k-`Cni8O2Xwk z?R?a-T##>f=4h;O74=fo*KO|1(~WubW010*CDiW@1@=YiN}KEGNbAzB@`vsc*?-{y zDou?1RlajGX)DePvMO`zb#W$%Sb%5WAy5Fe?D@P*z4tqmU}-6LEqdC z;s^5cs?%Je5vPsqRf{hZt>sSG--`fdA{()U3-1JGD=&7$z`lc#Sg4LHTM#Ybol!6H zsqPxcZVW&NJCNRDuGa2B&RoWyRZ|O0B;WYa?7f9ebN@i?mEwI`r+PGD`d07VZTS@l zCn9eQmf_Bs-_{@4Y(?{rjF>E)|I>Vddi6Iev1*XMvT>8ekC8vQU^1U(i5_5E89DV? zeMWDc+zTCf@+z^s895^Qk+Krn>3e}~2=}>&HS!d4G{C*kLiVq}w$1SQ$))Ci4EkS9 z0=j%0Dl`g6ipT{y?{OxgvQ8z;7#AhO1GFjW(`l`d4MijaVtZpQ9dPq|MCRJhl+pan zdH&9wgj~GtCtvXs1~D8_$nq4uaCwyfu=7v>0}%v8MdygLi%X0e+UI)RIo~eV(KTa! zipqYEa{cdR^912Y-_lq5AQU;^-vBG#fR|9jKlKI_TRQP7ES~0e>@WOb?1|r*3YlS- zHTyeI{gdmM>}Lt<=A`AHo5Up1^^fjU97}`B^-zuuX)cvQ6?8q{9*9%kq2TdzBOARn zyHI>@+0+7@lz)s2hM^>I=d^wI1~$RduCPrWAr%@{b(|=WCka>gZMfOt)GQVA|c<1_r;tu8Zu$YY(dNxy)q)``x9Jw9@d#7C%Zg-Bgui@E5= z$oQ*i5Xnt5H^nMLj#7rBT%xw$xs2q8DCf#4FJ-OxmhgJ^-}UN7e%E2E^8F1yl?9bG zzrP>9ub$3JNUPA$H6K?2tv=*hLg>eV^8E%ek*<{dC7t{f8Mh9`VoN=41UHEG;5_9hNc=@|$fQ!SivRyCoHAMs%Y*gm00I58<+38l?q! z+Yda`Kv(Pjb^#RZ4FV;%Y7fGm0-m(U-Scf^B0MDDEii6R0`(d~Se|Zou7-)*mJ$dA z^)9>5mSc*j@b^n#(o|R$j1=NrviZ!FDuh!J`wbsE`+m!O{}+BhzMQV%?B1I-8&Bu* ze~`)ZhI9nu7f5OtDSDrYU$hDoW1oMnOzfx>?aX@sL{?)ma$Zbo1=Mub(fIWn zXNJ)w^Vbhp$X*Oe09^%QqNzpS>P~a}-VX}TFzBOEW(%vIUpe*Nzm1p?rUqfNqAD_` zO_c07B{EaA{>?f6RrB467&lyXAk?cU&%}3UhC{ZH*;>br|CR$@ZljxQg>0qbiJQ7s zSs5;53oaN?`V~))m#}#k74}P9v8fjt9Um65NFE%O?cs)VIb=LbXG>YGMsN>V`XrN+ zY0hSAIRsh}^H1#d{c{v%bmP3_2&YfQuu5+=I|i;-ss!y)UpON5KRW;GR|ZA>R*Rx& z@5f7NB_b!w;sRz%6m67Zv2tDN9kM}GHAwN2+zuz8@<2QDi>>srllW4867+OIvnez} z8OOV~6tnWh4W646sgf$))8`(`otGYcl{0|?S3+f@54p02f+vWgrRzvOz4tjkb-qkZ zYJ#{U!!AQGU2kWF4GdKQRCInND~o$(M2@pz1v_wS>Kb%jC(~F z=}sHnAxl--f1bcTbbB_hr{o!7Q*Xn@F<9+a>s{J*0?%hpvz!z++C%icc3=c48Y*e* z!vI@&(aO!zm$#3oQ(vSxe6P6~vE6ZLrimCJ%U$EE#mSnX$TVrY0~@p+Y8Ds1yY<1@ zoqvBC74V1oj5_XYsPLCmlr70#Yd}rC<&m_N#~5Q%;JF??0>)}xPU}ugQFnG>`0I~c zo_k0xCz-0ERSSp7A9GGD$OP~E^}4}CbcQ_!kd`53ngY5Tu*?J*)O~1F<{fCPLPVT^ zWF$2dNwuR;UPiP%-oH@DOd*<%rZ*X=6C(vk9`m0)-n?F` z>5G*4pGDx0eW@HtJ{D6{-+dYuv$IpATXY{j3%f%g0YtY8v3ISDgyK$>80ZuOmIO0>qG^dvp~SM1kI-#%@T; zX$w`F@#%f>QdY}~;Ak%Gog(iybH*H5t$O$@}$B{1H*SaOOF;^f)3%ty> zD$Izn|3d?_p6QkJhnB~t;(MHf+(cHG1aJ`D$2*(8Gbn#K(}R2Gwtz**Xcacu*ci3-6-Vr_9V*n)xQb+|$!eG-!qGIw-T-Y}U1#iv`5jgQVFaphW%ld{4%alEk zB`-)xFSW;7CVL!7X(|mnYwlUih7Lcq`?HH{{)=wLATcd)dGt6cYky(j6Y@@)1DXz! z{a1@2TTUFgxQCe@jpmY@>`m?rb(a9u<55!q9L9oR;Gsn;D=ycF$^^< zhZ3C3q}lmIW25b}QoXV#^~>pBj4)@X{WNQ~a>~#y=725RPaIGOW~}ji;+56JFPBb^ zYKt0Vs_OP~h`M$*$+C`KNRrG(B}#)2`KNBYIEuawW~K8>=GLQZcm5EbQLX3=>3%cY zQaF`P&Y4SBVUQhzec4rXiPEjsz0_EiENy88!(y&x)mw)jJqEa)R*3bCppuR*d*Bs5 zx}>hKD#w$=4O3JBP%&z)x(4Z0Pz>A4Mzt?#P>dL=%e-|xKRJKAKQg!XT4MT2Dt4pY z7Y>c4b?n~9mrR8b>`RpN2nu?Q)4V?E)jh3spq{*nWoRnYZMaX|@7=t6cn zg)xW=-|g%LTE0Ukz0lV$W=le*zeO8Z81K`nqB4I=dDy9|#Rv%DdiafTK-Vc)Tw^-9 zOvD_zN&uS)c*E%SV*mI@_huiD{}7-l^QZnyu2fu@gMl4WkerwO$8>+My+8g&d+3G< zVx4hiJ>mj@b@bd2QOwK2$bP^^Jq*yDL4T5Ykv?11mvS#Kkh+czK7m*E+2536nkY@o z?}_~m9ag6?QiC5JDBG;F^sjsF@PFHPgVLBpeZ?^Z9-aw3r`j;l!K{wNZrnwJ6WQSg zVD)tv82OeIV~lnBonl^RC^BaB8YcN;CrG(6uL_DsGy{A&MMT(g`J4R;=ZL_Bi~S`m7F4*e zuqU*7l!W%$uiJICLcVa=z1dwv>6tQ@kH~aS!`iI#$MzUUrbSDQDLKt#JkHaGO9P%= z&dEdE8grBLVE3tZhR<#8nfkT?$24`qV|n8pZ9Vlru6oj@PESoxg=1#HhHA=W>jQ7# zEM~>pXG;yKQKWM{7Neyprw-;h?DkfT;NzD%I3#yPa%+Q*5hEq07{Sn}K{4q>7sAxc zf0tMxZ3&9+5&^TCdaBuNx8<*8xC^`d*C}h$~*9^e$X~V zO9|>c9cOY&8d}`Qf z`Ok_D*7HB^vY4=(V{r!XlnK%B_=35I10dzb6O_~+_JU$b^6gXFb11VS)uyd~VDtii z1&92*S90V)Mn@qdPGrI^@4m_qP?j#?UntJlM!#wozxmR{k}8JS%!UpW|6(YNxrqN} z8_~D04s~gjT|Q(Wgr4pbPOiEE0`h~dfA{R|gdBX8b>LRU71*4Rb$0H>6u2Lg^W^A5 zH_jMerSc%N)d+aQLS{=?hdRV{skSY)9B#f`Vi;!x(miMGCci)~7k%&xG)G%J^O+(# z@@iDQrjLN70{m6hO@FLPyr<|sRrBa@((>UBIS57TYjS4k8T~R_{Zep%kyMyd`z66H ztPgH;X`>L!+089Vxs6z+%~{HmrZ(;xd#(^1hTFQgv#YHgu>PgSE^=Cq1AHj)5DJK- zMXbcNvR!vrwGgD0s~5vR5lfE+{o$`CF@JuS;rO#y;=4t4r?VI_X)kIDK-Y%rKMk?V z_m8H-2LtpD>9NXD!{N>V8D!UQObdZ_6%B*zB8gZNo+)R?EbU|rF0C5l&@6F&gaK@e zX5KabVq2`(h!oI_-N-e{+8fPmI7ogP-*sp!Ltj2`Xy}*2=kb}9szM12m-npn>5XR0 zXP5@PAqKt5KKAF^y&=Za#Vigc$}VZk)7m9tH1%D5Q@ny&qxWt=fXrJwj?Yt@O#!(S zo{+Cc!bsgiL91skR;Kf5ZUV(8WWZnrS}8zlCo*n2P|jOM3$AiSXJc36eED!B1V&p2 zlcl_!e4{c*FvU?HUDNmg&Ku^U7W`8)U1GCyE;LC}+;5Dj;C6rB~TRq<+cat;doY2W7Rzq(zuZgKn~8J{T3 zkV)#^a6=J_98MW#7URcZ8Vz;kWd1p;LhO;o%XP?>ZCVP)xS42R-qW4OK*~ECR%`l?4W`B}gGN51UQ`wC z{(FpfUX<*DM?y?(yt4?&S{^5!8SG`iB%`FTgH)Sg&|V_KF)}UPrqsv1;!DiMSzL~s z^mTqPfyC$Th|dn)Hu&)|p=59wGm>_!n?ibACW#L8%+%iA?-bUo_WYjKB>heejHhd~ zkN(0OhOUY8tkV{{qQOP(76|P%JH-1GADzk5iY9MB*GMATm%x?X_JX^^)64Gr%R4?g z1>U+eC>58|n%EX5Hduw=M8ZNUUZ%bEqp-n6&GO!%lPX^+d-#WRp3FMi~Y^=4Dyt zuD!=o*?kEVGh%HNR3ZK&L-L8kl0US2EqFtF7W+FGKEdPOgs^6;>=1DYMer*5D6oo&8q+;*6v|4zdsih45rNX!C4OPQD>@V=-nX!Lt{#3D_GqP&R(;@;@* zIW4<%TQC~m${^*);|K1hx9c{n8}wg}=&CQm$`vp-Y%b@==ows|l@^h$FpN!sc<58IaRxujPhM!_JhU|t` z1;VkVW?4ojNhD6AxK}C>jAJ%FmK^YZzRknx^2Jhv&o+@4q!V5>KnH1w>mKo2?htP? zGofTN%DknV^pfUGdEj7F9ba8jLJR;HZIi&x|4>}3=Y`u-{_JnRNO0sXGc^9KZ7rP3 z#)VAFE34Szl{cAx!9^n%Iju0MxmcbM{Q-0YatZV`GJiH6;EDAudA5wIWwaigwC>m7fgsKDy(_$ffGJciVcm0D@ekTwZuU!I$Zh{dc zRcT8uB_4aCH;?V49Ij>7bsn2EUdyF&1pyC?jqrOgZRzp@MlWcLHzqvWr=ywD zzfCDNl~Zi=e%fDMpvEB@*3HXDamu>Ij8G$Q^FucV`*eD6{#GNp z-wV?7t5*jR;a?n&t^bJlfqjzE;|p?Q70v5$MU3T!mgG)3b8)WYOZSYl?olK1FXrRI z&fpi9(`e3U&X@xrSkB4u9`sZ7-fM-1k8@K~Kowg*I4?Q_e1!%%yH>Y9`=RVk7uHeW zbXBX(bma_+#u=2Or2&L&C0*uxHzCnL-+G#zA?l16VnJfFKZuDSN z{nz{IAAb6)bR}(`C{$D91)R z_jMg&=A2n}*(g>hgXsYCR@txGBU3}xnUJsa#$$RFl0$q5^Xfr}ZpF=@77t%+tX#YG zQY0{b%bo)^9iOgW1b3NWc*P}deA+L@M_2c|1OEm0+m8`cGi>`5O-=S5kva+boAmh> zw?#6Wz;!3w=+U$kQ7Yf3VXwz%zOL;Xu)PZ2W%eA699R->aZ6c}9=dU0-(L#j*Fb91o)lsc(d|a&E z^}^EGsvuS|Er1;9WZml|=u8#k3BpZb~>D5BDZo z{22gQZAc6mYifuIOv+3VaV2}v$t|o><5;xx=&YMt)&e32P1i_^NtFTPm zV55qHWAm*cTC^>s@r}$#&c!G*XZDc+b4iLh%T7gdVe_*o@zr*BLw~H$AL_&LU)Xn5;5-Uz1Pt5h8e@(pl>(hBKAv z{8-n8_PRtvw4bFQV+A@kGS(4|bnu+~drP=Hn~c2rw z{5zXG97D=F1xU>Y(Beg`r0uB)GIT8ersGHb94zFo{<`dn4O!T)$<mL&?4JWxr-GP*HUAQovvUk;M<6*juY9|ES;f@3sTD3G zqN1lxUg(cHv0?*5%CIuc;kQqj12WVii96mKG?AmbmR0Y@u>a;YnP{BWW8(~ti|BZQ zf_bp&o|Dr*xn;w#O66YOE`{iy!5wdaDX==IEA@f;s7^V|{#sUXnZZPDueAkMj@TP` z`1q$t?Y&{-6Q&T!dY`hN_H~v~5MgL5jE)8axQnFjZ01J|l-t7`~au%h>~7?p9s1W6oCslm78`!gklyqlz+_ znw&h0S#4XudeOpK3EQw}!9Zo|;TBl0UvQuafs%Vf1Ir24wy4ATWmyjw_H3Pn&)5Dk zEEs+PL!|R)1Lgo3U8*GsP?!>qkTXBVp+MKASEUc|kVrzBpe2|h zXO-LD9rT8yM@X4phbnC#zG2N!P96_|?OxCIfyNqnqD>~!5WO3J5WN2Co7_8Tm9h(aum}PV}8Y;)0WW4ojC-hgbnw|go z7cmZSCN*@hyp)43$oatic@2}G!g1@GCOUDt6@jj;KDO+ zu7wP~u-e9fXxipVAXx`bEhOWVwyl@?WL&=Ri(0j;%8%}vGHfwNZjy-~`0zw<8?xnR z>yVFcAja~;J(u%QT!mq#{Og4K(h@uLDWnS|EFbi4X1+-TS4PkI43aU~`blmvBV1wD zf(F!Bo5M8uD=sJ}_T1Bf*&QnuRTjgj*o?n8I5C1>oGNTw)aV-aPSGhaUoyIimMD)v zJv|)`R22m6wtqcvFRWBeG4)+&p$2os-Qle>bwhV^Wfqha*0$9looQE~nzP^jyi5Y_ zRWBc#PV)NO-)pGt9D=s*mpSIb4vrg_IL}N+1 zR_*)O#c9{gjK?dkU&&MkKL&m#CW_KuM!HrAq0T~zQSDIs@~D^h36YF@>92nT^J((_LJY2f3L1iqGayRnlQbwF9AQs;Acq?tr8JSUahJegX%PL|WV zm6ImqjLtsrM8*P8dce4`+fZ@B(kyQArNm)5{Re0k3AB>dBQ67y z?{MC&BYIs=%B=qfTkjN`i}yuq*X^!tySuh+?%K9(y|r!Iwr$(CZTI~C`7XYkZ2D(Bs;Fl~3g;9HIZvr&lG;*?ra*%V2UE*w8mwddgj}v>3eC&Sc3cEU5 zwpCSJN}qU5$ZDM>*tQ>RX==6}1|8wvzQid`2tx56u;~3NNQTBnWZN3pAfiKHdZO;{ z2N4KhQf{}ZRr7tuJ1}r+TU~uH*@c#x(~g9ycR74^=^jlVP*)JRTjsR8DplofhR<)7 zSb703xyetyAFxa{PUc+8jspGz$pkHb`s_oy&cI#oEHTY4>k>LK`nZ`!JN!=&?gLaHzI6Fj9k$*oY5K0J zFvr0Kpj09i&;55*RoPOf- z$t<3@PBC*4gD5+ALB31v^{_CRJ zoWG6+<+U$7_MyQ6FKtJO()Ogw5d9OvgY-lU;Og?FBqQNInaP0ob_VoAH;s95UdD0X z08%}`*k{v{gM6<+?}|@2WYF;yrw!IwNSsQUhuuX)Kw=Xo7QY)kkBH%U5I%GXMk;S* zU9E|*k?g#C4w#17UB@PAK{N=n{#3g02$}!bahSVbTQo)Qk4cGo$CTeTa+soEr_3rf z;QWRkGqu_IxaK42zK3hw1zA7y+Nq13g@Cx;@fId`D~kOX^lLoOD+yN=v?nYGFJ%lj-v> zEVDJ<%tHlbB5dgfe^M^&!?fs9_r-G3nKr;TDYqfaolMQAH zr;4N`C+H_r`w_9iRDgKIxn#g6BN#k*>Qo9J33=tAL`WcFm|LLil+vXF2_1eVpkVAy zgU;Eo!u_fxkvG4)1$Pq5_;CkVwzN7;6*t5#CSYPsF0a5e#4^v*nRK$za@Ik~bJpGC z!HpQNKej&itH|1w6#PeUh)WQUG-J;X?canzx@a>8+}AUqb0dkrdCF9s>Na-TEOMib z^^XTs-h|#;+auS&SR#~#id$G1K&ou)Pc#67u@l#7td@uhg}n*(P3J2DMAk3Jz;pK$ zm>PvR`Av{Y31x4c`2errZ*IEi$3gFo+5_eOOQh9N{kg#DScV@4$bGv-K9A0Nns3bK zW>orVf2^eud6=mCVHJL1o{!uQ^Q;%fyU3G&wOs9L|6yeG4#{Pb;_?GNpo}$c7w)M5 zGdtv>s-2GB_*U4S?=UqtR;B&qKNqtNf3xUzIRPCbjziVlJ!zT)|BBKMZoY+dRtR9& zd2Gty(|ehdh$vSAxWE*0^H!tkmU#cky4$X18EeA!Y59a@F||{Cm&zatS;!7S@CHpu ze3ae&*`0rY*MhNP>MTeeur7s;xflJp)1G}8zrLBu$4JAn`q4tF7CX(~3A>L8xjLtD zXTy<;>`DL)cW#q2E-V-}GcadhA`c)XYm19x@~F3`+?^6S5vZ2B>D-dv4_GvuYZ8l4(T{KH0alp;6>#e^E0swY*6N- z3d+K!>m`JxHA_w_>giwK0-VNdX5$Dh#Ge;fv0F_Ph=6wCGp_rboyi2e&wa;A-HZx& zVFY*h+PJzS`qvX6C}SPgJ4U0{;)$N5p7p-U2Jmt%Az1qWQsk20SOM?w)4m*uUo8S9 z&s=E@lp*%x=zDCqpi*rbooX86iZ5k{kFry#11aB9_4eTc(^@ z!;8;H1Kw4XHnWg_S;aIFE<5q0$UMP+wI1+}K8sXOxCaGQ#&7*L>H?D+A4=Du#ZRM( z#&ECcy@;IwUzg?-)uha?cgjy@vHz$t`rEO2E=KMD1hM(FL9uqfCO*-I=50lp&l_g= zJ!pEqut}hEeKV7`>OJ^XNtv!qlCuJuujntWoEsQAgQbOUGF9koR1p&|9MGngo_`Ef zywnmQ7oNv>QraB}Dab*UnKM`Yhse=lsw3wSLBUu7LDU_f{Z0xrAucZu)>@?^uZNm! z0}?POC`(OKuC8Y-sf4HTt>F4AU`JmIME;23!&gH&4*b&!F{stt5IM4jIbei&WW$C?jr&@9H}j+>rGw!*Im=UT5hfSy1z_r@RK65+rgJZu^LXK!=V4 zUQxZ2YtFyZ8F_6c2#8sy2g)iz8fYeV?(%Gwz~hK;=b#EDj@rcjI(sy9puLSnEmg*g zXH$UsuVm-f=t6ON*>8>ZrrJN}Gy`EOJO{_AOYied^FM}j#g7_`#2wY}{jg}iqr@O* z^;BkaX4%;6%KcPnZAH@pQkn3AvIJQHuW}y6Yy~EI&mv}!q*XM}kehyRHfY!XT1=Pm zU5Kl446mSBg<0wE3;P7evh`~-f?2rf2~PX7*R%^0fR@*KOC3`tjtBPa@H)p)mWZ6b zb^ZM?8&I?6JlhaR`WwDmit^ADcre@TH6QCtwsVz=w!yHO8W)-q8moNCsUC0u?=cG? zn!|#nhTY*=Ovw7>-o7y^kWIzX0k}L9oiX`He&=UFQjwS7bt+PRCNx}iFbWxeIq@lR2{pyxZ|JF-WW1WG+>(@2 zyTT4o`bsHS+Wr|olGj&SO)}mAa54a*@}eC=@EF>ZupOGw;>yB=A`;IouaS&dj|bzI zFIybMsQqA^lIGbFE5$x+C`%$Hg^J^0j79W4*kP~rmSgp*A3w1>1#2CLomk+S^ZutO zP?Z1j(se7bo8srh;CmU#PFFeH*{}7WKi~7sVnHjCM zc7N$xWJ{;(l{>kOIryJ74tDzVblCwmcYOHY&O`)-`_K<5{;Ycr8z!%SJaoR;grvuR8gz2xyn!49M&9FLB~ zt01NS=B@_LAoFe}Ts(!m)`9*2r4}dI0rN1MWW6wP$Ok@YND+lLcVoTbSoyv?^avVW zxfv?VZ zeb2vVs1&{;3_8MQ>hTZKOAVillPuk+u^;Z z+3}rN5U%jCQg$LL7y8mro(x4$7z`wWt>cq7H!-%|d$E=KlY`hyLOKGq@yu<@xv2k^ ze#9>x@d`cSx-&HZ=Iv}RrCM#yCSQ*A-^3)mln3~U8!!0GD#rU)yGfs#k7(5e8+cG` zs4Pyl62%tLUX}Su$$F$J8vMJmu9%_Ya4hmSk&Fw0V&}p4{o!)$O*rx_J9h7jp^acX zY6bad>sF!F_T<)MF0GzRxxM##uZ;NkkWN(Z41}QV^RF8Kene`DQ=Otc4O5M=FsaDN zKjm9D_A%cAPGIhE=9Op?ch4;~gZkU@d9zS$&^>LZHFFo^+ZP|744#|=Nd?dNz7*xW zRpkfh?cqx4c`h)7$EqbKB;D$ZWz>n6h49^F`DD|0NFTed=a)7m=@kWg54my-NYL0I zL0$r1Q{hBj`aAXWkC-!ywn!SBX8zD%U=bjK^nUu zE&SfilFII-K1ON-gnt7VuG#XDSmdLA84e9@PFxOvqRv4EbWEheT-@w)w-29=dJLFw zBvn5V>06xh>c9aHLg5QMa9&3Jk@eSB5Iu%?z>!}S^1o7#Bv@CmyzM1{vgZH}Irp=h zv>jRZ%5h)$&=VBwVUm6SI-x9lg>P(+Oa-8?hnC?92;LvZ>TsAqMrYwJ2*)8XVsJ%2 z)ox7y5|?L0=y!1%U;9v;^4@^YU)Iw`&~6C35{c`|uk05JiguKfZwfcf?a+l4x^&%7 z$x;34e5OSMN1%ca^ zWjjj`a^p;Uod`lp{*909GDVPp1H+cds#0$xRyECO%!nhJC$a|&GOj^fNMvd=l8o^H z*%}ETxbNmi)fx-AOjYvjx~_Tubm3)z?xjP@UU!qY-$sc6pJ!-uPX}EZu2Z!bl9gL{ z2*kJ-IT?7!O*&`I_mOkJkN25e)zAnathyvTQ6BSPyK2qpO0Au}YRQ7WWB-*_5jKPW z=oQ(FvAyR6!i0k_Sl?^4gZ6$`&Ya)r|Hxa#q(T0uPb}qE8kdL~N9P?Vgln zP@4Y9(^H_$%UFn^ipS8QG1*K{524L6Dl+k!neW!(^y*uvMcno39f;TQrx*?Z#u*x= zz7Xb$tM2(l6*!y$!Fw9D{L;DxQTgV3=GqK5sak%6z7yUlU4kL2ASf{qeqT!r_8}yR zgtFa9BN34)S&;y`qqQN4^u&7Mons;7B!12V$qBoM-(#+&v zR0-&{W^QgwP1D2(|9YRw`7;4fuWxCjlpR)KtWWBl+9_dMoO^B)KH*4ZDu%YIvFM}p zR|wT)%Prq)Wuy`tkqhB8{eBlG#@&!N=EnWOfmf&pvtyzBL~Hj=KL}YkJ&Ww_!R7ga z(}3!?Es;EwZ)~T6IxLpY$t!rP9rI_osVuA~7P>4wVY}ohQhQln$yNY-8JXbYt_sma z8o)-gj}s1&M6vbCb?aSEn(~#~upHUW6*BygHEgftr0KMr z*tezAUCriNjO8qpl&-1VfPR%z47&Ym5J~L;Z-;b}D_2f}!F2{JFnSh2Vqb@nR}`7*_y{=@gig9(4reQIr-w(TZhNWl)Zm!--_n@rkaUWo~r*vy6 z59S3#$b)w_q{FpuFd&OVv&nA96ZPBv92xNHj>2`v&&rp9HeNP`qM`5Q zsjxk8oOSOfBgCf=Ibh}vJK$<|koVvzZ}Vr6#CKP=h7eF(RQCxfH=^I;ASdG~fAIsm zAV%CS0T&cUtk4E_pP&hbT1~)*?hg0t&X+B_61xIO9x%HMie!##CDH2AOLl7K9*l&4 z5E#|n@+Jb=$qgL_d*}qe_G=OCEmg=lsr4KCzG35YpYqa8?H=E;sCMQ@X4YYYl;`3a ze$7L@N133)lNyv)6%mi<6^V!GkyE>A4IODl-Kj)-GHf;{ikuYm!Q^G-=-rDKP5U&s z{~7^E9rl>S-XTut?1p4p1r*lUi8?Z!%?~sCn!XWcodXwjT(?4Mk+8yuR;%_ zE4`LpIvM=cTmkfW+RMyI0*Y>&C8gPiWb29tO-M13Zq;~Mq$+-X(WjOBP~Q$r8odDv zK*N;_77;p!2MKoe|zE!^ym9M-h1c<5{LE^nDgY_D-2g(N+pN^gKfSLf?)6 z1%jTc;1#j5$9p<$6VUv06smyZ9)E!2iSO2XNBKh*8{acC4=lyYho--4V5S*Qf#Y*Qv8q4Z;lxYmZ|8b3i`^w;1;LwFs5M}KH! zrm-Ts+sWr}L;~4-A$ID*JF}=Oq5k4+S1!IEk54HknW6|F(UgX)C2}rMVS2!eW#j9J zp*g9H>}PZfgJga3H&(wpca+AJ4F-XWoA5htZS)vMBpc#?)Sq|x9`=W~xkw!b41%et zFnX*$2$mA|v2Z4_Jk@s$YJ4JX$oR>urM5>eE5%w*0cKkKlDR_lF2?UZ;zntsvFKWQ zDG1NeD~Y0%+Z{^gAAH!oBWnQ0zb4^4&wsMeT*j$D>-=)9_j%zOiq^GS;)*@TDaI0f zV(&Z@DKF8!@$4Q%vZ|D8&iGg<_1&4O0&X+j;Wj_Ng7H|QFPSotM;R1!>*=SDd%J)2 z5;o8pvhsySGwo%oO(7do7=r<1)_$fRcLf}&`$B#_@=0i=m&D>W@ZLW@1J=FZck%A}kisesW# zGZEu_a7hZfChq#4Ydg88j6`Y$1I`e6h-!Zmc+OAR{4;c8twQFDW8eypV!U#W&j?A5 zpu19fNd%o`F0QRW;w?bG&C1$oVK3T%GvEh?A)g`AVApL$xsifO_PyDc?O;pg#601T zVc=@!L^I-A9yXzU1(y&y=#{B=Rtz|^oMsKWqL{yTbjK^}u^0!qk%zas5F5sfGfRXS z5!%M|tnf}kTMyxBxl|LBR2*sTg252W{L<{uv%Ptm%p97FeP>DXs~C?8XUv$ldZfYS zh9lIhrK*%0U;KEAp!bl@C^r_qheol$N3z{(j=CZ)&p~fRvJmw-=yw%~Sf(}hwOJ`h zAb%o3G=NZn@U(M2l`4FpN=iiBf?jXvA~*VQ5Efs4VDLZktZ(9-#WD~jIHd{)t{<3d zK|ZD}X&r!x$RS>u)n8a|?)Hcg#^dgU)C7)lFvB#+W@KJRw_kFRQ_?Tep5-IQf^&#N zjmnFZF)RNWNy*9}FTPY!*u0^aVM%VgqR8H`%~nVDEiUOl`uTww z`b$C}kq}U!fnTvL`;=AbJc+^?|5dTvq*F|hY5VzgH47+%QoNRAU z!EZ(6Mh;4uy;1$|wx;Fq`m`1lm)u*m;)_Z7sd*=%8I+sN7rT8ZAYf{DUOr8gR&{sJ zMYl`oL_Ih652i&a1Is3bbhRT*WaPe$1#6p^B97 zNIyV*6%~9+T(`7wmfYGr7H3LlXQLw9_>!<>=ZoL@;;6#8@?v8tOHjb{{~=iG}x5n_Ffg`E4kG4U(mS&`&d$>HgFf zSrZ$?nJS~ELlsspw5epd!lc^fLoyIAR=O=dhn%4%yuLPtZjfP@dmm=j&cFJ~fDT^X zeP2lne%evqo?+QsHjLsK%lJS{BJ_!A@T4V|JQp|p8v}$*{i`r!fV3n=d|F;cm}4qDcd)0Q5o_4D^rIHv^qFFH5V}Ae^(158@ZvkY+`zT-{avE8<8=&*xr*f?mZaL z>VH+xY05c?B=PCKI;G#Q@1BGi!y2nIG(cRGU8re1KHhF0TCrL>$Yd#U8m92TRZn5R z!v|X##I0h#gc!qM*54!jml+(F_J`I9?eliGbuz^tiDS6=CcK9SUj$?G=mtQq=&f>{ zn{9qdnB@L^-<)qsrPfx9P9q_@VVVH3W_X9xc)5oeKR^gmbeF&gz6(muH!#dtdh5y6 zocZG{9^SVq_LpiXgu+=MI@29JvG>BE+(g1_J^T$)(4>zBS6-CFYsP1OfXb^6p5q#N zD`RDhy^h%y{nNyOGwG01d>3$X)KP}hST&6f;$6{>xB>1rX4A?NZ@L*(cuA_8(-n0C zA!+tbk%oObc})0}PWZ=Y+7n+BL^yH;2JH=V z6T#)MOT=NZ`K4WHg?}xt`-f}((n$8LgrnwY@`J%N*4J;^&a4QL@hU)g0h}Dx6I3Z; zpdtP>1;Vi#&Zi%FM4C8y%>R7-8;6m7gg#p0&-^`K*JEQMTcT0->{?}ZHsk#G>|0zz z?*r8B#*Ee@A@(hd6u3>g&4tivYV9cu;{#Zro#$3b1kc-$h6QF?2&e{obvBnEFlgJT z6%2p~p`sDLK_| zP>>GhcqOs^W@leLUIeO`UgNcF*PX1QygLJA_L+ROWdrDLm7|fPnf1LtnKPl$(B&hx zh#aMN0KVFtDux{2>!RFCLX?$WisFT>s(vez>wzH(+W?>+)#;#XyW0Qy0}A_=-{y`0 z*k#KEuWWMA4`k_B&h^5gRHJ?4meyAE1~c&*o1-afG@w7B*!Qm)U=ef6AxK`_zGws%NnT%OF|NCI`Piz1#U zvab8u@jvoAFrPvY5#}ieib%J;ei}Q*^z?QSxfbgDsDS~+m7yCEy#Domm#;~K1q{yC zhlFO`p~*o>8!Ds2PVVa@qb^POKqSv+-Zk1SlJ^m^bJnep4#Nik@ z`Vw$HtTNt14nLfbo|v#OzfGjZ!H4Cl!MzIQXb~XVyMQ)HfU?U4)V7~uOnQa^t69U} ziRLr`(oVPd+H6g4iKGUR>4ay~{YMzgy`j9(HyyDd8~@ zBY4k9i5x{e>pJwTbXO7vS`uCUg=jqnBDa&1mse{9LWawvF+^~n+RMP6K?RffwxCO7 zQ*%LEcksc7c+&gZPLn{8dQxbe$astou^`2gQ^iJ9@wz>D=v$wC$95sk>OH zh{m~dhQL@dOB51JPkMgFD3hweFRSX6%pF7<2Btx;=E{nt?=ckL$qb3_DN^cZ?q^9& zwPH1&|5T{TVruZ`E}9@Wyz_(cwNjk0&kZ0B8Rh_cCdJ*QW!WNv4>AYA1C0W%WXD8P zU4{_{D@9#GLqy^ftWD`+LUcwQP-O;{>LJN)3;6}fx5|LXo0p#45r!{g(=|w^QTk*{61*wH3t54^zuKo=yGe1^ITccUaeB zte@z)uuH_UI1U<1CO2PBV9#i$xlX+Scb)6-*+y2G@E?*g%aBf=YBhb2OJ?oLEcziD zz3*&tJG44MIURZVE|EU)b@BFCc@OYh5Y3^aB1`a9@G?I^Ce=@2i4CpEQ;OY090k=I z&^7MOwoN8Cz*d!X=a9TG2nJ`CI(iv-S?D4GjXu?!`)8B+>m!yZM8pQYiPvckeM{rp zx{h8G8fEN3ymLHp%+uJz8We4*A3_s$46|*;qLf7+VZzLLRuh0aSpnY}#{y_?=coO6 zyf!-nDYed>}i19Gsvp(239>j0qb3I`3Z(%h?B;q#G0t^c z6&L8XA26d7mXPX ztzU8mCS+4owxV|PySblZ!V7?-=D-?oREkgXJ*`rL929F@br5|YQ1cKu9C~_b0!!|( zBL}2@)5|WTa^rp8XTHHybiC1?PHUtxmRt~ZI5OUvY-JfM9k3!0{goeXZ3C|Q!uX}XB_+Gb8ZjLvN~jkCkm4{}h_?g~#P9;brR?ct`HPv^S+r1u*Vb_Q z2B3BJ4-NMBOw6F_>FFLnqjM|%7=)H*h6W&UMqm<~0e&%esKhOd(jwYzGbu_J?+|943;P?F2_;^fe`1ta2 z^8DOL{QOFPRBj0Vp5?wVygURK2%fedxnD0d#2C&7&~JGZQVvL-rS1M(toHEA()jWm zFqAurx)vs=V2mC93?WJ$=pHSHfT$Guf5>^TZzGydKrArt9)CA*9Ye#H^ee$_Zy1dL zfEx!JXLDl>D`1OOz!XRc#)?otP&;LQd^#LoAByRHa&B&8{$+Z1Zg_5BWA1Ev?{*3f z_&`VsXs{LJS1G5kJ}@{tk)*IN_*svP>09)1#e^{~Jghnz4)N#+>Q~LT03BZ7u(hR= z`P-=hph~Ev7IzBpD+eDNda5Os$+}Kk5Mnddei{|y63 z+|kkf!h`Ek`k>5BfdhW0f5;&+egb#lcl!qbaCw7YY+f`#C%r#E-zA@Hy5uc{RY0BPF)x7X{48ZjBvw3X-}>vN|KXSC9MJjo3-<=l zqxo&c`rZ8#&aI{OTV3*__4})Uv!Slu`8&F2W15}4bD}r%Vgn=ayQvKNHajx`EK8GR z^V6z2F@9%*5F}u_^4l^$ps+On_dg7#vGvbv-51G!7|ii1S^)u3E%C@+TQne080N>{ zg>IXa`sK~({WrFFK&78uUumE7Bg&bgmNexNSH`m`khnMqi6Q|C}0hB{yS7{F7 z{OJ_}EE7ejRmzUhr{%E&q@)G;)+?8k2--*blzK)m^hY20C%O$thPW4r-B0p~{Q#ID z{5!HO4Or%&7YW8s@_^kCoI&zO%o>Qid^ZfQkMtX-`*!L=9edCw-$8PA*3;HDd8Q|_^=i6Z7y>)8fC3f(=(&weO zdnd!_*7_2Rg|Xqsjt@PBeVIVV#KS7#@OI)yNFbHJW9;7a=Iw>!3+I!TK-@}L{E?q> zXW<=h?|Q?;k;x6{hmp$enX7%{Xa8}N060Xx#$yU-1Px`Z=`H+Rx;G#D`scbe4( zs!M8(O<0V5)hucQlpyxi##w}uG><5L2Q(sZ3!^xC1pn00v)e8wucznIpOkA#pNJbY&$O5_q39<{GQ2E}7qZ{`$lWzSpH_MmyDGohd?RVm70lc%Imn)qXBeBHN9~mjzL#m}=40*L$ z-JdA_l<}CfPln=df25%@uPiX&s zHM)D4Fu~ncb114^7IuD%6H(neK(7*A?fNBL<4a|Uy1&~9!oAm}CK*#Vogwp;&i&)V zx5+=<$b}bc`r`pJ0L^-2{uUJL&g2dj_J=4g&QF}UZ;O7x?BK{U<%A@20+mj&PEwpI z$QfacCx)h;_xdyw9y(y}I<`icW-C zDHw|5Zw6wn(@#*6Nuj#bq1ba9p78j@xrM$Nmt72Uj1&7k3>w=6$i@0qfJBY+fl?&T z)hqQ8%)wva=cWP++}3kvfb3p5qkr~rs{z(fjdIeUam}(Va51XXm9uM@?)8pF#!;#_ z*Oxs`vF=}3{F!M{D!Mdn;TxU5^RX)!%LCpebv| zt%uht8)-AK6)2N=GR(sG42fU9?1?%u>#m|>hn?%G4&6@c4@pT5u3qV zb-$$#t)#7mS1MIz*x*1ku_^s!-5Rj1QP0(IFg)-t_JTmgxLD@1!}DVUR&=L%XON+T;*%cx16J9xe&p3X}gvFiIJ>3mFXsw}1mDNDm?tJI=> zUOKxJO?>-H#eC@WV@G~_%EVnd^ZA7x{y+**LIAcmp$-SIC6zI&V>buZ+ZI5>g+^qR-&Mg*knL z!56oy`%8m^^2DczEJGE#*WF?C7&XB%J%o_dQ&vx%SEdut;R@;TAg(9bWD)ck8n!-X zIUDpH8^v6ela++f!hWEx@DUmy#y)j?3$}kR1WlQFxBQl=NuE7UYL(TzwbQC*uo*4> zLe-t73Yv~#3j3%4?GnC9rNwo2VTiE?Ss3h6o|= zt9@n=jH28{r=cV0-rJ0IJO^7x*$#WW7l{=5X9Tr6025c7Mlm^~;+%_e48q zkJTTAR|UM0(0YkdqB%mqfto()%pF`H*w9r$Av@glydw#p3JAB{+x~6iY;n z5A~WJp;MxyM7+mYzYj#flE)NZKMiZk+2h*i8v7Fqf1H`lvn}sB9%m|3b0Wovxp8q# zs~CaE*V;_$ShzF+S+J=sRcBs5(ZvB;E$iJ!rH%c%AsXiq}Q*yC0W$bAHGVco`3_ zLi>7a21~du(R^vc{wU&%V-GjtJB$WCdUOQMgACeV5AeYNH?M@@YXic2NBdDic(HEg z^8iH|SmH^&yd6w5438gt6a`~455nZg%8Y(}{czlh0+|^TyqB;usLe|9w1s+hN8I`> zrNpMyC|F}Aq>9A7h!&J1gaUXbjR?7x>}Ild>Lmm|xh50Qou9YDVla5(st9|aav1Oc zjwM+-)e2z%LeF)FOz4(~^0R~&{xh&c$7n;V0SRIMfV97ZUexHa1bD%E{XfhV5?3ca zo4S-Hy6ELATw=fv2Dus1#mGb&QdPY$wB+KkR2BpuOhfJ5r%Rma%^A2fo;!>e1Lcff zNSU-?5U`eRnR{X^Am2Xa}9@6uEEuck8x zB_khMS0PKaUs2!^Ke`)~A>77ocMZFHH;1XXp4nDH+Fyvvyy%8u@ix0{cjqL9N8|QUhgC!d zBDPt;U>Uoe8mcZm8r!q>2c&V{!bP~(VPf1L!oSE@qU;}xeP3LU?*Vp;hejSbZ>&Gr zZ7}(s{C=d`C*JW$XfG(qsy8-(r)F0H5p*$B1^2bCReUZ4va8h=z9Uv8NV=qHPyS-n z|KhAb1yV?~|MIW1ZiUM{NjduBw zv^?6k(koZ+&)bf77Dll7NQt9qBb}ddV@HYj&M177z_*Ah{GI68Em$EreWMwb=L0h| zFX)5!5%_kfMJc1rU&+4&kpkatL*m7Ic?jdvSX&2$0<|i?8(gT|W5x=ED?MsO_WM@> z(z-VQzD^Dn2XA{u-61 zI5Mykx!;ITp#**^$l5UXbKr`4Hzb>B$uga38Hcv}#5odoE3*sC{zZSabgSn793&DH zoEQnJ`&xIgBd65oyRq=8N?H_3J1PqSa$(ex-bJA@SC5~%2wa3^jDxdr%5{_=J}H5n zkQbUL%^I)&Dop97K@!`3x8Q-JKg9bo1v~^$#q%>N-N;aTy7}^eHPon_xM@vsAKA+a zhRP$J7`BPZMAu{3`|$1KTX6h&sD#FwI<9+2KlHJfM09EP();LtC{TpDsE4%$Yzc_I zD|MrzI-(smRenLtG)kysE!S|1mCt50lCBf6vOfgzsKNDtn`BEuhhp|$4GMxZW>NK= z8h#~m;2>!WDd$C0l8()2HATFGz1*KRe@@5bTlnVb&8rcy0oQMuiM5QB+^so+$X_{K^M&@CE8>5TkS|`f=L|x^1AFJ}4?Cgy z7S}$&Aa9`8`R}gY_Kc*Hg|6LugiM_k!j>@2O2ynO#V&DKHBF{8UUao($}1%5_qQHejN>*gpr83Glw+6o{4q`s8f=n(8d< z*>p$#5g*$j)}iNcCm1(hoj@)1@2!KG`tViXZC%4Y&clfJ+Zd$} zk$!F6ghb{3KmwvpMdgg2`{L7vj}fJw# zfASoycRBh(MbQNUoD{YS`s2#pn!78*r2Q3bDx{GL_l|CH7MnVwt!y^_8iRKx2hQ-b zv$LYOSbEYfXcow^z5mnqjUa>qy`G}p-y&~<>zYBWbN;R zxR?r*Q9E+vS;@HVo${lt<0`|*;&6P)tMyQe_iZguVYPAwiKP(#?lz?8tZjg71 z)op`#uz}=fP#_5#`^+o**>m)x5mGaO?fP6T*H&rWxW+o37 zS6(c0A5Udn)aMgn%+yEZ{uDbKr;q5SO{#{t+j!)92Ki zt4ta{otu8h9BZa`iXo|-?;w3U6N}2QUQl8Ma^Y*Jcin}%JUyYP<0YdW!v>pZiWT-36Cj| zfEJii;TL*D@lz4^q~`hdhOD)!JluIJVKjKa@-D3hr?W&upCG}CVx}j{yz&{0#^xb8 zwKLX<_((Gmv;LT3)zU?X8ggFBEzlZD!xTRQCD!$O>s(wP;l?K>6L4$I8*S$I{BvIKJoqcpm51t* zX`1%2*iT-M+_<9^0y)D@Hmsrm1z9+3PUwlgkqoNC+rN`u`_@=xHsf>lRQ$_|=wBdt z*%`VISL-;s0??}-(3r>qP+LDTd@n2#Afj7Kl76?4+Vkni?|>5Nj;VS{6+AN?MFXAXiP}^6kaX#MkpyZ(hMAt4SKc_6xb2kw_$W%{lJeP zL?3aU%h+wNf9Uv&s>V~x@z7}UL7VT3nQ~Vl-Zu0DSoNIcp0j(^R^OCra*P8p^6Zy$ zaRsYf>Lt2-rzga|)Q^kn-L__L_zt{YQc$_4v<2u-^#HNffnmh#WZAb-{$g9ol#rp` zJ$*4Ny8F5q&oo&Nu_})s^l^-*0cBA(LGY|JrHqDzM;S`=kavO03r{v4Vom8Pn2uMr z<{^<;i=foOfr3;kwx@^Z`ZR1Q^?C?mS<_^seJ35#-d#~MrgMhr}Mx0fis57@VK~+;ZGob%QIN} z*A*ZIbG1ZV<0=@+Zn+ANY&GrEO z(_J%}M8Q4m2qe8>dBzFcrL$j*1BHS}NoLz5S{VBj>gc|=iT#oZvH^NaVG(0}sVAo- zHw?(JHDr%{f|JdW4eD9Q(uhr_)+du(}D<)G%q<>tTBsS~d81ZCMY&#u5zm!RXq=i#^~ zR%Vm_M21n)3iz+1c~e%}?EXS>-R(9I`K0jlSwyAuZs%b@wIQH_+*eA2w zr0chh<7vjjJ9{Yp zVpA25C1w?dN39x(;JcFS_mqa|CmVGf3K#<79$%6yI^t<$4kIi97Usd^lX=yvJ|qa`&iT2} z6(GE_(sh7Z983^?_|WTyJcV0ipHodu<41|+@xgHlqvy4{I)U+sd>rY2^2iRi5)5^~ zEmo~40$5`;i+GOKwCszZ|irFFmK0w__v52cDt4isv^3*<=NWgmuYUpk_=*K>p?OS4ZQ5FT;P$a!MTvgHO%NdCS)UdBd!sm zsA#VXRhU{SKG1?JO)mX$nbtmhc>N;ZXJ&aror-Nn_?0@n09eS+$v+hweTe7(xmbbn)s_DaHl(lI?c@x)KYeIzEgZtD&{v?mdJpENn zGnyCVTwmd_`c*Y+lWX*KQ3!dl=;CmraG6iJH_z$c$)AR7Y`~746C$|IW(#O9%)5ME zp&nh#9|MqAvg@quRUUiSbJT8}tsy`85qQY4te9?OU<~%db*Zh>f?4XcRkTgZV#-zM zMo&75*&q(tze5vYMS!m<4nBp{%X>90VfY5rE>Kj*tPs2dMQF)A&iWviq-0SZx{-hT zC$!gCNxNyP2CEllah?=k91jJiS$B>R6_D4KApx@2^r*-;a`)KmWEz4xHW+b|X4yPB z%tu`Z3Bn&C)s7=!wy*2w$vRI)d9V_w^V;#&sIp~Nl%x0uU(L&1v-Z{~?W9cc=w|L4 zHO4fdT;te3Zy0vJWjQ(TJD-} zmjGc*c*JQIHnL5*dw0(<|N3~0!#TQ?@0*B&KU7VDM7d5@pYz@~ciMGEPANayH>S_e zs%OAE92RFH))*8&#rErG52q|8MI++mgT~7YrzBt0X$mQzTz-ksQCB;vdkIb{)Eu>N z31stk+~}!eO)Jy$X4LI#9rs22)(h#jWmPtl*vLxL66M5lfOS?b_&N2J>YbZ5xN-*^Ze zMYiJi>{Bfmc|+OnxG&QWBCBNC48-INEub2m;A*X?&A{<4<~8N)(I?9+8pG#AlRfY# zj^^pw3oJ>>!`feL#{lvv|48OXe*K&tEZ&KC`aeF0t?kW=W40P2guOV4hg99(u?keCw57?}RH3Y}Bv|6oZ>$0}i@+ve& zt^UO9Wqa&;YGsRSLji-%oH;9U-Wj=4HI|po2Yp^t=3lV=3j&>LP3zVvas%8M^Y*=6 zEhO;{&LvV#N|~l|0B=8%8Mrd3^>;sxg6?VV5-a4xQdhHBW>+w{vN-xsEdA4lxi zOFLb5QlP(5fB2RbE&vh6%U2B?#-+UAGGL$dLZf{Ztrlb({*`{;NvOQ0jsO!kk~hAQ zyM6_{>KSRRgt58aqNkPv#DN$?)*$>IlGM%6(!AOx!xTeMSUwHVNtmice15w2)AVNc zbqBw`^(Kgm$0UyZkq24en^GgkCx%%4V{JrpFito!n0-*BdcfB|nGe?xSwD&tJ!cs@ zc^5+PiEP;ve-7%QE=IOsqumX6;H(46k$>2inL8VgjSwCcOm2p(kgTJ@nx5g0i;rFp z<5Y&B&&4UYDD&hLcX&It#>soP$j)E1g!OJ-t>NnQ1LMOcO44D5DkUg94R2lp)jG~; ztQunGLm!)xXMjR}*Ta_?;H8+_wH1>nuP@G~acJW&i?u2^Q(#Lmt(s4z^v6Oc8E2?1 zY-(%86vnH4o({BE{Vo1{*u5MvWsL zBy?WTfpv0(_Ve4gCv!cgOHCp8q>NX5u`Y>$Rtn0E#FLA)>r?TDtRM*At4@@~5VO~E zAdV+{36MGtGukoz3i&qXiQ*eK_!${6v}SVWzGe_5=Bax0>S|@g&za9pRGM@H5Esc& zT{5d$Nv5u>pY{BQQcW=c^0@zqijDG9ZpUweUhgrG{3IAy!cXGRU#OyNh0d!DPU6Lw zaY}`{*n<&1(=(#FLkQ!$5gEOQS_b{BgHhJMXLTDqmIQi$a1x^xk;ujIz|mpkD<+wkB-`6#HS!r%E69YdG*6ed2@Dg-C6zCgrmZX z0nDEw79yb=K(j=SaDnt4P0FJQ8jIhNO>!};LLIu%9_{!Q7LDgOF7~9ur#O@p^Ke_x z)u|Gm?_){1++;x=%tVG{*ACJO60wXYaQZ@ZT|1J%BuYyfwK|#Q^rRMpgvrd05|jAP zi30lb=l*hw1eE`>hJ8vY*seUtu$o480!EC9cdQ6jT#6eL1S2lGLwP((wT|+0WC$i` z`2avGunMuA<6M(T%*n=sOr#_*U^5*(@{vv5jwc7()3%yEilVm_Z|~dpN4o2FiB@F| ztp7?@w`n7s4E(#v{bq8_nh{*)a?DB>-jKhZnFk;xip*&$l~|1L*(Ego$mE4F0`d&f zTzk${2xw1oV@n4+`uL&GpP|f7yJkVG#{NmU*h4|;w_(Um%JixHy&mjS+bwsc!_sA~ z#WjpgFr|m3oxmjBAwz+Af9 zBoiklL$_DtlCn+BHaay>huHI|Vzj+kB^uB1AXvpK&8EzF(eH1g;&L0y47#POi$h{O zCV1@X?ceqA2zgYUq*u&^Vzn82&A~0BETb^nk4+S<-x@i>kCwo!c)pv25@}g)+dJpG z`_D>$2XtOUQd=1KDEnmm2@rIDn8!Qia;8G$ZaO)NsHmF>$BMeMP2{eK5P7_av)ZlU z(@7%TMdND+HJy9;LP|pD=&}S0Dlzp_j`$jXiQr^DYD|yYnAgz{hM>oGC6yw37bAy^yN)7tgMpl zC3DImfy35Cc=xI?1Zk_YDXN$B_q9n9*$JM(kw#%Il z*D}Z&VkF~qQGA|w1f?BgO5SitGB>#R77e!9&^i2q|+hDd8570}LDD(3m`e=W}sl4i< z6$M(IU3RT&oAHou8kMP6yPbJb&g&w)V!)b%G4G>Vv%`@`Hsi}#*8a&gvh4nf#^gjp z67o;RRwvZHv7HQs>Pe5)Fvz`kG-efPFX3HJY2v>@mhV+vprfaO`Si2UV|?vAf`osx zDl0y)75t4R=q0whR`4c6jp42ReuY~*onr={Sx z!zsvQoA+-a;@y0p%1Bf*CglRTCG~^P!7&Xe%SaX675lt-_RJyGy zwA~l1hs7bQv#rjUx7@0V{i;*PDcEL2h!6)rp- zvDn(|5=lgUjbE_MWXAN<=N!l!V%fR|cUTm1fETv=Eh54V@atgfyby*U_}wC*rRlQ6 zFURW%zhnL*s(&N(qRPyIUOi2^q2)gR0R(H?lVSrFwi5)lR&QfEcV1;|IbV2p4)S7G zK~_jy5@3yV?(GEhWFu=@x=mFqH20CP18DA-cS*i4Ua{%1%~AZXFcnu%uxsn3PL{+4 z023Fxbd!I#y?<1PZbd=Xw7z3@>-Q-0bYdX28YO+()lq}snpI#bTKw(o&^L0cnI0E@ z5{&Jfe%>$o_g%{*Zk66RJEIc!_e-w|M{nYro5+(iq{r~?HF> zmBE?x09)v;j;`zI;05+57t)z%q8SJNAV{x8Zb4>S4n&VS9!-o~#dIG6Yw@7c)*J)8 z*^~-Vh%D&@Zl8aN>x<|+cOKa=@N-p*MziyBYl;iy9#Am=?w)xwy64ChDWmmH0Iob&kUtQ+kYe8ltk>!X`}qMk7SAuj zbt1OXDLTVa{UR?+>gPl;cv)a~BzHGzZo=)(VCEHOOEB|9lHI7d4t)%7=;6m7 zF9XM%!;_ecfuebCZCW`7V_2*ifOCMz^ev3Qz2>TjPK_EKA;qIonZ>ylBr27sxuDuV z9zgflH9n-}7F6F@&?3#NMK1_#*O!$NC24v1gaXD4>5TGQ4Fpy^Yx{BIPtWog z`qWohLxHf#nAqMUJ!OA(01a8Nt%W;6W~V>RVM`!3_9Vq&7yD_5gT`S$^~}6s_JlgW=z#4WF-q`ZluYk3^hxwnzib0U3mC)Ii4g+6)v1_$JTiwHLi5{qe)!NX zgZ2+J2%(u#TWfRP+l9ResKe?)^$cPKMr8HHT~0JJ{gKj@fSjtlZ>~ci{Zbu5VKG-@ zUt`EJkiWl=rz1R~e%#15ud!2aD+UfpV=ybCnnp={&GnyEv8XwMG$WIV8m0EvdFUUF zuhtySXrbk@ZjciV-p~oSZOI)z>lGy2%TG8>?B$wKGlo>1kTCEbHL}zoXGm;yi^;^J zn#yXzlx~%DfN@)Dn=CqZr^fOy_JN=J z^F%L^RibeiWoP2|!f+vzg}>Z=`3$G^Rw65p&&{BJ=1oQEu*v-suewqso!wn6j!WtJ zS0R0E9#Bc1?sWSe`JrR{o>J#16?DCETZnd*S6xM(asgr01u00tN!?Lxj2-FZJA2tQo@j^eowR2P zeQ!JfBrCfF^W$37EX5K1MRj02@%j-Gh1AiJ11~hAsW{%J?VSd}D+$W}wht>}PKKT5 zl+`^^_9g6Bk~|X$+c?JSqJt&3iIiN+nZYZKb4$CtDj$Woq*4`=Rpr%Wzd4Ij*JJN1 z1~{|R)PG5w7M*MiW3|Q?yu;f&I@64wP&aE*Ql}@*fpqF)H|I zIIJFSj-%yx7;4oA8+4QQ#^X)0$ojPka1ijfgURuSbMW&c*5d&S`YaAE8f8n~Q2+Db z0Xa-=B_4RK;iek!!3#pk@tuF_iNSHy06+;eKY3i&40N)NLKQrV+F{=82F865qpz+G z-mE^mv!x+W`jo#;ai8hdPcu!}qm@;fL6L*}nm zyW+a$v-LTMjzLE|p>Fh(j)`4RAVeE!EIvnuPn#Ds{V{lsmbT#GMwFOAGm9vg0krb< zFc|2fMZ;DO-djj@ZcN5iU+KzcSj(p6zfPV~J0j`H2c}0S6f*71bRt~Kj#mith7=pM zBt$V_7^-P3-c{-hz<@ZcvGJX*&++h2IV=@uSxG)t__vBSfEblsiGS7oSp|=QIBuJl z40+A_x)}3=F!4Q~i7Q!l2J6SZ2IxhpCa;7ug?OJT|9!#G`%h*6zYOh^o+3C0S^qM!*SdNpU=;IVNxxuZq+h$U>@2Ay2{wG!xpv-KS>LnjtrhV3Q}MK+51>Yce;$&H zJ5t~syyQR5S*!RW%)C>XL-&B$HPOJq3Gwu7`09``IMjr=8z+J`zdRkC_4;HVe?9(- zdufvH=kIFtHegHccGaUA-nd0|GU;3iqae`>K+Boxl=coT@K~9v#&s6PVDv%}g&lCQ z3={*7!VS6Hrw|^U7M@>H2Mkg}#=McFTx{fQOv=?9FLlrjGr?nsdcI3~uQf2rD<^Q+ zHd2(knX$_L$v9abobLk7M|eu7D+X?$WlHBguNDdM0{y-&PCX*TPrZrdU-lJfRh{jg zn~fiZHI_DBpHJ#t`7K>SUj!b4S3@Y&gMOUF_!Gm=^u&f)4Eaq-3HX`4{>sRra@x!c z9^$N}-u>__7V{-?ZaM}X=~r)5N2avlLn7zC5v^cLrZ1Sa#A61}1|9Rt^CT&js^@-u z!ly(pSP>M4>IO+dFU^E8d`3;v$Qk&<{625B?T`1NZmf5Vmb=TomjiBj6g6ZEWiqj_ zbvu(jnmQ$aZ0SM}2jE4NU;)gyR4yKDrY-E-zp&{`^}X3EpH9J@mZ;@CHP>Dl>w?iT zwkAY>^BVCrzpfW^+09odunv7?`<)FZdB^KKIwnA8Ij@Y;mwP_?T&htHPgb_6$&}8{ za!~j09*wsuvc0$FqoJ(0F&?l9mO#7mH6Kf>l~3Chyr0={19rG_FNpXKA)Yc^?$)r1 zpymna11rER6cjLRrtnelUu(-ZDxqEcqMy>Nrh_D0(#}uAMjyc~Mkr|0I?5A+X=yK4 zp;SYw;(JI&w1e>9Lwm68Y9HcT3>5b!%Fm%GWOO|0Hc=0?emDI6YKC*aEqirYEXk?9V10PyP z6R~Tj)F)L3ORt^bk|$oN5wH72?Z}`m>apgS_0~&GfS!Z}oFyLEu7agUqtna*y`rW+ zsmvK&G7uwlF>IRu4bne#EXlhB(Xe`G=PeH)netZXE`@iX?kOJTNa_7kdw)3^S>|nq z5E?OdQ#iQ=n{6N;#i%1(S<6T91XIxO)Z8Ro5#`YJOHW~IO$0vOL5L`;wOcy3=+qTr z8SRac0UWRr9x;6}hu7PMloHbXor_RNDRFW@&Y#h@4ijd7}mEbDxax_Tm9)rP@0Uo%Q0Wu}=`Z53AU9Dllm5 zqDiNQRlAC{9_0OR*Djy0bR|0Zz}AIW7MtB9n+5(ILj!L}dP{~gN#wxJLVFppn!kz9 z7tqPH1I5Mk3{J=WrLS;FwurA2 zWS4pApG{MJYn~+5&^=z32Zr(?8&AAIUX^o0Ce}G<@BU?q{MSu`^FU{DBA*we&wiMbOAiodVcwQCiOy@|B zZ6+c2KM`wO z4p#97ejv=6rZ?R@rwd3;84_-Mnkw=G+_s5aiY#bQ2l~o|Nz5jFiDBaR>we{@JZL;e zViS9IsSZ^fcArDRR|@eKW|EajCmx!p=^CxH)>npKH?EM0U1R;dZ!4k0bL7ybmC2#0 z`b$O?*p|_4+UD(^YIgZm6LW7$8bGIFdVx{$sFQ*!5G#igJ{gG|hE5map4eP+9f@E3+)itaC z&y^Oe{=WS`fkC1K4|<#&G(g+MaLi(d-GV?i2AR)L|A1}W$+LDZ=|12(tDJoXq-Bro z(h;%hJ&+0gVBWs?E0{`2GbUX8nYOe$ULGd5K**n=$cldoBxees`|Ut&;189ARDn>2 zUM%G8R72OC0l{Ox{Js9>^p#q=g5!1t4W&(HsLY#1xXG z!>G)$l9RQR&m~RwA2kyh@j6MpP^d6-dIV0rj+c}LHuKg~E?PT(IHMAhua&`a%saDR z0yfc&%fgYm0dGco2vgRiQ9uZjLxNsxP-E@T&hPa^BLvyBqow~BS{I?{-XxQy?Y>!O zxmd$XPBSetvX{}!7$C9YZ(r0xZPVQVHl=b6uPs`&3eIZDm5hDiGAgl*u`4kq*r1uBv4~bFB z`dmQ;12G#jiJTWlxaj1cS3$y3iJX4M%m_nBF#{#Cx=*5>Qh;*m%8@R}uGR-;rz~Zid1E{o^)rW%CwTseRc_~M&N1IJ8RHm@f7dDMMdcg+ z3FLyhDT>(5yfRB4Y>ZhZg-u>|Cbo8?&k2?^#UimsxoALNn7*n$bgK+GgQPFz>e?;+ zz|Rj#_Kh&sB>}pA6CIEv4#G8WZL8;tywl1YpO#=TCEDmCH0tKGi~zHxVbK?m1cHLN z&34)@MfwNphtg0uE~e2WU9+RCplGqv20o~!;Q`}rBt{eOR`TAWVmm>N+d??hr?-|E z@5X)bClodzwa>2Yl#G~LdNAzX(_h{*m93m+T1E@D4S-cFi=qw=iJy2D`5G6xJM98& zvjB`I!R3$#-MJ;nXtAk6*6Ul?6{#mH6=x_xJ}&Om;%nkH-5$*~_3$Hnt-cZstXLb} zwF$fnm_yyYNeC7ZFzj#Y>r2Ref^#*1(upjz4JybAgpl*!2j$s73W%M#5A~D1h@XRoV1yC*paHy_iEJ`GyEtZwPE8 zm(f|9!ObiZ1y{o=7?1dl1T`BM^pe;u<`eZNu7ZRSd+N^`2wxqT$tkDpjvFoIESb$r zKc9Q3{lC{`Y7of_7`^0-t%&~F7vVmU@!W9>3846i<}8+?8Sa3Kh^mBH*Z8r8U#fuINyGAI z)%-bNzRh)8R;$$^;j4?KLU0B3!qqOp#VKuo-CBifc76;(>C3b;L!jxXG|7N#@cYUoPJ!?;#bVhd34b8pN>r=IoNHHP^r1jsKX{6e9WcL4 z)un1nU)@_%t0Ba!LCUES0{q{~>Z~7-d1dLT?HbA>Pwe(p0zi|SR_i$t zT$FkLYU%84v3tj?r)eOC^dxW{HfP3KniOHkn4gN}j3nbExJ|&aQ;82F@S^gpT&>@_ zsk#mBSjV$a6W^ExGRO6}d-!#XZ`$Sw6lvJCC6Mu86YUe)5_R^=ZnqdyMt-u>fUM-0 ztLWGUnw&fdSdz3@A!rB&9WZ=V={Zm?2rcM+ButPt0e5Ej*`Iz2eRiu&zTKL@(}Y=u zxz$4kFPxKdfE7#+Mz``MoVQ^;;U$-tN&w$_$cR+1us1iwOhB%CCF{w~MA*Z6PRo%I z_)vhQo$f1#X92nfXz%C%V~%EfP>0an%JJnx%@f8aDP-e_%dUPg0hsL%dT!rn*V<#n z7CVqr9iW5)unlHWLzsWeN+-bY)#TfdFu@C~%&-#%-j~ildLrCRJAA?B#qC8P=B|ds zi`IgjOupc`=Q3FNP>nLY*|(T&r_&k~%jIU)k(4)4VUbb_k=!z8c6yFKwdopwL10#}Gd6DJ>55UmyV=%Od!4;oT*P;a`id?+6 z4K=w_BBkVg)KVH%%$M8JL4`HMfUXxzbK}~eM(edO*Ig8~QqGM^>~iNiy*DOZ+oe+K z3dPIfYHBMIRaB7%CLib+CYxZh6*u>88?-aF;Cn0CSjEUl0dWWV;<8S~tqRg_PnvbE zJc}io2E96}#@dE^^sI?nz_9L9D#o}!U6QP&F&cuWRPBIjUbacu{jdisRRkHO0hLE) z>%?I##a8^#s9wGh(-uKpm;T_cjoWl=I%jFJC^<-@adwa0p8e(hS7wrHdHRf}ZCUk} zJUJAs=_~ypfUiZy8SYLzCiEa~m*!Mmir{@R}n}> zB(jM8HS6+ItNE}<1VYc;fIw92!foVGlpP`6-5sV7pdy8LM~f5|sumNQ11K}>^JN8Q z|3a8FLMurMelk`O3GXSykkK&DZUe}&TRPt}@|R;-^@BfghGmcirH>~J^SCkU?EAzO zMCPDc29Io>(KJ4>{Qz468aMBCEWkU}Z4RPgX|zGazi_Rdnc0#V8tpzr zA4cZi?i@+-oZQramaQH-#K)xfE#>pM;@m|BnB$dCC`2LN2AaLszU7U;0rVd z3h|0+CPXK88K_!hzEw@0(;uP^vdrL*(G55oU%(|fV5|H*G*#7{qxvF*%!0txjlZ$) zdn*+s;6pn4+xk)9XroPu23NRK%)P#w0;W@boN37~(;;nIt=jQzQV>uI7^g z7=dTWBC)qb6&}V=@b&0#E26{s=@u|=CO};UL6h>I&#k#JzH(KsGrK*%5!t4T*r}wB zK;FSUcZiek@e(}Fo2oBLc%SA1Ck*YbDvo1XhOE~URB-=O{NCyV%|GsE@cx7EFYJ9x zRe|+cP8YTYX8g9>KkvEhx@|q2vT&yZuzz=qIt;-WNXB+MVg{Y(T63E>gtY~zR)5(@ zCb)-y!IC`s#a%8tEFTd z;5_ZD{rB~6TA!vfwquy-H^jcXnw1x-j6 z>gDK=_SWei3se@b$AMc1&XxWEo({P|DG%{d*7?o>CM4KKF_7OQ-$rc&U=aG_1F+h#1#f_htO&4Yf;FW=GmQdUIiV5|WZJ~wX#MOBlP8k+V0S-xq`YVYO-%ZG_ z-1OTlp+VnJ{m+s?@$?}as-15(-!9%uH3!~B1myR26yOA}T#!szzRueZhYaPIN>6=- zrG8Dffso{Rib$EWHNhLl8CDbVxAr%Fu?E-OB!;bLvSshZ%8Ta!KzodLy|lNnVH*{3 z6B~k)S-%Jy_wJ~_x+K)=%Q5gINo0N4Q&e>;|4`v=jPN%(d%$ZvS;WFSI};h5>!|sS z?P9K`s9sb=h(+?vVn@56LiA$RMZU&Dxx@Loh8|4?hSWu|7rE|qfK@!mU|8#9zeHTB zu^dgtWiOVvixY?(u$BaBKPNa}Ef23?5KoN&y_kiKxN4-F!$~F0yT#W2m%JDTK{Rk| z&7FX6wdfYI{^4l=)Ah<^4#MBJte4#ay>_j&#N=HRl6X=$7gnITvCnoi&5rh<-R@7b zf}oykNK$~52eQ!af_874znoD$7x`ozwgEBDZ`sncN;TCcKzYv;wP*1B3o5@;R?Ae- z-#K(VBH{$a59EiYDA!`ym@nMdu!%MKuL`8^ae}qJm}4wEG%o^*R%6`sDIj3h31bh1 zD78E=JEl%D`2LfnbF}vr$cBE^k)M~P)Q#4Af&{s3Zm)cxc6dOgBE|Yr`;HfX#LJMY zJ|l00un6bU5>@2M=F%lG0wQy{6%r}{>p?`zAdW!zb|d>3%9lyci`?6JJTJqlUTl;H zhtlLq9jx3$RsLm)05cf`->*7@SU**zgdmneK^ULUagmyX1cwKkZKdO7i@Y=s*(r4* z6+z@dhT7}bF)50Zr_F*K*o`=8&yNbg#Kpz-e_;>V{y*45CU#~{#{UO<81o9Qn7!3F z1`j&0qX&UFu=C&gZ-(C8-5nZ9SJ=TlY!8R1y^CjH-z?AhX5(}Bw(38H2(`K2PLJ2O zH{Z@B6{S>)>Ny}}=1Ojw>`I9KX&O$J7f8vI&B`1D2o;qE6crVgm#hS5eq{9vaCMiA zb0R-0=#4ZdKq8tm9izu@YdlI%81V2yGc%-vF7xGo%u^$>YHdOjo1J|MH%f=Ra4<3Is5>vy<-x&_P0NW$*yY#Rvg; znqbm6cg5k$#ry@Xd?^)l#+>_2Ibg|4iHZV6{8QA`#S_$!!xGe!R00H#-;aN046exJ z&hGBS!U6iF#w<9nKKmt5!ql$5f%n4);aq?UGId{>A0xa~aZEI_7ZGUPA_W%}13ydMC zG_MO1tesS z0Z1`Ax#%xP0O9V;l!^MLI2i)_ZJSx#2JfF89v&VUglBXIOZQIKX8LIf$Sezb@5`PB zWC&Q_J-gMr18Mps8{NP*Gyc8>zPhoyu|T$Sc4U5f{Vv`2LFZ;*8$z(U0;i|zfC$|I zEC9cZSvp@?0=a#t^Pu@tPYZt2K&5^BzuzUl3r6NIL^^YQL%+}A*drsREvC&@zbX%a z91@Zj0w8-Ybp#+jSRNMtjEo5M{)t(zyYGLV$sHLHU1o&b(x=WC5jwfb?I1w$HxQuiwjuzQ(UU_K#mR(tT^2 zPln%90OZ&2Tg+kE?WL6fi-t|wN#^%VI2~Mz3 zDj~ky-1KPw@QXdqycWorkzFa63scL7``Xu5?ax~G28hs!^vi62pIv&Knyl>a7~qx3 zw3MB&E&Nf!=4Z<6he_nu+rTltqG!WkXmoHEn9HcdbZ`Aw* z5K4T`?Zv@V|F>oS`(JQh|A?O;s^tUr!l*y{s@}rCJ=(s8z6+-I0fcYFQ}_Ri^Z&*B z|KhmsZNWU6{^sS^0gzpDDR3v!vh`m?di3h7XM%c`=Yh?P8bwZ7VrG9`4ros&8yU8C zYD|VDBJyT^#9iP&f7y+Y$y?pJu;*bd2lSG{S;!g2BGu#-G0#}Fq zX>6Gg)5Es6RnTPdH^E5 zd(4XCR3z}&M*AG%*JzlU%Rt!6)*W!6gNxM}1g2BUdeMtqs&^@EqEu`Lq@0SWB#7rO8aHt1nN)gvL^0CU21#RQ z4wxBoJ+xBAPGwi|dFmZ(<|1CYX8_aPy!C@+24-!(kX+@XDzbPGo%M?Ms(kpxk4Xf>AM5^y>fFe7$M zzIBxa453%UoW$!ASv^#I)Yiv{0Z0l0b%m$0B=4zVwbANbRyNt$`u62}ftdbBv{ZnVuMV-8kw z%Joc;g&=Sz-i&OvnWSR2>Clh9kQY^%pE>&D!_OI@mNo{%n2N6BU`ag?t`@leO5CQo zDRGmqwX)|ul0@9rS1Po^)oXGFT%^bV`w{&iQWY+M*Qb`4YcD_B55VqM?B?#FX&1Q( zhIv{Z%p19xQXSaS?)qFjQRIw>aOnA0sZ1)p_mQ*drQ+bF_Hk+Tw+O5G-UWrlj9v!? z{T@qfj7u_v>5>Eb186qUp@op3J}$DidC)24&FKsUoVveW^wvqf{$G73S3@@}J461` z>iMd(k*F?Vc6>&f7C->{mS(iB-rTc_$}*^Xp^)H9_h=;=edVn+$RZrVNyvu;OdEt` z3BLd-O4Br)Z@V4*j^I5Pf<@0-S^5#P`oytjO%dDGa@k^ldpTbN)=n1MSzcH=(z1O8 zfi?WRX(E4LG9DU4VRP23V|@ZtLoI+euzj5Xw;gy1mIqf>=)Y^9PLs)fTtp6u)j9$Y3;4JL#y^x`y45WgF@aNR0^TOZ6nw%%k|-~KJ+N1 zR{90~46~b4hRR9a)EFoNx`ailSVDh-U-7eAPCQ*oh>V6Nw84PTRN_q8N%R`PwyBgw zBu)3SM7miY6&8R$X=&GN=aX_Acb!NtAc=zZ{g0834xmCu9mA&B^t`9#SMg|b!+~Qj zjoiJ>!J`E$s`+j7yy}EdD`b02sVJ5CVQfp*SLz_fU_aWE#W zWXlAZ9jGaMzb5eK_w<+)ZnVn^sk%s-GRbjPHQ^~%Q$AiBk}ZJV3)#29%Qk;3_&PG~ zu)N=p?U0%xoMqnHI<6rCjrxQ9sa7jZL5O49i4+3E0bZ&?*QI8Q3dh-QfMP?a6mYEGwr4-E65|EUnd~Tfqc4H9s zbyF_#2IrHxtf53a(o4C9#kTrOCP!EeesEPKxVr&;HL4_S_W1E;#1C$k$pM8gzP<1r z^Q+x!-=Y0~xQ)g~kMkC6CPPl)8j$zjP9lZ++H+HQ(Z8y9*StYkGgHP-HSsC6y z_;HZ?&4x1OCg+=(`WWPIW2?+qL9cLZ2FEgsT8=A!-gg6)OoJAiWFoYgFhyh+g`^2X!cws6{t;NDSmGiru zY#lhsH7Kywk*Zj6cvfxQlS@|ApS;o74t3pcN=6QX1&ST@e!Mq4JKtpxSR&AAPu@++ zzG7>CZGquWUoYre+N)f;`z3-)j{qHhbZD^|!v7II;h^~$U|5@oz6ZW0LSSg1C$Qc8=Pj$~Azb;Y9IG6{B~Q2WgW%~{Q`GKZlTTP4jTV>_5@4UUG57O31hL2_w4UgZ+4sFnw^=o+^3sRl2V6?cYoZl*R>oaN<=}?>G3~* zSm}gt+-v^5!Wy>@Ub#10Ba-O-(gBn@TBcPp@F$f{L>_|}=g*ef3i&Ti77eEE_`7~z zD?5Wl$^>CW@_#^6QMvpoUIZDml;=h}%sibmU=)dgp}a~^NzaX6drT0SKV?#$nqo}= zv34%tw?oU>e?bPPT=Ly#^u-p4GKpe;RNql&rd`3JhxMct>y1d1&*wvTz3qCn59%(f zly4!eutDjE67yFDhrz7U9Euwiq)v`ai-`2YBLFvChv>3 zCOe7}2@`P(bX!{PpYCv#xR+GmrAJ4dvmKY63`hljcAmBMEs&CIvS;2MmGjzv8_M?C zy;P<3Fo6o%amN2*&YCB{GrsT%GcN{JLIJsRFjBp^peYQ-4!-{Vt{PL68t)WS|7CTA zYWBt`BPv`o2w_Mg3E}!?49BLzj%qV%KcHD;Cq^hQU~=l)1l7FeR3bhj8-lih;&XIA zYWF3g5eTBINMHw~k|u5#Ys&$DL4+!Cdan(t2Q@oUI&jWHU#G76c2fHEsEft!7Comp z>HKCqqAL&SCx=q_&J3}$D%H0V&k!yew;&%5qAB{basDZo6QWL;lhh*orp#$1-Dbh; z(t<=G;e7t2|Gr7@-hPZejbpc4di2LFxr)0U354j-x8rTcizgDZt;^?s`>-#5H0Ami zI`K7N+{yK7Ndskz%e?uyVtJdH{^o%}!TeF=DuWelnm>zfx+et+<-+t|f|mzwZ;Gej zr}d&5la7cj9}bQwSTgb`7M~&P4sm)Ag5cvFn{Y0wT0X563Okww7rG7{WQ?&_iCmox zp!FO?WK9f}%NYNn!Jg@V-hkuZ)uj%#Kq^)7&ED642;+lL*zU~3_KKel{JlU!e#Ye3 zJa*Y0DapzbJxpyK1_-gFvRr=cG{2i)>H7mN9P?BS!Zt3>7l4$0{;H?)sjP9d@Y@jA zW6Ui!a`r}LGRimC%#cksYM1WloA#m!2^JL#r?uNH|mG6QrVUPN?Uz;>qP zWg%NM?H<-{68MHgU9G^4>YP1fi8k@O(mSwP9~OIM_hH_``B6YUpBm zUaAX43*+qUG3L;@+;Y;K2{Q~zKvR3pp8^MUNh(UH^LlN6_q5vm>Kq^BmU`9-L^<81 zcZID9iB7pGeRJ{94|DZvo4K&prw}~(g5OPQ+nBTKI($3@BgAxN4EYoXs#h+T{6AE! zB^C|wrX9q=w)efJ)}4ZUt3>YYhi(*FkcS}YkUR~Ht{1`-=OZ5I_J8yc&2RvHj-3&prv z*)Y$IH!*m+3-OyTr^!gm)iGarOrsl1^6%1(hxhza4JA0WR-Yt3lhep(IHIF)&}5eU zUEGu`I_t>0v~3H*l@&||bn)w=APwx6JqEnbhS>Fg?hIe9h*#Gy!wl*(nS(q&!IbQe z@3N`ZXeg2C-x6GJ$3}%sWH^c{ZyLtjE^uAw*PkQ5SX4K;-ccP&%By?dQHP26XA*3e28QZ$`k zG0H1{_(7F8Xea_*iSP1~6Rj9;sqzL&q`xvraz3V^qaE=+RJU6Wq)rEY7o~~xx80=s zSxtpoAs3aKji3%I1yOM63Y8HDE2rK|En~~!!eiB@-_sE#Ebz%#rB(M=5DwQ^cgL!N z_eBz)a$sHw25cYIBG@F8{oIO|e70}NE9%dG824QhvESrqD_5)Nil>?N?9H$Ii@2YE zA+7{KFA{QWi^5>W|CH#3x`}|jmU+3kX_ZM1nny57749!70i;ecJ)_T#h}2sV4j;0i zcLA5Qm~Ly)8OXhIE7dO+Ufjr&hL$4smqe|0;xH2}mhF?=2KTU4h76Pf%aTHdIPBV)I)Irgf+J!xme4@`jB@AzS zt4G@?_1|Zq=`4C?Hu9?ac|$Wah%4}am|`J_T!^@B9*)Y7qkYAAd>`U|zF1B^)O<1f z3)cPgK7co_IPMyCh!86~&>n_E*;d?{oh2Z{VMn(+AJO!J;?xAHELLfvejvJtwafXD z`*fXo?#!3s+L3HaX(n>=5cQkMS7LkG-w6|M5;5`4ZuGM|LdSY+EAN#Gc1kpVuv!PP ze`@eI)(X1)+x>kf4AI%F?5!m5khqgY^|h!Y90J&U@Q241uVKr0j72!fWjUk9>d-*D z;P=O=WG7tp0mEa=xjBd7tMt&`c?vt1*Vt)Qye?))^ zphe`!yAWFty`fjEMbzSmSnIfd)#I{GDqY&F8d+0{{UlXPT8O!fI2qD}0rs|PFl4aJ zcw)44vRp$^B|oomf4!-m#OA?P$PXJ)%WE|cA7U%8)l3(c5Ge z{+t5$7lWoL=JqDwl}4B02l~$4&DE;dXGuIYN4;TGap5p8_&xR}sV=2|+)|12a{nSK zq1~ETOQtL2khxOrulHv8boCY`g}Sh;iR{%T?Vx$c;L3>s89MF2-NvGvnz2?^2cD?3 zgI<@$QUqQ=gaX-NAUt{E?ldt`sE~h|Id?}O9y78Y?>YCdxNzk|w7tJ_ZRwa=WT&Y< zR^00R^$Vf}2ZNj}Gy#NvJ`!uRK&ZUE`rRs&a|0R@p3Dv>=ipnP3B=mn6dGOeP0Btb zIK}Fay(s;)l^z%SAwJ0?_-xsG)S?;)O87Dn+umW zW#ns8tPw)x6A@dK&mE&|$$J9pJi%6hYi^Z}Prdij>w^S6Vqac=I5mH)?6L=Xl}HvY zUptpBUOB$+!Rl#oy4e-leM+NIu*pRMtC2d!zdJ_dM1>sZc~aB6ZI*x_L<4OVbA5XJ zJ-8Wh(v2L0Od1h9bWb1?0xzJbppzE?4_{);Rgpn<$PNwy!0D_kP0N^(LT)8)t{e`% zn8a`x@ej?#5yMY^*zvGFE+=ZI$9H$t2u4<*@F#GcXiU?Kx17K7WZdi%!-TsU7PRZ((SlX|l%$KqoGBL66? zH=1eDHFy)S2?bNBmok(NF=N?M*m_*z*WH^{EVaw#WusYv(Q}7F0>44L&}{CbY*K*MH&uWkB(5 zb*6g&hK|3DwgYvw%XKtR9bVZN5{ zWkPb}W9)~q;y&D>K`R~DVRU~WIa!Z#Oe$}+c$!I&dgHE$458C|iDQTqQGM!AzqRZA z`8?f!k05Pd``dPxs?aUhj?!5c<%X2$$Xm?}VrR$2kttox5Bo*E%au1W!H0*0oXK{3 za@<=IbEzX^Fm9WTuZDcORd+eNVmV@C+(357TT=JpF4F-0i`jS+5?=_#T7#j?^A|gZ zyYAdEX)iB*zRAz;R6c66V|wY;6s1O`fux^*Xzmu25tuyUGME&nL6jJ)iBtiM@etp~ z3`?56yc%$-b#SS$Nf**k1X;zzA7XcC554o=`$jQHY75Av!Z6e0#KC8wHymnK)_qCJirg%ZPn5yZm)4tY=KRGJ-|*d7V!pTiH9pchpRgh+xs%F& z*3&CJaNGo)%KbnR|F?cb)pnP|hBF(;t@Vc?1&cvuamwI6++J;GY{_N(tF>}RH4PQ{ zA#wHwtmAvgp9q@nZ+#}UJ4Ejx_e~^z=ZD}S+^_gYr%jprHC6J#R)j`eZ892d#I<+$ z8=(c_yW__qCiyJ3T8GZTh?KH%Sa0ZS)b08BZ*%9&;jagTHNs7CjJ4ip=p zMIjf8WlxBQ9p2}}-uS*;c!7>}*f1@Q))=xCJ`ZI*oFu7tAJE0!{WrF< z7c1w<%HQ}XH!%&!BYwobtqVC80MHQY-N|h|cPlx63v|GEGOibWv>!u1UHkTbz>++K zXHX4WCCq(Vhe$Ei`w~`REEdG)OYkmFJu|!0h3;ry&Mq1UstWB}EXf;G8! zb>0{O(opC1IUv{6pgPR!tjWXH=s9a zz1|Y7y{))gY8~^gHqH`U^E-N~$++JFw=ukdTmZ-v372s&9v&06XnJjbe3+I)t(kP+ zA8$Ow(miA3ktWHEk3AH(6Id?XZ4lKZAW%1l?x<3pO$fZ(7*(?zu`vdCMlf2L8TyFs zLN~&^WPF2492kLa;(8|hik0NphVtgb;a_>B5&VvLx;xYoxvnV1?p6l7&;RM$3s|duBoQt-c=B3^es{W1&Y3B{j#vS69`Yw= zrsLixd~%!^o7ez{qx6XN1_PU^G7q~Vk7{8n$k+7LCb6x5V)1>Vt0LVf6^9#}(5-%$<3txsbW=HJ)t`m)YYvZ0-L)PZA!?{9v1~jjB4K4U=r$k)3`qXmG^@F` z7>F85dd9HZYBrJUb+WD{@yA@H{tpT%vP44QaLBmZLT*92KF5N?-U7sV21P;rd?-QN z_Xu!JZEZY%!Z14WB_0W!Y9e9Jcro%ba#E&iZ>DmMGo$ZK*O{C^D9WZ|*Q**8og4eB z=OTj3l55{D)H!2@raws!@Ps>VV@}j{d&qE8=ktczP&%d=jwI6hT60NKD8AB+8cB7? zEh=0uF}2qIVM7V8^HrKm&mCOM42v`I7jE+~tT~T=4MnGN@T~96Tx31zZzNo!1wck; zx>R7>TLEL;E+ZO4zHp1mJ<%S}gAOfyRbM742E;Wg@$Tv?*kIR|Xeg(d$HpMVY6GYA z!W03UU;^sed^cl+G!xM{{8Y|s?6CvjI*Jgij6Y=yiV6mZ&%SuW_n`0La=uC+<(M^m zz2eb-3n1OAXB{hGfuzZIKa+iao1PU3S1Q~&m)nUu9f6VQqj~2s$P9TRs9t4|Wsq4$ zqVN&^ zoEym{reERr=E=}`uN|eGFyW}qzQub)VBKQ!5!nH)fX}2sZHVhDKPCHruuV8?#yib3 zcK61g^8aqoG+Yw2pQ#lWzJK1fHwHY_?Z(p_S9|Z%Xf#uj)4Chx@OHZIo3uYJx*9Wo z*{spu3{5xhH?EnJXT62$h;%B*k9Vl(!*s{or5~cMjp3K z64a&C%dcT$mTKzv?kd8@*KLnVG4MIM<0L)w+xJ(Qb1}eRYLyP{T73R}RJq-(O5f$( zEm)xMwgkQ|=<)cFZ5fMe@Lulx(_Kq=bZ!rCqCQHoQ@$HWs9GGx}2nb z-(Ge{RKFZ7*te%F1ZmZQm)`mzUz;qpX~>Uf$Uj9?9**hRoTNfb4jpBfhHTkeSyH%R zcj7n07#5NRIWA&J zkujQKp-*YT_Z47nr6UF9R?9GdtQ1Lvwnp9-Tx)r%B-WWe{@8qAWhC-0TV-!DWWs6y zs_M^%Zkq8vVX_SbfN|)FvCmWpt!cZ2lFt^(H+7oT5mo=Hoxzx}%2UYYyC9LfD1cwB zJ4DiIq}rFX8`;1wf7xC)?61HB)n-fYnykWLJtrV+texI>kQ!uBR|HpobUdHVKgBfF zh_4X71H4nq5f&+>Zf}n#kLABy?4E9l#ar%ZQKTG1Fll zT&+KY&rm&g{OA3dcU)jnY;>6^;ETaA++!_&tuFKNKcw%4Lk@@zbX)))#rsMOUuDA< zPa&bn5Q8;V88wm-^2>H#NH4+-RBTU++9!h4bICqMp0Z0gvO;ZtHQcNr{SnNE*11e> zi-GbpN_PGRDrI=*xpGU&g}21uBW7$LXGtBVHF5B^_4HwL2G8qh{t|Wb%|Lg7?%CnZ z8G@uV&EvO$2DbJoW}<+Tjy}h_4W%&())btrq=reWU$*>JPq~`E#EdLy8rD^uhHqQo zOEsnU4|pKEIlaJt6O@_mH%OVmA2ct1{6mk+sEO(jS()%wU|jf%9#vOK%Q9nk); zyr6-G72mvOj*cv!iK)&C^MTH-**l;GFHReZ^K1`y+B9s=%xexj1;O?nf$5?y?9N^W z-l&@($6K{@jRxJUjIPrV3&t=o2sscp0?WIh>pJtD?F`p{Q8!Ixxhp?DD4xosLd=D3 z7G3G2$Og*l@!Q!A83o}Q!+1CwNF6nS&Sk#GUfgGf#1LC=Bw3&@$)k0aa>bc5P`Ky! zzS`Df&W#X)L{^5V?kL;pV})ALX;q6);?}3z#n$}2vSr1ROOE47jk;0SR6BT)s7a4* zQtaVVZe~G$kP$l7c6DR1SR>L_)jNu5n#Ccmqpg2R97IG;yDmF&BN^rGKvuJbwJxh4 zOIyCIhAY)B57AUeEhG>A`O zF)v=6(z_s=$qwtP*DI;cK8xy$WCa8QZ(fN#8C(Bhk~Fn z>o4L_-O;(5YJD#`<%ym$J<<X%mCn3 z9uAhpJ>+WxgN`E4B%7*Nb$Y7+UmW(C%5ZRckAtwnmxqxiEXbXZO&&}pE-^X?dt6n>; zw!^8Jh|B3LhLbg0!=|$p&c8gOz{o3ro#-_jI0w;WSu0&qwV$oj zHCAi(J=x95+~UcRsMxA$=jKbuxW%&fQr&gnO10PG>PSN2M6rBEn({SL>yWR1M2X`+ z8@Sf2%rT7h;$tu+k#t?9%;eiH2bYz5uKwmuT}Y4fR)Yl8Zqs|dyq5x{!H5#ypq~=_`OE!{8UMCJ!H-+8PkBh{#?AWRPij#y6@~Tn~NO zEpM#J_9VljbDQ|ibmC+_9$U75!6MJn@q)ZnEMPO-bFOW{_oZn$@}9?t%Bwm;Ae=a1 zdSYlBF*hIuQC@dZcw5&`ZhpCZ`@=c_R` zNCrG1J8^MjCWtW}lHFR^L?0#^Y5tFP_Uwyo3r}u@B>LTH6F(J%aYH75IKyD)Msl-6 z3a1(PSr|-4a7)g69(f^*laV{xtbS2r@7%M#?cUNi!J#&L*0Z3Qlm{q^c{M=4UrTAz zRdHYT@KISS8+2T&$Qe~^J~@{<^lmHC)ukNv+_|FYIx+Lca}Fsw;OWrXl4`ntXAP?1 z-XZ)Lg1OPGv9;-skrXNy!a2GXq2kgO5qEr}=4Ccpw*pD<5%`rB&P6k4jW; zW1J02DrcRWz%UrJ!br=HCDENkf3g*1cVj%IQn!ofmpfY|iQt8Qt9Y8s2N0{j)W8CT zIZ|sLEG%PbFIXipSabtzbN$?K3i>(6DTy^2I7%oeS$zmycKg>6+C#v$5lf`?^oFTh zOzD!#NfkO7aPZ_6u(C130)t61ih2{7Z`ETCttr5mE=Xs^9uu2D;!ss_xUzuc?)q@f2YF`sPRao50SV@=l;tcILhx>>%e?6+Hi&y6+BFxAwU5ZQ5#o1f|}uJYx0^wkCH%JLczY zJzu^5#1i}0_b9vyDOsnO%HuS)mRFnbgx}f8+xn7ki#papiNrNs`N0;+mWLV}&|oFh zIc8`5-k6*~asETH0uidQsjl?}FL?QRWry{TgZDYpR*Q-@al~Naj2wL2?*Ov?{nvg+ z1k&Igfmb$vqmu}g*nveAjGdO12m-Q)B`?C}ptC&uNJu9!ibtEW!;vpXm%|)T*ocmV zROaPZG0xfi12XiOHM;F}8(z8-na($LoJ3e(MPgUcOoxYiTj+P3VZB=N% z*4QmoDue>p#&49nFNM6Or4}M-4w59j^u^1xNope2>EJp zj|QKAp2mTGf4YJjbnsyPio}%_$~ppS4!g3*Z~+zQAmw-YD(GD{ zfs^-!iHgIvTfJGIXzZR-@$^+fm0YJ?*(teybqOUO(Ue`K9p%GV;$Kfru_1L|pQ4l* zZ63b<_O@&yt0MuLJp}0|LMDVJt2fy}=5e`;71{3r5rJO>tR+K#=!F_gvGW=AEIN!q zESlAc5OI>yj5tqK{2tjd%SRX*zrK~jIS~-BVo*?vd|CJTF-{w@)@FTPModQ$YJ9?f zl+xjrmZ~kD@H~s63VtroZobQ=nz{q-$#F@Idok?K`E#sR+acJJ2 z3N9l8KNIZ?UP*LJJpw)JYhRES(aVB=P%SXj0K4~92$9@;eQ{d|`^E?^!ZSD8=`l0F z1%+Ve5R?^a9ekgLnm0a$Hrwi9UI>0{QP5@BD7K^Z^H@XA1O0eRGI%)W;qZZ%7YtUO z1;l`4ycwVLWm5(_SRE@vACVZ09P=l~&w3c??mu#CnMd&wUn<$jhH=oMg>*P868(v*iDX4TN;>%**5Kn)xX@3zn~Ur`SJbMhhQ_& zB1ACDun^of8pXEV53M#R%)L~9`YB`$G%b5PD9aW&qD3>NyNm|83d;T z@pc1fU$m4ZR57o3$S|rqX>Ol8;o~Ao#WC3>R>!p&R?8+}pt8k9WSrx4u@qMQdx54YntFj&V7h1J(5b9C?J6wyz%~isIARR) z4^FJHhNe)4Z;MJFwPwB3iG^j4Jwt0_Mba1*gQ-k@r*r-3hMp~CA-0gSb%9kw5`;n7 z($9QY*`51Lt?uwRi{h=F{2WacD5nI@9IlTSo>?D%6Tamb-rj`*u1$O*-^qM0w@8k^ zFH4%13}&BO_DuWmK3P`d-3YHsH3_F*9JDGNOQnE|_bwojCbe6ZSRKsZBHJpruw}NI zBOo$=k;HGOgY~$RyJ|YdOOHn7y92FK)=sDGUudg(f;iOyTPM9C3Xl6zu8DSGWV49g ze>VLCo|KU^Nz-xtTiVtcL|X0+^dAq{NuF0~B>M;X9*k@-UzeVnhxYRKqtwD#C0|2S zPf}(a*JxY0*bS_W$gcpr-`(&_@OR&43`OF9zb=o<%ne;UW_QEAq?yq`ZNCx54Q=6u^ z38koi9A<_RQaS|XVdDxxL7vfSJamGuF!joF>j zvs4L!Dd{z})G#QMN0cfJ!w}WNWLIGIsx#kg)|}UBj2bAPEGL+D6Xi#S%M|LQbj<8z zjawP%Jnr-jEwu)_-p&?wr4SZRyh%lGP#<_kNCd5qJKN`W$U$7Ti$!kg|uolo$PA> zw_9l+$Rv>dncQ8@$Y3(G03;BHAW6FHaI1AV=%xavRcls5qGA1yEY;C}zoMPS$k_qi@A|B$=z@>gEq&N#YzHq5@$8S6i7M^g8xQ~!tgKldQ zA`Va9+(1IFL$3a1$6z>@YX@`uXyFMgA^k~SI7mmOEGr*1Om{_yWRjn};MhpfaLhcstyM1qAeuF(ly59t705qy9PuFKrW`$S-BZ@y4Tn`;$Hsf8tqZ?IJLD z^HN8`6jK`OF%$CHXf=;i`EDK{8D>3F-oG5}pRH~$cabx?nc4Y$jzqu584lb;03lFP zSw?vMxyraKOZ>K3zfksW_rj;p0r!c@;c=p-K47EBw~shLY&3M!I?^r|`Szg_6YYvu z_IZ`YD*8wD`|ZPjy-lXD)8g*9D;{flJ0+nNcy7us!aLuvyp7~uVk zmNlugYmwmF@Eo3fIsYwuZ#h0|@tcHf@>I=lYILKfr;c@h5~A$F^~sdF;z269Z$w)~ z&}LpX^&{oNCpA|sn^>k^f6N@nb^FCxz)OAlCH7&Zr)xUVc)ubHZ|7ga@9k35?hXa@ z2emryTS$p*OlE-*YrN2+!F#PBxwR&95Z-;E-JKg`NwB{nyRmKbgl z(qt;Lr;&Gmm%8(Dj#jQD8OMyPQ|*3EKVyp$wm_%D25IlC_`0;%zr8w*I zif~Cp;&`b1C%$*VsKkQ)_Z$m)D(U27=U+p-5L9n}aD9yBd)B@(ArpoDKaXoJU3O^Y z0&mEQ+2cC-ZZOpCR5s7WK>j$m^i;Lba(KIAZ^A-`zaav7ud$NtgufyjM%a7a?S?08 z{_)+gWyow?(hi2r3Km0`l=iikJu~o;3uupcS$FGh0)4fW=4&=~z#Bx+LHtA~h;dSO z#>K{etDz_#E5t&0R11rMHVKm_mPifcs&N1$Kz?^WAqjsB-MiIgbYD1d?7Y55X!_Y2 z1XhKE&(8q1@ABxjkX1Sc{f^oRr1KD)<(qKsaTH`1R*?yR6O+uNh;$ixUU}Mm68n@vbZWf&=_j<2 zwp&SFC7FS?6qmrghH|9isDfPop^fu7s?+nHr|5f1(E$Abx)N@OMderMcUq~U8QJE% zH~WZ4f&lNIP2ZL+-NVVvGjWQIVIk}E+X(&65&qcTU8FZQe-^-J@bOp_XV{X&i==*k zaEiB=32QzVh~>F2H$aS+eA{M>cyQLp~S@O!uxfOX~u#Zl`Fn4Dc-P;QI-X4*B z&4TmJw;rrQ3*=(@R1N`aAsNE>>K~o8iX!`uG$yu=w*6@iWfDcR4@O8DftEQY@}8RXgYmf7Vus zm6eSeu*Z37I3*KN$r{Dhl;Rwumvck+^o%5U=?$fZEGdQA3kdctVU3fkoD)U@_Uk+K zZG*}0$yo+5JK^8?hg?Wg%Pt{*6BRUD+D($#%@Xo1?U5eK`gPAs#F`FO?Wb{7AFCE0 z6(fz6kG-a9PvGd=dAPt-(9QQcT*$^H5dyxkwl(ao6U_QCC8&+8kJ31QlMMljHo4O` zm{DR9uU!osKMoQ^h0dv=+y_mF-m_b?v_mDdd0lVC^ay`AY&4T>g2(gNW|Q5xWiG)%9 zZRSsBUOYfL=J|*5%)U@U7OZf{#j+!Ph1W}q19x1@OeM*zqd3phEsD)Y5c730mH*H$ z2;(Ay#UURfh!=`#uHB*@C_-oj0!|;vTh$$Ue2^6kS#}!9nm}VQ&#*#dG_Qi-jZ*+e zRtRU|g9~Z2uOjMyeHK27WeYhk+8K9koUV~qBgA_<%C4eQBn|kW1EZ`)>O+izv$L|> z0ulib_BQ^wVGo_cq@^>D3QcaCG$Moxn>#RXsZ#3dB!K+8u^OCsGn| zOs2YCHVHsq+M9Fh_WF{OajpEKv?Z;`_sdI-*rOv545DnVS*lZ4+FRdp3 zq@$`KGreC1hZc~=V&21@S(c5oW5Vh+!TyN=5K?;HzfAchp&*q1d@lPn8g`HidV(Q} zg0zO^ChP})r#;q;q}dp0q`kkEy}LQrbik;f{=j}O@ymdCIseNN4uU;db}G-C{DzLn0^{h&Z2N`0jgsWw(jqDEzkvkuoe!l zQ)7=;S}q1HM+kXpZ7hP{tvELOHNyD|I4!7Zb!))UpxC9`kOnS{drszqRw2J{x6EYw$AW|SNQe|^*b#h~6b09P`moXFq8@Dlx0Z@wDStRHIUqhh3UhRFWnpa!c-qYzU31$w?!CXlb5HV2 zt@8V0ZtkJIO?SH2o8E1+ed+c=wUtD({>VylKlaxjKuC_{$ca@ZIZvl1MNuFCk^l&R zVUx=VoBaHYwPot{r2P?-@^Z4*^6R+1e?H^TmreM@iiu?^RoYGFt7q7zxqnNons5#u z=t-GRE}s4O2NA(G`X4&pJVLKm=g(femU5y~Z>^b}UrdZlr7?hxOPSJ>^Tp(2!l$3k zf7wBN@!Cy%>Wv8fIZGMy@FMhFOlMrWB&VY8JOr_%a>vwu(uS@`i2n=IhvFF>gDZt^vBT}?#l9U{A&ya#>;>U+dk z1=R39^+j*|=Be&IHFz(3jeqUX7se;QGtG#NDa9o8)gjjvw)f z4s2pNpviVmB^8%gnB@CNs3!Txs4twvIny||CiyyYFy@FyP?L$kkAGjh=Bhh6(x%MX zcB%c&m>e-gf1*vQC2t}92XL0jo3Z%HUpRyJN0#_Uxs=e zey>Im+T)tFseu;{!8DyRs5FrNHB|whVf^*#KRyvJW|cmO)% zJ{8wja|Ru&xRThLRNE)JK+X?=0%3KdS6b57o0=-y3Kzmmxek%EW|46-sa&e0 z?elMF(SJ$-Hc7EuQVmy1uuSoRwi#4lO^2QqHr(E;VURYdXu0O=d7chRk)CJ+Lth(} za%t|8YMRNEbJv$^eWrn0_ts6cmY_jeLv?+Bjv^H-E zUBpa*IP>CxFp~~!?N%!{dmkCuU5j9N2?ac?OMjA(T!>_yts0i&*6GZFJvgl>9W$7K zp{-Qq^9}CI+e0g~j5|Z~-OzS_=)=<=B(*@%nGf?+uyCTdgQvhcFLxa6d<~5B>KF*1 z;+!6U;51G_1ON{&;4l~gfiqkgA`S$YXflcp&ViRAikBR;s^?Jq=xT1eX{c7ICHLRv?$Q-T`ODvq6?hR}Z&1p?T~_QYwy}pof%^rk{Yu~UO85-f_H8dMSYaqI+D1a^EJ2%mBj$4*d1T*t8! zR1ueP>;zQ=$JFsYhdaDDu+)qvPs+=w6UjNorb5t$>rK}9UzSBxf0UmvbjMiI_(`gQ zoSF7vvOJF?SF8RG{G~h z(4(wH)HHF$KuW0qOKLeZPl2?1{D+-+y5&Q3ts}3UC)3Q6rFjA>+o`hcRGAxIhFLNK zR*~78r5=_>F#G7MX<#cg@esfp26L9(>uNnTZhci$cl%(gtIc+~xN)wN+Zl>34g)As zSYYPiSTf9^7P-Sy*CJ<*K!475kux_ziG8#H(v7FsDj2NCx%PDjhwSbc!=k9Jms#-2 z<7e$Oel6;&Jy$bDpUNWpyd3r^D~4gu=m>&ExG`-QIkc_w ze9=@hdW)0x9I93)U$2TeQhG&iil!rxX(%8FyNluirXLebr!%c3MSth;qn#5UN9sE9 z2Oa*)e2#%Ur2vPlsSSoPp}k!hLg`NQ5MIzu!`el;Sy6`?@C^|_r4IsJ7N5(k3@R?f z7+vxzUv4NG8ahy*6Nlccnp*xXTU{^nYKWY6XI2Gv*~zLV*7U#`Y5OY;jt;Ou{HY|R zN$EqV@adA$LSz~QfPY3H;rF(}Q)rI_+zc3B5y@w0huS?V=V91Q_+5qH>s^b%Od%U` zy{vBPNQh&PoNZ>n5`b~I4f$nI6jWUHp4Q``-pYT0!&dVASVG)bLJSB!*nTDctj2w6 zhjMjvCs*gOcczf3bLwPvrm(59oYt&3v7HIH!SU_^HfEQ|lYiWp7PJbCBUIp*(8-pb zN-E}50DAO|)l_^RPwF8d&rzy-hK^MwK!1$GHdV<-EM&s)>IkLF-+B^M zeA+cyi`v5UwT10#3-j38;*ksxeV?|tm9gFTbH^!~TrK zuJvAzlh`_GcnHWq)xX~!=Tv4aIKxIDXtkBb@!HZpaTMc>tw?hgI#_w@U>uCwgX_eY zAY)vYerKAE^rH!qHHc59YKN>o24f<&E!iR9#OL6MEOIzpLXz%wu#*V;B~Hh@N{emX@4*Ih;v z{h=|pgv6A-xc(eUaJYQ|XG@|ue>auS^sJ6|QNeB*daQpHBV{}xGBDDMH%mkuj3;JR zJ~`znQ;zZbOajg&_Ox7zKgb9X@Jv>>?CI$`4|eylA^~!Sjb}_rXl%(uTCUVsrZ;7! zh?6RpkHCMi0x)~xm#X|}oxEwC39|a0(PQId+=!GlFqAbvL7`wqi>t>fLS^;;`SWw_ z1PGRrTGF9BEMIXU^_<`6C>SXbNSX98B?wk{VGnp6{IL zK5biHhPo$oBRno;wLWtGl)Ptsk!?(rOXyyLEmh^-5_!CyFeQKaXgKkarwvVnq{m*3 zxWOK3GGDG~F-~@c8D>iSqOXPS>=4}kSL7CobBvM#U@+Gu_Y*y&ru3S0#KoT@bfb=l z5)bIYpXAXws2lm}hJotTUn0ke_EdpO&sd-E7DoIILLS`&7Hso(B5iq+Vea3z#nh;b ztjSDTjX#+%0ex9*?^kO!`i^#`VijT|94Uq+}`BXo+CYtqFtZOFI zi6MUqygzgc@UeAvXuh1Bq^z(Ey4PN~e6Q%7VDT0{JMc-}n5RPbHtU%EwS8Tgb3`7u z3^*M7SR{*viw4i*;Bwu*zzk3w|wNO>PMSE=cmbJzXuxu9TQaS$>K@u%-}(AqgmK8 zx@1`L8(90XG?imch@*e}BOMLbf(K}}wn3ylD9~R2Gne3S=#N&>D-z@x1U=I^3}0SB zmV|Jj>@9zugxJ|`FX{eLw#o>Eo;l>j?Y?s{p=StBr?)%nmIaf_3M;$a*{^Jh%PWOg z-9&*}-jgiwTG&cwYSY2JJI0N_Cwts;QhzDnG(5>rc9p}f^kfk|B!y^fd{2Nbh;z%Y z-pid=Ri0?NOzzdMJFaz9okvv&SQZMVlRvpB8cPs-TV%Ug=3^&i1tEevvPzW2#N-8Y zjbn|lRxJ(AWtoSDAwO@Y(JWU)X2~I{Ox{0;(4Hh>`Z_vBp55XIw)pZpydNC-WmfoN z8`HW6>OAOD{1k}sYXku;=5q)ovgIV1ATOT+i#2+CscGe)3ZSg1;L)HAsTdXC@R*r} z?SJ6$CEj@Ke(UX)0m+3FWcv>v0l)$C*b}{5U8a>bmVPXid60pF6tU7jO)!`P0}x3)g1I5{}hFv+xd z3JnUcOo?%Fb-2Dj!Y>!spWScI7(qx@!#iklrA^&zsjQj2`o3?n4K(bZNlK(ylie@X zap~l$)E=1@L^Yo*?3DXS%#3ef)8%R^alZ-+UQJec>BYGM59eoN%yOIQFh5uK4e9?WrEj8jI|bk5H|&t|5jY$47WScDx=Oq zoi80XnI*`%l$vvDB1v^1{5!-5^!~t2tUN1piCE<#l=YC)Uf5U0?VTh)bcrfA57sOV5`JlFus#c3 z`XGH)a+r+)fu)~t4$%nTNc{P+V48OLhfji)kziqaQ^p}~acI2wuxZkdVOf2KTy+=##`$Xm}&a)fwnk})=jI< z_Dvc8fShr>2pg=PEHMk!e+A-^%=9KihUzV}M=vdn)#y@;`FpM=abEm+Us0#Td z7?PtcWwzeHX_l~`sxbmU%$<)7`v3&~Lxi+Ak3@=GjU@p_s1{(ZsG)qh=_|93kM$B< zmENiqTf9_88)CV8EJ-O{e`%Bc>RVaf7kL1fEr^p;YMEE5*ymKiY0vCndiN2LIw%e} zfhx5RG`OzXT7`itrK0PkC*n^qnAXX_To3ayGHcZrFnX=k~l6(7H|4~XfWy;Wol-0}N#p!~mv+ef4lG9OOY zam`Pv-XjFW6fYb0vb<#NT!x!EpggyIOUpa(sOKky2_}ZSsh>*j!jg7nnup2n9 zWHgWR-{*Iqzq{rE`VJ@5avuX!^Z3q|p|AiWsD3AzvZO}<#1K9XwQ?4U^@bKe3^uoE zI~I+hFLMK{^j4ou08UGnRTD}!u9B}WzW|Ig7mo1Q5fm@$gwvR;XnAKuB_%i1MF0jop`=pyTHU~^c2Mr#zS(l zzMDptnp0*Qv?q&ALNkjzRS0I6>VPi2Uh9ZKZDN64-2(c`mSTZRDQpjvUK5aU!S#Fz zomHALWT*Wvwi1X31pP}vrZ&o*8@*^82MPFN5vVt;WAMtf3u9iqF?bdp+)(aXLhSw) zs?naj*;tZyFkVnY6XZh;n8tul;ZWL%tPcl8m>oI7 z=o-G9WZAU)$WV)t4t?OAQoqS?r8sd~gkx)1VUATW+223P4q5+bWXEZaCgctK>q5lA z8j5#QPA7;~&O3u4$h<;h$rhozsvEmI2RK)Hr8~@gx39mBc7s|FDLKT-b+sc-p)36Sd zzZS@Im+~VI=>RisSDFlWo?(IOtonsex|Eepo-cMDN9Xf&9kBbdbKo{${^Q+{9E>%Y zFFk`;1=qCvjgd56Mhz zX~?;z(-XUnw;0i7bmbt}Fut&h-u`-)3hn~=dQ4};N1y#Nci7qj z2Mo;@D0d!~<~C>CjbXcwxRCLOiVn^Zr#Cqz*%dKzt+J9(ti;qTJ0v_Ud65i|Vhcn0 z8c3sMLll{b`O{Nt{br5@M{8v8MlfdAIm}b_GsN3Pu{!FEpYt^!*Nlp4yvYqo?i_h_ z4f$e4UK4dzwF?w-z({gbkC{qzHke5`7@oEnh*A$KvVGvyCnO3Rk{FfFuz6TuGFh>@ zZ>zts>60e!w3?r@IbF_)1L>?~3^|^^Wj@6_&zDEBD~N)HidYkN?-g$Rp{O1=;~=lN zwBH|95(^4{DBRR1o&u%Jvd~7WAwgb_vvJt_Yv#BS$|@xi&H93*oB=xk03g2QE`;`f}fc)l-2SR8S<@LU%+VN{Y@ZKauwMi9n@Wx@PMv%Is!qX z1)JVhAb}`I$ltgO6uwrOjZ%e~`S0!x&^SSn*&)sq7jlJS$0a>5&;(Nj7o%0)|E(l9 zK8t!NLDBFHOd+wXUbKTfJ(CH>Bi*-R z0{9Gh-cF#yeu5%2WC?RlC;-VpO85{pODdIIwHjTCQm%9d^qd{yI22{T1s7HV7%hiZ z&M|n#o|j)ioDfV)&5gz`RqD`79DzL(r9z4jLcweI6I~eXD#4VN{KbJ%s@U+@;jgrI zV{oy9B$pL6y^>WWbB1L$r3zgHiWTb+8k<~3cwrjzz?`Bc_g|_p^y>j?g#;Sgo+x_qp&nfH_@J2NU^@IDF zPyQMes_R?*;H%IW@O-NAk1iQKP1XqFDeTxV^k;1l#2&niw8O~C{S-Zw-%5xAyT`+| z%vbl#buy6Y=XFrTrPNC(x-=H;aYi^4j;s#`NTS$9Q;A6ww2nl@c8Z&pPvWJ zh`DG?VN-$%-dqbs$4M1=&hg0hq3z^8y++${w_em6D4Tv??Jc68!1t(P?#mR*>n`R{ znbN-Re_Q!z9O*c~(i^HBr81)f@KbYI|HGBB{x4Uyi9hay$8~pA zV`#Ui{#%VC`guP-sG*`TtA4qoIU#BvOfJ?`{bdG`=I7M1y*ro)0(Amu%FZA>uzx~*Jrf+*2k-EmEuD|`|THExHLf1Uk z4Uh`Yfn7N8BxR5yWNvD)zx)Y&2a<+U<8RSH)qBwow00warCv7_-c$Qg-`gj$CmV0Tx0j zyQIMhJu+ARLyYVqGn)fB+KR zg%A)v%t*yNij%r}PijSz_DVPe>&j@kCdlLH@6GrVI*WxulnU+C0a)>DlC@0d*0UX z^a{wiJsdY+>PPjJkeXEX|Rtc&qIJc9c_&p&1PIEH0|4X+$}mU0SDmt-M@% zXFJXC6E5urYeGqC0(;H8M)iF+*ULTEBS8pen<2hc#5Jds6-}Yf;afZ8so0;-%H2ai zvSwcObSk3+tUWY>)f=-6@4&QvS~zm_S*r;m_ufu`GFoz&SQeb#zQ%Q9Y1SsJ1zAjc z`eQAis!LGE2~o)|X<22dF`59zDMU`#$Wb>(#MIF16K1ZqfO9Z62!WBkAv=gw+2H+1 zKNiguZDvr!kLK~`Ph`BNU_vw1Cyl{$Cay!7bIleZ{D~{^x3$As*kACx^iiRiI6W78 za*qYb^jUZ?G-7ZH4auJxKQl=yf!F^OvDd$JntPGHhTc9Uuq6hYLQK&UUwxxTbNvNf zps0WQqXzT^0y(AUUVww91c^Lg)>&Pd!=^ZiL#Jrdju6SPWd1YR9RHrvR`^GfC6k+( zO#0or_E}yXG-$Z#+33e0`1KK@gT8BC6#V*o`^zutmh)eqr5NhF509>rX2PxE(pYsz zZ_8R%-|C3Z@nH)sFgaIn1p;46q0PfM((I@K=%Km8K!AeM*7Cl)jUwE$r?RHQhySmc zF!(T&>u9<}6+`}dK_p}mF*N$1aYG@9K)cvL2H6xcJ!4uo>=kRi>J)^a>Nph zL{?KYaa1A~vbC|`;kZ2ml=%;oV+)iGw7OR^aHn$_9TE@#F8E|nyODzKJWMV6l{cB0?NwPg{fWM zj|Ooxhu$qQw*+(HFrN$)Tz9GIAAA9Q;EZaCTh*YDrDG>sh<#-C^=Ixe zfPGJacc~9PQqu;RoKg_kQEdlC-SuFD)bT^Y_DUx>X)<%x%r3EmO#&Fp%GQPApnF6m zhwQSigbAQgvh9qe3eJ|ba=y!sJL}NH>?xFWjbOM{@NCj9pa?fz;L)Ztm3uD@@EMO~ znj9UnTn*bU>*|pr(Tk+ErSn0Nxm~T=KrX_sHTw9Y{~3iyBBFud6(H*R+K!12rj(*bFDnW1Q+ZhklNks zgnZ^RDqv{_nNUz*D)1e`oc0tF6kM7=3-Kg9fL=Ux0#A;Dq_mL0(@r~gxtNc+FA7vs zMgYF^v}a%gZ=$PzgDI_JaARnmz5r~UK5LqX2Prl+9F82RrT}eHI=>S@(p`8+OhU_1 zMMu7$29n8*@b{en)6Uk~L75OQWJ}2FAa`SES;gHq0JN=d zO2F~uRJCDfeHrUh3S;m(G!<#)QmR|>Ui48cjHvadkON%|xFuB`-Q}GH9w5WwgH!Q< zi2L6LPO@1(rQzpN#*h?0X6XyF#*E>bH6S5L8#jo3{>SPwhQov_{7=B4;E+6k9zLV#Vm@?MO3UTga7<*gS9TCKKE=a$(6XBW6E&&Ub{udpWc zjISbOeU1F7Hdg7`JRa*E&!=Y=pl)2^_0rxhBM5EI?jZ%WS^C`hS+i0lLUWrt9iUcx9ZJNZh-nmC4n5d)+35Oxd2{wesYilOjn!f> z4WVE0GgLameW^?u5f*Nxs7#U|Hn`Wv#;`ABerkBI7Q=-DGZI;FL`$-wPr<`oSk3Xm zJ-r`Fc(Bp9(uhT%457naD_8KH#8mD|tSS$LJo9A5 zz#b=9nf)PXBoCyEz)z= z4t>Z&Q;g7g;`G}iAG_zafF%`zb>T>VUMrODcp5x}io)ZE zV{;?3l!6it)2E2DXjw2|v9$3U4HoR)iT{SkH=Y3i6Q;Gweo4o%G#4kD8urf1k_bt* zQql`rEqRrUS?>=LrWJmv-RhO|-ul21ntAT{jGI)z+4s%xW!e$raLC@1snr95i{V zdfEvB|I!-7QdmKNDP^0S!Vf;q-<8eNmo~7R7v4`u-aD+I7A$2Vq#Os4IN)wzuNeoFjM0Imvln zeB{#E_@mDL&X?oI6xk*x+$~gY(%9EhCmYZ=BU2KsIPj|!yXJ_f?J5Y_T*pKgj!@xO zu>vc<$WoO9^Wy_4cg1EApm5R_86`#{e#;~o_J=U$)};WVaM;60Q{&_sXqgemfsE|H z3W`Xk{zyK_dTslM+n~&W1QUm?l%b;zN{6KIrJ3k17_od5*RW9scT(T^=YYa95bUAf z{=$&5SOK18^pD=khWg4#<%zw#PlwTd+{|A^Io0k}Er7w?*KJVQaNQDJ#CeaAG#-CX zx^|p-YQ{q+?U`IuPYkBuHsANq!6~J(*42rScBh`fVPwrfblu;SeJ|{X`&ZazR`IX+4P!04~ z-Tq!hGahOp;c*bg?H=7>_zE!{GM8pUAHq_f|GwAT@0&0tE2toS!&V?K-r^$AU2=Gb zjUHsOVD({o!N0n9&fsj8d$FqAv7INgeIzc9eeJWy>xXBN0XMT@5BF4hyWTaqyI|v@ zU@!EjRR5TWnvmftBD{lPLZKkQ5_Z4XY>@Vd|5x|CECIV_Op*DsbC^qc#kmd$x;A$g zMW(S{QlY>7KA`$Sgu#SgINS}nN>nGMlprF-@3lT3efw4k`)WoO>G?p zB}hF-1HdN6gVTHyX@ObaL>kQ=C_-xVKTv!i8z(cz|I%srtH1U~Z+*Lkp^^OodpX^4 zAf781zb}4+r*j|^cf9xhw$y=(aH6&*xLz(Pub`>mYvj#X;`u92ILI%luA!l^JgbKO zM_1wHK%wSEvEGn!Kuo^iX{I;<)16z`?_+L*ZivOi=`YmW(2IB%T|Z zL2a9t(!r4RCBVO?1Z%19(UUmrTE4sEMpr%RG(@r5x~_IHI+6lI=et>joeD=e>I`$o zQDsrpMaw1xA{Il34@2(h;E3F#H*3FBG`N~vPH%3(OcW|I78n_tll3R`1e3EbWF8v7 z`rJb=8_;-P+zzP7@K8BT*R)Dvx0fn8rA(Cpm5}HPlv4t%CVO6@Njfz#(#=0f8FF#h=I#Y7<>UpX+~gFo0<*jh@Aj~L^cV}v0H zT&^$H2f}puVst3wGaKOvF6yUAy4tbHv({9hEbK_u-{5XP95ihkb0eDRkfb#>tNHF) zrg2qiRv^{ps-mz~v8XYvyMGyA-*`mTAnbH9(%KWgCU_N5Hf;PYB(E*K_)pWlaly zRNwig#Qy$`mt3vj;8(XWOTZ6My51l2Yb9V-eu4!ck-`~qBi9i9nmok}kKWHxKB0a! z2M5o%Xkz{(JiX=mL9B5wVDGMMODkm zV&IrL95h%jpB_ju*K#ToA$j{4s6DLh_{*3Ok~VeV}yMj|2VUM>2A_Mg)tH;LMwTm;%JPJu=7SBrvcypWrsgd=PE& zu!%3dqCPd@eh(fp2A5=3)ITQSGr`oL9^t4Uku_!5uF3Sy8#(?w)N@%_KU|O49e^TY zf12Xe1Cg?AXvIZ>LvaijoY0fuC+;Mur|NGtR5#4C8I0C=8~04Nh8BM6MxznqQg39C ztRbOCiv1HDl$_h|WTMg^G;)r6{zN-GXEK!}RoVMsQv5><%9v#Qw@7i)zUC7uDIOR}+uvW{ytaQ?3{`*LTcI|;4WcoqOIhn|>$=SF z#sX0zh~VIfnpK!GL6f@g(xk^I5!#fHz9Y|8Iiy&NPcr1T*r-A*1axo|5{R%>5}QFG zR!t*}4h9nc;}lc^%ik%^gO&Z|1$vl}(IMn*4V(_qFP6B*{D-i(=9T<*gaG89u%ARCVB|CkSC zn{wBhpUt>SBEpI2SS5)3U862o62?gktjj3EOtXM@x7Zcl-K;I5#S6MnbE|Xgn^vaZ$QbSe^_3H)lgSl z_*EPM9JkR)-i7V?oPf$$WxWh2LsDnd#gJNX=7WaviuGnPTv4x?on3NlDG0x!#UJ7d z)Qmwiq;Kp4xV2Vt*d&8tw2U`(D2BzYTe3xE&6kw(@Olj<#} z;$cV}|C;e2OFLH7wt>gY8V!@JkYKpjM!n=A|MGp(VHC%8IFBBS1NFn1Sb$s{K1fUm=kPpl&0N=KgNnwZUr^0YJUWdVZt}CYzMaGRS@B6 zvdoZaTge)rQiI*P&AXn*mb*tCvUZ_qSaPlx|BPbKCeW(Bfiaj&y)U*Y$rm<(AM+q- z3m--1Kx2KZ2Ls|A=0ryxZAT#(vo=#XTaBG&!FB~1BI&eju%>;I(85eS?0V&Mzv2F5 zaqI}`Ds2-*LMrwF;#tUB101{bmKYp&JLY_P<1(ou6oUSMH>|?_Emap#!s+ zBS>OluE=#u+=K$<#9skig9-<*7!C_UW2srfKwG7O8)*RmOw)JXx*JD;nh z$cCgmJDaG;OUwr1a>#~;`d9%ssEx6VfPk75B~p)K*;!t4XxIrsYEaOG<;Z+F%A)A< z9`N8jLm+$xD>5;I@GNCwE@}w%n(3T>7 zJVtjo7Y0^ ziq#Bk-|SB3M?9w4!UHk=_cUzeDXU!ZETl$05FT86Ol$&%Q2j%=0vue^S_qwms`Y1d zY8fl91FBiMES^V`Y_ipUI^(zRT3{>ncMSMX#FcHTe}wi3J^w4{U;91Arb4+c`Rn9< z5`TR>I$z`y*$(zqZO_BA#J=dmGEgALWL6odpzZz~S96>1yC0p0+O;P>y z?JxH<@G$R)v!%DR?iQNVmFLF8U%-YBF9Plo!zLWvY2u9%J zQZOcqA%2q;cfp?P{IJ;`Ql04K&(Rra_q@yK;U3HvX`N(;yig79l>ojh@CPg|rD2C) z?+XfaDW}X>)wTEDebi?ja;SJTU+PR6bgkdO6AF|-E4%hp$Z%lq{DME!Q`s+}qYqG6 zf?;6`M!4*dJZEy3VVW3f#aQ{$VeVBZ2Uy`jeJhz5?vm&{W=uwrYl6-t zv|N(k2*J~{n(+5=mbRsfK$TfD>gv)(Q>I*ePD+RgkVS3=`B`cC`MpNftdz)ilAxj@ zb-AH45-#dq*d7HZ9QvEOGP9%@3}aM8(n_v zsYAU!;ZoXtK~f=)luN1JkDN<2CS7rlnfp*)sZd5({|FI84RB~z*o(mSR*2G*9?Y6pfty)Ia6f*5MwParXuN8q*X6|vva1mKoApB_rb z{2lvRkyU8Qr%SMkfljsZ@*v6k?qilyr)jhJ0&2~OkAw?moqmG)0B-Aq^`zAJ=+@Qx zEn8);UbFxy_I~CbEoy2ztx!N(ldy5ED4YF|zV2PA125rU5cJ4ls_m2M^FyETBqXJm zCof6V^|&bk@M~&fL{P376sIcQAtf(F|dU| zBZMOtQRp{R)EVzZu>pcNH%VdptB}H}@ZuO{h)iFN7CeX3jBF9e=c}1uDkM7B4SF|o zK6aC>lnOs>kjQ&Vqm_lscNT?`oXL#Iqu)4sEm1mya3G4IK`uWn=){6(46#MVo7+3n zBdt@dICXxxOX-gy|Ar*uXrmrSH}``UVqEL8PdKdikq5{+qW ze2pLbt#McLybKb$r-%2FpCflZckoQP!c#s9uO((t@p#w_ISB(K1) z50-&7w;~lUwUS0jR73eEV|yywZtby>Ph;}1^JkCZ*if;+a-L@^UyooA|9-w*`}?|Q z$6#agpQ@B&0pE|$i}kp$_+(6(H#Cy-M2xNWzzc!YV2y1Cu7*I88P_GwuVmogsx`uJ zYb4{POJ?dK+dD4zsC8$8vgw^F+0|}&A;hgWx8^Jcd+F^;mrHtxZ&9X@`hIPLn^(6k z{VEm%>1R^Jx*g=d`2{o(P!7%UEm7iOTkX(W{uZBZPr*nXqiW{=Y}(uD?rUST&vq+H zupv#{TV1e43|iTRr;!Y1ug!ocDXuu0dRWnPf4Fptk7ld0=cxXSuU}qtXA&7-FWL%` zqb{aLNx-a3_+1a%7&Q6ncya1|Rr5}E9LjyQ-90ULxaqgQt67C90ICp{QV-W(QE*!A zuPsD#=Bza!#f6)x!loTP1bslHe)@LBtuWVXt2?#mS|hPK^6N}^`4j*XeT0-k(;?nI z+k;iijLnBrR~t!ZmNv6%MtM~G?6?$ae-00N>Kt0g#|))Bo|Bp>1DptBJRg25b+`45 zX7PaB?An14*Bw$B0k!IP=p4dbd2_s@r)JUfe(^)*jN;IORfq&TChzhrreGAiz) zO6y_y#Uv9Af~a^PgthU0HxiJk9>8j%gWXq-`+j9Bb@cA2tA;|lQyXr=H6rP$BT;33 zI%^Q#0W2Gc^Ckm>n;GQPhv8OT)^I2()e4I3`IUdQDdy8x%s|(~`K@MgiS6nz$MMtjbe;#Yk z)V-!&I9JT;zGDI^`1t&*E2mU^PkxW9F+4j!OPb{Z z;+$Vc{V83Loo4c}zPh`n{CawIPX=PufV?b@i`#-b_F^JxrvC6hs%PJ1exj<(E(|m6 zjFf@S#;W<~7uwQ)3{khXzrTxB?!8!m6Zf>;WeWUz7pf>uZ4ucicYJBC;w%3?-Zm@e zE_u|Y2x1N#EB7wmZ&0T0CDsJB8{Tv4J~KEr^qEi;{|w1hg=z?>`lCT~U-|PH6kG5M z9(}RML>0$Y23v(=SR$Zhco?3pweftaL8s%Rjf{)y^8CHMz0J&S*#`F)(Xc-9FQ<6| zCvPm8!$a|@>&*IO+mS!gzh>>6t!d`(GYWr46W5a%qEMz4Nv{b#Z(`St==uuK`Qp<^d3mUo`gjOp=8ev% z@ShPMD0M(r&XJ+H^T!I4ihJRJkmjBsf`mJ8&y2Q!Nvc~OVuK_t2uomshj>oa6N?%F z>xST=am$n0p#p`=&?x$;1(=i`9(v#J21f&mG;8BYYthH0X-H-2obJlGt&NgL zpd|?Dh26%K>20DF>4)kiBhh8*=$$+!*JQDF+C9he2sSRJL2>&JgHSk14O63HM-sEg{#M*bU3W?wvchD3aD$Cdib}498=jE+8 zKSgyt+gu4MGp>3zKkBKN@WS?*^o1JX)~~s=MM_$#yVlHwC6Hfz(rIa1Z!zKB!I6xp z7s=h^%r4kV!c0j4vLnbs6gMT@7ap1!#gAVV_iMJQ!-uTU>J&MR5O_wD!U`eqkc7%Q zx!ML^&!)ols6F-+PS<0K1DVESLH~S$eZXH6Z|{X%c<6$dV)vxJb@&>PVORZdMAo*; zIDJ=)x1EZ8)lRQIke8qEzK+%0Q0HrQ{mI2)$n%LL|J8#YP!?<``<6lKz|v4e32w*2 zsDXxn0q-OtZQ^^c0c5A;6o?mwpmnD`%|tq^VzRgMTu(X@In7FGakVlpx_5iee)?TL zwk9H6s)9jX{u+`I1i>knp30Rj?m;fDq;-BFBRYcl0wzJy;;&tw?u&n#!gFrxHpp9I(Stt)BvyZQkah}pC`jn-Q9sP zzEspjfp%ILwm=4qQe~<#Lp1udphWfB@#uisj&b258CN?#S{uAz-sQ*Uo90Tn>6Y~j z&aT6dB3|YB&>S6lX{;>X2GryDp4KEI8Ub^hyn2;IM!p|zdB1(0(VJi3`s-HjXj9XA z6c6$2%6#S?}rSdfv(t=c_%C_yoMB5aV-6T6*B9Ax6qrFsxi z(XbpaA@5y`C}@)qg$S@dYZTHbSP7gubD{88eLOJ09^4!!WbjTfD?Kgg9y!JjWK>eT zvHZaPguz+aacWf=>eCPlZgVGZMK8ey( za&j$9jHv?wY%@W@$g1x(|A5m|Kmh=nld%1=qJ?9|rmU}==j$Yzg*&krAzJC+;~JV6 zKv6?6Bh~xZO6q9qt=||SN|Qh9@|mNkW$XVNzw>jxJE~aUx<1%}$bQ>}{_pwBLWfG~ z2})B)`sHhKRxow+qxdGM6!RZdVy0q7Q0 zu+AgTh9xZ~-#9g!y0=`Dd=wzOvj`CpZH zS0`2A2IURch@VvGA{5>#3RA`3W~0jTF@HW@<`W={8Jqu>J~GoHwwu|a6LpIw)+ zM;af&F zxBZq3DLlHpezsw!hKoI@lgN@n#0;mL*|hXIfwDx|6eoQf3Awq9)4pP#BpR zuzuN&H{vyvU2VqcH__g~@NV9@&W?c=TCTgC80_?rwPxL=vp4`YmU(B=Kr-7gxwp9} zP}f<+9>IdcRA4Jr{5Oj}`fU8E*<9Lve>?iadLDsHrSOLAO>GnD!wt8K#(o`W9!v@o z(Sgit$o{Xiv?qp8ace{8AB~BDzTSr)35%|1!V~$p8fl%#;!&Vw8GXXWi*M8$PkYPb90l%ITfp-s7a@_hgq86m2zq#JYMt1nKB$w*}R7wLgils+w64uPtX`3{oXQhByV-;*q+Q)%m!T>mxJ@zV5B!67Xn(#yC*H( z9=IIiK0>%M52Ny6k7JEnJJgc8GJ;xts&xkh>Ook4bBn4Kf+v82zVOp?@d6 zgA>;Hh8C~;&%tRI^_~GqI!`3ecFbD_oV6K3X}i6a12pK0yy8;WCx!T&K9xK z4JX#^h=BGm^lxe#i`r-uNN&GcHUhY-HZ4aLsKMQEW!$a$G%*?xi;q@iE(!2&&*l0b z;3ZmnlkKT^zaZ^uQ9Ap88C;rjnI~?XhuLa%JSV3s%(nzw{u(EASH7Y3C>u?j>2Sg_ zdf0Q8Ry*PBbl~gA>T0+>nq3B_;T(2{0I8hej=t>uusV1aK_l%HwlF#@IwutSaX)hR z94)tF;+XjkCz5@;foU}f&_lj|#IV&K!;k3OPYr^)t_LQ2)-7c~9WQ|tll^==NCbko zHX3irR!t9X@9*-n>t#OTC{Z|Qz9oxPy2}QFocB1J<=JoQ=e_M3Ll3)#7cYqo`cAW! zvUJsIbp$K5>b9P;k)P_`9Lz%@&fmTgf*yK$v4;)^I|=UmMjQ>azCTHG&-LD8YbGiF+v4Ia%BVcfE(=`3%)Aef|{@(jZ&Hh=M&(P zv{dA^nAlFL)5Q;fME>|)nXN$@A`tQ{RMYa}8oED(Nos0HXhE^t4X1)DO`|wVe>_HJ zYL*U}7ewxe)lsiRdXFN|Q!seV{Ak!(@zdxh(TXljj<_O#Ggg+LiiM($iQ#U8GHJbU z!;vuL4v)3A0mzOzaU;U!DQW!^`SEky_w~@|hmcC*Vrr^QAY(6O9Sq2*iS^Y>>!>z$IFS;-=G0 z;^;N-47~&cmjTe7DK)yN1=;f;ktX8aT=0_|hrMGZQAm^!WfW^({&7NwiUBl3wyUqV8<4mKW0M`eek$o9kg9tIk8pB}5ny6u9NsJ{8 zk(miu#=cKVD2=g|WRJ3itRZ_SYa#0pvMIri7Chiq&TfA##!3Cb==y!q^2q*$x5?di7Un*X!l?tI#xk0&d@d^6y`q`Ci*&`hB>3dugNEwrQ^Ij{FHAp-=~kytUrn!=1enx`*_nI4c#87@TbN(FIS;cja3g)$ZPBo&8F(N)4t4Wo14q4v z2tzu=sT^Wq!?Ee&aQ-%Xpy`TLWgfbV>ar502*w#I-_x za;-zM)g4q`P}d?JAMF3?Q4x!ldXKpStY;iXhzfp|5gTI0rCF=BvX9a3(##MvS=qvN zz2QhKjfjrkgC<}5rI-~5K)wFc@+9uP-;?L#cxB=_MB*I-eL|uFKzS~3K{<=I#H-xI z=Yjl!GIywdQu~XxdPoVwbn&I+e2b~KCv-{70Rz5ZR$pi~QV0q<>&~GcrxoP1Mx>wL zryrT(z~7XvnmrnXCQVqw^?&)V3Sq)sEj=GA6Q5HVh=`ME>5z+#sqbNbH%Ph?)8^lJ z@e>UaE$}N)|Mutn{VAEvrf<-RST&oaR|_}gA>T7c#D|k1z1e4FO$wc}uXZ?TdZ@kY zQ4^~%eg_ObIn>Bfz>;VW5oFokLf-bE-?M!`*g^^I+>Y0deLmR#(q}3v?ek?@On0~; zniT_}r9v{c&lII=>nr@+eDC99wO|7TE)qkR(-JTu9cghChsP>whdX|IZu`TZ@5K?2 zTNlzK?tdxY#@NnMb3UM#6c43axLd0yj&6x;833=-Lw4@Qe58m^ocfz;7~0iCZYd3q z7AxBmw;MF4Z>Fy1HzNl%9olp*pxB*P$!Wujw) zkLUv9#zDy7L;%HOK3ZfekI<>Rgd6=7lgT~xyY&oq?LGB^;FFglSqeE0vNcIM9y&GEG ze_et5qGUHyw>#Tf>~ns$?|AF4z0yRJMFED-G|9cyu(}_j6DtK5Fd$5$%T0#+K45h` z)~4W=bRu_|Wr2b6yXd!lJXbf>EwjmwCY*Cv6+uC)J&Xq%g-%Ac^U4$bxzDb}n*)<) z_5TRCrcg17iwxsbt>rg7;0%_=_UmTLVfwPi-q!?hV$HN8^&3`rU0YniIF9&Gd5cF+ zhripW0D49J#%v#8;~b7LTW}b!bN{*+grdXUaiDd0Pa?-mWOWD3 zYzOx|X=oEij@fRqnT9mD-|lIO6ro<+H3KLf-%YNr%!U*Fjg%g3veYGcNmZ{;l~u0u zCa|@Cy8n4%&ty{P*F zURd~@Umnkc9Z%>kP1gmGIzy()gutAo^unPpXG*rFLcM*B<{ohIv0Zs|fX=>`?G*{- zZ`ERJigv*$kDTORJjL>@ZYg3*Hue$~0kAzo)CO21Pcd=lW6 zxuC)O=B;W@uCno~wdX5W9&qBAJN5Z~d1oF}Pxh|j6nSBkWpIef-y!aXqT_UKyglZ! znQc1&)ybJd+s2CV>4SeVfd(qN;LZ(bL!PZKhgj|qtfV72M&Pczt7sPeQ>h9MWQPwO zdwq>(aQuV8Cw->WxhAygm|wljj;sv3?q}phBQe1T^h_{N?#mz%_DH<~=IJH(dRIF| zsym?#5+g;T`5_#L^CcEW#TI0KYEm0LsZAkbV+B`HZSD4h%qb%v-xp@<`7~I|S9&OA09|oBVGqtUXnOzaF6Zlqelel%ThyyB1sGM!YOCx6W zrF(a{Sa&MUvBI$Z&|D4%sa~fuHL3n(wm)?HKt%Fgx7cOi(C56PZ0Os=i!v#V(+x(k z=tYMKg%#gZ486M>0G5a~^&BX@(` zYmE-`g*mmGSurP>U1i1f17Y|*LY>ihmBab+Qvm^IP2SB@(yzU_S9o*tLxXsQ`(j*eb5^Tp?cF>hOd)Vo z2LWZ-c$lMh-{WXBpcBSbk&?70Dbl$|`$Ov+8)sa)BShPFl$$d%6BW^UgN+9hQkPsd zeOaHXNY_LMrY*EuTnOa|An@=HKv08PG?M^gus z|4vI0cVOyyMheiXSjk9lzy)TUTYCdZcKu#CY~d-x#;V!%Q=Z~8Hc>lZdO_f6M$KE| z(Po)@Vs*>*H8KZEpt-sci)HFBgtfExT>5g4n9`0aZ~G%AaOzS0#2_o=I|d+MYi9YwJYMtl{1zduq1S?S z6t;tzAFsz+CpTKF1aia*c%`p7WxkE)9F1pYu-^=GUL)P>rpCP9e2;xc(pQ7*I2I*!qzl2J3m9*`js)nexXPUfUy6&R^ZLEm%$X$jSs#O$&YO$bD!y) zwo<<}BvqDKxmSl7ZepwWz0|c*)wbolBg-!e^|6>%8+WkJM__JDxU` z)o%3o@NSdt4cFbBUV)0QLKy5WG#u=NA2jpUAl_21J761&YKfB_iX{>s`G7_)vea>K zMM<1vRQ_2Q5h6Jt^R@QUi+ms6UUAaL_|li1pB{*U)}0F+lwTK^H`D{B#mwuMZHxFo z=VDI)1o`XE=WeC)uSc#T*4~$Q?fqU$ld2t!zcG4ax?~H6i@f)CA#=bOC|MVX?a~|0 zBAo!2cUqcIp5H#)9XQ$~)`!odlLl-enVny3v|T>$VPEwyhOKB3y?V&EsS_e1)t|Qq zN61Kr^aIsv>ry^xth{4aoQ#FBq*wyboe`CJSapCMZ^ovclLCIB*D;x^*48PF^JR%u zug$Ma+f}pJD{>+7>;hrMvJg63C9Q`QB~c&AB+=b=25llGvv!(@1|>J}4IWRTIc|rZ zvL%Z5?`+rH5lwkVc5Wo)F{jMQ0u#Zj8c zfw%88qfd9z2%Z9NK(ziC*w6Sz|A>0AM({}*q-m{fCPMoL<*TfMhVV9GyUgo{bD;~7`gIkS*fi{(2_QE z+~pY|%OOKr!>6R{xg9LcSIUC=t@kLDkpe=6QK`qw2b+tQdXI0V<*F^9s%X~CgH$dl z+lZ891#;}oHp3ctad`OQ=4E&%a_~P0$^5Tcpn4J=r`!jVi-6e+bkG#V%Yci_P`HvR z^lzltTn2#uKa0E!$fHwAm=OItb0Jzx$DeXX7jT)VET)LMDrTpJfU2r1!PMa}xRWE? z8K$bHtPWGbBA_bjY6vA9Ohrcv>kM~Pc2t5Ql(5cDe@}mJsKK0|cU6?2&W><3RUOQK z>Sp>~r!#aAWGBv@5h5nXbd{Ak!Vn2fbKt$$|0x#i!3O%uP&wDKE~>@V<;Gz}kMjw; j8dIr*d_Qg(0nQa}uX12N!|T9epMtysz@}7P0i62>DyO>x From d18689f94eee0338da8b2a6e6596ae4d21053257 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Wed, 13 Mar 2019 15:40:09 +0100 Subject: [PATCH 008/403] Added in code documentation including doc strings. Some simplifications made along the way, they do not influence the use of the code. --- McStasScript.py | 897 +++++++++++++++++++++++++++++++++++++++++++----- 1 file changed, 815 insertions(+), 82 deletions(-) diff --git a/McStasScript.py b/McStasScript.py index 8a38e171..aa764256 100644 --- a/McStasScript.py +++ b/McStasScript.py @@ -20,17 +20,65 @@ basestring=str class mcstas_meta_data: - def __init__(self,*args,**kwargs): + """ + Class for holding metadata for McStas dataset, is to be read from mccode.sim file. + + Attributes + ---------- + info : dict + Contains read strings from mccode.sim in key, value + + dimension : Int or List of Int + Int for 1d data set with lenght of data, Array for 2d with each length + + component_name : str + Name of component in McStas file + + filename : str + Name of data file to read + + limits : List + Limits for monitor, length=2 for 1d data and length=4 for 2d data + + title : str + Title of monitor when plotting + + xlabel : str + Text for xlabel when plotting + + ylabel : str + Text for ylabel when plotting + + Methods + ------- + add_info(key,value) + Adds a element to the info dictionary + + extract_info() + Unpacks the information in info to class attributes + + set_title(string) + Overwrites current title + + set_xlabel(string) + Overwrites current xlabel + + set_ylabel(string) + Overwrites current ylabel + """ + def __init__(self): + """Creating a new instance, no parameters""" self.info = {} def add_info(self,key,value): + """Adding information to info dict""" self.info[key] = value def extract_info(self): + """Extracting information from info dict to class attributes""" - + # Extract dimension if "type" in self.info: - # extract dimension type = self.info["type"] if "array_1d" in type: self.dimension = int(type[9:-2]) @@ -43,15 +91,18 @@ def extract_info(self): self.dimension.append(int(temp_str[1:-2])) else: raise NameError("No type in mccode data section!") - + + # Extract component name if "component" in self.info: self.component_name = self.info["component"].rstrip() + # Extract filename if "filename" in self.info: self.filename = self.info["filename"].rstrip() else: raise NameError("No filename found in mccode data section!") + # Extract limits self.limits = [] if "xylimits" in self.info: # find the four numbers @@ -61,12 +112,13 @@ def extract_info(self): self.limits.append(float(limit)) if "xlimits" in self.info: - # find the four numbers + # find the two numbers temp_str = self.info["xlimits"] limits_string = temp_str.split() for limit in limits_string: self.limits.append(float(limit)) + # Extract plotting labels and title if "xlabel" in self.info: self.xlabel = self.info["xlabel"].rstrip() if "ylabel" in self.info: @@ -75,22 +127,46 @@ def extract_info(self): self.title = self.info["title"].rstrip() def set_title(self,string): + """Sets title for plotting""" self.title = string def set_xlabel(self,string): + """Sets xlabel for plotting""" self.xlabel = string def set_ylabel(self,string): + """Sets ylabel for plotting""" self.ylabel = string class mcstas_plot_options: + """ + Class that holds plotting options related to McStas data set + + Attributes + ---------- + log : bool + To plot on logarithmic or not, standard is linear + + orders_of_mag : float + If plotting on log scale, restrict max range to orders_of_mag below max + + colormap : string + Chosen colormap for 2d data, should be available in matplotlib + + Methods + ------- + set_options(keyword arguments) + Can set the class attributes using keyword options + + """ def __init__(self,*args,**kwargs): - # settings for plotting this data set + """Setting default values for plotting preferences""" self.log = False self.orders_of_mag = 300 self.colormap = "jet" def set_options(self,**kwargs): + """Set custom values for plotting preferences""" if "log" in kwargs: log_input = kwargs["log"] if type(log_input) == int: @@ -110,15 +186,77 @@ def set_options(self,**kwargs): self.colormap = kwargs["colormap"] class mcstas_data: - def __init__(self,*args,**kwargs): + """ + Class for holding full McStas dataset with data, metadata and plotting preferences + + Attributes + ---------- + metadata : mcstas_meta_data instance + Holds the metadata for the dataset + + name : str + Name of component, extracted from metadata + + Intensity : numpy array + Intensity data [n/s] in 1d or 2d numpy array, dimension in metadata + + Error : numpy array + Error data [n/s] in 1d or 2d numpy array, same dimensions as Intensity + + Ncount : numpy array + Number of rays in bin, 1d or 2d numpy array, same dimensions as Intensity + + plot_options : mcstas_plot_options instance + Holds the plotting preferences for the dataset + + Methods + ------- + set_xlabel : string + sets xlabel of data for plotting + + set_ylabel : string + sets ylabel of data for plotting + + set_title : string + sets title of data for plotting + + set_optons : keyword arguments + sets plot options, keywords passed to mcstas_plot_options method + + """ + def __init__(self,metadata,intensity,error,ncount,**kwargs): + """ + Initialize a new McStas dataset, 4 positional arguments, pass xaxis as kwarg if 1d data + + Parameters + ---------- + metadata : mcstas_meta_data instance + Holds the metadata for the dataset + + name : str + Name of component, extracted from metadata + + intensity : numpy array + Intensity data [n/s] in 1d or 2d numpy array, dimension in metadata + + error : numpy array + Error data [n/s] in 1d or 2d numpy array, same dimensions as Intensity + + ncount : numpy array + Number of rays in bin, 1d or 2d numpy array, same dimensions as Intensity + + kwargs : keyword arguments + xaxis is required for 1d data + + """ # attatch meta data - self.metadata = args[0] + self.metadata = metadata # get name from metadata self.name = self.metadata.component_name # three basic arrays as first - self.Intensity = args[1] - self.Error = args[2] - self.Ncount = args[3] + self.Intensity = intensity + self.Error = error + self.Ncount = ncount if type(self.metadata.dimension) == int: if "xaxis" in kwargs: @@ -143,6 +281,21 @@ def set_plot_options(self,**kwargs): def name_search(name,data_list): + """" + name_search returns mcstas_data instance with specific name if it is in the given data_list + + The index of certain datasets in the data_list can change if additional monitors are added + so it is more convinient to access the data files using their names. + + Parameters + ---------- + name : string + Name of the dataset to be retrived (component_name) + + data_list : List of mcstas_data instances + List of datasets to search + """ + if not type(data_list[0]) == mcstas_data: raise InputError("name_search function needs objects of type mcstas_data as input.") @@ -153,7 +306,24 @@ def name_search(name,data_list): else: raise NameError("More than one match for the name search") -def name_plot_options(name,data_list,*args,**kwargs): +def name_plot_options(name,data_list,**kwargs): + """" + name_plot_options passes keyword arguments to dataset with certain name in given data list + + Function for quickly setting plotting options on a certain dataset in a larger + list of datasets + + Parameters + ---------- + name : string + Name of the dataset to be retrived (component_name) + + data_list : List of mcstas_data instances + List of datasets to search + + kwargs : keyword arguments + Keyword arguments passed to set_plot_options in mcstas_plot_options + """ if not type(data_list[0]) == mcstas_data: raise InputError("name_search function needs objects of type mcstas_data as input.") @@ -164,46 +334,106 @@ def name_plot_options(name,data_list,*args,**kwargs): else: raise NameError("More than one match for the name search") - class managed_mcrun: - def __init__(self,*args,**kwargs): - self.name_of_instrumentfile = args[0] + """ + A class for performing a mcstas simulation and organizing the data into python objects + + managed_mcrun is usually called by the instrument class of McStasScript but can be used + independently. It runs the mcrun command using the system command, and if this is not + in the path, the absolute path can be given in a keyword argument mcrun_path. + + + + Attributes + ---------- + name_of_instrumentfile : str + Name of instrument file to be executed + + data_folder_name : str + Name of datafolder mcrun writes to disk + + ncount : int + Number of rays to simulate + + mpi : int + Number of mpi threads to run + + parameters : dict + Dictionary of parameter names and values for this simulation + + custom_flags : string + Custom flags that are passed to the mcrun command + + mcrun_path : string + Path to the mcrun command (can be empty if already in path) + + + Methods + ------- + run_simulation() + Runs simulation, returns list of mcstas_data instances + + """ + def __init__(self,instr_name,**kwargs): + """ + Parameters + ---------- + instr_name : str + Name of instrument file to be simulated + + kwargs : keyword arguments + foldername : str + Sets data_folder_name + ncount : int + Sets ncount + mpi : int + Sets thread count + parameters : dict + Sets parameters + custom_flags : str + Sets custom_flags passed to mcrun + """ + self.name_of_instrumentfile = instr_name self.data_folder_name = "" - self.ncount = 1E6 # number of rays to + self.ncount = 1E6 + self.mpi=1 self.parameters = {} - self.mpi=1 self.custom_flags = "" + self.mcrun_path = "" self.mcrun_path = kwargs["mcrun_path"] # mcrun_path always in kwargs - if "foldername" in kwargs: self.data_folder_name = kwargs["foldername"] + else: + raise NameError("managed_mcrun needs foldername to load data, add with keyword argument.") if "ncount" in kwargs: self.ncount = kwargs["ncount"] - if "parameters" in kwargs: - self.parameters = kwargs["parameters"] - if "mpi" in kwargs: self.mpi = kwargs["mpi"] + if "parameters" in kwargs: + self.parameters = kwargs["parameters"] + if "custom_flags" in kwargs: self.custom_flags = kwargs["custom_flags"] def run_simulation(self): + """Runs McStas simulation described by initializing the objeect""" + + # construct command to run option_string = "-c -n " + str(self.ncount) + " --mpi=" + str(self.mpi) + " " if len(self.data_folder_name) > 0: option_string = option_string + "-d " + self.data_folder_name + # add parameters to command parameter_string = "" for key,val in self.parameters.items(): parameter_string = parameter_string + " " + str(key) + "=" + str(val) - #os.system("mcstas-2.5-environment") - - #mcrun_path = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin/mcrun" + # check if a mcrun_path is set and has the correct backslash if len(self.mcrun_path) > 1: if self.mcrun_path[-1] == "\\" or self.mcrun_path[-1] == "/": mcrun_full_path = self.mcrun_path + "mcrun" @@ -212,12 +442,12 @@ def run_simulation(self): else: mcrun_full_path = self.mcrun_path + "mcrun" + # Run the mcrun command on the system os.system(mcrun_full_path + " " + option_string + " " + self.custom_flags + " " + self.name_of_instrumentfile + " " + parameter_string) - # Assume the script will continue when the os.system call has concluded. Is there a way to ensure this? # can use subprocess from spawn* if more controll is needed over the spawned process, including a timeout - time.sleep(1) # sleep 1 second to make sure data is written to disk before trying to open + #time.sleep(1) # find all data files in generated folder files_in_folder = os.listdir(self.data_folder_name) @@ -226,40 +456,46 @@ def run_simulation(self): if not "mccode.sim" in files_in_folder: raise NameError("mccode.sim not written to output folder.") + # open mccode to read metadata for all datasets written to disk f = open(self.data_folder_name + "/mccode.sim","r") - #fl = f.readlines() + # loop that reads mccode.sim sections metadata_list = [] in_data = False - for lines in f: # Could read other details about run if lines == "end data\n": - # current data object done, write to list + # no more data for this metadata object + # extract the information current_object.extract_info() + # add to metadata list metadata_list.append(current_object) + # stop reading data in_data = False if in_data: - # break info into key and info + # This line contains info to be added to metadata colon_index = lines.index(":") key = lines[2:colon_index] value = lines[colon_index+2:] current_object.add_info(key, value) if lines == "begin data\n": - # new data object + # found data section, create new metadata object current_object = mcstas_meta_data() + # start recording data to metadata object in_data = True - + # close mccode.sim f.close() - # create a list for data instances to return + # create a list for mcstas_data instances to return results = [] + # load datasets described in metadata list individually for metadata in metadata_list: + # load data with numpy data = np.loadtxt(self.data_folder_name + "/" + metadata.filename.rstrip()) # split data into intensity, error and ncount @@ -280,15 +516,34 @@ def run_simulation(self): # The data is saved as a mcstas_data object result = mcstas_data(metadata,Intensity,Error,Ncount,xaxis=xaxis) + # Add this result to the results list results.append(result) + # close the current datafile f.close() + # Return list of mcstas_data objects return results class make_plot: - def __init__(self,*args,**kwargs): - data_list = args[0] + """ + make_plot plots contents of mcstas_data objects + + Plotting is controlled through options assosciated with the mcstas_data objects. + If a list is given, the plots appear individually. + """ + def __init__(self,data_list): + """ + plots mcstas_data, single object or list of mcstas_data + + The options concerning plotting are stored with the data + + Parameters + ---------- + data_list : mcstas_data or list of mcstas_data + mcstas_data to be plotted + + """ # Relevant options: # select colormap @@ -305,41 +560,6 @@ def __init__(self,*args,**kwargs): data_list = [data_list] number_of_plots = len(data_list) - - self.log = [False]*number_of_plots - if "log" in kwargs: - if isinstance(kwargs["log"],list): - if not len(kwargs["log"]) == number_of_plots: - raise IndexError("Length of list given for log logic does not match number of data elements") - else: - self.log = kwargs["log"] - for element in self.log: - if not isinstance(element, bool): - if not element == 0: - element = True - elif isinstance(kwargs["log"],bool): - if kwargs["log"] == True: - self.log = [True]*number_of_plots - elif isinstance(kwargs["log"],int): - if kwargs["log"] == 1: - self.log = [True]*number_of_plots - else: - raise NameError("log keyword Argument in make_sub_plot not understood. Needs to be int, [1/0], bool [True/False] or array of same length as data.") - - - self.orders_of_mag=[300] * number_of_plots - if "max_orders_of_mag" in kwargs: - if isinstance(kwargs["max_orders_of_mag"],list): - if not len(kwargs["max_orders_of_mag"]) == number_of_plots: - raise IndexError("Length of list given for max_orders_of_mag does not match number of data elements") - else: - self.orders_of_mag = kwargs["max_orders_of_mag"] - else: - if isinstance(kwargs["max_orders_of_mag"],float) or isinstance(kwargs["max_orders_of_mag"],int): - self.orders_of_magnitude=[kwargs["max_orders_of_mag"]]*number_of_plots - else: - raise TypeError("max_orders_of_mag need to be of type float or int") - print("number of elements in data list = " + str(len(data_list))) @@ -440,9 +660,24 @@ def __init__(self,*args,**kwargs): plt.show() class make_sub_plot: - def __init__(self,*args,**kwargs): - data_list = args[0] + """ + make_plot plots contents of mcstas_data objects + + Plotting is controlled through options assosciated with the mcstas_data objects. + If a list is given, the plots appear in one subplot. + """ + def __init__(self,data_list): + """ + plots mcstas_data, single object or list of mcstas_data + + The options concerning plotting are stored with the data + + Parameters + ---------- + data_list : mcstas_data or list of mcstas_data + mcstas_data to be plotted + """ if not isinstance(data_list,mcstas_data): print("number of elements in data list = " + str(len(data_list))) else: @@ -587,7 +822,55 @@ def fmt(x, pos): class parameter_variable: + """ + Class describing a input parameter in McStas instrument + + McStas input parameters are of default type double, but can be cast. If two + positional arguments are given, the first is the type, and the second is the + parameter name. With one input, only the parameter name is read. + It is also possible to assign a default value and a comment through keyword + arguments. + + Attributes + ---------- + type : str + McStas type of input: Double, Int, String + + name : str + Name of input parameter + + value : any + Default value/string of parameter, converted to string + + comment : str + Comment displayed next to the input parameter, could contain units + + Methods + ------- + write_parameter(fo,stop_character) + writes the parameter to file object fo, uses given stop character + """ def __init__(self,*args,**kwargs): + """Initializing mcstas parameter object + + Parameters + ---------- + If giving a type: + Positional argument 1: type : str + Type of the parameter, double, int or string + Positional argument 2: name : str + Name of input parameter + + If not giving type + Positional argument 1: name : str + Name of input parameter + + Keyword arguments + value : any + sets default value of parameter + comment : str + sets comment displayed next to declaration + """ if len(args) == 1: self.type = "" self.name = str(args[0]) @@ -610,6 +893,7 @@ def __init__(self,*args,**kwargs): # they are int, double, string, are there more? def write_parameter(self,fo,stop_character): + """Writes input parameter to file""" fo.write("%s%s" % (self.type, self.name)) if self.value_set == 1: if isinstance(self.value,int): @@ -623,7 +907,57 @@ def write_parameter(self,fo,stop_character): fo.write("\n") class declare_variable: + """ + Class describing a declared variable in McStas instrument + + McStas parameters are declared in the declare section with c syntax. + This class is initialized with type, name. Using keyword arguments, + the variable can become an array and have its initial value set. + + Attributes + ---------- + type : str + McStas type to declare: Double, Int, String + + name : str + Name of variable + + value : any + Initial value of variable, converted to string + + comment : str + Comment displayed next to the declaration, could contain units + + vector : int + 0 if a single value is given, ortherwise contains the length + + value_set : int + internal variable displaying wether or not a value was given + + Methods + ------- + write_line(fo) + writes a line to text file fo declaring the parameter in c syntax + """ def __init__(self,*args,**kwargs): + """Initializing mcstas parameter object + + Parameters + ---------- + Positional argument 1: type : str + Type of the parameter, double, int or string + + Positional argument 2: name : str + Name of input parameter + + Keyword arguments + array : int + length of array to be allocated, default is 0 if not an array + value : any + sets initial value of parameter, can be a list with length matching array + comment : str + sets comment displayed next to declaration + """ self.type = args[0] self.name = str(args[1]) if "value" in kwargs: @@ -631,6 +965,7 @@ def __init__(self,*args,**kwargs): self.value = kwargs["value"] else: self.value_set = 0 + if "array" in kwargs: self.vector = kwargs["array"] else: @@ -642,6 +977,13 @@ def __init__(self,*args,**kwargs): self.comment = "" def write_line(self,fo): + """Writes line declaring variable to file fo + + Parameters + ---------- + fo : file object + File the line will be written to + """ if self.value_set == 0 and self.vector == 0: fo.write("%s %s;%s" % (self.type, self.name,self.comment)) if self.value_set == 1 and self.vector == 0: @@ -659,10 +1001,141 @@ def write_line(self,fo): class component: - def __init__(self,*args,**kwargs): + """ + A class describing a McStas component to be written to a instrument file + + This class is used by the instrument class when setting up components, + but can also be used independently. + Most information can be given on initialize using keyword arguments, but + there are methods for setting the attributes describing the component. + The class contains both methods to write the component to a instrument + file and methods for printing to the python terminal for checking the + information. + + Attributes + ---------- + name : str + Name of the component instance in McStas (must be unique) + + component_name : str + Name of the component code to use, e.g. Arm, Guide_gravity, ... + + AT_data : list of 3 floats + Position data of the component + + AT_relative : str + String matching name of former component to use as reference for position + + ROTATED_data : list of 3 floats + Rotation data of the component + + ROTATED_relative : str + String matching name of former component to use as reference for position + + WHEN : str + String with logical expression in c syntax for when component is active + + EXTEND : str + c code that extends the component, can use declared parameters and internal + + GROUP : str + Name of group the component should belong to + + JUMP : str + String describing use of JUMP, need to contain all after "JUMP" + + component_parameters : dict + Parameters to be used with component in dictionary + + comment : str + Comment inserted before the component as an explanation + + Methods + ------- + set_AT(at_list,**kwargs) + Sets AT_data, can set AT_relative using keyword argument + + set_ROTATED(rotated_list,**kwargs) + Sets ROTATED_data, can set ROTATED_relative using keyword argument + + set_RELATIVE(relative_name) + Set both AT_relative and ROTATED_relative to relative_name + + set_parameters(dict_input) + Adds dictionary entries to parameter dictionary + + set_WHEN(string) + Sets WHEN string + + set_GROUP(string) + Sets GROUP name + + set_JUMP(string) + Sets JUMP string + + append_EXTEND(string) + Append string to EXTEND string + + set_comment(string) + Sets comment for component + + write_component(fo) + Writes component code to instrument file + + print_long() + Prints basic view of component code (not correct syntax) + + print_short(**kwargs) + Prints short description, used in print_components + + """ + def __init__(self,instance_name,component_name,**kwargs): + """ + Initializes McStas component with specified name and component + + Parameters + ---------- + instance_name : str + name of the instance of the component + + component_name : str + name of the component type e.g. Arm, Guide_gravity, ... + + keyword arguments: + AT : list of 3 floats + Sets AT_data describing position of component + + AT_RELATIVE : str + sets AT_relative, describing position reference point + + ROTATED : list of 3 floats + Sets ROTATED_data, describing rotation of component + + ROTATED_RELATIVE : str + Sets ROTATED_relative, describing reference component for rotation + + RELATIVE : str + Sets both AT_relative and ROTATED_relative + + WHEN : str + Sets WHEN string, should contain logical c expression + + EXTEND : str + Sets initial EXTEND string, should contain c code + + GROUP : str + Sets name of group the component instance should belong to + + JUMP : str + Sets JUMP str + + comment: str + Sets comment string + + """ # Defines a McStas component with name and component name as first inputs - self.name = args[0] - self.component_name = args[1] + self.name = instance_name + self.component_name = component_name # Possible to give AT and ROTATED including AT_RELATIVE / ROTATED_RELATIVE # RELATIVE keyword also exists and sets both AT_RELATIVE and ROTATED_RELATIVE @@ -698,7 +1171,7 @@ def __init__(self,*args,**kwargs): self.WHEN = "" if "EXTEND" in kwargs: - self.EXTEND = kwargs["EXTEND"] + self.EXTEND = kwargs["EXTEND"] + "\n" else: self.EXTEND = "" @@ -726,6 +1199,7 @@ def __init__(self,*args,**kwargs): # method for setting AT and AT_RELATIVE after initialization def set_AT(self,at_list,**kwargs): + """Sets AT data, List of 3 floats""" self.AT_data=at_list if "RELATIVE" in kwargs: relative_name = kwargs["RELATIVE"] @@ -736,6 +1210,7 @@ def set_AT(self,at_list,**kwargs): # method for setting ROTATED and ROTATED_RELATIVE after initialization def set_ROTATED(self,rotated_list,**kwargs): + """Sets ROTATED data, List of 3 floats""" self.ROTATED_data=rotated_list if "RELATIVE" in kwargs: relative_name = kwargs["RELATIVE"] @@ -746,6 +1221,7 @@ def set_ROTATED(self,rotated_list,**kwargs): # method for setting RELATIVE after initialization def set_RELATIVE(self,relative_name): + """Sets both AT_relative and ROTATED_relative""" if relative_name == "ABSOLUTE": self.AT_relative = relative_name self.ROTATED_relative = relative_name @@ -755,26 +1231,31 @@ def set_RELATIVE(self,relative_name): # method that adds a parameter name / value pair to dictionary def set_parameters(self,dict_input): + """Adds additional parameters and their values using a dictionary input""" self.component_parameters.update(dict_input) def set_WHEN(self,string): + """Sets WHEN string, should be a c logical expression""" self.WHEN = string def set_GROUP(self,string): + """Sets GROUP name""" self.GROUP = string def set_JUMP(self,string): + """Sets JUMP string, should contain all text after JUMP""" self.JUMP = string def append_EXTEND(self,string): + """Appends a line of code to EXTEND block of component""" self.EXTEND = self.EXTEND + string + "\n" - - # method that sets a comment to be written to instrument file + def set_comment(self,string): + """Method that sets a comment to be written to instrument file""" self.comment = string - # method that writes component to file def write_component(self,fo): + """Method that writes component to file""" parameters_per_line = 2 # write comma separated parameters, up to 2 per line # could use a character limit on lines instead parameters_written = 0 # internal parameter @@ -831,18 +1312,26 @@ def write_component(self,fo): # Leave a new line between components for readability fo.write("\n") - - # print component long def print_long(self): + """Method for printing contained information to Python terminal, not correct syntax""" print("// " + self.comment) print("COMPONENT " + str(self.name) + " = " + str(self.component_name)) for key,val in self.component_parameters.items(): print(" ",key,"=",val) + if not self.WHEN == "": + print("WHEN (" + self.WHEN + ")") print("AT",self.AT_data,self.AT_relative) print("ROTATED",self.ROTATED_data,self.ROTATED_relative) + if not self.GROUP == "": + print("GROUP " + self.GROUP) + if not self.EXTEND == "": + print("%{") + print(self.EXTEND + "%}") + if not self.JUMP == "": + print("JUMP " + self.JUMP) - # print component short def print_short(self,**kwargs): + """Method for printing short description of component to list print""" if "longest_name" in kwargs: print("test") print(str(self.name)+" "*(3+kwargs["longest_name"]-len(self.name)),end='') @@ -852,7 +1341,147 @@ def print_short(self,**kwargs): class McStas_instr: + """ + Main class for writing a McStas instrument using McStasScript + + Initialization of McStas_instr sets the name of the instrument file + and its methods are used to add all aspects of the instrument file. + The class also holds methods for writing the finished instrument file + to disk and to run the simulation. + + Attributes + ---------- + name : str + name of instrument file + + author : str + name of user of McStasScript, written to the file + + origin : str + origin of instrument file (affiliation) + + mcrun_path : str + absolute path of mcrun command, or empty if it is in path + + parameter_list : list of parameter_variable instances + contains all input parameters to be written to file + + declare_list : list of declare_variable instances + contains all declare parrameters to be written to file + + initialize_section : str + string containing entire initialize section to be written to file + + trace_section : str + string containing trace section (OBSOLETE) + + finally_section : str + string containing entire finally section to be written to file + + component_list : list of component instances + list of components in the instrument + + component_name_list : list of strings + list of names of the components in the instrument + + Methods + ------- + add_parameter(*args,**kwargs) + Adds input parameter to the define section + + add_declare_var() + Adds declared variable ot the declare section + + append_initialize(string) + Appends a string to the initialize section, followed by a new line + + append_initialize_no_new_line(string) + Appends a string to the initialize section + + append_finally(string) + Appends a string to finally section, followed by a new line + + append_finally_no_new_line(string) + Appends a string to finally section + + append_trace(string) + Obsolete method, add components instead (still used in write_c_files) + + add_component(instance_name,component_name,**kwargs) + Add a component to the instrument file + + get_component(instance_name) + Returns component instance with name instance_name + + get_last_component() + Returns component instance of last component + + set_component_parameter(instance_name,dict) + Adds parameters as dict to component with instance_name + + set_component_AT(instance_name,AT_data,**kwargs) + Sets position of component named instance_name, reference component can be set in kwargs + + set_component_ROTATED(instance_name,ROTATED_data,**kwargs) + Sets rotation of component named instance_name, reference component can be set in kwargs + + set_component_RELATIVE(instane_name,string) + Sets reference component named instance_name for both position and rotation + + set_component_WHEN(instance_name,string) + Sets WHEN condition of component named instance_name, should be logical c expression + + set_component_GROUP(instance_name,string) + Sets GROUP name of component named instance_name + + append_component_EXTEND(instance_name,string) + Appends a line to EXTEND section of component named instance_name + + set_component_JUMP(instance_name,string) + Sets JUMP code for component named instance_name + + set_component_comment(instance_name,string) + Sets comment to be written before component named instance_name + + print_component(instance_name) + Prints an overview of current state of component named instance_name + + print_component_short(instance_name) + Prints short overview of current state of component named instance_name + + print_components() + Prints overview of postion / rotation of all components in instrument + + write_c_files() + Writes c files to include in existing McStas instrument in folder named generated_includes + + write_full_instrument() + Writes full instrument file to current directory, name as set in class initialization + + run_full_instrument(**kwargs) + Writes instrument files and runs a simulation with mcrun. Returns list of mcstas_data + + """ + def __init__(self,name,**kwargs): + """ + Initialization of McStas Instrument + + Parameters + ---------- + name : str + Name of project, instrument file will be called name + ".instr" + + keyword arguments: + author : str + Name of author, will be written in instrument file + + origin : str + Affiliation of author, will be written in instrument file + + mcrun_path : str + Absolute path of mcrun or empty string if already in path + """ self.name = name if "author" in kwargs: @@ -880,23 +1509,118 @@ def __init__(self,name,**kwargs): self.component_name_list = [] # list of component names def add_parameter(self,*args,**kwargs): + """ + Method for adding input parameter to instrument + + Parameters + ---------- + + (optional) parameter type : str + type of input parameter, double, int, string + + parameter name : str + name of parameter + + keyword arguments + value : any + Default value of parameter + + comment : str + Comment displayed next to declaration of parameter + + """ # type of variable, name of variable, options described in declare_parameter class self.parameter_list.append(parameter_variable(*args,**kwargs)) def add_declare_var(self,*args,**kwargs): + """ + Method for adding declared variable to instrument + + Parameters + ---------- + + parameter type : str + type of input parameter + + parameter name : str + name of parameter + + keyword arguments + array : int + default 0 for scalar, if specified length of array + + value : any + Initial value of parameter, can be list of length vector + + comment : str + Comment displayed next to declaration of parameter + + """ # type of variable, name of variable, options described in declare_variable class self.declare_list.append(declare_variable(*args,**kwargs)) def append_initialize(self,string): + """ + Method for appending code to the intialize section of instrument + + The intialize section consists of c code and will be compiled, + thus any syntax errors will crash the simulation. Code is added + on a new line for each call to this method. + + Parameters + ---------- + string : str + code to be added to initialize section + + """ self.initialize_section = self.initialize_section + string + "\n" def append_initialize_no_new_line(self,string): + """ + Method for appending code to the intialize section of instrument (no new line) + + The intialize section consists of c code and will be compiled, + thus any syntax errors will crash the simulation. Code is added + to the current line. + + Parameters + ---------- + string : str + code to be added to initialize section + + """ self.initialize_section = self.initialize_section + string def append_finally(self,string): + """ + Method for appending code to the finally section of instrument + + The finally section consists of c code and will be compiled, + thus any syntax errors will crash the simulation. Code is added + on a new line for each call to this method. + + Parameters + ---------- + string : str + code to be added to finally section + + """ self.finally_section = self.finally_section + string + "\n" def append_finally_no_new_line(self,string): + """ + Method for appending code to the finally section of instrument + + The finally section consists of c code and will be compiled, + thus any syntax errors will crash the simulation. Code is added + to the current line. + + Parameters + ---------- + string : str + code to be added to finally section + + """ self.finally_section = self.finally_section + string # Need to handle trace string differently when components also exists @@ -905,6 +1629,15 @@ def append_finally_no_new_line(self,string): # C) Could have trace string as a different object and place it in component_list, but have a write function named as the component write function? def append_trace(self,string): + """ + Method for appending code to trace section, only used in write_c_files + + The most common way to add code to the trace section is to add + components using the seperate methods for this. This method is kept + as is still used for writing to c files used in legacy code. + + + """ self.trace_section = self.trace_section + string + "\n" def append_trace_no_new_line(self,string): From d12e399f1b4416141a58feb5de64c1b58814258c Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Thu, 14 Mar 2019 13:10:52 +0100 Subject: [PATCH 009/403] Finihsed doc string documentation of the project. --- McStasScript.py | 284 ++++++++++++++++++++++++++++++++++++++++++++++-- 1 file changed, 276 insertions(+), 8 deletions(-) diff --git a/McStasScript.py b/McStasScript.py index aa764256..e15e64b1 100644 --- a/McStasScript.py +++ b/McStasScript.py @@ -392,6 +392,8 @@ def __init__(self,instr_name,**kwargs): Sets parameters custom_flags : str Sets custom_flags passed to mcrun + mcrun_path : str + Path to mcrun command, "" if already in path """ self.name_of_instrumentfile = instr_name @@ -1634,17 +1636,91 @@ def append_trace(self,string): The most common way to add code to the trace section is to add components using the seperate methods for this. This method is kept - as is still used for writing to c files used in legacy code. + as is still used for writing to c files used in legacy code. Each call + creates a new line. + Parameters + ---------- + string : str + code to be added to trace """ self.trace_section = self.trace_section + string + "\n" def append_trace_no_new_line(self,string): + """ + Method for appending code to trace section, only used in write_c_files + + The most common way to add code to the trace section is to add + components using the seperate methods for this. This method is kept + as is still used for writing to c files used in legacy code. No new + line is made with this call. + + Parameters + ---------- + string : str + code to be added to trace + + """ self.trace_section = self.trace_section + string - # methods for creating new components and modifiying existing components + def add_component(self,*args,**kwargs): + """ + Method for adding a new component instance to the instrument + + Creates a new component instance in the instrument. This requires + a unique instance name of the component to be used for future reference + and the name of the McStas component to be used. The component is placed + at the end of the instrument file unless otherwise specified with the + after and before keywords. The component may be initialized using other + keyword arguments, but all attributes can be set with approrpiate methods. + + Parameters + ---------- + First positional argument : str + Unique name of component instance + + Second positional argument : str + Name of McStas component to create instance of + + Keyword arguments: + after : str + Place this component after an already added component with given name + + before : str + Place this component before an already added component with given name + + AT : List of 3 floats + Sets AT_data that determines position relative to reference + + AT_RELATIVE : str + Sets reference component for postion + + ROTATED : List of 3 floats + Sets RELATIVE_data that determines rotation relative to reference + + ROTATED_RELATIVE : str + Sets reference component for rotation + + RELATIVE : str + Sets reference component for both position and rotation + + WHEN : str + Sets when condition which must be a logical c expression + + EXTEND : str + Initialize the extend section with a line of c code + + GROUP : str + Name of the group this component should belong to + + JUMP : str + Set code for McStas JUMP statement + + comment : str + Sets a comment that will be displayed before the component + """ if args[0] in self.component_name_list: raise NameError("Component name \"" + str(args[0]) + "\" used twice, McStas does not allow this. Rename or remove one instance of this name.") @@ -1667,6 +1743,19 @@ def add_component(self,*args,**kwargs): self.component_name_list.append(args[0]) def get_component(self,name): + """ + Get the component instance of component with specified name + + This method is used to get direct access to any component instance + in the instrument. The component instance can be manipulated in + much the same way, but it is not necessary to specify the name in + each call. + + Parameters + ---------- + name : str + Unique name of component whos instance should be returned + """ if name in self.component_name_list: index = self.component_name_list.index(name) return self.component_list[index] @@ -1674,54 +1763,196 @@ def get_component(self,name): raise NameError("No component was found with name \"" + str(name) + "\"!") def get_last_component(self): + """ + Get the component instance of last component in the instrument + + This method is used to get direct access to any component instance + in the instrument. The component instance can be manipulated in + much the same way, but it is not necessary to specify the name in + each call. + """ return self.component_list[-1] def set_component_parameter(self,name,input_dict): + """ + Add parameters and their values as dictionary to component + + This method is the primary way of specifying parameters in a + component. Parameters are added to a dictionary specifying + parameter name and value pairs. + + Parameters + ---------- + name : str + Unique name of component to modify + + input_dict : dict + Set of new parameter name and value pairs to add + """ component = self.get_component(name) component.set_parameters(input_dict) def set_component_AT(self,name,at_list,**kwargs): + """ + Method for setting position of component + + Parameters + ---------- + name : str + Unique name of component to modify + + at_list : List of 3 floats + Position of component relative to reference component + + keyword arguments: + RELATIVE : str + Sets reference component for position + """ component = self.get_component(name) component.set_AT(at_list,**kwargs) def set_component_ROTATED(self,name,rotated_list,**kwargs): + """ + Method for setting rotiation of component + + Parameters + ---------- + name : str + Unique name of component to modify + + rotated_list : List of 3 floats + Rotation of component relative to reference component + + keyword arguments: + RELATIVE : str + Sets reference component for rotation + """ component = self.get_component(name) component.set_ROTATED(rotated_list,**kwargs) def set_component_RELATIVE(self,name,relative): + """ + Method for setting reference of component position and rotation + + Parameters + ---------- + name : str + Unique name of component to modify + + relative : str + Reference component for position and rotation + """ component = self.get_component(name) component.set_RELATIVE(relative) def set_component_WHEN(self,name,WHEN): + """ + Method for setting WHEN c expression to named component + + Parameters + ---------- + name : str + Unique name of component to modify + + WHEN : str + Sets WHEN c expression for named McStas component + """ component = self.get_component(name) component.set_WHEN(WHEN) def append_component_EXTEND(self,name,EXTEND): + """ + Method for adding line of c to EXTEND section of named component + + Parameters + ---------- + name : str + Unique name of component to modify + + EXTEND : str + Line of c code added to EXTEND section of named component + """ component = self.get_component(name) component.append_EXTEND(EXTEND) def set_component_GROUP(self,name,GROUP): + """ + Method for setting GROUP name of named component + + Parameters + ---------- + name : str + Unique name of component to modify + + GROUP : str + Sets GROUP name for named McStas component + """ component = self.get_component(name) component.set_GROUP(GROUP) def set_component_JUMP(self,name,JUMP): + """ + Method for setting JUMP expression of named component + + Parameters + ---------- + name : str + Unique name of component to modify + + JUMP : str + Sets JUMP expression for named McStas component + """ component = self.get_component(name) component.set_JUMP(JUMP) def set_component_comment(self,name,string): + """ + Sets a comment displayed before the component in written files + + Parameters + ---------- + name : str + Unique name of component to modify + + string : str + Comment string + + """ component = self.get_component(name) component.set_comment(string) - + def print_component(self,name): + """ + Method for printing summary of contents in named component + + Parameters + ---------- + name : str + Unique name of component to print + """ component = self.get_component(name) component.print_long() def print_component_short(self,name): + """ + Method for printing summary of contents in named component + + Parameters + ---------- + name : str + Unique name of component to print + """ component = self.get_component(name) component.print_short() def print_components(self): + """ + Method for printing overview of all components in instrument + + Provides overview of component names, what McStas component is + used for each and their position and rotation in space. + """ longest_name = len(max(self.component_name_list,key=len)) # Investigate how this could have been done in a better way @@ -1767,8 +1998,15 @@ def print_components(self): #print("") def write_c_files(self): - # method for writing c files that can be included in instruments + """ + Obsolete method for writing instrument to c files for later use + It is possible to use this function to write c files to a folder called + generated_includes that can then be included in the different sections + of a McStas instrument. Component objects are NOT written to these + files, but rather the contents of the trace_section that can be set + using the append_trace method. + """ path = os.getcwd() path = path + "/generated_includes" if not os.path.isdir(path): @@ -1799,11 +2037,13 @@ def write_c_files(self): component.write_component(fo) fo.close() - # Method that writes full instrument file. def write_full_instrument(self): - # method for writing an instrument file - # could either use generated includes or write everything out - # will probably create an option to choose between these methods later + """ + Method for writing full instrument file to disk + + This method writes the instrument described by the instrument object to + disk with the name specified in the initialization of the object. + """ # Create file identifier fo = open(self.name + ".instr","w") @@ -1874,6 +2114,34 @@ def write_full_instrument(self): fo.write("\nEND\n") def run_full_instrument(self,*args,**kwargs): + """ + Runs McStas instrument described by this class, returns list of mcstas_data + + This method will write the instrument to disk and then run it using + the mcrun command of the system. Options are set using keyword + arguments. Some options are mandatory, for example foldername, which + can not already exist, if it does data will be read from this folder. + If the mcrun command is not in the path of the system, the absolute + path can be given with the mcrun_path keyword argument. This path + could also already have been set at initialization of the instrument + object. + + Parameters + ---------- + Keyword arguments + foldername : str + Sets data_folder_name + ncount : int + Sets ncount + mpi : int + Sets thread count + parameters : dict + Sets parameters + custom_flags : str + Sets custom_flags passed to mcrun + mcrun_path : str + Path to mcrun command, "" if already in path + """ # Write the instrument file self.write_full_instrument() From 0bf970d7143a939bc11cc4ccd8447dbd78983518 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Thu, 2 May 2019 15:31:24 +0200 Subject: [PATCH 010/403] Improved readability of the code. It is now PEP 8 compliant. --- McStasScript.py | 1995 +++++++++++++++++++++++++---------------------- 1 file changed, 1067 insertions(+), 928 deletions(-) diff --git a/McStasScript.py b/McStasScript.py index e15e64b1..c63a603e 100644 --- a/McStasScript.py +++ b/McStasScript.py @@ -1,10 +1,17 @@ -# McStasScript classes written by Mads Bertelsen, ESS, DMSC +"""McStasScript classes written by Mads Bertelsen, ESS, DMSC + +API for writing and running McStas instruments +""" from __future__ import print_function + +__author__ = "Mads Bertelsen" + import datetime import os import time import math + import numpy as np import matplotlib import matplotlib.pyplot as plt @@ -12,78 +19,83 @@ from matplotlib.ticker import MaxNLocator from openpyxl.worksheet import dimensions from boto.ec2.autoscale import limits -#from builtins import False, True +# From builtins import False, True -try: # check whether python knows about 'basestring' - basestring -except NameError: # no, it doesn't (it's Python3); use 'str' instead - basestring=str +try: # Check whether python knows about 'basestring' + basestring +except NameError: # No, it doesn't (it's Python3); use 'str' instead + basestring = str -class mcstas_meta_data: + +class McStasMetaData: """ - Class for holding metadata for McStas dataset, is to be read from mccode.sim file. - + Class for holding metadata for McStas dataset, is to be read from + mccode.sim file. + Attributes ---------- info : dict Contains read strings from mccode.sim in key, value - + dimension : Int or List of Int - Int for 1d data set with lenght of data, Array for 2d with each length - + Int for 1d data set with lenght of data, Array for 2d with each + length + component_name : str Name of component in McStas file - + filename : str Name of data file to read - + limits : List - Limits for monitor, length=2 for 1d data and length=4 for 2d data - + Limits for monitor, length=2 for 1d data and length=4 for 2d + data + title : str Title of monitor when plotting - + xlabel : str Text for xlabel when plotting - + ylabel : str Text for ylabel when plotting - + Methods ------- add_info(key,value) Adds a element to the info dictionary - + extract_info() Unpacks the information in info to class attributes - + set_title(string) Overwrites current title - + set_xlabel(string) Overwrites current xlabel - + set_ylabel(string) Overwrites current ylabel """ + def __init__(self): """Creating a new instance, no parameters""" self.info = {} - - def add_info(self,key,value): + + def add_info(self, key, value): """Adding information to info dict""" self.info[key] = value - + def extract_info(self): """Extracting information from info dict to class attributes""" - + # Extract dimension if "type" in self.info: type = self.info["type"] if "array_1d" in type: self.dimension = int(type[9:-2]) if "array_2d" in type: - self.dimension=[] + self.dimension = [] type_strings = self.info["type"].split(",") temp_str = type_strings[0] self.dimension.append(int(temp_str[9:])) @@ -91,8 +103,8 @@ def extract_info(self): self.dimension.append(int(temp_str[1:-2])) else: raise NameError("No type in mccode data section!") - - # Extract component name + + # Extract component name if "component" in self.info: self.component_name = self.info["component"].rstrip() @@ -100,19 +112,20 @@ def extract_info(self): if "filename" in self.info: self.filename = self.info["filename"].rstrip() else: - raise NameError("No filename found in mccode data section!") - + raise NameError( + "No filename found in mccode data section!") + # Extract limits self.limits = [] if "xylimits" in self.info: - # find the four numbers + # find the four numbers temp_str = self.info["xylimits"] limits_string = temp_str.split() for limit in limits_string: self.limits.append(float(limit)) if "xlimits" in self.info: - # find the two numbers + # find the two numbers temp_str = self.info["xlimits"] limits_string = temp_str.split() for limit in limits_string: @@ -125,47 +138,50 @@ def extract_info(self): self.ylabel = self.info["ylabel"].rstrip() if "title" in self.info: self.title = self.info["title"].rstrip() - - def set_title(self,string): + + def set_title(self, string): """Sets title for plotting""" self.title = string - - def set_xlabel(self,string): + + def set_xlabel(self, string): """Sets xlabel for plotting""" self.xlabel = string - - def set_ylabel(self,string): + + def set_ylabel(self, string): """Sets ylabel for plotting""" self.ylabel = string - -class mcstas_plot_options: + + +class McStasPlotOptions: """ Class that holds plotting options related to McStas data set - + Attributes ---------- log : bool To plot on logarithmic or not, standard is linear - + orders_of_mag : float - If plotting on log scale, restrict max range to orders_of_mag below max - + If plotting on log scale, restrict max range to orders_of_mag + below maximum value + colormap : string Chosen colormap for 2d data, should be available in matplotlib - + Methods ------- set_options(keyword arguments) Can set the class attributes using keyword options - + """ - def __init__(self,*args,**kwargs): + + def __init__(self, *args, **kwargs): """Setting default values for plotting preferences""" self.log = False self.orders_of_mag = 300 self.colormap = "jet" - - def set_options(self,**kwargs): + + def set_options(self, **kwargs): """Set custom values for plotting preferences""" if "log" in kwargs: log_input = kwargs["log"] @@ -177,210 +193,230 @@ def set_options(self,**kwargs): elif type(log_input) == bool: self.log = log_input else: - raise NameError("Log input must be either Int or Bool.") - + raise NameError( + "Log input must be either Int or Bool.") + if "orders_of_mag" in kwargs: self.orders_of_mag = kwargs["orders_of_mag"] - + if "colormap" in kwargs: self.colormap = kwargs["colormap"] - -class mcstas_data: + + +class McStasData: """ - Class for holding full McStas dataset with data, metadata and plotting preferences - + Class for holding full McStas dataset with data, metadata and + plotting preferences + Attributes ---------- - metadata : mcstas_meta_data instance + metadata : McStasMetaData instance Holds the metadata for the dataset - + name : str Name of component, extracted from metadata - + Intensity : numpy array - Intensity data [n/s] in 1d or 2d numpy array, dimension in metadata - + Intensity data [n/s] in 1d or 2d numpy array, dimension in + metadata + Error : numpy array - Error data [n/s] in 1d or 2d numpy array, same dimensions as Intensity - + Error data [n/s] in 1d or 2d numpy array, same dimensions as + Intensity + Ncount : numpy array - Number of rays in bin, 1d or 2d numpy array, same dimensions as Intensity - - plot_options : mcstas_plot_options instance + Number of rays in bin, 1d or 2d numpy array, same dimensions as + Intensity + + plot_options : McStasPlotOptions instance Holds the plotting preferences for the dataset - + Methods ------- set_xlabel : string sets xlabel of data for plotting - + set_ylabel : string sets ylabel of data for plotting - + set_title : string sets title of data for plotting - + set_optons : keyword arguments - sets plot options, keywords passed to mcstas_plot_options method - + sets plot options, keywords passed to McStasPlotOptions method """ - def __init__(self,metadata,intensity,error,ncount,**kwargs): + + def __init__(self, metadata, intensity, error, ncount, **kwargs): """ - Initialize a new McStas dataset, 4 positional arguments, pass xaxis as kwarg if 1d data - + Initialize a new McStas dataset, 4 positional arguments, pass + xaxis as kwarg if 1d data + Parameters ---------- - metadata : mcstas_meta_data instance + metadata : McStasMetaData instance Holds the metadata for the dataset - + name : str Name of component, extracted from metadata - + intensity : numpy array - Intensity data [n/s] in 1d or 2d numpy array, dimension in metadata - + Intensity data [n/s] in 1d or 2d numpy array, dimension in + metadata + error : numpy array - Error data [n/s] in 1d or 2d numpy array, same dimensions as Intensity - + Error data [n/s] in 1d or 2d numpy array, same dimensions + as Intensity + ncount : numpy array - Number of rays in bin, 1d or 2d numpy array, same dimensions as Intensity - - kwargs : keyword arguments + Number of rays in bin, 1d or 2d numpy array, same + dimensions as Intensity + + kwargs : keyword arguments xaxis is required for 1d data - """ + # attatch meta data self.metadata = metadata # get name from metadata self.name = self.metadata.component_name - # three basic arrays as first + # three basic arrays from positional arguments self.Intensity = intensity self.Error = error self.Ncount = ncount - + if type(self.metadata.dimension) == int: if "xaxis" in kwargs: self.xaxis = kwargs["xaxis"] else: - raise NameError("ERROR: Initialization of mcstas_data done with 1d data, but without xaxis" + self.name + "!") - - self.plot_options = mcstas_plot_options() - - # Methods xlabel, ylabel and title as they might not be found - def set_xlabel(self,string): + raise NameError( + "ERROR: Initialization of McStasData done with 1d " + + "data, but without xaxis" + self.name + "!") + + self.plot_options = McStasPlotOptions() + + # Methods xlabel, ylabel and title as they might not be found + def set_xlabel(self, string): self.metadata.set_xlabel(string) - - def set_ylabel(self,string): + + def set_ylabel(self, string): self.metadata.set_ylabel(string) - - def set_title(self,string): + + def set_title(self, string): self.metadata.set_title(string) - - def set_plot_options(self,**kwargs): + + def set_plot_options(self, **kwargs): self.plot_options.set_options(**kwargs) - - -def name_search(name,data_list): + +def name_search(name, data_list): """" - name_search returns mcstas_data instance with specific name if it is in the given data_list - - The index of certain datasets in the data_list can change if additional monitors are added - so it is more convinient to access the data files using their names. - + name_search returns McStasData instance with specific name if it is + in the given data_list + + The index of certain datasets in the data_list can change if + additional monitors are added so it is more convinient to access + the data files using their names. + Parameters ---------- name : string Name of the dataset to be retrived (component_name) - - data_list : List of mcstas_data instances + + data_list : List of McStasData instances List of datasets to search """ - - if not type(data_list[0]) == mcstas_data: - raise InputError("name_search function needs objects of type mcstas_data as input.") - - list_result = [x for x in data_list if x.metadata.component_name == name] - - if len(list_result) == 1: + + if not type(data_list[0]) == McStasData: + raise InputError( + "name_search function needs objects of type " + + "McStasData as input.") + + list_result = [] + for check in data_list: + if check.metadata.component_name == name: + list_result.append(check) + + if len(list_result) == 1: return list_result[0] else: raise NameError("More than one match for the name search") - -def name_plot_options(name,data_list,**kwargs): + +def name_plot_options(name, data_list, **kwargs): """" - name_plot_options passes keyword arguments to dataset with certain name in given data list - - Function for quickly setting plotting options on a certain dataset in a larger - list of datasets - + name_plot_options passes keyword arguments to dataset with certain + name in given data list + + Function for quickly setting plotting options on a certain dataset + n a larger list of datasets + Parameters ---------- name : string - Name of the dataset to be retrived (component_name) - - data_list : List of mcstas_data instances + Name of the dataset to be modified (component_name) + + data_list : List of McStasData instances List of datasets to search - + kwargs : keyword arguments - Keyword arguments passed to set_plot_options in mcstas_plot_options + Keyword arguments passed to set_plot_options in + McStasPlotOptions """ - if not type(data_list[0]) == mcstas_data: - raise InputError("name_search function needs objects of type mcstas_data as input.") - - list_result = [x for x in data_list if x.metadata.component_name == name] - - if len(list_result) == 1: - list_result[0].set_plot_options(**kwargs) - else: - raise NameError("More than one match for the name search") -class managed_mcrun: + if not isinstance(data_list[0], McStasData): + raise InputError( + "name_search function needs objects of type McStasData " + + "as input.") + + object_to_modify = name_search(name, data_list) + object_to_modify.set_plot_options(**kwargs) + + +class ManagedMcrun: """ - A class for performing a mcstas simulation and organizing the data into python objects - - managed_mcrun is usually called by the instrument class of McStasScript but can be used - independently. It runs the mcrun command using the system command, and if this is not - in the path, the absolute path can be given in a keyword argument mcrun_path. - - - + A class for performing a mcstas simulation and organizing the data + into python objects + + ManagedMcrun is usually called by the instrument class of + McStasScript but can be used independently. It runs the mcrun + command using the system command, and if this is not in the path, + the absolute path can be given in a keyword argument mcrun_path. + Attributes ---------- name_of_instrumentfile : str Name of instrument file to be executed - + data_folder_name : str Name of datafolder mcrun writes to disk - + ncount : int - Number of rays to simulate - + Number of rays to simulate + mpi : int Number of mpi threads to run - + parameters : dict Dictionary of parameter names and values for this simulation - + custom_flags : string Custom flags that are passed to the mcrun command - + mcrun_path : string Path to the mcrun command (can be empty if already in path) - - + Methods ------- run_simulation() - Runs simulation, returns list of mcstas_data instances - + Runs simulation, returns list of McStasData instances + """ - def __init__(self,instr_name,**kwargs): + + def __init__(self, instr_name, **kwargs): """ Parameters ---------- instr_name : str Name of instrument file to be simulated - + kwargs : keyword arguments foldername : str Sets data_folder_name @@ -395,159 +431,187 @@ def __init__(self,instr_name,**kwargs): mcrun_path : str Path to mcrun command, "" if already in path """ + self.name_of_instrumentfile = instr_name - + self.data_folder_name = "" self.ncount = 1E6 - self.mpi=1 + self.mpi = 1 self.parameters = {} self.custom_flags = "" self.mcrun_path = "" - self.mcrun_path = kwargs["mcrun_path"] # mcrun_path always in kwargs - + # mcrun_path always in kwargs + self.mcrun_path = kwargs["mcrun_path"] + if "foldername" in kwargs: self.data_folder_name = kwargs["foldername"] else: - raise NameError("managed_mcrun needs foldername to load data, add with keyword argument.") - + raise NameError( + "ManagedMcrun needs foldername to load data, add " + + "with keyword argument.") + if "ncount" in kwargs: self.ncount = kwargs["ncount"] - + if "mpi" in kwargs: self.mpi = kwargs["mpi"] - + if "parameters" in kwargs: self.parameters = kwargs["parameters"] - + if "custom_flags" in kwargs: self.custom_flags = kwargs["custom_flags"] - + def run_simulation(self): - """Runs McStas simulation described by initializing the objeect""" - + """ + Runs McStas simulation described by initializing the object + """ + # construct command to run - option_string = "-c -n " + str(self.ncount) + " --mpi=" + str(self.mpi) + " " + option_string = ("-c" + + " -n " + str(self.ncount) # Set ncount + + " --mpi=" + str(self.mpi) # Set mpi + + " ") + if len(self.data_folder_name) > 0: - option_string = option_string + "-d " + self.data_folder_name - + option_string = (option_string + + "-d " + + self.data_folder_name) + # add parameters to command parameter_string = "" - for key,val in self.parameters.items(): - parameter_string = parameter_string + " " + str(key) + "=" + str(val) - - # check if a mcrun_path is set and has the correct backslash + for key, val in self.parameters.items(): + parameter_string = (parameter_string + " " + + str(key) # parameter name + + "=" + + str(val)) # parameter value + + mcrun_full_path = self.mcrun_path + "mcrun" if len(self.mcrun_path) > 1: - if self.mcrun_path[-1] == "\\" or self.mcrun_path[-1] == "/": - mcrun_full_path = self.mcrun_path + "mcrun" - else: + if not (self.mcrun_path[-1] == "\\" + or self.mcrun_path[-1] == "/"): mcrun_full_path = self.mcrun_path + "/mcrun" - else: - mcrun_full_path = self.mcrun_path + "mcrun" - + # Run the mcrun command on the system - os.system(mcrun_full_path + " " + option_string + " " + self.custom_flags + " " + self.name_of_instrumentfile + " " + parameter_string) - - # can use subprocess from spawn* if more controll is needed over the spawned process, including a timeout - - #time.sleep(1) - - # find all data files in generated folder + os.system(mcrun_full_path + " " + + option_string + " " + + self.custom_flags + " " + + self.name_of_instrumentfile + " " + + parameter_string) + + """ + Can use subprocess from spawn* instead of os.system if more + control is needed over the spawned process, including a timeout + """ + + # Find all data files in generated folder files_in_folder = os.listdir(self.data_folder_name) - - # raise an error if mccode.sim is not available - if not "mccode.sim" in files_in_folder: + + # Raise an error if mccode.sim is not available + if "mccode.sim" not in files_in_folder: raise NameError("mccode.sim not written to output folder.") - - # open mccode to read metadata for all datasets written to disk - f = open(self.data_folder_name + "/mccode.sim","r") - - # loop that reads mccode.sim sections + + # Open mccode to read metadata for all datasets written to disk + f = open(self.data_folder_name + "/mccode.sim", "r") + + # Loop that reads mccode.sim sections metadata_list = [] in_data = False for lines in f: # Could read other details about run - + if lines == "end data\n": - # no more data for this metadata object - # extract the information + # No more data for this metadata object + # Extract the information current_object.extract_info() - # add to metadata list + # Add to metadata list metadata_list.append(current_object) - # stop reading data + # Stop reading data in_data = False - + if in_data: # This line contains info to be added to metadata colon_index = lines.index(":") key = lines[2:colon_index] value = lines[colon_index+2:] current_object.add_info(key, value) - + if lines == "begin data\n": - # found data section, create new metadata object - current_object = mcstas_meta_data() - # start recording data to metadata object + # Found data section, create new metadata object + current_object = McStasMetaData() + # Start recording data to metadata object in_data = True - - # close mccode.sim + + # Close mccode.sim f.close() - - # create a list for mcstas_data instances to return + + # Create a list for McStasData instances to return results = [] - - # load datasets described in metadata list individually + + # Load datasets described in metadata list individually for metadata in metadata_list: - # load data with numpy - data = np.loadtxt(self.data_folder_name + "/" + metadata.filename.rstrip()) - - # split data into intensity, error and ncount + # Load data with numpy + data = np.loadtxt(self.data_folder_name + + "/" + + metadata.filename.rstrip()) + + # Split data into intensity, error and ncount if type(metadata.dimension) == int: - xaxis = data.T[0,:] - Intensity = data.T[1,:] - Error = data.T[2,:] - Ncount = data.T[3,:] - + xaxis = data.T[0, :] + Intensity = data.T[1, :] + Error = data.T[2, :] + Ncount = data.T[3, :] + elif len(metadata.dimension) == 2: - xaxis = [] # assume evenly binned in 2d - Intensity = data.T[:,0:metadata.dimension[1]-1] - Error = data.T[:,metadata.dimension[1]:2*metadata.dimension[1]-1] - Ncount = data.T[:,2*metadata.dimension[1]:3*metadata.dimension[1]-1] + xaxis = [] # Assume evenly binned in 2d + data_lines = metadata.dimension[1] + Intensity = data.T[:, 0:data_lines - 1] + Error = data.T[:, data_lines:2*data_lines - 1] + Ncount = data.T[:, 2*data_lines:3*data_lines - 1] else: - raise NameError("Dimension not read correctly in data set connected to monitor named " + metadata.component_name) - - # The data is saved as a mcstas_data object - result = mcstas_data(metadata,Intensity,Error,Ncount,xaxis=xaxis) - + raise NameError( + "Dimension not read correctly in data set " + + "connected to monitor named " + + metadata.component_name) + + # The data is saved as a McStasData object + result = McStasData(metadata, Intensity, + Error, Ncount, + xaxis=xaxis) + # Add this result to the results list results.append(result) - - # close the current datafile + + # Close the current datafile f.close() - - # Return list of mcstas_data objects + + # Return list of McStasData objects return results - + + class make_plot: """ - make_plot plots contents of mcstas_data objects - - Plotting is controlled through options assosciated with the mcstas_data objects. + make_plot plots contents of McStasData objects + + Plotting is controlled through options assosciated with the + McStasData objects. + If a list is given, the plots appear individually. """ - def __init__(self,data_list): + + def __init__(self, data_list): """ - plots mcstas_data, single object or list of mcstas_data - + plots McStasData, single object or list of McStasData + The options concerning plotting are stored with the data - + Parameters ---------- - data_list : mcstas_data or list of mcstas_data - mcstas_data to be plotted - + data_list : McStasData or list of McStasData + McStasData to be plotted """ - - # Relevant options: + + # Relevant options: # select colormap # show / hide colorbar # custom title / label @@ -556,139 +620,146 @@ def __init__(self,data_list): # log scale (orders of magnitude) # compare several 1d # compare 2D - - if isinstance(data_list,mcstas_data): + + if isinstance(data_list, McStasData): # Only a single element, put it in a list for easier syntax later data_list = [data_list] - + number_of_plots = len(data_list) - + print("number of elements in data list = " + str(len(data_list))) - + index = -1 for data in data_list: index = index + 1 - + print("Plotting data with name " + data.metadata.component_name) if type(data.metadata.dimension) == int: fig = plt.figure(0) - - #print(data.T) + + # print(data.T) x = data.xaxis y = data.Intensity y_err = data.Error - + plt.errorbar(x, y, yerr=y_err) - + if data.plot_options.log: - ax0.set_yscale("log",nonposy='clip') - - plt.xlim(data.metadata.limits[0],data.metadata.limits[1]) - + ax0.set_yscale("log", nonposy='clip') + + plt.xlim(data.metadata.limits[0], data.metadata.limits[1]) + # Add a title plt.title(data.metadata.title) - + # Add axis labels plt.xlabel(data.metadata.xlabel) plt.ylabel(data.metadata.ylabel) - - elif len(data.metadata.dimension) == 2: - + + elif len(data.metadata.dimension) == 2: + # Split the data into intensity, error and ncount Intensity = data.Intensity Error = data.Error Ncount = data.Ncount - - # Select to plot the intensity - #to_plot = np.log(Intensity) - + if data.plot_options.log: min_value = np.min(Intensity[np.nonzero(Intensity)]) min_value = np.log10(min_value) - + to_plot = np.log10(Intensity) - + max_value = to_plot.max() - - if max_value - min_value > data.plot_options.orders_of_mag: - min_value = max_value - data.plot_options.orders_of_mag + + if (max_value - min_value + > data.plot_options.orders_of_mag): + min_value = (max_value + - data.plot_options.orders_of_mag) else: to_plot = Intensity min_value = to_plot.min() max_value = to_plot.max() - - # Check the size of the array to be plotted - #print(to_plot.shape) - + + # Check the size of the array to be plotted + # print(to_plot.shape) + # Set the axis (might be switched?) - X=np.linspace(data.metadata.limits[0],data.metadata.limits[1],data.metadata.dimension[0]+1) - Y=np.linspace(data.metadata.limits[2],data.metadata.limits[3],data.metadata.dimension[1]) - + X = np.linspace(data.metadata.limits[0], + data.metadata.limits[1], + data.metadata.dimension[0]+1) + Y = np.linspace(data.metadata.limits[2], + data.metadata.limits[3], + data.metadata.dimension[1]) + # Create a meshgrid for both x and y - y, x = np.meshgrid(Y,X) - - + y, x = np.meshgrid(Y, X) + # Generate information on necessary colorrange - levels = MaxNLocator(nbins=150).tick_values(min_value, max_value) - #levels = MaxNLocator(nbins=150).tick_values(to_plot.max()-12, to_plot.max()) - + levels = MaxNLocator(nbins=150).tick_values(min_value, + max_value) + # Select colormap cmap = plt.get_cmap('hot') norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) - + # Create the figure fig, (ax0) = plt.subplots() - + # Plot the data on the meshgrids - #im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) - if data.plot_options.log: - im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=matplotlib.colors.LogNorm(vmin=min_value,vmax=max_value)) + if data.plot_options.log: + color_norm = matplotlib.colors.LogNorm(vmin=min_value, + vmax=max_value) + im = ax0.pcolormesh(x, y, to_plot, + cmap=cmap, norm=color_norm) else: im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) - + # Add the colorbar fig.colorbar(im, ax=ax0) - + # Add a title ax0.set_title(data.metadata.title) - + # Add axis labels plt.xlabel(data.metadata.xlabel) plt.ylabel(data.metadata.ylabel) - + else: print("Error, dimension not read correctly") - + plt.show() - + + class make_sub_plot: """ - make_plot plots contents of mcstas_data objects - - Plotting is controlled through options assosciated with the mcstas_data objects. - If a list is given, the plots appear in one subplot. + make_plot plots contents of McStasData objects + + Plotting is controlled through options assosciated with the + McStasData objects. If a list is given, the plots appear in one + subplot. """ - def __init__(self,data_list): + + def __init__(self, data_list): """ - plots mcstas_data, single object or list of mcstas_data - + plots McStasData, single object or list of McStasData + The options concerning plotting are stored with the data - + Parameters ---------- - data_list : mcstas_data or list of mcstas_data - mcstas_data to be plotted - + data_list : McStasData or list of McStasData + McStasData to be plotted """ - if not isinstance(data_list,mcstas_data): - print("number of elements in data list = " + str(len(data_list))) + if not isinstance(data_list, McStasData): + print("number of elements in data list = " + + str(len(data_list))) else: - # Only a single element, put it in a list for easier syntax later + # Make list from single element to simplify syntax data_list = [data_list] - + number_of_plots = len(data_list) - - # Relevant options: + + # Relevant options: # select colormap # show / hide colorbar # custom title / label @@ -697,176 +768,169 @@ def __init__(self,data_list): # log scale (o$rders of magnitude) # compare several 1d # compare 2D - - #fig = plt.figure(figsize=(20,10)) - # Find reasonable grid size for the number of plots dim2 = math.ceil(math.sqrt(number_of_plots)) dim1 = math.ceil(number_of_plots/dim2) - - fig, axs = plt.subplots(dim1,dim2,figsize=(13,7)) + + fig, axs = plt.subplots(dim1, dim2, figsize=(13, 7)) axs = np.array(axs) ax = axs.reshape(-1) - + index = -1 for data in data_list: index = index + 1 ax0 = ax[index] - - print("Plotting data with name " + data.metadata.component_name) - - if type(data.metadata.dimension) == int: - #fig = plt.figure(0) - #plt.subplot(dim1, dim2, n_plot) - - #print(data.T) + + print("Plotting data with name " + + data.metadata.component_name) + + if isinstance(data.metadata.dimension, int): + # fig = plt.figure(0) + # plt.subplot(dim1, dim2, n_plot) x = data.xaxis y = data.Intensity y_err = data.Error - - + ax0.errorbar(x, y, yerr=y_err) - + if data.plot_options.log: - ax0.set_yscale("log",nonposy='clip') - - ax0.set_xlim(data.metadata.limits[0],data.metadata.limits[1]) - + ax0.set_yscale("log", nonposy='clip') + + ax0.set_xlim(data.metadata.limits[0], + data.metadata.limits[1]) + # Add a title - #ax0.title(data.title) - + # ax0.title(data.title) + # Add axis labels ax0.set_xlabel(data.metadata.xlabel) ax0.set_ylabel(data.metadata.ylabel) - - elif len(data.metadata.dimension) == 2: - + + elif len(data.metadata.dimension) == 2: + # Split the data into intensity, error and ncount Intensity = data.Intensity Error = data.Error Ncount = data.Ncount - - # Select to plot the intensity - #to_plot = np.log(Intensity) - + if data.plot_options.log: min_value = np.min(Intensity[np.nonzero(Intensity)]) min_value = np.log10(min_value) - - #to_plot = np.log10(Intensity) + to_plot = Intensity - + max_value = np.log10(to_plot.max()) - - if max_value - min_value > data.plot_options.orders_of_mag: - min_value = max_value - data.plot_options.orders_of_mag + + if (max_value - min_value + > data.plot_options.orders_of_mag): + min_value = (max_value + - data.plot_options.orders_of_mag) min_value = 10.0 ** min_value max_value = 10.0 ** max_value else: to_plot = Intensity min_value = to_plot.min() max_value = to_plot.max() - - # Check the size of the array to be plotted - #print(to_plot.shape) - + + # Check the size of the array to be plotted + # print(to_plot.shape) + # Set the axis (might be switched?) - X=np.linspace(data.metadata.limits[0],data.metadata.limits[1],data.metadata.dimension[0]+1) - Y=np.linspace(data.metadata.limits[2],data.metadata.limits[3],data.metadata.dimension[1]) - + X = np.linspace(data.metadata.limits[0], + data.metadata.limits[1], + data.metadata.dimension[0]+1) + Y = np.linspace(data.metadata.limits[2], + data.metadata.limits[3], + data.metadata.dimension[1]) + # Create a meshgrid for both x and y - y, x = np.meshgrid(Y,X) - - + y, x = np.meshgrid(Y, X) + # Generate information on necessary colorrange - levels = MaxNLocator(nbins=150).tick_values(min_value, max_value) - #levels = MaxNLocator(nbins=150).tick_values(to_plot.max()-12, to_plot.max()) - + levels = MaxNLocator(nbins=150).tick_values(min_value, + max_value) + # Select colormap - #cmap = plt.get_cmap('jet') - cmap = plt.get_cmap(data.plot_options.colormap) - - norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) - - # Create the figure - #fig, (ax0) = plt.subplots() - - #fig, ax0 = plt.subplot(dim1, dim2, n_plot) - - # Plot the data on the meshgrids - #im = plt.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) - if data.plot_options.log: - im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=matplotlib.colors.LogNorm(vmin=min_value,vmax=max_value)) + cmap = plt.get_cmap(data.plot_options.colormap) + + # Select the colorscale normalization + if data.plot_options.log: + norm = matplotlib.colors.LogNorm(vmin=min_value, + vmax=max_value) else: - im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) - - + norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) + + # Create plot + im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) + def fmt(x, pos): a, b = '{:.2e}'.format(x).split('e') b = int(b) return r'${} \times 10^{{{}}}$'.format(a, b) - + # Add the colorbar - fig.colorbar(im, ax=ax0, format=matplotlib.ticker.FuncFormatter(fmt)) - + fig.colorbar(im, ax=ax0, + format=matplotlib.ticker.FuncFormatter(fmt)) + # Add a title ax0.set_title(data.metadata.title) - + # Add axis labels ax0.set_xlabel(data.metadata.xlabel) ax0.set_ylabel(data.metadata.ylabel) - + else: print("Error, dimension not read correctly") - - plt.show() - + + plt.show() + class parameter_variable: """ Class describing a input parameter in McStas instrument - - McStas input parameters are of default type double, but can be cast. If two - positional arguments are given, the first is the type, and the second is the - parameter name. With one input, only the parameter name is read. - It is also possible to assign a default value and a comment through keyword - arguments. - + + McStas input parameters are of default type double, but can be + cast. If two positional arguments are given, the first is the + type, and the second is the parameter name. With one input, only + the parameter name is read. It is also possible to assign a + default value and a comment through keyword arguments. + Attributes ---------- type : str McStas type of input: Double, Int, String - + name : str Name of input parameter - + value : any Default value/string of parameter, converted to string - + comment : str - Comment displayed next to the input parameter, could contain units - + Comment displayed next to the parameter, could contain units + Methods ------- write_parameter(fo,stop_character) - writes the parameter to file object fo, uses given stop character + writes the parameter to file fo, uses given stop character """ - def __init__(self,*args,**kwargs): - """Initializing mcstas parameter object - + + def __init__(self, *args, **kwargs): + """Initializing mcstas parameter object + Parameters ---------- If giving a type: - Positional argument 1: type : str + Positional argument 1: type: str Type of the parameter, double, int or string - Positional argument 2: name : str + Positional argument 2: name: str Name of input parameter - + If not giving type Positional argument 1: name : str Name of input parameter - + Keyword arguments value : any sets default value of parameter @@ -879,7 +943,7 @@ def __init__(self,*args,**kwargs): if len(args) == 2: self.type = args[0] + " " self.name = str(args[1]) - + if "value" in kwargs: self.value_set = 1 self.value = kwargs["value"] @@ -894,13 +958,13 @@ def __init__(self,*args,**kwargs): # could check for allowed types # they are int, double, string, are there more? - def write_parameter(self,fo,stop_character): + def write_parameter(self, fo, stop_character): """Writes input parameter to file""" fo.write("%s%s" % (self.type, self.name)) if self.value_set == 1: - if isinstance(self.value,int): + if isinstance(self.value, int): fo.write(" = %d" % self.value) - elif isinstance(self.value,float): + elif isinstance(self.value, float): fo.write(" = %G" % self.value) else: fo.write(" = %s" % str(self.value)) @@ -908,55 +972,60 @@ def write_parameter(self,fo,stop_character): fo.write(self.comment) fo.write("\n") + class declare_variable: """ Class describing a declared variable in McStas instrument - - McStas parameters are declared in the declare section with c syntax. - This class is initialized with type, name. Using keyword arguments, - the variable can become an array and have its initial value set. - + + McStas parameters are declared in declare section with c syntax. + This class is initialized with type, name. Using keyword + arguments, the variable can become an array and have its initial + value set. + Attributes ---------- type : str McStas type to declare: Double, Int, String - + name : str Name of variable - + value : any Initial value of variable, converted to string - + comment : str Comment displayed next to the declaration, could contain units - - vector : int + + vector : int 0 if a single value is given, ortherwise contains the length - + value_set : int - internal variable displaying wether or not a value was given - + Internal variable displaying wether or not a value was given + Methods ------- write_line(fo) - writes a line to text file fo declaring the parameter in c syntax + Writes a line to text file fo declaring the parameter in c """ - def __init__(self,*args,**kwargs): - """Initializing mcstas parameter object - + def __init__(self, *args, **kwargs): + """Initializing mcstas parameter object + Parameters ---------- Positional argument 1: type : str Type of the parameter, double, int or string - + Positional argument 2: name : str Name of input parameter - + Keyword arguments array : int - length of array to be allocated, default is 0 if not an array + length of array to be allocated, 0 if single value + value : any - sets initial value of parameter, can be a list with length matching array + sets initial value of parameter, + can be a list with length matching array + comment : str sets comment displayed next to declaration """ @@ -967,7 +1036,7 @@ def __init__(self,*args,**kwargs): self.value = kwargs["value"] else: self.value_set = 0 - + if "array" in kwargs: self.vector = kwargs["array"] else: @@ -978,191 +1047,188 @@ def __init__(self,*args,**kwargs): else: self.comment = "" - def write_line(self,fo): + def write_line(self, fo): """Writes line declaring variable to file fo - + Parameters ---------- fo : file object File the line will be written to """ if self.value_set == 0 and self.vector == 0: - fo.write("%s %s;%s" % (self.type, self.name,self.comment)) + fo.write("%s %s;%s" % (self.type, self.name, self.comment)) if self.value_set == 1 and self.vector == 0: if self.type == "int": - fo.write("%s %s = %d;%s" % (self.type, self.name, self.value, self.comment)) + fo.write("%s %s = %d;%s" % (self.type, self.name, + self.value, self.comment)) else: - fo.write("%s %s = %G;%s" % (self.type, self.name, self.value,self.comment)) + fo.write("%s %s = %G;%s" % (self.type, self.name, + self.value, self.comment)) if self.value_set == 0 and self.vector != 0: - fo.write("%s %s[%d];%s" % (self.type, self.name, self.vector, self.comment)) + fo.write("%s %s[%d];%s" % (self.type, self.name, + self.vector, self.comment)) if self.value_set == 1 and self.vector != 0: fo.write("%s %s[%d] = {" % (self.type, self.name, self.vector)) - for i in range(0,len(self.value)-1): + for i in range(0, len(self.value) - 1): fo.write("%G," % self.value[i]) fo.write("%G};%s" % (self.value[-1], self.comment)) class component: """ - A class describing a McStas component to be written to a instrument file - - This class is used by the instrument class when setting up components, - but can also be used independently. - Most information can be given on initialize using keyword arguments, but - there are methods for setting the attributes describing the component. - The class contains both methods to write the component to a instrument - file and methods for printing to the python terminal for checking the - information. - + A class describing a McStas component to be written to a instrument + + This class is used by the instrument class when setting up + components, but can also be used independently. Most information + can be given on initialize using keyword arguments, but there are + methods for setting the attributes describing the component. The + class contains both methods to write the component to a instrument + file and methods for printing to the python terminal for checking + the information. + Attributes ---------- name : str Name of the component instance in McStas (must be unique) - + component_name : str Name of the component code to use, e.g. Arm, Guide_gravity, ... - + AT_data : list of 3 floats Position data of the component - + AT_relative : str - String matching name of former component to use as reference for position - + Name of former component to use as reference for position + ROTATED_data : list of 3 floats Rotation data of the component - + ROTATED_relative : str - String matching name of former component to use as reference for position - + Name of former component to use as reference for position + WHEN : str - String with logical expression in c syntax for when component is active - + String with logical c expression x for when component is active + EXTEND : str - c code that extends the component, can use declared parameters and internal - + c code for McStas EXTEND section + GROUP : str Name of group the component should belong to - + JUMP : str String describing use of JUMP, need to contain all after "JUMP" - + component_parameters : dict Parameters to be used with component in dictionary - - comment : str + + comment : str Comment inserted before the component as an explanation - + Methods ------- set_AT(at_list,**kwargs) - Sets AT_data, can set AT_relative using keyword argument - + Sets AT_data, can set AT_relative using keyword + set_ROTATED(rotated_list,**kwargs) - Sets ROTATED_data, can set ROTATED_relative using keyword argument - + Sets ROTATED_data, can set ROTATED_relative using keyword + set_RELATIVE(relative_name) Set both AT_relative and ROTATED_relative to relative_name - + set_parameters(dict_input) Adds dictionary entries to parameter dictionary - + set_WHEN(string) Sets WHEN string - + set_GROUP(string) Sets GROUP name - + set_JUMP(string) Sets JUMP string - + append_EXTEND(string) Append string to EXTEND string - + set_comment(string) Sets comment for component - + write_component(fo) Writes component code to instrument file - + print_long() Prints basic view of component code (not correct syntax) - + print_short(**kwargs) Prints short description, used in print_components - """ - def __init__(self,instance_name,component_name,**kwargs): + def __init__(self, instance_name, component_name, **kwargs): """ Initializes McStas component with specified name and component - + Parameters ---------- instance_name : str name of the instance of the component - + component_name : str name of the component type e.g. Arm, Guide_gravity, ... - + keyword arguments: AT : list of 3 floats Sets AT_data describing position of component - + AT_RELATIVE : str - sets AT_relative, describing position reference point - + sets AT_relative, describing position reference + ROTATED : list of 3 floats Sets ROTATED_data, describing rotation of component - + ROTATED_RELATIVE : str - Sets ROTATED_relative, describing reference component for rotation - + Sets ROTATED_relative, sets reference for rotation + RELATIVE : str - Sets both AT_relative and ROTATED_relative - + Sets both AT_relative and ROTATED_relative + WHEN : str Sets WHEN string, should contain logical c expression - + EXTEND : str Sets initial EXTEND string, should contain c code - + GROUP : str - Sets name of group the component instance should belong to - + Sets name of group the component should belong to + JUMP : str Sets JUMP str - + comment: str Sets comment string - """ - # Defines a McStas component with name and component name as first inputs self.name = instance_name self.component_name = component_name - - # Possible to give AT and ROTATED including AT_RELATIVE / ROTATED_RELATIVE - # RELATIVE keyword also exists and sets both AT_RELATIVE and ROTATED_RELATIVE + if "AT" in kwargs: self.AT_data = kwargs["AT"] else: - self.AT_data = [0,0,0] - # need to check if AT_RELATIVE is a string + self.AT_data = [0, 0, 0] + # Could check if AT_RELATIVE is a string if "AT_RELATIVE" in kwargs: self.AT_relative = "RELATIVE " + kwargs["AT_RELATIVE"] else: self.AT_relative = "ABSOLUTE" - - # If rotated is never mentioned, why print it? How does this influence McStas? + if "ROTATED" in kwargs: self.ROTATED_data = kwargs["ROTATED"] else: - self.ROTATED_data = [0,0,0] - # need to check if ROTATED_RELATIVE is a string + self.ROTATED_data = [0, 0, 0] + # Could check if ROTATED_RELATIVE is a string if "ROTATED_RELATIVE" in kwargs: self.ROTATED_relative = kwargs["ROTATED_RELATIVE"] else: self.ROTATED_relative = "ABSOLUTE" - - # need to check if RELATIVE is a string + + # Could check if RELATIVE is a string if "RELATIVE" in kwargs: self.AT_relative = "RELATIVE " + kwargs["RELATIVE"] self.ROTATED_relative = "RELATIVE " + kwargs["RELATIVE"] @@ -1171,12 +1237,12 @@ def __init__(self,instance_name,component_name,**kwargs): self.WHEN = "WHEN (" + kwargs["WHEN"] + ")\n" else: self.WHEN = "" - + if "EXTEND" in kwargs: self.EXTEND = kwargs["EXTEND"] + "\n" else: self.EXTEND = "" - + if "GROUP" in kwargs: self.GROUP = kwargs["GRPUP"] else: @@ -1187,43 +1253,41 @@ def __init__(self,instance_name,component_name,**kwargs): else: self.JUMP = "" - # possible to have a c comment if "comment" in kwargs: self.comment = kwargs["comment"] else: self.comment = "" - # initialize a dictionary self.component_parameters = {} - - # possible to store a preference for wehter this component should - # be in a include file or directly in the instrument? - - # method for setting AT and AT_RELATIVE after initialization - def set_AT(self,at_list,**kwargs): + + """ + Could store an option for whether this component should be + printed in instrument file or in a seperate file which would + then be included. + """ + + def set_AT(self, at_list, **kwargs): """Sets AT data, List of 3 floats""" - self.AT_data=at_list + self.AT_data = at_list if "RELATIVE" in kwargs: relative_name = kwargs["RELATIVE"] if relative_name == "ABSOLUTE": self.AT_relative = relative_name else: self.AT_relative = "RELATIVE " + relative_name - - # method for setting ROTATED and ROTATED_RELATIVE after initialization - def set_ROTATED(self,rotated_list,**kwargs): - """Sets ROTATED data, List of 3 floats""" - self.ROTATED_data=rotated_list + + def set_ROTATED(self, rotated_list, **kwargs): + """Sets ROTATED data, List of 3 floats""" + self.ROTATED_data = rotated_list if "RELATIVE" in kwargs: relative_name = kwargs["RELATIVE"] if relative_name == "ABSOLUTE": self.ROTATED_relative = relative_name else: self.ROTATED_relative = "RELATIVE " + relative_name - - # method for setting RELATIVE after initialization - def set_RELATIVE(self,relative_name): - """Sets both AT_relative and ROTATED_relative""" + + def set_RELATIVE(self, relative_name): + """Sets both AT_relative and ROTATED_relative""" if relative_name == "ABSOLUTE": self.AT_relative = relative_name self.ROTATED_relative = relative_name @@ -1231,99 +1295,103 @@ def set_RELATIVE(self,relative_name): self.AT_relative = "RELATIVE " + relative_name self.ROTATED_relative = "RELATIVE " + relative_name - # method that adds a parameter name / value pair to dictionary - def set_parameters(self,dict_input): - """Adds additional parameters and their values using a dictionary input""" + def set_parameters(self, dict_input): + """Adds parameters and their values from dictionary input""" self.component_parameters.update(dict_input) - - def set_WHEN(self,string): + + def set_WHEN(self, string): """Sets WHEN string, should be a c logical expression""" self.WHEN = string - - def set_GROUP(self,string): + + def set_GROUP(self, string): """Sets GROUP name""" self.GROUP = string - - def set_JUMP(self,string): + + def set_JUMP(self, string): """Sets JUMP string, should contain all text after JUMP""" self.JUMP = string - - def append_EXTEND(self,string): + + def append_EXTEND(self, string): """Appends a line of code to EXTEND block of component""" self.EXTEND = self.EXTEND + string + "\n" - def set_comment(self,string): + def set_comment(self, string): """Method that sets a comment to be written to instrument file""" self.comment = string - def write_component(self,fo): + def write_component(self, fo): """Method that writes component to file""" - parameters_per_line = 2 # write comma separated parameters, up to 2 per line - # could use a character limit on lines instead + parameters_per_line = 2 + # Could use character limit on lines instead parameters_written = 0 # internal parameter - number_of_parameters = len(self.component_parameters) # internal parameter - - # write comment if present + number_of_parameters = len(self.component_parameters) + + # Write comment if present if len(self.comment) > 1: fo.write("// %s\n" % (str(self.comment))) - - # write component name and component type + + # Write component name and component type fo.write("COMPONENT %s = %s(" % (self.name, self.component_name)) - + if number_of_parameters == 0: - fo.write(")\n") # if there are no parameters, close the component immediately + fo.write(")\n") # If there are no parameters, close immediately else: - fo.write("\n") # if there are parameters to be written, start a new line - - for key,val in self.component_parameters.items(): - if isinstance(val,float): # check if value is a number - fo.write(" %s = %G" % (str(key),val)) # Small or large numbers written in scientific format + fo.write("\n") # If there are parameters, start a new line + + for key, val in self.component_parameters.items(): + if isinstance(val, float): # CHeck if value is a number + # Small or large numbers written in scientific format + fo.write(" %s = %G" % (str(key), val)) else: - fo.write(" %s = %s" % (str(key),str(val))) + fo.write(" %s = %s" % (str(key), str(val))) parameters_written = parameters_written + 1 if parameters_written < number_of_parameters: - fo.write(",") # comma between parameters - if parameters_written%parameters_per_line == 0: - fo .write("\n") + fo.write(",") # Comma between parameters + if parameters_written % parameters_per_line == 0: + fo.write("\n") else: - fo.write(")\n") # end paranthesis after last parameter - + fo.write(")\n") # End paranthesis after last parameter + # Optional WHEN section if not self.WHEN == "": fo.write("WHEN(%s)\n" % self.WHEN) - # Need to add JUMP section here - - # write AT and ROTATED section - fo.write("AT (%s,%s,%s)" % (str(self.AT_data[0]),str(self.AT_data[1]),str(self.AT_data[2]))) + + # Write AT and ROTATED section + fo.write("AT (%s,%s,%s)" % (str(self.AT_data[0]), + str(self.AT_data[1]), + str(self.AT_data[2]))) fo.write(" %s\n" % self.AT_relative) - fo.write("ROTATED (%s,%s,%s)" % (str(self.ROTATED_data[0]),str(self.ROTATED_data[1]),str(self.ROTATED_data[2]))) + fo.write("ROTATED (%s,%s,%s)" % (str(self.ROTATED_data[0]), + str(self.ROTATED_data[1]), + str(self.ROTATED_data[2]))) fo.write(" %s\n" % self.ROTATED_relative) - + if not self.GROUP == "": fo.write("GROUP %s\n" % self.GROUP) - + # Optional EXTEND section if not self.EXTEND == "": fo.write("EXTEND %{\n") fo.write("%s" % self.EXTEND) fo.write("%}\n") - + if not self.JUMP == "": fo.write("JUMP %s\n" % self.JUMP) - + # Leave a new line between components for readability fo.write("\n") - + def print_long(self): - """Method for printing contained information to Python terminal, not correct syntax""" + """Prints contained information to Python terminal""" print("// " + self.comment) - print("COMPONENT " + str(self.name) + " = " + str(self.component_name)) - for key,val in self.component_parameters.items(): - print(" ",key,"=",val) + print("COMPONENT", str(self.name), + "=", str(self.component_name)) + for key, val in self.component_parameters.items(): + print(" ", key, "=", val) if not self.WHEN == "": print("WHEN (" + self.WHEN + ")") - print("AT",self.AT_data,self.AT_relative) - print("ROTATED",self.ROTATED_data,self.ROTATED_relative) + print("AT", self.AT_data, self.AT_relative) + print("ROTATED", self.ROTATED_data, self.ROTATED_relative) if not self.GROUP == "": print("GROUP " + self.GROUP) if not self.EXTEND == "": @@ -1332,629 +1400,673 @@ def print_long(self): if not self.JUMP == "": print("JUMP " + self.JUMP) - def print_short(self,**kwargs): - """Method for printing short description of component to list print""" + def print_short(self, **kwargs): + """Prints short description of component to list print""" if "longest_name" in kwargs: print("test") - print(str(self.name)+" "*(3+kwargs["longest_name"]-len(self.name)),end='') - print(str(self.component_name),"\tAT",self.AT_data,self.AT_relative,"ROTATED",self.ROTATED_data,self.ROTATED_relative) + number_of_spaces = 3+kwargs["longest_name"]-len(self.name) + print(str(self.name) + " "*number_of_spaces, end='') + print(str(self.component_name), + "\tAT", self.AT_data, self.AT_relative, + "ROTATED", self.ROTATED_data, self.ROTATED_relative) else: - print(str(self.name),"=",str(self.component_name),"\tAT",self.AT_data,self.AT_relative,"ROTATED",self.ROTATED_data,self.ROTATED_relative) + print(str(self.name), "=", str(self.component_name), + "\tAT", self.AT_data, self.AT_relative, + "ROTATED", self.ROTATED_data, self.ROTATED_relative) class McStas_instr: """ Main class for writing a McStas instrument using McStasScript - + Initialization of McStas_instr sets the name of the instrument file and its methods are used to add all aspects of the instrument file. - The class also holds methods for writing the finished instrument file - to disk and to run the simulation. - + The class also holds methods for writing the finished instrument + file to disk and to run the simulation. + Attributes ---------- name : str name of instrument file - + author : str name of user of McStasScript, written to the file - + origin : str origin of instrument file (affiliation) - + mcrun_path : str absolute path of mcrun command, or empty if it is in path - + parameter_list : list of parameter_variable instances contains all input parameters to be written to file - + declare_list : list of declare_variable instances contains all declare parrameters to be written to file - + initialize_section : str - string containing entire initialize section to be written to file - + string containing entire initialize section to be written + trace_section : str string containing trace section (OBSOLETE) - + finally_section : str - string containing entire finally section to be written to file - + string containing entire finally section to be written + component_list : list of component instances list of components in the instrument - + component_name_list : list of strings list of names of the components in the instrument - + Methods ------- add_parameter(*args,**kwargs) Adds input parameter to the define section - + add_declare_var() Adds declared variable ot the declare section - + append_initialize(string) - Appends a string to the initialize section, followed by a new line - + Appends a string to the initialize section, then adds new line + append_initialize_no_new_line(string) Appends a string to the initialize section - + append_finally(string) - Appends a string to finally section, followed by a new line - + Appends a string to finally section, then adds new line + append_finally_no_new_line(string) Appends a string to finally section - + append_trace(string) - Obsolete method, add components instead (still used in write_c_files) - + Obsolete method, add components instead (used in write_c_files) + add_component(instance_name,component_name,**kwargs) Add a component to the instrument file - + get_component(instance_name) Returns component instance with name instance_name - + get_last_component() Returns component instance of last component - + set_component_parameter(instance_name,dict) Adds parameters as dict to component with instance_name - + set_component_AT(instance_name,AT_data,**kwargs) - Sets position of component named instance_name, reference component can be set in kwargs - + Sets position of component named instance_name + set_component_ROTATED(instance_name,ROTATED_data,**kwargs) - Sets rotation of component named instance_name, reference component can be set in kwargs - + Sets rotation of component named instance_name + set_component_RELATIVE(instane_name,string) - Sets reference component named instance_name for both position and rotation - + Sets position and rotation reference for named component + set_component_WHEN(instance_name,string) - Sets WHEN condition of component named instance_name, should be logical c expression - + Sets WHEN condition of named component, is logical c expression + set_component_GROUP(instance_name,string) Sets GROUP name of component named instance_name - + append_component_EXTEND(instance_name,string) - Appends a line to EXTEND section of component named instance_name - + Appends a line to EXTEND section of named component + set_component_JUMP(instance_name,string) - Sets JUMP code for component named instance_name - + Sets JUMP code for named component + set_component_comment(instance_name,string) - Sets comment to be written before component named instance_name - + Sets comment to be written before named component + print_component(instance_name) - Prints an overview of current state of component named instance_name - + Prints an overview of current state of named component + print_component_short(instance_name) - Prints short overview of current state of component named instance_name - + Prints short overview of current state of named component + print_components() - Prints overview of postion / rotation of all components in instrument - + Prints overview of postion / rotation of all components + write_c_files() - Writes c files to include in existing McStas instrument in folder named generated_includes - + Writes c files for %include in generated_includes folder + write_full_instrument() - Writes full instrument file to current directory, name as set in class initialization - + Writes full instrument file to current directory + run_full_instrument(**kwargs) - Writes instrument files and runs a simulation with mcrun. Returns list of mcstas_data - + Writes instrument files and runs simulation. + Returns list of McStasData """ - - def __init__(self,name,**kwargs): + + def __init__(self, name, **kwargs): """ Initialization of McStas Instrument - + Parameters ---------- name : str - Name of project, instrument file will be called name + ".instr" - + Name of project, instrument file will be name + ".instr" + keyword arguments: author : str - Name of author, will be written in instrument file - + Name of author, written in instrument file + origin : str - Affiliation of author, will be written in instrument file - + Affiliation of author, written in instrument file + mcrun_path : str - Absolute path of mcrun or empty string if already in path + Absolute path of mcrun or empty if already in path """ self.name = name - + if "author" in kwargs: self.author = kwargs["author"] else: self.author = "Python McStas Instrument Generator" - + if "origin" in kwargs: self.origin = kwargs["origin"] else: self.origin = "ESS DMSC" - + if "mcrun_path" in kwargs: self.mcrun_path = kwargs["mcrun_path"] else: self.mcrun_path = "" - + self.parameter_list = [] self.declare_list = [] - self.initialize_section = "// Start of initialize for generated " + name + "\n" - self.trace_section = "// Start of trace section for generated " + name + "\n" - self.finally_section = "// Start of finally for generated " + name + "\n" - # handle components - self.component_list = [] # list of components (have to be ordered) - self.component_name_list = [] # list of component names - - def add_parameter(self,*args,**kwargs): + self.initialize_section = ("// Start of initialize for generated " + + name + "\n") + self.trace_section = ("// Start of trace section for generated " + + name + "\n") + self.finally_section = ("// Start of finally for generated " + + name + "\n") + # Handle components + self.component_list = [] # List of components (have to be ordered) + self.component_name_list = [] # List of component names + + def add_parameter(self, *args, **kwargs): """ Method for adding input parameter to instrument - + Parameters ---------- - + (optional) parameter type : str type of input parameter, double, int, string - + parameter name : str name of parameter - + keyword arguments value : any Default value of parameter - + comment : str Comment displayed next to declaration of parameter - """ - # type of variable, name of variable, options described in declare_parameter class - self.parameter_list.append(parameter_variable(*args,**kwargs)) + # parameter_variable class documented independently + self.parameter_list.append(parameter_variable(*args, **kwargs)) - def add_declare_var(self,*args,**kwargs): + def add_declare_var(self, *args, **kwargs): """ Method for adding declared variable to instrument - + Parameters ---------- - + parameter type : str type of input parameter - + parameter name : str name of parameter - + keyword arguments array : int default 0 for scalar, if specified length of array - + value : any Initial value of parameter, can be list of length vector - + comment : str Comment displayed next to declaration of parameter - + """ - # type of variable, name of variable, options described in declare_variable class - self.declare_list.append(declare_variable(*args,**kwargs)) + # declare_variable class documented independently + self.declare_list.append(declare_variable(*args, **kwargs)) - def append_initialize(self,string): + def append_initialize(self, string): """ - Method for appending code to the intialize section of instrument - + Method for appending code to the intialize section + The intialize section consists of c code and will be compiled, - thus any syntax errors will crash the simulation. Code is added + thus any syntax errors will crash the simulation. Code is added on a new line for each call to this method. - + Parameters ---------- string : str code to be added to initialize section - """ self.initialize_section = self.initialize_section + string + "\n" - - def append_initialize_no_new_line(self,string): + + def append_initialize_no_new_line(self, string): """ - Method for appending code to the intialize section of instrument (no new line) - + Method for appending code to the intialize section, no new line + The intialize section consists of c code and will be compiled, - thus any syntax errors will crash the simulation. Code is added + thus any syntax errors will crash the simulation. Code is added to the current line. - + Parameters ---------- string : str code to be added to initialize section - + """ + self.initialize_section = self.initialize_section + string - - def append_finally(self,string): + + def append_finally(self, string): """ Method for appending code to the finally section of instrument - + The finally section consists of c code and will be compiled, - thus any syntax errors will crash the simulation. Code is added + thus any syntax errors will crash the simulation. Code is added on a new line for each call to this method. - + Parameters ---------- string : str code to be added to finally section - + """ + self.finally_section = self.finally_section + string + "\n" - - def append_finally_no_new_line(self,string): + + def append_finally_no_new_line(self, string): """ Method for appending code to the finally section of instrument - + The finally section consists of c code and will be compiled, - thus any syntax errors will crash the simulation. Code is added + thus any syntax errors will crash the simulation. Code is added to the current line. - + Parameters ---------- string : str code to be added to finally section - """ + self.finally_section = self.finally_section + string - - # Need to handle trace string differently when components also exists - # A) Could have trace string as a component attribute and set it before / after - # B) Could have trace string as a McStas_instr attribute and still attach placement to components - # C) Could have trace string as a different object and place it in component_list, but have a write function named as the component write function? - - def append_trace(self,string): - """ - Method for appending code to trace section, only used in write_c_files - - The most common way to add code to the trace section is to add - components using the seperate methods for this. This method is kept - as is still used for writing to c files used in legacy code. Each call - creates a new line. - + + """ + # Handle trace string differently when components also exists + # A) Coul d have trace string as a component attribute and set + # it before / after + # B) Could have trace string as a McStas_instr attribute and + # still attach placement to components + # C) Could have trace string as a different object and place it + # in component_list, but have a write function named as the + # component write function? + """ + + def append_trace(self, string): + """ + Appends code to trace section, only used in write_c_files + + The most common way to add code to the trace section is to add + components using the seperate methods for this. This method is + kept as is still used for writing to c files used in legacy + code. Each call creates a new line. + Parameters ---------- string : str code to be added to trace - """ + self.trace_section = self.trace_section + string + "\n" - - def append_trace_no_new_line(self,string): - """ - Method for appending code to trace section, only used in write_c_files - - The most common way to add code to the trace section is to add - components using the seperate methods for this. This method is kept - as is still used for writing to c files used in legacy code. No new - line is made with this call. - + + def append_trace_no_new_line(self, string): + """ + Appends code to trace section, only used in write_c_files + + The most common way to add code to the trace section is to add + components using the seperate methods for this. This method is + kept as is still used for writing to c files used in legacy + code. No new line is made with this call. + Parameters ---------- string : str code to be added to trace - """ + self.trace_section = self.trace_section + string - - - def add_component(self,*args,**kwargs): + + def add_component(self, *args, **kwargs): """ Method for adding a new component instance to the instrument - - Creates a new component instance in the instrument. This requires - a unique instance name of the component to be used for future reference - and the name of the McStas component to be used. The component is placed - at the end of the instrument file unless otherwise specified with the - after and before keywords. The component may be initialized using other - keyword arguments, but all attributes can be set with approrpiate methods. - + + Creates a new component instance in the instrument. This + requires a unique instance name of the component to be used for + future reference and the name of the McStas component to be + used. The component is placed at the end of the instrument file + unless otherwise specified with the after and before keywords. + The component may be initialized using other keyword arguments, + but all attributes can be set with approrpiate methods. + Parameters ---------- First positional argument : str Unique name of component instance - + Second positional argument : str Name of McStas component to create instance of - + Keyword arguments: after : str - Place this component after an already added component with given name - + Place this component after component with given name + before : str - Place this component before an already added component with given name - + Place this component before component with given name + AT : List of 3 floats - Sets AT_data that determines position relative to reference - + Sets AT_data, position relative to reference + AT_RELATIVE : str Sets reference component for postion - - ROTATED : List of 3 floats - Sets RELATIVE_data that determines rotation relative to reference - + + ROTATED : List of 3 floats + Sets ROTATED_data, rotation relative to reference + ROTATED_RELATIVE : str Sets reference component for rotation - + RELATIVE : str Sets reference component for both position and rotation - + WHEN : str Sets when condition which must be a logical c expression - + EXTEND : str Initialize the extend section with a line of c code - + GROUP : str Name of the group this component should belong to - + JUMP : str Set code for McStas JUMP statement - + comment : str - Sets a comment that will be displayed before the component + Comment that will be displayed before the component """ + if args[0] in self.component_name_list: - raise NameError("Component name \"" + str(args[0]) + "\" used twice, McStas does not allow this. Rename or remove one instance of this name.") - - if "after" in kwargs: # insert component after component with this name + raise NameError(("Component name \"" + str(args[0]) + + "\" used twice, McStas does not allow this." + + " Rename or remove one instance of this" + + " name.")) + + # Insert component after component with this name + if "after" in kwargs: if kwargs["after"] not in self.component_name_list: - raise NameError("Trying to add a component after a component named \"" + str(kwargs["after"]) + "\", but a component with that name was not found.") - + raise NameError(("Trying to add a component after a component" + + " named \"" + str(kwargs["after"]) + + "\", but a component with that name was" + + " not found.")) + new_index = self.component_name_list.index(kwargs["after"]) - self.component_list.insert(new_index+1,component(*args,**kwargs)) - self.component_name_list.insert(new_index+1,args[0]) - elif "before" in kwargs: # insret component after component with this name + self.component_list.insert(new_index+1, + component(*args, **kwargs)) + self.component_name_list.insert(new_index+1, args[0]) + + # Insert component after component with this name + elif "before" in kwargs: if kwargs["before"] not in self.component_name_list: - raise NameError("Trying to add a component before a component named \"" + str(kwargs["before"]) + "\", but a component with that name was not found.") - + raise NameError(("Trying to add a component before a " + + "component named \"" + + str(kwargs["before"]) + + "\", but a component with that " + + "name was not found.")) + new_index = self.component_name_list.index(kwargs["before"]) - self.component_list.insert(new_index,component(*args,**kwargs)) - self.component_name_list.insert(new_index,args[0]) + self.component_list.insert(new_index, component(*args, **kwargs)) + self.component_name_list.insert(new_index, args[0]) + + # If after or before keywords absent, place component at the end else: - self.component_list.append(component(*args,**kwargs)) + self.component_list.append(component(*args, **kwargs)) self.component_name_list.append(args[0]) - - def get_component(self,name): + + def get_component(self, name): """ Get the component instance of component with specified name - - This method is used to get direct access to any component instance - in the instrument. The component instance can be manipulated in - much the same way, but it is not necessary to specify the name in - each call. - + + This method is used to get direct access to any component + instance in the instrument. The component instance can be + manipulated in much the same way, but it is not necessary to + specify the name in each call. + Parameters ---------- name : str Unique name of component whos instance should be returned """ + if name in self.component_name_list: index = self.component_name_list.index(name) return self.component_list[index] else: - raise NameError("No component was found with name \"" + str(name) + "\"!") - + raise NameError(("No component was found with name \"" + + str(name) + "\"!")) + def get_last_component(self): """ Get the component instance of last component in the instrument - - This method is used to get direct access to any component instance - in the instrument. The component instance can be manipulated in - much the same way, but it is not necessary to specify the name in - each call. + + This method is used to get direct access to any component + instance in the instrument. The component instance can be + manipulated in much the same way, but it is not necessary to + specify the name in each call. """ + return self.component_list[-1] - def set_component_parameter(self,name,input_dict): + def set_component_parameter(self, name, input_dict): """ Add parameters and their values as dictionary to component - + This method is the primary way of specifying parameters in a - component. Parameters are added to a dictionary specifying + component. Parameters are added to a dictionary specifying parameter name and value pairs. - + Parameters ---------- name : str Unique name of component to modify - + input_dict : dict Set of new parameter name and value pairs to add """ + component = self.get_component(name) component.set_parameters(input_dict) - def set_component_AT(self,name,at_list,**kwargs): + def set_component_AT(self, name, at_list, **kwargs): """ Method for setting position of component - + Parameters ---------- name : str Unique name of component to modify - + at_list : List of 3 floats Position of component relative to reference component - + keyword arguments: RELATIVE : str Sets reference component for position """ + component = self.get_component(name) - component.set_AT(at_list,**kwargs) - - def set_component_ROTATED(self,name,rotated_list,**kwargs): + component.set_AT(at_list, **kwargs) + + def set_component_ROTATED(self, name, rotated_list, **kwargs): """ Method for setting rotiation of component - + Parameters ---------- name : str Unique name of component to modify - + rotated_list : List of 3 floats Rotation of component relative to reference component - + keyword arguments: RELATIVE : str Sets reference component for rotation """ + component = self.get_component(name) - component.set_ROTATED(rotated_list,**kwargs) - - def set_component_RELATIVE(self,name,relative): + component.set_ROTATED(rotated_list, **kwargs) + + def set_component_RELATIVE(self, name, relative): """ Method for setting reference of component position and rotation - + Parameters ---------- name : str Unique name of component to modify - + relative : str Reference component for position and rotation """ + component = self.get_component(name) component.set_RELATIVE(relative) - - def set_component_WHEN(self,name,WHEN): + + def set_component_WHEN(self, name, WHEN): """ Method for setting WHEN c expression to named component - + Parameters ---------- name : str - Unique name of component to modify - + Unique name of component to modify + WHEN : str Sets WHEN c expression for named McStas component """ component = self.get_component(name) component.set_WHEN(WHEN) - - def append_component_EXTEND(self,name,EXTEND): + + def append_component_EXTEND(self, name, EXTEND): """ Method for adding line of c to EXTEND section of named component - + Parameters ---------- name : str - Unique name of component to modify - + Unique name of component to modify + EXTEND : str Line of c code added to EXTEND section of named component """ + component = self.get_component(name) component.append_EXTEND(EXTEND) - - def set_component_GROUP(self,name,GROUP): + + def set_component_GROUP(self, name, GROUP): """ Method for setting GROUP name of named component - + Parameters ---------- name : str - Unique name of component to modify - + Unique name of component to modify + GROUP : str Sets GROUP name for named McStas component """ + component = self.get_component(name) component.set_GROUP(GROUP) - - def set_component_JUMP(self,name,JUMP): + + def set_component_JUMP(self, name, JUMP): """ Method for setting JUMP expression of named component - + Parameters ---------- name : str - Unique name of component to modify - + Unique name of component to modify + JUMP : str Sets JUMP expression for named McStas component """ + component = self.get_component(name) component.set_JUMP(JUMP) - - def set_component_comment(self,name,string): + + def set_component_comment(self, name, string): """ Sets a comment displayed before the component in written files - + Parameters ---------- name : str - Unique name of component to modify - + Unique name of component to modify + string : str Comment string - + """ + component = self.get_component(name) component.set_comment(string) - - def print_component(self,name): + + def print_component(self, name): """ Method for printing summary of contents in named component - + Parameters ---------- name : str Unique name of component to print """ + component = self.get_component(name) component.print_long() - - def print_component_short(self,name): + + def print_component_short(self, name): """ Method for printing summary of contents in named component - + Parameters ---------- name : str Unique name of component to print """ + component = self.get_component(name) component.print_short() - + def print_components(self): """ Method for printing overview of all components in instrument - + Provides overview of component names, what McStas component is used for each and their position and rotation in space. - """ - longest_name = len(max(self.component_name_list,key=len)) - + + longest_name = len(max(self.component_name_list, key=len)) + # Investigate how this could have been done in a better way # Find longest field for each type of data printed component_type_list = [] @@ -1976,36 +2088,57 @@ def print_components(self): rotated_y_list.append(str(component.ROTATED_data[1])) rotated_z_list.append(str(component.ROTATED_data[2])) rotated_relative_list.append(component.ROTATED_relative) - - longest_component_name = len(max(component_type_list,key=len)) - longest_at_x_name = len(max(at_x_list,key=len)) - longest_at_y_name = len(max(at_y_list,key=len)) - longest_at_z_name = len(max(at_z_list,key=len)) - longest_at_relative_name = len(max(at_relative_list,key=len)) - longest_rotated_x_name = len(max(rotated_x_list,key=len)) - longest_rotated_y_name = len(max(rotated_y_list,key=len)) - longest_rotated_z_name = len(max(rotated_z_list,key=len)) - longest_rotated_relative_name = len(max(rotated_relative_list,key=len)) - + + longest_component_name = len(max(component_type_list, key=len)) + longest_at_x_name = len(max(at_x_list, key=len)) + longest_at_y_name = len(max(at_y_list, key=len)) + longest_at_z_name = len(max(at_z_list, key=len)) + longest_at_relative_name = len(max(at_relative_list, key=len)) + longest_rotated_x_name = len(max(rotated_x_list, key=len)) + longest_rotated_y_name = len(max(rotated_y_list, key=len)) + longest_rotated_z_name = len(max(rotated_z_list, key=len)) + longest_rotated_relative_name = len(max(rotated_relative_list, + key=len)) + # Have longest field for each type, use ljust to align all columns for component in self.component_list: - print(str(component.name).ljust(longest_name+2),end=' ') - print(str(component.component_name).ljust(longest_component_name+2),end=' ') - print("AT ",str(component.AT_data).ljust(longest_at_x_name+longest_at_y_name+longest_at_z_name+11),end='') - print(component.AT_relative.ljust(longest_at_relative_name+2),end=' ') - print("ROTATED ",str(component.ROTATED_data).ljust(longest_rotated_x_name+longest_rotated_y_name+longest_rotated_z_name+11),end='') + print(str(component.name).ljust(longest_name+2), end=' ') + + comp_name = component.component_name + comp_name_print = str(comp_name).ljust(longest_component_name + 2) + print(comp_name_print, end=' ') + + comp_at_data = str(component.AT_data) + longest_at_xyz_sum = (longest_at_x_name + + longest_at_y_name + + longest_at_z_name) + print("AT ", + comp_at_data.ljust(longest_at_xyz_sum + 11), + end='') + + comp_at_relative = component.AT_relative + print(comp_at_relative.ljust(longest_at_relative_name + 2), + end=' ') + + comp_rotated_data = str(component.ROTATED_data) + longest_rotated_xyz_sum = (longest_rotated_x_name + + longest_rotated_y_name + + longest_rotated_z_name) + print("ROTATED ", + comp_rotated_data.ljust(longest_rotated_xyz_sum + 11), + end='') print(component.ROTATED_relative) - #print("") + # print("") def write_c_files(self): """ - Obsolete method for writing instrument to c files for later use - - It is possible to use this function to write c files to a folder called - generated_includes that can then be included in the different sections - of a McStas instrument. Component objects are NOT written to these - files, but rather the contents of the trace_section that can be set - using the append_trace method. + Obsolete method for writing instrument parts to c files + + It is possible to use this function to write c files to a folder + called generated_includes that can then be included in the + different sections of a McStas instrument. Component objects are + NOT written to these files, but rather the contents of the + trace_section that can be set using the append_trace method. """ path = os.getcwd() path = path + "/generated_includes" @@ -2013,26 +2146,27 @@ def write_c_files(self): try: os.mkdir(path) except OSError: - print ("Creation of the directory %s failed" % path) - - fo = open("./generated_includes/" + self.name + "_declare.c","w") + print("Creation of the directory %s failed" % path) + + fo = open("./generated_includes/" + self.name + "_declare.c", "w") fo.write("// declare section for %s \n" % self.name) fo.close() - fo = open("./generated_includes/" + self.name + "_declare.c","a") + fo = open("./generated_includes/" + self.name + "_declare.c", "a") for dec_line in self.declare_list: dec_line.write_line(fo) fo.write("\n") fo.close() - - fo = open("./generated_includes/" + self.name + "_initialize.c","w") + + fo = open("./generated_includes/" + self.name + "_initialize.c", "w") fo.write(self.initialize_section) fo.close() - fo = open("./generated_includes/" + self.name + "_trace.c","w") + fo = open("./generated_includes/" + self.name + "_trace.c", "w") fo.write(self.trace_section) fo.close() - - fo = open("./generated_includes/" + self.name + "_component_trace.c","w") + + fo = open("./generated_includes/" + self.name + + "_component_trace.c", "w") for component in self.component_list: component.write_component(fo) fo.close() @@ -2040,31 +2174,35 @@ def write_c_files(self): def write_full_instrument(self): """ Method for writing full instrument file to disk - - This method writes the instrument described by the instrument object to - disk with the name specified in the initialization of the object. + + This method writes the instrument described by the instrument + objects to disk with the name specified in the initialization of + the object. """ - + # Create file identifier - fo = open(self.name + ".instr","w") + fo = open(self.name + ".instr", "w") # Write quick doc start - fo.write("/" + "*"*80 + "\n") + fo.write("/" + 80*"*" + "\n") fo.write("* \n") fo.write("* McStas, neutron ray-tracing package\n") fo.write("* Copyright (C) 1997-2008, All rights reserved\n") fo.write("* Risoe National Laboratory, Roskilde, Denmark\n") fo.write("* Institut Laue Langevin, Grenoble, France\n") fo.write("* \n") - fo.write("* This file was written by the Python McStas Instrument Generator \n") - fo.write("* which was written by Mads Bertelsen in 2019 while employed at \n") - fo.write("* the European Spallation Source Data Management and Software Center\n") + fo.write("* This file was written by McStasScript, which is a \n") + fo.write("* python based McStas instrument generator written by \n") + fo.write("* Mads Bertelsen in 2019 while employed at the \n") + fo.write("* European Spallation Source Data Management and \n") + fo.write("* Software Center\n") fo.write("* \n") fo.write("* Instrument %s\n" % self.name) fo.write("* \n") - fo.write("* %Identification\n") # Could allow the user to insert these + fo.write("* %Identification\n") # Could allow the user to insert this fo.write("* Written by: %s\n" % self.author) - fo.write("* Date: %s\n" % datetime.datetime.now().strftime("%H:%M:%S on %B %d, %Y")) + t_format = "%H:%M:%S on %B %d, %Y" + fo.write("* Date: %s\n" % datetime.datetime.now().strftime(t_format)) fo.write("* Origin: %s\n" % self.origin) fo.write("* %INSTRUMENT_SITE: Generated_instruments\n") fo.write("* \n") @@ -2079,9 +2217,9 @@ def write_full_instrument(self): fo.write("\n") # Add loop that inserts parameters here for variable in self.parameter_list[0:-1]: - variable.write_parameter(fo,",") + variable.write_parameter(fo, ",") if len(self.parameter_list) > 0: - self.parameter_list[-1].write_parameter(fo," ") + self.parameter_list[-1].write_parameter(fo, " ") fo.write(")\n") fo.write("\n") @@ -2096,7 +2234,10 @@ def write_full_instrument(self): fo.write("INITIALIZE \n%{\n") fo.write(self.initialize_section) # Alternatively hide everything in include - # fo.write("%include "generated_includes/" + self.name + "_initialize.c") + """ + fo.write("%include "generated_includes/" + + self.name + "_initialize.c") + """ fo.write("%}\n\n") # Write trace @@ -2112,20 +2253,21 @@ def write_full_instrument(self): # End instrument file fo.write("\nEND\n") - - def run_full_instrument(self,*args,**kwargs): - """ - Runs McStas instrument described by this class, returns list of mcstas_data - - This method will write the instrument to disk and then run it using - the mcrun command of the system. Options are set using keyword - arguments. Some options are mandatory, for example foldername, which - can not already exist, if it does data will be read from this folder. - If the mcrun command is not in the path of the system, the absolute - path can be given with the mcrun_path keyword argument. This path - could also already have been set at initialization of the instrument - object. - + + def run_full_instrument(self, *args, **kwargs): + """ + Runs McStas instrument described by this class, returns list of + McStasData + + This method will write the instrument to disk and then run it + using the mcrun command of the system. Options are set using + keyword arguments. Some options are mandatory, for example + foldername, which can not already exist, if it does data will + be read from this folder. If the mcrun command is not in the + path of the system, the absolute path can be given with the + mcrun_path keyword argument. This path could also already have + been set at initialization of the instrument object. + Parameters ---------- Keyword arguments @@ -2144,16 +2286,13 @@ def run_full_instrument(self,*args,**kwargs): """ # Write the instrument file self.write_full_instrument() - + # Make sure mcrun path is in kwargs - if not "mcrun_path" in kwargs: + if "mcrun_path" not in kwargs: kwargs["mcrun_path"] = self.mcrun_path - - # Set up the simulation - simulation = managed_mcrun(self.name + ".instr",**kwargs) - + + # Set up the simulation + simulation = ManagedMcrun(self.name + ".instr", **kwargs) + # Run the simulation and return data return simulation.run_simulation() - - - From 34ac5496ca7c2a3c8ff70553b2f31a968e1ee546 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Thu, 9 May 2019 16:38:10 +0200 Subject: [PATCH 011/403] Major change in how components are added to instrument files. McStasScript now reads component files from the McStas installation when adding a component, and is thus aware of the allowed parameters, default values, units and even descriptions harvested from comments. This is used to create a subclass of component for each component type added to the instrument. The user can now access paramters in a component directly as attributes. The user is informed if parameters are misspelled as addition of new attributes are locked at the end of __init__. There are also more help functions focused on helping the user find the right component and explaining the parameters. These have gotten some syntax highlighting. The print_long function also reminds the user of required parameters that have yet to be specified. The new features are demonstrated in a new jupyter notebook called McStasScript_demo.ipynb. The documentation will be updated to reflect the changes very soon. --- McStasScript.py | 739 +++++++++++++++++++++++++++++++++++++++- McStasScript_demo.ipynb | 495 +++++++++++++++++++++++++++ demonstration.py | 20 +- 3 files changed, 1234 insertions(+), 20 deletions(-) create mode 100644 McStasScript_demo.ipynb diff --git a/McStasScript.py b/McStasScript.py index c63a603e..e90638f8 100644 --- a/McStasScript.py +++ b/McStasScript.py @@ -27,6 +27,17 @@ basestring = str +class bcolors: + HEADER = '\033[95m' + OKBLUE = '\033[94m' + OKGREEN = '\033[92m' + WARNING = '\033[93m' + FAIL = '\033[91m' + ENDC = '\033[0m' + BOLD = '\033[1m' + UNDERLINE = '\033[4m' + + class McStasMetaData: """ Class for holding metadata for McStas dataset, is to be read from @@ -1079,12 +1090,18 @@ class component: A class describing a McStas component to be written to a instrument This class is used by the instrument class when setting up - components, but can also be used independently. Most information + components as dynamic subclasses to this class. Most information can be given on initialize using keyword arguments, but there are methods for setting the attributes describing the component. The class contains both methods to write the component to a instrument file and methods for printing to the python terminal for checking - the information. + the information. The McStas_Instr class creates subclasses from + this class that have attributes for all parameters for the given + component. The component information is read directly from the + component files in the McStas installation. This class is frozen + after __init__ so that no new attributes can be created, which + allows direct feedback to the user if a parameter name is + misspelled. Attributes ---------- @@ -1124,6 +1141,9 @@ class contains both methods to write the component to a instrument comment : str Comment inserted before the component as an explanation + __isfrozen : bool + If true no new attributes can be created, when false they can + Methods ------- set_AT(at_list,**kwargs) @@ -1161,7 +1181,20 @@ class contains both methods to write the component to a instrument print_short(**kwargs) Prints short description, used in print_components + + __setattr__(key, value) + Overwriting __setattr__ to implement ability to freeze + + _freeze() + Freeze the class so no new attributes can be defined + + _unfreeze() + Unfreeze the class so new attributes can be defined again + """ + + __isfrozen = False # When frozen, no new attributes allowed + def __init__(self, instance_name, component_name, **kwargs): """ Initializes McStas component with specified name and component @@ -1205,6 +1238,10 @@ def __init__(self, instance_name, component_name, **kwargs): comment: str Sets comment string """ + + # Allow addition of attributes in init + self._unfreeze() + self.name = instance_name self.component_name = component_name @@ -1258,14 +1295,32 @@ def __init__(self, instance_name, component_name, **kwargs): else: self.comment = "" - self.component_parameters = {} - """ Could store an option for whether this component should be printed in instrument file or in a seperate file which would then be included. """ + # Do not allow addition of attributes after init + self._freeze() + + def __setattr__(self, key, value): + if self.__isfrozen and not hasattr(self, key): + raise AttributeError("No parameter called '" + + key + + "' in component named " + + self.name + + " of component type " + + self.component_name + + ".") + object.__setattr__(self, key, value) + + def _freeze(self): + self.__isfrozen = True + + def _unfreeze(self): + self.__isfrozen = False + def set_AT(self, at_list, **kwargs): """Sets AT data, List of 3 floats""" self.AT_data = at_list @@ -1296,8 +1351,25 @@ def set_RELATIVE(self, relative_name): self.ROTATED_relative = "RELATIVE " + relative_name def set_parameters(self, dict_input): - """Adds parameters and their values from dictionary input""" - self.component_parameters.update(dict_input) + """ + Adds parameters and their values from dictionary input + + Relies on attributes added when McStas_Instr creates a + subclass from the component class where each component + parameter is added as an attribute. + + """ + for key, val in dict_input.items(): + if not hasattr(self, key): + raise NameError("No parameter called " + + key + + " in component named " + + self.name + + " of component type " + + self.component_name + + ".") + else: + setattr(self, key, val) def set_WHEN(self, string): """Sets WHEN string, should be a c logical expression""" @@ -1320,11 +1392,16 @@ def set_comment(self, string): self.comment = string def write_component(self, fo): - """Method that writes component to file""" + """ + Method that writes component to file + + Relies on attributes added when McStas_Instr creates a subclass + based on the component class. + + """ parameters_per_line = 2 # Could use character limit on lines instead parameters_written = 0 # internal parameter - number_of_parameters = len(self.component_parameters) # Write comment if present if len(self.comment) > 1: @@ -1333,12 +1410,29 @@ def write_component(self, fo): # Write component name and component type fo.write("COMPONENT %s = %s(" % (self.name, self.component_name)) + component_parameters = {} + for key in self.parameter_names: + val = getattr(self, key) + if val is None: + if self.parameter_defaults[key] is None: + raise NameError("Required parameter named " + + key + + " in component named " + + self.name + + " not set.") + else: + continue + + component_parameters[key] = val + + number_of_parameters = len(component_parameters) + if number_of_parameters == 0: fo.write(")\n") # If there are no parameters, close immediately else: fo.write("\n") # If there are parameters, start a new line - for key, val in self.component_parameters.items(): + for key, val in component_parameters.items(): if isinstance(val, float): # CHeck if value is a number # Small or large numbers written in scientific format fo.write(" %s = %G" % (str(key), val)) @@ -1382,12 +1476,40 @@ def write_component(self, fo): fo.write("\n") def print_long(self): - """Prints contained information to Python terminal""" - print("// " + self.comment) + """ + Prints contained information to Python terminal + + Includes information on required parameters if they are not yet + specified. Information on the components are added when the + class is used as a superclass for classes describing each + McStas component. + + """ + if len(self.comment) > 1: + print("// " + self.comment) print("COMPONENT", str(self.name), "=", str(self.component_name)) - for key, val in self.component_parameters.items(): - print(" ", key, "=", val) + for key in self.parameter_names: + val = getattr(self, key) + parameter_name = bcolors.BOLD + key + bcolors.ENDC + if val is not None: + unit = "" + if key in self.parameter_units: + unit = "[" + self.parameter_units[key] + "]" + value = (bcolors.BOLD + + bcolors.OKGREEN + + str(val) + + bcolors.ENDC + + bcolors.ENDC) + print(" ", parameter_name, "=", value, unit) + else: + if self.parameter_defaults[key] is None: + print(" " + + parameter_name + + bcolors.FAIL + + " : Required parameter not yet specified" + + bcolors.ENDC) + if not self.WHEN == "": print("WHEN (" + self.WHEN + ")") print("AT", self.AT_data, self.AT_relative) @@ -1414,6 +1536,504 @@ def print_short(self, **kwargs): "\tAT", self.AT_data, self.AT_relative, "ROTATED", self.ROTATED_data, self.ROTATED_relative) + def show_parameters(self): + """ + Shows available parameters and their defaults for the component + + Any value specified is not reflected in this view. The + additional attributes defined when McStas_Instr creates + subclasses for the individual components are required to run + this method. + + """ + + print(" ___ Help " + + self.component_name + " " + + (62-len(self.component_name))*"_") + print("|" + + bcolors.BOLD + "optional parameter" + bcolors.ENDC + "|" + + bcolors.BOLD + + bcolors.UNDERLINE + "required parameter" + bcolors.ENDC + + bcolors.ENDC + "|" + + bcolors.BOLD + + bcolors.OKBLUE + "default value" + bcolors.ENDC + + bcolors.ENDC + "|" + + bcolors.BOLD + + bcolors.OKGREEN + "user specified value" + bcolors.ENDC + + bcolors.ENDC + "|") + + for parameter in self.parameter_names: + unit = "" + if parameter in self.parameter_units: + unit = " [" + self.parameter_units[parameter] + "]" + comment = "" + if parameter in self.parameter_comments: + comment = " // " + self.parameter_comments[parameter] + + parameter_name = bcolors.BOLD + parameter + bcolors.ENDC + value = "" + if self.parameter_defaults[parameter] is None: + parameter_name = (bcolors.UNDERLINE + + parameter_name + + bcolors.ENDC) + else: + value = (" = " + + bcolors.BOLD + + bcolors.OKBLUE + + str(self.parameter_defaults[parameter]) + + bcolors.ENDC + + bcolors.ENDC) + + if getattr(self, parameter) is not None: + value = (" = " + + bcolors.BOLD + + bcolors.OKGREEN + + str(getattr(self, parameter)) + + bcolors.ENDC + + bcolors.ENDC) + + print(parameter_name + + value + + unit + + comment) + + print(73*"-") + + def show_parameters_simple(self): + """ + Shows available parameters and their defaults for the component + + Any value specified is not reflected in this view. The + additional attributes defined when McStas_Instr creates + subclasses for the individual components are required to run + this method. + + """ + print("---- Help " + self.component_name + " -----") + for parameter in self.parameter_names: + unit = "" + if parameter in self.parameter_units: + unit = " [" + self.parameter_units[parameter] + "]" + comment = "" + if parameter in self.parameter_comments: + comment = " // " + self.parameter_comments[parameter] + if self.parameter_defaults[parameter] is None: + print(parameter + + unit + + comment) + else: + print(parameter + + " = " + + str(self.parameter_defaults[parameter]) + + unit + + comment) + print("----------" + "-"*len(self.component_name) + "------") + """ + def show_component(self): + print("---- Current parameters for " + self.name + " ----") + for parameter in self.parameter_names: + parameter_value = getattr(self, parameter) + unit = "" + if parameter in self.parameter_units: + unit = " [" + self.parameter_units[parameter] + "]" + if parameter_value is not None: + print(" " + + parameter + + " = " + + str(parameter_value) + + unit) + else: + if self.parameter_defaults[parameter] is None: + print(" " + + parameter + + " : Required parameter not yet specified") + + def show_component_long(self): + print("---- Current parameters for " + self.name + " ----") + for parameter in self.parameter_names: + parameter_value = getattr(self, parameter) + unit = "" + if parameter in self.parameter_units: + unit = " [" + self.parameter_units[parameter] + "]" + comment = "" + if parameter in self.parameter_comments: + comment = " // " + self.parameter_comments[parameter] + if parameter_value is not None: + print(" " + + parameter + + " = " + + str(parameter_value) + + unit + + comment) + else: + if self.parameter_defaults[parameter] is None: + print(" " + + parameter + + " : Required parameter not yet specified" + + unit + + comment) + """ + + +class ComponentInfo: + """ + Internal class used to store information on parameters of components + """ + + def __init__(self): + self.name = "" + self.category = "" + self.parameter_names = [] + self.parameter_defaults = {} + self.parameter_types = {} + self.parameter_comments = {} + self.parameter_units = {} + + +class ComponentReader: + """ + Class for retriveing information on available McStas components + + Recursively reads all component files in hardcoded list of + folders that represents the component categories in McStas. + The results are stored in a dictionary with ComponentInfo + instances, the keys are the names of the components. After + the components in the McStas installation are read, any + components pressent in the current work directory is read, + and these will overwrite exisiting information, consistent + with how McStas reads component definitions. + + """ + + def __init__(self, mcstas_path): + """ + Reads all component files in standard folders. Recursive, so + subfolders of these folders are included. + + """ + + if mcstas_path[-1] is not "/": + mcstas_path = mcstas_path + "/" + + # Hardcoded whitelist of foldernames + folder_list = ["sources", + "optics", + "samples", + "monitors", + "misc", + "contrib", + "obsolete", + "union"] + + self.component_path = {} + self.component_category = {} + + for folder in folder_list: + absolute_path = mcstas_path + folder + # self.component_info_dict.update(self._read(absolute_path)) + self._find_components(absolute_path) + + # McStas component in current directory should overwrite + current_directory = os.getcwd() + + for file in os.listdir(current_directory): + if file.endswith(".comp"): + absolute_path = current_directory + "/" + file + component_name = absolute_path.split("/")[-1].split(".")[-2] + + if component_name in self.component_path: + print("Overwriting McStasScript info on component named " + + file + + " because the component is in the" + + " work directory.") + + self.component_path[component_name] = absolute_path + self.component_category[component_name] = "Work directory" + + def show_categories(self): + """ + Method that will show all component categories available + + """ + categories = [] + for component, category in self.component_category.items(): + if category not in categories: + categories.append(category) + print(" " + category) + + def show_components_in_category(self, category_input): + """ + Method that will show all components in given category + + """ + empty_category = True + to_print = [] + for component, category in self.component_category.items(): + if category == category_input: + to_print.append(component) + empty_category = False + + to_print.sort() + if empty_category: + print("No components found in this category! " + + "Available categories:") + self.show_categories() + + elif len(to_print) < 10: + for component in to_print: + print(" " + component) + else: + # Prints in collumns, maximum 4 and maximum line length 100 + columns = 5 + total_line_length = 1000 + while(total_line_length > 100): + columns = columns - 1 + + c_length = math.ceil(len(to_print)/columns) + last_length = len(to_print) - (columns-1)*c_length + + column = [] + longest_name = [] + for col in range(0, columns-1): + current_list = to_print[c_length*col:c_length*(col+1)] + column.append(current_list) + longest_name.append(len(max(current_list, key=len))) + + column.append(to_print[c_length*(columns-1):]) + longest_name.append(len(max(column[columns-1], key=len))) + + total_line_length = 1 + sum(longest_name) + (columns-1)*3 + + for line_nr in range(0, c_length): + print(" ", end="") + for col in range(0, columns-1): + this_name = column[col][line_nr] + print(this_name + + " "*(longest_name[col] - len(this_name)) + + " ", end="") # More columns left, dont break + if line_nr < last_length: + this_name = column[columns-1][line_nr] + print(this_name) + else: + print("") + + def load_all_components(self): + """ + Method that loads information on all components into memory. + + """ + + return_dict = {} + for comp_name, abs_path in self.component_path.items(): + return_dict[comp_name] = self.read_component_file(abs_path) + + return return_dict + + def read_name(self, component_name): + """ + Returns ComponentInfo of component with name component_name. + + Uses table of absolute paths to all known components, and + reads the appropriate file in order to generate the information. + + """ + + if component_name not in self.component_path: + raise NameError("No component named " + + component_name + + " in McStas installation or " + + "current work directory.") + + return self.read_component_file(self.component_path[component_name]) + + def _find_components(self, absolute_path): + """ + Recursive read function, can read either file or entire folder + + Updates the component_info_dict with the findings that are + stored as ComoponentInfo instances. + + """ + + if not os.path.isdir(absolute_path): + if absolute_path.endswith(".comp"): + # read this file + component_name = absolute_path.split("/")[-1].split(".")[-2] + self.component_path[component_name] = absolute_path + + component_category = absolute_path.split("/")[-2] + self.component_category[component_name] = component_category + else: + for file in os.listdir(absolute_path): + absolute_file_path = absolute_path + "/" + file + self._find_components(absolute_file_path) + + def read_component_file(self, absolute_path): + """ + Reads a component file and expands component_info_dict + + The information is stored as ComponentClass instances. + + """ + + result = ComponentInfo() + + fo = open(absolute_path, "r") + + cnt = 0 + while True: + cnt += 1 + line = fo.readline() + + # find parameter comments + if self.line_starts_with(line, "* %P"): + + while True: + this_line = fo.readline() + + if self.line_starts_with(this_line, "DEFINE COMPONENT"): + # No more comments to read through + break + + if ":" in this_line: + tokens = this_line.split(":") + + variable_name = tokens[0] + variable_name = variable_name.replace("*", "") + variable_name = variable_name.strip() + if " " in variable_name: + name_tokens = variable_name.split(" ") + variable_name = name_tokens[0] + + if len(tokens[1]) > 2: + comment = tokens[1].strip() + + if "[" in comment: # Search for unit + # If found, store it and remove from string + unit = comment[comment.find("[") + 1: + comment.find("]")] + result.parameter_units[variable_name] = unit + comment = comment[comment.find("]") + 1:] + comment = comment.strip() + + # Store the comment + result.parameter_comments[variable_name] = comment + elif "[" in this_line and "]" in this_line: + tokens = this_line.split("[") + + variable_name = tokens[0] + variable_name = variable_name.replace("*", "") + variable_name = variable_name.strip() + + unit = this_line[this_line.find("[") + 1: + this_line.find("]")] + result.parameter_units[variable_name] = unit + + comment = this_line[this_line.find("]") + 1:] + comment = comment.strip() + result.parameter_comments[variable_name] = comment + + # find definition parameters and their values + if (self.line_starts_with(line, "DEFINITION PARAMETERS") + or self.line_starts_with(line, "SETTING PARAMETERS")): + + parts = line.split("(") + parameter_parts = parts[1].split(",") + + parameter_parts = list(filter(("\n").__ne__, parameter_parts)) + + break_now = False + while True: + # Read all definition parameters + + for part in parameter_parts: + + temp_par_type = "double" + + part = part.strip() + + # remove trailing ) + if ")" in part: + part = part.replace(")", "") + break_now = True + + possible_declare = part.split(" ") + possible_type = possible_declare[0].strip() + if "int" == possible_type: + temp_par_type = "int" + # remove int from part + part = "".join(possible_declare[1:]) + if "string" == possible_type: + temp_par_type = "string" + # remove string from part + part = "".join(possible_declare[1:]) + + part = part.replace(" ", "") + if part == "": + continue + + if self.line_starts_with(part, "//"): + break_now = True + continue + + if self.line_starts_with(part, "/*"): + break_now = True + continue + + if "=" not in part: + # no defualt value, required parameter + result.parameter_names.append(part) + result.parameter_defaults[part] = None + result.parameter_types[part] = temp_par_type + else: + # default value available + name_value = part.split("=") + par_name = name_value[0].strip() + par_value = name_value[1].strip() + result.parameter_names.append(par_name) + result.parameter_defaults[par_name] = par_value + result.parameter_types[par_name] = temp_par_type + + if break_now: + break + + parameter_parts = fo.readline().split(",") + + if self.line_starts_with(line, "DECLARE"): + break + + if self.line_starts_with(line, "TRACE"): + break + + if cnt == 1000: + break + + fo.close() + + result.name = absolute_path.split("/")[-1].split(".")[-2] + foldernames = absolute_path.split("/") + result.category = foldernames[-2] + + """ + To lower memory use one could remove all comments and units that + does not correspond to a found parameter name. + """ + + return result + + def line_starts_with(self, line, input): + """ + Helper method that checks if a string is the start of a line + + """ + if len(line) < len(input): + return False + + if line[0:len(input)] == input: + return True + else: + return False + class McStas_instr: """ @@ -1557,6 +2177,7 @@ def __init__(self, name, **kwargs): mcrun_path : str Absolute path of mcrun or empty if already in path """ + self.name = name if "author" in kwargs: @@ -1574,6 +2195,15 @@ def __init__(self, name, **kwargs): else: self.mcrun_path = "" + if "mcstas_path" in kwargs: + self.mcstas_path = kwargs["mcstas_path"] + else: + self.mcstas_path = "" + raise NameError("At this stage of development " + + "McStasScript need the absolute path " + + "for the McStas installation as keyword " + + "named mcstas_path") + self.parameter_list = [] self.declare_list = [] self.initialize_section = ("// Start of initialize for generated " @@ -1586,6 +2216,10 @@ def __init__(self, name, **kwargs): self.component_list = [] # List of components (have to be ordered) self.component_name_list = [] # List of component names + # Read info on active McStas components + self.component_reader = ComponentReader(self.mcstas_path) + self.component_class_lib = {} + def add_parameter(self, *args, **kwargs): """ Method for adding input parameter to instrument @@ -1746,6 +2380,69 @@ def append_trace_no_new_line(self, string): self.trace_section = self.trace_section + string + def show_components(self, *args): + """ + Helper method that shows available components to the user + + If called without any arguments it will display the available + component categories. The first input + + """ + if len(args) == 0: + print("Here are the availalbe component categories:") + self.component_reader.show_categories() + print("Call show_components(category_name) to display") + + else: + category = args[0] + print("Here are all components in the " + + category + + " category.") + self.component_reader.show_components_in_category(category) + + def component_help(self, name): + """ + Method for showing parameters for a component before adding it + to the instrument + + """ + + dummy_instance = self._create_component_instance("dummy", name) + dummy_instance.show_parameters() + + def _create_component_instance(self, *args, **kwargs): + """ + Dynamically creates a class for the requested component type + + Created classses kept in dictionary, if the same component type + is requested again, the class in the dictionary is used. The + method returns an instance of the created class that was + initialized with the paramters passed to this function. + """ + + if len(args) < 2: + raise NameError("Attempting to create component without name") + + component_name = args[1] + + if component_name not in self.component_class_lib: + comp_info = self.component_reader.read_name(component_name) + + input_dict = {} + input_dict = {key: None for key in comp_info.parameter_names} + input_dict["parameter_names"] = comp_info.parameter_names + input_dict["parameter_defaults"] = comp_info.parameter_defaults + input_dict["parameter_types"] = comp_info.parameter_types + input_dict["parameter_units"] = comp_info.parameter_units + input_dict["parameter_comments"] = comp_info.parameter_comments + input_dict["category"] = comp_info.category + + self.component_class_lib[component_name] = type(component_name, + (component,), + input_dict) + + return self.component_class_lib[component_name](*args, **kwargs) + def add_component(self, *args, **kwargs): """ Method for adding a new component instance to the instrument @@ -1819,8 +2516,10 @@ def add_component(self, *args, **kwargs): + " not found.")) new_index = self.component_name_list.index(kwargs["after"]) - self.component_list.insert(new_index+1, - component(*args, **kwargs)) + + new_component = self._create_component_instance(*args, **kwargs) + self.component_list.insert(new_index + 1, new_component) + self.component_name_list.insert(new_index+1, args[0]) # Insert component after component with this name @@ -1833,14 +2532,20 @@ def add_component(self, *args, **kwargs): + "name was not found.")) new_index = self.component_name_list.index(kwargs["before"]) - self.component_list.insert(new_index, component(*args, **kwargs)) + + new_component = self._create_component_instance(*args, **kwargs) + self.component_list.insert(new_index, new_component) + self.component_name_list.insert(new_index, args[0]) # If after or before keywords absent, place component at the end else: - self.component_list.append(component(*args, **kwargs)) + new_component = self._create_component_instance(*args, **kwargs) + self.component_list.append(new_component) self.component_name_list.append(args[0]) + return new_component + def get_component(self, name): """ Get the component instance of component with specified name diff --git a/McStasScript_demo.ipynb b/McStasScript_demo.ipynb new file mode 100644 index 00000000..cedf4d7d --- /dev/null +++ b/McStasScript_demo.ipynb @@ -0,0 +1,495 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Demonstration of McStasScript\n", + "This file demonstrates how McStasScript can be used to run McStas from a python environment in a userfreindly manner." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.append('/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript') # Path to McStasScript pythoon file\n", + "import McStasScript \n", + "\n", + "# Creating the instance of the class, insert path to mcrun and to mcstas root directory\n", + "instr = McStasScript.McStas_instr(\"jupyter_demo\",\n", + " mcrun_path= \"/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin\",\n", + " mcstas_path = \"/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here are the availalbe component categories:\n", + " sources\n", + " optics\n", + " samples\n", + " monitors\n", + " misc\n", + " contrib\n", + " union\n", + " obsolete\n", + " Work directory\n", + "Call show_components(category_name) to display\n" + ] + } + ], + "source": [ + "instr.show_components() # Shows available McStas component categories in current installation" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here are all components in the sources category.\n", + " Adapt_check Monitor_Optimizer Source_div Virtual_output\n", + " ESS_butterfly Source_Maxwell_3 Source_gen \n", + " ESS_moderator Source_Optimizer Source_simple \n", + " Moderator Source_adapt Virtual_input \n" + ] + } + ], + "source": [ + "instr.show_components(\"sources\") # Display all McStas source components " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Source_simple _________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[1mradius\u001b[0m = \u001b[1m\u001b[94m0.1\u001b[0m\u001b[0m [m] // Radius of circle in (x,y,0) plane where neutrons are generated.\n", + "\u001b[1myheight\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Height of rectangle in (x,y,0) plane where neutrons are generated.\n", + "\u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Width of rectangle in (x,y,0) plane where neutrons are generated.\n", + "\u001b[1mdist\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Distance to target along z axis.\n", + "\u001b[1mfocus_xw\u001b[0m = \u001b[1m\u001b[94m.045\u001b[0m\u001b[0m [m] // Width of target\n", + "\u001b[1mfocus_yh\u001b[0m = \u001b[1m\u001b[94m.12\u001b[0m\u001b[0m [m] // Height of target\n", + "\u001b[1mE0\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [meV] // Mean energy of neutrons.\n", + "\u001b[1mdE\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [meV] // Energy half spread of neutrons (flat or gaussian sigma).\n", + "\u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [AA] // Mean wavelength of neutrons.\n", + "\u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [AA] // Wavelength half spread of neutrons.\n", + "\u001b[1mflux\u001b[0m = \u001b[1m\u001b[94m1\u001b[0m\u001b[0m [1/(s*cm**2*st*energy unit)] // flux per energy unit, Angs or meV if flux=0, the source emits 1 in 4*PI whole space.\n", + "\u001b[1mgauss\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [1] // Gaussian (1) or Flat (0) energy/wavelength distribution\n", + "\u001b[1mtarget_index\u001b[0m = \u001b[1m\u001b[94m+1\u001b[0m\u001b[0m [1] // relative index of component to focus at, e.g. next is +1 this is used to compute 'dist' automatically.\n", + "-------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "instr.component_help(\"Source_simple\") # Displays help on the Source_simple component" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "source = instr.add_component(\"Source\",\"Source_simple\") # Adds an instance of Source_simple called Source to instrument" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Lets add a parameter to the instrument to control the wavelength of the source\n", + "instr.add_parameter(\"double\",\"wavelength\",value=3,comment=\"Wavelength emmited from source\")\n", + "source.xwidth = 0.06; source.yheight = 0.08;\n", + "source.dist = 2; source.focus_xw = 0.05; source.focus_yh = 0.05\n", + "source.lambda0 = \"wavelength\"; source.dlambda = 0.1" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT Source = Source_simple\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.08\u001b[0m\u001b[0m [m]\n", + " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.06\u001b[0m\u001b[0m [m]\n", + " \u001b[1mdist\u001b[0m = \u001b[1m\u001b[92m2\u001b[0m\u001b[0m [m]\n", + " \u001b[1mfocus_xw\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1mfocus_yh\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[92mwavelength\u001b[0m\u001b[0m [AA]\n", + " \u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [AA]\n", + "AT [0, 0, 0] ABSOLUTE\n", + "ROTATED [0, 0, 0] ABSOLUTE\n" + ] + } + ], + "source": [ + "source.print_long() # Verify that the information is correct" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "guide = instr.add_component(\"Guide\", \"Guide_gravity\", AT=[0,0,2], RELATIVE=\"Source\")\n", + "guide.set_comment=\"Beam extraction and first guide piece\"" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Guide_gravity _________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[4m\u001b[1mw1\u001b[0m\u001b[0m [m] // Width at the guide entry\n", + "\u001b[4m\u001b[1mh1\u001b[0m\u001b[0m [m] // Height at the guide entry\n", + "\u001b[1mw2\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Width at the guide exit. If 0, use w1.\n", + "\u001b[1mh2\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Height at the guide exit. If 0, use h1.\n", + "\u001b[4m\u001b[1ml\u001b[0m\u001b[0m [m] // length of guide\n", + "\u001b[1mR0\u001b[0m = \u001b[1m\u001b[94m0.995\u001b[0m\u001b[0m [1] // Low-angle reflectivity\n", + "\u001b[1mQc\u001b[0m = \u001b[1m\u001b[94m0.0218\u001b[0m\u001b[0m [AA-1] // Critical scattering vector\n", + "\u001b[1malpha\u001b[0m = \u001b[1m\u001b[94m4.38\u001b[0m\u001b[0m [AA] // Slope of reflectivity\n", + "\u001b[1mm\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // m-value of material. Zero means completely absorbing. m=0.65 glass/SiO2 Si Ni Ni58 supermirror Be Diamond m= 0.65 0.47 1 1.18 2-6 1.01 1.12 for glass/SiO2, m=1 for Ni, 1.2 for Ni58, m=2-6 for supermirror. m=0.47 for Si\n", + "\u001b[1mW\u001b[0m = \u001b[1m\u001b[94m0.003\u001b[0m\u001b[0m [AA-1] // Width of supermirror cut-off\n", + "\u001b[1mnslit\u001b[0m = \u001b[1m\u001b[94m1\u001b[0m\u001b[0m [1] // Number of vertical channels in the guide (>= 1) (nslit-1 vertical dividing walls).\n", + "\u001b[1md\u001b[0m = \u001b[1m\u001b[94m0.0005\u001b[0m\u001b[0m [m] // Thickness of subdividing walls\n", + "\u001b[1mmleft\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // m-value of material for left. vert. mirror\n", + "\u001b[1mmright\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // m-value of material for right. vert. mirror\n", + "\u001b[1mmtop\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // m-value of material for top. horz. mirror\n", + "\u001b[1mmbottom\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // m-value of material for bottom. horz. mirror\n", + "\u001b[1mnhslit\u001b[0m = \u001b[1m\u001b[94m1\u001b[0m\u001b[0m [1] // Number of horizontal channels in the guide (>= 1). (nhslit-1 horizontal dividing walls). this enables to have nslit*nhslit rectangular channels\n", + "\u001b[1mG\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m/s2] // Gravitation norm. 0 value disables G effects.\n", + "\u001b[1maleft\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // alpha-value of left vert. mirror\n", + "\u001b[1maright\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // alpha-value of right vert. mirror\n", + "\u001b[1matop\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // alpha-value of top horz. mirror\n", + "\u001b[1mabottom\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // alpha-value of left horz. mirror\n", + "\u001b[1mwavy\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // Global guide waviness\n", + "\u001b[1mwavy_z\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // Partial waviness along propagation axis\n", + "\u001b[1mwavy_tb\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // Partial waviness in transverse direction for top/bottom mirrors\n", + "\u001b[1mwavy_lr\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // Partial waviness in transverse direction for left/right mirrors\n", + "\u001b[1mchamfers\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Global chamfers specifications (in/out/mirror sides).\n", + "\u001b[1mchamfers_z\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Input and output chamfers\n", + "\u001b[1mchamfers_lr\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Chamfers on left/right mirror sides\n", + "\u001b[1mchamfers_tb\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Chamfers on top/bottom mirror sides\n", + "\u001b[1mnelements\u001b[0m = \u001b[1m\u001b[94m1\u001b[0m\u001b[0m [1] // Number of sections in the guide (length l/nelements).\n", + "\u001b[1mnu\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [Hz] // Rotation frequency (round/s) for Fermi Chopper approximation\n", + "\u001b[1mphase\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // Phase shift for the Fermi Chopper approximation\n", + "\u001b[1mreflect\u001b[0m = \u001b[1m\u001b[94m\"NULL\"\u001b[0m\u001b[0m [str] // Reflectivity file name. Format \n", + "-------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "guide.show_parameters() # Lets view the parameters available in our guide component" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "guide.set_parameters({\"w1\" : 0.05, \"w2\" : 0.05, \"h1\" : 0.05, \"h2\" : 0.05, \"l\" : 8, \"m\" : 3.5, \"G\" : -9.2})" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT Guide = Guide_gravity\n", + " \u001b[1mw1\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1mh1\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1mw2\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1mh2\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1ml\u001b[0m = \u001b[1m\u001b[92m8\u001b[0m\u001b[0m [m]\n", + " \u001b[1mm\u001b[0m = \u001b[1m\u001b[92m3.5\u001b[0m\u001b[0m [1]\n", + " \u001b[1mG\u001b[0m = \u001b[1m\u001b[92m-9.2\u001b[0m\u001b[0m [m/s2]\n", + "AT [0, 0, 2] RELATIVE Source\n", + "ROTATED [0, 0, 0] RELATIVE Source\n" + ] + } + ], + "source": [ + "guide.print_long() # Verify the information on this component is correct" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "sample = instr.add_component(\"sample\", \"PowderN\", AT=[0,0,9], RELATIVE=\"Guide\") # Add a sample" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "sample.radius = 0.015; sample.yheight = 0.05; sample.reflections = \"\\\"Cu.laz\\\"\" # A small copper cylinder" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here are all components in the monitors category.\n", + " Brilliance_monitor Monitor PSD_monitor_psf_eff TOF2E_monitor\n", + " DivLambda_monitor Monitor_4PI PSDcyl_monitor TOF2Q_cylPSD_monitor\n", + " DivPos_monitor Monitor_Sqw PSDlin_diff_monitor TOFLambda_monitor\n", + " Divergence_monitor Monitor_nD PSDlin_monitor TOF_PSD_monitor_rad\n", + " EPSD_monitor PSD_TOF_monitor PolLambda_monitor TOF_cylPSD_monitor\n", + " E_monitor PSD_monitor Pol_monitor TOF_monitor\n", + " Hdiv_monitor PSD_monitor_4PI PreMonitor_nD TOFlog_monitor\n", + " L_monitor PSD_monitor_TOF Res_monitor \n", + " MeanPolLambda_monitor PSD_monitor_psf Sqq_w_monitor \n" + ] + } + ], + "source": [ + "instr.show_components(\"monitors\") # Monitors are needed to record information" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "sphere = instr.add_component(\"PSD_4PI\", \"PSD_monitor_4PI\", RELATIVE=\"sample\") # Add 4PI sphere detector" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT PSD_4PI = PSD_monitor_4PI\n", + " \u001b[1mnx\u001b[0m = \u001b[1m\u001b[92m300\u001b[0m\u001b[0m [1]\n", + " \u001b[1mny\u001b[0m = \u001b[1m\u001b[92m300\u001b[0m\u001b[0m [1]\n", + " \u001b[1mfilename\u001b[0m = \u001b[1m\u001b[92m\"PSD_4PI.dat\"\u001b[0m\u001b[0m [string]\n", + " \u001b[1mradius\u001b[0m = \u001b[1m\u001b[92m1\u001b[0m\u001b[0m [m]\n", + " \u001b[1mrestore_neutron\u001b[0m = \u001b[1m\u001b[92m1\u001b[0m\u001b[0m [1]\n", + "AT [0, 0, 0] RELATIVE sample\n", + "ROTATED [0, 0, 0] RELATIVE sample\n" + ] + } + ], + "source": [ + "sphere.nx = 300; sphere.ny = 300; sphere.filename = \"\\\"PSD_4PI.dat\\\"\"; sphere.radius = 1; sphere.restore_neutron = 1;\n", + "sphere.print_long() # Verify that monitors have filenames that are strings when printed, double quotes needed" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "PSD = instr.add_component(\"PSD\", \"PSD_monitor\", AT=[0,0,1], RELATIVE=\"sample\") # Add position sensitive detector\n", + "PSD.xwidth = 0.1; PSD.yheight = 0.1; PSD.nx = 200; PSD.ny = 200; PSD.filename = \"\\\"PSD.dat\\\"\"; PSD.restore_neutron = 1" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "L_mon = instr.add_component(\"L_mon\", \"L_monitor\", RELATIVE=\"PSD\")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "L_mon.Lmin = \"wavelength - 0.3\"; L_mon.Lmax = \"wavelength + 0.3\"; L_mon.nL = 150\n", + "L_mon.xwidth = 0.1; L_mon.yheight = 0.1\n", + "L_mon.filename = \"\\\"L_mon.dat\\\"\"; L_mon.restore_neutron = 1\n", + "L_mon.comment = \"Wavelength monitor for narrow range\"" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "// Wavelength monitor for narrow range\n", + "COMPONENT L_mon = L_monitor\n", + " \u001b[1mnL\u001b[0m = \u001b[1m\u001b[92m150\u001b[0m\u001b[0m [1]\n", + " \u001b[1mfilename\u001b[0m = \u001b[1m\u001b[92m\"L_mon.dat\"\u001b[0m\u001b[0m [string]\n", + " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m]\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m]\n", + " \u001b[1mLmin\u001b[0m = \u001b[1m\u001b[92mwavelength - 0.3\u001b[0m\u001b[0m [AA]\n", + " \u001b[1mLmax\u001b[0m = \u001b[1m\u001b[92mwavelength + 0.3\u001b[0m\u001b[0m [AA]\n", + " \u001b[1mrestore_neutron\u001b[0m = \u001b[1m\u001b[92m1\u001b[0m\u001b[0m [1]\n", + "AT [0, 0, 0] RELATIVE PSD\n", + "ROTATED [0, 0, 0] RELATIVE PSD\n" + ] + } + ], + "source": [ + "L_mon.print_long()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Source Source_simple AT [0, 0, 0] ABSOLUTE ROTATED [0, 0, 0] ABSOLUTE\n", + "Guide Guide_gravity AT [0, 0, 2] RELATIVE Source ROTATED [0, 0, 0] RELATIVE Source\n", + "sample PowderN AT [0, 0, 9] RELATIVE Guide ROTATED [0, 0, 0] RELATIVE Guide\n", + "PSD_4PI PSD_monitor_4PI AT [0, 0, 0] RELATIVE sample ROTATED [0, 0, 0] RELATIVE sample\n", + "PSD PSD_monitor AT [0, 0, 1] RELATIVE sample ROTATED [0, 0, 0] RELATIVE sample\n", + "L_mon L_monitor AT [0, 0, 0] RELATIVE PSD ROTATED [0, 0, 0] RELATIVE PSD\n" + ] + } + ], + "source": [ + "instr.print_components() # Lets get an overview of the instrument so far" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Running the McStas instrument\n", + "Now we have assembled an instrument and it is time to perform a simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "# If the folder already exsits, a new simulation is not performed but the old one is read\n", + "data = instr.run_full_instrument(foldername=\"jupyter_demo\",\n", + " parameters={\"wavelength\" : 1.0},\n", + " mpi=4,\n", + " ncount=2E7)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The returned data object is a list of McStasData objects, each containing the results from a monitor.\n", + "These data objects also contain preferences for how they should be plotted if this is done automatically." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "number of elements in data list = 3\n", + "Plotting data with name PSD_4PI\n", + "Plotting data with name PSD\n", + "Plotting data with name L_mon\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAG5CAYAAABIoz+EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvX2cVld57/1dQwaGwYFhyGSQF5mQoSQIEpAUk5CGpFETT4zG2hpP+9SX09o3T1tbn3O09Tm1rX15Wtt6zmNra9V6rOejtn40WmtiTE1i0kROCAmFYjhMEGQgkAkThgkwMMJ6/riuH9e+78wwAzNJENbv87k/973vvfZ622uvff3W9bJSzpmCgoKCgoKCgoKCgoLzBQ0vdgUKCgoKCgoKCgoKCgpeSBQSVFBQUFBQUFBQUFBwXqGQoIKCgoKCgoKCgoKC8wqFBBUUFBQUFBQUFBQUnFcoJKigoKCgoKCgoKCg4LxCIUEFBQUFBQUFBQUFBecVCgkqKPghQkrpt1JKn3ix61FQUFBQ8MKjvAMKCiYOhQQVnBVIKS1KKQ2mlD5b+e/tKaXjKaVnU0oHU0qPpZRu9nNrU0o9p8hvR0rpiF+7L6X0dymll/i5l6eU7kopPZNSOpBSeiSl9LpKvif8umdTSj0ppX9IKV3xfPfBWJBz/sOc888BpJQ6U0o5pXTBi12vgoKCgrMJ5R1QUFAwGgoJKjhb8JfAw8P8/1DO+SVAK/BJ4B9SSm1jzPP1fu1K4ArgA/7/PwHfBDqAi4BfBQ5Wrtvj17UArwIeB+5PKf346TXp7EZ5cRYUFJzjKO+AU6C8AwrOdxQSVPCiI6V0G3AA+JeR0uScTwCfAqYCC08n/5zzbuAOYGlK6ULgYuBvc87H/POvOecHhrku55x7cs7/DfgE8P+OUH+txr0jpbTLVxd/MaV0RUrp33yl8aOV9A0ppQ+klHamlJ5KKX0mpTSjLq+3pZS+n1J6OqX025VrP1jRln3bvw/4iuWVY8z7P6WUvg9863T6saCgoOCHEeUdUN4BBQXDoZCgghcVKaXpwO8BvzlKuguAnwOeBbadZhnzgdcBjwL7gW7gsymlN6aUOsaYzZeAlSmlaadIsxpYBLwF+Ajw28ANwMuBn0opXevp3u6f6zBC9xLgo3V5rQEWAz8O/LeU0mXDlPdj/t2ac35JzvmhMeZ9LXAZ8NpTtKWgoKDgnEB5B5R3QEHBcCgkqODFxu8Dn8w57xrh/KtSSgeAvcBbgVtzzv1jzPt2v/YB4D7gD3POGXs57AD+DHgypfTtlNKiUfLaAyTMLG/EtuScB3POdwGHgM/lnJ/yVcj7gRWe7qeBP885b885Pwu8H7itzjThd3POR3LOG4GNwPIxtnkseX8w53wo53xkjHkWFBQU/DCivAPKO6CgYEQUe9CCFw0ppcuxVbIVp0j2nZzzmjMs4o0557vr/8w59wDv9jrMBz4OfAa48hR5zQUyZrY3EvZVfh8Z5vgl/nsOsLNybif2LFZXJPdWfh+uXDsaxpL3SISzoKCg4FxCeQeUd0BBwYgomqCCFxNrgU7g+ymlvcB7gZ9IKW14oSrgGqi/BJaOkvRWYEPO+dAEFLsHWFA5fhnwA2pfmGNBPsO8h7uuoKCg4LxDeQcUFJy/KCSo4MXEx4FLgMv989fAP/M82imnlGamlH43pdTlDqQXAu8EvjNM2pRSmptS+h3MH+m3JqganwPek1K6OFnI1j8EvpBz/sFp5tMLnKA2UMRE5V1QUFBwzqG8AwoKCoRiDlfwoiHnfBhT8wOQUnoWGMw59z6PxR7DtE93AxdigRbuAf5zJc0cr0sC+oEHgbU55+e8JM8Qn8JMFr4NNAHfqCt/TMg5H04p/QHwrymlRuDGicq7oKCg4BxFeQcUFBQAkMxHsKCgoKCgoKCgoKCg4PxAMYcrKCgoKCgoKCgoKDivUEhQQUFBQUFBQUFBQcF5hUKCCgoKCgoKCgoKCgrOKxQSVFBQUFBQUFBQUFBwXqFEhzsNpJTyucIaV7zylTz6yCMTnicw4fm+UHg++uSHsQ4/bDhb+uwEPJ1zbh9PHjfeeGN++umnRzz/yCOPfCPnfON4yih4YZBSc4bWF7saBQUFZyWeHNf7oiulfHiUNE9CeV+MghId7jQwKaU81X83AkMvZmV+iNAG9L3YlSgoeJ5xCB7JOa8aTx6rVr0yr1+/bsTzKTWOu4yCFwYpzcnwCy92NQoKCs5KfHBcc/mclPJos8sHJ+CddK6jaILOEGcLAZoCHD2N9C8GeSsE6PnH6Y6DglqMt/8aJ6oigG3uXlBQUFBQMDwagKmjpioYDeeKddd5Cwlui8eYfjQCNOcM6tB8BteMhjOpx/OJ56ONE4kzEeBbRjnfdSYVOQ20Pc/5nw7GSyAnbmHhBDB4ik9BQUFBwfkOkaBTfQpGRyFB5wh6x3HtDEIg3XMG1w9nlzpeAbdaj+EG6fMpQA9npFvfxvqV/xmnkf9o5GO8GI5Azhvmv4Fh/usY5r8zIUNjMXQ+HQ3h6fTvRED9NdK9ev4mzoxpgkb6FBQUFBSc7ygkaHiklF6WUvpqSulTKaX3jZa+kKDTxKnMXurPNfPCaRDGY3LWP87rh8NE5nfiDPIXEaj2/0iDfXndcS/DkwYwYXwKJuRX8+s/RV0W+LfyHGB4sjEcVowxXRXDEdmeUa5RW/ZV/uvG6tx9BnUYDylXfarPUz/Rj+PBcGRqOMKm/hqOKHbx3DE5rmgINSgkqKCgoKDghUFKaUdKaVNK6bGU0vpTpJuUUno0pfS1yn83ppS2ppS6x0I4RqnHp1JKT6WUNtf9f7pl/AjwzznndwJLRktcSNBp4lRmL/XnDjO8luT5wMJRzo9V6B4NE+v7YJhSd1yv5ak/PxzqtR8iAtX+l+Ban9/GuuMGQgiupr0OE8aPev4nCKG6gZFNEnf5d5WI7BsmXQvWvzOwJ3cB8Gjl/Kn6fiwE4VQP+3BEE0YnT88XFvLc52knI5NTGHnBofpsDEdWRdiG06AN168ihVUt0XhJXyBTzOEKCgoKCk6FCdYEXZdzvnyUIAq/BnxXBymlScBfAjdhIstbU0rPIR0ppYtSSi11/w1nYPJp4Ma6dCOWkVJallL6Wt3nIkxsui2l9C3gntEaXkjQOCEhWIJWfYfqzl9HCLHz/LrhVo81MurzGc1HZju1Zkv1AuFwQvdYMIdaKn06vg8LGBuBqeY5XOAG+WucyozsgH+r3+qJ1HKifyb599JK+qWV/KvkRnXpwp6merIpoVr3Vv3eQdzfkQhGFUswrcOQf45jQv8aP9/Cqft+Z+X3jLpvCfJjqUcVY/Uzq47rsWAshHwk7VPPKcoZrn9asGdjLBhOg1bt1+ozOYPhtUTjR8bu/kif8w8ppbUppftTSn+dUlr7YtenoKCg4MXGC2kOl1KaB/wH4BOVv38U6M45b885HwM+D7xhmMuvBb6SUmryvH4e+B/1iXLO3+a5Rj4jlpFz3pRzvrnu8xTwDuB3cs7Xe51PiUKCzgBVgiEheDsm9NYLmhKU7sF2jGjBBLkTDL96LOHvBLUC93ACWj0pqAqO7cOkaa4c1xOwkVbRD4xQz7FgJ7UO5yMJr+qzDkKQHa4+AwS5Uf2V52GMsC3z4z6ivasxbc80L0Paoc1AZ+V3AybcNgNzgVVetznYGvxSYH9d+UIrsNXzbvN2VPutxcvuIMiJ8mgmSJzaImzwdAPUPqy6dkrdMcSY7PeylN/pavG2jiGN2gpj1xqNpAU7Fapjp2eY/6CWBGn8TJTmcgo2FlTPU5k/jg/jD4wwkllBXZphTQzOUvOGDDwLNPHiKScLCgoKzhok7P12qg9wYUppfeXzrmGyysBdKaVHRjgP8BHgv1Ar4s4lDF3A5ua5z8k8538E7gQ+n1L6aeCdwE+NsZljKqMOdwK/mlL6a2DHaAUUEnSaWMjIJm69nNo3YApBigYIYbgq8Fd9FrYTmgCIFX0JdgOYUDYcudhZSSMcrhyfqp7V/CYxMaY+i6mVXqpmRmrPPqx/Z2CEpdnrckMl7SCm1VmD+cvMwojFYowobvS8lxDtbfLjAzx368IdlfoNEMLtFGA2RqD2eN13AisrdZ5BaOgk2HdgBKyvkg5Cy3O4Uode7P61AocqdVpIkKJp1GqUVnm7dU+OYlqqKoloJ7Qt/ZW0Ign1+u6RtJhCxynOnco3q2oqOJq5Xr1WpbmuzOrYaR/mv4a6c3pGVb+WYdKeDkTmnx/tTz3G7RP0aerMCqoYycTgLDZvuD/nfBPwX4HfHUsHFBQUFJzLSIxJE/R0znlV5fPxYbK6Oue8EpuTfyWl9GM15aR0M/BUzrl+R/I0TF7Dbjyac/4TTHz7GHBLzvnZMTXyNMqolLU55/zmnPMv5pzfO1oBhQSdJrZTK1BNIYTIhdQShnpzovolzH5MiJb2QP9V8YCnacCE8C5MmG3EhNOV1AqibdQ601cJ1pX+3QVsqbtGdZjn9Zzj+Uvok8bhVL5HpzJ9q2o6OjBiIgwRAvN+rA86MC3NUWAbIbgvxIjOV7C+PkRoYYQ+4HH//WasrVswY6Kt1BJALWtsxQhHg9dnAHgY6z8RmRmESdwer+cewol/cSW/Nq/zTZW2Dfinl7jf6t9WjNi1ed+IVPUCu7G+XeztOFFpw82eVvd5OXCQ0HDVYzHWnzP89zzCXKxei6lxNFZTynrtncbyCWrNykYzkZS2bjjzvWasTxqxMao6Km09YdczWCUvJ6jVEI2khRpNizRW87/Tw/g1QSOYFVQxkonBWWnekHPW7X2GsVnYFhQUFBSMATnnPf79FPBlbI6u4mrglpTSDmy+vj6l9FlMVJxfSTePEQIMp5SuwYxpvgz8zmlUb8xlnCkKCToDSKDqwoT03X68oy7dVkzYXIgJY1Xh+zpM+NpDjeqSdky4Ewlp8M80T9/t+c3BhNP7qNVMDVDrTK985hA6xXp/C7WnDxtxU7xeEn4biZXwU/lXLBvmvyXeJuXVholyu6gVMocwAVemX5s9XW8ljxX+f1Wr0I0RiC6sr1f5eUlNTxCC8WyeqwFrw7Q9gjQ73V7ne7D+b/Ny5lXqLUIoUlLVmrUC64GvYmSgmYhCdy3W16sIMtKEEd4+jOjovuPXTyfM7Qa9Hm3A16glpg3AqzDCt4Tw55rh9d6KzSjt/lvEvJ4UTKF2HFXJXbWvqn1Xr2UbDiJ5QnPd74a6fNq9LvXmbUPYGN3p13RgMyzU+hxVNWxVqA7Nw9SnjTDzq5obVn2tuqhd1Ji4kO2jRocbi3nDaBjJxOCsNG9IKb0ppfQ3wN8DHx1jOQUFBQXnLCbCJyilNE1a/ZTSNOA1mJh1Ejnn9+ec5+WcO4HbgG/lnH8GWydelFK6OKU02c99dZgyVgB/iy12vQNoSyl9aIzNHFMZ48E5T4JSSos99J8+B1NKv55S+mBKaXfl/9eNltdUosOaMUF5CUEQLsWEtBZqfQcWYOShukp9D0E+hjAhc7Wn6cAEvD7/v5/QIuB5VVfWJYA1EyZPMonqxYR5mXRJqNMKeQsmBC4mtC31G0cqz6qwXR8QAq9TPcnY4mWovFaM0B3GtDQSKBUQoNXrsRA4hvXdgxhBABO892J93YT1mbRa/RgR0RO8GBPkr/N6rcfIg7QqIp8H/PxxYDK1JOvKSl67sPsxgBGZRs9rOabB2uJtuQ67R82EcH7Yy78O2OTXrPc634NpZ2728kSCV3q9ujx/EbAmb5cIwUaM4C3wcnZ4X27BNGKLvZxVXt/N2Ni9jtBmtFJrulcdAwoLDrXL+nuoJcVjCQffR2hA2wkC3+51WOnfGl+9dXWpakpV9xOerwhyVXPVw/CT3ADWL/LTEw57XhoTgsi46qBnWeN64kLCjxodbghzFfvdU5g3jIaRTAzOVvOGL+WcfyHn/Jac871jLKegoKDgnMUEBUboAB5IKW0E/jcWWvpOgJTS11NKI8bkyjn/AHg38A0satw/5Jz/fZikzcBP5pyfcK3+26gVYfHyPgc8BCxOKfWklP7TaZRxxrhgIjM7G5Fz3gpcDift0XdjKrl3AH+Rc/7wWPM6Qgysw4QQLGzBhPdBjJjsxIStPj+u+o1UBbUGwkRqHmHaNURocbQqvxwTPOUPtJAw/WolhErl1+/pRKAkUG7FRuaA57+V5/qKyDRO2O5tXur515vuHfe2TvFyVnm+x/3aGdjKfB9m+vU5z2szRmb2YtLdHC+3i9BazfO27fHf+4FFGDFpwPqzw8uZgpGhAa/DPd4XM7xeJ7ztKlPBH1Zj967Jy73Bjy/x42lE6Ob7sKXvNuypvcHrMogRthneP22YMH2DX7fR27/I81LMr9d52zZj5OSeSt9L4J5OEIdVGIlahd3fA5gJXLOfP44Rql3+uQVbPpG2pdPL0PhVGQt47uxUvc/XetuF3kpbqxpGmXBOw8ZANV9p1kRWF2L3qtnbtNTrtx+7F9u9TRpXeJnVsbnY89uJkZX92L2Y5N/V4BAi9fWBH1YDj2GEsgnrQ5lHNmP3uQ27fwOVPOZ4eSNpnU4P0gSNiP6c85lof6oYycRgPOYN7x5n2QUFBQUFY4RI0HiQc97Oc7dK1LnnKAZ8EereyvHXga+PUsa/1h0PYZqh+nRvHeH6UcsYD855TVAdfhx4Iuf8HBZ6OhA1biQERGkPmog3+kAl3T5MUGuhlgAtBK4HbiXMk7QSLk3OCWKUbqR2xX4vIVEo2IICCWhlvoFYxW7GBOc1mGCoIALSIkCEkpaQuZRaM6R+P9dOrSagz9snQXW91+WAt32yl7EU01ZIgF9FaHMWed5LMM2I6rzI+2cNpgWScLsTuILo6+OYAD3N+0z5zsaCKMzA7s+jGFmR2Zv6byPGkm/ytvVh96AXu+97/PwqjAxIMMa/JfzP8nbO9Ty3efo+78t1hEavB/giJoB3eP/OB96KCeYaC4cwIrTQr23zPl5Xqdd2/+7zPprlfd/t9VqDjacmTPqc63lLo7fTf8s0UROEtC5VAiTS3M9zdySTRC2iUX3gFGVtATbWthOkBWyMbffrtxPP21HiOauazC3ACNBS/xzC7tckbOxVo8YNUTvjK3pgu18z2+uqIBrzPX+Nd2EJdl80nuq1p2eOUX2CZqSUPp5Sev04ChnJxOCcMG94PpGG2TCwoKCg4IXGCxki+1zG+UaCbsMUEMK7U0r/5qFcZw53QUrpXbK/V2eJ5EgYBROaFhBC92ZCsNQq+yFMkFpDCJW9wLew5VRhDyaYNWIi0UaC0Mh8TdhHCPEtmPB/tx+LHFXNd5ZhgrPMd/Z4+l5CCK26X8/DNAnSSqmtYA74Vf8L7Z0yBRMS52H9MQkThg94+kcx4fwwJpwPYoL6AW9bi+f9NUzbcpgQZJu8PnsIrcF+TOuxz8ttJczb5BcjH6TNXofV/r8EZ7zeErLv8Pp0ESaOrdj9nubf6l/5p+D/X+J9sRMzfZOZ4hJv5yKC6K7xvOWP1e7lbsGCP+wmItItAr5DaLn6MJK5xPNf6P3cgj3Y6zCyKT+zJV73eX5+uveF9k2ahxGEQ97nIuBQG1igjVrSrDEwxctp9Lw0ZpdWrl1DaIV2ej/c7OVM9j5RYIoF3sdH/f8GYqecPuL50njVONnp+Q359VcRz5v8y4QB76debEHheCWv9dj96yH6VIRsM9ZvEx8qe1SfoP6c87tyzv80Ug7DmRX4/19PKc0ZycTgXDFveJ5Rs2FgQUFBwYuBMYbILhgF5w0J8lXHW4B/9L8+hsmrlwNPAn823HU5548rvKAEwqWY4LeNEKj6MSlgBeFYrr2DJB0cxjr8AUywugUTwiZRq61ZDdxFCKcqYwHhG6SoWF3UCnV7MK0S1EolvZiAu8mvOYYJnyIXhzHJZiG2Gl71f9Cqu9KKQLVSG8Gr3fNYgj2Ard5Hh7xsCcs3YMKkIraJIAz6NQu8Dr0YEXgNRgR/lljhl1Db4ue6vYy9GFHagvXhJkKLM+R1afI+VNk7CQf/ZYRp3AJsibrR02/3co8TWpA53o+K2rYQC8aAt1f7Qu0nAhNs8bYqQILu5yr//3H/vdzrI6I7iGm9voYRo45Kn03BhPklhN/SzZ7+Lq/7LP9u9TZu8Xu2xOt9ifdfJ+ELBbUaTxG2nYT51wlv31Fs/EmbN40gntK+PICNNY2v7ZhqoFqOFhaaCD+zTuy+HyU2G96O3SNN9vX7Mi30aw96vTTmNnqaLoLUvNnrpXZWzUd17/ZhZFpEuRq+/lQh508Po/oEjaoJyjm/Nef80pxzozu0ftL/f10lEtDXc84/knO+JOf8B5Vrh/2/Lv9/zTlvqhwP5ZyHNW8YoR6jlnE2YoQNAwsKCgoKfkhx3pAgzMJpQ855H0DOeV/O+bivZP4tzw0LOCK00qwVaqERE/7kWN5CCGYLMeFRkb3ATIt0A05gAtocIiT0cUzQOo4tp+708wME+VC0MEXQmkKsjGvfIgVq2IgJxt2YsKe6aMV+FyZYric0WgOE/5MimuHtnk1oheYRkdp6/f9GTLhUtLIeTBDf69e82fPc6+VO9jpNw8jJFcR+P2/2/prvbZSp3kNEyOMtmHnXXkzoXk4Isb2YVkSmYNKaDFK7YiKStR/TWCk0OX7dbO+nh7yf9mBEbQFGQvZh5npbMDJwlZ+7wvtkCkaw5MjfjJHqWX7No4RBlMy5jnv/PuzlLfC27CO0gpOxeyUhf6enb8AIjcy39hNaozle1v3+2e9lrvP2KXiEfGLAtEBdGNHe6fVS8A2d3+LX9hLEWfs3LfU63e/1Wozdb/x+rCAIha497tcrWtsJ7P5L2zbg7WvGxp9Cx28n9mZq9L5rI0hx1Yfpi/5dnRCrIbCXYc/QZC9jKUaQpT0bW/DqsWD8mqCC5w3DbRhYUFBQ8IIjAVMvOPWnYHScTyTorVRM4VJKL62cu5W6sIDDQTaWbZigJWd9rfgPEavEN1Ebdaq6F0sPRm76MWFtiFh5V1S4XZhgXPUYXkM4le/FBFmF0T7q+bVjplyrPN9jhPZoDrYS/xpMgLybMNFaQJiiiRTIDEzC7FJM8FfAhY1EhLbJlfprY9E9GHG5z8tfg2kPJmER33b5f1dU+nQdJoxDmHztwrzi5mNaknZMi6LdFtcQUeXu874Z9PpJMyKBeoFfv8Pbp32W1nm92on9fqr7/ohkbQHe5HWTr9QyQpPUhgnj1/h92OL/PeB9tdKvlQavFxtDG7wfVnhdZfYoLVwP5jsmP6VrMUKgvmrGxstqLLDCUoyMTff893pbVmLjQD40g57ueu9n7TM1jzBJ0wbBIh3dmPnmLQQZVZS8Rq+bfIGksWzxaydhhOkoRrRasDGqqH0iNAoaARFqXvd5D0aKZQ63DHsGmghyqDG30a8/6vWrbmK7wvNaQYTF7ic2n23yfE9U8tvveR4mAodsZCI3UdXyykifCfEJKjhNnGLDwPp0J82nR95Wu6CgoGB8aGiAqVNO/SkYHecFCUopNQOvBr5U+ftPUkqbUkr/hsmN7xktn4wJroOYENmDCUqLCF+Y9ZhQdTfh2wMmsM0gSJJWjtdjwvZDfiz/iVb/LCf8cR7w/xQUQGGFewgBVNqfXZiwq9DIYARETtwK772OIC37vB3XEeSqGjFuCxFSWpuDDmImZ9UACXMwQfgaTAzowsyZmjBB/QAmdB/ytG1e3/nALxEEYxATcOX/sd3zkAZF4bcPeX37vO+vJ3xNjmFkaTGmlVEI5M2YV/eXsXt0s/frcUIDpE1cl/u1c7xO3/Lfs4ngDt8gIsTJ7K6RCDDQSGj0jhFR1eZ4/8iUD4ykKrKcSNZNXvef9vvT6+0cIsiSCNFhbEzu8LoNYuNMmqLDlf7c43lJozTL2/8qP+72vr3O69SAjeEOTBOy2D/SdC3CCIPGuaIarsRIjNoIEf1P4+JSPz5AmPnJhLLTr53m/fYlwoyyz+9F1Tyzg9gMVnnInFEmqpu9DoqkqDp2E89Qi1+vPBZ6H8zHnhu1c+L2CYKiCTorMdKGgTWomk+PLWh8QUFBwemjIcHUplN/CkbHeaEwyzkfxuSs6n//1+nmM4gJqxv9+wAmWIngyP/jUUwokmkRmKA3RKibtMmjfGdeg61YK8LbICFMNvmni1p11ToscMB1hKmYHL/v8XppFV+r5v2Ys/0MTCB+jddZJkJgguQ+IsSyIp71YMKoopJVww1LoG3w8rVJabvX64D32xuoDdk96HlM9+MHMQL1ECb47/K0DxGhoxd7OvlOXUmQytmEL9bDXt9Bz2PI6yQtzDHPU75avZX/JmEEQWaK0vJ1+rW6n62YxudKjPiuJkjOzUTAC2kXriRIywnsfmrPGjxP+b3sI7Rym7yeBwmSM+Dfe71/ZCqpsTkXM63c6m3a5e1a6vfiUq9rm7f1coy8LcAIm7Qu0k6KOOk56Pa8p3gd5vq5FYQ5JX68zfNp93zUrn1e5nzvn+uwcS3HzknYOOjzPugjCPVxYhFhi+ffRezxI62motHNx8YPfn4/psGUWdw0wmzvGKF7me0fiL27nsBEXG08Kz+j8UPGkAVnE3LO7wfeD5BSWgu81zcMLCgoKHjh0UDtHi0FZ4TzQhM0UbgAE6zbsI6TKY0EwGmYALUCE47kOL4AM+NaiAnJ2hRV/inae0TCljaTBBPoqmZI7Rjxkb/NRsL/ZL7Xo+r7oNV/RfRa6Oc7/VhkBv9u9/aswgREkQEJgTP8GjABXm29ChNAr/I6HcUEyWa/fgnwFu8T7WsziyBDCvrQRjjO/yUmuK8iyIqCJkyqpJf2pYkQnhVwooXYv2cAs3t8CCMTm/3cNkyrsdrrNIQRmgZMu7OU8FNRGOpDGPHchRGCXq/bwxgJ7vTz6tN9RJCJewgfpTYvQ0R3l+fd7/UaIjR0fYTfmDZPVTAEaZOa/dwujDQc8vrP9/a1eL2kIerx7xbMT6fd85H5pAIPzPD7Ka3eXX68hiB1IrqPUhvC+lHiPu8nSKp8zFqxeyrirwAJndjY2eLtWEmYnT7u5d2EETGZjc7ytm72cjZ7X3d6v0ujIzNJaTdv8rpfRwTOWIGR1kbCzK7R69yDPXODhO/RxGBUn6BiDlduqWt1AAAgAElEQVRwFuICzo411fHUYazXDtfWi8ZR7pmiZZTzZ8s9KSg4e1FI0GngBOGs/igmBCkIwH5ig9RuYtNUmUJdjwlk6/x/RceajGk1Dvu5NkywlI9Nv3+kyWkmVsofw4TdZURAgsexqVFO+XOISHV9mDB3mBD+3kwIcAs9DwmOx/yaxZjPyk95Xa7DBk4XYe60zev8ACZoLvE8FhER12R6pfTKX/v97CIESw1MCdTS7KqOSzCh9LiXO61S5iRMaNZmsAsr57/i9cevrfpB3e11aMKE/15MKFf/7PXfjZ5uobdDPiHSxGlvJGnKphAbb4pAiiR0Yvdsjuczyc/Jj0uamlme76WV+vRhhEUaRPlrTfZ6DHhbpKmQ/1Gnl3cII0YyO7sUG1sKs73d6zMNIyA92D3c4fnLH+ZSz1d+WfLPWe7lXOl1kOmgyHgHse/VOq/3NZ6PAjnM8b6bRmimFByh2/tCCwYt2LiW2ZtIUy+hObzG/9uLaUG1b9YdxGa70kD1YeNe+1+1Ve6L8thDrSZv/Bg1Olwxh3uRkXO+N+d88+gpf5hxAc8VousF6gtG+F//tdSluahy3OLHy+rKW1Z3/UWVa1vqvqtlKPzPDdgMs6CSn34v8Ouq11bTTvX/bqzLV+d1PNc/KvMiv7Za10sJkrLAj9XuH63UpcXPXVrJq1reRZU8VJ7aojrgeS6jto+6Km1SGdV21H8uova+L6uUpzKr1+o8lfSXVo71m8p/F1V+K6/6NFW01P0/2pg8j5CovV3DfQpGRemm00AmHKu1gv048DosbPE0TFBagvmISCvRTvgMzCF8HlZg09iDmECqPXkUfliO80uxVezr/Dpt0NmNTUuDxIae2qx1iddpMaaVmYwJ6fMJ7clWTMhrwwTEQUwovBYT8NZhwmoTJnRu8PbIpEh+GNswQXAVJkjegwnaS7yMLkxg7sIE5Fbvs895WYe9Ty7FSMoyInjAZIxgag8YRWtb7HWdQUSAewwTfKcR4aNlXtZICPV43RZ530/3vl6JBWDY6tcfIIIqVMMvj7S9/Q5v52bsPiti2jJMyJ7s/bkK8ytSiGxpma71duwgNuncit2rSwgztQGv2zSCKM3GxsejXv4iLBLIXq97s5c1hdA6XUr4ZW33/l5BEIEuL2Or98MMwo9sGrF57F6CSB7G7u392D16nAiesZ0wT/wWNvZv9mu+6H2+D7u/V3qZS73fvkYQKfnPTcG0XY0Y4Truv3d6/e4gnsf93tZjXo6CZ2g84H260ts32/M76t+7iEiFewnCpDDcy7DnY/yQJqig4PnEBcQ4028JnEf8u8u/u+vSzsWesup2jEf8WG+66djT3OnHbdjMpjz7/HMZMRMOEZ6Mc7FZQ0uDyh//lqde9T+o3bluOhHPcmUlD73F+yrXdhA2Gbu93lP92iN+/W5qvf++W7lW7dzg7ej0zw5grf//o57XQWL3N/W1rv+S1/uySjnVtvf5b/VtZ107LsP6Duy+dfrxDmx2vKzSTmGZl6G67KjL72ClHnOJft1XKavR000lvDuPEERI9daS0gA2lhSSRm1UHQCe8uMLKmmO8Nz5UWLsVCYyRM1Zj0QxhxsGKaWXAR8Fngb+T875j0+VvpCg00DGVo/7MCHzOLbutB8THo9igqH8a7Ri3IcJ/iv8d5sfD2GC2GxMmLqfIClNxNRzD7G/0ErCL6nZ63G3lyMzJjnht3veh7BpaxMmwE33dmg/HTm0H/NrpEURAageDxD+S9v8uiuI4ABrMJOzLZjQKA3OEmxqHcJeJV/FtpoXOTngfdZM+FNJw7KaCE8t0iCfHJkciuC1YiZpmnq3+beIyBQvq5fQYglVciPyBPHq7sYE+62VdCuIsNY9GFHo93ot9PrfQfhgVSHfsUbsvkib0kmY9omgfMf7RnvvSNM0w/vjPmLjWUVX+yI2JiZ532m8Sct3mND4yEdJr0Zp5xS4AcJUsJXQskEQD/nIyJxP5p2v9for7YD/L+3VMUK7o/DaTV6HHRgJWu2/tY+P7sM07PnrIRYNFExkKbG3TwdGDmcRCwIHKmmuI/YwWujnT2Djewuhmd1fKUfPg+o6MRjVJ2hGSunjwD8VbVDBmaGFWmHzB9SKAhJGq0HkFxCC+G6CqEAIwH2VNFoCkt76u5hAraUCEQyl6/R851aOhyr1vMyvUf5H/D/tW9vt10pwhxD2lcdKT68y1M4qkarW8Yi3Tf3QRa0n7NX+XW33SoKkgL1tjxDkqc3bpjI669L/EvbWqt/qUnX+J0//lso1yrd6Tzuw/lQ71lbSq5/VT/pfs39nXdn15GSqt/PuSr3q8Xqsr9UO3QvlPURtv00nDMSF6ph7nOeaHA54+dV2Qozlc3wxSSYXE4CU0iTsdbx7OC13Suk9wM9hYvAm4B0558GU0o3Af8fEjE+MRjhGqcOnsHXRp3LOSyv/n24ZPwL8c875b1JKnxmt3EKCTgOTMcFLIaNlfiPhbw8mQO0jVs3li/IAsYnoo/49H3t8td/QakyYXUaYTc3x6zYSUake8/8XERtNao+UbZ5epmcLsNdTk6c5gE3l9xC+Q2/wdlyKkaevEUYJMmuSf80C/70EE+5neRsPYaNX/hEHPP9V3vZmIqjAg4S51iFCcN1LbCi609uzmpgW+7FpUqaG8lXa5//tJjQl6zBB+VUYubzD6y9yOESYNi0jHNsV9rgPE5A3exnTvP9FqqRp6vFyZN4mAttKBA3A276R2qAQ0uItxLQbHZjAPgO7x9rctB17pez3euzDQh0e8nrKx2ubl9uAaVoWez9v9vvR5/dBpoZzsFfxXILkHiZ8mIa8PIVrb/J8FKFPRhFN2H2Waehmb9vdnu8nsHHbTJjkLfZ78ivYWHw1ofUUMZaJ5yLvG40XacTwtAsJM8VD3r4Z2PO63dvQiYkyLd6PInR9xKases4g7u0C74sO7JnU/kO3eL31PN7PRGFUTVB/zvldE1ZcwXkIzUBVYbEqRFfJBsQKvITkudSSAWklLiO0CJdRK+R2+DkJ3tIqaHZX2qHK9d8F3u7HIgZaGuwgjFXBCImeVAn1iyrpwd4Q0yvHq4EvYJse4OV9l9DS1BOLRdQSD2m+Gqklf52VNJd5HmrXdK9zVWNV7et1hNapWgeRvWWc9FJMnZDXQVoNeRu1ZK+RkyRt6nQ4MkT0df29qdZV6ARtIvIkmIbqpsp5ESC1Q8ubVaJ8WaUdWkbU/eikVhs1lVpC00ltX1/k6atpLqr8Vh7DaYrOUUysJujXsEE2vf5ESmku8KvAkpzzkZTSPwC3pZT+HnPdfjX2unw4pfTVnPOWuusvAo7knAcq/3XlnKurLACfxjQ4n6mkmzRSGSmlZcAf1eXxTkzE/u2U0luAvx+t4SnnPFqaAseFKeXjRFhcRV6T4LcEe8SXEFHLtFHjbOCbGOG5iQhbvBKj1fh1ChoANmXIV0RowMjKNkIhLS3LMozMrCb8ViZhQt4xTMhtJkJBT8ZIlwI1SHBs9vpNJgTzaV7PAYw0DRKRzyD2JVrk6dRH7Rh56SCib+3ydkuLI8F6lten3dPP9rwW+fm9BOnajwn/VxHhrJuIYAI7ieh0XYQJVTO1u3doVV/krsnr1UkEQcD7XNP9g9h9VD2lwWggAk7s8nKOY4KyzBXnY1P5AWqd6eU7NkhtyPSf9fI01iD2r+nH7tkAEb5a0cqkrZrv3zJ7U3h3aShXEBookZzHK3UewO7bOuwerycCRShQgPpL420xdt8u9z6sjjutC+7E7ouen0ne19diz9AQRjJWYLPyLk9/l+exxvNp9DpN8vrtxWbA5V6vASIIg9YiF3vdt2FjeQOhFb3W++gx/+967B5uwJ6v+4jNe/WM7cCelU3wiIVGPnOsWnVRXr/+zSOeT+lj4y6j4IVBSnMy/MKLXY1ToN78TQLsXOzt01b5v4NaQgEhxMos7bvYck31XDVtG7WanA5CuJeWpUqatsHMRXb4zEEX5lWHqXBxI3zPD2cCz+B1dDnuYuB7OzgpTL90NTwpYR2Y2vnckKsAeYf/6CSWV7DfL210UuD5g00YT+6IPI+IjGGCaq6v0xAkzzMPQVdjvAyf9HNa4ZdS+KSYtsPaOPUVdpueqJ6r4BoqKzOVPqtBlXBoSQiY2QHP/FslfaeXK/m4DbtvVQ1XN2E6CLXmddU8qJyvan12UEus68vcQZjTqV5t1GqIRjKXO1vxwXHN5aumpbx+yanTpPXsxMzChI/nnD9ekyalecD/BP4A+I16TZCToO9gr9WDwO3A/8Berx/MOb/W070fIOf8R3XX/ySm4nyda49+Hrg15/y659Q3pU7ga9IEpZSuHEsZdXm8F/jfOedvp5S+mHMe+YVK0QSdFjQf9WOCbh8mSF2OjY4GIkTzav/9MCa478AE5y5MaBPR0DQgR+wHsAAEMrVp9OMNmDB63M8p+IB8FBYTG6gOYELcVV5GNybcPUaYMj2ICXVLvd7LMSGw19tzDyZobsOEytWEpbPMxrqIFfM92Ct1G2HJfa0fa0+dL3jeW7Dp97DXRdHetmHEUe3Gz0l4BxOYZTIlk0KZH37L8xki9swR+dCml4e9jC2edoXXfzdGtrZ7vz6GEYGVmBB9GHuVriFMwh4norY1E2Z7D2LC9We8rD1+/VWYEI3noY1Ve7yO8zzfh7wOWzCyMNnzUKCNx7FlkepmujIseZAw5Wr0ditS3k5Cs3ec2DR1OUaSD2FjbDp2Lw8TG7zu9f6Zg5kyirAf8t8PYGZv2px0GWa4cZUfK3R6P7EJq+5ds7exnQjYsQjTLD7o7WvHCFALNsblI9fneUmzoyiGj2NawEHs3u73ui8kxlsjJicosIKi+63GyI9MPpdgJp8KgX7Cr+vDnk1tADwxKD5BBS8U6k2cqlqZNmq1NhVBHvy403/vwCxljmDLHzcQJKqjkkfVh0dLHRWTutQZAv1UYHARPCPd+6La6qZGe7ilrXg58C9A6/RYRRzE8/R2zQWebISZnZHPpvjJMj/W+VZgb2PFNapCgMDKUVjMap5H2sKU4giwe3q8wF7idVc7ZzZaG05a3DVank/4sSY0kb2LO+23rPguITjq3U72rumw/ETSXuL3bZM0K3UEE2CwEZr8Xg0C6RV15KqRk4R15lp4Rn5S9SZ4VaK1g7j/3607V0+Sodb8sc/zl9mgSHj9OK2adtb7hz01TBnnEMamCXp6DETrI8B/YYRwgznn3SmlDwPfxzr7rpzzXSmlN2PrgEIPsTVm9fp/TCldDHw+pfSPmLbm1aPW3DB3LGXU4U7ggyml/0gt8x4WhQSdBi7A5toDmHB0LeHTcJzafYQEbdDZgAlqMgXr9XN7sFfGFkzgXIHNgd/CpoSVWLCAVxNCm9ZKhrzcw4SgfMB/vxYT4vZ6eTKVkoP/Wwi/khOEadwiv2aFX78AE0a/jr3yZAKoDSbbMCIl4XQPNmKvIiKzdXvZ2odmMWFmpAhtj2PE4YuEadUhz38dsbeMVvxbCCG+w/ulx9PJVGoK4deziNCObPQ+k5ZNZoAKV64NTq/B3kWN3h//QGh2tK+OQpFrW8Q+IgrdPL8XV2FBIKTl2Y6RqX3EGp2MBfR7C0HWRHD2Y+/Wydi9U4jwDX5v1nm+CgihCHcizzLbnIURg53+fx8RsOKA53kCGwcilbcSm9Ti/b8O00Rtw97F6/zaFkxLuMbLbvb/ZCKoSGtbsful+7vEy2wmFjFFMHVP5/s9W0Fo+xb7/Wjw8qZ4n88iNvW9D5MnFFpbv19NbYCDOdQGy1BEyBPEc6rlMD1jk6ndBHZ8yMSoLSh4PiBHcwmi0tAcqRxDrW9MddUewikfv3Y3wSJkKtVJmDSpjKqvTDXP6TZBiPQMLnIhvCKoTwVmu0D/PWzCFjk4ALySICYvwV4IeYiTQvF+bFKXrflszFXm9kozr8FWdMBebJMItfMmjFhc7sdydFSUpB3As8CNjZHnKu+aVxJ1eCWxSoeX11lpY/XcLD+eWanT5dhLdn+lnT3A651wPEmtq876g5CmwzI/3w3MrvSrNpWTNmoQ6/uLK+cHO2FuZ1wvOXRqo2u+PL+ZlWtyJ7U+XTsqx1djb+5/8+MOIgAFWGdvqnTMbp47Dut9up6ilhRVjc/PQUyAT1BKST44j/j+Z8OlmYmJZxdjd/YfU0o/w/AvqmFNy3LOf5JS+jzwMeCSnPOzY63iWMuolLUZM9YYEwoJOg0oPLZ8fdZhU4FMkeTQL2fpL2PmTHLO1p4tQ9jc2O95NGDCl1bCt2DCnEzmpMDX/jn7sOlkp5d5iIgItwObj/dhQvAq4H9hPgwKRy3t/15P24UJdQNez1bsdSYn9K9hgqWEQEW4ayJ8PG4mrKEV6GAbRjBmYILl9djrcXml79Qv8zGidYAQeCWcDmBCrHSnMnPahQnE2oC0gzA56yfMxuZ7Py4nQht3YwJyB7F/UwNBKK7xulxCvBteS/gidfn3Bv9/t98zWWyrDxVV7Gc9v71e1qWYYH0MI0v4vdpFaHdkEic/pn4iJHM7YWIGYQYpt9uHMeG80+s22+/BFkyrcZwIkb2VGLttfp182a7A7uM0T7/f2/4wNqY2E0EfrsfG5BXefgVM6PR6t/qnHbu3u4iIhsIe7D4pMMQs77f5hHnkUuz+LfG29RHR7TS2G72uJ7BnYtDb0UmMn05sbLcRUfOGMA3Sdzz/BozA/jRGguULpr2PWomxNTEYVRNUAiMUnCGqPkBPUWtGVF1hl1mRjq/GZrqqVqe6kn81ttLfgb0lwEjOQU5qk2Y2umBc8SGZ2RgaEoWsvNiF6e9hIpcmuEOYqdhL3EbgGuBCLJo12NrvUeyBlA3wGmBbY5CWmZgK+QN+3O2fD/vxA8AvAp/342rdqDRNuLFybhsRsO5Z4I3+/2bM8VGEQitQn/bjVYSTJdhE1Iq9eMC4xZ2Ea9QBr/NUYvv3Nd4XWi8/6nW924/f4doxTStdXuazleNJwL2V9u6o1OEJ7CUlbnEx1jeyYafDieVBOOAkNQN81zRKyvNIJ2H+OBWTAi6rHEOQniN1xzsY3iSzSuZbqI3+d45r1BUie3y4GrglpfQ67C5NTyl9tm4j6BuA7+WcewFSSl/C1hn/nnjawEbJsMFzU0rXYK/uLwO/A7x7jPXrGWsZZ4pCgk4TeuQGiZ3od2N36jXY6vISbP55DTY3TMHu4iZMkNuLCY1DmPCkUL19mKCrvWK06q4IYJpvH8JMgXr99xrPrwUTVpuw6eXNmLCmjSGbCTO8dmw1HcxBXSRsEJv7vuF1XuxteD0Rra0NE/yPE+8o+ewoolcH9p6aQuw1M0CY8K30tK2Ez8VKT3eY8OeZhj1tu7xvFar5Lq/bKu+3qoedtB77iMW8dk/fhwnp12NP0jG/5piX9Srsfsrsbhkh5Kt/Ozy/WZg28FvYK1/asTlexsN+fiexp9Rsz3uD10d+N51eH5mCNRBmckN+TpH7ughflEV+rfxTtDFvCyH4t3ofrCTCs0NszCsSKo0cXv+rCHOwIf/I30gmabdU+kkbm4K9N9+JEYclhDZSppENxGJli7fzWxgpO0Bod7Qhr4jOzZ5uARF8pJ8IYrGA0NRt9f8HsbGwyPvikP/Xh2m4tNjwVuy56QV+xtsi08Qhwv9MbezD7u3Nft3EoARGKHi+cQG1wuJcaonNSsIHA2LJiEp6kRwqadsiXQJyn5mjATwzVNEaOAY7QtaVU6Imp5nEhm9gQv6FjZG+6uUA9sA+iz3wwjyM0Mi07AZsElAaCfI9lTp8iCAw3cTOyHgTL8DMKMDsu3+dCMsJ9lKoWn3d6Odf4sf/7mW+14+/g71UVKd5/t+r/HiV532hH6/3/1R/iGhHIkEdlf8gzAy02tbkxypTGwPKRehCjAwq6tKNxKomWP+sxzROuuYdwOerPlvAxa8w/yeA1kY4MtWCOICTpJXEmDuCESKt62g8iTRd5v9tImxhRNbn1h1XUQ0Ff45hAgIj5JzfD7wfwDVB760jQGBmcK9KKTVjHfzj2Ah4GFjkpm67gduA//icaqa0Avhb4D9gyxufTSl9KOf8gfq0w2BMZYwHhQSdBg5hAvoANocsJ/ZrkYO5NBGr/PgJTIOxF5t7tns+1xCO5L3Y/KtVeu19shDzVrvGy9/q6RYQ0bO0ar4YmwrkyA8hDHcQK/FydD/kbdjv/y/y/1oxU6Rmz1PTzZcIrcxybD5s8fPbKnnsxwRLacfcYfwkCVyECdL7qQ1SIEd7maQ1YaO/1dNqHxpFYbvS27vJ+6Xd+0Was0Xeb9/EhNcFRMhjaZtWEXsB9RL72MgEqhV76iYTi4nf8PYd93LVfwpsoE1vqz4u2r9mIabRmuPtG8DeyyI01/n5Dq+LtrvrJ/b7afE0itbW7GmXEdvpycSxwfOe4+2Yj917MNInfyRFBzzoaacTe0wt8nruJQjUz2Ak7jA2rvoq6WZg79Z5XuYawoRSmjqRRUUr1PhpJ8z8OomxoEiMx7H7falfu5fQeCrktcKsy09IkQCX+DmFk2/FntkHsPdIIybTqMwWv4e3+jUNnsd92NhQ4IVmv3ftjMH4eEwYNUR2QcFpQoKghEGZDGkVXiZjkmh3+LGIj3x7qsJnGyF87o7rp3baX4N+nSbsZ47A7EYjPgBPHqzVVqzFhP+X+7EMbWT9fzvmOyOh77hXQ/kfwSaEtcDv+396cUrYr64A4WWtJ0jLUmpJFNhLUsL/ldgKjhw7O71ekwjCMQ/TqKhem7yun/DjDwF/Xcn/YeD/IVbxbsc8NH69Ur422sPb9zSxggixunadH2/2a6TJ+Ya3XSTpcmxyVFuf9vRVsriD8Gu6EyM+0hx1e32WEqaDImdHXBO0/qARoGt8DD2JB7LwMfTSRniy3iftSKXQSjAKwMZfHzbja9wqSILG7VzCnw3PT/sRwTlHhhp4XvcJSil9Hfi5nPO6lNIXsdf+D7C19Y/nnH+QUno3NsImAZ/KOf/7MFk1Az+Zc37C830boduslvc5bIRfmFLqAX4n5/zJMZZx5u0s0eHGjpeklFsw4XAjNuco1LLmoTnYvCfNjsytFPTgVmx+6cWEObmRHsbmqPVY9LjjnqaTCDetVfITmOArfw6Z4igk8XLCqV1C/Axiz5PZhGAq/6TjhCWBfIkURUtO+tpEcy+xwec+zNRrKyZYKxKcooQpiMMd3l/93s5GQtDXO0TTXSO1pnaylNjl7W/G5mHtxaP3xxIiWppITIOnWUREZZvt/SJS0ellb/C+k7C8kCCM0lRt829F2JuN3c8+YnPNDkLzMwl7Z95MmHFfgs1de4i9e2QiRqWOG7H3ksjrfGJc9Hv9FFhCGr6jnrc0gg3E2JKpm+676t/oZSryngxWuv3//YQ27z7sXSdTMJmjyX9Nm/wqGAhexjHsFbXX66F35v/CTM26CfM+keU+L1u+ZfIvUjjr7d5WbajbRBCpS/xercLG5h5i764h71f55C3y/mnAZvdbvH6DhF/yHOI1vB4b24f8/B6v190TEh1uRl6/fs2I51P6eokO90OCsys6XP2KuDY9Fap7uGgVXj5BHmr5ZGCEg+44f28l/epKhDZC+6DABYMYQVARd3saaXRejk1e0njsimwBe2BvJvx5mjBTB5myvREjUVUSsxd7QEW0Ppzh4YqLgXxqVId7gfcRvj49Xmd1k0iCnr4LPe33CCLVRa1Gqn4i2YtNTvKd+VPsxahH/gFPLzIo/6CuyvWbMB5wgdf9QuD/A77izPFDU0yTpDr8AhabS46Lq7B783d+vBZ7GUhb9TTWvzLz2E2tz9A3/fplxP1c7HW9149nES8vKn1Ur6jRW39qIxyRTSEE4an3W4O4oVf7+aqJXVUNt5OzWxM0zuhwbSmvrzfRrEP6x/G/k851FE3QaUBO+YOEALUZE7xuwB7nXURoawUL6McErTZqN3yU0CZiIuKwDZtDrsdeQy2EUKxIaXMwoXgbNicuxAjASq9DO2bKsxQT7Hv8umoIbkU5O4C9a/qIUNkKO92OmR+tJPYx2kOYpTV6vbQavxWbzwe8vLsx07l2Ivy2HOCvx+bJ6ZU+6SWc5WcTobY1H3d4fy30PEQc2rw+g9i83OHtX4HN31oIGyKE4Vl+jUiHNDR7vG7bPN1BbFFRRGQWEeFuPjYGXktoXqYRG7Ye8Hsgc7rp3me6H7u8Xx/GNIZbvR5f9nvzKm/npUSggn7svVkN9d1EaN9ENmSuKM2aiGQHYS7Xi71fpZFRHyiM9gxiLA9g97YNW5bRXk9XeF7NRMhw3Zub/BhMM6lArPLb+ulKXwx6/eWyK+3afOyealFVZvSPE6HNpV3s9Xqtw6xWNhEBP/YTz47SLsae1ynEBsTaRHYONu63ePpFRNTDXf7/UcKcb2KQKZqggolHvSBYH656KiFpywm9048liHbGtXkdJj2DkSLgmX0wtcNM3p7oMAIks67HsAlNQvBt2IMn7cJ8zARB4toPMKFcxONpjFDo5dWK7Wzyn/1YZmUQ/jWv8ut+0Y8/lqxOsiuXDa0ivq3FJt53+PGdXo5sXef5NSJiq/yabpjxAWMY/R+abd30ZCXNS4hHeod/i3C8FZPCJNff5m2RcmM9NumKwHQS6vDvYASoCyM5g76lcxemURIB+SWMJ0gzJl+oL/gC+IeSlSFp8A6M4KjOcz0/xfO6DJv0NxNDoBu7fzIl/AhmNKX7N9Pbob7rwghfdo3PkSGLVvdMNZx31U9NhVSZl/zUqmmG2//oHEViwjZLPZ9RSNBpQM7ii4k9YG7wb5GRldhKsrQc0zABSUKxVrgfJ8Iy9xGaBq1uL/D8pmHk4RgmIMq06rCn3Ub4dmhjTBEFEbMvY0RIfpTaXuBKP1aIYznt78Hmq894udd6ug2YMDiFmJdnESZZ04h9WxZg76vlfs1SInz23TON8NEAACAASURBVEQ0tqrZ9xIiEpjM1vqJoBBNnke73wftU6MQ1n3YO0dmdcux94C0ILpOQR3k6yNhvpEIE32MMC2Tz9JNfi9FMhWtbYBwwu8k9kHaTgj87cSmo/JFWoK9C05g75cNxJ5IN/l9+ihhILDI+6LD27Udu/eH/Jp5RCABRV+bg40fbcY6hFlDVENnKzrgcmKzWpGhbxILobsIjV+nt+uo57XA8+j2tk7CFmo/jt37ld5312AESn5V+wiyo0iH67yeK4hoi1UfZe1VJC3WPZgsMeD/tWNrgH9XuWfbMPljrtdNAR+2YmNuyP/rIIJZyPxuIzbev+L5yfdIxG079ixVo0KeOUqI7ILnG4rPWEVH5bdMji6rnLuX2EemE55ZHRNTz3TXAE11p1f39TmAkR8IvxZpXXZhD5I0IE9jBEUuIe/BXhSdfqyJ++1+/GnsYZSZmITvHuADrhE5MMXM0BQ8QQ79Mh34HuFqgud/K0ydZ+qsI60zrc6KM/Udz1/aLjBycCP03zmbGojELLP8jvyEq35+F3v5a5O9X8rw+RSanzu9X5zATP7oQY59enqQJrCX3K8RpOZebBXudtdySQPUXfle6nmrj94HdHv6WdRKglfAjI/spf8XvU0XY0RK5PLN2P2aTbwc7vA6i6y9HevrR/z4lRgxFMk9gE11UsxlBcmQ9rETeAURPW46oUrqIsze9lEbur3qF3RB3fc5Nq8+z+Zw5wsKCToNTMaEePkRyhxJwvgSbD5RFDctILUQ/gm9mMB8LTavSwiTz8wCjGQdxYSrWQSZmoYJ7Z2EX9FqQqiU8PwAYTqkyG1bMCFQ2qr52DtmGbFRpPZLmUOYEk3z+srvowkTor+MmfYNEKZ0VddZhbPuJ8jHEmyHrTd43URO9nkb5WeymPABeQzTysj0WGbda4i9wSW43uT95uthJwMhyHxaZfR7H+4lfH3kszVAROc77n18mAhPoqh0swgLgV5MyD9OkIBeQkso7cvl2Jx1mPBzud/LnetlDGFR3LQHz02ex1GMkEzCyLTeoTJpu8/7RFECpc2Qz5ksUWROKJPEVmzcXY+9m+VTI7LdSZjjzcKE/e3eL7v9o/DwLV6+AlNsw4hMp9dhsFK+fOtOENpI7RvVij1bGzAyoxDeen82e59pTF7p+YvcKlLeDIJQLSXI6wHCV6jd07yGGCuL/N4dIsKD30fsftKABXy4jthbSprM8WNUn6ASHa7gDKHXvfwoJMFqJpXwON1/7/Djg4RJHL5aPxWebYzja6ZHXHuZNSzDhOUHsJfQ04RgLnOtxX6scKES7HswYvM+O7xkz7/zxC0vt0kQjNhsgqnvdcLy2Zk2QV0IbJ5i6V7vZYgozcIm0tv9+NMZ3puCaK21Oh65wwmLXjbSPj3pealbLgZuy6ZJWevnWv38y7HJ4XY48szM8Nf5IibDy8zto3URgFXftXZ47EO+x9AbXWvz4WRp1hJalooJ4Lzf6Kbnz7vs+51d0e5qunkYIRI5vNXafbKf3pvp//DsCN7wIUxDpX641/OQachmP96BEcWfAD7p10nTt5kIRwthKqk8B3FtkDf8mSHi7Q42HqcTewm1EYNpKva2kE+QWG0b5/ReQRMTHe68x3nThSmlHYTM/oOc86qUUhvmD92JPcI/lXN+ZqQ8LsAcxm/AhCcJf1swYVWBEOZiQplC/IIJbl8nImXJp0XR4b6CrUQfwlaUN3s5ip6moAxXYY+7Qv9uJkJ2t2Dam9dg08dOTLCdRoTWvs7/H8LMrw4Qfh7SWg36eUVGk8/KLkyQ/yb2TnsYM2/WxputxJ5I8r3YjQmmX8Q2lpzv5/sIbVoTJvTi9XnI+0Uarl2Vc7O8jieIUOOD2Hw8DXvHVd+rNxC+MQewd7NMCqV9EME55vkq7tEkr3+Df/YR/in92HtsBrFBrrRLx4iw0xB+KQ97uUuIQBXTPZ+D3h+TMEIiX5tphDnZ6ko+N/t966HWxO844eeicSKTMpGJ7V6PhX68jNiUVEEVRExEjAcr+R/wezDZ+2E+MWaWEBr6xzCyr9fT9YS5IoTfl+qi/Ae9TzQmZEp6F/ZKvJR4PR4jgpGI3D/u5Sos+yav5xD2/N5KrS+d5BPtbdXr1z9M7BU038/t9jYuJ/zlpHWbOJTocAUTifrACFpFrzpoVDVB9Q7muCO7Irvtg1WvCAH2pdNNPfvS6WG3/FJsErnXvxXOumoO9QymwgXTyDxQOd8DF33q+zzFywB4YsPLQwMBtZucgr1QL8cmlTsx86t5GQ6kk3lOffczHPnOzBD+P5ziBQamXXovIVv3eL01oW3FNDIiEw8AX0728q9qvO7Eosf8OxZf/42YuhriZVPViN1KaGlasT5UIIW1Xo/NTpb0ElGktx3++wvAGuj58y64EXq2XxJatkuBzqPw+SlRxqvgopXfB+Cpz7wMbofLvvQoAN/dswRap4RvlEJwd/rxG7EVrq9gQ2U1JqB8CHvpHvd+/F6lnupHES1pvqQpupowCQQLonCgI9aDjmiDgz5qA3ZoDK+kdhNV4RzeK2gCosMVnEeBEZwErco5P13570+AvpzzH6eU3gfMzDn/15HymJVSnks8gjIXliO8wvrKrGkRNldvwxa4tJ/PMkzIk1nbkP8eIsyEthKhfqcQIZcPY4+6tAwtmLD3Os9/K6YZ309E3dqJCedyfN/Fc2OwyIcHjLB1Yu+47V6eQkBL49DubZuMvc80d7d5XtIKqG1yTG/HzJTeSvjcSHCeRGikWr09SjOJiHK3sNKuZu8biJV7kaoH/Z4MEK90tXNyXX4t2HuqnQhaMIswkZN5niKs7caE4wFiI9wGgpxKq3SIiGLXToSHVvS2Tj8n35q9/plMbEb7QKWPNhFaD90TOfXPJoJRaB+1PmJfnTmEjCKNFETYdogxsJCIWLvP27HTzzX7fZK/jMhKk9frQWwTAAVVmkTsq3WT56e+lDZwZ6Xu27D7KJL2kP9WpLgmYlxV7+mg9+GD2LhdgAU6mIMRnT3EXkNyH5jh9WsiNGM7iKiGN2AE/hrCrUFWPJKdpCn8woQERpia169fOOL5lLYUR9cfEpxdgRGq0Mbw1RXzxsrxVELi1XkFmcfDX1dOvxSb5KYSxEh75YhQ/DQ2AWiCWYWRE5mxrce0KtKM/Aww+6hpdcAmqClEoIXNcNEvf5/5vkT2yJ9ffTKU8+RLza/k2Hozk5r3GqtEz6e6jJSo+bMxrZB2LHmG2A4SwmfoNm/sDa7xkTbjcuCD3gYFdBj0a0Sc5lK7+al8iuR+1UqE4oZY2dT1cnyvakz0opIi73ZM66XJ/TLiJaQyFeQB4E74zb/6EH/2hx+I84pqh9Vvxqf3cuRZ26Tj2NemG3/W9T2Ev5WW0eWzReVYGie1833AH/uxfJSklXs78BeVfjha1w9H5E06ldhwd5N3gmwPhyq/IQiSyP/ZFiRhnIEROlJe/9ZTp0n/vQRGGA3njSZoBLyBcO37n9g0MCIJOooJO42Y8KbQ1DswQWwDJmitJHw2ZF4jR/UFhPAk4VB+DxAmOc1EwAHtkbIVW9nejglhGzzdtZiwKIF9C7H6v54IIjDLz8/x8y1exkJsOpmDLRo1EkEARA46PO0NXqcHCFIFEeChF5tT+wnthMpq8Ta8y+tTjbQmzZEE303eryu9nK95Ocuxd4ZCf0/z9FTqLX8d+fqIDChy3lZCo3Hc6zKECcpVPyOZtfV7O6dhwrqI42yvw1Zir50hb89s/0iDsojQqCmKniKhKdLcE5hAraiB+zHthPZCEgFQpLZDxEagN2AEYqOX20SErd5OROybQpAa9c93MBJ9HxFBrg8bw08Q5EZhoNsJrc4yQmt2N6ahWkYEtlA0OwW56MY0NTf7NQoWMQcbZ43EprYDxDgUAVpMjLPVhPboBPY6/Jr3V4u3+12eXkTpEGGeqvshjaREQW20O4fYz+sA9t7Xs78He+7W+bmJ8QeC4hNU8Pyg+qqXb4WExEbsqZUA2UbtppQ7MMlaBt4eCU5mDof80r1EEIJBzDxOK1T3YUKxBOlN/rvLCUYX5tNS9X3ZPIXJq5zQPD7dViFEKObBU1texlODpim68jfu4aENptM9drv7iNwOfCTTc5czjrUZLkhMfaOb0H1xppk1aFn0ABHXH2yy2gz8ghOzyz2t0ivS245Ku+4hVhjBJtBuQtEm22fhASyCizQ/7cSqlc7fSQSYAJsQnyZIyzVeN+VxL9bvt1XatRTTjAEcSexi/kkCOnm2+x15vWa8e6+Zw6318zcfZFnbJh75KzeJnAU0uZZN5KwLewk5Gbxoyfd56hUvi/HQ7e3wPJnn9Xpl5fw1RECJ3X5OQ/LId7FOlFkc1IbkUyaXEeN6B7VaoHNsXtVKZ8G4cD6RoAzclVLKwN/knD8OdOScnwTIOT+ZUrqo/qKU0rswWepkrJJvEAEEFmKvkMexeei1mOCkXehPEH47q7FFlLlESOQWwpG+FXvmJchvwebZPZgAuRAjDhLgZ/k1Q9jr6Sr/DBLag9V+zbXAVzEioGhffYQW5FqMMG3w/LqITV1vJgjQPmJPoGbPo8XTHvbyROKGvK5a7d9FaJgGsB2v1hHhrA9gc+NhIuqX2qZV/1bv11kEET1BONc/5PkoYIG0PiswAvNJIpKbCMokgkgdx4TwPdhUO5kI8y3TMhGiQxiBuNT7YBPhYyUzP5E/Rd7T5qh7ic1LL/H/Z3n/DBKRAYe8rO3e5zMq7W7B3nW7McF9m5ejgAEi2BDR3jTmWgj/pUVYBEAR/AHCb0iBEzTXHsfGujRie71M7dO0EXvfSlOzn9iEV9Hy3uDp2rGxKNPGDkL7KfLTjt13aUwPY2NgNrEv1wkve5+n3UOEc5cmc5b3kaIJnvCyN3q9thMa3KXYWFHAjusxLewAsTBxCJPJRH6vJWSQ8SETm6QUFIwHVYfwHxAqEG0wKQlT5m8yI1oL3AEzb7LDZ4ZgZiMnJfln/g2emQ6XdNpxq3/mEhtsSmMjcrAZe0gU+nGTX6OQ1cuA247CX5jmZ97Kbo4xmYGDLdGEWTDjVtNZz5+8i81fveKkvPvQ09eZJqeqdZkH7E1BpG6fDl1w5O3u8/MWzCRBmh2F1P4Lok4KJw2xR4M0Hu8gVNof9f+WYpHRpCl7j39L4/U+4OeoNYf7MCHPD2ITiSbcSRixaK2cP4CRBdV9B0b4ZBql/H/Tu+Hhbnr+7y6W/qlVfPPHruAfjr7tJBlsmT7AU2unc+VKs9l7aMt1RgRnWyOO/dF0Hpl6dbThw8C/JyNZWgV9jNgtHXiq82WRHsyU8d5Ku1Zhq2Zyyn3C23l/hXyvBy4W4emEqdP9fouMyxxO43YII+/PicN9bqKYw00IzicSdHXOeY8TnW+mlB4fy0VOlj4OMCml/BVM+JMpzx2YgH0NJ01iuBYTxBSc4C8Ja9V5mOC0i3Dg76ZWGyLXaAUUuIrwDfkGEVHsCew1NpvQ9mz09G/FBFtpPr6MCX2dXs+DmOAvAfOEp9WeQfIPmk1oRxQGWHsUQUQsm+ttleArv6hpXubD2Dull9CyDHhb5IexyL+7MQKn4Aiz/fdyTDhVoIjZ3pZ5fs0C7B2keVZl7/c2NGPmWFs8L0XeO0AEOWjzPmzAhP3Zfn0Dse+PXDYbCWuHBkx03VXJ5zihoWvExsl2b/s8bOqehb3DZGb+db9/8pVpwu5rJ6FVe5OXs40IDT5EhHDeTRBLRZATKZ3h5bQQ5mrHvR+q791BYpy0EtqPS7w+LZhcIxKtfaz2YIu+1xD+bEME6RQ5muP9v8/TiLRPq+SzhdgLqoGIbicSeAXht7SZCDU+CSO6vZjWTYSqwdP9FDbmlfch7J1/h/9f1Y4qYMk+bMzIrG7A+0Jk7ktMFIomqGCiUDUDqkIGwpK8+4jVdLBZZKU7pwOpMYIfANzfATM7ggxIE/EY5t8iof4L2fxuhJmE8L8feM9RuN2luKbMvDm76LnM6tHz7S5u+rEv8S8/MHuwm37sS9zxmTfR/x2LWNa/w77n/aybuv1hF/N+q5ueDV2hIWkCWiuaoUFM8JZyYBHWBplkdRCTorrpE4S24xKvt0zUdnnbP09oMBTwQZqf+72c3/fjud5P8n9Rt4s0Po2Z9en/HsKuXfi0t+1z2Iv+IYz4aM+k2zENjO8b1HNXF0yFzZ8xtdxNf/ol7vj2m8w/Cpi89ij0wEOfcO/IN8LkVQdN+wZMfv9BLmp7ip4HrVIzPr2XY4NTONI9M/pL0YpEir6JhTwVgXwc62s5+B7FiJAEiU3Yi+ulfq+aMJ+i71VCZh/Z5p2pzu30ztkdaZhK7Buk4Ann6HxaNEETgvPGJ6iKlNIHMavlnwfWuhbopcC9OefFI103I6V8HItGtZXaKFYSxOZh8+A2YpV4AHv+b8GETQVJkYCmjUdPYPPj6zBBS8EOBjAzoPuInezBFgG0Ir4JE3SvwgTfIcK/ZjGxYt6MrYgfxATwNs/zBDZfd/q184jwx5O8HRsIoRav9yFMgFW0uzUYURkkAhBI4yBhvZVwJhcRkn/KIeIVvYvQFDRhJOcwQfgWY9oaaULwMpqIAA0yNZuLkQ2FN1cAgINeN22kOkj4JqmeirQmvy21S+G1P4MJx9ozSOZ/8geSCZbuXYPXV+9W9UUHYcom8tOCCeD7qbXS10av2gz8CiKUdFUTo0XajV7XJ4iIb8cIc0kIkiKNm/yaGok9qrTm1k5oJTuJSGv7CbNLafw6MUIuLeFc7N5uwrRhCliwGCPKj/k90P4/q7F3qExFF2OygV591aAPKwl/OQW+UDQ/PWtNBJE6iD0vV2Ek6BbCz+mon5f27gThvyS/NUWzG7A2ToBP0AV5/frWEc+ntL/YeP+Q4OzxCZIvhDRBWkHX0lwHJjyu9OMNfk7C5vRaE68pxL4HEARApm9LsVW3+YRJlsIrSyj2Efyad34VgLt++RZ4I0x9VWgnJnPsZJE9e+ZD95STfG7q0mdYO/0e7vjqm+yPC+HKq+7hoS9cx9K3mDpKQv/JifPTwDx45e/9KwCPfOFqI2Zvr7TtrwkNxhu9nh/y4yOY743aq1W7W4FfOQhd061fDmB75EB0eTWQQycx+R/AJkuZuz2Gvagklr0Ue0HK5+gG7MXw9gxdyUzGfgmbQEXuLicizAAX/dX3eWrDy2q0Npf98qN898EVlTodZXKTkaZj66czY+1erpps4XLuePBN0BSBFAYOtnCkeyYXrfw+T91l5ohcCGtX3sm93/aoE+uxCVb3+2ewMSASfCE2iStQwmb/KGhFr/dDt6SNRmAfpA7IIkYi8jv8WG8EHU/1NGcrCRqnT9D8lNe/59Rp0m+efz5BKaWXYbrZp4H/k3P+41OlPy80QSmlaUBDznnAf78G+D3MQuxtmLve27B4JyPiOGFS1IoJ5XdjK8THMQFrGmYitQwTUDsxIXoVRmLmY4KuVvpXYnOXzHhmY6vZSwjSsBebbxUQQCZoe/wj4a/Bj6/ARoBMoeTfMUA4oE/BBHJFlzvoebQTkfo1T+/weogc9WKLYg97u99Sab9MkhQCuo+I1jZECOObOLlQRz8mkEsz00sEPpiDTW16RxwnFuO2+r1Y5v2muDGLMAFd5m5y8JcWRwSoweu8kYhUpnYs8fK0P9HDBNEb9LIVBlz7KA14v8rUUcL2Ii9Lee3Dxs4cL2+nH8sEchqhWTnhfbOMCPEsTYraI/O7Dswk/dD/z975x3dVlv//eRj7BewHG7AxmI5tCEyQgTOUEKEQ0JKvGIVZ+rGiLOxjZtbHzH5n2i/T+mhpVKZpqBR+0EyQklBRdMIQ2kAGjDYGY2yMjR/bcJzvH9d1va+zBYOET/Ax7sdjj/fO+33Ofe5zn/uc+3rdr+t6XbpfLh73lIGzixu0/0zmfbOey8YUeDyb3btcbYe5tpVF+nyHtnmjtjEdYdwsWXoHAjIstNWenRRtXxPiLVEWaZP14QV4Atr9uKT1xci4GIVLef9Vj8/C3fBbtZ44HBTl6H3aqvfMAKmBYXsuanH1vwRcHGIYrv5XijzbR4Ytb6ecqpP2ySlBEPRA1tJTgdIwDH9zkpv0f6y8hUz15iZkMjF5um2M0Ev6+W5hf8KDsRqowSeEPOSFbOphH6Wzq1Ml8uBGH4or2+CFRN+nCgZ86+8sWTEDgKn3LaKBTMqbi2KH1Gwu4Nx8McQLcyoZlbOWx5gNQFt7Aivax/OJGfcC8GjzVXJQKWy6pDB22QmXN9M+X9mFa4G74fVFGttyLzKhGTjYjawEhstk+9lJ8oIwwzwdAVIWxzIfMciXVgBjxWAviZfVE/NorUImLNOc7Ysa9rqcdGGWAALLeVCCiC08rNtLESW1tyLbzwI1gccu/QxxzTMRgr5QcOvf2HSOSLA1NabDbPjERumrlePfRQp7Y6zMiNmraSGFRG3096d+ke/yFYkbAkaMX01FbRHFKoG3pGYGtMLOx84g+RIX013dXuxgTSXMY+6Qy5AxYAp1lXpd2fp7P1wsA2S8bamDIRHVwi0HIKyCIE+2Q5N6t9KMvPUtv1WVfr5D8wSdQInsIAjikN7fFobh+7v8lous9WYjJskDYRjeo79NB+5BNQ2PBjiO0oZfIdEXO8MwHBn5/p89x1nAH8MwvD8IgoeOdt5/CxCEPBkLgyAAueZHwzB8NgiC14DHgyD4BPB34IPdVRLi+VOGISvHJbhblMUYWKD0pXhCxjG4IWby2UmIgWZgx1TZTGDGEnzmIY9zOTIKM7QOY00y8LiVgwgTfRHOFvTGXb6StG5LNtmOLDQZs2WqaC2IoVqvx5kBaYH5lky0CGdN8nUfUy0zlsGEBKoQQGDgYYdeXy+ctanFV+4tbuUCPdaEFow9sJiSWjxGZj0ek5SBs0YN+ELZizgj1IPO7I4JG1gwfDau3LaH2HoUZ2qf79M6EnS/4doHw7W+NXh8jgFYSySbp8eP1DrNUyBD228sTCYuInFQ+9Z+H6n9b0lHZyFI3tTkWvE4IRMRKNI+idN2GNDZjCfZ7YUzOla3ufIZyDJ2bBACQPIj12eMmCkGGjtj56rD44nS9PqG6naHtiNX6zW3unS9dstpNA1RgrOIhiK9Dwb6QMbg55H5uAmPqzN20z5NkGE98ryMR8bMftwtcRueTLaX1mfujl0Ve99+OWqeoKOWI00mXfY57MRyik5q/w+/zTVH2fd0+YdiTFB0uj+Auw1lIU+MggPiO6u/DUFewHm63YQYtba+bMk41yLJQEEepH64EVyaKKyGSkQnj9xNJg3sTBcmYUntNGhNgB3iPjdr/AIW9JvF6+XWJlg5eBxzU8WQfyzhSmaykLVKUeWlVvF647kkf3V3jNE4ML2N9qrUGAs1eG4lNesKPXhvJPCzZviwgqTfAY/guWquRACG5S56EgEeURU0quDCcZ7IrhRhhhYagDRn8S45mJLVuLfJ2PqytBluTHXQNBDBptfq9katqhpn185F4piMrWuFTeedHSPykvvsp31gKr9cfr180YRM+grUsqgjjy0saxZ3uCdTZzKeFbG+Xd1eDK0JzLGOK4Il5TOYNP7ZGFu3iQI2lZ/tfTOlDVYmCkAGjfdJ7JTTiBrcLTBb2xQX+b1PlndbJTAwT1g4A07b4xHgYyB+ErJEZnFEXVmgU00d7pQqn0NeCKmH+e0t4AthGK4KgiAFeD0IgueQqfBeZE2yBngtCIJFYRiWRw/WEJQDYRi2RL4rDMOwks7lQWT9/qHIfnFHOkcQBKOAO7rU8XFEFPYrQRDMxpcTjlj+Ld3h3m6JD4IwEXkPrsHllw/iuVIsZK+EzpLRtqp8EH93zUTeRyl6fB3CwljOlGHIO6UIYSJG45LSm/WYKmRuMqBVqvW16vfbEINyFGJ07kHeQ8YGWPB9CvJusVwra/EYoaGIsZmLG6K2Ym+GdTYuuNCm7X0Pnmh1BwIMLP5nMDKiTWnOhBBewxObrkAYJ3OlQ6/J3LUsIL9ev+uS2YJGXONoEC5+UIkzM1FD3WJmDiIr/pZCsBUHvrXaNlMUS8eN6mEI+2fKacbQJET6tYnOMT4lkT40pqZG+y0bF4ywdhp4trilUbjkcz0uKQ4yTv6KC0GYgEQDDmabcGDxgl5bDQI8++NS0dG+rdfj/4rnLsrRP5NjH4SPmR36af2xX/eJZnywmB4T/TCXyFEI4M7WdkQXAfIQGyVXz12Eu+0lIWDtUOQ+bUaA5KN6zvdoH0RzJOUiz7C5QY7D5+mLENsuD5ePtxi0l+V8J8AdLghLS+OO+HsQdBz1HEEQTETcfR86HAjSieVNIhMLEl2w4XDfv91J7XDtONK5jzKpfRzYrSt7C8IwnNXd9Z8q5dRxh7NiIMjE9+O7bJv9M0iYoDzdbO3yOQkxi2xFwwJT43BjfiVccNfzlDVL5HvHW3G0v5gag7CD51bS0JxJSqoMoQHUsW5zCR/KF/tnBe9mFG9QhAy9ee1z+EjCo8RpEMlPl3wR+sGIsZLbJo8t7CSLuki+o5rlhaSdv4M9z6rV3A/4NKSVirjCnq9kC/1sDNdQZDRGXbCG4IZ5pSEQZRp+Ey9xOGvxGJ59wPaDMEX71oT4/qa/b38DBp7TOU/O7oPwMd3/WeS3pTpzTUmVSd5ihmqALW/Azed47FMuohvwjUjiWJCYGhCWaBckF/vvaXN2sKdG+6o14ENFv2GZZkxra09gz8Jsbp39NQAWM43xrKCSAgCWNU9mTqoAog7tnEoK2UQB6dqZKbSQSzUP114j53hBQbC5ErYhbwbr+yTEEIjGa82nc4AvKKtmF56HJ0q1MiKyXYV0ftfYuFMFCB2nO9yZQVh6a/f7BJ9mK+6ECMLiPNBpnyAYjKgj3w7c1JUJ+oc6g+B/ELCyF/hGGIbT9PsvA4RheEeX/T+IOG1eGoZhaxAEnwRmhmF46WHqag+6NQAAIABJREFUzgOejswXFxzLObrUcTPwahiGy49lvvh3YYJOSElEDONqxGg3Y9yUo85EYgoOIS66lyCG3D5k5bhGjx+NGKYr9fsXEWOvAzHSXtHPjXhA/mg8H4kZiWZMWzzEiziTlIsnKrWYkPzI7/mIwWqJMVu03iI8xmk/Mi3u1/aZGpcBsA1ILMxK3BXQ1LsOar+k6Hl66LYJGViyS0tMuQpPhFmPuHWN037fgQA8YwrMy8KAlAmkmEFvIgBmmLfqXztiuJsS3369l1WRPqvR441li4pH1Oo9OYQwBfv0OBMe6K39ZLZCnPZVTuS+oee2OLBq/P6uRJa80/TvkF5bj8h11OOxNObuV6R9bEyHCWSsQcbjYu1jY25MYnsHDnKN3bFEsHsQ8FyM5zeqR4QbZuJxNMNwF0JzlbPYtpG462i9ttNcRC2+yIBZIQJG8nA3vKXa5gYcSG3EY6DWan/ZM2IuiPtwUJmKi3UU4gIdJjtvfdiCPK9rkEUOA0x/whPGbkPGrWWpGKPnNRfCE1Y6Orr7tV8QBNG16H+Y1PTln9dNHe8CKsMw3AwQBMF8pCuXHeH78i7HXwR8JgiCTpMaQn4frR1HOnd5GIZrEeaoUwmCoAZiASLdds7pcizlAM7hgjNBOrKT1SA3+GxshRmw6chqm7E8U5CH8vJInp9Z8PJdk8UFCkQAoRCSPyqGeC7V1JQVUjRRhlZlewEX5C+LtbCIcvrREDPM5yTMo4gK5jEHgO9PvYH7uY44NWj/3DiFARk7Gc9LPF7+HwCcO/ElYZLMBBwM5OHGv2WxtlWOoaivtV7/Uj3GVi2Jh5KhnuDzWv2cSWd3tSAelppiQJ58DNE6LztHjINJ+nMT0t/myjYdSaRXooC0GGGCKqv0+DxoPUcAxT3Ii3Yd0CcCfkyAQJXXCor+xqbaQopSpa9z51azgvEMyBffg51LzuCaoodjOZd+VHobl8+ez0JmAjCMDfx0881cki8+e59P/TGrKaaDnixrlAsZkLGTlvY+bFon6C4hr5nkPvuF3QOX9bZV4ukIs2bgZhsoxvLtSXQWuWjSz4HaedurtHOMCapDxra9oQ9XThUAdAJKD45FHW7XMQCtu4Ev4RFsRyz6Ph+D3MmpuAMLiPk0rusxYRg+EQTBEGB+EARPIItaFx+15VIshLjbc3QpzwLfCILgKtwn8ojlNAj6J4rJ6q7WbWMD9iDG5irEWGtDAJEFuIM/+/2Rd1a91pWPWBRViCE7FHG3toBzi+nIRIwtW40vR4w2k6a+EDHwo0a/GfTZiMG6FDGAe+HuTYW4u5PFzZyHWBwWowQuGlCPzB2r8RigcXrNO3CJZcvFkoYYnRu0niyc/TKFtY362abnNZEHa1MS8iTU4Spj4C5JBkDM6DeAE11kMteri/UaVmpfGxgx18PnEGM9HmewLJeMKdqVajtS9RwbcZBq4gbP4VLOKbiyXo72u0lVNyLzg4ksmBCQrUWaeIQJR8TrtZqcs42PHnofyvF8VgZAh+r/Fl9mcU3mImcufimI0T9ar3UbIqSQigALS8pbiQO3aq3XZKnzkTFUqOcuxuORahFrd7PWF691GctXpP3zotY7DL+HBl4TtH/sOqzf0vE4nUxtq43jZr0+E+Uw18sqZGwaKG3Q4y0X4Rq9xhw81qkYAVJNen02u5wwHy3zuT1yOZZJ7WjlSBPLMU04J2FS+wPw0yAILgSWH+N5TpdY6eoGZOAnGkg+iRgTZCpcZvz30V1s9SkTWSmwh/NpBCTND5w1sYmvVKy0grl/Y9OKszmwSypJTG3j3IkvsR9JyDku4VU2UcAYnV2z2MlPa29gbo64v+0ki8e4kuuR7ToGUNucQ3GqxKlcl3E/lRSwkyzJYQO8vvzdwv4YS/M7ROzgRQVqC5AHukp/fwUHJyD5FB7EweALeQKAzFg3BqwSWKuVBHninjZwqPfdRhw4xeGiZmjdiXSWyJ4JGn4jq0YHNsKFWl8Fck2/09/PR+7HbQiXC3JviokBiE1LzuYTU++NgZzFTGMu9/EwVwMwYOprfJqfx/r27vHXcePmn/OF/NtjXTE3/8f8uvljACSmtjORF5jHHC7PEGD0+OZrKMgvJ3esnGNTcyE5CdspyheXy5ebJpMwoZn2Jh1j6xB3Q+OOG5B4KRs3G5D7YmMsE89Ltclalac7mVWUoR1ps6cJJ+zU7XcQAAKJCTpOdbggCMxd+fUgCCYdZd8+wO+BG8MwbA40vqRLOaxrWRiG39cFr58BBWEY7j3WJh7rOSLnWodEBhxTOQ2C/oliSS4tj4zFS+Tj+W4sp89W5FFswQPn34+zLR36WzvObrwHZxoyEGO3CnnUqxEj1QLDeyHjf48eayvvZuDFIwt0VXpsC2JsWkyHqazFI4Z7qrYlAwEhZlgu1P8LEeCTixjK70EM4R7aB7nIeyxd6zdmoUnrs2toQox0EyIoxN3ZWvSajTkxNsuU2C7SuqJ5dw4i78YmZO7o0N9Mec+AqIG5VpzdyUDARJ4eV4aIPFiAfy5iJNcirmLZuFscOCtj4gJNCNAco+fM03M04XFGxrxsxN0ZLR+P2Q/p+l0vHOgYsIxKXpu0+VbEijQBgRRc9c7U8Uya3FI5GGNlgG+r3j8T6mjSfUydMEfbbwqFHXh8XLbenyR8zFvphSeETdL9UvR/i7U2hrEAsacuwtXbcnAXw2o8wWuH1p2Lu/PZfNCBgDUDvha/1IKzUgbeF+LPVAoyHo2hHI8LeJhioD0bphL3stZTjMjjH3cJ8Tn88CUtCIIHgKfCMHzqbZ7lSBPLqTqp7Qc+cYz1ny7/UCweyIzARiT+x2KC8pA3RrxvJ+PuVCWI4WmeZvv007DUZYgxuwOBwrsRNbGb/u4xI8vPhj4wMl9IzHKKyIwk9VnWOInvZNzmcSgUc25OKcm6/LOaMWRRR4suVq/lHMalrmRls+DnnakDGMVaEmlnar48Fg35mQKElOmZ+oNFVJNLVXMeoMlSC2HwGyqzPaNQuuLn2qj3I9LTJm89BQEzFnefh/gNrwMKpU4WNkNpqrjRgYCqScRioWhBJkAz/pMQYGag5gDykooq7/Ud6qstSxFG5Ww8/qYV+CrOeN2Bp34HaILEqZ57bDwvsYmCWN920JNCKnkIcV27mR8yN//HMRaumDKmsZjyVBGtSKGF5VzIJJaxgvEA3J3/aZYxmVJt6JzUefx01Re5fOx8AArG/k3GgJUSaVdMSGESsn4fDYcsiVxTnl77ZUTcFSuQQagAkSrcBc7KOzhn0LExQUcr7wZmBEFwKTIaU4Mg+G0Yhh+N7hQEQTwCgB4Jw9AyQtTgIxuENz2sY4QuYJlu5NeBzx5j+475HG+3nAZB/0TphRhAzyBGkb2nLCGjBarvxwUDxuCxKK3IKvc1iBFch+cysdiEQbptOXrOw9kBU5CznDnrkHnJFo7NsG5BDEYLiM/TbQvkz47sa+1uxt3NzCgciosWmFxwBu6vYoArTusfiYvinI8bywa8zDg26WcTi6jDc9ykIMAuH3cVM9U6M8aTtF0m+W2qfaaeZoIPBgC24apwpkZm7c7W69iHsAwrkbgPY/tKkPtrLmJW1kX+b4z8n4gAkRX6/QS9vnbcMDfgYIH2IGNmIwI8XkDumbmgxeP5i2zNaxACWlL0O1Nmtb9s3X+fnrcXMv6G4sley3D3w2Y9pkn3MUU1cy1sQsZgIc6M9UZAgSnt9cDBhoHVfXq8sU4tWneW1mdzocV+TcFV9CzeK0/rGouAsBL9vQC5v7Xalz0QYGKAvAqPdyvX40zUwtiwqXgC1Xo8vsmO663teFr3mYXc43pclrwBHy/HXY7OBO0Jw/BTx3mWI00s74hJ7XQ5XIlKZEPniDx7gxkdkSe2owXab0IeVvMymoyvYoBMaiZ3fLl+twx2Vp5B2nSJvxkxcTW17QNJVFA0nhU8WX4l5xaJIt3sDFlCKFddzlyq1TiXZf8m+jKb+fxYs4+2kMJknufc1NLY75soIJdqKingzcZh5GZUk1y8m89PlOynpZRQcd+YmEsefaSdNcuUKirWazBb/W79/LJ+Ggw38LG9Gf6WCtvroCRL4n4Gpophb0sCv26GUakOeg5ovJAZ/4nAb/EVsNe1D01pJRlfhQF5Gf438nJbi0twmlIcwGWQMLyZ9y4S9Penu65gC3nct+gmuRczVlOxfAxrJspy3sU8RwkOOJ/istg9AsikgTjeYoAOgATa+RrfZhmTKKSSRcygmlzWMopCvdCf1t7AiLGreXLVldKm9JDBEyupMVquD2J9mhtgNvI2MRfLJ/W6rJ9yEaaoAnE3TAd2Gxo1Ws0AT55+VtF5dj5dupYwDL+MjnBlgm4+DAAKEF60IgzDuyI/vQYMVa+AbQi3d1XXcwRBMAb4BfA+ZGnlt0EQfCcMw9uOoYnHdI7jKadB0D9ReiJGYRwyD5ha23g84P8gHtNgvxtzU4uwFRavEZXYbcFjHobrbztwFS9beY8GyZ+p7eqNA6cEPX8xLvm8Dzfm2vHYkZW4NPJBbYuxABl6nIkxbNJ2bcaVw7K1zSYS8TJi3ObruRvwQH5z+2rX3zORd/goxLhdj8cjFSGGdQrCXpnh34onId2Ku7A14uyXGfL26kvEjfCN2mfpCNAwA79S/7f7EvXNKdXfrKQgRvIGDl/acKGgDbgwQH9c6QzdJxePwRmMSzWbHLO5P3ZoO/P02HjtL2NzDIT3x5XUGpF+3aa/70AYFouDQvukVa9puJ4vBxd6MPXCTP3e5LtfRu5jMZ77yMQHzNXRxD424jmFMnW/ybgraW891z6tMxNhJY3tM4GIjfpZhNsDZbiU+SFkzNnzYtLaBVpHLp4/y9zwEnDRhWzkvu/AFQJB5uW/an0vI/mOhuFumuY2aObkcZd/DRN0pIllwxG+71RO9Untf6N0JxN7apYo82PTvC1DWW6VPN22vEFmVDZDkOqG+BQ8uSW425gZrE0IY/KK/t8H0ubs4MDeXqQkCBoYxRvEJbxFgRrJRVSQUtTCrYjL1Tzm0EEcV6sw1AF6kcz+GJOUSBstpDBEfddm8z0mLnmVkqnytv0Fn+QafsMkllHAJsiABXyAcakrubd9LgBfSfgu1XNzqfia5sdJQlZ1ooxK1CXuSiRHUJVu/wgxzm3189lUud6BWbIiYiuWf8PduEiVbjZQtEXrs65ep+eLSopUImHkICCgDPdcLNXjyyLt0jYl3ChiCu27Uml/OpW115wDQNpnd5BIewyQTmEpFYVF1DEAgHMpZReZTFbqaC2j2EVmTA3u4/yKdhLIUrey/fTiKS4jnSaqyGMMq8liJ6NYG2P3inLK2UIem/LEd7B9XSrkw4CJkmsohRY23Xd2zFUx4f0SQ7TnRvXZKEEA0jS9xmXaTy3aP7vBHbmtbMOBPJzaOYJOQDkB7nDdVh8EzyBPdj5wNbA2CAJz1Lw1DMNngiD4LOKsEQf8KgzDvx2mql7AB8Mw3KT1/geds3PZ+X6H3OV+Ggf69TAMf3mM53jb5TQI+ieKuf/0Qp7DGsR4XIUHlZcj79JVeExGHWKstSPvLXPPeQ9iVK1BDNrHkXdCLR7zUYC7nFkuFiLHWOxRPK4KZ6pfxhy1IO9hywezWI8zNa0S/ZyCvDaSkPkvARdXsHObK2AK7spnSngX4Dlu2hAAsxXPa2QGp/Vlf/20PDMr8KSyBvzMuDRGylyh0vG4IpOrToy0F90/EwEX23DD1hiROm3rMMAiy+PpzMgbs2GlBQdAaTg7ZG5vh3Q7UftgKQIMjRXppect0d/tOxO9MHYmCZch34CLGuzTutPxXEjGXBhblou7kyVp3Sbi0YFLUichQGkDMnbTECBhsU0HcZbHAJ3F3YzDXRJbkXFr23Z9m/FYo1EIGMmns/x4E3L/VyKuiGnIs7VNr2coLjn+F+SZsfi0/Mg11mqbRyLPpWkuF+qxlny3WNuViMdTGeCz52aQ9rO53xm7aoxmHfIc1yHPQ53eg5jdc7zlOJmgbiaTZ4A5YRjWHmlieSdMav9L5bAysV2V806d8tYR/gd5Ukxx3LYhtpIepMoDMSXy9SQ8TsWAw6dlc/BEUXo78GTf2CrPgb29GJXhwvEp7GWMulWBMD51ZLFCZbkL2cRCZvIDvgjABoYRx1u8qc7Hl/IMmTRwKc8AMIq1PDd1ArPVCfVbfI1H+Cg51DJRw8bu4QbmMYcZCbJWcHv7rYxLeJWKCQKCEkqaaW9NhEnqU/RDJAbIhBJuBr6i34OAHEvyCQICl6oYhD38yYg6nAkhfECPt77csg3Oy5PgSJAVlpF6XpAJ/3I8julB5IWohApJuO+7le/IdvuTHm+T9vMd1GwWADI1/ynqyIoJQiTkt3F3zg1cXC0A8qncGdQxgKXayDu5hUe4KpYn6DKeooTSmKtiNbnMYgEAj+j6RQGVbIg5ikvc0VlsYHyGsEktE1NIoJ2X7xMXu52TEHeRSDDlnh9m+3XZpLJYt0v0u2o6y4mTLAlUAdKHwu6VODqMasVCZ6W4d0AJ6CwpfpwlDMNluBMlEfW2Wg7vxkwYhs+APpRHrvelLtsHkUW0rvt9uOt3x3qO4yknXSI7CIKuI/Vw5VAYhifMxni7JTkIwgnIivBkXFnKBE5WIs+nxdssRgzXUXTOXg8yV5hL1Ujc8DbGxpJlvoAnhszDJact3sNc5YydMTlniyMxN6RVCFiIx/POjMNFFCy+qB1fQbd4notwiWEDDfF6nSZgYHE3JoxgLm9bI9czMrJtrFam7mvAwtzFxmq/2eAwlT1z0QJ37+sd+c6m9Vr9zkQG2vEg+lQ85nIPMg9l0Jk4N3dGK6Y0Z3lwnkfcGhcjhnCb1tNdKcTjcXrrOc3lyhTOTIAhSX83gNsbWUIHH3e5CEioQsbbIWSc1Og+Tch9N8aoFhm3tXgsjcUcmeBFLZ2V6yw2yB6+Q7gYgrE8luPOQNY+ZMyW4XFCpcj9P4SzRSbKQOS8BvYyEbbL+jwqIGFu+JYk2ACzOfh0IM9iI7KQ2ITcm/P0mHwE9Bu4WY+MCVOgszggiw8zZi+Hzt7nvZFnYZVe+4oTIZE9OghLu3ndB4OpRIbf8TBBp8txFpOJDcPwuSPvc7IlsqOSwD3xt2kyrt0MEhYw1BfRs5EBfq5ubwM+gr+kz0cMdTNgjUm5tk0UwUAEEJLaGZEjb9FNjQUk99kfAySVFHI998YMbWnVfvopk5BLNXVkka4Jc1bwbsoZwWNLrgXg51OvZQB1MbW4JvpyL9fzQZ7gXNxFroUU7kXy4/yaj7GUKTFFuYm8wH3LbxImBSSnTSsOeiYgsTr20K9DoP7PIv0yCHGTUEBIDfAUqEeZvPTvxlfmkhDH0T/p9ut4sDAIsBqJyEODuL79kM5y5PXIS9DKn4D78eS100O4LmDqc4sAycE0Ked5LteMrM/wPq7hIT7yp98DcPMl3+Z67qNJEWwu1SyPJUeCRNqppCB2rz7P3axgPOnsZowi40e4iiLK+S5fAeByFrKYabHfm0gXdzwDdzZJjVT787XAZcBBYqEaIv1QqH2zDDGK7LtKcDaogs6lSjvsVAU+xymRPTwISx/ofp/gouOfk97p5VRggmrpBmlqiQPO+Nc058ilJ2I0T8DBQCZiYC9BXN3qEePoOcRNzgLUn8ZdsepxRap4/TR54B6IkTkKT75Zjhhg+/BkkhbjY6Crl/5mRu8hPK6mt7a5HpccHoa8OszNDjw+aCzOKp2HK1Nm4fmQDup2Ag6I4pHXjrFAKbhIhAXfG2th8swHtY1ZwCIEmJ2p/ZuPx44YE2UxQcYGGBNgINKMYZMst/iSdlzUZy0eM2XxII3aJzvoHMA/Bc+DZK5svXBG4sO6/yokHUN/7YPHESBlohQ5uMfDfgQ4pel1dSDjJA8ZBznIvNqBMzgGWExQw1gwS2BqCn+5OMOUpG2wGKjBOKiyOtL0XCMRYJCOGP2jcbfGVuQ+m4pfAwIa7N5Y0tkcBHyMRsb/Hlw9d4r2rYlzNODAb6z2y1Zkbq/U9h7CVfTsOkxI4yLkmbKcVaNwEPUX7dcEBDgWIeNqJQKKFiLPpoFQE3wowmOcTLTCWM8s/FkHdyl9BrEJPcT7OMu/JiboHVeCIGg+2i7A9jAMzzoB58rDZWK7/vYpQO9PWtefT1LpSWfQA/IE5+n/uhRxQP0wt8RL/IXxc9PxScPKPDoHtS+AETnlVCxyV7PBU6tjimTpGU2UUBoztHcygATaWanOx1fxKL3YH8vzk04TA6iLuWBlsZMb+Ens2SigkhZSeGbhBwB4Y+ZZPMTVnEspKep7NovfU04Rd/JfADy+5D9Im7SDaQlCLwxgJxS2wZwIE/SdNkjX7f9GRBIe1Ot8MoTvBFCpRvfALHnpP48DqdsQsGSgpkl/uzbSl5V4vNWFyIvRgKStKJn73G1axzd0u0b73lwqkhDDY5nWDTAh4PLa+Tz5NaGPnv7WFB7iahbHfMvE/TDhknZtYl/KKYrFYxVRTjW5fK5eLexaIPHPsYDf9aPPZCXvYha/p1YTCCTSzlPMiAGtZUzmQMSR/L7Nn4eSNmiSvp009VlWNo8jL7UKgIpnx8gQjUqFmzQ72kcvIPuYpVjZTCz5LCDjeRU+o9Qhb3lTh+vq1/F/vAScCGGEf/tyKoCgijAMx3S3QxAEJyzu+HhKImJoVeM5Sar0uzGIkWiP2SDEsK3Bc+Jk6Pf5iMFvOVY2IqvO+xGD1FbeO/QclkjUlOgOIUZmLvK+NOO3t/5u8UfgLkcN+t15eG6TC/X7gwgIMJeqrbjx3h95tdQiK/vn6XUcwhmprYhRaTEe5hKWoP+fibNC5qY1FGeBMpH1mov0s5cek6lttfOAiz7YNaPt3o8Y65l4biTLAzNc2/GKHrdEjzMnkDPxoPgz9V604NLbJiOehgM8U+Vr1vNdhivP9ULcseqRRbpyOkd+NyLz5kaEMemhdTQg9z4RTyxaq9fWou3ogQO9HjibkYMY8IO0fWXa/ynI/V+BAIDGSN3xuGrcVv3e1AzLkDFnCnT9ceGDUgRUWDtNsa5F+7RR+6cQZyrj9N5YbqU67SfLydOBgKcUPI7L1AWH6naG1ttDr3WCXtdoBMCdibA6exBb4iHkuXxZjx2Pu/WlIZGeg7Xt5ko3WPvE3DiNtYxDLF57Zq9AFHajiwInpPxrYoLeiWXTv2Ie6SoT2/V3zdn0gOybc5IzkUdjgqIAyBghewPWIW8yiSGhEM/PAPIAr8VX6i3cyFb1kyDhtmayqKMiCQZPrSSRNs5iQ4zZ6cV+mkiPxfiYW9sv+CQg7lMllJISMVKb6Eth81YAKlMLqKSAK8qEQim8ZBND1myPgYkE2pjF71nJu8jRhEbzmMNkno8F+LdMTWEcr/KNu+7062rFDe87ge8kOmtzPvKyu1a3rwvge0Cm9lsyDmiibNHISN9UISDK+rIEMQp2xC5Szm/ubiATkN26UoQNMfW4BoSVG4WAtJGIgtp00BAektfvZi2juPtbwkI+w6U82TiTpzPeB8DUzctZlX82Y24U5qTs7mImtT1PQaIs0w2/fyv3XFfAE/2FzirpX9oJQM1pfpBxqa+SRV1MHQ7gQl6gQXWsiyljEwWxBKsfyn+IdhJpyhEQXE4RmakNVJSPifV1wdi/sekFVaU4QGd3ucHI/XoSvz/ZqbDFZgYQQHQQUdQHGcQHcDP3HawUd7q87XIquMMlhWHYerz7/CtKehCEZ+OMySrEABuOvOtSkBXlTMRIXIO8Y9MRQ3gWsko9DZcqBs/HY/EovRGD3QLZQYzcNfi7thfyfny/Hh+PCw2kI2DKxAUMuJn7USPuBhWPAKf9eg2mKmbAZR1iSA5CAIqxDBkIY/B+xGgcjgsvrNF6TCZ7K67gZoawyRcby9GKG/bj8Dgqm6ajbocWVxOv7dyDMx8WP9OKi1iswtkyEyTooLO4QSHy+jxPr/NinIkxpTBwxbIU/bRgf3PFSsLjeHoghnMrAnq6lmHa55/Rfs3CAY+ddz0yXvbjCVTN3TBPz2FiCoXIODuo/bNe92/G1QbHRv4HGTPjtI7hWq8lQjW3NYvpMpCzARnno/V8w3E3TMtL1YGr6jUj99LGUBye42c0Mj7atd0GzDfrvWjA3QNr9ZrGan9YHp99eMLYJL2GjVrfQcQFcCketxyHx4ulIQsS70eeg6XaLnN3NSboIO6iGIcn5bX8QZvlu+N3hxsVhKV/OPLvwVmn3RsOV4IgyLcErMezz1GOj0cIyMVdVJKOsP/JdIfrKowQVYcbhLw97O2aIXFAZgr0BXY3w2c0xsQoWDNIW/V/Yx6mA7sgbdIOihIqeHnJZC6Z+gc66MmSWjGeL89ZyFzupQwxeotZTQp7Y0pkt1d/G2rh5+OuBUSBLCsS9P6+9X/mueETqFaHkCLKOX9lGY+MEyaolhyaSOf26m+zPPddgLBJt3BHDFjN4Cm+zjfZ1S6G+p5bskm7cwd71unb8L+BdJh0l6CiZY9NlxedXfd05AWxUFcp/hovfXMjnsPmYwijZJN7EhJabm4AV+IS3CBG/XtxV8TtuEQoyEQ+D4lPAgY0/p2dXzxD7lE2YgTY6qG5KrTCgLl/j8Xt1JLDJJ6nXWmDj/FryiligaZSmcZiFjONn9zxJQCe+/IEFjONH87/qtS3B3Zfl0zfSgER2wozeZSrmMWCmGR5HQNIYS9lmqH1Ia5hDvNYgNyfFFrIpTrGNg2hivs2fz6WgPVPK66Q9pu0yvuRCf/eSF/1Q4ZxFbD2IPSNh90HcXBTh6ddB3eP28mpWY7THe7sICx9tPt9guLT88XRykkHQVaOEBvUokFUp0TpHQRhOmKoVSHPqBmjTXgSyDxcCKEGdxWyIPEVyHtrnX5vClhmnK5CDLIcres1xICzgO50PLmoJd+0XDvxiEGcgxtwJjwo1FhbAAAgAElEQVQQjweQr0PkgcuR9/MU3E0NHBgRqdtW4o1lGKttN+EEE2moQuaEXoixa/E5h3AwZEbtPmSl3gL8zQ3wAjyhZyMeG9IfT35pLBm6bTmFetNZqe9MvV6TOY6WLD32w7qfxVqZEp0p2/XHc+C04252WXodSXqNe/BEuJbLqRwXZ2hBANFgfG41RiSqfJat59mKJyUdpW1owJODZmm/mtjDNlxNzSSy9+gxcYjnhAG2RgQAGYNUj4wvy6eTjjNMBTiTZmxSE87UmE6PTT8G1sxdzyTSS7Q/ViJsShkuuGB5qwwom9BED3zR1twSzU3uLwhg64EslmYjMcdVuNtpE2Ir5OOCC0XaL+ZaWqf3wMb/cN3XXOqmaH2r9f9qHHibKmPViQBBI4OwdMGRfw9GnJ7UjqUEQZBKxNMhDMPj0spVmdjfAI1hGN54bMec7JigAYiBaEaiRT7a2zw18v1YD+avwuOBrHwYZzNq6JzLZrhspxXK01OUUMHrjefy3oylVJPLGMpIoJ1yipip7lJTWMoW8mJxJoVsopwi8jSoPYs6Jq55lV2j+wBwC3fyFW7nIzwCwGzm87mVD8RA0Go1vvvRQC057KcX1/AQn+bn/IAv8hizqSOrkyH+8l2TueCm5ylvF6m2PcOzRcjAlNt+h7ycLtftdQhQMtbmSWT/BuQlaTFCbTgjlK77m7vbJGABjFwkEZ7rvnieBJbm6e8HkCzoNjn00d9Mia+UGOiMKcf1BAph5PjXWLfiPEaOf43JLOMxZjOAOtatOo9Lxv6Br2nCowV8gMksi8VT/YJPkty2n+8mSjzP7fXfhj3wXKHobl+85EXumfopJioyayGFXKq5l7nMYR5N9GUZk7il8m6eKLyMdhJoI5GdDBClPuA+5lJOUUwYYwXjSWY/62qVfQRG5rzBusfOk43FyMvVxthCPL/DWjwXR0x7wwBzM2JBWWeaczy4W+ip4hJ3nCDoKHMFnJ4vjqWcSiCoCnnl7Ea8HdORdZGdwCfDMHz95LVOSr8gCAfjErpZiAGfiBhe9YhxZkptJttriU8z8NiDcoT1XosYrBcihqG53K3GV7lB2AA7djNiiLUi74L1uBhDCy5rbW46FmeE7pej/0cz3puLUyse8J6OvELStD5T9TqIGO4mXFCLGK6rInVEs1AYcMhDjEzLA2RM1Ap8Ok7T4z+qx5lqmrmd2eq8gT1TJTNxBYuDMvlni1N5XOs31Ta7B59BFtveo/sa8DOwBg6E7H9jvHrjiWcP4q5eh5B3d61+36H7mJrePO0DU4Uz9iQXlxiPQ+6zqZ3l0Nk1y/IHWWyPxRaZ7HdvxF3L2BkDLsaO1SJA3JgVk8JujvR5uZ7TzmvxZQZ8DaCAC0aATEfDEDvAGLneOMNlrn+mYhdV7dusx8bhrny9I78b8LOxaWDTAHYtDnpM6MHm0kV6zhRkTBRF+uB5/b9e6x+KzLvx+HhPx2Pp0pDxbixoOvDMiQBBZwdh6fwj/x6cc1oYobsSBMF1wLcQC8gmtzAMw/zjrHcCsj5vYWOgMrFHPuZkM0Fdi60z5umngSP1KUtWP4NsxFi3SaMKmaDMDak3wkSYgVoIyYN3k5nawCjeAERBbDLLYopiAJNYxnhEKCqLnTGpZYA2EriF78UC8osoZ/j6rbGH/87cG5nEMoYpf5/Q1sagYBuVCUP1+ERu4kdcw8Ox82XSwH3MjcluT73pBS6/a34s7qisuZgD6/qSViLg7cDeXpyVsYF1XzvPr+vy3Rz4dl/ZLgH+B2d5bkRYnyo8hucDSHyOkijUIOptlkVrPq4UBy4fOlO3bZLrg5/zWdy9rlC3b8aB1XXAYyFUSrDMgKl/p6U5hZxUd8LeVFvI3ByhVXKpZgGzYm6Cs1hAOk2c85M3Adh3XQ96f/0Qu+7sE+vbh7maW6rvBmB3bnIn10YrZRTTRgIAOWznUa4iQdHKJgq5jKdYpvrjlXpBrzcK2m5vTYTKSICLKemY7MhAPFbK1PvORhXiUv04luG02io6LwLAqSWScJwgaFQQli7sfp9g6GkQdLRyKoGgnwMLwzBcrNtTkTWPx4F7wjAc193x/4qSEgRhiLjK5AG/RowiC9avxaV7Tc0sE0/kabE0FnRvgfEpOFvSG5fHzkEMyzo93vKT7MGNW5A5y3LKgCtwmZtZNOFnPp4hwtgAy1FjSmtmrJu4QBsuz2wxKK3abstXZMa4rdhb7I+BwR26j0klG6Bq1M912q/pdHYNjFou9Xq+NNBXrexnroX1CGPxDB4XFBUqABeUSUMAm8XkZOIGONqmXNxANybK8va04q5xxhxZe/bwj4yRsXHmOrde22RGtsUZFSEMHYhxvVbrz9V9q7XdxrBYvikDXgYSEvScT+v+GxHLeQZyPw1sGwNp4K4KGRsGeuP1XEWRft6PAxRwaexpel3Z2qeWC6gOj8MxYGs5m2pwRThTlzOQl6XXl4fLd+ciz4ctBByK9Et/XCzDRDiy9bcyZJG2Fx6bhl6XgagGPZcB4Eo8d5HdSwPaNnbR808DHjsRIKioexeHYMzpSa27EgTBRuCCMAx3HXXn//W2nGwmKKoOlxL5fgSuEAckj4MDyyCY5LskIQ8MiItXNs5GvIg8fArBk7+6m3GpK1lWOzlmaNeSQyUFseD4AjaRSzXz1ggaeGT0B2IKcAAllDKkejv7BsiyypuJwxhzfwU8oed8L/JCVAbgkSs/wADqYiIIuVSzjEm0kcjH75AHaPWXRzCPObSpG1g1uRRSyb3rvwDAV4Z/lR83f57MVJc1SaSN6kZhp9p3pArIMTezm9vg/yV6zp5CZHIdiQOS3sgKy/ZId38YV5wrQUCRLV/0RVgdc5H7NPLCjjIdDZDwQ80B9HSqUPKFkDxHlPMyUxsopDImQrGgeRYXpr7AZHXCjqODYlYzuVl0LltSk6kiLyZqsJhp/GT+l1C1crbkDmTI/O3S5wC3wpZfDKRUl0xH8QaFzVvpuQfeyBWdkRxq2UVm7H48ylV0EBc7RyYNpLM75pKXQBtrOScWU5RFHctWTe+cn2IXLqE7X/t7LY5xdiGTUiw07w9IwJQxQRUIQDK3uFMJAMFxg6BzgrD0j93vE5xxer44WjkVhBGslIRhaEKThGG4JAiC74ZheFMQBKeEBsZ+5PkrRwy1/ohRZFLVBgrMwBqLGJUZeMB4Cu4CZ4Zqvn4aQJqAGKAr9fv9eBzEWj2+AzEi1+BxOhbsXoowGxaPVIezIhYIvw9nrJK0blO2M6bAkrj20vMOx41Lc3srwpkDkzmu0/a30Tl2Jh2PBTLAZLE9Ocgi2yzEQLeg/jjEsDYjfX+kvh7ajxZkb2BrPG4Y/xYnvy0HTYm2d6zWm4gYuWk42zEMjwNJ1P6z3DLZOMt3CGctDAyZMp7l4gExro0pakfYuqU4kBiHCDY046IVa/U6hmq7ErQeA0WNeq07cObI1NricBBoCWFb9P4Nw1nDJj2f5QtK1E9ju9qRcdYDZ0Dr8eSl8cj47oWMhxxczvtCbZMxRHYNrXr9UZfDhkg9plpYq9dXhYzz87TN0/D4n1bt10P4OM9A7JTXkHFiqoxZevw+Oo9tE0sYiqvumStlrrZtqF7zFFxeexzCYvZGxugJKUcXRjhdui+bcEL337xEjT5b0gJfHVer98AbeIZQ5CVjkwc4e2FqcNORAf8x3T21ijqySO6zn0faJW/MmIQyEmmPGeZFlDOOV7lmtCiOzeYx2kiI/b6YacxJe5DeC4VkS7+yiV3X9aHfCDGqV08cwZg7KmJN/kj178VYXylo45VxxXzkmt+z/qEzY/ss50IWMYM7uUWOWf97bh7+bUYNfxWAdeXncXXRL3i49hq9zkQohMtnCBVblFHOdzO/5WqNLyTCf0a61EindUgQPwhLMxJ3oQN5yV6r/5+PAKTf6/Yc5EVvlk+VfkaSp16w6PmY22DNSGc9jOnZ9MWzqSkpjIGz3940i48uWcCSwTMA+GXRR9hEIYWp4pqWQHsslgfgJ/Vf4o9Xvpf3zf8zAIuuvIzPbXlA3FEAMmFI/XaG/FGRWw5sm5rJoLaGGNN3zsI3aZmZEgM1HcTRRiIf49eACCHsIpP9CoofYzavbx7vMUGrroD0yIL8syoBZ2zj5drPA/FxWYO8L0u0T0rfjbM/INZaBZ0TqL6DcgWZotLpclzlVAJBjUEQ/BeuDD8b2B0EganlnvSSBgxBjMhFuFtZA2JUpSNqYCWIYbUBMbLycEnmrjl1MpHpqQh57w3FY4NM/cqC+5P0nBaDCcKsWLC3uUeZW89BbVMPxFBeT2dFtTjkHfOiXpPJZw/Xth7S872IK2hBZxelQThDEIcAHxfGlPeWrZybgQ5iqG7F3enWIGs4BirMwK3Xc9jzvh8xpNMRA71Nr2mf1pGi12JJW1v0b4Jex4dwV79eOKtkIgCZOJPSA3fjsnkwrst2PM4WdUS2zf2vA5nj8nGmzZJ8zkRAwvPIfNND+/1xbfssnDE7pHU24IxKs/bfBsBksaLCAb0QQ/1FhGUrRNgmc6O0+KksHETXIvfcmKnBei4DP7l4jJKxcgYI45B1t3hkPDfo96NxUJGk17FZ68jE8+JVIiCsNy59Xq3Xko3n8dmvdRcjz4e5z+3T9m5GbI0y5D4b+5ig58vUfjawh/bBDm275SJqxVULX9R+sVx9Bh6NEY0mfD/u0r1E9ml1uO7Ll4EVQRCsxNfTCcPwhpPXpJNVuk7vxl2aXHaVbo/tvFsfBOhYZm5bXTAQlB3qAymGasWSMVww9XkyUxuYrdP3eFbwgeXPcMfEzwPEJJjnch8grlOfrn6QLbkiOffpNQ/KQr6yD7nN2+n5CjEjb8zKCmmDKqC98lAx568p4wfjHJWcf30Zwx/cyrZrZYYsopzlTOQmRMNi0fDL6EcDbzYK3588eDfPM5nBOQLEakoKYTs8WS5BP0824f7oIJPzf+Hy1hcg/bAUNCRJwMw63Iq5GyEDP6PbbyEeWyYAUIi/3NB+74ODoq/Ay6smew6gYmAXnHvTS7z+2LvhwjZZbToAU2+SvEC15JB8/m4KUuWtNI85zGEeQ9YLYNw9PJnVFHN9s0pg/w7W3jCK9+UICBrHq2z58kDSdYmub9oBuBVW/0KCpcasr2DQ/AZ4BT5iaE7d/T5Yr6+kPfCrwqtiYKuaXBYzjQEau1NMGdX5uTElvwFj/87ORWeQNl06Ys+W7Nh1ATKZpiPAx+KALHCi1OKBLGtelW6n0lka3vJlnS6ni5dTaURcBXwdV9x/Ub+LQ2zXt1WCIMhF1HJtAf+BMAzvCYLgG8AnETsNjuLfDfI+tFXjqYhxOA6ZWixRZg7yrH4IMZjWIAZgNmI4mXqZ5Z75C756nYszSuU4iDLXODvG3H6srnzE8OuNGIimymbKYSaKMByP3zH3vMV63q1aj+X9MdeodGSKLMeBlcWBFOCAwPKyNOAuSrWIAdyk11GPvOstWL0h0t6PaF9NoTM70x93DzawMVbrMdW5bK3nGtwYf037x9z0XtTrrUbep8a+Jeh5LAePqX/tIxbsHgNlaLszEOuqGTeoDUw1IKCtAxc/uBgBsRbY30P7pliv73l8EBpIHKZtNfc6Y8eicUDmRpmFCy8YI1ePAJGN+p1JYqXp9Rjos/gpM4/SkanDWCJTbbOYpBTt23pcxS8aX2RukFXap+ZWZ8yRjcU2PX4DLpkNHjc2Fnmmhmv7m3CXymq9thW4fPwOPKbLQJLFVv0Fd/kzOXRzweuP54aq0z9jqeqR+xh1eWxCQNBfEZYqCRefiNpLb7scnQk6nSeo+3I/csujsTv/piW64h2d6uORJy0v8l2zR1BVpordeLFuFyNuWxb30hqQkN1Me42uwPeB8vYR7KnJojo/lxT2spZz+P7EG1iqATDX8BC5VLMSUW77XPUDPJc7gUSNKxnSezu7v5lMSrMYrD2/AIyC1Teo4X1XBbwXtkwU0HR+dRlbRg/k880/lf0vhX1/7kHTuL4M+om4t33vhhlM4vmYStoCZpFLNZMylgGw5KoZ1NzW11cw1iEvbQMcVZDwnWZxiwOmFi1iyeQZnSeDYmBLpKvX6Z/5rvwQ+A0MLpKT1MzV4B7LwPw75CVkSnulSP3mzPkI8HNzYIap4xexpFoYHlGRS4RS+NAPfsPj5f8h15V0Gefmr2CSusP1o4GPL3mUP04VhJlJA3Pa5lGZKsxgvxsauOWOu3nkVql29p4ySlOLRYIcBHh+QfMqAfwd3roUmq7sQ796GRRb+g9kSOV2dhcK69K34QCz2+azKVGu91xKmcbiWM6mFvqQQguPNgtzeGHqCywpyWLPLo2/ulDvhbnHzUNevGtxjPNhvVdxujxr+ZtigQGV/GN+rHcICwSEAbx1SvhInVolCIIzEAmTXcCbYRje2d3+pwwIUh/u/wyCoE8Yhnu7/Hw8C61vAV8Iw3BVEAQpwOtBEFi43Y/DMPxhN8f+Q0WWLNKYgnLc0aADZ3bWIcbaQTwBZq5u1+MCA8MiF7cVMe726f75+Mq8xeiYa5S57liOHzOIC7UeMzZNvcoU07Lw/ENbcclki2PajxvG43Gxh1ycGeqBx1CAGNZr8UD13Mi5zKXMAumNxTiETMGmBLofeadXIqv4HdrH5ppm0tENiNFqMt1rcNW9jZG6LKmsgYYs5L2aj4sppOMuarb4nqLnbaEz22xKYNk48LOsBHZN4IlA7XoHa3ssyedB5B1ueXAOIQuKL9O5bECMcYv9ytPry8I9VSyeyuKy4nU7j86JeE1ZbgUe01Sr7R6Ky1Cj+1pfWFzPMFxOvAnPxfQynsjb3DlNeXAYMs8bA2blGeQ+NGn92bhcuz0TvXGwWo+r9qXr971wZcU9Wm+cHmcKdb1x9mkYMs5XIvd2DB5HF4+DUhOxWK/7jUQYOmMiLRbqEVxFr13PmYMv5h5XOXqy1NOl+/JWGIY3nexGnBolKo0dNQQN7ufpdiOQDAMV1NgLxhTK5uCxGSAv6WxIO19GfE7CduJ4i9z8arLYSR0D2MkA8qiKubutYDyXs5DPrVH2IQfGUBar8o3Csyhoq6SnysPv/kUyfW88wJglGs8xAnZPTI6xEyyEIZduF4lJgESoTsxleP3WmLvDT878EqO2vhpTRfsmX+ec+jcZ0F+M+YZHM8mlmsWDRcb7QGFfAXdzpB/S5u9gzw+zxY0AWHLFDGFodus5SxD1mbXIC3Yv4g7XE89lATAPdt42wPv2thCeVHcvS/RnRsABYJvk+gHoeCuO9ptTY+50S1bMgHthwOy6TjmKiqhAPc+4+gfz+CZfjwkXfJIHyJ1aHXNVi6ODgsR3MadNaLXeOw+x/Mvv4iPqJsgWOJ8yd4f7ILwyvJjz18v92jY1k0H1DfSbvzeWv2jIzO3svjaZDl2q/MPwS0ihJQZyyynidUpoQkCOCVwcqJTtJXtnMGLiajY1Sl6h9hKgKtFjC6YhK7ZG9oCvqsaGdjOHNxWjUvHR7f/bJewBbYk9jrJX9+tAQRAkAcuRKa0nsCAMw68fZr90BIqORGapj4dh+HIQBNOBe5ApeN7RAMdR2vIrRBx9ZxiGIyPf/7PnOAv4YxiG9wdB8NBRz3sKCSOMRzq5TxiGZwRBMBq4LgzDuSf4PP+DoMR3A3v/GRDUJwjCi3B3mXWIodpLv+uNPJ9R6eP36P+m/FaEB4ev0Xrq8Fwt5TgAMnlpcyczY6wUTyZq6QGMlZ+AMxPrtN5qPCaoVs9hSVPjcaYnHzEAzWVrJR6Eb7FLCYgBvBEPKm9B5p0d2sYqXMq4Hgd9tmpueXzqcAGHdK0vX6/N4lqycJYLOrM2C3E2ohkxYo0V+7XWYaDko9omA0BJCCBIwNk2U3o7EzeKzT3KYsDAWQKLpzIFtD3aXotdStJ2mjqcxS0ZK9Ou9W5ARHBszknRtl2EmCmJWncK7qJnHt3mYmYiBHHIfTb3w3pkWRzknh3Sfo7H2Um7tn16jAk5GCiwvmqJfAedE+x24Cpq2YhdYEqG4HFjK3ABkDhcrc+YSwMaxiiZe+ZBJNijDc9htQG5//+j/dSu17dKryMXGc/9db/9eh2P44sFJtxg4sETkOeyCFd1NBXSkbpvD+S5/6vWbZLea06EMMJZQVh675F/D6aeDnTtrgRBcDtya5+iszvccUlkv722nGxhBCtm/EWTpB7EEUQjDMlyP+t05GEz6n0gYoSby1cSjChaTcVm+eLc/BVk0tApr08bCYxnBbPUXaqMYppIjwXKp9DCNBaT2yxsQ88/Iy90O8cQYATsGyJGXu/3HYIvIawLwABo/BBkmGtUBdAGd155I7csFxWzNyaeRSUFMUPcZLJNFS2LOj5z36+5eu4vAHj4V59k5MdfY91Dqg6Xh7xgDQAmSf6dnb+SXEVM1+G1I9FZsrsVPN2YLX1z30uUNxdxYIEyHFZfJNEslZJsFqB9diokw4hFMhtUfHeMsES2GqfugBRH6tiLuNApe5Q2fQfLEy6KxRFVUsCTzIwB0ocqP8VzhRMY3yb9kNh2iJ4P4r7yo+CJwsv44B1P+b14xe/NtmszGbSkAc4g5ga3bWkmg5Y38Jbu83zqBMZQRr+V0jHfHPdfpLM7di9uar6LhKQ2ChMkTimFFpbVTia5j/hCHPhtX7nXxkbuQAyrJFyEYq/2ZZVuh83AS7iiR4V07j/kyzpVyvEJI4wp6RH+pbT7oKCM4EC351Dp/95hGO7VPGgvAp8Lw/CVLvv9BnghDMN5QRCY2dQCvIncpRrESeTDYRiWdzl2AHAgDMOWyHeFYRhWdtlvInJXHzIQpOEwhz1HEASjgDu6XNLHkWl9AQLWHg7D8Nfd9dEpwwQBP0bw/iKAMAzXaKecsBIEQR6yELwSAUGfDYLgGuSx+kIYhrsPc8yngE+BK5IZkCnCBQNs5d4MrXyt1IQNRiMGncXB9Edcv/6KQN8WPL+MuUaVI3e+t/5tRIx1CyavRxaCNiBT2lRc+KAVl2k2pTQLnM9HDDljC3YgxrDFRZjMtEknG6PQGzEUjU3agcc4mVG9HnkFtSLApBlnRizw3eowtyUzyqMslckvW5ur6CzbbaxYkx5j92M/4vtoDJIBi1wc3ORof2VG6jFjOE3vkTEE1Xgw/V+0ry02a6P2kSnFWfxVHJ5zKRN3s4tKPRtT1aj9fZXWsQRnGH6HuFUW4yCjGXkTWByM5TlqwEU3jN1ag4yHCxHGLU+3q3E3RevbZr1/UTnt6PVY7FaSfprbXQnuytaCq91lIm8hy320D48pAlcO3IHLyJtqoLFuB7W/TbkvHx9v1vcb9ZrNpXQdsvDQrH1psXpP6/cbtG8tdq4Wj90arfWNxgWwGhBbw559EwVZouc7n87s2Qkpp2OCjqdcpZ9fjnwX0llo8t+kRKf3rsZfHm49DpUHcYuqbH01VV46RvWnI5OZGd3ZbVSsGMO540XuOpMGyihmFgtiSmzjWUEbCXxP3Z9msYAVjOf2SmFlaIAt4wayKPUSAK4Y9Sd5sO7Rc0wFyqB3m65kz0FeDAqCnrtuAhd/4UW+Mly0qG9/5dssv/ZdXM5CeYkDBW2VnLPlTe4ZLt6jA6jjeSbzQrPIcOek1sL0MMaQ0CquYxaPk9a0g34JDWwqlLxCPBmw86Ez/EVelSjxPZOQ2B+A78Ce0uxY/NTrd71brsuA1HPAL3F1uBFAPyjIEDDQ8FwmO684g4paOWfyZ3c7GwQwDQbM/js7y8+AdAVhP0yE6XDJDKHROujJ6M3rmZv/YwB2kcnVPMzH14tq3szhv2Phwg87sBqCLAsrZd+4Ez447ine0uCAnp9FxsNvZXtQUoO8OO8lxgQNqm+ANKhOFXfFMZTRb81e3hgn6nHXcy83cRdzFMVdlrqIIipoUS3wxUxjcE41NUt0kE0PGZBf7YCzCQF5VUifA3wC99kHIBV2j8BnpHjEGrH1jwOcekDo7ZeQIMa8dVP6BUFQGtl+IAzDB2J1CAtiED5e/zoxI5pzbSLKR4Zh2A60B0FwAVBpCaiDIJiPZIvpBIKQqfYzQRBcGoZhaxAEn0RCoi/tdD1huFxt9Gh515HOEYbhWsR87lSCILgZ+LrWt4AYR3r4ciqBIMIwrBZgGisnzLYIgqAPoslyYxiGzUEQ/Az4NnLDvw38CEGRXdv0APAAQFwQhMa89EYMqxzEODaDtgkxzix2IA4ZEesRhGdZ6S0WZiSyAHYBLsmcp3UaGFmpdRUhxmwmYgw24e5BVizwvD+yIm4qZ2aQ275R97jeiAG8FTEmt+Jqdv0RoHYRziSAG/321PTG1bQO6W9lSNyQSUOv0ms4iINBYyJMNKEIeb/aMWZAH0KMekv2uQ+Zo3tHfm9FGHNLzGluWINxpidfz5+L5xlKQBg1M6a36nFmuP8VMXq7lv64wtg6XG1uGAJOjd2wPm9AXOjMkF+rv5kgxVDE1jAZap16OwHbTFzUwtz1ciLHGFNRqsdbXFAeruxqohxJ2v5s/d7U46w+i+86U8+5HxeuMFGBl/UahuHugpak93xkjhqFs3nmotaB358GXB7b3A1NrtxigcYiwMbAtzFwB3HXzDPxZ+QK/b9ar8e8U5YiuQgbkeeyVc9lsXyZyDi9SNtRpd+ZQuFFev6L9JzP4Dn8Tkg5HRN0XCUMwyEnuw2nTulq7JkxmIcYhHn+UyvEVLTMN/cS/SxEInV1kKf1280e+sZywtQykLb2BCoTCinRZfpcqmkinbVIMsyVjCOBdlYXSoxPemETQ+7azpCeGncyDqG7jQnaCdvuzGTQHYrEyqDiezBCcm1ycfWL8AW4/TMCqg48DBPTXmXpFTBc170ffu0a5uQ8yDImA3AXN7GJwpgkdjsJjM9fwcPln5QDBsOy5dMZsP/v0oRzzhBGZ1LEJtxFBAyGMCkQAGFCBjVAYQi71I45G/gb4uy0oIQAACAASURBVIoA8vIobIMRGszxNCTMa6ZihkrbfAOV0ZbfD3w2kYTsZgb8Stu05Ax2fvcMeRn1k31G3LWadJpi7oVFlLOEy2K5eOJ4ixRauHm49NUc5vGrmVcxQ9ab6bdmr8TXqNJTxhZgDsIOgUy6W/Ckgq8g5qsljQOxJCtgyCtyP7dcN5DK0YWxGLBreJgiytmldGMi7TzM1QJakfGSw3amTZUb/MtF17Nzxxk+Hp5Fxt8uPJGve1NKaQIZw8Z4rsLH/L9t2XU0tknZlteRkX1vGIYru+ySj5ghv1YPrdeBzyEIszqyXw3yJHcqYRg+EQTBEGB+EARPIHb2xV33O0I5pnN0Kc8C3wiC4Cp8peeI5VQCQdXqEhcq3XYDLvB+XEVpvt8Dj4Rh+AeAMAzrIr//AsE0Ry3DESPrILJSvA8x+oYhxmA+njBzFS4kY4CmA2eNTOnqBtxNLQsxIPvrsQZWtiJGWjquSGVuOEnIyvVoPdceXEY5Tn+bgLwjrE0ZdA6MN+WrVm3rVjxexAy/JgTUmNCBgaCucTUWfB+HG9I7tL6DuIKXxR9Z/JIdb7FQSXjyzxRk5FvMiAGB9khfJNA5/sTc4S7C2SwTijik223aX8Zm1WsdloS2GgFApuhmzBC4OIWVtXpO68MG/d/U5jK0H4wRM3asUfsmCZlvfqn1WTD/SoS+rERAc7b+ZjLPFnvWC1cALMHdD8GTu76IM4Z5uLx3FS6QYXFgBh4MbNjUYgDb7stYPW8rsUVYWvT/UXruUXjMUrN+NwhnhxrwN91WXFq9Fx6TloQn4TU3RRuHQxFPkVnanjL8Xmfrue5Hlo1M8CAHj+dr0frXA5chwNGA31B83dyel43623vwWK8TUkL+7cP5j6cEQXA98p5v0u2+iPvEfSe3ZSejRGMgeuJSwQcQCkKXRZLz5OEN4mW7DWE3/qS7fw+4klgCzz3PZjN4huel6UcDiQntNJDJ8wo4mkgnl+pOyVOv5z4qkZiPMQtV7tryeVqiu+t1+wkY9BmzsIGLYEQZMRam4gwY8SPEeAeSp8pvU+YQc9H69C0PwjhomhmjCvga3+IRJQs3USgSz+qUM3hGJTVzC9nZquzDg3Du2JdiYG9dyXnyAn1QK8sLhPG5DUhSoPTfAVweyKQDsoJ2WxusU9BTAFyZ6DmX0qH9xVRXKH8W7r71Om686X7ZXgbtSansXKdM0GAYfGslNfcJwEl4fzPtJPDyksncPPUHsb6+O99QGbSTyDA20Etld57hUq7jfvrdJQTAH266hCsq/uR5gVYDD8MT37wMgA9+5ikqfg4jzBrLRJT8LBEiwB+RVa8H7bKaGLJyO5vGFcTaZH1upboxl/YM6Ze1nEPNrwodYO4CRkbA58hAVhqNEUL/PxtntEKQZUAb51FABLCTU8vkPb4SEsSY1yOXruH1h6knDDuAYo37WRgEwcgwDKNRgD2RafU/wzBcGQTBPcAtoA9312Yd/hzfVxbnZ0DBYeL+j1SCw3zXbQyPtn3WMdZ/SsUE9UPI8CnIhS9BfBMbuj3w6PUGwG+AxjAMb4x8PzAMw+36/+eBcWEYXtldXQlBEA7H3cxaEePOVKPA3eHqcfW4BZHvDXykRo4BMehmab1n4kkyjbXohUslG3g5iAeNp+j5jJFJR96/MxAGpQWPLTKDz0BVLz3vWj1Xip7b2C2LmVmMGINJeMC9GcCDcFes/bhalwWfZyLgsQAxgltw5VVza8tHgJyBO3CmyNzBDKxZvpsNdHYP/CvyrjTxBpCn1WKHLO+OGdLWxxaUv1brfozu15DicWAbzV9kCVRBgMj7tY9sn8RI/1XieZNMyQ9k4L+g7S9E5tMU7eN9uIJZLxz4WfstZscAcBVyz57G3cAshszc+HrhCmspyBiyvEB2D5PwnE0tkT/PNuHuaQamzsTH6VA8YewO7T9wt8AWHJxvxF3g7N6a216u/t+ChC0YC2T32mKXduh+5XiuoByt08Q64pHxM1LvhYEuc19dE7m2YbjL5Dj9fx3u+louf8cfE1QQhKXdhH0GHzodE9RdCYKgLAzD4i7frQ7DcMyRjvnfa8vJjgnqavCZQfhuZGnGjMVUoE7igsBXumbqz6ZsY4b7ATh39ku8vlndyJLaGZnzBinsjSXozEUC8S9Tv68s6jrF47STwJAJ29n9oqqJrT8Ae2BfscYA/dchobN/FGlDLZ5UdIAk8BxSL8zD6v4jYsk6y5VD//jKR3lu3AQuXi5SbHdOvJE2EmPub5fyR/4/e2cenlV17f/PYchASEiAEAyJBAgS0iCDtCCCgkUBb+WK1eJQLdfSW6tWLdXWtv609fZaW629tXWmLRergvUWihUEbUFEhIKAQgNIAsGEMAYykJHh/P5Ya73rhDKoYKXIfp73Sc77nrPPPnvvs/f6ruG78ink36vFIjIqZS7byeCtWQLkKAhhQuA5f9YgDkEKBpkAnd59nx09z6TTBrHU1FQnUz8hjaw/Rtjg7m6EKSKsdvr+++yYdKbnvxkewuOBaF7sHgV4stXJwLnQ6T61BN15piyUQ0MSO1ZSPzMNRjbCTBeGf3LTt+hBcQz0/NvCv3Dr+T/jJiTYMO+dzfAE7P+pnN9qCbIQmw11NmJKtyqrEGCspBV0RzbKiYiGDthzqzD7rU7prcOzgxf5IqMQy05e6WYWZn8uBoZ20YGZjItZhgbxN1bRj8JqGbseKUUUV+dSf6PGUv07gtlN4wuek8na+RdUPDaKpC3Iim2hJycbQcLxxQT1GRgXzlre8ajndA+2fqh7BEFwL1AbjZUPgqAzsCQMwxw9HoaIVT8GfhiG4Sj9/nsAYRgeGqdj1zyOWJFqwjC85Qj3zwH+HIkJOveD3uOjlpMGFis73LUfQ9XnAdcBq4MgMAPq94GrgyDoh7w2JXyA3aotIoTNx91nNiICYzQhqdEPb8MVXHUIuoueZwKk/R9NrlmF00NX4DTQBmRy9JrVuCtbL5zKuici+FlgeksEjFkeIhNU8/X/UtzmaTEgNTh5gAWhH9Rn2oKsxVHa7lIcsNQh62Y0z06+Pl93fVazptfiQrKBS7P4WA4fS8qJnhvNJ2SWoLm467Uxs12q9zMGuUycBtsC8Zv0mlWI8nMZHlFtMTdWCrTfarRPzPLRDmeCa9DfLfGtuROaPtLy6hhlt1mF0pG9aBBOuV6n9zNrXJTEoALxFqjW7w/S3B2zQfuwSY9tfhzQ457I/lGn/VuHzCsjx0jX8/voeGxE5qVZTkq1TmMfNNZCI40w970K/SzFFaR1ePJRI1wo1Wf8rI6BkYa0Q/Y9I6Ywsg0DgCu1723e1+CEBWZJNQKOvsg7ZYlhL9Tnsnd2IE6IEY8EmPxJzx+IbKfliGVuPu5u2pl/dIT+yOW0Jeh4SosgCAL1dTdXj7hjXHOKFhPyOiEri6l1ViCWoBw9ToEgwy8rQcgQLJJgPDAX2k0UNriqBZ15e8V5fGnA/wJQQzKVpBFPI0NYzCPcSiWpjGIuFSrktmQ/I3nNKbDfBO6HtIVK7dUbmAJJmZHJ/wOoV+tE4tXAlZFHWwvd5m2lXrkdUvdW0v/2tTAYMq7SFftNyB1UHBPuJzKZ+7iHceqClUwNF694g3MHCHCbueIq4nKqhdYaYFoT3BHvOX9GIm6B5to2CnbMOhMqYMc9aj2aEEICYtWI9Wd8zNKzY+yZAh6sbxcE4hhkcvodCOiyy9OBq6Byt+4eF8Hwi19hwU2j+dFj93LvZT+i/odp8GWxWoHE16RSGYu/2XV+W+JojDGzberbROXjqZJ8FjypnpUd0r/rrhIK7byizeLuZ4D0HgQMJhCL6kibU8+6MV3pUy111qQkksnWGBHCy9mfp5RsKnUXnM8IsimNsf1V0IFkashJKQFgzcaBsCgQ8AOy0D+PbzDguTaMHIN9NE+OmohIKtH3YAefPPg5MUUsQce3tAVBkA7sC8OwMgiCRGSW/7TZfcJwWxAEpUEQ9ArDcD1iMyxEtume6uq2BbEXX8MhJQiC/sDTwL8hjpW/D4Lgx2EY3n3ouYcpH+gex1M+cRAUBMGvOIp563iT3IVhuIjDm9SOmhPocGUv8r5l4K5e+QiTQxbO5AYyQxKQGAT0+xWIfJOAjKwJvEazbdrrDUgw+xb93b63wP8MvaYnHqAOIij2RHZ8y9FjrG8bEKuEuYG1xpOMGvBpRJSAGbjLVxHOVmbCpQXRR9nFLNi/DW4lMaIHY4Yz16sNeED8QdyC0FXb1BpPvtpe/2+NuCK+Fmn/Pu0XE/5ti++F58oxGvFk/Vj/W/yWMbYtQ8bRnGENdBkAGoi7OVo/7ERAgdE0WzFmv+7AI8hYtta/CTjAjYv00048j1AvraeNflei5w9AAEypts3AlBFJgLOgWTstBmqUPqOxyRnhhOVvyok8dzkC3ozgwPYcc9/rjFt3Wur5ZunajSdKBZkrddr2KOnBaoSC3ebGAXxc1yHAy3IV1eo9D+CxT+ZGmI0kgt2OzA+Lzemiz2aW1wZkjlXp9xdovZZDyZj05iPW06XaZouoHIRbxVrgCWh3I4x3eZygYllxT5ePWuYCLwRB8ASyr9yI6Iw/xcVWxig7XKQESJxFVPPTE1eoTwduh6pfS/Rgp0nvk0wNM3eLqSi7fSl9WM12MpjKddzKI5SSzS46xITgYnI5QCtGpsiOWDImh/4718Ze2NqUFiStPejg4BaozW5B0mBd2S4B/oC7bKUAsyFRbX7byaDbBVvZNO4Muj0sZpQ7Jv0X3+J/YprF9I3V3NT9F3xjhbzV5w6Yz88G3Mp3Fj8CQMGQZawpP9td096Ip9P496kcKoJ7009SBJyYO9Yw6RcKIO72appKUujRvZDiZZ9xEDNR/iTmCudSfb80se6YVc2oZM0N4NeIS1nUJ2UBNBWoO9wiWNAwGjpCCTn8KOVevpP1CAUDlsWsKA+nTKKIHjHXw+1k0EQ8jyFEu6OYSx9WxzauLd/rQJcpFb6RjQVaQt4UjY7diqiSo9nhG4GVsGdCImnfECCb17CZXePETDafEQxhcczqZsQZj6q/4yW8TEcqWKrhHf/B7xjLLFKNf7wogKERsfChAL6JCGHTkAW7JaL1PANvJzn4rl2C7ATr9PhQd7h/bTAUEtB0THe4Y5YzgP9VZVEL4IUwDP8MEATBbGBiGIblSO8/q6EqG4H/CMNwfxAEtyBrbkvgt2EY/v0w92gDXBmGYbHW+xVipO9egiB4Hnn7OgZBUIaQG/zmA97jI5dP3B1OOwTkNctHllwQvc/bYRh+6xNp2GFKQhCEg3G3o74IgUEmsiaDCET5iEDVAhcw1yNxpibQb8SDtQ3kgCdANQuM1WFaffR3Y6JLxwlSOuv/SYjwCZ4I0+iDt+GCn+XfMZrjatxCZALyBpx2Ok6frVifNxkX1C0+aB8ivFowfgIC/s7VehMi572hbTVa7+56jQm+aPuMpQy9/h2cVMFiVjYi5DVRQPKfiPBqQrBZB6zNIMtlDTKOT0WuNfa0zZHvWiDC+TsIYLPf8hGwaSJGa3wZtr47F9kzB0Wex8Z8AyJcH8BB2yN6XITsp+n6rMakdxABQxYjVKrtjcPBhFlYKvR/I5TYqOdciFvponmRkvFcSSBzpg8CypO1j6Og3VznLE7nQjyuqhh/HwxQVehzDdRnWoqz9y1G5oSBHIsNMtdFa2c6sr1ZHJ2x3tn4Wv+nI+BvGLIVZiJyxwWIFqRBx6RGf1ujbfqT9kt33EXwHe2fXCR23FzsEpD3dsOJcIfrFoTLf3jk34MJFCFY7TQ73GFKEAQtkFc/6lY9Wf3e/8ltOVnd4TKQt2eA/5TbunlA5UBcUN+GWCdGCkpKbFtH/Zo0CoYsA4SNrLzpDK6Ney5GgX0FLzKExTyqgnc+axnIcuIUaeXN2Mwfxl3KlVNkCm+Z0CGWWwgg7V61EBnoeROJO/mBHt+DvHxGGf0yYk2qIsZitm5qVyYzkR9wPwCTmUhmxORRTibfKX+QMZkvA7CgeoTkrfmhnnAHZJ1fRLy2ubjwM8JMZq5sJYi5uCeeYHUbHrwJItI9hC+m/ZDoZHPmuRtZbOz6HyMuf6/K4bkPzuetO0fIswEMhna52/hB3P0x8MZDQq5gDHNrF/fnsiHTeBhJl3UXP2E808lXW3VHKug4ei88I5e/1Aku/S7u/vg8vPo/Q7noXvU7uwR2DWpLx0c0jKNCzqEWAW0AmeLKmLROQet2oD+8mi5JluJpYvsh4LuQfOYiOZryKaSUbHLVJPbY1EkyB6Pqi4G4OyTIYr2LGBMfq6uRXcOknyJkkCyRkOXMquHkKMfnDpc/MDF8dvnReWAGBGtPu08fo3zilqAwDP8XIAiCCcCIMAz36fETHJ6U6xMrrRBhzJisLAbnIPKqdccD0t9BLC8bkbXiP5C12YTZHESIrkUEzHV6fQbOsGVB6l9CLCBRIgLLo2JWiQPIq19K8yByIw+wnD8W7N0GJyUwVzazEljshBE9pOtxsrbTLCCmobeYnjzEjasXnp+nDgE57fFEsSZ4mxtRKZ4fprP+rUUEcdPQg4O3TNyqZIAjneYAKCNSl5E05OCMc3G4tWIbAoCiSUGj8SBdtS/74gx35vpkSazRcwponlfQ3BHf0vvn0ty1r7XWlxw5N1vbYVtGEdLHRorRGhnT7sjcq9NnXYMn7V2Hx8JYzqgWOL14Z9wNLB0nb9iAA48W+n937SMDP2a5SUXAYw6eeWQYDraMkKAMGTNjpIvTdtlcGKL3Nca5gzgBgrHV1eLWp3bInPmz9qcx4ZmFtQ9uhTyg9f8Vmf+t9W8FDlCXImP7LDKexTjRQbb2ozHCgRMqrMfdD4098bjLaXa44yphGB5ERKUnjnXup6ck0jxZ6j79Ti1EiRky6XvozznIZmfCZRIiP76hjGXZ8bAE6ocI72UPimkZt59G4rkGoWFeRT/KySQXEcyH8CZ5pZt5NvuLABSPy+WSxpfFQQbo8nAFXS6pcMavy5EYDxP+v4+89O/r8UTYfzW0UhetXT9qS8d5e2ETvDtVaJnPfuQ97rr1pzEa4Tvn/IohY/7KW1M15mdoSLus7TE3sZyUEopzWnLWLNkF4mni7VnnubUmCxgdMry7xLks2Dpavm/AWcx2ATc2whOqoS/S/jRQtBZnLQIBl5WQdYPGEJErZnvVdb81aQTtHojkHbrhTd6+5jxmPDfOXeh6iDXuR0iOywVDhrOS/jGAMYp5nM8bdJyjRAhjxtDtlRL6zxHXtUvXIhohc3drhIvmLXJfmQToWL7XtbYpiMPU1/yaXYva0nHGXmeQq4KF6Z9jRLUAqdKUM5jMxBgQKyeTTMpjx/E0UkEHSQaLEj68miI5kqRjhFa8AAeMA3GKXIC0FNhTgndMNbIDGS9qPc3fg9PldDkJQFCkWGiM2e7b4gbYk6LU4xpnEyTzEYFzMx6Ino5Q2L+Fu6MVIu9sHW7VMI22ad+r8AB7E04tCDwdEd42IwLwXOAreD67WpxqOh0X9M3VrSeyx3VAAFYPPKg/GWdmS6Z5Ys90JObCYlaiQffmDmREEObSZlYX8JggA1HmklaCM8pZskqzYFhwvQXeGx1yKjIhduM5ilYiyjjT5JfjloBcXOdjdNNRFzKjhDYXuCjTG5H6LG+QxWNGYz9W44K9kQUcqTyPJ25NwoGcAQpz9apB+taAmFmduuPxOzYvrG9qEUHe3Nny9DcjTGiDx19tA8uMQXc86WkZAiBK8LE2kNWG5pTl5gJp1imz1lgMNXgOn1pkrm9A5kEeHge1DZG/+uJkIObA0BoBF+b6aclJrR1ZCBDK02vNumnumCXIvJqBxPCs1zbb/DT30izc6goCGI06vgHZc83S+qI+Uwaeq8nY4k5ICTnBSYc+HSUIgqeOBQ4/yDmnZqnH4yTseDcEZ/thABSpBv2iFNEm2IuciiQGNYazBGC4BL+DkByUNmWTGbc1RkoQRxOVpFKijrY1JDM3u5Hb5om9/eWLP099fBvi40Uwb1WA0CLdp/ecjLy85h7XCEs292PwDEFJWy6HLrOBb8vPHe/dC70lf5CBmttu/SX5FPLoNDnpiasm0J+VcL1c89biEfTvvopz9CaPVYur1pqFn5UTchubsxdNBoYHpE7SLyuQTeFuHCh1RJKnmjvc0FA6t7MelwBXQ9YQFdSHQNnUXMpe0QtyEcuQWbjeQACQamDennUePZ77O2+VD4lZ5npcX8QQFnMfkjMpmb1ksD3mDpdNKQsZRv4Y2bnGVs+hJiUxJl39MW8Ml7ea45q52cgCvEOPzUKk7pK1F7YgadNB+DXUjpNVs+O0vRAP+zVIdvH5nyOOJlpp2FHpoGz6sDoWE5RPIXMZRQdVRe6ig5Am5MhNmtak0G7cNqqmacdF6bBNal2ALN6GcRoAUiBNA8X2PB75EZwl8dQoH4wd7nQ5VjmZZsQDwMogCObr8QW4YfqkKAmIkGgKEqMErkIEql6IINaAWAysDMIpsLviOYb64oHoBl7MJWgYIvS1RmJVdN2mVs/9d61zAM6O1R4HZC2QNW4LTkW8ExE4s2nucmYJSs21x9IBWy4VA0qrEIGzRM97XZ9tBU7xbKQIBl6W6DWZeJC+0W8v1TZ1RZRL7XGiBQMIRmiwE3cf24KAuCatt02kr9Drr8DBVbJeawjbAGeC1rFMvxuKs8KaVagd7lZmLoN98KSbXXALDjR3n7MSj7tEFmobGvQZDMiYa58lKs0B7EUwAFSKx/w0ImPcAo9Rq8RBUmvcKaADHifUDxnfEjzprxFFNOHMbX/V57Q50YTn+GmJ00wPQMYxHxmXar3PFu3zKHHFQT3Pkrim4jFLK3BlQfvIb2twYP4FfUaz+GUj42yguC8y5hYjZpbDLJxJMUfb1ogD1hzkXRqGvBMWq/SOPp8Bv9cROvvZ+lyNeu/nte4TUo5tCTpdDl8uC4Kg4Si/B6D8zZ+6EqXGBpnxiQ5yQF7sS52GuZk5OxdYHt/s3MSCPRSrkD2KuRTG5ZPBdpo0ULsT22kinvHq3b6cgfRnJesuljfl39b9hV15bWmlyTY3ff0MunXfKm5uIJaf3xNTib66bCgX7VzEmyrfnvc8srAaWMiUz0XrFsVom8vTz2AQf+OJqyYAAszmMoo7lPlg1BCx6Oygk/TOGmUiUxvixc/N5Y3LhlE/R78fDRTAzKkasNNP+2o17laQi7hw2Wb160AWKWtnFnAVlN2voGcNshh+Ez8uIxZLRBYkTtxD/S6tsCGg+OHPAPDVSY+ygOEUT/8M54xfHou/KmzqzR1xD3JAxbsKOlBMLpcvlN1tfz9IK6qPZRJP7lsDG8QlEYAJ0GVdheRSALgf0dypwJC0Ul3e2kFSqf7fW8bDQE/joDgaiePZQWL5aySeSlJj7IDTGU8PipipCOss1pNMDTuKhGCix/l/p3jeZ7wf2yJ02LW464UBVJvH9RqosMecoaPAH1zcPVnY4Y6vSEzQp5Tz5QSWkwYEhWH4uyAI5uCJkO4Kw3DbJ9mmQ0uAa80H6f+Wg+cAog1ugwhpKxGhrC/O9JWMKLZG6jXliPBnLG/piABWpd9bHhgDUUY/nYRr0isQwa8NIrRZAHmCtiFqkQHZ/lYjAqbF/RTi7HN1uBUqmnKsJyIQmktUF0RYNlBhsUlo/xh7nFGIH9T+OYDTfffVdll8UTkeEL8Rj3fZglvizYWqGgEV2VqvWXVaI6CgL85UV4oAsRpcmEfb+3ykzuW4x/B6fCyN2rwI2WvfidQRVdoPxBWX4MxyjVrfUGS+LEL2xVqcSMJcElsgY9oe2S/LEOBQrf1ox+Asesvx8dyMJ+KtQeSBYtwCaQpeA+wDcDBg7opmJTECBGMzbKl93UV/N08Es/bk4ax04FTpKTgpQpSswSyj4JTY6cg8MIIQS/YKHhNkTKlG923ALRmnHbd5l4OMkbHG/QknGGqnY7IBkT1MQjaLk9HbX6DtNaILS1FdjqfHNpfNE1JOW4I+SrnzA5zzxsfeipO21EMkRwvshnp7s3IgrXVz4BNdzLrQnBAgVyiM16wQi0nhgHyuY2qMlSyZGt6jlwTfa0mmhpX0jyVTZQmU5mXT8UyRmrvdtVW0Cyb8rwHyoERBz0UXLoIZcJ54S/Ha1TDyRon7ASgMNnN5PGz60Rl0u1eIEW67+in4OTzz9HUAPLrz20xOnxijbX6RK3iIO9jxWRG8v7rsUX7z25vp8Zz4os2bNdYpqxF2vKppnd3bqkgJEW5J8a5tQCwUP9bj4ZF+A0iATvnvsyNB/eEeUgY0E+SXIIuz3aMA6n+f5mQNZcii14pYDqbitM/wQvlV/CZTcr1/dc2zTB4wkSv4P0Dis7rs3sKdtb8CYFLKz7gn5T46bhQrXH9WwUDocpciuU409y3/Nuzq25aORRoTtB9x63uUGGjd308Z/5RG+6Lui1iS3k+S2gILsyVp6mQd4EbiSKYmlmuqnjbUkByTSItXfIZ2w7dRtVwtQanIRlaEr49DgWZRkaYGLdG/icjAGDFCMvIe/GuDHysHaXHc7HCny0kAgoIg6GxgR//+6WjnfJLFNOB5eKB0H0QYqsRzhgwCpuLJNAsQYc+sLcZUdQES69MV1zr/Sa83ULFCvzcfwWytYx/OdJaJCM7Zek1fXDjtigfXG0gwZrKDiJDeGREWjTzB4p1SEcCUhwiwVbiG3wisrO1ErrEElWbhqNO2WTxLA2JxaaPnmjA9Sn/PifQ1Wv+FuEtcP21HZ+3z1ojS8Fxk3zYacnNPtJw65q5mloI52q8miDfQnJirDhmjUnxPStD6Nuq1ZvnJRMbKSB/s+mhZhAvWbZD9PilyvjGsJSHzyGJbzP0uFRkLcz1roe01K0QtMnZm+TAKckvKawBnMbIdGLNgBs7CZ14bbfDErnU4AOyp18fhY9lZ6zWLphE8WC4sAykt3FOOuQAAIABJREFUcYCWj8f7lOCEEGYBbKntX4XMh9aIxamN1mtWLkt6Gqe/pyPgZhuibJiPvD9ztW198fw+KTomBdoec+0swJnw0hGFs80nS/RrSshCnCjkhJTTlqCPVCy29HSJFhP2avCIViu9/d+gtUxwi1tphcDFMXq8F1lYTVAvgzWpZ9NjgICFwup8tqdkxHIDmbY/m1JJRgoUkUsG2zl753sALJzwOc5f+jdvQyYwCTFBg1ghWkHOd/V4KbAWdv1J2MfakgsLV/G2BqFc+8vNcIkk6UStS1wHK5/uTZEilD3piYxlFlPVr2IpnyOfQvotE1+r30y6mS89/L+8UK6WngVw7sPzeWu6qEeqyjJkMTDrxCLo1H4HZbkpQo39eCCL1VV4QtUsZCEapcdpmuvHyi0IucBgOYybUk1TZTKJHWWFqT8nDS6FrJs0ZmhBLgyHc/Pnc3vhk/xP/te57OJpLGcgv+D22HjdxU9j9NMdi/ZyR+5DvDpGSAoeefI7sBve/d5Z2vXl0mcGQJ8BOsCvbpPDb3ZDAJNpc9sB5bDptTPo9qQAzprzE0nrWR9zTwRJkFqaLWAvm1JqaBvLVbSK/sxgnLgnaikiN+YOR0Oc9HeR18d8ZE4uj4wB4LuBWTotmtb8cZIP+f3UKCeIHe5TX1oc+5SPvXwQquoPTWf9cZQERDgdgcgplyBCqAXoWx6aNXisj7kaddWPMZMlIa/obhywmIBfgbOyNer5pYhA3gbZJypw1rgEXHjNRIT8fbgloiu+bhh42oIn2UzH41GaEIHOQENfnBWshbY7OXK8HaektlgPs/hswK0xxTjAWIrst2aZacCZtozJzuiQGxA3pQqtexlOmoDe11ygCvX5vqr3LcWtJsaCZxaxDUisSAUeM2NxXtHyuvazERq0QYCtgVLLE1Qe6XeQva8G2f9M9CjQZ0/Wv1HrSDqeuLQJB7eN+jdd274MtxQl6aeK5glAzd0uG0+KaoQaVlcDzcfQwG8pMt6WTwgcMG3ArXoF2laQLci2oVIEvBnbbhuchns2zrZm29MBRNGcEjk3DgdOqXquAbiDeNyTkWHsxGPOCpF3KEH7uBduyarQ9g3E8wTZPC1EwJKx7NkYG/V9HPI+5eDvfLmOR2dOYI4giwk60ud0OV0+com+qUaO0N79VtfoJ1V/KtJPW0R+HKgfTRaaSB2J1JGZUk4G28lge4wW+SzWU0cbOrGdlfQjlyJu3DmFJen9eDn982IBqIL958mHtQgus88TyKY1UT+zYMssif3peO9euf4vcAmzuYTZshnHQ9pP6mEy/Pa9a6jNbkEj8dSQzB08SNoj9XRiBy9xKYX05lqeY2n1IOZNH8u86WOJu7uaFwq/QlxCI3EJEg/01tgRZI0vImt8ETQEsohaP90IZeXZtLt7G/w4gG+EsgnmRj5vaR8mIi5x2/T5VunnFch6rEhih4aGNE1JgWkBHVIq6JBSIWner4CyebmUzcuFDhDXuZpSsumU/z63Fz7J/KbhlJVncy3PcT3PUHD+Mh7lJuYznNv4JX/IvZRzWM5izuOiKYt49etDqZ3UgrPnvMfZc96j4869rLy1t4CxXyOL9yC4OmzL1WFbTxz3bf0sBb4reZpqJ7SAyyHt9nr4C+zJSxTyirUwgvmksoc21BFPI28zkGyBRsxX09YsxjKLsSxkGEN4k96ZhfTO1NW0MpLZJBXRcpYhFqBKRIM8DOiTAkEKzu1erfPbOEaPFa17unyayyduCQL6BkFQfZTfA3zl/kRLDSKQlSKC0yWIIGQWAaOFboknITWrwQbk/f0CsoaYRcby71gS5nTk9TVrhgnx3RGhvRZZAzbijPgWF1OMCIVGPFMeqS8ZB1umabf4oChRwD5k7TbNfyoi4FkckeVzqYmcb6QJTTij23I8iL0KB2Q79ZmM5c3clMzVynLztEZcpFrg7lGNiKBqbHCliAAaZfpC22CA1QBnC/3fWPHMWlEVeV50vGzZtFKDgB2jgW6BCMcpyJ6GHpsloQqPk30tUo+xt9lcMXc4c7szy5gRQiQh6/5ObV9rbZ/VO+qQNm3A2f9y8dxJlYjs0g+Zv3l47JaBdaPXNiugWQsTtB2FyHjVaV8YCCzRv32Q8eqJWO6M5ML6pRIB8S/iFtMU3CqXoXVbrJax1/WJjIHFT4EzJRqgqdC+bY0Ak0x93tdxoDpA2xhl8xuJW5DWad9sw2PWWmubrsWttabYyNZxOKHb62lL0Olywko09iHKEGfRkq3luz26cu2JxARl4S/bSOQlVfBDgtBklzbJTtPUEM9ZKevJp5BUKhnPdN7TbGcVdCCXYhqJZ1161xhYqiGZJRdnMPgujXgfhwAhLT/7JUx8FNobA/At0OVmYm5aXXZWQD9Ie1Ke6d2vn8XZU95j/PemMH3dBG5Y9xx0gMEVq3g0TwgPHrz1mwxSGpxicomjiQ4pFcSPF9rsUcylU3sBSQBv/3ggPBFPsr3hRYjFxBalmcAr8VRt6yyb8isqtFs/Ae1e3ib5ldbodUsQq0+xnrAVymbl0m607CRVZZ1hEJTdE3FdnBBhpFsxmqZ1KcQPKWUE8yFfSCeGZ86PxQR1pIK3GcgV/B838RhXznuJ8RdPYfrQCQBkTyilPr4NSdud8jqv29qYcXDPskTS1tXTcaT+PhH4GZ4kVsej9k8tSJpxMDYn+DykrauHMxUMIdToAAsYTg+K+RWS9nEQf4sl0gWJy5q5exyJbdV/oiyQ6WuuhB0R0BgjnEC0WLnIgn4OwqhXv53msUAGhOBUcYOzciKSpZ4uJwEICsOw5bHPOjlKHA4G+iAuNmbF6IUIrtsQcFSJaL7TEWWFBbVvRAQ+y0diVNqrcAG4Nc7MtROxPFmMyrmIANYBEe5SI/WZ21wqbuU5qB9jsDLXs+5ah+U8SseF8vVaR4XWPUzvaeQFlTiBgm2lpbjLk9GAF+o1Jki30d/MdbAQBzw78dw8HfAkoVGrtwEOY6Nrr89kgjyIhcLcxBqQPTNV72MkFumIMN6g/VCEs4fN0nra0NydrQy36BjJgAGdDP0/A48hspw7lh+nnd4n6j5nfW8kBgdwi6IBv+XIel+k343UPu6j5y9D4sjq8BxL+5Dx6ILsE9l6vA3Ps7MTd5MrRIR/I1owEGIkBSV4stsEZGxNTu+g9eRqH+zGwf1OfPvpos94AZ6zaLM+R1d8jrbGmf+sjpZ4AlpjpbNcQ2ZNNCvnRu2PBuT9tOTFFfo8FkM0DlEqLEdyA1pb30Le0/m4pWiMfm8gu1L7eiNwNZLYzN6f4y6n2eH+oQRBMAzBoa2A/DAMhxzjktOFVjQXBo0CJVqiAeTtPemkWYZMAN2KmIeNMnsv1O9tQ78UATBvzRhB6fjsZjEen1f1jzG11Sgy6LZU3Kc2DYKzS9/zlIn3I1YGFcS/83N9BM1lw32IVsPy0gDM8Jigs+e8R+3VLUhmb8xvZOWk3ixNHxSLQ1k+YygPjLud65gKCI13ckSFUUQuj10+iYI/Sv6j4ZnzWZAz2u/3CrJgmcRyRwgTgubxU6Z9ekUOq+gsfXmH2sbviBeL0N16/mtybtVD6oPwACKr6+mdrn+fHdPPZMFD2o4kIBGKc3IpXi4ECZTBzOFXkZgliUbfTDmPInJpozvYiIvnsGDWaO5a9FMA+n9jrSxWV8vlW3pDl1GI4ILmaPoLnqOpHax8rTdnNQp/atIPDsI9kPTkQfZPkFNanQd7shNJ2ymgdDrjGc/0WLJUc5U0F70ddKITO8jQOVhJKn3ar+btFeehX3hfgizoo4FNke9A5uhy05GbhGLz2iixo8QgiZwqVqGQIEZ+cbp89HK6Bz9EMbBgwfHJOLAx7XkSsgYfxBMaWz4cs0wYZXUDLsh3wd3MDiCv8xIcRLTBXdlMsDZKbIv1MQBUg1tAGnD2sF40VzKb9t3aZKQK0QSVmxEB0miVy3HrTF88H1EvvcZin6r1eSu0ftP5WGJNcz1rgzPjWXxQ68h5Zr2JjgE0B1yv4S5KqTR3+2un7WgZaUspIhC3QMZuBM7E1j/Sf3X4/maECStxJjRwBjsif22JrcKB005EqDY3sX3ah8bkZvocs7oYRfitNCdAMusX+nwDkPkzCM+l0wYHEDXIXCvHiTSScStRXzxOzSyG4O5yNj8S8PEAAV+Wj8qeOR4Hx+bmaXO0M26BMbdEYxM0y5HlR8pExsbmuikXOmhdi/GxR+9lzzAOsf4Ys52B8y64J8sFWl8LnDLeyBRMgXAxMn5L9WNxV5YzqwyZK5Yc2cb+uMsJsAQFQfBbRLeyIwzDgiOcMxohJW6JJBN94Gjfn8h2fNh7hGH4BvBGEASXIVPvaPc8CyFJ6EpkfwvD8MKP+hz/mmU/zWMgLEoPmluCAHIEANnL3BF5mcyisQURQB/S48uANfG8pQLu8PGvKCHCXnZoPMZfGEkj8aQigvlDc/4f7445iz2DRCCtJBUStvqCGI/knDFa5qeRwHvNQ7Py/N70n7KWes1Dk/gD4DzIe0fVSn+EnZcc5EfhvTFhvn/RWmbljmV5kcTC0B0e5eZYPp1K0qghmbGq+lrKIBgKa25QiuyrgCRJPhp77kX6F2BaQLvXtlG1prNYheycJXotiCCvFiNAFuvhuF92gvb36MjxQ8Rm+Y6iM2XxVFDFayEkNMEb8cRdJML/kPaLKSSfxibZRTaRwxsM45Gi7wBQmpvN+LHT6X+XWGX+8PilXDnjpRgmbhMmwpz62OK+5dYOdHm0wi1eq+CsC9eTtFStPpmI1a4dMXY/ukHao/VseUB2+h4UUUIOV+4U5oKV6b25jmdYpQmV4miiMBKXlsF2SsmmXYFaxPZ2FoCToydkIRux0eOCbGLFiDscyPlbS3DQk4gnXABZDk4NAASn2eGOVIIgOBNRl+wC3jvW/nIaBH2I0oRQW38BEa6MSncAbqVojVsIvoCAAxPmFiPv7zu4W9QVem4Fnng6T+u/AREcV+h1vfTcbERQTkCExlrgs8h6YK5NFvdhiSVN+DOt+muIkGcC8Tq9poO2P1fr7odYAnJwAggDG5XIHmaJUA102TkGVMzCpUsoJXqO1WGECqv02Xcje2Jr7SfTYRqTnVl+jKa5AXdnszgiix8h8n2S1j0d1+q3o3li1JXazzaGpuCLLp2W+6ml1md05GU0LwagzCXQ8g6BiCHVWodZg9K1vu7I3DCroxH1lGs7xiNjatY+68cEvP8NVFqsD3g8kCUSbY/M22zc7dGSrUZBmbkSgrvR9Yjc0xjdjPjAAFgyMm8sN1Eq0vcDEOBg363AgfE+fExBxmIbMs9KcGY39Np2el+jXX8Bj52zvrW6GhDgsgKxrtUi82Y9DugNKOXgljFTfqD3NkY9i4MzwF/CCSoHj33KMcoUZBOYergfgyBoiYiYFyHTdlkQBLOQrviH78MwLDzk+k5AfRiGNZHvcsMwjIYxH7YdR7p3GIaFQRD0AX5ySB03hGFoovE1ePj2kcofkIiSp/nU29TM/acVAogMqmcggCjiHpeU4ZftQhYuE8y3AmXQ6beSqXRHeQaJbSUWCISMoI42LGZIjHmtkXgu4WVWI7mIdo1py3yGc3O15AnqP3utLPiWgbgRuBkHRfcjL6Mu1F0/vxaehkQFRcwGroY/ikzN5edBzh/hQa6hLk/UZhOZzDhmMDFXzEcjmM8D3MW1pcKadn32UzQRx2MrJgHw/QH3UHRLD/LjBCy8decIAQKWjPN16Qdu1Ea+Ek9VamcBiyaY70JAjblt3Y0sljarhyGZ0xfocQdksVFXwB4D/k5xwWccRE1GQNMderxNyRf6QMtWBxiUspQhLGbB1NGEOeKOl3v+GvqwmpW5AjIqSWUUc9n1gKDakbxG7SUteC9eJIr+966VTUbN5l0WVjR3fdsISc8fRDkNRCg4E+iGk1BMhF0PtCVeB3BE9SIqU9qyKV3MiwsZxnSuis2PQnozkLd5jZEArGzqR25cMcW/V+tWHiIM2RyciSzgr+J05Kads75fbX4lh1qComJuK04Vtzhhhzs+YoQgCBKAhYjI1Qp4MQzDew9z3r+M0gw4C3g5DMMngyA47B4YLadB0IcoJhSZsNYCEfQseP5cRFgaiqwnc3Hh6QAiHDbiweGb9XtjDbPg71pkbfwTzn61EQdPJsxWEkuPQCVuySnQNpm1aLe2yYRtswqYpjwVJyWowAVloyQ2i81GXMt/QJ+/pV5rJA3GDkakTRb8f0Db0EfrWoesp31xGmOjjLYEmyZM78SD4i0eSklqmoGYzvrcBiKsPgNsFm+D1h9lAgUBLhZLtTNyXirNyRCiuYHMNc7c7cABBriLWBuc8nmfXjMY6fMWiATaXeurRcbI6svH8zWV6HPuxGOqLBYsFSe4sNDQSprnZ0rF3e0q8PnQFWdOM6Y2ECCUjmwtXfT+RrKwU+swNzMD0u9oe7bhsUe1yN66GAcplfjcLEVkBwNgRrJhSlOznpoL6nbcBa0vYrEZioASc5c0K2qdPmedtr+7Xl+g9dk8iloddyLvZRUClgbpfefr/brrPS1X1wkpx3aH6xgEQZSJ/akwDJ9qVkUYLgyCIOcodXwOKArDcCNAEATTEKLeBUf4/lDehwuAbwRBcEkYhg1BEHwNMcJd8gHacaR7F4ZhuBpnIG9WVLtXFYbhseJD94dh+PgxzvkUlKiwF40HAnnb1hJTsydmNJ9zuQgIMu3BFqAMdkxVVrMCqN8QT3EfcXVLzK8jm1LGM5319GIik2O5aUwoXkk/bit6ioW5QpV8fvzfqP2RJt0EWXgV2AA88fgEbnxnSgwctP8+7L8cWplZ/EagCi5XeLwlvQNd7qrgzoRfxQTz3069hh10YvLDtwCwZ1IiydX1MbrmlfQjjiYuGzANgPsX3wd74S2jZR6GWCCsH76MLHS3qOA5PNJPUYrsLBzkJCAb3m8ifftrnI48FXEB1FRExdM/I3WY62FbGDPpj7GhmXP/5TA0HiphYv5kJldPZHtKBiuuz2eJWlmK5hWQf/GKGCveNxsf4Zn46+n/Ne3M78Ke3ET6L9TjbtpOo5+6GnmTZxA7n+WA0pXX/zds3tuVvIWbHbRmQMeH98KVcrgkux99Gt/l0XiJx7qj8UGa4uNZzjkAjGc6f2FkzJLR1BBPh7gKxtwgzzpnxeUwmpiLXz1pQgH7e9wlcgGSO+hNPU7LgD3v4m6fGTQLNDtFwM8JLo3AhWEY7g2CoDWwKAiCOWEYLrET/tWUZogu+wdBEIzHHWqPWE4qEBQEwVCgp+YMSgfahmG46ZNul5X9yHpVirxei/HcKEMRQa8QWc834yQA+/D4ljWIcFiBCM0zkDXTBH9zdTN2r0pEcMtABLQcRAAfiliJ/orMDtOqVyBCY47WsUXr2YdbW0yYBhGm1+m5n0WEukxE2LX4JAsSz9f6N+v9zY3OXAEtyeaFiEDZHndBMyY0o2I2EgVwhY4BlCgtN5F2oM/WQ5/D2NiixAYDtZ+66/XmxhSHvO2piDUPfV5jFrPwyeXa11H3taiVp4Dm6TTMbasdzRX41h8peB6ZCjwOC33Oc/EcTdmRZ7Z4HUsIa6vKufoM5kpZiFsbLV7GXKbNsmHxSsnIfLNcTZagdBueR8lY5zZqvQbIzVLYgMtLq3F3sq54DFUJbuk5iIPYBDxn024cIFt9ffR7AxYbkbm3EQe8ZvmyZLEr9B51eJyV9U9LHQPz8qlDgM8I/B18C7EObUTmkRE/vIqzxeXgQPI13CXOcnWt5gRyGRzbHW4f8tgvhWH40lHPPHLpguu3QabIoKN837yJYfiHIAi6AdOCIPgDsvFcdJz3Plb5KvC7D3DeS0EQ3IRMdRPRCMNw95EvORVLVOA7lBo4A+gCaTlyuGe7fGfCvvmtmoY9C5EUogGawxpjLF7J7I19PYL5TGYiLdlPLsVcwYsAzGcE5EoQP8C7487i7Hfec9N4P2TBVa3PjUunCJhRwZuB0OpRXL59HblW8UiXTRVy/AQxF7pRzGUpn2PPJHGPupHHuSvlp9IW4Ar+j1KyY5Te64f0Ym1h/9gC32ns++woz4AivUlWSI/uhRSnqrWiCLHY3A081AgPxcMiSLxjD/VDIwlW9+Lucv+FLOKm5x6MuLpZF5Zpf9vw3QJzFl4e2+B6fP/vxNHE9Uzle5N+wTcffpBfTb+TAY2FZF0vJ11/8VR6sZ5f8C0AmuLjuG33L+n3tMRwDZ6zirRZ9bJggiy4y6Fe8ULieQiwMG81jcfaf7P+/jzkPaxuiAZIfg90g5XZclGfxndJqj7I2HRxNayPb0Mm5cTHfOygJQdi8yE5pYZ5Gy9lTHdBXlkDiihbnEt9mfbjUO2XUgT8XIUDRQ0jEjCUQ3M6ova48/qpYwWCD+wOd1SlWRiGIT77zDs/PKSOfymlWRAEdwD3an0vcox946QBQUEQ3IvIsL2QRlv6l/OOdt0/s7TBhe0sRNBbiawli3FteUtEAOyOrMsHEIHPko4WIrNimf4161Ipzu5lrj7muf2OnlOhx+v1PpcjAppltTdKZAtstyD2nfo3HxEarV2tEYHQ2pqPkwrsRATaImRgSvAkkka6YNaAOkTY7YNo780dLg53k2up15Qi4CBfn7FS729Wi2Q8oaq5ElrOFnNvMma3A4hQXYRr8Q08HKQ5UEtGhHkDNRsQodtcE/sjUpO9wY3aRsu9E4fsj1HSBAM+cdrO7vpMK3HLkMVLWeyKWZjMjSsHtyyi15krY0uaW6YM5JQj7pgJ2k7LDWTWn804uCyI9KPFDpnbWgJi1SiL3N+o3sFpqHvQXHK1mJx0nCJ9oN4jCadDT8eT8prlajZOY20WoDxkPIx9zaxibRBw0qjjYFTdu/VccNp2szYmIO9hNk4y0RkZSwPUBsrGaBvGaX8t0jovRd41a+P6yHkleOyTsUOaxfeElKNbgqrCMPzP47xDcJjvwqN8/49fhuHPdEN6HOgRhuHew533Ie591HI4F40jlK/o3zsPqb/7Yc49hcvRtvYSYLezwZEhwrgJ6qZ9M23KRERQN/kxC+ISGilvUiaFOMkJA9CBCoawmFKyY8HwAPE0khEL+JHzYguBlTdxa4RRNaset2Qy5FwHmhaILT+FLrNh3RhRc+XN2SySQiYS1A98L/cnXMdU7uRBfcodZFMaSzJ6+TtzGNh3Ec9VXwNA/Zo06BxCgUzRHbPO5OKxs5j3Fc3Q+qOA8o6ZTuawBlmcfgD8uwKlJzW56TQ9p0j7zlS5I+QZEgerhaMsTdy+uujvhhHsehsDvWfxY5/h4ptm8b0bfkHv367kNUZyzvg3yaeQZ1Z8DYD7uY8VA/JZyDAACsnn9+2/HBujPhe+S9IvD7LpFRm/bj/fSu2iFiT9u+xmb94I591DDOCs29KVvBmb2a40m13mAl8DbtNnB7GS1UL/Ure8PJv9RTqpa9omtToaEcWT3MhAlktsGFC5O5XEjpUsqBaAmpxS432M9s8CZDMbiAtibwN7NuhBBs3JQMAB0KlXPiA73K4wDAce7QS1tryNzOZHwzBcesgp/2pKs1eAHwZBcA0fwEv9pAFBiHxhLvuEYVgeBEHy0S/555ZGZM0uRASglbiwPgQRtLbp8RhEW2zEAZV4Ci+bkUMQgfQtxAJtVgDTmFs8xDZcmw6+R3VHwFEvnMLZKJrfwF3e3sIF3kY91yxYFkhfhQjBpmkvRQRWy41jhAeW92clTtWdHjnPCAmScMpls1IZYYLFmVhw+UptjwHAJL2/xch0xYGM9W8CDprMsmMuTznalxZ8Dy741kW+M5c7Y2zbrPeLurVZ/E9ZpB6jbybSNzY2UTc5q2O3Pls7BIQZnffriBrDXBDLkPFKidyvu/bz7kj7O+CgyPrA5lcSzd3gNuJuiB30+o367GZlshw7XXCKbAMLBiKb9FnNXW4bDt5242AtW+uzv9EVzBLMdsHno1n4jOHNFMM29pZQNQogy3G2uFTEPS0LAUXzcde+amR8+yDvQxKyJdpcyMfZ8XLxOTUAWTnNlc9ii/IRxcVBXCl+AbJgnbDgk2NbgtoFQfAUx2cJKsOZ9MHTIR3p+38oythWgFhc7kXSPh7PvU9ICcOw27HP+jSUqMbbtvlDBcQIW9wC3GDUgLh6mY/nKkQLYvLkEmjalUJTgQj+/TNXcQkvU0g+xfQA4FJe4g2GxdjicigRNrhySZa6ZFA/Mm6uoJUl1+yDACDzfZ2BCNnz5DCrCo8TArosQSwYmtD12TEicF90u6kx4JfcxlVMY5z6dV3KS8xlVCwu5fq+T1HU1IMD+8XxN7FgD9ekPMdvitTkkQrzZo2l06saC3XPmdQvSIMJamAsiYe7od20bVSZC10Z8AvgG9qISuTNeFCPx8g59ZPVwtEFATzD9fduSIyRvU3LkaFUq0fWxUXMmzQW7g5j7G/ZlPJi9RXMGyCgZxIPczOPMl6RVD9W8RzX8F2EHe69+F5kv1LKdpVIUpdVEtfYKGwwwHm3Af9NTFDJu34zfB+6GL4ZC/wIWWDtbesN72afxdnrZHzX5XWlkXgWqw5bcgYVxyw/lzGDuYxiPNPl+vYwg3Ex2uwds84kcfge6venxcYz5rsclVoTgKCn/B/uQ6xAUdNQe5xt42QSd4+/HKTFCUmWGobhAaBfEASpwIwgCArCMIw6vPxLKc207Vcc7ZxoOZlmRVMYhmEQBCFAEARJx7rgRJQPE3SVgAhMFg8wEvEcsBwvFrSP/t+D5q5mJvi/jgfNj0C4X1MQ5YbRRF+ACI/mRGlsYQ00D8zPwgPSzd/DmLaSEM32AdyytBmROAxodEYEYNN4G9hqjzO6ler3DYgwma7tNKpms1pYbiNwgIHWU4KAomo8WWi+tqcr4tWwU9vTTvvJXKl24+57B2hu2TE2uUzcTc+EVMvnYnEk1h5TIpkrl5V9eF5baq4qAAAgAElEQVQb60eLSTI3OItzARmDnZHr47WOTH1WS0RqRAQNCAitxN3vjDbcntUorM2SYpYSA2ob8FisWtzdy8YwVevYoPfM0fsbecI2ZAyqEJBrbngG5Jq0jQU42YFZ3Wrx9CHbaA6U4vS8DcjcsHxENjfqcPcyiy8zMgj02iI93oLn2Vqh53fGLTNdcar39TgZyQWIjFGHs8mZSx56noEnczHsibyLNuaDkPfTLD052oau2icvIGDTrIWFOMnCek5AOXZM0ImwBC0Deqp2bgviXHIN8giH+75ZCYKgP0I88G+Ijvv3QRD8OAzDuw8990Pc+4QU9Wv/BnC+frUAeDIMw+P2WDyRQcD/nBLNEwSOcgbQXEO+HbZmxOJSWIO7HIFsVBfg1oqewCrofbG8BUNYzCwuJZOtMdDzOyZwM4/FjmcwDhJe4tlBXwQkyWljfAsKn5a4lbN/8p64sa3Ue/RHwjlU8G51P6KBNKH7OuDbkLdUVsa8KZsFNF0grnYARfTgDh7koikCjN6dcBZxNJFeLtzfr2eeT3ZcKbPaX6q904YRzKfiYtn5Zq64ChqIucvN3HumLAhrVPAc2Qir46ma1hm+pcBoZrwkODUtyUNAQSMFr4r1ac28z4qFxWbOZODHkaFIQDaSmX6cOHEP9XvFz6GmqS28BHw54O1CEfbz85/mwP6WLFA3vwO0YiKTY65Sk5nI13mCwaXiDsdsYBN07CbHe76eSNLrB2XxBlnsJyMWKpDF8bvS3zp4vmAOlj9bsjuQSTlb8qTv8uZsJq/95pjG8YG+tysoEstgE3EMYTHLFWk1EUd50xlkxgmF+o6CbHqkFLFmjTL1tUXm3+vIgmslnoj/d2vYcx6eitsiWE16MJKEU8cl7kAscvf4SxiGlUEQLECcOKMg6JRVmsHJBYJeCILgSSBVfQZvQDbaj60cLejqcOefdc45LF/+c84JhjMX2QsMGA1C1oVinIj0RRwwmfY5F3mPzXKSjFhzSpFYmkW4ML0PEb52A3MQUplVePyMafircatPC5yVzYRHo5w2IdPWunScotiCuw0oHMTdk/JxZrLBiMBnhArrkBnaiDuUor9vxPPwZGhbc3CAZDEmpmlPRYTwOm27AcBc3NIALiMaXblRfWcgUtwAZF00tzkLjk+I1GlxUWb16av3fx0vBoDeOeS7Z4BR4WtAK9oGw2O/9UPAXR0ymSwRLlqPSWHGqLYbcaPsi1Ojd8BdF82NzAAQyHiaBcQ+pfoc6XrvCu2Xbbj7nI1Ny0gdCTigasKtUVm4xcxiubKQOWHWEaPHthihWm1rNu6Ktlnbl4vMhbpIH2RE6k9FQLlZSnMiv3VF3qcDeO6j9Th5Qz5uGTRuoFJE6fA73DqWjshyA5D5+KXI8xsQ34YDv3yE2KQUAUlddFysvkE4yH0lXABcQBAcTmn1IcsJsAQFQfA8olvuGARBGeIf/ZsgCGYDE9XKfgvyiC2B34Zh+He99rDfH1LaAFeGYVis13wFdxL6IO34IPf4qOVxZBo8psfX6XfHYpU7avmwe8XJUaLscNGkkWsRbbkBofbNc90MRcQViw26GklEOVKPG4B+sLZcUnnnZG7iLn7Ks1xDD80CegcPcSOPM5C3AVjMEJ5N/yKXNYpVJqn6IJTD2WoZoh/s7watbAH+uTbZMh0vwn10QeJVngE66fG34d3cszj79fc4+3apc/n/DOTynXNi+W6mch0/4H6GZ0pChBqSmczEWN6gn6+4my8veNHvkQpxl1Uze3ckdOE1HBw+oWBoAWRdL2CvbHQPuDvwt6EA+Eo8a7JVmM8FfogTJ5QgC1g0Rig1hGJdS2ZCfcc0Ol2v1qiHz+SyDdOY2f0qocsuCnim8mt8c8iD9ENAzf133sfiB4cwuVTkzEuzX5LkslY+D/s7QWmKuMNtJ4M3Lh7GnWf+Sn63xdFI5RMQ4GMRdu2Qt+p5QJpFlycrWPf1rtSrU3qXnhXsym3LXEYB0IfVxNEYA8UVdGA7nZhXLr/flPkojXHxrKpW/8g1AWte+WysyXFfqKbpxyky96zvtiJOXKGywdVvB87GebXX0jwe7tQBP3DC2OHSgX0KgBKRt/ynh5x2yirN4CQCQWEYPhQEwUWITN8LuCcMw1c/5tseMejq8KfvAxJiuUxAhN4snL3NBME6xMLzIrIjr8HZ3CweaDwCahoQQFWLrD9RZi2LBzFXqiRcaF2NJ8o0ga4cjwFqo9eZC1EDogQyjfwA3HJjLHCleIyFJcosxUGWkT9k42xwJgjH4cQM6QgAqkMERrM6VWqfJQGPALdrfa31fjm4YsdcvKJsdCn6TPNxIGHxLDl4otLWuPXCrEdV+ORajwOgDO1rA3BWzDITLV21z32hdUAbZYPLojll9npk/zOA845eNwABF+aGGL1fDc0JH5bj42tkE9avRhJRiwNLGyMDLH/Wc5YjY2L9Ynl4jODiIDK3jF2vSP9/XZ/acg0V6r0z9Xz7bR8OYlpHjsGtjXF47Jq5+nXResyitVz7rBgBKtZHffGYu9Vah+UY6o4TgFyv31Xo7wNx4oP12ndDEb1hoT5HX23PaoQcqqu28wVEOW1zeyOu1HDb2Akqx2kJCsPw6iN8f0nk/9l4BAbH+v6Qc9485Hgfh1FYHaUdx7zHcZTPhmHYN3L81yAI3jni2R+8fMi94mQoUUtQPW7KyaF5VF1rWL4PBuoKuBaZg6rlZyaS/yZLvVAaAkhtpF1HiWtZUD2CypQ0amjLY9xED4p4m3OoITlGjDCKudTRhh3xoupYmd6Py++Zw57HxUUvrbSeVo3IRgjiHP8D4Pt6vBFZ/F7Q48v18SL01av/pw9xX28kr0jURuMbp/Fq+tCYS1Yp2UxmYgyoDW+cT2MQR1OcCJLtCrbRlOtCZf2cNJrWpXjY+EyEBEEX5eH3vcKCSaOJe6iaskKlh7NFyhb/RfpMFsQ/HD8PRC/+rUhfLwCuaoIyI2MACmDHncLMl/VgETNvUgA0LYCrQrg7YHLBRK5Ikb7u8eDfeZA7eSJ7AgATq6cwLv15fssN0tfr6ml1C2T/Wqwu3WZvZfCqVUJRjvbz+/CatmnkPQjouU5//znsSm9Lx2f2um9/b8hbtzlmPXp3wlmcXfQe17YTOvIfpP+/ZiQUFht0U6bwbhcigDouQZDWgaHV0veKSZvuSBGg+Aai4QIRTgqA1aY+Mxr4Od6of0iOGhV5Ty1Q9BHLGcD/qpKnBfBCGIZ/BviUKM1OHhAEoKDn4wY+0XLMoKsgCP4T+E+AM8+UTSQLUZJMxQWyDUhs4EZEcCrUj1lO2iNrSxEe0zEbEQgtfsISby7DqZLztZ7P4uxiq3HSHLP4mLCZiQh6NYjgaPE6IML+BbiQadYWC2w3rbxZQMzaY+21GJMc/c3Y4jojwqHlvTmAEwH01P6xwP/22ukmMprgbe52FgtkbmEWV9RS6zMGUmMkjbqqWR824kDAXMWisSYGYg1gWH8dmvDS3M2sX42m21z6rOxDwFQVMvZ2v2hyVDsP3OpiNOQVOJufrURGLmC5oay/K7U/zCWyM245tJxFNoZGdGGcwn1xAggjv9iHE2Qk4GQSPXFrWq7+7YGTT9Qi78BSPS8OZ0BsjVuB9uF9b2QKqQiwidM6a/S3P2kbc3CSCStGnGFWsQ7ahmHaF+8gKqx39Hm6aN9YIlZTApjrHtpfUcowo6mPxpyt12dsF6mnPTLOZt09oeWfExN0KpcDQRD0iGy43TkxIVsfKEA3ul+4GeOTLpYnyGKCLH9KiR73hDNaewxQB+TFMpKtCahZWa0TlUBZPMkXCzqIj5ML8ykkgx0sZgg1JDORyUzlegDufeenrOzbm24LVfCO38qexxNJWyqa+iWD+jF45CoPU7oPWVCNUKAccaAZp8dLcf56gLVwjpqyNuVqwP/CreSeX8xFpeIO94fsS2nJ/pgL0W3xj1D1cGeWTxJJPjNuK2un9Y+xrJU1phGXV03TTPXteBEZdZWaFkwfTdzd1TTdnRLbkBIn7qG+IM21i6k4wAG4CwEO5sX0OnLu7/V4IPCLeN8ghyLAQgkTyh7OhasgLrWGpstSYFrAV597lCbieIDvAtIPd/NjSf4KkCKgw/qaN4FuMCNF3ACv7PcS/BHXVHUDamGkgZ7BYjlqZSqN2dCxfK9TaQO8D3vyEknbJPfo0VjEptwzYkx8l/ISxfQgUeOY3mYgheQzc+N4AL7UfSoLGBFzh2vZfj/FBbnUr1MfzeEhPBSIv/PvEVE5F3kjh2kb3khEELwFZM1BXtsoE3M0Lu5fO3HqiUiWGobhu4hIcLjfPg1Ks08eBAVBUMNRAp3CMEw50m8n4vaHu+Uh938KeAqgZRCEbQNZ0aYicYSW2+cgIoSvQEBMH0Rwfg0RFv+MCE0Wq7IKDyy3/CZF+DttQq5ZgmoQQX8U4o9Rg2xh2YhAZgH5FgPTC9fAN9EcbJlgb5aDIlyoS8aZ3drgblUWCF+Cu8xZ7JDFdlTqNVEtfhPNXbFMAbYIiVzbjQiqRv28HU+Wma/t7Rx5LkvWaSx3RikOsn/YspaAEx1YcFk0CWgFruVPp7kDLDhDm8V1GTtdBbJi7DgCaaEJ6UORMTSiiOhv+/B4okoEcOzWe6QifW1jZgDMYsGMxjkfD/Q364TFUh1AxmoLojjLx61MBgJq8ZxDqcjcMCDTErckmlXT5sN6nEK8JQKwMiLtNXBo7od2jZFBGLlADQJ4KvCcSLU0J9ooxeeW0ccn4PPsz4hyIBmnrM/Ek50u0/PewmOFSnQceum5i5B5Yy6DBvIsVslir5OQVfiAPoO51r0OfC0YbAnej7/8c2KCTuVyJzA/CIKNyPreFfEkPt7ygQJ0o/tFEGQek/Xu4ysW+xD9G4X8KbjjNrC1GnL1uBh5sS7T39YgQMisG8uh9/dXkhFRGy0oHE1N/jI6KjtcJakxbX8b6vht32u4vvo5Np0vAGUuo7hx4ZSYO9vgdavEQ89Azww8gzjAPQjrm9E2Z+vj3COHu5a1Ja9oM1tyO5DauIf4xoO8e/5ZHKAltZ2knSXkMJtL+HPjvwHQdu4Bhk96JRasX7y7B1nXF1F2pyCa6x58mmdmfc1BzGR5dnNdS3xgD/X/leY01yOhflWaxAE9EenqmYjbB8CUEBKaoEF3oocCWYCMz2EwIqffrsclSOzRa2oZSoWLz5/FvIVj5ZrL4DdTb+ac69/k+/w3AF/c+DLXdZ8c6/9BLKUDFewZpFa3TfXsmZQYe25mI6DTiA/aAf1g0yQFk7dvpVVV5PdLcPryJ4hRfZaSTVo3cUVM2nEQsokJ6fE0spghXBKRZa9jKv26iwvfAoazozyDmrZOmV2/JK05gOyILOyWh2kwsnCbXSDIgLAalP1PgP6hqWjqOVUsQB+QHe50OUb5xEFQGIbJAEEQ3IfIf88gG861NFe4fxzlQwVdJSJEBrtxYoB5iAbaYm7GAs/iwdc9EWHNKJYvwK0KObjb9RqtswG3HBmQaImsSwMR+Shezy9BBDIjChiJCG1Gw52MC3NNCMDYhlNNmxtSTwS8dUCEyYO4q1mdtmsnTlzwOs5vmKT3tkB+E2LP1XaV6nV52vbdeo8xes98xAXQrAEW+2FCu7l+gVNy1+La+lTcVclY2CwXj+2f5na1RccpX/t3g9YRBUAZNI8/2qL3XRPp6zqgbbA9BgaN4S5aFnHkUodbiBJwZj+0faaQq8JdIk04N5CYhIMC8Pgwc8sz+cEsY7vxGJ4GROCvQSa/JY01SvYq3JrUUv+3pbYX0vcGPLvgFh6LGUrCY2gaEJlhqdZTgvTj6/osCXhM15dx6nYDOkkImBmGEyMkIUAmP/Ic1ic1iNT7IuIOtxlRy5uFsb0+8wG9ryVQrULeN2P/a43nYCpFQNwA7cf5erxCn+15mocrHFc5tiXodDlKCcPwL0EQ9ESGLgDWhWHYeIzLPkj52AN0T2zZH/lr27zFR6jzcaK6EdW/C2ec7eB7OPIi2+LSgAjytyimKwpYu7EfNd3FrSyVPbyQP5Zf8K1YjMJwFlDKmYxA4m96UExNSiLdikTTf+PGKc0XzgMIwLEX6S/IhmfRCaVI71s49SLkxdOFqOO6vfA8dPl8BevO7wrxsJo+XLv0/2LC/3TGM5z5XBn/BwDajd7GyqZ+xMfJ7tWp/Q7KyrM590Fp8zMbJ7rLAUi4eC4wWvqhfmaaLEr79TcQprcCIFf76olA2OOuUva4tAAWxXt81UAERLyiU/QX8cR9r5qmNQpIFwDx8cR9Qez5TXenMG/wWBL77aHD+WKBK0vNZhBLma5I66vdH+O56mv4ScpdACxlEKvpw5VFYjj+w1WXMoTF3PCl5/zZViELMAgYLYBuZ8tY8TQSyp6nvychAGggMVC6rm9Xzp73Xux4T3YinRq3ExcvfbuLDuRQEgNm28ngbQbGLIUTmUyPzGKW8jkZTyrYUZARc7msWt5Z3BLXIG9elralaB8E6usSluiXFuu2HVnxbd6fOgAIzBJ0/Oxwn/byiYOgSBkVhmHUveDxIAiWAj/7GO/5oYKu6hFBaj4e9J6PCHvvIABnOZLVbz6ybh/AaXdrEMFqA24VMKtNjV7bhACMJjxQfD1CpbwC1+U1IIJYOg5gVuIkAz1x0FGCeA7swxOntiAW30pX/d7cmMxKkaDflyJ7k/mCfBa3VJllJx1349qM7APbaJ6nKBW3GIEnTi3UdiTjyVuT8Fin9EhfbsfjksyjPRcRwGsRqSRT+9PyE5lQ3RIR5gvxJKeHK9laVxXNDeYHcBfDLGRc6vB93OiYjxSAEL1nITK+vXAmsgP6u7lpJeD5iOzvIAQ8x+unUO+ZhDPMtdbrzeoXj/SrjY9ZFlO1T7YjgKNazzPCDnCXuS36218RUGVEAl1oHgdk70Utbj1MwN3rjH7brFvRuKsGnHK8tbY1HtFXR938ViDKiM046ErS3420o0Dr2aJtTdLrjKnO3EjPxSN6BuExc+VaX3fkfY3T8zYg8y1Jn9veiQjZ8PGVkCNPTCmn3eEOU4IguDAMw78GQXD5IT/1CIKAMAz/eJy3+NgDdE98OTT+wVyBlKKm3mInBsDWSExQ9IUEEdiHhyR2lJW7vl8a7bK2U7ZCEELugFd4jmvIYHvMOjSZiYxjBmORZJm/4z8YxFIKcyX248bVU9iTnkjyYBFQW92PLAqz9J6rEIuDwUxjilMDfO3VLUhaddDpLpYgMSuToaOCg2vn/R/MhrpBokK6ice44cnn6PP1vwHQP24VC2aNjsnIWeOLiEto5K2bxIWrx2N/ZzgLeGa3+IX1yC9mbdn/Z+/Mw7Oqrv3/OQx5w5AQEiAxIRpCkBBFBmPRiAxVsWClap1tLfXSn2Nbi/TWVluvWnvtdWq92tZe6qXUWrUqFSuIQ0GqEZQhCiYoSQgGMAkEQgKEvAzn98da610niEOFe+FS9vPkyXumffbZZ5+913cN3zUMmpy0gGLtJ9OknQyshT75MjM0jDyaLTdnOQPcPchibUxr49HEYyrMboP4b1ITVrhTHpnHGy+O5dh04Z5cMbUYXghoPbkna/8krmL/cfd3eJkzEvTkVTOO48krJibopvtQzy+bp7OxoDsgVpcLX3wu0Xebx3VhOYMZNfPN9n1vrofTETBq4+F8hEK7GlmsgcJqkWi29RHVYM/KVv5Y8FWuXCRA650Rx9KfSpZpYqiBvMc8xpDG5kSbyimiSEPsFjWPgBUx4idrv2xEGOI24qFtVYgbp2I1Gd9R9zdz+7QSJQqJbv/fLCHBAWWH+2cthxII2h0EweWILiVEPE4PWPqNfZUwDHf9o0FXT+KuOpXayEWIMNtV9/9Oz7XEowNwTXgHZL4cjQhRRYjn6lhEYFyJzIlZiJA3AhHKFiECXiGeNygbWSNOQgTMGkRjXocI4oP1muGI0GY0vpaE09yezDrQGycI2E37hJlv43mJLJmpxbaAu31l40J4Dh4bAiJkW9yRuX2Ze2C6Xm8EB5Y7xwaAxYCYNaMQp54GBx7mcmh1gVsIduLg0hw5rA/RNtTTPjZoD7LOvYdTIJsb227tB4v3MkY9KxarFK0rytGUhgCKPZFtI4Cw/jDCiz0IIHgZkUmsX3Nob0UykJasf0tx5sJU7btFOMW63acHAsKz9Bxrq5F9dNZnzsPzXoFHFRi4TcMBW2ekv9dE/pvbngERG2/GJmdjawMCQs0N0ZgNs5C12WJ80LqXIuP8LRy8r8ITAxsbnoE1A3fd9P4DEcWyEUZ00Dotd5bFTRmLIng4QpRYa79LiJtV912OuMPtu4xGMPo5+zgWIlEPn7t8nrXi0CrRpb4z8uUqKOqSKbJi1F5WhWgIrCTHEwksk4rbiCXF6XG8BK5UUsBg3iEWGbi5fEA9fRKWoe9v+E8W9h4qLnAAg4Xet5O9lesQRrh7dfs3COW1urvRT66xQMFu1++Bn8Am3U5/HlkgZkOvLyqTwUNw3bP30lFXkVxqKbhqRSJP0CJGMH7iM7yyScwyjc0ZxGtSE+xvVS8eR9X04+jzmFCgVVw2jB7T69iyUKw6Jz7zutBUVwLnuiWHKskplCjn4clPj0cmIHXQTMpqFtBjuYf+HpPJS+X4tKLN9BhTx4r7Tkpcn3RJM/HpqQmQ8q9LH4C0kEfzLwRgxhVX8K34b5mcNA2QeKCW1C6JZKkPbbiRZeMGkaezd8+3Wxn13296CNu9yIRm28nIZGfv5kHEBWY0bPyOAKteM7eybUIHodoGVo87issXPM3zo4SaL0nd4WyMzGMsRZQnQM8TXMJQyhIECa0rekJBKIlnwReXqHdbf0Tg+jCyjwp8BTcrUBQItfB/HfwcKQe2HEog6DIkB8MvkUXrdf4XNG3/SNBVJySOZTkiPJvLlrmsmZA3BPkMTUv8NgJy6hFAVIvTGhtbVhoutFnswvHIclWPqB5zcHYzc+MBZ8JP1TpMq23JRYfggqBptjvigAVcAM/HrQvLEbBRjbtJ5ePJXM0icyYeU7EJBy8WV4I+V6q236wExkyWpnWacGnWhHpcWI9p/ev1z/LVbEeA3xo8Seh2RI406wq41aFQz18VqcviVQycGHV2NEFqi/ZpXeRe4AleDcjYOwF3Y9wS2WfWLsuFY4QEHfTaDrhLXwsydgYgAKwNiUMz8BXHcyHtxhn96nCLn1kgd+O5leJ4PJeBWHsX7yGWE0t8OgJn6TPgkY+AdavP4rXMipeHu5BFY6LM9c229yDjzMBpsrbTAI8BKiOOqNPnNtIJizPbgo85S1ps6STW6P4eOMGGudWt0r41dzyjFDMikqX6HG3It/IUrpAYoW24GBk7Zhk8IOWTLUFHyj5KGIa36s/bwzBcHT2m1psDcY//0QDd/9nSBZ/hMiP7gNZmOCqVhGdNPSJgpkUub4rRsEO9AZsCehxfx5ZpAgZKrn2GJnoyjGWJGIVillBDHmWq+W/sXcv93MBto+Q11ZJLSVspmydpnMrKVmmeUWQPQgRts5jci2tqALYIAEp/RbdvB+6Ede9kkHOfrCSrnz2KyUxLALG/cxrf5oEEbXMtuVTG+xPfoQ/+Qky0IkdpnXXAJc7MxvGI61yNbC4xs9QdwHlax1HIgmjC+vHAVuhxiwDGLTdlieucHo/PV9rn+/X6S4GrSACcOcVnc1H248y9XtqckrSVtdX96TPlA0ooZfamCcR3xBiXPTcBcrqynbFJ8xOAI40m7mEqd06/A4DnJ53Odrrysvrkfb/6P8XyI5iJTYMg/UncvD0TyTdg8Vhl+nsL9JqjgDMZuq3cw8pxxwCQSQOrRx3FmDZxLXw/NpBcahOgp5ZcWuieGB9FlFNOEY3N6t+YFUJdQJ9rlRr8V0fLpL0Wz1+0A4kTSvB9dEGkjDG6YykfBUGHT5GYoCPucPtbDhkQFIZhDUI5esiWFIS6Lh8ReMxt2oLUm5Fv9CRc15aNzGt1el4ZIuB2RT7XakQAtJw+FojejAjAX0EsRUW4W9pcPH4nA7fiGPWwCaO9EQFuKR5DYnERGbglaj0uaBoQakTWwUY8TmanttesOdv1HIudMGF4O26pqtZjq3CCgvfw/DXrkLVtPU4hvQNPEWFWmkzdb1TdJlw3an8Yc1c9bi3fgICKQjxHUFc8ZiRb22bxId1wqmjzCInh65kleDXGPrTejjiDmlkc6nHrVA/trzV47NMWEoQ/rMNjXXZH9pnbmWWuKNI2GLV5Bg6AzH0wmhfJ4ofS8Bgxc/PqjI8BI8/I1zbu0ftuoX18klkIm3Q7B1EYGwOi5YWyc9F2WfxWV22/uV521D46Bhnbhci4H46MF2ODy8JZCM1lbpXeJ1vPW6T1DUO+uwIc0FmfGXi3pMQTkO+kUutZpe+kBQfkaYg1bynuqqiJ1TkHMT1swmnX97t8uiXoSPnk8jTuKWvlKeDEg9CWg1g64dKhzWY2M3ZBZns9HqTKxGfm3VORj9S25+jvHHED63/xuwxmOcuvlRmshn6MZR5d2E4DmcxjLFO5m41kMFvpw77NA9zHjeTUypcVy43zfmwgw2ZKtP2u06HTZBxi9kMmK2MoG4R8lLYgrIb09bAtVez93bL38MyI8Zy/cg7rpogg3W/BhywblcbJiyT4/v4RN/BE5ST+UCBxKAs5mRlJV3B/L2EhiF8Qo3VtT75eJMRVf1jxLXG/UtviiaNeZ0l1SaKH+496l6prj+Pctx7nL7PUfNSKaETujryKAtjyaFbiN+cClWr5mR4TU7Jiif7D36Vq6nFwmh5/IcaTnb4h7QBSpshq1DDjaGZ/OY0J6bNJoYUk4ty66TYALk5/gjSaEjFCX2cGQynjmUnjATj/K3N4ZhacESqqyQamwSZJ4US6gZ3TI///DJunKGBd0CqT/WycwnMLkrx2gzr6N0LPtlbeGSKJazeSQRM9KVMiMtvO0Jk2Tj8afBYAACAASURBVFI7prNB+WVUvDCMhq0KQM0FohgH6+bysFxVkl1SFe8YGVkOsgqa5SeFwykuaA8d9psd7kg5hEBQEAT/zb7Zdq48CM3ZZzHFQzIey5GLu4XtQISmt/AEjFmIcGVUwQNAmfKdBrgzAp5WIT4dFmuRpL+Px92TarROY/SyxJTzEMGuPHJuBm59tzgQE8JNo28AKUolnYTn/DFwtQYBCibAbsKTcZ6Ex7Ck6HOZhcOIDlJpTw2dggifeXqvznhMywbcsrFSn8uYzXYgwGYbHgtyBmi6O09QC+4SZvFBRpmdi1jm5ukzWWxMNe5CF41V2RDZZ+DHaJKX4bl0QOZoI58wdz2jH7c2GZMfeq0RVZgVZxMe4xSlYG5Gxo9Zzjbp72ac2W85Hgtl7ydb22rPYoDLnsn6pQl/31FLz57IMQOpHXDAtkrrz+ajlO0ms0QthOaGVoUAkdkIwNuNM/CZG5qBXrM6dkDGPwjosPi6cXrOMtqTXqzDLWlmLS3S57PYpxV6z6HabiNyKNFzV2g/NyHfSzEyptfq9aYAOCDlSEzQ5ypBEBQCxyH9E40LSsWx/D9RsdxA8FFiBANHS+Vf1hhxKTLLT5WeYq4M45EJTo9XlR5HVdpx9C2SWS+NJp7iAi7gKWbFz2Fi0nPEiHMBTyda00pX5nIWk/uIuaGWXMnXo2byTtcjrm9GknshMjlYnqBBiMbBbHr3An+Cbn38Y+lHDZRBzquqwhiKgCx9+xN5jgkFTyesEcsYSgN92DJfZpT+497l2KJ5zIoL6unytc20bu2ayF1TTyacG9DlNYljqTr/OJgKf/nVJb74VyATt2KY/te+SxJxKp5QFuIxIZwcwE9Vkn+wDa6PJdjjqs4/TvZN1+NrgalhIsZo7c8KIBnGT3mGOb86n9mXTCD+eCpkwNcvFvBWSQG5fMBfERa8BjIpXLSGqhESw3Xzsz/mLOYyrFZigDaNhPQ/QLqCnncuOZYTbn1fJkFI0GD3HBmxqDQjWitjALoXNhd0EYAEifwQ89Qq8z4DGcxy+qirWi25DKUsYQkqpYSG6lxOyZ8PQCb1VDQNc3eMM5AJuA5JkDoVcTHcCPRTldtqEABkrBN/RMa8RbgePgAIjrDDHahyyIAghETNSjLu+n/IlDY80NuEU2PaAhGqymjP/GUCvyWO3I2TEZhl31zPShDhbDDOqpaOxxAlIwLaQ4hb3g6tp0nPa8Jz8LQgc9gwPBeMkTgY+5yRFZiG3UgbjFXMguktj042Tl/dFQEvuXiunw2R47vxZNh5+ru31mWU1BPxYPkU3CqVgwivRgi0Bxf8jeLZ5kYT3i3+xsCGCeOWWyhF22RWN1NydkYEZHPbMznAAFQUhHTQ+5h78k5krjfyh03IO7Xg/r449bU5otiANgIDY7Izy4iNHQNFNkYy9ZmHR56xOdKn5vpouYEM/HTEk8kaMcAxyHgzF0YbvztwdzHLDWUWsvXIuDFwbIA0D7c6GfDNxRntDHCbG2gS8g464LFsGXqN5ZZKxi2NURe4nbhbm1ka65DQhVeR76aHXp+FKxzqcZBlebw6IEoAo89+D/n29iCubtv1bxEyEdn7yMLZ/QZqfWZpOyDl09nhjsQE7bsMRPhj0mgfF9QCfOugtOigl2gguOUJMgBUQWJm/lAziSWnSvB5Gu1ctviQRMA/wKArl1ExaxjxIhHAypuLyEutoZwihiWVMSt+DsuShvI9fkEZQ+lPJY1kUEAVtbFc/sJ5fLvtAapiBeSMbJRmDkMmuz/pPS9FPnCzDGUDzyOLH/p7BAm2uD+/dQ4T2p4Xq4USFSwY8QVGbXiT3/SexNWLpnN55dNcztMsLBjK7fyYaUxmOSfAWhh/5TPEiPOXFy+hx5g678LfxIhXCiBZWyyMba0rNE7lp/LX/7F3BbyM1O4thKS/SNxO1bXHybnmKvCukiokQ9ItzaSlN9GQfLQseAVa5/SYUG4DgxYso2J9EU2bdGUaCbxGwvUt/niqeH8thjaSiBEnlw8op4jRLOAcnmMqd3PxiOkUs4TLeIyv8KzERa2WNqW/psNhpNzihAUKgAyATkOsgwaKb9MxMRT4AJkMe6iFaDHyDv4EjJYkuQ1k8t2Vv+Xmwh9TSglpNJFBI/cwlZrmPABGpC7i2/n38J/rvwNA/+xKGAl9R2nOpqUF0jfFiIBwD/LcMWBxDTKWF2kntiJgyBIEr8NVmocHKQIcYYc7UOWQAUFhGD4d3dbssS9/zOkHpXRAhCpjWsvWv5nI/LECZ+r6ux6zmIRUPN4hjny7phX/GyJcmQYb/V+odR2DfMYZiJB4BiIAZ+h5FtdhgCaOCGrDESFzDyIIHoNrv83lpwiZw8wacBKemNNc2Cz4fxEyB1nCSCNXAGciy8cBglmpTNhuQoTgLThzXZrWn4fPsRv0vll4HEc0BsdAlyX8NG0+uAuVJRZt0XtbrE1c+80AYUuk3iF6P6vLrCdGpJCMW+264e5Pr+FgogQRyKMuc5bSwuo0t7hi3PMpygBi1pYmPPi/HrfIjdD790dA93CcPc2sgYWRus0qk4WTJVjMjVk4UnBrmYGMWhx09sYtdkatbe91O86+Z2M+mvvHyAnMXW838g7iOGPgy9o+o0A3i2URAqBz9Fg3fea0SN8Y412dPnc5Yul7EXl3m3DQl6HtqNbnM9KQOjwuSAmEEyA+R+sZoM9kQHMDAootZ1DUwrdf5X+UDubwLGEYPgs8GwTBKWEYvnGw23PoFRP6WpEvogCR2AcBqfKze+T03+ChQ6fo5WpRqVhfxKCJyxJ5Zs5JncUwypjFRAqoJDeplmUMpYr+XKDOvE9wMRk0kkkDV/Ews2Nnc+Gtz3numZMRrZiW5y6Fc37i2+RL+xYMEQrlUa+8KfFC18nhC296DrJh1yTopNaJUce+Scn7f2Ms87h5xI/pQz0pbKWBPozi7/yw9H7GlzzD2r4FzHnxfJKKm2E6bKlTW/N8+etSJpaf1oU9ZfG1xKaj5V/VmceJJgVk8UiG+INKcT1S+/UbGqz/zUzp+mRhgWtITqXPYx/QkK5uX/cg2rNestlCCvw0RrxYhd0xIfQNWFF+UuJ9DSpaRsXGYYkYoBhxdtOJZzW6oIFMbuNWcttkhX0h9iV6zdyaiPFZUPgFRpW96cQHjcAU7/o//gEufhA6mX11i54zHXYphXmnBtg2ogOto0Sd2KvbVnb1gcKVayhkDbuUwejr6rOxhGIyqSc3VdqUSb3EKDXJc1bVHAc7YO0TylG+TvsyB1lgL0EW4i5Alzw5p9WyFlbgAU01+v/wcoUDcYc7Ygn6aAmC4GiEvmMj8H4Yhnd90vmHDAjaRxkAHP2pZ/0vFvNU6YbMA+vxoPH3EKFuJ/LZmZG+ByIwvo0IecX62wRCs57EtY5G3WeJTMtxYTUdEdy24W46I/DkFXO1TSk4k1tvPR7DY3EsxiIHcSM7Cxf89mhbLF/LbkRA3BO5jyWxNFIAc+lbr+emah8UI0DK0vKtQ5RH1dqHq/RaAyrDcYCUhgi75vpngm6N/l6Juwy24Axq7yFxWwYMk7UfLMeS9au5/A3X617V88wdrgdOY25cM1GrUFRZH2WBs7jeqGXAwNIISCTV7KvP0Ya8G3MD24a7k7XQXrBOwS1v9YjquxAHggYezIK3B3dly8MtLeh9t+HgcI/W0w13gRuAA+quCHjK1XPMSleNAH8bV+bSGMeBsdGnd9B9lpeqWJ85H3mvXfH3a8DRLGTrcOp0s1oOxUF4DvLOkhAg+letw8Bduv6u1v42N7sdwLPIONiGj4H3tH+N1CKGuNoZiUIcUWiY7GPvfb/LkTxBn6sEQfCvYRj+B3BZEAQfyTwehuF3DkKzDpGyi/Yp99KRGTlC7N5KIi6FNETgNHP5X5BFoli3K2N0zN6ViEdYzgk00ZM4SQlgdDmPMY+x5Kpqayr3kNv8IZWpolq68L7n4FTYfJvGmTzcSutQ6PKg3OKcH+BJOUGOvQ6jblUa59MRWVcpml//OXQMh3Ly22WsPk+YDeadN5ZiFrNYG15CKWOZn4hTGlcyi+v4FbXjZGXbTScaH8tIECFc9MjvaaInLw5QdPY9JFfSg2rNeRWxRFVqH4FMwJPanOigErFYnKaI8iygJw44LeAzqtG5E3H3AtZeWwC9oMsFCsQqe8pktBCOv1JWk1H8nbGj5rFM423OYi4/4k6u0Yyt9zGFODGhFAfiI3Yz9bw7uGf6j+X6TsoMp16Eu6ZBp2dgl4KeMSiFuVFmZyO21UnQyUgKZkO3oXtonSSbzxecThHl9Nsi1G0zU8/hHJ5L0HjPYiIx2uiqVEJtJFFROoxxJcKRXsZQGh452v22CxCAaG4YIItuBhEvzwHQGuVn7UJ7YoTDBwAdqBIEQS4iBtry/dswDH/5Med2RHR+68Iw/LLu+xJCZtYRmPZpgONT2vIIYs1vCMPw+Mj+f/QexwLPh2H4cBAEMz7l3EMHBAVB0EL7mKA64AcHqTn7LCEyV1jAveUysXigHYhwmY8Ieqad34NbNZ7E41EsaecIXDNtwdsZ+mesbZsQwS8LEcRaECHN4m/m0T6v23o8hqcWdx/KRuaOHK33PDw5plk7eiPzrNEJD9H2rdd2nIbMResRIdz6wogZLKmqudtFLRGrtA0mUG9ChNYW7aeuiMDbDbFKmRtUZ2SO3oQL6eYC2KJtelX73qi6uyLCrAEKyx/UhAivf0WAjgGNaHD7YNzd2SxnxtQ3kvbJUFfgsT/2rOm4Qt8E6XU4OC7E3SPb4CP6nJU4kOqLKL2OR5SyixF3yLnaTqPKNhrqFH3GJr1PivbdOt23U6+rRoR/A3wWX2SWHssNZAliM3B3ygH4GGzEgZG5FVoC3UzcjdGY83bqeaV6/zrczc/yF1kx2cBc3OYgY7ZJ6yjS48ZsZ+Qaw5GxMAP/vgZofy/Tumw9zdRravB3O1rvPQIZq0ZykYXnrTKwugn5pqP+vJ+7hHyaJehITNC+i9kUDhhb+f/9svfyHk0aadm/gKPyPGkciKxojCYg1o/T8J49rY0GMmlYL4J9UXY5cZLoTyUliYhXAR3R+Jv61MxEHqF1UzLIebyRntO1TX2gy81IUk5g3QeQ0wO2LVfig4v2yEeshGz0A06HlZcIqDq1eg2rqWfjkO4J7XgKLTyw6F/ZOEIQxx+5jGlMJludkltIYTHFVDXLyvnvqTdxw9KH6X+3MJ9XUcCSn51K/1W6XV0EKwKZiEGAz11Ivh0LVMwC6mIeT/MhkmfH8gTdCVyNTHoAU9tomHE03KLb7yKJU9UiQhqeGBRIymumz/AGGjb1YcX6E6Apxoo0+X9R0e+13f0ZVFrDj0rElDaF+yihlBkjpF9u5mft3hOzEb25asg6Nch76KS+2TkDEKubuSqOg43vdKfXA1sTIJQb4Z3cYylqfh+As1e/wq5+sDpXAOkZvMxyBlOpUkqB5gzKTfh/CCg1iuymTWli9XpLAecLSL+vxcdpDNVQqtaodR0ym+u4ZhMChA4/Vzgru/dfhN8F3BiG4dIgCFKAJUEQvBSG4b48vL+LzLOpkABFDyF8iGuBt4IgmLX3tUEQ9AFawzBsiewrCMMwSngO8qU8iId4f+I9giAYDPz7XnVciSzxNwdBcDHwh0/rgEMGBIVhmPLpZx3c0g2Pl7HcKtvxBJ1GIf0SIrSdiQiVNTgT1il6/hAcIJjLXBPiLpWBuO+YG5rFxFgS06gL2gDkU/8yAgIsSaQFvy+mPXPaKsSNKqbXrdG2m1BprkEvI+DEGL124uQKNbglwEgAzIJiOVbMSmQEBrtxkoLe+pwW17MNWYPfwt0JLc7Ucs1YjEs+ngyzTs85Rt/Fq5E+NFY6i70x0ocdkfpvBB7Q9mbTnt0rCnIMBFmckAnEZ2g/GUiJ5h/aFLneAJE9bxEiNFvJxwHMNm1vVuQ+g7XtlXrtcARADMYtR1W4AaEOZwm0mLU0BFS+iowBew+NOCFBV2SsWXyXxSuZlSkTAWY7EYE/H7fkGci2uKAVyPs3K1U1zkC4Eo/16qh1WwxQHrKEmUueWQU7I9/EOGQ8ZuBKA3Pd66Dta9F6qpHvolr3/RW3/mzTe1s+qw54LqljIsc7I9+YuVeuxOOd7Bs7CVfo7nc5EhP0uYoBwjAMf2/7giDoAHQPw7D5oDXsoJYoK5Zpxa2Y7R/4sB76ZSYYyJiEfCxGJ1GHTF6mZauM0dYrSeI2gGXxoRQlVVBCaSJWpZWu9KEhsd1CCgVU0a9WLAPLcgeRc2oj/Fmq3DipO70WbRVCBCDn58BR0BAToNVv24cyeRnxV7a0s/A+sde/9ORIznz4NTgf2noLgLjwhOfY9RoJSuy5nMUI3uSH5fcD8Luiy/kV1/K9VNmexmSYD1VoHM9a4JKQqqW6PV8JCarVJHJyIJPSRtxKVqPbk3T7FuDXiPUH6LG4TogYfqPH02ICkKILzm9iXh9wyvB5vPETWTH+5faH+N33r4PzIKmwmXgasDgGBdBLTTm/Kp/Cv5Q8JEQOwLz7xrNrstc3JfU/eGDRv3p81emw+f0u9PyWjo9q2LimO72uUNPgj2jPzDcdeq3fKq6Ium9h7lBOXlCW0Fq9NG4kY5tfS1gGH+JaLuBpxiKU2V3ZTj2ZpCnSfpkzyKQ+QZHdJ72BtStTZfIFGb5/By4nQeVNPZqsUaNa/5SnL6A1ckIrLuZGAdH//XIg2OHCMPwQzbQUhmFLEAQVyJK4N5DpC5yNwHhzlvwCUBmGYbWe8zhCaLw3gBoNXBMEwYQwDHcEQfAtRJc5Ya+2LAiCIG+vaz/2HmEYLkeW+HYlCIKpwK1a31MIwfvHlkMGBAVB8EoYhqd/2r6DWUxImofMUZ0RgbIJp/Zdg4CfVQidvdE4fwX5PKO5VZrwXDFzgCsQofKvuAbe4hnOwl2uMhGhz2IUWhDhrBiPGfk7HndRg1uBjDErS58lHxHozFph1hvLL2PB8r3xIPDeCGAYgNMqp+OB8OV4/pR0nFK7CafLtniRIjz+I0/PNcHbhFyLxdmOC61mfWjRe8zBwchOnL7cyBG24wQFxto2ALgGsaiYhclyKe3A53z7vwURwlfoeS/j+YSiSVetGJgwa0FnbU8x7lpormPmcmZWxhZknB2vzwbuvGJEG2YwMHY5i7uKxt7Yfe15duLkHtv09yp8TBpZwxqcNbCD/s7QvjcXxR16bZ623b6PFATkN+FWyB761w2xTrXos63HrYbGQGcxSObaaUDuTGRMmbXwJL1fOTJel2rdBkZTEOXlOGQ8FCPvdibOofw2zshngB9tUz5u3XsOmcmtH0zxsVTPHQmagnE/y6dbgo6UTyhBEDyG6Np3IzxSPYIguC8Mw7s/+crDubTgQeIgwmA97ZKlgmtpfo184CZemDl2pDpq1AVseTSLoivF+JaW1EQR5VRRwHa6Sg4gSsmkniSNU5ncPJ1Oq2HZEAlEGbahAtpg4xSx0rQRg7Ktbm06HzaO706/BwQ0rXs5gy6dG0m/3Z9q43nd2YgIzWd+5TXWPZtBC90prBVgtPmdLizmRC5fIOHGl//haS7+r+n0LxLLzr9UP8qN+XcKSx2w4sWTBOiZi1cBsDZIBOe3HN+dOb863y0ztpha/4AAoM34Yn0/aPUAbHkwS/zLbtAdTSjg1L5tCuhz+wftkq2mTdzMKbcLePjdrOvgTOhTIuck3dBMycR59KGeaZsE6fy16Aye4OJE30+Y8jQNZHKfyq5nMVcmN3MaHaSkBup6tm10B3p9ZSurnxUrTgot9Lpha/sF7kZkslQXupPLylh421CKm8u06+Sh+7dJ390U+zlTuC9h+TmRxWTQyB+UA30w71CaMPNBjDZf/MGTzQ7GgZGZ8tcSKVHyj0EkGBABB0SHhyXoM+YJ6hUEQdQ6/tswDH+7rxMVgAzDl8Fo+QXwr7T3q82BiClP3sSIj7QzDP+sudoeD4Lgz4i15sxPa/g/co+9ygvAvwVBcBkeFPax5aCDoCAITFbtFQRBT0Dtn6QicsYhUzrhzFfgAd0gAvJpiPXk13rMLBFr9JrTEMGzFBGc8hDwYkxiyxFB6iRkXizS8zPwkdeEdEoJ8nYNxJgrUQHy2Q/GLQlDEDBWg8wZebjlp07riLrabkIsRRbkXo4IgF3xJJRFuOBo2n4TJrO0DZbktBoHJKa5X4wnRbWkmsbslY4z0FmMSa0+87ZIPQaudmh7ShEtfo3WMRAHP9bGbto3dbp/gP6eg7u8mWVkX9SEL+61vQX5IhfhrHDg7HvglNI7ETe2k3CqcUuOa/E6TXpsuV4btU71xgk2zHpmINIsXNtx61mS9mmUZMGsZ+v0fnl4TFCz/re8S/auOiIiUxxnHjRXMAPrbbgVKA1nkzOjhllnzOLZGY99s33JyIxn+9dr+7P0elM4mAvcazjF+N/0/1vI92IWKiMwqMdd3EpwFkOLWbJxZ2OkCQFQRtRQqH1v5Atd9T7p2o4DZsY+EhO0v6UoDMPmIAguRxx9foCAoX9SEBR1AYrapzNJyBKt9bC6Cyj7GYsRPa0J8qZBqNOleSF0mbyZJl0x1sePoikpjf5U0UgGQymjiv4M5h1hXwOqUvtzU/0vEpYBkLiRs2dqttMGFbJv1IMfQJe27YlJuEvnRtKXIw4zADvkeOGraq2YADlXNMJPGtnVR3alNLdSEitlwSghU8gdVctY5nMXPwTguvwHaaIn91gATl8hGRjMOwA8+eI3oDus/b6awPohC6z1Sw6iyZmKuAUs1uOntcFcFU7fRRYXCx4cqH1Zo9srEIHhe9q3Y9QVTI1PPAFzppzvgsa5cMrt82ihO8/e/hVO+ckyuB3GMp9aJVe4k5s5i7k8xVcB+Al3MJh3KJwj4HDj+O5sS+1At2fEOXvp6zD8ahKLTrfVe+Bq6HerAFAmI+8hQ9swCFnwLgV+Ast+PYjBzRWcPL0sAVr6Df2QjYXdE+5vz3EOJ7KYBrVO7aYTteQmQGwaTaSxmcGp0vfvM1CIKcwitkN/l+GZ0n+tbVAmPZk4m5GVBjxZqpXDA/xYEXa4T7UEbQzDsPjTTgqCoDuSY+2GvS3nQRBYnM6SIAjGRA/ts1n72hmG/6FWnF8D/cMw3Lqv8/bVtM96j8i9ViCi1mcqBx0EIfmRb8AVq1aacYPtIVE6IcJjDHepMhCyBplDjGJ3Ka6Jt/gU9PeZCMgZiQAVc28zTXsdAsetrh0Ile9wnEjBNOLmTmcZ67fjVheLHdqCEzQY7bMlZC3C3eeMNng3IjRu0DosZqJzpD3mxrQGD5BPoz1jncVfGNMcCOiYi7tOGQHDcr13Kh63slvPq9V+rMaFcgMsBub64rEw9VqPUVjvwK1S6H5LzmlkCZYjaKc+k5EimHXIrDroeb1x17dFOJU4OCgyi4RZ2cDjlcATnnbGVR3Z2o+zIvcGGSuDcYuYERgYQ9nbCAg0Ah/Lz5SEuyrWartGIO97sPZdpp5XhnALm1ukxfIkR/6OwRPBWrJeczeci5N/mNVvkbY3F1EaDsApvS2XlRF+ZCEgxtgAR2g9f9N2nEN7cJkW6TdjksvR53gLZ0o0XVk1zmDXGfGkeA9ZR0txMGksi+g+i5uq0T6w952PKAXsGz9g5YglaH9K5yAIOiMpKR8Mw3BnEASfuGgenmXvpT26baQIhrbTIejsVphLkQ9JXbjYQXsLSTK0ru1JRZqsamOy5zF/6Zc4cfhiJvA8APMZS4x4AlBMbJ7DS+NGJoRgnnmTs0e/kqBlZgfi5mQMI4Og28N7Eh9Wej8kNFpx258nncN5zc/BZXr+g3IN2zxYf9fJ0K1hD0m5YhG5k5uJk8Q11Y/ILfLLvD0AG6Eju3iy/BtyfJxQgXf5sZIS/KWn3MfEq3eRyeJqHAClAS/E/LnqEEBpE0oFwvym+IJJeq31fQbEF6fKJIZedy4wVQN0Fsd4Y30J1MQ45YVliabfw9REnM9t3Mqt3Mb3+AUAF1Y+x8UF0+k1Xsw2Dy240bO2I1bu4TfqcwDrBkHOQhLscVyKCAs2yZmR6l7p72FXVMAg2HWd9/26wgxyXmykV75ahgoquZ/vJYBzI2K1G6YPOo+xxGhjfrO4/bUu7CmMgTbmzpX3Q0fElA/wTQQAWewa6/DIXZAxvrcbaHRVPVIAdL58GvhjGIbP7OOUU4GJQRBMQJbA1CAIHkXk89zIeX35mLQ2QRCchogqM5HIv+s/Y/PWftZ7fN5y0EGQMlH8MgiCb4dh+J8Huz2fVDrhyRgthiUHAQMFiDb8GD1mQnIdoiRahAhLIxE3p4n6fzzySW5H5v/hyLxnQjSIJcYogLMQgcwCyE1bby5eRgdtwMYSqpowa5aG9YhwuBYRes0FbCkOto7Rus0drUWPG3DagS+lplXvqNdt0jotJ8sQRGBdjzPXvaz9UYnHNpk1YTcOLjvrNVHiBXOTMmtUMiLQFunzliMa+i/jcTZG2LAbt0pkI66KdQjwiBYDM+Buall4fJUVzQuX+L9I31E98t7M2nAGYo0wt7M0bZu569lcnkT73ELgcUUWq2LP0RtPOmskGNv03h0QoGeWjFXaH6tw5rQN2rdbtI4qPAatVvvHXCTrESAwQJ/PwLbV01v3G7X2HlzMMrc3Y2KLGvEX4ZTbRYji1OKkarVdBnDTcfpvy1lk8UV7cFIEI/UwMJ2v2x31+S0i4hhtW2/dbkMAUTc8P18NPt5H4hbIcn1HQ7SeSKjx5y9HLEH7Wx5GXtnbwIIgCI5BRLh/srIvrbcJg5o7JVBEkYUH6oN8IAV4nqA0vfRLstm/6F3aiLF2vcgmy+JDOXH465RyKktUdX8VDzOT8xLuTyNS36SAKs7cIMEv71x1LCfUvs+2VCU+WLxHPlC14vAgIiYZGLgUaIN1k0Ryv7D2Od7JPZYTFkogPrOBoeJuN+wiOFbnywAAIABJREFUcdPrtA2WnTeIk++TSn44pT8/4k6eSJPMpCWU8rul15GUp8OjF9TGc/ld0eUA3Mpt0Bda71E0eAkilFu/nAHcgeTNsXip7kBeG7ysM5wtcBbM/6U2GBkTAR/gHk2Mai5dacA9kDRd2hSfnAo74MRsQUnLRw4mN72WpOw4FVuFDW5+6ZdIKmzmxHQ5Zwr30Z9KGqwze8DkRCCNUFl3e2UP656Vvrz13xtl8bN4rGJYNyKDnOvV1+1O4D/QcHggBrsmQ6cK2qUh7tQgrnQg7G4t4yoTtNzLGEoScTqqhqcP9ZRTlHDZK2YxTaTRlir9Fh/XIsQbK7UfN+J9dJT+n48LNqDDOx1Xd5ojebQcPgBozwFIlhoEQQD8DqgIw/C+fZ0ThuEPQcynagmaGobh14Ig6AQMUFe3dcgXctne1wdBMAz4LySmaDXwaBAEPw3D8Ja9z91Heeuz3GN/ykEHQUEQfDEMw78B6/bK9A3AxyDTg1K2IlbqIYiwtR7/Lo/HAcHbyKeWiWjDVyDC3dt4ssbXEI35U3rM2M5itHdRa8HZ4iyWZrn+H49bfIxcoQZZ4nbgbkUFke0eyJxsBAKWzHMHAiJ2I8KcsZftxF3bchHrgQEwowuOab3r9RzLcVStx7NwQdIATJr2o8VdGHtblL3MYkKS8TXaWMJMWW65fAxANeK6nqW674t6zts4SYNZqiwWaLC+g79pm1bgAKgHAhIs343l+rH7NyHCc5s+gyW4RZ93CDIORuA5lExIr8cFdQN5xoIXLQaMLI9PBxwUDEPGoalH8iL9VKvn/F3bX6v3LIw8iwGwLDxOq1zPzdffFvM1AB+HZs0xBxdjQ9yubWzU8zZpnWatMTa9LThb32i933b9bUA+K/LcFmOUhYPa0ThRwtt4jNrb+myWQ8lAjz1TR/29Bgdfbfos0TG7Axk/L2ubzVVwgPbLKXhi4gNSjrDD7VcJw/ABhO/EypogCMZ+3PmHd4m6wnXCYyU0C1aoaHtH5/YsZCZkmlYmAyfcAtb3zSYvtQZ2iADWK6mRoZTRle0J0JPNemZyXsIy1JXtZDY3sq63CN7b6cquHtDtVXHJ2nWq0DJjAfy1tNeUqAk2Z7oK5jdD34b3XXNVCFwPw35TwfPPShjx2Qte4ToeYvIUAQBjmM9czuJH6T/TW+TSpWAz2akyc1Y1FdG6tSv/8vgf0QtE0DYrzkZkAblEt+cDD4f0zy+nar2ioJdjcGsMfq+Wm6tjYjkydrisGHyVRCwNBTGpb5JuV0LfWZWsLdX68uTZl8zQeJksqNp8HDwBSdMUKDXJDHxD+cMAdOm7mXdTpyQE5Jt7/5hacvkRdwLQFOtJt+xGci7SRtwIL40YyZm3KjvDUMh5uJFlb2n81soKmayVvpzV0OkiJNjSIrafgV03QmtMrINnNb9CeeqxzI6dDQjIaSGFUkoAKKWE9xiIlYt5gvmMSbjPNbx4tFPugmtwC3BXwo7I2Nym22l58OFO3HfQEnPYuD/cqLKDA8EOdyrwdWB5EASmcvhRGIazgyCYDUwOw3CflpcwDHcFQXA9six2BB4Jw/DdfZzaFbgwDMMqgCAIvoGPeH8ayQ06BgmNWYuQG/zuM97jc5eDDoIQOeZvtM/ybSUEDhkQZPEtPRCLELgQaYL8GkQwegMPMP8K8oAX4IAiGbGAG/NULSIom+XDAuZbEAF9EQJ6TIAeicxLK3EP2GQk7siAQAouyCUjU0Kp1mOWDIubqcW14cn6nDsRwa8IZ4iz5JcmzKfhzGkGLMAtRsbElYcAmTjunpeGgwlwa8FAbXdv3N3OgI3FB1kfWi4jkIH0Mu7+1RQ5f6BesxIBI1Gigt24Ba4GBzBWrL3m1rYGGQsD9NweuOvb3rFEoxEmuOH4e92GMPRZTK2RByRpW5bqdcb2NxzPxWMWPvQ5U3DGNksVt22vesFd0PJo7wqZhwAks8QYrbi5y61HSDm26X6jpbZlxsgwwEGXxfAY0LY4pTSk/82rwvJjDcDzJ2Ug49fqSMYJHfriFOiWsNcsi/VabyYyzsbqedtwcoMtCHAajLP8mULjDUQp8SpuudupzzBTz9uBs86VaHvf0HuZK+QBKXs+8egRdrhPKEEQ9EDcLUbprleB22nvlfpPVmyZNw15KzKr1Mjm5k1iFbKYjyYkIej1ke0dODgCKl4cRo8xopraGM+gKqk/5RQlkqO+x0AmM01iO4BsPmRw7J1EDEMiliFf/rXFOtCpYo+7heUCt8ImDRlKnwV8DSrUFWvQREi/FzYXaJ6hi1qFOe5GOHuOXPTI+MsorfwijxSI4riF7pzFXG7l9sT2falTuGaWkEc9OXEi/80k5nRXXezjyEJrGrjnkIXQhO6+wK8DYZOzHDobkQnmBUVwvwjh4gDFH1LXHcCPdduSzNkrqoG1swq8H75EIgEr4BPzSSEnpi+hiTQqpg+j/5QqKmrEMnRb6q3UkstDXAvAEw9P4s9XnZMgjHgpdyQtV9VSfpVEV57VNleIDAyArgZOhWGPK+t8P2Ryna3Hf4k7KBkw6gSdVkPlEAExJ28pY17qmAQonstZXF05naYCsaqVUsJkprFeB9WvuJYl64s5JVvs6fFxSTSUHg3HO2EEL9CeLGGw9rdZ5j6swQGPdibptEPwh1H5jDFBn1xHGL7GvuNuCMNwwj72zUfgv23PxkfGx93j9b22dyKWob3P+0h+t896j/0pBx0EhWGomQG4PQzD1dFjagI7ZEoHZM4yFywTfMylJhmZF1sQS7nFE5ThFMy5iNC1ARH+LMYhSindEVm5z0QE3HwEQC3Hk35aoPoAvTYTsS5Z3SbUquNDIsnmCGTOsISQ2XicTzzybGid+QhwytV2metZD8TYPAIHO6l4rMQmnNRheaROA3Sm2OmAWzkMSFnOF6O3tsSflo8pV9tkuWqSESF1FW6lMXe0aj3fQAKI1aQvovm3eB8DWFchX9scnMkuWsxNrQ2XGYw4YCAiWEf7bzRuBbFnBncZi+PkDuYmNwcHUmY1MQKHPN1v14CMm53aLnPTGql92BFXqHXWY10RxWmbPp9ZWYyEwqwhPZCxZm6fXZF3vAgnVzDWOQPARpvehFszc5A13eLOzBrYglPOo8fX4NYnY0Yx970knC49HwFvlqx1NwLMLsVdQ1sQkGLkEegzz0BklmO0j9YjiotqRNFo7dmN5xN6DbG4pSCgx0BZIQLasnEyi/0qR9zh9rc8gnw2F+n21xGK1I94GfzzFKMGNgFxKRLwYTPicBl3JkxaLEgv/f8h8iFoHEvrhz3pcV4dsSRxZepPFWk00bQpjbz0GlL0a4vRliBCqCWX+bEx9KEBgCsfeEw+agVB3RrUHc5UnhNg3QsZ5MwUa8XrE+DUhTBosB7X+JWeK1W7PxmogGUzBjGsUoT3TOqZWnAH99wkiOP5u06njGHCjgY00IcZXEGXMRLzc9EJs0ia35wwFPS4pY4tj2d5vxTTLl/SoB8to+K+Ye1iV/pPeZeqWcc5y9DaAL6NU2CPRACQ5Rp6FFlIvqHblyKC/dUeA5RIuKplTNELLIsP5Y1ZYzll4jwogIqlwxg/XDpvNx25kD/TFhcB+aWrRnIGLyfafeaNr8EgKKwQULTwyaEJl0FAJrNXYJMYzEg3cGTv5hVEC/hNnOr7Qen/giHSWStzj2Fy2zT+ELsCEPe3uwu+naBMH8h7LOILCUa4PtRzfPY7Eu8EkidpK54nqBG4CcnLZIlm52vfJWKCzOvVWBDho+Rgh4sVSCiyPwM73JHyKeWgg6BIeRpnrrXyFHDiQWjLPksrYg3PQ5aRIYjwuxiZ05oQdWN/RHAsRIS5bbhLVo1eb4JxOe4+ZHEPxhwXR5apV3G3rzW4NjvK+LUO6bwdeBLVJCTG42Q91xK0grukmUUHfTZLjGnWlBo8mN9ikmoQwXEgHgPSOXJtDFnPliJrnMUu7UDASx6ef2Wl1mluft3wGKVkvbcxgx2DE0fk40xuRs08HM99lKHbc/R+2TihgrHSZWgbtml/mGXhUgS8/AnPB2XKec1IAMi6l4K7e5UjgvEW/T8ap1I3gGP1dMUp0w2gNGodUff8L+OJOc3qlonnXTIXs2rdl44TYvTV4+/hSXdn4kpLcxOzOJomfD2x+KpaZKzFtb8MEEdBs1G1WzxXFvK+jPK7Bndr3K3nN+Lg2aw4q5D3vwZndXsbGWebtE0bEEvmBuS9puF5iE7BiRKS9NoRen9zezQQY9alY/BxaHFNZuU9A/mO8/R6G5v2HZkLYgru8r/f5QhF9v6W/mEYfjWyfVvEzeOftBg1sGnET5XfXUa0P2XvS+br7x0ISYLFsWS1sWVhFj1OlpnqjbVj6J9fzuT0adSSSy61vMdAFvEFLuexRJU3rfwFKwtlJdv8nS6UUsLZL6qpJxuYKPsBet7USg6NEuGFACCmkYgZWjcBYmF3es0Ukql3zjuWE655n7xRNSwoEDa4Ukq4Z+aPef4u8dmyGKVyRXm/4Rq+z928USbekuPemUUZQ2kYI8Bty4NZAgSN5MDiff4ugmfFgGESKfEgnPiYKLuXrC9W10K1YOwIBMQoKOo7rlLY5gwkVSKalx/qdgHwIYkcTFVrj5M26PlJxzczv/RL9Cn5gOMnvsUbs8Zy48SfspwT6KcC/+3NP2Fp6jBuTboNECtMGcM46zwBfw+fdxUP3XAjm5+Uvj65skxUBddpG14HXoElt8mDn/nwazKR2ld0LzLhFQM/130TgMGQ1izvo1fDVv5Y8NUEIH6FM5jAbOr1BWbQyBNcnDi+nBMYyzxys2UGn7NCqcg3a/19kfHYHVl4hyKCVhORsXuCnmR+LutwoG/l8KHIPlIOTDnoICgIgkIk1KbHXjFBqbQLu/tcdd+NuNnFETzwzTAMm5QPvQJnIF4YhuHVn1Zfula0AVkXtiACocWY2Kf3KiIAW8aoobi2fS2ijTZSgcE4WFiHCGSLEUHN4hwy8dws5k6ViceEpOAJHGv03D14jEYdnhOoLw7czKpvlhKLATIK5HIE6FkOnDjuKtSmbTA6ZGNcs1xELTi5gjHp9cDpqdMidc3RNpg7njGgtSCAahueBLaHtrkJAU2mCDISiTP0uZfpfzOGV2pb0vS9bdJ7mjuXWSZsbQLJIbQU+C3yPuvwAWNscW3IWrAYEcJNrCjCgYGd34QDhT3aBntHZt37qx4z97oa4Gs4CDhG27sGJ5swEgKLbzZA14SzoZkXx0ScuMPir8xKeAxCAX4BTnpggn8PBGjk4XTclVqPUbIbiDA68o4IgDHXNdVt0oyAlFe172J4PE+6PkM5/t2g22ORd/cG7amzo0kEjG4b3EI0FFm/FyG59szVs0Wf/S19X+Z2WYy77pUg43O0tjMNB31mKd3AAXS4OGIJ2t/SGgTBSHXzIAiCU/moiP9PUiwWyErUVSgHWqfr7/EQZIpQCWJSLcCtFTYpGlNXRgxOCklJEoE3lh+nhFLSaKJSK8mknoe4nhRaqKSA+YxhQr/nKU+o4eDst19h4ThRH5z8gEjYPWfqq+qDaKG+qycvArrBtudFPZezcg/ctDUx4Z5Q+T58F3re18qo49+EYVDbO5cF532B/mrKmcDzFFHONWq+uJxH+SbTKbA8QKTw4pSJPoEUw6ArllHxK3EzS7qkmTHp85n/wzEAxHenCuHvUbDkhFNhKvS9opK19xdw4t2lLPnVqXT52mayr1xP1bXCeb12SgFcH0KyWNGojLVzEegz6gMa7juaqkeUI3uFPHf/URIGUfXIcfT4Wh0NC46mz6h6jp/4FlUUUEIpLXSnF418L/V+CivX8MSuSQBcXDidy3kswcz20EU3wr2wHDGrDS5YTj19KJyszum3w9JBcOZCMV89ctVlXLnyMV9kd5AQCjb/Vxd6zmlNaLA6qWFidcFR7UBPEnFqySVTLYGllPCDBIKCp/gqiymmapMOQtOa2pBdi0z4ljyvDBFmlrBXGYNbhF7W3wZ6Drq4e0DLgXCHO1IOjVExEFF4p9E+LqgF+NZ+1v0S8EMN4Po5om/5gR6rCsPwH1LgbkeE6yG4xn0erigyRqtNyPd7DCIcr0Rcd07SazoigpMJl5Yc82TdX4ALaWcgAu82XJM+VOu3hKZNuGWgGyLUmVBqVgZj2TKmubNwkGYxmsY0ZoxmFtSei8x5Nbir3WJ9VnNT24m7yiUjwuoQrdfiVDZF2miucDtpn+vGAFKy9rElYjXaZMsEYIL4btyaVYfMxabJr9b2bYn0uwXrGwgzlG3xQdWItSkPEd6/iAzQuThT7Hp9tpcRoPRrREg+RvvG2MqyceY8o8OO6z3NzduARrnuS9HzahGh3/oqBRlfmdqXNYgwXoiMLXONs3eH1l+r/bFbn2shMm6MKtv6r4O2YTyeXDUZdz8zubwH7sI5Erca7sAps2vw8b0Tp742sFeIgIZsnEGur55fG9nXqM+/R/vXLKYj9T1t0nrSEOBi+7rpc3bDKdYHIO/U+DafRb43i5+rx3MqrUK+DwP2FvNTjHi1dND+G63vwrxlDlg5Ygnan3IN8HuNDQqQIfGNT77kcCym8TYBMJrJqgb5yi05ZaZPiiAfRQEel1IAXAJJWRqIX5PKuflPJALbi1lMPZnUkks9mSxH3J36U0UBlWRSzwRmE4/FEpp/gHVDMjh5poCfbVd1oNvP9rQ3qd6L5w0Coc2+YY+38XRQmVo+3j8gk9MgYAdcvuBpbh71Y+5ccAcAS0YV80PuSrjD/bD6PibmP8cPF9wPwL+NukkE7Bqp8sRrX2fJI6dKjAxwevrLzJl1fsIVj+lIzE53xK1tIaydX0DfRypZMkr6trWgJ1XTe/pC0wuJb7lB0cIk3W857acA54awQtzA+vzqAxpKj6aqXEFRIWxZmwm9YMUTJwEw8eLn6Mp2FiEWsMt5jOcLTk8QIzxZ/g0oIkGhXf5kEVffOp1R578pddZDz6lr2KUue52mw/DTSURhXDnzMelbexfdkIlxdQS0Kt2sscP1W/khdxd+m2/qg8VJIoPGRJviJDGNyYmYoNp4LvEdMY5NFzXj7lGdqFhf5KQUrTF4AnFjeBkZJxvxYGOAVgM/GsskO2lfDh8rUBgGCZfHI+Xzl4MOgsIwfBZ4NgiCUWEYLogeUy3e/tQdzW25kH8ggdI+60MEyRrcde0iRICfg5ClvIgIg28hQuspiJB0KfLtJiPAxpjS2pDvOEqB3E2PvYYI25l4LBGIEmSonruQ9kHajYhwW46DJktgWoMzqy2nPbuXxXagdZi1wILdW/C4FsvpswMRXI9BgEYKAvhsmTPaa3Bh3qxKZTjL1lPa5nxEuCxBBNpGHDSYsN6k163FXaCMvjgFEbDNZdByCZXq/7G4610NHvORjAjvzdqvFrx/DDK/7kFczlcgAnCuPtdoPe9e7ZsBOBhNwV0cjVltCx7ovwPPN2TxYC24QD1C232Lnp+Hu9J1BMw13qx1UVBl7mi5+lwFODOcUYyPwC1+2/B4nt44CcYQZLwbu6FNtxYnZQDbSBjMApmt+xbrdUvx+LfXcKBrljCLBzMih26ITGPgxNq2U9tXrfX9DRkrS/VZuuHxRNl4Atc6XLlgDHOjkXHyRWQsbkcU4QbwjE3R2P3qtV/i2o7jcYCI1m3JiferHLEE7VcJw7AMGBIEQapu/xPSY8O+hb29WbIiAmIrDoI274SyzlgOURPQO05VdJ4Wsphi1lar1Se/nvnrx/L17BmJGIWhlDGWecxSveYI3uQ9BhLX4wXNa5iRehlXDhZ3uVjbHtFKqOC98a7u9Fq9VVyzgI1TutPr4a1uGZqNgJNJsrm691H0e/VDcZkz8LYFbmu+g1+OEh6RIsq5jMc8YevagMr8/rw6SsxJo2csEpCi1zeRJhLSmbI958XzobgNihXAJCMxMdfj1qOfhqydVUCXv2puoX/r2T4YdCQygY7R7b/qM9wrmw2zjpZFQAFJn4n1ZJQ0UvGIWKMYEwqI+hOceLd0zkzOo+KJYQy6WNR/pZSwmrxEDp5/KXqIm7mTp1T8+e703/Ln286hSq12U5t/QafzlPIacUnsuS0yNqYjC6DlcNIkqUxDSBNAJtx8Z/t7Z9yxTGYaNRrFOpjlPMxVifHRRhId2UWTJqNKSdpKblJFwrKxpLpYXAlf0PovaYNnY06rCzIuV7NXWH9N5PfeOYLMMnp4AKE9ezoQ33EkJmh/y0EHQZHyCz4aE/Sf+9j3ecuViC7BSr8gCJYhsu8tYRj+fV8XBUHw/4D/ByIEGsBIQwSmOYjW+AIE+Jh7lbkLmQvXLERQK0ACs0ciAmoZDjTKEcFthB4v1uuyEUBgAein6bkpiDBnrFdnIIJYb237Tm2HecYaWcJrWqe5prXhVpa+OPtWb31mIzko1HotSH2DHlumz7gNt8pkIMJrDz1nN65Zt/xDNbo9Qtth8SJLaR8sb25kLXpfsz4Nwy1cO3X/dgSYvoaACJMnq/X/l/V/lrbL8uT0RvwvjcnOrBtJyADcre/D3LN643TVWThRhlmw7Le5Kpo1pQwHub2Rd/cUvr6Au2YVaXvSkfeagoyDHBw0p+i1A/Ras2zk6T2WI+9tOU6CYKxpdYiVqwkHgktxkoPd+PtpQT4US6LaVfvP3B4H4jFJ27S/B0b6w+J9jI3QXEbrETc/Y2wzxV8cAbrGLmdWxDrty7/pMQPnRhrxJKKMqNbneRUZ04PxhLj5OBnHQn1ey8P1kp47C/kGs/T9GDNrIQ5YTXEQpUw/EOWIIah9CYLgaCT0eiPwfhiGd33CuRkIO9xIIAyC4DWEdKfx46755yhRYoRMZJTn+eGeiMM4AJ1FG2RB72cAGyEpWRxaW5PjIqxWivRZmlZCl+7bqSeTYkUQBVRyOX9M5Kcpp4hacompU+zZr7/C2PHz2tNgz4XnfyHxOyWUtmMk6zV9q7TJJJbpiMucxgj1++BDdv0BOr0urHAAV855jGmpkxK0zGOZz/18j2xleBg3ahb3LriF1lFKZbMV+lzxARkTZahUPDJMPnJlQOszS1zVElTiNyJAsQy3DjUFsBhamzS3kAVaWkaUv+ifAczjkPr+ott5+ltpuFfMOglaIelctcL9NRXSYPzdz1Aal+fa8kIWfS+upGKGAKWKymH0uKWOYUkCguIk0UQa398gaRjvmnQDJ7I4YRHrdD0CahQb9Pz3VgE99sVYEKnFBFUg5AiPklhYF04aShlDuWCcsAOesOh96AGzC8X9cT3ZHJtwJod7+D4TmZVgD0wiTlnzUFrna79ZHJQB87/EZDLujmuejkIWmw9NLdeqHfh6ZNvi4Q7DEsLuXR0//bwj5RNLEIYHN5l2EASnIArdG4D7I4dSgfPCMByyzwv9+pdx2SlablYrE0EQ3IzIsOeHYRgGQRADuodh2BgEwYnItHPcp2kNOwZBaOQwQxChyNy+luNuO+XI3G6JVN/DlRcmsJkQbUK3BYAnI65XBrLMNczcwNyjWgQ5cylbhbjbVSNCXq2e+5reK4YIqx21jaV6fQ/dZ6QANr+k4Jp3O2ZMX42I8GqgyqwGlm/IBGMT9M3KYpaEOtzVrVzryNP2xhHtvFkJNtDeU6Or1p+jdb6Bs9Vtj7SpGqe7tntl4yyg2bggb+QC4K534Fr/KIW1xWQZuE3C3bgMWMW1fWYlMTc/s+QZC9tS5F0bmDALWl+EVj0ap2SJXrchH4vFlL2tfyV6j6567zhuRXkPd/PK0Ge3+LJVeN4cA3Kd8aS64KCtM85+twl3GzN2w7iea/mnzKpp769cjy3Sey5H5Jo4HmNmVhhjZTO3UGMN3InTnvfWeyThzGwDIuc0IeN8BO5ymKnn90bIjsxSZeMrGwH1A/W3WTItAS2IFagjPk4s9u0pWBKGoX3qn6ucGATt+UT3Kl0+wz2CIHgEwfsNYRge/zHnfAkhu+0ITDNg8XH7P0/5uHb8o/cIguAMhPDg4SAIZoRheMUnnPsSsAAR0UDCwMaEYXjG532Oz1uCIDsUvslDoaTgICgPgfWmJT9BBEqb/JsQod620/T3JZHjkWD9QUXLqGnO45up/81qBVZnMVdBj8S+lFBKfyoTMUEptFBAFf0WCSDZPKILPR9ulQB7YF1uBjnXNCYE883/1YWeX2pl27OaXHX2HnadDk2pQhW2gNOY2DyHm1Lv4AKeBgR4XXnFY6ye4dze05jM15kh7a5eDclxzs2eCQiD3ZJZEeeTNGQRMfP81W1wScytOI8iYOxxPFnqCmSSfVq3JyPanNG6fSkCnkzT0QuB9pbxaxDyWr4fqW++5A4CWFte4MQAG6HHmDq2LMyCgjZ+kf0dAG6o/g2P5l/IIg2Y+h738xQX8P0FAoKIIZOb5YIYAMsKBjGsVkxBzx0NI8MuJLUJYI3HYvRc0NrOwsZQYLVY6AB6LdgKPeCdIccCkgeqiv6JvD9jmZfoY/v/Ry4Tam5g9qYJxJtS6NJLTGatT/Uk6dxm4is0Q+tvkIn3vxEtMNIvrK6HYg1WWlyPzPCm6zb1r6moDjUr0L/t13oRDDkxZM6npOjOSd7vNelwL4cCRE5C8H0n2jsuN/MZ3Nc+bXHTxExfBk4PFfGFYWi5LQnDcEkQBFXAsfhnvs9i1MFfRqzYExFLUBqeoLIJd83qgMyHxYjwOADP9WJa5Fxkns3GBfU8PJdKHWKJ2IBYPuqRuaASEcKNGW0AIlymR+o24b4J17YvR7ToFndhmnazmERpuo3q2FzMTHBNR+Z8c0syYd+0/2ZtiAr3RvFscTxmeTL02oK4oQ3GhXVjIYvGUBkduLnJWTxRpvaxsZ11RsDAG3qdueHdDtyMs9+ZxWOdPl8dDgjSkMFpbn2dcWBkoMvqMPDXFVljdkT2xfR6s55lRp69SN+Ne8rLmmlxQBk4sYW5BNbp/ko87qUJl1XLkh7FAAAgAElEQVTiei9TQlp/pyAAy+jXU3AygGgiWEv6asxtxtbXhIzBZdoGs+CBu5F1wOPCarVNBnps7GfrfwNINfo823FwUUu7TCYJa1JUKWDWyrk4bXUjzlBYhyix/4goM1vw2DZTMKxBxtwaffYsbVcd8r5Xan/E8LxY3XBgZmyHruPcv3KAyOGmI/rrGfs6GARBR+AhZBisBd4KgmAW8hgf2R+GYfle1/cBWsMwbInsKwjDcO/wqI+04+PuHYZheRAEg4F/36uOK5Ehd3MQBBcj0QmfVNLDMLwjsv3TIAjO/ZRrDtPycct7F2RGMog/CJoivJcjEbeGk3S7F+0TVx4fJoRVK60Le9Jl3HYayCSDRu7h+9zMnQmihBl8nQt4moH6pTSRJvFB2oTtdKXn6FahrwRyRjfCn0loD3vOaYXb3N2KmdBpNvQ6X8gZxo6fT6ctcBc/pjZVQM/gtne4e8a3EwQAv+S7nMVcAT/AoPwyKh4ZRu6VQq2ynMGePwEE3HwNt9J8I+bsKCATVSUeQAnwU3WX+6tuP4pMnJbe8acI45lp427RZzR2OBBwYvcsBq6Htfcpypov1/YZ/gENPzuaLWTBZjhx1GJmI4lJ+XXA/Xd/j/JmAZy1qbkk0Zawmt1VeANpNHH14umyYxqk3dXEI7liQZsYzqKUEZw9XZj7uh3dyrrxGeT0ENPQtsIOdFu0h3XnZZDzsOxbdtUghi2q4IQX3wdgwTiJT7q1UsgPphbcQS8aE6BoIO9xEz/nLg3R7p8ueY5OyxeHnLIrh9LwyNHi/gfwpUCe/aRI35wL1GV639IFWbGM431f8UCHGhA6Ug52OeggKAzDV4FXgyCYHobhgfQqMY3jD4DRYRhuj+zvDWwKw3B3EAT5iJxb/THVJMpWRJvcjFg+LGanDAEKdbhbjwmAHfGYlM6IMNiCx+cYS9durbsA8UqwJSlL9+fiQvdaBKgYEcEmREArRgTDbbhlo1nvkaz1nIS7SRnAKEAEu7f1ulUImLG4lmp9HotN6qhtMGGwCRGI6xEl0W5EGM7E14YoAErCLRkgAMQIEywWydjXzK1ujfbFOu0bA2BxZF1ahefwMTepDYji7U/6XOv1/58Q/8Y6HMRlaPsbcVcp9mrTbjzpp4FI9L9Z/SxHUCOeo6cRj9Ex684mRM54DRdFDJhNQCw7lpQ1Gc+/U4SDsThu/arRNlh/G436M7hbZDd9xtO0jyyH0ibckmXuj6aNMOtMC/JujU78JJwa3XIsGesdOChLRsaGxVq3IKBoMP4+uyFyh+UPAgdHlTj4M4BsfZWs7bHEqE9q/6TrdXGcCCT6Di0+Kk/raSKRriRBbGL3Go0zDTZp+83aOlPvV0Z7C+3+lM8QEtQrCIKosua3YRj+tl0dYbhAGTA/rnwBqAzDsBogCILHEePj/I/ZX77X9aOBa4IgmBCG4Y4gCL6F4Mx2yfU+ph0fd+/yMAyX4x6riRIEwVQke/iCIAiewsPI91XmBUFwCTIcQBRpz3/C+YdxiQp7UXc405iP98OmuQCRHY3CFEQ1OJKE5aDPuFoalh4NaSKgNqZmQEHIvaW3cFHJ76migEzqKacoAUBu41bSaGK7zpBJxHmI67j1T/+fvfOP77os9//zDbENcGNsAnMwnWOETlDAGYqiWCpa6cGy9FQWejhlWp0y+1bHfmflKfNYmVbHlLQfUqaEpkCU+COUQMBYEw8DR5uTHw7GJrAN4f3947pen+s9VMDgFBr347HHZ+9f96/3/b7v63Vf1/W6TEhef85ght7TypYrXdPzw5321uSoKhXtCj/+NqwYdARHfcNEhgXnTOBtLb/nuoqPM9y1C+/6+L2ce/MsJvKIN+N45nM6ecWG3RvbK2FSmjOXW/WFY0wro5g+H/E+UTeejl2XBmUiNilchNnRrgI688236bpM1zdjgApCC6Tr87FdTQGvBgx4NWfu/zHB1NcGfSdtYv3qCtzSkMH/+VeeqD+ZX9acZ1l+dhJPXHoyj7kf0U1czq3tH+SZowwcFtPGOobkGJ1WnH8EbQw0Bjhv99tG/D6HJZaec7QFPfXx0H+6+W/NYTI1H6r3PDfx8Pg35Ygv6qnhXO7lO9Xmj7WeIczkfI73febhNDCDC3OawidmGeKuH2cz6fqvH25OmrPd4WceNmmf4H1V7H1aRgTsW/wUttosyXT+RkLMzRKFvA7SzgQ6DxIj7Gvqtedb/m5pa5Ik30qS5P4kSf6gv33M80ZMrvpdkiTLkiSRlfOpwJ+TJHkSM/m/LE3Tja+UiVKKzYOjsTlZZkOnYQJcMSbsNRJxT8oJgoEybB6Z579tmCbpaWxercUE3wqCPnoQPWPcCByVYmvTVkzw7uPPChht8XObCQ1BISbktWGSxjhCcH0WE4ylgXjA2yFzuFMI/4tWQgMgbcwaQtis9PpJI5RHaIQKM23oIIKlahdfJmOKbbOdIEOAiB8kauXthKmYfGZ2ErTRQ7A5U/Wtx4TYW/y5Nd5HrYRvjNrXQoDFDX5dgEBsfTuJGD8b/BmxlLV4O9ZgIFkbiE9iwHiW5y2z+AJMYpNPUSEBDKQdaMLWR4GNLMNeP8IHqYDw7yn2diimTbHXUQx5xdi7VzsU06gFG6sixBhE0F23YeND9OWPEWN2TiaP5UR8pA7vjzOIsVhGBDbdyEs1MEMwkFRIML+BWWNoLGkzVm0o8X5ZQ9B0S9smTeKjBGviBgLsy4dJ/d2AjbmtGDAdT2i9pHXsIkzj9jVJE/RKf8DzaZrWZv5+9ApZ7S4NpSezeLOfe6XzPeuYpr/CXJbvTJLkvZi25t273vcqy95dmg18zOfvxj3c+yHg59hr6cJEpSuTJOlIkuSfjCThDbv8ymeiwf/fjnXnn2FTe3xcCny3HJtoRZ3tWpn1Cw4Ph/XOxARyYNiEBuZ0T85RUj/NSC5kBg1UM4MLmcNk5jOJFg7jxBXL+GLTf7Hi9iN4/PYxRlYwDfrfs9MCbJ4GtMDS84/m2fNLYSn8eeobzVa6E9hsgvW1n/04j3/WKeW64DN33sC7pt/Lu754L1fc/G2u5HpaOIyv8Hnu4P3M4ly62wqZUnKP+Z98KOGJW09mHUM46SsPkndNu/nrjMLMzm6EAXettUCxF6VW9hRsgev0rvwWthMy3I+1QF1GAMuPYxqMwzBGuef93pux3aGrMb2ptje2EQDoEOB3MPysv8DzsG3mQLgzMS3TLbB+yeGMqlnETVzOu2+fxeiS5XBNF5dyKyfVL+VybuLMogdoYDjXcRWXPTydq7q+BU/BFYO+zVGfWUMTFTx+1BiePaqUpfOOhqPhxanAeBh79lMc2vQCPxv/TnO38e4ey1JO/O4y5jA5R3BQSSODWc9g1nEHF1PNKk5nPoV0cDF3cCitrGcIP+QyhrCeGuoNYDlrTfOMatN6nY1hdmnZRhH22ZV2L2dgC8YT6rcSDFWWZG6E1ytFNilGHrG7v3/ClCTJ4UmSzEqS5NYkST6zx/v/0T5BSkmSzMWMOa/Cpo8PABvSNP30bh/8O6bCJEkPxz6txzF7juUYmFhNCGrys+nABJc6LLhyPbYLXot919JmtBOBO3cQ+xiFBCjKxwTpXl6GBFkJkCUEvbCEQ1kw9CcEPJnH9SKonqUhWUf4DhURgUzl87OWcAgvxTQZb8+UU0yAsq1en1EEQIIwKxMxwnYvdwUmZMrkcCwhpDd7nv2JOE0ibRCKl8+S/EY0DS72e5/0vlcagIGffExVmO9tEqgQY142uKnOy1xOxAgCbmJ5G+D1qfJ+H+R90RszRXzQ71eAVTCgVkOAFsXu2e51EhmEAqE+TfjJiIpdGqNuIkiqCBfkX3WaX1tNBNeVjw+eV533ewU9iY1kVifNYz4BOOU/1kqA+I2ZX5kQFhDjocTrWOHXugh2vUYiBo++pX7EWFC+Ai0CIdoMWE5OjqKbYBQUgCn2dvXDxvhi79s6fxfjCB+sNdhYP83Lm+X9VI6NXY3BJ/eDT9BxSZLO2c31w0x0ehC4N03Te1/pPtfA3PdyPkFJkrwLmJym6TQ/vhjT0Dz8cufTNP3oK5RxJ6b9GZ6m6YZXuKdHPV6p7Fcq47WcDhyfIAl/1ZlzQ4hZ8lgTOGWbrI9JFJS12KjTjvuRmGCukV5gcW/yCrroe4jZK5yeN591DMnFpvkQP2AV1SbwYkxtotQGOI9ZDGY9Q6ebedWzU0vpJi/HaHYBd3Hkx5/j4RvMzOrUH/6Jj33om3z34/8PMEKFt935eyiHH5w6FYDLVkzn1qPew128EzCGutH8mTswl7KZMy5i1IWLqHuP2/2VAVd1wZ2+LTUKmxAmeTu/hAGgj/jx57Bt1s8RuslJ3i8imWjAHCeVPuv9qL6dgoEjGZJm2XeUBhKaorswCekG4DqX3W5OYCKcdd4swOIdFbOJ3280T4HuxiK+Me4TOSrwh04dz4T2P7G4yNDMHCbTSmkubs98JuVIEwAOff8LPHz7m3LHNdRTTw2nTv8Tz0w17dJSxnA687nHWRSK2UQN9czHAtHO4lwu4Ne0+iBqpJJbNk6juMRWl/WrKxhWtSpHnLFqxjE2KWs3agwmdDVjYw9CE6QdzvQBbCA3+om+9AxgcKCZw+2jT1BNbcpPd+vBAccn+8uH9BOYEWeKLa+XuBXAa9qHFA4saFyapumPkyT5j4yJ3EN7fOrvmHpjAlsrpvFejgnu0ro0YuBhAyYcHkGYlt2GCVHjMcFrJxF8tdjP/YFwWheoUpDQ0ZggKOGuCRMcFexRjuL9MaFM2oOtBKW1qKnlozMIEyR1TaAqjwh8Kn+Ilsz9OwmShmIvpwMTCEdigv0OTJCUyVQjBh6PIATbUu9LsaAtIIJSDiJAgPxvZGJVRpi7jfC85K8kjYVMnuRbpSCrSpv9twsjIBrv764XYeIln5U2wsxPGqsiz3Md4Z+k9yjt0AZvc7tff8jrqvg8i7G1TeQHvTPlqZ3tXtZyr1svr4s0OE0E858o1kWUITPKVV6XCZgJ14eJcbyFIAEqxd7zCCIQ71bsnWo8Qvj29Ceov+8D/o0AM/IJqyDMFLPAvQ0DvhuJ76ALG58TCQ1fETYu+mXyUgDWnYQ2TnmvxTYLRvpz67w8gT4B0GpCQym/qi3Y+ByEyT7S5lVha/BRnudIwsR0POEPt7/SHnyCNqdp+sF9LELhkpSGYU19pfMvSUmSTMSmp3swNraPvNx9r6Lsg+n/NPUlbMmOIrY9AFbCtiHwjDuhD8SEeXl8NWMTjTDUIZgmQyZbwxLyiruoKGnKgZyZCy7irAmzKMapounHZOYwgwsBGMNSBrOOMU451kI5xbTx7FQTkofObWXpWUeHM/8W+MENU7nsyel2fCRc3/7/uPaGjwMwjVv4zkUfpJt8xnikuGeOOowmKviMC/f11HAL03jgcovJ/m83fZ+7ut8ZesgzgYZ88qY6E9uKImvjL/z6DSmckQRBRB0mFs4m/KfOxJz4JWdPwXZAxbdwA6bhkS70TkzroZ0mxWdSXzdYW3N9/ZRfrwSusZ3+vOva6f5cEXNrHW015DPgxLUcX/IEALUli1nKGPqOsXeRRzeXFd2Yixt0dft/8YbpsPRjR+f6qYt86t0e7sv/80Xu4gK+22CA8+HqN3F812I2Te2bo0A/lUe4hWk5LeA7NjzArwadmwPB5TzHHVxMXzfqz6ebCSULWLDRTBHzijuMcr3NtRcnpPBsEmaA07H39FymryqxyTe3jy9fIKUl2LjPetweKABoPyTtQO57ms7ufUiHAh8DatI03ZYkyS+Bi5IkuYPXvg/pAQWCZAr/XJIkb8MWxmG7uf/vnmQG1QcTRkcTq7d2lo/AwMxpmND7DmwOPQubu96MmQ9vxoSpSszkqA8mfComSwUmBLdiAqC0MCJV2EmwkslRXCxiWa2LtAP470MY1JZ52iDMlGkk4WOzmQjY2ocIrCkN1Q5sOa3ChELFyKkmzJK6CNNAOV1Jq9Lfnxehg9jwTiP8hkTEIC2Tdtu3eH3Gef9LYOxF+Lxs9Hcx0q896W0/x9/BAGJ/SFoUkTq8nTDdqibM60RysZaeG6YipxBAlOlXsR8/iL0nmcoplozq1uzl1HhfbCEsLVZhIGCZnxuX6Zc2r4uAWB/iA5I2Rg7+MtcS8F5JaPh6Y1Yc2saXSWclAebFjLfG6yrfIJnMVWCWCSLj2OHta/SyROQg0gPNhL2xd/gA5lCS7/3/NAbY7iOC0AqYi2VObVWA2yO8bdJkVXg/LSVMROsIMofeXl4tNuOejwVQVfkCkyKI6MaAqEhEWggwJsbC/ZH2widoQJIkP2IPmqA9pEXAiCRJjsQsYS8C3oM1/eXO90hJkowF/gd4Gxap46dJklyTpunndr33VZR9wKYkSb6FBfLuxj7LS9I0bdv9Uwda6iDnGU8RPdnhxKnoaRSmnZjqx48SMRvAPiTZWAPMh9GXL2cr/Vja7bZSlV0sYwzXcyVgmoAOCqlx3fcT1DKJ+bm4MG9r+D1XV3+eCzCK5VVnDaeLPB4+1TQQ9dRw2YrpOfaxL/JlLuCunMbi0Idf4L2n/pwHOT0XB2gxtbRSymewjeNl7WOYWPQIH73pWwB8b+6nrG0eB4jZwGLoHuZgcCrByQ8wMzEAKM3O9zEAM5+QpGZjk6cCbvT3e9SXYI6qZ9u/A2rXsrmuLOgtwRYnCf+lmP+QKLXP9L4/EQOi34PuaUVQCReXm+w4vHwVX1pyLReO+yJgAOQj3MjKIgukcBOXU01DLk7Q94s+yJyPTeZrzuPdRR7nMSvH5NZ/4U6GnxryaiEd/G/+SLrI53Tm5/r6XGax3jV7Xx706ZxWB2Ahb6KNgTTPMHQ36sJFrGdIThPUtrHYTPxkPnh2EqaFYIvRSmxxOoRIayE8RUWJrVSJrY6anQ8kLdDfLe0PH1KwzuubJMl2bMlrYTf+nbs8eyD7kB5QIOgaj/L9SSw+UBFmSXvAJPnYVBABIEWXLQavrZjAloftHv8BM+3aiQnh9ZjAKzM1aVhkrH4K9r0v8f9rCLrpUswnaTMhvEvbdC4mLHdiwqJM68AEOQm5FxKsbzLjKyGWwAcxgVZAQ4KwnMFFvFBJ+Cn2IeLZdBB+o+UE61clsVtejwmQ8seo8ufVngI/J7rpCiL+0Wg/vwIz6BDbmHxn5P8iZreFBJLug32NdxFJflQbve/u83xGYJ7VkwntiyiyO7yOWcIkCcfSkqzy+2b5dZm+KabMFsz/p53Qiul3Az3pmccRIKbbn4UwA5O/yAB/Ng8bd6XexzKhfASbPbb7u6jGlogyQgPW5mVLuyWzTZmRiQlvpOdZ7+9K5o2Vfq/8ogowQLPBz8vnp4CIrzSZIGZQP96NvetnCfDZnwgQXupllPm5eu+XTu+HRiLOkTSn5QTbIoTm6Dh/TpsQA/x4CUFmUkWw6v3B71V/NBJ+bvuaUmKz4BXSHjVBSZL8AtvLPzRJkmZsQfhxkiT3A9PSNG1JkuQjhPvWrWma/sWffdnzu6R+wLvSNF3lz3yAnmLenuqxN2W8quRtuzxN08Z9zetl0u+Az6Zp+mKSJP+FGTUdMGbae04yA8oSI7QTO+fSN3t6BPNdkWCej4GF5riFs8k5OQ44ey1PPHwyA05cy+YbbYto1JWLqFtdy9eqrgbMGb+empxWpoFqqmngK3wBgKbqCqZxS06z8F5+zsNM5MwVDwBQc1Q9dx91Dss5FoBznVNalNzPnFrJO5oeYH7FJOY4SmlpL2da0S1U+5bXeUWz+OLGL9O7xAThviduYtvagebTA7bQ1GJseGAanQJCzHoDtuh834+nYKBnW6avRmG7nh/2411tW0UycZkdbr6szHZB5WMlcU2YQ7tdDoqOvnwpLd2HUZj3AkNYxxOczICz13JB3q/5ebvtJWz76UAuvvx/+B5Gmb3q1mPIm9JOa4lp2T7Bf3ML03qAxd+2/wv3FFnfX8CvWcoYzvPV6+5Tz2E8f+LxagO41TRw6MIXeHj8m3JA6tKFP+d340/JUV43UcFk5nCbTwsVNJFPNx3nH5I7buquYPPzA6NvOqOdPO7H0oiNILRBcqJdjAdKrfQTfbCx7VFfWQespycxwusMCO25Kc/vq4l2mqbPJklyHfBXbLTPTdN0bpIkF/BS/87xL/P8r3zT684kSX6FaWvO3PW+V0gv50P6kjJ2SbOBLyVJ8h727EN64ICgNE1FKrkZk/VJkuSAAkGHYMLeI5hgJ3+9TkzgG4UJSidhb20CEculzH/7E74z8pcRS5lM3CQ49iZ2vSXoLyd8TOTLU+nljsSkky5CY1GIAZtRRJyTNkyIfBQTysGE3nJMYJRp1kbP7whCy7ScYI5bTjCgiXlLpmmthKO8WLp6e9nO6p8zxRtEkEiInOBJL3OI11u+Mk1ezr8QtMTyMSnwfh3vz4utrRgDJDr/dgwwKghnf/9/qedXi61zHySAm+rd2+ujeEEb/PkqDEisxIDUSHoKxtoaaSH8nLZgX7j6SOQVAi0yadT7ki+LwEoR9p4V7+cEv09BUaX1qfM2y1fnCHqGAGkjfGx6eT/kE4QEJX69lqA9F3X2ORhYGE34C/XDgJjY7BSLSQByEGaCqHhW0ra0+rntGFCR5kXvvgNzGrzQy6zA3uMgb5P6WL5bT2IAR1pHjZFHsbEwApsh+2Fg+c3+Huq8rBqvQx1Bgd/qvyMx+UascGJX3NeUeh12k/aoCUrT9F9f4fxbM//fTy4UZY97Xvb8Lvf8cZfj7ZhmaG/rsccy/oY0HZibJMlPgG96nfZLStN0bubwcfYidMOBlbTMi3z1NGzm0Uy8DQNIvot+WFGoosF2ka4iqInl1O++GJufK4MK2NxQBodC3tvbqVtdy7CqVfR2Ka2WxTRRkYsTNIZlzOK8nGaohXJmcGGOPWwW5+UCrwIsZDzrGZLTLhTSQS2Luc5VJHOYzIIKM616qw+ttqJi3sPPOWm12zDMTmAMPFBs5nAsByph+O8Mg7e0l7PtroEGSsC2YB/FTNjUbu1+gWmADsV2aqb4uTpsIn4uc89ayLvFTezqimByO8PS9QA0l1SbHbF0qAv9WRfz8q5pp3toUW6L4anGsTAVNrdBM9Ucf/cfeeLMk1n2uzFse6Ff7n2dy73cMfffAbj80ut5hsqcv85dvJNCXsiBnEk8yJyit/CIB+AZTgMX8Guu5NsAzNgwFVrgV8edm+vrCeP/SAVNOfPGyePn0E1+zoeriQpaOCzHFlfDU8xhMoV5Rmn+v4ykJu8pHpttPkNnXTqL+q/U0Hyeo55qa0eOVQ/MpHAdmaC+QLqSAEHyMM6m1xnoyab9Zw6325QkyUBM5DoSExd+lSTJ+yCj6ov0siQDaZp+07U4N2P+Oi/sbfF7W0amrDpexRx9wICgV0hXElPQPzwpVot8UpZgQpaCLRZhc5fMhWT2Jq1GPSacye/lp9hSpMCTNYQJmoTNkzDBeTtmtpSN5yLqZYj4PHWEX4x28kcSG0o7iECSEkqP83ouIfxKFEy0hTD/Wo2Bs0e8DdJSjSJ25Yf4cwok2ogJmwJvYuTKBr2UsrrJz8nXsbe3fx2hySrx/J4kfHQEIpo9/3IiXtJoggVOQvkazJqgyeu367Sppfc27Ev6hbf3Csy8W+x7KwkmPflv/cyflZmkyBGURHQg6bDE+0xmjauJYKt6h7LIEPObtFwy019NUGe3YGNHbGciUxCYkhZmJAYwirwPBJo6CQrzTj8vlj6RYoi+fAUGHKSNhIhRVUlQggsAya+oD/aOiwhGODEnLvK2LMDGWpPXe6WXNc6fH4V9T6XY+/sl4W8nvvtTCIKOE72d2pxYRNB0b/F8VxGgWH3xPgLYaZy8Ffv2OjEZSbGe9lfaV03QP2NK0/SXSZL8FvgCsNjt1Xdmrl+/n4q6lIjG+JKUJMkHsf0TXuqJ+I9OWu4bMcCT9QsaAn0z2zYFhO9LNfBVwpkfjEBgpm/JD7T7B9f8lfVth9N9n2mViqs25TQD32v5GP9WfksOBM3iXMbzJ873wEAzuJALmZHTToxlKbdzMdc99XkAHjxqEtf98PMmhnl1KYe3DDLEcjF3MJ9JXMhNvItfMYkHyaObu3gnl1cZIUD95TXMX3B2Tssy+MK/UkorT91uVNLMJliLIEwaKjPtfoEgSpiPgRftGh6NgcXhxIRYaue6p7imrRigiOYSPz4FAz6PuC3Ih4tMC+csPt3fKLIJSmVOtnqvP+Fw+Dw88Y6T4TvwxNdPDiDWDB/hRvqeuMmLbGN+++k0Flnn/bl9HE1Fh1FVb6vUR2u+RQ31XOJqqFmcx9f5T2Z8ZioAd197DuWDnqPRO6KDQ6igiXpq+P7cT/Kzs97JHCbT4NToYMFRv87VTHIvzFuYRjUNOR+x9QxhVf0xDL70rwDMnXWevZcbXL69KulpcjnU/3+CTD8CbSMgp/xdh41rzdQl9NQEwesKEP2dQBBmHPSMyG+SJLkbW0bv4HXgQ3qgg6ADiuPvDdi8eBom1MvP5QTCROlZ7K2J0fFRQuBSDKFHiXhBo+jJbCZ2tRLCBKk/JrxtJRjVNmAO5GK+0rcgVrHfZeolqmiZa8nR/+1e36c93+F+XQLoRkI4lfC7GvNzug8T/iTcFhBmRPKpEXmBHP4bMcG3g2BiK/O+eMDre5e3YYS359uYRCFNkwTxJv+d4O0SGYFM+1R33+zjCH9ePhxDCJY6eCkQkjO/mDke8vre/zL3KkkTUI3N56KSVhJV89uxOVwsciKq6CBY67YQzHNi8JM/WNb0sIHw0xGttkzZwACdiA7KCNZAxftpwsblQ4RZYAVBcCG6aPV5GQHqhmP9exQBuGW2+CxB1PEHDMCUEKx7GqeFBPgX2BETnDRqEBrDLAWZYikNwDRSef6/fIdWelknEKx/4wgyhHkYcJKoKhbFkdgWVw0BwlTuBlq0q3IAACAASURBVGwTQLGhuglmxv2RZPK4m7Q/fIJer2k7NrTziRjAe5WSJJlH7Pdk09Vpmv7G77kak6J+9jL3AeD29j+y+8sPDOrVl6UIFl22/v8zbDvWDxuhbyX8t5RpfeDzGADAH6vLN28wsMl8VJf5dRST8x3aRr9csNRh5U38eO4VTDrL7L5O5RGO54kcKJrMHJqo4ELHl1/ky5TSyp/Pf2Pu+vs/9KMc8cJSxnAJ03sEX+0inyu4kRtdvjqp5XFOKl+Q0yj1ZSsUw8UTTGm5mFqemjE2TNEA5sOoWYsAqJt7Qux8gQGR64jJ9VBsMZ+JaSmWEexwEtKvw4CSnpkCsB2GO+BsxDRMRzooEiuOXtX3sQl+uYOkziLW/+xwW/zv9Hyf9z+Z0h0J61uGcHy5tXsBE9jWMJBL3EfoyKKVFLOJG2qMubCGevLpZh7GJtdEBUNYx/uvNdeRCSxgFdWUOoXOAibwda7meBbznbMM71ezivUMZpnzZ9dQz+XcxC25qLDkmAAB1s84HCrIaYrWN2M7VYuS6KeZhJnhUMIX7ZntFnA2C9oBm4mLiBVaUQOlAT3Qxd1XmVJeGg/2/yb9FTgxSZJ+XuJbMNFir/w7D3Qf0gN9VBwgi4ilrFmSgAqYELkEE7rEzCYqYDDBazshRIr6txL7TOWr0J8IvliGgYdugo55pOcvEzTt7IvyuNzLHIYJiJqHt3g5azD/i2cx4XkRJmA3ECxrvbC5aKuXXUX4sPTxOiwnBMcVmBAsEJhHxNBZiQHGtfQM+JkNiNlKsMHNIfxaZFp3vtdFgEImWtJOaC/zWWyeVBjAEQR9srRqOq7A5lP5PMkMbycmeAvElNOT6nonrwyAsknm3KI4H0awyf0boWkRsDsCGz9HeJsUC0nvr97bLb+nrYSPjWIJFXkfVHrbl/gzWzLPPEts5jYS76QRe0/y1RILYX8i3o825RYTJnQyUdPY3e759fN71xF03/p2VmPvqRf27o/Cvos1BNmIAOxwr/scbLOg0dvTRgDaldhm6nC/T35w3dg4EDX2YkIDqm9J468Q23jtIAgmGr1f6/39lXkdCry+Z2AgSqx0E9iNeuBVpoOaoFefnEb1eswNb1w2OPbepDRNz9hD/h/A9i/ekh4ocSVeVcr6BMmBXFQ31X7NBe3DKp0xzYXMVRhn0/F++0mY8C9ayYXAlny6G/NzPhyD3/9XozmeaBYzw8sbGHXWopyp2j2cTwvldDkxwtf4HO/iVzln/OE0UMgLOROuVkq5nJv4CqYZamMg/djKD52C/GEmMpZl/H7jGTxQZ+ZuHz31WyxgAt9r+Vh0w2y4o9PMxHgczrp8FnMXW5DRYd9qoPnUaupmONWbdi5lknUVtjhmj5cB1xCT/s2NMLMyzNuewRYxCfNtwCf6xK5lG7YYCWDOxp59IKrM88C3MyBJgWvfR64dfCSFOgcQM4Gz88jz7ZThrGL+8+RMByewgG/wmRx99X/wXS7hthwpxRXcyI9bpvHN8k8B8F0+xtV8jeed3voLfIXnKeUmrsi9v3zu5Rkq2ebBcDsoZAETaG23Z0qLWmmlNBdT6ugLl/LU6jGsmnVMtOta718IUoSJfrwKW9yeAlvJgG2VPqQr/XglNqbl37aRlwZLfR2lnby8QdqrTHvhQ7rQCQaWYJ24FCNYePG16kPao9x/9HyeJEkHLw92EqBvmqYHDFArSpJ0IrZrXoMJtWsIQbkbE+pWYwJdBfbW5mFCVyehAVL8GplClfrzEwjzsBpCMFtAUBJDjP0BRIT7RmzekOC6koglU4ytVaJGrsK0B2szZS7zvCZjGguZBClmzDx6ml2VYOQPrZiQLc2KKImhJ2uZzKukcZD2C2zOOwLTlZ6GCbv9vX+GZ/LpxkDEEK9jL7/eTcT6k7Ar7YWolEU/reuiQj6C0FqtJIglZEYnUKT4R7umYYTPsGLl7MQIMTqIwOK9sU3CDcTG4P2YeVULJmQ3eNvGZZ4RKBQjoBjWFDNJwLADGyeVBCmAiDd6E75dnQQA2ICNWZkV4td3ZPIc4fcKDGfpwmXaJtNJxf6pJZh15Te3xvPs732mdU4avmIMEBd7Hp2EuaZkCI2FJmITQtpHHWfjSW31tmeJEWQuKOC2gSCuqPby5UsH4R+lb3gMtho0EuO3v53b5zhBRydJOn0310/cD2W8HlOSJI9gQa/36wLpeQtgnfZK8ZBe/rkDJU6QvmSlN2HSo0BRX3ruoDt1yL86CFqE2e/KJ2gbxsTjPkGMwiaBNmCKLeXDq+pZVX8MfYc5RXbDQKaMuzMHcsawjJ+3v4fyIrNseSv308Dw3PXTmc88zuCt/DZX65mcz3A3rxvJ0yxnNNO4BYD3LbiLH094L3fxTsrdIWcyc5jPJN7o2qKPL/ghAIMnmAnW+lMPN1WwAshNT+HGJJzx67zN0/34W5jK+ZN+fAa28C4mTOdKsQk/a6a0CDNxA1Mj9yVjzuX9KfY37fgobcAClDqbHI9jk+sYDBwpDwiq7090wVX55N1ooHZwyXoqaGKse72KQU/MfR0Usp7B9PYtpPudtEuA9WlG0o+tOSa+27mYsSxjKWNo4nDAzN8WMCH3Pq7l0+TTnXuf62cdzknnPchjDxvwyjG8lbkkc2e+LRgipdiE9b24O7ZhQOgQejLpJWSkx/nY7N6Y6ZBd4wQdSGkf4wQdWZvy5T3ECfrAnuME/bOnfzjASNO0cM93HTipEVsPfoFtiMlEpxVbB1Zi85uE6AeB92KgQKY1mzHBrhcmgMrkTPTK0iw9jc3PYzHBX9TTEhQfxQRmsavh+Yt2+hQ/JwNKsZ+dRZjdlRP+OnJilzlSsbdrNSZIyh8DDBRtwPZk8jLHnYRgKfAlnykxj4lKWnFbRL6wAdtqlV9GH/+939tSRJhRrSNIHZ71skoJhjBpjfIIx/7NGIA9nwhsK2W52l6Jmfu1Y+uaNBhl2FomWuQOTJAX812X5zkS28S7wPNsxIDqIMLcK48IlHsCIYQ/hr3LPvRkylvr57u8vIV+f6vXYyjhyyV/lzxsfLwbW1sGEIQKxQTIrPA8873fGrEx2U2YHAtM6d12EBqsuZgsIBM3sR8KaGzBxnEVEXdIgXp9P48xhHZHsY2GeD0XE4x3owjtX6P/vZnQhimAbIv320J6simKnGQyNqakiRMAkunddj8+x99lhfdxDWbad5vX7wKvn8wG90dK2WOcoIPmcC+T0jSduOe7/uZ0I/aJ/C5JEoDH0zS97P+wvP2cZHiaBUKNBDFCX0zalBTdx3xvpPGYgsmXErrFoNbbj7MCf4NpI1a1HQN1sK3ApP0Bo9Yyp30y256349KqVvIKunJECGNYxmJq+YS7AC9gAh/iB+S7NuPirtvpzs/PCeKXcisTWJAzjztpwoPUczRNVOTIFq7keorZxC0bzSTrkxOuYQ6TuYBfA/Cl6d8wWmaJiDcnjLp+EXWfck1QAbZ4i160LxH5HExInwewHQ7zlXGi99O9rlVLXCuhj1qscTLB27YdavuY2ZyeLyYAZpfXY74fb9oOk/rAJ/8MHz7WJs6h9CQLOCUffgDdF1rZzRcXsf7tg+koMeTRSild3Xncm2dEB7O6z+UTeTfkmN6mcA/38za2+pZrMZtYz5AcoAGjLM+nOwes5jCZCpp4X4tZin6y/FtGhNFu5o7Dz/uLxQwa5ohlduJtdL+yOgyjCAA+jwFtAbw7MSBUCwHWhzgAavRj2X1oNt6YOfc6TCkHHq57DaZ/OAh6LaUtmCD1C0yoy8MEVwm7GzDBfiEmSImadyk2B1Zk7l9B7PYLBUpjshIDBo8SDGUFmDDbjoGkBYRWprfnN5QwT3orJmTKXKcYE/Lkw/m0Py8t1k6v9wiClKAXobXYgQmQNYQ2psLrrHg0iuvTggn3SzJ9UkAAoy2ECd8Qgi5cNMU3E7FwREYhTUFWq6TdffkfFRFmZYrbM4rwsVmOzaFNXv98IsbMBgJUNRKg7wgMBKkvO7x953t/yPRMsZ06gfcTYHGD11k+L4P8f5VVhQnRqzFQLVa+Xt6nIqaQw4L8sAYQNOMihdiCja9ObPxsx8aeAFMZATDzvAzRn0vrN8jz6fBz8iOSiWcbYcpW5e1Y7n0kP6WFBDB/MzEmBIoENkT73ogta/0xTU8vDCw1eH3UZzv9d6SXrzEk7aNYBk/A3u14Qhv7JEFnv4GIkyRTzQ3epxOwb6sTA8yneL6NGHDaTpjCbfV2DfHn9kfA1L2IE3TQHO7vnNI0rd7zXQdyegP2ZWq5X4fNbnIoKMHsjFwzdNiIHrTMzMc+BIGdQ7GdepnDlZKL/JxX20739KIcsDi+ygJyPlF/MoNr/poDQcVsYmzeMoZgLGlzOIvJzOnhQ7KACTl2ufr8Gp7OzRzwn3yN5RzLed2/AWBC3gKGsJ42BubMvJpnVNOsXTHgjsvfz3BW8aXVHl+xLoGL0vBDuQXqjj0h1PqbgE+Qo7NmKubOXZw5fgTo6hMA8TYMQAr8VGITUIOrm2aPh3cCX/L7r+vj3d5ox8WVNsne47PAxD5Wpl7VkX2sv/94rJnQzcQA1NeIOtyAOQVnuBlHlyw38gSs/oMv/yuDHUxMy7uFfLoY7SqWJ6hlGWNyJAeFdNBBYY56vIKmHEDqndmyyaML2gzUbCvvxy/rP5DTBK5qqYZ5+dF3azP9CLb7+QZC21gLzplhqRMDRfMgwHsjJhHt6hjTN/P/s5nj/RXN7QBJKX8vYoTXdfqHm8O9llL/JElHEKZn2u0uwoROBXoejwElmS9VEYQK/TCBbCS2FMk/qIPwCXnS85CD+yDCHGuHn9O+nrQulZggKFO1Qmyeedr/F9NWP8+rltDQyEStlHACLyAooRd4vicScV5k+iT/DgEl+bIoFo3ICkRoIIF4NKFZEDiQr1MT4aDeH1trywmgUU/s8ZR6GTLPKvH2iWpapk0ilZCmQPNvo/8vE0dp8+TL9LS/C/nltHkddvhzYl2Ts302L5EK9CYIKoq9Xh2YBmqs101miiKRENuYfJZEI11GxK9RvCmBBQHAJdgYksAugCmgp3bIh6yG8OuRH5TiN/UjWOmkxZTWcSsRP+ckf2djiNg+Mjlr9V9pkDRv7yC+iz6EFmgtBtL6YWNgsz/zJHAeoZkUOWo/f/6nGOiqxIBZH2JM4881ehnF/v9oTHPWn6BsF6ueAgb3JrRv9di3o+9uHKZdxfpln00PRiZJevNurr/loDncayYdOOZwogkWCBLtTtax/Fxix7yvCfHD/XAHNvlLQL0Mm3SUXRkRKXsT5H22ne6ZRVANA06USgM2P14W5k6dMHjcX+loty3A8qIWBrM+5yj/Vn7L17maiz14fD01jOdPrPeAr5OYzyqGMwvz5ylmE41OHfcDRy1f42rmtiiyKTA93zwO5kcdaCZMJiAH5gDT/2XhbxumRtYE+APvi98RVlc/wUBJpR+LblseZ3XYxJPucl47obMxzdsv/Hi05/WoH/8bprSTuUOt1+EQcova4If/yvpZh8f76oS+P9jEtncOzJV1zt1357RqyzmWVkqZ2WL+V98o/wxgsZyUusljiqMSgcwmKpjTbv277ZaBTLpydo7oAiCPbtZvtPfV95CtRqHu1lvD3/8XVt10TJBr7MAmfrHqVWCgTgv1YnoG59uUIe3IvVCIcOlg4GcNB27aR3O4itqUT+zBHO6TB83h9pQOaoJeRZKPwgIiVkwHNof2w+ZL7ayfQPhcKCaQCBWkpRjieR2Hfd81xK78Fuz7l3mayAMEHJ4mdr/7E8xsjYTQK98PCDa1zkw+MmE7ARNkNxBO8DvAXR6DknotATy2er0UZk+Co9rWSoAfAZY2IgbSWi9vND0BgDQ2EkYrMJO5U+gZ60VsYRKeh2LzpIABhJYJAgxt9ro0+7uoJDQ/IhI4zvtXFFNrMs/rTyBDjG4S8sFMsNq8jZUEsKwgNEpPZ9oEPcGtNEHScEgr1J/w8anBBPMSIt7OcYSf7VZsLV/rfSPGtyc9X5FC1BAgroPYY1tFxOzZ6L9l2Fo/kiAS6CZiBZV6PWT6J/a5VgL4SmMoJruR2Hse4OcEGvH8NxPkBTKjE8vhID8n37ETvT+WeBkC7OOwd6zYQoPoydw3iPCLW4uZEC7EtGrneP3O8ftHYuNM8bx28Mq+Yn9L2gtN0EFzuIPpVSQRInTQEwhtIxzIpQnS8RBbsOTnkm6HtX3CbGwxBma0uDQTwGG00zoDeVPa2by4DJ6HvpNMI/ClGhOwv1R/LV3deRQW2axZQRMNVOfiAM3kfCbxYC44ageF9GMrNy0xP5bR45bzfa7gdPfcO57FHEor1/JpruXTrGcIT8w9GQ6F48dZWKsnHjyZvMva6T7Zzam+PcJAyGnqK/dyPNcPq4FHtodvFBjAUXzPy4Cb10HfIWYasAwDHg3YInaG3zOTnjShw4EGN5d7ogg2tcNo7/uzCapusIn4GnrGIVJ+ApT3wUk1D/LYjNNhC6x/x+EwBY6/1dq9lX48ddNY+I7d3nfYJh5YfT4Lhllcpffm/ZzL+T7rym32H8x67uDiHJvbJdzGDnoz00kqGqimmzxKaeWSotuop4aF08bTRAXrFxye87kqZhPNaw1IVdQ0GQj2BXnVw8fYmNEYG0U4wIIN10MxHyjwBd7NDjdth4FOLrFtHTZ+FesqS12U1QgpvY7iBv39KLJf1+mgJuhVpAInRsjDhP91mFA2EhOkRH09gDAdEwiSD8lQQuDbgs2HCwjqXjCBT47/MjEDW3vG+fVGwildu9LycZBjeIOXJUd6CZgyY+v28+WET0svgixA5kYDvN4CZgXY7rlIIAT+BmDLqPw75Gi/zp9t8bLLCZCheDdHEH5KChDbQQAraZ/OyfS1BPmNhDajwO9dTfgFHUc4x8vsazVBOS3BX3TTct6XtqDU81asGJn0aWOqN+HrtBEbG0MJU0X1w8pMXaSJEbmAtHnyL5EZoIKSFmbul2nZPMzsca0fLyY0kuXE5uI4DMiJEW2tt6mdoBavIIgmNG6lRVF/ipRDQWZLiMC9D2BmgFlGOplh4uV2Y6BGsYI6CUINmUSuJAIHi2lO77GDAE29MUApyu63E5uI/QnfprWej/zi1noftmbeS4Xn0d/zlNYM74MWbKx2EQCqt/ef5D83R9znXbcRSZJ+ZzfX33ZQE/SaSf94TdCurFiDM9f6EuqKEj+WsL/dr+nYhfT8zONyzgSYRpALaLG6CBNi5cTeF6iGvLJM0NBhKXSaKdqUGnNAEttYNat4kEk5n58HVp/P0VXLcsdzV5/LgGHr2Dy7DH+Ax2rGciXX81iLCffDyptovqmaSZebA878W8+2iUFMbJ2Yr8lFfvwD/y3I/BYQ2qC2zLMAzzgXaTXQ0GjnaittEtEXem8jDKyETS6cnzsE7oXcVsdhfeC5dXDkkKjTiYRy43hg3nwYPcmOXyB2iT7vvx/HJiEpvb6N7bA5Q11ebTvdK4py2qqj32/MbEqTquawjiEUO1IrpIN6anIxfcayjMGs49sPW4ZnnTqLubPOY8DZaynPMxKKp5aM5d3jfpLTEq1fXQHNSYyHOm/XCj9upGdqwADPmMzxEALH3CvOzhHEYBOrhUeWZQY2ZrNAKBsnSJsABwoI2kdN0NDalCv2oAm6+qAmaE/pIAh6FSkvSdJC7FtuJTRD2onvTbB4bcGEMAmRYmoDC737KGGQUEREom/DNDOrM89K0yMTM8UbaiKc3QcRfjP1fpwN8NhNAB2IXfpaghCg3ssRI9cgTEMkC3IximlTayE2Z40nhEtpSmRip/hGVYRWRaZkWzBh8x5sHZUvykrvu7uI6U2mbTKLUwDLnYR2Qb5JeL9sJQKbbvU2yb9op/8vcgSROsgJvxcBTgQ0O7y/FhAsZdJuSQMiavAqQusi86sOAjyJNELvfCu2kXiUn+tFAAOZUO7w6xCmY48QSWQSKwk2s51er7WEhka+V0sIHzbFKRrpz8vcrsvL/YPXt8qfqyTMLqUR1RgVu55IJQoIEgQIc0n1eT9sjRQAe4yIlzSOiIO0xcs+yvvqNGytzPf6bPe8VhPU7gKPbQQhh/ybVhJU6QKf0oJWYVzL8qeSdlXfl0wF12Abvvdb/vsFBP33bq6fexAEvWbSPx4EZVPW6KOamPWz5/SVHg0MCT7957EPyF1KmIdpPvT4dAxIZDVCK7EdK+30T6UHABl2eQPd5DEB8xma2XI+eQVdvLHEDIHXM4RSWul2ULRqtZlZ3VBlpm7djsi+i9FfN7dUMKX8HmauvtAY3oBzrr+b5RxL8/WOYmqxCUOT6GwMbGhBG+X1u7fRT5TAuUURPVu8EUp9geewCUNmXYdh4G+qH39SRrsOKAdivkZZ5/5qggr6Tpzq2d9F7ST7XeygqW8fi100P1OP0d4WAY5SLL7QnZnjSwgyhvnAtfDump8AMHPj+XR35sNa69NJ42aztHuMaW6AUacuylFfg2ntOigkj+4c21veqHZ6v2EHY4qWAfDYracz/NK/GE266rgc3ALP3sU8AiwWYO9GdWykJ0ve8gyw6euAcdvd2EsREYJsEtt3OT5QQM+uaR9BUHltyrQ9gKCvHgRBe0oHQdCrSAOTJK0hWNNEX12Mfd8KsKhghxL+s+YyWwhtkGLadGFC1HgCnPTG5t7TCXAl35Y2TNCbTJhZNWIC7wb/fxpBTDCCEASf9P8Va0bkChLyoadzvHxgxOxVTwT6HOT1ENiTcK+NqlUYoJPpXqOf7+/tEcgQFfhqgipcPh9ZTUhF5tnRfl7U1nLPrCI0LRszz8k8S1TKolVuJ8zsVmf+l7N/IQYAzvD2Sfkuc75Sz6sX9h6HEZTVGwgQ1YsgWCjzvKSdI9Nnrdj4UNwnsQb29roJpPb2/sz6BC3zNp9CUGe3EEQRjxJxl6Q9kl+a3qmILgTKKwkK9DYCLBR535URMZjaiHGyndBmVhBjbBFmeibNTIe3YwK2Jl6Ajb2FxPgWW2F/gmhilNdFgEb92eRtG00w4bV4X6pPwMD9OQTdtrSjom4XwB6BfZsCo8XE/vhagp79MfaPJqg6SdJv7ub6Ow+CoNdMOnBBkLRA2mZvx0a1pPyjgXWQjLDDtNHuz4KiYzDqZjATLjH3yETrDAwY6JlTUmMEEzXyGe5En7NXTqEtYcAo28ba3FAGy+HyC68H4KbVn4C2iJ1+/Lg/GtuYp1Wra5hSNYOZcy/iybOMQOFMfmcaCWesowADBgJq2tUQEcJibDJVnQqw2DXL/HgeBlgUGbkvtgs1kBDYt3mbM/44OfpXCMCl4zLguXY4383hmrCFc6pf/+92uKQoSA/EcfF7zGcJDGgWEH1/G/Z6v+zHX8QEghNM1vvPqi/y9eu/kqtz3xM3se2BgZx0oZkWPvbw6Yw6dVGORW8Vw1nABAY7icVjqycxqmoxbTm7QGhePZzBVU05soW6uSd4QFO/YT5m0qdheJf3gXydigkabAiTBTLHBZjpYE6S6IutMgJIz3om2etyKFDnHUiAaB9BUFltysV7AEHXHQRBe0qva5+gJEm+BPw7Yd3yn2ma3u/XPou5Ge4APpam6ZyXzSSTXsS0udJIKNCohMLjMKHsUf9fWo1xmCAm358m7HMdgc2/8oEZhAmQpZjA9XbP+z5sTZEmpYoAPqOJnXhpI+RjKFCyBRPkSjHAIRKBrP8MBGudzHsU76cMm+vlV/KQ56W4Q8uIgLDybSnABMRHsc2eFoLJcxChbdmIvZydGJiSH9MSwkdIgu4aAnxBaINGeh7yoVqOAQGZrjX5b9ascKzXt5RgI5MVhHxQqomd/jyCDKKY8KVaQQjFYjHb4X00gTA7lBZGWqEWIs6MKNOb/B3cjr17Cf8CGdm4QC2ZtopEYKO3Yy5GVDCC8NEq9jzb/H6Z5eHl7iCA+kpsXK0iwimqjeqnbKwgMQrKp6fS66W+P4KIW5RlNhQD4XFeP20g3OX3PUloAAdh720IBqT0PisJGncRW3Rg41FsbapzMbHpcJqXL7IK+T1VEUQJhdj7favXo8n/mr1/+2PveRAGLn/KvqeUPQZLPegTdDD9jSlL5N5O7JgXZf6HHEjShLit0hjPhDmWE/bCYLv3Z2Pyp0gG5MguALE8sclc5G8N+fAc5J1p5b6x5GnqHj6B/DxtIVo1brrdfIAoBmqDfeyJ1RPIK+4I/6PPtjNzyUVwKBx3uWmT+l67CToTBkxyYHVLmX28izz/v2BgzhmxqfVyPuPH/0FPE8B8ejKWVWNxakozfTEJ+GoG1CzDFkIRJBzpv8+4Zue5PvC1oghKJlMLaXGuKoIfY5IKwK8xcDkREz4meZ1WEaZkl2AToWi3f9IFDfmcVWXTxXUbrzINlovGFxTdxYMXns5jSyKGT93qWurmW8eMunQRq+YeY7E1gLOq7mVuy2SGlzfwfHepnZyfsP6aw1l/isUNYhg20TqOprflmwNuz2PSZ1bbk9UkCphO9d/b2mHbU9hWsZDVEMyXTUQI2lbeNSiw0oEEgPZD2ot4CgfTntPrWhPkIOiFNE2v2+V8Dca/8iZM1p8HvDFN090OqaIkSUsxQTxr3gRhoiV2t5GEOVI14Ui+EvgAtkMuDVEhISDL8V2xb9YQwpn8g+7CTOoewuYYmedUYPN7b0K7ssLrJQauCkLoHUSYO0mb0uLPylytAFvPxhPkCpVejrQmcjwfR/jAyFxQ+zAjCZ+beV5vKdgXY2vnTmx9leZEVNYbCJ+i07ElewNBQKDd+Y3+rPJQYNEdRPymdYQJoJ4RV1LWfE7tXEhQggvYyhdoC6FB6k8AFWmzygiTsC309I3qgw28PH9HE7xNIlPoh42R3oQJo7SOf/Dys2aHGzFLg4mZsjszz/8CE9TbCFOxKnpqovoRYHInQS6Q1apJa7LE71Hw1x0YMBJZwVGEWZ2WQ1KbvAAAIABJREFUKEVsEECXOaDG1Q5sXOibEFFBP89PvsbKb4mXp/qMIEwspZ2Utq3A34NMFe/B6Ofv8TaImbDC38eaTNvyMBlD/kynY6ZyIkYY72XN2w9amqokSa/ZzfX3HtQEvWbSgacJyvoGZQFRH+zLkmpHPkLH+rHT30irsw37eCX498VAkAau/IEaCH8bmTtp2/UFzK7chd0BZ69l8+NlDD7VA5nefjhUwrBTzaSptb2UHS/2prvNZsPhVfV8g8/y7iWzLIPHYcC0tWy+sQwuUihxYHZ+DoAM+3kDzQuq8XieNiEcTQRDfQSjlZYAPg34aqadYHF+dP/ZVi6H0pNR7j5skQc4E7j5z9GX/4otnhIcwICMHBrbsMlGYFLsPLLsEnPcmcRiMR4TGEQr+Ru//3t+fBK2IGS0cH0P2cq2F3wFrsvnpLMeZFm7oajSolaa66tz5nK/XPCBICiA6N/GfKZMMLQ2s+V8WJxBjM3AlC64zM9NwzRWm/z6QD+WueTzWD8qCzlnbmr0+yvj/xzIWZfpGLAB+keC4GMduPbqwEz7qAkaXJtywR40QTf/82mCkiQ5HPsSnwf+N03Ta3d3/+taE7Sb9C/AnWmadgHPJEnSgAGix3b3kHwF5HvTgZnsPEAEpFyCCfy12LwvP55CDFy8GRP6tmBz2HGet8yfVmLzgJz2j/M8thBmcOOxee4ETAj0/RuK/ZnTMCB2Cra8icJamoOh2LLWgc2NczyfkQQpgJi1dhLmVTLPavc6dGAC/RZs+lmDgZw5BJDKsmaJrEHsd728bacTAOEIL1N+LdKIa2dejve1mNZ/HCakitxgBcFCJgpxscC1eVuavD0lXp7Agny8smZoA4j4PwIIO7zuef43kWC3U1BRETz09/YsI0yxyJQhP5u1mJAN9q62EqBBcWrkK6S0gQiw2ujnlvhz0gKu8fr/KxH3SbGhBOhKCP+ZMj9+jDC/VB9WYKBB7GXDvH71/vwpBKvfEiIOlMxCIeJVPe3Xx2GbgT/Dxq0IQ4Z5mwSg78c+2vv8PoGyp7F3O9H7OM/fw3KCGKEG+z4f93fRCzOFKyA0p+Vevw6CQe5BbMyeS5i+bSDW7Vbse34IMhFM9j3tQRN0MB1Mf0N6kdhO0Q65fIBOxnbUqzPXd2XaKupJcjARm4DBdldmY8J8GabFqMaEWvl4HOr3i+XsSL/mNNyb68rgUFh/q2sSzu7i6PJ6Vm20G44vecL8T1xiWVVQzbtnzuKky92Eq+50NjeUMeAja3O+LDnti4OY5vpqE4skEh6CHZ/tx8N63s9MDCRlTbbaMs83YxqVSRgJwRXengswgAe2kJ17bEzQZ/i9AkkfxRZFmc9VY0QH0vEe5r8iZNhGLGYvEjbRi4hArNcBp8CA37oGbHaZPfeQXc57exfb5g8Mh9JVsOqs4Wy7y83bLm0lr6ydmRuNDe74CX9k3QStsLB+42C6VxQxeMJfmfkFR7mVwKQUpofJIovzw0TvEWJnFGyyHk1MplOwe7VdXebHmyrteNOfITnW3sGmu4mxOg4buxAgvtF/+2KA/0AGQvuQ9hM7XJIkt2KGIuvTNB31MtcrMAOVMi/1R2lq/D1JkpyN8Q72Bm7ZE+D4W+rxN5TxRuC3aZr+MEmS2/dY7j+BJmgqJrcvBj6ZpummJEluxKJ+/9Tv+zHwQJqmd71MHh/ENo3Jg+PFBCetS6XfV47NMaKQPo6gu74PmzclgG0k/HLElCbNwDps3tyBrTO/IXaqtfMspqxubFkT0KrE5vEOQkAUs5fi67yZMDGT471i9fTzNpzr/ysI6KNe9nnYvP8INn81eVk1mCArFjxNl3nYvLc5U9dSwjekyvviOGx9laO76idiga0YuNnszwgYCkR0YlPhIILcYStBBS7wIqKJ0YQPlbRf4wgaatFTyzcGwpdIpspbsRlhFaF1EZtaC2EN8AgmvMvHqo4wD1Rwz1Ji/d01X7HHbfV7BYg199X7fRsy+Q0igKvAunx2yv2Z4QRNtPpoKAH0NTZasXEkk0P5hKnvS7xvpE4d7++t1t9pBTamBxHxp2Te2OTli1ijgNgwqPP3OJoAqEOw4K/qKwVPlSZU9ObSrkm7NQjbG3wWG2/SCpYR1PIVBABTPVS3rd4HAu9iLdyIjSO9p5X7QUtTmSTpF3dz/dKDmqDXTDqwNEHQM05Q1kyohJ4kCSdjX/M4P3Yw1Ne1GcJIjjUYgwm1WbMwPaaRWk1oAcA+pP7Epn4lJst+wrUM0/MZcNVaNt/jhTwLHAp9p1gm224cCFO74E5THQy7ssGE85lFDL7UtEkd7YVsaxgYgUnHYLs7J/nxKV4nCd4TCdpJCH+hrInWNIKUYK33wVVdcI2rMFZ6m/RMnf+veECLMY3Nj/14JgYApvvxFRipgcDDhdiirB20+Zi529kp3OmA43l6Bh/t9L/LosxhVzbQPKs62jUsZVSVaRHqrjzB6ijzxzHYQixTxmGWX95lZro4vGQVT80YCxmFGy96HRoyz2RTtdfzAT/WgiAfoEavV2nmmVVEPKUjsQl5UyM9TTez1O5gg3Nd5v9tHLhmcPuoCTq0NuW8PWiCbtuzJihJklMxmH37K4Cgw4DD0jRdkiRJIfAENmqfBv4X00vK0PRf0zSt3+X5wcC2NE07Mueq0zRt2OW+l9QjSZLer1RGkiSjgW/sUt1LMTHmLmz03JGm6W3sJr3mNUFJkswjpuNsuhqbbr6KdcZXMfLISzFL3l3Ty6LBNE1/BPwIoCRJUgnS3ZjgJ7AwADPHGYkJf2sxAbgGE4Lvxr77MkLLoxg6Mn3qQ1Bfn4EJyqcRNNQFhJN3t5ehdUaBWZcSDu4yTSsk6KnFelaGzdeiPi7FhMl3eL7lRABJ0Xc/iC2XhYTQWoYJoL/ABMahXlap/y0nGLm2Euxap2Bz6EpCsG4mYtDIRKrQ8xeN8mJvQ29eKvxvIfaHthIkEB2Yudl9mC9QPSZQP0bQm0NoftZ4vtIo6L2JZEAOZiu8jb39mSZMO9fkfddAANnxGIg7iQADqzGhvYWgfSbz3to8j3KC1a7EnxdF+1GYhqPG//r5OxA4OJPws6rysqT9acTA0BYMOEgjonANohUfSfhPnUAwAT6Njb0OgtlttfeRYg72JwKwipDiD9hG6AKvU72fV9llhM+RTNpWYxusonMfRsTdKsS+B/kZaYziz3Z5GWIa3Ip9k4v8uTHEO11DMCGOxsakxqH812RuWEPQlvcjLFr2NR008z6Y/m+ShEEJh5otxRSnHfV5xAyjVAnbMj5EBQQjGphW5Vli12g4NnlKpHoQm9Sk0ajG1NNf8uNjMK1Lg4OJTa7BEEiqs7y2fca1FdMgr6CL7qF2//qNg+meXgTPwfpPuTZpB6blUTPL7Dlm+PEpXt/fuDR/TX5P7dUkTNMjXxux/+j4RQzETM8PAFHh+Qq01GIAR7JqAaaxafTjE7GFSRqyGV6u0irCSRfgKr9nbWJ9BsGq5pTY/ALTMN3gx1Oh+QvVAcSGmahT97D5/OR9zoPbKonpSf02z851d1pfP/WFsXb+GALEPO/1lPnjNVjfy9epEuvbv/ixQJ7S27HhJzPB57ZD0occ4GksglQzrAB8JTZ2s6AnNFYRH+t1mlL2RhN0aJIkWaT0I5dpI5s0fThJkspXLCZNn8O+BNI07UiS5CmC36shTdPVAEmS3IktrfW7ZHEa8OEkSd6apmlnkiT/jumP37oX9XjTK5WRpulybOT0SEmSXAV80fO7i9BZv2x6zYOgNE3P2PNdkCTJ/xDB3Zux6UppGEFYtdt0CeHzI1+QfyGExDkEi9ibCZA0EROkFBxVGhPt0o/D5uwSgupYmhnFYBZzVYfnX0H4TmwgwFkntuEylohdI0HuIeB92CjdiK1RT3odTsL2VFZioK0YWyPk2ygNWAchVA7yjhvvfSBzrXzMUfzNhDDb5v8PIYT7/t5mBWb9BcFWpt12CHa8sX6vSBn6YevJYq9/b8zUqQkzs1tCmIHlE874O73teQSgrCRMqhQXpsqPt/h7qPNyZbIoh/8dfs99/qvYRY3eB43eT4rNM5Kg6hYoki/Rs5gAvg6bZVb78zXenv6ERuQh/x1EML09gM06CkorzYVM7AoJ7eDjmLxyhN8rkCQNknYXxLgnAFTl72+t1/shbNNyCwFqt/vv/ZhcIJPR8YQPTyPhS9ZKmAlWEQB0Owa+Nni/LcC0kycQ34nGbbM/M55gkivF3rW0sKcR5oV5Xs4W7H13E8Qe2hTWRkQBNnZXEux6eV7fI9g/aS+CpR5MB9M+pm305HuuJAxpwb6OrIP5CEwFcbQfOwiSqZbMyg4lzJs6MaFboGcMBhjO9eN52C6hSAkW+vOyf27FBHuBqGoClABcB93/UpQDXX0P2Ur3c0VwPgyodTOwujIGjFrL5gKfxe70MpTnJhycOPAa5fWe5NcLvH4CIGWE2R/YhHiBX1e9mz0fmdCBAQIJ/Z3YwpjV2nRk6vSAl1OXeX4tAWBWYYDpRQJY4XXSfn/2Wbysy7qgztu5KIFnTTsE0HxTtb0fMdA1YLtnSsP8mnx+ptCTohuvf2Om7FpvmwDjWq+vzARfxMaAwN9svz+noNwI6ZA4UVAE2wTU9DvfGy4pAXpqOHdNBxo73D6mvTOHe35/Wg44SBmLfbFnEVyJYKN//K7PpGn6qyRJjgTuTJLkV5gi4sxd73uFNHRvytglzQa+lCTJe3hpRKqXpNc8CNpdSpLkMEexYMhTn+gs4OdJklyPyV0jgD/tKb/NBBDZie0ad2Lzs2LwSKCXP5AooJf7M9KcPESwdokYYAkmwEsTUoAJYLMwAX87JhyLNUyO+QJAMilb4PWo8GfHY8KjiBHqMC2GtBvlXtZOYnceTMiTpqPR85RgLGF1A2GSJ3KI/t5Xp3lfSWjujwmZMkNrIjQ1hdh6JjNCUSwXe1ulzWj2dpR4P5V4fcYSmpQHCba1PGyJX0GwgBVg2hmRMYiIotP/b8B1rn5dvjj1hLO+YiJtx9alozBBuAUTkuXf1YvQtimga4nnNc7rI/PJeQTBxUIvt5HwrXqa8FUZ4m0rJ+idRWhQ4X3S7v18BEFa0I6946MI1kEIsCCLhHyMZU6BvEW4UYb5BYlgoYOIoTMHkxnqvM9HeB+IhEEmmPoVqJGGRWZwosMuI76NNs8Hz7fO29KfoDKXT63M5yCA/0jCX+5m/5XvlYIGVxDmgsMIeu/NhGlmmZ/bic3OAkAvsaP9G9NBwp+D6f8uZZd7UcJk/9eO+tGZ82Bf8aTM9RnQdqHHs8EYzpLKoAQFmwAGEQBiITa53Ju5fhJhhdfmv1qtdzWn2gR8mnCAVdybKabV2FxXZhP2jbC5qSxX5ublZfApf+ZEbJH8sBt93JlYOTLBeggT3gUGxmO7Yh+1w7xT2umeVhT+O6O8TXXEbtFQehJCNNMTEAkcqF8OxeonyeRiwnYbwvaYzHGD/472cqtTuDmJPAqwftUe+b1AbX5oYaqt/I5uZ0qYhO2GqZ5TCLMLldlMgL9PE46y0vRU+P0Stx/BQPIjvqUzuo/1lwgWemN45RfSLq4jVgy8ARkGw23thAGyQJAombKaoOyvQLzS6wgAgS0Wf8cmJUlyCMZP+PE0TduTJHk1FlXfdC3OzcDwNE1feLn7Xq7YvS0jU1Ydtj2xV+l1DYKAbyZJMgbrtEbcQDtN078kSfJLTN55EbhiT8xwSgsxIVwCVzU2Jw3wAtZg83QFJmSWESxf8lmQcCVfl1GY8FyLzSMSxh/F5rn3Y4L0ToKdawMmYC/C5vBWTKDdiQmGVdj8VIPNp43YnL7c6zKCiIuynQANvbx+Qzyf5X4tSyQgEgfN4zJ9e5Rgi5vj5cnJXVYSYtgSiNjq/XQ+JtTL5EvxgDoxAVS+J4UE0YNiJHUSMZoUjHW5990OQuvRx+sjMKlgnBCEC50YoOokKKvXeLsqCdNr+Qhv8PMCrb0JEDnEy5DALza4nUSQ1zyv1wIiqKk0dE97WfcQhAMy3Vvn/TARW7uPI0waxXAmljUB9C3eltO8PsMwcDAn805EwFHg/YD3/0Tgm/5sISHf7CR8jOSbI4INxQQS8KnDvo05hC69DNsYPY0giRA1tjSIopzv9L5ag42Hh/z5EQTQLMJATT2hbRNFuWjkx2fOrSSIELq871d43fp7PpWelyxeHiVMNGWSWUiY1O1L2gtN0EGK7IPpb0ySmAp3Od+X2FqCcPqRMDkE+HPGJ6jSPoZtlX69j5vHbY9nni0KQAC2OB1K+JH8HvtwBThEWy3n/rX0FMSHQd6MdvoeYlQ7m28scxIBl5FEbjCJMKk6FIuVs8KPO7Hdruv8mRMJUKHj7J75MGxhmm+H3duKggEPnBq8CyblGQgBW+g+Qtx3Cj3N2aQRmuS/8718gZ5a4AeEZqjT/5em6RRMu/I44YfTnMSOpfriOYIYYqqXuzBT9zanDAfrxzaM5UlpJrH/PsLrMd2Ps8NHZiLV3k75EZ2LLYbFfeLerIZKtuJ1Dmg24eKuYlMtxFZnFdBOcILf7ee2YWNWq3ijn9uYuf46Tjv5uzUxSZI+GAD6WZqmegF7bVGVJMlEbCTfg0Wu+sheFv03W23tbXpdEyPs73RIkqRHYILxBuzzfASbO9YQMXTAdtrl+F2CvTU5Yi8kfAzO92vywygg2MyW0ZOqWI7oAkrlhJ+nBCf5/7QRIOMIQhgWvXcbIbjL10hxg9zJO0fxXEGYg60mTNUe9bqu9Xu0j9Pf+6I/Ni2t9D7aSJhbKXjlEv9fzvhbseW40q8PwIRiMWaVYz4lxRhIUJt7Zf4f6nWd422XKVWhP7/E/x9BxN3p9v7ZQrDiVRBkCiJiEOW2TAXzsOlZDHUKOis/EZFBtGJjpBcmqKvfhhMajSe9vWKYW4MJ/4MwoLgRA9/bCVPEem+H2NlkitaHYLrTu5ZZX6G/D5EqSLslkzcBxwv83eUR8X4avM/ESNc/09cFGMgR09xor+9qb9NibBYc5PeMJwgy5LOmulZ6e0V5fRoGPIf79VbPp7/3e733y2TvR5kACtzJz22Nt+NBgtFtI+ErJ/8gjXn5lYlFThqjJwmKcfksrd4PpAUVSZL+x26uf+ogMcJrJh24xAhDsVEvjY924+VPsZGelNlDMfQwbpf7XUA9DBO6++IBLTGBNoVcPM1d47/IxEpaDoEYpQJsshFoGE5Emla6gFDBdmJilcyqlMckQvhuxrQcAlYiJdCOpmL0aLejzev1GT+enkJdYvGKAP473xbwZYR/1ECvo7r6eS9/qh/XYYBB8XJEJSvfGrAJXHTWMo0TKNLiX+1/K7ysYhh8ntOLzzjc3oXAnXx71PeH0DP+0SrCzAJsYl5I9ONabNKd6MfLscm/AWs/3gfvJBblN/h92v2EEDaUntlOsFAMhcP6wHNZrc46YoyCOQ0pNhCEMbWONxJjVXnAgasB2kdihKLalPF7IEaYt3cU2W7mdt8rECMkwE+AjWmafjxz/g0YacFbsE5fBLwnTdO/7PL8WMzT4W3Yl/JTYHWapp9jl7RrPfa2jH1Jr3dN0H5NLxJmNU2YwD6OmFNXEHFOZFKzEBNkFVCyAyMf+IPn1ZswRliBCY4b/f4iL2c5Jsj1x+bDLdiasMjzXujXBmTqIoF1LAGywAQ9Ob0Px6aRPMKHowWbb1fQE1iUYIKefJjqPZ9RhNComEBDiXg7xUTgygo/X+3tKMQE9xYMdJT6bwuh6ZBWbKv3Xy/PR/FZpL5Tu48iTO1avd6tXl9pdeQL0uRlKnBtb0ITI80NXvc+GJiqJ0iB8LKKiNhIVQRrXoU/2+Dna7xt+Z5/F8FYpqCvc4h4QDJ1fJrY25ImKM/7sNyvVWV+nyaE/97exk7/7YONlTX+f32mbLEZVmJgoCXz7BCCWvssjClEhAn1mBmnNF5b6KmNEiOc6Mm16dmWeV9riNAjG7AxPQobxyuJGFAiiRjpx7/xdyfN0jx/Tv5KWmbH+7WjvE3yGxuHgflnMd+tZYSvUjlhujcC+K4/tw77Tpd4f/QmgsnuazroE3Qw7d+U9YPQr4RECZxZiRlMePwZIYDqfgmblWb+ljba4XM+YjtH2KMDsY8wy8It1bmChTZgwr/AURlmtiULplPoyZr2IgaINNFXY8FMs3vEsz3fAiJ2zkzC5K7Tj2Wyd6H/ZmP21BJalwYMrEzy4zsTm6DmZ3xjboG869rp/kiRTVzTsIVAvjDyZRLZQqfnL1+Y/v+fvTMPs6uqEv1v1ZTKHAIhISSkCInBCAZCIDIJKMjwaGhbsaHtVmmVlgaHbn2v1R7k2fZr7XZonLAREWlRWlEUaRSIQiACkTCEhISYGAKpTISESipJVVLDfn+svbLPvbm3xntrXL/vq6/uPWefffbZ59xz1jprQm8upiy8GI/djrMujsNE07NIFp5b4v6eBfbAK9+MCSEWoUqXndItqGXGlJx1aFKDb8TvtwW1qNlbocNIQbygbnVbScrkiSTXiBWkt6pmBQJ1vRtNUnpMcbMxbQWOrYYxdfp9xW7YWk26Jt8YP9s1N5IU4bybZLm0CwxSUYmmvO9DlEBuhr4eIiI/RK/SI0SkHk0q8B0RuQ+9wmaijporRMTO8qdDCPeJyPWo2FIJ3FpEORkFXBFC+EPc33tJrwW6Mo6u7KPHuCWoG4wXCfbiYwN6H7Ag9PGo61MDek9rI6XVnYEKWrNRQXIO+mb/PPS+2YgKtVvRe/d6VNiyJAFTUEFzKilA2+4tFkBeS4olmRT/NpKUG0uYYDEwJky2xLFdHMc/iiTYWxa1h1Br0yTS/W4lKVX0+bHtjNimBhUQ58fjOxm9p5tgTty/eaE3xLZrSG/+zT3NvH7NEmPplYnbVpMsUU/HYzA3sRVxTJbAwNJej0UVklpSTOrj6HOojkRL3M5c7sw1byypaKclBjDFaHdmDFanx+JMRsf5mUwqDLuZlFK7lmQF2U6KLbJnlykdloFtdjxf5iLZQrLqmaVwI8n10ZQriymzhBnb0Wf/2Liv7bF/c+GsRq8BqxX0dPxvsb1W22l73N9ZqEXU5ntOnJO1pOvfEh6YEmiWM4vBslTf8+L+KtEEJGvR68WsSZYO3SyoppCvIRUMtmtwTWa/zXH+zyY9Ri2F/NOk5/v8OAf7SIkulqPn35JkPIkqyL8pgZXmaJFwbQfr/9EtQYOGgWcJylJFSo6QdX0jfp6P/hIgWYjMpLCJ3GKrVrxmA7lv7rMxGeP0a358i1mAfojehEy8OR+Vf7PZ5o4iWUh+iLrOmRudpaU2aw+k4M4T8/a5IX5egDrn2EN9WVz/KrnYPmeR4mNsuSWEsKn5GnpTMQWiGRX3LD34HaiClA1byWZZy3ebs2U2b0ejN6R6kn5wVezjU/H79eTWM/oiGqOUHdPjpDdqC1C3PNvnMnKTrO2P60z8PQ5VtM7PjLs59j8rs906ci+rbHRHMGvihvj/9SR3NsPc3UCvxYXxoLPKOyRFZyR6bY7MbD9QrUDQa0vQ6AWBuZ1YgpYNv2Kp3cUtQd1gPyrsWkzAelQBMhe4s1ABzxQecwNbREpPbbED55PcrsyVdzy5ysw8UoKFSaQscnvRe+FW9B7+NvR+Y1aOSlTgqyDFQjyJvtBZSopZ2RC3u5QU6L6KlLp5E+ktejPJQtIY245HFZ4NpMQL7agiMJVUELU9zscBUh2YzehtzZI13JyZkymkFOTLSVn0DielzrbEA1aHZkrcz4LYZnFs8wzJojIntrVkCpYlbTHwLpJC2Rw/70AtB2PJjQ+yDGE2JrNG7SZlBpxJSjZhcUgNsU/zLiAe80OkNNuW8ttioCzb2QhS0g2raWQuj5bgwpTDWagSawkBLJthRdy/WYJOR8/3haTsdQ1oHI+lcbdxmdK4laQMz0Cf6VtROcNipex8bM5s30yK8TJXvVHo89RqR+2I21omN0hxNttJilUdKRmIZcWrRa9PS5FtVrgDsb3FoG0mFbo9J25ryv+UeNzmymrWzEaSwjcblWFeiMdvv0e3BDmDi1aS+m9KULYu0OrMd8OUovnkSsnb0Ku2LrN8Azlv6k8cl6w0kAT/O+N3AZZtg7Pj9r+In81K8xT64zBxbgH6FsKUpGloJrpzSZnLGtAbkwnm30VzUtXF73ejCoRZJ/KzKZvlwn78ZgnJ5qqaEPdt+zSf3qwF5O8z43wTqjiZ8nYV+lDOqZhCskY9i95wzPXgDlShWZ1p+3Ds0yxcX4z7sdDzBvTYzWowK7OdjXEauQVbx5Ksd+b/fVJmu5EkhRVgy26gCdbF82dzdtB1clxUfJoyy+tISQ42kZygQa+pDSQlaH7ccRNJ0f4tKglNzPSRdYcb4pTIEjTccSWoG1h9mrnoz24eKWh/Svy8BFVKnkGtK6A/59Ek63AzakGagwpfds+0N+CWHOBx0iNlIXrvtWQGlrnrdPQeWkNSyvaSrA+WQMDScs9E7/1zYpu3k6vcWCppi/uoI2XEs7pB9tZ9B3qbmkdy6VuBCoqWlMDiTSC5W00gCatWE2c0qYglJIsFJLevTfGYLe5lYZzvs+KYLHh9dpxzU05MYLYU5GYFaECfPeehlrnZqPJ4RlyezbxXi758HIU+u6eTYqjWxzk/MZ6H2aTU3Nmg/SkkBciUVcuu2hznwJQ4eyFoFgxzGZtDUlh3xuX74t+paIIFc8WbRopLsnmyWCazpGwjpVs3d7PNpFpQFpf0QpyL+swYLe7G3PxeiNutQpWP+rjPFbFvyy63F1V8TDmaQXrO2jnfiCoja+P+HojnwVzV18e+rRCvuV7Wxvmy7IL28nMs6Vozq+ROUlruNehv54l4DuehSpdlNqzPnAe7bhvQ39K82Mf99B7PDuf0DdlHvwmR9obd6gZllSQTWo3foo7dtv632s9hsc1rS9EnYFTpVyyZP5G1AAAgAElEQVSFkQuhKX5fZm/sJ6cumkiKxlGTY2axDfr92Nl6QzLLgz1EzEoDuSmjQR9kVkMH1JoxmiT8j0QF/0fj9/NJ9SesvytJ7mfmr2sueCtQIdTiewxTdEAVik0kK8ta1KJlD7rb0Bvchrx9mKJlsVOmVF0Zj3kCSQCeQIo1MlZktjkBVYhsHw/HZefG70/GZTamWcB3W+Ds6tz+zRr1Wou6sjWQKYA7DmhKbbbsJrmwwcFkGyPj+W5qQjU5s9qsywwQUoXCpsz6cfHPNEBzd7Pr1yxBWYZYWuwsfZgYYSjjSlA3GIkKevNQBeU8UoHJFpJLbS1qJVmCClumFFnNn8kkwX1R/Ax63zqalAoYkluXCeUzSemdLb7CkiqA3oPqSEpMQ9y+DhUYp6KCtWXCAr2/WUzIPPQ+bcHxFq8zixSrtCEeiz2H1pCsNtNJSS4trmV33N8UUuKFBvR2Vk1yaZtESjYxiZThzdzotscxHE9SYmaR3vK3ocqHeT/UkZ5nLaSXbaNISuM8UpbPdlRxuSn2uz32uRM915bNbGycy5Uk69lENHuaZTGrRYX735AsFJYpbgIpeH9rZoxWIHQbKeZlBynBxYmkBBHbYx+zSUrZH0ie0mvj511x3bxM33Zd7I1jHI1e18fHealBz+9MkkJcGc/XCXHezkBfUs4i1byqILlumiVvEcmiuSqOqSb2Z0kHzIWvMY4xm2FvJvrbOY+UGtysgI+h7msrUHFreTw+63MJyaoyk5QQ4bw4n9vR39so0jvr4+KcryVZebdnzom57Nk1105KX14K3BLklJ8q9Io3CWpT3nejJe+/YdnjLEmUSd+vj8pP/JxjrtgJTVbUAPROMJKDT4umOl3XkNnkoFM1GkR/dnVSdM5FFRhrb0kYtmQ23xSHZtajJXEbs8qcELc/KrPNSaglBfSGu4HctM8TSBYTUKVkLckq8sfomxRz71iH3mCbMu3NPY243TJSooItqOJjukEDyaIDqrCsIyWhOAWd5nzXsz+QHnhXxWO3MWWtVADr1sKC2Ul/eBhNaW0K6cHMbZGjquHFbXCY+UQAh83OKESgT4vdJJfLqPA0/TJ+P5cU20Nsl83sBrkKjSVJyE/t3kSSmI5EFZ4j4/dXcJzOcCWoGzSib9vbSZYay3a1Br2XLUQFT9B76BOkt+mXokJVJUlReCcqPDaQXMvOQoXj04EH0XuXxUE8GLfbGP9mxv2NJyUt2IoKfM1xnIeTAvct29tLpDTeZ6HCXS1J2L6bJCBPJNX02R6Pf1f8eycpFqc5brsqfjYB2opjjifd4o5D79Pb0Lf8b4tj+l6cB7O02H4tfsNioiClCrcSBRbEnk1IY1nM2km3W0tcYZYjczdbH/d5chyXxVNVoM+QKSR3vk1xXp+Oc3oCyWo3A7VYZIV8q4XUGP/mo88zs3yYgmVWJ1PoziFlpKuOx/dsnAtLaDAzjsesQfYScCq5iTCaSda+KXH/Zk2aQ6phtA29XifEY7cEG+Z9Min2W48qTjvIVQYsrszc5sz1/Kw4J5b8YDIqXyyN246KbZ+M/0fFtptJiUbMlc9cRC2xyCJSJkWr+2NZ9EwpXYqeZ7MC2YuCStK1U0tKBrEZVfYsy2ALyeo2PY7PrLalDL9t77zJsEJE5gI3oJfar0MIpSrLNMywx30rKiDadzPDmMC6CRVQswHmlrMTVEqeTHJ1In7+JSqoNqF3r/cBz8X1Z5L7KxnJQevBwX2SKoAcWwcvLiQpYBvg0ckcdJ/67gb0ThXrJs5CbzqW6cyoJ1l6QG/W5ja2khTQCXozuoP0Fu3V+GeKVq0OI6cmkFmZpmT+TyO3xo4FlIImM8i6ntWiN2zTI9eRitZBKuBqrgEvbgNGavHQ11rgqWp4bQOMrEs6w4LYr1ndflWtx2muhVvWahILU1qOnQ3LWuCw+IS0+TgYLt6in4+N6xsAJsftY4bA1wCaCsT6xLTqBxXnczPfbZkdOJnv89HryRSeySSl2Pq29vn1gUz5GcJWIHC3gRLhiRG6QbVIGEEKbrcq9/XovcoK+M4lFSxdR3KbG08SpKxI5Omk9MDbUWF7Msk6sBBVmKww6nRU+To5bj+HpETsIwXHW0zMPJJ709LM91pUWKwhuSzZG/nZ8fODqGXf7uENpJiYs1FhtZpkpToHfRRaAU0T/PfGdeYGaALnPFQJM5eqZWjwu7lLz4lzYnV6tsexNsa2Nh87SMHultp7dmy/nmSJGpH33/o0Tic3E5sVA60gxapYXSDLlpeNdTo6fjYFcwMpc1jWugcp7TYkIdqsHcT5sue5xXXtJCmmkGo3PYY+txei58hiZMxN76U4dlNozXq4E1XMHyMlVhiRmQNTpNZn5mMDer6noQqQZYOricduLwDmkZ65lmACUhKQavQ3YWOeQnKnM6W+klSXqoZk4TLRxxIWVMdxPkTK7mqFaU0RO0By53sn+g57Lsnppy4em7nTmYJjxzOKFOe1HX0UL0LlDUvusbYESQsmi4QrO1j/1S7sQ0RuRU/tK4VSnsY2FwE3otN8Swjh8x0t7wnFxtHdfYjIx4HfhRAeFZF7QgiX9XRMfcnAS4yQfefZWmC5LZtBrlnBnkjZgPO6vDaWdruJFJX4S5LiNJFcxcliQbZl1s/OfN+NuthZXFId+guN/Y0cB03bDh3DrOpclzlIwv5h8bOl7a4lZrazPizFckSqoyIQx3zsOFUmlmWVv3HkcBiqlBx0C2zRfkxJaiC3fpLNgbmJ2bhtGE/FQ7YU3EfFMUs1BHuC5Eck7gYZl1tSMmvt2hLT5FimvhetEGnc6chqfZiGTLpqqYNgCm2dzsWLFmELqqBk43U2cGjCjUKuazaXdZntCrXfSW4ihJF530Hv2INJ8ellYoSaBYEjOkmMsMUTI3SGK0HdYJxIOAMV1O5HhUCrbm/ux7UkK4FlDNtIUpzGofdoi6+xoP+XUIHKMnJNIRVEnYIK/eZyRmy7Iu5nMqlI9GJSJakT0Nvj5jjWA6gCNQ0VTKfG8bTFfVTEthacDypQziC9fYdUDLMNdVWCZM2fHsdk7mCmlOxFFY9qUjYzC37fSUr1bSmT7UWY1ViyAHizJpnSOJVUjNwC37ejj2ErHDqJlBDn/DiHDaS6MXNIKc+zjCBZOuozy/Pf/I9Az5sVJ7VMdNsojFlKakjCvr3fMpfDFpLyZi6DZplqJhWMHUtu/JKlcDerkxUEPZyUyKIxjnkfqmDYNUb8/ygq8B9Oqse9kZSdrpoUp2Wun5YAwqyRdagyu4+UHGMaallZRMr89qPMvFihVYuZMjdTi3vai15v1bFPOzcWF2RZEWtILp02Z6aUWkHZhaSU9fYyYQYpBf3xcTw/RK8lO76ZpKxw40lWo0W6vtcPnCNFwp92sP7rXVOC3ow60dxepO5DJVp74QL00n4SdZpZU2h5CGFV3vZHAk0hhMbMslkhhHV57Q4ZR7F9hxBWiciJwL/mDfcv4//PoJfBGSGEMzs6/oHCwFOCDLs7GPmC4wz0KdaaaZ/NBpeN9TDMVWl1/GwCcDZuIyskmwBt0fcnoncyU3pM0bKnjgm+lpzh3PjfBPPJIJOjJeK3sa1tX0dytTJlDYqnWLY7d13skyKYEtbCQfcvmR3bb4j9maBuroFv1HYHl9v+7ThNSlib+Q5JmdimRWubNsT9z0fviKbI1KFPxGhpk7o4nhZyUpznnMPdcZ+2r+xx2RiteIIdmy1vIp27WaTzM45cRaUOVYpNadyNXgt2/BvIVZrMPa5Q0Ev+suz3waIAQa+VoKoFgXGdKEGvuRLUGe4O1w2aUEvNu1FhyFI/L0OtCBvQGAV7216HCryWbWwp+oZ/HCpQWTC3PY4sUPtoVDKwlMXzMtuDCnpbUUWqhfR2/bHY3zz0dgN6OzueJEhXx/2bNeQF9DZqFgxzFTKLVrYwrD0GrVZOC2qZqSal0Tah9w+xvQntdXHbFaR6QZBcs1aREjBY1jdQqcyKgLbEebGU1dXxmM2la3Kc73Pi8dmjzBIFmNXBUiabAmdCtsU97SRl/7PaSFl2khIImJXPaCQpLNviZ1OMauL+zXoxk6S8LI5zbJazlaRaNqPjdi+QgvYtIN+K19q8TSa5ullRT8vctz/ue3Ncfw4pKcecuE8bZy1qLbmQlLSjOfa5hKT0msIJapGcRHJ/NPfKM+I4p8Q5sUdvNquiXe+WPGNfHMciknJqqc2nxeWWSXEuev1tQx/HFl8EKTHFUlKMEyTXwLmkeklm9ZuLKszPor/1yjjfo+Lyc+JYHkQ9a86J83YvvSegv8UOOEJEsk++m0MIN+f0EcIjsehcMU4D1oUQ1gOIyJ2oEfbhIstX5W1/DnCtiFwSQmgWkQ+iOVYu6cI4iu17VQhhBWo5KsR1UYH6aZH1TpfJv6ONzFuWH1yeH6vRSIq7AP3FbiC5N23I9Gtv+u2X35RZt4FcJcCC5YltN+T1lbW6/BR9Utr6dRDsDm5jNpc+s5Q8HfdjitdEcl9prSYJ9fF7MKGezLps+8kk1y0gmODeFMe2GnUFzI47qyzMj3NgT6vJ5GY4s3WZeWtajT5R60h1c2zu15JjKQlrM31UZ/qclenzaVQheTgzBjLrrf/f5q23V2KWE9TGZXOTNXnZUyKbfCN7PeSzE3VrG5tZZufKFKusSycMLgWoBJjrkdMrXAnqBiNQwXQxev3dhcZRnoUKhueRkrqY0LgdFWqWoErCIlSI24a+b3sSFU5PR4VZUzB2kQReE7JHkCrazyAJe7tIhTBNOZiDKj9PxP6sJtAJpJTAVp9nefy+jxRP00aSfCxz3ESSALyflHVsISn5g6X/Pi6unx7nywR/UzAszfhEkkBuweZ1qAB6Rty/ZRczC8veuOwkNAbmBfR2awrIVlI8C3HZmngeTODPpp6eTspqZu8J95Iy6o0lpWO2AqsvxPEvJ5WnGEuySFhKbYvl2hHnZCupHtQD6PU0MY51FCnmyPq2Oj9z4jEtQh8n09BHkY1jM6qwbEetlC1xnJZNrjJuvzVuPz/2fQ76+DYlYVWc54finC+N52E26s5uj7RppHpTlnzBUrVbId3RpEQR5sI4Cv29mMtaCykTnNWIskxt5ka5llyr19w4f4/H//tJrpMW89QSj9P2OSnOsf2WLEvhWFR5OZmUeZG4zVvQEIFqkoJqZUZOJcU2PQiHZLjtDZ3EBL1agjd7R5Ob6Lcencpiy3MIIfxYRI4F7hSRH6PWmgt6ue+iREXq0+gl9e9d3I/TZfKVIhMm82OGyCzPuiqZI2t+n02ZNibQZpWiyeRaRLKWnqMzbax9Pqsz2+8m/Qp3Z9bXketi9TS5itc2kuBuipptb8dt63ejtmsT6JviNg+Ta/GpJvmzvZ6DmfMgrjMLCpnPGUvPwb7JfM66fk2M+7G5en3czo7fsqqZsmeWHmND3j5s7rNjyLfCbCLHVfCge2TWqpbt2/rPpq/OYgpN/rVm7CTXYlnFoU7ltt6uvSaGlSIUcCWoBLgS1A32owL9QlRItJhFs9CsJAVbb0UFT2Ibixmy2BiLU6wkJRxoRn/mFbH9SlLNGLvVmPBoqbk3x+9LUSHUkjRMQIVHy8S1HX2HtRcV8EAVqUZSQdFTSe4/Zn0wY3sLKYbDjtf6McO9jXEzKkjviMdg2bgsAH8dKlQ2xL5NoLQ+JpGSDliB0UqSdWF2HFc7KXWzubxZqulNpOxdy+P+Z5IsXZa+2mrjtKBCr91mTeBdHvveTMooVokK7RtIboOW9W8zqUjuH9BrZmrsazGqIFrmvYvjMZlbmWX/q4zfX0Afv2bBa4zzvzMe4zhUEbQ4lgWoAnQGKTGGHduSuJ+6eBxW2LeBlPxoH+mRMpeU1vvn8bsl1IAUK2NpsO+Px2+pqy3luRVdtcKxY0mFUC3JwhpSrNmFJDc9S9M9Ne57Zez7BZKC3hbn1eKC9sZzYNepKWFrSPFfdq1sjvs15a8mrmvPzDukWClLEDIHVdy3xc8W+1QKupAdbryI3Az8IoTwix7uRgosCx0sP3RhCP8WrTg3AceFEPYUateNfRclhLABuKaL/Tu9xtzjTKDMCqKQLEeFrEP5QekmSOe74DVyqBUgK+yvIzfTVxMp5oNMu+y2Jqhnx5VVlLJCOSRLRL6Abttnt7Pl+S50pixYW5uHrNK2M699VuHYkLe+lcLzml1m1pCsTX1sZgy/y/tux5j9nj/3+XOQtfZZe1OyCqWCsfOTVUiySku+wlIoc1u+EpM9362Zz/lKe/53x+k6rgR1g3ZSspcRJCV8Fiq0TUaFysmo8NeOCleWRrqF5GZlTCQJv3fHZZaFzPZht9696BvrdaTECqPi8mlxHxYTY+UGLCFDJSrAmbvRjPi/Pm67nJTmewMqvL+LlPltL3r7ejaOYReqqJm71pK43DKvnU4qsgnJ1cmsHbatCf9WQ6Yi/s2KY7B3cqtI9YhaYh+jY7v6eNyjSYkUiO1BlZt7Y9vNpEx4beitv42UrvwE4LI4lw2kVNWL47mweChLZ27C/KbY7xpSrTlLgrEsbjc5Lj81jr+BpPQ1kqwcFSQXxOo4vs1xbN9BFemdpMQIjahyZdYoS++9LPY1AVWMJsfxbIxzcyD2Y+flxHge1sfPLahyY0r/gjimRbF9ffy/ghQLdBZ6zeyL2/2SlM7dUnIvj+O18hvGBNS6asqqKXBZF7rNJDfEKeh1Byn5hJ37pSS31JfQa3w7qlzbb2RGnO8N6LV2HCkb4Vb0vFo83DaS6+pDpBTem9Hfl1koe0sfJfypJ3mcgk7P5g6WH4KInI1eknej8TrX93LfzoCh2Nv0fKUov90rHbQtJMAWEl4LOR93NIZ88q0F+W1fyVvekTtVY97//O2zsVTZ48xaOAptlxX28+cnf1zWX3aMXZm3xiLLCu2jWJ/FUkwXWl5orrqzvrNrbjAlPOhDPKT/ELqbTbSio5VOYR5HhaZ1mb+x6JvqFlT52YgKztNIlhR7Uw4qOJkis5yUES0rPFsttLeRBLZnSOUNpqMC9VhS8UnLaNaGCnKmsFgcDagAuYbk0rYGdeg/gAqWNXFfP4rHNhkVAEejQvIz8TiWxc9WD+mZ2NckUkHViaQMaaaEmGVoUhzndlQQNYXLAu8r4nHZ+OtRK8KjpLfwj2fmPltk9HKSe5zFajxAqtNjGc0ujG0WoEK7CbwWJ7IGtejMi38NpMKb42O/jfE8rEXPt5WGqCTFd0wiFdTdjArpZjEy5a0inrPN6HlcG8dag14nZknaFM/Pk6TYrMa4zXxUKm0nZT8z1+E18bink2KJTEEza9cmUmzWelJiDWJbS6NtSRjMujSTlN1wHynhx5y4zJJZ7IvzuIEUnzMevTbMiteMnnN7cWDprreT+/uwNOem3JliYmHctSRXw/o4DztQBd2SYqwixRxZceEl6O9tW9z3vLhPS5pgCv2k+H1b7K8UmCWo2B+wK4RwTS+sQKCXzmwROVZEatCqJfd0sDwHETkZ+Db6M7samCgin+vlvgc8IvIJEQkickTnrZ1ceirAtpJrlSo1vem/0DZd6asr27UW+Ssl5ZzXUjNYxjn4EJEJInKXiLwgIqtF5PQCbS4SkTUisk5EPtnZ8h6O41YReUVEVuYt7+4+Lga+FkK4FnhPZ41dCeomm1HFYjxJ6DoLdUs6mVTkcz0qoD2DCnQWg2CYkGfYq9HxJGuIFaa04PyXUMHRBP8d8c+Kpp6FShPTUUF8Qtz/6aQMWQtQ4boZFUSXkvsWfTEq2Jm70aS4L3NfM2FzBqmcwGVxG1MKJpIyaD0Z52wFSZGylM2Hx3Y1cX+WBW5xPF5zoVsaj3Miqmx8JI5pexz7KFSBmRE/V5LSU78U52UmKszWxeWW1tiSQNxNEqp3xP2fEY/puLifJWhqcCuOaskdrHzE3Dg+mwfQ6+JdpPgwE8ztWtlJqk1jCuyoeI72k6yHkFzJNqKK3XtJboK2zuoy7Yif16ICekPc77J4HOZitzDu3xTDKXEeN5IKk2bdjk25bUevy41xvSn3I0gxb+YOac4Ta+M47HdgSn5NPMZqknUSkiVne5zbneh1ZFkULamB1cOyWCtTUjejSmc7eg1YnNQyUozRjLgv8/I3y6MlzTBrK6hCa3Fi40lZ8U6gdMVSQa/5Yn9EdzgR+aNi24vID9HbxBwRqReR98fl94nI1BBCK2q5uR/1F/pRCOH5YssL7GIUcEUI4Q8hhHb0UjzkFXyhcXRjHwMKEZmOxj293N9jcRzH6fyVWSeO1YkbgV+FEI5HH3GrsytjQppvoMrFXOAqEZlbbHl+5yJypIiMzVs2K78dcBtwUVf2HdedKCL35v0dCfwXcKWI/DupRHBRPEV2NxghEiw97yRUSJ9IEuotBsXidiwV71JSNrHJFA7xnIkKlOeRCn+2oQLheWgWtMNRAWwvqpSY4LUQFdDMLc0yku1FhfClpGKqliVsYfxsBVOnx/FeilpaxqIxJ6vits2oG5YlP3gn6rpk6Z5NoJ1GqsHTQLJqWN2VE1GXuhPjvC0kFTMdjypvbbG9ZSKzeJJz4nhmkFJQr4pzbS5J+8i1pFTGsVjgv9WdMaF/M6r4rEeVnuWxzeMkwXgfqe6O/cJHZfoxlymrvWRZyyxIvyHu22JdrN7MVpICspGUfIG4bda1rIVkeYAUH7M8c1ztpJo7W0lxNfPi+PaiSuCOOP+mUB2d6fclUuzMKFIChZmkGkaQkj7MINUVmhb7MoVvB3qdriS5v1WQakidHNs/S0oDT6Yfu9bNNXBtnKPD45haYr8voL8TU2heIrk85jvTWFKPLNl6UZPj+Ceh16IlDJkV+7Ois/bbm0FyOy1FiuwJIuHcDtb/vAT7cLqPiNwF/DMaIrcghPBq59sM1BTZjuP0P71MkS0nh5RjtRjjX0JL/ho52URFZBxRjAhFlIFoGbohhHBh/P6puOrhQstDCP+at/0VwLVATjbREEJONtHYtg64N1NSoeC+8/dRZNyVwE9DCJd31G5IW4JE5L9F5Nn4t0FEno3L60SkKbPuW13pz66QdlRoayQlP2hBBeelqCBlblB7UUXJ3qZbe+N8VMmZQcoINiG2qyQJn/tJ2eDmkd6mz0AFtmfi+llxLLNRoc2SGIAKn6NR4dPc4Ky2SwMqIN4bj28XyRq0K+5/PcnaYk6W+1CBdQQpj892VEg11X89KsA2ooJxHenN9vdjGxOcs7FN7SRLyaWoq5YJqY/FsS8kWZEeiH2NJWVVm0GqOTMxzqXFp9SgyoClVrbEC6YArYvHtiMut0xuq1CBvY2U3GIm6jbXGI/1sTj3zXGOzCXNAvWXkrLSbUKtG5ZtbGY8H8tIRU2b435XZs7Vkrg/c6H7DXrunyApfdNje7NmLEXPp90FR5Oy7tXG4z4/zrNZv/bFecu+urHEAi1xDs6K7bZyUCFgP8kDfFE89tHxnFgy2+o4/xa/BClLoZ3XfaTfhVm5WjL92merZXVx3CYbeGKYVa8i9jWCXLe8nXF+1sXlFgO2Dr0ul8f/pnCNjsc8p8C+ekonliCnjxGRy4BNIYTlXWh7jYgs0zTm+ZXHHMdx+pRXQwgLMn835603T/bvisgzInKLiIzOa1Moo+fRHSzPIYTwY+BXaDbRd6PZRN/VxfF3aR9Zonx/M3A7XcgmOqQTI4SQ6g6KyJdISa0A/hBCOKk7/ZkQchnJid1yqtib4fNQgdHeQFsBTUs3nB8BbO5uHWHZrPaSArvNmvRSHNckVNA1Z8pnSTFENiZQQe8Z0pXfEtu9QErNa+5Fe0kWLVNIsimSx8XtbPwnkqwGzSR3sXNQpXAZOk/VqNXF3L/2oUrKithmBCms822ocmPza7l9TKGzFNQmwFt68R2oYHovmsnNrHCWztosCVb81jKWmaICat1bhVrTGtEgf3NNm0OyApqSZGmULfZkJ3rep8Z+LClGLeqiaDEoVgR3Dim7nGWnGx/3sz4emznr1pIUpmcy82CK+VSSK+HpcUxT45hGxGWLSbV87JisFs540o9lLynuxtwAN6CKz9p43JagIFtY93SS9XFUHO8JpFibOXGsV6MKXA1JIVtGbnp4y674ACkOaTl6bdm7sAqS4mZzmq0HBcmSaNnoppD8uM6IfZkyar81U+TsZcauuE02JqiQdbcnBDpNkV2K7HBOHiKyiFQzOMvfo+m539aVfqKQcbP2OdXdLBzHKRPtFK+z1GWqUIePD4cQlorIjcAngX/MtBnS2USHtBJkiIigmudbetvXCHKjeM21xmqRmLIxHxVALRubJS2wOjzm4mRZ5aw8m9URsriIEaQsWZBiFrJYlq52koB3PEkhyr6+HEtKJT0HFeytJsoiVOnZFNeb4jM39tVIspDUk2IiFqBCazbbly2bhQqWZrGylMd3x2Vz4ngPxH4nkSwO5sIHqshNIiVkMKuTKUfZ9Mcz4j7uQQX1raTCojWZOZpLsp5NQef6AVTamYIqZdvjn8X52PmzpAam7O5FheO3x2OzhKBLM/3XxON9CD2nU0kJIGrjvkeR6tWsQxUJU0pGkyx0Y0kK7UTU6lER92FWn52kZBSVcbsLSdnQppOKtmYVTcsQaIkpLL36UlKK8ZNJrnqjSe6eVrNnI+maset5VzwXJuSPItWZ2kdurR3LumesRM+5XVf2MuGxTBtL451dv5+kfJqbaDPJxbIBvbYWxzGbBWk7h76wMEXHzq2lZq+gU8Wly3ShWOquEIKniy4xIYTzCy0XkROBY4Hl+hhhGvC0iJwWQthaaBvHcZzyEyiBElQP1IcQzGnoLlQJym8zZLOJDml3uAxnA9tCCGszy46N5r/F8QQVJNe9IcVsQMoINQ0VYrOxQZtItUVMUDYrQQ1JqZmHCpqLUKuKvSk39pMb3raf5FKXDeyuQ4Visxsuz2xnb/8tFsUsIyt7SLcAACAASURBVGtIb/itCOcq9IozK0DWutRGrqBqbbLl68kss1TNpnQ0xmPNKmurUEHU+jKh3f7Wkiwyy0m/htGosH1yZp9mNbHseKDC/Mx4nKfG43mJVER0LyqIb4jHNgNVCG4nd96tmmPWlNgQx5a1FljdpgvjNgtIhXPXogrQWaTEBKC/8tGx/flxjLbucfTc7UOF4x2o0G4WtJNJVo9taCKK5aRECGZpGksS3lfFfirjMa8kZb8zJWc/SQGC5FZp2daeIcXOZGOZNsU5tQKpc2I/5gIHubE71rf1Y8qmJZGwTG6QLERj45ycn5kn4nH8khTfNBWd8wrUYjSBFAfXGOfJEpRMIV3n9rvIZnwbi871gjgHI+LxTESv5xGUjvYO/uhCYgSndIQQVoQQjgwh1IUQ6tCf63xXgBzH6V96nxgh3sc2ioh5dL+VFAlhDOlsooPeEtSRG0MI4efx81VoHVBjC3BMCGGHiJwC/ExE3hBCOMTQknVvqBYJ9SQXMXsK1mfamyDVSAq4NkWoMfMHSWg361E9KcD7JZJL0lxSodF7SOmlG1BXJFMmslxMct9qIAXHmxIzHhVO15PeZNs6swiYW1oFqmRZ20nxz47VisOaW5UJ2+tQodMUBysamo1TmokK7xZvZEUrTUmYi76lvwR9hVCNCqM18bu5rlna7b3oXJsVYReqSFgKaVNUbewn581DGyowbyK59q1HBeYRqIWvlhQPMwE9h+bGZRaCu0jWkYXxf3Xc9xJSljG7NvKDDRbG7Z9BFRJLLDAWvV7Mlcxcvaxw7mWkeBbLgLYSVaBMEWsn1QMy90K7flrivheRa4mZFuc867o5CT1320lKwK7Yt1lGslnTTGGwgsDWZnI8/vPieJ8muSzaNWlxObNISq5ZHqvRa2cduefWiuGui8dlLqXN6PU/P85lG+nFw4x4PPlpr2eR5tpqYI2O47aMhKXALUGO4zhO55TEHQ7gw8AdUclYjyoqiMh9wAdCCJtFxDJ6VgK3WkbPYsvzOJhNNG7zXuB9+Y1iNtFzgSNEpB74TAjhO13cR48Z8tnhRKQKlWlPCSHUF2nzMPCJEEIho8ZBKkVCfp1qYwYqcC1ABb9KVJgy9zHLCmc1g6aR4oUKlXfLx+rtmMBp8QrF2u4kmfnM8jIaFWxN4DOXo3kkAS9b08gEQRPkV6EC2n5yY0bm0HGK4Gxbc42yjHdWq8gUwwWkeTlAck/Kxk5VkBSqjaiiZHFAtaS6MjYPe+Mx7icpK9miqnbcE2LfNj9WVNYKjO4jCdnnx37uju2sZpFhx2TZ7yaRspY1kNword35cUx7SbFJ20juY+NRJWQqqcjs5NjPLFJCi7moy6Qly7CYmGyR3hNIQnsjuemt95PSudtyu4YtUxrkZjnszB3Mrqns3NjybPa28SQ30Xyyys0ckjJn2NitYHF+BrjuYv3Z2C3LI6TfBOixT4nfS5EdboxImNfB+sc8O9ygwbPDOY5TnN5mh3t90KzSHfEmf150wnBwhzsfeCGrAInIpJg+DxGZib407iw/QQ7TSHEpkATqnaTCjtUkBcjI1kiZRK4gbpYhw4RFC2g316T9pDiXk0lv4W0/JljOQwVF288qDg3gbic3cNwEUAvKN2FvKSow18TvWbewbGasmeRisUrmLrUdPSGrSHMwKTP2ZWiWtaWooL4GfeOfPTnT0Sxf+0gFNhtQn0eL+cimrbZ6Qbtjf80kS9tY1D1tchybpdQ2K4AVgJ1DShVeEcdkQrGl1AbNYgepns5GdM43k5Sy42Ibs2rMiv01okrMOpLyZoK+KW5mfbIaOBvinM0n1doZTYoNsliYrAK5Ms7/KPQ6OiGuM8VhZ958mzUme21mr6PO4mHylRqzhlriDHNpO5HCyhJxzNPi5zVxn9mblylA20jHYeuLZW6zeB47LivoS2ZspkxnrZeWZGNSHEcpHZS7UCzVcRzHcZwSMByUoCvJdYUDeDPwnIgsRz2XPhRCyC8p0iH1HKpQtKACmlk1ZmfWbUOFKVOOtpOsJ6Yg7CIpMFMz/dj/LO2oEGzuUrYPSCfVlJvt5CpiZJYb1Xnr1pCr6Bg2lmxMyz156+eSm+7YXMSIY32SZInYjgrc20jxIFMy2xZiPpoGuhYV9negguhdcUy2vc33Cei5MS3YirJamvOGvHWWDMGOBVL8CKTsGlNJ9Y8sqno7KnRvJ7dmkWUhayE39TjxGCzpw2KSlWoXKXW6pdPeEf9Xo9eAFZRdFtdZCue9pPpGlgEQksJiKd33oQpG1vXLlOqzMvMIuW6fcKjC2x3Mfa+CJNwvyay3xA+gys+cuP8Rme2nopZDI98nNuuSZ9djNobMfotkxpE9J7avfCVqKskNsBz0tliq4ziOM9Qxd7iO/pzOGPLucKWkkDucWRB6mh2qu5mlTiZZUTrDEgpk0yDb/ooVbe0O+W5OFgOVdZuyfVqBTEgWEcv0ZdibfwuoNyXR3LHsf/7+jLNIgrTF0Jgb4CZUwD0djTk5G50bc6mz/RLHb9aWfLJuWXNRS8y+uL/HOFRxm4zOtyVkqIjHafEoWXcqK5BrfYwn1QmyoLbs9VKo8GeWrNsW5M7f5HiMxdwYO+o7m+yjq+sKXee2zArsZjP8daRgFBubJcWwazLrZmmWwY7obL+dUQp3uFEioVApbWOFu8MNGtwdznGc4vTWHW52gK920uoSf150wnCwBJWMQlkktqFZx/ItKZ0VTzwn/u+u8pS1/JzQUUNUWJ9Pbh0Y218xBag6739HmLA5Fb2QrG5NVhEwd7isNWsnKpQWCsCydtk0fuvy/hvbSYkRQBUgs1osiuOqRZWdSlR4fjwuMwVpA6mgrf2ZBQdU0cnOczYupRpN2ADwaNwu3+K2jaQAzUUVMktQAKqMbY7HMYnkLrkArQi2M/Z5b1yWvV6y6dkLka/E2fyNiuPK1l4am9e2I+UqX8mZWGTd6SQrZzYJAnnL6knKxwkceu2NRc+l9ZU/NktPb66ooOc2e811pABZtrqpHbTpKwJeLNVxHMfpDEuR7Zag3uBKUDdoLbJ8KYf662czrBVicQfrQE9MZ0pOV4KYsorGGnJTfBfCkjZ0FH+QP+7NJIE2f0zFXNoKCaVZoXVCgfXGVFLshmVVqybXCmGpttegQe2W9hnUIjSe5A5mGct2kivEj0UVqJUcimWMezRvXIWUSzvWCvQYR5Ncy6zQ56rYpykuK9DEECNIxUXtXOYrWtnMZB39oO16yj8nlrmwq8zI+17MKvR4gWXZ+clXvEDnOl95ayS5KeYfXwV6PPkWHJtzu97zx1yorSmmhX6X+b+brKI2kdLhMUGO4zhO5/Q+RbbjSlBJyLqv5CsuHb1RL7Qum9GtkPCdpZiC0RGdufuM4NDYj3x6m3mrK3QUoGVpj7NYgVEjmwp8aV7bWRSOdzJMycimKh6f18ZuL1mhvliAvAX0N8T/hY4t/3a1Hz0Gm+usEJ6vaGUVmI4si8Wup0KKcfbGMC1vXVeyGRp2veX3AWoRy6cjVzA49Pg6s6QWUrSKYb+n7PVt47bjMKtb9nx1K5iwE7pgCfKYIMdxHMcpAa4EdZNCrkdZgbwzxaUzelJvZCoqrOULfD05uaVQcPKF6nJdZMXcwLKY1SdLvgKVjykZ2bkwpSl7LNn9F5o3E+jr8/7nWxo6cp00i0O5gvCLkVUuOlOKO8LmvlAfhd5TdXZuuotZJk1xK5QgpCPyx5198dAVl9Hu0gVL0K4QwjUhhF+UYfeO4zjOoMATI5QCV4K6SU+sLx2Rr7iYYDg3v2EHbEaFtXyXpp4ma+gtO/K+l2scdi46y1JmCkxnVoaukD2WfXQcR1JMoM8qTAvpuMZSXxi08xWsUgr3hSxuhdzNClmKykFPk4EUmpNynRuPCXIcx3E6xpWgUlAo1t/pQ4rFYqwqsKyjrFwDib5Wvrpa4KnUVgbofY2YfFe9gUB3hfvuXJcVFLaa9cba1FWyBWMLkZ/tMEtHc5ItBtxbzBLkOI7jOMUxJWh4IiKjgW+ikQsPhxDu6Ek/bgka4OzJpDAfDApQT9nTT6nas1aJ/hrDYKc712VfK8jZc9qZstwT5WMGmsSjVNeOZ4dzHMdxOqc0liARuUhE1ojIOhH5ZHfadGXbriIit4rIKyKyMm95sX38CXBXCOGDwGU93a8rQWVkTwi9Fo7GiHR7n6Vo05X2HWWa6+6xd/c4u4ONo9CY+iLJQ1fo6lyVQ1Erp/K3J4QOsyCWm55cV92Zj5fiX6muX88O5ziO4/QFIlIJfAO4GI3CuEpE5nalTVe2jdsfKSJj85YVik64DbioG+ObRirz2ON3hO4O1w3a4dW93UiOJV0XjI4AXu3RoHqwzy6O6+CYirXf2/t9dJcezZONpbMx9WDMfXreutiu22Mq07myvks2RyWkwzH1Yj46ysTdJdrh/kYdXzFERG4GfuHJEQY6W16FG7qTTLGnDMTfWG/xYxocDLVj6svj6eXzYvP98A8dPSsAakUkWynl5hDCzZnvpwHrQgjrAUTkTuByciMyirV5uAvbgpbFvFZELgkhNIvIB4G3k8osAhBCeERE6vK27Wh89agi9Cy9MOi4EtQNQgidldnpESKybKBV9fUxdc5AGw8MvDENtPHAwByTEUK4qPNWzmCgXM+LfAby9dxT/JgGB0PtmAbT8ZToWXE0yZoCqlgs7GKbrmxLCOHHInIscKeI/Bj4S+CCEozvp8DXReR/AT1+IehKkOM4juM4juMMLwq5PeT7gxdr05VtdWEI/xatODcBx4UQ9vR2fCGEvcDVXeynKB4T5DiO4ziO4zjDi3pgeub7NA5NelusTVe2BUBEzgZOAO4GPlPi8fUKV4IGBjd33qTP8TF1zkAbDwy8MQ208cDAHJPj9JSheD37MQ0OhtoxDbXj6YwngdkicqyI1ABXAvd0sU1XtkVETga+jcbyXA1MFJHPlXB8vUKCpwV2HMdxHMdxnGGFiFwC/AdQCdwaQviXuPw+4AMhhM0dtCm4PK//M4HdIYQV8Xs18L4Qwrfz2v0QOBdNTrEN+EwI4Ttd2Uevjt+VIMdxHMdxHMdxhhPuDuc4juM4juM4zrDClaA+RkSuEJHnRaRdRBZklteJSJOIPBv/vpVZd4qIrIgVc78qJSzsUmw8cd2n4j7XiMiFmeUlqxLchfHdICKbMvNySWZdwfH1BX05Bx2MYUO8Lp61WgAiMlFEHhSRtfH/YWUewyFVnouNQZSvxjl7TkTm9+GYBuR15DilREQ+ISJBtD7XoEZE/l1EXoj3irtFZEJ/j6knDIRnRSkRkeki8pCIrI6yw0f7e0ylQkQqReQZEbm3v8fi9A2uBPU9K4E/AR4psO4PIYST4t+HMstvAq4BZse/UtYSKTge0aq8VwJviPv7ZrxBdKlKcIn5SmZe7utofGUeB3Hf/TEHxTgvzospsJ8Efh1CmA38On4vJ7dx6PVYbAwXk67ha9Druq/GBAPsOnKcUiIi09H6Gy/391hKxIPACSGENwK/Bz7Vz+PpNgPsWVEqWoGPhxBeD7wJuG4IHJPxUWB1fw/C6TtcCepjQgirQwhrutpeRI4CxoUQHg8awHU78Md9MJ7LgTtDCPtDCC8C69DqvQcr+IYQDgBWwbevKTa+vmCgzEEhLge+Fz9/jxJeK4UIITwC7OziGC4Hbg/KE8CEeH33xZiK0Z/XkeOUkq8A/4citToGGyGEB0IIrfHrE2h63MHGQH5W9IgQwpYQwtPxcyOqNBzdv6PqPSIyDfhfwC39PRan73AlaGBxbDTFLhbNqw56c6nPtKmnb244hSr1Ht3B8nJyfXSJuDXj3tUf4zD6c99ZAvCAiDwlItfEZZNDCFtAH1bAkf0wrmJj6O95G2jXkeOUBBG5DNgUQlje32MpE38J/LK/B9EDhvT9RUTqgJOBpf07kpLwH+hLhPb+HojTd1T19wCGIiKyCJhSYNXfhxB+XmSzLcAxIYQdInIK8DMReQPdqMpb4vEU228hxblXbx47Gh/qMvXPcR//DHwJfSD2el56QX/uO8uZMX3lkcCDIvJCP4yhO/TnvA3E68hxukwn98lPA2/r2xH1nq48m0Tk71EXrDv6cmwlYsjeX0RkDPAT4GMhhN39PZ7eICKXAq+EEJ4SkXP7ezxO3+FKUBkIIZzfg232A/vj56dE5A/A69A3R1k3gG5XzO3JeOi4Um9JK/h2dXwi8m3AAhbLXkm4A/pz3wcJIWyO/18RkbtR14ttInJUCGFLdDV7pa/H1cEY+m3eQgjb7PMAuo4cp8sUu0+KyInAscBy0Zw504CnReS0EMLWPhxit+ns3i8i7wUuBd4aBmc9jyF5fxGt9fIT4I4Qwk/7ezwl4EzgspgwpxYYJyLfDyH8eT+Pyykz7g43QBCRSRaQLSIz0eDx9dGdqFFE3iT6hHsPUMx6U0ruAa4UkREicmwcz+/ogwq+WfJiRt6OJnLoaHx9QZ/OQSFEZLSIjLXP6FvglXEc743N3kvfXCv5FBvDPcB7Ypa4NwG7zG2u3AzQ68hxek0IYUUI4cgQQl0IoQ4VvOcPdAWoM0TkIuDvgMtCCPv6ezw9pN+fFaUmyiHfAVaHEL7c3+MpBSGET4UQpsXfz5XAb1wBGh64JaiPEZG3A18DJgH/IyLPhhAuBN4MfFZEWoE24EMhBAvuvhbNeDUS9YsumW90sfGEEJ4XkR8Bq1BXhOtCCG1xm+uB+0kVfJ8v1XgK8G8ichLqQrAB+CuAjsZXbkIIrX08B4WYDNwd3/xWAT8IIfxKRJ4EfiQi70ezRF1RzkFIpsqziNQDnwE+X2QM9wGXoMkH9gFX9+GYzh1o15HjOB3ydWAE6uoL8ERe1tQBzwB5VpSaM4G/AFaIyLNx2act46bjDCZkcFqYHcdxHMdxHMdxeoa7wzmO4ziO4ziOM6xwJchxHMdxHMdxnGGFK0GO4ziO4ziO4wwrXAlyHMdxHMdxHGdY4UqQ4ziO4ziO4zjDCleCnAGNiOwpc/+3iMjc+PnTPdi+TkRWdt4yp31TJrVo/vobROQT3R1H3PY4EXm23HPmOI4zUBGR6SLyoohMjN8Pi99nlGl/HxKR98TP7xORqZl1B58vvdzHDSKySUQ+W4K+zhaRVd15bjnOUMWVIGdYE0L4QAhhVfzabSWoh/whhHBSqTsNIZSlX8dxnMFCCGEjcBNar4z4/+YQwktl2t+3Qgi3x6/vA6Zm1mWfL73lKyGEf+ptJyGER9F6bY4z7HElyBl0iMgMEfm1iDwX/x8Tl98mIl8VkcdEZL2IvDMurxCRb4rI8yJyr4jcl1n3sIgsEJHPAyOjJeWOfAuPiHxCRG6In08RkeUi8jhwXaZNpYj8u4g8Gcf2V108nr8XkTUisgiYk1l+nIj8SkSeEpFHReT4zPIn4n4+65Yfx3GcHL4CvElEPgacBXwpv0G8x78gIt+L9+u7RGRUXPdWEXlGRFaIyK0iMiIu/3y0ojwnIl+My26Iz4d3AguAO+JzZKQ9X2K7q2J/K0XkC5lx7BGRf4nPlCdEZHJnByciY0Tku7G/50TkHZm+vhCfGYtE5LQ4hvUiclmvZ9VxhhiuBDmDka8Dt4cQ3gjcAXw1s+4o9KF3KelN4J8AdcCJwAeA0/M7DCF8EmgKIZwUQnh3J/v/LvCREEJ+P+8HdoUQTgVOBT4oIsd21JGInAJcCZwcx3lqZvXNwIdDCKcAnwC+GZffCNwY97O5k7E6juMMK0IILcD/RpWhj4UQDhRpOge1Er0R2A38tYjUArcBfxpCOBGoAq6N7nVvB94Q238ub593AcuAd8fnSJOtiy5yXwDeApwEnCoifxxXjwaeCCHMAx4BPtiFQ/xH9FlzYhzLbzJ9PRyfGY1xjBfEcffalc5xhhquBDmDkdOBH8TP/4UqPcbPQgjt0QXB3qidBfw4Lt8KPNTTHYvIeGBCCGFxZv/G24D3xHifpcDhwOxOujwbuDuEsC+EsBu4J+5nDHAG8OPY33+iCh7o8f84fv4BjuM4Tj4XA1uAEzposzGE8Nv4+fvos2IO8GII4fdx+feAN6NKUjNwi4j8CbCvG2M5FVVOtocQWtGXd2+O6w4A98bPT6Ev7DrjfOAb9iWE8Fqmr1/FzyuAxVEhXNHFfh1nWFHV3wNwnBIQMp/3Zz5L3v/u0EruS4LaTF/h0OYH1304hHB/N/dVqL8KoMFjfBzHcbqHiJyEWkDeBCwRkTtDCFsKNM2/9waKPC9CCK0ichrwVtR6fz1q2enSkDpY1xJCsHG00TW5rNhzKNtXO/F5GEJoFxGX9xwnD7cEOYORx9CHEMC7gSWdtF8CvCPGBk0Gzi3SrkVEquPnbcCRInJ49Ae/FCCE0ADsEhGzPmVd5+5H3SaqAUTkdSIyupOxPQK8PfqPjwX+KO5nN/CiiFwR+xIRmRe3eQJ4R/x8ZX6HjuM4wxURETQxwsdCCC8D/w58sUjzY0TE3JqvQp8VLwB1IjIrLv8LYHG0zo8PIdwHfAx1a8unERhbYPlS4BwROUJEKuO+Fhdo11UeQJUwQDPg9aIvxxm2uBLkDHRGiUh95u9vgY8AV4vIc+gD6qOd9PEToB5YibqVLQV2FWh3M/CciNwRXQg+G9veiz4YjauBb8TECE2Z5bcAq4CnY1KF/6STt3ohhKeB/waejeN8NLP63cD7RWQ58DxweVz+MeBvReR3qItcoWNxHMcZjnwQeDmE8GD8/k3geBE5p0Db1cB747NkInBTCKEZvcf/WERWoBaVb6HKzb2x7WLgbwr0dxvwLUuMYAujFepTqCv2cuDpEMLPe3GMnwMOi0kWlgPn9aIvxxm2SLKcOs7QRUTGhBD2iMjhwO+AM2N8UF+Pow64N4TQkZ96Z32MQpM4BBG5ErgqhHB5Zv2eEMKYXg/WcRxniFKKe3FfIZqZdE8IoZhFq7v91TFIjt1xyon7iDrDhXtFZAJQA/xzfyhAkTZgvIg824t4n1OAr0e3jwbgL0FTZ6PWpG0lGanjOI4zENgDXCMi43pbK0hEzkatY6+WZGSOM4hxS5DjOI4zbBGRW9GYv1cKvRmPLxtuRAtM7gPeF91YHcdxnEGMxwQ5juM4w5nbgIs6WH8xmup+NnANGnTvOI7jDHJcCXIcx3GGLSGER4CdHTS5HC3OHEIITwATROSoDto7juM4gwCPCeoGRxxxRKirq+vvYTiO4wxYnnrqqVdDCJP6exwl5GhgY+Z7fVx2SN0ZEbkGtRYxevToU44//vg+GaDjOM5gpL+fF64EdYO6ujqWLVvW38NwHMcZsIjIS/09hhJTqNBlwWDaEMLNaKp9FixYEPx54TiOU5z+fl64O5zjOI7jFKcemJ75Pg3Y3E9jcRzHcUqEK0GO4ziOU5x7gPeI8iZgVyx+6TiO4wxi3B3OcRzHGbaIyA+Bc4EjRKQe+AxQDRBC+BZwH5oeex2aIvvq/hmp4ziOU0pcCXIcx3GGLSGEqzpZH4Dr+mg4juM4Th/h7nCO4ziO4ziO4wwrXAlyHMdxHMdxHGdY4e5wjuP0K5d9bQmv7tnPa/taGDeyit/+3VuoqvT3M47jOI7jlA+XNBzH6TfWbG1kxaZdbN7VTIXAtt37+dD3n6a5pa2/h+Y4juM4zhDGlSDHcfqNG3/9e0TgpOnjef6zF/HZy9/AotXbOPPzv+nvoTmO4ziOM4RxJchxnH5h9Zbd3LdiK3997ix+dt1ZALzn9DomjKymyS1BjuM4juOUEVeCHMfpF25ctJaxI6r4wNnH5iw/7diJHDNxVD+NynEcx3Gc4YAnRnAcp+xc8OXFbN3dzP6Wdlrb26msEFraAh95yywmjKrJaVtVKbS1h34aqeM4juM4wwFXghzHKSt79rey/tW9VFUI40ZWUVVREZWcwAfePPOQ9pUVFbQFV4Icx3EcxykfrgQ5jtNr9u5v5Y++toSGphbmH3MYT720k6MnjOTej5zND5e+TFt74CfXnsFJ0yd02lel4JYgx3Ecx3HKiitBjuP0ird88WE27NhLe4Caygo2NzSxu7mVPdsa2bhzH7csWc8Zxx3eJQUI1BLU2uZKkOM4juM45cOVIMdxesxv173Ki6/uZUxtFbddfSrzjzkMEWH1lt2846bH+KOvL6FhXwtfvGJel/usqhDa3R3OcRzHcZwy4kqQ4ziH8K5vPUbDvha279lPQ1MLI6sraWlrZ1xtNV+96mSOmTiKD96+jLWv7GH25DHcde0ZjKutPrj9648ax5ffNY8Pff9pRtdUctasI7q874oKodXd4RzHcRzHKSOuBDmOcwibdzVT/1oTVRXCpDEjuGzeVH727CZe29fCu29ZerBdVYXwnfeemqMAGRedcBRzJo+htroSEenyvqsqhHZXghzHcRzHKSNlVYJE5CLgRqASuCWE8Pm89SOA24FTgB3An4YQNsR1nwLeD7QBHwkh3N9RnyJyLHAnMBF4GviLEMKBYvsQkWrgFmA+Og+3hxD+tVxz4TiDhda2drbtbmZcbRVP/eMFVFdqObF/uHQuzS1tXPq1JbS3B6oqhTEjqpjeQU2f+//mnG7vv9ItQY7jOI7jlJmyKUEiUgl8A7gAqAeeFJF7QgirMs3eD7wWQpglIlcCXwD+VETmAlcCbwCmAotE5HVxm2J9fgH4SgjhThH5Vuz7pmL7AK4ARoQQThSRUcAqEfmhKWGOM9R56IVXuP4HT1NdVcH4kdUcPrqGn/71mSz+/XZa2gJfu+qNBxUgo7a6kkV/233FpjtUVnidIMdxHMdxyks5LUGnAetCCOsBRORO4HIgqwRdDtwQP98FfF3Ub+Zy4M4Qwn7gRRFZF/ujUJ8ishp4C/Bnsc33Yr83dbCPAIwWkSpgJHAA2F2qg3ecgco7vvlbXtyxj517D1BbVUHrgTYa9rXwyu797Nnfyg9/t5Ejxozgra+f3C/jDqUhJwAAIABJREFUq3IlyHEcx3GcMlPReZMeczSwMfO9Pi4r2CaE0ArsAg7vYNtiyw8HGmIf+fsqto+7gL3AFuBl4IshhJ35ByEi14jIMhFZtn379q4eu+P0O5d+9VEu+PJi1r3SyIHWdgBe2LqblZt389reA3z8gtfx3A0XsuZzFzNn8hiaWtr40H89xUNrXuGdp0w7xArUV1S4EuQ4juM4TpkppyWoUCR0vmRTrE2x5YWkso7ad7SP09B4o6nAYcCjIrLIrEwHG4ZwM3AzwIIFC1wycwYFj67dzvObdxOA87/8CAAjqipoaWvniDEj+NZfnML8Yw472P7+vzmHW5e8yGfvVUPtladO749hA2oJam1v77f9O47jOI4z9Cnnq956ICtJTQM2F2sT3dLGAzs72LbY8leBCbGP/H0V28efAb8KIbSEEF4Bfgss6OGxOs6AYfWW3Vz7/aeZM2UsP7n2dI6bNJqpE2oZPaKKw0bV8IsPn5WjABlXn1nHUeNrOXLsCOqOGN0PI1cqK4T2AMFrBTmO4ziOUybKaQl6Epgds7ZtQhMd/Flem3uA9wKPA+8EfhNCCCJyD/ADEfkyaqmZDfwOteoc0mfc5qHYx52xz593so+XgbeIyPeBUcCbgP8owzw4Ttloaw/sO9DK2Npq2toDP392E3/3k+cA+O7Vp3LU+JH8+uPndqkvEeHxT721jKPtGpUxnXZbzEDnOI7jOI5TasqmBIUQWkXkeuB+NJ31rSGE50Xks8CyEMI9wHeA/4qJD3aiSg2x3Y/QJAqtwHUhhDaAQn3GXf4dcKeIfA54JvZNsX2gWea+C6xElavvhhCeK9N0OE5JeeuXHmbr7maaDrTRHqC6UqgQYX9rO6NqKjlu0miOGj+yv4fZIyqj4tPaHqiq7OfBOI7jOI4zJClrnaAQwn3AfXnL/inzuRlNVV1o238B/qUrfcbl60kZ5LLLC+4jhLCn2L4dZyDzzMuvsX77XmqrKzly7AiqKytoammjpS3wpXfN45ITjqKiYvBaUKri2NvdHc5xHMdxnDJRViXIcZye0drWzp79rWzc2cRPnq7nB0tfZmxtFd/7y9O4/gfPcPRhI/mfD5/N+FHV/T3UklMhyRLkOI7jOI5TDlwJcpx+4LW9BzjzC79hdE0Vv/rY2Rw+ZgQhBH734k7+6r+eoqGp5WDbmsoKRtZUsnPfAS792hIE+Nl1Zw5JBQiSJaitzZUgx3Ecx3HKgytBjtMPfPnB37PvQBtNB9o47f/9mlE1lTRHl7aqCuGo8bVUV1ZQXSnc9aEzOGx0DVt3NXP5N5YwZkQV86ZP6O9DKBuVsT5Rm7vDOX2EiFwE3IjGmt4SQvh83vpj0CLcE2KbT0bXbMdxHGeQ4kqQ45SB5pY2KiukYMHR1Vt2c8fSl3jv6TP48zfN4Ir/fJzWtsD4kdWMHVHFfR99MyNrDs0IMGV8LUs/fX5fDL9fyWaHc5xyIyKVaKKcC9CSCk+KyD0hhFWZZv8A/CiEcJOIzEXjUuv6fLCO4zhOyXAlyHFKTGNzCws+t4j2EPjIW2Zz1cJjOGLMCABa2tp5138+ToUIf3PB65gwqoZn/+lt/TzigYW5w3lMkNNHnAass0LZInIncDmandQIwLj4eTyH1rxzHMdxBhmuBDlOifnne1exv7WdcbVVfOnB3/OlB3/PiKoKaioraG0PNLW0UXf4KCaMqunvoQ5IKi07nCtBTt9wNLAx870eWJjX5gbgARH5MDAaKGiSFZFrgGsAjjnmmJIP1HEcxykdh/rqOI7TJS772hLO+Ndf09ickhjc//xWfrSsnuvOO47nbriQE48ex/TDRjKqppIA/Omp05l95BiOHDui/wY+wKl0S5DTtxTKJ59/8V0F3BZCmAZcgtaeO+T5GUK4OYSwIISwYNKkSWUYquM4jlMq3BLkOD2gpa2dddv3sO9AG3/yzce46c/n8+jaV/nc/6xmVE0lH33r6wD4xYfP7ueRDj5MCWprb+/nkTjDhHpgeub7NA51d3s/cBFACOFxEakFjgBe6ZMROo7jOCXHLUGO0wWaW9o47V8Wccbnf82B1na+/eh69h1o47rzjuOVxv2c/+VH+L+/WMWomkpmHzmGmir/afWUpAT180Cc4cKTwGwROVZEaoArgXvy2rwMvBVARF4P1ALb+3SUjuM4TklxS5DjdMLOvQf44O3LeKVxPwAnffYBmlrauPiEKfzvC4/nilOmc8W3HufwMTX88qNnI1LIu8bpKskdzrUgp/yEEFpF5HrgfjT99a0hhOdF5LPAshDCPcDHgW+LyN+grnLvC8FzuDuO4wxmXAlynA5YuWkX77jpMQ60tfPNd8+nskK47o6nqRDh/172BgDqjhjNk/8w9FNX9xVVBxMj9PNAnGFDrPlzX96yf8p8XgWc2dfjchzHccqHK0HOsOSPv7GEqooK7rr2jILrm1vaeNtXHmHjzn1UV1bw+injuOTEowB447TxtLcHjhxX25dDHjZUuCXIcRzHcZwy40qQM2xo2HeAi298lNf2HaC5RQXs4//xl4ysrqSmqoKqCqE9qAJ0oLWdvQfamDCqmoc+fi6HjU7prH/61/5CuJxUVXixVMdxHMdxyosrQc6w4JmXX+P6HzzD1l3NjBtZzZFja2lvD+w90EpzSzu7mlpoD1AhUFVRwTsXTOOpDTsZP7I6RwFyyk+lK0GO4ziO45QZV4KcIc8lNz7C6i2NHH3YSO6+7kxOmj6hYLsQgic1GABUiitBjuM4juOUF1eCnCHP3v1tBOC//+p0jp4wsmg7V4AGBlWVXizVcRzHcZzy4sVMnCHPn79pBgDjal3nHwxUVuhtqc0zEDuO4ziOUyZcCXKGPC0xy1h1pV/ug4GD7nBtrgQ5juM4jlMeXCp0hjytUZi2gHtnYJOKpboS5DiO4zhOeXAlyBnymDBd5UrQoMBigtrdHc5xHMdxnDLhSpAz5Glta6eqQjzxwSChQtwS5DiO4zhOeXElyBnytLYHd4UbRKRiqe39PBLHcRzHcYYqrgQ5Q57WtuBJEQYRqVhqPw/EcRzHcZwhi0uGzpCntb39YJyJM/CpdEuQ4ziO4zhlxpUgZ8jT0hY8KcIgosqzwzmO4ziOU2ZcCXKGPG3t7VRV+KU+WKiISlC7K0GO4ziO45QJlwydIU9rmydGGEy4JchxHMdxnHJTViVIRC4SkTUisk5EPllg/QgR+e+4fqmI1GXWfSouXyMiF3bWp4gcG/tYG/us6cI+3igij4vI8yKyQkRqyzMTTn/S0h6o9pigQUOKCXIlyHEcx3Gc8lA2JUhEKoFvABcDc4GrRGRuXrP3A6+FEGYBXwG+ELedC1wJvAG4CPimiFR20ucXgK+EEGYDr8W+O9pHFfB94EMhhDcA5wItJZ0EZ0DQ1t5OlWeHGzS4EuQ4juM4Trkpp2R4GrAuhLA+hHAAuBO4PK/N5cD34ue7gLeKVrS8HLgzhLA/hPDi/2/v/sPlqup7j78/M5OgFgQMoWoSSNRQG/yFnlJ/tFVBJVAvAY2a+Astt9xbpdoiFnjspYhgL/r0cm2L1Yi0ylXDj9aaW6LxXgh6L/IjBwNIotFj8ErEpwSBKI8Szsx87x97zWE8zJyzTzJ75uw5n9fznCcze9Ze+7t35sxZ31lrrwWMpfo61pn2OS7VQarzlGmO8Trgroi4EyAifhYRjR6ev80SnhihXKoeDmdmZmYFKzIJWgTc2/Z8V9rWsUxE1IE9wIIp9u22fQHwcKpj8rG6HeMoICRtkvRtSX/R6SQknSFpVNLo7t27c566zSaNZniK7BJpTWLhniAzMzMrSpFJUKdW5+RWTbcyvdo+1TFqwO8Bb0v/nirp+CcUjFgXESMRMbJw4cIOVdlsN97w7HBl0uq0cxJkZmZmRSmyZbgLWNL2fDFwX7cy6R6dg4EHp9i32/YHgENSHZOPNdUxvhERD0TEL4GNwIv38VxtFqt7OFypSKJakZMgMzMzK0yRSdAWYHmatW0+2UQHGyaV2QCclh6vBm6IiEjb16SZ3ZYBy4HbutWZ9tmc6iDV+ZVpjrEJeIGkp6Tk6JXA9h6ev80SHg5XPtWKaISTIDMzMytGbfoi+yYi6pLOJEs2qsAVEbFN0oXAaERsAD4LXClpjKx3Zk3ad5ukq8mSkjrw3takBZ3qTIc8B1gv6SJga6qbKY7xkKT/RpZYBbAxIq4r6nrY4Iw3mxw4r7C3uhWgKvcEmZmZWXEKbRlGxEayYWbt285ve/wo8KYu+14MXJynzrR9J9nscZO3T3WM/0E2TbYNMS+WWj61iqg3nASZmZlZMXy3uA29ejM8MULJVKui6eFwZmZmVhC3DG3o1RtN5vmeoFKpStSbzUGHYXOEpJWSdkgak3RulzJvlrRd0jZJX+x3jGZm1lu5hsNJelpEPFh0MGZFqDc9HK5sPDuc9YukKnAZ8FqyWUO3SNoQEdvbyiwHzgNeke4nPXww0ZqZWa/k7Qm6VdI1kk6S5NaklUq92WRe1Z2eZVJzEmT9cywwFhE7I+IxYD2walKZPwYui4iHACLi/j7HaGZmPZa3ZXgUsA54BzAm6aOSjiouLLPe8TpB5VOpiLqTIOuPRcC9bc93pW3tjgKOknSTpFskrexUkaQzJI1KGt29e3dB4ZqZWS/kSoIi878iYi3wH8nW3blN0jckvazQCM3203jD6wSVjXuCrI86fThMfvPVyNarexWwFrhc0iFP2CliXUSMRMTIwoULex6omZn1Tt57ghYAbyfrCfp34E/JFiF9EXANsKyoAM32V6PZ9OxwJVNxEmT9swtY0vZ8MXBfhzK3RMQ4cI+kHWRJ0Zb+hGhmZr2Wt2V4M/BU4JSI+MOI+JeIqEfEKPCp4sIz239eJ6h83BNkfbQFWC5pmaT5ZAtqb5hU5l+BVwNIOoxseNzOvkZpZmY9lTcJ+suI+EhE7GptkPQmgIi4pJDIzHpkvOkpssumWqn4niDri4ioA2cCm4DvAldHxDZJF0o6ORXbBPxM0nZgM/DBiPjZYCI2M7NeyDUcDjgXuHrStvPIhsKZzWqNZlDz7HClUq1A00mQ9UlEbAQ2Ttp2ftvjAM5KP2ZmNgSmTIIknQicBCyS9LdtLz0VqBcZmFkvREQ2MYKHw5WKe4LMzMysSNP1BN0HjAInA7e3bf8F8OdFBWXWK612tCdGKBffE2RmZmZFmjIJiog7gTslfSGNmzYrlfFGE8BTZJdMVU6CzMzMrDjTDYe7OiLeDGyV1N4iEdkw6RcUGp3ZfmoNqfJwuHKpuifIzMzMCjTdcLj3p39fX3QgZkVoNFIS5IkRSqVWFXvrjUGHYWZmZkNqypZhRPw0PXwAuDci/h9wAPBCnriYnNmsM97MhsN5iuxyqUg03BFkZmZmBcn79fg3gSdJWgRcD7wb+KeigjLrlXpqSXux1HLJJkZoDjoMMzMzG1J5kyBFxC+BNwB/FxGnAiuKC8usN+qtniDPDlcq2T1Bg47CzMzMhlXuJEjSy4C3AdelbXkXWjUbmPrEPUHuCSqTqnuCzMzMrEB5k6D3A+cBX46IbZKeBWwuLiyz3mj1BHk4XLlUK/JiqWZmZlaYXL05EfFNsvuCWs93Au8rKiizXmk1pOd5drhSqVVE00mQmZmZFSRXEiTpKOBsYGn7PhFxXDFhmfXGxHA49wSVSsU9QWZmZlagvPf1XAN8Crgc8OIdVhrj6e563xNULjUvlmpmZmYFypsE1SPiHwqNxKwArYZ0zbPDlUrVSZCZmZkVKG/L8H9Keo+kZ0h6Wuun0MjMemDcw+FKyUmQmZmZFSlvT9Bp6d8Ptm0L4Fm9DcestyZ6gjwxQqnUKhXfE2RmZmaFydUyjIhlHX6mTYAkrZS0Q9KYpHM7vH6ApKvS67dKWtr22nlp+w5JJ0xXp6RlqY4fpDrnT3eM9PoRkh6RdHaea2HlMt70PUFlVJFnhzMzM7Pi5EqCJD1F0l9KWpeeL5f0+mn2qQKXAScCK4C1klZMKnY68FBEPAe4FLgk7bsCWAMcDawEPimpOk2dlwCXRsRy4KFUd9djtLkU+Gqe62Dl49nhyqlW9exwZmZmVpy8Y4T+EXgMeHl6vgu4aJp9jgXGImJnRDwGrAdWTSqzCvhcenwtcLwkpe3rI2JvRNwDjKX6OtaZ9jku1UGq85RpjoGkU4CdwLZ8l8HKptHqCfLECKXie4LMzMysSHlbhs+OiI8B4wAR8Stguq/WFwH3tj3flbZ1LBMRdWAPsGCKfbttXwA8nOqYfKyOx5D0G8A5wIenOglJZ0galTS6e/fuaU7ZZpvWxAjzPByuVKoSjXASZGZmZsXImwQ9JunJZJMhIOnZwN5p9unU6pzcqulWplfbpzrGh8mGzz3S4fXHC0asi4iRiBhZuHDhVEVtFqqnnqCqh8OVSqsnKJwImZmZWQHyzg53AfA1YImkLwCvAN49zT67gCVtzxcD93Ups0tSDTgYeHCafTttfwA4RFIt9fa0l+92jN8FVkv6GHAI0JT0aET8/TTnZSVSn+gJ8nC4Mmndw9Vohie1MDMzs57LOzvc14E3AO8CvgSMRMTmaXbbAixPs7bNJ5voYMOkMht4fPrt1cANkX31uwFYk2Z2WwYsB27rVmfaZ3Oqg1TnV6Y6RkT8fkQsjYilwH8HPuoEaPjUJ6bIdkO6TCqtJMg9QWZmZlaAXD1Bkq6PiOOB6zps6ygi6pLOBDYBVeCKiNgm6UJgNCI2AJ8FrpQ0RtY7sybtu03S1cB2oA68NyIa6bhPqDMd8hxgvaSLgK2pbrodw+aGesPD4cqovSfIzMzMrNemTIIkPQl4CnCYpEN5/P6apwLPnK7yiNgIbJy07fy2x48Cb+qy78XAxXnqTNt3ks0eN3l712O0lblgqtetvFo9QfM8O1yptJJWT5NtZmZmRZiuJ+g/AX9GlvDczuNJ0M/J1usxm9Um1gnycLhSaSVBXjDVzMzMijDl1+MR8YmIWAacHRHPiohl6eeFvn/GymDc6wSVUs09QdZHklZK2iFpTNK5U5RbLSkkjfQzPjMz671c9wRFxN9JejmwtH2fiPh8QXGZ9UTDPUGlVE1Jq3uCrGiSqmQjG15LNpvoFkkbImL7pHIHAe8Dbu1/lGZm1mt5J0a4Eng2cAfQSJsDcBJks9p4a3Y4T4xQKq0Zzd0TZH1wLDCW7itF0npgFdnEPO0+AnwMOLu/4ZmZWRHyrhM0AqwIr1xoJVNvNKlWhOQkqExaPUGeHc76YBFwb9vzXWTryE2QdAywJCL+TVLXJEjSGcAZAEcccUQBoZqZWa/kvVHibuDpRQZiVoRGM9wLVEKtniAnQdYHnT4gJt54kirApcAHpqsoItZFxEhEjCxcuLCHIZqZWa/l7Qk6DNgu6TZgb2tjRJxcSFRmPTLecBJURq2eIA+Hsz7YBSxpe74YuK/t+UHA84AbU4/y04ENkk6OiNG+RWlmZj2VNwm6oMggzIrSaDapVT0zXNl4sVTroy3AcknLgJ+QLaj91taLEbGH7ItAACTdSDZjqhMgM7MSyzs73DeKDsSsCOPNYJ5nhiudipwEWX9ERF3SmcAmoApcERHbJF0IjEbEhsFGaGZmRZgyCZL0C9rGRre/BEREPLWQqMx6pDUxgpWLe4KsnyJiI7Bx0rbzu5R9VT9iMjOzYk2ZBEXEQf0KxKwI9WZ4odQSqlZbi6U2BxyJmZmZDSO3Dm2o1RseDldG1TQcrulZ+c3MzKwAToJsqNWbHg5XRq3hcPWGkyAzMzPrPSdBNtSyniC/zcum6nuCzMzMrEBuHdpQqzeDmofDlc5EEuThcGZmZlYAJ0E21MYbzYmFN608WkmQF0s1MzOzIrh1aEOt0Qzm+Z6g0mnN6NfwPUFmZmZWACdBNtTqDQ+HK6NW552Hw5mZmVkRnATZUBtvNr1OUAlN9AR5OJyZmZkVwK1DG2oNT4xQSr4nyMzMzIrkJMiG2ngj3BNUQq0kqOkkyMzMzArg1qENtXqjObHwppVHzT1BZmZmViAnQTbUPByunCruCTIzM7MCOQmyoTbebDKv6rd52bgnyMzMzIrk1qENtUYjJu4vsfJo/Z81ms0BR2JmZmbDyEmQDbXxZjDPw+FKp6pWEuSeIDMzM+u9QpMgSSsl7ZA0JuncDq8fIOmq9Pqtkpa2vXZe2r5D0gnT1SlpWarjB6nO+VMdQ9JrJd0u6Tvp3+OKuxI2KPVG0z1BJVStejicmZmZFaewJEhSFbgMOBFYAayVtGJSsdOBhyLiOcClwCVp3xXAGuBoYCXwSUnVaeq8BLg0IpYDD6W6ux4DeAD4DxHxfOA04Mpenr/NDvWmp8guo1rFPUFmZmZWnCJbh8cCYxGxMyIeA9YDqyaVWQV8Lj2+FjhektL29RGxNyLuAcZSfR3rTPscl+og1XnKVMeIiK0RcV/avg14kqQDenb2NivUGx4OV0aV1nC4cBJkZmZmvVdkErQIuLft+a60rWOZiKgDe4AFU+zbbfsC4OFUx+RjdTtGuzcCWyNi74zO0Ga9erNJ1T1BpTPRE9RwEmRmZma9Vyuw7k5fv09u0XQr0217p9bsVOWnjUPS0WRD5F7XoRySzgDOADjiiCM6FbFZrO6JEUqp6imyzczMrEBFfkW+C1jS9nwxcF+3MpJqwMHAg1Ps2237A8AhqY7Jx+p2DCQtBr4MvDMiftjpJCJiXUSMRMTIwoULc524zQ6NZhCB7wkqIUlUBE0PhzMzM7MCFNk63AIsT7O2zSeb6GDDpDIbyCYlAFgN3BARkbavSTO7LQOWA7d1qzPtsznVQarzK1MdQ9IhwHXAeRFxU0/P3GaF8Ua2xkzNPUGlVKtU3BNkZmZmhSgsCUr335wJbAK+C1wdEdskXSjp5FTss8ACSWPAWcC5ad9twNXAduBrwHsjotGtzlTXOcBZqa4Fqe6ux0j1PAf4L5LuSD+HF3IxbCBaM4vVPEV2KVUr8uxwZmZmVogi7wkiIjYCGydtO7/t8aPAm7rsezFwcZ460/adZLPHTd7e8RgRcRFw0bQnYaVVTzfV16oeDldGToLMzMysKG4d2tAab6bhcO4JKiUnQdYvORb2PkvSdkl3Sbpe0pGDiNPMzHrHSZANrYnhcL4nqJRqFVFPiaxZUXIu7L0VGImIF5CtN/ex/kZpZma95iTIhlZrYoR5nh2ulCoV0XAOZMWbdmHviNgcEb9MT28hm4HUzMxKzK1DG1qtnqCqh8OVUq0iGu4JsuLlWdi73enAVzu9IOkMSaOSRnfv3t3DEM3MrNecBNnQGm94OFyZVSvyFNnWD3kW9s4KSm8HRoCPd3rd68qZmZVHobPDmQ1S636SeZ4drpSqFdF0EmTFy7OwN5JeA3wIeGVE7O1TbGZmVhC3Dm1otabI9nC4cnJPkPXJtAt7SzoG+DRwckTcP4AYzcysx5wE2dBqNaDneThcKVXlKbKteDkX9v44cCBwTVpYe0OX6szMrCQ8HM6GVj1NLVb17HCl5HWCrF9yLOz9mr4HZWZmhXLr0IbWRE+Qh8OVUq3qJMjMzMyK4STIhlZ9YnY4v83LqCrRCCdBZmZm1ntuHdrQGm+2hsO5J6iMPBzOzMzMiuIkyIZWo+GJEcqsVqlM9OaZmZmZ9ZKTIBtarXWCap4YoZQqFTwczszMzArh1qENrfGJe4LcE1RGtUrFw+HMzMysEE6CbGi1GtA13xNUSl4s1czMzIriJMiG1nhaJ2ieZ4crpWpFNJ0EmZmZWQHcOrSh1epF8Oxw5eSeIDMzMyuKkyAbWq0GtO8JKqdaRTTS5BZmZmZmveQkyIZWvTUczrPDlVLF6wSZmZlZQdw6tKHVakBX3RNUSjUnQWZmZlYQJ0E2tFpTZLsnqJx8T5CZmZkVxa1DG1qt4XC+J6icqvLscGZmZlYMJ0E2tOpeJ6jUalX3BJmZmVkxnATZ0Ko3m1QrQnISVEYV+Z4gMzMzK4aTIBta9UZ4jaASq1VEI5wEmZmZWe85CbKhVW8G85wElVa1UqHRcBJkZmZmvVdoEiRppaQdksYkndvh9QMkXZVev1XS0rbXzkvbd0g6Ybo6JS1Ldfwg1Tl/X49hw6HeaFKrOs8vq2oF3xNkZmZmhSishSipClwGnAisANZKWjGp2OnAQxHxHOBS4JK07wpgDXA0sBL4pKTqNHVeAlwaEcuBh1LdMz5Gb6+CDdJ4MzwpQolVKxUPhzMzM7NC1Aqs+1hgLCJ2AkhaD6wCtreVWQVckB5fC/y9srvYVwHrI2IvcI+ksVQfneqU9F3gOOCtqcznUr3/sA/HuLnbCT2yt86Jn/g/M78SNhA/3fMrDqi5J6isahXxWL3p37kSOXbpoYMOwczMLJcik6BFwL1tz3cBv9utTETUJe0BFqTtt0zad1F63KnOBcDDEVHvUH5fjjFB0hnAGQDPWLKUxYc+ecqTttlj8aFP5tilTxt0GLaPTjj66Yzd/4h7g0rksAMPGHQIZmZmuRSZBHUahzS5NdOtTLftnb7Wn6r8vhzj1zdErAPWAYyMjMRn3jnSYTcz67XnLz6YT73jJYMOw2bofYMOwMzMLIcixwrtApa0PV8M3NetjKQacDDw4BT7dtv+AHBIqmPysWZ6DDMzMzMzG2JFJkFbgOVp1rb5ZJMQbJhUZgNwWnq8GrghIiJtX5NmdlsGLAdu61Zn2mdzqoNU51f28RhmZmZmZjbEChsOl+6/ORPYBFSBKyJim6QLgdGI2AB8FrgyTUrwIFlSQyp3NdkkCnXgvRHRAOhUZzrkOcB6SRcBW1Pd7MsxzMzMzMxseCl803FuIyMjMTo6OugwzMxmLUm3R0Spbp6UtBL4BNmXa5dHxH+d9PoBwOeBlwA/A94SET+aqk7/vTAzm9qg/154/mAzM5uz9mdNOzMzKy8nQWZmNpdNrGkXEY8BrTXt2q0iW38OsvXmjk9pTMjzAAAKkElEQVTrzZmZWUkVOUX20Ln99tsfkbRj0HEU5DCyWfaGkc+tnHxu5fRbgw5ghvZnTbtf+z9sX1cO2Cvp7kIiLpdhfq/PhK9Dxtch4+uQGejfCydBM7OjbGPd85I06nMrH59bOQ37uQ06hhnanzXtfn1D27pyw/x/PBO+Dhlfh4yvQ8bXITPovxceDmdmZnPZ/qxpZ2ZmJeUkyMzM5rL9WdPOzMxKysPhZmbdoAMokM+tnHxu5eRzmyX2Z027aZTqOhTI1yHj65Dxdcj4OmQGeh28TpCZmZmZmc0pHg5nZmZmZmZzipMgMzMzMzObU5wEdSBppaQdksYkndvh9Usl3ZF+vi/p4UHEuS9ynNsRkjZL2irpLkknDSLOfZHj3I6UdH06rxslLR5EnDMl6QpJ93dbc0SZv03nfZekF/c7xn2V49yeK+lmSXslnd3v+PZHjnN7W/r/ukvStyS9sN8x7qsc57YqndcdkkYl/V6/Y+yXHJ87B0i6Kr1+q6Sl/Y+yeDmuw1mStqf3xfWSjhxEnEWb7jq0lVstKSQN5TTJea6DpDen98Q2SV/sd4z9MMxtrrxmdRsmIvzT9kN2Y+wPgWcB84E7gRVTlP9TshtpBx57L86N7Ca1P0mPVwA/GnTcPTy3a4DT0uPjgCsHHXfOc/sD4MXA3V1ePwn4KtlaJi8Fbh10zD08t8OB3wEuBs4edLw9PreXA4emxycO2f/bgTx+z+kLgO8NOuaCrkOez533AJ9Kj9cAVw067gFdh1cDT0mP/2SuXodU7iDgm8AtwMig4x7Q+2E5sLXtM/DwQcc9oOtQyjbXDK/DrG3DuCfoiY4FxiJiZ0Q8BqwHVk1Rfi3wpb5Etv/ynFsAT02PD+aJ62XMVnnObQVwfXq8ucPrs1JEfJOp1yRZBXw+MrcAh0h6Rn+i2z/TnVtE3B8RW4Dx/kXVGznO7VsR8VB6egvZ+jSlkOPcHon01w34DTosLDok8nzurAI+lx5fCxwvqdPiq2U27XWIiM0R8cv0tFTv9xnI2374CPAx4NF+BtdHea7DHwOXtT4DI+L+PsfYD8Pc5sptNrdhnAQ90SLg3rbnu9K2J0jd+cuAG/oQVy/kObcLgLdL2gVsJOvpKoM853Yn8Mb0+FTgIEkL+hBb0XK/Z23WOp3sm7ChIelUSd8DrgP+aNDxFCTP795EmYioA3uAYfjcaTfTz6Che78n014HSccASyLi3/oZWJ/leT8cBRwl6SZJt0ha2bfo+meY21y9NLA2jJOgJ+r0DV23bzHXANdGRKPAeHopz7mtBf4pIhaTdVFeKakM75M853Y28EpJW4FXAj8B6kUH1gczec/aLCPp1WSNwnMGHUsvRcSXI+K5wClk33wPozy/e3Ph9zP3OUp6OzACfLzQiAZjyuuQ/pZeCnygbxENRp73Q41sSNyryNodl0s6pOC4+m2Y21y9NLDPyLl2ofPYBSxpe76Y7t2TayjPUDjId26nA1cDRMTNwJOAw/oS3f6Z9twi4r6IeENEHAN8KG3b078QCzOT96zNIpJeAFwOrIqInw06niKkoRDPllSGz5GZyvO7N1FGUo1syMtUQ0PKKNdnkKTXkH32nhwRe/sUWz9Ndx0OAp4H3CjpR2T3P2wYwskR8v5efCUixiPiHmAHWVI0TIa5zdVLA2vDOAl6oi3AcknLJM0nS3Q2TC4k6beAQ4Gb+xzf/shzbj8GjgeQ9Ntkv5C7+xrlvpn23CQd1vYNy3nAFX2OsSgbgHemGVZeCuyJiJ8OOiibmqQjgH8B3hER3x90PL0k6Tmt+17STD/zgWFM8vJ8pm4ATkuPVwM3tN0vNSzyfP4eA3yaLAEaxvs/YJrrEBF7IuKwiFgaEUvJ7o06OSJGBxNuYfL8Xvwr2WQZpC9IjgJ29jXK4g1zm6uXBtaGqfXjIGUSEXVJZwKbyGb2uCIitkm6EBiNiNYbeC2wvkx/zHKe2weAz0j6c7LuyHeV4RxznturgL+WFGQz87x3YAHPgKQvkcV+WBo3/FfAPICI+BTZOOKTgDHgl8C7BxPpzE13bpKeDoyS3TjalPRnZLPr/HxAIeeW4//tfLJ7Qz6Z8oV6RJTiG+Ec5/ZGsj9q48CvgLeU4XNkpnJ+7nyWbIjLGFkP0JrBRVyMnNfh42SzBl6T3u8/joiTBxZ0AWbQfhhqOa/DJuB1krYDDeCDw9YbPsxtrpmYzW0YDdm1NjMzMzMzm5KHw5mZmZmZ2ZziJMjMzMzMzOYUJ0FmZmZmZjanOAkyMzMzM7M5xUmQmZmZmZnNKU6CzDqQdGmajrn1fJOky9ue/42ks3p8zEd6WV+q80WSTmp7foGks3Ps15B0h6Rntm07RlJIOqFD+VPTa89t2/bsVEfPz8vMzMxsfzgJMuvsW8DLAdICq4cBR7e9/nLgpgHENVMvIpt/f6Z+FREvioj2VZvXAv83/TtZ67WJNVAi4ocR8aJ9OLaZmZlZoZwEmXV2EykJIkt+7gZ+IelQSQcAvw1slXSgpOslfVvSdyStApB0iaT3tCpLPTAfSI8/KGmLpLskfbjTwTuVkbRU0nclfUbSNklfl/Tk9NrvpLI3S/q4pLvTCtUXAm9JPTJvSdWvkHSjpJ2S3pfnYihb3XA18C6yBe6e1PbagcArgNMZwoUgzczMbPg4CTLrIPWA1CUdQZYM3QzcCrwMGAHuiojHgEeBUyPixcCrgb9JCcN64C1tVb6ZbKX01wHLgWPJemleIukP2o89TZnlwGURcTTwMPDGtP0fgf8cES8jW32bFN/5wFWpV+eqVPa5wAmp/r+SNC/HJXkFcE9E/BC4kV/vXToF+FpEfB94UNKLc9RnZmZmNjBOgsy6a/UGtZKgm9uefyuVEfBRSXcB/xtYBPxmRGwFDpf0TEkvBB6KiB8Dr0s/W4FvkyUkyycdd6oy90TEHenx7cBSSYcAB0VEK6YvTnNe10XE3oh4ALgf+M0c12ItWWJH+ndtztfMzMzMZp3aoAMwm8Va9wU9n2w43L3AB4CfA1ekMm8DFgIviYhxST8CWkPFriUbQvZ0Hk8SBPx1RHx6iuN2LCNpKbC3bVMDeHIqPxOT65jyc0BSlazH6WRJH0rHWyDpIGA+cBzwPEkBVIGQ9BcRETOMy8zMzKwv3BNk1t1NwOuBByOiEREPAoeQDYm7OZU5GLg/JUCvBo5s23892T0yq8kSIoBNwB+l+2iQtEjS4ZOOm6fMhIh4iOx+pZemTe335fwCOGgmJ93Ba4A7I2JJRCyNiCOBfyYbBrca+HxEHJleWwLcA/zefh7TzMzMrDBOgsy6+w7ZrHC3TNq2Jw0lA/gCMCJplKxX6HutghGxjSwB+UlE/DRt+zrZcLWbJX2HLDn6tSQlT5kOTgfWSbqZrKdmT9q+mWwihPaJEWZqLfDlSdv+GXjrNK+ZmZmZzUryiBWz8pN0YEQ8kh6fCzwjIt6/H/U9EhEH9ii2ntVlZmZm1gvuCTIbDn+YenvuBn4fuGg/6/v55MVSZ6q1WCrw7/sZi5mZmVlPuSfIzMzMzMzmFPcEmZmZmZnZnOIkyMzMzMzM5hQnQWZmZmZmNqc4CTIzMzMzsznFSZCZmZmZmc0p/x9xz1/NwI1eyQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "

" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "McStasScript.name_plot_options(\"PSD_4PI\", data, log=1, colormap=\"hot\", orders_of_mag=5) # Adjusting PSD_4PI plot\n", + "plot = McStasScript.make_sub_plot(data) # Making subplot of our monitors" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/demonstration.py b/demonstration.py index a7cb6a21..1b47bab7 100644 --- a/demonstration.py +++ b/demonstration.py @@ -1,14 +1,22 @@ # Demonstration of McStasScript, an API for creating and running McStas instruments from python scripts # Written by Mads Bertelsen, ESS DMSC import random +import sys +#sys.path.append('/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript') import McStasScript # McStasScript classes # if the mcrun command from McStas is not in your path, provide absolute path for the binary here: mcrun_path = "" #mcrun_path = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin" +mcstas_path = "" +#mcstas_path = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/" # Create a McStas instrument -instr = McStasScript.McStas_instr("random_demo",author="Mads Bertelsen",origin="ESS DMSC",mcrun_path=mcrun_path) +instr = McStasScript.McStas_instr("random_demo", + author="Mads Bertelsen", + origin="ESS DMSC", + mcrun_path = mcrun_path, + mcstas_path = mcstas_path) # Set up a material called Cu with approrpiate properties (uses McStas Union components, here the processes) instr.add_component("Cu_incoherent","Incoherent_process") @@ -78,9 +86,15 @@ instr.set_component_parameter("large_detector",{"xwidth" : 1.0, "yheight" : 1.0, "nx" : 500, "ny" : 500, "filename" : "\"large_PSD.dat\"", "restore_neutron" : 1}) # Run the McStas simulation, a unique foldername is required for each run -data = instr.run_full_instrument(foldername="demonstration8",parameters={"energy":600},mpi=10,ncount=5E7) +data = instr.run_full_instrument(foldername="demonstration",parameters={"energy":600},mpi=2,ncount=5E7) + +# Set plotting options for the data (optional) +McStasScript.name_plot_options("logger_space_zx_all",data,log=1,orders_of_mag=3) +McStasScript.name_plot_options("logger_space_zy_all",data,log=1,orders_of_mag=3) +McStasScript.name_plot_options("detector",data,log=1,colormap="hot",orders_of_mag=0.5) +McStasScript.name_plot_options("large_detector",data,log=1,orders_of_mag=8) # Plot the resulting data on a logarithmic scale -plot = McStasScript.make_sub_plot(data,log=1,max_orders_of_mag=[5,10,2,2]) +plot = McStasScript.make_sub_plot(data) From 30cf899c628b9d0355a6d3158c95a0eef6caa69b Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Fri, 10 May 2019 09:55:38 +0200 Subject: [PATCH 012/403] Updates to the documentation to reflect recent changes. McStas_Instr class Now needs path to McStas directory show_components method for overview of available components component_help method for details on the parameters of a component add_component now returns object component class show_parameters method mentioned show_parameters_simple method mentioned _unfreeze _freeze methods described --- McStasScript.py | 2 +- McStasScript_documentation.pdf | Bin 147913 -> 153845 bytes 2 files changed, 1 insertion(+), 1 deletion(-) diff --git a/McStasScript.py b/McStasScript.py index e90638f8..c975d208 100644 --- a/McStasScript.py +++ b/McStasScript.py @@ -1517,7 +1517,7 @@ class is used as a superclass for classes describing each if not self.GROUP == "": print("GROUP " + self.GROUP) if not self.EXTEND == "": - print("%{") + print("EXTEND %{") print(self.EXTEND + "%}") if not self.JUMP == "": print("JUMP " + self.JUMP) diff --git a/McStasScript_documentation.pdf b/McStasScript_documentation.pdf index e0cb18f76e72c0be75291e6b26b46c4b7f4265c5..4b0511b53da86e84a07eb46c6f5599fbe843e1b9 100644 GIT binary patch delta 119831 zcmZ6yV{qqB@b4Sjw(W0hJK5N_ZGYm8vGIl*Z?Lg#+sVco+fL5!e@>lS_ui?ge$elk z>VDAGRr9Lpu`u|DI`|}JPA(2!PA)Q5Su%YxK28oYb~Y|DLo!xnGIl;PRw*(N8;Fk+ zM8>K_2Kvuxkb$^3IN73vyYQS@Lk3^RlyZa+&k6o0{>N^Ko%; zTY@uV1rseXL<*pfj8J% z7MS5(c?d8uLWDmV(qa%!DJBprDgKap05=({qNS6yhYcBsor_FZ7{T4c&C=8n!6(Pu z#KgqR#KdT(ce1yaJ6kLX9HH023I>NPk1+<0~7P#x!l}&k2WOKf?}FxM+kN1k02t*>JCg5o$4CNG2ka+Ia6wZ$VQEj(Xuj z|J&(CTs2}7KlV5V9v)a#Kg&~!HIxVn7atc3I}bM*FDHnFmoKFn$^ziw;r)N-xPGCp z;JzV^(S4>};096If740&y{px$;q05*?|6^9L$Ktea0EDZFdN-3;mrle9|d%}20o4@ z9Jz_dx$jRr;wHbi#5d&#jG2ZusC(P3JIR^icY8ENaaF&i2-O zN-?_Ac|}y_-^4{>&GJ;9eP1Xj*&Zc4IM?)Z2{4QxBFtkoWpJro{S$0ke!sYxb^+^< z?wUCo%h}n(n4hUVShDZTbCz!P;7z6@_mFI48?RIIQ{Qe`%DscxX@ZgM0%&ns zb#Q8(*nTivWQl^>C~Trm=HBqa)YbEr?H?12fwSx>y=`_FZ$4hA8B``%^9b}W2S0ve z1#sJ07J{?Ax(e56E=lVpF5WuqLWs6Z)i0LME0#)w3jF4(6bQ9;++Lx|{C2P!i@L&dnSXn0YS=2(y|Zx;$n~}h+2HvuMr%KJk(MI8o>iPx z{CN$L$mI=p+nDnb!{)XzNNw16Dwmy zSfJt#vVzCbZLc`0p)jW{W0!{BwgI2!a8grR%HMCi9%;72X(4*KhDPt-6Vh%@ArkN) zM{BUH!EK~S3i;wQg;}=W3kJ!v+Kwg}VYRR_)1xPQmLJ$nLBApES_w^QGHqiwsfA;N zdT}()gJ+0VeL^ilf0RAqa{XNOSpm~PZj7J}2*rTMnS$`v;0;ASE@6(8UkBi-nh!|z zuWuI_%57pa3Gl@T$GdVR_M2aW^YluGVlJZu>$klEUz@sw?u|gJSW3Oq{sG0B%Y=<{ zg~A6dJtOYdzPP%y<-dlP9NY?oFCN~}vIKUV5b*6zul4sVcc zqJg3d=VN#LArawNuBk<%0ui?Zi~n2{?yUU*u6Scxl-Bn42hsln*}qP$&6~yTN7ZP? zy(&i)XR@rkPzug;o5G}^7iF`_IpGE)erlV3pb51^PX$q~{@s>JG}rG3KlTVzAJu{y z#3DUyR{D3Z+=?j&N<~j(o)OG>S>YZvr4RFyS;2EpOB9a{brcV2x zRdUmShD`>g5NY;_S=>{3+VMtB77H!8px{%NC4)JR+ZyzWS%eFH1>H^>D)_YjvU~OhJux8Oiust9Rl9@;tpahL}I*rP;sq2(C6^8s;~KdF&Mg!=&z_e zJP|Eqpg_2Cfr*?P7}Jv+m_x{xJ<_=alEm96bJHaw02gXI$xoeJc?kMFK=l{YcNO${ zFyfskB@=w@BLn4xOjM%&C_ms@g+`A;O$znGBIl;PBxexQiP|KZ9_dYmJzN^;)LCrd z@KUGac$$jS#i$n3ESt41qiY=DKDWPc-+iw36^K1$Dbl6@`d8S$>X<2thn_Ob4|I?m zavrb&CK<84oKg~j64C5=!J+0dZ}?2S#=Y+oxoy%ViyZ+>Nb4a=9dYn(scdV$T`X!C zE_FsFaT4xm+vZT~#U8Zn_q@4L^J;c`s#RHqfvbBCKBHA#Qwe@SLZfqCCg-CNDIH{g zV9}A$-r}!!tjF5xnU)NOe z2mCy9_5|2~J;7d7i;LRi@e$7OThQWm3r^8A7j|v33--(xOvLpZN^3l2+XUf*O-f>Ii;6Gh$Rk4yy>Qk5UeN&X z>u2xG?hm42ziOKoD;?oxKRfbUdhljjpL(%( zR(B?M#(Q@o&w?R8*n6R+D`pB{hoBc+*c0z-j#FK@U*3ogTZ z$lKpu_2d{6Vtp>Pa>3B8BVRe?dD;I4RI;tE&z2l63t>Bs>#zUzbNnm2bQkM`d2UTz z@QRr!SPD6(Eah>1pb&n04u>3rLP5Kw-~nmnT+q0*__-fqRjNveC+Q;wHXnp0=e3n$ zxr9Xw?dV1A*ufJslhb-EAEgLr+XZAJ1u+yI$zutXANOEnMG0Bol7+zbN}wA9obm}a z2@$`h-MOIZCb>vZViFLt&Yun-2p*PhB>j0^rYga)Ai*E6ePdst3Vg~?zz%laFUxs_ zPn1n!tr3(_b(SJ*kCH6(NN#%YtMgmiiYmt#!*C_83*n6>aYJwwuJ@#`#an34x-mLO zZLjy>j5zyZ$$jR)SdT!5ljb@A+VIZBw*Wp1mGmwO6VX2!{EZJBy=a+-Zo$y4Pkb3b z+zf@V_Dx)eAe+py18K5DSg(GTh(|Bj#E@TD=Eilu@Oh7LxLb) z_SQt6*ocs4YQJ;dqmp#$ekivF8IE~fDMX7(7h0w!ueJ*20)|B--mg`lVfJ8Xf)}i* zg)ZtB?^=?Mh0WXa&lsmg-^+`k?3y6|5TBplS0L5qhgu5f8YbOaaCbJ`zIwtXw(973 zgEj={!-AceBS`PwnF(I)r6fEIRWXaml~%BCvI@!N$_ic?r6t7Ke;Fg^zzyUm@;SZ1 z^WO9+AxBcFZ;fb%<)qsHb&B>}hhO?^_sn>&BG3}bLCb=l{C+I)mMF(FX=dYD13-uG zIf@bJNaK*2Lt62bfl%3j_w2vA+q=#_e>U`aZ6^APwc>say zT8${munZ&9@fdw6s$JtL=c)AI7NK=M16A zAFa}tR4k=33*`o`s{&IIrYS3V&4ywAe8c1{gv}_DKTc@LQHP5fiu@RYU?0~KlAO;ve)EQ~u(vMdFIs3^iU7xZg#x*3Ctxejx|Ll=&rR$rj*Kzo$PDDG;Wj=WV=ao zlxt`**}W>w{ok%#yzTQH&gQu_0M9Y6r6y!*-HB#>NB^@SRsk7U6aO=bkyayil%-ec zeXpjQZ6gw*bH~t|mJU<`)JOgJ?4@Dv$Dq$N3SeJh0qlZ$q1~L|a8@tT(mzVs5ODjsi5Ah#~QDhHB5`z%=SzrohQh!-csLJ zHaxR?d8f_lI<~!SIGAW$cRz#@{O-3fTLNH-2wrUlY%wmE`E>4m$htbTzl!8NC<~!~ z@=+SETniA%inGR~@Rdaa>{k_b(fZ#j5C#o{mPwl<)hH_U3H==v$p3Z^^tG0;8`4*R zmoc3LvRV+BpO+|tMyA{HW>Tr?G^+jEe?_D?Fc+_e-BsUZDqn=4iaqQ=Rm-VKE&gCy zufy>pR-N%P3A_e{gwJb6P_&CfkD0T2RULjKAW zh;8^LJ%qI&&V&Or(J^J+u~bFUrivuCMrd{3;4> zL)Kv{ZF6uTM8H1!uGa-F5>UmKkHUdZafp1dvlZb=pE`Q5tVC4-bF#}#kljRBMG!`N zCd1bmqUqA;{{oNc9oI^czsnCh2=tQfBls%Qu9}A&7&b?_I@Wj8KAo zOC9iI4Iqx{Qvc%uE^Nd_D`2N^Ibu;_e%fg~46)0uNU~5+-xeSb8Ys|*I_;SB7rwip zB~BAPt-iMwPGJ=-2P)nakZ2zx)xwaKQ}{(V!tf~@`R#=PlxWF0@UrMutAAXmZj#q^ zBiT3-*;RVnbG|c)ai*EC##Y2nc?8IiG}swVWLE?_|8tmjpn7kto7aiJZv6JJ)2Ef+ zwB8#Sj(=PPZ{b32ZfDb22cs?9-yg`izBq9Vhogd}8Af!eoz^d7lVk zp}?^%uj|(WL`eQJoeta_@U&Uh@sUQyi*Qe+>vpdqr_SjiqK)Imm-&SdWvf%F!oM3+ zfFXrvN*@YM&s*M65zxz-4CW*N21iPt+=!kPj)_sGz6i(dEXSgXVybMG{yWjJdR8eb zo}I!P-qjapfz?sgGO*6`*Xh`feDQk4Y-=0Slm7Q0Kt~~fQ7SNp{E)-3nPN49%PIZ7 zms>tDQolX&?;bAK_?8f7FY^WgPsV;H>?#&PG~S$^ypD_$?dC81kY&9;X>1y_rMli5 zuno&N{GTX}oqe=#7j>(OZO}#cW0S7fOpbOgg2C?5rn7iI*r!dn86_yWst=PsB#RV_ z5@oD5f%d%t`69xSoe+u4{GL`UTnM9o>pU6*2R3c>ajWa;%k;|n1*MA%QEgaHTvDRm zSk4)~zuJvn58DJTP+_gJc{0f2j3Y`P9t6PL8CdU!%D`U8 zX%VKsO_f}BEB<6p$=GifsUA6tu;7dg2WS-uGsM*@2-S}CrSa!s4CdTb*qljX;GJ3% zqixll#x79AA1{YSox_tCT))oEg@~7N7a~cEoWN$*Oaiz&y7891Zyh*^Ho>~OFEL9` zl^Z^jk{;SV8Je&6p-*TMxFC1fGGTmL2G*cvpKQ5*E+3Uiq?0o(uRwAO{uWsg1z^36 zN6OwSNfMVU>Ha>rOI2c%HEqVQ1W_49tA4Rbew7^v2G!;`K9oaOj3_`ZxvZw&oK9R| z7yFZaWv<*=fgJ=Ws%o#?`D>#iNGW`anOK-_bwbDeTGKU@eCmpAMU^_0c!W*jRqXcw zv3na^MBc~&%WI8zYxAKE&%oL^FlwS1#8!W*nrw+Rr42R=C+L{F@%qPDeREPVZPHCO zkmo)^Btc7>WF@LoU%k;E`1b*SP82paa`t&IpVv=iF1R01dBjm;wPTFxWR=22scc5+ z8%LyE?;=A_xzbMPdqkSy?}e{(-2GPHIE^1ZLwfO3LIK$s1MuL67xq>2An`K6 zkg9T!9CGgO!KD5C629ox`P?AFkqwyRz}XwYBmb1^iKE5INkBW_Z6|5Xg86 z!Ps0}YE{1+QP65ZfNLWgdoA=R9&dK`YJfB+do2vz8oq8Oum5`@qMMVuwY9$zKR*u- zj~*l;t)74khY^BZaCSrkpXl7+*x=mKAl|k17?>_3VG58Tjra{hg}cS&HA8f4dU0*4 zcMj^>*Tm7(!tCtccF)Y-VGr&(4n^fh63pmY_UfmC?yE5Zuow*R!1jtxTpN3THGfVd zM_giauW%>yHKA(dF(;5s>NJxl~ z5w>>_++@$mLg`5x%o5c7gx=sD1O-E;QgmPVIY6>ySR?h~8hnL9<=D>6hmjCrY>1=Xy zC3yU`D!=-39h~SK~UOJx?=_`Na z!x>2V0@Ob{~X zL>w?=NTH9f593~+FhGh0Wzi4o@ zAL82V*+9k|^Qor{PgKU<{^;En;+bh0*2L}z?qemsz8>rt>XZK!w+`|+{0j{>Sm|HS zpfqX$=7$6l7=N9}AY1|FmxLl1f3(OTQbEeQL=_nSiO3*KLCT9n{+#94thGnm7l83* z?eQXVkFR`#8aS-}Dv^Ja`kxZW0336)pOU`D{dxQ@TvYk>Yv!2Xi#kF1TbRiGZ`~YAw__N#y3`W;54Ya>683(a`H3rxgqv3zta9Gkzd3(!UN^M zi;7>WumjemO2D}Yre{63%c~4MQa(%W7v~-ap|!hAiU@u{f=F&d_NEAuaA4~@q)4pi z2W$||&SN4spx5zVyiNcAao)WXepxrf84wYRY_kF)Z^A2=BJaS{#N^=M<{+G(sgx;*hu`L%TMc&e=5wmp~Lo5bsGn`f|3YQj$S(n`$eMTt6+PFA#g8{U;LlW zH4Tq6QMCzF5!2dNJY7&jZ39ZjOS<>FS#JB_>-8hqh)Kg-ww1xN-IfRnB@h5)8?5mU7X(d=EmuQEfuNwxv#ZRb)29ZQIaIuBiSw}Wi@J$ zR_D0<9+gCqyyA^VhQ4nHIucRl8NA<0DI2Q+?(}+I2k;v}Wk4 zBJ2Tg#Pw&EJu7yq@n7nB3v_OhUp$qW21C_?yfEQ7I;Z4ecGVAXltx4+lS*a|w&!#L zRoTc*94jy5SE|GjzD-VTVN#U4g;uRu-Z_7zLcr{iUD9BM*#PEOsoQY4tj==`dD#y+ z=HKP4pRK`7#?g^Kkgrby;eu_evUk?1zreo>FWJ5b6fJgU|cJr{QG_x!c9ZvQ!54Dt#27c4pC)Rfz7!4Q}|Gs)9V)1#b8%Vr;E4uNlXGxgAnipg_Jg8F$ zxhv{lu!ko8xQ$h9FA>hHc6>Go42+!>u^BHF(xfZn?q=5{eiJ5%!tF4H@+Dz#3DPA9 zJ0ARQyp>(}El+~O?W$aq)onWNs5Xg!ZUJnKxWP3TwX~z~`Qwo5) zvKUGdH-frMcjDKOOR!)j&UN2^YhrK~bJxKf62tzlj)?$&P{-%t;x z#kN`8;Tdl9>MLq#zB$?f--Zj<+ckiSKzHVIOH+M?ked1l^_z$Kzq*u=dg9o93SfU~ z#Bk^d?^+7XYmf7@@46(=76pklFtIBN@uX!GB@{g|btuoZB-jp*{7i6nmUC@JAexhI z1YokhPlZ$`)(29$#CGMZK$qy@532hP=QQ9*+f3l6_e2<3;sM9X^}NfnBb$ILj_Ie( zJNK)7OS|>B_tPdFsjrkYX@vt1L_}|@M56X*<1(z;z5a_i7whV&D!;tE0{r)DChI$NapF5m;H{OhX}PwI9Q>r_Bx)wn6CMg zYknlwr3qC>tyjkKpF)>s68|>NwyWP-uA<+-p>^fua>=&!alIH>B~b^~iv^6brM0-+ zWx@jpWvWPxNGd3j1>!mIy1%*3L%&00qN@}ohz$%SKRf6k2K|4t{{YY6pta6mPeT_k+-1}Njkwc8aB`98H>NFQL7_>b_AvNV}XU{qK8J? zVcI{V#RS*A$0gl3J!})Uk!8%2S+2wpQYb!=G5TRVhELceA_Aks0kc;Ojs+2M7B}x| z<+K|nC$pj57akzPbG>s|X??Z$MllKrk9{RNtuE~+0AE#{n=Oy5zNyWD2Bk5QN<+Wa z9YDx`O&xQyAW?|4)HmU{+}uhd>YtobKT6`ADch0^CCde&*l{-?M3-h1ycWTShw$+seT0^ zLd##fHvGj3>!Ta+<4@x@d~TIJD;uwR)xJloKahW5>J2s!CidR?gxfTGN`jR1-P{@m z?xww$%AWZ}8Hr+ICp2okQYoZzLL>A%AkyZb3#@MKM-_9o-Cpx3VzKM;;n#Efq&`Ex4oycriK-u``VaPEN#0)@hP-G56g%}H~z7DWWcbq1VlEfu7 zX*0kW5f~c7wc^6 zHXylCT?gZ}p`NN0hgK);jPp@{RFyMdFZ|p+6^XzS)*zQDb7-lg@g(>6F@+&LsUrHU zMLqG}eQ{nNme?oF-|n5?4bx%P1ztSTI66yS^%RDYly@x+DI6YI#+JX26-0Fz3!Q?B zv}u?u>iAoNzWofmRX4tn2{G5!(vv5$e*vTq_K`zJ&`L{EMr}l0A`7hJW|J5Sx$`pz z17gxb>JrA-R}l9c-lC*EeR~F{j#yI;7A%@VUY*~ZV}zet$42Q#RuBZ_N|ot$JUBm2 zQEx+o{g98fwk~bEtgBRqyQHqq$kCDXcoMre$%YMoZFTHV2_Ot~Hvn(+ zY0XM>c^vA9JyA)hHkB4RIFd~2S!R?eRkY4+r-OuJKRc?q&5|-!W48SZo2IpOpqhy= zsp}>gQ=CJsTF>t}Er=?AYu|0B|Ef>6Lv|u10hQ4FEjGVpCa5~_3skgZEH*!@In1gp z;?ttKNfcaf`Zkn?<-O%_!?cI>S~rlKmO2h3vi_vI$MIIBxugDl<@&he>E`<-UC+|b_WZ)%Jv#4$&8Nq~RUjDmQb zgbR)fJE4oM$DQz*1pjV(X>@#fh?1=m=D*{ctxfNEUiNQWlJ175pPJ;JDv|YA64hxd zOW9>lyQdd#!zsf}(|-f~u7?ZOgrdN(8t&;;y91Fw5w|v!Y}I1y-Us2K{gt{6Cq;`d z?EH+xSHO3tAC6*Yawt+*M+eRv|58CjO^DcL*q;$z5;LKT@Za96DBcV$q?w4g4!T*d z{er6?%gd{-Tbey=NF_BvXeOeQ2V*CQlb9*8 z1^bC)_zTozsK2MD&6Oo0i7d*WYVdLt%M{eyN<8C__Q5^<{>;wiiVeib?s0bSXO|$G z-D2Ey7D$lzH=#`V`q=lb-o!hjSh_DTQhi;EGCA|%{^$vDZ|!YAT}evmLw_67OVkY`H9?z5WFy(xxbYYBR@WJ2CP2t&c0+QjE?%}m6&(S~$hEfW%0O~YZtt!Hdu z8r*KOB>@*LEIaAjcm%ey@p=lIX^~%LRh)QC;Si>-{jM#?PvXJDJV9mTJ+7B!i-a*m zN0p~g9F3EeMm>0Hu;`I;Yti$Bgu{d;-Z|!hiieKb?6D_GTDsIf{E315y}#j+lQu!y z%fCR$4u)KVN?B|OI(rh8Gyd6}r2cM&;(09hvF}_}E9a?c0zlPbaI$--jN^{Mp((fl zz`=9!yrnen!8jiNU=^v8quog?rAN2l(5}ioo=WS$W%q})DEH{tY_h|B;K5>!CAetC z9X|xdk+y;-!_?w|EV~KsAKEc>@cYgC;tg$XR*A{-=L%6Z9>% zx%@0_yp4cF5vb{TpyrGg$V}H=pxBd&qONoX)uT;Ptkam975+(UQW;2t6(6C2zZ4K2 zVv2T*UH@UzOhk-Ufn*jb)3l9ux>t9VTPpD+^}^pBA!#ZL<|>yr8}5cv;;%B4G;KfR z$}l9cdKj2TU9K(FsNYZ{`%ZYhDaWKKT$Gm$Om0BZ+^9ZL6?*}FoF(!6b z!Y0Iv0PuEVnF7Gk)R2gWboMyzT9eW9(>RmL$q&`C0pt49ImdF}tQw_w!}vL=Ny|JX zJrW*H+W^P)gHdox8TMlCm+WsI3m6GOq$H-hV?bI7cjdU8BVDN;VQsN@`8{;+K* zc!o$eiaL|zru zHOd~GuAnR z3U7Q!))rG!;T#yU0_VxA`ubOZk#9oeR7fU~mgYXsEjK)n=;+VitopYwoT?Y<7)aT; z0q!453328CBfoSsP96XTqvAO9*z2Bj-hCC^lH^ zc3Wg;9Dgak!NPv>2j0UeYWym1SFrQZs`9+j$F53&VIEF)t2t^O8=$NK{JW(8j?U~h zPoK=6QUbEuSikwNY7!;d_ODHa-{_{bbLFq-x@3}N&%Xzs7BnaoUpIpc zlrg~<*}J}kErTaeRwIwPc2VQnd++&k8suf-+hTvftc|vJ;{52~W8#o4*id!A_Efw3 z?Xvu=*_OB8VcZdGw-EQxewI0N(|es~)`aT}hPd|rax%W%Bc#{?JfsT4t@s$*PTiB% zLF*1B`~nj5;7bDn3Awa-;+&-eqa3wyZ@?>Ny5ZpY*i|Ji7X`)|nziU;Oh1sFOto={ zlIX@a@e-#RGjB@aZ@ZgV6+*kK!Ty|a$G2f)J!~?@Y83PTY?zIK4Mw}cJfgwWuC40U z?C;=(=AZGl6{=hYG%Eh~k9Xmrd7rE~FZ_iG)-`!;T0XXSH-)a&kyJll@!MIYHv$e* z+ezv^OLhHpG{q1r?zU>eR7bzfhFU3s;GZvZEi0%Kv`oA3#~abv{xo48@*#;x!h*4O zA!me*nPhXw(-R2&*4#3HhX{PN*=+joE|pJ~qGa=@K77^0tW3C6zik@)_w=Wtm<%@@ zZCp|6@-ue>_`vCBRMJc0*glD~mYqLcnQgMNEVm%DCDKih1{squgq=8rL9`n){>uIL zZI*Pli)QGLikr3rQgue8m63b^z|h%f$L&^T6SUs-PGzTcvR=Nc6P`+ zk{Yw&3)K16k}4=|v9`@v=ByG5>ZuMi{f3e4cj4(rf%>632Q zZTRimfM@P6SoBV4)bhEtVx+hyl>Or9b1x9D@vkBT)7Dc_4yiFFL-mt-;p%C@tRs{M zG*0>#xpR5OmNXNnPqTZtV$gTVkaC@>5=SWH6;PF{=fBe}^XS%^?W^m!*pZWG`X|bc zwoRBi`^Px?nUEZLltlE>b76j7^MkxSCI#3BfU6&#g)4@d7z-~%e0`RmOkG-gf}nZ| zU;zE==tI3HQ3<#%6eDdfLiR+80=3|tLGp|DMG=s);obhjq1HYsO5Gqg)CA9t!3>l5 z@slxk-HU*Lcr8hF@t`u@hnEY*zu}6Xd;X=kr}8IDaLm!W@u@+hTvTrw-tZo$%wMoXQWVfZy-r#;gPszAZyr_3v~y@A2d3*8Y$ zfVs`DB)#Oa2*Uj|u_nH31#b`7i~i0vpa$?eL4BlX6ZW1PK#*#5)`3{+mk4*d6gQ{8 zU9#pk-)Y)zW8WYWsrWg0jP4304z z=Vp-*mHcEy+wIl^EQeTH;Cxxc^t{KYC?M&vq*-jdrV6|U&!1!efrt0!hNq-Id`Pr@ zmo(w+KH8XUe%tvOkd{O98d4Pn6FCu!&(PXS=yU(a{U^%hJcx)c52og9iHls>UlU#u zSKFnzF?d^nndT$jl_%VGM@t(FDE;jyfgm`|!OlXQ4ig*ikf#2C^C;K)Yz(_ zNiYI~{dMcJH~XB=_Zho@W?dX_(E6Z$v`VQ?iT;YSBV97|_wwP@`5T?m358k}lWOh> zbM%R#oA&Tcs?+nS689i!qcJ8NN~_?ZC;Qh3QwbvVArgXGF}7!IR8;`Nhf1dJude@o1vs zb0Nfr#b4|-q8G$os5vns`oN~B(JqG6%t~C8><-DyTlL_fX{*EFvbjTNjJCQ z_mk;$7S?#aaF7p4u_1&k5;adX=?(MTwIEVKv%3fG^MS< zLl@3gt+BwB&DhyF9nm%U*U5%pTM49cS3(X-V@%enX?3GJ?Hlxn+qaC%gb-E@#d-A< z$z6Z`wg0+@f&!;wm6C1NL{6crN+*7RdsZ}-(20Bg3VIt)2m8oe4z(y7ia zwjJ;k?ecq-m)fMOQUpr4A?tYM9IYJGv^@Q%Pxiy}Zy$O8$u< zH5Zd=YV=|Re8m;a%lwU~Br}Y@v5C>jx;>7}G0e-|b697jp5MVVUgy_@;@&?vy@t1wZ=YC8 z$jFgQ8cDmO6Gw#HqjL@>`+<6*$lo`v6kxDy*gJp&__yPQW`rUtjrsB+{i5-l>d1}a z(DknR#~n4IXs5v94Y$N}tid$a@JEn}^k+fmZ)yICR&~EOUH5baPGw*7Sg@e*W#G6uBBdZi?Zps~8$=C*~2vi^Vr>r}EY-slHEYU$V z`bIhnm`94<<7s@*aOOQI*?cQLOZ><^2-12X2FSw9#Zv$lf^&u{{?Gu93b;3gK2zxo z9Rdyur`y+nwE5xh zfc~xeH5&&$Nz!bN)o1{Xe^|!GV=($zm^T^+{To(G{?6hgahYVs!5ZD+*yUHhnT2!h zJw8l&;|TN)7jXmnL7c6AlFD`ULujJ8OFxpTy0qmXEH!WMppMR#j36DKQR-ji4S%SF zR~7o@1+Fdw!cGDyj@|Brnx+tAlDa_Usl)$^A!$(=tpvj?NFvgBj~vfd;lP?y6$fYu5@ zDfLGkl5rweZEL~+a{tJPxGl4J82u(0b7yrqOWY#;Cb`t^ZYT#ip!MUpWwc__krmbk zVUl(H^a#t`eYjf*r>78TQ(eIhirxUm#7^!(%D4ke!Xnkw21=@C^yIAsTo7O z#iF2c@l30lxtWIIW512h#=4G&EHM<}n#>Li#OQVR**G~R>%pe+58b0NrV3PT#q9aW!Gg03U`$kn;Pi=9Tcu z$!5`?QWKXAPHjrnk`?Cp7!$3m7ua@;s$N5@O9zTUrnHcr%C|FD=rde)y*3T z4c2-~r*bMO+^eob2?;;yQD!p+0wilCQa9fDKid=Blc(D1>I77jfXAN&+7C0dllX{U zS%J_>J%UR-#Jg@+=k$Es-D32?qtFXoBzYlcMtbnNR}U?l9Y`{1OX)*1#j_LGBL1Cb zbashDf}e-08CvIde6}&-bF5I1>yB64wzk5-=vr(Z<~vqtoGf7-AC!MC8i`LQk-a8C zVgD*!RE>m#uF5uPfgS&tltZESJnO878yw|sr`h@44jSGlG~F`?_OYTz`?-B%Tf@U& z8GZ0FD=gfZ$2dzEXEs8~`z=|6{JoXkaS&;|v)}7H>?z@g5ltx28Nq_azZ<+%p;o1^ ziR=wAp;=3835=30p{ui<^{*{a0*p3LrB&oPP*+;iarr>d!H3(LS==I&!;H;*q3sF0;u)*Z+08dwa|AAwMq{ zI1~zyNBaKGlRc^+fql6CkgqG4k-%PK!LRk+{EpQ8S`G?;tSuXAJFAr0-J2kLgu{8! zbmA~Af+Bkoe5shcY5VyHYyDf+Ky$d-?wY^k8@k-g5)i-pPiZ_s0KR|S4!1YL>(BUO zqbB~(R@XQey1cCCcIpR#A$%)Gu478fIaOhe%G9N8aA6S~?gv>)352RYuPJD*;sU9D zq7AeyERgNel%m?pf{3|Fa4hnB6@=|?7+reVNJ7JE0JD?s`CfZ{`r-2Ovj^{z=OMgi z|3lCE3t%WHY@-`-o;V+<$-DM#A-w0xM|@Cr(PSc0_FZjF)DUk1kEkZw9NgPpm*#l7 z=As`xES+LZU1wX!_WsNeKghOa4Jy|d?zD53hE>=ETE=IXCh7ypm$RbQwCX1QeM9>$ zIsYvI-k)L+91rfIFM+QDP3SjCN-{|n|NO?c9pF;vhm9GeWLUQy$$|-MJNNZV_v;_O ziy3(qIrBDi8N;6WvOIk9CzKM;tcV&r=tFImb_K_Z)JvL!Omp{|u{@F6k)td7QmLii z=4he=W{`$dcsM7!JK6pjHCp0!8bW?B*t{U^W8c|?%oq??6rPuhX#`s|wocKd+0N-M zHIV(z0Nz8ADrH}x@$z1%!#;@CVAkW{Vq?Y1W=J_#d`o1foLJ0AA$_K9uZBzcdYktg z{dWwvakJU5fH!o|COh^Bj4E`I?7wLU#9wzwnn(_6xSX_DP~f*`vd|ox5&S}xX;%Z) zr987uQHe={ikp1K%_9hmDc_S{tq%27TC(LR1$08%0&;{5-eX-B7f`;pg$zV`Sm%iQde*iic=1#OxWx#p^Z93k!G9B=~ZYqD#y&t4CBj!JIyNd+U*su@;CsMx8Qj*E&VaQ5^&G{vA>nOhUEwlC@5v!x^A-FrlrPElP&bK1L@ z^q83KxJ=E&lfebE{0O91rZJkd79VL(*My0;qEokJ=7uP53aW_QGCSLP{Yv~R3{@DZ zA*Z;;rF%KUZx!hGRS7a)NlqlwCVEksFsQl;JJ{28yskR=I^RRJC*Xepdq9N0!{s70 zJ~p_3P6IO(=l%RKF-*x~>i<)n;i@))#G9>&F+u-qmm_Xg^-h+tV zmt!*tC$*?MA?fcxaX&MuI$SV+j}eNUv^%ZEki#!K>{sEUJph|al%$|V-lU~-76EB2 z4`S0o4-G zZ%NBsqWKci( zw(TupDr8&?K^l`|rg5%+3W7Lx7ocB|7%e`;yMyCVX>j=89jPi<3V(dD3QJb-0?iM& z5Ys|8#3i{Ao&*peWmSB?rAf>7HT zva(r%h|f18XF)wT=iuXj0%G}zk%zc0M7NIIG;UE<2kPhnW9LXwUxRi+y%O*aMrKGV z;&-*MHu9#eA0nH0woa0S9^KzP&w}^smo`{Q%xB7YI7T51UisZ7HKTcB;a=_&l85Hp zu3=&|HbxVOx7b8~a13EsAmSLdbh9j1WUSyEp9X-C=Ed&ORB8!a1{`jM7i#Ra*o4yk zk$>!GO8Rt_$!hj$_OzGf?0wt5U--JfLLzUL=QhSC=8+BWjP_$`t1y!x2lYbrqVDN( z3m07M?PpOWJLBF-xO~UEY;GyE_=Q-pRX|p=sa%P#aXG_(Nl86{p472i3wqMal+L1E zD?B*lqPLi@{~UWJ(BoMfVgq4JZNS$a?H2Y^_#&F2u~3s~L#@YmtpK5*dV=R&8>Y2h zyV94F%xf$JikpFXJyeA zEiaUxf4|OuKziO(ikt1Md0OcspFdHkmWLIz=ut2A=)3}6cj(U?z}ZB!Vn>Cf_4xL4`KOS3nTQC4+G(2LR*?+H(abl=-iF?Epg_u%*zp; z7WM%r;%EU%QKUWsBo!hyxY-)gOE}=cZ22|1z%M-E%4w>N?ZBaVBufbxS;;a<=yLzA zJphz{LmCS;#%26WZ%X;*oO3m%ib7$%A|TqY9!I8%`iIEu-b+p+hS(8xCs8%TBX>_% zOL(kwIhw0}wxtShPIdvi1Z$q+L@@Zn*OZ?r-y?Xs%To+97Q~?R$u|su88?KNm6R? z@=aN>_lvU;e^Q_*U#`o6JV}Ni?R~R2;1nEOV1jB}dbG*{OWMDm8K$!NK{mk?MxvL0 zOy_or+GfEdhkMowT3?K9w1}+$#W2gI!-Mm-jNSaP&=s$5-_FSdM?jd*0fN|nxPh<;dTn2+ZbA+s2T@<#P0U7 zUroEKsXiiEmg*?);hDCu$Q%JZdHU8A08YeY)BWyD^#ePU*FXo#8i3=eel&N9Q^E{V zu%Jn(pBr_l2R^H*rJ?^!+>HUJ8$3rYd}qbf`vQklSZ5Rg4b~H8G&GNj=D8Pwmw#AU z=(>`7dzKt7exb~T$uEC7>!1aHR6kQ#!_jI$pyNn^UV`{GI?OnZA%X;2D}!XIJ*~JCgi6Hu)j+ObwJ%V#q6kWVw_?o~-+3eF zU8hz(7g3!B2O}Q=<_I$)QTuN~RAO36H|XEsD+KJ4>VB`PU&o*jx2~K6B+t z2JSz^gf|99*%b>}$P%Cp1(XU^+ce)>&|UCg26%B-iyE(C--_KGqx67M7s?RXBA>kLseFf?rvHDRqS4h7nU*N$2E$2lp;;wN6t5r^@#CxBeeg<9-N)C80mZb5MFRE_uLL5Rrid=z5U)pn-F~cs6boCte*UU8ys!Q` z0t!tw6;1S!p-I&nsBp+)`lAs#!h)p{RhNB`BF*#L0A+c>sWsLz>$&l|K7W5I4@ny> z8`@>7xbzO66AZp2=FIsB{ArOE*jmCwDq|n1A3dxevZU??$cZfhaf*&>%i}Xiy1kif z7MYmme5*Hqj-i=JI8&z}IBPQG&8_a&ooH&&=!mH1rsUoS6-`qGVIG=<+rD-2%;%pz zR|w`*5@ehi6lONm7EIVN3qv>6c_quQwqeP)r!qMpW4V%^8gB@eImFgk^}m}t1?+#J zcp==}hGZa6LNGT&HXr4@Kgi@D=VqD9TXHFG3`bpm(4%-_qgAE~Ul6mQZgQ~3eKk(A zM`kgAujpEPD39}m^t+wwDYF)vJY%4qNw<1@XbQ= z@9yfBUjyLY-x%jf;<7^DwP{KjSEm%)`5sZQFDS^rSOb8Q!)qIX;7qHrtQyHR`53ki z#U2EIhPgBE@3a}x*gE8oCuYafv^;Xwe;I=ROgU!{KZyr>!>ghw?Qe=wsFjLRYU3vA zTGR9(pneMjaNS)?6Y2O*$`AngAhx>JXBU=G$rn)AwpIWoMHkNENF$Ws7l7%o?6|09 z&r45e_EAkj9S+JcK@qeZB)SXMuZD9C5m*X;3*6(%I zgqPL6>eo*0;+kbP(G|?Yj&NQk`JwF4vFQ)R?`hpAVdAqd`F@bTUpvvik# zk51!gjicp5 z{c2UBKatrit>4fp@H0RrYUloeT z0qmWnQn~(a*jnX=_*i(?Y|`|M3*@I&ahwCWFOX=SMrH~H9RqjV=-ZS&0{MNx_pd`U zYd*`M+zW}O%Oyrlo+SE~gM`t<361OSIKXBlk`YK4Z4==W@((yWLXqqVR|WaBi|Z5T zwY^udm|Plci&vvfn+_xI61r@ENl&IDr#@!s^_XtrwslGKKujru^|I1KJ>nELBE528 zh?3rJRXE>_rH0#5Eq)IMrc!Rh*EQzOaB?xnD(c!RYJwV04|VK*i$5ZXVTBZwF-MMk z!`(MU)HWi|UskFIbzR%j{i*W(1nruq%}TZqxTSpJG6Dn`8!wGNub*pw@MBxxBk^Ra zy-Zz<$JbUuSZ3I%5IZ#prxXNBA4%IRF$a*0e`c_<+&PFEw+`lHIQ@2j5quN9wMB}zNVQ_4h3Es(YrckQkZc$Q2-Fk^CVxjHGD0#Wmkp zcq^Ic#q5kt?%tsvApO30(!^Jk&-A@KIT3h8aa-Jq&<7$eS?5S^~+o<$NSO(n5NOAqQ9k4 z<@H|_TJws&~OkG%-iT`y&WH4g0Q1b8GVr(n~fkiG5WllzU3$-7|J~2 zjBshB<(!dbbB(dNZ-dyys`5q-(s(u)dllO$$2%zI>+ZFzK-scqR|##D`(YEUzDk(K zpuB#HkcsD4zsc!A-NP~^hy2sr$bisklWg?1oFky011?5?BVw@c*<$3!6G4xR9$S;M0UgU2o*SeqxMK>RSdn7DyJ^=;W8i+Fy<&C=g0eZTAajsc5co9bVQ z4%9HJSz~L!Z?)>P*=-<*7kf^1K%KUy&!a{jUyDsXN8JfW2<%nXj~LhAEtFd$_syv3 zXjFw$;gEuVlA}IET9g@cRxyjIhCum2mrCU6!aZoSL$yd%j{mw!XL$yhXK_dbpogU| zT%_F?OLVNw#jInF8f8{V9K*dk8GSU0wHb?<8zTc2<%@9tdg;K`v+$rS`ktu!gwvMFmAM~(c+caFE9>d2b zC$iaZqz?6%RFhKRe-=%&e{>HU84s5zK~_t!oo@m*Orsz)N#KKizI|U z6aB&YY98s;CoCY^pA(5@wY?x7+g`aby*RVv|KV(i1`SUeY?Hmh?`TwFsv2Ef9GQ$% zDco^M#wRQ3EXqe%RL_Neh>w(U;W8Fkv#R%hJCnQuF}#0S53&rs;fXFRx44+DGCSXT z;5a9{Z}Dvv=usQh4%L_n8@{BvF(SktxpHUMd1lJ$F1Rpeg`erm#oBy!4x1#<4{2uk zRr4KbmT6_^x+}*ejqouOEn_FCd_2X`LAVAO#}oBD$F$8@3y*362j0`blmKQ-?rH;n zeezR}4n{v4WM~qIR+U^rGHjB{^hGa`3nq`-#=7IicG?^>L;AXm0l4sk<~bum@x_Qp z2Y)}a85nt<6}xiLC{TC~Gh9|>YhyMa|Bo!)gfBxoU#-FI5lZAVHn0f0V1U;3=N7+s z){Mwp2U5DNkJt;++Bf6E(Cb#fZfdg?lVB2g0GHCD_mkidP)yTgs|u@ys~$8ngpM zKv@UJ@6RqFQf^uD%0}sb_*F;u>ZQtH{JEFM+=dLQ)NrJ}dNQp&P8 zMD0R?{$}mkjkSKpq#QV(@Q_j$dssCoIj^1o4|KAYijv+GrWtswZN`wi*&griTCw>= zofIvfZ&tsq7xM>dS|KG7Dd}v-kBzHx_P!e<2E`R+{w5KK1Ijgj$se%vV-?v`M9fEF zm_6A--Hw>>=l&>MHxelv zH_FNb>+uHH3ba9_fM*bvKE1Mot@_j@a@9a!UkbJeYGN$joi$;dq(`71;t zMsZPNq(nHMZtcU~GOX0-L1khc@XBGQusLY0UJ1&OQ@j)959#8QhaN^6!dR`6j-tI~ zClKAJ^X@M=V{^ww)?cNE%W`0-uM*dO4-fi>b`HX(3qusixucBYSH)Nd!Wg5GpUSUi zo7j)GiBBAVSs|;qa5B;7(&sStNH_)SwKg+c?fR6WShV*kp4n5PgJZ?$Pm%mT0qOu1 z{~BN*=vOFywj{SXM?e+AeptJ?ja*-o(vgG@)_ea}yCgangGl5P_-AeN3;Fa#Bd(t{Nu zl*G99@<4rpxGSigPJvnm2YNu6wUzO~{CkoOD(Nlb5tNpS2IT-MRsDt*9mSDvmJGu> zZb)MtXS1#9Yek~6W}rIJ57{Tt?mN#bPj)PwNT{_Uy_3#(eq?0=YgB0dj7(09JMYD;FOtHy;ZNfQ^NP_dkXX&U^p~V|ObvfFct> z&cPn&0#7OK;OOOSWnt+G3iF>w0F5avfR&e*o8j-{0DnmR2tRlB+qGyLuQq0|6j`t(7Uz-UW2R&E5>?3;+cOsL3h-lpTTg z|1wtimwy2R;NP_Yurjg!*WJHQ|K-Ta{_n%arlt;dj>h(0R`wPEb1PdQKv_zG$<@=9 z0bp!z_Lrftt&0Qbys^8nm94P}$l!10#sDc%Re&)l!GEXcV(M(==<34cVrBbRip+nx z0aaPj-b~!V&JJkr>H_~4KM5;mped;AUd;dMtbdKYgNMD(zk#`xy_xx6Ntn4gGHcjd zIk^F4CH`#!62bqGSpZ!DoGdIX+`Q}npc4S-X==&*mwR3^e~21~uQ= z%6}7}#{!x?RshRiKmUFD1R5_h2YXwuKjwe;mswp(TvAqt{$CmYS0^Us;0f?yx`S)_r0{+*Rk^^XJ zfdHC6L$1%l$zlrn#rpqw)c-#6|8K(o@_+LGHst@8kd&LP?cZvezxDq=YGXSqTd#i` zfQHu16|?|~4xlx#|G%bMz<({RBGAmr&F=qdWnGOyiy&%mVf)`QTDeGBc>>K;tXxek z|1~ZDl5706WwuuKKotiUtG})l03)b1|3?Q}EmIrN)!_mf$-h-V(B}MaNJ)EB2Y<7_ zR*a343t;T*Z0rROYBC6M0(@9OyJ!aV{CkK2%uMzUuAn0TP3A{)0f4CVvp9E+)>#rZzy(o5tMrkDUF#@_%j1 ze-)s_O#dJdT~jM(Q#U(vTToN~BjyCfFm2B@KlSEd{kQagtIZB# zj{_hdZvTLwhPeL&f|z;yfo!1Dp8tR#_g?>ipayvVA%6$*BS;a6s` zho%dEh<+a=f+J*97k@eOeRcBH46=b}1?!fh%yn|(K~~Afc=Q;M_WV9rzCIDQbf|h% z!zGXKQa;BRqYKTYJwq*gQU8$W=un8GG(lqcEczP*E)6^Akj&ex!7jM zy=Jeubt>T+@7(uyzygwv<&VIYUZ39$PMf1+LyQk$scny=&13t$ep)5MgTjOs9;|ed zmU@vJ>wFnRsee%Au9M(BT0mJ$RE9P8uRJeM#-Rc}pKrvT@mco@Sy*&=p!&fk2roHv zeQ#p@sv57Ax^@=OmTf)IKLx)Bb1A)>bf;cl7vfp6OB!W{(d1=F_I}CRilbKLuLm|R z1eY^k?^IzkNtAh!C?xK2uG|b$6miH(_a81-k4EZ$_J6W|;w@mh)U48IkLN5py&4jtgVH#^z8uc#0+z&dr%e7dgkh!7i%-Bsrf$@|jvF)*jcMLA7cGzz@< zVSlk7&V>9zUCf=-t~m}xOI`4Jf3m0e#e<<-R)UhcXjO4g{!}2`clFbXL{UFpZJ-GD zmtW0+Y=8Bg%8xW35HnFXV<|I_)*;9ZJ4c%}Z{G052-MUc^U1w;KJ+ioP41J9&+b$B z*jDM6a168n_&KA~AZ!z;NSF5m)9@1in)X3cF+;X$T`<9U3*-&fAPAvK&ec6V&QJy|~=e2RYaB z4}VnsKHSjpTy^l|L7FrDGd({Rmt+&Tt{R%3Rx-CnEw8t7L$<3<17RB*Yil!vNAZk= z@3>QbU?Uh#?7ZK-7cTMAo4+YBrT(_lRiJ)b+YyH{hdZfWhT(&3TYl};_nH^1p(E2M ze3osZid#jwC&e5cmdc4ZcOR~8+~g(w$9@2~bB@z!IvG2j-~&W*minBIJky3e?tj@R zZ7&0k^q9PlafG<8m~?h0JTZ~iIt_B9Jat$Zf5l3+0bK7bx5TvE@C7cq^me*p zq`^LGpwxo2$)KqQ4!8iK1}YnK~={1W4^W~TiW}vl=lo*aD+PXfM(*gL-xf| z>A7La=Rg@9fc%XWLc!g1(GCmBs&Du0q}d3?m0qO@va3d~0W<=B^;80F&Gq6OOzS+@MuKI1(I zG~{h7+EDgV(1~QQQ6Ij22;uShxZ;qA);pk%LvvuLbq#JJ`W7JX>!65Wh_N)Es)e@w zMwrlv!u!rUFCb5_jI&W05lxBZTV9LS)ZIxH4t(|Q!GwPjL`2`lQtf5Lv3W;3XdW0Drl?Z z>LWUK3wBXwyHw0DM0ux57SluA$zPwq^tx&hXt&)!Z5+b(QyD?!mcF z@W3&KM8~%^{9xw*%YUTjmLxaqoA{7uBYImOeAow|>cdjJp@=yS7dyVpwu-U)tT&#< zB$i=q&LrlLZUrkbUHQRq40=tRBK@$5V_+D+&t~}qTu_xNJNAjDCjUxa$7IAjG7@^V zGLv%ljuk@(4^PDsaqxM6Sg1vgpuXUa2$|H*v%J)!dY;MeZ+{70nnAI)G`1Giy;*A} zb5${$q%9}qiz$oa`n#`B#vH1wIJFc0fC}C{C(WXkl8GWfqKkpeMZSw!Y=%9ucS0{L zOjW^gA>R_ALbf;Fr&zS>a%Y6dqWtn;cO{9gC`D;*UJ6+St2e47(G?4VU3*(DFR*Yq zxHu{0##;e-xPQYRDwBoEv7(~5WA0%|0b6sn`BcY^k2;6T4b-bsAGFqH4uh$B@>zo9 z0dII%>C9GeR;zPva3|pR-Ot*Tuo~?VEuB@VNRpnWTj-t~{ zdK?96D{Lkn$@HcG*RsM(B_KYoC85Mb{U*X7SsE#^|9?RRKRvgjexZja9=gt+G`ztk zr)2fy#z_(uI$@6CMr(?6g z1?+<8swiBBoH=zPRw{?~AFGl>Yac`#z80g={bC>0xr2YQ*U zH^LFc0-M$qM!m;o=+L<`ugQDCA(?V<4#wD|RzIB-`ln6iVk58eXw^Enh|y$y)vtX7 zQh#*i8&>MrH!&v$N`QMa!vaO4;KDF9O7-tbZSvf4HL&y_)0WQloQpDEMs$7+VqEAr z0sT7aRtOP`q8?Us!d0Gs!cR$oX-MXu-@Qd&&&vn*ETYInQ`a{Nf$6G>OrglG?zmDG z9K5Gw_UM(;at}~-z2sU>*=Hfv;hpMGFMq5X_cf{a-%x8i2P|x-G20v3e}#}!$iqf} zrAZNiuRqQmpGk+WYE&Zfk(X-RUcWZ5$uQaKvp@64zA#d#Dfk4tZd|C52i7|1^AdsX zzIUatz0r1*&yn<#^&3S1hO?dM`=!fQ%)X(!TYKGY2)eX(!Lo-jmtWTo8JH#_K7R>b zO9-%};^HJxJ~*bZOj-fDP3Kp{M=Ut@2s&3jQ$HH^MezFO>FLb~{gP+}X{8|q0 z*9J2#AmzbZEVP49Sr5mx@K_~;FXFTLqlza-piF2kmhTyi)=LBbx-{_;CaMkw8N1j| z&egk@qsLtteX{uqJ?KZ)l&Q1}Q%2GH1!qA<;)jU$aEu-Yi9}-kr zgn=XF2TQ8jtrXBQ+a<>+6MwF{Fsrg`o_$uni1D*DWv;8~wAfhvN8SjEHMzE=uLa!ndxufCEjv8zeOe zE$~9gC$`Sx=2cx6Cp8Flu=kk;ifdybUu|h_<{K$siQ9mqs)x*W zj!K;J++bR-z(`-({(tqAE#pX;l&T%w*7+I^w-^n-?!kfM{-34Lm>Pgt((x3XujgkU zo=6wKWMLO{4ol~A@Z>2^Op7FITF!}oX9$X|PRM>D2vmb+eE^W(&9|XhB2Vb4hACK< z>o6XE_E&R$^D^cHD5~g4mo3il6Z1mG5PpIzo5j)jfE^Vo!hacfWW{)nkhXl-VxrY3LNCbfFac7UHMrG{MKcrCs578p-! zK6@bLonh2G+$@~GFKhZiL`{Y&Mc^H(Bk>Xv=x+ak2O}s;>NBDKzGhuH`{12%l_;r~ zSI0iz%{)D3wtp#Uf#)?;%4d^l#kZv|yUgZ(?As|BKgNrP_sOKoQqZc7sm&E#W?>dc zw6!!|{a)@Hn_F}S8e`WxB4Slx5ywM<-)R44;~!_)o&?r)~oh_T*aJ z^N{O?<2qpVYlTM7qprU`_o;l2{JUyRrG-hYTBRpDmAr5jf^1Ttc#i3XTP zhMn3vXn{2-(%i;DJAY^{AzwFIp0U^Qv0gV~_q7FgC#p7Tqn5SJeGS;DBRy<*$@?|0 z(l>VQlbjDNS@Z2maLUp6!~h{^#qx);4TMov^JT`qT7<&VODnf6~{@Pm5X41dl!E$Qle)U|p`cv`1EaGPk*1%Ao`6G}VSc<)Bj{Db21o zrx|E$p-Q)todHH^zKGqM0q@}K&U%9s z?1H$}+CO%LJM1v!5+AV{=h;IZh^+RPWkfdOgMZAYgI{f0J~I8t`1R^e9XM>qgibxF zw%;ewKCx=+^+JNnorIl_sPk({{Cm})-D#siQ;oD6r=fHP%wyv!Yw>RsSLWyigtwiT ziM?z19gZ(`tX1|AhQB3*{2Za_kIc(0cr7W2o=XS8K8ai@J{heT%(Y6(-}7@;Ko@!p z|9@zQJdkyEx)LpAHy8c9t%GLeRvFm0dC-5`IeT?Jhpyv{dP*em>z*$zX3dNk=3^1W zCLl@F6%FwRV|hFSChcCEae3iro8{g#uiiq5+dHh!tIooUY zw~_I69(wTzQlwtZR3xg=T-StTc0r#9elOIyF);yRp7)W}t%7j~4!WQ9Sncts$bavG z$V0!u08f;oE3GCdn6yLtaF^I`EcSHBKFBq;!n$SNcTr!*(4&M}j(ILf92pg6sYVKZ zLtM!l2?2~6N-6t{Qt~f1yGLEhh1=Z6+lLJFU%t>KVlBO@j_sBznV5&tuXl89g=9OB z!NshWXux%N&)!*_Sxg!q#KyZdNPp$drU~?8Xg_;xwv<=SfIri9fR9+*zjFv{vwiA| z=O~p)pUlr#zD+miopDkCI@D)=)3~_vM|>zsOq}5sI;R~fyi1d@kIx2gE3FdcCOh?! z2>U3&%;x&4I5_p#(@V5=GtoF}D^MbO>S%|&&>DS-%7^}tFlIJBUsDC3&XS<|5 zGyPqtaYbE~2!a)|U5M-knv?Xc);=z_mel=2QKxZLa2 z@YQwDzL2luRx6~wb4-<79t&rDn5Mozf9QV-kis$3lvY?`pg+cT!K##gE8H<)ZYgtW z=!YD=2eXVGM5%mw(j~6+4u6p-a}_~ke*mJVXXKnHu80U((+X%=8XYKhL+WRhE-Xlew~tPuk5YN!sO2xk{)4oz6+5RsVkggrFR4v zHSOL_mO6n-+IGtwt$!uxpiU0+Rw;>Q%eZx>mGA1{v<7NWvy8-{_8xw(3;o^YA*ea3;FApKj9k)+b<*Paq4t`Yrd*+Dd5=&|!#Bvy6LZ1o%7gq(XHgFJ~Z7~E|`==4|3t@!v%_-`*6sv!+}8(RVz zz1n<)ke}Dqg-z-2DR=7NE|l6g#MC%>!ybcszk|h;XMdCRFAZdVw>VKh?btjpFe%d- zgoR$Gsi&g=M0-G2KAzBGMMfv>hZv$Il6opaYIH&T9n#qb27%@i#`N1<< z1Hibv^~Y^*Q6^p^Gvzt(=_Z5Z8S$1kwTjdZRiY-VMa!kBg9oq&HlA_5&&*9oUa_sr z$f$7l;(yc-U+5fYjWX6tjiO5`CMxu4Y+dd$oiu6@b%j2zC4| zvwaBieGK;|B(!$3YZASg@QPatt-P|;Xs&&_!gch_S~*Hu+Fs<_g%yX!BQso_?7NIR z^M8F8iVL&G23ci4o)rIy{$VJ)lB>(vhA)z~rHTxHh z`5M$FX_)9@`|w_tsg4qurbiRWlI$EjHR{H83n7hGU|%? zM5NCEn|pJ=@#Y`8T5yH(Nq5-oo7NjO#hnbAtyrlz3y=nq55h7cM#_2gvyHi6(SLr9 zCQ?Q7KMIZx3!iQeXZ_z)D4c+TK8Hm zoXr_tPvmF&Tv6no5?52dObH#+G=H^)`LnMOeiUCC?1>i*;KapjLm#(JW>D*JhM3l; zoxeb49!hdQV|sGFAxsY%!cF0)6gC2GXp{(ib9=cv5Dcz{SS~G-Y5K4OjVDM}Kbatw zi94*IH*8ogbuJ!9(XdZ(@kyt7z*emJus()>pH4cm1Pwttxk+g};W zrGT(KhVJ7X*@UDPT9375S7<`9=+hUp4=DYWzgwIP!oZV1ds=%^>iWjd<{bEqD}_1n zBgmw1F&_BC>Xx6!{pO3sDt>L4rYjt2&bjM|M9XdSL=+jM#k2Oh(V2$-nQ`T(&xUQ? z$O}trWeTU04z9&N9MqG2_J4s&B>kRgTF3IH9MY9MUKYl0y|1g9h1lTwe7r+Ivk>}_ zn?KdPmJC6J*+ll+cxQ1#fC`@_=ShPV%(bz*;irA#(Mvk&$UJ{!FYIvFcezRkdZ%O)MfL_t>VFbh7`TZCSX&zt z{Obt}d|g4VULpQ`-~L$M2*FtMagcKRx$^W5ly3`SqoQiNf4 zN|rrRsbFE5Q(n7^%(@c9=O|2?OPgKpnH0q(>#uuS(CN~t>G*5)akiF1wi90}Z}Vop zqK*eCEnzAF1FpN7Jbz*nWy=~JDZ{>52W5Ji z38v+hNdI0H;0vCOen3%qu5N*ns0u&k{d)7gquz*=0zWO0u||8~9; z11uJ}Ddd>r{i!$5C>R;`jVrteqRO^)Q|9`iDjZ!JW75ek!2~UjdCwh@QYd`^fd;&i zaqJia5ad;?t$$y27j%%=!^n3J`Q025^HsTZ3v|yZMr^NW+$b1x-4U*Mz zG`D&KHFWjlYITV=MF2beu5NQ3!wlY7Ww6mv3of*3la()fF*0n>FHHTEL ziXZ27;QDx%=?Au$z>!CwcDBz}EX? z|FC_}8kC`UQ+MkooslQuBH>g{`zeF5MFoCo-P3)u#LQ?%$=LVUQrtAcT=-@sunhGo zj+9T;x2lAbA*TWQUHdL~Kxt$ddwZ2?Vk7$hI=0<0cc}3FjD3mes9v*DzMEtqh z*d_ldtbgSA17ZHg5Y(5bez*0Yd#et*b_v2=IvB5CyWg)M-b0X*szUKPDVh>~qZNzs zMg^x^Y3R#5y=KfB8JER06epS}5+JRoAH|M+`lxBD+kHTk_5q`E$Wo@EGnaD)XClkr1w&p9RsmOfRgAztXfl>XX*6Us8go4JFlhz#uyd((FQK; zU4O~WhnygB?QDx^1JdL}M>k%HgaZ+7rU?{%3(pf~SX_QO^b4x*)ssR)H6lQ}q$T|C znJ8WU26yu8z>Q%UzgHtaHss}v2k_!wVK1TQaZB!DMTV!}F_lK>&!prlYfjnIKcwc4 zLF&3qH)}1tj+6K`X*MD%og(zz>KvWa41fBr4cw(f*LC)t1?dzl04~*KzV9wAIMK#Z z-+j~n!K`JNAHUwc5_ub19EJ5UB#tEI66Ucs3ucjsJ358KnByDAh*AQvV&h7ftkDpdyx{b{HOGBKE@l%sO;&kk@6Roq z4k=!);eY0;ZoOyq4%VULMfPow0)GJ2l&z7HeypIjRJZq~HWQDp?T0elS`M<)Zxc@= zIT4s+z_(qNm+ZdETD`acRiABT4$L9av^MentjA(Ac0-HS&3(HzFQH+7?X+Fhq@Yz? z%mHtBesBK9mHmnWh>`Dbjlk_9i-XScZ;!W6+^HwHd|ehTK9}8DZ2an(jDIVevURRF zu+S4h7A%P+TKYrMEuRHR<=#0`dK^WX8W;%RIk@nN^t23~i=Wr^$Z0Iiuh$bo8h;-8 zyuYzP*0!e197afpFXjfR7PuFVL4cKOZV(o#ZNvLv{GSMSU3L9OueJar+}5!kj3+Bqco zAvV3}uZcC6W=hOtM5J-M@cIC@%kHM_{fRX3!d=z$Gew=4_W^i_uzz@O%u*C8lz9)x z^{QXCF72$q!6Y+0VbbWmQLq{8aN|tY zyC3|_+G3u}YF&3Dzelsz;~dv$UrI!^Q|vYj51J>8MhV*>f|1-}j|Iy9=0)s^QFw>; z!JcrQTBbD>v2ISTa)0kf-x;uE5GJ_+SV(qCou)Fin~#yuWDzN-5eJ-p?2}lI67jiH z4!?uXn`3#N#zzQf(SgFMxoJs?tsk9l|4E@3pAdzRJ6OT}O=m z<`C^CLsvCXRUnv(Ka=r&QW(Lv>{Hgu=4*c-gxKSKW??H5$A33R2MJoVqf_+!PpzWD zf$(d*hGIlpY0x74?i6Z^59Zx)^{4s~Sxg+?sCD|jjNFRN=*6qd9YU4E1u*}V(oPUx z5ZdE#!_f4MA<{jFmyEZHRix{Blh>5Ba0DQhq^6@e2x{1l(cIXVz#46L6j%32o=pgLnUD9qjolw%%cl*xR`Z_eIrz?1DujZRBq1p3a z^1HivcNmm8x1xXB9hwz>Ous^`q47hcE>fHRfP)qzBbhlbLPb%&WW0IgtuI>ra31Tb znNsNeWdo1Yupk1*M4Weg2%{oy{rM$p6sKWjPHnXwo|VBYdl*Zu>1((`K6HQf3J<;y ztt-Y!x+|eY?XQX<`j9-KH^H{ap`9CS2A7P1K~!5wY6E{xaL4UZkF51@y~koJIDute zQw91E#164XJvy_!;dmU+=S+TLLdqw?%Gz z+-1lXch!%bFm^w}v&U$x&;6d@U|kE* z(rf(rGuM9^fNy_v@61MJ0PC*vTJZWEQg8SvcIMJoC*za=jYGiWdXn{vk>X9)&>Gq| zeX}W;H*hkW(3F7-b#PcGaI~`b>n?o2+JJ-u9nyFjVfGmz{n{>d8_J&l3=*3x z;+0&c+VKU64K%{&Zv5RXQ0PBy*&V4c$bX{nI zh1Df&+JD$zp&%Gx5QL;sV9|8WntAC3mpal^*1f(f$j8u)`_?tE13iiHn4v8T{N~ww zHCcaF46D)pvr7v6jjh+}dk8s@P7qD2typX}O831oD=Mo`W1~RMKl>PJC@7UMvp8NQ zkzN=Md6dLzn^!Qk`fd?C4gZI3t5xxL;}Gx3c=4B?o2i@w&XApLrIu@SM^nWb21gU)^z4waSqv|O)@Wq7qS5TTQbCJ&V~k zp?OC&M1+&K6N}BeUa1RPELen;Pm!k7=JRZx-F0bR+rX6C!k%48@bvzQTM2*3BK~E; zq6AvTq`O{Ln?VI9jNXn8qmJ?Ppw&-tOW65{fL!O{!4EH5c*4fT*UENMUoq|5>cpao zh{sUO!3R=T3#)}6s#C_b#@V#m5L{3;T~*4;47u6e@;UmrIeds`dcnhA&HKDU8Ci0>m-~NQ`M(j>slXW<{nUikPh6*g%!2AtWy_E+{j7I(9++S4 zXO|8=uJHLc$%c#ZvUbl%H<-*a^0t4gPkFTua(^m}imRD9mi~h*9#^j30mlV0?9FyI zD!nkL@!lKG)Eoa7c?nVttx>)*a7`=q<^a{%P+Umck6O;v$YU5JsZxIgNSf-EgJ{Oe z>{vpyu!K?Z50j&d1<-crZ&SSy0Xp*0&uj7HCZIMQ_e zq}e3m{JhHZfrX1b7gF5h4RyRaKW&4hK!M0%y!yGs1|6hp3H6GZxL(mQx56*PZRD8< zd&qSZ_cDX-p?kZ1{d|^Kj){uC8sP)$AI$}X zGF(&#v|>?*a63A6uwTuR4<5vNA3w<&{AwO82Uv&*q114;Mx9y;xUNi*Mnn9z zkZ3QBgkGGhR7FS|Ci3}x9O+=&52#H=qKJ#ndPFbCWS)i+m%C3nSV#to5O>kx;69u- z6Ohn+&8+a50s?9r;^TE@XOBeI#OF3dWssSfhW#A5Vwt1V+?b6W3b>vx0Bv zSGN(;=^YIqSAyz9k2JwLCxx#xS{Z+`s2(LDSbw3rs;4)7NJ=38KzQ^{FB>qLHhWEt z8$Yk1sGEfhq85Hh}!7R5B?0(+rn-ConH*#P&s6YenAO2-K^?qwMn=C5llc zYpiKgQ)unVqG5F{xi9pbD(24M zm*9WBtFJA>#`K<7zP=)Q7wBle#PRf*{E4sA#Ta|ld=n1y^lJxDa>Jz*Hhlm=%wF9Zmrep!SM|!wWh%XQne3ih2l|hm}2*C>5Q0O!L=zU$JAc?F1!l{m8Q!8CgxyKZJg-x+{SZP z;~S>$lNB){pHGExk)m?iGVv_x@@9Wtz(?^kP)bfA2tS1pd__->KTN|=VuCo#My1Fw zN!Qfc6i(_?OX=tlmoH)sjy@CLY~pd#3@`8_iI$~~ir<@Z&mp(RzdFR?H8urHq3yIe zm!W2`c=(NE6tRlHb`yL6){JFRZkb4}K+<&IJuP-mi}mXqG0D}1v_MfeHDiAVj;u*s z%JZEFDfR}k%8ds;p98}pn%{Pq1iFW>^?Av+1o0Fhlnw@~`kMNuJDg7#lT}S^Rf zxcYE@*sG&IY3)wN(U2OHR2C>y3+dpwA-L?6`{I?P;TMEWs4spX7qN@>i1Q<+n0xw@ zw~uK`{Z-LN_y4KWf4jt-;=R=tVY{4Aea2AG9^wWe~U2mP&tyMLdRg2B;-O z@5@!1C&l$c6^)orD@Y63FW7hzXH`%EYt+vEZ7rq{Lq& zf=L>gWg(xv^_qEge=g$h9WJJYI|?MybEj^>Nij>RMPG0nS>>6C7QOU7OWByN7((vE zE-_mhx(a+z_=I!1eIS45@NKNUxit9_?{W{bI8?prD-%u0#$Gd4)r72IA6q)Y+>b)# z%g!$Q6F~f$Ry2gw7OVC#zP@~Qu3L01bxH8UTz|}o*Is;lq^$wZjv6w$@F*lX_LltH zQBE1#R~Ow~K}aI4y(FjP@agCD*}3*KoKTn*T{cfq7lmKC&GQBp8;78BZKS>@7myTw zxY%En@Ng5U$B}>Rj9}JL&}(SJCTQ!)u$PT3(z!y1Ibwy=pT+a0BQ0ll)~_yB49?os zkbT1MlE=Cp`JUxNR@bMQHt(H8LgedH)Y|t;@0d1!f%)l)`|VfY&MK17?{q2m*H_{) z;2pg>OoHA=aodL+W4F(%l$a@QKRTqbD}{vhrHs`UhogV%{K%nLDiA$#bAqHR?C%#L z>5WFp@UuK92~nsT${k17N_pEjIhyx*cS|f`uWcISSJgxw(V-n4{DI8TR5K8`kWK^~ zLzKrRHiTbMIKDDE9~dBJ#_RFLUZdrU4^N(yT?X9c+h>V!k5ojfkSU9zNBc zl%R}^$#sOS>PqUUK>js!N?@g|&Jv4W$O;#Q*Pecl*Ms<*Kf0MWAw;QpQl3dL$}5Ht zCH9K{mbB`3mV`J42fc%-L0pGLTXa9pqN5E367qjK>tvCtlJm|R_h!uQY*gsT`X7>{ zu5)^3Eb2dTE@<%ud`%9v4dBza(Bma&u7At|47s{``{nL(aD3DLrM&Rw3peCF$Cra%XF)B6b*+ zdES3GeZ6@+ljZ}vqf~To4B@zhU{FBp6qzuVsts=zqaoa8^kdva1?Ynm}>4I3vMMX$VF`DSD8gxH%a&WF|91XGit?&v?uPU1B+3A6FB2AhUtnl z_g-Y9dd4K+zZ2DET@#93^vjNjALrOEkut|)l?GuOeX9r^a}AZ_4deTM>C}Izq?x>- z@}|%eYz&7DT^Uv1OfBP)eipLNAz@&v$;(m*XZD5hTzrSetl?|?5BiOljWWkmgED(| z59zc!Fh>p{#%9V9klP3-dVaKZhjJbgsN<6?NO$6)??w-zkC({Nd=r zk4fV{E+}X}ho9(qL5=4X=8YbTXKTlsNb!&Z^UGTIQ0_VAqPt^!bPXjEgHqLQfDPOd zU4;FlFyLGyBnGe<=7Sre9J(xiOyVz)bZoPqch`+5Jo+8E{YjIp)rNlxFAM1RF)sk= z15Nhz2{_(f{zq#CJ!{z!9|NVNbjJXc1{isAr%@{ zq;w9+KoAk8F-eTv1(AQ6{pQ;FK(0C$XXT3{A=8Lddt0Q<&fPa8=+~&!z{p~csCooA zn}zUJr{*mr76JBRupPH=5Dm!+rpOWAS3Dh>P8{|@174>aj~A*%M2ZJf5Axb%(-h|$ z>kp8+R>}-74c)nf?|ywMKOX#~9Jh8>qR-}-HMzg3B?h3}uUmh{f}_NKav)2REd(x! zWoyz(Kfu!K4-+mNi5NJ85g0S-dmJhj(MNg?ieIe@@uX-bY6a8jX%IKFGB?yduTLhjl>Lt+T76wI+^Z%b~jmt^UW16lU+I!I>wyE!1di09!(Ta_1|MvVFc7H zkr2p7SeRf!VBXy}d;j(}+Ft@>6<_sxk9za3`DLfJm&tzzDl6jcX(Zd4H$>C6vr8dy zvA>JCMWl@2I!AJoV}+}>o_vs7qo?L9w@pxuLs%cf1C#eb?e2Zc2Ie(>hF#E02-JgR zQq@4<(qoX~<7F`>Ff4jp4-}}9{>{FJy0-Rt=M)>+MHq|8t0A$%t(W+HXpP$P+@PT< zNPo0S@zj4{D|DMezo`0`eMAEC%(cDF$dalH5%?B(hjo9BuXH^;@e#EB*fj&#(*7ZF z%o5x{6yTwhK#V2JCYRRw-4o`(8fiqABQ%S|+2wrlVO38fqvA%!s#q zVEXU_Jle+R&%H-k6-03ni80O~eCL#~-$mMYD1pC_q_E|7mg_{5{N3$_UiA(0J~%Jh zO?apyGl1L84}%XVRfK*=eOMDG7upaLL`|yf4i{A1oH-USpRXMXr}maWIOg(=mUOez zs8@ds7I*NQ`O-Vx5PDE@Q61S%OMH$S43DJ9wXL1OR}(V+vjPcuks`p*rfm-yvo^%} ze7q#(8tC@+Wbhu_VbQ&kxNk54VMcR<)aH3h)o|SYJ{0?PFjQM$kDM2ZC&L13{GpW` zBje)g$R#bmKXCk-jf+%*xUk}t`)Vp;MrVKRaQH`g-E3G`Psy;Pt`F5qAeym(W;Z`Y zIu-koD*Mgt9`Z6GIrLD7ohDJVLYj83&bfj|J1kTgT-Ta-0#~7yOj4bz1}1Oj1mQ__ zS|6)8kTS)$@a6L;CR375Xg7u(6>kM%!EYqr+xw_FJL_Z**~UeFOF2V|4i+Ve0|kHP zvaE+FzAMDxayuyrQUkK%GpXoQFgjIUiYEjBpxsg$mQ~tYiWKtga}%evG65K?k2SO( z=Lh;JWnZZ3{VqfeR9{Y>!${*=S+v|jIJ)GM^4*ZpOI(5?$TM?Q%RxAgW`zV)+OV+G zb3k*hW_AD@Q9Zjvy;Y|2#AKoECjEaLwJ(tyZ~mxNm7bwK0CC&BA^4(KMy5zqG*lUmDq<6 zO|`*1DQ2Hjdu6BNxw;45M!kQi^^sBp=PR~yl$uu+3GpIf-aSuX1P%_T%1BNNTA`B;!L%4UAgF%~81NT$zgKbyG6SKq&S*$__W zmi_+3o(c%BKQCK{9upEdp$slYiO4M_e9*YGFMIrJxk{uEGjjg6fUV(5iKFLKvkg1-fzIhA~* zl-42dl9*~eo=?71E1$&ftS=H>VXO6aCJ=xT$wDN^>`)%yGkU&-C&0Y4-{>~tCaODh zgs8Ojr*TClCgH)2@Q8q6%GZ2L5ZJJj-?iROj^2Odv#j>aJ3oanGuLpr zQ=T!$hs|pP$7%OA@~>L#@4=wwe}DUiustmo^FtN+2!bDebXBQ4-hs~G0&Qq&heB(o zEo60E5ZD9A2_)3NZFIMM%Jk~MuL6gytktGSPF3&SkSae4=;3>cRN4K10{ayN>hW0& zbU9940eT&ZNjHBp@h#?I;Mg(Z8U9SXASS_(*>PB8Hu3mbWiP{liPz-{F<$VgTqGGE z9PEyaZ>O=*-2oUSNim^Qa{Qr$@e(=qTGh(J3Gxp7VTF@wMv16JTq>an zv#mc$P?O39kXAFRDt@G`1h;-y{ZbFjWEx%G7?F(kN0*0hMT0c|aXK{6hF@dJ4M3sw2l-$K0$x~f>N2$8I3q|$QHlX&H~ zhS+gkk448itY%_pZ#L7Uj597MeK4BYs&>({-rq{gmPaStXI|&~++Ls~LDW2BefI@o z`wyZ&b4g>hq90W-Z)rU#c7HeOLppnT^frI?8H_gJ$GVC*ie_#U``i3a3taA=s3)^4 z=qZ(qus_N@ac5$n!>&T%>C%(!f7{-b4FkBLu=-b^)s)n4A!MKnI>4~s0<`9${KpW+ z@Z@!rxQyJPFT^PDD_A32Lr$GVPu-DXOZJP%DkhP6LA^4?tL zxsWV#0TDtCp1-~?MM~F0teqxnr^GiAp}OOs?(~+q%6Gg93kGe%!q@k$iBNzGI}Mj) z|8Qw(?A7!BEHBWI4ohIABq39A34niX(#vNA7cyRh8}lI4a5uqvYS*CUJ}8=&%m)7Q zPe9_P3Xd&-(SN6ot2Ac#JzP|dX%>O7;kfSwB#)CgrH_h(z-C;O-hbJ;2^PtIS6Wsm zU;5yrK_dd+@bq$C{ln=Kc}&UE+($<&wAl^(tQ3q9R9iq+pjLFhitel5ULk)nPaNaS zF*k~+OdJiiXzxeOfat#@3RS;oaRWS?OQF~s8l4`)k z|05C!;24FS@u0~8ybo>e>7<60z#bWZt%KI*mWm4kQf_sZeNUrkdHaPv-;&c@n=7|* zbLU?Bov)}FziQ6Ri8~&VhK+BId7D#MKRf1i4~2zMV-A7kul5ZR=?^R1{rGGNo~iJ0 zd~l=QssQR^ccU+DT@Zix)J^;F#6b)4SUe+!H~f=6nAA~?loUESK1`x{nu1d(JhO9~OUAXo&moY<_U7&82*5 z@xOZoYP?m%4$Q73>He^?ch@^JFCJ9ZZ}E5IcsI(CuiI1WnzbZXGf*-QZ=pw_rgF4{ zuDrYNjs(gFC&a%|tpXCO0`_T}WDslQvLO2$Ywo`LnP2Wq9iyCN{1F%!KHr<&0o$#S>m7fL)uC-Sjr!Q?h3x>v3UBILzLLGIB_I0zhQDA&1z1a z@Ol-7G07@NfF?W~Zb(mFP)HcOWt-RO25bI?_lbwg#QwA#aM2kL)^0{TsCY8NC3jyj z1!rHJOg>9c`XDHym8CSkm_vPd3<~%6H8DTZIyn3Feq4W*z+|I_#rg*HkuMT34giTq z7Tu^z`oUA00`LUROt4VqHum1GZa0-u?)bu=Q=RGDmu^CdV2?THPYR zF`^d~ikgtn(fd?ZdtL2KQeRtWeS_rvCG?7W5Q4Gg-J9C7j8 zSqziW`7(dGQOUs>T!->YxBuF`JB%rxB6E?EQpOo zUNOP7^B>OQAX!vMG`8AccM8h0lf8GkXSMCY8z{yGA!#aSq|c{*z5>V;9N2 za0dh0d(Xi4)OoZj7a(DJYG?;bO_t}CWg9|TzSy1Q)ggzjNBx7~mdJsKAxUc*-0-9k z4-0<;Rn>ZjkQ0^$agL(oYKEw*J+^-!>J{Gt`q+h|kfjZG{<&Bs0y(e~TCkmGz$B}b z>$-VL-O<`BAzs$|_@UyBsrP*!k#+V*vj1`1d!-xY|11+lGtjpdnpr(c$gVH>zFWDP zVZ`%QW~EUR&U}0J|E>ZJTD7+wMHQ+gId6Yc7QkPp09TQQ-duDPH90#ktRahRfCfvL;$~s53s8X{M{}(ziK*G|EKzn1Il0kuX5r! zIi3v`g7Txj0z047r%q&k`C=R9eBt^u+1X$5GyCib%y;PCthQ{C(Mt} zhYsGq*%aRIBvf)^m>Ehj#yMYa4Wj>Bo3G86Wz!d>;|diPh3Q%utKWNFVa!CN*<-;k zYak>3=>x&O{phQ&;ILUXyY1V3<1v2&as8QO2^0-(*pCRc1Kr*$@ed|HACJ7E=o(PZ zMR)HNyh2rgmfzHu)-$?qh*;9Vnu0H5>Ylf`Su0y@(aWj-1VThP!ew6b%!vBBGdjm# z2AweZc=MfCPn7}~2={?|b{B1|)CLU?koCZB(#w+wMJNG;{2D2gG-K**9sz&D3a9#w z|I5auYM0m*c)cZIK}xnUA6+8*WKBrw2OWjFvL0&Q^Nzy_eTVVu<@skNyC)wCjoOQ# z|K$bKq)%s#b1ZvctS&xRFOB>SSsaz_fy%uWyf<pTosB)Ut> zNQ~=Ybo=Oo0WB^y(Bvqq67zrb;U-)5Jv;c8wSQyV3@-J@*Fr7VPEOh8D{H%}A8pF2AUel_u0lcuskCSK;2S0xov9a3fC3O2I z|3pH0@TKCza;fD4U6MxDfl+{nVCY)q7PwZIo9m8QuaESGE%Kf6*{yaz5+uuzMw(DX zV|7Xx>VW~1F0^E*wv1<1Qq8j8VpzwO`xLi?z5TCC25!6wKZi~_n@-wS(Cb5K0dPo3 zdkp|;=IHIe(c5v8*2jOZgpbm#SQ0kIM%9nsAB3<`keK2I_E;pV3sH5$c@v%5V{mVA zg3qoF?r7t*$$3Ujm}o!+%x&w4P7#FHbZeYN77MiFT=JcwAtir93;@ZJf_}uk{sTVU zLPVum_Ykt3?$$%rFr*dr%|ObwcJk~aR3^%5qJp&L?+H&r^FI9D{}=0g81id{UjQfK z1MU7&@``@D<1<1P!h=chZO1gKc5cjSeB1cG7@vtWdgd=`+MEt; z)rW^yZaILSkVj(|&7T?XXi-z1bHKjq2GvCyA$yo; zqPuLk0eUCn5w6Z9{f9F)$>dd(R4fzLmJcP8JzV{e;Cz2_fyJjO>eWU+B+|><)DDqi z2OA*9{JOedwx)uOmMi>f*BIV|sG3+LHc}xt$%^9EUw=C8X1jfe3~>t9udmkOEUH4W zrIB)tIIOKRGyts zl(aW{MDi|sntersKsa9rM?C3`Mo|MJ%>EvDSx4eB^7S6$tEg|Ce$BYZzPU?$oI{ zEV)ka2?pQPHVCv1?Xk{EA4Olgl#q*-X5`lB-~-04xr7?i zAY_r5lW0w~ACf+^0Z6?WI~kr;52`ZRvU7i%jnh4OsHPt}Yo4{Dg<7uQMeDURZAt2U zlK8LIXw6mP33(Uw&-sPFxeUH;CRcBYiP$BfAFCRf(VjO)Yo8WKj_-mh;wn+il2%su z=*rNj{z+Pky7IAC_68$dn${IwTyIpc#^nI^+q;Hf;o@&b{6wZL2~;4}_?l-;fH4Ndw((|!1WDYCM+v*nL4jZZ6o7e7!SUQkb$818WX z9m~Zf<7}F^v1V-|QPp{vQgm-yck|!q$&tmI9Fb3L?NWSm50QpnTz$M%F%N(E%JXzm zn$fafr4+ik_Y?y8xl8Dc@Lts~I>~7kq;E(4qCk#@nV?OAh;YRw&!)j++gv}{l%ujL ztX{7VA(=w33?v1-QmD>3XDqPT9jT(9@dWHV(|f%RPUut)@~^2S@8C0?_mf@c`b3Hj z)U&~)BX{C7f^Iu*DTy>k({FzrPrTnsP#F)+BTE8>Pe4zTlE@dy`8~V$rKSj8Mw7p! zg>6W)zg(S#`M|Zh+uy@LLKndVd6zU$oaC4F4Rh5CzuOB2NEASP={wH()30-P82NZ9 zKa&-ANnokyYcAHc-`$SEB{{61oryLURqXzM+Kjc}K>!l>gYqr@o4tR9Gtp|0K^>aF z8(b8O_^iTdc=VcjLNke4f1iZpIK(Qn#d7YQ-HmA{?~F0~L|8uw4&vSuyy8!ZehW^5 z<9h-iusDdFezS;Aa&DkGw=P$E-I2_8isUtb@|kQ=8`ZJalc1q&i5d8HtL$C|?(V{f z&|UqssADM&M#?VQ@L+#%rNB^H=y=wJg~jIz({+eHP(!dQ@?8hnx~V9wN*oz6K9eMu z#hqT%pTySM)O6MO1I#t3I{#%e_LQn~&d^$DEZV6uvhn6~qyh5KJrX)h=2ebc!Z%@o zsF{lcxcx95hvlG+Z4=2$IYDKZz7i!Y6nbW?lpdz}@euR>&3S*7dd>0B*H#RZ*eu9( zv8wau(W;0?zz5w25xj`Q_Ec(+z8nSLR+W5$>P76(I2an-HcoEkE+-A^-)OpQMrI6> zl1wf>$OgJ1AGUW7{c!A83^C-Qx$VG&a3rx;$jlbfI(Xs-3!cddT=zT2ffuaa(U;w! zI^SF-a0y$=o78`$ZU$pu2QO2GgW9u=LiE^c%9a?}PlB+kI&1LlqnPADD%=W(mchS- z=|o^=6>Fb#iHg-6J_o)g`_=>lqFv@Eb&Yz}Im2a6F=Dbl#4d#Q_^bii(v`A(o*vRZ z(KhFnyI+IbX(J=SR|RD}B+j^3W?8pTQ&USGOoSW7PLqEhcnc=VZpNArx&1?hsw(d- z!Qh4G|5z3UV*5l}8syRs-o5d1a>D!>0p7A&?=`o-Il{A3o)p(HGkClVZ z&?=R>FvkKK|Fqn`YrY5PQ?H&g-_V6%(&o|x(4N*S?_-8D=#(l<+(gv-)93)$myWTM z-2~~+Rr9CgrEdGfwUPUDke=bg{t$4M8EIUh`7*%_eOUi0arC(96zHJ9Am*1FGgQ|K zLE?YH;wutOQl5uf5wL_M>41U~hk0whG}sR+BHtv6qB&`W1k!i?E1xojy-Fg`Rz=T)ZfHq$ zn(EPp=)UsGejJC@2t1=gg=Zu5Q6^&HupJ)ibEZ29%JzR?xYUclOB9g`PROE`_da(g=l*}ydqq{#-|#W!m}@l!sj?b_h^f6XP=C_i&Y6LQk(n1Drl88g3Seet zV`OG#MWmomw{*4v{zr^Rp$P;zS=!t2{$U^n0vb7kW#UH8U^@kSJAkZ<4Sk*nF8IlCEwfB>+- z#?l06=LGg}u`>mN0N~^RH5qw;k^|80A7lA{41eeW|CtSdg^}goaR2fCE0Cq#-_AxR zCib=tMs^;ScIE&xOB*0SNm8EC+1;5QU}R_dm!Xl3lRenq$koWw#>g0K@OR}#07(%Q zfDyRC|Fq|10faZ3=;1Uz;RrhiV> z+JDa8&CcsTU}kA&YW7zXrY;Ul8g`bBES2PeP?1TykKWCkx1D+dR_iv@fYO@Z!z z?=XOg(azo(>;eF{=L0aa2O<7-qMRH6CXv5H{}3mDN%S{yfmiA`aRZpde-jUYN#bAP zVg@it{w5Xxlhkiw1u#kfCN=<*%x_``FvouliwC#ndKh{F4*c11dr1C4+PKB<_`qV#`cd^z?1kLnFH)<2fjal=)t|( z|1JjXZ2wn89+K1V&i*2x>mO6(0Gm63Ulsr62G`?cW8`G< zM+k5^zY~BT!c5K+K;Y3j|NW`~Kjr?1|Nh+o1iAxF5SJG0P56SX8iKp->O=_L z81^OwW-0cx(rFmHmO$Mu52)}dG_~1*8=zZ}l&@dVS9c_+Z-kdgp1n@mo8ZGbl2ke$ zy`KycRHyek5f{I`9h&-dBGNcWj6lSoF1+vk?C7l-U=7_4*?%KTk?-ijjjCLTb>}u9 z<=!}0u`(XIu&1(L%PEKSR58O4qY?cvpmdI+z&K|f?>(F|1MwSL%nNt4xtrTr%)F^r z64?YgM4!_bwqh^cP1e}^dC#>fbylZdd~$qUJYwh@%<*YTFVVwPS={elWyKqy@wEB3 z-4k23$t*U9)PJ6PimG>@qbq$%iYZ=dd^{#-Y?-L&jSlHV+fvd*IQE>2RoM-9nJcb# zV<&p0M9Wtt8?HtURV1FhzK6U<&qH`>oCa;$FjWhjltvP}evU9=$h<~M)bOG`^Wmo$ z-1U#cCTpW>*v)M`sD={6?cM&{=GhHy0Y_`qDkcG&ctd9M*NDxs|T=Xym9%>0ZM=4zs7$ci?}Sh~4N@$%=h1+g52`aDhj*e|@L zavij=-ajM}1A||^`Xd0#Vg3~h67(DRxsQ%rP`HBKR?PZo?kA}YDuXXn+Wkjoen%k@ zU6%OBU-|GobiXR!IJd#<6hgffe63$xbvSs(5`UnkSqJG8H_ThoyIx^*ZOUvh@ZHPL zkKYzb{0`WeGh>%Ar(8533ck1kVj)tF2Z5j_H#I&ap zO12+j0ayN=BW=`84+UY!4!;`}OTJUUwZ5XbYf(#dE_ybj)IgJ(U6;G=`HxSDZ#`$T z9)B5g)S{9Uev;6HuJC_tjsD^KtUPPsPsYz8L#AY~=d|{zb6`aBm$^$_|IXQ4<4vm- zI%l}hyVs<|f{RC#JX_^T8h5IPoj6KXPA@|Tvjq#Z2;5&&Pw4P5mN3uem&6K{Qy)7O z;j6AuFW=P*X=awq;JVLbX#;_;`>RvuIzFlgQ|7~aJb%8m z-;SJ*Y&0HlJV`6`sKP)(k3zI&BpY|$@$0fd_50=XUma; zMM}4V{p&ljxzUXxc{I6`>6Kw01`yyntFSYPH6r>2o?$)CWAHd`a2%2^+Env2ezjd; zQ4TYAb(CSn2U4XnY-W`=aAT!RJAcc(in!B`7m;s~u9}mmLgPvMt3eP|@~QS|LY!%A z`kxAs+LXj7ELBajnqw&)t}tSUs1I-@;XSmtO(pr!2(?2Oi@n*%Pt`QW=F;D`&dM#n zk>#s0K|xgPO{Tp@S&ES&>Mi-Sx#XRdIM@F!T;tQL$wbXY;UVhRGMhQSt$!rW8H-F# z*bfM-OB>DK^5Wl-=x(}d{LI|8=~DKlpwS#|L$$r=_+FVqjEN~g*=2-yQ1$kwY;3<% zdawa;(Rf2*2CPS{-x7hhmug^P4Cg>o?r555S{#>^%r64?0NgPDk#yEHg6Bpf?1-mQ z3gp*xVJ>zg;a3QpV|MC9qJJ(%0mvVK2@=EH84D_hs+k=+_Y~I&ZJ*Evp{Q{TsRcF+ zabn)IK>e1u=7QP0cv{MK_DhFF(6)Qb(-sF1`dxmUz6DyAweY2y!FcQ*iI|PPKHRv^ zatnhak8sEI2Jm$qLAbv2r35~|)jQHnArh2ig3Ys`j6=Pf%Wuuy34dS9mr}tsEX|Zu z)XJWwx-5;?$?>^*)*o(RPoo*yI?-W-8kLh5vc73?BgT_&{*DTD~nRJe(Mx=FE_6Z^mL zbs?D+!?ms2jM^hi5P!6@J|ib-Y+c{D^m1;ei!DS^5De<5-%zRkj2qe~F`mxJcqvdTC}FH~b|WbTFGY8@q=Cf%BEUEw-sr77;aA6gg^qguGJ6XueJw z2SFsk&z$+Kj7l>8HUByvT-u|nH~$$Y{G8O%uCQ~AqjqSt;D6TFI0qTrYKl7QciKN) zQ%3i>d{~-zAZ;o|YUP$|{2@s=i!t7$rs^g2q0?nPY}VT({50Uixu#0RKl#SCYG_TX zj@&|BQ?8fWkH*QNy2$XMk6NPoR794P&50KlNGno!yjnDl46FN6F(TpAq&OXI+hp>s z;*ybZ{Yg)N>3PNJ7Maud(Ga-c)O=vI%-dNsI^#GotdK+!&1s~5T|2= zJv?o?10Cb7xs{D>KIol=Ghy7M5F0ORvGda9k_RQBWCp1l|E(j*IqF$mrzE4oEUFh? z`4(TM2(#UTabk^->j0LH;v}7H+R#od)*vTkKKW_ZV}Cq9k_YB7nFHFdsXAyof}o#P zb&Tq}DM%1EVR(m>l^9{%dvkf7^@BN5_TfCe<8$xzajWnBRnb3Txrce{lIjnleRh*D z`fgS~^W$r)rR{5W3_Cj^lW~pW>nRmM#x1nm$``i1Zj8&TqxyhKC5tIpk>QNY#x6nq zQcND#ynoqv4_ZQaDj8enw%Hn9Q$@1#w7{Zd`B}n!BUShOe$tR9Q_^l#B*^3}zwpdv z+RJ>nfSz5R{d`=tnn7_>EbGO7f<$BTx(Ch6;m`_w=Tvqd3l3nyy0l_AXh6DJrkGx- z6`qr7vlxGC3d5$bkt8$=G59r9QRx_Onate?0)JstNj>+C<{m>Qbt|cCbF1!W5A6+v z?lMxnTF>vR!rvKN{LAlgkU7pGAf_1NlEmekI1E5b(tAhMj^=@-wM_3o2c?1NhvpNt z$`naa?tm)Oq(>3Z~THf3{`xsNh@WMh7g$HHh;OI~W zyMIp!VMn#jFo}9(&BYNzHs+LHXMtsD)o6#Q#vG8ee{QycNjn%Vx9CjEbgqGZ*951x{ zL&0h8n|9s8Bz+Q(P~yt3f*tula%`EKl~esTyQN+uB%KODoV$WTYqHH6H=#a<{(r5e z*NLS5=Pl>voVUa)y`%;#fUemAQ&59f@slZX;tqY%jPL+nK%u{t9^GO~LU*Lt3Yus8 zjU9#;%n`HdsYXqY++{QoJ>`7B@)03P-A96<>iE^&Z-p%KqIH#1m}IiM4Uo+jz1J`O zmuOpF9ME?s%?_eOt3DL>8jWmw9HgyyWA`>DQi^Dh*Wks4JSQgKJx^~cQFj|ya&<0m~g6=YsMY0j22Vhpz-c}V{yM9PQHH{ z*)>dn)9g*Tq?C|=$_o%`F+s;eUAV(W7F$Uh&fwx|U@#nBB8RE1R&d>bKPEnY>)jYa z=`;{MiCn{}O*&vsW@kDT_94j)V>dX!jyl+MDK^c1&Yt8~sX@qTvOO#64*yzb1p-uf zJ<%{q9~#uVFn5J`nI3(_?w{2k$W4F6)sJ--(C?9F`mF|9Hv^L_y_FabBzWA6)u1|@ z21VgL~%j!<&H8N!qVg60`_dQ2j*SZ`f%Uj$g7g zLw2%<*d+wW5%(#HF}zh2Dc=&{!8PX)IMdR1pBSfxbq{D7cwNqw@OxL+x9oq+jf?K1 znD=u*CRThjI5{yrqNg&mn52g^ARg~4)H7D?=$!QO-=33V*i5nEMDeuR=Q zAU317%)=*xr0>kO6Ne9BJ0sPyDYbCCGzk|VYT#B3UQsGgHwQ|anbI<}Ob`Q5_E?e@ zIr2ObxEl$XkUJLOG&^=`OMibZmA3a^1q9}x)9Oq55Ri}wAuAK^$F})1z&)M&rV`lp z`&wNjXD7aqbS2Up0+2+=T`V%9!+)gGDZCwu{iz!mnTHia91*_Yy^qO537_3Ph`MeD z;zHYM@mJ~cwQFSn$a6%fVD6nUeTanWCc^uW6zH#{>H;jqeG=T08km1VD)xkUsI^ia ztEIQnItWO9tGZm{!qw!6a@u)kWov^N8kxzKN4k1}&jU&fJ|T#)L^wh>bQ$0#ZQvj$ zXf%N-yVuajcv2eW^YvLNLu;K z0qg4Uob~e!HWuZ{5ERl8AFy7E>w6+>u}tb+bT_k#SsznJ!YxANBMJV-c~&lvRBhXv zH8x4|8(+*qyd91|8}E&jReabl8ei*_%<&}!Dv_wt6;(koqKvf;L zST2AHxTax4DToTO+#{za*o(QM&bY@~&w~By!$t}@tbONsU%GR|-5lOm@>yNhiNHKm zBTO2qseWwHfkA(*XPj|U+{Aqrt52}r^T4X~U3ZZtJEG=Bol@j#1h}GYFv;M)Lo(+( zOk!3rBk)>Ge3WD(Mo5YYQgf5GbMO(bXFh{}IQi*uvukAbDagMpTZBzW;x?916+KTB z6>8gybU4xjs2{bLR6c!O*LueQO+;o4yVK|;rM8CPkG&r`C*iqbQj33l99a$wAGsK7U%aD#wH?gIf*lo&wrpT=@NUDodbdVF|Kjn9y!v zpsc7_NIrjl&Iz$<2^74g*RC{K6T1ZxbqHiWq4}V17b5p(hK1Pg$06Ml*urxJdg-6{%S2#`|BWQdGx->Z7lFOmBlC>ozP({A7k*nd8LoZ6} zTT|f!8dbf%R|}!#54Ir=LS(1zMQP0RFmC%o_MVMbS*@#YWVT%tMWxZGP9YmFVsQsG zwJLvbqDi$m=YW~oo!3l$K2CQY6FHe@)GIzbED>kj%)Pr#OX=YQaKBt&Bldsd9@IGv z7fGRbgn#^mD|RIdkxvsqxzTH@5J5o*vy(sG1E2X3Mx>|j+xQiigIHC5k$fp;v8-r2 z^UW>BO_r+feUa@eCtpx(HG-@1HVu|k?bCnGo-!T+z_7n)2+q*)46@33VG4cXuKSY1B zavghZ+o6eAPG7A4q3as1XlcPH_?&7G6ubO+sdZ9-E}!wp*`Rrbp31-Ei!#mf^|#Vo z5bZ3+7Q0r6!*}w0Bq9wjVut9Jvgtt42*PVXUUVpd<8ppRA)=9?(zv(dPK0SXY{B~0 zB-;@I^lX0z`PMPhwfBsI>O(7oVKjf?W-W3#ALqWpgZE%wzq#*~|1TYYOT~wJn=5Mj zuBBJFxd3y53>yiwQ@5nnw!Vd6I{#=tho7d)joLQYapKx8B-n+yQb_IZj9C?+fYm5_ z5wyVX-|sdoRadm#x!Xk!(XMi4Y(opqn}G7$3yI2S{I7&9<` zMG70h+a>l{e&`nlulN9#MM)ItlvmQ2Ht zggm2|a^*T|Un>gbn$Wh9uY!MQh|N-3HYxG}(?U=gIbpla7xyK%Fl!0rlzovFE;kUA z-S0#oL&?#j17qeW9%6Y+J}M)>m!f{Zjy$+sasPbN9J+N1`?a?ZJ7oqP!ZQShC^|2V z?tRj(KVcj8a$8V^=C*WXM&ivfesc_q)Nx67; zR*@{hJxZb={f4zed{xhB0W*wqx8&!Wz1rR5KDLIB!%&$tf z8X!SlM|I2@H3g#~QSPUwH1}ZBv{b%bo=Q&CYXr1*n>{=}%^NZ@Y`V zu2cv0vJ{Hv_Qg%fg;sI+4%HgM-6S$6<5jb0u8*fm`imoX9qZRmQy6TQg_BoT-~HyZ zeijBX2B>Ai(T#uL3R9wWM<#q6nAYpfG1l5BAT3l}FLqeMG3x)poM;x;WfQk%*Ex$Q zAs&O=$rOhY={+g-AHW-X715Uf@K2?=f6$GPXXfJ0 zkjFt8rVdXIQ&@Um(U+7K*dcGFIoZ@>H<9re->3;&=lnV8UIujROZ{2(Q(Ct)=}v14 z2aY!f{YC-0x5AhYoWP+r>`EzzmykAkC?kKlFScXqP?A3gr9SAijIlH%Sah8f zC|1P5%i1r{fAGE`_7*l6xfd|r-EiX8uTlnOs>N4ppb{$m2>vXP*cO=ZqTE-0l^ z79Q}dr|;e2jASLNF5)rR`WX>=A>VE(0upAKR!jer{@Z0nk`b+w4(Bb*>PVU%^3U(s;6zIRP#GzpmXnW>r>l~Wi?wT2e(a!&5x?zcRcsiN{t%iI&p}J5&{OzDvC_z=t9jden5XFa~;05 zXGlTni7ZOyQDZ#M*S15mn^<4}y5~5@dEp*a7!Y#K!9^O+T+x?46^HShC)Qsd4Wca! zS(ylr6$^f8SM$ZfNsYRq(X}6>N7=LtLIfya*m@>2Gf7#M9r}Eul*%bBVq0d7#NaG` zF}UevEZuB2zi;Zm@Fg4C`@DZA#Pdctl1I1-iz9!9Ks(yYd@$|h&7uc2^a;H8%$GHJ z9to!xw_t9_*#cZ|gG1!KwYX6k)p=D~A;lbF`fC9zANnu@P6XaD*^dEEVS{-e@K13M zYSH={XKh}bZ5LW`$#`-PsPtSy@;s2a2d%|-e4CAVFwC`hCFS)5F{Y}`bx$5#kOd3V32&u zBt5^k0)pdQ^C>%nGgGIieEDp+R~;v1Mh6~+^RU_{S3(1A{k!o)hoX0VhcMxC9Pd;d z9+Op3N(`0!OKnPu!QGq%1J}8o*JMViAn6!}=C8{2<23jQDoo(Ntl^NZ`(;rpW$SRxq6@S5LtD{4A{FTkxG>1!IDw&JI+NITk&L zl$4+o^Hm4v2+8r&jaLV%CVpGK+8b*56BcczqcUex5EREs(e-i(=kz5TVUBz9&Anu8 zMmzb++vu}v_;E!Sd$oqyu<`g~Y3g8@latCzGp=kx>Y0Bm>zW4R5i*G-oQR$%p7xk+ zzOmW41QS-MX&z$U3&SJr&)HXtM#rVxHa>-XUf7#>W&i7lEN&mNtbZaMdL^qWNxt_U439&O@ zE@#XYm&X0$w9t+NF|fP&PV&UEr`?v9ORgF$Pa3qre`yV?j|>Fg*WaP zU-lZ)9cr;keDL_WCH!vFP-2;sjeo8h7}a5l`9(=YLObixAL@?%mibm6`ttllNZh@x zzva><%|m9n;G51Y3Xi4sG8rd56IY{bR-%6hXk_ z94U;V66#qfOD~a3*fbYsSMIMO?LV3BEtAr{r<*nvrj5+Hki7{Rvp$nVrqAZ=j0JBi zD$&xQ(!}vxABf8eUGS(MRKRAY8tVM0DPi(O@*_=C&+Jwxnlm2*VSbFX7KJ@o@DYCq zaC1pk)A(#WdUYxn{zIln+VAb!gmyeH2Mbg-fW&PkMCC#deyA!zd3#CR((xPBcV_iK znIhu8HL;`RPa&_R$K|Nyh2(GX2O2JRk|#EzqCt9v3vc}!5j8FFnowRBbj=J@B17#k z&I9ymg_3W>tk$%6A&ZX8xAoXKB?_A|i|dQX!YOglV5^>npI>46 z!*egV4{mlxy$Wc<5iM`OMxs&35PN?YvdOGE)ZN3}fuV=*_uTr2wWOT8e^yiKW0#E{@Dzq?MYcnbPoMY6$ z=Yy1M8^}rM;Z5`&5*s)T#oK?MXK$KSAMn5O#2L8zrBt76U=d&NY6ldRn$i<*s!qNK z2D^F6_%s-Xj`Il8rfRMFxr`##*n`eLj3h`aWJzlKN z#75ee#Jl3|8kEw}v%u@0-{4RW76Lj8$*%0hKglZ3?p6h2?V>H`y^oZ4FN!-W6}uqI zim74UE!-wMVe~+1%wGJEh_3|XNv7E_imP+ZHk07?im#Yz738iv(XAnz9B^o5fb1fh z8UJD}oCW#@xomMxS;K#{Ytfshy^>t2(2DUPu<+K1H91g{I?u;HLcfHKwE^c6pG_df zgj^Z@l;VGVK-+))35miTuOxd=f_)m$sd$p9`pZ^#c>y%^`MrQ~w=1#X&S3qp;%(*h zWELhFmE3pB}$`=y`K1_e1Wv%zvikd0nj^-Hwi4Ed( z(xMSD^tnZb!`xXzWj(o23PmJl5q%F!)2)lM# zw@NSgpt64_XmdW|DQr0}fP8!5CvKDTWv%yFl|Po7>r2IF8+h<0`Gf)`XKoL|jU6tv zpIY#r>Z86GOQJS~N1WGk1g!E$O`98*6GB;8;4UT|%CH$=zvFH}LXe;#u=xV0=j?5h zvLFUCQmxlUD^SIG&Bm07S z-+6zH9-a326ZNSpIvwKX6lL#7D(AIX_H3TiDq;z#8|L>`4_K`h7W+gCn-I`)hZ~Bmo(;)1_f2TG-NSA-q zwk^sp?j89q1z(WjAZT0C-Ek}VI1qBM>v&f-}x4q&Wa1dWz;@D*AX^W zA~@|%>3oxcR8(P)+wm^S@Hw7@vvQUC+$}}x(f&b>_o|1CxfaI|GrcZ?( zezprV9IWDMt1X~}ts@J+)cS?D;ElkC_xO7F15iFIe5fIV`eNASaIL-9H}9W|Xe-U~ zz6l&tW^clXxJpv;1rKY8birRPF)n#N+8>=3;%XSoF$LFeJ&olQMW?TpG=G019%olI zsN%yArn$!>xt_V@%0DEh=d||N&}iHCOVU*9V@z82^09~b%AKzv@j1^&LAQ?(l1K<> zi<4cZ1yQ_|1oLsZjoRXwoG%Bd6K_t~K)X4$Rg$J`qn9ZXlZS&9e|(oFKsJhXQvsWc zkH4vp!6R{5dWiecHiOX_reuG;2QN3qU{-{EtSdZ$Jjo~>-#X8KLQ1_%*zY~xw>mu> zAPlBhn-iBPeg+SaV)R$DR^ zmA72lX*U=huZ66mE}8iT(9-;rMMFGk5iU_HTmj?O+;3VfIC_*Qu{V;WSSd3qt>>st z!-!A=b1BwB2H!G{M7 zUK`D-pY_J3-G=-Wd&Pf(hah9zbN)!2Pq>pgIUx_p8R$BR8807kxr<=_rONssxkw_b zy$+_|W%d9j)u0XI_Jr@~i^)gQTH@G}U$*CDwcdIK#<-LO-_0v#StSQGGW4g2%ady5 z5CldCEv_$9;eN2i?mC-xySKecU?w6BSd$4K*~$+n@>jQ7&qsf0zuHJejFmW1?}n8d z>Dnz7QHd0vB&e)eCMjwzk$1aPMd(O<%R7r9pdEvER$Sx(wr*3*UPqLEw~?FRlUp4s zK@+ML$g0od5%XqO}` zpAAz!<8G<5G=_hb@kvPho3Xiq)(+joKX?b56#t?MCVw z32jaH;K;qfd}nJicXbW5Y@P8kC2e|}Ux(Ql$)+tASUMZTXio_BN93WO{S&D`1c(HU z8#a8}1C zWv-90wxd%NsuP^h;#DT8cjGX(jDqy5K8~Q+ zXSl}r+dO|qJ2SicxBaY|J#Ts@3Qe~Ibu zZ=c-0eCvKy*=I9zR-EzU;clMr3fMv$s>YK(>=lApRC49XRRZz6tF)PUfD;GfO_aCj zdCK>de~05&N!MMiVZAjJH#gvbg~SwLZ5tKqlHqy(p|Lm*&(uWt^pbeCc&~$eYx90H zvj%@YG3Ccw?)&lj{k{v!b$*4!hqfE*ie1^{hDVG@k9$37`yVi4S`Y(Kj&&Osf(oo| zPMxwh-XfdSgIM4Kvd4D}+Q^1?)gXRkrZ8(2ZeKtPOXZz_@XGP_NgU~O+bB8Hi^L^g- z08=c*senG7T{5LRjUSPQ;WO!_Ub8-m_F@>p3Kx&VU>SVKBws9)@;EkW8KlGAE^2R4f z=$9bcHN>@D+t+3G;RSyaeQ~Ja5VNS08Kpj=#!J?Lpb%Yl7-ikFsUx!s)=v3hz)(n+ zaeCiPrGn=uO+0__erQz~QKt;2xW(JW~EG53} zJ@UYv^*5tANF~>y27Vgbzo@KGgl!Xi-MjHZ7$$f<7?u!RvsHf&eW%2y`Ni521gzi5 zt}L1<3Dm&?UM01p1zdk>Idc6p|H@bIwB;3n6T>jyZbItD#)6b(htyw2ffA|1G839~ zjIc-}tG8!J;L~-F-sLzFZLp?|-}4Snx>-hL%B?obB3}6IFhgy^CvEXd>E)y;O;lZX z6lHWt9^e%I4f}tt!7(!{Q*-l!%ct*)TQ{=&?~T^t$*#^t=)W#5bH|1yWezaN-pF`J zcAl{MHN3ptIIyD65CV7~ii>gwbmmswhdOpn#iBja4HSNgYoxcN@7ZC8ahYW2eJV)# zj`q67*Pv>Zv)3@>dxv#wio&freKml?(g)Y|6Fuj!}PzA?m>)Z_D#=VWm#=15X1; zn?$CVSrwRNP905Dwx1bn ztuSzAHteKj7AHEz;ji3+U)Rf>*_yDY@*-q6>672?^u=vS47gMBz_PemqO;soeQpu8 z6(;zA_iTTAsghZE$B~)rf-DgED0w|Zl0o7h&34& zaf15#LNvtqQte%Ts0BJ5D7nJiDnB;3`-BJU?;}gad%xhg@4po})cu1}*w<*-XR9l? zH=|USxb0_({e84uxYnmC92EJ_d_njf-Mc&*aU)V6&-r<#f|KZ5GU*;--Z38~*5j{P zcP)Q;*)E$w8p?Tcn!ttrKsX`$YQ*i}5fLVZmIiGpEo26#x={{U)@~`d+<)i&>e10} zz>@my5i$hx<{~Fq9`YlJt8CI5WoTz064?;)SuaLu{s8F=0mx#r9m9OJL7GNg;w*fv zNPIdel?8A20%!6)EfZI`r0|(B_n{srzWX2!;BDG z)$&tppC$KWKcSrj0YGHr1?`b$YV}Pju8-o3Up}d>;u;}$@uK(E+bC}f4HNj*T)^uK`SGhjtYH>1*roS}Is!*XD1 zUA=7bZJI0TN8r$@HB*ew-VO?=h%er>ntuxNv!#Ra2y&&_U1d6~R%6m)B%CzB`YPG9 zZhu4vMWfO1@@&FvlI}~7B8RqZ{K$V1ND5IEUyJLfs7j|1fBZVp%L&bB*Fhs^xT{f@ zQ#RB;82Ct+l_l*{l*X%XP)6+Gn1fjhrT4Lz!#)=Wd$+D-D?QHT)b8$5+`8|(DsQcE zu)$!9vKW!eZb0MgQTUYfX^hg?hoQlf)nOt}Uwt38ER)NFXnkfx9@$*tnZth&PpfMW z!;z>hXzUVM)q27}5}$P5lOA%IuJ_HrdVE1Sswqq{t@T`C$}C;YC9abSHv31hB(hcDY1{+3 z>%<7$7{3;?USWEn#`R4k!6DYo1CsD4k--ctn4 zk5I(beX_|3ALe6@4FYqSGCt_&pZu9~-d%|@d+eqzAN;p@<5b~Ba2@@r>%%=MQDsDf zCY~Mz@$l7Xs)=Qy>-P4}5N8I;LaO+mr3;as%=?#bVk08%JH{{ z5X@s^S$CFy@TuQ#fM3mwseyi>>(pLoR5pZa6YFFrZ>$$OacZm2e3#9W&WTZ&y!Lc7 z(jdV;<0!pen?ka_iD`c?b!Nuc9}g2!1abL2_q~*29#O z^p_vE-yJsOQ{L_NW3LvpnWt70gb5Lb#B^CgcFvhqC8zt3} zz(7Vx%mlpY5L|JH@<#B{pfc4lVj+JeBl?p0cDtubMjj!9`Z0gvu(!gfIoqhk(J$6x z;1}WGS~g!P&RZ8;45zM~SQcmkJN*G>3mm5wM!J>Kmr}zeQZnQ!VbO1=;oh4I%1c&k zO~GOK0MmyL(#ZnfJwzKN_;)r93WKuS;cVH*dC5)B-g~zlr#Z`{4_1t^8fr>EmeGEY+pYd~Xkd6-{qdvg!bB0qcv&?4`~o!cp8C%V zsVU+`X+jFP-2@2k(2uAuyKG!e_#2;=k~te@y_N~yMI(QF)sqSRp@X-!tLiz3CD*iF zV9*e$&XP5Nz57-Cs_rN1FSAU9>HI!lx^owfWOx2R1?sh0plmv;8;h{sTo^}K2c!12 zzlh(V0L?1oAju7l{LpPoDm~@Lnp6zVWtA!Kgs9e;+%S42uU{ns42`1H(_^2$Nj4+6 z!~s*|uu^~1;Y`A>XRReCJjQ|v;ZxbSvgEKU9)kSO19%(};HP(AS7;d+#0~nz+gvIs zmnlKH=fNk?l7lb;Rrs+0%gbLM_kFOtZ}~?)6IY++g-lbG&0cVX z-B^G9%0h5YL?D{`{+f64qzb^+w4e6$dXgK}lT!ong)ohYV(j;CGd6d3yur4&n5;sg z<6p+(+i`Tq4t|{#GsH4}q70NgoxE4e#y#W;wt)~4OR%P^h_EL!88?sTU-pu2NOD`@ zy-Y4DE%v4KKQi*CP87WDR{So6KY=mw80vowgw-F3eU}dqQ9`SXgNv_Vz%Zb=hyQ5g zbcy}0WxVpLw))!)Tb>!{b@}k;JDG+6Xr;5WGQpF`_P64}ED}fIFh9FG{g=<%!q=K3 z;?)8>xr0Sn#mq&!wIUu{8I{gf(MvF}i<2N+mEv|c>d=MXt2_gn)HE!)*idg*XTpC* zVZwADT_G$j@MdQxW{+`yEMlsvs6~#F4XhCGOEgH0m98TgCi0xek#z+zu8p!nIkwg@ z_lx!|0dU~>v{==RZ)l*3Tew|Fn_9weV_!Oy*na+Ugaz@{AK(bQ31xM3XFg7@0U~KJ zczT&G9fx?QsX%ho6&KyA(nQPAI4FPg4#s~(JgSsulfAT?Z}oE~vvY9UV#j~;h2f4deYAIe&x}=2fMFI6ewQaZx3~CwLtHsM(5g@ zyI$zUC<~*v;UNZPkY6l|e*9hMa<^Bs)ulMAJ#R_5IN@zkh6ozpmPiJ|St@_tC{>2y z43X32oE_HUI1-RD;>yzoT%Lc@}%>B)t7YrMdk(Pqg%Yj;;hO9%mT{`l(=> z;YBf;$86@j$fm2pVvJ>W_PG*03X$UrTgrpr$hYmrOq$}-Rr!^hl0D8CF}R89FQw3U zTA`9Z?Ctv!D6!tnr!9@#ToT4S4Zn|#glzYdA1em&Y)567HHnB`X3zwUgb33iRSS&7F zEmDlZQePY8q`BG~+?Qp#THc}aS1t!}--S~hyarUzwtw8gla90&dFVkvmL|S*mjw3FP?LE!ynLRKJj?vGWRqt?_;p$hUfFH5wOoZhzqkq4V)N`q_xkksFVuD>= z9L>Dp~g|;l~?D_p}*3Azj-&d!|(G1?i{WZ;xp{wFpQzN^=LqZ}2~fi3n($ z@?zl+jJLvOd7Ay70JaZF@Y$Cx!&pit{IzF&Kj|_)Uk86+b?@d!)>TETP@ZqzdsjNq^h#*`lBhN;yn!socxM+vN16+ zm}uJ=4DNq)Q=tOLM%MtS_NNBf>7Aa_)Gfbrgq8^H0Oj@O0e9e(DxSSE4O2IXv8dFsnbsJ*QvubN?WD&K0}8GsT}ufYCynU14U z`yYS*GbWo1aP&B@T>(ql)f6dzV64`GS!Ji#J8_;!ecBYbb$uV~-pTk>Y{U#8g-~@~ z-J_DvAzIb0y$nki+!9FIw@aUcY-Am;k@?Hp@3*pd*E=&LZC3LAPQlh|vuu`Ht-qkb zERB0<5C53+(nz`7Zx2XB7nQX+2eHa!F7u+Si=o|t0yaVi;ug=I1%yDjNLN89cWZ#sWa z9&MmPF$y*=j2{I>3KLmJ@m7XPk3IEQt6QajFI*tG0)JY2dZvuVqizIIg0W8fQ`@GESo#cNGVx)0Q zUp7R`t%C)GL>+fr%q$w5QK4w8{)Lo%u9n7Q`k6L&fq)anME|_ZvaCA4#HzTF)V)xz z;KAiq@i)Ds@Ulc*dkBbh=2M9eSw%?Y1-=8#Wg)q;+y^SPMDv;8olezia|z`TDVRX{ zR{WqH$Yq3ea3-awGf3npl(B!$TcvJH=McPR6w)K>s}a-Oh`=UdgZ#>Tx`UZ#kjR%z z&O+ESGj$@SZoE^{hzTT8sA0ukXTR?qmF))uIFKmAmhq*+Q!a=}&Jq-zSNqAGMQ8$D zyfBuvu#%}!-ZtWa1&G72{%NsfUTa-MYM1f(>B2aN9IN_D#`Q5c8@7LA9U4C1RiGme zS*XWV4E`|!fCAfjV0RodC)4T2Rz%(b&{(Q>jm-as$)i!&?ST1_OnE|Dg$m)K*qvP1 z3!QeK^LPLZmi)bfa{fP$xlE&8K>-eOziQ$f+|MzbnSxp_q6w6h#`*?*>`-!_ z2g?VL66x7SW9md7+rNJ`5AN&CNt=5>rmB&FTRfjQwj`O2fImQA$}BApU++{Q$Xpzt zh5m4(O#EZPCYD3YTXhePh}jA2;fc(G@s@?W^BY;w7ghrrA_Qa10%ZXhQ}iBVn>`_wVfb>7#%25qiOD!Ra}Hq;0&) zTUgaP08|0KCMgj0w6qB=IFxZB~@ThA`)-6fxgk3c%9)y z(r_00c|3(&afb^vV#H7 zR$ypgy8RD7tm5mJ4Y!cwM{PoI^B8Nneh@x)H`o^Y1T*GOH7?f@AhkyeklfnV&uJ=M zM4#6Y0irQ9&m=k#(y6m~uNToz$~idLt`~ja(WpZIYtF(h+4y2uriAO-mwBQZ(Avd( z1%so2lqY|mZxL9D>d`uZ~`~vC-7HubCIc<5|aRbk@Kx!#ICWz!C%+iWGGob@aqjr?R-c)O8Ry zQW7_Vt+jAd@uUo)G&>H1KZ?6YQPU1VCT?yVB(IU-Oe%KrH$z!^O_MvOs3D%=iVL}I zpZ1^KRUQtJGFRD>6Wl|+lvoG+#WuhRWh!ix$y+x65FR-Ut<2qM8VP&IQ!fdgOYkc z$parW-Uf?k1wNPNR{NFHg>)>$Mx2tVTFIQ4W-LP`^YJ4r2%6nO*cft9rIMAc+7JZv2HDVA%cW(?NX`OQ>B-4K_ z2znuiypoL)Kn4;|yJg&d^235yisS`1yp*|g_z6_iLF#PL7rfSEboiCiz^8u^58&wx z3_*ir)d-4nCrwPH0)2fsYo;)LIdfuzuc>D;MUJqAGy(dA&+5DmP7V4KyRrW4c~^Ws zhhjwe=s8ouR9NA_ZLUz`nVVbd;hTS0IObHf2-NlC(#zldKiwX)r0LGkltf17oISoL z1@qj=myVofD};z}ozPXJg95J8ZKsX!sA(VPE%IZ>eD8)Lt=n_=_F3|Mv__TT9BAz= z!fYs{1G`+g_BxT#%JrF7+F(%2Me<}2|8#(pX0A+YJ(x6^Tuvu$JydYDTHt>`bo4cc z&F>xHu|qN}m!C99RmCvFki5sSz|aKv5Fu3+(4QV)H^LK_y8AT6{42~jocuVN_IX+{ zlMRtV<;?LV&d7b^*M|!gmglxD?@N+qsV2Rpu*6R@L} z&jH!$Cim!K?{t`gC$(D*M2jSV7rT-IL9S0D z^PgV`ycsj~+Rv+S9uJx8Aev}eOiehi7sRXkayB4c-wUP}M&hEvM`!AW%dgQEl{3|s zQcTa`-wi((Q3KIaF5ZoZsVO-X;4-x04LqkbblFIFB};)5Y)T8#**SkhwZw}mt$aXK zQy#fY85l9;RQYLwt%GV4TjfZfitYR-+g)rqwPx%~@!`0W56HO$fs((9R z4?3ZgX+&`1(49R^wNrm?Fs0#jiz%obMQ0D=RG+xI2&Bxg3?>#E0^=w{o}oSQfBnEr0BT22fa5+aOF4C}3y8jQ7GEF6#wIkl59AJzu9# zYSlTOG-|NZfO=(TgTWTekl)mXst0J3ar|JeP2O~%}X>#m5vNFgN{oPK7oAJKy1_j$pD5fAmy~vJS|bQnIqKpa*1mN z70S0oVEI@at`mRt!)?){Rf(p3IsklJ^ceI;vk*L!@?9OX;FAKcwnT>HbQbK}LefmQ z5^jSfrl2G$?-L#P_3E|YS+dITMgOK^84Weq)pC{NC1K@-DmfslsW<%u7|Xswz|Gqa zg~}dm>1O-8(i%g@_1D_oHi^y$BKp_QOPYW&hyxvw4DEk^Zm66r^)QM&KIDFPSB)_y zHQ@1NpeO8f-eXrF+xeamw?E?wV_a127>1(WXWJAiz3iu}7)&^23`PFYX zoCk2TFJ?^+u&+UVYAj&D*mRE^_G^rf*a5@b zs9`RcaVURb@~plgSO6|Yo)|ImA50F2lzd&B1{@N0%9e)Nxq971M~P^;!uEp zo19(JDZA`)Dc~wGS-Ji>ZX%l|Qg|jq@~pT>soqpAj7Qh$w*z|9(c@_DPM-5=Zoh;P z;NBo?MZfcDvj*4F-N;}}Se_pHUR^Kgy1%e-9UOlPs{mm@p1;bBJ4TilvKJCF=TtL@ zK3_-9$>JP%y*+_mb7||#Jdgv^A)|F}x7k5}>&P#1-XfCg!p$ms0&TlXVGQBc7hlwG z8`=`O^I@EOEZXHn*OKKKSuqZfq@JIv==Vg=o1JN0FGbZWYBjT%TR8E#Pju+$cKTRdNzZU(q0Vxjp7!fbN; z=HL#ab@g^Tvl;BB*$t8esZj>k#;n#AB`3Upwo^IzF;mFgQ3&cB;yye03{)Yb>B$FI zH)c4Eq&I17lHS*XS0ewGGguM`qh6F^o_s06wT0Gy<&%TXVwtXJ7g){BHfH*kRMb&o zySE30>gPJP1O-W*9_~r)n=I7|{J;f>1X?B7khv)6v$>FjZ_?!f=3`TUbe1`(Df-C=_n_<0@ztu`Ti4V>%b3?FmwT$02G-4a<(8- zM+7QyTRV3Lpt*(9d!GON1kf7O0oeHXco={GUJekoF?9eM8-f6ehE5iyHt!jY4XpvH zw#GnHC-?u^f>zMN$;pnNg~ip?mD$k7k=fS4T$qj#;0koI0H~NcnmV|cngISP8K7in zWBTvXm=UM|Y8F7pe>qfb&752f9ZUi525X?PDai4Ci8IK=)B*6G9iS?!08q9w1^s_3 zSm9p*jDUY14uFlB?Z4aod-Y!%0YQH+HZ(T2wXrh4pF)(N6%w_X_`ApQEt@(9X$`*%4^{SB)%xZS#K2 zk{}atTN@iwkdq_AU-~3~4yMNM=k9;b^6!Uh1+sModH#pYfFKjIzsfLiwqsET0qvbl zWhMR{^KL@;V>35(0&uaivhuR?0Zi=yrf$X-EPo|XbGI}7+sXEq`Mm~jPdi&XfZ2N) zrrtm^)Aug~Pe(%+Q-G6$v#Gb|KOO%|2yAQs6QHpZz{u1b2txR?`@7lH>|cNU{`?() zZh+6M@9oD1VEya!-(Py~9cE$+vUdLy{`Vth(UJT3QC^hc-zERoDJEv?2JmF!;07?U zbFl%~*jPCLJY1{*@BiKBqapC$I#~a#l?9pE0{H$V_x+syBiZHOJwW^K0igr@?_Nr_ z@11K3p#9V6x~yER#_xaF{y%@W``=6c|8@CayZpa4`u|lV|aWb=V{>u(@ zlmfb$ntTL08C(3TYyM?d|7+f?fgsb5wvNER-Z1a0SXuv%?|sOOt=@m%B98B^`M1mT zeTM!wuO!IW*5t2YW9Q-q7&M4eJV{%-TrQ701Gq7*6Do-;Jrp~ zfSIiW!e0-Tn+w1q`j_cn#0y}N_(OaE7Rmn-4=aF0>JPC2Sfu|DJAg&z4{-okWd9H+ zfJN>PaRXQs{typIj^}-~ z+duGKwfjHtU8Tq0_&;-C?Cjw1ekuI@!g?Q)|M1^8kg2JgsWHOhFI!`QAj|ro_WL?f zLRY5U33g88fy;l0YdFmvNqm>zp8~`MAFenGBNs%wXZIo>HZYFZ%idb7v~XCh^w+)8 zBl&R_8{47HjJ6rQCNYE_j~o@8+4tnTx^%v9fK1GB&RSK5T(3XO(BU%LU+m6h9Y_mO zx7OTMTb#ktG#@h~K}6OHLilYsL>e ziDgzu^fmc@=<2g08y8?F!@Lw)4+g>6*kiQ4zV@Zr2OyCEW{!gZV(A= zvb>x!2M+rXB`XsbnJaEm;Y_|@;L+Z=sv@uErdwJTEqB{Shm$l)H0j*D`nG=21SiPr z@wtI&t3j59PF)e(&rn`s-mbY6Gx{T}kQas7;vP!3!j6XE3%(qM?Ij(W&fyJnHyEXQMF4*- zTA5anP$VbMeaLj>tBJ0~*j>i(m$)H$w%JclCz8&8~0)3-NOAn@W*5 zp>qk1<%Y=Qifrof*Cq)V!^s3Ts$9+lYLZdP_EV4wOV%7IMnCSNXsr)Eu$P*tyvlrq zd^vT%=oaROnHc?C?nxl+R-5<^#Gj@Laf}B~!i;nPn%0KIE1}|V(-`Z}V2zxDJ`#Y`}@$R@D z1b!$2yb&=PNT@j#C%!P|?c9Gig3CKFa+aYM=|dP-0ORiG7b9$NU&H)H6t|9hBw;zL z-*vlG1~O&Rmx`pwRNI^(>x~-(2-gx(pDatYmuJ}ego#xjXq zm4^ZgC7{x`7lXLb(bL5f$#^664x7yxjqyYmdx^4aH$-Ajr*pn{TK0cDhzR&M%2wg# ziAtBnZE1h(l9$IGE?s>4*0(Qq>1eRyH>JtfB^p{Q!7eMge*B_&E3cIMm7W7AO63#~ zfKrYKg;@EmkJ;7@X|s=Fh#FkA%|Zf<{Hl`6GZ;iL5P4e`P9@;UEW{taSnI7Pniv~& z@YqtV4n(>a3cYe10)6(zjR+y=AC3)r*v9e^(U_TJ@H-q1i%P9p;*Gzq zQ$gHzfT;DiadZHt#Bz>-v1%on$H{F&|0M8f27h`>i%Q}{Kd+Lh52ve;9^+6G{mEf0 zC}2gp3DA8e&m1^!^TkG}C+7>vn}hler76Z!;i;|T93>&cMn4Qua&OV5*Q!8FJmKzdGl5iLC5foD0{C*;U9Xx=OzhY zq^ft-y+T;BQN{jj7F6=t41fqK0R05FA~4echNKR^B575}`Ap~pHGf7UuqJ6b5p*dp zm}hxRQkP}qz(&eUA_4^To&MAj!bRyb8BCv@_|?MN%dCHR9bIF>0eXSw)IXG4(6V3l zyy>rI9WdJLWe2ccOiA4(>KHo*ucFX#2lZB@=)ed57ohkdhA~PqqsK&LONAA_;urx-WtRIz*mT`?7!cnyY zvD*OV>65v(QvS1pS);Kl!H!RAbw{9Bg$SHjei;lkwbNAb0!Y8LGB?t0`thg{vq%CA z^+k$Wc6RL2ZJgNjF@x&Z7<(Luy?utT6|@`DJm5HS~jm&K*N$#!R{J82~WCJeM$>oNHWzhr+P zt>cWfcY%y_vn|`sh=RxNV7AxJxhjL35p=+|BLTfBN1ibM*gPawUKE;?5=zHFxO#Cx za|o;rLc`llEtWV9{xO!`^U5&w%+;6lh)~S{#6gV&#LKHuT&pS@>Wzp!zZS9Ws1JF5 z6F)P@seftyj3;2>MAX(-ev0fv>pFi&`T~OJEE3)Zsia66L|b!15Ti*Q-)VyyKrIeb zc04mMm&q&M9aLW3>JrgAMNdf%I&&-sjFmxs6wpc~Y!KTkGQG>O%%S2j^NOJ$x}w|l zQ^-Ibi26@FWM-jP6%NB`R`Vw3W~54Sr@xN+?wWP)Y)6?=xOci_N6M}#R9t^`Ng>1s zGY_}y&mKulHqW2#Lg;17>^;5v z5J3o~t&Th#kJw57xp_K@6IT0{(ev-&(j4rOLo}8lfFN^f^QD&#)0_^QIEAC z9K+&#VJO+BR9zLwil&jm%t79VsB0XQ?DgtI)J*4$pbbtMr>@9uf53lsJ*7R6JoU-^ zW>&IBfIxO~W2`xsw)m|lYjdC)g*V*J8!4>*=SW{e2c15-!(rL<$;jiBld1ux28TSf z1z$3G)-h#CM1GuM5{*rEX$SL}_i!*D$>X;6*P?^vl%EhjX-q(|=f{Yo8+wK#lg>>) ze=S^F)x<+7^dE16e128ZrKjZTm@Yr0Fpehpc7BdUaHp?@ z7Wui_kRUmo)5KyhtfTb1*(9+<(wICl>%g;tht@|E!y#rEh6dt+N>Sy!ME))rai(z|<;uhO6Sn*~{ zwh4bO1G_jXgZdx+D-wbRxosHbofh@S#0Jtv44yfFUl3c+O1dla4=0>o9Au_ne$`3S zl(ZyXe9EGxc&_e{_~G2;C^%J*^`z3Mxov#~N7$TdTmkd!CI)?_BccF&-Ve9xcu>|t zJP85nplZwPz#T|GGG!kVg|@vmps$zv?y-NUPZPR9qn<2AO~6K~2(d-BbX)8P~QXqiT-B(@B5apSL2QL%rH zE=)7q9}aanm*1+DY(CP#Y5k7Ats_`pE$H(7?(02nfWc{DYaxY?%$F#xr$rNH=f~+q zFf_Vw30J{yD8@q}&l53Pj}F=azdKAOKjLlh8yaQH&DjrKVS@3@Q`$bi#7U_Ua56z| zpf@CsI`csF1+!!~RK$K&-ug-hBc^{q(TUWGQ(h9IuEW&ap((;qE^e$K8_M+ z-DIH)binKT9ZQ2bt)NWTkSTur<0rVU1PomCGA0hQ{K%!uAI6DWBuCjIlw?{T?3FVRudzk3ck(f0qZTkpk;;!%-f1rPb|Ef#1{bSFa z?Aicfw*>t&k7n8O4wt`2sdVAerDOTRh5g$uoURs+i%p>oWD1>Eq12GKDxG|v z3mgQ1*I8bilrtfN+KhkSSl%CeHj3i@A~ZM~LxM1F!_V=s6tA5kPlx7iVb)+?JZ`aE zeD_flHDGnwn5JEoR2`QID&8wqx}k@6DA9{$fSlxew<588b+lEFEC3=YouJzRsP8xB zX-O&}xGG>5(AXT@=kaPOI!qDoR$3=;xbIbcj!N+*yr1T)^G<(uSb?bIIka?oJy8w_ zk#pBQ$Rc<>Z(`h=bJns5xH~x?mQ5!nYTbKs^?^t1zBJo{#68j$OswC?Y+&n~?%rV> zFK()|Dryc#LQhupXl#^U_^r}flZh5%qbDKfhd^rea^~_uHf(F^oR1yyh|9mKK6%>A z(>#Y7-$Mn|;%|RaIXe$`VjeDGnn{dyk648zD*BY zqa@WrrJC8yWc6!|t+@k-8@}~&)N|zBV@u4jJ&t34^TrB=q5A=N@?!21D4xyLKttMcsLGnjH<7-_*+Pk zdtxq#4PbxLdPt&(mC?NF(K5g5-qKF?AmW*y&_{h@KiH_*xq)s zXH8S{!Fg8ibQTDY^WrC^V718#3=AS%q2cxpeEScsBQgVJXD7kwVJc3u@u*+M$X0E?*DeVlgf!8d_B?+9jT zZDECEST-iy7=$d0miS`1NEr`DGw#jLEhUPU#c4EvCHf1A%S1AqoOZjP=S_`ZKp z2(`lajV0oFFh%+>_c4Co>R(iZa1W^CtcJZyX%{P|ep|#YjK+qbJqPb}*EO*@p6`nE z=INxfqps4v#+JT9vr&f< zx3lIqCkkrkWUn_^A<_NCc`BKnT1S6Ap{2;!_ED>7n}d=D{n_1kMXd8QE)Fi@hJ=ST|#}#kQBX&m@XDeq#@H=c# zuG;M^2g&}74qWmHX#Bq3;*;|rPJB_5UuS3zaD*e-2Q=ypn-!9^_V-~gNWW4LmRaJc52jP^d)wPd_+>wxvIsZ;5Z%D zPGEXv<@n^1&sAiFR~o7FK9dFe(0w;sxDuNX{l(l$DNG}|wWs>p>gJCy4Wk}}O}6?48}&HNrc$KY$(DaPF>lL!$_Y(8YpG1# zs_fzz{c^}l%>gyZH-U=fE+W*sP!>{gGplC5CD#usTgsnC^5Y}mS+GLf&r$2(-GSSm znBB2Ib)TTXV9>WF;B@&2Du+cR`};%c%d4S@Z?sIER5{Da8q21Zf`u(|3qeCVs$4I}$ezCaRRU)tQs95U%{3LfHhGtnSVQ3g6 zkDpAR%-lj+=uuq-D*#*zxnaoHI~Jd;V~SxA=_mJuAg`85O0ux4HD9$wRZ1wE^|JGi z8zp{0Pe(YybAC(^Rwq#I7pkT?$14d3oumf$9dA$}SrhT_Za@%ObujBB--lHXPCc+A zq~Avl4v>G~lmeR)x05Gf>8Vg~;ny1a+^H`Pv*x4K>)%fnu$CzadW@@~x^5^hN9SWfv!J zyv`K(NYYhKh)~o_+S1CEusz$FhgEg1d@!)O9YcS&2$XIj{6uNPH1?ys?zsV61-8O1 z(kE^}H*p~~aumT#gFR$A9j%>@$yEKDr21QRgd`mMAn}?_s|t14_3#G>tQ#cBpte^N@ux|I24so2h5%tfTuVLB0ikzc4w4VE%6F ziQaV|oi!-=x0Aziw=yhlHq0Gr`E0*bTqxEus78&l&vhuazdDYvVL?cwV7yWBeLRFJ)*W{Qd!qHUXuS%Ub7R$&_Z47wwtsvcfUU9cV* zYt3DzS&XMVMBv>3K?GPCLn&khyhC1VI+)$nYUVKA`RV}03ZK~GZ;8ShyGH!u0cC&l z(VRz#4tVMnx1p3lj*=*q7-kcHu-B{fg;FM)j$>D!?=FlkbFV*9s5Pv%GdbYpTK51s zuW|8u%rBp&@u+1xyr;d!U~jipKgKDSZ@(d$+9sh9v0tT!o=-`9{mP@J%vKicP$cHP?fu+Z;OqLBsM@z|L^UXz&dLceq{^Q%HBojS#gcE!4;0Wj#Le^4*J39#jvtAU=Tv`5Rq~3eNI;`4ZqukAsm#4bHJ#W|gt7{)}vjcQAQQ;>sp`^@j-^dKaeRD#FW{sDeR5ImV|+e@ZwdYH{PY4)@-e)_fZmvq#JF<6DZ&>i-`GO z(7@-^auqRF+5wiQxgCG1?yW9WLhmrJ!TU|cyXwJML~ z;!k0lR(KqM_p>(z)0Q2_kkqc?&5a$z6C5VKc}zo2*}OY@Q)@V=g>@0dN$P6_)$CdO zg}IR>d7RPwmpRE55&fFb*=V`Z-D@jwV5?8t#8aEcGis9E3tNAy<8k?rjv}td6q0q- z1%nnm5WmRRV)GYASt)~Ez9jL9NG-0KG0G)0azGNtUWAp&ys9Cal&&u#-b5ybS4K$Y60=Z_9w6VOQ zEgAET{w$}(t`C_+N(yxvzp)^+NTZ^~mhooxsQyKIm(8>k#lUsciViGsxP@fe53lRY zSyfD(^h$qRU8u3KpPP=P1!K!_Hj#~7%WJn87F&+c4k5YZ;W+U3& zK8;_$e0MGnNy;)05#Z(~4BOx(p%}k(s8U)7-L)@bTW`U}C{&W~pt0kLknlaNO-PPi z_66Kg(3)L2FfkGBtKh1PIDE;MgG_9lS*pY4#>Dz4`1ZUzh6SPFOmb3TzeN5kGCC)B z**|~jHF(}SY`j&IVBnUdO9GjdLkaB(sT%)F@9cQrN&FAmKAD&FWTF;JdUgqzxfM%T zq17|eIc*HmY7wHA%DS(T5ouN);yZe+I3U&j!achQ_;a3^V6zueT(Jy6A1sw^QQ%>> zFv$%ryAYMw3F-C3h3^KMsS{CyGGHj;V4Z)lvTrvxd}vh95YI-X)bP{xubgqf_xj3k zmc|k2*fzi5w-O4#q67DjO$`s>lFAAE1Dg#aKJ!AyES#`lHQeH`;jXhy;UvpT_KA4= zboljo6HgqXk14ki8kX9LcPCpr)Cdo-X^*m;={jPSkamHeGRu`ji3s$v7pM`K-9&%; z>KlI;Q3V$yQWd#wr%Ym*2{4+ETw^XW%_+Pt!?!SsE+~pWK45a~c0V*~C0WhTrJD`` zg`G!QVX$!z*&t^4Y4`AAiOw1n`*qG!49r5Ga5Rh**}MQ9s_>}Ovp(aC`~?np8rs^V zWGhfoZuxV1^ruE1o2tQL%(^dB5uAUMPGMQ4!c7TGyLT5GR1=c$>=XgfqRt94Cen4h zSxQgS=XPTH2qfP-vI6n_7iG;^XBD~H0DNHJ!bQ-{=XWr$!K8=5mEuwB4=+i#&rUV1&htJDu)F=eIUP#CGdsfru$ZUP2*snSKOvWqAcU$k*M zj|8J#xbwfTeQWF(i;1w2YuCo`H}ISw?w6r^xQWEq<2Eym?gMwQz7T&kdJ`^YnEiD2 zJ=^4d5993EDGZoBE$u#%I+|VG)}uIw&wXCJ)4A!*$3z@=&R8z+<4F*9Qnzf!ljw7* z*Ei_bQRw9#)tua*2-4t(zS^qYimUFphs;%Yi81I2P#P9to12|_fmu{DgW4p!Q z1}Jh>9QDk7hkerf{9b=sxX5Cs0ij) zY{ia-k)pJ@|%b}q~QDR;Z^)hG@V%q>GfBmPd|LXg8}D9d%olA@i@E6%nIdd1V_ z^`E6!gfZ;FhVRK_%p~ju9@XKE#7Bn(Mk#k5N0EsSR!R!WKsE-LrxRJnfxMoH)^|LqQIQfAV;(%&Wt z0)@$*#w7?2QCA!0q9c3XsBY?KUHq_z!^2B6le(%rNvcrr@B|+M^e-&d=I1%y7?DeA zif zn^;N}Q*wXzXCmn@H;cH?Jqqin%DnH576~MC!*|rC3d2)x*9J&m_v`F%2ozm41j<~C z>g5~hjP-&y=%;?n;O5zGA{bk$WG7an`B^F+<`DXPT(2N`MFDegx9X}~Ja42rywyie zi3NCZ;~@+1v!4ykw~H}c(o^Y;WcrcjecqDC#=n2^ZJyB-D}sBh%|Uq~<2z(ljcn$3 zVKlmu_(7&kWjb%E4DEgiy@r*=39Gv7w6Y3jnplFf`+9~$d#~k@Q*l%^F6b4DJPNA!jEivLzE#+U@kn0B zf41~#76tFu*x|ML>dao5(Bz0yAI}C&8iN=g^sGFsgM<@UlelZ00*g#Hm^EwR*D%u_ ze+n)cw@)D7wJPt@-=XT4A%J62(1?Iz>70Ks*+($A;>SC?MU#`NhrHwV&6j3am6aVy z_-d&=JFN)e446t$?4@?F5G?FPM@V$W%h@;^EDx4ql3zZ-ZX(?qy;+<_cPokZi`)TN z`^@XB-HdgmfI|<=Aj)6IoBAONQ*zZ%dgV``0mbdu$OQZ8(0Lj0popHTLtdE|By4{J z)d`xLt3GqP7i!1@dMZrT6Z;ji9XWL=I)kmwYSu?vD{r*VvQw&58}9giD1BBJqIsy= zxhINZXx|Z`aidqilLgsObDSh=po$T zUDR8AlUKs0>m*k?(QC=cZq^c}3^H=^7%lJ-8*}iq@Yss-5wc@;9P0bL2q5FWGX{;^ zhXDB7Nz5B*$Uh9ymyG%3mp6Z_YpG5$0ncrFk^M!4&IPMrmbiq@kH@CgSx6f>h8F80 zHwgPekyvZO@x*`Z^!w$tZDsXQXp2%I$TlV|Z-ZrBPc5lQ)h#_IdY?vMPi#IDMJN~0 z6;n~FIB06t;=#2)=G{lkEmzK!ROe3tDsqZNNAdcz$>M$64| zeLuz{JZCuOavM0bFPR=C{%b!{(My)dh4RA?@tZIE4f^fsmd|;>rvT`j1)fZlay)kP z@cLVjCdvdpd0XC z53xh8k?1gWeFEA?lt+ILUc@x|DBz0(T^rMobiV75e2Gdo`TfSc8w^Hu+*JS>Yq zDdncG;DNi*RMnm*Juu(W`Sr61jYQ3rbP?Mr`cKP`9g0b-ju7y4^Jpl(2LtT5BuZd|RYSFM1!i?D+8 z^4_`%--J=h)qceSr+BS`aLfp>Hi-T~EcyXoO?Tv(au3>n?^O1DeVmK}t1x)IGTu&5 zqj{G}k;pUO{dYSE_h12e|4aN=^Xgf+8=C|grNWH_EMtFU^^+tCCRNUcaYgg}$y1P) zJ`WC(Gsb6Y9-QGMC#Fx@-Yvh^ogXH>8_!K&P~5#rO1Yo5D->&Ar8vvMCeCjf%DGFd za6eo(BJ*T86CHJidKiJ{AYE8(aE0tJqi_1irlvR&WzI)Q)M;-HHAQ+7A+{jc9F)Cj zi{5Hc^5TCpqvTmk)`D@mvoAK(WVWEcY)|?E%U`@6{_YCuXJu z>$W+0i%nehFEHd*+zeta#?N4ip{*?$8hW!ek5Bgo09K6I?1pKrX;C=i44RJ%qoDyu zuB5^thKmNhQcUJSa!9goq(!1%Uu9ajrkhyMVhn$>c~5ftPsu%HhE=PqZQ{yQ2(gD^ zo4j^LGe8Dt@jf>v$)B_(q@9_Tl+0gSJRJ}j;Azd+P@;;pBMhcvq+}407mf4xr=s#1 z0uJ6##|>WR_LWuRco8r*8QqrlCU(=j2F)RceYNFT0lKfX5BY41%jrC~@xS%AqG~|S zhcADjgy~64Vmlg}<6|_|Nic%O-z*5wVj-ssSDx57U(bv_;Pr_>m(Cd#_q(4CRx4u_ z?CxzjieG$1ErOow1Dm^oAB=)o-yrYpJ-1#6hXe=A7V|=7-nP+y>}08Q{zk!H5Je`3 z+bMC?a!u04P;JKjl5*tV5~}D3PIQX=suh3BMDl_~6s@H>;McRDIN=F$J9h7F#fTr= z%-QwEJAnwc?mr&k$97<{Sf8r?BsbLOE@k;hCU0&PYH~Yul;>Jo=t?i?VS?Iw6}dpa zMJF)yVWw`TYI$k(M{%C1Od>qiIQ)lDS2*ZH_FWWq2#x4IPt?$t&C6P28Z}wg3KoCj z1XEUuoO@30?udYUsyFIzmU_EWZ7Q$O#@JxiBpoUpj^7xhBXh7S#iKBOL1>pqV^G&c zTt^G9t3eK9vlUOcf>gL)zx`%U0X^A_RY)aM#uzL+Gx&xFm5)AqAc@5jA%!-VdShLn zLlM|d_*!7fOYq>hQQG0|ZMITlJraNB)AgB8cVG27iz_yxYkD(j2wO|`lq{T0cQFUB${ru+H z2Cwk6)9}lU(hOTVNN^><0j9&fLu$15j)Z8awej|fsK8qj`qj=0VOU3Y>N_=BT9#v# zDC&|A{x?GNPYIe>Tk?NW2?K~`?g)>P{=W41OlPDR)A(@87+l~Drm=~OsESX?lq#jr zN;j*HZi08hLIm_X~rNaRjkw~c*Z8u9|>ft5hrIEW3ilb1j*f0UXQ?erzI zUs`A~hVWGzb{O5lFEWn!-`NlSkk$#`ki54j>5H>gT30T%T1ttXZWM?5k=A#a=wBVeTd|Y1O4-juO zNyg6*e$qWOZn=M^2l=);_EN)(+j7RaJ1ucsOaRy6T}>ELm>u1=yaXN&td=bGo=+ZH z$9+T36a9jXYoL=LdMcn%NqJ7yhJ;K4zLke;&I^&DJ6C%4Y_Y90YJCtHcB_Ux56-7w z>&$I3(xSJHohC;1sjkl$rN(bu7ynG$k_qE{SD~-;$XS2?+ZQ^DiEq~8))5Xe;;n7u z9BEB%8JNqGy0D(pv?6eevdzSv%rmfe#IZar+vzQQYmmh4>9j zHfQ$i!|!>vVO9jXV&5p)gP<^*Dn7vqHCw{JB~Gt>y=CXY``e--#ubVZIoY-w4^P4kJdpn96^OyGGCQA4tY5);`1;neJtbk=5R zXo75RJm)sCn3Dtb%^F1z*E-rpb&#NcZTgr~eB~?r6nLs{5d@RtlC1cECQg54AKO_G z-n48;Ng?)R-SIHVt!rC|1#3iZCN6RUvv@h`bMr)^$yCi)PzZLp&ji5t3(aur(I(v} zR8k!EKA}EFcvHF6x<)?FG+F(u^E8`LCojl05xHGc)$Z`shoUhQjncEnrb+4qM>uvZYZydK_3%@Wjyr!jpen#Hb153g7J^uQPZ201G|Rx9o0pbE{qZ{wqKg+Lcp}*NxY)4$*ryR9AU3?@S$cc6bo=AtU`9;L=w@Uj5h41_jPU zKqQ@1OH34U83OSisSLvjqft*_HX${;-8fw4Cxj>D%%5QM8yD3Lku!hp(ofU8kuK7V z4a1T%a8Jy+y}ZT__Vwzd4|1W*!Vytz@AKoTG@{u(jTCfyE*gg2WX^sw?3g}ju&)YQ zw%Ige1(vqqTPIAh0yBuqzR4ePeJYQMYw$+qP}n*2K0m zF`n3VGMU(RGO=yjwv8|Me!t#(Z*|wHu3gpL`~2xXd!4n{TBv$8;%Q)eQ8olxuUVeY z3>n&oCwB@b3dSHd<+NYAe26AJNI2b^ke6;(3t?k46J}l7GE2iTGoVi_0KwCF^c+)J z{>YacTZ0&Kl|2|3nb6P&6!6i%ds1HptogM@Dj!t(B*-6}M-<%xw(36l!RdGhDny?U zlizUf5!qnr59=VPxa8{Gy9ou>6YTLJ<=PA~BJIj&lP0EF(+RK=pco}Lo1zFgM787p-uM}o!5g@f8O3AE90?KpJJCR zcxQz5e|n;bBFUDuSICj8hq!gcZP6@rQ*vNS8r6sSD0X23RF+Ptyg^xcBK0EIT?8q> zL%3xP2vG;^)}90|U~!efcjLrlE6wN(?hTB@hq5nRCxJxGb$u;L(RD@IuKuy7Df5(7 zbCU1>`I^)p)N<)EK(o7Bycyd*jp$wEP<&vM=fw~TIgr|*Ao{(P$CgE<^T_B!DkmO!! zd&d%1g}lt@_md8OFzLs2Ls`QDKL zDTtCPBYz(E?M@sgr`ibKOsJje#h)89!n(lN`eToC>t2RRv5lC9OBL(49^o2PAb#GF zi8vt$*xy`exX0p9B z_Lk!hw>GYZ@!S2a%EO7~qQUENntdLS9qH=T6ZNsZ5m zYH#n3_gFOyA!(KPqis=;Dt}O&iu$r1K}-Z9n2ly_-C~=M-IaAM{~nNRiUe@V5a%x+ zfR}#D6_Do;N^K@CYQQ67wals3vQ+r_*sNK1ivD1llSAGm=K1O1P^zeHr2}Ps??iMh zR=7<_gFyoK8jns-=Tri?u)dLP6MMg)mjJAt@qjZW{?NP?o1_P)`I!tjt?nG!)dA0V zCi3++kcYc=1)PfXI#Yax;N(IG)HMMIz$q4s>$e??W+nf=oeQ&cxIgXgEuruPt<__! zn`?`S(wT(`8iq51B$MXK)NPdzBv)6Ih_ZH*)aU{$?y1Y@8+9i+micm`^25{Et2@(3 zNUq6g-0X9GpJs1w-xF%j6f(0>Fg>|NsKeEY9R6Qy&A{I#y@4l`vPHWar>i2_&dt5 z-*l7(ac25B7S{oK0Zd1=9sep002PS?K^p^+$GCI>WZ6`E&N#hiS+N5g29vavwM1Nh z&%=espEH#7)$aL0|DH*TMq~YU@((mDWrzJ?n+sJ5@7QUJTFuqh!iu9?Ky<07(Yh_~ zGJ{uDVSHvZkZZp#Iny@ouNx^J-AA5KDd?W#v~BQBpEh^F(Culd>YF|F0wNumT^ecA z3yTJlW+O3xYZM%HPME-^Lto(F|+do0mUT7MGN@nRJEJ<-TPNlQB8`D3dFPxDGB2#tuYFi z4}qPVoq>gugNTcbnSqNtsR|4~4J{g20>H|~@gG7emwK`ewEyb1atw$~7eR*bx(K1_ zrTi!4oso$+UE>`?-d*F>gl@5Zf*;$X5Zcs*4gDAb zi|gW_^YwYa_*A)A@iwdr# zexB)DLNjs>$*@RYAGMXsuI($822ZNPS&Mzej>JdN7&Kl-SCC~FZeayA{L!oY2n;M4 zE`IR}_5|@QUeHe9e6rNE@qvSH0+iXsQyO~i^E&=`9M54ORE@8wNs*4@FFQT2k@R$!G)VGL5yZkws?tmSrMO##)t>3-h-Ya5V6Lu_-q> ziD1NpHA_%wvW+&Xir}hCkU*1;x84{c4dhD~8$s7sTb7?gJ;hP)lk~D^aFs&GjF9ZI zv4rnLwlcw_vZ%6+Mu$??TbAR39*NNHgV1XjNC2k-e&UNUK}D68iP#Pyv1XT0+E@ld z;=w5s$xg^d#xaRKue_Htc9C%hfs(Z1my4z#gU*v*Ug@|vvuDey zIiydv-cf+J&qc_#y$0kkFPQtmG9m%%BG2-BhZY0(b%{MAC~CvtmC>)H`#3@Qr<)wi zOFr)_e1i!Ohp40EV+4#asq){;q}PA|fH}FV5dF7m!({Y^9YM>)y6tU{8U%rodrSXi zNLhI^?^Joa=J{%+4e@2%<9f?B74Ah5)%s;T-&JW2Tamsm3XbLV@x1%uMebvZ0)}m%5`&R0Hg_1 zajfXCiG4vD52>%t^+h&RN)@1Qd`NZZQ?y!8jPS{zatLqVZ9hy(=p`ii!(RR*!zXD5 z=*?2OLVPY!(M{P+1Qt#_|8Re3U1%uXa_jVT=!in7ZpK1P4LCyv6qlu;mI2M6NNLes zd`I|AT30-d`+zeug67Vb$UXQ$z`8!3XIiS;U41%`gHmU>ryPRx$=PTL?#)*DHr%tk z;Co~YQJ$8LJiDNBN8U?4rh)25_8$G<@jfliT`G3*H0p`&~Sui$k)xvt>RB50NJ$D($s zhm(Q2mw!Ly{o^2qnc#K-AgktYPuQsCYrk1@7IEqzG-GjPmd0zlI0|N;(aJnbga*&T zD=!$0CEXVIR9mPc%TOWvcszmQ7>JN1KpH6E$oK4fhMar8GF912 zG&UO&{yL*S{b?jAJg?g}MWZlp_3z|Z1fBTjf&5;zJz=0et*OQjfVn_OL=bIQw8Q|D z>r|uKf-0E=AHqhQ$Y<_%>e`RQoES<}g@?46s^o6kQ)BHaJJueyH^ld5ap+&Jv+Dj- zSnVB97eS4T;0bwntG&; zMr0Afa>n|(-`xlRsBtx&v~K0QfFbd2iFPoLMxOM6nX|%?x!gJ_fS6)miQ)dnomvSh zXM3^#teV0X?5;{1Hy?_@GhXdMMqys5&YONzZLnQ>zRZF}{O7FIOsid^h_awv%Ky)^ zp*5$aL<*a>V`H4q&WWTTytR*`QBU=`efr&vaK=`P$pLa3uoTz+G30e`ZM4>1>7LbU zz&Bfclo^b~v!-Jtyb0%4`5oOw^-=}s{Ol^iB%bOBc)|DR-zYdEvZ>p5W~a3HBZ-Bq z1xH^BjW?duc^uMs{AdvVp5hr7{--=r$VrP3T59;At4TEVjsE2F(gbBVjTCPK) zvumELY)7~R(7D8s?(8La5WHl2m3eq+MU<}sMKXhWoJcib6G(zVBS8XQeF7W?l^Cnl zjk;+Q#FT^i;9)scX|Gu2ilRaFhhY}VP*-bzh(n~j7mu}e=QeqD2021`5y1?jk^s+u z52?2CG*0%V*r02)$cUVjk1Turq7_IQrjvQPDAjcwprk*t5k)L;5<%RVQ6xoPFAJ%% z!0Ub&Mq2K`)w$I;xqA??ZXafXK(<&HD5zp#iAku&hiaecGlFtQ4Ewi=ZQadr2E81> zZ@-4a3sRKktnv7i(|#3Wb?qx~uogios#6j$q{$?RB1Jtxja0b-{p-2|snSvmDija; zu~`)YAkpL`+KZ!sCoE=GC_1#@Y4$r4EE1;pv)t-<1wov)CSSD_wSgTRIMEY1l#QT` zg7?63X@fyI&_IFNMojLE<;Utsdgd`GGpCpU9G&dzV9Xb5deJE#W%%@%br)Ubw+Cy4C6pRP8)%> z4rVO@i~0cMbA^I$6$_T*evzP;!!Vc)I(s2k$~kka{p%Cm>4?$jVwmeb+u0M;bn7tz z_YD#4j zuH0CSkpPsWp2`lUVLnip67Q&hrMHCSkgNMk6eRt&x{{a}y4EdH%76BF>?mBJBS=lC zuZM)dG~tM?b|)-%T#BrgBa)4hZq+adkjg&b-E8`Jdr_-B0p`lqZCpMVZja|r=4 zHGoFtZ*5^zec2DO1fsbTADU4fy{TWOgH2rmSf5>-)?c0AqmG4vjbt(kt%N<(o+CBB zRwWo~T*}{UXAEbrheb&|a^8zpg~~<>XuJo5S^>A0CEg4^A_5^z_9q9pXo711Qs*Iy z^^6cjhmfQ<&`XRE`0T|<&=7*YA} z9Fm;g{mC3tUBWm!->~84ts~oH?P*YsR2(`!RQah7Cr8DbX4Uf;s5_fSs)-Iup z9<@HJfuNv}l-8&+I2&*$CJl(oiAN5+jUQ8BqK4+n$PQEZ39jQsa*uvMlguiygW|BQ zWkolO+LF~7a+zgqVKJ+x)aO7Mc}eE2+BUBBF4hGtHUWvt*sP&U=$FXNxJUW7Z+h}9 zLRMHsfHbz)=DK^xzc^*w9(;v2*wPq3Ud95BG0*b_iJX@2z%{AVT(MN8)3LQ#!?)ik zat_nWNKSkR3rv-BOxbe)mcY5_p#)p-{N~{kupNZyc*b1R zx66)b1*+q!d1&7)KX!5$r9ZJnQ_8S#d1Xvot`o7Ert{=va4j`S+&F{unz}Ab`-aRr zcAQ;Kqz=sg1Qb+9eWIlIs!sapDZ*(ZaU;8H7{t^{ItkvTwBPsuW4wJM!zUsUIVP>) zz6%b=X1|TN9sV+0+&@(?d^qccYpHf*3_lToh5rWSzwIge@u!7s!Ta$vZZ%b?; zxQN5@SiEr_++%zVVAZo;vvxY(q{^~-i-%+OApWy$2rP=%vMkvbObRX<3}ONg`J0x??w#nN)%J+V;y6Y;{D^4hSliW+DLz9rmuU-Ou&Op5a~YF& z$S?b9l|+6X)auvW3b&FkINdnE0NC z=D)HX0=sv&yJ4fYc%B+%$`Ee2;`%-WhQ`z}8X`3k%Ujs>fFR4JPG#*u-@9PTnS*}qJO18#8@RHyi)kP%VfF@Z|`83IP(x|Z*Y5DQ>T9EGtYm; z*+@%Yv6(d;y@Vg?0YoD)^Tp5~@h9he5mZmziRJgi7(&pdaB>)>NqS26T(GNvX}oRc z<#I7k>z9)(uLtM;A#N9{2xN%l%1TSu?+1<^{aBGDfDO7(QL!x1IXhPyb2f10ut1P$ zgMbmo3_7$cb{7=7WgNCnW0cpw7k5^K!|L4bXikT`jkG9N3?dv^v5x)w$zGJGD#ltr(JLq&yw9*f*=FTEH(G@uGQzkGCXDI2(8X4RJk>PxJ|S2P2(o5 zyJXf+ft_d{*!aD7XfKr&pTfB7fKl?FzR~>{Z&{gc*SA>zVX!t_tKG0lMd|gKKR{&* zbGn7j15e-`SPM0HUhf0lkTYzTj4EZqHyOO;fJRRNu_Er9KlI1dIGAglSG;h(u*F;=FrX}-zd=;$J(QvWF2cmz1vieP}jVHAI;ODK17{v z0MLpRit3CqDcc+Cx(C$ad-@#Aiw{ysIzsCLj_V+J~E@Z3m2!YtcisOWo(Gg!T z=6=ehVFGxB``tNGtSj>c{I@S5?_C7WlWz#VKWEb>uk4F0%P+g#1^TeSWZDLW^LWCI ztVQ2{wGsPG^&aD#I(I<-^)U3UBNd`D02b4qdIQnbJCxp|H=>pWi)qxh_v5n5M`91s z^O_eO7{BuBG~w3^&RZeA4MG-MkC1=A;*}5wG{DnNg8M+^HntRR-(k;`1TEZ`RUEg1 zr!n-RZkftYA*8o$R<7u*R`#NW)NaQ7#yg>%w>shS5!~i;|K2)v8gDUPzN~jKrOC0b zwSR6gZg*h81@6;Ep0)!vf)Qs%zqB`@lhWV%I_Bi^OwnYcLU#wzWm zJIsc)OP#lV`Ro`IAA`qS-FqgyRbC`aTU4F$9m%0zlW=A}j&%M!q-={tO>8t3GMZKinuri0qIsvF1BuM1JP<&Zz2Y7s6ExW@Aq@uDbOTf@hlC@H) zI47OHZ7Oz;jKcYWee@M_dFJPzM<6R$dFaUdc|7MF9|>WTCOQYx7H*W@2f@c=-R-3B zf%ljHuYjvjeu5#;q0i zJ##8&%(+Urq$S?>+D{SX{|!GoZj?y*_7OhCsa9I{<~TYTTm)nnqjTVl+qzFWX9DsN zloFgfb=3K)@H1K*xs29ez++&UoMywKP|Z7~X7#gKsL_6NTT*9@>*?FOah-998L+M7 zSX|M=Wjgm_E|zSTZzNATw*$CEmF(V=F;SShmEQ|dh0VIYe$nV$|KSVfZ}WeWriR`5 zwdX2hJLWn_?nz++=V0Saf@p;2B90c*2?N<58lSOK>Q_A%dx)he8z?xWmQW-mtG|(NTaMC1TlSJ(JruNu7GzluiKw5e| zH^?#1A785rcZbs{>=m zcT~dr0_E=F&?roDHyx@?mRX=3HMi#Tg^06Z`LZS#6fn^+i=W8eEkszl%JO~>1honq zt}AalTlbblssbK~nocQ(#Ly$Zf!6X7QGEZF3SEDy4M~vqAmy6(&%`9u%|ho~I08MX zT_>*97C+;6)|}wK$NLL*g`wStOwZZQNL&WS_jU^7Hfa`G{%xEk4FQF%I`x&DMnB9g zM((8c^KbS#Vg|y6aDf=%Cg63P`;AIAdG}KMXD67SU<*LKY{2SaUTZPKM72(#A48Y| z5!r?>jnLL~8#+9$do)ZYnnMU*(+AWHhXe6Q{l?HQSK?k-3G=rxzX^uxJNHrnL8q;{l?wwB-b9rNFQZ z?!E5#%pCxSu@M=m${v(O@&{|}Gu!L-dZEDK^wZm`=EN5ei=78*XdiR!4=s#UYZ2=W z^q9I3%HDZ>;+vx5$_|lSdbv3jNL5wKa)-4#4p*u^?7zLa>5U`*fIRyinyoX&-H^C@ zXHv$&*dP8cM%vOOZ1PJ;U9rsC18179ct*#yh83`$AfG(K-OoaT{vAq3L0_-+dj;Dg z-`FgQ@YGj&I?{OxONghwjH^pEHxasGzgE+x+*h_~x-FGUdkP4bB|WjrLre(90+P=r zLRU>i(5riLx>g@fNaYLO%NPa8nI|)cf7!tK(?;RaOWqdq7;bD8zVBcX}Gd|n`i~k;HdKMG^qdk`k!nXQbx4c*rH;#jUlMD~G zvTZR!0?NO#0#vvSB(r2KyZExgf%W^I(oN-UsSa9jism7N#MdQr^R{BxdfLh|xTguc zF&7*jDw6{Dicpo${GhLb-pk2iL1h2{ACt{dVZrdAOWb|VG=f5mI(vEbqi|W@>^*y#aWB!7cDNmp~F}jZR zBK^AD-a#GsWY)Q{G+tb>2*;7kMX6~Vpq7_s#=pNHDWZC91XOd}RV$HX@+|>qWVi8u z4{R&uUGbz#9Jx&SIW2D$3jdHfdy~(}CyrlRU~nHMEB$Qb_F;jGawAW_lgZEV}VF*DPt)eoH=3jN2cAmW*j#kR2E5}I$j@q&bFlz;AAP_G#>0%9MD?aOVd z?TzU}3P~wo!lI4F4gq!_`s9MsFJ*%Xnin~B!Wt@1lvom4x=g5;Vf@%%pg8{Ys zj_pShi#LZ0H4Wz62QZPX&Ad9p^{Dq1D`WMD)Oz8C5=H;ykDJ%qffGawT_s^8)Ln`n z(i?b)`jfE8m@<}79~mnGXu7C=Oz%z=)K8L3MS*_&p)DK@ing|(5@9N*=C-!b`(&Tv z%)B>8YUlU)OhB>wAWSB;rvBdMp?y^(D*(aGO`Rx=JXgRVBbFw5RL#{@=deX>V;DZ1 zAE=w1=(QfwujH@8NUrQT9k=S!y@2P?r%pY|t@HJ!cW=)cMTDRslJ^E8QuLgwtENOO zrwVyGzkVwA@z@M+IJUk?_99Ccd1?g50(@<-<@GZT$5YL7>e*}s+48W zpHY!H9}+DWbI&tPnB2uvA=h2~S15z5prKHs0$D)yC+M<5A|+^M`Lw#_Wg)l8mZpMLa}=p z5Q>1=%*KC4Oj^6v(K{(KQyXxk9?`&tiOy*u%s&3nXpnaL&Q-YfFa#9gyJj5m6A*7|h*D?pf&L~^a{IsDRCH+r&4HwZ+BI|; zbrR%&Fk#E4n3DwiT88HeNj^n15^zXLv zOfac0Vz#W;o-na^doSSJg*9tL!mI@fYtfus+ z>KZR}wReA**OZZxHvr~*4$%9M&Tz0_;ULT}Xb3*p<5nGzQ#4@~%4ct^33g$*jkBPg zQ+Lo~{GJfg82J~PR>5rCj>i#{4KCZ;9!PxXFWHaDkc25AC^Z(ad`pEg41q2H3c$yC zF2s|Qkc;s4CFCf5Z<2#rb;Nu5H-bVZ< zqc2~fj8Ym4**n80Fg#5Bo6&UQKCcKp<9XAmNX*S+AYN1Va5c0S^rPd5Gi!~dv_=Aq zhho=$M@xhP1Jz>O&GSDNa) zx3nS)eFU@URCo5bTo_RnA}1@QGW4PLP=|-dTzD?8A2IoG{ZYRLeBlus4TJ>=L~k*x zSXyMWoTncZQCDU@m2-+GMHk`^rVnpx}eKBslDK6!6UX?owf)4AFXp=;D{#&Nv-2+{#Id#OpX7+YTN{?ft~ku2jFWFnB`8#I#+|D%-ywWTopj|%# zdzdj(TuItBP(S;LK}&talB$1 z5-TyJ7xh!roz9SEXK3p$n?3h?<)cUh&6Ts%)0w!iu(cnH4;G3`mccMi67;(B)P3vS zYfKB;2v(L3AE9)3fML%kk(%Yu0OP^wB+c z-DVMPe%mM3<*pue!A=Rj{=m+v9v8OWv}wiMLo8sL1))ZBhvpF_t-o6VQ^AzrbP94CBr?f z^482%__>p!(iLx5Txlo*f<*Kd{)8fUBGI(5&_S!Mlm1whyw^Ei`JBb+QqPz@2*4d= zVGl$oHB+TvzNR&d9|R65B;aB_{qx-z>prZo(TqNHY#LxM1yjT>Ur+d>56yT#c=P7r z?TQqaOZJcO?G}nA_-PQJJoT-+`(1PXJyY9pgd<2E=)H;W2NS1teuLruLQJ!%Z|{DJ z(Cy5@>%tCYIg5bvjR8NWGW%C3NDbq2YBC_lH;hmwDVUS&>H6k9_ARvK9$&9*`AZSI z--a^~{>vflzUAgt53qhUCFpnh)i1};!x@VoRo4sdw#H2?To}*=hQgiAn+aaJ`91udL;^GPZ-%ID4tO{UU%`M4&7U>yI!-` zp^r0`wdL%uDdsGOP9vIFP+_!FlMv?}EC4Rl9}mZaHF{gdoAQ{CUaWs$d8;b&Glf@` za}J{wqugebb9SnNXk4dHFDV>&tV^#;i@d2y^D5V>SF0g=#;of=Jl4&AZ4Rea$HZIS zG+&IhMVhF|dMz*LbvZE5THA5H=8u>YI();Z=D4I#n^}5&KLQm@fkPsN3&da$lmSX3 zB`a5ErA@rC1t~#3VH&mvIE}o3CAt_&sdFRb@kL%lfcD$jIqcSBd3<<$!0(TomIm`b zF!#%~%$ZoPi(5X4UY#TEz1>~juK?Rl=@fr%B92(*733=2GM>HawYuML668~FP^c1s z{YOns+OmZt8FHI5Ki;kgO(ydGO#;$2fm0t7d`Q)VNv2bpGK~GC&Ru8u7xFk&dRMGe zf3Fu?p9YM8r}#8joyn^n>Dh({0qys|;42a8FA7msm3*txwGqe=*hF>Yk7Xy{)J|16 zH|POhg!k9m?(8q7W$e#Cugoh7+L4CWGm=KWmRFT6HSG9Am#p2*!*J_lS^+do$`C_i zE)nHBI|1R0&%dosU3YY-_N%??tNTtT)*@2q_T?z(D;xz-M@afCvZ*tB<64OW`jZpp zb8HTz2OyS=^fZOa{aw3kd}!cyT(L_)d?E@3$RMhJ@1W%Q6nEmQ)IjNEFr%OO z1TIlzoh%;I+YC+=;6nM!a=-EXnYRz6v=Y5_-=*lcj6R7)waY?kwrw}72pArEskMvZ zN)b|{;-p1#ni+im+<3MT_2Egw2{qzD(Vd5aSw#wtd99P6 z?zni9rIbE~QwnVmGeQTA1uH67){q1$ZQ5ORIRw{@tz)Q5VRc5R>i7X0X*1lZ$MyIs zqsy;MlH%T~DwqZ)NRyr*yV;eAV)Od+4tcFBoku>A!%0nhvzLMjf{^gKnt0I{k}}QP zaDm=|9Qr={-^W}N^aF$@uOAxecF|?>+fK!2p~KC1ITnHF5et-t!)|UMRoHg?=WG@g zT~V8%_fj}>vkX(#S146Tl?3x=0z|gm#Bm>vr+iMv19Vj=OqLX*A#TCuzOnxmW=wFo zPt)KfFxyc|^lE?+BNt;UKg*4o;M2gD_V2M?1VyGEL@Zp?sRHO+Bs!7Yhyt5ZgYmBd zien1-lbLf1gF*Na3gMREFiEt*130fCHjEXqv_iS6wb2S>O0*Uhooy`#g_#K8Cf!BX z_wy9PUFfX65Cf0di~{)91Z1^xbJBS039x8{h$p^>u2umCr|K)?`_O{J3`453=dWSq@e9g?I*|4nsB=aXaJNRT5Z$r@@=&kMa6 zVi)==aadlWArU3~RU|D*$Y`)SXv8CPz~Qc%&XOT5X~;;jI(QILNDxy1rWvXubB1|Y z@XCPb3nKlA5Zjsy|1I{9H)JHE4_9Jom?H}ST3>-l06>70j_RU7nXvB9mqK?%NsIQ4 zPNcJ0du3z)m5^5wlc10n3nXD7iO57jQ_dtv%nfT)%r6Gx4|d8TL)x(^sS5$)FLcFW z7e*u(0b(x{|G9!UQX_*7o=#RQpeQ9ioU;VBrkd*R5Qu)1O*uE1?B`Kb#G`Yir_6kr zV)F1ZQY&QE)=DB)EQ+vv^U|QeGE!0r|22`HDac6uG{M*IW?&%%MPRSyxN|di{+;Yx zCIIDWn=*MYQ*Yjce0AbDhTE?i4pVZ&1Qfhu&R^WWGeVtwe)obBMlBCGWe=!CPh+K_ z!mkAYKbHhQRRPJD0Vj{*#Q`@O*!$%t06vZyU$P6@9}R;)1*vN$Pu90q5WwrFui+YrQy-U}Qn$%R5J~tj!8W))x6;kmsh7BsU9P zo8SZYShw)!!H_LZWj{KB=8EIBG7@0GEV@O&sS-@@i~p?XCb|Xd({Hc zbrr2F#oul00U7l2hq5pHW5+LY_gJd8hz}CrTJe*X2z8yFWQ%=W25kF5C@I{N zmaFh8vvUYyAMkNMQ(nI#b%URKjy!yxgFc;tADOHYf(`P;e1Vm3R_;NgG)qW$(Y1#a zum%d6YX?};yYL+exMJlNPG&Jhl+ZDgiU)ia94NRa@Up6dUF6Xln3U3nRMUM0<$kRgh2d)? zR{%Xq>L%V6bxOTlq}nqsUT1o3*0|qxG-{>fWOhJnz)Xo`p1Kc~4;2BT>sum_*4nm_ z29JF@f1zJ06}OOcTq#8y2iJxseM!n?zK<%8GrqG9$i5+X(AA6I0Q&THm~F%0(*ne$ zE?BK1NAZ~!*-b9qjd4FiV&8`ijQ7x9IC$=tGJA^fE~Fk#%(w<&qDCM~ine{ODFp5% zg1-#;n3`oV{EPNkD#CnU!{4HK5{Lpqc zENXEfwOndRW3Uu{n2SSI{ntDn_6XYLH#)f&F|Jt=Cc-D;9J5qFSR;{AXPcz)UUx=Q zO&MRqHwUj5ln{m7(f#y^Fj0w-@4c$7{0qb+GgLh|zJOD)izd`MqVwcH>7MDgHpNL* z-GszW4$r@rR<;ld`+rumQ-j(f{NlM9_#YXbA?YE=K`5ys03Y^^Szpln$loYB%X|&4 zDX`F@;jLf;sLc!>Z5k`Y(An#4M~3HT%NuQ}a%?kYQp|ZJI$qYLT1v{gi0pRfZReE6 z#oZ+Jp%liJB>z2_^B4=9^$kHsS*_LYIlejLbDJr>FgSRda zz1W-gzybt!r(0fJq67u^rUg&wHF2I6$fJmT%Xu6P6!9Ia41Nvlc}Dv3V#GgTb27W= zcCo`kf$krP)8+PCb;-k0nZ}dWV5%LcRZ2QX{PUOohe;II1Lx!^md*8LLBm6n39J&; z+nyMi8F}^=5jR5es7~IQ{^cL28Xt~HrX#*%O$8Vd>rl##HSph4@ed(dh~Il=vlkUt z7$gK;;GyZ#6`WTM%q}o}h9f;Tr2B+!Da-Wh5mCTCoaiR>Mp5(GVAqbq>4#$v#kYpL zZ(<+PtQUFUj&VxX@y3JC2s8CPr8b?yt9mww+$r7XPcRoohaoVk_6f&yjD{RqFzg5s z5eMWX;RPPn`USP4C0>h2c)XG$8bw2u#qsrUp7Ze0Q-9(z&I~A?zZgMP9xVFK23;su zwZQ9-X3$a>3vMZs8updc^_#2;1Pk>8H`ZH6nX{QDYO?ze)z%9jcPzH2TaMr&pwZl1 zA$Acr8eT&-lAyG8Yczhd5hmqq^?;1lmI2rsq$Pn9ca_6oYE8Sl29K*pF>jSb=c|&L zCLLLY2shCCmdNEYt(l!6@%KWaD4&tDM$+4l5`)IzSS=X1g$Qk?^_|mc8Cj|q9I+wm z6yfF=3>eeNvS5#o90rp6z-Vd~*5N23YCZ12<;r^5w)3gUg=Px8!TR$aTCC;rU;z-` z+c%iGQHIG5Ou6Iy@EzoAGG5wq^H>~_q+g8w(JUFEo!mmjMZ21yrfoJ6?}WN*tvpI!OwxOM>VttUwR5kqtXe|0p} z46t$29vX*18%w_yF%-Yg&IaZz?> z>F(Mq8xHLG85ks{(QGd+?*z>x^OP(ZEFW{{q>0j~= zljB-w6iyfAplnlcFlAAK|YD?n9U5&L zSHrk_;7XAHI~+38Ujvfi_N9>~1*2WL>DDzA#WtXea(#issFl6x^9uK^JF$uL045 z{#)%wh^YL+VSu0K(25Nc^)PO$gXE4QEQTl=*O})h`Lk|Y-j1OQ%a0%jUoA?Y=8wfh zM(_KJb@*|LvTEEe;2xyaA2XAgGHfI(JTowR=`FbiVQ%HM0apl-!yh^z-GWmny!VHp z28=aL2jEq~$y)desLDy3^M1daLxX!@%s>b#WXcAY1VES$0WBXOUFb3mR?9o?#6m79 z{#Bk4IST(+KH$tn*lnK(rqmgUbs+wc7=17^l3NjpeaIw;V$YVr;lkYBh54S(`A5@Z zB0kg!hdGZ6^7y?@7+#fqZJLh_=_$kf3^VPY-#aV1!+ zms}U{jXFNPvg6b)K)}9`>w2KOz zks$Ad3T8LwSwH1PJ6fqdZYOE|3O~jdD;T>q@{t0;O-!9!^-6mxIYV3`rQzx4_e5W- z^#Pj<5}|4Hvs%JVohK*8ziKq(y+u=a@swR}-SunE?4>WGY-ng{D7Xxn;|ehCHmgfL zJ2#MIKuab~7wOi@+X;O;-mb=LLe>wHFiot|>q50U+U#ze=2GuRF0|U5adhyUGu|{> z*x5H@z-rsfP%}yXFcs$;Ykx<B&YHbHIO^15%4(}M0@L^TV^wFp=hRFx4MnWy_cI&XJ%h1OnTbQz^+=3 z?2p^O@-^u;yC$jPq>JKzu@qq(5EE8*5oKolzZ&O7`NTP9^mpfE>ulPb9!ktz|5O&V z@SF)PCE01%u{3Q<3?(nx!s8EkR+Nv8o!aHA7mr&uqB&H8MXL~>omy`tx;4B?HZ7Dx zW|{IgD&pUyQCGz)HlE%4AK6T9L=XB35-g|qF!<{+Hxs91)AWjhc#At2sR&$Oc`te0fQ?k91>-Z3tMBlKfno;|7fVkLno7xc~* z1v?f?T_s?YAECZw5K*8w#F)TgTo3;QM0zv=3;cQuY{(~t^itE_u)F|-m(YL56F2;n z4;$c4%q44^xphU_{H6HD3(^20M#kRKhKUN|f{2pH){|y-sv~cfjjFuH5a4eM4;I_~ z1lXe_bh`>eyg|sDrQ#3cANG$|6svNaie!dxU2%Q^NC+Lg<8KP}&S5Av8QQUBtJfva zO`4;slbE|V=xd(je`XSP_JYr!DRhEyLjrBMjN=qv3j5bI&D+_EH@$!gZ{jgQ;3h-a zSk}=Uv_26fVk?nOzs$_Pf;y8!sSc7Rns*Hjymt(W#%N*L6^I_DYyi>u#fPTYNL-q$ z>5{j>Y#qEcBD#Dgp4A!nU#BxehM05D{n2RCEen>8LNZ!!4K@s8<~nP zJ|0_q+D@4dWJF+EZqNVT0wzIKq+qP|MV`q0_+qSKZolUYE z+jcg#lQ;MMc5gkO&Z(L?Gc{8^Q>VNC{p-LDWG3QpWENRm_~K-+doCP!m}snyaMHdt zz}Aw@w)n}8Ri`ZXFmshAHz+DAR5T{_<&riWw*?flxmX(|^oyX50Myl+H55L0|H>qe z(W}%Pq2@T>UfFKMVkQqw`soiA-VKv^&LfShxQ%s5DO6ht9+0aw-fuVyL8Re2U?zN5 zJw9!QkatXQyDp_V`YQMq2IIrN81U#7f#wWNPV5sj?E|p@9xLxM2;qrsBIg35{0sj^ z;+mJAAI@v=H_MwX5zsY2)8FhovoC%X*QfPVs`plDQ(&eTKZ2yXP+JLQI(L4q@b3b( zFsC+bc`+%0PW!`We^kn)jaRcb+6R5uwpkq0hioL|HghzR7ioZCnIOm>lk_6w-%u?D z2Sugv)@d!?`Y$q+E0WcSo4jzN`@t$s0rpAC=*_(aCV>@OcK}9wMVJj|02zckJ3s(u zdJyTW0456vQTIWkCXjWa>`}tL4(!$wKh^&vJK@=w{Xr#{) z`?F|_ap&7?oIv+xlZN+;o&sIDp@NO13UY_6B077lr^Q zob4{EADC|rp&DbSI-?Qixn<2b1d3!;3UH3KMu*us}~U} zLu(E(zC4hJKy>l2A#F=K#fR9FfpnA<*My>&pKuYtPoTi0WVd>h&=`iR^6I+*lg07It2yTQZwO&jmxGtl7xBf(;^ zu<$--$>v4j6H8OqIpi1j;9#Jz)8AQV4YcSmCA=yuCQG-Hw79`sEe|Lwm`*!gQJich zOD`<+*5diNLUenuDjOs0P)sX=(CDvA$&`#vp~jJ7K%)1c4fEJs72IPaam(j9g3m9G z@tWAd&Tk}g7tht^a+$}o$Q`yo+i~h>!1NMIpLLM`t~5qeK173|Q$^d(A(YTg1MW%E z$)v9;cF^9!jWdGYH~b68rvIUA{bJqa$KDpv9c$a%15H&#{C-U@ttGq6D!l%{F6~Ls zuw?TqEwxPoEiWlarAJW;T~V6ylb$rikUU8b_Y;4)WV z0a=E}mA_alF{=v!l{Z!)Fc3<>jIqY`H)iHG^mqn|qH6>F$KBRiF>~ayNe$XT zSBAz0bJ+KwOU91FQX3kIXx0u@!llABOAmtPJ`{Tr@VGMYGS>BU)Eo7mc$xVD-ZTRA z2|pN5ucP}I-~`r~yQ|Zbq?gUO&q=#^l?uk7Hw?hgrC-pmh#bONgOHhyTXl!EHQW9p{~=?yjVPm>CZUe z(~ejg|MED-7NGB0+y%I;o&KVcej63)jfIA&`|J*oM2^I2DH+JcV31}mk1_V7=C<5O zqNc{`;t}r8O4o}QA)!7j`3n>fw;2--TO{-;%bO?omj~OWNPuDCk=SFw!lVRGsnT!@ zLd7yi1@|Kq@|S#@V)xV`?*l*OZ*t1SO)67k!VL}LAvfk|BvC5sm$GLI3f@okURFJb z2WiC>PgN}WjmaAYCV8!Skl;U&KRR16&q&z5AI}^rlXuWmtWn=NF$d68i|QVp%tNLg z&=rsT5XqGdGSReh2F+qR6i=1KJagAa@g@hm<&-O_M>G+!s8FZD6Klsu`&P)GchHD& zMji53jrL5hWL&NCzMf@Dtulz3eX1{|jKK~mf|%s^uWIEX{zEluT(H%mC5;CBSoWxD zWoqWZvtbSSt)N_)E*Vhma4QWlY>}%NV-|RHGXD+Aw}u|=I%$T!tfbqR_ELa&QR_bs z_k|pFvu!hxv^bfE8LIx%=qT^nXqZQon;ZU0Vb${)diTC|xn=C;cYm(rNRo~8AYI-& zu~Aj^eerHfkTB|XX^ar%LhZTZrQ_n?UHc(YAUncloaE8A9WZ|~rT!QYCr4Bvz^#N% z*fcsJ$D=g(Bq{xz?d`8i5`Byr8@46p&ke2PY^o@eaPJ*vs(aRbNG|A!>WY1M{laL- zwCj#ncbao5hOg_iv92E|1}&GsEQYl8yUb{ZYv?0xl5IY@&s=dI_uuU;!o(oI*uiyH zYlHL&Osc8`Jx~&P#}S1~CR>uwphDB2Hb_EL;c@31Y&IhH!~p>jH-r<@I~C}?A1|HW zSKJ{@D44iAYL$y-5Lob$ZrwM-Ga{a5Tqs2Kjrl79_BM!_i#3xlvsRb;I8FV59W_+R zdpUhPqXvdpRo@2;UM-sz&zn*6OQJokWIpb&T0tam0aurBElp`VNTi58zRmAjK9bW8 zh$Nex+K+iO{O92y6sM>+jlH+QeK_wBU{pvj^zw0AO2q!i`y@digvkCnmMX;Z6hVPb z^vC!tzw4mIQ}Hp{2IDE98A#;ScrXyGX3hVCqSKU275I;U@yj70m9|VJ2BnQJ)AMW> z_>U%n1G%u__&nPQ{_s35edwTgT>H6|eT zX{^-SE@X}S+hB7%ij0Ji%k(V8N&Z_(B!m!u@L9Hb{HHpIu;|kyK&L?DQ!%b!ge_!9 zJ_ZBv!NNaZ=~;;19GiaoANNk81qI#99-;uk$3kuRaN%#A_$u(ehAddoy0@eL*LH>?rjs)><06b9y6!bHm0t!AVWeg4cW37!Ii$6#2NEv4Qik=XR zUQ^cXFm8juYBC)g?ACGj(yX5&7`+}=0Qwis8#wlS zclAuZiCSze6lDefT?~Hx6;Xkq&q`X`FepLVDLNQjQal9K|By=lzxxWxlE#7ohMz{e z3yP2y{SJ!%g)L$GZ*IwkzMktEC)UrYy6Lkdb~Uy(aKGcpwwgo*Du<5PSr5u{aI%?} zQnZSaa`N{_U⪚(MB?j=E{?xh$??%Xy`uAKC!4x1*JPfL3D-m;+7?T^}3D|hXZ{A z%|~F0d>&I^WzJ?d@Z1}^;8*wc8-RPLhl}RuqdE|0UpMNzH1+X{-EU0zsWQ|_KL28Q zclHcle?vHCn!DJ?p!b7PKX`Rj23oL3%e!?jHG1E&(P%6m%gQ zfw36rJv*o)^DJh8|62WIlpePH~D5rEF8DVL&>0;dM*G z5iDeDFx>5%PhR=IuChdS;!2%M2AJ5;6;Z@`wez(>e6>pofumrPh6J_h24_Dm(K56h z2W*&}kbipU&Jx|d1xMk``n7u!qRmL5m28?regPZ;Fsmo zn2>Y9C+JH8e>;jf{`h5-IKTr6m+L`{b|8;d{XL5O;WHyBGpG{McAYlMMcG9eU+}7> znph2b;S(;?wdIo#dtl zBC?d2@7{)6yWdHi$q;7m)1GS;NHywP%W^;xE9Cr`9mMxsdWbPB60pHxP7TIXXNET* zVGi_3$Fahzc237Y&w!I6Eg|Gy=62oh3bk_03cgO{&KZ$2_0}>Zd^wThV-xOO0=PPtqos0gLGhn5PxmMo8?@MUq1cG?O)hcSqda&y9y~=3`6{dq{3Cl z0(1`8ga?F%@bLmnRUq1{Xze8x|9w>QPP&c#B;h+e19~MhM(&)nH|qWQxVUk6LDX&K9MF`=q|e* zI45;YkpbbbItbva^?q5_9R%XgFOh3gaJ_3{QSMm>7z1KA5>ylT9n5>a;v>5O51DIJ z0i&7Qqf$lwh{+HR9-PoiVdhaWcpo{jDSr;oEbyMDvg*NtM$OTDPFZd!C+*F?_)AzF z@DW7^?A0=X#C3-A&Yf5-1hdf!*fNiN7BK4?H-dZ?V}PnevUP^O{Zj{C;YYdpIU|%6 zk)_jG*j`Aedu9FxJjJ$C+%jX`DSn*E!OOiv4>|bs-e1Kq3(cc3cM_>ljc)A){qqjm zqwLP|Qa_|~Z6z#fIO%E74bak?aC>*t65FvB0SJp7h{So-pgdS?!bu5NG*(jH7n1I- z67&zXe&FvJWfqpRG)34Lf2@zdFbk(!7ADs-O`Hb5R0@BVnMQ?p)YX9*X1JAW>4im` zz8B;_fQK21b^x6H4!;{b&+5#k}ALZXi!W4Em(dMm^7m>iNO zI~#jz{5MyS(;+58wQ4T;&PNg8fcD-8It$iSo>Bi|MlerB14cK_cV`Cc;a&M z<))QR2PfgI-IOYCzssJc?~fcF`k6Q;6#%;DJYoa%&EYKPYLNngai!#)Q6UtqpazEH zQKTk11fLQnEc=o>GbL}{`Xa`<(+DOsE;NzevMtg_@u0*mD;i%~!d7?m{2^;&TlAaQ z5ex$vefJfsgM$xW4Wk)*M$1UlFwVNk_>UQUQ+G&xQUiGml)m4f0oDa8BmaB~wSZ{8 zR!qD;R{pHk=*5cPw(g`pbpquL5SU+3UQ_`lu3a&oU3m7AA;Bo~pm#dUPpp+*u?NS5 z_dS<@WxnVbW)I#6#~8WUJA2DjQN+usls7Vd2tWR3M?^QH8>U=!w#Ut$M^llVWO`{m zpGP-F*=n)fWFJ;GkW6G*4`V3%UEnRsvTsIv(Xx*+z1JGb->`Nm3=O&_F6WW6a}inx z_M_k)wFY8FmuSba6%Awb$v!n~z!U2tA_n4^oO>xCp+4flkrOSJaBfw48Gk-NGH^PM zK(zj>r}<3?5#bVqn&X?fF3Z6gSp;O05R!k2`2zbZ^B7sa%tuyy=^rWvE}W%u*53B4 z{XHGcp-1nt*rw+j7ac2idVTW+;RiMxz;H+_A`#7juVE%O z1zp>RHL&X=3|e7s>mD?Gj<<`M4^{|qDz=Kb?+_Seao0l&<{84qV4^XcW-H6y74cW3 z>JMc^891pNTI7Edeg6n!Mxgm1>&Z%l_MTp*y3c2Ek_Tz$H3WfkR8{wV`}Bg&#CS(# zLO^o<+&b5SpG0W40T5yGYkPEBK7R&Y=&n|ymnqC;aXS$PACCs3#B@dpRmbXBEx zz{7I_cubi7IdYbX`2ai1fM~ri|Q@fldMHWhQyc078j{LaM=XleDHqzc-jas zAFupP(@ljtMw!HcJ;t4`5OrK2PbiABIUN1wn!`2uXAFN04{)sib*jk*ozPM*vf4Z| z(MR$Mno0brEi$V}npi71EtMRu>~CISP%^mrZ&l9(P}JhFTu}$n(4?nEAUB}T9fgkU z0bvG${YBG~D}V_4{JL%I)E`;84-SQR$}I!fIqA8-j9h`h2n#whVPme3+d}pN9Hy;V z+rMHcDk|5|j=kOZ{_jHH5bHv>oL7jb>2K&BkF{b|!GTD=UAN%&RAFOS;$Ye>j$dO7 zVI8Bx?u0a)#yC=z1i+TGM^gBd3!xqTO8zPr-9vYns46|Q&dh2mnD+# zo3zY@>ITgTkLHF|-gpUdHh zb8J?0>YGQ|(A_9%W;?*+xhEW!XL_oaOHqZNiKEf3n?1=JAF6emp$$E|{JZp_*z-By z;-;eK8hP_z&_~iq@RyX~A>ZkLHt)R@CSQ!`hDj2mA&!<^kznCE2zg;>m}`x8K*J%J zsbY&x^d@xo^7t9Osfn#)7Wy1A)wv7j%7;<-J{9NV+7iSEZoMAe;;tmS5&a-oji)R% zti_h^wUrP}C}1I>JEMC!D;e%d7<(U4PxYU6YcSFk`+5!JG0MdvXlQ81FJ`~bi?AYX zJ?`LNDpuJsOyfs?Mjk93kbnAD6IClf*n?qX^)AQmxzyzOOMfCyjywLc_-^j%_C?2Z zNQ>JAWp2G12Ia*|L%jf{|6iwW1qO^T&Gh1nKgq?)_21Y8eVwGe7Sx}4Mg_7dRpqqE zSdZ87VKH^p-FSR^&Z;TDh}zJsLNOzzEeCL%Wv~A}4~cUZ)@0(4!K9(E<#kO=)n zvU{d9x!+1kUxzqrKV7Ta@P+At*&Jb7CLQ^%CZrJmPfVFVA)te2#GYDBEN>?Tq1;gY zDpno#xH{&;orxrs$}n2_wBEaFuVFSXvGLm$m`GcS(w31uX=nHx@G zwDOQYfkLv=@*o1B5>CU@1 zEloFPIVsxh?!`EWzONjGqjv9AMYykQM_Pd!BnI9Gm+JyNIg~$^UHPHsGM{C5tW2rT zP*;w=z=g-SG$4w4DsASnmNW@byg%O=HD8-$u$;*f^CTYp01=KsFS>&PajNL1raF&X z_>3%;m?h_*NNh%vi78(Fwef(Yj`A1uZYmG{*9L*@xkMaG(gvvx2`t0X3YZu+U-HXY zM-2xk(;yh&6B;T@GH*;RHEU{qt)jh6kIqLbdGfAk%KSMHFMYpg@Um-n@iP2}rYzK{ zfRY&+r3f)nKU?S$wgVGlJT<}tOq~jlpQMO3OBwanZQ%H=iWkXBsViauSqeFx9_x`B zXl&T2ixQ~8QtXY-%&_0Eg1 z=zR!#)vRxJ6p4XJ=T*!g6O|e}P!QHsVehxLdYrcZL14tNy5BKC8O+r+++Jg&$HBPE+ih_<pY7 z2cFgN884kmz#7!d?zI)Gg|Kw%3lHu2z2r4f^zu9#Urg3e%d({?h)D5*JhPWI)k&gV(D8;7)v zF@L4D{;J$Mv}v-^c8)QR*#G8Tg}xbSNKNf9`J^bT7gO9Eh8@IRuFELpAK?m*D-Sn^ zN_{>Ur&)g=XHg7?L@c4D%g?Gx0PIY9fZq?@VGQH($6&^dOZ!+$vOZdprwe(p0_kCg zaWySz5iME~EnCI+zq;j{yE}@`k!McE{iQtlX}{siF%%+G5}kO7wOJaB04(>mkFOP% zMO-`YVG7X`A6U6YA?kiYdAYQ5c{O%8p20filaW8z8&SliQ(9acHC!v(fw7OXR&?

T~+AiA3|qqtc;jD1H}xTzkTq?c@iIC?HCf*2LJMD1h4L?xXq(E z6c(z*jdr5uwDo2OzCy58_iF<1AhKyHjxO5FHzIZwD5mtmeO3p8@MAv%gtRkq6#BDX zMuiMtN8~=a^JtU0ZyZ1SfO$3W#Df~JBBuyLB$+s)%~|y@N$sKsT%1W15-+$B3e7G_ zPFaKr7IyM6X4#rlGN(aEZLkZ)qw4w(iGhioyJojQW|BCG??QU{u&6A(W* zEylfT&Zc;RkH$9ntgRKBn7T=ez+D^+sQyAkC^bpXF-~sE>vVc0Q(Q9>Poy(wDziiXwqjO&<540+a=^MiH^3Pti8^x|z)u>5GrO&P z7(rlZaCK-Uv-v7zNODtHVFsEt*YLB~Go)gpV%pX>a^X&~flz*q zwb#oBU{|d7f1#LDs?r5tEmLbYQp^FvBP2AE7g6bYaAbPlLqJCgr8wCBPB>K!2~|CR zb|Qczm%c`y{{w4+Aj99mJ?*D6Gk1HCx(9pVUxMXOHz$(Sx@}*7Kb!0OGo7(HCF~oo z$}PjG^{K4cVX3DQ z02Y9BAUv9%jjp6ea;HP%AM&gqQ8{7^Bz3H%%TB6Tub`Eyss zVS#-~S4Hx>ZHc7y;KhA^pu~6*Isfw1WA$SY8r_wjwZ7EQu&h#Er3yf)49U1fl3!dv zq`r*Td5r81#R4p>)*y_5P}^Svaa}0DnTlaz4`JWtCjJK^lV?$vn9hNT99&u7)V$4L zPiz7NP(-Enf%wP57LWxyup{(ti*1NU*>`E`IpX7(ih=J zm9oVTR+K#+c(4{RAzMk(L7t;XftNLkj}>eb2Kkdf7EBT%;;2HmfPFih8Ds#G9n4QL z(}_RmgMi&v@5^@z{+Ol7taKpcXy?rssV3;;*jgBC_A(v%`0R2T(emTZ-|KMtFq>KN z1oyl~yfcXN)N(p<^1kCHxV9k5~3A zS(S@SKYSl>-zHe!d;fhOM-Xr_dhvV+c(f|I4S2Qp6BTr7<9+ST({6*!IrO||IPEbM zCR)P@hE1qa8bJ(wP}OhWSVF!K^9zn;E<1*y!<_dQmC_d2h6!qbww(Dmc7nVqHi(?W zr(=xIYQYvY^1{<0!@Ub3P#KTzE6h)vo?hl7D8C|%QZ=Av#T5J6=K_g;wwPU{h;-_O zYU9S=3PT!33Sl#vcKRr6MIYKIn^g(((#ETa18<8!=WTbbxqe*@j-{FG5I!{Yne0Cx z;GxHjVQ(>V=PBVnL0auRqveioA^SfLJ`c$Akgi<+NrCD<=WS2q>vS9k1S8)?T3B?L zN#)zlEeBdC`1@Npc!6Q{9Uc44K}Zs|*^4h&%icMOkEb-$I~6QSJ?iwekAiJZA=^kKJh=lJ9MF1Ujs2f@ln1d>0O`r|VyYwT-AI zGB4+;?n6=>YAt}zG|Y~1oXC~kC)$p&hx+^Y=92!famAPH{>rVvkUq3lRRzUKQ1KTS z1~?nIa<$MIV5dGVQwXWV)b%#E*V=L0Ug6}2cMKMkCA;?VE6s~x7+Ci3U83l6&-?yw z!;fa~vGQMO7kw2!)>}M3EWBD9_~Q!d@IxoqUY}@CfJ5t&P9eL4U{;E!13?E0S>M2% zF&=_``1MiN95U*wl8(rZ1ffu(`&ZnO2QI%|hG=f_x^$I-U$ zS7Y52gv`h#`tuX4j$<9N3vl0)U4fDj)HMSzSuP9E*H18$9mU<$cTmCq)2}sq|I*sB zvGQ>Lmt#AD_f;L-a{c}jvP@}SeteKCVDgT{!Nq}XPBH6tjRLt@d}Um@SXPDSb;}bQ zUb$HQw0ipQ`XDY5nCDk^`{%BqT#G0#0@j@N>rors~7z_2M0x20f>ppX={A zX9B-jCY3iMTYik{Oj1TLI z>RiqDU{{-#j)e8nJQLL;?g#}51to=(h^G&a-@J@&mch5bX@Q{x&%B?Of1!T9fqGEq zC3MB5|-lXO#vG%RD3KoS)r8(S$s!=A^whcucF<7bg|Kf-sso$Ig=%yU3 zii}tcNP|7?$sXS=`}@mG>|Vco6s!`Q7S^qX4xgv4Dge*udzCa=%ViY-mAS(b=s%C0 zR91*O!}E{d)UVk?WW0LmUP#Bc-gkHEe3|Sng|7U%FjLoIP$t)B2)`3mf{*gW4UpWp zphE80epY~4E3tXB1eDyDo@JV9L3RAA zrRNODzG>hk9^eVcUPpoU<)CFTehTg?=fGskPzRpxBIOVK2Pf3?Sz=nOK?V_5h(r)D z(UBNoSnV$>sNTbqFHXN2Z~`6xnY*sV?4hGXPGDzl*zHCO6{E|bJsj6a6k)Zc&HlxS zpN)WX7eMWkDL_Do{}ofhg0|yM=vn{G#P`oD!N<93`-{h?qShaqjnBzD+fa_3I$ok zu)(rL*B^z$C)SJt${~(yx<-T#00uKm%6tz7_)kO_pgZ ztdNtLdQc)kE!vi27~%qc84PMrh3Q|15Aqqm7FdWF&^K9(26Q-$1*7|MjBVVb&Xi0m zDW{)`_5PR<@mfkFu();Ws8~#&X%c;66fc&527OUOn0|$Z+ZL6M+F(H-3g*fp(XJEi zdOVe-3!jWTFk$SUu3j?>0-RYy)#btNn9&AC=aFOi-h8E;UAd5?Z`sXBkU$;eYNjgo z1um=**0fNP@aXt?@un-73fS&QAbZolbBp=%2b=#!Ig5pXMg8CbUmOwJy0BCY zWt~DuS9DMqUdI-fc6Gjf!=wxYO@^u?Ex!0^s*n8`hH|1b@F9%m0C@e#$H2b}Q+iWz z^^L+zTQMS}hS@)qd(|SysfxP_)zs6kX7|W>i0ksu)G0C$)8t6=@ z{Tt@r+^ufL;(~*GA)qI*BVKb?9jr|qTXcd((t>0>?4|d|8QwHE5Fpv!-iTUqQk<0> zbEC2%9awC<63$};2}&(xdnm3WR!x;$wi)3k6Ed9tSX}D29DAi_L>)MzU+|}}j(95& zVOl=Fq0C&}`7<{fJjTbi12%&1TS^h~n=I&IAe=-XT`z-V3cxG5X6mLM9UJ-V+V?k9 z5|V>2^EU;O;_{euDZ>SVB8l`GGlY$tU_Z~NO(x670JLz!ohe0^whWWz?Bh^|eh=I{ z2A{mBc+O9BYhaB|5H-SU4DwjYt|wEEF@tH>y8$h&vRBhm9_i69j;c-ui5+%?c~wPC zbuLblvKAs?0tou;52`}OFKNbAxY8q9TI%*sK78l4iedu0H0O5KqQ7F`=gI4R`PS1% z_vK^Hr;|Y8kqZph$<#5$s=8W|$)5C|sbvU{aVNY-ZzZ~6KYwPC%%@i(>P`KTZ&O+% zoA~dq`5Xrl*I2m08UaR5eT(@5jo(s8@8Uij_pE%HtpVb$ZR@L)?UTnUyqrTPO&(~) zAX;@V$l?JxQVLqTq@wqro+|(lGav+G>>qDt?5&L&41n7&irnTnFyX9$|17HEYOusR z?VtEzAXta)7+QH=aAqcuzKSM_b2%-R2Vl!~n$Y+7N?1JV>D%pH)SqsMSQGWNQ`nvf z2Pm}W0G>q!o`ut~W?)VvB=j)1;-w0MBR{m*p<(JrN%&{W!Tn%4F$|q|3%A*#ah$$zi-TtsJn4nB z6(CV;Xe01@4;E#9H}D-5^2L6`;PTLL)>1q60@@Spws`~8>Wqa_4Qf;VWzTO$C4hxD zV}9LlI|jZBHvzmX^uQHyt5Hq2AM2exE(cd$m;<%0@Veg(f$ zP&zU`b)c0q^-HPlYo!zI_ed>AVqQQo=(M3)uCK1ZUBoXrMW)WCdjDhTShLd{xS=5BR2O5A zi5S$L8{4R9OkQxgtC2wJ{W=n1loT+Qt@2xs$z$&p{%m4{?l_KIqWsUuxm;_9!@$Od zI-j}g8b%ZO#b{4{9VE2T8~Yu!F19cW5DNP=!i2-ZVr(m`t}lUIE)GLw!Jf9cvg9Cy zZfti2zP;%zUmY${0nyem0Io`kQ|_^qMEST9ZI zGU@=EYHk3on z+Unjp+s1GXQEJzuddg)glQq5i+v(FUQo1p4u)^W+0BJAS`&f-$b3Q& zKf)ceemM@zIz*4uvAcf)JO%!0e9t1x{xH05NMR`9nj~l;e~sj6g1Pbrr^ zJrma}1@L1yhRx1>EQh7PJC00JVGxH_=9yC59^mjBvnRXcqu@jXg5vviUV0O_f12;7 zbQn6%&UN8GYJ2ntJTf4D^(F8zCfA?*Xk-O*z=KkG-Fa?cdAV8pCr!}j4)W+w9@N(N zyRGbdK*TD@n6$F4k{+H>yJr%&J3d$NF)fDb+G}AIv&vn4)grs6Hnuwtw(YMCD7mln zZsm3%U9NUcMM#J_aA3p*PTW60(!AELn|3qxEtPB@E0!;hcpbAr+IN%^$HwG?#eC5t zVI=E{bq8a0U_@boi0fdb>dsxSbt9s|7>bo~L#Kjp=`6DQb4vbuIkudogU?GG42y+_ zu0So`){wf27gN2r3Tw>ueIOl#E1H?YGj;Z;OYCI|D`7W1JYV~O@W3bNM0T4@S~3jS z|K%x}13Ya1Q;?|pRglPu)-zRSd>&ExjqEob_kMhiy+=}|x&>S9>YzE&mzN|@u0m4b z)z$m+6;!p5ernmwVzl!YbOk7iFxNNX$0Y@<6?aW@0MI~C7tcZjXzl8nic<6P79StA z&|a`I#@#R&m&f_?7cFn^0Xq9uRv1TC8k6{mRa(8Cmm@2#9ppED5*B7b%khy?z4hrYP#$#E;j4 zYWS?)ECcF_+rYoRa1ntfe@-3KpuZ)Cpcfct0MQBMg`SsD_Mpgs zf5eYnQJa)*$R9KRkU~=OmDJi!{;Y>ez#wAou{3ei6*c@_Ch0W}_$XA&`Nes)PsZnu~=HjI+Y0{1-6n;)ooLy%$6ofFS34@ zFckdQ_EP&ETUx;t^>5IQ(9>6K%4#%7)8u(2|<76zKGccG+L=)I{abSG{D1I7) zX_zdR3Jp&O#xyB${*ri_7g0v_%WgSR7Ks)WeJslkp{hH~Ju<2h z8Q~w38pXF3hoHUBa_j}tdpnTMmY`;{-o|s_^!d9+3j|XXO?~#wy9>^Q4n?sW)6lpm zF_T{b5%{dWTTsS()3%b6+fGV}j(>GVwy^N57xzGyzjnD*1|=-*m70cq#&x93;C^z* zomc5D&+jW^v!IN~1RO``5AlEC1(G2<1<-O&7}|$|*r_uufp&b5V|`{%Ua<};i|`J> zxjK;%QW|7T+c=*&)aSeMqG}Rd#F-!qzNJ>Mpfn*B+cI>60tD#at|4$DjK9z!>fbB6 z9z~1?Ex8Zi-Nmkx@fwjk3%X5IoOfd}#6Kpjuu-H=ArKF%(9|#}v7S5L97-2t@RWry z$ahAm``jOj!Y0DON^|jBDo~6g#QUNE1XmkAZO}U}BBRLEq!R8>9+0gN6%Qf!Qaz9# z#x15A&d(#yYdvQ@3^XTT_lN(MY(rs6l)mD5y5hjZm@kO-IBpBMEM1zAf2qdV;BF{rQymASx3EK9#)S z=@!Bq+DWh#_WoF~VQnA%P#(UhDQeNlaXXw_DUtb0Y;)W4 z&!eiD(YmZ#xPM2yJ7DaW-5P|HrYC>?iqna4?3a+#y}k0&ptKo{zt|6tU#^0h+I>P` z@x68<9?E<+n_|LwP$8pqnO)u!AV%((z(@BQ+xVMOTlG;&vfp_8`)`pq#5O#MN%exJ zwj=>^<{r#7(NkU=c}JfGOa+JpHN1!x@5a4l=jqHJ$mT@iUBUkXlxyyQOLWX4+^ z>^pU&&?(I&bu)`>wbrtLwk$RsFX<_;zBB~hC8fqY6Azm!jLbL+bzjY19ijTit2m!U zRRnjrLb-MYd-Gwmg55l@;aTZ1J z2uDY0wUwMfY2uRKUgX&m%#m@&mwlRor^qhcF4#8z7QYpr9f}HS0OWI2lJY|j4x%Cq zEB^Xr@j*w47!{C+#Yn-D2 z*m!DCV-PBXX0FVvtvn=9?qP@p{}HF{tTz3qD1m^o9cCrqimY*PSfFu`>JPdevP9W~ zfZ$0RqyzT@d2mq3+P5uwMi_?;((pvu0--a(LZRxj8KMd1ASyD!K`cpN8T}ou1;4OY ztuL%0-vyms8gXs~KsJQzfPIn6&78@b*djm1M!Oq~;1sjT-X^>oY+>{cy=EX6>8061 zec9>qo#xlk<<&!gU`bXwHeJ$y`7A$Y1I-H^BT5!T&zyzpuH$Fgp4*-+L_R`8Rhyse zMd*VjiHcv%hQ6vW_8bRWD))r>GbVbHf!GRBNU0hAM7%8K`>Mg`cJBX(av3VE| zwAJCB^Xm)&M|P6F6mYK1Y=~^%Gw9RRlZG#XCjzfFUR_}v&ReOgm)JHY{%Ek_pbXT5h-x+?C7ra42E9gL7<(6FeR_zgOoNf}s zD{+d_x^1Ju`DuAQf*{(4mOT+D)Uz&-eem0f%KJkOa1nYk%(us_e+_OFb5VHuFxGQ5 z`3XZ1fy!=(NQfR9D~1)_e@K>yb4Bb%dI$X@)nW|trq(x9u)rCNeA+JxJsDab3N$Qk z1iSPwRwU+K(u7^c2);lify!xkI7q z%yBeVuG$9bc|B$T1`Gn_C;aF<5lEoKhKmmt%g$8_`NacE&z6Y&TuumA&Wgl z8XqlEJ|It#$#u#g1A0AgS!(g|+l!!=p@CHq{2`BJvXr_S&&-~2{2I1V91LHrJXe)m zTO2dspa8ctzz6QO(>7(mk2ETb^26;cHt&*ltPVZ?#>TOuwrBThqZnjm`cT<~yF{B1 zP&_e_`Y;~MEY{9;Z2CL|%ea22{9e5n_0RfDtZdGjtlC|tZ_O+(Y|9-b1fF}r3w-W` zKRMBkrirCC_ky_|{HZ9874o2T^Fs5a6DjhZ$uTrt;D^##!4iUN;HzWgNaw}|1^g!o zZr~lL%SKuGcB#!P$(*udC_*3a1RK*OE-si;r}1kaI(U6ydDwn*l3@P+Cy3FSB2wA} z`v19QCro3;0FwY%+5b1Wp(~fP)`r^is#WijSZV*w(LW5I6O(VH#-8wjoX6|2FM*qF zJ&~G0=Dhm-^p*p}76Q?VUgz#Rl4=t1^6^O61(a~=h9&*$7(C~6*YwI2RpSFEpRKp2 z;Z~lJ)13wGlz9SP8JnH(uSu*^?0KNJeXM4bdqj@cuIlV?sJBNM#}-~_>v{*P`@`*i z_g;^NEeCrs^XwmG62DcZ)#9i=b%Fsy6Ed6N=k>o%fsrLg1I_&q)E*%#o+e1br`*0a#WMipb4+P}NA!8RmrrarS24(>2sxtwE zogu;Gfz1Ec)^!EL;b?E2DAD_h4WjL0)m@_Zn&{D4ELI4j*A0mfy|3Pbkmy8RB}9$( z3&H9{??QCfefj_Iow;w{c{nrY?VCCCmAQVyO;-*j`hHuKV|~UAwKBbx>{bwCf^4%n zS8SI2>;*`Vt`0z8k?*-|y3&FA%qe8JUz{tiVTD6mqCRPH?g70;?cIGP7WfhB;`K$H zw(ESCxWx3(xsr_{ua%@Y!hDJI>M-i1%#{+}o6!#2xm}i$6;xLY5CPojTc-{mXvpoB zPO6zZ<~->+LQxb`7VEq-;~L$Tmk1Tx0Oii|vrw%+;~5tYzA>irXe85LPlcpM>W>qy ztN&cT>b=73K4Kjo0GK%%&sc13XqR;wlyYnLc}w^X`#;l;P}nKifeRZ|&$MhG*f0+u zM_>{Pi_zG8v;~NhBfKwG$PKw;bR>tX}o{N&2A>k+H}r1Z}?jJDZu;zWdyePz9-meU!zabl2i67Y-oV_S7JZ{Y^Qg}As;tS^dHk;=_F8s#bYlME z3*^OKBI?K)A8)MM+K~7x+ionHrUg&3wR>Z3c|)Sc^y z%LBtt`##izS3AOoDX8@XCj}L7 zc2mN7IZw`^qRK>UTs-?|IL)$f9z*aDBhW58JVL~hUVSteE=At&AfXwDk=tuI_ll0N zLevYsRHwGwW4&IJ0^oyyUd)yR8sMif%NY{fj_aOJI2n=q>YOxEMOJD*;0Y=*>I{lj z@!XnofhPwoym#C%VP~w%<=8@@AqxLpyD2r9Wo5Qjjc47@Vn)2VKG$m7S|Sf9r7R#_X8obrOebS#}?zgAEqUTtRi&T&x-pN_ej_lwgDVnsOk?{-c!7x-v*i#{x(~iz+ zHEg0Sw3hudx*vkd?0_nO%ifkMm6!SOrWtQF?32aoo13o@1_2Eh06IyAZ_j3m?Pb_L z6kQ?Wu5_T`&Ed@f%p`0yX-T<^2IK0B!(`&EQlbD3Cm>e|%#R-shpGrqeaNZD#c(`f zxgMzOM{A<7l{?cV+33P+!%f`<4=CbGT+V8qtlmY!r{zh6VFgY6TpFE>|dbn?G zLa*sNhb;E9bBNlO5OX0}bTrqiQ9ywE_4;TBW73noC({}UVCqsb^X%9)4dqDnXZC*3 zJ`o%TqFnqk_vECMwz@B(+f)T=CygrGuy@NX=xD_C<2j4~`4hd+;No46z%X;uY+eAI54iDi_lWz7d z`cEdMOD6cY#=(RDGO3*P1EtkA|8frO)0( zPRc)or3dU7p03OhN{>-6O;W!<0%1jWe9ab-7z@ z@=SfMtA~14nq}$6hiF`m$-9*`>SO12sYD&eGu%{TX=O|sZrhjbH!)T}tjD1wM-3O% z7^~g)Fos`?A>ZabrKF>$BQP*Qwy*Ezi#|X>c|HtvZDfukZ|kK9y5Ba$7iI&<5e)#$d5jX{OzDr zs*73x6;J<-1+LZ;5^M6WT8d&huP!Qq&628Q~(2B=OP+>M+ob%$={0hMK z3Cs%6aH)i{@J2NfS1Mz7HB+?ocU(}x4lpIt*KJ!?;McIVHjKYtI}AJ(owxYq;_BP} z{Jc_&CD$asPE=40R;YHbe2y-t&zkq9zQtswgFZC>u9kx-j`CN zK|N`*kypR1*$Vv6>(p)p3h8SoVda2iHZ^_PhM&b>4o`f=!IRRcj1;U2I6L%K(;(+* zJ6wrd{!kf@_H%Rk9Yv==du)`3R!9U}ry|BeQmbz}zMImV0=H{=ODj0^=Li0Hq^XYj zaXtNXv;)pr81L&x5u=cy=TYNZ{CuFKQ!2L!by6tPz*KXQyL~()>1NpwTgyjUKThm0 zMj;BgDsYWl9mftrRsQLBpcgv%9Jz0fr5&QZR2wu%a8iy<;h8-PYRmXDyziq5E3MTtTew5PM%exT)X2ZneX zH*qOiYrf`aG4M0nYGLbsI`v=!{w9uqQh*HN z<=dvOEu0%luum90t}Jhpi?%Oh?K(ImxRIxPfAXZ|w^$2(&qw-aGJU%wKl3T$y})MH zhF8xHqqGk7AEFk%MOg341xJ1L|I^2+_y_w^$|{2BBn7Ts@POOXiF+e^6rqbqe#8HZ zurOvs&8X;u+AP0ngVg3ie*$n9-41a(RVst$8I~%B1STHJJm8etD!zCX<>_>QZB)A% zak5tjSv2Qj^i9I$wLy^$Udk?};7UDk2#@W}!iL;}6iS^Uo|{@ekz|Dcv29P6LPN<} z%oogZ?g6UDn=3!8?voVE|1Kp;09(Y{w%*~Q43!4?aye?*1qd?a)EfiV%;&S~vgEYN zei=TQo=FM9WGmuEymjOc^1OS#v+rq9qAQ+?Q}*LIFMD@$jdj{g|cKPrH6%fOrQ(EtYECmGbguFoqO}LaIu+hm^p)Nq?>}@W>3eWiWU?nUiAA zoFBKLX{}-61)|fIb>j4IpdU>>{q}U<@;h7<$|LFCxc-|nG&CeHQm_N4oX^S{uD>vg z77>&jgU{%1f-zN{1Ky`YO&49`GrWCV1s6H~XBTzCi%Z#|;n2uK%4wp{F6I)m??r+c zj~a1hmY^V|Qn*e+UGFQjf)?BKqpn(+9g6&FBmT{dD$n@sAWMQy03km9R2r=15iJ4A z-|Vy}vMVRw&Yaczb-rfqy5Y>>m_HrmHG%x&wu1EHz=fAE(Iki741TjhN;YoQhWAt2 zThZh>@-hB>EcTv%*JkPzmB($z zNGB+RR{92kPHxkX z1Y2IpGCFM1$Pc>4Bqi`!iNS^Rcdks$@(l(c=SSTj%>}yFCZth%x-|$Tsuq6#)xk&M z2r9|2@{M9fmaV@OPS={w!47HyE`>SRYqYd314@?*=|jW<3fV||4y-f*LhOzaF$3u7 zm-AHAsw9=jvPb#^idZ3%pr*E3A0<~_Yq!Ec+v=zi$Eu<`VsW3?na?%Z%tOL|ex%kI zBa-6`e_uc6h%Wj4o;Qq1iUowC@>AaEc;W7a$4GDjPHgk&SHb@{Mx4nhQjKFC=I9*m ztqf>aGS9?2=j$0@G^Ko)*gPx&E5+LqDaRXSmZ1Upnaan}na|36)PWqyn&@#ulLFa!b>7ljC; z?@P5g|6_c2-?5D=f@ZJ4WklP^|C=wwg+&l{BI0mSabYpU{hBxe?jY$PiVzVKwzYE* zmX#K_w?#lD>|i1yV&ZmC5xA|Sous(91VUI$5+Nc1fy-L{C*x$>+2Y`GtA3X?AmRpA zFe#Htg{rGU%-5Kc&YcOeP-N+rcpMjvVd@#m)#`i+_8e;+xQ?QS&Tn<_>-^6+dYYT4 eS6rNd`f-fl<7ix*u~qUVw5kH03%XtbkN#i&82~B( delta 113795 zcmZ5{bBy3k5arm|v2EM-j&0l44u50YHg>#Y+qUi5F?Ou`?sAvhT_=@PzwUJ2A6?b2 ztJ9D5u;an72@LG)Ts$mn#7sYlb%}Y{*@#)0S&8+DnG}gxd5D=Lh*_9f*jTuTnG}dw zScsX_h*{XV*m>9!jWa-*)9b0gu+n2R!FZBoKza55=Ku%s|JRtL#ff$KS&U8D*tnT_ z*iB81O}UM^Oj&ujO^rD%n0ZW1O-#(W1o_QP%*`ygP1#w^xH(x&P0iWP3gJod*&IEm#q=#WOvY~RoeP!6w!1%Bv6 z0jg;L+sFYX37YH$t_QFaGs&4dSh`sev#_!f3kt%yy1AGe+r$0JF*PzWGBGkTnC+YD z>sy&19s_|i;$#DdPZ+-k`5m+`?4p`GNE8Yt^%u5?08B{hHM1z7=n~-`_|~^$hOM&m zkk1D#RMMJun09Du0t>_jPZq^aIDs%>{4?x@@PU9JL&pQoONZuRA3J}h#%}knp)uG8 z0wRGyZJTTZAq36I!b;4=! zb<@ASb$klXQ?~jESW!@5(oWWrJ9>QkS#qZ^c%^nh&_)rOL=|W5`?~%Nr9y^P{PG#h z$KKu9_WjKL6L~bHW1ZCbE{;3H%7kXidQu{PJ#pms=IYFM^l3l8JPH^;yl*25AE6dz zE@+S@nre)jRUs^9Mv!~0JGRJd{Ig$1RA1C&P@&9$El;lb7h}s-es-LS0)F)nYT!DQq=7Xa1XDWl3 z9h!zdne21B7Amk=-5O{|p;3~}$1E3!Ktu-b{#$iTCZhu>mwA$CvZf9}oj4Qg#z=7g z$6L5V$SnlDetEt6kHH`M8kB0iR^*VaqpLw0;5Q?G5Jo>tmNmhr>rk^Ga;MlNr>>>j zn}hIpicEa@HMThKKMaxc7Ypt^>c#NNnhxIxN9mG?^(Qf|W)Pt7Yc$lMGQw$>;K>J| zNe~OW=iYi$!FyL6yVt8TxW$At2eTuQ*RV6TwB+IAV|YhJxY235T=^G0$}dYkRmLz4 zF=c0N6G<4D>=vLT+&CTipW0}>aLw($7;%MDkgZx`QFSNWKq+=#%>J?f6mkbB6%UDg zH%eMXhu`)I;s&_Ofde#qBHJ&BL`8Xor9YCPEZC6LQqDmq@OjZ?_wfF=C2>pZ5(FU{ z`IQIk#J0ZfyT(0N)-ETU(%?A;3n2ADpeVkQOb;aGp3Z=@kUlH;YU?A)iim{qKBNFC z@5`T}dsjOoaJarSn;$=_V$5aG>SKmabt`#OzO};cHPwmqTI!2X&jse>MOyIY zbJ8xCf+7cqNH9Hd-2kW3uuS!1RZ~>)pzirrBdLMql z7NUmnhCumH%Jj-Zp9LLjnYr5WyBHcL>0mL>o-ss7R1C62_#PbK62%j8!X86`l0VBL zIG1xirTUet^-mu@mF|8eDf}RmjCE?Ws0e2T9Urg`4+x(}xm{BS@`zs#>B|eJNy?s4 zc+}jmg+jXNz=+P{GxpT=m~QGcgb_RZBOE)!rNNSOqQ_C;jHwsfD8p@FT<}>O9>PF? z5Wjo2eK!iw*$)y|A25va+GsixX)z^$cccM6R_qlDGB9gh7-LvsJOuwj@WnA67Rt6& z8HnLd@@_kT_1$5(;Z|Em(*IP7pM5sfuQlO``-|3sI$YnLL5A=eUY4bPNqvH`(-yx} z96KP$%mp1tDxz=+#&*tA%bli_J956YWZztE%2S1dw0&Ud(BG=s`buX zFw=nGEnPvtmQXN@4rR@c#+#iU=7kH(1Za<_lVYsw*wG`7qK%Y4q>r{`C_Tq{w`Hx=B)$p$@Kh%XK~9Xd@;%PlDrFT43sZ2H5 znq2k7oOPGZ@fNjFsNe{{Hke#(5?5^fXG&LBqvjfSO8GtIx_~BR;^=<%rDf92)Uhav zM$<1LDr42#w>cr?Xb4_$7vo$|V~*KDbY!k>=N$j~Cpa(dqRJt0Pvip}kS1bEk8=9m zC-&ViWLiv}V-Zwm?_;cq3B~HczPLGFFQvF&JAq4$Wh+o=hxP2n8ls#4t7d}ZS{CMgSopZq za_}xZW+iZ|^xO!I+AQFNRsq7Tyt2K4A}{|e<*e|S+hrZCIp_Y1QK~(LX;KTRzATGT zw%jH`^Ivy|V7As^f#fb3i0qTrEl!10h;|1?>g?eyvsf@|thEz^OA4r2s9iX@I4xz5 zo6euicvfMnUow3_{rW9-z{sJ>lvKQ7+1}WZK+ZkM=BXyice;4?zw&9$#=lJa&!e}U zN^~hxqSA(r(2#t;gSqq93lT0vbIkgw?sygCbBRcq+2P zIVQ48am}d!j`MLxfd@s&O{bE8xh>H|0mClA*Lt`O_iMice6)$$ca2aiY!!+%1v;)z zH4MS@VMT|ReCX^Ntb{W2_JqQ=QDOTJyraYd07`#cEzfjEgpONnGJm!fPbZtjxKKoW z4o|jm2`cas0QIX}_%wGg``<$BKhM#`2CfnPM>h#5$N$om$$we!fn#lLM|>_+|6RlW zQGEzpPDfN2FfErO>K1(c#2N^1Y-xMzgG9+pYaS2(&z1h`6TNvYq#Q`hjM@syX!YvK zc*|^RTH_?82^d{i`=CEE*mWVx1CmVDC&}| z89@MrThNRsnyCmAI}4|1J0#XEQO6!eiVrjFlOKqx(NgeVEfKyK^$yg+Aj&!JfS)S2 zwSmhh{2_(`fYS;dwHs+bH{kbPlhB#mDfy$AAF3KvY79CCzqI&iy1~rt*|p)NXWT z%Zd8YraODFe(dJ9D_3@gg5%9G#R}(57f-~PrTEOD1ycFKf83^P`bd=< zeVE-SANC6_w`tq^J|9Qt$0IYJ_pl?1S&cUtFe92;kxhCxAFooCQ$dfW+*GpLU%HGf zs&;FXUgeI1F9qf^NolfS!)GlwAdH6J_2X#7G`L~|Y=hQ_4B)F4V$g#Z-Yb=iBh|y> z=X7!FT;Y71mP{mZqm~bW)oH3$X(M*c+W1whafaLLzyfg%gCR?9xX*6y8%p`!XZNey z8-}W~-dOpromShw?^FfCms-4+s7D%yx?dtH_;R03%HQfmkG;l6lg*#aVTQ(?C{W5d zo;j4jL|0WMg#%h8?GMk_^{#a&naFBJ`>RKaP^WLC&7Hsrx6rlEIk*yBG~9H^noY5&OT*&oW4XgG9 z+!E<-l<@PLS5)N5*4Bs?t1D*8GB5Tr?Lpfm#rlNc@Jf+{?dKP-5ez?b<(oySnc zRoBCOlplLCLwm^Lm78l%<(GR~T{xvUQT@FQD{2N1HaLB5jVfk!?Du#F5SHdaSh*8f zIF>fFg4xK8jR|5o5m|YIAkih3Ny9JHOPx?P;M~l`&9`w;2-I7~7N(w6(st|t5@oBi zw%+S~N_Ja%Z%IPzP}3CZp2j*73jE$nswPexsY192>x?ob-u;*YR4;5}+8|gO?y=5F z-#+F<5Jo-_7$Ta4rXQIh;HcrMOE8>{(u~Ro#_}d<74d$xa|$@I3uKnC&R*z?LJU96 z{p;NrFUI%eO5UoKIu+6`Y6krQEm>bC33q&w6E^#FQms%9#F8I$N(V}!HWID324`atAd`%22obyFGv19 za-6D+B20d)1hqk>5{NC(f0$ShaK%(caAGXXf0vf6;}_-sPPKk?o~+gdG`qB|-HXxr z|G++MN6R|T?0eM$VjMYfd31{rrG7TK_e~Hsa01O|C2h6xU>@nOJ#n3r{HiVC1yS7H z6dTLG#eISzYFUV!Z%)v!5BXz+@+mSYr8awthWb;GHbG=*Tv7ZC4kl4o?C3&%jt|bH zK}j}7MwP4N|KprEp+KX?cv@}?Q@ew-$Un(p0xg?qdCf!ECs z(&c2_LEJmO$_b|LPU^pkei1((#owoHrPm!R-U}0sn|hG~Y328^zI3xkN(N)HUKF;{ zQAd2Q4iLS_&Awb-856c%WK#Ft_>;O`R5y~I%{gPRb3R^%ic-k{-D_vgL}t!1(K#Ov zo?lAios$O{-ujl@g$^emcNF|V{GC8_O!aySgbXbT^8P8E3*NrF^`^XsTz`5xBE!#b z$wAS@W$H`aKYq%&@RT~leJXwZ2MJjh-uk$pe`>&nAJ3S-tsl&60LAfmMbpQhiUmEK z8tj`b2E$kR)Yb|xj+DjRJvI??KDx1`$4I6--B=$c$y(1Bhtef46f(YbIHH6{CTHHT=@4#8T$x6#djbl7MHsfyx_x9m4^Zoo{#z*VX z2(B8$*ilIkJ!1L{iL_jR!9Y!?ln(HC2-8~OS(xTyySCjP)Tl3la$LOEb zy#A&4-G`~bx=Z8a{>UNxT>XeJhXVHbLVW@^TA=j-hOSzS2_vs)G zJ#z8-`=+rg8I#ekJKqqpn(Gn0>4aW_ZGkDyfBca(NAs>*V*@Cq|MV^-X0dw8s}GOdP80Z2wK z1BAUFCwM-S4{?oG#~%as9{?y-)skp(F)u$VD=X*!sWq_@vv6{7vL)Z~VgOv+Tx|bO zVJGGhQb})fB@7-saPJxu*ORKPv(pD$-pSJw88ry{zpn0oZu;JJdUw28{>^vQbxrO0 zwIx#aO^#``ghKUiQ6@7JTL{$FX6GVH3!?+5h%s1O)<%$w3@x1hY;SB_eLA;V_**-i zOcR=i8_3$+aQYq;8v=!J^EO0-} zWl&m`1`tTTgz4TK^Y3F}=$GexkPMuR@9gW{d4Pho^_36X%FfQ#9=geytMwI(nWGg9 z07V}%$I02sIRg>KOYX%F)QD@jxf8}JXvdg4+upya0S7%0l>yo78~`p{**%zBU0uwa z*jwLZ$qo&zcjC3DM#P6!HgL@jk6@lxzr?2rghy^puV-FvCYzh;-J9<|kTbJ3Gcvv? z28Y(;l&43wc5uik-W>CvDcXc=4TTkefLS>?Is8jKkOTpcBMZBc7fn!gPrkWb$&=o+ zU5;Nq8|xdOa=YdMUDNU+H$qN%al%+X`o{Zlj;>x62ftDA+1UDqw$@;cAl^(Iz@Mq! z-&x208GiVGBb_*a5R^SXnL;stKEB=vbw4Aq)i>9>d>?*2W3bW6{)Dxqp8L`T?t$2W zffff4#kbjN5bw0vDG&<_4MvbrOUi)f?-ON+tZyG8Il!dUPR<@w?|b9=o#)eXlJWZ* zv=Tsu;n)LQ$2WUC8DWGU%jexQ1=()ZX+Q2Wae@ALcm=hphfxg+0l zFa8&BDQxRX_YC-SdDb>Az60oE>pinU)8FpPAfL8wq4qU$Uv=^murGq}qMU}+Up_G> zaR(<3#Ap((RHltU^JMSJ@)s^Uohx2KQBCoyVLT>?02|ukcYU{Fdj0YH;ox02)i-D0 zPWUMx8?}zTnf1Y8PM^OHDhv%>z=yx+Ls#$ng>Y-;Pb7twu(_*`02rD5sdx8A2JMP| zfXdk5?fY~uzRU-W5d|1Nqq#w2ihv0CKI$jK10yizsBaPrkm4aC6HsQEFA@!q;w2&z zaAuir5)Y8#OQHi1=84b3=kt5uth-|Xhny(m{?_rCvA;t1F9R zeeW5XeU0WnGP%7<1@&IG%piS70G_Y+$iAA6PsqOMj$g>WtH!U$zE~!Y|6wMd(3!ib zYabOKgfE#@rpzdFF2P7ti@~IC61vCiodq`D^Xm`0^7G z=nYTKci_$G;eT|}&)(vzyyHFIp?k_b|66tP`33LW(jYdM0Dos!2M|);4SyB-c&0;z z09?Rv1{r47aUUSG)u5YqG-3BU7jEM2k)?2yRkncqxBmShC`-)xZWYb@$E0RJWC)~Y7WaYpcOJywZtbq1N$UZ*hrO=>^P z@S|ch0TKknjdr~Isp%_ros$>5L^phfoadXm>esvtJorFa4?pRor9U?W+&^vJT5-Ix+uZfq?L*WA71LTr4~_xn%%h? zibzGKVPN%ia0<9RFeXE(0nV+|zE-Ku?8-JQ`x$p^`+~SH)*~0nrs(TV^)1|pnj}w; zjN-IoS5CUPJj4v#9|XEn4%aF zq6p6FtA-F+_+Yk0L)cq+CT{&u7uRaqA?Q{isVX4iX*ob*HM6;b06&t)#;JQb8^jm( zno+h&aa~R{Zuj!KU=3|wh-Y7lkpgEV?lfi-XU_1Hx9V^Br7efF5na`+211i<% z`zv-)TP9Px&4Ri7`mbP6m5vpXdm|D-PMY0#55*r2jZT?v&W3X4C=2++SSQ42I-eNc zJHAF~8d8cyixYf_K)=v!0JJiqGUFA>E0ufZ7lOF2#T3`dPdIe>YoMRu00J4`TkX1d zL4py^hEQxa@KQVH{HGsfBcD_}RUR>kUi(31qzcrnvz4JY*0)yVaJs@E05W|yhaz}bkKH6Z)eZO8P z%6SsShh(2y6TcEs>+a8%2Q7~*(nE_I@G zyzvilK0&lMmdN8CjuqZz-y384T%4(WOVPWV3j_ZvU|}(lBk=A_d4@s4-svKEExu%h zSb6wje5r`}$>O8!23Zf1(bvKx7b;85@4BAk{&{>(P48Fe`x<5b=`Yt6_H~&89l>I> z(Ht_Xs1mfV|FWWso*)O99s~IK_<#9~Op8rO<4b4C*CaSd`ez)aJTEM>IVaKZK zpehg$`CGNTRWB}~|A|Qojm?6L0@2nfaCKtv7xEy*%|57Zj%7(|O(2~QUNSs#y_6_$ zBP5D?$xgk@wF%B63(8nQFkm*4mt|tZtjj_hAhoR>w-?7!w2Klw+tr_r;q|2;(wZLb z3I;oOOL(XOe6}d4O?Q$}6oh~|lu45Zapddz2PKQ8U)NheQn^ z0K(jgomgjhfG(F95$bR0X3z5=9!lJC*olF4_D~L1b|~eDhSbQv+s^TP^wa8f`%!Lx z>Yt8D36HvJV_b*56FDuP-U5C(>M3!nur1`%u8i_kwuoGk;>5Ag-k*Zt+|-%4xJy&G|-c&3sD>^cV?ea&7Mb+|PDrqxS=Kb0}mwOk~StD}H>%y$<8 zkmQNC4cz*dU{`SKN=LRvlh&2TSE+tK)?3Taqz^9o79Ez19fOcQWhQh})=>6c@Uhqw zyfU@Ld%k%5+e07FOReXi9si}mbRQc8X&cd!b=$gj5Ez%%w0Mb$b~_aeoQaGDMeUmH z#+YmeOSrLjS(^T8&;FtZ8AR^0aLea%-&Hl1V~%b@*3T&MBkXbb64fG%tzI(dzugKV-n<-Oz@2x| zL~A)~>+;Vs0jD=Q-X!mT=dbB@l?<@7A4cnnGw6e~6OB3tlinMjGFW0QS)CNlD#Vw{ z(anmHZ%mIKFbj$I>JZJ!X##>zF{2~0g(~Q>(0K zl@h@LpT@~_ea`0u^(Kc?{`ONSFl^z-Eu&r^Hi~{s!&E za@fK~YbJL&j#D4tGsM96%x86{;TtJSb`#DgBDJ8kjbn`#tU+0DoOYD>=-F0R5aDQ1 zSyJZp(t_=6f2yaOL&JR<@0EA2>E6#O6(!)R72R?6qka2}y55?r$L%yuf9{eQW0dFc z5GCZwgnl#eq(o^AM2fTeb)i~A@xae%O|VkNsFZL{h|qi{SAJE8{t>djZ`jJvR<_~r zc!=w#m9>W2GEvIeB5nLxj~VycG&~q#{^y`PY&Q$Prddu*N!75IhF~0ytV+>Akz#hy zo>U5nOiGhy_YcEo4{N*O&`y{6(>>NMHl3pE2 z;+|*S+o_uA`LK zKc*mvHmWH|0RH{ZzggBw9wu^XC(OQ(I?lojK}B>uS_GQ=)7+W9vU8}8GqUr#*pZ=> zYSCqf;aEJ-U7=+46C1mK8yjZHp@({{<(#b+Bl?#^1`bEUiGQ3yXwCDsZgZnDtx4bU z?F0;IqWBtbmVlorGTjEl2G6{%B}($d#@tD>c| ztnX%%5IsW)yUPDS>`zt_>QZZ}l6WmKD)X5`~JofB7ZKktVqE+Vl*fUGlg`@ z>xR5~%UVvbt+J=2Pmp^8%y-2{1st7*&Gh-qK-PgzSE<#CO?{}u$m=$w3I+mHf1%EL z(p+A9E2=+k=#$i!L{TPF4}*j*NI*b{43o7o_J7N4T+Uwpsy z%`wpp2A!<(+)*ZloaCUzJRpnB`IL{*_mTO^Z^HTO^k+0@+9BTEnx)cdM%sM2N^Gt_ zAp8^Bjn;(=`rC_z=iqij+`xxsChGkIl0t|LU`QgBn(;Aiw+i4;U2^H0x~+033vPt{ zeuJFN^-BKHBl2#|O_@{E)^8S7e;n((A$KH@7;8LJJjs7T&mn6w;4;xlz`B4Y{uC}f zyULbvy6{;O<*o0Wj@P`48*)qFuTky<962cQ8roPYDFiXB`Q6Wp?^!Zy{_OEvY;8iV z5OkGtFd(7&MNyPT+*+}kf$?3~2NOmTo^)Vv%@@Jac;i}Xzw4pWC2q!;igu}}kwC** zoh5mQskKn`tk#hK(@)+k4;JZqs4O?_Hxg&DWjEe+oggA+YsoG8&5fq>qRb~GF!j+4 zd!3X+D5_J#BsOUmI%tU#*I$5KqQIC8go4pa~Pw_7;gU&0kU!!5bfhrVzGFz zywQJ5DSyYCg`W7Wiy4!cziB?%(yuSu|L3x9Bv0OJC*1-RxNML{Lm#*{BRD z)=nvfIYtK2}bL`-0hia?Ci;=+@Z^OXLNarBCfFaLs>z*VSQe@gk( z*l)6Sfg|-2bIom7`hRTRJjcJ3z6YpYSQqJ!qS#D>4uPG|Rhv?RLYIrY|aPqZSSa1aQcSylw z$<0N!y^FdF4$?4U{1CL6eg6q>`?ZZ)WpLtGEHv?a%w4VGD{!3H%mveC`uGId+s&LY zlGlF;Il8cVkLmu<2J={9Z9%e?fT!+FoK zWSu^Ft56&e0Lsm@ed6yFTFU&!z({KS(h_*Ja?nLT`j*dWrNoSPr##kvAG|nE_-diJvn zXb!y&^2g8O)rO%?+?xxhw8BlfWLOZDP(>kPjF%7xD`d* z*lN{oyV8$vc5d0hCc`+8S-0Ivq*d0sLyWSZozpV)k!6%;s<3H4;n>S5<(9Qul2S^t*k191qzY7Z2!(WCLm( zQ&)vG{sfA1Y;*{>bgtfxu#l?1ZsVDk`S^6rjX>tEU)ZMKxh!^sH90SH)RU7Uvos*H;ZvHOmcWXG{2;p z1*Y$>VNT&rqado)<*}>EM{GJE;f3e7Zty&Bq0jGPWFcw0;?(uO2=HPMn-a)z94Zb^ zIU4z&4#pod^u?{YZ5qRxHewph^&otEiNgW`I|xt&9cE=og;1<=v%d$11Iz6nTwfk% zYb@e3v_4M6LUW1SpVXS*Lg;TLR+U9)9#)q|t-Y}o_v0df$i)0)lK#XB z^VsSS)#HEe)y#OGlD&}MVAn>?VyJ#oS9ca$x+_Crgl>L+HY~_dkm_#3g38|v>JAQ? z(w)|;>KM)RT|l-d>bMuH?25`)laUGgGWe?EC6@LY-tT2+bvUCBN~@nB=z)csF=kDn zWU*LQeex|vwSnE!>;5SqJ@wVH7^pb!Y67lCjxHud)gXS93$ce7W_e2KtMe>eLdvg(;#FQ>8 zElJ#Al=secScFdBup0>39yV+8LE@*0)6Lm5Y^!{UE zb52H6C5~5PmCN{A1=LuaaQ4vFK_EKH9BxBv^WH>fZ3fwpSrASDh}m$GSs=^UmI@(X zI`HJ-quRHnr3-L4hJ7QUJ9<}&9CR~YfU?K^vvD48YNHC|2800dl6?_$; zRIV)M%!W7fnL@uK#w-#3%$dAU&L1PLU(OAYvCMVFgA{WRR1R^q!hZjg_o=PZtO&(J zCcN_cL$>~Pc{N{ZaEk+%V1N6YcKyZ%6~S%#=(wVv#w?gxQVlF^BXsY^iAXm+Okwq@ z9r_rgx>*eP9AgIaor6hSj*F71IKqA{5`F7SV+}C-XqiSy)n_owVIG*Ig?6L7Jon+xXPZ z?w~Xo)_(r<7P7I$3O}(YI1u!f7Xcmhp2*h`nM)5;i(rhrzrSwSb}i3nRcq1w!gj18 z4$j6@WwEHOj_mJL%87TL8W%Bxw{|y`rWP-bh{N)VE*o6Yec=h)M3vcG(8%N0i6VUq z((`7wbmB@`_MG%f-xBY$4?@7=9*d`cL>-lh6Zg6lX|JvrDyFHrHcr4qp=FvNj%;MW zd}#o#blgBzSm@D@rCg)Y(uyCAMtM<56ig=neM)#VMWOXlx8>MeBf*Qw;Mbb#`e~Lv zw$3$-f>fN_B}=p~7M?C78|`$Xg^j;5HI<}@PPwW7MMgt9P-Pv8%)pu##1doQeZ31l ztW5C5;QIrIES@ENrmYY1IDqA7<4(5(Yl^OzT!J)o*0SpB>bA^p3f(jq$W@Oe2p zJw!B+k7thw5J;6?;%sd3DKNsN&NMI5Ic5$BNHTMvs*JC101;7jd`l5peV?gDs6Rqqwv>dxwm zx+_f?T6cY!2qfn9Y&Zq;;&N(hPqE8Fp=<1(Q}OS; zqhPP0heE5OxHjh<1#Nhgo^y*pvR5FG>^iFASk%idXz(RAdlS^lf`(0D;fNrVFPd(q z{KL7c*B0L6^}t*cvh_fRH$%yl4n`Ox9qNTxjkJec^pgZ~42vg=pP{;G@JIW5vI62v zgQMK8z~k%m&`Hxxx{AUah`!fV^2pSYxUtI5lB}uz`{ePrpKjW*I^YDDWEFsc0KZqN zv2;n$^OtFOp(@K0RFRQ^g37NFrS69@0`0(rUJf#_gkb(v^032u?)okP&V>$o&p)Oh z5>yx;r9tTz_n3S4Hn*qah5Y3%!~?z+2~fU& zq*;ksCTwHKhTqZ=>Vu+Rg(8G48*K+IQmyJx5}H6atu#?zji^r5Jy<*ycH7$HmC%)P zmVd@ZFHL}p{SiPo0+-ELXeZV3+8k-uWrEFlL5+r;%5`qxYXC-bW77ovW(RP4!ylC% z_&jIZ%hq=wbamoLvqL0FPZg30cO3jlvurEd9M50(rEdFu$RV=4eH)~dEHYcHn-8JS zC8W|&KsNSn^m-ZeXKqXJRe&O*VE^+HR*>0WPf;riBloPc9q-HK!)$4hhcy;lvGNVt ziBXj_23mR(B>-wn5~Y3EeszM=1;+Gsk}dH9v6|P&OMxQnsnd$KB9g}nPWH8{rre4B zzI2(>N)o^y?2Ve*x!Nfg2QPA!;tdgQeHvOL$z^T;_pz7hvc#-3({&iNOh*T_cG0@L;TlMe4T zo91qP7ZTjzFBXlSU?P(fGuQOhIvI3}o`CQB|nQMRs$F{q*F|P#ajP zG^{4ZJAo`i4w&_N3IBl1)m#Ylf*S+&rKr2wP4lWn9R|VY4lsH}>o$iXz4m@WA&A;c zMY{m-Q(D1G8@OA59i8csXY=oxXkMKGib?Y=1ktYr{CU zxS+jY*;0r5RxTvY@k`H_sJH-$B&3l|wp|Hb#_6&`A zjHX;!s-Z;mi?RF1mGU8K<6V_@JRi6_1mBd64+gNG^wdS!D$iQw^g*Te%`i+!_&sLR zLqB+nHrKMLt!LonV|&CWLsTqoc7DfbK>}-To@mAb!l(b9h%dYk>}9 zY_pOcq8v@)cF109;lb2%;bXK-RM-$+5igmia=z3b(_QvUYDBQ&0EWJo=tpVMjX3-u zs)Y3DNGVGOh&3;K-C_7Yxy$0rMS@2NCzZ6aTkW*DcAe|aFH zhb_hGm6)fU;GPBGTRBSq+_>A@q~7ngHuv=!{9=hlU6^NElTi_oVIh=wnvqWrsqzO*B=@{&=h}X#$=YXVRipCEN z8{6JeO&CIlr8DzDFXp`F+KF@cN^9@EVXeL!j4GP5r$Ou&$rOV>BRz;M7syhd{l%@n zkXgHToTaAsD20EfE2gSdy_o^`kV?$ujb*OC74G{WLmBe*m_rk5PSRd#(Pe9_d1@k- z&<-NMVEsA}lbrz!!41Qq@z=)j4>|ADy1bsWNUUFEr zOHA{t=x*p`(~uCEaAtgM_-zNtF`7gs(=h8}B5z?kR1TTjz*kyg7EkzJ&ZzJ#-W3PQR^l@XgN(cSbX}=cva#V`LGfb=(Di9??1 z6=EAiyuQ4l!j~F|A6CL{BP_Wu^zG&G?fq!{i2e}=VQfoO89Q5e$kLG7LnxskdZX3eWkTH z;^RATM;0%@=-(7@vMTXGnVEq6zd{S#%Tzlodd ziWPQh$NSCA$MD;=3a_Xupc{>{)d1KC-F)cYEuqaD`jirZ#IY*OC&(`foA}Lx8#I&4 z`yd*z;36akP<%VpejV=5ZwEK3yro#>iDqU;l7s;aHWnM8rzh1hRxP#T>vO|&Bzn-v z^v*%xC;w7NhN1Q`@@5(7=8;BtbFTaTx}l4ZoGiyIjeISU{VEa%!R5fYwJOQz8>~wY zlaQ#+lz%UBdm@m6=VV_~Su%^l`hld-8nQhj7D zlvl)Iz*qH;BUOhU+8g-IHEkTBY$MB1F(eLL;F5|gK`{vrFiGVK40bJcB{rp17M5sd zFT3hx&WfR#F>%{D^R`80{dW5OVJV!e)X?kjw>t7N%-OXFo~9<}h++mf%hs?bzx1FZet@`=W%c?>ehc4Ft{&E=Ef^3GF+FF)BjQi)6YZHko&`d z!6=i=gj{frC0C*K%gQckq9m{GX{wIKJiLm`1Hu#E?V8xVD;VW}0Cqr$zvf-Aym2p# zUw?S0iZnrYFZcJeN7b4gSG}SoGCaqNw#Uc*mK>X0^29DqV$Wa1v_5Rgy0Kn%ld$gd z6eUsswqu?TWa61xopnp?Rti$^z_cQ8R^DXJFL>^BsTHM9=;nznzFF`ZE z!qZR{`>(%hA)QaX+jCycWyH;5dlDIqrDEBiM(sk07oqc2Qafx_TQk`d`XF;)wecN#y`mG-8_eet!;*6NprW z_%8AG)$B9&VWDbt!V)|y>*OEV=L=}wGPcQfk3e!^r0cx_rN;%xC`DK>z6&N)-*VbM zA~5i+mYkalSXZXtFjqgGJn1y}`fuJ(VqH0@590*l)Ah;$kroXxN`K(La=?BKLB0n6;i<~D@KC_c?;#~lpvy1bY*w|EPIxKd z)su0maNXCAB)IO;E+47XS2>>KD-5CUx{yQv8xcM}t_pK&#+FeZosWe&q#g2Glq3^? zeWZUMbA%Y|0>u*t5iy-M#XEzj6%QH=)vdn_mNX~~f;yI1OC@r8PJeAU3g9%i)F@m( zQ&x-qeAu|NO5Ez-IQS`iB$?N*As_lMR6a~<8ymG>RyB-!G`vCh$P??T+BxS@2T=%u zz0H;%d6XYjJLyxGSSz1)y0BL&uU(%JD-Njj{=0e_vMP0y7ot|sAw2hmM?M^39*!hL zj3bgu*&!Ko{$5IG6@NO>_TJ*qhX1mNgppJ{l!*(jsY0H!3RVC4-3mC|17h~ux---L zTKB%5iUJ{AB@+>Hp)`}?qLJax5at;~1vX~n$92jLfloX1=e4xX?2yb~a*@X0WSgNo z)y!GDB2MnDWA(7VC?Ab^Gd(3o3gY{HbY?lIz^ZdSsWf+@pR1AazgkVS+^cLQ)*p}&5m#J zcQ#-A_){f>LEm%lzUnuQb(li@-!f$bKa`DbE1>6=BV?4GsN2wh@isi!I&;cU;F;3! zXpAwc+l6!zNq?gN<$W@+oU1G~W$k@p^U&4?gf?@_(dB`u&Z$afvRQ@3Q=%tch;paepw493|Vu0MmEIR4&`pf}pD_ zcm)WTB$EmozxW_SODMI2e(CY2-y}6)i8ANYG?G(@1T}%wI!}H>ttUCr*|zw=ve`-o zFSAn9x-a(BhVpTb5}rC*kcc+^?#XkzP%5rFn@yQZZN_%RZ$!F*F|4u(WZQUn0wEjl zihZC4wtv?Hm=`Hz>!r|UVjjiT3+k;pe&*gojA$d{+rXjydum*m=QmCv*|)xDToa<% zzK5!{&2-dikWN!dLvkQ75kmu@Ryf zo9$+2j4{D3HQ`mZ(Jg91ytYU4Ro6~~pOD;TG>n5Zg%_V#*fzN0S&yEb8ERo?U`~yN z8j#mzTLf5{&s?7?cZR^eWADMKCkK2}DIXU(9&bz#bg9RiTl2)FDCO|-ot<4QbN=MF zBY!+OH3pGF2{#8^=^rPevxddx9h{qLQ-qzefUy`5;uw*{3d0Y9SOpgOBKltBL#J&| zhh$!i8!o`R&G1x!ovO7)lz(s7Wi*7*MAwk{sEXdy7_%pO7C8d)Yz{ABsDXdmp%6mvNh3+pRJiLH zA@d%$N`syBuZUbcu=&bdZ#Z%G4wTT@gnwP?c2iYfOW7aeHHo-dc{pC zB?T{9vJ$Q_{y;jGY74hU5=ahVlYiIENs8hNklB~1yi{HY6`P|(@frfhJ_zT%kgI zr=$bNpJ-na8;1)3EI(wy)EzWPJrB+k;_tj2u5zkDUF3(mE@f=Gk0J7QA?1QB>U%RQ ze(03q{C4l7$Ht;QS&J-SZ~5sSkdm3aPn>Ne0&qRJ$P0H^WUx|{37fO_U^P$i-c~B+ z@agdK;$bn8bU|Um8Dk5V?tkYj@_6#eQ$ryn8qz8)r3T~~-~=A~1EM_p*0r(yc$TQV zW@SGwsV^>2<9_34`kDs;?}4@$odqg77wlT$`hM=9n~Yk;8Fa171pVV6Y*i1jV{cG* zWr~E~@X{LdmoGkxwE}rn{?DY2eUgl`V^~DNyY`_HB9*)a<`4FENPh>$a;@}{eHamd z2_PZC5pXYe-t0T=gPGvBUSb~vTej2H{&*`67G#9P52r3x_EfKJ8rXt73PPQd^JAa) zXT_1uby}$W^%9Dv(I&MXCAk^|9C{5qXV6C2L71P$bU9`zz^PP5UJVbG&GGzyo=R%r z6-MPnLdVM07eqx4^M9<`en$>ldoC@mG&KMq{rH9*jC$R@cH#0XLhwL>m|@v1QhZG2*_%w`1UP85F=rtVs)7J`K;uKW{OKLP{3en$(fub-{IsTB7NP z2d7=zn+cbQZSrZhmIUk}T>8WpIG3}=n~e|fJlL~0y?TzD4I&f>!rV;#KXe}@)4Wy| zsd#G?V8GCN)qmEhnmMXf`F-oKug2x7D{`gq!j#ze*#;qYe{>ijH6 zna^eKMHKXDsU2O8lpwHXtde29v!$%5xJwFkS-ovG8;BCI1gpKd`>MB$TfagbLgCHI8hjihoP#qj$$rQ#b27 zQ6+?1{(rSm-8#8Vrn3&!IPobQzkK|226X0qjB}!TkKz&iw^cfV$MoAriU#Qp3ry9? zzPt36P9X@7UN@@o&fH7~-p?e=zM0MB&20XJuo=+36HVM|tx@g3`P4Q_hOg&P@oTTH zcvBl+wESX21mbtf0QX%N8Eqh*B0~fzAMu(>pnry-b~1l;3AY8auNv^E47_OtK?+@i z)E|JnsagQXal4D}Od_a=9;eY@WbOM&G)0`pg?<2NI*R4P;>CQ&>qj&sqjd?ai7#J` zGb5$IoUcJ!+Yz42>llS&3}bSia$E1ZBJ}RK5o7~5q{&kNddxbFd4kYk9hWgkgz2L` z$bWJ=ekbJSfnt^x=^mHgV``(XkLm#(t$J7gayh!+T$M0r6u-<#6UEik+eNiTk$-4n z&a}^ntGRn$WsKA6Ee~$ylT32fM=a((@0^N+P`7xxj}xt!X%?U6ST7`;8xfIIx!{Q_ z7O?Nu)wNArIL@@23vYgsX1i_y0#len8> z0d@Dwu>Aremcz|q7j|XR7e6+t>Wwe?D^SAug9z+v8jUfl zR?nLl^=EF5n3_p5))2b*Zf7rGdYD8= z@VBF&o5O*=k|*aLfw|$6TDl)svF`X+w-2wRsXy0|T4W?mFvHP|oBhB(Yvfd+baUX` zY1Wst>j-zc!cZWH973?rg@M4JVxih|r}V6De+=JQiUPtEb7Iz6U`e)uf2y<0$c)5s zLGhD3ISrAUO@IBal@p@Hj#qCHg)1l}2~5 ze<%K`g?VOgVY+L}%BjuSB3M8DtSJOT<@d1AmtK%C72H^p<~9fVx5Vkx6RZT$Y}e12pWoplzvrc`VE$oyPno*AD{j8C-3vttYF&` zL}_H^v;=q_d?k%=Ju7k9#ziz?n)()4I6}6{o_`2ZvcGLq_1V(w0Wm0O{NxcX6;}-x zttg$vF;)E?9BuEh@eNZ)e+o5F(J#xInhh+wJx-{ta zkcHz`C!8!_-=i{g2wo(G#&T7opHE6dd+eVzSkT6JQ4p?{oA z+wJ?sW*>O|=IZ7*#pNqDL@3ACVZHxTerbwF&7O!ZV^wk51jhc1mFYTdvd`EcH%ed+}~kKE7EBIMe$d9fWu_T#--y@#t0mAFyvB)mwyL49tV8d zhvBy*4PJY`W$ZtQWStM=XhB7`EezLbc07oYHvr|$zk0_Fk8Q=n6ZSvqp{}Yz4jUlZ z7VZT~*&+-NQkaUc6~oON*v!)0r= zvIf*y%Zi*${LwOSvDVOJ$$$Rl!JhOXN_6yk4adZ7QNMJJcT@a zZZ??Co9@HG$!20R?Bk@fDh}N%td{pG=}5|E=4rvA)4sNIf}o7?xPSH5=b%>s()oad z8m`S2^v`4g>zC^}!ie%TtM>g2HwEonH`<%BDI9?9*LXK@B_V59>g)FZdg($&n0T9n zf~RCd^jN-PfA`llJ~{CJ@3E*5fM+8N|JW^sEcMb7dq7j7pnTMMka^EIW`|o-H`P;q z{1Hlhh(&b=MADwxdw)t^d+9lFi@Yp?|Fh2z6%$fi$DB@oY) z=SeO;C-C)W(Dn42WF5Tjus zlp_45H1#vW)PHF}9t3=qdLVc}^UIssWIY7};FL&>I<%Smc|l#DvPXsQVFI|8=KXE~ zJT2Fa7?p$SwzFVW43KYqb+RGL&kk6FmP;0iMTkD@(zdpw-}4JV+_7`hvw74+~! z{$OXzO9Qf;$3fm|8G$4D_LzQ9-u(G9p;B|r227f6<9|wSS$?QpgU!ync$rfl3G-HG zS`%!wmQUP$6#t;|MtK73Bp2jD%*-A8i*2V)GClja)!7Q6m?Sot(WLK-$#? zz{CPzV&`V!;AUh5Ff%f8{g0u&6E{HA$j#CeAV&|7wzmU1Ban&MJ9s)-np?PlX#VFb zfYO8tz{JJHLHjRvfRHWF$*-`;-( zvb6h`vyq93y{&_hou{RpIl#=)1_*yp5SOKQ@o=F97}=TrWoTsMY!C7`ax=2DF){`j z{3~-KfVhwnzz9^}zsqwrak6x9ai({+wE3$yVfBLL`OV!`lNcvVja;J=hie~CdA_j77l1L)+|mx=PjrwNX!bV-9ln#L2SA4rG3$@~Y~piYhdJSNwk;ov^UI2f&+-l@UP4%*F^{`fJEIKwo_SJB*@{<-gPT zhp&{KnLU8(?`%PB`k##5{yhMc|6UF%z<lL&41cx=`3#P0W?*#bTP5`ds_aMtNpcQHkNikMSEwrhly%GaEa=$jQmb69II{AjAgnW&-V^ zDbV9zLkwV`x3hNvxd4Aa<@o~4?41z)I#G5u0E5t9qQ4P4fI;{V;s7v+{6U-m2GKu= z3&0@uAH=}~V37EOm;nrue-I0RLFx};1u#heK_GUSKM2Gw`v-y8<^CWLyZj#nVpsSN z;$#FcDE>hpcI7_^#IEuOf!J05AP~FS9|U4o|ARp68h;RoUGslGhzrE0{Re?8js75z zrSTsG>Wi_Hk%=`B^tPC}{E@T#NB;MI{6_&Q%;Z0a4HV48-Uc)q|07{#{YzqN`-kwa zpW1|{AgF(We{zG$v;6}>*A#=@KOiVs`#+_EY(dZFKh&Vi9R8?5z7C+L%kIA# z%gXd`>3_GC1(cNo&~UouPkKh0wSmFDPb?*cS6w)yV>OiUovKYGFhs@nNa z&p@d<18pt;`>fdhvH`jQ{~-YdaRy!M|49Lqma~nK^FM#u$pp&k4=w1vWN@)?0{-K8 zKxMnQ+yBD>6vOo&5Y%wDe?U-X?tdUN$lK!|5ES0?9}v`FuRqCwB6$Iw{-*k`JIBP; z3DjYif4vHz3+aFGzutHt&;w|KusCOL!V_dw6V&=pC4}!zw>!o+O}49%OhxCt=+x%= z^a1tIoR0a2ZULAeZ1Fa#Oz&oVLvK(DGKPcv4Jh=Brc+~cmERTfD?JDh6vdbX8 zluXe@seRK8ESw?BHcp?#`2^!aM+irae&K;Kb9;X`jh;FFPAnZugW!7-#ggx>y}=y) zIP0}qrpoNxiA##BjY9}|i#{?*?k#+fDE)EXyC{F9Z^5I9H=j5YnKo&K4we3ZIjz!C zInu77yV`AJv7Kor>jxl+0>2MqC%(G40n@u!tG{457?U6Z;*Wy%s~E#8U&TpZQwC zaIsO2O)pyPNh}+;#kO$SPnypvCDFY*UojY=`^D4hkt>(}OubyKeqkB(@DPC>pAKPuruN1uyQjB~qef6#0vCy)uWqp+1Xx3!?emxK#my*x|Pg z0n9aR3J;WENIy|mqse~mEkk}bXd7%$zkI_J##d2&$ocHG0oFY~HM&hQJh@HkZBwpW z$lB8g;9>ig0%;RVPBOn8kb1q&NBMs(;>|3gaZSx#sBVd%I&G#8xPCG)0ww$zwvB}m zlYi_)5|CF+@pDZ!p9b@NE*i8!W_ufkckW)1U}H@K8fw^Iw8bX`;+OzjAM zV(*3hN9L4=M7EM$e<^-y1n!PyCD~j;2Fd&+f-E!G$7-F7RJ5Dze19sEZ)ShNnqS~d z4$vauz_xj3DKH0WViGTvF%((EvPpvIxU119&^F#Cgg!{4RMJB)_SA?-kAX?Mlz@?U zdvm~iXRk*19H>6gJ<)kQJ104dAAcRmP(1WOeBRvslQ>&KjQgcZ7^zR?d!W4%@7VrW z5+dTHq2DjwbRs6kVjsAaciw-NL)-JZhR21UYl9XSYgs|-<%a=q_4QR%X##_|h62|d ziO1N81|wO}IzQU4IXx74S(#=DulZcYA0)w+P>^}pQ<@rmon%~@4q2X4)kMIcEmN`U zBwfmDCZ~PxJaLHT-uz66$aL2o&jWOuoA+21Slvi;(hTmUnschoYb$?Wu=@5)BJmj4 z2}`f!q#xxnwHV7rV%)sh*Krc&bRW6_5KftngQ=fbaQW^b6Vg?uv}EX4WN?lKseaRb zlo*onHVPBb7M93pLm(pbT&DaGAwv<;&8)yUt)5iDE~Q9HYV&;fRMtor|8Ya76X$pa zI64^l(2oa)D>E`r&P;!1o?u+*6?!i{f}29?YVRjk#@vJBwdNX^k`+3`PMz99U4Y!% zgzyPA*Wq9X;N2^K1vBdhFg7zt>8dWh$>L z(wLSvwxn=3H!hg3!R$eN!0AXLYdTf2jcFMLdeSZL1PkG1WAeQ^)+9tD}eM$E^pu*r)K+0km#q}Ut*!D~u<|B7K(+9YPL{qrp z0Z;b(FP%$k077x(q97buJ2sUock*JoY`KP)$ z?;Qnnz=vceNLhb3lUZ9VXv_M7PV#|IawkW&J%SAyvmxa;dF8e%#$=3($br={7tS-ou@Ul%Jay zG@-R1#x;SFWASS{q9lyNV#L6aRFg0^yYsr<6|#}Xn-*{ouq-b{zeen zhU~c`cks?0P?}Y(-*#{0l0gh7sK9ib&5#Zzeo370i^Y@ZbIP^}ik#g1gha3Q>#7c< zZP|OX*Z4Pae;9alo07-UPhHad6+oy3b>SEdVFKTMb*k@BD=GuambkRp=Yea5=gR2V zjoA5ZE#iMs{g5SXis|$RZL(040Ui%f1vmyeW18w=XdnBpZy zXyY8-mhiqh`CG(4HO9MQUw#kzW=Lb>jR$uRRJx!0ZXjs(k(~uka$V8LZPE)@Z4}F( zDsvRGPrHn%MnH-kHM~C-F#)&~=bgy|@o+2%L`P~?5qm$SkP!Lpl=9GUIOyiNd*GsLZAl>Lud<0% zjIJESW1$md8mu%WO4Q$PUK|Ec5(y#MG+<1gF&VCKy3${}(wuECetNp*=eeNu_Zok! zne0*@_-y*Om_Z)HaCEauE8YkF@834khBgkf3uB^s`pU$ysckCn@sgDoB5`1WnIsw;Bn=sFYDB;5xji`**~^>F@i8k zAe}o4xOnR&Vvt3|41?7Vb1XL627Ab`l;X$4^X(PedbTFfzWS4vd~f?S$->flugEpe zb)p^R%oPewVYppRgnZ((r18itpOAkt;5>cXpU^-o2xImY>8C!S#%eG*Gpm0)da;cc z;vVS?v&K0_jr(eF--!a3@q6y>CxwDcjG(;l4UVwmyT48d#FV*vuxD$OSSuwLet5AW<7<$&cN;mq_k`{HXVhFg}!x~@miPNkstP{p=@QY9^A4~o?3r4cvG+UOBlM_ z*17EZO7mV0Yy1sUGO0g?ldaJEnez|KuDXa6~;`<@z+Y9?NOk+XsSkE~` zI1&*N;z;k0CUEo`{@TAz&WZLIKiVN~7&`=;J1ZuelG07;-c^pxq>;<=I&?sxH=@{J zAo(=;rPXmBJkbyKB>sP*F&pdm@+@-uO1x=MBkWZ%6q*@w!z|!7(+URzadh2!J0IGu z32u~2!ihVZXN!=y9ExM^zDNR#0QbPLD-N$E=&7RTcNv@sky8F>V=p{+SQZaYoS5!L z!uWX55FwuM1!;Bt>8x06-AE_wi`j#s2Wx<2a2A%&5v;~b9nXKV1koHOsusp47U3JV z#p{>7hfPV{Pt&D3Fb_r`xUj>bzk_cjJ{6DyN)>9J#yhdtSPR!~{i<3_j*9$IzXX%t1u_9zSM6DkWE*>oIx z)EZ>XYo&A7u*rWFRzj`soh@UYN5Eo4x0IvQ1q8i+s*sTP1!6CORyllG& z$wSl0BHJZKCJ8_rtYPaL1TULo#?|{}VE4uFL>UrQO`Lxg$q0w8U9bate*In{u8eI& z;7>TP=}>Zr4Z$nT@t>yZ4EdG*Sf78z5XA$lf=hv<-*n5p;{qjJZ6$bw=}}tyRg98R zVu)v~8EaX|5hA*{Kfzj+qUj<7l_!JuyCc5c!j5a8i;b)ZQ@mymfNc~n3BfUTzQ=JY zKTu#Na>9R$NkoOFlOR`-soReTI0&J_Jc`ItDxD~|G!*p1hVpW{o)nI#891o4%V6su z&nCkGuJHF^X=&E+3&t7g27Y+Op**IYW+Al0(&Hx z0hfZC(b_GV&cu}=J21%?t86?WdQRgLUL29q!w-K@fnmA_e7>G;Mzi=ZqN5ZdYf+*_ zxBJCU#p%t{hz%g8s3lQ6JHbQ51r*3z1ah{eOuz(HB*_zb-=SOM&Y*y9c3_+sf$8F32z0mAt4mmVuZ_xuNIX4T zx4AE;X)rTPNOCN#L`Le7hrX3F#^lyKXC{9Ex-={E>bDo5qA=cDT zd-Z*}t8Zx3>Zy;?M+}&mC$k#uCy{JFk5qqK)4y4n_z1h=B_h#|qYvhUpDwY1QuIkOEKjA-go_tWFEeCIR$)eh`%?M7D)Yg9`i%~muTj&HMLZ0y2*2mcx7LM{H3y@dcYW&5* zhf|?>ydltPizyxVfK4~e5_C^!xjio_xbi*FZ2ar1b)z!ELsLFPi zXv@f=jpqw74o5t84wBaGoJehXukB&I{;x_2S2hEQG}wpwMW%vh6c>hXGl+k08&M-$ z7YG}y;nhs#c3}q3qWr!NFf@B+CFWcfq=ZjJz2JI+=W>sR3;I({5;Au@Y^5-H?)}Ft zP&-mij^{!}EM`Jq*0stjLGNgC@Vx`m-O-u2zRMJtM??X^ss zd+dC_XFRX>CsW5&y^a4OuoJ%@+|czw5CYE!s_cXqYi=d%pf0sfe~Et`|BNBSbMo2H z=pq}vU;sHnr*bR;)o`kPL@Xn>%N_4G^obD>K2o;Vp5>LSQP4+pU#p?2{XxO!+=yM@ zUVjgiy>pFU(6A}HcA?JE$&7Z?AG|+Q+6ZVDdtFEV7($QaZ`|iRC3c{bog^Q~eTF=j zG2{mr))kR;87AhOt#*G5I+qAEyA8MW>Fd6PQ^#S=y($fD7Rei%1=B3Iwyyae)rBQpvkP)^_{gy zGIca3ZT>1%|M!HWEYQB@XR_MqwI9-beq7uH2mc9GU*2_!q}_k_42b5Uav_dShu)$g z%DfEBF0XRE{Wp)!y9EKy)?8AWH*sdU#Xlz@x8BEJpJ^}_3pB+}3KLNW=#Mr@Iw!h6 zQA;nYaD3=o(juyaBRGIQw^~LfB%fLoI*>-9DcuX}Xlj8&Uqa`*O_a~xC1rQ3QNdHy zLJR-Aj8h?-^v-`eR(Q5AkOnqRad&dx{pc_L(NtYRc8->2AKMwLOyVtXL!Y6s*s-n~ zYVZ!+;#)6D+2f-&QJGheXt9eR63aahJvA-!KyE>h--?P?!@_V!t~HGReLiRK-ER}P zajGsVJ?oRy+^mV>J6R~=6fy9zPjx_O-~iDK=M^G3H!goc(U%80;?s1i%-!_ou~^lt zh7aQRPrCbfulM>h@sNagkcd1f@SQ$K$^cQ_o-fFft~2cKO1-ZW$rR~IECa?o9-kYd ziCM0RRYtf=tc=l4m&qDkq+?+j_=mC;-p_s#I;pP(cHw&HRW-r1@>6Y{Xa26&3$RIl zgk-aCN7aAX&z=zHL8X-^FQUM(ERN8vmRI^MbtO47dNV=XDWJ-ID!3qi{&8Ra9T8SV z^Y3j3iKo$QLvr6?<*~0n6`YQ7}kUc z_)Xt83=&f~9pz7va}}%jw&j)+T?OVa!KyKZ7)n-%(#7)iQh{DKz8i z`$K~y1X0xHP}!vrb%|4g_E+xsU$_U=4W1ze`DY8bsHGTvv8U^GKY1@;!JV_HEqV1_ z4!Z7$|1^UfSCU!;HPuGC@^l@nZHo184+1iU<=_`nRi zv|BMv_N58!JH16WyLHjZ5c_|C!(Y_}kN;3#`~LkWLh?(RQc#`F${MfQ zZ%u9js4q*)0wy$fWE<7+r}8Z;!YXWBArD`F*MditWPIwL>-kx0exQ2Ty1JupT&&Rx z2eV9BLrn_!<_=T#a6p9>@hyHkSRYfK#HqYn%PXHZKZN|FQxcDmsgwx5AwyW8F9Ls^ z6#$&wOLy4j3T5Oq;-?HN9`$IT3?1(Lsz$!bu43e9g;0qE#n&F}o|UJMwG&e#V&}{Y z6OxJ?zdu$Iooel94ARwz52B07#m?)c4hV;DWs;(U>0L6D@hUa#ZTam%TIg>QZ6A)D zRQc!je_rbMHZ5>)p9~@dvwX5VBDQ~r<8q20Rr9v<8un#Z(YxkTG}u1H4h*kX1+*%u zIwYSnI#8L2JyHhxZ&{nf6Il#iG*Yd=6XO|6_lP0rYN|>QkTIaD}_i22|K~$Q%hF02L|{Usdq^? zhP!qYX9l&EPi5V>`ric`);bRwh2CC70?LkG9STO3W?GV|WHS zD^Y(*z8?*H+@L1f+)#ylZs>BFb5pkK@N z5qIC-hT)k6G{mZCWPYKb`tED>wWfH43qG6-TiusUVPl|sNfpXv8%cj?rqc11uccKN za0^Nt0amxBo^hw|+Z%ECb4WH=?0zlRtBW}5H&`-}v*jZ9BSh?R!=c>_ z#*u&HdEguD%Y6KGP7YOkt)thmbyWVkW&2etBRmqLbabEj^XJ-}ENaB-u!A)D!U!RX zA!p`Y$W&@S<}1!PwJLupRP_r>mIhpf#p|7;n@O>4#Kp>wnRAWnDt1-c!;zOCEtfi$ zvf!300!v`c?ZVxGC9u?k-6#;NlL8Zxh2Bha#%J&*)@sc@}4FSW)IZqm+ub(yiP z>bc;kEKT6GQXw>W`U5*Nj=;zTQ}5`L5chF?~ z`i23`;Bg}dKlQX@a;noXi^oqw$ahnB;x~I50AH?fjK(p+SdOKRjG|Bq7JlR&&c@mp z?_vZ4Pn(bZH$P8~Pj@s|7+{r!I@=lGzBi^#kyT0ARO8BeeQSqgWbkT*W?a-n6c$2zHDSOy(uV0!7raG1$=Yz5Ue(3k^hiW$)a&#A8ExZ zo~7u^b`kfaSrh8+e_FDySPeVU|C=LY9TOT;oL~Cx0l=dv=G3vfpVvV`)|oK1t8e3_ z+}&^2xdd$>@~fk1mDE9z1_d zwVX9kui{FHU^M8^U$=eR`5Gv34m7j11ftfINb3*|kzQVE%`z;A8SDkqMcg5P&mD+7 zRTw$vJcbnRgAwGc^g)M5cDpVI-dVO%w}=vKQp0-QZq}Ydz6T-4mj~mvk^YK(Mk^5J ziu{^tsirIW_?k9pXjB|kR}g0`hmU`}oVpi1q^GQIqTR7Wm;#1T*5{%X6}Z;d^KdRE zjW90pG!&VZKWN~?5x3AVUBhjMF_A3j2INJHt3rrO*=H#+t>US_;KP^d>k09C=@)G^ zDNBM5sbN*K=kXdl!1gz#xnJ+y3V6Vq6LNux;PrOhk&m$>cmdaiKv`^rSBl3{G`P%bW4_%a^%wQcm z_NG|deP*DDW`_AUeUgM-2Ujl9*d0L*`VkaebB_ZCI2;~o^i%TMic$W)N+UvdTl2RIsG1 zAt-Iv@dk~V*I{DcU+VQp@`s3BS6X`qmAyVoJ=clfs@uAb0=05y0B5R_wVQJ@j#SYU z*U7ra3>pSG-~Z|VP^@6k2A;$NJmeLNCkh;+Q0FG*#g$f z2J?wH+Pq_ak(z{MqMKc76TZY3)(FB8ejaUf7`@PFl6xJ`)DM9#rV_3nrw_(BsP_qn zhj+yNOfzs-%TgGp5+a*EF-9!Z&u%0;ZVKGIBgj1A6K}~bfVuBTRJMO>oa?M)C$|Hw zXiB+TGSNq9b`vJ;!LfgjbeTRebSQ<83)U_K32Jo#2{VrGYf~J1pM|X>#y^!E+4*q@ zq(X_5sQDeas9J4VzJs@Fd45XnB?UnL%1}#8-IrCFtKJH)`iaZke5?S!l=;E&+1SHS zS`c<0ki5zGlF?OGr4!??9S!}bf~RGj&y*Hs7t66h^*6iT z?{ADyRZWQ#yJ3H#BC}b6O1W-%Ly!7d1yyi1)4Q%N}N8%yt)Y%P=|T zl89XAmD}Q}SS+1A_JFoL6t-vj8c9G~bz9*yYlsGvlvIDPa(*JsoySQroo2_1n)ef$ zLVN3DwE~`F-OI0FxjzEZ_C?c(tr($sjw@h1@9+E-8mS zd^6^2cVn`E5yYee$}fDI1jZBk#LTYv;dR%b{!9b(%BoM?Ce5gbH3HL)676PGcuF2lG*zTb1MDliY|#JWysSuI;Ss!qrO{bVwwRR zeFA5IxG67g-Po~dNbTA4$dEAnOs)bRf1H~;|7+;=EHSsuGm}k$Izcf)lmA184o`k{RBEf?C z7u$2ht?=c4>;um(iyo?W*p$`~Um-<=vC&2}-^n~(YACiXkC&sIVgu81x;;2PniJqx z^H7&1vUq9ONp7B>R!3OTK|Xf$R_)Fu+dQY|5C@5M*JMF9`YyW=Mom~3i ztRZJtTDyTc(F~m&!O%#mN0CqO{2dGF8Yo?pWR2y2@m5Ofam6xWxUJ(Q-+fD|^T+us zO8f&|sdTnYIqkjSzPsMp5qt0kCsNpvnOk#K2!omC8+4Zs0MjO!+cwPEwt+wgy6?@H+&St zI@q4pcA2B@80XEedjkSZ)m!ohF*UGdRVSKUF$5>ePV;aSceRjHC-&q@)HKIx>SG2^v zXyNTU>G>0~)@OZZ-$u3AolH<%$>W6HLD5v*- zBN>B3=I+O*?Ie^^N@;b!&iCd=7`v;if1!YdS)DBAHU7O4vPq=V-4@yrGO)bKY&SLZ zG+)&ibdH!Swc=_s6x!7X?o#|fhWaBp{WOf6@~Yj`u=+`_0qX(=qwD~d7<#-J*KgIY zUUkDrD9!#69RIjf0nPs?!si5I-F@4Cgk;Ut?^2xvyAu+MeeGT_goFpd7o1n=qMs#5 zI1)>CGfBIHb)Nc^DX0dgFR}?&H(uLn@$M)?iajO71?7QgG{}rGI48nHWve5p!4}9X z+ZLXcwAuHGHKx`$bhXsYP7Dd6^mzuB-OH1-NtC+Y5SoT6gB(U{H^1Q=!><*8+q9{> z!W?%qQzpmqV7vhuYQ*Af2C(PD70%3JC6SY#;iN(Y{iHev?zU_*5M8wz4i7DJdypX1 zA`DS!2H$Bd)%*( zejj6yGwIr0gpcUPTc5;K!uVLr$%Cm!jo#dFTfviIu_E>@(LI(h53{GU@n)ZUTF5{y zvy@7lBA4vu)n7O5R)k9h=OQMT#qV}){WyrdU`%Tc02QH&;>hdaTX-ygo9%R`6XizK z9o43IcKmJZLHvE_8&$#0rGF77t9Wn25sDJ+I}Q#$fx}Rp4F8KIWe;;>&%V* z=q}&ZyPiVo*p&+nwpPY}>9Dl5k*^HjKKf>p;SAL9l;nnjG5ej!7q$ns&*9SETLjSD zBV+B6ldb6LXp(xKYJ+~PUwn3~so-Ci$g=KjNQ21C&M|CReZ1Uh(yta%1vmDl#9m(g z07jg>isbY8lKaS8dvWt8I)vio*>}%;(^VBhY{Lv$wN$$b&q#)UZd>!6z4%on^1TdL zGP9~|k(VgAs15w>X{_j%--heQKTk9@M(0O7vD>XA-}PR0Rr}pKU(ED8OPI}(Yf-d! zl9qV<=O#7GXW%C|)cPu^)dpXg35#t^{Aa)%YS-UzZTb+Er9EmLj6OU2Lb{$cQ0Fs| z-+PjG>IcdQ-=rM$1A5LeNQOlg8v^8fw4}B_6?fwhT)L5K1usHjWs0 z1+=DC#5i7 zSc>X~Iqk$t02AQDufXE&qEYtZ8Qp2-g$0PFvVMZZ=F%50@^RxD*$IRjpVwwjLn;lA zA4uoECz0D-->vb_AFDH9K~?SUkUNn@hwX>L_NPC8uY2AKE%aK*QiQ^j_tL{fX-$69 z0USB5B13WpPS;k@y6czp8R>K;CnJ~EFO{6>u8T9?imFjDMt|?B68*LNFcq?}lV3oo zcJL7ce1+(AoHrp-8*0P;i1XO&#Wf$sX9*>kS6!NdAu3%&b@*uZ?4ppHq3NQa7&~xh z6-GLL8n7VGCbX|q89k|!=DIXw&+lT<^1jJf2#0m^s8}m8O(gu3vMwAF@7Ui4gkW%P00Ezf~+_o_6UUVL>@aZDKJ>g{m}c6w zg}^Wy(XhMEj{Nd@)I}!XeU6ADjHb05a6hI7qmXSQp{dsbW66TVm$jDYw%pWansI%9 z%&TJu)4+^Z5)n8JZ;b|QD6E!}epOiT*K7`ZWtO8kNA!iLs^HZ7;v^oV4C>cn#4DnfTX0Qtyj*()ZYz^*(0Nrv7L(nDo0 z^lrH^%JRrwJ)!l{N35B#>S4lTghol~o#?3xgA2nTs;X6B>}3sST@QDUl>C=i@pyVU ziEuHVQg1}R8_d+fxR>{9<4-t5C@UVU#pP8E0IBdh;3k45yjN{&n2CSDXpfQ#X z$vsFg&)epQMUw-QbI98U8wTRsv{x&zkm805B_^({_c;N#%7>vO{ZAxLh_l4&H+s)`R87 z^b6sB3di(Bj#HOnT7!>@dIl}Suw3C|ND(YmAYrcR?bb-IaY#A)@0N$H?=q(){H0=< z0sP3P-RQnYTpy2rYkma2o`{6A{m%KYU|=9+~SMh!uKxQi9F@XT+%}@z1B@0VcVK-sv%cK zhnt6|!)rmU2Q$+{!nI02=)eSdkNu_%^czYvn#b?LxIbTivC&J+dr|Q}XmKSP#(pPE z78Yty@2nVp>c;tKneUs|k9rQo5wyV`f0~t4;dbdJtA-(C6bh2-IJZl=6~aYay_=^a z=nT&pB?W7rG{^>E+`;go6w@9u(`qf=BamqC^HyQ z?Y!f#_*FB1L_>7>lXgfmzYm>v{%AyOC!T@<_#l5jqs95=9ppGKFiS4Gq8SVCYJD%} zJF8osVp0Vb+^XFG-B@`R5mYf1!MD&LbuH>Xef$306{L3D*})zA;GG$aqpBspHE8n# zgJIYchI_X>7DkWS^1l6u1yUM>sEvhJFlFG%yef2mk7*kF}!5dnU4^K1P!lEP?J*P{!Txil2YtB%)_N8O+~l`NQ@il?BGZ{vM{Z1n5DlhZyutrw&Elap`Y_Jv*6YJ0Wz0jA z-_~zO*Lj*eWb)8W3=suAw2Hmbfvz=-J5=ws+qIFn>$j)Qh!ekM_Ocw7I?elII1)D`?Z{XydGD5Qaf=y#3Rrj^FF&tD zp^-a%pe&~l`_;Y+Hl(~XS;d|N^{g|=xEcvA!1fr@P* z<+?JZEVcaTe9Q1+GRPVbVGyY6{#wYS%9gb{YesAS>%-1>S%1PRzp?>MvCxwPJ^VF) z%mGEn5;YkdF&o7;!c9zPBa2gTDAX8d#{=l>uPeMoT4yJbsS{v!k;tp(I$u4o+G97X zJT}dJ*)IGx&xC^eVyY=2i`^@%_H+4NH8`L(i5T-z3IVc;+70U3{C>_|3gl!bs69X& z0F?;r%lg`ToZv<8Pq}s!NSh;+(#DW~?sk9w2hE-X9cOvxt_*SK>hZ-SCqR__I6;Vn zD3zs%4_PFHj7)#UBNX3=+l;;+bNB1g_i>3^8$A@a^6nIUPKslW;gffBM7+mp%N7n? zzY0Av7~1l=<0;GzJh-bdH>((N>?ywjXLs2zkbZ9v%5#1qC-vd-w<54j449c`hDIL!D zm=0GzScIu|X+C9u^(MS5rWJ@;e>(QZlb9I#qHP=2MqQh|BG(|$9B@?qi$dRBH>F^Dq z>o-O0$q$~&u&=?G9thJURDwDo4*DD%BElR#HPXbBJ}HyAHrpcLNLgNGmnj5jl`^+P`7RKE{WCd3a>J+aIbOr*i`w%Mr0fFAj@P0UFEKc)wN4Lw} zG^PV<(T24sk!J~3z~))<=$MlPL1Grn2%c|W=f$YXo1;b$=4|`apv-<%)=}5hm!6uc zas%r1B0}WC0S1DJcIX0D;mpV7StLKsveXjTLmHkPEzU`4Yivw^?YdaOKYzrQ9-@Rr z+_$>=N+X75B?#UAB`Kq7&~JgLuW+AE8~x^ZwP#CR{F|SUW5iL3XxQNm$mQ)PG1-_>%G9cd0VaepqqkxmFi@5 zE|t4Y8AxlOjLfZne0i--T_hcM8j?72Y=YR>#Y3RGly5c5ZKSBa-I@OchYt*Dc|e{9 zID4?n+@e?Shtcd0#`bSAnhZ>*FkT>2j@w;vXMMr$__nmV$RHiwGLep}bD~|$!Zgal zmML~UCVfIrN=gf7C!f3P#$83uy$HRHVn`$Jq{Kv>Hz+-SmskVC!}(FPOkV~WKRt~k zKk~_1DIVZF=y3B0dkVv6GC@SgMO)!rN4D|h(YXLMA4xCXOFNfLHb@ZG(F{yoYr9?= zL7PmQ#Ni>jx5QJO*abI5WksH2x1;eb6?x=fhofSJW=e36CpcLlnw9hJ@E13^KysD= zykZah{K1cZfI!>E{ni?}d_jagcG8di_=8wyizsXGw__09X!7rT>qa~dlGzv`W^f$P zmagS`t*=(yn3jl1Yh8owMz+SN@!vbW4g~FwA2@LdyKKU6ELneiq-65$%RB%VhLNuDtvE(=(ayzxq1Q~OR^y~#q zNQ>B)9ocfVXgf&K=&P6BuZdgoFte`|&?`5TOMkH)RQ0st#A`X~-YWBv2)H3{kfjKc zsnu_P-E(GfhRWnJ*FRbduOKgrPK2KtnWe>!n{LyG&A}~dgr}x6fc(pFfX&_RF-b54E=69 z>2)rp;5fRH!sxKwaX06b%eM$0=@^#RoP1 zjcPusyE&tF+oLEPfWu_6y;_9Xa={R8h@($ z2u>=_BiFs)-LoU9iB;p8l;u|@0?i@d3a7>h$zKw8mDWY{mrij*wrLl#<-EJyfE;y9 zu+sxHv7zLAXmCH`=o7258Y3@}Em{13ps-^rM)AKy31<}2f65@(71$IA;qm@yyqkEK zw(hB*k*T19a8s?WIfryw0nI9yJgkPoS7zk^pif4d>kZ-ZviuAYF+uq0<8EVf~2L;?(AR8P# zha;=tO-=hb#6Do)`j$dRK}R4j)HSD?di8XR$*+9|$r0u&y~g_D$Hdt;v1-RL`L6Bd zN%@8^DdRD2m+o7{A?NAky-Tit(8P+%OxX&qatBKr%hl>u7!MN|r9jD_rcCx{m`eji z1gW`#DB>wCfdi%LLVCZ}aY8whV&X}DsKNvp<;lcfHabu6kcuzB>Tys#Sam1guAxigI?io1nmR!X?PvS0DT;bM@u(!3ROL zRi9hx`3cCwc(P$Gn_iB~6Y0h<1$Zl}(5aY`lH zGP;T(F*$W<>XnZxgSRYyM)h%Keu-Q;5Ar?7T#|}UXi-Q;b_{xvmTd!kF@xV>8XB57 zFsC?jTHxH*R{e^afAp+jf4-~;sd1)^EIcYqfBWiljue&SS>Q_>`=E`JZant`yJ|B@ z=BGQSMbfrWwlQ3kizmxeB4$zj3!cnrl*m%p{ejooa~)S#Xz4hAOnkZ}*9NK;tc0_W z8#5LODA6vh;IMj}`Hj$#@Q3pTX(Oouqmof5Y zGR+y;`d(P65hF@!`5BOSrC&BpxU77uY@5_I1-rlZtnhJRDS7(UAD}NYR)+LM6}21% z2++bVjFj_9{8W|s^Jn%@9CIv!?{&+A$^c?vlMe-Lgo zT9th;1J!!Qx-xCEr1st*LNum0D1Offjg5;2yy9iO);8+A?#jJHml`n|Wlt1)gcgLY;$L(R+ zt7dO;Vk3EfmiJi9VHO+*GJUOGyUxiLgKU31!jl4~Yz`JC;a(@*i4&q-VhmOEeLGQI8LpVPnrX&{TteXXCGD0{52UES5!bu570DWLoP0 z!ZZYQqXI@dtkQJDZ}~79I<|!Q(|V+>9LwtO&x1)PqH@n9gm*diZ^Gaq$wwsT6xT#{ z?`{eF19XKlBn0uhpG$oetrgIg-wp1rHe3{7o4B#_-`57!htC;3Nli%uluZM43)9I+ z1d`)_=u;isjAK;1UyVVUT5wbdPZ z3O5^X8327!J!5Mlr13C|C3L*}QMRIHJHC;%>z4XDge7W@V>(90 z6AAp-zzO2zz>9fkjIbNo?_^}GhTFq`cRqi=*vNxT^aiDz!N|2wNd9;k`E!u^nZG4{ znYbt|7G1m?taA9gHM35RbKUqi0=A?r7D(!p-|xmvo%}zd%ctIwc{6Fa<>Mwhc^of- zq-I)ruyX%qR83bBV!ryg^bD@UX%7=6u@)(WO#^gh7CC$`xq)H+#6^T0t6j5y^>6t# z*Quf}&9jM0hWq0xo6Aq*81IpbX%EDFvVrn3&5v=bFn6)i_BNIUTtwJgW(_ahCdeoS zddVSwdz%ui&A&LBdism<*U;rk?JillU{(j@O}`Y+jSsP z+mYI~2|0i&%j1(YeYJ#om}kAS%bk2(pe zyFtN4!mpSkLzgs3f^qIjmR5KJY+d-9Z?lwvV>J$?%3L>*l9)>PJd=6f^UL79e-rKk z`K`n6$1exO^K^jU;6dV#W+3%CPRCo{XMtCllS}bdZ!q#&<%BVRKi)%ZiJGV?5W@bw z4{($0c&xTL!_}DEa$d^wKYLEfDdLLMxf6L_W(V;4y4v64au_ySkA^^}S94=85X80u z)DYb7UV;P|ewl5ucpp@F&X)op8hL!7!}ySgJ|18o7)veREd>fR;BM?6%+AM;wNnFO z-24$M_o+Ay6YR8qhOmFrJfm;$E2UZLPs6A9RfPmbksnhbsj!KkkB{zD<<=2k)}vpF z`F0^P$z=@8h{%bh2?h~9a4jjd+z_8GjX8%JiT3DNEl=C63&w%F?lOMVUK`cYau^1B z-YWtMg&&u5&5zkwUY1=w87pQ==&_Ixs3o-Zkd{6Mu2)ij>Lyc2hrTDO=z`AXj^pd{(V^|4%r=aR5?sR|pA!GIV8*$BY|L6?j&YNo*HuO&k`@19r0J{R zl3(b_rq&Aeqdn@3COuIUKXTQgMYU=UN&99G2bgd7$sbJ-tu`EAW~QYmKb(t1PQ>a@ zs!SUvdqr49CyJqT$I#V?9u=jkL}4)mgT*RsbY=Q zvY91+xsu;X;|D05WYnXI|Rl4D$AGRd&JoBCT zRsfU8-(!n`%3rIK`yykT1RoxemY4`>gD*gv(%Xse_`6 zqmPFnSQSN6L z)j3_>&P>U@ZQl>-AUA>FO=f~qZK#!!e7uXUwQl8Jbxw;fUcT#j8r}mO>uhBT1A745#RwGC2xDA(OAY+9*y^cQ*NB5Rc+L?31GS{ z`r8;X7LTqfwRdn@)AN9&tk`ROS3SHFB;})8Nl=@7-_8BBWcTeNIArzrbKy_ZiL068 z5vY$;33TgFCipOGqsO>bBqW`G)*XY#BJ7j-+bdlk84MKJ#EY23c3c>E!94%YHua`( zqNjrMLYlszL-X%RX*kR2({8t(U7mG2*bzIpf7cCR*p?&ioHNcBA1?b{QjZ;0CXnNC zIsJcy%q%OZS5o(5t2IDp01)PPz)#ns%M}l7q;|Z2VA$wrWL|Tv z$_FfRAO2*bZ4K@Ezmobx){fAMLps~e2lY%-#c2f?oF9SdnK_`XHShiUt+L2D7^F5) zMi?JfTs5IFR>XiQJ7*^j1fV#NJS~+*LfQ6tCEi3l*#wRvTQ7f8NvU41=*YxNJ7mwtBaTl!!Z&GmDW&5;Lj3!cN$b!mY*L{~}V<c<5wV#k?#5J_*BW4z@?axo!vrD{C1{O$1r4LR)6})U3%H^LM82gB6o<5Vl0va#`Qr@1Bq?q4=_;Af681HS}4lo&xR?Jq*Rw_7k= ztkX(dc8y5$y@~3fyBI1;oSHl`C~z?h)ILO~W+7rTKws}Et!^a$7g{t2>YP@oF+#yO z(4q09w6WM=yEd19*rAIHIrbtw@+;OK&RgJ?~AX&juHGk1Pdd8VY{$tn>kL1jyF5aEVq__d8ut2*RkzV)R|ym7a`gC z7|&|RyreXxCQf9pos27Em;>U9Y;~O_WQjwcWyrre=ndz{?#Q5oDZUBrI%zWJrRDEe z#)umKYTbijAHLQ2#8;L=qcDeCMy&{%_o$_k# zL7gOl;Z#Sga| zW_I3o@^y`I>xSNSoshe+DCd-}KjwUY+QmK2OZ! zfq@^IfwK^l?1YuzG;&?nE@4K5>z&CF)4o?#Ag3=)U4FFn;VPd&tl-;Zz10DK{Bc<6 zzg`yHe(be>y{FwvtIi*LpVPBYbWJH6Fvit@;D7vZX!?vSl+jgHct_LO+B-?^f&nO{9Hs?6AxdX{YF!0BQ?+fG`e z8YZ&QEtSJ(n?`D@bAZrdg%LEGC=X{&Gi%7YCc&{UP2G@nq@s!^k)sy#js*9^0z3h!OP zC@5xc9b?xCL?ol6`hR-)7iLW(<_iGEG|c1u*tuKkB~rsXw&M=kSl5`5qba7@qGcLm z&#D(_O2$(rG^ZN^u2$x%@>)oiY%5N`4Rf zz1>RL8<}+YTH7(W#K8C@u{wMEhNjPW? zQuJk{`-k-RFxMWS`*b7LI4L_AOZ_a=orD2>%$dqK!Z!BJA4 zk!boymd|(TJ6f%Oi~*Is8__DxhMS7|9i<5wc~c$c*(C#B?C5?POlVY5j*;!8bVls) z7(}&D8Kv~n?qE-uBs7IMkxxsGx;jqp6MCy7Anhq_9gxpee_lLLa88tG%M8)<%A3e9 zSlaz|ovE;6vMGQ5lJ=GmdW(@H4Nb+8t3ABMucN79zE3HCRzqLToqZ~Zn~DQ`lwXcc z7vR9n`op7%a|9HAJ*Vi(3#Xp-pe@&oysor3Ksmu6rvt)^Zt-}Q14+A+4gimdqRgY? zlxh9A6v3&)Uv#DETJ;(n?0v-SV!wfKM^`2#{|Y2+-E_A#j-{Y8~&4EBoWdrKeRnKvMFI?Ks3!HOF87~ zeLTh^J#!yqofY8zp}b?xzmlMhL``#O2wsLuDHPV=vcpNP$I-@1h^`thts&-;^5|jl zn)9=NVgxOe%H@x*0oT?90k>IK8T7@Yg@A$M@s5%DmQ71xY?db!&A>DW2DWjzpb zILh~i{esd2Hozo`gV|XdzdjZsca+NCEw2NG9(O$#Rv_|4;o2I4X&c5A2ZmQ2M2IF; zjl=RzN0>hOpGpl*$ven(=>b)?I2I**Z49a?bYM#P$!NU~4{qv4T$G)!K>dH}r@H^e z+<7U6npopS4N#3-8ZhS@lc3c+5;Qn6ATLa1ZfA68G9WQIGcq-k@j4WLGB7taFd#lY z3UhRFWnpa!c-oA%1yCH?wk?Vi+})bs?(XjH5D3;djk`l|w-DSRxVyUq3BlbpxI2%1 z_PHnf-2bcItFEGZOrK-TxfT?p%4!TErgp|aNjs1;0}CTFFF;H|m4y|+%*@8f%*+Z; zL7{HxYy^P_hSt{x+8X+khVMZ*BlAj4b~N_iyjN0$GCo_FGC|6C%bolBUd9!8zbX)gMU?S1dtR_0T{hE z`0w_dOdKukot+q+EN%X3k?F56?<`AzOvUVMZGj+XC-}eW6Ss5(n!MBQ!SwgZT7&G| zKwkd_W|kmRv%i`!b+KpC09iV?0AjM9bJGvUjJ15H-cwj0hn5v zI0KA<=9VD%KhfXCK(oK``{6rUx&!o>-)D~n!2H+eKfmmn zE=bbF#^zsY>VN6~KWZaeOB;`W8@$h~i}U;ZE7-k%Zvp6kn`#07-dP2psilkU|JKSl z8@=y=2*}*#KQvl8Nm{xCO_eR3O)UN%mcQj1e=V7fB?zc&=VbZUtpZ?RVP^hcy7$d8 zv3|cfoZct$Un=1H;{10?36P1M>0cYh%E1XRa&$EEfM{y|&-Cb2(=8^9#~2k`)yB>scA zm;p?Ze-I0RN$L+`1u#kfL2LjfnLmgfz$E(zz1Jf52ff!K{|CL-qVNa3*P{3bz1O1j zAH@A$i}D}zo?Z11de5%*2fb%k|AXGMYy3ff@7Xo~p!e)rf6#k&?LX)}yUu?Q&%343 zAM|c%{0F`BV(e&SVhwzMXw01d$l3lQ|9e~hqj(Q(@*l+hUheyiYWpYrUjxHr`VaV? z0QevHJ`YU5|BA=L{LY5iANX!=_7C`%((;cx+h5T2Pdt{t1U7&4f0^64IQ}F0yMg(C zKj3@47JsULr`N*6-s1f+`D5`ev-}5qFWBlI@SRHQf53MxZTW%JNQ<)1S`%LO|Dlu*mUl?)3gt z{Bd|s{wLh~mCNL8;RyW4T)cPZ>}K~5hxZO#{sG^KcKru@=gRFLL-OwZk7TUx;XVEV z-+A=>L&JL{PoU%9ss8KQGI4QyC(`*}56kyt~=g}B#-o>u53$C-v}>}yms~+uF75&ryRn6bLlUJXpN{(0mU;ExyG5ZxF2Dh8Hhg6qMy5?%-q~g zqi0XPk;ul=!TTIXvlV*jZm`BY%zCbttFtSt-7&sto5W&sK<&A!sCw^scxgaMG097fhsy+sDH9pB-YT77TTGgN0K=Ynz9PHs zE_2D%V(dh(lwkR$WW!a*p^Ct>+w+)R=Xn52ja92n8>(u7m0U*x>f;C{0?)3aL=MZ} zH6MD8###F`WU@NCirLW2gKQ{4)Y9RuxoGJ$`n)IrJwgETz`>=tdZOl@Q(l?Q+iX83?v;sJ3*w~ndCWz3@aTjc-tpaq?%=xiK6B20ZnB zn6JFWa;>z`-lvlAfnVOd`oaNAq5h?F67=hMSx*k_5IBMzR?G$|?!Uj*stmkRY4;tT z_#Fm^w_D;Nj_~1m=#D7gI5$IW=Rsf#zSS(O*zXgw1gL3NgZsn|@fLNjl^R`{GF$Y| zd-?hC+rrGUx}A)FWq*AP!3s9#81#h<{5pIF2LBL5NWdc%XyG5_J9%<7L&MLeHie56 zY}!=@A=?Kwha*qyKpT0}ML`g}&F@CVlH(L`WuPeTn%@|eg_^-A)nBg$YIoN?J1t1S z_MA?CV$4*FOjNigp$S>$A8Cp@b$wBuw(uw8XOSUO`n>CZv|7;CKP-7??o!>ieS&Sg zVYN)>3=?wymY9%x{)Cimt6WCoPW8AQOUcUVWoU0UXMqxqb2s^n3L9++^=6CB{WCNv zuLX4Y;kGJ&{Ztq{oSO?WTrhb?+`Clb84yz+Nwk^sFGicw9_WrHO;`0r55HpmLJ}HE zFfTUpXgm`ss+}^}X(}~@iM`>$PUB!av`nT8it3bwcCSL@?aAL;nLN|+QQe<3AKK;d zt@?TBd}yQbh~-IIs!tW_DD)&mYeuqu?;SULJ4Ky;Cvh#+GuR~z-G+z;vQGE)JOG|7 zMGWLC-3s=tZOdjw)rn-&WKDc43)Sm~gJ~Jc*X7{+AE~RXeq+(qJoV@@AQP3KH@Nqf;W@#%JsYhIA}eMgj0sz&MFv)-MYx`|@AgbneNn3E7nzq*>*qkQs2secY$3zoMo^@p`>YXfpYwkAKD!$}Wt|4ir z#QY}q6xAhZ+%}HRifMnCxm}G0ta*BWNkZ>&+LfTFFOV4J5k@4t_Tk95L5gaKKlMl{ zE1)sr2zLj_{k&)IY$+fF)jKAwt2aL!I=Tc`>j*1=BAQ$#v`N+S<(t({P@+!SHFpU}B2?y;@XHUoMVu4|eus6rlm&w8-e-TBD92+Jt(=nQ@ zmd1h;iT5*S#+Fe@!n@*M-z1qxwL5pEA`6Y0m@_M1H&Dr|C4porsT=>T1IZckNp+hfqrx<@ z7jDTWUz!Lr=+QW#QpmL*Lq~CfPBvw5y9#4~lQM_=IQ=P(AHf6th|C`4Zn7E@gdcQm zRn4frlZ*g%6N-C4S%wyW%Dp?2?O8LBDP*rx(Ez97!Cw`%0K+}hTbI;e0HxDS z!f4*C=GW;+lcnujMl?G+0h4j1;@dG5e(Eix+;T75ZU@@MPzsUq1~N??AH{4~Lyk*a%6A8GJ^vngqZDgt;?x?fmY z1MNi)OhDHT&t49WTIGPaDTehzAAW){dG({_#ZXA8f%8{(9}5m({F=04m}9?mg-jv6 zQWGpE)kY!S<|LX;UL8qDI{cTn5JjaU+$A!1BQUs8CH1Tin!5~b)J>$a4Nbb89@^`0 z9p6dyt32mdgy$K58~sZjun;*;!oemPViU#X>p4C?1cDv`yh`gBm9{4ueI+>gItYf-L{e_k{>)tNf)G#bBPekES+4xIT z2m`1fKJ>8487e`atf4S`(8io{WE%KAr2^&Pt1*Wu#uTl8k^~$_98!&jy2T^js*P(G zPaDB!8t{i1yfJcnvGlaT-$bZ%W7N$GF>tf(OUh50kqJunxuZkQCSr!IvpHML=`sDa z{*~Mu z>Eu??HJHwS2^yHJX-0AmqBBeA4m#5hzhGkE(Ue=>LIV8&N+fj^)7cy#v?2maZc&a` z+P%RqDefDf4q=iWi6;ngN$G&f~ z{%t(5?`6}uArqTuxtsJe3!r_v-_)_ztMJ(rF=3m3KJl0Er9Rz4V|+)1*fNS|%MA$4 z3+j+r^;n~_OYS0yke+fjVCj&6r1}&7U`5=@&d)p+dC}^!Npv#Vom%jQ^X{wHzKdoe zdmJ2QtZ@J)*o1blEIL}e9G9-V_(!As@zVKkidjrq*u!HJ_8f{>kG0FqCvTyki&- zquHH&K`9{tksTn^Xo8B1Ja>oeb4WbVJ+u5&)w9V!9ZUVmD()a##F0_&CXq6?vO~wXGBm zBCLjR2&o4Jf;iM&Ax@^t0KVh8LXX^3T>VIQ4)p=?SD#gX(?(#TrMD8}z66h(u^L3H z(|{`u?}2ED1m2>YgQMZX8q} z#q8@jnHcfWFG&gC!n?}S3Q4+11LAN;Al9J$e?RK`fHz8Fb`5mLFG{Fmunya*TJpmc z^*XW{VKWc?9v~$)+e#QZfNqOW%b?W4^3o)j1FM8t{``hiioDTZ+`yEQs$~KnfV9h! zxWJL^5zk#mz=YU32cy}#T~&O&SlrTg84#F>N^2nLgHJ*xgs4og7t`#|0P}q2`xW1| zf6v$IJSijLgQP2=<{*G1T<&~<5f%0ml}_I6V9d2{U_>@XG*NiiocA6&4<&3y#{lx0 znIjjqGe@Z~ptv?bgjs-a6iH)$;g zIewi9)b|GsjnrqQQ9fUvmdJg$B3Lc(!vbe2K`W zL#z9!Lg6XUPySs44BUmk2}_n!RVw9nw0>nQ)YW!vrw)hW=Ao}GyY3gJez}0Mf0)mg z=atW_D?>BZFE^MNl)ncd5Dxi(HBwyj3DAWyU+<$jm{rVrm|Ej+;Ub<$@Yc`Lvw);( zTi&cOiIPA0qUYj3SpIChH&Rw{p?5UC*2!sOiwaaCk;TiZf?|ZN>k0-wkNP2|@}e%y z)NbE~2PgrvQnIutXEU8@(aheMe+OdjgLYkomWomSa>9zj-=cnFe!DZP>fc#?2x48U zF6gzKbIj$Mf)1e|%)@Yxm>Op<(ILaDbOa98s18m-|1R3h{)?5rvw&5!{aImKyfei`y7U2$@%mfn@lt329A6j zLijwR3+E_;DjACNQo5F~e?jHzcNy{KDIxX(ULn(;QHE2QXQamksejbFXmv~%dU~g; zkJWE$$|!7CnbEH2f8p%Kf*mv2uUsui9p0RZs8EK-NRj158fiou{O7+;*7!=N}Ujd8kL}>|a^n7(!iM(EFQ-8D*t%>=K z@Peh`+Au?A>CV}p>zUvezD?3>D18n_uqRzApVxhRTCqfi}#*PX}U z3}|YVVnvZ^bIt(MwA-$j{Cu45J;pQBPNuDlm*M737}l>wp9qHAb{G=8S8>g`vfJ@)$?=glFMGKJSShi7`;$d zw1xTR7VRco)%PLa_KlM-D5e6=Re6gBL#pa|dsi8k0;SeWpCVStIlwQrWp^9b#;je$ z8g?reU2tSBe>-@yfyAd#IPCLeQ|$P9O%n1RGU|C48KF3Xk3c*?s1|m;QG;0GCp|8kP#Rpa8dzPfk+lnZmJ=Z2O-gxbD9bzCCke-(%Td=)?Fmv#C>`fGpm2jEOJ{Xum9 z>^+G{{+wjyf^|KU@u!>ZgIZUa)w{hBh$aNcTov>+^s7v8@tT>Vt0(Jwr>}Vyf{kg0 z!SUHf(Iv{&)V@{}%9SC_!y|$y@C{O0Hp%hP`!5iSJ?=-QyfE|y;>AZ zS&vv|wbk2}x=MqhQ>%Tufde=@XH$U~`BZH{q|ZbO~S@Y(R=0w4fx&^kWD znpGrSaF>!W$e?!h08iC(O27;){O~Kyy}6ahY9f_;sIjQBDSy>=p~0^h`e{;>zFgPY zUE2i&Su!Cbe3K;a&&2~n9G(<^F&2y>tYD5Td$jv3$5bNJ+d{JyGcZ5>YHZ%Ob<`Fbgu(x)i0|6v9w-<4|t(e9_6JL{x^DDu2 zre0-)?s_RYn$=)hy|)ge3OmX0o)|xtE^u<;6vu97_fb69>1vJ}d{VmXF>@JeRN-1W z<)Gy}XP*u1B-QGyt-?FFf6t!#Ja|rkSh zSV%+EVM(D1iyupS5>obpSWsZVirn$XqGorw=Jjz_-KovH;X9nz%RO^qB_ z-W>Gnxv1U>KYU;W4zw9R{vyRJld^veZl;GYlIykop$;K=N+6}D)A)m>Hr}HBcdlY- zEUc{E9KD|R4UxC-f9K%`0pp!@CvJmsWydtNxC#wq0;SV0odRjCrVgV0b(dfaSRB+m zXK*&O{*>ybnBc}In~mqkQ0p8kGHzb8bCAB(`Dtw4c5;G_IG+6^1TV8z&`Ji_V%uPn z2hJ*{0^@w&HdHFYVPA2tqIDJp*T#KHC%t3Te839j3kP5+f1;b9f-Nej%-P5VrBuF$ z1-$4Rc(*zuSjno3cnmak!b8sGfEL5Sp_XX13_Zlbf9 zJ}=@rSZP6|cAixvvRAH`6qoB81^gs);hUs#GvR#1f|GL@o-XJDuP2BA^m|poW9E(QrM!jZ)dUZAyATSKDa|VUPDp?LUR~eRKrT8@~3La)m{!w^3Qu&VZ(w? zvtvVVB{%JR*Ot7(Y^}xUh+Ig#C~0O8!n)b3N_t=@F*wE*-Ck@ozd zX!vPR_1shV^ z8r_qsO%&nSA`c6C6ul}HCv1?H=YmT$vcKq}e26L62JUw^%Y5f91L`Y7T z5q!H|Si~j|?j15$@Vt@FXcv*7DC<%{h5DvPUo-VN=4;nyS^?s?6X!X-(fI}nhI*Tk zrQ6c$>zp9SRtAiwOixne(eIMPkrT)zsJN6Yd9MiPsKK}a;;F7)i*}X@XgA{tT_(0x ze=jjr0Y6E%Kz1t@n#ZC_u8xM1;zn z;9`Q|ahOG5(YM2wVN8C%>tkCy13$rA$#Gg0!X<{n$=e<{*7MqH?*0^GpUiHpO&>g$&xwuPXf3pu^t!;Q;NrG>GRtzozg z%IZEE8+hNJRy0upvq1#zV2`N9NH!`$*lr~c+)=o&4LttYyq zxvK+(=7}A8Wl3S-nr{vWL*pV4tXR)^V7XW?(e5cQG>jhewRD7bq3V=cfAM)Qq8Nnt zy5p*J3WlHEks#GMQS}IVfxag73-iF!cBL|ImxF_~+y$3!jfof0sX3!mP*9iYy{ip8 z&MTG;F4#COR@;@=GRUm@?L9;Iqq%mXU3ufAE+E6cNq8zuS!a24l!hi`(t!Gd$*kJt z!{h?N^O3#;Xg#scbH|LKe@U*`UHh`&8p!+m?v9Q~sm?Y-S@5NfS0aokaQ!z8dS{sx zqt8(%SZ3}8N6iTSNNdo^Y91@$zZB|H@oa*=m8Jf6%3k9N@G6pWogV&;Wl!3G|D<>I zJGXBq=FsY6X##KStxR*#q?%?@?=^FpPu!!<2yXe6T%U7SjSilKe|YjIPw+n5N^Xus z<4Y}~-6Abr)RO9vYyT|^5PgjfCRgL*mRDcl0*X{@mbFRVSei=0(>hTud%M7z*?`3q zlqT7BB0}vnG$q)vi0@`@dhsb)f!_mhA^H`&KW$KAJhPpq!0OQ0yaZY@Wo_TDB#b(Z z06Ke{e&~F6t?}){fARCf(V*$J+VSkEW1%{T+C01lVP&)*Py)`biE5^I=2WU{R=b^Z zTwEo0grU@U{XcGH)KGm`G!SDhX7oA`BMj9eO4#rv%;;rj0tlLQoF70wI0NOW<;!!!vUsiK)B|F~y zYuT0^Y)+3%f5XldwTY!tHzE1scaAB=?zD+cO|?B*mZ%Hlt)SI%A$x_JfHUs(liRmmxX}5+K-@vOQ zHsL##C%^F8utVBJaxU0~KCNMXY=Q)Y2T!MV4FXGMn3) zYi-~vQ)G-c2hVDUI`8VCb|o1J56Sr0aHDEDgbib0%RyR(+Cq)6^Zf;f6QkH0aM62c zg)W^INB;(n@mBj{U{wp*m3K(7-Sk432!+pEeSToGiBd3?)>3Rmi2y|Z@efn z{R^kx6$H@xBKSz0dLasJty>S4AS7RZ#W1(Q;&|y{asiYj5vo#tF}3K$^}v195XqPQ zf6WoA`qxY&j)|_^^*miC5`U}EY4)pDkQ~O02l)?yMepUg&YTNGWcSLmi)X{zSRJMB zD1!s>;w?SiZ>5|TYpS)jmfk}YU+1ifYEC_qgtblK)YIj{lC4?{g=A1%Zwl=af3P!< zqx1;=I+y8?q9rv>7G6?-ve|6*DQQ0gBS-5e`C|%v&h##i#@voKVQ=`Xk zZa)uiGHA=W@wgWFYJB*TsCMzmT^CFfk^6Yh#f%##N;;efScV*$;8iqK9*+6p(Ss6@ zODw%V!Dk_b_N}f}%>gbuW-F@I{1fX8kw%4?-jhfx@!w&;Aq_^;|6objRiQ`ub_C68}1m!lLTva(wpk^2N zv-{x_2K{o=$nteF1dQWfbXI-R*AqmS@K=(e4G1$*uBHt(V{zu&1gI{Lf1Df(L}x5G zppN57`7{7I8$v^iQqBv2LOJuV01TFMBnIwK+Zj@1FE~?S6QpQxRL1U{V7`Uyn^KT_ zy>tp0mJ^dhis3~zu_mQl49lI;9{x{>O*+`8$c;lf;ktrQ-|=y=PAg^fBBf0^Sq6bG6U9|ezbA+9IcR~e@aMJxm#@B6RqN4kpbGsi84^_G zxodJbt3J20C7d?lf6vGDO0d3BHT4GIz3Ld8yx1;q{b{>_bcy#fssAANC}>kH=|mM2u5K*r z(WIKu;H3JT3dOCS?liEnsIhPy!3M0_`IyL2vYeMsc?~W;e~%@4`9Kf{<2#(>6g4}J z0bkLsJDI)@!!R1}8bvP&v+SIRpZtJeZYfv5&;=iHx^@j(Xj6jMLZu*-x>p3%z zR@wJHnHNGdsX%ewfWZ;5C(GXPJA3_DUAM9lm3;_ZXZ?j~X9)8G${Ww1y@ z>GqtM$d?K}f4kPg?Tx^FR)MY|iW5ex$OYxukgVb;)fpR&%TMfhi@BR@5e|{si0vW~ zg_JF#?yOOW0>z76{MiYvY{VP6pk+bB9plEu6!nd67{DNGvlSF`Ta!$YKv=`Pb|Dh} z2Pr9kZ334^)$>ggdm;x2&!?m+)t@gy96V6XgJ2)&e) zZf|c3>Ef;mGJ4nNkR~S<)ZNEB$%-|&Zh=ZXc0niCd$gBHodOjKv8B%`I`ykV;fpw_ zo@VVF>9Y`$sASX->0mz6MCyd~T3I4c+)&|wZppFnfMXwcQ5AtjL6fM1!~#;X2jf7E z6$B3#e*&1 zlvPra_AH`%6!U({z3iAuhqCl|3zb6X8RN_0dt~Nqhuv{#Rgly_?SikwJDv3uB?XZ? zzVKQ&e1+-UdkBgs{(ya+CTvXSh0@2)bI4Vs>Srx4pZx&V(nzF;3Y%mhYMSaETcn0M ze|ELybpXEfO+_vAUi( zkawki(zn6eyxd!;GY6OGr!gg)`xV8OVEZ0|Z!aPDt{Wkqo?x#}S2pJ^*Qr6OO0!<$ znT|*9!^5r4s&dOhiwyRprQ?sAvpbBae|q>D9n?4XR8D(6@ozD#>mI7V*tg)t;)Bbh z52bnXtFvqu7f@9DaA#%rBR;uOn@dA5XQw(o8-Z;eULj=2TXT8l4Bd%>1qKD=nepp} zg1%=@=GS}MW1fHl70^pVX$YcWI)^J4Ji|UvA;id7CQvm5qIcLlt#~E}%QZVte-#g$ zy2*RH<(dHqx>0_Zw`sKSu_;JGSPSV|tdXmQg-v5TUfWt_d^L60?6UPSh=67 z7{4GrA6F@S35|6jL8s0ygpiRje;%%@a}Ohvs^u#a^<6o;H1__frsnhbQCP>EV4pG# zezZofxp=~pz{YV|NE=#SY4~Ew8nSItbY7pJQQ@Py!5Otv(|3n#<*k~MtVjiY&yPCz zF_lL>ZBD3ocjn>lh1_UP9Hs#Vof#nTEsy5q=YCA_a90CGVuf5eW=Y_PJ$_jPqh=%kZqQ4;FUY zxMQRc*}blUo1Dpj$^g)`dx8!LOjsmR z&K55k@n{yCMqGag9FC}qo35F5q`(?~+UM`&JH@&(01wR2r5`GO+Kb@MOh|m3b;gY_ z$eP2L%$9_yW605BE=ypAUxu9|-mHWma_8&GXvx;FYIf{5V`=z>e}t7y6(vv_=sOV& zn72lW=gm~;2BzgT`W2*V&Axx7n3>_%USO}p7 z%!u6Yxby@;rRLE?WcJ!hb`Hg-CxB{mfdx!T*Vr31+WWuW_F!<{;x3B;ZyJwGYdUQ1 zk_Mn|tbFv(oT6Nsf5@XR)Nkx6qRSg%&`{hZu|G}{STn@vP9gQou~A`;TxfwSZ5qA- zY0OyIzasEWiyewPP2CIvBai4SgL~6AL|IM{x7MxsmTghRq|bw;@z#Nm8`o4!p7UUz zJ;%q}9nEO$EN~jPI+AgvT86V}X}YBpATydhKR(68C_yoTfB%l^;KKoS1T);#a&UOr zj)b9mmY#I^7R2bgS;{^)5yX6Sn3qOsGkU@Y)Gf1Uc7HU6OQnkOU|I0N$5C=VVJx*b zeJX%G#Wv2>&HcEDlrkGm^&4m-(%X91anbCfXro?CMfuhCHVQx3Twp21RYbu#+eh1h z>#-b7v0>nwf4peswn~^KSeuoygcFLn`XdSL$YjlwrSLqv6_Fo2x|eC3`}ctkX&#g~ zPFvM3UVX43{bgQGi*4_A?kbnW+s~J^$B8Z z3QH7I*Ww1XO30+9AK}cI9G|mLmPF(PC8T=F1S_n==KL5pi;kE{;#9KEl|ueh-v-Z7H5hDmc!(gYIIiK|oC=ikgM z6mi?pQWBTaJw;;I)t-{saOIog#8GQ6w3^=6GDU*Z;y-Qt!FdE zd@Gy{e@`cm(wqLb>F>HMHFo9;P zc2NT2!jL9++cU3FNB7z|pMNVvlI+}EBbe*_#Jwpg9f|c#(c@rsaz|gg2PuUpA6zU` zg*>FvqEu2}g*C&W1$#lphw+2mN%)*DQW|FDe;V|;_?~TsrwSssXdRq2l1l|_Y1Pzl zU^qFTukkeETxrPATk&G7JmU+n41Af$22t~8+IU_<0-Q$C0?k~pwPU_j9eR=Ksa~3( zBC}~Ae5Ki1cPB>%fv6e0C;3dGENG`6jRTA+J`Gc?p86agkEiD|T=hOZ4n~H{@{&Ac ze?QcP|Iv;>$&EV^8(oP)fNWY|qrUL8APdCAfLDa}l;?3Q1+lvTDvla_5a@N6SfJ~q z4VX5qv)+J77Y<)6En!Ei3V}f1N~o8j&(&4gqfm>s;rhJIr9D?zQCGCReawpU_03`< zT43s!D)$gJ!t(=q8HyDt9-a;loONy!f6>ZTVvAAu*MtT}g4MWdHv6^{qwoyI0-baI zfnouySM>_ApR!GlRoVX0pwG&%V)= zfcHnfAm&AP5dn7*8H29f@qAxn7@(mBSNIgba|yZe^SqC67Zod z)T<&n+2E<0gRg2U+)J?7IJL0{nR{_Mmx}SR$kH=u5OaWe1U%Q|L>lMm=Pm<|_LRHT zblT>6^imBT-u`{Jb&i^I_F4Lvc*oS06hifG^XU)&Uxnc8zBfRlN|R)Wo{(Q}u5EEh z0vU&o^eiTu6h@BqQO_}9e*rB>Cg|3B=$RULWIu+TAbh?vvwYdgO2AMR@Q$K=B`f~0ond`NajV7G*)Hn{xk1ogva^k93jgsCui*Te*)|m@Y=4dKc;)61Q97??p7kMxd;+{jB1G`!|!66l8^bt&I&W3w-%HD*n zs~;Kd3twq+4$qX!td_t}`GlxA0Yz)W=#Z9A_nLjDfI+2Be?nq}vl)z_Eu_%^eLS~9 zf&@urSi&f7^kUmwF|e;P**)4;@k0R!QOO`mBgikmYyhUaQ9Jj^-3R>#vEnCf;d>}D zr5suryZOyIKZkT|FTzmfngi^TVHTeUZKEwVSJe-!hC#NzM@AIB4B#wx}l zY!O6964rk+e>JH4fIKRpM}zbksUn0EZ4$^F$Q60ye2lWdkxx~#@=p#-c3b^oU$)>j zMyy1MtU}o=2nRDyVHh04;sc9g8G^O`lp5B~Q zChgQ->O?3gA#;6+*oKPJu&l5EcI2Y=;p4>o^8oT{A2!y6|BcpfRD}E}QFLm$rjBO~ zgn^Yve+?yN*x8}DH6Op%X1CE8e6php&-~vljNGAhlRydYh9N?*-e*xuSF21;nHS_G zuJ|wOTCXcLx*feDqvZ`wv&Fos%X6&maU4fTY=v3wDYJ#i&}AJiOeXQy(V=>_Z<6w~ zpUg2RMQ>C(<{xp*;LV}!MQ?+fqI(=nHnzdPf1}pP@0qiHH&C70J}Hi@{EkFNf~K_X zpCatM#y^pz{4kk_VA6@ABfX?bgep$C0-|w2=6BJRl`hPP4sqJ=c=pJBg|h!{a&KWT4fP|V#u*VGg74I zE33)|dDhh-M8?{x%&ZT}c4l7J?_!i%{G@0bl{zcRAvkYi8cNhsgmq5`h$#h}knaTL#og z!*ah)m>eDCGf&klCWOioce$Yi(8d%-?6T7KChRN~TXMciS%4$8TY2u1bm=10df<;{ zPLnJ^gUnBL$Fje)wtV~a<8qF1e^gNEnmNhnVNSU;nJB#U$&l0F%M)fs(vhpq$Czx8 zo`B0<-{T%B#nPQWpWnpTop0U7{mJ&=an7wh;6jgrUM)d6ehc8s3Dj`YfWG%y=_Un- z{vqi(v`j^dp}biD6U>jAp6ZTF_Eg_~nw!ItJ9CmTd+rwR-vY6BAbIe{e^F9sd#>}y zjpwshn?(Wfn?(yn?illK=U^XX0?Jgoa;$$L4g9jB!@!x_@JyanH9mye{W2l3ub6313L$0 zVU!G-=fG01*|(yN^$UoKO`{m!Nx`+;r}^G}mD^X^qJC^Qm2V+0tds$hgNta7C$3jt zcSi!kDbwpl0s~(l1@Mv@DjTI4%`KE~M;6>=ZDx_BCqke!_&NAaxLHsOTz#@GCuDdI zcp&!loRM(wSG*ole?;4{mk*ZBUgE>PJ7a6;Que0(M)7EM^n;~G?!qw0Hp)0>2sDJ+ z*+8geSJK@r=1u7~^Ei?D&91b#ntIQ~fT_4|SDkb!iRRYdI6_Ut|3WOx8oSWt*J4j; zbf30LyQ0vMYmOn@VcAjvKOHJ&YB)G#L(G2!FQyw;*lTD{e3PHPb% zn8w^sk++oWvpOvw=8+MRnr{oHam?i@twI*;m(o{6e_>E4x_IzgVoYi}W8rkL3A!=< zR(*$r%OTpYi(Nm$hEl51&zv*{u{1Dq?NJg=yW&YLHqI6q4yZo)4%ItiDnetPLJSWj ze~cUFT6L?PPcG*darjM}lN~9kOgz%=8b#b)iXeCqYxVW_V@Q$Z?W)JU^(P(1jOe&% zHg!Aue~e9GOFkK4}RCNc*fHO>ZwiX z_7#u2XKa(}5`-I)9eG6_MHbNIktxk8r=r&V~k>|iYqumWV&)Ga}ZEYse;I~e8jx3F;6N+3i!q+ z);*S1aa7qpS4uzfNGf+v!xP0VACYd$X+L|*fmNeNO^Rq18s9A*Ri$61@u08UvR1yH zKU^>Da*#|s4korQ|EfYC`ysRU@KnO2SS3}X~P6Glq?vODDB%0CUV;yZ^@L1=qC#ze^^-& zM|n|UQW!pSM6M6a@}D?`#bBi~)WWT)F*&3|^)sH!Y!WUT-1HqiO}F(#e~_A7Ypm}j zV)+&}V|a!HEck#!>wKub?^r}A@5=WH!1eHDjfXj997Vn<^2w(&hP@=ih&bZpffhaaZDH0YDOiVzE$Xj;zolcvS zC5fszrnFa8VNi6$MpY$La~36B$b@Em_8^{}FJD2dQL!_%PLp)DN#zWBf5o!{DVc+; zmjUEttIj!>9lUJ`JoUkTKnrx%YWV=$3@xWRI*5KB`24a9ziCR?7;h{rMwSoIu^#w8 z0bUQG@U!J$H2aB3jEqwP3Y80`f1Sh;h${c}zgG)%R}U+|*l1(2K$J1rUZmQL;Z$ld!}JO*&~g^secUBOTD zTxKZe*c|=wX?Qh0f0uOS23g@2S0z)TJe$!8k6k6ny=-{I3F~R786Kp;LU?|{Y^fS& z)_S2yN?8oxtgCPD8p`PSv^Lg&0zme&*^C2uOMye-GS8+`=hwXe->n}FI_BgH-VY7LEt(^ZeQ>= z@dm3+9-nm%#&-IQrGQgBh|{cvS~-d_qxduH(jG`(;q@>Ak&^5XI~F9pO+7O%7vWE> zOfpv1~O7{R`t&h$y;7ou%X`_8J2YhAmE8(xf##4Go64mqH zwMbv(e=chVGnR5T`wXp7b#Im*oIOmO5J+=q4JKL{haF*x#-6cj%~R zb(#bYOuQK+td^-Z=cYqOLmm5_H4CygY8E9ON#w(+1>zy}uL@-RkTy1+|m1$NHS^wJ3ye{)&T?-xwy0UXDpXQ@acw%X<+sG9)v zcs!Q1Ug2YPtDJX4kdC^X3(cuHmd}uKsZL_D9H2n}Y``eQGKj%;MaLNw@A?GO18zK4 z{rzLCiGA=A7zPT@k0E#Sn_tvRpkp?Z+?NfZ&f{3@Z^ov6?SD0eIeh8j1r-x~|M^FKny!HK=$ z+D}#m&q1ZIu@eg|4NxAsDDIkTd+L)Ze~ONjW_@A(FH#J|e2x70Om9-Q-&uRRr+n&U z0@I2;`4(xGGhj6BM&VD5dsTuEjp$QNQ;f0w+H<^hMh80YkzY=1d8hT!LiI!GP|9xU z)34P(^rbluyMNOY?nutyU!pF-_lIjQki9>^XY)AkTx1)&1++L!(3J9oqj%dafBwOD zj|UH5zVV?v(FmS|1yg3J3?f&@q0$7#BZxDU2N?=U6qhn!I!E*}tG?)wL!9j~tI`L9 zS7qkf=CPg?(Hc^UlQv1|O~!RR2QQ5&iV%%e3M5eg1X)Z*1jraB@cd@A69e+8%I_tS`a>7l>UF?K1AlM!*4q`dv6=k-!g7sCM* zCs=AF?H9#z8;vfduzXpcx}G5hR{Yc$j*(+T)9zn~1Z<|(BXlWU@pX-!NwuuwtH+O( z3?TNU4@*U_?9*DQQHwrrm@j4`&*yg$6rmB5OshLDUh$4AsoKU3oTr5k=m$Ce}k-VsEEVcH2+R%@OBKeBmqfr6a0ylzU zzrM)^0@7C)Gm`j%4jAgQD=X*<;mW-w#*6@XaoHEwLZr3{oVDqjtWu74wt3vx1psir z*bhLgw#Q@6E!Yy8=r3zAE77wF7du}s9gC7M=^OPSF{%GT#9O85kw-rA~6w;00$(0C%q@Txz4W%u>g!zV} z&kYOyi-j#e zheV(pN9Mr(ZBEa)$NeQMDr1Ggle_f`Dud9Vtc5L@f2(`ae}j?7zLwgYb4{Yo{p@Uf z{85Yld#do4Gr(e6XV^RG!}4@6`>#uhaCskC8?gHlQje|mtlzAAgs%cWtfulBX4*&1 z52p$vKryg4kV5Rnp4OfEMlplAj6e- zMk@rBe}X9z5GuI0fpfqXZ!IPRp#1>n=ibw9aMg4IHUP0&pQP_UgjLPe43o4H#U4 zv5aV zC{BdMt@e8`0E`?E*HdrHc9uu-gcG+)X0%UYs|V86w{Xdjy-xHCN7{01ZNJ@9T{8^0 zLry*EUGo)*;42UH-Z6yXacJY{bT6{2;#QTH!~!QcI2r*s{lM+S&yuc-6A@Bubz()Dz9;M5L~rmy!fJ6? zEM$kqKrSe`A|TS|A*ipIuBegQB?P7qXt4pp)|`_t@v0mz9oAbRwn zHv~2(88e|G?a zbFD$6H5+u%6yTgGzP?@=d}OzzNL{q(Vh;qz3%=f*Fb%_0*+(uAy_+NpfzyRZ;rw81 zIjyivGNtD>;=x9Khh9PkVeDP3e_PxPv57P2pPWlq^BlGugo>RU=nWUb#gwCD`CnTi# zy*V#DMUtS!O4@^L<>yr~|LvSK6(V&XO~_LJRRY1_Y$_E5dGtKD-`5H~`65H7 zr-Au+yq$z2d2aGjJb=bIf6|-y4GY54$E9clfcZbiB@L8*YCW+L*BPn>Akn?AgkDy) zF%Dr8A))NVcE-M*O-)1}sGOZY@(+33B`GzxqTyv&o-j4BXAloB!ArBgaFXI z|LMk^S5PL_Z}9xuo|}sraaQxp2z$=sI;x^%&J$N=kSYP7F;pew?cr*e8L?kUUXxsr*lW-FmGr(iCe=>>%Q0f-jo*jCl^H6uc0vkm=4z5P`1^! z@w7EdRm|Zq0Ug>Of8IX>vod|VUH1*oe4jnA{RVc7SJJ5YYGhsOoJ8n$+XJ(}aFcZ_ zKcx7=59k}&z7ir{68*hOj(NWcdLw>dX^pzCKg1Xp%KYQbhN@JWlHrY00;Q(rH!dMC z__d+zOa!Qq#y<-j@CBctF{Xun?K;K#M{Oiok|0i**K6DeL47IX(V>(cCfti*oXva2{}jf6%K!hAP=b4zDx z`ZP0AgZ!)FmgE+wfI*ZCU_nE``?h8xktKvSEoPuLo;v|8057leI{HRxpMnj7AYCis zyd{wI9T{V=Uc2>2;1=EzQ>m78k<}umv1~H8fF}XmArUn(ATLa1ZfA68G9WQFFf%lh z@j4ZMH!?RdAU-|{b98cLVQmU{+Kl%FP+i;7h6@A1U4q-f-QC^Y-QC^Y9RdU=xVyV+ zaCdhP?hr0}AIU!7|5x2xRKa?>dyIa2%wC02^%k^!;?HYWcrjTV{&ploj8^e=~! zovE{%fujlF(_n33WMb>|xx~fR*u)X=nH``cAq|kTH?jR!u=KwIr~&^z8~_6?!+*E? z_v*hkvatPov4N41osGSLt%rrJ8Nk$k!rBBNCn`n{O_1g6Z9W{o0*9- zfQ6o(o}G~cVB!EUaW^uj`zwL6hrP+)PKLkCpEdY++1uFzOh3yo@v$&9`TPUzXKFf=i{2eXa0b2B*?Z*J1|Lf+T&07-;bD1K~q|PLQ$3K-zERoDJW>?4)CI3Vg=AJvM>M`80eV*Y%KHu zpa0!Q-oWDDI_Uqbm9RCn191FH?&mrEN3!d`dw~4k1404#-@Rn*K0DV0K>nxEwdq;t zjXr-d{C{ruznA>~>+-*L`G0Nn|EoyU#oGFBKl#4`{(t-iHWt<%|Bm>7>|7V;&nb|x z`-qHgW&EnE`aPwsy{+O8}oW`T$Jr9HIYuu&gWq zI)T4T{~~q(o$w#x0MLp2m)IBpbYg#q5kM#YhnN6#5`TypKqvW!SOIj>e~1l0C-a9s z^U409&wO(KC3boMo%|pA%%}K=KJzL4q0fBEf9SI!l|S^EUG)!teP&ntFL8X5!5{k6 zV)%zXwHW=Em_IXozSnI2ME~`y=#2k?pQmH;5B!vC`Un3ai+^}O<(vHjKX*6(2Ywdt z&*0ArEdPO@GOhoCpE_;+Aj79B+kfDvD!V^be8zs>N&j$v>aza_e#&zA2Y$+O{0Dx@ za{32;%5wfMezqrnowJ+WKir>Z>+%o$RPFi?{8ZxhkK_4V?fwt^RPFH({8Z`rH~vrO z8@V_-eqIBAzoI_J;y?WNonvC+Zej$zvS??-6>M1--0@T+fbB+eFv-XaH*^zu2dTC% zg6Vps5Gcg`e9M#{wJgvxe;D<=jeN#f^3iOijz({#yXBpK7R8CS($E2BYPd)3J&nxs za^@uM!gwgv-L0w5WNU1OcG;r%)9sFbjsl(9;rd`9^F)lBw595?()<#Ftm&K<7GyFe z3IcVb!7_*X-R|KY~qI^UUD7XNw02@`Tg`OH(DK-0>Tlb!>P%_mP*xuEhIl*K#G$6r(+i)Ir2kQ)iX36X0!34&fBjIb3dWN;if z$pd6&bpf{(pB<#U5p0=H_^1cEjMV_+ zQp1F%RH9Xqbx_Szr7ITg)%l|nQY{LjBc>?)*~y$xHsc&LXk;H1U+q`zvsD8=k%Yp3 zeJDrPiZOQSudI6aZTk|;5e-<$_QWK~HgsS)!InY~}<~yfNaAU$%;LnG5*HgXk*))xMY(eWWy{6=v&rSHo8bVE%f=+E?>@{d(2S z@#S5RIsTp2j&~kQBO*G$I1F42ItiF5C^MnWGUij@x;di-Jy_ZB>uGCBacxI`uOJOX zd|0?JRM@yid;GzsG4LP<7_m#hJu*EF##&?qBqndD&Ex9tA(ATKh_8Hgh=K2>9A8CE z*l=j7h4F~H~#x!tcYidRHrZyFSY#d71z}9&ot;}m-Pj>o^T02~EQ;H7)JuecPR-;N9 zxqRruWmK>uK_AToWPZ$H1dixh+Yc3>Zbt64qYL65Oz41MhCxFa;v(AeG^L=$=f{3r z`9-q$1VznLRm1X!vjkEfXuTVv0{a={Ho&`gKEd)zS{>CKkm!k*h~3D4;KPyZF^6t7 zY-2&+2}dhf7Hh1{G4%5kRHdIvg$Iomi)$9f4T6tn;JC^C49XV<`^?7`&>&HPo+BVu@@-c`zFSHPb)=RGe!+QZOXTa{F zn=9Dm2P+H+cR&QH?epGOUq02jX)6EIk?`o0idFXbyBbB9Jx7p#>Hr%jM~mb*=5Zi; z^+dC8l6zoNSiVibuOF$=-#L)3D#Ys|D9XgfnUn>ln2fl&tnhaL+HZszLsxBnsL*wU z9HBW2pzWY)f^2188k#P_yp1|TJW1wjO@WO+Fsq5W*OwX-#x7+`?uL0L*)h$mT5pte zk2NO)CybGD>fAejK#%+(V>NH_t`JXQVS00UAqD5?Y|YXe#7l`8$V5R&2)JE4{cXlT z?CPeRWpsZ{W;2E0a!RaZ>lIq-tQel4HuyqS6=UrC_thxjx7lIE8RI>)(p~c##FBv|ZmNk})^{fm zBskA@3fKzERMjFhW#l)kdgV9YNzLFUEkrD9yv7S|*V4Qtx|i=N64Xqnuo>TR0D=9# zrZjob;roq;)8;1^o9X*#W$t3CjG1iTp_p|~C70D5*1YZqE9r+!w+V}f-3Fg=tg~WWU<#t;ng?EHPqXU(%t@tOxynAaKS?G2pLP8;^Vdydg+xQ>UtO zU$@31S)BeglB3nr${Cg|8g%In$QC|=PL|3Am2Af_$dOoiff<~wns#j-MLVWSf?m>` zcatJrA!xovD_)1N_RG&#*yV5VaI4@l#X>Nk?lFq2KT8FY#2)U+wYVChr3# z;a!G*#$ej4dKSFOKy4=w!jEOYkeQ*Gn>zuDePpqc6Q9i9D1W2WJ9lI+X&2LlSz56TEv$R7SQXan&2D7B+=k$n+E;w|VT8VKWXY4j@(E3k zKcJ@KKyhsN^$Muo*?VT+?u>{b_e=PbXsR23RY^jhRXXCj525^eHPevIeRDKzFml7% z_f4tn3=%BkgA~jy0VgGOo+(_m)om%yjE5C%ec7bTULAHQ**z%_YECpkAl zov=XNyM*2iDQB4h4f=k?{g~DllP5$kgi?J^mY#eKi5%LKT&O)FTE3VI-t~LmvwcW^ zYgMs)2X2iSOeX}7rz$8EVx8hxL_aTSa%>{&D5gY1fOf zync7oT%bFlE)VV}0+TIb0NGm??^}zb4HJr8k_oe=D0tZV^(BZ6q)vg2z%=Z(%yA^u zYRUM@6kqn+uf?l z!YSx!?a0Q26Fjr0qf=tWv>f8)R}h8pel39iVg3U+<@X>DgR<;Fx7?c{$Ls$Q1nUZNw=6kz|MNt}9zk5!; znPBjgJ(3XYH+~y9n6FQr3u}Q~TnYOiE++?-^fX_)FmXD66dah^h4=`E$Euy=2L)Y2 zP_EauOtRw)bzkm-eHY6q(vq_^P1c^1smBuhy0qe;Jt(We_@*}M6GUdS8tL>#G-Z#P zj1!AQj0mGLPrORoc0gR1fFx}%XD;)Sf$mtMf%~lRT<$NhqzkyTeAA4<$O-Lbu&}43 zN{XbCERhg@B2qKHx!jG73K&YV7F6CgjJaN7IMZytMo^koH@V!Co{+Tc$EzbMVzER> zoo~*U;(tJ(`F7&=Lu%>DtR0x1rXcjW?>77Hn@(n}_3&Fai)-lo&j5h=j?#XzxDYbFq#eXP4< zUDoR|fm#h*Q*SG=EUa;G6$Q#MG+uK&j#K1)u{Um|@;$lG3B>gM$+=yVkInK{x zX5=o56?OW%T4Y)x&+JN-%cVD0qJ-g<@WT}$^S#)w@usVG39ds2Xo|zS@&RQD!NaUJ z)KbnXy5oXFsiS&tOcweu&4@)k<+-PmF7J+i;7G*z5g&jxl6s9fz&cfP3Z0?p@uWC0B7d8^hI88W2WbdLsA%Suz^Pp#GNI zt)&1LlqTweZGrUyU$Yccj>ToF<4}psJganWGjC-2Ug#^PXxM_suFpoBEC8^7vsQ*6 zglxtXrlOW&AC4>@xWSnDt#lTX16d*SQ=d#mz4_-cnk;k8biONC;P1~nmJDT9T8^SV zL+E^93fNB=oT8A!3!6&VChb8mvu%J(}`5iX7y z++wPoiH$_+d{)V8rT%&^#xK`@zazyFmsZu_J=-Mg)sAUh*ib-2rtLY}7!{JzHp=RN zyjA@fb(z>Ks$5=CePd)CnoY`bFb3p@3BRqM>gX;=AV|AuDx-057%zY9Fhub z)Kta_Tb)uUVNF?SrKP~JL3H4lqIg4O>{Ra8!JHb9;4mfk*w}`C_ZfnJY}`*FQ5W8R zKLiCPew=?<|K$<#b#dGG1Q~|v4lXn>v>q!lj=I2nD!H@kn}g@Vsq+;QsBnDJrYOAC zrSoqE_!|P$5gdgxL2Cr^j#1{s1Kv%}AoG9?*Gh+%-babeA?zMu$~QK(lC^!70MBBv z{M8$$(&cN1j{`_;bv9Rjn|zxu$rQ3y*$6;2;-^^mr-*EbpyQk`%G!6$q98a(wmXIF zU!E6+w!_c5;iKUR!h?n%u_c3{dF5m^bHbsaiw)Q-(g=@PfNcR#nrkc5lEws}JMr6V z$HQ-i(X9GB!}GCt&=WSCOwX(F8p%==h#uyq^=5?==4*wI@&X8dfg5W^WF1QQD(Ezz z@!lz7^}Xyr6TRt%2=Ur`WN@V_W2|~503hGfuzDOVbp2<%Eb)c8H@NHr8=6A;J%3vY zj1a}U7uRr|9(z|_ArR?D43gEl?EeVQ6A-xq6HBYZ$+CrEKJW-O5829@obX|uw=A$Y zm|hD1K_Mt$-FI<+%g-kGRQ$sn&m+nXNN~{5bZEC#`|$J|J9>(k5<(VJLT_f}SX{J! z#DnZ+qp>=5gBLb4e-NokDQ)R61FAJ?mVBoa%-Ujwf|tz_*;|;=6KG&H<_?LA6P6=7 z3hPuGQOzv@YIa`Wf{H6N?FkKkRJ&RT?)5~Sh_OSP4zOx}QHr@@C9SFPMs2K}nIn@s zruAC%Th!xAbL_bTn$uv@_BxS)#|d!KOPR&RGBaeYjhnP^U?r&r@c2A4{{cg6|D_w{ zpxp2E+3rCIYMwT#4#f2?m(c(fl4il2la6ZjUx9jQbh+?yzDHt|SbdxjO?LS_&_!?7$W3R$f@k@`7u^h*UcykB^u63Y=Qa^yQF`Z-?R^F*|Hsizf#$My=4(4TlI8-whB?KwNprz-oRy{UA$a7BFc=ENtW zx89u`_Y(WM(vdb4yUWa7Lp0s0wfduCHGFGaS8CWxOzZMKT^E_sc)SUYJD7N*K~M6P z(#HP2J9|vR(^H3glKg|zTX}9wJGGj)RKGNU;0wk5k^&69du$rL+_WtT%6dGhKV2M1 z(U@L;aTDdcE}L=(yCSnhJ_T{0d34+{T8GB)2iK!dB(0bRuXGXw0}XmCbS851v4W53 z?wP)sh?TxFiWSLGbRAP2WkP1ec6nU9B&v>t_FOaD41HWfk%8!9Z~J>(gk>&HMM7dH zskMh^YQVT5GO62<7}kPLc-3x~{gxB6t!rz4i5@YdZhGPOp+l&H+Rm8btGIVdg^p?p zQlewLA6t+PAHfgd6x|tphP8XRAHk1J_`bi6frB~Tu};pL(hqB@WP;3b^x4}aRon1t z@3FQ*@PX!Hgy<^bFOIuYM5)5W1^t^#HdI2kE?0~P*zLm4hsv_>c+#(y@20IXc ztSn6P*%8cog57N}$>V$D`m&*UJ2oLh)mdAk3D>yY6|~V4#3%MSnyk)WLYcj7FYg~S zn9JVGohB<6un=ye8{kKL@qAjBvP=QC!%X*Qcl8{tL_96v{^N-lo-|RuwEfiWyMrq- zARd7=%#{$2$sK})q#rA&`7x*<O*AL;z+-eIjGDmrA#sKee>b;Jyh&^6uX1C)>RbbXaV zprhQGi*3m_zIWCl(B>$sO1)>cV)dn`R!-+V)OTXC*gYDY@ z?*u zl`GWff}_prw4zIG)8w(NxwZlhzGjBIN!(!Vg?YP0SoR<-l}9eJHbEswzOPfWT;>e7l}whFp`3pGhSs^djEN>En)Hrq+?!jt~)O}kcXakt|x7`TdKPT^Xq z>i#Aj!pN+(jiS}Nn>rxeB>w#90Usf*p4}|`74?d?P!zZ0%PihrUmbK`E?+LS+Eu6MWDM8Z6qkLey*KQ_ zG@Hv8$l+f|C!KX8#eBq;V00O6=#(@%47d_aDKoUeM#%twx*eD_?likRV`1$v&L8W?;+zbV2G+H7I3r{*!b-UTf0Sqo4i_fgy{wu2g0EG~z#ZR!ua5NK zWA*cS0op@<1kYx@hD;_yFGd4~IU?Lcv>VcgLoqsDX9#l+^88;hP;g*Tpioo|RC=C& z)XIEIR15U{5t`E0*tFcevsR+QZRQuv$tBFur)!wyVevH@Sq~Pt^=l^$!mb&SPVO9> z^hQX1L%~Iwa6br`ZJnM{Aj*#VQ^N{>wmQIsdm7V!CxjcMIZE8VwGvKp>hAa&=#}#b zkuOrLxR7oWnUaK`zUZ(pi~_O#U_xBCbrz3DZdsdg3{1WRxs=Ub#(*u@RMg-gk;Ziy zwF{9h=T`}LzX(uQmh1u&54pz>aJ;O^_A4GUvRmK)Pc|0vcVoFR{JXT2CL*;sq)EAz zsl2a$p;{+aL$X1HtM>v6{hP)jPP@Y{be!D{YAwpv0vNupe z6uLp%cMMO=^({Cxkva9=bWbL*ZzPyF+B4d>A?qOeK<8QBQRU2f8iUXSykrJ0u?7KR zg^BXUuIjpr_xqu#%XL`jE;>P;ReewMYSC(cBw4Q{i4d`8lrjo2_rGuO5=3_7X-pIB zk5jTGB%k3aEyiQYlKW2Ra5>8|&y_u=u0*aFv*C(c&fN4k=_YGa7E$3_sjvr+q z2`^Q6`6yRVG!HR^AK;uZ?CK;o#6g)3E69o6mdwPi?;4xrVBpzUY zCQ~O|y6<4ak-j8xdTME(klLi5$oWZ~fWE$!WWyGwv(4EfHRvZsDujL!@1Xu(`=;!f z*`6e@0fi(mH=uG-3QDuytM0lBH3uYR`7Qb$W=@zzMH6k$W&Oc2Hiz&Y0mS}~*@Ia!^twMClZUQvQ+&Za=5hDfcg>W-jU$vLSknY7p01dx$B^%NJ2XImV{n?WKYizXQHP8_V%Q`f)&`XkA$x#o{=(crB zc5IkVv!f;}dj;mfzRwjwuK_i(D@x}m*E4MvblM&q)~;6W4VFfCF&~2NPl3*^sM=FU z(O2oNHNF96P$I0_VGUdy5MJ7Uy*MT*!kiiUs?#AM7;6_sZr#+Uta8#s4I(6Mk}zk) zR=XM!siw6m`J{V1wVN~RS0RdIeJ4n5Xs*WIFvgzCpBJ1tZ>bk^WCrNRw?DHK_suqx z(M1gTgZq0jS-Yg!e@Dzwzww#gay}ShOVS``uo;RcHxOpuKBdD)B=uZ>$xBX{S4^ro zHv5zg+OaW@{5;Ai=1toY#4;U4ARIM}b8j+Qs)EN!^IIW3d!o>-?Ld;ZWb&5( zuIqDY@+>L=*qh~)k956g(K?4m&}F_$)Gae3xHWByWXE&x}&zI&^$^5fy`|M@Ph;E)5tMOrUs?gRcznrk6Mc53sP5~z)-0VEJRNJu)C+Z1OYI*-j(Fb# zhUQ!0R?`Q}SLB_Jg-|F9iTP+HB>sj{bemo;b@oADP5cEVm!YED(d9y4N|P8;#aLEy zP$ET36)Vo=%v?!-wP(|gGBL-x49dLhNHv}iqimup`r{>dEWU)zBb4B1#VGEho>@~=i zXJ$2y9m052)za#U$z_&y3*Z%l-|c+WIn8f6dp1-zjrBq^ZymvdzKSxi6rsxA2^FI$ zP(46I&ByJ3X_Hc~HpM@&yoXueowu`PTJD<@A~~bT*kA@nf)h%(94rs*9%oMRe!+ue z*G+= zR&5S!Rnn!C9UYma<@b!JhF8fOB37sZ2;|x;(agnvUFi#9-*>(IDsKGd435K`)1zgO z%JK-}0u5BO@DGGReI6k(nB2UA7Kli85HZN_%%gttZcXL1-vUd5-(Kt4wOLk-9Q>jU z8dB{>+9tLJC4hY=lCT=m5|;13%mbExt{(SHIF*Er)nShG6Dub)nbq7lcMSJ-{t0}p zWso(0|K$y1<_mJ^qgys{+p;H9?cVvJK%O|z-2MS8A{Jgv;Qc8Y@ujWyc>Q-wZ4hp; zhR%fSy&S-B3mF$!)a>uD2?;O#Fl_p@cyh+}b3=V?la1}VT9#VY2a(fEYsL{TQ}|lH zZNm-|^AwYmOOh+Y^THx1ih#?fR&J#awUfGk*z04s22zeG+MR7$pmNGH6=$N;foY@- z^)0jlJs)O}CwP>Is$9k(2Rm}uU%mp0`JrwRzE|m|tsnjJSH^HhQJJN#AYG=b);11- z>XqJMfoc2E6Zg!neM^}phYkX!Hmxfu2h+j?KgS3+ab-apzLgO-<$kDvU{XFsr?2~e ze)mn?XRqs3RYw5*$fE7;YV})vMBK%#jM=&u3_%dexaIL*M4_FR_YUWoYbo8LdGa8p zzeg}`^hcG3uYm@@z>Rxf6YEUwo$ymiG)_G~eJiLSY`_-B^5|awd9j9r`CE$!?FF3< ztQqw2eU$Hl3XC6=X`Tiix_wLth%mW-gXSW3;)m6)q2SZw2WqwQuSq;!8b}!= zyfmk#t=fxelF6&X0mZE)S=q}BELS46TT#}-4r^SLMuIfu+O9P$OTojAAqL3v>)YBG zH|@HVIJT1Fxl|!;16!_effo*c<6-=o7Tw?kk;k)tt{eTR4d~@fVkPhGy6mF!(c_B`(FxnuV(Lpv6fPn! z%cO$NQwsH&?rPD@SnsJ^D{;?s(2kq}k9hz#L#*nHGsDAv{MH7_l9r>!BhW}Qv-grQ z`ofVLWTU&{;luGAf`!Q3~(FHA3E$wW7pmbeX%F#N(;$;W?BN^9aJ5`bI_) zg;L)R@WDlnCy}OgNH#hoZJcoFF*JmN@xG+>c`+&}Mr^i&$malZ&h=8Er4)iCIeV1x zbn{f@(UJ4+w@Ly(qm=l6``hfcH#XelaBNe{g;6sGBZA^iqDuk*f~SCeu1hvER~pD! zYN9lf2J({$2q)AsDR=9Nkv$TtxUnFzY7afXT^{xU-)=^}QYKOiK3%oib<1pGu+;G7 z$n6z3w{4ES*4khh1{Q^Nc>*8cLh4L|@V@7C40&6Zo0^*9XB0+%H6b!qbVyo+l@$)V zK8t4{HSc#T?mfJbrxLZ7^OSZHC!jXtg{WQvpvl-rI6F}H<>3yNd$5N7#@sA%Ux4a` zj}dSgoT-;^U0_YAFLHaE@0?#PCC~QT9sOfk>eTv%xaAgVAcnFGalL zNqjgGz zq;8l>-}fE)){Cl6#qj}6r(D1PBRB7IM-9iFE}o@SF?oN`nd;`MH%1F91>THs=QRvJ$RaT|tR?j{i3nM|5FK$vPdc1%#*g4qm{@mb>!kq}u?!8p8(s4Q zw=XpdOm!%BaUXxM$NWrkuuss7J5)1L?nnRH(%ur~^&Vy7ow@ap!{FQyw`6H)#puSC;<`=sz3MLt$uS#O7S6nwQ`4l?@u_ud{b_FPr-e~MlF$pbLu}| zI^wWO7YWQ+19>k_zSt_G{)t)a!Lo+q(yVOJHy3{eVZWW>(=`cva??*Pj6 z4U9~S#ve(Jb)0GF%_A<;tN3X{m3_O5-Oho%h~Y;`0emO>=g2%qG!jZL5->PFD}H$8 zz{x{@F7{OhvU|l_2?&UM;W}Ft`VDxn z@mZ|)rMiFxs#+5LDURn7(~6pf_mV%HD2}!gyo&Q1V-dEyn}xB*R!wCtiQ5Wnkhxmc z6~qX`>wc2a^(w6$IwNo;zF@3L>v}Xj?96@9)XBW0T*66s+E%N7-t z_6XN$bym4Ep@)xB5b{%Fr?YF#Z;oRgU4E}udMIfJXzJ{EsK}dcLqk7~oLP%?C>aZ^ z9L<*Tt~w_i$U3rJf4m64T{j5M-S%whrM_hNf)y`nIP#Lm`erIa4fS)^DVytyHhq1l z{nj&WOy7h}W+W`m5_*Wi#^-Y`(^aGe2G!6LoJ7W}Y0q{6MfL`6O9_SEl`b zG>g_?P-aX*HpcTV>q3{*1?eRiy}fQ034$Z614dO5DB@V*PvS-%c)g-0yiR9XY?9VSO{XK;OxvsvElo>DR5ZkVrX(X+Xo`Tg~CosJMV8U(I{4r z*)+PRS(`i6JepAEll621i)eVB%YDV265)Q{+mndgVF47aNvF2P# z2{E7i+X%9P)uBfkY=05!>_O~*{e%NY1{O!In1(FxX3Tme&xv(6Wbj8DeS*SelWMq| z)|JKNh?{>XiFmQ+O1t2a$ZY+1Y(61#oe%a+c4v7D7KOsc;bnRc0{&<&>!2BdJI?Ax zS1ex^c&YdW%RVWym4^d8r0H2O71}@)<^B$e8K?Tt?u$^pB} zx2unMYvEBhkcY?@E0?wwcSh7vtMnxxv)=_|k362t0zAv}SccH<=Sc)*>shzDct-I*x>6S@~02)%8}#NG(D#OkBQQe&P@npv;tAUj{mN zulPs#M2TL#Q++o!^bo0kQTUWdE5~pTT+r28j7DRn#P%=Y_PFxM)IR zyZTLm5DQWOG{+y8OiSLpo*dscJnray2s}B1YA%vo{5&5WAi>J~OII^I9U)Ek%jJ`` zw-p<;Gn>*Aw%pTyCYF;!F>dw)3gdR0+FM~|W!mqPB@}SKu$jS^McyEE#E8;D*FB^L z8}M|zYFs(m{(?9dEw2+tBbv6)3m5MxT1}ntu;n4rg#933(KqwTT}C#t0ptLV^2_kb z%t|F@vbFID<1j_Q@Go5(Pdh9CB(^t;eI{`Fc(sfM71{@(kDv8t7KZu)-FI^WM1$atiJ_AnF^=e5W(R(TcQsUeusX)shn*XO;$AZ_y2*w7#3pR ztOB@iO5-Gd<;9m{-w5b4VmtF3ut?NS2npzo%Ie>wq&ZPK-;y?IkkX{b#*85xMaF^? z&dsh%lEG97IV32i!qkZS{B~HOazjT6neaJ)Ukp9?RE0}}N0mPEVNrKR>H=!Qm>7pT z6S}!`YSWlsl%Aw<7Z;SLQ%*7nAat75WpZwPjzJ<4{m`Bp-;(8vcSBk0bOd8LH~W-{fcoA@zG z^o=8j6^X1=lHTKC@iWvFC`jjvhw)AEp|XRla{}}lyDlC&sUCHp^Bplcf?^XUtBfn1jOLB z)y{e4vMDx=q&ugVCUAFtSf@AjCuS);MNMRnih{!~rWszO_55^&5A=BGSdMK69HP4Y zEFORbs;BTp*v1Db-~+I~OzQ`+1l&eiA1SbZtb$%w9tQb z*g_Rw`X#-w86zcQ8~`I06401%v@Xx4X7MhOB!0pZ@QIyrYHmFYQp8X9==ceLI$X6j zZ>ERZlE{J@?Y7*o=HGgEUPNW5dhze9Y{$}{G}+VU4JY5c?ck&PyzD@@Bh0;-am#>l zp+XYLzZUf3X34V6&}EQgg}UzVpr zZIot`*`~Kkv}b!BHR^+Z8;Rk6Q-H;c4Eo&@nVJ{hNm`-+lNEhp#QE!YGWS4+%GA zofT^^6iyj!G;!`p=tz~RPx;}Ev1U$YdIWzAm)>tRQKLD+X#Y=$db zo!6glL8~t&eGSrs=@x&Z)_7zx*Ub_p9?AM>VWrWZgGRn83{BZ^uugFn;S*`hhE8^UoHoP=rAUyV?AX16O%u4+?m!;nCalYXJ+N^~R6Nx>F zw;KBop*8cggccg)@XSL5Xm2!#p_AW!#^D8#&^Z>@69^>+{@WPoSMRnwd8(-byGw-v zuj&M#0`EihjN0#Z0VKSkSGZ9FZ}88cc^GYVd?x`XJx*Ey1@s?(_Kz;4nuNg;{3Cn6 z@MowR`E{*ce;qOBbE-HR^PxKcf^QW&Cco;v&F>iVxj1`bJ&SgC5?oOIh`Q0)1#jAf zDk+<6sNuj%X9SzTJur;orMpJJdVE_qsYFmqd!n#i^$ic+k!f*#3^1UZy`K|BHk;g~ zEpMj%(kdijebNShF7Kv+qzQH)ohNf0^_%si{aSS=t;BRC_S*O>#Il$V0Qp`^Ryft8swB8;kJ^`CpANchj;tq8EN$fK;JjKebpqspvwQ?3 z)LSEDZihnTdo0*&uBgRf)1g}d!O1~CP>Bph(WN%>fYeEUPDR%dj5M?ssD88N$zN@jSUuQZNsM0DQ(w^PHdIp*T|O&V`L8?ni~l0g|qz zS(Y=z5}{4m=Ncf~BuJBFDhBu#kr$fKctm9TC4MB7 z*wl}|_y@I}OX-HP?UnsJBO2yBu@F0Mv?#Tc{+^sut6J+LSSaIjt?g+T;$Zs?W*Eb! zs;Q&}NT4u$#p^DSk|^W#_GPPMD}#nHGQSok)6H1>?xQVp=L4|*03wx9X{lv@j&2|SXzuIF!SNO^cU zL|dUH4)iiE)>;Pvev*ls^Y$TIRB6OI6KjzPzsH;^oK|rV0qSOkkm#h8hnjL+9aeG% z_a$n8oVa`t$f|70sa}~cvqH*Go*G5kMsupdsD>v8+xy&Ch2^QjQ%{lKVy5IWAK*KDDoVsZ z2O(dlv#vK)Vj+25+E+4o2BEXX*_Moa4(Jup)NCtyFy^s!m$f@`1Fk4_3h5{kNsV)V zy3O}8rD_cTs={fX0*%I+`7j5TsO8zd=(?F~eJWX(^Er zf-#74oJM&$?&w^k1f-c!Lm%@jnR`Be!vbYx8!xR_OcsSjuDRAz0Jg8lgV-csPTu8s zt-{Vj&}pufyQp5c4%U+nd>zfQAi}~gz?jf+tDaC8b|nNys?o>;Hp9j+6x(GpX8NVW}oolSEg5O@zkypAAQiEis!sYr?{c!D1o&pOK;{@ai~Jl zo2RMfhc3WT(Q%L$=4U$ay`*R8G+gY9Q!yHxPfC za^LVV7;2?2g;}c^_vM>O5Xc&Tm8H}qat*~bUJ?>zyTuz^KK{8pik_+~+4p0oE{&}n z15-=R0*b3=PdpBY9OP^wyv>ZA99gyib2^Kk5t5~PujjJ86gxL~w>?vYO=LYS#t1lz zx&A|)M;+f)Q}((MvKf}XC6V?usQ>i0p$MgX&JUV?J!z&!5sC2f?i4$Jm-h11(^wdf zwkcBJMW~&r-Kc1~(~BhPw%_!j5G-n)ho(u}5WFHDX?pk#tf#&vp?o8ztmh3l+(B|Y zt#+(~CSlI8qu5D*CHTP(SvGQ*E9W&!dt<~KEJNpZi5ZZGTO^W&y{CQnHVGe7n)^jV zQwj23?_q8M0p^@EL}6)vhqR26qx8!Q??p2UP;>bjSg0epxQG?=ax5(DZ?J3`n%DrU z`+ijhIbZrxPI4@pf^3CoLXmj> z`B_u|nq^Q5WDkp}(k2(;V^uq#%D9jCIm(3$sxJdOOXhQsa~&Ih56=pu;F&`+19Y&$ z#B1^5M-$|yD;5555whQx+|h3g@0x%l?dSsRSZItcYxU@4YwwFm`|h=)r!OI}Ti#0kf zf>Xbp4+Mi)#XTo~2U|#p4~gMFcw>vk(Bh9wid8EAR;zA3dti2y;x5bjP4FKKiN~HyVg;I)&8j_Vg!qbh;mPa|8 zy|#L;sv=ph=~-)%gwAoTL#JL(-aG?mpb56`%Bi7y%GdB8>5C1h2M_mH9{%6QPF=ET zO5Rm$#WEa%CeTlN3lP4!guQ*$%Z zr_a;pC>sEDk1dFSv9ERKEFT($n-Mnh(s}OEpJf15qRgrQ-hARtSMON)dQ?cmt=hm% zFjN!%95&f-9Ihlj+*pU%q4raI{I@-*bAUMuFk4MvJ$!uO*=;^?4>stQw_b22;5bi> zWIa?<-A3N<$6#^EN$88M2fJKHp9h>rBvO=A-w{A`XGR6VfF0%2g^X_0M(Zu`6t_F< zm)E_ z=mWer4WcvD9=mdPMdF<)L`EjYhf3t}1Tv)2@xlk;)u#8N$b#1BM)@o%AtJ;-(j<6r z2lh2>nUu2g`?z7LQH0y5rZm+KTz_6UvKNuddS}gFK{u?+%C=yC>rEcWEA!Fn9VE)a^fyIyS2FZ%P0N z$mi#tQl;Q2K#HI7{UnzkZ>X;x)Xu1{_796;0HzD81uI? zq$NZ{cMGBBTDex=v!|a?5H(B{Q$_Ed_a6tGTFT>s5lfD5B$>^P+nd4SPolvD5e8?J z=vapnmPq1O@uwP*FNSwI--JMYY6ie%tJMXn2S2(stSrHouM_k=O=BHdQlPB1Ss+uE z3}s$tyo{)H@d2_xP&u!>!`!gXlk&lw61Ayynkcm~WXgk8_61~Ziqx@1cA%7bM_Jeh z$`(P?dc7`hpn|huEQST8rEb4)|TxU7?!dSa(j9JiokeIw%(HBt(dn zR-}?pW*_idX_aB6;tVaF#~WT(db`?U2?J82ZW2=DHS<_PtZfYhdYjWF#V5GGmHUA+ z=FWiY%z*VXB4v}A3>gD>{xIO2h%hfhuF3Kk`jny66`NK?qKF|r<`k*4G=6qkR)8My zSal)-w?Hn_e;wG{`pDt?^PSW(x@4pVVp=}Jf+f((q2TE)N9m}z6@-dD$S!w zW9C}`xwdG>dfvWbz^8*z3~W@#6r-H7d+tFJ^4A@e3C}+ZDX)K6?AZwK0vj-G%%M5K z*bY#oq^V>vz`T&`Ow2?aT+FGqF~CLuMpowk(FeKImT|)6Kegw znJ`siiI~}HiP(&2C9yu%X? z;eyp$k9oW4)Z%6Zz-j)k9mZ7syFaZhyBvk%)>7t_k0^iV=jGIl-S)?$IB;maa`LTG z(5SYBRptFqrW>I#TVQC+ zU}dl*K90@;=C5d4oOEigagDpKvcTYZ%Xk!(n6;)ZsmQ2{loj%Uc4 zgYVkIz)o~B6-9*u_8mm>TJ` zNQXrvv@GJV_~Wg$H#xslN`rsmtL+ZDEB*41YJgTnV-qZ2FD>J9h=TRJiPo^%JgQ7_ z**lUD60H`LBWA6^;NOhtrz9*5I1~-cAW~(D!-4+glgSPS1~l_xCARpoCiPLUH9_$C zQDCwr)uRjkpt~;En8+o}8pg)#*y>9d>FtS($y_SpASKK?#>PmQP}GsKn-++)9s8K6 zhyc0?1La$Gh6xY3&8?dNZVgmQwgZds4{)`ivC*-rwlcf5nB~43{{h6i`WM3{f?r9W z?)jZPSOR*#T+gqOHnv~@4{7B~ZJSysso<%GTE4sd8sZO+u{QkuUA%Mc$ zwrW3bFE(IHL29f~!*;C&uG^$PuEFL!X|H`;PK7M+zLePEclh$XRokvFCOJ>P@&1bk z%oQ>`48u@Wnc?<%=@S7Kzvma<>enh?eQFb5g4`rNL1|pDtOrhlyZg8s8PjAmE&+?} z<@9+hG5I}SnCCCCx*O<#>t}AcL!#E9&*sQ+T=nmlad2|y?E%Y1*q42VI*`cwjIBQ? zyg~tx4-^jtASzazr{cx;N{11sSPV#-3SeaP{^2=7z+pw4>6`e&thPo;plLMY{dH}`ld~c3X((Ac73_Su8dc%8?BmPx%p~b}xmcx$& zyM6pc34uD~5ZY!nm5E%cZN+ZdEx;!>G zb{w3yCJi7)vp}w3aJV7wWDKB0AX#^59%a%=KPP$}M{0rdm{L!(R;z0Y0f3+6T3$Bw zp^~?(ro1g9F?*wOVy+-Kg7?10-HKOSDwet=8E~cZh0TtY*f(b2H~gpG+_&x7FC@>1 zD_PH&>lbt^*j0(i({J)cZ4-rC=Kuv;cFQrHBFc#xVS$XXj(t`GrRNbJ14_b}caYFQ z4%a-46wIT?AS8CELJ}{Gd%zkV72~lgXD}#!#48SdS&DCc`dn%mr#fX-8|$(0*x2E% z>a|0j0vZ|KuP~Be>Y4q%(lKz#%d)#H8T`~EZB2*MUg)}6r4@4pMv^EdVJ-1xdMP|k#e`khAA5UQV&Lp2<4BhQeDl|C6Lqfxk_txJ|Jy-bNY`n56m7s z4t@yTqB#MSdi(qgHy5%TuaE#PH8`04zHj$V$nm83L~)4B1aM?X7PKn+NaWi>*-CVQ zp@MvVcHyhYlH!nz2a4h4^8&?;E3wCrQkw zs9{IEx0I~J(2*C6BS4L+kYF|zQ0=SA$-3Lx7t{cWxxOvP%Q6;mA`D(hzUw)-sE#DVZcA&^28&#Pe?bap z%7PlmT+FO|833u?b>k%q$fAF)i$WBCou48w+6!q?1oj!Kgy=}c_dF4*b5)!5^3_1S z;E8}=E;;%p{YmUa4xdaTUW_gtfk&ML&Smfu|6ldcex^hyccXQ)4r67<8xq1IOwFRy zfuL+9M0E}Wqz3i_4q;){NfuZ{Ca>kpt$HteTj*&KFrb}ROPzpp2?fd`s{Ls7JL`EJK<73$e!aVM*6Kb z_kw0?9DegU>;!A*1h}kuR*rtwG;C(18V=M}vKM08 zy?1^h&;W#qFf1qQM4f+||1>;6Ftm(<9nSg&Xo;h75$hZhr9~8r;b;4kHHR@lJ9e7% z>F6@9A~tBJ1|#H45U^_G!JIk4C2*Fapw);;V@#(!A_HG-CxG8{-sT%+3j3G#o7cA1G|4Gfc_!O0T-5-+JTrsmE1rCie(%cCP7&fIVg*e z^aB*X?L7M~CoKsECZ7t80*{r+Kmz8t*qMm<$af)CDV+Vp%|bqYfPo7Vl5zn5DKCU7;!tLISFC z!2PQVlSz<)IG>oAs!$&(SeGL7xAS9N7#J9Yn9)3U7_4eK-WD`|L>j!(fG7U7!EatnDr7S|JYGh_s1W7X)P19f@H zjp@!_;@m)D9^p~7AQHwNu!CI?4QL}4<)J0N%B}vP{l8fY8<`@#Sd(-Q&EBbOs?L?x z(q^b^CT-OswZlKz3+iKW1XzFWpsO@=0*E{tqBp}Z8~E8kr5cE5zgyoko(~hG^(Yoa z3dUr6tXCwzUyv6X`9(Cs{O0*Oc(56`wwzqYMTcbf%~yJD6S#xCOfM=o0EirXhXc|r z{>z5^zhC3(8l_UC%1U-pa-sJL@}jj1j^$iAXEH|gc!fUX`=ZA5Od+DoPnZb|BPyTG z>eM!*Sm%`v*a(`(ps4lZ$9ql}>yjG+^%tN3uF zauG;QFXy{NcnP2^vHn!ii4&?gt#yqQ(&-aR3}c@e6Pis5P4qfC=C8|&BA!-Hc_OxPxaeAgxx8UNH5Qfl z8rCv(+mG)77=w?`kUn~sL9vs#zG4v4RoYVgI>gHl5!*Vy4djNg0QAckj>g^v_U5ot zLPv!J9w|>qO^tC;!c)TfvZSVDIrAkK zuC{I)of4?VkjiSvYwLxt$FdiUFq@(vn{eVDxhp}k<*p&+B!vTEP`=jwQ* zr36;X+d$>vm#PGaAJ78eI6n?ht6nb$C;atJLqb9p@X& zDFp0p2LcT)n(QsSgbuor?ym5W?VWhcn@aBq4;VaPP+!M803(pp`YQbR*5g3fmjqU0 z=4{qd@n8C!)ctz|1(nJ6{QUCI?)6e@BcqHx+KJS?hM9$5B@Q467yNQ8(4l~=h=w;4re)oK%8 z4PSn-k*}9i=!DQFB=;Zexl+PnTBu+c6&W*+dl}bdCvkRoQj7b4%|7P7;7QBchwghs zN|lze@w94M7+-FGG{+82)x8Ing-(+B(5iagWhC0a0mX%hdnbJpyNdkKF$5Mi3NeI( zvxNnDD|Cpvr`aGfeDG#aSt5*&1ZMZPx-IwLY$N$=$Xnrq1cFU1_a-6bDgcsx{M?$7 zDEIC6$LC+Ts#}aC-4dbKUg6z(E&u_9Yb}j1jCxmtq)A6PzV#zcgJwpF&?&v3+LYVnTKYEzmfNqjG?xy-LlSxNzd8*YpGbcQ4MP`@o)^MKr=O24FSoa1~ZvnmYz)!z@!zaMtJ zWTXY0S8S_Lkxh|_n$WH72BR~F^~6H+4$O(g(VvE`xJkJnm42}8f&W+4Qj@Y zo&+<+{p;2e8!hPM5(n5lf{X+>a*s1@2S5XWs25%vu&33%-Jl2XU%Xi#-YTWnWuP)I zKZC62Ny$b)M)u^^r)t(e_z{}AaOH#eQ);<+2XKYE2CxXL{A0clx2rfaOl*yvoE=RJ zQg?HKS^sZGfFM;U4_Fky!p6w{KYf8It@Fh7X5{ayo`89Ug($K8&op@fvMDZ?j6eI4 z>)0cN=HYH5)Z{vnG|l(RZkRG>lHt#B`A&AW@<2lNb?>0H9Y581o2>fXCCgH2`m)qF zX~G-xD(&lGYkQBtzG5mlZyiaUtci4oah+#~2_U0mvLeXoMUc`ZUYqxQ*^D{B%}j2WJGDsxi``$TX$BNh77MuAedZEp$8OoJ67Q$0j}H7HOa`4j7CX_h8I9qz zP|W-zNA}~nVsP@y6ALDq4MpXdqyBf+%&Fpk76`%O#mj|7dB$>M%r}m%{DQH#xl-q# zGXP=gpqopc6uR9*H=?o!`d6fiYLs}7(8-_C`d$`E0hD2yxRBUl28l~Ih0Bxj{SF-T zuQnq+tlY0*R#GgM6O$bZC!Lv1Ug1zOyJPLl2L{qX!kcgeMkf3f;?9)SDUVy#orR9e%g;(IichbZcP410P?XXyjW z4c+{okvrOXObOotygcU6U4;Fij)&Md2H|d;gJog>_MOd37q|33WXmN}2;D3Y)@-Ix z=cF$#6^M4J(}yVsDy&TYQ28Ze2_(VVgG`z+hCz1K?t% zTJ2OX_FdGzo8yv4$3ARE_ieBECc7AkYD8Nzg_@iQbbQ0r@*;HToZXJ1k&*-3iJmF% zJ?qxZLP0S`IkxGz)r4MsI2f)m>T=<@-9iYSdS>qTtggRp9NuLR=wku{5{2Ie_-5#W;VM4DeX6_>z#x@{)uBk@jz~Qj*I!u9V4O@G$P`F9K2Y z6w%;Dn;j*P8<$y=lnFzrRU1^SA!~DNmPk+#9gk!Vcq|+6;lomwM~mwQ3_zuCZ!SDK z(TL0ZQ?yPNP@P zT2QG;xEv&Me(m^r0mPfXQ%cVBV9JnK_g`*Lz$B~sgQXVh1G6)E_ezrv@}<~TN@n$? zcUO`0V+lT*9eo*V=?F9@CBT?2-vGT`gXIbDD*ysYOwZ@@t@IkeCm;fxq@bsx=&%FF z@-0>{L>bVntNa&#EB||-3>(qHpqIdLv$Fe{lK>VCcfQWRhQRhqwzcceJekefKl@)xktCT5B&1Uiw%tnzNh8_(6{gJl8_|nvSged^TkWEO z4{H;;GrD%OTKdX!AMehaGmsX&p;Y|3e_k_&kNl^_rqRq*oJfWRFEtOnGB>7tz#KU- z`Yusm7_F`5;9PhWw}f+Yr9^4N45U!@iqqT>lEj>4ZpdQ5erQaB0S!?6l0QlOqF!}n z)HNk`p=hCvJkY>%vGK{lA)u0?@_|Z*d+TWfehgwjzmAVp;`FWI_Lb0h>BfxWlJu<` zqlJ_M>Snni08-FP;+0fneQWyGbRi%_V})^GR-n_SaNxD<<6^|nN8+nLn;TT9!DMN; z#RYL-PKCyB3AOz*Xt6@d{$0Q{OlZAZqf`vC&>JLSLMUqK>8whU0bTxW$RfaWF-bq` zp?DG)sSRs`|CYefg#U$W|63zdKuE!303^%_#QMy3h6WXZB1uKz5^(5Z^qD00lyl#I zzPsmV_22G>C^0lf==pyEd+cB`bv$)j0({n1Qn;ULBUEwp4-4g-(}pID7rnOK9lf7& zvfR5`_dqts@ErZW*(9_fypRD#qSxD3O0tKK8DA|!Ovl+mSA>3I-9AHIK;NWMx}Vre zHqa@OcIR*2YvCYBDW*y;q51nK&pFcsAqOK_q8e57|I@)M# z5FaP;AfGqBQCea0Fc1iSxDrLaLVE()q?Nr4kVWpEPgB;mNwaP)6LQ+=h8meRgv)D> zFu7;R9hrO^@Cg(_u49U#fJc-+|K^3kmH&aNY@(5MP=0Zolmuesor5~~aHLmf(z&2Q ztv)ARdW~-gVsnp$$pT3mHHvHF^j#DpmW1=4Ke71PnNMoC+Lb*tyRKK(xABCmY1=d} z-cfMM8yHE3@XE@%!ko|WRq>P{pQU$noqHZlf~GZy98FG@^z%D@1HML9V_OHzH`8co z5dFQdK!z*_p{5IM6Im6v*JavlOtU|aKQ1KFdQ;N*;NCcd-gHIRl4)#9uH+J%?NCB4 zeg68&puR2V<{Rw)h5@rDO)L!rW-bei-gF)lZMXtX@O?f<6dbqc4y8#(tf5UCYKc(>FCgYZ>$}z>@8*Z~bdIhoPwn}uqp{8F zNBK~Qz+iD~-0c{TYqhfpJ{1X~YM4$DWT><-hw3Me9x!;Gxs3nH3uq_9COt%KCFzKv z%>UD+LrAJ6HyU2ATeYrkDvDP6FmC|_{DOa0pm^4-F!c8-14siSdZcD<2!-7FD#I2- z;m>LO%>*+=cs4?ueBzRl zv}1CXMpXDX-N3B&A6`Yk9Y$ab1&{kKDsRnPHcDO3qLK)*;yo|I%YD?Z_>LalQ<}YaYP|t zOk`nFlpCaD)?uzA&+S30VABt+%ea=UMaE)dY~+h^<%ObM;G1n2wfal!e3^afF9d+@ z{#>UIk6;12lV4E}Utte?Q&QinYg>Hn&ENGnsv7F{0@&ac8l1n8Akw`JVN~z!_ujx@ zoT(1y0nRpf)gbn@m`MjoRTR^Zpxhf{sJ)~>1mzc4In|%BNsWQntwxqio`00<^NoEv zcThDY`6^;CPg}~E!KvMZG=B#P!H*?5F0*Gf#)N9)vSOH8(_O5nr;V^<#2)ya zyhjc78N51F8PR7Ue&QSM7DO)Y*O^%0SMM+d_N5)c#A+ECaH>FCwAn_q7eBvx&g%xB z&~&E3C9UX~-yB_dC{>-p2lF#xwXQBj(i6&CBX&_M_X=|Nby16bpRLMY2Ua99b>H+}m}kF2Z{}sXHn%**#l)y8B0J$S)K)@L>fC~N zV8f81pkmxaH92e{|36dQ7JK%{Fbb7pOaS`Sg`1QWs#6Oo1(gl;WCzAE%AMi%No@Y3 zlKiJiWRA%FlvqD(uK%nhuX0XW&&TM|K)7t*+J1Q&q8YR4$LFp9G>pXMB!K^= zi}$4~;Y0TosV6lt6z@Y9^+Wd=EPyO8E5x@ZrMGX4vBj)=7@TNj3Aw!gV==d14ak&Xt49%lt^P7`u=>fC?FU3B?&Y~45~ zz_)25EfG?b{)kC_MT*t)VEQwhZdGNkMc9>H)%UUhTWz?Fc)IWD-{cRHQve9c)UE&Q z3jTg+@0aRDD??Iv26tnw&KpIGw;yqe8;_htS`Hz3mg`KT_HK>ONIfh z67a6&xG`YtE#SD-KMIQCX)19!DiTwcE?cKZ;}}%tfVM}M2RC^()TmXTWMde^?v5SOq?`)-Tb2EYNCyH*2Ou_Yi$+th6CB(y~Jo?HyHh z{cFqG?aeH(OSAd&y|RG*1}J#p^!3VoNnNoj`C5~wQ)fNuT6o~&7#mao+BhJ2*tizI z{T>j;fNPP;-1xsNFhOcYefc1qyE;QDJgyF%#sKZp_ZQfW?}npQThnxEIuPLA5Z_4Dc>3 zUK{P}uu}q4*ew8f+G|oK9SCr8b@pYdkD#{l$De6sFT6iJ5g{HXoB^n-c;BwYg21W` z-v+QugE|k!&)=pic9)fzLpF`&IS7fd@Fx^4$9e1Ug; zXIM@M8U1kkk@Mk*;6egkCBiQEt~aR}!7?JX_iOo0X+Xg^*)siK{48%d%8* zFv_8iC!(ce=x0JBk0f#qB26I?(CD?ES?nN#@V{k5e!(}fF3c&yidWU1vm|Q42#~XNRBA<-{Q@~Sye6k#^@e~6)THIfQJ!h)W zNB+i8)+wH+Lzgzpa*hSb@I>=_n^Wrxq*GbW$18C+ObiAXYL-dr0>9R@)b8}v_Q%c0 zc)r7T`G_~2>gopVP4?f7n~77Qh9b5CG-ltAL2Wg8v!lad7w%V}hoT}do(%}EntWMm zePQK?_?GNu-!`eWdg>-C=2vrnnJJgpOyF(hauBTBQ8C@k=24ZmZW*{~*S79)%_|?K z;d4xS@fmY;eZivtLZ9+09m}&59}0lE0ViATbPqhDJUt=$MvkCH=ZQraf~zhDTu2Rx zjM|*;BG@Sk``DkZ%UjA%ziz%A$W2a z%M+tR1=VMDYuGcRK=e`GWE4A9N~V$FCaXzAu@!9+Ez)q#wEhrt+^E1y;WF*fj%;{C z6?v`dtj?f!HfE3Hzf(91toPWuJ;W{}VQFM&C^&)0gTSH6ijOiEGZb+EoY`_~s|EC# zT3P*(%l(gBhrN}cT;v!tHKs4z59^~)MYJV#L&T}&HC+{D7F-x&lzFT)_0UGrG$o5Q z+9&N9$_%Gyq51MA8(FnoMjc*AQX<#CZWLAUOMn^9P4~dTdOKJh&1TJsC5APjU=N7T zfkuF0oOv2!^UL(t{UyW!5Yvp%XY!S%9-u0W#PZ-PoyDiSSJrq*dMWqy^zoOQR^0Vw zU=4i&C|;V3hl$)uPg50g0XFn@)k7C3waVaQrynjIhW0A+VPTm zB}z+)#_*RU>GJiNt75ENjZFFJOYB^-i^fU{ZntQwf?h*YIuYG~)8W}%v&-N0F~%1$0>T{wO3Bh$HO#@!x@%~dCli9hbN$|5<9An>PDWC^Mk5V)~uO0Xvj0yp9~v3OOJ0-x$Fv9YoF-oqz5j85&zc`NxjG(GKQ;LObSL zLw2*$q3jR7>sW07DKT`u9e;Muc87QOuml;xm4MA@46#~|&%Vw~141{&( zIVk(Wzm%R4cjiYG#%mqSBNr>uaRA?13DLNPITF%iy*4BGeAlf0iCvrJ==PaV zR}6I_ksfhLdWCfM5KT@OXoLis6BWc|7DMUO96GgX<5+1+9oKbck`8CI>7p0OJ_T9w zcdT)0KBM^|1lo(av=~&QuiZWZLDs!ILp~GgxiHjIj~!})D0-?ufmJ0 zJM1mrq1xlV7h_X(6{d}49#}+0&hQSJCRB!B=9nRNBJy;~A&n4PCM1Tc%!v}<%pb|^ zlbD}PnNq=kgSE=Gyyv4nv=9xiK_~t*v!XiV&Q^U(H(D$n1dqO z7B8+l#V!7|)4F43t-%wPF^z-~#Ni0Ovog~}m?9*F9W1@MHs$?>9s1s7P5@>rq%mr8 zYRVHXrhTIdSORfu$`g%3*>(xw2fb3yMmJ`cmga(5*J{z0oZZxy8Z$P*4KWDH5;6j6 zsxp+B_7V12QpKS1#~b;<+Qc;2c2i^-UP#L-BygplJYJU1y-%JO4!bSyFo;akGk}QM zd_~Zh2jh)%CnsnRofA2c zPs9oOO&uJ2-DB9{#W(3CGQ}OB zP&WhjCqMgmT34h?Yv``^K3`A*H||?{Is?i$SFoyMk$nrobgo{!G=8%?;m!3mzmvRV z{tmr$<o{xA3eBP>J>o5}FOHQ1I z2~fRdhi>Y|?|M1%D)tNkKeo1WUTydf6XE?}qORGZ=W3+S=fYf$U%vNU*WegcMQ{IM zA~eM*DF9ItLj_h9cew+l6Y|fS8ux>VK>kLU0Cv!qLXRW3@nf1-$XIJdME8o8Ml0Q} zJpgtf!2$zesyAHjf^&#P`oV=Y-d&VeFv4Wu-q5lYQBlWzx2s+Xvu`f%5^hFN+rw6}f;+y1z- zS?hXTTo!bB*)M#H@OF@SQMHndpodOJJNlk+GZBWb{HU=ot}> zHGg5>dFR+Q>COS*=-GcERrl`GL$(pcYOo|f}TNupj9=8J|Y~NDwW)=Is@7~OSei3 zj?@rNHiz1C2KgOizCP|`2vr9rzHOWHeXQAt4tRM-)pm3haZ9$EfjULe-34J`Sff_w zg%uZ^#bEeRNUtj7>0T!LDF=V=-Z#_;W{KS3r>74p|KZH!FB`v1Y19 z_k)8!1rBceEsm@S7&?u0j{&zNL{ZcG;3u+v{44)$8{jqw6qPH_8=JQ1hj(ST&W{4*J&IcRZw}u^_q(M3{E*i zFn$<*hYjlaNd3oC7hE4AwiR9pw!qO;~|k2*nS;Wgjslv@)kaH#=I7-J z%LKYx6Ysy}^pzzQBjru*6`=9ao4z$lR|ct!dua_ZlwHU`rXYnwZ5vQnM(GY;*mhu| zc`D{&93Yn09vwjIL}ij$pr=!9$i1tnn+7rE&)|H=q62^_HTkamU&GHTVP=K9Xkh)O zhcDB-o%z#x^G>2<+SYp&SabIsqsvD0a2K_dcaVFkqs&e&i_X zBsaDCndIf)Gfe73d8bHhS4nb4wP8X&AHB~T7NbwLdpez&d9bjny3V6mwLT^-sn|9p zJB(9|nNK7*YfK~uEZ{v+ zY-mCq1)&-#JFU~+%!ssG3+~LJ6%eKAk?tV;CX13pnj_yZA}EV~GD8x=@U#7ml+(kK z3}7b0_uF3LAx51-ikCVt_Ty)%geKM35JN&-t|LE(IY z;3WG=f5KHtDM?Wc9kHy{xcID$MF*>$?I%1|_l6K`SGG;er-y8ViAFekPwDx!v?RrS zqJ5JPdOMEFDDD8R(n6YV=9gNu=;w@Z&;$@jSyr}85`We;k`Rx%&(7_os@yJpgmHnNdvnjsH;MGv67 zPRC%JpCe8s;HPC0=6C)_3_4hx-<*}au4wgMMl#DQM~Nn*_?jmuu*jsLn>_Ei?gh+b zi1T8aW@LTRUR6_ZtX#3dJh8b-_4@%6>dm1TC(VxSObBA4S1Qz23@3Yi2N>jl4oe?M zRf-ELPO*N^S#TYW-H3I(b2bU(AP8{OMA{(-+qm8s`rCdMvh~4cJ9F>Xu&&Vs`mpcN z3Y5`+S-J#x-WHAr{k`OSm2^qFw>v?$xtSyOCp_klwFQCRp#OYc*S6u@a0R2+rYvNc)O zhffq0OGmn5glMNE*1971dJL{aHp0R5*%AQ=`Msh)jw*vtehlheB2#>MplHQRjh1|+ z!cZkl>bpl51BF_3tMR^dP3VAahReS1TxAGo zmhgt5_Y*A~dEn=k5f1>>#<2oTGNj!)q!8h^_CE<4)5lk9mATo?eidMVxh|~}$WD*k z@iNG_wIO>iATy%|?29NVbBOp=DbnZ~d8&Iz$ko5Y&Vj7M&kZB=TjdhO|7-iWp$&E* zXM@ga3h#Ka~;TS+%pQ)Fba5*CtGDq-o zWe36i{X{Mrfkngh*9`<;!Nv-%1SW_2X-7-%aDkGF)0#hNh6Wk9Jh69t^ zQ%{`h9_8foAy4*jJ0Eiai{Sv~qi7?`=GKgu*$MFbiWv^MCha*%()h8iVf4sViG%5! znjnEEV3DM$#t)!}$qHv5j`ExH-S$Tw+v_WeMRzs!(=7nKCxp$m3jLo$8uYCscy68n z#!A!G&nm9p61>C_mR*(@kN4WoQk_j|X7|se30kH_zVd`PjKhj3@X(1}GocWlKT2_w zE+q|hBiXKAX+~#mLahJ4SoKs(QrVU%yuYjxe z5bB1a^l}d0173Sy8V(cIouqo`*wcXdOl;Ef>;ZiZu5@cfjW^u%)kb;# z(F5q9U6=7P{+f!VO?M3gul@b6=p&_E;|nP3PFDLcuamM%Fc`lrlS%P$Elfi?Y)ZjD zLxu(TdSPQ^TjfVNGp)5^I5?_l)yh+c?hfy6Y>Gyjv1aE|O}ucW7AxGSL?U_S_<%mv zN%D|kxVW#s-#&f9V6F|S@?WhD=3r2VN+ry^x7*;Cf;)(@9#r8D5{oJoDOg#WjXq?R2uGqb|s=r zID!U{X2>~);xE>51(g$d$YoiLh5>fixK3{kyP}xsw3LEJ*L(CHx~RkheVo{Ey0HtK zfj8P8Dcnxv-WqORI@N3>L$7U5n}66danHAq%qii$xM95zN&@jf1H&uxl&C;9 z|1>(G5d;cT-4=lH6FWiCQ*Ajxpj$TffH`o18B-15LC}GjQu2V&{|7*Vura6ZE&$`D z*6#sR0*IJ7*;)UGU^~>>c3N*m_MOq|J4I!462HM69N;UmNYE{5D+-@Kl}&&YFR+=G zDxy_(@CNu`cI5q{sy7l#8j&LeLm~?MbgfhO2BOZ%Hs$rY4MXI*r@%!?|E16nozc?K z^f^NcY~w+}Ovy6BHeWJY5-9=5pAHM)%7z9;OtaQ7p^W`{4HOi{|E%40LDu|ye3{)p zmNp6TIJS26PS6-iY62?N*Ur3fPw^QYI+(wms3ag1U|^o%MC~!bA#IQ}ZBZ)?jE2n$@`wpX&dfdnrtn{YVuZ$zWFyUD z5?fOCRo;H~FN4169)bcR_?R2pz29G~WC|2WNihTH6f?rNHk~kl1}kfz*j(5yg2W_K zh!A3k<=Cuy&@kD8JVUipp}Y+Tar>{!D5T+#mqdEv%-8+nxsfJ$2rP*;siUMxqA;ez z0@Ch`?(+%T2@)c@eX)3rQVoMoo39#!g0zKil`&yQC_0$;`j~?yx#d7BtC@ST#oXW> zhJNWkP?>Iv&1nn(_&sKr=z;~TRLGHXZDl7FeEFS4 z);OLp7%frk9iNdop8{{1mf42u+o$^2#l#Mf5o=mw3uautrZ7dBT` zN3i+Gutna*{$qanJvT+6`WGXgQk_x+Ak!Y(nhy+jEDB}{{A@2ue9hDDrb|EZ+LVkR*Z(mun=)AaW6BsG~59TCfDWwslFu)v4&nF%3|8@0^!I?x|x8cOLIk7ddZQHi3 zC$`Newrz8QiEWz`CzIT~U)8eJO#-F2$>*?X_E)=DZ6osq$F#Xaxr1W2Bq+o9YYEodcM zWbLj8BjMhg2Fjh#G*Gi()&*NMvQHy$okpBFSWnCJhZ#FKyb(al6l$m&<+F()sSg2G z*wEv?L7F=Yq9X}GdBm>+QX^=TY0V|pKrgJh`}nFB3x|IKtL;K2XsDLeg#zM@)Ua6s zVvxVu27Sn`-#7Mv;M52;^v?{W=HI7!La32)`68?U-!m42;u#sJ%x+X;e&8Z!N4~03 z#YT$;E2dd6$pFA;EwT~kN)vRz4}Jpkt#L^BZYakNUKHFy2Kh>OT^tleN(XHJ=w0Jk zVpS1a?YTam5ex$_z21r)dXAg&+$}ODs2x|8R3q5jOytP<$qdY?*0xm5)=4?_pEZt; zh-rdE-^h=DT5BqH1U3Psi+`P^Qpf+XFFvUNj062?cZpG7lUX(g2Z=bboiuW7W2; zCZ7E56pAYOd0S(bl@DiGTUSwVOw(8X&RQw1R8ZL^D!iF)a3)T!@3LQM$Zezd=}{a~ zz{M+(&XxusanSC>z;TgNkFd+i2wwi#VQd+dD{-MHCv}w&{S8yo9LDLe>8MV=niU5o zDtTn1vwchA)qi*kOd)HMR7W6%;aDHty*v3XtwX-;+ssCtT3T_@Qp;!SgM#+9d4Z zp?+$(=4K2J&N)L)7a0la@2_oXcgshj>o27xfn#m|mn&5s(Meq!9r5Z2LVLyu9k%3W zs`P|+Wi=w0P?T=0v$U0e$h~toLmS%B5$dX%GGklPrq z`qRfng8FyJT+tLkNd)cHFON|{wy9hQz#M~%1v;|RwQbN#=5gHnP7V*$wv=T4t$IXw zV{*bWGjmAC`mp$rMpEUhs3 zo*D*OhLrXIdU{1Bp2W3{B851^UZHbXw@GW$ zwi@y4>?P=B#LQ}f>(Z73?)eMy`E2regDsu-2kyuRbFz6N?^&a=gNGp)z)XFvDvi9L z-()_|4;Odrhq7d3X9JTrYgF;GY3=Eo4E`bSPJSSMX3!4TALt0gbu`YRC)ly&dO7-M zL{34?iBfK=Uw89683*qNcbUQB+bD`NZ{+LFA~ZBk=WBO^>J zuyOL;$=xX9FB0V-OnfveV0~iq{8ApF_tO;2hr-bi4&om;w!(W3RIL(7Q@Ep9Jvl_0 zVG)f8S|T6_D(aS*#kK$#dPqd#g_?8_>GbNbcW&VNJRYb6$-N6tFnv)|OUAA#l#e=k z)uNLG)Vfl3$w}J97$~n`E1KtEQ)k)xz_zS513JLVOWdEpWck1XW_25c`Eo#}2^Ls- z8JgPOs+TpY?l&Tl`9n-3;jgsR+i02GDZY z%NtYQdu-t0A|zwmio(Oc1|2KJ1&cf#N%9IiriX4m{AIK*JJByJHtG)T3Wu_x<&$JO>VkUMZ`fcIMv*4JfI0 zZL#*Kaz2sOPpslk&jeijFDB4GM`61%r|>e4y=VSGL$TJ;_WTrwp;TJ?cf>`kfh@m# zluIr>169%xl824U?KG(NIU3KvaZ;6#1_K=^5%!7G8d?_+^#uvyWHyx!`U%Sa|FUkm zPf$|;2Rr9~rP){b8}_tqcmI4t6^Z*{%RN2&&`(9OD8#aw#T4MtEtA6e=GWCLqr0?6 z+7eGUQ{zPH6am?^E zzqsY=CgSGdwqb<$)?1pz4GOH|(Cg9@77#37EbXc>g0En@(m_>Yeg^J7gLqdeQwI{^ zDr{`pf+|_=J@}6?JVCmNI_I}Jfm%Fuq@_^8=SG%;><1vEf*$;2U$c)uPq^}~&m*6z zxDs&um>%MLYOuEu0h}7NUHpu#wLmLIDrsHcti9WM&k={KG=;uFfMOtg1UN5l#~@m7 zU(p9*HUIlKpBC7Gw)`Ujh84CH1#=^@aD-R=pM!u4`#3Grr*G2+3PE41m=~v5c>I_< zC1RC} zn<>92z|HAE)vOW>g^_5wutZ5FR^TaF{OlYnim1Z4LOqG3LN3bs#^>wfMS?N}#nw@M zaf%?A9J(S7H7H-$u#hG7`*lJ;Q`)W%STBJ>b@10oAU=Tm&3(V4`uHGHu~ys2xQhBG zoOEl-6qVHa#bCRhQNP^lIOuL_3Uw z{?_`a-haS&^IPO*G?o6C=Y}(9a;;k`QLG{dL#Yu+K>bXIv{$LfpDzQIK0v`Ct#mJb z|Dd-gbq+Wj6hh9#T>E6ioH?5pOf+aui3)~~k;6MjD}8vF-~>PU^CB(;e%I4|bnhqTay79eG3(nqA2=kYt`YbWM^GN$oz~r|h8+uYNzCL?C)}BzY;7bO|FY|Gkoy@5iOu_B1>BD>8&%|3$gLV@)aUbF?je6$_co~WAoIl@1|e3 z0$jQf1FAJ6XdFM9PXQ`de16a+tz;M6IeGSo5;@f+Qj+Tjv2-}eU_H@uVV%%L15qeOr!ZTdLw+oFD6p1INvL(Md!qJvBi+=sDF!`bRu80&9Qy5fx1&GNNLR`9DVLj!7Dg z5UanMQNgdsDoj#_EPnzl^ADEc=W5FoWzQu@#gl-?eq47nh}k^4?+V2LhrR?O0Zq@K zHwYLeCBv+zf(UBwze5-dw!HSU>p=il)mW?1)Zb^oXF77IigHpqhGf#{!0LlY#BObl zE&3n##&l?_T&pAkN*TFFD7vvIp@^2MUM!!sk5MMdUdv7b{lXBMqw{h ziE4u>C{&`Z6-VWh363)Xw!lB|=8;645EMvy6C&r<5*W(cFPe+)86vRnpZ{K`IahgS zo|_}IYOv`aS4dR zUjC=~TgKy6n2DtqNd}YK-S6^)7m|_EJ%t$)sVED@Q>85b`W@H`K!=p4R~~-pwj_8JH|ZNpaOK{g;tCM4&~qO6 zVzCj}Q7gne8We@62IaO%g<9~k}wLTb9>%WnJ8p`xg#*s>%w`(Uq^pONK08Js5c629y> zHZMaQ4}bfM2)c>cL1^X{ccz3DfcyfAxKUqaART)xE!k^;u+0t*wn9SI7v*m<&gR3yjH%v`-=q8 zYTYhO4VzBI*H19iYVS!+v-)m4{Y*=hGXpef-!F$itAT;Kw8x!rJW!V4qV(bjbv%=p zq^B`08%i++AX6EmIwqS<#qStNb;b{A$FU&>5RrLw4Zzo0oSkhg+2KwXL= z{AJf=PwgXMKsV3h6jr)m=gp!pw3c|}O;C3^joDNR(2Erd9mP&^BJGG6H(jj8qSvHG zGF4~$%5p$XE@01;kwLtNSk7bXU)*bVo1_nZ1jI-O1s5OSPT9<)>_kR((N~K(cFqnB z=>&NEE8&_&in!P+)JMVcr<(TpXg1y+ciDrA8n#RSuFebvTJDDuN(9Jt9z7VScp*4#Aw&p!|ECzT zU_fA?9>k!`EO#fg=x%ia>cH65Ef_K?1f)1IASD3gw~g2wX)-U>QF6^m=X2BF2-gJU3bDo%ff(^%ByMslpwEyJREK63)vqjebfI@|YoeuyV z{XHFI+$o!E)jW_&1s=$AFE#~3sNP+m1_nmgLL8NWwn;ELshYV=%rK#v$?-qq4@SxK z3Klyd-INNJE5ZMa2&LLTfi>$O( zb~*NJ1t*&Y8JwowzvK~f5#!hlmUh5b_TO*wg=3xd7ny`+-{#OAr&r&>-A0?@qt;AjiK z+xf!ma;}W)Clf`tWT(ZAhqXLymiHwWAY?M-IGPwk_Kp(1Y(7&OTlW(i?3w z`cjCHb2{dPV?>>Ned#wATH(O)duit5GXxbOgCoP(|5-ZcYVGn?N7SkdK9Ax2$~r2g zM=lSk@QQVPXb!)9mS}3+)$vO+z*e+|wi-l42O|kovI4$8=y3~*YI|vX4Q!3RNa&w` zlfLcy4UJOOSVLz7;D*!AxubnZK!L7NyUc{~!+ZW3y$TaE#Z{O)$_P<=)0SW zh!1pvC4)sTLaQW^e*(<`)0~xNx|TKCO*kSc8+z3L0+NOS24}r+yl-|}fS?Gf6!I_l zv0eh75u;(!1V8P<_LHRLp1>xIOy&b|@^QmQ&bpHp>N({w$}0AI;|;ZxDoRaXvGLFi z!wgV$f1vqVTjGeBgkq;i{sKLlAYP1E5IX8HNr+)zsxvrx(Se?YKR1r+`xcrn_WV@Q z@O+zGvX2!2y#FL)efUZC{_?XZQfAZHv2Or(icp_`pQDTmxZCo3>w?lni#H32S(4V1 zse)-|_`{g7FX}Zr&=^>8)P)Jj(PY8TYBMg-zjwH}HKo&cZ%-0>|Fc@#$+C%9u zRTHm{tbI~RKfgV=MI?`q$JDMK(mmbY(Ah60|M5pCpdkLP>9#M5oxqyKP?w2eSTpMU z@7=H};_+{oeCO`;nB$x{l7WN7bo+7*QMIu{3=e=-ji>Bm8gao^mhCZzWJ}@t+h(o={Ud1 zW5G$+DZQx01Xbg&_bc&WRO(5j)FV|yA7oHrkj^hx4F%icbEZ<@jS@_iO+r^e&eksMQX93GjOT?zB`qPXuo_3_5jrt|Yx zVbe$?v6PV&yl`8oEw`H_Z+==jm+kab!4g^Gs9&DH>+Q>{&r%kfd3Ttaa#^_?mwTSl` zf*Ho*Zd@#$l@`O+#^=&EH@=P_JkV7bEYV#|t9i9th_+Ogec2F$jWlA9@~air=e~B< zT(pNc)b}kuJWgeFpH}WShG7hFUlRcG4H&jRUd07dEl6GBq!P8rGSNtMYPWsgrkZG9 z;Fghe&YBz=4rmrenGXuIElwOh#mXFe|LHUD`I)zvX8EAvIu<43X|l6Gz}@EzJ?*Ad zAKd3p<5vB>cPBuSM*CJ&^^Z_G%J4X5iy1UxS4S!8oA02`?!}!COq|&G*wF=Kv|>xP zimliwsNC|#n{d$X`tWgx2=#otbcQVTZz!tDt&?xQt+Ewx@Ht9F1I{|j9rU{>*KYeq z6iQXQJmLzTIosB)3wm8YmaoGG3WX!!XpwHtfA zjWD%1zcQJ_a7u_4I7VU;;;FND%gtE+lo-}Zw&+pHFmPrBLwSP4{t^b{g~2dlr$2#G zP#FL8@4WAXP-vukpPQl(6Os?VqRz#638zbA&hcW1tJh?eU>pJ#{hDVDb+{|0^La>m zHlrk0kstmu$}6AaWOm$`y?{O##MkCB=t}6e>p5&cix&jNr{ifvme4+yfF9^YBtMvt z5(Qat0>8C9Vs;p$`Y8l>XhzD#9E{-H0OMR_5la8-EC~|%giVtOGFZqhRB(aQp9Nk~ zHZUiFif2v151Gqc-S5e5{31Ll46dmHo@Gr3N0XG9Z{#r7LlYvSrdPb?=+iGiLY+rO zH9U$Mvow1%*Rw$h2^~u#!Y;aku;c&&i`HYTM#w_-Pp?s`ErtUCMxGFhl<8*B*pnte zk^Kw=Mt(>{4RvL|YkjRNG#g~)R=bLX2YKkyvjcpHi9S`iROu4VbAJYqht(3Dm~ zx`Ux{C(sRFQuV&?HvOmB0WcIVnkIGQ)(L4ZyTu>v+^6^oNz*^diJH+o#jh`RCXsM4 zBMU&qjF|(a%?E%b{}BVGJjGMznu0dFl)9>zhl-~r|6STb-OGv!YVRm+bAHcrMa`++ zJ7W^%fx={#0zAVCPxA+ItbZ`NK>9mJ^kbWVj{BkI`S~K=t&N_XN5JICEf0z3L$FB+ zW>bMuF;q~Eed!0f?_$c2Dk+2Iv~oL#1pakjgchXr$p&C~Ebe|rQ&!(^4m0LNoY)lz zR^@mBn-;)Yl=6nx_H_T8rE_(uFtKrW;fRETCNCo6LHgk~&e4W(t)VaxoEYduu=4F1 zP)5M+bekE~w1EK6 zHz-7qO93zi!Uo(F(9I`6!{r+|m*`X)RMwqhPKN2%acn)+U2PW8t&;S;x#*SE|M-4YQ#VqZ(5%h6-gz7E-C@5SEd{^t!{bl_5}ZV~)HMoB5+}nysB+1RGgt z8#DkaFVS=&sSj0J#>OoNo6lp%4~;|PGS4^YktB#F4UM$V&aPCZp(F4d8M zMpuzvHtgKn(;Z6Vvcd@=p)^KR{k_qg?FJ{zwtVWU2%Xnr6}@4P8Lu!@j4m06Q^+W$ zAr{b9nYOsh82v`fWYbmE$YaVsP{vcsIs(}ge-Z$UYl;cV7#r?z6+X^KdA1_e1`~Bg z%>pd5I1I)dSH2{Lv_{|5+|T-FJ4aS2%_~tgX%hbUwN&3hV=+KPL37@^5$O@ADH+<4 zV3Ma6Xn_Etwv8k;-SK=TD$g3ywY^Zhf0ThWG%ANQdO843(*v8Qb3)?D z2Q5B@Y@+^qqzW4sXE%~QM!>-K(^g0v5T*f}qxn%Oe24EUKKW6`N`DVm{?>I@TI3-v9d4Hq4y{tl!*pBemjHXc+Fx>_g470Cjo3bt+}P&CunEd6R$I}V$?$pYoSi%|jH0Zg_A@!k?`!O{eHWa( z4E)2l@{oA0^>yd3MJ*7qv4b~f7^c)=#CDgAw!O$5Wk!d>uh-; zNXKu7Of|(4WXXAG6l{1LtpP`alXhb%W0Z2?=p=)Z6)@rxV}|6r9JNC*oEVtGj71jJ z{CHyC&}O;(kXWD~(QvE``f#G+aB#PGU&QyI$kc*OPORos_ubZM(78DqTe8$AD(2%I z%=DmgUA`$pjLOD?uvs2=)kSRR&3+>(vN*|#hyw4_Uz?Y`n@$<)(twpuW|6;`HwUkr z?m@e{ox0)6FZ4*Vx^r0Ut4R4LfxP36tlMLC(e~wO*`6BWug%nRH^Ec=6--#eNG7@@ zvXE9n5*KgU5n~(WXGz!U`I<^fgm2o!Oea>L$9E}PDiptMM(1#3#TqCE*}qB0 z;m)_4EEbP2s|jGOY=96hyvSScVxnm4!9{gLOI!@VQFa@|@P2EM1kbLf5gg9t74_lX z-grj`XD<=*U)aEm=#?BqMjaJ`g{MG9>tYK>~_iO3|GI zm7eIw+#47!f0E~+&OFD;E&-SUfy;->YeqjH+Rbj%7m(U(7Vv|L)0Pv5s^IY63@Z>< zm`K$$Big0KpFNPdpS@l5yvvg=VMX=vTOf1I;)8+C&J1j zV}g^XXEVm2S@*MS_`UUr>1(x3k_ZAzuRE3Y`k1I61o?E5PoW{bAe?wYDw&?G-6-2J zG!G#V;|pou4UEwv{TdhSzpxs@bWJ=kaR3Jw(|;w#TiQGS5u5Yx`xcv{v@RV(7J%V> zAem;fV@b|j?#<-q^xu{0<{9NyCaGBcW3c1UkWZdd(xgXC*oH(2BID@Mpn2&Jr=PiH zVfOS~#nKAs>3BQ#Q8E)o-^R||+B8d@s+`9t;aHod@ks@=)s6w2oakeJ-@FC#n7p@Z z{aS2$H7B`u6Ogm>me(9@Hi%maJ(yI#{Y& zF>4(hB5G<>+%|IHihsO;!VJ-{yO@RdlH}MagJNrhm2Ok2#H~yklF)^UY{I5lm;Dw?tU z>qS?>YU{!2S=wn;G4)N96&NH_07F!LNVL;lA7*ch3UJzNTB+uK)ia(Mz$63O2*Sd+ z68Cog#`I?U@DSRq$lLYU1M12!3x|f>58anMoR(LKdcy#S%f$CqJg)VS^rf;IPKI+M zEkT$_tH!Rj+mD;}W5@Pg$KmnQ53}DuUA};q@ar%r+6?lj36`FD4ZZ78-e34LwLO`C zIS$Y^QOa3UxH`}}4WD*xYr-yiTyWsR4bRzY2-PY-Uk5s`S51jLujK{EV5=TV9u^7} zl^gs8(uDy?2g9Y+;qO-m-D@j_bdw9=6K8`sSQ$9fGd!w)FectqnfX<#mlUBU#ZsRX zN`Y;D9*q%_e|Q>LbL&eRN7k}q%gsV*L!7Ix1+oJFR5^MP{OKw`t_M-(Y{-WwLvk5R z!l#c6`#VL0k6kzwy}QOqGHE7I&3PDzYCK3XG(8L06biOqi}^6kK_*bA97cOa`gS4I zf-V^BOsV{{uB<|OESpW26y@x298t4c; zeN2>z@VtgL5&iG%E2Se+u6}w{iVB-I$MOelrK_$D2iqC}-7VM0vrFVCz-Zt9g_J_N zghd7L0-H!c(E=MjEKCrsa=E5Y8tJs-d&6SjNjv2GfWLYt3PDgH+glnoFK6jETGRS! zFxyY@BvnTA_>Lmk-(yL| z#Gj;Pur?|4d_JNL+8SSi}bCnr-4hO`2C zNYh;NkJ@?p&z%A*?R2+$QcLcJIabSc-yTbCP&tj-H|^PGFhSMSw;iE{RA@_WCOQl= z!3FGG!3E5~jAct2H;Sy<5NSXSd*d#Bm6H#=Oh094cZe?nvBrezXBcFiRxD7$l)54K zuRLl_UC>BXy~w79@DX5Cc4jGHee8a7W}%Q-u(~SZ9^^x<5jI89$FVKCgl$EeH(lEv>;tLBbjEi{@R4K zf;sky`d4GPRuY3$iZA!a4X`DrSY8p38WxDYxIO=T9_nY0s9&I4YW+`-$n{N+_`6k} zbiwB(RQ6EnTEY^Bep3A5JZ3RzTh46~1$I+w9u3t>SZ!-$BN7KYizNdZl*&=^hGKtubhY|mTHI2-3_A~6 z2g?3dB!D?eiEE#b$5$Zk%I>8#Tmm%m0OdQ=obs0*UIQo~QL;co8Nr+&wuWv%ZOoT7 zQpKmQiZ)=kR%sFTF(`DFj~>HV>|ysuAM>Ku(W;ty26{$PqL9*HJ{%U+b|W<<7ya1- z8*>EsJJny*mc$osxIr)P0SAtM8CQci?Fasl`4CiH&F~hyHbA(xw;& z;yK&hh#Y}2XtpBJ-TAP+sdHjuX_km;Gop-s@Ba+JtNb7QVLQ{HB|M6;Z&`it&PRFmoj4!-(cP?aQf0W~S3 z0Atg`(+Q`|vcQ(jhfUYKzUxKRIsd$`L@{j?^<-bOSM2@#4O;3cF=UB$7_=wZVJDba zbHH$-Wr!+3md-B=tSvgCk`$3C*Ccc(%aYOX3i?X6Paz+1B*lb2sBN?~tF@{dqdhXl#BL;teu)|=a7v-s_ z(fyjk8Mx-oL-`yk(1O{R(!IK0`iBlg0RX+MIH(WE;0q)Hyq%lY$@IAuXlZwti%$ms z+eFEYW!~3aRxC~vH22C^mfMoTXu9W?e5`QQ{b?*PM�-UJ!S##kWa8EG&jN2yhD& z-b+bhkI+#gPM=KF$SLhSI+tl!b;%U8U1>dju>In)G_n)%1 zh~jtmomq9JEiWnfU&W5|r!+K?iqRvcyJ(0^g8&f0upX3jV#@zNd5xm{ZtF6$asIbd z@`%=k^9Bd9-?PT8QdWiGX2hfkciM()76+ExMkX6l4D^^Sl@dt>`RDsJ7_r?%Bi+c< z;YhxtRt}#JCd3NcYr^bdI&0^`XE!HL-yw%l%qrW_?|qs%-nm8OZvZHf(t&c4#U|@a zR-0Q(y=ofZO0in3-SvpR?*3+fx4~DW=i^VksyE4&$t*+uZCz8RmKki6I4{-ETY0Xw zjJd?^>S~9Xb%g$I=pt~qY=^IRvS)O(egO-`6Ku%9Yx^&Y*G8|Y=~zaudE`yxWlp`| zUpk8x_rv)|(iy?6E}D@X$XB5?NCEYYm{L%gZ%7f^<4rvG} zobWOLi}C-$`w0@gy|2w5j8}Xv@s;oEl{o|hfaRNaaYVsgk;X7c8WwZuc=XCgJJEd z6S6821g-+K^vooS)%$cA8BygH9#%q!dKI>Mhezf~5spT!NN^V)Q<6R8*0xf`kb@B5 zSK!yMnHRL_Y#c%W6{CinO29+{hxFThwBzBTH`rSR{+C)&IhGwW?p}|$B!EG2NND_T zbeW`3@wkB-X1ExcqVD1@U+&ufQ(=;qb>t-D|vZQwVru=^2%ETAC32VudpyxG?1j zD8vloIrb}`^0+shs4$CQad<==YUAU@kLLxa5V}-ySY!UMgt;_XvTiwb3y_heX{6)^ zSr|{wsHg$-&;k{;4_Anuh#S&d9gCK)3od@;-^4^#;w0kG;#9iHQ1x+2&es0`oi~o; zGCvq$NJf=dR+WXHZq;}0nRyFS24F~$b_(K_S=RTr2+lp}<3S71{_;at0Tai}ra&VJ zArk}Y_-say=ajfH{kPh3$2Bt?eKL+e<;d6$FGIZgSZC9i z!Nsv)EbYL}5HN&gh+-p6n^RZ>pQI)csLE35*x)#@5vyt-u^f9^pdlCjGf`_*ukA3^ zmDR(L7~vS~<;br=6qWimcP;nQ-h$ntK=FCu|4v1U|-r;HL)Evj(fBnP9wuN=*y1a_7Qd zS&lyjpfPBSBCquA!9oUi(QXPY(>6*Yg?BV?)ov3}Lp$0Tvhq_#>B;nG{*(j&W6481RY|GcQtdMflY!Ho(ISwVjql3P#Ct4+mi(L zFC*3}8Y%;nc~0YQb+;5T!0;cFF|}6N;W@`471))N6?1<;(L89&p5W?+**f$@q3h* zrA}9^9n;6VGX(cP5C?1m-A1&C>&hHHXN*6`Mo{Q@9fG{n6fBc7K0h0i* z{kMT$kETrgcl7@T^V{8}=WeMt z2?VKOhu-<3h&kZ`eE+>(mAx9Y{c@-+^6fO|(iwKbHshlA+L^|x;)J`by}E!s;%(1n z+|`)x-*(fsS<<7o>b9|xRK>ZEd zZQtt1V2Ypuz$B9w5qHN|s?<<~Y#@O5sVtjZo2&U+AFNr7SvZ)|b3ZaYXWiWb^Rjv# zR$2I4FP`&i`F%66q;B8a5W^4NuDau2UHsqRQsX~(qdf2}*3Gw5-5_db?E*ybZh0pd$?Bq>S-IaMNZp9^}jqd&wG9#&*^BA@Ww{}s+t>Rol<~l%kcfY`9-Hs&)n)a+um6G_^AooADV3qk5u z0nw2#{{0GZ9P>K7mXzIlJVM`s2$sQODmDuc;2vqpVB%qRPSs$q=^`dxI^SlcD8YrtT%RxZ zd&Z5-b>x@2`*1RM@Kcy4gy$)DoqS@C!Qpa?{9W_Ycy(_CM7&$Ek!_IK9%f}>UEdpJ zLoGmI>dycO0hwGKvjJ*hJ_=h`3WHFPtD-&)q%IBW7PzsL`Hb}Hh=L~blF_0t!1&;3 z=H?fIVy#d?pu5Ih$6S~xqzN4z)13HnTqZ31z)vOdKd&1#LPCgih zNNU0XIW-WmUtN;YGa+J9YL5#ZfC_T*bA3VDxN6TXrtz7)V?C9Ft$TEw&(k0}Niv|z z(z=AHCCMT>Hr;tYV7pn7Ar@ViI%bDjn^5;NTg)q?bmT6y2Upp;mryh3uiS4wOX7fy z4EF190!C;>O30_!hO!!sVif*oa3zqfNh}iNA=#y z5AkMB*x%_E2ltnfZqhZ=j$au7I`%yjn z8D3QqI&9Jj-LRqQC7s^~33@WyeVA$g@C>usY3bY!i|F1FU%kR8DO*0t|5y+a0b-P)t+{VKR zCP)aw%FM#d&dSEjl^&uFM)toh>(#-AzZt|0lwertF&f|d3A2$2D=Q}x7n_NRkqM{K zFB29nP7@;zb0#hm6JukuU;Mmg#%8AGoF;56rkotiCMIUATx{P@Fq^Wl8Zk4mF|qRN z{qJsij)^e{D24dwbrHNQJbVlnv9chvC`-VaZy)l0ccbL~I Date: Mon, 13 May 2019 14:55:49 +0200 Subject: [PATCH 013/403] Restructured the code to a package instead of a module. The code is now split over multiple files instead of one monolithic file, making it easier to find to manage the project. Typical use will now only import a few classes and functions that are found in the interface package. This includes the instrument class, plotting and a few utility functions. The data package contains the types for handling McStas data. The remaining code is in the helper package. examples have been moved to an example folder. --- examples/McStasScript_demo.ipynb | 495 ++++++++++++ examples/manual_code.ipynb | 441 +++++++++++ examples/random_demonstration.py | 100 +++ mcstasscript/__init__.py | 0 mcstasscript/data/__init__.py | 0 mcstasscript/data/data.py | 341 +++++++++ mcstasscript/helper/__init__.py | 0 mcstasscript/helper/component_reader.py | 361 +++++++++ mcstasscript/helper/formatting.py | 14 + mcstasscript/helper/managed_mcrun.py | 222 ++++++ mcstasscript/helper/mcstas_objects.py | 733 ++++++++++++++++++ mcstasscript/interface/__init__.py | 0 mcstasscript/interface/functions.py | 63 ++ mcstasscript/interface/instr.py | 980 ++++++++++++++++++++++++ mcstasscript/interface/plotter.py | 308 ++++++++ 15 files changed, 4058 insertions(+) create mode 100644 examples/McStasScript_demo.ipynb create mode 100644 examples/manual_code.ipynb create mode 100644 examples/random_demonstration.py create mode 100644 mcstasscript/__init__.py create mode 100644 mcstasscript/data/__init__.py create mode 100644 mcstasscript/data/data.py create mode 100644 mcstasscript/helper/__init__.py create mode 100644 mcstasscript/helper/component_reader.py create mode 100644 mcstasscript/helper/formatting.py create mode 100644 mcstasscript/helper/managed_mcrun.py create mode 100644 mcstasscript/helper/mcstas_objects.py create mode 100644 mcstasscript/interface/__init__.py create mode 100644 mcstasscript/interface/functions.py create mode 100644 mcstasscript/interface/instr.py create mode 100644 mcstasscript/interface/plotter.py diff --git a/examples/McStasScript_demo.ipynb b/examples/McStasScript_demo.ipynb new file mode 100644 index 00000000..8a04b384 --- /dev/null +++ b/examples/McStasScript_demo.ipynb @@ -0,0 +1,495 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Demonstration of McStasScript\n", + "This file demonstrates how McStasScript can be used to run McStas from a python environment in a userfreindly manner." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.append('/Users/madsbertelsen/PaNOSC/McStasScript') # Path to McStasScript pythoon file\n", + "\n", + "from mcstasscript.interface import instr, plotter, functions\n", + "\n", + "# Creating the instance of the class, insert path to mcrun and to mcstas root directory\n", + "instr = instr.McStas_instr(\"jupyter_demo\",\n", + " mcrun_path= \"/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin\",\n", + " mcstas_path = \"/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here are the availalbe component categories:\n", + " sources\n", + " optics\n", + " samples\n", + " monitors\n", + " misc\n", + " contrib\n", + " union\n", + " obsolete\n", + "Call show_components(category_name) to display\n" + ] + } + ], + "source": [ + "instr.show_components() # Shows available McStas component categories in current installation" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here are all components in the sources category.\n", + " Adapt_check Monitor_Optimizer Source_div Virtual_output\n", + " ESS_butterfly Source_Maxwell_3 Source_gen \n", + " ESS_moderator Source_Optimizer Source_simple \n", + " Moderator Source_adapt Virtual_input \n" + ] + } + ], + "source": [ + "instr.show_components(\"sources\") # Display all McStas source components " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Source_simple _________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[1mradius\u001b[0m = \u001b[1m\u001b[94m0.1\u001b[0m\u001b[0m [m] // Radius of circle in (x,y,0) plane where neutrons are generated.\n", + "\u001b[1myheight\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Height of rectangle in (x,y,0) plane where neutrons are generated.\n", + "\u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Width of rectangle in (x,y,0) plane where neutrons are generated.\n", + "\u001b[1mdist\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Distance to target along z axis.\n", + "\u001b[1mfocus_xw\u001b[0m = \u001b[1m\u001b[94m.045\u001b[0m\u001b[0m [m] // Width of target\n", + "\u001b[1mfocus_yh\u001b[0m = \u001b[1m\u001b[94m.12\u001b[0m\u001b[0m [m] // Height of target\n", + "\u001b[1mE0\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [meV] // Mean energy of neutrons.\n", + "\u001b[1mdE\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [meV] // Energy half spread of neutrons (flat or gaussian sigma).\n", + "\u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [AA] // Mean wavelength of neutrons.\n", + "\u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [AA] // Wavelength half spread of neutrons.\n", + "\u001b[1mflux\u001b[0m = \u001b[1m\u001b[94m1\u001b[0m\u001b[0m [1/(s*cm**2*st*energy unit)] // flux per energy unit, Angs or meV if flux=0, the source emits 1 in 4*PI whole space.\n", + "\u001b[1mgauss\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [1] // Gaussian (1) or Flat (0) energy/wavelength distribution\n", + "\u001b[1mtarget_index\u001b[0m = \u001b[1m\u001b[94m+1\u001b[0m\u001b[0m [1] // relative index of component to focus at, e.g. next is +1 this is used to compute 'dist' automatically.\n", + "-------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "instr.component_help(\"Source_simple\") # Displays help on the Source_simple component" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "source = instr.add_component(\"Source\",\"Source_simple\") # Adds an instance of Source_simple called Source to instrument" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# Lets add a parameter to the instrument to control the wavelength of the source\n", + "instr.add_parameter(\"double\",\"wavelength\",value=3,comment=\"Wavelength emmited from source\")\n", + "source.xwidth = 0.06; source.yheight = 0.08;\n", + "source.dist = 2; source.focus_xw = 0.05; source.focus_yh = 0.05\n", + "source.lambda0 = \"wavelength\"; source.dlambda = 0.1" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT Source = Source_simple\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.08\u001b[0m\u001b[0m [m]\n", + " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.06\u001b[0m\u001b[0m [m]\n", + " \u001b[1mdist\u001b[0m = \u001b[1m\u001b[92m2\u001b[0m\u001b[0m [m]\n", + " \u001b[1mfocus_xw\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1mfocus_yh\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[92mwavelength\u001b[0m\u001b[0m [AA]\n", + " \u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [AA]\n", + "AT [0, 0, 0] ABSOLUTE\n", + "ROTATED [0, 0, 0] ABSOLUTE\n" + ] + } + ], + "source": [ + "source.print_long() # Verify that the information is correct" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "guide = instr.add_component(\"Guide\", \"Guide_gravity\", AT=[0,0,2], RELATIVE=\"Source\")\n", + "guide.set_comment=\"Beam extraction and first guide piece\"" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Guide_gravity _________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[4m\u001b[1mw1\u001b[0m\u001b[0m [m] // Width at the guide entry\n", + "\u001b[4m\u001b[1mh1\u001b[0m\u001b[0m [m] // Height at the guide entry\n", + "\u001b[1mw2\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Width at the guide exit. If 0, use w1.\n", + "\u001b[1mh2\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Height at the guide exit. If 0, use h1.\n", + "\u001b[4m\u001b[1ml\u001b[0m\u001b[0m [m] // length of guide\n", + "\u001b[1mR0\u001b[0m = \u001b[1m\u001b[94m0.995\u001b[0m\u001b[0m [1] // Low-angle reflectivity\n", + "\u001b[1mQc\u001b[0m = \u001b[1m\u001b[94m0.0218\u001b[0m\u001b[0m [AA-1] // Critical scattering vector\n", + "\u001b[1malpha\u001b[0m = \u001b[1m\u001b[94m4.38\u001b[0m\u001b[0m [AA] // Slope of reflectivity\n", + "\u001b[1mm\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // m-value of material. Zero means completely absorbing. m=0.65 glass/SiO2 Si Ni Ni58 supermirror Be Diamond m= 0.65 0.47 1 1.18 2-6 1.01 1.12 for glass/SiO2, m=1 for Ni, 1.2 for Ni58, m=2-6 for supermirror. m=0.47 for Si\n", + "\u001b[1mW\u001b[0m = \u001b[1m\u001b[94m0.003\u001b[0m\u001b[0m [AA-1] // Width of supermirror cut-off\n", + "\u001b[1mnslit\u001b[0m = \u001b[1m\u001b[94m1\u001b[0m\u001b[0m [1] // Number of vertical channels in the guide (>= 1) (nslit-1 vertical dividing walls).\n", + "\u001b[1md\u001b[0m = \u001b[1m\u001b[94m0.0005\u001b[0m\u001b[0m [m] // Thickness of subdividing walls\n", + "\u001b[1mmleft\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // m-value of material for left. vert. mirror\n", + "\u001b[1mmright\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // m-value of material for right. vert. mirror\n", + "\u001b[1mmtop\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // m-value of material for top. horz. mirror\n", + "\u001b[1mmbottom\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // m-value of material for bottom. horz. mirror\n", + "\u001b[1mnhslit\u001b[0m = \u001b[1m\u001b[94m1\u001b[0m\u001b[0m [1] // Number of horizontal channels in the guide (>= 1). (nhslit-1 horizontal dividing walls). this enables to have nslit*nhslit rectangular channels\n", + "\u001b[1mG\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m/s2] // Gravitation norm. 0 value disables G effects.\n", + "\u001b[1maleft\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // alpha-value of left vert. mirror\n", + "\u001b[1maright\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // alpha-value of right vert. mirror\n", + "\u001b[1matop\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // alpha-value of top horz. mirror\n", + "\u001b[1mabottom\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // alpha-value of left horz. mirror\n", + "\u001b[1mwavy\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // Global guide waviness\n", + "\u001b[1mwavy_z\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // Partial waviness along propagation axis\n", + "\u001b[1mwavy_tb\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // Partial waviness in transverse direction for top/bottom mirrors\n", + "\u001b[1mwavy_lr\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // Partial waviness in transverse direction for left/right mirrors\n", + "\u001b[1mchamfers\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Global chamfers specifications (in/out/mirror sides).\n", + "\u001b[1mchamfers_z\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Input and output chamfers\n", + "\u001b[1mchamfers_lr\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Chamfers on left/right mirror sides\n", + "\u001b[1mchamfers_tb\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Chamfers on top/bottom mirror sides\n", + "\u001b[1mnelements\u001b[0m = \u001b[1m\u001b[94m1\u001b[0m\u001b[0m [1] // Number of sections in the guide (length l/nelements).\n", + "\u001b[1mnu\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [Hz] // Rotation frequency (round/s) for Fermi Chopper approximation\n", + "\u001b[1mphase\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // Phase shift for the Fermi Chopper approximation\n", + "\u001b[1mreflect\u001b[0m = \u001b[1m\u001b[94m\"NULL\"\u001b[0m\u001b[0m [str] // Reflectivity file name. Format \n", + "-------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "guide.show_parameters() # Lets view the parameters available in our guide component" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "guide.set_parameters({\"w1\" : 0.05, \"w2\" : 0.05, \"h1\" : 0.05, \"h2\" : 0.05, \"l\" : 8, \"m\" : 3.5, \"G\" : -9.2})" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT Guide = Guide_gravity\n", + " \u001b[1mw1\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1mh1\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1mw2\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1mh2\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1ml\u001b[0m = \u001b[1m\u001b[92m8\u001b[0m\u001b[0m [m]\n", + " \u001b[1mm\u001b[0m = \u001b[1m\u001b[92m3.5\u001b[0m\u001b[0m [1]\n", + " \u001b[1mG\u001b[0m = \u001b[1m\u001b[92m-9.2\u001b[0m\u001b[0m [m/s2]\n", + "AT [0, 0, 2] RELATIVE Source\n", + "ROTATED [0, 0, 0] RELATIVE Source\n" + ] + } + ], + "source": [ + "guide.print_long() # Verify the information on this component is correct" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "sample = instr.add_component(\"sample\", \"PowderN\", AT=[0,0,9], RELATIVE=\"Guide\") # Add a sample" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "sample.radius = 0.015; sample.yheight = 0.05; sample.reflections = \"\\\"Cu.laz\\\"\" # A small copper cylinder" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here are all components in the monitors category.\n", + " Brilliance_monitor Monitor PSD_monitor_psf_eff TOF2E_monitor\n", + " DivLambda_monitor Monitor_4PI PSDcyl_monitor TOF2Q_cylPSD_monitor\n", + " DivPos_monitor Monitor_Sqw PSDlin_diff_monitor TOFLambda_monitor\n", + " Divergence_monitor Monitor_nD PSDlin_monitor TOF_PSD_monitor_rad\n", + " EPSD_monitor PSD_TOF_monitor PolLambda_monitor TOF_cylPSD_monitor\n", + " E_monitor PSD_monitor Pol_monitor TOF_monitor\n", + " Hdiv_monitor PSD_monitor_4PI PreMonitor_nD TOFlog_monitor\n", + " L_monitor PSD_monitor_TOF Res_monitor \n", + " MeanPolLambda_monitor PSD_monitor_psf Sqq_w_monitor \n" + ] + } + ], + "source": [ + "instr.show_components(\"monitors\") # Monitors are needed to record information" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "sphere = instr.add_component(\"PSD_4PI\", \"PSD_monitor_4PI\", RELATIVE=\"sample\") # Add 4PI sphere detector" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT PSD_4PI = PSD_monitor_4PI\n", + " \u001b[1mnx\u001b[0m = \u001b[1m\u001b[92m300\u001b[0m\u001b[0m [1]\n", + " \u001b[1mny\u001b[0m = \u001b[1m\u001b[92m300\u001b[0m\u001b[0m [1]\n", + " \u001b[1mfilename\u001b[0m = \u001b[1m\u001b[92m\"PSD_4PI.dat\"\u001b[0m\u001b[0m [string]\n", + " \u001b[1mradius\u001b[0m = \u001b[1m\u001b[92m1\u001b[0m\u001b[0m [m]\n", + " \u001b[1mrestore_neutron\u001b[0m = \u001b[1m\u001b[92m1\u001b[0m\u001b[0m [1]\n", + "AT [0, 0, 0] RELATIVE sample\n", + "ROTATED [0, 0, 0] RELATIVE sample\n" + ] + } + ], + "source": [ + "sphere.nx = 300; sphere.ny = 300; sphere.filename = \"\\\"PSD_4PI.dat\\\"\"; sphere.radius = 1; sphere.restore_neutron = 1;\n", + "sphere.print_long() # Verify that monitors have filenames that are strings when printed, double quotes needed" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "PSD = instr.add_component(\"PSD\", \"PSD_monitor\", AT=[0,0,1], RELATIVE=\"sample\") # Add position sensitive detector\n", + "PSD.xwidth = 0.1; PSD.yheight = 0.1; PSD.nx = 200; PSD.ny = 200; PSD.filename = \"\\\"PSD.dat\\\"\"; PSD.restore_neutron = 1" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "L_mon = instr.add_component(\"L_mon\", \"L_monitor\", RELATIVE=\"PSD\")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "L_mon.Lmin = \"wavelength - 0.3\"; L_mon.Lmax = \"wavelength + 0.3\"; L_mon.nL = 150\n", + "L_mon.xwidth = 0.1; L_mon.yheight = 0.1\n", + "L_mon.filename = \"\\\"L_mon.dat\\\"\"; L_mon.restore_neutron = 1\n", + "L_mon.comment = \"Wavelength monitor for narrow range\"" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "// Wavelength monitor for narrow range\n", + "COMPONENT L_mon = L_monitor\n", + " \u001b[1mnL\u001b[0m = \u001b[1m\u001b[92m150\u001b[0m\u001b[0m [1]\n", + " \u001b[1mfilename\u001b[0m = \u001b[1m\u001b[92m\"L_mon.dat\"\u001b[0m\u001b[0m [string]\n", + " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m]\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m]\n", + " \u001b[1mLmin\u001b[0m = \u001b[1m\u001b[92mwavelength - 0.3\u001b[0m\u001b[0m [AA]\n", + " \u001b[1mLmax\u001b[0m = \u001b[1m\u001b[92mwavelength + 0.3\u001b[0m\u001b[0m [AA]\n", + " \u001b[1mrestore_neutron\u001b[0m = \u001b[1m\u001b[92m1\u001b[0m\u001b[0m [1]\n", + "AT [0, 0, 0] RELATIVE PSD\n", + "ROTATED [0, 0, 0] RELATIVE PSD\n" + ] + } + ], + "source": [ + "L_mon.print_long()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Source Source_simple AT [0, 0, 0] ABSOLUTE ROTATED [0, 0, 0] ABSOLUTE\n", + "Guide Guide_gravity AT [0, 0, 2] RELATIVE Source ROTATED [0, 0, 0] RELATIVE Source\n", + "sample PowderN AT [0, 0, 9] RELATIVE Guide ROTATED [0, 0, 0] RELATIVE Guide\n", + "PSD_4PI PSD_monitor_4PI AT [0, 0, 0] RELATIVE sample ROTATED [0, 0, 0] RELATIVE sample\n", + "PSD PSD_monitor AT [0, 0, 1] RELATIVE sample ROTATED [0, 0, 0] RELATIVE sample\n", + "L_mon L_monitor AT [0, 0, 0] RELATIVE PSD ROTATED [0, 0, 0] RELATIVE PSD\n" + ] + } + ], + "source": [ + "instr.print_components() # Lets get an overview of the instrument so far" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Running the McStas instrument\n", + "Now we have assembled an instrument and it is time to perform a simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "# If the folder already exsits, a new simulation is not performed but the old one is read\n", + "data = instr.run_full_instrument(foldername=\"jupyter_demo\",\n", + " parameters={\"wavelength\" : 1.0},\n", + " mpi=4,\n", + " ncount=2E7)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The returned data object is a list of McStasData objects, each containing the results from a monitor.\n", + "These data objects also contain preferences for how they should be plotted if this is done automatically." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "number of elements in data list = 3\n", + "Plotting data with name PSD_4PI\n", + "Plotting data with name PSD\n", + "Plotting data with name L_mon\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAG5CAYAAABIoz+EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvX+UVtd53/vZwMAwaGAMGs9ogDDGEBAFI1FkJFkukiNbkiMrdq4T24lzYyeuk67rpO296W3a+DZO4qbpj3vbdDkrjpM4ievEbqIVO45iy7EaSbEsWQUjyVAMAeMhoNFgxGhgBIwYMfv+8Txfnv2+zA9GjH4Y9netd73vOWef/euc95znu59fKedMRUVFRUVFRUVFRUXF5YJZL3cHKioqKioqKioqKioqXkpUElRRUVFRUVFRUVFRcVmhkqCKioqKioqKioqKissKlQRVVFRUVFRUVFRUVFxWqCSooqKioqKioqKiouKyQiVBFRUVFRUVFRUVFRWXFSoJqqj4HkJK6V+nlH7v5e5HRUVFRcVLj/oOqKiYOVQSVPGKQEppdUppJKX06WLf+1JKZ1NKz6aUTqSUHk8p3enHbk4pHZ6kvr6U0mk/90hK6Q9SSlf4sX+QUvrrlNIzKaWhlNI3UkpvLeod8/OeTSkdTin9aUrpuhd7Di4EOedfzzl/ACCl1JtSyimlOS93vyoqKipeSajvgIqKiqlQSVDFKwW/BWwbZ/8jOecrgA7g94E/TSktvsA63+bnbgKuAz7s+/8S+ArQBbwa+HngRHFev5/XDlwP7AG+mlL6gekN6ZWN+uKsqKi4xFHfAZOgvgMqLndUElTxsiOl9G5gCPgfE5XJOY8BnwTmAyunU3/O+UngS8D6lNKVwGuA3805n/HP13LOD41zXs45H845/xvg94B/P0H/tRr3/pTSIV9d/NmU0nUppW/6SuPHivKzUkofTikdTCl9N6X0qZTSoqa6fjKl9PcppadTSr9UnPuRQlv2t/495CuWN1xg3T+dUvp74G+mM48VFRUV34uo74D6DqioGA+VBFW8rEgpLQR+Ffi/pig3B/gA8Cywb5ptLAfeCjwGHAP2A59OKb09pdR1gdX8ObAppbRgkjJbgNXAu4D/AvwScCvwD4AfTSlt9XLv888tGKG7AvhYU103AWuAHwD+TUrp6nHa+0f+3ZFzviLn/MgF1r0VuBq4bZKxVFRUVFwSqO+A+g6oqBgPlQRVvNz4NeD3c86HJjh+fUppCBgA3gO8I+d8/ALr/ryf+xDwIPDrOeeMvRz6gP8XeCql9LcppdVT1NUPJMwsb8Kx5JxHcs5/DZwEPpNz/q6vQn4VuNbL/Tjw/+WcD+ScnwX+FfDuJtOEX8k5n845PwE8AWy8wDFfSN0fyTmfzDmfvsA6KyoqKr4XUd8B9R1QUTEhqj1oxcuGlNI12CrZtZMU+3rO+aYX2MTbc873Ne/MOR8GPuR9WA58AvgUcMMkdS0FMma2NxGOFL9Pj7N9hf/uAQ4Wxw5i/8VyRXKg+H2qOHcqXEjdExHOioqKiksJ9R1Q3wEVFROiaoIqXk7cDPQCf59SGgB+AfjfUko7XqoOuAbqt4D1UxR9B7Aj53xyBprtB1YU298HPE/jC/NCkF9g3eOdV1FRUXHZob4DKiouX1QSVPFy4hPAa4Fr/PNx4K94Ee2UU0qvSin9SkpplTuQXgn8FPD1ccqmlNLSlNIvY/5I/3qGuvEZ4J+nlF6TLGTrrwP/Pef8/DTrOQqM0RgoYqbqrqioqLjkUN8BFRUVQjWHq3jZkHM+han5AUgpPQuM5JyPvojNnsG0T/cBV2KBFu4Hfq4o0+N9ScBx4GHg5pzzeS/JF4hPYiYLfwu0Al9uav+CkHM+lVL6t8DXUkotwO0zVXdFRUXFJYr6DqioqAAgmY9gRUVFRUVFRUVFRUXF5YFqDldRUVFRUVFRUVFRcVmhkqCKioqKioqKioqKissKlQRVVFRUVFRUVFRUVFxWqCSooqKioqKioqKiouKyQo0ONw2klHJljRXCtf/wH/LYN77xcnfjRcVkY7wcxj8djMHTOefOi6nj9ttvz08//fSEx7/xjW98Oed8+8W0UfHSIKW2DB0vdzcqKipekXjqot4Xq1LKp6Yo8xTU98UUqCRoGpgFzJ/B+p7NmStSmsEaX3mYhSUx+F7EVNdnzze+MaP3wysRk41Rxy6H+3gyLAYGgZONWdpfEJ5++ijbtz864fGUWq682DYqXip0AD/zcneioqLiFYmPXNT74hRTP10+YiHgKyZBJUEvEIuw5AEXg8tBcByPAElonEl0Mf1U21Phcrg+M4HLfZ5m+l625O4VFRUVFRXjY6YX5S9XVOuuaaLFv0WA2qd5/rIZ7MtMYfFL3N7MC40zT4BWzFA938t/sKn6flF2XxeBtpep3ckwc9d5DBiZ5FNRUVFRcblDJGiyT8XU+F6W0V4WjDZtDwMrp3H+Yf9eNM4x7WsZ59hMYCKyMxUpaSZu815g++ONeSJ0TaPsqmn2QwRnsnFctF2TYzxNWM8M1f1iYyozxqMXUMeLQVgms4N+sf470PiwbG5n5kw+M6YJmuhTUVFRUVFRMROoJGgGcGCSYxuL36XWaDxTumH/biZaMD1SMBFeqAbmcNP2cy+wnqXTKFtqdsYjTyWB2Y/dyCuxedo8Rd0iOM3jKDUbExGV6Qj1JXlcVXz3++/pCOwXSrSnSwhfLIhoTuW4KVwsWRLBH++/c4N/vxDyWf7vxoh7pGxnZolXJUEVFRUVFZOjaoLGR0rp+1JKX0gpfTKl9ItTla8kaJpoB9ZPcnwy07LhSY7BxKvJa5jc3OvFvIhl3ZOZP12Ilme3f08k8G6cYH8zYWyjUQhdhM3dAWyetk9Qz1TzVGo2+icocwoTqpvJRnPdPTSSR12//YwvSDejWbCejGiX12WycjOFCyHkk2nSxiMNp3jhGkaYnOA/4t/lNW2boB/NaP7f6R4pifZk13H6yFRzuIqKioqKyTBTJCil1JFSujultCel9K2U0g1Nx1tTSv8zpfRESul/pZR+pTh2e0ppb0pp/4UQjin68cmU0ndTSrua9k+3je8H/irn/FPAuqkKVxI0TQwDuyY5fpbGSX1ikrKdTLzC3+KfdcDeYn8zyZpHkKfJCFgzSSl9Xia7CUpiJgFwPDJ0oT5SLTRqB1YR/Z5sroT1fv4YNvYWzhcNyz6UfR3jfAF+BVNrCBZjRBT/HgTm+vY84FrOJ7D9BKlTP9VeZ7G9kvGv23iC9Zpx9kEjeVM/bhivIHYfTHaNLoSITMf/ary2Xihp6GFiTVd5f+venjVB+2D30FT9mOx/MRHRvnhk7Cky0efyQ0rp5pTSV1NKH08p3fxy96eioqLi5cYMaoJ+E7g357wWE1u+1XT8OeBNOeeNwDXA7Sml61NKs4HfAu7ARNX3pJTOIx0ppVenlNqb9o33Kv9D4PamchO2kVLakFK6p+nzauAx4N0ppb8B7p9q8JUETQOzJzkm4XopIaBPhnmY8Fqu3JeC3Kh/djcdbxaDZNI1j1gN78JWukuNValNaadxpX6M6Zn0SOiWRqckFuNpu1YUZUdpFEz3Y/2eiAyqrPq3q9j/HBaEVnOw0etRH+YBJ71/GzGyMR6BOwrc4sfUz1nYP67F+yci2uO/n/Tt57B/HJxPNJ8o+qlr04ld0xWYQL+cibUY65r6W5Jh/XE1PzK9U/8fYXwcx+ZkIoxn6jjRvTHeEkvzk214nPPbGP/BM5WZZRt2v4yH48Rc6d7uJu6FFqbWVq4i+joLaJ2g3Hik9WK0WI24+MAIE62oNZUZd3XtFbqyl4FnsUvSbJ1bUVFRUTE+rkwpbS8+HywPppQWAv8I+H2AnPOZnPNQWSYbnvVNrc9n4PXA/pzzgZzzGeCzwA+N04etwF+klFq9zX8M/NfmQjnnv+V8cWjCNnLOO3POdzZ9vgu8H/jlnPObgB+caoIqCZoGzhJCZqlJWU+sjou0LCWERE1yKSgtGaf+ZrOvHkKLsM6PTxSWuxQgj2DSwkQSkARDCdAyL2vWkkxFjKTR0djLm2kVIZgfpFH700yUFnG+GVcXRmjWeT9Hsfno8XrPAncCZ4pznvB6ejBzpVaMuI5h12UQmxONax6wwOt/CCND6udqb2cdcJeXXUn8Q3UduopxH8fIVLuPf56PdQt2v6zBNAgbvex+YBuN12FRUe8AMOS/b/VxrfRx432TQH7Yj5cC+niRCLfQqLWaTFescY0yvgnjbs4nBCIpJUkrSe9iTJQfG+dciPE3P5hmERSgNEXTPQJwrOmc0vxtlPHNKksMernF3j/dC/pfTGbG+EL95MbHRfsE/SFNK2olJlpdewWv7H0153wH8C+BX6GioqLiMkfigjRBT+ecNxefTzRVsxITff4gpfRYSun3UkoLzmsrpdkppceB7wJfyTk/iom5h4pihxnH9Tvn/GfAvcBnU0o/DvwU8KMXOMwLaqMJ9wI/n1L6ONA3VQOVBE0TEoxKTcq+ccodwITE0lxNgtIiTEArNSQUxxZjguOIn7OaEPDai3J4/eNdxGEahepmCeVaLzOP0C41mzlJ+L3QENrlP2c/YTJWQhqqHhrDjV/rfVF/W7E53OnnyLSs39s5hRGgDkywl6lYDzZXp7zeYUyI3eTHRai2YHM7hGkMtE917MPm4wngC172Lm9fWisJyx3EHD3o4zpAXO9HgQ2+f72XHyJM+TZ726eKOVzr7Ugj2OdtH8CeWLf6vBws5nQY6CXM+w4DN/ncCsM0kpIRGrVNzeaDggT/8tweGjVc64vjY9h9OUyj/kIECBqXfBb7eEVUVtOItcT9WZqiDWD/sxYvIzT7lzVramRWOQu759qKfqpf7b5fGqF52P+olYlNEy8eF68JmmBFrcREq2uvyJW9nLNumWeYSaVbRUVFxfcoZsgcbg4mHv12zvlazFDkPO18zvlszvkabG319Sml9RgPO6/oeI3knP8D9gL7beCuQrM0FS64jaKtXTnnd+acfzbn/AtTNVBJ0DQhYbd8E5erwC0EMVlWHGvDlj1nYUaVW7xsT9O5xzGpYZgQvnYTAqC0KBIWnyOEymWYILkKE1pbCBO+ZkLyWPG77H+zyVAv40tT4+XR0c0kYldqd7SvHRPm+4t9Pd6frRhBgBDWTxGaLbU7gI3xr7Hx7Sjq6idMzvA6d2Gk5iav550Yuer0No5iQnMZnW/M2xGBuAMjQ6X/Tatvt2NzdKufN4oRq1IT86SP7RRGgDQna73/OzENzxB2DR7EhH0llp3rv5dhJO9BH9M87L4a8rnZRqPm5gChnVmMLamU2rMBggTfxMRhr0WCVHYljRqRo9g8L/I+tvlctBELB9IKlSRSGKTxv7DXy7Zg87rb21tGIxFT3aXpaAvn+5c9h11vXZMDGDkew/5LpwgSjJcd8bq04HEYm8t5vJghCqaMDjepecMFYqLVtVfkyl5K6YdTSr8D/DfgYxfYTkVFRcUlixkiQYeBw67ZAbibWDM+D24q9wCm4T+MWfQLy5ggplRK6Y3Y2uPngF++sK6d698FtfFCccmToJTSmpTS48XnRErpn6WUPpJSerLY/9YLqU/+K81v7TJE72pMuBr0/T2YkHWSEK5PEqv6FOeWOMb5mhiRr5Wc70dzHBPO9mPahW7vQxchYJbkbRFBgKSVaXbwl+9Lp5dXOQmGZd9EzMYLi3zKy64jhNkF3jfd0bMJzUgZSGA9NheaxwWYOeF6Pz5KkL1VGHFbgwnL+7zvg8Rc/wX2L2/zTxd2PVr8t4jgAj9vDfAl7HqVxHWg6Pd6QiPY7sdkoiYtz0N+/AlvX9o6CeF/g/3bj2PXqY24xiew++q4j/05H/dSTPjv9Xl8zufqOsKnSIS1GyNAIgTlGNd7/9b7+G/y49fSqPU45f064H1qxmH/6B4oA0C0+ZhFwkSu52H3w0Pe9iLvx01+3n1N9XcVY2pp+i7J2SwsQMRm/30UmyeNY6woB+ZBeav/HiJM6JoDZxz29l6cpK1TRocbxXjzr0xg3nAhmGh17ZW6svfnOeefyTm/K+f8wAW2U1FRUVExCXLOA8ChlJJe8z9Aoys6KaXOlFKH/56PvSb3YGuuq1NKr0kpzQXeja0V03T+tcDvYhr/9wOLU0ofvcAuXlAbF4NLngTlnPfmnK9xVd4/xOSfz/nh/6xjOecvTlXXLEwoPOCf0idDzuadhNZmBBP0+glH6y2YIHgQE0p7m9ooBc7nvLPdmNC30ffNw8jJAUzo18q4TL/AtAijmFDY6n0Q6WnDhM7Sr2W0qEPjwMssxgTIERqJmnxkSqfzyQTDsxgB6MQEyWGvTwEIdmMCZysm8MupXsSuw4+LsOwiCJW0JnMxYXqxz1kHNvdyel+GEZCHfHsUIwJLMRKzjiBUBwhtAERgBZGZ93gbi70vOn4Su66LfcyP+v7NBKl8FBPChwl/n9U+n+3ej14f1x0+X8d8nk/6eDqxJfVTGOlajvkkvRV7QokA6iMsI67XUex+2uV1HsSuucZ42NsozSlFcDRPG32OS5+yWf4pTSRHCM2e5uoGwndLZTZh98LDxf51GClah90LIuHSeMp07YD3px0ji6cwrVKvl38Iu2bthFarw+dkGUa4ZDKp/7bIrtCF3S8XmgNpephSE3Q85/zBnPNfXkQjE62uXRIrexUVFRWXOmYwOtzPAX+cUvomZqj06wAppS+mlHqAq4D7/fg2zCfonpzz88CHgC9jEeX+NOf8v8apvw34kZzzt920+ScZJ4tGSukzWEynNSmlwymln55GGy8YlzwJasIPAN/OOU+WxmRCZMxsS2YzfQQpeA4Tro5iAq2E6VVEHpt+P6eFCKUtsxqRH5mQSWOzAhN6D2IEQkRmA+F4P+ztbKTRzO0AQbgO+e9lmPB2mNCEdBMr4MII4aMjorPavyVQH8BIYbliXgqG7YQg2YYJxCsxIrCiqe4eIoDCMGGq1o4JybcQZk4rfU7WEOGi5I+yG5v7QW9vN2GGpmtwCLuGHZiAfIi4Lvd7X7d6vwe9X9d6+aM+hzdhxOEsZsrW5X1Z5G2JOC3x3w/5fI36vL7F+z/q+/X7qI/vMc73UZlLEIZW75fuP+UfGsKE9iVeTwtGpLb6tZD5ZL+PYwURWED3UhnQQ8EiFMij1Iqc8nEf8DqPFPM2VrQjsqYIburzUcLsU2aQvRj56fVxDhHEd5AIFCFo3ga9Pz3ehvp+EiOfMkFUhEWZRi7zc47SaHIqM0SNZXExtiOEVlEP0JlLmDqlT9CilNInUkpvu4hGJlpduyRW9l5MuIPwYymle17uvlRUVFy+mCkSlHN+3K0KXpdzfnvO+Rnf/9acc3/O+Zs552v9+Pqc868W534x5/z9OefX5pz/7QT1fy3nvLPYHs05/+445d6Tc74q59ySc16Wc1bEuinbuBhcbiTo3cBniu0PpZS+6aFcXzXeCSmlD8r+XnlmJJxKYJfp0EFMGH8CE5pWY0LgcUz4GiZIwgiwkBDORjEiI/OsBZiAutLrXUz4DL3D63kOE8iW+fnHvJxMilYSwvZWTOgr/X86/NOJ2deUOIsRreNE6GkJ3Sd8nLNoXMLtx1b2t3g/hglBUtqC7cCNvr8DCzbQiRGxLYT2BYKgjfp4DxIE7DmM9EgDt8vLrsNIxl6MnNzi/TiJCeKzMZLwKEG++r3uJT7nczEhVxoyCf7tPpfLMVKzE3it92U5toRxyOdqr8+hfFkgAim0Yv5MZ71vhzAfn3bMX0n3zxnsuu30dnd7P3t8vOrXep/3R/24iNper3fYz32I0Byuxu6xgwTxPurt9XmdrYRwL21IP43ayiOE9nAFRmDUJ/kGiTBIo3gTQY7bvY49xMNozOdGWlRdn93eVhmNUL5Dqn8U0+ZIy9nqc7Acu7+OE1pImSwexO7FMhiDNHLCWYy8z/N2ZC9wI0ayZi5h6sVrgsZbUfP9X0wp9Uy0unaprOy9yPinnJ9Ho6KiouIlxSxiIXuiT8XUSDlPao59ycBXHfuBf5BzPpJS6gKexqSOXwOu8gyzE6IlpbwQM4UZIJyp5VHWjglXazDhTN/joRMTCGcRvgk3YYKqfGIOYALfCkzC2Ap81cuv8PL3EULhPOB6TOi7BSMTj3gf+2gkbQOYEHyUIDIiBC0EOdrt5+8gTM8OYyRrBCMMyqUjLPaPyJ+E2tkYGenEhNNWjLSIkHT4mNdjS8PyZdrv/d7s/V3sZft9HNdghGEE06DchRGLxzBTsp1eRt7Y0j4MYNfokI+p09vb6XM9SpjwLcDI33W+b9Tblymc+voYRoIOYMRkNyaAK2hAu7c1C7jNy2mudvvxWzEyscXH1OHb3URACZmZ9WD+SjcQuYHmed17MZK9nPDJGsLI3iHifhUJUujpnQRZ/nHgj4sxQdzX6/37NkyiFRHo8bkdw7zl/5TQrMzyedb99RB2Ty338ZdJTFdixF6E5g6CLJb3fGtRZjN2nz3p8/wWjHCu8PZFKnX9Fvm562gMrNBMalSu/K2gD8s453P2jZzzZi4CmzevzNu3/9qEx1N6735MYfmXF2kSVzFNpJSWAX8E/Fvg/8w53zl5+Z4MP/OS9K2iouJ7DR+5qPfFxpSm9OFYNgPvpEsdl5Mm6A5gR875CEDO+YiH/RvDTDteP1UFY1g0r0WEkCQCpNw0EMSnmQCtJHK9aHV8HeGfIaFM4Z2PYAKxhPcHvQ/yB/ljwsRMiTcf9GP3ez0SXrVifwMmTHdjAuZmTKjs8j7dRZhsSShUmOrm5KtL/NzlNK6aKzDEeh/TEEFw1mGCvYII/BHhlzPidd2DEbVNfs4dhMAujc0p7+9SIvGsCFmZL6gf07g96O0MEZHBhnyMSwnzvFkY0TmFXVsR3aMYkRrAyIZ8UDRXCv28kbiejxBarM2YZk1mXxuw69pG+Nxs8XKfI3yipAlZignaGwmtXysRRU9+RCswn6AFGFmTOWEn4YcjsjeEkcdriZDpZwlTulU+bz0YqVjk5fb6/IksSEu0hjAz6/Q6PufjUvAFCD+dAUyrecT7uxa75qW55RK/Jpv9Wm0itKnXEtrKHuze3oHZWy3EfLbU14M+1nv8t/yB5HNUJiEu80hBIwGimB+ZvZaBIC4eL4lPUMULw38B/m/Ojx9TUVFR8ZIiAfPnTP6pmBqX0zS9h8IULqV0Vc75Kd98BxPnFj2HdiL0rhz4tTpemoVJwH6OEBS3Ek7xZXjdoWL7ACbwncAEKzlqa7VbwvRa4NMYQdqGCWUdmHC3ysvN8z4eonEF/1HM30JR2h71uo94vzW+YUJLpShuu7z9BZjwLv+jcuydmICuSHinMMF4FJtkCZtvxLRT13tfj/g8nMVMwg55vfJ92UT4QPV5HcoFM5cgh2d9TldiAvIOr3c9JshKQO8H3kSEjd7oczGMEZCHfMz7MMK40uuRz06/z+N9RI6aM4SvlaK6Lfe5mE1oy6SqVrS5UW9PxPQOQst1BNNmyMytxcfQRvgA3UTkvOnFSOspwnRtyNtf5/MxSETVO4Rdz27g60Q0OYX+lr+OIs89RoQV13i2E9Hx+gnzuEU+rzJZPOLbqm8Ddi1X+lh1f63wsQx5f4b9nO1EdLmN2HXXIkSL1z9GaHX6fP5lproP+0+0eX2txGKGQrBD+Bb1+3kKejGI3WNzvX6RI2kTTzITGGOK1KuLUkqfoGqCXlKklO4Evptz/kZK6eZJyn0Q8LDlzQkHKioqKmYGs2bB/Kmypl1wfu3LF5eFJiil1Aa8GfjzYvd/SCnt9IgXtwD/fKp6nsdWm+ULIw3NRmxVWjaYRzCtwQpMkNaK+n5MUJIf0DrCUb0LEy5nY4L0rf67ExOwlX/mOCbk3kgI7GsIArWOEFhFgOQzMhsTkmdh4ZjHMDIirZQExhVEJDs5jUsQ3EEkqJSzPZgQqqAJEkQHvI6DRE4dmXcpWWgf4SejUNcPef1P0Bh57iCRZ0baJhGTNV5eK/KP+fhHCOf5Rb5PCWkfJoJHfIEws1JY8zFCyyUTPhEpCA2FiNdhIhiB5mV3UXaE0Jw94m2twwjeVswvRr4qh4iEqSJQctgf9jpkyjjb+yCthyLpfdDr6vH2/9K/pU1ZQUTK68P8m/Z6W6MEAZEGqp0gNbof1/tnpY9lOZEjazZ2r4rkL/b+3u91fBW7n5Q76iaMqGzHrm8rtnDQQuRPGsTu/VaMAMl8cAFB4Hb7dw8R3W8XEaih1ds4SARZkCZTobflb7XLx9ZORIbUQ1P3Wh+NCxsXj6oJegXiDcBdKaU+LMHrm1JKn24ulHP+hLKzV6v8ioqKFwuzEsxvnfxTMTUuCxKUcz6Vc16Scz5e7PuJnPMGj3hxV6EVmhBjhCZgCyYEvgUTFB/DhM/FhH/IQUww3kBElOvGBKq7MI2PVtyPEALytYQTuKJpyX9G/hYPEqvlX8KERq2AryOEUAmyrX5sFhEe+CgRlvpaTPBWXhjlORogNC6K1NXr45BWQg7pnV6vwkL3eF0iEArs0O37l9IYeGAFJmRuxgTdFV7miPd7g/dnFBNiV2FkYsT7dhATrhVK+xCmJevHBNYOr7ff+7fa52DUxy3TqC8QpmMyXxvABPT1mGjTh/maHAJ+2NvVtVyHETLlATrq5TQvCt8tX5JBQiOje2m5l2/1sR31upZ6n454n/TpxIjUn3r7GzGiexumudjg41XIcJFW5eSRiZ1CYff4+A76uI8SUdeWEwEChrF75QvYvXSWuC8GsfBh+70NaSS3EMlIZfa3AiNjS7wPD2MLCQqXfsqvT5e3I1+qEb8Wu72f8pXS9RbpEflbgxGbFUU5CH8sefdvJ6LnjXh/9/pYh/xabPK5XkJEz7t4TBkdruJlQM75X3nEol4swM7f5Jzf+zJ3q6Ki4nLFLOxFPNmnYkpcFiRoJjGKCXXSPkiTIO2BzHLkJ7EK84t4lIhatsnLLPQyg9hqtvx3HiOSNe4mVrZ3Y+ZXCwl/FOUGkinXfi+3kDAl6yVMl5Sr5Rpv74z3fS8h6O0nVtI3YMLxCkw8O+x1HCRyqgwSZkaLfXwj2Ir/Xj93GNNsKAiCSJ7Mtc5gQq5iAg5aAAAgAElEQVTmd4H3W+QNTHOgsNfrMPK3ERPKpfESqWjDBNNHMQ0LXn+fj38tkZtHIadF9q7167MI02QMEBqFHkxAXktE5duG+RHh7T2CERLdD/Jj6vRzDhDaH5l4dXv/NxI5jaRZO4CpKpd7/6VhbPXzdmAk7AmCpB3w8tK0fJmIRHe/z/sCH/tqP38lkcz3uPfjnd5XXd/HfDwKCQ9GfFb5vm5MozTXj4mUrfaxKSiDtGpnCaLYRuSFArvO8h9bSUQzbCeSlSrZrvyO+gjNXT8R3GIMu5by0yuj+L3Dx6/Fg5X+reAL0vr2+Pwq0IQWFRSlZ2YwpU/QTITIrqh4kXApWNjPYfrjuBTGXVFx+aGSoGlgFiYgbiWEf4gcJhLUIByMJPhqoiVEn8EEuS7MVO0+jEC0Y4KWVtmFfUV9SpC53b/lpH/Q+6DIcHIwfxAjMj1EslQJyRIsb8SEupu8LEXdC71emXjt9TG1+O8ewm+jAyMFN2K+LSKDo5hp008Tzvw9BPGZTeTv6QIex4TXeRhBPEAER+jGNAX9mOB6iAj8IO3LOm9vpfd/mfelF7t+irgnn6xDwF9gxGedz90jGLnp8fpHMeFeAR8Gi3MVAECatvuIqHJ3Eclyj3sf92GEaZaP84wfm4sRheU0Bh046nN0kHDcX0Fo6kaJqHED2D252+tUkIgnfBybMHKi+2sUI8UyhRQBkpblJGE+JtxA+KEpnDXYvbPH+6hQ2rsJTeC3vb+P+LVRTqSFPtfdPoYx7D7ubapjNkaS5ZOnoAQymzvl5y3yMot9Lpd5/bf6R4E6wP4f3dg1F5Hq9Ho0353el12E5mqR17OORp+ii0NmCk1QNYd7mZFzfmCqyHDfexhPiG/e17zdPs6x+QSJaKeRUMwBXl1st/t2WV97cR5N52t/O5Hy+NVNZVb4vlc3bQuv9n065w1N2+2Yvr1sbwWN4yn7qONLm+pQ/8o+6NgmbBlN/W8uT3Fc56wt5k/H1xb9XFHUVW6XfWwep9qb0/RRu6/m/DmfUxwr+0jTb4rzy2PNBHNt8Xs88vlCCOllgkSE2Z3oUzEl6t01DYjI7MAEOa1eS/PxECY4yf9kkEhwuZyIgFaamJ30Y4f8/BZMAOwmzNgkrCp0chmKu8fbG8VW22cRvikPY8LqcSLP0DAm0Cppaav36xgm0CkCXivh6C0/n05COO/z7xYi8eZsIi+SkpRuwojSSiJE91Gfg3WEz8kaL3M/RiY2EMTuCd+nkNYdhBZuHyZ0L/N67yC0SZ2EieJRTAh+mBDcO4lQ5HidJ7Goe8qzBCakr/K6+ryuecXYhXYf+1LCsf4J7Nq2+Dyf9Lndhd0D6/zYo0REty2E9ktCvHIdXUtExhMRkKlYv9fRjwWckCZwhbcnsz8ld12HkbVFXrfM75SvSWHDRbBknqnEomd8zL0YcRvArmWnj7vdr4cIn/JUfQkzeZSWS8lZHyeI1QqMqCnYxSrvz26ft300igzXYUT0FkzrNdfHdCN2/x31edyG/Y8U6OAGglR90fuyy/t52K/NSm9XPkcQGkkF0ehmpiBNUEXFS41SHNA/ZA52P5akpEwl3I4RH2XW0lLZad+3uKjvSd/fnMpRgv18wrD0VNP5S7B/pM47DbyuqOM0kdZZy3iLfb+SNoA9yWT0u9+PQxCf+YQdgXDKz1GCiGVF2X1efr7vfz22rHLK65SOWu2cbmrzdFHvfBqzla32fUuBbxZ9UB1Lvcw+76/qPVb0X33VG0yxVct5WuLtlOeXaPN9msv5xX7N2xLvx2nsHtE1Hiy2dT2E096nkkCXx8rn4KuB79J4j84nllQhJCWVucSfozKHq2hASun7gI9hKXD+Luf8G5OVryRoGsgEoZGQKs3MYsw/aBcmyB3175OEgCShSX49Mp2TwLkOe1TJSf8dmMC4xbfvwQTAvZjGppPQQCzGBFppIyDIUaefL63Cet9WUtAHvS0lEh30vrQTzufq62ZM0L/Jz5UJlsyyRv3cYxgBOupjlq+Pwki3eXuKeHfAf7fQGDp6Nqa5eRyL5nYfRlak7TmIhYTu9zoGMaFZvhzSQCz3sezy8+UndJDIe1OGND9OaFHasEf1Mj9vhW+f8b7v8HbuI/yyZAo3SogLIhfyQ+kn8ifNJoIdfIkIVvGjXvfDxfwswUjMKZ/LIYzYtmHPxLcSOYG2+7lriYSrm3wuRF4VqGI58UpXQAbljer1cc/2MewmiMlRwlyzHSMe0g4t93EMEz5lIojqi0wNTxD+YSu9v6f8+IMYMVnn7S3x3xt8vr5I+Pts8HFswu6hoz5P/cQ9eRwjQ4rup8AJw4TW8yRG4g75sR1ETiFFm9vnc7MGI5cXD/kETYgaHa7iRUApMLZzvsAJQSTAhF/FO20WXssy2t6PPTFOF+eUJEfG1GUMzdf5eaq3JEkiB2WGuie9jlXFdtmnVQQR03gGgZuL7f1FnSpfEq+SbOjc/QQZ2EkjyRMZ1PZSL7+l6bgydKh91TfofdhSbAslQRTJxMvuB2Qx+62iXaEkXOV8lCjJ5DGCdA5iT/6lwANFHzQ+4XXEuGWorjq+SSPxEtSnw8Q1nwg6VpKfc2bD42DOJMe+B5GYERLkwV6UIeP58fIKpZQ6gN/DXn0Z+Kmc8yMppduB38REg9+binBM0Y9PAorCub7YP902vh/4q5zz76SUPjVVu5UETRObMDFlDBOAtQqs9ZV27L5ciAmDnyP8e4RO7BF/BCMTili2GxPQbvBynyIShN6PkYGzhID2kJdTFDaFDO6iMQTwGULrI82UVtKlPRGBkpbpUewVoJV+CbWDGFnYjf0b5Ch+lFjRV2CCA0T44zZvc4zw2TjqfR3EVtYVfUzaJOXv2Yv5mcgZfreP4wBBAhYTkciGiISfbT5X/ZjQ+wSNZEdC9Xq/DseJdbk1hE+PzOc2+3jOeP2D2PWXuZt8rNq8b9uLth6lMeeM5lQ5eoYwTdMGb2cEM9G7zudL5GmE0BJK+/QOIqz5MUJz9M8wArHH52wVdk/cSYRD7/AxKCy5othJy9mBxZbfjN2TWwjjjTsxX60Ob1M+cO/xur/s8ybboTEiYIbGcAQzk5NP2o1EyGmNe4PPpTRBu71/u7w+BbGY7d9rsWvXjt1jG4lojvoPlYFNHvE+byMWAfoI3ydFmtvo87aMxoAhEyVFnj6m1AQdzzl/cMaaq7iMUa6YNwuIWr2H88mGhFcJ5vuKMqXwf5pGzYaID9g/cFmxrX+5DL9fh721SnKwoSi/jyA7ggjQwqZ9Txa/lxLLFa8n3moA/9Pb0BjU/v8s6pNGRePp4nztxoaiTEkK1Ifbi+0W4GtFH0TuVhXbg0V9r/ffV2NPqJ1evjxHxK3Pt0WqthZ9FOHTdnl9N3gdN/v2A/67JL13+DlbivNex/mkVHOzGnurHi6Ol6RLc76P8VHei2X90CjGthdtNj9HLyECNPO4Jef89CTHfxO4N+f8zpTSXKAtpTQb+C0s8vJhYFtK6Qs5593liSmlVwOnc87Dxb5VOeeSlQP8IabB+VRRbsI2UkobgH/XVMdPYcY7v5RSehfw36YaeCVB08QI9uiQGY3yx8j8R9tHiEetElQq0tcaTNhaiwlku4hcMMN+vnK57CVMs7YR2oLV2CPtGJEcdSXh03I/9kiUSZu0EiMYYevGBLu5vn8zYd4lk6hRIsJWGSGry8cnoXyJl5XGaC4moG4nTOnmEQr4UR+HTP2krRKZaSHIyQE/Lgd4WTKPYqRG5n+jhOndGp/LTsIscRDTsEmbo1V/RcpTPiAlc+3w69KCaWP2E6aEbRgxVLhkmatt8Hal5VIgBWmPDmKERYK5fGye8DqW+HmL/XvMxyRzrBEiBPoAQXRbMOKxprhup4gIbQr7PeJjPOttKjHvvuJ6bMXu2zG/ju1EUICdhDnYCEZcD/m5Jwhfqlv8Wsr08RaMhJ3CyKau0Q4fc5sfU1jsEW9L5pIKqrCduC9W+rmbieASm7xvJ7HX/43+W/eq8iL1+nw86PVIE/kZjKwNed9ERBUEZcTruMWv40Gfl+Yn+cVBPkEVFS8lSgGx2WRN2yWZkHZA2200rtwvI0ygIGKYliv7S4vjp7FlolKohhCqX489FfQvn+/bt/r2Cd8nnTLQ3gvDO2g0f1uFPanx8Swt+iRyd7Vv9/m3yoMRLO/TnKvh+W8RxEVt9sU2C2kkf12EIbnaKM4/N8/NxErHNQaFbdkAc3rh+R3E3DzpZUrCsBPzf4Ige5p7EbtyHkSEwAjQYNNxmn6X90rZ79KscFlRTvWdLo41k7Fm8j3Hyyk7nMzrStJzuqn8JUx8EhciwV+ZUirXYj+Rc/7EtJpJaSHwj4D3AeSczwBnUko3APtzzge83GexgLC7m6rYCvyTlNJbc84jKaV/jK3bvrUslHP+25RSb9O5r5+ojZzzTmJ9tezvLwC/7PXdDfzBZOOrJGgaaMUEKOWKaSN8z5RQVGRAJnOKCqYgAoswAfc5TPCSKZv8OpYTjtjyO5B2o4UIO6xEm0owedQ/W/1b+0Rk2jHhWUlcz2KCo6Jx7cAEwlbsFdJK5KrZi62SKxiAHPcPEeTloG/fggmey4CfL/qwkBAol2CPZAV/UJ6bVkKw3+1tDBDkQiZuMp/aQxhULMdCQi/HNGSLCJM/+RztxQiTAgmIGGgVv8P7to1IUrrfj78J09opH88O7PWr9gcwgrHd29W1nut9VZJYafn6/Vo94XOiZKijGIGVJmIxpqV4C3bvSTxWUIken++tRMTAU35NFPShFOYVREKGICIVCokut13laBIhxa+V/I7afQ6UT0k+ZHuJ0Owi73u9jgOEj5ZCWEsDNoiRsXVe/iex67vdx3SSSFx6g5fp8L7o2u7xazAXu2/7fV7XAXd7X0XYRgnt2V5M29aO3Zcd2P/yLPYanu1zdMrPbffxrvJ9Is4zYw5XfYIqXgq0N20PM75vBoTAKlOm0ucEzLRpqR8/jT1lVUZLBFtoNI/T0pQE8bJ+CCJSkiTFVVX5rZwjPCwk7C1KTdCmYv8qmLOw+Hv1wquAZ3xzTm/j0K/ote+nnLC0A8OjRn4Anu/jHCG8xcvcfwKu7m2MZPRsC1zhGclGgGdaCiVcb0FifLztvdGH4SNEeJgSIgCD9lD7zqZiLq4m5glgPrzqDfBMn22+6lZ45gjnrk37G2B4MbR3FW0OFuP8ltf5NZ+nN8DzJwjzQ6Iv52kPSzPBVQSBUTzN0iSv1BI1Q1rDbzbtH89crjSPu4SJ0IWZwz09nnlbEzLw1ymlDPzOOCRpJfYK/IOU0kbgG8A/xS7uoaLcYc5fxSDn/GcppdcAn00p/RmmrXnzlD03XFAbTbgX+EhK6ceIlYwJUUnQNPAc9gxbhQlO0gDJ8X4Fpoe7gciDopX6ft+3EROy12PC38OYkN+OCV99mGC1yM85iQlh8uNYRzjGr8EEc71KOrHV7R/FnMpv8v71YnfRAKF9kqnQoB+7k8ZIWJ/DBO9TmLAoE7P13l8Jjk9irxwJmEOYEK9xj2Gvw1mEtkTjO+DlenwedH67j/kMIcy2+Vg2ev0bMRO5Qf8+5udJm6Dr8xxBSqSRO0kETmgjyM1B7+cR4McxsisyeZKIPncQI6IKrnDWt5/ASOBs4H/384axNdBR7P54xOvsJczjlMNGArncUE/5Ne4lzMT2YWT7CR9rP2GuOAT8d2x5Rf47hzDioEAIIoTyZZNPzDrv1xN+zU5iT59hjFQMYCLNjYTpmjRT8ts5QYRvP+PXt4MIVy0yuNP7qBDrivC3GstNJCItbcxRH/cG7D7VYsAB7B0wSpDAQ8DXsXtpqc9rG6GB1X15EPuvdGBP+Me9n4pWqEWC7QSRlMZSIfGVfHcxExtxTB8Zu2srKl5MlKQH/136oUAQlmE/Vur+9xFO96Xvx7FiPzRqOJq/N9CoESnbhPN8iK4GvuXnt3e5rCttxUJod3KxFntgfccPtXsbc1rsnNf4/u/g8rEf18qe+GEr5lotXAEMD3IuxbLIyhzMJni192OoOEcJ1q7x7S8BjEKnt/mUT8NO1+K006jQmNPVqDB5fhRe1WJE6toWEzjAyZzI3wl4TVeIjs93wTOjRs7AucZiuME1Q48csXaGnTi9qit4xDlI04YToDJIwmIbNztoDIRxmjAlXOX7RHqa/YFUj8j1aexeUnk9YctgF6UJIQQJu4wCI8xMBLg35Jz73WztKymlPTnnvy2Oz8FepT+Xc340pfSbwC9yPiMFe4GdvzPn/+BanN8GXptzfvYC+5YutI2irV1Ydo8LQiVB04AEzdKU6k7s8b0aE54VTnkzJnwpEtZmTBCUudsu7FUh864+7C98EyagLSK0OC1+/A6M3KwnIpwtwbQmm4koZPLvOUtE0lKy0d1YAs0+TOCdhb2mFK0MQtvwHCZ8DxEJYs9ifirrMGf0tRiBuYlw2pd5GIRm4cve/kPFnMm3aoRY4xvBHm/dmGAq34693r8xH780WJ3Y+0fhye8jXsESJeXsvgl7rGplfw0RcW47Rly0sr8UE/7l26Tw3a1ej8zRRjCBfQ2h7VmOBbHY7L9XYq9NmVGOEJqqw15uyMe/hch1o8h17dgr5qsYMZM5oRKfnvF+jxFR9FYTuX86fNwPYuRDATBkeidRRNpG3VePY/fKfi8rDZxcYjU3Y4SJ4FGvp5cgEdJEScZQMtkVGKkaIf5Tb/F5P4tFuJNZ3VuJhLWKiLiMiAK3zOtU8JE3YffndT5vGwltk6Le3UQE1JBJJT7GxYRf0m0YYR3ANE8rvHwbdo+91vuoKIMXhyk1QTUwQsUMoPnVXwqlMmuTAHqKiIAG4SRfmlPJLEmR0CT0qoz2i7S83n/32mZ7LwxLk4G7drQEgXnmBLS2cE7Lcy4IWW8M53kieVq3V91XDHEEs+zyU3gA+1PLou5xH/I1xfatREShXmCgq7HOtZgK+vqiDeWKwNvrK+q4GuhoiT4MAV8B3ujb2zHx7evF8WcJi7zWFtt3jR+7dmGsnqrfQwvjXHwuOkQ2ta/FVhMBbumy/tzt5E51S4m3/mqr/6lNcf4NC+GR00EETwPPL4arfPtZXAgoCYrIS7lfjZQESNvzm7YnqkOG5a9uOn6acdhcRRNyzv3+/d2U0uewP2dJgg4Dh3POUuPdjZGgLxKxjyC8Dc5DSumNmOj2OeCXgQ9dYPcOX2gbLxSVBE0D8quRoKeV4A7s7ymH7RaM/HRiAvNsP78PE5gWEMKxNDS7MJLzMI3mYUPE8xxvs5sIf6zXVI/3QRG9BryOuZjQeZbw75ChgsIH3+Pn/7nXt4TIsSKnc4VvfogwgZJgegf2mjxO5MlRjiIFgHij191BmA1tAf7E50GRw2ZhwuRqH8tu78cNmE/PXdhj8x2YQCshewcmkEpIn0Ws7PcTvlqtvv+Hvd6zxT75o/QSkemkQViAkYgxv3Yqv8ivg0wFZcq3ARPKO7D74iQmdEtwPoppj75NhF8u+3CECKJwvLgOrdg7d6337SThnyTN2VnfL4LZSviQKfFnv/dLYdshzDcVgly+SKuJNbkvEmaJtwG/79dRGrY2IqeP3skKw76PiDrXgRGLR7En4xaMwJ7FZIB7vL2z2L3zVcLAYxS7vvpfdfo1UFAN+f6IyPR4n97o12izt78f0ySp3xL1VhP+Uxt8nqVF2+J16T+qwB/NQWVfOGpghIoXG81hrsvV9XK7JD2nieWl1di/WQvBpXZHzveChG8Zi3vZq1pgpDdu9SuB04Wp2vBoECCAOxYaKbnKt7UCrjQzHRipWUuQlG6MhChbdp9/HijOeTfxAOzmfAKjssJQ0WYfYaOs/lyD9XMijGAP/tJa7bri/Cu9XpGqbu+D+tTndegloHH0Ftu/i72kFH9B/ekt+tBBzGWft6+18weIHB3qw7aivHJcXNUb/WoFHlsMT/lS0qtaoH1hwUGkQdNSk0zpSpJcBqX4Eo3EWz5nuvcgwpmLWOue1X19iWuCZiA6XEppATAr5zzsv98C/GpZJuc8kFI6lFJak3PeC/wA9hrcBqx2U7cnsX/Tj43TxrXYXfmDmP710ymlj+acP3wBXbygNi4GlQRNAxIqFVRgmNDUKDBCN5Fs8RgmJG3HyNASIsGlzMYWEQ7pA15OTvjypRjBhMU7MUHuGJHr525MqBNWeJ8kBOo1sgAT3PRsO0S8K+7y4zJPmkUQp3XeVzn3L8eE7QexRTKFTJYfymyMsAwRIYpl/ftlwiTwiNcjk6uzhCWC1oO2YORmAUZsbsWev+0+363eVxFRCIFbpmoiADIn1MKe/JKWY9e1w+dU4cNlwqUodiex91vpRzXsY1CwCpkkHvJ+SSiXTxY+PwswcUI+JrcRwSd6vcwsjHCuJDRMZ4kwz2eL/bOJIAKtPs7NXr/6tLOYu16CZA4TgS56iVfKQuxV00KEc99DowblPm9HpmPtXs8S7/e3seu7yMe2uqhrKUbCV2MLoYPY6/EOH7fCga/AfL02EH5qPcVYZvv+r2L33G3eryGCHIl47i7OuY8IbrLR+6X39S7sPuj0tn8II2Uypzvo587137qWM4MpQ2RXVMwAvkuEOVmCPWFLUjSfoPavo9HgU56herIrQtl8IghBYTYGodlZ7fu+hZlwKRDuLuwPJ0F+e4s9rKUR+Tom/vyub7+ZUMfr+FoaVwxHCHMC/Ng1hFamFRP43+XbD9CY8EsvU9Wn1UdpWFTvzcW+PhqJ0Ao/T+O4BntAq04IR1j1SSthEM6m6lefn9tRlBGpURtvI/IeAPws9vAeKOq4npg7zYnOV19EekawSyti9gCxmvlUMY6rFgYJ6gUeO2H7AJ5a6iZ7Iiy97mMl7eOTNOZTWoY99cvIfLoPS+0SNJpxln5mg1zSRGhmzOG6gM+llMD4wJ/knO8FSCl9EfiAa4p+Dvhjjwx3AHh/zvn5lNKHMNFuNvDJnPP/GqeNNuBHcs7f9np/Eg+yUCKl9Bns33RlSukwFtzg9y+wjReMlPOk5nUVBRanlG/GBD2thj+IPRu+TWhQThFC6iPYs1zxYI5hz5x7vI5R7D0gc6MjNJokP+71KgT1LEJgPIk9hx8nIsaJ9IwRfjgriZxBPZiwLy3IciKhpwjce31c+PEVWALRWwlScIDw4VEeIplTybStC9NizPM2RByPeDs/hAmZw/5bz+xDRZ+13Y09/hb4vOwkAgGoD4d9LuUrcwwTVK8liIjeLwotrTDVZRCAuzECJtNFCdoyK1vgc7ufCBU95H1R9Dy8/q1E7p0lRDQ7vb8HvO7ZPk9KFiuN4Brsnam2l/jY7sLuLYi8PiuJCINKpDoLuxeU2LcdMyOXH05Z7jnv+5D3fVVxvRZh980ar6uXiI4nczhpjkTUerw/uq4K232N13eEiCA3jzCt20TkrnqYIHhagBgggo1oIQJvR5EJF2CvVZnZ3QR8mvC/E2mTLKEcXDI/lMb3n2DJETp8+z1EwtylGInt9nP+AL5xAU6ok2Lz5kV5+/abJjye0hcvuo2KlwYp9WT4mZe7G5NAbxpphRSY4DCR9AHf/83iuFbxJbBuIEzdClOlOV3mwwJ2/FUL4896zl+l6MrwEbjan57SyEgwFxnp9W09OMv1gmswbcZHi31DhLglIqA6Po+9vO/17ZsJrRFExmkJmnpoP1CUB3uY/YQbX989z/r8Xj/2MYI8gD3oHiUIlNT9qvN27/Pnffvtfuxnfftx78c1hAZnpGlcA9hL5EixXRLGXm9D41qBvaD7fFtRXn7Ot+/1ffKxuoNGQgX2QJ1PKAv3Ydf+WpdIHnOP0QZ3nSM0anFW0ejnUwZWKMlQcyQ63aeDTd/nGnqF4iMX9SzfvCTl7bdNXiZ95uLfSZc6qiZoGkiEKZx8gN7l+96EPdd3YMKUfHbeievzsOfCCGEFK+FZWo192LNxHuFPuY4gXQp3PYAJnD2YECYTJplDn8CEyLkYUZHWRRHaVhBmWxJWW71Omb69ichbMxcTIhW2eJRYld9MrJIrCMEBL7eDiBImsnWrn9uHCfmyXtCrcozwGVG/8LFLEJVZXavPla7HWkyI3+X9WOrjfq2P+zgRGU0COIQfTA+mhZDP0HKvSxH3IIJZvA0jANv9eKfPp0iCFg2PEQToqJ+jZK6d3hdpi44B78ful60+vwoRrsSmmo8v+Lm6litpDDQhgjKbyFUkE0cFRugjLDlkTiar+6XY/aiIhU9iBE++bUNFO/jxIz6GN2HveWnN2rDXkjRzA97uk4Sp4iP+DRF04FGCOK/0+jsIc0Npz5TwtpNYbJjn5ZVAdgdhEroNs0Bp87IyR1znba/E7gMFx1jh10/mryJq8geTJnNmUENkV7zYUA6gcsUcQtuzzH/f4dunMYlfhszN+XlEgJQfx6OTPY+ZRQE832JR2MqV6zfTaKo1UGiOpHF5n2+X5ETl+zCSAEYavg58ltCarPV9OvcBH4a0T3sIEzq8vtuL8z9Po0ZFq1bv9u3Hib/qfLdL0ktTgc5kHSi5/TcwAiNy925sjVsERe2pjfVNY/9djJx0F/uHfB7uLcodLOpci83XvcV2iQcxDw2N5cPAjxTjbqWRgPb5GEpt1DPYbaNz2jG/o3MhM91UTQEhAJ7qIpYMRzGiM7+xfEPi2tM0aoJ0/5ZBE0pNkPzUXslEqOLlRiVB04Aip3Vjmp/XYv/xU/69EBPy9xPC227iWdFNRLBSbp//g8g6342Z9WwiEkZCo89CCybw78B8ck5iwu4Q4ZNyEiNne/2YzMM6vA4FHZDvxBEid9FtmHZmDZGQdAHhD9GBPV+fJGIXvsv7/WZMCFZuHIVHHvM6tnr7nd73x33/BsKn5IzP1VZMEF3nc6P8RT3eP5l6rSHCGGu+NhHERiHH24lobfi86Hr2ez1lIAoR1CHsXSP/oFFsYe+Mz6N8c4vwk80AACAASURBVEaw+0FarDEinHQL4Q8ziAnVD2L3y3rfVp6bUz43XybyNckkUOaNs31eN2DvozU+VxLgDxGC+wBmRtlORBeUVmW19/0sRnIVoEAaIuWp0r3z09i118LjEmItecjreAi7F8CuZzcR8U8ap+PYfdLtcyazyz7gg0TwjN2ELxFEdLatPpaSxJSmgcd8LnVPXUcQ9wEiV5PMAXf7WLf5nI753OwmCJhyE3Vj//VhwsS0DJV/8aghsiteCjRH5iqd0Fcx/qp8SX6afYgWw2ta4DurMFs3L1veylcTQvPzJ+ChheYDA6Hd6PXtB7AH7QO+/WHswdBsJvZZ374GexiX/jl9hDaHou67/bubIFEQD/zuovweGoMebMZsaVX+ZuxFJoJxe1Mf/sjrUx29/lualI8X/cbb6yDIoUwQ+nz7XxTHRJj6aPR1upl48KqOPmwOweZRfQcjZDuJ7Nkaw9qm8wVp6fRABTO3eOyEBWqAEDLk0j7SZcESnpJ6Sm+zQlPYkAx3MY25i2Tqtpq4d0WIynu3JE7zuaSfpTPgE1RhMknFBeIYtsCzEzMpknC4ERNc12OEQqvgMsFScAStgRzEBKh1mFbhIez5c8brud/Pf8K/d/l5e7yOVj+3jQhhrDDAyq8j8x75s4x6GYXRlhZiOxFuYykm9Mr3p49QRo8QoYPn+X6t8EtQ7PMyB4lnn1KuDfj8PY4Rq30+PyJM0p5AkEr5fpzFXql9Pl96bIrULccejTLhVrADmYtt97kdInIhKS9TO43vVSU/XeDXZb2Pb4XPlyLDjRHQOE543QoHLc0CRAQ69f1GQvPRjV2PUz5HOwm/nbVEGO5RIrnsOuzd1UIE+TlC+DFBOPRLQ3KL7+/F7o9Z3kYPdq+NEpEGRwkN5QChUZKG8rj3RUlW9fo6g5HhNxGkszSVfMTbk0miiKoswO/zOTuI3deH/FrgdX3V50jzuxRbeJDf1yL/FkFuISLAKbjEDYRWdQjT1m7xednn412EXeNdRGh0mYEq1PtRH8dCPPLtjEA+QRN9LDpcSultM9ZkxSUK5UlphrRATxKJOZXIcj7hnyGUpm8Qwqmv5Le32PFD+O9VQIv9wVdhD9ErCdOtEeA9ToCu90+377/XP28n/F96sYdPX1G+9M2BUC8PeFslUXjAP3f6eWv98wCN0eRWeBsfJ8hJd/HpwgjUA8W5ny3q7PNttTkHS3gm0iMTvgeKPsh0T8RC87PVP3/o4/+sf/YU5XTO+7zu24mQmrcWdX2eyDa93ev5ABG29nbsga65HfC50Dg/j2mK3u0frfxJA3W99+P9C20O9vv8X4OFGFeY8WXAVV32aW8xHyHdg+0Laczv9CT2JNc9uZgI0NEcGluJVvVbuMQjw8knaLJPxZS4bHyCUkp9hOXK8znnzSmlxVhqlV7s7/ujOednJqpjYUr5h7HnkMzUlnmlpfZH5mDthDB1lLgnzxB+Kyf9e7Wf24aZOini2iHs+aXV9FFMID1JmMmNEr4qO70d+Sed9HoU2KAU3hZ7vYpM94RPziYvs5sQZlsIX5EnMUFXEckWEOZRGqOCGwwQROBg8Vsr6PIZGvS2FxK+TAu87TOY8NxFaHaGCU3EAJEPRhHl1mHP5T1eT6efq9w8+LzIhwuv9yiRi+hawmQQwsxO7ZRRyGQWBxEUowMjlQp3LXKmR/hJgjxIYydtzVEiXDY+10PEvXKIeMQrSpnyR7Vg76lZRbkRTCMiE7sbiYAI87xfy7Fr1OXndPqYlRdLJpQ9PrZR7F032+dMC5aDRKjxtqJP0oIt8HG0E35jfd7GAPZ+vs/rvM/LSKslEttO/K/6sD+wIhO2Y6TkDi8jzc0gRoAU3lp+dpqfXoxYytROixxnizLXEGaNo0RupVHgyzPiE7Qgb9/ebK8SSGlHtfH+HsErzyeoJETziSUu6fUlQA7SmO9nK42r8k2kqN1zzLyqq0g8ij1wRFQU2abPt0V6tL2WcIIFE8yvKY73Yn/O1uL8eUQehJHiWxZWb8YeYKpTdalPt2Gamtt9+3EatTI6533+++P+vc2/3+b9+kMiFObNXo/SOcq5Vsf/EHuo6C+u9kqTuw7CJ6iP8OHBfw9gxEP9HKJRi1ZqkcDmYy+hjfo68AuEOV0HtuInyIFS9fVhK0qCEvYpYzUEOSsF7z3EXL2RRrM+RbbRS+x5D6JwLtCCtIlyHniS0ETq3tM9eawoU2qFyjxXr0RcpE9QV8rb3zN5mfSb1SdoKlxu5nC35JzL9Ge/CPyPnPNvpJR+0bf/5UQnjxFmwMppc5DQKPQRz7QVhM+CggV8hUh4Ka3QUUzoGiZyotzp5x3DhDY5sivEtQR9+Y0opO9sr1/agTZi9XuMMNvajQmTEkTXE6ZkryVW+ddhz/BuTOiT0Ljc+7aNiK4mrcYgkcdoDRG8QMlkZcY2RPiiHMKeu9IaiKlu8zF1+TjO+twdxwID7CJ8o056XwZ8Xlr9/GHvfwtBMKQVmEv4CA0RobGlQVGks+OYOLDc25lLhF9WHp4RQq3aR+RKGvE5kD8KxXzKfHGICL6wnghioIW853wOryPIaSuhVerz77le11tplAUUDKOL0Fwqgaq0MSNE4IlDRKjtVYSmrlyobCXIxY3e/52EFrALk1E6Me3dEiKp8EN+DsQrrpvIW7SNyJWk8OJnsftcwTikldlAhGrXXKzz+qWJ2ujt3ErclwcIM0uRyhOYKNhP+EEp2MQbMbPEv/GxywRxJfZfu+DMbFOiRoereLEg06BXN+1v9q1QjiCRpAdt3xxPrvn8t4CrzbwNPNJbl1VfRhTrpjGymh76EBoLCeZD2ANG5gDvxR5SWrEC+wNrCOuxiCWKIfIh4J/57x/xhd1Pe55FEYp32+8lu8wZ/9gHlhoBknC+FhP+VecQtvp2W3F8gJCz30uYmGmc/wWTIH6nqONm4D/69ptp1GB9HutDaU7XR5iq3VvUDTZHN9OY30imIiKgrTSa7X0WU/13+LyMJGjNcLfPz0ZsPvXYuYeYf4p29LAewh6QzxXnyDxRD2L1+V8Ux3VP4H3TCx+AhfDUCc4Rl9dc7YEYCrI9p9fvPV0A2U4IJalvOvdSxMwlS72scbmRoGb8EPG4+SNM+TshCcqYkLgE004cI/xiZhEmPsp1I1+TfURO5YcIX4l9XtceQsBdiT0bjmHP3N0YEfoM9qwSEeomSMwhTCB+iIhqtgkTJkeJ6F5jXl4ESCv+fV5eTv1zfSzKI7MPe+aVbSzB3hXy02j3sh2Eg/5cIsfNEJGHRT5R272N5V5OfWzx8T1I5IRp9XpvIgTYuYSPVFvRrvx3On3OuwnNhvyrpFW5FVvY6iVcew/53Gjxa4Ffhy6vQxoWPc8VGW2M0K4oip20e1qLWkr4sLR4n9u8LycwEqqoZfKDGvU5b/H+n8QE/Uf92Bux99ZdhJXCbEyjeAtB+mSmJy2Ngj48TEQ7lJmkCM5qItLhIcKi5XHC3HM55sO0hcijdNbn4QimTdxG+BzdRmgyIQhkH0G+ewm/MhHEPoKwKtT3SSy/1cpi3mQJsJ3QkO4jslToHpbZYQt27z1HyGLHfPtRn5M/IcLGS6u7xvu4hZmkLdUnqGKm0BCKq9iW03kpJD5JZJ1rTlQJ8PritpxvZKejOPyMhyS5wrd7aUwSKhMqaURkGlZqdrR6qOMjRBLRu/3cm1yQ35OsrAT1j3ldzwIfcuH+7RgBuNnL3Ao8Dsfe68Ly1zHS8wE/fr2X+Uvf/gkfg7Q5X8Fe1HqYf4DQ6ojYrAV+cRRuaYlx9NGY7rH0txnCyJzW6nsx4qO51QO31CRJWyLypvr+nZbFBi3Kngjm3dg8DaXow8dSIwG9jyA7fYT5HthK2HbgvT73m5OdM4948L2LxgjpylOg6ztAOF2CzeENxPXbDNy/EOa4SZxWZc/ZYZzw+28/lssTIrR7iTK3kO7xV6omqOKVgMuJBGXgr1NKGfidnPMngK6c81MAOeenUkrNS2SklD6I+WtzBbZgcg8mtK/HnqMd2N/sNoysXEuYTR0k8stovU2r/6sxAXUxtsIs64FRTMCX2VkfJkjKAbub0CaDCXUbgR/FBLrjmOA2DxM6zwJ/7f09gAl8ysdzhtC+6J2kEMiKAiYh+CRBrlYTzzf5bEBoN67zcj3AfwZ+idBijXk/REoUVW4vYcq1w+uTgLnXt096GWnZf5hIUKvEldsI7dRSwq9IGrP7MAF2jde72sssJCKttRBhxg8QhEVR71Z6X0R05HgvIiZzwzLq3SkiIMMKLzvic9rr8yMCJtO0Tr9Gg0TEul5Cm3fcx7vK90n7oTbuJ8htp7e3FLs3WgizLmmt+r3f8lmTf9uNRKLcbsI/6zbCv0tjltZrL0E2riGI4wAR0VCLB63Yvb6TMJU8gJG4Uz4H+JysoNGEcDlG5j7tfd5LEJV1Xt9qYhFAGrJeQlPXSgSEkJmjTFaHvG93Y2G792KawQMYWTpIYxaVi0MmbHwqKi4GzWS6jLylkMRgd/NhGs3dSvOj+djToi+OP0UI468CWlsikADYn/ztRdN7aDTZ6iV8gMA0IF8vyrfS6N5xjXfnoybIr/jkHg4OrXW/EuyhfjPhZwS2YvY4Idx/GnsAfdiF+V9IZnah1azNNDrzP4CRKpmKPe/9er9vf54IGy1swwJEyFETJ0Q7m8p91r/VtsjELx8x88L3+bYIUalJegqL3X8v4bTZhyWgBfiYP+EUAOKjmBZM8/ksjcEXbiUSxYLN4yHgQ/4cumeezcV6J1FPY9fqeuLFvIfGAIIDmJbs+eK4SCXYdSutfkUiz4VUb4lyAM8sBO6DOW+D57/mO+XLpvt0P3Yfl+T+EiZANTDCjOByIkFvyDn3O9H5Skppz5RnAE6WPgFwRUp5PxGVaxgTV7T6LJMvhaLe5dtfJcIGH8V8FZSzR1oALTAp+tdyTKj9TSw9rvIIjRA+JdsxoU752ESM+ojEmmOYEHwLJqxt8WMHMSGyk/BjGiFCAktzIzPpBT5WhV1eiT1ylhGarBHCR2qAIBcfIhZ8pNXZij2je70t+XN0YK9fLQIOEYRpsfdvC6EVkg+niKj8oRS6WHmZjvp8HMIEellZyOxQ/T5EJLBtJcweZfp2kEgKKi3YgF+3BYTZ3nbsnapkpTIv6/cy+4r52e19ljkYvm8U0w5BaLikKZFjfyfx3layV2kz+n17AXZ/HCMW4vZ6Px7FCDQEwV/ubQ0S2g/5NT1EkOsfIsh9K/E/2FdcrwH/PURoYxRmWr42MpkcIYjlOp8TkerXYvfKjmKexvz7JHYvarGUYt73EmaManuD90WaNs2Fgh/oP6gAIcewReAVxPWSX90SIiT+ucXLi0LVBFW8WJBwKGdz2TcprPCx4vjrCbOiVdgTzzUoc1oi3CPEyoYc64aKbwnWtxEPUwiVdemPcyvxJzqMvcikIbkX+GiGd5ogfvBP1powrnDX67EXygBGbMAeVtcTREMriL/gwvwejBxIErjPP5KpR7CXzFd8+yoa8+18GvjBUSOAmotOIiAAwBVOiBRtXH5Nz/p2M4ma02VETq5kV2EP9uuKPrVjpOQQ9oC6hvATAnuItwJ/5ts/QfgzQZjw+bX4/h/7Jn/3718Xt8OtmHbqHpew12MvcZGW+zBzuY6oA2iMYnczNv99xfFu4lrcTmiadG47sMzJz7d8/zP6sQrTRt5HaIIWYm+ER31bWqDmZKqXKKo53IzgsiFBnvWWnPN3U0qfw/5JR1JKV7kW6CosjfaEKPP3SAOgsMdHMWFTPhESXrf6vp1EkIAHsf/7w368NDmT/8p/xTQ7j2PPkfsxIWyNt7mDyGAv5/Ae7N2hyHT7sOeawj+v8n7IJG4nYQBxo9ehSGLt2HNXhOiAn/8gESZ7J/Y/lPCpxJZbsPfRjcRjSCv+EkzPYiTn20TumXZCYO7BnNulzdGqv3x6NhC+OaPe926MJMkHp8XrGSBMDTd7nxSHpjQRUzjwYex9LTMyiIAMg4TZnoR2fL9MHFuJyHby01HwiqVE3Bv5k/Vi71kFcxjz83qw91w/JmwrUe1y/30IE8h/yq/FFoKQzfK6lns/h72dYYKkKAiCEp5ux+4HmXoqNPRswpdGUQ7lw4b39Tnf/0fY+3LAx9hPuF2v8fOuI/JEKfJaK3YtZbaoJKtbiNxTi31MJ4k0GO3Yu3kP9p94o1+H5di9r//CKLHA20IEnRrA7kf51CkSYIvXtx/7H84u2m4jQsovx8zxFJHv4lF9gipeLJSaoKXE01/7yrxB+wlTpFEipbSjFL5GMAH8L7EcNg8QQQ2k3bkX+AhBOFqxF4r4/ge8vGxkj2OaiI+ZIH7F7z3NmZG5nBkpIohJCwLMvf0EZzr8mAjI1zFCJOFeGhNpqLoxbc45Z3xg+AQMeT1rafQZehp4qg9ae237vdicfGsU9rW4FuM0PNDUx6tik2EieALAsM9tmSPpO6Nwg8/1LswERaYPcuK9HfhPBGlsLfoprZv8ceSXpGuxEwsHdbNt/t2nXmd9VJ9ugiX/6UmO/UcjvUuuf5JjH1vKkre7L9WQk+Hu5+DKQhWha47XVZKeB4h8ExBmhCKU99Iojc7B7o12dzwblvfu630ACuwxSKi4TmNv8kuc/AhVEzQjuCxIUEppATAr5zzsv98C/CrmNvGTWAqznwT+YrJ6jmPCsxJE3oKRk3bs7ynhSItiIk0nsP/7Fsx3ohcTNDdhz7ibCJ8MaUXeiQnkH/A2bsGeJwpdrGhgKzGBdQnhT6OcOLO9zW3Y80naDYW6lnDe5XUu8I9yuOwhFpuW+xiVFHYxtrh3Hya87yNM9gb92AhGGKRx6PA5lFAqMyiZKSmvzhBhDidN1Saf96U+1jVe9iSxki+SJF8oacZOYmSzj/AxOkFo4/BzFNVtnY9RIgA0xp9pIczv9nm/ZCYobYjy2KiOh/23+nCU0BopoIXCdUsYF8lYRfglyadKUe2kTVpJED98TnoxYqMEt31eXpoORVJ7DLtX30gkA5ZWcBS7Pouw66qATAq7voAgTWB/okHsfnnE+9tBmGnK7O4oYSK3gEaf2QWES4Hu0w5vV+HC5Xe0hyCEP+z9+BR2vUeIVBorsXu8DVug3Ozn7fT+KziECPlZghB/gch5NUz878Hu0zHvr54LF4+qCSqRUpoF/Br2+N2ec/6jl7lLlwBEdKAxMhyEc4eW8hZyzg9IeJZQLOll8SMEIZIQLMKhVf9FxXY3ocmRyZmTqys+/DTP3nslb/91sxvbz2s50zaPv+N1ANz8Y/fywG6pkeDMRxeaBuPThPnbx4nQ1WAvwyMEGRiiURDvBu5YGA/ehwjfJTBp6VW9MQfPYw+D1haPkd/iIcKBYddgDF8NfA2ekvZiJ3xuA5YYFOANwHz4js/11Qvh+pYgC8NHYLgrbN+fwYSGbcRjYi0RDhNs/ktTxDudTN5sm3P/8QnObAiidtVbv8M6dvM/hn7w3LiPPb70HEc+tmcp/8/P/xL/+dQ/tx0dMLf7BGf2LOSKtxvjfPbzVzbmWNJ11XrOnTTmeZL2Sujwc0X2VmPaoHPWbCKJIvDl72/6tmwHymSpw5zvG1dxKSOl9H2Yl+DTwN/lnH9jsvKXBQnC/kGfSymBjflPcs73ppS2AX+aUvpp4O+xx/iEyNhroQUTAB/EhC1puI9iK9SKygZGEhScYAUhIG/GnmW3YAKcAgMswFbWl2MC1l7C6VvO4xJiO4ls97MIP5EDhL/FEUwI3un9u47wA3kj9hzaTazyixjJT0Jmbrv92AAROW0e9qqUT9IIkUNnMeEjokSrEu4HsGf8cq9LYYzX+vcC75tMoxTmeXmxT4SxjDonJ/jVXs9mTHDuJsJvH8VuBpljSXBd4h9pgU75tZTp2RihyZEZ1wLC36SDIGrdhImZQoqvJgJDKE+ONG4yMfz/2Tv3+KrKK+9/dzAXAwkxISYcSDlAIJASCBcLxBso9YLWUWvVKjq9WKejfdtqO2Pbcexl7Lx12lftzGhbi714q7ZWnGpRWxQqNkjlEg0TuQQ4NJAEITHkcEmCZL9/rLXO2iflZmEqQ3k+n3xO9jn78uxnP/t51u9Zv/VbW0gXXFiDxJfl6/eV+hyG4Ep3DUifqNJ23YcY+0ZZtHs0epp53Lbod416nkw9fhMu4W52iiXqNS9dL56jKY70/7i2TzES33a2tn8eAhSzkP69I9Iuu3BvzAS9ruUqGqf30Ig8XwP+eXiMUFLbohbvb5uQFQ7zTBmAXKr/x7X+Rl8bhvfL3fqX1Lpa22zRe0gifb4v2JmOL2AfeTlyT1AQBD9CzI63wjAcd4B9LkDYtv2AuTZRHOj7o1mPP+Maf4Mv+/aNhD5RDrtE6XDgigF9VbSsqc3Y3AvkO4UricRqmE35McSjksApWecjL2FCt+/shoezPdytAHnJzRAeh69YADsTgxhwwXaenn+1fDEmhJyeFCBZ1DxTVni0DL57Iy2zh8vAYyDmAuSlt2uYgst/Wp1IT1yaQM5p4g7JTli5BU5Rb8TbnQKSDEQNQFZDpgNonMqe01UlT49pQVT1zFXccrIApaRx7t4Ub4cZ+0YlWKmg6KSSdI2K6cCSN+X8Nkw8lxBwZvd9NbKyamDw8WwBRQr2eu7Ml+elbdlSOpyWV4Yz+LPCzWv5xnARQUgobTAn5P7em1JVmFH5PIseugAGwM46zXY7LYRXA1fWS+BiFiB1szgi2y7F61yKGETX6XYd0sfe1hihFLi0eDaQkbkQT8ixDmks2zZwdJyCn6PoCQqCwFIBbgnD8OL9/P454FN61R+GYXivfn8szhejgV+HYfiDIAgeOtR1/ypAUBiGG3C7NPp9G3Du4Z7HVsEnIGNWOR4XNA7pQeWIwb8JMaKyEUPWEi+CAA6LdTAp60zk1d2GxxbGEcN6FO6pMIPVjH6j5fXTOuTgktJPIj2qA5kblkWuVYwb7KuRaa4RmSeKEKOzGDEeO/AYC5Nn3qd17I8Apb14bAg4VfDnuLy01bVQ26hAr1Oq99iJGPMNuJBMVD3NaEo52pZGj+qHx9hswdXg0O/P1u2eyH2bMW/eHFNeM4bFJJzCaLLM6/WZmAenWevWjSczLcTdiSbfbdS0bcB8nB5/MR6DYkIW4N4vA0CdyDPt0DYxz4aBtEKkHxXgtDmr80gc+HUgfe91xPPUgRv8RjXvJV1y3GLHzE4wxTYDy+tJF8nowKl+tiBQhlP6+mlbnaHX24R7WYyqWIgrGpbpbwZyYvq3BBeSsufbpudsQPpku7aXCTpsQp59r9bLBEnievw52jYGpgoiz8QWLrv0eU3Qc76kdTx6XqCjEhP0E8TU2+8EoBPefUiY9WbgtSAIfoU09Z98H4ZhQ5/jTwX2hGGYjHxXHoZhI+nlT+pxoGuHYdgQBEEV8H/7nOMTSLddopPak8CLh9sQJ0q0RFWzTsZpQ+Wkq8UNAf4AeXHZPAnxQKi9ywDkpTGD9l7SaU0g+OoKPL5mbra7c0Fe9kgMSVZ1J3kFSZId4vIYXNjMptoxZE0TMNBTl8+Mcxay6Fnx/oyevYa1jCfrYvNWITzcAphcI4Bk+dzTBQjM0d+Xab0sQekE4EtvihwzOG/YmuGWfHg8XyhwIBLNzyEDs5WWTijIh+EqH96ESIenvBydpAHIsWMVxptn4+R0DFoMrNwq6m4g3pA9OJe3AwFAO3HAEY/7CiXIM0ggdDlQeWxSdLdxd7/GqlmnOW0wB4o+s4VqVsotMVwAzQx5WKNja+gmi3iutMNG4jAOBozZzs4ntVPkBA6EUHpiY4QWuApPcgsegGolB3lOBuwS6MCs4GcPOixa4lTwJVZrwPFI41qnW4Hz6o7DcnRjgj6H9Lb8vj8EQTAOAUAfQMyo54Mg+DUy7R2L88VK4J+CILgKePhQN/5XAYKOVslCjLhWxIhfgefvsWSfjbhi5SXIuGu5V4xC1YwnxDTjPg8x4gr1z+JPLN6oV+vwO0ShqhEZR7biMTTtup2DGHOz9DyWMqBE62Y5fWxl3zwPFj9ThRh/zchwslTPmYHMG+bJ2owrsvXHk1la+oAuZOGqGAFtu/Dh6xU874t5dTqQN7AVzydkcuJG6eqHeznsXkyK3DxEIIqdJvxgyVAtv5J5qEzxboS2W65eewwCjMxYtqSccTzJ5mrc+N6Kq+wV6H0NRPpLE2JQz9Lfz8fpdAnkec7W52UCFyZ+sE7bxEBgf712tl7/HN2nH9InOhBwUKDXLUD6VIe2gXm6TF3NaJQbENBgOYPMK5fEBStMs2cCYgfU6G+v4Iu4ZXofBqpi2nYWR7QPFzQwj0uZtsHQSJ2Temyb3u84pK914WIG1oY7cKaIgfZJek2TZl9H+gJlKU6lr9JrtiJ9IU/b/kltp2W4zZOLvPcWF4e22+8Qe++ocbT27TvYr4OCIIisgfOAirekShiGLwdBED/IOT4ANOriEEEQPI54WxYd4PuGPsefDfx9EASzwzDsCoLgU0gXnH0Y9TjQtRvCMKzHw9pTJQiCzbhA4EEb50Q5UDmJdKWsk/GRcQsuhgDQCCfNctvyHTwXA8hLE8cVzmboZxyncQ1DBgdb6S9BQJS9iBrrMuwaOWBTwxjaFuUz+nJbvYfRNW/QTZb8npPPotoLGDBHLPe188cz/fqFrO0dDUBL7XBGz36DomjeGDO6zdhOkE6Pux346Vh4VtXiZgXpAOaerTC8hJSk3ShkIFqpft+Pl8DKekic7sboOxoflPLeaARqUo95sxDGZnrgP+1qo6vt2aKNZb+fgiv2gJx3FjBvL7SqIt/3gFvw5zAFGbh0kCp6ZAttdw5J1XFV83j3rAGDY820vDSc51ZdLtt3bCROgqS6xLLpYW3D6WxStbkBX9zOsEmrmcpSGq6vlGr3xmirG0LWBQpaW/PleuZVAzFarG2NVxUq+gAAIABJREFU/mbFQJz1l2o8F4JtL1RAmeqYpnBoYN7ig6wP9QVA0eysx0HJ4HA8QYecL4IgGApcBHwTuHU/5xgLvBqG4W7d38zQxRyb88UXga/q+Z4Efryfe0qVEyDoXZQuZGW9P2L45pMuLzwK96AkcAOtHTea4nhMkIGfTGQJ1oDRPr3OPsTwakMM0wpkDlml3zXjwfIWS7INN8KX6TksDsi8KFafUj3G6HNJHOSYh8HibLpwj0clslZoAAy9l3X6ncX87MDnBovNMaBioKZNP4u0fs8g89QZeD6hDjyeaQTyhlncziY9n+WlMa9Kk35nhn8TDnDA8whtw6ni6/S84LLXAxETwQL1LQlqDJEdP0Pv63U91jwZDYixPwGXtI7rs0ngynNxPb8xQWxeaCB9yC7WezPVudNw9T+j1+UgfcQSvpbhOapMebAVF7/YofvvQvpXA2LfFOOSz+ZBMdC/AgfpRmMzcQqL3ynHJbJNBr1I77Mdj+vZptew/t6m58xFQPsIHLBbclmjIRbrvScQm2AbQov7OAJKjNpZpfewFaffmbx5obZnDk4/zUdGdkuCOwJnbYxE2DRGDy3X3/JwKvsRl5BDmfnbj0IG8CGki9ltRh7xgb5Pr2IY/iIIguHA40EQ/AJZffvgEV77YOUp4D+CIDgTePkwr3OiHLDswSlDtm2yNwCFYsxH41v2jHUdhQRi0M6JbJ9N+uqArfwYAKlGBl81xwbfuJGWfx/Ozt681DkmX/57CnRGqWANzcR4uvkyAMbVvMaqhtPo6RJQNH32QnrIou1VoewNrtlIW28RRRltLLl1ppzzM6EkTL1BQU5HIJOneYJuR4IYVXGOjZosZ7r+vqpEErAa2LOSo16aOMDpMji0mGxzOZxc4qp2C6Oy4wB7BCRpFVkch3c6YbhuFwArV8B0jSYtRWhkLboMNc6U6DJdEeYkZOD8Dz3HPyCDVEI2254cIue1fEgLsmFWN4NjzQC0NMe48JynaDpH3E2rVpzG1ElLadYgsFW1Y5hR8zz1t5u2qACjBioFUAHTY7WsrZb4IbmPbijPJqtaQdGd+el5peLAzcCDur0aWYL5mG7/hHRKRwek8yLQ/xsjbduXLXsy6aDnOAJAh18OZ764F/hHIqlr+5RVwDeDIChCBovZyJt8rM4XzwNfC4LgGtL1CfdbToCgd1EykbEdPL6hDRkz1+DrEVnIfGFxHsWIwXwxYmBZ4koTEOggHQjZ+pwF3HcgxvYKXKDAKFZG5TLtHvPMFCNDxRDcU2TFvBmdeo5hiBE3B6cBmTLaE4hhuQEHFRbngd7nOuQtsTw0uxCQV67fG0DbjSe+NApfcaQ+q3Bp8A5knNyn9RmIB/dHAZUZ2bsR43ivbpuhbeIJpkpmKmPmRehCDO6YXm8TTjccqnXcqu07RX9/RX+rAubp98MQIFGAO+ONTlaIJxq1ukXr+gryfE1hzoQ2TKTA5LkzEVvDYmYM1Jq3ZRPSrwyQP4vHXNmzMaAzClewi1K89uLS34W4R2UbLkbRhfe/VtxTtEnrZQByqh63Wz+jbWgKu+bp68SnKMvD06P79ODJe4v0HkyuehSuvPtZ5B0x4G0j/zY8f1Ae/rx/p21j+xfpPVUi76kByedwoGeCJNsQrxuIPWNU1yMuIe52238ZGATBA8AzYRg+82deJTjAlQ/0/Z9+GYb/pqty3wNGhmG4c3/7vYtrH7DoCuQnD/P8J0qqmE1jK+c23Rfisiogb+YiUNEBGcG2+As5eKzn9wHnUEc5sKb4E8cHwM14xulyRE0sIUvXLY8NZ8AN26nKEPL3xtlJymhica9kR32xdRbnxhaQlSOUrDYGUTRmS2r/RU9dkJ6kVMuS2pkMvltjW24dLgOr5hbiChh2/Wo23aVLYasR78nn9eAvzfL7seb6Cc5PH4UHvoKAk8EIJS5P6XDJvTJ4mXJKnkpeb1RAeUqmr5qC2ul7YKNeZPrpkDcJluz1/d+GlORNDvCzFXDSJBd2mKaftiZ+u+5n4ghxhAq3QDaLPrOFttZB3MR9ADwdu4wmyljbLg8rK97J0/Ov5pOz5fdEzXoqWENtR40cX9hGjGYWvXQB08+RG63fXcXOjjzGVcpy0KrHRNO7p049XNVIO1jbxvGcR9bmM/B4q7dJF0+wiSYJPkDuIR0ElSNeoGjsW5RreJzR4gKOmA4XBIHF4CwPgmDG/vYJw/DNIAjuQkRsdyJrvu9w7M4XqxByxmGVEyDoXZQexC9o9LZsxGgy49WoU8NwVbWVemw5Api24nEv9k6bp8MoZFP1WhNw2e0ROHVpF7LI1oULFMTxBJP99bt8BDz04LE1ID3Y5LgbkLG9mD+l1hUhRje40W4GvRmPFkRfp/cTQwCViSdk6HlM/csSf5rXIAOnFZrH4uzI73F8yLOFJFMmy8Q9HaYuZzLb/fU6WxDjtxWXaM7AwYZ5lSxRq0leL0MoX5ZvroL0AIvN+JqTCTeY/PcWPfYFXKXMBCm2abuU43miCvS7qAemGJeAXooA66hXyIQ5puJ9ZyoOIJtwVsSFeFLPSXjOIDORxuh9d+l9bsVBs91bDI97MWBfigMY64cg/WsSLjRgaoNnkE5HrCVdMMG8WRfjfTsD90Q1aF2G6m+rEQEN86SZIuIwfTbtkXYxOmo9TpMz8QSTSS/Q/V/CaY65Wm/rQ5uR/lKm+zfodezdOuJyaE/QjjAMbzzCq2wmPYf9UKQZDvT9nxT1yoxD1gG+ikRkHMm1T5SjXvqufNt0vwd5a8wbdDJwLW7tqyjCSRHDO4d0wFGA4CZw47VVv2/UfWchtCuAuoCiadtpO0M9BdXd7OzIo7ZLDOt4YYIOCqjOkMCVxthIitjO6ELJxtnSG+NnGVezXhFWv8v3ieHeJcDtFu4hK6Ob5TVT2E4RzzVfxOi736B5d4yd03SkW5DNpsoxDnrQOpun52rSvVcW32Q5esYgxBobOH8LfAiYlw/JBBAX79mbkZieaj2fKesZBcNA0FAgXgIFuv/POmF6vijOgYCpyyJtXYCApKjgA3oP9gY+qXX7ZuQ+noZhn1XqYfNwZsQW8jDXAzCVpTSmkCvcUDiXhtmVLNBw6UoaWEMFPV3ZeksrebF9Flee81MaqKSHbKbmLuXF1tnkafDTpdc8ztMrrvb6NULRBUrLs3aZFmmXS5E+ZHTKsdKcLI7c4yAgaZ41Az9DSFeDs0aF414Y4fDocIcqpwOXBEEwG3nL84MgeCQMwznRncIwfBD12wVB8K+4CfS/fr44AYLeZWnE4wYMEFhQeQzpRcsiv01FppZG5HUdgbznlyNB8uvwQHaLmdiCGGjZODVnHQKKxiE9YI2etxqndbXjcSlLcU8EuLLWCmRsMRWyGsRIrcGJnCNww7oIV4tr1+Or8CSbRn+LBsefiRuWI3G6bzPinUrqPpagdSpiOFfgOVssv4vlxNmGe5DApb2N9mRUuVxkVd68FwZOMvE8RZn6/Wta76UIqFuHJ8AeiAMgIt9bKGa0GEiwN3MzIgiRgSy+jdN2O1vvZ5XWvwMBa5bU1O55G57kswLPt2R0MBMwmIA/8354ItAn9BxjEKW0ZpyKb0lBzRNnsTpxXAHNZLj7IX3ExBZ6kb7ZD+mfnVrPClx5bgeuQNKKA1+Tdo/jyXALcG/fPq1vGw6AckmnlJq0ONpuVyE8qTNxMGI5hSxuKAfvI0NwoFWMjKabkZifUlxl1mw+o/Rt078zcGA8Sa85UO/LTYgjLH8ZT9BrwCilKGxBzL9rkNvd3/dpJQiCicAPER75RuCRIAjuDMPw9r77votrH9MlCIIyZB2kFHkVHgjD8Lvvba3eTTmJdJmxUZH/2xFL2Za89gCRuBZ7acxwvxRRFzNPQwHyclgSTYCCUOhnr+hC7lBoS8QYPVsM0zKaqGANT/ReBUAW3VTSQJ6O8LvJZQrLU0b1g603UBebSL2me84jSfPuWGrSmcdlLGmu4crY4yzefRYDCpKsrR3vgAwgAQOWbWfnXAnmH7BsOztfHeQc6eeBixbAZeoRmobnCwAx0i/D9/8JMG+rKLi9E5fvzgB+W+KiET/eCtNLRNENYOfYdG/G2Ey5xm91/5PyZYKIDihxXGXtGcSmb0QeaQJ5g1pxmfFHkHb5ot83F5Bq23NjC2hkJDdzPwC11HAWLzO78NcALGcKZTSlJMi/VHkXWfSkVsZmsggKYQrLU1WsYC0dIwpIRFyGoye9QaJdtnu68mlLxNw934oYQsb/tu9tpfNVZKA187cUcb2nPGNjcSvAEmqcjHNTrERn7Hc4roQSjoI6XBiGXwa+DKCeoC/2BUD626maY/N9iPk6HenJ/+vnixMg6F2WGAKAfoe8glfo/1m4klgFvsq9D6cePYf0nB3Ikz0NGQcsfwm40W5UqRG6vQMxDG1VvUB/z8QFAOr0WiaVHRXbfV1/szgi9D7a9FzNiPF4PrJ6b5Sq+YhhbVQ2kGHFJLFNkjvqKULrlIEMR5Z00+6rDAEeMWQIM2/OUm2vKAgzOeomPV8z7kExWhXaNhavY6kojMJn3rm9uDz4QGReadPnFAU82ZF7tW0TNbLh1HL6TEHGZgNAfUGSARrzyuRpPQ2ALEXmTQv4N0M+CtzM01Ci+1gCVvAcPOa5s7giM+QXI3Ooqa21R+7NzmFy4AP102JoJuD5f3Jx8GRJXJOROlvunqF43E8brnpYiDznVtyjaYqFrdo+/6X3OA2nMJoC4CY9dw7SLy1RbFLbztTsjNpngMnuoxv3kHUgIMawhnl9SvSYVjznVYfuN07b1RQVLWdTAS5PftTKEXqCgiD4GbI+P0hFBb4ahuGDQRDMB24Iw7A5CILPIM7KfsCPwjD8bz12v9/3KbnAR8IwXK/H/C3O5j+cehzONY618g7whTAMVwRBkAcsD4Lgt32VkI7Nsj/Dbzcuga2KWycpdenkfKF1mTKXxZxYJ78XeUkX6fb5uPqIrYR1BWJ8q3GbVSqxIVk6kjZQSZwEAzLEMB9EG80R0vZZvMw3dt/B7FwxzM+NLeAhrqN+m4g3xIvfZOfqQVw36YcAvMyZ0JrNtbHH+PmrfwvAlef8lMU1Z6WuuWn+GHZ+Z1DKw7OzY5DTr9D7u2yWG+aleo9x3U4gQM8m1W1Iu1muCfCVFPMinVSiVC5VoNuD2O9d2rY2YL+jo9HgTDHz7tHj/z7SziDXWvgmzBrr1/zeClg/UYQdAKph9FNvpEBPFj0saa5h1TfEpbVqTsjgEYkUYOmggKVMTbX/ZcxjI3GurBSpl29xG3kkuYV7AQFNz624nOGTEqlqPcR1TGUpa3YLpS6RG09dH1A3e+CewVcD6UPmtHmS9JihGXIfqbbu0HYD78pJkxcytL4UV4ewsof0vm9ACI4bMPQ/VKLzBfBLjQnaC9wchuHbus//+vkiCMOD0uv+x0sQBIWH3oveMAw7Dr3b/2zJD4LQcuDkIoa/qZM1I0ak0azWIAbX3+CG1wT9Phd5t1cihpd5QizJ6STEkGtExogxOFDoRoCTCQPESffUDESMTEucuQQBXo24YWnAJUf3M6pRM2LQGVAwA3Ybnsumn/4fpcMV4Hl4ojQ2S3lQoMeAix2YoISBlH0IcNyrx1TqPRkToR8C8oYgIHMFLmpgMSytOPA0w9hiWIwuN1CPW6btvA2hP5n6npW+YMbohabaNizStkkOHhNiRjlIH2hGvA+jtB5T8T5hqngrEKbFLpymZUqBpkhYj4tZWIxNU6RtDLhZfYuQBcZ+er440pf6R87fg3uZuvCEsnuRPhLDk4bavRfhYg/gnrt1em7T77FnYODBKKGNeA4fq4958tpxlULrf7v0txo8+ew+5NlbjJl5zYx+n4Enby3TNv8ZnqS4VOtbgPS5Vj23iXw04Yl8LTQgT+vwBKkEsMuPVLRgyoQgXDb/wL8HQ2lESDJH4gk6UY6wBEHwX8B/hmH42wPvEwvh7/6CtYqWvsAnut5pK+ZWhuh3amXaypLZsKfgK2/gblwzwscg5JbNOKg4A4hD1hgNjO/IoyjezOiMtXrqAZTwFkt3S4zz1NylxGhmpbo8ymhiJot4SBPH5LGTNooYqQlejRZnss5tDKKut5qqjHouZR4gHo1GyllSKyoEA6q3s3PRIDesxyCrmCYl/TfaLHHdXo288Eafq9N7fkRtppFvwUSlsSV0n2ptm3mqBvflEvg2bqfbSo7VYTPpeWrNfW51SOg+ltvoJ3gyWiuXIqBrkW7HgU+T8iaNO+c1EruHk5eb1J8TLHlgJv984z8B8C/NdzAjtpBqPekaRjOcBDMi6OsZPkSDygYtrz2d62p+SB5J8RABS5lKGX8kqZ3nLUpIkkdbr1AuR2esZcmKmeIhBBGsmKPCFSDtPAeP5LhU28mqYBPWArwrvw3pbvMtONUTZBkuqsJ8rIGerx3RfDGlIgiXfe/g+wTnHvmcdLyXYwEEdSF2zv4CoKz0C8PwfX+hKh2wFAZBeAoCIszAMmMLxNAyWtQ5+l0z7rG0eIJWPFGmzSMmpGDftSJTk8UsXIhTlPohY6N5e7IR49kM1Cl4jiITTChDQMYoPIB9BWLYleJxEkY524vn1dmKGJ2WP8YczkbZq8TV3QwkdSFG50wc4BnVywzWDgQE7tb7sZgeA3Hn44ZwDx53laP7GH3LqIjRhKlmwNtxlt8ohstfv67tbJ6WfThwQNvR8huZYT9Kz7kNT9xpRrcBMQuYN0C4g/RiUtgTcFlxA5DmXTEJ781aZzO8t5EuoW6ALw+3UxbjFLBleu+ztJ5GnbPYH3smXfizLUSWXUbh1Dtbc1umx1ryVBM2sJABm5Is9HofroBobduhfwW4YMMGPEbOKJDmbSrBPTs5yPMzwZAspA9uw5MMNyGeVot4MLpdqZ7vdYTVYvFfUS+QecpK8Oc4Xdtgg957l7aDyZKbqMeuowGCxgfhsmcP/Hsw7MSktr8SBEHnoXYBWsIwHH0UrhVHVOrGhWHY2ee3GwH11A2cLNrFx0ox69FAjwEhyxk0xH9P0Y6QyccAAQgoyMbF5Ex1LI6IHwC0ZovBq3ljhl2zmh6yqVBi8RoqyKKbqSwFIEkeeSTp0dnyGh7jST6cosOtZySzmZ/yXnSTzVI+QKWSuJ9o/BiXlf+M+e2zyVLp5+/nfpplTEkZ5g8+dbO8vPZ+xfUzoZ9RoAeeUNSkH/MQL40BkGkI6PlJ5Fx1+p3R1xZpuy3UbvL7fDH07ffntsJMUztDljfG4g4NA17mnVqNgLcletw04PuIfa9AqWjOFtq+PSR1ymG3rWbT/DFMny0iBj1kMZJG6lT8/zLm8WtmM5U/pI6poZb7kQSpU1lKnESqrbeqOlsbRbTpKFtEGwuZwSDlDmTRQ4I4MeVIrKSaVfNPS4sRy5rRSU9CvY+2lPCCfhpIjIpvrES6sHXbNxNInzWg8wYy6ltsUBvpFtqxVo4QBI0JwmUPHnyf4IwT88WhyrFAh3szDMOJB9shCIKVB/v9L1UsuabFc+QgRlEcj93pQoyo3+FKbkYvGoFTtSxAHNwQteDzM5DV5YR+V47HHplhZ+IFlvE+C6cyQbrBnKP1sQUmU/LKx9W6zEOzD6eAW+hsLjIPrsAFW+K6bzFOw7KknGvwGB0DB114AtR1enxUAtpoVdu0bWwIj+kxFoy/W69l2wZKSvG0FOYNMlnoeiQ2ySiMDQgwiSa4NEW+K7VuCT1nGS4iMAKXHI/jz69d62HeMaNltes1jKoN4gFaicdqjUNAmyVbLdG6bcNBgoGNHKT/WPuat680cr8JZI5cr+eYru2zGvFwlOJxNQW4YIDF0KD3YQDUFn33arvWaFvU4oIO5sE0D9NA/T9X29UU59px2loB8lysz5yBx2QV4DmCxkTO3x/3whot0P43sQmbDqfi8u+m7Nas57kEIU7swr0+pghoFHR7ZhdG6j0V8Rrm6XOrx2mgU3Cb8IjKXyYm6Hgs6/8S80gQBAOAXwKf7wuAADQHxwOyb+y9XWFMK9GpvgiXDgFJxTE28vubkBzrCbLqkJfS4tyzkZUEK6+gAAhYLSAmq7pTAumniaT1ROpoooxFG84H4NwR86nrraZCPUPLmEwV9TyBxAiV0USMlhRoShDnH1b9B7eMk9yIN3E/RWznXgWZt5T/X2I0c13hwwzSLKBz7nqScbe9xkWoa7U6hAWBqKcB3A7jnnqNVSuUb2DS2fa5CAElJmedg08MIIPqXETJxehvpcgk9HzkmFZguBr7F+j35jE7pSRd5W5mn+Pj+merpUlkEv6bEhms5uo1v0OK092WGJKm0pdNDwNmbE8ByJ7eLJY/fTozLn9eL5Egmx4e3CCg58IR81jOZG5RTt6TXMEaKlKAppYamhnMeOqZrW37Mmcynnq6FcTOT08BI+A2jlDi7LvVkbycZYju2Md0u450j9njSH+M0jJT1oy52S4HHiXd7bYHtzKOo3ggONrJUv9qy7EAgqYfepfD2ud/vASI4bUXMdIt18konHpmoMKEEyzWYx9iZFkCxgmIAWr7bMJXsfcir7eJFWxGjEQDXtbvTVHMhAAMbJgC2kDcW5GJCyOMQBZcLtNt8w6g587Vc39Qf48hc0E2MgeYd6gQMTKjcTKbte5GmVuPzJ9Rb0qVfmbqPfVDjNfLEEp1KXC9/m5JWM3jYyDNZKHN49OKe0gszshiOgp0u0TrG1XsizrLZ+KenTE4tdAodP3whK0deE4iA7G78NgYcG/RJMToXhq5NrptiVAn6T10aXvv03btr3VOIn2qB48fG4iLX9gzNFqd0TZ340lId+n/fZX0TAyhFacvrtLzWy4siyUztTYT8kjqtYzGaKBsL9LPB+o+pgJXrPvV4zTGXiQeaBQybdlztNg0k0nv0v00bJlduCCV9aNMfEHhBVxhbxwCsHqQd9e8jx24hPhupL9PQPriPDwRcD98ATkPj72LxugdtdKXm5lejoY63PFYPnyU9jlgCYIgEwFAj4Zh+NSRnOsvW8z4s+neEgBEEovSCYPVKN02VmJUVuqyyIVIB1+tu5rRbjoKpwAXqweoKwsSAVk5PYwuXJPywjy94SpGj6jnwhFCVatjIrMz5qeEDq7lMeaseJLbJn0dgLc4lSrqU4Cminqqxv2B+1RUqojtlP5mBxvPi6d+z6aHeVzGRB1lH7ztWv6x99+4p0OAUlZBkp5B+RSNEbpU2xVDWDXiNPfKlAK3d8MVyt1oBb6Oe4pexUURwBN6duFCCADzEnBZXP9HJpboABEH7tGVjlsyBcgkdfvRTBk47Zo5ek0DRR9EAMGTCPC5ARms50LWXKUePpsPQyV3EsDaB8Yz/caFlCAUvayMbhZffhY3qTDCImZwN7fSOEJQUzODqaWGGmoB8cr9mI9Riyj5xWgmRjNX8URKQS6PJAmGpyhzlzGPx7kqtR2jmcGVG2lpGC73USD1a3lMt5fheY+sdETaAW3napwiOBiX2AZkGWo8TodbB7wV+f04E0Y4UY5Kec9BUBiGXXDA2KBkGIZ7bZ/3uvTonxmN5hFYhwe770O83YsRw8qM20JcyjkT8YqYSIAFV29BDPMnkPH4Cb1OPmII79XfB+KUsyQCrKK0NxNXADckT8NjdGoRI28vLjFsiScNoFTg8SdJZBV8CwIaonlrSpHV8Tm4qMEGPFFlLq5i14oYp/WIt2MEHuMxERnLM5CFtV79M3pbDKcCWvyL0el6EYPUAJLd5zJcbtuos+bNs/YEMQfOxnPixLWuBrIK9DgDYqZytw43/nfp/tbOBpD66z2U6TG/wlXJQMDleUh/MI9Lu9ZjFZ7YcxgulDAGzyFkKoBou5pinCUXjeNS1tsQAGBUTJM6n4p7PjJxz9Ao3PMGnuPIAPU6ZH5vRvqLvQem9JcTaZMO/X2Itkccz/mUo/vs1Xru0v0tf5RRREu1rvm4umFx5D4NxJlC4CS9vsUy98PjjrrwWKQJev8TkHdrA7KgUa7tYwCxUNskiQNekwKPehWPqBxaIvtE2U+xjOJWgiDIJzK/hWHY3nefd1OCIAgQidg3wzC8+8+u6HtSzOizFXJbtjJe0R75Ls2gPNkTeFaTLl9cB/xn6Pl3ZgAd2a4hf0bIzlcH0XZOkgrWcCpb2dQxhiLauIJfAqImVk8V1/AYAPdxM89OmkWRArM4G/kgv01RtGaykFksEAEE4D5u4q3zSjhTNZSv5gm+wR1cz0PM5Qay6GEyy2mrGwKl3YyOraGMJrIu7+a5f79c6j0IUVIzGeaTgWez3VP0LEI1M8+PiUGYp+hJJI7oB7jUZQKYGZfPj+l2Ha6kZ4PPcAWY92wVb5Alph2DDEYzdP9Ferxxcz+KeJOeRSatR4C53TAnm8mFy1nymLqtNsMNzOVfmu+A56Hsxj+ymLMASY7689hHeFLXBG7mfm7lbmZpIqEzWUw2PanEtXkk2UNuKtaqg1N4gfOpo5okeVSwluVMpoI1xNnIcqUgDqItFcPVQCUtLw2naIYAlGRpHi1PDfeuGQcGkJ6PqhXvc9NwSuabiOPyzU7EKinEE/424ryOPcjsYfQ4u9hxIoxwFNThTpRjICbIShAECcSGeht5vAXIsPwW8KkwDJcf+Oi/TOkXBOEQZOrYgBvC5g0oBWU4C+UmKoXchXh21iEGnFHkzPtTgbNXByLGc5ROdCFiXJrEtAWGb0KM0ieQ5Ne7kBVv8xyZ4fcSTjMytS4rzyGr6+ZNMBGDDXpMCZ6zJUvrntDvNK91SiBhrx5nks/mqbJ6WyB/g17LvFYLcYnrMr23LhxEbNB2N5pYlEqXp+cwWWm7b4vvnYcAhL5CB5bA9Q4cNBqwAqdjmdfEknca/c9AUqbWz2hwbYixb/v3IuN5E+6ZWYAAG6PFTdB7P1O3M3B56HIcjBThMTDGjIhm/NiCgIRsZN7swWOStmgdh2gdzJN7ddqdAAAgAElEQVRkz6wK93AZxc7YHL241LV5Hg1YGFBbisTCrcaT9BrYspgty5XUjPeDs5GpK1PP04u8D+bFq0VAUj/kOZZq29Vq/e1d6tJrbdPvLemqeSAttsm8m0NwoZAebS97DyuQ9+J6rUcz8s4s0c9SPc9eBJgpve7IY4LeH4TLHj/w78H4E8IIBytBEPwd8A3E8rHJLQzDcMQRnvcMxFyux311XwnD8IAyFu+tMML+yqn6afFANiIWAuWS2BOk5U5GjFJwz8/H8N9NGx9EwWUZDLhiO7FcoUytrR3PgOrtxHPFG1HCW1zDYzym6rb76MfJ7KYCocOZR+gOvgFITMkCzmWiBuDEaGYwzancNjGa6SY7RfFKksdSpnI3t/IN/hkQClYW3ak4FRNdaEMkslsKh0t8k4KcAXO2s/P5Qa5y87ze+yLdrkYAkuWr/wiuAvSIfleOaPd/M7Idx1eSzJthdLhGZNU0ods5+rtd0+h1BX22x/Q5Zk7kGtsh6+JOigrlvlseG87gazbyQz6FlaWpmxDq2lU8wTImA/Bt/pH7uSlFbavS/FE9ZGkz1PEN/plselIUuTgJljGZmCLpIrZTS02q7R9uvp5hsY3s7JVZuW21Et6tzotJ9SNAJhFz89t+r0b2hwhoN1aq9eelkZ1MLAGOPdBzhDFBVUG4bN7B9wlGnYgJOlR5zz1BkfI8MC8MwxcAgiA4D1nz+DlwP0Te2veoZOMG00BkJsxCFr+G4DE8u5BFomrEsB2HGGfRoG4DIZl4Dp8OXPXN6HJLkBtfgOd6AY/nMOqQCbtbrqKteq7VyEJSMzJEmCz2FlxNayJOsdqi5+6n9XxJ62U0JjNK++MqdvWI0Vmkx4/AqXoWC2WCC8XIODcMMYqTeG4gU8azWJjXcWU1EygoxT0rBoQ69NOowpk4IKvHBSKs2HGXaHuYV8u8DlZGIkZ7pdavRNusLbKfJcgdhRv95qXJQQCI1ceM8S7E8LcYkjycYm/KeHGcomXy2yZkYDqVpUifs3P2QwCQ0QYtFma3trGBW/BYMvMKjdB2srgkA1l5ul2g7duI95VCxF4wOWzLZ2UePLQeE3Q/AxhxredWrYPqKJHQNl+PgMMe/fwbnHZpwiIWD9Yfef/MYxjH+98sbc/VCNgqwmOSipG+arLpdlx/vdf++LtokvMG+DbgixPoOU2x8IjLXyZZ6vFcvgi8PwzD7UfzpGEYvsLBxXuOwXKg6d1QzpDI9h6nZJ2SCW+bPqiWKJ3rdWRmNorWh4ApsDMxiLU5shxzbs2vWdx+Jtm5IlJQxHbu56ZUDEkeSWqpSRnRd3b/E/dk35IyuBdzJhWsTf3+BFdxLgu4pfM/ALgv/0ZqqeFL3AWIp2EKy/RT1kvvar+Nqwqf4OEGMf6HVa5m00NjGHy9ADNWdbsHC9h55yChISzQ+7oTUb0z/nk1MBnxxljJQSZmm5wXIEApmtNzDO7hWIRcz+hzn0YEGExs4fN92to8SGbGJnBQlNDvOoRaZm21vPZ0igrbaGuXZ3HpNY9TRBtfQuKpbmAu87g0JTpxE/eziBmpdntf01vMLpvPWb8XL9wvTv8QBbxNE6JNtZQPcC2P8SRXcB0PA/K8bub+FP2tlhrySKbokJ+MzeXp3kspypCZoaiyTRLZ1gkglQk+hJbA77MU9wQZneFSXClvMNCSIB3MR8uePtvHGRXuhCfoqJRjCQRNCcPw07YRhuFvgiD41zAMbw2C4Jh41JYuwehRxXjyyQZknNqGGFu2YGMxOaZsdRVOtarC5bNNwjgbeZXN0zAOBwymYrUDD5Lfp9c2aesNeJLLesRAi+Or4G2I8TYKl8E22lISj39IIkZ6PHLeWOTcBbjX6mxc9a0YMVxHIeNYHE+WanNJHh4sb3EkoyL/5+BSyv0ix5lHBr1etu5j5xoSObcFsxcjQA48Tuls/f+0yH1k4zFIlp/G/rr00yhv/fFYF5NnzsfjcYwulh/5fW/kPFMj7YueawqyvN8PAdAfx4GNUb6iwhWZiC2SgTz7LlwK2jw2VUiep1I9vk3PZzmqjHbXjMc6dUba29p/B9LHduOA0CTOJyD9rEufoYElE+2II7E5ngFE+kNGpL32aRvk6Pf5+n0lHi9ndE+TvDaZbqN7mpS2AZkexDuaiTzvkci7E9f7r9f/LdbIvDqmiGfAvwDxbi1GFiSuxXMlWdxWJe7RO+JyaGGEE+XgZT3Oh/krLwcy+PYgyxVGhzsd+D3kxWUziQAh3WQMvpoA8sKsBr6jcUB12aL6tTqAagE9u8nlusKHU8H2zSNiZNGd8jYMoi0VcwIwJ/tRfsQn0iSxS1LLI3Bn59c4K/8lGvLFTVpJA59rfIA7y78AwHASFNDB3/b+lGczLgagtrCG7RSlgus3NYxh8vW/p9s8GrGVPHfG5e6sm6P3dXHkPr9EelzKR0n3TtRp+3xfv5uGgCdb1VqE5xsC8aaVgqbckcGyDm/r7yA0PQsA+CTwU8+z1PNIvsQEPUKaAl3L/OG0bBf+YtbFnbTcNZzP3/YtAO596ks8e/mslJJbkjy+meL8wcnsThOliJcl6CGLO08XXsIt3ffQlj0oBZLqqaKJMm7hHtYzEoAK1vAyZ7JW3YNCk1uT8jgV0UZVRj2LmoWuNyy2kZ11gyiapvFZXUMkZmuNxqXdgMRKfUYr+Yi2++OIUQSR+CED8yfrX3RJN5on6CSOKyB0QhjhqJRjCQS1B0FwG9LNQfDC20EQ9ONQocJ/oWLGrMXE/A4xmCz+wSR9LbdKDh7zYEDDJIOXImOnzdZr8JX0OK7gtQqnXY3S4/KQ17xYt0sRo68LB12diFdlA+5lGYF7SHrxPG0diHHeSrohW4gYsq/jsSbg0tPtyDCTh4zHST22EFebi4pUGkgahauLmbRxttZlE0KFswB+8wIlcDDWicdmdOFKcW34fNVP651EPAW5Wq84YtDeode1eJNsHOSZlyQTAQBG5cvH5Z3RNjDaosUwmbx3rh5bhhjnJuRgHrEy4B+Bf9P2WYh45Bbo51YcZO7GAW9T5Phxes5WvZd1oOtw/szHIFZhrt53FfIsM/QcGXq/jTj9ED0feo6ROAAxLpAlvzVAYN44E8DIQfq09fniyP3vwhUIY9pm5k00MQtj4GQjAKUGee6mEGeeMBP2MAn2HMSmyEIU7l7HZeTjCCicpN+V6/67db9xCAC9GPfm2TMuw+Xlu/B4pio99qiG8Rz8ZCfU4Q5evgzUBkGwlIjifRiGn33vqvRelWjsw0mkr5gX9dm3yj1BAO9kplO4hpEuif0K8KquTe5ExBCmdTK5UAzlHrJoZnBKCAFgD7kpQzqLbmI0U0YTIEZygjizeBEQz8JFjS+mgu2+e96NfIsvpbwTvzr9PC4r/xnzVolb5uVxH+CrfJ07M25PeSOu4TFK2MqUSXLNeVzKmSxm7m7R9F7VOoUZG55n0ScukIt0w7l3/JoX//0i2bYJ0rw8qxAwo7unPDpRENOBCEVY21ksi5VXkYEqGiMUUXZLrc4sfFO2fzkW7oSeJgUHZ+BJW7OBj4RAIPVU4BQvTLC2anzqkuMuf41P8cOUxPX1PMwn+FEqHusT2x5jfXE5y7bJjb5c/AHO+vwf+O97BeA8kX01QJpEdhY9dFAgIBOR0X6B81N0xoe4nmZiqZit+cymmyymxxz4xmpayNZXdBFD6Lkz3yktXXiwppUE6R6wHHDgA9K/G0kX/DiZY5cOd6IcC+VYAkHXAF9FnMMg3f8axHa68s89aRAEZcBDyDDRCzwQhuF3gyD4GvApHG8clN8NMqPmIAZRPRJvYPEWlvtmEhJLkIm8w9sQg38kMm5NR1aUL0HmlCF4QL7FDu3S85bj+YEsRgY8T43FvWQi43Mb4mUoQIDBDsTInYQY4hm4h6kMz5Ni91WFq9UZ+DDKUhcev2T3bUZwN+4psuB4yxFjcSCW/LIQlw8fqPXswT0xE3Ej14CdlUzEyM/Uc2cgQ56BxyJcFe13+rsl5ATxfuQhNKm43v9WpGNk6jMyD4CJTphXYHdkuyxyPXDPiLVxfzyHj9HJrA2bI+ePIR6fLQgIWomAgE1IbJDFKVl8zCY9p9HhLPZoN+7BSOJKf2V47FUZ4hFpxr0y5kGzZ2tKfl16rVwcvJrnZwweT1SAgxD73kJT+0fOXYTHdJnUt9H8TOBiFvKeZODxT0YprMDpm92kK+BZwlvzhNkaYIP+FSN2RnFkn+fwOJ7T9NyXaf0tf5aJgthCQxdOgbsEEbiIUhojxKEjK4f2BJ2gwx28/ABx/kZjd/5KS3QF/B3SY4KMxA3we6AQBqtMdsteedlNhjGBvEQmEGBxG1GltIJuehL5JAsHsGrDFK4c8RANVKboUDcwl3qqyFKjdypLGUQbv1Yp5TySLGUqn278CQDN5YNhILx6nrg7PvfhB8TborB2JOuZ98xH+dWHzgPgkqbfsL2siEoa6FBXzbW7H+W3uR/k/t6bUtVMZMSpyhXK3ZK5M+FfYfSP3gBg7TXjefGmizxhJ8hgZoDm+8jE8WPd/rp+/gtoSJMMiosibdVKejzV9xFgZOeM48otAPchQOnj+iy2IyIJ/6W/vwBcCqM/+wZrPzEefhFImyyDwTeqGlzDeAbM2E6eRs22MYhKGlKg5yGuo4ZaylW04LvFN3IVT/BosQglXPubX7Ly3rEpz9C3tn2N1uKBJFQpo4wmBrGdNVSkKHULmMVs5rNAO00zMbLpTj3/ShrYTlEKoFbSwHPzL6foAlVyy8H5y9Zu4DTA1aQDIJCYoLwSSCp/cfAsaBkCqXxHS/lTStzxU8IA3jkmOFLHVgmC4H0IaXI7sDYMw28ddP9jRRjBShAEA8Iw3HkUzzcYGByG4YogCPKA5cg6zJXAzjAMv3PQE0TKKUEQGgX4OcRgWqXbFr9i4gKZyEr4OMR4KkSMqg3Ie7wDAUTdOE2pSfdpR1a947gAQxYCCsqQuWcxYvw3IgbdC7h6lXkbwA3xYsTozNRjevRaeVqXhP4/BE/g2YQYmevw5KbmcSnWulXjwMmktctJT25pBqXJczcjxvBmXBygEBnjMhH6kdHdLP5iQuR+svAUAuYZMq9SDFlUm4RIOVm8x0Ct6wSc9mXxMFW4B80oZyaDHVUCJHJMu9Zvh7YluLfDQEMRPreZcENX5Hf0/D/W30DU1iw1RRUu0rABec67kfk1A5cGt2vkk+6VMSCxSutsogLmEduHgBWT0LZ6DYvcp1E67XmOQgx/oxnm4Z47m/cNMBnN04CqUd6WaNsNwYGJeU/NNjDrNQ/3GmXiXsa9eJ8yEPscnvA1U59FMx4flYU89924Ip55VXO0jUcgU6epBc7Xc/UittFqPObJlB1t0aPjaAgjVAThsh8c+Pdg5olA14OVIAhqwzCsea/rAceKMIKtc0ZXzO1zamS7kJS08NixLn0KLpFp2yCTXsTQL7pgC91d2RTlivG9tr2C2YXzU2IEs3iRQWznUl3jNGllo0/dwFwaKaeMPwIioX0VT6QoXN1k00MWZzWKgXt9+QOczwucqpS5PeRyKm/RRlHK+N9KCUny+ORjjwJw5TU/5efNV8MCtRyHQtGMLbTNUjBYrX8mCDGtW/IemZfmDESVzTxB9yJ8lR8gQOUGxKtzKakcPbQi9Dij0CV0XxOVWKPtaBSvLwJfA8xss3giA2av6L7/GXkeFcB13XCD3NeV839KE++jmcGA5GiawcJUW9/GXaxhdEotro0izucFPqCCAvVU8cEHX2HXHIkiXZQ9M43atoYKvrHtXwG4o/grWoU11FLDZPX0rWU0g2lOJb9dxmQG0ZZ6NtsZxALOZVOzAKui0u10d2Wzs1WXFhOB9Dtr+2nAzcjqYB1u4KQ5d1YgM7MBH9NgNZnsY40Kd2TCCJMmB+Hi2oyD7jMgp/ewrqGMq2XAljAML+7z234dCfrbBcB3kely7qEAxyHq8COEiPFWGIbjIt+/q2sEQTALGBmG4Q+CIHgoDMPrD7b/MeMJCoKgBmGBDgDeFwTBBODvwjC86eBHHryEYdiC6oiEYZgMguBNfAnsXZVuZCyLBrRbsPckZAHHqFsWz7MKT4i5AfeUbCZ91d5oY9Hs9rsQo90Mf+vuFgNUj4sOVOKGdRfu8YkhBtorep6pkXqZlHE/xHA0WeZCPHGpeW1MRrsEAS2mktap1zLppXacMmQ0wFHI8BRHDFjzKE1B5gBb2TfWhXnE0H234TExu7UeJqNseV9Mna5b93tQj+/Vdr8en3fQfUzpzgBONh5gb0pldg4zvA0cmVJeBvKs+um1d+l2N+69MLGMKVoXixtbp9e6UNvoWW1vS4SL7mtqZysRINGO9AuLGULrlotLN3dpPXJwTpApGZpiYX9cFCEP6Vdm15h7tB8Ofvrjfdtob6Nw4QYD/eZ526X/W5xRFgKIirWu+3C5cVM1LImc34BMKwK0jCq4V+tiXsp6Pecw0kGrUUFjOHgrwVXhDGA2IjLlC/Va3cj7UqnXGYa8F6uR985kyXtxj5l5tI64nIgJOtKyMAiCG4FnSKfDtR/4kOO5mNEXXRE3dTgDQwqATlHvwzrERWrB+lfj2vwgMSumygJkzegUta+C7pQaXF5BkjgJnt4g3oTYiIfpISsFflqIcQv38LIa4nkkmcUC3veIGKw1H6mlJTtGo6KJj3z8GX7943NTQfE33Xs/0x6p41dzxBP0AudzE/cz7aU6fnSOKNBNZSmLOZPrrvkhAN1kcWlsHhXXy5LTXY99layMHgcocxAQcr5uL8hOT1zagQy8i3S7AAFAr3TDk9liQtpEVqqLy/EeWJktgzxIjNHzyKolpANLa+s6HGiZm9yWam/QY27HJ8kFCDVRw3yS5LG8fTLxwkTqvj/f8APCt0V04Fenn0c1ddzPzQDMe/KjvHpFdQqwVFFP4yeHMrhbRvYZ3Qupzx7PtY0ib/7H8lP5VfF5XPKb3zDlPHELjmQ9U1nK4+o9qqKejZGbm8ki6qniDXWZ5ZEUpThNrtvWMUQGXaMexkN4NvD2eRoZdFdH2uZZ0kN+AEGfi/T/CLCHvjv+ry9hENCTfShX0GF7wj6HiI/n7+e3d4AvRB0JQRD8Fpmy70OyV20GXguC4FdhGDZEDw6C4FRgTxiGych35WEYRtM0AvwEecMfiuzX70DXCIKgClTtw8snEFPpn4IguApUueMg5ZgBQcA9yPDzK4AwDF8PguCso3mBIAjiiB21FIkG/UwQBNcjw9cXwjB8ez/H3AjcCGLsTEeMr1zEsN+BQNc6XLq5ADGO+iGG1FY86LoIMWKn4rFBpoh2DjL/mBTvJXqNIsQgjCMG3VLEcDWPQAIx6ipw74CJA1TinphWpNcW6vEm6DANlJntsSyZyJxnksYFeszruNxxMU4ry8UN3Ew9nxmHDXpNM6zbEQOyGRmi2vXee3ADOAroirTu5tEyz1kvHsNi92sJbPNwueWBeG7pYty7AB63ZfE2turfgyvBtSLPcz0yQhhlawuu4mY0sqgSYCauuNYfscjiej+r8Zw8o3AP1HPaLs24/PNuHFAaJa8Bz01l4g7Nei4DoCYuYABuAgIEpuE0ShOisMSnRi2fgkub99P7z8Ctyg24cIEB4L14fzb6GHj/3aLPwiikll/Irm0gN1Ova4qGFUi/sxfXVjCM+T0EedZFyLN/BaeAFuhvqyP3shjh2W7Dc28t0fux0XsC8u6dj0is2wJBjp7TqHwJ5D2xPn9UyomYoCMp1+jnlyPfhXg3/SsstgJuBtHJyExj20qEttlvOukyzosQ74WBoiuAuTDgOyLA19OVRVZpJz1d2Sn60+iMtTzce10qJiiPJMuYnPp9PPVk0ZMSP6jqfJNE/tCUalr/3/RSXr2ZNWW6dHU5IqSggfLZdLPrIxlc8ve/ASD5vTzi3Rv573NG8okmoX3dUfYVprKU7/I5ACaygk21YzxD9hRouXV4yqgeN+k1Vj0yXnIFgQym20mfLF6IbH9a2+aGbBcpsBih5y2HUrasYVtbriYd+BQgg64pnl2gvxvwmgF8eCt8VJdsdsKAMdvZmRjkstxxqdP0moUArKecnrp8Zp8j7P77229idOUbVClN7CLmM5L1zED2X3nFWKZ01vH+fFFzWPPVCTBqR2p18LdXnMEHP/wK3//lxwAYSaN4jYrgkm3S/q8WV5NNN8MVGdtzXoQIIRgNco8Slpsoo611ENPPkToseWkmzArhFVOHC2TyNID6GQT0RKkPJyFdOZnQL4YgD9cEP0Bmnb5m7vEFhg5RBgVBsCyy/UAYhg9EdwiCYChwESLsfmvfExzEkTAQaLT8a0EQPI6IuTb0OcXZwN8HQTA7DMOuIAg+hTDQZ/e5zstqo0fLBw50jTAM63EZk+j9fBH4qp7vSZzAut9yLIEgwjBskpx0qXLU4o2DIBiAZPv+fBiGnUEQfA9h84b6+f8QFNm3Tg8ADwAUBkG4DDF4WvGV8GfxWJV65L29AvfkRsURopLLlQhkjSHG6TDE8PqQHteAGOQ5eC6WBQiAMpqPUX5G4Xl9wL0C9biKVSnuVTKgNAo32l9HjL4eZKw3Y7a//v6c1tnyF+1DjEAL+re4Cyv9cS/BXq3PCNyDY/Uyox0cSLbhYg6mItelx+XhKnj2LMx7sxqPrYkCoGE4CDOAYSIO5pEzOl4BYiIYFe9O0oMLsoksMWuxGLA2PFaoTK9rsuPWZgZg7TnkIODKZKrt3E16z5Nwiel9eNyT9aetkXOv1vaxftOkfxZ7ZlQxk87uxhPOTtE6bcPz4WxAjPyhWoehes1MPObGAGgV7g0pidQxR/83SmCmHmdy7VtxqXfrP73IczPAZ1LYJoxggNfaD6Svbwa+gNgUQ/SaBbg4RwkOzPvpuTbhOZQuQfr+a4g9k0DeT6N8WthtL07RHIUrEB5xORETdEQlDMPhh97rr6X0FUaISghPxf3N7cBY3z1BuoxzHM9GDDLhfTGUnDrAuZeLHPaVscdTOXj20Y9zMxZwCYLT53IDNzA3JYSwlRLqqWIybp91k52iWaz85FjiJFL0KYZDXuceVpaLt2rifW/y9s0nk32XALlrt/2S/y4eyfu/up7ZXxePxSU8w1KmMo/LADiLxWTVvEiyRvhuP99wPZPvrmWq0sDuf+pWii7dQtvbuszSBVwcgnpQ2IR4WwxE1elfNQ5sXkUG6ucj22PwifkexCt0NX6NRZHjDSRZWyeAvy9Ji7/a2ZHnqy/ATdffzf0v3UpSeXwjaWRtwXju3XAbABeOmMcUlqeAyee5h/lclHpWRbRx0ltwQ/5ctOHgF6RECmK0QBmpZ/HBR16Banh08ocZyXoABrGdjcRTQgh1VJNFT0ry/OHe6zgzY3HqHirZysRYXYouOf2chQKEErpD3/gfixQvxcH423s1yaw1XgIZ9Q3c93U0wPEEgHrJSCkdHrjs2X4YdLh7EZ2mvEPs19eRcB7pa3+b2U8qmzAMfxEEwXDg8SAIfoHY2R881LW0DDmca/QpzwNfC4LgGtJ70X7LsQSCmpQSFwZBkAV8FnHPHXEJgiATAUCPhmH4FEAYhlsjv/8QGdoPWpLAeMTQOxtZ0W5CIG0Cp2rZeHex/v460ltMsjoXGeuaESN5CfKkl+By0xfjBl4CD/i2RKXmBeqPMBcsnijqRYjKGVfp52qcKleAGLk9iChAFHyUIQZxqe5j0s4dev4GZCy31ft+uEFrVKF9iFFfQXrMSH9tu616zVG4xLZ5fHbo9zYXmNy1Bdmbgp151kw+O0fbykCHKYf1w/PHmLfOVMwsxqMfDtZMCW03Hntl4C8KgKIJbZfp32V6fpM2z9FzD9RjzCNlnooeXKzgcuBn2tYJxLO0D4/fMopeu7ajgQYz0qMAaBeubLZb260emTst6D8X98jsQEaYcgQUxPBkueYFMbqj9T0TODAQXox79Ewu3bw6Rksz1TcDRF2kA+gcfR45eg2jLFo8VTMuE26eTqs7yOKD1XsJrgJoAKgUeb6Zej+WN2gBHhcXlazfoNvT9TfzRr6AvK/PcBQZbCF/9eH8R1KCILgZGec7dPsU4KNhGN7/3tbsvSh9hRGsFJHKDQSQN9ZdsSAvTwGuajYBeXGiptQrAVkXi2xzA5X0tOZTVziRkWp4dnAKTbyPZXrQV/gmdUxMGeL1VHEbd5HXLYZ1c/6pNDOYnk+KUddNNmuo4Kxt4r1oHDeU8sbNTHxLTIK3bz6ZbrI45S25h2+X/x/ySDL/67N5VK33U17aw67TM/hE9o8AkdFuJsZbKSKs5NRZ3nq6bEzrpu3pISlaGR8B9gTOGqxGBsIoQMnR71dHvgMHLXHSk3yORbw9iyK/z8AltsFpJcDgf91Iy+XD/ZpzgGezGXbjalraY/Qsyuf++bdCF6xqFkW4ttggRk96I83rNoVl/APfBoSqNojtfGKWeMxeXvAB3sdbqRxODIQ/futUYp1CTXz/g+vhI3DtIwIuX51TzSC2c+2Tv2TXh4Sk/2L2LGZ3/ob6fAGpzcSopYa4NsidGbezjCmpGK8K1vIQ16WSq67tHQ1juqFAvXAmKGGRIR3aVgnckOjIVHEE3U7uQWZqe2C7OZ7V4UKCFIXxzy1BEFgMzvIgCGYcYt++joT95U3br8hAGIb/pl6c7yHxOocb93/Y14hcaxXp8iYHLccSCPo04jgegtgzvwElrR5B0Qf1IPBmGIZ3R74frG4+ELt11f6OjxYLH12Bq1+VIKpWZlxfiRhTCRyQzCKl9Ek1kv11OmJ8GY3NYll6kMWwiXg+oErc6E8i1LFdOC3HvCoWJB7DY0IW4OppRtvaqvWbhMxr6xADvRMxWsfptTtx8LVOv5uIe2ja8fw4Zpwb7S1T93kFj2tpxw15i+nJ02Nshb8CsQFH4DS8aPC+xXwk8Vggy8/UpPWPgh0Eg/YAACAASURBVL9zcPnvMv2/WP+M1taJG8TtCFD4Lzyg32hXRu8yTwS4KpgBnm0Ifaocmcv+Dgcb4LFfpo5n1zRvhqkAztP6rdT7KdFzmHejXe/dYmtW4DbMOKS/lSEejRwccOfi4MmARp62m1HemxDQbAqEG7SuRuszNTaLzYqCvEytVysOpi3xqnnvXkLiWw0oGriydogj75SJGWRp/eM4oKlH+rDFrmUgz8rkzCuRPnuhfuYig8oInO65Sa/fpuc1YLgbAbOmAmgetd3azjlIv9qBDFLW5tE85X92CXGljRPlzymfCsPwPtsIw/BtpV/8FYKgA5XN+jdUNpPqy+1ScFCArB58PHLIq7h8sVK4ehZJ+EDLmHwmV/6eZmI0UQbAqhWnQQJmX/5rQIQOsuimXmNCZjOfe7iFG7LF+xCjmQrWktBV/SbKuHbVL3l7nBi08c7N7CrLoP81skLw0C+vo5IGSrNFQ/mm7vu4K/tLzGJBSqGs9pwa6qni2/wDAEuZylKmsugp5b+NgQHV21NxTKseOA0u7ob/o4ZlNTCrG74TMTTrcIBjYGZopJ2q9Tvz9DyOCCVEV3gG4WDJjP0Zup3QP6X9tcwe7pQ5ECulCzbdNQZGSTxWT1c2WTndDC4U3kVLe4yphUtTnpvRrOVbfCkFcl7gPGayiP9eIBLYRbTxzqmkhBSay+WzLV8AS/yTCfI697DsdPHaVHW/Qf9netn1oQxqs0WDpIAOEvlDU2p/MVr4EM/Qo56KFzif7RSxXmO8migjRot4f4Cs6k4GFCTZmdC2ttgqKwXa9gn+NI4qFfZyMsKeWqTbfT1Bpp96fBQBQYfyBB2ynA5cEgTBbJSUEgTBI2EYzonutD9HAjKIlEV2G4qTf9JKEARnItPkPEQF+jP7228/5bCv8eeWYwYEaYbva/8HTn06cB1QHwSBOVK/Anw0CIJqxOxIcBgyPt3Ia1WGGE6TkAAmEyVoR0DHJDxg23KyWGLKl5DYPwMB23S/0xAjsgENQEIML1MU24sYkbNwla81ut2Oq2VZUlQzTGN6/TG4AlwpDiRMItoAl62qWwJQA18GejbjoKUVj3lpxxXeQAzMBjw2ZgJiWJqEch7Sk63OScT2s2D+gbgqnklst+GS25asdgVugJvP1ILbLTaoDPckEKmjtWsOnnzzWdwlGFUiA3mDO3Bjugf3PliyzJn4+L0S+AZCzzKwYfExSWQsN4GBDbham3FA43i+GgNeJbiAhHmg4ri62m5cuCKJzMk9iDeyVPerRYx4C+Y3tbtC5NmbjHeptqXFw5RrexgNs5f00WkI0q/W4Xl8TEyiGKf3WS4ju44RiI1G2ITnpTL1tlxEuOAyPGFxDOlTRhMsQ7xA5+BS4hvwOKcuPD7NwGsmHt+zBve+GtiuQN6Rzbpvrtbf1PxAgNY2jmI54Qk6kpIRBEEQquypBtYesaXwv7P0pcNFy1A8uk6j8KL24cTI/z9FDHljM2ngYdYFnaldlteezria1yjhLRoZyaWTHidrUjc7dZm+hTwuZR4t6vNuoJKZLKQIiStaQwVTOut43zpV8jr1D/xx3KkpUHTWq3+g9rwpnPUx8QzlsZO3KOHVMjHM2yiigjU0UMmn7/uJ3MLNKxlAkhcVFFXSwFf4JrUzxHCfXLicJQ/NZNUsjWO68Q3Wzh4v4gMg+Y9as51+9Ug3o2NrZB+QwWIBPrmCDBjmFYJ0rX8QWlc17hn6tP5my7GmxGfxPjeQrgQ3Dhn0forkD1qUD5uhZ3U2m24XAHFT7D7uf+BW/vnGf5Jnw2Tu5lYWI8lPr+chsujh/U8KlY2twJWk5K6nLa+DOvjtJ8/Qtk5yyrrNVI0TKfFF2TMpukKWBj/4jIDQtz90Mk9wVSomaCEzaaAyJcMdo5mlTOU6jXl/kVkkyfOYoIaZ9HTgk3NpCPHAJ+MxkTa09i1FBt53on74dnwmKQLewFFSkmNPIe69LWEYfhmNn1RP0Bf3A4D260hA1lhHKdVtCwL9r6FPCYJgIvBDJO5oI/BIEAR3hmF4e99991MO6xpHUt5zEBQEwX9wEPfWkSa5C8PwFfbvUjtoTqD9FTOcovLGIxCjqgGnO+UCj+KG+y7k1RyFvOMW1L4BMfJGImNfE2KQbUOMLFMzs2SllgfHqEM1iHEaQ4xnC5q3/C8mDbwVT45qY+9evR+TQ47pfpbscxcCggwENOKKaflaZ6M2WcxSEo+VMkW0ElwYwmhueUjjj4q0YRMuWmBtuzuy3aR1NQM2iXsODKjl4BLG2YhxWoQnNAUxYE1uPA/3atQi4KEeL33lpKKuwg2kq82h11yIy35XaBt8AQG2ZsAX6X1E783EGuy5/grPvWSiC0aFLMLBeC8O7ppx9ToDJybwMEvrtAkHOB14G+/S+ppy3Vb9rlrPm40r/DXjiUotEWobAk6Ntrhb73Wk1jkq/tCu+xkYKtbr9uBeoWZtow68X5+BvDsVes87kL6zAfFcPahttBfpX70IrXRDnzZZqvsN0/PFtf7X4mDYqJ8FuLCIKe8tQRLHt+mxtghxVIqpcpwof255Afh5EATfR+aVT+MRGn9FJQqA7NNGtPGkSWabXWi7rsYpceB5bYyatAA4A3paxRM0vXIhPTVZ5JFkK6dSznoaGUkeO1NxJxWs4UVmcS6S02U+F3Emi/8/e28fnlV15f1/TpDcMZAQSCLhhkCAQDAFDS8aRFAERIviT1ssnVYdn0r7dKqtddqOtrW2pYyjUzutHbUzDraOWkeqU3200FYRERCJvFpiJBAgNBhekmBIICTh5fz+WGuddYIgWrCiZV9Xrtznvs/LPvvss/f67u9a3xWBogRtnLYbFo08F4ALql6j78qd9N2soCgBqynhgjsEBH2hy+OwGapuEBomh3oKn9rKHdO+A2fCCxPGMofPMoPZkUrZlW1P0/WtA9w6QBJ63n339+HqkF5JWVhOUkvpvDLm7BKFs/YZmXLfJlpwe4L1k85yRuw+BKRk4W5xT2h7LdR90hAD3tzdvgn8PeJqZ209BJnkQZx47sHzCu3BWSDbHooMPL8DLofsm0SevCi9kpUV55OabGfwl/4UsQRPcxX3V32DZKHc57f4V+7lZn45TWzJQqrYQU+GsxqAX478HNcNepwi1gMCMF8YOZaLmgTwJBO1FFBN94f28cINYxnFShrI5ss1D0egdCAbaaYrdyJArIBqSimLQHEbCWpJRu5yI4tfYeVvz3cDZWsgb22BbtskuEz/FyATywFwBbgCJOeVgR5zh4uj+48PAJKYoONzh3u3EgTBPKSHD+AIREIYhvOCILgJGXM7Ab8Mw/CNI5wqHbg6DMONet6/x3t4/Hr/g3CiOUEQbEXEDR56j9f4i8uHnidIGwSEsSkG5uj21UjejVs+lIodoZwWBOFVeCC1raZbVr4KxFBbisQKmKrZEmQV3ZgZY1EsKWgZnnAyA3m3LTZlK2LAbtdrDMcNRRM12I8YqQN122Sjm/X7Zq2LsS3m4mQB8eYWVoMrzNn8ZwzEEsTtrLOeazkCzAx85evfGr2HTDzxa2dcUa+Tnm8jMmS9jDBnFsBuroMWUI/WbSli0O7S8+zCWQqLP7Lc5Afx2JwL8XgbiwvqgQCabnh8z6W4wXukEneBs88GduJiBpaEcxTEQn4l1nSatlEX5DlkI2P+QcT4NjBQg8QFZeF942wEHJmSncW2GHAwgGlubodi+xpruAFPEJur92HuanZtY83AhRfictl7kb61EZmDp+GJZA3kWJJcY+Ky9DxpCHhr0n1fR8CLuW5uR/qfJes1ie083dc0f5r0Huy+N+j35kpZrW1scuf2rFrxnFT5ep3tSP+8XNvvd3rdFjwp6jSk/2Uh7/0l+Dto9mIeMOdE5AnqH4QrfnD034PrqUKw9il1uCOUIAhSkDWHScji1/NIbokTJrLz3utyMuQJihfz49qFLBEZE7QWGYUVyl/V2fPZgAxS1+C09zLkBTAwkNfGyOQKKluKmJ4u0/caSiimIsotM4vbWcoYUXjTksXbXLxSDOu9Q1Po8soh/jxBErpWMpiLa5ZIgD5AG1R922Wbu2w4xNyhEyN2YxyLGcZa+lbtZFGhAqm617gl9186uAytZjjp6tg8Skfo+1vE637P7Byyb3qLhoXaLvORF9ts6nEIQ2OT41hth9/hTNBCJMePrUw1Ij3RnH/G03E1shRhdS6NnXMPAqbQ4/KAF/CiK6SDb9Ukr7VF9ErWsm2eaIIMnvInBlJFI90BmMT8KI+PVGEhzzE1EqXoTzUlrKFvjQDOZfkljH5oDXfcIDmAZjCbvq/shMFy+arcPhSWb2XW0G9wo3qZdq/Zx5P5UyMgVU8OZZz7DpU4Az1zWqZzVfrTUf+obUlKjqB1ul5dhRhN1k6/Q8Dlw7F2yAN+vx9/QG/pQbaUuQF3tLZyMoGg48sTVDzq9PDXK95dB2ZE8OapvHLHKB86CLISBMFLwOQwDPfrdmfg+TAML/pwa+alSxCE/xdPjLofMfqNfE1DDPjzkNXiyYgxtQGX77WEp414YtIksqpegifBtLgey7HzOmLAd0YMu1GI4dmKgJ8mPNZhLwIwNuBiAbZabcb3QdxtrgVf1W7Wa1vy00Zc0jkLQamNiDFpbnXm7mTGbwoew2N5ZFK0LpaodQueUwfEMDXxBmPcLEA+Ew/874azICZZbezCHNzob0SMV2MgmpEFNFtQslKHAKJbcSW6LXQscfe7OjrKPBfq96/Gfgcxus0lyxb5LgT+QdshBXn+TQhTswFnuDohc63mweZsXOiiMw7qXkdMl85Iu/fBJaZ34UxGOu6euA5PyGvqhnZ/Bq4M2Fk+p3ycXbQ2W6Xft+JAxdwpzWXPEgpn44DEpMjbcBbS8hrZIoEpvxlT1huxMaxfGOCqQfpCD9x1cSAyFZqLXycESH4eec727tl9mTx3BmJbmNCCxdwd0mczFme36vAEvmfj7nwvnwgQVBCEK97FSSD44qlkqR+V8uGDoMMdPUwdzpYThun/fZBR4Lubu5YNzibfWaLb3RD/bV0t6VpSz57t2Zw3YGF0pVp6cSMPRDFA9WRTxHqK1JF0IFXspGfE0txe8xMW5Z/LyDZfOkq0HaI+U/wr8h7aDQl44Rpx0bq4ZgnP5k+mUvn4Iio5nRZq6EuxvpFzmN7B+K8lyTSe4n4k9WA+NaxhONt+LoZk1xn17FmW45S/BeNbWajf2fvZivjfNuLMz2g6ikpAR7W3RkTg11bNWhEjwlaepiFs0W26bb89o9slCFOUFsIkAQxDNy2nkI00KjobyEaeOXQl2SnispaklinMiwDIlLa5NCcyIpYOoKBtM80JGXFnM4Pbq37CAcGjrM08k+EL3uTtCcIcNpMhIPW5JbwxdWB0jnZSydYI2gayuYtbI/e4VNpZy7BILW4x49hMQQdhhIKUalY+riIV9cjkYe5wjdqG1Tg4fwZ3AwF4ewcCgEwYwRz4P57JUs8clR7+asXh/igdy3nBmlPzxTHKh+4OFytJ3HYBSZqaPPruf/1iEr9lCNABmQsa8XFzFLJKfR4SEzIAYYyq8WD/5bhBZ3E3efqdGX+2ul6Gu8PVIdNWGjL2XojPUyZpbPFJ1fr/EO7yZMZmOx6rsQmZEm0MNgO6m17P8vD0xoPJ0/RaB2PHWb1NYtokudFrWh4hA0ODkAXFGjzXziokAbe5C76FK3nVaduuQjrFQTwXjBmnRdoOLYi70jCtS5O2n4GhVm33Oq3TAm2nKr1vAwVW7HMdHhc0AOkLxtz0oSNTtEXvc2vsPEu1DlchAMCkoo0ZqsTjbdJjx72uf91wz5Qq5PkbkzRUz5+nxxu70oirolmQv8U0GQu0Cl/UNHfGhD6HEpy5sRw95raer98ZY9VZn0EaQlWMwsFTJ237BXg+LAMfrcgz66H3YLbWLq3nGjzuqQkHTHVaz3Rtu056L6U4mK/A45Z7ahsaC7sUB14mJNGMx/sMQp7jGLwP9MAZTBP8WMGxNTvfcwk5gYkB/nZKEAQPHks6/L3s8/Eqhxt8tmK+FVmasBXzczXppMX4ZAppFA/mjwfnD8UHAWDPmhzIgmoKKFEmAGAFI6lQp9cLWEyCtihY/1GuI4NmelmM824oyy8lNSG+oAnayEg0syGQEbRvOJBPlG/k4q8Lc/TGzwZyxcrn2T7S5UjmMJ2FXBTlHprCXPpTHcly/zPf5SXGM12dTb7383vIvuktzvuax6UwH/rdKQhmy91DOgbiT0NcImyyvwsxyFtxku1yxHC3ifEaxKCfpNsWbxRXk7sHZ5KWICtgs7SpFyyn/DvndEie2qt4M9se7x/l4Nh2KEn5E+dEQbFrv/UWU1LmsUhZspeqPsmPC78aAdIHEl/hKzwQMWKXlb8oz2SoSInffttPYC2cpsIYw0vehDNEohxgReZIdtKTt6eeHsV0NZBDL2o7qJWNYSnVCMCsJdlBGCOLRrbtSpLTQ0HTmt405OXAaF2Ubw2kDaxdhyDucSY8AR5HFWV3NNW/fbH/JysLdKqcLOVkAkF3AauVEQKx8X7w4VXnneU0xOCajKzSF+DqVkMRY7YCl+Y9GzFCX8ZdgYoRVn0vzgDtQm7WZHvjwGQ7YqC2IoDLmKNxeEzMBj2vKXCdjYzTFlhuDJAlODW2wXLWWBA4dIzFILZ/hl57CO5yl4XH+hgLZAZ6AgExpkTWDWdQmhH2YzUyNyT0mLF4nFQ6npTclMrsfswVaheeGyhL23ISLnWcTkcxhP14MP5BxKDeiLM3ZyNgI87oGNhD76Wcd4IbYttxt7nDdWjy9X5qkGdoqmaHYsdkahsOQbMGx8p+XJhgBC4UMVTPlae/D9F7MBdKE124HDHYfxdrnzo8Vi0Dl6/eoeex57xD778b0qZrkec7SrdL8QSwtQhDZhLg5na5DOm3jbp/i96HvR+WoNfAr+UIysel000tbhPSlwzgWHyPJYc1Nsna4zeIPbJBz/0yLsFuwgn9kOebi/TFZr1fUzzchLynv0X6mQmX5NJx4fe4yrHzBJ0qRy5XBkHQ+i6/B8BJ41Xw1ymHxwVZOR0ZPUp9+0ATnCkxPlQjqxjWWsYMWTSAvTRDxGDtmtfAnjU5NLdkkJEuo14j3SmjlFv4KSBB9810jWIYbuGn1JPNKFYCIoH9rZX/HsUEtZPKsKY3KVyi1/z+Rgn30NiaT1Rt5MAgWIzkU7+67jmm586hP9WROtwMZtNGghs1qOfH/BN3cys19AXghq/dz0O1M3hVGZHUvCba8zLZ8luxvPvduo4tA4Z0jF7oFmvW25EB7j585eY+3LcaBKiUAJqChzyEBbKeulzbVkEPQ3RfvWZ58TkCkmJl24P9ZcB8AaiEhrzesAYmzhMlvheXXkb9mGye4O/kgD9DQ2E2P90lkQVP9ria02mJAMvbQ0+nmQxqdc35wHegOfN0utcJmLgj9zuMY1EUE3TxgiViwIyGJ3OlrQupIkF7FOP1U27hVu7mi/wXAD3ZQRGV0bPJoJnsHg3Uqx9NrxGb2bY05tplcT/LdPvCWPsYO9QLcR3EBTqkmCpcA57wAT5uwggnSB3ub76cNCAoDMNfBUHwe3xkvi0Mw+3vdsxfu7QjK95peHxKZ8RIX4cYfT2Rcc7cz4oQYzYXMdjMFcoYl3OQFekK5MaTCEDZrt/lIYbbCHyxaINecxDuxlaBG9YW82GGaBJ3jTLwkIIDjMZYfSxOydS2DCyZEEu1nsMMzFJc7MDG9X54AtY63O3JXOXscxFiWKbjwMTy7ryOr+uYOppJJVvsiuX2GYYL6JgL2Rj9n4rLS7fq9c21rgIxeg3kmPiC5bbZEWsX9Fr27Izx6oEzBwaA4vFABi4tT08zYoBn4KxeZ23fLshwbWpoY5GFQStb9JgUBKis03verfXtpO1Wg/QXky1v0/Z6Gplzx+Lsh8XkWLLVXFyRz4QmjKnqGbuWuRluQfpZJTI/WfLZGt3nIAKA6vAcTibpbbmlhuEgxxKaNuNu4XuRdeu3tG7dYm1kcuxbccamC+4Saq58+QgLNUzv5SLEXW+MnqcGj21bpc+oU+wavfUYSx47X+th78VYTqBu5ykm6C8p33oP+yw+9i4fpxI39k7D3YQG0SFPEFXAmR5cd47+t9l3CO56BPJiFQKN4o61pzoHCkL2VOdQUywAo5mulFIWxYKAuGVdy6OAyFUPpKpDsse5IydGMUNPcxUFmdX07SmuTHu/k0KXmkNRslSA4c+/KSuSIIZ+bg6n08JP674NwKLcc0mlnctUA+lXXM84FjOfiQA8NPNGmAQTxwh4WLxrnKxuKNjb8uAQASA2CNvAbtumZANurN+OGOnLYt/fE8I9GutyDZ7xHER1bwXu4mWreIW6bW1upV7POQ1fARoGn7nzv/nNzyW8+kdf+ybPcBVzEIGHRydcSwXFkYT2CkZJnM/90ra33fgDZjCbcSwCFAA9tY8/TxN/uJkL7mTv+Smcpi58b0wYSC29uPj+JVx9iYQlPlk4lVqSkbvbeBZSRmnkmngVT0cACOB0WsimPnLJaz+k/cD6XD3OQIL7n/8BF+gAWW3ur+B9czUd8wLtQ2aNeL6sj095b8lST5VjlQ+9VwRBkGdgR///v3fb58MspyGGexZiQKUAUxGDKR8HGRZm+hJijJ2HGE8WfzIIGbvL8MSmNbgKlclXj8DjFExWGmSO2oAYabb63wMHO28hY0YxzmTsx2Mz3tK6DkAC8P+OjgDBXN4svihu5HfCY4kO6nXMsE3TupgAwSFkTOui34HnpFml570Kl9Y+hBi5xoYcwtXIsmPHmwx4bzx+Y4f+gaS3qNZ2NiZkiLZpFzwnTi1iFdkwEs/XY0lYo4y6OEg0UHQQN3y74YJKcQbIkq1anijLxdSIM1NmbFv71egxA5C+ZOP/W3i7gzzfFpzl24CDk7UIoLP8VZYrZxoClMxd7iA+z5ThSqS5WsdBWs8GvP/YPa9F+q71TYsFsyS0WYg90QkBbXYdA33VOHPTgrvypSEANQNnf4wZbMZzWJlMdznyrixBQI3VYQkS/r0UmTftnOnIAu005N1tQGKJwPMhteLucXW4O1yl7mNCJim4298JKaeYoL+ohGH43x92HU7eYqvfBoIsStWEEXTpy2zF7Z3lBRit288gA7G5wxUiv1fLZur4Jtq3Z3Jt8X8xn0kUUE07iQ6sTAlrGMPSyD1uki5XGZOTTgvJ2DLCJObTt3xnlCeoe/k+9g5KifLQ3P7UT2A3XP28GOGrJ59JAdWsoYQD6pE1mEoayInYpxry2Uc65Y8Lyrvhjvt5aN6NvPj4ZXLACuCbbWAuXQuRVSBjeSx+x9wksnB51ALdfkrbxQa72cCswM+xARmYLVA0nqANZNDKAgoUcVyakO/smqPx1b7LEWNgObx46SRSrxFG5FGuo7YlybXpIkddTX+u5VG+sECSoz47YTJf5hfM+8ynAfgKD5DdVh+5Inav2cd/TLs+ekbUQkMih2dyxb1uIvMlgeqF8HahPJ9Syuhbt5NluXKjzXSlEJXgBh7hWnbSk1LNpvY0V5FBMw27ZGYf3KOShoIcb/t63J+b2HN4WP8/hwzy/YHN8Vl6H57Rbx8dZ2z4uLBAcGKSpZ4qMod/2OW9SFW/bznrD6IcwN25LkTGn2pkbOyDGIWWC8ZiE5J6TD5iUBYjxthqnC0xwLEBQYCmGlaBrD7vRgy1MmQseAsx/KvxeJ+zkUWRLojBZjFLtfgQsEH3t/ieLsjCkyWXTMXz5liCywzEGO+ixzQiRmWr7m/uT8Z+JZGxaT8CgCwE12TCd8fuu1jPbXXcq/fZistab0CM/AZcBtskwmu0Pp20/Ycjxm4S9zgwFmEvvmhnLof/o/sZaEnqNTP0eocvwpmqGLjMtMmi2zPqRkd5c3Cpa/B58yFcwnwvDhQsMK4FZzH66bEmxNGCAA9biLTna3WLAyyLM7P6LtH7XYWrwjXqfY/BFeGsn1vMUQHS3qYGuAsHlum45LvFGfVA+mcJzt610jGHVTEep2YskCVozdS6Vep5rK16IP1/CO7yZmIH+Xjy1q3Iu2OAskzbpBF5T0pxtrFE9+ut+xQi75MJIhTrPazROpnyoomK7OIEpuCzmKCj/Z0qp8p7KvH1TcsTZOxPNtLLLWZiH9AZMvQPZKBahivBgQwCBchLtAQY3SZ/iMTxIsaRpDaKDWomgywaqSebHOpZwSge5VpyqKeWJJUUMY5FjGMRqbTRRoJKiqikiL7P72TvoBTmM4n5TGLvoBTaEwkuYx6XMY9F086FP8MbkwfyxuSB1JKkjVTOYAcrMkv4Vua/MIfpzGYGdzCTBG2U8hpZNMIS+N7nvstDm0Qg4crPPcGVn3sicj3oemU9Xa+sdz/Zy/WvHBkshujfTchAcqW2U6P+PhqZrAoQEFSCTFAPIzi0DU+Kai6GMcVyRgHXJORvO3S9vV4mAZW4vPIOlY5TH+yRt75Cw2O9aV+YSfuaTG7lbialz+dHh+5gG0nmMJ3nmMqvJ3yaYEgrSxnDs02fhvXAehEp6PLyoaiteQyu5GkKmrZS0LQVzoC+/7KTicxnIvNJ0M6iG86FbnA/X6GSIpJNO3k793Sa6cpOlUmfxxQStDGKFYxiJW0kqKCYCoopoJr1tR2D+ocm/yT5gfJCab9JoQzAY3WHatw1c6r20Xogoyf074nMDvtwq8O2P54lJOAgnd7171Q5dvnQmSDg7CAIDnfqjJeAdzp9figlBTFylyBGbiOy0m6y0sZwW4zE88h4VoRMNYd0v6F6rhIEUBTr51xcJawKdwuqAabguYiycMMsBWeZihFDvJ8en6v7Wu4WcHclAzAHdX+TnM6no9Ft0sQWH2FsVyOeC2gAHii/FFmVN8PQFLgq9doNiMFr+VyM0crH8+fswg1fW/03WfEyXPzBEq+aivc51wAAIABJREFUgMNuBDAdRILvTT7c4qLScMO+GheA2I2LLVQhBnA1zsBYiYttmjqZtaudZzVHLo3IPGixQ6W4Gpy5cBkblIEH/ltbg8dCtSJ9aLfuF1dYi7uUmdthAgEVSW27+QiIN8BpcWAGqPrp/Zg7oLmXgfT9ZOx61jfMtc7W4DYgdoItfHbGn0cPHPjbszWAOgLp5wZc4izjbiSGawQeV1Wp99dZ730T8kzS9b5qcIapi9a/FAeXFkeUj9gxW5E518BwpZ5zlNZ7idZnOB5WvosTLIxwigk6VY67HO4KBx3dhMxVCFynUt2KLBj1s/j2GjxIHTQYUDj09kcTrLx2FGxP0DBEAuXL0ku5gMVqAK9gJCuZyfc65O25imdIaFKsDPYw+rk1rjaWFPbBmB4GwNrCInI0EH94+Zvs/U5KJLQwkhWsp4gySpnBbG7lLmarCsFnVW86nz+LLPQDsJZh9BpQzbbW/pFqGuMgO6+ehtnKkJUgg4G5CbYhwMYW359CJr6vE4kUMEvby9quAMhBwFCe5PRpuKa3M0P99LzTlPm5LyHHmALdN6G9NVXiXwCegcUzxkEafOY6IT9/s/TvIQd+NkWUCJ9jKgVUMy1FKpVNPRUUk08NLyeFebs98wdMOX+etksNiyafyxTmRo83p2k3pz0vn3897dOcMXkHF9epKEXuQBrJYnt+N4azhgayeSlzLGtiGXZLWM0l/JGnmMZSxlBANVm8zU5Fmhk086Pkd5mHsHC19GLLvCE+2V0OLAk82LJE270M6ZvbkcG6uRq6F/hx9EBG5mx9cPE8QSeDuXuqnGzlQ+8VYRh+ZOBqG2IYmVjAIGReaMKVvSxmohxnMszgM8ZkOx53ahLT6cj7XqH7X6fnNGU1S0aZixhdrYiRuh0xGHvrPuZaZ+pz5jJkcRF1uGKX5QNq1ev2xgUODEiZKEEdnlPlbMTYt/glkwxOIsagxRyZolgxAgQX6He1eIxSKjK2GZhqRIDMCBy0WK6aLK2PgY/VeqwpqnVGwEsuLp+NnmcvDoh2IYZtPzpKWr+Ki/uAiwDYc0/H3eNMFtmM9914vqAEPm+C52FqQfpGgbZLnX42MGqgyxb8DWibK1Y/vA+t0PYygBB30avBY3pMrroVZ2gM5HSLtaWxeAb07H7TkeeRiQMHcwvM0PoYa1aNC1Bk4X3Q8gWZ6+YOrZ+5OFriWVMI7IELgJh4gcnSWyJWkGduMVzjcNU3y1GUxJMAF+l+o7Se5obYjgM/Y3n24jFF1XrOLsiztWsb2B2FPKMGTlA5pQ73jhIEwThE5fw0oDgMwzHHOORUAd45vcdXxf9EB+h+WqbbinnIxLY9tt2IG6TfDOF3AZaDvOtX68lIb6Y9L5VzU8TdKUE7zWREMSK19KKU16K8MaWU8QjXRvE6DWTzxtSBFLRtRg+gLzvZe6E4q3S58xAFP9wcuc/1GlTLysQoLlggyVPfmDCQR7iOK3iWF2PB99tIcpfqTc9hOt/7+T0M/prk19n2eH+6XlnPz2aqHvXDkL2pgYZqBUFjEaW2aXrfMxDBAgODDyNg51Y8oeqVCICxfRrx7M5AQ6cz4F5c4cxc7BKKrP4DzzcAMBraZ2X6RDMeGm6X+v3mbokBSv1iE9k9GvgpInywZcEQvjLh37im9tcAnJdcSjo7+T4/BKATB5nKszzCdQDMrrqJA2fAHzMlVmrkt1ewjSRPTxO1uJmP3cmya0qYmzsRK/nUUE1/LntelOUYDo253clSqbY1DKeYisjFsZoCErQzUEUL2knwo113MLiHONtvWTqk432DrBpaFy5HVqkKYr83An0KOk620sqHbX/oZu4HUkKCDzRZ6t9K+Xj2jg+opCPGT088PmcVMnf0QYw/c+8aoL/n4e5jllx0AxKHU4HEIlTjstWpeCwCiIFmrmrNiDE4BGdi+uHAymJKrA49dX9TJTNVUxN0sBiS/Thz0kpHBqEJl7W2+BHLuWPsBYgBb6v8ScTIN5niBjwnTSfEmKzV+7AVfJPithxF6D0Zy2GMgwXop+HxG3XI/JyNMGYWXwIe52SMijFr1r4tuPQ2CAAyFiDuadxMR5cnE044W89Rofc1FBmvOyPgpUivvwNPVLtczxEHyCaMkIIAjniOJgNqWxCzpRp/5uayZzE5+7VOuxAQbZ4ExiqZOt5urZsBhzzkWZvsdSnex3fjeaHMK2s30ieNZbRnvV/rvglnDVu1LVoR8HaeHvs67rZp8WxdtD2NwTRVQIsxMun2RlyYoRvwcyT+5/cIkD2IvHdjkP7XrPsWIfNoq7btfjy+eJNeez/yfM111OphDNV5iCtsg7ZxAR0l1Y+rnAAmKAiCXyLNsDMMw6FH2edSxBzrhCQTvevdvj+R9Xi/1wjDcDGwOAiCK/HX52jXHIyIJPQjNr+FYTjhL72Pj2aJT+22Gm7fxWMmtGTEdl+BvBRX6vZ25OW3GKHHAun0JaIOt+eZHPaMzia7oDbKC1NBMZ04yM2H7gXgX1P+CYAi1gMijHAWa6NkmQDDWEuXnfImPTt5MvXkML1NXb8mQ945u6lcLhk7SxNljGl6jdUTRChhcFslsxLfJa9qN7MKvwGIOtw1/DqKS5rCPB4Y+49cpWm1Kz9XweJD49ijinPcA+u/cpYnga1CAIqJHJRA11n17Bmr+XW+jGjajsYnnCwELD2s23mIz/klul3QGX6GK85VI3khFIfxa4RVGh873+X4QD8DAVx5bQxOCoBY/49nkfpvtWxZJchr4oS5PPDIPzL4OgF76bSQSpu4wAGn3Q/Lvl3CzSsflHP2hdNWQMGEagAe4EZm1txJr3ydidMgh/oI0PR9bickYO7kiWyfLA7haxlGLb0iCexSyiiiklRNiDSPy0ilnVqltBa3XEB7a4IcBSwjx7zCygfPl8kYZIA3tSPwQXsZDs7rcJlswJnNs/R/FTKzx9+FU+pwH/cSBEFfpPfUA+uPNb+cAkHvoxxEXLBMMS1Dt9MQFuEKxFDKRWZqi1vogRjxthpvq9FJxGi7AldxqwF+hbBEKQgAMtlmU1RrQoyzXyGp0c3lyOJbVulxlsemn24f0voZqCnQ+7JYD2MAjNEwtsjcyUwq+GDsNwuCN7bKzmdxQQdxpsgSjjYjxqTlPzKgZzE8JhbRBXdtAmc7DOxlIYDD2BJjOgywWUJby1FjAG8BnlMH/a1N64C2pwEgy31kdTQGyJTiNsXqBc5+mB1bGfvNjO0kwuTXIka6sSZWb6uTJcX9fewcFQjrYe7qjUhbZui9b8BjlouQdje2sbP+ZmIV5n53EHe1PISwcM24W7s9Y8u7MwDv53nIc89DppwkztjYPdUifWoXAsry8US+87WeBvRM+a4CAYPtOFC3OJw2rX8t0rc7IQBoPuKmtlz3uxAXIslA3guLd2vD44wq9Xy99XqWcytd76FB69hN78EU+MZpWyzB3SJPSDl+RPUwMgk8cqQfgyDoBNwPXIx0xeVBEDyLNMU7vg/DsOKw488A9oVh2Bz7rjAMwyo6lnfU42jXDsOwIgiCYcC/HHaOL4RhaNkOP4dnWjlaeRJZT/8v/qY5NYsDAgE7cXW4fcgbY0ZjD3m5zDYcjhjh5mI0Xv/btk562QViFDfM7w3VAQ0kqR8g/G6W7jwrRfy6cqgnh3oSahRvIxkBJoBsGniAr3BX2w8AmNg2ny5Nh1AxOV74x7EMW75WBBEAesGy80sYvUCCamZMuI/Z/+cmnv3V5EiR7izWcpBOEfuUpJZPjvhtBLwWPnIp37vuu/xoxR1yzhkJuBB6jdmsdexP6pIm2u9Tn4JJsGdGjk8cP8OBoX33BwQ4mTscuEw20m5cj7vUjUaEJ0z07nd6LlOHK0SSp/5/un0Tolg3PsH6dWfBTSGMgi2rhjB0hKwPvFg7iaHXLecqzbB6Cz+lmgJeypQlsTXfHk4B1cweOcN/n1AgroLAzPvvFKPESok8n+4rFTSfCWyCS5pepDZTFOT6U00OLnm9k57M5I5IvaydBCNZwTwVtkim17J+3VmszRPQ1CulFkbB4BEC3NY/eJasxFmXbcTFOQyUgifyBdjWm45ung3AGXiyVCtHk47/aBVRhzs+JigIgjRgEdIjTwOeCsPw+0fYrxoZJQ4CBywB68m4aAYMBuaGYfifQRAccQ6Ml1Mg6H0Ui9WpQ1aDLRjbVugtYP3ziDFoK88bEMPJVCjKEHU4S/ZoWe9zkdXpUsQI7wc8iCwk/Q4xuEzmNw2ZxjrjEtQmzGCuOxl4YsqeONAyNsDiRkyxzXIeWX6XvXquHTioAFesszqba5uJOVjckbVZPKbE5tEueMA+iN2XhoMtO0e13vcura+xSgWx336OA54i/ZyKq+el4G511j6mMFcYu2YFYjjHLT67jyLcohqFGMHx/D7gLnpHK1vpGBdk4NCEIEx628QVbDteahG2ydgRY6S6IG3bhhjvpsgXd6O0eJnOeo/9cCbI3Oe64LmIchHAbRLjBvyN8axGAMZAZNrJxeNyDCgN0HObiIHdQwWyONoZj7W2xQVTgDsHj1my9s3SOlnslDGfSxGvFVO924S8Z+bqZ21iOaAuRGyTJJ7EuA+yEAvSX4ch760Jg4A881WIJb4OB7nxhfTjKsd2h8sJgmBFbPvBMAwf7HCKMFwUBEHBu5zjXKAqDMNNAEEQPIGYWQuP8n3FYcdfCPxDEARTwjBsDYLgi4jQ45T3UI+jXbsiDMO1yCT4jqKre7vDMDxWfOiBMAx/cYx9/kZKXBo4rg4HMuv07ri7xZ2Y+9ua2HYeqJpxpObT8Iwef3kbrEswcsBSflP7WW5IzqaMYnqyMzKCX+IiiqiM4oF6UUsxFRFAqaKQu175AXPPF5er8W2SLnDZPwp6uKhpCU9nTuXqHhIjtOh8ySf04wlfBeBG7ufJX01lSttc8hOSNXR43Zu8lHtRlNBzJnfQSHdenScgqd916/jR4/8csSypjzXRflMm2xZovprHoH1GzBXtm9oOBmiuRBJ1XoyzR7N0nz/odgkyyFbrdrX+ZizbOBj6peWUDzBdcnxFCZxpspKFgNIn0HoFnPdvL/HqgxfRc4QY++VA+d3niJsewrDdzqwoSWw1BRRTwY3cDwhr15MdWGLTbTe2kUp71G60QvcF+9h7vlgwSxNjGFUo+Z361sk1q3L7SJzWINlndmIG2TRQgADKtZxFBs0Rm7R21zD6jTD/SijfNAqyQtbfrSzO1SE8GTjrYz7dC3FWbBtiiEXccCYdI3cHAZ5M18tHG/yc4NIGTAjDcE8QBJ2BJUEQ/D4Mw2VH2PeiMAzrbePdFrTiB/21F80QM+y7QRBMJ1pGOXo5qUBQEARjgUGaMygX6BqG4eYPu15WWoCRiBFWgRhqn8SNP2NgyhDDzlzU0O9fRozpYkQ04ZN4zA3I4NUND97Px93qzK1qlF7bEp7W6m9tiGXSGTfMbMXaVtp3IEZfN9xotSHDZKaNHbAge7PHjH0xWWZwgGC5xwchzM5aZJyyWBAz5A/pPktxtbj9uKFtINEC6tNxlyVjMvLxsMdsvX/Lp1OIgDljDqwNOyNg01gAk6veom2wN3ZPNub20P82nMYZHWtLK30QI9n2iSdbjbNH4AAoJbZ/Fzzw3xg0a7MBdCz9tP4jtB0sX5G5BRbTURI6D+mXBUgb1yHeLmnI87hQ7yUPae+4+6EB4lpcZtv6swHjRlxYIRuZ4+NKcQaKrWj4b5T412K0jEUchDN6m3D3yi24UEEqbpcU4PF5BpqNcbR4tW6ITdFZ2yYrdm2Ttm9G4vTOxsHnfr32ITyebYe24wKtS8/YMzkh5djucPuRR/pcGIbP/YVX6U2UXx6Qbln6Lt93rGIYPhkEQX/giSAInkQmnouP89rHKjcg5PexynNBEHwFSYtl3Y0wDHcd/ZCPczEAZOpw4KpZ1iTD4MAOqFN5tDXIS3Epvn0pmpgSMezX4E8xK8HQCctZWTuK8cmXeKh2BqxLUDjhiQjkJGijmQwalCnoSnMkpw2STHPu+ROj7S6zDzH9xoeZ8/Xr5RpToHlyRsSgZNPAJ76/kQtukpigubkTGc5q7k7cFp0jO7eBKczlbvU1e3HVZTw2YhqJKdItFs67VCabPNnu1aOWLTMyZSIGWVV5Ch/0xiODiWHJrvrbbP2tFenNC+kYE1QSO8f1CID5g/9ePv8cB0VZdHSXG6/7Gsgy5qMABv/yT6wfcxavrrqI8770Ei/OFJGBiXfMZeqtz7JW3cKeYyp3MJOlmj3vkQVf4scTvtohJ9PV5c/x7FBLugR/Yhi31wjrtnromWTTEAGei3csYfXQMxle9yaLcgWMzmE6s4beHh2foJ1RrCBVhS9A2L8zdObM7pFky6Yihg7Q9Zztgdz7ON15fgDdEaPJ2jHepq0IY7kdSfQLyIxoqocgM5axoPDOfEEfbTB0ItzhwjAM8Tfbpr7wPR5+1AWtw/b7qy6aBUHwTeD7er6nOMa8cdKAoCAIvo+Lqf0KeRiPAed/mPWKl0OIqwyIsWmy0GaYm8iAuXDtwF3OLHfQy8i7W4i4Of0dvtJtK+YjEGNtEGJcpeA5gyzfD4jh2BkxEMHjJEx8oFT32Y0Y2rbinYqMHaZM1hnPz2JxKNvxeBQL3M/Wa7UiwMWkkxsRo3ZT7HhzNQJnOdpxCWRz1TMWIq6QZmNcOgJQ2rXOdp95uJtXEx4XmY3nnGnHAZixQq3I/BZfGzLA0g3PO2RsRzwGyFTXjEmJg6f9uBFcpPdmzyEeolmsx76u93sQyVN0CR4TZkH4+UhfyEQWuyp1u1Z/N3lrE7oYgBjk6/T/Lm0Pkzi3OLWDuOCRsV9p+LOx2LUNuAR4qj4Tc8FrRfqvxTCtRkCXMYx7cWYkDe8PlkPKXCOtj5nbnAG2vNj91+k+TXreFP1Lxd1ArV7gbqMm9NBHt3fjTGcKAoqMpSrT+zN3SFMyBOlz0/DcXb2Rd7hUz23Kc62cQCD07kzQ7jAMv3ScVwiO8F34Lt+/88sw/FedkH4BDAzDcM+R9nsf137XciQXjaOUv9f/8eSpIe9cT/gbKXFDz4zDdMSSF1ckTusMB/bFjMlMp/ZBjM9CPBO1OaoYxEyD8tqz6JWspY2EBOInW2gjNVJom8SL1JKMmIB2JB7kqibB8fMyJ3PF889z2+QfADDxxvncws84MFMusTbzTHqyI3Ip+MTKjWz/YTd+hLiyjWQl85jC/XXf4NlcMeZv5l7mt0zijnQ5ScaIZmYzg4ULFN3Vyz1l3yOL2wnaxeUizoBdA9mXintVw4ze72R5GuX+IxetNGRwuT7WVstxY14BTASKliGDxyx9BS4PhP1Rh59+m9axZaZZ/3psXhssTEj8Uokcv3LXyIghefGRy3jyuqt5hGsBWMko2khQq4kaZky4jwRtpLbJA5z55TvhX4lcq6opIINmqvLFgbsXteQ9tptF1wjguWD9awyvexMQBg8k3moO06PkqCWsoYLiKEaojQTDWMv9LTcCUJReSemAMlYrrdZrzGayqae8QhmxUUBWCH/Q4eLLOLiMPx/AJZAKEUsrnhT4T7xTHe6jDX6siDDCMUHQMT0HlG1ZiTTg/WEYHok+C4HngyAIgf/Uc5ysi2Z/AH4QBMHncA72qOWkAUEIMhyOxqiHYVgbBMEJ8zI5EeUQ0vpvIYbnCqTCT+E5T/IQ42stYmym4cYziIGZGztXq+4/Vs83DPgjAp2X6/kHIYacJYC0XDhmkPZAGs2kpytxpbWByLyxAVdjewsxMi04vBkHOhaon4EYqVbvTYhxbYaoKfFv12uahLaBB1NsM3BlrNjrOBv1Ga3jLgREJfV3EzKwdsvAYzjMBcpiUbpom+3Qe/wuzmTZSj54jiPrUGYAb8TBxG59PpbHDhygWX3qcLU6cNEDK8bu1OFCCMauHb48YkyEMT8mCpBA+o/lNjLWkdi1TEZ8DC6VboICjXSMy7F2aMZlnnfocdZvN+HuZ9Z/jCHsjPSTnsgigCVxtTYxV1Brx3xtw3Tk2WzEE+ju1vsZiotlmFT6ft1u0HP30fM34aIaBkYPIX3gkF7LYsrKEbBj8t+tsWPO1vvZhLNepuaYjrNP6QiYtXMZqDMFxE/q/TcjI7K52p2QcmwmqFsQBA9yfEzQVjytFEhT177L9+8oqtg2FGFcvo9EKxzPtU9ICcOw/4k610e/2GjXjBiGBoJM8kNYFA70QAI9FATZqoLR4mvwhGggE9Uk6PU5jZ1Z0B8aEzRnZbA+TYQLJqbMJ4M9UeA7wLU8Ekkkn8EOErRTnSmG9kA2sn1yN+6q+4HsfDPMfXwiKzLFSB792BqGn/lmFIi/jSSD2yq5/xURQWAY5Of+mdW5Z3LFc6Lt/Mepl3Bv+s08gOQDuoOZfIsfM3iCxp2sEqak4T5x62tY1lvWlQ2gXA7Mh4Yl6vZXhKwyVevvyxCGbAa+CjNJ9zHXwcf0fIZjhuJUPIirWxaqtqfneUKPA7Y8MsQTsYI8kyUqoz1DUeijCdqrM3noa58H4IZVv+YCXqa8Vu7vk8m5rGUYX1H3t5305I9cwuyEhtf9Ci5jXgRgJjGf7q/sY/v50tYZbc38+ZozuKBO+suPz/8q3yr/d6qG9uG6JknAWpt5Btk0MIfpgIhSJJyIJUEbSxnDqHSxxztxkBryo2v+fumn2EZ/b8flQGXgbGQh0g9N3QltZ9sfkD7eAwdBC3ln+XgAIJCYoPeQLLXe4neOVsIwPAiUBEGQBTwdBMHQMAzLD9vtfLXJzwBeCIJgHSfpopnWfdq77RMvJxMIag/DMFSkSRAEJ8yueLfyfoKuQtyoXofH0nwSGddMbvcgrjDaWfdNQ4xAY1L6IS5xhYhF8DLOHFjwdwFigP0RMdbG4vlltuBuVPvxxbo6POj8IAJ4WnE4bUIOBkqMdTHlrwwcmAzSezLRAMslk4qM/+focdV6DxZIboth23EBBWMARuBgq1K/N1c4c3/aH7uvTnrvpmC2XesVl6herJ9N+joLT6jaGqtTJ3xJYZO2RRuuOBYvffR85p4WL/nIs1mHG/dmbsQBlBnYVjfLgWTxNzti95im7WptnIcro8XzFQ3HY7BMoczsE3XVB/y5bsfbuw5hbfJxV8osbYck7u6WosfX4O5h9twtIWkXvddLkGeRjjNNFv9lgNUYOjt3it67MW7xRKq1OPgxFboMXKY9Scd8T6362dzu+uGMrMUGZegxZYgNUhM773nIu1eAAKotSF/fotdqQfrbcv0z4Q4Ti9iNy5+fkHLsmKATwQQtBwbp6txbSBj355BX8kjfdyhBEAxHhAcuAzYDjwVBMCsMw9sP3/d9XPuEFPVr/wdQLWWxhP4zDMPj1Nw7sUHAf53SfNi2GYdv4UsUEPkrZOiKug0w+nWH4DfbvRG2LVW8OaSN1LQ29izLoWjCKwBspJBSyiL3twKqeYaryFZQ1EaCZrpGzFBB22a6/NshDghRQP3j3bjsoRepukFA0p+vOYNU2qK8Qr2opcvLh7DUNFW5fUiyjQRtTJoqSQ5qyCeD5kiW+epdT3Jtj0cjF6L1eUVMHDGfHUhwf/nQc0gtaaL9gLbDLNydDUlauueZmDACyAA7H1SDwJPsWd6g8brPJN02JR9bMrgHMe7VHS676i0aZvX2PA1DELe7ArH7uuY1sGdINjQGpKYJyBh26wpW3n0+TyHqb2SFNJMRqcf9ftNVFA24OwKgP+UWZjCbL9c8DMC9+V/iCaZz+0MqOpEPP578VWYwG4BnElfx+Vf+l72jxGH9W1UCgCopoi1TjPBPPLaR+ddMiiTR11ASARyASopopiv5OgPXkE9lSxG16WpRpUm9Wac27zCkuxrreI8+h2U4CDW5V97UL3rrQX/S7dORGfRkMnNP3hKGYWMQBAsR6Fl+2G+1+n9nEARPI25qr/ARXzSDk6t3/CYIgv8EstRn8AvIRPuBlfca2GVl+MiRPLriJ1wWjGcIYlRdgSuTfR4xMluRMfAixMC6EDGqWnDVrVbEFa4GeZe3Iu/4JqSn1Ol35yHjgRl7G3Q7Q/9MSOqgXrsPsmCVgVgboxFDcy+eB6ZZ9zEjuBaPCTLAkI67q/XRz2b8tSPzYCfcBc+M2P0IW3Aebpyv0n0sdmIFbpibIWly00v0ervxFfh2XAnNXKl64EazrTdNQkAWOLjYj5Dlb+kxBrpykXnd8syAJ6tF28jyzRxu4P4YOCecDxyga3DpOwCU1blN7yuuKGhCBi1ap2qkf+zXY0zFztq+CWenLH6mGGeJhml7mvCBCUNYv0vXYwpwWXUD2kl8dLEQ6V8h/bJZr2PS2gauTD2tG85kDkL6dDnixfAyDv4MpFnS3F24KIYpCtZpvXdoO6HtYeIgrfp9MfK+mIqhsZZnI/3gdW1rY8Gq8YUFixN6FU9HYdcwQJOBvHv22XIJ/Vy3S7Xu5Qjgy9PvF4cLgQsJgiMtWr3PcgKYoCAI/gcxv3KCINiK+Ec/FATBPGCGrujdhKyvdAJ+GYbhG3rsEb8/rKQDV4dhuFGP+XvcAei91OO9XOMvLb9AusADun2tfncsVbl3Le93rjg5Stz9J54j6Cw6iiRootRm7XjNnWXyMrcvYyuMGUrDk4IB/ZKbaWjJgZKmKOajke5UUkSLansOYy2ptDFcfZl20JNCNkZKbaWJMlK/3U7fKok7ydu9mwNXQ+ECiaI8MAqqM/uQVyfbd+TewswFd/LCZFE8K2I9s5nBYNYzSzONzmMKMxfcyX9MuB6Af+5xO/dzY8RQfDI5l0a6R4wJQPtNmTKggMThVBEZ3Xsey/EBAgQkZWn7fFm/G4TkCZql26P0PNWxtivCY3wsFkhBUsN9vTuqn6Uhq5/3yNiyJy9HnsNYaN+eCffBykvPp9etmyNW4JMDnqaC4kgKvHnAfK7jkUgq/HdcRjsJns0Xt8FIhbL7AAAgAElEQVRSXqOAzdx2ww8A+AoP8K2qf+eqwv8B4F5u5j/Ov54pmtPpmcJxDGQjl9W9yB253wFg2DVr6cmOCAQtZhxVFEYqgSsYSRHreVpvOMk2pqfP4ZlDst11SD17qmMAcwkyYX1Tt01gAjq6ab7aRMeoU/CAgcO9uj4+LBC8Z3e4dy0ae79fAdDpSE+8+7B9ugApYRg26+fJwEze44LWybxoBicRCArD8J4gCC5GRuQi4I4wDF/4gC/7XgO7tAhHsREHKAYcLscTiFpG+UYcbFjuGXO7uhAxzjbgAGEDLg9tSnGdcEbF1N3W4sDD4l6MadmB5zYp0fP+DzKnGQtlgewmFz0AZzMs6Hw7Lpvdgrs+Z+kxFvRubk3mPmfy2FW4+1VWrH5JxFCtwFmhQ3p+i8WwWCQLdrdovToctJk7YJwMTsGZohYc9GzHA/nNeC7X/bfovb+Fs0GmoFeo92FAycCIjNMFgMuJWzEVNfvOXARNHjuuHmf3Ynmb0nFxiCQ+bxr7n6b1qNH76ITEjmXgMS+WSPdC3d/avBYBg6YgZ2IU6/AEtyCg3hL3GrtVjSfazUDm9Upt10M4UDHVOYs9S9O2MjEBc8mze+2NtPsAPIFqs9YlT+uchi/7WJxTHdI3s/R6v0HY2EJt37E4mDJ7pR8+NVZrvQfgQLAOVxusxAUhLsTzUpnQgvUbsOdp3OoJKsfJBIVh+HdH+X5K7PM8UKum4z5H/P6wfV45bHs/R1iwepd6HPMax1HOCcPw7Nj2giAIXj/q3u+9vM+54mQrB0AZD88QZ0BoLZx2PuSqHIsNhObClYe8bKaidnmTJPBUQ37LqiGkFjTRq0ctjXQHYP2hwQxLWUu6LiFl0EwzGdTosksq7RykUxQ4X0uSYazlz4VSx77lO1mbfybDN8sq/2lnQCFbqRoqI+kk5vPsXZO5okZc31bnn8kU5jGybYVIawM1ufksmnAuN++SXEXZPRr4L77IjZrZdMvMIeI0Y69uOfR6fDPbHlGGqwCZAMzofhthJOKqLI3ElNqQpYBxCMQHGZgL8MF8tDb9/9XtMqQOZuw/FsK+wOn/UTh7hP6/FFn52o6spw8J2fZ4f7bVaL2vDskuqGVkiii4LWQ8o3ctY1YPsTnnMJ1JvMjp+mwK2MweMrhWhbT6PrWTA5Ph6dvk9V12VwlfLn+Ye4fKsJNkW8Sm3domZGiXmkPMKvxGxOwVU0EZpdF+0/hfHudzfFYV6uYziYdqZ9A1S9jKjPRmhhWv5dWlotxHDj6BgLu+ZeH9shq4KBNeMkns3rjPBbjvhfXzj1dskAgjHHey1F7Af+siTwrwmzAMfwdgi2bIk3haF/lOAx4Pw/APus9HfdHs5AFBAAp6PmjgEy/HDLoKguBLSDoe+vaV9XJzJ3oVWTW3RJtmSDcihtNoBMbmIq9jGWKsrUIMrQw8n89B3L3NhAfAV+zLcDbEjOIuuDSyCR9YoHeW1vOPiFG4G4/zMJACHYUWDFykxc6bEfu/H3k4g7TRRmg7rMPnSDt3EheI6ISAhd36veVpMbajAQGUls/HGKVdyDhvEc0F2sbdcDatBQcrryNGqw11zXg+JItV2osrjdl+FtCeq+1nXuxbYv+74a5ulrcIHOwYUGrBE22m6D1b3JUF49u1LceQiQmkIca5sTxZuIQ22i5JnCEzVtBityy2qFnb2xT1LM7I1Pmq6egiuAkPAzCJbBMJsP6WF6uzxYzt12OqdP+eSN9Lw4UN9uNKbUv1HMP0c4u2dQGeILiTXs9kvZtx8GRAdAACPkx3aLL+1o709XS91yq91ga9r8VI/6jG2aNavB/1Q/pkJfB15P1uxyXe7bmN0zY6gbDHy18nJujjXA4GQTAwNuGal+bxlvcUoBufLzoG0nwY5WhGXg/kdnQW6H4+vN0EJeoGtgR5CS0AfQgyyKvx2b4uEy6H1IKmaLugRzUDqeL3qz7FeSNeYkbKbGpJRu5v85jCOBZHwfmjWEEzGZToRcoopYDqiCm4uduDpNIeucMVLtjKognnRszRJObTRmrEZoxjMSsYSUMihx/lSgxQNg38kUvY0EMiWGdyB5fPnB8l5Oz6zXpmpX+XpcWimrZzQk8WJi/1lZOv44liQQaZm/Df79PfCmJttQzxETYQk4awPcbuVOu+Zsib45EN8rMCjz0CmBFKclq7ZgH0um4z26r7i3k6C3Ehux2+fqsAkgQicX11uQwPzUMz+F6PmfwTPwYkNqqCYsapI/lahnFBzWvRNd6YNpB5TOGW7/y7HE9X/jz0DG6u0nj6PwPD4Ne5n+bzVf8LwKLCc5nB7EhmG6CNVKrV5bKZDA7SKXp++dRwRnIHa9SfcduC/mzL6++D6gFk5dBigtbgcQXleMzVCiBDkywZkxkt6fWIfY6Xjzb4sXKC1OH+RORU+o7f4uptZx9ln4/6otmHD4KCIGjmXQKdwjDMPNpvJ+LyR7rkYdd/EEnXQ+cgCPsGozu8VsvxhImXIE/qEsRYWo4YWYOQ8XMC+s7iyTCNoSjFlxTN28BcnEztaxLifmwuTBsQIFKAK5SZLLTFgBQgBmE1rsQGvjLfhhvFebjMcQouYmOxTiaMYHEqFjdhbklmcBsgsIDzvbgCWw3CSLTqZwuMb8EN57jSns0/zYjBbPmPOuECEwY08/T43rpPA57vyIU6O4ofxOsdd2sbjhjaFuxvz7AOEXR4kVLgtOhcrXgOIIt3adY2iKuGmUR3H+SZj9V2sHu3JLHGumzR/eN1TkP6zAC9ryycPWlB5ooxuMJbuu5jTKMxK61I/7GYn1Z8ykjV8/RG+kINLh7QiINTAyir9LcCvY65XLbioMTaca/WDz3Hfnyh1EDPFlzm3PL7GMDbhfSxXHwBwtw0DyL96yDOapXi4LpC22I+AtwMdOXqdV9G2M2X9ZgJeE4mi+8zlskWIz4VjI7En467/HVigj7O5VvAS0EQbELG937A/zkB531PAbrx+SIIku9VavYDKvEV77hEtokkaEbOt42r1TIUMTo1FoZ1iDFqhyt2as/yGKL1S8+ieUwGQ0cs59VVF5E+ooUktbSTSgXFnMEOljKGr/FzQJifOAjKoJlKBnOdpfXYAO35qVGumu0TunHB/a+JsQ5wPuydnMIDCQkiMjUygK/zUx7lOhrI5kbu52JdV72WR5h4x1xerBW3sD2NGcxOnxEpkqXmNcFjkFoi4K6gRzXrF5zlLMzvEOATD8a/B3EDuR7JcjIauG0//IOyankIU2RtmaZtazFCBqQMFK2jo9wlyOBvSkRbYduI/u5Gd7vWYXQbjx66loKUalauOp9eIzbTPlQM5MGs52buJck2QCSxi6iM3OPWMoyK/GK+/PWHAfjENzbyiWf/Pbp8xo17aCeV1YUCNoY/+ibLJpQwjsVsL+xGOwlWU0IN+ZEa3BiWkqA9Ar3NZFBMRcT8rWUYFRRTolx66oQ2tqwa4oMqeNAneJB1KxIjVY937+Zq/XA6HcA96LYtZ348GKBT5cSWDx0EhWGYARAEwUykmz+KTDif5wTmIDxKeV9BV50Rg+gKxPiy5KiDEIPKXNnKECN6GO7SFZd7tvgOU5kDAVGT8MSmG5D3vRjJX/IZvaapumUgs3s+MlYs0X0n4TE+JoyQp7+Zy1o+HQVq4iBmA54bZSkyvtvCVa3eywjE4DWGxoQMDuGu46OQoceYhM4IcCrEYzdMRMJYAFOey8Td/MwATcdZEZMSN3loM7DjyVfjinzGZiXwgH5023INxZOY9sDd1swercFBUh3QK2iImKQBdAQ6CTqyUeDKZOY+uVX/Rmn9mnDAZkxYXHEtDtBqEVEEEyDYjjAc1nGH4UlEu+DujVl4fqjO2m77cVVDk7E297xhuJiEubxtwWNoWhCwlKXt2Ij0nxRcjroFYVby9HwmaLADVwG0ReZNeLLUDJwdS9XzmDqcKb/V4TmlihGmJxUHTSkIm1OMx0EZgB6FAOrFWrcN+OJBGq6uOA+P5wLpmxYrdRABevPx2LzjLsdmgk6VdylhGL4YBMEg5NEEwLowDNuOcdh7KR94gO4HV440zceTSioY+r12vIzOYmhW68+jEQBkOgp5SBD7GsGFQz+1PMoH1E6CwSP+RKrmBRpMJb2oZQ8ZtJOIXLDqyeYqnuETdRsBSObW0r1uH3NzJVnqyAkrGP79N5n1Q1F/u63pJ3AJvFAoMUAXr1zCwsRFfOt5MdafnTyZBO000p0XmUSSWkopo5mMSBhhHpcxnSeoSApYKqWMZ37+WT75td/K7Xf+FHwVMsbLqL1+6VkS3GuG+B+A23DWBwSAXI8wPUOg6z317FmX40zOHxDAEo9nacRjhgwAWVtrvI+xVYDky5mtn7+JKMdt12sDXAODk5Ws/+1ZNNAb0mDbpgLKBpRqW+dQQTFXIMxQBs1k0RgBkkoGcyVPs/pnAnLKKOXLrzzMLx+X0IsvLHictyecTuHzOkMOExe6avozukYaozT/NZrpygyNw6knJ5LFBqIcRRaPVdZSyi3pP43U5DJ0pjQA2r5G8zUZ8I7nAYmD80Zw9zcD9+b+Zn38QzdzP5ByiJRI1vxU+cvLydQ7LgnDMO5e8IsgCMqAf/0Ar/m+gq46AZ/GM82nIbE28xHgYosVPfAV/wmIAVaFGFBbEQOtEDH2apC1ikI87sZidvIR4HA5MgZkImPlOYjRbJEIaYib3Q5kpdvAgMW/mPS0uRutwBmh7cjcFnddss/98BiYdXgun2rE8K3EFbSK8IUbi/Ew2W1LIpuh31vcxX48oaeJwJjBaVLL8bwzJrvdRds7Q+tXhLsRWn4YC3rPiv3tx5mBBjzmxHL7gAsXWLEg/LhU4SbcVSuh292QZ9UNF1IwYJWr7WeWmDEzxtQd1D97JnHFuMPJ/OEIi2IiDvG2N0ajGgHftTh4svibAlxowGKoRuFubrk4cLKkrCl6LZMKL9N7MDZvqN57K94fKrVeFodlIK9Rr70X6V+m6lat17HnZDFvvYFfIu+RSXoPQN6nduD/If2kQY95XZ/BXjq+A5YPyRhEi2kyJswkxg3MWf97Hl/QWIK4bVbga40X6b4TgP/mBJSQYyGqU+5wRyhBEEwIw3BBEASfOuyngUEQEIbhb4/zEh94gO6JL4eveMfV4vrgxmJnzam6z7fH4wzIaOQFte2SNliWiFbRyuedQ68pmymmIkrAOZ9JvFpxUeRXO5XnqCUZKZRdxjzmMYVErgTvV1AMuXAGIoywhwwW/bCI258XxbI3Jg/kE8s2cvHLSwB48oapXF3+HLdMloTxY1hKPdlMZw5PcxUAqynhAhYzr05U04blvsZsZrCtVtiJZxo/C2nw+8e1y/wRyIOG2SoTY5PKaHy7Dx7gWY6KFhAp6e0ZldORyRlPJLUNyGD71GFtOxYHSZ9FBhdboVwWSNtbzFA57h6h10wtaWL9qrNIHa8A4qZMuD2IWJiJzKeCYiopAogU+y7RwKXPMoc5TOfmleLuVjaylL2/SuELt4n89eq7zmT482/y5OSpAFxd/hzbSJJDvbjGARn5zTTTlc1aqY0KrI0Zmspz/JHJWCLbRFobc5jO+goVpWiEfmPWseXnSokdnovKYgHi4ZdZSJh9VHbREQSdTkdp+I8XA3Qi3OFOlZMLBB0MguDzCHkcIuE2J8KX+6glDMMD7yfoqgWZCS/E4ybSEKP6dTyBpRmCxjLsQsa+XUj8QickUSrI+NeIx+WYOpjFKezVa45DjL4EvqqfioskWBJSk1jeihh2+XqeMYjxejau6PU6bmSbIW4GKHqP9gCG4WxHmtZ5jJ7b3LBMjMAYoAG4e1M6Ll+9C1dCM5W43npv5sZXF/uc1Lq04sZ/F8TAzUJcl2yhyBTz7LqHcEnmBL7IfijWvjtwpmkHHUERek976Vh64rFN4C7gFnvVjjyDboixvwLpLxtjbXUe/nwsGa09A5sD1yHzwQa91mr9bOC3VutSg8yn22NtcVDbx9znzCXMGJtzcKluE5HYjwAKA9J7tY479F52IX3ImKay2PWMRTFZaXNlM2CDnssAkqnEmeug9RdjrizJq8mzGztYqftV63XMnTEVeU8s7NtA3CbdztbzrkUkvmoQgH621tHYP4tly0KSl9liRRKxT0r0nj+DPNd8OgaLHFcJ6ei7+c5yyh3uyOVCRLNl6hF+C4HjAkHvd644Ocrh7nBWeiDLbgW6vQMOVBExQqMyhe0w4/8Z3XWJbq9IyKBzsWxml7xFklpqyI9crKopYGLx3Cgm6I9MZic9WaEUh6nImdFcTAWFVVvZXihxVHnP7SZ7akPkbvA0V1Jw4U/p8qSsEFz9/HO8MXlgpIDWRioXsJju39/HF2aI8T43fyIzuYMxuQLM2klQShn5SZVpTuZT3nqOJB8F2J6ARhj/JZHFW/jbS2Wg+g+976dCuClw17UhyICQh0tkX4+7vIEMIuU4MxQHOyAC7lmx34cgA6ddo1Wlue/JibaZhsQrGVAAyAppbxVWoN/j69iyqYhUnZ3WU0QhVVFbzWYGY1gaAc6uNHPzKw/CnXKqLz/8MM/mTuZPdwmAua3pJ3ArDJ+sI+ROkTzvXrUP+spXGxnIlKbnmZcpMVr51LCDnhETtJDxtJOIgNi4lMWspoShxcsBGM4aHn3ki+4muA4xjqzPFSBs23hchvxeu/nM2P9XcInsQRxZGOHjUUQd7hQTdLzlZAJBn0O69b3IpPUKf4WVtvcTdGWy0VuQd7UzYoh1QQzETYjBbXl8GhCDyaScwQ3NYmR8fRqXFTYWxVarbbwsQVaZz0YMtStwqWdTebOFkkLEYN2rv9Vo/Uze2oLnt+s+A3ADz3LYtOIGdHrs/Em9bqteYxceH1KA54Xpp+3RiBimxpqYkbtXvx+ADFsNCFOQqufI1mPMwDQXw6S2sbnHPY8DvS0IyGnEDWZzoTqECzPY+cyIN/YjLopfqW2dghvGcXYIPe5opSH2eTfufmeg6Ww8UWcKnl8pBQe5BoZq9doGKrbiAhEgz9sSndbguXLsGbbggOoQDoLG4X3MEr4O1f82VbRoHcwntU5/24+r8xXgz3YT7tVhHh55un8Krv5nTA1IHzPXTpOPz9K6liOAJi6AaixNKc64Wr+z+Kd8bUd77zbp+S2hcDYChIYg82qltlEP/B1vQxiffGQRohPyztcgQPbvkMXdD8Qf6oT51v3tlDAMv68fZ4Zh2GF9WNmbE3GNDzRA94MtlkjSPlfhK+Q9gHPFDQ7EAB2PS2Sb+5HJOs9GXgY1UBvSetNWkGDPdlvKg14DqsmgOXJzkhgR90rcSCHX8ggvqtU7ipXQSrQ9/cL/pXvdPhYVngsgOWwm46tOZ8In/mEjb/xCNpPUsphxvPDDsRELMY7FWgMZwX6LMD5DK4TH/V7xd2EEbDskjElBspqVm8aw8EGNxh+LvOR2/zeJAEE0Mc/Sdhoda5t7cNYG3fcuXEK7Wv+e0O0sBAiN123FodmflRG+4Q+92TM0x7W0hurxOdDvU+tE4W48UB3QdXSztsU2igdURIlqp/EUV+96knlZEuf+25RPccFTr1E1TSiteVxG6fllNMyV55dKO1esfJ4r+j4f3UbV6j4U1m2Ntrtfto+quX0iEHsGO5mT+elou4j1WhcZIbNpoJmu3M1tAFyFyHhb3qenW66CPtCrWBPwzu8Pe/AYoT8gA7a1G7pdhxM8pwEHLFcQCBjax8eNATpVTmw5aUBQGIbViOToSVvacbESW0E2+WsTLshDDPaxuOFsAfsGGMBX1a9AjC2THbZFIGNjViHjwATEcByLTF+WD6URMabNsLacQJa7ZQhiMCcRA9DYGAM1LwPT9XuLN+ocO7cZhQY2NuHuP42x69l6RCqu8mbuXBYY34wwPq0IMFiMLGql4gpjDbgwgBnaDXhMjans/f/svXt4VdW19/9ZwVwMJESSSAgENhAMxkTDRcEAioA31B60WHwt0nNaau9WW3u0rT/bejitHvvWtqf2tb7U04NoveClKnjjJiCKcokNBoIRNgZCuAQDgZAEyXr/GGPssYKCtnB+UGU+T57stfZac80119pzju/8jvEdZyMgMh03RFv1ehYIb4CuRa/fFU/YaQDDGJ2Dy1v4opR5NkS1ZixBqLEDJpVt7nSFOMgxkGEeEOaydS3OAhqpbaCtBWdPjJmxvoz28y7keRrLY3FbIIa/AeJ2PB7GVAgrkPfMWLutyDuerfdTirObcdwLw/IcNeo1TfGuV6TtBqwrcYDcXfuqSOuxGCRzvTR572Q8F89QPPZru7bNGCJwFb0Y8p7PRX5TNdpuA/MpyPvViPzOhiExb4NxlVqT9zZg+BbuxrlJj0/DQbTFAs7Ve4+yh393+Xgm6EQ5fHkCTxdmZRYw5Bi05RiXqHUIPnoNwDODAZwMpyd7zskuCBCKuoFV4CscZbrP4lbmwqgbFrE47zxi6RuIN/dNCBpYMYnsHN1fTRGLOY9hGkNSTRHD0yr44kxRG2MXcDGc16JCCH+GD66Gk3SiWVVwOqf9upqi3RJTdEnmc0zjNmJs4MIVgs7uHvIdJjKL6ZoiqpJS7uYH/EfxDQD86/zfMnrMC6yuF5eshsaeEIeS64WdWP3k2Z4Xwu57Gj6Jj8bds1oix8zEmaFbEKPBBs/XkcHKmJ4XENBkyVUXSh0Ns3r6NWZGvt+j15oODZfk0Of2tWzsNpAeOzew5beC9QtvqKGKYiYifTmLiYzqtpj7FIlVUQw9SMT4FLY+LAP+IOnLBO1v97QMCp/c5NljSgEJ1SKDPQC0kUIZFYxVv789ZFBFMS9yMSDJbbeQzxRmALCcoZrjRgDqnsYMeozZwJY5ul6RhSjAWdLYCdqn1+C6YnH9b1q6H2zGlwfBgb+B/SYUKfFpKO0knXCHOwrluAFBQRD8Fx+ttvPlY9CcjywpCONQhRhRGxEjtwwxutbrvvTI55F4RvuLEONuMDKn9MdliU1wYCUeQwNwFbLwdj4yL6QiBmNnPIGkuQbFEIPXXJq24kbiXt0XVU1rA8bjrmcGfjrpdz1xRqINBybm5gdi/JmyWk9k7LRYGwswt6SkB3BXvWx8LjXQkIYnKc1DhjaTp7ag9io8eawdb/MLwMN4jhwLsD+Aiw1YnvTViFEeZYAsf425ttXicTq98LxJ4AuSNZHtXpFzbf/5iDF9Fh0lpi2vz8BI/6Yj7Ndu3FWsGFl6NkU0u/cWXDXQnpu5NEYTyWZF7qFSr9GIsBl2P+ZO2YCYR3m4CqC5Bsbo6PJlghQGvgwc5+LCwCZOYTE7JhFuCm6bcfl2U5Nbr+02V0dj9AzAmcJbvp6fhscDtSK/D5OvLkZA/lDE/dTU4sbgrp57EZc3m/NfRFz430J+j3P0Gebqs2pAQJNJsxvg9DXSIywnYoL+rhIEwUDgDKR/onFBmTgZ+hktH+AGoJXnAeumzbCmBjIUO5oPbVy/juGACISNaAFiOl2PlHwle17IoftVyyCdBANjge+LGcV1zEgwQ0VU052t3KnMwK3cyd6CJDq3yMv/cslILly9JJE3KP/JbbyYOZbyyeLa9kywhs+FEqsCMO2K2xj+UgWPX3QFlUNMwUEYiOWvipjCtBHf505u5Y93iaIcV4hAA7MEWZ17wwJeq7iAdTt1mWaT3uc4vLTgE04FIpk9FxnIJiCrKWU4s3On9qXVUYYAHVsRG4hMQq/r9iV0VIbbh7BMM3W7RuseCnt65Ugbvy7uaVNuEIBx1/rbGd3vRVYo7k+hjdEsSMRKjWcOd4/4TkIiO4MmzrjxXVZdJMIIGblNFL60ifqLZCTP6bqLkzLh/QJhWOLEGPTBGgpf3UT1iCK9hsyIc7gMEAGE5Qylh1oKcfrSQDZFulRU0V7GaUnreK3OdEJFJjvRL120n6OTuwHIAbiBsWV35ABbprRZejMdkwTDpwUAwdFJlnqiuH10PJTngNn6Nw+ZvPYc0xYdVJoRA+ws3IVpK772MBBPpBhVZIvj7lsDcEDxju6r1M/v4AadiQEs1XMK8NgJS4BpksfVSGdZhnsL5C/BV+kHICDO4icq8dgeM56f1/PjeqwteNm9r8eN/0a9j124UMCbel/JuDCEiQZUIuO1MTQW01Kl99pZ67PElHuRubgfDiw26X1YUL65571Lwougwz11i/RX1H2tOx5HA260WyyOOY1UI/boVuR5VuPS4l0R0GPuyenaPruOxc4u0GP2arv64AuLlli3K/L8jFXJxEHIMhxgbcTZOpNPNxYSPJ9PJ5yFbNH+S8MlxZu1XwroKB9trmuVOKthKSyM0WrR8+q1TcXI+9IVec9ycTe6GM5StSMgx1TpzGV+PQL6zE0SvU535H3oqp93aZ0mid2o9dcjz9EWH9L0uKFa71na3iL8XXgF+e0MxFlJW8TohgxEXfW4/voMLG7MlO4G44sXR0N/OVFMHe5QfxoTdAIAfagUIfg1C4kLsr/BwFePYbuOcclAwM9JeKA4wJn4CKOGYgmepNL8Uu1vKGLoj0Rm5R1APIB4QHbZZuatH0+PqzbQTDrdNdZkWbPk/pnKdMYzh0KEaajmNBZwARk08ZvWG7idOwBIbW1PTAAZ7KGmpBe9r91G72u3UZ3Zn8t+MY9Ttu/jlO37KA9HCqDKB/Jh+LMVcDr8gP9gOUOYxKNks4PubCU2Yg10hzOpJIcdZP9gM5wNfYrXUkyVTB458NqcCyAPTutWzWndqmWQGYkb3LPokOIxe+5mGSDLECD0tPZVHBkc1wJf0u+XaJ91RdiM4XgyUIt1uUa30xAwNVEf13BkUHoOGTgrgJnQZ+daAUIT4bUZF3DX0p/wFFfySr/hNJHBjOYpxIhzAQtYwVCWM4SllDOdqfxg1n9SQRmLGUUGTdz+6x9RunsNpbvXSJzJSRJD1UYq1Zn9+SACggdtXyOD32kCfi7bPpIuLqcAACAASURBVE+PTaGQGsYxl1lMpIjqhCpgKq2MZgEbiNGFJs5JWkZlcyk0pspfS4r3h/29jLsPLoz0lQ3cLcBJmfIeZ9iymr3j3SJ/0JEVPW7W/o+oWLLUw/2dKB9fjpu3IQzDJ6Lbmj127iEOPyalM+KGtRlXloohxtPnkN9nATKO90GmF5PxLQdmIIZUJRKTkYW4hFmszFI8oaUZ85WI4Vis17G8MLWIYVaKsx7oflvZ74MY5t3x1fUDyLzRDTd6W/S7frp/sx63DFnAsixZ+3GBAnPV6oYH3ZsojrlX1eFKabaKDs642DnmntdZvzNxBRPnsRiXfO339XqsKZYNxxfSzG3KBBLM3a0YZxR6avsW6DkGstB6LU7HVvctPsnU7UwJrifuuVSA52pC78kSwq5C5kQDNlbycFCwV+s1EJmix1q8bDQzo+UfMol1S6Bq/QbO7EWZIROiMCAH8oxiOPDcj+duirpPWns6ad8UI8/E3PKiqs52D8YyNdIxOa39JtD+S8GTrpqyn7mkWa6m7ogdUY4MCvaena3bxmCej7y30cUC64NanI2Ka79fiicrRus3+fVhdEymugyxtHsi83MMT5x6VMv/qBzMp7OEYfgX4C9BEJwbhuFrx7o9x08xBijqzLsJB0PZQCmckuzqW3HEKLdB1WQ/bSIoxY19oKGiJ10G7iCbHdTRA4DzWMyqdAmmmcs4hrGMGHHu4hYAhrCce7iJjFQZFa7jQciEHq11kCkJOofXVCTcrs6ofVdoXlUju/CVJTwz8aKES9dvfng93119P/FbTmf2w2OJE+NRrmHFziHM7DaZxwuvoIFsylnK8qShMEbyCm2jO33Gyyi78bcDoZe6waH3vBp3yWrUrlSmpmFkT5+8piKDVnegBzLQxLQPhyOxLGsREBXXcwZqfw/U7+oRJigWuWY9Eoek2ym37aZtViZdJu9g4/yBMAu6DNzBsMHLEi6I5/9omQDa0a38a+PdjM5fwH/zJbJb5funU69k2sTvM1V1txdzHpN4lJO0b1NLWqEUet8rYJantsHX4ZQnFSx3Be4AXoH8iVt4O7c/MeKcUfsuqwpOp4FsSqmkiYwEEzSXcYxmIam0sY4iKhhEalorxKRNiXgym3RLkAl0om7v0H55AZ8UG5HXuCmmr/lgmSy2xPWAd4BtdAQ+nx4mSCSyTzBBR1qOGxD0EWUACe2R46OYolkxHvuwFRnTapFlyJWIkfgXZEW/GjGQKxFj3mIg0nFD3VydOuMB4tVa//m4e5K5o52v1zExhgKtr5N+fkfbux13D+qHu72l4It9lsDSYjhMSngjvo5SjefaMZCRS8fYn3Z8Jd5icTrrXyoCIopwELIclzA2cYcqPEjemC5zY4sqzOXruRb/kooLGFiCzUY6shIGbCyBaLnex3I6BrevRySRayLPyFgVy/dkoMlcHGvoGA9yru6zWKN8vedsrd9AjJU2XJbazBRjs6J+PMsQSWZzH4vhiTtztZ32HDNwZsvyMXWK9JnF15jnS73+WRyNxZQZYKjHgasB8K64ImFnpK/bEBupQa9vLok7tY4B+LNrw5PDHtD6zf4fgMcTGYArxiW1DUCvRd4rS7hqYh8pCBNUoOcM1HMuQtjXoTgD1ob/rp5CfsdrcYBvbqr27EzYxMaAvVrvUxyFciJP0N9VgiD41zAM/wO4NgiCD2UeD8PwhmPQrOOoRKWDB9ARFG2GD2LuipSG/AAm6HYcp+5B8taUtUKNrDSnxHazZ20Oq9NymFAskeurKGMSj9KAqJpdwAIeZVJCLW5q63TaUlP5wXbJ8/N4roCUDakxAC6ctYT3Jp5K/m4xxE9aDgyD+iHqojVgF504ID884Ls191NT0ovWh1NZzCgAfsy/U9WtmHG6lnoHt3MHt9PUrHEor+ewZVNfzp0iy2EbJ/aFaan0+L0G5+f1FRCkAhEpc3fT9kJmIj9Pl4Gq2rYWBy1xnKYGATU5uIvbnxDG50+Rvs7C3S5ykElptG7fBwxshU3S122/zISusGd6TuJ5jRqziOeXXkWfckUHJfCFa/+bxZwnfc10LuM5FqWeD4gy3zCWkbddZrLq3NO4uvZZGRiBlBJZ2nv9WwJih3+hAlZB/cPmMwEZrU10HtieiMnakdmVZwouSggjTGEGP2aaCF4ABbzHLD6fEKkAGJs0l8cqvuT9EGsFVbijRe4jsQw+EGcn7T18HmSwVF+cD7rBlho6SmSfCspMHt/m7olytEoQBL2RNMQ7gHVhGN55uOOPm7ciCIImOsYE1YMuGx0nxfLTWLxHAR6bYG41WQhb3YoYrKsRY8xc0loQo6oacbcpRdzIqnFFNcu/MxRnCTZqfSZLvB0x5I2FMVerKsRAszYYE2LAJ6r8ZQpixu4Yc5CFGLf9kGnSjNyteP6WTvi4bW5/tpBopRUP5DfQ8Q6eANWMWwNT5+OgBxz8dcMX3LJw16g0vY86hLGyfE3rkVX8TpFrGIvRH3dfNKbCmDJLYmqAyhgAS7xpDFy0vMSHy2u4n+lQPgy0SvD8NWi9JgbxDp6Etg4HY+b6txPpb1MgtH6052KulPv1vlqQ55SKJ9DdjwB08ygwF0lT2TOj39TjTBCjE/KMC3CWbxduTtUiz3k38uzW4+C9Oy4B3gnxQFmF50sygQmT0O6OLDyb4qLFgJm74mr9bzmMyhBbpDOes8gAVjTB6kY8njsLeWcuxhcKumubyxFQM1LPK8fn3+e0jpU4E6Rrx0deQj6OCToRE/TRxcL6lx/TVhy3ZR8ddRZ3RrZj0LTfJ4eMZI9dsTIcV0mrAApTEz7IbXGRKD6t+K/M2SkKZGO7zWUe4xJS2HXks5Ry/oX/AmBe6jgBJyIiRnpuM/nUMWimPMZVk09nUO0a3iuQmKDea7bxwXVifAPckfkjMmiidojkrx3HXJ7iSoaxLME+1CAMxXKNjZnCDFJppUu61PHgmCmJWJZoSQTnG3BR0NP2gibwvE229+TlCMhpxFmzWcgAYX31AsISWfBpFz32Et2uB25rhRI1/muAb4fwuCSiZTSwMNUBqq3wTdZrPQ3Pl1zFuVct4LX1owE499oF1NKbLVVyH98d+BuuS3qQ3s1C9bydfgYZNPFMriDI2+b/b9gJ739PwEPv+duYPWYsjeq4XZRbzSkn7WOPAphVDIJUKC6p4l36A1BGBf15N5EM9ymuJIeGRE6iz/Es9/ItCtV6MkEMA24b1xeJRLn5iptxkRbZNlc4Y4IGAQOT4fGYbH/wKrLcaBZaNjLbHzdm7lEt5g53JCUIggLESSkPMTfvD8PwNx9x3E3Imxwi65P/EoZhSxAElyCKzp2A6R8HOD6mLQ8ga5DbwjAsiez/W69xGjA7DMM/BEEw4+Oue9y8HWEYZnz8Uce22Kr7SMRwM1etA3iulRbE+B+EGIpFCDApwgUDLE/O+Qg4mYgAIvv9m4vOXMS4fxHPZr8TD15viOxvQIzS7sgYMVDb2I4sSq3EDWljGFbieVYstqUJecNNctncvJIRQzoVMcKjrk6WXNXiT8zVyty7srR9psq2FzEiLZnnEsASn9jxVdomU+IyIFeLJ7i0RKYW4I72wVJEZrABGRJ3an/Z/GFqbJcjCcBNVtz6AP28EQFTy3RfVCbbXOIOVexZGkN0FjKOG5MySfvDXMEsgWg78v4c0D5A216jfZSOLDYaM2LnWSySvYMmJGBubZnIc1lyUNvMNdKSvBbhTJ8lHLX7tv4x0YFKnInbhfTrflya3NplMWoGyLOQBYNuyDtYqufU4yIW5r55NgJyjG3sFtnuBDwGfEXPH6PfddV+akOEDcYj70I1rtpobov2W9ipzyKm91SHLDLv0ufQjCdGLUJsmlLkXdvLUVKGg0/CBJ3IE/QRxQBhGIaJnLVBECQBXcIw3H3IEz8T5eA8QQ2Ig240aDzyOSfZlXbApSHN+BwO2aM30/CCKJgNGf8q8fYYGTTRVi+AqK1bKifTTK06c9zLN5nCg2SpNZ9NA8sYxqIRwtrk0EAR1cyePBaQQP/ZBWO5ePc8AGZ/ayyX/WQec34mCgN33PhzESVQG/C9glO5afd/clIr3JN7EwB38wNWMSgRrP8UE0ilLSEIUEwVi9tHsbpCldheRgYIGyANTkddtJYjCnGQoMS7zNrBnqmax+eXdARF9dpvJqFdBnxtN5yuuW0agbxUZ93ygCUBPKrb05CB1rDaZDyZ6tPIeVmIG+JcAU6vlVwAsVYuLZbUWG2kkkETV6YLV72YUXxx/hM8NEYykPQfI2yOAZqxI+bSTLrES2l5f8zJdFGU3J2txIiTv3sbizPl+TWRwaTdT9CQKaBnFIspopodygRWa66iKpV8GsdcNhBLCGV0yWtgT2OOq+ANRQwg67ebcR/qaGkhkgaoJ4d8p4EP/w7+sV3jQgIOJKzSv7t8AHw/DMOVQRBkACuCIHg5DMPEww+CoCdwA1AchuG+IAgeA64JguBB4F4kY9gm4M0gCJ6JnqvnnwrsC8OwKbKvMAzDGjqWPyEMzozIcZ0OdY0gCEqBXxxUx5eR9dUfB0EwCXjw4zrguAFBQRDMC8Nw7MftO5alATF6MpEppAkxhBYgv1lTtrJ8PsaQFOByye8gRlQr8AwSS2Qryhbzk4wYchfgK/ID8KSh6chiXDmuUGeeoeZS1qbXKsaZhCzE6LPkkYN1f1pkXzMy972Dq8qZS1O2Xs+ASDoOhAw0mCiCKdyZS5QxBv207o3I3FoATEHGeRNx2Kvt2oUYpzG9n054ok6LEUrTOiz5rDl4xLWNpnRn3hzGRKDn3wCaN9sX/oq0nhIEAJnsdbSYnWptsOSo6D3k01F5rg6Zr1uQudsAaT3uzlWr1zKw+FakPgMlFmuViyvDWRzNAdyNziTBLcFoFSIgcRbybJJx8YZ27S9jWpoin41R2onHVKUhz6sKmdMN/CRrG+03YEIM0DG5q/Wl9VOD7jfAba6Ub2ndnXGmaz3+fjYiym5btS4DVhnIu2PumAa2k3H3tVTkfTfQ3w8PfWhE3k8Dk0V4niaL+/onnMk9XM6ov7l8PBN0ohymBEHwMJKV5QCwAmHOfhWG4d3HtmXHQzGjcDMdQNBJwAcRpsgoz6iCmbltAbRAw9M9E37XK3aMgKHQpbiJHsUbiBFn3vrxfKHfjEQemFu5k+UMTSRTvYAFVFOUkExuJZXC1ZvoMUBYnLbUVM549l1mXyHT/2WvzoPPkWAa9t6VxLrUokSyyAyaqM7MIIMmvsm9ABS+uonpI6YySRFFNadRSwF/rBPJ7LH5c4klxUUaG6AUuozewZ4XFNCMA7JaoUKR1hLdZ4Z6BTArZM/lOagStAwUc+mY7TqGK+3VAw9louE48l006enrdExUe7N+NpW0ODAyhNeDRE6iPr9aK4yAUdyz4LSfV/NFJGnsM1zBUsr5Gn8A4GGuJWVMG3fzrwD0/uM23vvKqRSon0NTagZXr4iQzC8BU+GBXFGXayOF82a+Qc3kXnx9+58S7X78iisSuaBM+GIOwgwWUEsrKQnQs4jzSKU1IaLRkJ7Dnpacjn0xDhSvSh+0aH82RvZVICxmojN348lSTR0uCnb+sYFPtHzCZKk5QRBE2fH7wzC8P1FHGG4BtujnpiAI1iBrx1UdqxFllSAILJqjDjgHqAnDcD1AEASPIFPjweeeD3wjCILxyh59FZm6x3e4nzBcFARB7KBzD3mNMAwrkbXsDiUIgpuBn2h9s0Dp50OUYw6CgiBIQzo1JwiCUwDlgROL18dN6Yw8tSbcIHsFecLmimTqX+auVIX8lhsQVywzwM3OsQSXi/GYno24EEIr8tO2AO2ByE/7bDzmxFyEWvTYfohBWIAYfC3a5vzIfgNLJgVs1zDZ3zzcVa0TAgb66HXMwC/S7wxcGGjohCyotYPmi5ZrNup3pchQ9Zb2WbVe19yzzO3LXKXMgLZfnhnq23HVrv+FLJ7t0rpWaj+YYpqpj2Xqed20PQbUqulonO/HQUwUAPVCwI4JPpibm3lLD9O+qNR+su/7IIuIg3C3KzPuO+EAuhOeFLa7XuctPS9N25aEZ/kwN73teq4xFcac7NW+N3Zpqd7PQD3e8v1YPzQi84zFZrXgeXXseRmrZsDE4mRycUDWEqnfynZcKtzyEq3X9p6FPDvLKdWGKykeQACcAfUlyHxfi3vwvIOr1z6HxGWZCEiS3ks/5HdYir9Ty3FRIpMUz8PjyToh70FP/B3qhgs3GICyvF5HXE7EBB1pKQ7DcHcQBF9EiMBbEDD0GQdBJ0c+j6aDe9wHu+GU7vC+fm2uAHHdNvUaM+xLgEZI+aoQbG31mbAWNjKQc4sXECfGLf3uoAd1LOQCQPLCxIlxsS451ZHPlQdH0XUXAxzE7a3mil5cNlOYIPJh9oixXHarbC+68xzyqRPXLAQEjWIRDzIlYWj/fMSPGcvcBPvwW77LDfyGYfmSeyhOjBX3jxAXNYA9sGdmjrsBjgbWpnoA5y7kO+uHCcDvAukbWzW5OpSkqrfqMU8jA+qNuv0nBCR9W7dbIHvCZs8LhNZvIGgc7gsMMFwpobRUGcR/CRufHCgTuIKDlJt3s+7+M3nxekFm5SwlX+xcAJ6a9b/4zcTrqVPzasZXriOVtoSL2qCXdvH2Rf0T8TvDWypgOoz7oQTo9H51G5wuwHVvZhKdV7ez6orTyeL9RKLaDJqIESdFQXAR1XShiUpEvnxOs7Bz30oXwDpvvdjDXSaoUMLTOTLwxrTR1Yi5+3+RFeO1uGT2Blv67I68vCqywD465g36TJYdYRgO/fjDQAHIINz5BYAwDDcHQfBLRJZkH/BSGIYvBUEwkY4RAlH9puj5j2vC6keCIHgcYWsu/ITt7/lJrnFQeQH4aRAE1xLJJnWocsxBEPA1ZIjIxxVwQezke49Jiw5TliI/sXTEIOuMLEaY25St1JtkryVdBDemByAG2lA8sDxDz+mEABTLcm8B/ea69gqeODQfd4Ez0YN6nAnartcwcFGDxxAl67H5yNhpcTd1+Eq+yXRH40bMODfXKFsWaNb7s/sxdqEzAhwsnqg5st+SZlqMSQwXcDD0a6peJqqQpfv6IGPkWbo9Ewcvpj5mwf/rI+eDG+92DYs/see0UtsUjU9Cj4/mgxmKu7iZa5y9A63ar5Znx9yvxuj1jbkx4NKun3O1P+9HgJUZ+f21TU14/BA4M2PP2FhHE4QowAUL9iLP4SwcLPXDle8MZNmCb61uD0aejwkSGGOSjMcW2Tu0X/9bzFA//d6eo8UWGXsyFAEw2TgDZv3Shr/3WxG7bD8ySlusj71nRcj7Mxf5Labod8v1GjHcm8fYPWM027SOcgRIn40rGKYhixxVelw58p60I++YSdQfVdxyggk6kpIcBEEyaqKGYbg/CIIP5Z/7bJWT6CiMsJmOyVL3wQeZvmkD5DW6bcGeZojPAi6Htuf0nC6QMno3bY0ZpNJKEdVUU0Qd+eTrMtByhnAT97BNEUUxVaTQlgAoX6x9grcL+nNGjbhmvV3YnwrK6DJZRsCM1iYu2z6PD34klzzvpTfgJLhmzDcBeJKryLt3F63fSmGqMj87yOZMKhOr5TOYwuLm82hrEb+JSd0elcnJmIX3gQvh0uvFjez5+VfJAG/dthUZHEfr9n36f1qkjvpABgaNG6JE+81o90nIJG4B/2uh4YOezvRcjgcegoCgJXDp7dqmlVcJAzRcwBMDoSGeT5e8BsanzwYEYETzLW8hnxtX/oF/G3wzAI9PvIJBVDD81goAhg+t4IGJ1xJTe7Hmol7MZSzfXa2EQVdgMi5q0Hsb7xeczBnz3024I9ZSQAG15KjwxSoGkUETL7cK83db6r8nQBdAfnod8Z0x7kVyNvXoF2fLkr7sUfc5spB+XKgnNCJh7qNwt4UPld24Azz4bP3pcYGLFokJOjrqcEEQdEESTd94sPuwkhP/BPRFnsTjQRBMho8IqPuIXJ8AYRj+h7I4/wfoH4bhJ01/E3zEvsOO52EYrsZ1BT+2HHMQpEFYvwmC4DthGP7nsW7P4UoSYkCacTkDMcjaESPpXFxe90rE6NyEq4htxV3donlsOuFxEpbDpgxPeFqDG5Sm7mXgJQvPZWPiA4uRsSKq+NWODxEGrGzcTcKlvitxY9tW/PcjoGMXLhd9AS5ckI3PAbZoZsNQvtaVhRiLA3CuNR35Fb2rdRjrkKH3mY4rw7XiOZBqcTCEtrsYmVcsuWaFfp+NuxEO1vZ2whPGmnjAW/psLMZqrfaZufmZYQ/yDhjzkIIDIIsTisab7MWZiH9BDPR03ASxvEnv4BLgFt9kyXHTkGdXq20yxbYCPdfECppwYYUq5B0wIYT1elyJfjdAn5Ep4HWL9LGBdHOrs/g369s8/Z+q/RvHXc0sB1EWnkTXhBGs7cZ2LcFZlxRtSz2e9HQ/Anb2a33v4CIdFXrtrvi7BZ6baijy3D6HgOX12p8HkGdfr+0YiICbOr2PUhyw7dT95+N24FIcyNu7Vc0JJug4Kn9AHs9bwKIgCPqQSCn/WS7RHEEnI0DIsqvthKbucLpupiGTjsVgGBNRodsxPC4FoCykrTGD7FhdwlAuo4JKShPJMS9gYYcg7loKyKKR/po76IGCaxnEKt4ulLiUDJpojeQ66Vy7i/rCruTNlNH29sk/4o4VP+dlXVCupJS2b6UwjnmJNpzHYs5b/QazS8SlbirTqUvP5+k0CcB58MmvQpazD9npO9g4fiDPT5Aksl0m72DP3BzMLudPiHuaAZwbtU+m636QGJaBSAg5+CRtbgWvI/D8ad2eoPtG6vbvEPPNhAGek8/P36GJbfOQt/s2kSYH2d6zKYfHSkRpbeaYiWy4Psav2yU2qmFtTy4d/CTTtVGzuZwHuY78O2VGW8UgCqmhd42qqL0C351zf8K97uUfjiSfLZyxWp4V2+CUtH28N+bUhLBEGRVk0MRSJPlpAe+xjGFUp54GePJcE1tYV3Umo4tfoLJdmKEtdfnCyBmbNVxAdcIG7oUoSLUAG2yATIYN4JbAG8i7bdbHychMa4kjPl2l/SglS9VFoyeAh8IwfPIjDhkHbAjDcLse/yRibj6ImB5WetFRAyp6jVGI+fEU8BOcC/24sumTXuPvLcccBAVBMCYMw/nA5oMyfQNwiIdyTMp+XA3sAuSJWg6YTXiSy0uRgO2hyAp1d8RQGowYS39GjOJqxHg/gACXNMT42oTHWZj70wW4nk83xLCMxjEUIdOaJdO0+J9mPS8VX4Gvx4Pt8xGjtwGxFCwFhBmclgtno7ZlM/KLqIrUtxmPw6jV65oMssWRNOHGdZu2Z7X2TYHur0N+WfXI9Lxa7zEZAV7GdOzH5cEtsH0gYmRn4d4J5rZoBqyBGZPbjro/fUP74DF9NhbLslGv1QcfWt/BWbFm/PlHhRKMHUPrmog86xSckTLgYKIaFosTtYFbEc8Ii40ykYl+Wm8ertq2S7ezcUBsdZnLXLL2Vbru64kzgAbS8+n4Hr2j17Z4tMV4zFEN8l4bYKzCY7i6I8/Q4slyEcauDM8dZKCqCU+qai5+dowxZHa9dOQ9jeNqcmg947SeQm3XEjyeKhl5xwfrPZnbnsnCGxiO63flOPOVj4CvRm2/MYBZCCh+k6NUTqjDHVEJw/C3wG8juzYGQXDBsWrP8VE+4MNB4lGluJNF9toWzrsgRrlRpxOQqAEDRYXID1GN5B794sSI81pdOV3yhbmpoIwyKhIr1QsYTTYNie3+1JDBngQT9OX5D8ukYIPsNvhy2cPsLRGdzZcLR3Lh/CUJoDaV6bw+pKzDSvgMpjCKRQnDfBGjeLRkUuIay5uHcl/612lKEv+3x4ZfQ3beDmJJcQBWzBjhgfhARnoTe8bluBDCbchEZMpuj+jnikhflek+256IAKSv6/b5CIM0Wrfjer6tIubR0fknDZgWwloFA1nIhPA7HDitBr7dSkqa3PfklbO4dPCTdEmSZzG1+GfUkZ9wd1vGMLJpoHC7PPBCNrEo9xz36e4LLz8xMuFCV966lHhqX/YOUM3TAbAutYjS3WuozhTQ2kQGbaQkQM4GYuTQwAK90Xy20EYKq1Q2b2zxbBrJIjtJmKMu+U1kXNXE6vXyUrW9nikA0N65hcigOxBIUz+CFuC13dBXGckN5yAvpmUkTNdtm3EPjg/6xy4hSUdDHS4A/gisCcPwV4c47D1geBAE6UgnjkV+CW8CA9TVbTPCHV/7EdcYhDgyXobA1plBEEwLw/C2g4/9iPKJrnEk5ZiDIGRYmI9k9z64hMBxA4KSkTGuHzI2LUDASR3CCJkxNgtZ8X8Td29rQQy3+/XYLMQ4S8YZiAzEUK5DGBlTYQN3YbPYj3yctQGXSt6l+17BE4/m6XmW4b4zHpBvMUpbEYM0DTEQOyMG6QHEcLdAfhNjMDBiMUFm3JvxvBdx/TI2ZJX2m8lbxyLnWVsakLnAWKjuuLudJfhMwnMfdda2x/W8y7Uui0N6Sq99La7CZv1gDIIVE7b4CiKUYLLPJoqwKvLZwI39j7rImQtds9YxXu97AOLS1oAAmzY8znOXtsfcGW3dKkPblYYA7rMQEF6ibTe3zGpclMAAZ1ccLJq63n5t/wE8Z1U0ka4xmftx9zcTyDD3t3YEOFmiVrTuRv1vz79S67TEqlXI8yvXug3gJOHvcaP+DcbBoYHk9bjbaBLOUtXi8WLW1jZk/jxfr90NeaaDcfl3c8F8E0+ea0DGVOJM/c7i9vL0us/ps8jAc1mZqMZRKe2H/faEOtxhShAEXZGVxvN01ytIasfDiTl+RooxQZuQpRsDQvvkRbfJZMN+aEl2medGhK34J93OAsaFkCZOV1ue7MuWgX0ZWzybeXMk1qNhdA5l6RXs0PiMItZRSA01yj5VUUwODQzShAT1Y4TleXuyGNVn1LxLTWEvqtVpOp86zUkEbgAAIABJREFU6A3PFIqs8/jdL9F71zZeLhAkcOHqJZSWVHIb03hU/fg+xzMdjMQr058Sxkj3leT/ldXFZ9MwXRmVFxAAE5fNLWP6isk1U71+Lk+F51rhuVTvlzjC+tikMxC4E++7GJ43AzxhqjFBFyMgydzf8pCBz87PweOOovVl6TlZ0Of3a9lYNZCxxeIOtzjtPJ6/6yr63CJI7K6VP2Hm4ImJHD6DWEUP6ng/V96HOYynmCqm5X4fgKljpnPh/CXMHiMM2hnL36VhRDZn/EpdFX/Yn9Lda2hNTeKMmbKvZnIvVjEoEQOUQwNNZJCBeD3V0YMGchLucs2ks2L+CLoM1xig13PoM2YtxCNgL8o+GqPWGNkHcG5mZAXqDWAELozQgLzjtgDw6QFAR7GMAK4DKoMgsJ79URiGc4IgmANMDcNwmQoMrEQ6cRUisPBBEATfRqbXTsADYRi+/RHXSAeuDsPwXYAgCL6E/Ao6lCAI/owsD+QEQbAJETf44ye8xt9djjkICsPwJ/rxjjAMN0S/U/R33JQ9uGtRVG7jHWQsM0PZXIKmIr9PEyp4EVm8WYoY7GY8VuNxB2aox/D4ks7IW7QTMb7qEGOsJ76aXo/nevk/Wl8uPnYaiDLWwlTbbJjIx1XRLMbIcupYXJAJEmTgecui+W4O0FGFy1gqyzm0HndjM4M8GY/paNI6zLg0Q70+0l5b01mPzBfJuDueSXKn4M6qtpJvxnErPr5aDhtzybJYFEtGCh0D+7ciAOyjHGGtRFmcXOR5GNjdjYMkA6SdDjrPYl1ssXUj8m7FkPxD5lpuam2F+vcarq73JgI2UnF72lT+2vA8TcX6XR88hshYvM34M05GgIcBoyoEyBswAenHA7iDTQx5HtXIvN9P27ATB5yd9P4aEZCYhrCpG3FFxM348zMFOnMfbde6zSXT2toKXIUwViaxvR+3U+y+Y9pHy3B31rO1j6pxGXLzrzc3zS8gv+XOyPM1oRFbsDiicsId7kjLA8ja+Bd0+zpEHehDXgafnWLTfFQcoRAPGj9ZTJsEA5HcMR/LaAQcGEhaDrwfwNkKBgZCSfGbHKATQ8a/yg6yuZKnyWYHyzSGOYcGbuVOxiOGehupFFOVAEkx4rw8eSQXrlgCwN1DvsN1zEhIZMcze8FWOKfQY7YfKLiWL69WBbSSiziZZu6d/332jhDGoiE1hx3kJNTietRtFaEDjcf5ys/vZfVtZ7vr2W2Ia5uFkaciA66Bnjzg9VSXv7aJbzrO7JyMuMnZqkiL9p1NxHnAr3E2yRR5TAjBVPnMbq/B/doBJqsy3ESE9p4Ge9ozIA61xfKA2lpS6HHLBhFMAG656meAsGcAec/u4r4r/pm4gqI7f/FTfvPD67mp9R5AxCneG3NqIunsZcwjRpxFPzwHgPNefQO6w47CDLZMlhl5Bzlcvf1ZXs8V9NZEBssZwudwsvoZrqBGZbiv5GmyxrxPX0Wcv0/7HhurBkJMwz3qA3kO1m8t2s+vR/qqEXgtOrKfjDsqg1g3+/DZ/CQ+TUAoPArucGEYLuGj424Iw3B85PNPkMWlg4+ZgwjQHO4arx60vR9hhg4+7kNJrj/pNY6kHHMQFClPIIu10TILNNPZcVBOQYwgC6TPRcZTi8E4FzGgS5Gf31+QOEiLgTQ3HmN0cnHZYAuiX4YYvTtxVuctZH6ajLvEWWD8m8h8ZQHt+xHXrio9zlzsCpDYm1bcrc1iXS0wfb0eZ7ESFmtSixjJFuNhCl+WR8ZidQwAGftgQf+mHmeJS83Q7qd9ZKvqryHGu4GxKOuQi4C3flrHQBzANeGJM5fjQ1669mG1XiMLASKmMGcAxQQremqbf679+gof9iY2AJTEhxfso7mDRiLPugQXhEjB8+Z0QsBwJzoKAaxFGEbLWzRU79+EKCz3z1uItHgK8pwK9bMBAmMMwd3eTA1tDA5eLNa3BXeTTMKV3bYjYAQEKCfjghY1CNhOxWOn0nDguBV3YUzH3xcTgTBxCmP56vSYZjwHVj/kuefiSnEGmNtwNtBiqyw+rxGP7zbAV6v7l2u99Xh+IAOS6L3YosBLOEis1eOe1/tepnXtx22UIy4nJLKPtPQPw/Dzke2fRVY4TxTAlxcMFOmyVKm6GaUhMHKcfj0Ucb9qiWyX4HEuLbC68WzGls9OJEetoIwdZFOoMT8gYghnqsHaiQNcsHsJT2WKA8ijTGI8c0Byo/KDmv9kduFYLmsVEFQ4fxOsgbwtMsI+M/EivvzHh1n1FfGP20CMQVTAB/BvqbcDYphP4hF+jcTGfDP/Xjbkx3hmqLweV/NnYVxM8joPWZ20YNnlyKAWBSi2uqf3zXCEQbIBIIYwFTZgb8TjeEASocYCZzPK9HxjhqbhjAf4ip2dvzaQ5xKH0eNfYOFtl9BweU+4GRo0eCnWLU4BtQy7SgDjVKbThSb+VQUSZ+RfzygWJ0Qr3v5hf9ZRxLpUGdkHbV/DQ7mf5857fwrA+986md4122grVIO7K7AV8rruYlWuiB00kM37uSdTq0h5HaeRSlsiRiiFNopYx7x2eameSprAxvVFZMfqvG/rgTS1x/NCupQ1uFz5TO3rgUhs1iV6/OnJsCaS9JcO9jYywkfN3E8PEDoayVJPlOMABAVBMBA4A/F1j67WZXIIDZC/oe67ETe7NgQD/EsYho0qBbgG92B7PQzDr39kJZFyAI/DMWUyy8OyHjc8Tfa5GVmNNmGEKmTNIk//m7zw2Tjzm4cY3+1a9yuIAVeEK84VIUZwCa7gtZ6OilYWMJ+CSxibZPIBZCyJih+8q/ssRiIfjzsxV6VWxEivxFflC/hwcudaZA4w5icZnz+atH/W63WKtZ9MStxc+qJ9OUCPt5w82XrNznp/licmG3fxq4rUuxa4HQcfIHOKxe1013ZZfMpebUu5nv9nPDGuKYEZAIraAoPxuKcyOrJk0f8GYO09MaZtPS6H2At53uUIgDHQnKH1j6QjS2VgyGShjUwwNzG7v+6If+n5+PzaoNfvhxj952o/JSHP12LK4lpvnv63nE2DEdfDf0KAkQEM62+TsrY4MRNZyNXv8vCYs6gyYSdkEEjHFw4MQC3TvslEWJliPaczzt5YTNjziFCJvYdZuAS7CYVU630b+NyIcP8jEUBsIhPP4G6XxfqcnsIZyiMuJ5igIy37giAYqSucBEEwgg8HxHzGiiWJNNCzDIlcjQSQZyTLjxc9tAs+sE9HBjQDRRZkqYxJSmw3PbrV0Uw6KbRyKlsZygqWM0TD4UXkoJyl3IEAlP/LV3k007Fqf2rovXpbQsTgsvnzyC5sSHxPb70NUcRmBzm8/pWyRF6aVNpEjeyikUziUZrIYC7juLB2CfcUCAgqYh21FDA8U9im8cyhqLiaGbdPAUSMYd3gM8leLgxZQ/eeMgBaTNA1uCoPOCC6BgExNyPKbRPwydyOi1tfBh1jgNbq96MjfT0az36yHJnU7FlMA26TfEYL51wiQGjaJdACW9bHGNJvKQXU8nTVNYlr1JT3Z93OIlHDA+4b8s+MYjGddLXljGff5d7h32d2rvR9XW4+X/zjE9z+LZHiu2Pmz6mZ3IvCWnH83jsgic4vtfNe7qkMemkNb1/Un8tWzGPRkHMkaSvQgzqqKUoozhVRTR35nJO0LNHXGf2aWLdTgFePwRvYsrSvA+3GgD3P5XR0fVtLR2GJ4WiCQBP92EpHARBbJrX3/NMBfqy0k0Rb+9FRh/sslyAMj616aBAE/4S81p9DbAwrTcAjYRguPYK6LwLmq+/iXQBhGN6iIOi5MAxLDnf+waVTEIT9cWmKQtxIfweXZDbRgrmIkbxet1cjiygDkDFtFGJgm4Tvblxpqg4P0LfcKRbvYS5RTcjcZDEL9lNfi7AQTbhr23rE8N2FAysL+I4COXMxa0HGX3PbM8BSh6/EZ2n9y7RuY1hA7Li9keObccWxGALiXkaM1lrtn2K9fj6e9sBctAzcteMgqhFnDixPUrveX5yO+X2+jxjXaB9YHhxz6WvUerK0PWZQx/W7l/T/W5HnkIq4PK7EXbi7attN6toEI8wF0ADX9kh/Wd83I8ELVoYhc/BQ5Nn2w2OIivG4JmNQturxhZF7744b6aYeF0MM/11ap6nnnaXnGcDsHqlzDgJ2zL1wp543X9vZqtc1YHZA6xyG/A7y8BihTbgwRj/82WXisU3Gmhm4NwBjrJ/FkoELQyThMV/2br6GA+NZiB23Uve1aFvGaV1VuMulJaM15bwa7fMWPJfhK4hNlqn38TtY8UlzMhyqDE0KwuWHWZoK9h/5NT7NJQiCMuC/kZ9HgDzGL4Vh+NfDnvg/0pb8UDJAHIty8EsUNQ5NN9PKOfJdj0jA+fDI12XID3ihbt8sxyTiOdbmJDT6x47RuJSdoyjvtjRhaF/BM2SwJ2EkA4xjXgLEWJB9QoHsJXjve6fSe7sqlm0FKuC9yUIVzeA6zmNxIgYFxLCey9hE3MkwlrGMYSxXtDaXsVzJ01QjimVVFNNEhriTAQ1Te8q9GmQ+GVIm76atRVfbJ6eKpWIAZiICSh5HVjLRfovjxnwW4sKxQ7cX4i5y4InZbOIcp8eay10ZMjj9SbfnhnBbIN8bgzVN/zQB69hfzU6wPACnUc10piaEESbyBHFiiXirHHYwhBVcvVpd17rDQ7mf54vPPiHbp0ubP+gtm62pSTSk5pC/exsvZo7V28hiGMuYgQDKFFo5k0ru0/e/nKUMoiKRLPf3O7/J2G5zE3mF1i09k9PK/8q6+WfKRd4EekT6wYBkPR6Emwj12X/QDnOPA7FOmjg+y0+PaCw/aehZYdYbh/cSa+jU68R88THlmDNBYRj+BfhLEATnhWG4KPqdruIdSd0vRTZf52/QDj9U2Y8Ag8W4q5hJRzchBmYyLtecHzkvFRnT3tF9c5HVZ3PpsSSplsg0AzG+2vC8N2aQDdPzzLXMgspbcFWrNFwa2LJLVdBRXc5W400muwpPtlmOx7AYyLGEqJZHJ5q3xvrDRFxS8XioFlxG2BJMXoEAoctxrwHLbbRZ603We8zW6xbicUMWm2RxR+Buftvx+CeQBaPBut+Yl5XI3GWAzhiarrhLmOW5GaD3/xbuHtUVYRIG48H2cT12P+6eZa6KTVrHTlwNzfI2rUdEMyyvUC8EMPRBnqup2aVE+tFkxXdqP43EBQUMFNVFntNO/b4Bmas3a70bta01eHxYKx47ZCxRi95HuvbVUsS17i08gW66fj6A5/fJ1/O24gzfKtz1vgpXrHsHAfBL9X+6HmMiCdv13sqQd9lizbbqPRibZYDlXATMd0Psi7nIu2xMlbmyJun9DsAlspNwF0KTaq/X9hsAMlEGs0eOuJxggo6ohGFYAZwVBEGmbn9G5bGjq94nISOAGYk2MtqssA/YCVvUrWhQprt1WckCfqkLpo0BPAd73hRXpZJb3hRVr7S2RMxHSlobWTSyVZMmrKOI6Tun8h/dfpCosoKyhGEez+xFGym8XyJA7ZS6ffyeb3LnKz8F4P2JJ3NKxb5ErplU2simgQYFc+etfgO2QdWY4gSwuoZHaCWFyzScYPXSs7msfE4iDuWxGV/i0ilPsi9JRpm6BxpYN+NMsr+tTND0nrT9LjORC4c8ZAI0gDMNGbi+g4OYOLLq9A3dbkRA44TINjigXIswP7ZtA5up1H1bz7nROi1QxTjcBWEy9CjewDd/JX4E/99vf8lpN/yVW7gLgHu4kZu4JyEYAdBKCrdyJ4AwPGmA4s37Sv6ZMiq4/QphglJoTciNA0wvmUI+dWRkLuaAzrwZNLGBGKUKQFYwhGf4XEJhLocGauifAKBtjRnkd9uSUO4jL2TdyjMT7eNsRNrTwPgL+MqovcbmovK+ZZ3bh8xif41sR0ngT48rHEDYHtBqAP1E+bvLMWeCrARBsDIMw8Eft+8I6n8WeDQMw5nKBL0NrEMImNvCMFx8iPOuB64H6AJD+iKGeDUeL5KPqMS9hcfVpONB7s/rcck4c6RutVQiyGwnYpzGkDiZ8YghOABnaiy434QSshBjbAESH5KBu/nsRQy2TL2WGcDmNmZGnsWrGENhRrvlrYmSrcbM5OpfBTKNWi6ZNG1fTK93AGcMLLjdjPZ6ZLHHjPE0xCDN1jqrtB8rkHkmCXffM5UyA1wGBE3dbq225yVcYCAVWZPtjid0NdbCZMJNbnu7fmdACFyu3JTvLHeNuW3ZdqNew3Ld2LVatd7NuAx0ZwSIvaX1LMBd9IYiLlx12ifW18ZyZOBsW7Ve01glk37O1j42EGSKehbfbBLWJYihPwAHOg16vrnXWazNbjwvj73nKxHA0oInZrUcPpZrx3JfVSHvdzEC8LYiz/0AAta74ypvO/X+7PmjxyxGfh/oPT+JxNHNxwGogbd8BDwb03c+nkvoXP3fhIBPSyS7TO8Hvb/nEYBZjbxPlm/IWNt+es9LjgYTFAThssN8f9JRuMY/WgmCoDcSlbIDWBeG4Z2HOTYbCeAdiUDKJYjoTsOhzvmfKseWCTq4RNc7Tb7EjM59QCmcq8bka8gAY/lx8hCXLxNKGElHac08YDWUTHkzoQa2rv00xibNpRxx5FhKeeI7gCt5ihr6JwDJKBZzF7ckmJ2buIellDNEJYjWUUQTGYntvFd3cd+If04Eho9jHhk00XvWNm6a+AsAxjObZQxLxE3kI3mMHmUSACvuHyH3GNNGLdd7tHtbi7v+gYCVFyLbk0kotCX21SOD9STdrtZ9UWPeVlak4WIAmG1uzIe50tUjA6URaPYMSnD3AwVlEwY/AsDc5nHsmZ7DaTcIGEihlV/xPSrUl3A8czhj9btcUCKWyY/4dy7YvYTKTImvGjRzjQyUCopuHfJTRrE4IT1e3rqUzq+2896YU8luFYrrntSbyKGBDGVdXuRiRrOQFxE1P5PINtDTRAY7yCZVn/e6pWdCrFWEJ0Aw+j58slqCr/QakKxHlAyNwdyyho7AZ6dWpDdy3JUjY4KSygaFyfNfOewxbdldP3Pzxd9ajjkTFATBuQjpkBsEwfciX2XiNujhzjdvm4PLj5VlIgiCHyPDzEP63RagdxiGDUEQDAGeDoLgjI9aNQzD8H5kkZ6TgyC0ELw6xMgtR4zX1xCD7UoEmJj62H7EeF2JGGh9kBiGs/EYDjPebJXcYoG6IwtLnRFDuhExLpv1uM5647fiSlmWl6cZj3cwNTljWmrx+B9jMCpxhmiMtt0ksncixp61YbP+9UMAhqnQmRudCSl0xVfvTaDBmIY2xJCdr+favLtRv7djjBlrQuSdjEGxgPc8vW8z2LshBux6xKBtxBXDfosYvpfTUSVuJzJXmfthMp6fyFzXoqAjU9tmqmDRuCdz20vBGYX92o4G3W8xOCai8ApO2NuaVgwHaRZ30wlX+YvjzN0wnGHKjewDl0M/gMtDJ+GCEyV6Xh99VgZEuiHvbDSWqSsdXdPQ+zgbj9kx1i4qFGCqdfZOX6xt3IRLqEeZy/54ctp6XDApXY8fhisG1iPzdQvyTs9FAKQtOFTr9S3h65u4GmAz4pJqDOowPBGxxdmZ4EkfBBzFcPntRuT9XI+LRxxpORpEUBAEDyCv+bZDufwGQXAJ8BvklZhuwOJQ+49mO/6Oa5wGzA7D8A9BEMz4mGMfARYBFnDyReBRPKLlM1gOVoczztOMxW7QN1mVtgCSJSbIfuRlyIBj4KAWGfjtibZAjykbaCOV1+oEWPXIr6OIdfxbu8QAjU+aQ5wY92nCnLmMI5W2hLvcHMZz5/yfcveY7wBwyvZ9HMjtRF6tjJJ5u96gpqQXb+jI9uKIi7mYFxOyzxk0Uc1p3DPxJq7kKQBqKGQKD/JlHgAkLmUDMVbMUQeTF4DftcJCNbzr8cHAti8GFUmjR/kGtrze162NJbjkdU5k3wTceF+GB/ODuMGNxJmhNFwBDu3jtTjYGY48Ntu2a89CBrvRkD15Mw0ze1I0WEKcm9IziN0QZxmi5tZGKg8yhUd3CjKLd4uRXdLATdyjTRzGssxhXIPEDL0+uYzhqytYNETOH88cSqnklBp5Xx4q/Dx1Y/IpYxWLUy0rLIxjLqsUaJWzlKWUJ0Dwo1xDMVWJRLYr6oYyJH95Qh2wR/kGtqzs65T6aODyEOaqUIK6WybUnKyckgxb7L01l8/NkQMOZoKi5R+bFQrDJHfVPFH+7nLMQRBiF3ZB2hKNL97NJ3BfC8PwsJObapJfDowNlfYKw7AVFfoKw3BFEATvIhPt8kNWpCUfl5HehBjNhYixuRlZWU+LHGcuT5cjLHkyrlQ1QI9bgK/+tyJGUCmeP2cVrv6Vjqu2rdd2rEcMz3at21zEDNENwPOp2Aq5ibFsx2N8CnT/X7S+ZDw3ygE8jiQDGZMH4vnVjGWyWJpm/d+CK5GZS5bl7NmpddTiKmrR3DNoG4Yj7IAltbSYjSY87iZJ21oXOaZI7yVZ+3mjtt/cFw1MGIiJxoBE1fuMATI5bgMCjXiiWYvjatR2pGmb8xAwYXUbsDHA96L2ewPCROzCpcwtDqged3mzOJt8XErdXN6ytP/G4Ep9Bri2425/axFAmYUzPINxRT9LeDpYP/fTeu24tcj7aH1tIh19cBntOJ7w1gCMiRKsR5hTU32z2OABeCxOKq4EBx3f2V2IK1p00aBZ6xmHg/DlOEi5GAEvPREb5EU9b5a2136TLdpmc3Mdidg1lljXfnNrta0GFKNe6EdSjpI43J8Q5uQjAUMQBJ0QDY4LkcfwZhAEzyCY8UP7wzCsOuj8U4F9YRg2RfYVhmFYQ8fyoXYc6tphGFYFQVAK/OKgOr6MDIE/DoJgEpKl/HClWxiG/xbZnhYEwYRDHv2pLVHXn4ONPYPsGkV60mDYsAZniJCBywzu1/HAfRBQsJgObNCWOX1JGb8WWlI4rV8l+dQxl3GkJMlKfw2FpNPMI0qR5LOFBrJpVofXMiqYPWYsk9QQfyj381RSyqgCcdA45b19dFGBBYBSKlnOUG7f/XO5hV0QL4gRY0PCBe9BruMebhTVOKCOfN6lkAnjhTG5ePyLfGPpfzH2Woljmvfby2SwsrelDz4RA1tm9PWJz/qoEYHdF+u+F/R767s0JFbHhA4q6Kj2Vq+fLUZopNb5bd2ehoNQOz+m+28GFkJsSpzYlDj3Nn8LgD2/zJF6FZ+MHTyb65hBfjeJExrFYqYzlTt+In2342c5TGp9hHmpYko9xLUUlazjjj/K9/Vf6UoTGSwtFKW3U9lKHfmJXEAAqbQyl3FkR+KxqilKuOAVU0U+dTzdLp2bktbKDrI7sHRb6Ov3/UtcJhu9/9E40waSdrMv8L6BnojQB+AS2Wbm/mODng+V9gBaTggjHGk55iAoDMNXgFeCIPhTGIYHKxIfUdEVx1uA88MwbI7szwV2hmF4IAgCy2W5/uPqsySM5lI0CDEMhyLWw3DEGNqLG22lyOqzCR2YMZ2EGMnpyEpzLsKGGAvyCjIlvYQoRlgCzgZk7nkR0fepQpgJtI4GPc6uYYHsMWT87qRt2h35DK68ZtLEBijsepafZTAyBvXHWWkzRBu0nSl6ryb9vBOPb9mOq461al/l6/1k4+7XtlLfFXfRatP+LdX9JrNcoPWa650Z4mnaXmN6ump/VQH/jgAAY2+s3wxcmXFuSWwtZsjc1azsxcGHxeoYADQ2wdTrGvV/Z+TZz8VRd65XST/ctc/YQmNGxuAMVVecrbNnnqf3YsILaD0mxd2g2yahnoyAKmMXdyKAYC0O5uq1zf203Sl6fD+9hkmiZ2h7TOHtLa2jBVnsTNLjkpH3u5P2ZwEdgbK1L4ZLeJtCXDGucpit56YgwCUXZx2ztF0Wp2RAsQ0XKjH2p03bOlTbdD7y+9iEgxtLlmpttGduv/OoCMeRlE/ABOUEQRBdrLlf2WqvIwwXqcvvoco5QE0YhusBgiB4BBH3W3iI/VUHnX8+8I0gCMaHYdgSBMFXERJ8fPSgQ7TjUNeuCsOwEjcXEyUIgpuRxHmLNGnffx3m3hYEQXAN8JhuTwRNTvOZKh9l8NmquMVMXKqHbqUDAOpBx2ID8ELdjiNGu0HeoVAyXuOCKgLWUUpZv1W0kcoUxb/VFDGXsQl3qWe5glIqeVZzpC+lPBHLA1CgSYsskH780NlsIZ+rb5Tg/Sm/vp+JzGJHpizD5W3bJaCLVr7LrXIOc7iOB/k93wREKrqG/gm3rm/M+C8ogXl3SIJXKhDgYIlLwROYgXCLp+PucwuRN/EU3Z6ADBL1kb4yd4Sor0ocZ37i2rdFke+jIOhGOrJwceQXslzbWwYrvjyCLr/bwZ7/FDrqC7f/N4+tn8J1/UQpoZylVFGcAEkp6W3cxD2s+pm4v+Wwg8mpD3EtknNpCg9yK79g0lcEkFZRzNUvPUvvQSJXzi6oKiwmmwayVfHhMuZQQyEvKhqME6OJDMZpgpA68llKOaVJMqIubLyYPVkZNMQlxmtLvaaEtPu8BAGUcd3OQ/IrleG+9RkIEOqQ/+odHOTb/k8Z+DlRjmpJ+vhD/n8rzUEQ3B0EwZwgCObb3xHW+Tvkp/JyEAQVQRDcp/vPA/4aBMFbyGLw18Mw/Nhchycjv8WzkN/mKsSwX4IYUi2IwVWOuAiZG9Um3B1nGGK85eHyx8sRNuh8xFDrjIyJnZEV83ZcWGC7XvNyvW4eAhwsbggchHXGFb9m4QklGyNta8AFHYx9yUKMRotrakCM15UI25Wt9/sKYlDatQ1NptLRhc6YEPMyMGBgc0MzsoLfB2dCLCeLub+ZYpgpmW3F2QUzRJMj5xvAuVjbBR1Txt+JuMc1Ro41Bmg7MpTWIfP8Vm2zgToTZrDxer+2yZi/BkRyfCMy1xlzZCBhJZ6zxuY+y7/UTfdZXp0sBCwaMDNA0oLHoKXhP2SL2zJRDpOUtmfbjrxnlsZia6TNpiZo7I85LzE6AAAgAElEQVTZPtlar7GajXqvZhln4Yp9/XAXw3btxwKtN6Z9WqznnI+8l5aYdDmer7FV77Wb/m/V61bhrFd3vUZcr9GMMFLWH03I760TAuryEQBtbv72XnXCJbQr9B7bta6rcPfJWjyWz967FHxh+GgUY4IO9QfsCMNwaOTv/kNUdbjSk0hqTGSI6nmY/R3bGIaPIybKI0EQfBFha75w8HF/47UPV14AbtDxO/4xx34NeBh5ZK3IOv33giBoCoLgMyqSYGud3XDDcAAymlvXV+KoBvmRxHE3rApkMB2O/JDjuq8XkAarZ5wNjwdkT9gMFQGPrfwSc5vHUUkpM5jCg+3XUUwVC7mAB5mSkE6+mBepI5+pTOcW7uJRJlFLAcsYxoTWp2gjReJ4Uq9hFYO44NfPQ1eY8ZPrqSOfNxjGVTzFpMI/0UYKt9X+b6ZxG49wDam08pW6B/gmv6eAWpZSzuqVZycYjJlTJpIS2y185S8RZqVS7oeBCHxejeSomYaAna8jAOURhJN8CFdwexqnkuPab7u0nxbSMZ4ornXFdN9tiOvcNGQimKB9bXFJ5qqHHr9F26hAKDt9B4yCHrds4LH1U5jQ71EeXD+VKoq5h5uo5EyGpi9nT2MG05lKKyk8yiRmMIU7uZUMmmggmz/wNVJopXL7OSxmFA9yHUsp54GLruXW3J9yZe6feabwItpI5Tamkc8WiliXEKyYxCMMZTkptNJGCssZwgyuI8YGmkmnsr2UpTvL4fGALklNMDNgdL8X3S1wJsKcmXvhcJw5uwYxGD7AJ6STQMB9d8RiGIDMPiY/9QHuYHQSx8G6/9ErIdASHP7vM1iCIOgdBMEzQRA8EATBrR97/HEkjPAS4rt9MzI8fAnYHobhLce0YZHSJQjCkbgCWDXyWyxHjMy3ENBirkvNiJFlbmYGPowhsngHixWxUo+MgwacLKGnuc+9gxi6powVBUeWl8WC9g3ElEbauxdhcuKIQdoNGavT8bQE5lJ0KZ7vpxGfI/JwqW8zfNNwY7sOV98yY34jzmJY/GkzrlBm7eyEO/An4/EfaVpfJ8QbI4aDI2PYLHg9RdtSiIDV/0PHYu5wBpSKcLDShCuvpeGgx8BoG8K+9dJ+M7bN2JDOeowxHeDgrBpx0XMBU7/PK/H4L1P+M4PdEsjm4s/U4r8acTcyY1GGIXPqu8j7t1yPsYXJTjiTZu6ExuDYu7ATAQJ1kXqjKnwmXjEKj11ro6OsexIuZ23vUBSktCCWahvy7N9CgEaetmsrznBm4RLWJvltiolL6KhYmIwsLFyEv/elePyRMWj2Dh8splCt932u7l+gz+Ad7dssbWsaLgby4lEQLTgrCMIXD/N9DzEVFgDPhmH47KGOO1wagCAIrgYuDsNwqm5fhzA0iz5qfxiG3znENR5B2J/+YRhuP8QxHdpxqGsf6hr/yOX4EUYwwy+KNffhwgildAREwJWZHqQf0/+j9b/5aZss9JtSRcrw3bQ1qsFZH9CnfG1Cfrq1JZVR6YtoTNAmIn5g7M+pbCOHHSziPECSb2bTwArNlT6Bp0ilLZGMs4wKnmJCQlihmCoGbV/DlNz7E2xTExlk08AcJSjXzTmzQyLSS8c/SRXFbLxDlzHuQwxwywuURUcGxwCMreY1In30HGK1gKu9GXiMurKBC0y8EKljuLeJgVrnP+v2rxFWxJ7F15H+Hxlpj7nbqd0/+pYXWDj/Es4dswCAAt6jjdSE61ojWayYM4LHxn8OgD/wNW7nDu5VxiyVNkqpTIhOCEDK4Y7t4h53d+53GMdcailgARcA0tel/JUV6r+WQhtzGZtwRYwRp44eLNbnu2VOXyhrhbWp3tdr8eWRAgQQWb/k4fmV3jfe/f+x9/ZRWpXX3f/nAPMCMsM4w3SGGXi4QZBhfiiIGBCxYkITNcYYl63GJCZNbfokzUqbNH2atGmaNmY9zcuvpqtpkxqTpmqNGn9qUqukIUqqASzIS6ADCOJNgWHIMOPAzcu8AOf3x97fe597goBCEkLnWovFnHOfl+u6zjnXtb/Xd+/vPgxVOShs9O2RmIUioC/G89yUyE5a56Tcf5IIjkuTE94jSZIJmLtyIzYt3p2m6d8e57gzFd/5quVM3SNJkkXYnPSPSZLcm6bp7Sc6/myCxXVpmn4jSZI/yLjInVj64hdcjmDG1juIAO1t2LcrECPlM0n2zvZzhgHvJAy4lQSAasY+XbnYiAkZ7r+VYYa6XGFz2Dgs1S0pdVUSzIAMQR2/mVhBn0oApDbM8JWh2YqN2ZV+3jav02ps5f4QwW7IDauGyL2C11uAQoxBPQEmyrxfxK70EK7WlX7s8xgQksEqVkNyzq1EMtWBzHVavR3nEYtLtdgytfxjIMAa3t56wiVwD+HOJsZMAOcQoSQmFS+1TfFDYougFJhs8efQib07K4mkq/MJ8Kz7QjBc8hOt9WsLvOzwevcSbNAl2POV18DDfswSIhHoAAZwygjJa7yecmFTDia5/+l5VhJxa2DPTqBE7osTvK1dGKga47/PJ+JoFNMz1eswkKmLnqvYL4GT57wNE/x6csVsxL4F1a/S79mJvWs93u5eP3+AcNcrYPbcagIY6/41mHiH8gHNxlQbl2PfwwoMMJ+URn4N5SQxQfvSNP3Aad5iJxG6DYbn20+w/2dKkiRXYq/QY5ga24ePd9xruPdQ+bkVrYZng8TnZv7ein3Neotr7cWWsa/BWRPQjf7bEt8eA1RC/2I5ZkP5NfvZvrqF0S3mLvX7o/6eVcwpSmILqCiPzCTyXMoLLMPiTppopy6jNraWS8iRLxrdrbRxMev5J367eM+++nJeYgp3eMKce3kPL3ZPoz9v9br2ukfZwQTyh8z16qk/vcl8YAVYFmK+I7N8W1S//Efm+b8HM9udGGh6n+/7BAZasgwamWt+i5jAIYx7ARpNggI98yiyPcW63I8NhNe7++DNFWZAuIDD0ievgRpY/oD11fIaeNN1/8az3XZAeWU/v3Pd3/MAtwHmLncvt/NRvgzAQ9zC3/Oh4rO6nft4K0/yg/oFqJTTTx8VRUnsCfw3j/MObnZlg6/xe9zOfdzLewBKABXA7vVAZUUpM5bzdkG43chtsIeQD/eYLxqBjQOYjyLYCA7BAulCWRB0Dslka1X29MoR4I/SNF2dJEkV8EKSJD8YHAfKa4zvzJ54lseQnlUgSK7wu5MkeSs2MY4/wfG/8DIKWztrI3KgrMOmE+W3EZi5nFDsmogZfxuwb7qRiGsRaKkicvRsxQwsuWdVYWPENswIk3taIwEApEAmd7FqAnAIAHViw4eC5Vsx17U+InfPMW+bVtzxa9cScSQyxDu8bR1+rU4ifkjs0oAfo+D05wlpZMVUDCdiTPOZfT1+XIVfS6v+YhEEzLKiA+2+71GChdIqf5Ofr/QKKk/5vxv8XLVZuWE2EMCkkVCw25Zp50HiOcqYH/D2bPa6ChhDAChJdiufVDPB7Ch30ihvr56PwG+331+KdlVeh3bvQ+Ugmo2t8y7wOsmQVxslONFIACoxkHKtk5vdcMKFrEC4MJ6HgQGxmj1E3iS9R53++1HfL1dNMWmTMRtgCxFHJbfAC4h4JeUDkovmKN9+Hvt+JFgwlUj0Wu/tk5ue+rBAgKOLMBdPtVXqclO9beu9bopf2oG5y4n1XMnpl1OICRqTJMndnIQJOklZCUxNkmQS9mrcCtyGN/c4+0tKkiSXAF8H3op55d+fJMmdaZp+6jTufdaWJEm+iKU168fI1d9O07TnxGedbSVrCI7E/LMW+nYzJa5w1Jq71dW+Kb9YgYLHMUM/59tTcDYkVvb7e6ooz+2naZThWzE8MoLXcxH9lPNTN2jljpWzIA8q6GcZ84tJP8vpYz0XFZmjP+aLfJHIOfQWvs8H27/Gd5tuKLpmbWi7DGr6WDjbaJf/PDaX9wy7jy/3fNROWoSZVQIs1xABhWCAo4fwd+3FzLSXffsrGFh5LNN1sygVkrhrP/xldTAaEAlVIYIvN7qnZmN1qVBCj/ezwEAOk+Z+H9bXz2Fs0WeIR/g1mLhsE78+30Ql2mjlNh7gh73mX/EntZ+njr1FwPnZez/Hl2//vSJjNodVTGMzsxzB3cUfcgP/ynpf9rqFh/g8f8Kn+Sve6uF2re4crQSs7+IB7uEOtq+2zutqGcuBnire1GTI+cW3Xczo3F4OrBgbfZuNxVpKCCGQ6a+9hCrh8gEM2Ctyc7AwwlRsVsgKI5wjAOjUywljSNM03Y197aRpWkiSZCM2IJQAmdca3znouLM5hvSsAkF3JkkyBvgj4O8wO/4Pf7lVKi2HCcNcCT3BjLvrMcNyOMHotPtxEzAXqAWEdK/c2NqwN26/b0uUoBMDSZsxkPUU5prWnTlOiwBioToJ2WwxQYrt2U5IWkvMYar/vo0QFJAxPsz/SeGzh1ilV56ibQQTVMAMVOVOkerYIq9nj19LLFKTH7+eYL82+72VDPOYX+ug17eNkPfe5OdvxebgnF9LktoziZxJYqXOw+anmX5+H6UJVb/n/96MMQMdhBrbMcKMqCIA4HC/b5XX4VimTYewcT3LOg0n2J9LfPsy7PlfRDBdhwjwUuZ9qHxMSpgrdzyxclKpk/KcjH7FjNUSbpIKHZUbmkCWQHm/94/a8xZCGEJujoqNOQ+bo8oJwNTrfaCkpQK6P/J2NXkberA5rYA9Nx0rOWypJfZ4v0gZ8AniHd7h+8YTTNZ53r4Bfy6K59KzE4umBdbxXv8JGJCSy6X6c53fX7FvYsO2+LM6U5R1Srwfr1JOygQlSfJtzIQYmyTJTmxC+EaSJE8Cd6Rp2p4kyYcxPZLhwDfTNP0vP/e4+weVUcBvpmn6kp/zXmIt/FTqcSr3eE3F2/ahNE3zp3ut45QfAJ9M0/RIkiSfBz6JCe78CpURlEhiQ2Z7PYxYFPbhCIxVeMa3tdCuCacF+4iy4GEBplQl97GehHGT24siBBP4b35KA4+59FoXY+mjvCjTrPw9F/ASAP2UcwsPFZmE32cJd/HRItNwIZvZwQQe63wnAN+pfxszmn7CX/FpnsCEDj5Y8zXe03RvERR1fbGZL7/tE0V2ZuFti1n66DUB5hq9S8TeVGLBo+/17XdgA4bYi09hgKYGeMyXLkaUmQ0uB6Tp1RZvVPDfp5eFaALYW/TPwKTq0nuKfRL7oX5dizFBX/JjF9i+yz/yDMvbHLXeCdufbuE+R28feuPf8Dur/4XvzjbRgj/jTj7NZ4uuaTfe/iDLmF9kgj7vr/Yd+78FQFP1bpYxvyhH3kcF5fRzL7czizWAqfUdoKroUncH99BOE+NmG2Lc/cAkmJfyw0ddhOIAHMgr8Ad7BtlIwYlYPwmAPpX5TcBoRBmMLIOCUkn+GOv8rHRRlgk6h1gg8Jigkx6191Rd7hyAXEKs0Z6sHC++c+7gg9I0/Y4vej2YJMl3MLbmN87kPQaVxcBnkiS5jZPHkJ49IChNU60D7MPXoJIkOatAkAxbMRp7sG/1IBZkP54YTzsJA3AZxgTVEav0Cj6vwgy0nVhCC7FLUqi6xI+/lnB5kiJXJaWxKxMJMFFLBMRLZlmG8CW+bzWRvHWLHz8Nc/VRckgNL4obkbhAO2Yw1mCG8wJKYzR6MTasimBJpI4nVygxLGIdtvi+m/1eu3z/cGzBq4xIEl3nv9dgRuNmzPBVXh7JW4u96CJEKzZ7nY8RAEilinDhm0aAt0YCvCpOqI5QpavCrLrZBPMm9gqCccuu8itHjRKQHvU69hLgRy7sSiiadXmUcpoC/M/zv7f6fSv890cwMNrt7RCrN5sQwRBzlMMA+3xsFWIHpkin+J0m7zPF6ko0odKvK3U3xantIxhNsDmtDHvO/dhotgT7pjqIuCItxu4g1OCOYc9xGPbOyp2zCvvWHsG+m45M2wW+pmHLQXMIBqieiNna7u3vx76LnD+rOm/PFOy7GIPZhtd6G7Z4Pwqsn25JvQ4nKCdlgtI0feer7L8u8/eTGEk2+Jjj7h90zI8HbQ9gzNCp1uOk93gd5VvAvydJ8s/AF7xOZ6Skafrvmc0VnELqhrOzKOZHHLJWzt8ARzbG70eq4Zn9cL4b5jWUyjr3YtB2oW9vwj665xIz2scCs/rYvqyFifMNKb3EFDYfmkZulBnF5fTxn8fmFqnxSeT5EP/AUr9ojpd5iFvo8gj5u/goH+UuLu2zRe13V/wL6+niI/UWvvDrPMt/cBX/m68y45hh6olNL1Ogih8+4Ib3e/q4sGkzTa3GLi194Bp4BC591F7nvdSxvakF96YzU0qTL4TxLcNznh+TIxLN9no/ifl5Lza4fNV/7yFkrsEiHYpuXpQmSdU9vroRznckeivmeDqP8PfOw/K/ujqu+Ttw+cAzLL/bQNE/VH6ML8z/CH/mwU4V9PP+Q9/kllGm/jafZbzIhdzla857aKDA6GLy1HbGcQf38JIrCF7Jsy6K0F5MgDuWLvJMYoqD2PVcRB1dvNhuzNDE2zZRRYENKzyQbEEKK5KQRxWo/pJvP5fpSzAp7C0Yhsl6dRbyBKiH0ri3nww6+BwCQHCm3OEASJJkNPD/AX94vHyZr3bacfYdV2QgTdMvOIvzVSxe58Dxjjude2TuJTPylMpZA4JepXwMfHniLCjlmJGl1eZtmBF1JWa0VhHgoAd7R6dhRtXThOJUE7G6L+f4BkwOW8pdCiSfgPmPNPk91xP5WAaI/D6Kr9D+Tszonuv17c7UTTElAhAFIlfQHm9Lnojv6CQkkQUADhEGr4CQAJVilHqJ5JRNfs5E/7/Rz5Vr2Y+I1fl+zOCs9X0yRCGMVd1X07hcriZjIDJPiFMoXmiq99FEf27K+SfWTP25ys97zOsml0MJU+BtFSu40p/LUeDbhIy2YrLwfp7j1x5DyD4r/mUYAdjOI0QfJLet+BQxPCr9fp8cIaTRiQErgaXxhBKf2ihgnCOmEEmwz/fz9mPv5cHMOeXYXDTD69Xg+wWK6v0YuSDWA/+IJVCXK2ivt72eEOfo9/4r8/PlDllPLAOVYfbCFuwZtvmxx/yY+YQy4AAGXiu9fm2ZPmwjmM+Dfu9GbN79Lb++3CvHYO+IGNxO78+HsZUaqeo1cQpLTqdYTpcJ+p9Y0jR9OEmSfwM+DaxKkuQ+Ml2ZpunfnKFbvR88mc1xSpIkHwD8+Yx5tcN+wUXTvHwXmrEV8iwoOkwx2cIIoKoaXvGfZYwu9G3FseR8Wy5jczB3pb3A2grqrtnF9jZbyh/b+mPmjFrFSF+ln8MLfLbj01Q1hYjBMuYzzt3fXmQae6krxpzYbWr4VMXnAPgif8xexnKRB79/9tinmT9smSXnHGYJQh/fdgvbmRb1XFFB4aYqlq52X7MccAe88IAnT70Ti3fScuwszPVPjFcLNoDI8Fzq/z+1Hz5abcfKDUPHfJeSfErc6n2ZJ+oglzgINbh5vv1l4C+nx/GVwKfgwpt+wouzLzZfmRrve13ju7D8pqsj31ENPMPCImBZfu/V3Hj7g0XXwhe5kHaaeHibxY9fONlEES7pNMGBSfV57uKj3ICtuTzPXHYwgT00MJfnaaKde7mdBvYUVf8KjAYsHxAQ8WFidlYkVl/lWr0fc9FQnJliolTUH3v9/8J+IjmI3N9qsXdcMUGH+dmYoHOonBoTdNKSJEkZBoD+JU3TR1/DqedEDOnZDoLOKo0/Sf4OYNPGTMygWkm4dmVjY54mYmA0R9zr5yonyVHMgMthn3AFoXClT7qJSGxaTzAn9X7PApFHRcBAMUGKk2jAjLp1mFHY5XU6Sri4SW1sll/zAm9DK/bmKlakBpvelY/nPMxgLvP6TyCYqj4MFAmkSJFsotddsTNS3prq24p5EdtR4fVsIoCfXK7kftdPuEwNZP7XHHSMcP2r898kSiHhgQa/p5xas1+bOOJrvV+yTM8oYg4SGa8ErVV+3dXel3O97nuwd6gdexZSRsv5sXKNlFtjj/9eRsRO1RES0Yq/qvK+EGhdQghGCBT0ELEvWjIXaFvtddyaqavKs0SOHolPrPf71xGsDX7eoxiw30yA9wLGrDzn15ca3z7sW1AsVy8BvmRX9BDugMOI72A79mwn+vHPUJrUVi58q7Bndplfbw3Gkm3B3sGHvY93Et/3cOz51RI5ka726yiP1GAn6Ndb9B6foJyJmKBztQxgr448QE+CJ6MkSbKE0vUFlT9L0/S7fsyfYcvJ//Jq13F/+7vt+KazQ3oVsGpnp3tx6WBfYybXypE9kGsoBTk1BDvxBOb/rYH1w9ggsx6KqX52Q1euubjS/0LNHC5vWlZ0qWpiN29qWkIbrcXbNvBTAzFYjM8y5hfjUHqoYRqbizFFt3Mv7+AxPtVt7MadtZ/iHu5gL3VFRbpxk/PsbptEeYstbPfXVJtbllbUFF8inPUJ/7fb1cfObzB3NfVDCxZ7kyUUFgDXVONefdZXV2b6SoIScilc6v+rDpswcKn9Kgow1EqRrncf8Di8+L6LLSYJP38rRVW79yz7OlwH963+XQAubP0J/VSwfJkxQ+Nuf7kIYsDieW7hIXZMnlDc3sw0cvUGgiroZwI7eCaTMbeVNrYyhXbG0c44CozmxWMXcsewe/ycPh5++r2Me6Mxf621z5ornCaTvYTUuvppKaUqeR0EGNJkUMQ0AkDNxFLoYWzkzrp9budnzdxzjBE6jZIkSQJ8A9j4OhaKTim+82yPIT1rJLKPV5Ik+e80Tf/XL7seKqOSJB2JjXED2Ni2DzO8ujG3GDEaYwgjsUC4ik3BZloFf88h4kC6MaNwFDa/7CBA1R4iYWYrBl4mEKvkMvq1gq0xU65PzdgbVI4Zg51EnMxRIhnpKsxolaG7jQBk2XxAW71tFX6/ASJ5J5RKZx/CxjrF+Mgd6XnM0CwQrIXc97Z5O5W0W8HnWTU0KbFpneegt1Oy5Ou9vcqxovgZuY8VsLG2H2NwZMyqzoMTow4uij/KFoE91UliBLswpkLAtyXTlhoMoCipLFjfN3idG7w/6ryundj8ISauJ3NeFQY4BjBbRQBALEl2UVKuiQex/lUOHYloSIFN71yX75f5lI0Bg5jXJdqxixCLkAz2BEJmW4ylgEUbBrynEBLWUhqUTHu/H/cW7LtZibFMK4nYuvmYTdZDuHhmVfo0D0/Fvrs24vtSH4gBXI29jxIsUdzVZCx+TC6t7jZ52hLZrUmS3n+C3y89A/c4F4vLqP4N9lj+Kpsc+wxd/72YQPGbTvXaZ49ENpTGQ0ykNBpyPBZ/LMNyP4yojsPPxz4+reL3YIa3PvjHsY8w1K9DxlllCfDhvmJg/Npjs+i6v5mJtxvNMpYuZrG2CIoq6KNAVTE4/yUu4GVyNFkMN3lyfJS7+Pyx0tCsrhXNfGi+2XL/8OTHYCt89iOmX/3nd3+J8pszMt75xNrw7ky73pdpVw/GUCiPbC828P7At494mxsBqTR/EgM2j+Vte0TOBgwNvI3YSlI2/qqeYNlaMMdOgYF5fj3V6UZictf/twIPQvn9DvburC5NsKrYoXlm65XXFCiv7OfAYnM1vPamR/kpDdzoCg9/vu2LfHbyH/MQtwCwiB9SRaEISKsosJc65vBCMWZrEnmWdc+nrrYLgK7uOi6qXc8L2+Z7XRPowPJIAV0dY+GRipC+2kkpu7iY0iSzeWLgFkhlK6UgSKBevg1atjxbmaDTlMiePCflzpNIZL/rpBLZC7A3cj1hvv1pmqZPDoohLcZ3YtOl4juvw/hKxXd+7jj3uALY70IGYp7el6bp1wcd97rvcTrllw6CkiQpcHwfvwQYmabpWcNWDU+SVC5qrZjh1oeNkdt8/xJsTN2FPcUybKySmlwt9j0PxwyubNJMgQABK7EAiiuSW1mP31+qVgI+nYT6mIzjCX69CgwQ7CBcr6YS7knrB9XhGJGsdBsh1lDp17jK/+/068zGDMY52Cr8FCKgPEfkCmonQFiN/99BKMX9CDNiDxJgr45gwFoxBmERERu1DzN+u/1eYwilOLmtKahfrmVb/B6ziZxIYMOmjPpdlMYMiSVaQCh5ZssUr6NyB43HjPpOIj6qnIhlUtJTMRZVhOvVbEIqeQuRtLTC+1RxMBISKBAg6nnft5JwXZzr/ay4XslHHyPAqxbbJvpvBSIB6YD301Qs9uk8wrXxJUzmZYvXvdnPF5tzyO+51u/fi71r7X78FmzuX0/Inh8lhEU2+369t2JfVEfFTTVi79Z6QtVP05/c3/DrZ4UMJDYk99TzCDnzOQSIv8yv/ySR5P1HRJzcwTMAUKYnSfqtE/w+bwgEHbckSfIslvT6tEUWjnNtAayrXi0f0vHPO9tAkNiekdjolMVyUwnR+zJgD4xwKeIrKXUDuwpzCJS71dcweLiCMFqzTBF+7qw+6Kkobl87+9EiqGmjlV/nP3jQDe9beYjnmcte6gCKeW4Wub9UO008230lVTX2hb9h2POMpYv72n4XaoyOGtfUbvlovB6KT9r+qKO5+7EJQ9ED78ZWjhSfcz+W/0c5gDowwHGXG+HvaDD2YhbhMrfbZX4UR7SJUhatEgNaEj6oGdS3UCpHroFtjYdpXF4drmECSlk/YzChCp0PsABuvOlBHr/3Vt9OuXTyMvLHcgB0rW1m4ezFrDpkw8qBjjo+NPkulni2vhfbp/GmpiVFkYunVt/Eh2b/DS+TYxovArCZC5lEnoeO2fPr6hhr/d9mcuQzWleyYdscixsDRt+8lwN3jo1+yxGJE/H6LySYoB5sMp6R6Uup9BXLRowFUn6gXYMP4OxigU4TBE2ak/KXJwFB7z0xCBoqZwEI+lUq5yVJOoEwkjuJXGhtBIyeixnMqwjm4Sg2TskoHUWoVcnVZzJmyF6FjQVbCMW2SmIlvoVQuZIC13NEIH+z3+cxzGCvwsDZNIJNqCNkhSuJ3ERqWw1mdO7IXE+uTF1Eon1JexAAACAASURBVNPx/vswv+YYIk5GBm+XH6P8PYqfEBBQPEkvthbZQbh4nef1VkC/WC4F0MsYz0odNxCu2UqmqtgNSZbrGdT7frnNbfFrbCfWkwqZ/tuc+b+VcI+EiJMRk9JIJM8dwICaDHgxdwIemr/6vH4QjFjB+6OFSD7aT0imHyPECVSfHq/zTG+XEoDKva1AMHuH/DyxdAKoxwixA72fd/u+HBEfg19bsWV6j8uIvFlTCVZUaoDtGIhYgL1f53n7NJ/XYQCrkWANxQjWEnFHYtfkRlkgEsp2+jliX6WEV+H/LycYR/wYCS7MwUCpXNUXeb+uw4B6B+GWOQp47AwAlJYkSb95gt+vOMVkqUPlzJUkSbZir0yX71qRpun/Pvl5v2wQlJUGzpYqLNmD3IZG+j+NeL66XpWzzcIAjCuLQSqHGagywgV2OghGQ8c+bv/VLdlFV74JNiXFa8xoXUkDPwVgKxdQQX9REnsCO9jBhCIIAnOXkzrc93gba7mEwiFjda4b9W883PZeFra64pvX4T23fZ372j1X4toK6IVLbzIhhBf+9AoDa069jvuHl9n9xklhZG8cgKvLInh/DiYYUeWM2QxsYO6kmKOHZ/YD6+F8jzNS8KpW00ZjTMYkB5g9hLQpwJEBOL8MXsnb9t/mbA1cffxEH9xRYUbCb6bw8SSEFWb5MUsxqnwwM+ftuvEfHuTxz9/Kwj9ZDFg81gv3XlFUtCtv3M+NtY8VRSmaaOdCNnPA/Rw+3/4JLm1aRTn9LG93pmdpBSzsM4VAoC7XTtfjzTArY1+uTQLkrMLeEfV1zustgLeJ0iDLreq7jVDlvoXFJKl6b3dhM05W3CwrACKX0LMFCJ0mCJo4J+XPTgKCfm8IBJ2snDUsy69COYIZinswo/KNWIxPK2agjsIMrl3ECv8EDKBMwQxFSf8OYCptEhSoI0CIpKAnY6Bigl+3kshwr3gOJSidSbgOLcMMyzd7Xdv9vCqMrbncr58nXG+lUCYXORnbzX6cYmimEHEgcwlWRzlqyv06OW9rk7d3jF9TK/Kq6zDCwJbkstyYrsR42j2YoT4MAwkyaMXiPOLHDiPG2KyBnF0P0nApA/2Y1zNPMBaTKWUFOoDbfZ/YuIN+rdlEXJRcIMWO9WIGcyuh4jYMG88lvSxltuF+35w/i3VePzF/l3ndFKNc7/cWgO3C4pSmYQDuMUJRLk/Eke3wfQJYNUSeoqzIheS6IRKWriMSkx8kQImel5QEBQA3Z/oSQkik0dvWgOVm6sbeLykbivV7iVBknO/3mYMBlwnYd1LA3sNd3nffI5QIlYhYbpAzselRCwWTCWCzzdtQ6f/0XtZ6W8cTQGg2ZnPo/QMykQ2nV04hT9CQMMIvuKRpOuXkR52NJWvsZZkgxU7UZbYPE35fu4BaPLadYrSgaNU8pqAmheMbsQ/j7dhHOAP7QCZSZIu61jbbefOMTbiwaTO7jzWxYZOphZU37mdcbXtRznpZ93zur303v7X6ewDMmL2ScvrIu79UPxVUUaB8lF3vyUNvhTwUWquKbnsXtv6E+1b/bsg03zMJboYXPuYAJYdNMHnb3P3GSVbfv/Z2vaPMBtJJvt2B9aH6QbFSuwmgdHk1dFwRAFETmiSyx5YBDfCyb19bVpqb6BmMKfo7aydLiQkVoHmYTeB7gJsTeCSFOxwIiV2aRamv/NuwwcxV7wpU8Tt/8vfc122ubHfWfor225uKogZd1PFw23uLA/folr0c6KjjTZNN0PHCps200sbzzOXSJmv4rNvW8o0nf9/YPjDAmzPXO4D+r1fb4C7Xww7snVmS2c4yah2UxgzJteLA9OhLRmKzx67MNoSC8hZ+No312QKAhsrZUoaYoNdQKpMkbcG+1UewsWgCBixk2CqwfRj2fc8mVrIlTjCRYI36CbGBJmJVX7LO5UQOmXXY/CI3Lxmwy7CFoad931zCfW6HHy/juIFwdVNQfTlm6Ekeusyvq3iiJsy4/H2/Xrlff4ZfQzFM2RV5ARaVKmxerPf9ZQQgkTCDQOAyr+sUb9dzmAHb6Pfc4OdOwIY5MQfrvG/FxlQSDEMXZuiKpajFxmS5eXcQTIacRDQvyS0ty2AonkaJW+WWKABw1PupjBBIKFDMdV1kRRoJMQf1ebf/vRZ77hLc6PV7X4kBhHLsvVLS24cx8LXS7/cubA6/2a95lAA7dYRy3xhCda6fiDVS32Xlt7NxMlMx4QPlfFKOLDE/q7F3eTbhzTDFn1O916kLex9nY++5vpWrvK3PE++q4peOZtqj2KmHsTQeUtgb5vdUrNNBguGSOEg79r4oHQpEQl2xZQLJelZHsffmZr/+Fu+78bb/tFfdpiVJ+tUT/P6mIXe4X5nyy2eCsiULgqBUVhj/bWrm7ykUwY/iVuTqJsNeRW5xihnahA1edxKSx3cAjxjbArB72SR4Fsb9iW+3G/ipazT5r64VzUycv6koclA+rJ/d7U1FtbH+niq+MPkP+D/bTCKbjgRyfZCvCCGER6otBiivWCeM9Vnkf0sFTmzEv2LZS+RKVuNtVruWYuzQdO+XjQNwSZmpqxSDQQfggxnW7BHtd3e2j1bDXQPwUb/GCmB5Hq7N2fYPcDs9b9tVOVt5Up16CTew3/b9azBjZKHv/xawKhLX8hyUf3g/l9a+AMDybQsprylwUa3RTy+0z2Fi08tsf8AaeultP6aGHn7Y7h2Vr4Bnoe6PDWzcMuwh1nAJl7CmKHRxmFH0URHMUEcF9MDoefY8D3wpkxMIbNJ9kHh3er0vcpk2ZMHhGmAcHg8k1bcGzAUuC4K6CXW4ZswyO1uBz2kyQf9rTsrHT8IE/cEQE3SyMsQEvYYygBlFL2FTyDHMgJIalgzZpzEjTjE9T2Ir+TLgaoiM9jK2Ctj334UZVWIVJJ+s3CVSy5IctoxExY10YKBhMrHqr1w7ku6eQ7gJzcWMwhps2G30/ZcTanH1hDR4D2Z8L/BrKLh9NQH4DhEB+bVEzETWxUr75ZakvD7rCBai2ftH95Y63ATvy+2EYVyPrfxLDlxt3eP12oPNZbuIRK6Nft7zxHwnd7l9hFBEq98nmyC2lgjc7/U6C/hAJPwUWBKj10W4edcQ8UECJ22EKIae4WUEM9GCvX91hDRzP/b8a/05CExtJVzuJFSxikiSexnh7igGbR9h7yhOa4Kff9D7cRjhvjgXe08V36X3IcsiHSKYlm6CNekmZMvllidgstr7cy7BYNUTjI8WBVTva70eKzHAvBx7h+sIVrOOEIEQc7nFf1dy1YkYyOn2Z6bvttn7XQD5B95m6Q/VE8l+T6ecAhM0pA43VE6xZF1/sglWav3vbFT6xYRkdgOWeNIZkyP7Yfdh6PQlnMuwj1AfXx4bmP4aSyDagg0OmzDDPI+tCF4Pu+92WmUGMJVinAk9FYzO7aWv1w33GlOQe9HRxVye5/FNt9K/1X6/9AM/5iFuoS5n7nPlk/vp6q6jv7KC/qXVjL5mL/0d0L+2molv9Fige1so/9R++j/uoGgp4c8OBtq2E8IHu5fAwkVFlz5mARvLYKPTF7+t3zZCwZevrp1uQKuAiSQUNhIMGxbwP64s1OTYD1fnIvblMmyC2OjPorAaVswOcNABNgo32DnzvK83AMtXw+Wz3Q+9vOjmx8ehf3E1y+83dThuhQtv31wULRjd2MX2e1ssdw/wa1jM08ImWx5qbWrjP+ZfSf6QPbsloxbx4gMXs3zhfC5s2syLT18MLQ665C7R2Ac15Rx4xMFPBTZoCxw+4W15MNO3S7F4JrBJ5G0EU6QBuwh0wN7RN2S2pQyn9/gcL8coTYM0VF5XGWKCXkOpTZK0H2MLpB6lXCPd2Li+BgMZPZhRfi/BvrRi371cnARywIzEmUSyz0ZC0rgKM7i+TwArGblSm5OKVxORdkBCBDLWh2HD51yCtej1348RcYkCJD1Efp+DhFuR4n8K3ubhhJGqIPV2b7cStvZkfldOI+VgUWJX5YnZ7MdvwIzSyzCWQACwhVCsqyTyHz2NAR65l0EAl6l+re2EGEMZNrcs8XY0Eip1auMuIsZECV2nev0UVzOVcEVT4L4YNQG0PmzOuoiQopZQQpPXSQBZ8Ujq0zKvSxvh8qcYpm0Ey6EYleewd09MovpJcV+Kz1mfqc8ApV4eEpSY7W2R0MFwwh3zIgJAChSWE66gAlEz/fx1BIDV95D3/yUiovdfOZSqCMVZvRujsOluB+b6Lnau1p/PZILBOQ/7HjSHVnp7lgC/g4HCPDE/i+m5HlvEVfLbmX5cVihjDKHy5+PAaa+6TU2S9G9P8Ptbh5igX5lydjFBEGueMhLFDNVR6g6n2cVBEPvhkmqb3MACHTcRMSgSRLiGcGe6CvvgVa7B3Ma0InYz8ByMvsOZgrVj7WP0KtRdYzFEF042tuLFJy+GHFza6vE8bVfAKrj0dt/+0BWxepVVpbuHYK3uSeGeJNI3rfN6iK35NkYn6/hNOPPgrNn57rq2238f539nsea1GDujY4pySBlWbQLBLj31Y2/0Vt+hPlf5MTZivcE2pzcY+XE5ET+zFnPrkzGxez9Mqg7gdE9qSnguqT3u0ZeNeVtigHL0zXuZNmozL/yV3XvhpxeztP3qoqtb/liOvt4KqkbZDLG7bRLljfvpv7+6tK+fIFRmVhGTKtiklCOkwLUyl40ryzI/38EGbeWqAsIXQ+pwSzGULRAkQQRtjySW487GcppMUPOclN87CRP0F0NM0MnKEBP0GsohLHB/OOFCM4MwyOXippVcqYL1EgzScEoTfjYSeVYOEUpoYlKUNHIZpjRWhhl35UQi1O2YAd6LGWTKGbOJcHnLEUzMSoJ1UhyQAtLH+DWlE7THr6nr78OM9icwkCMXwKexMVnucAOYwVjv1/o+Me7V+HXHeL+tJ9gOxTAd9PsMz/RbNxaHpfoKhAzDwMob/dhqQm2tQIgY7CBAiRTIav0ZyT1Nxrf6R4BGwgNyE5OhPtn7WaBYz2APNrWprRJrELs2xp+hWMAewt1N80A9NpfM9f6bSshFKxarAnu+5xFJQ8sIQKUkuMOJ2C4IKXK5+gm44Psl3KAcVqMwEQPlaRJgVN8IMOcw20J5q8Q46neJL0CAoTYiRqmRUE9UTNYOAtAN+D3H+3XG+/k/It5RCY5UEkCyGXjA+3KO32sz9vyn+jUU01eGfVN1xCLAc5n+qff7ZpXnJhKLlqdbTjm5zVAZKqdcslO9YoCaM9vZ/3cRMwBABgCBTX7vAFdUtuDWHGaMy+j9EQGSwOKLpCoDNmiOhwN/50zBe/pga0Vx8Bs9rEChpsAED2x5sediAF540gz18nn76e+tNnEDMDCzwdzr+o8ZH9/1eLNNOJKw+FRiqxnf9e3lA5ArC0brauz45W5kT2owhbyi6MFG7zNnkna7a9xOYjB4aiPh6wCMa4hjASgzdzbF61xyBaxRtC3Ycl91xCHtuMJz46y27Y2HYVzO6qz+7cDq+Bbf/pzXT6zLnYk9H2ebdn9skp27yFi4A3eMJX9/H5d+2gDl0ruvgUVpqMdtaobKlAMd9qxGz7IYIRZRjIUqv34//RXVeD5WM4yWDKpjtlRirnBLM/tWEIn35JlZBEHqPxeeAAxx/ifx3o6i1M1zK0NlqJysDIGg11AGMGP9R5jhfRM2no7CwIHicTZhQ6WCvJuxMUAgppcwZLcQRuUYwqVGBpfkj+djxrQYHCWUnEgEdk/w33YQuXWU+6TB7ytZ6G6/BpiB9xZszBrjdVZshcCI3Lrw9k7A5pMezB3rJj/nPAK8LcEAxlpCJe2Q16/X2yM3th3Y4pgWCusxJkjlzUQ+FiWNFVhS7NNqr9M6zNAdwIbLN3s/yziuImSeZFjLFa7S27DL66p2awiW+li/11fS5PIA6SVMiyrCFjhGGOZlRILPAYJ92uHH9hOujOMJafA89o7N8PvKdbKeYDv0fijfk9zT6vwcLRZmwZTcw1RnMZwy9LswkFCPPR/FLTUQ4krKlyMwsQUDpRMwwHwVweQs8GeUDTHY5r+vwNzyJWkut0IBRTFh5Zgpstmvs8j3/4D4Htu835b7+bd4vbux91KS2buw90jMq1wO1Y9y6+z2uvcS77HU4cQ8nm5JOWmy1KEyVF5HGZwsdSSxJNJFsEFgBrmUtoDzc2aMapAYjRmv7l1FHvtwFxKxKwsJ4QCw5JgLM1VYRUg7g8WQTInjK+in/+vV/HDCW23HVuAAzPiAZRHd0HaZHS+Pvg1Q/u797F6dSYa6BUvkqtifmdjAIJernjJzTxNY0ArWdAcuGwdgRFmseI6YXtqNRzz2Z3SmHh3T4ZUl8E6Pp/m2pMY9buUIQHMwR3nN9H7PEcCRPOzN+fGrYfRsirIz1wPfdqD0YT91rPfjJ3z7nX6cSIK1GNul5KqbgMUw8XYLLtr+pUl0rWimq6c5+qGy38QswOK6Pp5w7fxHAfjPY3M5sCmxezqT0/9EdWT3hhA+yOKQCuLZzMPifgSOvLlFclKB0sW+liN0d+YgxQJlpd67Mr/XgqsPnpNFeS2GymmVcxoEJUnyGeB3ifWFP03T9En/7ZOYR8xR4CNpmn7/VK65CzPW5Nomwz8bq5MNmocAJjOJPDVyFRuFfbaLMDalBTPmlUSzHhu/lDRTwGoAAxGd2EIcBEMh1ymt3i/y4zb4daVgJvniXiKOSIIGYgjUrnJCPEAuXAow3+nXnuHbYphuIGSpN3gfzPU2dhHsRKXvX0PISO/C1nkU67QTG28lbT2RYHQEErd432UZBIEbgZg8Eehf78cLmMotbZq3X7FKOwiGqAtbpOrGGLXJhGjBMK+rZJ3XYeByKwEk9f+PsGlNzEOPX6efYNsUY/Ost3s24U52lADDm7Fnrms1EmqA6wh3ODFR5RjoENPWSoDXNsK1TazkTmy8PeT1E8Cf7P35FgJYihFVfqSLvN6FzD3+3fu4y/t2hveJZLafJlwntxFuhvUEC9rm19qCfVcS1Hg/lsJkAeEOeoP3Q6cff5m35ZBfW+Ia/YS8u7w8WjAg3e3X+Z7vX+B1eAYD3CHke3ol5aRM0FBM0FA5xZKVyM4KI8iQFOiZOui8XdhXm7fNV8S/uqF+ACjsgVW+XSDcwBozl1FMEBiI2k5o0c/C4mn8FkW/1DvMPf/FZcb86Hp1t+6i6yvNbHi/qckxz685Lm7X//VqGzwXxT7uweKUwAbi72Iqdrr2Mxth0vS4Zg9hkPeWWT21/aCfI1ZsOuaaNgJzQdNNLl8E3/YZ5/wG6/7r/SKLvd5ievZi4goCA71AZS7uuSETDwQGNqdX28BUiQGiL1VbX17ux7QAS2D0V9zV8PqxFu8kF705wLth+93uk7fJtgVo6j68y9gfF7UYfc9eDuTH8tTqm2xHTWr9cA/R17NS+E4SdT2CPc/FmTr1ESBZMVAqg93hNjrQKwpO1Lprh+TcIdzfVORcr/d6sDLcOVaGQNAZKec0CPJyV5qmX8ruSJKkFUt79v9gtuCSJEkuTNP06PEuoDIcM8auxYyhSwgXWOWqUayGVNUkRzyGcD0bIFZ7OzGjcgc2BggIPYMt5uwAPoIZYj3YJ95BuAHNwMb9qdiCl+JWJCncjRmxiveRnHINZrRLDlnKZVLEGu5tkkLcPmzhr51QKxvj7ZiBGbDVfj2pkMmYayXECvqxuXATpan59nl9WoB/9rbv9PPaMYN1stenB3gKM2CVK+gxQs9IrlpSiDvobXiL95MU3PYTeXEkC668RWKH2jEAV4nNHWP8umISxHop9kaudDoO7D3JAptjhMiGcvW0ZfrkKBZrc8zPVaxsg/fHfu8PxepI1S/v13mzt7nDryX3SMWSdWKgczMBygX0dI9KP7/K9+UpBcbTvI+3YYBAogzTvB8FWJTgFK93K5Ecdrg/s26vi943lS6vp9zdd/gzEOMneew27LkuIBaXdU+5RO7x5yIhifUYcNGC4yEi8aqEG3YSCxEtfo0bKBVA+C1sAWEHZ6acAhM0JJE9VE6xHBn0t3y2JhK8PNiMkYXxtVgsSjb/Ss6ADwANZtzLYJ1B/F2JfRB5SiWPN2HSz7JP12KGt4S8xOp0eB6hGkLaGej6YrMZ0Ups+oSfL3eBGURsj4z3R/Zy4PmxATDGe/2URuYtwI3TIzj/Cb9+3rcbMXcGeappYhaAudXvVdhvwASgY7bd4xIf/bdiA5OM/nnY5JV1E8u6PBQwcLXct8/3PlDsTC82kG3ytryz2higWwmWxdmtA4vc1fDj3jfqh+eBhTDuI8YEldPH9j9tKf7eVdNsA+RM2z6wYmwMlABPJNR9eBd9X6rgwLv9Hi2J1VXMjxSY1JcKFs5l2vpE5u8OSlm26dW27xWBy8NwuJpSJYC5WEWzqodZ6imbIwjOvjxBp1lShkDQcUqSJP8L4z33Ai+mafrXJzr+fwIIOl55O/BgmqZ9wMueDO8NxNBz3HKUSKQp1qePkFvWWClgIOajDjNoFYyuhJkSALiKSKY64PvejBl307AxS6BCimNSs1LyUSWEzGNGnAxWMVaNGBt9yI8XOzLT/+733+T2JBelOX6Pfdh8JdCgOJ7V3r7Z/vsO/7vNr68Ykry3WW50R4lknx1EHMgAsVAnRbUqbF6V21i/3/t5InFshZ+fw1bym/watd6eJm+D4lDWE+5pdYSL3Ut+z61+n2lEgL2MZPVdDjMPpEAmOWyBnGZCoa6WUDPLEy53YtUGsDl5G6E2J9NEgLjH6/cjzEC/3tv4tD+7KQS40jNZhwHEa/3vmQQQb/D7d3q9xPYc9XsJRA4ncgpJ9ELubdOwZ74Fm+t3+L1r/TgpDyo/Vq/37zZvx5X+HK4iWL889t1UEnF4fX4vMXXKfbWfiNXS8Tv8mpL4VlzQSu/XQwRjiz9HiUEsI8DXNN/3DLYAkPf7j/H7VxC5hBTTdCbKUEzQUPn5ll2UMkEjsRFFPl1ZlyOwNzxfuu8I8QH1YEZ+DeaP+hv+t/ZBDPIqDZSKFvRhA9hzvq0BT4F2N2NGs45fQBj9YAN2HpPidlW0A/eMNZcxgYwN2CD7I9/+LqVxS9cTsfZ4/ecQ7nDTAQZgrwOcr2GucNdXhxrePCKZG5ir2nPEamkHxl495sb9pGp7DLLLP4iBsg9m6pAFkxroerBJXfdcSri79fi+r/n2c9hzEAvzcdu3+zZHc5uwZ1HjIlnfSQyA6p47PeZnhQO98dC1tNn6+U4/5l+JCRkMiM0i3pFNBHhTGYuZqWB9ngWEYtiKIKbWEsmylZBwfwqbbSRXMxKbdbMxboMBzzkCgOCMMUFJknwTe/t/mqbpjBMcNxzjbHelaXq977sG+FtsSr3nZIDj9dTjddzjQuDf0jT9xyRJ7j3pfc9ldTh3h3sfZiutAv4oTdNXkiT5Cpb1+34/7hvAU2maPnKca3wA+ABAJVwqN5mtmOH2ku0vKqfJMJNb2hhCwVLraoqHkHGtxJvbMSNtE2Fsyn0sT8gIK8/QQczwkuJbATPMqr1ex7w+yikDZgR/n3B2EBMgV656zNBT3IqC7TWXrcSMWHzfMt+uJQCZJI8hFMWOEvEmh7xf1hB5leSvKEGIY5gxqgWodb7dhxmkEjuQtHQV4WoGNiyqTRO8rVkDfRk2T/yAEGUoJ+JQJFG9xe9T5fce5nXbQqynVmbq1kC4wssdT7EwMsyb/f91GKMkJTmxVzkikWoDITChnDqbiLxEYsoU3wL2DszD5pT5BPsmt7IOQg3tPEKm/SAhI97i7Tia6TexkTkCsNRk6jrNr73d913k/dVGCErILW4YwZpJkKCKyGW1Dvu+jmFM0GXejm5iEWIM8Z7M8uM8S0VRIGKN10uupz3Yc9Z3uRX7FpQMdSr2vjxEPPetfvxUf46K3ev1firDgGjhDCi35ZIk/YsT/P7+IXW4X5nyy1eHy7rDQfgWDS7N2BdwOLMNpbxsAz9b5PJVFjkGlrtxf361fZSaODZhsTgaoGdhg7LYCbm3KSh0DjZoaEbugPL799P/iBviY7EZXck3v4IBo+cI1bQ5hK+3Sg8RjL8Qs6UVO3MPJXFJVGKD0D9mzq8h2IwazA1NrmkqGqB1jXmZ37+DrfzIbbAnc5zOzd4DgqHSPe/w9lZm9nVkrqWVJF1jhddRAKUCAyzquw1+vm/XzTPXQzFFu5+cZHUQYFw6qH6qdy5Thx7fl435aaQ031Ej0dd53F0vwzaWkDbuHleSF6iZ8HVRkZ4rZHzpODvLaarDjZ2TcsNJ1OH+6eTqcEmS/Drm5HrvSUDQx7CvqjpN0+sdFL2ILXvsxMzDd6Zp2jbovF8DDqdpWsjsm5Km6dZBx/1MPU50jyRJLgL+76Bqvh8zNR7BuLL70jT9pxO1/1eeCUqSZAmlnsgqfwZ8Ffgs1hmfBf5frJOS4xx/XDSYpundwN0Ao5MklaE6AzOgWzCjagc2XgoAKSZoNfbpysVmE7YqP4AZ4m/Bxv08ZoTK1awTG5NWE5/wMczQb6M0lkN5f4ZhBmGnn1NHLCR1EGOUJKevJMBWvR/TTiw2SRluBjbcbCLc8XLYOKaA+HpCuEBKbArKV9yODF3leJFwaBeRz0bMTzZY/yksL9yz3ldyuSt4f1V6myQEoVgPuRg+6/VtJYZLuSbeghm0EgGQzHgtBhYv83oNYPPANL/WQWxuXeD1m+3PR0psx/weUpwTAJQM+EGvz2bfLhDqb4rZEjiZgi1enke4NYrtUdyQRi4B78nEe9Pn15ZctICZ8lE9QyT+lWCEYm4K3t87vV+eIVwKBaz0/PTOSCWuzPusyfuq1evVQXwv7QQAbiNUEsXUtBPTolzcFvk1BPYlTqC8R5UYSMth34aYrJl+7f3+TI5hQLYKGyh+A3svu4mYrrcTTBLEc5yAPcsO7Fm+269xJsoJfXKHylA55TJ41TvrSjRy0P4sMzSYg07W4wAAIABJREFUCdqV2Q82Oo6kqJL2CvBK3oL5z/d9OWzgzeKuBwmjtwcziN/r24sxUHK+b+8kAhmxv/s7quEzvn2j/5YFOM8R7Iju8TjGfIANRpWUsj/PEYb6HV4P1XEpBtzEVtyJ5ULKAp6vYCBiqW/nKQUcK/z62n6bny+QJDeNvG/fSrjn4fWZkjl+MZZj6IOZfd8ixB50z1sIxmse1teqdwfWB3sz5/RiIBDoWtUMM2D3h5wpWosNhKP92IWZe8rN7ypsMhMAHcwEVWL9r2uAPR/1fdFTTWB7NRxpJsB3NzbTTqUk71LJe6oyIvPbOSyMcIbc4dI0/Y8kSXInOiZJkvHAW4HPAR/z3W8AtqZpus2PeRB7U9oGnX4V8MEkSa5L07Q3SZLfxfQlrzuFerzqPdI0XU84xGTr+nHgL/x6jwDnNghK03TRyY+CJEm+Tnih7iQIDTAbuP1nThpUhhHywQrynky4QUmNqjfzdzX2rYvtacaMxzJsXFTOkhuwz/tJQoxgnR87FzP2mjHjbielwfzbMEOylVCaq8MWe24gDHsBDkk5P4SpummeGhxPpNiOTv+3k4jJOOj36iWC8LPuQApkV+yR1OZqMIg+1+/VQySNlfudlP07sYd0LbbS3oStyk8kFqLq/Brf9/speaeAXQEL0q/w/tRcJCZ5E8GGKQ6oxusmZVR90VdR6p5dg/lPziASzSqPTi+Rm2k5IV5RRwBExYk1YIb+Fuy5S/xB4GI7oYImYDCccKebSKRlEOAqeF8J1JRhIEF5h7YTcSyLiHxO6gtJiKvOTd6udwKPYu9aGwYsev3+eh8UEzcKA4nbMJCwnlDQe6M/D4FmhQZIVrvK+2Q4pfmzxmDPWoB7NpGDKE+Ij1xGAElJkit2SO5++O//RMTfVfqxYookiiA1RanxiYUSsyh743TLKSRLHSpD5XUWGYySyM7mCXqeYH7GY2+8QNFF2GiSdZ87TBEEnQ8UcsbOqFRiH1uW6eklmIAn/DZiWX4PGzgWZ64xjwA0jRgI+YxvCzyotBDMj9ij6zEQpIjgHsyAl129zushKyiHgatv+faNGCCRhfEZ/6c2dGAg6nHChW4WBohUt4VEDgG1o5cAJO/zNku84QkMGCrH0jxCSQ2sn/Z5e9U3vdhAeySznQ1cvINSV8JZRM4HHd9DgMMpmFGS9+23+/XE0uH3X5xpp3z7dc5SP0bP/xoMAOV8ezkOehTzA/ZeSf56NrZcpSWwHDESZ1XhxmMzDUSy1KwAyDlcTs0dbmySJFm66G5f2H+t5cvA/6F0WUPh7Co7MROspKRp+p0kSSYBDyZJ8h2MiPiNU7zvKd1jUFkMfCZJktsodcI9bvmVB0EnKkmSjEvTVJoo7yA8Tr8HPJAkyd9g9t1UTHD+hGUEkchSeUvy2Of6XYyxVrZ5uWaNwQwkuXDNJkBIGfb5KsN9HhtvxBLNJOJMf8sr3UnEdx7Dxsqc128lxiytwsb5BZhhKve2dUTsTpXX92EMKD3ndbnAf1cOm3psKGrEpkG5Q/UTzNJ6igKeTCBiPZ4lGLAt2FQqY7uHiKsRm1+LDXmKHZFL1nDsra/Bhr0GTGEMDFwoh5AAodwGBTLknjeTyNEkgDbVz9lOuGVNJZLHtmMgQ8zRUb+XYrLK/FjlQmrE5pDz/LrKKTPc6ySjX6zVjsxz0T16ific5zETRa5cNYSLmuKTlHtnmx/bTYChacQcrPFym/82xfu7FQPZF2DvkMQeJBZQ79eUy7fA+2zM3hATMxl79lpNEAiV1HolEVeF30eJVCXVvQ/7SN+MjXaSbO/x/qohxEekLjeAAdRLCOCj/qonGMY24luQPaApVl4o6v8+gt26KtNnEq24OnOvi4j34XRLyhATNFR+XmUwEyRjsct/k9G4CxsFB+UPqrrC/i/s8XM32vYrI4Gc5b9xobWfia7dRCkLsxYbLJXb5p+xgUVG9VK7ZInbVRZEVVIac9SCsTIdmX33+/5ZmXMWEx9/HludEcjZANzRB5sq4vgs67PQ7ym241t+7U9QGrOTLXlvg84ZSykg2eR1zDJa2RxLmzDzU/3S59ccQwzq78MGQoGUWVg/acDfQLjIqdRQyl7diU3YYBP6pkwdtvv9BWi0krUS+E3fJ1ZHuaM+SDE2C4CvYzE9NXKUH4CpZbDTgXRhD1RVw2G3JI7sIeJ/ICTbJd8ONkP9hHhPawf9PiSRDew9XffpJEkUp/NCkiQLsz8d5/BX86j6grM4XwUuSNP0wPGOO97tT/UemXttIBxIT1rOaRAEfCFJkllYp+VxB+00Tf8rSZKHMbvoCPD7J1OGUxmGGXUyDHdgxtB1mKvQRMLgExuxCDPKctj4IlW0AiFGMBczrPZgBpsU1Sb6PVYRLmd5IhZjPsYeSYpYRrGCzxWnpDxBcrGqwRgduV4r55CSjYr1kXucQMZ5GCszH0uwPZNYo5E7nhgnxVBMxYajYdjYLMNcrIcW9eQaJRe6Yd6OZd5fGoez84zy7ykBpo47SLgJig3YTOQBOoqN4VO9/v+KLU1IuU/uZFIyE9MlI1zJyZWTpt37Qi5x3ZQmOZVb4Va/xhgM/EhV8Hmv3w3YnKM5Uq5j1YS0toQNDvk1pXYnNcJKDIRuIhLfSl2tjvDG0JLOLu+T9YTgh3IVVfq5ykPVRICBbuw93UYwL2KRxmB2kBZnewn75CDBqHwbA/6bvJ6d2ALuE9h0pnd1C/aNrSbc6CoxsN7tv9cSYhtyYav0ei/xvp5AMLF4Wxb5+XrP9e5NJlwQ1VaBpjZ/Rr9BJHtdyemXU2CChiSyh8oZKllmSPEV+N8jCR4ZYJfLE5M5Vts5YA9UNbi0MTDC5Y2z7MTLFHETl1MaO6PLfMv/Xkipm1gLNnmIylesjc7P+/mVwKfcRvp4Urpm/C2MFZmXEQBYRwgK3AHcVxHH11Aa17QUY4cExBYSE5LquZZgf1Q6CPZpEyFkAMEcZd0LcoSbWSOlMt3qs33EhChwoolRjJf2y8VP11jqvwv8LcEGXNUpRyl7lfd9SnQrCv9Koi92YgBPLg9rsQFc19iBJZbdmBndNu4P98mqBtcxyDJDg9XdFKumfVI0zIJ1RaSqnENqcL+8cgVwQ5Ik12FvWXWSJPcDf88pelQlSXIlZq48BvwFkeXqZOV1eW29lnJOg6A0Td9zgt8+h/k3nnLRivNOQlHrIiLGQDEYcpk7iI1Ze3yfDGapqF3kx4zyba2aryDieqqwT13s0RbCqK7BjL4+/03uY4qXuYgw3DcQrmGTKV213+5tqfZ7PUmI7AicSAGvlWCo5mLjnPIFDceGqbXEIsVkzKCWwSoFt37C2NueOb6BABwFzEC/jAB0Myn9AiQVvQYDkT3ehkaCmTlKBP1LBAJi1T+HGbO9hEucDHqpwin/0FE/v4AZ1RI8GOX9IFU6zU0XEXml9nnfyP1NeXaqCZbjvMz1uzPXErsDAYwvIiS2xdgMx0aJTURc0n4CsCm5bD/ByqlPlfBzGMEwjvG+F3MnlzaxRJuB2wlQcgxzPZRCm+LjwJ7zlX5vvZdydZuJvY96l2/3Y9Zl2rUSe4brCCnvrJLaBu+/GozhvBz7XhTPU8AWXJu8D1Z7HZXUt9P7tszrJHCj71kud1UYy6q8UWrnmSonWY0ZksgeKmegHCZWzMFmlWzy1GZiuW49NtLXZrYPU4zNOB9jgwoDGDDqhvrqUoCz+8d2vBKR5imNjemlNOC+B3NF07bigxZntt9OqQTzzdhg+XFfPF7o2/JVbcFWE7cmcY95BFh4jlBeUx3l9gWxWiNWppFggFTPqyhdxboKG3xVh1mUxgh1EEpv+n0twcJcjw1Q2ZW/CuxxfQlzM+vBBmr5b2/1Oot9Uh9n3fhWDLqm+hPseY4n3Ar1bHS8wGklARBrCICne3UQRpFwyPm+/PTKgAHlVzJ1YAkWAgI2um+lNP5H76zA+cXYCJ9lOLMm7TnMAsEvTCI7TdNPAp8EcCbo42mavjtJkhHAVHd124VFtN02+PwkSS7BuMC3Yksh9ydJcmeapp8afOxxyspTucfplHMaBJ3pkhJsQzM2RjQQ49sUzDjchhlTkj3+BmbEbSDUq3oxg1QJKdcRCTEVfzMXG99aMEP2JWwa0ur4Qcwwr8QMXCUknUm41E3FxqOpfq1+Ij+KBA2OeZ27/NqXYfPBIsxY7yJ8BgVONFds9fO1Ii/mQdNlJxGrIde2TiKpplbkuzADtpFwr5Ork9TlxKy1+LFd/vcT2LwgJdM12JKDErpW+rPpINzU+gmXOM1rAjhtfuxsr3MFwb6MIty6xYRV+n2G+z9JkIvtUP8fwtgMuWNv8WPXEMzTV4l3oxmb2wSGDmHMSsHrVud9OxV71o2EQppc/yYTSXTrvW2KM1NuIIFPtUMgoZIAIkcJQYgq4n293J+X2j7Rf5OIRycBot/hfa2YpX1+/HbM1fNqjD26CrjX2yrXwQFC/EJArJtY85OL5TCMqXwXBqgO+TlzvI8UH7YMe3dGeb+ojlIGFOPTQrzLkoevozSfVg0WsnsmylBM0FD5+RVZoiOwEVEW/K9hbkVaaR+FWb3jM+dKVhtshN9F0fh8ZTX2ldT6/in2oRwZgBEa4a+w2wpwvOIsQM631wxAVVkovEColoEZ9Tni+A4snuh9me1HCBnmedjg2JM5ZxbGBsmYn+d/L838vpSI71H3CKDsoZT16SHcxvIYUyJ3g5bMOdlr9mCDnrpS/raK4TmMDW4CXmu9nmKG5Ds+gQBourbcz1Q/9Z0YNLFi+7zeOm4WpW6COUoBUg/GgC3O7Kvx/csxye8aIheGzjlCrOHvwFkgfx/OL4NX5FapchURE6Si358ftL8O69haSl3msuUcZ4HOnET2t7G3aGySJDsxUYFvJEnyJHBHmqbHZV7SND2SJMmHsfXm4cA30zT9r+McOgr4zTRNX/L7vZf4ck+lHqdyj9ddzmmJ7DNdxiZJ2kCoTdUS4GK4b0s5Krua30W4sg3HDKaJhEx2EwZ69hPSyoplkZuQjPA8IQesPDCzMSC2wLcnEMblABEYrtR4MuoKRMSZFnR6sbnnagwwPIENTRCMwkTCdUjy0wJJ7d52CUJABOP3ECyOXNYKRJ6cpwk1NrExAmtHCYBVwNaMFhCuUDKWZehDAFG51eWIXDHqx10YaNiRuW8OU/7LEQll1T9NBLjIezsPetu2YyIOEjOoJXI8CWR1UwoAH/Pzc77/OWyukvhEH1GmYKBzTuYao7DnqiSoZV6nTv9NBrXyUK3DTBsZ8urfg9jzFqBuI4CQwFAFFov1DsIls+B9K9n14dh7AgG2FZOlGB2xRprW3oHN1wMEsIZwi6siTCzlcBK710qwR11ErqCrva3rKM0nJPn1ORiInUzke2r2Y8TK5rF3bB/2/ezz3zUGFDAwLaGSZWdAvro5SdIPnuD3Px+SyP6VKb98iexXK1WUBpCDraprhX2Xb6vILSkrjKDRSL9vwUaurJLcGwg/MBnAPiJVlUFhI8UgIqnCveLLD5Magu5W6aVU4ewaShObLiVAAgQT1Js5J0eAhsHHa2VPAKaGUiNzKaViDRocWzL1EkhqzJyTvc4sSgHGYuAPMXEFlWz8jgZhTUCbfFttg1Kwozo0Ztq5glI/coGa7PnySdd1cpl2zqN0lUcub2vIqLB7wlgp3BzBwNFuLScd9ouqYc4YFt/Bkdj7JCboeCHaEvQ4NGif3rmR2Kg8YtD22VpOUyJ71JyUlpNIZK85uUT2//QyxAS9hpIScTqXY4buFmzVXcZxD6WGfS1mrO3zf02YESoXm3ZsfFyOTStriFicqwkgNRMz2pSE9XoM+LyFUKLb4cdKureVcHE6RsRMyC2vh1DL2kfk8rmWcAd7MxH7pDxAMuArMSNws/8u0CUhAQW7d3g/Vfs+xSWJbX8XEaCv+I8cwSRobspKRwtkjvf+lZiOhCPExCjtw3YiRmUbZtweypwjhiiHiVyodGPzVr/30Va/fh6bG7K5e2Z4f0tAoopw/ROAq/R2S5q7CwMPm7GhfA4RbwYBXif6daXWtx17J77n/TQKc+l71u/TQHhHD/j1aghRjXYMGFzg/2fFJVRviFxHcvebgwG36wkAP5xI9CswNoZwvWvH3tUbiPdQYHgBIY1dSwAVudtV+W89GDjXO6RpTyzMXIIZVMxRjohjy6rPSQurnhA0yGEA+Upv1wTvK7F/h/z6W7HnrHbkvb1ZW+10yhATNFR+fkXT/eHj/JbNtTIV+2JkoOrrmZvZbqY0jxDYVyX26BrCbQ7C4HXQU8gDU8BVmHkZA0KXO2hanodJucBZYwmfb/xSiwnDXfE7AjpgH2cvpXl/egjAkQVH+HmzCOO/hdKYG7FL2fNupVR1phJbocsq5eUI238F1jXCho1YUtNbfftbvk/t6sD6IJvyaY63Qde8Bss/JJGCb2fqDMGIZVc6lw46JstwHSDc3cABUIbVW48NzKL0AXAAdEQXOYw9a4lq5KCwn1Lltl3EO9TNzyY6HfyeSjdV+8djDGY2ti1bBgOgc5wZGiqvqwyBoNdQjmDSvoeI4P2jmAFfRwgBZCWzBSzk7vQjzMhpJgLvz8MAj8DBcD9mFWEwtmFs+yFC9KDcj+sicgZtJVa7t2MGoQLEewnwotV4ue2WEypcAjtyl1JMhUCOvAAOYSBDKmyKjZECW3Xm3DdiY+QuYihbRCSaHeV1r/T6rPQ6PI+xQ0ooOtzv83b/X2yCFM7KKZ3OO4l5VMATr0ubt7XP+6GeYG4UAzTgdZE7X6v3txiGNuzZ54jnp2f4vLenlgikb8Hm0nv8vBavSzvGuD1DmBET/dw1Xk/FEr2LcLWT21+5908N9g6uJZQI835s3uvV4nXTImhW9l3uar3YM1SSUQkN6D3cRcRhSUBBroR6RuXE+ychiaMEwJYLXmumP7dg8383ERen/lP5fuZ6jxBCBt3YO3DI+0L5oWSjtPg5wwk3fNlFYl4llZ4VVtAChb7TDcQiRyf2/gypww2VX62SNQYPY6OOwM6WQcd2Y8zQ4NxBOu5ibJTIKs4txpYGfDlnxGxzjys6mvo1enOx+QqRbHVEzoDR5f7b8owrlUovMbgDrNkDNMQ5mzC3u+nVcUzW2JdfuXSqVlIar6O8NgIPa7E6iQnZi8UtvTIAk7xuWmmSAMQllEpF5/wc3QMiRge/fiURE9SDgZ585vdeSkHNUmzAXerb0/3+OkeTai5zvw1EhpVv74dJ1eG6MQJLXKp+7ASOlJXmHn0FYL8puoEBnCMjCVCzFXavpvg+FPZg6Em/Hyak17X9E2JGv9i3Fac2EhvZd8Y1iy6cWTc4sZwqWeBzjgGgX1BM0LlehkDQaygHiWG4DTO8ajB3HhlKCnDv8GPloqY8KlcRiZS3Y0ZsR+a69cQnrXFOCUQVJJ4n3HFWYmPcKux7uN7rpUSnkwl5YIkqbCDGRcXFTCOC77MuUHJ1qsSMaiW9lILYBX6dLRgrNYAZoqMw43AYNozJuO3wurR4myWaIJe9GgzAHfT/ryPiPSqJJKhthLBBDWaUyt2qChtu91G6FrQNm5P2EcpsEMBMICvv1+jE5kElr13tbcx5Wz7j99W8l8NArpg2MW8T/Jh27D2pJYzmrKezVPB2ej2VJ2eu10nxZPsIIDwXAz1iFOWSOZ8AG4obE3B6AAOWii+TC2M9IY0uuXDFyVR6f7UTMVGXE3FYV/v/LRj4kNtbE+F2p9w667F3YpHXXQlkBaYUM9aLMZFSj53mfVRGSLZP9mOzMVmyDW7CXCz1Xhe8nR1Eqoxd2FS8xOuhukAIaEgqW4JMzxDArpUzy9wMMUFD5edXXi15qhx3s65JI4mZaAqlSnHiqadmtrUkpt90Db/HkY2Y0apzXIFud1YNbFfc84gDqPz0zO8bKQbKjy5z49x/Wg9Br2RKVca43z0A48rinJHYwFqcJPbDyxlBh9GUuuD1AgxAh48QU7BB/7GyOGcNwZJoe32mntMxgLE7s11JuJtN9/s86NsFr2fRUtsPea+jwFelt00jV6Ufn3V/OzIA6zMgsgoDP2ACBS/voTQZ7mFYmbPNI/tdxEAAVq5stZm+k0OxAGdWbRCCCcwyPYOV37Lb2Rg0CPAjmezscSq1/CwbdI4Bn2w5QzFB/9PLEAh6DWU0kcC0yf/lMAAy2f+XNHQ9EdepwHPFfBYwY1FjpVyVFMO5HjPArsRWunXcQUKKWVLSYAZzr//b4XXYiRmQA0TMjFb6KzGDtIuYH+Su1e51UbzEHq9HJ2aAziFy+Uz1+k3EwNB2r/cthCErhkJgpR1jhZSXZzilMs5Hvf05b6/km6XOmSfc8eTClSMA0mZCQRQ/V4BKeWsKWHyLVtzl4iaP9e0YWO3w9kKwed2YYV3tfTrG9z+GxctM83upHRdgQK830+ap3i6JbEz2v1uJhch8pn5SODtKKAKKwRHbIunnKZg5M9Pr3Ey8Fw3eH28kWMpsTJDi12ZgJo3iduZgYFsy2Hi7lahVSXYFEOYQMUhK5Dvb63g3If6x3Z9Fj1/rCWzR4CilMVWHCLCzDVt0+BevRz7Tj1d5veS6qdieCUQ+LrFqq72/6wjWUQypAHe2HxXvrLXvXV7PVj9uO2euHDv5If+jSpIkrdiaQxfwwzRNHznxGUPl1IoMxOO5x42n1MDMGqSKEdIq/c7MPhmyyteSNXrnUur+lGUGxBplgVgz7F7i280YQvAlgt0DlLhMjWxwF7scLHdjfUSDfbzFjCRlDj4GYhsoRjFWVZeCh5cB9kAhA67GlQWA6cTYp/MbYmCchAGKcX6OVhoVG7OlARu1vJ01DYNko71eAlFHyORlAsZVl7bhZQc/55cNqvcAbFTfV9sxRTwwAK9shRHT4x6TGmCv6rwRaM7IVXc7y6N+2E88Vz2fWiyORwBlF/ZeZMU15PKmv7dS+j5soZQpOkyAZvl3jCT8FasIYETmvHMY+GTLEBN0Rsqwkx8yVFSkjNVK5N3ZRax292BMgRgTiEDzGgw8dGKGsiSie/33bZih9wRmUHUSMTMLsOH6IsItaxRm8C3ChpKdmNE5mRiP64mYjOe8rpKyriNYpkMYkFD8jhTCFB8yjGCIZOCLDRpPLAYp2el2zMjejBmIcjvbQeTDEeBQPIWkqau9/2YSyVHLMKNVMVRipRQH1EOsRQocyQ1vkV+rgYjpkAtTHyHKo7iZNsyw30SwEaswQLvV69/n1+jHmJ0l3leKhZKcd6X39xrCG0IJUDWkX00M+73E4k6j97GkuGsJSfPNhKug4qc6vJ3d3p/HiNikTsJFskC8a7pPB5E7SeIWKwmVPkmNyyXtWe+PbX78Km+34sB6CFEEsVK9WFKBq7B3aZo/IwHLegw8ibnSt9ZCCHEU/Jhn/PzLCXGIJu+fbURiV7x+E/w+bdj0rfd3if92gffpQf83zf/H+05xfxBCIoo97vb2SjzkdEuKvVev9u9USpIk30yS5KdJkmw4wTHXJEmyOUmSrUmSfOJk+19PebV6vI57XAv8XZqmH8TU04fKaZXBa59yOj2c+SdmKGtk7vR/ElU4nPl7lP+WZYyyx/yEAD6KFZKy10js670IM5KzrECX/xuJfbFlBHiRzEyWkcgAiiN7TLlOK1/soTRjaB74caYb8vDKRgMRL+v3BmOxjrh/W5a5OuJOva/st3sd2QMv+zm7Bxyo5WH3xqjnkfz/z96Zx8lVVYn/e7q6k5AQEhJCMAskMSFOTAxLZA2iyD78QB1Q0BkRHRkdcZvRGZlFGdQZ0XFQxwWjIjiiLA5oBlEQgQACgbCEQCASIzFNSAiE7Ft31/n9ce/Jff1S1V2druru6j7fz6c+XfXeffeed9/rqnPeWS7hGzue94ObcvMSz82mbX+bx/3Cq53Sa0bq80GG7JNRXkjH8AywKRQqeA3sLj3d+lh4cSf88XfB2Nps3h4zUsxQWR/n4/nYt+X72PUaRftAdAghbXYi9ojtufh6hRTeZq99csfbfWjf5mYkZ11tA9QAcqqGe4K6gBkBFrq1lBSGBcFYmR//To/7V5PCgQ4ihagNim0WEL5CrAjAOwkel3UEZd6S90cSDJk5BCNjAqmIjIX6WNjODMJXin19ZXNH15CUzBaCIWGLVNpvheUZWb7EelIy+EJSae1XSIu7Lo1thhCUTAv3slCuofH4t5MWlRxG+MpfTFAifxHbW9K8FZgokkpMP0dQsDeQylMfEvf9IX7eFMebE+Vtin3Ymj8TMteC2NYUdzMebHyrhpdlMMEQslUMlpMi3c2DYXN/KymXJ3u8GcV3k55ErCFdI6s6OItUOe1EUm7QjrhvF0mpt+pwZrCYp6eJVGluLMkgWEqK3igS7mnz2B1NysMyL+XEOIZ5MSHlyI6J5/sIKbd4BSF3a2Gc46y3zR4SjInn+geCMWKpsgWScWb3+zpSFcATSUaBeYoaCMaZeedsjGMJ/5dT43jj4/lYLat1pHL0T8XX3HhsC+H/dDOp0IelEmyK83cyyRvVXZSqeIKuISwB+aNSO0WkQLBJTyF8VTwiIvMJtuAe21V1ae74A4Htqro5s22qqmYzNErKUW5sVV0qIrOA/8j18X7gf4DPicjZJPeDs9fkFUWLRzDMQLF1VkqFGWWry20n/BpMIBlCZsjsQzCA8hXmmgn/+fZ5FsGTYIq07bPLbQbP8/GzfVOY3MtJRpeF5UVvEmZo2DHZ2zQbwvUwoTrZDfHzOzLnTzQYZpG+zbOG3AJSZbPnwxiNJ0cPyqTcMb/LzJ0dn61wNipdolez3hfg1YdJjz6zoYfbofVhkqfF5srGWQ4v2lybnIZ54WxestcO0rzZ8fY4MHv9LK/sZoLxk7++42lvJGVD47LHP5fZP4o0L9nx7d7bh2T9Npbos5V+XQzBw+GqghtBXWAXQbkbQ/hDPVz1AAAgAElEQVRKm0l4Cm6lmE1T2EBQ9izMaFr8bJXOHozt5pLWhGmL+24kKP6zSAaQPQcZS1AMT4zH2fbhBIV/B0HpbiAon88RFP2nCAbD0tiHVVYbG8e28sENBIXzLNJXywrCV5OF91np7edIlccaYv/PEb4eTyQonivieVl4F/HvRFIYl50X8Thb28g8a5YDamWQLbSpLW63NXlWEQoOrCPkmJ4S+zRPylNxn5Vd3kZQbtcSlNuVJOPLwtM2xnNfSfDYWE7N7odtpEIUY0k/IdMJ19iKYawlFdIxBd8WKV0R58q2FUjLwVko3xqSB8zCE28ghLXtiud+BOFneDTBCDok9mdGVZFwnZpIBRvMa3MCYYkJWyjUvERmlJmBbt61dhoxQeVYS8rLMa+XGcej4rneQfv8LjPaV8T3j8TzsJA0C4G0hUzHkIpBZANprMLccEIFugUEbX4EybNF3G/30WOEsM0bopz2kGI6aQHVGQQjdSIpF24X4d5ZRqhsWyRcqxFUB/MEdcABIpKtizpPVee160P1XhGZ1EEfRwHLVXUFgIhcT/jKuKfM9vwlPxH4sIicqao7ROSDhOcbZ1YgR7mxl6rqElK6dp6PRAPq5g7Oy9krsoqkkc/PaCWsJ2Sf9yEprNn8DlNCF9JeIX2B9or19txx4zPbISjMT2Y+j2JPpTubUUncn/UDjyZ5kSAVb7A+zEAzRXs7wRCyEK7rYp/NmePt29naW98TSGvczAptWm+I27NGV3PuOJPJvs1eiO1tPpbQ3hu3jWBEbSfMvxmYQ0nV1czzNjRzTHbuLa8mYyDtfrxo+0vN2yuZzytJHkAy+8wjtJ3wddKa2Z+VIWvgENvlZbTt2Tbm7bFHttl71j7nj+mnKP369HoKN4K6wFCCAvY4QTGzcCyrT/I6gqL5GEE5mkJaI+YVgqI1hfAVeWv8vB+pAph5HBpi35bqaGFpLQTlazMp9Gts7H8RQYGbSlAqf0X4+rUE9m0EY+dwgjIKQXE7Kcq7maBMriaskWMJ+UQZbQHYaYSvv2nxXO4mfIXOIHyNziUo7o8Rnn89RjBATiZ5vozhhK/dVYRk/Ylx3lbTPqStheA9OYT2yx0UCMrplNj3KwSPwpnxfF4hFZSwnJQlsZ8zCbk9M0nGHfE4K/FsOS0TSAUARpAKT9g5WEEHU9otEd88OsRztOtg4YGLCdevSKrqNo5glDwfx7fKdNl1ip6L57wqns9xsd9jSEUCzFPYRFrc1rxzTSTv4WyC0n0R4VotI1yTNXH8BlLIohUWyHoqbP6I52IV9SynBsI9YaXfVxDul1MJ98JOwrW1stwWIjqK9LNsoZBj49yNIXnBBsV2VsjBzvOw2P8GkuFZjMdbjtJ98fy3xTmzfK3hhOs7K8p+P+H+MEN2DuEa/yDzuZp04gl6uQrrPownOUIhrc1cbns7VPWmuIL39SJyE8Fbc0q+XRfHLks0pP6JcGm/UuE4Tpcpp1Hlt5sSmt+W9yZB+xyPrDKff2pvhsLUTHtrRzzuSdL6RWaYTMi0fzI35rbM8XaMVRSzY7bTXpEfnTtmIXsabllFPitbdhxrs5D2Cr8ZHzYPQ+Ox9i/wHO2r7D1Hqs4HKc9qNGmOrIi/jZEPS8vKavtfof38mxfPyBqcJlPWq9PInjlj+ZyurPcmX+jA2mbvo/w9AcnwfonS6mqpe3OAUKR0Op/TJdwI6gLbCcocJG/OW0jeiw0EJdIqo20lKH1W1S3rcLZCCnMJSh4E48KeXo+M7VfH7WdnxjyaVObXckQOJyh3E6OME6IMo0mFDFoISuPY2MedBCV7UuzrV6Sn7c2x3xmkpH4zyM4grf0ynaDEjiF4yQoExfzEeH5HkNaKe4q0YCxRHjMUigSldmzsexbJizGDFJZlhSZWEb72j43zYmFvbXFftnT4cFIezKgo308Inp4ZpDVmZsRzsDyXYaRQL6s6ZmsKTY/tLP9nIqE4wolxXixs0TxWDaSy0VYgw3KezKixtXKeJ9wzq+Pxq+OYawg/JeaFtPLbljNlHpGxBEP3gjgXZgjOIRWVsPthbWau7LxWE+6f/Qj3xyBSWORxhPvdjPynYtuJ8TqsJdwj1sdr43yYATOd8D+zjnTdJ8TrZ8UsDo/9jo3na3lw5iFcHMceEq/XSaT03PWkEt9jSGs7Wb9DSZ682SRPI/G9peaOjfOykPA/OTzO5WrSIrR2b2zIyN5dKqgON0JE5gH/p6r/t5fDSJmhy23fc6Pql6MX5zvAa1V1S6l2XRi7LKr6PHBxhf07NaGRFB5nT9tNgc3WTs6TfaKfVWS3U3phy2z4U9aosmPuybSHPb0JjbnjskqxjbUyty3r0eqo2thL7FmCOZsfZeNlc1MOJIXyQfo2MvnNeMqfV9aoGkV7A88KUGzPtM17uLIyZo0T2581SrK5YLZ/YYlzMMwzmL9+kO4Bm4PsAkfZ+6NUmNrmXHtI91x2m7Mbn5Ju44URusAggqJp5fNPJpXLfYWUF2AVtyyZu4lgUFiozYhMW8vNeXv8vJGgZJqhYAnZtjaKVYa7K/ZhSf+2xsmdJCNsKSkRfiVB4bw1yjufoIC/lhQy984o++h4jtMIivd0goFwTjwP80atJZVhXkCIY7GwpBvjeT5GWqPISkfbUg1WlOEBglI7g/AE/4S4bxfBG1EgKPWLCcZZE8G42kAKJ5sR5+ckkjdnUpT1sXjMrwhf5c2kxS63EowiCwiwctZnkUqXrySVDbfS1LbeTQMppNFCoqbHY61q30iCcXR/lNk8JcXMmItJi9w+GGWfG6/PpDhftojuyXEcu/ceIBgeN5IWF51CqPB3P8Ggg3Cdrfrczji/VgzAfp7MiLiD8FM3Kc4tUeYH4phj4zycGGVaF8c8lbSeUjPBM2fHziQZbZaDtiG2M2N0OslrZCm3q+L1+RXBKDOjxPLWno/X4WhSyB+kMuczCffe4/F8psftd0bZLez0uHhsMylUsInwf782jjWW8H/REs9lJu2DXbqLrRNU7lUlmgm3iTGBMBXltu+BiJxAOP1bgM9VYWynT9NRiFEp4yfbNn9sdpu9tz4szGllrm3+Ze3K9Zcft5Qsti3fl/ESyagxA2Fz7tVa4th8H5vj35coLX9+Hl6i/RjZ414iGZD5+ci/N2OptUx/dl7ljs/Pg1Hqeufb5M8rT0deR9fsnb1HRGaIyI0i8h0RObez9m4EdYGtBIXrQYLyZ0+UlxGUdQvbsvyL5QRl3dZFe5CgyLwx06d5lm4hhX8NIyh4lhtxIkFpfYygVK8lKPujCUruMMJX3WxSKeAJBGXPcjwsaMByWkYRjIcFcf/JhAjoHXHshXHfelIex7MEhf4QggJ8FilRHoIi30TK1RtE8sIUSFXvRpKq000hKKErCIbektjGEusfip+PjbLbopWWL7Q6yvqH2J/Vn1lNKitt+YPZGKJxpPCng0gV+Kx6210ExbwY52ZHlOdZgiJ8GKn62XDCtX4dwXBYFt/fGeevEGWeRMqpsmIVmwn31CiS0Xo04T5aGftbGt8vJ3mKlsbzmUbwmhHn8g6CodtE8LicGOWfG89nWpzTrQRPz8bYl60btC72f26UeUGc02VxXovxnCyn5xFS+XGinJZT1EAKsNhMWttnZRx3JSlvriWeq3llivH9I/H8RsV5GRn7NON7W9w2m1TSmvjeDLMhhOs9I362ioBWctv+jy0PDML/agvhmpnBa4VAtmbmahWpaEM1ME9QuRewUVUv7oYXCMK0ThORySIyiLBe/fwOtrdDRA4Hvkd4LnIRMEpEvtDNsfs8IvIpEVEROaC3ZXFqSTnDrZbj1aJ9Z3J39bwqNSydekFEpovIE5nXJhH5RIl2/baaqBtBXWQQQRkbS8oJmkCqeHZa3F8kKOx3EhTJmaTJttAdo4W00Cokb8UIgjL7RNx+HO1LXlsFsNUEBc4Wp1xGUA4tf8ZSEt9DUK7fSHpGNCWOb/kxBxEUuuNi28MJngQLyRpBUE6nEgyCgwjGmSnttrbcGaT1bF4hGDcT4jnuInlQGkiK/SCC0jk0/h1OUHBtvRvL51gQz28bQekdTQo33EjQzKyk9MjY3/I4L1ZY4nmCIXNnnOP7Ccq2rRdzRJRhDGltqLZ4zFpSkU9Tfq3gxCRSYYUpBENlaDz/wbGvqYT7xYqtjiEo0zPiOVj1sdXx84h4HbaSSqGfQMrxMa/c3Ni3GUdWinxrfP9UlGM/UonvCfG4XQTDwdb9+UUcfwbBIFgf5waSF8SMRgs/eyEzzoo4h+ahO4RUQGB1HNOug3nbivE8ZsT5WRbbLCG4DkbEsUeQyoabwbUtbr+DYHSeQaqEt4hw/RuiXJa7lactnstQUhGSpaRAkI2ksNMZpAIfQ/boqXt04gkaISLzROT/lTteRH5KuGzTRaRZRD4Qt98mIuNUtRW4hPDc4RngRlV9utz2EkMMBc5T1T+oahG4kBJLJZWSowtj9ClEZCIh7+lPvS2L4zhO54/MOgmsBlR1maoepqqHAUcSfkpvybbJVPQ8g/DTd0H0tpTcnh9DRA4UkeG5bVPz7QjVRE+vZOy4b5aI3Jp7HUioJnq+iHyFCqqJimqH4dhOhoKI7kN4Sv4IyRMwi6BwjyMoWJZEb+WztxEU4INIT8pfICj2FhY3nFQ+2BL9FxMUwQmkJ+ojCFc1W5J3Oilvx4ooLKN9EruVdYagWNpCkqbETyWFBY2L/ZkSvY2gWC8i5dhYuuYh8RyPI2g1o+PxSwnhdS1xPiynYmLcb2WXW2IfzxGU8+fi5wKpatiY+HdhHN9KGdu8nBrPcwVp0VhLXn+OoLyeSsp/WUNQKKfE8x0ZZRyVOXdbb8eKRmSZS6omZt4h4ueJpFTYuYRH3FNIC4BaCqsp02sJxoLNja3pY56OUSTPxYTY9kHS9dpMuCeKpKpss+P8jIyyWQ7ZHNKinxvivLZk+l9KumfGEows87Zl83zsXjyWVEntNNKi53Y/riHcc2YUjiMZMcvj3zHxveV2HR3n72hSCOVjsZ+ZhOtiYYoHkRZq3RZlHkQw6IbQvlrfMpLhViSVxd5F8sZmsWqK00mFH+bG+V5KKlpiPzPRcHu0u0ULRoromzvY/4sqjOF0HRH5GfB5wvOBOar6cufHjFP4m5rL5jhOPXJZt77LRQ7X9qWmSjFiJZD9rtqjmmjqT04FPqeqx+e2Hwtcpqqnxc+Xxl33lNquqv+RO/484MNAu2qiqtqummhsOwm4VVVndjR2fowy51MAblbVczpq168LI4jIDaQHvyOBDap6WJzoZ0j630Oq+qFK+pxDWMTU0hPfQjJ67Ml5FjMsBhGU4MNJSpc9bTZlFlI1Lnv6bSsemPJs4TpT4utOgoJpypgZQGMIHgBbBHM9yZAxg83KDtsaa9b3KFL5JjNA1hMMqWyt3HGkx793kQogmIfMFk21p/EQlMtb4jyY98bmaAdp4VlbNHMIIXyrEI+1sCtbnHIS4en/uDifFlZmoYfmlbuD5LGwXKB1BKNtQabvBlJp6sdJCv1ThEIDts7SjwiK+yu0r+bVRso5eZBUwW9hZvyzCddtNmHOrYraEaQwK8sns7Czt0RZ74v7Tybk55jBNIxkbJgx3EYIm7TiEk8R7tGlhMcqN8ZxrcKb5dWsI4X/mffSCiZk6weZMTaLlD9j1d12EAwXy5ebQVpXyzxYr4vb7KECmXl6Ip770bH/FVFG85buJBXryBprJxAMv52Ee2x5PJ/BJOPW+lgYtw/O9GlkF+K1YhdrYl9DCfeApVPb/2y1qGLuj1MF4vpEL6jqYpFSdR3atb2Y3UUcqlU43XEcZ6/oSjXR8wmpxHn6dTXRfm0Eqeq77L2IfJX2RZz+EF2AFWPr60BKoDflfizhqX421M3a2hPvISSr69j4eRvtmU24ymMISt5ggofEjJy3xD5WERRDM2Jmxr/Wf0OmDwiK5hpSXoy9N/mzE2NV3MxIWR3HN0XWyGYzz4p9jSGty3M/SeE/JB5vlfAmERTYO0jVvwqkfKPjCIbI/XGeTiQoxusIiu1sUs5JQ5TF1hE6Ip7fIJLibZXtbF2aYjx2W2y/jaCsW9iUeeOsEtoMgiJs5zwutt0UZbFqbrb+T3ZNa/OkvC7utwSIHYTrtjaet1UfMw/VDJJXZGGco/Fx/0KSN83uAavm1xbPZ1ecZ0v+vy/O4ybae23MULWS0+ZBMa/Q4aQFSVdktlvVvGcJYYKzCfeA3XPD41g7CffXbMI1bSCV6J5OuK6m+I+N52Jzvpi0zpLNpy3sOoy06OxhcU5sgdVsrg+kXCxIxR9snhoI940tytpM+n8uEK77XMK9aA8/jiB58syzVA0qWCy1GtXhnBwicicpVS/LPxN+UE+tpJ/4lHVe6HOch1k4jlMjqlcjO+Znng1cWmp3iW39pprogMgJkvD47p2UtnIrpkjysiwmKFpm6KwlFR8wzLNhZap3EZTxEwlP0c1gGUxQBk2pNCUQUoiUVWizRT0tVGpd7PMpUqgRBGV/JWkh0iUEJW4JQekdQlrolczf2aS1ZVYTbhAzwKzcckNGXsMMICvMMDae+1pCDtLKeHxbPI9bCJ4IS1a3xVo3k7xUG0ilox8hlRgfQSq+YN6cuaQy1utJi9ceF9u1xLFfIXmaLAdnEakowagoy/rY3hZntVAx8/RZqWQrkdxEuP5WXtvySO4mVbi7k5ADM5eUTG+FERaQikJsyMyfrQtUIIV/DSXlUhUIHisLz1pKMDQsvO6R2HYrwRjZGbfb9ctWvBtDMFKt+uFowvV+nGCoPE8wiIhjD4/zsJNggCzK7IdwnXZGeUeRKg/uJBjNVnDADPChJKMCUuGEU0nV+SwvaQip+MWYOP5Qwv9UNlTU/ieH0Z6thOsAKSdpNulet3WgzHCyUMP1pGqPZoBaNbpqYIullntRncIITg5VPVlVZ+ZfhNtpMrBYRJ4n3FKPiUgpg8lxHKeHUNqXNy/1qpgzgMdUdW2Jff26muiAMIIIUTJrVfW5zLbJIvK4iCyIF6gkInKxiCwSkUVK8MRYyBMEBcgUv2yokIUGrSYtIjmMoPBZRTYLn9tJWqvFFLhdpNAwW4/FqlmZp2B97HsM4c6wJ9yHxPenZtpY2e5BpIpao0ieKFMSF5MW5rRwrakEQ62BVNr5edLTbwsnWkdQGh8nKJFWZe75KMM2Uulu638U4b/iEIKBY8ZUA6kctxlW0wkGpK1bY2GFVkBiB8HbkS1QsCy2O5fk/RkbX9Npb8xZGFc2tHAlwRMzlXAtrLjD3LjvGFKOUXM83gxK81jYekrHEjwWGwjevfGE62pV6E6L/S8jXI9bCPfIQaT8rTFx/pYTDKwhpMpvJretb9QU9xfiOLbeuRWIWBf/mqL/OCmc0cLizMjfSbgvHidViMs+BCDO9+Mko2Bb5m8byUBpI9wXVsDDylIPi3P0FtL9vDzKYyGb5hc3r9Cv4vGWu2Z5P2ak2f/kCxm5ZpMeaMwlhcGZ16kUkzLv7f96Jyl3q5qBT8UOXlRQGMGpHqq6RFUPVNVJqjqJcEsdoaprOjnUcRynhpgnqCpG0AWUdxL062qidW8EicidIvJUiVc2GSp/gV8EDlbVw4G/A34iIvuV6l9V56nqHFWdUyB4U0aS1v1pIyh+Wa+ILbQIQfF6kLQgJgQF035B2zJ/TbmcTjA+tpKMCeLYI+J2e8K9jva5GlYWuom02OZIUp6IrVu0iKRYWyED82bY0+1VBANnNEERH0YyfLL5E/Z+DO2DNW27rbNjIUoN8TwWxzFGELwkgwkGxCKCkmx5Lha2tDq2P5r2T9+3kQoYWIWxBXHMFwgK8SaSgbmW4ImwUL91BMW7ObfP5nRBPHYWIXzPqslNJWRJz4rnPjjKN5twzUzGsQSDZXHsa22c7yfiMeb9+hXBMJpDui4QDOKh8fNdwDsy5/4sqSIbBGNoFOEeuoMUtmkFFzaTqugdS1r01NZMtzWMLEcny9Dc53z+my0cOzvKmn18M5qUO9NGeCRk6wUNJ9x3G+Lc3E37BwprSUaGeY2WZ/Y/R/p/swcBVmWPzHHWZgNhfsw7mce+FEfF94fQPszV/j8GZ7Zlz7U7uCfIcRzH6SlEZCghR+fm3PYBUU2031eHE5FGgi58pKo2l2lzD/ApVV1Uar9RENGDCcpPM0E5sift5t0YTFqkM4/lbuSxPIRstSkIil+5leinkvJXrGw2pAIKkBLerTLcnLjPZLW8hyxNJC9AqXPIk5W5VH+2zc4lW6XOMDnN4FkXz2kNoQDA/IxMtoCqrTlkC8Va2eX7c31buJQZXwcRFF9TljcTvEu7onzPx3MaT1rQ1YoPZP9rD4/HbiRd0wlx2zZS2fMxhP9qO2+bB8tTKpCS7NeQSlsfG89pOClHa0rmnG1dqufj2ENiu7EkIz2f33I0wQCw6zoiI6vlh1nYmpXotqpwkPJhZpLKdxPPcxopzyh7H1i+VLYgiPmzrYy89WN/DyEYwFZC3P43LOfIQjLNkHsw7rOCCB0xlzBnJb8I4tgjo8x2XxLHH0m4TyYS5jBfgHRrFSq37SuiszvY/4BXh6sbvDqc4zjl6W51uBkKP+6k1ZH+e9EJ/bowQuRk4NmsASQiY4D1qtomIlMIOtyKch1kyRoxqwiKXDYX6CD2LE8NQQnOG0CmpA6Kn7NKVf548zStI4WOEduszrQ/guAVsRAoKw88nGD8ZAsxlAr9aWFPQ6IcZnCZclyqPzvnjaTkdsv5WUlQxDeTSlhbVS5TxOcTlNEdBA+YPeEfE7cVSeu0PB//Zo1HqwIHKRnelO1sGFxb/DuM5E0zY2IGydC0XKLHCddvK8lQmERacHNEPB+7Tqac2zysJhlGKwhKvJWunk1Q7I0RJE+DFdewioDDSfkxdk5ZA2gc4X6xfKEhJE+VeUcaCMbF4MzcFOLfbPCt7Wu3klk8RztPKzFuWF5Xtgy1GUDZwhxZsqXEzQPUQvLabM5st1LpizPHZ8Pj8ti9na8IZ+OtJBm7WU9SC+E+mhDl6HwFhr3DVn5wHMdxnPJUrzDCQKbuw+EqoFTZvzcBT4rIYkLF6w+p6vo9juwEM1LMiBlKSubOGjDTKf2E2qyyUsHl09hzfRorkJD3I04nGQL3077ktj31Nw9FljkEpXkclTMq8976s4krdTNl58GKLVgFMQsFs1LapsjOju1MAV8V99k5tRCU7s2kRVpHEeZzOEGBtwIUbaScrc0kBX4CwZAYRQhLM0PIFvQ0w2JslG0hKfdjV2Y8C9ODtHAtBIMoOx9WcW5CZrsVDYBUaMPCBon7psa+1sc2Q2M/ZkytJVy/KQSviBXIMCPQquY1k+6RKaT8pZmka5S9R22u88U+suTD42y89aRQuQ2Z87G+rBhG3gCyIh5TSPfWRtJ8ZY3s8Rk5zds1If4dTmkDKCu3FYkwrH32fFfSPsyVOJZ5NKtZECFLdxdLdRzHcfo7Vc0JGrD0+3C4amKLpe4NhxCMHSvp2xkWqpRdi8ewcCMLNRpO8EiYt8LCvKwssHmDstixkJQ5ewI9nfZrD8GeYWzZ0D7zBOX7Me9U/thsyJ6di7WxctBGviy3yTKJlENiWM6VKd2ljs1i5zA919dM9gx3Oprgacp6SA4hJclnsfm3qmgbSUbFVIJRt5P212BmlKGZFIY1gXC/PEXybln4YdaLYvNp3p/BJIPHPGprSddjeOyvXEhYV8mHcZbCymvn6SjkE9IaPdlx7J7JLtyax8JFy+2za9ARHd23sKe3thrhcENFtNRS2sYSD4erGzwcznGc8nQ3HO5QhW930uoU/73ohIHgCaoJtshiR/H7WVYSFCpTtIcTFORRpNAey3WAoBi2sWdpX0gKrSnQVhDAjBIzRsx4yhtAQ2mvuLfQXoktle8wK/c5bwBZP1nvQCkPA+z5lL4p0yabkJ9fnNVKN++MMuaNyRXxZQt6LCUYOlbJ7+j4mpmRnShzgXAdrBKflSC3a7MwjmcFJyCVK89j4VrbSGs+WdGIQVH+4YTrZ9f7KZJCb96q5sz7Isnomkl7L8o2Up7aKNK6PBsJ988JUR67HuY96Qpd8QiZ92Rq5jgzgKbn/uYNoBGkOR9LWpAU9ixfbeeQl2045Q0g4r6SVVByZO/bqaR5NopU/wtU6dQT5DiO4wx4qloie8AyEHKCakK2rG7+CXEl5EPdSm0rUt6TYUqxrQW0lvYVsjpiG12XdxFpgcpSeSJGR0/1S5E3ZLJP1vPG04Ps6XUoVWhhcWaflVYeRTBksp4HMw6XZvookJ7wZ8/NihFk+94Z+51IMmiGEZRVywvaSCprbh4uu25ZWaYTvBP562L31mbS/ZHPyYFQfS1brMBYT4j37G4J53JG03D2vOZmIC8nlay2a2b5aTb3+f8d83ZBujc6+/9qzrXJ/h+VK0Zi2ywnrZMFSncbcWbAjiJcw86O6yqeE+Q4juN0TpGua3JOHvcEdYEC7Z8EG8Mz70vtr4RySmo+JyGLeXqyhkRX8nuyVJLfYOF2tcqFqIS8griTPT0BawnXJB/KBKWNtGyJ7/WUVmyzOTmQwuJsO/G4bO5VdqxsKNjKEvttzZw85b7i8vdFZ6uHddU4HZf5m7+ns/dqKWM+iy1cm8UWpYXS52cej+EdtMlTrk3WAJrNnl6rjYT7ujPsnrD1onbk9pfKj9obKvAEeU6Q4zjOgMdzgqqBG0FdoI3SeQSmCI4qs78SOlJSD8l9HluyVWBvl9Kt5OmzPb3PLibaUzfQlA72lfJS5JVz8xZk5y6/zk0pj4Fh52zGT17pns6eVEMxLheG1pGsebpiGNv1XJ35m72nx1G5QTW8g30deSuLBEM7ew1PrHDMjlhMaWOpK/8zFmZnDx4aCHNSredx5gkq98LXCXIcx3GcquBGUBXIV0mrhKxhU0qBNvLr00BlhRXK0YDL1A4AACAASURBVJFnqatUEkZULSqqX94JtiaO0VHRhHKU83yUWlPJ7ou9CUUzw6WUgddRfk4puqLkZ69nKY/f1i701ZmXqCPyRvmCkq2qQ3dCBa1EfTXxnCDHcRynY9wTVA08J6iXyBo2lSxKWg2a6JoHoT/S5TroVaCroWjQsWJdrapunVHKO7g359IRTQTlvqeM6VJU+5y6g+cEOY7jOJ0zsNcJEpFhhPJ4u4B7VPW6venHPUFVZEsfKDfekQz1qFz1xJz2hetWTfrK+XQUDme0EL7KuyJzXzm/WuDV4RzHcZzOqY4nSEROF5FlIrJcRD7TlTaVHFspInK1iLwkIk/ltpcb4x3Az1T1g8DZezuuG0FVwJSyfUVKbu9J8jJk2aK6+1UJHbWrpI+9Pf9azVupc+/pa7RFlaG0DzWr9JpUKmtH90BPkg2H6+wcuyNzZ/OSH3tvi5f0BBXkBDmO4zgDHgVaO3l1jIgUgG8BZxDSpC8QkRmVtKnk2Hj8gSIyPLet1HJ41wCnd0G+CYSiutCNZ4QeDtcFivDy1j1TdJAyCly57SU4AHh57yWrjC7IA3CAiJSVqZK+ujheyeNyfXRrnkrJs7cy7q083ZGhwnY9ci91gQOAl7s5z+3I99VZ3/n9W2s3R/kaJl2mCLdvDvKVQ0RkHvB/Xhyhr/Piy3DZHr8XNaCv/c9XAz+n+qC/nVNPnk83fy9evB0u6+i3AmCIiGSXFZynqvMyn48ClqvqCgARuR44h/Yp0+Xa3FPBsRDqGn1YRM5U1R0i8kHg7cCZ2Uaqeq+ITMod25F8zQRD6Am64dBxI6gLqGo16wrsRkQW9bVVfV2mzulr8kDfk6mvyQN9UyZDVU/vvJVTD9Tq9yJPX76f9xY/p/qgv51TPZ1PlX4rxpO8KRAMi6MrbFPJsajqTSIyGbheRG4C3g+cUgX5bga+KSJ/Duz1A0E3ghzHcRzHcRxnYFEqjCIfX16uTSXHho2qX45enO8Ar1XVLd2VT1W3AhdV2E9ZPCfIcRzHcRzHcQYWzcDEzOcJ7FmctlybSo4FQEROAGYCtwCfq7J83cKNoL7BvM6b9DguU+f0NXmg78nU1+SBvimT4+wt/fF+9nOqD/rbOfW38+mMR4BpIjJZRAYB5wPzK2xTybGIyOHA9wi5PBcBo0TkC1WUr1uI9uNys47jOI7jOI7j7ImInAl8DSgAV6vqF+P224C/VtXVHbQpuT3X//HAJlVdEj83Ae9T1e/l2v0UeDOhOMVa4HOq+oNKxujW+bsR5DiO4ziO4zjOQMLD4RzHcRzHcRzHGVC4EdTDiMh5IvK0iBRFZE5m+yQR2S4iT8TXVZl9R4rIkrhi7jekiouulJMn7rs0jrlMRE7LbK/aKsEVyHeZiLyQmZczM/tKytcT9OQcdCDD8/G+eMLWAhCRUSLyGxF5Lv7dv8Yy7LHKczkZJPCNOGdPisgRPShTn7yPHKeaiMinRERFpLP1Q/o8IvIVEXk2flfcIiIje1umvaEv/FZUExGZKCJ3i8gzUXf4eG/LVC1EpCAij4vIrb0ti9MzuBHU8zwFvAO4t8S+P6jqYfH1ocz27wAXA9Piq5priZSUR8KqvOcDr4/jfTt+QVS0SnCVuTIzL7d1JF+N5SCO3RtzUI63xHkxA/YzwG9VdRrw2/i5llzDnvdjORnOIN3DFxPu656SCfrYfeQ41UREJhLW3/hTb8tSJX4DzFTVNwC/By7tZXm6TB/7ragWrcDfq+qfAccAH+kH52R8HHimt4Vweg43gnoYVX1GVZdV2l5EXgPsp6oPakjg+hHwth6Q5xzgelXdqap/BJYTVu/dvYKvqu4CbAXfnqacfD1BX5mDUpwDXBvfX0sV75VSqOq9wPoKZTgH+JEGHgJGxvu7J2QqR2/eR45TTa4E/oEya3XUG6p6h6q2xo8PEcrj1ht9+bdir1DVF1X1sfh+M8FoGN+7UnUfEZkA/Dnw/d6Wxek53AjqW0yOrtgFEuqqQ/hyac60aaZnvnBKrdQ7voPtteSSGBJxdSa8qzfkMHpz7CwK3CEij4rIxXHbWFV9EcKPFXBgL8hVTobenre+dh85TlUQkbOBF1R1cW/LUiPeD/yqt4XYC/r194uITAIOBxb2riRV4WuEhwjF3hbE6Tkae1uA/oiI3AkcVGLXP6vqL8oc9iJwsKq+IiJHAj8XkdfThVV5qyxPuXFLGc7devLYkXyEkKnPxzE+D3yV8IPY7XnpBr05dpbjY/nKA4HfiMizvSBDV+jNeeuL95HjVEwn35P/BJzasxJ1n0p+m0TknwkhWNf1pGxVot9+v4jIvsD/Ap9Q1U29LU93EJGzgJdU9VEReXNvy+P0HG4E1QBVPXkvjtkJ7IzvHxWRPwCHEp4cZcMAurxi7t7IQ8cr9VZ1Bd9K5ROR7wGWsFjzlYQ7oDfH3o2qro5/XxKRWwihF2tF5DWq+mIMNXupp+XqQIZemzdVXWvv+9B95DgVU+57UkRmAZOBxRJq5kwAHhORo1R1TQ+K2GU6++4XkQuBs4C3an2u59Evv18krPXyv8B1qnpzb8tTBY4Hzo4Fc4YA+4nIj1X1L3tZLqfGeDhcH0FExlhCtohMISSPr4jhRJtF5BgJv3DvBcp5b6rJfOB8ERksIpOjPA/TAyv4ZsnljLydUMihI/l6gh6dg1KIyDARGW7vCU+Bn4pyXBibXUjP3Ct5yskwH3hvrBJ3DLDRwuZqTR+9jxyn26jqElU9UFUnqeokguJ9RF83gDpDRE4H/hE4W1W39bY8e0mv/1ZUm6iH/AB4RlX/q7flqQaqeqmqToj/P+cDd7kBNDBwT1APIyJvB/4bGAP8UkSeUNXTgDcBl4tIK9AGfEhVLbn7w4SKV/sQ4qKrFhtdTh5VfVpEbgSWEkIRPqKqbfGYS4DbSSv4Pl0teUrwZRE5jBBC8DzwNwAdyVdrVLW1h+egFGOBW+KT30bgJ6r6axF5BLhRRD5AqBJ1Xi2FkMwqzyLSDHwO+FIZGW4DziQUH9gGXNSDMr25r91HjuN0yDeBwYRQX4CHclVT+zx95Lei2hwP/BWwRESeiNv+ySpuOk49IfXpYXYcx3Ecx3Ecx9k7PBzOcRzHcRzHcZwBhRtBjuM4juM4juMMKNwIchzHcRzHcRxnQOFGkOM4juM4juM4Awo3ghzHcRzHcRzHGVC4EeT0aURkS437/76IzIjv/2kvjp8kIk913rJd++2Z0qL5/ZeJyKe6Kkc89rUi8kSt58xxHKevIiITReSPIjIqft4/fj6kRuN9SETeG9+/T0TGZfbt/n3p5hiXicgLInJ5Ffo6QUSWduV3y3H6K24EOQMaVf1rVV0aP3bZCNpL/qCqh1W7U1WtSb+O4zj1gqquAr5DWK+M+Heeqq6s0XhXqeqP4sf3AeMy+7K/L93lSlX9bHc7UdX7COu1Oc6Ax40gp+4QkUNE5Lci8mT8e3Dcfo2IfENEHhCRFSJybtzeICLfFpGnReRWEbkts+8eEZkjIl8C9omelOvyHh4R+ZSIXBbfHykii0XkQeAjmTYFEfmKiDwSZfubCs/nn0VkmYjcCUzPbH+tiPxaRB4VkftE5HWZ7Q/FcS53z4/jOE47rgSOEZFPAHOBr+YbxO/4Z0Xk2vh9/TMRGRr3vVVEHheRJSJytYgMjtu/FL0oT4rIf8Ztl8Xfh3OBOcB18XdkH/t9ie0uiP09JSJXZOTYIiJfjL8pD4nI2M5OTkT2FZEfxv6eFJG/yPR1RfzNuFNEjooyrBCRs7s9q47Tz3AjyKlHvgn8SFXfAFwHfCOz7zWEH72zSE8C3wFMAmYBfw0cm+9QVT8DbFfVw1T1PZ2M/0PgY6qa7+cDwEZVfSPwRuCDIjK5o45E5EjgfODwKOcbM7vnAR9V1SOBTwHfjtu/Dnw9jrO6E1kdx3EGFKraAnyaYAx9QlV3lWk6neAlegOwCfhbERkCXAO8S1VnAY3Ah2N43duB18f2X8iN+TNgEfCe+Duy3fbFELkrgJOAw4A3isjb4u5hwEOqOhu4F/hgBaf4r4TfmllRlrsyfd0TfzM2RxlPiXJ3O5TOcfobbgQ59cixwE/i+/8hGD3Gz1W1GEMQ7InaXOCmuH0NcPfeDiwiI4CRqrogM75xKvDemO+zEBgNTOukyxOAW1R1m6puAubHcfYFjgNuiv19l2DgQTj/m+L7n+A4juPkOQN4EZjZQZtVqvq7+P7HhN+K6cAfVfX3cfu1wJsIRtIO4Psi8g5gWxdkeSPBOFmnqq2Eh3dvivt2AbfG948SHth1xsnAt+yDqr6a6evX8f0SYEE0CJdU2K/jDCgae1sAx6kCmnm/M/Necn+7QivtHxIMyfSlezbfve+jqnp7F8cq1V8DsMFzfBzHcbqGiBxG8IAcA9wvIter6oslmua/e5Uyvxeq2ioiRwFvJXjvLyF4dioSqYN9LapqcrRRmV5W7nco21eR+HuoqkURcX3PcXK4J8ipRx4g/AgBvAe4v5P29wN/EXODxgJvLtOuRUSa4vu1wIEiMjrGg58FoKobgI0iYt6nbOjc7YSwiSYAETlURIZ1Itu9wNtj/Phw4P/FcTYBfxSR82JfIiKz4zEPAX8R35+f79BxHGegIiJCKIzwCVX9E/AV4D/LND9YRCys+QLCb8WzwCQRmRq3/xWwIHrnR6jqbcAnCGFteTYDw0tsXwicKCIHiEghjrWgRLtKuYNghAGhAl43+nKcAYsbQU5fZ6iINGdefwd8DLhIRJ4k/EB9vJM+/hdoBp4ihJUtBDaWaDcPeFJEroshBJfHtrcSfhiNi4BvxcII2zPbvw8sBR6LRRW+SydP9VT1MeAG4Iko532Z3e8BPiAii4GngXPi9k8AfyciDxNC5Eqdi+M4zkDkg8CfVPU38fO3gdeJyIkl2j4DXBh/S0YB31HVHYTv+JtEZAnBo3IVwbi5NbZdAHyyRH/XAFdZYQTbGL1QlxJCsRcDj6nqL7pxjl8A9o9FFhYDb+lGX44zYJHkOXWc/ouI7KuqW0RkNPAwcHzMD+ppOSYBt6pqR3HqnfUxlFDEQUXkfOACVT0ns3+Lqu7bbWEdx3H6KdX4Lu4pJFQm3aKq5TxaXe1vEnVy7o5TSzxG1Bko3CoiI4FBwOd7wwCKtAEjROSJbuT7HAl8M4Z9bADeD6F0NsGbtLYqkjqO4zh9gS3AxSKyX3fXChKREwjesZerIpnj1DHuCXIcx3EGLCJyNSHn76VST8bjw4avExaY3Aa8L4axOo7jOHWM5wQ5juM4A5lrgNM72H8GodT9NOBiQtK94ziOU+e4EeQ4juMMWFT1XmB9B03OISzOrKr6EDBSRF7TQXvHcRynDvCcoC5wwAEH6KRJk3pbDMdxnD7Lo48++rKqjultOarIeGBV5nNz3LbHujMicjHBW8SwYcOOfN3rXtcjAjqO49Qjvf174UZQF5g0aRKLFi3qbTEcx3H6LCKysrdlqDKlFrosmUyrqvMIpfaZM2eO+u+F4zhOeXr798LD4RzHcRynPM3AxMznCcDqXpLFcRzHqRJuBDmO4zhOeeYD75XAMcDGuPil4ziOU8d4OJzjOI4zYBGRnwJvBg4QkWbgc0ATgKpeBdxGKI+9nFAi+6LekdRxHMepJm4EOY7jOAMWVb2gk/0KfKSHxHEcx3F6CA+HcxzHcRzHcRxnQOFGkOM4juM4juM4AwoPh3Mcp9fZ0dLGG794JwCfPWsGZ856DcMG+9eT4ziO4zi1wT1BjuP0OpffupTNO1rZ1Vrk0z97kuO+dFdvi+Q4juM4Tj/GjSDHcXqVXz75Ij9Z+Cf+5sQpPPv509lvSCMtbcXeFstxHMdxnH6MG0GO49SU1rYib/3qPZz0n/fQmjNuljRv5GM/fZx9Bxf41KnTERGOmTKag0cN7SVpHcdxHMcZCHjQveM4NWFnaxtnfv0+XtiwnR0twfiZddkdTBy1Dz//yPE8u2YzF179MIWCMPXAfWkqhGcyjQWhrai9KbrjOI7jOP0cN4Icx+k2G7e1cO5VD7BlZytnznoN859YzavbdtFaVPZpKvDdvzoSVfjY9Y/z+7VbmPHZ2xHg4NFD+ckHj2H8yH1299UgbgQ5juM4jlNb3AhyHGev2byjhZO+uoB1m3cCIMD1D/+JHa1FRuzTxNfedRjHTz2AQoMAMHv8CDbuaGHrzlZa2pQbLj6Wg0YMaddnY4PQpm4EOY7jOI5TO9wIchxnrzjz6/ey/KWt7GorMna/wXzz3Ucwe8JIBjWWTzW86cPHddpvoaGB1jY3ghzHcRzHqR1uBDmOUxFnfeM+9mkqcNOHj2PNxh38fu0WCg3CzX97HEccvH/Vxik04OFwjuM4juPUFDeCHMfpkO272vjc/Kd4avUmhg0u8NLmHfz9TU/QVGjglx+by5Qx+1Z1vEJDg4fDOY7jOI5TU9wIchwHVUVE9th2+tfu5U/rt7OjtY0D9h3E+q27OObff0tR4UvvmFV1AwhiTpB7ghzHcRzHqSE1XSdIRE4XkWUislxEPlNi/2ARuSHuXygikzL7Lo3bl4nIaZ31KSKTYx/PxT4HdTSGiDSJyLUiskREnhGRS2s3E47Td9m4vYXXf+52Dr/8DrbubAXg9K/dy4zP3s6ytVtoLRa55qKjWPQvp3DL3x5PoUEYNWwQ73rjxJrIU3AjyHEcx3GcGlMzT5CIFIBvAacAzcAjIjJfVZdmmn0AeFVVp4rI+cAVwLtEZAZwPvB6YBxwp4gcGo8p1+cVwJWqer2IXBX7/k65MYDzgMGqOktEhgJLReSnqvp8rebEcfoaxaLyyRueYPuuNrbtauP8eQ9x5CH78+yazQxpbOAr576Bcw4bv7vYweyJI1l6+ek0NsgenqNq4UaQ4ziO4zi1ppbhcEcBy1V1BYCIXA+cA2SNoHOAy+L7nwHflKBZnQNcr6o7gT+KyPLYH6X6FJFngJOAd8c218Z+v9PBGAoME5FGYB9gF7CpWifvOH2Ns//7ftZv28Xnz5nJGyaMYOP2Ft79vYWs2bSDz79tJuNGDOGDP1rEkhc2cuGxh3DpmX/GkKbCHv3Yoqa1otAgtBaLNR3DcRzHcZyBTS2NoPHAqsznZuDocm1UtVVENgKj4/aHcseOj+9L9Tka2KCqrSXalxvjZwQD6UVgKPBJVV2fPwkRuRi4GODggw+u5Lwdp8/xx5e38syaTbS0KRdd80i7fWP2HcRfHn0wIsLrx+1HW1H5t3Nm9pKkwQhyG8hxHMdxnFpSSyOoVKxMPsalXJty20s9gu6ofUdjHAW0EcLt9gfuE5E7zcu0u6HqPGAewJw5czxGx6kb3vrVe9jZWmRwYwOr1m9nvyFNXPv+o/jUTYvZtquVT5x8KN+7bwXDBzfuDm37v4+e0MtSh8II7glyHMdxHKeW1NIIagaymdMTgNVl2jTHsLQRwPpOji21/WVgpIg0Rm9Qtn25Md4N/FpVW4CXROR3wBygnRHkOPXI8pe28Id1W3d/Lohw7fuPYub4Efz6E2/avf0dR0zoDfE6pEGEopauWOc4juM4jlMNahnc/wgwLVZtG0QodDA/12Y+cGF8fy5wl6pq3H5+rOw2GZgGPFyuz3jM3bEPYp+/6GSMPwEnSWAYcAzwbBXP33F6jf+8fRnDBhW47x/ewsxx+/GGCSOYOX5Eb4tVEY0NwfDx4giO4ziO49SKmnmCYv7NJcDtQAG4WlWfFpHLgUWqOh/4AfA/sfDBeoJRQ2x3I6GIQivwEVVtAyjVZxzyH4HrReQLwOOxb8qNQagy90PgKULI3A9V9ckaTYfjVI3nX97KO7/7IFt2ttJWVAQYPqSJEUObuPWjc3nmxU38+uk1fPLkQ5k4aii3fqz3Q9y6QqEQjKDWotK4Z10Gx3Ecx3GcblPTxVJV9Tbgtty2z2be7yCUqi517BeBL1bSZ9y+glRBLru95BiquqXc2I7TF9mys5U3f+VuXt6yCxEYMaSJQpPQpsr6rbtYt2Unb/zinexsLdLYIPz1CZN7W+S9ohBD4IrqniDHcRzHcWpDTY0gx3H2nlOvXMCajTu44OiDmXPIKP7jtmd4ecsuDtpvCPMvOZ4D9xuyu+07r3qATTta+bPX7McvnniBQ0YPY9jg+vz3LjQkT5DjOI7jOE4tqE8tyXH6Kbtai5z7nQdYu3kHazftpKkg/OC+P/LdBStoKgjXX3wMx0wZvcdxN37ouN3vr3zXYT0pctUxI6itzY0gx3Ecx3FqgxtBjtNLvLJlJ8tf2sKlNy9h685WNu1oZXtL2+79H5g7mU+fNp3tu9p453cfZPiQxpIGUH9jd2EED4dzHMdxHKdGuBHkOL3AzY818/c3Lt69mFWDwPAhjYwaNoTBjQWGDS7wr2fNAGBIU4Hf/N2JvSdsD1NoCEUrvTqc01OIyOnA1wkFd76vql/K7T8YuBYYGdt8JuanOo7jOHWKG0GO0wOc8l8LeGHDdv7iiAncsXQNazftZPiQRsaN2Idv/+URHDxqKE2FWlasrx9sGjwnyOkJRKRAqBZ6CmFduUdEZL6qLs00+xfgRlX9jojMIBTnmdTjwjqO4zhVw40gx+kmqsrZ37yffZoK7XJzjD+9so0/rNtCoUH42aPNbG9pY8y+g/ndZ05iUKMbPnnME1R0I8jpGY4ClscKo4jI9cA5hCUaDAX2i+9HsOfC347jOE6d4UaQ43STb929nCUvbGLk0CY27WhhvyFNu/e1tBX56PWPM2xwI7/6+AkcOHwI77zqAQY1NrgBVIZGrw7n9CzjgVWZz83A0bk2lwF3iMhHgWHAyaU6EpGLgYsBDj744KoL6jiO41QPN4Icpxvc8fQa/vOO3zNscIGN21o46ot3sk9TgW272sJCpgItbcq33n0EE/YfCsDPL5nby1L3bRqsMIIbQU7PICW25W++C4BrVPWrInIsYQHumapabHeQ6jxgHsCcOXP8BnYcx+nDuBHkOBn+/Bv38dKmHfz04mOYeuDwjtt+/T6eWbOJ2RNHcsPFx/DEqg1cePXDbG9pY9jgRhobhKIq+w5u5M/f8JoeOoP6p9GNIKdnaQYmZj5PYM9wtw8ApwOo6oMiMgQ4AHipRyR0HMdxqo4bQY4TeWnTDn6/djMtbcrpX7uPA/YdxP5DB/GTDx5DY0HYurONQY0NjNyniR8vXMnSFzfR1NjAvL86kiFNBY6ZMpplXzijt0+j7mkQC4crdtLScarCI8A0EZkMvACcD7w71+ZPwFuBa0Tkz4AhwLoeldJxHMepKm4EOQ4hd+dvr3uMxoYGrn3/HH7x+GpuWLSKNZt2cvjnf1PymJNedyBfPW82+w8b1MPS9m/ME+Q2kNMTqGqriFwC3E4of321qj4tIpcDi1R1PvD3wPdE5JOEULn3qfpCVo7jOPWMG0HOgOexP73K+65+mE07WvnGBYdz3GsP4LjXHsDfn3Yoz7y4mX/9+RIgeChUg8E0uLGB7793zu78Fad6FAruCXJ6lrjmz225bZ/NvF8KHN/TcjmO4zi1w40gZ8CydWcrc6+4i1e3tdDYIBwyeihnzx63e/+Bw4dw4PAh3PsPJ/WilAOPgnhOkOM4juM4tcWNIGfA8OLG7bzzqgcZOqjADy86ig//+FFe3dbChP334fZPvIlhg/3foS/ghREcx3Ecx6k1rvU5/Z7zrnqAFzfs4JWtu9je0gbAcV+6CxH4/nvncPKMsb0soZOl4EaQ4ziO4zg1xo0gp9+zfusumjds57TXj+XTp72OVa9u459vXsL+wwa5AdQH2W0Eed654ziO4zg1wo0gp9/T0haU6S+fO5sR+zQx9cB9eeDSt/ayVE45zAhqdU+Q4ziO4zg1oqG3BXCcWvOeow8GUq6J07fZ7QlqcyPIcRzHcZza4EaQ0+8xj0JjwY2gesDD4RzHcRzHqTVuBDn9ntboUWhq8Nu9HmiM18kLIziO4ziOUytcK3T6Pa3FIiL4wqZ1QiF+K3lOkOM4juM4tcKNIKff09Km7gWqIwrxWhXdCHIcx3Ecp0a4Zuj0e9qKRc8HqiMavTqc4ziO4zg1xo0gp9/T0qa7k+2dvo+FLbonyHEcx3GcWuFGkNPvaS0WaSr4rV4vuCfIcRzHcZxa45qh0+9pK6qvEVRHNEgskV0s9rIkjuM4juP0V9wIcvo9LW1uBNUTdq28RLbjOI7jOLWipkaQiJwuIstEZLmIfKbE/sEickPcv1BEJmX2XRq3LxOR0zrrU0Qmxz6ei30OqmCMN4jIgyLytIgsEZEhtZkJpzdpbSvS6OFwdUOh4OFwjuM4juPUlppphiJSAL4FnAHMAC4QkRm5Zh8AXlXVqcCVwBXx2BnA+cDrgdOBb4tIoZM+rwCuVNVpwKux747GaAR+DHxIVV8PvBloqeokOH2CVg+HqysK4p4gx3Ecx3FqSy0fjx8FLFfVFaq6C7geOCfX5hzg2vj+Z8BbRUTi9utVdaeq/hFYHvsr2Wc85qTYB7HPt3UyxqnAk6q6GEBVX1HVtiqev9NHaG1TL5FdR1glvzZ1I8hxHMdxnNpQSyNoPLAq87k5bivZRlVbgY3A6A6OLbd9NLAh9pEfq9wYhwIqIreLyGMi8g+lTkJELhaRRSKyaN26dRWeutOXCJ4gD4erF3bnBLW5EeQ4juM4Tm2opWZY6tF7Xqsp16Za2zsaoxGYC7wn/n27iLx1j4aq81R1jqrOGTNmTImunL5Oqy+WWle4J8hxHMdxnFpTSyOoGZiY+TwBWF2uTczRGQGs7+DYcttfBkbGPvJjdTTGAlV9WVW3AbcBR+zluTp9mFavDldXiAgN4jlBjuM4juPUjloaQY8A02LVtkGEQgfzc23mAxfG9+cCd6mqxu3nx8puk4FpwMPl+ozH3B37IPb5i07GuB14g4gMjcbRicDSKp6/00cIniAPh6snCg3i1eEcx3Ecx6kZjZ032TtUKI87rgAAH6NJREFUtVVELiEYGwXgalV9WkQuBxap6nzgB8D/iMhygnfm/Hjs0yJyI8EoaQU+YkULSvUZh/xH4HoR+QLweOybDsZ4VUT+i2BYKXCbqv6yVvPh9B6tbcqgRjeC6olCg1B0I8hxHMdxnBpRMyMIQFVvI4SZZbd9NvN+B3BemWO/CHyxkj7j9hWE6nH57R2N8WNCmWynH9NSVIa6J6iuaGxocE+Q4ziO4zg1wzVDp9/TVix6TlCd4TlBjuM4juPUEjeCnH6PF0aoPxoLDW4EOY7jOI5TM9wIcvo9rUWlycPh6govjOD0JCJyuogsE5HlIvKZMm3eKSJLReRpEflJT8voOI7jVJeKcoJEZJSqrq+1MI5TC1rbirvXnnHqg4J4YQSnZxCRAvAt4BTC0gmPiMh8VV2aaTMNuBQ4PhbVObB3pHUcx3GqRaWPxxeKyE0icqaIuDbp1BUtbeqLpdYZ7glyepCjgOWqukJVdwHXA+fk2nwQ+Jaqvgqgqi/1sIyO4zhOlanUCDoUmAf8FbBcRP5dRA6tnViOUz3aikpTg4fD1ROFBqGtWOxtMZyBwXhgVeZzc9yW5VDgUBH5nYg8JCKnl+pIRC4WkUUismjdunU1EtdxHMepBhVphhr4japeAPw1YfHRh0VkgYgcW1MJHaebtBaLFNwTVFc0Nght7ghyeoZSXw75u6+RsGj3m4ELgO+LyMg9DlKdp6pzVHXOmDFjqi6o4ziOUz0qzQkaDfwlwRO0FvgoMB84DLgJmFwrAR2nu7S0KU2eE1RXuCfI6UGagYmZzxOA1SXaPKSqLcAfRWQZwSh6pGdEdBzHcapNpTFCDwL7AW9T1T9X1ZtVtVVVFwFX1U48x+k+bUWl4OFwdUWhQWh1V5DTMzwCTBORySIyCDif8JAvy8+BtwCIyAGE8LgVPSql4ziOU1Uq1Qz/RVU/r6rNtkFEzgNQ1StqIpnjVImWtiJNHg5XVxQahKK6EeTUHlVtBS4BbgeeAW5U1adF5HIROTs2ux14RUSWAncDn1bVV3pHYsdxHKcaVBQOB3wGuDG37VJCKJzj9Gnail4drt5o9OpwTg+iqrcBt+W2fTbzXoG/iy/HcRynH9ChESQiZwBnAuNF5BuZXfsBrbUUzHGqgarS6uFwdUdDg9DmRpDjOI7jODWiM0/QamARcDbwaGb7ZuCTtRLKcaqFeRO8MEJ90ehGkOM4juM4NaRDI0hVFwOLReS6GDftOHWFKdKNBfcE1RMN4uFwjuM4juPUjs7C4W5U1XcCj4tIViMRQpj0G2oqneN0k5a2UGa50T1BdUVjQdjZ4iWyHcdxHMepDZ2Fw308/j2r1oI4Ti2wMsteGKG+KDQ00Fps620xHMdxHMfpp3QYI6SqL8a3LwOrVHUlMBiYzZ6LyTlOn8NCqtwTVF8UBC+R7TiO4zhOzag0UeJeYIiIjAd+C1wEXFMroRynWrQWYzic5wTVFYWGBl8s1XEcx3GcmlGpZiiqug14B/Dfqvp2YEbtxHKc6rA7HM49QXWFV4dzHMdxHKeWVGwEicixwHuAX8ZtlS606ji9xu5wOM8JqisKDUKbh8M5juM4jlMjKjWCPg5cCtyiqk+LyBTg7tqJ5TjVoXV3dTgPh6snCu4JchzHcRynhlTkzVHVewl5QfZ5BfCxWgnlONVi92Kp7gmqKwoNsjufy3Ecx3Ecp9pUZASJyKHAp4BJ2WNU9aTaiOU41cFyggruCaorCg2C20CO4ziO49SKSvN6bgKuAr4P+OIdTt3Qsrs6nHuC6olG9wQ5juM4jlNDKjWCWlX1OzWVxHFqQJuvE1SXNDQIbW4DOY7jOI5TIyqNEfo/EflbEXmNiIyyV00lc5wq0OKFEeqSUCLbrSDHcRzHcWpDpZ6gC+PfT2e2KTCluuI4TnWxnCAvjFBfhMIIXh3OcRzHcZzaUNHjcVWdXOLVqQEkIqeLyDIRWS4inymxf7CI3BD3LxSRSZl9l8bty0TktM76FJHJsY/nYp+DOhsj7j9YRLaIyKcqmQunvrBwuIKHw9UVBRGKbgQ5juM4jlMjKjKCRGSoiPyLiMyLn6eJyFmdHFMAvgWcAcwALhCRGblmHwBeVdWpwJXAFfHYGcD5wOuB04Fvi0ihkz6vAK5U1WnAq7HvsmNkuBL4VSXz4NQfFg7XVPBwuHqiUHBPkOM4juM4taNSzfCHwC7guPi5GfhCJ8ccBSxX1RWqugu4Hjgn1+Yc4Nr4/mfAW0VE4vbrVXWnqv4RWB77K9lnPOak2Aexz7d1MgYi8jZgBfB0ZdPg1Bu7CyN4OFxdURBfLNVxHMdxnNpRqRH0WlX9MtACoKrbgc60yvHAqszn5ritZBtVbQU2AqM7OLbc9tHAhthHfqySY4jIMOAfgX/r6CRE5GIRWSQii9atW9fJKTt9jRavDleXNDYIbepGkOM4juM4taFSI2iXiOxDKIaAiLwW2NnJMaW0zrxWU65NtbZ3NMa/EcLntpTYnxqqzlPVOao6Z8yYMR01dfogrV4dri4pNDSgiucFOY7jOI5TEyqtDncZ8GtgoohcBxwPXNTJMc3AxMznCcDqMm2aRaQRGAGs7+TYUttfBkaKSGP09mTblxvjaOBcEfkyMBIoisgOVf1mJ+fl1BGtXhihLrEUrjZVGjp1OjuO4ziO43SNSqvD3QG8A3gf8FNgjqre3clhjwDTYtW2QYRCB/NzbeaTym+fC9ylqhq3nx8ru00GpgEPl+szHnN37IPY5y86GkNVT1DVSao6Cfga8O9uAPU/Uols9wTVE4XoufO8IMdxHMdxakFFniAR+a2qvhX4ZYltJVHVVhG5BLgdKABXq+rTInI5sEhV5wM/AP5HRJYTvDPnx2OfFpEbgaVAK/ARVW2L4+7RZxzyH4HrReQLwOOxb8qN4QwMWuOCm14Yob4wm9UrxDmO4ziOUws6NIJEZAgwFDhARPYn5dfsB4zrrHNVvQ24Lbfts5n3O4Dzyhz7ReCLlfQZt68gVI/Lby87RqbNZR3td+oX8wR5YYT6wj1BjuM4juPUks48QX8DfIJg8DxKMoI2EdbrcZw+TfIEeThcPWFGqxtBjuM4juPUgg41Q1X9uqpOBj6lqlNUdXJ8zfb8GaceaHFPUF3SEK+XGbGOU0tE5HQRWSYiy0XkMx20O1dEVETm9KR8jvP/27v/KLnK+o7j78/MJpGWCDQBURIIlSgGf/BjpYq2yg/lR9tECpXEX1g5pVWpbQErHE+RItYix5NjW6wi0gqnGhBrzVE0nvKjthCQYBBINBp+HIl4CghEOWrYmfn2j/vMOiyzu3d3587svft5nZOTmXufee73uTM7e7/7PPd5zKz3ct0TFBH/JOkoYFnnayLiqoLiMuuJptcJKqX2++UcyIomqU42suENZLOJ3iFpfURsHVNuIfA+4Pb+R2lmZr2Wd2KEq4EXAncBzbQ5ACdBNqu11wnyFNnlUndPkPXPkcD2dF8pktYBq8gm5un0YeBjwLn9Dc/MzIqQd52gYWBFmorarDQarWCoJiQnQWVSl3uCrG/2Ax7qeL6DbB25UZIOA5ZGxFcljZsESToTOBNg//33LyBUMzPrlbx3i98L7FtkIGZFaLTC02OXUPs9c0+Q9UG3L4jRP/hJqgFrgXMmqygiLo+I4YgY3nvvvXsYopmZ9VrenqDFwFZJ3wZ2tTdGxMpCojLrkZFmi3k1zwxXNjV5djjrmx3A0o7nS4CHO54vBF4K3Jx6lPcF1ktaGRGb+halmZn1VN4k6MIigzArSrMV1N0TVDqjU2R7BK4V7w5guaQDgR+TLaj9lvbOiNhJ9odAACTdTDZjqhMgM7MSyzs73H8XHYhZEUaawZB7gkpndGKEppMgK1ZENCSdBWwA6sCVEbFF0kXApohYP9gIzcysCBMmQZJ+TsfY6M5dQETEcwuJyqxHGs0W89wTVDp1L5ZqfRQR1wPXj9l2wThlX9+PmMzMrFgTJkERsbBfgZgVodkKT49dQnUPhzMzM7MCeZyQVdpIK5hX98e8bNpDGN0TZGZmZkXw1aFVWrPVck9QCbVv43ISZGZmZkVwEmSVlk2M4CSobNwTZGZmZkVyEmSVlk2M4I952bTfsoaTIDMzMyuArw6t0hqeGKGU6qknqOUkyMzMzArgJMgqrdEMT5FdQu0hjO4JMjMzsyI4CbJKa7RaXiy1hGpqrxPUGnAkZmZmVkW+OrRKa7SCIfcElU77PWs6BzIzM7MCOAmySmt4drhSqo8Oh3MWZGZmZr3nJMgqbaTZYsizw5VOPQ2Ha4XvCTIzM7Pe89WhVVqz5Z6gMhrtCWo6CTIzM7PecxJklZbdE+SPedm0kyAvlmpmZmZF8NWhVVo2O5x7gsqm/Z41PRzOzMzMCuAkyCrNEyOUk3uCzMzMrEhOgqzSRpoeDldGvifIzMzMilTo1aGkEyRtk7Rd0nld9i+QdE3af7ukZR37zk/bt0k6frI6JR2Y6vhhqnP+RMeQ9AZJd0q6J/1/THFnwgal6eFwpdROgjw7nJmZmRWhsCRIUh24DDgRWAGskbRiTLEzgCci4iBgLXBJeu0KYDVwCHAC8ElJ9UnqvARYGxHLgSdS3eMeA3gM+MOIeBlwOnB1L9tvs0Oj6cVSy2ioln01NTwczszMzApQZE/QkcD2iLg/Ip4G1gGrxpRZBXwuPb4OOFaS0vZ1EbErIh4Atqf6utaZXnNMqoNU55smOkZEbI6Ih9P2LcBzJC3oWettVhhptZjn4XClk3Ig3xNkZmZmhSjy6nA/4KGO5zvStq5lIqIB7AQWTfDa8bYvAp5MdYw91njH6HQKsDkido1thKQzJW2StOnRRx+dpMk22zRbMTq0ysqj3RPkJMjMzMyKUGQS1O3Kc+wVzXhlerV90jgkHUI2RO7PupQjIi6PiOGIGN577727FbFZKiIYaQbznASVTvst83A4MzMzK0KRSdAOYGnH8yXAw+OVkTQE7AE8PsFrx9v+GLBnqmPsscY7BpKWAF8G3hER902znTZLta+f6zUPhysbSdRrouUkyMzMzApQ5NXhHcDyNGvbfLKJDtaPKbOebFICgFOBGyMi0vbVaWa3A4HlwLfHqzO95qZUB6nOr0x0DEl7Al8Dzo+IW3racpsVRpotAE+MUFL1mtwTZGZmZoUoLAlK99+cBWwAvgdcGxFbJF0kaWUq9llgkaTtwNnAeem1W4Brga3AN4D3RkRzvDpTXR8Azk51LUp1j3uMVM9BwN9Kuiv926eQk2ED0b6AnuckqJTqEs1Wa9BhmJmZWQUNTV5k+iLieuD6Mdsu6Hj8K+CPx3ntR4CP5Kkzbb+fbPa4sdu7HiMiLgYunrQRVlrNtNCmh8OV01BNNJ0DmZmZWQF8dWiVNZJ6EdwTVE71unuCrD9yLOx9tqStku6WdIOkAwYRp5mZ9Y6TIKusRuoJGnJPUCnVJZrhe4KsWDkX9t4MDEfEy8nWm/tYf6M0M7Ne89WhVVYj9SIMeYrsUqrX5HWCrB8mXdg7Im6KiF+kp7eRzUBqZmYl5iTIKmu0J8jD4UqpXtPoe2hWoDwLe3c6A/h6tx1eXNvMrDycBFlltWeHq7snqJTqNQ+Hs77Is7B3VlB6GzAMXNptvxfXNjMrj0JnhzMbpMboxAjO9ctoyMPhrD/yLOyNpOOADwKvi4hdfYrNzMwK4qtDq6xfT4zgnqAyqjkJsv6YdGFvSYcBnwZWRsQjA4jRzMx6zEmQVVZ7OJzvCSon9wRZP+Rc2PtSYHfgi2lh7fXjVGdmZiXh4XBWWY1me3Y45/plVK/VRhNZsyLlWNj7uL4HZWZmhfLVoVXWiGeHK7V6DVpOgszMzKwAToKsstpDqdwTVE7uCTIzM7Oi+OrQKmukvViqe4JKqS58T5CZmZkVwkmQVZZnhyu3oVrNSZCZmZkVwkmQVVaz5YkRyqzu2eHMzMysIL46tMpqT4wwz8PhSqleE81wEmRmZma95yTIKqvdi1D3cLhSqtfkiRHMzMysEE6CrLJG0jpB8+r+mJdRtlhqa9BhmJmZWQX56tAqq92L4NnhyqlWE03nQGZmZlYAJ0FWWQ0Phys19wSZmZlZUZwEWWU12sPhPDtcKdV8T5CZmZkVxFeHVlntdYLqHg5XSkM10XISZGZmZgVwEmSV1e5FcE9QOXl2ODMzMyuKrw6tstrD4TwxQjnV5Z4gMzMzK4aTIKus0dnhPDFCKQ3V3RNkZmZmxXASZJXVaLWo14TkJKiM6jWNLnhrZmZm1ktOgqyyGs1wL1CJ1SWa4STIzMzMes9JkFVWo+UkqMzqtRrNppMgMzMz671CkyBJJ0jaJmm7pPO67F8g6Zq0/3ZJyzr2nZ+2b5N0/GR1Sjow1fHDVOf86R7DqqHRbDFUd55fVvUavifIzMzMClHYFaKkOnAZcCKwAlgjacWYYmcAT0TEQcBa4JL02hXAauAQ4ATgk5Lqk9R5CbA2IpYDT6S6p3yM3p4FG6QR9wSVWr1W83A4MzMzK8RQgXUfCWyPiPsBJK0DVgFbO8qsAi5Mj68D/lnZXeyrgHURsQt4QNL2VB/d6pT0PeAY4C2pzOdSvf8yjWNsHK9BT+1qcOIn/mfqZ8IG4ic7f8mCIfcEldVQTTzdaPlnrkSOXLbXoEMwMzPLpcgkaD/goY7nO4DfGa9MRDQk7QQWpe23jXntfulxtzoXAU9GRKNL+ekcY5SkM4EzAZ6/dBlL9tptwkbb7LFkr904ctlvDToMm6bjD9mX7Y885d6gElm8+4JBh2BmZpZLkUlQt3FIY69mxisz3vZuf9afqPx0jvHMDRGXA5cDDA8Px2feMdzlZWbWay9bsgefevsRgw7Dpuh9gw7AzMwshyLHCu0AlnY8XwI8PF4ZSUPAHsDjE7x2vO2PAXumOsYea6rHMDMzMzOzCisyCboDWJ5mbZtPNgnB+jFl1gOnp8enAjdGRKTtq9PMbgcCy4Fvj1dnes1NqQ5SnV+Z5jHMzMzMzKzCChsOl+6/OQvYANSBKyNii6SLgE0RsR74LHB1mpTgcbKkhlTuWrJJFBrAeyOiCdCtznTIDwDrJF0MbE51M51jmJmZmZlZdSl803Fuw8PDsWnTpkGHYWY2a0m6MyJKdfOkpBOAT5D9ce2KiPiHMfsXAFcBRwA/BU6LiAcnqtO/L8zMJjbo3xeeP9jMzOasmaxpZ2Zm5eUkyMzM5rLRNe0i4mmgvaZdp1Vk689Btt7csWm9OTMzK6kip8iunDvvvPMpSdsGHUdBFpPNsldFbls5uW3l9OJBBzBFM1nT7hnvYee6csAuSfcWEnG5VPmzPhU+Dxmfh4zPQ2agvy+cBE3NtrKNdc9L0ia3rXzctnKqetsGHcMUzWRNu2du6FhXrsrv8VT4PGR8HjI+Dxmfh8ygf194OJyZmc1lM1nTzszMSspJkJmZzWUzWdPOzMxKysPhpubyQQdQILetnNy2cnLbZomZrGk3iVKdhwL5PGR8HjI+Dxmfh8xAz4PXCTIzMzMzsznFw+HMzMzMzGxOcRJkZmZmZmZzipOgLiSdIGmbpO2Szuuyf62ku9K/H0h6chBxTkeOtu0v6SZJmyXdLemkQcQ5HTnadoCkG1K7bpa0ZBBxTpWkKyU9Mt6aI8r8Y2r33ZIO73eM05WjbQdL2ihpl6Rz+x3fTORo21vT+3W3pFslvaLfMU5XjratSu26S9ImSa/td4z9kuN7Z4Gka9L+2yUt63+UxctxHs6WtDV9Lm6QdMAg4izaZOeho9ypkkJSJadJznMeJL05fSa2SPp8v2Pshypfc+U1q69hIsL/Ov6R3Rh7H/DbwHzgu8CKCcr/BdmNtAOPvRdtI7tJ7d3p8QrgwUHH3cO2fRE4PT0+Brh60HHnbNvvAYcD946z/yTg62RrmbwKuH3QMfewbfsArwQ+Apw76Hh73LajgL3S4xMr9r7tzq/vOX058P1Bx1zQecjzvfMe4FPp8WrgmkHHPaDzcDTwG+nxu+fqeUjlFgLfAm4Dhgcd94A+D8uBzR3fgfsMOu4BnYdSXnNN8TzM2msY9wQ925HA9oi4PyKeBtYBqyYovwb4Ql8im7k8bQvguenxHjx7vYzZKk/bVgA3pMc3ddk/K0XEt5h4TZJVwFWRuQ3YU9Lz+xPdzEzWtoh4JCLuAEb6F1Vv5GjbrRHxRHp6G9n6NKWQo21PRfrtBvwmXRYWrYg83zurgM+lx9cBx0rqtvhqmU16HiLipoj4RXpaqs/7FOS9fvgw8DHgV/0Mro/ynIc/BS5rfwdGxCN9jrEfqnzNldtsvoZxEvRs+wEPdTzfkbY9S+rOPxC4sQ9x9UKetl0IvE3SDuB6sp6uMsjTtu8Cp6THJwMLJS3qQ2xFy/2ZtVnrDLK/hFWGpJMlfR/4GvCuQcdTkDw/e6NlIqIB7ASq8L3TaarfQZX7vCeTngdJhwFLI+Kr/Qysz/J8Hl4EvEjSLZJuk3RC36Lrnypfc/XSwK5hnAQ9W7e/0I33V8zVwHUR0Swwnl7K07Y1wL9FxBKyLsqrJZXhc5KnbecCr5O0GXgd8GOgUXRgfTCVz6zNMpKOJrso/MCgY+mliPhyRBwMvInsL99VlOdnby78fOZuo6S3AcPApYVGNBgTnof0u3QtcE7fIhqMPJ+HIbIhca8nu+64QtKeBcfVb1W+5uqlgX1HzrUTnccOYGnH8yWM3z25mvIMhYN8bTsDuBYgIjYCzwEW9yW6mZm0bRHxcET8UUQcBnwwbdvZvxALM5XPrM0ikl4OXAGsioifDjqeIqShEC+UVIbvkanK87M3WkbSENmQl4mGhpRRru8gSceRffeujIhdfYqtnyY7DwuBlwI3S3qQ7P6H9RWcHCHvz8VXImIkIh4AtpElRVVS5WuuXhrYNYyToGe7A1gu6UBJ88kSnfVjC0l6MbAXsLHP8c1Enrb9CDgWQNJLyH4gH+1rlNMzadskLe74C8v5wJV9jrEo64F3pBlWXgXsjIifDDoom5ik/YH/AN4eET8YdDy9JOmg9n0vaaaf+UAVk7w836nrgdPT41OBGzvul6qKPN+/hwGfJkuAqnj/B0xyHiJiZ0QsjohlEbGM7N6olRGxaTDhFibPz8V/kk2WQfoDyYuA+/saZfGqfM3VSwO7hhnqx0HKJCIaks4CNpDN7HFlRGyRdBGwKSLaH+A1wLoy/TLL2bZzgM9I+muy7sh3lqGNOdv2euCjkoJsZp73DizgKZD0BbLYF6dxwx8C5gFExKfIxhGfBGwHfgH8yWAinbrJ2iZpX2AT2Y2jLUl/RTa7zs8GFHJuOd63C8juDflkyhcaEVGKvwjnaNspZL/URoBfAqeV4XtkqnJ+73yWbIjLdrIeoNWDi7gYOc/DpWSzBn4xfd5/FBErBxZ0AaZw/VBpOc/DBuCNkrYCTeD9VesNr/I111TM5msYVexcm5mZmZmZTcjD4czMzMzMbE5xEmRmZmZmZnOKkyAzMzMzM5tTnASZmZmZmdmc4iTIzMzMzMzmFCdBZl1IWpumY24/3yDpio7nH5d0do+P+VQv60t1HirppI7nF0o6N8frmpLukvSCjm2HSQpJx3cpf3Lad3DHthemOnreLjMzM7OZcBJk1t2twFEAaYHVxcAhHfuPAm4ZQFxTdSjZ/PtT9cuIODQiOldtXgP8b/p/rPa+0TVQIuK+iDh0Gsc2MzMzK5STILPubiElQWTJz73AzyXtJWkB8BJgs6TdJd0g6TuS7pG0CkDSJZLe064s9cCckx6/X9Idku6W9HfdDt6tjKRlkr4n6TOStkj6pqTd0r5XprIbJV0q6d60QvVFwGmpR+a0VP0KSTdLul/S+/KcDGWrG54KvJNsgbvndOzbHXgNcAYVXAjSzMzMqsdJkFkXqQekIWl/smRoI3A78GpgGLg7Ip4GfgWcHBGHA0cDH08JwzrgtI4q30y2UvobgeXAkWS9NEdI+r3OY09SZjlwWUQcAjwJnJK2/yvw5xHxarLVt0nxXQBck3p1rkllDwaOT/V/SNK8HKfkNcADEXEfcDPP7F16E/CNiPgB8Likw3PUZ2ZmZjYwToLMxtfuDWonQRs7nt+aygj4e0l3A/8F7Ac8LyI2A/tIeoGkVwBPRMSPgDemf5uB75AlJMvHHHeiMg9ExF3p8Z3AMkl7Agsjoh3T5ydp19ciYldEPAY8Ajwvx7lYQ5bYkf5fk3OfmZmZ2awzNOgAzGax9n1BLyMbDvcQcA7wM+DKVOatwN7AERExIulBoD1U7DqyIWT78uskQcBHI+LTExy3axlJy4BdHZuawG6p/FSMrWPC7wFJdbIep5WSPpiOt0jSQmA+cAzwUkkB1IGQ9DcREVOMy8zMzKwv3BNkNr5bgD8AHo+IZkQ8DuxJNiRuYyqzB/BISoCOBg7oeP06sntkTiVLiAA2AO9K99EgaT9J+4w5bp4yoyLiCbL7lV6VNnXel/NzYOFUGt3FccB3I2JpRCyLiAOAL5ENgzsVuCoiDkj7lgIPAK+d4THNzMzMCuMkyGx895DNCnfbmG0701AygH8HhiVtIusV+n67YERsIUtAfhwRP0nbvkk2XG2jpHvIkqNnJCl5ynRxBnC5pI1kPTU70/abyCZC6JwYYarWAF8es+1LwFsm2WdmZmY2K8kjVszKT9LuEfFUenwe8PyI+MsZ1PdUROzeo9h6VpeZmZlZL7gnyKwafj/19twL/C5w8Qzr+9nYxVKnqr1YKvB/M4zFzMzMrKfcE2RmZmZmZnOKe4LMzMzMzGxOcRJkZmZmZmZzipMgMzMzMzObU5wEmZmZmZnZnOIkyMzMzMzM5pT/B6T2X3+3X8gBAAAAAElFTkSuQmCC\n", + "text/plain": [ + "

" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "functions.name_plot_options(\"PSD_4PI\", data, log=1, colormap=\"hot\", orders_of_mag=5) # Adjusting PSD_4PI plot\n", + "plot = plotter.make_sub_plot(data) # Making subplot of our monitors" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/manual_code.ipynb b/examples/manual_code.ipynb new file mode 100644 index 00000000..2a957194 --- /dev/null +++ b/examples/manual_code.ipynb @@ -0,0 +1,441 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.append('/Users/madsbertelsen/PaNOSC/McStasScript') # Path to McStasScript pythoon file\n", + "\n", + "from mcstasscript.interface import instr, plotter, functions\n", + "\n", + "# Creating the instance of the class, insert path to mcrun and to mcstas root directory\n", + "detector = instr.McStas_instr(\"LOKI_detector\",\n", + " mcrun_path = \"/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin\",\n", + " mcstas_path = \"/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "detector.add_parameter(\"wavelength\")\n", + "detector.add_parameter(\"height\",value=1.0,comment=\"Height in [m]\")\n", + "detector.add_parameter(\"string\",\"reflection_filename\")\n", + "detector.add_parameter(\"string\",\"data_filename\",value=\"\\\"data.dat\\\"\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "detector.add_declare_var(\"double\",\"energy\")\n", + "detector.add_declare_var(\"int\",\"flag\")\n", + "detector.add_declare_var(\"double\",\"tube_radius\",value=0.013)\n", + "detector.add_declare_var(\"double\",\"displacements\",array=7)\n", + "detector.add_declare_var(\"double\",\"t_array\",array=4,value=[0.65E-6,0.65E-6,1E-6,1E-6])" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "detector.append_initialize(\"energy=pow(2*PI/wavelength*K2V,2)*VS2E;\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "detector.add_component(\"Origin\",\"Arm\")\n", + "src = detector.add_component(\"source\",\"Source_simple\",RELATIVE=\"Origin\")\n", + "detector.add_component(\"beam_extraction\",\"Guide_gravity\",AT=[0,0,2],RELATIVE=\"source\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "detector.add_component(\"pre_guide_slit\",\"Slit\",before=\"beam_extraction\",\n", + " AT=[0,0,1],RELATIVE=\"source\",comment=\"Slit before the guide\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Origin Arm AT [0, 0, 0] ABSOLUTE ROTATED [0, 0, 0] ABSOLUTE\n", + "source Source_simple AT [0, 0, 0] RELATIVE Origin ROTATED [0, 0, 0] RELATIVE Origin\n", + "pre_guide_slit Slit AT [0, 0, 1] RELATIVE source ROTATED [0, 0, 0] RELATIVE source\n", + "beam_extraction Guide_gravity AT [0, 0, 2] RELATIVE source ROTATED [0, 0, 0] RELATIVE source\n" + ] + } + ], + "source": [ + "detector.print_components()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "detector.set_component_parameter(\"source\",{\"xwidth\" : 0.12, \"E0\" : \"energy\"})\n", + "detector.set_component_parameter(\"source\",{\"yheight\" : 0.12})" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT source = Source_simple\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.12\u001b[0m\u001b[0m [m]\n", + " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.12\u001b[0m\u001b[0m [m]\n", + " \u001b[1mE0\u001b[0m = \u001b[1m\u001b[92menergy\u001b[0m\u001b[0m [meV]\n", + "AT [0, 0, 0] RELATIVE Origin\n", + "ROTATED [0, 0, 0] RELATIVE Origin\n" + ] + } + ], + "source": [ + "detector.print_component(\"source\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "detector.set_component_AT(\"source\",[0.01,0,0])" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "detector.set_component_ROTATED(\"beam_extraction\",[0,2.0,0],RELATIVE=\"Origin\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "detector.set_component_RELATIVE(\"beam_extraction\",\"pre_guide_slit\")" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Origin Arm AT [0, 0, 0] ABSOLUTE ROTATED [0, 0, 0] ABSOLUTE\n", + "source Source_simple AT [0.01, 0, 0] RELATIVE Origin ROTATED [0, 0, 0] RELATIVE Origin\n", + "pre_guide_slit Slit AT [0, 0, 1] RELATIVE source ROTATED [0, 0, 0] RELATIVE source\n", + "beam_extraction Guide_gravity AT [0, 0, 2] RELATIVE pre_guide_slit ROTATED [0, 2.0, 0] RELATIVE pre_guide_slit\n" + ] + } + ], + "source": [ + "detector.print_components()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT beam_extraction = Guide_gravity\n", + " \u001b[1mw1\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1mh1\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1ml\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + "WHEN (vx > 0)\n", + "AT [0, 0, 2] RELATIVE pre_guide_slit\n", + "ROTATED [0, 2.0, 0] RELATIVE pre_guide_slit\n" + ] + } + ], + "source": [ + "detector.set_component_WHEN(\"beam_extraction\",\"vx > 0\")\n", + "detector.print_component(\"beam_extraction\")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT beam_extraction = Guide_gravity\n", + " \u001b[1mw1\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1mh1\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1ml\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + "WHEN (vx > 0)\n", + "AT [0, 0, 2] RELATIVE pre_guide_slit\n", + "ROTATED [0, 2.0, 0] RELATIVE pre_guide_slit\n", + "EXTEND %{\n", + "n_scattering = SCATTERED - 2\n", + "%}\n" + ] + } + ], + "source": [ + "detector.append_component_EXTEND(\"beam_extraction\",\"n_scattering = SCATTERED - 2\")\n", + "detector.print_component(\"beam_extraction\")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT beam_extraction = Guide_gravity\n", + " \u001b[1mw1\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1mh1\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1ml\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + "WHEN (vx > 0)\n", + "AT [0, 0, 2] RELATIVE pre_guide_slit\n", + "ROTATED [0, 2.0, 0] RELATIVE pre_guide_slit\n", + "GROUP guides\n", + "EXTEND %{\n", + "n_scattering = SCATTERED - 2\n", + "%}\n" + ] + } + ], + "source": [ + "detector.set_component_GROUP(\"beam_extraction\",\"guides\")\n", + "detector.print_component(\"beam_extraction\")" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT beam_extraction = Guide_gravity\n", + " \u001b[1mw1\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1mh1\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1ml\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + "WHEN (vx > 0)\n", + "AT [0, 0, 2] RELATIVE pre_guide_slit\n", + "ROTATED [0, 2.0, 0] RELATIVE pre_guide_slit\n", + "GROUP guides\n", + "EXTEND %{\n", + "n_scattering = SCATTERED - 2\n", + "%}\n", + "JUMP myself iterate 3\n" + ] + } + ], + "source": [ + "detector.set_component_JUMP(\"beam_extraction\",\"myself iterate 3\")\n", + "detector.print_component(\"beam_extraction\")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "// Simulating severe misalignment\n", + "COMPONENT beam_extraction = Guide_gravity\n", + " \u001b[1mw1\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1mh1\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1ml\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + "WHEN (vx > 0)\n", + "AT [0, 0, 2] RELATIVE pre_guide_slit\n", + "ROTATED [0, 2.0, 0] RELATIVE pre_guide_slit\n", + "GROUP guides\n", + "EXTEND %{\n", + "n_scattering = SCATTERED - 2\n", + "%}\n", + "JUMP myself iterate 3\n" + ] + } + ], + "source": [ + "detector.set_component_comment(\"beam_extraction\",\"Simulating severe misalignment\")\n", + "detector.print_component(\"beam_extraction\")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here are the availalbe component categories:\n", + " sources\n", + " optics\n", + " samples\n", + " monitors\n", + " misc\n", + " contrib\n", + " union\n", + " obsolete\n", + "Call show_components(category_name) to display\n" + ] + } + ], + "source": [ + "detector.show_components()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here are all components in the samples category.\n", + " Incoherent Phonon_simple Res_sample Single_crystal\n", + " Isotropic_Sqw Powder1 Sans_spheres TOFRes_sample\n", + " Magnon_bcc PowderN SasView_model Tunneling_sample\n" + ] + } + ], + "source": [ + "detector.show_components(\"samples\")" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Phonon_simple _________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[4m\u001b[1mradius\u001b[0m\u001b[0m [m] // Outer radius of sample in (x,z) plane\n", + "\u001b[4m\u001b[1myheight\u001b[0m\u001b[0m [m] // Height of sample in y direction\n", + "\u001b[4m\u001b[1msigma_abs\u001b[0m\u001b[0m [barns] // Absorption cross section at 2200 m/s per atom\n", + "\u001b[4m\u001b[1msigma_inc\u001b[0m\u001b[0m [barns] // Incoherent scattering cross section per atom\n", + "\u001b[4m\u001b[1ma\u001b[0m\u001b[0m [AA] // fcc Lattice constant\n", + "\u001b[4m\u001b[1mb\u001b[0m\u001b[0m [fm] // Scattering length\n", + "\u001b[4m\u001b[1mM\u001b[0m\u001b[0m [a.u.] // Atomic mass\n", + "\u001b[4m\u001b[1mc\u001b[0m\u001b[0m [meV/AA^(-1)] // Velocity of sound\n", + "\u001b[4m\u001b[1mDW\u001b[0m\u001b[0m [1] // Debye-Waller factor\n", + "\u001b[4m\u001b[1mT\u001b[0m\u001b[0m [K] // Temperature\n", + "\u001b[1mtarget_x\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // position of target to focus at . Transverse coordinate\n", + "\u001b[1mtarget_y\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // position of target to focus at. Vertical coordinate\n", + "\u001b[1mtarget_z\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // position of target to focus at. Straight ahead.\n", + "\u001b[1mtarget_index\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [1] // relative index of component to focus at, e.g. next is +1\n", + "\u001b[1mfocus_r\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Radius of sphere containing target.\n", + "\u001b[1mfocus_xw\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // horiz. dimension of a rectangular area\n", + "\u001b[1mfocus_yh\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // vert. dimension of a rectangular area\n", + "\u001b[1mfocus_aw\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // horiz. angular dimension of a rectangular area\n", + "\u001b[1mfocus_ah\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // vert. angular dimension of a rectangular area\n", + "\u001b[1mgap\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [meV] // Bandgap energy (unphysical)\n", + "-------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "detector.component_help(\"Phonon_simple\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/examples/random_demonstration.py b/examples/random_demonstration.py new file mode 100644 index 00000000..447af8c5 --- /dev/null +++ b/examples/random_demonstration.py @@ -0,0 +1,100 @@ +# Demonstration of McStasScript, an API for creating and running McStas instruments from python scripts +# Written by Mads Bertelsen, ESS DMSC +import random +import sys +sys.path.append('/Users/madsbertelsen/PaNOSC/McStasScript') +from mcstasscript.interface import instr, plotter, functions + +# if the mcrun command from McStas is not in your path, provide absolute path for the binary here: +#mcrun_path = "" +mcrun_path = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin" +#mcstas_path = "" +mcstas_path = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/" + +# Create a McStas instrument +instr = instr.McStas_instr("random_demo", + author = "Mads Bertelsen", + origin = "ESS DMSC", + mcrun_path = mcrun_path, + mcstas_path = mcstas_path) + +# Set up a material called Cu with approrpiate properties (uses McStas Union components, here the processes) +instr.add_component("Cu_incoherent", "Incoherent_process") +instr.set_component_parameter("Cu_incoherent", {"sigma" : 4*0.55, "packing_factor" : 1, "unit_cell_volume" : 55.4}) + +instr.add_component("Cu_powder", "Powder_process") +instr.set_component_parameter("Cu_powder", {"reflections" : "\"Cu.laz\""}) + +instr.add_component("Cu", "Union_make_material") +instr.set_component_parameter("Cu", {"my_absorption" : "100*4*3.78/55.4", "process_string" : "\"Cu_incoherent,Cu_powder\""}) + +# Set neutron source +instr.add_component("source","Source_div", AT=[0,0,0]) +instr.add_parameter("double","energy", value=10, comment="[meV] source energy") # Add parameter to select energy at run time +instr.set_component_parameter("source", {"xwidth" : 0.12, "yheight" : 0.12, "focus_aw" : 0.1, "focus_ah" : 0.1, "E0" : "energy", "dE" : 0, "flux" : 1E13}) + +# List of available materials, Vacuum is provided by the system +material_name_list = ["Cu", "Vacuum"] + +# Wish to set up a number of randomly sized and placed boxes, here we choose the number +number_of_volumes = random.randint(30,40) + +# Initialize the priority that needs to be unique for each volume +current_priority = 99 +for volume in range(number_of_volumes): + + current_priority = current_priority + 1 # update the priority + max_side_length = 0.04 + max_depth = 0.003 + position = [random.uniform(-0.05,0.05), random.uniform(-0.05,0.05), 1+random.uniform(-0.05,0.05)] # Set position in 10x10x10 cm^3 box 1 m from source + rotation = [random.uniform(0,360), random.uniform(0,360), random.uniform(0,360)] # random rotation + + # Choose a random material from the list of available materials + volume_material = random.choice(material_name_list) + + # Add a McStas Union geometry with unique name + instr.add_component("volume_" + str(volume), "Union_box") + instr.set_component_parameter("volume_" + str(volume), {"xwidth" : random.uniform(0.01,max_side_length), "yheight" : random.uniform(0.01,max_side_length), "zdepth" : random.uniform(0.001,max_depth),}) + instr.set_component_parameter("volume_" + str(volume), {"material_string" : "\""+volume_material+"\"", "priority" : current_priority, "p_interact" : 0.3}) + instr.set_component_AT("volume_" + str(volume), position, RELATIVE="ABSOLUTE") + instr.set_component_ROTATED("volume_" + str(volume), rotation, RELATIVE="ABSOLUTE") + + +# A few Union loggers are set up for display of the scattering locations +instr.add_component("logger_space_zx_all", "Union_logger_2D_space") +current_component = instr.get_last_component() +current_component.set_parameters({"filename" : "\"space_zx.dat\"",}) +current_component.set_parameters({"n1" : 1000, "D_direction_1" : "\"z\"", "D1_min" : -0.05, "D1_max" : 0.05}) +current_component.set_parameters({"n2" : 1000, "D_direction_2" : "\"x\"", "D2_min" : -0.05, "D2_max" : 0.05}) +current_component.set_AT([0,0,1]) + +instr.add_component("logger_space_zy_all", "Union_logger_2D_space") +current_component = instr.get_last_component() +current_component.set_parameters({"filename" : "\"space_zy.dat\"",}) +current_component.set_parameters({"n1" : 1000, "D_direction_1" : "\"z\"", "D1_min" : -0.05, "D1_max" : 0.05}) +current_component.set_parameters({"n2" : 1000, "D_direction_2" : "\"y\"", "D2_min" : -0.05, "D2_max" : 0.05}) +current_component.set_AT([0,0,1]) + +# Union master component that executes the simulation of the random boxes +instr.add_component("random_boxes", "Union_master") + +# McStas monitors for viewing the beam after the random boxes +instr.add_component("detector", "PSD_monitor", AT=[0,0,2]) +instr.set_component_parameter("detector", {"xwidth" : 0.10, "yheight" : 0.10, "nx" : 500, "ny" : 500, "filename" : "\"PSD.dat\"", "restore_neutron" : 1}) + +instr.add_component("large_detector","PSD_monitor", AT=[0,0,2]) +instr.set_component_parameter("large_detector", {"xwidth" : 1.0, "yheight" : 1.0, "nx" : 500, "ny" : 500, "filename" : "\"large_PSD.dat\"", "restore_neutron" : 1}) + +# Run the McStas simulation, a unique foldername is required for each run +data = instr.run_full_instrument(foldername="demonstration2", parameters={"energy":600},mpi=2,ncount=5E7) + +# Set plotting options for the data (optional) +functions.name_plot_options("logger_space_zx_all", data, log=1, orders_of_mag=3) +functions.name_plot_options("logger_space_zy_all", data, log=1, orders_of_mag=3) +functions.name_plot_options("detector", data, log=1, colormap="hot", orders_of_mag=0.5) +functions.name_plot_options("large_detector", data, log=1, orders_of_mag=8) + +# Plot the resulting data on a logarithmic scale +plot = plotter.make_sub_plot(data) + + diff --git a/mcstasscript/__init__.py b/mcstasscript/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/mcstasscript/data/__init__.py b/mcstasscript/data/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/mcstasscript/data/data.py b/mcstasscript/data/data.py new file mode 100644 index 00000000..4b561ca6 --- /dev/null +++ b/mcstasscript/data/data.py @@ -0,0 +1,341 @@ +class McStasMetaData: + """ + Class for holding metadata for McStas dataset, is to be read from + mccode.sim file. + + Attributes + ---------- + info : dict + Contains read strings from mccode.sim in key, value + + dimension : Int or List of Int + Int for 1d data set with lenght of data, Array for 2d with each + length + + component_name : str + Name of component in McStas file + + filename : str + Name of data file to read + + limits : List + Limits for monitor, length=2 for 1d data and length=4 for 2d + data + + title : str + Title of monitor when plotting + + xlabel : str + Text for xlabel when plotting + + ylabel : str + Text for ylabel when plotting + + Methods + ------- + add_info(key,value) + Adds a element to the info dictionary + + extract_info() + Unpacks the information in info to class attributes + + set_title(string) + Overwrites current title + + set_xlabel(string) + Overwrites current xlabel + + set_ylabel(string) + Overwrites current ylabel + """ + + def __init__(self): + """Creating a new instance, no parameters""" + self.info = {} + + def add_info(self, key, value): + """Adding information to info dict""" + self.info[key] = value + + def extract_info(self): + """Extracting information from info dict to class attributes""" + + # Extract dimension + if "type" in self.info: + type = self.info["type"] + if "array_1d" in type: + self.dimension = int(type[9:-2]) + if "array_2d" in type: + self.dimension = [] + type_strings = self.info["type"].split(",") + temp_str = type_strings[0] + self.dimension.append(int(temp_str[9:])) + temp_str = type_strings[1] + self.dimension.append(int(temp_str[1:-2])) + else: + raise NameError("No type in mccode data section!") + + # Extract component name + if "component" in self.info: + self.component_name = self.info["component"].rstrip() + + # Extract filename + if "filename" in self.info: + self.filename = self.info["filename"].rstrip() + else: + raise NameError( + "No filename found in mccode data section!") + + # Extract limits + self.limits = [] + if "xylimits" in self.info: + # find the four numbers + temp_str = self.info["xylimits"] + limits_string = temp_str.split() + for limit in limits_string: + self.limits.append(float(limit)) + + if "xlimits" in self.info: + # find the two numbers + temp_str = self.info["xlimits"] + limits_string = temp_str.split() + for limit in limits_string: + self.limits.append(float(limit)) + + # Extract plotting labels and title + if "xlabel" in self.info: + self.xlabel = self.info["xlabel"].rstrip() + if "ylabel" in self.info: + self.ylabel = self.info["ylabel"].rstrip() + if "title" in self.info: + self.title = self.info["title"].rstrip() + + def set_title(self, string): + """Sets title for plotting""" + self.title = string + + def set_xlabel(self, string): + """Sets xlabel for plotting""" + self.xlabel = string + + def set_ylabel(self, string): + """Sets ylabel for plotting""" + self.ylabel = string + + +class McStasPlotOptions: + """ + Class that holds plotting options related to McStas data set + + Attributes + ---------- + log : bool + To plot on logarithmic or not, standard is linear + + orders_of_mag : float + If plotting on log scale, restrict max range to orders_of_mag + below maximum value + + colormap : string + Chosen colormap for 2d data, should be available in matplotlib + + Methods + ------- + set_options(keyword arguments) + Can set the class attributes using keyword options + + """ + + def __init__(self, *args, **kwargs): + """Setting default values for plotting preferences""" + self.log = False + self.orders_of_mag = 300 + self.colormap = "jet" + + def set_options(self, **kwargs): + """Set custom values for plotting preferences""" + if "log" in kwargs: + log_input = kwargs["log"] + if type(log_input) == int: + if log_input == 0: + self.log = False + else: + self.log = True + elif type(log_input) == bool: + self.log = log_input + else: + raise NameError( + "Log input must be either Int or Bool.") + + if "orders_of_mag" in kwargs: + self.orders_of_mag = kwargs["orders_of_mag"] + + if "colormap" in kwargs: + self.colormap = kwargs["colormap"] + + +class McStasData: + """ + Class for holding full McStas dataset with data, metadata and + plotting preferences + + Attributes + ---------- + metadata : McStasMetaData instance + Holds the metadata for the dataset + + name : str + Name of component, extracted from metadata + + Intensity : numpy array + Intensity data [n/s] in 1d or 2d numpy array, dimension in + metadata + + Error : numpy array + Error data [n/s] in 1d or 2d numpy array, same dimensions as + Intensity + + Ncount : numpy array + Number of rays in bin, 1d or 2d numpy array, same dimensions as + Intensity + + plot_options : McStasPlotOptions instance + Holds the plotting preferences for the dataset + + Methods + ------- + set_xlabel : string + sets xlabel of data for plotting + + set_ylabel : string + sets ylabel of data for plotting + + set_title : string + sets title of data for plotting + + set_optons : keyword arguments + sets plot options, keywords passed to McStasPlotOptions method + """ + + def __init__(self, metadata, intensity, error, ncount, **kwargs): + """ + Initialize a new McStas dataset, 4 positional arguments, pass + xaxis as kwarg if 1d data + + Parameters + ---------- + metadata : McStasMetaData instance + Holds the metadata for the dataset + + name : str + Name of component, extracted from metadata + + intensity : numpy array + Intensity data [n/s] in 1d or 2d numpy array, dimension in + metadata + + error : numpy array + Error data [n/s] in 1d or 2d numpy array, same dimensions + as Intensity + + ncount : numpy array + Number of rays in bin, 1d or 2d numpy array, same + dimensions as Intensity + + kwargs : keyword arguments + xaxis is required for 1d data + """ + + # attatch meta data + self.metadata = metadata + # get name from metadata + self.name = self.metadata.component_name + # three basic arrays from positional arguments + self.Intensity = intensity + self.Error = error + self.Ncount = ncount + + if type(self.metadata.dimension) == int: + if "xaxis" in kwargs: + self.xaxis = kwargs["xaxis"] + else: + raise NameError( + "ERROR: Initialization of McStasData done with 1d " + + "data, but without xaxis" + self.name + "!") + + self.plot_options = McStasPlotOptions() + + # Methods xlabel, ylabel and title as they might not be found + def set_xlabel(self, string): + self.metadata.set_xlabel(string) + + def set_ylabel(self, string): + self.metadata.set_ylabel(string) + + def set_title(self, string): + self.metadata.set_title(string) + + def set_plot_options(self, **kwargs): + self.plot_options.set_options(**kwargs) + +def name_search(name, data_list): + """" + name_search returns McStasData instance with specific name if it is + in the given data_list + + The index of certain datasets in the data_list can change if + additional monitors are added so it is more convinient to access + the data files using their names. + + Parameters + ---------- + name : string + Name of the dataset to be retrived (component_name) + + data_list : List of McStasData instances + List of datasets to search + """ + + if not type(data_list[0]) == McStasData: + raise InputError( + "name_search function needs objects of type " + + "McStasData as input.") + + list_result = [] + for check in data_list: + if check.metadata.component_name == name: + list_result.append(check) + + if len(list_result) == 1: + return list_result[0] + else: + raise NameError("More than one match for the name search") + +def name_plot_options(name, data_list, **kwargs): + """" + name_plot_options passes keyword arguments to dataset with certain + name in given data list + + Function for quickly setting plotting options on a certain dataset + n a larger list of datasets + + Parameters + ---------- + name : string + Name of the dataset to be modified (component_name) + + data_list : List of McStasData instances + List of datasets to search + + kwargs : keyword arguments + Keyword arguments passed to set_plot_options in + McStasPlotOptions + """ + + if not isinstance(data_list[0], McStasData): + raise InputError( + "name_search function needs objects of type McStasData " + + "as input.") + + object_to_modify = name_search(name, data_list) + object_to_modify.set_plot_options(**kwargs) \ No newline at end of file diff --git a/mcstasscript/helper/__init__.py b/mcstasscript/helper/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/mcstasscript/helper/component_reader.py b/mcstasscript/helper/component_reader.py new file mode 100644 index 00000000..968d8444 --- /dev/null +++ b/mcstasscript/helper/component_reader.py @@ -0,0 +1,361 @@ +import os +import math + +class ComponentInfo: + """ + Internal class used to store information on parameters of components + """ + + def __init__(self): + self.name = "" + self.category = "" + self.parameter_names = [] + self.parameter_defaults = {} + self.parameter_types = {} + self.parameter_comments = {} + self.parameter_units = {} + + +class ComponentReader: + """ + Class for retriveing information on available McStas components + + Recursively reads all component files in hardcoded list of + folders that represents the component categories in McStas. + The results are stored in a dictionary with ComponentInfo + instances, the keys are the names of the components. After + the components in the McStas installation are read, any + components pressent in the current work directory is read, + and these will overwrite exisiting information, consistent + with how McStas reads component definitions. + + """ + + def __init__(self, mcstas_path): + """ + Reads all component files in standard folders. Recursive, so + subfolders of these folders are included. + + """ + + if mcstas_path[-1] is not "/": + mcstas_path = mcstas_path + "/" + + # Hardcoded whitelist of foldernames + folder_list = ["sources", + "optics", + "samples", + "monitors", + "misc", + "contrib", + "obsolete", + "union"] + + self.component_path = {} + self.component_category = {} + + for folder in folder_list: + absolute_path = mcstas_path + folder + # self.component_info_dict.update(self._read(absolute_path)) + self._find_components(absolute_path) + + # McStas component in current directory should overwrite + current_directory = os.getcwd() + + for file in os.listdir(current_directory): + if file.endswith(".comp"): + absolute_path = current_directory + "/" + file + component_name = absolute_path.split("/")[-1].split(".")[-2] + + if component_name in self.component_path: + print("Overwriting McStasScript info on component named " + + file + + " because the component is in the" + + " work directory.") + + self.component_path[component_name] = absolute_path + self.component_category[component_name] = "Work directory" + + def show_categories(self): + """ + Method that will show all component categories available + + """ + categories = [] + for component, category in self.component_category.items(): + if category not in categories: + categories.append(category) + print(" " + category) + + def show_components_in_category(self, category_input): + """ + Method that will show all components in given category + + """ + empty_category = True + to_print = [] + for component, category in self.component_category.items(): + if category == category_input: + to_print.append(component) + empty_category = False + + to_print.sort() + if empty_category: + print("No components found in this category! " + + "Available categories:") + self.show_categories() + + elif len(to_print) < 10: + for component in to_print: + print(" " + component) + else: + # Prints in collumns, maximum 4 and maximum line length 100 + columns = 5 + total_line_length = 1000 + while(total_line_length > 100): + columns = columns - 1 + + c_length = math.ceil(len(to_print)/columns) + last_length = len(to_print) - (columns-1)*c_length + + column = [] + longest_name = [] + for col in range(0, columns-1): + current_list = to_print[c_length*col:c_length*(col+1)] + column.append(current_list) + longest_name.append(len(max(current_list, key=len))) + + column.append(to_print[c_length*(columns-1):]) + longest_name.append(len(max(column[columns-1], key=len))) + + total_line_length = 1 + sum(longest_name) + (columns-1)*3 + + for line_nr in range(0, c_length): + print(" ", end="") + for col in range(0, columns-1): + this_name = column[col][line_nr] + print(this_name + + " "*(longest_name[col] - len(this_name)) + + " ", end="") # More columns left, dont break + if line_nr < last_length: + this_name = column[columns-1][line_nr] + print(this_name) + else: + print("") + + def load_all_components(self): + """ + Method that loads information on all components into memory. + + """ + + return_dict = {} + for comp_name, abs_path in self.component_path.items(): + return_dict[comp_name] = self.read_component_file(abs_path) + + return return_dict + + def read_name(self, component_name): + """ + Returns ComponentInfo of component with name component_name. + + Uses table of absolute paths to all known components, and + reads the appropriate file in order to generate the information. + + """ + + if component_name not in self.component_path: + raise NameError("No component named " + + component_name + + " in McStas installation or " + + "current work directory.") + + return self.read_component_file(self.component_path[component_name]) + + def _find_components(self, absolute_path): + """ + Recursive read function, can read either file or entire folder + + Updates the component_info_dict with the findings that are + stored as ComoponentInfo instances. + + """ + + if not os.path.isdir(absolute_path): + if absolute_path.endswith(".comp"): + # read this file + component_name = absolute_path.split("/")[-1].split(".")[-2] + self.component_path[component_name] = absolute_path + + component_category = absolute_path.split("/")[-2] + self.component_category[component_name] = component_category + else: + for file in os.listdir(absolute_path): + absolute_file_path = absolute_path + "/" + file + self._find_components(absolute_file_path) + + def read_component_file(self, absolute_path): + """ + Reads a component file and expands component_info_dict + + The information is stored as ComponentClass instances. + + """ + + result = ComponentInfo() + + fo = open(absolute_path, "r") + + cnt = 0 + while True: + cnt += 1 + line = fo.readline() + + # find parameter comments + if self.line_starts_with(line, "* %P"): + + while True: + this_line = fo.readline() + + if self.line_starts_with(this_line, "DEFINE COMPONENT"): + # No more comments to read through + break + + if ":" in this_line: + tokens = this_line.split(":") + + variable_name = tokens[0] + variable_name = variable_name.replace("*", "") + variable_name = variable_name.strip() + if " " in variable_name: + name_tokens = variable_name.split(" ") + variable_name = name_tokens[0] + + if len(tokens[1]) > 2: + comment = tokens[1].strip() + + if "[" in comment: # Search for unit + # If found, store it and remove from string + unit = comment[comment.find("[") + 1: + comment.find("]")] + result.parameter_units[variable_name] = unit + comment = comment[comment.find("]") + 1:] + comment = comment.strip() + + # Store the comment + result.parameter_comments[variable_name] = comment + elif "[" in this_line and "]" in this_line: + tokens = this_line.split("[") + + variable_name = tokens[0] + variable_name = variable_name.replace("*", "") + variable_name = variable_name.strip() + + unit = this_line[this_line.find("[") + 1: + this_line.find("]")] + result.parameter_units[variable_name] = unit + + comment = this_line[this_line.find("]") + 1:] + comment = comment.strip() + result.parameter_comments[variable_name] = comment + + # find definition parameters and their values + if (self.line_starts_with(line, "DEFINITION PARAMETERS") + or self.line_starts_with(line, "SETTING PARAMETERS")): + + parts = line.split("(") + parameter_parts = parts[1].split(",") + + parameter_parts = list(filter(("\n").__ne__, parameter_parts)) + + break_now = False + while True: + # Read all definition parameters + + for part in parameter_parts: + + temp_par_type = "double" + + part = part.strip() + + # remove trailing ) + if ")" in part: + part = part.replace(")", "") + break_now = True + + possible_declare = part.split(" ") + possible_type = possible_declare[0].strip() + if "int" == possible_type: + temp_par_type = "int" + # remove int from part + part = "".join(possible_declare[1:]) + if "string" == possible_type: + temp_par_type = "string" + # remove string from part + part = "".join(possible_declare[1:]) + + part = part.replace(" ", "") + if part == "": + continue + + if self.line_starts_with(part, "//"): + break_now = True + continue + + if self.line_starts_with(part, "/*"): + break_now = True + continue + + if "=" not in part: + # no defualt value, required parameter + result.parameter_names.append(part) + result.parameter_defaults[part] = None + result.parameter_types[part] = temp_par_type + else: + # default value available + name_value = part.split("=") + par_name = name_value[0].strip() + par_value = name_value[1].strip() + result.parameter_names.append(par_name) + result.parameter_defaults[par_name] = par_value + result.parameter_types[par_name] = temp_par_type + + if break_now: + break + + parameter_parts = fo.readline().split(",") + + if self.line_starts_with(line, "DECLARE"): + break + + if self.line_starts_with(line, "TRACE"): + break + + if cnt == 1000: + break + + fo.close() + + result.name = absolute_path.split("/")[-1].split(".")[-2] + foldernames = absolute_path.split("/") + result.category = foldernames[-2] + + """ + To lower memory use one could remove all comments and units that + does not correspond to a found parameter name. + """ + + return result + + def line_starts_with(self, line, string): + """ + Helper method that checks if a string is the start of a line + + """ + if len(line) < len(string): + return False + + if line[0:len(string)] == string: + return True + else: + return False \ No newline at end of file diff --git a/mcstasscript/helper/formatting.py b/mcstasscript/helper/formatting.py new file mode 100644 index 00000000..58ac53c8 --- /dev/null +++ b/mcstasscript/helper/formatting.py @@ -0,0 +1,14 @@ +""" +Helper class that contains formatting classes and functions + +""" + +class bcolors: + HEADER = '\033[95m' + OKBLUE = '\033[94m' + OKGREEN = '\033[92m' + WARNING = '\033[93m' + FAIL = '\033[91m' + ENDC = '\033[0m' + BOLD = '\033[1m' + UNDERLINE = '\033[4m' \ No newline at end of file diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py new file mode 100644 index 00000000..a5cdf435 --- /dev/null +++ b/mcstasscript/helper/managed_mcrun.py @@ -0,0 +1,222 @@ +import os +import numpy as np +from mcstasscript.data.data import McStasMetaData +from mcstasscript.data.data import McStasData + +class ManagedMcrun: + """ + A class for performing a mcstas simulation and organizing the data + into python objects + + ManagedMcrun is usually called by the instrument class of + McStasScript but can be used independently. It runs the mcrun + command using the system command, and if this is not in the path, + the absolute path can be given in a keyword argument mcrun_path. + + Attributes + ---------- + name_of_instrumentfile : str + Name of instrument file to be executed + + data_folder_name : str + Name of datafolder mcrun writes to disk + + ncount : int + Number of rays to simulate + + mpi : int + Number of mpi threads to run + + parameters : dict + Dictionary of parameter names and values for this simulation + + custom_flags : string + Custom flags that are passed to the mcrun command + + mcrun_path : string + Path to the mcrun command (can be empty if already in path) + + Methods + ------- + run_simulation() + Runs simulation, returns list of McStasData instances + + """ + + def __init__(self, instr_name, **kwargs): + """ + Parameters + ---------- + instr_name : str + Name of instrument file to be simulated + + kwargs : keyword arguments + foldername : str + Sets data_folder_name + ncount : int + Sets ncount + mpi : int + Sets thread count + parameters : dict + Sets parameters + custom_flags : str + Sets custom_flags passed to mcrun + mcrun_path : str + Path to mcrun command, "" if already in path + """ + + self.name_of_instrumentfile = instr_name + + self.data_folder_name = "" + self.ncount = 1E6 + self.mpi = 1 + self.parameters = {} + self.custom_flags = "" + self.mcrun_path = "" + # mcrun_path always in kwargs + self.mcrun_path = kwargs["mcrun_path"] + + if "foldername" in kwargs: + self.data_folder_name = kwargs["foldername"] + else: + raise NameError( + "ManagedMcrun needs foldername to load data, add " + + "with keyword argument.") + + if "ncount" in kwargs: + self.ncount = kwargs["ncount"] + + if "mpi" in kwargs: + self.mpi = kwargs["mpi"] + + if "parameters" in kwargs: + self.parameters = kwargs["parameters"] + + if "custom_flags" in kwargs: + self.custom_flags = kwargs["custom_flags"] + + def run_simulation(self): + """ + Runs McStas simulation described by initializing the object + """ + + # construct command to run + option_string = ("-c" + + " -n " + str(self.ncount) # Set ncount + + " --mpi=" + str(self.mpi) # Set mpi + + " ") + + if len(self.data_folder_name) > 0: + option_string = (option_string + + "-d " + + self.data_folder_name) + + # add parameters to command + parameter_string = "" + for key, val in self.parameters.items(): + parameter_string = (parameter_string + " " + + str(key) # parameter name + + "=" + + str(val)) # parameter value + + mcrun_full_path = self.mcrun_path + "mcrun" + if len(self.mcrun_path) > 1: + if not (self.mcrun_path[-1] == "\\" + or self.mcrun_path[-1] == "/"): + mcrun_full_path = self.mcrun_path + "/mcrun" + + # Run the mcrun command on the system + os.system(mcrun_full_path + " " + + option_string + " " + + self.custom_flags + " " + + self.name_of_instrumentfile + " " + + parameter_string) + + """ + Can use subprocess from spawn* instead of os.system if more + control is needed over the spawned process, including a timeout + """ + + # Find all data files in generated folder + files_in_folder = os.listdir(self.data_folder_name) + + # Raise an error if mccode.sim is not available + if "mccode.sim" not in files_in_folder: + raise NameError("mccode.sim not written to output folder.") + + # Open mccode to read metadata for all datasets written to disk + f = open(self.data_folder_name + "/mccode.sim", "r") + + # Loop that reads mccode.sim sections + metadata_list = [] + in_data = False + for lines in f: + # Could read other details about run + + if lines == "end data\n": + # No more data for this metadata object + # Extract the information + current_object.extract_info() + # Add to metadata list + metadata_list.append(current_object) + # Stop reading data + in_data = False + + if in_data: + # This line contains info to be added to metadata + colon_index = lines.index(":") + key = lines[2:colon_index] + value = lines[colon_index+2:] + current_object.add_info(key, value) + + if lines == "begin data\n": + # Found data section, create new metadata object + current_object = McStasMetaData() + # Start recording data to metadata object + in_data = True + + # Close mccode.sim + f.close() + + # Create a list for McStasData instances to return + results = [] + + # Load datasets described in metadata list individually + for metadata in metadata_list: + # Load data with numpy + data = np.loadtxt(self.data_folder_name + + "/" + + metadata.filename.rstrip()) + + # Split data into intensity, error and ncount + if type(metadata.dimension) == int: + xaxis = data.T[0, :] + Intensity = data.T[1, :] + Error = data.T[2, :] + Ncount = data.T[3, :] + + elif len(metadata.dimension) == 2: + xaxis = [] # Assume evenly binned in 2d + data_lines = metadata.dimension[1] + Intensity = data.T[:, 0:data_lines - 1] + Error = data.T[:, data_lines:2*data_lines - 1] + Ncount = data.T[:, 2*data_lines:3*data_lines - 1] + else: + raise NameError( + "Dimension not read correctly in data set " + + "connected to monitor named " + + metadata.component_name) + + # The data is saved as a McStasData object + result = McStasData(metadata, Intensity, + Error, Ncount, + xaxis=xaxis) + + # Add this result to the results list + results.append(result) + + # Close the current datafile + f.close() + + # Return list of McStasData objects + return results \ No newline at end of file diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py new file mode 100644 index 00000000..cef75cc0 --- /dev/null +++ b/mcstasscript/helper/mcstas_objects.py @@ -0,0 +1,733 @@ +from mcstasscript.helper.formatting import bcolors + +class parameter_variable: + """ + Class describing a input parameter in McStas instrument + + McStas input parameters are of default type double, but can be + cast. If two positional arguments are given, the first is the + type, and the second is the parameter name. With one input, only + the parameter name is read. It is also possible to assign a + default value and a comment through keyword arguments. + + Attributes + ---------- + type : str + McStas type of input: Double, Int, String + + name : str + Name of input parameter + + value : any + Default value/string of parameter, converted to string + + comment : str + Comment displayed next to the parameter, could contain units + + Methods + ------- + write_parameter(fo,stop_character) + writes the parameter to file fo, uses given stop character + """ + + def __init__(self, *args, **kwargs): + """Initializing mcstas parameter object + + Parameters + ---------- + If giving a type: + Positional argument 1: type: str + Type of the parameter, double, int or string + Positional argument 2: name: str + Name of input parameter + + If not giving type + Positional argument 1: name : str + Name of input parameter + + Keyword arguments + value : any + sets default value of parameter + comment : str + sets comment displayed next to declaration + """ + if len(args) == 1: + self.type = "" + self.name = str(args[0]) + if len(args) == 2: + self.type = args[0] + " " + self.name = str(args[1]) + + if "value" in kwargs: + self.value_set = 1 + self.value = kwargs["value"] + else: + self.value_set = 0 + + if "comment" in kwargs: + self.comment = "// " + kwargs["comment"] + else: + self.comment = "" + + # could check for allowed types + # they are int, double, string, are there more? + + def write_parameter(self, fo, stop_character): + """Writes input parameter to file""" + fo.write("%s%s" % (self.type, self.name)) + if self.value_set == 1: + if isinstance(self.value, int): + fo.write(" = %d" % self.value) + elif isinstance(self.value, float): + fo.write(" = %G" % self.value) + else: + fo.write(" = %s" % str(self.value)) + fo.write(stop_character) + fo.write(self.comment) + fo.write("\n") + + +class declare_variable: + """ + Class describing a declared variable in McStas instrument + + McStas parameters are declared in declare section with c syntax. + This class is initialized with type, name. Using keyword + arguments, the variable can become an array and have its initial + value set. + + Attributes + ---------- + type : str + McStas type to declare: Double, Int, String + + name : str + Name of variable + + value : any + Initial value of variable, converted to string + + comment : str + Comment displayed next to the declaration, could contain units + + vector : int + 0 if a single value is given, ortherwise contains the length + + value_set : int + Internal variable displaying wether or not a value was given + + Methods + ------- + write_line(fo) + Writes a line to text file fo declaring the parameter in c + """ + def __init__(self, *args, **kwargs): + """Initializing mcstas parameter object + + Parameters + ---------- + Positional argument 1: type : str + Type of the parameter, double, int or string + + Positional argument 2: name : str + Name of input parameter + + Keyword arguments + array : int + length of array to be allocated, 0 if single value + + value : any + sets initial value of parameter, + can be a list with length matching array + + comment : str + sets comment displayed next to declaration + """ + self.type = args[0] + self.name = str(args[1]) + if "value" in kwargs: + self.value_set = 1 + self.value = kwargs["value"] + else: + self.value_set = 0 + + if "array" in kwargs: + self.vector = kwargs["array"] + else: + self.vector = 0 + + if "comment" in kwargs: + self.comment = " // " + kwargs["comment"] + else: + self.comment = "" + + def write_line(self, fo): + """Writes line declaring variable to file fo + + Parameters + ---------- + fo : file object + File the line will be written to + """ + if self.value_set == 0 and self.vector == 0: + fo.write("%s %s;%s" % (self.type, self.name, self.comment)) + if self.value_set == 1 and self.vector == 0: + if self.type == "int": + fo.write("%s %s = %d;%s" % (self.type, self.name, + self.value, self.comment)) + else: + fo.write("%s %s = %G;%s" % (self.type, self.name, + self.value, self.comment)) + if self.value_set == 0 and self.vector != 0: + fo.write("%s %s[%d];%s" % (self.type, self.name, + self.vector, self.comment)) + if self.value_set == 1 and self.vector != 0: + fo.write("%s %s[%d] = {" % (self.type, self.name, self.vector)) + for i in range(0, len(self.value) - 1): + fo.write("%G," % self.value[i]) + fo.write("%G};%s" % (self.value[-1], self.comment)) + + +class component: + """ + A class describing a McStas component to be written to a instrument + + This class is used by the instrument class when setting up + components as dynamic subclasses to this class. Most information + can be given on initialize using keyword arguments, but there are + methods for setting the attributes describing the component. The + class contains both methods to write the component to a instrument + file and methods for printing to the python terminal for checking + the information. The McStas_Instr class creates subclasses from + this class that have attributes for all parameters for the given + component. The component information is read directly from the + component files in the McStas installation. This class is frozen + after __init__ so that no new attributes can be created, which + allows direct feedback to the user if a parameter name is + misspelled. + + Attributes + ---------- + name : str + Name of the component instance in McStas (must be unique) + + component_name : str + Name of the component code to use, e.g. Arm, Guide_gravity, ... + + AT_data : list of 3 floats + Position data of the component + + AT_relative : str + Name of former component to use as reference for position + + ROTATED_data : list of 3 floats + Rotation data of the component + + ROTATED_relative : str + Name of former component to use as reference for position + + WHEN : str + String with logical c expression x for when component is active + + EXTEND : str + c code for McStas EXTEND section + + GROUP : str + Name of group the component should belong to + + JUMP : str + String describing use of JUMP, need to contain all after "JUMP" + + component_parameters : dict + Parameters to be used with component in dictionary + + comment : str + Comment inserted before the component as an explanation + + __isfrozen : bool + If true no new attributes can be created, when false they can + + Methods + ------- + set_AT(at_list,**kwargs) + Sets AT_data, can set AT_relative using keyword + + set_ROTATED(rotated_list,**kwargs) + Sets ROTATED_data, can set ROTATED_relative using keyword + + set_RELATIVE(relative_name) + Set both AT_relative and ROTATED_relative to relative_name + + set_parameters(dict_input) + Adds dictionary entries to parameter dictionary + + set_WHEN(string) + Sets WHEN string + + set_GROUP(string) + Sets GROUP name + + set_JUMP(string) + Sets JUMP string + + append_EXTEND(string) + Append string to EXTEND string + + set_comment(string) + Sets comment for component + + write_component(fo) + Writes component code to instrument file + + print_long() + Prints basic view of component code (not correct syntax) + + print_short(**kwargs) + Prints short description, used in print_components + + __setattr__(key, value) + Overwriting __setattr__ to implement ability to freeze + + _freeze() + Freeze the class so no new attributes can be defined + + _unfreeze() + Unfreeze the class so new attributes can be defined again + + """ + + __isfrozen = False # When frozen, no new attributes allowed + + def __init__(self, instance_name, component_name, **kwargs): + """ + Initializes McStas component with specified name and component + + Parameters + ---------- + instance_name : str + name of the instance of the component + + component_name : str + name of the component type e.g. Arm, Guide_gravity, ... + + keyword arguments: + AT : list of 3 floats + Sets AT_data describing position of component + + AT_RELATIVE : str + sets AT_relative, describing position reference + + ROTATED : list of 3 floats + Sets ROTATED_data, describing rotation of component + + ROTATED_RELATIVE : str + Sets ROTATED_relative, sets reference for rotation + + RELATIVE : str + Sets both AT_relative and ROTATED_relative + + WHEN : str + Sets WHEN string, should contain logical c expression + + EXTEND : str + Sets initial EXTEND string, should contain c code + + GROUP : str + Sets name of group the component should belong to + + JUMP : str + Sets JUMP str + + comment: str + Sets comment string + """ + + # Allow addition of attributes in init + self._unfreeze() + + self.name = instance_name + self.component_name = component_name + + if "AT" in kwargs: + self.AT_data = kwargs["AT"] + else: + self.AT_data = [0, 0, 0] + # Could check if AT_RELATIVE is a string + if "AT_RELATIVE" in kwargs: + self.AT_relative = "RELATIVE " + kwargs["AT_RELATIVE"] + else: + self.AT_relative = "ABSOLUTE" + + if "ROTATED" in kwargs: + self.ROTATED_data = kwargs["ROTATED"] + else: + self.ROTATED_data = [0, 0, 0] + # Could check if ROTATED_RELATIVE is a string + if "ROTATED_RELATIVE" in kwargs: + self.ROTATED_relative = kwargs["ROTATED_RELATIVE"] + else: + self.ROTATED_relative = "ABSOLUTE" + + # Could check if RELATIVE is a string + if "RELATIVE" in kwargs: + self.AT_relative = "RELATIVE " + kwargs["RELATIVE"] + self.ROTATED_relative = "RELATIVE " + kwargs["RELATIVE"] + + if "WHEN" in kwargs: + self.WHEN = "WHEN (" + kwargs["WHEN"] + ")\n" + else: + self.WHEN = "" + + if "EXTEND" in kwargs: + self.EXTEND = kwargs["EXTEND"] + "\n" + else: + self.EXTEND = "" + + if "GROUP" in kwargs: + self.GROUP = kwargs["GRPUP"] + else: + self.GROUP = "" + + if "JUMP" in kwargs: + self.JUMP = kwargs["JUMP"] + else: + self.JUMP = "" + + if "comment" in kwargs: + self.comment = kwargs["comment"] + else: + self.comment = "" + + """ + Could store an option for whether this component should be + printed in instrument file or in a seperate file which would + then be included. + """ + + # Do not allow addition of attributes after init + self._freeze() + + def __setattr__(self, key, value): + if self.__isfrozen and not hasattr(self, key): + raise AttributeError("No parameter called '" + + key + + "' in component named " + + self.name + + " of component type " + + self.component_name + + ".") + object.__setattr__(self, key, value) + + def _freeze(self): + self.__isfrozen = True + + def _unfreeze(self): + self.__isfrozen = False + + def set_AT(self, at_list, **kwargs): + """Sets AT data, List of 3 floats""" + self.AT_data = at_list + if "RELATIVE" in kwargs: + relative_name = kwargs["RELATIVE"] + if relative_name == "ABSOLUTE": + self.AT_relative = relative_name + else: + self.AT_relative = "RELATIVE " + relative_name + + def set_ROTATED(self, rotated_list, **kwargs): + """Sets ROTATED data, List of 3 floats""" + self.ROTATED_data = rotated_list + if "RELATIVE" in kwargs: + relative_name = kwargs["RELATIVE"] + if relative_name == "ABSOLUTE": + self.ROTATED_relative = relative_name + else: + self.ROTATED_relative = "RELATIVE " + relative_name + + def set_RELATIVE(self, relative_name): + """Sets both AT_relative and ROTATED_relative""" + if relative_name == "ABSOLUTE": + self.AT_relative = relative_name + self.ROTATED_relative = relative_name + else: + self.AT_relative = "RELATIVE " + relative_name + self.ROTATED_relative = "RELATIVE " + relative_name + + def set_parameters(self, dict_input): + """ + Adds parameters and their values from dictionary input + + Relies on attributes added when McStas_Instr creates a + subclass from the component class where each component + parameter is added as an attribute. + + """ + for key, val in dict_input.items(): + if not hasattr(self, key): + raise NameError("No parameter called " + + key + + " in component named " + + self.name + + " of component type " + + self.component_name + + ".") + else: + setattr(self, key, val) + + def set_WHEN(self, string): + """Sets WHEN string, should be a c logical expression""" + self.WHEN = string + + def set_GROUP(self, string): + """Sets GROUP name""" + self.GROUP = string + + def set_JUMP(self, string): + """Sets JUMP string, should contain all text after JUMP""" + self.JUMP = string + + def append_EXTEND(self, string): + """Appends a line of code to EXTEND block of component""" + self.EXTEND = self.EXTEND + string + "\n" + + def set_comment(self, string): + """Method that sets a comment to be written to instrument file""" + self.comment = string + + def write_component(self, fo): + """ + Method that writes component to file + + Relies on attributes added when McStas_Instr creates a subclass + based on the component class. + + """ + parameters_per_line = 2 + # Could use character limit on lines instead + parameters_written = 0 # internal parameter + + # Write comment if present + if len(self.comment) > 1: + fo.write("// %s\n" % (str(self.comment))) + + # Write component name and component type + fo.write("COMPONENT %s = %s(" % (self.name, self.component_name)) + + component_parameters = {} + for key in self.parameter_names: + val = getattr(self, key) + if val is None: + if self.parameter_defaults[key] is None: + raise NameError("Required parameter named " + + key + + " in component named " + + self.name + + " not set.") + else: + continue + + component_parameters[key] = val + + number_of_parameters = len(component_parameters) + + if number_of_parameters == 0: + fo.write(")\n") # If there are no parameters, close immediately + else: + fo.write("\n") # If there are parameters, start a new line + + for key, val in component_parameters.items(): + if isinstance(val, float): # CHeck if value is a number + # Small or large numbers written in scientific format + fo.write(" %s = %G" % (str(key), val)) + else: + fo.write(" %s = %s" % (str(key), str(val))) + parameters_written = parameters_written + 1 + if parameters_written < number_of_parameters: + fo.write(",") # Comma between parameters + if parameters_written % parameters_per_line == 0: + fo.write("\n") + else: + fo.write(")\n") # End paranthesis after last parameter + + # Optional WHEN section + if not self.WHEN == "": + fo.write("WHEN(%s)\n" % self.WHEN) + + # Write AT and ROTATED section + fo.write("AT (%s,%s,%s)" % (str(self.AT_data[0]), + str(self.AT_data[1]), + str(self.AT_data[2]))) + fo.write(" %s\n" % self.AT_relative) + fo.write("ROTATED (%s,%s,%s)" % (str(self.ROTATED_data[0]), + str(self.ROTATED_data[1]), + str(self.ROTATED_data[2]))) + fo.write(" %s\n" % self.ROTATED_relative) + + if not self.GROUP == "": + fo.write("GROUP %s\n" % self.GROUP) + + # Optional EXTEND section + if not self.EXTEND == "": + fo.write("EXTEND %{\n") + fo.write("%s" % self.EXTEND) + fo.write("%}\n") + + if not self.JUMP == "": + fo.write("JUMP %s\n" % self.JUMP) + + # Leave a new line between components for readability + fo.write("\n") + + def print_long(self): + """ + Prints contained information to Python terminal + + Includes information on required parameters if they are not yet + specified. Information on the components are added when the + class is used as a superclass for classes describing each + McStas component. + + """ + if len(self.comment) > 1: + print("// " + self.comment) + print("COMPONENT", str(self.name), + "=", str(self.component_name)) + for key in self.parameter_names: + val = getattr(self, key) + parameter_name = bcolors.BOLD + key + bcolors.ENDC + if val is not None: + unit = "" + if key in self.parameter_units: + unit = "[" + self.parameter_units[key] + "]" + value = (bcolors.BOLD + + bcolors.OKGREEN + + str(val) + + bcolors.ENDC + + bcolors.ENDC) + print(" ", parameter_name, "=", value, unit) + else: + if self.parameter_defaults[key] is None: + print(" " + + parameter_name + + bcolors.FAIL + + " : Required parameter not yet specified" + + bcolors.ENDC) + + if not self.WHEN == "": + print("WHEN (" + self.WHEN + ")") + print("AT", self.AT_data, self.AT_relative) + print("ROTATED", self.ROTATED_data, self.ROTATED_relative) + if not self.GROUP == "": + print("GROUP " + self.GROUP) + if not self.EXTEND == "": + print("EXTEND %{") + print(self.EXTEND + "%}") + if not self.JUMP == "": + print("JUMP " + self.JUMP) + + def print_short(self, **kwargs): + """Prints short description of component to list print""" + if "longest_name" in kwargs: + print("test") + number_of_spaces = 3+kwargs["longest_name"]-len(self.name) + print(str(self.name) + " "*number_of_spaces, end='') + print(str(self.component_name), + "\tAT", self.AT_data, self.AT_relative, + "ROTATED", self.ROTATED_data, self.ROTATED_relative) + else: + print(str(self.name), "=", str(self.component_name), + "\tAT", self.AT_data, self.AT_relative, + "ROTATED", self.ROTATED_data, self.ROTATED_relative) + + def show_parameters(self): + """ + Shows available parameters and their defaults for the component + + Any value specified is not reflected in this view. The + additional attributes defined when McStas_Instr creates + subclasses for the individual components are required to run + this method. + + """ + + print(" ___ Help " + + self.component_name + " " + + (62-len(self.component_name))*"_") + print("|" + + bcolors.BOLD + "optional parameter" + bcolors.ENDC + "|" + + bcolors.BOLD + + bcolors.UNDERLINE + "required parameter" + bcolors.ENDC + + bcolors.ENDC + "|" + + bcolors.BOLD + + bcolors.OKBLUE + "default value" + bcolors.ENDC + + bcolors.ENDC + "|" + + bcolors.BOLD + + bcolors.OKGREEN + "user specified value" + bcolors.ENDC + + bcolors.ENDC + "|") + + for parameter in self.parameter_names: + unit = "" + if parameter in self.parameter_units: + unit = " [" + self.parameter_units[parameter] + "]" + comment = "" + if parameter in self.parameter_comments: + comment = " // " + self.parameter_comments[parameter] + + parameter_name = bcolors.BOLD + parameter + bcolors.ENDC + value = "" + if self.parameter_defaults[parameter] is None: + parameter_name = (bcolors.UNDERLINE + + parameter_name + + bcolors.ENDC) + else: + value = (" = " + + bcolors.BOLD + + bcolors.OKBLUE + + str(self.parameter_defaults[parameter]) + + bcolors.ENDC + + bcolors.ENDC) + + if getattr(self, parameter) is not None: + value = (" = " + + bcolors.BOLD + + bcolors.OKGREEN + + str(getattr(self, parameter)) + + bcolors.ENDC + + bcolors.ENDC) + + print(parameter_name + + value + + unit + + comment) + + print(73*"-") + + def show_parameters_simple(self): + """ + Shows available parameters and their defaults for the component + + Any value specified is not reflected in this view. The + additional attributes defined when McStas_Instr creates + subclasses for the individual components are required to run + this method. + + """ + print("---- Help " + self.component_name + " -----") + for parameter in self.parameter_names: + unit = "" + if parameter in self.parameter_units: + unit = " [" + self.parameter_units[parameter] + "]" + comment = "" + if parameter in self.parameter_comments: + comment = " // " + self.parameter_comments[parameter] + if self.parameter_defaults[parameter] is None: + print(parameter + + unit + + comment) + else: + print(parameter + + " = " + + str(self.parameter_defaults[parameter]) + + unit + + comment) + print("----------" + "-"*len(self.component_name) + "------") \ No newline at end of file diff --git a/mcstasscript/interface/__init__.py b/mcstasscript/interface/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/mcstasscript/interface/functions.py b/mcstasscript/interface/functions.py new file mode 100644 index 00000000..a6ca195d --- /dev/null +++ b/mcstasscript/interface/functions.py @@ -0,0 +1,63 @@ +from mcstasscript.data.data import McStasData + +def name_search(name, data_list): + """" + name_search returns McStasData instance with specific name if it is + in the given data_list + + The index of certain datasets in the data_list can change if + additional monitors are added so it is more convinient to access + the data files using their names. + + Parameters + ---------- + name : string + Name of the dataset to be retrived (component_name) + + data_list : List of McStasData instances + List of datasets to search + """ + + if not type(data_list[0]) == McStasData: + raise InputError( + "name_search function needs objects of type " + + "McStasData as input.") + + list_result = [] + for check in data_list: + if check.metadata.component_name == name: + list_result.append(check) + + if len(list_result) == 1: + return list_result[0] + else: + raise NameError("More than one match for the name search") + +def name_plot_options(name, data_list, **kwargs): + """" + name_plot_options passes keyword arguments to dataset with certain + name in given data list + + Function for quickly setting plotting options on a certain dataset + n a larger list of datasets + + Parameters + ---------- + name : string + Name of the dataset to be modified (component_name) + + data_list : List of McStasData instances + List of datasets to search + + kwargs : keyword arguments + Keyword arguments passed to set_plot_options in + McStasPlotOptions + """ + + if not isinstance(data_list[0], McStasData): + raise InputError( + "name_search function needs objects of type McStasData " + + "as input.") + + object_to_modify = name_search(name, data_list) + object_to_modify.set_plot_options(**kwargs) \ No newline at end of file diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py new file mode 100644 index 00000000..f43104d6 --- /dev/null +++ b/mcstasscript/interface/instr.py @@ -0,0 +1,980 @@ +from __future__ import print_function + +import os +import datetime + +from mcstasscript.helper.mcstas_objects import declare_variable +from mcstasscript.helper.mcstas_objects import parameter_variable +from mcstasscript.helper.mcstas_objects import component +from mcstasscript.data.data import McStasData +from mcstasscript.helper.component_reader import ComponentReader +from mcstasscript.helper.managed_mcrun import ManagedMcrun + +class McStas_instr: + """ + Main class for writing a McStas instrument using McStasScript + + Initialization of McStas_instr sets the name of the instrument file + and its methods are used to add all aspects of the instrument file. + The class also holds methods for writing the finished instrument + file to disk and to run the simulation. + + Attributes + ---------- + name : str + name of instrument file + + author : str + name of user of McStasScript, written to the file + + origin : str + origin of instrument file (affiliation) + + mcrun_path : str + absolute path of mcrun command, or empty if it is in path + + parameter_list : list of parameter_variable instances + contains all input parameters to be written to file + + declare_list : list of declare_variable instances + contains all declare parrameters to be written to file + + initialize_section : str + string containing entire initialize section to be written + + trace_section : str + string containing trace section (OBSOLETE) + + finally_section : str + string containing entire finally section to be written + + component_list : list of component instances + list of components in the instrument + + component_name_list : list of strings + list of names of the components in the instrument + + Methods + ------- + add_parameter(*args,**kwargs) + Adds input parameter to the define section + + add_declare_var() + Adds declared variable ot the declare section + + append_initialize(string) + Appends a string to the initialize section, then adds new line + + append_initialize_no_new_line(string) + Appends a string to the initialize section + + append_finally(string) + Appends a string to finally section, then adds new line + + append_finally_no_new_line(string) + Appends a string to finally section + + append_trace(string) + Obsolete method, add components instead (used in write_c_files) + + add_component(instance_name,component_name,**kwargs) + Add a component to the instrument file + + get_component(instance_name) + Returns component instance with name instance_name + + get_last_component() + Returns component instance of last component + + set_component_parameter(instance_name,dict) + Adds parameters as dict to component with instance_name + + set_component_AT(instance_name,AT_data,**kwargs) + Sets position of component named instance_name + + set_component_ROTATED(instance_name,ROTATED_data,**kwargs) + Sets rotation of component named instance_name + + set_component_RELATIVE(instane_name,string) + Sets position and rotation reference for named component + + set_component_WHEN(instance_name,string) + Sets WHEN condition of named component, is logical c expression + + set_component_GROUP(instance_name,string) + Sets GROUP name of component named instance_name + + append_component_EXTEND(instance_name,string) + Appends a line to EXTEND section of named component + + set_component_JUMP(instance_name,string) + Sets JUMP code for named component + + set_component_comment(instance_name,string) + Sets comment to be written before named component + + print_component(instance_name) + Prints an overview of current state of named component + + print_component_short(instance_name) + Prints short overview of current state of named component + + print_components() + Prints overview of postion / rotation of all components + + write_c_files() + Writes c files for %include in generated_includes folder + + write_full_instrument() + Writes full instrument file to current directory + + run_full_instrument(**kwargs) + Writes instrument files and runs simulation. + Returns list of McStasData + """ + + def __init__(self, name, **kwargs): + """ + Initialization of McStas Instrument + + Parameters + ---------- + name : str + Name of project, instrument file will be name + ".instr" + + keyword arguments: + author : str + Name of author, written in instrument file + + origin : str + Affiliation of author, written in instrument file + + mcrun_path : str + Absolute path of mcrun or empty if already in path + """ + + self.name = name + + if "author" in kwargs: + self.author = kwargs["author"] + else: + self.author = "Python McStas Instrument Generator" + + if "origin" in kwargs: + self.origin = kwargs["origin"] + else: + self.origin = "ESS DMSC" + + if "mcrun_path" in kwargs: + self.mcrun_path = kwargs["mcrun_path"] + else: + self.mcrun_path = "" + + if "mcstas_path" in kwargs: + self.mcstas_path = kwargs["mcstas_path"] + else: + self.mcstas_path = "" + raise NameError("At this stage of development " + + "McStasScript need the absolute path " + + "for the McStas installation as keyword " + + "named mcstas_path") + + self.parameter_list = [] + self.declare_list = [] + self.initialize_section = ("// Start of initialize for generated " + + name + "\n") + self.trace_section = ("// Start of trace section for generated " + + name + "\n") + self.finally_section = ("// Start of finally for generated " + + name + "\n") + # Handle components + self.component_list = [] # List of components (have to be ordered) + self.component_name_list = [] # List of component names + + # Read info on active McStas components + self.component_reader = ComponentReader(self.mcstas_path) + self.component_class_lib = {} + + def add_parameter(self, *args, **kwargs): + """ + Method for adding input parameter to instrument + + Parameters + ---------- + + (optional) parameter type : str + type of input parameter, double, int, string + + parameter name : str + name of parameter + + keyword arguments + value : any + Default value of parameter + + comment : str + Comment displayed next to declaration of parameter + """ + # parameter_variable class documented independently + self.parameter_list.append(parameter_variable(*args, **kwargs)) + + def add_declare_var(self, *args, **kwargs): + """ + Method for adding declared variable to instrument + + Parameters + ---------- + + parameter type : str + type of input parameter + + parameter name : str + name of parameter + + keyword arguments + array : int + default 0 for scalar, if specified length of array + + value : any + Initial value of parameter, can be list of length vector + + comment : str + Comment displayed next to declaration of parameter + + """ + # declare_variable class documented independently + self.declare_list.append(declare_variable(*args, **kwargs)) + + def append_initialize(self, string): + """ + Method for appending code to the intialize section + + The intialize section consists of c code and will be compiled, + thus any syntax errors will crash the simulation. Code is added + on a new line for each call to this method. + + Parameters + ---------- + string : str + code to be added to initialize section + """ + self.initialize_section = self.initialize_section + string + "\n" + + def append_initialize_no_new_line(self, string): + """ + Method for appending code to the intialize section, no new line + + The intialize section consists of c code and will be compiled, + thus any syntax errors will crash the simulation. Code is added + to the current line. + + Parameters + ---------- + string : str + code to be added to initialize section + + """ + + self.initialize_section = self.initialize_section + string + + def append_finally(self, string): + """ + Method for appending code to the finally section of instrument + + The finally section consists of c code and will be compiled, + thus any syntax errors will crash the simulation. Code is added + on a new line for each call to this method. + + Parameters + ---------- + string : str + code to be added to finally section + + """ + + self.finally_section = self.finally_section + string + "\n" + + def append_finally_no_new_line(self, string): + """ + Method for appending code to the finally section of instrument + + The finally section consists of c code and will be compiled, + thus any syntax errors will crash the simulation. Code is added + to the current line. + + Parameters + ---------- + string : str + code to be added to finally section + """ + + self.finally_section = self.finally_section + string + + """ + # Handle trace string differently when components also exists + # A) Coul d have trace string as a component attribute and set + # it before / after + # B) Could have trace string as a McStas_instr attribute and + # still attach placement to components + # C) Could have trace string as a different object and place it + # in component_list, but have a write function named as the + # component write function? + """ + + def append_trace(self, string): + """ + Appends code to trace section, only used in write_c_files + + The most common way to add code to the trace section is to add + components using the seperate methods for this. This method is + kept as is still used for writing to c files used in legacy + code. Each call creates a new line. + + Parameters + ---------- + string : str + code to be added to trace + """ + + self.trace_section = self.trace_section + string + "\n" + + def append_trace_no_new_line(self, string): + """ + Appends code to trace section, only used in write_c_files + + The most common way to add code to the trace section is to add + components using the seperate methods for this. This method is + kept as is still used for writing to c files used in legacy + code. No new line is made with this call. + + Parameters + ---------- + string : str + code to be added to trace + """ + + self.trace_section = self.trace_section + string + + def show_components(self, *args): + """ + Helper method that shows available components to the user + + If called without any arguments it will display the available + component categories. The first input + + """ + if len(args) == 0: + print("Here are the availalbe component categories:") + self.component_reader.show_categories() + print("Call show_components(category_name) to display") + + else: + category = args[0] + print("Here are all components in the " + + category + + " category.") + self.component_reader.show_components_in_category(category) + + def component_help(self, name): + """ + Method for showing parameters for a component before adding it + to the instrument + + """ + + dummy_instance = self._create_component_instance("dummy", name) + dummy_instance.show_parameters() + + def _create_component_instance(self, *args, **kwargs): + """ + Dynamically creates a class for the requested component type + + Created classses kept in dictionary, if the same component type + is requested again, the class in the dictionary is used. The + method returns an instance of the created class that was + initialized with the paramters passed to this function. + """ + + if len(args) < 2: + raise NameError("Attempting to create component without name") + + component_name = args[1] + + if component_name not in self.component_class_lib: + comp_info = self.component_reader.read_name(component_name) + + input_dict = {} + input_dict = {key: None for key in comp_info.parameter_names} + input_dict["parameter_names"] = comp_info.parameter_names + input_dict["parameter_defaults"] = comp_info.parameter_defaults + input_dict["parameter_types"] = comp_info.parameter_types + input_dict["parameter_units"] = comp_info.parameter_units + input_dict["parameter_comments"] = comp_info.parameter_comments + input_dict["category"] = comp_info.category + + self.component_class_lib[component_name] = type(component_name, + (component,), + input_dict) + + return self.component_class_lib[component_name](*args, **kwargs) + + def add_component(self, *args, **kwargs): + """ + Method for adding a new component instance to the instrument + + Creates a new component instance in the instrument. This + requires a unique instance name of the component to be used for + future reference and the name of the McStas component to be + used. The component is placed at the end of the instrument file + unless otherwise specified with the after and before keywords. + The component may be initialized using other keyword arguments, + but all attributes can be set with approrpiate methods. + + Parameters + ---------- + First positional argument : str + Unique name of component instance + + Second positional argument : str + Name of McStas component to create instance of + + Keyword arguments: + after : str + Place this component after component with given name + + before : str + Place this component before component with given name + + AT : List of 3 floats + Sets AT_data, position relative to reference + + AT_RELATIVE : str + Sets reference component for postion + + ROTATED : List of 3 floats + Sets ROTATED_data, rotation relative to reference + + ROTATED_RELATIVE : str + Sets reference component for rotation + + RELATIVE : str + Sets reference component for both position and rotation + + WHEN : str + Sets when condition which must be a logical c expression + + EXTEND : str + Initialize the extend section with a line of c code + + GROUP : str + Name of the group this component should belong to + + JUMP : str + Set code for McStas JUMP statement + + comment : str + Comment that will be displayed before the component + """ + + if args[0] in self.component_name_list: + raise NameError(("Component name \"" + str(args[0]) + + "\" used twice, McStas does not allow this." + + " Rename or remove one instance of this" + + " name.")) + + # Insert component after component with this name + if "after" in kwargs: + if kwargs["after"] not in self.component_name_list: + raise NameError(("Trying to add a component after a component" + + " named \"" + str(kwargs["after"]) + + "\", but a component with that name was" + + " not found.")) + + new_index = self.component_name_list.index(kwargs["after"]) + + new_component = self._create_component_instance(*args, **kwargs) + self.component_list.insert(new_index + 1, new_component) + + self.component_name_list.insert(new_index+1, args[0]) + + # Insert component after component with this name + elif "before" in kwargs: + if kwargs["before"] not in self.component_name_list: + raise NameError(("Trying to add a component before a " + + "component named \"" + + str(kwargs["before"]) + + "\", but a component with that " + + "name was not found.")) + + new_index = self.component_name_list.index(kwargs["before"]) + + new_component = self._create_component_instance(*args, **kwargs) + self.component_list.insert(new_index, new_component) + + self.component_name_list.insert(new_index, args[0]) + + # If after or before keywords absent, place component at the end + else: + new_component = self._create_component_instance(*args, **kwargs) + self.component_list.append(new_component) + self.component_name_list.append(args[0]) + + return new_component + + def get_component(self, name): + """ + Get the component instance of component with specified name + + This method is used to get direct access to any component + instance in the instrument. The component instance can be + manipulated in much the same way, but it is not necessary to + specify the name in each call. + + Parameters + ---------- + name : str + Unique name of component whos instance should be returned + """ + + if name in self.component_name_list: + index = self.component_name_list.index(name) + return self.component_list[index] + else: + raise NameError(("No component was found with name \"" + + str(name) + "\"!")) + + def get_last_component(self): + """ + Get the component instance of last component in the instrument + + This method is used to get direct access to any component + instance in the instrument. The component instance can be + manipulated in much the same way, but it is not necessary to + specify the name in each call. + """ + + return self.component_list[-1] + + def set_component_parameter(self, name, input_dict): + """ + Add parameters and their values as dictionary to component + + This method is the primary way of specifying parameters in a + component. Parameters are added to a dictionary specifying + parameter name and value pairs. + + Parameters + ---------- + name : str + Unique name of component to modify + + input_dict : dict + Set of new parameter name and value pairs to add + """ + + component = self.get_component(name) + component.set_parameters(input_dict) + + def set_component_AT(self, name, at_list, **kwargs): + """ + Method for setting position of component + + Parameters + ---------- + name : str + Unique name of component to modify + + at_list : List of 3 floats + Position of component relative to reference component + + keyword arguments: + RELATIVE : str + Sets reference component for position + """ + + component = self.get_component(name) + component.set_AT(at_list, **kwargs) + + def set_component_ROTATED(self, name, rotated_list, **kwargs): + """ + Method for setting rotiation of component + + Parameters + ---------- + name : str + Unique name of component to modify + + rotated_list : List of 3 floats + Rotation of component relative to reference component + + keyword arguments: + RELATIVE : str + Sets reference component for rotation + """ + + component = self.get_component(name) + component.set_ROTATED(rotated_list, **kwargs) + + def set_component_RELATIVE(self, name, relative): + """ + Method for setting reference of component position and rotation + + Parameters + ---------- + name : str + Unique name of component to modify + + relative : str + Reference component for position and rotation + """ + + component = self.get_component(name) + component.set_RELATIVE(relative) + + def set_component_WHEN(self, name, WHEN): + """ + Method for setting WHEN c expression to named component + + Parameters + ---------- + name : str + Unique name of component to modify + + WHEN : str + Sets WHEN c expression for named McStas component + """ + component = self.get_component(name) + component.set_WHEN(WHEN) + + def append_component_EXTEND(self, name, EXTEND): + """ + Method for adding line of c to EXTEND section of named component + + Parameters + ---------- + name : str + Unique name of component to modify + + EXTEND : str + Line of c code added to EXTEND section of named component + """ + + component = self.get_component(name) + component.append_EXTEND(EXTEND) + + def set_component_GROUP(self, name, GROUP): + """ + Method for setting GROUP name of named component + + Parameters + ---------- + name : str + Unique name of component to modify + + GROUP : str + Sets GROUP name for named McStas component + """ + + component = self.get_component(name) + component.set_GROUP(GROUP) + + def set_component_JUMP(self, name, JUMP): + """ + Method for setting JUMP expression of named component + + Parameters + ---------- + name : str + Unique name of component to modify + + JUMP : str + Sets JUMP expression for named McStas component + """ + + component = self.get_component(name) + component.set_JUMP(JUMP) + + def set_component_comment(self, name, string): + """ + Sets a comment displayed before the component in written files + + Parameters + ---------- + name : str + Unique name of component to modify + + string : str + Comment string + + """ + + component = self.get_component(name) + component.set_comment(string) + + def print_component(self, name): + """ + Method for printing summary of contents in named component + + Parameters + ---------- + name : str + Unique name of component to print + """ + + component = self.get_component(name) + component.print_long() + + def print_component_short(self, name): + """ + Method for printing summary of contents in named component + + Parameters + ---------- + name : str + Unique name of component to print + """ + + component = self.get_component(name) + component.print_short() + + def print_components(self): + """ + Method for printing overview of all components in instrument + + Provides overview of component names, what McStas component is + used for each and their position and rotation in space. + """ + + longest_name = len(max(self.component_name_list, key=len)) + + # Investigate how this could have been done in a better way + # Find longest field for each type of data printed + component_type_list = [] + at_x_list = [] + at_y_list = [] + at_z_list = [] + at_relative_list = [] + rotated_x_list = [] + rotated_y_list = [] + rotated_z_list = [] + rotated_relative_list = [] + for component in self.component_list: + component_type_list.append(component.component_name) + at_x_list.append(str(component.AT_data[0])) + at_y_list.append(str(component.AT_data[1])) + at_z_list.append(str(component.AT_data[2])) + at_relative_list.append(component.AT_relative) + rotated_x_list.append(str(component.ROTATED_data[0])) + rotated_y_list.append(str(component.ROTATED_data[1])) + rotated_z_list.append(str(component.ROTATED_data[2])) + rotated_relative_list.append(component.ROTATED_relative) + + longest_component_name = len(max(component_type_list, key=len)) + longest_at_x_name = len(max(at_x_list, key=len)) + longest_at_y_name = len(max(at_y_list, key=len)) + longest_at_z_name = len(max(at_z_list, key=len)) + longest_at_relative_name = len(max(at_relative_list, key=len)) + longest_rotated_x_name = len(max(rotated_x_list, key=len)) + longest_rotated_y_name = len(max(rotated_y_list, key=len)) + longest_rotated_z_name = len(max(rotated_z_list, key=len)) + longest_rotated_relative_name = len(max(rotated_relative_list, + key=len)) + + # Have longest field for each type, use ljust to align all columns + for component in self.component_list: + print(str(component.name).ljust(longest_name+2), end=' ') + + comp_name = component.component_name + comp_name_print = str(comp_name).ljust(longest_component_name + 2) + print(comp_name_print, end=' ') + + comp_at_data = str(component.AT_data) + longest_at_xyz_sum = (longest_at_x_name + + longest_at_y_name + + longest_at_z_name) + print("AT ", + comp_at_data.ljust(longest_at_xyz_sum + 11), + end='') + + comp_at_relative = component.AT_relative + print(comp_at_relative.ljust(longest_at_relative_name + 2), + end=' ') + + comp_rotated_data = str(component.ROTATED_data) + longest_rotated_xyz_sum = (longest_rotated_x_name + + longest_rotated_y_name + + longest_rotated_z_name) + print("ROTATED ", + comp_rotated_data.ljust(longest_rotated_xyz_sum + 11), + end='') + print(component.ROTATED_relative) + # print("") + + def write_c_files(self): + """ + Obsolete method for writing instrument parts to c files + + It is possible to use this function to write c files to a folder + called generated_includes that can then be included in the + different sections of a McStas instrument. Component objects are + NOT written to these files, but rather the contents of the + trace_section that can be set using the append_trace method. + """ + path = os.getcwd() + path = path + "/generated_includes" + if not os.path.isdir(path): + try: + os.mkdir(path) + except OSError: + print("Creation of the directory %s failed" % path) + + fo = open("./generated_includes/" + self.name + "_declare.c", "w") + fo.write("// declare section for %s \n" % self.name) + fo.close() + fo = open("./generated_includes/" + self.name + "_declare.c", "a") + for dec_line in self.declare_list: + dec_line.write_line(fo) + fo.write("\n") + fo.close() + + fo = open("./generated_includes/" + self.name + "_initialize.c", "w") + fo.write(self.initialize_section) + fo.close() + + fo = open("./generated_includes/" + self.name + "_trace.c", "w") + fo.write(self.trace_section) + fo.close() + + fo = open("./generated_includes/" + self.name + + "_component_trace.c", "w") + for component in self.component_list: + component.write_component(fo) + fo.close() + + def write_full_instrument(self): + """ + Method for writing full instrument file to disk + + This method writes the instrument described by the instrument + objects to disk with the name specified in the initialization of + the object. + """ + + # Create file identifier + fo = open(self.name + ".instr", "w") + + # Write quick doc start + fo.write("/" + 80*"*" + "\n") + fo.write("* \n") + fo.write("* McStas, neutron ray-tracing package\n") + fo.write("* Copyright (C) 1997-2008, All rights reserved\n") + fo.write("* Risoe National Laboratory, Roskilde, Denmark\n") + fo.write("* Institut Laue Langevin, Grenoble, France\n") + fo.write("* \n") + fo.write("* This file was written by McStasScript, which is a \n") + fo.write("* python based McStas instrument generator written by \n") + fo.write("* Mads Bertelsen in 2019 while employed at the \n") + fo.write("* European Spallation Source Data Management and \n") + fo.write("* Software Center\n") + fo.write("* \n") + fo.write("* Instrument %s\n" % self.name) + fo.write("* \n") + fo.write("* %Identification\n") # Could allow the user to insert this + fo.write("* Written by: %s\n" % self.author) + t_format = "%H:%M:%S on %B %d, %Y" + fo.write("* Date: %s\n" % datetime.datetime.now().strftime(t_format)) + fo.write("* Origin: %s\n" % self.origin) + fo.write("* %INSTRUMENT_SITE: Generated_instruments\n") + fo.write("* \n") + fo.write("* \n") + fo.write("* %Parameters\n") + # Add description of parameters here + fo.write("* \n") + fo.write("* %End \n") + fo.write("*"*80 + "/\n") + fo.write("\n") + fo.write("DEFINE INSTRUMENT %s (" % self.name) + fo.write("\n") + # Add loop that inserts parameters here + for variable in self.parameter_list[0:-1]: + variable.write_parameter(fo, ",") + if len(self.parameter_list) > 0: + self.parameter_list[-1].write_parameter(fo, " ") + fo.write(")\n") + fo.write("\n") + + # Write declare + fo.write("DECLARE \n%{\n") + for dec_line in self.declare_list: + dec_line.write_line(fo) + fo.write("\n") + fo.write("%}\n\n") + + # Write initialize + fo.write("INITIALIZE \n%{\n") + fo.write(self.initialize_section) + # Alternatively hide everything in include + """ + fo.write("%include "generated_includes/" + + self.name + "_initialize.c") + """ + fo.write("%}\n\n") + + # Write trace + fo.write("TRACE \n") + for component in self.component_list: + component.write_component(fo) + + # Write finally + fo.write("FINALLY \n%{\n") + fo.write(self.finally_section) + # Alternatively hide everything in include + fo.write("%}\n") + + # End instrument file + fo.write("\nEND\n") + + def run_full_instrument(self, *args, **kwargs): + """ + Runs McStas instrument described by this class, returns list of + McStasData + + This method will write the instrument to disk and then run it + using the mcrun command of the system. Options are set using + keyword arguments. Some options are mandatory, for example + foldername, which can not already exist, if it does data will + be read from this folder. If the mcrun command is not in the + path of the system, the absolute path can be given with the + mcrun_path keyword argument. This path could also already have + been set at initialization of the instrument object. + + Parameters + ---------- + Keyword arguments + foldername : str + Sets data_folder_name + ncount : int + Sets ncount + mpi : int + Sets thread count + parameters : dict + Sets parameters + custom_flags : str + Sets custom_flags passed to mcrun + mcrun_path : str + Path to mcrun command, "" if already in path + """ + # Write the instrument file + self.write_full_instrument() + + # Make sure mcrun path is in kwargs + if "mcrun_path" not in kwargs: + kwargs["mcrun_path"] = self.mcrun_path + + # Set up the simulation + simulation = ManagedMcrun(self.name + ".instr", **kwargs) + + # Run the simulation and return data + return simulation.run_simulation() + + diff --git a/mcstasscript/interface/plotter.py b/mcstasscript/interface/plotter.py new file mode 100644 index 00000000..efa9b7b7 --- /dev/null +++ b/mcstasscript/interface/plotter.py @@ -0,0 +1,308 @@ +import math +import numpy as np +import matplotlib +import matplotlib.pyplot as plt +from matplotlib.colors import BoundaryNorm +from matplotlib.ticker import MaxNLocator +from openpyxl.worksheet import dimensions +from boto.ec2.autoscale import limits + +from mcstasscript.data.data import McStasMetaData +from mcstasscript.data.data import McStasPlotOptions +from mcstasscript.data.data import McStasData + +class make_plot: + """ + make_plot plots contents of McStasData objects + + Plotting is controlled through options assosciated with the + McStasData objects. + + If a list is given, the plots appear individually. + """ + + def __init__(self, data_list): + """ + plots McStasData, single object or list of McStasData + + The options concerning plotting are stored with the data + + Parameters + ---------- + data_list : McStasData or list of McStasData + McStasData to be plotted + """ + + # Relevant options: + # select colormap + # show / hide colorbar + # custom title / label + # color of 1d plot + # overlay several 1d + # log scale (orders of magnitude) + # compare several 1d + # compare 2D + + if isinstance(data_list, McStasData): + # Only a single element, put it in a list for easier syntax later + data_list = [data_list] + + number_of_plots = len(data_list) + + print("number of elements in data list = " + str(len(data_list))) + + index = -1 + for data in data_list: + index = index + 1 + + print("Plotting data with name " + data.metadata.component_name) + if type(data.metadata.dimension) == int: + fig = plt.figure(0) + + # print(data.T) + x = data.xaxis + y = data.Intensity + y_err = data.Error + + plt.errorbar(x, y, yerr=y_err) + + if data.plot_options.log: + ax0.set_yscale("log", nonposy='clip') + + plt.xlim(data.metadata.limits[0], data.metadata.limits[1]) + + # Add a title + plt.title(data.metadata.title) + + # Add axis labels + plt.xlabel(data.metadata.xlabel) + plt.ylabel(data.metadata.ylabel) + + elif len(data.metadata.dimension) == 2: + + # Split the data into intensity, error and ncount + Intensity = data.Intensity + Error = data.Error + Ncount = data.Ncount + + if data.plot_options.log: + min_value = np.min(Intensity[np.nonzero(Intensity)]) + min_value = np.log10(min_value) + + to_plot = np.log10(Intensity) + + max_value = to_plot.max() + + if (max_value - min_value + > data.plot_options.orders_of_mag): + min_value = (max_value + - data.plot_options.orders_of_mag) + else: + to_plot = Intensity + min_value = to_plot.min() + max_value = to_plot.max() + + # Check the size of the array to be plotted + # print(to_plot.shape) + + # Set the axis (might be switched?) + X = np.linspace(data.metadata.limits[0], + data.metadata.limits[1], + data.metadata.dimension[0]+1) + Y = np.linspace(data.metadata.limits[2], + data.metadata.limits[3], + data.metadata.dimension[1]) + + # Create a meshgrid for both x and y + y, x = np.meshgrid(Y, X) + + # Generate information on necessary colorrange + levels = MaxNLocator(nbins=150).tick_values(min_value, + max_value) + + # Select colormap + cmap = plt.get_cmap('hot') + norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) + + # Create the figure + fig, (ax0) = plt.subplots() + + # Plot the data on the meshgrids + if data.plot_options.log: + color_norm = matplotlib.colors.LogNorm(vmin=min_value, + vmax=max_value) + im = ax0.pcolormesh(x, y, to_plot, + cmap=cmap, norm=color_norm) + else: + im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) + + # Add the colorbar + fig.colorbar(im, ax=ax0) + + # Add a title + ax0.set_title(data.metadata.title) + + # Add axis labels + plt.xlabel(data.metadata.xlabel) + plt.ylabel(data.metadata.ylabel) + + else: + print("Error, dimension not read correctly") + + plt.show() + + +class make_sub_plot: + """ + make_plot plots contents of McStasData objects + + Plotting is controlled through options assosciated with the + McStasData objects. If a list is given, the plots appear in one + subplot. + """ + + def __init__(self, data_list): + """ + plots McStasData, single object or list of McStasData + + The options concerning plotting are stored with the data + + Parameters + ---------- + data_list : McStasData or list of McStasData + McStasData to be plotted + """ + if not isinstance(data_list, McStasData): + print("number of elements in data list = " + + str(len(data_list))) + else: + # Make list from single element to simplify syntax + data_list = [data_list] + + number_of_plots = len(data_list) + + # Relevant options: + # select colormap + # show / hide colorbar + # custom title / label + # color of 1d plot + # overlay several 1d + # log scale (o$rders of magnitude) + # compare several 1d + # compare 2D + + # Find reasonable grid size for the number of plots + dim2 = math.ceil(math.sqrt(number_of_plots)) + dim1 = math.ceil(number_of_plots/dim2) + + fig, axs = plt.subplots(dim1, dim2, figsize=(13, 7)) + axs = np.array(axs) + ax = axs.reshape(-1) + + index = -1 + for data in data_list: + index = index + 1 + ax0 = ax[index] + + print("Plotting data with name " + + data.metadata.component_name) + + if isinstance(data.metadata.dimension, int): + # fig = plt.figure(0) + # plt.subplot(dim1, dim2, n_plot) + x = data.xaxis + y = data.Intensity + y_err = data.Error + + ax0.errorbar(x, y, yerr=y_err) + + if data.plot_options.log: + ax0.set_yscale("log", nonposy='clip') + + ax0.set_xlim(data.metadata.limits[0], + data.metadata.limits[1]) + + # Add a title + # ax0.title(data.title) + + # Add axis labels + ax0.set_xlabel(data.metadata.xlabel) + ax0.set_ylabel(data.metadata.ylabel) + + elif len(data.metadata.dimension) == 2: + + # Split the data into intensity, error and ncount + Intensity = data.Intensity + Error = data.Error + Ncount = data.Ncount + + if data.plot_options.log: + min_value = np.min(Intensity[np.nonzero(Intensity)]) + min_value = np.log10(min_value) + + to_plot = Intensity + + max_value = np.log10(to_plot.max()) + + if (max_value - min_value + > data.plot_options.orders_of_mag): + min_value = (max_value + - data.plot_options.orders_of_mag) + min_value = 10.0 ** min_value + max_value = 10.0 ** max_value + else: + to_plot = Intensity + min_value = to_plot.min() + max_value = to_plot.max() + + # Check the size of the array to be plotted + # print(to_plot.shape) + + # Set the axis (might be switched?) + X = np.linspace(data.metadata.limits[0], + data.metadata.limits[1], + data.metadata.dimension[0]+1) + Y = np.linspace(data.metadata.limits[2], + data.metadata.limits[3], + data.metadata.dimension[1]) + + # Create a meshgrid for both x and y + y, x = np.meshgrid(Y, X) + + # Generate information on necessary colorrange + levels = MaxNLocator(nbins=150).tick_values(min_value, + max_value) + + # Select colormap + cmap = plt.get_cmap(data.plot_options.colormap) + + # Select the colorscale normalization + if data.plot_options.log: + norm = matplotlib.colors.LogNorm(vmin=min_value, + vmax=max_value) + else: + norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) + + # Create plot + im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) + + def fmt(x, pos): + a, b = '{:.2e}'.format(x).split('e') + b = int(b) + return r'${} \times 10^{{{}}}$'.format(a, b) + + # Add the colorbar + fig.colorbar(im, ax=ax0, + format=matplotlib.ticker.FuncFormatter(fmt)) + + # Add a title + ax0.set_title(data.metadata.title) + + # Add axis labels + ax0.set_xlabel(data.metadata.xlabel) + ax0.set_ylabel(data.metadata.ylabel) + + else: + print("Error, dimension not read correctly") + + plt.show() \ No newline at end of file From d2522f0c9a9f2ec4615416230a939470194cc497 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Mon, 13 May 2019 15:03:19 +0200 Subject: [PATCH 014/403] Main code moved from monolithic file to restructured package, see last commit. Examples moved to example folder. This commit just deletes the previous versions. --- McStasScript.py | 3003 --------------------------------------- McStasScript_demo.ipynb | 495 ------- demonstration.py | 100 -- 3 files changed, 3598 deletions(-) delete mode 100644 McStasScript.py delete mode 100644 McStasScript_demo.ipynb delete mode 100644 demonstration.py diff --git a/McStasScript.py b/McStasScript.py deleted file mode 100644 index c975d208..00000000 --- a/McStasScript.py +++ /dev/null @@ -1,3003 +0,0 @@ -"""McStasScript classes written by Mads Bertelsen, ESS, DMSC - -API for writing and running McStas instruments -""" - -from __future__ import print_function - -__author__ = "Mads Bertelsen" - -import datetime -import os -import time -import math - -import numpy as np -import matplotlib -import matplotlib.pyplot as plt -from matplotlib.colors import BoundaryNorm -from matplotlib.ticker import MaxNLocator -from openpyxl.worksheet import dimensions -from boto.ec2.autoscale import limits -# From builtins import False, True - -try: # Check whether python knows about 'basestring' - basestring -except NameError: # No, it doesn't (it's Python3); use 'str' instead - basestring = str - - -class bcolors: - HEADER = '\033[95m' - OKBLUE = '\033[94m' - OKGREEN = '\033[92m' - WARNING = '\033[93m' - FAIL = '\033[91m' - ENDC = '\033[0m' - BOLD = '\033[1m' - UNDERLINE = '\033[4m' - - -class McStasMetaData: - """ - Class for holding metadata for McStas dataset, is to be read from - mccode.sim file. - - Attributes - ---------- - info : dict - Contains read strings from mccode.sim in key, value - - dimension : Int or List of Int - Int for 1d data set with lenght of data, Array for 2d with each - length - - component_name : str - Name of component in McStas file - - filename : str - Name of data file to read - - limits : List - Limits for monitor, length=2 for 1d data and length=4 for 2d - data - - title : str - Title of monitor when plotting - - xlabel : str - Text for xlabel when plotting - - ylabel : str - Text for ylabel when plotting - - Methods - ------- - add_info(key,value) - Adds a element to the info dictionary - - extract_info() - Unpacks the information in info to class attributes - - set_title(string) - Overwrites current title - - set_xlabel(string) - Overwrites current xlabel - - set_ylabel(string) - Overwrites current ylabel - """ - - def __init__(self): - """Creating a new instance, no parameters""" - self.info = {} - - def add_info(self, key, value): - """Adding information to info dict""" - self.info[key] = value - - def extract_info(self): - """Extracting information from info dict to class attributes""" - - # Extract dimension - if "type" in self.info: - type = self.info["type"] - if "array_1d" in type: - self.dimension = int(type[9:-2]) - if "array_2d" in type: - self.dimension = [] - type_strings = self.info["type"].split(",") - temp_str = type_strings[0] - self.dimension.append(int(temp_str[9:])) - temp_str = type_strings[1] - self.dimension.append(int(temp_str[1:-2])) - else: - raise NameError("No type in mccode data section!") - - # Extract component name - if "component" in self.info: - self.component_name = self.info["component"].rstrip() - - # Extract filename - if "filename" in self.info: - self.filename = self.info["filename"].rstrip() - else: - raise NameError( - "No filename found in mccode data section!") - - # Extract limits - self.limits = [] - if "xylimits" in self.info: - # find the four numbers - temp_str = self.info["xylimits"] - limits_string = temp_str.split() - for limit in limits_string: - self.limits.append(float(limit)) - - if "xlimits" in self.info: - # find the two numbers - temp_str = self.info["xlimits"] - limits_string = temp_str.split() - for limit in limits_string: - self.limits.append(float(limit)) - - # Extract plotting labels and title - if "xlabel" in self.info: - self.xlabel = self.info["xlabel"].rstrip() - if "ylabel" in self.info: - self.ylabel = self.info["ylabel"].rstrip() - if "title" in self.info: - self.title = self.info["title"].rstrip() - - def set_title(self, string): - """Sets title for plotting""" - self.title = string - - def set_xlabel(self, string): - """Sets xlabel for plotting""" - self.xlabel = string - - def set_ylabel(self, string): - """Sets ylabel for plotting""" - self.ylabel = string - - -class McStasPlotOptions: - """ - Class that holds plotting options related to McStas data set - - Attributes - ---------- - log : bool - To plot on logarithmic or not, standard is linear - - orders_of_mag : float - If plotting on log scale, restrict max range to orders_of_mag - below maximum value - - colormap : string - Chosen colormap for 2d data, should be available in matplotlib - - Methods - ------- - set_options(keyword arguments) - Can set the class attributes using keyword options - - """ - - def __init__(self, *args, **kwargs): - """Setting default values for plotting preferences""" - self.log = False - self.orders_of_mag = 300 - self.colormap = "jet" - - def set_options(self, **kwargs): - """Set custom values for plotting preferences""" - if "log" in kwargs: - log_input = kwargs["log"] - if type(log_input) == int: - if log_input == 0: - self.log = False - else: - self.log = True - elif type(log_input) == bool: - self.log = log_input - else: - raise NameError( - "Log input must be either Int or Bool.") - - if "orders_of_mag" in kwargs: - self.orders_of_mag = kwargs["orders_of_mag"] - - if "colormap" in kwargs: - self.colormap = kwargs["colormap"] - - -class McStasData: - """ - Class for holding full McStas dataset with data, metadata and - plotting preferences - - Attributes - ---------- - metadata : McStasMetaData instance - Holds the metadata for the dataset - - name : str - Name of component, extracted from metadata - - Intensity : numpy array - Intensity data [n/s] in 1d or 2d numpy array, dimension in - metadata - - Error : numpy array - Error data [n/s] in 1d or 2d numpy array, same dimensions as - Intensity - - Ncount : numpy array - Number of rays in bin, 1d or 2d numpy array, same dimensions as - Intensity - - plot_options : McStasPlotOptions instance - Holds the plotting preferences for the dataset - - Methods - ------- - set_xlabel : string - sets xlabel of data for plotting - - set_ylabel : string - sets ylabel of data for plotting - - set_title : string - sets title of data for plotting - - set_optons : keyword arguments - sets plot options, keywords passed to McStasPlotOptions method - """ - - def __init__(self, metadata, intensity, error, ncount, **kwargs): - """ - Initialize a new McStas dataset, 4 positional arguments, pass - xaxis as kwarg if 1d data - - Parameters - ---------- - metadata : McStasMetaData instance - Holds the metadata for the dataset - - name : str - Name of component, extracted from metadata - - intensity : numpy array - Intensity data [n/s] in 1d or 2d numpy array, dimension in - metadata - - error : numpy array - Error data [n/s] in 1d or 2d numpy array, same dimensions - as Intensity - - ncount : numpy array - Number of rays in bin, 1d or 2d numpy array, same - dimensions as Intensity - - kwargs : keyword arguments - xaxis is required for 1d data - """ - - # attatch meta data - self.metadata = metadata - # get name from metadata - self.name = self.metadata.component_name - # three basic arrays from positional arguments - self.Intensity = intensity - self.Error = error - self.Ncount = ncount - - if type(self.metadata.dimension) == int: - if "xaxis" in kwargs: - self.xaxis = kwargs["xaxis"] - else: - raise NameError( - "ERROR: Initialization of McStasData done with 1d " - + "data, but without xaxis" + self.name + "!") - - self.plot_options = McStasPlotOptions() - - # Methods xlabel, ylabel and title as they might not be found - def set_xlabel(self, string): - self.metadata.set_xlabel(string) - - def set_ylabel(self, string): - self.metadata.set_ylabel(string) - - def set_title(self, string): - self.metadata.set_title(string) - - def set_plot_options(self, **kwargs): - self.plot_options.set_options(**kwargs) - -def name_search(name, data_list): - """" - name_search returns McStasData instance with specific name if it is - in the given data_list - - The index of certain datasets in the data_list can change if - additional monitors are added so it is more convinient to access - the data files using their names. - - Parameters - ---------- - name : string - Name of the dataset to be retrived (component_name) - - data_list : List of McStasData instances - List of datasets to search - """ - - if not type(data_list[0]) == McStasData: - raise InputError( - "name_search function needs objects of type " - + "McStasData as input.") - - list_result = [] - for check in data_list: - if check.metadata.component_name == name: - list_result.append(check) - - if len(list_result) == 1: - return list_result[0] - else: - raise NameError("More than one match for the name search") - -def name_plot_options(name, data_list, **kwargs): - """" - name_plot_options passes keyword arguments to dataset with certain - name in given data list - - Function for quickly setting plotting options on a certain dataset - n a larger list of datasets - - Parameters - ---------- - name : string - Name of the dataset to be modified (component_name) - - data_list : List of McStasData instances - List of datasets to search - - kwargs : keyword arguments - Keyword arguments passed to set_plot_options in - McStasPlotOptions - """ - - if not isinstance(data_list[0], McStasData): - raise InputError( - "name_search function needs objects of type McStasData " - + "as input.") - - object_to_modify = name_search(name, data_list) - object_to_modify.set_plot_options(**kwargs) - - -class ManagedMcrun: - """ - A class for performing a mcstas simulation and organizing the data - into python objects - - ManagedMcrun is usually called by the instrument class of - McStasScript but can be used independently. It runs the mcrun - command using the system command, and if this is not in the path, - the absolute path can be given in a keyword argument mcrun_path. - - Attributes - ---------- - name_of_instrumentfile : str - Name of instrument file to be executed - - data_folder_name : str - Name of datafolder mcrun writes to disk - - ncount : int - Number of rays to simulate - - mpi : int - Number of mpi threads to run - - parameters : dict - Dictionary of parameter names and values for this simulation - - custom_flags : string - Custom flags that are passed to the mcrun command - - mcrun_path : string - Path to the mcrun command (can be empty if already in path) - - Methods - ------- - run_simulation() - Runs simulation, returns list of McStasData instances - - """ - - def __init__(self, instr_name, **kwargs): - """ - Parameters - ---------- - instr_name : str - Name of instrument file to be simulated - - kwargs : keyword arguments - foldername : str - Sets data_folder_name - ncount : int - Sets ncount - mpi : int - Sets thread count - parameters : dict - Sets parameters - custom_flags : str - Sets custom_flags passed to mcrun - mcrun_path : str - Path to mcrun command, "" if already in path - """ - - self.name_of_instrumentfile = instr_name - - self.data_folder_name = "" - self.ncount = 1E6 - self.mpi = 1 - self.parameters = {} - self.custom_flags = "" - self.mcrun_path = "" - # mcrun_path always in kwargs - self.mcrun_path = kwargs["mcrun_path"] - - if "foldername" in kwargs: - self.data_folder_name = kwargs["foldername"] - else: - raise NameError( - "ManagedMcrun needs foldername to load data, add " - + "with keyword argument.") - - if "ncount" in kwargs: - self.ncount = kwargs["ncount"] - - if "mpi" in kwargs: - self.mpi = kwargs["mpi"] - - if "parameters" in kwargs: - self.parameters = kwargs["parameters"] - - if "custom_flags" in kwargs: - self.custom_flags = kwargs["custom_flags"] - - def run_simulation(self): - """ - Runs McStas simulation described by initializing the object - """ - - # construct command to run - option_string = ("-c" - + " -n " + str(self.ncount) # Set ncount - + " --mpi=" + str(self.mpi) # Set mpi - + " ") - - if len(self.data_folder_name) > 0: - option_string = (option_string - + "-d " - + self.data_folder_name) - - # add parameters to command - parameter_string = "" - for key, val in self.parameters.items(): - parameter_string = (parameter_string + " " - + str(key) # parameter name - + "=" - + str(val)) # parameter value - - mcrun_full_path = self.mcrun_path + "mcrun" - if len(self.mcrun_path) > 1: - if not (self.mcrun_path[-1] == "\\" - or self.mcrun_path[-1] == "/"): - mcrun_full_path = self.mcrun_path + "/mcrun" - - # Run the mcrun command on the system - os.system(mcrun_full_path + " " - + option_string + " " - + self.custom_flags + " " - + self.name_of_instrumentfile + " " - + parameter_string) - - """ - Can use subprocess from spawn* instead of os.system if more - control is needed over the spawned process, including a timeout - """ - - # Find all data files in generated folder - files_in_folder = os.listdir(self.data_folder_name) - - # Raise an error if mccode.sim is not available - if "mccode.sim" not in files_in_folder: - raise NameError("mccode.sim not written to output folder.") - - # Open mccode to read metadata for all datasets written to disk - f = open(self.data_folder_name + "/mccode.sim", "r") - - # Loop that reads mccode.sim sections - metadata_list = [] - in_data = False - for lines in f: - # Could read other details about run - - if lines == "end data\n": - # No more data for this metadata object - # Extract the information - current_object.extract_info() - # Add to metadata list - metadata_list.append(current_object) - # Stop reading data - in_data = False - - if in_data: - # This line contains info to be added to metadata - colon_index = lines.index(":") - key = lines[2:colon_index] - value = lines[colon_index+2:] - current_object.add_info(key, value) - - if lines == "begin data\n": - # Found data section, create new metadata object - current_object = McStasMetaData() - # Start recording data to metadata object - in_data = True - - # Close mccode.sim - f.close() - - # Create a list for McStasData instances to return - results = [] - - # Load datasets described in metadata list individually - for metadata in metadata_list: - # Load data with numpy - data = np.loadtxt(self.data_folder_name - + "/" - + metadata.filename.rstrip()) - - # Split data into intensity, error and ncount - if type(metadata.dimension) == int: - xaxis = data.T[0, :] - Intensity = data.T[1, :] - Error = data.T[2, :] - Ncount = data.T[3, :] - - elif len(metadata.dimension) == 2: - xaxis = [] # Assume evenly binned in 2d - data_lines = metadata.dimension[1] - Intensity = data.T[:, 0:data_lines - 1] - Error = data.T[:, data_lines:2*data_lines - 1] - Ncount = data.T[:, 2*data_lines:3*data_lines - 1] - else: - raise NameError( - "Dimension not read correctly in data set " - + "connected to monitor named " - + metadata.component_name) - - # The data is saved as a McStasData object - result = McStasData(metadata, Intensity, - Error, Ncount, - xaxis=xaxis) - - # Add this result to the results list - results.append(result) - - # Close the current datafile - f.close() - - # Return list of McStasData objects - return results - - -class make_plot: - """ - make_plot plots contents of McStasData objects - - Plotting is controlled through options assosciated with the - McStasData objects. - - If a list is given, the plots appear individually. - """ - - def __init__(self, data_list): - """ - plots McStasData, single object or list of McStasData - - The options concerning plotting are stored with the data - - Parameters - ---------- - data_list : McStasData or list of McStasData - McStasData to be plotted - """ - - # Relevant options: - # select colormap - # show / hide colorbar - # custom title / label - # color of 1d plot - # overlay several 1d - # log scale (orders of magnitude) - # compare several 1d - # compare 2D - - if isinstance(data_list, McStasData): - # Only a single element, put it in a list for easier syntax later - data_list = [data_list] - - number_of_plots = len(data_list) - - print("number of elements in data list = " + str(len(data_list))) - - index = -1 - for data in data_list: - index = index + 1 - - print("Plotting data with name " + data.metadata.component_name) - if type(data.metadata.dimension) == int: - fig = plt.figure(0) - - # print(data.T) - x = data.xaxis - y = data.Intensity - y_err = data.Error - - plt.errorbar(x, y, yerr=y_err) - - if data.plot_options.log: - ax0.set_yscale("log", nonposy='clip') - - plt.xlim(data.metadata.limits[0], data.metadata.limits[1]) - - # Add a title - plt.title(data.metadata.title) - - # Add axis labels - plt.xlabel(data.metadata.xlabel) - plt.ylabel(data.metadata.ylabel) - - elif len(data.metadata.dimension) == 2: - - # Split the data into intensity, error and ncount - Intensity = data.Intensity - Error = data.Error - Ncount = data.Ncount - - if data.plot_options.log: - min_value = np.min(Intensity[np.nonzero(Intensity)]) - min_value = np.log10(min_value) - - to_plot = np.log10(Intensity) - - max_value = to_plot.max() - - if (max_value - min_value - > data.plot_options.orders_of_mag): - min_value = (max_value - - data.plot_options.orders_of_mag) - else: - to_plot = Intensity - min_value = to_plot.min() - max_value = to_plot.max() - - # Check the size of the array to be plotted - # print(to_plot.shape) - - # Set the axis (might be switched?) - X = np.linspace(data.metadata.limits[0], - data.metadata.limits[1], - data.metadata.dimension[0]+1) - Y = np.linspace(data.metadata.limits[2], - data.metadata.limits[3], - data.metadata.dimension[1]) - - # Create a meshgrid for both x and y - y, x = np.meshgrid(Y, X) - - # Generate information on necessary colorrange - levels = MaxNLocator(nbins=150).tick_values(min_value, - max_value) - - # Select colormap - cmap = plt.get_cmap('hot') - norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) - - # Create the figure - fig, (ax0) = plt.subplots() - - # Plot the data on the meshgrids - if data.plot_options.log: - color_norm = matplotlib.colors.LogNorm(vmin=min_value, - vmax=max_value) - im = ax0.pcolormesh(x, y, to_plot, - cmap=cmap, norm=color_norm) - else: - im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) - - # Add the colorbar - fig.colorbar(im, ax=ax0) - - # Add a title - ax0.set_title(data.metadata.title) - - # Add axis labels - plt.xlabel(data.metadata.xlabel) - plt.ylabel(data.metadata.ylabel) - - else: - print("Error, dimension not read correctly") - - plt.show() - - -class make_sub_plot: - """ - make_plot plots contents of McStasData objects - - Plotting is controlled through options assosciated with the - McStasData objects. If a list is given, the plots appear in one - subplot. - """ - - def __init__(self, data_list): - """ - plots McStasData, single object or list of McStasData - - The options concerning plotting are stored with the data - - Parameters - ---------- - data_list : McStasData or list of McStasData - McStasData to be plotted - """ - if not isinstance(data_list, McStasData): - print("number of elements in data list = " - + str(len(data_list))) - else: - # Make list from single element to simplify syntax - data_list = [data_list] - - number_of_plots = len(data_list) - - # Relevant options: - # select colormap - # show / hide colorbar - # custom title / label - # color of 1d plot - # overlay several 1d - # log scale (o$rders of magnitude) - # compare several 1d - # compare 2D - - # Find reasonable grid size for the number of plots - dim2 = math.ceil(math.sqrt(number_of_plots)) - dim1 = math.ceil(number_of_plots/dim2) - - fig, axs = plt.subplots(dim1, dim2, figsize=(13, 7)) - axs = np.array(axs) - ax = axs.reshape(-1) - - index = -1 - for data in data_list: - index = index + 1 - ax0 = ax[index] - - print("Plotting data with name " - + data.metadata.component_name) - - if isinstance(data.metadata.dimension, int): - # fig = plt.figure(0) - # plt.subplot(dim1, dim2, n_plot) - x = data.xaxis - y = data.Intensity - y_err = data.Error - - ax0.errorbar(x, y, yerr=y_err) - - if data.plot_options.log: - ax0.set_yscale("log", nonposy='clip') - - ax0.set_xlim(data.metadata.limits[0], - data.metadata.limits[1]) - - # Add a title - # ax0.title(data.title) - - # Add axis labels - ax0.set_xlabel(data.metadata.xlabel) - ax0.set_ylabel(data.metadata.ylabel) - - elif len(data.metadata.dimension) == 2: - - # Split the data into intensity, error and ncount - Intensity = data.Intensity - Error = data.Error - Ncount = data.Ncount - - if data.plot_options.log: - min_value = np.min(Intensity[np.nonzero(Intensity)]) - min_value = np.log10(min_value) - - to_plot = Intensity - - max_value = np.log10(to_plot.max()) - - if (max_value - min_value - > data.plot_options.orders_of_mag): - min_value = (max_value - - data.plot_options.orders_of_mag) - min_value = 10.0 ** min_value - max_value = 10.0 ** max_value - else: - to_plot = Intensity - min_value = to_plot.min() - max_value = to_plot.max() - - # Check the size of the array to be plotted - # print(to_plot.shape) - - # Set the axis (might be switched?) - X = np.linspace(data.metadata.limits[0], - data.metadata.limits[1], - data.metadata.dimension[0]+1) - Y = np.linspace(data.metadata.limits[2], - data.metadata.limits[3], - data.metadata.dimension[1]) - - # Create a meshgrid for both x and y - y, x = np.meshgrid(Y, X) - - # Generate information on necessary colorrange - levels = MaxNLocator(nbins=150).tick_values(min_value, - max_value) - - # Select colormap - cmap = plt.get_cmap(data.plot_options.colormap) - - # Select the colorscale normalization - if data.plot_options.log: - norm = matplotlib.colors.LogNorm(vmin=min_value, - vmax=max_value) - else: - norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) - - # Create plot - im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) - - def fmt(x, pos): - a, b = '{:.2e}'.format(x).split('e') - b = int(b) - return r'${} \times 10^{{{}}}$'.format(a, b) - - # Add the colorbar - fig.colorbar(im, ax=ax0, - format=matplotlib.ticker.FuncFormatter(fmt)) - - # Add a title - ax0.set_title(data.metadata.title) - - # Add axis labels - ax0.set_xlabel(data.metadata.xlabel) - ax0.set_ylabel(data.metadata.ylabel) - - else: - print("Error, dimension not read correctly") - - plt.show() - - -class parameter_variable: - """ - Class describing a input parameter in McStas instrument - - McStas input parameters are of default type double, but can be - cast. If two positional arguments are given, the first is the - type, and the second is the parameter name. With one input, only - the parameter name is read. It is also possible to assign a - default value and a comment through keyword arguments. - - Attributes - ---------- - type : str - McStas type of input: Double, Int, String - - name : str - Name of input parameter - - value : any - Default value/string of parameter, converted to string - - comment : str - Comment displayed next to the parameter, could contain units - - Methods - ------- - write_parameter(fo,stop_character) - writes the parameter to file fo, uses given stop character - """ - - def __init__(self, *args, **kwargs): - """Initializing mcstas parameter object - - Parameters - ---------- - If giving a type: - Positional argument 1: type: str - Type of the parameter, double, int or string - Positional argument 2: name: str - Name of input parameter - - If not giving type - Positional argument 1: name : str - Name of input parameter - - Keyword arguments - value : any - sets default value of parameter - comment : str - sets comment displayed next to declaration - """ - if len(args) == 1: - self.type = "" - self.name = str(args[0]) - if len(args) == 2: - self.type = args[0] + " " - self.name = str(args[1]) - - if "value" in kwargs: - self.value_set = 1 - self.value = kwargs["value"] - else: - self.value_set = 0 - - if "comment" in kwargs: - self.comment = "// " + kwargs["comment"] - else: - self.comment = "" - - # could check for allowed types - # they are int, double, string, are there more? - - def write_parameter(self, fo, stop_character): - """Writes input parameter to file""" - fo.write("%s%s" % (self.type, self.name)) - if self.value_set == 1: - if isinstance(self.value, int): - fo.write(" = %d" % self.value) - elif isinstance(self.value, float): - fo.write(" = %G" % self.value) - else: - fo.write(" = %s" % str(self.value)) - fo.write(stop_character) - fo.write(self.comment) - fo.write("\n") - - -class declare_variable: - """ - Class describing a declared variable in McStas instrument - - McStas parameters are declared in declare section with c syntax. - This class is initialized with type, name. Using keyword - arguments, the variable can become an array and have its initial - value set. - - Attributes - ---------- - type : str - McStas type to declare: Double, Int, String - - name : str - Name of variable - - value : any - Initial value of variable, converted to string - - comment : str - Comment displayed next to the declaration, could contain units - - vector : int - 0 if a single value is given, ortherwise contains the length - - value_set : int - Internal variable displaying wether or not a value was given - - Methods - ------- - write_line(fo) - Writes a line to text file fo declaring the parameter in c - """ - def __init__(self, *args, **kwargs): - """Initializing mcstas parameter object - - Parameters - ---------- - Positional argument 1: type : str - Type of the parameter, double, int or string - - Positional argument 2: name : str - Name of input parameter - - Keyword arguments - array : int - length of array to be allocated, 0 if single value - - value : any - sets initial value of parameter, - can be a list with length matching array - - comment : str - sets comment displayed next to declaration - """ - self.type = args[0] - self.name = str(args[1]) - if "value" in kwargs: - self.value_set = 1 - self.value = kwargs["value"] - else: - self.value_set = 0 - - if "array" in kwargs: - self.vector = kwargs["array"] - else: - self.vector = 0 - - if "comment" in kwargs: - self.comment = " // " + kwargs["comment"] - else: - self.comment = "" - - def write_line(self, fo): - """Writes line declaring variable to file fo - - Parameters - ---------- - fo : file object - File the line will be written to - """ - if self.value_set == 0 and self.vector == 0: - fo.write("%s %s;%s" % (self.type, self.name, self.comment)) - if self.value_set == 1 and self.vector == 0: - if self.type == "int": - fo.write("%s %s = %d;%s" % (self.type, self.name, - self.value, self.comment)) - else: - fo.write("%s %s = %G;%s" % (self.type, self.name, - self.value, self.comment)) - if self.value_set == 0 and self.vector != 0: - fo.write("%s %s[%d];%s" % (self.type, self.name, - self.vector, self.comment)) - if self.value_set == 1 and self.vector != 0: - fo.write("%s %s[%d] = {" % (self.type, self.name, self.vector)) - for i in range(0, len(self.value) - 1): - fo.write("%G," % self.value[i]) - fo.write("%G};%s" % (self.value[-1], self.comment)) - - -class component: - """ - A class describing a McStas component to be written to a instrument - - This class is used by the instrument class when setting up - components as dynamic subclasses to this class. Most information - can be given on initialize using keyword arguments, but there are - methods for setting the attributes describing the component. The - class contains both methods to write the component to a instrument - file and methods for printing to the python terminal for checking - the information. The McStas_Instr class creates subclasses from - this class that have attributes for all parameters for the given - component. The component information is read directly from the - component files in the McStas installation. This class is frozen - after __init__ so that no new attributes can be created, which - allows direct feedback to the user if a parameter name is - misspelled. - - Attributes - ---------- - name : str - Name of the component instance in McStas (must be unique) - - component_name : str - Name of the component code to use, e.g. Arm, Guide_gravity, ... - - AT_data : list of 3 floats - Position data of the component - - AT_relative : str - Name of former component to use as reference for position - - ROTATED_data : list of 3 floats - Rotation data of the component - - ROTATED_relative : str - Name of former component to use as reference for position - - WHEN : str - String with logical c expression x for when component is active - - EXTEND : str - c code for McStas EXTEND section - - GROUP : str - Name of group the component should belong to - - JUMP : str - String describing use of JUMP, need to contain all after "JUMP" - - component_parameters : dict - Parameters to be used with component in dictionary - - comment : str - Comment inserted before the component as an explanation - - __isfrozen : bool - If true no new attributes can be created, when false they can - - Methods - ------- - set_AT(at_list,**kwargs) - Sets AT_data, can set AT_relative using keyword - - set_ROTATED(rotated_list,**kwargs) - Sets ROTATED_data, can set ROTATED_relative using keyword - - set_RELATIVE(relative_name) - Set both AT_relative and ROTATED_relative to relative_name - - set_parameters(dict_input) - Adds dictionary entries to parameter dictionary - - set_WHEN(string) - Sets WHEN string - - set_GROUP(string) - Sets GROUP name - - set_JUMP(string) - Sets JUMP string - - append_EXTEND(string) - Append string to EXTEND string - - set_comment(string) - Sets comment for component - - write_component(fo) - Writes component code to instrument file - - print_long() - Prints basic view of component code (not correct syntax) - - print_short(**kwargs) - Prints short description, used in print_components - - __setattr__(key, value) - Overwriting __setattr__ to implement ability to freeze - - _freeze() - Freeze the class so no new attributes can be defined - - _unfreeze() - Unfreeze the class so new attributes can be defined again - - """ - - __isfrozen = False # When frozen, no new attributes allowed - - def __init__(self, instance_name, component_name, **kwargs): - """ - Initializes McStas component with specified name and component - - Parameters - ---------- - instance_name : str - name of the instance of the component - - component_name : str - name of the component type e.g. Arm, Guide_gravity, ... - - keyword arguments: - AT : list of 3 floats - Sets AT_data describing position of component - - AT_RELATIVE : str - sets AT_relative, describing position reference - - ROTATED : list of 3 floats - Sets ROTATED_data, describing rotation of component - - ROTATED_RELATIVE : str - Sets ROTATED_relative, sets reference for rotation - - RELATIVE : str - Sets both AT_relative and ROTATED_relative - - WHEN : str - Sets WHEN string, should contain logical c expression - - EXTEND : str - Sets initial EXTEND string, should contain c code - - GROUP : str - Sets name of group the component should belong to - - JUMP : str - Sets JUMP str - - comment: str - Sets comment string - """ - - # Allow addition of attributes in init - self._unfreeze() - - self.name = instance_name - self.component_name = component_name - - if "AT" in kwargs: - self.AT_data = kwargs["AT"] - else: - self.AT_data = [0, 0, 0] - # Could check if AT_RELATIVE is a string - if "AT_RELATIVE" in kwargs: - self.AT_relative = "RELATIVE " + kwargs["AT_RELATIVE"] - else: - self.AT_relative = "ABSOLUTE" - - if "ROTATED" in kwargs: - self.ROTATED_data = kwargs["ROTATED"] - else: - self.ROTATED_data = [0, 0, 0] - # Could check if ROTATED_RELATIVE is a string - if "ROTATED_RELATIVE" in kwargs: - self.ROTATED_relative = kwargs["ROTATED_RELATIVE"] - else: - self.ROTATED_relative = "ABSOLUTE" - - # Could check if RELATIVE is a string - if "RELATIVE" in kwargs: - self.AT_relative = "RELATIVE " + kwargs["RELATIVE"] - self.ROTATED_relative = "RELATIVE " + kwargs["RELATIVE"] - - if "WHEN" in kwargs: - self.WHEN = "WHEN (" + kwargs["WHEN"] + ")\n" - else: - self.WHEN = "" - - if "EXTEND" in kwargs: - self.EXTEND = kwargs["EXTEND"] + "\n" - else: - self.EXTEND = "" - - if "GROUP" in kwargs: - self.GROUP = kwargs["GRPUP"] - else: - self.GROUP = "" - - if "JUMP" in kwargs: - self.JUMP = kwargs["JUMP"] - else: - self.JUMP = "" - - if "comment" in kwargs: - self.comment = kwargs["comment"] - else: - self.comment = "" - - """ - Could store an option for whether this component should be - printed in instrument file or in a seperate file which would - then be included. - """ - - # Do not allow addition of attributes after init - self._freeze() - - def __setattr__(self, key, value): - if self.__isfrozen and not hasattr(self, key): - raise AttributeError("No parameter called '" - + key - + "' in component named " - + self.name - + " of component type " - + self.component_name - + ".") - object.__setattr__(self, key, value) - - def _freeze(self): - self.__isfrozen = True - - def _unfreeze(self): - self.__isfrozen = False - - def set_AT(self, at_list, **kwargs): - """Sets AT data, List of 3 floats""" - self.AT_data = at_list - if "RELATIVE" in kwargs: - relative_name = kwargs["RELATIVE"] - if relative_name == "ABSOLUTE": - self.AT_relative = relative_name - else: - self.AT_relative = "RELATIVE " + relative_name - - def set_ROTATED(self, rotated_list, **kwargs): - """Sets ROTATED data, List of 3 floats""" - self.ROTATED_data = rotated_list - if "RELATIVE" in kwargs: - relative_name = kwargs["RELATIVE"] - if relative_name == "ABSOLUTE": - self.ROTATED_relative = relative_name - else: - self.ROTATED_relative = "RELATIVE " + relative_name - - def set_RELATIVE(self, relative_name): - """Sets both AT_relative and ROTATED_relative""" - if relative_name == "ABSOLUTE": - self.AT_relative = relative_name - self.ROTATED_relative = relative_name - else: - self.AT_relative = "RELATIVE " + relative_name - self.ROTATED_relative = "RELATIVE " + relative_name - - def set_parameters(self, dict_input): - """ - Adds parameters and their values from dictionary input - - Relies on attributes added when McStas_Instr creates a - subclass from the component class where each component - parameter is added as an attribute. - - """ - for key, val in dict_input.items(): - if not hasattr(self, key): - raise NameError("No parameter called " - + key - + " in component named " - + self.name - + " of component type " - + self.component_name - + ".") - else: - setattr(self, key, val) - - def set_WHEN(self, string): - """Sets WHEN string, should be a c logical expression""" - self.WHEN = string - - def set_GROUP(self, string): - """Sets GROUP name""" - self.GROUP = string - - def set_JUMP(self, string): - """Sets JUMP string, should contain all text after JUMP""" - self.JUMP = string - - def append_EXTEND(self, string): - """Appends a line of code to EXTEND block of component""" - self.EXTEND = self.EXTEND + string + "\n" - - def set_comment(self, string): - """Method that sets a comment to be written to instrument file""" - self.comment = string - - def write_component(self, fo): - """ - Method that writes component to file - - Relies on attributes added when McStas_Instr creates a subclass - based on the component class. - - """ - parameters_per_line = 2 - # Could use character limit on lines instead - parameters_written = 0 # internal parameter - - # Write comment if present - if len(self.comment) > 1: - fo.write("// %s\n" % (str(self.comment))) - - # Write component name and component type - fo.write("COMPONENT %s = %s(" % (self.name, self.component_name)) - - component_parameters = {} - for key in self.parameter_names: - val = getattr(self, key) - if val is None: - if self.parameter_defaults[key] is None: - raise NameError("Required parameter named " - + key - + " in component named " - + self.name - + " not set.") - else: - continue - - component_parameters[key] = val - - number_of_parameters = len(component_parameters) - - if number_of_parameters == 0: - fo.write(")\n") # If there are no parameters, close immediately - else: - fo.write("\n") # If there are parameters, start a new line - - for key, val in component_parameters.items(): - if isinstance(val, float): # CHeck if value is a number - # Small or large numbers written in scientific format - fo.write(" %s = %G" % (str(key), val)) - else: - fo.write(" %s = %s" % (str(key), str(val))) - parameters_written = parameters_written + 1 - if parameters_written < number_of_parameters: - fo.write(",") # Comma between parameters - if parameters_written % parameters_per_line == 0: - fo.write("\n") - else: - fo.write(")\n") # End paranthesis after last parameter - - # Optional WHEN section - if not self.WHEN == "": - fo.write("WHEN(%s)\n" % self.WHEN) - - # Write AT and ROTATED section - fo.write("AT (%s,%s,%s)" % (str(self.AT_data[0]), - str(self.AT_data[1]), - str(self.AT_data[2]))) - fo.write(" %s\n" % self.AT_relative) - fo.write("ROTATED (%s,%s,%s)" % (str(self.ROTATED_data[0]), - str(self.ROTATED_data[1]), - str(self.ROTATED_data[2]))) - fo.write(" %s\n" % self.ROTATED_relative) - - if not self.GROUP == "": - fo.write("GROUP %s\n" % self.GROUP) - - # Optional EXTEND section - if not self.EXTEND == "": - fo.write("EXTEND %{\n") - fo.write("%s" % self.EXTEND) - fo.write("%}\n") - - if not self.JUMP == "": - fo.write("JUMP %s\n" % self.JUMP) - - # Leave a new line between components for readability - fo.write("\n") - - def print_long(self): - """ - Prints contained information to Python terminal - - Includes information on required parameters if they are not yet - specified. Information on the components are added when the - class is used as a superclass for classes describing each - McStas component. - - """ - if len(self.comment) > 1: - print("// " + self.comment) - print("COMPONENT", str(self.name), - "=", str(self.component_name)) - for key in self.parameter_names: - val = getattr(self, key) - parameter_name = bcolors.BOLD + key + bcolors.ENDC - if val is not None: - unit = "" - if key in self.parameter_units: - unit = "[" + self.parameter_units[key] + "]" - value = (bcolors.BOLD - + bcolors.OKGREEN - + str(val) - + bcolors.ENDC - + bcolors.ENDC) - print(" ", parameter_name, "=", value, unit) - else: - if self.parameter_defaults[key] is None: - print(" " - + parameter_name - + bcolors.FAIL - + " : Required parameter not yet specified" - + bcolors.ENDC) - - if not self.WHEN == "": - print("WHEN (" + self.WHEN + ")") - print("AT", self.AT_data, self.AT_relative) - print("ROTATED", self.ROTATED_data, self.ROTATED_relative) - if not self.GROUP == "": - print("GROUP " + self.GROUP) - if not self.EXTEND == "": - print("EXTEND %{") - print(self.EXTEND + "%}") - if not self.JUMP == "": - print("JUMP " + self.JUMP) - - def print_short(self, **kwargs): - """Prints short description of component to list print""" - if "longest_name" in kwargs: - print("test") - number_of_spaces = 3+kwargs["longest_name"]-len(self.name) - print(str(self.name) + " "*number_of_spaces, end='') - print(str(self.component_name), - "\tAT", self.AT_data, self.AT_relative, - "ROTATED", self.ROTATED_data, self.ROTATED_relative) - else: - print(str(self.name), "=", str(self.component_name), - "\tAT", self.AT_data, self.AT_relative, - "ROTATED", self.ROTATED_data, self.ROTATED_relative) - - def show_parameters(self): - """ - Shows available parameters and their defaults for the component - - Any value specified is not reflected in this view. The - additional attributes defined when McStas_Instr creates - subclasses for the individual components are required to run - this method. - - """ - - print(" ___ Help " - + self.component_name + " " - + (62-len(self.component_name))*"_") - print("|" - + bcolors.BOLD + "optional parameter" + bcolors.ENDC + "|" - + bcolors.BOLD - + bcolors.UNDERLINE + "required parameter" + bcolors.ENDC - + bcolors.ENDC + "|" - + bcolors.BOLD - + bcolors.OKBLUE + "default value" + bcolors.ENDC - + bcolors.ENDC + "|" - + bcolors.BOLD - + bcolors.OKGREEN + "user specified value" + bcolors.ENDC - + bcolors.ENDC + "|") - - for parameter in self.parameter_names: - unit = "" - if parameter in self.parameter_units: - unit = " [" + self.parameter_units[parameter] + "]" - comment = "" - if parameter in self.parameter_comments: - comment = " // " + self.parameter_comments[parameter] - - parameter_name = bcolors.BOLD + parameter + bcolors.ENDC - value = "" - if self.parameter_defaults[parameter] is None: - parameter_name = (bcolors.UNDERLINE - + parameter_name - + bcolors.ENDC) - else: - value = (" = " - + bcolors.BOLD - + bcolors.OKBLUE - + str(self.parameter_defaults[parameter]) - + bcolors.ENDC - + bcolors.ENDC) - - if getattr(self, parameter) is not None: - value = (" = " - + bcolors.BOLD - + bcolors.OKGREEN - + str(getattr(self, parameter)) - + bcolors.ENDC - + bcolors.ENDC) - - print(parameter_name - + value - + unit - + comment) - - print(73*"-") - - def show_parameters_simple(self): - """ - Shows available parameters and their defaults for the component - - Any value specified is not reflected in this view. The - additional attributes defined when McStas_Instr creates - subclasses for the individual components are required to run - this method. - - """ - print("---- Help " + self.component_name + " -----") - for parameter in self.parameter_names: - unit = "" - if parameter in self.parameter_units: - unit = " [" + self.parameter_units[parameter] + "]" - comment = "" - if parameter in self.parameter_comments: - comment = " // " + self.parameter_comments[parameter] - if self.parameter_defaults[parameter] is None: - print(parameter - + unit - + comment) - else: - print(parameter - + " = " - + str(self.parameter_defaults[parameter]) - + unit - + comment) - print("----------" + "-"*len(self.component_name) + "------") - """ - def show_component(self): - print("---- Current parameters for " + self.name + " ----") - for parameter in self.parameter_names: - parameter_value = getattr(self, parameter) - unit = "" - if parameter in self.parameter_units: - unit = " [" + self.parameter_units[parameter] + "]" - if parameter_value is not None: - print(" " - + parameter - + " = " - + str(parameter_value) - + unit) - else: - if self.parameter_defaults[parameter] is None: - print(" " - + parameter - + " : Required parameter not yet specified") - - def show_component_long(self): - print("---- Current parameters for " + self.name + " ----") - for parameter in self.parameter_names: - parameter_value = getattr(self, parameter) - unit = "" - if parameter in self.parameter_units: - unit = " [" + self.parameter_units[parameter] + "]" - comment = "" - if parameter in self.parameter_comments: - comment = " // " + self.parameter_comments[parameter] - if parameter_value is not None: - print(" " - + parameter - + " = " - + str(parameter_value) - + unit - + comment) - else: - if self.parameter_defaults[parameter] is None: - print(" " - + parameter - + " : Required parameter not yet specified" - + unit - + comment) - """ - - -class ComponentInfo: - """ - Internal class used to store information on parameters of components - """ - - def __init__(self): - self.name = "" - self.category = "" - self.parameter_names = [] - self.parameter_defaults = {} - self.parameter_types = {} - self.parameter_comments = {} - self.parameter_units = {} - - -class ComponentReader: - """ - Class for retriveing information on available McStas components - - Recursively reads all component files in hardcoded list of - folders that represents the component categories in McStas. - The results are stored in a dictionary with ComponentInfo - instances, the keys are the names of the components. After - the components in the McStas installation are read, any - components pressent in the current work directory is read, - and these will overwrite exisiting information, consistent - with how McStas reads component definitions. - - """ - - def __init__(self, mcstas_path): - """ - Reads all component files in standard folders. Recursive, so - subfolders of these folders are included. - - """ - - if mcstas_path[-1] is not "/": - mcstas_path = mcstas_path + "/" - - # Hardcoded whitelist of foldernames - folder_list = ["sources", - "optics", - "samples", - "monitors", - "misc", - "contrib", - "obsolete", - "union"] - - self.component_path = {} - self.component_category = {} - - for folder in folder_list: - absolute_path = mcstas_path + folder - # self.component_info_dict.update(self._read(absolute_path)) - self._find_components(absolute_path) - - # McStas component in current directory should overwrite - current_directory = os.getcwd() - - for file in os.listdir(current_directory): - if file.endswith(".comp"): - absolute_path = current_directory + "/" + file - component_name = absolute_path.split("/")[-1].split(".")[-2] - - if component_name in self.component_path: - print("Overwriting McStasScript info on component named " - + file - + " because the component is in the" - + " work directory.") - - self.component_path[component_name] = absolute_path - self.component_category[component_name] = "Work directory" - - def show_categories(self): - """ - Method that will show all component categories available - - """ - categories = [] - for component, category in self.component_category.items(): - if category not in categories: - categories.append(category) - print(" " + category) - - def show_components_in_category(self, category_input): - """ - Method that will show all components in given category - - """ - empty_category = True - to_print = [] - for component, category in self.component_category.items(): - if category == category_input: - to_print.append(component) - empty_category = False - - to_print.sort() - if empty_category: - print("No components found in this category! " - + "Available categories:") - self.show_categories() - - elif len(to_print) < 10: - for component in to_print: - print(" " + component) - else: - # Prints in collumns, maximum 4 and maximum line length 100 - columns = 5 - total_line_length = 1000 - while(total_line_length > 100): - columns = columns - 1 - - c_length = math.ceil(len(to_print)/columns) - last_length = len(to_print) - (columns-1)*c_length - - column = [] - longest_name = [] - for col in range(0, columns-1): - current_list = to_print[c_length*col:c_length*(col+1)] - column.append(current_list) - longest_name.append(len(max(current_list, key=len))) - - column.append(to_print[c_length*(columns-1):]) - longest_name.append(len(max(column[columns-1], key=len))) - - total_line_length = 1 + sum(longest_name) + (columns-1)*3 - - for line_nr in range(0, c_length): - print(" ", end="") - for col in range(0, columns-1): - this_name = column[col][line_nr] - print(this_name - + " "*(longest_name[col] - len(this_name)) - + " ", end="") # More columns left, dont break - if line_nr < last_length: - this_name = column[columns-1][line_nr] - print(this_name) - else: - print("") - - def load_all_components(self): - """ - Method that loads information on all components into memory. - - """ - - return_dict = {} - for comp_name, abs_path in self.component_path.items(): - return_dict[comp_name] = self.read_component_file(abs_path) - - return return_dict - - def read_name(self, component_name): - """ - Returns ComponentInfo of component with name component_name. - - Uses table of absolute paths to all known components, and - reads the appropriate file in order to generate the information. - - """ - - if component_name not in self.component_path: - raise NameError("No component named " - + component_name - + " in McStas installation or " - + "current work directory.") - - return self.read_component_file(self.component_path[component_name]) - - def _find_components(self, absolute_path): - """ - Recursive read function, can read either file or entire folder - - Updates the component_info_dict with the findings that are - stored as ComoponentInfo instances. - - """ - - if not os.path.isdir(absolute_path): - if absolute_path.endswith(".comp"): - # read this file - component_name = absolute_path.split("/")[-1].split(".")[-2] - self.component_path[component_name] = absolute_path - - component_category = absolute_path.split("/")[-2] - self.component_category[component_name] = component_category - else: - for file in os.listdir(absolute_path): - absolute_file_path = absolute_path + "/" + file - self._find_components(absolute_file_path) - - def read_component_file(self, absolute_path): - """ - Reads a component file and expands component_info_dict - - The information is stored as ComponentClass instances. - - """ - - result = ComponentInfo() - - fo = open(absolute_path, "r") - - cnt = 0 - while True: - cnt += 1 - line = fo.readline() - - # find parameter comments - if self.line_starts_with(line, "* %P"): - - while True: - this_line = fo.readline() - - if self.line_starts_with(this_line, "DEFINE COMPONENT"): - # No more comments to read through - break - - if ":" in this_line: - tokens = this_line.split(":") - - variable_name = tokens[0] - variable_name = variable_name.replace("*", "") - variable_name = variable_name.strip() - if " " in variable_name: - name_tokens = variable_name.split(" ") - variable_name = name_tokens[0] - - if len(tokens[1]) > 2: - comment = tokens[1].strip() - - if "[" in comment: # Search for unit - # If found, store it and remove from string - unit = comment[comment.find("[") + 1: - comment.find("]")] - result.parameter_units[variable_name] = unit - comment = comment[comment.find("]") + 1:] - comment = comment.strip() - - # Store the comment - result.parameter_comments[variable_name] = comment - elif "[" in this_line and "]" in this_line: - tokens = this_line.split("[") - - variable_name = tokens[0] - variable_name = variable_name.replace("*", "") - variable_name = variable_name.strip() - - unit = this_line[this_line.find("[") + 1: - this_line.find("]")] - result.parameter_units[variable_name] = unit - - comment = this_line[this_line.find("]") + 1:] - comment = comment.strip() - result.parameter_comments[variable_name] = comment - - # find definition parameters and their values - if (self.line_starts_with(line, "DEFINITION PARAMETERS") - or self.line_starts_with(line, "SETTING PARAMETERS")): - - parts = line.split("(") - parameter_parts = parts[1].split(",") - - parameter_parts = list(filter(("\n").__ne__, parameter_parts)) - - break_now = False - while True: - # Read all definition parameters - - for part in parameter_parts: - - temp_par_type = "double" - - part = part.strip() - - # remove trailing ) - if ")" in part: - part = part.replace(")", "") - break_now = True - - possible_declare = part.split(" ") - possible_type = possible_declare[0].strip() - if "int" == possible_type: - temp_par_type = "int" - # remove int from part - part = "".join(possible_declare[1:]) - if "string" == possible_type: - temp_par_type = "string" - # remove string from part - part = "".join(possible_declare[1:]) - - part = part.replace(" ", "") - if part == "": - continue - - if self.line_starts_with(part, "//"): - break_now = True - continue - - if self.line_starts_with(part, "/*"): - break_now = True - continue - - if "=" not in part: - # no defualt value, required parameter - result.parameter_names.append(part) - result.parameter_defaults[part] = None - result.parameter_types[part] = temp_par_type - else: - # default value available - name_value = part.split("=") - par_name = name_value[0].strip() - par_value = name_value[1].strip() - result.parameter_names.append(par_name) - result.parameter_defaults[par_name] = par_value - result.parameter_types[par_name] = temp_par_type - - if break_now: - break - - parameter_parts = fo.readline().split(",") - - if self.line_starts_with(line, "DECLARE"): - break - - if self.line_starts_with(line, "TRACE"): - break - - if cnt == 1000: - break - - fo.close() - - result.name = absolute_path.split("/")[-1].split(".")[-2] - foldernames = absolute_path.split("/") - result.category = foldernames[-2] - - """ - To lower memory use one could remove all comments and units that - does not correspond to a found parameter name. - """ - - return result - - def line_starts_with(self, line, input): - """ - Helper method that checks if a string is the start of a line - - """ - if len(line) < len(input): - return False - - if line[0:len(input)] == input: - return True - else: - return False - - -class McStas_instr: - """ - Main class for writing a McStas instrument using McStasScript - - Initialization of McStas_instr sets the name of the instrument file - and its methods are used to add all aspects of the instrument file. - The class also holds methods for writing the finished instrument - file to disk and to run the simulation. - - Attributes - ---------- - name : str - name of instrument file - - author : str - name of user of McStasScript, written to the file - - origin : str - origin of instrument file (affiliation) - - mcrun_path : str - absolute path of mcrun command, or empty if it is in path - - parameter_list : list of parameter_variable instances - contains all input parameters to be written to file - - declare_list : list of declare_variable instances - contains all declare parrameters to be written to file - - initialize_section : str - string containing entire initialize section to be written - - trace_section : str - string containing trace section (OBSOLETE) - - finally_section : str - string containing entire finally section to be written - - component_list : list of component instances - list of components in the instrument - - component_name_list : list of strings - list of names of the components in the instrument - - Methods - ------- - add_parameter(*args,**kwargs) - Adds input parameter to the define section - - add_declare_var() - Adds declared variable ot the declare section - - append_initialize(string) - Appends a string to the initialize section, then adds new line - - append_initialize_no_new_line(string) - Appends a string to the initialize section - - append_finally(string) - Appends a string to finally section, then adds new line - - append_finally_no_new_line(string) - Appends a string to finally section - - append_trace(string) - Obsolete method, add components instead (used in write_c_files) - - add_component(instance_name,component_name,**kwargs) - Add a component to the instrument file - - get_component(instance_name) - Returns component instance with name instance_name - - get_last_component() - Returns component instance of last component - - set_component_parameter(instance_name,dict) - Adds parameters as dict to component with instance_name - - set_component_AT(instance_name,AT_data,**kwargs) - Sets position of component named instance_name - - set_component_ROTATED(instance_name,ROTATED_data,**kwargs) - Sets rotation of component named instance_name - - set_component_RELATIVE(instane_name,string) - Sets position and rotation reference for named component - - set_component_WHEN(instance_name,string) - Sets WHEN condition of named component, is logical c expression - - set_component_GROUP(instance_name,string) - Sets GROUP name of component named instance_name - - append_component_EXTEND(instance_name,string) - Appends a line to EXTEND section of named component - - set_component_JUMP(instance_name,string) - Sets JUMP code for named component - - set_component_comment(instance_name,string) - Sets comment to be written before named component - - print_component(instance_name) - Prints an overview of current state of named component - - print_component_short(instance_name) - Prints short overview of current state of named component - - print_components() - Prints overview of postion / rotation of all components - - write_c_files() - Writes c files for %include in generated_includes folder - - write_full_instrument() - Writes full instrument file to current directory - - run_full_instrument(**kwargs) - Writes instrument files and runs simulation. - Returns list of McStasData - """ - - def __init__(self, name, **kwargs): - """ - Initialization of McStas Instrument - - Parameters - ---------- - name : str - Name of project, instrument file will be name + ".instr" - - keyword arguments: - author : str - Name of author, written in instrument file - - origin : str - Affiliation of author, written in instrument file - - mcrun_path : str - Absolute path of mcrun or empty if already in path - """ - - self.name = name - - if "author" in kwargs: - self.author = kwargs["author"] - else: - self.author = "Python McStas Instrument Generator" - - if "origin" in kwargs: - self.origin = kwargs["origin"] - else: - self.origin = "ESS DMSC" - - if "mcrun_path" in kwargs: - self.mcrun_path = kwargs["mcrun_path"] - else: - self.mcrun_path = "" - - if "mcstas_path" in kwargs: - self.mcstas_path = kwargs["mcstas_path"] - else: - self.mcstas_path = "" - raise NameError("At this stage of development " - + "McStasScript need the absolute path " - + "for the McStas installation as keyword " - + "named mcstas_path") - - self.parameter_list = [] - self.declare_list = [] - self.initialize_section = ("// Start of initialize for generated " - + name + "\n") - self.trace_section = ("// Start of trace section for generated " - + name + "\n") - self.finally_section = ("// Start of finally for generated " - + name + "\n") - # Handle components - self.component_list = [] # List of components (have to be ordered) - self.component_name_list = [] # List of component names - - # Read info on active McStas components - self.component_reader = ComponentReader(self.mcstas_path) - self.component_class_lib = {} - - def add_parameter(self, *args, **kwargs): - """ - Method for adding input parameter to instrument - - Parameters - ---------- - - (optional) parameter type : str - type of input parameter, double, int, string - - parameter name : str - name of parameter - - keyword arguments - value : any - Default value of parameter - - comment : str - Comment displayed next to declaration of parameter - """ - # parameter_variable class documented independently - self.parameter_list.append(parameter_variable(*args, **kwargs)) - - def add_declare_var(self, *args, **kwargs): - """ - Method for adding declared variable to instrument - - Parameters - ---------- - - parameter type : str - type of input parameter - - parameter name : str - name of parameter - - keyword arguments - array : int - default 0 for scalar, if specified length of array - - value : any - Initial value of parameter, can be list of length vector - - comment : str - Comment displayed next to declaration of parameter - - """ - # declare_variable class documented independently - self.declare_list.append(declare_variable(*args, **kwargs)) - - def append_initialize(self, string): - """ - Method for appending code to the intialize section - - The intialize section consists of c code and will be compiled, - thus any syntax errors will crash the simulation. Code is added - on a new line for each call to this method. - - Parameters - ---------- - string : str - code to be added to initialize section - """ - self.initialize_section = self.initialize_section + string + "\n" - - def append_initialize_no_new_line(self, string): - """ - Method for appending code to the intialize section, no new line - - The intialize section consists of c code and will be compiled, - thus any syntax errors will crash the simulation. Code is added - to the current line. - - Parameters - ---------- - string : str - code to be added to initialize section - - """ - - self.initialize_section = self.initialize_section + string - - def append_finally(self, string): - """ - Method for appending code to the finally section of instrument - - The finally section consists of c code and will be compiled, - thus any syntax errors will crash the simulation. Code is added - on a new line for each call to this method. - - Parameters - ---------- - string : str - code to be added to finally section - - """ - - self.finally_section = self.finally_section + string + "\n" - - def append_finally_no_new_line(self, string): - """ - Method for appending code to the finally section of instrument - - The finally section consists of c code and will be compiled, - thus any syntax errors will crash the simulation. Code is added - to the current line. - - Parameters - ---------- - string : str - code to be added to finally section - """ - - self.finally_section = self.finally_section + string - - """ - # Handle trace string differently when components also exists - # A) Coul d have trace string as a component attribute and set - # it before / after - # B) Could have trace string as a McStas_instr attribute and - # still attach placement to components - # C) Could have trace string as a different object and place it - # in component_list, but have a write function named as the - # component write function? - """ - - def append_trace(self, string): - """ - Appends code to trace section, only used in write_c_files - - The most common way to add code to the trace section is to add - components using the seperate methods for this. This method is - kept as is still used for writing to c files used in legacy - code. Each call creates a new line. - - Parameters - ---------- - string : str - code to be added to trace - """ - - self.trace_section = self.trace_section + string + "\n" - - def append_trace_no_new_line(self, string): - """ - Appends code to trace section, only used in write_c_files - - The most common way to add code to the trace section is to add - components using the seperate methods for this. This method is - kept as is still used for writing to c files used in legacy - code. No new line is made with this call. - - Parameters - ---------- - string : str - code to be added to trace - """ - - self.trace_section = self.trace_section + string - - def show_components(self, *args): - """ - Helper method that shows available components to the user - - If called without any arguments it will display the available - component categories. The first input - - """ - if len(args) == 0: - print("Here are the availalbe component categories:") - self.component_reader.show_categories() - print("Call show_components(category_name) to display") - - else: - category = args[0] - print("Here are all components in the " - + category - + " category.") - self.component_reader.show_components_in_category(category) - - def component_help(self, name): - """ - Method for showing parameters for a component before adding it - to the instrument - - """ - - dummy_instance = self._create_component_instance("dummy", name) - dummy_instance.show_parameters() - - def _create_component_instance(self, *args, **kwargs): - """ - Dynamically creates a class for the requested component type - - Created classses kept in dictionary, if the same component type - is requested again, the class in the dictionary is used. The - method returns an instance of the created class that was - initialized with the paramters passed to this function. - """ - - if len(args) < 2: - raise NameError("Attempting to create component without name") - - component_name = args[1] - - if component_name not in self.component_class_lib: - comp_info = self.component_reader.read_name(component_name) - - input_dict = {} - input_dict = {key: None for key in comp_info.parameter_names} - input_dict["parameter_names"] = comp_info.parameter_names - input_dict["parameter_defaults"] = comp_info.parameter_defaults - input_dict["parameter_types"] = comp_info.parameter_types - input_dict["parameter_units"] = comp_info.parameter_units - input_dict["parameter_comments"] = comp_info.parameter_comments - input_dict["category"] = comp_info.category - - self.component_class_lib[component_name] = type(component_name, - (component,), - input_dict) - - return self.component_class_lib[component_name](*args, **kwargs) - - def add_component(self, *args, **kwargs): - """ - Method for adding a new component instance to the instrument - - Creates a new component instance in the instrument. This - requires a unique instance name of the component to be used for - future reference and the name of the McStas component to be - used. The component is placed at the end of the instrument file - unless otherwise specified with the after and before keywords. - The component may be initialized using other keyword arguments, - but all attributes can be set with approrpiate methods. - - Parameters - ---------- - First positional argument : str - Unique name of component instance - - Second positional argument : str - Name of McStas component to create instance of - - Keyword arguments: - after : str - Place this component after component with given name - - before : str - Place this component before component with given name - - AT : List of 3 floats - Sets AT_data, position relative to reference - - AT_RELATIVE : str - Sets reference component for postion - - ROTATED : List of 3 floats - Sets ROTATED_data, rotation relative to reference - - ROTATED_RELATIVE : str - Sets reference component for rotation - - RELATIVE : str - Sets reference component for both position and rotation - - WHEN : str - Sets when condition which must be a logical c expression - - EXTEND : str - Initialize the extend section with a line of c code - - GROUP : str - Name of the group this component should belong to - - JUMP : str - Set code for McStas JUMP statement - - comment : str - Comment that will be displayed before the component - """ - - if args[0] in self.component_name_list: - raise NameError(("Component name \"" + str(args[0]) - + "\" used twice, McStas does not allow this." - + " Rename or remove one instance of this" - + " name.")) - - # Insert component after component with this name - if "after" in kwargs: - if kwargs["after"] not in self.component_name_list: - raise NameError(("Trying to add a component after a component" - + " named \"" + str(kwargs["after"]) - + "\", but a component with that name was" - + " not found.")) - - new_index = self.component_name_list.index(kwargs["after"]) - - new_component = self._create_component_instance(*args, **kwargs) - self.component_list.insert(new_index + 1, new_component) - - self.component_name_list.insert(new_index+1, args[0]) - - # Insert component after component with this name - elif "before" in kwargs: - if kwargs["before"] not in self.component_name_list: - raise NameError(("Trying to add a component before a " - + "component named \"" - + str(kwargs["before"]) - + "\", but a component with that " - + "name was not found.")) - - new_index = self.component_name_list.index(kwargs["before"]) - - new_component = self._create_component_instance(*args, **kwargs) - self.component_list.insert(new_index, new_component) - - self.component_name_list.insert(new_index, args[0]) - - # If after or before keywords absent, place component at the end - else: - new_component = self._create_component_instance(*args, **kwargs) - self.component_list.append(new_component) - self.component_name_list.append(args[0]) - - return new_component - - def get_component(self, name): - """ - Get the component instance of component with specified name - - This method is used to get direct access to any component - instance in the instrument. The component instance can be - manipulated in much the same way, but it is not necessary to - specify the name in each call. - - Parameters - ---------- - name : str - Unique name of component whos instance should be returned - """ - - if name in self.component_name_list: - index = self.component_name_list.index(name) - return self.component_list[index] - else: - raise NameError(("No component was found with name \"" - + str(name) + "\"!")) - - def get_last_component(self): - """ - Get the component instance of last component in the instrument - - This method is used to get direct access to any component - instance in the instrument. The component instance can be - manipulated in much the same way, but it is not necessary to - specify the name in each call. - """ - - return self.component_list[-1] - - def set_component_parameter(self, name, input_dict): - """ - Add parameters and their values as dictionary to component - - This method is the primary way of specifying parameters in a - component. Parameters are added to a dictionary specifying - parameter name and value pairs. - - Parameters - ---------- - name : str - Unique name of component to modify - - input_dict : dict - Set of new parameter name and value pairs to add - """ - - component = self.get_component(name) - component.set_parameters(input_dict) - - def set_component_AT(self, name, at_list, **kwargs): - """ - Method for setting position of component - - Parameters - ---------- - name : str - Unique name of component to modify - - at_list : List of 3 floats - Position of component relative to reference component - - keyword arguments: - RELATIVE : str - Sets reference component for position - """ - - component = self.get_component(name) - component.set_AT(at_list, **kwargs) - - def set_component_ROTATED(self, name, rotated_list, **kwargs): - """ - Method for setting rotiation of component - - Parameters - ---------- - name : str - Unique name of component to modify - - rotated_list : List of 3 floats - Rotation of component relative to reference component - - keyword arguments: - RELATIVE : str - Sets reference component for rotation - """ - - component = self.get_component(name) - component.set_ROTATED(rotated_list, **kwargs) - - def set_component_RELATIVE(self, name, relative): - """ - Method for setting reference of component position and rotation - - Parameters - ---------- - name : str - Unique name of component to modify - - relative : str - Reference component for position and rotation - """ - - component = self.get_component(name) - component.set_RELATIVE(relative) - - def set_component_WHEN(self, name, WHEN): - """ - Method for setting WHEN c expression to named component - - Parameters - ---------- - name : str - Unique name of component to modify - - WHEN : str - Sets WHEN c expression for named McStas component - """ - component = self.get_component(name) - component.set_WHEN(WHEN) - - def append_component_EXTEND(self, name, EXTEND): - """ - Method for adding line of c to EXTEND section of named component - - Parameters - ---------- - name : str - Unique name of component to modify - - EXTEND : str - Line of c code added to EXTEND section of named component - """ - - component = self.get_component(name) - component.append_EXTEND(EXTEND) - - def set_component_GROUP(self, name, GROUP): - """ - Method for setting GROUP name of named component - - Parameters - ---------- - name : str - Unique name of component to modify - - GROUP : str - Sets GROUP name for named McStas component - """ - - component = self.get_component(name) - component.set_GROUP(GROUP) - - def set_component_JUMP(self, name, JUMP): - """ - Method for setting JUMP expression of named component - - Parameters - ---------- - name : str - Unique name of component to modify - - JUMP : str - Sets JUMP expression for named McStas component - """ - - component = self.get_component(name) - component.set_JUMP(JUMP) - - def set_component_comment(self, name, string): - """ - Sets a comment displayed before the component in written files - - Parameters - ---------- - name : str - Unique name of component to modify - - string : str - Comment string - - """ - - component = self.get_component(name) - component.set_comment(string) - - def print_component(self, name): - """ - Method for printing summary of contents in named component - - Parameters - ---------- - name : str - Unique name of component to print - """ - - component = self.get_component(name) - component.print_long() - - def print_component_short(self, name): - """ - Method for printing summary of contents in named component - - Parameters - ---------- - name : str - Unique name of component to print - """ - - component = self.get_component(name) - component.print_short() - - def print_components(self): - """ - Method for printing overview of all components in instrument - - Provides overview of component names, what McStas component is - used for each and their position and rotation in space. - """ - - longest_name = len(max(self.component_name_list, key=len)) - - # Investigate how this could have been done in a better way - # Find longest field for each type of data printed - component_type_list = [] - at_x_list = [] - at_y_list = [] - at_z_list = [] - at_relative_list = [] - rotated_x_list = [] - rotated_y_list = [] - rotated_z_list = [] - rotated_relative_list = [] - for component in self.component_list: - component_type_list.append(component.component_name) - at_x_list.append(str(component.AT_data[0])) - at_y_list.append(str(component.AT_data[1])) - at_z_list.append(str(component.AT_data[2])) - at_relative_list.append(component.AT_relative) - rotated_x_list.append(str(component.ROTATED_data[0])) - rotated_y_list.append(str(component.ROTATED_data[1])) - rotated_z_list.append(str(component.ROTATED_data[2])) - rotated_relative_list.append(component.ROTATED_relative) - - longest_component_name = len(max(component_type_list, key=len)) - longest_at_x_name = len(max(at_x_list, key=len)) - longest_at_y_name = len(max(at_y_list, key=len)) - longest_at_z_name = len(max(at_z_list, key=len)) - longest_at_relative_name = len(max(at_relative_list, key=len)) - longest_rotated_x_name = len(max(rotated_x_list, key=len)) - longest_rotated_y_name = len(max(rotated_y_list, key=len)) - longest_rotated_z_name = len(max(rotated_z_list, key=len)) - longest_rotated_relative_name = len(max(rotated_relative_list, - key=len)) - - # Have longest field for each type, use ljust to align all columns - for component in self.component_list: - print(str(component.name).ljust(longest_name+2), end=' ') - - comp_name = component.component_name - comp_name_print = str(comp_name).ljust(longest_component_name + 2) - print(comp_name_print, end=' ') - - comp_at_data = str(component.AT_data) - longest_at_xyz_sum = (longest_at_x_name - + longest_at_y_name - + longest_at_z_name) - print("AT ", - comp_at_data.ljust(longest_at_xyz_sum + 11), - end='') - - comp_at_relative = component.AT_relative - print(comp_at_relative.ljust(longest_at_relative_name + 2), - end=' ') - - comp_rotated_data = str(component.ROTATED_data) - longest_rotated_xyz_sum = (longest_rotated_x_name - + longest_rotated_y_name - + longest_rotated_z_name) - print("ROTATED ", - comp_rotated_data.ljust(longest_rotated_xyz_sum + 11), - end='') - print(component.ROTATED_relative) - # print("") - - def write_c_files(self): - """ - Obsolete method for writing instrument parts to c files - - It is possible to use this function to write c files to a folder - called generated_includes that can then be included in the - different sections of a McStas instrument. Component objects are - NOT written to these files, but rather the contents of the - trace_section that can be set using the append_trace method. - """ - path = os.getcwd() - path = path + "/generated_includes" - if not os.path.isdir(path): - try: - os.mkdir(path) - except OSError: - print("Creation of the directory %s failed" % path) - - fo = open("./generated_includes/" + self.name + "_declare.c", "w") - fo.write("// declare section for %s \n" % self.name) - fo.close() - fo = open("./generated_includes/" + self.name + "_declare.c", "a") - for dec_line in self.declare_list: - dec_line.write_line(fo) - fo.write("\n") - fo.close() - - fo = open("./generated_includes/" + self.name + "_initialize.c", "w") - fo.write(self.initialize_section) - fo.close() - - fo = open("./generated_includes/" + self.name + "_trace.c", "w") - fo.write(self.trace_section) - fo.close() - - fo = open("./generated_includes/" + self.name - + "_component_trace.c", "w") - for component in self.component_list: - component.write_component(fo) - fo.close() - - def write_full_instrument(self): - """ - Method for writing full instrument file to disk - - This method writes the instrument described by the instrument - objects to disk with the name specified in the initialization of - the object. - """ - - # Create file identifier - fo = open(self.name + ".instr", "w") - - # Write quick doc start - fo.write("/" + 80*"*" + "\n") - fo.write("* \n") - fo.write("* McStas, neutron ray-tracing package\n") - fo.write("* Copyright (C) 1997-2008, All rights reserved\n") - fo.write("* Risoe National Laboratory, Roskilde, Denmark\n") - fo.write("* Institut Laue Langevin, Grenoble, France\n") - fo.write("* \n") - fo.write("* This file was written by McStasScript, which is a \n") - fo.write("* python based McStas instrument generator written by \n") - fo.write("* Mads Bertelsen in 2019 while employed at the \n") - fo.write("* European Spallation Source Data Management and \n") - fo.write("* Software Center\n") - fo.write("* \n") - fo.write("* Instrument %s\n" % self.name) - fo.write("* \n") - fo.write("* %Identification\n") # Could allow the user to insert this - fo.write("* Written by: %s\n" % self.author) - t_format = "%H:%M:%S on %B %d, %Y" - fo.write("* Date: %s\n" % datetime.datetime.now().strftime(t_format)) - fo.write("* Origin: %s\n" % self.origin) - fo.write("* %INSTRUMENT_SITE: Generated_instruments\n") - fo.write("* \n") - fo.write("* \n") - fo.write("* %Parameters\n") - # Add description of parameters here - fo.write("* \n") - fo.write("* %End \n") - fo.write("*"*80 + "/\n") - fo.write("\n") - fo.write("DEFINE INSTRUMENT %s (" % self.name) - fo.write("\n") - # Add loop that inserts parameters here - for variable in self.parameter_list[0:-1]: - variable.write_parameter(fo, ",") - if len(self.parameter_list) > 0: - self.parameter_list[-1].write_parameter(fo, " ") - fo.write(")\n") - fo.write("\n") - - # Write declare - fo.write("DECLARE \n%{\n") - for dec_line in self.declare_list: - dec_line.write_line(fo) - fo.write("\n") - fo.write("%}\n\n") - - # Write initialize - fo.write("INITIALIZE \n%{\n") - fo.write(self.initialize_section) - # Alternatively hide everything in include - """ - fo.write("%include "generated_includes/" - + self.name + "_initialize.c") - """ - fo.write("%}\n\n") - - # Write trace - fo.write("TRACE \n") - for component in self.component_list: - component.write_component(fo) - - # Write finally - fo.write("FINALLY \n%{\n") - fo.write(self.finally_section) - # Alternatively hide everything in include - fo.write("%}\n") - - # End instrument file - fo.write("\nEND\n") - - def run_full_instrument(self, *args, **kwargs): - """ - Runs McStas instrument described by this class, returns list of - McStasData - - This method will write the instrument to disk and then run it - using the mcrun command of the system. Options are set using - keyword arguments. Some options are mandatory, for example - foldername, which can not already exist, if it does data will - be read from this folder. If the mcrun command is not in the - path of the system, the absolute path can be given with the - mcrun_path keyword argument. This path could also already have - been set at initialization of the instrument object. - - Parameters - ---------- - Keyword arguments - foldername : str - Sets data_folder_name - ncount : int - Sets ncount - mpi : int - Sets thread count - parameters : dict - Sets parameters - custom_flags : str - Sets custom_flags passed to mcrun - mcrun_path : str - Path to mcrun command, "" if already in path - """ - # Write the instrument file - self.write_full_instrument() - - # Make sure mcrun path is in kwargs - if "mcrun_path" not in kwargs: - kwargs["mcrun_path"] = self.mcrun_path - - # Set up the simulation - simulation = ManagedMcrun(self.name + ".instr", **kwargs) - - # Run the simulation and return data - return simulation.run_simulation() diff --git a/McStasScript_demo.ipynb b/McStasScript_demo.ipynb deleted file mode 100644 index cedf4d7d..00000000 --- a/McStasScript_demo.ipynb +++ /dev/null @@ -1,495 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Demonstration of McStasScript\n", - "This file demonstrates how McStasScript can be used to run McStas from a python environment in a userfreindly manner." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import sys\n", - "sys.path.append('/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript') # Path to McStasScript pythoon file\n", - "import McStasScript \n", - "\n", - "# Creating the instance of the class, insert path to mcrun and to mcstas root directory\n", - "instr = McStasScript.McStas_instr(\"jupyter_demo\",\n", - " mcrun_path= \"/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin\",\n", - " mcstas_path = \"/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5\")" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Here are the availalbe component categories:\n", - " sources\n", - " optics\n", - " samples\n", - " monitors\n", - " misc\n", - " contrib\n", - " union\n", - " obsolete\n", - " Work directory\n", - "Call show_components(category_name) to display\n" - ] - } - ], - "source": [ - "instr.show_components() # Shows available McStas component categories in current installation" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Here are all components in the sources category.\n", - " Adapt_check Monitor_Optimizer Source_div Virtual_output\n", - " ESS_butterfly Source_Maxwell_3 Source_gen \n", - " ESS_moderator Source_Optimizer Source_simple \n", - " Moderator Source_adapt Virtual_input \n" - ] - } - ], - "source": [ - "instr.show_components(\"sources\") # Display all McStas source components " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " ___ Help Source_simple _________________________________________________\n", - "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", - "\u001b[1mradius\u001b[0m = \u001b[1m\u001b[94m0.1\u001b[0m\u001b[0m [m] // Radius of circle in (x,y,0) plane where neutrons are generated.\n", - "\u001b[1myheight\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Height of rectangle in (x,y,0) plane where neutrons are generated.\n", - "\u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Width of rectangle in (x,y,0) plane where neutrons are generated.\n", - "\u001b[1mdist\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Distance to target along z axis.\n", - "\u001b[1mfocus_xw\u001b[0m = \u001b[1m\u001b[94m.045\u001b[0m\u001b[0m [m] // Width of target\n", - "\u001b[1mfocus_yh\u001b[0m = \u001b[1m\u001b[94m.12\u001b[0m\u001b[0m [m] // Height of target\n", - "\u001b[1mE0\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [meV] // Mean energy of neutrons.\n", - "\u001b[1mdE\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [meV] // Energy half spread of neutrons (flat or gaussian sigma).\n", - "\u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [AA] // Mean wavelength of neutrons.\n", - "\u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [AA] // Wavelength half spread of neutrons.\n", - "\u001b[1mflux\u001b[0m = \u001b[1m\u001b[94m1\u001b[0m\u001b[0m [1/(s*cm**2*st*energy unit)] // flux per energy unit, Angs or meV if flux=0, the source emits 1 in 4*PI whole space.\n", - "\u001b[1mgauss\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [1] // Gaussian (1) or Flat (0) energy/wavelength distribution\n", - "\u001b[1mtarget_index\u001b[0m = \u001b[1m\u001b[94m+1\u001b[0m\u001b[0m [1] // relative index of component to focus at, e.g. next is +1 this is used to compute 'dist' automatically.\n", - "-------------------------------------------------------------------------\n" - ] - } - ], - "source": [ - "instr.component_help(\"Source_simple\") # Displays help on the Source_simple component" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "source = instr.add_component(\"Source\",\"Source_simple\") # Adds an instance of Source_simple called Source to instrument" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [], - "source": [ - "# Lets add a parameter to the instrument to control the wavelength of the source\n", - "instr.add_parameter(\"double\",\"wavelength\",value=3,comment=\"Wavelength emmited from source\")\n", - "source.xwidth = 0.06; source.yheight = 0.08;\n", - "source.dist = 2; source.focus_xw = 0.05; source.focus_yh = 0.05\n", - "source.lambda0 = \"wavelength\"; source.dlambda = 0.1" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "COMPONENT Source = Source_simple\n", - " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.08\u001b[0m\u001b[0m [m]\n", - " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.06\u001b[0m\u001b[0m [m]\n", - " \u001b[1mdist\u001b[0m = \u001b[1m\u001b[92m2\u001b[0m\u001b[0m [m]\n", - " \u001b[1mfocus_xw\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", - " \u001b[1mfocus_yh\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", - " \u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[92mwavelength\u001b[0m\u001b[0m [AA]\n", - " \u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [AA]\n", - "AT [0, 0, 0] ABSOLUTE\n", - "ROTATED [0, 0, 0] ABSOLUTE\n" - ] - } - ], - "source": [ - "source.print_long() # Verify that the information is correct" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [], - "source": [ - "guide = instr.add_component(\"Guide\", \"Guide_gravity\", AT=[0,0,2], RELATIVE=\"Source\")\n", - "guide.set_comment=\"Beam extraction and first guide piece\"" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " ___ Help Guide_gravity _________________________________________________\n", - "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", - "\u001b[4m\u001b[1mw1\u001b[0m\u001b[0m [m] // Width at the guide entry\n", - "\u001b[4m\u001b[1mh1\u001b[0m\u001b[0m [m] // Height at the guide entry\n", - "\u001b[1mw2\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Width at the guide exit. If 0, use w1.\n", - "\u001b[1mh2\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Height at the guide exit. If 0, use h1.\n", - "\u001b[4m\u001b[1ml\u001b[0m\u001b[0m [m] // length of guide\n", - "\u001b[1mR0\u001b[0m = \u001b[1m\u001b[94m0.995\u001b[0m\u001b[0m [1] // Low-angle reflectivity\n", - "\u001b[1mQc\u001b[0m = \u001b[1m\u001b[94m0.0218\u001b[0m\u001b[0m [AA-1] // Critical scattering vector\n", - "\u001b[1malpha\u001b[0m = \u001b[1m\u001b[94m4.38\u001b[0m\u001b[0m [AA] // Slope of reflectivity\n", - "\u001b[1mm\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // m-value of material. Zero means completely absorbing. m=0.65 glass/SiO2 Si Ni Ni58 supermirror Be Diamond m= 0.65 0.47 1 1.18 2-6 1.01 1.12 for glass/SiO2, m=1 for Ni, 1.2 for Ni58, m=2-6 for supermirror. m=0.47 for Si\n", - "\u001b[1mW\u001b[0m = \u001b[1m\u001b[94m0.003\u001b[0m\u001b[0m [AA-1] // Width of supermirror cut-off\n", - "\u001b[1mnslit\u001b[0m = \u001b[1m\u001b[94m1\u001b[0m\u001b[0m [1] // Number of vertical channels in the guide (>= 1) (nslit-1 vertical dividing walls).\n", - "\u001b[1md\u001b[0m = \u001b[1m\u001b[94m0.0005\u001b[0m\u001b[0m [m] // Thickness of subdividing walls\n", - "\u001b[1mmleft\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // m-value of material for left. vert. mirror\n", - "\u001b[1mmright\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // m-value of material for right. vert. mirror\n", - "\u001b[1mmtop\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // m-value of material for top. horz. mirror\n", - "\u001b[1mmbottom\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // m-value of material for bottom. horz. mirror\n", - "\u001b[1mnhslit\u001b[0m = \u001b[1m\u001b[94m1\u001b[0m\u001b[0m [1] // Number of horizontal channels in the guide (>= 1). (nhslit-1 horizontal dividing walls). this enables to have nslit*nhslit rectangular channels\n", - "\u001b[1mG\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m/s2] // Gravitation norm. 0 value disables G effects.\n", - "\u001b[1maleft\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // alpha-value of left vert. mirror\n", - "\u001b[1maright\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // alpha-value of right vert. mirror\n", - "\u001b[1matop\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // alpha-value of top horz. mirror\n", - "\u001b[1mabottom\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // alpha-value of left horz. mirror\n", - "\u001b[1mwavy\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // Global guide waviness\n", - "\u001b[1mwavy_z\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // Partial waviness along propagation axis\n", - "\u001b[1mwavy_tb\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // Partial waviness in transverse direction for top/bottom mirrors\n", - "\u001b[1mwavy_lr\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // Partial waviness in transverse direction for left/right mirrors\n", - "\u001b[1mchamfers\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Global chamfers specifications (in/out/mirror sides).\n", - "\u001b[1mchamfers_z\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Input and output chamfers\n", - "\u001b[1mchamfers_lr\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Chamfers on left/right mirror sides\n", - "\u001b[1mchamfers_tb\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Chamfers on top/bottom mirror sides\n", - "\u001b[1mnelements\u001b[0m = \u001b[1m\u001b[94m1\u001b[0m\u001b[0m [1] // Number of sections in the guide (length l/nelements).\n", - "\u001b[1mnu\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [Hz] // Rotation frequency (round/s) for Fermi Chopper approximation\n", - "\u001b[1mphase\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // Phase shift for the Fermi Chopper approximation\n", - "\u001b[1mreflect\u001b[0m = \u001b[1m\u001b[94m\"NULL\"\u001b[0m\u001b[0m [str] // Reflectivity file name. Format \n", - "-------------------------------------------------------------------------\n" - ] - } - ], - "source": [ - "guide.show_parameters() # Lets view the parameters available in our guide component" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [], - "source": [ - "guide.set_parameters({\"w1\" : 0.05, \"w2\" : 0.05, \"h1\" : 0.05, \"h2\" : 0.05, \"l\" : 8, \"m\" : 3.5, \"G\" : -9.2})" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "COMPONENT Guide = Guide_gravity\n", - " \u001b[1mw1\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", - " \u001b[1mh1\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", - " \u001b[1mw2\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", - " \u001b[1mh2\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", - " \u001b[1ml\u001b[0m = \u001b[1m\u001b[92m8\u001b[0m\u001b[0m [m]\n", - " \u001b[1mm\u001b[0m = \u001b[1m\u001b[92m3.5\u001b[0m\u001b[0m [1]\n", - " \u001b[1mG\u001b[0m = \u001b[1m\u001b[92m-9.2\u001b[0m\u001b[0m [m/s2]\n", - "AT [0, 0, 2] RELATIVE Source\n", - "ROTATED [0, 0, 0] RELATIVE Source\n" - ] - } - ], - "source": [ - "guide.print_long() # Verify the information on this component is correct" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [], - "source": [ - "sample = instr.add_component(\"sample\", \"PowderN\", AT=[0,0,9], RELATIVE=\"Guide\") # Add a sample" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "metadata": {}, - "outputs": [], - "source": [ - "sample.radius = 0.015; sample.yheight = 0.05; sample.reflections = \"\\\"Cu.laz\\\"\" # A small copper cylinder" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Here are all components in the monitors category.\n", - " Brilliance_monitor Monitor PSD_monitor_psf_eff TOF2E_monitor\n", - " DivLambda_monitor Monitor_4PI PSDcyl_monitor TOF2Q_cylPSD_monitor\n", - " DivPos_monitor Monitor_Sqw PSDlin_diff_monitor TOFLambda_monitor\n", - " Divergence_monitor Monitor_nD PSDlin_monitor TOF_PSD_monitor_rad\n", - " EPSD_monitor PSD_TOF_monitor PolLambda_monitor TOF_cylPSD_monitor\n", - " E_monitor PSD_monitor Pol_monitor TOF_monitor\n", - " Hdiv_monitor PSD_monitor_4PI PreMonitor_nD TOFlog_monitor\n", - " L_monitor PSD_monitor_TOF Res_monitor \n", - " MeanPolLambda_monitor PSD_monitor_psf Sqq_w_monitor \n" - ] - } - ], - "source": [ - "instr.show_components(\"monitors\") # Monitors are needed to record information" - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "metadata": {}, - "outputs": [], - "source": [ - "sphere = instr.add_component(\"PSD_4PI\", \"PSD_monitor_4PI\", RELATIVE=\"sample\") # Add 4PI sphere detector" - ] - }, - { - "cell_type": "code", - "execution_count": 16, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "COMPONENT PSD_4PI = PSD_monitor_4PI\n", - " \u001b[1mnx\u001b[0m = \u001b[1m\u001b[92m300\u001b[0m\u001b[0m [1]\n", - " \u001b[1mny\u001b[0m = \u001b[1m\u001b[92m300\u001b[0m\u001b[0m [1]\n", - " \u001b[1mfilename\u001b[0m = \u001b[1m\u001b[92m\"PSD_4PI.dat\"\u001b[0m\u001b[0m [string]\n", - " \u001b[1mradius\u001b[0m = \u001b[1m\u001b[92m1\u001b[0m\u001b[0m [m]\n", - " \u001b[1mrestore_neutron\u001b[0m = \u001b[1m\u001b[92m1\u001b[0m\u001b[0m [1]\n", - "AT [0, 0, 0] RELATIVE sample\n", - "ROTATED [0, 0, 0] RELATIVE sample\n" - ] - } - ], - "source": [ - "sphere.nx = 300; sphere.ny = 300; sphere.filename = \"\\\"PSD_4PI.dat\\\"\"; sphere.radius = 1; sphere.restore_neutron = 1;\n", - "sphere.print_long() # Verify that monitors have filenames that are strings when printed, double quotes needed" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [], - "source": [ - "PSD = instr.add_component(\"PSD\", \"PSD_monitor\", AT=[0,0,1], RELATIVE=\"sample\") # Add position sensitive detector\n", - "PSD.xwidth = 0.1; PSD.yheight = 0.1; PSD.nx = 200; PSD.ny = 200; PSD.filename = \"\\\"PSD.dat\\\"\"; PSD.restore_neutron = 1" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [], - "source": [ - "L_mon = instr.add_component(\"L_mon\", \"L_monitor\", RELATIVE=\"PSD\")" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": {}, - "outputs": [], - "source": [ - "L_mon.Lmin = \"wavelength - 0.3\"; L_mon.Lmax = \"wavelength + 0.3\"; L_mon.nL = 150\n", - "L_mon.xwidth = 0.1; L_mon.yheight = 0.1\n", - "L_mon.filename = \"\\\"L_mon.dat\\\"\"; L_mon.restore_neutron = 1\n", - "L_mon.comment = \"Wavelength monitor for narrow range\"" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "// Wavelength monitor for narrow range\n", - "COMPONENT L_mon = L_monitor\n", - " \u001b[1mnL\u001b[0m = \u001b[1m\u001b[92m150\u001b[0m\u001b[0m [1]\n", - " \u001b[1mfilename\u001b[0m = \u001b[1m\u001b[92m\"L_mon.dat\"\u001b[0m\u001b[0m [string]\n", - " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m]\n", - " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m]\n", - " \u001b[1mLmin\u001b[0m = \u001b[1m\u001b[92mwavelength - 0.3\u001b[0m\u001b[0m [AA]\n", - " \u001b[1mLmax\u001b[0m = \u001b[1m\u001b[92mwavelength + 0.3\u001b[0m\u001b[0m [AA]\n", - " \u001b[1mrestore_neutron\u001b[0m = \u001b[1m\u001b[92m1\u001b[0m\u001b[0m [1]\n", - "AT [0, 0, 0] RELATIVE PSD\n", - "ROTATED [0, 0, 0] RELATIVE PSD\n" - ] - } - ], - "source": [ - "L_mon.print_long()" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Source Source_simple AT [0, 0, 0] ABSOLUTE ROTATED [0, 0, 0] ABSOLUTE\n", - "Guide Guide_gravity AT [0, 0, 2] RELATIVE Source ROTATED [0, 0, 0] RELATIVE Source\n", - "sample PowderN AT [0, 0, 9] RELATIVE Guide ROTATED [0, 0, 0] RELATIVE Guide\n", - "PSD_4PI PSD_monitor_4PI AT [0, 0, 0] RELATIVE sample ROTATED [0, 0, 0] RELATIVE sample\n", - "PSD PSD_monitor AT [0, 0, 1] RELATIVE sample ROTATED [0, 0, 0] RELATIVE sample\n", - "L_mon L_monitor AT [0, 0, 0] RELATIVE PSD ROTATED [0, 0, 0] RELATIVE PSD\n" - ] - } - ], - "source": [ - "instr.print_components() # Lets get an overview of the instrument so far" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Running the McStas instrument\n", - "Now we have assembled an instrument and it is time to perform a simulation" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [], - "source": [ - "# If the folder already exsits, a new simulation is not performed but the old one is read\n", - "data = instr.run_full_instrument(foldername=\"jupyter_demo\",\n", - " parameters={\"wavelength\" : 1.0},\n", - " mpi=4,\n", - " ncount=2E7)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The returned data object is a list of McStasData objects, each containing the results from a monitor.\n", - "These data objects also contain preferences for how they should be plotted if this is done automatically." - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "number of elements in data list = 3\n", - "Plotting data with name PSD_4PI\n", - "Plotting data with name PSD\n", - "Plotting data with name L_mon\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAG5CAYAAABIoz+EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvX2cVld57/1dQwaGwYFhyGSQF5mQoSQIEpAUk5CGpFETT4zG2hpP+9SX09o3T1tbn3O09Tm1rX15Wtt6zmNra9V6rOejtn40WmtiTE1i0kROCAmFYjhMEGQgkAkThgkwMMJ6/riuH9e+78wwAzNJENbv87k/973vvfZ622uvff3W9bJSzpmCgoKCgoKCgoKCgoLzBQ0vdgUKCgoKCgoKCgoKCgpeSBQSVFBQUFBQUFBQUFBwXqGQoIKCgoKCgoKCgoKC8wqFBBUUFBQUFBQUFBQUnFcoJKigoKCgoKCgoKCg4LxCIUEFBQUFBQUFBQUFBecVCgkqKPghQkrpt1JKn3ix61FQUFBQ8MKjvAMKCiYOhQQVnBVIKS1KKQ2mlD5b+e/tKaXjKaVnU0oHU0qPpZRu9nNrU0o9p8hvR0rpiF+7L6X0dymll/i5l6eU7kopPZNSOpBSeiSl9LpKvif8umdTSj0ppX9IKV3xfPfBWJBz/sOc888BpJQ6U0o5pXTBi12vgoKCgrMJ5R1QUFAwGgoJKjhb8JfAw8P8/1DO+SVAK/BJ4B9SSm1jzPP1fu1K4ArgA/7/PwHfBDqAi4BfBQ5Wrtvj17UArwIeB+5PKf346TXp7EZ5cRYUFJzjKO+AU6C8AwrOdxQSVPCiI6V0G3AA+JeR0uScTwCfAqYCC08n/5zzbuAOYGlK6ULgYuBvc87H/POvOecHhrku55x7cs7/DfgE8P+OUH+txr0jpbTLVxd/MaV0RUrp33yl8aOV9A0ppQ+klHamlJ5KKX0mpTSjLq+3pZS+n1J6OqX025VrP1jRln3bvw/4iuWVY8z7P6WUvg9863T6saCgoOCHEeUdUN4BBQXDoZCgghcVKaXpwO8BvzlKuguAnwOeBbadZhnzgdcBjwL7gW7gsymlN6aUOsaYzZeAlSmlaadIsxpYBLwF+Ajw28ANwMuBn0opXevp3u6f6zBC9xLgo3V5rQEWAz8O/LeU0mXDlPdj/t2ac35JzvmhMeZ9LXAZ8NpTtKWgoKDgnEB5B5R3QEHBcCgkqODFxu8Dn8w57xrh/KtSSgeAvcBbgVtzzv1jzPt2v/YB4D7gD3POGXs57AD+DHgypfTtlNKiUfLaAyTMLG/EtuScB3POdwGHgM/lnJ/yVcj7gRWe7qeBP885b885Pwu8H7itzjThd3POR3LOG4GNwPIxtnkseX8w53wo53xkjHkWFBQU/DCivAPKO6CgYEQUe9CCFw0ppcuxVbIVp0j2nZzzmjMs4o0557vr/8w59wDv9jrMBz4OfAa48hR5zQUyZrY3EvZVfh8Z5vgl/nsOsLNybif2LFZXJPdWfh+uXDsaxpL3SISzoKCg4FxCeQeUd0BBwYgomqCCFxNrgU7g+ymlvcB7gZ9IKW14oSrgGqi/BJaOkvRWYEPO+dAEFLsHWFA5fhnwA2pfmGNBPsO8h7uuoKCg4LxDeQcUFJy/KCSo4MXEx4FLgMv989fAP/M82imnlGamlH43pdTlDqQXAu8EvjNM2pRSmptS+h3MH+m3JqganwPek1K6OFnI1j8EvpBz/sFp5tMLnKA2UMRE5V1QUFBwzqG8AwoKCoRiDlfwoiHnfBhT8wOQUnoWGMw59z6PxR7DtE93AxdigRbuAf5zJc0cr0sC+oEHgbU55+e8JM8Qn8JMFr4NNAHfqCt/TMg5H04p/QHwrymlRuDGicq7oKCg4BxFeQcUFBQAkMxHsKCgoKCgoKCgoKCg4PxAMYcrKCgoKCgoKCgoKDivUEhQQUFBQUFBQUFBQcF5hUKCCgoKCgoKCgoKCgrOKxQSVFBQUFBQUFBQUFBwXqFEhzsNpJTyucIaV7zylTz6yCMTnicw4fm+UHg++uSHsQ4/bDhb+uwEPJ1zbh9PHjfeeGN++umnRzz/yCOPfCPnfON4yih4YZBSc4bWF7saBQUFZyWeHNf7oiulfHiUNE9CeV+MghId7jQwKaU81X83AkMvZmV+iNAG9L3YlSgoeJ5xCB7JOa8aTx6rVr0yr1+/bsTzKTWOu4yCFwYpzcnwCy92NQoKCs5KfHBcc/mclPJos8sHJ+CddK6jaILOEGcLAZoCHD2N9C8GeSsE6PnH6Y6DglqMt/8aJ6oigG3uXlBQUFBQMDwagKmjpioYDeeKddd5Cwlui8eYfjQCNOcM6tB8BteMhjOpx/OJ56ONE4kzEeBbRjnfdSYVOQ20Pc/5nw7GSyAnbmHhBDB4ik9BQUFBwfkOkaBTfQpGRyFB5wh6x3HtDEIg3XMG1w9nlzpeAbdaj+EG6fMpQA9npFvfxvqV/xmnkf9o5GO8GI5Azhvmv4Fh/usY5r8zIUNjMXQ+HQ3h6fTvRED9NdK9ev4mzoxpgkb6FBQUFBSc7ygkaHiklF6WUvpqSulTKaX3jZa+kKDTxKnMXurPNfPCaRDGY3LWP87rh8NE5nfiDPIXEaj2/0iDfXndcS/DkwYwYXwKJuRX8+s/RV0W+LfyHGB4sjEcVowxXRXDEdmeUa5RW/ZV/uvG6tx9BnUYDylXfarPUz/Rj+PBcGRqOMKm/hqOKHbx3DE5rmgINSgkqKCgoKDghUFKaUdKaVNK6bGU0vpTpJuUUno0pfS1yn83ppS2ppS6x0I4RqnHp1JKT6WUNtf9f7pl/AjwzznndwJLRktcSNBp4lRmL/XnDjO8luT5wMJRzo9V6B4NE+v7YJhSd1yv5ak/PxzqtR8iAtX+l+Ban9/GuuMGQgiupr0OE8aPev4nCKG6gZFNEnf5d5WI7BsmXQvWvzOwJ3cB8Gjl/Kn6fiwE4VQP+3BEE0YnT88XFvLc52knI5NTGHnBofpsDEdWRdiG06AN168ihVUt0XhJXyBTzOEKCgoKCk6FCdYEXZdzvnyUIAq/BnxXBymlScBfAjdhIstbU0rPIR0ppYtSSi11/w1nYPJp4Ma6dCOWkVJallL6Wt3nIkxsui2l9C3gntEaXkjQOCEhWIJWfYfqzl9HCLHz/LrhVo81MurzGc1HZju1Zkv1AuFwQvdYMIdaKn06vg8LGBuBqeY5XOAG+WucyozsgH+r3+qJ1HKifyb599JK+qWV/KvkRnXpwp6merIpoVr3Vv3eQdzfkQhGFUswrcOQf45jQv8aP9/Cqft+Z+X3jLpvCfJjqUcVY/Uzq47rsWAshHwk7VPPKcoZrn9asGdjLBhOg1bt1+ozOYPhtUTjR8bu/kif8w8ppbUppftTSn+dUlr7YtenoKCg4MXGC2kOl1KaB/wH4BOVv38U6M45b885HwM+D7xhmMuvBb6SUmryvH4e+B/1iXLO3+a5Rj4jlpFz3pRzvrnu8xTwDuB3cs7Xe51PiUKCzgBVgiEheDsm9NYLmhKU7sF2jGjBBLkTDL96LOHvBLUC93ACWj0pqAqO7cOkaa4c1xOwkVbRD4xQz7FgJ7UO5yMJr+qzDkKQHa4+AwS5Uf2V52GMsC3z4z6ivasxbc80L0Paoc1AZ+V3AybcNgNzgVVetznYGvxSYH9d+UIrsNXzbvN2VPutxcvuIMiJ8mgmSJzaImzwdAPUPqy6dkrdMcSY7PeylN/pavG2jiGN2gpj1xqNpAU7Fapjp2eY/6CWBGn8TJTmcgo2FlTPU5k/jg/jD4wwkllBXZphTQzOUvOGDDwLNPHiKScLCgoKzhok7P12qg9wYUppfeXzrmGyysBdKaVHRjgP8BHgv1Ar4s4lDF3A5ua5z8k8538E7gQ+n1L6aeCdwE+NsZljKqMOdwK/mlL6a2DHaAUUEnSaWMjIJm69nNo3YApBigYIYbgq8Fd9FrYTmgCIFX0JdgOYUDYcudhZSSMcrhyfqp7V/CYxMaY+i6mVXqpmRmrPPqx/Z2CEpdnrckMl7SCm1VmD+cvMwojFYowobvS8lxDtbfLjAzx368IdlfoNEMLtFGA2RqD2eN13AisrdZ5BaOgk2HdgBKyvkg5Cy3O4Uode7P61AocqdVpIkKJp1GqUVnm7dU+OYlqqKoloJ7Qt/ZW0Ign1+u6RtJhCxynOnco3q2oqOJq5Xr1WpbmuzOrYaR/mv4a6c3pGVb+WYdKeDkTmnx/tTz3G7RP0aerMCqoYycTgLDZvuD/nfBPwX4HfHUsHFBQUFJzLSIxJE/R0znlV5fPxYbK6Oue8EpuTfyWl9GM15aR0M/BUzrl+R/I0TF7Dbjyac/4TTHz7GHBLzvnZMTXyNMqolLU55/zmnPMv5pzfO1oBhQSdJrZTK1BNIYTIhdQShnpzovolzH5MiJb2QP9V8YCnacCE8C5MmG3EhNOV1AqibdQ601cJ1pX+3QVsqbtGdZjn9Zzj+Uvok8bhVL5HpzJ9q2o6OjBiIgwRAvN+rA86MC3NUWAbIbgvxIjOV7C+PkRoYYQ+4HH//WasrVswY6Kt1BJALWtsxQhHg9dnAHgY6z8RmRmESdwer+cewol/cSW/Nq/zTZW2Dfinl7jf6t9WjNi1ed+IVPUCu7G+XeztOFFpw82eVvd5OXCQ0HDVYzHWnzP89zzCXKxei6lxNFZTynrtncbyCWrNykYzkZS2bjjzvWasTxqxMao6Km09YdczWCUvJ6jVEI2khRpNizRW87/Tw/g1QSOYFVQxkonBWWnekHPW7X2GsVnYFhQUFBSMATnnPf79FPBlbI6u4mrglpTSDmy+vj6l9FlMVJxfSTePEQIMp5SuwYxpvgz8zmlUb8xlnCkKCToDSKDqwoT03X68oy7dVkzYXIgJY1Xh+zpM+NpDjeqSdky4Ewlp8M80T9/t+c3BhNP7qNVMDVDrTK985hA6xXp/C7WnDxtxU7xeEn4biZXwU/lXLBvmvyXeJuXVholyu6gVMocwAVemX5s9XW8ljxX+f1Wr0I0RiC6sr1f5eUlNTxCC8WyeqwFrw7Q9gjQ73V7ne7D+b/Ny5lXqLUIoUlLVmrUC64GvYmSgmYhCdy3W16sIMtKEEd4+jOjovuPXTyfM7Qa9Hm3A16glpg3AqzDCt4Tw55rh9d6KzSjt/lvEvJ4UTKF2HFXJXbWvqn1Xr2UbDiJ5QnPd74a6fNq9LvXmbUPYGN3p13RgMyzU+hxVNWxVqA7Nw9SnjTDzq5obVn2tuqhd1Ji4kO2jRocbi3nDaBjJxOCsNG9IKb0ppfQ3wN8DHx1jOQUFBQXnLCbCJyilNE1a/ZTSNOA1mJh1Ejnn9+ec5+WcO4HbgG/lnH8GWydelFK6OKU02c99dZgyVgB/iy12vQNoSyl9aIzNHFMZ48E5T4JSSos99J8+B1NKv55S+mBKaXfl/9eNltdUosOaMUF5CUEQLsWEtBZqfQcWYOShukp9D0E+hjAhc7Wn6cAEvD7/v5/QIuB5VVfWJYA1EyZPMonqxYR5mXRJqNMKeQsmBC4mtC31G0cqz6qwXR8QAq9TPcnY4mWovFaM0B3GtDQSKBUQoNXrsRA4hvXdgxhBABO892J93YT1mbRa/RgR0RO8GBPkr/N6rcfIg7QqIp8H/PxxYDK1JOvKSl67sPsxgBGZRs9rOabB2uJtuQ67R82EcH7Yy78O2OTXrPc634NpZ2728kSCV3q9ujx/EbAmb5cIwUaM4C3wcnZ4X27BNGKLvZxVXt/N2Ni9jtBmtFJrulcdAwoLDrXL+nuoJcVjCQffR2hA2wkC3+51WOnfGl+9dXWpakpV9xOerwhyVXPVw/CT3ADWL/LTEw57XhoTgsi46qBnWeN64kLCjxodbghzFfvdU5g3jIaRTAzOVvOGL+WcfyHn/Jac871jLKegoKDgnMUEBUboAB5IKW0E/jcWWvpOgJTS11NKI8bkyjn/AHg38A0satw/5Jz/fZikzcBP5pyfcK3+26gVYfHyPgc8BCxOKfWklP7TaZRxxrhgIjM7G5Fz3gpcDift0XdjKrl3AH+Rc/7wWPM6Qgysw4QQLGzBhPdBjJjsxIStPj+u+o1UBbUGwkRqHmHaNURocbQqvxwTPOUPtJAw/WolhErl1+/pRKAkUG7FRuaA57+V5/qKyDRO2O5tXur515vuHfe2TvFyVnm+x/3aGdjKfB9m+vU5z2szRmb2YtLdHC+3i9BazfO27fHf+4FFGDFpwPqzw8uZgpGhAa/DPd4XM7xeJ7ztKlPBH1Zj967Jy73Bjy/x42lE6Ob7sKXvNuypvcHrMogRthneP22YMH2DX7fR27/I81LMr9d52zZj5OSeSt9L4J5OEIdVGIlahd3fA5gJXLOfP44Rql3+uQVbPpG2pdPL0PhVGQt47uxUvc/XetuF3kpbqxpGmXBOw8ZANV9p1kRWF2L3qtnbtNTrtx+7F9u9TRpXeJnVsbnY89uJkZX92L2Y5N/V4BAi9fWBH1YDj2GEsgnrQ5lHNmP3uQ27fwOVPOZ4eSNpnU4P0gSNiP6c85lof6oYycRgPOYN7x5n2QUFBQUFY4RI0HiQc97Oc7dK1LnnKAZ8EereyvHXga+PUsa/1h0PYZqh+nRvHeH6UcsYD855TVAdfhx4Iuf8HBZ6OhA1biQERGkPmog3+kAl3T5MUGuhlgAtBK4HbiXMk7QSLk3OCWKUbqR2xX4vIVEo2IICCWhlvoFYxW7GBOc1mGCoIALSIkCEkpaQuZRaM6R+P9dOrSagz9snQXW91+WAt32yl7EU01ZIgF9FaHMWed5LMM2I6rzI+2cNpgWScLsTuILo6+OYAD3N+0z5zsaCKMzA7s+jGFmR2Zv6byPGkm/ytvVh96AXu+97/PwqjAxIMMa/JfzP8nbO9Ty3efo+78t1hEavB/giJoB3eP/OB96KCeYaC4cwIrTQr23zPl5Xqdd2/+7zPprlfd/t9VqDjacmTPqc63lLo7fTf8s0UROEtC5VAiTS3M9zdySTRC2iUX3gFGVtATbWthOkBWyMbffrtxPP21HiOauazC3ACNBS/xzC7tckbOxVo8YNUTvjK3pgu18z2+uqIBrzPX+Nd2EJdl80nuq1p2eOUX2CZqSUPp5Sev04ChnJxOCcMG94PpGG2TCwoKCg4IXGCxki+1zG+UaCbsMUEMK7U0r/5qFcZw53QUrpXbK/V2eJ5EgYBROaFhBC92ZCsNQq+yFMkFpDCJW9wLew5VRhDyaYNWIi0UaC0Mh8TdhHCPEtmPB/tx+LHFXNd5ZhgrPMd/Z4+l5CCK26X8/DNAnSSqmtYA74Vf8L7Z0yBRMS52H9MQkThg94+kcx4fwwJpwPYoL6AW9bi+f9NUzbcpgQZJu8PnsIrcF+TOuxz8ttJczb5BcjH6TNXofV/r8EZ7zeErLv8Pp0ESaOrdj9nubf6l/5p+D/X+J9sRMzfZOZ4hJv5yKC6K7xvOWP1e7lbsGCP+wmItItAr5DaLn6MJK5xPNf6P3cgj3Y6zCyKT+zJV73eX5+uveF9k2ahxGEQ97nIuBQG1igjVrSrDEwxctp9Lw0ZpdWrl1DaIV2ej/c7OVM9j5RYIoF3sdH/f8GYqecPuL50njVONnp+Q359VcRz5v8y4QB76debEHheCWv9dj96yH6VIRsM9ZvEx8qe1SfoP6c87tyzv80Ug7DmRX4/19PKc0ZycTgXDFveJ5Rs2FgQUFBwYuBMYbILhgF5w0J8lXHW4B/9L8+hsmrlwNPAn823HU5548rvKAEwqWY4LeNEKj6MSlgBeFYrr2DJB0cxjr8AUywugUTwiZRq61ZDdxFCKcqYwHhG6SoWF3UCnV7MK0S1EolvZiAu8mvOYYJnyIXhzHJZiG2Gl71f9Cqu9KKQLVSG8Gr3fNYgj2Ard5Hh7xsCcs3YMKkIraJIAz6NQu8Dr0YEXgNRgR/lljhl1Db4ue6vYy9GFHagvXhJkKLM+R1afI+VNk7CQf/ZYRp3AJsibrR02/3co8TWpA53o+K2rYQC8aAt1f7Qu0nAhNs8bYqQILu5yr//3H/vdzrI6I7iGm9voYRo45Kn03BhPklhN/SzZ7+Lq/7LP9u9TZu8Xu2xOt9ifdfJ+ELBbUaTxG2nYT51wlv31Fs/EmbN40gntK+PICNNY2v7ZhqoFqOFhaaCD+zTuy+HyU2G96O3SNN9vX7Mi30aw96vTTmNnqaLoLUvNnrpXZWzUd17/ZhZFpEuRq+/lQh508Po/oEjaoJyjm/Nef80pxzozu0ftL/f10lEtDXc84/knO+JOf8B5Vrh/2/Lv9/zTlvqhwP5ZyHNW8YoR6jlnE2YoQNAwsKCgoKfkhx3pAgzMJpQ855H0DOeV/O+bivZP4tzw0LOCK00qwVaqERE/7kWN5CCGYLMeFRkb3ATIt0A05gAtocIiT0cUzQOo4tp+708wME+VC0MEXQmkKsjGvfIgVq2IgJxt2YsKe6aMV+FyZYric0WgOE/5MimuHtnk1oheYRkdp6/f9GTLhUtLIeTBDf69e82fPc6+VO9jpNw8jJFcR+P2/2/prvbZSp3kNEyOMtmHnXXkzoXk4Isb2YVkSmYNKaDFK7YiKStR/TWCk0OX7dbO+nh7yf9mBEbQFGQvZh5npbMDJwlZ+7wvtkCkaw5MjfjJHqWX7No4RBlMy5jnv/PuzlLfC27CO0gpOxeyUhf6enb8AIjcy39hNaozle1v3+2e9lrvP2KXiEfGLAtEBdGNHe6fVS8A2d3+LX9hLEWfs3LfU63e/1Wozdb/x+rCAIha497tcrWtsJ7P5L2zbg7WvGxp9Cx28n9mZq9L5rI0hx1Yfpi/5dnRCrIbCXYc/QZC9jKUaQpT0bW/DqsWD8mqCC5w3DbRhYUFBQ8IIjAVMvOPWnYHScTyTorVRM4VJKL62cu5W6sIDDQTaWbZigJWd9rfgPEavEN1Ebdaq6F0sPRm76MWFtiFh5V1S4XZhgXPUYXkM4le/FBFmF0T7q+bVjplyrPN9jhPZoDrYS/xpMgLybMNFaQJiiiRTIDEzC7FJM8FfAhY1EhLbJlfprY9E9GHG5z8tfg2kPJmER33b5f1dU+nQdJoxDmHztwrzi5mNaknZMi6LdFtcQUeXu874Z9PpJMyKBeoFfv8Pbp32W1nm92on9fqr7/ohkbQHe5HWTr9QyQpPUhgnj1/h92OL/PeB9tdKvlQavFxtDG7wfVnhdZfYoLVwP5jsmP6VrMUKgvmrGxstqLLDCUoyMTff893pbVmLjQD40g57ueu9n7TM1jzBJ0wbBIh3dmPnmLQQZVZS8Rq+bfIGksWzxaydhhOkoRrRasDGqqH0iNAoaARFqXvd5D0aKZQ63DHsGmghyqDG30a8/6vWrbmK7wvNaQYTF7ic2n23yfE9U8tvveR4mAodsZCI3UdXyykifCfEJKjhNnGLDwPp0J82nR95Wu6CgoGB8aGiAqVNO/SkYHecFCUopNQOvBr5U+ftPUkqbUkr/hsmN7xktn4wJroOYENmDCUqLCF+Y9ZhQdTfh2wMmsM0gSJJWjtdjwvZDfiz/iVb/LCf8cR7w/xQUQGGFewgBVNqfXZiwq9DIYARETtwK772OIC37vB3XEeSqGjFuCxFSWpuDDmImZ9UACXMwQfgaTAzowsyZmjBB/QAmdB/ytG1e3/nALxEEYxATcOX/sd3zkAZF4bcPeX37vO+vJ3xNjmFkaTGmlVEI5M2YV/eXsXt0s/frcUIDpE1cl/u1c7xO3/Lfs4ngDt8gIsTJ7K6RCDDQSGj0jhFR1eZ4/8iUD4ykKrKcSNZNXvef9vvT6+0cIsiSCNFhbEzu8LoNYuNMmqLDlf7c43lJozTL2/8qP+72vr3O69SAjeEOTBOy2D/SdC3CCIPGuaIarsRIjNoIEf1P4+JSPz5AmPnJhLLTr53m/fYlwoyyz+9F1Tyzg9gMVnnInFEmqpu9DoqkqDp2E89Qi1+vPBZ6H8zHnhu1c+L2CYKiCTorMdKGgTWomk+PLWh8QUFBwemjIcHUplN/CkbHeaEwyzkfxuSs6n//1+nmM4gJqxv9+wAmWIngyP/jUUwokmkRmKA3RKibtMmjfGdeg61YK8LbICFMNvmni1p11ToscMB1hKmYHL/v8XppFV+r5v2Ys/0MTCB+jddZJkJgguQ+IsSyIp71YMKoopJVww1LoG3w8rVJabvX64D32xuoDdk96HlM9+MHMQL1ECb47/K0DxGhoxd7OvlOXUmQytmEL9bDXt9Bz2PI6yQtzDHPU75avZX/JmEEQWaK0vJ1+rW6n62YxudKjPiuJkjOzUTAC2kXriRIywnsfmrPGjxP+b3sI7Rym7yeBwmSM+Dfe71/ZCqpsTkXM63c6m3a5e1a6vfiUq9rm7f1coy8LcAIm7Qu0k6KOOk56Pa8p3gd5vq5FYQ5JX68zfNp93zUrn1e5nzvn+uwcS3HzknYOOjzPugjCPVxYhFhi+ffRezxI62motHNx8YPfn4/psGUWdw0wmzvGKF7me0fiL27nsBEXG08Kz+j8UPGkAVnE3LO7wfeD5BSWgu81zcMLCgoKHjh0UDtHi0FZ4TzQhM0UbgAE6zbsI6TKY0EwGmYALUCE47kOL4AM+NaiAnJ2hRV/inae0TCljaTBBPoqmZI7Rjxkb/NRsL/ZL7Xo+r7oNV/RfRa6Oc7/VhkBv9u9/aswgREkQEJgTP8GjABXm29ChNAr/I6HcUEyWa/fgnwFu8T7WsziyBDCvrQRjjO/yUmuK8iyIqCJkyqpJf2pYkQnhVwooXYv2cAs3t8CCMTm/3cNkyrsdrrNIQRmgZMu7OU8FNRGOpDGPHchRGCXq/bwxgJ7vTz6tN9RJCJewgfpTYvQ0R3l+fd7/UaIjR0fYTfmDZPVTAEaZOa/dwujDQc8vrP9/a1eL2kIerx7xbMT6fd85H5pAIPzPD7Ka3eXX68hiB1IrqPUhvC+lHiPu8nSKp8zFqxeyrirwAJndjY2eLtWEmYnT7u5d2EETGZjc7ytm72cjZ7X3d6v0ujIzNJaTdv8rpfRwTOWIGR1kbCzK7R69yDPXODhO/RxGBUn6BiDlduqWt1AAAgAElEQVRwFuICzo411fHUYazXDtfWi8ZR7pmiZZTzZ8s9KSg4e1FI0GngBOGs/igmBCkIwH5ig9RuYtNUmUJdjwlk6/x/RceajGk1Dvu5NkywlI9Nv3+kyWkmVsofw4TdZURAgsexqVFO+XOISHV9mDB3mBD+3kwIcAs9DwmOx/yaxZjPyk95Xa7DBk4XYe60zev8ACZoLvE8FhER12R6pfTKX/v97CIESw1MCdTS7KqOSzCh9LiXO61S5iRMaNZmsAsr57/i9cevrfpB3e11aMKE/15MKFf/7PXfjZ5uobdDPiHSxGlvJGnKphAbb4pAiiR0Yvdsjuczyc/Jj0uamlme76WV+vRhhEUaRPlrTfZ6DHhbpKmQ/1Gnl3cII0YyO7sUG1sKs73d6zMNIyA92D3c4fnLH+ZSz1d+WfLPWe7lXOl1kOmgyHgHse/VOq/3NZ6PAjnM8b6bRmimFByh2/tCCwYt2LiW2ZtIUy+hObzG/9uLaUG1b9YdxGa70kD1YeNe+1+1Ve6L8thDrSZv/Bg1Olwxh3uRkXO+N+d88+gpf5hxAc8VousF6gtG+F//tdSluahy3OLHy+rKW1Z3/UWVa1vqvqtlKPzPDdgMs6CSn34v8Ouq11bTTvX/bqzLV+d1PNc/KvMiv7Za10sJkrLAj9XuH63UpcXPXVrJq1reRZU8VJ7aojrgeS6jto+6Km1SGdV21H8uova+L6uUpzKr1+o8lfSXVo71m8p/F1V+K6/6NFW01P0/2pg8j5CovV3DfQpGRemm00AmHKu1gv048DosbPE0TFBagvmISCvRTvgMzCF8HlZg09iDmECqPXkUfliO80uxVezr/Dpt0NmNTUuDxIae2qx1iddpMaaVmYwJ6fMJ7clWTMhrwwTEQUwovBYT8NZhwmoTJnRu8PbIpEh+GNswQXAVJkjegwnaS7yMLkxg7sIE5Fbvs895WYe9Ty7FSMoyInjAZIxgag8YRWtb7HWdQUSAewwTfKcR4aNlXtZICPV43RZ530/3vl6JBWDY6tcfIIIqVMMvj7S9/Q5v52bsPiti2jJMyJ7s/bkK8ytSiGxpma71duwgNuncit2rSwgztQGv2zSCKM3GxsejXv4iLBLIXq97s5c1hdA6XUr4ZW33/l5BEIEuL2Or98MMwo9sGrF57F6CSB7G7u392D16nAiesZ0wT/wWNvZv9mu+6H2+D7u/V3qZS73fvkYQKfnPTcG0XY0Y4Truv3d6/e4gnsf93tZjXo6CZ2g84H260ts32/M76t+7iEiFewnCpDDcy7DnY/yQJqig4PnEBcQ4028JnEf8u8u/u+vSzsWesup2jEf8WG+66djT3OnHbdjMpjz7/HMZMRMOEZ6Mc7FZQ0uDyh//lqde9T+o3bluOhHPcmUlD73F+yrXdhA2Gbu93lP92iN+/W5qvf++W7lW7dzg7ej0zw5grf//o57XQWL3N/W1rv+S1/uySjnVtvf5b/VtZ107LsP6Duy+dfrxDmx2vKzSTmGZl6G67KjL72ClHnOJft1XKavR000lvDuPEERI9daS0gA2lhSSRm1UHQCe8uMLKmmO8Nz5UWLsVCYyRM1Zj0QxhxsGKaWXAR8Fngb+T875j0+VvpCg00DGVo/7MCHzOLbutB8THo9igqH8a7Ri3IcJ/iv8d5sfD2GC2GxMmLqfIClNxNRzD7G/0ErCL6nZ63G3lyMzJjnht3veh7BpaxMmwE33dmg/HTm0H/NrpEURAageDxD+S9v8uiuI4ABrMJOzLZjQKA3OEmxqHcJeJV/FtpoXOTngfdZM+FNJw7KaCE8t0iCfHJkciuC1YiZpmnq3+beIyBQvq5fQYglVciPyBPHq7sYE+62VdCuIsNY9GFHo93ot9PrfQfhgVSHfsUbsvkib0kmY9omgfMf7RnvvSNM0w/vjPmLjWUVX+yI2JiZ532m8Sct3mND4yEdJr0Zp5xS4AcJUsJXQskEQD/nIyJxP5p2v9for7YD/L+3VMUK7o/DaTV6HHRgJWu2/tY+P7sM07PnrIRYNFExkKbG3TwdGDmcRCwIHKmmuI/YwWujnT2Djewuhmd1fKUfPg+o6MRjVJ2hGSunjwD8VbVDBmaGFWmHzB9SKAhJGq0HkFxCC+G6CqEAIwH2VNFoCkt76u5hAraUCEQyl6/R851aOhyr1vMyvUf5H/D/tW9vt10pwhxD2lcdKT68y1M4qkarW8Yi3Tf3QRa0n7NX+XW33SoKkgL1tjxDkqc3bpjI669L/EvbWqt/qUnX+J0//lso1yrd6Tzuw/lQ71lbSq5/VT/pfs39nXdn15GSqt/PuSr3q8Xqsr9UO3QvlPURtv00nDMSF6ph7nOeaHA54+dV2Qozlc3wxSSYXE4CU0iTsdbx7OC13Suk9wM9hYvAm4B0558GU0o3Af8fEjE+MRjhGqcOnsHXRp3LOSyv/n24ZPwL8c875b1JKnxmt3EKCTgOTMcFLIaNlfiPhbw8mQO0jVs3li/IAsYnoo/49H3t8td/QakyYXUaYTc3x6zYSUake8/8XERtNao+UbZ5epmcLsNdTk6c5gE3l9xC+Q2/wdlyKkaevEUYJMmuSf80C/70EE+5neRsPYaNX/hEHPP9V3vZmIqjAg4S51iFCcN1LbCi609uzmpgW+7FpUqaG8lXa5//tJjQl6zBB+VUYubzD6y9yOESYNi0jHNsV9rgPE5A3exnTvP9FqqRp6vFyZN4mAttKBA3A276R2qAQ0uItxLQbHZjAPgO7x9rctB17pez3euzDQh0e8nrKx2ubl9uAaVoWez9v9vvR5/dBpoZzsFfxXILkHiZ8mIa8PIVrb/J8FKFPRhFN2H2Waehmb9vdnu8nsHHbTJjkLfZ78ivYWHw1ofUUMZaJ5yLvG40XacTwtAsJM8VD3r4Z2PO63dvQiYkyLd6PInR9xKases4g7u0C74sO7JnU/kO3eL31PN7PRGFUTVB/zvldE1ZcwXkIzUBVYbEqRFfJBsQKvITkudSSAWklLiO0CJdRK+R2+DkJ3tIqaHZX2qHK9d8F3u7HIgZaGuwgjFXBCImeVAn1iyrpwd4Q0yvHq4EvYJse4OV9l9DS1BOLRdQSD2m+Gqklf52VNJd5HmrXdK9zVWNV7et1hNapWgeRvWWc9FJMnZDXQVoNeRu1ZK+RkyRt6nQ4MkT0df29qdZV6ARtIvIkmIbqpsp5ESC1Q8ubVaJ8WaUdWkbU/eikVhs1lVpC00ltX1/k6atpLqr8Vh7DaYrOUUysJujXsEE2vf5ESmku8KvAkpzzkZTSPwC3pZT+HnPdfjX2unw4pfTVnPOWuusvAo7knAcq/3XlnKurLACfxjQ4n6mkmzRSGSmlZcAf1eXxTkzE/u2U0luAvx+t4SnnPFqaAseFKeXjRFhcRV6T4LcEe8SXEFHLtFHjbOCbGOG5iQhbvBKj1fh1ChoANmXIV0RowMjKNkIhLS3LMozMrCb8ViZhQt4xTMhtJkJBT8ZIlwI1SHBs9vpNJgTzaV7PAYw0DRKRzyD2JVrk6dRH7Rh56SCib+3ydkuLI8F6lten3dPP9rwW+fm9BOnajwn/VxHhrJuIYAI7ieh0XYQJVTO1u3doVV/krsnr1UkEQcD7XNP9g9h9VD2lwWggAk7s8nKOY4KyzBXnY1P5AWqd6eU7NkhtyPSf9fI01iD2r+nH7tkAEb5a0cqkrZrv3zJ7U3h3aShXEBookZzHK3UewO7bOuwerycCRShQgPpL420xdt8u9z6sjjutC+7E7ouen0ne19diz9AQRjJWYLPyLk9/l+exxvNp9DpN8vrtxWbA5V6vASIIg9YiF3vdt2FjeQOhFb3W++gx/+967B5uwJ6v+4jNe/WM7cCelU3wiIVGPnOsWnVRXr/+zSOeT+lj4y6j4IVBSnMy/MKLXY1ToN78TQLsXOzt01b5v4NaQgEhxMos7bvYck31XDVtG7WanA5CuJeWpUqatsHMRXb4zEEX5lWHqXBxI3zPD2cCz+B1dDnuYuB7OzgpTL90NTwpYR2Y2vnckKsAeYf/6CSWV7DfL210UuD5g00YT+6IPI+IjGGCaq6v0xAkzzMPQVdjvAyf9HNa4ZdS+KSYtsPaOPUVdpueqJ6r4BoqKzOVPqtBlXBoSQiY2QHP/FslfaeXK/m4DbtvVQ1XN2E6CLXmddU8qJyvan12UEus68vcQZjTqV5t1GqIRjKXO1vxwXHN5aumpbx+yanTpPXsxMzChI/nnD9ekyalecD/BP4A+I16TZCToO9gr9WDwO3A/8Berx/MOb/W070fIOf8R3XX/ySm4nyda49+Hrg15/y659Q3pU7ga9IEpZSuHEsZdXm8F/jfOedvp5S+mHMe+YVK0QSdFjQf9WOCbh8mSF2OjY4GIkTzav/9MCa478AE5y5MaBPR0DQgR+wHsAAEMrVp9OMNmDB63M8p+IB8FBYTG6gOYELcVV5GNybcPUaYMj2ICXVLvd7LMSGw19tzDyZobsOEytWEpbPMxrqIFfM92Ct1G2HJfa0fa0+dL3jeW7Dp97DXRdHetmHEUe3Gz0l4BxOYZTIlk0KZH37L8xki9swR+dCml4e9jC2edoXXfzdGtrZ7vz6GEYGVmBB9GHuVriFMwh4norY1E2Z7D2LC9We8rD1+/VWYEI3noY1Ve7yO8zzfh7wOWzCyMNnzUKCNx7FlkepmujIseZAw5Wr0ditS3k5Cs3ec2DR1OUaSD2FjbDp2Lw8TG7zu9f6Zg5kyirAf8t8PYGZv2px0GWa4cZUfK3R6P7EJq+5ds7exnQjYsQjTLD7o7WvHCFALNsblI9fneUmzoyiGj2NawEHs3u73ui8kxlsjJicosIKi+63GyI9MPpdgJp8KgX7Cr+vDnk1tADwxKD5BBS8U6k2cqlqZNmq1NhVBHvy403/vwCxljmDLHzcQJKqjkkfVh0dLHRWTutQZAv1UYHARPCPd+6La6qZGe7ilrXg58C9A6/RYRRzE8/R2zQWebISZnZHPpvjJMj/W+VZgb2PFNapCgMDKUVjMap5H2sKU4giwe3q8wF7idVc7ZzZaG05a3DVank/4sSY0kb2LO+23rPguITjq3U72rumw/ETSXuL3bZM0K3UEE2CwEZr8Xg0C6RV15KqRk4R15lp4Rn5S9SZ4VaK1g7j/3607V0+Sodb8sc/zl9mgSHj9OK2adtb7hz01TBnnEMamCXp6DETrI8B/YYRwgznn3SmlDwPfxzr7rpzzXSmlN2PrgEIPsTVm9fp/TCldDHw+pfSPmLbm1aPW3DB3LGXU4U7ggyml/0gt8x4WhQSdBi7A5toDmHB0LeHTcJzafYQEbdDZgAlqMgXr9XN7sFfGFkzgXIHNgd/CpoSVWLCAVxNCm9ZKhrzcw4SgfMB/vxYT4vZ6eTKVkoP/Wwi/khOEadwiv2aFX78AE0a/jr3yZAKoDSbbMCIl4XQPNmKvIiKzdXvZ2odmMWFmpAhtj2PE4YuEadUhz38dsbeMVvxbCCG+w/ulx9PJVGoK4deziNCObPQ+k5ZNZoAKV64NTq/B3kWN3h//QGh2tK+OQpFrW8Q+IgrdPL8XV2FBIKTl2Y6RqX3EGp2MBfR7C0HWRHD2Y+/Wydi9U4jwDX5v1nm+CgihCHcizzLbnIURg53+fx8RsOKA53kCGwcilbcSm9Ti/b8O00Rtw97F6/zaFkxLuMbLbvb/ZCKoSGtbsful+7vEy2wmFjFFMHVP5/s9W0Fo+xb7/Wjw8qZ4n88iNvW9D5MnFFpbv19NbYCDOdQGy1BEyBPEc6rlMD1jk6ndBHZ8yMSoLSh4PiBHcwmi0tAcqRxDrW9MddUewikfv3Y3wSJkKtVJmDSpjKqvTDXP6TZBiPQMLnIhvCKoTwVmu0D/PWzCFjk4ALySICYvwV4IeYiTQvF+bFKXrflszFXm9kozr8FWdMBebJMItfMmjFhc7sdydFSUpB3As8CNjZHnKu+aVxJ1eCWxSoeX11lpY/XcLD+eWanT5dhLdn+lnT3A651wPEmtq876g5CmwzI/3w3MrvSrNpWTNmoQ6/uLK+cHO2FuZ1wvOXRqo2u+PL+ZlWtyJ7U+XTsqx1djb+5/8+MOIgAFWGdvqnTMbp47Dut9up6ilhRVjc/PQUyAT1BKST44j/j+Z8OlmYmJZxdjd/YfU0o/w/AvqmFNy3LOf5JS+jzwMeCSnPOzY63iWMuolLUZM9YYEwoJOg0oPLZ8fdZhU4FMkeTQL2fpL2PmTHLO1p4tQ9jc2O95NGDCl1bCt2DCnEzmpMDX/jn7sOlkp5d5iIgItwObj/dhQvAq4H9hPgwKRy3t/15P24UJdQNez1bsdSYn9K9hgqWEQEW4ayJ8PG4mrKEV6GAbRjBmYILl9djrcXml79Qv8zGidYAQeCWcDmBCrHSnMnPahQnE2oC0gzA56yfMxuZ7Py4nQht3YwJyB7F/UwNBKK7xulxCvBteS/gidfn3Bv9/t98zWWyrDxVV7Gc9v71e1qWYYH0MI0v4vdpFaHdkEic/pn4iJHM7YWIGYQYpt9uHMeG80+s22+/BFkyrcZwIkb2VGLttfp182a7A7uM0T7/f2/4wNqY2E0EfrsfG5BXefgVM6PR6t/qnHbu3u4iIhsIe7D4pMMQs77f5hHnkUuz+LfG29RHR7TS2G72uJ7BnYtDb0UmMn05sbLcRUfOGMA3Sdzz/BozA/jRGguULpr2PWomxNTEYVRNUAiMUnCGqPkBPUWtGVF1hl1mRjq/GZrqqVqe6kn81ttLfgb0lwEjOQU5qk2Y2umBc8SGZ2RgaEoWsvNiF6e9hIpcmuEOYqdhL3EbgGuBCLJo12NrvUeyBlA3wGmBbY5CWmZgK+QN+3O2fD/vxA8AvAp/342rdqDRNuLFybhsRsO5Z4I3+/2bM8VGEQitQn/bjVYSTJdhE1Iq9eMC4xZ2Ea9QBr/NUYvv3Nd4XWi8/6nW924/f4doxTStdXuazleNJwL2V9u6o1OEJ7CUlbnEx1jeyYafDieVBOOAkNQN81zRKyvNIJ2H+OBWTAi6rHEOQniN1xzsY3iSzSuZbqI3+d45r1BUie3y4GrglpfQ67C5NTyl9tm4j6BuA7+WcewFSSl/C1hn/nnjawEbJsMFzU0rXYK/uLwO/A7x7jPXrGWsZZ4pCgk4TeuQGiZ3od2N36jXY6vISbP55DTY3TMHu4iZMkNuLCY1DmPCkUL19mKCrvWK06q4IYJpvH8JMgXr99xrPrwUTVpuw6eXNmLCmjSGbCTO8dmw1HcxBXSRsEJv7vuF1XuxteD0Rra0NE/yPE+8o+ewoolcH9p6aQuw1M0CY8K30tK2Ez8VKT3eY8OeZhj1tu7xvFar5Lq/bKu+3qoedtB77iMW8dk/fhwnp12NP0jG/5piX9Srsfsrsbhkh5Kt/Ozy/WZg28FvYK1/asTlexsN+fiexp9Rsz3uD10d+N51eH5mCNRBmckN+TpH7ughflEV+rfxTtDFvCyH4t3ofrCTCs0NszCsSKo0cXv+rCHOwIf/I30gmabdU+kkbm4K9N9+JEYclhDZSppENxGJli7fzWxgpO0Bod7Qhr4jOzZ5uARF8pJ8IYrGA0NRt9f8HsbGwyPvikP/Xh2m4tNjwVuy56QV+xtsi08Qhwv9MbezD7u3Nft3EoARGKHi+cQG1wuJcaonNSsIHA2LJiEp6kRwqadsiXQJyn5mjATwzVNEaOAY7QtaVU6Imp5nEhm9gQv6FjZG+6uUA9sA+iz3wwjyM0Mi07AZsElAaCfI9lTp8iCAw3cTOyHgTL8DMKMDsu3+dCMsJ9lKoWn3d6Odf4sf/7mW+14+/g71UVKd5/t+r/HiV532hH6/3/1R/iGhHIkEdlf8gzAy02tbkxypTGwPKRehCjAwq6tKNxKomWP+sxzROuuYdwOerPlvAxa8w/yeA1kY4MtWCOICTpJXEmDuCESKt62g8iTRd5v9tImxhRNbn1h1XUQ0Ff45hAgIj5JzfD7wfwDVB760jQGBmcK9KKTVjHfzj2Ah4GFjkpm67gduA//icaqa0Avhb4D9gyxufTSl9KOf8gfq0w2BMZYwHhQSdBg5hAvoANocsJ/ZrkYO5NBGr/PgJTIOxF5t7tns+1xCO5L3Y/KtVeu19shDzVrvGy9/q6RYQ0bO0ar4YmwrkyA8hDHcQK/FydD/kbdjv/y/y/1oxU6Rmz1PTzZcIrcxybD5s8fPbKnnsxwRLacfcYfwkCVyECdL7qQ1SIEd7maQ1YaO/1dNqHxpFYbvS27vJ+6Xd+0Was0Xeb9/EhNcFRMhjaZtWEXsB9RL72MgEqhV76iYTi4nf8PYd93LVfwpsoE1vqz4u2r9mIabRmuPtG8DeyyI01/n5Dq+LtrvrJ/b7afE0itbW7GmXEdvpycSxwfOe4+2Yj917MNInfyRFBzzoaacTe0wt8nruJQjUz2Ak7jA2rvoq6WZg79Z5XuYawoRSmjqRRUUr1PhpJ8z8OomxoEiMx7H7falfu5fQeCrktcKsy09IkQCX+DmFk2/FntkHsPdIIybTqMwWv4e3+jUNnsd92NhQ4IVmv3ftjMH4eEwYNUR2QcFpQoKghEGZDGkVXiZjkmh3+LGIj3x7qsJnGyF87o7rp3baX4N+nSbsZ47A7EYjPgBPHqzVVqzFhP+X+7EMbWT9fzvmOyOh77hXQ/kfwSaEtcDv+396cUrYr64A4WWtJ0jLUmpJFNhLUsL/ldgKjhw7O71ekwjCMQ/TqKhem7yun/DjDwF/Xcn/YeD/IVbxbsc8NH69Ur422sPb9zSxggixunadH2/2a6TJ+Ya3XSTpcmxyVFuf9vRVsriD8Gu6EyM+0hx1e32WEqaDImdHXBO0/qARoGt8DD2JB7LwMfTSRniy3iftSKXQSjAKwMZfHzbja9wqSILG7VzCnw3PT/sRwTlHhhp4XvcJSil9Hfi5nPO6lNIXsdf+D7C19Y/nnH+QUno3NsImAZ/KOf/7MFk1Az+Zc37C830boduslvc5bIRfmFLqAX4n5/zJMZZx5u0s0eHGjpeklFsw4XAjNuco1LLmoTnYvCfNjsytFPTgVmx+6cWEObmRHsbmqPVY9LjjnqaTCDetVfITmOArfw6Z4igk8XLCqV1C/Axiz5PZhGAq/6TjhCWBfIkURUtO+tpEcy+xwec+zNRrKyZYKxKcooQpiMMd3l/93s5GQtDXO0TTXSO1pnaylNjl7W/G5mHtxaP3xxIiWppITIOnWUREZZvt/SJS0ellb/C+k7C8kCCM0lRt829F2JuN3c8+YnPNDkLzMwl7Z95MmHFfgs1de4i9e2QiRqWOG7H3ksjrfGJc9Hv9FFhCGr6jnrc0gg3E2JKpm+676t/oZSryngxWuv3//YQ27z7sXSdTMJmjyX9Nm/wqGAhexjHsFbXX66F35v/CTM26CfM+keU+L1u+ZfIvUjjr7d5WbajbRBCpS/xercLG5h5i764h71f55C3y/mnAZvdbvH6DhF/yHOI1vB4b24f8/B6v190TEh1uRl6/fs2I51P6eokO90OCsys6XP2KuDY9Fap7uGgVXj5BHmr5ZGCEg+44f28l/epKhDZC+6DABYMYQVARd3saaXRejk1e0njsimwBe2BvJvx5mjBTB5myvREjUVUSsxd7QEW0Ppzh4YqLgXxqVId7gfcRvj49Xmd1k0iCnr4LPe33CCLVRa1Gqn4i2YtNTvKd+VPsxahH/gFPLzIo/6CuyvWbMB5wgdf9QuD/A77izPFDU0yTpDr8AhabS46Lq7B783d+vBZ7GUhb9TTWvzLz2E2tz9A3/fplxP1c7HW9149nES8vKn1Ur6jRW39qIxyRTSEE4an3W4O4oVf7+aqJXVUNt5OzWxM0zuhwbSmvrzfRrEP6x/G/k851FE3QaUBO+YOEALUZE7xuwB7nXURoawUL6McErTZqN3yU0CZiIuKwDZtDrsdeQy2EUKxIaXMwoXgbNicuxAjASq9DO2bKsxQT7Hv8umoIbkU5O4C9a/qIUNkKO92OmR+tJPYx2kOYpTV6vbQavxWbzwe8vLsx07l2Ivy2HOCvx+bJ6ZU+6SWc5WcTobY1H3d4fy30PEQc2rw+g9i83OHtX4HN31oIGyKE4Vl+jUiHNDR7vG7bPN1BbFFRRGQWEeFuPjYGXktoXqYRG7Ye8Hsgc7rp3me6H7u8Xx/GNIZbvR5f9nvzKm/npUSggn7svVkN9d1EaN9ENmSuKM2aiGQHYS7Xi71fpZFRHyiM9gxiLA9g97YNW5bRXk9XeF7NRMhw3Zub/BhMM6lArPLb+ulKXwx6/eWyK+3afOyealFVZvSPE6HNpV3s9Xqtw6xWNhEBP/YTz47SLsae1ynEBsTaRHYONu63ePpFRNTDXf7/UcKcb2KQKZqggolHvSBYH656KiFpywm9048liHbGtXkdJj2DkSLgmX0wtcNM3p7oMAIks67HsAlNQvBt2IMn7cJ8zARB4toPMKFcxONpjFDo5dWK7Wzyn/1YZmUQ/jWv8ut+0Y8/lqxOsiuXDa0ivq3FJt53+PGdXo5sXef5NSJiq/yabpjxAWMY/R+abd30ZCXNS4hHeod/i3C8FZPCJNff5m2RcmM9NumKwHQS6vDvYASoCyM5g76lcxemURIB+SWMJ0gzJl+oL/gC+IeSlSFp8A6M4KjOcz0/xfO6DJv0NxNDoBu7fzIl/AhmNKX7N9Pbob7rwghfdo3PkSGLVvdMNZx31U9NhVSZl/zUqmmG2//oHEViwjZLPZ9RSNBpQM7ii4k9YG7wb5GRldhKsrQc0zABSUKxVrgfJ8Iy9xGaBq1uL/D8pmHk4RgmIMq06rCn3Ub4dmhjTBEFEbMvY0RIfpTaXuBKP1aIYznt78Hmq894udd6ug2YMDiFmJdnESZZ04h9WxZg76vlfs1SInz23TON8NEAACAASURBVEQ0tqrZ9xIiEpjM1vqJoBBNnke73wftU6MQ1n3YO0dmdcux94C0ILpOQR3k6yNhvpEIE32MMC2Tz9JNfi9FMhWtbYBwwu8k9kHaTgj87cSmo/JFWoK9C05g75cNxJ5IN/l9+ihhILDI+6LD27Udu/eH/Jp5RCABRV+bg40fbcY6hFlDVENnKzrgcmKzWpGhbxILobsIjV+nt+uo57XA8+j2tk7CFmo/jt37ld5312AESn5V+wiyo0iH67yeK4hoi1UfZe1VJC3WPZgsMeD/tWNrgH9XuWfbMPljrtdNAR+2YmNuyP/rIIJZyPxuIzbev+L5yfdIxG079ixVo0KeOUqI7ILnG4rPWEVH5bdMji6rnLuX2EemE55ZHRNTz3TXAE11p1f39TmAkR8IvxZpXXZhD5I0IE9jBEUuIe/BXhSdfqyJ++1+/GnsYZSZmITvHuADrhE5MMXM0BQ8QQ79Mh34HuFqgud/K0ydZ+qsI60zrc6KM/Udz1/aLjBycCP03zmbGojELLP8jvyEq35+F3v5a5O9X8rw+RSanzu9X5zATP7oQY59enqQJrCX3K8RpOZebBXudtdySQPUXfle6nmrj94HdHv6WdRKglfAjI/spf8XvU0XY0RK5PLN2P2aTbwc7vA6i6y9HevrR/z4lRgxFMk9gE11UsxlBcmQ9rETeAURPW46oUrqIsze9lEbur3qF3RB3fc5Nq8+z+Zw5wsKCToNTMaEePkRyhxJwvgSbD5RFDctILUQ/gm9mMB8LTavSwiTz8wCjGQdxYSrWQSZmoYJ7Z2EX9FqQqiU8PwAYTqkyG1bMCFQ2qr52DtmGbFRpPZLmUOYEk3z+srvowkTor+MmfYNEKZ0VddZhbPuJ8jHEmyHrTd43URO9nkb5WeymPABeQzTysj0WGbda4i9wSW43uT95uthJwMhyHxaZfR7H+4lfH3kszVAROc77n18mAhPoqh0swgLgV5MyD9OkIBeQkso7cvl2Jx1mPBzud/LnetlDGFR3LQHz02ex1GMkEzCyLTeoTJpu8/7RFECpc2Qz5ksUWROKJPEVmzcXY+9m+VTI7LdSZjjzcKE/e3eL7v9o/DwLV6+AlNsw4hMp9dhsFK+fOtOENpI7RvVij1bGzAyoxDeen82e59pTF7p+YvcKlLeDIJQLSXI6wHCV6jd07yGGCuL/N4dIsKD30fsftKABXy4jthbSprM8WNUn6ASHa7gDKHXvfwoJMFqJpXwON1/7/Djg4RJHL5aPxWebYzja6ZHXHuZNSzDhOUHsJfQ04RgLnOtxX6scKES7HswYvM+O7xkz7/zxC0vt0kQjNhsgqnvdcLy2Zk2QV0IbJ5i6V7vZYgozcIm0tv9+NMZ3puCaK21Oh65wwmLXjbSPj3pealbLgZuy6ZJWevnWv38y7HJ4XY48szM8Nf5IibDy8zto3URgFXftXZ47EO+x9AbXWvz4WRp1hJalooJ4Lzf6Kbnz7vs+51d0e5qunkYIRI5vNXafbKf3pvp//DsCN7wIUxDpX641/OQachmP96BEcWfAD7p10nTt5kIRwthKqk8B3FtkDf8mSHi7Q42HqcTewm1EYNpKva2kE+QWG0b5/ReQRMTHe68x3nThSmlHYTM/oOc86qUUhvmD92JPcI/lXN+ZqQ8LsAcxm/AhCcJf1swYVWBEOZiQplC/IIJbl8nImXJp0XR4b6CrUQfwlaUN3s5ip6moAxXYY+7Qv9uJkJ2t2Dam9dg08dOTLCdRoTWvs7/H8LMrw4Qfh7SWg36eUVGk8/KLkyQ/yb2TnsYM2/WxputxJ5I8r3YjQmmX8Q2lpzv5/sIbVoTJvTi9XnI+0Uarl2Vc7O8jieIUOOD2Hw8DXvHVd+rNxC+MQewd7NMCqV9EME55vkq7tEkr3+Df/YR/in92HtsBrFBrrRLx4iw0xB+KQ97uUuIQBXTPZ+D3h+TMEIiX5tphDnZ6ko+N/t966HWxO844eeicSKTMpGJ7V6PhX68jNiUVEEVRExEjAcr+R/wezDZ+2E+MWaWEBr6xzCyr9fT9YS5IoTfl+qi/Ae9TzQmZEp6F/ZKvJR4PR4jgpGI3D/u5Sos+yav5xD2/N5KrS+d5BPtbdXr1z9M7BU038/t9jYuJ/zlpHWbOJTocAUTifrACFpFrzpoVDVB9Q7muCO7Irvtg1WvCAH2pdNNPfvS6WG3/FJsErnXvxXOumoO9QymwgXTyDxQOd8DF33q+zzFywB4YsPLQwMBtZucgr1QL8cmlTsx86t5GQ6kk3lOffczHPnOzBD+P5ziBQamXXovIVv3eL01oW3FNDIiEw8AX0728q9qvO7Eosf8OxZf/42YuhriZVPViN1KaGlasT5UIIW1Xo/NTpb0ElGktx3++wvAGuj58y64EXq2XxJatkuBzqPw+SlRxqvgopXfB+Cpz7wMbofLvvQoAN/dswRap4RvlEJwd/rxG7EVrq9gQ2U1JqB8CHvpHvd+/F6lnupHES1pvqQpupowCQQLonCgI9aDjmiDgz5qA3ZoDK+kdhNV4RzeK2gCosMVnEeBEZwErco5P13570+AvpzzH6eU3gfMzDn/15HymJVSnks8gjIXliO8wvrKrGkRNldvwxa4tJ/PMkzIk1nbkP8eIsyEthKhfqcQIZcPY4+6tAwtmLD3Os9/K6YZ309E3dqJCedyfN/Fc2OwyIcHjLB1Yu+47V6eQkBL49DubZuMvc80d7d5XtIKqG1yTG/HzJTeSvjcSHCeRGikWr09SjOJiHK3sNKuZu8biJV7kaoH/Z4MEK90tXNyXX4t2HuqnQhaMIswkZN5niKs7caE4wFiI9wGgpxKq3SIiGLXToSHVvS2Tj8n35q9/plMbEb7QKWPNhFaD90TOfXPJoJRaB+1PmJfnTmEjCKNFETYdogxsJCIWLvP27HTzzX7fZK/jMhKk9frQWwTAAVVmkTsq3WT56e+lDZwZ6Xu27D7KJL2kP9WpLgmYlxV7+mg9+GD2LhdgAU6mIMRnT3EXkNyH5jh9WsiNGM7iKiGN2AE/hrCrUFWPJKdpCn8woQERpia169fOOL5lLYUR9cfEpxdgRGq0Mbw1RXzxsrxVELi1XkFmcfDX1dOvxSb5KYSxEh75YhQ/DQ2AWiCWYWRE5mxrce0KtKM/Aww+6hpdcAmqClEoIXNcNEvf5/5vkT2yJ9ffTKU8+RLza/k2Hozk5r3GqtEz6e6jJSo+bMxrZB2LHmG2A4SwmfoNm/sDa7xkTbjcuCD3gYFdBj0a0Sc5lK7+al8iuR+1UqE4oZY2dT1cnyvakz0opIi73ZM66XJ/TLiJaQyFeQB4E74zb/6EH/2hx+I84pqh9Vvxqf3cuRZ26Tj2NemG3/W9T2Ev5WW0eWzReVYGie1833AH/uxfJSklXs78BeVfjha1w9H5E06ldhwd5N3gmwPhyq/IQiSyP/ZFiRhnIEROlJe/9ZTp0n/vQRGGA3njSZoBLyBcO37n9g0MCIJOooJO42Y8KbQ1DswQWwDJmitJHw2ZF4jR/UFhPAk4VB+DxAmOc1EwAHtkbIVW9nejglhGzzdtZiwKIF9C7H6v54IIjDLz8/x8y1exkJsOpmDLRo1EkEARA46PO0NXqcHCFIFEeChF5tT+wnthMpq8Ta8y+tTjbQmzZEE303eryu9nK95Ocuxd4ZCf0/z9FTqLX8d+fqIDChy3lZCo3Hc6zKECcpVPyOZtfV7O6dhwrqI42yvw1Zir50hb89s/0iDsojQqCmKniKhKdLcE5hAraiB+zHthPZCEgFQpLZDxEagN2AEYqOX20SErd5OROybQpAa9c93MBJ9HxFBrg8bw08Q5EZhoNsJrc4yQmt2N6ahWkYEtlA0OwW56MY0NTf7NQoWMQcbZ43EprYDxDgUAVpMjLPVhPboBPY6/Jr3V4u3+12eXkTpEGGeqvshjaREQW20O4fYz+sA9t7Xs78He+7W+bmJ8QeC4hNU8Pyg+qqXb4WExEbsqZUA2UbtppQ7MMlaBt4eCU5mDof80r1EEIJBzDxOK1T3YUKxBOlN/rvLCUYX5tNS9X3ZPIXJq5zQPD7dViFEKObBU1texlODpim68jfu4aENptM9drv7iNwOfCTTc5czjrUZLkhMfaOb0H1xppk1aFn0ABHXH2yy2gz8ghOzyz2t0ivS245Ku+4hVhjBJtBuQtEm22fhASyCizQ/7cSqlc7fSQSYAJsQnyZIyzVeN+VxL9bvt1XatRTTjAEcSexi/kkCOnm2+x15vWa8e6+Zw6318zcfZFnbJh75KzeJnAU0uZZN5KwLewk5Gbxoyfd56hUvi/HQ7e3wPJnn9Xpl5fw1RECJ3X5OQ/LId7FOlFkc1IbkUyaXEeN6B7VaoHNsXtVKZ8G4cD6RoAzclVLKwN/knD8OdOScnwTIOT+ZUrqo/qKU0rswWepkrJJvEAEEFmKvkMexeei1mOCkXehPEH47q7FFlLlESOQWwpG+FXvmJchvwebZPZgAuRAjDhLgZ/k1Q9jr6Sr/DBLag9V+zbXAVzEioGhffYQW5FqMMG3w/LqITV1vJgjQPmJPoGbPo8XTHvbyROKGvK5a7d9FaJgGsB2v1hHhrA9gc+NhIuqX2qZV/1bv11kEET1BONc/5PkoYIG0PiswAvNJIpKbCMokgkgdx4TwPdhUO5kI8y3TMhGiQxiBuNT7YBPhYyUzP5E/Rd7T5qh7ic1LL/H/Z3n/DBKRAYe8rO3e5zMq7W7B3nW7McF9m5ejgAEi2BDR3jTmWgj/pUVYBEAR/AHCb0iBEzTXHsfGujRie71M7dO0EXvfSlOzn9iEV9Hy3uDp2rGxKNPGDkL7KfLTjt13aUwPY2NgNrEv1wkve5+n3UOEc5cmc5b3kaIJnvCyN3q9thMa3KXYWFHAjusxLewAsTBxCJPJRH6vJWSQ8SETm6QUFIwHVYfwHxAqEG0wKQlT5m8yI1oL3AEzb7LDZ4ZgZiMnJfln/g2emQ6XdNpxq3/mEhtsSmMjcrAZe0gU+nGTX6OQ1cuA247CX5jmZ97Kbo4xmYGDLdGEWTDjVtNZz5+8i81fveKkvPvQ09eZJqeqdZkH7E1BpG6fDl1w5O3u8/MWzCRBmh2F1P4Lok4KJw2xR4M0Hu8gVNof9f+WYpHRpCl7j39L4/U+4OeoNYf7MCHPD2ITiSbcSRixaK2cP4CRBdV9B0b4ZBql/H/Tu+Hhbnr+7y6W/qlVfPPHruAfjr7tJBlsmT7AU2unc+VKs9l7aMt1RgRnWyOO/dF0Hpl6dbThw8C/JyNZWgV9jNgtHXiq82WRHsyU8d5Ku1Zhq2Zyyn3C23l/hXyvBy4W4emEqdP9fouMyxxO43YII+/PicN9bqKYw00IzicSdHXOeY8TnW+mlB4fy0VOlj4OMCml/BVM+JMpzx2YgH0NJ01iuBYTxBSc4C8Ja9V5mOC0i3Dg76ZWGyLXaAUUuIrwDfkGEVHsCew1NpvQ9mz09G/FBFtpPr6MCX2dXs+DmOAvAfOEp9WeQfIPmk1oRxQGWHsUQUQsm+ttleArv6hpXubD2Dull9CyDHhb5IexyL+7MQKn4Aiz/fdyTDhVoIjZ3pZ5fs0C7B2keVZl7/c2NGPmWFs8L0XeO0AEOWjzPmzAhP3Zfn0Dse+PXDYbCWuHBkx03VXJ5zihoWvExsl2b/s8bOqehb3DZGb+db9/8pVpwu5rJ6FVe5OXs40IDT5EhHDeTRBLRZATKZ3h5bQQ5mrHvR+q791BYpy0EtqPS7w+LZhcIxKtfaz2YIu+1xD+bEME6RQ5muP9v8/TiLRPq+SzhdgLqoGIbicSeAXht7SZCDU+CSO6vZjWTYSqwdP9FDbmlfch7J1/h/9f1Y4qYMk+bMzIrG7A+0Jk7ktMFIomqGCiUDUDqkIGwpK8+4jVdLBZZKU7pwOpMYIfANzfATM7ggxIE/EY5t8iof4L2fxuhJmE8L8feM9RuN2luKbMvDm76LnM6tHz7S5u+rEv8S8/MHuwm37sS9zxmTfR/x2LWNa/w77n/aybuv1hF/N+q5ueDV2hIWkCWiuaoUFM8JZyYBHWBplkdRCTorrpE4S24xKvt0zUdnnbP09oMBTwQZqf+72c3/fjud5P8n9Rt4s0Po2Z9en/HsKuXfi0t+1z2Iv+IYz4aM+k2zENjO8b1HNXF0yFzZ8xtdxNf/ol7vj2m8w/Cpi89ij0wEOfcO/IN8LkVQdN+wZMfv9BLmp7ip4HrVIzPr2XY4NTONI9M/pL0YpEir6JhTwVgXwc62s5+B7FiJAEiU3Yi+ulfq+aMJ+i71VCZh/Z5p2pzu30ztkdaZhK7Buk4Ann6HxaNEETgvPGJ6iKlNIHMavlnwfWuhbopcC9OefFI103I6V8HItGtZXaKFYSxOZh8+A2YpV4AHv+b8GETQVJkYCmjUdPYPPj6zBBS8EOBjAzoPuInezBFgG0Ir4JE3SvwgTfIcK/ZjGxYt6MrYgfxATwNs/zBDZfd/q184jwx5O8HRsIoRav9yFMgFW0uzUYURkkAhBI4yBhvZVwJhcRkn/KIeIVvYvQFDRhJOcwQfgWY9oaaULwMpqIAA0yNZuLkQ2FN1cAgINeN22kOkj4JqmeirQmvy21S+G1P4MJx9ozSOZ/8geSCZbuXYPXV+9W9UUHYcom8tOCCeD7qbXS10av2gz8CiKUdFUTo0XajV7XJ4iIb8cIc0kIkiKNm/yaGok9qrTm1k5oJTuJSGv7CbNLafw6MUIuLeFc7N5uwrRhCliwGCPKj/k90P4/q7F3qExFF2OygV591aAPKwl/OQW+UDQ/PWtNBJE6iD0vV2Ek6BbCz+mon5f27gThvyS/NUWzG7A2ToBP0AV5/frWEc+ntL/YeP+Q4OzxCZIvhDRBWkHX0lwHJjyu9OMNfk7C5vRaE68pxL4HEARApm9LsVW3+YRJlsIrSyj2Efyad34VgLt++RZ4I0x9VWgnJnPsZJE9e+ZD95STfG7q0mdYO/0e7vjqm+yPC+HKq+7hoS9cx9K3mDpKQv/JifPTwDx45e/9KwCPfOFqI2Zvr7TtrwkNxhu9nh/y4yOY743aq1W7W4FfOQhd061fDmB75EB0eTWQQycx+R/AJkuZuz2Gvagklr0Ue0HK5+gG7MXw9gxdyUzGfgmbQEXuLicizAAX/dX3eWrDy2q0Npf98qN898EVlTodZXKTkaZj66czY+1erpps4XLuePBN0BSBFAYOtnCkeyYXrfw+T91l5ohcCGtX3sm93/aoE+uxCVb3+2ewMSASfCE2iStQwmb/KGhFr/dDt6SNRmAfpA7IIkYi8jv8WG8EHU/1NGcrCRqnT9D8lNe/59Rp0m+efz5BKaWXYbrZp4H/k3P+41OlPy80QSmlaUBDznnAf78G+D3MQuxtmLve27B4JyPiOGFS1IoJ5XdjK8THMQFrGmYitQwTUDsxIXoVRmLmY4KuVvpXYnOXzHhmY6vZSwjSsBebbxUQQCZoe/wj4a/Bj6/ARoBMoeTfMUA4oE/BBHJFlzvoebQTkfo1T+/weogc9WKLYg97u99Sab9MkhQCuo+I1jZECOObOLlQRz8mkEsz00sEPpiDTW16RxwnFuO2+r1Y5v2muDGLMAFd5m5y8JcWRwSoweu8kYhUpnYs8fK0P9HDBNEb9LIVBlz7KA14v8rUUcL2Ii9Lee3Dxs4cL2+nH8sEchqhWTnhfbOMCPEsTYraI/O7Dswk/dD/z975x3dVlv//eRj7BewHG7AxmI5tCEyQgTOUEKEQ0JKvGIVZ+rGiLOxjZtbHzH5n2i/T+mhpVKZpqBR+0EyQklBRdMIQ2kAGjDYGY2yMjR/bcJzvH9d1va+zBYOET/Ax7sdjj/fO+33Ofe5zn/uc+3rdr+t6XbpfLh73lIGzixu0/0zmfbOey8YUeDyb3btcbYe5tpVF+nyHtnmjtjEdYdwsWXoHAjIstNWenRRtXxPiLVEWaZP14QV4Atr9uKT1xci4GIVLef9Vj8/C3fBbtZ44HBTl6H3aqvfMAKmBYXsuanH1vwRcHGIYrv5XijzbR4Ytb6ecqpP2ySlBEPRA1tJTgdIwDH9zkpv0f6y8hUz15iZkMjF5um2M0Ev6+W5hf8KDsRqowSeEPOSFbOphH6Wzq1Ml8uBGH4or2+CFRN+nCgZ86+8sWTEDgKn3LaKBTMqbi2KH1Gwu4Nx8McQLcyoZlbOWx5gNQFt7Aivax/OJGfcC8GjzVXJQKWy6pDB22QmXN9M+X9mFa4G74fVFGttyLzKhGTjYjawEhstk+9lJ8oIwwzwdAVIWxzIfMciXVgBjxWAviZfVE/NorUImLNOc7Ysa9rqcdGGWAALLeVCCiC08rNtLESW1tyLbzwI1gccu/QxxzTMRgr5QcOvf2HSOSLA1NabDbPjERumrlePfRQp7Y6zMiNmraSGFRG3096d+ke/yFYkbAkaMX01FbRHFKoG3pGYGtMLOx84g+RIX013dXuxgTSXMY+6Qy5AxYAp1lXpd2fp7P1wsA2S8bamDIRHVwi0HIKyCIE+2Q5N6t9KMvPUtv1WVfr5D8wSdQInsIAjikN7fFobh+7v8lous9WYjJskDYRjeo79NB+5BNQ2PBjiO0oZfIdEXO8MwHBn5/p89x1nAH8MwvD8IgoeOdt5/CxCEPBkLgyAAueZHwzB8NgiC14DHgyD4BPB34IPdVRLi+VOGISvHJbhblMUYWKD0pXhCxjG4IWby2UmIgWZgx1TZTGDGEnzmIY9zOTIKM7QOY00y8LiVgwgTfRHOFvTGXb6StG5LNtmOLDQZs2WqaC2IoVqvx5kBaYH5lky0CGdN8nUfUy0zlsGEBKoQQGDgYYdeXy+ctanFV+4tbuUCPdaEFow9sJiSWjxGZj0ek5SBs0YN+ELZizgj1IPO7I4JG1gwfDau3LaH2HoUZ2qf79M6EnS/4doHw7W+NXh8jgFYSySbp8eP1DrNUyBD228sTCYuInFQ+9Z+H6n9b0lHZyFI3tTkWvE4IRMRKNI+idN2GNDZjCfZ7YUzOla3ufIZyDJ2bBACQPIj12eMmCkGGjtj56rD44nS9PqG6naHtiNX6zW3unS9dstpNA1RgrOIhiK9Dwb6QMbg55H5uAmPqzN20z5NkGE98ryMR8bMftwtcRueTLaX1mfujl0Ve99+OWqeoKOWI00mXfY57MRyik5q/w+/zTVH2fd0+YdiTFB0uj+Auw1lIU+MggPiO6u/DUFewHm63YQYtba+bMk41yLJQEEepH64EVyaKKyGSkQnj9xNJg3sTBcmYUntNGhNgB3iPjdr/AIW9JvF6+XWJlg5eBxzU8WQfyzhSmaykLVKUeWlVvF647kkf3V3jNE4ML2N9qrUGAs1eG4lNesKPXhvJPCzZviwgqTfAY/guWquRACG5S56EgEeURU0quDCcZ7IrhRhhhYagDRn8S45mJLVuLfJ2PqytBluTHXQNBDBptfq9katqhpn185F4piMrWuFTeedHSPykvvsp31gKr9cfr180YRM+grUsqgjjy0saxZ3uCdTZzKeFbG+Xd1eDK0JzLGOK4Il5TOYNP7ZGFu3iQI2lZ/tfTOlDVYmCkAGjfdJ7JTTiBrcLTBb2xQX+b1PlndbJTAwT1g4A07b4xHgYyB+ErJEZnFEXVmgU00d7pQqn0NeCKmH+e0t4AthGK4KgiAFeD0IgueQqfBeZE2yBngtCIJFYRiWRw/WEJQDYRi2RL4rDMOwks7lQWT9/qHIfnFHOkcQBKOAO7rU8XFEFPYrQRDMxpcTjlj+Ld3h3m6JD4IwEXkPrsHllw/iuVIsZK+EzpLRtqp8EH93zUTeRyl6fB3CwljOlGHIO6UIYSJG45LSm/WYKmRuMqBVqvW16vfbEINyFGJ07kHeQ8YGWPB9CvJusVwra/EYoaGIsZmLG6K2Ym+GdTYuuNCm7X0Pnmh1BwIMLP5nMDKiTWnOhBBewxObrkAYJ3OlQ6/J3LUsIL9ev+uS2YJGXONoEC5+UIkzM1FD3WJmDiIr/pZCsBUHvrXaNlMUS8eN6mEI+2fKacbQJET6tYnOMT4lkT40pqZG+y0bF4ywdhp4trilUbjkcz0uKQ4yTv6KC0GYgEQDDmabcGDxgl5bDQI8++NS0dG+rdfj/4rnLsrRP5NjH4SPmR36af2xX/eJZnywmB4T/TCXyFEI4M7WdkQXAfIQGyVXz12Eu+0lIWDtUOQ+bUaA5KN6zvdoH0RzJOUiz7C5QY7D5+mLENsuD5ePtxi0l+V8J8AdLghLS+OO+HsQdBz1HEEQTETcfR86HAjSieVNIhMLEl2w4XDfv91J7XDtONK5jzKpfRzYrSt7C8IwnNXd9Z8q5dRxh7NiIMjE9+O7bJv9M0iYoDzdbO3yOQkxi2xFwwJT43BjfiVccNfzlDVL5HvHW3G0v5gag7CD51bS0JxJSqoMoQHUsW5zCR/KF/tnBe9mFG9QhAy9ee1z+EjCo8RpEMlPl3wR+sGIsZLbJo8t7CSLuki+o5rlhaSdv4M9z6rV3A/4NKSVirjCnq9kC/1sDNdQZDRGXbCG4IZ5pSEQZRp+Ey9xOGvxGJ59wPaDMEX71oT4/qa/b38DBp7TOU/O7oPwMd3/WeS3pTpzTUmVSd5ihmqALW/Azed47FMuohvwjUjiWJCYGhCWaBckF/vvaXN2sKdG+6o14ENFv2GZZkxra09gz8Jsbp39NQAWM43xrKCSAgCWNU9mTqoAog7tnEoK2UQB6dqZKbSQSzUP114j53hBQbC5ErYhbwbr+yTEEIjGa82nc4AvKKtmF56HJ0q1MiKyXYV0ftfYuFMFCB2nO9yZQVh6a/f7BJ9mK+6ECMLiPNBpnyAYjKgj3w7c1JUJ+oc6g+B/ELCyF/hGGIbT9PsvA4RheEeX/T+IOG1eGoZhaxAEnwRmhmF46WHqag+6NQAAIABJREFUzgOejswXFxzLObrUcTPwahiGy49lvvh3YYJOSElEDONqxGg3Y9yUo85EYgoOIS66lyCG3D5k5bhGjx+NGKYr9fsXEWOvAzHSXtHPjXhA/mg8H4kZiWZMWzzEiziTlIsnKrWYkPzI7/mIwWqJMVu03iI8xmk/Mi3u1/aZGpcBsA1ILMxK3BXQ1LsOar+k6Hl66LYJGViyS0tMuQpPhFmPuHWN037fgQA8YwrMy8KAlAmkmEFvIgBmmLfqXztiuJsS3369l1WRPqvR441li4pH1Oo9OYQwBfv0OBMe6K39ZLZCnPZVTuS+oee2OLBq/P6uRJa80/TvkF5bj8h11OOxNObuV6R9bEyHCWSsQcbjYu1jY25MYnsHDnKN3bFEsHsQ8FyM5zeqR4QbZuJxNMNwF0JzlbPYtpG462i9ttNcRC2+yIBZIQJG8nA3vKXa5gYcSG3EY6DWan/ZM2IuiPtwUJmKi3UU4gIdJjtvfdiCPK9rkEUOA0x/whPGbkPGrWWpGKPnNRfCE1Y6Orr7tV8QBNG16H+Y1PTln9dNHe8CKsMw3AwQBMF8pCuXHeH78i7HXwR8JgiCTpMaQn4frR1HOnd5GIZrEeaoUwmCoAZiASLdds7pcizlAM7hgjNBOrKT1SA3+GxshRmw6chqm7E8U5CH8vJInp9Z8PJdk8UFCkQAoRCSPyqGeC7V1JQVUjRRhlZlewEX5C+LtbCIcvrREDPM5yTMo4gK5jEHgO9PvYH7uY44NWj/3DiFARk7Gc9LPF7+HwCcO/ElYZLMBBwM5OHGv2WxtlWOoaivtV7/Uj3GVi2Jh5KhnuDzWv2cSWd3tSAelppiQJ58DNE6LztHjINJ+nMT0t/myjYdSaRXooC0GGGCKqv0+DxoPUcAxT3Ii3Yd0CcCfkyAQJXXCor+xqbaQopSpa9z51azgvEMyBffg51LzuCaoodjOZd+VHobl8+ez0JmAjCMDfx0881cki8+e59P/TGrKaaDnixrlAsZkLGTlvY+bFon6C4hr5nkPvuF3QOX9bZV4ukIs2bgZhsoxvLtSXQWuWjSz4HaedurtHOMCapDxra9oQ9XThUAdAJKD45FHW7XMQCtu4Ev4RFsRyz6Ph+D3MmpuAMLiPk0rusxYRg+EQTBEGB+EARPIItaFx+15VIshLjbc3QpzwLfCILgKtwn8ojlNAj6J4rJ6q7WbWMD9iDG5irEWGtDAJEFuIM/+/2Rd1a91pWPWBRViCE7FHG3toBzi+nIRIwtW40vR4w2k6a+EDHwo0a/GfTZiMG6FDGAe+HuTYW4u5PFzZyHWBwWowQuGlCPzB2r8RigcXrNO3CJZcvFkoYYnRu0niyc/TKFtY362abnNZEHa1MS8iTU4Spj4C5JBkDM6DeAE11kMteri/UaVmpfGxgx18PnEGM9HmewLJeMKdqVajtS9RwbcZBq4gbP4VLOKbiyXo72u0lVNyLzg4ksmBCQrUWaeIQJR8TrtZqcs42PHnofyvF8VgZAh+r/Fl9mcU3mImcufimI0T9ar3UbIqSQigALS8pbiQO3aq3XZKnzkTFUqOcuxuORahFrd7PWF691GctXpP3zotY7DL+HBl4TtH/sOqzf0vE4nUxtq43jZr0+E+Uw18sqZGwaKG3Q4y0X4Rq9xhw81qkYAVJNen02u5wwHy3zuT1yOZZJ7WjlSBPLMU04J2FS+wPw0yAILgSWH+N5TpdY6eoGZOAnGkg+iRgTZCpcZvz30V1s9SkTWSmwh/NpBCTND5w1sYmvVKy0grl/Y9OKszmwSypJTG3j3IkvsR9JyDku4VU2UcAYnV2z2MlPa29gbo64v+0ki8e4kuuR7ToGUNucQ3GqxKlcl3E/lRSwkyzJYQO8vvzdwv4YS/M7ROzgRQVqC5AHukp/fwUHJyD5FB7EweALeQKAzFg3BqwSWKuVBHninjZwqPfdRhw4xeGiZmjdiXSWyJ4JGn4jq0YHNsKFWl8Fck2/09/PR+7HbQiXC3JviokBiE1LzuYTU++NgZzFTGMu9/EwVwMwYOprfJqfx/r27vHXcePmn/OF/NtjXTE3/8f8uvljACSmtjORF5jHHC7PEGD0+OZrKMgvJ3esnGNTcyE5CdspyheXy5ebJpMwoZn2Jh1j6xB3Q+OOG5B4KRs3G5D7YmMsE89Ltclalac7mVWUoR1ps6cJJ+zU7XcQAAKJCTpOdbggCMxd+fUgCCYdZd8+wO+BG8MwbA40vqRLOaxrWRiG39cFr58BBWEY7j3WJh7rOSLnWodEBhxTOQ2C/oliSS4tj4zFS+Tj+W4sp89W5FFswQPn34+zLR36WzvObrwHZxoyEGO3CnnUqxEj1QLDeyHjf48eayvvZuDFIwt0VXpsC2JsWkyHqazFI4Z7qrYlAwEhZlgu1P8LEeCTixjK70EM4R7aB7nIeyxd6zdmoUnrs2toQox0EyIoxN3ZWvSajTkxNsuU2C7SuqJ5dw4i78YmZO7o0N9Mec+AqIG5VpzdyUDARJ4eV4aIPFiAfy5iJNcirmLZuFscOCtj4gJNCNAco+fM03M04XFGxrxsxN0ZLR+P2Q/p+l0vHOgYsIxKXpu0+VbEijQBgRRc9c7U8Uya3FI5GGNlgG+r3j8T6mjSfUydMEfbbwqFHXh8XLbenyR8zFvphSeETdL9UvR/i7U2hrEAsacuwtXbcnAXw2o8wWuH1p2Lu/PZfNCBgDUDvha/1IKzUgbeF+LPVAoyHo2hHI8LeJhioD0bphL3stZTjMjjH3cJ8Tn88CUtCIIHgKfCMHzqbZ7lSBPLqTqp7Qc+cYz1ny7/UCweyIzARiT+x2KC8pA3RrxvJ+PuVCWI4WmeZvv007DUZYgxuwOBwrsRNbGb/u4xI8vPhj4wMl9IzHKKyIwk9VnWOInvZNzmcSgUc25OKcm6/LOaMWRRR4suVq/lHMalrmRls+DnnakDGMVaEmlnar48Fg35mQKElOmZ+oNFVJNLVXMeoMlSC2HwGyqzPaNQuuLn2qj3I9LTJm89BQEzFnefh/gNrwMKpU4WNkNpqrjRgYCqScRioWhBJkAz/pMQYGag5gDykooq7/Ud6qstSxFG5Ww8/qYV+CrOeN2Bp34HaILEqZ57bDwvsYmCWN920JNCKnkIcV27mR8yN//HMRaumDKmsZjyVBGtSKGF5VzIJJaxgvEA3J3/aZYxmVJt6JzUefx01Re5fOx8AArG/k3GgJUSaVdMSGESsn4fDYcsiVxTnl77ZUTcFSuQQagAkSrcBc7KOzhn0LExQUcr7wZmBEFwKTIaU4Mg+G0Yhh+N7hQEQTwCgB4Jw9AyQtTgIxuENz2sY4QuYJlu5NeBzx5j+475HG+3nAZB/0TphRhAzyBGkb2nLCGjBarvxwUDxuCxKK3IKvc1iBFch+cysdiEQbptOXrOw9kBU5CznDnrkHnJFo7NsG5BDEYLiM/TbQvkz47sa+1uxt3NzCgciosWmFxwBu6vYoArTusfiYvinI8bywa8zDg26WcTi6jDc9ykIMAuH3cVM9U6M8aTtF0m+W2qfaaeZoIPBgC24apwpkZm7c7W69iHsAwrkbgPY/tKkPtrLmJW1kX+b4z8n4gAkRX6/QS9vnbcMDfgYIH2IGNmIwI8XkDumbmgxeP5i2zNaxACWlL0O1Nmtb9s3X+fnrcXMv6G4sley3D3w2Y9pkn3MUU1cy1sQsZgIc6M9UZAgSnt9cDBhoHVfXq8sU4tWneW1mdzocV+TcFV9CzeK0/rGouAsBL9vQC5v7Xalz0QYGKAvAqPdyvX40zUwtiwqXgC1Xo8vsmO663teFr3mYXc43pclrwBHy/HXY7OBO0Jw/BTx3mWI00s74hJ7XQ5XIlKZEPniDx7gxkdkSe2owXab0IeVvMymoyvYoBMaiZ3fLl+twx2Vp5B2nSJvxkxcTW17QNJVFA0nhU8WX4l5xaJIt3sDFlCKFddzlyq1TiXZf8m+jKb+fxYs4+2kMJknufc1NLY75soIJdqKingzcZh5GZUk1y8m89PlOynpZRQcd+YmEsefaSdNcuUKirWazBb/W79/LJ+Ggw38LG9Gf6WCtvroCRL4n4Gpophb0sCv26GUakOeg5ovJAZ/4nAb/EVsNe1D01pJRlfhQF5Gf438nJbi0twmlIcwGWQMLyZ9y4S9Penu65gC3nct+gmuRczVlOxfAxrJspy3sU8RwkOOJ/istg9AsikgTjeYoAOgATa+RrfZhmTKKSSRcygmlzWMopCvdCf1t7AiLGreXLVldKm9JDBEyupMVquD2J9mhtgNvI2MRfLJ/W6rJ9yEaaoAnE3TAd2Gxo1Ws0AT55+VtF5dj5dupYwDL+MjnBlgm4+DAAKEF60IgzDuyI/vQYMVa+AbQi3d1XXcwRBMAb4BfA+ZGnlt0EQfCcMw9uOoYnHdI7jKadB0D9ReiJGYRwyD5ha23g84P8gHtNgvxtzU4uwFRavEZXYbcFjHobrbztwFS9beY8GyZ+p7eqNA6cEPX8xLvm8Dzfm2vHYkZW4NPJBbYuxABl6nIkxbNJ2bcaVw7K1zSYS8TJi3ObruRvwQH5z+2rX3zORd/goxLhdj8cjFSGGdQrCXpnh34onId2Ku7A14uyXGfL26kvEjfCN2mfpCNAwA79S/7f7EvXNKdXfrKQgRvIGDl/acKGgDbgwQH9c6QzdJxePwRmMSzWbHLO5P3ZoO/P02HjtL2NzDIT3x5XUGpF+3aa/70AYFouDQvukVa9puJ4vBxd6MPXCTP3e5LtfRu5jMZ77yMQHzNXRxD424jmFMnW/ybgraW891z6tMxNhJY3tM4GIjfpZhNsDZbiU+SFkzNnzYtLaBVpHLp4/y9zwEnDRhWzkvu/AFQJB5uW/an0vI/mOhuFumuY2aObkcZd/DRN0pIllwxG+71RO9Untf6N0JxN7apYo82PTvC1DWW6VPN22vEFmVDZDkOqG+BQ8uSW425gZrE0IY/KK/t8H0ubs4MDeXqQkCBoYxRvEJbxFgRrJRVSQUtTCrYjL1Tzm0EEcV6sw1AF6kcz+GJOUSBstpDBEfddm8z0mLnmVkqnytv0Fn+QafsMkllHAJsiABXyAcakrubd9LgBfSfgu1XNzqfia5sdJQlZ1ooxK1CXuSiRHUJVu/wgxzm3189lUud6BWbIiYiuWf8PduEiVbjZQtEXrs65ep+eLSopUImHkICCgDPdcLNXjyyLt0jYl3ChiCu27Uml/OpW115wDQNpnd5BIewyQTmEpFYVF1DEAgHMpZReZTFbqaC2j2EVmTA3u4/yKdhLIUrey/fTiKS4jnSaqyGMMq8liJ6NYG2P3inLK2UIem/LEd7B9XSrkw4CJkmsohRY23Xd2zFUx4f0SQ7TnRvXZKEEA0jS9xmXaTy3aP7vBHbmtbMOBPJzaOYJOQDkB7nDdVh8EzyBPdj5wNbA2CAJz1Lw1DMNngiD4LOKsEQf8KgzDvx2mql7AB8Mw3KT1/geds3PZ+X6H3OV+Ggf69TAMf3mM53jb5TQI+ieKuf/0Qp7DGsR4XIUHlZcj79JVeExGHWKstSPvLXPPeQ9iVK1BDNrHkXdCLR7zUYC7nFkuFiLHWOxRPK4KZ6pfxhy1IO9hywezWI8zNa0S/ZyCvDaSkPkvARdXsHObK2AK7spnSngX4Dlu2hAAsxXPa2QGp/Vlf/20PDMr8KSyBvzMuDRGylyh0vG4IpOrToy0F90/EwEX23DD1hiROm3rMMAiy+PpzMgbs2GlBQdAaTg7ZG5vh3Q7UftgKQIMjRXppect0d/tOxO9MHYmCZch34CLGuzTutPxXEjGXBhblou7kyVp3Sbi0YFLUichQGkDMnbTECBhsU0HcZbHAJ3F3YzDXRJbkXFr23Z9m/FYo1EIGMmns/x4E3L/VyKuiGnIs7VNr2coLjn+F+SZsfi0/Mg11mqbRyLPpWkuF+qxlny3WNuViMdTGeCz52aQ9rO53xm7aoxmHfIc1yHPQ53eg5jdc7zlOJmgbiaTZ4A5YRjWHmlieSdMav9L5bAysV2V806d8tYR/gd5Ukxx3LYhtpIepMoDMSXy9SQ8TsWAw6dlc/BEUXo78GTf2CrPgb29GJXhwvEp7GWMulWBMD51ZLFCZbkL2cRCZvIDvgjABoYRx1u8qc7Hl/IMmTRwKc8AMIq1PDd1ArPVCfVbfI1H+Cg51DJRw8bu4QbmMYcZCbJWcHv7rYxLeJWKCQKCEkqaaW9NhEnqU/RDJAbIhBJuBr6i34OAHEvyCQICl6oYhD38yYg6nAkhfECPt77csg3Oy5PgSJAVlpF6XpAJ/3I8julB5IWohApJuO+7le/IdvuTHm+T9vMd1GwWADI1/ynqyIoJQiTkt3F3zg1cXC0A8qncGdQxgKXayDu5hUe4KpYn6DKeooTSmKtiNbnMYgEAj+j6RQGVbIg5ikvc0VlsYHyGsEktE1NIoJ2X7xMXu52TEHeRSDDlnh9m+3XZpLJYt0v0u2o6y4mTLAlUAdKHwu6VODqMasVCZ6W4d0AJ6CwpfpwlDMNluBMlEfW2Wg7vxkwYhs+APpRHrvelLtsHkUW0rvt9uOt3x3qO4yknXSI7CIKuI/Vw5VAYhifMxni7JTkIwgnIivBkXFnKBE5WIs+nxdssRgzXUXTOXg8yV5hL1Ujc8DbGxpJlvoAnhszDJact3sNc5YydMTlniyMxN6RVCFiIx/POjMNFFCy+qB1fQbd4notwiWEDDfF6nSZgYHE3JoxgLm9bI9czMrJtrFam7mvAwtzFxmq/2eAwlT1z0QJ37+sd+c6m9Vr9zkQG2vEg+lQ85nIPMg9l0Jk4N3dGK6Y0Z3lwnkfcGhcjhnCb1tNdKcTjcXrrOc3lyhTOTIAhSX83gNsbWUIHH3e5CEioQsbbIWSc1Og+Tch9N8aoFhm3tXgsjcUcmeBFLZ2V6yw2yB6+Q7gYgrE8luPOQNY+ZMyW4XFCpcj9P4SzRSbKQOS8BvYyEbbL+jwqIGFu+JYk2ACzOfh0IM9iI7KQ2ITcm/P0mHwE9Bu4WY+MCVOgszggiw8zZi+Hzt7nvZFnYZVe+4oTIZE9OghLu3ndB4OpRIbf8TBBp8txFpOJDcPwuSPvc7IlsqOSwD3xt2kyrt0MEhYw1BfRs5EBfq5ubwM+gr+kz0cMdTNgjUm5tk0UwUAEEJLaGZEjb9FNjQUk99kfAySVFHI998YMbWnVfvopk5BLNXVkka4Jc1bwbsoZwWNLrgXg51OvZQB1MbW4JvpyL9fzQZ7gXNxFroUU7kXy4/yaj7GUKTFFuYm8wH3LbxImBSSnTSsOeiYgsTr20K9DoP7PIv0yCHGTUEBIDfAUqEeZvPTvxlfmkhDH0T/p9ut4sDAIsBqJyEODuL79kM5y5PXIS9DKn4D78eS100O4LmDqc4sAycE0Ked5LteMrM/wPq7hIT7yp98DcPMl3+Z67qNJEWwu1SyPJUeCRNqppCB2rz7P3axgPOnsZowi40e4iiLK+S5fAeByFrKYabHfm0gXdzwDdzZJjVT787XAZcBBYqEaIv1QqH2zDDGK7LtKcDaogs6lSjvsVAU+xymRPTwISx/ofp/gouOfk97p5VRggmrpBmlqiQPO+Nc058ilJ2I0T8DBQCZiYC9BXN3qEePoOcRNzgLUn8ZdsepxRap4/TR54B6IkTkKT75Zjhhg+/BkkhbjY6Crl/5mRu8hPK6mt7a5HpccHoa8OszNDjw+aCzOKp2HK1Nm4fmQDup2Ag6I4pHXjrFAKbhIhAXfG2th8swHtY1ZwCIEmJ2p/ZuPx44YE2UxQcYGGBNgINKMYZMst/iSdlzUZy0eM2XxII3aJzvoHMA/Bc+DZK5svXBG4sO6/yokHUN/7YPHESBlohQ5uMfDfgQ4pel1dSDjJA8ZBznIvNqBMzgGWExQw1gwS2BqCn+5OMOUpG2wGKjBOKiyOtL0XCMRYJCOGP2jcbfGVuQ+m4pfAwIa7N5Y0tkcBHyMRsb/Hlw9d4r2rYlzNODAb6z2y1Zkbq/U9h7CVfTsOkxI4yLkmbKcVaNwEPUX7dcEBDgWIeNqJQKKFiLPpoFQE3wowmOcTLTCWM8s/FkHdyl9BrEJPcT7OMu/JiboHVeCIGg+2i7A9jAMzzoB58rDZWK7/vYpQO9PWtefT1LpSWfQA/IE5+n/uhRxQP0wt8RL/IXxc9PxScPKPDoHtS+AETnlVCxyV7PBU6tjimTpGU2UUBoztHcygATaWanOx1fxKL3YH8vzk04TA6iLuWBlsZMb+Ens2SigkhZSeGbhBwB4Y+ZZPMTVnEspKep7NovfU04Rd/JfADy+5D9Im7SDaQlCLwxgJxS2wZwIE/SdNkjX7f9GRBIe1Ot8MoTvBFCpRvfALHnpP48DqdsQsGSgpkl/uzbSl5V4vNWFyIvRgKStKJn73G1axzd0u0b73lwqkhDDY5nWDTAh4PLa+Tz5NaGPnv7WFB7iahbHfMvE/TDhknZtYl/KKYrFYxVRTjW5fK5eLexaIPHPsYDf9aPPZCXvYha/p1YTCCTSzlPMiAGtZUzmQMSR/L7Nn4eSNmiSvp009VlWNo8jL7UKgIpnx8gQjUqFmzQ72kcvIPuYpVjZTCz5LCDjeRU+o9Qhb3lTh+vq1/F/vAScCGGEf/tyKoCgijAMx3S3QxAEJyzu+HhKImJoVeM5Sar0uzGIkWiP2SDEsK3Bc+Jk6Pf5iMFvOVY2IqvO+xGD1FbeO/QclkjUlOgOIUZmLvK+NOO3t/5u8UfgLkcN+t15eG6TC/X7gwgIMJeqrbjx3h95tdQiK/vn6XUcwhmprYhRaTEe5hKWoP+fibNC5qY1FGeBMpH1mov0s5cek6lttfOAiz7YNaPt3o8Y65l4biTLAzNc2/GKHrdEjzMnkDPxoPgz9V604NLbJiOehgM8U+Vr1vNdhivP9ULcseqRRbpyOkd+NyLz5kaEMemhdTQg9z4RTyxaq9fWou3ogQO9HjibkYMY8IO0fWXa/ynI/V+BAIDGSN3xuGrcVv3e1AzLkDFnCnT9ceGDUgRUWDtNsa5F+7RR+6cQZyrj9N5YbqU67SfLydOBgKcUPI7L1AWH6naG1ttDr3WCXtdoBMCdibA6exBb4iHkuXxZjx2Pu/WlIZGeg7Xt5ko3WPvE3DiNtYxDLF57Zq9AFHajiwInpPxrYoLeiWXTv2Ie6SoT2/V3zdn0gOybc5IzkUdjgqIAyBghewPWIW8yiSGhEM/PAPIAr8VX6i3cyFb1kyDhtmayqKMiCQZPrSSRNs5iQ4zZ6cV+mkiPxfiYW9sv+CQg7lMllJISMVKb6Eth81YAKlMLqKSAK8qEQim8ZBND1myPgYkE2pjF71nJu8jRhEbzmMNkno8F+LdMTWEcr/KNu+7062rFDe87ge8kOmtzPvKyu1a3rwvge0Cm9lsyDmiibNHISN9UISDK+rIEMQp2xC5Szm/ubiATkN26UoQNMfW4BoSVG4WAtJGIgtp00BAektfvZi2juPtbwkI+w6U82TiTpzPeB8DUzctZlX82Y24U5qTs7mImtT1PQaIs0w2/fyv3XFfAE/2FzirpX9oJQM1pfpBxqa+SRV1MHQ7gQl6gQXWsiyljEwWxBKsfyn+IdhJpyhEQXE4RmakNVJSPifV1wdi/sekFVaU4QGd3ucHI/XoSvz/ZqbDFZgYQQHQQUdQHGcQHcDP3HawUd7q87XIquMMlhWHYerz7/CtKehCEZ+OMySrEABuOvOtSkBXlTMRIXIO8Y9MRQ3gWsko9DZcqBs/HY/EovRGD3QLZQYzcNfi7thfyfny/Hh+PCw2kI2DKxAUMuJn7USPuBhWPAKf9eg2mKmbAZR1iSA5CAIqxDBkIY/B+xGgcjgsvrNF6TCZ7K67gZoawyRcby9GKG/bj8Dgqm6ajbocWVxOv7dyDMx8WP9OKi1iswtkyEyTooLO4QSHy+jxPr/NinIkxpTBwxbIU/bRgf3PFSsLjeHoghnMrAnq6lmHa55/Rfs3CAY+ddz0yXvbjCVTN3TBPz2FiCoXIODuo/bNe92/G1QbHRv4HGTPjtI7hWq8lQjW3NYvpMpCzARnno/V8w3E3TMtL1YGr6jUj99LGUBye42c0Mj7atd0GzDfrvWjA3QNr9ZrGan9YHp99eMLYJL2GjVrfQcQFcCketxyHx4ulIQsS70eeg6XaLnN3NSboIO6iGIcn5bX8QZvlu+N3hxsVhKV/OPLvwVmn3RsOV4IgyLcErMezz1GOj0cIyMVdVJKOsP/JdIfrKowQVYcbhLw97O2aIXFAZgr0BXY3w2c0xsQoWDNIW/V/Yx6mA7sgbdIOihIqeHnJZC6Z+gc66MmSWjGeL89ZyFzupQwxeotZTQp7Y0pkt1d/G2rh5+OuBUSBLCsS9P6+9X/mueETqFaHkCLKOX9lGY+MEyaolhyaSOf26m+zPPddgLBJt3BHDFjN4Cm+zjfZ1S6G+p5bskm7cwd71unb8L+BdJh0l6CiZY9NlxedXfd05AWxUFcp/hovfXMjnsPmYwijZJN7EhJabm4AV+IS3CBG/XtxV8TtuEQoyEQ+D4lPAgY0/p2dXzxD7lE2YgTY6qG5KrTCgLl/j8Xt1JLDJJ6nXWmDj/FryiligaZSmcZiFjONn9zxJQCe+/IEFjONH87/qtS3B3Zfl0zfSgER2wozeZSrmMWCmGR5HQNIYS9lmqH1Ia5hDvNYgNyfFFrIpTrGNg2hivs2fz6WgPVPK66Q9pu0yvuRCf/eSF/1Q4ZxFbD2IPSNh90HcXBTh6ddB3eP28mpWY7THe7sICx9tPt9guLT88XRykkHQVaOEBvUokFUp0TpHQRhOmKoVSHPqBmjTXgSyDxcCKEGdxWyIPEVyHtrnX5vClhmnK5CDLIcres1xICzgO50PLmoJd+0XDvxiEGcgxtwJjwo1FhbAAAgAElEQVQQjweQr0PkgcuR9/MU3E0NHBgRqdtW4o1lGKttN+EEE2moQuaEXoixa/E5h3AwZEbtPmSl3gL8zQ3wAjyhZyMeG9IfT35pLBm6bTmFetNZqe9MvV6TOY6WLD32w7qfxVqZEp0p2/XHc+C04252WXodSXqNe/BEuJbLqRwXZ2hBANFgfG41RiSqfJat59mKJyUdpW1owJODZmm/mtjDNlxNzSSy9+gxcYjnhAG2RgQAGYNUj4wvy6eTjjNMBTiTZmxSE87UmE6PTT8G1sxdzyTSS7Q/ViJsShkuuGB5qwwom9BED3zR1twSzU3uLwhg64EslmYjMcdVuNtpE2Ir5OOCC0XaL+ZaWqf3wMb/cN3XXOqmaH2r9f9qHHibKmPViQBBI4OwdMGRfw9GnJ7UjqUEQZBKxNMhDMPj0spVmdjfAI1hGN54bMec7JigAYiBaEaiRT7a2zw18v1YD+avwuOBrHwYZzNq6JzLZrhspxXK01OUUMHrjefy3oylVJPLGMpIoJ1yipip7lJTWMoW8mJxJoVsopwi8jSoPYs6Jq55lV2j+wBwC3fyFW7nIzwCwGzm87mVD8RA0Go1vvvRQC057KcX1/AQn+bn/IAv8hizqSOrkyH+8l2TueCm5ylvF6m2PcOzRcjAlNt+h7ycLtftdQhQMtbmSWT/BuQlaTFCbTgjlK77m7vbJGABjFwkEZ7rvnieBJbm6e8HkCzoNjn00d9Mia+UGOiMKcf1BAph5PjXWLfiPEaOf43JLOMxZjOAOtatOo9Lxv6Br2nCowV8gMksi8VT/YJPkty2n+8mSjzP7fXfhj3wXKHobl+85EXumfopJioyayGFXKq5l7nMYR5N9GUZk7il8m6eKLyMdhJoI5GdDBClPuA+5lJOUUwYYwXjSWY/62qVfQRG5rzBusfOk43FyMvVxthCPL/DWjwXR0x7wwBzM2JBWWeaczy4W+ip4hJ3nCDoKHMFnJ4vjqWcSiCoCnnl7Ea8HdORdZGdwCfDMHz95LVOSr8gCAfjErpZiAGfiBhe9YhxZkptJttriU8z8NiDcoT1XosYrBcihqG53K3GV7lB2AA7djNiiLUi74L1uBhDCy5rbW46FmeE7pej/0cz3puLUyse8J6OvELStD5T9TqIGO4mXFCLGK6rInVEs1AYcMhDjEzLA2RM1Ap8Ok7T4z+qx5lqmrmd2eq8gT1TJTNxBYuDMvlni1N5XOs31Ta7B59BFtveo/sa8DOwBg6E7H9jvHrjiWcP4q5eh5B3d61+36H7mJrePO0DU4Uz9iQXlxiPQ+6zqZ3l0Nk1y/IHWWyPxRaZ7HdvxF3L2BkDLsaO1SJA3JgVk8JujvR5uZ7TzmvxZQZ8DaCAC0aATEfDEDvAGLneOMNlrn+mYhdV7dusx8bhrny9I78b8LOxaWDTAHYtDnpM6MHm0kV6zhRkTBRF+uB5/b9e6x+KzLvx+HhPx2Pp0pDxbixoOvDMiQBBZwdh6fwj/x6cc1oYobsSBMF1wLcQC8gmtzAMw/zjrHcCsj5vYWOgMrFHPuZkM0Fdi60z5umngSP1KUtWP4NsxFi3SaMKmaDMDak3wkSYgVoIyYN3k5nawCjeAERBbDLLYopiAJNYxnhEKCqLnTGpZYA2EriF78UC8osoZ/j6rbGH/87cG5nEMoYpf5/Q1sagYBuVCUP1+ERu4kdcw8Ox82XSwH3MjcluT73pBS6/a34s7qisuZgD6/qSViLg7cDeXpyVsYF1XzvPr+vy3Rz4dl/ZLgH+B2d5bkRYnyo8hucDSHyOkijUIOptlkVrPq4UBy4fOlO3bZLrg5/zWdy9rlC3b8aB1XXAYyFUSrDMgKl/p6U5hZxUd8LeVFvI3ByhVXKpZgGzYm6Cs1hAOk2c85M3Adh3XQ96f/0Qu+7sE+vbh7maW6rvBmB3bnIn10YrZRTTRgIAOWznUa4iQdHKJgq5jKdYpvrjlXpBrzcK2m5vTYTKSICLKemY7MhAPFbK1PvORhXiUv04luG02io6LwLAqSWScJwgaFQQli7sfp9g6GkQdLRyKoGgnwMLwzBcrNtTkTWPx4F7wjAc193x/4qSEgRhiLjK5AG/RowiC9avxaV7Tc0sE0/kabE0FnRvgfEpOFvSG5fHzkEMyzo93vKT7MGNW5A5y3LKgCtwmZtZNOFnPp4hwtgAy1FjSmtmrJu4QBsuz2wxKK3abstXZMa4rdhb7I+BwR26j0klG6Bq1M912q/pdHYNjFou9Xq+NNBXrexnroX1CGPxDB4XFBUqABeUSUMAm8XkZOIGONqmXNxANybK8va04q5xxhxZe/bwj4yRsXHmOrde22RGtsUZFSEMHYhxvVbrz9V9q7XdxrBYvikDXgYSEvScT+v+GxHLeQZyPw1sGwNp4K4KGRsGeuP1XEWRft6PAxRwaexpel3Z2qeWC6gOj8MxYGs5m2pwRThTlzOQl6XXl4fLd+ciz4ctBByK9Et/XCzDRDiy9bcyZJG2Fx6bhl6XgagGPZcB4Eo8d5HdSwPaNnbR808DHjsRIKioexeHYMzpSa27EgTBRuCCMAx3HXXn//W2nGwmKKoOlxL5fgSuEAckj4MDyyCY5LskIQ8MiItXNs5GvIg8fArBk7+6m3GpK1lWOzlmaNeSQyUFseD4AjaRSzXz1ggaeGT0B2IKcAAllDKkejv7BsiyypuJwxhzfwU8oed8L/JCVAbgkSs/wADqYiIIuVSzjEm0kcjH75AHaPWXRzCPObSpG1g1uRRSyb3rvwDAV4Z/lR83f57MVJc1SaSN6kZhp9p3pArIMTezm9vg/yV6zp5CZHIdiQOS3sgKy/ZId38YV5wrQUCRLV/0RVgdc5H7NPLCjjIdDZDwQ80B9HSqUPKFkDxHlPMyUxsopDImQrGgeRYXpr7AZHXCjqODYlYzuVl0LltSk6kiLyZqsJhp/GT+l1C1crbkDmTI/O3S5wC3wpZfDKRUl0xH8QaFzVvpuQfeyBWdkRxq2UVm7H48ylV0EBc7RyYNpLM75pKXQBtrOScWU5RFHctWTe+cn2IXLqE7X/t7LY5xdiGTUiw07w9IwJQxQRUIQDK3uFMJAMFxg6BzgrD0j93vE5xxer44WjkVhBGslIRhaEKThGG4JAiC74ZheFMQBKeEBsZ+5PkrRwy1/ohRZFLVBgrMwBqLGJUZeMB4Cu4CZ4Zqvn4aQJqAGKAr9fv9eBzEWj2+AzEi1+BxOhbsXoowGxaPVIezIhYIvw9nrJK0blO2M6bAkrj20vMOx41Lc3srwpkDkzmu0/a30Tl2Jh2PBTLAZLE9Ocgi2yzEQLeg/jjEsDYjfX+kvh7ajxZkb2BrPG4Y/xYnvy0HTYm2d6zWm4gYuWk42zEMjwNJ1P6z3DLZOMt3CGctDAyZMp7l4gExro0pakfYuqU4kBiHCDY046IVa/U6hmq7ErQeA0WNeq07cObI1NricBBoCWFb9P4Nw1nDJj2f5QtK1E9ju9qRcdYDZ0Dr8eSl8cj47oWMhxxczvtCbZMxRHYNrXr9UZfDhkg9plpYq9dXhYzz87TN0/D4n1bt10P4OM9A7JTXkHFiqoxZevw+Oo9tE0sYiqvumStlrrZtqF7zFFxeexzCYvZGxugJKUcXRjhdui+bcEL337xEjT5b0gJfHVer98AbeIZQ5CVjkwc4e2FqcNORAf8x3T21ijqySO6zn0faJW/MmIQyEmmPGeZFlDOOV7lmtCiOzeYx2kiI/b6YacxJe5DeC4VkS7+yiV3X9aHfCDGqV08cwZg7KmJN/kj178VYXylo45VxxXzkmt+z/qEzY/ss50IWMYM7uUWOWf97bh7+bUYNfxWAdeXncXXRL3i49hq9zkQohMtnCBVblFHOdzO/5WqNLyTCf0a61EindUgQPwhLMxJ3oQN5yV6r/5+PAKTf6/Yc5EVvlk+VfkaSp16w6PmY22DNSGc9jOnZ9MWzqSkpjIGz3940i48uWcCSwTMA+GXRR9hEIYWp4pqWQHsslgfgJ/Vf4o9Xvpf3zf8zAIuuvIzPbXlA3FEAMmFI/XaG/FGRWw5sm5rJoLaGGNN3zsI3aZmZEgM1HcTRRiIf49eACCHsIpP9CoofYzavbx7vMUGrroD0yIL8syoBZ2zj5drPA/FxWYO8L0u0T0rfjbM/INZaBZ0TqL6DcgWZotLpclzlVAJBjUEQ/BeuDD8b2B0EganlnvSSBgxBjMhFuFtZA2JUpSNqYCWIYbUBMbLycEnmrjl1MpHpqQh57w3FY4NM/cqC+5P0nBaDCcKsWLC3uUeZW89BbVMPxFBeT2dFtTjkHfOiXpPJZw/Xth7S872IK2hBZxelQThDEIcAHxfGlPeWrZybgQ5iqG7F3enWIGs4BirMwK3Xc9jzvh8xpNMRA71Nr2mf1pGi12JJW1v0b4Jex4dwV79eOKtkIgCZOJPSA3fjsnkwrst2PM4WdUS2zf2vA5nj8nGmzZJ8zkRAwvPIfNND+/1xbfssnDE7pHU24IxKs/bfBsBksaLCAb0QQ/1FhGUrRNgmc6O0+KksHETXIvfcmKnBei4DP7l4jJKxcgYI45B1t3hkPDfo96NxUJGk17FZ68jE8+JVIiCsNy59Xq3Xko3n8dmvdRcjz4e5z+3T9m5GbI0y5D4b+5ig58vUfjawh/bBDm275SJqxVULX9R+sVx9Bh6NEY0mfD/u0r1E9ml1uO7Ll4EVQRCsxNfTCcPwhpPXpJNVuk7vxl2aXHaVbo/tvFsfBOhYZm5bXTAQlB3qAymGasWSMVww9XkyUxuYrdP3eFbwgeXPcMfEzwPEJJjnch8grlOfrn6QLbkiOffpNQ/KQr6yD7nN2+n5CjEjb8zKCmmDKqC98lAx568p4wfjHJWcf30Zwx/cyrZrZYYsopzlTOQmRMNi0fDL6EcDbzYK3588eDfPM5nBOQLEakoKYTs8WS5BP0824f7oIJPzf+Hy1hcg/bAUNCRJwMw63Iq5GyEDP6PbbyEeWyYAUIi/3NB+74ODoq/Ay6smew6gYmAXnHvTS7z+2LvhwjZZbToAU2+SvEC15JB8/m4KUuWtNI85zGEeQ9YLYNw9PJnVFHN9s0pg/w7W3jCK9+UICBrHq2z58kDSdYmub9oBuBVW/0KCpcasr2DQ/AZ4BT5iaE7d/T5Yr6+kPfCrwqtiYKuaXBYzjQEau1NMGdX5uTElvwFj/87ORWeQNl06Ys+W7Nh1ATKZpiPAx+KALHCi1OKBLGtelW6n0lka3vJlnS6ni5dTaURcBXwdV9x/Ub+LQ2zXt1WCIMhF1HJtAf+BMAzvCYLgG8AnETsNjuLfDfI+tFXjqYhxOA6ZWixRZg7yrH4IMZjWIAZgNmI4mXqZ5Z75C756nYszSuU4iDLXODvG3H6srnzE8OuNGIimymbKYSaKMByP3zH3vMV63q1aj+X9MdeodGSKLMeBlcWBFOCAwPKyNOAuSrWIAdyk11GPvOstWL0h0t6PaF9NoTM70x93DzawMVbrMdW5bK3nGtwYf037x9z0XtTrrUbep8a+Jeh5LAePqX/tIxbsHgNlaLszEOuqGTeoDUw1IKCtAxc/uBgBsRbY30P7pliv73l8EBpIHKZtNfc6Y8eicUDmRpmFCy8YI1ePAJGN+p1JYqXp9Rjos/gpM4/SkanDWCJTbbOYpBTt23pcxS8aX2RukFXap+ZWZ8yRjcU2PX4DLpkNHjc2Fnmmhmv7m3CXymq9thW4fPwOPKbLQJLFVv0Fd/kzOXRzweuP54aq0z9jqeqR+xh1eWxCQNBfEZYqCRefiNpLb7scnQk6nSeo+3I/csujsTv/piW64h2d6uORJy0v8l2zR1BVpordeLFuFyNuWxb30hqQkN1Me42uwPeB8vYR7KnJojo/lxT2spZz+P7EG1iqATDX8BC5VLMSUW77XPUDPJc7gUSNKxnSezu7v5lMSrMYrD2/AIyC1Teo4X1XBbwXtkwU0HR+dRlbRg/k880/lf0vhX1/7kHTuL4M+om4t33vhhlM4vmYStoCZpFLNZMylgGw5KoZ1NzW11cw1iEvbQMcVZDwnWZxiwOmFi1iyeQZnSeDYmBLpKvX6Z/5rvwQ+A0MLpKT1MzV4B7LwPw75CVkSnulSP3mzPkI8HNzYIap4xexpFoYHlGRS4RS+NAPfsPj5f8h15V0Gefmr2CSusP1o4GPL3mUP04VhJlJA3Pa5lGZKsxgvxsauOWOu3nkVql29p4ySlOLRYIcBHh+QfMqAfwd3roUmq7sQ796GRRb+g9kSOV2dhcK69K34QCz2+azKVGu91xKmcbiWM6mFvqQQguPNgtzeGHqCywpyWLPLo2/ulDvhbnHzUNevGtxjPNhvVdxujxr+ZtigQGV/GN+rHcICwSEAbx1SvhInVolCIIzEAmTXcCbYRje2d3+pwwIUh/u/wyCoE8Yhnu7/Hw8C61vAV8Iw3BVEAQpwOtBEFi43Y/DMPxhN8f+Q0WWLNKYgnLc0aADZ3bWIcbaQTwBZq5u1+MCA8MiF7cVMe726f75+Mq8xeiYa5S57liOHzOIC7UeMzZNvcoU07Lw/ENbcclki2PajxvG43Gxh1ycGeqBx1CAGNZr8UD13Mi5zKXMAumNxTiETMGmBLofeadXIqv4HdrH5ppm0tENiNFqMt1rcNW9jZG6LKmsgYYs5L2aj4sppOMuarb4nqLnbaEz22xKYNk48LOsBHZN4IlA7XoHa3ssyedB5B1ueXAOIQuKL9O5bECMcYv9ytPry8I9VSyeyuKy4nU7j86JeE1ZbgUe01Sr7R6Ky1Cj+1pfWFzPMFxOvAnPxfQynsjb3DlNeXAYMs8bA2blGeQ+NGn92bhcuz0TvXGwWo+r9qXr971wZcU9Wm+cHmcKdb1x9mkYMs5XIvd2DB5HF4+DUhOxWK/7jUQYOmMiLRbqEVxFr13PmYMv5h5XOXqy1NOl+/JWGIY3nexGnBolKo0dNQQN7ufpdiOQDAMV1NgLxhTK5uCxGSAv6WxIO19GfE7CduJ4i9z8arLYSR0D2MkA8qiKubutYDyXs5DPrVH2IQfGUBar8o3Csyhoq6SnysPv/kUyfW88wJglGs8xAnZPTI6xEyyEIZduF4lJgESoTsxleP3WmLvDT878EqO2vhpTRfsmX+ec+jcZ0F+M+YZHM8mlmsWDRcb7QGFfAXdzpB/S5u9gzw+zxY0AWHLFDGFodus5SxD1mbXIC3Yv4g7XE89lATAPdt42wPv2thCeVHcvS/RnRsABYJvk+gHoeCuO9ptTY+50S1bMgHthwOy6TjmKiqhAPc+4+gfz+CZfjwkXfJIHyJ1aHXNVi6ODgsR3MadNaLXeOw+x/Mvv4iPqJsgWOJ8yd4f7ILwyvJjz18v92jY1k0H1DfSbvzeWv2jIzO3svjaZDl2q/MPwS0ihJQZyyynidUpoQkCOCVwcqJTtJXtnMGLiajY1Sl6h9hKgKtFjC6YhK7ZG9oCvqsaGdjOHNxWjUvHR7f/bJewBbYk9jrJX9+tAQRAkAcuRKa0nsCAMw68fZr90BIqORGapj4dh+HIQBNOBe5ApeN7RAMdR2vIrRBx9ZxiGIyPf/7PnOAv4YxiG9wdB8NBRz3sKCSOMRzq5TxiGZwRBMBq4LgzDuSf4PP+DoMR3A3v/GRDUJwjCi3B3mXWIodpLv+uNPJ9R6eP36P+m/FaEB4ev0Xrq8Fwt5TgAMnlpcyczY6wUTyZq6QGMlZ+AMxPrtN5qPCaoVs9hSVPjcaYnHzEAzWVrJR6Eb7FLCYgBvBEPKm9B5p0d2sYqXMq4Hgd9tmpueXzqcAGHdK0vX6/N4lqycJYLOrM2C3E2ohkxYo0V+7XWYaDko9omA0BJCCBIwNk2U3o7EzeKzT3KYsDAWQKLpzIFtD3aXotdStJ2mjqcxS0ZK9Ou9W5ARHBszknRtl2EmCmJWncK7qJnHt3mYmYiBHHIfTb3w3pkWRzknh3Sfo7H2Um7tn16jAk5GCiwvmqJfAedE+x24Cpq2YhdYEqG4HFjK3ABkDhcrc+YSwMaxiiZe+ZBJNijDc9htQG5//+j/dSu17dKryMXGc/9db/9eh2P44sFJtxg4sETkOeyCFd1NBXSkbpvD+S5/6vWbZLea06EMMJZQVh675F/D6aeDnTtrgRBcDtya5+iszvccUlkv722nGxhBCtm/EWTpB7EEUQjDMlyP+t05GEz6n0gYoSby1cSjChaTcVm+eLc/BVk0tApr08bCYxnBbPUXaqMYppIjwXKp9DCNBaT2yxsQ88/Iy90O8cQYATsGyJGXu/3HYIvIawLwABo/BBkmGtUBdAGd155I7csFxWzNyaeRSUFMUPcZLJNFS2LOj5z36+5eu4vAHj4V59k5MdfY91Dqg6Xh7xgDQAmSf6dnb+SXEVM1+G1I9FZsrsVPN2YLX1z30uUNxdxYIEyHFZfJNEslZJsFqB9diokw4hFMhtUfHeMsES2GqfugBRH6tiLuNApe5Q2fQfLEy6KxRFVUsCTzIwB0ocqP8VzhRMY3yb9kNh2iJ4P4r7yo+CJwsv44B1P+b14xe/NtmszGbSkAc4g5ga3bWkmg5Y38Jbu83zqBMZQRr+V0jHfHPdfpLM7di9uar6LhKQ2ChMkTimFFpbVTia5j/hCHPhtX7nXxkbuQAyrJFyEYq/2ZZVuh83AS7iiR4V07j/kyzpVyvEJI4wp6RH+pbT7oKCM4EC351Dp/95hGO7VPGgvAp8Lw/CVLvv9BnghDMN5QRCY2dQCvIncpRrESeTDYRiWdzl2AHAgDMOWyHeFYRhWdtlvInJXHzIQpOEwhz1HEASjgDu6XNLHkWl9AQLWHg7D8Nfd9dEpwwQBP0bw/iKAMAzXaKecsBIEQR6yELwSAUGfDYLgGuSx+kIYhrsPc8yngE+BK5IZkCnCBQNs5d4MrXyt1IQNRiMGncXB9Edcv/6KQN8WPL+MuUaVI3e+t/5tRIx1CyavRxaCNiBT2lRc+KAVl2k2pTQLnM9HDDljC3YgxrDFRZjMtEknG6PQGzEUjU3agcc4mVG9HnkFtSLApBlnRizw3eowtyUzyqMslckvW5ur6CzbbaxYkx5j92M/4vtoDJIBi1wc3ORof2VG6jFjOE3vkTEE1Xgw/V+0ry02a6P2kSnFWfxVHJ5zKRN3s4tKPRtT1aj9fZXWsQRnGH6HuFUW4yCjGXkTWByM5TlqwEU3jN1ag4yHCxHGLU+3q3E3RevbZr1/UTnt6PVY7FaSfprbXQnuytaCq91lIm8hy320D48pAlcO3IHLyJtqoLFuB7W/TbkvHx9v1vcb9ZrNpXQdsvDQrH1psXpP6/cbtG8tdq4Wj90arfWNxgWwGhBbw559EwVZouc7n87s2Qkpp2OCjqdcpZ9fjnwX0llo8t+kRKf3rsZfHm49DpUHcYuqbH01VV46RvWnI5OZGd3ZbVSsGMO540XuOpMGyihmFgtiSmzjWUEbCXxP3Z9msYAVjOf2SmFlaIAt4wayKPUSAK4Y9Sd5sO7Rc0wFyqB3m65kz0FeDAqCnrtuAhd/4UW+Mly0qG9/5dssv/ZdXM5CeYkDBW2VnLPlTe4ZLt6jA6jjeSbzQrPIcOek1sL0MMaQ0CquYxaPk9a0g34JDWwqlLxCPBmw86Ez/EVelSjxPZOQ2B+A78Ce0uxY/NTrd71brsuA1HPAL3F1uBFAPyjIEDDQ8FwmO684g4paOWfyZ3c7GwQwDQbM/js7y8+AdAVhP0yE6XDJDKHROujJ6M3rmZv/YwB2kcnVPMzH14tq3szhv2Phwg87sBqCLAsrZd+4Ez447ine0uCAnp9FxsNvZXtQUoO8OO8lxgQNqm+ANKhOFXfFMZTRb81e3hgn6nHXcy83cRdzFMVdlrqIIipoUS3wxUxjcE41NUt0kE0PGZBf7YCzCQF5VUifA3wC99kHIBV2j8BnpHjEGrH1jwOcekDo7ZeQIMa8dVP6BUFQGtl+IAzDB2J1CAtiED5e/zoxI5pzbSLKR4Zh2A60B0FwAVBpCaiDIJiPZIvpBIKQqfYzQRBcGoZhaxAEn0RCoi/tdD1huFxt9Gh515HOEYbhWsR87lSCILgZ+LrWt4AYR3r4ciqBIMIwrBZgGisnzLYIgqAPoslyYxiGzUEQ/Az4NnLDvw38CEGRXdv0APAAQFwQhMa89EYMqxzEODaDtgkxzix2IA4ZEesRhGdZ6S0WZiSyAHYBLsmcp3UaGFmpdRUhxmwmYgw24e5BVizwvD+yIm4qZ2aQ275R97jeiAG8FTEmt+Jqdv0RoHYRziSAG/321PTG1bQO6W9lSNyQSUOv0ms4iINBYyJMNKEIeb/aMWZAH0KMekv2uQ+Zo3tHfm9FGHNLzGluWINxpidfz5+L5xlKQBg1M6a36nFmuP8VMXq7lv64wtg6XG1uGAJOjd2wPm9AXOjMkF+rv5kgxVDE1jAZap16OwHbTFzUwtz1ciLHGFNRqsdbXFAeruxqohxJ2v5s/d7U46w+i+86U8+5HxeuMFGBl/UahuHugpak93xkjhqFs3nmotaB358GXB7b3A1NrtxigcYiwMbAtzFwB3HXzDPxZ+QK/b9ar8e8U5YiuQgbkeeyVc9lsXyZyDi9SNtRpd+ZQuFFev6L9JzP4Dn8Tkg5HRN0XCUMwyEnuw2nTulq7JkxmIcYhHn+UyvEVLTMN/cS/SxEInV1kKf1280e+sZywtQykLb2BCoTCinRZfpcqmkinbVIMsyVjCOBdlYXSoxPemETQ+7azpCeGncyDqG7jQnaCdvuzGTQHYrEyqDiezBCcm1ycfWL8AW4/TMCqg48DBPTXmXpFTBc170ffu0a5uQ8yDImA3AXN7GJwpgkdjsJjM9fwcPln5QDBsOy5dMZsP/v0oRzzhBGZ1LEJtxFBAyGMCkQAGFCBjVAYQi71I45G/gb4uy0oIQAACAASURBVIoA8vIobIMRGszxNCTMa6ZihkrbfAOV0ZbfD3w2kYTsZgb8Stu05Ax2fvcMeRn1k31G3LWadJpi7oVFlLOEy2K5eOJ4ixRauHm49NUc5vGrmVcxQ9ab6bdmr8TXqNJTxhZgDsIOgUy6W/Ckgq8g5qsljQOxJCtgyCtyP7dcN5DK0YWxGLBreJgiytmldGMi7TzM1QJakfGSw3amTZUb/MtF17Nzxxk+Hp5Fxt8uPJGve1NKaQIZw8Z4rsLH/L9t2XU0tknZlteRkX1vGIYru+ySj5ghv1YPrdeBzyEIszqyXw3yJHcqYRg+EQTBEGB+EARPIHb2xV33O0I5pnN0Kc8C3wiC4Cp8peeI5VQCQdXqEhcq3XYDLvB+XEVpvt8Dj4Rh+AeAMAzrIr//AsE0Ry3DESPrILJSvA8x+oYhxmA+njBzFS4kY4CmA2eNTOnqBtxNLQsxIPvrsQZWtiJGWjquSGVuOEnIyvVoPdceXEY5Tn+bgLwjrE0ZdA6MN+WrVm3rVjxexAy/JgTUmNCBgaCucTUWfB+HG9I7tL6DuIKXxR9Z/JIdb7FQSXjyzxRk5FvMiAGB9khfJNA5/sTc4S7C2SwTijik223aX8Zm1WsdloS2GgFApuhmzBC4OIWVtXpO68MG/d/U5jK0H4wRM3asUfsmCZlvfqn1WTD/SoS+rERAc7b+ZjLPFnvWC1cALMHdD8GTu76IM4Z5uLx3FS6QYXFgBh4MbNjUYgDb7stYPW8rsUVYWvT/UXruUXjMUrN+NwhnhxrwN91WXFq9Fx6TloQn4TU3RRuHQxFPkVnanjL8Xmfrue5Hlo1M8CAHj+dr0frXA5chwNGA31B83dyel43623vwWK8TUkL+7cP5j6cEQXA98p5v0u2+iPvEfSe3ZSejRGMgeuJSwQcQCkKXRZLz5OEN4mW7DWE3/qS7fw+4klgCzz3PZjN4huel6UcDiQntNJDJ8wo4mkgnl+pOyVOv5z4qkZiPMQtV7tryeVqiu+t1+wkY9BmzsIGLYEQZMRam4gwY8SPEeAeSp8pvU+YQc9H69C0PwjhomhmjCvga3+IRJQs3USgSz+qUM3hGJTVzC9nZquzDg3Du2JdiYG9dyXnyAn1QK8sLhPG5DUhSoPTfAVweyKQDsoJ2WxusU9BTAFyZ6DmX0qH9xVRXKH8W7r71Om686X7ZXgbtSansXKdM0GAYfGslNfcJwEl4fzPtJPDyksncPPUHsb6+O99QGbSTyDA20Etld57hUq7jfvrdJQTAH266hCsq/uR5gVYDD8MT37wMgA9+5ikqfg4jzBrLRJT8LBEiwB+RVa8H7bKaGLJyO5vGFcTaZH1upboxl/YM6Ze1nEPNrwodYO4CRkbA58hAVhqNEUL/PxtntEKQZUAb51FABLCTU8vkPb4SEsSY1yOXruH1h6knDDuAYo37WRgEwcgwDKNRgD2RafU/wzBcGQTBPcAtoA9312Yd/hzfVxbnZ0DBYeL+j1SCw3zXbQyPtn3WMdZ/SsUE9UPI8CnIhS9BfBMbuj3w6PUGwG+AxjAMb4x8PzAMw+36/+eBcWEYXtldXQlBEA7H3cxaEePOVKPA3eHqcfW4BZHvDXykRo4BMehmab1n4kkyjbXohUslG3g5iAeNp+j5jJFJR96/MxAGpQWPLTKDz0BVLz3vWj1Xip7b2C2LmVmMGINJeMC9GcCDcFes/bhalwWfZyLgsQAxgltw5VVza8tHgJyBO3CmyNzBDKxZvpsNdHYP/CvyrjTxBpCn1WKHLO+OGdLWxxaUv1brfozu15DicWAbzV9kCVRBgMj7tY9sn8RI/1XieZNMyQ9k4L+g7S9E5tMU7eN9uIJZLxz4WfstZscAcBVyz57G3cAshszc+HrhCmspyBiyvEB2D5PwnE0tkT/PNuHuaQamzsTH6VA8YewO7T9wt8AWHJxvxF3g7N6a216u/t+ChC0YC2T32mKXduh+5XiuoByt08Q64pHxM1LvhYEuc19dE7m2YbjL5Dj9fx3u+louf8cfE1QQhKXdhH0GHzodE9RdCYKgLAzD4i7frQ7DcMyRjvnfa8vJjgnqavCZQfhuZGnGjMVUoE7igsBXumbqz6ZsY4b7ATh39ku8vlndyJLaGZnzBinsjSXozEUC8S9Tv68s6jrF47STwJAJ29n9oqqJrT8Ae2BfscYA/dchobN/FGlDLZ5UdIAk8BxSL8zD6v4jYsk6y5VD//jKR3lu3AQuXi5SbHdOvJE2EmPub5fyR/4/e2cenlV17f/PYchASEiAEAyJBAgS0iCDtCCCgkUBb+WK1eJQLdfSW6tWLdXWtv609fZaW629tXWmLRergvUWihUEbUFEhIKAQgNIAsGEMAYykJHh/P5Ya73rhDKoYKXIfp73Sc77nrPPPnvvs/f6ruG78ink36vFIjIqZS7byeCtWQLkKAhhQuA5f9YgDkEKBpkAnd59nx09z6TTBrHU1FQnUz8hjaw/Rtjg7m6EKSKsdvr+++yYdKbnvxkewuOBaF7sHgV4stXJwLnQ6T61BN15piyUQ0MSO1ZSPzMNRjbCTBeGf3LTt+hBcQz0/NvCv3Dr+T/jJiTYMO+dzfAE7P+pnN9qCbIQmw11NmJKtyqrEGCspBV0RzbKiYiGDthzqzD7rU7prcOzgxf5IqMQy05e6WYWZn8uBoZ20YGZjItZhgbxN1bRj8JqGbseKUUUV+dSf6PGUv07gtlN4wuek8na+RdUPDaKpC3Iim2hJycbQcLxxQT1GRgXzlre8ajndA+2fqh7BEFwL1AbjZUPgqAzsCQMwxw9HoaIVT8GfhiG4Sj9/nsAYRgeGqdj1zyOWJFqwjC85Qj3zwH+HIkJOveD3uOjlpMGFis73LUfQ9XnAdcBq4MgMAPq94GrgyDoh7w2JXyA3aotIoTNx91nNiICYzQhqdEPb8MVXHUIuoueZwKk/R9NrlmF00NX4DTQBmRy9JrVuCtbL5zKuici+FlgeksEjFkeIhNU8/X/UtzmaTEgNTh5gAWhH9Rn2oKsxVHa7lIcsNQh62Y0z06+Pl93fVazptfiQrKBS7P4WA4fS8qJnhvNJ2SWoLm467Uxs12q9zMGuUycBtsC8Zv0mlWI8nMZHlFtMTdWCrTfarRPzPLRDmeCa9DfLfGtuROaPtLy6hhlt1mF0pG9aBBOuV6n9zNrXJTEoALxFqjW7w/S3B2zQfuwSY9tfhzQ457I/lGn/VuHzCsjx0jX8/voeGxE5qVZTkq1TmMfNNZCI40w970K/SzFFaR1ePJRI1wo1Wf8rI6BkYa0Q/Y9I6Ywsg0DgCu1723e1+CEBWZJNQKOvsg7ZYlhL9Tnsnd2IE6IEY8EmPxJzx+IbKfliGVuPu5u2pl/dIT+yOW0Jeh4SosgCAL1dTdXj7hjXHOKFhPyOiEri6l1ViCWoBw9ToEgwy8rQcgQLJJgPDAX2k0UNriqBZ15e8V5fGnA/wJQQzKVpBFPI0NYzCPcSiWpjGIuFSrktmQ/I3nNKbDfBO6HtIVK7dUbmAJJmZHJ/wOoV+tE4tXAlZFHWwvd5m2lXrkdUvdW0v/2tTAYMq7SFftNyB1UHBPuJzKZ+7iHceqClUwNF694g3MHCHCbueIq4nKqhdYaYFoT3BHvOX9GIm6B5to2CnbMOhMqYMc9aj2aEEICYtWI9Wd8zNKzY+yZAh6sbxcE4hhkcvodCOiyy9OBq6Byt+4eF8Hwi19hwU2j+dFj93LvZT+i/odp8GWxWoHE16RSGYu/2XV+W+JojDGzberbROXjqZJ8FjypnpUd0r/rrhIK7byizeLuZ4D0HgQMJhCL6kibU8+6MV3pUy111qQkksnWGBHCy9mfp5RsKnUXnM8IsimNsf1V0IFkashJKQFgzcaBsCgQ8AOy0D+PbzDguTaMHIN9NE+OmohIKtH3YAefPPg5MUUsQce3tAVBkA7sC8OwMgiCRGSW/7TZfcJwWxAEpUEQ9ArDcD1iMyxEtume6uq2BbEXX8MhJQiC/sDTwL8hjpW/D4Lgx2EY3n3ouYcpH+gex1M+cRAUBMGvOIp563iT3IVhuIjDm9SOmhPocGUv8r5l4K5e+QiTQxbO5AYyQxKQGAT0+xWIfJOAjKwJvEazbdrrDUgw+xb93b63wP8MvaYnHqAOIij2RHZ8y9FjrG8bEKuEuYG1xpOMGvBpRJSAGbjLVxHOVmbCpQXRR9nFLNi/DW4lMaIHY4Yz16sNeED8QdyC0FXb1BpPvtpe/2+NuCK+Fmn/Pu0XE/5ti++F58oxGvFk/Vj/W/yWMbYtQ8bRnGENdBkAGoi7OVo/7ERAgdE0WzFmv+7AI8hYtta/CTjAjYv00048j1AvraeNflei5w9AAEypts3AlBFJgLOgWTstBmqUPqOxyRnhhOVvyok8dzkC3ozgwPYcc9/rjFt3Wur5ZunajSdKBZkrddr2KOnBaoSC3ebGAXxc1yHAy3IV1eo9D+CxT+ZGmI0kgt2OzA+Lzemiz2aW1wZkjlXp9xdovZZDyZj05iPW06XaZouoHIRbxVrgCWh3I4x3eZygYllxT5ePWuYCLwRB8ASyr9yI6Iw/xcVWxig7XKQESJxFVPPTE1eoTwduh6pfS/Rgp0nvk0wNM3eLqSi7fSl9WM12MpjKddzKI5SSzS46xITgYnI5QCtGpsiOWDImh/4718Ze2NqUFiStPejg4BaozW5B0mBd2S4B/oC7bKUAsyFRbX7byaDbBVvZNO4Muj0sZpQ7Jv0X3+J/YprF9I3V3NT9F3xjhbzV5w6Yz88G3Mp3Fj8CQMGQZawpP9td096Ip9P496kcKoJ7009SBJyYO9Yw6RcKIO72appKUujRvZDiZZ9xEDNR/iTmCudSfb80se6YVc2oZM0N4NeIS1nUJ2UBNBWoO9wiWNAwGjpCCTn8KOVevpP1CAUDlsWsKA+nTKKIHjHXw+1k0EQ8jyFEu6OYSx9WxzauLd/rQJcpFb6RjQVaQt4UjY7diqiSo9nhG4GVsGdCImnfECCb17CZXePETDafEQxhcczqZsQZj6q/4yW8TEcqWKrhHf/B7xjLLFKNf7wogKERsfChAL6JCGHTkAW7JaL1PANvJzn4rl2C7ATr9PhQd7h/bTAUEtB0THe4Y5YzgP9VZVEL4IUwDP8MEATBbGBiGIblSO8/q6EqG4H/CMNwfxAEtyBrbkvgt2EY/v0w92gDXBmGYbHW+xVipO9egiB4Hnn7OgZBUIaQG/zmA97jI5dP3B1OOwTkNctHllwQvc/bYRh+6xNp2GFKQhCEg3G3o74IgUEmsiaDCET5iEDVAhcw1yNxpibQb8SDtQ3kgCdANQuM1WFaffR3Y6JLxwlSOuv/SYjwCZ4I0+iDt+GCn+XfMZrjatxCZALyBpx2Ok6frVifNxkX1C0+aB8ivFowfgIC/s7VehMi572hbTVa7+56jQm+aPuMpQy9/h2cVMFiVjYi5DVRQPKfiPBqQrBZB6zNIMtlDTKOT0WuNfa0zZHvWiDC+TsIYLPf8hGwaSJGa3wZtr47F9kzB0Wex8Z8AyJcH8BB2yN6XITsp+n6rMakdxABQxYjVKrtjcPBhFlYKvR/I5TYqOdciFvponmRkvFcSSBzpg8CypO1j6Og3VznLE7nQjyuqhh/HwxQVehzDdRnWoqz9y1G5oSBHIsNMtdFa2c6sr1ZHJ2x3tn4Wv+nI+BvGLIVZiJyxwWIFqRBx6RGf1ujbfqT9kt33EXwHe2fXCR23FzsEpD3dsOJcIfrFoTLf3jk34MJFCFY7TQ73GFKEAQtkFc/6lY9Wf3e/8ltOVnd4TKQt2eA/5TbunlA5UBcUN+GWCdGCkpKbFtH/Zo0CoYsA4SNrLzpDK6Ney5GgX0FLzKExTyqgnc+axnIcuIUaeXN2Mwfxl3KlVNkCm+Z0CGWWwgg7V61EBnoeROJO/mBHt+DvHxGGf0yYk2qIsZitm5qVyYzkR9wPwCTmUhmxORRTibfKX+QMZkvA7CgeoTkrfmhnnAHZJ1fRLy2ubjwM8JMZq5sJYi5uCeeYHUbHrwJItI9hC+m/ZDoZHPmuRtZbOz6HyMuf6/K4bkPzuetO0fIswEMhna52/hB3P0x8MZDQq5gDHNrF/fnsiHTeBhJl3UXP2E808lXW3VHKug4ei88I5e/1Aku/S7u/vg8vPo/Q7noXvU7uwR2DWpLx0c0jKNCzqEWAW0AmeLKmLROQet2oD+8mi5JluJpYvsh4LuQfOYiOZryKaSUbHLVJPbY1EkyB6Pqi4G4OyTIYr2LGBMfq6uRXcOknyJkkCyRkOXMquHkKMfnDpc/MDF8dvnReWAGBGtPu08fo3zilqAwDP8XIAiCCcCIMAz36fETHJ6U6xMrrRBhzJisLAbnIPKqdccD0t9BLC8bkbXiP5C12YTZHESIrkUEzHV6fQbOsGVB6l9CLCBRIgLLo2JWiQPIq19K8yByIw+wnD8W7N0GJyUwVzazEljshBE9pOtxsrbTLCCmobeYnjzEjasXnp+nDgE57fFEsSZ4mxtRKZ4fprP+rUUEcdPQg4O3TNyqZIAjneYAKCNSl5E05OCMc3G4tWIbAoCiSUGj8SBdtS/74gx35vpkSazRcwponlfQ3BHf0vvn0ty1r7XWlxw5N1vbYVtGEdLHRorRGhnT7sjcq9NnXYMn7V2Hx8JYzqgWOL14Z9wNLB0nb9iAA48W+n937SMDP2a5SUXAYw6eeWQYDraMkKAMGTNjpIvTdtlcGKL3Nca5gzgBgrHV1eLWp3bInPmz9qcx4ZmFtQ9uhTyg9f8Vmf+t9W8FDlCXImP7LDKexTjRQbb2ozHCgRMqrMfdD4098bjLaXa44yphGB5ERKUnjnXup6ck0jxZ6j79Ti1EiRky6XvozznIZmfCZRIiP76hjGXZ8bAE6ocI72UPimkZt59G4rkGoWFeRT/KySQXEcyH8CZ5pZt5NvuLABSPy+WSxpfFQQbo8nAFXS6pcMavy5EYDxP+v4+89O/r8UTYfzW0UhetXT9qS8d5e2ETvDtVaJnPfuQ97rr1pzEa4Tvn/IohY/7KW1M15mdoSLus7TE3sZyUEopzWnLWLNkF4mni7VnnubUmCxgdMry7xLks2Dpavm/AWcx2ATc2whOqoS/S/jRQtBZnLQIBl5WQdYPGEJErZnvVdb81aQTtHojkHbrhTd6+5jxmPDfOXeh6iDXuR0iOywVDhrOS/jGAMYp5nM8bdJyjRAhjxtDtlRL6zxHXtUvXIhohc3drhIvmLXJfmQToWL7XtbYpiMPU1/yaXYva0nHGXmeQq4KF6Z9jRLUAqdKUM5jMxBgQKyeTTMpjx/E0UkEHSQaLEj68miI5kqRjhFa8AAeMA3GKXIC0FNhTgndMNbIDGS9qPc3fg9PldDkJQFCkWGiM2e7b4gbYk6LU4xpnEyTzEYFzMx6Ino5Q2L+Fu6MVIu9sHW7VMI22ad+r8AB7E04tCDwdEd42IwLwXOAreD67WpxqOh0X9M3VrSeyx3VAAFYPPKg/GWdmS6Z5Ys90JObCYlaiQffmDmREEObSZlYX8JggA1HmklaCM8pZskqzYFhwvQXeGx1yKjIhduM5ilYiyjjT5JfjloBcXOdjdNNRFzKjhDYXuCjTG5H6LG+QxWNGYz9W44K9kQUcqTyPJ25NwoGcAQpz9apB+taAmFmduuPxOzYvrG9qEUHe3Nny9DcjTGiDx19tA8uMQXc86WkZAiBK8LE2kNWG5pTl5gJp1imz1lgMNXgOn1pkrm9A5kEeHge1DZG/+uJkIObA0BoBF+b6aclJrR1ZCBDK02vNumnumCXIvJqBxPCs1zbb/DT30izc6goCGI06vgHZc83S+qI+Uwaeq8nY4k5ICTnBSYc+HSUIgqeOBQ4/yDmnZqnH4yTseDcEZ/thABSpBv2iFNEm2IuciiQGNYazBGC4BL+DkByUNmWTGbc1RkoQRxOVpFKijrY1JDM3u5Hb5om9/eWLP099fBvi40Uwb1WA0CLdp/ecjLy85h7XCEs292PwDEFJWy6HLrOBb8vPHe/dC70lf5CBmttu/SX5FPLoNDnpiasm0J+VcL1c89biEfTvvopz9CaPVYur1pqFn5UTchubsxdNBoYHpE7SLyuQTeFuHCh1RJKnmjvc0FA6t7MelwBXQ9YQFdSHQNnUXMpe0QtyEcuQWbjeQACQamDennUePZ77O2+VD4lZ5npcX8QQFnMfkjMpmb1ksD3mDpdNKQsZRv4Y2bnGVs+hJiUxJl39MW8Ml7ea45q52cgCvEOPzUKk7pK1F7YgadNB+DXUjpNVs+O0vRAP+zVIdvH5nyOOJlpp2FHpoGz6sDoWE5RPIXMZRQdVRe6ig5Am5MhNmtak0G7cNqqmacdF6bBNal2ALN6GcRoAUiBNA8X2PB75EZwl8dQoH4wd7nQ5VjmZZsQDwMogCObr8QW4YfqkKAmIkGgKEqMErkIEql6IINaAWAysDMIpsLviOYb64oHoBl7MJWgYIvS1RmJVdN2mVs/9d61zAM6O1R4HZC2QNW4LTkW8ExE4s2nucmYJSs21x9IBWy4VA0qrEIGzRM97XZ9tBU7xbKQIBl6W6DWZeJC+0W8v1TZ1RZRL7XGiBQMIRmiwE3cf24KAuCatt02kr9Drr8DBVbJeawjbAGeC1rFMvxuKs8KaVagd7lZmLoN98KSbXXALDjR3n7MSj7tEFmobGvQZDMiYa58lKs0B7EUwAFSKx/w0ImPcAo9Rq8RBUmvcKaADHifUDxnfEjzprxFFNOHMbX/V57Q50YTn+GmJ00wPQMYxHxmXar3PFu3zKHHFQT3Pkrim4jFLK3BlQfvIb2twYP4FfUaz+GUj42yguC8y5hYjZpbDLJxJMUfb1ogD1hzkXRqGvBMWq/SOPp8Bv9cROvvZ+lyNeu/nte4TUo5tCTpdDl8uC4Kg4Si/B6D8zZ+6EqXGBpnxiQ5yQF7sS52GuZk5OxdYHt/s3MSCPRSrkD2KuRTG5ZPBdpo0ULsT22kinvHq3b6cgfRnJesuljfl39b9hV15bWmlyTY3ff0MunXfKm5uIJaf3xNTib66bCgX7VzEmyrfnvc8srAaWMiUz0XrFsVom8vTz2AQf+OJqyYAAszmMoo7lPlg1BCx6Oygk/TOGmUiUxvixc/N5Y3LhlE/R78fDRTAzKkasNNP+2o17laQi7hw2Wb160AWKWtnFnAVlN2voGcNshh+Ez8uIxZLRBYkTtxD/S6tsCGg+OHPAPDVSY+ygOEUT/8M54xfHou/KmzqzR1xD3JAxbsKOlBMLpcvlN1tfz9IK6qPZRJP7lsDG8QlEYAJ0GVdheRSALgf0dypwJC0Ul3e2kFSqf7fW8bDQE/joDgaiePZQWL5aySeSlJj7IDTGU8PipipCOss1pNMDTuKhGCix/l/p3jeZ7wf2yJ02LW464UBVJvH9RqosMecoaPAH1zcPVnY4Y6vSEzQp5Tz5QSWkwYEhWH4uyAI5uCJkO4Kw3DbJ9mmQ0uAa80H6f+Wg+cAog1ugwhpKxGhrC/O9JWMKLZG6jXliPBnLG/piABWpd9bHhgDUUY/nYRr0isQwa8NIrRZAHmCtiFqkQHZ/lYjAqbF/RTi7HN1uBUqmnKsJyIQmktUF0RYNlBhsUlo/xh7nFGIH9T+OYDTfffVdll8UTkeEL8Rj3fZglvizYWqGgEV2VqvWXVaI6CgL85UV4oAsRpcmEfb+3ykzuW4x/B6fCyN2rwI2WvfidQRVdoPxBWX4MxyjVrfUGS+LEL2xVqcSMJcElsgY9oe2S/LEOBQrf1ox+Asesvx8dyMJ+KtQeSBYtwCaQpeA+wDcDBg7opmJTECBGMzbKl93UV/N08Es/bk4ax04FTpKTgpQpSswSyj4JTY6cg8MIIQS/YKHhNkTKlG923ALRmnHbd5l4OMkbHG/QknGGqnY7IBkT1MQjaLk9HbX6DtNaILS1FdjqfHNpfNE1JOW4I+SrnzA5zzxsfeipO21EMkRwvshnp7s3IgrXVz4BNdzLrQnBAgVyiM16wQi0nhgHyuY2qMlSyZGt6jlwTfa0mmhpX0jyVTZQmU5mXT8UyRmrvdtVW0Cyb8rwHyoERBz0UXLoIZcJ54S/Ha1TDyRon7ASgMNnN5PGz60Rl0u1eIEW67+in4OTzz9HUAPLrz20xOnxijbX6RK3iIO9jxWRG8v7rsUX7z25vp8Zz4os2bNdYpqxF2vKppnd3bqkgJEW5J8a5tQCwUP9bj4ZF+A0iATvnvsyNB/eEeUgY0E+SXIIuz3aMA6n+f5mQNZcii14pYDqbitM/wQvlV/CZTcr1/dc2zTB4wkSv4P0Dis7rs3sKdtb8CYFLKz7gn5T46bhQrXH9WwUDocpciuU409y3/Nuzq25aORRoTtB9x63uUGGjd308Z/5RG+6Lui1iS3k+S2gILsyVp6mQd4EbiSKYmlmuqnjbUkByTSItXfIZ2w7dRtVwtQanIRlaEr49DgWZRkaYGLdG/icjAGDFCMvIe/GuDHysHaXHc7HCny0kAgoIg6GxgR//+6WjnfJLFNOB5eKB0H0QYqsRzhgwCpuLJNAsQYc+sLcZUdQES69MV1zr/Sa83ULFCvzcfwWytYx/OdJaJCM7Zek1fXDjtigfXG0gwZrKDiJDeGREWjTzB4p1SEcCUhwiwVbiG3wisrO1ErrEElWbhqNO2WTxLA2JxaaPnmjA9Sn/PifQ1Wv+FuEtcP21HZ+3z1ojS8Fxk3zYacnNPtJw65q5mloI52q8miDfQnJirDhmjUnxPStD6Nuq1ZvnJRMbKSB/s+mhZhAvWbZD9PilyvjGsJSHzyGJbzP0uFRkLcz1roe01K0QtMnZm+TAKckvKawBnMbIdGLNgBs7CZ14bbfDErnU4AOyp18fhY9lZ6zWLphE8WC4sAykt3FOOuQAAIABJREFUcYCWj8f7lOCEEGYBbKntX4XMh9aIxamN1mtWLkt6Gqe/pyPgZhuibJiPvD9ztW198fw+KTomBdoec+0swJnw0hGFs80nS/RrSshCnCjkhJTTlqCPVCy29HSJFhP2avCIViu9/d+gtUxwi1tphcDFMXq8F1lYTVAvgzWpZ9NjgICFwup8tqdkxHIDmbY/m1JJRgoUkUsG2zl753sALJzwOc5f+jdvQyYwCTFBg1ghWkHOd/V4KbAWdv1J2MfakgsLV/G2BqFc+8vNcIkk6UStS1wHK5/uTZEilD3piYxlFlPVr2IpnyOfQvotE1+r30y6mS89/L+8UK6WngVw7sPzeWu6qEeqyjJkMTDrxCLo1H4HZbkpQo39eCCL1VV4QtUsZCEapcdpmuvHyi0IucBgOYybUk1TZTKJHWWFqT8nDS6FrJs0ZmhBLgyHc/Pnc3vhk/xP/te57OJpLGcgv+D22HjdxU9j9NMdi/ZyR+5DvDpGSAoeefI7sBve/d5Z2vXl0mcGQJ8BOsCvbpPDb3ZDAJNpc9sB5bDptTPo9qQAzprzE0nrWR9zTwRJkFqaLWAvm1JqaBvLVbSK/sxgnLgnaikiN+YOR0Oc9HeR18d8ZE4uj4wB4LuBWTotmtb8cZIP+f3UKCeIHe5TX1oc+5SPvXwQquoPTWf9cZQERDgdgcgplyBCqAXoWx6aNXisj7kaddWPMZMlIa/obhywmIBfgbOyNer5pYhA3gbZJypw1rgEXHjNRIT8fbgloiu+bhh42oIn2UzH41GaEIHOQENfnBWshbY7OXK8HaektlgPs/hswK0xxTjAWIrst2aZacCZtozJzuiQGxA3pQqtexlOmoDe11ygCvX5vqr3LcWtJsaCZxaxDUisSAUeM2NxXtHyuvazERq0QYCtgVLLE1Qe6XeQva8G2f9M9CjQZ0/Wv1HrSDqeuLQJB7eN+jdd274MtxQl6aeK5glAzd0uG0+KaoQaVlcDzcfQwG8pMt6WTwgcMG3ArXoF2laQLci2oVIEvBnbbhuchns2zrZm29MBRNGcEjk3DgdOqXquAbiDeNyTkWHsxGPOCpF3KEH7uBduyarQ9g3E8wTZPC1EwJKx7NkYG/V9HPI+5eDvfLmOR2dOYI4giwk60ud0OV0+com+qUaO0N79VtfoJ1V/KtJPW0R+HKgfTRaaSB2J1JGZUk4G28lge4wW+SzWU0cbOrGdlfQjlyJu3DmFJen9eDn982IBqIL958mHtQgus88TyKY1UT+zYMssif3peO9euf4vcAmzuYTZshnHQ9pP6mEy/Pa9a6jNbkEj8dSQzB08SNoj9XRiBy9xKYX05lqeY2n1IOZNH8u86WOJu7uaFwq/QlxCI3EJEg/01tgRZI0vImt8ETQEsohaP90IZeXZtLt7G/w4gG+EsgnmRj5vaR8mIi5x2/T5VunnFch6rEhih4aGNE1JgWkBHVIq6JBSIWner4CyebmUzcuFDhDXuZpSsumU/z63Fz7J/KbhlJVncy3PcT3PUHD+Mh7lJuYznNv4JX/IvZRzWM5izuOiKYt49etDqZ3UgrPnvMfZc96j4869rLy1t4CxXyOL9yC4OmzL1WFbTxz3bf0sBb4reZpqJ7SAyyHt9nr4C+zJSxTyirUwgvmksoc21BFPI28zkGyBRsxX09YsxjKLsSxkGEN4k96ZhfTO1NW0MpLZJBXRcpYhFqBKRIM8DOiTAkEKzu1erfPbOEaPFa17unyayyduCQL6BkFQfZTfA3zl/kRLDSKQlSKC0yWIIGQWAaOFboknITWrwQbk/f0CsoaYRcby71gS5nTk9TVrhgnx3RGhvRZZAzbijPgWF1OMCIVGPFMeqS8ZB1umabf4oChRwD5k7TbNfyoi4FkckeVzqYmcb6QJTTij23I8iL0KB2Q79ZmM5c3clMzVynLztEZcpFrg7lGNiKBqbHCliAAaZfpC22CA1QBnC/3fWPHMWlEVeV50vGzZtFKDgB2jgW6BCMcpyJ6GHpsloQqPk30tUo+xt9lcMXc4c7szy5gRQiQh6/5ObV9rbZ/VO+qQNm3A2f9y8dxJlYjs0g+Zv3l47JaBdaPXNiugWQsTtB2FyHjVaV8YCCzRv32Q8eqJWO6M5ML6pRIB8S/iFtMU3CqXoXVbrJax1/WJjIHFT4EzJRqgqdC+bY0Ak0x93tdxoDpA2xhl8xuJW5DWad9sw2PWWmubrsWttabYyNZxOKHb62lL0Olywko09iHKEGfRkq3luz26cu2JxARl4S/bSOQlVfBDgtBklzbJTtPUEM9ZKevJp5BUKhnPdN7TbGcVdCCXYhqJZ1161xhYqiGZJRdnMPgujXgfhwAhLT/7JUx8FNobA/At0OVmYm5aXXZWQD9Ie1Ke6d2vn8XZU95j/PemMH3dBG5Y9xx0gMEVq3g0TwgPHrz1mwxSGpxicomjiQ4pFcSPF9rsUcylU3sBSQBv/3ggPBFPsr3hRYjFxBalmcAr8VRt6yyb8isqtFs/Ae1e3ib5ldbodUsQq0+xnrAVymbl0m607CRVZZ1hEJTdE3FdnBBhpFsxmqZ1KcQPKWUE8yFfSCeGZ86PxQR1pIK3GcgV/B838RhXznuJ8RdPYfrQCQBkTyilPr4NSdud8jqv29qYcXDPskTS1tXTcaT+PhH4GZ4kVsej9k8tSJpxMDYn+DykrauHMxUMIdToAAsYTg+K+RWS9nEQf4sl0gWJy5q5exyJbdV/oiyQ6WuuhB0R0BgjnEC0WLnIgn4OwqhXv53msUAGhOBUcYOzciKSpZ4uJwEICsOw5bHPOjlKHA4G+iAuNmbF6IUIrtsQcFSJaL7TEWWFBbVvRAQ+y0diVNqrcAG4Nc7MtROxPFmMyrmIANYBEe5SI/WZ21wqbuU5qB9jsDLXs+5ah+U8SseF8vVaR4XWPUzvaeQFlTiBgm2lpbjLk9GAF+o1Jki30d/MdbAQBzw78dw8HfAkoVGrtwEOY6Nrr89kgjyIhcLcxBqQPTNV72MkFumIMN6g/VCEs4fN0nra0NydrQy36BjJgAGdDP0/A48hspw7lh+nnd4n6j5nfW8kBgdwi6IBv+XIel+k343UPu6j5y9D4sjq8BxL+5Dx6ILsE9l6vA3Ps7MTd5MrRIR/I1owEGIkBSV4stsEZGxNTu+g9eRqH+zGwf1OfPvpos94AZ6zaLM+R1d8jrbGmf+sjpZ4AlpjpbNcQ2ZNNCvnRu2PBuT9tOTFFfo8FkM0DlEqLEdyA1pb30Le0/m4pWiMfm8gu1L7eiNwNZLYzN6f4y6n2eH+oQRBMAzBoa2A/DAMhxzjktOFVjQXBo0CJVqiAeTtPemkWYZMAN2KmIeNMnsv1O9tQ78UATBvzRhB6fjsZjEen1f1jzG11Sgy6LZU3Kc2DYKzS9/zlIn3I1YGFcS/83N9BM1lw32IVsPy0gDM8Jigs+e8R+3VLUhmb8xvZOWk3ixNHxSLQ1k+YygPjLud65gKCI13ckSFUUQuj10+iYI/Sv6j4ZnzWZAz2u/3CrJgmcRyRwgTgubxU6Z9ekUOq+gsfXmH2sbviBeL0N16/mtybtVD6oPwACKr6+mdrn+fHdPPZMFD2o4kIBGKc3IpXi4ECZTBzOFXkZgliUbfTDmPInJpozvYiIvnsGDWaO5a9FMA+n9jrSxWV8vlW3pDl1GI4ILmaPoLnqOpHax8rTdnNQp/atIPDsI9kPTkQfZPkFNanQd7shNJ2ymgdDrjGc/0WLJUc5U0F70ddKITO8jQOVhJKn3ar+btFeehX3hfgizoo4FNke9A5uhy05GbhGLz2iixo8QgiZwqVqGQIEZ+cbp89HK6Bz9EMbBgwfHJOLAx7XkSsgYfxBMaWz4cs0wYZXUDLsh3wd3MDiCv8xIcRLTBXdlMsDZKbIv1MQBUg1tAGnD2sF40VzKb9t3aZKQK0QSVmxEB0miVy3HrTF88H1EvvcZin6r1eSu0ftP5WGJNcz1rgzPjWXxQ68h5Zr2JjgE0B1yv4S5KqTR3+2un7WgZaUspIhC3QMZuBM7E1j/Sf3X4/maECStxJjRwBjsif22JrcKB005EqDY3sX3ah8bkZvocs7oYRfitNCdAMusX+nwDkPkzCM+l0wYHEDXIXCvHiTSScStRXzxOzSyG4O5yNj8S8PEAAV+Wj8qeOR4Hx+bmaXO0M26BMbdEYxM0y5HlR8pExsbmuikXOmhdi/GxR+9lzzAOsf4Ys52B8y64J8sFWl8LnDLeyBRMgXAxMn5L9WNxV5YzqwyZK5Yc2cb+uMsJsAQFQfBbRLeyIwzDgiOcMxohJW6JJBN94Gjfn8h2fNh7hGH4BvBGEASXIVPvaPc8CyFJ6EpkfwvD8MKP+hz/mmU/zWMgLEoPmluCAHIEANnL3BF5mcyisQURQB/S48uANfG8pQLu8PGvKCHCXnZoPMZfGEkj8aQigvlDc/4f7445iz2DRCCtJBUStvqCGI/knDFa5qeRwHvNQ7Py/N70n7KWes1Dk/gD4DzIe0fVSn+EnZcc5EfhvTFhvn/RWmbljmV5kcTC0B0e5eZYPp1K0qghmbGq+lrKIBgKa25QiuyrgCRJPhp77kX6F2BaQLvXtlG1prNYheycJXotiCCvFiNAFuvhuF92gvb36MjxQ8Rm+Y6iM2XxVFDFayEkNMEb8cRdJML/kPaLKSSfxibZRTaRwxsM45Gi7wBQmpvN+LHT6X+XWGX+8PilXDnjpRgmbhMmwpz62OK+5dYOdHm0wi1eq+CsC9eTtFStPpmI1a4dMXY/ukHao/VseUB2+h4UUUIOV+4U5oKV6b25jmdYpQmV4miiMBKXlsF2SsmmXYFaxPZ2FoCToydkIRux0eOCbGLFiDscyPlbS3DQk4gnXABZDk4NAASn2eGOVIIgOBNRl+wC3jvW/nIaBH2I0oRQW38BEa6MSncAbqVojVsIvoCAAxPmFiPv7zu4W9QVem4Fnng6T+u/AREcV+h1vfTcbERQTkCExlrgs8h6YK5NFvdhiSVN+DOt+muIkGcC8Tq9poO2P1fr7odYAnJwAggDG5XIHmaJUA102TkGVMzCpUsoJXqO1WGECqv02Xcje2Jr7SfTYRqTnVl+jKa5AXdnszgiix8h8n2S1j0d1+q3o3li1JXazzaGpuCLLp2W+6ml1md05GU0LwagzCXQ8g6BiCHVWodZg9K1vu7I3DCroxH1lGs7xiNjatY+68cEvP8NVFqsD3g8kCUSbY/M22zc7dGSrUZBmbkSgrvR9Yjc0xjdjPjAAFgyMm8sN1Eq0vcDEOBg363AgfE+fExBxmIbMs9KcGY39Np2el+jXX8Bj52zvrW6GhDgsgKxrtUi82Y9DugNKOXgljFTfqD3NkY9i4MzwF/CCSoHj33KMcoUZBOYergfgyBoiYiYFyHTdlkQBLOQrviH78MwLDzk+k5AfRiGNZHvcsMwjIYxH7YdR7p3GIaFQRD0AX5ySB03hGFoovE1ePj2kcofkIiSp/nU29TM/acVAogMqmcggCjiHpeU4ZftQhYuE8y3AmXQ6beSqXRHeQaJbSUWCISMoI42LGZIjHmtkXgu4WVWI7mIdo1py3yGc3O15AnqP3utLPiWgbgRuBkHRfcjL6Mu1F0/vxaehkQFRcwGroY/ikzN5edBzh/hQa6hLk/UZhOZzDhmMDFXzEcjmM8D3MW1pcKadn32UzQRx2MrJgHw/QH3UHRLD/LjBCy8decIAQKWjPN16Qdu1Ea+Ek9VamcBiyaY70JAjblt3Y0sljarhyGZ0xfocQdksVFXwB4D/k5xwWccRE1GQNMderxNyRf6QMtWBxiUspQhLGbB1NGEOeKOl3v+GvqwmpW5AjIqSWUUc9n1gKDakbxG7SUteC9eJIr+966VTUbN5l0WVjR3fdsISc8fRDkNRCg4E+iGk1BMhF0PtCVeB3BE9SIqU9qyKV3MiwsZxnSuis2PQnozkLd5jZEArGzqR25cMcW/V+tWHiIM2RyciSzgr+J05Kads75fbX4lh1qComJuK04Vtzhhhzs+YoQgCBKAhYjI1Qp4MQzDew9z3r+M0gw4C3g5DMMngyA47B4YLadB0IcoJhSZsNYCEfQseP5cRFgaiqwnc3Hh6QAiHDbiweGb9XtjDbPg71pkbfwTzn61EQdPJsxWEkuPQCVuySnQNpm1aLe2yYRtswqYpjwVJyWowAVloyQ2i81GXMt/QJ+/pV5rJA3GDkakTRb8f0Db0EfrWoesp31xGmOjjLYEmyZM78SD4i0eSklqmoGYzvrcBiKsPgNsFm+D1h9lAgUBLhZLtTNyXirNyRCiuYHMNc7c7cABBriLWBuc8nmfXjMY6fMWiATaXeurRcbI6svH8zWV6HPuxGOqLBYsFSe4sNDQSprnZ0rF3e0q8PnQFWdOM6Y2ECCUjmwtXfT+RrKwU+swNzMD0u9oe7bhsUe1yN66GAcplfjcLEVkBwNgRrJhSlOznpoL6nbcBa0vYrEZioASc5c0K2qdPmedtr+7Xl+g9dk8iloddyLvZRUClgbpfefr/brrPS1X1wkpx3aH6xgEQZSJ/akwDJ9qVkUYLgyCIOcodXwOKArDcCNAEATTEKLeBUf4/lDehwuAbwRBcEkYhg1BEHwNMcJd8gHacaR7F4ZhuBpnIG9WVLtXFYbhseJD94dh+PgxzvkUlKiwF40HAnnb1hJTsydmNJ9zuQgIMu3BFqAMdkxVVrMCqN8QT3EfcXVLzK8jm1LGM5319GIik2O5aUwoXkk/bit6ioW5QpV8fvzfqP2RJt0EWXgV2AA88fgEbnxnSgwctP8+7L8cWplZ/EagCi5XeLwlvQNd7qrgzoRfxQTz3069hh10YvLDtwCwZ1IiydX1MbrmlfQjjiYuGzANgPsX3wd74S2jZR6GWCCsH76MLHS3qOA5PNJPUYrsLBzkJCAb3m8ifftrnI48FXEB1FRExdM/I3WY62FbGDPpj7GhmXP/5TA0HiphYv5kJldPZHtKBiuuz2eJWlmK5hWQf/GKGCveNxsf4Zn46+n/Ne3M78Ke3ET6L9TjbtpOo5+6GnmTZxA7n+WA0pXX/zds3tuVvIWbHbRmQMeH98KVcrgkux99Gt/l0XiJx7qj8UGa4uNZzjkAjGc6f2FkzJLR1BBPh7gKxtwgzzpnxeUwmpiLXz1pQgH7e9wlcgGSO+hNPU7LgD3v4m6fGTQLNDtFwM8JLo3AhWEY7g2CoDWwKAiCOWEYLrET/tWUZogu+wdBEIzHHWqPWE4qEBQEwVCgp+YMSgfahmG46ZNul5X9yHpVirxei/HcKEMRQa8QWc834yQA+/D4ljWIcFiBCM0zkDXTBH9zdTN2r0pEcMtABLQcRAAfiliJ/orMDtOqVyBCY47WsUXr2YdbW0yYBhGm1+m5n0WEukxE2LX4JAsSz9f6N+v9zY3OXAEtyeaFiEDZHndBMyY0o2I2EgVwhY4BlCgtN5F2oM/WQ5/D2NiixAYDtZ+66/XmxhSHvO2piDUPfV5jFrPwyeXa11H3taiVp4Dm6TTMbasdzRX41h8peB6ZCjwOC33Oc/EcTdmRZ7Z4HUsIa6vKufoM5kpZiFsbLV7GXKbNsmHxSsnIfLNcTZagdBueR8lY5zZqvQbIzVLYgMtLq3F3sq54DFUJbuk5iIPYBDxn024cIFt9ffR7AxYbkbm3EQe8ZvmyZLEr9B51eJyV9U9LHQPz8qlDgM8I/B18C7EObUTmkRE/vIqzxeXgQPI13CXOcnWt5gRyGRzbHW4f8tgvhWH40lHPPHLpguu3QabIoKN837yJYfiHIAi6AdOCIPgDsvFcdJz3Plb5KvC7D3DeS0EQ3IRMdRPRCMNw95EvORVLVOA7lBo4A+gCaTlyuGe7fGfCvvmtmoY9C5EUogGawxpjLF7J7I19PYL5TGYiLdlPLsVcwYsAzGcE5EoQP8C7487i7Hfec9N4P2TBVa3PjUunCJhRwZuB0OpRXL59HblW8UiXTRVy/AQxF7pRzGUpn2PPJHGPupHHuSvlp9IW4Ar+j1KyY5Te64f0Ym1h/9gC32ns++woz4AivUlWSI/uhRSnqrWiCLHY3A081AgPxcMiSLxjD/VDIwlW9+Lucv+FLOKm5x6MuLpZF5Zpf9vw3QJzFl4e2+B6fP/vxNHE9Uzle5N+wTcffpBfTb+TAY2FZF0vJ11/8VR6sZ5f8C0AmuLjuG33L+n3tMRwDZ6zirRZ9bJggiy4y6Fe8ULieQiwMG81jcfaf7P+/jzkPaxuiAZIfg90g5XZclGfxndJqj7I2HRxNayPb0Mm5cTHfOygJQdi8yE5pYZ5Gy9lTHdBXlkDiihbnEt9mfbjUO2XUgT8XIUDRQ0jEjCUQ3M6ova48/qpYwWCD+wOd1SlWRiGIT77zDs/PKSOfymlWRAEdwD3an0vcox946QBQUEQ3IvIsL2QRlv6l/OOdt0/s7TBhe0sRNBbiawli3FteUtEAOyOrMsHEIHPko4WIrNimf4161Ipzu5lrj7muf2OnlOhx+v1PpcjAppltTdKZAtstyD2nfo3HxEarV2tEYHQ2pqPkwrsRATaImRgSvAkkka6YNaAOkTY7YNo780dLg53k2up15Qi4CBfn7FS729Wi2Q8oaq5ElrOFnNvMma3A4hQXYRr8Q08HKQ5UEtGhHkDNRsQodtcE/sjUpO9wY3aRsu9E4fsj1HSBAM+cdrO7vpMK3HLkMVLWeyKWZjMjSsHtyyi15krY0uaW6YM5JQj7pgJ2k7LDWTWn804uCyI9KPFDpnbWgJi1SiL3N+o3sFpqHvQXHK1mJx0nCJ9oN4jCadDT8eT8prlajZOY20WoDxkPIx9zaxibRBw0qjjYFTdu/VccNp2szYmIO9hNk4y0RkZSwPUBsrGaBvGaX8t0jovRd41a+P6yHkleOyTsUOaxfeElKNbgqrCMPzP47xDcJjvwqN8/49fhuHPdEN6HOgRhuHew533Ie591HI4F40jlK/o3zsPqb/7Yc49hcvRtvYSYLezwZEhwrgJ6qZ9M23KRERQN/kxC+ISGilvUiaFOMkJA9CBCoawmFKyY8HwAPE0khEL+JHzYguBlTdxa4RRNaset2Qy5FwHmhaILT+FLrNh3RhRc+XN2SySQiYS1A98L/cnXMdU7uRBfcodZFMaSzJ6+TtzGNh3Ec9VXwNA/Zo06BxCgUzRHbPO5OKxs5j3Fc3Q+qOA8o6ZTuawBlmcfgD8uwKlJzW56TQ9p0j7zlS5I+QZEgerhaMsTdy+uujvhhHsehsDvWfxY5/h4ptm8b0bfkHv367kNUZyzvg3yaeQZ1Z8DYD7uY8VA/JZyDAACsnn9+2/HBujPhe+S9IvD7LpFRm/bj/fSu2iFiT9u+xmb94I591DDOCs29KVvBmb2a40m13mAl8DbtNnB7GS1UL/Ure8PJv9RTqpa9omtToaEcWT3MhAlktsGFC5O5XEjpUsqBaAmpxS432M9s8CZDMbiAtibwN7NuhBBs3JQMAB0KlXPiA73K4wDAce7QS1tryNzOZHwzBcesgp/2pKs1eAHwZBcA0fwEv9pAFBiHxhLvuEYVgeBEHy0S/555ZGZM0uRASglbiwPgQRtLbp8RhEW2zEAZV4Ci+bkUMQgfQtxAJtVgDTmFs8xDZcmw6+R3VHwFEvnMLZKJrfwF3e3sIF3kY91yxYFkhfhQjBpmkvRQRWy41jhAeW92clTtWdHjnPCAmScMpls1IZYYLFmVhw+UptjwHAJL2/xch0xYGM9W8CDprMsmMuTznalxZ8Dy741kW+M5c7Y2zbrPeLurVZ/E9ZpB6jbybSNzY2UTc5q2O3Pls7BIQZnffriBrDXBDLkPFKidyvu/bz7kj7O+CgyPrA5lcSzd3gNuJuiB30+o367GZlshw7XXCKbAMLBiKb9FnNXW4bDt5242AtW+uzv9EVzBLMdsHno1n4jOHNFMM29pZQNQogy3G2uFTEPS0LAUXzcde+amR8+yDvQxKyJdpcyMfZ8XLxOTUAWTnNlc9ii/IRxcVBXCl+AbJgnbDgk2NbgtoFQfAUx2cJKsOZ9MHTIR3p+38oythWgFhc7kXSPh7PvU9ICcOw27HP+jSUqMbbtvlDBcQIW9wC3GDUgLh6mY/nKkQLYvLkEmjalUJTgQj+/TNXcQkvU0g+xfQA4FJe4g2GxdjicigRNrhySZa6ZFA/Mm6uoJUl1+yDACDzfZ2BCNnz5DCrCo8TArosQSwYmtD12TEicF90u6kx4JfcxlVMY5z6dV3KS8xlVCwu5fq+T1HU1IMD+8XxN7FgD9ekPMdvitTkkQrzZo2l06saC3XPmdQvSIMJamAsiYe7od20bVSZC10Z8AvgG9qISuTNeFCPx8g59ZPVwtEFATzD9fduSIyRvU3LkaFUq0fWxUXMmzQW7g5j7G/ZlPJi9RXMGyCgZxIPczOPMl6RVD9W8RzX8F2EHe69+F5kv1LKdpVIUpdVEtfYKGwwwHm3Af9NTFDJu34zfB+6GL4ZC/wIWWDtbesN72afxdnrZHzX5XWlkXgWqw5bcgYVxyw/lzGDuYxiPNPl+vYwg3Ex2uwds84kcfge6venxcYz5rsclVoTgKCn/B/uQ6xAUdNQe5xt42QSd4+/HKTFCUmWGobhAaBfEASpwIwgCArCMIw6vPxLKc207Vcc7ZxoOZlmRVMYhmEQBCFAEARJx7rgRJQPE3SVgAhMFg8wEvEcsBwvFrSP/t+D5q5mJvi/jgfNj0C4X1MQ5YbRRF+ACI/mRGlsYQ00D8zPwgPSzd/DmLaSEM32AdyytBmROAxodEYEYNN4G9hqjzO6ler3DYgwma7tNKpms1pYbiNwgIHWU4KAomo8WWi+tqcr4tWwU9vTTvvJXKl24+57B2hu2TE2uUzcTc+EVMvnYnEk1h5TIpkrl5V9eF5baq4qAAAgAElEQVQb60eLSTI3OItzARmDnZHr47WOTH1WS0RqRAQNCAitxN3vjDbcntUorM2SYpYSA2ob8FisWtzdy8YwVevYoPfM0fsbecI2ZAyqEJBrbngG5Jq0jQU42YFZ3Wrx9CHbaA6U4vS8DcjcsHxENjfqcPcyiy8zMgj02iI93oLn2Vqh53fGLTNdcar39TgZyQWIjFGHs8mZSx56noEnczHsibyLNuaDkPfTLD052oau2icvIGDTrIWFOMnCek5AOXZM0ImwBC0Deqp2bgviXHIN8giH+75ZCYKgP0I88G+Ijvv3QRD8OAzDuw8990Pc+4QU9Wv/BnC+frUAeDIMw+P2WDyRQcD/nBLNEwSOcgbQXEO+HbZmxOJSWIO7HIFsVBfg1oqewCrofbG8BUNYzCwuJZOtMdDzOyZwM4/FjmcwDhJe4tlBXwQkyWljfAsKn5a4lbN/8p64sa3Ue/RHwjlU8G51P6KBNKH7OuDbkLdUVsa8KZsFNF0grnYARfTgDh7koikCjN6dcBZxNJFeLtzfr2eeT3ZcKbPaX6q904YRzKfiYtn5Zq64ChqIucvN3HumLAhrVPAc2Qir46ma1hm+pcBoZrwkODUtyUNAQSMFr4r1ac28z4qFxWbOZODHkaFIQDaSmX6cOHEP9XvFz6GmqS28BHw54O1CEfbz85/mwP6WLFA3vwO0YiKTY65Sk5nI13mCwaXiDsdsYBN07CbHe76eSNLrB2XxBlnsJyMWKpDF8bvS3zp4vmAOlj9bsjuQSTlb8qTv8uZsJq/95pjG8YG+tysoEstgE3EMYTHLFWk1EUd50xlkxgmF+o6CbHqkFLFmjTL1tUXm3+vIgmslnoj/d2vYcx6eitsiWE16MJKEU8cl7kAscvf4SxiGlUEQLECcOKMg6JRVmsHJBYJeCILgSSBVfQZvQDbaj60cLejqcOefdc45LF/+c84JhjMX2QsMGA1C1oVinIj0RRwwmfY5F3mPzXKSjFhzSpFYmkW4ML0PEb52A3MQUplVePyMafircatPC5yVzYRHo5w2IdPWunScotiCuw0oHMTdk/JxZrLBiMBnhArrkBnaiDuUor9vxPPwZGhbc3CAZDEmpmlPRYTwOm27AcBc3NIALiMaXblRfWcgUtwAZF00tzkLjk+I1GlxUWb16av3fx0vBoDeOeS7Z4BR4WtAK9oGw2O/9UPAXR0ymSwRLlqPSWHGqLYbcaPsi1Ojd8BdF82NzAAQyHiaBcQ+pfoc6XrvCu2Xbbj7nI1Ny0gdCTigasKtUVm4xcxiubKQOWHWEaPHthihWm1rNu6Ktlnbl4vMhbpIH2RE6k9FQLlZSnMiv3VF3qcDeO6j9Th5Qz5uGTRuoFJE6fA73DqWjshyA5D5+KXI8xsQ34YDv3yE2KQUAUlddFysvkE4yH0lXABcQBAcTmn1IcsJsAQFQfA8olvuGARBGeIf/ZsgCGYDE9XKfgvyiC2B34Zh+He99rDfH1LaAFeGYVis13wFdxL6IO34IPf4qOVxZBo8psfX6XfHYpU7avmwe8XJUaLscNGkkWsRbbkBofbNc90MRcQViw26GklEOVKPG4B+sLZcUnnnZG7iLn7Ks1xDD80CegcPcSOPM5C3AVjMEJ5N/yKXNYpVJqn6IJTD2WoZoh/s7watbAH+uTbZMh0vwn10QeJVngE66fG34d3cszj79fc4+3apc/n/DOTynXNi+W6mch0/4H6GZ0pChBqSmczEWN6gn6+4my8veNHvkQpxl1Uze3ckdOE1HBw+oWBoAWRdL2CvbHQPuDvwt6EA+Eo8a7JVmM8FfogTJ5QgC1g0Rig1hGJdS2ZCfcc0Ol2v1qiHz+SyDdOY2f0qocsuCnim8mt8c8iD9ENAzf133sfiB4cwuVTkzEuzX5LkslY+D/s7QWmKuMNtJ4M3Lh7GnWf+Sn63xdFI5RMQ4GMRdu2Qt+p5QJpFlycrWPf1rtSrU3qXnhXsym3LXEYB0IfVxNEYA8UVdGA7nZhXLr/flPkojXHxrKpW/8g1AWte+WysyXFfqKbpxyky96zvtiJOXKGywdVvB87GebXX0jwe7tQBP3DC2OHSgX0KgBKRt/ynh5x2yirN4CQCQWEYPhQEwUWITN8LuCcMw1c/5tseMejq8KfvAxJiuUxAhN4snL3NBME6xMLzIrIjr8HZ3CweaDwCahoQQFWLrD9RZi2LBzFXqiRcaF2NJ8o0ga4cjwFqo9eZC1EDogQyjfwA3HJjLHCleIyFJcosxUGWkT9k42xwJgjH4cQM6QgAqkMERrM6VWqfJQGPALdrfa31fjm4YsdcvKJsdCn6TPNxIGHxLDl4otLWuPXCrEdV+ORajwOgDO1rA3BWzDITLV21z32hdUAbZYPLojll9npk/zOA845eNwABF+aGGL1fDc0JH5bj42tkE9avRhJRiwNLGyMDLH/Wc5YjY2L9Ynl4jODiIDK3jF2vSP9/XZ/acg0V6r0z9Xz7bR8OYlpHjsGtjXF47Jq5+nXResyitVz7rBgBKtZHffGYu9Vah+UY6o4TgFyv31Xo7wNx4oP12ndDEb1hoT5HX23PaoQcqqu28wVEOW1zeyOu1HDb2Akqx2kJCsPw6iN8f0nk/9l4BAbH+v6Qc9485Hgfh1FYHaUdx7zHcZTPhmHYN3L81yAI3jni2R+8fMi94mQoUUtQPW7KyaF5VF1rWL4PBuoKuBaZg6rlZyaS/yZLvVAaAkhtpF1HiWtZUD2CypQ0amjLY9xED4p4m3OoITlGjDCKudTRhh3xoupYmd6Py++Zw57HxUUvrbSeVo3IRgjiHP8D4Pt6vBFZ/F7Q48v18SL01av/pw9xX28kr0jURuMbp/Fq+tCYS1Yp2UxmYgyoDW+cT2MQR1OcCJLtCrbRlOtCZf2cNJrWpXjY+EyEBEEX5eH3vcKCSaOJe6iaskKlh7NFyhb/RfpMFsQ/HD8PRC/+rUhfLwCuaoIyI2MACmDHncLMl/VgETNvUgA0LYCrQrg7YHLBRK5Ikb7u8eDfeZA7eSJ7AgATq6cwLv15fssN0tfr6ml1C2T/Wqwu3WZvZfCqVUJRjvbz+/CatmnkPQjouU5//znsSm9Lx2f2um9/b8hbtzlmPXp3wlmcXfQe17YTOvIfpP+/ZiQUFht0U6bwbhcigDouQZDWgaHV0veKSZvuSBGg+Aai4QIRTgqA1aY+Mxr4Od6of0iOGhV5Ty1Q9BHLGcD/qpKnBfBCGIZ/BviUKM1OHhAEoKDn4wY+0XLMoKsgCP4T+E+AM8+UTSQLUZJMxQWyDUhs4EZEcCrUj1lO2iNrSxEe0zEbEQgtfsISby7DqZLztZ7P4uxiq3HSHLP4mLCZiQh6NYjgaPE6IML+BbiQadYWC2w3rbxZQMzaY+21GJMc/c3Y4jojwqHlvTmAEwH01P6xwP/22ukmMprgbe52FgtkbmEWV9RS6zMGUmMkjbqqWR824kDAXMWisSYGYg1gWH8dmvDS3M2sX42m21z6rOxDwFQVMvZ2v2hyVDsP3OpiNOQVOJufrURGLmC5oay/K7U/zCWyM245tJxFNoZGdGGcwn1xAggjv9iHE2Qk4GQSPXFrWq7+7YGTT9Qi78BSPS8OZ0BsjVuB9uF9b2QKqQiwidM6a/S3P2kbc3CSCStGnGFWsQ7ahmHaF+8gKqx39Hm6aN9YIlZTApjrHtpfUcowo6mPxpyt12dsF6mnPTLOZt09oeWfExN0KpcDQRD0iGy43TkxIVsfKEA3ul+4GeOTLpYnyGKCLH9KiR73hDNaewxQB+TFMpKtCahZWa0TlUBZPMkXCzqIj5ML8ykkgx0sZgg1JDORyUzlegDufeenrOzbm24LVfCO38qexxNJWyqa+iWD+jF45CoPU7oPWVCNUKAccaAZp8dLcf56gLVwjpqyNuVqwP/CreSeX8xFpeIO94fsS2nJ/pgL0W3xj1D1cGeWTxJJPjNuK2un9Y+xrJU1phGXV03TTPXteBEZdZWaFkwfTdzd1TTdnRLbkBIn7qG+IM21i6k4wAG4CwEO5sX0OnLu7/V4IPCLeN8ghyLAQgkTyh7OhasgLrWGpstSYFrAV597lCbieIDvAtIPd/NjSf4KkCKgw/qaN4FuMCNF3ACv7PcS/BHXVHUDamGkgZ7BYjlqZSqN2dCxfK9TaQO8D3vyEknbJPfo0VjEptwzYkx8l/ISxfQgUeOY3mYgheQzc+N4AL7UfSoLGBFzh2vZfj/FBbnUr1MfzeEhPBSIv/PvEVE5F3kjh2kb3khEELwFZM1BXtsoE3M0Lu5fO3HqiUiWGobhu4hIcLjfPg1Ks08eBAVBUMNRAp3CMEw50m8n4vaHu+Uh938KeAqgZRCEbQNZ0aYicYSW2+cgIoSvQEBMH0Rwfg0RFv+MCE0Wq7IKDyy3/CZF+DttQq5ZgmoQQX8U4o9Rg2xh2YhAZgH5FgPTC9fAN9EcbJlgb5aDIlyoS8aZ3drgblUWCF+Cu8xZ7JDFdlTqNVEtfhPNXbFMAbYIiVzbjQiqRv28HU+Wma/t7Rx5LkvWaSx3RikOsn/YspaAEx1YcFk0CWgFruVPp7kDLDhDm8V1GTtdBbJi7DgCaaEJ6UORMTSiiOhv+/B4okoEcOzWe6QifW1jZgDMYsGMxjkfD/Q364TFUh1AxmoLojjLx61MBgJq8ZxDqcjcMCDTErckmlXT5sN6nEK8JQKwMiLtNXBo7od2jZFBGLlADQJ4KvCcSLU0J9ooxeeW0ccn4PPsz4hyIBmnrM/Ek50u0/PewmOFSnQceum5i5B5Yy6DBvIsVslir5OQVfiAPoO51r0OfC0YbAnej7/8c2KCTuVyJzA/CIKNyPreFfEkPt7ygQJ0o/tFEGQek/Xu4ysW+xD9G4X8KbjjNrC1GnL1uBh5sS7T39YgQMisG8uh9/dXkhFRGy0oHE1N/jI6KjtcJakxbX8b6vht32u4vvo5Np0vAGUuo7hx4ZSYO9vgdavEQ89Azww8gzjAPQjrm9E2Z+vj3COHu5a1Ja9oM1tyO5DauIf4xoO8e/5ZHKAltZ2knSXkMJtL+HPjvwHQdu4Bhk96JRasX7y7B1nXF1F2pyCa6x58mmdmfc1BzGR5dnNdS3xgD/X/leY01yOhflWaxAE9EenqmYjbB8CUEBKaoEF3oocCWYCMz2EwIqffrsclSOzRa2oZSoWLz5/FvIVj5ZrL4DdTb+ac69/k+/w3AF/c+DLXdZ8c6/9BLKUDFewZpFa3TfXsmZQYe25mI6DTiA/aAf1g0yQFk7dvpVVV5PdLcPryJ4hRfZaSTVo3cUVM2nEQsokJ6fE0spghXBKRZa9jKv26iwvfAoazozyDmrZOmV2/JK05gOyILOyWh2kwsnCbXSDIgLAalP1PgP6hqWjqOVUsQB+QHe50OUb5xEFQGIbJAEEQ3IfIf88gG861NFe4fxzlQwVdJSJEBrtxYoB5iAbaYm7GAs/iwdc9EWHNKJYvwK0KObjb9RqtswG3HBmQaImsSwMR+Shezy9BBDIjChiJCG1Gw52MC3NNCMDYhlNNmxtSTwS8dUCEyYO4q1mdtmsnTlzwOs5vmKT3tkB+E2LP1XaV6nV52vbdeo8xes98xAXQrAEW+2FCu7l+gVNy1+La+lTcVclY2CwXj+2f5na1RccpX/t3g9YRBUAZNI8/2qL3XRPp6zqgbbA9BgaN4S5aFnHkUodbiBJwZj+0faaQq8JdIk04N5CYhIMC8Pgwc8sz+cEsY7vxGJ4GROCvQSa/JY01SvYq3JrUUv+3pbYX0vcGPLvgFh6LGUrCY2gaEJlhqdZTgvTj6/osCXhM15dx6nYDOkkImBmGEyMkIUAmP/Ic1ic1iNT7IuIOtxlRy5uFsb0+8wG9ryVQrULeN2P/a43nYCpFQNwA7cf5erxCn+15mocrHFc5tiXodDlKCcPwL0EQ9ESGLgDWhWHYeIzLPkj52AN0T2zZH/lr27zFR6jzcaK6EdW/C2ec7eB7OPIi2+LSgAjytyimKwpYu7EfNd3FrSyVPbyQP5Zf8K1YjMJwFlDKmYxA4m96UExNSiLdikTTf+PGKc0XzgMIwLEX6S/IhmfRCaVI71s49SLkxdOFqOO6vfA8dPl8BevO7wrxsJo+XLv0/2LC/3TGM5z5XBn/BwDajd7GyqZ+xMfJ7tWp/Q7KyrM590Fp8zMbJ7rLAUi4eC4wWvqhfmaaLEr79TcQprcCIFf76olA2OOuUva4tAAWxXt81UAERLyiU/QX8cR9r5qmNQpIFwDx8cR9Qez5TXenMG/wWBL77aHD+WKBK0vNZhBLma5I66vdH+O56mv4ScpdACxlEKvpw5VFYjj+w1WXMoTF3PCl5/zZViELMAgYLYBuZ8tY8TQSyp6nvychAGggMVC6rm9Xzp73Xux4T3YinRq3ExcvfbuLDuRQEgNm28ngbQbGLIUTmUyPzGKW8jkZTyrYUZARc7msWt5Z3BLXIG9elralaB8E6usSluiXFuu2HVnxbd6fOgAIzBJ0/Oxwn/byiYOgSBkVhmHUveDxIAiWAj/7GO/5oYKu6hFBaj4e9J6PCHvvIABnOZLVbz6ybh/AaXdrEMFqA24VMKtNjV7bhACMJjxQfD1CpbwC1+U1IIJYOg5gVuIkAz1x0FGCeA7swxOntiAW30pX/d7cmMxKkaDflyJ7k/mCfBa3VJllJx1349qM7APbaJ6nKBW3GIEnTi3UdiTjyVuT8Fin9EhfbsfjksyjPRcRwGsRqSRT+9PyE5lQ3RIR5gvxJKeHK9laVxXNDeYHcBfDLGRc6vB93OiYjxSAEL1nITK+vXAmsgP6u7lpJeD5iOzvIAQ8x+unUO+ZhDPMtdbrzeoXj/SrjY9ZFlO1T7YjgKNazzPCDnCXuS36218RUGVEAl1oHgdk70Utbj1MwN3rjH7brFvRuKsGnHK8tbY1HtFXR938ViDKiM046ErS3420o0Dr2aJtTdLrjKnO3EjPxSN6BuExc+VaX3fkfY3T8zYg8y1Jn9veiQjZ8PGVkCNPTCmn3eEOU4IguDAMw78GQXD5IT/1CIKAMAz/eJy3+NgDdE98OTT+wVyBlKKm3mInBsDWSExQ9IUEEdiHhyR2lJW7vl8a7bK2U7ZCEELugFd4jmvIYHvMOjSZiYxjBmORZJm/4z8YxFIKcyX248bVU9iTnkjyYBFQW92PLAqz9J6rEIuDwUxjilMDfO3VLUhaddDpLpYgMSuToaOCg2vn/R/MhrpBokK6ice44cnn6PP1vwHQP24VC2aNjsnIWeOLiEto5K2bxIWrx2N/ZzgLeGa3+IX1yC9mbdn/Z+/Mw7Oqrv3/OQx5w5AQEiAxIRpCkBBFBmPRiAxVsWClap1tLfXSn2Nbi/TWVluvWnvtdWq92tZe6qXUWrUqFSuIQ0GqEZQhCiYoSQgGMAkEQgKEvAzn98da610niEOFe+FS9vPkyXumffbZZ5+913cN3zUMmpy0gGLtJ9OknQyshT75MjM0jDyaLTdnOQPcPchibUxr49HEYyrMboP4b1ITVrhTHpnHGy+O5dh04Z5cMbUYXghoPbkna/8krmL/cfd3eJkzEvTkVTOO48krJibopvtQzy+bp7OxoDsgVpcLX3wu0Xebx3VhOYMZNfPN9n1vrofTETBq4+F8hEK7GlmsgcJqkWi29RHVYM/KVv5Y8FWuXCRA650Rx9KfSpZpYqiBvMc8xpDG5kSbyimiSEPsFjWPgBUx4idrv2xEGOI24qFtVYgbp2I1Gd9R9zdz+7QSJQqJbv/fLCHBAWWH+2cthxII2h0EweWILiVEPE4PWPqNfZUwDHf9o0FXT+KuOpXayEWIMNtV9/9Oz7XEowNwTXgHZL4cjQhRRYjn6lhEYFyJzIlZiJA3AhHKFiECXiGeNygbWSNOQgTMGkRjXocI4oP1muGI0GY0vpaE09yezDrQGycI2E37hJlv43mJLJmpxbaAu31l40J4Dh4bAiJkW9yRuX2Ze2C6Xm8EB5Y7xwaAxYCYNaMQp54GBx7mcmh1gVsIduLg0hw5rA/RNtTTPjZoD7LOvYdTIJsb227tB4v3MkY9KxarFK0rytGUhgCKPZFtI4Cw/jDCiz0IIHgZkUmsX3Nob0UykJasf0tx5sJU7btFOMW63acHAsKz9Bxrq5F9dNZnzsPzXoFHFRi4TcMBW2ekv9dE/pvbngERG2/GJmdjawMCQs0N0ZgNs5C12WJ80LqXIuP8LRy8r8ITAxsbnoE1A3fd9P4DEcWyEUZ00Dotd5bFTRmLIng4QpRYa79LiJtV912OuMPtu4xGMPo5+zgWIlEPn7t8nrXi0CrRpb4z8uUqKOqSKbJi1F5WhWgIrCTHEwksk4rbiCXF6XG8BK5UUsBg3iEWGbi5fEA9fRKWoe9v+E8W9h4qLnAAg4Xet5O9lesQRrh7dfs3COW1urvRT66xQMFu1++Bn8Am3U5/HlkgZkOvLyqTwUNw3bP30lFXkVxqKbhqRSJP0CJGMH7iM7yyScwyjc0ZxGtSE+xvVS8eR9X04+jzmFCgVVw2jB7T69iyUKw6Jz7zutBUVwLnuiWHKskplCjn4clPj0cmIHXQTMpqFtBjuYf+HpPJS+X4tKLN9BhTx4r7Tkpcn3RJM/HpqQmQ8q9LH4C0kEfzLwRgxhVX8K34b5mcNA2QeKCW1C6JZKkPbbiRZeMGkaezd8+3Wxn13296CNu9yIRm28nIZGfv5kHEBWY0bPyOAKteM7eybUIHodoGVo87issXPM3zo4SaL0nd4WyMzGMsRZQnQM8TXMJQyhIECa0rekJBKIlnwReXqHdbf0Tg+jCyjwp8BTcrUBQItfB/HfwcKQe2HEog6DIkB8MvkUXrdf4XNG3/SNBVJySOZTkiPJvLlrmsmZA3BPkMTUv8NgJy6hFAVIvTGhtbVhoutFnswvHIclWPqB5zcHYzc+MBZ8JP1TpMq23JRYfggqBptjvigAVcAM/HrQvLEbBRjbtJ5ePJXM0icyYeU7EJBy8WV4I+V6q236wExkyWpnWacGnWhHpcWI9p/ev1z/LVbEeA3xo8Seh2RI406wq41aFQz18VqcviVQycGHV2NEFqi/ZpXeRe4AleDcjYOwF3Y9wS2WfWLsuFY4QEHfTaDrhLXwsydgYgAKwNiUMz8BXHcyHtxhn96nCLn1kgd+O5leJ4PJeBWHsX7yGWE0t8OgJn6TPgkY+AdavP4rXMipeHu5BFY6LM9c229yDjzMBpsrbTAI8BKiOOqNPnNtIJizPbgo85S1ps6STW6P4eOMGGudWt0r41dzyjFDMikqX6HG3It/IUrpAYoW24GBk7Zhk8IOWTLUFHyj5KGIa36s/bwzBcHT2m1psDcY//0QDd/9nSBZ/hMiP7gNZmOCqVhGdNPSJgpkUub4rRsEO9AZsCehxfx5ZpAgZKrn2GJnoyjGWJGIVillBDHmWq+W/sXcv93MBto+Q11ZJLSVspmydpnMrKVmmeUWQPQgRts5jci2tqALYIAEp/RbdvB+6Ede9kkHOfrCSrnz2KyUxLALG/cxrf5oEEbXMtuVTG+xPfoQ/+Qky0IkdpnXXAJc7MxvGI61yNbC4xs9QdwHlax1HIgmjC+vHAVuhxiwDGLTdlieucHo/PV9rn+/X6S4GrSACcOcVnc1H248y9XtqckrSVtdX96TPlA0ooZfamCcR3xBiXPTcBcrqynbFJ8xOAI40m7mEqd06/A4DnJ53Odrrysvrkfb/6P8XyI5iJTYMg/UncvD0TyTdg8Vhl+nsL9JqjgDMZuq3cw8pxxwCQSQOrRx3FmDZxLXw/NpBcahOgp5ZcWuieGB9FlFNOEY3N6t+YFUJdQJ9rlRr8V0fLpL0Wz1+0A4kTSvB9dEGkjDG6YykfBUGHT5GYoCPucPtbDhkQFIZhDUI5esiWFIS6Lh8ReMxt2oLUm5Fv9CRc15aNzGt1el4ZIuB2RT7XakQAtJw+FojejAjAX0EsRUW4W9pcPH4nA7fiGPWwCaO9EQFuKR5DYnERGbglaj0uaBoQakTWwUY8TmanttesOdv1HIudMGF4O26pqtZjq3CCgvfw/DXrkLVtPU4hvQNPEWFWmkzdb1TdJlw3an8Yc1c9bi3fgICKQjxHUFc8ZiRb22bxId1wqmjzCInh65kleDXGPrTejjiDmlkc6nHrVA/trzV47NMWEoQ/rMNjXXZH9pnbmWWuKNI2GLV5Bg6AzH0wmhfJ4ofS8Bgxc/PqjI8BI8/I1zbu0ftuoX18klkIm3Q7B1EYGwOi5YWyc9F2WfxWV22/uV521D46Bhnbhci4H46MF2ODy8JZCM1lbpXeJ1vPW6T1DUO+uwIc0FmfGXi3pMQTkO+kUutZpe+kBQfkaYg1bynuqqiJ1TkHMT1swmnX97t8uiXoSPnk8jTuKWvlKeDEg9CWg1g64dKhzWY2M3ZBZns9HqTKxGfm3VORj9S25+jvHHED63/xuwxmOcuvlRmshn6MZR5d2E4DmcxjLFO5m41kMFvpw77NA9zHjeTUypcVy43zfmwgw2ZKtP2u06HTZBxi9kMmK2MoG4R8lLYgrIb09bAtVez93bL38MyI8Zy/cg7rpogg3W/BhywblcbJiyT4/v4RN/BE5ST+UCBxKAs5mRlJV3B/L2EhiF8Qo3VtT75eJMRVf1jxLXG/UtviiaNeZ0l1SaKH+496l6prj+Pctx7nL7PUfNSKaETujryKAtjyaFbiN+cClWr5mR4TU7Jiif7D36Vq6nFwmh5/IcaTnb4h7QBSpshq1DDjaGZ/OY0J6bNJoYUk4ty66TYALk5/gjSaEjFCX2cGQynjmUnjATj/K3N4ZhacESqqyQamwSZJ4US6gZ3TI///DJunKGBd0CqT/WycwnMLkrx2gzr6N0LPtlbeGSKJazeSQRM9KVMiMtvO0Jk2Tj8afBYAACAASURBVFI7prNB+WVUvDCMhq0KQM0FohgH6+bysFxVkl1SFe8YGVkOsgqa5SeFwykuaA8d9psd7kg5hEBQEAT/zb7Zdq48CM3ZZzHFQzIey5GLu4XtQISmt/AEjFmIcGVUwQNAmfKdBrgzAp5WIT4dFmuRpL+Px92TarROY/SyxJTzEMGuPHJuBm59tzgQE8JNo28AKUolnYTn/DFwtQYBCibAbsKTcZ6Ex7Ck6HOZhcOIDlJpTw2dggifeXqvznhMywbcsrFSn8uYzXYgwGYbHgtyBmi6O09QC+4SZvFBRpmdi1jm5ukzWWxMNe5CF41V2RDZZ+DHaJKX4bl0QOZoI58wdz2jH7c2GZMfeq0RVZgVZxMe4xSlYG5Gxo9Zzjbp72ac2W85Hgtl7ydb22rPYoDLnsn6pQl/31FLz57IMQOpHXDAtkrrz+ajlO0ms0QthOaGVoUAkdkIwNuNM/CZG5qBXrM6dkDGPwjosPi6cXrOMtqTXqzDLWlmLS3S57PYpxV6z6HabiNyKNFzV2g/NyHfSzEyptfq9aYAOCDlSEzQ5ypBEBQCxyH9E40LSsWx/D9RsdxA8FFiBANHS+Vf1hhxKTLLT5WeYq4M45EJTo9XlR5HVdpx9C2SWS+NJp7iAi7gKWbFz2Fi0nPEiHMBTyda00pX5nIWk/uIuaGWXMnXo2byTtcjrm9GknshMjlYnqBBiMbBbHr3An+Cbn38Y+lHDZRBzquqwhiKgCx9+xN5jgkFTyesEcsYSgN92DJfZpT+497l2KJ5zIoL6unytc20bu2ayF1TTyacG9DlNYljqTr/OJgKf/nVJb74VyATt2KY/te+SxJxKp5QFuIxIZwcwE9Vkn+wDa6PJdjjqs4/TvZN1+NrgalhIsZo7c8KIBnGT3mGOb86n9mXTCD+eCpkwNcvFvBWSQG5fMBfERa8BjIpXLSGqhESw3Xzsz/mLOYyrFZigDaNhPQ/QLqCnncuOZYTbn1fJkFI0GD3HBmxqDQjWitjALoXNhd0EYAEifwQ89Qq8z4DGcxy+qirWi25DKUsYQkqpYSG6lxOyZ8PQCb1VDQNc3eMM5AJuA5JkDoVcTHcCPRTldtqEABkrBN/RMa8RbgePgAIjrDDHahyyIAghETNSjLu+n/IlDY80NuEU2PaAhGqymjP/GUCvyWO3I2TEZhl31zPShDhbDDOqpaOxxAlIwLaQ4hb3g6tp0nPa8Jz8LQgc9gwPBeMkTgY+5yRFZiG3UgbjFXMguktj042Tl/dFQEvuXiunw2R47vxZNh5+ru31mWU1BPxYPkU3CqVgwivRgi0Bxf8jeLZ5kYT3i3+xsCGCeOWWyhF22RWN1NydkYEZHPbMznAAFQUhHTQ+5h78k5krjfyh03IO7Xg/r449bU5otiANgIDY7Izy4iNHQNFNkYy9ZmHR56xOdKn5vpouYEM/HTEk8kaMcAxyHgzF0YbvztwdzHLDWUWsvXIuDFwbIA0D7c6GfDNxRntDHCbG2gS8g464LFsGXqN5ZZKxi2NURe4nbhbm1ka65DQhVeR76aHXp+FKxzqcZBlebw6IEoAo89+D/n29iCubtv1bxEyEdn7yMLZ/QZqfWZpOyDl09nhjsQE7bsMRPhj0mgfF9QCfOugtOigl2gguOUJMgBUQWJm/lAziSWnSvB5Gu1ctviQRMA/wKArl1ExaxjxIhHAypuLyEutoZwihiWVMSt+DsuShvI9fkEZQ+lPJY1kUEAVtbFc/sJ5fLvtAapiBeSMbJRmDkMmuz/pPS9FPnCzDGUDzyOLH/p7BAm2uD+/dQ4T2p4Xq4USFSwY8QVGbXiT3/SexNWLpnN55dNcztMsLBjK7fyYaUxmOSfAWhh/5TPEiPOXFy+hx5g678LfxIhXCiBZWyyMba0rNE7lp/LX/7F3BbyM1O4thKS/SNxO1bXHybnmKvCukiokQ9ItzaSlN9GQfLQseAVa5/SYUG4DgxYso2J9EU2bdGUaCbxGwvUt/niqeH8thjaSiBEnlw8op4jRLOAcnmMqd3PxiOkUs4TLeIyv8KzERa2WNqW/psNhpNzihAUKgAyATkOsgwaKb9MxMRT4AJkMe6iFaDHyDv4EjJYkuQ1k8t2Vv+Xmwh9TSglpNJFBI/cwlZrmPABGpC7i2/n38J/rvwNA/+xKGAl9R2nOpqUF0jfFiIBwD/LcMWBxDTKWF2kntiJgyBIEr8NVmocHKQIcYYc7UOWQAUFhGD4d3dbssS9/zOkHpXRAhCpjWsvWv5nI/LECZ+r6ux6zmIRUPN4hjny7phX/GyJcmQYb/V+odR2DfMYZiJB4BiIAZ+h5FtdhgCaOCGrDESFzDyIIHoNrv83lpwiZw8wacBKemNNc2Cz4fxEyB1nCSCNXAGciy8cBglmpTNhuQoTgLThzXZrWn4fPsRv0vll4HEc0BsdAlyX8NG0+uAuVJRZt0XtbrE1c+80AYUuk3iF6P6vLrCdGpJCMW+264e5Pr+FgogQRyKMuc5bSwuo0t7hi3PMpygBi1pYmPPi/HrfIjdD790dA93CcPc2sgYWRus0qk4WTJVjMjVk4UnBrmYGMWhx09sYtdkatbe91O86+Z2M+mvvHyAnMXW838g7iOGPgy9o+o0A3i2URAqBz9Fg3fea0SN8Y412dPnc5Yul7EXl3m3DQl6HtqNbnM9KQOjwuSAmEEyA+R+sZoM9kQHMDAootZ1DUwrdf5X+UDubwLGEYPgs8GwTBKWEYvnGw23PoFRP6WpEvogCR2AcBqfKze+T03+ChQ6fo5WpRqVhfxKCJyxJ5Zs5JncUwypjFRAqoJDeplmUMpYr+XKDOvE9wMRk0kkkDV/Ews2Nnc+Gtz3numZMRrZiW5y6Fc37i2+RL+xYMEQrlUa+8KfFC18nhC296DrJh1yTopNaJUce+Scn7f2Ms87h5xI/pQz0pbKWBPozi7/yw9H7GlzzD2r4FzHnxfJKKm2E6bKlTW/N8+etSJpaf1oU9ZfG1xKaj5V/VmceJJgVk8UiG+INKcT1S+/UbGqz/zUzp+mRhgWtITqXPYx/QkK5uX/cg2rNestlCCvw0RrxYhd0xIfQNWFF+UuJ9DSpaRsXGYYkYoBhxdtOJZzW6oIFMbuNWcttkhX0h9iV6zdyaiPFZUPgFRpW96cQHjcAU7/o//gEufhA6mX11i54zHXYphXmnBtg2ogOto0Sd2KvbVnb1gcKVayhkDbuUwejr6rOxhGIyqSc3VdqUSb3EKDXJc1bVHAc7YO0TylG+TvsyB1lgL0EW4i5Alzw5p9WyFlbgAU01+v/wcoUDcYc7Ygn6aAmC4GiEvmMj8H4Yhnd90vmHDAjaRxkAHP2pZ/0vFvNU6YbMA+vxoPH3EKFuJ/LZmZG+ByIwvo0IecX62wRCs57EtY5G3WeJTMtxYTUdEdy24W46I/DkFXO1TSk4k1tvPR7DY3EsxiIHcSM7Cxf89mhbLF/LbkRA3BO5jyWxNFIAc+lbr+emah8UI0DK0vKtQ5RH1dqHq/RaAyrDcYCUhgi75vpngm6N/l6Juwy24Axq7yFxWwYMk7UfLMeS9au5/A3X617V88wdrgdOY25cM1GrUFRZH2WBs7jeqGXAwNIISCTV7KvP0Ya8G3MD24a7k7XQXrBOwS1v9YjquxAHggYezIK3B3dly8MtLeh9t+HgcI/W0w13gRuAA+quCHjK1XPMSleNAH8bV+bSGMeBsdGnd9B9lpeqWJ85H3mvXfH3a8DRLGTrcOp0s1oOxUF4DvLOkhAg+letw8Bduv6u1v42N7sdwLPIONiGj4H3tH+N1CKGuNoZiUIcUWiY7GPvfb/LkTxBn6sEQfCvYRj+B3BZEAQfyTwehuF3DkKzDpGyi/Yp99KRGTlC7N5KIi6FNETgNHP5X5BFoli3K2N0zN6ViEdYzgk00ZM4SQlgdDmPMY+x5Kpqayr3kNv8IZWpolq68L7n4FTYfJvGmTzcSutQ6PKg3OKcH+BJOUGOvQ6jblUa59MRWVcpml//OXQMh3Ly22WsPk+YDeadN5ZiFrNYG15CKWOZn4hTGlcyi+v4FbXjZGXbTScaH8tIECFc9MjvaaInLw5QdPY9JFfSg2rNeRWxRFVqH4FMwJPanOigErFYnKaI8iygJw44LeAzqtG5E3H3AtZeWwC9oMsFCsQqe8pktBCOv1JWk1H8nbGj5rFM423OYi4/4k6u0Yyt9zGFODGhFAfiI3Yz9bw7uGf6j+X6TsoMp16Eu6ZBp2dgl4KeMSiFuVFmZyO21UnQyUgKZkO3oXtonSSbzxecThHl9Nsi1G0zU8/hHJ5L0HjPYiIx2uiqVEJtJFFROoxxJcKRXsZQGh452v22CxCAaG4YIItuBhEvzwHQGuVn7UJ7YoTDBwAdqBIEQS4iBtry/dswDH/5Med2RHR+68Iw/LLu+xJCZtYRmPZpgONT2vIIYs1vCMPw+Mj+f/QexwLPh2H4cBAEMz7l3EMHBAVB0EL7mKA64AcHqTn7LCEyV1jAveUysXigHYhwmY8Ieqad34NbNZ7E41EsaecIXDNtwdsZ+mesbZsQwS8LEcRaECHN4m/m0T6v23o8hqcWdx/KRuaOHK33PDw5plk7eiPzrNEJD9H2rdd2nIbMResRIdz6wogZLKmqudtFLRGrtA0mUG9ChNYW7aeuiMDbDbFKmRtUZ2SO3oQL6eYC2KJtelX73qi6uyLCrAEKyx/UhAivf0WAjgGNaHD7YNzd2SxnxtQ3kvbJUFfgsT/2rOm4Qt8E6XU4OC7E3SPb4CP6nJU4kOqLKL2OR5SyixF3yLnaTqPKNhrqFH3GJr1PivbdOt23U6+rRoR/A3wWX2SWHssNZAliM3B3ygH4GGzEgZG5FVoC3UzcjdGY83bqeaV6/zrczc/yF1kx2cBc3OYgY7ZJ6yjS48ZsZ+Qaw5GxMAP/vgZofy/Tumw9zdRravB3O1rvPQIZq0ZykYXnrTKwugn5pqP+vJ+7hHyaJehITNC+i9kUDhhb+f/9svfyHk0aadm/gKPyPGkciKxojCYg1o/T8J49rY0GMmlYL4J9UXY5cZLoTyUliYhXAR3R+Jv61MxEHqF1UzLIebyRntO1TX2gy81IUk5g3QeQ0wO2LVfig4v2yEeshGz0A06HlZcIqDq1eg2rqWfjkO4J7XgKLTyw6F/ZOEIQxx+5jGlMJludkltIYTHFVDXLyvnvqTdxw9KH6X+3MJ9XUcCSn51K/1W6XV0EKwKZiEGAz11Ivh0LVMwC6mIeT/MhkmfH8gTdCVyNTHoAU9tomHE03KLb7yKJU9UiQhqeGBRIymumz/AGGjb1YcX6E6Apxoo0+X9R0e+13f0ZVFrDj0rElDaF+yihlBkjpF9u5mft3hOzEb25asg6Nch76KS+2TkDEKubuSqOg43vdKfXA1sTIJQb4Z3cYylqfh+As1e/wq5+sDpXAOkZvMxyBlOpUkqB5gzKTfh/CCg1iuymTWli9XpLAecLSL+vxcdpDNVQqtaodR0ym+u4ZhMChA4/Vzgru/dfhN8F3BiG4dIgCFKAJUEQvBSG4b48vL+LzLOpkABFDyF8iGuBt4IgmLX3tUEQ9AFawzBsiewrCMMwSngO8qU8iId4f+I9giAYDPz7XnVciSzxNwdBcDHwh0/rgEMGBIVhmPLpZx3c0g2Pl7HcKtvxBJ1GIf0SIrSdiQiVNTgT1il6/hAcIJjLXBPiLpWBuO+YG5rFxFgS06gL2gDkU/8yAgIsSaQFvy+mPXPaKsSNKqbXrdG2m1BprkEvI+DEGL124uQKNbglwEgAzIJiOVbMSmQEBrtxkoLe+pwW17MNWYPfwt0JLc7Ucs1YjEs+ngyzTs85Rt/Fq5E+NFY6i70x0ocdkfpvBB7Q9mbTnt0rCnIMBFmckAnEZ2g/GUiJ5h/aFLneAJE9bxEiNFvJxwHMNm1vVuQ+g7XtlXrtcARADMYtR1W4AaEOZwm0mLU0BFS+iowBew+NOCFBV2SsWXyXxSuZlSkTAWY7EYE/H7fkGci2uKAVyPs3K1U1zkC4Eo/16qh1WwxQHrKEmUueWQU7I9/EOGQ8ZuBKA3Pd66Dta9F6qpHvolr3/RW3/mzTe1s+qw54LqljIsc7I9+YuVeuxOOd7Bs7CVfo7nc5EhP0uYoBwjAMf2/7giDoAHQPw7D5oDXsoJYoK5Zpxa2Y7R/4sB76ZSYYyJiEfCxGJ1GHTF6mZauM0dYrSeI2gGXxoRQlVVBCaSJWpZWu9KEhsd1CCgVU0a9WLAPLcgeRc2oj/Fmq3DipO70WbRVCBCDn58BR0BAToNVv24cyeRnxV7a0s/A+sde/9ORIznz4NTgf2noLgLjwhOfY9RoJSuy5nMUI3uSH5fcD8Luiy/kV1/K9VNmexmSYD1VoHM9a4JKQqqW6PV8JCarVJHJyIJPSRtxKVqPbk3T7FuDXiPUH6LG4TogYfqPH02ICkKILzm9iXh9wyvB5vPETWTH+5faH+N33r4PzIKmwmXgasDgGBdBLTTm/Kp/Cv5Q8JEQOwLz7xrNrstc3JfU/eGDRv3p81emw+f0u9PyWjo9q2LimO72uUNPgj2jPzDcdeq3fKq6Ium9h7lBOXlCW0Fq9NG4kY5tfS1gGH+JaLuBpxiKU2V3ZTj2ZpCnSfpkzyKQ+QZHdJ72BtStTZfIFGb5/By4nQeVNPZqsUaNa/5SnL6A1ckIrLuZGAdH//XIg2OHCMPwQzbQUhmFLEAQVyJK4N5DpC5yNwHhzlvwCUBmGYbWe8zhCaLw3gBoNXBMEwYQwDHcEQfAtRJc5Ya+2LAiCIG+vaz/2HmEYLkeW+HYlCIKpwK1a31MIwfvHlkMGBAVB8EoYhqd/2r6DWUxImofMUZ0RgbIJp/Zdg4CfVQidvdE4fwX5PKO5VZrwXDFzgCsQofKvuAbe4hnOwl2uMhGhz2IUWhDhrBiPGfk7HndRg1uBjDErS58lHxHozFph1hvLL2PB8r3xIPDeCGAYgNMqp+OB8OV4/pR0nFK7CafLtniRIjz+I0/PNcHbhFyLxdmOC61mfWjRe8zBwchOnL7cyBG24wQFxto2ALgGsaiYhclyKe3A53z7vwURwlfoeS/j+YSiSVetGJgwa0FnbU8x7lpormPmcmZWxhZknB2vzwbuvGJEG2YwMHY5i7uKxt7Yfe15duLkHtv09yp8TBpZwxqcNbCD/s7QvjcXxR16bZ623b6PFATkN+FWyB761w2xTrXos63HrYbGQGcxSObaaUDuTGRMmbXwJL1fOTJel2rdBkZTEOXlOGQ8FCPvdibOofw2zshngB9tUz5u3XsOmcmtH0zxsVTPHQmagnE/y6dbgo6UTyhBEDyG6Np3IzxSPYIguC8Mw7s/+crDubTgQeIgwmA97ZKlgmtpfo184CZemDl2pDpq1AVseTSLoivF+JaW1EQR5VRRwHa6Sg4gSsmkniSNU5ncPJ1Oq2HZEAlEGbahAtpg4xSx0rQRg7Ktbm06HzaO706/BwQ0rXs5gy6dG0m/3Z9q43nd2YgIzWd+5TXWPZtBC90prBVgtPmdLizmRC5fIOHGl//haS7+r+n0LxLLzr9UP8qN+XcKSx2w4sWTBOiZi1cBsDZIBOe3HN+dOb863y0ztpha/4AAoM34Yn0/aPUAbHkwS/zLbtAdTSjg1L5tCuhz+wftkq2mTdzMKbcLePjdrOvgTOhTIuck3dBMycR59KGeaZsE6fy16Aye4OJE30+Y8jQNZHKfyq5nMVcmN3MaHaSkBup6tm10B3p9ZSurnxUrTgot9Lpha/sF7kZkslQXupPLylh421CKm8u06+Sh+7dJ390U+zlTuC9h+TmRxWTQyB+UA30w71CaMPNBjDZf/MGTzQ7GgZGZ8tcSKVHyj0EkGBABB0SHhyXoM+YJ6hUEQdQ6/tswDH+7rxMVgAzDl8Fo+QXwr7T3q82BiClP3sSIj7QzDP+sudoeD4Lgz4i15sxPa/g/co+9ygvAvwVBcBkeFPax5aCDoCAITFbtFQRBT0Dtn6QicsYhUzrhzFfgAd0gAvJpiPXk13rMLBFr9JrTEMGzFBGc8hDwYkxiyxFB6iRkXizS8zPwkdeEdEoJ8nYNxJgrUQHy2Q/GLQlDEDBWg8wZebjlp07riLrabkIsRRbkXo4IgF3xJJRFuOBo2n4TJrO0DZbktBoHJKa5X4wnRbWkmsbslY4z0FmMSa0+87ZIPQaudmh7ShEtfo3WMRAHP9bGbto3dbp/gP6eg7u8mWVkX9SEL+61vQX5IhfhrHDg7HvglNI7ETe2k3CqcUuOa/E6TXpsuV4btU71xgk2zHpmINIsXNtx61mS9mmUZMGsZ+v0fnl4TFCz/re8S/auOiIiUxxnHjRXMAPrbbgVKA1nkzOjhllnzOLZGY99s33JyIxn+9dr+7P0elM4mAvcazjF+N/0/1vI92IWKiMwqMdd3EpwFkOLWbJxZ2OkCQFQRtRQqH1v5Atd9T7p2o4DZsY+EhO0v6UoDMPmIAguRxx9foCAoX9SEBR1AYrapzNJyBKt9bC6Cyj7GYsRPa0J8qZBqNOleSF0mbyZJl0x1sePoikpjf5U0UgGQymjiv4M5h1hXwOqUvtzU/0vEpYBkLiRs2dqttMGFbJv1IMfQJe27YlJuEvnRtKXIw4zADvkeOGraq2YADlXNMJPGtnVR3alNLdSEitlwSghU8gdVctY5nMXPwTguvwHaaIn91gATl8hGRjMOwA8+eI3oDus/b6awPohC6z1Sw6iyZmKuAUs1uOntcFcFU7fRRYXCx4cqH1Zo9srEIHhe9q3Y9QVTI1PPAFzppzvgsa5cMrt82ihO8/e/hVO+ckyuB3GMp9aJVe4k5s5i7k8xVcB+Al3MJh3KJwj4HDj+O5sS+1At2fEOXvp6zD8ahKLTrfVe+Bq6HerAFAmI+8hQ9swCFnwLgV+Ast+PYjBzRWcPL0sAVr6Df2QjYXdE+5vz3EOJ7KYBrVO7aYTteQmQGwaTaSxmcGp0vfvM1CIKcwitkN/l+GZ0n+tbVAmPZk4m5GVBjxZqpXDA/xYEXa4T7UEbQzDsPjTTgqCoDuSY+2GvS3nQRBYnM6SIAjGRA/ts1n72hmG/6FWnF8D/cMw3Lqv8/bVtM96j8i9ViCi1mcqBx0EIfmRb8AVq1aacYPtIVE6IcJjDHepMhCyBplDjGJ3Ka6Jt/gU9PeZCMgZiQAVc28zTXsdAsetrh0Ile9wnEjBNOLmTmcZ67fjVheLHdqCEzQY7bMlZC3C3eeMNng3IjRu0DosZqJzpD3mxrQGD5BPoz1jncVfGNMcCOiYi7tOGQHDcr13Kh63slvPq9V+rMaFcgMsBub64rEw9VqPUVjvwK1S6H5LzmlkCZYjaKc+k5EimHXIrDroeb1x17dFOJU4OCgyi4RZ2cDjlcATnnbGVR3Z2o+zIvcGGSuDcYuYERgYQ9nbCAg0Ah/Lz5SEuyrWartGIO97sPZdpp5XhnALm1ukxfIkR/6OwRPBWrJeczeci5N/mNVvkbY3F1EaDsApvS2XlRF+ZCEgxtgAR2g9f9N2nEN7cJkW6TdjksvR53gLZ0o0XVk1zmDXGfGkeA9ZR0txMGksi+g+i5uq0T6w952PKAXsGz9g5YglaH9K5yAIOiMpKR8Mw3BnEASfuGgenmXvpT26baQIhrbTIejsVphLkQ9JXbjYQXsLSTK0ru1JRZqsamOy5zF/6Zc4cfhiJvA8APMZS4x4AlBMbJ7DS+NGJoRgnnmTs0e/kqBlZgfi5mQMI4Og28N7Eh9Wej8kNFpx258nncN5zc/BZXr+g3IN2zxYf9fJ0K1hD0m5YhG5k5uJk8Q11Y/ILfLLvD0AG6Eju3iy/BtyfJxQgXf5sZIS/KWn3MfEq3eRyeJqHAClAS/E/LnqEEBpE0oFwvym+IJJeq31fQbEF6fKJIZedy4wVQN0Fsd4Y30J1MQ45YVliabfw9REnM9t3Mqt3Mb3+AUAF1Y+x8UF0+k1Xsw2Dy240bO2I1bu4TfqcwDrBkHOQhLscVyKCAs2yZmR6l7p72FXVMAg2HWd9/26wgxyXmykV75ahgoquZ/vJYBzI2K1G6YPOo+xxGhjfrO4/bUu7CmMgTbmzpX3Q0fElA/wTQQAWewa6/DIXZAxvrcbaHRVPVIAdL58GvhjGIbP7OOUU4GJQRBMQJbA1CAIHkXk89zIeX35mLQ2QRCchogqM5HIv+s/Y/PWftZ7fN5y0EGQMlH8MgiCb4dh+J8Huz2fVDrhyRgthiUHAQMFiDb8GD1mQnIdoiRahAhLIxE3p4n6fzzySW5H5v/hyLxnQjSIJcYogLMQgcwCyE1bby5eRgdtwMYSqpowa5aG9YhwuBYRes0FbCkOto7Rus0drUWPG3DagS+lplXvqNdt0jotJ8sQRGBdjzPXvaz9UYnHNpk1YTcOLjvrNVHiBXOTMmtUMiLQFunzliMa+i/jcTZG2LAbt0pkI66KdQjwiBYDM+Buall4fJUVzQuX+L9I31E98t7M2nAGYo0wt7M0bZu569lcnkT73ELgcUUWq2LP0RtPOmskGNv03h0QoGeWjFXaH6tw5rQN2rdbtI4qPAatVvvHXCTrESAwQJ/PwLbV01v3G7X2HlzMMrc3Y2KLGvEX4ZTbRYji1OKkarVdBnDTcfpvy1lk8UV7cFIEI/UwMJ2v2x31+S0i4hhtW2/dbkMAUTc8P18NPt5H4hbIcn1HQ7SeSKjx5y9HLEH7Wx5GXtnbwIIgCI5BRLh/srIvrbcJg5o7JVBEkYUH6oN8IAV4nqA0vfRLstm/6F3aiLF2vcgmy+JDOXH465RyKktUdX8VDzOT8xLuTyNS36SAKs7cIMEv71x1LCfUvs+2VCU+WLxHPlC14vAgIiYZGLgUaIN1k0Ryv7D2Od7JPZYTFkogPrOBoeJuN+wiOFbnywAAIABJREFUcdPrtA2WnTeIk++TSn44pT8/4k6eSJPMpCWU8rul15GUp8OjF9TGc/ld0eUA3Mpt0Bda71E0eAkilFu/nAHcgeTNsXip7kBeG7ysM5wtcBbM/6U2GBkTAR/gHk2Mai5dacA9kDRd2hSfnAo74MRsQUnLRw4mN72WpOw4FVuFDW5+6ZdIKmzmxHQ5Zwr30Z9KGqwze8DkRCCNUFl3e2UP656Vvrz13xtl8bN4rGJYNyKDnOvV1+1O4D/QcHggBrsmQ6cK2qUh7tQgrnQg7G4t4yoTtNzLGEoScTqqhqcP9ZRTlHDZK2YxTaTRlir9Fh/XIsQbK7UfN+J9dJT+n48LNqDDOx1Xd5ojebQcPgBozwFIlhoEQQD8DqgIw/C+fZ0ThuEPQcynagmaGobh14Ig6AQMUFe3dcgXctne1wdBMAz4LySmaDXwaBAEPw3D8Ja9z91Heeuz3GN/ykEHQUEQfDEMw78B6/bK9A3AxyDTg1K2IlbqIYiwtR7/Lo/HAcHbyKeWiWjDVyDC3dt4ssbXEI35U3rM2M5itHdRa8HZ4iyWZrn+H49bfIxcoQZZ4nbgbkUFke0eyJxsBAKWzHMHAiJ2I8KcsZftxF3bchHrgQEwowuOab3r9RzLcVStx7NwQdIATJr2o8VdGHtblL3MYkKS8TXaWMJMWW65fAxANeK6nqW674t6zts4SYNZqiwWaLC+g79pm1bgAKgHAhIs343l+rH7NyHCc5s+gyW4RZ93CDIORuA5lExIr8cFdQN5xoIXLQaMLI9PBxwUDEPGoalH8iL9VKvn/F3bX6v3LIw8iwGwLDxOq1zPzdffFvM1AB+HZs0xBxdjQ9yubWzU8zZpnWatMTa9LThb32i933b9bUA+K/LcFmOUhYPa0ThRwtt4jNrb+myWQ8lAjz1TR/29Bgdfbfos0TG7Axk/L2ubzVVwgPbLKXhi4gNSjrDD7VcJw/ABhO/EypogCMZ+3PmHd4m6wnXCYyU0C1aoaHtH5/YsZCZkmlYmAyfcAtb3zSYvtQZ2iADWK6mRoZTRle0J0JPNemZyXsIy1JXtZDY3sq63CN7b6cquHtDtVXHJ2nWq0DJjAfy1tNeUqAk2Z7oK5jdD34b3XXNVCFwPw35TwfPPShjx2Qte4ToeYvIUAQBjmM9czuJH6T/TW+TSpWAz2akyc1Y1FdG6tSv/8vgf0QtE0DYrzkZkAblEt+cDD4f0zy+nar2ioJdjcGsMfq+Wm6tjYjkydrisGHyVRCwNBTGpb5JuV0LfWZWsLdX68uTZl8zQeJksqNp8HDwBSdMUKDXJDHxD+cMAdOm7mXdTpyQE5Jt7/5hacvkRdwLQFOtJt+xGci7SRtwIL40YyZm3KjvDUMh5uJFlb2n81soKmayVvpzV0OkiJNjSIrafgV03QmtMrINnNb9CeeqxzI6dDQjIaSGFUkoAKKWE9xiIlYt5gvmMSbjPNbx4tFPugmtwC3BXwo7I2Nym22l58OFO3HfQEnPYuD/cqLKDA8EOdyrwdWB5EASmcvhRGIazgyCYDUwOw3CflpcwDHcFQXA9six2BB4Jw/DdfZzaFbgwDMMqgCAIvoGPeH8ayQ06BgmNWYuQG/zuM97jc5eDDoIQOeZvtM/ybSUEDhkQZPEtPRCLELgQaYL8GkQwegMPMP8K8oAX4IAiGbGAG/NULSIom+XDAuZbEAF9EQJ6TIAeicxLK3EP2GQk7siAQAouyCUjU0Kp1mOWDIubqcW14cn6nDsRwa8IZ4iz5JcmzKfhzGkGLMAtRsbElYcAmTjunpeGgwlwa8FAbXdv3N3OgI3FB1kfWi4jkIH0Mu7+1RQ5f6BesxIBI1Gigt24Ba4GBzBWrL3m1rYGGQsD9NweuOvb3rFEoxEmuOH4e92GMPRZTK2RByRpW5bqdcb2NxzPxWMWPvQ5U3DGNksVt22vesFd0PJo7wqZhwAks8QYrbi5y61HSDm26X6jpbZlxsgwwEGXxfAY0LY4pTSk/82rwvJjDcDzJ2Ug49fqSMYJHfriFOiWsNcsi/VabyYyzsbqedtwcoMtCHAajLP8mULjDUQp8SpuudupzzBTz9uBs86VaHvf0HuZK+QBKXs+8egRdrhPKEEQ9EDcLUbprleB22nvlfpPVmyZNw15KzKr1Mjm5k1iFbKYjyYkIej1ke0dODgCKl4cRo8xopraGM+gKqk/5RQlkqO+x0AmM01iO4BsPmRw7J1EDEMiliFf/rXFOtCpYo+7heUCt8ImDRlKnwV8DSrUFWvQREi/FzYXaJ6hi1qFOe5GOHuOXPTI+MsorfwijxSI4riF7pzFXG7l9sT2falTuGaWkEc9OXEi/80k5nRXXezjyEJrGrjnkIXQhO6+wK8DYZOzHDobkQnmBUVwvwjh4gDFH1LXHcCPdduSzNkrqoG1swq8H75EIgEr4BPzSSEnpi+hiTQqpg+j/5QqKmrEMnRb6q3UkstDXAvAEw9P4s9XnZMgjHgpdyQtV9VSfpVEV57VNleIDAyArgZOhWGPK+t8P2Ryna3Hf4k7KBkw6gSdVkPlEAExJ28pY17qmAQonstZXF05naYCsaqVUsJkprFeB9WvuJYl64s5JVvs6fFxSTSUHg3HO2EEL9CeLGGw9rdZ5j6swQGPdibptEPwh1H5jDFBn1xHGL7GvuNuCMNwwj72zUfgv23PxkfGx93j9b22dyKWob3P+0h+t896j/0pBx0EhWGomQG4PQzD1dFjagI7ZEoHZM4yFywTfMylJhmZF1sQS7nFE5ThFMy5iNC1ARH+LMYhSindEVm5z0QE3HwEQC3Hk35aoPoAvTYTsS5Z3SbUquNDIsnmCGTOsISQ2XicTzzybGid+QhwytV2metZD8TYPAIHO6l4rMQmnNRheaROA3Sm2OmAWzkMSFnOF6O3tsSflo8pV9tkuWqSESF1FW6lMXe0aj3fQAKI1aQvovm3eB8DWFchX9scnMkuWsxNrQ2XGYw4YCAiWEf7bzRuBbFnBncZi+PkDuYmNwcHUmY1MQKHPN1v14CMm53aLnPTGql92BFXqHXWY10RxWmbPp9ZWYyEwqwhPZCxZm6fXZF3vAgnVzDWOQPARpvehFszc5A13eLOzBrYglPOo8fX4NYnY0Yx970knC49HwFvlqx1NwLMLsVdQ1sQkGLkEegzz0BklmO0j9YjiotqRNFo7dmN5xN6DbG4pSCgx0BZIQLasnEyi/0qR9zh9rc8gnw2F+n21xGK1I94GfzzFKMGNgFxKRLwYTPicBl3JkxaLEgv/f8h8iFoHEvrhz3pcV4dsSRxZepPFWk00bQpjbz0GlL0a4vRliBCqCWX+bEx9KEBgCsfeEw+agVB3RrUHc5UnhNg3QsZ5MwUa8XrE+DUhTBosB7X+JWeK1W7PxmogGUzBjGsUoT3TOqZWnAH99wkiOP5u06njGHCjgY00IcZXEGXMRLzc9EJs0ia35wwFPS4pY4tj2d5vxTTLl/SoB8to+K+Ye1iV/pPeZeqWcc5y9DaAL6NU2CPRACQ5Rp6FFlIvqHblyKC/dUeA5RIuKplTNELLIsP5Y1ZYzll4jwogIqlwxg/XDpvNx25kD/TFhcB+aWrRnIGLyfafeaNr8EgKKwQULTwyaEJl0FAJrNXYJMYzEg3cGTv5hVEC/hNnOr7Qen/giHSWStzj2Fy2zT+ELsCEPe3uwu+naBMH8h7LOILCUa4PtRzfPY7Eu8EkidpK54nqBG4CcnLZIlm52vfJWKCzOvVWBDho+Rgh4sVSCiyPwM73JHyKeWgg6BIeRpnrrXyFHDiQWjLPksrYg3PQ5aRIYjwuxiZ05oQdWN/RHAsRIS5bbhLVo1eb4JxOe4+ZHEPxhwXR5apV3G3rzW4NjvK+LUO6bwdeBLVJCTG42Q91xK0grukmUUHfTZLjGnWlBo8mN9ikmoQwXEgHgPSOXJtDFnPliJrnMUu7UDASx6ef2Wl1mluft3wGKVkvbcxgx2DE0fk40xuRs08HM99lKHbc/R+2TihgrHSZWgbtml/mGXhUgS8/AnPB2XKec1IAMi6l4K7e5UjgvEW/T8ap1I3gGP1dMUp0w2gNGodUff8L+OJOc3qlonnXTIXs2rdl44TYvTV4+/hSXdn4kpLcxOzOJomfD2x+KpaZKzFtb8MEEdBs1G1WzxXFvK+jPK7Bndr3K3nN+Lg2aw4q5D3vwZndXsbGWebtE0bEEvmBuS9puF5iE7BiRKS9NoRen9zezQQY9alY/BxaHFNZuU9A/mO8/R6G5v2HZkLYgru8r/f5QhF9v6W/mEYfjWyfVvEzeOftBg1sGnET5XfXUa0P2XvS+br7x0ISYLFsWS1sWVhFj1OlpnqjbVj6J9fzuT0adSSSy61vMdAFvEFLuexRJU3rfwFKwtlJdv8nS6UUsLZL6qpJxuYKPsBet7USg6NEuGFACCmkYgZWjcBYmF3es0Ukql3zjuWE655n7xRNSwoEDa4Ukq4Z+aPef4u8dmyGKVyRXm/4Rq+z928USbekuPemUUZQ2kYI8Bty4NZAgSN5MDiff4ugmfFgGESKfEgnPiYKLuXrC9W10K1YOwIBMQoKOo7rlLY5gwkVSKalx/qdgHwIYkcTFVrj5M26PlJxzczv/RL9Cn5gOMnvsUbs8Zy48SfspwT6KcC/+3NP2Fp6jBuTboNECtMGcM46zwBfw+fdxUP3XAjm5+Uvj65skxUBddpG14HXoElt8mDn/nwazKR2ld0LzLhFQM/130TgMGQ1izvo1fDVv5Y8NUEIH6FM5jAbOr1BWbQyBNcnDi+nBMYyzxys2UGn7NCqcg3a/19kfHYHVl4hyKCVhORsXuCnmR+LutwoG/l8KHIPlIOTDnoICgIgkIk1KbHXjFBqbQLu/tcdd+NuNnFETzwzTAMm5QPvQJnIF4YhuHVn1Zfula0AVkXtiACocWY2Kf3KiIAW8aoobi2fS2ijTZSgcE4WFiHCGSLEUHN4hwy8dws5k6ViceEpOAJHGv03D14jEYdnhOoLw7czKpvlhKLATIK5HIE6FkOnDjuKtSmbTA6ZGNcs1xELTi5gjHp9cDpqdMidc3RNpg7njGgtSCAahueBLaHtrkJAU2mCDISiTP0uZfpfzOGV2pb0vS9bdJ7mjuXWSZsbQLJIbQU+C3yPuvwAWNscW3IWrAYEcJNrCjCgYGd34QDhT3aBntHZt37qx4z97oa4Gs4CDhG27sGJ5swEgKLbzZA14SzoZkXx0ScuMPir8xKeAxCAX4BTnpggn8PBGjk4XTclVqPUbIbiDA68o4IgDHXNdVt0oyAlFe172J4PE+6PkM5/t2g22ORd/cG7amzo0kEjG4b3EI0FFm/FyG59szVs0Wf/S19X+Z2WYy77pUg43O0tjMNB31mKd3AAXS4OGIJ2t/SGgTBSHXzIAiCU/moiP9PUiwWyErUVSgHWqfr7/EQZIpQCWJSLcCtFTYpGlNXRgxOCklJEoE3lh+nhFLSaKJSK8mknoe4nhRaqKSA+YxhQr/nKU+o4eDst19h4ThRH5z8gEjYPWfqq+qDaKG+qycvArrBtudFPZezcg/ctDUx4Z5Q+T58F3re18qo49+EYVDbO5cF532B/mrKmcDzFFHONWq+uJxH+SbTKbA8QKTw4pSJPoEUw6ArllHxK3EzS7qkmTHp85n/wzEAxHenCuHvUbDkhFNhKvS9opK19xdw4t2lLPnVqXT52mayr1xP1bXCeb12SgFcH0KyWNGojLVzEegz6gMa7juaqkeUI3uFPHf/URIGUfXIcfT4Wh0NC46mz6h6jp/4FlUUUEIpLXSnF418L/V+CivX8MSuSQBcXDidy3kswcz20EU3wr2wHDGrDS5YTj19KJyszum3w9JBcOZCMV89ctVlXLnyMV9kd5AQCjb/Vxd6zmlNaLA6qWFidcFR7UBPEnFqySVTLYGllPCDBIKCp/gqiymmapMOQtOa2pBdi0z4ljyvDBFmlrBXGYNbhF7W3wZ6Drq4e0DLgXCHO1IOjVExEFF4p9E+LqgF+NZ+1v0S8EMN4Po5om/5gR6rCsPwH1LgbkeE6yG4xn0erigyRqtNyPd7DCIcr0Rcd07SazoigpMJl5Yc82TdX4ALaWcgAu82XJM+VOu3hKZNuGWgGyLUmVBqVgZj2TKmubNwkGYxmsY0ZoxmFtSei8x5Nbir3WJ9VnNT24m7yiUjwuoQrdfiVDZF2miucDtpn+vGAFKy9rElYjXaZMsEYIL4btyaVYfMxabJr9b2bYn0uwXrGwgzlG3xQdWItSkPEd6/iAzQuThT7Hp9tpcRoPRrREg+RvvG2MqyceY8o8OO6z3NzduARrnuS9HzahGh3/oqBRlfmdqXNYgwXoiMLXONs3eH1l+r/bFbn2shMm6MKtv6r4O2YTyeXDUZdz8zubwH7sI5Erca7sAps2vw8b0Tp742sFeIgIZsnEGur55fG9nXqM+/R/vXLKYj9T1t0nrSEOBi+7rpc3bDKdYHIO/U+DafRb43i5+rx3MqrUK+DwP2FvNTjHi1dND+G63vwrxlDlg5Ygnan3IN8HuNDQqQIfGNT77kcCym8TYBMJrJqgb5yi05ZaZPiiAfRQEel1IAXAJJWRqIX5PKuflPJALbi1lMPZnUkks9mSxH3J36U0UBlWRSzwRmE4/FEpp/gHVDMjh5poCfbVd1oNvP9rQ3qd6L5w0Coc2+YY+38XRQmVo+3j8gk9MgYAdcvuBpbh71Y+5ccAcAS0YV80PuSrjD/bD6PibmP8cPF9wPwL+NukkE7Bqp8sRrX2fJI6dKjAxwevrLzJl1fsIVj+lIzE53xK1tIaydX0DfRypZMkr6trWgJ1XTe/pC0wuJb7lB0cIk3W857acA54awQtzA+vzqAxpKj6aqXEFRIWxZmwm9YMUTJwEw8eLn6Mp2FiEWsMt5jOcLTk8QIzxZ/g0oIkGhXf5kEVffOp1R578pddZDz6lr2KUue52mw/DTSURhXDnzMelbexfdkIlxdQS0Kt2sscP1W/khdxd+m2/qg8VJIoPGRJviJDGNyYmYoNp4LvEdMY5NFzXj7lGdqFhf5KQUrTF4AnFjeBkZJxvxYGOAVgM/GsskO2lfDh8rUBgGCZfHI+Xzl4MOgsIwfBZ4NgiCUWEYLogeUy3e/tQdzW25kH8ggdI+60MEyRrcde0iRICfg5ClvIgIg28hQuspiJB0KfLtJiPAxpjS2pDvOEqB3E2PvYYI25l4LBGIEmSonruQ9kHajYhwW46DJktgWoMzqy2nPbuXxXagdZi1wILdW/C4FsvpswMRXI9BgEYKAvhsmTPaa3Bh3qxKZTjL1lPa5nxEuCxBBNpGHDSYsN6k163FXaCMvjgFEbDNZdByCZXq/7G4610NHvORjAjvzdqvFrx/DDK/7kFczlcgAnCuPtdoPe9e7ZsBOBhNwV0cjVltCx7ovwPPN2TxYC24QD1C232Lnp+Hu9J1BMw13qx1UVBl7mi5+lwFODOcUYyPwC1+2/B4nt44CcYQZLwbu6FNtxYnZQDbSBjMApmt+xbrdUvx+LfXcKBrljCLBzMih26ITGPgxNq2U9tXrfX9DRkrS/VZuuHxRNl4Atc6XLlgDHOjkXHyRWQsbkcU4QbwjE3R2P3qtV/i2o7jcYCI1m3JiferHLEE7VcJw7AMGBIEQapu/xPSY8O+hb29WbIiAmIrDoI274SyzlgOURPQO05VdJ4Wsphi1lar1Se/nvnrx/L17BmJGIWhlDGWecxSveYI3uQ9BhLX4wXNa5iRehlXDhZ3uVjbHtFKqOC98a7u9Fq9VVyzgI1TutPr4a1uGZqNgJNJsrm691H0e/VDcZkz8LYFbmu+g1+OEh6RIsq5jMc8YevagMr8/rw6SsxJo2csEpCi1zeRJhLSmbI958XzobgNihXAJCMxMdfj1qOfhqydVUCXv2puoX/r2T4YdCQygY7R7b/qM9wrmw2zjpZFQAFJn4n1ZJQ0UvGIWKMYEwqI+hOceLd0zkzOo+KJYQy6WNR/pZSwmrxEDp5/KXqIm7mTp1T8+e703/Ln286hSq12U5t/QafzlPIacUnsuS0yNqYjC6DlcNIkqUxDSBNAJtx8Z/t7Z9yxTGYaNRrFOpjlPMxVifHRRhId2UWTJqNKSdpKblJFwrKxpLpYXAlf0PovaYNnY06rCzIuV7NXWH9N5PfeOYLMMnp4AKE9ezoQ33EkJmh/y0EHQZHyCz4aE/Sf+9j3ecuViC7BSr8gCJYhsu8tYRj+fV8XBUHw/4D/ByIEGsBIQwSmOYjW+AIE+Jh7lbkLmQvXLERQK0ACs0ciAmoZDjTKEcFthB4v1uuyEUBgAein6bkpiDBnrFdnIIJYb237Tm2HecYaWcJrWqe5prXhVpa+OPtWb31mIzko1HotSH2DHlumz7gNt8pkIMJrDz1nN65Zt/xDNbo9Qtth8SJLaR8sb25kLXpfsz4Nwy1cO3X/dgSYvoaACJMnq/X/l/V/lrbL8uT0RvwvjcnOrBtJyADcre/D3LN643TVWThRhlmw7Le5Kpo1pQwHub2Rd/cUvr6Au2YVaXvSkfeagoyDHBw0p+i1A/Ras2zk6T2WI+9tOU6CYKxpdYiVqwkHgktxkoPd+PtpQT4US6LaVfvP3B4H4jFJ27S/B0b6w+J9jI3QXEbrETc/Y2wzxV8cAbrGLmdWxDrty7/pMQPnRhrxJKKMqNbneRUZ04PxhLj5OBnHQn1ey8P1kp47C/kGs/T9GDNrIQ5YTXEQpUw/EOWIIah9CYLgaCT0eiPwfhiGd33CuRkIO9xIIAyC4DWEdKfx46755yhRYoRMZJTn+eGeiMM4AJ1FG2RB72cAGyEpWRxaW5PjIqxWivRZmlZCl+7bqSeTYkUQBVRyOX9M5Kcpp4hacompU+zZr7/C2PHz2tNgz4XnfyHxOyWUtmMk6zV9q7TJJJbpiMucxgj1++BDdv0BOr0urHAAV855jGmpkxK0zGOZz/18j2xleBg3ahb3LriF1lFKZbMV+lzxARkTZahUPDJMPnJlQOszS1zVElTiNyJAsQy3DjUFsBhamzS3kAVaWkaUv+ifAczjkPr+ott5+ltpuFfMOglaIelctcL9NRXSYPzdz1Aal+fa8kIWfS+upGKGAKWKymH0uKWOYUkCguIk0UQa398gaRjvmnQDJ7I4YRHrdD0CahQb9Pz3VgE99sVYEKnFBFUg5AiPklhYF04aShlDuWCcsAOesOh96AGzC8X9cT3ZHJtwJod7+D4TmZVgD0wiTlnzUFrna79ZHJQB87/EZDLujmuejkIWmw9NLdeqHfh6ZNvi4Q7DEsLuXR0//bwj5RNLEIYHN5l2EASnIArdG4D7I4dSgfPCMByyzwv9+pdx2SlablYrE0EQ3IzIsOeHYRgGQRADuodh2BgEwYnItHPcp2kNOwZBaOQwQxChyNy+luNuO+XI3G6JVN/DlRcmsJkQbUK3BYAnI65XBrLMNczcwNyjWgQ5cylbhbjbVSNCXq2e+5reK4YIqx21jaV6fQ/dZ6QANr+k4Jp3O2ZMX42I8GqgyqwGlm/IBGMT9M3KYpaEOtzVrVzryNP2xhHtvFkJNtDeU6Or1p+jdb6Bs9Vtj7SpGqe7tntl4yyg2bggb+QC4K534Fr/KIW1xWQZuE3C3bgMWMW1fWYlMTc/s+QZC9tS5F0bmDALWl+EVj0ap2SJXrchH4vFlL2tfyV6j6567zhuRXkPd/PK0Ge3+LJVeN4cA3Kd8aS64KCtM85+twl3GzN2w7iea/mnzKpp769cjy3Sey5H5Jo4HmNmVhhjZTO3UGMN3InTnvfWeyThzGwDIuc0IeN8BO5ymKnn90bIjsxSZeMrGwH1A/W3WTItAS2IFagjPk4s9u0pWBKGoX3qn6ucGATt+UT3Kl0+wz2CIHgEwfsNYRge/zHnfAkhu+0ITDNg8XH7P0/5uHb8o/cIguAMhPDg4SAIZoRheMUnnPsSsAAR0UDCwMaEYXjG532Oz1uCIDsUvslDoaTgICgPgfWmJT9BBEqb/JsQod620/T3JZHjkWD9QUXLqGnO45up/81qBVZnMVdBj8S+lFBKfyoTMUEptFBAFf0WCSDZPKILPR9ulQB7YF1uBjnXNCYE883/1YWeX2pl27OaXHX2HnadDk2pQhW2gNOY2DyHm1Lv4AKeBgR4XXnFY6ye4dze05jM15kh7a5eDclxzs2eCQiD3ZJZEeeTNGQRMfP81W1wScytOI8iYOxxPFnqCmSSfVq3JyPanNG6fSkCnkzT0QuB9pbxaxDyWr4fqW++5A4CWFte4MQAG6HHmDq2LMyCgjZ+kf0dAG6o/g2P5l/IIg2Y+h738xQX8P0FAoKIIZOb5YIYAMsKBjGsVkxBzx0NI8MuJLUJYI3HYvRc0NrOwsZQYLVY6AB6LdgKPeCdIccCkgeqiv6JvD9jmZfoY/v/Ry4Tam5g9qYJxJtS6NJLTGatT/Uk6dxm4is0Q+tvkIn3vxEtMNIvrK6HYg1WWlyPzPCm6zb1r6moDjUr0L/t13oRDDkxZM6npOjOSd7vNelwL4cCRE5C8H0n2jsuN/MZ3Nc+bXHTxExfBk4PFfGFYWi5LQnDcEkQBFXAsfhnvs9i1MFfRqzYExFLUBqeoLIJd83qgMyHxYjwOADP9WJa5Fxkns3GBfU8PJdKHWKJ2IBYPuqRuaASEcKNGW0AIlymR+o24b4J17YvR7ToFndhmnazmERpuo3q2FzMTHBNR+Z8c0syYd+0/2ZtiAr3RvFscTxmeTL02oK4oQ3GhXVjIYvGUBkduLnJWTxRpvaxsZ11RsDAG3qdueHdDtyMs9+ZxWOdPl8dDgjSkMFpbn2dcWBkoMvqMPDXFVljdkT2xfR6s55lRp69SN+Ne8rLmmlxQBk4sYW5BNbp/ko87qUJl1XLkh7FAAAgAElEQVTiei9TQlp/pyAAy+jXU3AygGgiWEv6asxtxtbXhIzBZdoGs+CBu5F1wOPCarVNBnps7GfrfwNINfo823FwUUu7TCYJa1JUKWDWyrk4bXUjzlBYhyix/4goM1vw2DZTMKxBxtwaffYsbVcd8r5Xan/E8LxY3XBgZmyHruPcv3KAyOGmI/rrGfs6GARBR+AhZBisBd4KgmAW8hgf2R+GYfle1/cBWsMwbInsKwjDcO/wqI+04+PuHYZheRAEg4F/36uOK5Ehd3MQBBcj0QmfVNLDMLwjsv3TIAjO/ZRrDtPycct7F2RGMog/CJoivJcjEbeGk3S7F+0TVx4fJoRVK60Le9Jl3HYayCSDRu7h+9zMnQmihBl8nQt4moH6pTSRJvFB2oTtdKXn6FahrwRyRjfCn0loD3vOaYXb3N2KmdBpNvQ6X8gZxo6fT6ctcBc/pjZVQM/gtne4e8a3EwQAv+S7nMVcAT/AoPwyKh4ZRu6VQq2ynMGePwEE3HwNt9J8I+bsKCATVSUeQAnwU3WX+6tuP4pMnJbe8acI45lp427RZzR2OBBwYvcsBq6Htfcpypov1/YZ/gENPzuaLWTBZjhx1GJmI4lJ+XXA/Xd/j/JmAZy1qbkk0Zawmt1VeANpNHH14umyYxqk3dXEI7liQZsYzqKUEZw9XZj7uh3dyrrxGeT0ENPQtsIOdFu0h3XnZZDzsOxbdtUghi2q4IQX3wdgwTiJT7q1UsgPphbcQS8aE6BoIO9xEz/nLg3R7p8ueY5OyxeHnLIrh9LwyNHi/gfwpUCe/aRI35wL1GV639IFWbGM431f8UCHGhA6Ug52OeggKAzDV4FXgyCYHobhgfQqMY3jD4DRYRhuj+zvDWwKw3B3EAT5iJxb/THVJMpWRJvcjFg+LGanDAEKdbhbjwmAHfGYlM6IMNiCx+cYS9durbsA8UqwJSlL9+fiQvdaBKgYEcEmREArRgTDbbhlo1nvkaz1nIS7SRnAKEAEu7f1ulUImLG4lmp9HotN6qhtMGGwCRGI6xEl0W5EGM7E14YoAErCLRkgAMQIEywWydjXzK1ujfbFOu0bA2BxZF1ahefwMTepDYji7U/6XOv1/58Q/8Y6HMRlaPsbcVcp9mrTbjzpp4FI9L9Z/SxHUCOeo6cRj9Ex684mRM54DRdFDJhNQCw7lpQ1Gc+/U4SDsThu/arRNlh/G436M7hbZDd9xtO0jyyH0ibckmXuj6aNMOtMC/JujU78JJwa3XIsGesdOChLRsaGxVq3IKBoMP4+uyFyh+UPAgdHlTj4M4BsfZWs7bHEqE9q/6TrdXGcCCT6Di0+Kk/raSKRriRBbGL3Go0zDTZp+83aOlPvV0Z7C+3+lM8QEtQrCIKosua3YRj+tl0dYbhAGTA/rnwBqAzDsBogCILHEePj/I/ZX77X9aOBa4IgmBCG4Y4gCL6F4Mx2yfU+ph0fd+/yMAyX4x6riRIEwVQke/iCIAiewsPI91XmBUFwCTIcQBRpz3/C+YdxiQp7UXc405iP98OmuQCRHY3CFEQ1OJKE5aDPuFoalh4NaSKgNqZmQEHIvaW3cFHJ76migEzqKacoAUBu41bSaGK7zpBJxHmI67j1T/+fvfOP77os9//zDbENcGNsAnMwnWOETlDAGYqiWCpa6cGy9FQWejhlWp0y+1bHfmflKfNYmVbHlLQfUqaEpkCU+COUQMBYEw8DR5uTHw7GJrAN4f3947pen+s9VMDgFBr347HHZ+9f96/3/b7v63Vf1/W6TEhef85ght7TypYrXdPzw5321uSoKhXtCj/+NqwYdARHfcNEhgXnTOBtLb/nuoqPM9y1C+/6+L2ce/MsJvKIN+N45nM6ecWG3RvbK2FSmjOXW/WFY0wro5g+H/E+UTeejl2XBmUiNilchNnRrgI688236bpM1zdjgApCC6Tr87FdTQGvBgx4NWfu/zHB1NcGfSdtYv3qCtzSkMH/+VeeqD+ZX9acZ1l+dhJPXHoyj7kf0U1czq3tH+SZowwcFtPGOobkGJ1WnH8EbQw0Bjhv99tG/D6HJZaec7QFPfXx0H+6+W/NYTI1H6r3PDfx8Pg35Ygv6qnhXO7lO9Xmj7WeIczkfI73febhNDCDC3OawidmGeKuH2cz6fqvH25OmrPd4WceNmmf4H1V7H1aRgTsW/wUttosyXT+RkLMzRKFvA7SzgQ6DxIj7Gvqtedb/m5pa5Ik30qS5P4kSf6gv33M80ZMrvpdkiTLkiSRlfOpwJ+TJHkSM/m/LE3Tja+UiVKKzYOjsTlZZkOnYQJcMSbsNRJxT8oJgoEybB6Z579tmCbpaWxercUE3wqCPnoQPWPcCByVYmvTVkzw7uPPChht8XObCQ1BISbktWGSxjhCcH0WE4ylgXjA2yFzuFMI/4tWQgMgbcwaQtis9PpJI5RHaIQKM23oIIKlahdfJmOKbbOdIEOAiB8kauXthKmYfGZ2ErTRQ7A5U/Wtx4TYW/y5Nd5HrYRvjNrXQoDFDX5dgEBsfTuJGD8b/BmxlLV4O9ZgIFkbiE9iwHiW5y2z+AJMYpNPUSEBDKQdaMLWR4GNLMNeP8IHqYDw7yn2diimTbHXUQx5xdi7VzsU06gFG6sixBhE0F23YeND9OWPEWN2TiaP5UR8pA7vjzOIsVhGBDbdyEs1MEMwkFRIML+BWWNoLGkzVm0o8X5ZQ9B0S9smTeKjBGviBgLsy4dJ/d2AjbmtGDAdT2i9pHXsIkzj9jVJE/RKf8DzaZrWZv5+9ApZ7S4NpSezeLOfe6XzPeuYpr/CXJbvTJLkvZi25t273vcqy95dmg18zOfvxj3c+yHg59hr6cJEpSuTJOlIkuSfjCThDbv8ymeiwf/fjnXnn2FTe3xcCny3HJtoRZ3tWpn1Cw4Ph/XOxARyYNiEBuZ0T85RUj/NSC5kBg1UM4MLmcNk5jOJFg7jxBXL+GLTf7Hi9iN4/PYxRlYwDfrfs9MCbJ4GtMDS84/m2fNLYSn8eeobzVa6E9hsgvW1n/04j3/WKeW64DN33sC7pt/Lu754L1fc/G2u5HpaOIyv8Hnu4P3M4ly62wqZUnKP+Z98KOGJW09mHUM46SsPkndNu/nrjMLMzm6EAXettUCxF6VW9hRsgev0rvwWthMy3I+1QF1GAMuPYxqMwzBGuef93pux3aGrMb2ptje2EQDoEOB3MPysv8DzsG3mQLgzMS3TLbB+yeGMqlnETVzOu2+fxeiS5XBNF5dyKyfVL+VybuLMogdoYDjXcRWXPTydq7q+BU/BFYO+zVGfWUMTFTx+1BiePaqUpfOOhqPhxanAeBh79lMc2vQCPxv/TnO38e4ey1JO/O4y5jA5R3BQSSODWc9g1nEHF1PNKk5nPoV0cDF3cCitrGcIP+QyhrCeGuoNYDlrTfOMatN6nY1hdmnZRhH22ZV2L2dgC8YT6rcSDFWWZG6E1ytFNilGHrG7v3/ClCTJ4UmSzEqS5NYkST6zx/v/0T5BSkmSzMWMOa/Cpo8PABvSNP30bh/8O6bCJEkPxz6txzF7juUYmFhNCGrys+nABJc6LLhyPbYLXot919JmtBOBO3cQ+xiFBCjKxwTpXl6GBFkJkCUEvbCEQ1kw9CcEPJnH9SKonqUhWUf4DhURgUzl87OWcAgvxTQZb8+UU0yAsq1en1EEQIIwKxMxwnYvdwUmZMrkcCwhpDd7nv2JOE0ibRCKl8+S/EY0DS72e5/0vlcagIGffExVmO9tEqgQY142uKnOy1xOxAgCbmJ5G+D1qfJ+H+R90RszRXzQ71eAVTCgVkOAFsXu2e51EhmEAqE+TfjJiIpdGqNuIkiqCBfkX3WaX1tNBNeVjw+eV533ewU9iY1kVifNYz4BOOU/1kqA+I2ZX5kQFhDjocTrWOHXugh2vUYiBo++pX7EWFC+Ai0CIdoMWE5OjqKbYBQUgCn2dvXDxvhi79s6fxfjCB+sNdhYP83Lm+X9VI6NXY3BJ/eDT9BxSZLO2c31w0x0ehC4N03Te1/pPtfA3PdyPkFJkrwLmJym6TQ/vhjT0Dz8cufTNP3oK5RxJ6b9GZ6m6YZXuKdHPV6p7Fcq47WcDhyfIAl/1ZlzQ4hZ8lgTOGWbrI9JFJS12KjTjvuRmGCukV5gcW/yCrroe4jZK5yeN591DMnFpvkQP2AV1SbwYkxtotQGOI9ZDGY9Q6ebedWzU0vpJi/HaHYBd3Hkx5/j4RvMzOrUH/6Jj33om3z34/8PMEKFt935eyiHH5w6FYDLVkzn1qPew128EzCGutH8mTswl7KZMy5i1IWLqHuP2/2VAVd1wZ2+LTUKmxAmeTu/hAGgj/jx57Bt1s8RuslJ3i8imWjAHCeVPuv9qL6dgoEjGZJm2XeUBhKaorswCekG4DqX3W5OYCKcdd4swOIdFbOJ3280T4HuxiK+Me4TOSrwh04dz4T2P7G4yNDMHCbTSmkubs98JuVIEwAOff8LPHz7m3LHNdRTTw2nTv8Tz0w17dJSxnA687nHWRSK2UQN9czHAtHO4lwu4Ne0+iBqpJJbNk6juMRWl/WrKxhWtSpHnLFqxjE2KWs3agwmdDVjYw9CE6QdzvQBbCA3+om+9AxgcKCZw+2jT1BNbcpPd+vBAccn+8uH9BOYEWeKLa+XuBXAa9qHFA4saFyapumPkyT5j4yJ3EN7fOrvmHpjAlsrpvFejgnu0ro0YuBhAyYcHkGYlt2GCVHjMcFrJxF8tdjP/YFwWheoUpDQ0ZggKOGuCRMcFexRjuL9MaFM2oOtBKW1qKnlozMIEyR1TaAqjwh8Kn+Ilsz9OwmShmIvpwMTCEdigv0OTJCUyVQjBh6PIATbUu9LsaAtIIJSDiJAgPxvZGJVRpi7jfC85K8kjYVMnuRbpSCrSpv9twsjIBrv764XYeIln5U2wsxPGqsiz3Md4Z+k9yjt0AZvc7tff8jrqvg8i7G1TeQHvTPlqZ3tXtZyr1svr4s0OE0E858o1kWUITPKVV6XCZgJ14eJcbyFIAEqxd7zCCIQ71bsnWo8Qvj29Ceov+8D/o0AM/IJqyDMFLPAvQ0DvhuJ76ALG58TCQ1fETYu+mXyUgDWnYQ2TnmvxTYLRvpz67w8gT4B0GpCQym/qi3Y+ByEyT7S5lVha/BRnudIwsR0POEPt7/SHnyCNqdp+sF9LELhkpSGYU19pfMvSUmSTMSmp3swNraPvNx9r6Lsg+n/NPUlbMmOIrY9AFbCtiHwjDuhD8SEeXl8NWMTjTDUIZgmQyZbwxLyiruoKGnKgZyZCy7irAmzKMapounHZOYwgwsBGMNSBrOOMU451kI5xbTx7FQTkofObWXpWUeHM/8W+MENU7nsyel2fCRc3/7/uPaGjwMwjVv4zkUfpJt8xnikuGeOOowmKviMC/f11HAL03jgcovJ/m83fZ+7ut8ZesgzgYZ88qY6E9uKImvjL/z6DSmckQRBRB0mFs4m/KfOxJz4JWdPwXZAxbdwA6bhkS70TkzroZ0mxWdSXzdYW3N9/ZRfrwSusZ3+vOva6f5cEXNrHW015DPgxLUcX/IEALUli1nKGPqOsXeRRzeXFd2Yixt0dft/8YbpsPRjR+f6qYt86t0e7sv/80Xu4gK+22CA8+HqN3F812I2Te2bo0A/lUe4hWk5LeA7NjzArwadmwPB5TzHHVxMXzfqz6ebCSULWLDRTBHzijuMcr3NtRcnpPBsEmaA07H39FymryqxyTe3jy9fIKUl2LjPetweKABoPyTtQO57ms7ufUiHAh8DatI03ZYkyS+Bi5IkuYPXvg/pAQWCZAr/XJIkb8MWxmG7uf/vnmQG1QcTRkcTq7d2lo/AwMxpmND7DmwOPQubu96MmQ9vxoSpSszkqA8mfComSwUmBLdiAqC0MCJV2EmwkslRXCxiWa2LtAP470MY1JZ52iDMlGkk4WOzmQjY2ocIrCkN1Q5sOa3ChELFyKkmzJK6CNNAOV1Jq9Lfnxehg9jwTiP8hkTEIC2Tdtu3eH3Gef9LYOxF+Lxs9Hcx0q896W0/x9/BAGJ/SFoUkTq8nTDdqibM60RysZaeG6YipxBAlOlXsR8/iL0nmcoplozq1uzl1HhfbCEsLVZhIGCZnxuX6Zc2r4uAWB/iA5I2Rg7+MtcS8F5JaPh6Y1Yc2saXSWclAebFjLfG6yrfIJnMVWCWCSLj2OHta/SyROQg0gPNhL2xd/gA5lCS7/3/NAbY7iOC0AqYi2VObVWA2yO8bdJkVXg/LSVMROsIMofeXl4tNuOejwVQVfkCkyKI6MaAqEhEWggwJsbC/ZH2widoQJIkP2IPmqA9pEXAiCRJjsQsYS8C3oM1/eXO90hJkowF/gd4Gxap46dJklyTpunndr33VZR9wKYkSb6FBfLuxj7LS9I0bdv9Uwda6iDnGU8RPdnhxKnoaRSmnZjqx48SMRvAPiTZWAPMh9GXL2cr/Vja7bZSlV0sYwzXcyVgmoAOCqlx3fcT1DKJ+bm4MG9r+D1XV3+eCzCK5VVnDaeLPB4+1TQQ9dRw2YrpOfaxL/JlLuCunMbi0Idf4L2n/pwHOT0XB2gxtbRSymewjeNl7WOYWPQIH73pWwB8b+6nrG0eB4jZwGLoHuZgcCrByQ8wMzEAKM3O9zEAM5+QpGZjk6cCbvT3e9SXYI6qZ9u/A2rXsrmuLOgtwRYnCf+lmP+QKLXP9L4/EQOi34PuaUVQCReXm+w4vHwVX1pyLReO+yJgAOQj3MjKIgukcBOXU01DLk7Q94s+yJyPTeZrzuPdRR7nMSvH5NZ/4U6GnxryaiEd/G/+SLrI53Tm5/r6XGax3jV7Xx706ZxWB2Ahb6KNgTTPMHQ36sJFrGdIThPUtrHYTPxkPnh2EqaFYIvRSmxxOoRIayE8RUWJrVSJrY6anQ8kLdDfLe0PH1KwzuubJMl2bMlrYTf+nbs8eyD7kB5QIOgaj/L9SSw+UBFmSXvAJPnYVBABIEWXLQavrZjAloftHv8BM+3aiQnh9ZjAKzM1aVhkrH4K9r0v8f9rCLrpUswnaTMhvEvbdC4mLHdiwqJM68AEOQm5FxKsbzLjKyGWwAcxgVZAQ4KwnMFFvFBJ+Cn2IeLZdBB+o+UE61clsVtejwmQ8seo8ufVngI/J7rpCiL+0Wg/vwIz6BDbmHxn5P8iZreFBJLug32NdxFJflQbve/u83xGYJ7VkwntiyiyO7yOWcIkCcfSkqzy+2b5dZm+KabMFsz/p53Qiul3Az3pmccRIKbbn4UwA5O/yAB/Ng8bd6XexzKhfASbPbb7u6jGlogyQgPW5mVLuyWzTZmRiQlvpOdZ7+9K5o2Vfq/8ogowQLPBz8vnp4CIrzSZIGZQP96NvetnCfDZnwgQXupllPm5eu+XTu+HRiLOkTSn5QTbIoTm6Dh/TpsQA/x4CUFmUkWw6v3B71V/NBJ+bvuaUmKz4BXSHjVBSZL8AtvLPzRJkmZsQfhxkiT3A9PSNG1JkuQjhPvWrWma/sWffdnzu6R+wLvSNF3lz3yAnmLenuqxN2W8quRtuzxN08Z9zetl0u+Az6Zp+mKSJP+FGTUdMGbae04yA8oSI7QTO+fSN3t6BPNdkWCej4GF5riFs8k5OQ44ey1PPHwyA05cy+YbbYto1JWLqFtdy9eqrgbMGb+empxWpoFqqmngK3wBgKbqCqZxS06z8F5+zsNM5MwVDwBQc1Q9dx91Dss5FoBznVNalNzPnFrJO5oeYH7FJOY4SmlpL2da0S1U+5bXeUWz+OLGL9O7xAThviduYtvagebTA7bQ1GJseGAanQJCzHoDtuh834+nYKBnW6avRmG7nh/2411tW0UycZkdbr6szHZB5WMlcU2YQ7tdDoqOvnwpLd2HUZj3AkNYxxOczICz13JB3q/5ebvtJWz76UAuvvx/+B5Gmb3q1mPIm9JOa4lp2T7Bf3ML03qAxd+2/wv3FFnfX8CvWcoYzvPV6+5Tz2E8f+LxagO41TRw6MIXeHj8m3JA6tKFP+d340/JUV43UcFk5nCbTwsVNJFPNx3nH5I7buquYPPzA6NvOqOdPO7H0oiNILRBcqJdjAdKrfQTfbCx7VFfWQespycxwusMCO25Kc/vq4l2mqbPJklyHfBXbLTPTdN0bpIkF/BS/87xL/P8r3zT684kSX6FaWvO3PW+V0gv50P6kjJ2SbOBLyVJ8h727EN64ICgNE1FKrkZk/VJkuSAAkGHYMLeI5hgJ3+9TkzgG4UJSidhb20CEculzH/7E74z8pcRS5lM3CQ49iZ2vSXoLyd8TOTLU+nljsSkky5CY1GIAZtRRJyTNkyIfBQTysGE3nJMYJRp1kbP7whCy7ScYI5bTjCgiXlLpmmthKO8WLp6e9nO6p8zxRtEkEiInOBJL3OI11u+Mk1ezr8QtMTyMSnwfh3vz4utrRgDJDr/dgwwKghnf/9/qedXi61zHySAm+rd2+ujeEEb/PkqDEisxIDUSHoKxtoaaSH8nLZgX7j6SOQVAi0yadT7ki+LwEoR9p4V7+cEv09BUaX1qfM2y1fnCHqGAGkjfGx6eT/kE4QEJX69lqA9F3X2ORhYGE34C/XDgJjY7BSLSQByEGaCqHhW0ra0+rntGFCR5kXvvgNzGrzQy6zA3uMgb5P6WL5bT2IAR1pHjZFHsbEwApsh+2Fg+c3+Huq8rBqvQx1Bgd/qvyMx+UascGJX3NeUeh12k/aoCUrT9F9f4fxbM//fTy4UZY97Xvb8Lvf8cZfj7ZhmaG/rsccy/oY0HZibJMlPgG96nfZLStN0bubwcfYidMOBlbTMi3z1NGzm0Uy8DQNIvot+WFGoosF2ka4iqInl1O++GJufK4MK2NxQBodC3tvbqVtdy7CqVfR2Ka2WxTRRkYsTNIZlzOK8nGaohXJmcGGOPWwW5+UCrwIsZDzrGZLTLhTSQS2Luc5VJHOYzIIKM616qw+ttqJi3sPPOWm12zDMTmAMPFBs5nAsByph+O8Mg7e0l7PtroEGSsC2YB/FTNjUbu1+gWmADsV2aqb4uTpsIn4uc89ayLvFTezqimByO8PS9QA0l1SbHbF0qAv9WRfz8q5pp3toUW6L4anGsTAVNrdBM9Ucf/cfeeLMk1n2uzFse6Ff7n2dy73cMfffAbj80ut5hsqcv85dvJNCXsiBnEk8yJyit/CIB+AZTgMX8Guu5NsAzNgwFVrgV8edm+vrCeP/SAVNOfPGyePn0E1+zoeriQpaOCzHFlfDU8xhMoV5Rmn+v4ykJu8pHpttPkNnXTqL+q/U0Hyeo55qa0eOVQ/MpHAdmaC+QLqSAEHyMM6m1xnoyab9Zw6325QkyUBM5DoSExd+lSTJ+yCj6ov0siQDaZp+07U4N2P+Oi/sbfF7W0amrDpexRx9wICgV0hXElPQPzwpVot8UpZgQpaCLRZhc5fMhWT2Jq1GPSacye/lp9hSpMCTNYQJmoTNkzDBeTtmtpSN5yLqZYj4PHWEX4x28kcSG0o7iECSEkqP83ouIfxKFEy0hTD/Wo2Bs0e8DdJSjSJ25Yf4cwok2ogJmwJvYuTKBr2UsrrJz8nXsbe3fx2hySrx/J4kfHQEIpo9/3IiXtJoggVOQvkazJqgyeu367Sppfc27Ev6hbf3Csy8W+x7KwkmPflv/cyflZmkyBGURHQg6bDE+0xmjauJYKt6h7LIEPObtFwy019NUGe3YGNHbGciUxCYkhZmJAYwirwPBJo6CQrzTj8vlj6RYoi+fAUGHKSNhIhRVUlQggsAya+oD/aOiwhGODEnLvK2LMDGWpPXe6WXNc6fH4V9T6XY+/sl4W8nvvtTCIKOE72d2pxYRNB0b/F8VxGgWH3xPgLYaZy8Ffv2OjEZSbGe9lfaV03QP2NK0/SXSZL8FvgCsNjt1Xdmrl+/n4q6lIjG+JKUJMkHsf0TXuqJ+I9OWu4bMcCT9QsaAn0z2zYFhO9LNfBVwpkfjEBgpm/JD7T7B9f8lfVth9N9n2mViqs25TQD32v5GP9WfksOBM3iXMbzJ873wEAzuJALmZHTToxlKbdzMdc99XkAHjxqEtf98PMmhnl1KYe3DDLEcjF3MJ9JXMhNvItfMYkHyaObu3gnl1cZIUD95TXMX3B2Tssy+MK/UkorT91uVNLMJliLIEwaKjPtfoEgSpiPgRftGh6NgcXhxIRYaue6p7imrRigiOYSPz4FAz6PuC3Ih4tMC+csPt3fKLIJSmVOtnqvP+Fw+Dw88Y6T4TvwxNdPDiDWDB/hRvqeuMmLbGN+++k0Flnn/bl9HE1Fh1FVb6vUR2u+RQ31XOJqqFmcx9f5T2Z8ZioAd197DuWDnqPRO6KDQ6igiXpq+P7cT/Kzs97JHCbT4NToYMFRv87VTHIvzFuYRjUNOR+x9QxhVf0xDL70rwDMnXWevZcbXL69KulpcjnU/3+CTD8CbSMgp/xdh41rzdQl9NQEwesKEP2dQBBmHPSMyG+SJLkbW0bv4HXgQ3qgg6ADiuPvDdi8eBom1MvP5QTCROlZ7K2J0fFRQuBSDKFHiXhBo+jJbCZ2tRLCBKk/JrxtJRjVNmAO5GK+0rcgVrHfZeolqmiZa8nR/+1e36c93+F+XQLoRkI4lfC7GvNzug8T/iTcFhBmRPKpEXmBHP4bMcG3g2BiK/O+eMDre5e3YYS359uYRCFNkwTxJv+d4O0SGYFM+1R33+zjCH9ePhxDCJY6eCkQkjO/mDke8vre/zL3KkkTUI3N56KSVhJV89uxOVwsciKq6CBY67YQzHNi8JM/WNb0sIHw0xGttkzZwACdiA7KCNZAxftpwsblQ4RZYAVBcCG6aPV5GQHqhmP9exQBuGW2+CxB1PEHDMCUEKx7GqeFBPgX2BETnDRqEBrDLAWZYikNwDRSef6/fIdWelknEKx/4wgyhHkYcJKoKhbFkdgWVw0BwlTuBlq0q3IAACAASURBVGwTQLGhuglmxv2RZPK4m7Q/fIJer2k7NrTziRjAe5WSJJlH7Pdk09Vpmv7G77kak6J+9jL3AeD29j+y+8sPDOrVl6UIFl22/v8zbDvWDxuhbyX8t5RpfeDzGADAH6vLN28wsMl8VJf5dRST8x3aRr9csNRh5U38eO4VTDrL7L5O5RGO54kcKJrMHJqo4ELHl1/ky5TSyp/Pf2Pu+vs/9KMc8cJSxnAJ03sEX+0inyu4kRtdvjqp5XFOKl+Q0yj1ZSsUw8UTTGm5mFqemjE2TNEA5sOoWYsAqJt7Qux8gQGR64jJ9VBsMZ+JaSmWEexwEtKvw4CSnpkCsB2GO+BsxDRMRzooEiuOXtX3sQl+uYOkziLW/+xwW/zv9Hyf9z+Z0h0J61uGcHy5tXsBE9jWMJBL3EfoyKKVFLOJG2qMubCGevLpZh7GJtdEBUNYx/uvNdeRCSxgFdWUOoXOAibwda7meBbznbMM71ezivUMZpnzZ9dQz+XcxC25qLDkmAAB1s84HCrIaYrWN2M7VYuS6KeZhJnhUMIX7ZntFnA2C9oBm4mLiBVaUQOlAT3Qxd1XmVJeGg/2/yb9FTgxSZJ+XuJbMNFir/w7D3Qf0gN9VBwgi4ilrFmSgAqYELkEE7rEzCYqYDDBazshRIr6txL7TOWr0J8IvliGgYdugo55pOcvEzTt7IvyuNzLHIYJiJqHt3g5azD/i2cx4XkRJmA3ECxrvbC5aKuXXUX4sPTxOiwnBMcVmBAsEJhHxNBZiQHGtfQM+JkNiNlKsMHNIfxaZFp3vtdFgEImWtJOaC/zWWyeVBjAEQR9srRqOq7A5lP5PMkMbycmeAvElNOT6nonrwyAsknm3KI4H0awyf0boWkRsDsCGz9HeJsUC0nvr97bLb+nrYSPjWIJFXkfVHrbl/gzWzLPPEts5jYS76QRe0/y1RILYX8i3o825RYTJnQyUdPY3e759fN71xF03/p2VmPvqRf27o/Cvos1BNmIAOxwr/scbLOg0dvTRgDaldhm6nC/T35w3dg4EDX2YkIDqm9J468Q23jtIAgmGr1f6/39lXkdCry+Z2AgSqx0E9iNeuBVpoOaoFefnEb1eswNb1w2OPbepDRNz9hD/h/A9i/ekh4ocSVeVcr6BMmBXFQ31X7NBe3DKp0xzYXMVRhn0/F++0mY8C9ayYXAlny6G/NzPhyD3/9XozmeaBYzw8sbGHXWopyp2j2cTwvldDkxwtf4HO/iVzln/OE0UMgLOROuVkq5nJv4CqYZamMg/djKD52C/GEmMpZl/H7jGTxQZ+ZuHz31WyxgAt9r+Vh0w2y4o9PMxHgczrp8FnMXW5DRYd9qoPnUaupmONWbdi5lknUVtjhmj5cB1xCT/s2NMLMyzNuewRYxCfNtwCf6xK5lG7YYCWDOxp59IKrM88C3MyBJgWvfR64dfCSFOgcQM4Gz88jz7ZThrGL+8+RMByewgG/wmRx99X/wXS7hthwpxRXcyI9bpvHN8k8B8F0+xtV8jeed3voLfIXnKeUmrsi9v3zu5Rkq2ebBcDsoZAETaG23Z0qLWmmlNBdT6ugLl/LU6jGsmnVMtOta718IUoSJfrwKW9yeAlvJgG2VPqQr/XglNqbl37aRlwZLfR2lnby8QdqrTHvhQ7rQCQaWYJ24FCNYePG16kPao9x/9HyeJEkHLw92EqBvmqYHDFArSpJ0IrZrXoMJtWsIQbkbE+pWYwJdBfbW5mFCVyehAVL8GplClfrzEwjzsBpCMFtAUBJDjP0BRIT7RmzekOC6koglU4ytVaJGrsK0B2szZS7zvCZjGguZBClmzDx6ml2VYOQPrZiQLc2KKImhJ2uZzKukcZD2C2zOOwLTlZ6GCbv9vX+GZ/LpxkDEEK9jL7/eTcT6k7Ar7YWolEU/reuiQj6C0FqtJIglZEYnUKT4R7umYYTPsGLl7MQIMTqIwOK9sU3CDcTG4P2YeVULJmQ3eNvGZZ4RKBQjoBjWFDNJwLADGyeVBCmAiDd6E75dnQQA2ICNWZkV4td3ZPIc4fcKDGfpwmXaJtNJxf6pJZh15Te3xvPs732mdU4avmIMEBd7Hp2EuaZkCI2FJmITQtpHHWfjSW31tmeJEWQuKOC2gSCuqPby5UsH4R+lb3gMtho0EuO3v53b5zhBRydJOn0310/cD2W8HlOSJI9gQa/36wLpeQtgnfZK8ZBe/rkDJU6QvmSlN2HSo0BRX3ruoDt1yL86CFqE2e/KJ2gbxsTjPkGMwiaBNmCKLeXDq+pZVX8MfYc5RXbDQKaMuzMHcsawjJ+3v4fyIrNseSv308Dw3PXTmc88zuCt/DZX65mcz3A3rxvJ0yxnNNO4BYD3LbiLH094L3fxTsrdIWcyc5jPJN7o2qKPL/ghAIMnmAnW+lMPN1WwAshNT+HGJJzx67zN0/34W5jK+ZN+fAa28C4mTOdKsQk/a6a0CDNxA1Mj9yVjzuX9KfY37fgobcAClDqbHI9jk+sYDBwpDwiq7090wVX55N1ooHZwyXoqaGKse72KQU/MfR0Usp7B9PYtpPudtEuA9WlG0o+tOSa+27mYsSxjKWNo4nDAzN8WMCH3Pq7l0+TTnXuf62cdzknnPchjDxvwyjG8lbkkc2e+LRgipdiE9b24O7ZhQOgQejLpJWSkx/nY7N6Y6ZBd4wQdSGkf4wQdWZvy5T3ECfrAnuME/bOnfzjASNO0cM93HTipEVsPfoFtiMlEpxVbB1Zi85uE6AeB92KgQKY1mzHBrhcmgMrkTPTK0iw9jc3PYzHBX9TTEhQfxQRmsavh+Yt2+hQ/JwNKsZ+dRZjdlRP+OnJilzlSsbdrNSZIyh8DDBRtwPZk8jLHnYRgKfAlnykxj4lKWnFbRL6wAdtqlV9GH/+939tSRJhRrSNIHZ71skoJhjBpjfIIx/7NGIA9nwhsK2W52l6Jmfu1Y+uaNBhl2FomWuQOTJAX812X5zkS28S7wPNsxIDqIMLcK48IlHsCIYQ/hr3LPvRkylvr57u8vIV+f6vXYyjhyyV/lzxsfLwbW1sGEIQKxQTIrPA8873fGrEx2U2YHAtM6d12EBqsuZgsIBM3sR8KaGzBxnEVEXdIgXp9P48xhHZHsY2GeD0XE4x3owjtX6P/vZnQhimAbIv320J6simKnGQyNqakiRMAkunddj8+x99lhfdxDWbad5vX7wKvn8wG90dK2WOcoIPmcC+T0jSduOe7/uZ0I/aJ/C5JEoDH0zS97P+wvP2cZHiaBUKNBDFCX0zalBTdx3xvpPGYgsmXErrFoNbbj7MCf4NpI1a1HQN1sK3ApP0Bo9Yyp30y256349KqVvIKunJECGNYxmJq+YS7AC9gAh/iB+S7NuPirtvpzs/PCeKXcisTWJAzjztpwoPUczRNVOTIFq7keorZxC0bzSTrkxOuYQ6TuYBfA/Cl6d8wWmaJiDcnjLp+EXWfck1QAbZ4i160LxH5HExInwewHQ7zlXGi99O9rlVLXCuhj1qscTLB27YdavuY2ZyeLyYAZpfXY74fb9oOk/rAJ/8MHz7WJs6h9CQLOCUffgDdF1rZzRcXsf7tg+koMeTRSild3Xncm2dEB7O6z+UTeTfkmN6mcA/38za2+pZrMZtYz5AcoAGjLM+nOwes5jCZCpp4X4tZin6y/FtGhNFu5o7Dz/uLxQwa5ohlduJtdL+yOgyjCAA+jwFtAbw7MSBUCwHWhzgAavRj2X1oNt6YOfc6TCkHHq57DaZ/OAh6LaUtmCD1C0yoy8MEVwm7GzDBfiEmSImadyk2B1Zk7l9B7PYLBUpjshIDBo8SDGUFmDDbjoGkBYRWprfnN5QwT3orJmTKXKcYE/Lkw/m0Py8t1k6v9wiClKAXobXYgQmQNYQ2psLrrHg0iuvTggn3SzJ9UkAAoy2ECd8Qgi5cNMU3E7FwREYhTUFWq6TdffkfFRFmZYrbM4rwsVmOzaFNXv98IsbMBgJUNRKg7wgMBKkvO7x953t/yPRMsZ06gfcTYHGD11k+L4P8f5VVhQnRqzFQLVa+Xt6nIqaQw4L8sAYQNOMihdiCja9ObPxsx8aeAFMZATDzvAzRn0vrN8jz6fBz8iOSiWcbYcpW5e1Y7n0kP6WFBDB/MzEmBIoENkT73ogta/0xTU8vDCw1eH3UZzv9d6SXrzEk7aNYBk/A3u14Qhv7JEFnv4GIkyRTzQ3epxOwb6sTA8yneL6NGHDaTpjCbfV2DfHn9kfA1L2IE3TQHO7vnNI0rd7zXQdyegP2ZWq5X4fNbnIoKMHsjFwzdNiIHrTMzMc+BIGdQ7GdepnDlZKL/JxX20739KIcsDi+ygJyPlF/MoNr/poDQcVsYmzeMoZgLGlzOIvJzOnhQ7KACTl2ufr8Gp7OzRzwn3yN5RzLed2/AWBC3gKGsJ42BubMvJpnVNOsXTHgjsvfz3BW8aXVHl+xLoGL0vBDuQXqjj0h1PqbgE+Qo7NmKubOXZw5fgTo6hMA8TYMQAr8VGITUIOrm2aPh3cCX/L7r+vj3d5ox8WVNsne47PAxD5Wpl7VkX2sv/94rJnQzcQA1NeIOtyAOQVnuBlHlyw38gSs/oMv/yuDHUxMy7uFfLoY7SqWJ6hlGWNyJAeFdNBBYY56vIKmHEDqndmyyaML2gzUbCvvxy/rP5DTBK5qqYZ5+dF3azP9CLb7+QZC21gLzplhqRMDRfMgwHsjJhHt6hjTN/P/s5nj/RXN7QBJKX8vYoTXdfqHm8O9llL/JElHEKZn2u0uwoROBXoejwElmS9VEYQK/TCBbCS2FMk/qIPwCXnS85CD+yDCHGuHn9O+nrQulZggKFO1Qmyeedr/F9NWP8+rltDQyEStlHACLyAooRd4vicScV5k+iT/DgEl+bIoFo3ICkRoIIF4NKFZEDiQr1MT4aDeH1trywmgUU/s8ZR6GTLPKvH2iWpapk0ilZCmQPNvo/8vE0dp8+TL9LS/C/nltHkddvhzYl2Ts302L5EK9CYIKoq9Xh2YBmqs101miiKRENuYfJZEI11GxK9RvCmBBQHAJdgYksAugCmgp3bIh6yG8OuRH5TiN/UjWOmkxZTWcSsRP+ckf2djiNg+Mjlr9V9pkDRv7yC+iz6EFmgtBtL6YWNgsz/zJHAeoZkUOWo/f/6nGOiqxIBZH2JM4881ehnF/v9oTHPWn6BsF6ueAgb3JrRv9di3o+9uHKZdxfpln00PRiZJevNurr/loDncayYdOOZwogkWCBLtTtax/Fxix7yvCfHD/XAHNvlLQL0Mm3SUXRkRKXsT5H22ne6ZRVANA06USgM2P14W5k6dMHjcX+loty3A8qIWBrM+5yj/Vn7L17maiz14fD01jOdPrPeAr5OYzyqGMwvz5ylmE41OHfcDRy1f42rmtiiyKTA93zwO5kcdaCZMJiAH5gDT/2XhbxumRtYE+APvi98RVlc/wUBJpR+LblseZ3XYxJPucl47obMxzdsv/Hi05/WoH/8bprSTuUOt1+EQcova4If/yvpZh8f76oS+P9jEtncOzJV1zt1357RqyzmWVkqZ2WL+V98o/wxgsZyUusljiqMSgcwmKpjTbv277ZaBTLpydo7oAiCPbtZvtPfV95CtRqHu1lvD3/8XVt10TJBr7MAmfrHqVWCgTgv1YnoG59uUIe3IvVCIcOlg4GcNB27aR3O4itqUT+zBHO6TB83h9pQOaoJeRZKPwgIiVkwHNof2w+ZL7ayfQPhcKCaQCBWkpRjieR2Hfd81xK78Fuz7l3mayAMEHJ4mdr/7E8xsjYTQK98PCDa1zkw+MmE7ARNkNxBO8DvAXR6DknotATy2er0UZk+Co9rWSoAfAZY2IgbSWi9vND0BgDQ2EkYrMJO5U+gZ60VsYRKeh2LzpIABhJYJAgxt9ro0+7uoJDQ/IhI4zvtXFFNrMs/rTyBDjG4S8sFMsNq8jZUEsKwgNEpPZ9oEPcGtNEHScEgr1J/w8anBBPMSIt7OcYSf7VZsLV/rfSPGtyc9X5FC1BAgroPYY1tFxOzZ6L9l2Fo/kiAS6CZiBZV6PWT6J/a5VgL4SmMoJruR2Hse4OcEGvH8NxPkBTKjE8vhID8n37ETvT+WeBkC7OOwd6zYQoPoydw3iPCLW4uZEC7EtGrneP3O8ftHYuNM8bx28Mq+Yn9L2gtN0EFzuIPpVSQRInTQEwhtIxzIpQnS8RBbsOTnkm6HtX3CbGwxBma0uDQTwGG00zoDeVPa2by4DJ6HvpNMI/ClGhOwv1R/LV3deRQW2axZQRMNVOfiAM3kfCbxYC44ageF9GMrNy0xP5bR45bzfa7gdPfcO57FHEor1/JpruXTrGcIT8w9GQ6F48dZWKsnHjyZvMva6T7Zzam+PcJAyGnqK/dyPNcPq4FHtodvFBjAUXzPy4Cb10HfIWYasAwDHg3YInaG3zOTnjShw4EGN5d7ogg2tcNo7/uzCapusIn4GnrGIVJ+ApT3wUk1D/LYjNNhC6x/x+EwBY6/1dq9lX48ddNY+I7d3nfYJh5YfT4Lhllcpffm/ZzL+T7rym32H8x67uDiHJvbJdzGDnoz00kqGqimmzxKaeWSotuop4aF08bTRAXrFxye87kqZhPNaw1IVdQ0GQj2BXnVw8fYmNEYG0U4wIIN10MxHyjwBd7NDjdth4FOLrFtHTZ+FesqS12U1QgpvY7iBv39KLJf1+mgJuhVpAInRsjDhP91mFA2EhOkRH09gDAdEwiSD8lQQuDbgs2HCwjqXjCBT47/MjEDW3vG+fVGwildu9LycZBjeIOXJUd6CZgyY+v28+WET0svgixA5kYDvN4CZgXY7rlIIAT+BmDLqPw75Gi/zp9t8bLLCZCheDdHEH5KChDbQQAraZ/OyfS1BPmNhDajwO9dTfgFHUc4x8vsazVBOS3BX3TTct6XtqDU81asGJn0aWOqN+HrtBEbG0MJU0X1w8pMXaSJEbmAtHnyL5EZoIKSFmbul2nZPMzsca0fLyY0kuXE5uI4DMiJEW2tt6mdoBavIIgmNG6lRVF/ipRDQWZLiMC9D2BmgFlGOplh4uV2Y6BGsYI6CUINmUSuJAIHi2lO77GDAE29MUApyu63E5uI/QnfprWej/zi1noftmbeS4Xn0d/zlNYM74MWbKx2EQCqt/ef5D83R9znXbcRSZJ+ZzfX33ZQE/SaSf94TdCurFiDM9f6EuqKEj+WsL/dr+nYhfT8zONyzgSYRpALaLG6CBNi5cTeF6iGvLJM0NBhKXSaKdqUGnNAEttYNat4kEk5n58HVp/P0VXLcsdzV5/LgGHr2Dy7DH+Ax2rGciXX81iLCffDyptovqmaSZebA878W8+2iUFMbJ2Yr8lFfvwD/y3I/BYQ2qC2zLMAzzgXaTXQ0GjnaittEtEXem8jDKyETS6cnzsE7oXcVsdhfeC5dXDkkKjTiYRy43hg3nwYPcmOXyB2iT7vvx/HJiEpvb6N7bA5Q11ebTvdK4py2qqj32/MbEqTquawjiEUO1IrpIN6anIxfcayjMGs49sPW4ZnnTqLubPOY8DZaynPMxKKp5aM5d3jfpLTEq1fXQHNSYyHOm/XCj9upGdqwADPmMzxEALH3CvOzhHEYBOrhUeWZQY2ZrNAKBsnSJsABwoI2kdN0NDalCv2oAm6+qAmaE/pIAh6FSkvSdJC7FtuJTRD2onvTbB4bcGEMAmRYmoDC737KGGQUEREom/DNDOrM89K0yMTM8UbaiKc3QcRfjP1fpwN8NhNAB2IXfpaghCg3ssRI9cgTEMkC3IximlTayE2Z40nhEtpSmRip/hGVYRWRaZkWzBh8x5sHZUvykrvu7uI6U2mbTKLUwDLnYR2Qb5JeL9sJQKbbvU2yb9op/8vcgSROsgJvxcBTgQ0O7y/FhAsZdJuSQMiavAqQusi86sOAjyJNELvfCu2kXiUn+tFAAOZUO7w6xCmY48QSWQSKwk2s51er7WEhka+V0sIHzbFKRrpz8vcrsvL/YPXt8qfqyTMLqUR1RgVu55IJQoIEgQIc0n1eT9sjRQAe4yIlzSOiIO0xcs+yvvqNGytzPf6bPe8VhPU7gKPbQQhh/ybVhJU6QKf0oJWYVzL8qeSdlXfl0wF12Abvvdb/vsFBP33bq6fexAEvWbSPx4EZVPW6KOamPWz5/SVHg0MCT7957EPyF1KmIdpPvT4dAxIZDVCK7EdK+30T6UHABl2eQPd5DEB8xma2XI+eQVdvLHEDIHXM4RSWul2ULRqtZlZ3VBlpm7djsi+i9FfN7dUMKX8HmauvtAY3oBzrr+b5RxL8/WOYmqxCUOT6GwMbGhBG+X1u7fRT5TAuUURPVu8EUp9geewCUNmXYdh4G+qH39SRrsOKAdivkZZ5/5qggr6Tpzq2d9F7ST7XeygqW8fi100P1OP0d4WAY5SLL7QnZnjSwgyhvnAtfDump8AMHPj+XR35sNa69NJ42aztHuMaW6AUacuylFfg2ntOigkj+4c21veqHZ6v2EHY4qWAfDYracz/NK/GE266rgc3ALP3sU8AiwWYO9GdWykJ0ve8gyw6euAcdvd2EsREYJsEtt3OT5QQM+uaR9BUHltyrQ9gKCvHgRBe0oHQdCrSAOTJK0hWNNEX12Mfd8KsKhghxL+s+YyWwhtkGLadGFC1HgCnPTG5t7TCXAl35Y2TNCbTJhZNWIC7wb/fxpBTDCCEASf9P8Va0bkChLyoadzvHxgxOxVTwT6HOT1ENiTcK+NqlUYoJPpXqOf7+/tEcgQFfhqgipcPh9ZTUhF5tnRfl7U1nLPrCI0LRszz8k8S1TKolVuJ8zsVmf+l7N/IQYAzvD2Sfkuc75Sz6sX9h6HEZTVGwgQ1YsgWCjzvKSdI9Nnrdj4UNwnsQb29roJpPb2/sz6BC3zNp9CUGe3EEQRjxJxl6Q9kl+a3qmILgTKKwkK9DYCLBR535URMZjaiHGyndBmVhBjbBFmeibNTIe3YwK2Jl6Ajb2FxPgWW2F/gmhilNdFgEb92eRtG00w4bV4X6pPwMD9OQTdtrSjom4XwB6BfZsCo8XE/vhagp79MfaPJqg6SdJv7ub6Ow+CoNdMOnBBkLRA2mZvx0a1pPyjgXWQjLDDtNHuz4KiYzDqZjATLjH3yETrDAwY6JlTUmMEEzXyGe5En7NXTqEtYcAo28ba3FAGy+HyC68H4KbVn4C2iJ1+/Lg/GtuYp1Wra5hSNYOZcy/iybOMQOFMfmcaCWesowADBgJq2tUQEcJibDJVnQqw2DXL/HgeBlgUGbkvtgs1kBDYt3mbM/44OfpXCMCl4zLguXY4383hmrCFc6pf/+92uKQoSA/EcfF7zGcJDGgWEH1/G/Z6v+zHX8QEghNM1vvPqi/y9eu/kqtz3xM3se2BgZx0oZkWPvbw6Yw6dVGORW8Vw1nABAY7icVjqycxqmoxbTm7QGhePZzBVU05soW6uSd4QFO/YT5m0qdheJf3gXydigkabAiTBTLHBZjpYE6S6IutMgJIz3om2etyKFDnHUiAaB9BUFltysV7AEHXHQRBe0qva5+gJEm+BPw7Yd3yn2ma3u/XPou5Ge4APpam6ZyXzSSTXsS0udJIKNCohMLjMKHsUf9fWo1xmCAm358m7HMdgc2/8oEZhAmQpZjA9XbP+z5sTZEmpYoAPqOJnXhpI+RjKFCyBRPkSjHAIRKBrP8MBGudzHsU76cMm+vlV/KQ56W4Q8uIgLDybSnABMRHsc2eFoLJcxChbdmIvZydGJiSH9MSwkdIgu4aAnxBaINGeh7yoVqOAQGZrjX5b9ascKzXt5RgI5MVhHxQqomd/jyCDKKY8KVaQQjFYjHb4X00gTA7lBZGWqEWIs6MKNOb/B3cjr17Cf8CGdm4QC2ZtopEYKO3Yy5GVDCC8NEq9jzb/H6Z5eHl7iCA+kpsXK0iwimqjeqnbKwgMQrKp6fS66W+P4KIW5RlNhQD4XFeP20g3OX3PUloAAdh720IBqT0PisJGncRW3Rg41FsbapzMbHpcJqXL7IK+T1VEUQJhdj7favXo8n/mr1/+2PveRAGLn/KvqeUPQZLPegTdDD9jSlL5N5O7JgXZf6HHEjShLit0hjPhDmWE/bCYLv3Z2Pyp0gG5MguALE8sclc5G8N+fAc5J1p5b6x5GnqHj6B/DxtIVo1brrdfIAoBmqDfeyJ1RPIK+4I/6PPtjNzyUVwKBx3uWmT+l67CToTBkxyYHVLmX28izz/v2BgzhmxqfVyPuPH/0FPE8B8ejKWVWNxakozfTEJ+GoG1CzDFkIRJBzpv8+4Zue5PvC1oghKJlMLaXGuKoIfY5IKwK8xcDkREz4meZ1WEaZkl2AToWi3f9IFDfmcVWXTxXUbrzINlovGFxTdxYMXns5jSyKGT93qWurmW8eMunQRq+YeY7E1gLOq7mVuy2SGlzfwfHepnZyfsP6aw1l/isUNYhg20TqOprflmwNuz2PSZ1bbk9UkCphO9d/b2mHbU9hWsZDVEMyXTUQI2lbeNSiw0oEEgPZD2ot4CgfTntPrWhPkIOiFNE2v2+V8Dca/8iZM1p8HvDFN090OqaIkSUsxQTxr3gRhoiV2t5GEOVI14Ui+EvgAtkMuDVEhISDL8V2xb9YQwpn8g+7CTOoewuYYmedUYPN7b0K7ssLrJQauCkLoHUSYO0mb0uLPylytAFvPxhPkCpVejrQmcjwfR/jAyFxQ+zAjCZ+beV5vKdgXY2vnTmx9leZEVNYbCJ+i07ElewNBQKDd+Y3+rPJQYNEdRPymdYQJoJ4RV1LWfE7tXEhQggvYyhdoC6FB6k8AFWmzygiTsC309I3qgw28PH9HE7xNIlPoh42R3oQJo7SOf/Dys2aHGzFLg4mZsjszz/8CE9TbCFOxKnpqovoRYHInQS6Q1apJa7LE71Hw1x0YMBJZwVGEWZ2WQ1KbvAAAIABJREFUKEVsEECXOaDG1Q5sXOibEFFBP89PvsbKb4mXp/qMIEwspZ2Utq3A34NMFe/B6Ofv8TaImbDC38eaTNvyMBlD/kynY6ZyIkYY72XN2w9amqokSa/ZzfX3HtQEvWbSgacJyvoGZQFRH+zLkmpHPkLH+rHT30irsw37eCX498VAkAau/IEaCH8bmTtp2/UFzK7chd0BZ69l8+NlDD7VA5nefjhUwrBTzaSptb2UHS/2prvNZsPhVfV8g8/y7iWzLIPHYcC0tWy+sQwuUihxYHZ+DoAM+3kDzQuq8XieNiEcTQRDfQSjlZYAPg34aqadYHF+dP/ZVi6H0pNR7j5skQc4E7j5z9GX/4otnhIcwICMHBrbsMlGYFLsPLLsEnPcmcRiMR4TGEQr+Ru//3t+fBK2IGS0cH0P2cq2F3wFrsvnpLMeZFm7oajSolaa66tz5nK/XPCBICiA6N/GfKZMMLQ2s+V8WJxBjM3AlC64zM9NwzRWm/z6QD+WueTzWD8qCzlnbmr0+yvj/xzIWZfpGLAB+keC4GMduPbqwEz7qAkaXJtywR40QTf/82mCkiQ5HPsSnwf+N03Ta3d3/+taE7Sb9C/AnWmadgHPJEnSgAGix3b3kHwF5HvTgZnsPEAEpFyCCfy12LwvP55CDFy8GRP6tmBz2HGet8yfVmLzgJz2j/M8thBmcOOxee4ETAj0/RuK/ZnTMCB2Cra8icJamoOh2LLWgc2NczyfkQQpgJi1dhLmVTLPavc6dGAC/RZs+lmDgZw5BJDKsmaJrEHsd728bacTAOEIL1N+LdKIa2dejve1mNZ/HCakitxgBcFCJgpxscC1eVuavD0lXp7Agny8smZoA4j4PwIIO7zuef43kWC3U1BRETz09/YsI0yxyJQhP5u1mJAN9q62EqBBcWrkK6S0gQiw2ujnlvhz0gKu8fr/KxH3SbGhBOhKCP+ZMj9+jDC/VB9WYKBB7GXDvH71/vwpBKvfEiIOlMxCIeJVPe3Xx2GbgT/Dxq0IQ4Z5mwSg78c+2vv8PoGyp7F3O9H7OM/fw3KCGKEG+z4f93fRCzOFKyA0p+Vevw6CQe5BbMyeS5i+bSDW7Vbse34IMhFM9j3tQRN0MB1Mf0N6kdhO0Q65fIBOxnbUqzPXd2XaKupJcjARm4DBdldmY8J8GabFqMaEWvl4HOr3i+XsSL/mNNyb68rgUFh/q2sSzu7i6PJ6Vm20G44vecL8T1xiWVVQzbtnzuKky92Eq+50NjeUMeAja3O+LDnti4OY5vpqE4skEh6CHZ/tx8N63s9MDCRlTbbaMs83YxqVSRgJwRXengswgAe2kJ17bEzQZ/i9AkkfxRZFmc9VY0QH0vEe5r8iZNhGLGYvEjbRi4hArNcBp8CA37oGbHaZPfeQXc57exfb5g8Mh9JVsOqs4Wy7y83bLm0lr6ydmRuNDe74CX9k3QStsLB+42C6VxQxeMJfmfkFR7mVwKQUpofJIovzw0TvEWJnFGyyHk1MplOwe7VdXebHmyrteNOfITnW3sGmu4mxOg4buxAgvtF/+2KA/0AGQvuQ9hM7XJIkt2KGIuvTNB31MtcrMAOVMi/1R2lq/D1JkpyN8Q72Bm7ZE+D4W+rxN5TxRuC3aZr+MEmS2/dY7j+BJmgqJrcvBj6ZpummJEluxKJ+/9Tv+zHwQJqmd71MHh/ENo3Jg+PFBCetS6XfV47NMaKQPo6gu74PmzclgG0k/HLElCbNwDps3tyBrTO/IXaqtfMspqxubFkT0KrE5vEOQkAUs5fi67yZMDGT471i9fTzNpzr/ysI6KNe9nnYvP8INn81eVk1mCArFjxNl3nYvLc5U9dSwjekyvviOGx9laO76idiga0YuNnszwgYCkR0YlPhIILcYStBBS7wIqKJ0YQPlbRf4wgaatFTyzcGwpdIpspbsRlhFaF1EZtaC2EN8AgmvMvHqo4wD1Rwz1Ji/d01X7HHbfV7BYg199X7fRsy+Q0igKvAunx2yv2Z4QRNtPpoKAH0NTZasXEkk0P5hKnvS7xvpE4d7++t1t9pBTamBxHxp2Te2OTli1ijgNgwqPP3OJoAqEOw4K/qKwVPlSZU9ObSrkm7NQjbG3wWG2/SCpYR1PIVBABTPVS3rd4HAu9iLdyIjSO9p5X7QUtTmSTpF3dz/dKDmqDXTDqwNEHQM05Q1kyohJ4kCSdjX/M4P3Yw1Ne1GcJIjjUYgwm1WbMwPaaRWk1oAcA+pP7Epn4lJst+wrUM0/MZcNVaNt/jhTwLHAp9p1gm224cCFO74E5THQy7ssGE85lFDL7UtEkd7YVsaxgYgUnHYLs7J/nxKV4nCd4TCdpJCH+hrInWNIKUYK33wVVdcI2rMFZ6m/RMnf+veECLMY3Nj/14JgYApvvxFRipgcDDhdiirB20+Zi529kp3OmA43l6Bh/t9L/LosxhVzbQPKs62jUsZVSVaRHqrjzB6ijzxzHYQixTxmGWX95lZro4vGQVT80YCxmFGy96HRoyz2RTtdfzAT/WgiAfoEavV2nmmVVEPKUjsQl5UyM9TTez1O5gg3Nd5v9tHLhmcPuoCTq0NuW8PWiCbtuzJihJklMxmH37K4Cgw4DD0jRdkiRJIfAENmqfBv4X00vK0PRf0zSt3+X5wcC2NE07Mueq0zRt2OW+l9QjSZLer1RGkiSjgW/sUt1LMTHmLmz03JGm6W3sJr3mNUFJkswjpuNsuhqbbr6KdcZXMfLISzFL3l3Ty6LBNE1/BPwIoCRJUgnS3ZjgJ7AwADPHGYkJf2sxAbgGE4Lvxr77MkLLoxg6Mn3qQ1Bfn4EJyqcRNNQFhJN3t5ehdUaBWZcSDu4yTSsk6KnFelaGzdeiPi7FhMl3eL7lRABJ0Xc/iC2XhYTQWoYJoL/ABMahXlap/y0nGLm2Euxap2Bz6EpCsG4mYtDIRKrQ8xeN8mJvQ29eKvxvIfaHthIkEB2Yudl9mC9QPSZQP0bQm0NoftZ4vtIo6L2JZEAOZiu8jb39mSZMO9fkfddAANnxGIg7iQADqzGhvYWgfSbz3to8j3KC1a7EnxdF+1GYhqPG//r5OxA4OJPws6rysqT9acTA0BYMOEgjonANohUfSfhPnUAwAT6Njb0OgtlttfeRYg72JwKwipDiD9hG6AKvU72fV9llhM+RTNpWYxusonMfRsTdKsS+B/kZaYziz3Z5GWIa3Ip9k4v8uTHEO11DMCGOxsakxqH812RuWEPQlvcjLFr2NR008z6Y/m+ShEEJh5otxRSnHfV5xAyjVAnbMj5EBQQjGphW5Vli12g4NnlKpHoQm9Sk0ajG1NNf8uNjMK1Lg4OJTa7BEEiqs7y2fca1FdMgr6CL7qF2//qNg+meXgTPwfpPuTZpB6blUTPL7Dlm+PEpXt/fuDR/TX5P7dUkTNMjXxux/+j4RQzETM8PAFHh+Qq01GIAR7JqAaaxafTjE7GFSRqyGV6u0irCSRfgKr9nbWJ9BsGq5pTY/ALTMN3gx1Oh+QvVAcSGmahT97D5/OR9zoPbKonpSf02z851d1pfP/WFsXb+GALEPO/1lPnjNVjfy9epEuvbv/ixQJ7S27HhJzPB57ZD0occ4GksglQzrAB8JTZ2s6AnNFYRH+t1mlL2RhN0aJIkWaT0I5dpI5s0fThJkspXLCZNn8O+BNI07UiS5CmC36shTdPVAEmS3IktrfW7ZHEa8OEkSd6apmlnkiT/jumP37oX9XjTK5WRpulybOT0SEmSXAV80fO7i9BZv2x6zYOgNE3P2PNdkCTJ/xDB3Zux6UppGEFYtdt0CeHzI1+QfyGExDkEi9ibCZA0EROkFBxVGhPt0o/D5uwSgupYmhnFYBZzVYfnX0H4TmwgwFkntuEylohdI0HuIeB92CjdiK1RT3odTsL2VFZioK0YWyPk2ygNWAchVA7yjhvvfSBzrXzMUfzNhDDb5v8PIYT7/t5mBWb9BcFWpt12CHa8sX6vSBn6YevJYq9/b8zUqQkzs1tCmIHlE874O73teQSgrCRMqhQXpsqPt/h7qPNyZbIoh/8dfs99/qvYRY3eB43eT4rNM5Kg6hYoki/Rs5gAvg6bZVb78zXenv6ERuQh/x1EML09gM06CkorzYVM7AoJ7eDjmLxyhN8rkCQNknYXxLgnAFTl72+t1/shbNNyCwFqt/vv/ZhcIJPR8YQPTyPhS9ZKmAlWEQB0Owa+Nni/LcC0kycQ34nGbbM/M55gkivF3rW0sKcR5oV5Xs4W7H13E8Qe2hTWRkQBNnZXEux6eV7fI9g/aS+CpR5MB9M+pm305HuuJAxpwb6OrIP5CEwFcbQfOwiSqZbMyg4lzJs6MaFboGcMBhjO9eN52C6hSAkW+vOyf27FBHuBqGoClABcB93/UpQDXX0P2Ur3c0VwPgyodTOwujIGjFrL5gKfxe70MpTnJhycOPAa5fWe5NcLvH4CIGWE2R/YhHiBX1e9mz0fmdCBAQIJ/Z3YwpjV2nRk6vSAl1OXeX4tAWBWYYDpRQJY4XXSfn/2Wbysy7qgztu5KIFnTTsE0HxTtb0fMdA1YLtnSsP8mnx+ptCTohuvf2Om7FpvmwDjWq+vzARfxMaAwN9svz+noNwI6ZA4UVAE2wTU9DvfGy4pAXpqOHdNBxo73D6mvTOHe35/Wg44SBmLfbFnEVyJYKN//K7PpGn6qyRJjgTuTJLkV5gi4sxd73uFNHRvytglzQa+lCTJe3hpRKqXpNc8CNpdSpLkMEexYMhTn+gs4OdJklyPyV0jgD/tKb/NBBDZie0ad2Lzs2LwSKCXP5AooJf7M9KcPESwdokYYAkmwEsTUoAJYLMwAX87JhyLNUyO+QJAMilb4PWo8GfHY8KjiBHqMC2GtBvlXtZOYnceTMiTpqPR85RgLGF1A2GSJ3KI/t5Xp3lfSWjujwmZMkNrIjQ1hdh6JjNCUSwXe1ulzWj2dpR4P5V4fcYSmpQHCba1PGyJX0GwgBVg2hmRMYiIotP/b8B1rn5dvjj1hLO+YiJtx9alozBBuAUTkuXf1YvQtimga4nnNc7rI/PJeQTBxUIvt5HwrXqa8FUZ4m0rJ+idRWhQ4X3S7v18BEFa0I6946MI1kEIsCCLhHyMZU6BvEW4UYb5BYlgoYOIoTMHkxnqvM9HeB+IhEEmmPoVqJGGRWZwosMuI76NNs8Hz7fO29KfoDKXT63M5yCA/0jCX+5m/5XvlYIGVxDmgsMIeu/NhGlmmZ/bic3OAkAvsaP9G9NBwp+D6f8uZZd7UcJk/9eO+tGZ82Bf8aTM9RnQdqHHs8EYzpLKoAQFmwAGEQBiITa53Ju5fhJhhdfmv1qtdzWn2gR8mnCAVdybKabV2FxXZhP2jbC5qSxX5ublZfApf+ZEbJH8sBt93JlYOTLBeggT3gUGxmO7Yh+1w7xT2umeVhT+O6O8TXXEbtFQehJCNNMTEAkcqF8OxeonyeRiwnYbwvaYzHGD/472cqtTuDmJPAqwftUe+b1AbX5oYaqt/I5uZ0qYhO2GqZ5TCLMLldlMgL9PE46y0vRU+P0Stx/BQPIjvqUzuo/1lwgWemN45RfSLq4jVgy8ARkGw23thAGyQJAombKaoOyvQLzS6wgAgS0Wf8cmJUlyCMZP+PE0TduTJHk1FlXfdC3OzcDwNE1feLn7Xq7YvS0jU1Ydtj2xV+l1DYKAbyZJMgbrtEbcQDtN078kSfJLTN55EbhiT8xwSgsxIVwCVzU2Jw3wAtZg83QFJmSWESxf8lmQcCVfl1GY8FyLzSMSxh/F5rn3Y4L0ToKdawMmYC/C5vBWTKDdiQmGVdj8VIPNp43YnL7c6zKCiIuynQANvbx+Qzyf5X4tSyQgEgfN4zJ9e5Rgi5vj5cnJXVYSYtgSiNjq/XQ+JtTL5EvxgDoxAVS+J4UE0YNiJHUSMZoUjHW5990OQuvRx+sjMKlgnBCEC50YoOokKKvXeLsqCdNr+Qhv8PMCrb0JEDnEy5DALza4nUSQ1zyv1wIiqKk0dE97WfcQhAMy3Vvn/TARW7uPI0waxXAmljUB9C3eltO8PsMwcDAn805EwFHg/YD3/0Tgm/5sISHf7CR8jOSbI4INxQQS8KnDvo05hC69DNsYPY0giRA1tjSIopzv9L5ag42Hh/z5EQTQLMJATT2hbRNFuWjkx2fOrSSIELq871d43fp7PpWelyxeHiVMNGWSWUiY1O1L2gtN0EGK7IPpb0ySmAp3Od+X2FqCcPqRMDkE+HPGJ6jSPoZtlX69j5vHbY9nni0KQAC2OB1K+JH8HvtwBThEWy3n/rX0FMSHQd6MdvoeYlQ7m28scxIBl5FEbjCJMKk6FIuVs8KPO7Hdruv8mRMJUKHj7J75MGxhmm+H3duKggEPnBq8CyblGQgBW+g+Qtx3Cj3N2aQRmuS/8718gZ5a4AeEZqjT/5em6RRMu/I44YfTnMSOpfriOYIYYqqXuzBT9zanDAfrxzaM5UlpJrH/PsLrMd2Ps8NHZiLV3k75EZ2LLYbFfeLerIZKtuJ1Dmg24eKuYlMtxFZnFdBOcILf7ee2YWNWq3ijn9uYuf46Tjv5uzUxSZI+GAD6WZqmegF7bVGVJMlEbCTfg0Wu+sheFv03W23tbXpdEyPs73RIkqRHYILxBuzzfASbO9YQMXTAdtrl+F2CvTU5Yi8kfAzO92vywygg2MyW0ZOqWI7oAkrlhJ+nBCf5/7QRIOMIQhgWvXcbIbjL10hxg9zJO0fxXEGYg60mTNUe9bqu9Xu0j9Pf+6I/Ni2t9D7aSJhbKXjlEv9fzvhbseW40q8PwIRiMWaVYz4lxRhIUJt7Zf4f6nWd422XKVWhP7/E/x9BxN3p9v7ZQrDiVRBkCiJiEOW2TAXzsOlZDHUKOis/EZFBtGJjpBcmqKvfhhMajSe9vWKYW4MJ/4MwoLgRA9/bCVPEem+H2NlkitaHYLrTu5ZZX6G/D5EqSLslkzcBxwv83eUR8X4avM/ESNc/09cFGMgR09xor+9qb9NibBYc5PeMJwgy5LOmulZ6e0V5fRoGPIf79VbPp7/3e733y2TvR5kACtzJz22Nt+NBgtFtI+ErJ/8gjXn5lYlFThqjJwmKcfksrd4PpAUVSZL+x26uf+ogMcJrJh24xAhDsVEvjY924+VPsZGelNlDMfQwbpf7XUA9DBO6++IBLTGBNoVcPM1d47/IxEpaDoEYpQJsshFoGE5Emla6gFDBdmJilcyqlMckQvhuxrQcAlYiJdCOpmL0aLejzev1GT+enkJdYvGKAP473xbwZYR/1ECvo7r6eS9/qh/XYYBB8XJEJSvfGrAJXHTWMo0TKNLiX+1/K7ysYhh8ntOLzzjc3oXAnXx71PeH0DP+0SrCzAJsYl5I9ONabNKd6MfLscm/AWs/3gfvJBblN/h92v2EEDaUntlOsFAMhcP6wHNZrc46YoyCOQ0pNhCEMbWONxJjVXnAgasB2kdihKLalPF7IEaYt3cU2W7mdt8rECMkwE+AjWmafjxz/g0YacFbsE5fBLwnTdO/7PL8WMzT4W3Yl/JTYHWapp9jl7RrPfa2jH1Jr3dN0H5NLxJmNU2YwD6OmFNXEHFOZFKzEBNkFVCyAyMf+IPn1ZswRliBCY4b/f4iL2c5Jsj1x+bDLdiasMjzXujXBmTqIoF1LAGywAQ9Ob0Px6aRPMKHowWbb1fQE1iUYIKefJjqPZ9RhNComEBDiXg7xUTgygo/X+3tKMQE9xYMdJT6bwuh6ZBWbKv3Xy/PR/FZpL5Tu48iTO1avd6tXl9pdeQL0uRlKnBtb0ITI80NXvc+GJiqJ0iB8LKKiNhIVQRrXoU/2+Dna7xt+Z5/F8FYpqCvc4h4QDJ1fJrY25ImKM/7sNyvVWV+nyaE/97exk7/7YONlTX+f32mbLEZVmJgoCXz7BCCWvssjClEhAn1mBmnNF5b6KmNEiOc6Mm16dmWeV9riNAjG7AxPQobxyuJGFAiiRjpx7/xdyfN0jx/Tv5KWmbH+7WjvE3yGxuHgflnMd+tZYSvUjlhujcC+K4/tw77Tpd4f/QmgsnuazroE3Qw7d+U9YPQr4RECZxZiRlMePwZIYDqfgmblWb+ljba4XM+YjtH2KMDsY8wy8It1bmChTZgwr/AURlmtiULplPoyZr2IgaINNFXY8FMs3vEsz3fAiJ2zkzC5K7Tj2Wyd6H/ZmP21BJalwYMrEzy4zsTm6DmZ3xjboG869rp/kiRTVzTsIVAvjDyZRLZQqfnL1+Y/v+fvTMPs6uqEv1v1ZTKHAIhISSkCInBCAZCIDIJKMjwaGhbsaHtVmmVlgaHbn2v1R7k2fZr7XZonLAREWlRWlEUaRSIQiACkTCEhISYGAKpTISESipJVVLDfn+svbLPvbm3xntrXL/vq6/uPWefffbZ59xz1jprQm8upiy8GI/djrMujsNE07NIFp5b4v6eBfbAK9+MCSEWoUqXndItqGXGlJx1aFKDb8TvtwW1qNlbocNIQbygbnVbScrkiSTXiBWkt6pmBQJ1vRtNUnpMcbMxbQWOrYYxdfp9xW7YWk26Jt8YP9s1N5IU4bybZLm0CwxSUYmmvO9DlEBuhr4eIiI/RK/SI0SkHk0q8B0RuQ+9wmaijporRMTO8qdDCPeJyPWo2FIJ3FpEORkFXBFC+EPc33tJrwW6Mo6u7KPHuCWoG4wXCfbiYwN6H7Ag9PGo61MDek9rI6XVnYEKWrNRQXIO+mb/PPS+2YgKtVvRe/d6VNiyJAFTUEFzKilA2+4tFkBeS4olmRT/NpKUG0uYYDEwJky2xLFdHMc/iiTYWxa1h1Br0yTS/W4lKVX0+bHtjNimBhUQ58fjOxm9p5tgTty/eaE3xLZrSG/+zT3NvH7NEmPplYnbVpMsUU/HYzA3sRVxTJbAwNJej0UVklpSTOrj6HOojkRL3M5c7sw1byypaKclBjDFaHdmDFanx+JMRsf5mUwqDLuZlFK7lmQF2U6KLbJnlykdloFtdjxf5iLZQrLqmaVwI8n10ZQriymzhBnb0Wf/2Liv7bF/c+GsRq8BqxX0dPxvsb1W22l73N9ZqEXU5ntOnJO1pOvfEh6YEmiWM4vBslTf8+L+KtEEJGvR68WsSZYO3SyoppCvIRUMtmtwTWa/zXH+zyY9Ri2F/NOk5/v8OAf7SIkulqPn35JkPIkqyL8pgZXmaJFwbQfr/9EtQYOGgWcJylJFSo6QdX0jfp6P/hIgWYjMpLCJ3GKrVrxmA7lv7rMxGeP0a358i1mAfojehEy8OR+Vf7PZ5o4iWUh+iLrOmRudpaU2aw+k4M4T8/a5IX5egDrn2EN9WVz/KrnYPmeR4mNsuSWEsKn5GnpTMQWiGRX3LD34HaiClA1byWZZy3ebs2U2b0ejN6R6kn5wVezjU/H79eTWM/oiGqOUHdPjpDdqC1C3PNvnMnKTrO2P60z8PQ5VtM7PjLs59j8rs906ci+rbHRHMGvihvj/9SR3NsPc3UCvxYXxoLPKOyRFZyR6bY7MbD9QrUDQa0vQ6AWBuZ1YgpYNv2Kp3cUtQd1gPyrsWkzAelQBMhe4s1ABzxQecwNbREpPbbED55PcrsyVdzy5ysw8UoKFSaQscnvRe+FW9B7+NvR+Y1aOSlTgqyDFQjyJvtBZSopZ2RC3u5QU6L6KlLp5E+ktejPJQtIY245HFZ4NpMQL7agiMJVUELU9zscBUh2YzehtzZI13JyZkymkFOTLSVn0DielzrbEA1aHZkrcz4LYZnFs8wzJojIntrVkCpYlbTHwLpJC2Rw/70AtB2PJjQ+yDGE2JrNG7SZlBpxJSjZhcUgNsU/zLiAe80OkNNuW8ttioCzb2QhS0g2raWQuj5bgwpTDWagSawkBLJthRdy/WYJOR8/3haTsdQ1oHI+lcbdxmdK4laQMz0Cf6VtROcNipex8bM5s30yK8TJXvVHo89RqR+2I21omN0hxNttJilUdKRmIZcWrRa9PS5FtVrgDsb3FoG0mFbo9J25ryv+UeNzmymrWzEaSwjcblWFeiMdvv0e3BDmDi1aS+m9KULYu0OrMd8OUovnkSsnb0Ku2LrN8Azlv6k8cl6w0kAT/O+N3AZZtg7Pj9r+In81K8xT64zBxbgH6FsKUpGloJrpzSZnLGtAbkwnm30VzUtXF73ejCoRZJ/KzKZvlwn78ZgnJ5qqaEPdt+zSf3qwF5O8z43wTqjiZ8nYV+lDOqZhCskY9i95wzPXgDlShWZ1p+3Ds0yxcX4z7sdDzBvTYzWowK7OdjXEauQVbx5Ksd+b/fVJmu5EkhRVgy26gCdbF82dzdtB1clxUfJoyy+tISQ42kZygQa+pDSQlaH7ccRNJ0f4tKglNzPSRdYcb4pTIEjTccSWoG1h9mrnoz24eKWh/Svy8BFVKnkGtK6A/59Ek63AzakGagwpfds+0N+CWHOBx0iNlIXrvtWQGlrnrdPQeWkNSyvaSrA+WQMDScs9E7/1zYpu3k6vcWCppi/uoI2XEs7pB9tZ9B3qbmkdy6VuBCoqWlMDiTSC5W00gCatWE2c0qYglJIsFJLevTfGYLe5lYZzvs+KYLHh9dpxzU05MYLYU5GYFaECfPeehlrnZqPJ4RlyezbxXi758HIU+u6eTYqjWxzk/MZ6H2aTU3Nmg/SkkBciUVcuu2hznwJQ4eyFoFgxzGZtDUlh3xuX74t+paIIFc8WbRopLsnmyWCazpGwjpVs3d7PNpFpQFpf0QpyL+swYLe7G3PxeiNutQpWP+rjPFbFvyy63F1V8TDmaQXrO2jnfiCoja+P+HojnwVzV18e+rRCvuV7Wxvmy7IL28nMs6Vozq+ROUlruNehv54l4DuehSpdlNqzPnAe7bhvQ39K82Mf99B7PDuf0DdlHvwmR9obd6gZllSQTWo3foo7dtv632s9hsc1rS9EnYFTpVyyZP5G1AAAgAElEQVSFkQuhKX5fZm/sJ6cumkiKxlGTY2axDfr92Nl6QzLLgz1EzEoDuSmjQR9kVkMH1JoxmiT8j0QF/0fj9/NJ9SesvytJ7mfmr2sueCtQIdTiewxTdEAVik0kK8ta1KJlD7rb0Bvchrx9mKJlsVOmVF0Zj3kCSQCeQIo1MlZktjkBVYhsHw/HZefG70/GZTamWcB3W+Ds6tz+zRr1Wou6sjWQKYA7DmhKbbbsJrmwwcFkGyPj+W5qQjU5s9qsywwQUoXCpsz6cfHPNEBzd7Pr1yxBWYZYWuwsfZgYYSjjSlA3GIkKevNQBeU8UoHJFpJLbS1qJVmCClumFFnNn8kkwX1R/Ax63zqalAoYkluXCeUzSemdLb7CkiqA3oPqSEpMQ9y+DhUYp6KCtWXCAr2/WUzIPPQ+bcHxFq8zixSrtCEeiz2H1pCsNtNJSS4trmV33N8UUuKFBvR2Vk1yaZtESjYxiZThzdzotscxHE9SYmaR3vK3ocqHeT/UkZ5nLaSXbaNISuM8UpbPdlRxuSn2uz32uRM915bNbGycy5Uk69lENHuaZTGrRYX735AsFJYpbgIpeH9rZoxWIHQbKeZlBynBxYmkBBHbYx+zSUrZH0ie0mvj511x3bxM33Zd7I1jHI1e18fHealBz+9MkkJcGc/XCXHezkBfUs4i1byqILlumiVvEcmiuSqOqSb2Z0kHzIWvMY4xm2FvJvrbOY+UGtysgI+h7msrUHFreTw+63MJyaoyk5QQ4bw4n9vR39so0jvr4+KcryVZebdnzom57Nk1105KX14K3BLklJ8q9Io3CWpT3nejJe+/YdnjLEmUSd+vj8pP/JxjrtgJTVbUAPROMJKDT4umOl3XkNnkoFM1GkR/dnVSdM5FFRhrb0kYtmQ23xSHZtajJXEbs8qcELc/KrPNSaglBfSGu4HctM8TSBYTUKVkLckq8sfomxRz71iH3mCbMu3NPY243TJSooItqOJjukEDyaIDqrCsIyWhOAWd5nzXsz+QHnhXxWO3MWWtVADr1sKC2Ul/eBhNaW0K6cHMbZGjquHFbXCY+UQAh83OKESgT4vdJJfLqPA0/TJ+P5cU20Nsl83sBrkKjSVJyE/t3kSSmI5EFZ4j4/dXcJzOcCWoGzSib9vbSZYay3a1Br2XLUQFT9B76BOkt+mXokJVJUlReCcqPDaQXMvOQoXj04EH0XuXxUE8GLfbGP9mxv2NJyUt2IoKfM1xnIeTAvct29tLpDTeZ6HCXS1J2L6bJCBPJNX02R6Pf1f8eycpFqc5brsqfjYB2opjjifd4o5D79Pb0Lf8b4tj+l6cB7O02H4tfsNioiClCrcSBRbEnk1IY1nM2km3W0tcYZYjczdbH/d5chyXxVNVoM+QKSR3vk1xXp+Oc3oCyWo3A7VYZIV8q4XUGP/mo88zs3yYgmVWJ1PoziFlpKuOx/dsnAtLaDAzjsesQfYScCq5iTCaSda+KXH/Zk2aQ6phtA29XifEY7cEG+Z9Min2W48qTjvIVQYsrszc5sz1/Kw4J5b8YDIqXyyN246KbZ+M/0fFtptJiUbMlc9cRC2xyCJSJkWr+2NZ9EwpXYqeZ7MC2YuCStK1U0tKBrEZVfYsy2ALyeo2PY7PrLalDL9t77zJsEJE5gI3oJfar0MIpSrLNMywx30rKiDadzPDmMC6CRVQswHmlrMTVEqeTHJ1In7+JSqoNqF3r/cBz8X1Z5L7KxnJQevBwX2SKoAcWwcvLiQpYBvg0ckcdJ/67gb0ThXrJs5CbzqW6cyoJ1l6QG/W5ja2khTQCXozuoP0Fu3V+GeKVq0OI6cmkFmZpmT+TyO3xo4FlIImM8i6ntWiN2zTI9eRitZBKuBqrgEvbgNGavHQ11rgqWp4bQOMrEs6w4LYr1ndflWtx2muhVvWahILU1qOnQ3LWuCw+IS0+TgYLt6in4+N6xsAJsftY4bA1wCaCsT6xLTqBxXnczPfbZkdOJnv89HryRSeySSl2Pq29vn1gUz5GcJWIHC3gRLhiRG6QbVIGEEKbrcq9/XovcoK+M4lFSxdR3KbG08SpKxI5Omk9MDbUWF7Msk6sBBVmKww6nRU+To5bj+HpETsIwXHW0zMPJJ709LM91pUWKwhuSzZG/nZ8fODqGXf7uENpJiYs1FhtZpkpToHfRRaAU0T/PfGdeYGaALnPFQJM5eqZWjwu7lLz4lzYnV6tsexNsa2Nh87SMHultp7dmy/nmSJGpH33/o0Tic3E5sVA60gxapYXSDLlpeNdTo6fjYFcwMpc1jWugcp7TYkIdqsHcT5sue5xXXtJCmmkGo3PYY+txei58hiZMxN76U4dlNozXq4E1XMHyMlVhiRmQNTpNZn5mMDer6noQqQZYOricduLwDmkZ65lmACUhKQavQ3YWOeQnKnM6W+klSXqoZk4TLRxxIWVMdxPkTK7mqFaU0RO0By53sn+g57Lsnppy4em7nTmYJjxzOKFOe1HX0UL0LlDUvusbYESQsmi4QrO1j/1S7sQ0RuRU/tK4VSnsY2FwE3otN8Swjh8x0t7wnFxtHdfYjIx4HfhRAeFZF7QgiX9XRMfcnAS4yQfefZWmC5LZtBrlnBnkjZgPO6vDaWdruJFJX4S5LiNJFcxcliQbZl1s/OfN+NuthZXFId+guN/Y0cB03bDh3DrOpclzlIwv5h8bOl7a4lZrazPizFckSqoyIQx3zsOFUmlmWVv3HkcBiqlBx0C2zRfkxJaiC3fpLNgbmJ2bhtGE/FQ7YU3EfFMUs1BHuC5Eck7gYZl1tSMmvt2hLT5FimvhetEGnc6chqfZiGTLpqqYNgCm2dzsWLFmELqqBk43U2cGjCjUKuazaXdZntCrXfSW4ihJF530Hv2INJ8ellYoSaBYEjOkmMsMUTI3SGK0HdYJxIOAMV1O5HhUCrbm/ux7UkK4FlDNtIUpzGofdoi6+xoP+XUIHKMnJNIRVEnYIK/eZyRmy7Iu5nMqlI9GJSJakT0Nvj5jjWA6gCNQ0VTKfG8bTFfVTEthacDypQziC9fYdUDLMNdVWCZM2fHsdk7mCmlOxFFY9qUjYzC37fSUr1bSmT7UWY1ViyAHizJpnSOJVUjNwC37ejj2ErHDqJlBDn/DiHDaS6MXNIKc+zjCBZOuozy/Pf/I9Az5sVJ7VMdNsojFlKakjCvr3fMpfDFpLyZi6DZplqJhWMHUtu/JKlcDerkxUEPZyUyKIxjnkfqmDYNUb8/ygq8B9Oqse9kZSdrpoUp2Wun5YAwqyRdagyu4+UHGMaallZRMr89qPMvFihVYuZMjdTi3vai15v1bFPOzcWF2RZEWtILp02Z6aUWkHZhaSU9fYyYQYpBf3xcTw/RK8lO76ZpKxw40lWo0W6vtcPnCNFwp92sP7rXVOC3ow60dxepO5DJVp74QL00n4SdZpZU2h5CGFV3vZHAk0hhMbMslkhhHV57Q4ZR7F9hxBWiciJwL/mDfcv4//PoJfBGSGEMzs6/oHCwFOCDLs7GPmC4wz0KdaaaZ/NBpeN9TDMVWl1/GwCcDZuIyskmwBt0fcnoncyU3pM0bKnjgm+lpzh3PjfBPPJIJOjJeK3sa1tX0dytTJlDYqnWLY7d13skyKYEtbCQfcvmR3bb4j9maBuroFv1HYHl9v+7ThNSlib+Q5JmdimRWubNsT9z0fviKbI1KFPxGhpk7o4nhZyUpznnMPdcZ+2r+xx2RiteIIdmy1vIp27WaTzM45cRaUOVYpNadyNXgt2/BvIVZrMPa5Q0Ev+suz3waIAQa+VoKoFgXGdKEGvuRLUGe4O1w2aUEvNu1FhyFI/L0OtCBvQGAV7216HCryWbWwp+oZ/HCpQWTC3PY4sUPtoVDKwlMXzMtuDCnpbUUWqhfR2/bHY3zz0dgN6OzueJEhXx/2bNeQF9DZqFgxzFTKLVrYwrD0GrVZOC2qZqSal0Tah9w+xvQntdXHbFaR6QZBcs1aREjBY1jdQqcyKgLbEebGU1dXxmM2la3Kc73Pi8dmjzBIFmNXBUiabAmdCtsU97SRl/7PaSFl2khIImJXPaCQpLNviZ1OMauL+zXoxk6S8LI5zbJazlaRaNqPjdi+QgvYtIN+K19q8TSa5ullRT8vctz/ue3Ncfw4pKcecuE8bZy1qLbmQlLSjOfa5hKT0msIJapGcRHJ/NPfKM+I4p8Q5sUdvNquiXe+WPGNfHMciknJqqc2nxeWWSXEuev1tQx/HFl8EKTHFUlKMEyTXwLmkeklm9ZuLKszPor/1yjjfo+Lyc+JYHkQ9a86J83YvvSegv8UOOEJEsk++m0MIN+f0EcIjsehcMU4D1oUQ1gOIyJ2oEfbhIstX5W1/DnCtiFwSQmgWkQ+iOVYu6cI4iu17VQhhBWo5KsR1UYH6aZH1TpfJv6ONzFuWH1yeH6vRSIq7AP3FbiC5N23I9Gtv+u2X35RZt4FcJcCC5YltN+T1lbW6/BR9Utr6dRDsDm5jNpc+s5Q8HfdjitdEcl9prSYJ9fF7MKGezLps+8kk1y0gmODeFMe2GnUFzI47qyzMj3NgT6vJ5GY4s3WZeWtajT5R60h1c2zu15JjKQlrM31UZ/qclenzaVQheTgzBjLrrf/f5q23V2KWE9TGZXOTNXnZUyKbfCN7PeSzE3VrG5tZZufKFKusSycMLgWoBJjrkdMrXAnqBiNQwXQxev3dhcZRnoUKhueRkrqY0LgdFWqWoErCIlSI24a+b3sSFU5PR4VZUzB2kQReE7JHkCrazyAJe7tIhTBNOZiDKj9PxP6sJtAJpJTAVp9nefy+jxRP00aSfCxz3ESSALyflHVsISn5g6X/Pi6unx7nywR/UzAszfhEkkBuweZ1qAB6Rty/ZRczC8veuOwkNAbmBfR2awrIVlI8C3HZmngeTODPpp6eTspqZu8J95Iy6o0lpWO2AqsvxPEvJ5WnGEuySFhKbYvl2hHnZCupHtQD6PU0MY51FCnmyPq2Oj9z4jEtQh8n09BHkY1jM6qwbEetlC1xnJZNrjJuvzVuPz/2fQ76+DYlYVWc54finC+N52E26s5uj7RppHpTlnzBUrVbId3RpEQR5sI4Cv29mMtaCykTnNWIskxt5ka5llyr19w4f4/H//tJrpMW89QSj9P2OSnOsf2WLEvhWFR5OZmUeZG4zVvQEIFqkoJqZUZOJcU2PQiHZLjtDZ3EBL1agjd7R5Ob6Lcencpiy3MIIfxYRI4F7hSRH6PWmgt6ue+iREXq0+gl9e9d3I/TZfKVIhMm82OGyCzPuiqZI2t+n02ZNibQZpWiyeRaRLKWnqMzbax9Pqsz2+8m/Qp3Z9bXketi9TS5itc2kuBuipptb8dt63ejtmsT6JviNg+Ta/GpJvmzvZ6DmfMgrjMLCpnPGUvPwb7JfM66fk2M+7G5en3czo7fsqqZsmeWHmND3j5s7rNjyLfCbCLHVfCge2TWqpbt2/rPpq/OYgpN/rVm7CTXYlnFoU7ltt6uvSaGlSIUcCWoBLgS1A32owL9QlRItJhFs9CsJAVbb0UFT2Ibixmy2BiLU6wkJRxoRn/mFbH9SlLNGLvVmPBoqbk3x+9LUSHUkjRMQIVHy8S1HX2HtRcV8EAVqUZSQdFTSe4/Zn0wY3sLKYbDjtf6McO9jXEzKkjviMdg2bgsAH8dKlQ2xL5NoLQ+JpGSDliB0UqSdWF2HFc7KXWzubxZqulNpOxdy+P+Z5IsXZa+2mrjtKBCr91mTeBdHvveTMooVokK7RtIboOW9W8zqUjuH9BrZmrsazGqIFrmvYvjMZlbmWX/q4zfX0Afv2bBa4zzvzMe4zhUEbQ4lgWoAnQGKTGGHduSuJ+6eBxW2LeBlPxoH+mRMpeU1vvn8bsl1IAUK2NpsO+Px2+pqy3luRVdtcKxY0mFUC3JwhpSrNmFJDc9S9M9Ne57Zez7BZKC3hbn1eKC9sZzYNepKWFrSPFfdq1sjvs15a8mrmvPzDukWClLEDIHVdy3xc8W+1QKupAdbryI3Az8IoTwix7uRgosCx0sP3RhCP8WrTg3AceFEPYUateNfRclhLABuKaL/Tu9xtzjTKDMCqKQLEeFrEP5QekmSOe74DVyqBUgK+yvIzfTVxMp5oNMu+y2Jqhnx5VVlLJCOSRLRL6Abttnt7Pl+S50pixYW5uHrNK2M699VuHYkLe+lcLzml1m1pCsTX1sZgy/y/tux5j9nj/3+XOQtfZZe1OyCqWCsfOTVUiySku+wlIoc1u+EpM9362Zz/lKe/53x+k6rgR1g3ZSspcRJCV8Fiq0TUaFysmo8NeOCleWRrqF5GZlTCQJv3fHZZaFzPZht9696BvrdaTECqPi8mlxHxYTY+UGLCFDJSrAmbvRjPi/Pm67nJTmewMqvL+LlPltL3r7ejaOYReqqJm71pK43DKvnU4qsgnJ1cmsHbatCf9WQ6Yi/s2KY7B3cqtI9YhaYh+jY7v6eNyjSYkUiO1BlZt7Y9vNpEx4beitv42UrvwE4LI4lw2kVNWL47mweChLZ27C/KbY7xpSrTlLgrEsbjc5Lj81jr+BpPQ1kqwcFSQXxOo4vs1xbN9BFemdpMQIjahyZdYoS++9LPY1AVWMJsfxbIxzcyD2Y+flxHge1sfPLahyY0r/gjimRbF9ffy/ghQLdBZ6zeyL2/2SlM7dUnIvj+O18hvGBNS6asqqKXBZF7rNJDfEKeh1Byn5hJ37pSS31JfQa3w7qlzbb2RGnO8N6LV2HCkb4Vb0vFo83DaS6+pDpBTem9Hfl1koe0sfJfypJ3mcgk7P5g6WH4KInI1eknej8TrX93LfzoCh2Nv0fKUov90rHbQtJMAWEl4LOR93NIZ88q0F+W1fyVvekTtVY97//O2zsVTZ48xaOAptlxX28+cnf1zWX3aMXZm3xiLLCu2jWJ/FUkwXWl5orrqzvrNrbjAlPOhDPKT/ELqbTbSio5VOYR5HhaZ1mb+x6JvqFlT52YgKztNIlhR7Uw4qOJkis5yUES0rPFsttLeRBLZnSOUNpqMC9VhS8UnLaNaGCnKmsFgcDagAuYbk0rYGdeg/gAqWNXFfP4rHNhkVAEejQvIz8TiWxc9WD+mZ2NckUkHViaQMaaaEmGVoUhzndlQQNYXLAu8r4nHZ+OtRK8KjpLfwj2fmPltk9HKSe5zFajxAqtNjGc0ujG0WoEK7CbwWJ7IGtejMi38NpMKb42O/jfE8rEXPt5WGqCTFd0wiFdTdjArpZjEy5a0inrPN6HlcG8dag14nZknaFM/Pk6TYrMa4zXxUKm0nZT8z1+E18bink2KJTEEza9cmUmzWelJiDWJbS6NtSRjMujSTlN1wHynhx5y4zJJZ7IvzuIEUnzMevTbMiteMnnN7cWDprreT+/uwNOem3JliYmHctSRXw/o4DztQBd2SYqwixRxZceEl6O9tW9z3vLhPS5pgCv2k+H1b7K8UmCWo2B+wK4RwTS+sQKCXzmwROVZEatCqJfd0sDwHETkZ+Db6M7samCgin+vlvgc8IvIJEQkickTnrZ1ceirAtpJrlSo1vem/0DZd6asr27UW+Ssl5ZzXUjNYxjn4EJEJInKXiLwgIqtF5PQCbS4SkTUisk5EPtnZ8h6O41YReUVEVuYt7+4+Lga+FkK4FnhPZ41dCeomm1HFYjxJ6DoLdUs6mVTkcz0qoD2DCnQWg2CYkGfYq9HxJGuIFaa04PyXUMHRBP8d8c+Kpp6FShPTUUF8Qtz/6aQMWQtQ4boZFUSXkvsWfTEq2Jm70aS4L3NfM2FzBqmcwGVxG1MKJpIyaD0Z52wFSZGylM2Hx3Y1cX+WBW5xPF5zoVsaj3Miqmx8JI5pexz7KFSBmRE/V5LSU78U52UmKszWxeWW1tiSQNxNEqp3xP2fEY/puLifJWhqcCuOaskdrHzE3Dg+mwfQ6+JdpPgwE8ztWtlJqk1jCuyoeI72k6yHkFzJNqKK3XtJboK2zuoy7Yif16ICekPc77J4HOZitzDu3xTDKXEeN5IKk2bdjk25bUevy41xvSn3I0gxb+YOac4Ta+M47HdgSn5NPMZqknUSkiVne5zbneh1ZFkULamB1cOyWCtTUjejSmc7eg1YnNQyUozRjLgv8/I3y6MlzTBrK6hCa3Fi40lZ8U6gdMVSQa/5Yn9EdzgR+aNi24vID9HbxBwRqReR98fl94nI1BBCK2q5uR/1F/pRCOH5YssL7GIUcEUI4Q8hhHb0UjzkFXyhcXRjHwMKEZmOxj293N9jcRzH6fyVWSeO1YkbgV+FEI5HH3GrsytjQppvoMrFXOAqEZlbbHl+5yJypIiMzVs2K78dcBtwUVf2HdedKCL35v0dCfwXcKWI/DupRHBRPEV2NxghEiw97yRUSJ9IEuotBsXidiwV71JSNrHJFA7xnIkKlOeRCn+2oQLheWgWtMNRAWwvqpSY4LUQFdDMLc0yku1FhfClpGKqliVsYfxsBVOnx/FeilpaxqIxJ6vits2oG5YlP3gn6rpk6Z5NoJ1GqsHTQLJqWN2VE1GXuhPjvC0kFTMdjypvbbG9ZSKzeJJz4nhmkFJQr4pzbS5J+8i1pFTGsVjgv9WdMaF/M6r4rEeVnuWxzeMkwXgfqe6O/cJHZfoxlymrvWRZyyxIvyHu22JdrN7MVpICspGUfIG4bda1rIVkeYAUH7M8c1ztpJo7W0lxNfPi+PaiSuCOOP+mUB2d6fclUuzMKFIChZmkGkaQkj7MINUVmhb7MoVvB3qdriS5v1WQakidHNs/S0oDT6Yfu9bNNXBtnKPD45haYr8voL8TU2heIrk85jvTWFKPLNl6UZPj+Ceh16IlDJkV+7Ois/bbm0FyOy1FiuwJIuHcDtb/vAT7cLqPiNwF/DMaIrcghPBq59sM1BTZjuP0P71MkS0nh5RjtRjjX0JL/ho52URFZBxRjAhFlIFoGbohhHBh/P6puOrhQstDCP+at/0VwLVATjbREEJONtHYtg64N1NSoeC+8/dRZNyVwE9DCJd31G5IW4JE5L9F5Nn4t0FEno3L60SkKbPuW13pz66QdlRoayQlP2hBBeelqCBlblB7UUXJ3qZbe+N8VMmZQcoINiG2qyQJn/tJ2eDmkd6mz0AFtmfi+llxLLNRoc2SGIAKn6NR4dPc4Ky2SwMqIN4bj28XyRq0K+5/PcnaYk6W+1CBdQQpj892VEg11X89KsA2ooJxHenN9vdjGxOcs7FN7SRLyaWoq5YJqY/FsS8kWZEeiH2NJWVVm0GqOTMxzqXFp9SgyoClVrbEC6YArYvHtiMut0xuq1CBvY2U3GIm6jbXGI/1sTj3zXGOzCXNAvWXkrLSbUKtG5ZtbGY8H8tIRU2b435XZs7Vkrg/c6H7DXrunyApfdNje7NmLEXPp90FR5Oy7tXG4z4/zrNZv/bFecu+urHEAi1xDs6K7bZyUCFgP8kDfFE89tHxnFgy2+o4/xa/BClLoZ3XfaTfhVm5WjL92merZXVx3CYbeGKYVa8i9jWCXLe8nXF+1sXlFgO2Dr0ul8f/pnCNjsc8p8C+ekonliCnjxGRy4BNIYTlXWh7jYgs0zTm+ZXHHMdx+pRXQwgLMn835603T/bvisgzInKLiIzOa1Moo+fRHSzPIYTwY+BXaDbRd6PZRN/VxfF3aR9Zonx/M3A7XcgmOqQTI4SQ6g6KyJdISa0A/hBCOKk7/ZkQchnJid1yqtib4fNQgdHeQFsBTUs3nB8BbO5uHWHZrPaSArvNmvRSHNckVNA1Z8pnSTFENiZQQe8Z0pXfEtu9QErNa+5Fe0kWLVNIsimSx8XtbPwnkqwGzSR3sXNQpXAZOk/VqNXF3L/2oUrKithmBCms822ocmPza7l9TKGzFNQmwFt68R2oYHovmsnNrHCWztosCVb81jKWmaICat1bhVrTGtEgf3NNm0OyApqSZGmULfZkJ3rep8Z+LClGLeqiaDEoVgR3Dim7nGWnGx/3sz4emznr1pIUpmcy82CK+VSSK+HpcUxT45hGxGWLSbV87JisFs540o9lLynuxtwAN6CKz9p43JagIFtY93SS9XFUHO8JpFibOXGsV6MKXA1JIVtGbnp4y674ACkOaTl6bdm7sAqS4mZzmq0HBcmSaNnoppD8uM6IfZkyar81U+TsZcauuE02JqiQdbcnBDpNkV2K7HBOHiKyiFQzOMvfo+m539aVfqKQcbP2OdXdLBzHKRPtFK+z1GWqUIePD4cQlorIjcAngX/MtBnS2USHtBJkiIigmudbetvXCHKjeM21xmqRmLIxHxVALRubJS2wOjzm4mRZ5aw8m9URsriIEaQsWZBiFrJYlq52koB3PEkhyr6+HEtKJT0HFeytJsoiVOnZFNeb4jM39tVIspDUk2IiFqBCazbbly2bhQqWZrGylMd3x2Vz4ngPxH4nkSwO5sIHqshNIiVkMKuTKUfZ9Mcz4j7uQQX1raTCojWZOZpLsp5NQef6AVTamYIqZdvjn8X52PmzpAam7O5FheO3x2OzhKBLM/3XxON9CD2nU0kJIGrjvkeR6tWsQxUJU0pGkyx0Y0kK7UTU6lER92FWn52kZBSVcbsLSdnQppOKtmYVTcsQaIkpLL36UlKK8ZNJrnqjSe6eVrNnI+maset5VzwXJuSPItWZ2kdurR3LumesRM+5XVf2MuGxTBtL451dv5+kfJqbaDPJxbIBvbYWxzGbBWk7h76wMEXHzq2lZq+gU8Wly3ShWOquEIKniy4xIYTzCy0XkROBY4Hl+hhhGvC0iJwWQthaaBvHcZzyEyiBElQP1IcQzGnoLlQJym8zZLOJDml3uAxnA9tCCGszy46N5r/F8QQVJNe9IcVsQMoINQ0VYrOxQZtItUVMUDYrQQ1JqZmHCpqLUKuKvSk39pMb3raf5FKXDeyuQ4Visxsuz2xnb/8tFsUsIyt7SLcAACAASURBVGtIb/itCOcq9IozK0DWutRGrqBqbbLl68kss1TNpnQ0xmPNKmurUEHU+jKh3f7Wkiwyy0m/htGosH1yZp9mNbHseKDC/Mx4nKfG43mJVER0LyqIb4jHNgNVCG4nd96tmmPWlNgQx5a1FljdpgvjNgtIhXPXogrQWaTEBKC/8tGx/flxjLbucfTc7UOF4x2o0G4WtJNJVo9taCKK5aRECGZpGksS3lfFfirjMa8kZb8zJWc/SQGC5FZp2daeIcXOZGOZNsU5tQKpc2I/5gIHubE71rf1Y8qmJZGwTG6QLERj45ycn5kn4nH8khTfNBWd8wrUYjSBFAfXGOfJEpRMIV3n9rvIZnwbi871gjgHI+LxTESv5xGUjvYO/uhCYgSndIQQVoQQjgwh1IUQ6tCf63xXgBzH6V96nxgh3sc2ioh5dL+VFAlhDOlsooPeEtSRG0MI4efx81VoHVBjC3BMCGGHiJwC/ExE3hBCOMTQknVvqBYJ9SQXMXsK1mfamyDVSAq4NkWoMfMHSWg361E9KcD7JZJL0lxSodF7SOmlG1BXJFMmslxMct9qIAXHmxIzHhVO15PeZNs6swiYW1oFqmRZ20nxz47VisOaW5UJ2+tQodMUBysamo1TmokK7xZvZEUrTUmYi76lvwR9hVCNCqM18bu5rlna7b3oXJsVYReqSFgKaVNUbewn581DGyowbyK59q1HBeYRqIWvlhQPMwE9h+bGZRaCu0jWkYXxf3Xc9xJSljG7NvKDDRbG7Z9BFRJLLDAWvV7Mlcxcvaxw7mWkeBbLgLYSVaBMEWsn1QMy90K7flrivheRa4mZFuc867o5CT1320lKwK7Yt1lGslnTTGGwgsDWZnI8/vPieJ8muSzaNWlxObNISq5ZHqvRa2cduefWiuGui8dlLqXN6PU/P85lG+nFw4x4PPlpr2eR5tpqYI2O47aMhKXALUGO4zhO55TEHQ7gw8AdUclYjyoqiMh9wAdCCJtFxDJ6VgK3WkbPYsvzOJhNNG7zXuB9+Y1iNtFzgSNEpB74TAjhO13cR48Z8tnhRKQKlWlPCSHUF2nzMPCJEEIho8ZBKkVCfp1qYwYqcC1ABb9KVJgy9zHLCmc1g6aR4oUKlXfLx+rtmMBp8QrF2u4kmfnM8jIaFWxN4DOXo3kkAS9b08gEQRPkV6EC2n5yY0bm0HGK4Gxbc42yjHdWq8gUwwWkeTlAck/Kxk5VkBSqjaiiZHFAtaS6MjYPe+Mx7icpK9miqnbcE2LfNj9WVNYKjO4jCdnnx37uju2sZpFhx2TZ7yaRspY1kNword35cUx7SbFJ20juY+NRJWQqqcjs5NjPLFJCi7moy6Qly7CYmGyR3hNIQnsjuemt95PSudtyu4YtUxrkZjnszB3Mrqns3NjybPa28SQ30Xyyys0ckjJn2NitYHF+BrjuYv3Z2C3LI6TfBOixT4nfS5EdboxImNfB+sc8O9ygwbPDOY5TnN5mh3t90KzSHfEmf150wnBwhzsfeCGrAInIpJg+DxGZib407iw/QQ7TSHEpkATqnaTCjtUkBcjI1kiZRK4gbpYhw4RFC2g316T9pDiXk0lv4W0/JljOQwVF288qDg3gbic3cNwEUAvKN2FvKSow18TvWbewbGasmeRisUrmLrUdPSGrSHMwKTP2ZWiWtaWooL4GfeOfPTnT0Sxf+0gFNhtQn0eL+cimrbZ6Qbtjf80kS9tY1D1tchybpdQ2K4AVgJ1DShVeEcdkQrGl1AbNYgepns5GdM43k5Sy42Ibs2rMiv01okrMOpLyZoK+KW5mfbIaOBvinM0n1doZTYoNsliYrAK5Ms7/KPQ6OiGuM8VhZ958mzUme21mr6PO4mHylRqzhlriDHNpO5HCyhJxzNPi5zVxn9mblylA20jHYeuLZW6zeB47LivoS2ZspkxnrZeWZGNSHEcpHZS7UCzVcRzHcZwSMByUoCvJdYUDeDPwnIgsRz2XPhRCyC8p0iH1HKpQtKACmlk1ZmfWbUOFKVOOtpOsJ6Yg7CIpMFMz/dj/LO2oEGzuUrYPSCfVlJvt5CpiZJYb1Xnr1pCr6Bg2lmxMyz156+eSm+7YXMSIY32SZInYjgrc20jxIFMy2xZiPpoGuhYV9negguhdcUy2vc33Cei5MS3YirJamvOGvHWWDMGOBVL8CKTsGlNJ9Y8sqno7KnRvJ7dmkWUhayE39TjxGCzpw2KSlWoXKXW6pdPeEf9Xo9eAFZRdFtdZCue9pPpGlgEQksJiKd33oQpG1vXLlOqzMvMIuW6fcKjC2x3Mfa+CJNwvyay3xA+gys+cuP8Rme2nopZDI98nNuuSZ9djNobMfotkxpE9J7avfCVqKskNsBz0tliq4ziOM9Qxd7iO/pzOGPLucKWkkDucWRB6mh2qu5mlTiZZUTrDEgpk0yDb/ooVbe0O+W5OFgOVdZuyfVqBTEgWEcv0ZdibfwuoNyXR3LHsf/7+jLNIgrTF0Jgb4CZUwD0djTk5G50bc6mz/RLHb9aWfLJuWXNRS8y+uL/HOFRxm4zOtyVkqIjHafEoWXcqK5BrfYwn1QmyoLbs9VKo8GeWrNsW5M7f5HiMxdwYO+o7m+yjq+sKXee2zArsZjP8daRgFBubJcWwazLrZmmWwY7obL+dUQp3uFEioVApbWOFu8MNGtwdznGc4vTWHW52gK920uoSf150wnCwBJWMQlkktqFZx/ItKZ0VTzwn/u+u8pS1/JzQUUNUWJ9Pbh0Y218xBag6739HmLA5Fb2QrG5NVhEwd7isNWsnKpQWCsCydtk0fuvy/hvbSYkRQBUgs1osiuOqRZWdSlR4fjwuMwVpA6mgrf2ZBQdU0cnOczYupRpN2ADwaNwu3+K2jaQAzUUVMktQAKqMbY7HMYnkLrkArQi2M/Z5b1yWvV6y6dkLka/E2fyNiuPK1l4am9e2I+UqX8mZWGTd6SQrZzYJAnnL6knKxwkceu2NRc+l9ZU/NktPb66ooOc2e811pABZtrqpHbTpKwJeLNVxHMfpDEuR7Zag3uBKUDdoLbJ8KYf662czrBVicQfrQE9MZ0pOV4KYsorGGnJTfBfCkjZ0FH+QP+7NJIE2f0zFXNoKCaVZoXVCgfXGVFLshmVVqybXCmGpttegQe2W9hnUIjSe5A5mGct2kivEj0UVqJUcimWMezRvXIWUSzvWCvQYR5Ncy6zQ56rYpykuK9DEECNIxUXtXOYrWtnMZB39oO16yj8nlrmwq8zI+17MKvR4gWXZ+clXvEDnOl95ayS5KeYfXwV6PPkWHJtzu97zx1yorSmmhX6X+b+brKI2kdLhMUGO4zhO5/Q+RbbjSlBJyLqv5CsuHb1RL7Qum9GtkPCdpZiC0RGdufuM4NDYj3x6m3mrK3QUoGVpj7NYgVEjmwp8aV7bWRSOdzJMycimKh6f18ZuL1mhvliAvAX0N8T/hY4t/3a1Hz0Gm+usEJ6vaGUVmI4si8Wup0KKcfbGMC1vXVeyGRp2veX3AWoRy6cjVzA49Pg6s6QWUrSKYb+n7PVt47bjMKtb9nx1K5iwE7pgCfKYIMdxHMcpAa4EdZNCrkdZgbwzxaUzelJvZCoqrOULfD05uaVQcPKF6nJdZMXcwLKY1SdLvgKVjykZ2bkwpSl7LNn9F5o3E+jr8/7nWxo6cp00i0O5gvCLkVUuOlOKO8LmvlAfhd5TdXZuuotZJk1xK5QgpCPyx5198dAVl9Hu0gVL0K4QwjUhhF+UYfeO4zjOoMATI5QCV4K6SU+sLx2Rr7iYYDg3v2EHbEaFtXyXpp4ma+gtO/K+l2scdi46y1JmCkxnVoaukD2WfXQcR1JMoM8qTAvpuMZSXxi08xWsUgr3hSxuhdzNClmKykFPk4EUmpNynRuPCXIcx3E6xpWgUlAo1t/pQ4rFYqwqsKyjrFwDib5Wvrpa4KnUVgbofY2YfFe9gUB3hfvuXJcVFLaa9cba1FWyBWMLkZ/tMEtHc5ItBtxbzBLkOI7jOMUxJWh4IiKjgW+ikQsPhxDu6Ek/bgka4OzJpDAfDApQT9nTT6nas1aJ/hrDYKc712VfK8jZc9qZstwT5WMGmsSjVNeOZ4dzHMdxOqc0liARuUhE1ojIOhH5ZHfadGXbriIit4rIKyKyMm95sX38CXBXCOGDwGU93a8rQWVkTwi9Fo7GiHR7n6Vo05X2HWWa6+6xd/c4u4ONo9CY+iLJQ1fo6lyVQ1Erp/K3J4QOsyCWm55cV92Zj5fiX6muX88O5ziO4/QFIlIJfAO4GI3CuEpE5nalTVe2jdsfKSJj85YVik64DbioG+ObRirz2ON3hO4O1w3a4dW93UiOJV0XjI4AXu3RoHqwzy6O6+CYirXf2/t9dJcezZONpbMx9WDMfXreutiu22Mq07myvks2RyWkwzH1Yj46ysTdJdrh/kYdXzFERG4GfuHJEQY6W16FG7qTTLGnDMTfWG/xYxocDLVj6svj6eXzYvP98A8dPSsAakUkWynl5hDCzZnvpwHrQgjrAUTkTuByciMyirV5uAvbgpbFvFZELgkhNIvIB4G3k8osAhBCeERE6vK27Wh89agi9Cy9MOi4EtQNQgidldnpESKybKBV9fUxdc5AGw8MvDENtPHAwByTEUK4qPNWzmCgXM+LfAby9dxT/JgGB0PtmAbT8ZToWXE0yZoCqlgs7GKbrmxLCOHHInIscKeI/Bj4S+CCEozvp8DXReR/AT1+IehKkOM4juM4juMMLwq5PeT7gxdr05VtdWEI/xatODcBx4UQ9vR2fCGEvcDVXeynKB4T5DiO4ziO4zjDi3pgeub7NA5NelusTVe2BUBEzgZOAO4GPlPi8fUKV4IGBjd33qTP8TF1zkAbDwy8MQ208cDAHJPj9JSheD37MQ0OhtoxDbXj6YwngdkicqyI1ABXAvd0sU1XtkVETga+jcbyXA1MFJHPlXB8vUKCpwV2HMdxHMdxnGGFiFwC/AdQCdwaQviXuPw+4AMhhM0dtCm4PK//M4HdIYQV8Xs18L4Qwrfz2v0QOBdNTrEN+EwI4Ttd2Uevjt+VIMdxHMdxHMdxhhPuDuc4juM4juM4zrDClaA+RkSuEJHnRaRdRBZklteJSJOIPBv/vpVZd4qIrIgVc78qJSzsUmw8cd2n4j7XiMiFmeUlqxLchfHdICKbMvNySWZdwfH1BX05Bx2MYUO8Lp61WgAiMlFEHhSRtfH/YWUewyFVnouNQZSvxjl7TkTm9+GYBuR15DilREQ+ISJBtD7XoEZE/l1EXoj3irtFZEJ/j6knDIRnRSkRkeki8pCIrI6yw0f7e0ylQkQqReQZEbm3v8fi9A2uBPU9K4E/AR4psO4PIYST4t+HMstvAq4BZse/UtYSKTge0aq8VwJviPv7ZrxBdKlKcIn5SmZe7utofGUeB3Hf/TEHxTgvzospsJ8Efh1CmA38On4vJ7dx6PVYbAwXk67ha9Druq/GBAPsOnKcUiIi09H6Gy/391hKxIPACSGENwK/Bz7Vz+PpNgPsWVEqWoGPhxBeD7wJuG4IHJPxUWB1fw/C6TtcCepjQgirQwhrutpeRI4CxoUQHg8awHU78Md9MJ7LgTtDCPtDCC8C69DqvQcr+IYQDgBWwbevKTa+vmCgzEEhLge+Fz9/jxJeK4UIITwC7OziGC4Hbg/KE8CEeH33xZiK0Z/XkeOUkq8A/4citToGGyGEB0IIrfHrE2h63MHGQH5W9IgQwpYQwtPxcyOqNBzdv6PqPSIyDfhfwC39PRan73AlaGBxbDTFLhbNqw56c6nPtKmnb244hSr1Ht3B8nJyfXSJuDXj3tUf4zD6c99ZAvCAiDwlItfEZZNDCFtAH1bAkf0wrmJj6O95G2jXkeOUBBG5DNgUQlje32MpE38J/LK/B9EDhvT9RUTqgJOBpf07kpLwH+hLhPb+HojTd1T19wCGIiKyCJhSYNXfhxB+XmSzLcAxIYQdInIK8DMReQPdqMpb4vEU228hxblXbx47Gh/qMvXPcR//DHwJfSD2el56QX/uO8uZMX3lkcCDIvJCP4yhO/TnvA3E68hxukwn98lPA2/r2xH1nq48m0Tk71EXrDv6cmwlYsjeX0RkDPAT4GMhhN39PZ7eICKXAq+EEJ4SkXP7ezxO3+FKUBkIIZzfg232A/vj56dE5A/A69A3R1k3gG5XzO3JeOi4Um9JK/h2dXwi8m3AAhbLXkm4A/pz3wcJIWyO/18RkbtR14ttInJUCGFLdDV7pa/H1cEY+m3eQgjb7PMAuo4cp8sUu0+KyInAscBy0Zw504CnReS0EMLWPhxit+ns3i8i7wUuBd4aBmc9jyF5fxGt9fIT4I4Qwk/7ezwl4EzgspgwpxYYJyLfDyH8eT+Pyykz7g43QBCRSRaQLSIz0eDx9dGdqFFE3iT6hHsPUMx6U0ruAa4UkREicmwcz+/ogwq+WfJiRt6OJnLoaHx9QZ/OQSFEZLSIjLXP6FvglXEc743N3kvfXCv5FBvDPcB7Ypa4NwG7zG2u3AzQ68hxek0IYUUI4cgQQl0IoQ4VvOcPdAWoM0TkIuDvgMtCCPv6ezw9pN+fFaUmyiHfAVaHEL7c3+MpBSGET4UQpsXfz5XAb1wBGh64JaiPEZG3A18DJgH/IyLPhhAuBN4MfFZEWoE24EMhBAvuvhbNeDUS9YsumW90sfGEEJ4XkR8Bq1BXhOtCCG1xm+uB+0kVfJ8v1XgK8G8ichLqQrAB+CuAjsZXbkIIrX08B4WYDNwd3/xWAT8IIfxKRJ4EfiQi70ezRF1RzkFIpsqziNQDnwE+X2QM9wGXoMkH9gFX9+GYzh1o15HjOB3ydWAE6uoL8ERe1tQBzwB5VpSaM4G/AFaIyLNx2act46bjDCZkcFqYHcdxHMdxHMdxeoa7wzmO4ziO4ziOM6xwJchxHMdxHMdxnGGFK0GO4ziO4ziO4wwrXAlyHMdxHMdxHGdY4UqQ4ziO4ziO4zjDCleCnAGNiOwpc/+3iMjc+PnTPdi+TkRWdt4yp31TJrVo/vobROQT3R1H3PY4EXm23HPmOI4zUBGR6SLyoohMjN8Pi99nlGl/HxKR98TP7xORqZl1B58vvdzHDSKySUQ+W4K+zhaRVd15bjnOUMWVIGdYE0L4QAhhVfzabSWoh/whhHBSqTsNIZSlX8dxnMFCCGEjcBNar4z4/+YQwktl2t+3Qgi3x6/vA6Zm1mWfL73lKyGEf+ptJyGER9F6bY4z7HElyBl0iMgMEfm1iDwX/x8Tl98mIl8VkcdEZL2IvDMurxCRb4rI8yJyr4jcl1n3sIgsEJHPAyOjJeWOfAuPiHxCRG6In08RkeUi8jhwXaZNpYj8u4g8Gcf2V108nr8XkTUisgiYk1l+nIj8SkSeEpFHReT4zPIn4n4+65Yfx3GcHL4CvElEPgacBXwpv0G8x78gIt+L9+u7RGRUXPdWEXlGRFaIyK0iMiIu/3y0ojwnIl+My26Iz4d3AguAO+JzZKQ9X2K7q2J/K0XkC5lx7BGRf4nPlCdEZHJnByciY0Tku7G/50TkHZm+vhCfGYtE5LQ4hvUiclmvZ9VxhhiuBDmDka8Dt4cQ3gjcAXw1s+4o9KF3KelN4J8AdcCJwAeA0/M7DCF8EmgKIZwUQnh3J/v/LvCREEJ+P+8HdoUQTgVOBT4oIsd21JGInAJcCZwcx3lqZvXNwIdDCKcAnwC+GZffCNwY97O5k7E6juMMK0IILcD/RpWhj4UQDhRpOge1Er0R2A38tYjUArcBfxpCOBGoAq6N7nVvB94Q238ub593AcuAd8fnSJOtiy5yXwDeApwEnCoifxxXjwaeCCHMAx4BPtiFQ/xH9FlzYhzLbzJ9PRyfGY1xjBfEcffalc5xhhquBDmDkdOBH8TP/4UqPcbPQgjt0QXB3qidBfw4Lt8KPNTTHYvIeGBCCGFxZv/G24D3xHifpcDhwOxOujwbuDuEsC+EsBu4J+5nDHAG8OPY33+iCh7o8f84fv4BjuM4Tj4XA1uAEzposzGE8Nv4+fvos2IO8GII4fdx+feAN6NKUjNwi4j8CbCvG2M5FVVOtocQWtGXd2+O6w4A98bPT6Ev7DrjfOAb9iWE8Fqmr1/FzyuAxVEhXNHFfh1nWFHV3wNwnBIQMp/3Zz5L3v/u0EruS4LaTF/h0OYH1304hHB/N/dVqL8KoMFjfBzHcbqHiJyEWkDeBCwRkTtDCFsKNM2/9waKPC9CCK0ichrwVtR6fz1q2enSkDpY1xJCsHG00TW5rNhzKNtXO/F5GEJoFxGX9xwnD7cEOYORx9CHEMC7gSWdtF8CvCPGBk0Gzi3SrkVEquPnbcCRInJ49Ae/FCCE0ADsEhGzPmVd5+5H3SaqAUTkdSIyupOxPQK8PfqPjwX+KO5nN/CiiFwR+xIRmRe3eQJ4R/x8ZX6HjuM4wxURETQxwsdCCC8D/w58sUjzY0TE3JqvQp8VLwB1IjIrLv8LYHG0zo8PIdwHfAx1a8unERhbYPlS4BwROUJEKuO+Fhdo11UeQJUwQDPg9aIvxxm2uBLkDHRGiUh95u9vgY8AV4vIc+gD6qOd9PEToB5YibqVLQV2FWh3M/CciNwRXQg+G9veiz4YjauBb8TECE2Z5bcAq4CnY1KF/6STt3ohhKeB/waejeN8NLP63cD7RWQ58DxweVz+MeBvReR3qItcoWNxHMcZjnwQeDmE8GD8/k3geBE5p0Db1cB747NkInBTCKEZvcf/WERWoBaVb6HKzb2x7WLgbwr0dxvwLUuMYAujFepTqCv2cuDpEMLPe3GMnwMOi0kWlgPn9aIvxxm2SLKcOs7QRUTGhBD2iMjhwO+AM2N8UF+Pow64N4TQkZ96Z32MQpM4BBG5ErgqhHB5Zv2eEMKYXg/WcRxniFKKe3FfIZqZdE8IoZhFq7v91TFIjt1xyon7iDrDhXtFZAJQA/xzfyhAkTZgvIg824t4n1OAr0e3jwbgL0FTZ6PWpG0lGanjOI4zENgDXCMi43pbK0hEzkatY6+WZGSOM4hxS5DjOI4zbBGRW9GYv1cKvRmPLxtuRAtM7gPeF91YHcdxnEGMxwQ5juM4w5nbgIs6WH8xmup+NnANGnTvOI7jDHJcCXIcx3GGLSGER4CdHTS5HC3OHEIITwATROSoDto7juM4gwCPCeoGRxxxRKirq+vvYTiO4wxYnnrqqVdDCJP6exwl5GhgY+Z7fVx2SN0ZEbkGtRYxevToU44//vg+GaDjOM5gpL+fF64EdYO6ujqWLVvW38NwHMcZsIjIS/09hhJTqNBlwWDaEMLNaKp9FixYEPx54TiOU5z+fl64O5zjOI7jFKcemJ75Pg3Y3E9jcRzHcUqEK0GO4ziOU5x7gPeI8iZgVyx+6TiO4wxi3B3OcRzHGbaIyA+Bc4EjRKQe+AxQDRBC+BZwH5oeex2aIvvq/hmp4ziOU0pcCXIcx3GGLSGEqzpZH4Dr+mg4juM4Th/h7nCO4ziO4ziO4wwrXAlyHMdxHMdxHGdY4e5wjuP0K5d9bQmv7tnPa/taGDeyit/+3VuoqvT3M47jOI7jlA+XNBzH6TfWbG1kxaZdbN7VTIXAtt37+dD3n6a5pa2/h+Y4juM4zhDGlSDHcfqNG3/9e0TgpOnjef6zF/HZy9/AotXbOPPzv+nvoTmO4ziOM4RxJchxnH5h9Zbd3LdiK3997ix+dt1ZALzn9DomjKymyS1BjuM4juOUEVeCHMfpF25ctJaxI6r4wNnH5iw/7diJHDNxVD+NynEcx3Gc4YAnRnAcp+xc8OXFbN3dzP6Wdlrb26msEFraAh95yywmjKrJaVtVKbS1h34aqeM4juM4wwFXghzHKSt79rey/tW9VFUI40ZWUVVREZWcwAfePPOQ9pUVFbQFV4Icx3EcxykfrgQ5jtNr9u5v5Y++toSGphbmH3MYT720k6MnjOTej5zND5e+TFt74CfXnsFJ0yd02lel4JYgx3Ecx3HKiitBjuP0ird88WE27NhLe4Caygo2NzSxu7mVPdsa2bhzH7csWc8Zxx3eJQUI1BLU2uZKkOM4juM45cOVIMdxesxv173Ki6/uZUxtFbddfSrzjzkMEWH1lt2846bH+KOvL6FhXwtfvGJel/usqhDa3R3OcRzHcZwy4kqQ4ziH8K5vPUbDvha279lPQ1MLI6sraWlrZ1xtNV+96mSOmTiKD96+jLWv7GH25DHcde0ZjKutPrj9648ax5ffNY8Pff9pRtdUctasI7q874oKodXd4RzHcRzHKSOuBDmOcwibdzVT/1oTVRXCpDEjuGzeVH727CZe29fCu29ZerBdVYXwnfeemqMAGRedcBRzJo+htroSEenyvqsqhHZXghzHcRzHKSNlVYJE5CLgRqASuCWE8Pm89SOA24FTgB3An4YQNsR1nwLeD7QBHwkh3N9RnyJyLHAnMBF4GviLEMKBYvsQkWrgFmA+Og+3hxD+tVxz4TiDhda2drbtbmZcbRVP/eMFVFdqObF/uHQuzS1tXPq1JbS3B6oqhTEjqpjeQU2f+//mnG7vv9ItQY7jOI7jlJmyKUEiUgl8A7gAqAeeFJF7QgirMs3eD7wWQpglIlcCXwD+VETmAlcCbwCmAotE5HVxm2J9fgH4SgjhThH5Vuz7pmL7AK4ARoQQThSRUcAqEfmhKWGOM9R56IVXuP4HT1NdVcH4kdUcPrqGn/71mSz+/XZa2gJfu+qNBxUgo7a6kkV/233FpjtUVnidIMdxHMdxyks5LUGnAetCCOsBRORO4HIgqwRdDtwQP98FfF3Ub+Zy4M4Qwn7gRRFZF/ujUJ8ishp4C/Bnsc33Yr83dbCPAIwWkSpgJHAA2F2qg3ecgco7vvlbXtyxj517D1BbVUHrgTYa9rXwyu797Nnfyg9/t5Ejxozgra+f3C/jDqUhJwAAIABJREFUq3IlyHEcx3GcMlPReZMeczSwMfO9Pi4r2CaE0ArsAg7vYNtiyw8HGmIf+fsqto+7gL3AFuBl4IshhJ35ByEi14jIMhFZtn379q4eu+P0O5d+9VEu+PJi1r3SyIHWdgBe2LqblZt389reA3z8gtfx3A0XsuZzFzNn8hiaWtr40H89xUNrXuGdp0w7xArUV1S4EuQ4juM4TpkppyWoUCR0vmRTrE2x5YWkso7ad7SP09B4o6nAYcCjIrLIrEwHG4ZwM3AzwIIFC1wycwYFj67dzvObdxOA87/8CAAjqipoaWvniDEj+NZfnML8Yw472P7+vzmHW5e8yGfvVUPtladO749hA2oJam1v77f9O47jOI4z9Cnnq956ICtJTQM2F2sT3dLGAzs72LbY8leBCbGP/H0V28efAb8KIbSEEF4Bfgss6OGxOs6AYfWW3Vz7/aeZM2UsP7n2dI6bNJqpE2oZPaKKw0bV8IsPn5WjABlXn1nHUeNrOXLsCOqOGN0PI1cqK4T2AMFrBTmO4ziOUybKaQl6Epgds7ZtQhMd/Flem3uA9wKPA+8EfhNCCCJyD/ADEfkyaqmZDfwOteoc0mfc5qHYx52xz593so+XgbeIyPeBUcCbgP8owzw4Ttloaw/sO9DK2Npq2toDP392E3/3k+cA+O7Vp3LU+JH8+uPndqkvEeHxT721jKPtGpUxnXZbzEDnOI7jOI5TasqmBIUQWkXkeuB+NJ31rSGE50Xks8CyEMI9wHeA/4qJD3aiSg2x3Y/QJAqtwHUhhDaAQn3GXf4dcKeIfA54JvZNsX2gWea+C6xElavvhhCeK9N0OE5JeeuXHmbr7maaDrTRHqC6UqgQYX9rO6NqKjlu0miOGj+yv4fZIyqj4tPaHqiq7OfBOI7jOI4zJClrnaAQwn3AfXnL/inzuRlNVV1o238B/qUrfcbl60kZ5LLLC+4jhLCn2L4dZyDzzMuvsX77XmqrKzly7AiqKytoammjpS3wpXfN45ITjqKiYvBaUKri2NvdHc5xHMdxnDJRViXIcZye0drWzp79rWzc2cRPnq7nB0tfZmxtFd/7y9O4/gfPcPRhI/mfD5/N+FHV/T3UklMhyRLkOI7jOI5TDlwJcpx+4LW9BzjzC79hdE0Vv/rY2Rw+ZgQhBH734k7+6r+eoqGp5WDbmsoKRtZUsnPfAS792hIE+Nl1Zw5JBQiSJaitzZUgx3Ecx3HKgytBjtMPfPnB37PvQBtNB9o47f/9mlE1lTRHl7aqCuGo8bVUV1ZQXSnc9aEzOGx0DVt3NXP5N5YwZkQV86ZP6O9DKBuVsT5Rm7vDOX2EiFwE3IjGmt4SQvh83vpj0CLcE2KbT0bXbMdxHGeQ4kqQ45SB5pY2KiukYMHR1Vt2c8fSl3jv6TP48zfN4Ir/fJzWtsD4kdWMHVHFfR99MyNrDs0IMGV8LUs/fX5fDL9fyWaHc5xyIyKVaKKcC9CSCk+KyD0hhFWZZv8A/CiEcJOIzEXjUuv6fLCO4zhOyXAlyHFKTGNzCws+t4j2EPjIW2Zz1cJjOGLMCABa2tp5138+ToUIf3PB65gwqoZn/+lt/TzigYW5w3lMkNNHnAass0LZInIncDmandQIwLj4eTyH1rxzHMdxBhmuBDlOifnne1exv7WdcbVVfOnB3/OlB3/PiKoKaioraG0PNLW0UXf4KCaMqunvoQ5IKi07nCtBTt9wNLAx870eWJjX5gbgARH5MDAaKGiSFZFrgGsAjjnmmJIP1HEcxykdh/rqOI7TJS772hLO+Ndf09ickhjc//xWfrSsnuvOO47nbriQE48ex/TDRjKqppIA/Omp05l95BiOHDui/wY+wKl0S5DTtxTKJ59/8V0F3BZCmAZcgtaeO+T5GUK4OYSwIISwYNKkSWUYquM4jlMq3BLkOD2gpa2dddv3sO9AG3/yzce46c/n8+jaV/nc/6xmVE0lH33r6wD4xYfP7ueRDj5MCWprb+/nkTjDhHpgeub7NA51d3s/cBFACOFxEakFjgBe6ZMROo7jOCXHLUGO0wWaW9o47V8Wccbnf82B1na+/eh69h1o47rzjuOVxv2c/+VH+L+/WMWomkpmHzmGmir/afWUpAT180Cc4cKTwGwROVZEaoArgXvy2rwMvBVARF4P1ALb+3SUjuM4TklxS5DjdMLOvQf44O3LeKVxPwAnffYBmlrauPiEKfzvC4/nilOmc8W3HufwMTX88qNnI1LIu8bpKskdzrUgp/yEEFpF5HrgfjT99a0hhOdF5LPAshDCPcDHgW+LyN+grnLvC8FzuDuO4wxmXAlynA5YuWkX77jpMQ60tfPNd8+nskK47o6nqRDh/172BgDqjhjNk/8w9FNX9xVVBxMj9PNAnGFDrPlzX96yf8p8XgWc2dfjchzHccqHK0HOsOSPv7GEqooK7rr2jILrm1vaeNtXHmHjzn1UV1bw+injuOTEowB447TxtLcHjhxX25dDHjZUuCXIcRzHcZwy40qQM2xo2HeAi298lNf2HaC5RQXs4//xl4ysrqSmqoKqCqE9qAJ0oLWdvQfamDCqmoc+fi6HjU7prH/61/5CuJxUVXixVMdxHMdxyosrQc6w4JmXX+P6HzzD1l3NjBtZzZFja2lvD+w90EpzSzu7mlpoD1AhUFVRwTsXTOOpDTsZP7I6RwFyyk+lK0GO4ziO45QZV4KcIc8lNz7C6i2NHH3YSO6+7kxOmj6hYLsQgic1GABUiitBjuM4juOUF1eCnCHP3v1tBOC//+p0jp4wsmg7V4AGBlWVXizVcRzHcZzy4sVMnCHPn79pBgDjal3nHwxUVuhtqc0zEDuO4ziOUyZcCXKGPC0xy1h1pV/ug4GD7nBtrgQ5juM4jlMeXCp0hjytUZi2gHtnYJOKpboS5DiO4zhOeXAlyBnymDBd5UrQoMBigtrdHc5xHMdxnDLhSpAz5Glta6eqQjzxwSChQtwS5DiO4zhOeXElyBnytLYHd4UbRKRiqe39PBLHcRzHcYYqrgQ5Q57WtuBJEQYRqVhqPw/EcRzHcZwhi0uGzpCntb39YJyJM/CpdEuQ4ziO4zhlxpUgZ8jT0hY8KcIgosqzwzmO4ziOU2ZcCXKGPG3t7VRV+KU+WKiISlC7K0GO4ziO45QJlwydIU9rmydGGEy4JchxHMdxnHJTViVIRC4SkTUisk5EPllg/QgR+e+4fqmI1GXWfSouXyMiF3bWp4gcG/tYG/us6cI+3igij4vI8yKyQkRqyzMTTn/S0h6o9pigQUOKCXIlyHEcx3Gc8lA2JUhEKoFvABcDc4GrRGRuXrP3A6+FEGYBXwG+ELedC1wJvAG4CPimiFR20ucXgK+EEGYDr8W+O9pHFfB94EMhhDcA5wItJZ0EZ0DQ1t5OlWeHGzS4EuQ4juM4Trkpp2R4GrAuhLA+hHAAuBO4PK/N5cD34ue7gLeKVrS8HLgzhLA/hPDi/2/v/sPlqup7j78/M5OgFgQMoWoSSNRQG/yFnlJ/tFVBJVAvAY2a+Astt9xbpdoiFnjspYhgL/r0cm2L1Yi0ylXDj9aaW6LxXgh6L/IjBwNIotFj8ErEpwSBKI8Szsx87x97zWE8zJyzTzJ75uw5n9fznCcze9Ze+7t35sxZ31lrrwWMpfo61pn2OS7VQarzlGmO8Trgroi4EyAifhYRjR6ev80SnhihXKoeDmdmZmYFKzIJWgTc2/Z8V9rWsUxE1IE9wIIp9u22fQHwcKpj8rG6HeMoICRtkvRtSX/R6SQknSFpVNLo7t27c566zSaNZniK7BJpTWLhniAzMzMrSpFJUKdW5+RWTbcyvdo+1TFqwO8Bb0v/nirp+CcUjFgXESMRMbJw4cIOVdlsN97w7HBl0uq0cxJkZmZmRSmyZbgLWNL2fDFwX7cy6R6dg4EHp9i32/YHgENSHZOPNdUxvhERD0TEL4GNwIv38VxtFqt7OFypSKJakZMgMzMzK0yRSdAWYHmatW0+2UQHGyaV2QCclh6vBm6IiEjb16SZ3ZYBy4HbutWZ9tmc6iDV+ZVpjrEJeIGkp6Tk6JXA9h6ev80SHg5XPtWKaISTIDMzMytGbfoi+yYi6pLOJEs2qsAVEbFN0oXAaERsAD4LXClpjKx3Zk3ad5ukq8mSkjrw3takBZ3qTIc8B1gv6SJga6qbKY7xkKT/RpZYBbAxIq4r6nrY4Iw3mxw4r7C3uhWgKvcEmZmZWXEKbRlGxEayYWbt285ve/wo8KYu+14MXJynzrR9J9nscZO3T3WM/0E2TbYNMS+WWj61iqg3nASZmZlZMXy3uA29ejM8MULJVKui6eFwZmZmVhC3DG3o1RtN5vmeoFKpStSbzUGHYXOEpJWSdkgak3RulzJvlrRd0jZJX+x3jGZm1lu5hsNJelpEPFh0MGZFqDc9HK5sPDuc9YukKnAZ8FqyWUO3SNoQEdvbyiwHzgNeke4nPXww0ZqZWa/k7Qm6VdI1kk6S5NaklUq92WRe1Z2eZVJzEmT9cywwFhE7I+IxYD2walKZPwYui4iHACLi/j7HaGZmPZa3ZXgUsA54BzAm6aOSjiouLLPe8TpB5VOpiLqTIOuPRcC9bc93pW3tjgKOknSTpFskrexUkaQzJI1KGt29e3dB4ZqZWS/kSoIi878iYi3wH8nW3blN0jckvazQCM3203jD6wSVjXuCrI86fThMfvPVyNarexWwFrhc0iFP2CliXUSMRMTIwoULex6omZn1Tt57ghYAbyfrCfp34E/JFiF9EXANsKyoAM32V6PZ9OxwJVNxEmT9swtY0vZ8MXBfhzK3RMQ4cI+kHWRJ0Zb+hGhmZr2Wt2V4M/BU4JSI+MOI+JeIqEfEKPCp4sIz239eJ6h83BNkfbQFWC5pmaT5ZAtqb5hU5l+BVwNIOoxseNzOvkZpZmY9lTcJ+suI+EhE7GptkPQmgIi4pJDIzHpkvOkpssumWqn4niDri4ioA2cCm4DvAldHxDZJF0o6ORXbBPxM0nZgM/DBiPjZYCI2M7NeyDUcDjgXuHrStvPIhsKZzWqNZlDz7HClUq1A00mQ9UlEbAQ2Ttp2ftvjAM5KP2ZmNgSmTIIknQicBCyS9LdtLz0VqBcZmFkvREQ2MYKHw5WKe4LMzMysSNP1BN0HjAInA7e3bf8F8OdFBWXWK612tCdGKBffE2RmZmZFmjIJiog7gTslfSGNmzYrlfFGE8BTZJdMVU6CzMzMrDjTDYe7OiLeDGyV1N4iEdkw6RcUGp3ZfmoNqfJwuHKpuifIzMzMCjTdcLj3p39fX3QgZkVoNFIS5IkRSqVWFXvrjUGHYWZmZkNqypZhRPw0PXwAuDci/h9wAPBCnriYnNmsM97MhsN5iuxyqUg03BFkZmZmBcn79fg3gSdJWgRcD7wb+KeigjLrlXpqSXux1HLJJkZoDjoMMzMzG1J5kyBFxC+BNwB/FxGnAiuKC8usN+qtniDPDlcq2T1Bg47CzMzMhlXuJEjSy4C3AdelbXkXWjUbmPrEPUHuCSqTqnuCzMzMrEB5k6D3A+cBX46IbZKeBWwuLiyz3mj1BHk4XLlUK/JiqWZmZlaYXL05EfFNsvuCWs93Au8rKiizXmk1pOd5drhSqVVE00mQmZmZFSRXEiTpKOBsYGn7PhFxXDFhmfXGxHA49wSVSsU9QWZmZlagvPf1XAN8Crgc8OIdVhrj6e563xNULjUvlmpmZmYFypsE1SPiHwqNxKwArYZ0zbPDlUrVSZCZmZkVKG/L8H9Keo+kZ0h6Wuun0MjMemDcw+FKyUmQmZmZFSlvT9Bp6d8Ptm0L4Fm9DcestyZ6gjwxQqnUKhXfE2RmZmaFydUyjIhlHX6mTYAkrZS0Q9KYpHM7vH6ApKvS67dKWtr22nlp+w5JJ0xXp6RlqY4fpDrnT3eM9PoRkh6RdHaea2HlMt70PUFlVJFnhzMzM7Pi5EqCJD1F0l9KWpeeL5f0+mn2qQKXAScCK4C1klZMKnY68FBEPAe4FLgk7bsCWAMcDawEPimpOk2dlwCXRsRy4KFUd9djtLkU+Gqe62Dl49nhyqlW9exwZmZmVpy8Y4T+EXgMeHl6vgu4aJp9jgXGImJnRDwGrAdWTSqzCvhcenwtcLwkpe3rI2JvRNwDjKX6OtaZ9jku1UGq85RpjoGkU4CdwLZ8l8HKptHqCfLECKXie4LMzMysSHlbhs+OiI8B4wAR8Stguq/WFwH3tj3flbZ1LBMRdWAPsGCKfbttXwA8nOqYfKyOx5D0G8A5wIenOglJZ0galTS6e/fuaU7ZZpvWxAjzPByuVKoSjXASZGZmZsXImwQ9JunJZJMhIOnZwN5p9unU6pzcqulWplfbpzrGh8mGzz3S4fXHC0asi4iRiBhZuHDhVEVtFqqnnqCqh8OVSqsnKJwImZmZWQHyzg53AfA1YImkLwCvAN49zT67gCVtzxcD93Ups0tSDTgYeHCafTttfwA4RFIt9fa0l+92jN8FVkv6GHAI0JT0aET8/TTnZSVSn+gJ8nC4Mmndw9Vohie1MDMzs57LOzvc14E3AO8CvgSMRMTmaXbbAixPs7bNJ5voYMOkMht4fPrt1cANkX31uwFYk2Z2WwYsB27rVmfaZ3Oqg1TnV6Y6RkT8fkQsjYilwH8HPuoEaPjUJ6bIdkO6TCqtJMg9QWZmZlaAXD1Bkq6PiOOB6zps6ygi6pLOBDYBVeCKiNgm6UJgNCI2AJ8FrpQ0RtY7sybtu03S1cB2oA68NyIa6bhPqDMd8hxgvaSLgK2pbrodw+aGesPD4cqovSfIzMzMrNemTIIkPQl4CnCYpEN5/P6apwLPnK7yiNgIbJy07fy2x48Cb+qy78XAxXnqTNt3ks0eN3l712O0lblgqtetvFo9QfM8O1yptJJWT5NtZmZmRZiuJ+g/AX9GlvDczuNJ0M/J1usxm9Um1gnycLhSaSVBXjDVzMzMijDl1+MR8YmIWAacHRHPiohl6eeFvn/GymDc6wSVUs09QdZHklZK2iFpTNK5U5RbLSkkjfQzPjMz671c9wRFxN9JejmwtH2fiPh8QXGZ9UTDPUGlVE1Jq3uCrGiSqmQjG15LNpvoFkkbImL7pHIHAe8Dbu1/lGZm1mt5J0a4Eng2cAfQSJsDcBJks9p4a3Y4T4xQKq0Zzd0TZH1wLDCW7itF0npgFdnEPO0+AnwMOLu/4ZmZWRHyrhM0AqwIr1xoJVNvNKlWhOQkqExaPUGeHc76YBFwb9vzXWTryE2QdAywJCL+TVLXJEjSGcAZAEcccUQBoZqZWa/kvVHibuDpRQZiVoRGM9wLVEKtniAnQdYHnT4gJt54kirApcAHpqsoItZFxEhEjCxcuLCHIZqZWa/l7Qk6DNgu6TZgb2tjRJxcSFRmPTLecBJURq2eIA+Hsz7YBSxpe74YuK/t+UHA84AbU4/y04ENkk6OiNG+RWlmZj2VNwm6oMggzIrSaDapVT0zXNl4sVTroy3AcknLgJ+QLaj91taLEbGH7ItAACTdSDZjqhMgM7MSyzs73DeKDsSsCOPNYJ5nhiudipwEWX9ERF3SmcAmoApcERHbJF0IjEbEhsFGaGZmRZgyCZL0C9rGRre/BEREPLWQqMx6pDUxgpWLe4KsnyJiI7Bx0rbzu5R9VT9iMjOzYk2ZBEXEQf0KxKwI9WZ4odQSqlZbi6U2BxyJmZmZDSO3Dm2o1RseDldG1TQcrulZ+c3MzKwAToJsqNWbHg5XRq3hcPWGkyAzMzPrPSdBNtSyniC/zcum6nuCzMzMrEBuHdpQqzeDmofDlc5EEuThcGZmZlYAJ0E21MYbzYmFN608WkmQF0s1MzOzIrh1aEOt0Qzm+Z6g0mnN6NfwPUFmZmZWACdBNtTqDQ+HK6NW552Hw5mZmVkRnATZUBtvNr1OUAlN9AR5OJyZmZkVwK1DG2oNT4xQSr4nyMzMzIrkJMiG2ngj3BNUQq0kqOkkyMzMzArg1qENtXqjObHwppVHzT1BZmZmViAnQTbUPByunCruCTIzM7MCOQmyoTbebDKv6rd52bgnyMzMzIrk1qENtUYjJu4vsfJo/Z81ms0BR2JmZmbDyEmQDbXxZjDPw+FKp6pWEuSeIDMzM+u9QpMgSSsl7ZA0JuncDq8fIOmq9Pqtkpa2vXZe2r5D0gnT1SlpWarjB6nO+VMdQ9JrJd0u6Tvp3+OKuxI2KPVG0z1BJVStejicmZmZFaewJEhSFbgMOBFYAayVtGJSsdOBhyLiOcClwCVp3xXAGuBoYCXwSUnVaeq8BLg0IpYDD6W6ux4DeAD4DxHxfOA04Mpenr/NDvWmp8guo1rFPUFmZmZWnCJbh8cCYxGxMyIeA9YDqyaVWQV8Lj2+FjhektL29RGxNyLuAcZSfR3rTPscl+og1XnKVMeIiK0RcV/avg14kqQDenb2NivUGx4OV0aV1nC4cBJkZmZmvVdkErQIuLft+a60rWOZiKgDe4AFU+zbbfsC4OFUx+RjdTtGuzcCWyNi74zO0Ga9erNJ1T1BpTPRE9RwEmRmZma9Vyuw7k5fv09u0XQr0217p9bsVOWnjUPS0WRD5F7XoRySzgDOADjiiCM6FbFZrO6JEUqp6imyzczMrEBFfkW+C1jS9nwxcF+3MpJqwMHAg1Ps2237A8AhqY7Jx+p2DCQtBr4MvDMiftjpJCJiXUSMRMTIwoULc524zQ6NZhCB7wkqIUlUBE0PhzMzM7MCFNk63AIsT7O2zSeb6GDDpDIbyCYlAFgN3BARkbavSTO7LQOWA7d1qzPtsznVQarzK1MdQ9IhwHXAeRFxU0/P3GaF8Ua2xkzNPUGlVKtU3BNkZmZmhSgsCUr335wJbAK+C1wdEdskXSjp5FTss8ACSWPAWcC5ad9twNXAduBrwHsjotGtzlTXOcBZqa4Fqe6ux0j1PAf4L5LuSD+HF3IxbCBaM4vVPEV2KVUr8uxwZmZmVogi7wkiIjYCGydtO7/t8aPAm7rsezFwcZ460/adZLPHTd7e8RgRcRFw0bQnYaVVTzfV16oeDldGToLMzMysKG4d2tAab6bhcO4JKiUnQdYvORb2PkvSdkl3Sbpe0pGDiNPMzHrHSZANrYnhcL4nqJRqFVFPiaxZUXIu7L0VGImIF5CtN/ex/kZpZma95iTIhlZrYoR5nh2ulCoV0XAOZMWbdmHviNgcEb9MT28hm4HUzMxKzK1DG1qtnqCqh8OVUq0iGu4JsuLlWdi73enAVzu9IOkMSaOSRnfv3t3DEM3MrNecBNnQGm94OFyZVSvyFNnWD3kW9s4KSm8HRoCPd3rd68qZmZVHobPDmQ1S636SeZ4drpSqFdF0EmTFy7OwN5JeA3wIeGVE7O1TbGZmVhC3Dm1otabI9nC4cnJPkPXJtAt7SzoG+DRwckTcP4AYzcysx5wE2dBqNaDneThcKVXlKbKteDkX9v44cCBwTVpYe0OX6szMrCQ8HM6GVj1NLVb17HCl5HWCrF9yLOz9mr4HZWZmhXLr0IbWRE+Qh8OVUq3qJMjMzMyK4STIhlZ9YnY4v83LqCrRCCdBZmZm1ntuHdrQGm+2hsO5J6iMPBzOzMzMiuIkyIZWo+GJEcqsVqlM9OaZmZmZ9ZKTIBtarXWCap4YoZQqFTwczszMzArh1qENrfGJe4LcE1RGtUrFw+HMzMysEE6CbGi1GtA13xNUSl4s1czMzIriJMiG1nhaJ2ieZ4crpWpFNJ0EmZmZWQHcOrSh1epF8Oxw5eSeIDMzMyuKkyAbWq0GtO8JKqdaRTTS5BZmZmZmveQkyIZWvTUczrPDlVLF6wSZmZlZQdw6tKHVakBX3RNUSjUnQWZmZlYQJ0E2tFpTZLsnqJx8T5CZmZkVxa1DG1qt4XC+J6icqvLscGZmZlYMJ0E2tOpeJ6jUalX3BJmZmVkxnATZ0Ko3m1QrQnISVEYV+Z4gMzMzK4aTIBta9UZ4jaASq1VEI5wEmZmZWe85CbKhVW8G85wElVa1UqHRcBJkZmZmvVdoEiRppaQdksYkndvh9QMkXZVev1XS0rbXzkvbd0g6Ybo6JS1Ldfwg1Tl/X49hw6HeaFKrOs8vq2oF3xNkZmZmhSishSipClwGnAisANZKWjGp2OnAQxHxHOBS4JK07wpgDXA0sBL4pKTqNHVeAlwaEcuBh1LdMz5Gb6+CDdJ4MzwpQolVKxUPhzMzM7NC1Aqs+1hgLCJ2AkhaD6wCtreVWQVckB5fC/y9srvYVwHrI2IvcI+ksVQfneqU9F3gOOCtqcznUr3/sA/HuLnbCT2yt86Jn/g/M78SNhA/3fMrDqi5J6isahXxWL3p37kSOXbpoYMOwczMLJcik6BFwL1tz3cBv9utTETUJe0BFqTtt0zad1F63KnOBcDDEVHvUH5fjjFB0hnAGQDPWLKUxYc+ecqTttlj8aFP5tilTxt0GLaPTjj66Yzd/4h7g0rksAMPGHQIZmZmuRSZBHUahzS5NdOtTLftnb7Wn6r8vhzj1zdErAPWAYyMjMRn3jnSYTcz67XnLz6YT73jJYMOw2bofYMOwMzMLIcixwrtApa0PV8M3NetjKQacDDw4BT7dtv+AHBIqmPysWZ6DDMzMzMzG2JFJkFbgOVp1rb5ZJMQbJhUZgNwWnq8GrghIiJtX5NmdlsGLAdu61Zn2mdzqoNU51f28RhmZmZmZjbEChsOl+6/ORPYBFSBKyJim6QLgdGI2AB8FrgyTUrwIFlSQyp3NdkkCnXgvRHRAOhUZzrkOcB6SRcBW1Pd7MsxzMzMzMxseCl803FuIyMjMTo6OugwzMxmLUm3R0Spbp6UtBL4BNmXa5dHxH+d9PoBwOeBlwA/A94SET+aqk7/vTAzm9qg/154/mAzM5uz9mdNOzMzKy8nQWZmNpdNrGkXEY8BrTXt2q0iW38OsvXmjk9pTMjzAAAKkElEQVTrzZmZWUkVOUX20Ln99tsfkbRj0HEU5DCyWfaGkc+tnHxu5fRbgw5ghvZnTbtf+z9sX1cO2Cvp7kIiLpdhfq/PhK9Dxtch4+uQGejfCydBM7OjbGPd85I06nMrH59bOQ37uQ06hhnanzXtfn1D27pyw/x/PBO+Dhlfh4yvQ8bXITPovxceDmdmZnPZ/qxpZ2ZmJeUkyMzM5rL9WdPOzMxKysPhZmbdoAMokM+tnHxu5eRzmyX2Z027aZTqOhTI1yHj65Dxdcj4OmQGeh28TpCZmZmZmc0pHg5nZmZmZmZzipMgMzMzMzObU5wEdSBppaQdksYkndvh9Usl3ZF+vi/p4UHEuS9ynNsRkjZL2irpLkknDSLOfZHj3I6UdH06rxslLR5EnDMl6QpJ93dbc0SZv03nfZekF/c7xn2V49yeK+lmSXslnd3v+PZHjnN7W/r/ukvStyS9sN8x7qsc57YqndcdkkYl/V6/Y+yXHJ87B0i6Kr1+q6Sl/Y+yeDmuw1mStqf3xfWSjhxEnEWb7jq0lVstKSQN5TTJea6DpDen98Q2SV/sd4z9MMxtrrxmdRsmIvzT9kN2Y+wPgWcB84E7gRVTlP9TshtpBx57L86N7Ca1P0mPVwA/GnTcPTy3a4DT0uPjgCsHHXfOc/sD4MXA3V1ePwn4KtlaJi8Fbh10zD08t8OB3wEuBs4edLw9PreXA4emxycO2f/bgTx+z+kLgO8NOuaCrkOez533AJ9Kj9cAVw067gFdh1cDT0mP/2SuXodU7iDgm8AtwMig4x7Q+2E5sLXtM/DwQcc9oOtQyjbXDK/DrG3DuCfoiY4FxiJiZ0Q8BqwHVk1Rfi3wpb5Etv/ynFsAT02PD+aJ62XMVnnObQVwfXq8ucPrs1JEfJOp1yRZBXw+MrcAh0h6Rn+i2z/TnVtE3B8RW4Dx/kXVGznO7VsR8VB6egvZ+jSlkOPcHon01w34DTosLDok8nzurAI+lx5fCxwvqdPiq2U27XWIiM0R8cv0tFTv9xnI2374CPAx4NF+BtdHea7DHwOXtT4DI+L+PsfYD8Pc5sptNrdhnAQ90SLg3rbnu9K2J0jd+cuAG/oQVy/kObcLgLdL2gVsJOvpKoM853Yn8Mb0+FTgIEkL+hBb0XK/Z23WOp3sm7ChIelUSd8DrgP+aNDxFCTP795EmYioA3uAYfjcaTfTz6Che78n014HSccASyLi3/oZWJ/leT8cBRwl6SZJt0ha2bfo+meY21y9NLA2jJOgJ+r0DV23bzHXANdGRKPAeHopz7mtBf4pIhaTdVFeKakM75M853Y28EpJW4FXAj8B6kUH1gczec/aLCPp1WSNwnMGHUsvRcSXI+K5wClk33wPozy/e3Ph9zP3OUp6OzACfLzQiAZjyuuQ/pZeCnygbxENRp73Q41sSNyryNodl0s6pOC4+m2Y21y9NLDPyLl2ofPYBSxpe76Y7t2TayjPUDjId26nA1cDRMTNwJOAw/oS3f6Z9twi4r6IeENEHAN8KG3b078QCzOT96zNIpJeAFwOrIqInw06niKkoRDPllSGz5GZyvO7N1FGUo1syMtUQ0PKKNdnkKTXkH32nhwRe/sUWz9Ndx0OAp4H3CjpR2T3P2wYwskR8v5efCUixiPiHmAHWVI0TIa5zdVLA2vDOAl6oi3AcknLJM0nS3Q2TC4k6beAQ4Gb+xzf/shzbj8GjgeQ9Ntkv5C7+xrlvpn23CQd1vYNy3nAFX2OsSgbgHemGVZeCuyJiJ8OOiibmqQjgH8B3hER3x90PL0k6Tmt+17STD/zgWFM8vJ8pm4ATkuPVwM3tN0vNSzyfP4eA3yaLAEaxvs/YJrrEBF7IuKwiFgaEUvJ7o06OSJGBxNuYfL8Xvwr2WQZpC9IjgJ29jXK4g1zm6uXBtaGqfXjIGUSEXVJZwKbyGb2uCIitkm6EBiNiNYbeC2wvkx/zHKe2weAz0j6c7LuyHeV4RxznturgL+WFGQz87x3YAHPgKQvkcV+WBo3/FfAPICI+BTZOOKTgDHgl8C7BxPpzE13bpKeDoyS3TjalPRnZLPr/HxAIeeW4//tfLJ7Qz6Z8oV6RJTiG+Ec5/ZGsj9q48CvgLeU4XNkpnJ+7nyWbIjLGFkP0JrBRVyMnNfh42SzBl6T3u8/joiTBxZ0AWbQfhhqOa/DJuB1krYDDeCDw9YbPsxtrpmYzW0YDdm1NjMzMzMzm5KHw5mZmZmZ2ZziJMjMzMzMzOYUJ0FmZmZmZjanOAkyMzMzM7M5xUmQmZmZmZnNKU6CzDqQdGmajrn1fJOky9ue/42ks3p8zEd6WV+q80WSTmp7foGks3Ps15B0h6Rntm07RlJIOqFD+VPTa89t2/bsVEfPz8vMzMxsfzgJMuvsW8DLAdICq4cBR7e9/nLgpgHENVMvIpt/f6Z+FREvioj2VZvXAv83/TtZ67WJNVAi4ocR8aJ9OLaZmZlZoZwEmXV2EykJIkt+7gZ+IelQSQcAvw1slXSgpOslfVvSdyStApB0iaT3tCpLPTAfSI8/KGmLpLskfbjTwTuVkbRU0nclfUbSNklfl/Tk9NrvpLI3S/q4pLvTCtUXAm9JPTJvSdWvkHSjpJ2S3pfnYihb3XA18C6yBe6e1PbagcArgNMZwoUgzczMbPg4CTLrIPWA1CUdQZYM3QzcCrwMGAHuiojHgEeBUyPixcCrgb9JCcN64C1tVb6ZbKX01wHLgWPJemleIukP2o89TZnlwGURcTTwMPDGtP0fgf8cES8jW32bFN/5wFWpV+eqVPa5wAmp/r+SNC/HJXkFcE9E/BC4kV/vXToF+FpEfB94UNKLc9RnZmZmNjBOgsy6a/UGtZKgm9uefyuVEfBRSXcB/xtYBPxmRGwFDpf0TEkvBB6KiB8Dr0s/W4FvkyUkyycdd6oy90TEHenx7cBSSYcAB0VEK6YvTnNe10XE3oh4ALgf+M0c12ItWWJH+ndtztfMzMzMZp3aoAMwm8Va9wU9n2w43L3AB4CfA1ekMm8DFgIviYhxST8CWkPFriUbQvZ0Hk8SBPx1RHx6iuN2LCNpKbC3bVMDeHIqPxOT65jyc0BSlazH6WRJH0rHWyDpIGA+cBzwPEkBVIGQ9BcRETOMy8zMzKwv3BNk1t1NwOuBByOiEREPAoeQDYm7OZU5GLg/JUCvBo5s23892T0yq8kSIoBNwB+l+2iQtEjS4ZOOm6fMhIh4iOx+pZemTe335fwCOGgmJ93Ba4A7I2JJRCyNiCOBfyYbBrca+HxEHJleWwLcA/zefh7TzMzMrDBOgsy6+w7ZrHC3TNq2Jw0lA/gCMCJplKxX6HutghGxjSwB+UlE/DRt+zrZcLWbJX2HLDn6tSQlT5kOTgfWSbqZrKdmT9q+mWwihPaJEWZqLfDlSdv+GXjrNK+ZmZmZzUryiBWz8pN0YEQ8kh6fCzwjIt6/H/U9EhEH9ii2ntVlZmZm1gvuCTIbDn+YenvuBn4fuGg/6/v55MVSZ6q1WCrw7/sZi5mZmVlPuSfIzMzMzMzmFPcEmZmZmZnZnOIkyMzMzMzM5hQnQWZmZmZmNqc4CTIzMzMzsznFSZCZmZmZmc0p/x9xz1/NwI1eyQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "McStasScript.name_plot_options(\"PSD_4PI\", data, log=1, colormap=\"hot\", orders_of_mag=5) # Adjusting PSD_4PI plot\n", - "plot = McStasScript.make_sub_plot(data) # Making subplot of our monitors" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.7.1" - } - }, - "nbformat": 4, - "nbformat_minor": 2 -} diff --git a/demonstration.py b/demonstration.py deleted file mode 100644 index 1b47bab7..00000000 --- a/demonstration.py +++ /dev/null @@ -1,100 +0,0 @@ -# Demonstration of McStasScript, an API for creating and running McStas instruments from python scripts -# Written by Mads Bertelsen, ESS DMSC -import random -import sys -#sys.path.append('/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript') -import McStasScript # McStasScript classes - -# if the mcrun command from McStas is not in your path, provide absolute path for the binary here: -mcrun_path = "" -#mcrun_path = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin" -mcstas_path = "" -#mcstas_path = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/" - -# Create a McStas instrument -instr = McStasScript.McStas_instr("random_demo", - author="Mads Bertelsen", - origin="ESS DMSC", - mcrun_path = mcrun_path, - mcstas_path = mcstas_path) - -# Set up a material called Cu with approrpiate properties (uses McStas Union components, here the processes) -instr.add_component("Cu_incoherent","Incoherent_process") -instr.set_component_parameter("Cu_incoherent",{"sigma" : 4*0.55, "packing_factor" : 1, "unit_cell_volume" : 55.4}) - -instr.add_component("Cu_powder","Powder_process") -instr.set_component_parameter("Cu_powder",{"reflections" : "\"Cu.laz\""}) - -instr.add_component("Cu","Union_make_material") -instr.set_component_parameter("Cu",{"my_absorption" : "100*4*3.78/55.4", "process_string" : "\"Cu_incoherent,Cu_powder\""}) - -# Set neutron source -instr.add_component("source","Source_div",AT=[0,0,0]) -instr.add_parameter("double","energy",value=10,comment="[meV] source energy") # Add parameter to select energy at run time -instr.set_component_parameter("source",{"xwidth" : 0.12, "yheight" : 0.12, "focus_aw" : 0.1, "focus_ah" : 0.1, "E0" : "energy", "dE" : 0, "flux" : 1E13}) - -# List of available materials, Vacuum is provided by the system -material_name_list = ["Cu", "Vacuum"] - -# Wish to set up a number of randomly sized and placed boxes, here we choose the number -number_of_volumes = random.randint(30,40) - -# Initialize the priority that needs to be unique for each volume -current_priority = 99 -for volume in range(number_of_volumes): - - current_priority = current_priority + 1 # update the priority - max_side_length = 0.04 - max_depth = 0.003 - position = [random.uniform(-0.05,0.05), random.uniform(-0.05,0.05), 1+random.uniform(-0.05,0.05)] # Set position in 10x10x10 cm^3 box 1 m from source - rotation = [random.uniform(0,360), random.uniform(0,360), random.uniform(0,360)] # random rotation - - # Choose a random material from the list of available materials - volume_material = random.choice(material_name_list) - - # Add a McStas Union geometry with unique name - instr.add_component("volume_" + str(volume),"Union_box") - instr.set_component_parameter("volume_" + str(volume),{"xwidth" : random.uniform(0.01,max_side_length),"yheight" : random.uniform(0.01,max_side_length),"zdepth" : random.uniform(0.001,max_depth),}) - instr.set_component_parameter("volume_" + str(volume),{"material_string" : "\""+volume_material+"\"", "priority" : current_priority, "p_interact" : 0.3}) - instr.set_component_AT("volume_" + str(volume),position,RELATIVE="ABSOLUTE") - instr.set_component_ROTATED("volume_" + str(volume),rotation,RELATIVE="ABSOLUTE") - - -# A few Union loggers are set up for display of the scattering locations -instr.add_component("logger_space_zx_all","Union_logger_2D_space") -current_component = instr.get_last_component() -current_component.set_parameters({"filename" : "\"space_zx.dat\"",}) -current_component.set_parameters({"n1" : 1000, "D_direction_1" : "\"z\"", "D1_min" : -0.05, "D1_max" : 0.05}) -current_component.set_parameters({"n2" : 1000, "D_direction_2" : "\"x\"", "D2_min" : -0.05, "D2_max" : 0.05}) -current_component.set_AT([0,0,1]) - -instr.add_component("logger_space_zy_all","Union_logger_2D_space") -current_component = instr.get_last_component() -current_component.set_parameters({"filename" : "\"space_zy.dat\"",}) -current_component.set_parameters({"n1" : 1000, "D_direction_1" : "\"z\"", "D1_min" : -0.05, "D1_max" : 0.05}) -current_component.set_parameters({"n2" : 1000, "D_direction_2" : "\"y\"", "D2_min" : -0.05, "D2_max" : 0.05}) -current_component.set_AT([0,0,1]) - -# Union master component that executes the simulation of the random boxes -instr.add_component("random_boxes","Union_master") - -# McStas monitors for viewing the beam after the random boxes -instr.add_component("detector","PSD_monitor",AT=[0,0,2]) -instr.set_component_parameter("detector",{"xwidth" : 0.10, "yheight" : 0.10, "nx" : 500, "ny" : 500, "filename" : "\"PSD.dat\"", "restore_neutron" : 1}) - -instr.add_component("large_detector","PSD_monitor",AT=[0,0,2]) -instr.set_component_parameter("large_detector",{"xwidth" : 1.0, "yheight" : 1.0, "nx" : 500, "ny" : 500, "filename" : "\"large_PSD.dat\"", "restore_neutron" : 1}) - -# Run the McStas simulation, a unique foldername is required for each run -data = instr.run_full_instrument(foldername="demonstration",parameters={"energy":600},mpi=2,ncount=5E7) - -# Set plotting options for the data (optional) -McStasScript.name_plot_options("logger_space_zx_all",data,log=1,orders_of_mag=3) -McStasScript.name_plot_options("logger_space_zy_all",data,log=1,orders_of_mag=3) -McStasScript.name_plot_options("detector",data,log=1,colormap="hot",orders_of_mag=0.5) -McStasScript.name_plot_options("large_detector",data,log=1,orders_of_mag=8) - -# Plot the resulting data on a logarithmic scale -plot = McStasScript.make_sub_plot(data) - - From 9007461efb9576dca742a81ceea076ab729e8ecb Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Mon, 13 May 2019 15:27:23 +0200 Subject: [PATCH 015/403] Updates to the documentation. Section on importing the packge. Updated syntax to new package structure. Syntax closer to PEP 8 style. --- McStasScript_documentation.pdf | Bin 153845 -> 155747 bytes 1 file changed, 0 insertions(+), 0 deletions(-) diff --git a/McStasScript_documentation.pdf b/McStasScript_documentation.pdf index 4b0511b53da86e84a07eb46c6f5599fbe843e1b9..aee763e0a92dbbe7aeb5b3500a90ae345c80d62c 100644 GIT binary patch delta 65751 zcmZ6xW0WO4&@S4xJ68grSmu(6x6v6vgPn=rF*u(7gmnVWH2SeP&g@Nt>3nlo`*nBs64Gchr9 zurQl*8FO-R8XL27v$LB2wbRLesE9R1+u%66~|2Pc9P79^b)zPXtLOdK>R5C#kGf3fapVgtv=_aEEFmgcSi zPOg+BaKe;32oj(wfSL6_^~jk!Sh`vLrzuu|fB>AUn~S-zJ)BprsgaS9iILIn*Z=|< z5fcoH5NPJ?%mA2K6Q7ZjkrCI-vfoV9!Qc~OBl59blGa#fthc~{Kma~4V0yt8&4mF950@pot>>cvZYaOktu%rWb`iqfxwp?!%%s%d~I5J zm!Cu_dRAI=N_P#Zv~9=agfrxoh(>$?HGiNhj;7$w55a1O*r}ZLKqxyyvkZl;Ig9>8 zL+Lic@783FufFT?E`oFZIypNE@^K1DqY47#c~9@O4G9Q??B9N{81xu%dHea+Sd};|nOnV_FWSu8!pO() zLI7WEnQJ*BxB&`qLk`l|OXMoAfQO@X=JgL#CE$iUvtkr(W*7A|M_*0NG1QPCgZu-=pIz9Hfo}525J`}GnAAalB)Iq6KAXp273(E}4hX|XdfSyagW0K;>_9Sb z$laiC;3SN9ys|2T$0~w`JWv}+f7$92NK#;R^tw<`AUFuN`T~MIkXKRVh(PGXh4^aM zQ%xuLGC@J|eg!%}D^c9{ZL~6h_f(V6rdk-7$1-+KEi zfAXMr1P>O~Fun8D*2pBiaSp}D8&^owx#<-B^;&>bTtxfN@&#!gG>)?ZdJt}tD^y#T z@o_*V(6wJU7JLF~KC(07Dy}wNaL%Rdh$;o~UoaTK{UR82B@gt+EwQCRj&4;m-0Pn7OaU?;w$xE;eg{rCZ29`ZmQ`A}hB zTf=+}F=<$bC|9nL{xZ$vBK2iIy5Bp!+~hoS9gxKSz})fq69JPMAh*oJT(Lxh(X<^B zX)~hq#@)h8on+QCpDM`Wzd^NEvW=UUW)Ww5ekp$5)IR7M-SOWED2l6csAgq=>+5jLg z?aj`3Clp`UVaj#^BgX}_rpw4&?+0_0>dB>&j|wD*$`9|?cks(`eSwk8;c zw6H?Ts))9H;XaDoVolJrV74lvPo!_Yi@^5_&$KO^TzjH7=S_*BUdy{b^j7I19NZSW zVhrI|qX4&dPBhC38^A5poH?C1T{Pzc|8z!fxUM;Qa@D4Y2W12Wk3$B8L^ho`93qjX z94){#Lto24X`qI^eSWq~G~aPrLPUEnx*;1!NCwH;9{!?R)~QHb!0g;F!N5=~y67OC z$vsk8_*FRUzOcw6FFA;PV@JxDq~TmLAm%wZtp^;x3+SUlKgv?&(6(j5Aue{mCB0VE zBlxF+m>x5=RW0^vR{Q%lIQ-E4Ihc?kzxo8@>mT`6D885GFm1%DgUK^5?{Y3)hH&x3 zHi|ilb<+4IB13*B-L`esvp~{5S?XE9C$%ESEi9TB;4sBfWSg948uL|WiGpare{$p4 z7aj;3PercWpEHX(DZ&`Qfntr}X5+mCO!Tt~``f_L*gyDqjl86f6YKM1G< zjqv|^Xgs@MqV3$u=nj-ti^gZc z(-_I=%N<%>nkpX4rR>iIN_#|EDaSG8|B>?V(5f$xn4S^(ei*Y3JQK;AV<8Tbd}TqS zq3!9EDV_ir>x&KX0*JAasD!X|=!uD47r6BFWTgV#xy~|@K%A$&A(v*J zNYHSvpNAMoj3M~Y(xsR8c}M=M?qY?aWkwlwPAjQtAw6Q0yes=jYGET0L23 zmq|g4Ff&70zbT-%3FfN4w9kR6ux`~chGIe_`s{M|b{X+QBRpku(VXIMX zrQOY5dOfNmMKQ}umPfc1HIa+?=NWSHfu7-EE&}Cq_bs0Ht0THkxt0+su}f}ET3D)- z9-&o-4pAb?hO1H%BTLar6L=K<=K{s9WthhD1B~O<)=6WMFhj+{50Bf|^u<|oMDxz0 zPS(%-a_*go=yh0m0W5L-*Eba1C$bGj98O9J4{x&oiX(AKq(4GRCo?t}3)}y4=z$6V z*8jY732PTuHvlUW^Z)Jqq?=y+`zj@aoXVDr zqgp&Oob>Rt1sx8KL>=RTf3xaN2|V1bHc1i(BRrHQAJUJH^+>{E6U{<(k|kwaaO2AX>l^B z#K{9upb;;O5z&M_Oo+9{PoS5&-2e`cxUSjlwwwIT>Qz@m5kdtz;k2GrN0x z+yU|o^)icN3^A*QHm$n!A8RKO5g$2#kCoj624q7T;CA{@yCiESIOPp81BDWNxNQt^ z1qSW(KQ2YZBD41cTr4Pse7chcpt>UNocN^9rS@Kf*&e>VWA7HUV1AD-f=TP8M88_o zijMSJKwQ3Bf#r=|R^><1wQ36-V_JDe zgIRJEm{!-hZ2M)n4FebS^C5B^`@_>d@A`_^mb(!1&n@0MIJUc5XJ|F3x|&AkzQx>@ ziM+w5C21`lW8{h-U&WVZIIR>HiAe6upV17*^s)@0Q7hM#zkpaZu}bH~4IG|aTSux9 z8ru3~v0xLNF!+2>*$}-fdV*X#)s%jQCpiBND8zZk3>vni9!AzB0ySB}47(B;jnN8< ztzJsV1oG5Eipe&Bp`Cj6*O?y-VRJ6d4+V>%d0@FNFzyAhGqNbZB0h(gkXeoc8kq-) zkDwRIpVSCS)0VS>vA)s{nHJ$XkfiW;&M!wH9}*lRgJJV*?$QvHv)H@X*$mn-xkj5E z;4}vIy))!I$lp=Rib$QmnZh$E>G`+&3(aztU?LUkP+_#N32bw06D#wz2y6)gWY=9~ zvPZb9#Wwb=1Usmb^*U?+%584&cyjn-0^GuCTQrOz?9urtWaopmM;+vW^7;iz4r zLUy8P5?^m|YG=0*HE1|vXZD=yDrM$JyUXQtM7y>Af|;aG*AF0K|KyVJCQ7Wa$X$hM(tB+4X%*!z0rASj=Tvm3YV*IXMQILVO5l|hp_)}%m5bb6b@JPh zo*L3`)1!~qMPn`3TgcbL*d5Z{203IhkaVnW>Di*Bc6~vhz;z3qU3s2;1ECg`Mk1F~ zhPdvz?vQ5TQddpr!-}|=XL`1{t*+Yk?=+1{5Dl~)69z3NNUh2gE%G%7fhr*(2cWsK z2$XTeGzSPi%`7b{s{dVi^ja1~L4z#si)dt8M90!#cqHS1fCCjhCNEUmn?%HjlF=!q ze^z)p6@0Ct@^uxMt~B|!!GY&2yK{|Qv8-m^nQExI-o*q8;A|k)hh`W-{d> zPDJgBP~%2y!BWY@@gaTzu7A_*>qft?26A29UydPBDgmwo^a;VE^6ezSDgCz;KZ=(_ z*EbQuiHv(oZ>of&C_i#wQvDI$n?_%XzcPo;5Slw3o%`1_<(dmk#o9qv`m&&e3x(j6;9>74+0SQ2;;U7Hjl=$h zb0_bmp}bfCVn-``S42c9qUA`q$0J37qCo{;KQGRzk#oRUa8Slqj?Y=y`EH9Key-!L z0Vs2yNA@abJ#m&Q@GZU2s~@muAvs96$@hon9YWk1P9blG}%j65av zJo}Hguu66dDDvk9Rb|e&9m}~ihy4_N=gwr}7qsi4=2TL%^UtS0Kf!9oG87T1qg4LG z;H#g9D|gM!(VG=l7o?Z#az$>n;LN+|R87KD^>$a@PVUM9aB{y|iq(%+#018aIMLTi zGbO}xcmo3MZrF~kmT@jzPSi72C47|=T*FcYSObc5Em+WcKkvh*!#LMw^G~lp+P@%=ix#@*&m>~B{l6f!G7+jFqu&Nt+Z zZuqMVF5}z@)RI4ia=r^$ItO&s6O4evs1WrCf{YiTm&c@cM$ob57EBIhEtQK;%dIty z&b!glhZuZSny;kLO>48=z~_=WwK_W-bO*?}t7g$;9Tkq%oxu}LYv>TJHT2-ArhYUW zeZjU>O@8EjKkDQQCpin4_O3ikO~+kYIPvDxSbL-C;!TzudG&=+W-Phbcc*&_Jn}WX z2$g)C+gsVAhBbv|(I`B9wuVZU-7rhagx6t3_!@9|WLWF%99Qlqo{m(Kiu6L%~C7G_p9=9D`g z3?K^&C-?t1=@t6|sg!HG2^szG`kD=CaEHI6n>Vhz8+|(j(i54G4Z_pYGnf|^sp91_ zYcl_5x7szj`dBxiPIC9vJb%+Bwhs5_%FoQ;U**Z+ z_tX;5fnu$C2n7O@OZifAGVs6$Mg~6_MbUXRB@_FjBBEOJqNpeK4QJ#*l8b3T(3OII z80J@IMmHyC(j$)VKuZ!Qi`AsRq1K_A=OK!U%CU%RrsKtLTBu7!YmK$>rC;)W)$ng1S0 zka8heTj)^1MPZY|(LEeCKWtmZKtgz{7cEda;Mdp7BuI8`q!X81SOo)Z0jBE}gr$rkJPyA9c(42%-Tyca|3u&av>pCrB$jsP z?eza?`C0n;sg%F0z3Ta~2hq{-%pUV*52xV3&?=zuZ>OFRJG3QNo_;JbMA zglXRxF;U!HzB$W6L$XTV3?*aZQs9mL{WJL&2ZGB2;|%7fEo`}nfBIBU4#mXE&D9m8 z2Ldd-{{+Q~XMh39r^cWU(7k7zI*veY77Iq=4bXi<-+^Qbehc@2SVaAhIADP^9}&)+zKn-+JJkdcL9t>Z+!8t&*w0lTF5~GQlLnnLFbQB z2n_F+a)<~|kby7K4=WVXDp2;v6Xp`oq#%U7aB)RcuJ@Cy&HH^u4P6PU;Bj5|GXa~- z^#coj9@*Sog14~!=NkA!w*S?B3>>Yg0VDw3GBMTO3QltYl$wRTPd^Iz4~%$)(6>Zr zN+_Baf?GqN)nhAjBTq!b#*ml~l=P?379Pzmpx>tJg$|wGJm15h7{gygC~N`=Kp_;? zdBH@)!>cD`7`U7NB+HJOCvqv25)jJhSN)o2w>-WE!;RhQ2O5YK^4)O0bq|ewZt|INVy6{D7 z=@-+GHuP8A$~Ge1R8`~2|1yY8R_%E3{++q@w>guxVOQt)WiE}@hZG;PM1ZxD|1O_Rv^_7?6AwP9$>QsO~4F{*fCiJg_0lqPAZZDf3i{nh}cTaQNO`x|K!SCh5Rl>a! zij%mcMd7gz#j`79Qu-2K{%;-gA@Cuw^!yqkvYN-@wYAr#$mJs19ST5KYaol36~b@A zDn7;q3gBO`KH@bKMTna2Q98OVz6JmN12OE}w}7>~Z}wTuX#K5+Q(2FE9H^q3BE9IF za>1qgy6C&wb@JF|!9^@H=|?e4JBo$MTTYOi6H(f%`ZimqOaTqAlqt#^7Y0LQ<#eYB zsV4$De}br0=w9^T{dls#XBPl9x6+Va*bZ?ojnHZ^v1yUxUsV&ZPFMxU zA4p`q*b_jCLaL?;q$<7LfV$Al&RZwN%h@P-Z2i5+cyQ_ndFwi6A+kxXoI-yE>EF47 zRvH%<&>ZQo^XC@BUWdGTKAQ-_ArCP@G)j3Oz|wLMEt@X|3PW?j%yBAX!L*mL{BZN~ z{V0}({SPDSqAKE!i0XPRdjzQe!+Bq;28qTsv#T?ZK+P3Ic(a?ostX0Y1FU+T;+YG51O|cMvhRSoRnk^2igyPg4o!+>NaHB5Brp> zt>4bZTW@X`zp-m`26?NR8!6b{Zv%oeI{zkv^ag z(=Ep*5lUBF{P<+b&i2VO$<>nI0toyrCPsp?|AMTL-mEP*wwU{A=Omo`ryKYSHtjq8 z!8|d*_d^kh90{4Fm#)M&>v^badTbN>aHnmatDx*Q)^g ziRc{!g~5A{^gq*k2YEv*cv3lkKEYf&{WmXm;fZNqCT{92TP*q_TKXtJ5(prEHYgE~ zN-uf)GhRNzQjztYCM%JZymbBcTGf@t4C$#`k9Xrn$iM757OLHR-YfwJ z`1n*G{eWhPrtz=e%xW(sV9X!z(l~m378)2GM{KSg(Z-H-ABop1@<5PAG8b>0{2uU% z%{WST$b&OIefzr9c~R~g*!+Da`Fnw@SKEr2n6!VY%f&Z+Xiy;JA($$=!*+v&c$;0F zEjd1!dVeoR`V33OZU3qw8aT&&bx~tZ%RoIwP#!Q=G<-o)>r&5P^}oAZ_Nh|KHelW+ zSw$~ZMNP8)U{sED?gK|^Fy=AoH@oH=4}Q*hSL38)7yD`uuK=(qa!A7ZC+2fw>6 zGh=s`>*Hm+9ZTIIjcMMos7_8Q1Fb?kxiad)`ko|G9|<;m4ga3z(N@y*@7{j&M(Hw8 z=SHGkScAGEWgfDhoj6|Zl3`@|T2#Wp$u6sach%$hBtEa)T>TdkHzo%$-QswpC8!_v zHi;MpDNSda!0MQYeMe-wMJZj_4BM{0B0y#g=9p(x<8ak-k?--69fSjD`)N;@2>df5 zvSIIi0%=BBmva8B#)^#-boHuE){ARs2K*eMX8%Nj;G0W%_~??uxWl%{c-zQ3k9R5{ z#ITpQKadA@Lj$X~87Xk1wDw&Z(WM-zbG&9=_ig2j@K%oGjS$Z@8k7Ahw~3;ME9I36 ziCEm>-bZe_mAR3K^h$=}T}!Jb`}G#MQMn_6WAD_Xq^Ui(vWrq8Dr}O-9&2t?JIwP7 z`}W&lIuD;yat}j%g3eqeR5C1_dI)Osj@I&X)t5K2JAjByt0hxmEn&=Gd25pBNSGSi zU3VZtm^XFJ7SgsGUa)|Tm4)Y?g%v)5Y0y#1Drls(^3#S)$0R9%HRwG6;aBw%By(43 z1Ir)LJ5$ZrU<^*ive=#{Joo6+Ci1`WAp{wmUZHe;!KEq>ae?@sgH`upjVe8rRJ)bq z6{!QW+Q4p+^WkIYypS@A>@;bn+Lf~qrSof%bR+HoJb`Cy3tO*?G;L3>WxZenXNdfw z03zkH9g4%PYjM+=bl=zs9y0MLBQ z#qqmv#1YVYIhN$WFPZ=!2g)xKMMgh_Jbh}2VIZPHR6Y8IB=tIun771*y|v2h3$Nz5 za0^+nlm~q#D|XG;1>dz?`}HHXFYTdXyU3>|LXZHdJgXW^JVC4On?d3*-LE?0)0p8` z9G#kE16Aw?$unJ$Y0i(*4hu&48^hV(r>xwEP#6NBUT5YCgq-{n+#?0aEI>x&RMyVO zJD`NJ32)1J16?bQV2z#G3UA;Ah^C>au#`hGV$M3Z{{+E?6E4@11Fjo&c<4Ryz2(c%#@&swhnOzG0snk?cu3!; zK(2v0Z~dX(UQ*{C&P{ff`0>0t^uucH30y{|iq%l#l_TqK3#_5YFQF_?`fhQ2#7Yqr z*gYaFD&>_xG!ZbAB)u2dX@vEi@f;cy%H8(()`>n{hT^0qIT$pgYLk@GjTvZu)FTcN z5A@v^NDN&=z0+WY=|Gwf0Z!C-x42^H^3^E>QOZx>0ZhI5Y@*UX@q=3$pWKv*8_kQc zf0^7BUXG%Y5#%Rad4m0ZS{mu65O0bMD-V&LWAGU7bosb{FqYIQ@T-$SJ`Q5HXL;C; zRlN&pUy_cD(`^&Id}`ZB`*lz9oQc>F#ud_kR ziVYu)y{Qzor$C?sTC`Ck?Gb8G10Md1oBf>MlXPOJtU6qP%HrK|Xc9iZFHzjL<;y$D z(FL5mf~>_OPIb&SfS}z|$upn2ror1n2 zK8}oSrt!Ps>c7i?Uu|Fiwmd_UYuiz|2k)zG5Yh_GlW>m;fOg{ss?On&^*HZ#zZI4} z(qhI6XcJH6P8)h|2rn%t8RxQ#caZmU0aB7q3OeVW`Sh?@y9rs(#+aHVHxx7~7FX~9 z(0HNBMtMM!=43f_O?-IS=AywoyXsI<3%H~jQsz}22KQ0NV5>pUVt|{!?Q{;s;*vG{ zR+qhNEB>`J5cgXU>K*yxddj$g4TROq)S9QtlF}%_>|vk9>469O$kqGRMNQIz9Idt1 zl5Ac(*o5|g1u9h7hNQ1-7j%e7W6nf8FNOgKEW!3JiW-Kvg#=#gg{SrR=-euXco180_oG%%G@BY1InY z9#KyULm^Op`~fef5LYtM$j2A93)&562YDN@$(~-`m)E+J(?*xsiRhlX!etS;3XEN> z5|2!J;O9pBQj@~COvLj<8O_pyEs`}IhMuL-iF9i#o57c10B3v4`6K7}FA}I(M&%7T zgd}NC{V^)({^2;ekrZ71fSA96(N>u~uyUJe_D@to)-W7e6+(r2LA7G~C8+IaNXIi6 zFsj48vPKRJ<>tX6rf{}HD$3TvtHJl z!sBZevza^dNJAm7znyvGV)egm_dWPGgqLLp>$#717g_h_!Jr*{uZC06)9Biyx(kNoSY3dUIR)a`GC|L4CVu!D8oGM+3SFkqZ(irh`v zwyT?rrLBn2mI>$IYOik2GyDE@E{x7*2AmHSW-V%4`)D-v8=d=Xx}Mq@+#f2 z@r>4V?3?)_P`E-#&}8@}h|p`OUpFL{05z_ zTj8f&CfBar++Tnx&1s%IKdvtq2dvr^n@7sydcUb(>GDg-i1<<+1>dL`-Rf70PK5TKKS7ZpEqVJwR?@)+2-oSm7zqkd1 z|87A?vCCE!wAzPGI4ImPNF^$t5>ImfL@5V^`*fWCx>uRgf-%}wQ&_Rh)$nS(GaYGF z>DV!?FQte#xJsPsOUH7}LaUCH+izPY3(Buzex~*)>L_$Fz^~Xh z#q3+IT!^UrIpsyd*8GWWWEmKt5NSNUcY{B)X$RFCg@3eUNCDTJ?$C$xEXO+yPJq|M z$~NZ+o_H;roKn#lHg^gY&8!o=+kzT zw%8}zMpZqLAGGaX;NxFDu1CF+&P6LLif6&IL41*aP5J}qE+30q>IGJds=!OSLHJuY zhs(+Fca!*##fTX`vEEDSLgSCogzwk0jRu3uFeE^+gSittQbn`()Zd@o;HQ{lM+|8j zsj~IYUw;sSlRM9{mmOmNIz@KYYy4fd8{LkWrAwQe^Ij+s5TZMZRHz{+aGtF85$a## zgf48-4{hQ%ImN4@g#|=yDnegqV%gO^jm7XWq`~(_UI%q3unkDnzm;`#T$6YzphowM zA{--7Bf=sO5NR3k4V$2n`L4N~M<$RLSfhUNjW=PD=I@6TzyFs0N!)+hbrOI~&ICbA z5=8IYx)H;?Rqhvr(BAaVztA_|cjpPAkPP!*Pu+_tX3tOkN(ZXh=hiQcVSM?;Rjsq4yRvp*?@brhA(pE~I=rydS8M<#7*0@=mmA^bZyJnrl8NGkle%)D zmb*xF`VExJB#$M00{%H!*|gc_03AJu@pw06Gj-t-kC7~xX4GHO=5`MjZh zp40XZb)0rMadhP2%^id7NCuVAHsE(IO2q99U}pQTG9Zd-tU^+W8)K!%68T=5WgKzQ zA7=0>!4{WKED?$&<1IMR@Om)Aev$IQU^=YdWLxu&U;s?$xRJHc6^gINi1<<2r6DRy zk%~POM)Y2!nhdxv{qQl5`o$l9#W&w>?;xtYq|qHuU=4Y}7pj%Kb9Np%vrds53xK8` z&1;Y}IH+JD0KIFzKLaWBJvcbWCj4jkhp~U5H2jzT5Vo0er_rAFD(zH2R)ber_{1t> zWI;>iniX)jDfgZvr?!7LQdC9MEyUELEgJjrKJpxz^?22Mn1?l!+~@QjEAFe+_xJ+u zyQ4;uF$BMgi0e~c^;NC<*uunwLu5=gT}CTq_q{w&B7uVlRc+!tyW!WDWA&BKtLtdI zJ2Sh&t|D>~f84%vTIZpE%-2R-y5#wI9^OZIIVMmC+=5}tKaT)87 z5zbu(M~loKq*POizGw}Z#n9)2$9loP918RCvU*MQin6q>FZ-*>xfhqVaZDUi@kUZq zWc0vae!s9{HfKvlKv+90O3;+7KRWSl(U+#2BFt{QK5G~ntRhX^C)RrYOuACU;>^5H zzK8xnjb9@-7a3j~w45oBo!!?^+OWF8r{t>ECRnH{zAjZMuB_I?@~=PC`m8P+QJ*vu z=ui~}hCbcdBF>&ZM_3uO}wC49~If(HEM-b`GX~xwR@BBie(+> zAE(Ya4mRSeXxfv|@yc+hsiBi%U2T!#pet=8-4p;nN!=p&(b9R7| zwZ)E%|Abd6>J`e+X&wm9l;BxRsX<*YL`2#%e0H)jsL~_Y>$wyt|eO>Z*YxAll@aP zXJlEfnL07NkvZ%CM2AEXo*1@EA@6KCjAg4~Ge>gxJ^xYAL=r*k{pc#+vA=L5kz8f^Mg$=V^+4FKuObRm-#-8K zxz1nZz0-=kG8q>=Sd-0VR#Iq1H}ezdh3B1GriDd6$@w%}*asrv!ovrNX+ktQu(=x>fmxpSICdX(A|5D&kxTV}@0JZBGm`ZGwG z;~kVYppO~kT&r(chk!f^B3N`(jQ*4#}c04r4uX)G=6kAjOB z9IMFzA~}<`UAyE9(vw%#L^8mJ!o(N`KQuF9S6orivy!ScMN`Kr^*t0Q@_T&w^E=T2 za{HX@`w1MQ)UdrR`0a+e%W2|L80TXF*IeNYPy6??Pn?$GE?vYeT3g-YH$K0+7MR}A z{()JkzE*n1%+C1YM_ItxjskJzB8RGFk8CKOa*>|r2mDNT=3 zrOG_xrnRlpAb+8Eng=ehzJ9WtOBAGksNK?Rca&~hLP7&|&Sy zkgO5tC9G=*23$lgc^G^38O@q6BN9^~f<0|Jt&!0xN<)X%w_U#%#<$lacgi!6Y(eT zE*q^)Bw7c&`iK`;|LOg(tLw5haKo!#TAv@Tma7kwSzd#JQfmurgdZr3Hx)wvgnY!Gja`u9oNo^9Ug`fh~M z4{UK2JrOit z)Fb`|5m0%0^3HG2qgOm8ec4Cflwf^w3eIHr6q3|NwI*r#=Mte=*ty>U!%p4jonRyC z`U=~{hYz9AO&=+BZOJoAMR%a-%1GQ?z4VO|zi4 zy)t2IP7wL(oc|?&Gr0SqN$1jVH9MFx-U=3Kcn|@&OvCzTULyqgu-`*Dl`CKm_~@(E zwbQ)90GG8t?$R4jt$!s~{Du0g!%aFUpfgfJ?>#k}X_pqyT1`yB)=;hWbl|4>NM7A0 zT)B906zD-O0X4A^dQbE0q$2aQ>RZ4{k4EK!P|iXf%ICd0Ac7z8M51~S&G7XWBpov6 zgenYtUsgcAzjg~fRA@nG=()$kE#Bx^+nkyyLG~66C|BX(QEjYHC*yCuy^~F2ZSwcz z3xTwbFYC6!6MpVpg7zD($NtSlI{16Mb&v7d-?!$Hh!fjbJOXZeubLxb#jDM;Nnpvp zB?K7@LUj!-%uYoM>EoExVfe!Mq0`Bqi6aq6)C$lb>Z@g(B_H?bgrHFduRfVBW-<+9 z0eu&1+UyB8FSJ&Uww*)u0$B>n55T(_NJASD9>`=+XCufis?+gbA6LucHMPlJtUS_R z{gcdG-;uL&WL0WIF+&oePqh3FvP}J~Z4>lgB|Ztcx8u%!rNB98om;Q~cG4K5J*^A~ zQ+@CPe~LCr`UL#!P&n<=d=kRSosc3+P-9ULU6-f0^;CtR<#(}LcV6n%`nNpKZTn~J zhYO!oL~4%Szo4KlJB{BRurmHd>UHm0?(@ZmM0|Zhjw?gs2X?W#KIYBk>y_?73#XS} zl(RqAjj!-+KfCcA;+7DL_2^pd{@MdH&DAJhm$rnUs82zJ`w15aJCZxmduS^8&GUkLl zeG*wLI?*Rq&MORm$dmM;REwdsP%HFqz@BRfH|(f%&l+evk#dUHPmeVVaL)5+sAh0& zn|CIAFZ`uFhcrA5@`hN090Lc!&uuVHe0g=ehXRtpH(P^8TzSynCqX- zr`iiL{<%Iar2%&e5po}*vVeB#i{t01E(^c2uXY(8x_5}tb^wqtw{w8S2+SJ+-3BS zJr8pwlRZf`!aZA`-L@#e@B{FK7W5hpW)?v<|Fg~rv3W5eylc)F-kQo%0rnR&dFU3- z<)bQ5bZkd{FU-P>gn|&y_lRF+qX2((pD37ozN*={e_$1EPK0gk_tRQi%-U6Au}Z7V z&s(7p!;TaDmN;tqbeY$VU^vOFUs39lYo)U5@$a+B!z&XjEg%C4U*Gzss?280B7^EZxstEhU8knqR&V z4JufC);zzOI^H0SlkFVhHAtFLkqz_(H;1Q=n&1ECv`1z-I_f8_gpQBj%Uj#-r~p%1@AO z+$GHpxKR-V_JK-%rkZ5z>)|5d^iWP=2qb3k41dj_DB70CXZj6OVP{O=j0D>UcH{}I z*+lUb_S*QbIG|AY&eI0r&E&2LLuJ4x3W!-#XXWB?>u<=+GMo@u`$@OgUGM*SbIt+S zoL}S+NZR~{uN$OUkI0&n4jgD-<77jz5`tJodV;lWf$og&FP3fVu#we2hhtEh2Td9@>z%k#g_YH6=j z1rKLrdy`oy+zGuh9msCF4ZD#XAAXvRkZuGE<4`Li{W+Msv1NX;(c8EQR}#%K{F{`? zB-0fF?0m5%Zv~^zc5}M-a4FY=_Cm3=lKC3Trc(2tdq(?M&{he-S~pksHoD1rF*h0N z$-1ui@Em9R_~J)4q4JjfJ?Onx#bAOC?q+qE`$At@iS#*c*Cz5iI3*b zn<0cJS~Hys@PbhVxN^Qxf&FYpNA11R(n|dY*e?9pdJ&quGdL^JC@;g&oA$xq_U4ML zc5bOsIofp=GLztF$c^7gED@XT=;8r>ygioH*cedGe{XFcz>w27+5`D$jzWqe`W5am z$VN25VxaMo_>XFL)m=gC=Vb5EVHNabZkDCu|riZj7 zhAEsnJp~_bDR$XKvxx7rSC>z`l%egyz|i2e+7&yloA=k9>l^p0f7$|u&bSGB_QqSV zdRO&M%pAjtYr2Tg96#?F?&;;%wlK(Se*tiEBBIX^NBYKCwqXNAQX1%-u>-wwuGQpWS?Q$T!1P*% z0Z61s3`W;_rSoI^EObJb^oOfBv3wkc1KXV#`WzntWpp(YY*P{_35cO>%&q~NJ$IOg z9>VUO2^;^@X7x-D!<47UrIJc@YQ$Q52`)PaBKSA`$|r@NKPNXy!AmP!xBjf9tjDml zuP(%7Ti)fPyMu1f$k=eZB|wA{Ag94to-N?!csE$4Y4l(IWAe3Go9rv_xtU)TNV@E#he|P z*0cazeB_pi)1Df*cJu!OP(ZK0DwQ$B=lI<6wAfzGSXD2u1_0^4*&(&3^&N3LTY!HO z730{d6#Sc5<+ZsQ=cRRXD|33xeamoQdrTA}zs?I}h5eu(0T^( zwAlsJ#3N&3A1u+u-=?NLjjj~{D?1TQ7frV%_L#>{DQMedWtK$lAwmI>%;xAzM`9~3 znL#>GKK2z>b1c8jBgVnqzpQ_EV}E6aZJuV_14lnw*3=>6OTorMkhf3Rl&!~({Z=yi zzKJnMjqc*}>d#%E522`JD#vZfj~#1FD?0vrw4lb5Lqotpnkhu?>C*c$^o1!`*_)|! zECgpGN@qD`nBlTsY(A!@Z+KKCccHko-n`zi&`W0&06k|kGhaM?GE;xyk4M|--WgQ% zOQgouqQkcCHyqYliV|}?f_}{`uV>?cPpbf_0VMdQ`1Y;>5zZNr`)(>&iB%1R+t-XB z=(z?yE*^dFRJpQ^ntg7H{<^b9fK_vP`Pe~DEpGEt3OiN{LgV>yYxaFu@uKRn5$)?! zY6&xrM=;GySVC^qRj+?9Qxi#Zht{ssVcFiX89d1PzJg_w zEN_+C10zhED`J}=^9M;fhQ-g`-rcfw@pVEsWGBgC=x%3<&qT-Y+hu4WV;i$J=A{E**c_q-q`DCw55rdlpvv z7)h*QAUB`IVuDXv2Q~&#aZq{TQqto&O+XYW(sqWY-$S`cF)vZnbVQLQ+bJ}eMvzRM zKONs8-=_G93Y*(LO)^M7v~k(ei{Ofed5wDk^?U~%*eA{DGT`f3tI>OcCAR}HrysER zikcET{ertvV|srpH1^-@rEmlLcBFTu%0`!9m`#Xg?-0V4&1G)mqPdvZV)E@eYxwt( zwG6%X5V#r)J~Dj7o1bn7QRsblKPBjxQUWEUv$we+*pYbm35)rxJv-hJWbxea>Hr7z_W zUOK+C3+mGO=wgKgqMSC(hNSh0JM6*Qtd@1(;VZA~=~ln#LaAw>Gz#elm#K1CpN!%7 zvD{mS)_Dr@N8F`U#%fatd<4uW%-zAa;^%+BI*s>koCdV%)vrR7ltC{}G|FgoiOeMVRIO@!~zpzzzviJOBXL|{eX2yp{`7~dJ3#8!X7 zuHI_O^J7bcsFZMs>Yh@?O7Sb~298zb)WW%y8?;tRo9LLx>JZZh4fgw)1kkd{l?8t1 zd>m=h>PdAwfubD-KIo)0B4=@7#JcCJ9`uE`*$9J?02Zgrr!(QVj7J+o$uMtcU(u;8 zOu(AcNB#Z!8Owx5$37V&T?|eZ(~y6Rw*`^08$URH)4J)Q*p?&tqT`9ZoX%jTBOA^87dYQxmADzK^W=9TtIjC&Koi{(iwb)y!d}6;8e>_ zfO-nW@SgnIq$4Te*my|iGqtpln_bi?rqr1oB7}2EL{W-C(k}0}HHlX=q}>8q!~`To zXyw<8AF1PhsKc5*@V4yGP+va@`zE!Ih8!tdO$*nQ3=dv7G3*eHDMl7}l-M;i1x0q* zGNUU_QIiJi8(KKu^S+v~)qa0P9$Rx`jp|W z>nc`OdHo9~@XjXs+wel>)R$VLqXBJ0Zrd5WTRN)zIu=O9m}tS6XbPw4_iU&Lfhwgc zX$Y#b(`1)P;t7~+)s!eb9A#pAa^8xvUdbO%#A>yK00%}9_RsOgJAQu)Y}D6$Lb=s^ zH@(#o@9R?|Mv>Xcs<+>gJ+ReC#>F| zUwnc@>%iGirxz^iUFeR{dnTc>H|fFNX3HQ<%TOgg?@ctS6^6K_k=pvR@`ryd+xs1e zL$is2VnDs2N)g^gVx@l^RSf0$OKk7Bdzca`pP;C!#X)~R5O9%8u43d|Eln^v@aY$c z)gXmaW3PpxpSckoTDR;yM7ZqIE*)Vxgs{NRe6YpMwLoTcK%Zm^11l}pe#8v3r}2-& z=IRJb9CDGzatKC$B~&;xueLLvtg8EB^+#RpQP(TT>~kLRv~GWyhKJoiTT&JFB$Y*f z9s8$F)elYYnaH_*CuQN6?UjAbO?&SoDAMua`x9Km>pwP!FkZ7)V7HB0A@eU*6C`PP zr!8qkpB02n@R2wXcSc>HgDkMgQg^JvSQLKZqLqXhp5CPd;E+8@j%VbFI`)S>nYUOL zzT$FYmnXQ_y>ox$j?;8=b0iUb|3KRCMI|^m8M!%b2KmmPj>2|l;5$Z`OAtiV6+OiT zT(f~%yF;*c@r=^&yd-nyJp%A2&$Q$-bRhA$ZgeWRfOUE}Gv?L!Sshs4j}yFM%Ovnz zxo9Tjw&-RhHD6!;@WZIz$JJ#6z4q!k9v97ssXV(oAAEnxA>YL~FQC`UxVez_as(C4 z?5HJ+|0T%h{1?E5zQ7AAMsF!)fm z7E^XVdX9g?B~+EI_3JQd%X-!cAAU<>%N%a_kM{yG$)bxAvh9L_H&nOu1&xWJy9IED zPKo-GXl7liJ^>&DOVP?$_*%jFeh5Ng&?Fi*5unMsJD7EZm($V=39Pt2kfl$3DRL}A z*1%-?lisfIJgwh1dY{CUx8}wTDAx9T53LpUu~dJ&7~XMu$!OCo^!Ezr6A!I1)?~Y> z!BIx(neBu*6-v#|!O&i`{t5_ahhKZn>SEW!7K*GrrUptJ(CU~^$R;y%K9+1qbF5Nt z8a<^tz6H@W&9mKy+oZLMm}f}OPl&G3pgF^LihP$*5K|*7H#0mF-B`c?a-;7~m43*j zXUKojL7hPQAR}x1e4ZKnd2|CK0NYCwsZOb%I~QFl^yPW$6Wz=mP=i+xt z!CDYA{bxFb>c)=(Z^>HYt37W-=~Jg#0~>cy4f-E8lx2df6u66xqKe+pkJ$tp0N(Cx z<&NC1N`s{zp>cCbJc&hjRK-qy*uxuLM#q0wULcq*X2a?t*fhyiKX+Gc$J=W}CmmL^ zkU^`|2oSpel5YWew#x#c7mBR6aZ5}W&kT68Ig z^`3N6%1m}$MgeQ3^=6>;8Te)BIY;s~`!;GX-8Nps^nQAwqAh2Eevq8c_~?1vu+{vT zmC(by{IO?1#V5-8(#|$@34*k0$hCiP$TdArKX!F@a$Xzzks!)AjSPyj95HVq;ndCW z2h^J4R5wmw2c4D4fXuJTZSs8nt0#evGDa&mSTUiI__wNIC^@*5-I=UEL%*ysX)*>C zZ;_GYIOv45`=_u#;Z5J(ApOY1foeD(q34NP{p~n^e%P5FQqcKmV%D+h^y7bBh6M8n zjZ;^ujQK`-Ug5w*A5->xQK{~uq&J~wunf_9u~hI|t}42@K8i0U1bQu4 zk_}DQ*A)ukw~;Q|oUC$MpVawlczoR`YakfvYdIp~6~v;9?RgaguYqm~KEvl`=}7)S z{!tzR`te^4!7Id$`xCqQTcdxKSJGXJOC7=mRB`CPE#`7XSDX!Sh!w(XApmbKlq@|^ z(x+EeNMXc>sMSk0TUp0@>4=7Mm@@m^p&s=fb6*qN9V`L&M~WP)7{9k=NVtAf%1hUH ztL0Ucb-`bGB-@j-lrN^YX=sx>Sp~3C_AY&BFA)kteQgnD`e4(O`_+HiAZzr?Wsp=U zQA;%+;!qftfb6B{6hEq#5^)N#R!2dV2%MPfNT(k5Vnwz^JB5RU)=6G`)4j zFB+(G=ZCA8raj=@&_1zAgZaHIO0hq^PDh&G2M1}V!L^kJvXyD7N~U3ildjpMPpm(bwH%fpF+pJ zY#3QhRQOlE4T!eB;_mX*Fv5m;i%F6Mu0!$9Nf7gHEqP*}PT4_9WHc!xSa~Mt# zRS^HR;S95BorY$I!;}lmA?HnsCtDaa)H_jvaD~$X|#5J-1$WxL7uem{nTdEO1I!qg@?LVGPj=ayh$`15XIbuG5% zag)DqgJs~e=Uyv@-z~BqY8mI%R8@=PQu!C)-A~PD#4VusLRTFvC0*A<@w)zGVB}`& zH-Q@w99q*;hojJ?)}~KK3!OxOb2A*wBp9!%VC{c)nj_4o4c&Bl|7$!4Oo@6Yk_^1(jvHIZAv|!jpR3)qS1}y=w!b(spmgBja!tHZ9kT*O@_&xA-@zw;B zYC?Z$JKz$+7-{S?a4JbHY2 zK9C?pEBPj3g06*)N_uV9WJXMiQ|oUXZlE~V$ofQbTAOU zBoD3yf=%zSH&TP}jo74!mmagX-OhFF$)A5WUCJ&@4Z7OEDBVyZC1$JMjyZhPK)G$1 zj)V#yHm1x)Csmu+i_A~*i|&#(paTDrFP~pLq?Pro{F|=?W^H;+szX+14UO_+v{egQ zfI!zHo;I4?Y15mpS#=b0hZ}e1XWncCQ;R+HLrcMI1QM5VO}l_3)GG8aTjQ7V59WW% znp$)}uGh`R$8B>kh|G7Wc_7UXug%6389#I#_t(CNWwE*2s8S&bXpkbSF~9QVOeKr# zJ&j)@y20f)%PTCjgjPzs0p|nWp3z*H9I+yPsxLcyL!dzosp?z3Za0emQc+y&K(m6< zgE{&uT0=>k3wfWF%60CXC0~(Zb~b;NI#QpRw?W>xPm77er=cx6yTT$sfeZzHby(5G z1xquA9xzE zGv9YuQXR%Lz z`{Q6+8*QQN;~;LNoyvAwn0^z%`D?;gpv!Q z#$^c75|SCOf)c5M^}->rYW%^(rIK06_A`!>rO8`O`?S?o!CfnLh~u{@3Kpt10;VP% zysr7dbwu{Flv^G%QjeF~tL#rwSapj9-St)&8EfXwogOviZ+4$+Yqx)TlzBUNV2zz^ z1(VC+b*t0Dsh-KURR&g#dnX&>h z$mPj&Zw0o-roIe#5xmznwtu1Us~@i-3HmO8Dd>cq*w-~w;U&J|N3n&GAkvq9)72qd zZ*a`R*M>(G%xT_1JJf$_`AMiYknV&QHgagzQBC>UIa-uNB(JN8in=#$BY6wuE#ocnPvVI+xTGuI8D{=m%h|uW^b5VS_y%%L32D7n*L30b8^}+7 z)9_%DC!1rQ*k9Ws_i?)lHR5j4B)ON^yAtT7ZzigAG^lHqB@}D14BgQvC%f@WdiS=mST3wRARGxAybMdS7qX7?hmL(y-MFK{ZD zVz!04*t$RT!^u3rVg5pcy)Al62Ue49jj)o(MfKW!$jee9ylhPt(PTlysejkdAENj-$pRUECj$XloONclQWfm|D4j_W{bqaC$*Yho-TSMG#*WLr@qI*TvfxQkCRf4P37Xk=>OlZNTls4(4;f5`9tMeLB;8Vc?y8=HU#P{68_JNe;h5xCZ0IVd!jGGp@jR?> zHSB-3QS|or9qVufKQovVGpAqka4_b3I{AqnVedydOTDL$ax1%N7i zm4AX@als>&%b$|&HI3}1ovHyA*8bh#Gy^tu1uP{5yK<}~f7~wndlttZGdUB@b2?~J zIG6{8Ux@%)2*7qw)1xIw5rkUXY1D^50SmyY)uoj?gnF@+!`jG~1Xll*pS%FfIz4~% zJ>wFvVL*XR3ikD=qD7;R2lb!>?Bi{s%_9E;<$c{DKM74w_vddx9}(cD)HM9PN)~?<*9qnNcPYFEW2m@o!e}@%OBx@zx}JA?8*6_T zhD$i(fv{Wy{EHI&&1ivIs69kUp;D9cEm0jB)Rz4)vu1Z%3%=M1&&k8hdrgH^Zz`XG zjJausH1C8Di$sBrx!qbLCPt2apo^Zx{K`~Bk@M?6dYYO;U8c3rctSv>&B}iWMl~$1 zF2uMJQ`4pjjlGv8&1|k@>Z_z4@tE z1Mn515ZM@v3 zrC&c=UAG1v#%M)mcMYk(@w1T+8WC+^VisGT;JUJ= z48GF(B;=|NW+J(DsoAqW+UI6=ZHg(-8B{)1wP2ic=7htE%gbzCSH44!0#bk*9*JUV z7(^}gaNdXbSH*iPSv}UtL15fAHs~|kk}_b?PU6c9u@D$(-&U{9HC>|Qe;--{jv5%v zJjOu~b%69+uy63&-i&{K2%6)pqKZ8KeRby`@JJVy0aA;i#f@iYC&8|@8FHotVoJb( z`J8!vQ@(|rb0$sPVxU2{DC#XuK2S~b`EMuO_>3sWUf*G9RYXwykcvP0vNCDc3sRlP z$B17bnyDYHT995G2ECfYKBgY!70ZVHcz7Ua^5Du&zD+$5RX%@QFx3!Jp&ygYbejH3 z=SF(QfygCm3eV$eWQ#2|Y}6VvLe9>PF-Rb42vA2Wf#tVAn!&fDoV(-aU7)2CWhEJ8 z!GhpRUWYf63lugsd&bP1voxs_sM1 zn35Kr^pY9t($0T%jbJbJ#Aho}S73zNVxY+956V-)JG<=wT-zK4f26Sc2VwOLPgY4|koa_t)GWqtO?Xf0$GxOE}o>e1lW=;qOE1M8$Y%;tv` z-MjPxg9E1$h$^ZYH6Dz;s zM!jf#mQ}lAa+8VfPonzZ%t)VGTg>{O?Nxb3*&ToQ)Pv(hn)6Jo>q`zzI^Oer~qfoq(>MQ*a(Bt?a)ctgmzwoj28x z2@%P0dI20B4O2&;reU)AX~pLjVh0nMQU+F+I^3jsE+<|Qz;r5?Y5TdSmaQN{|0Ouj zN)dl4Z~Vw{H;qaGNE~ew*`+C^2`m6_<7V)ZFCG7w3iU?JfG6kWWKUdtP7gEwE;(J^ z!siC(`JHNi6EJc|<~NQf$hj01F;VZ5gknSnUd~r-(Dsz?#}0pM#@=CCwu3E%I;A*# zfd@;_fVHs9v~a@bm+oup(Y!8&fF*P-<3yZDx1o2@F^>#<`(nk&IiPX z5PL%;;|&R~B_y{b_hzq~njG#;k)>i9LHtnei}Mj9M)D?T<*GL>Pi&ad9u(F?88Qnp zs{2}R8=ml*HQTUQixBK|{eDv-z*jNtgy{I-;YT=CL~Cyq1SmBne5yy9?$YuzwYz^! z!`ZOnqDvNG1Yy!Y=B#wlRqlN@?fsykaV~pa5md?XjWoLsuh3C*LY5~X$!%=HFF4bI zcIZJqUZ`|3`TW5K-xy{mvv@4(!OzgP79oK;1=ps|Du<2np!=*O1RjRyzon!9f`IoF zRli~{uo0fGs9LxKL!Z6VtM87{+w*_X>ll8JHfO;!J+}v&^&iU5j7dyJsaLhmMpf!D zfp~rOB8jAI(l`}{kYat7>91R@zMiX3G!FkbtPotNVZpsAg;BwNn5FVyK80RK!mhob zcEO#uhM5oj^K3`FTeE0hAy-(Td6;%AaI)dABWE&6mHQv|U8a|$>pGNl=(2w&8h1(`BV(%y08(5#c!l>{`i92wogmBoe~{#XjXRfK!GMYfyhKirt(?YK*8b)~ z8jCgoC_-l>K+L739kTb4%O`(NB7O$)(B-rQmcfP_+D?RV+!thq>fz20ysCB==$oPC zw5dPs0B$0JW#>nRI$Gy+>lTYr`q8!foe_2z!TGZ@kNmi!erS5Y;eMqk=X(Td)r}Bp zc2D6x3dX#Nckonc!+^UJA<#(piE6=GleY|Sk`@s`hzFEtP~Dl~5R89%aWeeOw0f({ zA^OO$-#OPl3|K6&vIBj5k=50P3A%dRJ&+r0cFTVtkT-Hsf{jTXe!80qv~g~noM`A%jo_VWPEjH;sc_Vou+TCS zf26|ha>QWET1JyqN-Ow&D`@ien7_)Ne!dPVL@0DTBB1~$hDU#^PmNHjK)w==?(M>{ zCo)df5AoRRLG6<-zVho-PJo%4_HC%t2D+~GFA=SkL`|7c=*@rhk)~ntwrqO!wro=Q zpImtTS8H*_LX0dfZYT*@wq+$8Ac($}S|E{nwN$`dcLWmk|AYnK`m5?>Kuf9@1h#4? z2cs%5&aS2WwrO2t0w<|(y{Eb3oA$efoZR<{s)v3MvTXjZ?)>Ns&9?vBb&|t*R(he! zy*AmpD_FP|pMZbSS1eHOs`NeWL`*3tEl^MuB6l4q$BB8U@0Z>Wr zXXd6p7}|1Tf??W|h7=WHBCV*_7m{nV+afu(QbG6R>gIb8p0fybJlp#$Br`E&1FS06 z+Z}U;y|{l)A6IM3Qh0H7TDo$HHT~Q8?Ju{R z(w98S!G#OsA$(5h7MCO>&B%mC3kBl?nzrz&xlMnL+=$q*7F|HV>l65qCd>^R9+1~s z_4YfgqZ3z!;)D6BCzlvzieWH5 zMF)p_HsB4l+=(6X7f!4jQ z4%~lyXKk6;+5l?NV8l1Uv+aG+ttUnvX?%_8?mLc3Rtoj=xargOYRkq+`U{ZLzOS#c z@$qY17IM?aFmotDuj-Qkx+Vqy-Udvs!a4*#fD?iv~Lj6gEO zee{Lh&~mXDsrA=5?Hg(D~bkpV6DFR#RGL2H#O_zW7 zx-7qdr|<;Q;F$Z6Zd(-f>uevbF^#|{MHUCAxWT5<3FgX(F7sr?uQK{(ynhJh;~f64 zQ9c}m;<}hCh?&~q5W2ynhpLjC#5dZ`V>7wHj2K!1%s?=W5BzZSujfqV5_yY6^CZzfrkha{ceajV#eb2ER`qQOB-vq}S3vRL$?DFJEu+MfxiY#egx=vOw1 zR=V!|4h^u(9cI;HpIS*e@7kdiQQ?9Z?1LmBbF8QY(k zd{emFn>arD!${%}mJME)+rqITaD=SpYmM_3O|vPQ?6ev_{+U4x!N7{NzW^6f;CZNv z`<}-8I;KC43fq7`s=1@bbUS|u4}}QG7DIv2YNBnbs7TgT*yg~kMX8X4JMAo;&?Phu zMzA9LTolh);L;GzjoL|b`Lgs7ew*+y$mNn9SEA9#<|PKy+~)-(rk}SMp}R6A0@Zj} zs}pO<6i1qc&5ZFXg(l8;6v$_Z-7P*=lO8CXgvwv1|5()gv(mFH011D8y1pR*Him}( zL^K1iz|`r%!v?(L<*!cx>*KVthd9>-R4~R<6*+Gv5kz#}z9@h;{wK+`n#}TFe!58e zAhaA7@a&RW=kM99C5EVPv&4|VZ{n;&q7q~_-`6E`r+Uiu&CSmJgv{NIE+|Q*Yh-V^ z8%Xqm#AmkA0Cd~wAB%sh@hR;TK&F9MuFCAZT{Pfwngj05Xz{}d&DqJfwNNoEXJP2j z(+D?U3{ZWb1ZRvfdv~}VQgRgz_vKw)bK;PUKubN(^Vv+MwfV(R{Wag(=F&^lk2;W0 zFpOyfCsXV`>D1~AG{poRUB|?^Gx=c;qB7yF)4Z;*S;Pd*#}|JcwygjYHjy0nuN@Pj z7K=l3s7c1X9UgGf+-)nola zH@qm9*wYIfX5K@Gs!b7%#Wk@_1oLi+?s8ay@)8-&vZ17fRVYs!stSiGj zm3_)h0JZ!vW;vSNlHZe>-ADJ=n^)TZRo6Jhal*+GUWQ=ggB89yIQGW(>6$WHkonVTC;ZWG-%S6hsc$vghXcrCT z;KGXCErEZdpA2tKn&F)-h0U{5-WvSd#}2uif=`4ePsEx{SEw2!zFG8+g%FF3CIN!O zHC%mPUiwDO>dUm<_&Lk-b~`2Zm5*t$GHl`~Tjn*uzq#qL*=~J4JlOSnZ@0sr%K{eE zk#IR!0U5o~9VFCjiU@|&YAF_y48v5H%YaS zs5mh9$8u0;`a`=LFh<$DnP&94!NSN8nQwNIFuW)lHxR@?x2vRPS@i#GK<^4$td(r* z*?HO(>Ua)1S9)Be$4+e~-E$>4D6V}ed?~A{U_!O;igYCaffffvEzGXgMUhnPX@cDx z-yVPa?6SZ)=_}$9z!>N~nyHI!sAx)E9qxfa!m*EUeJBH>6$r-|S}t8VIxZk^Im?0= z`*x)51-q08y%|b=N<$X3P{Z5e?TU`>_`j8Ts4_PrkuTWEHun1q!l4qrJxL>HS6h#6 z80o^9j4F0jKQZYe%w*Xs|1*eYpLA%$*~@>J&Rx@Xz`R|QBy)5RIaf3UyDdMCrmPflt{?b$lbbZwx6}7(mWMKwaCHtCs+A}^E5QVwfE|B$ zoo}OX21?yeLPgxzzU(8DXWLv7W)AqD6<*twZ&6_Si=Xl$o6n@9v9WYi8qS9Jw=9Pb zS`Xl`bju8g4Ol-hKU0<$V(?$I4kp+XZ21{_SEa>F9`~T?pykI?5Eh9NCC9vYq03Xa$vv&hp&KQWPqlprps#(YhJ3*vxsQLv0!|v%i-g zNdY{w+|{;GlduCJmu@%$3Ael_0d*k(Ig_yiAeU}90tmNSNdX{50XLU0paCtHsEz?C ze>OKTAU-|{b98cLVQmU{+U;FSZzDO9zSpl1`ji6NY`!0dJ!}KhJ5LODx_~{@_90tJ z+rr3_M@m<9|NDstQ_7T7va_hNH9#FKCYj7&1Ruc&@*^!LcN01JpLa5cKfZtW!%r$q zloH7~J$ZjSF-iF7CLtK1Eu_pRAF3alf8~0rL-lETqjjw66^Dz}wyjsQhGVmOxoqbA zJa5`&)~+`k`?OdtbDs4I>9qA?bxdmW^w99@V}jrP_3wZA)AX13e}4Ce_wWAoP679F zq9zs?k4h7_)~dUgb*I@{4*k=WjMonGV%IKA^NKW+n7%5SmC(kCD*C zlkP`PHg}VQlz;38#7puHdSEwPv=-4&2gG!zq6jwkuF0mE+(MrlQ^r0of2Q#tW!y*q zk%zB=;zSC;)96(~ItA=_VWE3db1ANcO!0@G;v|XWHRV@QNSWXT_jYJV6RU=Ub`YBl z64x9+LwcL4|AHVu6GNi+)d~YwZ8>N;$W0C%QAh4E*xVSn>SvC%9IH9DJs#~UYT-;E z={!hxX0&UOVj7P2f!NUtf2^@VJuSHWRabtWDb!>}L0@w+_bC^#C=qi5?xWBylMgq_ z`Rcnt#XtXvb=6;|H_2Cjr{BN8ud7aIJ?%ip#0yk|cF=pZ9#+Gg3U8?JcK1w;m8d=- zeNE4svGN^O2_$Oh8{fa)Fopgeq1~@#n4(tod8*OphG|4bbvI5Qf2KEqMr5EN2)|G8 zo1p8S=qn&xv{aP$s;IL#5n!quF#SlS*Yw-cFHA5lNl*zd8Ya%G(ZfW_>W7h^c#Acp z6l*1AM|WN5r6bGKDpX5Wh^Q=mAZ-Uh&56tL4(Opr3`adTFm zBq2>tohZru6M`)VEeCa%ctW#y;c)VRLWA@rn#F@)Aq?4n9F(8A0p;RVyf)?H-axr{ zRxV+nTs$k6@TST|f2nc_tXwQB7stxQf^r$hSa8QmK{xBe+0gDQ$$O5rR1gNb6)8BlXZ@x{jZ)4cE(f^6QjW;lo zug8Y*UU;i`Z2Geb1^L#c-VN|$9hDkw*}91pe#rfQf1Yn+S-H4xzRi{UHU}Gg`w^m3 zf3pi%vLY!rxiLl<7}nG;|2Cr?oTI@211bbF@sQX0v-7MK(zxMR7#19Zh%yo>?Yo6{ z+_ahASeRNLn)V)dg%nza5qd&BpPz68QeZdW0t{)XV9K{cjvnhx4XiYqXDZd`L8U4W z5s90Bf8a;y$h7`@>SQ&a<3<)dELM+CEk8cui+V%9To@(Ot{COaTUqV*oba@5GLhM` z-fllfY%!7WJ>o=453JSOE*w zL3@FTC5(?}+s#^`tUb438=>K>nE=PY(yl8}fAuEg(8vdO^Y^?fO70YdzdbJN6>m!( zRaD0vZZm0nA?|_}U|TSExK+8K4P4yP+}!oIdTA%q$@L@hRxfEpqso>Qbc4m}E=N92 zovph1=8e#Sm?yStx6N$5nx87vS_lW^ai==()86Jy+9|k(4L=Wu#mTyJFp7*hS9efF zf644>uBT)aOpxg%6bwwb?i2+u;-TFNC_ulACEqLQL=3Ko1dOayMnP*KwJ#!Jq)^~X z7LkZTg)%O{ztb?9N=Sh51wFTjgx9nvRzf03VMAHZLeJEhA`%fyP+i7FvLeW$A*OM= zAQX*rjk~z6j0$c(o_$1*v<7B#+%iwHBBDdQqWf?}4CNS+*(0uojt9;S#3f2&|7 zGev{UYM9BCDI*a@jAdLH+^j4bWY#+JElWtir%IJ^0sgltW5Oq)ebG?20j9DtF(S-l zs%VheWQ0vcL*3!Ri1%eAU?#IggUl(I$y6BcSe|jotrkgVmz@3S5e>Z&wb|2Nt z?wmufLjOsT-#;Ov>&<-odZ2O}l1SldHef7T$6mb#s2ogS0*W}oDnJB5$+0@M6pV|S zVCf=rp$Olqpn9c_LopwzT;^fZdw!tjhMwErGx9F&*T#uQJc*OIZXyhCd~WD@*?V5m z^Bq06^n5?QpcC5-{&k^Lf7WBWT+JW|=->GlK(^mv5CC(r2#UEI1bs2Dau5VZh$YQ{ z9qqg08+RPb@7fD&uw~#>)CPx|QoIwHcPSyr=nFg!rW7LKk^}XK2P6bNOEe}Vk_Z~l zNkNNZE5q+Y@3*1f75%nTZ@(J$3P<%Hfw7R)#DaeBDCIsYi?4vie~Mai6ODsHyqtbC z)rWC4VX^MVePOF##%}$pYtW(23wb?oREy`1oO%IH{VkLzFc;k=bZB47Yt*3#H{AhD zDL{B6_zDY-tvI+FPxUNv={eA*3!?>5RAI`K>7#tCZaKE(Si`Xy$6AgpIJV~4iS1w` zHMl#Wyh9l2MO1Fse<5zU_(hM=9rr7a)f{{1-i@r2t1#ZsWt8b^6pszUC;vPS{!J7Q zFc;HBG*4g5Z<^;TY90kv2lWnuohqZbBVgJl4hC)zdXFY2f3-fWJSV*M-TSf4?IMk1 zMPrDLPSEqXZt8R;#(p9R5J$QsrcoC9K?ONb$mVNRj|wC4iHGZlHfD+Wc8Dqso?CyNbIb4Z9U>&<5XlB^5J7daq@U`K&9YhDwfCHP$d-e= zem5Q9WfUhUe`+)rx;*#I;_kjZMax+5tas(o0w;2ccq;Fw0c=@IdZr7NNbua!FQIxco8-p+*$G`bVb2!&6rSnX5OIx?Rmr0gW@1* zvE_UytXQyF^O5xgz1`{gc2rGeW zf+iL!Mj~aR+M^Jmt0U6yMD@ayVxI5laWBriZcj~ipogPPmkTD}+>oF=k-K z;~~SBf8ZF!H|BuZgYCP&GzaJKbw7WTbK@;Hh=#;nn=NPHYiaO{`{?>W9&x6OXviDkFLHV2YQ9jN#NeTIhdUdc1zrpa3@ z`3z>zTw8HqX&+$G6^xGry%Z`N zdPaB=799Z`hcT(Gh1R0K5_gFtiYr$Q!d=_;3maKX0atV`pVJW%~x-eB6VZdti9(d;?TG$MZhlv&i%0X`C4_ ze=GcX47`;_sBm^8SxH3LLYsq|XmlJv&t0Mo&5_Xajy>r_IPV&aU{5Cp^SXT&d#>@o z%hyAhAA{HrQRY46at30a>qz4naOu7TVvZG~w0;SR&%?7N%&5MM1P+f>L;{Q@17>^) z39zF~C=(s!wGk@Eo)YMI;hAV?`7YO=e3- zXz<{YEs{ekMw>L|O?6=V+QLA>j?=D-$Gu8Slyj z2}w9rCI}dPu566pwCZhK+9 ziKh}04s50}IXqYfu1pROmVqi#oiL?~vY~Dw7zVaXj)X_1isY~ok4%+O0K32x%>Y(; zx(=j-gywq}OGp?^=Nd~$SSdn`WhB5daAkskbBSlpOGtPtQYaH7fMsBd6sL_~8OSn0 zViL+1DIA-?GBA3)Lv+q%1WQ;Ye{+P5_7bm+S~1#~vC+M^jP2bVKy3G}-0pPqtX}Pr z%&|i<*P9LFn7eI)op0&71-zUA-Rr2kMJBp`+g5qmesF4;zd#`Ob5Lv;UFPLbY+UtP z=DViHps{-%?s+tJ=j7s;_oeF;c@tjKGDRPZZG8vEw%#3Mp)s+)1hC~Ve`@~Jbzp2v z!vz{lBJnWc5R8p4J1{oB&tPm!-mV{VA~qXQyT`lE`S~PQhY0Nxt-Hr-<1Ue^UKO&9 zexPyoTJR1k1n|XP6|&9v0%ZbI38xVc4(3%l)2wU}-XYPMg@Ks4*oK1{2TKkzXPYj| zF=u!csaF?Z4JRsGnD4XpfANqDZS_}%$vRCH(p~JQyG#G_#k)(6HRGwiHqgQ`&{r}z zMCKUZ=qDNW3&HQ>slGi(3U3%N>1sey%0p6oRfzi-rGXYoAwDx}jlP_h(HiBvb!wx} z+Z(8jWC=)Q`7T#$M+528Ng%y_xrT`2L7;{~m6p+z40nQHEQ(Coe=E2^7#GH^y&glt z;TGbnBDTlq1mI4aOQ?jtn3qur#jJH2q0ibkL!tn&xx4=NiGyFedw-92*zv@02<45a zBaA3@FpTnD#5D(V4i*E}wimmE_;bgXTpyyTWInzm@ig@Q_!2xTdN%a@x{A<50;gSz zBD7k_@Tv&%F^Uklf79V2#!+9+%V@%K-a1v-=k1#+{Bl)@C{wJK~EaIXgkOL!UCp#`NpJ{uCj3f`R!@jLc{q0;u(TKn#H zYs_(~G>do6f0!>R%!A%h_^((_($$gF;4^f+8_-qNFZ4U&kV;A-fEhnHr1F3Fgza`V zR9$0mC0(@5jcwbQ*qGSK#CC41iOn0^wkEcnOfs=;dtzh4m-p)Z`Kr45oa(Ob-qqE; z&pE5sTARY{-xS`)+30AuK0~y*bmezBp{?ILKT*=J#bFgjnzwxdH5GN&>;n(XQP{#( zN+-~H(B;?7L%pc3rUZT#>}IF>%s@Aub3L_`wrJrhT|ryWv&e$9+@->PJ=<9)S9BY? z*S-e2wVO3}A2a5thg}m1`=P1)o&;{cO*GmqgThTrvi7vK8^Yc++Q}d8p{hl-FIMg4MiHwp$!_lFsuMrIZA&yQuc)W z>-~oBR^d>Z81z+TVs~qwDq?zHMfLM&^KTp-Hp-#NVC0~#6sBN z-&-&ciFtVdZsmuW(VDF;;%>EKP45N$+_A=`tFT?o9_BBnR_U$K z2#J3L+$%QDPz{E{yBV^iQ>hd4^Qp*$DJy$-iQxa&W?6xB%a=+z4v3pe1TRup3(H-2 zO2VPqeoD=0a&=Dl|OX?Il-8?%Mx^UXblNfw2k}aJrP1o z_N_op`_L4rVvwZF&`pQnGgR4c56YmA+EmmQ#k2L1s9}h!W$-ZKaRhDnD7Be`&6lfY z!V@}&on_s+b>R6Y_C@vqGBl}SPZ(!^1{_gzl}SWejYI`aX+b6JhIQ9MUmWYPkC=7f z1pP4t@!d8n)Y@ z*ARNYkg*pJaz1jfd%r&!7&1Lz4NT5B?J`^YIN0F`n`u}RD&nBwV9mB<&Q@kD`3;yf ze<@Wx;hb-!=`p5=9z&}8e*GhIo;jI`uKRB>NHe*o)J5zhEQyZ~ms3l_XTbuGgNBll zt>pJaRhU(S-OEjr^0m97Hb#W%U_eX(h^?2p}r z@|Jnf_Y17*1%&!(o4$|dbE_6H#(zVQaNgOW!QgKvS?AF9MkKc{gl-Up4O?Ay+&{?> zKSaPJ4;+vTwY7wT>B{RBKI96)Jcq05;4tp?IHyai|VL<}D?@-;N_xni-o9sQdu z>~b9Ea?$7s$L;pc4|5$(Jp?55s-}t~(Bbv_E1M>rhMrl>6^INY|3f99XQbHuUvpTh zbPaTtIyb78kH3NAh}W~Qhe0OHnzk_|5ejP}8!3E#VkhjW%fhdFH8Vt(VhTMbWZaWO zVA5#A-hc&I5#&iOS&-F&;Bp+21#}78RB+r+JIBevJqbm+WCM3y?w@tlxECE0+UhWB0bf{TZrg$@9G@{fUHfL?Vni8&TNyU>V~n)@MU{u#S0ut+6Oh(_5ZjW-zkK zf536&IK3(>vTN4aKFW5so6mL$_kXtXr&9r4dDkbXwFrK8VSlxC-7(#ueA|+0Np~eR z+Lvp+`MVjXCS#Ss6W-{Bi# zjp2funu3)&U;$?-$Jb^M!0_z~4mJdim$EB)pQ5AMa||2=T$R%+cL`7=RVF$D1Y0us z_G%}1L3?E4?olll>9xF1z3qw452UT9C4=HDOrOx%63mod-<3l^240|$n8|)1F*8bTj5hGpoNj5-JXy+wxY;^uX3X1IW$%7Hz zpMm$73UIPpz=cct8;{)2)P3v*GQJK*hvI{OA&n3X^THCeKhak4l(&LX#345Vnh^jP zX>amzy;jiPdHDiMt$_q6FZG8<+=#^Kk%`WnLD>{RxPL!D!rjlzr?cN>L5e4dbL(P% z!gV`@#9-uveK{^4z}6VUL#c|nlMPHOn5g}SL=9^sKYFp{$<_-W+up1eN4E_vxO1T~ z-o=s)W}W4!V7S;ee1WbUz1l_-d<01|L&&2aa`MyVRv!4%=p{3%uD===5=6uW-6wyD zXMWJgrZ>@oj1m-n?L_FLWW zrM1rg@vrud9AB5+cz)y6+X{z|>o;`uyn4++sY^%!)!DW+&XiVTO(C9m)8b^!XK((E zjmszZnOv3kI}3c9O|Rq;3(}H6C$i! z%YoPfsLg@&ibM9Pv?;`}BemdOtcaq1oEmywQpS#9UgSDtkR~Lc!5M-E^(armV=DZ_ ziSCa`C_JiDRgOoZ8z{mJGR7&k-^{!|wvEUIDVaJn|MpAHaMbtOYi^B=RbMNTT)jBGd$8lnqpIJ-|7@!5548Io$|IQr^&|gt3zg31v z##V#U2M1nFCd7BImj0g6kBW~Y-H||kuK*nw=i`aZ9U=X*ucyp2+MyqeYxE%xd^FPs zRi9Oy=x_$jQ!bb;p@=l_FlC#$`AcN$*g{8EB9q%O;T2!1*|PMaVhC&N7C^kx-Mh_dw3Y6 zlW=#8(x!@QX@9HYD{>G!IK!|qE_q!xFHt}78B|$J_VU&1RI>sbZukTExkhOxKN9|h z1t|uu)&P#FUsQ0HL$4PA;UwHhQwE`2vJlK>ELOCD3Q-a_f;<442RX!vJRRgn+f;~g zs!R*c@Mm9X=d@C)Q2I}YBQ3+H8%M0Q_^hcTHr0%Y7IXa*eZ^Qcy)6<$@^SAyg>Ck_jY4VNnHU8gn2j5H1A zrcm~`J&-B@L&M;T5d*XYFH$H&8g1}kuE8Retk7c0SaKqV0Cd-5#fA9}5Om9%NQE6|Ju}tU6aaOo%F+@#_fnYnNbv~mDW$HfAkF5rGhN+)q6ozZjK76s7 z&`59GYC5b_Bv@1H^uKs2i zTld3lOVfxgi1DgL=9Hl(U~&Yox;G%3sohgEjGL^(hq*bt;0Da10A8I)-eE_HZ@+hV zuqSSJbW#yPVBzzQRaFOOc-X=*iSc<2zJbK>s(s__PF=XIA_#;A-P68q_=Y$Y}$be#x+QT79)=I-F$L7 ztIR9+fv%syTiLS6ubcA9tm!=^S=^AELHwok&`&(2gfBJ!UQs*E7@6ylj)|GLqkx}d zXYHazKB!wq>x(xd9MENg;XWxGF`3nrkl@Flgb4wpD3VZlS}p`5C-`vrgx0x;Qu)6fRQ+lZd=hG_V}kCx7Rx+-I5EKJexYl*e_a z2#1dP_V*D(#z*aVL-bETKqomIn%g}SjNTfJhaS#^GeoM5fg1Rg*&fcaWL?8T*YS z_W>r!OnY=cL0Qs${rt)T{`~m&uY1;E@woZ$9T+Zbw>^aY4{t<_gYQypxddz(bg9;P z-ig6z^~0+);ce@;p9(GfhAuiTc@c1+)l;cqw4u>G;%REct>s(->R+1W@OoJL_V?(doJH!$>V%JC;9^VPq{4_DEb)9KG7G5kQE zh#zM@7E*my=W`YaEbm>KuLcr#JHVk=efK283KMEJTP+FL5C}@_3t$mb!a%wK6=OP0 zr1ceI=KG>VeByZkxDK}WLaRnp^Y42I+G+>Q@~m6ZZ&Ms;blEHL4xF$!DxM>~&&CjP zdNdL51@IA9zXe!QulbawyG6kwED~L@*+4gSuk?^)AvK>PL~Iotp&JqORZ>NEb3`)2 z7Hgl-D8dFZ!>(v-E>3*T#$;@Oa;@EKHhyI~w<3OnriX?K3hjfEkkl#Ye_${{Z-L6| zZ%=8D9~q&gB$%WyD^YyE`*hBjWnhz}Vn9T#v6qJR{Kvrx^u zHB@RPj11%RYVd%&QG&RslNt!>&KT;VCT6ATf!Wk&FT=z9itq`MxFa)xJ5She?y{dq zFVI~yx^qX90qDv8Vf`3xS!Q$udK$wncmqZOKUya~mk?WE@0uA!OJ$nCAx$@s(SG92 z7&!i-r`}C<_G}~%8E*i&SSBK~ti-KbT0WW7g6pn;VI#sruYC3*SObYdZ3@G>_p-_k zW=a(&U2&`+64BS!Sxtk(#3!ys-NKF&-(a&0Mk900(zxE}aJO^a9u7y5Te27wQ-Ak~ zv*AkG=JUIp3WFf2JB$O(_BLGCvR|yzBcwg= zvHF#->qWgaC6JB%Zg4*r1UL`V(4F;(Oi%<}^zG{)qN3=OB@gAO7`>_eaEPfQM*fLs z7(-kKC)9;1b4o#UDP;`xs3~dCvPe2JAgOUEFdXcGtO2xADtOAEtm0JzY6u*wmsXm_ zEuF^mIZt=3)|rz(j`^7u! z<{zZpt$kb(0BrwBN2>vsvJx8O@!2y$Ok2Qqv|L^RbZ`T2$p)KhO zj9j_*aw3Bysingss44FF|s_yl}C3@JE*Q<7qUc-gtrr#~}PBY&3*xAL{MwMv6Ak?+tm4 z_w8vT+J0C6aGysFcR9I|_TTY=sH33y%-q-wB0O1`s~)NNL`t%*%G`Zs6)lXbfy}80 z`DQlGJ~)Qrdpj)DOO}eASbLxo=*QTmlHHGX-b45?0H(di1RR!;Xdp{S@E@LE(-Vu` z?Y4O9JVypdy1IQu?h)1RRxMmhuB$qsJlcuWkWRW|NcFBjVpDMMFOo)Gv-zJ9!L_G_ z?+#^9OFn$MoxtI|lg$w={szbc|9Vr@k!ewgGQ9c|$IzpJnQ}O|?~50>ARSb(AI6r; z@Jcdoyu}+O!`1&EkZ0U6g&2ad<*JG0Ln2}|()IP(>;fN4vAFSxLuPUFjDUQ#v?~4F zLL^5sUtu}KH?6;uWeoDwxKb(G65q?q%F12iim4i!)Uey<@UnkC|1Ky*4qDIMq83q? zi3B=4@7g3M6{SmDB`|5Nv{LSkh%t(mJM2IE@HoOXh$VcKE znmh`#%Ybq1U`g`2ik&b6p~Z%Z{ZIzKeC;`44eB8_(_p+7J4)kOzjOOX{?uo~+72+4hg*YWp?^xYp)LRV2K7bSc|`yodxveoL5e6Hz5E+hyF<@Az30^+l+uu`f%U715L2(W zGO&;0ixBzls*0%PjY1r&x`W_M-A`vyi>Fy)fBu@|HO&8nhK?dbqd9I4@gg52Z;+g& zTNn4OLdr!jYW19qkKBJ5&?W>Sn22y4=t5F(VqG6A4XR2#bOJv)Li_V=HN=w)xQfp+ zqXAjRZ}soRnGj#g0yiV@z)O7|0nTNR=;XHUJn`#6_7~8&; zdx|ul6@s>u`c5-tVR>m+$d&;bjHS;0t@2`DMfj3Pm5=3{%QeOqhMgo`AFNf+qbjLV zxXz4q*a#Vs6)j6#RSrH~5xNbe0i>wDr;O%w5y7c{kdX1mEARQx{%YdB^DPeSO5hF_ z78Qn5W80$s5dg@!A~39R5m;ZB>xQKA#&l$B@PJ$o5wlfy_HWeJNAn4BU3R+(wRhN= z6h{F~7!AxYzAY?&0G~mG{&*8m+^cNOiiNX{>Q3mS+?CjX~h-- z!;HIYG|xJ|eTmFn16idU5}pRaDzM^5({DbL=j9QKr4{FmWl+3jMa`8NDj(dC>oAZT zD?p)X$4?kqUOj`UMsHSG!fLjeN(@Jnk-0j^UAV^OB`+LOL!nqwm||vpnTC;BV2{Rw;rkaD>LBNcsQvVEx2BA))6rVn7CDKghXQ zP@)#mrLpRn+(J-X0cx67w7sd)r%bF4B_N74X~Ycw+!N*6=)`E7LK|7fuTh!`z%Vn5 z(WP!`&uU_MT9>Sb!2br3mHOn4agfIsz;v3G(_$qJ^N7{t0*#&1@USCT;Kry-V!~I% z(I*Lww)QyV07g4v3|nZcs%Jmu1)F?7QL)+5*F^LY8^hXYJI0YLttP$fJmb*z6NL0y ze{~%CjEO0fNi?1`xv=^A@s_$2$u@0R9b~hQIQaA^Z3uYVEMaj5^ z&MH|gs0jOKU!iTi1#YOz62FPG{)rFC)(xejDHHn+J0QzRdr3L7GcY|nMG-0i&Wkz- z2))u=0IhEA5EoKuD_`uK_~UQpFRsae3>c zGPLqMr4@gHZM(5hqz)c|?jpwhIw1QWma}`hZqqhn(dQ&+DKV!T*Iak5Bct~bL!t6k`)#B z;+e~czF<&zR19pCI0!JPQ_v(B7(z`u94{FEem-Xpu|EVpZ33XTUlda7{0sm|NMmOyby42 z6EkEoEWQff!fHypgdqX zK{T*=Rxk<~Xxp%X140^-%pw%EX5rEqXMn|BoFXfNHVL9}Vk7mhAN4ZaKbd6U3#?XV zii!o=B##zStl$?n{`F6&Bb*iss#Yfdio^zUn%uOP)B>3dX$Akp2{u9`fdR^bGIwV( z5UfS=TLu&W_J1GTBI)Go*0dvz2p#9&l5qBf!91*)6om>x%+)|OS1ePu!kel&*`$!Dvez)-6*=5;Ee8J<}9)k*xYGL{4Lc*cxBhQ2#`-l1Ya(K(U za2NMme@}Vo+S0O=;nY)osr1kH79<*XaDP`%{Us{sEaTJ`^5XCL1QIvA^E-a`BXQ?aFv%>I3&uaw1k{ z=@4Y7|M8&cp)yH4lV2V2%RWrHGvm;}cS?fgS7HTAI0EAnwuZCyTHez2aMa`)8Hov2iF zRhFWGk}5cV?sV$;Q~vu$N2>yAraC?9VVZG$ZkqfT1s@ChQpt$ftxHw3VuJ((fX@aQ z$Im4!Btlir+a{=5`19`jv@Qyr5sp7zK!sdZhv@Hq96{OXvGXMw4BVYG-V5!N`Ns!f zgeNE(sSnY4kult9JcjYcyw~h~l7G~GryAdc^UBI~q|BW!H#Wuyg7;_7J2K6KQi&7P zgEblcT-xULyT?LUBSa~hPjKfqk{AWaGq>`SSd*a9ChtV|_?`-Hv_m-NpEZSwSn>n> zmMR~~YNSVT1bky|{1^`_(G=x8bq+_R2IkKdF7t=;Pb9NrE!L`)J*2l!uL%onzN}jx zZ`x4EncAn(^tJx-oxD);P<6CWbR1DhEGI-kb8&9L6#rmTnRk`lG@zrM4$A~lbWA

9=mg|bi5Qsp zs)V{i=s|a0fWb4uNB8h=`nOlKPrqL}1xOqTAn+pXtKIurCKmU>iWLOG=83*d$i?lnMJrt0}hM)0l>7SWY(;%v%%=XJvdXRqVr^B?cQ!xj^oBsj# zf}^~Q$mlV#9f9oSG|8#V_ZM*ZI92|KW?KGOO?>`Y{X7+qH5NKI(39Y{BKT0M(P~Uh zkwgJMsQI2y^REaxvp<>&r6ww4jur(MyI%Ct((FLum4hE#emBKuIH2$w8Sj=xXsTfN| z2u8UxveM~~;ENxN#v?0`4t65@0n`z%ue`6+k^3zPv2|{pAos&Gd40Kg==cHz9>??> z^x%_?$Uk#EO1UGyX_M#^IyLcN@TeOD1*6Bp1_jTrGTOqTFo%|@5C$th2 zu}4p&CF2;lK?_%@b!D{Nzcx_WbVy&mcn@`)r0D{B_@};G{btTgGLt{PH>up|Q#N7FJX|S*ys6FXq%H#2!rpLu8ADN?RZ&%~jj?NN_GSG`(LKQyf z0m2T%i#FH161wigeewSS=urd*6B+}IC8a$wk^S0Uyz_z?{Adf0|}%W1wP8k^_L5hIYUrbJEm;GfdwjR0BZ8!UP-dv-LiC5lepioba?o@b@*yL zhs=pkBpn}f+K@^!3U1f}g{wFmuhG`y3j5jCi-5d(Xg4Tm-M0axFlfeWnXYWsfK6Df z&thDRw(2{Xy4zq*s3TofuP7%MkSRj!&pxcy9DL~wnbN3bv1%jIHvlKE4Pz4|fM%>Y zehBAE8BnleY2D+$xk^A}lh0UXrAbNT>o4z508#6$>%)6r@(jq^+M9QOzDM!t=qu%B zF8M(KyqZsIWOW$rLM)ZdD>s2G|`m?UFiy%5?BgEz61v zQbX4YPgfE633G{8RinqNCVOF^2}Ilr=rh|&j3oyXBdx|4ny>|d8S=c$zeY>N0Fwmu+x{JqYRJlsO$7$SO>Fs-)i~XgTXJ~CvQl?z`OFHL-ogLwz zFZrkcTsb0rP-kvh$M`WLXtJkZ)utjQ?iQW@OUDSo4DLHr$;3{d>9=NN9&_BpIx8g* zm!q_xR^|BpaaS3Jg$Sn3q1$5sz`*C<=>p>rN=L;!1RxX#Bfl^>y65Wd{Ov1VJ{yA+ znHZ@ZM*vyETf@tOn_%RH3cx4m*eF>QQmrp3JgMV2yV^sTN9`Bv&)icsMNxD3fx)eotoF9HYb!tK%P$4lfp+Cev3w=zv>k)kk#Oet zYm;|xB!)l7w#1q1494QF2SAi+=z}zTU~moRgByATTTke$kpS64@?IC}a2BxB9avxY z&k|;Rb+k;Ay+%$Gbh#O^i+H;srShkUwtna@7IjI&4!5ZYkHSp7i)OC<0()WS#_ zl7P8~D3%smBhc7rkzh@l-bC+#P)^zgZy838VY~#=Q*DwWGla<2uo0b{(hR%|m#LU* z_C;_EtHusjU5r(m;~wl*fB8O$-5mvKQI2b`W2zM7O85Nr}pOe#GLs!&l zr;V8Grz+P|Td){dFhp%CTphG%+6#;SmkWJbd7J~Hr4F*hEPNRh4mC$fkui$NpDhR< z3Oo6gt%l8>@S=hzVvlrHqEtXqGyP2=up9p*llG}@6eU`Usx3(v?b3WFf+n9F(1(|1 z2XyEJSN&lCY7}=F3~s{&-U%A%*OA~JqrPUQI{%p@_EIvQwkj$1VS20z_0>l8rhPR} z*~xQ4sp}(B7Q64ZE8KuO?n)0L?&Op6Y7wYY6HNxr(;ol2U-L?kqgj;~XulGB)L67+ zC3(8RTov{ntk#e8osan?w0PEON~GILsRjRSlxy4*#MW#WR`-xLFW=0^B_dNR@ti6rwcE*t`10GQXbHfIcBK(uDJ62DFYIXl_IR) z<9Gd#iWw36B28DI(b&V+6R|ETfP_I$b-G!5D4Q6Evznw^XMHvu?xM~fG(OoCfbiTP#B{FFx31f8YcXtMg%Ibbmh`jj;Pn8Ac6;+ z;Zs#0N5y1p1J_nXQJ~;4IbbJpJu?s#!~4LzkMgn}55FrC32kI43lRapc4Jst5TsvD z_7`2e#Vz*Q${=`TkV_2*6kqLt?U9C>!+bZzsj*5xaL4{xg7mXbLkQ-pU5Vw4>o;c& zIfS)?5EjaJ(-OdT}2Y=$&@ za{0jL+KM}Cuq@_s_VXNm>Nj@hZ2}>2+~IWpQgA&!qjJd7$jw2vlD3Kz^G?7f>x2dw zxuI?7Tx2G?dfk=$yvx=a2JF!qkMbJ^T9umzuVRu4AC8h8dq?=s_RApUmYs=PumA|B zLir6V$1pxR2oOtd6CFQIK@KSScK^B+8B;&Sz`kPL3o5Dki+Bdb;MSD8Wn!>4UH}V! zK7SVVk4T-j&GOq_B5k0ni%I>(dr!$)b|i(TFrnS)NR>JtJ6gEzs{Ug*wSf}rFJqZ5 zM!qg}Z%#2_(OX`-kWue_p-3#715-$pjE}Mg%Y~?6{2lq+Om9L*b__@a#=OXn9|@Km zpMK4EcUsKlvGsZxYkT+v&GPe;{CV+l)^77ni^=ZM3Ul(Z#_FD;R+|EHf`CvM zEV-Yps9si*wh`_|I?=K|T~3PFz425rCd01rjCHY|9Ha+_p%i@Eqg_z5cVyJ%;~aKJ zf$B<#!mRM5@O<1 zco+Otd13F`zzI^I`;iNt*oIvWrTlt2ZYAGP369N!df<=;90%k`6IbX;GtC=5lmx$q z$m4AQzQF{s@bPr?TLy)!vK#j}A$_n?74kyyRQ`<7>&Y(MVsQQWiTcC0`w5X7V>GJP z;dRf#;?ZfY^5k^!fztFHx?2#u4vxC(qRWG^-%8-sXJ#ExRi}@LR|(EVD4f zgFI(#rtQ)wnUkA4fkx{Ke-qc0A`t;YV!tGZY4uBbLl63 zG%sa3QmRgR$kA_ZfDvu{SBx#wmQQ{=+UT`Ndji>VTOD+m&equSgQIgGZRDNHQMPCq z@hXhpjYlm9mxJ&z@!oE%*t)`yi?fs9 zZOxEOCF_x6I@cj|nXQI8_%eD$C&g^(d`ae_X*{d)QB8Sc6G*lK$gY|2$apAb$jk@CkTD(})+?HIW>|Y9%eTtaRxIMl zWGS#<^uCZa@Qv1U?HJy`4F2N(4x75$67*Zvn}iQ9Yt7R;y}q1bLrKB>XG_=aGRu%4 z2*Z76-sf|JFR>0UiDErio~r1t%nE-=9M`f#XddA_3WZc6JBbO{%VeS4`@C1PU#(zK z4a{%OHd7chl*2s3!8}-lcN>J*$B3o?JCgl~7i+kvU`=U?hCIU`{9*j&kt z!*wSieBJRWgR?^>UQ)3fGoGYB9wxX2mnj|lGpzZC8+@Yf(e6jG2!Lyp)G3*cig<_@ zlEt+3Ta+kJ^pIB78U|;EFew>&$~CW1Or~<@eo}>+kW0s$ZXPPNky|=043x?Q3Nq3- zzRu?fwk4NJgSTU63TJ>1@XY%4qs@Ha^AA-}U<0etcz!-v;2kePa^P7Zi}qR*|Izlb z(zVPzH4{*KyXh_O~#zvSMo$G>c! z@ZX9R4{)0k0<~-N2+fI6wu!>ZSS7BmwtSxOO*XRZK|T;7j&)MtkNW5a>Rj_3?~ylJ z_dVLpZFX5n%W6p#<#SUE%`ZlP&If=g?S0{Ym&a`E|5+Yy>S-sfbD{e^)hb>|Lp2$E$niNlgK_i6&C&8BjA#sSqq(SgKf56#_ z?k(iEUw?6Ocsy<^4A(vdjp9?0SA=;AtMPG>3RHqtPvJm=s;60#aau|cjM*roF8h2;~+wmCxu2uB*T6KV&X>~=ha#L_S-v%<3# z0KAac}h)zJ5#q57hfb_$`vEf=@ zpNsvJxU^~y98pUN*+n{3d<6zox<3{@_i*7;YkMdamX^4M4Cb;w&k?v=X9j|}DN59C z;);;2J_n?KA`PY3(=kQq!=9o}h$=l!KA^(#ALxLv6bpBT)(C{Vs%wbBerIu*e5Z5(N7SI1rcuq1BaVVRa(!_RBp=TF>}^+Rbm1-0yVM?2sZmvG3kLxD#aRc~Rm zWwtau;+COk@jMymC!^EIFXR+i1b0dA2jO4RlA`d7e)lp$+N4!cOj znRwJ*OzNf}tAG0sPC6lczDq@DIc_tEN&{9i+RrLOT<<|_+V)_1J00muX`NUu%)()( z0V+DZEUwm$0HE>NErUYe6)^*l5npBF3GwcV4?$2+A`Q%(xeZ8~k#d<^gQ z7AF>QI!`%daF^)Qk-l$*P~)S0eGJn23dqrH>9#Hg*s)qURB%Ixj%+_L5vg&;ZcWL6 z#x9->@!2dhKX|oiW!uJ*LK?&!vQj`$mS8e>re6thonKokADmASo5wwpUz?{6Tq~7< z2den8!L-k4t%>>vb~eOjigv?}WyUqXwtw}YWiCSz04a+Gp%|EcI4X)T)BcSfVL^;R z5qk*WIywfRt()^K1RMKhmP!i=Wj53(PUe5H(uF9TlF`M`b`u4~s|~AUMh;R$S3ytZ z6of>Tt+Q`zn8_b?$))A6WXqs|hscb!I0T9$@Ft~%h-Gp8z)XauAf-o8GS&W*EEm+A zO$9$H61U2)3>!<&p{*@FW5UJ^qh!LMhzY-tK8_Ir&1rrsZX_IY7*Ll#=#fiXMG<*a z;E+G`GnEz$5M9q;R)Jf_ngF6g7!-+NUESvC?*FT4B*M#Z5N*gWw(fDeUu#lVoYONn zwLCk;Ex}uz7S+(R{&(AU%(H2bd$+Npi}tJ`b8zF&9J2Uh>T9)m`+_*@x<%i9Un?|+ zsvq35TnjWuvVFVvKsDg#&A91W7oyO6HwV9vH_#bKwNh0Lh{r(wS3CIe2F2~E%t?Y*JYWv% zX4+8YzGnM6+|b4V&Pg1&<@~i2X$kc4PuxIT*i*;_2G3U5K0ZkG&q()k+mX6fvi_}5 zI0781jSYcpFF z%(}%HUEH_DSpiVEIxQpYf$#syBMrgE<>Yb|LulBboZx@n3UZ5Qe6G7C;5`%(y!!Jv zt=@)^#h*1eX+G1G>3)tOGKkEJ7J@JQix$scu?D+rsmjg^h9%9@$`dcQ2Z4XYBye3i3cSqft$``cpVB8%Q4P}C-a|=KB|Vx0V=!+0`qUbqRpSix z<3!c>#lLOI6*Pg$tt6?x&M;Xs7CHcT(qu|^(w4wX_pKml#Ci8e+~nxW0a2~ylqQ9c9sBPp` z3bX5ZEi-?Eg`nWgGRgbHGPS&#=&@)z$L!icR0x4EDQK?8lgs6VR))arRW{Q(LI5pC zsZOWF(NN|Xl?5_K=^y#fq7V|7i|#;L!HPauJ*@kk!*YOxid668=rDOkZ+jJz83w!| zwNi^OR7HnYR!2@V(YJvFmP7~Cr||tq+x;V#dRw`V3-$I0-OtYa1L2&stoQLYow{`| zLl`+XWl*i=?ul!6cqL>W3MEt%*qoN*2r7@tE8`F$xXP42_6*eYM2IZH#k#$;n)OT&Ln-UlN+>gdPb2ajd%_19V{y6~2XnnyM zqT%y*$f2AO-oaAJlSx`rU(!$+MC%6WKx-Y|G^VaBU|Ke!J-%S+rhp4X82^0n+&Fpq zStCX^8PBH)Uz0gvn?wJ|G_`+h9>`~$!kbM$>de=9dR3_ydxkHEgCuv2n2!Bu9k;5L zad&xAooo)&lN1I)c#+j&EJ%H?kgHsfd0hrZJb{+Suxy(Y;jL2ff6z?rRLT4xLA&b- zMobx3d@+o4A*~jTP!v=X8o)I|_>#DKGsmCV`3aO>%YjxiLr&4n55hDtd=?lL5sMbi zE7EM)8_yI8UPk!{?0<8a-(B}=r*&@XfA5*&;oPSK=JwwB9sEMF4JnQ_NB%jM37_Lc z%dLMZAw@RiBg(h6Tz0p{2fl zcroRySQlnGGn86eaBq|1>TLXfCN)R-)Vq7@$WWn?1DTOoPvCsHXTD@+{hEQ z`xN*v9C##;wOq)-ym@e2J3}#kTH{~{tQv<|&~R(Nm$*i1RZR#fQ%+8hiuVpC4bc&OZMsy7 zSk<+#7MMb%P1k)KgJWboSXxWeGsivJL(3^2Rx;qkR^vo-Y^{m69=)AElYM8<5=Ysb(M*Q-9#i*C**AMP#hZ4mmne4=(N}eG~j71DEW{_)3 z;!YR-@HgG}?X=90(fDyOs(RpPD&cWEOXY7o39Ky#xR|_Jr_U}ZV~xf`N28HeTG?|G zKvLZFpeo$#{7qs!@OKFiB)9k97xOb3?-pARvKL9i7g!>4w?6%=i0=){B)Ucz-2_s@ z&EHEcueh2fB;z+Iv@O{T(R+}$b+8xs=>+JgVB*KPZ5#^3%n%I8@&mpq!R$Tlrc(gM z+cbudMc8lLQlbp)5*c5v1wqKiqN4hJ)dy!}*}Cne!qQz@pvp?0{@|q}dXmzF5?sFgNV^q~v#D#iSXkbIW4+@qfwBw>`-}1>(U)gH?2!g~U zQ__;K*NI}CYHyNlk+a7}^>Whiraq!|E=jlEuKha8t4HO{vTwk$HhmCn`>i8PnJA%_ z9my?+2ft+oXoBZCC2$8SD$Mp?-*x0{^p`JZrLZ06(->?N<*S~=ZULHZCQOz-z{{ep zf7#!n?(GYSv4YGOF0hUA(jAT^2loAACzV7RYdZ(i-D>C%@#*V6i5bDM$=FvZ^!CX! zpuFgW=aIpEf!%eO4uLX<@PT#Fna=(Xov=g}no+PEkV_PoXnEHWHJA<}gSr($1P$-t z{hzo6Lm_z=5ud6b{#PZ+sHPk4exvr=>U{)Dr3D+cY*C3V)rv4pX@afR?RVHc8S0Cp zdbXp*oTMscRU>gB?+kcb^$5Ge5wqqX;J@6Y3{t53$5H%Q=so3_`759a;6Rf^Z(P(H z2V|MYe?k@z7QQQd2PT1jkt~n=BgypxGy4$6*pxeJE!YEX#|P!gC`SZi%82~@R?EDc z-2Y82UmD1};d7()ylL09&}k0R!H>MTtcGy^_CWjH7~K`&;fj+&o`vZuC6C0&-y6_5 zkCR+rEz2=#FtQa=28|3BCslmQIY%zkhIiBdl;Bka?DTp#;NOK3t22ouFfc&+k8?iA zEm{_lcfY@SZ%+}(DUh;-y`7I-N^jKlo|W8dUgZO1PwlZjGM~s{NDMb?uTWE3N6Ag= zHJ^^2ke{ewwc{O3Hxfr`;w}$9N1;v0=q`Iy(9;cEd-poT*J9JC$<_A za|U@z`tHCLVav%b`&Ys7x>fC{~d_YEh`G)8Q3omqisy^MpMlm3; z9N~mn#>+r$?vtQ|2B0iWKU>JaS=qvOf{t2-*6;i!6+~b~s4pc-pks+xvNDhxWEwL?hPK zSm=1SvhH4a+&PG!2Do?ef+y%t^|Y%&mFu$I)~0tJJHs`$rV#?_V33E9nfJCUWQb_? zb|+z^s0?mK#{~1?$Oe7k#>hceCSrQHh*re^weP9_T_3x9nSD~IN`5Jkn@okR8wC2O z;H6P=&!C?X>O{qIgX3SlabrQmWGs!==JS#1@4c* zu`fHCa04Ey(B1G`OsNLAYP6P9nMS`YgJ-G`cq*>CX_stZsAJSK?&Zy_zx~x)Qr9`5 zoB?c%$CYief+}}aHu$S;u`qT-qCm_Pl>$F8lv<+?ALwAx15=6ePL{ec#+`g_*i6yg z3erU#sXj1V!X2OO9@&pt7mW87^fa0d;*x-a5wGEJ0z+zP5V;h-A|@97nDB-_B{7lk zuozq??U$@Tg*kup_GKwA&$ErGL zC>CRn_9#SX-F&}9pOpUaF*HaabWGTk&FV1{XegTA+zX3z{Wg`5)h(=#wdO=6w^z0B z7-^>Ev>`D89}0ucMeHE48L*dm|K8h=45P`Ena27lBG?g`1}3|{ceLeJ9^T|*qx2MQc07W*ta4v>hjEJO~GP=gi@o89@W^_OXA#E+ha-KAKUQ1>;d zCdu%nyK?{uf4RbtlhYI}Qq-fdnq>vfx4ovp8)}=kKtkN%u7lk@)e=M43Ti`pZU`;S)ld>Z z+qmhb6x%-Q#yb*UD9FQqWYK~EE;#8P$DGgrSoPYX;jz)@-YLB1 zw)G>~@eKgRuU~#f;#um0^K&s=_VBLIP<7Oej54Ve*NHLdX>`G>tI&nI_y+9JCWRrl zU41tfc=qsdief;cVg~Q^fjOoe5lnt@1M<*spOuM5R@Uc~rXz{b+mGDEG!wC->K~Jk ze{+jLj4i$&ZT0-fOeg48pc{#hQ>gCKE$@31I_ZiJO&Z5*VG1FDo6*kmt74zBp0#i> zQ?1h-H@&j81KP3V&s1pbxUS0ALTolUo-I-pkm6zdgmFdTrfKRj*9Sgcq`d7|oD}RQ z0Kp@2wjBT3q==HaM^t>o^Q0L$mx`TC=SX(4duXwI-gObG=`V|!N1|Fk6ByeRMeFZq z{(gd|i2FT;1-av{jnWMTKD66fv4R=}-DxJ;IAVIFfn)a{0PfH;i&+!a$xF6kh zK#Klv@|l{2K-`Z9T9C;=)XP$3S{(aR?|d&Ufm*D$+*$A~Qz(UP=$T_|edq_8*`>el zkuodHxhve8%w-s|NY|VrGQXAIeplhi-5m5N{%y4=6)BU;3}VacH|v$xf+Jwen4}{v zLW_o+^9K;X8~S~f5GiJuqb)yDf}S)%0TV6m>04sBz2rgAbD@n)M-&lK6P#2x_s%27 zge7$F{hy?0H$!&-uILZMR3 z{W%KLTr*8`io@ND>(Sh9pWf(B?b3x01&N=7NxdIT#}b!J%gS2ohsS=mSAm0OCS}@TBES&70x5w3$7EeoADNq`>#h~LNyHhI4L4PgynXwLL$+p8 zM+*1>nxrE#iBFCW8lDoBNZW)F1I&mybLB1Va-H|sNHf}>@I@Y>_$OwJh&jzspB%tq zhsAivk>N1v{$6IO%>WRuPv87gj-iwOoss%|!quQ>*ig0C0ntCDFQ<}ItzcU3I;o^$ zg#83(`Kwy$Zm9JiH2WOh1UepdlA4rlkNL4})*isgquJcc&O0Pp1%(l+6ZoC-aHx_! z9I`+Fjcb%|@4Jm{$cVu}v|T36F$Q=zLHCFq9d^kg)|gq`u6c@<8roZT#{)d@>uW~Y zTGeom-p513$oRCBwwxRZSMz691K1IuOauhJlOl!Bu-kci`#Es&RPvRX+Itoju${qJ zSD)2L?{Kyrk&l`K0(|IPKx>$5`}_GJ*yQ^wiy4Yi76twGa~3@0J5`ZYJs&~f9O}Q1 zxDCVT*4UhxIgR&N1mz-Wi86_Fi4lHgKH&!WRgd3|DVN^qKOGE+<~6@wEqu2KW1spX zTsfFT=j8s(Q6lCd;b9W;)5&T|xKblwbx0mwJdES&T+{A51{oKA>DSx}^02k7w~7CI z?ahtKJp z$#oZaVIIOOcql<{e(zJTBQuM?2L}sd4&dFw0DTvXz5lXe$zdpDE~$ z_DM?nBVBbOaP~e)cAp6F~X}Iw&&mt6IiUZuj^is zfj+2A4p1o8qoI4-fR&E|6S1GnBj{575LP}nq3o#n1wd*BUhjbs33`(;bS~nXP(~8L zr4aWLQ2z$fjG0WnUy<2A$R&T>@HLV)EMP)e$77d6H%4lA2q1E0i-;RH;VhJ*sncqz z{pFZ^4`F+9PfUA`CA5fj(s=#WyD%h4O~kM+t&|TS0OeW95flhdK7Dv;R`(?8yOUQ; z3iUgSMIgP1Qn|sI<6-hS_;E}jNXCwUQ2v1W4ma3MfB^Gq$aoWVvAWT4ylkwGQ?Fv+ zF!vsN`w#}IaNF~Ec1%Y44TR3Q{Y2${qh9x@a;Sl_XNFRQvS&yp0kuo!e(0A6`bzQ& z!jB#BuhTLx!Hvb9h*!lw`(M6nf-JiZ@7qS%3P3+z$CQ5x@E&xQ)|flypVurNNGXF~ zQ)oUn8GO5Wd!>c2F1zrny6vh-00#q{~Zg2lx2b$avExNy&5lj{z?h8Uy#_t zZDjes4~IUlvab6DJDJs1Z7pwmQA6bSKYsb*qWlAb*6PLWWGEqm>3nN;Z|ZN&zJv%y z2mBwD%4vQ1l>L_f_`g*SDKx#?hEhbTT%FCFh%}WbAGHqa9)rkL+1*taLyH91zl4m7 zMWYv8iS(2Vd~rY_`mdyl=am&Y+H^}|dVA#at-s!HH{X!|Fo()?vAW*6bgBr|&oDG7 zP^y_*G(I=In|`Qg1BtbI{oY4AuZ4TwuK9x!7Q%FR(oBpptDALdJgZ(UVJL&>0Ui%P#AysOG9Tl9YN7^-9qx8(_5vfS!`wVDM`qed@lipCQTO zUfKiaLuLqsC^k4dz(^pp^J2;5W6KT_R%?ft{;hdJ)8TQxdSNxszaD$1cJ1R%o)%hb zDZ`qI?Vz0>+o{}uT*?Lt9FkN*70eY$!XF*x6Z@_G3H8|>1X!v z-?0SnLhs>?TP(?cfo^5B#e_vJE7w>XvHs#IZB~P z`&B?vi4+4H!P27j7C9>)(Y0_}m~vN|snE2%piyYnPJxP}uJb~C-g0rjAU6up=?5FB z;z9Zo4hJrxn!4+PD|=yfC`Z(=F0~nDq`y=LU@wd6sg?k{E(RVU3VMD|4o)=e& zLTtSiNHS<5nkhs^-cWdS#9}7LPJ&8ZvA=i|lFoDCjGzz=%2+{dH0Npl;Y}H;s8;A4 z%v#Z?oyC&fE>Zf(sDKlMX7ktpYZw1-=*lY_r*J!zBx`TOTDa^47M#lTTrPGoayyi z*(Nd1?(NIE3Ye6NvPXzpR4%*GkGjXecKs)ls-crzo#sP1h9G45;%1mNYkUvddyp17 z;03tWA3-j~o`HRGVW^oxLKmdpPb+o9J}-8l%c8xufb{L^3GT3yD!kQG8KqklBADG&k$5GT92y7G#Y$NYgcUdFP(Ky_ zqny}7ksS-$=N}{ZG_Fg8NuA^eD&>FnfuSg)S70wSBvFf3E z^67~GjeHJCnyR-Bjl&j2{Ov~PSvAg^C2(@O=X#a=I5O=7u(UkXjl?$%m%TOYDxp+T zYyZTpShwQD)H=}YoePSm>^}Lh6Y2AIw?u;=AkyjQB{3<>QEe0vSuk58fRTeF1PVfj zV!@iFdz1JT)nq~rSVaA}$1>ZUiS&jSok~CThIb)z`LR{T_iX*$!B@m<)p4kYT||Y3 z>0gaHm8ppa*LkWeEqclf9{^)xJqx9Paf)F#6>n`|8cnH<@FvCzw!BFN+cw>K0^w}n zr#DFf(|cD~pRV*AA3TJ8>rx|D5l}5!$TF7=vh(ujFB{~xaIV#4YG_C1_ZZxf*-R=o z$o_pyb8P;76;R0dUnA3ofRP2)ty!KkUj@9NGLPV5ST1D_U)X=1LRkqHxFSFygHL)O zKuP_`vYO<`;pCo8x8bo1Ac7Dd&$B0jv5xU>QP7uQy|>SrDF8Bkzw@%-KcgaOc0P5^ z%~H-yhP1?NSU~#V2FmN^A>u%1i#1QSReH9oBCa4c;Dn518Xw{$!7z|W4jg93OhSH> zG!`XvC0j^`*}Us%eZpGecyx~?&7@-G&0NuxRdlhkXbntQ_H>a=fWY&?ciPmA9YLlM zFeTtEE6&SLRAih9?i30uP zr9Iy-+`Ohz3#XH3$Wm(SI2*2tN}RpwEjw@qq3oy{pRHthnI@HbEv^$z9)dR_=7Ed| z_>x^cn=XUD>^vMr!0fKQGw-IF*}8L^(t(6BIOPCRWRCJTYL`zIbTY(ytzjxD3@LdqmN%5KD#5#)^dLpPXMzThPDF%nx18%+=Li?h z2UG#=hjjT4r2)nEDqL!b-^Bh>Aq`QG!?Ed98vG$2wGf|#!0D;VIi0(_hfL&k&;V>W zNw1%D7`%6wi~5PX3<7SPRK*v|#A7@+>XVA>WGH`MOg)(r2>1nQ|OoxEd zE=^h|O}xh-D7%1(_P@6zinpt#zY6fA=?8&K5;o_=qz*C4tH;8z>?6#6AkmsA^teNE zko9VX%(Dk~ngt`PtdWsEFVojrA4^)4YzxNIv=Qtl_8JR!?PtH$WvgD@0;Kt!bdV6> zrN5f?%XZ2L1^zlxMb!YJfHtw`jIx*Raf1c>#?W-lLS6AbJZ znpAzK)l+tSU~&tjs?n*<(_^27%!9yd?8QS=XW5#N^E)QKX3YQ|=O8~7)UFbNocQwr z;JSA9FU$3%kn`-TwLf)AU8mJ85k-W?+H@!b7`J7K&%ZhchHBrhFw-`jY<`_KzeXRFfS z**(wehE-K&vaR$`d0o4rimg>(hfg1eH1YV^Y`wpD-2Hlz?RG;&-s>`M;_`dXOxU!1 zm8IZNY^bNfZfOwYyFl4VpgVz5hi=fv*EL0UaZB|@F|x`S9{h4?vI=xt;c7N$sPY{^ zD{tB}@xM}{NfRy)E!T7{gLmDYHrUTwNi@TeVdW1A=YrA`-nyfV6CFF=fwp25Jx)KJ z$8u(jO8Qw5KbnK*8AELF;Gzd{z&E)o_>%;z1|R@m1V=<_waV=g>>EHnbf3N=n>&V- z48-xq-|{AHnSDHjv1G;z)T}36^u*D&O~Dn3M0XL+V_i#A>m(k7A2Aox@AN0vGG_&7 z#I4GNXa0l-WR{E zkEjhf!tQ>pwW8lP2jK&Eu>Pn#`e>2$53+zF4HVA^Zf-Z%jEY~G;PuuCp-S~Yf|8{~ zHJ`!a1=BP{nYsQn)9;I|iJ`I3zv<#ZZQ=J8>64&JE$|-TSs11$o_t9U ziwzO%Cb!-tIwKDxo%oPg(_&P24A?b*2Q-+_h(SzMGTUXSLo+sqB5~M+y4oti!M-=y za2aialmBWP&-!T>K=f->SK+Vr!K`EZf) zj=7mjY+Qop9_vU7Me|CRS}K~M&}kc_G8If_8prNf!oVv9zg$Ncunk27C3s6{&qGmI zI|#gR|7vKuEV`9<*z8r}sdM<|u_1du_Y#~DAh9Abnv+ELTRUiUp(*A@;tMK~6u7-o zlMJuaR>lF#YDRt3KU?;I&}J;7Wx%DuD=$&hrpHOA!REg_LWkq=ejQzJ$i;!TK zolm*KM0TzIho@JoBZ(i(qh(QFnHqvW!luf_ZzAViM}o*rbo?O>_N$ltU=is)e<9`bxuKx)E)00nGZ$s^w{Z7P6 zXkMD!1`s@=IdP3^mC{8SriH9P>+N~9(MRbe>#e_?FCeR+aXxsB6t_`T5)46!pln)$ z7z05lVm!kbKK&?#NrByJB!EIV$~cyKnEB{bv-%B#?f~)_%&xck!~v0c-zs1`twQVo zE%d3!?cEu%Hqg)G-z72~hFsJ^4wKQQh`B5dbS)&k-@|aV=55D@R<@6eL-)5Xo2!3s z(>DkSWZUniKS%ELXs!(}+hp46dc8eU{%u(UuSR3V1jv;q)0I136Wr`PZbyKWSPo`^L)Zoy!gF(%%t1Y zxNcYvNS#yjz`+)d{BDBRd7@+BPJIzBh`2)E5LmJw6og!6M zom)LuF|3hsSmRNA#l9bd+ZOhEiwvVc=5xgIL zTNra?=%RHun-caG*dd**5PWzHmmdr=I8VjkNf&K$ABbsaxKV(bpyFH;19&fv9%Wc8 ziZT_+l_B-Y!IpwOH31sQTg%`Q5lZF}=)XTk=ujkemA%UH#GuE~{lZ$2O~Vw7V09>= zHy&K2QJ2GVQdw2&>)escl$yXN;5p><<6^fpl8EA>Ei}>EX1B*%mj0>qrf!b;ydWoh zxfzf7Ter!6ItOTC8vh61M@ysOE&ezV zL?K)#I)EXs~Vn^4nmlu`mo{Z&ESW=+q5R+cTv^q zQ7~k!KA4~%Q4PYeeA`hkaDmJ2l#Yg&b4zQz(emeI)#nW&@aYq)2#;i!aj+I{pxv#l z6bgh&nT0*I`iHNGatp@%Kd#>HzfKt#&y|@MJ&h7gP%J?C%9|~Chv^isR4ys&(h5c! zM*OW6&Cy(RZy_VBbn0&0B;0|FIwzJCmoju1;dzcJ{taiL70dWPh+A(RCmosSGH4CxFgsEp)A00{xD zegHLXfi*CrjwMOT%khMlTeB3M)v#c4#{#vxeZfY}m!qWkI5{uS6K{$V1PD_FR?sfJ zUlp5=?@kyDqh{O(sS10!xj*vp-Rcqiz5oqeSH>pKs{%u5pl?M44t#Q~+$scPWKfAg zyr+jnO=Nwfy`kY*g$#(}3o4H(!3oZv9#xBM88@Ty-W`Zr zXRf}bH2thxKO$1Y`kBue5Y0)av%yuOfX^=I{ntL@gdS0U)dwe1!Zchab(u9^%0#tO zoNdYN$iLCZ?M!5hMZNwR5mtHA|A5M|<8{SfFwezV{asZWnw>>vZRB>H+-}ey<=%3V+qjP>uyt@kj=V5@MM@l1V#_^WK^$NKK69uZD7Zb~QQBazLu<}@H z$t$jvRa<MNQ|I`;{9DM3+EdFZJeD z{T^pb`Y;2Y&(6munxz-*K>JhU-eyI8L;70fDGQxy^}eAdm{9ZXKJ-g2m_;y?}q6YC zk%lBL5^nididdMh6G~0u(M4#0ZFsV1-wDRd07aw5J;AyOt8hCE-DSmt{ z$rR{HUr40K^l2}nF_Pw&zvMA(qSN-L0dryk0`GQx$sl5?VZ`t1gqMGa@-QQUFGm7p z;$91&If=Di{Y1lYl=%ShVC4XuAmIE2DY3e~BjLf23`0aD690Ps`QaS=flmE9wxqB9 z-sSEONVb0whRvmc3froIM`N?s5#jOCJA{P1K?W@f;8m8Bnp_Ur%Elg-K973lYaI~+dmz_*03IC)&3pQQPO5!Zn5fqyp1AgB{p#r-~iaES8 zl(R^dT0J$8-yG$MRQ|ff3yeaxYC4*&H*ACmwjtBp+Fw};uP-PHZnO-kYjtPl{qeE^QeHvd8d-f~)(xz(Q`ae%l)+8SzH}5OnUWlmWx3dQr0^HAIhle!nf8CO zFOI5PUp6wFkU*Dc@W%b3NCRHJ`Z;NNTt8;}xK?sy9cYwRS5SXTh#SjC*Knrl1hG z?KNJ=%iKblo`mXZza52kmmBb_pq{N?eGr*_vVs|gK~X!uQHWd>VzfK%#)=W|tyc?M z8BCVE&rf3)(L>bx;_9OJ>Ef}=?isAJ3P~)Go78W@AEAgHQ%i zX!!Vq6%6amhwZSedw?Y$@##YOiaYh2;4}9`Q|V1ud?(a(l;9$Er9CkE11(KcUsfki zPRBoNRVg9`u;*<}A}=&f_i6Rm#0K$R&oJWbV)Y)KbdN)#@bh#~UBLH|hY;Zth7h+4 zlo$j#b0-oWijUDkt!rcRy93Oo2x-R~3-&PSZgFrm!je zHBqME@=D{I1iwwI%0EKSZi(5bYV!^DUSQiNgEGf+>5VNcvDq7ofm5-S;^3Z{gz1OE z!35XHQGXTx5oHp#_#OYCEj3>x_-TlIf9 zv*%oqWJ~xG$0~%~NGh+40&SdJbW-b|BRByFu^bqGM1d4X2NdNxUA!1l)tLZk%fI#S z&MWkN0537Yar%+|N9FcPZ9T2E`fnfybr}1X1t)6OX$m6Pjp#C;)!dY@ZqOlgtJENfhwm!l@9?gp3>-GrM!PKd+Ff-Hv>`Kd7GPHMNkfTAD+Z>?1;@D z7_WnEIB*A5Kn4jlm<~GE{{wE}{SUZ>Afucbj26hr^WVL8(|WRQ>l3Iw=h_9XVAb|s zS_}~cInlX1X&J*>hkH**C@@hnB7w*tjOQP(4{QZ291`kO7Y8QO!C6;%c}_mXlFrzX zJIdMv&A_%EpMP3_AdV!idbnRs;JK16wjmVrNo*{QNJ8O!$<-NZbof0$BcR?e-Bfmw z!Ed9pq42jJgAdn_3~eU>nhY*r84VY;OM@=iWdP$BHzh->P1|H=;iw~8ORE59?Dn1E zaBh)dCC7V{nyk)`As8wr=jT3sWc}sKGfD;QH;2DFPo%_EExVHblXi~x@%)`X(Jg=kh6m$Gw4f@ zWR)hNjbv0t;MR<5cJZg(aV1LpVYE`FDQRkY)!l z7I$C1ok8i$VFV-VcM+V$(hPq_{y7!nqy3>%FZ0{Qa*}obKJCL)r*^WqTe)z-8eJD3 zx<0HL8r>zzhJ`OqA_t9;HZEeeGDmF^j@VVV-L$FlLqJ{%le?Z&iaAO6Cm4?% z%crWSCpN)!SN_ghZ1a{T4>sQZeAqyCpEvyi4Xe_$s5VqP7=&Wq& zZh?#n3?3Xcg?WY%3N~!nz4lZ8Tw-K}GC=`vz$+YY|2qRgtBa6s4g1fUv`B)ea`g6V zYPwJH7*^A3o6b?s@#it|#!8wxNrisEFySi`)&{(Q1Y%NLI5$~CV=!X&$O8^G441tv zd0X71Ssdj7u6bOg$j-i18yyV64pq8IRcgE%5aclRbof>gPEMAm>m{#$Ita$*^t&wT zZB=(kEAZ-J9RIEaA(5W&NGi=;g&@$7m+`jt9V59t;XD!v9YG?)u)Dds&?Zaexc$9w zOcfR!tBKB-^>^Mm5A|47AsT67JZc=Du&N(tT14&7CZVhBrx+^9FPcftBi^>N0C0J0 zU`z3OnICw>Ae0$)Idu=?#q@|TO9FQ60Z&^#vRY3x=xg4D51N z?B^@NcK?#_+-(kNiT5#7p?>?1ZFSXgng?!<6t{)z(TN2MY+_J8fDy^&v`qjwaH*1j zP};xSGCX-Uf-$C+$6zf4Kr9GO^}DjbZ947qk=r26{q9s%XxbBEf9sZsPQ$D}rSZ=| zp1F;wjgh*CIyqjnPcIW;z8_8pTn=8sX!TN_k%>=+=gthTrj*|npH%i8t*nt3w8xX& z4NEeYn2e~Q+Tjdom0)_Zm7evW;pnt23>U# zYc6ul=9#NnA6}y#h8_Ou&4YD8LF==_S|=DUpN{OylBOGcS~^mMS=Wyt!0NpB#mD`Q zbyW&!m}eDStX#;RhxUc$UpZpOsIojQ3KCP$Ol>9-EiyR=b&uO`TmGA-(;m}}=Wr#? z+KT88ZDj%^;K7uQvWej}#A%(k1aT=|B>%2`sfD%A z;@cP896n8>Km z2^XSt@xz{15#xy0RS;y{uS@ZVv{DS>B`&3Y+(&P+3)u=WUYNoZzqRv-o8w?xzl(|* z7)4+?C&`@es3Fgm0Ruj8ANE)BxBI&NC(c9k33C71-#NR_;oQw307*)cWg;IMAgD&3 z@nwcnb5g9c8@67&Hx_!qgQ`SR2SOYgaWrO>r7g|itC`OzDgBu)xA!-&=j z408$W74mIPUID({IKCE~KiY|;Cc>6e-I6cg2l41LhM@1Nt1Tz~Zifl^_L2XzrYzp} z>7G#V`cSZoq*^Ld#}NR)A0tD)qS8dRBt95fe`th9u_v?f0r^$Cd6(&-^J5|t2iBMW zWbFQFSx(rX19&mPcU5lhsfuR`P2Ja+`0dbo&!M29A8^NQMxp}ga zU>SU#CjR0UNvGuzs?GpmOO_h}7XlxPiQEai7{3XCqy?eD-I>aSqRbDojZBd#qNG?D zkRnN>Uga%_2QsFe^|G?@K-%Jl%-ym<;o8_dZD()wzR;V$Z1!#$fE@iEt|;HNSAbw0 zBy)yRBMay;G?EBKol(b?>4h<0yw2ijiHRzi_uF06C}|8t@U%_72D8YLu<3~PkkY$7 z5$NGv(L)$Taa&)Y=Eoj+FjmQPO3gs&3-Y4t$4vtaPjo)QAoUoD`^>395&D zratoR%M6Ir9U-7TBUydaX#QwpqJXsIfK!6D>3g26!`L!P{OFa#KtIbUVEz9sFu7R% zHyMzM?Yj=j!OijC!W`Y&iV5pnDBW+`Cp6%kGKmffyeVe3AaslDfTUr!?tLS~b|eHutut!+DDG5<>8DM*DG+1s%sqzJyr zfz(Y;{zxG@@x6m4Nq`eax15f zUybUeFVlz^d9sz4JxZOkzM4R0?YZTE>`ikZRIgaA;rfIxFqu_v6Unlx@g}@2p{n6Y zOZbrC&H^wif`uJCq#*#U>!ooJ#@#eKvMlVpn9{}v-wd#{xO@Bx^iNYK+Oh*2z(PSZ zo<=s}AOU(u0!4N%R5flI9|hwOsAQ<5*!;|%1A7SAZ+M<&&iZ>%6@ljqa+%=CC84f( z&J(f-G+zw(Vw|W9x#D1GIbz9DB+h*lW)cT}QxTn@HWRK$&O^G-ASj~X@g+7&;x7)` z*bb%|D|saLP0U3UfN}P}qY#uBuD#93g?|M1u-(QGvO#TOf5MV;L_eym*=WA-h83$B zH$g}@GgLueSnhV{{{gCW3QcG1|YL<+H z;xlHGx$29UGy-Xt@ncmKW#X{hC9YzQ=y?hj{??KLFe4jI9l*a;TQ(ILrLEYh>SEM0 z;_7{FgK-)W>X&!*9_a(YgpOVyS|6y2R{M2$wz5de;32fch@hCRSCjB4dzZinwv(MI zeR?07i>kk;j#)#ygi7Nh^p&2C%m&4WE258O!p9s3sy#r)0~Z>2cI(q__H{GjBB4J% z#b;}sMSXZEQ9%7Ut$_X({IiMLHbS>}L(t}OvV!~2Fl~?Rc1mLuVp`ArxDFbZgP6CA zWyk9|Vzaduc2K7y6);&UbKjfC8$-=B@REnyL(!%`16WMy*ntlda%{qFu>S7so|Ih3 zhIxW0km5=`V5rXErPx9Fzf+;omXPn4Oi&MM)XeISGlBh0*%{l>mfS?OYYjvrZa(Tb zyi{r;*28`C*_TPCwz0hgyO0Ueza5dw45f@N#ybQ4tt@48%O`~sGZ&nE@Zu*__VfH>b6<>Q^0lS97s`9FhD)7G zNI-+=3Iw)PNnp43FnDWLE3Vt{LPd@O3{T`;WCW0$G>S)_TeQVG>D@sA;%D+=?^VC} zo34p+2?pVO%iL-ie8R+H8>c?In?ss=vEIBGTT<*UTjPKm%}I;|a=VIjnt_V~kIb99hR$LY3qb6?ZZ>^ru6MUnzXofIZESpR+9~r& zFW-s*B71BW05(L_#7P_^t?fnOgPEKjENNzO^2Hdl^8RS!w9 zA3gf`(u@QzM*~EYG)pwADGc16^lR^}Yf&xA~&_y*a%x2I4dyIlwWG(dJYyT64kw^dj43 zfKBY7tW*igfeWS=wz&UU6OIbT`O4VY?#w*c5H6v~tqtPdKpxslCd%OF0VB$=M+Acf zV`EP*0A)h|-t+n&lvu8eo&VGtbhW?`Q@X%0GXe@gp}%Rd{~d?ppvmvH&VsOYPtWnk zv))XV*;nEEr%~gw{(4ZlbxgBFI|b&-$3IAzG3;_936P<4aACFTgT$I-W@LIJVF%(o zqXVk(Xbxt&Ec++f9@%P-tVNH!2`~nSJ41|01BOP0^gRzg#ybUr;2$vnql^Jyyy&&a z)R4?J`QLx}=rC&5R!t5Md&iIePARLun^bWFaOrE4OH*yMmNX9R0t36yM)u)wFT|F~ zaLV7{FGZy4Vz;sle~;6~HhKJ@s*}~7G52>~=(DlD9;KtFX+rbmMj{XmHx5KJ!2K3R z;hejjRQ4wMUG>n>u$$j)J%aOqALM6t_1QQHdu#KUBY|zETav1%j#7XlA^0qK^c67` zkIhQRRG>KYrHvI%F4guH!9J8tG}bnc8{C|nYK%ZRwmy^&5miU?@C83*}et7gal((zFS3?;? z?;=~miG&DgjZsZ3I~d${#W_cX-kGgaxypn zHnMxGG+K)uYZ87uj?rJJO`uSILAnLa(l_|mdD`ejWaQjkCN7RnDNNv{IGdJ)J>vz> z=oLvJoGoP*mzqV6oPLXZ@bh{@qk7;#V>Yyr*sElTleYmbuXwEBT$nwH^1V43&|J0f z?>%DbAa3^fa!}aq`u6<)*>z^)NT~-WX?5fQyC4MR%+S{YBZFpVWoP5$Z!r7Gh(&Dgn`^7%(4dopR%v0l@VUhV-MAuC_aS56%|JlZ_7N3RxWGI!c67in{}&qI2Q2^q delta 63928 zcmZ6yV{qW#4>wwCi>-~VZM$1zYumQ{t!;OUt!>-3ZQJJk{qJ*MJaf;B%t_`vg3BZ^+Q)>jkhyW!bCg%T~k}Yudh4ZGttw-o*@(m3fE(83WY(GcnBH@4&LAETVxcyj#R;DFL|;>lGZmh=G?YR zA+P=Q`JI74Zjd}#b;=^sN4-NEBp56SMn5S?G}L3Pi&VhnpZ0@Raja*Wt|zB4Q7Lb} z@BM5&s`5u8H~JU~78XcFAN@0&iLLSfXUKoM|2e^&8ovaJ4#vWm8W#h~fWr3wMajg; z&c)H_Ki61NXJbI|5}Uw@Q)dLgpn(5k$HDo3`?GebCGE5>hSGJemg5Lk-gnzU7~0w5 zT7UjWu{7HG{s<&KE(i{W8N^)Un}2g2JRyftL)+b^a17djAoKL}>h#OB4fOVceScMe z;RW?@y*!db0476nsv?=Zy=}B0WnyeXaxy@9b&=WY-*-m~a1nXsIIEiB`?S8;Z4fga zWGdA!k+z?v!kj_V?;K|#ReNFTL}v5VWc^-uH3ns7nj#4+TxhhFVQ?bT_Tew~35KFrc=tS*h}~D0x`eOumG+PH{*ZiDd2QrumnqHc+^4$8nxw z`shZaF8LU*YZ0wp{a4F!Nz|#G&UTyxCnNpgRTyZtU9q-p8Q*@?S)dPtSkG%Di)UYV zMb*%Bljs}ejes%fF1l;79&0+8uO5)YS#|dDDgiwK-Wf34=;!@1Ts!mD$gc?NgfHLQ zE&cJf43sXHF3J{*d~-Z!D* zIKmZySz71>QNt>!L&LZoZdod5&%?U~Q~L5I?FR+_6r{CKP5)plJ22;GllHQ|d15~l z=ubi33^45vnh2s$-%`ldboLA-AFA@B6*>vY1r*sH;?d++r9qX(Vh;`1QELY-VbjAH zTRw9)!I2xhYGRDvW`s0@{M)g|^B7Jz3_;p}CwRfy0Nr>sTr}1?P#+5rYbD~k(q+D? zG1*@Dn=-H;QmEC;yW`ui>LcUG77=owQ3RmyQd;y0cm7%NckLupm@cy}3p}d77ZqJp z`cj5l$LXbN`(07YCZdg~-S@~9p}t|f?Y%NTV#^~1=pmvG)BQ$MEUsB9AyB7GA{PgN z_igv4AVLEQlG1lh=VXhaWPi;p9o>)6nB?0tuox`xk!o}^P;*g&Jg(?8e){c?oPl5I zt;Z8I(5h%@Dd7{{OOMP3Or_wpEw~2cX%>;2Wc(3)Js8Rte$#j>?g7RD3B^yCY=2kW zmqC;f8iFaj15jWwCc)g4IRg+*3h6=ssWq62rb9xlo4W<-67vWZ9Bd)nvCb^v{iZj+ zY|Wyz}1C@<;7r4U_5GpU_Luk z@cx{pw#tyV$=M)C?kMQt{(DgG6PCfAr+?s5gzVnmVt4DG#_7U;qb&B*c+Snn)iH(Jyi!9wz5UWl>xl zo+}<=6%}a@cjm*qgdg`IDV#kb7gIEZh+WLNBx!>o`-&uKl>U<3d=V(^T_UZtW|;XV z>$oG-?=y>(LluZcDpIf#rBDk}!7R@NZuDV@Ueb9*umviL^pu1gS*FnjH0_{ERuw@J zgI7{Yd7IfS5mGIzPz|a-m>4q=rq7nc%ou>Y1h1m3@P@ZnW$jTV$}BmcHUY%ti7DTl}g$dG>4a0qDehWM0( zP%v1#%X_d@f8nu`0h!e{ANQlLir%J=1wY7MybVDqSUd`FAD$q&9DPYi5ZY%+5NrP} zEBFgzc;WXEx<=rN1}4B_f}1S9{D`TvpLBz%_uBXEaM&$YRNU{zT^zy|0k2T$NvhwW z;wKd%86m_gy`-bsqNH|22U4S8N{AaN`cP4bZAXEz^=qxV%~=vgCyio6lSKNOxQ1S^ z)9n8IL)V4kw-5THi9o9~(?MR}icOjz7INYcH_%RS#0nfT>ZeBbu!;)%2!}Ig`vn+@ zzhl#K>h*k#XSIqIF0^~o!ms(uwnxD_CNZvhbkZxL*w^Y7MhQFp+%|$(D{!W0d*I9p zn^UyhQ>aMK^I6%mb|0zeoQ(1Ga4W*EC_lA@A38^8DG}Kj}5a1 z-7zg}H)G^av7y(*+oMl^Lj~W=BDO@6w2m{BE-IDhvj+`m23y9szho|WdWrt17no|eDv zs6d-6-0Ot)9jK1xL#{JwVprc=8QH&WGc(@~&}{DhncnN)>+RhSzwr7eF!w-;l}+bB z4?@n{GsiyEM4bnu2epuu5?m6A1Pgw1FReR4@-D$TOIh7rcW3J1qJ1s4ut8C-Aza&L zy8>3F@)@Q#=Zn@?dC=`AbvGM*EC!;ON8}IPBMczxu}a05#{}n2Ik7?1POuRmM#R9SUpyaz z;XE$hig~h%`YFN3B(k>$%ECM!1TwIzS$GI`Q1!$-i6XJVsWzvqs!VG`OAG4gyER!XaX=& z|2edC`Nx~fSU#nbSYNP8nY-bUrRQhbk)t1E%QIIh5H(HAuXfuSKFyu|%sAx!?I{c; z-*H4u-BT|4Oh}c!=vXlpfnggK%|OU9QlQJyVI9MZm9aIREi}yMlGJCH{Uj@vv>(8( zOoU-nTLjiD-}y65g;Px)bsohy1PjPrsh>F<9OndSY^Ds$CTwtm8?8FOdd@w+=nc&nC@(|4VRD$vi4E|~ECgAV7-N>tcc zM*%hem+Uh7ZF=4>$>N+h8ZqJD%(;39nK1pCGF-Oru$;HOvIrrhN?XG!ftf&xd992U z+tIfc;{zSmn*gM+obM9v7q=&Uv+LKBE8gf_EW7zgJ8b`e7Z>1R^#zza384odzEP zdy;N7RRCAKbqaC~fO#PFekR&O5Tv&Mm*m$IBU%6Yuk49sBnD&T{9pA0$P%$|5;2Hb zI6D1T;c&71-$`=jq=uFft~iG8w%%-Pd-88SpX(~ALb#f6rXkS%6>=&92>2XzqKe4C z`}1dQPu9wK#=hGGpR|0I&Eo0D^YsxC1=z$OMX?nrbJQS}K6kPT40cb0=o`4L3K%Gn z%rHce4hamvH$XnQS`cwaoQC#fmI_7<)IL|G$&cg7&nP7l^N>*| z+ae-lw3-Msl)%3axl8p3lr-iyB#!?)rTB$3lwY6kN$m^$v>Fp2uzm{@lIrZdnER|r!SjF_zDCfHL*`++nQofM2F zZ~Hh0Ga^r^``e0%~G*@#~$!0 z;b7hNCXoFo$A|pIMWVNS!-FUBn;{~Rt2mtby38_ME3^!5K*x89uqi~5xLga@%SQUw zMpu7tOEI$!RT*e8?WqrgF^SaH2I`!AjtL<$apmr9YC; z;|@fnq@w6T0_|EYh9|zlw5Pt$4HMuWG^Y|w-1ZxC)QAywGb{qH5fobGfPfO@xq$?e zbp~xU>9p5>Lp(=l-6QUKj@Sglc@4c`v?~{lY0>GV#bYmCxMtUm^+bF;8HDz+C69eU zd@gcr*~2+EKd2Q!ow2CZ+8!4U{Ww&!6I8&vg7F_B3pVi)!r{(Vume@n$RV&KOIikX zy33A}(TH1t6G(9`&eh?s;%U3ZMr8$l=_m>(p+PU&iwo7KO-vD|)T+0s`XCJosTf zG4f!CC9T$csN>JrDZJ;Ej}{Uw)rOtRpnUCFp^^`T~M?>wL zdN6v!pU0hE)qjm^Jw8F$C;70(_P>lQ%^PZ=)Fk@)d|1~O#!p}{nca94QS8{_ zxo}|?>P7P0yAe4kqF4r00gzOjCGBP2J*@E{wmcv(gjDej$mv0-D8)((Fzj}c^a_Xu za)v3Tu{M=6vgy&x#AX1jg9pYugN=lVPpwPt+31c`!CKi&ODpZOR;aJKv^R~YPv);9 z7MmvGm0&j8l!qR6sn`&$wvdfIOt!HtKGq((bsUb={SN3AG@Nj(SxqT*aa)SbTx|a( z&8lQZWr`vVw{__HB@FH_M4OIYiucRf6`5AZ{D;vA2XtB+OM8IV&nets1}lMiN}ruZ zn1rqJDDG1vUnW0R+;p>TuU{%3w{XW_IPG6|3mPVv?!g*|a{r-uYhBdJTFMfYoK{ZJ z!hBdO+B2J|pj*1#`-;v{dL18x%D^GrY^fL-H>wDH^lO+INAV5bvBB3X?IUSBo))^`GzP$w-D+2H`(){)oUbg zoZUgZHw}<{ec<&fL@?gPn{0Ncy>$0m7ye+-oING=P6|Lg5a&u-z7vZ%I4MeLzH1^t z5<9+2#2XLKgnv(@;Yyw_chDI>{YS!;`0w!Fovd#>@F_0Q5uBfa3-`H!{lq{)3{bAG z;cWJjS@dJq=H3doFn5$@+ka2#tM{L>Y}e-Ox_r0kz8$slTp~f6WpJbtMd<|>JwEb) zI8ie^33tR;p$2cy}b)-$?eXX z6>k%yv+D}A=uEEuD=zM_^^3acW*_pDJcbQ?hY?7Fa&PWmg_wD^VE?;xTr8aOi*{)l zoSnB+U|A5_O>emPqnsdisho1-(Mhx%ov3j$g5H-@H(cSHQRKV$kk_{+)8?@RvTRry ze9?X-<@Rj+61~8S=sRus-W24}TSh@``QA$n8BSFCPsI5AT#GF-=J%?Gj>vOoWDAn$ znK1AK9mgrt=gh?Hre_>-D+w&EHejvJ1=PO)t79YjD!z<$XA1EqXp?FnLomEHS?h0A zdP5aUckX8>;+!n=~~@eBmDpJ9eh+~R?h#x;s1kaG7~W~F)}kJG9jS>|ASlE|L%^HXx)58{SVH%tkM5?i+rf17?Uhjh_@Z{7dm)7zL&aNz?m_tXH zTU!5+cVcV=YxDe!{ec52t)?c<515)FAt8|)@nDieoBjBu3FQ}>Tu!z_G6Q*XfyfH} zk<2JKx`OypJ(0FU1$vgEO8=cu&Xv~giNymBO5|UeOf|Cw>D)KD1%Cn$0tsC*N)3{P z@Bj48too7)3cj=52wKBj`?b8;E%$vmGWK=dKU7qN=o&Nhq^tUb0pdiX1rP~pNcoR0 z&L@NFTiZRQ=GIn5f}eEMw$~LnAjad#=$%XF3_gO`BXJBaObhm$Na%cLho@81p7qiuh z7FR2%3E7to7)tMVyatF40GdflOS{o=0g{6Xa$;dQ`jP78!XUo0Ew$7=kOTkWjfam1 zdXz)z=c{@oI78@8h-u_T)U&vXaB_SvH~3BLuBz&no?J@P17U7pg7iJiBLUC)jS0oJ zy*h@PGYs~ZPZeZbPvG0<4FZRO1=>riTHpwHPSwzn(pFRr{nEn*zSStmk9J^h3=Z@` z8S5PCK-9l+m~CeQx4+vIn3~==qJhlhMh-WSo3BW^5}9vV|(eWQkOZ-Z~&9t+?6ci(n>-*<8beaY-4Km)n+qyC1&=ERA?*w5kDI zzmTO#^ahX!#2hxD=DWK{vj?E7B%YZVo4oqAG|`C`iX^hMGkD)-)@+r~@Bo`suF(EN z_svH4onZCRXwszmB!~`;S>9cR4nk7G_AL&rNvDK6v$zX}Guo{pICJ!2Cn4#j1YO^) z8Wo-RL;vE!`T`Qkk{QMU%v)Wk-5l!S!z&DQLgopvDu)CBk@xfkae_8`>E<3Agw@CR zlzw0sfYir$4{QOQ*aLnd`DyGS?Ljh1e_=Y*gQOLH5vhXIKM)Q;>8HE~u7FO|0Y9Pr zG_H`q9OAzN1+~$>h<;)Y3cw7Ap8h9N_+r=tbx?Q>6r2_K63RKT1b$Msy%9o0RNX@R z=UM$H0!}plCwl^r87Q-_2qEfNzXAnQ$bp|F^yE`RMeKqz8ABV7v6-LUcYw_}fSxlT z^G)D+5=tsf-h5_=EB2$U`q9MEbx>EV~(Q2Hj2rC$mxs`4sdK+7&f z;T~8+{oA&#$_^EHK9d6fG}S| z(f|@;WlXL+AD6pD_&R@c$n%u^2^YtGA=S}g_Xn)Frw@MhE`H=D=Mqmqxt}cdMv;FQ zD<8R%P`OSp-7KLoOd9HPOaekW)b}#H?&jQ=fY0nLON8E^VC$MUq;o{vEtKxbV%Do( zF>A6AIu=Y0GZkhJ^KF1OId(-d0&l8L&SG|GCc>;-5LprtMfePggnAxUODuYEnDYJT zi~Bizk$x#~quTGMWxy{WDzKof&QwO&jM=2(uWLUg{4%#IF43%HYU_&WaHnZ?s|)om z&h^H#TMt-5%wcR#itfK{1lf#yBjG3{gHoH={7IwtPG3#3zQDd941x;hgcQ$s+;eYi zky81?s>B^WO+gJA#YF-BUp6Jwz&t-nFs; zi)4~VJSFLsL)8Yn5}Lz^)H5NyTCCU^@Koo!N2lMmP%&p7drT`&#>W|Jn8|AakAwUJ z5r3zXgJ-q9y5uLo(!=dCkT zi)AJJ$)dnvM8y)j^lJoxM?8bgZtG?cW?_Nwezen#|A7IR{&STWGkvA>vZ8vLY7gH4 z^1_urPh^c+B9ZzGK7ZW=X^}^=Jwc+?#L6pzy99I2j1l6ueoTTIXL!JvbwQi4>-RUilITrGc3vxkaq7q)bhymrOO=MPK3HSvWN*&i~wCfXg9^W=C55g17Pvz<_)= z(9@5{aVp@aKRhA{fonG=uz(@a!^dG;n_7>etizK+KwUT!>}=UsfaY4hLsI_a-z|~7R3}RBL6gv z{>Xr+3)9dT^EQ~@f?Siktit*GPnEe@jIO%bQMjpG7Tf?A*UE||Nc=V`=(GtupeCz7A;{s&kfa(rZmfz`%6!(%RlJ?e&o7*cXqE@CSI33b$)ul$FZo zMaMSKiAjGum(fkdRQT02uae`dwT>Lh9LiIw8?qZ{t>t^U`1}{MB9~;I(mTZ_FG5SS zm0}PNKV>YO(~YpoX5)bDbJ!Q8#VKaqoEw`bdk0*^G36~YhIc-M_iB~Wh53JzPz449>W+S&BX5{*dYATGdf!` zY~ZcV`xU>&7;w@8C@78^;ocjOkzRX<&+?~nsUE~k`Qk_ON8>0cT zl~mgde~8PcRocNZdvac z@g%t97x{Q14r|*R$Dc-XI{;jHn-^+YE3TM5*8~bvH!8^J{^gMf`1S-tC@uEA!N;3c zGn*fRq`}HK0pWwkA#mO(PN9}~8M1sYaN6>!ZpW48T42_}!YXq)v4Z%AqW9R-)9 zruTZE8ckVA)Ctxe-UEO08Y~UrCd9!GS5h;v4)<2`AlH#Jnm!i!_xWI04{QLMHTfsS znQ-G81;Q>LnBCjgmc6*JC7zrZVJH0(7X(}4Hw>cd^PDjKuv*rCWx-9KVrets2QE48 zcT?!<@mgjxulg5%|A5itO}vrBa-9b*AV@l*wqr7RtaVXEJ>*=S7ZC*M9C~Fu zJ2xnUu;R7ZyedIz{L7SQ`{@XXD$&YHN6lQTC$bYb3fmZO!o~i&rZz7>I3wY9{o$%$ z)~-CkDB@8pg)uK#40d3hb4+5)RF%7x)MN^QGj+2mx43~r>XQ7dch%b}chkcZA~M{} z_Mv|aGG1_;LdtQG@e*fF;;BXGy#k$c*00!+8^(o*$Ad#Z!+ZY8B>t=kH`2%Io;H1j(3Vf8=6MP)BL9}s9X1}|Wk&IAWKMK^ia{5K zMv@yuaro~!R4);Y$?4jOfk|JOs_$6H_skx>wu9CAD^%OW+Jv##sbNL#q{5U@Ku2*H zNfo*O)?O_)gjZI<*@y~!`N3`RQB3BgB!m+S=0*BXigrb6ScmY{x&3CKl~L(+__d9a z`@4x_t606^+|ev(B=6%+-;FH1ic-|VRu@hKvYexgbQb+bfR2|IJwuH>R|_ZA;gA-n zM@v5;bz<;XZC+lB(UpNDsFqXHtMYJkEO+QQ!a}(cVZ)LsVqhuYd8ZL@0BYy1embFQ zuUhV8YfrxV;S`Z=BQs&vP3|)|w&qBrG&S&9%9)3};-e>*%W)t>%Ht(k;>k#&u zbgiNofEnjVoi>*yaX-4id@H9+V~~_orGf+RD6M!}#Aw=cj{`G~TA2 zSA1PqAIjX78kBT;=Ae7Gy#8wQNtjxAJwH-QN=A5`K++xHomQ&=rx%t`4LP25%y7b` zB~gcv;92A^rXH@^7D)@Wzr9Mw>{Wj8?gN^l9{g7KXBnA_Q91M31^7tI9f1X$Zg~7T50|5AJ@Fne`C7JjWC@39@L)770*zlXr9{UKh4xIZhW62=5E7*t>%GnK4l7c%#38#6?67QFw{Qb1pVYbQ-wi} z%p*{B?o-JI`s5`2EhLWqZFh?5O^-uA)8>tcC@piq`Ja|W$mEVxU9~7;;B^!mKb<7c zIU>osbRKBRuA2Q?+RZwXXQ;q^W-EQ(mbc=8rnN3+TE|@jg5#7%`o;VTC6WEB1*Y)- zNrnQ|mdeC;@u`*@y4~zGql~L(^#b?9U5tt)R4)+iw%R4}&`aDW_bC2XU2cUnowKe< z)A0|9kGP^BA@x}&?}g)P6J5FOT3(wrFl`O4y>+2Xsd~$Z*lFa%{II&xFf|2xd!!2d zoJBPdjoDX)C5BE9s`PRX>uiLz@HQ_k9@26egL5U104A#YMbDt7?~14U8Zbq|$!O}0Hiv@JGU^Lf)MS&Rza8;ynNjndS5{j>kR-QcQD z7DJD(*iaJT;A!@d`$&ZpUd-AHU5Z3V@YK%qyl*C}cac}In=b!goDfC%zcw3^Lul!; zwMw)Z=5?}RO4O>lU=@6OP?AWQa_%4wVwxv)^eL*65P|7Sj(|7)__idyCmm5BIR^_p z?m{U~F*p~#xds7Vc$tn775B5gHgxaBC@Rd#j9%(+u&=qQ)ernnCoU-)EZxoTQHrL` zvKUx{7xY)q`vyLPKN@n;qRkUbAB>jn3t>=|-7kpRzYfnTM5h?}Xu6=K=V~NkZ{->d zD$BY3hf@$J)=QL{b4&fT<(Gv{xW-6j-fie> zR`*Egt$jTv)9p*7CzauEF1_L)He(@lU-kO$fBh?*NyG8en7c*Gsy;RY2(u+HdyEY* zoe`yvoo)`OQy-AH?aAg`4Pv>I(hw^3lygP`-zPOE z-+SgG2+Fb(iB!6&8`S&XLqB~3Xfp<9U;XgWsr#_gT3Y#}1ChSd(usoN76~_asec*a zXUDc(2OLH{t~!xGeub3+a^^OsrA6d+YvhfdldgXMs0%~1ciibZpD?iGtoXf%4zmmv zcsFP>yBVzBghc*?P>b&1myz6}pq$u#`$LmZN}sXhes!7ZaJ}zjIV4k-rm79|Z%^{_ znKn^b_#d+=kC`P}3^o@sv`-xQUaV7L3k*euK93fRE6$X~lun`pI;I8~5)F;4x}UmN zxEWf`P&h{LKfy3ls46K!B~99@@{&xp48$pnB;o)4&3lpSJ1@2cM|nEX+_;ZB59GIr z>sPAiOUkcMiqwLGb|``kD%tHqY1E5ae%cBnRoOM|EyPu0hhR1=3WrJ)3&~pJHuqx3#()hR=kxtzRPRlOy7u>34AEmVmZ5_0ZN`o^)i~Up1eA(>J*RXT zfVt&Kxk!y^h*-Yk5gd3GeVwY-260ty=H^zNv0U(T*2NG&@GwV-m};_$qZr%VI#;SW zF$+}8qAP4O1N3_5Vg?>t$7hT)`p0u}Hqw9u%ho$o3(vkGlWvl~)R`CEpNoK&#Wexf zAf5}xLlnYV?Bi8og0PCGR1*>Qy}*g$Ks_5xe&)}Sm&Y?%d`|1(AX&cBrfrH@{#wiP z$KL_tSwUGqY{|Wq&<9@bY3#%}ojV;>Shh5DFMqf;6+d<*)kU3TD2eLDMbq0o@X=An@&by9T_1HkP}HRpd;Ku z8+q`8lV9p)IC$)uXB=*^R&V_dU+1Yn^K0`?uVo+f4;?gDOmwW-B4{x~ z^Pji3_s1-t{WInj%0^xMTe8(U)*}C3HJJmFXh8D-LCBD^UWa(QEWFRLRU!TM!s2a@ z^R7NXZuM-FZ_`6v6RM9jF>3}V~ANA=6wl9B6x5#jD$5V@p$ zno4rYvpOzBZFBHw8UlcqTtcGsc5n0uLMAv{VevS6F)#7Zx-M zM~dn_O7V_?qg`BQEO>omcs&&UL9c6u%#g0LEaozWIz26PuG-DnCfJxKu6M8^#k|MG zeR@kHQ$q%aaA2sNP2zB>2=>9qT)@kwDM@Y0Phj4~FIIh{+X=?1-sddxm@--N-^4Va z-t~v$B+Ee&gnPlvcfO_NUfi2fN+xp`gS!}?xN@!WD_ zgwKk5fUPEoLSAj@TtY58k~ zSEVWFa*|2bCir3IomSK(0Gt4DaeYklNvi6GIRZnjy=6(hG#gC%wp31*C!u(q(DhLS zBBkD*b7WNyi1Cz8=t9N-NM5noK_+EY7>vd|oVf-LKBcP&Oee!}Y}flWm>WRPN_K$Z zqqM%(pzvWTJ&;8rZXdEBE+Q`bbHYKdw;P?5y!_=>STteMZDe~oQI4$Sn4LtLkN2E# zzndS6mQ?8Ht}xL}aqr_xwhx5F36i&1f`itMry9O@)~i@n;TXSR-?iixigcf^cpiJN znypQMYpv|+9(5{6KP_uY@dx0WE_qPVioOtf{94+C-X_xavZpU#Mex)4 zry>7uP~6UUjH~KZo}-7|3{`E0tu1F)uIN4cf)4~1UN577U#xXL`6Z30xS{>R|MhRM zrpUJ%BR@#a{f^5d?~KdXBKj(SdBeeszoQYTSWMy&ue~gq;5{uJkHa>0 z3go&ZEQee-r{sYL*taPhjS&loDtYAPqT_|7fzUP3?AZ=o(-VIrbZaXoMoR3T_ZEKY zo#2^AGcQR;=SfqO(*jb2$nSNj!v0^o^9Z3q?bqpmhmBw_Y ztVV7Aur(oCv~AxkJn$av8@!#w(Q$2YJfx_4M4Bg%hoY5SfRY z?#NY_A)oIDdll4e<{li$b;XTR4;3wq~(N*A<^!pXzS1wN!+dF3TE6xJBMcRqs zd&)|^xe%64A9V7Vq*=O1+9GluI_mQZ93QkCsK(WStus3LNNVhiR1u4O^H0Ztr79|4 z3|;$6U0)ntcu_E$1x@}#KayQ456$Sh-RhB;y>Z(ajL}!C5#!z*yYcAw=UKab`-(oz zght@u?hj>&?=ZJ8zD2g42*LDlB_Z{34bx1gi8R`MRAJ*hHe`7d^I62JNWnBnhL=5w}O7&9CA8}9#NPW!2Vq+c;_0g^Rv%WFpilX-da50F7 zylgrOLMfZ4K4)7z<(`}MKbA(nP=XbhJSG4!*)KkURK#8SJyPLPQpF_CiQvnh#934S zE>kEJ@>MZZ?$;tZvE@7-uXZkuD-QVkED>a<6vvzX`cz)IFCfG$YCdbyXHH`4${m=! zYbzZ5Ls3)emVw2eXKf6At*`#+i>8Nj5srzlGcaf^OxP@IDt~StlD1Tw)h%dBAms=M z7HD)=jK&UTYn}w-?c~+U^Ao-*M4g^4(c-NJJeop6RUn-xC7h=shr?Q( z-i4k(e6~i;;Z_>eYcKlAq7U7)xuag)+n2Nc*W8EL8^XHF&!%+Pbv^9yLcbcmkgI+C z)t~|l&Dcg0HS^!KC-ayMNR*$+-CCIdd|ywZfS0D1;@R8K^by`mG)*wqEy+lMJrlu8 z|5?hv;m@PUL26%{v?3Zji>cQ0Fp+Vadl5A3g2DQyw%PQM?{tU5;^`2Z&5<9{Rwi)8 ziHKE$0(c9FK2QEqq@URqn!|TRcyr0Tx)?)toz>-kgI9LmygP&i>wmt*We6++ohk4_ zL8~H9>+WU_!hUf7$c`lg(I*;f+jon7_GYEI&qjCwV}=X+Ww*BC0EPL}_J0%RA#yyg z5T}@%^-g?Ztsh@=dA{v$ES=ieAYg+DRG!7gsG?6$QfDX{SS{hu>RPy{ALp>}-a0~6 zy1%}>x4+c4V0zW>9g;M6Yh|H;U9p?@vW!D5Y}YsHg8Pk=0C+LIMa3WkSE&>}#ZrBP zbS2&P$cZ+Tfn!RUztR~xSLtYjWarghnlqKznf6?sO|1eyYgaCsBU1S zy?7P1kRK4+9>j0>UL8Dq{w+y_jv92Ga6UC2bJ)vUe(zOA~Of?f^5fn?h+z65Af^DRJhu&sb zX5^LO$AZ%hCgV8xRQ+8V&?cULVT%rvCBAjh zcYb6?`wA*}RN49`l)wo9N1vYeo%vf~iOGS>2gGB+)Wucy3bpQVm+qu;}t1=K>eXQ5*#kDz<(a7 zR8;D@V7k~c&nL?do%i!8Ja|1M%O5rvvG1WSHRxv=7Z1GbjCi8~X$T36j;zg|;B3y1 z2bM13?4lq%A62$a`2Fx(>ZU^U8*jmu`VIBP5?R>oD2~1e?MscqNo=9YRS|^8E_?N^ zJ}u%sqOY}5_!9&63~o>C^oIptth0g#pb+E{lJ8|_~^>>isA-qpZ1F>Sq=Onbxe}nVslwg z;;&-RH=TESH^EbyoYpM#pN(DGva#k-dq-ks@gAacHns%gh0f?yXeN=v zrFEn^_}qc8IEQX{5IC}J5iFX|k7-m>b!}hnhaY9Y^vT$;FDSRW zi=Jo$>~1v@0rrE#Xy}_gJp+c^V+ZLg1JRJ;ZKhXq)LFz2n`d}g3-E7M2pfeW%Pvn@kf&(0AoPnSUDxzD zgxy;}CyEEICSLF(6KM?TA<9uL`w!Fjumkb`<{k$RM5%%qHPsqspm};+56zL8+=}J2 zQG+c+5Zhj}=x3!BB|Bkgkzb7?_YWFX%lFQmV}!7@u`AX0S(PYL zuP?~LEe+r_Sd>Wf`n8AP=1qGxz4|hpgi4=)4#ShstE5;&J347THf`mn9P~fsj^AQY z;DaV(Wjx%${b~ES!(obGwTAmrX%(|S(>it@y4Z$&MCeUXx&Eknm|joQWg=4PR_y{u zWwxDWkBCdT`=U=aabO^eNtN*lz7;u5%FWM(?5MHTm!ZrXnuvAtcBpbBT*zrgJRH1~xsQqAZKoTD@WpBD`r%avu{xJ z>iY=#VcD@ICv^A9i{R)_J3PJ}Dg6k=ZW`VNA<%Yxk8CQn;Y+Ca&WS$#x5W^cu6#cW zHU`TFe+sKYA#GAyI>UN*nN$3&Sx4I9r*=JlEmV1P$LsQI5qYHvVU3IQ^%r~RNp(0| zs;Sh3u}FbK`^_6j)A&`<&!T~%gcKGnG(!gj)si8aIQ z2}>O}l5X+(<$b(mb3G}MMx_gOc%;7+QDU&`L;>*|hOv-iUq_-B5en|1Prcdp{|&LR zq1W2VRykgaZ)4XO|0Hh(RhMv;$|_=R%!rMjF-E2;L59xsy+~A#LAh-Oln}cEr!$N^ zvWLWB%xC=_eVVOd0(AqRZxF5%Bv+^sgIBR=UR8eRRa5zK(ugQV6TD zDX0*oMF=F``Y2-cHeV<$jUQP7L_sV2KBfjVD8n4$(6E{f`AQETa+P^~{x?<~A%-Ga z7Bj>jS7?@zNJpFYkHv2QvW5)ac8SYdSJXztjen`geq&eB2dOz3p?fYjQ zqJGWsg{4L{N2nB>dnPU?HQGZEr4$t9bHP}y#LR9Sj_2}a{p&k?`6dUcp+9;#&CN#e z7a%mTZiW8(iq{zxFGC{=N)WT5{txzRF>K106iT9~fkB@X5GK{is) zL?Z-|iyf~%f(Po-r*(){Rg-ARlG6@HM0P3}dxf#l6X8N!Qw^>fn(h#vbXUo%@iQv7 zl5NxU{~YbDgvF`P!l;=m5=?#fU>?>JU^klMHqAtnnYpdwFtqZLzT2K>%7S&?l%oTFPu+(WLq($R*Kt@1 zSFci*9u0!7BjUVk#-mMkv*hO%-QK5G-ndyyifP=ftB*41b64;6?%LZu+^~|kn)BB2 z|DyZKbpNjSuNAd`UNPg#FA#%-B%O=lx2Qswafio2C4=TCU{7#fmacg6X#yU*P(uVZ zERyNw4UxCs2LC1%WzC;x>CaOzgW@G zfM@7A2^DB@pa82$1h?=A9=xao7NOL$@df*mQSZ7wO$&@cv02pC`#@E#zZq_kwm4BG zZ_{Tvvr?IaVQ+6%iVucmZo^~*!)-A(i_uk}uYTCPV)`@tzrX(hes+NK z^@NxS$a&Sh=FJ(QJV#eNb67q-M;uZi^HBd zVZ5ug^7l7u>PzZ+Mgp+P!4$qP1Jda0Irr zZgd_;1-!PESonbmBsW64l4A*?B-ssLB0Rz^h=lV;--n*W#4pm4)TQPZni-IoUcT=E z`4HEC0OD1^2)|bfjFop`&dA|d=lQ@FL2aZJ9>{s@=#&pLrn8QDK=2}&^%}6EmrI0Y z@H41DQGeEX>aWKsWGeTZ@=|9P&B*Xf^!pOq|3lU}1qa#%-Fjl%wkNhTv2B|ZoA1P! z*tTsunb@{%8~=CeoSVN+?W%pzH@z=+^;-R`S}^|b+tfUIxR0Y%A9gKu_=?%D1{v6o zsH){NZ)omVd1SeYD$U;<($8HibhH%;CIv!MfZ#i}H8ph-Qv;ViMVvl1qG#fub%q90 z)0-U%AHsL2U4`1M`#$pZsK;$ePDWWK*i>wmZBep~i-gKtAELr)qJ46T^=szM%{zqC zltQ79aZ9y+4GBjrQoB zz?BxJj@=GJUQ03~k*OuKaT?~x5jxtOV;DK5*9)T+=nk65{8bLm|>*ulYh_T1gZwi0RpNXN0HN6G`@X4igPmgY;acW~) zt!jmm3bh^$&JY^}h~r!|+W0o028jB&|GD>OkOVc|-A4`DZB(%s=633_;=^n>N{C>G z<YR50fN7|Z zvt-+u(pi@d4r_$=#UkBdOT2ifZCJF@Oy3WDx6j{(F*HO3TN>qp|UO2k{oxSO5rN7>rxYnPoCw24i6`=z&O8RBimk+KzRM?@fp79HU zDsn3tu^{^PA$L*1QD)^e?2qp8F3^X>sO`}|^ly30P1%6?a{X*DKO$^caiR}OSp%*j zn5bN3sA*`maSd5lkwZ^yYz)3_b@PtPUIleeFS6EbGO=`&oM9>iz6o3lIdqjftEvK7n;J2wGkvsp*)(d zIk3~Ui6=MoJv}}+6f{m3z#7FGK__wcDlh#TxnqHmx!(osVGMAz^$^Q&>1>+Hp3fko zn<+01!dQaajEwz}+Vn}eR8w${bh$FIG@Gm4t;2w0fK8MkDzT}k&yq0QRiFRAS6Md4a{RiTC4snb4x$tpzT2#wD*WB`T=N163V1H zVgrr@q62d^qw)bcs$t3pa^5`ch*?y)Kx2sIi43OltmDt0hl!R_yp}tK3Gi*IheJX& zeZLJ>edZK8UdL$)feR6XqpfMm0*KKD=TDzx&FJumZrok4bD~LzAQoL!s77N&r{%lR zWN162DZww~=U z4!k_BwFZ;%NQ8r4M1rHZAJ&BQP?}-Tc?%BB;#u0Tt<|z|fVjvHN2RKYcDfHn?LUrIDYAUju<+~IIZg@FG2J+qaHlPkE=UY{sH@>`=nQ*LsgRRJx0A;u>?oHp`| z#ZH>rdWSJ)gEFr2HPJxouQzS>e?EwtKQBkcG%|?NyC;6<({U8%Z*@h{EQ(0^IOtcA zeLq`}FZ{O7GLQ+-IGqdy`^O(8xMO5&#I`n}7b*q{F7ELtB9tg>YRXzN5d(2=G_+#; zIQ3?Ld@;)dlq627sdPk=0wqR@OgM%u$k*~oUW=#uO|H8hDqonoaqBFmeF6!t(hq_% z_dSd^l38`VuTPD$a&r4@n)QJM47&+N70b)9d?Q!-HpYic+M}tRl%1}M8v6dBhir}R zZc;C-6U&~#XXu&Zvk!sAGv9(~K24H}5S|pk=N+d3>GAcZ;Y_o{Yqh1gQ4$vEOc!9M zYj1qjN%9V*kbl6$l@-s}k0X@Ifx&%z7lwLGaDJ*$s$TGH-z;wb*10{dgw;*Iw8 z$na=Lg$#%2xajSjpO^zOkl(t)1InEeqYwW+Bw#D0@M5!|8QA- zhSmuZ8iw1~1Xea#YzoqTAZ1_C^Ube@@^%EVuX3DGZEk^_zL`6SMFhHXL03k-XfQlF zn$@zzGVEBsG4mD~`KK9Te*LOw|KB~JJ5?KNU;u$NZW2Cjpk)bySLCbKRNM!q+=OHu zyr<-tYW!?>8kwr!*F-}-yrBQi&Rr{Fy2sb9#c3 z!f1>TEr7QDd(Uwmp7Dk(Jh>=3VmrfWnxtj8hi7n)odZH9@3N6QCC|Lp<0Z-zy)L5H z4bA7rQly!(U7BQ-(45OQKfRm6-^X)&=F!FAMj<6mb`z-RN-5p3`z&ahC&>D-C@6s( zumRHaZMRhL_RyL~&(Rj}TXYg25fQTDE&Z*8H&X#SK~2uG)Hy8#HsBJG&_gjJpuS9K zpRy?KHUtijFFezZ0xD07!)ny9hTk8z#*!*hbbb-W*8Xam0$yF`kuqAH0zcwDB}YnD zKxa3&E)XN@@1y91HMVf+V}qO^-jU4ljcNB=^NJB{dy2p$1nE}mn}Z*)Qc)mibtykI z8;hH$ib<^sce>L?(t45jzL!+EixnhS%IHUoRrmKP?4GPR)%z`>B~H-^qZ?BH7c!z6@<%+I&yX%1``)BHrNPSx07C9IA}l~AcdP|Mv~L@nC|Hc zFzj6uFcb&#!jjK9m)P}5G0T*T893l;9j1k0c0CBltfp3D3ttT~Fzev8!}=(_1Ua|+ z5+C2#R(7?qy`o+_AvJKRcAe3o$&C)_v#Ku!RT>iM@bquQ2pIxh6CQa1y-z(n}6zK>5~707fnE=&6jH97ZF^2fT8JkGiX)~4PsNz$q= z@{)s_)8mKLwkNhs#Z(ME4h1EwU`J=tyO?KIh*kcDv8~Xs@-DUj9!*u2C{BTT0(f%l z4iwTtOO8Yj=ntTOB5{3NY zqv*Nozo>Q+oy#+oSXLyHG5SLk1x&x>52|Tra3)o33%jYXV$uCtR}7MF9MH;!<1YT= zhbYb1SPoEHo{!e1MA6T+35RkU2hZpHyDuiAw{TyoVNeI)r`8r@efzKDhuaBXvkyho zmrK$(uCqji56)E<)}CdqQ#kL9H)+`#C3CRz+aCOcOtR!8tVG{(4_^a_Xy%Wo$XSjv*mp2kTcTIQ*oEyXlO7lKUj6!D$hc;=oQ#03e} z6RH z#AX0tXTD`-pTe>lm;i-uYxjCTymE4?oqd6V8anz{;N1QXiu7=C=y@>{4%Hpnb#GJG zl+!b38hDy~ju|R&-g7|>iio7)Hyc+cIU=GsUCVW{uqh*T!%p(t;_~hCnKol zae&`#4Kh>|xY@_HSJm7Mk(**S_CrB4aon@GLcU}`w23A<;umK?ud1pJh?hp zpIpo?KWcTFUp>}qOwy48Lz?}oBQPq$DYO)q9DU|N-;Z9U>&g)Pk&@et#pDvxCmSa4NL3iIKAMiS`&s|5zPd*!Mn{+gtJgx>W;qVNm!r z7XO#~rf`@x9-0{WJ5gTv4g&r@#MjVJSD~`Tjtg!cFBA;4TBVDTOP8x4BD_}^x$SgW z-V>Yf?LD~$tNRO|)eR6N88xNM89>F7tA{?483`&{_Y7jWlXsv>{Qk1To#iw@b5u-B zQkFUWqzczX(AmkM+6Et??!D>;R=$Qd{e1P*zqMU6#pt*)w8c~KEuiZYI$XJH^MUjhl@i4=tP;rL?RGFvw?9|)c<2TPnry~O zNiZ0XQ|}AoHk|6Ro)h`+yrW)9kP6g+{I6&cLoM}Ffwn(Xf6)X!kp+z`R(=Z+Z zW=VOKhlZ2k&2aZz7lNVWb1v1LRv519s~Aj^KHD?_2p_vA{V`Jef&c@xrC?~ziRZ7V zV~nFH!UzkS;S9;!Sg`wX?PtX+?xXw;6CW1@3e-U5MY}%;8>o6gpM^|2y5!`LwKzwC zc=`D4KmBC)7-L<2H{`f4M^W>=5wv|uB~&ejz%s&}JTo)?I0ch?dW7NH(*KgMf#A1U zMLFP8spb*?jQW%Dp$5o(Q;0rz+q9?3O>aLi6+1O0N8GCL_K%6cw2{|+8in!t@Au?F z`rES4U)H+ZoJ2)?SAKkddR0cYAy$5tib_vnDMgZCu=BdwypI;TAdU(lqZBhsMQ%XE zrGFl+y$V(HU|AggB_o*+Q}xyOWebhW8B8gj#N>9dEL(fz`q%@cfrZ^UMe8<5*<{rU;>Puu>A$+I{qb&R-`DMO_& zP;6EsXx!rtB5D3*6!r03IP~+>>1VPs{73jl^YjAF;vV3x8N?i1-`_d6-jt0Rgb!TX zn1$p?yYh46)C#_z#9&O&<3ZyY%KX>+xQR(9hpzCrZK7rbzVI^+c|<}p)lk@QYm>wK z`-x-C0Mr!2;L$tA>%QjItfV<*6pEH^@6w8VJ)Ki@zPUk$#IdgDZ<|sXN|R(_}2 zpBNSEFR@0_JioMWTNLH*(axtiiPWYn=q)bLg2lC_hMov(@iBb60pnX6I-c&5(83UP zL;=E?r-*%y6Kl7{*4(N6dtwV~58aZ_MH40E`5Wto^B@1yK-9;t4G|ZQ3z+<}KWW3JtZX$ar zIw=vX%FFmfxy)(tONH`4~gRefF*{n@{(nhvnn7d?T^5BrCha%D!5`<{|bX0g+7fEJjN=(9TTF9z^#Go`6P zdcl;4CTf!!XH&uQb2A;Ye&qgu^yz|qf>3BbrpKTwyl!lVDL+^sgRv2o%#)=HC%xO3 zhDaSOhGoM|E_e}E;>Rb=1)CE@qHxK#jD}Epg8MlXF$6~7gW8z%jDPbt%9k}j>SUXr zDSAG0z?PQNW@S$_hWO6WCK<>@S;0tp6E&|9+sgoz(7RaAQBNa#a4y~QqxV4N<~uLa zkL=-E4`eLqhx$w0pMaJ|#RCz)hn{~@CH(G02O+*^=L(v%5{fL>)W=6-o}=PzRGH`4$w+EG^K14l%`*HVwuEL>6Ca0w_bXvEFKF}ZkOL^H ze-U+ffRUk1*1l@SvH)Y|e$&jD6sMBK(>8(`t-~7IJzlHG^2f=aUxV4O&^3aLI-!JU zsN8w*4C3J<^b|fbt&NP{A9>ES&TYuG#tZ6atA$B-in&*8JHD-Kums zgIAS|sCq^fk8YI6e^5q+$ww{}33ph%x`U~DI~%u8IQA&Zd0m1^8y`y?#V9Fv`xXQZ zd9l=7{hMyW{uqrd`^X@#)Fx~4~I_LfDKzcbKKQv zUtIU)9s|I82vEyUk99AC@d_P4{J_T2;ANEGe&cy%|d@2z#>Y9ih7V34p$1fS=uJ!MkwF>w$O?L`ZS6-qIf# z?W{2G;e5$<5>xiYt~zR(a@@XXnK2Idhc6$(GV9-z0lMTkMEDock@h8Zvzs8;6jIE2 zDo!7HLAR*fPuh!P{V;ckA4b6m*5cu%V!E_>FozTj?bc#7zZ$9pr47D`@=+ ztH4|QG(MG)CQWhmwy@(OpQVLyrboUEJ-3|czoK=#ky791p9SMdnU6Y;o^?VIC&!^qtaB_RPpApzLWdwfsg2Cr zRC~Xb|5Tz~{gH8>Z+6D8l>BGzm$*Ool!W4f2MA5!81J-s)GPE?4fo~daxz(8ei>u& z^r7t8o8nbk`RYykGABpz1W4eT@-sp3v}V(yc~mjvxpq1OCAPX(67;|(s!)2J!P^_3sPIbk z@`xS2x+Fa^2L`n0TvECA-)Y)mr0HEymv#ZPt1rB(3xb||*Y5+Q}(xPzAX*R**uq9;0Q7=Ypn5WX**wUV3 zzA%!Nf!dcTeYMPl_9Ujca6G-W+n|j{`5(i`LpKMmiLH?vd5nY9H*}h0 zIwA@=NuiuLwY#m?5acllTtzVvfxYIsiCe&GI}GNipN6(NwZYp?;V&}K?VATD{m+3@ zG*8*l`3(t)pN*>sAC>5lD5^R_>bdGJJrP$G+xjFd3i$gI%$yOWviJzime&%Ke@=SH zVbyvp9l`iAWb#%R(xDW71MyZ5rSiwtzsOW$$rM+>Z^2q5U0>P?%bpk3A5eW09j`0= z2>h<#-G}k5!7-^8yEaijelQ})y9riK%z z{_3q~aJJR{smi_(9F)lXr%!LHEpJ`Cf%b8OGY4VgpXq{7<2M;9%no*N)@|-6NGFo* z)oEc!QZFISpQ^y6V<0&K4piCBHN{t0reD#ZsYUiH%xZfjiZl4!B+W?GZXg$Mq54P zmj$`^o55djcba@;A)Frx0;vm1QHkh0+yb)so(ELeWzmoNq`-zZGU|UQwx09=6>9$R zL!LcXMe_=KK}aJFx9)$Z0#le?DH@rD)oNJ&FS1aNdu1f;*BN;=qeL)dssxn!e3aQZ ztlv6!G4T9f+Cy)n@mSs4jcmjL_!%j_YXfF(|6R9;GT! z)C$lis|-_Qn}d4dcYK?x?)Nl7aEpoM_Vy zQyM91Gl0H^gs!okEIC-Sj?mT@bYktJZ5@k*R}JMbuBi4VX)kj=7J5W_?9A-Ds=Bw{ zrJS;Xj-_wl!6(H-gg0_P-Qi}&TK%EG06m=_W%BN-EChlbY=9Pg!t5(co6=|>j&A6k zOw0FL7jGm@4yhN+#L$%3&*&x%C8Q0cOr}?}1Ay=;>*{A%l$btqU(-F&)E=>xswA5` z+tR(4Y;s#Bkf_ztCl-t4|GC1`v1LlzyXj}uXrR||=GRXDOLqo~_b^(#P+}J8YdfL( z;czdOs^1(CM?SIuiY*_m{lA zsIq5YqBz$liTZEH4euhn!|$JHVyrVQnCV*l(j(Q3uiZLr=|+S1YUV{sXj4AkPv6y` z2-;081Y#KF6x{YIn7sxiKQ!{F=;g9BkSSc{?$H>Dr%puo`zq4pn__9pR08Q?0C}rl z;&GJ1>uP}sq@q81LXm1K;664PczUdP)W1vKqQS-tf7CebadT%QUA znTNOy>=E+6buwxuQ_SYEiuPeKFoRFEaVoaG^^7J&3s+707;T8jzD~jVx<5}UYIbV1 zI65xZefOEc96!@cVbBrmR$`!=z&5w&ZjmSjiDEkQPjD5d#oVtkI)&B#0Lj}6DNC&F z_Fj|y5fcxkH7~jy_^TSsQiVi9w*r>I?x!;En^Mwi)(at};4J#Q0 zG#H~k5VY`0LsCFE^&G ziF0Myafn4o-KdkGLVWliPwT;LWPdG4fHvbj8l|xXkJeM`oKHa`9rDaf?2WGWKw_m| zyod_>`A22U4DLYlnErfuEl6kWa7=!Xv)p4oNBgr(t{ zpqRNTO;nCg?(=$tnh5G|bY$Nv*)rICeR|F!Z(S?kD-sC?per2+%O2+giWjF(vZL&c zf!dTkDIO3m@x_>JqM%x(*wj79Cr$DSI3?EsPqeHx69;?8faz+)E6e@HQBQICR7)X< z3ET59d6b}K7n@8mOt{8<-Mg%O5(*LcAEWUBeuG_KU;>-MqD5NI$n{xQOCn25g&2>M zLSxNtcNb)UD&?4Uen8{lHH?Dry}-xjH`cii_MJ_z!4IlEu*)yyy9mFIeO6(N{y?c4 z+hMkHkJCM-<~dV?=zM^}a!-A=AY&pJ54`c`8eLZg+^?ktnB>cRT|vt<1GVCWJt$Cj z<9c-{)>_QZ#@?G0s3ODDsMl|w^_On!oNzX;BSvdrEfdjpF*H=ej{8q`tn}}&$m=y7 z9R5)w6wp&@^?i|}ssnxa$sC+(OC^P3o`2LjC@=<6Yn(D8P>)Du$ZT>sAmi%BJH) zL?KVaHO4vEL4YxiF^h=t0spO*mXNSbjPQ;C72_;Ds@YkJiH)4zqIV45>AqrtLR<#W z5`6#3RZ3uF6JLZLS`vFKcaMbo6{YrTR&M}Pk8uh22s+Vq-RK?_bEIDeZ&T;G8v8)s z%hWKr0kseNlthxKbxoMj_;&F&W^sCu-)-I6ej>X??Jfg9Wkhd$fGnA)D4WMJ57r`3 zq-*vV5__b~<)39b=SJ5Zuu_?9uryTP4n4eHt-xwb%FpTR$Bg)cQS1vYsYwh-{i8 zxlfVJkmH@Qu_iMp%U2vsiH@n+TtJD~Wsl6o^!1p_92W+UiEeLm>*fcIJ!BVb?C|;leM6wHq z7bjZ{shnlC-Z>*`p5L>yn25(FyD2|dyLw0Lyot?L>dYtprDn-;Qf&{$6YCL}ehuzv zgYUMZ)Ub~TU!lk&s=!T~&E}M_$-$J2z7C+>qg9%WS66>I8Jj8nlG6U$epjdQ1WBfw zzJ#H#Yp+^6bok?Gy(7eMch6q@L$sJ4MwK%a%Z^XBvL^r_8QmI>5K&ZGo-tdePPFaf zq>hLeM-_0AZOmyZkMtX{hYJC|cU%>fQx8`0LZ&fxG=$Ge4e+<4kgOdUE4|S`9JVG3 zF|Fa4WEtJf5bLd`}BUnV{!LEL-`Cw_x# zyBGW;D|c`1z+0N75V(gHfBi)nLBY6sF=tlM^9#OLWQ@TG?KFO_`yd0@^D=Nd4bO~A z+^o7mkb4uE_kH<8Q(xcGa2UfBr9cN@2`UonD=MU5UpagcjQ^w9|DE1iXKqWXwCI_t z>|(Fue!qP(8uu>)KTg5+QrX8DDK5l7*SAxR8R=#0-bFcmw%(u!y}j)j9rU$L<|OJy zf02=A)C#lEUg9%fC^`g4%ascVbNEL&UEF7~t}D2jSWr(}sb7Ock|taWPY%(kTsp;V z@w0Y?pe#S<7W{&5-n$D?{zMh=uBMFQdWSXZIYICEO*8^=p`ovk%zck7z>e3BCY()T z-kw0Ab6Z*w2WgT_1~gbfNFgD91Z(t_zvH>67+POEp{Fp|RZJV<#&a9)J#S%-s^L>KZo<(+z+uW@$Ae)XUcOu%rLGAui>VOVO~-i+>} z;I7Qg3g^I7yZ8duBAa%8{Xl&Vyrcih=n7_?wT}Hoklu@@iyrw>*>C0XknSbS8m~gtV z7&N>$<0jl94%q+PrTtdITdZ43$j$p5j`QMLaiI@+b=4m>qxacZYC?k`KE|+iW9U%S ztEheAu@oHq?-+L8HB3-Zq?YbZ4{Ei&jJir1ABR~WfjkBHm!-duGq|+2;IjAvHo;!X z^KHiZlvwUOHKT3$bFGY}{`SbZ5ae!#AC*V;NG)2YpVP>{H0>`~>n9Uo=wWV@E!wCI z_b;>5Zd8h&=w9ZPiG;hK9GKSx~a%I}Y7%flpkp*EpVI>QE@ zRIOvX@gcSW^(3EwGqH;qE^OQl4tcvn1}cQ}ZOiuG;^y%2@v;m8BarQ+M9uC6|RWh@lgL7Ess zF{*?Ft~EpnKdjh{C1bBD1k_gW*xXzeq#pdD-GB`RlKXmsPDKsPF>G>N!Xp;(1)#bq z-|xhZaa0aGYGGN$-SS>aZWp7umFeJRz-Vtrn2-Ruep| z1hlNH!h-PxjTKJd(=IZ8BwCO-^93D9yy%i8F&?dkpj9Pw%6z3SHIU)_@O3fn!utaX zVp%mh2JvrUKC7M}9P*0m~wiP5=(rxmHd~T~?@HzKSfG&q6xJ#OJ=HNJ@Pp_#ZwEVYeu&}U^+MQ=Z zrPZyfDf9X);`ks2dj`6b*+2-^F;2iSovK(}xw_bNpq-_ZYx>!2$VvCzm>+)VA~aut zaIgj0gA%3jZY{x?b1^T>*b`vby70GG20ac|ehRuY2<3ZF&`$P;-v3K7OUU46Zy;G} zR!Z>np=qWDaU)51UZicwl>#9WL;L^I%-A?m>WDz`QZA!GXaH8W|IIDF)RVENYpdJJ zF(5Hr1RcWfCW5Y){4*ivghI^e9NWRg`j@c67G`!JZtY3d&-bh^x!r74!nbtak{RxA zj5*d{(>hHtzu)7dpQ7?#$ALZ+9|OZk+kO@cqBL=t^9eETXbC|vcBla;Yr<2%@5Sx$APP40?-}jOv5xO@Zok*LMU9zN>WE12?T}w;Gh! z+kFFpkK6rFz*n)iD6=%2SznVVjLv59!0mB&KE{b9Fce6WG*ZswQ<+^HgvJ6JOis8K z{Ma6a)TSwH7{C-*To?PCug@!w@wNhbr5*Y`k$xc`*~(Wo32X5lhy@EUD#2JxlCKaK z8p%6dQ|{|7%Da~Od8Td&&B)p(!XbZs)K)ILcC1tyJgE$4F7_8YkQ_x~(s~_TL6u#& zg%;HCN3QZCGO(mM`^C!J5yrN7!8k(j$&glGAdr6W$pS{0QF z^S2go)d{rNl$socF{478#i=#eMjKUx@zlggVaUc?Zw!$K^QDT7VCt(a%g>>oVrceB z`&iVuN@1c#NO##-!geBBnP8JyRMdAf|4c@9Z`%ZRKyY{$QAsgL15^rZo0$ZDhw%D|0`K*jwaHOp@>DA z>HYyyeP+oUF#k`3#j3z2*(Ar^Btt3saT zBJV8lO4DY`cy0)QE)8~{V4PFesaD8jY>N4Peq7?lA%Q)wypJ<_k#Pr+imXD*SwoOP z=gBXxbX<(tvt`vB$|qaz$lu%NB6!NF5 zkygTejG)}pO%B#2pZ67k!GwqX-=oB1M9fgha+hVYYrr2cr*IXb|5j<3jNGs#Y?)a9 zeH*9>NvP=FGH@AOR^H4zRoH$?ABtX9_{DuATV2TDMu zwylL~-P{R)GGQu?7SWp67o_!&{OVd?WJ9A;{_#x!r3Q0~UJHg9HW^qB>FvAiheZXm zge-U1$Dd&MB*g%;St?sdz$GHGDYJ>l!ioPU><^4C476^!b!sY1cp-ETVPChT_4{wCE4w+KJ|yaVpo`_ETYuO z*=Pyg%~ts~{Ii_kdqfm*o~Di*yP#5M-b+1}fyzhr9{s=LeLCE`WSrv3QTGf8!yWLY z4-ICxNK76rOeA01hTff}rnbSKC!F`R7QY;br#Yp0&%|{hxm>5qJ}Lf-{ICT)4vANPqW3`$XkNDa~8|ba5<#O|*HSyjN{c7^qEasPY4_ z7l`qQA`Od{nBcNqs?=N1C6f?CI7k!u%ma?y`w>_ZL-8sIP&QMQ+)aC`tleeD+QW8+ z1l}z61Iu+*J)iQceS>PkXc6H&!4Ge>_n9|KuG7PaEq~c!FeXXF?!^!51Po-ess~pz z$d~Y>QU=+^#0AfYErMCjSU>lB8Ua9+tLdb5E8iI$nRiR1lX*1aq#xXz6`tJr)=?hR z6z575&joL4C9s_B#qP6eia@ZZDrMY!C<@)zUEt*6pGv(Im5(*t3t=WUNX%onlgZ1EHIaO(=Q00oMPMyIp3vH;Yxj)1qT;7MzTDxa(y?)X9LkhNwdAcasbsSLCAKCazB5)E; z(v?;uNl`BYrM$rFeiuqsZqL=V)i}9(5Wa2~YJy0=MOj_@3LLD3lZoh*_z!6?38G5UOwb@#Zop_= zcOq9>ib99r!#p;tKmy`Tjv{@y>iEAz%?d?^7Cg;d(!nEOi$BY)j#m)H=xXv+O3@nF zAwc3iQ9{@V+bMYuESEMIlmZOonQcU6&sf+8BBf>?1JiSg2_Z1ZzYfNHv8Q)^g8y?_ z+bWeNFiqw3_f4nMfURob$glnvn4$pX;f#bZ-Ou^wpEFO+gD-&Th1ktE#frzCSFv?Q zXB7l%Pe?%*j=c_UEe?nF@WbZ{mB1<*JjeYaPA`YyUpCn6g={J3%(1rCCx+t@qtV4M z*L}8=Cz$EhV;so!XfY#5n#nMA)ilX1kB|;(eovTaA=wZrYA#I_ix_!tG)rD3iHBN$ zBKx2}63I9&Xfwbqj4dtc!RUj722%N^Dh{fu@}s9DNR(8gG7NNY^fwF)eV1f&DFN<; zI-8NSq$QatwN02(V>M>nj|8=3c5rp`!NR0i2YGD0C1m?tT`dvN)Z6Mx5)znNw+P8U zv&UmcVe*}UszUv}q=cq%M{Kn_p}FId_Q5}#%Ei7>O)kg({SUx0 z$|?y6e}ZW&AtELF(<*1x7XGa-vm?cZY_24LVU)vY8j$W}QxgZ#XBVUUqel2q$HKry zI{6p9ggxDkBRRHKIS6}P@{ifh817y#i=tS>yceA^wT*SKOgt5Fm+748vfpRH0E=|4j#Vp zY_;F7YeIwoxOw0i!!(sb{kMi@ImDEsPwp6jp zfk+cR4uOlCl^4GKI%e+{twULS&U}tg!YNOxHXcZ;9PBMHQ#^%m)yL{mTay6AGwWP+ zkI%^xcQISmZlSbZ)qbnNz`)?7*1u)&HV}?X>X4Tcj~w_LPPGTb4b7Jkou&vAT*r$P z9s@v=^eTzH!tig)iXIl#C95-(GRxY+VpdPd&%rW^lJr~EZ9MB;>^XoXU@r1M$?=^Vecby5y#2w0zZg7VWWOW7 zdH4i;2XQ)@1cS%n*|h1^!O%1jnx=Q*n>AzJFhg*_R!mehEp zmB`(8O^S*yttY66!}3_HaUQ~Bd=0SbU9VX?9dA-$S-r)_HG2@F_x1-7!EafX=no=; z5D5Y`L4d0CCuVm8Xigg*(|Pljd%Zsi_LTZ2dg-)1qB1#-kq$q?J2=*Mb)<{W(9EUV zgBh%6&H5DUTVMWE021qwduIWspk_)wNJ^OBuF55RV_U;xk_i1K}At=Zj!^YK|-}6Jv;ho4*o6sZ3In zdgg*$1x#aqcU>+Q^R#|B%J6z{?jPcHqX|O=ORTK4bh|uo^y)_oF99|fLPf z?abLAmBRvorVRo{95Wa&t~lM$7?v?OI*ot5+FsmQ5f7_#dm=gQ^EOicx?&RJ%7}LE z-%lo@+(>MDZ#VR@j6=U7GWb;zM-M&h;4|r97no=a=e*ka z**P0040tjuS|H4O(*OjqC(;QXa;M$!l+O}9nu4H%%q%tc^RCtBLDD>B7>KP-%G9|v zK+L9D`KED`=3OG|r@&664_xftJB*j|icew8wf`u^Pk?zp%3DUd$Mr4x&oFp9p4Dz> zrGnJ@OvaD0g*n|qr@<$PPV9vme6RPx9;g|%OGf3gUpHyI&>uvm)j>>tee!dOl4l>;!D?H~+?f39|l zoL3nL+u_itov!~w#^4H0deIY7Z=J-`c9LE6S~iDt75V-ZnQ^E++DX*0Hq^UK_6Tv! z8+>kn9qLEY=>f18a#SvflV0@^S-!h03<7sQlCu7ND!rXUo%=QJ?{~a^S#+aVjfV?F zA66X4C5?{wf-?_LEe#VQAl~oJkzrq%FA%(a33=}#a-Muc@@1S&o4m3wwk*Hw_7v#D zfskt(6wc%SYGf_?&eBF2Fx7jEaqQXwYwKm`Uq>!PV*nOYpZWqY)H)U4BRBpo3l`I= zZturrmybjrq~3JUO(CYXZ&t48tXB4+2iI;!x!|AB&0C#t`3P?Fxqok+I*zv( zFJIO>o6_W1*V;X|7#3 zDA=fSEQFl?C#P1vUCuOren{1oK-oqZz0XLh*2OlNng4gx#z%cfslH$2&0i+p-3@#z z`v33XULPSA?w5G zG7OyW#eTZS%0MVln(?Yb*fSTa?f&}dy}a0l|V`#wof!|rJ8IZIlPIS-P%Qy4s5DfiufO<<2SGeg7f%~Q%|k!yb# zw2l4)$u!zK&;>ODI<6gYpDJ~cUYI9We!7vK>?{JCk}miZ^iz3Lsm97v!CUaAfK=8Wd2*v4f&o0%Ypu@`3|Z zg!_jWIO6E_J){1_zc4ia5*7ZR@SYjc90@9-SQy^ztio=eEbM?KNlj5aZ3mJDy0a8c zf&^@mhy~x+7JG*#PLUW$U8na(ET|K4`Zv$?s8*6N07!IzBHb;HhnZdshjBRfQrxwd zJYY)Jv#I8^?flUCMB{M_*F$g|{pM|YZd97_k0Gh>#J!Vvf32Jk2*XZ95B6Aj3SXRZ z%s-Rp-t@lczHos-{cn$hfu{pe!ITA!G!OJ@dV-xx`=BJjkm;RpGHG-7y=m9yzP-xc zhN~@9fL#7vY6uWx!a^c+VB;D81B?X<27GSsj{VebTfuSi9ovKMY{E9~*tQW%o;nCk zRhVXz5wuFK?k*0E>?B9iq4H#z8QM{EYd&|72s4&9Q({2@ zJq?4%iPYUfn7OkQ*Z04GRssEWg>6U6zOry7z#~!9DaDX5diXccT0SC*cUCF?^{4WX zD0weZuIa!`R9xLGbk2o6(3A3Y{90}CGk#ai3I2PmFJE^E+I`UUob`<8rGIQ+mjG^) zTA_JX<1A?qC~VcKx7alLVQw*U7qyRXv&Rtw5H5rh#0Uogm;KydRIPpN zha@O9R23Y{zgGp#NM(KygOwt})-643ZelUNWDv(*1z3Db)tAiKhWwB8Ep%?3&_KUM z8!$5YJq^|eh|1EI6R4E}{W7@sy5lof0360fc(@WvKqg5B*4k&b$L;k(f!*n+r$^0+ zHy|224^-ba>e?4t0ISw4+7sw8c_Emk>-xkyNz0i9BC+&xbIPBps+RE%Yjqs1RAtzA zdvnthN9F-}_B}XTYmB2Ie)rC(jFoO6v@J@)+$d!7i(f^q%+d{KnzndG%ejULupTFq zIKnZ&NP_+yOiS^*Uj6S1wp+fTNd)1kx5RX~;}jM@XMGuaw^D9Abj5zHnpL^CRMT{O zGP~v!5H4eCe7Bo0Ka3e9w^f+7vLc^H&*XHiE*!t&7rcid3X&sddJfOBp5v#L?4^f{ zHRdtud~tzr)?0U?=YAu-{?!&P02IgPN!_?-iTV_KE>ByYpA+*i9DT0U;5Zn4fL-JS zJwJY^k+;|z^ubs_X>3bU=#IO52^7TQ&KIjuQEn6}5*rro6XSAz3C1k=QcJmF6Slx= zLH{p{v~Hs<$X^I!>^sTk72Z6pq1|+tnEGPMzis8C#3v)49hI-nsyvA?fC>sg-8lAyCv)WCjRC#p#mo2VuTSA9b$g4OiWZiQ9gi zO9xjn7!Kdg}7$uyyU(2D4CFRrDvN^3HXjHga@<5}*}NCF_yVi}|1LvdBmW(#vBgYwf~bz*T&L#am6AWYa%zW%J<#By_jpooi={tGU?|szm+Y_AanF2pOc9nzc$0*I82lm zP=f5o0vF;yx)1}cJ89BiY=>f=d9~W;y;`)@w;Ih8lI6~w{@rBZH5M=M<1_4r`SK*D??*341-wc#!+ZD(D~u7%ceyu;3%I7gcA15kNym zi&-XNC+-9)io1Hl=WAUG0|uSd@ohSLM3758dVr_`+e5!CP0AU-7u!;!;}7+DO|2*l zQr@TcH8CC5pFt5Ni5!UKf5Z(E;6R?Bg46619#X&p5#Lh4l0P_e!0OF)ETC7Xl*S7J zRy8abGJw(tqy;iybpqSy;{}r?;sp`2*T#t%gw}?>IAC>#TA)G1(jyCRVZp^U-}c}I z2-GP2j9gHu88QH38Hw)CZK~~y>PHGnDxk;u6^R`L>^k(x4yRkn3==RfcJ_Z@zzZgd z{IMT5udfp)fEc<;)PTRI6hElX{}A=ZV8Jm3EdG8nCIrw_A>F9HohqmwBk7C$eRzUf zSR3T5twBXY6i-d9t)chHKF1ljZjO}C@AK(_qW3}QjcSd3JxzoAt4LM=e4CqE5g2*S zfI&JeHS~y@tE;YIv)aZGd^jIa7aO5#9VCs!ufuTm>^Uu$>eD^H=isL<9kH$R^`>`E z_Zm5bfFY9i1|m}QoU5y*cr1qs8CstKDwgr+G*39@{z;Z1b0-;U1p5MfO|a$lGgjol zs2*%R_!XJ_&0oxzqf`W}?F^P;?`ydp5nx>aCt+_G8sw@HWG;QdL1r!zxSCaU_wg(DAU|6%Qe z$q^h>ZgJ;lM|NQpfz@Pj^MH&|!8tDybthBzGc}mp#Z!LgUENnGz0822V1oiFK=mi+ zvTQshv4Uj{2h(s04GH81=m8o&o}!sJE4rRj>=`74Cxke)A`{9$$7^wvrOut5mTcZl zeb~uleQRT5MlNlTmVP)HLkYXE_#q-*h_eQP_IM^RkOL=zR}yWKz?a2A;78&mDzjWF zO!CoK9j)yEBD-p`Co+HZUK)fPU^cz6&46Bg*D`V^X=Z8zj?^s@SU=t|C5Zgw4-fAQ ztyJSaka6^LZ`BEtSFQj7=&Q%Wzd{Bt-$*n_8(qgLTw53diqKsX*4PP%H)TZeGkAYr zBXQ|{jWtss%Rfwu{%5a7EHw23dD-XWpM&!StkeQg-I%2b* z45xc~4$10$jp1hWpi4|P6p*}#19A4@0ozE{SV(sD%qn3j{Z}nV9!i$I;ms|ihn4>> zDbh>r4Mh9Y|5j(sBDSu@0#8NVX#~aZj8~ML20Bh><3xE$$KI7(^%lJtcyc|O_5@I;sg>7 z@lmnD7&szE0K>7~)RJaxE6fCvdLw2_dF%-gi*!WN?&F6UEobMn0><#DHyFC{WtIGz z1uahIMRqL^{eDpa!{r+c@bKw_PxiW0 z`{fi(m;`g%8mfU^m~Z1OXy()%^cud$MKy+JLI0998MooI2W5uK_Ot~O8OkDShbj~` zCIqF%0+wm1P=F!O20#J0+0OYnbK-Il-k$7pI`IyS|F+D0oyz(Fe_|f+6{ns!;2?kW zFZKKR8Ekw95(B(^pvc>aGt&C=Wy>ffu#i2|y!=B$M84^aC+_o#(9@nb9g2iq-2TO? zX&@&0m!{VFME52N69IrX9jy_ z?gO2xiVT@?{SI7+Vl+~e<~=3k7=MQ`2u<~5e@llDWg@aMQ7S+mY7TX}xy^;!O=jNkwEknGYO}JH|vOIV#R@=-58wn0W}HR{JKM@@;-yS`sKJ< zmL65?1+p=^1cXC*`~J|yuk^w=>m9rs3C8;EJlNPSa5v@bcV?O^pfEBnw2F|DmiGO9|{ERtr76!F5Yy;%M3W?j_lamL|dalKDewzUxLQJPm?&*RsWSpScyIX zp4|2mWoR1s*j3Gh(KI<6Xd+u_vv6)dH{cqUg zd>u^ZetWs3mQ!+}e>lo*^6EmqH_y*)kT@LWbwNhp#prbzEf_~7x%TcvMJ#`5L%ueo`t1*{aj{6aPfD0r5 zleCYTB$KY?^)BldTrm!FhiE;bS#s<){I6PQI<-(TP?F0xF%sA(V^NHKOC(=IQmdD2 zBN1*f270s7nGQH;DTK##nd!2{GWyl|CXSNBi8NVU)fHX!oXCY`Z4l*Ls%kA_J@_SC z^AunEG_TvaCW2R*B?PqVM_@N&`(Q5s&jZTY;Mzv1lDU8q+Gg%*PU{*aTHG1Ba^%#E z$TgawrAm0E)JJe5u>_7sbVGb4hQy+7l8VC_((KHy`pahb{XUrp5o;(%rde<7`f_8$HrNc)kElyzA^GT#;X*9riAU+)`>su$lBQR?} zk68}7kO1(Ef)}$36>NF$k*M7)$iZX%#I)SqtHReM%01x!8P`*VpoVt(FQmeKdeoyC zsi>WQ?sctCJ8(4%a4w$SlsY2m0{0tMMLO@Zp&P%;mOV-3QB1Z9LRrtrmw(j>$t0dt zjm#oRe>9qnwBpu0`?0E0HbnxkM&Lh4;I`2WR}4photd&YdN06#EjDTiS{_Wu$^}au zzxcG!R3N~V^JvSG>9iCEy)JpRz{M9`rZkGrejsvd!yN9d8S7zOYZx1`fcN#1UrKm4 zNcijQk+2sNS)G47vUE5D;x-%=VL6#D^bPIZ%K^z~UKi+b^}OF7ZO#c`BM^o5I7G<8 z1?f~!+VU3hnvebwJgQRiWXp;25fA>2EY_OB(GRa0?j={+o|m*&dFP}O-P@qG>!KR& z`;2?+nfNd`DLqr7bi9)0no@ad;wS;9@;nk zV<`ob!!BQs%g}|UyC1xHbMtgYipeEwBYeAsq6vH&1Sm{>Ywv#7oPW>Mb{^sIk^6gY z;`_kFsGr|pxV{k6Z0g#&o+9)(vT`}G{7Bm(;Cy4i&neDk@dqeld`?aJ<#>k>N+txd zkv(1CyhpzUx7_3Fv@d_jVGmfb`NMzNrQEmN-0A?fxE16 z5DOIgb%UXBWOJp17kq8|bM6eLgf#)H{(q1uj{l2H!8iXPQw$s||C9Ecn9AQam?qNV?dfnA%dAoB|cgx6vh26jQvN_;vk`OpUj z>k}=QJ)vWspm;`Qeci>6ICO2f?taZ)hdxeQ)|9rrrkFDuIt^=LM1|2zPC%TuGjjq^ ze>@xy*63^*ZpvUjdN5_ca#dC2rwgnq16DN~=gF+Pt>^o|7(w@yP_9wSF{p0P5&}bsBZ88<02AupD z=S8Y4Kr)@wlxFB7e(pTWvyjK8*tcS#^mo13^3-nxJjtuU;!H;ANXI%f0BFA#249{~ zcafj6s^nXVww*wdz$&6Me=Ixkrgo~ru|Ws;B6OhMdS`zzC2fEHd1YRX&xSO#o{lv9 zwY;iqsbR+}vSjUU9)?3J-9imuRE8KFb%`j`)dl#eT>fiu>b#>xwO{R7U)_H?u@;s@ zyDv@gyTYCqb%dnfESoyLFQ%2)Zy+&lKF8`n;vdA4fsPt~xvz7#l@|@%jx%-%h*wx4 zFBwGj-yM`Zui`Fz#TqEBGzJt@`8`fU2}Ka~9e#O!Cfg8|TLMDn-}uddcx%70>y@UL zJ9eQj3zC!0w(YPC{w=%i6fb`C3MPwKd*Bi|rpe+#oz1{_UUrl$#`}%u&%Avo`IX46 z`))a(W%Nlbs$E7>lWm(>Il%DHORY@=dlJ9$&k@~74l{%ApBv9sLSCFHIKc*-DBAN- zkX$gl(F48O5q406Gnq<&I*V|=F^_c;)Ey^JvZT_-P)hy{Vmj!6u|PS6${G@X`AwUv zZo9y`v2_d;ajdQ|B`qId1I<5oDlxs@3g|K`lccz}O0vfOaT25_$SyWzLfBkheM27W z^5@}C|xT&PE=;3rXqct=K{DKn}g1eea{L2?qE9lh+T8w7ck%`R%77 zv(TX?T&#;gzYz=MheK{|AQhQ+eCMnd<(yHQq4$#5ax?Xl)>kMMN#*(SXZ!@WT|{sn zj;Fj%#{IMvDU6onA|Y?r26`rNXjPPmTO9%Ft zE&{@n55g8M>Xc{!PNH2%E=2xK$$|J+e#KFRJc$gsg@GVE2!(J-%|fp-!}x9*F+O%m#kkYrInGxj89Z^#oWn z{4&4j{D2tIq!&t%-~t|RB#^X+_$es(YxyCOUZIgP$FOby8X#bZiN+F%5BgB8WRi}i zOm+$4qis{268YqqH=^Xo2~zs%)bso=`q+iO@~q~UXh=kHS#qQ$acK<}2aR}Sb~qeW z)0vW_B@Jl_76%XfvT?$)z%)a3WR5T|3m$0@{Q;yuJ;c_g0$IhrvHEmmzeD928|KLT zfYw)F;vfJZrK8#?P)1Dq^QF+;5fVcEqZ6sjmLA#IS)wxX!lD#1!u}+TBw^_&XbR~B z@wp+5Ke}&VJb@0GWJo(!C3QhyJcZ6UECPt+f

VB0nv717$Mk!0AM}0*X@N!#Q(c zORC9Uh1{S-+5BRExg-<|BH#3%`CuAj_aqjS0l7hQK)xvPf1*-z0}EwHDX56c=0l++ z#mkvB^?`nmGArZ;lKo6YMLarJddk3^E-V8tDZWBxX(=yg!6*mIJud+YEGaG?2l3;` zj|-CG^v>S3yJ=Vm0b$syIj$TGU0IV|%LJgD?Nde%CMwOFkgpD`$8h^q!y)o6m<51$ z%=wG^cRHw(&+k4^!ieR64%z<{Bd4)aP~q47fS*eOpQ?al%77C`@nV1*^=y6e;{YGW zlh)OVe7HC?ccv;BlTN$D^TP#*B%v}6YRupe75$_`Qv>hBn%st6y~MS{v+rr$aEMybw_$XXu` zBp6u$`SQ*YEK{?rfu&h~2;{l37|G2-_a^wid#qdd^FYWJhcfFPWmCEFT1inbU`FjC z;ABzy_r*2~+KC>%`qarR6Eo1Nk|FrMM>EpeOQ9|u5tu7P<3Ri!dVfQ1iCci;m;=n? zNS1Cp0f!T?;}a4`1D~ab6{HnR(Dd1#Mh?vJCT&BRdlWh6feq%O|Kal@VarUR_Pz+qD*z z2rsib&`AcpfnGjkNGa8uPg-NeAOv4Eu>$B(OgsLzs7w6iBH5O1@jBgOv&Qwdvr#=M zC%qF|6=q5>{nT}^e5eQzS>FudHp;e)ojVOEO^sqR!u8igh6gbWy}8o1{Cutm@;ztPIQ zh;q&hGZOd_&YYzJ!Wsz|KiedY^|&*bYD)VWzBzckpoA#oh#dGG4-*j|{@$nL%(FmD zGDFpi;|(|!zGy z4EY;^9E6fO>;quinE3_GgZz!6wane%oCFIk6xs^*54HJ^Tf6ECF?9BN`;q?n+44qv zvNZEdnK(mUiI#_Dsk*#^HX@77dHXq~VQ~*heK3WgImv%-rksX+5-UV-+(Qp4!v(N; zF{)ifeo{0`%GRao_$1DY%5w6q)!?lQL@&0cy|8?M-RYJWrwBg2y=lJF-)cBd3*-^R z-sPP3dUE*oReBo#_T0n0xiDg%u-O=#w7Xegp+NVKL}+sdEV^Z2sf=SuYcQ1$lqzUBCOW! z4qUpdk9j+vnw)>8z!PjB@1ey~Iu8~C;JJN+nH!;>Xh)wr&I8{`&MfJnIX92R8czB} z=NrkG7Tm?bUtF}S25Q`H6;`gdE{z%w9)kB`A|fIo;>we$BpNGEle#%Km)tPVMPo@5 z>qqvsO!V2E-+^lb@Z5TW)E&`B*Yj0DLrnu4H}0jen|K0%;~T=SnCwlSAW5kKIHp9o z^Li9IGQ#vn?)68c7!MA~gSjaa_^|FMuV=mEP>jR*6Za5L`2T^2GSD7is5&Uoxe!rhX%$~!tj zB8NS}MTHQ+)22)(4q2Va-%-f|5R|~=sNF(oO=SeYOV$)fAh>@w!@nv4RK(y@t3{ja zy`pt)c=kfUbFpm6&fOZcp4C?C6q(QK$JC6z&|U`m{UM^A5U{OTh75%t`Xb~%WMvLk zm8wF!hW?1|N0|6^dk0}dyo8>j2Oy^0hClqFBstpN?O@HfPhnGr<^V6y51;;2xvM5D zw@ntgCul&MyaGVry?*)uYTf``4vFGrOyJcpu5P%ZekM5(a0EBZ8$AoDI5!k?-Q_iD zRyObEG|(FLlfPimHyEJk0LVM#{3@1BmP?Yj(clLyA0Av%f>|>G=Arlh*i`VD#Akx| zUgThFjwhTxrco4o(1jwc9x`67IPX;y*21+@M|e`;(Ch+^Q10kSs5%mlvCoBeo3u+c41aogM7R%JISafsp#28`u1B&|vJ zWN^T%QZIZ(H|5km;V#+Mx!ikLQU7g4eNkOP31T=tj*&L_eMv-pI8rt%Crf#xYQZ`p zSc_>!99vELpd3$c&)Xo6KXIQ=26m%vjC0Q6ys9y`;Va++a35N+qNg6lZM75Iv4_PF zLSsL3|0I9bZqM7%cVbku0OGDi@mJHNv`_1Mf3XZbPEt^c*#+E#wEAMEGf;+%WQL~u zXD_`a)*#HSyf)zSBeMEJ`=y$(@rU;PkZHhJ)3g9CMV!oqEI?IG%ADu>+I zKp}lLxEKV$cnE0u0O>-Tez01`ekU4oNiIuaM(`-~WBGtB7h$(!B9KyRB-)PHp*85i z#6WsQF!~{#Ac7@Z5{Dggdl%+=KBtYQ*GOcj3lR1ajeab|Wy5eJy|Uxb!ArohkmLK@103kRd6jZ7 z1g!eQCbi}Luu0~_KRF6kj{gTu(w1`CA42ZFuHkT;l1$kAfxQYGAKb{;!C9xYw~{T$DO>{n_xzsFYqc(5^N(n7%KWUlfJ4{GiJ?Y~s*I;l5*MC= z^R26H&6%ylWrP*YFB%GVeTJ9QunS6BuUVcN#jM@wek)^@6NZY@tUCZ!vstt zi`2Sc_0D#i8;7~%`;iOvc1Ij7Jjb**)fN_(%_y+ib`#Wek_`Idd_&Fe2-wXfrL!ym z(Xcq027!cLb!nGbM-Q@u&^6D^j3T}+D8W)s7$*6^vU_fLi&~A3H~CIHW-j6tHY7Qf zmyn+HQ4O!x!64dO_b+y(KFplG5%)Z8{eF$sY;?ZvH%N=WRMf=G`*Y|B2jo$t?kty^ zIJ$j-FEqVJJY57MVpx!e#~m7rsv|A{<7XnzcqYonq7~Fki@Z>tMDG@D@;(=~a}LSP zyoI8fdhP0VD%U;^I<1*~`4EX|7d@M5X|fELw(>QJcAF;g;)ILhwrGkFR)`4;o3Jty z9*xF%A#M@Y8QtAEsXD86hldhV=ZwmN7S1#Nr34#Q8^)$>(V@geYk2%&GP?kPzUHAM zuZ%OSl8%Mk^@|N%u8G~Gg2%YY{XOkyV&UPKWx8=)B|wN{L5HOvxT9}D(1P-@u}iaj z_2O~MN+^eluV@wGvrGN0M7xGd-l~Oi$Ru6nMp5LOG~%jw#mc>B|0A2;h3G+7R+RA+ z9|nIt>Sp4UY&yRp!YcNTV|oP;J;?eN0ot)%EHnr5aFC@89*9Jn zZdow5=a=kGEfW2OA-qOBlJe6r8EB8GZt1dpAER!0hb<#D`3F$&t!Jrwqi6*B@;kOY zgatg@m=<^$kJc8#yW&2KQ12(*%@v-EFESooeA+>o4`e`LZ7t{CUj^12ZBOUFiAYBj zipU^|4O^H9^2mk-3l)jc9!k=?4zM(3vMhYDV$>+fK1yGs&JKvk2o{V=e!Hd##cl>h zZ!AbHlg|{A2jABm{K!Q};DG%pM5e#Pq7Y6l;By zTjUwZ#ttJWE>@RA7|vf_%A8#x=Vw)itSlwO{Zjw(I2aRiY~@t#iS$4nvTPJa_aGe( zx=$Yq=S1koU%?NsMkl!nIvcDeXCW`w-#)L#-Do03x*=W*yUPjHdmN}>183Bf zd|uwvCoEq0fMt9g4%F2xZ;CMvq=Dz15Irp7ZtA{MsHo@3GVLdTn`mXMLJ`Tr{`t z#K&soFy6s2%T{UrV8W>WK*qHg68z5_Vkju$-5W(@YAfi~f>gf&b&-P4p6{2K{IC-o z4&Xp{Ri1E3^T2SriWWvZ(TcgU;vukm$0w^c?IW+||4l`sfPpv2&?5Fe7n)MQ^9` z5wG#cRTJ|#EL3A!s8~N)JUV$q_L8CBwE)W|L-o$suUqHmf6$&~2o?Do8KN&@ zbnnle+J1+ng#E}AJZw36Ce0&15kO`Yk+&ae?hdP~WE^X6zxR*_zKmCC7_?XsE&2o` zP;q;~X46Jd_Q?;_pHn(UZH0%m6dpM(wFC$hTD4D}5V8<02rTEHO1 z1q6{2_YN2BA5E;IM}NBwln8^#;^ODLDU%zyM>KU!$DmitlZ}qdZeK@@IiOjCF791s zDN($IxcM*C%}T$#jNy#^4f*L-qWI!sPc^QG6IhoEqr5)cF8Pcs5ViJ(m_*UoG;$0H z8aQe<$`FUeP2M9~0=smM9q7W+IH!RX^ulI5d*OU_Hk)xQgVa$oq!p`%3RDk)_(eO} zzjA$e`6CplUy3L@Sp*{LDS$`fR8sMqvR#yqQ2n%k&rRPv(wQ@)?Iy-OZpX| z@X0I!dFLjo_rvyjA$|CYK^4kjXPU|;eTZ$q^`G{mVhd{WNXB+Wg5~^mQy2WkULa1BF<7Z68(2KAXk%W6Oi~6(Cev8wWM(Mj!v72rtP*GuYa`5+Mq-wIA)@Ic0{h_dxr=b7nO!x=dO^>*8|>4u6H1imu!93Q z$n;t2iRDWA#H^VD0uPeiR}>Fpfm*PIlVywkp>sxnh~BCm#`#X>j?I-V{2^#Nh@}sf z$T@5%RH^NloCi=>3ThsmE`TQ={wf^y7RZ(iFiA#xzxYw)bteP4XO$|d zg*Ol|DO0A#6>7sn!O7>&Ijl#!pb8pQqPfs2nouf#tYw&1Di5Gyp6*R5`E7*|Mnrrv zs#t!6_f*Lk6KJ+%O05Dro;jvio}7O8s#`^N&ns1;NeZa6xfcf;GRc;WGV(t@UBH3x ztfED^O_-%EDeBUvx#l5SQu~i{3^omaEn5vlO->h}1}jJE?WCRRb#n-_vqRs>&APvX zA3oQwxAp&eJzmP$5oaPiiI?_FZdO#-EhS%GsA7g zh#v1)0TxcDm7o1$qzKD+*yT_O8pbB2IOGOiM8#h--F-EQBTvwyL$-x{*&#I?3}q$a z9^FF>H7~l3$ar0moiLAX-~Q;*?K$JtoM)X2;c41$ZfN@pK}yBZ3n6U(E799!8~loy zVp>S-HI_ZVKD)n%n;hU4I=szjsS`hiN>&u11r&uputZ>!N*2Y{DNxrb4GJsUr_Jw#`0;EA_7)Sq*xxi3S3$j_1Q>U-`3d$B&jKqwKQXr*Je z<%oO{4~PSR2oQZWOcjWv$pifDX;1JN{?$MVC*z^D4#bi}{w9`I;y{Bln=>8-Mx`#A z&hs4x;g&)`C~lsP4@j9Hfwbyf_Y>6)2~1ZE|sR#2~#sn)7^8A_Y>=s6dPOHk6;=3(!IuDwDLTQYJFy1b||sfEqU+{!iWr#6S$_^Qu< zX|e@$p4EAaJ^xF0$h@Ym+YfBOkrpBGe< zY?UXgM3-yVth3y>u=?t~F6CJ1mie6Lc1pmu*mjMU*B8md9GP?YnN%E9oFMRGCfuJw zgwM=?_9UDZMk$2yz97kYACR(zhm-)=s=97fc|)%k(!K;GswMv)k19(c;eVL$mol>FiiasgnEYq~<`Pe7CD%Q&Ay z-Z$`D9CsU%G2X;=gfIsH7$)0=2<1>3rP4Nn?CCo#AU&WQ+;W2^!%^N*9*_5?xspf; za`77`-KqJT0CX9X9hG7J5gl^0nz66%+BHqFmw6x&?)KJ0pJ#&MpXiHQP)tsnGS2$9 zM-BGU>F)ix!g%2Wt>m=g{bz=1IeX`#XTQ)TsE&;t!}{($CQTH;Gfz;aRep?u9+M|l zGvA;qj^=~jN6T#d9S7?#2+jOGL^I7Xff9cLl+8NK$`$(yS?J7ttp((9+qy+vrGO*_ z`lq|@_MR=V11a3xW6Eo_42eo@OGy?`e3_INy^Zj`V>c0+NgO69)Va>M;_T2SIMksw z$pl7d#qRky@Wm;hK#dQvhrUhIR;F62QO47rj7)U!$cJcF(=UDzNjn8yOci!)^31|v zfMcPdWrOKZS)IIRii36t&ARCxm}&eiS!uz%EputUekZds)tXs#2^+nyH@hd+2ero+ z*$ssVm~d0}Rvor_7U9qWF80=fGsB@0uXN^{-8a9pyf^`n>BJ{*G6XgXPKm9I0nj*P z;_v4h#KZM7Q~+zMps^N}J^QLikFaeBt)t@j2(bKog?30%v8J!ERmEgC#w%d1%^FT( zgJcPKdt?m5RctXXD{76S<2c_fd_3+?!OM1>%8aF>E{mnp2z#vBm`oAOcb44opBK9& zPXn`A8^8l7_53_p4`A?vO#-)upjx*?g6wlPP&!0^iIELpchMiY3XiS&T_kRidGu!Q zkBeow!={2*IIx1R`RT`mU_GRSrhQp}GeEl=N-78P>Q%>bStZ#a?A5n=W3Qn#K!;^* zFxN_W;x~R@cI-y0!5NK}L6^AXGJu#@{l(8^(5D0xiMGtrwtZ{B%6OM5U;cqGBQ&*N z57`e2b}rA|geBjxk6HOsbB-5daQOCU(@h3Cvp*^uVxoFH?o2E;rqZRpsD0T^bDY^x zTI_{zsV;{>1tUHKya`-<7i#TnSY$cg%mZe!3l_hi7?1;vNiZeigu+O|`9|E;S%mtf z)He#apvb^*5GM~A=Z^N^8De1ln}N>uN*$xZEtbTcVWd(f9C34KgdS?EFpy>x?9^s<@=UYE_OC%sRn$ASMW=;cdo(XP6MNVE6N%=l0-ncF8>uk>fl>RUY zq`smR+10mV71=eg0%bHXKUoB{?pyY$F+mQHCxk!Zl8N{5`qO1;irVsfWn2nDm6?gT zB^JjC=zI{DeSO<-&Ov2b1z*isd+~D3#iTY28V*tI1sRR3u+~M}Ggs=$ZLBZzhrVin zSO|jiPkzpMb;)+X0xr$nrMmdgdS zv$9CUnl-?$qW!EtzZE{&JCQ1JMbIDEgWhtNJJx4MuId~p z0*rvv-!{PA*Sj~(;`i?jqEaM(YDku=S>n&VXzLaX-;I?xLS3M4=M3h-O(KDT7e9{e!1v_UOog3uL_#oakwff z7?&J6H1o1EJq2gZ#uD0w{V+NtHYB0eiY3BV;ef~CV(-lIj_Ig}J?tb-X(Pk3TZ&)@jH3eCP(~MX(H#@V_!t ztr8bdamJk_#uya3Vj3czK7D2a}Ph~R@rM)p6V{Wte^iGxQE6Blm=!Gcw z`^Ken8__S_MdqE=5$ywjn89j&f>?~d=PwiWq6X{N9a$pyj6%{nAJ-Wm8}3XwMdh%h z4{|V7y0zz!u<=>Nvl$LANW;Jz_z--Pj2D^T>BmWPCB8CZi$^GbvtcclGWN7(9PDeT z4nDhIL^r(NIck_W(`p+p@;@5A4&8URWvfM@N)ruY{Y_DuvPR#hQR9w z&^lJV1Ocn`tz84Uud!B93xP60_Jw9qkL^5T49;38fgFRFXmr%NGfX9!djh_)lzqW} zkor%{2bZ`%1V6t*=;5fpNV_xQA>C(IC?9hf?4^O)ICX(w>=czfKfc`{)6qVW>EI9? zzPB&cV5i{PEZ_l9xz*ho&EG!$SDI^;s3kJ<8SM51fhS`D8bX4gQrv<57M&Hz?XWPx zGVT`L(tY*dPI;ZF7wSg*EP)pgse)Qd*2L=(;X$#b(S-$yPiz)`SYMntUoV?}#uMfL zsJke!$0-t6Fvr=Rq%OAnu0eV+gV808d$%*vcjov?5(fj$B^# z!`NSv%$gMPc8o817xN>5MB0C2NiH=^tze|{Q50^$Ji49G7dpbta2);G8SM@aEJuZq z6clbD?RvWKd_Vbc;A?`n9aagcXzzYKpQuGEf`$XQ_WlO8CG+b;69v+2vowt_hP00j zITKK`>SKwS;sdtDT@pg49SN*xS990cem!-CD9RhJ>e;a03xLj+(M4oMv6&)xeux|G z=VV4#{i;0-;>B&Q=C<}?N+au^4c%x!lz6Lgr`%1V;d|9p(Lp$fK^%eXEObgmEoXbZ#~^W z0g_;kyz#Nmxo#nxeB7MRMGkcEIvaPP)L(60@!A_?p``YZ2+{8cf@5eg3UK zw>eSJIE#x1zggOkDq4bfg<1$ZmZf*U29=yBw7QH1(U>xl)p2B>PQ`X|A4(H8Xt4o6 z(eiI#iAwoS#QI&-tkNVC^W{w5Xz3(k0ukb=z-UeR))ANoI*EN3=E zF7XdS6dQ+kAN0#bGJUymkV{mVYHR`;;|H(9rH!tM*Bn)%?rZ4#w#Tlpw6j_4uuhB$ z&OLJ|>bmL$jV${)T=)4yatzP4vdJs((y>(9G&83-V}sT1)6^m7R{j+~6}rCqUEP&+ z-y&`u4tR*#^EQd;9&w%jXY<}eZjh?vRX0VfH^|bwClJVA118N633aQ|rUI}Dq$}J0 zC3qLScYX4T+R(t%J_mUTp6t+xb>s1e|1lZs>(&&=17@QZ)#RZlvmW&@P>G`?Ii%T= z>%D~lh0kv>t}Cr;B_k2$g&*?(UQ6*zy(JLghIyk3`~>N02{<^oy@}rI`zoYBU5h=i zNx>{Lif-a~WcbO{2GPg2vJzbe%o+p}qh}?0-?1vkSNt1sYQnCmh4u)z4HuX>Wn~HY zPYN0c2sMC>k?nt==Syvkg#Bh@pB%kB$)t)>8bple+t`q(n#wL*u6+l^q$a{v6tiIT zuuS=d=;0n-cxEbOrc9w<)g+$xM63=_=3eH^?GCZBe<=UnO+rUK&>d6Kb(@;@V>w9P zj=l~Gv*%Z(W069oATi~1PEOT?15V528Q-5u*!W)9l0H4hWK=h{q}wLXOr!r#SJxOE zNYJL^WMkX5ZQIz`ww>(6w(X5~<7~{0ZQJ(7$>qKuS9kZTXKJQrx~95n`t3)F2e1tX z7-4tMuN71a)fuLv5{ZA#N_+NSz{s}7f7sn&3^r+cN7sGDLAhu%-cnL7)j`1y`LV+b=9w8)!~n;V?Nwjh*D_`qm@tV-K%yQ zrt=aTe{Fz?^rdL6S%nn?fpzlV4GZ@BFPiY(!H1xP(X0I~;L|dN_1&0-Qhr@kPn9S? z3N&J6mOwMw{@$A8(W+XxZvv!We)&xNMZqjQhwXalchk&XQ&l{r3}w^h7S7Qm0qdVP zl#7DX$h&xcq9R6A8^KChV5@w`^m5+(%Xpi;{qa9U2ko!v<77xEqqt4ou#;kx2LcEbQk<6i;Q^Hhimshk^;Y;!inQ08ApHZ0F50dN!YEfzV_baNJyqMhzujQwc)%F)(7+M6634f~cp`W*+O$1|f>~ z=X=A(8`Dgdb6H}Zqyv8t;aIfddl(R>icV^(i};1ls1k`;a{h^=MpT*DlGUb-e~9YH zBcS(F`EX4e1U45E@hr(3q}n9k7?xJR#IX2MUe4Qoaey-Qg8@EaVX`FiM$}TXCT2G( zTHEw!e58^m?}{eOpM43^4~zOQySA4vgTpjsVNQjV%+Sci2vK@DLRa6~Fd)X$B0a#= zsQ~#&iWt+>QE#0(j=!pSQLL0YBIb~#kmDI~9%(^F2JJe?K^iP2-uTQ68`SVD(7{-Z zrhPNj1_scKrvR)xes9=3(GveSlqqwsNUExLex!N#zwp=ZwT+GJNSq-1@%IPOqSDe3HcOT+2hQ)Nv zH2S`8j3PKVVUBd7=&cMlrce=*3aK`!HrYNL{K40xwG7?AE!KLIg}{=s!r$ig%@4_9 zyk|L0qc0HFu%baYLy8H56e803+S_3l3ZW$jZUD&Afnkp!K~ScHZ%YTrY+)tF9^7d( zVzSc}GwVmtnXGPFPG;yof1Np}`0`d4@MPGILt4a|y;56!$*m5p8!WY)W6dJ>alNb1 zHlqxvsqH796lHZ|OB%zmg1O6e7^MOtUEy%#Vdqe&FZ$!Z*FMCXm%t(tOK9rwv#JsR zJCh#Z4+Hn;gLwS081duMK30;fj~3(^LSC#uM)+a;ujcf~X3favt&)ePPWi^pw&Dw< znUnDVDNlY{Tzol(A|y(p6ECqA3;iL0<-z9hwc@InYv(;&A!gzOGtV$o-A^b#k5(@K zmo2tuh_=~els|htvbc0=vx}pKYh^1i_Hq6PP5d8%xC`MvzI3EnTnV<0D)h3y(D@oG zBgRf&2}Ao|A3SoNq{nZz3`uMKBYYYmt9vSL^QiVkMQZV*?I^h|-8n(85Uka`-vKxf z*>n|07cJ&n5!(u66Z()I%L75Uu^)j#TA8^Dz1c6LLI$rxa-ZD!w8@>fj-Nfiyc&4Y z!7s34r$_@tnRvs^S@m#9t>S+;*ptX4Ua&(H-#a8ZW#K1S*vZG3Wq+lSIrT$ofn6#d zRo8w<^iAyCH@XEelf+9n{4|W+cg{JJI`}?10pZVSKJNYNe2ORJXl#?u%1W_;sgtxA z+{Ip>Y6K!use$?+?R9!6(S->CPz}Z8>q=Mer3WLXoW7vl3qujRfEmYDAdgV%8#g8W zIFDs4>`!`R#M4)m>zk)Odr*aoNK&d<+G027gJ50|4`5@4lEYt@9`PQXvnxYaw^RJO0SR_(xbt6&BXn*(Fgl;EnRBelS+_ zXCBa2PuNYrSi|;5q65uCgp-88EeL`!nME@;>Io`Fgu%(hY~MVL z2dqoW0_xwKCb142Svc?kA=u|^Kg_-F1LIdjDef52kI?f;tl+Z&w|>Xd8rYm?=Ie>v z>mNZNkqtv^1K+Bo|KK|%yh8%@SA#XN(ad-}ZrCLACRW2>dj=8+7#6tQO%9tmFyukK0Ga!ioy#3xMGHmhbi42DC z%Iwg8Etyr{c$5ec?J;jI^sxs?qR-v>@RLVjP46oI4Z*Y2^TD2=Ihnn(MH&Scdu-n* zS11|OL`6SdmW49;VHg_ET4a~G&QI7kVE z30LS1E|vD!51TXqt+e%L_yN{B@Y~-s36cKZ^3j6rwV~A%?6lcMlmTnoCvtaQqB}4& zl7DykJQ$a5O3phgp|buA;E6-TPr10~OZ+xfl$WCH-=g9QF2akprMscw1KsZ$m2~|CRej$kQrd_p8ms` znY%Su-GjYogkU+$&52~SX4^Nw&-&)!TzhOz3G3FYa?7BkC5Td9iv<(c9!_rsvt<&& zOt7W@IZ&eysP@gRw&9YoT3O@h6Zp8O^q6Caiti0)USi(2*+~=Y7PNGg#O=z}?Fre^*A-~8v^l>F59&$2E|%YINg}NUFX_sOuye~ih^YV*^WtH+eO#n(|K*lYK{PGea?Pa{iV`z6E4q#!m0$~h-+Wu;Y zYr+7|G<0J-2)hfgDd~F61Opal@G!fP&!9RUyL7J%9hYyQTBM?!CK6OWGP7pd4Vhi zUREzYR=80V96$nDI7x_rtqR=?hI=^E&j6&@o1I}~5P#4I1G}%@SML=3u}hQL89?aK z&YKb9ui%qoD`Cvps|@Jl^Q&nDi;v-vn+W=F>sj$c_xyUibBK$yayoK~-|BxlkyjHC zE#K|;9kDYXzdvvRHSMfJ0RvEC!z_lCa7O?>UfHu`RUQ)k;6va;i(qZ{gTp?yAmC*9 z;`uM|(X#k1@YT*wRM4q~_q97;tL0nnq2~j`S(kzES7v3%x5O%?A%w7hs(P&(OGuYu zej#zpWydgd81n(5Qd$DrFu`@u7Be5mPLQ`H`caekbc_kv%~+y_UU=GMIQO9hD&sLd zMFmOI)60AW<=2GKs`}Kd7-C=RTp($9i`hkrNV`_(cl`KUQE1&z(YMToogNAs(SI$J zjjDwC>EqSJL3hQV^ESIyTus;gW9h~_g#YS#jQ9V+G}x%`Do?r1C8n7JbbW{JqT_yuhIPj<(%q zKO_m;?B$ok%H9Quzm zpWNQ4C=n7*y&8El>ORm&%VXw0-^(U}+a4zx$?JU7h7E3E(iM)?ps#ZJfYpysJA+;WwMq^*jibY_jqVWPU1 zOfodrM2)zCY6+U8Xe~6)^JzYoO*EXUX$h@4VIuA*)sWkyUlW<$caUxfC zpBP)lE^3GI%_Y4-qlzz@{Iy%10e#qSRTX3>LB%F8bZ|Cs`If-{4Nk2E z{BZ?k@LxOFUXN&Sp#7gE?IL!2!R%B|dxAD(vYx&}k_2ws79mm>a7hoMy zT!EiMC~Nv)vRvk%ub*JXJBqvMJt$yWU$yKZC>Ue96e<`kz{CB2O4$j#Fa2)w&HE3? zGNpO>@qVtr$$Jue7kjoj#q7H^3ZzEym2u?~SrwkwEl(^sgkd7ejFk&&o40g z$F7!3e(nC%m6jb_S@M$<`G&s>=iQ#W?dM}$zfRhxujGeIf=OG420efx zr(cTqWYp~Svb#GGJEs`U`8;}+ZQwyCYPNyf1f<#!@8n6_sb!~)w;PYalJI(SoMfI zQb9sNN#P{&>BHkMFQc19$lYJsfkePF|A)m0)Q>k%59(Y6!PlSd;%1YisqVKZ*e8Dk zRzl5i{#dSUqVAG$xZC9=7kUq-dc(1@+rgwM4a3-3mGj7F%*INypD?=Eyoto)H=iiU zvt=mb`_6$2IBo$Tc}e@0OElUW$ixQpqr(uQA_UQ7+~^IZE!;fIx6AZ>x2Y`Ae{ zoMfNT7#fpo%QS5ySyzmf8GN7RCKvjR)OWGypkNcrR+)BFHdo%sr<$!G;@<5|YObGF zzSWi?qA+PRhnrBpl!>)$!cd0vSE>WP>^>0HZ%+bsQV&)|hRpkOp3#84N*c}OvWmdUyg>=HAIDBAD@5%P1;=mdH|(J@Ufpyr zq~lxfyE`?$Otx1-*M1!sY3ne^lj}2t4n&pUqkQpwB)4v87QEeDJL0QCDeRDVy5F)9 zv-?~33T-Z@7B3d5b-LOeJo%Q@10vN;eS@Cdj>iZd-ZupfTdrnQK^uT@(+y3!JTSp! z+{@5Ck?aDwNa((j4}2pk=VkYSFYie9`;m2V6bJXKi>mU@&^I^6Y2#lvCUQ>{Rk^WBJdb!h>S3-c2^Zt?-41NXGMj@ zfCoV4u46uX=qQmJ)Sef9x6w?+=+bWo%QX~DSZ!gwe|h3(E#TY%Q2S&F5D?=3xgNxX zw&hOjTK~($cj}es<6O1)*F|D&&fMmSB{nIivaTtQyG{F0ttt%-bO_>Dy>e7 z77i#4HJ2ln&U8*=0t2-%kZytx87tX|7Cz=z^H`CDZ(;LWk?cVOYxn~ba*)X}hPV(E z4>kFKiacqd7ePS`L5*98xxoqwC3zU_kcmt>XE(!uwr!ssiY%;qEYU}UZUxsa%?;Ud z7Q=+9c-_Ss5e#4k4vXkxcfv!I!~L-%+pZRyZi5K{cQ3@W7iWzT{Ce0ok2S^yb5uW| zc|1)9^wcDiAsKakpa?v1`**o{v%JkT=9pb3djUh*3ahoS{<3+;u)^UJ>rP_<<2>t* zTLI%Z>5e-5`~a&il(T*5*G&ViL^4dEfh+l6odX*Hi}V#%$jK~SD3Rc1EsHU9aRI+f z1~sUnjIYZF1&m)E%tiF+8_Y)o+nmNi(EK>YHXcxBeoiYXXPk+3`_G7YEu|Bf-?_C_ zEN09!h(0ljmq}Dj0p!RaVrYiOY%TyI>ZTi~QG?A0>==gc@ zrYo2V+3raoyE7cP#eDfg%>E*u$H9C<`QQOx91`2Qv``IWor2F$v{x8h#}b!zb-sDS zpbQ61fvO=bx%^?GhxHhae4^C%A&hG8q)zH8I9b;PSi* z?$VT|N$buyL|9ux?5B>`;- z-*?r)TGX*bCuk(iNyfupy8X}brn!MY$=23-l%FRh*(tHNDl5`KB}OX|Jcf{<)KWHw z;@V=>R4HYfk$y6vg9VQzrGCqC*Sdz(K{I-V!$md3TS4&C@&$EeX6nwLc`@LzJ~nON zBKdGri;>=BK@WpqC4%U>86;DAC4n^)H}#mfsAt!nkuXU}4!*3v6o`t;W74Gzm+*=t z(re5R)^dWqJfGHCEFXQ)!gcp16dhVJOy6f82Qu}#VCT{K3=GdL^RX)EmN`(j?i$e}66DIFPu(#0k*|G<51& zED)&2O(ngL|8U&1^l7vr?f|x}u2Z*99;@(j51qdAKr05*s(V3}^vRJ@(Ap*!zXx|+ z1Av%5AsA!tcq3!?@96$O*!|+DZH@zD&R=k!#lN`fEbz{HC;asVYtS6SDlZDpO$9Pm zQAM$@rp59BEZKHr`YvAy^G97h+r7)$vkeg|qMlX?n{(kng+IBT#XzBF(R7?Cm=g&J zJZ`P!fQOa%V zFX?uX=Brw&Kl)?H*Pb627HsREI$~Xpvlni0@a)1T-O!doM2Zb9cz*Bx;w%S!-%%l7 ztT%Kn4-IEcwPUZ=B*1o?H&Cs{NGMJJcj{@*{AP3_SVSYn*Za0(;W}^=Or1^j!GGyl*Fxh%0+)V<8R($P;AhJyEBq@Q!@M0F zOgXyGgJwbf`pEs%}pV*)~jwhEWA0E1p`_pFMx3QtlXXd(w-avji+Eq{k32pes zeh;mKCCn1`4R{)2!e(JHvXNESlfWt$hoLfOPv2ZwvKK-#vb_f1-gK6)j*zH;Xld&M zS0%+R_t;9Nd|V0k25Sjq)`{jS3^*cXD-bx0yzZ0!9(8;&YX2?GOdpD64Qy#IRm9{~ z!~i;#|5K5SmI+ZYvR%|uB3Iz9p8m%PfNB@wY{sO{ytj z^&pO&QXquoZC11MF~0zhbs{2WlgRjrhB|cU90?9Pq$lE{Dl$B@CqSe_Vo^>s=k?pd zFL@jeA+=^mS8XF2WqWMdA2`XA`s@~d^zQLrD)AHdZmY(R~q?ar4fGm5)_+81B;uFR3f~?tfFnBx8ZYGrZCowpX%qJA#Bf>Ge$+2(NK4z$f-TjlN z5C~A?dlq31fZ=sR3`dUmPJ$XbVq|CLg%+C|fa{YY5`fr6%@lnd$u*iJ<@uw>$M8Lh zv(gSM!<6fdy(g}^2U(}}UiZ_1b9~CX9xXo31B{xVQZ8e9Ccaw=;74~1pPl1ER@PC{#WQU6 zOy+jS=L$KdMOR&WEvjNxxv#BSWcSp}%E?^wqv0g#{w6gO#d# zcilf5k#$B;tc)Al6@*LYQJtSt@($%#au)VJFYz!e<{ml%zwx#P)K$EgYQ0rhV{aaU z=pbBCO%yO^50 z5_9|~AWj0{Vf%j~LY*%WAt!3rRE^O^WF;=yUp(&pgj_q1xOx zK5C-AU}lcHp))Rz^A#*w+&utvc7Ir599e0M6DC$^b-P}UEMbG~--_d2Y42ao4ytOp z=6D-OeXi=q%u9b#SC4lriQ=T{GuC^y=5%(y8Ry(oU5R2!xJA8485ipI5@0n%Q{N?h zycSl&Wp`)mQ&-#tjrfvNVqK4~b!6*Hm)*fe1{n{ZIi^G7CWWFE8f5}8iRDF}SJ8H$ zNI*d7F?PM~Y1?E<1c|71YA2-s%qe1MYJrkk%gJf;xYt05v9)4k;jbR=N#Zb?kXb2N zhm0>w5Ij)03TYf1C>4M+#*n&nZ>T!<&sGq;4@$2X=4APz$|q_`C7*O6YyxD$IOOg?mQ_k3xao56GjQy~1f> z%!$(7LlISKRyeP=b^AmAjgmm}$4Z$sOQj(7>-fVU$UcK~!cKV?O9=Lu8tvfdbwCHh10^_Qvq``nLA^dYDoh zT2_%8IaO;n8Oc6HY$BB-x7$&AoA#kO4`w;m1~YitHe5Dr9y+#L9q==oJ|r>^CHS9emTuY$|5nMqK{=cp;R@8c?X)4MUKfVd4r^^FW^(x z6fsi9;`DvdEQAusl%*HSmd%9Bf1(ec7x$D0m9mg1$UtSxv85~HznYMxL--_FCpVp; zit2bMAnALuoM13EC(OyXdW;a9bW$!P%rijz43d!I)EXPFM*iHqIj*8f3+8p=+oz#L zqW2S>+HB!|eclem&|R!Nb;DwT*JB844Pv}~Qf>>!Y%|W(&kYhcjPhN5MDvNOT zz=b-IA!0gYY|A*G8Pw;y@}g=oUF5kS3%-SBh@dnf727g&odN{tNXGy;5&8&psJcT% z$D@c*zXkUJoV(af3SK=@dts-sit}z9y7WkkWvthXhbO;0ct&EZdp527+*;8V#9 zj&32`zLf+^VQ<)+4Ria*U*VbDOVXRB;4UmsMBA}ttj)UWq_|l-*X?j_<)_RDvGrZ^ zsYg{Kqg7d_aPN+IXW&?q?HYvCcTfI;6{i!UxG#RFdu!#VerY2re~BL+zgz`1wfls? z;`{H71SqrF9Eu6&eud1^Wp;T_fEcN50w2w5Y-1$#chyHJ$$tIu-;rW(h;29$ z-c%+r-N06Ky%+t-FRem%z+t&5=MI&I+-afU=NMA@_L^b z@8s#Qhf}Ddu`g%?eo9XVEP;}{P)v5UI{%a;Un8@ARvnLX%T)dTU>5@1a)|mtbr-_4HyHDV#aR^I zBLWTikB#IEas!wA_9D-oV6KcizUNy-o1-;V-6 zsMyqG{y|5H5FMC=$wj`!~RX|A^gk{yXESIFW#|6=o&ynykKmP@uk_Y8XuyNuunZ zfZ$0Bq&@dP@{r)rHQX(FMi~1I(ugG5LZNfPBBAQ@8KMd1U@9`feoRSV8SNdm8NaAo zttY&$zy*z78ewh)Kr(=A`}QK2mo<|=u|bDq!IGkMY_g;Q^I3ku2AUr>MwB9mmNg68S;Nn?J-0nugmi?8qBcL- z4c`Mz5}mM`1ASd#6fpS7&=VdFOOgY5t$=<{-E(9>y#198hn(lbau zXwpmebIhmUgIX%*4?B#$IxeTMwS*fjU6b)taNxsPl~hwMM#(6!dJA#V_T#BTY#t^6 zEj2h7{MrM+k*%aJ1*~f$8v>g{CVhr_^5A92M9}rdt1FCo6m^gw!~89T>EAllyx=-8 zw3CaJ8#gYeaD`sJYVYuc+UUln9IS9jcjdX(oxw+W!COSs!ZwsuZpjtgYL6JB4C7c{ zi8JIs+twPKpB6Vm@S-iKITJxbUF!ll2Y;QYyg%ds7ojJE0y~`A*N}QK7lo$}BVAYH zA20-wDC`CZglJ)LVwf?#hh$0E*Tin5_t5@n=3|hzzkS053!TBpr~RVQQlRyqK*Qr# z5Y68Y%dQMvYpOP6?w2{vQXJ{AqH%xHYU&Av#EFrjRjid!*16+b5ZecPbykb4bHFi~A_)YM#(b`w@kWo`G6!vRlhAw<%Pe zJC5ebRa-+nugCVmfI%StfE%4B0tu4XaPh%p*||<7zx>D2wIyOV_xp0NCn!MD9b!7Z zc&@nif@A|4VG&Bb=4Ma-v)T(A4Nsz=0>nTbP*KWiA&WId znh+yW-X~9y#dXFY19~%WQELA2*NdQ=p^jA%{9iuHWGQtuo~a$<_|3O^aWH(f@;p^? zEpd#%gF>9rKp)tHu^P05TWiO*-(9=c8zmqs(}&8&+&{Gl z0mTzzsSl(6tP-sp$A-^Cu*{p6N{8yj=u@k6v9dWUvTAqjo;B0_@GW=bP&n=dFYvh& z{*)wJng*8Nd6&$!;7`TztdIw#o0s2D+7Y83m>k101pJlG3zy(sgI*n@hT1naDBwOx zaDwhZT{gLt!{B>(C)k*-aB#q!+Kpa&(7|2hW8Io&b6a!pnLkCV^F z+tXkx-_Ysa9B0Zb5wDERR=8;r^9*bLH_$rvYm|FPj@P#8{BWSVOBve+PH5|92eb3T z?P2#pmxe7DYccEmlrov$GRtytRF67QpP>PXP4M&Pv|V6m$x;9Neke+pkR?w8B;ixu zpF2&xlNH7U-UM^v)T7(OQ(;d!7XvM!4AmUB&ug-=G_QXINZ(F$1UCM1!9QJiO+@(Q9?(W^7{Cb>eg?`?*85Y2qj1*3L!e= zQ>Vh5f$T?gd8@Rz$cKtlGc5k^-_f0$;ZzS(nKL3(XCM!y=MP^8Uc1f-@n%Nwbu7QH z=p7%)m-ncZQOXawb9#<@E6Rt9oRyv#vuM<=w4GiV;fz>MawDE=DiP9*;pUlsioZcEJ6RwLQvtOTU*<}^+NW*%%9gkSJ4==!SUJH zDvWlt@BDLi$hrQ{(^W9q19r2h3WTHfUfI`30g=*UQ-6M1W0OjQ5ZHTagp}Ql(JID< z2JdtHq~eI8!Co&0vT;M9l0&;%BxOQA>}}AGIwk{DF@~+iC9{l8z&IdhYv*Y-+%TX@ zW9Y`KeO2KDsYMrhAWUFl8IIZnOP2HWaN(<@=t%6*iu=ZW!TKgg6 zpZ#D&Ns82LI+^=xfehWKo~N4Z1($qU2hNMO^D~8*M{tJx*cbB#cr22mJrg4sj~$bv zE$uY_1%gi3t;J3xSHW&Ou=hacCLc~;h?N>Y!Jxz;(n800Z{&3MlJ>ZwU+O`qagH?L zCmw+k3xpjQ>^%}1j1gBGcY6*-_6#7L(o2qw|W0MiBXYWRErPdWabkBIjb zZK%!?gnRo&(-HqL74);26Ut>f_rD@aJVw#I@g+G#QS~mj`PLtf zdYu*`emb=F0&m^s;Uj+xq8C{)MECx3a;72lhhydS?ue{DL&i}`Jw2q`m+wMeE9*(I z7-IKTYc?}AfZ!xSSwt8=y7DexjnOG{tkai^!JLDjMxv+pp7~=u9!P`ULjLZU8CKDR zaMkP6WT3SqB!P<4%=ZkqvGm%gX=m2$z9sE~_gpEu-Ar~Szk(%q4E|RNKF_gNW@5EiWtz5^RHgUC|XZ$$2+qRk*?g7SOWiL zpshy2w!pY$#a(KRV(abw{ZF`>Pt!9#IuB;Q;!25`06}E&t9jh30#|5jXsZtn3;}9d zQXZDtjP%wx97j7Z8$PKOF?lJs7cG8V6%d+=NTx!Lc{{6r=qv7prX_Qdx6;egY)5TG ziPCHAQ%sY%lij*ddv0yKEDXaE%Z$#;Erd!rPc=290vc=-_=eFlrgxc>3)Qi0zWyT{ z9rbN5iWuMN?Qp6aD~aNQVp%4E9;FOUHz#&qMm$1V(aei$h!w;FDi6He_%PXs0l;z2 z8{|$p(W_FgRZ~{bXj?P{T|l+gfaCgB8JUhA+`9F~Q1HC=+3~!w9fQB)#ququcQoQ| zhCdVnJPS$udXWM-*E6xB*9mu9ADNAH7Z)~M{1vFQE4%FtBf+eT^CbVmsZm4>r<>PQU!z>xGI!nlfajCB*Cf1NSezWoU*tX&^?I zh<1|n*C5Od&~M)e!V_bOY|EcNbB@&rOSp9LpLe@U#v=1?_yv*t*{y7lW%AWf znx60KkXuW7Zcj2@5q{T7Cr_3Uoc()+(p@D|Tl}*97W;`W#2<(4yhNOf3?t)1`&_P2 zK}>{Gi6EtUc%1zeLcW>s;oKQB^`=6jp+MzUxY$gaeiLzEAy%fmW9q{_@A0dv$WtFGlBY{d#`wzuedmYttuRpjC+St6O8Lzo=YCkFFg3Zk@;I zF|j*E9i1+dggFyGx)=;JRW99Zwa0rR$uvnPEi_ZBcC;GM&$*=bnFH3I>YN4^);QYQ zd>!D~w3Wt*4y05m&EnRKH9r5Y-KAvUsXDHA<8~r{$ESNaS{+28i=f?Vq@{}_(i^6l zPya}*{pcRlMtvYYts5w-B30cOxpz*Jobn>)tGGF%&)u9E8U_Gp>%ga|nG;$Xx}*nW z$60AuF6@!T)?z2Kc;=+{9rd+(8ra4eXp3nCHvHE@`-r`nwNWmKxnT*jRp8)=)Gm(EEWK_B1ZwC4c%t`f zw!8-6P{?NdY`m1lcv*a&FfOt3Kf>8i)eBax6`KotwR5U z%H)0XNN5w_l}3oCL=jGe*@ZAaHA7E9MItMq@yC5~rfURSue`1u;$bWp8e+% z%#jLGKA}WSRGV>DXYwgj4hYG@KQ#vxB%U)AC9wf$i_Kenunc`G%a6U8D+S zjaJrW`2J@<0@D3v?aIv8qLW_(SNu8c=x)KxUR?cl+A|NwSec5aPMu1yeI!Mi0Ma8# zE2)ZP{2b3@N7a_Q;k@s}H#(qgqy8JoWC$0!w4hBb`%SZ&<~=5Ovk#BHUZ@2ar^`b- zA)o-@ob)9vKOhSX{E;8Q*i9^6fQJ{Vy1AOp%E&WqyrOzc-&NBy;{Gt!^4vSKLOn!Y z_?+wg@410xYda?}lq=#IX&I{8PM32vjMX3OrWsUVn~P4Y%vd3zVZb3>M2=vYu(w{| z456S_gZ4PH#x?%bPamQO9}*mVF^#*85DkFv)_M3F(VJUfs*C6DQXrdmsJ?PN?TwD~ z1|dw+QJ7KUyJ^eKmSi!INvl(YL_jIo6t*aT5)Gd#9OHfQi@*X2E9Gd{0)c%NUME?~ zHHhEO<|Le5D_28n0W2vhtxH@-r@7_Xz>I|=bg%NiZG`g*Ua^Cf2BcGe8yxNb{5HRcWA_B_J$5gkH(9P@%@rDsmGtS z^hO{G>Q(pO&H!0drsd}`_V?t2TLdT5yN@($h!Zz)0R;kn>qzDAFr~(;oTHl=A@vBR>2+=hr7{8W|dJi#s zYD32&Uz6IXQp=j+PiPL0*p=$K9Go$h`-#-L@8-#I>IZL1q|v1ZVbnp`ytn`zvX}T# zx2BUD7#74GePW06umt$eY3M96)>;tVAWNH2cX9kqG2JY%Cz`(_SlUR4iLK+D++|=V ztd(F>I0DG@V`XWDA6(njH}OT=m<$gXaU~g(y;^bnL4!h9(TxFzkPP%=-?cMml4V%; zo~<7*=_nhSlFc2=T-{vEjqTG1`M@y#voQT)#d zssUIDD0|{6As9DnaxXYm`lSJw5WqpqBqL6&%g@Zg!fI~H%3;jL!NP9N!pzKJZfwD0 z!Di0N&SGL}!6L}dVP;~^#c9gT%F51R%EfAI!eh$A!NFvP%E@djsQ Date: Thu, 16 May 2019 16:25:40 +0200 Subject: [PATCH 016/403] Added tests for large parts of the package. The tests are in the tests package and use unittest. All tests can be performed using: python3 -m unittest discover The tests covers the data package and most of the helper package. In the helper package only the formatting and a few methods of the component class lacks tests. The interface package is not covered yet. --- mcstasscript/data/data.py | 86 +- mcstasscript/helper/component_reader.py | 18 +- mcstasscript/helper/managed_mcrun.py | 34 +- mcstasscript/helper/mcstas_objects.py | 8 +- mcstasscript/interface/functions.py | 2 +- mcstasscript/interface/instr.py | 3 +- mcstasscript/tests/__init__.py | 0 .../dummy_mcstas/contrib/test_for_empty.txt | 0 .../dummy_mcstas/misc/test_for_ignore.com | 0 .../misc/test_for_ignore_weird.comp.backup | 0 .../dummy_mcstas/misc/test_for_reading.comp | 187 ++++ .../dummy_mcstas/misc/test_for_structure.comp | 0 .../sources/test_for_structure2.comp | 0 mcstasscript/tests/test_ComponentReader.py | 455 +++++++++ mcstasscript/tests/test_ManagedMcrun.py | 356 +++++++ mcstasscript/tests/test_McStasData.py | 147 +++ mcstasscript/tests/test_McStasMetaData.py | 130 +++ mcstasscript/tests/test_McStasPlotOptions.py | 66 ++ mcstasscript/tests/test_component.py | 349 +++++++ mcstasscript/tests/test_data_set/L_mon.dat | 178 ++++ mcstasscript/tests/test_data_set/PSD.dat | 633 ++++++++++++ mcstasscript/tests/test_data_set/PSD_4PI.dat | 933 ++++++++++++++++++ .../tests/test_data_set/jupyter_demo.instr | 92 ++ mcstasscript/tests/test_data_set/mccode.sim | 90 ++ mcstasscript/tests/test_declare_variable.py | 185 ++++ mcstasscript/tests/test_for_reading.comp | 186 ++++ mcstasscript/tests/test_parameter_variable.py | 181 ++++ 27 files changed, 4231 insertions(+), 88 deletions(-) create mode 100644 mcstasscript/tests/__init__.py create mode 100644 mcstasscript/tests/dummy_mcstas/contrib/test_for_empty.txt create mode 100644 mcstasscript/tests/dummy_mcstas/misc/test_for_ignore.com create mode 100644 mcstasscript/tests/dummy_mcstas/misc/test_for_ignore_weird.comp.backup create mode 100644 mcstasscript/tests/dummy_mcstas/misc/test_for_reading.comp create mode 100644 mcstasscript/tests/dummy_mcstas/misc/test_for_structure.comp create mode 100644 mcstasscript/tests/dummy_mcstas/sources/test_for_structure2.comp create mode 100644 mcstasscript/tests/test_ComponentReader.py create mode 100644 mcstasscript/tests/test_ManagedMcrun.py create mode 100644 mcstasscript/tests/test_McStasData.py create mode 100644 mcstasscript/tests/test_McStasMetaData.py create mode 100644 mcstasscript/tests/test_McStasPlotOptions.py create mode 100644 mcstasscript/tests/test_component.py create mode 100644 mcstasscript/tests/test_data_set/L_mon.dat create mode 100644 mcstasscript/tests/test_data_set/PSD.dat create mode 100644 mcstasscript/tests/test_data_set/PSD_4PI.dat create mode 100644 mcstasscript/tests/test_data_set/jupyter_demo.instr create mode 100644 mcstasscript/tests/test_data_set/mccode.sim create mode 100644 mcstasscript/tests/test_declare_variable.py create mode 100644 mcstasscript/tests/test_for_reading.comp create mode 100644 mcstasscript/tests/test_parameter_variable.py diff --git a/mcstasscript/data/data.py b/mcstasscript/data/data.py index 4b561ca6..9ec685eb 100644 --- a/mcstasscript/data/data.py +++ b/mcstasscript/data/data.py @@ -62,16 +62,20 @@ def extract_info(self): # Extract dimension if "type" in self.info: - type = self.info["type"] - if "array_1d" in type: - self.dimension = int(type[9:-2]) - if "array_2d" in type: + type_data = self.info["type"] + if "array_1d" in type_data: + type_data = type_data.split("(")[1] + type_data = type_data.split(")")[0] + self.dimension = int(type_data) + if "array_2d" in type_data: self.dimension = [] - type_strings = self.info["type"].split(",") - temp_str = type_strings[0] - self.dimension.append(int(temp_str[9:])) - temp_str = type_strings[1] - self.dimension.append(int(temp_str[1:-2])) + type_string1 = type_data.split(",")[0] + type_string1 = type_string1.split("(")[1] + self.dimension.append(int(type_string1)) + + type_string2 = type_data.split(",")[1] + type_string2 = type_string2.split(")")[0] + self.dimension.append(int(type_string2)) else: raise NameError("No type in mccode data section!") @@ -261,7 +265,7 @@ def __init__(self, metadata, intensity, error, ncount, **kwargs): else: raise NameError( "ERROR: Initialization of McStasData done with 1d " - + "data, but without xaxis" + self.name + "!") + + "data, but without xaxis for " + self.name + "!") self.plot_options = McStasPlotOptions() @@ -277,65 +281,3 @@ def set_title(self, string): def set_plot_options(self, **kwargs): self.plot_options.set_options(**kwargs) - -def name_search(name, data_list): - """" - name_search returns McStasData instance with specific name if it is - in the given data_list - - The index of certain datasets in the data_list can change if - additional monitors are added so it is more convinient to access - the data files using their names. - - Parameters - ---------- - name : string - Name of the dataset to be retrived (component_name) - - data_list : List of McStasData instances - List of datasets to search - """ - - if not type(data_list[0]) == McStasData: - raise InputError( - "name_search function needs objects of type " - + "McStasData as input.") - - list_result = [] - for check in data_list: - if check.metadata.component_name == name: - list_result.append(check) - - if len(list_result) == 1: - return list_result[0] - else: - raise NameError("More than one match for the name search") - -def name_plot_options(name, data_list, **kwargs): - """" - name_plot_options passes keyword arguments to dataset with certain - name in given data list - - Function for quickly setting plotting options on a certain dataset - n a larger list of datasets - - Parameters - ---------- - name : string - Name of the dataset to be modified (component_name) - - data_list : List of McStasData instances - List of datasets to search - - kwargs : keyword arguments - Keyword arguments passed to set_plot_options in - McStasPlotOptions - """ - - if not isinstance(data_list[0], McStasData): - raise InputError( - "name_search function needs objects of type McStasData " - + "as input.") - - object_to_modify = name_search(name, data_list) - object_to_modify.set_plot_options(**kwargs) \ No newline at end of file diff --git a/mcstasscript/helper/component_reader.py b/mcstasscript/helper/component_reader.py index 968d8444..1f233f6c 100644 --- a/mcstasscript/helper/component_reader.py +++ b/mcstasscript/helper/component_reader.py @@ -170,7 +170,13 @@ def read_name(self, component_name): + " in McStas installation or " + "current work directory.") - return self.read_component_file(self.component_path[component_name]) + output = self.read_component_file(self.component_path[component_name]) + + # Category loaded using path, in case of Work directory it fails + if self.component_category[component_name] == "Work directory": + output.category = "Work directory" # Corrects category + + return output def _find_components(self, absolute_path): """ @@ -316,6 +322,16 @@ def read_component_file(self, absolute_path): name_value = part.split("=") par_name = name_value[0].strip() par_value = name_value[1].strip() + + if temp_par_type is "double": + try: + par_value = float(par_value) + except: + par_value = par_value + # Could change the type + elif temp_par_type is "int": + par_value = int(par_value) + result.parameter_names.append(par_name) result.parameter_defaults[par_name] = par_value result.parameter_types[par_name] = temp_par_type diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index a5cdf435..9ff5f177 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -2,6 +2,7 @@ import numpy as np from mcstasscript.data.data import McStasMetaData from mcstasscript.data.data import McStasData +from docutils.io import InputError class ManagedMcrun: """ @@ -68,13 +69,14 @@ def __init__(self, instr_name, **kwargs): self.name_of_instrumentfile = instr_name self.data_folder_name = "" - self.ncount = 1E6 + self.ncount = int(1E6) self.mpi = 1 self.parameters = {} self.custom_flags = "" self.mcrun_path = "" # mcrun_path always in kwargs - self.mcrun_path = kwargs["mcrun_path"] + if "mcrun_path" in kwargs: + self.mcrun_path = kwargs["mcrun_path"] if "foldername" in kwargs: self.data_folder_name = kwargs["foldername"] @@ -84,7 +86,7 @@ def __init__(self, instr_name, **kwargs): + "with keyword argument.") if "ncount" in kwargs: - self.ncount = kwargs["ncount"] + self.ncount = int(kwargs["ncount"]) if "mpi" in kwargs: self.mpi = kwargs["mpi"] @@ -129,23 +131,37 @@ def run_simulation(self): os.system(mcrun_full_path + " " + option_string + " " + self.custom_flags + " " - + self.name_of_instrumentfile + " " + + self.name_of_instrumentfile + parameter_string) """ Can use subprocess from spawn* instead of os.system if more control is needed over the spawned process, including a timeout """ - + + #return self.load_results(self.data_folder_name) + + def load_results(self, *args): + + if len(args) == 0: + data_folder_name = self.data_folder_name + elif len(args) == 1: + data_folder_name = args[0] + else: + raise InputError("load_results can be caled with 0 or 1 arguments") + + if not os.path.isdir(data_folder_name): + raise NameError("Given data directory does not exist.") + # Find all data files in generated folder - files_in_folder = os.listdir(self.data_folder_name) + files_in_folder = os.listdir(data_folder_name) # Raise an error if mccode.sim is not available if "mccode.sim" not in files_in_folder: - raise NameError("mccode.sim not written to output folder.") + raise NameError("No mccode.sim in data folder.") # Open mccode to read metadata for all datasets written to disk - f = open(self.data_folder_name + "/mccode.sim", "r") + f = open(data_folder_name + "/mccode.sim", "r") # Loop that reads mccode.sim sections metadata_list = [] @@ -184,7 +200,7 @@ def run_simulation(self): # Load datasets described in metadata list individually for metadata in metadata_list: # Load data with numpy - data = np.loadtxt(self.data_folder_name + data = np.loadtxt(data_folder_name + "/" + metadata.filename.rstrip()) diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index cef75cc0..53db6645 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -364,7 +364,7 @@ def __init__(self, instance_name, component_name, **kwargs): self.ROTATED_data = [0, 0, 0] # Could check if ROTATED_RELATIVE is a string if "ROTATED_RELATIVE" in kwargs: - self.ROTATED_relative = kwargs["ROTATED_RELATIVE"] + self.ROTATED_relative = "RELATIVE " + kwargs["ROTATED_RELATIVE"] else: self.ROTATED_relative = "ABSOLUTE" @@ -384,7 +384,7 @@ def __init__(self, instance_name, component_name, **kwargs): self.EXTEND = "" if "GROUP" in kwargs: - self.GROUP = kwargs["GRPUP"] + self.GROUP = kwargs["GROUP"] else: self.GROUP = "" @@ -476,7 +476,7 @@ def set_parameters(self, dict_input): def set_WHEN(self, string): """Sets WHEN string, should be a c logical expression""" - self.WHEN = string + self.WHEN = "WHEN (" + string + ")\n" def set_GROUP(self, string): """Sets GROUP name""" @@ -551,7 +551,7 @@ def write_component(self, fo): # Optional WHEN section if not self.WHEN == "": - fo.write("WHEN(%s)\n" % self.WHEN) + fo.write("%s" % self.WHEN) # Write AT and ROTATED section fo.write("AT (%s,%s,%s)" % (str(self.AT_data[0]), diff --git a/mcstasscript/interface/functions.py b/mcstasscript/interface/functions.py index a6ca195d..c7e757aa 100644 --- a/mcstasscript/interface/functions.py +++ b/mcstasscript/interface/functions.py @@ -60,4 +60,4 @@ def name_plot_options(name, data_list, **kwargs): + "as input.") object_to_modify = name_search(name, data_list) - object_to_modify.set_plot_options(**kwargs) \ No newline at end of file + object_to_modify.set_plot_options(**kwargs) diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index f43104d6..690f7e19 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -975,6 +975,7 @@ def run_full_instrument(self, *args, **kwargs): simulation = ManagedMcrun(self.name + ".instr", **kwargs) # Run the simulation and return data - return simulation.run_simulation() + simulation.run_simulation() + return simulation.load_results() diff --git a/mcstasscript/tests/__init__.py b/mcstasscript/tests/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/mcstasscript/tests/dummy_mcstas/contrib/test_for_empty.txt b/mcstasscript/tests/dummy_mcstas/contrib/test_for_empty.txt new file mode 100644 index 00000000..e69de29b diff --git a/mcstasscript/tests/dummy_mcstas/misc/test_for_ignore.com b/mcstasscript/tests/dummy_mcstas/misc/test_for_ignore.com new file mode 100644 index 00000000..e69de29b diff --git a/mcstasscript/tests/dummy_mcstas/misc/test_for_ignore_weird.comp.backup b/mcstasscript/tests/dummy_mcstas/misc/test_for_ignore_weird.comp.backup new file mode 100644 index 00000000..e69de29b diff --git a/mcstasscript/tests/dummy_mcstas/misc/test_for_reading.comp b/mcstasscript/tests/dummy_mcstas/misc/test_for_reading.comp new file mode 100644 index 00000000..e9dd6c7a --- /dev/null +++ b/mcstasscript/tests/dummy_mcstas/misc/test_for_reading.comp @@ -0,0 +1,187 @@ +/******************************************************************************* +* +* McStas, neutron ray-tracing package +* Copyright 1997-2002, All rights reserved +* Risoe National Laboratory, Roskilde, Denmark +* Institut Laue Langevin, Grenoble, France +* +* Component: Source_simple +* +* %I +* Written by: Kim Lefmann +* Date: October 30, 1997 +* Modified by: KL, October 4, 2001 +* Modified by: Emmanuel Farhi, October 30, 2001. Serious bug corrected. +* Origin: Risoe +* +* A circular neutron source with flat energy spectrum and arbitrary flux +* +* %D +* The routine is a circular neutron source, which aims at a square target +* centered at the beam (in order to improve MC-acceptance rate). The angular +* divergence is then given by the dimensions of the target. +* The neutron energy is uniformly distributed between lambda0-dlambda and +* lambda0+dlambda or between E0-dE and E0+dE. +* The flux unit is specified in n/cm2/s/st/energy unit (meV or Angs). +* +* This component replaces Source_flat, Source_flat_lambda, +* Source_flux and Source_flux_lambda. +* +* Example: Source_simple(radius=0.1, dist=2, focus_xw=.1, focus_yh=.1, E0=14, dE=2) +* +* %P +* radius: [m] Radius of circle in (x,y,0) plane where neutrons are generated. +* yheight: [m] Height of rectangle in (x,y,0) plane where neutrons are generated. +* xwidth: [m] Width of rectangle in (x,y,0) plane where neutrons are generated. +* target_index: [1] relative index of component to focus at, e.g. next is +1 this is used to compute 'dist' automatically. +* dist: [m] Distance to target along z axis. +* focus_xw: [m] Width of target +* focus_yh: [m] Height of target +* E0: [meV] Mean energy of neutrons. +* dE: [meV] Energy half spread of neutrons (flat or gaussian sigma). +* lambda0: [AA] Mean wavelength of neutrons. +* dlambda: [AA] Wavelength half spread of neutrons. +* flux: [1/(s*cm**2*st*energy unit)] flux per energy unit, Angs or meV if flux=0, the source emits 1 in 4*PI whole space. +* gauss: [1] Gaussian (1) or Flat (0) energy/wavelength distribution +* +* %E +*******************************************************************************/ + +DEFINE COMPONENT Source_simple +DEFINITION PARAMETERS () +SETTING PARAMETERS (radius=0.1, yheight=0, xwidth=0, +dist=0, focus_xw=.045, focus_yh=.12, +E0=0, dE=0, lambda0=0, dlambda=0, +flux=1, gauss=0, int target_index=+1) +OUTPUT PARAMETERS (pmul,square,srcArea) +/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */ +DECLARE +%{ +double pmul, srcArea; +int square; +double tx,ty,tz; +%} +INITIALIZE +%{ +square = 0; +/* Determine source area */ +if (radius && !yheight && !xwidth ) { + square = 0; + srcArea = PI*radius*radius; + } else if(yheight && xwidth) { + square = 1; + srcArea = xwidth * yheight; + } + + if (flux) { + pmul=flux*1e4*srcArea/mcget_ncount(); + if (dlambda) + pmul *= 2*dlambda; + else if (dE) + pmul *= 2*dE; + } else { + gauss = 0; + pmul=1.0/(mcget_ncount()*4*PI); + } + + if (target_index && !dist) + { + Coords ToTarget; + ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP); + ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget); + coords_get(ToTarget, &tx, &ty, &tz); + dist=sqrt(tx*tx+ty*ty+tz*tz); + } else if (dist) { + tx = 0; + ty = 0; + tz = dist; + } + + + if (srcArea <= 0) { + printf("Source_simple: %s: Source area is <= 0 !\n ERROR - Exiting\n", + NAME_CURRENT_COMP); + exit(0); + } + if (dist <= 0 || focus_xw <= 0 || focus_yh <= 0) { + printf("Source_simple: %s: Target area unmeaningful! (negative dist / focus_xw / focus_yh)\n ERROR - Exiting\n", + NAME_CURRENT_COMP); + exit(0); + } + + if ((!lambda0 && !E0 && !dE && !dlambda)) { + printf("Source_simple: %s: You must specify either a wavelength or energy range!\n ERROR - Exiting\n", + NAME_CURRENT_COMP); + exit(0); + } + if ((!lambda0 && !dlambda && (E0 <= 0 || dE < 0 || E0-dE <= 0)) + || (!E0 && !dE && (lambda0 <= 0 || dlambda < 0 || lambda0-dlambda <= 0))) { + printf("Source_simple: %s: Unmeaningful definition of wavelength or energy range!\n ERROR - Exiting\n", + NAME_CURRENT_COMP); + exit(0); + } +%} +TRACE +%{ + double chi,E,lambda,v,r, xf, yf, rf, dx, dy, pdir; + + t=0; + z=0; + + if (square == 1) { + x = xwidth * (rand01() - 0.5); + y = yheight * (rand01() - 0.5); + } else { + chi=2*PI*rand01(); /* Choose point on source */ + r=sqrt(rand01())*radius; /* with uniform distribution. */ + x=r*cos(chi); + y=r*sin(chi); + } + randvec_target_rect_real(&xf, &yf, &rf, &pdir, + tx, ty, tz, focus_xw, focus_yh, ROT_A_CURRENT_COMP, x, y, z, 2); + + dx = xf-x; + dy = yf-y; + rf = sqrt(dx*dx+dy*dy+rf*rf); + + p = pdir*pmul; + + if(lambda0==0) { + if (!gauss) { + E=E0+dE*randpm1(); /* Choose from uniform distribution */ + } else { + E=E0+randnorm()*dE; + } + v=sqrt(E)*SE2V; + } else { + if (!gauss) { + lambda=lambda0+dlambda*randpm1(); + } else { + lambda=lambda0+randnorm()*dlambda; + } + v = K2V*(2*PI/lambda); + } + + vz=v*dist/rf; + vy=v*dy/rf; + vx=v*dx/rf; +%} + +MCDISPLAY +%{ + if (square == 1) { + + rectangle("xy",0,0,0,xwidth,yheight); + } else { + + circle("xy",0,0,0,radius); + } + if (dist) { + dashed_line(0,0,0, -focus_xw/2+tx,-focus_yh/2+ty,tz, 4); + dashed_line(0,0,0, focus_xw/2+tx,-focus_yh/2+ty,tz, 4); + dashed_line(0,0,0, focus_xw/2+tx, focus_yh/2+ty,tz, 4); + dashed_line(0,0,0, -focus_xw/2+tx, focus_yh/2+ty,tz, 4); + } +%} + +END diff --git a/mcstasscript/tests/dummy_mcstas/misc/test_for_structure.comp b/mcstasscript/tests/dummy_mcstas/misc/test_for_structure.comp new file mode 100644 index 00000000..e69de29b diff --git a/mcstasscript/tests/dummy_mcstas/sources/test_for_structure2.comp b/mcstasscript/tests/dummy_mcstas/sources/test_for_structure2.comp new file mode 100644 index 00000000..e69de29b diff --git a/mcstasscript/tests/test_ComponentReader.py b/mcstasscript/tests/test_ComponentReader.py new file mode 100644 index 00000000..b53f1b1f --- /dev/null +++ b/mcstasscript/tests/test_ComponentReader.py @@ -0,0 +1,455 @@ +import os +import io +import unittest +import unittest.mock + +from mcstasscript.helper.component_reader import ComponentInfo +from mcstasscript.helper.component_reader import ComponentReader + +def setup_component_reader(): + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + dummy_path = THIS_DIR + "/dummy_mcstas" + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + component_reader = ComponentReader(mcstas_path = dummy_path) + + os.chdir(current_work_dir) # Reset work directory + + return component_reader + +class TestComponentReader(unittest.TestCase): + """ + Testing the ComponenReader class. As this class reads information + from McStas, a dummy McStas install is made in the test folder to + avoid the test results changeing with updates of McStas. + """ + + + @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + def test_ComponentReader_init_overwrite_message(self, mock_stdout): + """ + Test that ComponentReader reports overwritten components + """ + + component_reader = setup_component_reader() + + message = ("Overwriting McStasScript info on component named " + + "test_for_reading.comp because the component is in " + + "the work directory.\n") + + self.assertEqual(mock_stdout.getvalue(), message) + + @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + def test_ComponentReader_init_filenames(self, mock_stdout): + """ + Test that ComponentReader initializes component names correctly + """ + + component_reader = setup_component_reader() + + n_components_found = len(component_reader.component_path) + self.assertEqual(n_components_found, 3) + self.assertIn("test_for_reading", component_reader.component_path) + self.assertIn("test_for_structure", component_reader.component_path) + self.assertIn("test_for_structure2", component_reader.component_path) + + @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + def test_ComponentReader_init_categories(self, mock_stdout): + """ + Test that ComponentReader initializes categories correctly + """ + + component_reader = setup_component_reader() + + n_categories_found = len(component_reader.component_category) + self.assertEqual(n_categories_found, 3) + """ + Categories stored in a dict, so n_categories is the same as the + number of components read. Here it happens to be the number of + categories as well because of the dummy installation. + """ + category = component_reader.component_category["test_for_reading"] + self.assertEqual(category, "Work directory") + category = component_reader.component_category["test_for_structure"] + self.assertEqual(category, "misc") + category = component_reader.component_category["test_for_structure2"] + self.assertEqual(category, "sources") + + @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + def test_ComponentReader_show_categories(self, mock_stdout): + """ + This method prints to console, check it prints the categories + in the dummy installation correctly. + + """ + component_reader = setup_component_reader() + + component_reader.show_categories() + + output = mock_stdout.getvalue() + output = output.split("\n") + + self.assertEqual(len(output), 5) + self.assertIn(" sources", output) + self.assertIn(" Work directory", output) + self.assertIn(" misc", output) + + @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + def test_ComponentReader_show_categories_ordered(self, mock_stdout): + """ + Check that the print to console is ordered as usual. This test + may be implementation dependent as python dictionaries are not + ordered. + + """ + + component_reader = setup_component_reader() + + component_reader.show_categories() + + output = mock_stdout.getvalue() + output = output.split("\n") + + self.assertEqual(output[1], " sources") + self.assertEqual(output[2], " Work directory") + self.assertEqual(output[3], " misc") + + @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + def test_ComponentReader_show_components_short(self, mock_stdout): + """ + Here we attempt to show components in the misc category. In + the dummy install, there are two components in this folder, but + one of these is overwritten by the version in the current + work directory. + + """ + + component_reader = setup_component_reader() + + component_reader.show_components_in_category("misc") + + output = mock_stdout.getvalue() + output = output.split("\n") + + self.assertEqual(len(output), 3) + self.assertIn(" test_for_structure", output) + # Check overwritten component is not in the output + self.assertNotIn(" test_for_reading", output) + + """ + # This test not as important, but could be finished later + @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + def test_ComponentReader_show_components_long(self, mock_stdout): + + component_reader = setup_component_reader() + + # Add elements directly to component_readers library + # generate list + # add list + + #component_reader.component_category[] + + component_reader.show_components_in_category("misc") + + output = mock_stdout.getvalue() + output = output.split("\n") + + self.assertEqual(len(output), 3) + self.assertIn(" test_for_structure", output) + """ + + # test load_all_components + @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + def test_ComponentReader_load_all_components(self, mock_stdout): + """ + Load all components in the dummy install, but only one has any + content. The method is currently not necessary, as components + are now loaded individually when needed. + + """ + + component_reader = setup_component_reader() + + CompInfo_dict = component_reader.load_all_components() + + comp_name = "test_for_reading" + name = CompInfo_dict[comp_name].name + self.assertEqual(name, comp_name) + + parameter_names = CompInfo_dict[comp_name].parameter_names + self.assertIn("target_index", parameter_names) + parameter_types = CompInfo_dict[comp_name].parameter_types + self.assertIn("target_index", parameter_types) + parameter_defaults = CompInfo_dict[comp_name].parameter_defaults + self.assertIn("target_index", parameter_defaults) + + type_str = CompInfo_dict[comp_name].parameter_types["target_index"] + self.assertEqual(type_str, "int") + + comp_name = "test_for_structure" + name = CompInfo_dict[comp_name].name + self.assertEqual(name, comp_name) + # test_for_structure is an empty file, so no conentet to check + + comp_name = "test_for_structure2" + name = CompInfo_dict[comp_name].name + self.assertEqual(name, comp_name) + # test_for_structure2 is an empty file, so no conentet to check + + @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + def test_ComponentReader_read_name_error(self, mock_stdout): + """ + read_name should throw an error when searching for a component + that is not present in the installation. + """ + + component_reader = setup_component_reader() + + with self.assertRaises(NameError): + CompInfo = component_reader.read_name("no_such_comp") + + @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + def test_ComponentReader_read_name_success(self, mock_stdout): + """ + Read component simply calls read_component_file, but here + the output is checked against what is in the dummy file. + + """ + + component_reader = setup_component_reader() + + CompInfo = component_reader.read_name("test_for_reading") + + self.assertEqual(CompInfo.name, "test_for_reading") + self.assertEqual(CompInfo.category, "Work directory") + self.assertIn("dist", CompInfo.parameter_names) + self.assertIn("dist", CompInfo.parameter_defaults) + self.assertIn("dist", CompInfo.parameter_types) + self.assertEqual(CompInfo.parameter_types["dist"], "double") + self.assertIn("dist", CompInfo.parameter_comments) + self.assertIn("dist", CompInfo.parameter_units) + self.assertEqual(CompInfo.parameter_units["dist"], "m") + + @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + def test_ComponentReader_find_components_names(self, mock_stdout): + """ + Test that ComponentReader initializes component names correctly + """ + + component_reader = setup_component_reader() + + component_reader.component_path = {} + component_reader.component_category = {} + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + dummy_path = THIS_DIR + "/dummy_mcstas/misc" + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + component_reader._find_components(dummy_path) + os.chdir(current_work_dir) # Return to original work directory + + n_components_found = len(component_reader.component_path) + self.assertEqual(n_components_found, 2) + self.assertIn("test_for_reading", component_reader.component_path) + self.assertIn("test_for_structure", component_reader.component_path) + + @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + def test_ComponentReader_find_components_categories(self, mock_stdout): + """ + Test that ComponentReader initializes component categories correctly + """ + + component_reader = setup_component_reader() + + component_reader.component_path = {} + component_reader.component_category = {} + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + dummy_path = THIS_DIR + "/dummy_mcstas/misc" + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + component_reader._find_components(dummy_path) + os.chdir(current_work_dir) # Return to original work directory + + n_categories_found = len(component_reader.component_category) + self.assertEqual(n_categories_found, 2) + + category = component_reader.component_category["test_for_reading"] + self.assertEqual(category, "misc") + category = component_reader.component_category["test_for_structure"] + self.assertEqual(category, "misc") + + @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + def test_ComponentReader_read_component_category(self, mock_stdout): + """ + Check that the correct category is returned. + + Can't run this test with overwritten component test_for_reading. + read_component will report tests as category, but this is + overwritten by read_name in normal use. + """ + component_reader = setup_component_reader() + + path_for_test = component_reader.component_path["test_for_structure"] + CompInfo = component_reader.read_component_file(path_for_test) + + exp_cat = component_reader.component_category["test_for_structure"] + self.assertEqual(CompInfo.category, exp_cat) + + @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + def test_ComponentReader_read_component_standard(self, mock_stdout): + """ + Test that a normal parameter is read correctly when reading a + component file. + Has default, is double type, has comment, has unit + """ + + component_reader = setup_component_reader() + + path_for_test = component_reader.component_path["test_for_reading"] + CompInfo = component_reader.read_component_file(path_for_test) + + self.assertIn("xwidth", CompInfo.parameter_names) + + self.assertIn("xwidth", CompInfo.parameter_defaults) + self.assertEqual(CompInfo.parameter_defaults["xwidth"], 0.0) + + self.assertIn("xwidth", CompInfo.parameter_types) + self.assertEqual(CompInfo.parameter_types["xwidth"],"double") + + self.assertIn("xwidth", CompInfo.parameter_comments) + comment = "Width of rectangle test comment" + self.assertEqual(CompInfo.parameter_comments["xwidth"],comment) + + self.assertIn("xwidth", CompInfo.parameter_units) + self.assertEqual(CompInfo.parameter_units["xwidth"],"m") + + @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + def test_ComponentReader_read_component_required(self, mock_stdout): + """ + Test that a required parameter is read correctly when reading a + component file. + Has no default, is double type, has no comment, has no unit + """ + + component_reader = setup_component_reader() + + path_for_test = component_reader.component_path["test_for_reading"] + CompInfo = component_reader.read_component_file(path_for_test) + + self.assertIn("gauss", CompInfo.parameter_names) + + self.assertIn("gauss", CompInfo.parameter_defaults) + self.assertIsNone(CompInfo.parameter_defaults["gauss"]) + + self.assertIn("gauss", CompInfo.parameter_types) + self.assertEqual(CompInfo.parameter_types["gauss"],"double") + + self.assertNotIn("gauss", CompInfo.parameter_comments) + + self.assertNotIn("gauss", CompInfo.parameter_units) + + @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + def test_ComponentReader_read_component_int(self, mock_stdout): + """ + Test that a integer parameter is read correctly when reading a + component file. + Has default, is int type (comments and unit checked already) + """ + + component_reader = setup_component_reader() + + path_for_test = component_reader.component_path["test_for_reading"] + CompInfo = component_reader.read_component_file(path_for_test) + + self.assertIn("flux", CompInfo.parameter_names) + + self.assertIn("flux", CompInfo.parameter_defaults) + self.assertEqual(CompInfo.parameter_defaults["flux"], 1) + + self.assertIn("flux", CompInfo.parameter_types) + self.assertEqual(CompInfo.parameter_types["flux"],"int") + + self.assertIn("flux", CompInfo.parameter_comments) + # Have already tested comments are read + + self.assertIn("flux", CompInfo.parameter_units) + # Have already tested units are read + + @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + def test_ComponentReader_read_component_string(self, mock_stdout): + """ + Test that a string parameter is read correctly when reading a + component file. + Has no default, is string type (comments and unit checked already) + """ + + component_reader = setup_component_reader() + + path_for_test = component_reader.component_path["test_for_reading"] + CompInfo = component_reader.read_component_file(path_for_test) + + self.assertIn("test_string", CompInfo.parameter_names) + + self.assertIn("test_string", CompInfo.parameter_defaults) + self.assertIsNone(CompInfo.parameter_defaults["test_string"]) + + self.assertIn("test_string", CompInfo.parameter_types) + self.assertEqual(CompInfo.parameter_types["test_string"],"string") + + self.assertNotIn("test_string", CompInfo.parameter_comments) + # Have already tested comments are read + + self.assertNotIn("test_string", CompInfo.parameter_units) + # Have already tested units are read + + @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + def test_ComponentReader_line_start_long(self, mock_stdout): + """ + Helper function that should return true when certain string is + the start of another string. + + """ + + component_reader = setup_component_reader() + + test_string = "monkey wants banana" + + return_val = component_reader.line_starts_with(test_string,"mo") + self.assertIsInstance(return_val, bool) + self.assertTrue(return_val) + + return_val = component_reader.line_starts_with(test_string,"on") + self.assertIsInstance(return_val, bool) + self.assertFalse(return_val) + + @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + def test_ComponentReader_line_start_short(self, mock_stdout): + """ + Helper function that should return true when certain string is + the start of another string. Here checked with short test_string + + + """ + + component_reader = setup_component_reader() + + test_string = "m" + + return_val = component_reader.line_starts_with(test_string,"m") + self.assertIsInstance(return_val, bool) + self.assertTrue(return_val) + + return_val = component_reader.line_starts_with(test_string,"mo") + self.assertIsInstance(return_val, bool) + self.assertFalse(return_val) + + return_val = component_reader.line_starts_with(test_string,"on") + self.assertIsInstance(return_val, bool) + self.assertFalse(return_val) + + +if __name__ == '__main__': + unittest.main() diff --git a/mcstasscript/tests/test_ManagedMcrun.py b/mcstasscript/tests/test_ManagedMcrun.py new file mode 100644 index 00000000..82c57392 --- /dev/null +++ b/mcstasscript/tests/test_ManagedMcrun.py @@ -0,0 +1,356 @@ +import os +import io +import unittest +import numpy as np + +from mcstasscript.data.data import McStasMetaData +from mcstasscript.data.data import McStasData +from mcstasscript.helper.managed_mcrun import ManagedMcrun + +class TestManagedMcrun(unittest.TestCase): + """ + Testing the ManagedMcrun class that sets up McStas runs, runs the + simulation and loads the data. + + Here the simulation is not actually performed, this will be done in + integration tests. The surrounding plumbing and data loading is + tested. + """ + + def test_ManagedMcrun_init_simple(self): + """ + Check shortest possible initialization works + """ + mcrun_obj = ManagedMcrun("test.instr", + foldername = "test_folder", + mcrun_path = "test_path") + + self.assertEqual(mcrun_obj.name_of_instrumentfile, "test.instr") + self.assertEqual(mcrun_obj.data_folder_name, "test_folder") + self.assertEqual(mcrun_obj.mcrun_path, "test_path") + + def test_ManagedMcrun_init_defaults(self): + """ + Check default values are set up correctly + """ + mcrun_obj = ManagedMcrun("test.instr", + foldername = "test_folder", + mcrun_path = "") + + self.assertEqual(mcrun_obj.mpi, 1) + self.assertEqual(mcrun_obj.ncount, 1000000) + + def test_ManagedMcrun_init_set_values(self): + """ + Check default values are set up correctly + """ + mcrun_obj = ManagedMcrun("test.instr", + foldername = "test_folder", + mcrun_path = "", + mpi = 4, + ncount = 128) + + self.assertEqual(mcrun_obj.mpi, 4) + self.assertEqual(mcrun_obj.ncount, 128) + + def test_ManagedMcrun_init_set_parameters(self): + """ + Check default values are set up correctly + """ + + par_input = {"A_par" : 5.1, + "int_par" : 1, + "define_par" : "Bike", + "string_par" : "\"Car\""} + + mcrun_obj = ManagedMcrun("test.instr", + foldername = "test_folder", + mcrun_path = "", + parameters = par_input) + + self.assertEqual(mcrun_obj.parameters["A_par"], 5.1) + self.assertEqual(mcrun_obj.parameters["int_par"], 1) + self.assertEqual(mcrun_obj.parameters["define_par"], "Bike") + self.assertEqual(mcrun_obj.parameters["string_par"], "\"Car\"") + + def test_ManagedMcrun_init_set_custom_flags(self): + """ + Check default values are set up correctly + """ + + custom_flag_input = "-p" + + mcrun_obj = ManagedMcrun("test.instr", + foldername = "test_folder", + mcrun_path = "", + custom_flags = custom_flag_input) + + self.assertEqual(mcrun_obj.custom_flags, custom_flag_input) + + def test_ManagedMcrun_init_no_folder_error(self): + """ + An error should occur if no filename is given + """ + with self.assertRaises(NameError): + mcrun_obj = ManagedMcrun("test.instr", mcrun_path = "") + + @unittest.mock.patch("os.system") + def test_ManagedMcrun_run_simulation_basic(self, os_system): + """ + Check a basic system call is correct + """ + + mcrun_obj = ManagedMcrun("test.instr", + foldername = "test_folder", + mcrun_path = "path") + + mcrun_obj.run_simulation() + + # a double space because of a missing option + expected_call = ("path/mcrun -c -n 1000000 --mpi=1 " + + "-d test_folder test.instr") + + os_system.assert_called_once_with(expected_call) + + @unittest.mock.patch("os.system") + def test_ManagedMcrun_run_simulation_basic_path(self, os_system): + """ + Check a basic system call is correct, with different path format + """ + + mcrun_obj = ManagedMcrun("test.instr", + foldername = "test_folder", + mcrun_path = "path/") + + mcrun_obj.run_simulation() + + # a double space because of a missing option + expected_call = ("path/mcrun -c -n 1000000 --mpi=1 " + + "-d test_folder test.instr") + + os_system.assert_called_once_with(expected_call) + + @unittest.mock.patch("os.system") + def test_ManagedMcrun_run_simulation_no_standard(self, os_system): + """ + Check a non standard system call is correct + """ + + mcrun_obj = ManagedMcrun("test.instr", + foldername = "test_folder", + mcrun_path = "path", + mpi = 7, + ncount = 48.4, + custom_flags = "-fo") + + mcrun_obj.run_simulation() + + # a double space because of a missing option + expected_call = ("path/mcrun -c -n 48 --mpi=7 " + + "-d test_folder -fo test.instr") + + os_system.assert_called_once_with(expected_call) + + @unittest.mock.patch("os.system") + def test_ManagedMcrun_run_simulation_parameters(self, os_system): + """ + Check a run with parameters is correct + """ + + mcrun_obj = ManagedMcrun("test.instr", + foldername = "test_folder", + mcrun_path = "path", + mpi = 7, + ncount = 48.4, + custom_flags = "-fo", + parameters = {"A" : 2, + "BC" : "car", + "th" : "\"toy\""}) + + mcrun_obj.run_simulation() + + # a double space because of a missing option + expected_call = ("path/mcrun -c -n 48 --mpi=7 " + + "-d test_folder -fo test.instr " + + "A=2 BC=car th=\"toy\"") + + os_system.assert_called_once_with(expected_call) + + def test_ManagedMcrun_load_data_PSD4PI(self): + """ + Use test_data_set to test load_data for PSD_4PI + """ + + mcrun_obj = ManagedMcrun("test.instr", + foldername = "test_data_set", + mcrun_path = "path") + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + results = mcrun_obj.load_results() + + os.chdir(current_work_dir) # Reset work directory + + + self.assertEqual(len(results), 3) + + PSD_4PI = results[0] + + self.assertEqual(PSD_4PI.name, "PSD_4PI") + self.assertEqual(PSD_4PI.metadata.dimension, [300, 300]) + self.assertEqual(PSD_4PI.metadata.limits, [-180, 180, -90, 90]) + self.assertEqual(PSD_4PI.metadata.xlabel, "Longitude [deg]") + self.assertEqual(PSD_4PI.metadata.ylabel, "Lattitude [deg]") + self.assertEqual(PSD_4PI.metadata.title, "4PI PSD monitor") + self.assertEqual(PSD_4PI.Ncount[1][4], 4) + self.assertEqual(PSD_4PI.Intensity[1][4], 1.537334562E-10) + self.assertEqual(PSD_4PI.Error[1][4], 1.139482296E-10) + + def test_ManagedMcrun_load_data_PSD(self): + """ + Use test_data_set to test load_data for PSD + """ + + mcrun_obj = ManagedMcrun("test.instr", + foldername = "test_data_set", + mcrun_path = "path") + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + results = mcrun_obj.load_results() + + os.chdir(current_work_dir) # Reset work directory + + # Check other properties + + PSD = results[1] + + self.assertEqual(PSD.name, "PSD") + self.assertEqual(PSD.metadata.dimension, [200, 200]) + self.assertEqual(PSD.metadata.limits, [-5, 5, -5, 5]) + self.assertEqual(PSD.metadata.xlabel, "X position [cm]") + self.assertEqual(PSD.metadata.ylabel, "Y position [cm]") + self.assertEqual(PSD.metadata.title, "PSD monitor") + self.assertEqual(PSD.Ncount[21][27], 9) + self.assertEqual(PSD.Intensity[21][27], 2.623929371e-13) + self.assertEqual(PSD.Error[21][27], 2.765467693e-13) + + def test_ManagedMcrun_load_data_L_mon(self): + """ + Use test_data_set to test load_data for L_mon + """ + + mcrun_obj = ManagedMcrun("test.instr", + foldername = "test_data_set", + mcrun_path = "path") + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + results = mcrun_obj.load_results() + + os.chdir(current_work_dir) # Reset work directory + + # Check other properties + + L_mon = results[2] + + self.assertEqual(L_mon.name, "L_mon") + self.assertEqual(L_mon.metadata.dimension, 150) + self.assertEqual(L_mon.metadata.limits, [0.7, 1.3]) + self.assertEqual(L_mon.metadata.xlabel, "Wavelength [AA]") + self.assertEqual(L_mon.metadata.ylabel, "Intensity") + self.assertEqual(L_mon.metadata.title, "Wavelength monitor") + self.assertEqual(L_mon.xaxis[53], 0.914) + self.assertEqual(L_mon.Ncount[53], 37111) + self.assertEqual(L_mon.Intensity[53], 6.990299315e-06) + self.assertEqual(L_mon.Error[53], 6.215308587e-08) + + def test_ManagedMcrun_load_data_L_mon_direct(self): + """ + Use test_data_set to test load_data for L_mon with direct path + """ + + mcrun_obj = ManagedMcrun("test.instr", + foldername = "test_data_set", + mcrun_path = "path") + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + load_path = THIS_DIR + "/test_data_set" + results = mcrun_obj.load_results(load_path) + + os.chdir(current_work_dir) # Reset work directory + + # Check other properties + + L_mon = results[2] + + self.assertEqual(L_mon.name, "L_mon") + self.assertEqual(L_mon.metadata.dimension, 150) + self.assertEqual(L_mon.metadata.limits, [0.7, 1.3]) + self.assertEqual(L_mon.metadata.xlabel, "Wavelength [AA]") + self.assertEqual(L_mon.metadata.ylabel, "Intensity") + self.assertEqual(L_mon.metadata.title, "Wavelength monitor") + self.assertEqual(L_mon.xaxis[53], 0.914) + self.assertEqual(L_mon.Ncount[53], 37111) + self.assertEqual(L_mon.Intensity[53], 6.990299315e-06) + self.assertEqual(L_mon.Error[53], 6.215308587e-08) + + def test_ManagedMcrun_load_data_L_mon_direct_error(self): + """ + Check an error occurs when directory has no mccode.sim + """ + + mcrun_obj = ManagedMcrun("test.instr", + foldername = "test_data_set", + mcrun_path = "path") + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + load_path = THIS_DIR + "/non_exsistent_dataset" + with self.assertRaises(NameError): + results = mcrun_obj.load_results(load_path) + + os.chdir(current_work_dir) # Reset work directory + + def test_ManagedMcrun_load_data_L_mon_direct_error(self): + """ + Check an error occurs when pointed to empty directory + """ + + mcrun_obj = ManagedMcrun("test.instr", + foldername = "test_data_set", + mcrun_path = "path") + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + load_path = THIS_DIR + "/dummy_mcstas" + with self.assertRaises(NameError): + results = mcrun_obj.load_results(load_path) + + os.chdir(current_work_dir) # Reset work directory + + + +if __name__ == '__main__': + unittest.main() + + diff --git a/mcstasscript/tests/test_McStasData.py b/mcstasscript/tests/test_McStasData.py new file mode 100644 index 00000000..3bdd6fe7 --- /dev/null +++ b/mcstasscript/tests/test_McStasData.py @@ -0,0 +1,147 @@ +import unittest +import numpy as np + +from mcstasscript.data.data import McStasData +from mcstasscript.data.data import McStasMetaData + +def set_dummy_MetaData_1d(): + meta_data = McStasMetaData() + meta_data.component_name = "component for 1d" + meta_data.dimension = 50 + + return meta_data + +def set_dummy_McStasData_1d(): + meta_data = set_dummy_MetaData_1d() + + intensity = np.arange(20) + error = 0.5 * np.arange(20) + ncount = 2 * np.arange(20) + axis = np.arange(20)*5.0 + + return McStasData(meta_data, intensity, error, ncount, xaxis = axis) + +def set_dummy_MetaData_2d(): + meta_data = McStasMetaData() + meta_data.component_name = "test a component" + meta_data.dimension = [50, 100] + + return meta_data + +def set_dummy_McStasData_2d(): + meta_data = set_dummy_MetaData_2d() + + intensity = np.arange(20).reshape(4,5) + error = 0.5 * np.arange(20).reshape(4,5) + ncount = 2 * np.arange(20).reshape(4,5) + + return McStasData(meta_data, intensity, error, ncount) + + +class TestMcStasData(unittest.TestCase): + """ + Various test of McStasData class + """ + + def test_McStasData_init_1d(self): + """ + Test that newly created McStasMetaData has correct type + """ + + data = set_dummy_McStasData_1d() + + self.assertEqual(data.name, "component for 1d") + self.assertEqual(data.metadata.component_name, "component for 1d") + + def test_McStasData_init_values(self): + """ + Test that newly created McStasMetaData has correct type + """ + + data = set_dummy_McStasData_1d() + + self.assertEqual(data.Intensity[3], 3) + self.assertEqual(data.Error[3], 1.5) + self.assertEqual(data.Ncount[3], 6) + self.assertEqual(data.xaxis[3], 15.0) + + def test_McStasData_init_2d_names(self): + """ + Test that newly created McStasMetaData has correct type + """ + + data = set_dummy_McStasData_2d() + + self.assertEqual(data.name, "test a component") + self.assertEqual(data.metadata.component_name, "test a component") + + def test_McStasData_init_2d_values(self): + """ + Test that newly created McStasMetaData has correct type + """ + + data = set_dummy_McStasData_2d() + + self.assertEqual(data.Intensity[2][3], 13) + self.assertEqual(data.Error[2][3], 6.5) + self.assertEqual(data.Ncount[2][3], 26) + + def test_McStasData_set_info_title(self): + """ + Test that title can be set + """ + data = set_dummy_McStasData_2d() + data.set_title("title_test") + self.assertEqual(data.metadata.title, "title_test") + + def test_McStasData_set_xlabel(self): + """ + Test that xlabel can be set + """ + data = set_dummy_McStasData_2d() + data.set_xlabel("xlabel test") + self.assertEqual(data.metadata.xlabel, "xlabel test") + + def test_McStasData_set_ylabel(self): + """ + Test that ylabel can be set + """ + data = set_dummy_McStasData_2d() + data.set_ylabel("ylabel test") + self.assertEqual(data.metadata.ylabel, "ylabel test") + + def test_McStasData_set_log(self): + """ + Test that newly created McStasMetaData has correct type + """ + data = set_dummy_McStasData_2d() + data.set_plot_options(log = True) + self.assertIsInstance(data.plot_options.log, bool) + self.assertTrue(data.plot_options.log) + + data.set_plot_options(log = 0) + self.assertIsInstance(data.plot_options.log, bool) + self.assertFalse(data.plot_options.log) + + data.set_plot_options(log = 1) + self.assertIsInstance(data.plot_options.log, bool) + self.assertTrue(data.plot_options.log) + + def test_McStasData_set_orders_of_mag(self): + """ + Test that newly created McStasMetaData has correct type + """ + data = set_dummy_McStasData_2d() + data.set_plot_options(orders_of_mag = 5.2) + self.assertEqual(data.plot_options.orders_of_mag, 5.2) + + def test_McStasData_set_colormap(self): + """ + Test that newly created McStasMetaData has correct type + """ + data = set_dummy_McStasData_2d() + data.set_plot_options(colormap = "hot") + self.assertIs(data.plot_options.colormap, "hot") + +if __name__ == '__main__': + unittest.main() \ No newline at end of file diff --git a/mcstasscript/tests/test_McStasMetaData.py b/mcstasscript/tests/test_McStasMetaData.py new file mode 100644 index 00000000..ef63ff86 --- /dev/null +++ b/mcstasscript/tests/test_McStasMetaData.py @@ -0,0 +1,130 @@ +import unittest + +from mcstasscript.data.data import McStasMetaData + +class TestMcStasMetaData(unittest.TestCase): + """ + Various test of McStasMetaData class + """ + + def test_McStasMetaData_return_type(self): + """ + Test that newly created McStasMetaData has correct type + """ + meta_data = McStasMetaData() + self.assertIsInstance(meta_data, McStasMetaData) + + def test_McStasMetaData_init(self): + """ + Test that newly created McStasMetaData has no content + """ + meta_data = McStasMetaData() + self.assertEqual(len(meta_data.info), 0) + + def test_McStasMetaData_add_info_len(self): + """ + Test that info can be added to McStasMetaData + """ + meta_data = McStasMetaData() + meta_data.add_info("test",3) + self.assertEqual(len(meta_data.info), 1) + + def test_McStasMetaData_add_info(self): + """ + Test that info can be read from McStasMetaData + """ + meta_data = McStasMetaData() + meta_data.add_info("test",3) + self.assertEqual(meta_data.info["test"], 3) + + def test_McStasMetaData_add_info_title(self): + """ + Test that title can be set + """ + meta_data = McStasMetaData() + meta_data.set_title("title_test") + self.assertEqual(meta_data.title, "title_test") + + def test_McStasMetaData_add_info_xlabel(self): + """ + Test that xlabel can be set + """ + meta_data = McStasMetaData() + meta_data.set_xlabel("xlabel test") + self.assertEqual(meta_data.xlabel, "xlabel test") + + def test_McStasMetaData_add_info_ylabel(self): + """ + Test that ylabel can be set + """ + meta_data = McStasMetaData() + meta_data.set_ylabel("ylabel test") + self.assertEqual(meta_data.ylabel, "ylabel test") + + def test_McStasMetaData_long_read_1d(self): + """ + Test that extact info can read appropriate info + """ + meta_data = McStasMetaData() + meta_data.add_info("type", "array_1d(500)") + meta_data.add_info("component", "test_A COMP") + meta_data.add_info("filename", "test_A name") + meta_data.add_info("xlimits", " 0.92 3.68") + meta_data.add_info("xlabel", "test A xlabel") + meta_data.add_info("ylabel", "test A ylabel") + meta_data.add_info("title", "test A title") + + meta_data.extract_info() # Converts info to attributes + + self.assertIsInstance(meta_data.dimension, int) + self.assertEqual(meta_data.dimension, 500) + self.assertIs(meta_data.component_name, "test_A COMP") + self.assertIs(meta_data.filename, "test_A name") + self.assertEqual(len(meta_data.limits), 2) + self.assertEqual(meta_data.limits[0], 0.92) + self.assertEqual(meta_data.limits[1], 3.68) + self.assertIs(meta_data.xlabel, "test A xlabel") + self.assertIs(meta_data.ylabel, "test A ylabel") + self.assertIs(meta_data.title, "test A title") + + + def test_McStasMetaData_long_read_2d(self): + """ + Test that extact info can read appropriate info + """ + meta_data = McStasMetaData() + meta_data.add_info("type", "array_2d(500, 12)") + meta_data.add_info("component", "test_A_COMP") + meta_data.add_info("filename", "test_A_name") + meta_data.add_info("xlimits", "-2.4 5.99 0.92 3.68") + meta_data.add_info("xlabel", "test A xlabel") + meta_data.add_info("ylabel", "test A ylabel") + meta_data.add_info("title", "test A title") + + meta_data.extract_info() # Converts info to attributes + + self.assertEqual(len(meta_data.dimension), 2) + self.assertEqual(meta_data.dimension[0], 500) + self.assertEqual(meta_data.dimension[1], 12) + self.assertIs(meta_data.component_name, "test_A_COMP") + self.assertIs(meta_data.filename, "test_A_name") + self.assertEqual(len(meta_data.limits), 4) + self.assertEqual(meta_data.limits[0], -2.4) + self.assertEqual(meta_data.limits[1], 5.99) + self.assertEqual(meta_data.limits[2], 0.92) + self.assertEqual(meta_data.limits[3], 3.68) + self.assertIs(meta_data.xlabel, "test A xlabel") + self.assertIs(meta_data.ylabel, "test A ylabel") + self.assertIs(meta_data.title, "test A title") + +if __name__ == '__main__': + unittest.main() + + + + + + + + + \ No newline at end of file diff --git a/mcstasscript/tests/test_McStasPlotOptions.py b/mcstasscript/tests/test_McStasPlotOptions.py new file mode 100644 index 00000000..6b4ad324 --- /dev/null +++ b/mcstasscript/tests/test_McStasPlotOptions.py @@ -0,0 +1,66 @@ +import unittest + +from mcstasscript.data.data import McStasPlotOptions + +class TestMcStasPlotOptions(unittest.TestCase): + """ + Various test of McStasPlotOptions class + """ + + def test_McStasPlotOptions_default_log(self): + """ + Test that newly created McStasMetaData has correct type + """ + plot_options = McStasPlotOptions() + self.assertIsInstance(plot_options.log, bool) + self.assertFalse(plot_options.log) + + def test_McStasPlotOptions_default_orders_of_mag(self): + """ + Test that newly created McStasMetaData has correct type + """ + plot_options = McStasPlotOptions() + self.assertEqual(plot_options.orders_of_mag, 300) + + def test_McStasPlotOptions_default_colormap(self): + """ + Test that newly created McStasMetaData has correct type + """ + plot_options = McStasPlotOptions() + self.assertIs(plot_options.colormap, "jet") + + def test_McStasPlotOptions_set_log(self): + """ + Test that newly created McStasMetaData has correct type + """ + plot_options = McStasPlotOptions() + plot_options.set_options(log = True) + self.assertIsInstance(plot_options.log, bool) + self.assertTrue(plot_options.log) + + plot_options.set_options(log = 0) + self.assertIsInstance(plot_options.log, bool) + self.assertFalse(plot_options.log) + + plot_options.set_options(log = 1) + self.assertIsInstance(plot_options.log, bool) + self.assertTrue(plot_options.log) + + def test_McStasPlotOptions_set_orders_of_mag(self): + """ + Test that newly created McStasMetaData has correct type + """ + plot_options = McStasPlotOptions() + plot_options.set_options(orders_of_mag = 5.2) + self.assertEqual(plot_options.orders_of_mag, 5.2) + + def test_McStasPlotOptions_set_colormap(self): + """ + Test that newly created McStasMetaData has correct type + """ + plot_options = McStasPlotOptions() + plot_options.set_options(colormap = "hot") + self.assertIs(plot_options.colormap, "hot") + +if __name__ == '__main__': + unittest.main() \ No newline at end of file diff --git a/mcstasscript/tests/test_component.py b/mcstasscript/tests/test_component.py new file mode 100644 index 00000000..f61c077f --- /dev/null +++ b/mcstasscript/tests/test_component.py @@ -0,0 +1,349 @@ +import builtins +import unittest +import unittest.mock + +from mcstasscript.helper.mcstas_objects import component + +def setup_component_all_keywords(): + + return component("test_component", + "Arm", + AT = [0.124, 183.9, 157], + AT_RELATIVE = "home", + ROTATED = [482, 1240.2, 0.185], + ROTATED_RELATIVE = "etc", + WHEN = "1==2", + EXTEND = "nscat = 8;", + GROUP = "developers", + JUMP = "myself 37", + comment = "test comment") + +def setup_component_relative(): + + return component("test_component", + "Arm", + AT = [0.124, 183.9, 157], + ROTATED = [482, 1240.2, 0.185], + RELATIVE = "source", + WHEN = "1==2", + EXTEND = "nscat = 8;", + GROUP = "developers", + JUMP = "myself 37", + comment = "test comment") + + +class Testcomponent(unittest.TestCase): + """ + Components are the building blocks used to create an instrument in + the McStas meta language. They describe spatially seperated parts + of the neutron scattering instrument. Here the class component is + tested. + """ + + def test_component_basic_init(self): + + comp = component("test_component", "Arm") + + self.assertEqual(comp.name, "test_component") + self.assertEqual(comp.component_name, "Arm") + + def test_component_basic_init_defaults(self): + + comp = component("test_component", "Arm") + + self.assertEqual(comp.name, "test_component") + self.assertEqual(comp.component_name, "Arm") + self.assertEqual(comp.AT_data, [0,0,0]) + self.assertEqual(comp.AT_relative, "ABSOLUTE") + self.assertEqual(comp.ROTATED_data, [0,0,0]) + self.assertEqual(comp.ROTATED_relative, "ABSOLUTE") + self.assertEqual(comp.WHEN, "") + self.assertEqual(comp.EXTEND, "") + self.assertEqual(comp.GROUP, "") + self.assertEqual(comp.JUMP, "") + self.assertEqual(comp.comment, "") + + def test_component_init_complex_call(self): + + comp = setup_component_all_keywords() + + self.assertEqual(comp.name, "test_component") + self.assertEqual(comp.component_name, "Arm") + self.assertEqual(comp.AT_data, [0.124, 183.9, 157]) + self.assertEqual(comp.AT_relative, "RELATIVE home") + self.assertEqual(comp.ROTATED_data, [482, 1240.2, 0.185]) + self.assertEqual(comp.ROTATED_relative, "RELATIVE etc") + self.assertEqual(comp.WHEN, "WHEN (1==2)\n") + self.assertEqual(comp.EXTEND, "nscat = 8;\n") + self.assertEqual(comp.GROUP, "developers") + self.assertEqual(comp.JUMP, "myself 37") + self.assertEqual(comp.comment, "test comment") + + def test_component_init_complex_call_relative(self): + + comp = setup_component_relative() + + self.assertEqual(comp.name, "test_component") + self.assertEqual(comp.component_name, "Arm") + self.assertEqual(comp.AT_data, [0.124, 183.9, 157]) + self.assertEqual(comp.AT_relative, "RELATIVE source") + self.assertEqual(comp.ROTATED_data, [482, 1240.2, 0.185]) + self.assertEqual(comp.ROTATED_relative, "RELATIVE source") + self.assertEqual(comp.WHEN, "WHEN (1==2)\n") + self.assertEqual(comp.EXTEND, "nscat = 8;\n") + self.assertEqual(comp.GROUP, "developers") + self.assertEqual(comp.JUMP, "myself 37") + self.assertEqual(comp.comment, "test comment") + + def test_component_basic_init_set_AT(self): + + comp = component("test_component", "Arm") + + comp.set_AT([12.124, 214.0, 2], RELATIVE = "monochromator") + + self.assertEqual(comp.name, "test_component") + self.assertEqual(comp.component_name, "Arm") + self.assertEqual(comp.AT_data, [12.124, 214.0, 2]) + self.assertEqual(comp.AT_relative, "RELATIVE monochromator") + + def test_component_basic_init_set_ROTATED(self): + + comp = component("test_component", "Arm") + + comp.set_ROTATED([1204.8, 8490.1, 129], RELATIVE = "analyzer") + + self.assertEqual(comp.name, "test_component") + self.assertEqual(comp.component_name, "Arm") + self.assertEqual(comp.ROTATED_data, [1204.8, 8490.1, 129]) + self.assertEqual(comp.ROTATED_relative, "RELATIVE analyzer") + + def test_component_basic_init_set_RELATIVE(self): + + comp = component("test_component", "Arm") + + comp.set_RELATIVE("sample") + + self.assertEqual(comp.name, "test_component") + self.assertEqual(comp.component_name, "Arm") + self.assertEqual(comp.AT_relative, "RELATIVE sample") + self.assertEqual(comp.ROTATED_relative, "RELATIVE sample") + + def test_component_basic_init_set_parameters(self): + + comp = component("test_component", "Arm") + + # Need to add some parameters to this bare component + # Parameters are usually added by McStas_Instr + comp._unfreeze() + comp.new_par1 = 1 + comp.new_par2 = 3 + comp.this_par = 1492.2 + + comp.set_parameters({"new_par1" : 37.0, + "new_par2" : 12.0, + "this_par" : 1}) + + self.assertEqual(comp.name, "test_component") + self.assertEqual(comp.component_name, "Arm") + self.assertEqual(comp.new_par1,37.0) + self.assertEqual(comp.new_par2,12.0) + self.assertEqual(comp.this_par,1) + + with self.assertRaises(NameError): + comp.set_parameters({"new_par3" : 37.0}) + + def test_component_basic_init_set_WHEN(self): + + comp = component("test_component", "Arm") + + comp.set_WHEN("1 != 2") + + self.assertEqual(comp.name, "test_component") + self.assertEqual(comp.component_name, "Arm") + self.assertEqual(comp.WHEN, "WHEN (1 != 2)\n") + + def test_component_basic_init_set_GROUP(self): + + comp = component("test_component", "Arm") + + comp.set_GROUP("test group") + + self.assertEqual(comp.name, "test_component") + self.assertEqual(comp.component_name, "Arm") + self.assertEqual(comp.GROUP, "test group") + + def test_component_basic_init_set_JUMP(self): + + comp = component("test_component", "Arm") + + comp.set_JUMP("test jump") + + self.assertEqual(comp.name, "test_component") + self.assertEqual(comp.component_name, "Arm") + self.assertEqual(comp.JUMP, "test jump") + + def test_component_basic_init_set_EXTEND(self): + + comp = component("test_component", "Arm") + + comp.append_EXTEND("test code") + + self.assertEqual(comp.name, "test_component") + self.assertEqual(comp.component_name, "Arm") + self.assertEqual(comp.EXTEND, "test code\n") + + comp.append_EXTEND("new code") + + self.assertEqual(comp.EXTEND, "test code\nnew code\n") + + def test_component_basic_init_set_comment(self): + + comp = component("test_component", "Arm") + + comp.set_comment("test comment") + + self.assertEqual(comp.name, "test_component") + self.assertEqual(comp.component_name, "Arm") + self.assertEqual(comp.comment, "test comment") + + def test_component_basic_new_attribute_error(self): + """ + The component class is frozen after initialize in order to + prevent the user accidentilly misspelling an attribute name, + or at least be able to report an error when they do so. + """ + + comp = component("test_component", "Arm") + with self.assertRaises(AttributeError): + comp.new_attribute = 1 + + # If unfreeze does not work, this would cause an error + comp._unfreeze() + comp.new_attribute = 1 + + + @unittest.mock.patch('__main__.__builtins__.open', + new_callable = unittest.mock.mock_open) + def test_component_write_to_file_simple(self, mock_f): + """ + Testing that a component can be written to file with the + expected output. Here with simple input. + """ + + comp = component("test_component", "Arm") + + comp._unfreeze() + # need to set up attribute parameters + # also need to categorize them as when created + comp.parameter_names = [] + comp.parameter_defaults = {} + comp.parameter_types = {} + comp._freeze() + + with mock_f('test.txt', 'w') as m_fo: + comp.write_component(m_fo) + + my_call = unittest.mock.call + expected_writes = [my_call("COMPONENT test_component = Arm("), + my_call(")\n"), + my_call("AT (0,0,0)"), + my_call(" ABSOLUTE\n"), + my_call("ROTATED (0,0,0)"), + my_call(" ABSOLUTE\n")] + + mock_f.assert_called_with('test.txt', 'w') + handle = mock_f() + handle.write.assert_has_calls(expected_writes, any_order=False) + + @unittest.mock.patch('__main__.__builtins__.open', + new_callable = unittest.mock.mock_open) + def test_component_write_to_file_complex(self, mock_f): + """ + Testing that a component can be written to file with the + expected output. Here with complex input. + """ + + comp = setup_component_all_keywords() + + comp._unfreeze() + # need to set up attribute parameters + comp.new_par1 = 1.5 + comp.new_par2 = 3 + comp.this_par = "test_val" + comp.that_par = "\"txt_string\"" + # also need to categorize them as when created + comp.parameter_names = ["new_par1", "new_par2", "this_par", "that_par"] + comp.parameter_defaults = {"new_par1" : 5.1, + "new_par2" : 9, + "this_par" : "conga", + "that_par" : "\"txt\""} + comp.parameter_types = {"new_par1" : "double", + "new_par2" : "int", + "this_par" : "", + "that_par" : "string"} + comp._freeze() + + with mock_f('test.txt', 'w') as m_fo: + comp.write_component(m_fo) + + my_call = unittest.mock.call + expected_writes = [my_call("COMPONENT test_component = Arm("), + my_call("\n"), + my_call(" new_par1 = 1.5"), + my_call(","), + my_call(" new_par2 = 3"), + my_call(","), + my_call("\n"), + my_call(" this_par = test_val"), + my_call(","), + my_call(" that_par = \"txt_string\""), + my_call(")\n"), + my_call("WHEN (1==2)\n"), + my_call("AT (0.124,183.9,157)"), + my_call(" RELATIVE home\n"), + my_call("ROTATED (482,1240.2,0.185)"), + my_call(" RELATIVE etc\n"), + my_call("GROUP developers\n"), + my_call("EXTEND %{\n"), + my_call("nscat = 8;\n"), + my_call("%}\n"), + my_call("JUMP myself 37\n"), + my_call("\n")] + + mock_f.assert_called_with('test.txt', 'w') + handle = mock_f() + handle.write.assert_has_calls(expected_writes, any_order=False) + + @unittest.mock.patch('__main__.__builtins__.open', + new_callable = unittest.mock.mock_open) + def test_component_write_component_required_parameter_error(self, mock_f): + """ + Test an error occurs if the component is asked to write to disk + without a required parameter. + """ + + comp = setup_component_all_keywords() + + comp._unfreeze() + # need to set up attribute parameters + comp.new_par1 = None + # also need to categorize them as when created + comp.parameter_names = ["new_par1"] + comp.parameter_defaults = {"new_par1" : None} + + with self.assertRaises(NameError): + with mock_f('test.txt', 'w') as m_fo: + comp.write_component(m_fo) + + + # Print long (very similar to write component) + # Print short (easier) + # show_parameters (similar to write component, with formatting) + # show_parameters_simple (similar to write component, without formatting) + + + + + +if __name__ == '__main__': + unittest.main() \ No newline at end of file diff --git a/mcstasscript/tests/test_data_set/L_mon.dat b/mcstasscript/tests/test_data_set/L_mon.dat new file mode 100644 index 00000000..6da328aa --- /dev/null +++ b/mcstasscript/tests/test_data_set/L_mon.dat @@ -0,0 +1,178 @@ +# Format: McCode with text headers +# URL: http://www.mccode.org +# Creator: McStas 2.5 - Dec. 12, 2018 +# Instrument: jupyter_demo.instr +# Ncount: 5000000 +# Trace: no +# Gravitation: no +# Seed: 1557975068 +# Directory: jupyter_demo3 +# Nodes: 4 +# Param: wavelength=1 +# Date: Wed May 15 08:19:54 2019 (1557901194) +# type: array_1d(150) +# Source: jupyter_demo (jupyter_demo.instr) +# component: L_mon +# position: 0 0 12 +# title: Wavelength monitor +# Ncount: 20000000 +# filename: L_mon.dat +# statistics: X0=1.00415; dX=0.0576164; +# signal: Min=0; Max=8.72065e-06; Mean=2.58585e-06; +# values: 0.000387878 4.37886e-07 2.23517e+06 +# xvar: L +# yvar: (I,I_err) +# xlabel: Wavelength [AA] +# ylabel: Intensity +# xlimits: 0.7 1.3 +# variables: L I I_err N +0.702 0 0 0 +0.706 0 0 0 +0.71 0 0 0 +0.714 0 0 0 +0.718 0 0 0 +0.722 0 0 0 +0.726 0 0 0 +0.73 0 0 0 +0.734 0 0 0 +0.738 0 0 0 +0.742 0 0 0 +0.746 0 0 0 +0.75 0 0 0 +0.754 0 0 0 +0.758 0 0 0 +0.762 0 0 0 +0.766 0 0 0 +0.77 0 0 0 +0.774 0 0 0 +0.778 0 0 0 +0.782 0 0 0 +0.786 0 0 0 +0.79 0 0 0 +0.794 0 0 0 +0.798 0 0 0 +0.802 0 0 0 +0.806 0 0 0 +0.81 0 0 0 +0.814 0 0 0 +0.818 0 0 0 +0.822 0 0 0 +0.826 0 0 0 +0.83 0 0 0 +0.834 0 0 0 +0.838 0 0 0 +0.842 0 0 0 +0.846 0 0 0 +0.85 0 0 0 +0.854 0 0 0 +0.858 0 0 0 +0.862 0 0 0 +0.866 0 0 0 +0.87 0 0 0 +0.874 0 0 0 +0.878 0 0 0 +0.882 0 0 0 +0.886 0 0 0 +0.89 0 0 0 +0.894 0 0 0 +0.898 0 0 0 +0.902 6.848407452e-06 6.248130986e-08 35763 +0.906 6.866161621e-06 6.148602348e-08 36439 +0.91 6.992118025e-06 6.217988572e-08 36685 +0.914 6.990299315e-06 6.215308587e-08 37111 +0.918 6.987681714e-06 6.200203725e-08 37442 +0.922 6.931391469e-06 6.138059091e-08 37526 +0.926 7.003200779e-06 6.117598703e-08 37880 +0.93 7.100447462e-06 6.167554991e-08 38316 +0.934 7.042332201e-06 6.03764795e-08 39010 +0.938 7.231194779e-06 6.154956608e-08 39270 +0.942 7.179696649e-06 6.161318973e-08 39469 +0.946 7.241356191e-06 6.140479837e-08 40012 +0.95 7.265397176e-06 6.179511592e-08 39943 +0.954 7.381198679e-06 6.257929826e-08 40851 +0.958 7.391137153e-06 6.219631387e-08 40892 +0.962 7.278247399e-06 6.106552423e-08 41019 +0.966 7.398367612e-06 6.196836884e-08 41552 +0.97 7.354610436e-06 6.075838077e-08 41677 +0.974 7.53410921e-06 6.223245816e-08 42310 +0.978 7.508440709e-06 6.194599015e-08 42612 +0.982 7.536226359e-06 6.166548059e-08 43109 +0.986 7.58747296e-06 6.191103555e-08 43217 +0.99 7.700813855e-06 6.246839896e-08 43894 +0.994 7.649421626e-06 6.117426148e-08 44068 +0.998 7.851906203e-06 6.259913983e-08 44691 +1.002 7.701359897e-06 6.182829984e-08 44689 +1.006 7.806647865e-06 6.21844611e-08 45391 +1.01 7.880220455e-06 6.255227108e-08 45560 +1.014 7.846829303e-06 6.172939534e-08 45839 +1.018 7.914230543e-06 6.17305117e-08 46414 +1.022 8.085177922e-06 6.313380395e-08 46798 +1.026 8.017689165e-06 6.188377035e-08 47055 +1.03 8.144096936e-06 6.25759159e-08 47704 +1.034 7.991669735e-06 6.172261948e-08 47450 +1.038 8.163793551e-06 6.184388935e-08 48424 +1.042 8.175189518e-06 6.209804185e-08 48681 +1.046 8.133108765e-06 6.147113879e-08 48618 +1.05 8.20871245e-06 6.129162456e-08 49514 +1.054 8.322510208e-06 6.296203203e-08 49671 +1.058 8.304703444e-06 6.260875512e-08 49804 +1.062 8.307654524e-06 6.195806359e-08 50006 +1.066 8.198945646e-06 6.085237807e-08 50330 +1.07 8.428986557e-06 6.215537039e-08 50868 +1.074 8.544564326e-06 6.238909803e-08 51562 +1.078 8.549680216e-06 6.24509714e-08 51740 +1.082 8.652166989e-06 6.229092608e-08 52506 +1.086 8.630931156e-06 6.294201767e-08 52297 +1.09 8.659533684e-06 6.193634129e-08 52945 +1.094 8.636982139e-06 6.140929118e-08 53001 +1.098 8.720647309e-06 6.237398087e-08 53546 +1.102 0 0 0 +1.106 0 0 0 +1.11 0 0 0 +1.114 0 0 0 +1.118 0 0 0 +1.122 0 0 0 +1.126 0 0 0 +1.13 0 0 0 +1.134 0 0 0 +1.138 0 0 0 +1.142 0 0 0 +1.146 0 0 0 +1.15 0 0 0 +1.154 0 0 0 +1.158 0 0 0 +1.162 0 0 0 +1.166 0 0 0 +1.17 0 0 0 +1.174 0 0 0 +1.178 0 0 0 +1.182 0 0 0 +1.186 0 0 0 +1.19 0 0 0 +1.194 0 0 0 +1.198 0 0 0 +1.202 0 0 0 +1.206 0 0 0 +1.21 0 0 0 +1.214 0 0 0 +1.218 0 0 0 +1.222 0 0 0 +1.226 0 0 0 +1.23 0 0 0 +1.234 0 0 0 +1.238 0 0 0 +1.242 0 0 0 +1.246 0 0 0 +1.25 0 0 0 +1.254 0 0 0 +1.258 0 0 0 +1.262 0 0 0 +1.266 0 0 0 +1.27 0 0 0 +1.274 0 0 0 +1.278 0 0 0 +1.282 0 0 0 +1.286 0 0 0 +1.29 0 0 0 +1.294 0 0 0 +1.298 0 0 0 diff --git a/mcstasscript/tests/test_data_set/PSD.dat b/mcstasscript/tests/test_data_set/PSD.dat new file mode 100644 index 00000000..24146293 --- /dev/null +++ b/mcstasscript/tests/test_data_set/PSD.dat @@ -0,0 +1,633 @@ +# Format: McCode with text headers +# URL: http://www.mccode.org +# Creator: McStas 2.5 - Dec. 12, 2018 +# Instrument: jupyter_demo.instr +# Ncount: 5000000 +# Trace: no +# Gravitation: no +# Seed: 1557975068 +# Directory: jupyter_demo3 +# Nodes: 4 +# Param: wavelength=1 +# Date: Wed May 15 08:19:54 2019 (1557901194) +# type: array_2d(200, 200) +# Source: jupyter_demo (jupyter_demo.instr) +# component: PSD +# position: 0 0 12 +# title: PSD monitor +# Ncount: 20000000 +# filename: PSD.dat +# statistics: X0=0.000283843; dX=1.8828; Y0=-0.00309525; dY=1.71996; +# signal: Min=0; Max=5.86601e-08; Mean=9.69694e-09; +# values: 0.000387878 4.37886e-07 2.23517e+06 +# xvar: X +# yvar: Y +# xlabel: X position [cm] +# ylabel: Y position [cm] +# zvar: I +# zlabel: Signal per bin +# xylimits: -5 5 -5 5 +# variables: I I_err N +# Data [PSD/PSD.dat] I: +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.883361597e-11 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.13138197e-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.176303142e-18 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.111208884e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.512569703e-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.304089484e-11 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.068813319e-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.13889238e-14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.340218913e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.732642742e-24 0 1.433948998e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 2.461044926e-22 0 0 1.343194535e-18 0 1.121747477e-18 0 0 5.148744315e-19 4.610252444e-21 0 0 0 0 0 4.470662612e-19 0 0 0 0 0 0 1.863718963e-18 1.074015018e-19 4.835681448e-19 0 0 0 0 0 0 0 4.554417581e-19 3.478796283e-19 0 8.187606379e-19 0 0 0 0 0 0 0 0 0 3.555714916e-19 0 8.104780338e-19 0 0 0 5.386018288e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 1.25990799e-19 0 0 5.941281407e-19 0 0 1.101922078e-18 0 0 9.781469164e-19 0 0 0 0 0 0 0 0 0 1.252290404e-18 0 0 0 3.486975412e-19 0 0 0 0 3.799111561e-19 0 0 0 1.476254179e-24 2.621303867e-19 0 0 0 0 0 0 0 0 0 6.866524162e-11 0 0 0 0 0 4.33000772e-12 0 0 9.088757162e-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.675351311e-26 0 0 0 0 0 0 7.557646374e-18 0 0 0 1.257706491e-22 3.641269306e-18 1.393328074e-23 0 2.213685524e-18 0 0 4.067980837e-18 0 0 0 0 0 1.922799834e-18 0 4.790007151e-19 5.456807638e-19 1.023205441e-18 8.021655266e-19 0 3.834609551e-18 0 0 9.036645786e-19 0 5.396075115e-18 5.005305026e-19 2.022910703e-18 2.069354936e-18 0 9.631043691e-19 9.799640231e-19 2.080657771e-18 0 3.671594357e-18 1.96300687e-18 3.215065596e-19 6.665384818e-18 1.054194872e-22 6.51158069e-18 1.106079261e-18 0 0 0 1.789514251e-18 2.703568659e-18 4.565937174e-18 0 1.522478718e-34 0 0 6.131642129e-19 2.362057132e-18 3.505344375e-18 9.034013004e-19 7.376701165e-18 1.075882266e-34 1.757360745e-18 0 7.305809513e-19 0 3.902534062e-19 5.817096237e-18 6.342592311e-18 0 2.259041574e-19 1.473683161e-17 5.822905428e-18 0 1.158922355e-17 8.642125804e-18 8.371075151e-18 5.944619327e-18 4.982595876e-19 1.706012427e-18 6.040143232e-31 5.429361333e-19 2.009887769e-33 1.666604204e-18 4.86604812e-18 0 3.601483454e-18 0 0 0 0 0 0 2.072320836e-18 2.757797922e-18 7.423373011e-19 2.876090711e-18 1.398351856e-35 1.416345762e-18 3.147907574e-18 2.058949381e-18 1.779278532e-18 0 0 1.034692914e-20 0 9.797793582e-19 0 0 0 1.737256458e-18 5.135909176e-22 0 0 1.255352643e-18 2.291733282e-18 0 0 0 0 0 1.120282766e-18 0 5.813574604e-19 0 3.976519855e-18 0 0 0 4.4944314e-23 0 0 1.043594648e-23 0 0 0 0 1.510286312e-18 0 0 2.247638843e-18 0 0 0 1.008970517e-20 0 1.769195779e-20 3.033848292e-26 0 0 0 1.895800982e-26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.932381537e-25 0 0 6.336407602e-27 0 4.446441783e-22 0 1.155937215e-18 0 3.652495405e-25 1.202998959e-18 0 0 0 1.924196487e-18 3.630143839e-26 1.133528559e-20 2.925970566e-27 2.597376008e-18 1.188532696e-18 0 6.024542053e-18 4.786818638e-22 0 3.561645107e-18 9.77615639e-19 0 2.0939605e-17 5.677477208e-18 3.720861209e-18 4.438364031e-17 4.945540487e-19 1.43972842e-18 1.156222146e-17 4.567667549e-17 1.027674316e-18 2.310641008e-18 9.628300574e-18 1.639914231e-17 2.122178048e-17 5.597141062e-18 4.266993167e-18 1.270353875e-18 5.452211439e-18 2.184426763e-13 4.236072517e-18 1.193997672e-17 1.692445994e-17 1.374007692e-18 3.053750527e-20 1.881023682e-17 1.113752524e-18 2.953020999e-17 9.388985501e-18 1.232771598e-10 6.786380166e-17 3.020664649e-17 5.105282579e-18 7.317052942e-18 0 2.347704401e-17 2.651307498e-17 5.73425962e-18 7.174234307e-17 2.075314245e-18 1.280771526e-17 1.130554803e-18 1.239836723e-17 1.917093662e-17 2.811820253e-18 2.85167599e-18 5.439171506e-18 5.444704635e-17 9.688488624e-19 1.135796137e-17 9.863746238e-19 1.043065778e-33 1.268857468e-17 8.435176786e-19 2.411855762e-17 6.976144538e-18 3.958141309e-17 1.700374399e-17 2.373040121e-18 6.344593292e-18 4.106374309e-18 6.889567083e-17 1.246779735e-17 1.305370029e-16 1.418511719e-17 7.048002927e-19 3.638006573e-18 2.39592817e-17 5.378319349e-17 2.980565358e-17 1.820340921e-17 6.289986479e-19 3.822262434e-18 1.71095485e-17 4.852756328e-18 9.746803322e-18 2.919810801e-18 3.447024676e-18 5.987265416e-18 9.564489141e-18 1.966122608e-17 1.29006474e-17 8.769201457e-18 2.236793718e-17 4.749513896e-18 1.701086832e-17 9.994906433e-17 2.709771867e-17 0 1.260235227e-17 3.853422418e-18 5.860273547e-19 3.686949447e-18 0 0 9.236553988e-19 4.001925491e-22 6.457226637e-17 1.38722029e-17 9.903571411e-17 9.582375747e-21 6.908745012e-19 3.272722628e-18 3.129109401e-17 1.885727491e-18 0 3.122775726e-18 5.644867108e-17 1.025621438e-23 8.498529489e-19 2.876336481e-18 9.735105267e-19 6.938259447e-21 0 1.729028439e-27 1.331324709e-17 0 1.120624184e-17 7.402719012e-20 1.377574933e-20 5.475207073e-18 9.701698354e-24 0 3.106455003e-22 0 0 3.398329886e-20 3.427941887e-19 3.918498513e-19 0 0 5.574788499e-24 0 4.308052104e-24 0 0 0 1.150551558e-25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.618978547e-25 0 0 0 0 2.705283451e-24 0 2.520387046e-20 8.732481691e-19 3.122454229e-27 0 1.453145883e-19 4.948090053e-19 2.00489967e-26 7.362246835e-19 3.235393234e-19 1.957484878e-18 0 3.372998837e-20 6.045169531e-22 4.171607681e-19 1.890809631e-18 6.16786383e-18 1.046078351e-17 2.05565124e-17 4.197002783e-18 1.503682242e-17 7.585234274e-18 1.386219368e-17 4.319118263e-19 2.039428755e-18 1.45794005e-18 6.549250911e-17 4.988668224e-17 4.661143681e-18 3.570619367e-17 2.186887165e-16 5.668977848e-18 6.285756021e-17 1.586690479e-18 6.125446644e-19 1.968804785e-17 1.996364794e-18 3.169465512e-17 2.792140697e-16 1.919747538e-17 2.013123172e-17 7.518240244e-18 3.103120922e-16 2.63557555e-18 2.968462823e-17 3.474329307e-17 5.466707725e-17 9.169162623e-18 2.405326723e-17 1.807962952e-16 3.388042901e-16 1.950853062e-17 1.767088588e-17 4.378351067e-17 7.820387247e-18 2.635906151e-16 2.650955639e-17 1.947667804e-18 2.20923217e-17 7.968759497e-17 2.918956272e-16 9.069762461e-18 2.320485401e-17 5.551619442e-17 6.183639601e-16 1.339185233e-17 7.32997788e-17 1.824321505e-17 3.210379331e-17 4.680007054e-18 5.415860334e-17 1.071066377e-16 1.389188357e-16 6.985665525e-17 2.639099263e-17 7.125010822e-17 1.60175023e-16 1.156578093e-16 2.642599456e-16 2.122545426e-17 2.99281128e-17 6.874638585e-19 6.911957126e-17 1.623190839e-16 9.874459631e-17 2.195025332e-17 3.531426193e-17 2.42253544e-17 1.135996279e-16 7.000588223e-17 1.029132762e-17 2.700536132e-16 6.992343748e-18 2.909714205e-16 9.36174457e-18 3.292741864e-16 5.92068615e-17 1.878292053e-16 2.465675244e-17 1.323856043e-17 4.117459929e-16 1.98387174e-16 1.892530565e-16 3.905030694e-17 2.185584575e-17 2.045747371e-16 7.852069781e-17 9.77030453e-17 1.354165841e-16 2.475331248e-17 9.474956477e-17 2.153590242e-16 3.214529196e-16 4.756206291e-16 1.474429763e-17 3.73183721e-17 1.705728878e-16 1.308589377e-17 9.378952439e-18 1.546433187e-16 1.822983899e-17 7.236595622e-18 7.923982787e-17 4.107091516e-17 4.381698523e-17 2.372435416e-18 8.728216998e-18 7.429630681e-17 2.388094089e-16 0 2.207243978e-16 2.976710812e-17 1.343695123e-16 5.165352379e-17 1.975003128e-16 2.754224652e-17 6.189768543e-19 1.036505292e-18 7.301845712e-23 1.875230458e-23 4.90690842e-19 9.829617798e-17 1.62078141e-19 2.234892338e-16 2.829409969e-18 0 6.113240021e-20 5.340894583e-23 2.476386315e-18 0 3.765582972e-24 0 9.885957957e-22 3.054202701e-20 0 0 0 3.125260257e-27 6.176499882e-24 4.749379128e-27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.149531011e-27 0 1.435926142e-23 4.557092878e-25 0 8.52613378e-23 5.806270476e-22 7.559303246e-27 1.426575229e-21 6.165825379e-20 1.996800865e-18 7.106926755e-20 4.405198918e-19 7.811934775e-19 1.809465843e-18 8.408090034e-18 1.208154486e-23 5.624464153e-18 1.471077543e-18 8.391081989e-18 3.835559841e-22 8.406010041e-19 1.660972585e-22 4.071912244e-17 1.47016058e-15 1.36150002e-23 4.249877723e-15 5.042594049e-17 1.03333072e-17 2.659011284e-17 1.026699825e-16 8.083769402e-16 1.841170581e-18 8.660256841e-17 1.144512958e-15 2.713593201e-17 4.505137273e-16 4.021202639e-16 1.639003867e-16 1.657967355e-16 2.554004436e-16 1.205734232e-16 2.918550091e-16 1.088496272e-16 3.980056886e-17 8.980106131e-16 8.389228749e-16 2.919843199e-15 4.902938647e-16 2.553660411e-16 1.671327696e-16 4.325020569e-16 1.43646268e-16 6.97353175e-16 1.481890448e-17 2.442594002e-15 2.315406565e-16 8.620525963e-16 5.195848484e-17 4.757489969e-16 9.018825572e-16 1.034738477e-16 8.893686728e-17 1.15684885e-15 2.21843233e-15 9.661037044e-16 1.673057569e-15 9.082820927e-17 7.411117702e-17 5.278422825e-16 3.506655994e-16 2.850854313e-15 7.497327052e-16 2.284544038e-15 4.980393972e-15 1.751692746e-16 3.673677819e-16 2.635975067e-16 1.136532167e-16 7.816027063e-16 4.110513711e-16 9.244754955e-17 1.824529488e-15 2.49786007e-16 2.004108527e-15 3.166475503e-16 2.156375916e-16 1.104432094e-17 1.57395704e-16 1.67118629e-16 7.039836349e-16 3.316839664e-16 5.451029063e-16 3.43309826e-16 2.622067754e-16 7.342369769e-16 2.518746279e-16 4.470486089e-17 3.888545042e-15 1.100711721e-15 9.90456244e-16 1.288175369e-15 5.963297427e-16 1.403785813e-16 1.044683008e-15 1.694718905e-16 3.483859703e-16 2.322077118e-16 4.929985759e-16 1.217422093e-16 4.194344467e-16 6.697798436e-16 2.13856539e-15 2.092687637e-15 1.788512528e-15 2.297154108e-16 2.199898296e-16 9.061174059e-16 7.928193125e-17 3.152266004e-16 1.119618973e-16 8.406723271e-17 7.458018389e-16 8.648041371e-16 3.509348976e-16 1.133283081e-15 7.328300491e-16 2.643877034e-16 1.514294579e-16 7.684530634e-17 2.42108899e-17 4.243045667e-16 9.455270944e-16 1.975947564e-16 9.180810371e-17 1.079183842e-16 2.063365897e-15 4.910506634e-17 5.34277825e-19 7.861298351e-16 1.572956271e-17 2.61868937e-16 2.903390805e-17 9.094938835e-17 6.739402379e-18 1.780514217e-18 1.03135876e-17 4.786557551e-17 6.771110634e-18 8.936111111e-17 1.213229152e-18 1.16637106e-16 1.687861945e-16 1.395015736e-21 1.763621936e-15 3.204579182e-17 2.745568477e-18 2.55680838e-24 9.960538558e-19 3.063926861e-26 1.548688463e-19 1.170219639e-18 1.283193826e-18 4.970876495e-21 1.974330465e-27 1.111032839e-26 7.914502251e-25 8.050245653e-26 0 0 2.928780552e-25 0 0 7.022157843e-15 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 2.953196914e-11 0 0 0 0 0 0 0 0 2.866898892e-24 0 0 2.324122825e-24 1.474856661e-24 2.699272672e-21 2.527953929e-22 1.92601185e-23 0 1.038434369e-25 0 4.772837098e-18 3.432325593e-19 1.121086129e-16 6.525265491e-18 3.46100738e-19 5.416964876e-18 2.792142584e-22 3.000472629e-16 2.094836312e-15 9.262376454e-16 1.518549913e-17 3.176215658e-16 1.294318642e-15 1.759820965e-17 5.348424147e-17 8.054263027e-15 1.431689145e-17 1.744021491e-15 1.320375081e-15 1.164169371e-14 7.623684678e-16 3.729414798e-17 7.836891925e-15 3.239935489e-15 1.07589195e-16 9.550676752e-15 2.01632555e-16 3.003503441e-15 1.4296717e-24 2.380543912e-15 6.056179108e-17 2.978348124e-16 2.056649116e-15 4.241643287e-15 3.490715015e-15 1.343828916e-15 8.701439006e-16 4.480776537e-15 8.74404847e-16 6.772921736e-16 1.578967033e-15 2.243852618e-15 9.481247336e-15 4.886919004e-15 1.561052175e-14 3.851234753e-16 3.201017361e-15 7.398504903e-16 3.182392656e-15 4.364264622e-15 2.690142881e-15 1.243052825e-15 2.736208384e-15 3.116210647e-16 2.581392345e-17 2.010837229e-15 6.077168704e-16 9.042720632e-15 2.789314384e-15 7.584767694e-15 3.69540967e-15 6.092531473e-16 2.331916317e-15 1.057509131e-14 5.921308249e-15 1.406971769e-15 1.371836995e-15 1.439965568e-14 5.451728751e-16 5.463383065e-15 1.207099872e-14 5.458089063e-15 1.488752415e-14 1.022282511e-14 2.203321338e-14 1.667506674e-15 7.913138201e-15 6.106230804e-15 3.687003222e-15 7.644442512e-15 2.627273787e-15 7.756408043e-16 2.253163235e-14 7.579944456e-15 4.189845698e-15 1.766126396e-15 1.237602912e-15 2.409433282e-14 1.933261272e-15 5.501095569e-16 2.827606214e-16 4.74465762e-15 1.228683836e-14 6.575084925e-16 3.36258085e-16 5.415655463e-15 2.459440809e-14 9.107910333e-16 5.819264787e-15 9.813927864e-15 3.214335402e-15 1.967973032e-14 1.520614458e-14 1.934959673e-16 7.825910018e-16 2.441522654e-14 9.512582251e-15 2.632128049e-16 3.681114576e-15 4.508404403e-15 3.50618915e-14 5.686998558e-16 1.581323867e-16 5.234316785e-16 2.584097448e-15 1.616045921e-16 3.039174841e-15 7.094271862e-16 8.445353288e-16 3.990685619e-16 4.498516584e-15 4.559342082e-15 3.22948093e-15 6.174442543e-16 3.13985442e-15 5.042546339e-16 4.742865369e-16 7.891501557e-17 2.724381926e-17 1.423049956e-16 1.29666263e-14 1.861452495e-16 6.525644171e-18 8.26009811e-15 1.790078102e-15 5.635644267e-17 1.379411292e-15 4.121367873e-17 6.062648911e-17 2.50115588e-15 5.602937572e-16 1.205753006e-18 4.18254297e-16 1.75194785e-17 1.730093195e-18 3.067548569e-24 4.555048356e-22 3.770156055e-18 1.167931728e-20 4.198040383e-19 1.898266026e-20 2.03112338e-19 6.730962298e-19 9.009874504e-26 0 9.239334337e-25 2.268051779e-24 0 0 0 0 0 1.642097949e-12 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.137638324e-26 0 0 0 0 1.306764671e-18 1.205378064e-24 2.694083209e-18 2.741613615e-21 4.095307634e-16 1.532946163e-18 1.579212641e-21 9.281472578e-19 5.347855699e-15 5.217531588e-16 2.776370073e-20 5.359478825e-18 2.168134014e-18 1.671162758e-15 6.489762637e-21 2.6111314e-14 9.093428396e-11 2.697837551e-20 1.315540261e-14 5.022321081e-16 3.551114265e-14 1.557349506e-14 1.730884015e-14 1.144573955e-14 2.161972928e-14 3.801233187e-14 4.154838625e-14 9.755921181e-15 2.448683555e-16 1.843183319e-16 2.844214998e-15 5.541779601e-14 7.014609959e-15 3.435603126e-14 8.76048764e-15 2.056502058e-14 2.469728512e-14 1.212814496e-14 1.245668577e-14 2.394033039e-15 5.216223768e-14 3.196312592e-15 1.718366147e-14 1.032463787e-15 5.848065427e-15 3.51342752e-14 3.52575101e-14 1.672856457e-14 1.259412495e-14 5.340466755e-14 3.201869713e-14 6.552964526e-14 6.519678872e-14 7.357655182e-11 2.582781391e-14 3.370410288e-14 6.752190471e-15 1.854131858e-15 1.682232853e-13 4.183190386e-14 5.353414263e-14 3.9425517e-15 4.078968756e-15 2.432365464e-14 5.037430925e-14 3.329438602e-15 9.014362184e-15 1.102940972e-14 1.581016109e-14 7.712779772e-15 3.742294757e-14 1.844506007e-14 7.641750633e-14 1.109822802e-13 4.454468288e-15 3.740427001e-14 3.847676475e-14 5.160197788e-14 9.102706989e-15 4.355189519e-14 9.584437279e-14 9.237997335e-14 8.082608167e-14 1.646040374e-14 1.663833573e-15 1.35618661e-13 2.436554951e-15 2.14278394e-14 1.175229345e-14 1.960283876e-14 8.720293928e-14 6.280659294e-14 9.768994206e-15 5.885836979e-15 2.165731125e-15 7.409905955e-15 1.614537678e-14 4.536267755e-15 1.933172681e-13 2.008141688e-15 1.19304424e-14 1.161226585e-13 3.893956826e-15 1.069246647e-14 1.878284736e-14 7.200356633e-14 1.531773691e-13 1.964252355e-14 5.378124208e-14 8.971337058e-14 2.014663263e-14 9.481504956e-11 5.37264557e-15 1.633776985e-15 4.496448428e-13 3.324484517e-14 1.628757698e-15 3.74801062e-14 1.02999525e-13 1.785078421e-14 1.132677313e-14 1.765741186e-14 1.561636698e-14 7.761417556e-15 4.340229346e-14 4.503104634e-15 6.008300599e-15 8.746988927e-16 9.039133009e-15 3.538641322e-14 3.138870787e-15 8.083243759e-14 2.297475899e-14 3.507534397e-14 2.538668713e-14 4.540854829e-15 4.363673666e-15 6.260360606e-15 6.601153481e-15 7.523664109e-18 2.450330262e-17 1.941641494e-15 5.81242654e-15 1.197074773e-15 1.780307734e-15 3.4029568e-16 1.391010621e-13 2.367338277e-16 0 1.793507368e-17 6.263564252e-18 1.376310704e-19 3.222519454e-15 0 3.165037436e-18 3.459404842e-19 1.158927846e-16 4.166241833e-18 4.844415861e-24 0 0 3.691166512e-27 1.947910812e-21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 1.050143151e-10 0 0 0 0 0 0 0 0 0 0 0 2.787857845e-23 1.098837244e-26 0 3.431938097e-19 1.569830119e-21 2.710206498e-16 3.028082649e-22 5.104523709e-17 3.783220895e-18 1.401128507e-14 1.0946737e-15 6.939738179e-15 3.826486011e-17 1.335476116e-15 1.121798648e-16 1.549308864e-13 2.591246726e-13 8.330499519e-15 2.466581374e-14 1.10494092e-13 1.220584487e-13 2.491099744e-13 1.155104362e-14 3.384413643e-14 3.906911529e-15 4.9211016e-14 2.023039984e-13 1.137521035e-14 9.374584188e-14 2.526797763e-14 2.118673354e-15 5.380559196e-13 5.163709855e-14 4.391497065e-13 2.64962416e-14 1.184551701e-14 5.24877446e-13 5.598924903e-16 9.147189317e-14 4.870240812e-15 9.885170353e-13 8.618970064e-15 1.240099527e-13 1.000334389e-13 6.170169499e-14 2.088153001e-14 9.244142436e-14 3.317285755e-15 3.858368756e-14 8.826852299e-14 1.890701992e-13 1.219270961e-13 1.465308126e-14 2.46867302e-13 2.480878642e-13 2.453902462e-14 6.562758591e-14 1.133917373e-12 2.667555082e-14 2.279075838e-14 1.546703839e-13 3.626266574e-13 1.748330899e-14 1.269449029e-13 1.391526978e-12 1.389294807e-13 4.491383127e-13 1.141739464e-13 1.774827464e-13 8.485839654e-15 9.139257737e-13 2.177171651e-13 7.68156089e-14 3.281927668e-13 1.928085395e-13 1.089314286e-14 2.312025452e-14 3.139179943e-13 1.543661819e-13 6.318808701e-13 4.624803361e-14 4.750727797e-13 4.1764626e-14 1.234348731e-13 6.702872013e-14 1.352803905e-13 1.140893819e-13 2.7329466e-13 6.433245142e-13 3.711412828e-14 2.914419078e-13 7.031266023e-13 1.950479803e-12 2.164024139e-13 2.353707112e-14 3.761100218e-13 1.848189761e-13 3.492158664e-13 3.458805185e-13 1.534875231e-13 3.021189426e-14 9.085296252e-14 2.102688161e-13 1.072678889e-13 1.235081315e-13 9.436639053e-14 1.3283632e-13 1.599496398e-12 4.155174749e-13 2.45632277e-13 1.63133652e-12 1.86289999e-13 5.068933393e-14 6.125650232e-13 3.771006771e-14 2.882517482e-13 1.671516174e-14 3.650712834e-13 5.33219425e-13 1.645075281e-14 3.743202773e-15 2.760457156e-13 7.448421232e-14 1.851810817e-13 5.358674633e-13 1.826032669e-13 6.786307029e-14 2.999526648e-13 3.768481971e-14 6.074017327e-14 5.027687389e-13 2.438208708e-14 3.07244219e-13 3.791986083e-15 1.364467375e-14 2.04300596e-14 1.103026046e-14 2.398613365e-14 2.593757363e-15 7.078770898e-14 8.198468377e-14 6.968326619e-16 2.323543377e-13 9.303065874e-15 7.408200457e-13 8.105922392e-14 4.292650148e-15 1.708548826e-16 4.437698474e-16 1.685745909e-15 2.235036534e-17 3.775956341e-18 2.84906883e-16 1.921424354e-13 4.309835247e-20 2.230870346e-16 6.930558667e-18 1.114221057e-15 1.989258974e-20 2.636711172e-18 3.200131293e-19 4.774604234e-19 1.213649464e-23 1.769825862e-20 1.261961848e-23 6.863097117e-24 2.327811137e-21 0 0 6.65680438e-22 0 0 0 6.665385663e-11 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.882821688e-21 1.091106345e-26 5.040709308e-19 7.561145476e-22 1.279160855e-16 2.113911149e-16 3.67704124e-22 3.635153154e-17 4.862009834e-19 1.714829757e-25 2.018821954e-17 1.076296694e-14 8.174723763e-15 1.237415014e-18 7.974789317e-14 1.141970502e-16 2.099257142e-15 2.351762763e-15 1.238903293e-14 4.137124244e-14 3.095686303e-13 1.46165739e-13 2.164779759e-17 3.566914887e-14 2.308113127e-15 1.196741916e-12 1.658824489e-13 2.97342899e-14 3.594347381e-12 1.945811609e-14 2.634713629e-13 3.641479783e-13 3.521680908e-13 5.755260955e-13 1.442405719e-13 8.92250937e-12 2.001405361e-13 6.789669829e-15 3.603523933e-12 1.790814971e-12 2.331088154e-13 1.332288809e-14 4.141794406e-13 9.704698949e-13 3.521571469e-13 6.37320693e-13 2.135602772e-12 1.313043254e-12 1.696019474e-12 3.571042998e-13 2.950659702e-12 3.070642538e-12 4.901344787e-13 1.509523371e-12 1.312321555e-13 1.64917465e-12 1.613321577e-12 3.421673334e-12 2.157993814e-12 2.260637435e-12 1.223502124e-12 1.193587765e-12 1.64233441e-12 1.368095132e-13 1.216265429e-12 3.320836102e-13 3.143363343e-12 1.009049689e-12 1.008599937e-12 1.096227037e-12 9.211068016e-13 6.99106415e-14 1.280376273e-11 2.256246736e-12 1.43898653e-12 1.545108657e-12 5.38994038e-13 4.378933255e-13 2.893328168e-12 2.530232736e-12 7.225725862e-13 2.805984059e-12 5.792488324e-13 8.651437811e-13 4.876967444e-12 6.222120299e-13 1.471744572e-12 7.448365212e-13 5.29701336e-13 4.301336164e-12 3.369291754e-12 4.056321131e-13 5.521617073e-12 6.812486354e-13 6.046115823e-13 1.462942235e-12 1.960411594e-12 4.237523602e-12 1.683948551e-12 5.33008507e-12 5.390038329e-13 3.165467678e-12 1.255255175e-12 8.71640548e-13 8.131872181e-13 2.726292162e-13 1.667645444e-12 1.69969631e-12 2.064010713e-14 6.124602731e-12 1.46377416e-12 1.131362008e-11 1.931714924e-12 2.23990562e-13 9.772960547e-13 2.517066107e-12 8.907863405e-13 1.175874177e-12 2.716138571e-12 1.139067289e-12 1.085151504e-13 1.079380251e-12 3.907969748e-13 2.62965624e-13 1.700953668e-12 2.813964996e-12 6.00803049e-12 1.660660129e-12 1.187761306e-12 7.04240264e-13 4.357322789e-13 7.199875766e-14 3.569585621e-12 7.860198444e-14 8.525009949e-13 2.611983826e-12 1.544704547e-13 6.109660008e-14 1.14239657e-12 4.6336358e-12 3.679721579e-15 1.085194939e-13 7.066265343e-13 4.609238219e-12 9.882838256e-14 5.754529355e-17 9.713546449e-13 5.234516658e-13 1.170687122e-14 3.150332376e-12 1.894850586e-13 4.959613947e-15 4.858810763e-14 1.914069174e-15 2.513622403e-16 1.231352198e-16 2.002233687e-21 1.078317628e-17 5.870730632e-16 1.007415252e-18 1.237235266e-21 1.354937402e-19 6.010341067e-25 0 3.062069644e-16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.193711649e-23 0 5.897454098e-24 0 1.96096864e-20 1.221464936e-18 1.459507327e-16 1.697898367e-13 9.323786969e-21 6.199140709e-15 6.665154001e-17 2.647614756e-14 1.495327363e-17 1.37768888e-13 6.506129049e-16 4.907531205e-16 4.844026684e-13 2.674266264e-14 4.096618208e-15 2.757856784e-13 4.541876715e-13 1.004876916e-12 1.155976956e-13 2.459676393e-11 8.189243246e-12 8.909581602e-12 1.162288452e-11 1.044349278e-12 6.651897398e-14 2.244954182e-11 1.019067354e-12 1.012282376e-13 8.963435578e-12 5.394989999e-12 7.584686834e-12 3.762363089e-14 1.211397579e-11 1.826779758e-12 6.712605734e-12 2.084456117e-11 3.840371501e-12 3.243678497e-11 3.952703096e-13 1.050487589e-11 3.407132091e-13 1.738149154e-12 4.655681014e-12 5.795262677e-12 3.471030014e-11 1.726815241e-11 2.390829425e-12 4.237171163e-12 3.464980758e-11 1.875946419e-11 4.803296438e-12 5.882086427e-13 1.366209703e-11 2.826942738e-11 1.404753639e-11 3.491377858e-12 5.352647082e-12 2.425356762e-11 2.273681614e-12 1.543398099e-11 2.40390786e-12 2.773742903e-12 1.569059723e-11 3.288314751e-11 2.527392053e-11 1.390633386e-11 4.116215156e-12 7.589661557e-12 1.146435764e-11 3.01498578e-12 5.172660646e-11 7.659712193e-13 9.402535002e-12 1.49395738e-12 1.302074972e-11 7.201782005e-12 1.566926614e-11 8.620098332e-12 3.59754823e-12 6.786940403e-12 2.276087324e-11 2.687974671e-11 1.328441269e-11 1.280669652e-11 2.711276241e-12 8.180019048e-12 1.652717422e-12 1.019606259e-11 1.030045508e-11 2.404552339e-11 7.78361647e-12 3.932522973e-13 9.317426278e-12 3.391846867e-12 4.481395552e-11 1.553657997e-11 3.784173093e-11 6.374883074e-12 3.470440496e-13 1.832029415e-11 9.599886665e-12 3.058698727e-11 5.501998498e-13 1.489774258e-12 5.537906294e-13 2.989960594e-12 1.527131078e-11 1.82404018e-12 1.492356519e-11 6.478086806e-12 1.771945074e-12 2.866320115e-12 1.885316978e-11 2.655682843e-12 1.484107208e-11 4.519406776e-11 2.323409414e-12 5.204014389e-12 3.720481823e-12 1.625068346e-11 4.74627221e-12 4.225165924e-12 2.390688281e-11 1.894743478e-11 2.893566524e-12 3.724994613e-11 1.115331454e-11 8.571919252e-13 1.479248148e-12 2.705139329e-12 2.076589645e-11 2.74692802e-13 3.135929007e-12 1.445197319e-11 9.77516603e-12 4.067747832e-13 3.247565013e-12 3.340648044e-12 6.826999613e-14 5.435552832e-12 1.274866826e-13 2.252342106e-14 1.984825024e-13 7.106816032e-12 1.874702869e-14 4.624165678e-14 6.207094475e-12 6.216520171e-13 8.595684022e-15 1.076026302e-12 1.786677821e-15 7.349045208e-16 2.358000046e-13 3.179888031e-16 4.108239464e-19 1.634860299e-18 4.448588079e-17 1.353777475e-17 4.674699918e-16 1.715570939e-17 5.825104072e-21 1.957684666e-26 1.90598608e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.772035261e-22 0 1.391397208e-21 4.610290859e-20 6.468799685e-21 2.188037291e-18 1.306033475e-20 2.014335781e-16 8.568289846e-21 1.809051876e-11 9.122049874e-14 2.783368413e-12 7.954616866e-14 1.36690612e-13 1.829025962e-16 1.904396397e-13 2.976109063e-12 1.215984361e-15 1.071354312e-11 1.411880895e-12 2.86650583e-13 1.202913777e-12 1.062186627e-11 2.14780129e-11 1.230965614e-11 1.111040184e-10 2.805142269e-12 2.81794469e-13 4.449091078e-11 3.117268405e-11 6.960719056e-12 5.992462546e-12 7.33660243e-11 1.161510622e-10 3.593160524e-11 1.419614991e-10 3.729890798e-12 1.261416902e-10 7.098960644e-13 1.876488147e-12 2.059218583e-10 2.874435534e-11 8.019147909e-12 7.719469257e-11 5.792436673e-11 9.3714312e-13 6.407015064e-11 2.217208054e-11 1.252287654e-10 3.79685239e-11 1.273987517e-11 8.754919724e-11 1.378736853e-10 4.00264176e-11 3.508146061e-12 5.027871736e-11 1.441069888e-10 7.764754388e-11 1.462553982e-11 9.055586287e-11 3.687940958e-11 9.612369167e-11 9.190058479e-11 6.893538366e-11 2.422409387e-11 1.605965572e-10 2.181473539e-11 4.975073336e-11 7.619832857e-11 3.921038235e-11 4.992824618e-11 2.077814914e-11 9.861328606e-11 8.772320939e-11 8.756146285e-11 2.30133752e-10 1.324251018e-10 7.906399536e-12 4.522489644e-11 1.770925217e-10 5.180534205e-11 3.897597527e-11 8.516591931e-11 2.090567647e-10 8.064394316e-11 2.911207656e-11 5.660275757e-12 6.525605195e-11 1.075447121e-10 3.189581239e-11 4.714894113e-11 2.276497303e-11 7.840077481e-11 7.806874508e-11 8.71728001e-11 1.603233306e-11 7.110295847e-11 8.018646664e-11 2.385051939e-11 1.767421709e-11 8.738839867e-13 1.13587762e-10 5.448986064e-11 1.428482026e-10 2.342402786e-11 7.50110281e-12 1.316410369e-10 1.410544498e-10 5.627271145e-11 2.008417599e-11 1.86243627e-11 7.65549679e-11 1.121765924e-10 9.523924143e-11 1.086464618e-10 2.635378238e-10 3.541140579e-11 1.250948525e-11 2.584398933e-11 2.249050584e-10 8.467676851e-12 3.298478187e-11 1.171373972e-10 2.743233849e-11 3.537145289e-11 1.23599801e-11 1.141442747e-12 3.869185488e-12 3.437003061e-12 3.463466989e-11 1.261755819e-11 1.645598083e-11 9.71596867e-11 9.195397556e-11 7.25305189e-13 3.424823588e-12 4.738521882e-11 4.715204177e-11 1.669206089e-11 5.327519534e-12 8.524184936e-11 4.782121384e-11 1.098436558e-11 4.258044843e-12 3.954663573e-12 8.04486342e-13 1.584018405e-11 1.447383849e-11 7.008513042e-11 3.131172286e-11 4.775400895e-13 5.504410099e-12 4.522551935e-11 3.614127389e-17 1.536776333e-16 3.59091798e-19 4.696618697e-12 5.87510889e-12 1.204569415e-17 6.841469228e-18 2.376999596e-19 1.071431392e-20 1.25965927e-19 3.991383931e-19 4.673196785e-15 2.060959956e-18 1.524969916e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.551660816e-21 1.877559784e-24 1.749627705e-21 4.41720014e-24 2.147001644e-20 3.253129983e-16 5.708357247e-18 4.99495545e-22 5.691462768e-12 8.231622932e-14 3.436213793e-16 6.883205454e-12 8.643084829e-14 1.293195875e-15 1.08296963e-12 4.923153529e-11 3.583461343e-12 1.228044295e-13 5.994619841e-11 3.56795462e-10 1.48041523e-12 2.23889355e-11 2.66136356e-12 1.120569245e-11 4.40899913e-13 1.095505214e-10 1.024230908e-10 1.137871414e-11 3.213353493e-11 1.069973489e-10 2.018456213e-10 4.197453615e-10 2.29148594e-10 7.749966983e-11 1.904422584e-10 4.975890115e-11 3.226205662e-10 1.947058876e-10 1.583257386e-10 4.736359825e-11 8.588047034e-11 3.374065709e-11 2.082400755e-10 4.968141186e-11 2.41522362e-10 3.565362033e-11 2.874647883e-10 1.79828613e-10 1.360266345e-10 3.990759413e-11 3.377597769e-10 2.725126984e-10 2.575454472e-10 1.247947684e-10 3.833483929e-10 3.978783771e-10 1.928313409e-10 4.782291065e-10 2.484141122e-10 2.165790109e-10 1.000050167e-10 1.565336724e-10 2.232854438e-10 9.272201857e-11 1.301558657e-10 2.780454852e-10 5.010409582e-10 2.274444346e-10 2.813703212e-10 6.789489872e-11 9.756875471e-10 4.402079642e-11 1.941596419e-10 3.379041381e-10 6.654935796e-10 1.79969381e-10 3.89197866e-10 1.635040677e-10 6.739359551e-11 2.627803903e-10 1.509172701e-10 2.273354713e-10 5.794409146e-10 3.015702287e-10 7.256962923e-10 5.966181536e-10 6.962294286e-10 2.354248677e-10 2.375395554e-10 8.675197291e-11 1.814347598e-10 3.959396737e-10 5.503873727e-10 3.576204685e-10 5.899590138e-10 5.755972497e-10 5.42566761e-10 3.543343146e-10 5.765974385e-10 2.719627418e-10 9.772720184e-11 1.794586579e-10 1.649068725e-10 3.254739398e-10 2.192853718e-10 2.760757274e-10 6.53398421e-11 4.648946375e-10 1.044680572e-10 4.769010035e-10 2.193981668e-10 3.347111253e-10 2.560595385e-10 3.404551092e-10 1.568984187e-10 1.758934124e-10 2.057355892e-10 2.648087037e-10 7.607219231e-10 5.023142858e-10 2.067087668e-10 1.611596912e-10 7.376262432e-11 1.771377634e-10 3.706782649e-10 3.015192311e-10 1.114040615e-10 4.083061037e-10 2.115260136e-10 8.863700128e-11 4.092292787e-10 2.441418859e-10 2.678680448e-10 1.603940411e-10 3.113114079e-10 2.894917371e-11 3.816482372e-10 8.982041579e-11 2.804610682e-10 2.310408791e-10 7.312979802e-12 1.722765642e-11 1.458218166e-12 1.132560598e-10 3.387478774e-10 2.527887165e-11 8.561361391e-14 9.364198637e-12 6.914318028e-12 2.865474737e-12 2.695034379e-11 1.724685842e-10 4.849715776e-13 1.307360774e-11 1.379268612e-12 2.135616787e-13 4.196118096e-12 8.78182516e-15 2.40842954e-14 4.741595436e-17 3.06051577e-18 2.178038054e-14 3.099129368e-13 2.544752092e-13 1.820824402e-21 5.744435177e-26 1.580151973e-24 1.337835388e-19 3.801566411e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.034211037e-24 8.716080485e-20 1.978194605e-18 8.08353754e-16 1.954920843e-20 6.552468254e-18 4.071177009e-15 2.17155663e-18 3.005133198e-17 8.562861527e-18 3.112746614e-11 1.193238235e-10 3.088591632e-13 1.752789055e-10 1.168157515e-14 2.221630851e-10 7.235152778e-14 5.377442294e-10 2.347385999e-10 5.708859364e-12 1.824439578e-10 1.585467068e-10 1.741405785e-10 7.408237936e-10 2.892391874e-11 3.331109066e-10 1.845570813e-10 5.785944424e-11 6.236437597e-10 7.257273959e-11 3.073974896e-10 5.455006026e-10 3.249267712e-10 7.799271103e-10 2.897454315e-10 8.275559218e-10 3.671021962e-10 4.350459896e-11 3.654110384e-10 1.643343212e-10 6.170689076e-11 5.33758756e-10 1.016324087e-09 4.143717479e-10 6.432067005e-10 2.921351199e-10 2.238052449e-10 6.113823371e-10 1.700510751e-09 6.820331836e-10 6.190198984e-10 1.129339532e-09 4.544659705e-10 6.646737671e-10 1.005121246e-09 9.182644723e-10 3.731751861e-10 6.697158828e-10 1.326775763e-09 6.259672505e-10 1.084144154e-09 2.386017896e-10 1.750186928e-09 1.167129855e-10 2.046638428e-09 6.666591984e-10 8.334238399e-10 7.586120074e-10 1.359214381e-09 1.277468513e-09 1.262896172e-09 8.303392531e-10 1.618936894e-09 9.854758851e-10 4.814510783e-10 1.200805148e-09 1.403605047e-09 6.991596195e-10 1.89700838e-09 7.005492423e-10 1.253880389e-09 4.528685959e-10 4.753662818e-10 1.123020388e-09 1.216706957e-09 9.712510602e-10 1.684990882e-09 9.024564556e-10 1.374155243e-09 1.001324894e-09 2.448513447e-10 6.919697352e-10 1.960921644e-09 4.631212086e-10 9.046235058e-10 8.963234219e-10 5.87096128e-10 5.673967581e-10 1.120985571e-09 2.642009443e-09 1.676094799e-09 2.419724168e-09 8.664937215e-11 3.533724042e-10 8.207643321e-10 1.169453629e-09 6.964718049e-10 8.064275076e-10 9.846263294e-10 1.572731637e-09 1.217526845e-09 7.594631932e-10 1.863227535e-09 7.284359183e-10 7.194321687e-10 1.428331016e-09 1.418257823e-09 8.079913695e-10 1.286685627e-09 1.507827863e-09 3.010374264e-10 4.666802747e-10 1.133547387e-09 1.901551639e-10 1.264591019e-09 6.149956695e-10 9.191045987e-10 3.383116177e-10 8.954511524e-10 3.003945071e-10 2.595135076e-10 4.163877165e-10 8.295789743e-10 7.930774218e-11 1.578004868e-10 7.188783012e-10 2.035277897e-11 4.851462635e-10 1.204126336e-11 8.606831089e-10 4.873574775e-10 3.09849189e-10 6.739941351e-12 3.749651504e-10 2.020801333e-12 3.063682532e-10 7.35241068e-10 2.795045186e-11 4.385800315e-10 6.082723203e-11 4.984824641e-11 1.657997115e-11 1.511415566e-10 7.88495605e-13 4.675810509e-12 4.486646984e-13 7.024034589e-13 9.818916236e-17 9.531335968e-14 9.969013621e-17 3.271445136e-19 2.830299835e-14 4.455535116e-19 4.028005915e-15 7.711809055e-27 2.257165983e-19 0 6.545455871e-26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.461729271e-18 2.584512781e-24 2.864857045e-23 4.701568949e-17 6.027963898e-19 7.24053157e-18 4.840896739e-19 5.262846574e-16 2.676877791e-12 3.431584913e-17 1.928156598e-17 5.538498143e-14 3.399014378e-11 1.571862309e-11 4.614985054e-11 7.347610721e-18 1.478863761e-10 6.507249158e-10 1.483034031e-10 9.127515667e-12 1.370649209e-10 4.768095988e-10 7.24401009e-10 1.163699206e-09 1.906737672e-10 4.277535986e-10 6.359128175e-10 7.140985826e-10 6.843404999e-11 1.293251074e-09 8.357904953e-10 1.003386388e-09 3.486164288e-10 1.369489293e-10 9.721184918e-10 4.222116267e-11 1.917940672e-09 1.887012242e-09 1.424867927e-09 2.358217189e-09 1.151086514e-09 1.309943483e-09 1.069847672e-09 9.519552102e-10 2.146656697e-09 2.595266673e-09 7.186045432e-10 1.977057028e-09 2.01550663e-09 1.264799044e-09 3.175333423e-09 1.071379267e-09 1.586341486e-09 1.870564049e-09 2.098270576e-09 2.780565177e-09 2.847729475e-09 1.152386555e-09 3.499183455e-09 2.785890399e-09 2.167622878e-09 2.346140252e-09 1.304330098e-09 1.764403226e-09 2.658803585e-09 3.192181608e-09 3.027124819e-09 2.209974709e-09 1.213073304e-09 2.427556395e-09 2.607590267e-09 2.507601972e-09 2.160986886e-09 2.624131189e-09 4.335192782e-09 1.575127674e-09 2.753930397e-09 3.618228964e-09 1.926866872e-09 1.761734237e-09 2.244112715e-09 1.894039506e-09 2.167794882e-09 2.041887956e-09 1.492876722e-09 2.568598077e-09 2.215688062e-09 2.106357973e-09 2.140674999e-09 1.132378283e-09 2.120190731e-09 1.74693537e-09 2.128927989e-09 2.730121242e-09 2.580028245e-09 2.168414303e-09 2.380984843e-09 1.384075977e-09 3.050462652e-09 2.509851039e-09 1.562460502e-09 2.101765336e-09 1.13272536e-09 1.168416781e-09 2.105548039e-09 3.322758686e-09 1.520478251e-09 1.888345966e-09 1.439128883e-09 3.235617492e-09 2.206360322e-09 2.284772033e-09 1.453062563e-09 2.470150753e-09 1.342910884e-09 5.288148359e-10 1.595527262e-09 2.639416316e-09 2.650438289e-09 2.715318888e-09 1.975795251e-09 2.500380675e-09 1.717568086e-09 1.680740895e-09 9.141379244e-10 3.765668433e-09 1.110938741e-09 2.340787671e-09 8.051522417e-10 7.001971757e-10 1.202398707e-09 4.741616881e-10 1.503804805e-09 5.838197462e-10 1.528545953e-09 7.67299508e-10 9.396904855e-10 9.01865324e-10 5.517792093e-10 2.34759555e-10 8.117528317e-10 8.921843828e-10 8.594518484e-10 7.494023357e-10 4.095807473e-10 7.39177816e-10 4.252443595e-10 3.651440745e-10 3.404075136e-10 6.089016649e-10 3.228922192e-10 3.267113643e-10 1.168124241e-11 1.53499774e-10 2.110954105e-10 1.049716044e-13 2.664140118e-10 3.08701543e-13 2.496217755e-13 1.341647372e-11 2.071609967e-12 8.185924529e-13 1.000359637e-16 2.325399738e-15 3.075568258e-14 2.502723795e-19 2.787191677e-19 2.438075761e-19 1.577725577e-17 1.941607283e-19 9.217540878e-18 1.525806499e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.897944734e-23 1.897552958e-22 1.14465633e-14 2.164689787e-15 1.639377636e-17 2.623929371e-13 3.676694511e-14 6.762924401e-14 1.336556443e-10 3.508025784e-11 8.021894492e-15 2.82764436e-12 3.32970186e-13 4.735990867e-11 2.999771387e-10 1.620802141e-10 1.283812746e-14 6.006798593e-10 8.151683876e-10 1.002436812e-09 1.049656333e-09 3.91350088e-10 6.313236309e-10 3.167382138e-10 1.293372383e-09 6.912955419e-10 9.09520474e-10 9.560814255e-10 6.336357513e-10 7.102698847e-10 1.290597623e-09 1.089881638e-09 1.671668428e-09 7.505270133e-10 1.299324415e-09 1.786047473e-09 2.61515522e-09 2.504505299e-09 2.124273058e-09 2.156516393e-09 4.427544703e-09 2.632998469e-09 3.479156981e-09 1.842471895e-09 4.24832955e-09 3.045456492e-09 2.423571711e-09 1.440835879e-09 3.511586189e-09 3.281847223e-09 3.096884419e-09 1.524718494e-09 3.487167715e-09 2.491611328e-09 2.729795813e-09 3.215141963e-09 1.800213224e-09 2.532831606e-09 3.434957138e-09 3.023210994e-09 2.946724757e-09 2.61890972e-09 2.705153943e-09 4.400325039e-09 2.495952128e-09 3.066264792e-09 3.143382975e-09 4.318816817e-09 4.335396477e-09 4.105297131e-09 4.66229054e-09 3.752936026e-09 3.928438253e-09 3.542338428e-09 2.517552035e-09 4.386604014e-09 3.286480792e-09 3.281099351e-09 1.362452138e-09 2.465740196e-09 3.687340056e-09 5.578318054e-09 5.475153342e-09 4.281763269e-09 3.560198014e-09 2.326615647e-09 4.405832426e-09 3.761456087e-09 3.434453168e-09 3.321477987e-09 2.836418636e-09 2.86955046e-09 3.420503014e-09 2.963993454e-09 2.119143271e-09 5.111824461e-09 3.424017642e-09 4.767883054e-09 2.065595176e-09 4.766600028e-09 2.00257208e-09 3.359266723e-09 4.2168644e-09 1.306445005e-09 3.353857123e-09 3.382615783e-09 2.952279009e-09 4.310438322e-09 2.63257307e-09 3.462057283e-09 4.203692008e-09 3.373295658e-09 2.437211939e-09 2.879092243e-09 2.596613191e-09 1.580010276e-09 4.297424892e-09 3.736181488e-09 3.45232155e-09 3.144070295e-09 3.850733186e-09 3.521714483e-09 3.779612528e-09 2.247236627e-09 2.85604373e-09 2.209756482e-09 1.619335139e-09 2.956518095e-09 3.100204768e-09 1.879443353e-09 5.929396789e-10 1.408567816e-09 1.60895972e-09 2.180490457e-09 1.448163837e-09 2.203052615e-09 2.195075716e-09 1.228751579e-09 1.647582042e-09 8.616858064e-10 1.724119997e-09 8.211898496e-10 9.51297319e-10 1.23587495e-09 9.807945653e-10 7.099404704e-10 1.348761788e-09 2.445063832e-10 6.030530672e-10 3.864037741e-11 6.277409497e-10 1.697984885e-10 2.016556713e-12 3.462890587e-10 6.000443872e-10 2.61316658e-11 2.446710665e-11 1.453750833e-10 2.243131114e-11 2.814135051e-11 2.335124423e-15 4.603371355e-15 1.992599334e-16 1.286680289e-16 9.060651065e-20 1.06597209e-17 9.109523969e-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.566067e-20 4.428022981e-17 7.601822908e-23 5.718528098e-15 7.389945609e-15 2.59102801e-14 1.263551159e-11 6.316698731e-15 1.427986157e-11 1.245585361e-11 2.421117042e-13 5.450363326e-12 7.86269389e-16 6.252700749e-10 5.712689231e-10 4.799554355e-10 9.121034093e-10 6.58632038e-10 1.126394516e-09 9.885471415e-10 1.893231718e-09 9.465987114e-10 1.574415685e-09 1.309300459e-09 2.183375948e-09 2.231829704e-09 2.805432783e-09 8.41146263e-10 1.990288851e-09 3.004299582e-09 1.917466537e-09 2.009990784e-09 1.978197688e-09 2.171012486e-09 1.958349439e-09 1.901859329e-09 2.659100571e-09 2.98036697e-09 2.331620427e-09 2.482297802e-09 2.892565907e-09 2.347917275e-09 4.194240569e-09 1.864925506e-09 4.421037926e-09 2.58193519e-09 3.377641749e-09 3.323195187e-09 3.196341825e-09 4.075897803e-09 2.187803937e-09 5.282369911e-09 4.617795865e-09 3.760891316e-09 2.510042983e-09 3.377339274e-09 8.178424395e-09 5.753549444e-09 4.167409723e-09 3.19991121e-09 3.250607685e-09 5.209995863e-09 3.640642572e-09 5.068232595e-09 7.093755561e-09 6.184263735e-09 3.486170637e-09 6.224814433e-09 4.844970637e-09 6.064643284e-09 5.726971623e-09 3.468614538e-09 2.653840038e-09 5.588805838e-09 3.779227771e-09 5.442510873e-09 2.923075195e-09 3.86314543e-09 5.473011634e-09 5.426176957e-09 6.70819358e-09 3.815700525e-09 4.193305029e-09 6.640843606e-09 3.501288625e-09 3.214365089e-09 6.149883775e-09 5.173668809e-09 4.704156703e-09 5.471941564e-09 5.783821058e-09 5.407710184e-09 3.157408879e-09 2.349257987e-09 5.784620348e-09 5.939337051e-09 4.870479463e-09 4.663401099e-09 4.344799462e-09 4.298297057e-09 4.496909796e-09 4.999939027e-09 4.943196576e-09 5.57902372e-09 3.945365693e-09 3.035014319e-09 5.538150308e-09 3.89674644e-09 4.180122249e-09 5.429131405e-09 5.511646084e-09 4.779485452e-09 4.567691715e-09 3.297843093e-09 6.579236217e-09 4.455187748e-09 4.710420575e-09 3.500608553e-09 2.933308424e-09 4.200324813e-09 3.362192671e-09 4.063611537e-09 4.322065292e-09 4.426285177e-09 3.199891448e-09 2.077262417e-09 2.316586266e-09 3.663322864e-09 2.6262599e-09 3.783565809e-09 2.633335315e-09 3.626320782e-09 6.018025726e-10 1.966292301e-09 1.197216913e-09 1.881007521e-09 2.033972632e-09 1.678264939e-09 1.527605786e-09 1.975191365e-09 1.0574606e-09 9.482840204e-10 2.085923288e-09 5.662819716e-10 3.014319365e-10 3.823195711e-10 6.002797554e-10 1.0121418e-09 6.187143354e-10 9.947173927e-10 1.340025832e-09 9.958014966e-10 3.267098638e-11 9.812579226e-12 4.714731529e-14 1.351566768e-11 1.70893318e-12 6.925773293e-12 9.141902655e-11 6.777874654e-18 7.783966112e-12 4.053462943e-14 4.72856418e-16 5.672808965e-14 5.086731728e-16 3.599497817e-17 7.428107508e-19 3.890394703e-19 1.66932662e-22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.27175689e-18 9.952534287e-19 1.999807624e-20 2.685623794e-23 1.791784933e-16 2.416956942e-14 1.050447709e-13 1.205771702e-14 1.412835371e-12 1.11182692e-17 1.155385289e-11 6.443916092e-11 6.990119661e-14 2.402836181e-12 4.44562482e-13 1.898326302e-10 6.017660238e-10 5.229994073e-10 6.229960033e-10 6.610712497e-11 1.452788846e-10 2.531997757e-10 1.137304912e-09 7.736893465e-10 1.846835752e-09 1.330144549e-09 2.613009744e-09 1.073092177e-09 3.828131208e-09 3.237381607e-09 1.855781882e-09 2.308090139e-09 2.595057961e-09 2.687070181e-09 2.529349723e-09 2.057970538e-09 3.470821911e-09 3.794762255e-09 3.140342228e-09 2.285439157e-09 2.394363707e-09 3.381370522e-09 3.326418255e-09 1.717082902e-09 3.983399811e-09 5.347943465e-09 3.228117653e-09 3.635367028e-09 5.286150946e-09 6.441745228e-09 5.487838394e-09 4.428346506e-09 5.43907265e-09 3.949839549e-09 4.400365677e-09 5.626304859e-09 3.751748952e-09 6.351339522e-09 8.229858945e-09 4.363789354e-09 5.918837817e-09 5.838885338e-09 6.932313786e-09 4.802863857e-09 6.091411569e-09 4.149312379e-09 6.258122186e-09 6.641483325e-09 4.882821503e-09 5.404333242e-09 7.085048792e-09 4.309004669e-09 6.153424093e-09 5.838294694e-09 6.58840975e-09 5.647067473e-09 6.299147206e-09 6.077535596e-09 5.269112686e-09 8.09006477e-09 5.573201778e-09 4.851684359e-09 6.232548382e-09 6.438527211e-09 6.841121897e-09 5.059688571e-09 5.185561804e-09 6.136412737e-09 6.002429335e-09 2.526927501e-09 1.038977176e-08 4.719129049e-09 5.895799823e-09 5.835412882e-09 5.605649653e-09 6.198485159e-09 5.216312644e-09 5.334994415e-09 4.853589491e-09 5.102909813e-09 3.973106085e-09 6.343147345e-09 6.20598402e-09 4.889052643e-09 5.157252579e-09 4.303855839e-09 7.938820406e-09 6.757142419e-09 5.12545582e-09 3.764274243e-09 3.741955252e-09 6.005288012e-09 6.415434621e-09 2.656428898e-09 8.398984329e-09 7.031916e-09 5.163116666e-09 5.752749739e-09 6.628155837e-09 3.704809323e-09 2.977014882e-09 5.88750024e-09 3.995253931e-09 2.822415069e-09 2.987948615e-09 3.312240856e-09 3.417208001e-09 3.970758017e-09 3.789619147e-09 2.500806004e-09 3.266484979e-09 3.358149931e-09 2.068087941e-09 3.289709401e-09 4.345294724e-09 2.640491003e-09 3.969979187e-09 3.52224216e-09 3.466874195e-09 2.125897812e-09 2.746254163e-09 2.770313503e-09 2.026071874e-09 1.206706539e-09 1.938209786e-09 3.084750323e-09 2.277738376e-09 7.123038418e-10 7.407946732e-10 1.869762005e-09 9.252865324e-10 1.782336272e-09 6.967937787e-10 9.174060857e-10 2.198757398e-10 6.114938778e-11 3.013049123e-10 9.31676633e-13 1.187203794e-12 7.846490034e-12 1.972161187e-10 2.753446715e-12 2.297313849e-12 2.904300261e-15 3.391379759e-15 3.037742785e-14 1.371352792e-16 5.643538063e-15 1.191908932e-15 4.347061812e-19 5.585253364e-22 0 4.802508042e-20 0 0 9.724421158e-13 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.700724772e-18 2.993855936e-18 2.093919781e-17 3.569035704e-18 1.307723277e-15 1.459123144e-14 1.548118906e-12 2.467658258e-11 5.049450451e-14 1.584038307e-10 4.213655748e-11 6.897407801e-11 3.625254787e-13 1.550538973e-10 4.944837978e-10 1.050820697e-09 6.224561161e-10 8.408319856e-10 7.220491803e-10 1.330063587e-09 9.601545009e-10 1.212787499e-09 1.279973059e-09 1.203169105e-09 1.589616676e-09 2.298895262e-09 3.359504411e-09 1.793216501e-09 3.163714629e-09 2.197241256e-09 4.496918746e-09 3.078254394e-09 2.85858323e-09 4.530437395e-09 3.70379052e-09 4.335698393e-09 2.852096181e-09 4.639004582e-09 4.647071461e-09 3.633904885e-09 4.97709808e-09 4.36504378e-09 2.908637728e-09 4.874311541e-09 6.249433555e-09 3.735369775e-09 7.377501079e-09 4.087746433e-09 4.470712327e-09 6.211544784e-09 6.414728942e-09 5.027831415e-09 6.786438695e-09 6.908660681e-09 4.948449024e-09 7.35396472e-09 7.347497054e-09 6.356195916e-09 6.675025729e-09 7.224246228e-09 7.313825925e-09 6.896910371e-09 7.536291046e-09 9.498211101e-09 5.615711656e-09 7.255015017e-09 6.008177366e-09 7.705721393e-09 7.042680372e-09 6.084116208e-09 7.094891287e-09 5.719969217e-09 4.625386309e-09 6.398956887e-09 5.903758842e-09 5.869596636e-09 5.449177086e-09 6.674586629e-09 4.994283011e-09 7.626142746e-09 4.77634103e-09 8.293257823e-09 7.962419732e-09 7.349174712e-09 7.105561362e-09 4.664001549e-09 6.446187058e-09 5.947395103e-09 5.512872576e-09 6.17461136e-09 7.949149502e-09 9.149461507e-09 8.676598648e-09 6.853800586e-09 7.229113195e-09 6.540068318e-09 6.446450779e-09 7.001078086e-09 7.67304141e-09 1.106286743e-08 8.152052639e-09 4.690672372e-09 6.25616641e-09 7.033847167e-09 9.122904517e-09 5.816665912e-09 6.346730845e-09 1.086704667e-08 6.26811797e-09 5.579576739e-09 7.963842487e-09 5.601551273e-09 6.08725677e-09 6.126898987e-09 7.900329019e-09 5.676529015e-09 7.242073102e-09 4.618383707e-09 5.620631446e-09 5.467883649e-09 4.915047374e-09 5.383431906e-09 6.066623404e-09 4.712476946e-09 5.833094767e-09 6.226796571e-09 5.668628392e-09 5.701307275e-09 4.878733933e-09 4.687825694e-09 2.301100099e-09 4.052696161e-09 4.049737589e-09 3.456895478e-09 3.194598163e-09 3.875282418e-09 1.938271792e-09 2.289373846e-09 2.651701114e-09 3.205758981e-09 2.62579259e-09 3.06464018e-09 2.496339989e-09 1.708436028e-09 1.57281423e-09 2.023343899e-09 1.347831998e-09 8.437944764e-10 2.358028579e-09 6.358989703e-10 2.747755226e-10 8.711027373e-10 6.079615959e-10 1.116994188e-10 3.024429033e-10 9.853785445e-13 2.396910096e-10 2.042312315e-11 2.46355107e-10 1.036711636e-10 7.910463111e-12 6.859743734e-12 2.999799668e-12 9.221865878e-14 1.758321829e-18 2.775627019e-17 3.438693545e-18 3.354633071e-18 2.465176941e-19 7.323806116e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.437372797e-21 1.821468879e-18 5.814449746e-18 1.771349165e-18 4.512846503e-17 8.683579257e-16 1.714700331e-15 4.04005561e-16 5.257132331e-13 3.587296089e-12 1.562448061e-11 1.607399041e-10 5.548589089e-12 8.875299457e-11 2.420126313e-10 4.856053306e-10 9.22968572e-10 2.534352874e-10 1.963075128e-09 8.098635923e-10 1.373825735e-09 1.449558658e-09 8.655560224e-10 1.912431235e-09 2.229793641e-09 1.555168159e-09 3.226838177e-09 1.894282557e-09 9.21368965e-10 3.075186815e-09 4.743934426e-09 4.516505802e-09 5.00956067e-09 3.791850026e-09 2.497602055e-09 5.104754565e-09 3.583914827e-09 4.567712922e-09 6.251045676e-09 3.591665584e-09 4.794533842e-09 3.137525334e-09 7.201039771e-09 4.463337882e-09 5.412477761e-09 5.645070645e-09 7.518845132e-09 4.134739704e-09 6.135224674e-09 8.240449967e-09 6.252568368e-09 8.259593259e-09 8.899162226e-09 8.19943251e-09 6.884585983e-09 9.339507601e-09 5.685231446e-09 9.019125749e-09 7.952898329e-09 1.018737682e-08 7.762371857e-09 8.163046788e-09 7.712282593e-09 6.521529348e-09 1.157627927e-08 1.051424562e-08 9.957186476e-09 9.842031659e-09 6.240732489e-09 6.974592404e-09 8.115920204e-09 9.308779768e-09 9.282517619e-09 6.065343429e-09 7.79818283e-09 1.060560739e-08 1.114970421e-08 9.998706474e-09 1.213035296e-08 7.576549031e-09 8.198629504e-09 6.544252181e-09 7.395438012e-09 8.52016116e-09 7.089233688e-09 1.132104555e-08 7.851516218e-09 8.721544014e-09 6.455304389e-09 6.953206514e-09 9.36689469e-09 9.857399149e-09 6.182528414e-09 8.123852572e-09 8.900817904e-09 5.665306648e-09 6.984437619e-09 6.411715685e-09 7.830065947e-09 8.393107849e-09 7.479202009e-09 7.965025025e-09 1.135099961e-08 6.835198837e-09 1.072641534e-08 8.770649429e-09 8.50733431e-09 8.842078819e-09 6.81773516e-09 8.730334215e-09 9.914964649e-09 6.431440756e-09 5.723768212e-09 7.523227244e-09 8.134040888e-09 7.216844129e-09 5.971266599e-09 9.420960726e-09 7.632826282e-09 6.372360377e-09 8.409154054e-09 7.80747926e-09 6.340476699e-09 6.851970874e-09 6.009840299e-09 4.106104006e-09 6.240680384e-09 6.840495977e-09 5.632736238e-09 6.188894441e-09 5.27263261e-09 6.771596735e-09 3.287083923e-09 4.844066587e-09 5.496814227e-09 3.823677166e-09 3.853830004e-09 3.590635414e-09 2.404412331e-09 3.575829208e-09 2.347334147e-09 2.602987201e-09 2.283255432e-09 2.388010902e-09 3.175276717e-09 2.466874262e-09 2.730214681e-09 1.821521213e-09 1.588473124e-09 1.883704579e-09 6.753880633e-10 1.218561894e-09 1.739742998e-09 5.905190476e-10 9.083279231e-10 4.015415999e-10 6.000027558e-10 1.653444267e-10 9.452962022e-11 7.489691785e-12 1.464273038e-10 5.119154108e-12 3.517019621e-13 4.290915957e-12 3.507181948e-16 5.799572556e-14 1.81306389e-17 3.97899949e-15 1.29368911e-15 0 9.857902779e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.631798198e-19 7.099570849e-24 6.700799021e-20 4.536618159e-21 2.080897146e-15 5.796573888e-18 1.749094008e-12 5.29505163e-15 4.649951254e-12 3.73142452e-11 9.071055734e-15 1.784021644e-10 3.383806441e-15 1.772789171e-10 2.549925944e-10 3.707159915e-10 8.852416954e-10 6.3031744e-10 8.0705324e-10 1.665981278e-09 1.934135653e-09 2.093272773e-09 2.170419243e-09 1.829425581e-09 1.979340381e-09 2.192217945e-09 2.603911759e-09 2.706242201e-09 3.84972083e-09 2.682061804e-09 3.200871727e-09 3.926100361e-09 4.005912816e-09 3.391663318e-09 4.357929866e-09 3.441688852e-09 4.686681351e-09 3.615202567e-09 4.706500663e-09 6.175049742e-09 7.202189058e-09 4.974657401e-09 5.752434648e-09 6.797972767e-09 5.775838068e-09 5.26161673e-09 7.65148627e-09 7.013992943e-09 1.019459537e-08 8.777153047e-09 7.739551023e-09 1.04936703e-08 6.697319439e-09 7.860364431e-09 1.051896056e-08 1.177559627e-08 1.020363129e-08 7.528886969e-09 8.755810128e-09 1.125453608e-08 1.218496915e-08 8.321491359e-09 8.495583659e-09 9.300938402e-09 9.039108127e-09 7.146864539e-09 8.608378998e-09 1.143608586e-08 9.370654756e-09 9.821822696e-09 7.861103607e-09 1.005748413e-08 1.250189014e-08 8.204168902e-09 9.919699941e-09 1.177208421e-08 7.954183327e-09 8.333094112e-09 1.072477657e-08 7.1610434e-09 1.027705169e-08 1.071314944e-08 9.115167667e-09 7.824973893e-09 9.33641234e-09 8.531559677e-09 9.657544017e-09 8.920299682e-09 9.769140528e-09 9.787443082e-09 1.118949214e-08 1.02847407e-08 1.116334401e-08 8.144563958e-09 8.943164228e-09 1.128750672e-08 1.151298557e-08 8.76166256e-09 9.844087406e-09 9.745581741e-09 9.250538543e-09 9.068702869e-09 1.00972037e-08 7.710655352e-09 9.449751428e-09 7.826992813e-09 7.49199204e-09 1.019699302e-08 1.061451829e-08 9.459483082e-09 9.059064009e-09 9.245226765e-09 9.516812048e-09 8.511554407e-09 9.449483132e-09 1.03907523e-08 1.076407656e-08 1.040759891e-08 6.626758718e-09 8.168483796e-09 8.436306666e-09 9.498166175e-09 8.29369327e-09 6.052295843e-09 7.852462044e-09 4.542314833e-09 6.371084046e-09 4.51819075e-09 6.375280678e-09 7.316494635e-09 5.44766744e-09 5.509035593e-09 4.539830074e-09 5.379075516e-09 5.389381087e-09 4.300075202e-09 3.692216421e-09 5.00171951e-09 3.440248817e-09 1.339818049e-09 4.479799549e-09 3.27793977e-09 3.462686534e-09 3.248340426e-09 2.446768315e-09 2.579562528e-09 2.760847114e-09 2.844730254e-09 2.144059422e-09 2.247785576e-09 1.586687249e-09 2.091973401e-09 2.209356261e-09 6.925499016e-10 6.713806894e-10 3.280270764e-10 1.2235078e-10 5.27554562e-10 2.266199681e-10 1.067990468e-10 7.497078538e-13 1.571995595e-10 5.799212638e-12 1.353669956e-14 2.655319795e-16 1.463199487e-17 1.734627615e-15 2.875472732e-18 7.368478247e-18 7.410371059e-22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 6.58031316e-19 3.085770788e-26 4.744932965e-18 2.403673884e-20 4.189539312e-18 3.491708568e-15 2.981121149e-15 2.166689104e-15 1.935008187e-13 1.322170366e-13 4.675660534e-11 3.962644935e-11 8.836032584e-11 8.316413681e-11 7.44048869e-11 3.587518172e-11 7.467014445e-10 1.184715484e-10 8.38342122e-10 1.434633231e-09 4.008870316e-10 6.050378309e-10 6.407969415e-10 2.515438571e-09 2.795101291e-09 2.187668228e-09 3.413648553e-09 4.622331449e-09 3.475618135e-09 5.022913127e-09 3.202959221e-09 4.579938368e-09 4.949640167e-09 7.283439305e-09 4.050187455e-09 5.311267755e-09 4.468021425e-09 6.068433848e-09 5.471516756e-09 6.034364215e-09 7.814598733e-09 4.711865844e-09 6.889339709e-09 6.386665945e-09 8.111997303e-09 7.837619031e-09 8.936743432e-09 5.430912184e-09 9.021045506e-09 8.497403815e-09 7.730913702e-09 8.26896055e-09 9.059559661e-09 1.123674127e-08 9.843177593e-09 1.037131938e-08 8.852442035e-09 1.179291463e-08 1.137720102e-08 8.765530274e-09 1.038832681e-08 9.142350772e-09 7.605507793e-09 1.138280894e-08 1.33190281e-08 1.19528654e-08 1.267064545e-08 1.111114242e-08 1.074221267e-08 1.230183024e-08 9.080063502e-09 1.310913304e-08 1.028128948e-08 9.28160129e-09 8.907281239e-09 1.098142359e-08 1.029362636e-08 8.436261878e-09 1.049447584e-08 1.14875324e-08 1.458658789e-08 8.548714476e-09 1.013380971e-08 1.099818306e-08 1.204169918e-08 1.039168973e-08 1.465027699e-08 1.231031149e-08 1.028016179e-08 1.006444115e-08 1.199841862e-08 1.203344229e-08 1.130114812e-08 9.383883274e-09 8.760756106e-09 1.161391649e-08 1.028583505e-08 8.814851921e-09 1.00967423e-08 1.424500375e-08 1.20823914e-08 1.095370448e-08 1.08026966e-08 1.179234183e-08 1.09316725e-08 1.069242553e-08 8.982580092e-09 9.186021346e-09 1.073682538e-08 1.069962509e-08 9.996706275e-09 8.077349763e-09 7.878611798e-09 9.291656418e-09 7.567804877e-09 9.300628883e-09 1.164096787e-08 1.27668622e-08 6.814756374e-09 8.020100299e-09 8.597686348e-09 9.996890662e-09 9.989778894e-09 1.201297188e-08 8.743168704e-09 7.037436068e-09 6.599317304e-09 6.87662857e-09 7.807450478e-09 7.815682583e-09 5.368401007e-09 5.196765452e-09 8.397671185e-09 4.908193461e-09 6.404814851e-09 3.848301238e-09 7.970926996e-09 2.444061099e-09 5.127372661e-09 4.804323835e-09 2.566928392e-09 4.0679978e-09 4.044114349e-09 5.572117123e-09 2.755138554e-09 3.945093567e-09 4.482191215e-09 1.077324607e-09 3.27072771e-09 1.986864141e-09 1.783005924e-09 2.795539193e-09 1.483909081e-09 1.645306405e-09 1.041531737e-09 6.065017741e-10 3.694897667e-10 1.728815697e-11 4.5952986e-10 2.127732337e-11 2.755459903e-10 5.057895292e-11 3.670762486e-11 2.751691557e-13 3.239487974e-14 5.209433284e-14 1.109605078e-15 5.076663632e-16 1.238774516e-17 2.985891624e-18 2.794459714e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.650062463e-19 2.045320317e-17 2.74972003e-17 3.894466289e-17 2.075599041e-15 1.197932823e-14 6.079597532e-13 6.087885046e-12 2.871854449e-11 3.960402003e-12 1.269894797e-10 8.93498619e-11 1.749502916e-11 1.056615902e-10 1.167261083e-09 7.92783659e-10 9.010318818e-10 2.3263281e-09 7.579056599e-10 1.300823265e-09 2.161678017e-09 1.381667994e-09 2.114516147e-09 2.880690213e-09 3.288467985e-09 3.852586025e-09 3.545518643e-09 4.893949694e-09 5.713444365e-09 4.47579983e-09 4.748813992e-09 5.40440268e-09 4.484604357e-09 4.335284542e-09 7.29736853e-09 4.668408073e-09 7.903933777e-09 8.363132305e-09 6.669237008e-09 8.625321272e-09 7.600066172e-09 9.450171283e-09 8.799186149e-09 6.676626492e-09 9.354623622e-09 5.663058193e-09 8.176413421e-09 1.189986581e-08 7.389630476e-09 8.69440303e-09 1.21556742e-08 7.475215753e-09 1.320566492e-08 1.036900409e-08 1.250103931e-08 1.11279025e-08 1.067977747e-08 1.290343492e-08 1.037561519e-08 1.400757515e-08 1.177285721e-08 1.171375544e-08 1.168653307e-08 1.255837065e-08 8.839917197e-09 1.409225333e-08 1.249181838e-08 1.241448178e-08 9.72207024e-09 1.603691639e-08 1.138183049e-08 1.074058003e-08 1.180206245e-08 1.276512979e-08 1.070487211e-08 1.317417667e-08 1.214982683e-08 1.3896759e-08 1.368025367e-08 1.52998558e-08 1.1945909e-08 1.154699911e-08 1.410276709e-08 8.968053485e-09 1.244565376e-08 1.169106231e-08 1.205847127e-08 1.338567384e-08 8.928914262e-09 7.187679748e-09 1.234104372e-08 1.294163323e-08 1.280531992e-08 1.381343175e-08 1.00487505e-08 1.194334017e-08 1.330163992e-08 1.40245449e-08 9.8833751e-09 1.450461365e-08 1.331942828e-08 1.25069402e-08 1.297680108e-08 1.392890656e-08 1.098856501e-08 1.182562385e-08 9.260370533e-09 1.522565923e-08 1.292182422e-08 1.299004755e-08 1.226810727e-08 1.354772513e-08 1.105934608e-08 8.884723073e-09 6.123252288e-09 1.041050852e-08 9.696259174e-09 1.102014885e-08 9.73674195e-09 1.03725699e-08 1.084367806e-08 1.063419542e-08 8.33505719e-09 1.000556823e-08 7.538682666e-09 7.956040023e-09 7.71947285e-09 5.187394177e-09 6.454243383e-09 9.924884566e-09 6.179748954e-09 8.369999105e-09 8.966364333e-09 6.586661745e-09 6.409289348e-09 3.687183947e-09 5.048056207e-09 3.491081339e-09 5.043473106e-09 5.776199534e-09 5.74687215e-09 7.211829246e-09 5.766171323e-09 3.773947349e-09 3.490395388e-09 4.512672667e-09 3.342958945e-09 3.07571583e-09 1.596186419e-09 1.433034179e-09 1.342888999e-09 1.137018811e-09 9.036298973e-10 1.483010697e-09 1.197901412e-09 3.007292034e-10 8.926762062e-11 3.709366564e-11 5.753280767e-13 7.825908359e-11 9.00036075e-13 7.847012103e-13 3.862330994e-13 1.391695053e-14 4.116833071e-13 1.378000744e-14 2.080013624e-17 2.940246164e-16 1.209272652e-18 3.522593047e-22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.817551757e-24 8.923183409e-21 4.848159272e-16 4.26220023e-17 7.403672622e-14 8.822817373e-15 5.359892631e-13 3.74662475e-15 4.092491201e-11 3.514777823e-11 5.078323898e-12 2.205608597e-10 1.599309213e-10 3.725510915e-10 8.58552025e-10 9.829509643e-10 7.553328474e-10 1.661773771e-09 2.712154727e-09 2.920548721e-09 2.015169742e-09 3.751331277e-09 3.34180773e-09 3.037458393e-09 2.104612669e-09 3.90617363e-09 4.605297474e-09 2.752169708e-09 4.705970091e-09 7.32912593e-09 2.295889629e-09 5.365098074e-09 4.644096865e-09 6.621083912e-09 5.681381655e-09 6.490115502e-09 6.10934953e-09 6.923819247e-09 9.810447648e-09 7.443817071e-09 7.948383753e-09 9.817791352e-09 7.125411611e-09 1.0850221e-08 9.709420174e-09 1.092936315e-08 8.936824548e-09 1.173599566e-08 1.12531918e-08 1.045616079e-08 1.340175527e-08 8.855483061e-09 1.253587971e-08 1.089902527e-08 1.0332541e-08 1.577215562e-08 1.234857642e-08 1.338591171e-08 1.167663845e-08 1.377008068e-08 1.215498818e-08 1.193209081e-08 9.821397611e-09 1.174637655e-08 1.367357506e-08 1.469655602e-08 1.226205442e-08 1.401714859e-08 1.081693858e-08 1.18390855e-08 1.578763727e-08 1.466078336e-08 1.254867008e-08 1.30376733e-08 1.331539884e-08 1.398794876e-08 1.447875004e-08 1.610093351e-08 1.06526633e-08 1.534925421e-08 1.410731218e-08 1.382796926e-08 1.63953554e-08 1.170912238e-08 1.082509744e-08 1.382226662e-08 1.414543207e-08 1.674427899e-08 1.338219009e-08 1.643859304e-08 1.394760392e-08 1.596870859e-08 9.018514915e-09 9.589716288e-09 1.58648581e-08 1.499358805e-08 1.293445999e-08 1.328672865e-08 1.127678844e-08 1.303626755e-08 1.493505103e-08 1.208111023e-08 1.360104408e-08 1.041986238e-08 1.20406916e-08 1.096713632e-08 1.320261285e-08 1.211613985e-08 1.072426002e-08 1.420809523e-08 1.199497544e-08 1.151997219e-08 9.115962882e-09 1.382711525e-08 9.395775327e-09 1.217588409e-08 1.256520997e-08 1.177654993e-08 1.25238096e-08 1.114714879e-08 8.438258284e-09 1.078759528e-08 8.849266886e-09 8.943470112e-09 1.296999555e-08 1.05076647e-08 9.843512541e-09 8.491830187e-09 8.898824929e-09 1.017902285e-08 7.867258532e-09 8.352714555e-09 7.803114765e-09 5.519110491e-09 8.852076375e-09 8.038976911e-09 3.89029121e-09 6.592293198e-09 5.195159067e-09 4.224477615e-09 4.334717378e-09 3.379726864e-09 2.823503903e-09 5.234127215e-09 3.689039375e-09 3.682909872e-09 1.998926011e-09 3.626518048e-09 1.914900561e-09 8.465070352e-10 2.891968769e-09 1.11477724e-09 9.823357003e-10 1.658705021e-09 6.6094111e-10 6.661670616e-10 2.638977073e-10 5.46718987e-11 1.040348235e-12 7.983478273e-11 7.241036571e-12 1.713748108e-12 1.642528758e-12 3.832450779e-12 1.959187161e-15 8.77869134e-15 4.661886303e-17 8.350207939e-18 4.919015162e-18 1.670741128e-21 2.521972392e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.039930665e-19 5.677745698e-19 7.223496121e-18 5.874996655e-17 1.327350577e-17 4.750245175e-16 4.906358453e-14 8.081179757e-12 6.959163451e-12 2.292749291e-10 1.353697191e-10 5.254927211e-13 2.625244723e-10 8.566797999e-10 4.535207094e-11 8.149460594e-10 2.364981292e-09 1.102421898e-09 2.232799267e-09 2.535533544e-09 2.622309193e-09 4.265541584e-09 2.487397522e-09 1.578280531e-09 5.054765167e-09 3.218597045e-09 3.007896029e-09 4.985294734e-09 5.488178989e-09 7.082128409e-09 5.651208087e-09 4.702424673e-09 6.009443166e-09 6.684415092e-09 6.792081583e-09 8.207971502e-09 8.751270006e-09 6.240154626e-09 7.615399577e-09 9.308475184e-09 9.287355855e-09 1.185744172e-08 9.968690035e-09 6.200476476e-09 8.881311872e-09 9.694203588e-09 1.00472958e-08 1.20427447e-08 1.253851753e-08 1.05530156e-08 1.056653782e-08 1.329449306e-08 1.96101437e-08 1.423618787e-08 1.380035726e-08 1.487357945e-08 1.376711339e-08 1.388198191e-08 1.463681543e-08 1.288783264e-08 1.296389588e-08 1.77438247e-08 1.166823792e-08 1.443976958e-08 1.441647879e-08 1.749083054e-08 1.284074138e-08 1.371244567e-08 1.387691017e-08 1.35368823e-08 1.547855386e-08 1.512857498e-08 1.57105249e-08 1.39718549e-08 1.554308992e-08 1.292570422e-08 1.315209691e-08 2.11751355e-08 1.493689114e-08 1.322998716e-08 1.527550321e-08 1.997448092e-08 2.027348619e-08 1.729759134e-08 1.450228092e-08 1.630530693e-08 1.140116853e-08 1.461454161e-08 1.437340979e-08 1.227008637e-08 1.689381911e-08 1.001142567e-08 1.709977883e-08 1.508941184e-08 1.425720925e-08 1.515067138e-08 1.562277635e-08 1.77075033e-08 1.308925012e-08 1.064760277e-08 1.345315292e-08 1.309036221e-08 1.687092167e-08 1.28902494e-08 1.454981763e-08 1.43468509e-08 1.329567605e-08 1.251963877e-08 1.072900006e-08 1.585366298e-08 1.439271435e-08 1.275434533e-08 1.252073973e-08 9.352832872e-09 1.330346197e-08 1.133287242e-08 1.112791107e-08 1.869480209e-08 1.200962206e-08 1.128447314e-08 1.007584347e-08 1.125347142e-08 8.684481295e-09 9.158336745e-09 1.209477394e-08 8.759624592e-09 9.353906088e-09 7.824833838e-09 9.857359767e-09 1.020347057e-08 9.693393246e-09 8.671659164e-09 1.014865976e-08 9.662942632e-09 6.669005797e-09 6.358462113e-09 8.036030084e-09 6.572737782e-09 6.478967386e-09 4.748730004e-09 5.892326376e-09 4.420808506e-09 4.121851335e-09 5.724511262e-09 3.969905839e-09 3.617834527e-09 2.679053553e-09 2.68516146e-09 4.211665303e-09 1.682703757e-09 2.171735992e-09 2.785082381e-09 1.441278665e-09 7.023658234e-10 1.171280408e-09 9.369838614e-11 2.24087849e-10 1.534861881e-10 2.608096126e-10 1.884546122e-10 1.028189141e-10 6.040227702e-11 3.279019075e-13 1.165503601e-12 2.5991066e-13 3.432758946e-14 4.493966926e-15 5.763719307e-17 8.759061628e-19 0 8.630711256e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 3.630999724e-11 0 0 0 0 0 0 0 0 0 0 1.401585135e-18 2.245855018e-17 1.262753264e-17 3.955525959e-16 5.624608247e-16 1.026217749e-14 8.348230088e-13 8.163115037e-14 4.610017001e-11 2.27669009e-10 2.010089985e-10 1.976859539e-10 5.538290867e-10 7.739286005e-10 7.121497339e-10 7.064439349e-10 1.92391215e-09 3.007037091e-09 2.172258471e-09 2.166332475e-09 2.468027398e-09 2.565576274e-09 3.5376736e-09 2.527371919e-09 3.366117446e-09 5.159272541e-09 4.448591239e-09 4.18435484e-09 5.406464243e-09 8.185061191e-09 6.427146174e-09 7.373539606e-09 9.325530316e-09 8.219508638e-09 5.451348323e-09 8.149640876e-09 9.362081682e-09 7.513573537e-09 9.019427466e-09 1.123423547e-08 1.26557404e-08 1.11320581e-08 1.153921474e-08 1.268388521e-08 8.365565548e-09 9.794422014e-09 1.232706731e-08 1.368637049e-08 1.363535974e-08 1.385584616e-08 1.20159439e-08 1.444871175e-08 1.207700078e-08 1.332867699e-08 1.207659051e-08 1.451243892e-08 1.575181216e-08 1.23298857e-08 1.462970032e-08 1.514524536e-08 1.28604262e-08 1.532706714e-08 1.195640116e-08 1.759771605e-08 1.385085156e-08 1.334366497e-08 1.422142321e-08 1.585271867e-08 1.446462123e-08 1.460106595e-08 1.63130348e-08 1.167510575e-08 1.503836416e-08 1.550293291e-08 2.049526447e-08 1.545892105e-08 2.071306229e-08 1.468118555e-08 1.932825434e-08 1.422741832e-08 1.631865738e-08 1.567207027e-08 1.28748459e-08 1.650430076e-08 1.588404118e-08 1.223437026e-08 1.541932326e-08 1.300219466e-08 1.468413324e-08 1.276223066e-08 1.38175628e-08 1.462957364e-08 1.739534338e-08 1.368288904e-08 1.261499814e-08 1.581084063e-08 1.236617369e-08 1.563276943e-08 1.630988796e-08 1.755321133e-08 1.614369488e-08 1.597076728e-08 1.622825218e-08 1.331715998e-08 1.890469381e-08 1.597663629e-08 1.94164007e-08 1.29605689e-08 1.408552972e-08 1.351577043e-08 1.369304487e-08 1.537598823e-08 1.455810137e-08 1.41159751e-08 1.616712671e-08 1.397210266e-08 1.08726342e-08 1.401443181e-08 1.422506602e-08 1.075852091e-08 9.509212088e-09 1.388183176e-08 1.17862146e-08 6.931330965e-09 1.346592187e-08 1.168320411e-08 9.443684342e-09 1.141951534e-08 7.543564937e-09 1.307826004e-08 7.617395399e-09 9.392480139e-09 1.032175315e-08 6.543286245e-09 8.866078027e-09 7.636793531e-09 7.455595242e-09 6.816147289e-09 5.709901478e-09 5.985129623e-09 3.652633179e-09 4.463840113e-09 2.887517383e-09 4.975550608e-09 4.426098657e-09 3.12311106e-09 2.999640294e-09 2.61373559e-09 3.233998699e-09 3.478880404e-09 1.980371296e-09 2.015147665e-09 1.256188406e-09 5.425682687e-10 3.907101464e-10 6.875407606e-10 1.523346111e-10 2.268944287e-11 4.962537687e-11 1.216867975e-11 3.567584815e-12 7.312082479e-13 8.220122224e-13 8.211972665e-13 1.324077672e-14 2.851402271e-15 2.146646171e-16 1.758568176e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.504075964e-18 5.645047823e-27 4.437395157e-17 3.318832457e-16 9.360513654e-16 8.291722499e-14 1.845738053e-13 1.429987757e-13 7.310229815e-13 1.497398394e-11 2.289881433e-10 4.684269822e-11 2.262072848e-11 2.363746535e-10 3.855055971e-10 1.358709056e-09 1.322339675e-09 2.175147761e-09 2.177171536e-09 2.720549556e-09 1.915342938e-09 2.4096445e-09 3.140463194e-09 2.416488034e-09 2.513937952e-09 3.637470642e-09 5.336110147e-09 4.142159841e-09 3.774627866e-09 5.543454393e-09 8.072851752e-09 6.044631343e-09 1.126310056e-08 8.139231501e-09 8.871663145e-09 6.973680123e-09 5.309433524e-09 7.970534786e-09 1.145328938e-08 1.171808149e-08 1.091627246e-08 1.255976597e-08 8.557869201e-09 1.26647964e-08 8.363155418e-09 1.444410677e-08 1.372909168e-08 1.398129268e-08 1.1305165e-08 1.320651356e-08 1.347565847e-08 1.703242174e-08 1.788207495e-08 1.54183611e-08 1.438231967e-08 1.681201264e-08 1.327280273e-08 1.828984533e-08 1.588679543e-08 1.399561253e-08 1.704357845e-08 1.728510911e-08 1.618787432e-08 1.441939765e-08 1.888080878e-08 1.388173694e-08 1.510879502e-08 1.938171882e-08 1.475257039e-08 1.58906378e-08 1.418809632e-08 1.327920856e-08 1.889100316e-08 1.566125383e-08 1.287888267e-08 1.877834724e-08 1.384537826e-08 1.810428018e-08 1.424419139e-08 1.72443356e-08 1.790618539e-08 1.45689111e-08 1.835801624e-08 1.699941635e-08 2.013969917e-08 1.434409339e-08 1.665225964e-08 1.819402693e-08 1.418122215e-08 2.154730936e-08 1.700874394e-08 1.334884512e-08 1.874979443e-08 1.427947833e-08 1.623514464e-08 1.839371615e-08 1.544679581e-08 1.752599775e-08 1.489796149e-08 1.502341814e-08 1.747421222e-08 1.717651255e-08 1.762489742e-08 1.640763973e-08 1.159773857e-08 1.584882284e-08 1.81771604e-08 1.369034397e-08 1.540056534e-08 1.53965646e-08 1.387958033e-08 1.544696233e-08 1.756418102e-08 1.602949973e-08 1.253636725e-08 1.425527537e-08 1.37902592e-08 1.192631835e-08 1.327203067e-08 1.782677774e-08 1.199444654e-08 1.252133616e-08 1.660407676e-08 1.394088053e-08 1.406977774e-08 1.047344635e-08 9.577126397e-09 1.208802547e-08 1.169238188e-08 1.129436383e-08 9.862751402e-09 8.953938345e-09 8.179416949e-09 6.116764968e-09 7.175063669e-09 9.247238369e-09 7.886162023e-09 5.623295607e-09 6.556153814e-09 7.948342637e-09 1.006555421e-08 6.92584548e-09 5.423714153e-09 5.782044703e-09 3.385377222e-09 5.416702326e-09 5.709668304e-09 3.183981154e-09 3.330802473e-09 3.507448857e-09 2.657126054e-09 1.935185867e-09 3.180913841e-09 1.072363144e-09 1.246685838e-09 5.044198516e-10 2.019309291e-10 7.019735913e-10 1.513011876e-10 2.656248676e-11 3.323594533e-12 6.606916285e-11 2.777830087e-13 1.625056172e-14 9.416306342e-14 1.134584795e-14 8.747005643e-18 3.154944204e-20 8.657862853e-21 3.342055427e-18 0 1.820306286e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.712132271e-19 3.141857229e-18 2.813179637e-17 3.026163821e-17 3.546014209e-16 1.873168083e-14 1.698083742e-14 1.355165296e-13 3.314162172e-12 3.272365452e-12 1.641476324e-10 2.408409086e-11 1.899137758e-10 1.486312236e-11 4.19004393e-10 2.548191939e-09 1.496601061e-09 1.574733283e-09 1.147369077e-09 3.2978855e-09 2.834876516e-09 2.404520882e-09 2.174392453e-09 4.069954134e-09 3.470355474e-09 3.948371727e-09 6.393925679e-09 4.481312194e-09 5.405592173e-09 9.438184866e-09 7.919076914e-09 6.806050374e-09 8.588643728e-09 6.568234592e-09 5.552099876e-09 1.001538108e-08 7.827365166e-09 9.130611666e-09 1.083283925e-08 9.06430423e-09 1.236543063e-08 8.115558194e-09 8.462874978e-09 1.218474919e-08 1.419710864e-08 1.211609028e-08 1.695078787e-08 1.152943265e-08 1.380792379e-08 1.968942656e-08 1.644688097e-08 1.514500272e-08 1.311712935e-08 1.247809783e-08 1.594702158e-08 1.269401026e-08 1.83906997e-08 1.881704186e-08 1.373457904e-08 1.781308261e-08 1.448812918e-08 1.150602189e-08 1.419864376e-08 1.792851766e-08 1.772960702e-08 1.790081998e-08 1.191491416e-08 1.63301183e-08 1.304756952e-08 1.27693792e-08 1.648262683e-08 1.450503889e-08 1.920148357e-08 1.60024323e-08 1.191821596e-08 1.28520933e-08 1.478462433e-08 1.56075671e-08 1.553685116e-08 8.819224687e-09 1.661559774e-08 1.367580656e-08 1.535629953e-08 1.570615133e-08 1.424112275e-08 1.290708062e-08 1.507441283e-08 1.330012232e-08 1.344754942e-08 1.916174445e-08 1.620442086e-08 1.735304665e-08 1.548191622e-08 1.637228609e-08 1.765727345e-08 1.492695083e-08 1.589668591e-08 1.568318775e-08 1.275370553e-08 1.850607734e-08 1.014493106e-08 1.035311343e-08 1.572227624e-08 1.75781763e-08 1.429847237e-08 1.877502894e-08 1.49770314e-08 1.192902597e-08 1.774042413e-08 1.449212526e-08 1.394344679e-08 1.500590175e-08 1.554982282e-08 1.595138444e-08 1.219543554e-08 1.64373669e-08 1.321562757e-08 1.952612258e-08 1.29888521e-08 1.280197037e-08 1.389871448e-08 1.595608642e-08 1.593412345e-08 1.617039783e-08 1.509741816e-08 1.230112004e-08 1.220823903e-08 1.342580174e-08 1.151383797e-08 1.334445988e-08 1.442563879e-08 1.19719505e-08 7.698480628e-09 8.261864078e-09 8.736815932e-09 1.275481079e-08 1.024024499e-08 7.064151346e-09 8.167517506e-09 9.885454287e-09 7.869070326e-09 6.217640603e-09 8.261689431e-09 4.528336205e-09 4.118782014e-09 7.432219437e-09 6.575969259e-09 4.072677418e-09 5.113867508e-09 5.486638402e-09 3.581639268e-09 2.148031425e-09 2.710710606e-09 1.7335749e-09 1.397457162e-09 1.807644617e-09 5.937178348e-10 3.331006264e-10 3.133899439e-10 2.247679133e-10 1.140134596e-10 1.879000116e-10 3.859559651e-11 5.439820541e-12 2.947681599e-14 9.340643795e-17 1.435779552e-14 1.101063478e-14 2.994685847e-18 2.056300517e-19 2.933247091e-17 2.399485095e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 1.134038824e-31 0 0 1.032857061e-17 6.061513602e-18 6.162966746e-23 6.108009065e-16 2.171265311e-16 2.44195848e-16 1.245796143e-12 1.011805597e-13 1.317494378e-13 1.783144528e-11 1.160621479e-10 1.381984933e-10 1.481386823e-10 3.023842951e-10 1.777723246e-09 6.364182881e-10 1.235491323e-09 2.15800715e-09 2.629547753e-09 2.293516815e-09 4.238007793e-09 4.522703957e-09 3.679419904e-09 4.567070263e-09 5.375789934e-09 4.542319643e-09 5.127818115e-09 8.5255708e-09 7.063367081e-09 8.080696895e-09 9.049716525e-09 6.251649354e-09 7.073166138e-09 8.686629919e-09 8.30884008e-09 1.253237833e-08 1.401999634e-08 1.069740636e-08 1.167580972e-08 1.622775457e-08 1.456870881e-08 1.330062623e-08 1.54684575e-08 1.154502901e-08 1.449310717e-08 1.369815654e-08 1.257419371e-08 1.43000327e-08 1.608108348e-08 1.514323956e-08 1.720592897e-08 1.979980265e-08 1.484692966e-08 1.902696134e-08 1.81325303e-08 1.405210669e-08 1.772865117e-08 1.894903328e-08 2.051791853e-08 1.940897343e-08 2.109071365e-08 1.753094025e-08 1.418796936e-08 1.368920651e-08 1.588151097e-08 1.270179832e-08 1.855731454e-08 1.642353408e-08 1.612506333e-08 1.218316817e-08 1.570147847e-08 2.039306331e-08 1.674865462e-08 1.469266596e-08 1.278161439e-08 1.450015657e-08 1.379963329e-08 1.256809291e-08 1.136637163e-08 1.413372604e-08 1.599406598e-08 1.884508358e-08 1.448613996e-08 1.155479047e-08 1.801568455e-08 1.484761022e-08 1.224152296e-08 1.384505649e-08 1.605113133e-08 1.277618071e-08 1.35207711e-08 1.266224866e-08 1.205204754e-08 1.314836611e-08 1.426934623e-08 1.01938221e-08 1.531595431e-08 1.469652732e-08 1.451022222e-08 1.466661788e-08 1.163342975e-08 1.50391447e-08 1.358840147e-08 1.530934187e-08 1.820877402e-08 1.505763501e-08 1.471534931e-08 1.737764088e-08 1.942851771e-08 1.073176276e-08 1.730253956e-08 2.17888525e-08 1.694700881e-08 1.388772024e-08 1.935843124e-08 1.843053411e-08 1.787097006e-08 1.560339198e-08 1.470382048e-08 1.512407364e-08 1.548182775e-08 1.294943626e-08 1.045276161e-08 1.475319198e-08 1.507255356e-08 1.395521452e-08 1.778676284e-08 1.032780949e-08 1.145468025e-08 8.316440243e-09 1.460012818e-08 1.185854624e-08 1.344079932e-08 6.549784244e-09 9.752128981e-09 9.331117321e-09 8.807379959e-09 9.121065341e-09 6.112842384e-09 9.148177724e-09 7.211931874e-09 1.059534181e-08 8.573796954e-09 5.831385197e-09 4.707956504e-09 4.705261316e-09 3.341336296e-09 3.771743398e-09 3.520523279e-09 1.677831935e-09 3.49592623e-09 1.67535534e-09 1.992227983e-09 2.377003165e-09 3.063281163e-09 1.151821024e-09 1.060859266e-10 5.711683726e-10 2.596719464e-11 1.418839949e-10 1.203775619e-10 1.347760113e-11 2.141062489e-13 3.210919689e-12 2.619657686e-15 1.292383567e-14 4.034282436e-15 1.646632805e-18 6.715372877e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.22172156e-16 2.521785353e-17 2.649172882e-15 1.459853404e-14 2.431057377e-13 1.368152956e-12 1.252591291e-12 3.855128837e-12 1.032938766e-10 3.112657274e-10 6.04299983e-11 2.216638164e-10 2.214223829e-10 1.602404847e-09 1.157488258e-09 3.297350375e-09 1.397422608e-09 1.350555856e-09 2.790909323e-09 3.103577824e-09 3.226090578e-09 5.255669232e-09 7.797337598e-09 4.607552583e-09 7.36574391e-09 4.939819212e-09 6.494571576e-09 6.402067478e-09 9.009226349e-09 8.638821458e-09 8.518395929e-09 8.949403811e-09 1.038606324e-08 9.724339469e-09 8.785262677e-09 9.700243676e-09 1.015606843e-08 1.175720907e-08 1.452837293e-08 1.00063474e-08 1.181044363e-08 1.316987689e-08 1.250844018e-08 1.40908038e-08 1.440949903e-08 1.429697064e-08 1.605219804e-08 1.379105786e-08 1.543514205e-08 1.504026117e-08 1.566037288e-08 1.785888989e-08 1.512942517e-08 1.906047909e-08 1.8942244e-08 1.316884602e-08 1.829706684e-08 1.662048255e-08 1.111889681e-08 1.887220944e-08 1.365982919e-08 1.617883668e-08 1.179530816e-08 1.687315733e-08 9.914913365e-09 1.35483202e-08 1.569992569e-08 1.082904457e-08 1.268381626e-08 1.636681108e-08 1.166365303e-08 1.375740647e-08 1.586382615e-08 1.573625057e-08 1.361700402e-08 1.242545429e-08 1.633453629e-08 1.348894443e-08 1.388550031e-08 9.366671108e-09 1.484599809e-08 1.565794886e-08 1.118834133e-08 1.366102928e-08 1.064248031e-08 1.434019763e-08 1.436262799e-08 1.383215322e-08 1.453500533e-08 1.588170343e-08 1.422997632e-08 1.261931613e-08 1.353942657e-08 1.003297755e-08 1.241633554e-08 1.536424228e-08 1.191804402e-08 1.637885235e-08 1.665736315e-08 1.977645563e-08 1.818685099e-08 1.23651719e-08 1.82180336e-08 1.737837219e-08 1.534445003e-08 1.553036902e-08 1.58074544e-08 1.664825048e-08 1.732138037e-08 1.365390338e-08 1.412436939e-08 2.252529043e-08 1.626278724e-08 1.563355269e-08 1.752246774e-08 2.029451238e-08 1.285093706e-08 1.580862852e-08 1.813495179e-08 1.996509903e-08 1.347813915e-08 1.935126158e-08 1.290492615e-08 1.184394409e-08 1.065703561e-08 1.224660648e-08 1.664273143e-08 1.487798176e-08 1.330863027e-08 1.324596161e-08 9.487456526e-09 1.270140552e-08 1.613282805e-08 9.332124629e-09 9.921743866e-09 8.207980293e-09 9.627020547e-09 9.876224566e-09 9.825209023e-09 5.89089623e-09 6.977864302e-09 6.727691585e-09 4.632627626e-09 6.875288174e-09 5.362544737e-09 6.201637564e-09 6.549189176e-09 5.302389155e-09 2.198732273e-09 3.019865804e-09 2.887583911e-09 2.498818773e-09 2.285907091e-09 2.291679944e-09 1.225599244e-09 1.644227981e-10 5.621285643e-11 1.895338116e-10 2.056977275e-13 1.415103365e-10 1.023659421e-11 2.180196411e-12 1.893821697e-13 1.749280118e-13 1.951477253e-14 6.20705962e-17 7.901970585e-18 6.371381614e-18 2.731553752e-20 9.840243227e-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +6.774001001e-11 0 0 0 0 0 0 0 0 0 0 0 0 0 1.565558915e-24 2.835333701e-18 5.632497499e-18 3.929411404e-16 4.475045454e-16 4.183071155e-17 2.161204311e-13 1.26947719e-14 2.529490492e-12 4.184108325e-12 2.391420758e-10 3.366226044e-10 2.068144049e-10 1.669036072e-10 9.704510655e-10 1.476920521e-09 1.601657971e-09 1.099400686e-09 2.26256622e-09 2.111113016e-09 5.337376193e-09 5.628910674e-09 4.260847976e-09 3.394236345e-09 4.109873379e-09 6.799879572e-09 8.19766736e-09 6.462234722e-09 7.270842721e-09 7.238828335e-09 1.170444296e-08 8.938364317e-09 8.583694624e-09 1.089932692e-08 8.36750666e-09 1.308369268e-08 1.049846934e-08 1.371389383e-08 8.676902219e-09 1.297686652e-08 1.286090242e-08 1.039114227e-08 1.312895076e-08 1.53122382e-08 1.48728229e-08 1.512684406e-08 1.54266978e-08 1.519387481e-08 1.962547713e-08 2.128762877e-08 1.539255517e-08 1.348298423e-08 1.234228084e-08 1.734152217e-08 2.019602863e-08 1.677912135e-08 1.428658515e-08 1.950007503e-08 1.721315974e-08 1.504989067e-08 1.391878873e-08 1.410894743e-08 1.690230773e-08 1.698423973e-08 2.367915421e-08 1.913798556e-08 1.545961907e-08 1.153137881e-08 1.370515338e-08 1.524069626e-08 1.445740038e-08 1.233241117e-08 1.84940314e-08 1.473572717e-08 1.209015144e-08 1.433505399e-08 1.58126627e-08 1.133733074e-08 1.355977621e-08 1.285391997e-08 1.03056634e-08 1.357647566e-08 1.588921624e-08 9.084331958e-09 1.371087756e-08 1.340547679e-08 1.690993163e-08 2.038749487e-08 1.402453114e-08 1.31661209e-08 7.614856088e-09 1.204474225e-08 1.235236941e-08 1.641056322e-08 1.353321386e-08 1.286293738e-08 1.644297822e-08 1.179428572e-08 1.621426434e-08 8.796282028e-09 1.380321746e-08 1.250757381e-08 1.626603998e-08 1.234057287e-08 1.465135428e-08 1.562819788e-08 1.204305685e-08 1.326524704e-08 2.177428646e-08 1.347336175e-08 1.716213065e-08 2.000194715e-08 1.768458118e-08 1.925998389e-08 1.729303092e-08 1.377215058e-08 1.75729711e-08 2.06533816e-08 1.524416888e-08 1.726778652e-08 1.638288758e-08 1.010597672e-08 1.380759391e-08 1.63585204e-08 1.641978424e-08 1.681912011e-08 1.593290192e-08 1.667809795e-08 1.440742273e-08 1.05175958e-08 9.911378141e-09 1.417918234e-08 1.18738981e-08 1.281375984e-08 1.394634397e-08 8.09480112e-09 1.317426434e-08 9.534352657e-09 6.796822287e-09 7.759805916e-09 1.075958047e-08 6.270219003e-09 8.931819853e-09 8.381180414e-09 4.47525355e-09 5.220277324e-09 7.384804112e-09 6.335593083e-09 6.038403756e-09 5.350322753e-09 3.414062882e-09 3.345621934e-09 4.467469282e-09 3.256189097e-09 2.114872788e-09 1.341463776e-09 6.20353292e-10 7.021667141e-10 5.007450329e-10 3.76650774e-10 1.990801184e-10 4.227368268e-10 7.988474381e-11 1.443738162e-11 5.71210838e-13 4.192111617e-14 9.852318042e-16 3.856092434e-15 6.023614618e-16 2.769761323e-17 2.721236708e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.004514233e-17 9.842306137e-18 3.279881096e-17 7.851008907e-16 1.811381606e-15 8.595406654e-14 1.898644485e-12 7.767640572e-13 1.873034938e-11 2.842677666e-10 3.06732869e-10 4.446136011e-10 4.49266685e-10 4.94467044e-10 1.667782723e-09 1.264870665e-09 2.229118254e-09 1.819031649e-09 2.119603406e-09 4.585267119e-09 4.782460717e-09 2.975365208e-09 3.589186426e-09 4.460677095e-09 7.529519897e-09 5.364267316e-09 6.811741169e-09 8.909188611e-09 9.211415944e-09 8.365640372e-09 6.940166404e-09 1.007896802e-08 1.015703621e-08 1.531701513e-08 1.311443359e-08 1.099699773e-08 1.552656596e-08 1.471352491e-08 1.287828248e-08 1.320609209e-08 1.668976208e-08 1.238304766e-08 1.378951623e-08 1.15960508e-08 1.55178266e-08 1.610949771e-08 1.255879171e-08 1.728368085e-08 2.035388878e-08 2.026572553e-08 2.078564407e-08 1.742488817e-08 1.622174555e-08 1.399285282e-08 1.735356878e-08 1.313988251e-08 1.683927451e-08 1.911157134e-08 1.262753056e-08 1.417300578e-08 1.297632727e-08 1.412598299e-08 1.581880347e-08 1.619469029e-08 1.462392324e-08 1.408227826e-08 1.051245566e-08 8.723454949e-09 1.281532289e-08 8.499327039e-09 1.296825037e-08 7.95237532e-09 1.115998582e-08 1.234122676e-08 1.968762837e-08 1.311915379e-08 1.07286469e-08 1.17445207e-08 1.056445866e-08 9.854283612e-09 1.309476161e-08 1.314130327e-08 9.857606323e-09 1.478736136e-08 1.343648799e-08 1.226401428e-08 1.439226632e-08 1.494204036e-08 1.567305969e-08 1.370629705e-08 1.140508378e-08 1.22157211e-08 1.160052706e-08 1.346723468e-08 1.436423379e-08 1.344993183e-08 1.598469994e-08 1.386368297e-08 1.175778554e-08 1.465507268e-08 1.243382622e-08 1.142610424e-08 1.095204327e-08 9.839966489e-09 1.499267752e-08 1.804341355e-08 1.418059201e-08 1.635442112e-08 2.090543026e-08 1.784155001e-08 1.685797785e-08 1.679541686e-08 1.614286831e-08 2.313977567e-08 1.688418139e-08 1.616517911e-08 1.792328756e-08 1.472090535e-08 1.575451284e-08 2.214100395e-08 1.305093541e-08 1.765976344e-08 1.684418115e-08 1.940027392e-08 1.679499495e-08 1.739272546e-08 1.64781486e-08 1.549645018e-08 1.675041198e-08 1.488871826e-08 1.186129769e-08 1.765071928e-08 1.494458072e-08 1.420071018e-08 1.282401658e-08 1.042644816e-08 1.215879817e-08 9.053851668e-09 8.599155942e-09 8.185816799e-09 9.089615221e-09 7.543580762e-09 9.092498094e-09 8.890110079e-09 6.214403014e-09 9.94197511e-09 5.241615885e-09 5.425638255e-09 5.698558374e-09 4.396006435e-09 3.963098812e-09 2.204414384e-09 2.153178155e-09 3.163527022e-09 1.410497634e-09 6.828267947e-10 4.720916609e-10 2.334719336e-10 7.37584672e-11 1.89764902e-10 1.042141298e-10 4.509880806e-11 7.259662912e-12 2.874243935e-12 2.49978383e-14 4.515685779e-15 6.72104035e-16 2.399020304e-16 1.144659954e-16 7.075607557e-19 2.226787197e-21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.477660783e-18 1.943186303e-18 3.708404768e-26 5.797175055e-17 3.554408005e-18 2.578529087e-14 1.316187498e-14 3.304252497e-13 2.231939464e-11 5.240939721e-11 2.120066918e-10 3.970283189e-10 3.002312875e-10 6.81247379e-10 7.366470075e-10 1.366377669e-09 8.457627106e-10 1.730006887e-09 2.343624558e-09 2.618358773e-09 4.638066285e-09 5.698240428e-09 4.225343995e-09 7.157196879e-09 7.302628016e-09 1.075199415e-08 5.884353655e-09 7.845862236e-09 7.194965701e-09 7.854527635e-09 1.069981941e-08 1.239327917e-08 1.11546017e-08 9.9217235e-09 1.211711621e-08 1.404739254e-08 1.206449328e-08 1.608598677e-08 1.529486102e-08 1.091142499e-08 1.562378092e-08 1.59060059e-08 1.691098547e-08 1.422923718e-08 1.599674882e-08 1.631125437e-08 2.493604976e-08 1.745019763e-08 1.31536011e-08 1.858063352e-08 1.90043111e-08 1.368190201e-08 1.802518634e-08 1.815783948e-08 1.944286297e-08 1.663767627e-08 2.346836781e-08 1.563699385e-08 1.65937835e-08 2.017020823e-08 1.584826341e-08 1.478975493e-08 1.427921841e-08 2.045842219e-08 1.225055286e-08 2.034572141e-08 6.460479041e-09 1.341762964e-08 1.479178459e-08 1.292940058e-08 1.242705091e-08 1.23493586e-08 1.043877108e-08 9.753571872e-09 1.159736431e-08 9.043314974e-09 1.174029112e-08 1.094613307e-08 1.124592217e-08 9.786251611e-09 1.444112364e-08 6.717639974e-09 1.377938004e-08 7.938389079e-09 1.160225615e-08 1.636361471e-08 1.234320353e-08 1.373840873e-08 1.273656831e-08 7.849659535e-09 1.193149482e-08 1.029584981e-08 9.969180615e-09 1.354839451e-08 1.112999603e-08 1.030451583e-08 1.110283278e-08 1.40295973e-08 1.446776453e-08 1.614443159e-08 1.060524553e-08 1.280447899e-08 1.097016908e-08 1.611490797e-08 1.459199826e-08 1.419699021e-08 1.901851121e-08 2.272126412e-08 1.736797461e-08 1.540168676e-08 1.579040048e-08 1.664070921e-08 2.017565196e-08 1.407787283e-08 1.678540692e-08 1.929541727e-08 1.655994971e-08 1.903102469e-08 1.399013522e-08 2.224227756e-08 1.519805247e-08 2.044225856e-08 1.675924526e-08 1.876053155e-08 1.742289039e-08 1.89941165e-08 1.832364046e-08 1.546586192e-08 1.492030541e-08 1.298288207e-08 1.654343425e-08 1.661912563e-08 1.225443951e-08 1.534350057e-08 1.505479378e-08 1.661183594e-08 1.334020365e-08 1.255406914e-08 1.109859061e-08 1.128595258e-08 1.109223056e-08 8.561901097e-09 1.016652693e-08 8.605491662e-09 7.797313081e-09 7.354441201e-09 5.730724686e-09 4.550239045e-09 6.120205379e-09 4.859234815e-09 4.512543755e-09 3.26891923e-09 2.393976145e-09 3.169470305e-09 1.874553935e-09 3.237731852e-09 6.384180576e-10 2.612630903e-10 8.520414928e-10 2.821417683e-10 1.882282833e-10 2.340833087e-11 1.267813115e-10 3.711734369e-13 9.236854566e-13 4.778374599e-13 3.518618573e-15 4.479446669e-15 1.147483438e-15 7.647692401e-18 4.983635971e-18 4.34631343e-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.093616276e-27 7.406385391e-19 2.33637837e-17 1.423691978e-15 1.666613218e-15 2.607139253e-14 4.079050805e-14 2.294006279e-14 9.104149727e-12 2.152277244e-11 1.575980663e-10 8.140466771e-12 4.57192714e-10 1.453464733e-10 8.363218027e-10 6.39965119e-10 1.0216091e-09 2.650145683e-09 1.53494264e-09 3.458412339e-09 2.865617854e-09 5.987913882e-09 5.148202363e-09 6.611777729e-09 5.452068074e-09 7.608341451e-09 9.074855412e-09 7.888731238e-09 8.803653703e-09 7.493564059e-09 1.092338166e-08 9.46775366e-09 1.320271687e-08 1.431584473e-08 1.302926488e-08 1.207665991e-08 1.487973264e-08 1.562902669e-08 1.474679446e-08 1.560604945e-08 1.427793031e-08 1.738261225e-08 1.499100867e-08 1.753725158e-08 1.954219396e-08 1.664219929e-08 2.451477839e-08 2.461108619e-08 2.27050315e-08 1.702097246e-08 2.45345657e-08 2.049528824e-08 1.554444124e-08 2.358642164e-08 1.935452187e-08 2.040902436e-08 2.192895836e-08 2.076291809e-08 1.443152331e-08 1.425481189e-08 1.979518262e-08 1.352161401e-08 2.154912001e-08 1.737372483e-08 1.529736588e-08 1.187896878e-08 1.256626631e-08 1.631178913e-08 1.574144651e-08 1.178586794e-08 1.367304652e-08 1.414967214e-08 1.328800918e-08 1.067105692e-08 8.999115912e-09 8.101676804e-09 1.392652357e-08 1.52346448e-08 1.20560412e-08 8.555485051e-09 1.3742877e-08 9.762424905e-09 1.114368982e-08 1.124015357e-08 1.392131732e-08 1.303360893e-08 1.108978943e-08 1.414404835e-08 9.883095154e-09 1.409049758e-08 8.885532432e-09 1.255872535e-08 1.08565871e-08 1.109250658e-08 8.804595287e-09 1.006038649e-08 7.569331755e-09 1.272795754e-08 9.608548501e-09 1.049981589e-08 1.163867367e-08 1.16499799e-08 1.133975718e-08 1.062291828e-08 1.271452889e-08 1.33013337e-08 1.338691911e-08 1.768193786e-08 1.802103832e-08 2.234987903e-08 1.713829867e-08 1.801411904e-08 1.11970953e-08 1.962805184e-08 2.219329872e-08 2.518122365e-08 1.304021855e-08 1.504394201e-08 1.667244761e-08 2.511829591e-08 1.649211733e-08 2.053636209e-08 2.043732119e-08 1.883341945e-08 1.467129521e-08 2.024229512e-08 1.414654292e-08 1.416900614e-08 1.870052067e-08 2.138389703e-08 1.595938537e-08 1.479370851e-08 1.806936172e-08 1.613819931e-08 1.592490059e-08 1.144079911e-08 1.368623897e-08 1.177323576e-08 1.098296429e-08 1.43755093e-08 1.057994925e-08 8.827698844e-09 8.491977439e-09 8.299778422e-09 7.978367149e-09 6.353331976e-09 7.05421218e-09 6.926048403e-09 4.722289931e-09 4.452422026e-09 2.694498447e-09 4.777974006e-09 2.281686265e-09 2.704822935e-09 3.963864215e-09 1.536053246e-09 5.791297227e-10 8.698408553e-10 2.163638457e-10 5.865794601e-10 2.14554546e-11 6.705838925e-11 2.972747714e-11 2.551328713e-11 1.347554839e-13 1.025250687e-13 3.530190119e-16 1.855323548e-16 4.203325787e-16 0 5.575138417e-19 2.908202479e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.761382366e-18 1.786611018e-17 3.332113397e-16 7.788565546e-15 5.63737929e-15 5.072070771e-15 7.496782041e-13 3.609466753e-11 2.933101679e-12 3.757028823e-12 2.082141232e-10 8.142790628e-11 1.295270935e-10 4.87044919e-10 6.730385258e-10 2.050985184e-09 3.037747742e-09 2.764106951e-09 3.649930794e-09 4.799537148e-09 5.835615524e-09 5.639085973e-09 3.941166236e-09 6.293134837e-09 7.816064179e-09 8.447087362e-09 6.470612229e-09 9.578853158e-09 1.156948208e-08 9.700427068e-09 1.072817576e-08 9.411434108e-09 1.569832175e-08 1.121493593e-08 1.501505709e-08 1.140202228e-08 9.169252517e-09 1.374905052e-08 1.401077578e-08 1.981935663e-08 1.766894644e-08 1.73844366e-08 1.666438657e-08 1.527403263e-08 2.200748847e-08 1.641912869e-08 2.070229295e-08 1.862929819e-08 1.747440923e-08 1.878790181e-08 2.02073064e-08 1.757344557e-08 2.327712505e-08 1.891726696e-08 1.986236339e-08 1.548077147e-08 2.130548521e-08 1.778457848e-08 1.343414999e-08 1.028155228e-08 1.505110776e-08 2.608728421e-08 1.615197603e-08 1.903831293e-08 1.561196488e-08 1.731082376e-08 1.355885723e-08 8.995606528e-09 1.310314133e-08 1.162580752e-08 1.090794101e-08 1.635833885e-08 1.055367055e-08 6.924598072e-09 8.214184067e-09 1.226549704e-08 7.706510829e-09 1.197707845e-08 8.66780501e-09 9.630138547e-09 1.445114824e-08 7.391652862e-09 9.21651203e-09 1.262610805e-08 9.482013539e-09 1.061010383e-08 9.862783904e-09 1.338862775e-08 8.71185263e-09 8.113726263e-09 5.551386249e-09 1.058909397e-08 8.680635028e-09 8.961340823e-09 1.327573478e-08 1.0863309e-08 8.928731898e-09 1.160522519e-08 1.32379917e-08 9.664850432e-09 1.090056979e-08 1.480014865e-08 1.434935145e-08 1.132592009e-08 1.750956936e-08 1.086753846e-08 1.966084015e-08 1.402694599e-08 1.330339105e-08 1.324096052e-08 1.357549955e-08 1.674626281e-08 1.883271706e-08 2.87075419e-08 1.752399045e-08 1.623712523e-08 2.184905094e-08 2.206434545e-08 2.013142898e-08 2.064551683e-08 2.329918736e-08 2.298155974e-08 2.420561784e-08 1.839667974e-08 2.348855311e-08 1.97177084e-08 1.67698998e-08 1.638817408e-08 2.05032572e-08 2.00595867e-08 1.365001432e-08 1.963040716e-08 1.307500292e-08 1.10477875e-08 1.476268402e-08 1.587845032e-08 1.011442816e-08 1.176022053e-08 1.13166937e-08 1.093320547e-08 1.078586506e-08 9.091249903e-09 7.054662842e-09 7.409793143e-09 1.07174992e-08 5.884539456e-09 9.116089167e-09 5.973262003e-09 5.036006201e-09 3.349685333e-09 3.324830211e-09 4.537448204e-09 3.809719048e-09 3.460432015e-09 2.03344092e-09 1.291141371e-09 4.740336943e-10 4.698709368e-10 5.580109487e-11 3.426243807e-10 2.537278549e-11 9.938662029e-13 3.553639618e-12 2.530129248e-13 2.94924349e-14 6.940537344e-15 1.22108003e-15 6.615610195e-16 4.338920127e-16 3.456946652e-17 7.885072461e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 4.436249688e-19 1.269762407e-18 8.754683966e-18 6.927867031e-20 1.451366584e-15 1.486735356e-15 2.158291304e-15 3.484660588e-15 1.574704844e-13 3.010890258e-11 1.151482813e-11 7.79803081e-12 3.920610827e-11 3.552761239e-10 2.044703097e-10 3.141889048e-10 1.289622226e-09 2.509323189e-09 8.80556322e-10 2.711526261e-09 3.25218957e-09 4.502110924e-09 4.447786625e-09 4.364965661e-09 5.853898111e-09 5.118374828e-09 1.100306062e-08 9.069490041e-09 1.358008451e-08 8.720049638e-09 1.100772927e-08 1.10745049e-08 9.340021121e-09 1.202473459e-08 1.434988638e-08 1.359960368e-08 1.470511666e-08 1.356911131e-08 1.684557581e-08 1.449237633e-08 1.439004332e-08 1.641391517e-08 2.234320831e-08 1.620692515e-08 1.19928788e-08 1.772563108e-08 1.596397384e-08 1.574211421e-08 1.883408275e-08 1.89130318e-08 2.082979046e-08 2.613001166e-08 2.66836943e-08 2.357840497e-08 1.872632007e-08 2.598890784e-08 1.873649037e-08 1.819279987e-08 1.789566857e-08 1.876812651e-08 1.960289613e-08 1.875704333e-08 1.364792984e-08 1.683394599e-08 1.668995009e-08 1.321408006e-08 1.78456099e-08 1.505235972e-08 1.127459509e-08 1.162773323e-08 1.642086941e-08 9.759745901e-09 1.33107644e-08 1.34901556e-08 1.077746627e-08 1.270736198e-08 1.108638326e-08 1.290278935e-08 6.00249662e-09 1.124489249e-08 9.30099059e-09 1.367200419e-08 1.189933148e-08 7.837726464e-09 5.839157723e-09 1.067373808e-08 1.378779833e-08 9.459601291e-09 7.470177482e-09 1.182159734e-08 9.671990138e-09 1.246874214e-08 1.085577028e-08 9.826874332e-09 8.544328884e-09 1.141822352e-08 1.03264555e-08 7.304150375e-09 7.327025522e-09 1.559255117e-08 9.3922799e-09 8.89500387e-09 7.232370815e-09 1.097876661e-08 7.742483047e-09 1.548645732e-08 1.270248991e-08 1.080291831e-08 2.277465537e-08 1.221967152e-08 2.184287682e-08 1.53870301e-08 1.05031319e-08 1.463291468e-08 1.776452723e-08 1.837817799e-08 1.875653504e-08 2.300723712e-08 1.917127205e-08 2.293482318e-08 2.011843829e-08 1.112465721e-08 2.287495738e-08 2.590074016e-08 2.374830033e-08 1.846525498e-08 2.081347761e-08 1.724308714e-08 2.041840476e-08 1.705613663e-08 2.027733567e-08 1.883152687e-08 1.637452346e-08 1.714085275e-08 1.394466031e-08 1.577782585e-08 1.506823731e-08 1.444712869e-08 1.255020202e-08 1.087774877e-08 1.191224667e-08 1.147948244e-08 1.176505697e-08 8.919668666e-09 1.012546823e-08 8.144685484e-09 8.510354118e-09 9.140169783e-09 7.677120547e-09 7.166618554e-09 4.841279633e-09 7.38124781e-09 5.914098157e-09 4.294103623e-09 1.328293136e-09 1.915818352e-09 2.442291253e-09 1.799371922e-09 7.925216042e-11 4.76708073e-10 5.605528329e-10 1.239077432e-10 4.701541656e-11 5.587417212e-12 7.630992035e-13 2.771739686e-14 4.64137668e-13 2.04159473e-14 2.964479014e-16 5.728018329e-16 6.541814758e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.002142739e-18 1.247578432e-17 5.371254366e-16 1.507589797e-16 6.681874475e-16 4.564806227e-15 1.602293493e-15 7.553837136e-11 2.3970027e-11 8.628956722e-11 1.207409886e-11 2.424455084e-10 2.977656354e-10 3.609299858e-10 1.413734036e-10 6.125274717e-10 2.214871457e-09 1.890687682e-09 2.412647078e-09 3.581502971e-09 2.029413636e-09 7.042791573e-09 5.362357414e-09 4.808611143e-09 3.26724132e-09 8.400284474e-09 9.744447669e-09 8.112290081e-09 9.806363868e-09 1.067310343e-08 9.056805927e-09 1.32538328e-08 1.066688195e-08 1.204820887e-08 1.647119984e-08 1.488745478e-08 1.550784378e-08 1.516439734e-08 1.454658265e-08 2.017304316e-08 1.776224076e-08 2.522585855e-08 1.938786643e-08 2.000326685e-08 1.931166605e-08 2.180021163e-08 1.945431101e-08 1.950571224e-08 2.706275512e-08 1.846384931e-08 1.913611449e-08 2.309687524e-08 2.209438539e-08 2.169296625e-08 2.051620951e-08 1.995147092e-08 2.299955492e-08 1.849411261e-08 2.547583475e-08 2.012067097e-08 1.783944916e-08 1.537517317e-08 1.74790143e-08 1.193074961e-08 1.586636932e-08 1.191019103e-08 1.347763349e-08 1.53805212e-08 2.112431279e-08 1.109423627e-08 8.834578229e-09 9.811508067e-09 8.226957266e-09 9.577054689e-09 1.245041564e-08 1.290604804e-08 1.139548304e-08 1.105508238e-08 1.026841142e-08 9.590259132e-09 1.137385887e-08 1.12619871e-08 9.665384389e-09 7.464277834e-09 6.369691188e-09 8.274170642e-09 8.468111305e-09 4.63506218e-09 9.187860603e-09 8.617382665e-09 8.534958268e-09 7.051006077e-09 1.115509066e-08 7.164005251e-09 7.454063822e-09 1.015301172e-08 8.470745045e-09 1.177305279e-08 1.091222529e-08 1.181962277e-08 1.318334351e-08 6.946312407e-09 1.201397064e-08 1.289572145e-08 1.669484483e-08 1.613363992e-08 1.916974379e-08 1.36409895e-08 2.066467565e-08 1.709931901e-08 1.971152972e-08 1.481222131e-08 2.110950317e-08 2.304915811e-08 1.552493003e-08 1.732307843e-08 2.719704976e-08 2.052860352e-08 2.134281682e-08 1.79968338e-08 2.375589715e-08 1.995202111e-08 1.591441625e-08 2.388960549e-08 2.346716338e-08 2.052102341e-08 2.264907558e-08 2.202095627e-08 2.016880362e-08 1.748834191e-08 1.639305106e-08 1.884822775e-08 1.511051461e-08 1.510377739e-08 1.550350306e-08 1.175331001e-08 1.424203535e-08 1.309040567e-08 1.171401773e-08 1.125330219e-08 1.339523911e-08 7.813917298e-09 9.657986627e-09 1.328047968e-08 9.444046368e-09 1.009434253e-08 8.222288254e-09 6.187179779e-09 5.632399179e-09 6.101216416e-09 6.45125279e-09 3.733724434e-09 2.905396855e-09 4.104486838e-09 4.253644266e-09 1.555356592e-09 1.466584338e-09 3.256925229e-10 3.542866823e-10 3.548532322e-11 1.214049951e-10 8.686586815e-11 1.066120587e-10 1.988910803e-11 2.750212079e-12 1.093440272e-15 3.01613432e-14 1.170836195e-15 2.894261156e-16 4.369641453e-17 3.041400403e-17 6.717978699e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 5.371258264e-20 0 0 2.922589714e-18 1.414287035e-15 6.300947621e-15 4.05926946e-14 3.969740582e-15 5.193706596e-13 2.431641606e-11 1.893063122e-11 4.418544578e-11 2.603683663e-10 4.18130191e-10 1.124037383e-10 7.805367653e-10 1.502991162e-09 2.635102509e-09 1.845213288e-09 3.301599514e-09 2.150747842e-09 4.230591862e-09 3.699246291e-09 7.700314786e-09 8.635549122e-09 6.257952058e-09 1.016740429e-08 7.642594301e-09 7.712895917e-09 1.012153358e-08 9.945531656e-09 1.426958947e-08 1.250604912e-08 1.715734299e-08 1.200440557e-08 1.297058039e-08 1.126082548e-08 1.35474761e-08 1.858728773e-08 1.7767602e-08 1.792290802e-08 2.080438791e-08 1.987626844e-08 1.651641354e-08 2.068771767e-08 2.276952352e-08 2.584238103e-08 2.541613344e-08 2.516151565e-08 2.096659736e-08 1.904817408e-08 2.475762276e-08 2.160545925e-08 2.74265145e-08 2.040076471e-08 2.443000022e-08 2.115804863e-08 2.501764238e-08 1.7219256e-08 2.365760544e-08 2.644302996e-08 1.330311654e-08 7.886238019e-09 1.735434411e-08 1.347377141e-08 1.191225214e-08 1.062229943e-08 1.439669638e-08 1.348532564e-08 2.021461086e-08 1.332963773e-08 6.767113511e-09 1.278713312e-08 1.0657733e-08 8.583725172e-09 7.254958693e-09 6.643612575e-09 1.29247367e-08 6.535444616e-09 6.905100218e-09 7.534765041e-09 1.621622346e-08 8.632422018e-09 1.152176552e-08 5.525148079e-09 8.250681179e-09 8.433201361e-09 1.161829228e-08 1.042691585e-08 5.258152885e-09 5.560134937e-09 5.591778669e-09 1.129214068e-08 7.684477109e-09 1.011797437e-08 1.200648606e-08 7.733547451e-09 1.096038443e-08 5.55548644e-09 5.580793076e-09 1.090344996e-08 7.709358276e-09 1.186121414e-08 1.030061761e-08 6.818074649e-09 9.20532953e-09 1.471225085e-08 1.388967904e-08 1.66505482e-08 1.504602039e-08 1.441422014e-08 1.449534677e-08 1.869381635e-08 1.577984305e-08 1.254068284e-08 2.130241642e-08 2.834755958e-08 1.695254933e-08 1.988645261e-08 1.878717073e-08 2.099350597e-08 2.890344828e-08 2.064418996e-08 1.618525622e-08 3.505482535e-08 2.239024145e-08 2.472574466e-08 2.695474772e-08 2.480650922e-08 2.261577598e-08 2.192322429e-08 1.796980481e-08 1.852768921e-08 2.061419336e-08 1.915515804e-08 1.780951785e-08 1.76589827e-08 1.662650202e-08 1.229792698e-08 1.338747966e-08 9.889808764e-09 1.234193967e-08 1.176739212e-08 1.06883995e-08 8.980553904e-09 1.196596141e-08 9.179245021e-09 6.656764778e-09 8.400027098e-09 7.068389858e-09 5.233435207e-09 4.777273762e-09 5.587393517e-09 2.78554263e-09 5.534696401e-09 2.560015644e-09 1.6576894e-09 1.308469376e-09 6.106578668e-10 3.033609303e-10 2.253399204e-10 9.647993103e-11 2.086262907e-10 7.974434548e-11 5.993976631e-12 7.646995944e-11 3.115404401e-14 3.487462906e-14 2.758308567e-15 1.353201071e-16 3.07665376e-17 3.531157315e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1.954283371e-18 4.162285982e-18 1.990239335e-18 8.802913225e-17 8.107324378e-16 5.345237976e-16 7.355735638e-15 1.190842025e-14 1.123022421e-13 5.052729861e-12 4.164942799e-11 1.362277095e-10 6.076349103e-10 2.925208641e-10 2.162891865e-10 7.412323165e-10 1.203426527e-09 1.617796504e-09 3.08748365e-09 2.366490558e-09 3.240207955e-09 3.50581031e-09 4.996769115e-09 6.418640559e-09 8.688321554e-09 6.352191056e-09 9.727460526e-09 4.888220092e-09 9.441461509e-09 1.063983229e-08 8.031815179e-09 1.118904282e-08 1.436429606e-08 1.27062213e-08 1.584208089e-08 1.550360219e-08 1.270822228e-08 1.472169643e-08 1.512121312e-08 1.960453373e-08 2.087677423e-08 2.118991277e-08 2.394355706e-08 1.59422632e-08 1.990773555e-08 2.273149893e-08 2.334781937e-08 2.281887772e-08 2.06672259e-08 2.084818282e-08 2.744140323e-08 2.675204145e-08 2.067092967e-08 2.342941407e-08 2.405625261e-08 1.6735951e-08 2.148772002e-08 2.161274259e-08 2.30921887e-08 1.835694804e-08 1.958578242e-08 1.484005514e-08 1.401368767e-08 1.378306219e-08 6.923866934e-09 1.064634594e-08 1.542779855e-08 1.155999456e-08 1.136028566e-08 1.324678521e-08 9.229747019e-09 1.131912686e-08 9.335471199e-09 9.625962188e-09 6.757169623e-09 6.503104885e-09 3.837214321e-09 8.508527476e-09 8.701327786e-09 6.994339581e-09 8.588727067e-09 9.956204685e-09 9.230717907e-09 9.355183117e-09 7.701313653e-09 8.143054297e-09 8.293415845e-09 1.129279858e-08 1.155011781e-08 1.004294028e-08 9.387249773e-09 8.850682088e-09 7.370489046e-09 8.507601362e-09 9.007734262e-09 6.520203769e-09 1.036467572e-08 5.906981387e-09 6.983728667e-09 1.187659618e-08 5.186796585e-09 8.805957724e-09 8.774645829e-09 1.422290137e-08 1.077675742e-08 6.608902264e-09 1.239420434e-08 1.535371511e-08 1.310083837e-08 1.626564703e-08 1.73090712e-08 1.504444647e-08 1.912031549e-08 1.956019549e-08 1.617272718e-08 2.004597324e-08 2.176064877e-08 2.109827034e-08 2.063787009e-08 2.762739847e-08 1.866204993e-08 2.588727271e-08 2.102596756e-08 2.714559234e-08 3.147144024e-08 2.393960211e-08 2.519822459e-08 2.506783394e-08 2.284741865e-08 2.143230437e-08 2.083441019e-08 1.885226238e-08 2.109339525e-08 1.528256299e-08 1.799557184e-08 1.743072734e-08 1.333873909e-08 1.697719866e-08 1.491851031e-08 1.452641194e-08 1.132986243e-08 8.466785356e-09 1.100259972e-08 1.121920876e-08 8.615164055e-09 6.892360069e-09 8.598923157e-09 6.934674125e-09 7.413655455e-09 8.709405523e-09 8.441015257e-09 5.385047085e-09 3.464866132e-09 4.886450992e-09 4.938985051e-09 1.317949302e-09 1.974471443e-09 6.363613512e-10 3.623392732e-10 8.326910615e-10 4.43870356e-10 3.38700333e-10 4.763138913e-10 7.17726154e-11 1.351475299e-11 7.275639172e-14 6.65066939e-14 2.663778365e-15 3.980124951e-17 3.280654883e-15 2.522867927e-16 1.27124762e-18 2.45111932e-18 0 0 0 6.672225859e-20 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 2.89441481e-24 0 0 0 4.173526173e-19 1.680488034e-25 2.810526215e-16 9.940544574e-17 6.145377923e-16 3.159702535e-14 3.551742825e-14 1.016284239e-13 4.942754183e-13 4.071388887e-12 8.735920724e-11 1.298273466e-10 4.873266314e-10 3.984180783e-10 4.503048498e-10 4.459015365e-10 1.714333543e-09 3.174361927e-09 2.90442902e-09 3.07328603e-09 4.746862307e-09 5.787684429e-09 6.688771583e-09 9.268218244e-09 8.989852573e-09 9.812853075e-09 9.40312404e-09 1.108798489e-08 7.648243479e-09 1.273789564e-08 1.3468855e-08 1.320791081e-08 1.320500775e-08 1.765517717e-08 1.847074599e-08 1.668341506e-08 1.546008686e-08 1.776714948e-08 1.838008722e-08 1.842719492e-08 2.251117137e-08 2.250375264e-08 2.44997726e-08 2.315085097e-08 2.783646715e-08 2.40668687e-08 1.854862121e-08 2.420811777e-08 2.634159337e-08 2.371036251e-08 2.72659353e-08 1.812774953e-08 1.71519091e-08 2.629753238e-08 2.82953704e-08 1.843637949e-08 2.633718924e-08 2.265796503e-08 2.04835552e-08 2.646796753e-08 1.655996205e-08 1.277294224e-08 1.381187342e-08 1.346967727e-08 1.500101298e-08 1.304099924e-08 7.969229763e-09 5.516599068e-09 1.458664607e-08 1.029138102e-08 1.309072586e-08 9.803863188e-09 1.427746423e-08 1.180182007e-08 1.087636926e-08 7.432372816e-09 9.989985388e-09 1.229910757e-08 1.317300501e-08 1.079619631e-08 7.468252594e-09 9.109286067e-09 5.18121353e-09 4.816694926e-09 5.635373094e-09 8.734919594e-09 1.138116378e-08 5.46415242e-09 5.665388789e-09 1.126373606e-08 1.166126398e-08 6.112336516e-09 4.513531352e-09 1.241332404e-08 1.048221203e-08 1.475227043e-08 1.007427627e-08 3.125472203e-09 8.158059399e-09 1.671503045e-08 7.717824116e-09 1.911869498e-08 9.974456862e-09 6.541351333e-09 1.801823156e-08 1.814267407e-08 1.757819587e-08 1.258922369e-08 1.903993645e-08 8.394691578e-09 2.174712225e-08 1.791605798e-08 2.571842971e-08 2.520964528e-08 2.415429145e-08 2.85176316e-08 2.331813326e-08 2.026784369e-08 3.640643657e-08 1.630005473e-08 2.195213715e-08 2.491530956e-08 2.201715823e-08 2.252578362e-08 2.491260208e-08 2.071231707e-08 2.146001317e-08 1.961571714e-08 2.667326278e-08 1.990498316e-08 1.81495161e-08 2.105344454e-08 1.850436567e-08 2.133705083e-08 1.639287176e-08 1.360951707e-08 1.751793756e-08 1.387330965e-08 1.38810985e-08 1.434055265e-08 1.509042986e-08 1.568153969e-08 1.613009085e-08 1.055657266e-08 1.086889257e-08 1.149924732e-08 7.008938715e-09 9.250165378e-09 6.891596058e-09 8.01036357e-09 7.730251053e-09 8.0268128e-09 2.911282053e-09 2.536263969e-09 1.517291794e-09 1.967649439e-09 1.241087986e-09 7.032084187e-10 3.470779284e-10 3.059601783e-10 3.643963034e-10 3.448009427e-11 3.756941388e-11 1.19587335e-11 4.328436944e-13 9.248975762e-14 3.403105336e-14 6.74409167e-15 2.882898773e-17 1.345990949e-16 9.508466602e-17 3.655556623e-18 2.318253623e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1.563262394e-27 0 8.901995055e-19 5.797951908e-17 1.277786928e-16 1.039892685e-16 1.574602588e-15 2.838712875e-14 2.822643075e-13 1.039153747e-11 2.522301939e-11 2.570999467e-12 1.460368573e-11 2.844181964e-10 4.596758283e-10 6.854640126e-10 2.192384051e-09 3.363724186e-09 3.291528049e-09 2.769483567e-09 4.837006203e-09 5.174722251e-09 7.011730892e-09 5.865958405e-09 7.795681965e-09 6.804046555e-09 1.043532874e-08 8.482866638e-09 1.196586e-08 9.426689862e-09 1.289510563e-08 1.319951304e-08 1.234410887e-08 1.231784013e-08 1.668973876e-08 1.438408529e-08 1.728789071e-08 1.736416019e-08 1.788727586e-08 1.77283971e-08 1.807063831e-08 2.577481961e-08 2.103870801e-08 1.936469939e-08 1.814219074e-08 2.368075746e-08 2.060049771e-08 2.553553591e-08 2.449318423e-08 2.382557442e-08 3.08028888e-08 2.540350617e-08 1.808936362e-08 2.688107549e-08 2.388456869e-08 2.648654489e-08 2.01360008e-08 2.781765762e-08 1.91035323e-08 2.257020466e-08 1.37367106e-08 1.886112241e-08 1.490649779e-08 2.047268001e-08 1.937607354e-08 1.19691311e-08 1.340799349e-08 2.087507591e-08 1.403344954e-08 9.485869051e-09 1.367928375e-08 1.300565002e-08 1.240607409e-08 1.115524633e-08 1.388435526e-08 8.937823773e-09 1.133053118e-08 1.035165672e-08 9.316328295e-09 1.139895005e-08 5.397868782e-09 8.30042911e-09 9.673928526e-09 8.029089934e-09 1.148742546e-08 1.142568703e-08 4.984535589e-09 7.887433409e-09 9.060171049e-09 7.287732481e-09 7.207835616e-09 8.144718043e-09 9.598041564e-09 8.95411531e-09 9.023060744e-09 1.10402083e-08 6.352564472e-09 8.254031595e-09 9.834004249e-09 9.341951324e-09 1.044088107e-08 1.047989116e-08 9.180431419e-09 1.653458797e-08 9.064115425e-09 1.734443954e-08 1.254040208e-08 1.171731974e-08 1.729172561e-08 1.444569472e-08 1.950368086e-08 2.208040088e-08 2.428160013e-08 2.187602165e-08 2.01316773e-08 2.210362323e-08 3.606607066e-08 1.888215672e-08 2.948963918e-08 2.612531632e-08 2.500866019e-08 2.872123618e-08 1.819479783e-08 3.083648589e-08 2.819812753e-08 2.78563763e-08 2.771471484e-08 2.567410982e-08 2.074531518e-08 2.53635907e-08 2.040152729e-08 2.923725069e-08 1.872749951e-08 1.831789214e-08 2.460991863e-08 1.937314277e-08 2.36804235e-08 1.748294044e-08 1.66303307e-08 1.152521441e-08 1.455863635e-08 1.40640349e-08 1.314579677e-08 8.863164563e-09 1.109865124e-08 9.111753892e-09 1.103667865e-08 1.134264012e-08 9.66197281e-09 8.420366412e-09 6.727458242e-09 8.102562576e-09 6.543078882e-09 2.912530649e-09 3.717171608e-09 3.04302873e-09 7.868089822e-10 2.408467542e-09 4.698017402e-10 5.67883192e-10 2.145567938e-10 7.835393541e-12 4.779483043e-11 1.088862516e-12 2.228135797e-12 9.797484695e-15 4.268606866e-13 7.247700881e-16 5.386929738e-15 7.679277661e-17 4.720823327e-17 2.817186665e-18 0 5.704011616e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.633181623e-20 4.802429984e-15 1.558853026e-15 9.509775648e-16 2.231527974e-14 2.872847476e-13 2.282665573e-11 6.63012139e-11 4.232918061e-11 2.124998514e-10 5.880839851e-10 4.114751388e-10 1.484686194e-09 2.267953317e-09 1.358344241e-09 4.938640351e-09 1.560037071e-09 3.257830686e-09 4.844052344e-09 5.414498445e-09 6.932355604e-09 1.02463456e-08 9.17800249e-09 7.673464428e-09 8.716378032e-09 1.012607634e-08 1.297830973e-08 1.214248916e-08 1.362636717e-08 1.438346083e-08 1.285345026e-08 1.830495795e-08 1.833038356e-08 1.812041976e-08 1.949966294e-08 1.777087537e-08 2.030434334e-08 2.089977871e-08 2.640453126e-08 2.278551265e-08 2.066104438e-08 2.427247619e-08 2.808283704e-08 2.671424339e-08 2.981874544e-08 2.493578024e-08 1.860769447e-08 2.113705097e-08 1.748467056e-08 2.303648459e-08 3.070531702e-08 1.894850294e-08 2.376184463e-08 2.70883473e-08 2.7738177e-08 2.841287318e-08 1.660707638e-08 2.899443461e-08 2.213115833e-08 2.188938557e-08 1.563102782e-08 1.535557825e-08 2.080716315e-08 1.004943314e-08 1.071474635e-08 1.358922804e-08 1.393895571e-08 1.065162132e-08 8.971062643e-09 1.116346366e-08 1.855451092e-08 9.063785613e-09 1.120262891e-08 7.558765671e-09 9.280455351e-09 1.132760717e-08 8.788343681e-09 8.881451775e-09 9.509218492e-09 7.912118322e-09 7.103778437e-09 1.019432864e-08 9.972885743e-09 5.783847593e-09 9.507264338e-09 8.155750872e-09 6.533446911e-09 8.60990378e-09 9.097288739e-09 1.002355987e-08 8.768132947e-09 1.400171501e-08 8.66233736e-09 1.075869626e-08 1.262502489e-08 1.222425406e-08 8.026207145e-09 7.680211544e-09 1.008776965e-08 1.157508139e-08 1.279329408e-08 1.534737535e-08 1.039016464e-08 1.284462345e-08 2.25896451e-08 1.845822704e-08 2.314292181e-08 1.237363851e-08 2.575132652e-08 1.682488844e-08 1.828325197e-08 2.727116809e-08 2.623360503e-08 2.558047842e-08 3.031260833e-08 2.134794357e-08 2.651832052e-08 2.836519714e-08 3.011438417e-08 2.572445825e-08 2.112112884e-08 2.656571507e-08 2.54721047e-08 2.488478491e-08 2.688163553e-08 2.443298387e-08 2.000320873e-08 2.660462152e-08 2.585684032e-08 2.214545383e-08 1.95734842e-08 2.226386571e-08 1.96421094e-08 1.89108059e-08 1.606299657e-08 1.74964801e-08 1.237493399e-08 1.498128408e-08 1.265671061e-08 1.62808322e-08 9.332496344e-09 1.248042837e-08 1.135891377e-08 9.460344028e-09 1.144782648e-08 8.707724669e-09 6.945881759e-09 4.020092825e-09 6.310047639e-09 6.242328256e-09 4.70834045e-09 3.43479631e-09 2.174084104e-09 1.889008823e-09 1.42921585e-09 5.270225707e-10 2.804394066e-10 1.78158851e-10 2.153942212e-10 1.566407047e-10 5.854282847e-12 4.148029876e-11 1.535821544e-13 1.990573873e-13 1.084474772e-14 1.434663975e-14 6.911449794e-16 3.976418551e-17 6.099219051e-18 4.842232776e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 8.806550581e-11 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.632755587e-18 1.730427655e-18 8.558946906e-16 1.261759955e-15 1.519963149e-13 1.298274388e-13 2.363866142e-14 4.104459964e-12 2.728174137e-11 1.79170454e-10 2.399742175e-10 1.334310896e-10 7.317359611e-10 7.245680721e-10 7.542974325e-10 3.408522541e-09 3.308997882e-09 4.507823029e-09 4.455125488e-09 4.901495935e-09 5.899312775e-09 7.534335526e-09 8.295074485e-09 9.852139362e-09 1.102436324e-08 1.186699015e-08 1.016462462e-08 1.597705778e-08 1.567552209e-08 1.381089581e-08 1.385877465e-08 1.443469153e-08 1.326303485e-08 2.200900136e-08 2.000357179e-08 1.9552108e-08 2.017826803e-08 2.071513208e-08 2.268871998e-08 2.266359564e-08 2.578878813e-08 2.679125922e-08 2.638177899e-08 2.923031248e-08 2.730455218e-08 2.728693347e-08 2.236320815e-08 2.470517331e-08 2.187072929e-08 2.913146846e-08 2.750064068e-08 3.094102419e-08 2.50604486e-08 2.905291356e-08 3.002349476e-08 2.35724979e-08 2.749265252e-08 2.668600761e-08 2.383887225e-08 2.050538335e-08 2.320535722e-08 1.648382259e-08 1.339005705e-08 1.480972635e-08 9.938330323e-09 1.769957102e-08 1.52969782e-08 8.407782535e-09 1.865084197e-08 1.121213037e-08 9.055969253e-09 9.038296379e-09 1.004122479e-08 9.329429027e-09 9.833222434e-09 1.454531622e-08 8.454190729e-09 6.261111158e-09 7.45070359e-09 9.249765766e-09 7.369558363e-09 4.760862714e-09 1.090542481e-08 1.484260449e-08 8.222873054e-09 7.908199397e-09 1.263746832e-08 7.675153328e-09 7.009272616e-09 1.514129733e-08 1.306826581e-08 1.223992406e-08 5.004495611e-09 1.066281528e-08 1.123474503e-08 1.278212626e-08 1.294265445e-08 1.438569611e-08 6.189912253e-09 1.090300338e-08 1.520852233e-08 1.457656061e-08 1.505895033e-08 1.551980978e-08 2.041852167e-08 1.631155917e-08 1.643208206e-08 1.591115961e-08 2.030220827e-08 1.614823008e-08 1.658558026e-08 2.218324915e-08 2.383340748e-08 2.304186286e-08 2.89883995e-08 2.814532768e-08 2.41824353e-08 2.189543758e-08 2.55618128e-08 2.935788226e-08 2.245193584e-08 2.672494662e-08 3.117282661e-08 2.364983559e-08 2.273587519e-08 2.888971941e-08 3.178498848e-08 2.428519818e-08 2.409456644e-08 2.557986311e-08 2.113763455e-08 2.442237597e-08 1.93077227e-08 1.973876349e-08 2.039092984e-08 2.042384978e-08 1.95837175e-08 1.550187467e-08 1.755434326e-08 1.62698032e-08 1.511453253e-08 1.373493752e-08 1.316917641e-08 1.307866937e-08 1.26520497e-08 1.015189233e-08 5.933906757e-09 7.717521859e-09 1.052260831e-08 5.227590712e-09 5.108028636e-09 6.332434945e-09 3.977905359e-09 1.889175494e-09 3.043944601e-09 1.460055968e-09 7.905352971e-10 4.277413943e-10 4.363030196e-10 4.986650247e-10 3.836526603e-10 3.423665233e-11 6.211571599e-12 2.839457671e-13 2.22995286e-13 2.484119982e-14 2.603138649e-15 9.03485716e-16 2.369072668e-17 1.210674601e-18 2.329920993e-18 0 0 0 0 0 0 0 0 7.809620173e-11 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.740121518e-17 2.947576198e-18 4.279108573e-17 1.00999428e-17 2.472767329e-15 7.169019202e-14 2.079701534e-14 5.638566615e-13 1.683623242e-11 4.694079704e-11 2.082425805e-10 2.611303038e-10 8.247854122e-10 8.010171218e-10 2.180122383e-10 1.135352459e-09 3.260497131e-09 2.995344152e-09 4.535972474e-09 4.627684964e-09 4.705739693e-09 4.17295245e-09 7.142512278e-09 9.087514446e-09 6.844390227e-09 9.407737211e-09 9.004358982e-09 1.410682185e-08 8.880963662e-09 1.650045537e-08 1.451769924e-08 9.4654095e-09 1.599767483e-08 1.903189134e-08 1.929374756e-08 1.564537454e-08 1.852421123e-08 1.98105725e-08 2.924159408e-08 2.266446392e-08 2.277645193e-08 2.773823641e-08 2.645393926e-08 2.534724911e-08 2.292359395e-08 3.109954279e-08 2.199430845e-08 2.625756827e-08 2.590171047e-08 2.448447536e-08 3.542271409e-08 1.958216957e-08 3.287123949e-08 2.993967247e-08 3.117946073e-08 2.74475967e-08 2.057155301e-08 1.795641777e-08 2.592853634e-08 1.838481882e-08 2.620253678e-08 1.930832549e-08 1.657978931e-08 1.772346341e-08 1.712756284e-08 1.845098439e-08 1.287363389e-08 1.395228963e-08 7.129242242e-09 7.925114556e-09 1.281827067e-08 1.422140257e-08 9.937798999e-09 9.297647938e-09 9.026765332e-09 1.404907223e-08 8.764975309e-09 1.420320222e-08 8.402314155e-09 1.299806178e-08 9.269701383e-09 7.943631477e-09 9.752517087e-09 1.197951078e-08 1.321904617e-08 8.88802058e-09 1.574803409e-08 1.195305505e-08 1.082800945e-08 1.254733948e-08 6.776314179e-09 5.221218114e-09 1.590526003e-08 1.397804732e-08 1.616367065e-08 1.251392303e-08 1.040374839e-08 7.404419363e-09 6.06481571e-09 1.218918632e-08 9.927542583e-09 1.077914067e-08 1.780862975e-08 7.989591536e-09 1.124250253e-08 2.535936595e-08 3.276867165e-08 1.955468341e-08 1.795227166e-08 2.338636964e-08 2.128868811e-08 2.506696368e-08 2.735910744e-08 2.370161155e-08 2.44770516e-08 2.749576295e-08 2.611907496e-08 2.726406858e-08 2.840488644e-08 2.847964237e-08 2.397876305e-08 2.667719364e-08 2.961023698e-08 3.408678291e-08 2.816799248e-08 3.367134373e-08 2.393377103e-08 2.711596405e-08 2.924747747e-08 2.509743347e-08 1.741695681e-08 2.070194137e-08 2.340148794e-08 2.11789421e-08 1.727978542e-08 1.405516844e-08 2.019512312e-08 1.710016333e-08 2.064336931e-08 1.747174113e-08 1.657508514e-08 1.489598683e-08 1.484693895e-08 1.22459173e-08 1.466356035e-08 9.669884561e-09 7.824404271e-09 9.921853853e-09 9.438323132e-09 8.763822783e-09 9.498739263e-09 5.617998295e-09 6.273750527e-09 3.976783868e-09 2.842926183e-09 3.478160141e-09 1.684343065e-09 8.362989679e-10 4.753259387e-10 1.638756182e-10 4.855357806e-10 1.779823366e-10 1.060074233e-10 3.772795296e-14 6.136584099e-13 2.734683586e-13 1.745085998e-14 9.813302413e-15 2.553623105e-17 2.453456362e-17 1.570947969e-18 3.531333061e-22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.983505338e-18 2.469689563e-21 7.901629632e-18 4.727106258e-17 4.005178647e-16 1.519630664e-14 9.555529181e-14 3.403131322e-12 8.546505585e-12 6.065837962e-11 1.916819887e-10 3.402230414e-10 5.358379184e-10 2.82845542e-10 1.707471245e-09 2.143346821e-09 2.583408698e-09 3.696311767e-09 5.134633326e-09 3.685138731e-09 3.645191746e-09 4.179317001e-09 6.073000611e-09 1.004162479e-08 7.477144527e-09 7.269898022e-09 1.184654859e-08 1.083391888e-08 1.238969622e-08 1.241166408e-08 1.713408684e-08 1.578200041e-08 2.018851526e-08 1.845395852e-08 2.239200942e-08 1.808126099e-08 2.10874391e-08 2.403140205e-08 1.870254652e-08 2.22457018e-08 2.312030784e-08 2.617888123e-08 2.52434927e-08 2.572135753e-08 2.957910219e-08 2.87913384e-08 2.809303583e-08 2.838059507e-08 3.095575011e-08 2.646267463e-08 2.278895175e-08 3.512401803e-08 3.538400874e-08 2.662175399e-08 2.234611664e-08 2.953853801e-08 2.989512856e-08 3.006368568e-08 2.377900273e-08 2.483998352e-08 2.093518796e-08 2.49896262e-08 2.397314726e-08 1.841977415e-08 1.469382128e-08 1.568556817e-08 1.590187212e-08 1.846968992e-08 1.761123967e-08 1.029031295e-08 1.574953228e-08 1.060674739e-08 1.652739891e-08 1.129264926e-08 9.086902813e-09 1.324974141e-08 1.352232575e-08 9.147113088e-09 1.378931079e-08 1.219839851e-08 9.459812027e-09 1.220949974e-08 8.598319635e-09 1.292248308e-08 8.293027654e-09 1.433561883e-08 9.633821793e-09 8.03183556e-09 1.012061263e-08 1.378329834e-08 7.104508649e-09 7.871473763e-09 1.084844439e-08 8.485569242e-09 9.984169688e-09 1.340412955e-08 1.189474889e-08 1.418815974e-08 1.630333936e-08 1.47279046e-08 2.120447224e-08 1.225633048e-08 1.120465436e-08 1.909988485e-08 1.416749323e-08 1.738190005e-08 2.017242108e-08 2.085156482e-08 1.887246446e-08 1.477599447e-08 2.279602998e-08 2.783705833e-08 2.568878094e-08 2.539945919e-08 3.250398673e-08 2.958773944e-08 3.280292757e-08 2.640376044e-08 2.246452666e-08 3.012933889e-08 2.655401402e-08 2.593001653e-08 2.771129385e-08 2.84883335e-08 2.676663597e-08 3.210043784e-08 2.397598423e-08 2.651587936e-08 2.715642587e-08 2.538585128e-08 2.608642911e-08 2.361542194e-08 2.138976397e-08 2.202826355e-08 2.083542114e-08 2.504501492e-08 1.737749452e-08 1.868943425e-08 1.764611655e-08 1.887934797e-08 1.880886257e-08 1.543316978e-08 1.053768736e-08 1.420327501e-08 1.014872616e-08 7.498730653e-09 1.14568152e-08 7.79357232e-09 1.02404966e-08 8.081149412e-09 8.048036969e-09 6.559581124e-09 5.197387496e-09 3.302008766e-09 2.414500136e-09 3.78536995e-09 9.670298466e-10 8.432829236e-10 2.860396925e-10 5.499921128e-10 7.253432413e-11 2.454372307e-10 3.127819042e-13 1.820223704e-11 3.446311318e-12 3.22663992e-13 1.757358935e-12 4.575719119e-16 5.631787696e-17 1.441989033e-16 3.282266821e-19 7.858230716e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.201609159e-17 1.669498042e-17 1.059997291e-15 1.79160622e-15 2.607437377e-14 4.207352527e-13 1.772178297e-12 2.775775227e-12 6.8231658e-11 5.119786222e-11 4.76907355e-10 5.222605179e-10 4.998147859e-10 7.257121808e-10 2.618616035e-09 2.342541482e-09 4.783659403e-09 5.839234011e-09 6.205966942e-09 5.737419587e-09 4.685283569e-09 9.667207346e-09 7.86190072e-09 1.199074657e-08 1.307537458e-08 1.069931093e-08 1.019527916e-08 1.271245554e-08 1.545365048e-08 1.467021846e-08 1.868907077e-08 1.521958209e-08 1.991780878e-08 1.961887641e-08 2.209302609e-08 2.473859073e-08 2.52490823e-08 2.569520101e-08 1.881343643e-08 2.641153456e-08 2.217364918e-08 3.113163686e-08 2.363590348e-08 2.231550824e-08 2.964385085e-08 2.739375972e-08 2.955814472e-08 2.269602692e-08 3.15715912e-08 2.580414893e-08 3.066046463e-08 3.03207478e-08 2.959530793e-08 2.290788604e-08 2.641341396e-08 4.162821182e-08 3.132800418e-08 2.665593948e-08 2.321195207e-08 1.883674564e-08 2.239193536e-08 1.887201514e-08 2.240628833e-08 1.489128245e-08 1.42374622e-08 1.825897895e-08 1.368634335e-08 6.500130213e-09 1.330368724e-08 1.572536966e-08 1.670703522e-08 1.237180945e-08 1.525983587e-08 7.18493951e-09 9.520103397e-09 1.070695076e-08 9.504672285e-09 1.254782208e-08 1.724384255e-08 1.211793364e-08 1.134654869e-08 8.670754087e-09 8.83133389e-09 1.363552488e-08 1.067528152e-08 1.065246021e-08 1.014810932e-08 9.482466252e-09 1.375825176e-08 8.782641546e-09 1.073239389e-08 1.451386925e-08 1.194247617e-08 5.465402973e-09 1.518967341e-08 1.326474061e-08 8.304938694e-09 1.678903778e-08 1.491849576e-08 1.298732639e-08 1.191464825e-08 1.570329954e-08 1.236311409e-08 2.21406916e-08 1.684312618e-08 2.520595695e-08 2.171679362e-08 1.637166378e-08 2.157533356e-08 2.649766217e-08 1.823096844e-08 2.818809271e-08 3.626347482e-08 2.72500152e-08 1.939255821e-08 3.193840391e-08 2.899109365e-08 2.518368315e-08 2.751082702e-08 3.036589743e-08 3.0728788e-08 2.490183416e-08 3.027508235e-08 3.052686715e-08 2.873158487e-08 2.660342379e-08 2.885200233e-08 2.453669482e-08 2.571621909e-08 2.831362035e-08 2.732277276e-08 2.747812019e-08 2.527836781e-08 1.965246653e-08 2.107398313e-08 2.257228979e-08 2.156786382e-08 1.645779122e-08 1.787080959e-08 1.877584854e-08 1.235566011e-08 1.715789241e-08 1.27627367e-08 1.093944347e-08 1.039024657e-08 1.061302482e-08 1.255688699e-08 9.404104093e-09 7.331085671e-09 7.950682258e-09 7.161688894e-09 4.214893449e-09 5.463073881e-09 3.514142036e-09 1.676363684e-09 1.725979378e-09 8.032441423e-10 1.536433751e-10 2.048692459e-10 4.696701456e-10 1.310557855e-10 4.266323581e-11 1.676140145e-11 1.926275705e-13 1.312828963e-13 3.049653163e-16 9.394214087e-16 1.860240606e-15 2.597915166e-17 6.701128933e-17 1.948663422e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 4.436207229e-19 3.163658535e-18 7.207048398e-18 1.260268123e-16 6.950045987e-17 4.411944748e-16 8.559579371e-14 2.654670471e-14 1.173879451e-10 5.032543662e-12 6.869992962e-11 1.009576445e-10 1.717066435e-10 3.637554383e-10 1.230449416e-10 9.246400846e-10 2.216001967e-09 3.444119873e-09 3.545514778e-09 5.962287446e-09 4.680345228e-09 6.841962195e-09 6.816446678e-09 6.185857578e-09 8.730018751e-09 1.074294919e-08 1.11876142e-08 1.063389679e-08 9.783482909e-09 1.458748551e-08 1.571231368e-08 1.327895807e-08 1.413521385e-08 1.743979236e-08 1.984114938e-08 2.108034946e-08 1.872406872e-08 2.348631736e-08 2.463765057e-08 2.981255923e-08 2.380751713e-08 2.988459378e-08 2.85196837e-08 2.571589517e-08 2.997812599e-08 2.783698783e-08 3.186414291e-08 2.879344889e-08 3.088766311e-08 2.883813163e-08 2.960720203e-08 2.42750426e-08 2.4487297e-08 2.677668087e-08 3.513063451e-08 3.352981403e-08 2.452554821e-08 2.92224092e-08 2.520989239e-08 2.814575447e-08 2.616886675e-08 2.068137084e-08 2.328748183e-08 1.796526016e-08 2.251121334e-08 1.529821697e-08 1.307641021e-08 2.261207299e-08 1.045082262e-08 9.574973906e-09 1.891797039e-08 1.320891436e-08 1.115774855e-08 1.151462343e-08 9.554421153e-09 1.282839938e-08 1.213916255e-08 1.281440567e-08 1.310508323e-08 1.415898688e-08 1.117064235e-08 1.00188962e-08 8.781083084e-09 1.349898229e-08 9.449300251e-09 1.327762657e-08 8.958599635e-09 1.153748743e-08 1.05143199e-08 1.070878889e-08 1.113601094e-08 1.312782879e-08 9.127680566e-09 7.033995496e-09 1.623977003e-08 1.034832592e-08 7.672409372e-09 1.001845625e-08 1.333155534e-08 1.296385231e-08 1.009777401e-08 1.425214305e-08 1.85674358e-08 1.476085474e-08 1.311350911e-08 1.961029675e-08 1.425839098e-08 1.826674125e-08 2.251097216e-08 1.936722456e-08 1.971708876e-08 2.950391087e-08 2.324026946e-08 2.500261904e-08 1.494828199e-08 2.269231795e-08 2.823372887e-08 3.01609258e-08 2.520113948e-08 3.188479058e-08 2.421997486e-08 2.718911117e-08 3.191244741e-08 3.057514032e-08 3.191499757e-08 2.87029693e-08 2.869807936e-08 2.55605874e-08 2.942371948e-08 2.753718754e-08 2.83515468e-08 2.81641074e-08 2.753632925e-08 2.583897209e-08 2.40084757e-08 2.599109325e-08 1.989208942e-08 2.412170401e-08 1.95199947e-08 2.042428008e-08 1.805148889e-08 1.794007788e-08 2.004822691e-08 1.842947393e-08 1.070480715e-08 1.085114335e-08 1.152872343e-08 1.310364159e-08 1.04963037e-08 1.021496425e-08 6.18473433e-09 7.410215741e-09 5.012520328e-09 4.206556945e-09 6.087970019e-09 2.753912372e-09 1.198408991e-09 2.324405092e-09 5.024344123e-10 2.840431797e-10 3.982150073e-10 5.548027778e-10 3.932236926e-11 7.273041353e-12 1.36022121e-11 1.125645735e-13 1.769497346e-14 2.481848909e-14 2.287516735e-15 3.251603326e-23 5.505382142e-17 0 0 0 4.501460116e-19 0 0 0 0 0 0 0 9.837076548e-11 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.241767896e-24 6.883590194e-19 1.767978821e-16 1.713833294e-16 4.996278091e-15 4.319160657e-14 1.342144311e-15 7.401351088e-14 2.524783819e-11 2.196550431e-10 1.934257718e-12 1.294138287e-10 4.646293822e-10 6.699233257e-10 1.026532697e-09 1.619482783e-09 3.812532991e-09 3.817752084e-09 3.526966024e-09 4.214739516e-09 6.666202633e-09 1.0668481e-08 8.791304527e-09 1.12230294e-08 1.1156618e-08 1.287734739e-08 1.234765223e-08 1.487715474e-08 1.550316762e-08 1.808132678e-08 1.573955072e-08 1.6910862e-08 1.974400517e-08 1.58614623e-08 1.873578445e-08 1.953592236e-08 2.697141541e-08 2.534940783e-08 2.503232574e-08 2.005164882e-08 2.582419247e-08 2.621426898e-08 3.045945004e-08 2.539511814e-08 2.881313285e-08 2.755092169e-08 3.217835702e-08 3.368849769e-08 3.276965936e-08 2.462193398e-08 2.584329977e-08 3.567004277e-08 2.724940783e-08 2.480764613e-08 3.111251071e-08 3.111327952e-08 3.228175526e-08 3.063065546e-08 2.60675022e-08 2.505998566e-08 2.882565426e-08 1.670856668e-08 2.159798106e-08 2.157650422e-08 2.053243286e-08 2.00072268e-08 1.885618179e-08 1.263535244e-08 1.289019693e-08 1.56784454e-08 1.38872511e-08 1.567510589e-08 1.344348489e-08 1.269041439e-08 1.630703824e-08 1.193105167e-08 1.083258905e-08 1.060894695e-08 8.217069385e-09 1.604209091e-08 1.553760808e-08 1.00179907e-08 1.142687078e-08 1.376155799e-08 8.838792843e-09 8.018583834e-09 1.103472078e-08 1.315428141e-08 1.232681971e-08 1.320383043e-08 1.276228282e-08 1.179099425e-08 1.027943565e-08 1.03276622e-08 9.25554226e-09 1.053818719e-08 6.771010221e-09 7.555526844e-09 1.08607387e-08 6.964956279e-09 1.33739685e-08 1.508009785e-08 1.43656656e-08 1.68661759e-08 1.595332135e-08 2.212076294e-08 1.868944709e-08 1.438548389e-08 1.445300594e-08 2.5105888e-08 2.64462945e-08 1.954151724e-08 2.767022971e-08 1.854323109e-08 2.797335274e-08 3.081359212e-08 3.543344714e-08 2.520824491e-08 2.484972979e-08 3.383900101e-08 3.741742935e-08 3.300663549e-08 2.918067869e-08 3.201304688e-08 3.075645456e-08 3.178364426e-08 2.587293975e-08 3.083695747e-08 3.52947775e-08 2.843128306e-08 2.989277684e-08 2.535241102e-08 2.378936981e-08 2.237460998e-08 2.153936603e-08 2.335184662e-08 2.148319629e-08 1.849532481e-08 1.573525955e-08 1.871731682e-08 1.657199145e-08 1.831266238e-08 1.667980114e-08 1.377049805e-08 1.248283205e-08 1.097787742e-08 8.485474671e-09 1.066584644e-08 1.208559694e-08 1.156988926e-08 6.761298909e-09 7.202914352e-09 5.381491746e-09 3.885119127e-09 3.630287947e-09 3.656111937e-09 1.272234306e-09 7.163226581e-10 4.568752958e-10 4.296437226e-10 3.605534594e-10 2.434567579e-10 9.096137772e-12 3.625881336e-11 4.523334129e-12 6.200897398e-14 7.684166063e-14 2.925004143e-15 1.156563084e-16 1.29378843e-17 3.899151803e-18 1.520056655e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.569841305e-17 3.350018457e-20 5.026165396e-17 2.990739638e-16 7.490897695e-16 5.585115586e-15 1.285803303e-14 3.05137654e-12 8.721726615e-13 1.9494211e-12 3.198881828e-12 1.385664205e-10 4.569217612e-10 7.562597764e-10 1.205393065e-09 2.405660947e-09 3.520623488e-09 6.094252845e-09 5.625809041e-09 7.058291769e-09 5.915349479e-09 8.280832636e-09 9.668726451e-09 8.97792647e-09 1.361531495e-08 1.108136918e-08 1.370422529e-08 1.528002183e-08 1.527491953e-08 1.860489455e-08 2.046703163e-08 2.030001309e-08 1.420626736e-08 2.131714185e-08 1.685233817e-08 2.216820119e-08 1.980591708e-08 2.596951267e-08 2.081790532e-08 2.608072338e-08 2.84988438e-08 2.901875816e-08 2.865526204e-08 3.319776564e-08 2.734349971e-08 3.795557755e-08 3.312170728e-08 3.830750893e-08 3.771514108e-08 3.554171764e-08 3.24553004e-08 2.622368785e-08 2.814072584e-08 3.033117607e-08 3.270167095e-08 3.491411632e-08 3.459358884e-08 3.076939629e-08 3.263441878e-08 2.420256533e-08 2.874626895e-08 4.070015804e-08 1.81491626e-08 1.906018999e-08 1.925524234e-08 2.075480869e-08 2.035620581e-08 1.907481153e-08 1.817194928e-08 1.720436287e-08 1.620530333e-08 9.746498559e-09 1.008798845e-08 1.309270168e-08 9.957629444e-09 1.328142493e-08 1.183153267e-08 9.810553986e-09 1.339495302e-08 1.182148657e-08 1.369100053e-08 1.513394242e-08 9.084071648e-09 1.401899137e-08 1.191952362e-08 1.231071818e-08 1.297200133e-08 1.052060135e-08 9.525173379e-09 9.417446477e-09 1.295707153e-08 8.967374777e-09 1.221775507e-08 1.629401861e-08 9.956131032e-09 1.44966873e-08 1.261871644e-08 7.090457234e-09 1.535135913e-08 1.067405367e-08 1.187638134e-08 1.123431049e-08 1.698688804e-08 2.437124418e-08 1.130102546e-08 2.242569394e-08 1.921803195e-08 1.297135587e-08 3.170731974e-08 2.822924997e-08 2.371467866e-08 2.502687976e-08 3.146050957e-08 3.058945039e-08 2.549664465e-08 2.867712078e-08 2.809912262e-08 2.965541182e-08 2.785754588e-08 3.258291511e-08 3.432265118e-08 3.719268681e-08 2.771087484e-08 3.391943493e-08 2.910393413e-08 3.196594213e-08 3.031961487e-08 2.983391028e-08 3.25068034e-08 2.785516132e-08 2.529785457e-08 2.606954435e-08 2.427580239e-08 2.113368759e-08 2.199423457e-08 2.944429281e-08 2.482411676e-08 1.810529206e-08 1.874853218e-08 2.161404855e-08 1.883880913e-08 1.930398071e-08 1.005798716e-08 1.741227144e-08 1.309575136e-08 1.053923006e-08 9.950612006e-09 9.174367401e-09 8.142135539e-09 7.879620205e-09 6.396267925e-09 6.551208175e-09 7.460645168e-09 4.27049133e-09 3.43423981e-09 2.89303381e-09 2.39346763e-09 2.175965434e-10 9.166962802e-10 3.327566895e-10 4.476935287e-10 3.496640144e-10 3.291094189e-11 1.979405923e-11 3.050622551e-12 8.473996655e-14 6.95361825e-15 1.878583797e-14 2.504313509e-17 1.622567442e-17 3.770442891e-18 2.597627547e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 2.174437605e-19 0 0 0 0 1.060786446e-18 1.798936725e-17 3.204997778e-17 6.515056423e-16 4.150433217e-16 1.371597983e-15 4.261734098e-14 1.628278962e-12 2.422989597e-11 1.381816341e-12 2.145852092e-10 1.86316192e-10 5.378240787e-10 4.860528361e-10 8.089712329e-10 1.205744148e-09 3.581175785e-09 5.291324559e-09 3.359475361e-09 5.891695694e-09 8.792085931e-09 7.019682587e-09 1.106886056e-08 7.989399434e-09 1.09968932e-08 1.348416872e-08 1.399189517e-08 1.287738952e-08 1.584728654e-08 1.671349636e-08 1.577134688e-08 1.943152517e-08 2.171440801e-08 1.422918861e-08 2.520718938e-08 2.447789652e-08 2.011686494e-08 2.310475103e-08 2.737852169e-08 3.037679106e-08 2.772099213e-08 3.206250329e-08 3.116287655e-08 3.337242098e-08 3.463722833e-08 3.574427339e-08 3.190905448e-08 3.475016136e-08 3.455646053e-08 4.332363579e-08 3.614010355e-08 2.859181313e-08 3.017939832e-08 4.567308373e-08 3.19092234e-08 3.343677077e-08 2.811719489e-08 3.41570906e-08 3.359886475e-08 3.160481459e-08 2.646011494e-08 1.843092611e-08 2.071298397e-08 2.753181675e-08 2.567991605e-08 1.371013907e-08 1.416024991e-08 2.263246726e-08 2.474135284e-08 1.858643155e-08 8.113477895e-09 1.531162895e-08 1.128009744e-08 1.549801087e-08 1.163607381e-08 9.92350308e-09 1.652871175e-08 1.233087127e-08 1.571825433e-08 1.221840125e-08 1.41655813e-08 9.688442319e-09 1.473215097e-08 1.391983334e-08 1.143557911e-08 1.087457815e-08 1.10911157e-08 1.151471162e-08 1.412803503e-08 1.535659699e-08 1.070725763e-08 1.324909267e-08 1.188382115e-08 9.989069731e-09 1.246437973e-08 1.645011729e-08 1.176411097e-08 1.768488633e-08 7.150359436e-09 1.268833155e-08 1.169939617e-08 1.001011394e-08 8.9795507e-09 1.728570761e-08 2.007159613e-08 1.131730625e-08 2.338105843e-08 2.408626603e-08 2.001289011e-08 2.668818621e-08 2.202652723e-08 2.971478132e-08 3.124618185e-08 4.322527883e-08 3.387724814e-08 3.582358973e-08 3.679075222e-08 2.400989856e-08 2.480765057e-08 3.130090031e-08 2.980880368e-08 3.767135807e-08 2.939778248e-08 3.25839017e-08 3.073431351e-08 3.022827992e-08 2.769063266e-08 3.315793447e-08 2.91762427e-08 3.896321415e-08 2.495290621e-08 3.0702129e-08 2.841655587e-08 2.572655405e-08 2.872387846e-08 2.513181019e-08 2.040534454e-08 2.037899654e-08 2.303165188e-08 2.111723549e-08 1.740540879e-08 1.585115838e-08 1.624877532e-08 1.536013164e-08 1.552569379e-08 1.29546709e-08 1.382026392e-08 1.188634538e-08 1.153894657e-08 9.74855523e-09 8.492596607e-09 8.35292935e-09 7.216572564e-09 4.662352876e-09 1.324247777e-09 3.0229695e-09 2.540542827e-09 1.889427876e-09 1.012826123e-09 2.633816916e-10 3.80341179e-10 1.090139169e-10 6.236939072e-11 1.048174645e-11 1.241400917e-12 1.562762864e-12 1.725955569e-14 9.310437711e-15 6.737117273e-17 3.785640718e-18 2.507855466e-18 3.196865286e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1.970715951e-21 4.469540096e-19 4.162977053e-18 5.918846544e-17 7.003709567e-16 4.027175427e-15 2.165664043e-14 1.692326027e-13 1.320498747e-13 3.771552725e-12 2.164995648e-11 8.998769094e-11 1.216568076e-10 3.72883772e-10 7.503247833e-10 1.112010928e-09 2.827081702e-09 2.155327394e-09 4.270403018e-09 6.394125954e-09 5.849887315e-09 5.587748938e-09 7.898834999e-09 1.024755569e-08 1.297739737e-08 1.007507477e-08 1.175453257e-08 9.263004333e-09 1.623704101e-08 1.87946306e-08 1.254606801e-08 1.642241841e-08 2.313854018e-08 2.60481193e-08 2.571895128e-08 2.325814271e-08 2.425443715e-08 2.27021271e-08 2.794741784e-08 2.649098106e-08 2.427896174e-08 2.655180732e-08 3.003910259e-08 3.255733873e-08 3.532051324e-08 2.737685984e-08 3.739205145e-08 3.968705867e-08 3.784960781e-08 3.471662285e-08 3.231639523e-08 3.545079409e-08 3.341015173e-08 3.981625534e-08 3.633732789e-08 2.300670516e-08 3.398640876e-08 3.540977084e-08 2.863260586e-08 2.443436706e-08 3.60433357e-08 2.939616991e-08 2.737511726e-08 2.186294442e-08 2.579499946e-08 2.586312385e-08 1.710980805e-08 1.599918642e-08 2.160930361e-08 2.43700124e-08 1.605133279e-08 1.270345908e-08 1.579212382e-08 1.533921276e-08 1.362460087e-08 1.302845804e-08 1.237003103e-08 1.001306361e-08 9.131749884e-09 1.375728852e-08 1.208106603e-08 1.178153265e-08 1.517437849e-08 1.057812008e-08 1.210455209e-08 1.018849181e-08 1.833518926e-08 1.223869199e-08 9.250552213e-09 6.73491001e-09 1.58677172e-08 1.055701682e-08 1.039266648e-08 9.767931288e-09 9.281527409e-09 1.492582383e-08 1.247501733e-08 1.121078707e-08 1.164348628e-08 2.332824977e-08 1.725471797e-08 1.313526309e-08 1.383964389e-08 1.351384421e-08 1.338630475e-08 2.255527471e-08 2.262907827e-08 1.79895462e-08 1.658204365e-08 2.403262544e-08 2.934296975e-08 2.775863756e-08 2.781613251e-08 3.131870974e-08 3.141948841e-08 2.853533439e-08 3.744159182e-08 3.610091489e-08 2.758373797e-08 3.048160226e-08 3.436199977e-08 2.894566547e-08 2.889660152e-08 4.097178421e-08 3.22490366e-08 3.38999206e-08 3.897997781e-08 3.04927911e-08 3.344925218e-08 3.05274808e-08 2.928159349e-08 3.29807245e-08 2.590424059e-08 2.875915532e-08 2.379438748e-08 2.560342182e-08 2.150973093e-08 2.132676726e-08 2.658250666e-08 2.397374517e-08 2.252765914e-08 1.867580739e-08 1.865745649e-08 1.743599415e-08 1.396592635e-08 1.299415759e-08 1.393027238e-08 9.011512651e-09 9.409030523e-09 7.717096167e-09 1.029496203e-08 6.427662834e-09 7.740320524e-09 4.574460373e-09 4.940864749e-09 3.364354996e-09 3.495710773e-09 2.341232651e-09 1.067562385e-09 6.37828775e-10 2.782772077e-10 2.962305761e-10 5.62449506e-11 1.535936893e-10 1.725971496e-12 1.644053029e-12 1.623285093e-13 7.189192906e-15 8.136204488e-16 2.253356752e-16 4.020828851e-16 3.527545268e-18 2.297781635e-18 4.991235939e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.346755711e-18 9.089274946e-19 2.313676316e-17 5.539476171e-16 2.014058005e-15 2.137143071e-15 4.193627528e-14 5.601811007e-13 8.872981838e-12 1.691466326e-10 1.714971381e-10 4.057327153e-10 3.812732872e-10 7.819156907e-10 1.843388287e-09 2.507124815e-09 2.950944005e-09 4.234129742e-09 4.26966199e-09 6.297779659e-09 7.339664656e-09 1.106703589e-08 1.019628339e-08 1.089337322e-08 1.171332247e-08 9.997795684e-09 1.079203441e-08 1.768474416e-08 1.237230975e-08 1.599000048e-08 1.701763303e-08 2.491381416e-08 1.937260471e-08 2.060386912e-08 2.1191721e-08 2.137830723e-08 2.426579619e-08 2.834050746e-08 2.74831731e-08 3.047872259e-08 2.988278786e-08 2.883044379e-08 3.650102561e-08 3.242804081e-08 3.659721591e-08 3.338252562e-08 4.172757727e-08 2.939173029e-08 4.326229293e-08 3.509354985e-08 3.042401485e-08 3.644389212e-08 3.76605699e-08 4.128532412e-08 3.683082939e-08 3.454920823e-08 2.368825145e-08 3.964754696e-08 3.499989156e-08 3.119770908e-08 2.324720833e-08 2.896921042e-08 3.121957459e-08 1.545252376e-08 2.496606074e-08 1.802633849e-08 2.130991412e-08 2.081430973e-08 1.338555189e-08 1.316897574e-08 1.559212716e-08 1.480494317e-08 1.774478197e-08 1.089642483e-08 1.188138487e-08 1.801456912e-08 1.083573358e-08 1.094183588e-08 1.36781094e-08 1.658086054e-08 1.949185651e-08 1.901732989e-08 1.314250342e-08 1.031879574e-08 1.169012389e-08 1.308095473e-08 1.395860958e-08 1.55087419e-08 1.331373682e-08 1.129577849e-08 1.525778632e-08 1.406247189e-08 8.602521323e-09 1.130002013e-08 7.01316085e-09 1.20627144e-08 2.053235418e-08 1.091680402e-08 2.291655566e-08 1.273507146e-08 1.064511569e-08 1.296902248e-08 1.372618676e-08 1.212342848e-08 1.895263108e-08 1.774390656e-08 2.362166122e-08 2.45438737e-08 2.5134639e-08 3.476519298e-08 2.999981551e-08 2.76260399e-08 3.611702376e-08 3.518031788e-08 3.537369036e-08 3.783946235e-08 3.406664849e-08 3.060359184e-08 3.808450277e-08 3.443904406e-08 2.843491978e-08 3.246302265e-08 3.073690812e-08 3.200805352e-08 3.001828198e-08 3.653724618e-08 3.950058309e-08 3.368015666e-08 3.786884946e-08 2.942251241e-08 2.493667059e-08 3.402453476e-08 2.737009424e-08 2.620587753e-08 2.216082919e-08 2.562262411e-08 2.108898134e-08 2.293086471e-08 2.096656466e-08 1.951063344e-08 1.838908494e-08 1.964212869e-08 1.709214744e-08 1.773288895e-08 1.340749689e-08 1.392781716e-08 1.362913023e-08 1.141296546e-08 8.667969434e-09 8.825095411e-09 9.204928818e-09 4.607638413e-09 7.221912955e-09 6.274400022e-09 3.774253653e-09 4.092718889e-09 3.785284004e-09 1.933383693e-09 4.909735269e-10 6.706153608e-10 2.90411042e-10 1.377965465e-10 1.799281523e-10 1.484608294e-12 1.453680065e-12 2.157406577e-13 6.815258005e-14 1.897446404e-15 4.276613564e-16 5.128806437e-16 8.716852561e-19 2.518259693e-18 0 0 0 0 0 0 0 0 0 5.191240241e-18 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1.014514269e-18 2.026157018e-19 2.371044413e-23 3.079315881e-17 2.089680832e-16 1.793109973e-16 5.676210635e-15 1.045174947e-14 5.707907944e-13 6.863359172e-12 2.414106267e-11 1.007851618e-10 6.825332382e-10 2.778106814e-10 5.783292025e-10 7.071816343e-10 2.852944816e-09 2.3701329e-09 2.943060713e-09 5.636306838e-09 6.20811155e-09 9.219158678e-09 7.130647573e-09 1.061853854e-08 8.297997724e-09 1.285455033e-08 1.306871435e-08 1.36512548e-08 1.530873886e-08 1.63638254e-08 1.661307357e-08 2.121169145e-08 1.867764393e-08 1.916940275e-08 1.911485171e-08 1.960600285e-08 3.199835315e-08 2.605350221e-08 2.821506683e-08 3.139666795e-08 2.849056377e-08 3.860914002e-08 3.203990122e-08 3.543372376e-08 2.757808439e-08 3.481114351e-08 3.659517129e-08 3.467459846e-08 3.999645601e-08 3.156126536e-08 3.966497589e-08 2.905469256e-08 3.675304117e-08 2.900051426e-08 3.707572672e-08 2.830113525e-08 3.233871526e-08 3.563407114e-08 3.133610594e-08 2.652096258e-08 2.953609246e-08 2.732532387e-08 2.68009481e-08 2.676402229e-08 2.652625602e-08 2.518075994e-08 1.490424966e-08 1.650150743e-08 1.538380525e-08 1.756234361e-08 2.088700814e-08 1.163231295e-08 2.37082407e-08 1.160646329e-08 1.879258363e-08 1.008922015e-08 1.442358181e-08 1.738087351e-08 1.497502707e-08 1.615867343e-08 1.189112323e-08 1.381540678e-08 1.217178361e-08 1.217686049e-08 1.08402943e-08 1.339244738e-08 1.519473828e-08 9.3360738e-09 7.652469228e-09 7.687365483e-09 1.132521927e-08 1.238898483e-08 1.003952839e-08 9.889725371e-09 1.561316952e-08 1.713888003e-08 1.794364029e-08 1.287853801e-08 1.53258594e-08 1.865573074e-08 1.58459731e-08 1.325319312e-08 1.736088716e-08 1.465836448e-08 1.986313783e-08 1.354311924e-08 1.965322152e-08 2.811963777e-08 2.731727688e-08 2.804138118e-08 2.83497354e-08 3.070829729e-08 3.666393228e-08 3.783676285e-08 2.976994882e-08 3.596039078e-08 3.4197256e-08 3.346852253e-08 3.497083421e-08 4.573497914e-08 4.235158131e-08 3.329937225e-08 3.838074339e-08 3.165609385e-08 3.79263399e-08 3.785949846e-08 3.72299972e-08 3.548882977e-08 3.727887325e-08 3.067413922e-08 3.069185387e-08 3.081647873e-08 3.354220014e-08 3.218797174e-08 2.909692503e-08 2.611129063e-08 2.66341351e-08 2.192292404e-08 2.505842557e-08 2.420044311e-08 2.301661869e-08 1.759537737e-08 1.828687413e-08 2.052791782e-08 1.428693601e-08 1.67252911e-08 1.709952248e-08 1.373015546e-08 1.153696062e-08 8.94277556e-09 1.173536539e-08 7.518904323e-09 6.740882879e-09 5.891167157e-09 5.01807817e-09 2.607262379e-09 3.076150234e-09 1.522283154e-09 1.196618291e-09 9.637056674e-11 2.975415821e-10 7.162975896e-11 1.89318679e-10 2.872984112e-10 1.391978942e-11 9.591038625e-14 5.939980533e-15 1.356344535e-14 4.35566806e-16 1.805718501e-15 4.404799876e-18 7.18424169e-18 2.057370797e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 9.62533952e-11 0 1.774602739e-18 3.725191722e-17 3.974484574e-18 7.939169331e-16 9.440794933e-15 3.715002873e-15 2.191293388e-13 1.693294966e-12 4.375267932e-12 2.461071957e-11 1.432553766e-10 4.936211866e-10 3.020626072e-10 3.892847203e-10 1.031155961e-09 1.588464096e-09 3.841124537e-09 6.560637639e-09 6.228981519e-09 6.690385014e-09 6.993094442e-09 7.561594685e-09 1.390451625e-08 1.042253187e-08 1.067268939e-08 1.396526049e-08 1.437495479e-08 1.631122582e-08 1.464683152e-08 1.874328362e-08 1.685308781e-08 2.096806198e-08 2.520707357e-08 2.248491328e-08 2.814888786e-08 2.327922601e-08 2.0889036e-08 2.4021242e-08 2.804212977e-08 2.880754192e-08 2.855206481e-08 3.107414622e-08 3.51484406e-08 3.327519794e-08 3.404556944e-08 3.610316235e-08 3.159948249e-08 3.906127459e-08 3.127416137e-08 3.532726471e-08 3.763225042e-08 4.450520997e-08 3.227968355e-08 3.34712701e-08 3.910519977e-08 3.940788665e-08 3.144700836e-08 3.947037165e-08 3.426984007e-08 2.484811356e-08 3.167399296e-08 3.529327093e-08 3.125884554e-08 2.384653864e-08 2.35750408e-08 2.018707018e-08 1.430235987e-08 2.795048799e-08 1.865139604e-08 1.14932117e-08 1.909444916e-08 1.071533535e-08 2.293469109e-08 1.813621351e-08 1.560377402e-08 1.407227151e-08 1.664600604e-08 1.562245019e-08 9.402344004e-09 1.275826173e-08 1.419641635e-08 1.296932483e-08 1.249276173e-08 1.523272788e-08 1.026368011e-08 1.066532369e-08 2.018207284e-08 1.486441342e-08 9.216035551e-09 1.269371412e-08 1.153822354e-08 7.540586433e-09 1.43316869e-08 1.357466175e-08 8.812898589e-09 1.244512942e-08 1.66992561e-08 1.752013924e-08 1.883769501e-08 1.389275372e-08 1.696260924e-08 1.390239646e-08 1.284608073e-08 1.5932846e-08 2.328019832e-08 1.85476842e-08 2.354524604e-08 2.134298764e-08 3.652404005e-08 2.45336097e-08 2.96393402e-08 3.077568539e-08 3.383962702e-08 2.69350102e-08 2.606941381e-08 2.752445275e-08 3.426453678e-08 3.198097399e-08 3.311799806e-08 3.836125028e-08 4.099924392e-08 3.544189728e-08 3.716090691e-08 4.211518484e-08 3.704376355e-08 3.903728123e-08 4.15197963e-08 3.661161845e-08 3.790423586e-08 3.386934494e-08 3.3529523e-08 3.192480372e-08 2.295528606e-08 2.932106279e-08 3.48804356e-08 2.74151997e-08 2.396773961e-08 2.410351414e-08 2.201124646e-08 2.087136995e-08 1.886946949e-08 2.208646366e-08 1.983690426e-08 1.553717194e-08 1.743947286e-08 1.208313753e-08 1.244057883e-08 1.199701727e-08 1.049962054e-08 6.5588756e-09 1.078616745e-08 6.71855295e-09 7.186430738e-09 5.296157545e-09 3.49365938e-09 4.604892478e-09 1.667737485e-09 1.344187646e-09 5.162339123e-10 4.6247824e-10 3.441524801e-10 3.552207298e-10 5.729886062e-11 1.982334864e-11 1.002631382e-13 3.523956724e-11 2.353218953e-15 6.050301826e-16 1.234967784e-15 2.72401633e-16 3.401448758e-17 3.750288342e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.792959187e-19 1.16331664e-18 4.957359705e-18 5.123421387e-16 2.527061332e-14 1.944157427e-14 5.59867637e-13 2.789895346e-13 1.364057306e-11 2.464156674e-10 2.088655107e-10 7.264104018e-10 2.844988051e-10 4.965466483e-10 1.388623477e-09 2.868765536e-09 3.274602276e-09 4.644637167e-09 5.882569263e-09 7.674426337e-09 9.884504817e-09 9.792899644e-09 1.136549672e-08 1.408729365e-08 1.260710871e-08 1.313120456e-08 1.606759513e-08 1.542705862e-08 1.767796594e-08 1.967877269e-08 1.975208819e-08 2.071038252e-08 1.725785883e-08 2.184309615e-08 2.743070975e-08 2.192074497e-08 2.754850591e-08 3.024609093e-08 3.219332957e-08 3.626161474e-08 3.611976083e-08 3.211552587e-08 3.086695543e-08 3.54798665e-08 3.976689146e-08 3.387552932e-08 3.954213169e-08 3.890928706e-08 3.758897817e-08 3.212727014e-08 4.139395087e-08 3.999572833e-08 3.638538875e-08 3.581136331e-08 3.319591319e-08 3.295027024e-08 4.0793959e-08 3.559299526e-08 3.427587622e-08 3.132822055e-08 2.231257208e-08 2.892770632e-08 3.342748292e-08 2.640540887e-08 2.120420593e-08 2.291258511e-08 2.168882336e-08 1.46737401e-08 1.282520874e-08 1.34955387e-08 1.445629832e-08 2.074201224e-08 1.50210145e-08 1.386876176e-08 1.272448052e-08 1.130419952e-08 1.364992352e-08 1.532594115e-08 1.121397011e-08 7.579498392e-09 1.284193082e-08 1.317893072e-08 1.158959141e-08 1.098176858e-08 7.720595836e-09 1.330085483e-08 1.4385731e-08 1.34298225e-08 1.547389138e-08 1.956449449e-08 1.423048533e-08 1.34919138e-08 1.270261092e-08 1.251610521e-08 1.913728647e-08 1.381659687e-08 1.681819422e-08 2.026397578e-08 1.919601099e-08 1.802262858e-08 7.509810254e-09 1.971520243e-08 8.479242616e-09 2.399141926e-08 1.90402286e-08 1.983925067e-08 2.558267442e-08 1.942375851e-08 2.196017447e-08 3.862913367e-08 2.806443859e-08 2.894573415e-08 2.643153257e-08 3.121290614e-08 3.217732283e-08 3.544052386e-08 4.183937199e-08 3.821664012e-08 4.096621303e-08 4.544568004e-08 4.283853474e-08 2.950372139e-08 4.640908325e-08 3.416811797e-08 3.224546083e-08 3.993425242e-08 3.353833289e-08 4.473764482e-08 3.309130863e-08 3.065458882e-08 3.000800682e-08 2.958272852e-08 3.139579773e-08 2.977716327e-08 2.26660124e-08 2.337830877e-08 2.885232062e-08 2.381287156e-08 2.224998582e-08 2.291556403e-08 1.806613749e-08 2.194244523e-08 1.978448439e-08 1.656614033e-08 1.689037955e-08 1.219054612e-08 1.616611568e-08 1.154851848e-08 9.195150683e-09 9.191679074e-09 1.026617222e-08 5.989734643e-09 6.134875038e-09 4.95533402e-09 2.099327728e-09 3.572286336e-09 2.130541713e-09 8.698202502e-10 7.446384176e-10 2.330789814e-10 3.213749158e-10 1.275734585e-10 1.73913114e-11 2.024466712e-11 1.150267874e-13 4.626206563e-14 1.963192285e-14 2.162040674e-15 1.753262198e-15 0 8.902109352e-18 9.427628322e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 5.966619982e-19 2.695972574e-18 1.156287371e-17 4.50134364e-17 2.654008222e-16 1.00901092e-14 5.466262116e-14 2.143131317e-13 5.26367638e-13 2.552295594e-11 2.08949392e-11 2.258774017e-10 1.930673529e-10 5.106017643e-10 7.400711284e-10 1.20721538e-09 1.657631472e-09 5.824782806e-09 4.46421783e-09 4.362766776e-09 6.707363666e-09 7.959505699e-09 6.63511178e-09 1.049469633e-08 1.057543394e-08 1.398682287e-08 1.233007109e-08 1.526367988e-08 1.518682018e-08 1.750220597e-08 2.004818073e-08 2.347819948e-08 1.981213591e-08 2.355299886e-08 2.023516038e-08 2.375585452e-08 2.429657286e-08 2.64722968e-08 3.347521563e-08 2.756502947e-08 3.559224992e-08 3.117986666e-08 3.186673304e-08 3.522023916e-08 3.887020172e-08 3.499678976e-08 4.043519843e-08 4.328360069e-08 3.524143e-08 3.599980566e-08 3.444462486e-08 3.826071503e-08 3.564351821e-08 3.8725969e-08 3.42822723e-08 3.928045628e-08 3.437206975e-08 3.975835469e-08 3.252506423e-08 3.085935649e-08 2.93826279e-08 3.863521674e-08 2.829677129e-08 2.688535505e-08 2.113170927e-08 2.316188235e-08 1.775669842e-08 1.607037306e-08 2.348478216e-08 2.083684543e-08 2.256441173e-08 1.432145363e-08 2.071661028e-08 1.256531323e-08 1.393505788e-08 1.80583671e-08 1.293854588e-08 1.741901829e-08 1.497325478e-08 1.609749726e-08 9.677190844e-09 1.023749974e-08 1.448431759e-08 1.848371109e-08 1.309569462e-08 1.335662914e-08 1.09856526e-08 1.533626624e-08 1.102282672e-08 1.691164451e-08 1.94794004e-08 9.682818255e-09 2.10330341e-08 1.320650025e-08 1.947118275e-08 1.399749088e-08 1.603876194e-08 1.198407011e-08 1.010120154e-08 1.527113601e-08 1.123672098e-08 1.509615291e-08 1.223468119e-08 1.602216211e-08 1.770350339e-08 2.204316903e-08 1.880207218e-08 2.144378168e-08 2.242341122e-08 3.40990274e-08 3.193952078e-08 3.04981646e-08 2.415423402e-08 3.072671231e-08 2.634423954e-08 4.26333888e-08 4.477222161e-08 4.616913873e-08 3.055323566e-08 3.728770718e-08 3.71851766e-08 3.755945883e-08 4.094484041e-08 4.2743275e-08 3.581473894e-08 3.710028882e-08 3.392085821e-08 3.812229373e-08 3.142083565e-08 3.700298908e-08 3.342270374e-08 3.50996466e-08 3.149738358e-08 3.429881987e-08 3.579216837e-08 3.088526164e-08 2.59640184e-08 2.528123547e-08 2.445415447e-08 2.472997232e-08 2.447637416e-08 1.84969629e-08 1.868098103e-08 1.913149721e-08 1.860083649e-08 1.258498432e-08 1.4890813e-08 1.192355393e-08 1.583208861e-08 1.147436248e-08 1.012174767e-08 7.355992995e-09 6.757365451e-09 6.118496236e-09 7.788103819e-09 3.692789695e-09 3.892825751e-09 2.790289429e-09 1.33729767e-09 3.714316382e-10 2.515715462e-10 3.740531526e-10 2.089098503e-10 2.193021896e-11 8.324403367e-12 3.354830864e-13 1.000015282e-12 5.94112669e-15 1.068180498e-15 6.849897561e-16 6.83218124e-17 2.492465077e-17 1.392948946e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.205292379e-19 2.413548469e-16 3.91284688e-17 8.163465476e-15 2.51734693e-14 9.530325158e-15 7.321518133e-13 1.351149912e-11 6.264595284e-11 2.433720342e-10 7.698378419e-11 2.559020787e-10 5.421199267e-10 9.005194438e-10 3.076396516e-09 4.699907122e-09 4.645141372e-09 7.400829246e-09 5.2704678e-09 8.563818304e-09 6.802946321e-09 1.011219898e-08 1.093774096e-08 1.499995475e-08 1.388255752e-08 1.786543389e-08 1.590249083e-08 1.75674824e-08 2.15217435e-08 2.513165883e-08 2.37646627e-08 2.167798461e-08 2.011036951e-08 2.260915989e-08 3.226800517e-08 3.032273443e-08 3.006968442e-08 3.09660659e-08 3.535475052e-08 2.735874757e-08 3.508017963e-08 3.834851718e-08 4.010340357e-08 3.613860426e-08 4.844623508e-08 3.53668442e-08 4.514577593e-08 4.666316524e-08 4.755017811e-08 3.643729342e-08 4.458663932e-08 3.427032318e-08 3.467862969e-08 3.736315311e-08 3.463458988e-08 3.158259726e-08 3.296960082e-08 4.199655293e-08 3.152748574e-08 2.996520801e-08 2.869913797e-08 2.235102382e-08 3.284678728e-08 2.838359189e-08 1.683731043e-08 2.603675268e-08 2.286895409e-08 2.406128348e-08 2.037005151e-08 1.288898828e-08 1.750573695e-08 1.767462289e-08 1.64879513e-08 1.807982833e-08 2.267445834e-08 1.483267639e-08 1.724724558e-08 8.51120877e-09 1.808950658e-08 1.223350893e-08 1.094809677e-08 1.255901031e-08 1.140030474e-08 1.583653611e-08 1.282680781e-08 1.281206323e-08 1.606745953e-08 1.137370742e-08 1.150430622e-08 1.747107081e-08 1.698030986e-08 1.093498369e-08 1.266981027e-08 1.600237402e-08 1.086847491e-08 1.707719808e-08 1.130211038e-08 1.417872041e-08 1.677963925e-08 1.474908064e-08 1.604381903e-08 1.873852655e-08 1.646812026e-08 2.749939696e-08 3.107275583e-08 2.723960954e-08 2.682258862e-08 2.401033586e-08 2.829721008e-08 2.587502083e-08 3.288358498e-08 3.105125782e-08 3.232511058e-08 2.797706421e-08 3.943140823e-08 3.445288011e-08 4.037326065e-08 3.855646655e-08 3.149285414e-08 3.602398092e-08 3.443135902e-08 3.7563012e-08 3.775206127e-08 4.239963254e-08 3.711975332e-08 3.423530838e-08 3.326796834e-08 3.712289597e-08 3.875544166e-08 3.527617237e-08 3.070603034e-08 3.261246921e-08 3.187523579e-08 2.750321842e-08 3.132205296e-08 2.343600649e-08 2.742659489e-08 2.158654188e-08 2.431869444e-08 1.569306628e-08 2.017640519e-08 1.694564366e-08 1.977066615e-08 2.028510603e-08 1.612952816e-08 1.404684363e-08 1.453224794e-08 1.219091587e-08 1.150507285e-08 7.663786767e-09 6.950490245e-09 8.974280444e-09 4.953356095e-09 6.306752063e-09 4.960520583e-09 2.588893306e-09 8.809605474e-10 3.923231864e-10 1.891542121e-10 6.557357445e-10 2.487733375e-10 7.242998629e-11 9.54944473e-13 5.133107616e-12 4.155939272e-14 3.72572108e-14 1.158565804e-15 2.747058941e-16 2.681124601e-16 3.792115562e-14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 7.831660717e-19 1.923600517e-18 9.235080947e-19 5.295045311e-17 7.264490483e-15 6.313312617e-16 5.007582299e-14 9.226383063e-14 1.181095853e-12 8.625113916e-12 8.619174927e-11 1.59903239e-10 3.493887143e-10 4.641883556e-10 4.859713009e-10 2.312573619e-09 1.040826568e-09 4.128995618e-09 5.328863459e-09 6.548546374e-09 6.738462154e-09 1.03978047e-08 7.054706939e-09 1.099615794e-08 8.071577319e-09 1.459596527e-08 1.549539323e-08 1.839975657e-08 1.598644315e-08 2.330369587e-08 2.182662949e-08 1.733080499e-08 2.37237422e-08 2.328147456e-08 2.727923678e-08 2.639090293e-08 3.025069612e-08 3.578885888e-08 2.986347291e-08 3.599932085e-08 2.795303179e-08 3.394583277e-08 2.770235503e-08 3.442025919e-08 3.954223605e-08 3.973245947e-08 4.324318632e-08 4.837436906e-08 3.549935193e-08 4.228213434e-08 3.850963282e-08 4.217783905e-08 4.210451656e-08 3.960106649e-08 3.930541274e-08 3.940771094e-08 3.365304471e-08 3.708310145e-08 5.280670852e-08 3.775673116e-08 3.174252237e-08 3.349980995e-08 2.606802663e-08 3.278612916e-08 2.17111483e-08 2.124752155e-08 2.01584919e-08 1.581673292e-08 1.794046472e-08 2.222970551e-08 1.28280076e-08 2.068069192e-08 2.047510393e-08 1.73504192e-08 1.303782304e-08 1.858355002e-08 1.851580959e-08 1.478342379e-08 1.373836973e-08 1.779669965e-08 1.254712957e-08 1.164969767e-08 1.494793832e-08 1.160441892e-08 1.346052521e-08 1.566125046e-08 1.373874279e-08 1.261420558e-08 1.257003392e-08 1.492651122e-08 1.584088319e-08 1.161095396e-08 1.501575065e-08 1.79022862e-08 1.66715127e-08 1.210310646e-08 1.190628574e-08 1.945908902e-08 1.363236902e-08 1.36709974e-08 1.855063665e-08 1.14429498e-08 2.156011056e-08 1.931799053e-08 1.69626076e-08 1.374180296e-08 2.02335928e-08 1.980716693e-08 2.814667419e-08 3.151968678e-08 3.426314972e-08 3.416409144e-08 3.780504198e-08 3.342410194e-08 2.66332044e-08 4.207237696e-08 3.575918253e-08 4.508559323e-08 3.547909851e-08 4.167529071e-08 3.645073344e-08 3.588392141e-08 3.844847773e-08 4.335582003e-08 3.922169831e-08 3.834186526e-08 4.955896714e-08 4.761531607e-08 3.549463355e-08 3.122138288e-08 4.19555934e-08 3.528169826e-08 3.10103044e-08 3.040275079e-08 3.375713279e-08 3.452631143e-08 2.758542633e-08 3.230472022e-08 1.602349687e-08 2.406870616e-08 2.451385609e-08 1.940933399e-08 2.297179481e-08 1.77033623e-08 1.628821049e-08 2.240128917e-08 1.477114032e-08 1.343154485e-08 1.129525228e-08 1.116473742e-08 1.121447182e-08 9.215103531e-09 6.198224909e-09 8.036351753e-09 6.290906439e-09 4.984425978e-09 3.476931575e-09 3.156824596e-09 8.806927055e-10 3.028134015e-10 2.653026603e-10 1.452908013e-10 1.187865192e-10 4.674536797e-13 3.474002234e-12 1.409949125e-13 3.291051678e-13 2.783119546e-14 1.894705588e-14 2.196665894e-17 0 1.5448653e-17 4.346684072e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.391767931e-18 2.294174503e-16 7.350934373e-17 3.721650058e-16 9.665512129e-14 9.035777069e-15 1.496051389e-12 6.42189805e-12 1.635269341e-10 1.843293206e-10 2.006271072e-10 5.356433101e-10 4.567541916e-10 1.321338905e-09 1.895034809e-09 3.963848647e-09 7.161069548e-09 8.458376086e-09 9.80677634e-09 1.096528711e-08 1.275746361e-08 1.065096309e-08 1.05832244e-08 1.37974709e-08 1.659190596e-08 1.308740906e-08 1.767019852e-08 1.52238497e-08 1.967549075e-08 2.55082025e-08 2.507182038e-08 2.54515956e-08 2.496012154e-08 2.514800374e-08 2.7411958e-08 2.800891607e-08 3.115821396e-08 3.134800265e-08 3.25939494e-08 2.858084941e-08 3.491065007e-08 3.836551615e-08 4.135813512e-08 4.193359742e-08 4.17422201e-08 4.01251822e-08 3.704465666e-08 4.402559094e-08 4.175736115e-08 3.704265417e-08 3.967155196e-08 4.552282846e-08 4.100298614e-08 4.616656735e-08 4.296665594e-08 2.526114009e-08 4.163015792e-08 3.428305252e-08 3.523818461e-08 3.666692344e-08 3.287274805e-08 3.009848095e-08 2.273337306e-08 2.828292562e-08 2.469405622e-08 2.494154562e-08 1.893523961e-08 2.231330288e-08 1.542710229e-08 1.666102624e-08 2.131088816e-08 1.892677784e-08 1.893378402e-08 5.956936593e-09 2.005995176e-08 1.868630376e-08 1.050390009e-08 1.263329318e-08 1.424682e-08 1.525362595e-08 1.235324635e-08 2.013970783e-08 1.309264517e-08 1.418066003e-08 1.304932435e-08 2.071722718e-08 1.171174063e-08 1.393070964e-08 1.23840778e-08 1.641512244e-08 1.827301411e-08 8.530423041e-09 1.548655718e-08 1.606612324e-08 1.79957914e-08 1.69753825e-08 1.91312534e-08 1.518120318e-08 1.432188309e-08 1.951580536e-08 1.716800112e-08 2.213833467e-08 1.628843575e-08 1.894629266e-08 2.885798184e-08 3.214203567e-08 2.564184694e-08 2.490378151e-08 2.242749446e-08 2.117835123e-08 3.989345672e-08 2.427811303e-08 2.874770318e-08 3.764227645e-08 4.587548066e-08 3.540128427e-08 3.385048237e-08 3.492321277e-08 4.646552995e-08 4.644125355e-08 3.942993092e-08 3.522535884e-08 4.24662761e-08 4.263502622e-08 3.807220877e-08 3.375035322e-08 3.664846628e-08 3.648722866e-08 3.694317989e-08 3.76676218e-08 3.640654296e-08 3.406222195e-08 2.741850178e-08 2.920425454e-08 2.942822171e-08 2.627877324e-08 2.910581028e-08 2.709712543e-08 2.500468579e-08 2.113051082e-08 2.125836143e-08 1.758346458e-08 1.828868117e-08 1.409565052e-08 1.789715663e-08 1.735234911e-08 1.371429181e-08 1.047235008e-08 8.851031999e-09 1.441437381e-08 9.100088725e-09 9.349518823e-09 7.116485597e-09 6.948583588e-09 2.967823736e-09 2.143503464e-09 3.551727668e-10 9.681510599e-10 7.971057801e-10 4.481714315e-10 3.075193104e-10 2.223124449e-10 6.377880867e-12 1.065910153e-13 3.3334155e-13 8.563692758e-14 1.210780731e-14 9.390192165e-17 1.244183235e-16 2.802613674e-17 1.533559277e-19 8.374127495e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 5.137652218e-19 4.186041027e-18 5.602743174e-17 5.954580892e-17 1.555549029e-16 7.715889044e-15 2.151058942e-13 3.538109047e-13 5.728811886e-12 1.375357303e-11 1.05680669e-11 7.276764694e-10 4.931372727e-10 3.419772875e-10 6.175183232e-10 5.913751537e-10 3.252751117e-09 4.837991163e-09 4.913036031e-09 5.036770937e-09 1.031188903e-08 8.943552394e-09 8.443092563e-09 1.147672904e-08 1.337029008e-08 1.270235525e-08 1.751476716e-08 1.374990076e-08 1.54797188e-08 1.968111663e-08 1.925820498e-08 2.137043606e-08 2.368013063e-08 3.09992663e-08 1.931311826e-08 2.972076094e-08 2.832308778e-08 2.836934194e-08 2.929511044e-08 2.755717674e-08 3.098519534e-08 4.174150303e-08 3.62030925e-08 3.748637915e-08 3.987088023e-08 4.045927e-08 3.424455497e-08 4.458300207e-08 3.879774266e-08 4.403464967e-08 4.442441349e-08 3.402549133e-08 4.285022251e-08 4.426822587e-08 3.57183846e-08 3.886304736e-08 3.917247423e-08 3.590227296e-08 3.678812011e-08 3.456683486e-08 2.779496737e-08 4.550711167e-08 4.252320093e-08 2.855038902e-08 3.430366481e-08 2.672126012e-08 2.975308787e-08 2.233959876e-08 2.357557804e-08 2.310757358e-08 1.812350243e-08 2.079114822e-08 1.783913711e-08 1.452711152e-08 1.664236451e-08 1.876690658e-08 1.036013148e-08 1.300962748e-08 2.062443214e-08 1.577353939e-08 1.411136375e-08 1.712771417e-08 1.66819011e-08 1.896488984e-08 1.303751564e-08 1.891337336e-08 1.370974033e-08 1.500015488e-08 2.041547132e-08 2.123645986e-08 1.593160226e-08 1.503267835e-08 1.505929032e-08 1.766456972e-08 1.358554934e-08 1.431074949e-08 9.756453314e-09 1.875418162e-08 2.307969055e-08 1.85503131e-08 1.518728687e-08 1.912030829e-08 1.45648351e-08 2.028686703e-08 2.2342287e-08 2.007342104e-08 1.358299318e-08 2.434975322e-08 2.886070808e-08 2.93552862e-08 2.346244123e-08 3.041895022e-08 3.473154016e-08 2.812147351e-08 3.399170431e-08 4.154918067e-08 4.054525956e-08 3.83352733e-08 4.007012701e-08 4.825830524e-08 3.461905778e-08 3.997053423e-08 3.57403923e-08 4.319297499e-08 3.367204524e-08 4.525928014e-08 4.000654951e-08 4.494533273e-08 4.205883513e-08 3.538481212e-08 3.905161638e-08 3.515888841e-08 3.89981963e-08 3.485245794e-08 3.00027693e-08 3.187878581e-08 2.57832704e-08 3.016251139e-08 2.980298527e-08 2.806380899e-08 2.492018657e-08 2.244508964e-08 2.098747347e-08 2.16400637e-08 1.877710972e-08 1.592670768e-08 1.489247662e-08 1.314988377e-08 1.270849668e-08 1.292807307e-08 1.005700338e-08 8.770704823e-09 7.558836644e-09 8.89812169e-09 6.205999769e-09 5.379260873e-09 3.285294904e-09 3.112024635e-09 1.161903808e-09 7.147412072e-10 1.034905981e-10 3.107063314e-10 1.795598472e-11 2.13190624e-11 5.066129103e-12 2.056336438e-12 2.051668661e-14 4.101765125e-14 6.325839871e-15 6.733175697e-16 1.28967383e-16 2.155205289e-17 6.164442136e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.903337161e-19 6.360127092e-17 5.386159104e-17 2.043767362e-15 7.582307463e-16 1.303580925e-14 1.205545345e-14 1.528728864e-11 1.015514875e-11 7.646345522e-12 2.511532315e-10 3.854314837e-10 3.281550429e-10 9.413589287e-10 1.821456454e-09 3.322741349e-09 4.097167651e-09 3.742077268e-09 5.502564357e-09 4.990772871e-09 1.037372234e-08 1.129177313e-08 1.333925708e-08 1.162982557e-08 1.139183818e-08 1.39787208e-08 1.54777963e-08 1.76420286e-08 2.30248251e-08 2.206766419e-08 2.148858398e-08 1.9994254e-08 2.167591547e-08 2.657903099e-08 2.451696694e-08 2.600640047e-08 3.313222157e-08 3.207788173e-08 2.742676205e-08 3.797213121e-08 3.10459893e-08 3.690203425e-08 3.988664723e-08 3.481383904e-08 4.426302107e-08 3.977567512e-08 4.116511196e-08 4.463474964e-08 4.192471452e-08 3.890626066e-08 3.614071821e-08 3.896570671e-08 4.837311194e-08 3.679145808e-08 3.829871634e-08 2.50023935e-08 3.746304681e-08 3.441460606e-08 3.699222742e-08 3.965541206e-08 2.93994878e-08 2.752029871e-08 2.401604949e-08 2.274526333e-08 2.919046447e-08 2.050144782e-08 2.068452027e-08 1.974921628e-08 2.592102523e-08 2.386833098e-08 1.574857362e-08 2.259041059e-08 1.975643547e-08 1.556897342e-08 2.279097887e-08 2.301881003e-08 1.675134653e-08 2.065195942e-08 1.843900574e-08 1.407588807e-08 1.342341777e-08 1.376103664e-08 1.283772197e-08 1.59169972e-08 1.152065101e-08 1.665658045e-08 1.664907057e-08 1.495892494e-08 1.521914377e-08 1.267221002e-08 1.247373616e-08 1.705473904e-08 1.415260234e-08 1.129593814e-08 1.609533167e-08 1.666938224e-08 1.376940149e-08 1.725616443e-08 1.89309372e-08 2.149584138e-08 2.856928856e-08 1.836761611e-08 2.180064274e-08 1.158387537e-08 1.923717565e-08 1.715312291e-08 2.784779962e-08 2.240559973e-08 2.565560125e-08 2.014867677e-08 3.839920616e-08 2.815327042e-08 3.820927654e-08 3.805622684e-08 2.477945217e-08 5.156047601e-08 4.2769615e-08 4.503112489e-08 3.845729596e-08 4.079362247e-08 4.126450071e-08 4.664634948e-08 4.117863382e-08 4.285129781e-08 4.253655304e-08 4.197895008e-08 3.407366516e-08 4.19094747e-08 3.455782189e-08 3.990150351e-08 3.882048646e-08 3.819765761e-08 3.128106797e-08 3.168159979e-08 3.038562698e-08 3.199521022e-08 2.432845529e-08 2.502941543e-08 2.589455907e-08 2.286187801e-08 2.095190108e-08 2.027816285e-08 2.525445667e-08 1.71416024e-08 1.917321112e-08 2.085687601e-08 1.727605169e-08 1.693212714e-08 1.259149226e-08 1.217349219e-08 1.232121362e-08 9.295166642e-09 7.828088795e-09 4.857421626e-09 4.898539332e-09 4.926306569e-09 1.555797169e-09 8.411140482e-10 5.166878937e-10 3.251175915e-10 1.226213515e-09 3.562841528e-10 5.307511918e-11 1.329398547e-11 4.855227817e-12 9.123444679e-13 4.092083394e-15 3.187997796e-15 5.211938503e-17 3.416926962e-16 1.729685217e-17 8.742432183e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.030478925e-18 6.928932223e-18 1.446005506e-16 6.984646569e-17 3.569957056e-15 4.057314579e-14 2.490805621e-13 2.833631882e-13 6.259232034e-12 6.244229329e-11 1.887124423e-10 2.795241136e-10 3.162921797e-10 6.372563262e-10 1.366532222e-09 3.178122425e-09 2.762274404e-09 6.622808829e-09 7.027342233e-09 8.137979929e-09 1.042480202e-08 1.389371528e-08 1.037713184e-08 1.066011846e-08 1.692905199e-08 1.887892723e-08 1.155436649e-08 2.297611915e-08 1.660463096e-08 2.014397969e-08 2.152712065e-08 2.612539967e-08 2.655549795e-08 2.366513334e-08 2.790229835e-08 2.69073993e-08 2.536045318e-08 3.053722496e-08 3.368330505e-08 3.262950197e-08 3.824261423e-08 3.502150171e-08 4.020261873e-08 4.449272275e-08 4.829497384e-08 4.356278449e-08 4.389169533e-08 5.059574867e-08 4.036666601e-08 3.96709975e-08 4.146909572e-08 3.976224307e-08 4.199255533e-08 4.429931196e-08 4.284683735e-08 3.833417366e-08 3.777872587e-08 4.26643244e-08 3.137698791e-08 3.243078905e-08 3.611434972e-08 3.315334951e-08 2.350364345e-08 2.976860782e-08 3.408525912e-08 3.281218045e-08 2.407914187e-08 2.08881291e-08 1.852843111e-08 2.240438857e-08 1.090564826e-08 2.769585559e-08 1.709397456e-08 1.903669459e-08 1.532893601e-08 1.611642282e-08 1.474276157e-08 1.531948728e-08 2.138898944e-08 1.010082329e-08 1.805759967e-08 1.298618844e-08 1.882120042e-08 9.303496387e-09 1.222288807e-08 1.126836196e-08 1.477714186e-08 1.583628539e-08 1.538873842e-08 1.306293508e-08 1.47117091e-08 1.446231008e-08 1.06779863e-08 1.45843639e-08 2.273544515e-08 1.015306027e-08 1.60399203e-08 1.677595898e-08 1.93981553e-08 1.878133461e-08 2.035568356e-08 1.723494586e-08 2.446473338e-08 2.236868744e-08 1.572952433e-08 2.765538182e-08 2.545160385e-08 1.274620338e-08 2.604739647e-08 2.962032264e-08 2.805827642e-08 4.224153696e-08 3.904091802e-08 3.130126943e-08 3.847972521e-08 3.685931661e-08 3.461207899e-08 4.501709726e-08 3.903020132e-08 4.114776401e-08 4.108378186e-08 4.156057203e-08 3.60496743e-08 4.270896943e-08 4.801242863e-08 4.468806709e-08 3.729770977e-08 3.634501313e-08 3.858937058e-08 3.891302295e-08 3.589498782e-08 3.632049315e-08 3.189416769e-08 3.594798177e-08 3.412717887e-08 2.447320542e-08 3.053155233e-08 2.9561081e-08 2.751235851e-08 2.24975877e-08 2.732039785e-08 2.378808417e-08 2.130665093e-08 1.78486675e-08 1.725261636e-08 2.196488257e-08 1.710131284e-08 1.605990122e-08 1.231931927e-08 1.459405903e-08 9.184879781e-09 8.590543514e-09 8.879126232e-09 8.38667507e-09 5.713283797e-09 3.163967773e-09 2.446374817e-09 1.546413976e-09 7.674216687e-10 4.68395988e-10 2.820192974e-10 1.011047317e-10 1.523145027e-11 9.628409004e-12 2.929810711e-12 3.338345435e-13 1.417116619e-15 1.924622614e-15 2.283239145e-17 3.247487998e-17 1.464223889e-18 1.946510046e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 5.470964463e-36 1.510182472e-18 1.123724642e-17 1.125864542e-16 4.431375133e-16 3.161525076e-15 3.131639903e-15 2.11938098e-13 3.358362366e-13 5.270221756e-11 4.110584097e-11 4.716361143e-10 3.41236632e-10 2.401156471e-10 4.413901574e-10 1.829916154e-09 3.859320183e-09 3.222653068e-09 4.226725198e-09 7.562133188e-09 8.466949734e-09 9.050740467e-09 1.155058926e-08 9.657527863e-09 1.233850226e-08 1.872185529e-08 1.426033024e-08 1.204837654e-08 1.907911841e-08 2.104356269e-08 2.089225519e-08 2.41321861e-08 2.267743127e-08 2.511501278e-08 2.377999164e-08 2.919667052e-08 2.838991574e-08 2.94228783e-08 3.114949691e-08 3.89451259e-08 3.397957035e-08 3.500305836e-08 3.557229962e-08 4.522957664e-08 3.90888129e-08 4.497926436e-08 3.921575814e-08 4.127869379e-08 4.532780161e-08 4.586142649e-08 4.156311317e-08 4.62934293e-08 4.105780998e-08 3.711482281e-08 4.842866095e-08 4.00548343e-08 3.866341006e-08 4.288132053e-08 3.625630463e-08 3.561691878e-08 4.131712278e-08 4.127113099e-08 2.830822368e-08 3.306380312e-08 3.940918529e-08 2.978420947e-08 2.911608721e-08 2.299005521e-08 2.484316378e-08 1.845746843e-08 2.418686842e-08 1.266935047e-08 1.044160161e-08 7.138968318e-09 1.805817755e-08 2.206439783e-08 1.898342382e-08 1.697822929e-08 1.511374868e-08 1.522594604e-08 1.429795202e-08 1.508955921e-08 1.213668192e-08 1.465983914e-08 1.454049672e-08 1.592698812e-08 1.200666179e-08 1.729693416e-08 1.556762833e-08 1.868590233e-08 1.364287805e-08 1.123647724e-08 1.061806779e-08 1.648120845e-08 1.424711933e-08 1.171380974e-08 1.024228641e-08 1.054649433e-08 1.250051247e-08 1.726012436e-08 1.780777962e-08 1.162917502e-08 1.942960266e-08 2.369766853e-08 1.151643668e-08 1.884612503e-08 2.115991648e-08 1.986345888e-08 2.319184455e-08 2.688711314e-08 3.320999447e-08 4.163045895e-08 4.14559932e-08 3.365493816e-08 3.430387311e-08 3.972594754e-08 4.073536009e-08 3.575011263e-08 4.654800435e-08 3.908164878e-08 4.06834126e-08 4.941745685e-08 3.712139594e-08 4.126991456e-08 3.960059966e-08 3.407163655e-08 4.483168682e-08 3.64309857e-08 3.865355163e-08 3.438973016e-08 3.761022415e-08 3.670102959e-08 3.457422765e-08 3.554457768e-08 3.748101203e-08 2.834037528e-08 2.623213303e-08 2.768462808e-08 2.778328137e-08 3.068635652e-08 2.155733724e-08 2.349870943e-08 2.540107578e-08 2.135672734e-08 2.074597397e-08 2.052087799e-08 1.504850162e-08 1.650178147e-08 1.738288465e-08 1.213138406e-08 1.349903953e-08 9.508758982e-09 1.224239346e-08 6.283282787e-09 6.325065427e-09 6.062172117e-09 3.238772106e-09 2.728879284e-09 1.451614539e-09 4.085027766e-10 6.384999132e-10 5.011509759e-10 9.745555921e-10 5.89896708e-11 3.873076408e-11 1.755643789e-12 9.351084615e-14 7.086137783e-14 7.503461544e-15 5.893120666e-16 6.300036363e-17 8.540368511e-18 1.018171674e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.80011054e-18 1.948713703e-17 6.186131789e-17 2.151062174e-15 1.886668231e-15 3.18453314e-14 1.007450875e-12 4.005666514e-12 2.129456355e-11 6.79981991e-11 1.528159015e-11 3.276874672e-10 1.055032638e-09 5.508193063e-10 4.799350557e-10 2.842155764e-09 4.542153187e-09 4.748785532e-09 5.565389311e-09 6.195359002e-09 8.540617089e-09 1.038449852e-08 1.471247889e-08 1.131208362e-08 1.467980474e-08 1.636814615e-08 1.79801826e-08 2.090377409e-08 1.962686277e-08 2.125260717e-08 1.976621628e-08 2.299520528e-08 2.564323854e-08 2.740443175e-08 2.501656473e-08 2.999884066e-08 2.725280444e-08 3.173608428e-08 3.830824678e-08 3.683389455e-08 3.969611445e-08 3.271603192e-08 3.90260307e-08 3.642652814e-08 3.423942385e-08 4.028851965e-08 4.466952272e-08 4.915240625e-08 4.482743155e-08 4.300830992e-08 4.387487301e-08 4.249322268e-08 4.726335401e-08 3.95064601e-08 4.454417214e-08 2.77733862e-08 4.040695496e-08 4.208782419e-08 3.56148015e-08 3.65097124e-08 3.296534369e-08 2.69585512e-08 4.305178672e-08 2.522678776e-08 2.29841602e-08 2.305235885e-08 2.470979787e-08 1.778064903e-08 2.209435143e-08 2.478381729e-08 2.544917857e-08 1.877586576e-08 1.154210132e-08 1.593660347e-08 1.77412743e-08 1.466099714e-08 1.630940451e-08 1.62427308e-08 1.870512278e-08 1.294835514e-08 1.632318128e-08 1.424507681e-08 1.219578312e-08 1.139071478e-08 1.418966425e-08 1.391917642e-08 1.170157712e-08 1.260185885e-08 1.295857258e-08 1.232458901e-08 2.360442292e-08 1.679310853e-08 1.530139275e-08 2.394247874e-08 1.046407796e-08 1.412224138e-08 1.586357545e-08 2.073338282e-08 1.717256283e-08 2.145941553e-08 2.28636348e-08 2.091078779e-08 2.126436842e-08 2.916671015e-08 3.579694143e-08 2.791631628e-08 2.862632189e-08 2.395419142e-08 2.727729076e-08 2.592508822e-08 3.874015954e-08 4.021495673e-08 4.151391384e-08 3.036219967e-08 4.019043302e-08 4.324929706e-08 4.601833565e-08 4.783580904e-08 3.912288562e-08 5.350318417e-08 4.773109547e-08 5.093071101e-08 4.907058522e-08 5.579667497e-08 4.261089166e-08 3.816193892e-08 4.125896436e-08 4.20025842e-08 4.21705059e-08 3.941820594e-08 4.112898665e-08 3.870957113e-08 3.378385387e-08 3.15648276e-08 3.573768105e-08 3.264944512e-08 2.861787019e-08 2.621392125e-08 2.598657203e-08 2.873095707e-08 1.720592456e-08 2.101750237e-08 1.963157947e-08 1.839305304e-08 1.929929377e-08 1.541987219e-08 1.652522847e-08 1.250440351e-08 1.504832713e-08 1.079407616e-08 8.995443679e-09 7.635453143e-09 6.650612035e-09 6.551761494e-09 3.247490464e-09 1.691126098e-09 2.476126185e-09 9.819443629e-10 9.09067395e-10 9.274814708e-10 4.48542765e-11 4.977401266e-10 3.183250558e-10 1.962860235e-11 6.672688728e-14 2.485746945e-14 4.916210715e-15 2.001279223e-14 1.184261412e-16 9.537369138e-17 6.584217758e-19 5.348168462e-19 8.050634203e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 4.168385093e-19 2.390647068e-18 4.87217859e-19 5.804243133e-16 1.495033535e-15 3.984802729e-15 8.353056231e-16 2.663567437e-13 3.512991522e-13 8.656427888e-13 3.100588799e-11 6.539130311e-11 6.394307706e-10 3.113481024e-10 3.384647939e-10 1.559621871e-09 2.514543632e-09 2.651676754e-09 4.373071972e-09 5.662478505e-09 7.052268629e-09 8.722056149e-09 9.213643908e-09 1.092517971e-08 1.11519484e-08 1.127622037e-08 1.616111071e-08 1.14734734e-08 1.968881423e-08 2.028310722e-08 1.954864357e-08 2.40636353e-08 2.495896571e-08 2.64634398e-08 2.676327765e-08 3.029298514e-08 2.962308125e-08 2.783355964e-08 3.862426966e-08 2.830860514e-08 3.934281964e-08 3.214195024e-08 4.554312739e-08 3.308432547e-08 3.978830877e-08 3.981458159e-08 3.989681685e-08 3.472621609e-08 4.382941958e-08 4.515120979e-08 4.014446439e-08 4.421067753e-08 5.115798455e-08 3.773977181e-08 5.059698832e-08 3.784048618e-08 5.17857247e-08 4.472933382e-08 4.083313993e-08 3.274479555e-08 3.267995599e-08 3.332762936e-08 3.434404484e-08 2.461273128e-08 2.81537271e-08 2.984491198e-08 2.109611707e-08 2.492482498e-08 2.009362185e-08 2.417109816e-08 2.466296042e-08 2.078397446e-08 2.035263499e-08 1.390241737e-08 2.348294626e-08 1.521840389e-08 1.832697989e-08 1.277648303e-08 1.737636096e-08 1.277894524e-08 1.824413161e-08 1.924418828e-08 2.151265526e-08 2.007260239e-08 1.788166831e-08 1.161248499e-08 1.439583804e-08 1.511828679e-08 1.698965523e-08 1.381020327e-08 1.02959583e-08 1.621951029e-08 2.205592592e-08 1.057370071e-08 1.180671934e-08 1.499601462e-08 1.336541686e-08 8.650465672e-09 1.541449017e-08 2.27787667e-08 1.669219952e-08 1.374774202e-08 2.038939e-08 1.908071617e-08 1.477012493e-08 1.945140046e-08 2.717668194e-08 2.161551739e-08 2.425151874e-08 2.641359205e-08 2.330457313e-08 2.953210943e-08 2.646845785e-08 3.054436258e-08 3.036188211e-08 4.188925919e-08 3.585818605e-08 3.962161003e-08 4.168724881e-08 4.722955751e-08 3.003093325e-08 3.49286047e-08 4.724646649e-08 4.952496634e-08 4.459918836e-08 4.137305797e-08 4.440964437e-08 4.390219921e-08 4.475844772e-08 3.976640753e-08 4.277433801e-08 4.345376054e-08 3.377146392e-08 3.297488638e-08 3.163047976e-08 3.12251915e-08 3.014697902e-08 2.727956211e-08 2.909983541e-08 2.773867896e-08 2.943237607e-08 2.21722554e-08 2.123619011e-08 1.702932069e-08 2.098257285e-08 1.885616051e-08 1.558324827e-08 1.545814181e-08 1.243800581e-08 1.799488882e-08 1.068464945e-08 8.073648038e-09 9.600267347e-09 6.003288614e-09 4.985685639e-09 4.388332439e-09 2.761930688e-09 2.664100659e-09 1.356783476e-09 5.072803478e-10 6.510601735e-10 6.684689704e-10 3.110140971e-10 8.634544734e-11 3.777261352e-11 5.867213371e-12 4.120523972e-13 2.697558152e-14 5.934885597e-15 9.220261831e-16 1.474355728e-16 4.214656775e-17 7.5960882e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.524691379e-18 2.376258244e-17 3.267788003e-18 1.013227499e-15 5.48670128e-15 6.341959933e-14 4.253232658e-13 5.346187898e-13 4.658140401e-12 1.546689748e-11 2.322404837e-11 1.864473166e-10 5.610234431e-10 3.908073355e-10 1.110068707e-09 2.449355478e-09 3.116287333e-09 4.245601186e-09 6.5563522e-09 4.695397106e-09 7.111452575e-09 1.011430701e-08 1.127663971e-08 1.364089778e-08 1.213047625e-08 1.582764578e-08 2.086915789e-08 1.902469568e-08 2.023847111e-08 2.261208614e-08 2.277479526e-08 2.787829256e-08 2.578851255e-08 2.297614105e-08 2.781804451e-08 2.715170013e-08 2.857593163e-08 3.85331489e-08 3.711161089e-08 3.880345486e-08 3.983305849e-08 4.170559592e-08 4.530956173e-08 4.02004522e-08 4.076767488e-08 4.369892293e-08 4.301314527e-08 3.97716117e-08 4.197718051e-08 4.801873784e-08 4.478807535e-08 3.967266019e-08 4.743505945e-08 4.900883955e-08 3.633608724e-08 4.734649595e-08 3.61824573e-08 3.844458977e-08 3.220363985e-08 3.100331381e-08 3.129400754e-08 3.495194254e-08 4.706785938e-08 2.988000115e-08 2.988378339e-08 2.210387838e-08 1.830441568e-08 1.611398057e-08 1.900602852e-08 1.902972066e-08 1.738017561e-08 2.558929332e-08 1.734202753e-08 1.68168956e-08 2.258088972e-08 1.443730637e-08 2.02848405e-08 1.702531631e-08 2.002686635e-08 1.336629134e-08 2.015160444e-08 1.536261111e-08 1.336592824e-08 1.547599772e-08 2.015654115e-08 2.535907495e-08 1.542453835e-08 1.209326835e-08 1.952927486e-08 1.470271559e-08 1.34046335e-08 1.748632925e-08 2.015448952e-08 2.352923002e-08 1.462742567e-08 1.957693622e-08 2.363242673e-08 1.735108097e-08 2.492611347e-08 2.232876191e-08 1.858030481e-08 1.937694466e-08 2.358884193e-08 2.792237475e-08 2.29158824e-08 2.123323665e-08 2.574730204e-08 2.687795256e-08 3.643300702e-08 2.535836626e-08 2.633423973e-08 3.898754377e-08 4.650678035e-08 3.68340648e-08 2.819770089e-08 3.877256303e-08 4.242562021e-08 4.689296882e-08 4.455405084e-08 3.539245754e-08 4.541723139e-08 3.709987887e-08 4.568512054e-08 4.778844818e-08 4.513287697e-08 3.992295179e-08 4.616474046e-08 3.956368168e-08 4.10508556e-08 3.744110905e-08 3.388184586e-08 4.04714996e-08 3.607837838e-08 3.218636101e-08 2.817252663e-08 2.914627225e-08 3.214386316e-08 2.748071398e-08 2.581052258e-08 2.457853025e-08 2.462816267e-08 2.410664196e-08 1.91635071e-08 1.74137651e-08 1.90395176e-08 1.511855331e-08 1.707863416e-08 1.81089485e-08 1.210424251e-08 1.351843993e-08 1.100203033e-08 9.593850153e-09 7.291167524e-09 6.121746671e-09 4.91230878e-09 3.251263928e-09 3.262668061e-09 1.199892863e-09 6.57348391e-10 1.020707766e-09 4.783078733e-10 4.438227108e-10 9.151550381e-11 1.520772634e-12 6.950882563e-13 2.514515777e-13 1.267902496e-13 1.846188925e-15 7.138998943e-16 1.810403902e-16 1.263470588e-17 1.832079198e-18 5.297487412e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.451856482e-18 3.496031106e-17 2.090702827e-16 6.902494481e-18 1.192910829e-15 7.081103843e-14 3.0951092e-14 1.810224488e-12 2.652213266e-11 1.004987809e-10 3.263910758e-10 7.455033591e-10 1.053209219e-09 3.625423677e-10 1.931931749e-09 3.840128011e-09 4.122551475e-09 5.745966763e-09 3.582820672e-09 7.681506727e-09 8.269372888e-09 9.930550692e-09 1.171400409e-08 1.204688922e-08 1.655183e-08 1.438470335e-08 1.849438902e-08 2.141140862e-08 1.85554633e-08 1.900441736e-08 2.425576599e-08 2.059251643e-08 2.455230937e-08 2.502515756e-08 2.539234832e-08 3.696077734e-08 3.523778789e-08 3.426093318e-08 3.575299122e-08 4.020949558e-08 2.986504544e-08 3.606451626e-08 3.912995292e-08 4.178193676e-08 4.437605006e-08 4.289353891e-08 4.458072156e-08 4.896271284e-08 4.114389749e-08 3.874701068e-08 4.514632272e-08 4.548272247e-08 3.582334774e-08 4.8166719e-08 3.431071708e-08 4.470490284e-08 3.362066983e-08 5.023038441e-08 4.176555177e-08 4.185878041e-08 3.045832411e-08 3.228493993e-08 3.021350885e-08 3.108081984e-08 2.388456926e-08 2.525093805e-08 1.50956998e-08 1.919212865e-08 1.743183073e-08 1.948118786e-08 2.097208475e-08 1.254807188e-08 1.586502907e-08 1.174465335e-08 1.62386545e-08 1.42028571e-08 1.617799961e-08 1.520195313e-08 1.647913571e-08 1.153851273e-08 1.64133544e-08 1.176184568e-08 1.430183429e-08 1.540510573e-08 1.411688289e-08 1.625082415e-08 1.717793274e-08 1.353077879e-08 1.537216869e-08 1.466041398e-08 1.309896458e-08 1.384285903e-08 1.431426854e-08 1.485867115e-08 1.55903572e-08 1.958960281e-08 1.569547079e-08 2.526133748e-08 1.66542061e-08 1.983638538e-08 1.777709088e-08 2.321159243e-08 1.55604785e-08 2.229444584e-08 2.437364661e-08 1.978651846e-08 2.442791819e-08 2.327936524e-08 2.092261022e-08 4.163234092e-08 3.089080875e-08 3.410678201e-08 4.253427247e-08 3.313734576e-08 3.514590876e-08 4.21211883e-08 3.57383393e-08 4.30207838e-08 4.260278397e-08 4.435414787e-08 4.214264741e-08 4.380468009e-08 4.142118686e-08 4.658289401e-08 5.1890041e-08 4.558500591e-08 5.300576444e-08 3.709229741e-08 3.70499607e-08 3.947021154e-08 4.098072591e-08 3.896327155e-08 3.63997361e-08 3.460964288e-08 3.909850028e-08 3.308098252e-08 2.937464631e-08 2.865692991e-08 2.348609704e-08 2.550152984e-08 2.536261331e-08 2.125658729e-08 2.305597747e-08 1.904995204e-08 1.788219984e-08 1.99850032e-08 1.484817948e-08 9.95463495e-09 1.625868858e-08 1.006618807e-08 9.611140518e-09 8.660030786e-09 7.06183888e-09 6.479871407e-09 5.311118712e-09 4.289977372e-09 4.345090996e-09 1.269074048e-09 4.97021963e-10 7.693880435e-10 3.446689605e-10 1.817676872e-10 4.090765373e-11 1.85031356e-11 4.874503127e-13 5.137801105e-13 1.909516253e-14 7.30343285e-16 2.526208997e-16 2.290877629e-16 2.025277482e-17 4.873328847e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.434594396e-18 4.581602068e-19 9.043926952e-17 1.355652264e-16 6.843466113e-15 6.249449378e-14 3.209294039e-13 4.613993818e-12 1.30686028e-11 1.365060016e-11 4.786585195e-10 5.727343904e-10 9.249482937e-10 7.139076345e-10 1.428647884e-09 1.168993029e-09 3.158707404e-09 4.675853665e-09 7.733757778e-09 9.150231364e-09 8.900352709e-09 1.043522729e-08 1.329208027e-08 1.175370695e-08 1.561489571e-08 1.47779581e-08 1.55307494e-08 2.007643566e-08 2.091914679e-08 1.991350189e-08 2.486474929e-08 2.835407235e-08 3.104931955e-08 2.704822665e-08 2.481277655e-08 3.250674633e-08 3.013683661e-08 2.774463726e-08 3.166622809e-08 3.806560823e-08 3.240933232e-08 3.625189916e-08 4.172527714e-08 4.321075774e-08 4.559727027e-08 4.128571646e-08 4.154983487e-08 3.854866862e-08 4.591133854e-08 4.242649224e-08 4.397620045e-08 4.146753641e-08 4.137253652e-08 3.773508846e-08 3.573234146e-08 4.367679952e-08 3.867361629e-08 3.467119472e-08 3.653935254e-08 4.100057986e-08 3.869815444e-08 3.58910913e-08 2.41560576e-08 2.061789717e-08 1.982264698e-08 2.363903712e-08 2.313936662e-08 2.043509622e-08 2.11612089e-08 1.918832861e-08 2.151724364e-08 2.127424191e-08 2.101478944e-08 2.193488935e-08 1.566629185e-08 1.90206272e-08 1.651797104e-08 1.70455499e-08 9.757054307e-09 1.95431707e-08 1.558536054e-08 1.838549968e-08 1.563881469e-08 1.506065656e-08 1.652112514e-08 1.016574889e-08 1.29392159e-08 1.32521123e-08 1.513965319e-08 1.717438065e-08 1.309082146e-08 1.562322048e-08 1.573179557e-08 1.055594493e-08 1.571754352e-08 1.704287198e-08 1.594037652e-08 1.648574045e-08 1.616688838e-08 1.795952458e-08 2.533909659e-08 2.247217897e-08 1.858802388e-08 2.293580735e-08 1.7513866e-08 3.248297668e-08 2.898333446e-08 2.271936587e-08 2.565689228e-08 3.964419278e-08 2.952067799e-08 2.562780713e-08 2.902226263e-08 3.736999495e-08 3.957737994e-08 4.595240859e-08 4.161329817e-08 3.419083259e-08 4.317471242e-08 3.951859591e-08 3.666727363e-08 3.529792028e-08 3.79029881e-08 4.266662778e-08 4.541864594e-08 4.355380667e-08 4.091595503e-08 4.179630044e-08 4.202606216e-08 3.716504189e-08 3.486246624e-08 3.201662353e-08 3.2135886e-08 3.394732175e-08 2.998988647e-08 3.267703579e-08 3.011961513e-08 2.625347391e-08 2.509952768e-08 2.450660095e-08 1.954200642e-08 2.20913589e-08 2.158081635e-08 1.988443609e-08 2.28987819e-08 1.988520861e-08 1.683012966e-08 1.49617678e-08 1.032297066e-08 9.933140616e-09 1.347452137e-08 7.948409485e-09 7.307800502e-09 6.934156441e-09 5.364035971e-09 2.391584562e-09 1.760605593e-09 8.069763235e-10 1.132385525e-09 8.719730303e-10 4.590442269e-10 4.882455958e-10 1.384243924e-10 2.822358929e-11 1.188164441e-12 2.070736817e-13 1.789906892e-13 4.526934451e-16 1.295195527e-15 5.644796702e-17 3.420795359e-18 1.035504665e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.70224063e-19 5.300187815e-17 1.000587152e-16 1.14306908e-15 1.05191777e-14 1.533780729e-14 1.760283025e-12 2.705102217e-12 1.169698985e-11 2.27159936e-10 1.726817275e-10 6.040405147e-10 3.964781872e-10 3.772587313e-10 1.035248115e-09 2.991392476e-09 3.080302457e-09 5.426554696e-09 5.114032616e-09 7.231151754e-09 8.25960769e-09 9.317236408e-09 1.021901733e-08 1.188808894e-08 1.299234009e-08 1.666247717e-08 1.911806413e-08 2.001688031e-08 2.063884594e-08 2.374764587e-08 2.173709906e-08 2.785533793e-08 2.366738737e-08 2.740806669e-08 2.844197732e-08 2.934230877e-08 3.066564788e-08 3.38371524e-08 3.963378162e-08 3.856142826e-08 3.506408781e-08 3.871002503e-08 4.641166778e-08 3.464924133e-08 3.803537882e-08 3.936090599e-08 4.066962616e-08 4.124815456e-08 4.456819562e-08 3.909169543e-08 3.733592113e-08 4.163034821e-08 4.789486354e-08 4.816608231e-08 4.634163579e-08 4.5945873e-08 2.960618232e-08 3.998711133e-08 3.624005477e-08 4.556428686e-08 3.927914662e-08 4.168579408e-08 4.565491261e-08 2.627530959e-08 2.87544464e-08 2.764776454e-08 2.182783441e-08 2.892065908e-08 2.340912306e-08 1.72895732e-08 2.506744931e-08 1.917193127e-08 1.563728355e-08 1.968510268e-08 1.414468901e-08 1.95675316e-08 1.480717278e-08 1.410630201e-08 1.5792723e-08 1.505080599e-08 1.542338535e-08 1.481992922e-08 1.66698199e-08 1.800876349e-08 1.782942529e-08 1.913855022e-08 1.70597634e-08 2.307642041e-08 1.21214674e-08 2.054905268e-08 1.557333551e-08 1.549537566e-08 1.652382038e-08 1.354189401e-08 2.181539649e-08 1.748503163e-08 1.886781844e-08 1.45065953e-08 2.006539511e-08 1.41882136e-08 2.078529581e-08 1.427195297e-08 3.033018756e-08 2.139516346e-08 2.306132674e-08 2.547384377e-08 3.146820632e-08 2.643395718e-08 3.078729907e-08 3.014865731e-08 3.105546083e-08 2.948530715e-08 3.149091206e-08 3.84294543e-08 3.723266e-08 4.35150397e-08 3.819350462e-08 4.232438526e-08 4.01663999e-08 3.70712901e-08 4.009552731e-08 3.931881156e-08 4.861222654e-08 3.724694326e-08 4.625069192e-08 4.174443028e-08 4.051899144e-08 3.035198948e-08 4.71936626e-08 3.677333805e-08 3.628956209e-08 3.783544633e-08 3.26859912e-08 3.200698068e-08 3.281087982e-08 3.110721677e-08 2.887783428e-08 2.723514416e-08 2.668607204e-08 2.450014783e-08 2.515230771e-08 2.09270204e-08 2.212949607e-08 2.352923293e-08 2.115714285e-08 1.700639885e-08 1.267740202e-08 1.148002745e-08 1.346479111e-08 1.247219277e-08 1.129999413e-08 9.043003507e-09 7.777152738e-09 7.627938506e-09 6.196203317e-09 2.99317051e-09 1.415019924e-09 1.078767274e-09 3.876527998e-10 2.600418473e-10 5.26257936e-10 8.087091827e-11 4.140016086e-11 8.739176099e-12 1.014324925e-13 1.09779229e-13 2.39214252e-14 1.793308523e-15 1.130768356e-15 8.929624965e-17 2.695413898e-18 1.265617961e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.240903948e-18 1.54738348e-17 6.979960182e-16 3.750862992e-16 2.158819067e-15 2.914309357e-13 5.927313656e-13 5.728522013e-13 1.960823236e-11 2.882001221e-11 2.458139441e-10 8.626693448e-10 6.59915496e-10 6.508727878e-10 1.363610621e-09 2.598038169e-09 2.582304101e-09 3.553987174e-09 6.27472909e-09 8.933859126e-09 7.237000145e-09 1.081325375e-08 1.262187899e-08 1.218104525e-08 1.124729723e-08 1.767926304e-08 1.545973013e-08 2.045868164e-08 1.822944376e-08 1.9772824e-08 2.386598768e-08 2.282956172e-08 2.335172145e-08 2.579907618e-08 2.466562155e-08 3.075202937e-08 2.649623081e-08 3.06526252e-08 3.572650156e-08 3.936224515e-08 3.80910016e-08 3.862890847e-08 3.81012579e-08 3.81378216e-08 3.860874876e-08 4.253095278e-08 4.081468715e-08 4.331017514e-08 3.952197951e-08 4.161705886e-08 4.287141539e-08 4.580919539e-08 4.422816473e-08 3.805973816e-08 4.367419474e-08 3.734897204e-08 3.420478796e-08 3.237948591e-08 4.180231177e-08 3.709729864e-08 2.117712083e-08 4.6038041e-08 2.344246785e-08 2.995581938e-08 2.899975331e-08 2.318523029e-08 2.959792428e-08 1.606902181e-08 1.896603621e-08 2.504683758e-08 2.189505972e-08 2.066981479e-08 1.283243632e-08 1.335818959e-08 1.659597566e-08 9.968795816e-09 1.50067711e-08 1.122238558e-08 9.307611408e-09 1.883627418e-08 1.203410783e-08 1.812703788e-08 1.710890454e-08 1.710848516e-08 1.108880866e-08 1.613726938e-08 1.594290609e-08 1.386106173e-08 1.82652118e-08 1.656308934e-08 1.758988623e-08 2.073978957e-08 1.347420959e-08 1.779632368e-08 2.115054004e-08 1.596130814e-08 2.108000644e-08 2.94642474e-08 1.28959659e-08 2.045995666e-08 2.084158179e-08 2.572279098e-08 2.291657347e-08 1.8777577e-08 1.596520089e-08 3.045562029e-08 2.798937906e-08 2.701622167e-08 2.832891203e-08 3.092827885e-08 3.818449583e-08 3.959255572e-08 3.414354333e-08 4.126358129e-08 3.450438521e-08 3.393352644e-08 3.392410664e-08 4.203972974e-08 4.097285137e-08 3.934373143e-08 3.593594767e-08 5.156899845e-08 4.162825611e-08 4.339744049e-08 4.041224181e-08 4.446387889e-08 4.263099349e-08 4.590887009e-08 3.978996171e-08 3.619422831e-08 3.482810676e-08 3.615853975e-08 3.928063619e-08 3.803876461e-08 2.719834716e-08 3.464962289e-08 3.18823069e-08 2.908860179e-08 2.759432391e-08 2.323936688e-08 2.715195204e-08 2.392171174e-08 2.37774375e-08 2.363124296e-08 1.814721279e-08 1.595135771e-08 1.553122117e-08 1.321368152e-08 1.629927086e-08 9.649865605e-09 1.176385275e-08 7.998808607e-09 8.269736467e-09 4.921834334e-09 5.423345829e-09 4.081334967e-09 2.725225889e-09 8.354642219e-10 4.167145328e-10 8.65433227e-10 1.788484055e-10 2.307668603e-10 2.108166636e-11 3.123533494e-12 1.209493757e-12 9.083788844e-13 6.757363996e-15 2.079071504e-15 4.910343862e-16 4.009419579e-18 3.993966473e-18 4.019045793e-18 5.511962491e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 4.125068956e-19 3.018755e-25 3.030687156e-18 7.788862056e-17 8.887438656e-16 2.278306991e-15 2.758415617e-14 1.00194217e-13 5.448211715e-13 9.617212119e-12 1.546983979e-12 2.248024119e-10 6.433620594e-10 4.797696111e-10 5.645797909e-10 1.335370075e-09 2.799934221e-09 3.542819911e-09 6.520866837e-09 5.509604057e-09 8.632462415e-09 1.350917954e-08 1.002367025e-08 1.65147396e-08 1.251673166e-08 1.353690714e-08 1.287572793e-08 1.802152972e-08 1.687067371e-08 1.942786592e-08 2.095663714e-08 2.35273475e-08 1.93376829e-08 2.51770334e-08 2.718035926e-08 2.726222866e-08 2.946700369e-08 2.782531614e-08 3.318928177e-08 3.76026535e-08 3.496595804e-08 3.484683713e-08 3.817750203e-08 3.928437906e-08 4.356461236e-08 3.587774006e-08 3.888052264e-08 4.780956021e-08 4.195722437e-08 4.83043824e-08 4.658886553e-08 4.695024164e-08 4.913544621e-08 4.212602429e-08 4.347393362e-08 3.933714659e-08 4.255834012e-08 3.629194145e-08 3.55741737e-08 3.10954998e-08 3.919516435e-08 2.95243833e-08 3.325745728e-08 3.514837795e-08 2.960072163e-08 2.172440258e-08 2.318979546e-08 1.565215079e-08 2.079762315e-08 2.137424644e-08 1.917954716e-08 1.94137303e-08 2.187956743e-08 1.212315975e-08 1.297363262e-08 1.170694139e-08 1.824685243e-08 1.447423011e-08 1.485231698e-08 1.340743781e-08 1.932054233e-08 1.377073202e-08 2.014654478e-08 1.92278602e-08 1.737883155e-08 1.464472444e-08 1.252255932e-08 1.75612405e-08 1.097803698e-08 1.416614291e-08 7.639324411e-09 1.769642105e-08 1.799636031e-08 1.66607782e-08 1.760959748e-08 1.544957707e-08 1.823841883e-08 1.488934008e-08 1.468971173e-08 1.799947868e-08 1.537351078e-08 1.330303609e-08 2.663881145e-08 2.120608656e-08 1.754875717e-08 1.903932185e-08 2.182040443e-08 2.113315425e-08 1.289755005e-08 2.181020533e-08 3.064501556e-08 3.681576727e-08 2.725489263e-08 3.131947113e-08 3.17493473e-08 3.677228578e-08 3.648626836e-08 4.538394892e-08 5.100618476e-08 5.372372758e-08 4.186972852e-08 4.090917803e-08 4.832076917e-08 4.729849599e-08 4.326497092e-08 4.615875925e-08 4.342124374e-08 3.865324851e-08 3.823923766e-08 3.926900223e-08 3.78751049e-08 4.01671956e-08 3.473777502e-08 3.605547682e-08 3.370107898e-08 3.156928124e-08 3.34293135e-08 2.695456827e-08 2.530967052e-08 2.653112693e-08 2.788550236e-08 2.064502286e-08 2.595772643e-08 2.48021708e-08 2.310125957e-08 1.99641038e-08 1.823683504e-08 1.480160653e-08 1.522191973e-08 1.286785751e-08 1.337410179e-08 9.223729228e-09 9.986451798e-09 7.889127717e-09 7.117334375e-09 5.006468919e-09 6.075217467e-09 2.42748763e-09 5.506904923e-10 4.584184235e-10 5.055625049e-10 3.827694614e-10 2.771639885e-10 2.820607331e-11 3.875936674e-12 1.215967678e-12 3.941449779e-13 1.922638695e-13 2.371854297e-16 1.07948193e-15 3.298676096e-16 0 1.123805848e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.510017589e-19 1.739789334e-18 8.865485109e-17 1.102525595e-16 5.499333982e-15 1.817647166e-14 3.737493645e-13 2.228467611e-13 1.449139679e-12 2.794006447e-11 3.448473824e-10 7.282370916e-10 3.61656081e-10 5.151774555e-10 2.193782964e-09 2.732993439e-09 5.474689114e-09 5.965627622e-09 4.979993986e-09 7.246201295e-09 1.070390111e-08 9.28162105e-09 1.160890359e-08 1.270391516e-08 1.491791882e-08 1.44804462e-08 1.610938703e-08 2.178122154e-08 2.025670168e-08 2.384448535e-08 2.229897789e-08 2.221058352e-08 2.566379779e-08 3.038404067e-08 2.932040467e-08 3.657552447e-08 3.444694615e-08 3.138767584e-08 3.039802996e-08 3.872779942e-08 3.201356345e-08 3.805634692e-08 4.22191214e-08 3.478904282e-08 4.40610824e-08 3.565128284e-08 4.829275441e-08 4.073397176e-08 4.255129357e-08 4.282656295e-08 3.731837537e-08 4.218000414e-08 3.817370675e-08 3.827935025e-08 4.615439544e-08 3.879774874e-08 3.702459514e-08 4.096104093e-08 4.74437187e-08 4.477272558e-08 3.103091609e-08 2.282179937e-08 3.529751155e-08 3.340849348e-08 2.861490871e-08 2.803884085e-08 2.157260067e-08 2.112600872e-08 2.471933955e-08 2.101834844e-08 1.43348735e-08 2.889486492e-08 1.624602563e-08 2.032691047e-08 1.739412923e-08 2.10944605e-08 1.727313134e-08 1.502996536e-08 1.534841149e-08 1.819507832e-08 1.510676444e-08 2.083228617e-08 1.509184495e-08 1.897912545e-08 1.322687134e-08 1.080227569e-08 1.864409087e-08 1.963368496e-08 1.111442234e-08 1.929843066e-08 1.549172876e-08 1.278109653e-08 1.639094351e-08 1.856584557e-08 1.589216784e-08 1.91117702e-08 1.538059693e-08 1.750002054e-08 1.891141813e-08 2.22115236e-08 1.777808111e-08 1.833002249e-08 1.962246648e-08 2.715140377e-08 1.58249913e-08 2.149403084e-08 2.607297515e-08 2.481282514e-08 2.985760203e-08 3.245047221e-08 2.662330214e-08 3.035505298e-08 3.460329022e-08 4.332511838e-08 3.794603431e-08 4.768720903e-08 4.766450148e-08 2.904798281e-08 4.178479721e-08 3.973776644e-08 5.048307132e-08 5.043634972e-08 4.363070213e-08 4.482782044e-08 4.400568322e-08 4.242242232e-08 3.811647686e-08 5.018247347e-08 4.14338792e-08 3.662376926e-08 3.632284133e-08 3.546738253e-08 3.026155918e-08 3.601018452e-08 3.242244003e-08 3.308001359e-08 2.514598239e-08 2.629433277e-08 2.888653574e-08 2.608988661e-08 2.204204695e-08 2.247129106e-08 2.125472502e-08 1.975233891e-08 1.879190151e-08 1.475733354e-08 1.396537522e-08 1.884366113e-08 1.098864393e-08 1.394413372e-08 8.726525926e-09 9.98843726e-09 9.520787942e-09 7.766935541e-09 7.656699273e-09 3.411349426e-09 1.648580462e-09 1.63862173e-09 6.603118067e-10 1.988945709e-10 6.08312842e-10 3.084529481e-10 2.440750802e-11 3.510529958e-12 1.24970938e-13 2.809452181e-13 8.336152957e-14 1.160297582e-14 2.058307105e-15 4.491796618e-17 1.577565315e-17 1.969794101e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 3.920210491e-19 1.686694955e-18 2.687618966e-17 1.39828005e-17 1.406811712e-15 2.229429881e-14 2.227229529e-15 1.469523068e-13 1.121225553e-13 9.910964301e-13 1.461852878e-10 2.758786252e-10 1.689488476e-10 4.302030368e-10 7.453458604e-10 1.341105634e-09 2.986791137e-09 4.597994476e-09 5.447972705e-09 7.7551791e-09 6.388475658e-09 9.803513494e-09 1.098590668e-08 9.78164573e-09 1.366224494e-08 1.390062912e-08 1.688520481e-08 1.598943342e-08 2.107052493e-08 1.998038741e-08 1.8141181e-08 2.757596383e-08 2.251650726e-08 2.488020323e-08 3.04092141e-08 2.897611442e-08 3.035377065e-08 3.278131857e-08 3.271659885e-08 3.040287768e-08 3.498981594e-08 3.255999862e-08 3.151580572e-08 3.877785178e-08 4.322109156e-08 4.620876079e-08 4.505771787e-08 4.1217502e-08 4.669661981e-08 3.779525019e-08 5.359626529e-08 4.649314441e-08 4.246772658e-08 3.764789911e-08 4.312543277e-08 4.229570089e-08 4.102058231e-08 4.715540488e-08 3.047512244e-08 3.79106794e-08 3.123374874e-08 3.177013757e-08 3.881833058e-08 2.499189168e-08 2.310176996e-08 2.946591738e-08 3.008081737e-08 2.268157378e-08 1.591410781e-08 2.471049114e-08 1.591230996e-08 2.971259881e-08 1.74852071e-08 1.903315881e-08 1.85854373e-08 1.793379645e-08 1.375395035e-08 1.970652285e-08 1.308306407e-08 2.056501975e-08 1.36995561e-08 1.758388797e-08 1.348550952e-08 1.899116412e-08 1.485700858e-08 1.372730967e-08 1.590875971e-08 1.494625751e-08 1.711429372e-08 1.522004812e-08 1.882969839e-08 1.508434139e-08 1.608100659e-08 1.94050454e-08 1.779363879e-08 1.434067837e-08 1.502366656e-08 2.018312531e-08 2.124790305e-08 2.071449755e-08 1.048624565e-08 1.575252919e-08 2.241031629e-08 2.160933014e-08 1.865716993e-08 2.323187947e-08 2.419488793e-08 3.422238738e-08 2.282327476e-08 2.498087841e-08 3.082619515e-08 3.269541092e-08 3.988683713e-08 3.464196746e-08 4.635091112e-08 4.120685184e-08 3.858664006e-08 4.261110642e-08 4.029765309e-08 3.905538662e-08 3.995268224e-08 3.901361001e-08 4.584149329e-08 4.458469712e-08 4.407831067e-08 3.995685778e-08 4.259455867e-08 4.466189004e-08 5.13545094e-08 4.500011427e-08 4.323071338e-08 3.717569583e-08 3.609277493e-08 3.697253887e-08 2.998137418e-08 3.314920376e-08 3.288885684e-08 2.730352265e-08 3.240013262e-08 2.407482229e-08 2.579370802e-08 2.319113978e-08 2.390991841e-08 2.352078622e-08 1.790040813e-08 2.309815376e-08 1.904110266e-08 1.760388261e-08 1.372401687e-08 1.308025062e-08 1.209740619e-08 1.113546773e-08 1.141904732e-08 5.795480451e-09 7.882928816e-09 5.804741228e-09 3.832638126e-09 2.339083317e-09 1.878382805e-09 6.090506885e-10 1.253727382e-09 2.204268941e-10 4.92650052e-10 4.908192399e-11 1.816151284e-11 4.085604146e-12 3.637572476e-14 6.636630009e-14 3.953514673e-15 9.276560223e-16 1.83183267e-16 9.950392362e-18 3.413736229e-18 7.817625372e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.81975312e-22 7.169973963e-19 9.1217354e-18 9.364012229e-16 4.878532562e-15 2.204345587e-14 2.061928511e-13 5.874793461e-14 2.775050808e-11 2.418586064e-11 2.282952405e-10 5.792632603e-10 1.19601866e-10 4.136282184e-10 7.013239115e-10 1.393334905e-09 2.342419192e-09 4.156116352e-09 6.44466199e-09 6.928275092e-09 1.021029704e-08 1.183444579e-08 1.405210704e-08 1.681488381e-08 1.473231041e-08 1.541486551e-08 1.330365299e-08 1.694362052e-08 1.976032557e-08 2.100018005e-08 2.527599489e-08 2.660859006e-08 2.445160768e-08 2.526303143e-08 3.004796073e-08 3.137959334e-08 3.37978122e-08 3.536060143e-08 3.071622129e-08 3.581480236e-08 3.732854577e-08 4.097684235e-08 4.298204939e-08 3.491152898e-08 4.352226603e-08 4.003185195e-08 4.968395447e-08 4.023687674e-08 4.341165562e-08 3.65724285e-08 4.592721832e-08 4.082544518e-08 4.158673032e-08 3.910745196e-08 3.577243964e-08 4.320547314e-08 4.067078533e-08 3.506327751e-08 3.673920262e-08 3.166731955e-08 2.844051544e-08 3.416922159e-08 3.166332857e-08 2.553896045e-08 1.928636974e-08 3.715899674e-08 2.719056508e-08 1.461684164e-08 2.133947556e-08 1.789918208e-08 2.046139018e-08 1.944910908e-08 1.843642175e-08 1.667510845e-08 2.297018749e-08 1.321717946e-08 1.187803117e-08 1.475025514e-08 1.720227793e-08 1.073076335e-08 2.086796059e-08 1.879381583e-08 1.374779417e-08 2.409298145e-08 1.645826479e-08 1.22698363e-08 2.037825168e-08 1.014679435e-08 1.550630208e-08 7.159834619e-09 1.028676579e-08 1.651970349e-08 2.513802672e-08 1.793498695e-08 1.817339713e-08 1.381783948e-08 2.057138692e-08 1.932685807e-08 1.80765048e-08 1.667529917e-08 1.130946801e-08 2.381998106e-08 1.822301108e-08 2.105611534e-08 2.31121831e-08 2.178235693e-08 1.986345938e-08 3.00256477e-08 3.479711427e-08 1.817177459e-08 3.55864349e-08 3.290078531e-08 3.7172549e-08 3.521482153e-08 4.388881418e-08 4.353051938e-08 4.017595005e-08 3.552175082e-08 3.902696951e-08 4.144026087e-08 3.748784715e-08 4.380274022e-08 4.63000444e-08 4.820229469e-08 4.374966689e-08 4.011779375e-08 4.379984203e-08 3.905797669e-08 3.953897467e-08 3.631629649e-08 3.766757565e-08 4.077290477e-08 3.51805092e-08 3.298664731e-08 3.173446267e-08 2.839008037e-08 2.823688192e-08 3.040919161e-08 2.732905962e-08 2.32693164e-08 2.333551525e-08 2.687646897e-08 1.712469414e-08 1.975939288e-08 1.897521833e-08 1.826459437e-08 1.551567983e-08 1.139111695e-08 1.112166892e-08 1.239018445e-08 7.295712266e-09 9.307994719e-09 8.236214563e-09 5.711368521e-09 7.39864361e-09 4.633841842e-09 2.038051984e-09 2.273073697e-09 6.477821913e-10 6.493420891e-10 3.323995882e-10 1.447821933e-10 4.854011229e-11 5.626771622e-12 8.077253521e-13 7.924017087e-14 1.493849275e-15 2.839141174e-14 2.371030081e-15 5.076631012e-17 8.546128973e-17 1.667340977e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 5.555771919e-19 2.611028445e-18 3.408912501e-29 2.925492563e-17 2.240361783e-16 1.102929495e-16 2.685647905e-14 9.248495917e-15 1.501658858e-12 2.286138445e-11 7.899017727e-11 1.282055915e-10 5.508409737e-10 1.898123122e-10 1.623672196e-09 1.897704771e-09 3.919150729e-09 1.058375418e-09 4.330326936e-09 5.574933815e-09 6.169446417e-09 1.351406993e-08 1.16490541e-08 1.236013326e-08 1.161675328e-08 1.380704408e-08 1.924666941e-08 1.799506988e-08 2.328210051e-08 2.025180976e-08 2.073928295e-08 2.5667079e-08 2.45583943e-08 2.2455538e-08 2.914227035e-08 3.278984878e-08 3.11207578e-08 3.048973318e-08 2.914859632e-08 3.230137969e-08 3.599638767e-08 3.355296917e-08 3.462219173e-08 4.027919895e-08 4.70887962e-08 4.24160293e-08 4.179851065e-08 4.170840945e-08 3.999072636e-08 4.837884366e-08 4.77456697e-08 3.905180554e-08 4.416228148e-08 4.665815424e-08 4.026754897e-08 4.566709026e-08 4.613098462e-08 4.603886635e-08 4.007299376e-08 3.198379617e-08 2.831990442e-08 3.951437743e-08 3.107297759e-08 3.17199046e-08 2.746670268e-08 2.580135959e-08 2.742026037e-08 1.522959946e-08 1.660086353e-08 2.976066687e-08 2.100000321e-08 1.706746877e-08 2.196874022e-08 2.172595249e-08 2.017452885e-08 1.563012561e-08 1.595584258e-08 1.465507142e-08 1.677551207e-08 1.644790204e-08 1.157021425e-08 1.186533826e-08 1.31806098e-08 1.792711953e-08 1.775567639e-08 1.510540235e-08 1.339097387e-08 1.938908998e-08 1.349507922e-08 1.75011248e-08 1.395040193e-08 1.728189666e-08 1.786542153e-08 1.810946938e-08 1.423126946e-08 2.117938282e-08 1.761374088e-08 1.49489932e-08 1.280888101e-08 2.279008862e-08 2.75711442e-08 2.309017621e-08 2.053119185e-08 1.975814918e-08 2.512297335e-08 1.869387934e-08 2.138353994e-08 2.024310784e-08 2.784085083e-08 3.089117155e-08 3.30380661e-08 3.036570716e-08 4.269830613e-08 3.013272612e-08 4.537454471e-08 4.09661668e-08 4.190020549e-08 4.104892816e-08 4.333146534e-08 4.110788868e-08 4.085526213e-08 5.09354702e-08 3.947394842e-08 3.3623272e-08 4.646393491e-08 4.190954877e-08 4.174260321e-08 4.147683746e-08 4.159407938e-08 4.159230795e-08 3.924419643e-08 3.444971166e-08 3.869846108e-08 3.734372771e-08 3.159658931e-08 3.65656889e-08 3.118255609e-08 3.192997004e-08 2.79962801e-08 2.649837659e-08 2.61130531e-08 2.320848131e-08 2.683383242e-08 2.447232559e-08 2.132820643e-08 1.819399303e-08 1.720329275e-08 1.75729886e-08 1.693483362e-08 1.586361623e-08 1.320068826e-08 1.335487804e-08 8.462654217e-09 9.964986814e-09 6.829109519e-09 5.648385431e-09 5.051892324e-09 1.965108752e-09 1.189388522e-09 3.011313538e-10 7.026860378e-10 6.056581734e-10 3.32097166e-10 5.823064949e-11 5.297311152e-12 1.665285036e-12 1.144002772e-14 4.995811053e-14 8.435982349e-15 2.091099689e-16 2.819434706e-16 8.468900706e-18 4.020881475e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.942553975e-19 2.536096367e-17 1.385525309e-16 2.688711301e-16 3.211859723e-15 1.094927046e-13 4.136729004e-13 2.441997833e-12 2.01642482e-11 2.706832524e-10 3.172808407e-11 4.463033939e-10 5.69750041e-10 4.89930253e-10 6.977385929e-10 3.46107283e-09 4.533537207e-09 4.025095687e-09 4.989658257e-09 5.672142886e-09 1.031616341e-08 9.055048439e-09 1.191921347e-08 1.301981205e-08 1.34743162e-08 1.71835658e-08 1.464445339e-08 1.797753208e-08 2.125934609e-08 2.045976791e-08 2.238788191e-08 2.327286126e-08 2.282027529e-08 2.512837267e-08 2.538417688e-08 2.672902233e-08 3.681337539e-08 3.445241288e-08 3.392542149e-08 3.079147785e-08 3.848606911e-08 4.30953997e-08 3.764906908e-08 4.336934724e-08 4.402082856e-08 4.072192806e-08 3.770177806e-08 4.561601944e-08 4.582116836e-08 3.966951685e-08 4.551370678e-08 3.897234408e-08 5.45952441e-08 3.426323808e-08 4.541830151e-08 3.940196795e-08 3.867418878e-08 4.028054783e-08 3.932975818e-08 3.619819578e-08 3.671254579e-08 3.115658356e-08 3.234951444e-08 3.279171907e-08 3.080845989e-08 2.583799769e-08 1.390505114e-08 3.036307845e-08 1.830155136e-08 1.839437844e-08 2.250514824e-08 1.621804087e-08 2.453707199e-08 1.059544046e-08 1.559173864e-08 1.026343097e-08 1.447325309e-08 1.031778153e-08 1.666918891e-08 1.208927189e-08 1.301975595e-08 1.758695769e-08 1.375315721e-08 1.276759213e-08 1.578794928e-08 1.599447633e-08 1.823684998e-08 2.282767407e-08 1.395279001e-08 1.338747415e-08 1.656022676e-08 1.411147729e-08 1.666923112e-08 1.865841574e-08 1.712028763e-08 1.4372339e-08 1.492823348e-08 1.591033642e-08 1.870657769e-08 2.010241991e-08 1.599157835e-08 1.555547951e-08 1.531779917e-08 1.273517403e-08 1.722387151e-08 2.41641366e-08 2.153772647e-08 3.135870279e-08 2.945979696e-08 3.228214783e-08 4.4371379e-08 4.044321509e-08 3.880057891e-08 3.793369143e-08 4.294816651e-08 3.58821636e-08 3.943789069e-08 5.273875291e-08 4.681030475e-08 4.630217257e-08 4.325104716e-08 3.858725716e-08 4.118324156e-08 4.309576706e-08 3.69723811e-08 4.558284595e-08 4.540623271e-08 3.651599258e-08 3.854357274e-08 3.687744674e-08 3.967200777e-08 3.575957761e-08 3.265562366e-08 3.373819731e-08 2.865108531e-08 3.50708222e-08 2.871046586e-08 2.527504957e-08 2.527814195e-08 2.321486451e-08 3.069625711e-08 2.238328456e-08 2.202155015e-08 2.086512172e-08 2.094504248e-08 1.727758632e-08 1.405487969e-08 1.340453702e-08 1.364345819e-08 9.709807893e-09 9.602423366e-09 7.867582591e-09 1.088130599e-08 7.838511895e-09 4.536992827e-09 5.008413892e-09 1.962554561e-09 6.621669211e-10 3.827827271e-10 2.195078168e-10 8.380279335e-10 3.151255341e-10 7.883869519e-11 1.47251624e-11 2.694152862e-12 4.609262479e-13 4.51197982e-14 4.807580705e-15 8.840599528e-17 1.226586494e-16 3.358055922e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.295720791e-18 3.401269854e-18 1.332800275e-16 6.247404422e-16 4.226520879e-14 2.61437583e-14 3.284098584e-13 1.619804907e-12 7.090134851e-12 1.031099077e-11 4.308017965e-10 4.824895209e-10 6.170432934e-10 5.29499641e-10 1.139439532e-09 1.172359433e-09 3.904977849e-09 5.034232242e-09 8.570002887e-09 5.623750477e-09 1.052880521e-08 1.048886926e-08 9.098759267e-09 1.486827103e-08 1.286981971e-08 1.662892911e-08 1.678143513e-08 2.129651219e-08 2.132258063e-08 1.698168352e-08 2.172197533e-08 1.930284179e-08 2.260180331e-08 2.36979213e-08 2.911440021e-08 3.443786231e-08 3.116511228e-08 3.278531095e-08 3.393276965e-08 3.327524254e-08 3.43360047e-08 3.866829384e-08 3.635473811e-08 4.051120083e-08 3.928100923e-08 4.528320995e-08 4.454561556e-08 4.81565972e-08 3.886941461e-08 3.865579702e-08 4.219593112e-08 4.769566292e-08 4.025595301e-08 4.145121528e-08 3.296438958e-08 3.396883826e-08 3.605565791e-08 3.710387696e-08 3.448989203e-08 3.61434776e-08 3.339914773e-08 2.727234775e-08 2.783549361e-08 2.489486011e-08 2.469335517e-08 3.274613522e-08 2.556223256e-08 1.794698084e-08 1.808815673e-08 1.746104552e-08 1.819539542e-08 1.764200723e-08 1.801171325e-08 1.948984203e-08 1.231690969e-08 2.013425307e-08 1.625052902e-08 1.470288956e-08 1.096719623e-08 1.688862242e-08 1.47562225e-08 2.112033465e-08 1.750933956e-08 1.619870628e-08 1.543136116e-08 1.524785139e-08 1.10131846e-08 1.544659212e-08 1.508712264e-08 1.841728554e-08 1.218551e-08 1.862593782e-08 1.959665553e-08 1.497749054e-08 1.768897731e-08 1.538780174e-08 1.650471163e-08 1.845099109e-08 1.468504758e-08 1.231377083e-08 1.569515744e-08 2.109460109e-08 2.03276728e-08 2.32259254e-08 1.654119194e-08 2.078965028e-08 3.086383025e-08 2.860655941e-08 2.796929925e-08 2.492886209e-08 2.606200414e-08 3.844777916e-08 3.303967363e-08 3.786286244e-08 4.228914511e-08 3.361004727e-08 3.744555712e-08 4.179770899e-08 4.383332869e-08 3.786021074e-08 4.291656325e-08 4.064866257e-08 4.310592088e-08 4.240963145e-08 4.417021117e-08 4.878579879e-08 4.281730882e-08 4.191590367e-08 3.82349032e-08 4.161862487e-08 4.323619418e-08 3.921790537e-08 4.101820084e-08 3.716980222e-08 3.487696531e-08 3.512739209e-08 3.210398212e-08 3.224896014e-08 2.772338038e-08 2.627567382e-08 1.713132216e-08 2.479220556e-08 2.450237268e-08 2.341259519e-08 1.704938508e-08 1.779595299e-08 1.444267578e-08 1.582622474e-08 1.32224836e-08 1.372909228e-08 9.963489966e-09 7.983963532e-09 7.831562685e-09 7.298623971e-09 2.782778175e-09 3.415364337e-09 2.669717726e-09 1.482468164e-09 6.999564207e-10 6.486840927e-10 5.902677497e-10 3.287925063e-10 2.942724602e-10 3.31148809e-11 1.30655465e-12 1.247219062e-13 3.940203205e-14 5.871391285e-16 1.925966303e-16 8.004531022e-18 4.302345167e-34 8.708536672e-18 6.54946558e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1.632979012e-18 4.136775673e-19 7.657770973e-17 1.99038912e-16 4.383261442e-17 2.299118411e-15 1.354983807e-14 4.852681604e-13 3.538088337e-12 3.673644779e-11 5.89945773e-11 6.83620807e-11 4.1527625e-10 7.603434306e-10 4.794080767e-10 1.736509085e-09 2.937240069e-09 4.481911415e-09 4.494368847e-09 6.529741326e-09 8.063917322e-09 1.015507189e-08 1.285565874e-08 9.792446317e-09 1.30510509e-08 1.346249803e-08 1.64571643e-08 1.904650834e-08 1.866417442e-08 2.050873537e-08 2.452057724e-08 1.678384201e-08 2.155725988e-08 2.195806916e-08 2.838857341e-08 2.607708889e-08 2.467631456e-08 3.526816589e-08 3.192602627e-08 3.524910744e-08 3.773207254e-08 3.224619982e-08 3.215962963e-08 4.076411752e-08 3.774710519e-08 3.652724728e-08 4.224296798e-08 4.248620564e-08 4.196288894e-08 4.580003827e-08 4.667053511e-08 4.739815094e-08 3.810923342e-08 4.889185129e-08 4.308215179e-08 4.34384221e-08 3.911821522e-08 4.336101736e-08 4.056421062e-08 2.713102847e-08 3.850807556e-08 3.751077641e-08 2.830856172e-08 3.891899074e-08 2.516296028e-08 2.318424775e-08 2.938404963e-08 2.923441753e-08 2.777317867e-08 1.782962237e-08 1.676215093e-08 1.229884098e-08 2.373409849e-08 1.399610542e-08 1.620117359e-08 2.004119942e-08 1.904380847e-08 1.591972596e-08 1.841026888e-08 1.908551017e-08 1.638822312e-08 1.618385011e-08 1.643429204e-08 1.726494513e-08 1.147317002e-08 1.364069444e-08 1.221088144e-08 8.206574933e-09 1.459216864e-08 2.204302005e-08 8.957314177e-09 1.605124926e-08 1.385394732e-08 2.146697868e-08 1.825237607e-08 1.40757851e-08 1.265615613e-08 1.697487252e-08 1.556907716e-08 1.90035169e-08 1.956768551e-08 2.164170653e-08 2.195552807e-08 1.896867481e-08 2.154689048e-08 2.039053505e-08 2.764239249e-08 2.483881467e-08 2.416867196e-08 3.191531608e-08 2.467134773e-08 3.556590989e-08 2.45268131e-08 3.111115017e-08 4.082046173e-08 3.957881642e-08 3.989583168e-08 2.746484972e-08 4.384887906e-08 4.553629566e-08 4.706378372e-08 3.569477011e-08 4.745494278e-08 4.771160361e-08 4.631247876e-08 4.354365412e-08 3.854556152e-08 4.236779464e-08 4.457735694e-08 3.902609996e-08 3.912349892e-08 3.666475441e-08 3.620149768e-08 3.628021297e-08 3.605789038e-08 3.287444486e-08 3.493410928e-08 2.756812177e-08 2.947127734e-08 2.638836552e-08 2.442410923e-08 2.235565516e-08 2.459213703e-08 1.831420189e-08 1.843579167e-08 2.0343567e-08 1.614636306e-08 1.519026629e-08 1.480481539e-08 1.493327275e-08 1.388876662e-08 1.232910721e-08 1.073845499e-08 8.028579971e-09 5.956437448e-09 5.890478995e-09 4.40914504e-09 2.202416337e-09 2.172565976e-09 6.507815719e-10 7.981643437e-10 3.542267955e-10 2.664737258e-10 7.371670938e-11 1.617212018e-11 1.293113791e-12 1.227556595e-12 1.923797192e-14 6.185246507e-15 3.309729369e-15 1.157781626e-18 6.732714607e-18 1.147258364e-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.36936331e-18 5.827220135e-18 8.042650745e-18 2.20047534e-17 2.849504406e-14 5.526596217e-15 1.388354338e-13 4.798842467e-13 1.293163891e-11 2.835940821e-11 7.286943188e-11 2.140379809e-10 1.469483623e-09 9.452826874e-10 2.170882449e-09 2.711331881e-09 5.298465174e-09 4.296204515e-09 7.507150777e-09 7.02769216e-09 7.386373786e-09 1.048665584e-08 1.140979682e-08 1.437324492e-08 1.264384424e-08 1.563460372e-08 1.793018536e-08 2.002127686e-08 2.458463338e-08 1.930663402e-08 1.909422992e-08 3.003213269e-08 2.603414744e-08 2.533878242e-08 2.72377715e-08 2.945532882e-08 3.514877666e-08 3.109856152e-08 3.033971691e-08 3.561389018e-08 3.619641121e-08 3.90001173e-08 4.383027192e-08 3.470066816e-08 3.703701741e-08 4.526735101e-08 3.955750873e-08 3.866307303e-08 4.168905609e-08 3.265832516e-08 3.793747789e-08 4.884773942e-08 3.623464118e-08 4.044315182e-08 4.060194623e-08 3.985211181e-08 3.970716177e-08 3.325021494e-08 2.541113489e-08 3.635777273e-08 3.680599464e-08 3.659629038e-08 2.3857355e-08 2.802454496e-08 3.138888015e-08 2.555744817e-08 2.122704289e-08 2.045867536e-08 1.970370311e-08 2.550872425e-08 1.735992376e-08 1.600747909e-08 1.133090337e-08 1.5971262e-08 1.693870179e-08 1.319962232e-08 1.048056743e-08 1.701638348e-08 2.112347297e-08 1.886721156e-08 1.684564145e-08 1.323882372e-08 2.329403646e-08 1.953497354e-08 1.516109225e-08 8.769618472e-09 1.543225808e-08 1.677588213e-08 8.223950568e-09 1.813192035e-08 1.538280803e-08 1.549572026e-08 1.076442732e-08 1.39469022e-08 1.432049177e-08 1.628737996e-08 1.810434282e-08 1.589978645e-08 1.455567697e-08 1.553956398e-08 1.692874654e-08 1.922463201e-08 2.605696571e-08 2.309285931e-08 2.20531943e-08 3.03312345e-08 2.932352535e-08 1.564142192e-08 3.115500537e-08 3.207079905e-08 3.164753501e-08 3.467435933e-08 4.562099493e-08 4.013973502e-08 4.451591451e-08 3.294065848e-08 4.35842149e-08 3.683774718e-08 4.429400001e-08 3.970433302e-08 4.860183764e-08 4.100327759e-08 5.474305171e-08 4.968570034e-08 4.389468376e-08 5.019989146e-08 4.743588004e-08 4.054819038e-08 4.097074314e-08 3.583730336e-08 3.749995061e-08 3.72745323e-08 3.671451766e-08 3.272881178e-08 3.361668458e-08 3.378003239e-08 2.742053824e-08 3.138991944e-08 2.946528727e-08 2.664368254e-08 2.291690133e-08 2.221874168e-08 2.010117751e-08 2.222347383e-08 1.957289923e-08 1.807701268e-08 1.645947062e-08 1.506150648e-08 1.64612095e-08 1.119335628e-08 9.577223869e-09 9.812629947e-09 6.455129133e-09 5.385064448e-09 6.023176621e-09 3.410142992e-09 2.463656192e-09 1.2515507e-09 1.286277017e-09 2.697494251e-10 5.909096861e-10 2.440777851e-10 4.129571711e-11 1.761972364e-11 1.319912489e-12 5.537350173e-13 7.094355414e-15 7.697059451e-16 8.596676102e-16 3.874138897e-17 2.960161341e-18 1.537748877e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1.449751269e-18 2.691950736e-23 7.160415673e-17 1.387702988e-16 3.189529547e-15 8.329550365e-15 1.741639074e-14 7.47801649e-14 1.800554246e-12 5.593289963e-12 2.817983418e-11 2.694950259e-10 7.57842262e-10 5.721196759e-10 4.492216175e-10 8.455808446e-10 1.90067782e-09 4.360378437e-09 4.660186305e-09 7.87947219e-09 8.907829064e-09 9.306037715e-09 1.102098588e-08 1.228080716e-08 1.206176507e-08 1.517184121e-08 2.0687108e-08 1.624217755e-08 1.764061876e-08 1.816428528e-08 2.227258371e-08 2.33361864e-08 2.206156212e-08 2.756920974e-08 2.763513318e-08 2.513001533e-08 3.730446542e-08 2.802651289e-08 3.250847557e-08 3.383369709e-08 4.032142739e-08 3.244166237e-08 4.324820632e-08 3.925201646e-08 4.668759327e-08 4.031428168e-08 4.141081386e-08 3.966036362e-08 4.023224316e-08 3.725596667e-08 3.238125021e-08 3.732988545e-08 3.596061311e-08 5.510084108e-08 4.237203739e-08 4.638962175e-08 4.060594273e-08 5.082130116e-08 4.354527682e-08 4.104976938e-08 3.892950931e-08 2.93821719e-08 3.777582403e-08 2.363057846e-08 2.649981183e-08 3.166626246e-08 2.475832936e-08 1.797777379e-08 1.63534818e-08 2.690331695e-08 1.50981729e-08 2.120262386e-08 1.414253648e-08 1.674745716e-08 1.459144458e-08 1.676744658e-08 1.495407703e-08 1.944014307e-08 1.909110264e-08 1.114928238e-08 1.359508318e-08 6.247669866e-09 1.430889851e-08 1.976020149e-08 1.628717042e-08 1.220542555e-08 1.973502206e-08 1.659823674e-08 1.996950373e-08 1.287368297e-08 1.174779672e-08 1.211425994e-08 1.301129797e-08 1.721848863e-08 1.42623914e-08 1.508393221e-08 1.733445138e-08 1.497386981e-08 1.884483054e-08 1.888030508e-08 2.04165579e-08 1.834267718e-08 2.219449508e-08 1.996706484e-08 2.483588728e-08 1.666703255e-08 2.413290549e-08 2.495641536e-08 2.634724796e-08 4.000065814e-08 3.583898658e-08 3.803972682e-08 3.367107815e-08 4.466025574e-08 3.507279152e-08 4.221296024e-08 3.805041157e-08 4.285387968e-08 3.89272998e-08 4.350031768e-08 4.016021685e-08 4.21403618e-08 4.647185672e-08 4.817104576e-08 4.226766651e-08 4.603508263e-08 4.681722469e-08 4.446274286e-08 4.724067797e-08 3.609308856e-08 3.874833497e-08 3.822859551e-08 3.938343212e-08 3.511811748e-08 2.808367796e-08 3.201891865e-08 3.358304428e-08 2.917323231e-08 2.240953958e-08 2.499994598e-08 2.848123603e-08 2.621326927e-08 2.447586476e-08 1.904686051e-08 1.799839387e-08 1.686777517e-08 1.561674925e-08 1.505188415e-08 1.744965619e-08 1.34288254e-08 1.306024679e-08 1.141062518e-08 7.81448526e-09 6.50605421e-09 5.894833062e-09 4.714582255e-09 3.538741682e-09 3.065123177e-09 1.524151419e-09 5.5183941e-10 3.340956362e-10 1.704369445e-10 7.405714492e-11 5.549894307e-11 1.238309167e-11 7.68006273e-13 7.081664128e-14 2.879930692e-15 1.834011636e-15 9.480019115e-16 1.493265816e-17 2.429979622e-18 3.22138223e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.474614063e-17 3.66659725e-17 1.339992903e-15 2.668001735e-14 2.933367008e-15 3.465944723e-14 3.911177263e-13 3.561647497e-11 9.955264878e-12 3.90280732e-10 1.860895214e-10 4.437195781e-10 3.670959354e-10 2.956709111e-09 3.424221418e-09 3.454448606e-09 5.05656855e-09 5.377720603e-09 8.728492184e-09 9.571327765e-09 9.079101578e-09 1.025739106e-08 1.043965848e-08 1.472266629e-08 1.247820042e-08 1.875708929e-08 1.88182505e-08 2.183084712e-08 2.162817499e-08 2.320427493e-08 2.404643984e-08 2.480298558e-08 2.909460541e-08 2.499951765e-08 3.224059181e-08 3.448107295e-08 3.071760902e-08 3.340157962e-08 2.969505856e-08 3.545366838e-08 3.95700164e-08 3.701774424e-08 4.34231043e-08 3.710051921e-08 3.881340267e-08 4.287841405e-08 4.084931846e-08 4.453914215e-08 4.013380197e-08 4.140021258e-08 4.460702325e-08 3.930182005e-08 3.430262658e-08 3.409819204e-08 3.471238541e-08 4.582115939e-08 3.707060082e-08 3.650956701e-08 3.317977652e-08 3.456865302e-08 3.219977189e-08 2.347606765e-08 3.22268703e-08 2.63255679e-08 2.061698996e-08 2.511560449e-08 1.762463801e-08 2.019420658e-08 1.778601568e-08 1.738619479e-08 1.486860182e-08 2.266375114e-08 2.335963903e-08 1.408661535e-08 1.115257249e-08 2.078180016e-08 1.518813973e-08 1.29006825e-08 1.323951867e-08 1.762159253e-08 1.67111956e-08 1.750256928e-08 1.248126317e-08 9.96960923e-09 1.188945293e-08 1.113213669e-08 1.362135806e-08 1.30169198e-08 1.253770262e-08 1.445068947e-08 1.89856231e-08 1.528692587e-08 1.951442787e-08 1.496537508e-08 1.182732277e-08 1.242479924e-08 1.448300691e-08 1.777574425e-08 2.313230982e-08 2.491898338e-08 1.944276285e-08 1.586722076e-08 1.939330752e-08 2.171104938e-08 2.268777527e-08 2.891589859e-08 2.393450631e-08 2.986725969e-08 2.936927321e-08 2.632861776e-08 3.173191283e-08 3.744694505e-08 3.624354587e-08 3.535382032e-08 3.806427884e-08 4.158463281e-08 4.436217589e-08 3.818135475e-08 5.171116974e-08 3.715083256e-08 5.201083657e-08 4.473890202e-08 4.57515256e-08 3.770178457e-08 4.143783436e-08 4.474702318e-08 4.225003508e-08 4.64496814e-08 3.963118507e-08 3.429344084e-08 3.332190549e-08 3.662065796e-08 3.466259375e-08 3.282118467e-08 2.784458085e-08 2.714603692e-08 3.166671573e-08 2.996751963e-08 2.445595144e-08 2.50655183e-08 2.375767503e-08 2.403942642e-08 2.179343678e-08 2.160843481e-08 1.700063182e-08 1.748254727e-08 1.576847381e-08 1.193594053e-08 1.161379229e-08 8.953536192e-09 8.201114497e-09 7.977777168e-09 6.840535361e-09 2.647213132e-09 3.517071176e-09 2.578959047e-09 9.94661909e-10 6.601669034e-10 6.504654349e-10 9.611636235e-10 1.383863377e-10 3.563749951e-11 7.804515138e-12 9.314285568e-13 1.88169325e-13 4.211456514e-15 3.058709886e-15 3.722916594e-16 2.547404367e-17 6.605371153e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1.591990613e-35 2.560549479e-18 7.955226747e-19 6.033934734e-18 2.590117579e-16 8.94622734e-15 2.67386049e-14 5.102306026e-13 4.125275733e-12 2.046260852e-12 9.741044297e-11 1.721109156e-10 2.484493653e-10 4.438660369e-10 2.451808605e-10 1.052231075e-09 3.000981687e-09 4.276143854e-09 5.312773342e-09 6.418513431e-09 6.127571147e-09 7.004868077e-09 9.568649347e-09 1.252040872e-08 1.354410809e-08 1.665468376e-08 1.572540987e-08 1.769219077e-08 1.583584274e-08 1.904203593e-08 1.601339667e-08 2.386942152e-08 2.258247704e-08 2.80367355e-08 2.867007958e-08 2.563013226e-08 3.640941203e-08 3.429632193e-08 3.468617463e-08 3.794033007e-08 4.010597413e-08 3.542438928e-08 3.52143681e-08 3.992909872e-08 4.007025104e-08 4.198230562e-08 3.893721501e-08 4.158496453e-08 4.43872899e-08 4.657806153e-08 5.174611708e-08 4.890658432e-08 4.438384378e-08 3.362967813e-08 3.725185654e-08 3.977865859e-08 4.538771633e-08 3.524009935e-08 3.067958571e-08 2.809167233e-08 3.952551279e-08 3.614020873e-08 2.988455954e-08 3.232092243e-08 2.961659377e-08 2.948633793e-08 3.195375077e-08 2.353580853e-08 2.44579487e-08 2.060440076e-08 1.736062025e-08 2.372450535e-08 1.937549887e-08 1.942457137e-08 1.721828667e-08 1.793337763e-08 2.464983439e-08 1.412071465e-08 1.380649593e-08 2.043145717e-08 1.63997968e-08 1.706740645e-08 1.523182056e-08 1.160245141e-08 1.795250528e-08 1.525173811e-08 1.332558003e-08 2.321253068e-08 1.256111633e-08 1.883430418e-08 1.935761343e-08 1.386779718e-08 1.234323662e-08 1.964499038e-08 1.902888133e-08 1.741719762e-08 1.487166028e-08 1.679605534e-08 1.934611208e-08 1.922718715e-08 1.60866917e-08 1.537574957e-08 2.233586835e-08 1.403754476e-08 1.903252619e-08 2.184061883e-08 2.755401201e-08 2.422515216e-08 2.985977289e-08 3.755828323e-08 2.409094147e-08 3.654665666e-08 3.31466937e-08 3.767269633e-08 3.263519194e-08 3.877706571e-08 3.198705567e-08 4.426301861e-08 3.759316151e-08 4.447612718e-08 3.575778301e-08 4.203932817e-08 4.451042809e-08 4.91010784e-08 4.497768134e-08 3.79416383e-08 4.323826506e-08 4.748534388e-08 3.827431291e-08 3.96791319e-08 4.220740421e-08 4.157023423e-08 4.035871427e-08 3.215052434e-08 3.55753735e-08 2.979056683e-08 3.461803725e-08 2.8018924e-08 2.848466644e-08 2.81539762e-08 2.410295505e-08 2.518771444e-08 2.664960427e-08 2.164170242e-08 1.745047003e-08 2.049343407e-08 1.818521095e-08 1.385896496e-08 1.329715371e-08 1.16817029e-08 1.251226231e-08 1.135403526e-08 1.002302239e-08 8.211221301e-09 7.74237754e-09 4.888089134e-09 4.517973681e-09 2.305188462e-09 1.275627425e-09 1.053270964e-09 3.305165337e-10 4.267707968e-10 2.326858162e-10 1.16279716e-11 8.424370966e-12 3.062279571e-12 7.296888604e-14 1.111808903e-13 2.486680855e-14 9.309269102e-16 8.342986291e-17 9.45852532e-21 5.231311749e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 3.778569768e-19 3.361379776e-18 9.91349466e-18 6.91525894e-17 2.224988967e-16 9.044378524e-15 4.741644628e-15 3.033816903e-13 4.862001686e-13 1.928628028e-11 9.881634853e-11 1.832401659e-10 2.626482988e-10 5.068330634e-10 1.246321912e-10 1.306843761e-09 2.387101025e-09 3.451400093e-09 4.219373262e-09 5.790576186e-09 7.733568967e-09 1.024296549e-08 1.103833924e-08 1.00801089e-08 1.540679698e-08 1.20015087e-08 1.767995212e-08 1.696302261e-08 1.776614625e-08 2.217030189e-08 2.298612494e-08 2.469609224e-08 2.636545616e-08 3.021070514e-08 3.109719426e-08 2.663011317e-08 2.465172178e-08 3.237709476e-08 3.527791886e-08 3.313058169e-08 3.028714723e-08 3.543952119e-08 4.107748264e-08 3.600859736e-08 3.975555278e-08 4.237035749e-08 4.225793919e-08 4.554681502e-08 4.010568999e-08 4.597125369e-08 4.484736359e-08 5.043244498e-08 4.26768579e-08 3.964164409e-08 4.468158527e-08 4.616884112e-08 4.045677111e-08 3.628803697e-08 4.0131087e-08 3.89368184e-08 4.271844614e-08 3.151174215e-08 2.425275889e-08 3.129647491e-08 3.508217982e-08 2.988566927e-08 2.108661044e-08 2.810314903e-08 2.034106393e-08 2.393266856e-08 2.051196456e-08 1.878662734e-08 2.702516473e-08 1.382521075e-08 2.157196096e-08 1.428631565e-08 1.466060512e-08 1.8928047e-08 2.161024233e-08 2.110266317e-08 1.816830531e-08 1.52943792e-08 1.566498604e-08 1.102046637e-08 1.209632681e-08 1.86693596e-08 9.732986365e-09 1.712316489e-08 1.554860747e-08 1.78921649e-08 1.427697797e-08 1.817392945e-08 2.116441686e-08 1.436752823e-08 1.044089902e-08 1.691213046e-08 1.469838264e-08 1.559246627e-08 2.202561476e-08 1.798054036e-08 2.028877169e-08 1.575407123e-08 2.076464019e-08 1.585656151e-08 1.335023566e-08 1.828481101e-08 2.577066512e-08 3.091917007e-08 2.794157152e-08 3.394145645e-08 3.388612839e-08 3.694383545e-08 4.064632868e-08 3.586577492e-08 4.583925838e-08 3.765448205e-08 2.729872866e-08 3.743087493e-08 4.247660291e-08 3.768284816e-08 3.899928115e-08 4.959151089e-08 4.295354205e-08 4.262703264e-08 4.574223565e-08 4.311988627e-08 4.406348613e-08 4.407237557e-08 3.887183607e-08 3.866314656e-08 3.718227348e-08 4.211990671e-08 3.719726995e-08 3.492998424e-08 3.415878649e-08 3.45551903e-08 3.012568737e-08 3.098111894e-08 2.76977499e-08 2.49981858e-08 2.40423077e-08 2.658286991e-08 2.217038178e-08 2.149794126e-08 1.736865354e-08 1.727751079e-08 1.695402789e-08 1.303428322e-08 1.288047011e-08 1.524178153e-08 8.749042165e-09 9.081179781e-09 9.323169134e-09 7.492871252e-09 7.148843699e-09 5.304031745e-09 2.340957163e-09 2.962304011e-09 2.104305055e-09 1.054964451e-09 8.306601185e-10 5.724335248e-10 4.180993077e-10 7.10674923e-12 3.80908903e-12 1.121410177e-12 1.171187566e-12 8.794982141e-14 5.286646391e-16 8.45814977e-16 8.36932553e-17 1.140376797e-18 1.723265046e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.822821058e-19 1.902431425e-17 9.614348803e-17 4.760547809e-17 4.539270647e-15 6.895563646e-14 1.216614673e-12 1.555714944e-12 1.721373338e-12 1.169748254e-11 9.487837289e-11 9.979195973e-10 7.312369896e-10 3.468497292e-10 1.802074602e-09 1.676928162e-09 4.233123507e-09 4.078680839e-09 5.160485074e-09 5.488542053e-09 6.797458248e-09 9.941552875e-09 1.371210807e-08 1.550842853e-08 1.755432239e-08 1.643374035e-08 1.847239524e-08 1.731809371e-08 1.843331798e-08 2.258379704e-08 1.995895449e-08 2.142456714e-08 2.403965679e-08 2.740969267e-08 3.076644348e-08 2.799641444e-08 2.974814083e-08 3.368256084e-08 3.462959707e-08 2.739904598e-08 3.84366285e-08 3.856246007e-08 4.308918964e-08 3.90990957e-08 4.845658733e-08 4.312720171e-08 4.081855227e-08 5.037838942e-08 3.729174541e-08 4.464283885e-08 3.948453506e-08 4.878681899e-08 5.117902991e-08 5.042874096e-08 3.812502349e-08 3.705829967e-08 4.805859709e-08 3.757908063e-08 3.29645244e-08 5.443117619e-08 3.779986476e-08 3.051238601e-08 2.920405265e-08 1.966997051e-08 2.125065651e-08 2.12304929e-08 1.908513281e-08 1.974441658e-08 1.81123293e-08 2.275363308e-08 1.916427401e-08 1.788125394e-08 1.564909476e-08 2.263948344e-08 1.854128471e-08 1.663995972e-08 1.670269287e-08 2.149347955e-08 1.364665731e-08 1.574024819e-08 1.254336198e-08 1.895226178e-08 1.612127598e-08 1.611297824e-08 1.57058879e-08 1.420283769e-08 2.393035196e-08 1.326061552e-08 1.739159274e-08 1.193461911e-08 1.693433751e-08 1.916359978e-08 1.926394899e-08 1.203501679e-08 1.470302645e-08 1.774878219e-08 1.602521078e-08 1.701304824e-08 1.883861117e-08 1.691879778e-08 1.566849257e-08 2.944288456e-08 1.226913132e-08 2.157496333e-08 2.013122064e-08 2.943155018e-08 3.179587628e-08 1.716387642e-08 2.727845043e-08 3.350208995e-08 3.485086039e-08 3.757202282e-08 3.626948075e-08 4.680765192e-08 3.598990697e-08 4.324260878e-08 4.079322209e-08 4.42968046e-08 3.398984158e-08 3.696006497e-08 4.182191222e-08 5.343156966e-08 4.642910144e-08 4.780078685e-08 3.886988569e-08 4.318908622e-08 3.820194355e-08 4.984176743e-08 4.087163433e-08 4.014234395e-08 3.671844845e-08 3.69487565e-08 3.605458447e-08 3.379848722e-08 3.022849999e-08 3.384289208e-08 3.142711018e-08 3.003238329e-08 2.507926528e-08 3.004990835e-08 2.276289535e-08 2.055737224e-08 1.857472938e-08 2.517312097e-08 1.609478269e-08 1.592144998e-08 1.635368715e-08 1.668076062e-08 1.372134064e-08 1.140013805e-08 1.090242423e-08 9.099083233e-09 7.750180456e-09 5.671103276e-09 5.81614712e-09 2.739536481e-09 2.770839675e-09 9.161808738e-10 3.18550768e-10 5.159829364e-10 4.76741336e-10 2.826816865e-10 3.165622661e-11 8.066383772e-12 1.79849433e-12 1.977696639e-13 5.041464067e-15 7.326494842e-15 1.635847429e-16 7.707465548e-18 3.469871865e-17 1.551246932e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.659215909e-19 3.86200349e-17 1.247308861e-16 7.555227231e-16 4.303085142e-16 9.654439209e-14 1.290788981e-13 6.752721519e-13 1.593230276e-12 1.944621976e-11 2.963571322e-10 4.190710776e-11 4.581020305e-10 5.984631962e-10 1.935927683e-09 2.725735552e-09 4.607017962e-09 6.337194958e-09 5.326254622e-09 8.393939646e-09 9.198073358e-09 1.110209299e-08 1.205846749e-08 1.159577515e-08 1.590567586e-08 1.712194774e-08 1.62614504e-08 1.611907286e-08 1.87497275e-08 2.555864795e-08 2.050640206e-08 2.48051573e-08 2.987046374e-08 2.655701484e-08 2.660493841e-08 3.0879073e-08 3.096698075e-08 3.015890928e-08 3.660748858e-08 3.590565008e-08 3.699417674e-08 2.983189927e-08 3.63328415e-08 3.274194892e-08 4.29343111e-08 4.354016118e-08 4.651174037e-08 5.318883584e-08 4.44856354e-08 5.433163386e-08 4.170312362e-08 5.28132894e-08 4.061255167e-08 4.65629856e-08 4.74376303e-08 4.242704462e-08 3.295401568e-08 4.012533843e-08 5.070099526e-08 3.625507911e-08 3.649053221e-08 3.775463907e-08 2.764625504e-08 3.712498899e-08 2.803433067e-08 3.540803523e-08 1.686664582e-08 2.068921882e-08 2.644040332e-08 1.85226666e-08 1.534605922e-08 1.551680451e-08 1.189546399e-08 1.071789634e-08 1.187894043e-08 2.128305755e-08 1.718991791e-08 1.940649367e-08 2.474884486e-08 2.064676977e-08 2.176277315e-08 1.289134368e-08 1.737411579e-08 1.727601102e-08 1.109167985e-08 1.706417957e-08 1.486958461e-08 1.081995712e-08 1.828429005e-08 1.224071681e-08 1.077124906e-08 1.615825335e-08 1.573379417e-08 2.033697149e-08 1.732700335e-08 1.430665544e-08 1.471067365e-08 2.314380191e-08 2.216398509e-08 9.064541339e-09 1.828451285e-08 1.209943207e-08 1.200314893e-08 3.091192667e-08 2.60163499e-08 2.848848588e-08 2.048710871e-08 2.291292578e-08 2.510986431e-08 2.415894674e-08 3.386324995e-08 3.122675851e-08 3.814056912e-08 3.285907508e-08 3.168256071e-08 3.128123711e-08 3.368429982e-08 4.611781794e-08 4.763899966e-08 4.235263608e-08 4.288525743e-08 4.19950738e-08 4.605258519e-08 4.714301728e-08 4.083550949e-08 3.739569854e-08 3.890208026e-08 3.665325956e-08 4.036736358e-08 4.510869245e-08 3.357570946e-08 3.635811156e-08 3.627964057e-08 2.90687087e-08 3.442599878e-08 3.25984544e-08 2.93276466e-08 2.709561259e-08 2.494802541e-08 2.482505184e-08 2.228197593e-08 1.892822895e-08 1.926042124e-08 1.807595497e-08 1.767934092e-08 1.770676594e-08 1.862770082e-08 1.644896667e-08 1.205956266e-08 1.44030144e-08 1.154030374e-08 9.996247554e-09 7.340776648e-09 4.752309969e-09 3.575277708e-09 3.932514399e-09 3.513544627e-09 9.462458325e-10 5.124754205e-10 3.721925754e-10 7.066353151e-10 3.109576122e-10 6.512323812e-11 1.202198019e-11 8.090329198e-13 1.626795809e-13 2.542149061e-14 5.966815074e-15 3.473760015e-15 8.300366572e-17 4.93923349e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.289220961e-24 6.066423656e-18 3.268231923e-17 1.29001111e-15 1.369987169e-14 3.809955068e-15 1.861543773e-13 4.454075242e-13 1.459664974e-11 5.281105194e-11 3.18682205e-10 1.755206793e-10 7.404102103e-10 7.258502688e-10 1.45094108e-09 3.550478019e-09 3.516800677e-09 3.509127128e-09 6.944917251e-09 8.033686079e-09 7.807774005e-09 9.728679694e-09 1.025794351e-08 1.367025553e-08 2.039894389e-08 1.752810813e-08 1.719063263e-08 1.683411464e-08 1.766617926e-08 2.158012978e-08 2.757084226e-08 2.365954771e-08 2.612528259e-08 2.728514624e-08 2.664099907e-08 2.803186468e-08 2.507782493e-08 2.795772834e-08 3.040399006e-08 3.408961384e-08 3.567834685e-08 3.931266289e-08 4.019472746e-08 4.431132145e-08 4.519435107e-08 4.435232376e-08 4.545701203e-08 4.194913967e-08 4.377730136e-08 4.443353939e-08 4.603974839e-08 4.783914987e-08 3.965808213e-08 4.038402164e-08 4.314852033e-08 4.134344606e-08 4.859420288e-08 3.679866643e-08 3.848920329e-08 3.368875952e-08 3.340419874e-08 3.848404269e-08 2.800002375e-08 3.767229437e-08 2.753774227e-08 2.842176201e-08 2.148295082e-08 2.090895793e-08 1.61490697e-08 1.784849482e-08 1.75976278e-08 1.744017428e-08 1.224347298e-08 1.53999761e-08 1.562412629e-08 1.677045584e-08 1.450053136e-08 1.864526165e-08 1.903920444e-08 1.350193844e-08 1.634051426e-08 1.280279279e-08 1.267116485e-08 1.569650002e-08 1.43043438e-08 1.421159615e-08 2.340093516e-08 9.425222081e-09 1.525754799e-08 1.435825109e-08 1.539877035e-08 1.114632245e-08 2.196674068e-08 1.557206572e-08 1.530054667e-08 1.727456054e-08 1.762371323e-08 2.187563187e-08 1.520530547e-08 1.437190101e-08 2.790328754e-08 2.436040624e-08 2.540090066e-08 2.658470891e-08 2.81689103e-08 2.382699682e-08 1.413934134e-08 3.190721613e-08 2.665617666e-08 3.606817139e-08 3.009559185e-08 3.113122438e-08 3.955884756e-08 4.03007392e-08 3.407206315e-08 3.86772802e-08 3.925391194e-08 3.82431649e-08 4.030737955e-08 4.042689073e-08 4.205356281e-08 4.581849311e-08 3.998694274e-08 4.069382567e-08 4.21604279e-08 5.062736071e-08 3.67949243e-08 3.976517545e-08 4.034447426e-08 3.763256874e-08 3.384429602e-08 4.321939462e-08 3.830467152e-08 3.06913441e-08 3.105293884e-08 3.522705645e-08 2.967519657e-08 2.733016291e-08 2.487137307e-08 2.752212874e-08 2.83113075e-08 2.615930599e-08 2.159479647e-08 2.115407733e-08 1.570053087e-08 1.679027867e-08 1.59923992e-08 1.394858247e-08 1.524614653e-08 1.198777832e-08 9.576534385e-09 9.010712651e-09 7.541125538e-09 4.118171206e-09 6.174846196e-09 3.317449078e-09 1.894181422e-09 1.942282954e-09 6.416787947e-10 2.435065702e-10 2.587090969e-10 4.086604194e-10 4.697721654e-11 1.092459153e-12 4.987346062e-12 2.321487721e-13 6.39580864e-14 2.370112968e-14 2.407147306e-15 1.034514027e-16 1.495802774e-17 3.991598596e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.885472588e-19 3.75369359e-17 3.714553438e-17 8.421483306e-16 3.320402765e-15 1.620843568e-14 4.383049303e-13 1.01125619e-11 1.458780676e-11 1.070262512e-10 2.038662258e-10 5.16056965e-10 5.778507554e-10 8.813192386e-10 1.767771413e-09 3.325636352e-09 3.190183127e-09 6.008435993e-09 7.122546216e-09 9.495280641e-09 9.033084562e-09 1.138289005e-08 1.14073468e-08 1.369960233e-08 1.385901692e-08 1.192189333e-08 1.793125125e-08 1.722348056e-08 1.831847578e-08 2.307975161e-08 2.274541288e-08 2.299592214e-08 2.422303684e-08 2.430446669e-08 2.518651892e-08 2.616413278e-08 3.096792793e-08 2.956828744e-08 2.94974848e-08 3.444411602e-08 4.161549237e-08 3.775882539e-08 4.179690818e-08 3.798417553e-08 3.756749873e-08 4.394900803e-08 4.146701495e-08 4.511404757e-08 4.047597038e-08 3.356625583e-08 4.444370161e-08 3.524958423e-08 3.623816122e-08 4.485638078e-08 2.842763407e-08 3.055439958e-08 4.323879874e-08 3.940675724e-08 4.439622369e-08 3.665373936e-08 4.534189144e-08 3.48171027e-08 4.224855217e-08 3.024999993e-08 3.56227996e-08 3.344214274e-08 3.03444349e-08 2.629112542e-08 2.365783381e-08 2.141158517e-08 1.339232697e-08 1.171266807e-08 2.125139034e-08 1.518132588e-08 1.443562071e-08 1.56811535e-08 2.227812805e-08 1.240566331e-08 1.492084528e-08 1.393154349e-08 1.649230563e-08 1.251723799e-08 1.373614058e-08 1.185077922e-08 1.223653629e-08 1.140664419e-08 1.95469437e-08 1.221340719e-08 1.737256896e-08 1.064311883e-08 1.936659737e-08 1.748621904e-08 1.329000586e-08 1.530961607e-08 1.7953182e-08 1.316083784e-08 1.795277906e-08 1.591744512e-08 1.696453591e-08 1.8707407e-08 2.066722055e-08 2.034324806e-08 1.812405273e-08 1.862669291e-08 2.412942693e-08 1.938476218e-08 2.168965857e-08 2.21970858e-08 2.810521641e-08 2.634385758e-08 2.975423947e-08 4.546182898e-08 4.171242167e-08 3.606466697e-08 4.445904148e-08 3.409462199e-08 4.309263017e-08 3.867414078e-08 4.725956514e-08 3.574948161e-08 4.947903776e-08 3.137467134e-08 4.851342919e-08 4.084396544e-08 4.74263686e-08 4.397898328e-08 4.107283099e-08 4.735252729e-08 4.079194049e-08 3.403990389e-08 3.872580222e-08 3.802745091e-08 3.388079142e-08 3.26173324e-08 3.547096537e-08 2.824424191e-08 2.860694326e-08 3.041431971e-08 2.488118901e-08 2.061581979e-08 2.133735757e-08 2.488011068e-08 1.747599465e-08 2.221040583e-08 2.097580864e-08 2.00511427e-08 1.756715982e-08 1.310349331e-08 1.378003594e-08 1.379173024e-08 1.107406938e-08 7.98553611e-09 7.66376185e-09 8.279124275e-09 5.583528881e-09 5.020853572e-09 1.336231546e-09 1.21358611e-09 2.634668557e-10 7.759349357e-10 1.722039149e-10 3.79670287e-10 7.152323254e-11 8.461640218e-13 7.85915495e-13 1.375676363e-13 3.226801892e-14 5.945784364e-15 2.333115338e-15 2.722718663e-16 8.621775198e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 4.667850452e-31 5.641277647e-19 1.168376844e-18 1.072723549e-17 1.415990413e-15 3.979285047e-15 1.294776047e-13 6.992203126e-13 1.42448153e-12 4.646482564e-11 6.775264912e-11 4.556167926e-10 8.074061466e-10 3.40862047e-10 5.091335232e-10 1.687278393e-09 2.69828242e-09 4.229757663e-09 5.401730007e-09 7.0754721e-09 8.279715711e-09 8.214793358e-09 1.28628681e-08 1.093207187e-08 1.204549586e-08 1.40084795e-08 1.599627465e-08 1.614124405e-08 1.935326342e-08 2.005867252e-08 2.037854167e-08 2.130850801e-08 1.969668767e-08 2.493283217e-08 2.184370516e-08 2.509221718e-08 3.033909705e-08 3.08484702e-08 3.394416301e-08 2.983895707e-08 3.524787042e-08 4.145834368e-08 4.40614255e-08 4.584511268e-08 4.076095e-08 4.292460543e-08 5.08026195e-08 4.163129796e-08 3.702658453e-08 4.749824305e-08 4.718023551e-08 4.141967406e-08 4.41470817e-08 3.826987743e-08 4.101666166e-08 4.397321413e-08 4.579146822e-08 3.6372825e-08 3.400091801e-08 4.74129512e-08 3.818160054e-08 4.132093457e-08 3.749308457e-08 4.000682986e-08 3.38852827e-08 2.502203465e-08 2.627109989e-08 2.181243603e-08 1.663033485e-08 2.083462221e-08 1.551325617e-08 1.726661551e-08 3.141166597e-08 1.746140028e-08 1.740496775e-08 1.695456884e-08 1.820046133e-08 1.796833686e-08 1.725351158e-08 1.538421174e-08 1.220427976e-08 1.373427607e-08 1.431003728e-08 1.094963692e-08 1.512342519e-08 1.424056414e-08 1.879046929e-08 1.30953386e-08 1.790088899e-08 9.845155767e-09 1.484117698e-08 8.249332873e-09 1.732730925e-08 2.102797755e-08 1.37358772e-08 1.952398244e-08 2.009065314e-08 2.275270766e-08 1.610807545e-08 1.350246461e-08 2.053527455e-08 1.988063585e-08 2.144133346e-08 1.984258675e-08 2.548952519e-08 1.578414059e-08 2.75425871e-08 3.116051264e-08 2.818418622e-08 2.757469512e-08 2.79308307e-08 3.843676734e-08 2.783593727e-08 4.187916578e-08 4.019979906e-08 4.509817057e-08 3.81380638e-08 4.305256897e-08 3.341624859e-08 4.268700347e-08 4.413690706e-08 3.896628568e-08 5.374114803e-08 3.755621358e-08 4.694362647e-08 4.312089805e-08 4.09606598e-08 3.552630237e-08 4.187362992e-08 3.842540316e-08 3.682181564e-08 3.359299104e-08 3.853484205e-08 3.169222028e-08 3.673407324e-08 2.623164553e-08 3.559285533e-08 2.320852862e-08 2.481306841e-08 2.103615989e-08 2.198398394e-08 2.397283955e-08 2.256618289e-08 1.712278328e-08 1.63215772e-08 1.674507933e-08 1.844671952e-08 1.533595174e-08 1.357795635e-08 1.353264768e-08 1.30213039e-08 7.901843099e-09 9.275569752e-09 6.701781274e-09 9.27146737e-09 4.175667942e-09 2.67138184e-09 2.911454178e-09 1.159818477e-09 2.792555551e-10 1.076619717e-10 4.398398457e-10 3.662887686e-10 7.06210492e-11 1.59372e-11 2.60785678e-12 2.669157707e-13 1.694935235e-14 1.255850072e-15 2.428210624e-16 3.622535366e-17 1.453430665e-17 2.423229462e-18 4.205620187e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 3.131810023e-20 1.856993134e-18 4.544141868e-17 1.518197272e-17 1.52404482e-15 1.589369027e-14 1.593230595e-14 8.876460463e-14 1.447688353e-12 5.640106123e-12 1.768999939e-11 4.220322294e-11 6.435162726e-10 1.360237523e-10 6.715834199e-10 8.773742923e-10 1.834383097e-09 5.252789473e-09 4.15399188e-09 6.887789875e-09 8.331834364e-09 6.882783069e-09 1.210417517e-08 1.169141129e-08 1.498755263e-08 1.381842698e-08 1.741378021e-08 1.49402508e-08 2.174222398e-08 2.011038724e-08 2.18336619e-08 1.952293102e-08 2.060337916e-08 2.673112017e-08 2.884458155e-08 2.376333514e-08 3.15951706e-08 3.093149916e-08 3.109383179e-08 3.333059784e-08 3.522790597e-08 3.412224601e-08 3.291046746e-08 4.033768681e-08 4.1672691e-08 4.483514134e-08 4.958589761e-08 4.437314899e-08 3.989043329e-08 3.917067638e-08 4.435047171e-08 4.061683384e-08 4.869694734e-08 4.657810267e-08 4.378401888e-08 4.557161826e-08 4.904001125e-08 4.356371684e-08 3.793645998e-08 4.199677541e-08 3.917265202e-08 3.795203261e-08 3.017662444e-08 3.324635349e-08 2.979206414e-08 3.180568265e-08 2.459118745e-08 1.444654951e-08 2.484875741e-08 2.633452834e-08 2.303409789e-08 1.9801706e-08 1.196335957e-08 1.557974074e-08 1.725324836e-08 1.583582001e-08 1.577114932e-08 1.938949035e-08 1.918714546e-08 1.190368729e-08 1.500955683e-08 1.536991161e-08 1.875949216e-08 1.837957084e-08 1.629288397e-08 1.278906046e-08 9.869206516e-09 1.526045232e-08 1.088718498e-08 2.161076141e-08 1.478979014e-08 1.365431919e-08 1.722440216e-08 1.407355741e-08 1.628548318e-08 1.816964886e-08 1.113864972e-08 1.507371396e-08 1.848032619e-08 1.311388793e-08 2.430530231e-08 2.540212924e-08 2.126233813e-08 2.319383402e-08 2.279040269e-08 2.281834447e-08 2.318458652e-08 2.902643564e-08 2.519009184e-08 2.422154354e-08 4.184634734e-08 3.576379034e-08 3.194239271e-08 2.537866994e-08 3.521309089e-08 4.00858248e-08 4.008682136e-08 5.0244453e-08 3.935234587e-08 4.167144643e-08 4.581451065e-08 3.369699385e-08 4.142806643e-08 4.895072906e-08 4.602712256e-08 3.781387456e-08 4.590321306e-08 4.510798559e-08 3.863025553e-08 4.086132075e-08 4.49344731e-08 3.70294466e-08 3.553753549e-08 3.53495596e-08 3.519601127e-08 3.281183148e-08 3.271084569e-08 3.019051621e-08 3.182698571e-08 2.360381388e-08 2.683751663e-08 2.149677506e-08 2.409099045e-08 1.860602841e-08 2.307405231e-08 1.807999638e-08 1.56317455e-08 1.424189935e-08 1.569633521e-08 1.153999424e-08 1.511237625e-08 9.444423867e-09 8.377143014e-09 9.159694219e-09 8.866437084e-09 4.345068449e-09 2.26433063e-09 1.106760317e-09 1.547113429e-09 2.146351476e-10 4.315397774e-10 2.91793148e-10 1.103306987e-10 1.457110058e-10 7.74918927e-12 3.467587697e-13 5.198991054e-14 1.917297113e-14 1.789157114e-15 1.112710502e-15 2.070139991e-16 9.473220302e-18 1.127664386e-17 1.103824387e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.320650089e-33 1.539482701e-17 6.892910257e-16 3.537720185e-17 3.687702248e-15 8.848423387e-14 4.004543917e-13 1.5976051e-12 1.693079684e-11 8.813853246e-11 1.887644744e-10 2.393361986e-10 3.79696279e-11 4.368111222e-10 1.413654719e-09 2.55715696e-09 4.516431511e-09 6.494236355e-09 5.553634409e-09 6.891260359e-09 8.013733015e-09 1.1846117e-08 9.927743687e-09 1.24630175e-08 1.358175344e-08 1.804253382e-08 1.713155045e-08 1.721893435e-08 1.982869665e-08 2.126926371e-08 2.62508798e-08 2.373782297e-08 2.848665547e-08 2.382161755e-08 3.046253963e-08 3.105536225e-08 2.421289674e-08 3.911683058e-08 3.643881395e-08 4.170121087e-08 3.444993521e-08 4.273952302e-08 4.028526382e-08 3.867558859e-08 4.703891148e-08 3.563726109e-08 4.930619599e-08 4.918356125e-08 4.34884395e-08 4.549500571e-08 4.047251244e-08 4.396854997e-08 4.955415712e-08 3.513034793e-08 3.339659159e-08 3.447991448e-08 3.970082678e-08 3.808599329e-08 3.800078239e-08 3.475588187e-08 4.421545711e-08 3.640431977e-08 2.898065684e-08 3.125096779e-08 3.029518774e-08 3.383233832e-08 2.849670888e-08 3.01754903e-08 2.699711206e-08 2.249248247e-08 2.409142627e-08 1.986940573e-08 1.472861517e-08 2.359157347e-08 2.062322818e-08 1.751956728e-08 2.082049932e-08 1.707457835e-08 1.733438608e-08 1.569299973e-08 1.362557658e-08 1.480346731e-08 1.645572151e-08 1.881656425e-08 1.99028788e-08 1.329645484e-08 1.231599503e-08 2.101758985e-08 9.167133021e-09 1.331634016e-08 1.472348105e-08 1.62008311e-08 1.720634497e-08 1.619282495e-08 1.950944114e-08 2.303845481e-08 1.284260642e-08 1.909150074e-08 1.516242491e-08 1.403953548e-08 1.618453843e-08 2.077276959e-08 2.253707151e-08 2.941088146e-08 3.116769009e-08 2.847263842e-08 2.675802186e-08 3.229950324e-08 3.061382583e-08 4.077386763e-08 3.480047e-08 3.869278354e-08 2.760615951e-08 4.17151737e-08 3.79184486e-08 3.722359482e-08 4.077540945e-08 3.559751877e-08 3.989525781e-08 4.424127367e-08 3.930017905e-08 4.225787536e-08 3.817260745e-08 3.655192589e-08 3.961749317e-08 4.56373516e-08 4.869159563e-08 4.606156518e-08 4.373475689e-08 4.358799976e-08 3.655472956e-08 3.448540865e-08 3.153984547e-08 2.606131505e-08 3.690769437e-08 3.452933971e-08 3.288195983e-08 2.682016199e-08 2.511682462e-08 1.975664406e-08 2.87488119e-08 2.105173823e-08 2.022181979e-08 1.898012312e-08 2.065979218e-08 1.856794329e-08 1.982343034e-08 1.256206628e-08 1.305705249e-08 1.239636029e-08 7.764760105e-09 1.177630253e-08 9.06595341e-09 5.570824145e-09 6.232510483e-09 2.826806822e-09 3.882806212e-09 1.666351305e-09 5.27017257e-10 7.982194645e-10 5.092464416e-10 4.667529541e-10 3.822918871e-11 5.319621524e-12 5.739079361e-12 2.430380806e-13 1.064059424e-14 1.310881262e-14 3.698110549e-16 2.039200112e-17 3.55179979e-18 3.130029539e-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.729843096e-17 1.48826972e-16 1.031990101e-15 1.071786572e-14 4.339355858e-14 1.105278899e-14 6.776127571e-13 1.389543307e-11 1.659865078e-10 1.283254799e-10 6.59921353e-10 4.938561303e-10 1.211050189e-09 7.623673814e-10 2.347608985e-09 4.403094565e-09 4.50847019e-09 6.223045407e-09 5.759435688e-09 9.4741646e-09 1.036547953e-08 1.11016761e-08 1.474816723e-08 1.400574057e-08 1.590884861e-08 1.565877843e-08 1.746979089e-08 1.941068705e-08 1.910953651e-08 2.234530094e-08 2.963683004e-08 2.398916113e-08 2.959204884e-08 2.496562759e-08 2.668242452e-08 2.804063967e-08 3.005099915e-08 3.2371224e-08 3.356364582e-08 3.640111464e-08 4.357406017e-08 3.646188976e-08 3.367719708e-08 3.914500955e-08 4.647540614e-08 5.066688376e-08 4.225779189e-08 4.273061971e-08 5.353565199e-08 4.669483016e-08 4.844847129e-08 4.858739432e-08 3.969262467e-08 3.922401011e-08 4.772692731e-08 5.099819892e-08 3.247822817e-08 3.000967409e-08 4.372727521e-08 3.024561021e-08 3.312944941e-08 2.575571723e-08 2.836555816e-08 3.396993235e-08 2.267738616e-08 1.637150647e-08 1.865957943e-08 2.115609533e-08 1.509336218e-08 1.770771147e-08 1.815477815e-08 1.563556788e-08 1.940975094e-08 2.418588731e-08 1.896084923e-08 2.030888277e-08 1.308968398e-08 1.49808159e-08 1.49735651e-08 1.25876414e-08 1.568114113e-08 1.376034732e-08 1.256107729e-08 1.187320619e-08 1.530478478e-08 1.071376222e-08 1.166271772e-08 1.581869565e-08 1.186510937e-08 1.277870928e-08 1.233025518e-08 1.672748253e-08 1.734126259e-08 1.542892519e-08 1.478705814e-08 1.530297007e-08 1.823747959e-08 2.156715058e-08 1.268073373e-08 1.94517542e-08 2.346371247e-08 1.979459186e-08 1.682621508e-08 2.322537968e-08 2.26924503e-08 2.957438902e-08 2.334708858e-08 2.690950945e-08 3.485381796e-08 2.993605206e-08 3.398629368e-08 4.428984747e-08 3.918478273e-08 3.466655041e-08 4.22371861e-08 3.770774098e-08 4.318296869e-08 4.372542613e-08 4.249583045e-08 4.197917422e-08 4.028434657e-08 4.486407383e-08 3.97953747e-08 4.673745235e-08 3.969260589e-08 4.030125707e-08 4.074125675e-08 4.262664546e-08 4.248457105e-08 3.788926805e-08 3.394822709e-08 3.721509217e-08 3.47107036e-08 3.336867323e-08 3.248764931e-08 3.008241257e-08 2.732832518e-08 2.30061729e-08 2.550006618e-08 2.499664918e-08 2.408413314e-08 1.875594658e-08 2.130616365e-08 1.980592592e-08 1.730587665e-08 1.483907089e-08 1.308503971e-08 1.400662212e-08 1.139045449e-08 8.963785424e-09 7.134366953e-09 6.672319237e-09 5.343451112e-09 3.575696349e-09 2.672867349e-09 3.523319599e-09 1.673978148e-09 9.338595308e-10 4.666010597e-10 4.493357148e-10 2.475466468e-10 4.728429401e-11 5.435052498e-12 4.003369794e-12 1.868897959e-13 2.072645227e-14 2.885871667e-14 4.078884756e-15 6.462235252e-17 1.613840125e-18 1.494579513e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.114348723e-18 7.154171593e-18 2.783511528e-17 2.581605719e-16 1.334133141e-15 1.50653538e-13 9.759712945e-14 4.734424202e-13 3.583039734e-12 6.395785437e-11 6.664078572e-11 2.2362769e-10 3.220059025e-10 1.571965199e-10 1.258183597e-09 2.444970261e-09 3.08739228e-09 3.407131138e-09 4.976743228e-09 6.202419706e-09 8.242783402e-09 8.130561056e-09 1.293148726e-08 1.519878445e-08 1.840116833e-08 1.642749458e-08 1.79087224e-08 1.571852458e-08 1.878738693e-08 1.790338607e-08 2.32091833e-08 2.576268635e-08 2.438012517e-08 2.883746633e-08 3.404539266e-08 3.024169955e-08 2.816848494e-08 3.576163545e-08 3.734808267e-08 3.94697141e-08 4.092620703e-08 3.922991163e-08 4.477715149e-08 3.837134836e-08 4.074345327e-08 4.203997072e-08 3.894634389e-08 4.64031971e-08 3.818558854e-08 3.845792542e-08 4.260998729e-08 3.270326417e-08 4.952600686e-08 4.208968088e-08 4.434050112e-08 4.59370345e-08 3.650032673e-08 4.021151321e-08 4.816486605e-08 4.208201213e-08 2.984767807e-08 2.355340661e-08 3.511040157e-08 3.535415501e-08 2.27701741e-08 2.43329323e-08 1.84658293e-08 1.829501402e-08 1.71680322e-08 1.229512078e-08 2.539147936e-08 1.09080045e-08 1.293529555e-08 1.49076606e-08 1.996849486e-08 1.61310747e-08 1.538548401e-08 8.555415762e-09 1.025162639e-08 1.678548081e-08 1.221346504e-08 1.336474897e-08 1.178645263e-08 1.41473422e-08 1.792670107e-08 1.528649712e-08 1.556585914e-08 1.996778972e-08 1.244489536e-08 1.653956287e-08 2.073823798e-08 1.418835754e-08 1.349210679e-08 2.015773208e-08 1.28230765e-08 1.245482406e-08 1.657341473e-08 7.619055897e-09 1.963561217e-08 2.162778394e-08 1.940509718e-08 2.107031826e-08 1.937491248e-08 2.521977629e-08 2.33919761e-08 2.054472928e-08 2.258029484e-08 1.787677067e-08 2.667284876e-08 2.320911777e-08 3.529456881e-08 3.949806278e-08 4.398830197e-08 3.433993199e-08 4.387745303e-08 4.091402925e-08 4.203991495e-08 4.346508151e-08 4.509127968e-08 4.971992944e-08 4.856503347e-08 4.156142449e-08 4.009046323e-08 4.481798254e-08 4.204101522e-08 4.100091611e-08 4.484121218e-08 3.636164417e-08 3.377188087e-08 3.960138191e-08 3.583988463e-08 3.694307098e-08 3.632113956e-08 3.337494529e-08 3.239911423e-08 3.411848117e-08 2.79795748e-08 3.166322093e-08 2.211383675e-08 2.265061383e-08 2.608742456e-08 2.377266356e-08 2.526643014e-08 2.291782544e-08 1.849492636e-08 1.581752707e-08 1.081243847e-08 1.592091356e-08 1.203036305e-08 9.512331864e-09 1.021887762e-08 9.472133426e-09 6.663761925e-09 7.148473423e-09 4.352916111e-09 4.164548388e-09 2.724181888e-09 1.726696221e-09 3.279805156e-10 3.276717133e-10 1.689034107e-10 4.682017739e-10 2.217639077e-10 2.326744579e-12 2.445063834e-12 6.246260256e-13 3.242221264e-14 7.128881816e-15 8.560818862e-16 2.263021621e-17 8.106093416e-19 5.309032922e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 3.744650962e-19 4.181293972e-19 6.862611948e-18 1.898481289e-17 2.682704194e-16 6.883134727e-15 8.230892073e-15 5.110882289e-13 4.069822953e-13 8.025209709e-11 5.482730583e-11 2.43449105e-10 4.847590971e-10 8.180289325e-10 1.008273958e-09 1.443713208e-09 2.104033084e-09 4.838178055e-09 4.893958632e-09 7.651727204e-09 7.539315661e-09 5.126010621e-09 1.016765372e-08 1.243317268e-08 1.49109945e-08 1.522624679e-08 1.423428667e-08 1.480196538e-08 1.782159246e-08 2.290484789e-08 2.509678173e-08 1.89673981e-08 2.531770931e-08 2.85063283e-08 2.883120093e-08 2.787795548e-08 2.934549223e-08 3.426363582e-08 3.28695908e-08 3.308368288e-08 3.053455325e-08 3.770691381e-08 4.128637283e-08 4.212109333e-08 4.391587502e-08 4.226835738e-08 4.352823887e-08 4.170738839e-08 3.999651127e-08 5.025164247e-08 4.785271566e-08 4.308372546e-08 4.713964519e-08 3.242928271e-08 4.901487836e-08 4.663853885e-08 4.325577536e-08 4.067365501e-08 4.552566415e-08 3.716006703e-08 2.641312865e-08 3.077137856e-08 3.047905637e-08 3.254194407e-08 2.45358792e-08 2.75863819e-08 2.338095084e-08 2.555015427e-08 3.152476167e-08 1.825117292e-08 2.134959925e-08 1.627067177e-08 1.638963516e-08 1.702287748e-08 1.996545736e-08 2.31757747e-08 1.323273318e-08 1.909737083e-08 1.764113748e-08 1.494045139e-08 1.551937836e-08 1.529160807e-08 1.424334577e-08 1.85153448e-08 1.440136877e-08 1.774613599e-08 1.290862264e-08 1.251052998e-08 1.493380044e-08 1.314644679e-08 1.117757187e-08 1.546517296e-08 1.377851944e-08 1.645927972e-08 1.125990816e-08 1.431420955e-08 2.196340519e-08 1.798243335e-08 1.221212606e-08 1.423441043e-08 1.889282452e-08 1.708898294e-08 1.885843058e-08 1.810923532e-08 2.374753551e-08 2.082358161e-08 2.240210504e-08 3.293494732e-08 2.762766003e-08 3.387110159e-08 3.088646509e-08 3.028942986e-08 3.600908385e-08 3.674591637e-08 3.699421499e-08 3.654641885e-08 4.088540275e-08 4.32302434e-08 4.334019377e-08 3.627929949e-08 4.230323049e-08 5.166736798e-08 4.825076602e-08 5.194194365e-08 4.313797574e-08 4.347913602e-08 4.180309855e-08 4.136458675e-08 3.794136013e-08 4.382093274e-08 4.139178715e-08 3.59828744e-08 3.545198912e-08 3.418504775e-08 2.617709167e-08 2.854496657e-08 3.434675042e-08 3.075109877e-08 2.95856472e-08 2.276387797e-08 2.452374031e-08 2.670445409e-08 2.186863042e-08 2.54793392e-08 1.980091147e-08 1.512530762e-08 1.744827735e-08 1.029378078e-08 1.72336855e-08 9.933891587e-09 1.085648363e-08 8.682828697e-09 7.874054661e-09 7.736461877e-09 5.296382261e-09 7.350982966e-09 5.345263523e-09 3.481414775e-09 6.135864318e-10 1.220942486e-09 3.420566383e-10 2.926071124e-10 2.086188846e-10 6.895354945e-11 8.026743211e-13 6.892600044e-13 6.259146597e-14 1.00891605e-14 4.429473582e-15 3.534436871e-16 9.748191852e-17 8.107214603e-18 7.072244725e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 6.561039428e-19 2.394271653e-20 1.657398227e-17 2.092933763e-17 7.381436158e-16 6.00889977e-15 1.324515464e-14 6.773797298e-14 1.157675869e-12 4.738226759e-12 1.163851933e-10 1.259087851e-10 3.398292812e-10 3.587660468e-10 6.515413199e-10 1.158860039e-09 2.362434029e-09 4.758093446e-09 6.408355816e-09 6.400084292e-09 7.214526475e-09 1.382900397e-08 1.145532596e-08 1.288714564e-08 1.555010985e-08 1.396952354e-08 1.539222251e-08 1.603255054e-08 1.757930762e-08 2.036792848e-08 2.455953415e-08 2.538193322e-08 2.463505561e-08 2.44762893e-08 2.507095413e-08 2.80232789e-08 3.145603479e-08 3.03767993e-08 3.366010818e-08 3.527841382e-08 3.191524248e-08 3.550487627e-08 3.929822184e-08 3.627914533e-08 3.984883901e-08 3.671201012e-08 4.940873315e-08 4.364026443e-08 4.359527007e-08 4.680656843e-08 4.366295231e-08 4.841907977e-08 3.495898952e-08 3.627296465e-08 4.277985511e-08 4.000447688e-08 4.125934272e-08 3.664692388e-08 3.671556214e-08 4.632075953e-08 3.732033561e-08 3.619939861e-08 3.405414157e-08 3.046093126e-08 3.904279607e-08 2.704328227e-08 2.120207704e-08 2.262445168e-08 2.164611714e-08 2.049582122e-08 1.669425806e-08 1.526657077e-08 1.603562123e-08 2.094586123e-08 1.189641078e-08 1.434891012e-08 1.262774804e-08 1.654829602e-08 1.631079732e-08 1.732545687e-08 1.71507041e-08 1.516659551e-08 1.468381434e-08 1.967374633e-08 1.308090624e-08 1.510979266e-08 1.315485327e-08 1.306284272e-08 1.653247772e-08 1.61329532e-08 1.672921325e-08 1.409616093e-08 1.668757878e-08 1.595394629e-08 1.729030914e-08 1.609473045e-08 1.429858012e-08 1.999522382e-08 1.457793951e-08 1.877224591e-08 1.540259539e-08 2.603833233e-08 1.652798385e-08 1.51510326e-08 2.227752944e-08 2.040724534e-08 2.144819234e-08 3.284298451e-08 2.689215207e-08 3.336184314e-08 2.557937898e-08 2.627638947e-08 3.853943356e-08 3.773940741e-08 3.392773412e-08 2.7577632e-08 4.507796303e-08 4.744832995e-08 3.584883325e-08 4.232122886e-08 3.611464318e-08 4.223524912e-08 4.530617054e-08 4.674936046e-08 4.133990392e-08 4.31423346e-08 4.396254078e-08 3.988725861e-08 4.93436134e-08 4.140713214e-08 3.732068107e-08 3.670548143e-08 3.287157762e-08 3.124500898e-08 2.965744355e-08 2.597421583e-08 2.394675569e-08 2.917941422e-08 2.716954633e-08 2.61681915e-08 2.726569395e-08 2.459979188e-08 1.90428267e-08 2.489233416e-08 1.959614405e-08 2.114331373e-08 1.453652646e-08 1.501338674e-08 1.017777532e-08 1.362243688e-08 9.298784885e-09 1.124838095e-08 1.220987092e-08 9.101189188e-09 8.971562968e-09 4.22972125e-09 4.704443707e-09 2.203708369e-09 1.116547543e-09 1.326512119e-09 6.384129208e-10 1.965168304e-11 5.700984414e-11 2.171734426e-11 1.807154021e-12 6.166574386e-12 1.228645106e-13 1.293888744e-14 6.634975193e-15 3.150598692e-15 2.790670213e-16 6.763142387e-18 1.29452631e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.164055282e-17 1.766398937e-16 2.059764015e-16 3.639402813e-15 3.275725383e-14 8.862792136e-14 8.172731316e-13 2.764024851e-11 1.555730084e-10 4.21685679e-10 4.956225997e-10 6.390641792e-10 6.882871278e-10 1.435453752e-09 3.838612276e-09 5.080974188e-09 5.458210597e-09 7.238622807e-09 6.667800567e-09 9.211454295e-09 1.116527494e-08 1.217547169e-08 1.244171225e-08 1.298856714e-08 1.124357587e-08 1.626383164e-08 1.605810922e-08 1.937031044e-08 2.082053245e-08 2.478498222e-08 2.351303075e-08 2.699216944e-08 3.150881126e-08 3.222280266e-08 2.820783498e-08 2.955470249e-08 3.614735102e-08 3.491580413e-08 3.706962611e-08 3.717181081e-08 3.891202701e-08 3.785086251e-08 3.596434646e-08 4.647283063e-08 4.186505566e-08 4.69937077e-08 4.357074417e-08 3.788881467e-08 4.626216254e-08 3.701921829e-08 4.763810729e-08 4.361802183e-08 3.94527229e-08 3.764499123e-08 3.558430616e-08 3.611821396e-08 3.997693931e-08 2.461626895e-08 3.909944626e-08 3.243784407e-08 3.618560286e-08 2.798187778e-08 2.46865013e-08 2.45173929e-08 2.701882874e-08 1.204752462e-08 1.689074964e-08 2.00520668e-08 2.062056364e-08 2.562579633e-08 2.533768298e-08 1.60361265e-08 2.224958381e-08 1.398962091e-08 1.990138697e-08 1.083099248e-08 1.399392271e-08 1.270891145e-08 1.541334267e-08 1.371033325e-08 1.104996378e-08 1.366388539e-08 1.594703766e-08 1.792892446e-08 1.933837518e-08 1.08033836e-08 1.622503064e-08 1.327357347e-08 1.473730872e-08 1.402931397e-08 1.436505756e-08 1.538932234e-08 1.615468453e-08 1.338479394e-08 1.433428863e-08 2.014194361e-08 1.422669154e-08 1.537883196e-08 1.661573584e-08 1.553838283e-08 2.234140237e-08 2.0005792e-08 2.631446353e-08 2.256040896e-08 2.450544085e-08 2.437435804e-08 2.729939303e-08 2.853424515e-08 3.17734096e-08 2.637903186e-08 2.776713412e-08 4.007914936e-08 3.519735993e-08 4.306887504e-08 3.054973941e-08 4.146351481e-08 4.34851861e-08 4.222301497e-08 4.168999681e-08 4.063268645e-08 4.075600424e-08 4.629708031e-08 4.753989347e-08 4.642394125e-08 3.791456529e-08 4.327729463e-08 4.212088015e-08 3.721332481e-08 4.077666272e-08 3.743931665e-08 3.948583424e-08 3.755467943e-08 3.174642494e-08 3.356876874e-08 2.851920969e-08 3.180602299e-08 2.540073097e-08 2.522410301e-08 2.557585062e-08 2.643273162e-08 1.874515295e-08 1.992558149e-08 2.023596804e-08 1.492290748e-08 1.919914386e-08 1.394427075e-08 1.620848038e-08 1.429902331e-08 1.37260204e-08 1.085254232e-08 9.851373377e-09 7.976087042e-09 3.783499355e-09 2.632158515e-09 2.086194618e-09 2.224612557e-09 1.895912128e-09 1.398657602e-09 4.429010202e-10 4.159603626e-10 1.656681781e-10 1.193930204e-10 1.042944234e-11 8.161809847e-12 9.192843293e-15 5.113250801e-14 1.607520557e-15 1.526150573e-17 5.353122719e-17 1.083767736e-17 1.280161206e-18 6.665678581e-28 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 6.359571834e-11 0 0 2.181662224e-30 1.404484238e-18 2.394700066e-17 6.239879706e-17 3.307554199e-15 2.530147689e-15 1.494273824e-15 1.148506714e-12 1.18692957e-13 1.071441228e-12 2.137609059e-10 2.394111816e-11 3.324662149e-10 5.92534428e-10 4.185027142e-10 1.471497539e-09 2.641620425e-09 3.552977537e-09 4.767667157e-09 6.479215083e-09 7.087351407e-09 8.525934366e-09 1.094487604e-08 1.45580482e-08 1.295830177e-08 1.429667864e-08 1.587117586e-08 1.51898164e-08 1.89045816e-08 1.94599334e-08 2.00531851e-08 2.307929516e-08 1.851600154e-08 2.369264573e-08 3.152055036e-08 2.375381482e-08 2.513955502e-08 2.800333071e-08 3.071673731e-08 3.374980915e-08 3.476950498e-08 3.6163511e-08 4.015984814e-08 4.097945341e-08 3.908453175e-08 3.856324796e-08 4.834126521e-08 4.191007016e-08 4.554271251e-08 3.747472291e-08 4.278102359e-08 4.77857136e-08 4.438742123e-08 3.822878475e-08 3.209601709e-08 4.028598911e-08 4.147097162e-08 4.644089661e-08 4.375276984e-08 3.789669954e-08 4.146952808e-08 3.740206225e-08 3.853447357e-08 2.855370033e-08 3.151899142e-08 2.011864594e-08 2.084166597e-08 1.407095321e-08 2.093168815e-08 2.459039122e-08 1.650044277e-08 1.79835002e-08 1.687663024e-08 1.06678295e-08 1.545177883e-08 1.652526225e-08 1.568701883e-08 1.549033046e-08 1.548546844e-08 1.376389886e-08 9.579971666e-09 1.619522983e-08 1.662274015e-08 1.840199904e-08 1.464101332e-08 1.315343189e-08 1.40739283e-08 1.828684945e-08 1.463534553e-08 1.373264152e-08 1.288076808e-08 1.636086873e-08 1.279504862e-08 2.15884605e-08 1.36789478e-08 1.379151586e-08 1.411752927e-08 1.819479068e-08 1.821957081e-08 2.00484242e-08 1.62483609e-08 1.262492216e-08 1.668198906e-08 1.951530657e-08 2.644396825e-08 2.528134235e-08 2.075783711e-08 2.815338897e-08 2.871328669e-08 2.735963233e-08 2.545173328e-08 4.126260642e-08 2.742737974e-08 3.16117715e-08 3.405313721e-08 4.646869045e-08 4.071409759e-08 3.559287572e-08 5.070544495e-08 3.864845178e-08 3.711282465e-08 3.898808033e-08 4.127235788e-08 4.748734396e-08 3.994669708e-08 4.502018453e-08 4.553542543e-08 5.085345304e-08 4.2747411e-08 4.378304372e-08 4.052348886e-08 3.398516359e-08 3.835245338e-08 3.280930714e-08 2.815482483e-08 3.306439116e-08 3.160269852e-08 3.009175564e-08 2.755496146e-08 2.741845336e-08 2.461888072e-08 2.003059924e-08 2.147152565e-08 1.69930163e-08 2.091996146e-08 1.667417982e-08 1.292014506e-08 1.726392028e-08 1.525115217e-08 1.251057146e-08 1.28122959e-08 7.977596427e-09 8.640501809e-09 8.60419781e-09 7.307826775e-09 6.964698714e-09 2.644075519e-09 1.44008276e-09 2.321382365e-09 8.442369964e-10 5.354115464e-10 1.048188438e-09 3.264643315e-10 3.608078136e-11 1.192408028e-11 2.423658774e-12 3.687433443e-14 1.295858356e-13 1.456981505e-15 5.505449633e-16 8.412582013e-17 2.957836474e-17 1.291227716e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 5.276041825e-19 1.796495064e-19 3.351997843e-18 1.775051242e-16 1.810357483e-15 2.162827855e-16 1.379340939e-14 8.986116795e-14 1.048529383e-12 4.988252955e-12 1.68851904e-10 7.163681821e-10 4.710974054e-10 3.758637867e-10 8.853771149e-10 8.040341159e-10 2.486504268e-09 4.603859736e-09 5.422551254e-09 8.166930486e-09 5.709606979e-09 1.08556551e-08 9.480343533e-09 1.461865578e-08 1.349911702e-08 1.485628353e-08 1.685682507e-08 1.715618871e-08 1.970380275e-08 2.143459382e-08 2.077204117e-08 2.266202361e-08 2.499275005e-08 2.247392547e-08 2.74879116e-08 2.988394558e-08 3.349293314e-08 3.234932612e-08 2.693145494e-08 3.324994798e-08 3.873487723e-08 3.456121601e-08 3.781891401e-08 4.040592261e-08 3.96047851e-08 4.297264065e-08 4.041496875e-08 4.231556918e-08 3.973446038e-08 5.027596191e-08 5.051428338e-08 4.821341155e-08 3.834140862e-08 5.341565357e-08 4.9319963e-08 5.86600939e-08 3.170297386e-08 3.197268798e-08 3.974961257e-08 3.071648137e-08 3.6785266e-08 4.218074424e-08 2.974221061e-08 3.304554028e-08 3.617391559e-08 2.38663745e-08 3.438494714e-08 2.604915816e-08 2.657572004e-08 2.60967307e-08 1.851887691e-08 2.570091207e-08 1.041451482e-08 1.892535817e-08 1.436445697e-08 2.21043547e-08 2.029601872e-08 1.385891743e-08 1.472446744e-08 1.806176429e-08 1.425209906e-08 1.02270109e-08 1.062935332e-08 1.285037924e-08 1.568826021e-08 1.645511557e-08 1.458042857e-08 1.365852517e-08 1.712263078e-08 1.25085762e-08 2.020406189e-08 1.932935621e-08 1.629926989e-08 1.551480149e-08 1.317924767e-08 2.035046644e-08 1.461880115e-08 1.049736135e-08 1.459164863e-08 2.298146424e-08 1.611539766e-08 1.293825415e-08 2.511299652e-08 2.180462569e-08 1.925701262e-08 2.486099365e-08 2.174735823e-08 2.448083147e-08 3.079733818e-08 2.490826366e-08 2.811481977e-08 2.923436392e-08 3.615716222e-08 4.792546945e-08 4.088413554e-08 3.163005726e-08 4.119597609e-08 3.144157191e-08 4.346145486e-08 4.693270804e-08 3.700505575e-08 4.290329441e-08 4.696229822e-08 4.469835249e-08 4.400298368e-08 4.927597807e-08 4.81439952e-08 3.942774397e-08 4.397376478e-08 4.509067447e-08 4.49069509e-08 3.791972559e-08 3.635146254e-08 3.759399681e-08 3.305650659e-08 3.124733047e-08 2.602496597e-08 3.176693605e-08 3.235299793e-08 2.325170317e-08 2.547735678e-08 2.621009059e-08 2.134092856e-08 2.260945109e-08 2.229134742e-08 1.49313427e-08 1.672939279e-08 1.462955239e-08 1.338205639e-08 1.269510452e-08 1.052933675e-08 8.931559389e-09 9.472870387e-09 8.423677104e-09 7.315741993e-09 5.299735517e-09 5.490767688e-09 2.560904305e-09 1.742732647e-09 7.612644039e-10 1.235799843e-09 7.426819601e-10 1.16726643e-10 9.672038897e-11 1.436522459e-11 2.819009809e-12 3.282221628e-13 4.473807333e-14 1.144485368e-15 1.11912785e-15 2.162987631e-17 2.699890678e-18 3.834756375e-18 9.403698066e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.885230028e-18 1.17351304e-17 1.23253869e-16 7.259584889e-16 6.69328045e-17 7.030263005e-15 6.500146383e-14 1.776014508e-12 1.533549613e-12 6.546852028e-11 3.870317981e-10 3.887511915e-10 2.706294024e-10 5.759090719e-10 6.405557439e-10 4.692275603e-09 2.654989486e-09 5.258822558e-09 7.50889909e-09 7.46763099e-09 1.008663385e-08 1.089618493e-08 1.101154516e-08 1.548866653e-08 1.59488984e-08 1.244863135e-08 2.283028941e-08 1.957119699e-08 1.946770918e-08 2.106909364e-08 2.252430777e-08 2.045001746e-08 2.82130347e-08 2.566715956e-08 2.460468213e-08 2.426883298e-08 2.812258964e-08 3.034784259e-08 3.230420168e-08 3.1031299e-08 3.692146298e-08 3.889155953e-08 4.010621382e-08 3.867257403e-08 3.588928173e-08 4.357743998e-08 4.596569589e-08 3.954494968e-08 4.42474345e-08 3.488079109e-08 4.247285528e-08 4.496990173e-08 3.925140687e-08 4.589219095e-08 3.711700931e-08 3.845380581e-08 4.607292782e-08 4.172261766e-08 4.15803058e-08 3.968718005e-08 4.331342994e-08 3.347053447e-08 2.655212925e-08 2.843381866e-08 3.373243502e-08 2.958687664e-08 2.668689022e-08 2.261624742e-08 2.411762263e-08 1.682657135e-08 2.142228233e-08 1.802002255e-08 1.561723723e-08 2.043760309e-08 1.957200851e-08 1.257721242e-08 1.990251732e-08 1.750868831e-08 2.134323291e-08 1.392805012e-08 1.150027777e-08 1.500172145e-08 1.452528855e-08 1.429531318e-08 1.634696662e-08 1.442492514e-08 1.22575217e-08 1.575795214e-08 1.640641636e-08 1.231408963e-08 1.354965347e-08 1.315017808e-08 1.633478442e-08 1.409187289e-08 1.790188708e-08 2.122274458e-08 1.448252821e-08 2.036300884e-08 1.945782292e-08 1.334092669e-08 2.292956176e-08 1.884447025e-08 1.549201987e-08 2.373553635e-08 1.679102156e-08 2.717625036e-08 3.163071815e-08 2.376828574e-08 2.380918632e-08 2.183473668e-08 2.803271532e-08 3.672769656e-08 3.962286521e-08 3.424737154e-08 3.793583027e-08 3.81263926e-08 4.380528685e-08 4.036149338e-08 3.966996119e-08 4.291351211e-08 3.862471336e-08 4.206597018e-08 4.198685231e-08 4.258993242e-08 3.990908034e-08 4.105529194e-08 4.620768566e-08 3.817992273e-08 3.905631148e-08 3.904921042e-08 3.880011644e-08 3.764823194e-08 3.289560393e-08 3.333352731e-08 3.573874397e-08 3.647770011e-08 3.130003237e-08 2.405507064e-08 2.807995925e-08 2.817153816e-08 2.288640351e-08 2.404717473e-08 1.825332867e-08 1.957249677e-08 1.955920661e-08 1.914274011e-08 1.677172973e-08 1.42637118e-08 1.303251042e-08 1.022702534e-08 8.546066555e-09 1.025009048e-08 8.094359976e-09 5.395155218e-09 5.651042941e-09 2.986823291e-09 2.314688351e-09 1.515221159e-09 1.203606441e-09 7.318367321e-10 5.213168874e-10 2.561359669e-11 3.943260151e-11 1.397867689e-11 1.953759091e-12 6.019564854e-13 3.977956963e-15 1.907126299e-14 1.526182237e-17 7.777926856e-17 8.148924051e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.094276063e-18 8.023054937e-19 6.853380555e-17 1.319787854e-15 4.172630605e-15 4.139215953e-14 3.648884041e-15 4.722401019e-12 1.156106095e-11 1.433697449e-10 1.846851292e-10 4.694283338e-10 2.840228476e-10 9.696656094e-10 1.045742178e-09 3.07251252e-09 4.18399741e-09 6.640307124e-09 4.986434215e-09 6.429998332e-09 9.680362936e-09 1.038180609e-08 8.5319812e-09 1.285702654e-08 1.452652023e-08 1.363718866e-08 1.999509667e-08 1.867202144e-08 2.300973777e-08 2.181940408e-08 2.285110726e-08 2.225358161e-08 2.417656284e-08 3.112385587e-08 2.833356058e-08 2.852858624e-08 2.956421407e-08 3.449499124e-08 3.042072542e-08 3.256585308e-08 3.572985885e-08 3.956775805e-08 3.614604214e-08 3.906872734e-08 4.158988103e-08 4.465763937e-08 4.387545698e-08 4.409493954e-08 5.090221527e-08 4.632062917e-08 4.414737898e-08 4.157125678e-08 3.879637786e-08 3.959428497e-08 3.824900956e-08 4.886342563e-08 4.761785251e-08 4.542135011e-08 3.652972577e-08 4.073521562e-08 3.41223032e-08 3.570465105e-08 2.384956639e-08 2.772516182e-08 1.848496352e-08 1.934832031e-08 2.089476366e-08 2.429622908e-08 2.74223454e-08 2.169713661e-08 2.084486882e-08 1.259735926e-08 1.926661616e-08 2.099937895e-08 1.264963164e-08 9.733116535e-09 1.735810578e-08 1.918046734e-08 1.698094151e-08 1.680493897e-08 1.675837179e-08 1.36314525e-08 1.105404527e-08 1.399754851e-08 1.024258342e-08 1.593634082e-08 1.858372184e-08 2.020397675e-08 2.027814224e-08 1.230210814e-08 1.780537154e-08 1.24051825e-08 2.005732676e-08 1.662923986e-08 1.403093421e-08 1.981830221e-08 1.583764475e-08 1.149960727e-08 1.886917586e-08 2.754477554e-08 1.757388924e-08 1.375173479e-08 1.503163133e-08 2.719401964e-08 2.26802088e-08 2.332412952e-08 1.99969912e-08 3.711140519e-08 2.304443209e-08 3.588448513e-08 2.732832829e-08 4.445551447e-08 3.809786682e-08 3.59470258e-08 3.879438918e-08 4.353454268e-08 3.810546418e-08 3.54390578e-08 4.541333323e-08 4.313044533e-08 4.48982483e-08 5.128990392e-08 4.851527567e-08 3.726847584e-08 3.588799648e-08 3.736105661e-08 4.388370221e-08 3.988197538e-08 3.64457654e-08 3.685808671e-08 4.054262732e-08 3.969902719e-08 3.741351689e-08 3.569044501e-08 3.034177627e-08 2.826482957e-08 2.602132253e-08 2.869015874e-08 2.336113811e-08 2.441626105e-08 2.270265598e-08 2.396727223e-08 2.504653991e-08 2.060451071e-08 2.32359868e-08 1.623191583e-08 1.393296863e-08 1.474549375e-08 9.537366598e-09 1.466656114e-08 1.226023763e-08 6.913042969e-09 8.22319177e-09 8.208060066e-09 4.982191696e-09 5.478872241e-09 2.646964826e-09 1.60968875e-09 9.163640432e-10 3.819975009e-10 1.793834319e-10 8.936148444e-12 2.688998939e-11 1.958510098e-12 3.782540791e-12 2.403197193e-13 1.720202641e-14 4.067234176e-15 1.747858258e-16 1.245537785e-16 4.058429549e-18 3.388860715e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 8.021393894e-19 2.038817679e-18 3.570535701e-18 1.166386914e-17 4.417824721e-16 9.049261069e-16 8.336247768e-15 1.632536471e-12 1.660515982e-12 5.522641221e-12 6.415082307e-11 2.743529118e-10 5.489690916e-10 3.642759685e-10 4.884579593e-10 6.698212449e-10 2.486422291e-09 4.995696577e-09 5.111193222e-09 7.528630824e-09 5.610505486e-09 1.117616382e-08 1.238128734e-08 1.437061256e-08 1.288965043e-08 1.477589953e-08 1.468225761e-08 1.984169022e-08 1.782407885e-08 2.029784765e-08 1.682713238e-08 2.204395756e-08 2.373065218e-08 3.041322727e-08 2.832581938e-08 3.039632049e-08 3.126231591e-08 3.151329162e-08 3.509959073e-08 2.997240084e-08 3.81939643e-08 3.420647069e-08 3.836704926e-08 4.408398455e-08 3.776468113e-08 4.596673041e-08 3.93020886e-08 4.087421472e-08 4.197879046e-08 3.730428962e-08 4.881860509e-08 5.288899863e-08 3.666806854e-08 3.770307865e-08 3.966823739e-08 4.433187726e-08 3.949414281e-08 4.310524769e-08 3.493761227e-08 4.270630504e-08 3.379014991e-08 3.765546138e-08 3.848737592e-08 2.881668071e-08 3.660242775e-08 2.752132607e-08 2.336028634e-08 2.722859973e-08 1.60630497e-08 1.559400532e-08 1.99343605e-08 2.180684872e-08 1.608693665e-08 1.875373419e-08 1.378755595e-08 2.056970333e-08 1.40198511e-08 1.515319461e-08 1.935358109e-08 1.450441254e-08 1.60689806e-08 8.924955355e-09 1.945705411e-08 1.156811809e-08 1.290353968e-08 2.048706318e-08 1.076433962e-08 1.360622677e-08 2.007759569e-08 1.233150669e-08 1.737882247e-08 1.917132612e-08 1.359989493e-08 1.789256954e-08 1.852700414e-08 1.641348628e-08 1.171989463e-08 1.229959328e-08 1.576124969e-08 1.461454793e-08 1.397170588e-08 2.126576528e-08 1.965453103e-08 2.729392623e-08 1.381057686e-08 2.51096697e-08 2.103038052e-08 2.797265523e-08 2.688673188e-08 3.262846713e-08 3.558369063e-08 3.477915191e-08 4.021191934e-08 3.363066182e-08 3.213855749e-08 3.855445841e-08 4.857753487e-08 5.642226468e-08 3.559453722e-08 3.721527269e-08 5.199997962e-08 4.089731383e-08 5.048090944e-08 4.94562724e-08 5.154990989e-08 3.85623327e-08 4.448354384e-08 4.775654907e-08 4.982874131e-08 4.029875714e-08 3.714812248e-08 3.471649779e-08 3.975009095e-08 4.171525438e-08 3.303479191e-08 3.119702623e-08 3.230547197e-08 2.923747083e-08 2.513503028e-08 2.492211055e-08 2.443636384e-08 2.37996234e-08 2.350118889e-08 2.220789527e-08 1.834080292e-08 1.883020005e-08 1.231428769e-08 1.539516896e-08 1.705466111e-08 1.226055221e-08 1.207611214e-08 1.141789959e-08 1.036582964e-08 5.624595174e-09 5.813915703e-09 5.962954246e-09 4.252661785e-09 2.706585865e-09 8.250701197e-10 3.887936723e-10 6.918137167e-10 2.453679268e-10 9.551973211e-11 3.909364392e-11 2.455096577e-11 5.208939972e-14 3.945727569e-13 9.160523886e-14 9.592637044e-15 6.101205596e-15 2.599932391e-16 3.8648788e-18 0 9.514040691e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.614438448e-18 3.398454427e-19 1.887821218e-17 5.053131714e-17 4.937407228e-15 2.371130626e-14 1.853972448e-12 2.331711514e-12 9.281017626e-12 4.583052702e-11 7.062635329e-10 6.879506952e-10 6.462489942e-10 6.343280969e-10 5.329815402e-10 1.383292382e-09 2.804493345e-09 6.942116882e-09 7.686936901e-09 1.066154201e-08 1.079264895e-08 1.07568644e-08 7.654058344e-09 1.509380466e-08 1.273607912e-08 1.507473779e-08 1.624115585e-08 1.879799611e-08 2.028950029e-08 2.111502106e-08 2.586868004e-08 2.300024998e-08 2.792957528e-08 2.395262431e-08 2.84555189e-08 3.51017277e-08 2.807076815e-08 3.534413291e-08 3.477643141e-08 2.963780389e-08 3.476516255e-08 4.359460714e-08 4.238749756e-08 4.148160955e-08 3.954596709e-08 4.495238194e-08 4.818009949e-08 4.310531514e-08 3.918095135e-08 4.332741078e-08 3.751090019e-08 4.485548537e-08 3.64899679e-08 3.831160505e-08 4.40509122e-08 3.555771942e-08 3.186651917e-08 3.166607271e-08 4.258233631e-08 3.804013098e-08 2.923168383e-08 2.812342129e-08 3.726628151e-08 2.573432535e-08 3.054055285e-08 2.206853917e-08 2.398845027e-08 2.314300699e-08 1.860511576e-08 2.643530656e-08 1.875786352e-08 1.792307861e-08 2.069544185e-08 1.93220098e-08 1.720568067e-08 1.350562084e-08 2.137914972e-08 1.91247849e-08 1.26801299e-08 1.55712082e-08 1.286113706e-08 1.834254545e-08 2.011054871e-08 1.560328979e-08 1.4349396e-08 1.466243795e-08 1.476880246e-08 2.084242858e-08 1.362848203e-08 1.537503063e-08 1.454328505e-08 1.234791039e-08 1.22604404e-08 1.892265095e-08 1.727427878e-08 2.007957491e-08 1.379831152e-08 2.673680919e-08 2.037049267e-08 1.918107586e-08 1.698830731e-08 2.118620681e-08 1.895632314e-08 1.868883777e-08 2.343459788e-08 1.686118899e-08 2.391502792e-08 3.127173944e-08 2.945451774e-08 2.507466555e-08 3.406577824e-08 2.569797161e-08 2.830491303e-08 3.394341132e-08 4.843620714e-08 3.596515493e-08 4.012955248e-08 3.864790573e-08 4.451238743e-08 4.31509838e-08 3.866235192e-08 4.091199234e-08 4.543528904e-08 5.092383313e-08 4.586243343e-08 4.456806466e-08 4.404827316e-08 3.814384626e-08 3.970130083e-08 4.178253563e-08 3.647174242e-08 3.514219686e-08 3.353769836e-08 3.192552202e-08 3.021875456e-08 3.17783662e-08 2.600132687e-08 2.938580667e-08 3.108416174e-08 2.219166293e-08 2.263240696e-08 2.104965515e-08 1.699796857e-08 1.753460362e-08 1.873858693e-08 1.797775706e-08 2.008831715e-08 1.455723675e-08 1.182563602e-08 1.089797284e-08 9.489316333e-09 6.835629072e-09 7.695657423e-09 6.264495888e-09 5.358921814e-09 2.298821334e-09 1.771009191e-09 1.199495423e-09 5.175937409e-10 9.364017509e-10 1.073908187e-10 4.190924125e-10 1.387444221e-11 8.808406901e-12 2.999715659e-13 1.281874034e-13 8.975034255e-15 7.106890128e-16 5.726302677e-16 2.204719899e-16 1.985039891e-17 5.779109181e-19 2.943883649e-21 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 5.249484928e-19 1.700087935e-17 7.097744313e-17 3.530761208e-17 6.061486386e-16 1.528458266e-15 1.407231974e-13 7.264046984e-13 1.736912839e-12 1.342887211e-11 1.813919126e-10 5.122565112e-10 3.257934578e-10 2.908323821e-10 8.937198956e-10 6.899078106e-10 2.904596887e-09 3.937395682e-09 3.940890196e-09 6.673478138e-09 9.613964789e-09 7.194566187e-09 1.022498956e-08 1.005247105e-08 1.770813257e-08 1.904613786e-08 1.674286728e-08 1.208406094e-08 1.966494577e-08 2.073798863e-08 2.481365357e-08 2.408667459e-08 2.441053382e-08 2.800402515e-08 2.605499343e-08 2.42423355e-08 3.04985732e-08 2.928306578e-08 3.40203256e-08 3.604359473e-08 3.635905358e-08 3.900199981e-08 3.68523352e-08 4.158876628e-08 3.879697083e-08 4.440599606e-08 3.571603241e-08 4.839872399e-08 3.760093267e-08 3.751528203e-08 5.053754872e-08 4.90000413e-08 4.994343826e-08 4.352289501e-08 4.138689979e-08 4.621770077e-08 3.385585547e-08 4.309269185e-08 3.845352008e-08 4.177754407e-08 2.786653305e-08 2.531179112e-08 3.668431399e-08 2.719294539e-08 2.68519356e-08 2.420904362e-08 2.513913627e-08 2.683850955e-08 1.610460377e-08 2.2916002e-08 2.373814103e-08 2.031543327e-08 1.910015053e-08 2.163452272e-08 1.572234696e-08 1.36594229e-08 1.675120482e-08 1.774835624e-08 1.519716651e-08 8.128367502e-09 1.767089471e-08 1.727745571e-08 1.631253773e-08 1.54573928e-08 1.751023644e-08 1.469809235e-08 1.563489332e-08 1.890455594e-08 1.225952396e-08 1.855026646e-08 1.627692543e-08 1.435136144e-08 1.453175982e-08 1.345666823e-08 1.696453519e-08 1.66999975e-08 1.741078183e-08 1.441502643e-08 1.670596357e-08 2.042928498e-08 1.822856923e-08 1.515014693e-08 1.702308676e-08 1.731660696e-08 2.545242009e-08 2.090097397e-08 2.183024096e-08 2.793101231e-08 2.139725496e-08 2.58402051e-08 3.482426826e-08 4.021515207e-08 2.494231589e-08 3.678490694e-08 3.790297551e-08 3.665248851e-08 4.346085186e-08 4.818807965e-08 4.085129268e-08 4.162074755e-08 4.505326054e-08 3.786949296e-08 4.065868034e-08 3.580688628e-08 4.001302487e-08 4.754185212e-08 3.745723682e-08 4.400622103e-08 3.632328139e-08 3.828068401e-08 4.023678273e-08 3.252481841e-08 3.848175037e-08 3.61648096e-08 3.325420224e-08 3.527178551e-08 3.632217336e-08 2.899460578e-08 2.410937869e-08 2.545423361e-08 2.726741831e-08 2.157872439e-08 2.426438245e-08 2.008445813e-08 2.018803886e-08 1.811867808e-08 2.168579625e-08 1.341720358e-08 1.599265848e-08 1.513273028e-08 1.292239849e-08 9.942880452e-09 8.115720542e-09 7.255022824e-09 6.074310106e-09 5.957618428e-09 5.606446976e-09 2.172977588e-09 5.47643366e-10 1.112059192e-09 4.785346544e-10 3.506949084e-10 3.058033089e-10 9.342348671e-12 1.413111431e-11 1.402875414e-12 7.97214157e-15 1.575721572e-14 2.023112289e-15 2.646303268e-16 1.361991377e-16 1.43748863e-17 4.240417106e-19 5.086684156e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.234664572e-18 2.267881911e-17 1.595629576e-17 4.402035384e-16 1.247171698e-14 7.868573797e-14 4.209896944e-13 1.309864221e-12 2.944215019e-12 6.362551393e-11 1.552005041e-10 4.707107537e-10 5.212281756e-10 2.991114062e-10 1.970448621e-09 2.613840658e-09 4.464332483e-09 5.242535149e-09 6.307806788e-09 8.410689565e-09 8.339797044e-09 9.793090097e-09 1.075146246e-08 1.749072956e-08 1.361052917e-08 1.712385293e-08 1.427068829e-08 1.617802742e-08 1.795067749e-08 2.209130388e-08 2.558971515e-08 2.636008316e-08 2.93822966e-08 3.032793635e-08 2.43346236e-08 3.091195978e-08 2.742730155e-08 3.803887334e-08 3.342006645e-08 3.312262626e-08 3.678372666e-08 4.080768368e-08 4.275868523e-08 4.063822786e-08 3.544110029e-08 4.187158578e-08 3.993539469e-08 4.95222469e-08 4.366288338e-08 4.521958065e-08 4.723048278e-08 3.774785202e-08 4.329138169e-08 4.416955068e-08 3.59224086e-08 4.392875174e-08 3.685097867e-08 3.518630233e-08 3.701444149e-08 3.758342028e-08 3.572113699e-08 3.55136818e-08 3.98479684e-08 2.33221579e-08 2.6434007e-08 2.350590116e-08 2.984778489e-08 2.771730058e-08 2.477542105e-08 1.808234183e-08 1.77771082e-08 1.748802878e-08 1.737990228e-08 2.255603622e-08 1.707875796e-08 1.731685887e-08 2.005751468e-08 2.347346198e-08 1.651680772e-08 1.393410948e-08 1.682211576e-08 1.263695824e-08 1.59196504e-08 1.561034562e-08 2.314792435e-08 1.294989179e-08 2.098437935e-08 1.281024432e-08 1.511861628e-08 1.428668849e-08 1.606017118e-08 1.436053273e-08 2.469929999e-08 1.711859001e-08 1.472771801e-08 1.313582503e-08 1.414964612e-08 1.831453459e-08 1.809798634e-08 1.662770519e-08 1.924017911e-08 1.711147094e-08 1.5902265e-08 1.450713818e-08 2.480632352e-08 2.708708204e-08 2.769076673e-08 2.845159783e-08 2.922811134e-08 3.362082754e-08 3.215035438e-08 3.09367956e-08 3.542394257e-08 4.031256073e-08 3.841934119e-08 4.797118287e-08 4.330508056e-08 4.580383103e-08 3.971358106e-08 4.004164451e-08 4.315004599e-08 4.264794878e-08 4.68779906e-08 4.300365029e-08 4.857818725e-08 4.960271478e-08 4.130121928e-08 4.477531752e-08 3.818487074e-08 4.329387185e-08 3.694590047e-08 3.519038284e-08 3.34128908e-08 3.147618584e-08 3.289634145e-08 3.634119117e-08 3.130576498e-08 2.694769367e-08 2.48911371e-08 2.295699769e-08 2.194579302e-08 2.239360321e-08 2.152511861e-08 2.096883527e-08 1.34909439e-08 1.718625556e-08 1.52088573e-08 1.616748436e-08 1.396914749e-08 1.228134757e-08 1.055096027e-08 9.712733864e-09 8.060388154e-09 4.686365361e-09 4.874682704e-09 2.291881672e-09 2.488599907e-09 1.504030517e-09 2.097455903e-10 5.998516528e-10 5.801046872e-10 2.456507171e-10 7.771661701e-11 3.180303283e-11 8.574947835e-13 6.562445996e-14 1.309887345e-14 9.465689725e-15 2.875494199e-17 1.36901754e-16 5.240561029e-19 3.793215948e-18 3.787007971e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.533993021e-19 2.172707255e-17 6.414505138e-16 3.105382327e-16 4.214818811e-15 2.059069634e-14 2.3572816e-14 6.126525116e-13 3.117420171e-11 1.513280232e-10 1.182958384e-10 4.468606384e-10 1.360192829e-10 4.31980553e-10 1.349947429e-09 2.220663751e-09 3.612993235e-09 6.001644658e-09 5.648528994e-09 8.0977288e-09 1.080925717e-08 9.760117761e-09 9.260552953e-09 1.585324044e-08 1.301931176e-08 1.582805822e-08 1.454353788e-08 1.705065098e-08 2.032500728e-08 2.038943961e-08 2.308588194e-08 2.110270715e-08 2.588538596e-08 3.108209136e-08 2.634163663e-08 3.121610133e-08 2.645088623e-08 3.404363761e-08 2.990678238e-08 3.111599298e-08 3.731178766e-08 3.483491674e-08 3.810296813e-08 3.823540845e-08 4.300127801e-08 3.96259826e-08 4.243327504e-08 4.346927579e-08 4.397403756e-08 4.441855772e-08 3.864393944e-08 3.208943796e-08 4.291749358e-08 3.637882685e-08 4.802515339e-08 3.490937886e-08 3.443719655e-08 3.466464381e-08 3.221283432e-08 3.122495929e-08 3.950598957e-08 3.249033995e-08 3.487398616e-08 2.986252937e-08 2.482518959e-08 3.275642559e-08 3.008395003e-08 1.97378408e-08 1.587049483e-08 1.81430927e-08 2.06317768e-08 2.081063147e-08 2.052168667e-08 2.071876683e-08 1.535574421e-08 9.239187072e-09 1.391923022e-08 1.687403737e-08 1.553095294e-08 1.424869385e-08 1.212056185e-08 2.24601539e-08 1.929450662e-08 1.806010489e-08 1.533111257e-08 1.550078919e-08 1.523314105e-08 1.091896121e-08 1.192287387e-08 1.178865811e-08 1.945763977e-08 1.338746385e-08 1.269887564e-08 1.579055955e-08 1.522855786e-08 1.498059109e-08 1.601227443e-08 2.608914513e-08 1.978049654e-08 1.944908924e-08 1.274638744e-08 2.238054583e-08 3.530090937e-08 1.189913021e-08 1.622739276e-08 1.422239659e-08 2.468647716e-08 2.105443857e-08 3.61407572e-08 2.594084408e-08 3.233472612e-08 3.678246043e-08 4.013317214e-08 3.690602971e-08 4.060858647e-08 4.395910337e-08 3.522095337e-08 3.843886978e-08 3.162085469e-08 3.959256458e-08 4.156636751e-08 4.743847109e-08 4.363069612e-08 4.382982539e-08 4.896734037e-08 4.577580117e-08 3.74355381e-08 4.388072841e-08 3.585857011e-08 3.642797874e-08 3.738033372e-08 3.904325537e-08 3.727575542e-08 3.371321693e-08 2.826966832e-08 3.025836518e-08 2.995158622e-08 3.059805471e-08 3.022900542e-08 2.383856665e-08 2.531259864e-08 2.110961969e-08 2.349051764e-08 2.473269963e-08 1.742014923e-08 1.68258598e-08 1.459955173e-08 1.440122964e-08 1.209110733e-08 1.005860701e-08 1.063171233e-08 9.691590425e-09 8.242333602e-09 9.194539847e-09 6.12992161e-09 2.647119645e-09 2.205647613e-09 1.031016874e-09 1.694141838e-09 2.473542937e-10 2.471391075e-10 2.579079305e-10 3.403520199e-11 1.079814451e-11 6.673364829e-13 1.877839081e-13 1.704641136e-14 1.617773797e-14 8.378064253e-17 1.049958036e-17 9.092081795e-18 3.713122787e-34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.179203264e-19 4.017101736e-19 2.429287292e-16 3.969683722e-17 1.360490234e-15 2.546966431e-13 8.450086087e-13 3.130124384e-13 1.375274822e-11 4.603005357e-11 5.057857068e-10 2.894892232e-10 6.742575375e-10 6.811804128e-10 1.857966304e-10 2.438116395e-09 4.391967182e-09 6.213910275e-09 8.229725913e-09 6.824499926e-09 8.169968653e-09 8.651785393e-09 1.068898383e-08 1.251748826e-08 1.526191461e-08 1.441340735e-08 1.578955247e-08 2.076855818e-08 1.895289317e-08 1.836385177e-08 2.499707233e-08 2.420624514e-08 2.434625742e-08 2.607258067e-08 2.812536818e-08 2.570264618e-08 2.573791035e-08 3.321249242e-08 3.147040569e-08 3.483450319e-08 3.66394948e-08 3.639315879e-08 4.157216241e-08 4.000337637e-08 3.923867166e-08 4.270872869e-08 4.54316478e-08 4.118995217e-08 4.078310412e-08 4.702098089e-08 5.104989876e-08 4.772292103e-08 4.756575456e-08 4.815348605e-08 3.829585336e-08 3.464883512e-08 3.623097312e-08 4.163936874e-08 3.489764048e-08 3.298113337e-08 2.066523625e-08 3.74372815e-08 3.874951521e-08 2.73059078e-08 3.164019841e-08 2.084387368e-08 3.088887164e-08 2.756960204e-08 2.641722212e-08 2.389567458e-08 1.852789906e-08 1.329348797e-08 1.301734293e-08 2.63122269e-08 2.511619303e-08 1.550350567e-08 2.874364532e-08 1.46985118e-08 1.97569588e-08 1.249663359e-08 1.443087259e-08 1.802205792e-08 1.656645944e-08 1.381445263e-08 1.074826282e-08 1.709272964e-08 1.765974645e-08 9.10083088e-09 1.548467363e-08 1.030737971e-08 1.241741023e-08 1.010076382e-08 1.531247069e-08 1.300021538e-08 1.247918758e-08 1.165759776e-08 1.548829239e-08 1.095231502e-08 2.255837457e-08 2.104388786e-08 1.406880266e-08 1.629691451e-08 1.440045953e-08 1.340490419e-08 2.396834766e-08 1.665730561e-08 1.800542278e-08 3.202845077e-08 3.094967094e-08 3.473127125e-08 4.443688039e-08 2.822435808e-08 3.494881133e-08 3.959514813e-08 3.514924436e-08 4.064256838e-08 3.304252824e-08 4.319096589e-08 5.000683371e-08 4.092364494e-08 4.436143691e-08 5.45469521e-08 4.046013543e-08 4.323741769e-08 4.235313187e-08 3.985204789e-08 3.767442026e-08 3.596040203e-08 3.994199513e-08 4.332292883e-08 3.703051467e-08 3.778196114e-08 3.461304036e-08 3.42367323e-08 3.088442753e-08 2.855282704e-08 3.207306389e-08 2.960572333e-08 2.521369864e-08 2.637152592e-08 2.495324759e-08 2.566726008e-08 2.037543532e-08 2.110097909e-08 2.166848623e-08 1.694262518e-08 1.484841995e-08 1.523221794e-08 1.47442981e-08 1.410148605e-08 8.734313035e-09 7.899455691e-09 6.328515586e-09 5.86854754e-09 3.515696451e-09 3.30756361e-09 1.894736739e-09 7.470541722e-10 2.009020161e-10 9.599902891e-10 4.790078336e-10 1.435288252e-10 6.945824898e-11 1.491824764e-11 8.345141477e-12 1.426661122e-14 1.152699506e-14 3.062203212e-15 2.494674595e-16 4.659825093e-16 2.739953616e-18 4.618565894e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.229455747e-19 8.005380581e-19 1.002996806e-17 3.553833927e-16 1.784809628e-15 1.411242825e-13 1.425451659e-13 1.458874691e-12 1.356175908e-11 7.541803633e-12 7.937114081e-11 8.276101963e-10 4.119956746e-10 9.001564867e-10 1.365710557e-09 3.405844016e-09 3.894906253e-09 6.297798078e-09 6.18876809e-09 5.976673465e-09 1.018071473e-08 1.28853095e-08 1.140871031e-08 1.382102325e-08 1.581067905e-08 1.584158418e-08 1.522408109e-08 1.942152155e-08 1.992110094e-08 1.831201855e-08 2.212946447e-08 2.787156446e-08 2.847464747e-08 2.719704286e-08 3.02268479e-08 3.365539159e-08 3.093133285e-08 3.557336846e-08 3.129113851e-08 2.879219251e-08 3.996669954e-08 4.139488107e-08 3.785331937e-08 4.123400098e-08 3.706988181e-08 4.136218035e-08 4.574461463e-08 3.76197984e-08 4.763555451e-08 4.093936602e-08 4.704521611e-08 4.798863407e-08 3.574963662e-08 4.161530105e-08 4.108642586e-08 4.070842886e-08 4.714959106e-08 3.149002278e-08 3.869901705e-08 3.611643807e-08 3.239249876e-08 3.311332113e-08 4.292277965e-08 2.680139935e-08 3.109482825e-08 2.367925694e-08 2.268701712e-08 2.271769374e-08 2.030234875e-08 2.262221328e-08 1.779357601e-08 1.489440645e-08 1.887628557e-08 1.821689828e-08 1.664642156e-08 1.342421725e-08 1.521290002e-08 2.105913045e-08 1.556097346e-08 1.476212612e-08 2.055016973e-08 1.55015913e-08 1.493319217e-08 1.661429351e-08 1.528179819e-08 1.445908688e-08 1.821206574e-08 1.641660638e-08 1.237472485e-08 1.650908506e-08 1.42095444e-08 2.193339971e-08 1.273551631e-08 1.518911486e-08 1.202209214e-08 1.374825119e-08 1.420920396e-08 1.462810936e-08 2.164086662e-08 1.243226046e-08 1.552784448e-08 1.459555664e-08 2.137202377e-08 1.747136211e-08 2.299611766e-08 2.622739731e-08 1.991293956e-08 2.160762294e-08 2.746121151e-08 2.464996148e-08 3.001927058e-08 2.558818614e-08 4.962814088e-08 3.488083255e-08 3.595353682e-08 4.534189967e-08 3.28786957e-08 3.954408267e-08 4.210932093e-08 4.200473156e-08 4.642759701e-08 4.386794575e-08 3.505999849e-08 4.172702227e-08 3.963300591e-08 3.938394984e-08 4.442293421e-08 3.906674999e-08 3.793541608e-08 3.79889843e-08 2.958002429e-08 3.749164207e-08 3.604261326e-08 3.325618372e-08 3.171091574e-08 2.726431177e-08 3.012922505e-08 3.042072675e-08 2.639840872e-08 3.141484994e-08 2.070946685e-08 2.268166849e-08 2.57337083e-08 2.058758671e-08 2.090221107e-08 2.199934453e-08 1.7871404e-08 1.488837673e-08 1.288292689e-08 1.267397402e-08 9.513443676e-09 4.83606175e-09 6.523744384e-09 5.460144427e-09 5.00544006e-09 3.708347868e-09 2.142272165e-09 7.792099716e-10 7.646990915e-10 9.278645464e-10 5.898983144e-10 2.699318163e-10 5.997984152e-11 2.766049839e-12 2.340641633e-13 6.92090739e-13 1.635374516e-13 1.197222646e-14 1.107828296e-16 4.000215899e-17 1.582917936e-17 4.77494857e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.367975361e-17 6.866283114e-17 1.280855261e-15 2.563904544e-14 1.194708539e-13 3.039284543e-14 2.932573703e-12 1.49924041e-12 2.2294069e-11 3.303800137e-10 7.820339193e-10 8.012849409e-10 5.299493513e-10 1.050598007e-09 3.556993794e-09 4.810863173e-09 3.976607643e-09 5.625518377e-09 5.821905369e-09 9.682428227e-09 1.133770671e-08 1.343842514e-08 1.303021052e-08 1.352456855e-08 1.43059604e-08 1.525286688e-08 1.943310787e-08 2.235215814e-08 2.314414502e-08 2.23918698e-08 2.363974057e-08 2.771795056e-08 2.627965043e-08 2.581138241e-08 3.491017848e-08 3.121940418e-08 3.128323117e-08 3.925181418e-08 3.774487257e-08 3.56351566e-08 3.374590002e-08 3.997769889e-08 4.467679818e-08 4.473277965e-08 3.470626914e-08 3.921734902e-08 4.092839934e-08 4.26281815e-08 4.473026968e-08 5.065058556e-08 4.681575707e-08 3.709543566e-08 4.052758277e-08 4.464153233e-08 3.90728098e-08 3.447164016e-08 3.070439364e-08 3.644388032e-08 3.766319779e-08 2.828040303e-08 3.160969228e-08 2.806297461e-08 2.382117804e-08 2.741713476e-08 2.891046756e-08 2.116666607e-08 1.946482768e-08 1.904714965e-08 2.217895331e-08 1.463180376e-08 2.16330343e-08 1.430241711e-08 1.498114356e-08 1.591929062e-08 1.243872899e-08 1.780844189e-08 1.558426213e-08 1.419202319e-08 1.298166352e-08 1.384301016e-08 1.493639382e-08 1.652656618e-08 1.866080625e-08 1.675861102e-08 1.536995346e-08 9.296185761e-09 1.488960418e-08 1.659314191e-08 1.293163513e-08 1.477552483e-08 1.802643313e-08 1.229369722e-08 1.500289725e-08 1.655274106e-08 2.330448878e-08 8.713671744e-09 1.289210948e-08 2.104157592e-08 2.137491449e-08 1.436153473e-08 2.136150408e-08 2.177316243e-08 2.37955974e-08 2.622398213e-08 2.718543196e-08 2.393112761e-08 2.133630819e-08 3.33519762e-08 3.012552295e-08 2.698407623e-08 2.780112913e-08 3.853579652e-08 3.978982175e-08 3.350744536e-08 3.992108172e-08 4.333863049e-08 2.876094179e-08 3.880035676e-08 4.069261414e-08 4.171552743e-08 4.026834369e-08 4.289650057e-08 4.471604798e-08 4.248956891e-08 4.315554154e-08 4.9783521e-08 4.115715017e-08 4.347645692e-08 4.062917035e-08 4.123306692e-08 3.303447518e-08 4.035378161e-08 3.264385623e-08 3.11822272e-08 3.203288757e-08 3.367683252e-08 2.477114385e-08 2.644265322e-08 2.721583158e-08 2.664468275e-08 2.257297581e-08 1.957020939e-08 1.912480549e-08 1.447398467e-08 1.93598338e-08 2.05732445e-08 1.436008809e-08 1.4128639e-08 9.243355337e-09 1.049837568e-08 8.205984791e-09 6.879832764e-09 4.52003962e-09 6.71008952e-09 3.363559946e-09 3.557234984e-09 1.495941445e-09 4.196014927e-10 9.158560836e-10 2.107161492e-10 1.939639376e-10 5.512322441e-11 6.71660274e-12 5.633682281e-12 1.422378428e-13 9.104359756e-14 1.51508637e-14 1.764161054e-15 3.645426354e-17 2.62853604e-18 5.004504424e-18 0 0 0 0 0 0 0 0 0 3.189110819e-26 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 6.223342043e-19 9.87665529e-31 2.786081341e-17 2.680087892e-16 1.113424495e-16 6.733169707e-15 9.587605207e-15 4.527751631e-14 3.192871519e-13 6.172815729e-11 7.825881657e-11 1.974836114e-10 7.178964297e-10 6.678061867e-10 6.288062342e-10 9.152302546e-10 1.958421165e-09 5.143804802e-09 5.98640791e-09 5.764389651e-09 7.715159948e-09 6.402806316e-09 1.0086688e-08 9.079767463e-09 1.440815875e-08 1.738452384e-08 1.668350647e-08 1.47120962e-08 2.099087528e-08 1.691332837e-08 2.43374279e-08 1.993247255e-08 1.909070038e-08 2.285319792e-08 2.742417792e-08 2.83416076e-08 3.265784643e-08 2.614984987e-08 2.985079708e-08 3.660841897e-08 3.507342409e-08 3.704085113e-08 4.4438744e-08 3.464451217e-08 5.29308546e-08 3.778706232e-08 4.385428075e-08 4.15284902e-08 5.239017026e-08 4.884968743e-08 4.779423664e-08 4.223105528e-08 4.134643462e-08 4.120230759e-08 4.876458019e-08 4.576538378e-08 3.971380956e-08 4.138675777e-08 4.073644838e-08 4.179521126e-08 3.326240128e-08 3.45326802e-08 2.802263789e-08 3.123023697e-08 2.360841409e-08 3.002277826e-08 2.24992167e-08 1.561501852e-08 1.597033672e-08 2.328384259e-08 2.50884693e-08 1.320287591e-08 1.161792929e-08 2.12059022e-08 1.633219603e-08 2.375494583e-08 1.319145215e-08 1.72295378e-08 1.405277171e-08 1.280323232e-08 1.305974502e-08 2.08075757e-08 1.313789833e-08 1.30882846e-08 1.788206755e-08 1.193244898e-08 1.410877097e-08 1.764252545e-08 1.658411514e-08 1.891824574e-08 1.674609408e-08 1.690396786e-08 1.972549221e-08 1.577117801e-08 1.955049273e-08 1.246428835e-08 1.557271342e-08 1.979698176e-08 1.528480108e-08 1.781296486e-08 2.090714346e-08 1.310164482e-08 1.972361063e-08 1.302271631e-08 1.43610366e-08 2.333090974e-08 2.979090823e-08 2.399388433e-08 3.087719113e-08 3.255836333e-08 2.904926763e-08 3.66309868e-08 2.4237388e-08 3.991211555e-08 3.494201895e-08 3.54980182e-08 3.609332369e-08 4.226313038e-08 3.588616666e-08 3.18400808e-08 4.596997159e-08 4.160007617e-08 3.973288019e-08 4.63388374e-08 5.157502441e-08 4.559883926e-08 4.608271606e-08 3.88359486e-08 3.353778482e-08 3.69431776e-08 3.679187911e-08 3.701281983e-08 3.411807911e-08 3.410358878e-08 3.493942015e-08 3.615443112e-08 2.908903317e-08 3.221354765e-08 2.564009413e-08 2.576703843e-08 2.127157608e-08 2.242776692e-08 1.983261283e-08 2.422913981e-08 2.026431913e-08 1.953134353e-08 1.701990892e-08 1.60943772e-08 1.582285025e-08 1.254934228e-08 1.08885067e-08 6.389731135e-09 8.22821715e-09 9.514344704e-09 8.187583474e-09 4.93927591e-09 4.836818032e-09 2.05175502e-09 5.633778091e-10 1.016691349e-09 5.893795904e-10 5.472253052e-10 6.599520967e-10 3.853177499e-11 2.79036466e-11 1.732572679e-12 3.179128192e-13 8.775512283e-15 1.544473197e-14 3.261703693e-15 4.026780272e-17 3.316654673e-17 5.155050681e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.489341322e-18 9.597532662e-19 1.171130934e-17 1.366889339e-16 5.152282142e-17 3.260532823e-14 7.653668917e-15 1.0851199e-12 8.393197244e-12 6.608551062e-11 1.784596226e-10 6.367400551e-10 1.119278825e-09 6.081912913e-10 8.441368619e-10 1.332872426e-09 6.276834927e-09 4.845419758e-09 7.147755478e-09 1.028011167e-08 8.360667214e-09 1.256693288e-08 1.233981002e-08 9.002253018e-09 1.21511899e-08 1.878413253e-08 1.722064028e-08 1.902611959e-08 1.701629404e-08 2.266624928e-08 2.298413348e-08 2.634832006e-08 2.154651029e-08 2.882578242e-08 2.295452065e-08 2.99890061e-08 3.058418673e-08 3.700958895e-08 3.361066689e-08 3.477851635e-08 3.273543729e-08 3.756571683e-08 3.806889512e-08 3.81065928e-08 3.494966873e-08 4.294343226e-08 4.247184988e-08 4.482789329e-08 4.436012527e-08 4.159494366e-08 4.399818986e-08 4.306261142e-08 4.521022042e-08 3.764754418e-08 3.68578647e-08 3.401660037e-08 4.183574063e-08 4.589781652e-08 3.631658262e-08 3.129987544e-08 3.940105781e-08 3.807216234e-08 2.532157539e-08 2.675301562e-08 2.403525993e-08 2.049663222e-08 1.72127008e-08 2.509546546e-08 2.260706723e-08 2.481560958e-08 2.042702392e-08 1.401907004e-08 2.041114024e-08 1.989523168e-08 1.648012407e-08 1.648568021e-08 1.31813281e-08 1.031544915e-08 1.402939191e-08 1.965801367e-08 1.519459126e-08 1.591003556e-08 1.796087892e-08 1.553969717e-08 1.022512915e-08 1.705854404e-08 1.111510935e-08 1.589745448e-08 1.627791961e-08 1.303624719e-08 1.58283037e-08 1.670225848e-08 1.696236153e-08 1.486368391e-08 1.071150432e-08 2.081575147e-08 1.331769737e-08 2.222425045e-08 1.62575419e-08 1.98933885e-08 1.127301547e-08 1.720670459e-08 2.05745168e-08 2.87125636e-08 2.779417028e-08 1.883797159e-08 2.372814247e-08 3.221053472e-08 3.943686431e-08 2.078559794e-08 3.26164749e-08 3.796271895e-08 3.221106231e-08 2.996485844e-08 3.145403595e-08 4.627424531e-08 3.320556222e-08 3.973614434e-08 5.556899421e-08 5.139589882e-08 3.679298443e-08 4.339823316e-08 3.785088908e-08 3.528474233e-08 4.269490444e-08 4.161756519e-08 4.159578911e-08 4.083795351e-08 3.816219303e-08 4.018115149e-08 3.861071333e-08 4.154693447e-08 3.447788498e-08 2.994979708e-08 3.038167226e-08 2.426787204e-08 3.212822698e-08 2.284986698e-08 3.167742571e-08 2.260441951e-08 2.011049639e-08 2.165633012e-08 2.284635153e-08 2.002523964e-08 1.824178052e-08 1.426592509e-08 1.561955583e-08 1.494407117e-08 1.175183982e-08 1.130002193e-08 1.317065081e-08 1.198389484e-08 7.498548514e-09 5.820000987e-09 3.891147528e-09 3.38015964e-09 2.791713129e-09 2.328743032e-09 2.181816154e-10 5.363616585e-10 3.344101749e-10 1.890286829e-10 1.417683345e-10 2.616343454e-11 7.876927168e-13 1.492290253e-14 1.648742768e-13 5.963188281e-15 2.509281843e-16 7.048434316e-18 2.002190908e-17 0 1.0325763e-18 0 0 0 0 2.939538045e-26 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1.236947851e-18 2.944137424e-18 3.005874202e-17 2.820043626e-17 9.214766302e-17 1.71238821e-15 4.751990641e-14 2.953146377e-13 1.160319749e-12 4.022140181e-12 8.088593492e-11 2.148340313e-10 1.520664396e-10 2.14648046e-10 4.113535981e-10 2.169320166e-10 2.786252238e-09 4.244139365e-09 5.386068416e-09 8.620059977e-09 6.770232224e-09 8.461118183e-09 9.102420986e-09 1.173538366e-08 1.296568526e-08 1.15265398e-08 1.959028867e-08 1.914071285e-08 1.860870698e-08 2.056222542e-08 2.341712159e-08 2.27843777e-08 1.970170886e-08 2.882090198e-08 2.519290423e-08 3.072282845e-08 2.78557759e-08 3.060652696e-08 3.052321488e-08 3.388926003e-08 3.690658292e-08 3.209212029e-08 3.889065851e-08 3.988637018e-08 3.921798811e-08 4.226934821e-08 4.48019436e-08 4.352449188e-08 3.860802079e-08 4.439781514e-08 4.158039463e-08 4.950436994e-08 3.754648522e-08 4.128622637e-08 4.242340833e-08 3.694204192e-08 3.701780705e-08 4.106350735e-08 3.953106644e-08 3.63963297e-08 3.580401517e-08 3.399571383e-08 3.003598429e-08 4.494945937e-08 2.577263739e-08 3.252626126e-08 2.00072126e-08 1.574713304e-08 2.934914539e-08 1.967469364e-08 2.403344531e-08 2.642508373e-08 1.767480447e-08 1.797751808e-08 1.466546672e-08 1.641672346e-08 1.612082215e-08 1.28269039e-08 1.263926507e-08 1.754260292e-08 2.11638295e-08 1.903265388e-08 8.485860159e-09 2.051927158e-08 1.706836407e-08 1.323090985e-08 1.623683929e-08 1.598011321e-08 1.643149062e-08 1.563423218e-08 1.954890763e-08 2.019073162e-08 2.204664127e-08 1.531091203e-08 1.587341034e-08 1.846268385e-08 2.653707756e-08 1.956833021e-08 1.641638503e-08 2.281520582e-08 1.544353228e-08 1.6818131e-08 1.814436229e-08 2.198043369e-08 2.373640119e-08 1.161053713e-08 2.549445888e-08 2.953953216e-08 3.249181927e-08 3.400331176e-08 2.806756313e-08 3.436233157e-08 3.670450675e-08 3.49436744e-08 4.270064065e-08 2.4776342e-08 3.87797606e-08 4.563640211e-08 4.344791372e-08 3.98018684e-08 4.28675441e-08 4.498308649e-08 4.229664504e-08 3.877093942e-08 4.229586116e-08 4.484165375e-08 4.295707264e-08 3.76980189e-08 4.120593995e-08 4.228669541e-08 3.996641535e-08 4.426952378e-08 3.278531922e-08 2.753454118e-08 3.249747505e-08 3.316005895e-08 3.456285348e-08 2.938627691e-08 2.502991175e-08 2.696640487e-08 2.667923605e-08 2.111269013e-08 2.43952941e-08 2.456375199e-08 1.982368517e-08 1.643459755e-08 1.628576148e-08 1.554785531e-08 1.412233256e-08 1.365116625e-08 7.025597615e-09 1.036456356e-08 8.948381191e-09 8.513138376e-09 6.425171991e-09 5.510756588e-09 2.403752316e-09 1.645570743e-09 9.234659928e-10 5.353527683e-10 4.302697026e-10 2.738188078e-10 3.37694248e-10 7.730425661e-11 1.210817982e-12 3.576631583e-13 7.846637173e-14 1.110143294e-13 5.891794519e-15 8.920846522e-17 1.797390772e-17 2.756538797e-17 5.007520776e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.927345148e-19 1.523384333e-17 1.001719448e-16 1.839540063e-16 2.699889301e-16 1.925195397e-14 2.403920843e-13 7.610886064e-12 7.272879082e-12 5.253577592e-12 3.008365558e-10 5.737763567e-10 8.609367517e-10 5.02297552e-10 4.501944727e-10 3.259777645e-09 2.9517758e-09 4.454045831e-09 6.261161776e-09 8.58441153e-09 7.043639105e-09 6.163469888e-09 1.303089551e-08 1.279371438e-08 1.4331599e-08 1.83737533e-08 2.007738975e-08 1.893598393e-08 2.044503555e-08 1.859234406e-08 1.787909727e-08 2.473309082e-08 2.999361953e-08 2.48435407e-08 2.604849286e-08 3.222287406e-08 2.960637729e-08 2.81794442e-08 3.367598371e-08 3.404052522e-08 3.984670074e-08 3.439577491e-08 3.468773157e-08 4.212935711e-08 4.217844881e-08 3.466495e-08 3.899468835e-08 4.776081194e-08 3.583197371e-08 4.926844799e-08 4.86295168e-08 3.727699941e-08 3.308993864e-08 3.517009325e-08 3.636285511e-08 4.335506264e-08 3.69206408e-08 3.037632942e-08 3.87639995e-08 4.00811842e-08 3.705949555e-08 2.177942647e-08 3.256998807e-08 3.978307387e-08 2.116753902e-08 3.266524718e-08 2.078215195e-08 2.736832397e-08 1.813824623e-08 1.775115501e-08 1.822627437e-08 1.453026542e-08 1.798494704e-08 2.316759367e-08 1.830266438e-08 1.947416305e-08 1.706332974e-08 1.052456479e-08 1.445590431e-08 2.181488327e-08 1.463084841e-08 1.983767223e-08 1.575594319e-08 1.167187945e-08 1.529975053e-08 1.445204499e-08 1.841252947e-08 9.519956134e-09 1.573688215e-08 1.378826417e-08 1.417488644e-08 1.734229614e-08 1.469221624e-08 1.866641598e-08 1.334039041e-08 1.868864423e-08 2.142201122e-08 2.287898879e-08 1.962424071e-08 2.053789811e-08 2.165833615e-08 1.795791808e-08 2.273141717e-08 2.102227591e-08 2.091175326e-08 2.772138894e-08 3.033909315e-08 2.623748464e-08 2.956482808e-08 3.217098646e-08 3.139620169e-08 3.014272553e-08 3.420262409e-08 3.547040463e-08 4.685992539e-08 3.783452333e-08 4.361133516e-08 4.565144176e-08 3.540852601e-08 4.259866128e-08 4.367684952e-08 4.203998603e-08 5.01305852e-08 4.81753032e-08 3.984762005e-08 3.953859963e-08 4.478632656e-08 4.072374606e-08 4.106029921e-08 4.244403638e-08 3.737667632e-08 3.627743835e-08 3.22551101e-08 3.526468134e-08 3.087564548e-08 3.214785233e-08 3.373533357e-08 2.970625215e-08 2.767547534e-08 2.645075652e-08 2.123172854e-08 2.114040242e-08 2.797380644e-08 2.235627607e-08 1.909949914e-08 1.765815636e-08 1.508650391e-08 1.45182454e-08 1.427950338e-08 1.442596577e-08 1.513112292e-08 8.026723648e-09 6.730968019e-09 7.336233068e-09 4.660928051e-09 3.385280514e-09 2.74928292e-09 9.023895651e-10 4.32635064e-10 7.414377625e-10 3.003312038e-10 3.362085457e-10 1.135883182e-10 5.857324013e-12 9.381963005e-13 1.903016018e-13 1.75743977e-14 1.357094751e-15 4.147846024e-15 4.979138503e-17 1.102149811e-16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 3.569973985e-19 5.594737361e-19 7.17252586e-18 6.061765945e-17 3.643556568e-17 7.447135685e-15 3.083899422e-14 9.780923899e-11 3.521320342e-13 5.261368662e-13 5.888443464e-11 2.482110233e-10 6.607178778e-10 7.232427967e-10 1.028646182e-09 1.33603034e-09 3.915718992e-09 3.34312952e-09 3.24414434e-09 6.207677923e-09 6.582891568e-09 7.887859115e-09 1.060946175e-08 1.142192221e-08 1.062959358e-08 1.768697393e-08 1.506254272e-08 1.385799757e-08 1.830855983e-08 1.843826025e-08 2.093537624e-08 2.319389233e-08 2.411481195e-08 2.395914031e-08 2.666205731e-08 2.825863945e-08 2.905160622e-08 3.321612407e-08 3.009635041e-08 3.372310388e-08 3.639677239e-08 3.80274949e-08 3.916100588e-08 4.325906957e-08 4.453856651e-08 3.521628545e-08 5.091165708e-08 4.314229174e-08 4.424993967e-08 4.322946393e-08 4.147749133e-08 4.876959436e-08 4.15887207e-08 4.55642815e-08 3.71309024e-08 4.759922658e-08 4.573490244e-08 4.110426069e-08 3.838321987e-08 3.348984448e-08 3.313619862e-08 3.589323679e-08 3.291725693e-08 4.17981687e-08 3.346785544e-08 2.99121338e-08 2.559391546e-08 2.330261585e-08 2.34697482e-08 1.714663794e-08 1.723721613e-08 1.183697288e-08 1.588749768e-08 1.768902991e-08 1.93728165e-08 1.353529762e-08 1.949535915e-08 1.990796609e-08 1.83967947e-08 1.53329147e-08 1.806780892e-08 1.132780238e-08 1.417417907e-08 1.705550487e-08 1.679112065e-08 1.434834194e-08 2.208412101e-08 2.088513546e-08 1.888398816e-08 1.720090109e-08 1.299052984e-08 1.251619298e-08 1.586022583e-08 1.444340224e-08 1.732866569e-08 2.22923145e-08 1.758447771e-08 1.548260681e-08 1.993977561e-08 1.515119201e-08 1.938176077e-08 1.825559456e-08 2.808669663e-08 1.842190228e-08 1.509242456e-08 2.525725628e-08 2.77733711e-08 3.239461778e-08 2.367381814e-08 2.804642614e-08 3.18666052e-08 2.72156818e-08 3.253874263e-08 3.400034428e-08 4.110605009e-08 2.931272014e-08 3.975240954e-08 4.780961199e-08 4.573297291e-08 3.548017134e-08 4.108233627e-08 4.315817606e-08 4.366317715e-08 4.217642284e-08 3.734912006e-08 4.576856568e-08 4.076941084e-08 4.182129685e-08 4.767827109e-08 3.793564586e-08 4.396338287e-08 3.221555502e-08 3.531973701e-08 3.242436144e-08 3.368061924e-08 3.275480435e-08 3.237052776e-08 2.900073632e-08 2.723148669e-08 2.719527911e-08 2.298209113e-08 2.645008116e-08 2.424725958e-08 2.252795888e-08 1.783030526e-08 1.696206672e-08 1.954562493e-08 1.649617308e-08 1.463100174e-08 1.203329473e-08 1.463044668e-08 1.052528179e-08 1.276655049e-08 9.515528121e-09 7.812338408e-09 4.498026297e-09 4.336308638e-09 3.031587028e-09 1.338765555e-09 6.598854886e-10 2.539148015e-10 3.085292899e-10 2.20425624e-10 7.996682532e-11 4.731524653e-11 2.34725768e-12 4.603841672e-13 3.583644996e-14 5.909893266e-15 7.864258413e-16 1.516803954e-16 3.199251734e-18 1.569887262e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.12684672e-18 1.245487528e-18 4.160198368e-16 2.327424996e-16 4.655101826e-16 5.203068021e-14 4.376857014e-13 2.336442632e-12 2.348310151e-11 4.034767818e-11 1.362808295e-10 5.824311865e-10 6.039122023e-10 6.245265855e-10 1.188809321e-09 2.773873032e-09 4.662128979e-09 4.202682353e-09 6.646135403e-09 8.565119745e-09 9.390870795e-09 1.265136371e-08 1.319612607e-08 1.351661481e-08 1.625453971e-08 1.464730977e-08 1.57145863e-08 1.921961913e-08 2.308217046e-08 2.097935327e-08 2.000883922e-08 2.518765659e-08 1.796922338e-08 2.54228101e-08 2.73285988e-08 3.134727439e-08 3.236687881e-08 3.401659227e-08 3.607608678e-08 3.372323665e-08 3.34661376e-08 4.316171755e-08 4.178132635e-08 4.443155543e-08 4.219768295e-08 4.228532415e-08 4.521001828e-08 4.051702376e-08 4.159065139e-08 3.932913895e-08 4.50686355e-08 4.368049921e-08 4.362423864e-08 4.551118643e-08 3.959082482e-08 4.165067266e-08 3.478722569e-08 4.527683319e-08 3.212158458e-08 3.908208982e-08 3.317791727e-08 3.389798835e-08 4.083944553e-08 2.811244892e-08 2.600231891e-08 2.013111453e-08 1.836853869e-08 2.259819157e-08 1.667934103e-08 1.717285091e-08 2.203140928e-08 1.829905433e-08 1.236793398e-08 1.418335594e-08 1.493873676e-08 1.600022492e-08 1.483224658e-08 1.949615641e-08 1.506430896e-08 1.678295974e-08 1.486932356e-08 1.917531095e-08 1.675739826e-08 1.910858946e-08 1.082434353e-08 1.824749904e-08 1.385793592e-08 1.128098862e-08 1.933547396e-08 1.345879506e-08 1.513230638e-08 1.59624287e-08 1.145494692e-08 2.21116497e-08 1.529578397e-08 1.518783587e-08 1.581396718e-08 1.465899434e-08 2.172764079e-08 1.770903102e-08 1.538025512e-08 2.777854433e-08 1.263530915e-08 1.485211381e-08 1.149929862e-08 2.494755248e-08 2.093782975e-08 1.867340863e-08 2.582239286e-08 3.669832366e-08 3.326549488e-08 3.907204493e-08 4.012962764e-08 4.580348019e-08 4.221033847e-08 3.896857413e-08 3.961182544e-08 4.037211429e-08 4.575173548e-08 4.6464058e-08 4.790000269e-08 4.743077592e-08 3.690374052e-08 4.40141605e-08 4.281632556e-08 3.466568897e-08 4.277382004e-08 4.813519947e-08 4.361318408e-08 3.725199018e-08 4.066625876e-08 4.013958669e-08 4.085203725e-08 3.111313139e-08 3.180526588e-08 3.512191936e-08 3.252314674e-08 3.343374042e-08 3.139924751e-08 3.292813852e-08 2.184992897e-08 2.162142819e-08 1.59875895e-08 2.057075328e-08 1.779473063e-08 1.639656663e-08 1.335143035e-08 1.359204837e-08 1.49592834e-08 1.196625847e-08 7.735604112e-09 9.655079463e-09 9.235697611e-09 6.466213454e-09 5.702572158e-09 2.587363305e-09 3.79901032e-09 1.445656747e-09 7.10947031e-10 3.695906983e-10 3.257124167e-10 1.606928434e-10 1.130510663e-11 1.121348492e-11 1.324997912e-13 9.706346589e-14 2.185186255e-14 8.129646043e-15 1.512722083e-15 3.62583367e-17 1.268023444e-17 5.201958557e-19 6.179354965e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 4.496637627e-19 5.480229471e-18 1.524078801e-17 6.077141541e-17 6.458310087e-16 2.186636845e-14 2.924428139e-15 2.013267733e-13 1.72402812e-12 4.695482981e-11 2.078769615e-11 3.459955824e-10 2.779919047e-10 2.717162942e-10 3.733570892e-10 5.561427898e-10 3.089376982e-09 2.896104621e-09 6.429833059e-09 4.699308496e-09 8.767536737e-09 7.380556973e-09 9.78477516e-09 1.12955428e-08 1.089747429e-08 1.592788775e-08 1.862806799e-08 1.479025918e-08 2.026354137e-08 1.901052037e-08 1.677358985e-08 2.685941137e-08 2.586101518e-08 2.764621377e-08 2.408081459e-08 2.897154024e-08 3.06540997e-08 3.058876514e-08 3.35135937e-08 3.773318391e-08 3.505465453e-08 3.652816978e-08 3.923288647e-08 3.61630733e-08 3.996139926e-08 3.301121613e-08 3.546025638e-08 4.324662171e-08 3.941571597e-08 4.437882231e-08 3.815198988e-08 4.45660952e-08 4.745551415e-08 5.416688882e-08 4.279562688e-08 4.229917248e-08 3.541212977e-08 4.320088365e-08 3.678021941e-08 3.75773726e-08 3.920016701e-08 2.803184523e-08 3.00199496e-08 3.678781729e-08 3.238330614e-08 3.102125911e-08 3.122120038e-08 2.673172335e-08 2.338417014e-08 2.103758844e-08 2.649985182e-08 1.205773022e-08 9.24560575e-09 2.004492514e-08 1.307598259e-08 1.531941141e-08 1.818630105e-08 2.169438053e-08 1.325439354e-08 1.812438781e-08 1.581092871e-08 1.551142133e-08 1.560818288e-08 1.456288171e-08 1.745841149e-08 1.787096223e-08 1.540499312e-08 1.536420941e-08 1.623546191e-08 1.853669201e-08 1.155546303e-08 1.856506069e-08 2.050811221e-08 1.556552571e-08 1.503322647e-08 1.97583465e-08 1.320526334e-08 1.540113827e-08 1.439451704e-08 8.972544087e-09 1.517104328e-08 2.128441996e-08 1.318759606e-08 2.092583388e-08 1.918006266e-08 2.141906438e-08 1.952104225e-08 2.331064411e-08 3.427786697e-08 3.338340374e-08 2.926870245e-08 3.180290232e-08 3.763558221e-08 4.314808104e-08 4.28514725e-08 4.009571387e-08 4.515685336e-08 3.758511464e-08 3.553708714e-08 3.781538302e-08 3.810419131e-08 4.3830702e-08 4.410656259e-08 3.952654791e-08 4.606949138e-08 4.417364387e-08 4.05992722e-08 3.89687783e-08 3.846031998e-08 3.455311174e-08 4.056805203e-08 3.991274735e-08 3.666655449e-08 3.53726585e-08 3.217488008e-08 3.281634067e-08 3.267667093e-08 3.128091039e-08 2.616174554e-08 2.506710563e-08 2.592384458e-08 2.121288643e-08 2.479217413e-08 2.422452852e-08 1.832433164e-08 1.986521399e-08 1.472008985e-08 1.295348268e-08 1.26601838e-08 1.420387768e-08 1.206456611e-08 1.3251723e-08 8.556098084e-09 4.292969799e-09 8.766228188e-09 5.508233333e-09 2.958769062e-09 3.184293831e-09 2.2387278e-09 1.046695311e-09 3.847437953e-10 6.537281961e-10 3.322357688e-10 9.054713483e-11 1.639921926e-12 1.714072934e-12 9.837080106e-14 1.171375562e-15 3.98297043e-15 8.493367938e-16 2.17288989e-18 0 2.089523314e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 2.245288981e-19 0 7.528527114e-18 3.346250307e-17 1.589613196e-15 3.078453802e-15 5.231300234e-14 2.311920114e-13 2.637324211e-12 3.480373507e-11 7.354379488e-11 2.956631313e-10 5.45295306e-10 3.526717096e-10 9.215111829e-10 2.347659254e-09 3.680840167e-09 3.755722024e-09 4.333784098e-09 4.482056373e-09 8.228506555e-09 5.994779322e-09 8.938732551e-09 1.299073432e-08 9.901010469e-09 1.424612207e-08 1.559976467e-08 1.622642442e-08 1.876676499e-08 1.675447965e-08 1.619121264e-08 2.473373702e-08 1.904083943e-08 2.152302268e-08 2.392337257e-08 2.805196953e-08 2.942926397e-08 2.920416563e-08 3.140390584e-08 3.33576198e-08 3.498213177e-08 3.76253605e-08 4.021995402e-08 3.841972807e-08 4.189316795e-08 4.221545433e-08 4.25770098e-08 4.329053749e-08 3.705999011e-08 3.894683227e-08 4.729194429e-08 4.265950107e-08 4.304369861e-08 3.698018499e-08 3.348047203e-08 4.067606425e-08 3.791784701e-08 3.859523166e-08 3.2800518e-08 4.021844768e-08 4.148516105e-08 3.175192141e-08 3.375065251e-08 2.52917334e-08 3.897637056e-08 3.121772519e-08 2.564114677e-08 2.364317529e-08 2.427152078e-08 2.050328032e-08 1.861328238e-08 1.34490527e-08 1.381921718e-08 2.086416033e-08 1.940699951e-08 1.608735234e-08 1.85215849e-08 1.396348444e-08 2.107107762e-08 1.437038681e-08 2.000127739e-08 1.802546395e-08 1.247678591e-08 1.276994751e-08 1.562111273e-08 1.459084742e-08 1.239801118e-08 1.84023516e-08 1.560540701e-08 1.139121781e-08 1.557576653e-08 1.189368768e-08 1.56545457e-08 1.463579287e-08 1.887226757e-08 1.249012762e-08 1.828519417e-08 2.121680373e-08 1.689382591e-08 1.586688156e-08 1.738766259e-08 1.412243293e-08 1.815083315e-08 1.832351544e-08 2.768621702e-08 1.408484033e-08 2.092718512e-08 2.521138464e-08 2.747484128e-08 3.174242828e-08 2.73151194e-08 3.534634129e-08 3.342743982e-08 4.313717957e-08 3.673871622e-08 3.585024021e-08 3.77726887e-08 3.863999174e-08 4.588900512e-08 4.635582205e-08 3.259275919e-08 4.482380685e-08 4.163013468e-08 4.742710692e-08 4.98603385e-08 4.005448772e-08 4.512452977e-08 4.082351091e-08 4.204563304e-08 3.768791733e-08 4.300981973e-08 4.175966076e-08 3.511381399e-08 3.063423556e-08 3.311155545e-08 3.673824644e-08 3.277648537e-08 2.903860956e-08 2.894987505e-08 2.763747622e-08 2.342963416e-08 2.670402324e-08 2.473128867e-08 1.892634036e-08 1.634789674e-08 2.059584651e-08 1.739625724e-08 1.486379034e-08 1.323652815e-08 1.39639579e-08 1.032537246e-08 1.252640493e-08 9.429788909e-09 9.34938974e-09 6.696607637e-09 3.460542615e-09 4.183927376e-09 2.547445857e-09 1.137685991e-09 4.634952408e-10 4.286960243e-10 7.876556205e-10 1.034057318e-10 7.273499085e-11 1.876744346e-11 9.002488833e-13 1.139944928e-12 3.786443264e-15 2.908503705e-15 6.216937011e-17 5.187519633e-17 2.19466338e-17 3.66344867e-18 4.423639168e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 6.628526114e-19 3.604254733e-18 1.978482232e-17 7.514218649e-17 5.915546912e-16 3.554102124e-15 8.375249723e-15 5.298180805e-13 5.727570819e-12 2.131551809e-11 1.186896701e-10 5.923549732e-10 3.08659038e-10 5.675000908e-10 8.04671402e-10 1.02177924e-09 3.26588466e-09 2.674245248e-09 5.270136181e-09 7.483344382e-09 9.671641995e-09 9.312158684e-09 1.370862705e-08 1.267611465e-08 1.572088511e-08 1.327869259e-08 1.433348838e-08 1.231327345e-08 1.717678355e-08 1.748575009e-08 1.661710453e-08 1.89639615e-08 2.436917439e-08 2.193936987e-08 2.90773895e-08 2.149047468e-08 2.822740683e-08 3.149650006e-08 2.983915191e-08 3.27481166e-08 3.339136284e-08 3.200223806e-08 4.15086207e-08 4.105992244e-08 3.589398598e-08 3.568684939e-08 4.4128306e-08 4.899042263e-08 4.665078514e-08 3.62824898e-08 3.272852612e-08 3.820656578e-08 3.549106296e-08 4.168216878e-08 3.782713932e-08 3.384894534e-08 4.492037313e-08 4.696438873e-08 3.592855228e-08 3.303277753e-08 2.789121231e-08 3.831527756e-08 2.582299192e-08 2.634405306e-08 3.090311539e-08 2.090460543e-08 1.972681053e-08 2.742049793e-08 2.770288884e-08 1.790242292e-08 2.123804855e-08 1.482703356e-08 1.967642825e-08 1.617194301e-08 1.844689384e-08 2.259339383e-08 1.666235299e-08 1.888277381e-08 1.973045771e-08 6.35712168e-09 1.529146323e-08 1.308159623e-08 1.492108273e-08 1.726860505e-08 2.041400797e-08 2.782059584e-08 1.39651969e-08 1.628181632e-08 1.679833931e-08 1.661531256e-08 1.728987878e-08 1.437832373e-08 1.337818235e-08 1.572905481e-08 1.652433731e-08 1.766614321e-08 1.545628027e-08 1.647303151e-08 1.904110071e-08 1.543529134e-08 1.792589881e-08 1.459960986e-08 1.512873151e-08 2.473754777e-08 2.74500549e-08 1.396070104e-08 1.973563978e-08 2.833181211e-08 2.240223848e-08 2.789904358e-08 2.873328498e-08 2.878926067e-08 3.564984666e-08 4.143904211e-08 2.711954008e-08 3.356409179e-08 3.827260425e-08 4.205412865e-08 3.684270627e-08 4.187284668e-08 3.538153187e-08 4.106515007e-08 4.649428168e-08 4.062423733e-08 3.822593759e-08 4.359906303e-08 4.43357285e-08 3.472754975e-08 4.77914734e-08 4.606114557e-08 3.855753629e-08 3.185673472e-08 3.824831419e-08 3.620797738e-08 3.245669266e-08 3.349443069e-08 3.554621368e-08 2.571972832e-08 2.851862687e-08 2.57620898e-08 2.287338048e-08 2.512224284e-08 2.231592055e-08 1.588540184e-08 2.093347173e-08 1.371354144e-08 1.501192675e-08 1.409621259e-08 1.457108986e-08 1.417759973e-08 1.04409393e-08 8.387912976e-09 1.013165645e-08 8.655916495e-09 5.510505217e-09 4.108931191e-09 3.729477342e-09 2.315160831e-09 1.563177748e-09 6.152709168e-10 4.672767051e-10 3.338014309e-10 1.988535719e-10 1.476702503e-10 1.147323785e-11 7.60255832e-13 7.343560046e-13 1.72043304e-14 1.731564195e-14 2.357432892e-17 2.321760654e-16 1.341591163e-18 4.610118984e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.194440887e-17 4.510774132e-17 1.146890217e-16 5.398523e-15 1.332662308e-14 4.357055536e-14 1.660287545e-12 5.131214345e-11 2.913216313e-11 1.212889177e-10 9.621043653e-10 7.067376726e-10 5.438228167e-10 1.504092322e-09 1.823479825e-09 4.480075441e-09 6.475332395e-09 6.03071913e-09 7.518901053e-09 7.497048078e-09 9.815074215e-09 9.470270894e-09 1.505031228e-08 1.266234369e-08 1.394249943e-08 1.482543599e-08 1.834986011e-08 1.858241734e-08 1.972495049e-08 2.011025713e-08 2.247299183e-08 2.937186086e-08 1.985957076e-08 2.441159009e-08 2.667782812e-08 3.376986066e-08 3.555705003e-08 2.883490379e-08 3.504576987e-08 2.869342859e-08 3.425569367e-08 3.912468009e-08 4.263821774e-08 3.632823251e-08 4.34666569e-08 3.958769161e-08 4.417356792e-08 3.094267817e-08 4.555061302e-08 4.5436427e-08 4.400210886e-08 4.26947159e-08 3.616183845e-08 4.502947459e-08 3.630622907e-08 3.188827883e-08 3.854028863e-08 3.462712594e-08 3.765071373e-08 3.736897249e-08 2.124392849e-08 3.114355033e-08 3.219205009e-08 2.112230451e-08 2.49741586e-08 2.853985481e-08 1.958287336e-08 1.540459398e-08 1.705359485e-08 2.010488001e-08 1.417488162e-08 2.378639672e-08 1.835495702e-08 2.038211987e-08 2.129268662e-08 1.678045078e-08 1.326266926e-08 1.432386047e-08 1.537611923e-08 1.332001618e-08 1.774614481e-08 1.149830571e-08 1.131078687e-08 1.568639538e-08 1.246396472e-08 1.512816268e-08 1.07130403e-08 1.531429781e-08 7.062434367e-09 1.488170511e-08 1.884193241e-08 1.678702976e-08 1.769939874e-08 1.978988339e-08 1.197335688e-08 1.906748115e-08 2.09598931e-08 1.090927123e-08 1.647150644e-08 2.110579808e-08 1.493920163e-08 2.024384081e-08 2.119107918e-08 1.563705617e-08 2.417802159e-08 2.272571937e-08 3.255563619e-08 2.158344642e-08 3.349772852e-08 3.173237439e-08 3.277015562e-08 3.114544973e-08 3.403249028e-08 4.434403178e-08 4.05607816e-08 3.840125674e-08 5.029586623e-08 4.775163095e-08 4.453220192e-08 4.438145722e-08 3.946679517e-08 4.072040453e-08 3.674593174e-08 3.856345081e-08 3.836803951e-08 4.451977953e-08 3.729975498e-08 3.780503327e-08 3.351665791e-08 3.171844617e-08 3.326174057e-08 3.216426255e-08 3.743491068e-08 3.139632471e-08 3.237890446e-08 2.829418148e-08 2.737800957e-08 2.554526696e-08 2.34041388e-08 2.45923545e-08 2.429405535e-08 1.99764735e-08 1.538170171e-08 1.858298175e-08 1.588006624e-08 1.485154489e-08 1.749725572e-08 1.308627418e-08 1.057513368e-08 1.019685932e-08 8.418190817e-09 8.837529972e-09 6.578391162e-09 5.974947957e-09 2.136303502e-09 2.79862592e-09 6.572659431e-10 4.48935138e-10 1.033385133e-10 4.419003613e-10 3.139292688e-10 6.075147785e-11 1.539442137e-11 7.286664887e-13 9.725634501e-15 3.082701117e-14 7.321132606e-15 3.365913362e-16 3.972432709e-16 2.254537281e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.703376144e-19 3.525113235e-17 2.517418299e-17 9.756925305e-17 1.761947011e-14 5.920429241e-14 1.918320615e-13 8.921899676e-12 2.400393767e-11 3.243656234e-10 3.060083137e-10 9.057461171e-10 9.770065711e-10 6.320885576e-10 6.615382861e-10 1.855174554e-09 3.837048943e-09 4.471594773e-09 5.829420631e-09 4.722182362e-09 1.14248545e-08 8.691623905e-09 1.043179964e-08 7.493023278e-09 1.362842272e-08 1.714389397e-08 1.550693484e-08 1.969662884e-08 1.961585691e-08 2.185749368e-08 2.129144766e-08 2.390464773e-08 2.313864222e-08 2.392983799e-08 2.911258095e-08 2.161034614e-08 3.068884074e-08 3.189156941e-08 3.358889356e-08 3.198121492e-08 3.557823964e-08 3.674534922e-08 3.561437509e-08 4.029981174e-08 3.405969389e-08 3.398343312e-08 3.789949988e-08 4.077365708e-08 3.609651517e-08 4.370507475e-08 4.054574465e-08 4.778294128e-08 3.818230794e-08 5.061274981e-08 3.657033044e-08 3.436818053e-08 3.570576385e-08 3.987008379e-08 3.244476271e-08 3.17432498e-08 3.55955844e-08 2.444314037e-08 4.696935093e-08 3.246977215e-08 2.418919537e-08 2.305776573e-08 1.714577812e-08 2.522838208e-08 1.706237093e-08 1.756051741e-08 2.199718e-08 1.813506217e-08 1.297134411e-08 1.33027348e-08 1.3883514e-08 2.390227953e-08 2.051736725e-08 1.434080722e-08 1.12726118e-08 1.919357373e-08 1.981442342e-08 1.266868713e-08 1.276663954e-08 1.878186868e-08 1.679283469e-08 9.198776716e-09 1.136896977e-08 1.642684949e-08 1.41925704e-08 2.004837107e-08 1.182021543e-08 1.087822503e-08 1.516568038e-08 1.381582419e-08 1.409967174e-08 1.341211848e-08 2.351367639e-08 1.217624615e-08 1.386129011e-08 1.521262787e-08 1.095102669e-08 1.860159609e-08 2.085349938e-08 2.318005968e-08 1.227821554e-08 2.84973126e-08 2.16616455e-08 3.007354631e-08 1.903905141e-08 4.006528348e-08 3.566320152e-08 3.286257491e-08 3.589374596e-08 3.224520028e-08 3.670109801e-08 3.24591464e-08 4.116386794e-08 3.993345512e-08 4.268244888e-08 4.498118438e-08 3.93048333e-08 4.504848603e-08 4.110950466e-08 4.186539473e-08 4.529364042e-08 3.906984552e-08 4.061058453e-08 3.309986887e-08 3.640652079e-08 4.738398257e-08 3.426780011e-08 3.819218379e-08 3.119944555e-08 2.966179411e-08 2.96761397e-08 2.808994794e-08 3.032700209e-08 2.615025572e-08 2.646673502e-08 2.70077315e-08 1.812597053e-08 2.362350994e-08 2.108825195e-08 2.158113801e-08 1.675375442e-08 1.881791811e-08 1.227864632e-08 1.27886112e-08 1.456241898e-08 7.939882504e-09 1.137209645e-08 9.709990041e-09 6.466482442e-09 5.196952631e-09 2.144726322e-09 3.961875091e-09 3.391820285e-09 1.443430409e-09 9.178883778e-10 6.197354779e-10 6.33043322e-10 8.706130531e-12 1.376106616e-11 1.437053911e-12 1.500663688e-12 2.168937844e-13 6.307883594e-14 2.104153897e-15 4.150352859e-16 1.870300148e-17 6.619367489e-17 0 3.856721948e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.752449046e-18 7.122614015e-18 3.714845811e-18 1.799475165e-16 1.183227219e-15 1.866697308e-15 5.319836534e-14 3.344014397e-12 1.518120372e-11 7.603851122e-11 3.138747077e-10 5.612560475e-10 3.988193033e-10 5.455261324e-10 2.355537672e-09 2.713102984e-09 2.798354505e-09 3.953995636e-09 5.598856984e-09 8.406628543e-09 1.0263267e-08 9.823448991e-09 1.106517155e-08 1.416827799e-08 1.516459437e-08 1.662760235e-08 1.550444729e-08 1.902151883e-08 2.105054947e-08 1.865041811e-08 2.361595614e-08 1.72095473e-08 2.378040028e-08 2.492690303e-08 2.633440571e-08 2.515956545e-08 3.195501484e-08 3.061263645e-08 2.767175723e-08 3.260521418e-08 3.676633917e-08 3.431549927e-08 3.396384265e-08 3.332788902e-08 4.104563725e-08 3.904685841e-08 3.399706334e-08 4.08665444e-08 4.235097485e-08 3.233389232e-08 3.997330152e-08 3.671784724e-08 3.424158359e-08 3.866809533e-08 3.210065338e-08 4.728518747e-08 3.893788559e-08 4.386890199e-08 3.297988921e-08 3.329992588e-08 3.362070428e-08 3.171667999e-08 1.887494865e-08 2.841595818e-08 2.359406044e-08 1.975980972e-08 2.262656621e-08 2.210330029e-08 1.894642762e-08 2.36451e-08 2.536589191e-08 2.363924946e-08 1.531677298e-08 1.447567628e-08 1.39545494e-08 2.428816973e-08 2.171001272e-08 1.352167751e-08 1.897168825e-08 1.419205902e-08 2.14341306e-08 1.44665976e-08 1.422379463e-08 8.687822935e-09 1.279608794e-08 1.535971848e-08 1.290948736e-08 1.587029443e-08 9.981738358e-09 1.816791323e-08 1.358185572e-08 1.393428435e-08 1.053636429e-08 1.559055111e-08 1.442390933e-08 1.745770365e-08 4.894876845e-09 1.269695153e-08 2.078283437e-08 1.477584903e-08 1.699103364e-08 1.155571539e-08 2.152436488e-08 2.067630213e-08 1.532567235e-08 2.243178028e-08 2.915809085e-08 1.861262276e-08 3.190390997e-08 2.301451031e-08 2.916433557e-08 3.397850039e-08 2.645180665e-08 3.783908115e-08 4.4268192e-08 3.63201509e-08 3.065114255e-08 3.508288957e-08 3.715841838e-08 3.532248934e-08 3.65992371e-08 3.947172478e-08 3.586485755e-08 3.611096097e-08 4.005686017e-08 4.358338448e-08 3.170539894e-08 3.853390632e-08 3.756292359e-08 3.95126397e-08 2.973775556e-08 2.878084184e-08 3.204058329e-08 3.467022803e-08 3.174264066e-08 2.29219087e-08 3.030716759e-08 2.135883803e-08 2.409932222e-08 2.543473201e-08 1.873799941e-08 2.263270944e-08 1.707571097e-08 1.375224786e-08 1.754797777e-08 1.663248858e-08 1.394412594e-08 1.287219052e-08 8.562316304e-09 1.074850235e-08 9.357167379e-09 1.171762092e-08 8.553311189e-09 6.747739148e-09 6.680157945e-09 2.857035124e-09 2.038216617e-09 7.082761913e-10 4.312074929e-10 6.390865852e-10 4.348635602e-10 3.579789345e-10 5.514882779e-11 4.214063794e-12 1.924373011e-13 1.021754866e-12 2.776811711e-15 4.473398537e-15 3.487242774e-16 7.13601968e-17 1.591439592e-17 1.376503695e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.540040963e-18 2.48084161e-17 7.592133284e-17 2.976773549e-16 4.30072239e-15 2.415465919e-13 2.042214133e-13 5.720504667e-12 2.434940748e-11 1.112253134e-10 1.305937685e-11 7.930648729e-10 5.195972379e-10 4.545186922e-10 1.47947823e-09 2.523661299e-09 2.781052769e-09 4.484771085e-09 3.605553974e-09 6.97464305e-09 6.132888304e-09 5.58099868e-09 9.104445954e-09 1.029200759e-08 1.416465776e-08 1.32680801e-08 1.796861378e-08 1.720293025e-08 1.707416876e-08 1.886748415e-08 2.257037679e-08 2.427711798e-08 2.347504795e-08 2.810423782e-08 2.785163213e-08 2.723731782e-08 2.795416788e-08 2.673994587e-08 3.415977915e-08 3.296585564e-08 3.172521326e-08 3.756274568e-08 3.323834749e-08 3.751175855e-08 3.812310054e-08 4.283296952e-08 3.775738679e-08 3.513740978e-08 4.036575305e-08 4.693196429e-08 3.894330604e-08 4.16095528e-08 3.640576351e-08 3.405897191e-08 3.806700406e-08 3.811905478e-08 3.649057737e-08 4.352360205e-08 3.39728897e-08 3.336138259e-08 2.864427119e-08 2.945149582e-08 2.847149454e-08 2.887732046e-08 2.709496127e-08 2.019039492e-08 1.742055422e-08 2.085525749e-08 1.481728057e-08 1.092099737e-08 9.106642229e-09 2.49634748e-08 1.574971665e-08 1.399183698e-08 1.881218853e-08 7.89720929e-09 1.326141278e-08 1.414603362e-08 1.563946327e-08 1.530252022e-08 1.573491751e-08 1.941140806e-08 1.86016198e-08 1.292872691e-08 2.028829831e-08 1.023940881e-08 1.434641006e-08 1.756921856e-08 1.514319577e-08 1.854268818e-08 1.511852898e-08 1.360572872e-08 1.746424707e-08 9.900649054e-09 1.841037008e-08 1.137360429e-08 2.057628675e-08 2.068877669e-08 1.282628902e-08 1.673074837e-08 1.293776662e-08 1.58570934e-08 1.42073343e-08 1.835184408e-08 2.053462034e-08 2.83801298e-08 2.496280868e-08 2.04821784e-08 2.063926427e-08 3.16699136e-08 1.790010787e-08 3.338649342e-08 3.234254886e-08 3.942414065e-08 3.662052657e-08 3.579903176e-08 3.383158486e-08 4.257354172e-08 3.458008803e-08 3.613318911e-08 3.353490437e-08 4.769817742e-08 4.118135557e-08 4.415218722e-08 3.725760591e-08 4.13774893e-08 4.108103985e-08 3.634947074e-08 3.689264273e-08 3.649096446e-08 3.974150666e-08 3.78083548e-08 3.080956126e-08 3.076681528e-08 3.109749516e-08 2.628312334e-08 2.483276619e-08 2.800758077e-08 1.870715945e-08 2.549996635e-08 2.008205409e-08 1.970054707e-08 1.908570526e-08 1.852050853e-08 1.510831516e-08 1.743439526e-08 1.232451141e-08 8.492297869e-09 1.04007843e-08 9.347309408e-09 9.494369529e-09 6.53831346e-09 6.314050802e-09 4.054671096e-09 3.49594031e-09 3.148589241e-09 2.491316007e-09 1.388571849e-09 6.493075575e-10 7.729547656e-10 2.906138769e-10 3.758446799e-10 8.157185229e-11 4.398871661e-12 5.458295718e-12 5.638759955e-14 1.67273114e-13 1.229814509e-15 4.724146434e-17 8.160843552e-19 9.07308897e-18 0 0 0 0 0 0 0 0 0 0 0 8.902682706e-11 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.721997922e-18 1.648347226e-18 5.497353768e-17 1.17647817e-16 1.355726741e-14 8.719722371e-15 4.223146582e-13 1.226163596e-13 3.861236455e-12 2.088087846e-11 1.937448263e-10 5.966743755e-10 4.94425715e-10 4.592642523e-10 1.014893879e-09 1.966118857e-09 4.325720594e-09 6.040678118e-09 7.694280275e-09 7.255580642e-09 6.198283762e-09 7.025629773e-09 1.341447367e-08 1.477740846e-08 1.385713515e-08 1.40031512e-08 1.508165607e-08 1.656676802e-08 1.841583627e-08 1.993848649e-08 1.993744565e-08 2.006080214e-08 2.446110067e-08 2.57866093e-08 1.985557461e-08 2.919959246e-08 2.793585124e-08 3.031518008e-08 3.09179001e-08 3.472826842e-08 3.470961135e-08 3.223097691e-08 3.720209437e-08 4.213642899e-08 3.31858059e-08 3.695454609e-08 3.316670832e-08 3.652454448e-08 4.187899156e-08 3.692392725e-08 4.382218477e-08 3.360283909e-08 3.54876281e-08 3.863391098e-08 3.313573498e-08 4.178444904e-08 3.796431419e-08 2.809576127e-08 4.245619594e-08 2.504254098e-08 2.265249216e-08 2.758170172e-08 2.79860676e-08 2.285913052e-08 1.612205966e-08 2.402083225e-08 2.06442494e-08 2.327446502e-08 1.335906098e-08 1.675784749e-08 1.839703743e-08 1.863240757e-08 1.223213194e-08 1.887436611e-08 1.96452581e-08 1.681881961e-08 1.338260988e-08 1.222184499e-08 1.280661474e-08 1.509671651e-08 1.940161248e-08 1.142625698e-08 1.072842697e-08 1.035647714e-08 1.105435098e-08 1.391753415e-08 1.088160533e-08 1.575764041e-08 1.113261819e-08 1.258869759e-08 1.513907395e-08 1.135321365e-08 1.70139002e-08 1.994515961e-08 1.107532505e-08 1.27096303e-08 1.055671065e-08 1.722822544e-08 2.411771331e-08 1.324103301e-08 1.52843597e-08 2.179026714e-08 2.067021494e-08 2.118862903e-08 1.823653622e-08 1.639564175e-08 1.544347704e-08 1.74925173e-08 2.587877847e-08 3.202619819e-08 1.585510653e-08 3.133705738e-08 2.724425626e-08 2.691242502e-08 4.451478088e-08 3.950284043e-08 3.192034476e-08 3.440901322e-08 3.926163366e-08 2.653212171e-08 4.478531354e-08 4.71976404e-08 3.57741117e-08 3.490714595e-08 3.438569831e-08 4.434313751e-08 4.527662824e-08 3.901015283e-08 3.838735974e-08 3.185585137e-08 2.812843295e-08 3.2177882e-08 2.880392873e-08 3.451953656e-08 2.757424303e-08 2.927166579e-08 2.755065739e-08 2.860268681e-08 2.185373015e-08 2.068986788e-08 2.091971032e-08 1.934252053e-08 2.195974217e-08 1.962903585e-08 1.914000568e-08 1.224679762e-08 1.534015526e-08 1.083734673e-08 1.208677168e-08 1.050432255e-08 8.469860628e-09 1.095577751e-08 7.212848318e-09 6.705005984e-09 3.687749456e-09 2.782293018e-09 2.308068689e-09 2.464442823e-09 3.168984474e-11 7.260938775e-10 6.901994366e-10 3.981280537e-10 6.450651425e-11 8.309107612e-12 2.29640639e-12 1.303943675e-13 3.333626758e-15 5.261315033e-15 7.812149196e-16 4.346339953e-18 9.749052843e-18 3.170177499e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.405921211e-18 2.684639729e-18 2.435784231e-17 6.673976162e-16 7.282979637e-16 4.497806489e-14 2.129634069e-13 7.873535372e-14 1.973113732e-11 6.545338392e-11 9.182404806e-11 6.279781197e-10 2.642442181e-10 8.237545106e-10 7.534104392e-10 3.086058768e-09 3.991046012e-09 3.095446481e-09 5.462086269e-09 7.018407701e-09 7.961830924e-09 1.112490399e-08 1.049274489e-08 1.003986725e-08 1.080239853e-08 1.34155631e-08 1.608900878e-08 1.575562849e-08 1.542594183e-08 1.984061493e-08 1.930880208e-08 2.009470206e-08 2.35813166e-08 1.850026564e-08 2.582304584e-08 2.732138407e-08 2.589261552e-08 2.756254547e-08 2.950685413e-08 2.940960591e-08 2.978251461e-08 3.660259066e-08 3.427918784e-08 3.286213179e-08 3.533068603e-08 3.509929833e-08 3.543517239e-08 3.333897811e-08 3.184868439e-08 4.205429905e-08 3.81044909e-08 3.921175925e-08 3.822275968e-08 3.86803411e-08 3.541418851e-08 2.454392292e-08 2.847981168e-08 3.311356643e-08 3.822742385e-08 2.672629818e-08 3.781702714e-08 3.031161279e-08 2.739068555e-08 2.58183633e-08 2.312141082e-08 2.302806172e-08 8.053763536e-09 2.044313414e-08 2.05478871e-08 1.550489987e-08 1.642905034e-08 1.285640826e-08 1.913326548e-08 1.567519391e-08 9.498620467e-09 1.293047603e-08 1.595324119e-08 1.132010437e-08 1.168788211e-08 1.605789257e-08 1.065783021e-08 1.452552926e-08 9.674933733e-09 1.508320972e-08 9.842994811e-09 8.005731598e-09 1.586991794e-08 1.187994934e-08 1.230510507e-08 1.415675465e-08 1.74013827e-08 8.593291674e-09 1.103109971e-08 1.074101446e-08 1.506625296e-08 1.413639769e-08 1.316191196e-08 1.736724101e-08 1.309717521e-08 2.160525383e-08 1.091905651e-08 1.620119266e-08 1.042800772e-08 2.172676809e-08 2.127619581e-08 1.274512459e-08 1.892108665e-08 2.524706089e-08 2.704858478e-08 2.410607593e-08 3.662065688e-08 2.155215934e-08 3.426229663e-08 3.208710076e-08 3.461242895e-08 3.01613225e-08 2.853716377e-08 3.617848232e-08 3.901531585e-08 3.43183321e-08 3.457871555e-08 3.8502695e-08 3.966006925e-08 4.100025287e-08 3.049938299e-08 3.780026433e-08 3.425336345e-08 3.552114009e-08 3.702101627e-08 2.854391767e-08 3.244756401e-08 3.048098341e-08 2.81670491e-08 3.167498992e-08 2.415778748e-08 2.857594029e-08 3.005979971e-08 2.765452786e-08 2.655898017e-08 1.625426534e-08 2.003020467e-08 1.97048246e-08 1.770885217e-08 1.607013793e-08 9.897551302e-09 1.09483984e-08 1.237183139e-08 1.482812291e-08 1.053047953e-08 7.275021702e-09 7.830294871e-09 7.905275591e-09 6.487211885e-09 5.247965727e-09 4.311730615e-09 3.64429669e-09 3.799111413e-09 9.75032461e-10 7.34774955e-10 4.195684212e-10 1.944112464e-10 2.774054325e-11 6.156689375e-11 8.144140513e-12 2.755397944e-12 3.237192541e-13 1.427368194e-14 1.727521834e-15 1.995344965e-15 1.563574706e-17 6.457413294e-18 8.275909228e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.929241389e-20 0 1.222124213e-17 6.292508859e-16 8.770800407e-15 1.33353108e-13 1.314736047e-14 3.653500224e-12 1.817029649e-11 2.32790937e-11 3.057802415e-10 1.431066499e-10 3.978641781e-10 9.177186465e-10 1.032469507e-09 1.651686253e-09 3.532694044e-09 5.647142898e-09 3.59705415e-09 4.753135328e-09 7.358824544e-09 6.969975079e-09 1.06935231e-08 1.094381014e-08 1.146321724e-08 1.819789215e-08 1.654909224e-08 1.417159899e-08 2.127285146e-08 1.818821066e-08 2.211797814e-08 2.000753649e-08 1.642973534e-08 2.660548496e-08 2.326976567e-08 2.435708514e-08 2.477592017e-08 3.300391348e-08 2.842577874e-08 3.225226499e-08 3.186632626e-08 3.12162311e-08 3.524702983e-08 3.472328735e-08 4.24085387e-08 4.023055386e-08 3.593995144e-08 3.804657726e-08 3.02939287e-08 3.154539965e-08 4.016931071e-08 3.607976203e-08 3.929922701e-08 3.149817563e-08 3.69213087e-08 2.805991027e-08 2.952143357e-08 2.939152545e-08 3.035398148e-08 2.992098005e-08 3.071260909e-08 2.936072937e-08 2.689553911e-08 2.252318516e-08 2.122053357e-08 2.451699446e-08 2.211447067e-08 2.034417934e-08 1.453669145e-08 1.669846731e-08 2.430229659e-08 1.716006672e-08 1.92944912e-08 1.411727007e-08 1.478788439e-08 1.757499612e-08 1.898426897e-08 1.164719927e-08 1.341025747e-08 8.755839338e-09 1.74631634e-08 1.666538085e-08 1.397652679e-08 6.471387295e-09 1.451193893e-08 1.493592615e-08 1.397398141e-08 1.115071656e-08 8.030756592e-09 1.110408174e-08 1.270459411e-08 1.30406326e-08 1.228715798e-08 1.068964948e-08 2.052624736e-08 1.283139882e-08 1.641737478e-08 1.272123035e-08 1.807123159e-08 1.610119151e-08 1.855492654e-08 1.797378143e-08 1.705641585e-08 1.454541449e-08 1.385856975e-08 2.691805155e-08 2.134901541e-08 1.151520741e-08 3.220348444e-08 2.541248863e-08 2.504315985e-08 2.672223448e-08 3.662644926e-08 3.338638852e-08 3.998301461e-08 3.352204579e-08 3.560592616e-08 4.267671952e-08 3.577839971e-08 4.026419454e-08 3.913684383e-08 2.741604213e-08 3.631864124e-08 4.15048162e-08 3.361159643e-08 3.602118649e-08 4.453653887e-08 3.193090962e-08 3.300046358e-08 3.242491858e-08 3.122554037e-08 2.459172279e-08 2.930036224e-08 2.898086442e-08 2.780446546e-08 2.607888784e-08 2.331667062e-08 2.788673529e-08 2.165612622e-08 1.847877985e-08 2.118463067e-08 1.427356207e-08 1.901962343e-08 1.830079696e-08 1.564571028e-08 1.137515756e-08 1.200023783e-08 1.407920058e-08 9.169828473e-09 1.086418743e-08 1.150000942e-08 6.626389868e-09 4.824527033e-09 4.137454206e-09 4.595144175e-09 3.480369564e-09 1.813733499e-09 4.292663456e-10 4.529340368e-10 3.660314275e-10 1.995696873e-10 3.844570968e-10 3.417074072e-11 1.426976462e-11 4.914924122e-13 8.444566593e-14 8.505962478e-15 9.682913424e-16 1.543819174e-16 1.332516695e-16 4.608194596e-18 3.606551808e-19 1.132311013e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.307187626e-18 1.451358285e-18 7.441038139e-17 1.127823329e-16 1.772055458e-15 2.235140744e-14 3.013732401e-13 1.012524857e-12 5.010348436e-11 1.030269724e-11 2.497453054e-11 2.088048969e-10 4.590438835e-10 1.237125091e-10 1.969764744e-09 1.877896908e-09 2.870691308e-09 2.250906466e-09 5.654387731e-09 5.449935308e-09 6.275158557e-09 5.987811446e-09 9.878355011e-09 9.80745476e-09 1.502068495e-08 9.530077962e-09 1.252072851e-08 1.349501035e-08 1.785955114e-08 1.641058254e-08 1.562725721e-08 1.829601756e-08 2.394813544e-08 2.255602386e-08 2.233124904e-08 2.366486152e-08 2.830057528e-08 2.997920568e-08 2.810100987e-08 2.295518645e-08 2.376239673e-08 3.613032231e-08 2.82469673e-08 3.177525511e-08 3.404068019e-08 3.450750761e-08 3.749405691e-08 3.396419705e-08 4.00977935e-08 3.285432822e-08 3.877052531e-08 3.65726551e-08 3.266537971e-08 3.772703594e-08 3.12236187e-08 2.921161321e-08 2.764029039e-08 3.559132547e-08 2.733281488e-08 2.428995112e-08 2.136299787e-08 2.161240251e-08 3.071907859e-08 2.483522747e-08 2.578034497e-08 1.95491291e-08 1.923173477e-08 2.354686432e-08 1.603989858e-08 2.326356233e-08 1.916749617e-08 1.008275103e-08 1.515088082e-08 1.369156372e-08 1.303880796e-08 1.369564384e-08 1.662102622e-08 1.387248334e-08 1.430729326e-08 7.699920205e-09 1.496102316e-08 1.24006837e-08 1.197035452e-08 1.35144943e-08 1.512250732e-08 1.28827182e-08 8.490709745e-09 1.030445908e-08 1.332152716e-08 1.392068569e-08 1.454289905e-08 1.500643212e-08 1.003410801e-08 1.489147426e-08 9.945606995e-09 1.376097134e-08 1.672833032e-08 1.553745258e-08 2.007857315e-08 1.518859394e-08 1.723746685e-08 1.525054265e-08 2.38314227e-08 1.555318631e-08 1.618602983e-08 2.397530141e-08 1.527857618e-08 2.047436546e-08 2.315365716e-08 1.666192715e-08 2.961683974e-08 2.900631935e-08 2.726447342e-08 3.227760275e-08 2.318475872e-08 3.087934905e-08 3.158639138e-08 3.224125199e-08 3.430862778e-08 3.746397964e-08 3.917103196e-08 2.805311213e-08 3.421170552e-08 3.743878203e-08 3.465566973e-08 3.303656516e-08 4.173472699e-08 3.499364973e-08 2.845576883e-08 3.614025193e-08 3.504732461e-08 2.829184518e-08 3.135805057e-08 2.375384679e-08 2.562733849e-08 2.667213206e-08 2.41777494e-08 2.219568265e-08 2.240436955e-08 2.126333763e-08 2.03952507e-08 2.482940015e-08 1.531681327e-08 2.332836419e-08 1.612143967e-08 1.4813945e-08 1.210726594e-08 1.210934214e-08 9.851524922e-09 8.958815161e-09 9.821172297e-09 7.454751835e-09 5.344727132e-09 7.133630703e-09 4.589338333e-09 2.781427103e-09 1.476229154e-09 1.409637493e-09 4.639875992e-10 5.38368772e-10 3.964380797e-10 1.557761156e-10 4.191715451e-11 1.136022769e-11 5.449258986e-12 4.046519608e-14 1.98950568e-13 2.682441e-15 2.768788534e-15 2.022219499e-18 3.737169437e-18 5.335948778e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.452377242e-19 4.524072726e-18 4.384949714e-17 3.314811163e-17 7.511753764e-15 1.408662826e-13 6.267343065e-13 1.453103378e-13 1.395278917e-11 2.285305298e-11 7.757162715e-11 6.853613932e-10 3.271336255e-10 5.921881345e-10 1.054546432e-09 2.470877279e-09 3.500661841e-09 3.622389086e-09 4.734218577e-09 7.083085741e-09 8.049607887e-09 7.710115435e-09 1.154048146e-08 1.030103035e-08 1.404108084e-08 1.286764734e-08 1.124179492e-08 1.377965856e-08 2.090437192e-08 1.797415647e-08 1.835812256e-08 1.878330049e-08 2.295454263e-08 2.166591453e-08 1.832565659e-08 2.504414286e-08 2.30688348e-08 2.548815822e-08 2.807582855e-08 2.640784676e-08 2.520794336e-08 2.575164009e-08 2.849469791e-08 3.098974762e-08 3.352238609e-08 3.080790618e-08 3.313374954e-08 3.398256703e-08 3.189015441e-08 3.117759065e-08 2.662127093e-08 4.078277494e-08 3.615641465e-08 3.676140511e-08 3.226747798e-08 3.320259985e-08 2.47975129e-08 3.457153883e-08 2.661008996e-08 3.443478331e-08 2.264974079e-08 3.637407196e-08 1.842575261e-08 3.065650712e-08 2.218850822e-08 2.080920974e-08 2.463786506e-08 2.43184954e-08 1.151455892e-08 1.591256844e-08 9.868412917e-09 1.223495395e-08 3.045617821e-08 1.28431996e-08 1.294335425e-08 1.846485983e-08 1.549664039e-08 1.087270648e-08 1.330418322e-08 1.177769234e-08 9.171851466e-09 1.035801647e-08 1.069287623e-08 1.041395929e-08 1.257898267e-08 1.252452857e-08 1.219918926e-08 8.519062981e-09 1.667933107e-08 1.356626633e-08 2.054857862e-08 9.545850165e-09 1.075268924e-08 1.336632526e-08 1.458033378e-08 1.346437004e-08 1.162392396e-08 1.677500216e-08 1.938130524e-08 2.153472145e-08 9.555895034e-09 1.972688866e-08 1.766822518e-08 1.096065021e-08 1.796657501e-08 2.351606448e-08 2.544510554e-08 2.900117808e-08 2.950366119e-08 2.959116308e-08 2.283369326e-08 3.339883188e-08 2.650308672e-08 3.16197167e-08 3.214303189e-08 3.094637094e-08 2.953930474e-08 4.044262003e-08 2.747485517e-08 2.737507569e-08 3.374262476e-08 3.359042711e-08 3.877076665e-08 3.123952506e-08 2.941316e-08 3.756591139e-08 3.654236088e-08 3.674620732e-08 3.185719373e-08 3.448750308e-08 3.065432801e-08 2.564563116e-08 2.553012771e-08 2.532961318e-08 2.595263217e-08 2.312194009e-08 2.268827524e-08 2.493789418e-08 2.102551615e-08 2.078312557e-08 1.914455032e-08 1.857211827e-08 1.655143893e-08 1.679945277e-08 1.591090172e-08 1.491344481e-08 1.42349402e-08 1.304531933e-08 1.280128401e-08 1.009680145e-08 7.18034956e-09 5.850673567e-09 7.453949717e-09 4.259921312e-09 1.987029091e-09 3.455392376e-09 2.424985868e-09 1.154887997e-09 2.010112111e-10 8.032205472e-10 6.726510557e-10 1.492871915e-10 1.481384658e-11 4.826858736e-12 4.606312614e-12 1.321722245e-13 8.063542262e-14 2.579616429e-15 2.887991596e-17 1.986969351e-17 2.971612303e-17 9.390201964e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 5.664555233e-19 0 2.583244384e-18 5.299357593e-17 1.426085608e-15 1.243573648e-14 1.178919157e-14 1.040723474e-13 2.167750714e-12 7.053098775e-12 5.751170926e-11 2.642264042e-10 1.668106027e-10 4.522369436e-10 4.17257828e-10 8.595765503e-10 2.138408763e-09 3.155879938e-09 3.440960646e-09 5.99623408e-09 7.937900985e-09 7.591969456e-09 6.692431002e-09 6.019717461e-09 1.27167903e-08 1.129375479e-08 1.081037266e-08 1.186214788e-08 1.396922925e-08 1.636662485e-08 2.180859673e-08 1.817100492e-08 1.763300111e-08 2.145054758e-08 2.243233214e-08 2.215907744e-08 2.317080791e-08 2.283331561e-08 2.486099936e-08 2.804691796e-08 3.263327117e-08 2.925502541e-08 2.934293322e-08 2.742122593e-08 3.66629932e-08 3.323206479e-08 3.131435262e-08 4.471147696e-08 2.883225535e-08 3.560399455e-08 3.632996632e-08 2.967070648e-08 3.213434706e-08 3.715274305e-08 3.766430568e-08 2.788992978e-08 2.39150068e-08 2.125552395e-08 3.996079264e-08 2.591196544e-08 2.627382742e-08 1.969872344e-08 2.387541172e-08 2.566507866e-08 1.235199847e-08 1.633081453e-08 2.437758204e-08 2.141220661e-08 1.407665284e-08 1.340326034e-08 1.920040381e-08 1.053945277e-08 1.700721781e-08 1.976728494e-08 2.226808372e-08 1.438742802e-08 1.021772952e-08 1.295211719e-08 1.105100661e-08 6.698864118e-09 1.184400923e-08 6.310293595e-09 1.422672961e-08 1.269772035e-08 1.190229835e-08 1.753653296e-08 1.100574186e-08 8.931972418e-09 1.346784495e-08 1.150442009e-08 1.41256295e-08 1.646638379e-08 9.003722229e-09 9.169669995e-09 8.01172188e-09 1.075705329e-08 1.374560278e-08 1.250789574e-08 8.062835143e-09 1.543051729e-08 1.764082718e-08 6.907795115e-09 1.218617423e-08 1.785934428e-08 1.588395728e-08 2.71142268e-08 2.524962529e-08 1.947607457e-08 2.233556542e-08 3.054651213e-08 2.379360899e-08 2.210797362e-08 3.055296695e-08 2.846062965e-08 3.202362184e-08 3.599436615e-08 3.204424322e-08 3.19114054e-08 3.390001449e-08 3.22091424e-08 3.162355361e-08 3.449439679e-08 3.574902107e-08 3.967931997e-08 3.358482095e-08 2.908269828e-08 3.54002448e-08 3.582900572e-08 3.057671616e-08 2.746755765e-08 3.461290027e-08 2.601025683e-08 2.557761057e-08 2.434642726e-08 2.586217478e-08 2.370860968e-08 2.120163753e-08 2.429115471e-08 2.083956786e-08 1.88017316e-08 1.63970782e-08 1.57624273e-08 1.548127213e-08 1.638077883e-08 1.598672949e-08 1.323925047e-08 1.453158878e-08 1.485298846e-08 1.251465321e-08 1.41066735e-08 1.278252388e-08 7.998359738e-09 5.964923603e-09 7.433890714e-09 4.886410974e-09 3.825692953e-09 2.933488523e-09 9.438418994e-10 5.938819636e-10 5.486850826e-10 3.287316348e-10 2.973905804e-10 2.805495695e-11 9.82291169e-12 6.995174147e-12 2.124667476e-12 2.129020482e-13 4.128625593e-14 1.454758885e-14 3.844060937e-17 2.257040092e-17 6.401255176e-18 1.363774134e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.56340996e-18 5.037685076e-16 5.506476105e-17 2.896291703e-15 9.487278308e-15 7.062443337e-14 3.273358557e-12 3.819328518e-12 4.41735202e-11 1.070054386e-10 4.585911306e-10 1.094349822e-10 1.87621581e-10 9.977061943e-10 2.267795279e-09 2.415952067e-09 3.811504113e-09 5.595527693e-09 5.427195306e-09 6.562407768e-09 7.664942377e-09 9.99001833e-09 8.678914902e-09 8.591098134e-09 1.233765237e-08 1.600928471e-08 1.227706305e-08 1.686721078e-08 1.226617014e-08 1.652621242e-08 1.438829272e-08 1.625071139e-08 2.136863778e-08 2.109098019e-08 2.290633524e-08 2.344513302e-08 2.905105181e-08 2.815311841e-08 2.89921303e-08 2.909777881e-08 2.799448791e-08 2.93591798e-08 2.993892318e-08 3.003102726e-08 3.37626038e-08 2.951913662e-08 3.571589904e-08 4.367880048e-08 3.183174688e-08 3.77619069e-08 2.652227456e-08 2.763014733e-08 2.434026031e-08 2.820682482e-08 2.405927145e-08 3.324613441e-08 4.41598341e-08 2.618289832e-08 2.721204538e-08 3.116162037e-08 2.892532057e-08 2.377882025e-08 1.596045394e-08 2.265627631e-08 2.258646591e-08 1.698951315e-08 1.697389052e-08 9.675953416e-09 1.764498274e-08 1.651778134e-08 1.133825206e-08 1.74086461e-08 1.723188332e-08 1.530565652e-08 1.662320033e-08 1.21288045e-08 7.457422753e-09 9.903227495e-09 1.012009006e-08 5.877627052e-09 1.299641798e-08 1.333070552e-08 1.51756283e-08 1.186026109e-08 1.194839818e-08 2.093414768e-08 1.361381072e-08 1.080249284e-08 1.254359757e-08 1.059883092e-08 1.600823714e-08 1.063139683e-08 8.894979895e-09 1.320942457e-08 1.470415344e-08 1.231634508e-08 1.698055236e-08 1.653454266e-08 2.088536974e-08 1.098520775e-08 2.194269359e-08 1.217392828e-08 1.420218275e-08 1.719445795e-08 2.370654274e-08 1.869554672e-08 2.483979254e-08 1.858276584e-08 2.992796987e-08 2.880750411e-08 3.269248461e-08 2.029360236e-08 3.611741905e-08 2.382297324e-08 3.213734371e-08 2.919224874e-08 3.785817888e-08 3.040088004e-08 2.862275646e-08 3.037320267e-08 3.992804895e-08 3.303886429e-08 3.595090995e-08 3.298404148e-08 3.211308404e-08 3.296435425e-08 3.175166625e-08 3.320501156e-08 2.99930758e-08 2.684359169e-08 2.537449256e-08 2.887462562e-08 2.597447268e-08 2.712298807e-08 2.156067671e-08 2.409688869e-08 2.693478548e-08 1.725811272e-08 2.093886614e-08 1.92114569e-08 1.674335758e-08 1.247722827e-08 1.497599453e-08 1.245278546e-08 1.449835972e-08 9.509586858e-09 9.565052361e-09 7.48075418e-09 9.125328739e-09 5.629832284e-09 6.37961849e-09 6.39368873e-09 4.53290053e-09 5.1515556e-09 2.675195231e-09 2.150446608e-09 1.090390172e-09 2.309233271e-11 2.277572693e-10 8.90387472e-11 7.70863624e-11 4.715011797e-11 1.090602787e-12 1.229805696e-12 7.467412254e-14 2.248198243e-15 1.177392911e-16 8.187982497e-17 2.150715586e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.627103524e-19 5.844320946e-18 6.646415297e-17 2.168452353e-16 1.218281121e-15 3.786721244e-14 7.918332599e-14 1.134283065e-12 2.376646498e-11 7.556743489e-12 8.601431083e-11 1.006415981e-09 6.386962396e-10 2.050374124e-10 1.377779925e-09 1.714883842e-09 1.339871187e-09 5.216159849e-09 3.544718859e-09 6.167507883e-09 7.695516555e-09 5.866946296e-09 5.595529398e-09 8.792018364e-09 1.446966201e-08 1.15437335e-08 1.345628834e-08 1.160059394e-08 1.375346297e-08 1.766624242e-08 2.093483639e-08 1.741213039e-08 1.722665724e-08 1.666274903e-08 1.981278645e-08 1.923855472e-08 2.561801859e-08 2.537059539e-08 2.862513435e-08 2.794838008e-08 2.642585504e-08 3.009065288e-08 3.370870283e-08 3.158651538e-08 3.432262578e-08 2.918323626e-08 3.080461903e-08 3.237355125e-08 2.984506583e-08 3.294136206e-08 3.565300563e-08 2.493673245e-08 2.870806203e-08 2.744945744e-08 2.935427722e-08 3.20770127e-08 3.394616791e-08 3.100818416e-08 2.62508799e-08 3.063284922e-08 2.966972238e-08 2.106249411e-08 2.040062545e-08 2.777276625e-08 2.139065465e-08 2.043613932e-08 1.534929875e-08 1.37357605e-08 1.392252658e-08 2.229624716e-08 1.01445173e-08 1.706411843e-08 1.869641565e-08 1.442750437e-08 1.764546061e-08 1.045705868e-08 1.311603585e-08 1.221114938e-08 1.185264281e-08 7.957073724e-09 1.213353569e-08 8.65535181e-09 1.474719134e-08 1.171543363e-08 1.091356613e-08 1.43042062e-08 9.855259791e-09 1.410492219e-08 1.396823947e-08 1.357398387e-08 1.310232178e-08 6.799525117e-09 1.1605486e-08 1.316739616e-08 1.414480605e-08 1.048686154e-08 1.087264776e-08 1.573861951e-08 1.307628542e-08 1.205894007e-08 1.195430464e-08 1.817963912e-08 1.305880512e-08 1.607989693e-08 1.917034344e-08 1.841749261e-08 1.942059676e-08 1.85931297e-08 2.060906586e-08 2.278823602e-08 2.385424265e-08 2.927755097e-08 3.006658057e-08 2.846083585e-08 2.704545616e-08 4.641105414e-08 3.373554351e-08 3.076139003e-08 2.748421401e-08 3.679271229e-08 2.953039764e-08 2.987919032e-08 3.854785297e-08 3.164522557e-08 3.001363229e-08 2.77862509e-08 3.893764298e-08 3.335594052e-08 3.379875697e-08 2.921203205e-08 2.735161643e-08 2.680582768e-08 2.455135304e-08 2.985758277e-08 2.577408957e-08 2.098612784e-08 2.224761019e-08 1.847067423e-08 1.757297905e-08 1.70003998e-08 1.858185755e-08 1.728043677e-08 1.464755409e-08 1.519153533e-08 1.398140066e-08 1.478647616e-08 1.286202637e-08 1.054280498e-08 8.803960826e-09 7.090709253e-09 7.606189606e-09 5.5986057e-09 8.665966645e-09 5.297173424e-09 2.266344593e-09 2.311010116e-09 2.131227254e-09 1.148588952e-09 4.49906457e-10 3.645636057e-10 2.903144958e-10 7.024067615e-11 3.368662877e-11 2.275954646e-11 2.719670033e-12 2.661971817e-14 3.846071138e-14 8.122667344e-15 4.236288474e-16 1.195960505e-17 1.612684958e-17 3.257334224e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 7.603732753e-27 0 1.3740897e-18 6.311581136e-17 1.801238271e-17 2.019870471e-15 4.747325249e-15 6.612774735e-13 1.938239933e-12 1.483207056e-11 1.121710457e-11 1.697168227e-11 2.352446946e-10 8.023062202e-10 4.267388891e-10 1.148976535e-09 1.366892002e-09 2.884406053e-09 4.886574648e-09 5.39671098e-09 4.656514998e-09 6.636612742e-09 8.216454345e-09 6.022330762e-09 7.431941721e-09 9.324330064e-09 1.199816054e-08 1.323248317e-08 1.580154438e-08 1.445287497e-08 1.710585517e-08 1.462046143e-08 1.550409749e-08 2.098616325e-08 1.998324916e-08 2.079779279e-08 2.424334566e-08 2.29147022e-08 2.49832784e-08 2.358704216e-08 2.414998747e-08 2.699528788e-08 2.070533495e-08 3.349702798e-08 2.948959693e-08 2.457103689e-08 3.101859957e-08 3.402511029e-08 2.949239275e-08 3.495708719e-08 2.724998164e-08 3.013038864e-08 2.834458461e-08 2.814621309e-08 3.165749738e-08 3.009450354e-08 2.8493214e-08 2.780913782e-08 2.452308665e-08 2.126532733e-08 2.987586709e-08 3.572719454e-08 1.83056652e-08 1.231964926e-08 1.824437972e-08 1.361761722e-08 1.4792346e-08 1.903918489e-08 2.035169351e-08 1.63838882e-08 1.580224548e-08 1.528954383e-08 1.347489832e-08 1.278580287e-08 1.391763715e-08 9.784261286e-09 1.052955181e-08 9.438505995e-09 1.240126626e-08 1.126597261e-08 1.302565823e-08 9.078172885e-09 1.036925524e-08 1.145220175e-08 1.243350931e-08 1.283659903e-08 1.215089499e-08 6.309004608e-09 1.164699153e-08 1.009701633e-08 6.343981873e-09 1.32280897e-08 1.060701034e-08 2.144080054e-08 1.247962557e-08 1.106576633e-08 1.82668098e-08 9.524569121e-09 1.103176739e-08 1.267466058e-08 1.75126446e-08 1.148718499e-08 1.399824196e-08 1.287754591e-08 1.95685113e-08 1.474971357e-08 1.867464327e-08 1.701068021e-08 1.993571703e-08 2.436115161e-08 1.691435683e-08 2.371272463e-08 2.117978005e-08 2.255638782e-08 2.618794204e-08 2.868829373e-08 2.52569525e-08 2.507532139e-08 2.948309728e-08 3.007335328e-08 2.428058749e-08 2.883372845e-08 2.755199861e-08 2.42630768e-08 2.664005532e-08 2.724231695e-08 3.023059066e-08 3.208740155e-08 2.929487661e-08 3.353208908e-08 2.759101635e-08 2.758366008e-08 2.505078103e-08 2.234580982e-08 2.706985443e-08 2.744163947e-08 2.521176344e-08 2.430750245e-08 1.738287945e-08 2.247258266e-08 1.550660409e-08 1.704292862e-08 1.740604436e-08 1.664013478e-08 1.565488257e-08 1.470804653e-08 1.324809845e-08 1.283444881e-08 1.444821581e-08 7.636671121e-09 1.022969572e-08 7.911183894e-09 6.042255649e-09 6.572582144e-09 5.662290497e-09 2.366467582e-09 1.851571802e-09 6.490311305e-10 1.396015698e-09 5.329087352e-10 7.45477151e-10 3.299620187e-10 2.092035413e-10 4.981507226e-12 2.902793623e-12 1.526740539e-12 1.191253039e-14 3.787940034e-14 1.459595972e-14 1.202518007e-16 3.434632038e-17 5.357091694e-19 4.415905949e-18 1.166473686e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.487291189e-18 2.315129551e-17 7.395896253e-16 7.721886029e-17 2.80577749e-14 2.289076057e-13 6.107037366e-13 3.190751027e-12 1.805845713e-12 2.240501254e-10 3.42697905e-10 4.531260942e-10 3.602451592e-10 8.819263334e-10 1.554146066e-09 3.187490059e-09 4.570383207e-09 4.759278331e-09 6.31100322e-09 4.473942086e-09 6.760913633e-09 8.361922714e-09 8.276816976e-09 8.996088608e-09 1.488614825e-08 1.317182054e-08 1.505343895e-08 1.575808178e-08 1.220282095e-08 1.753359603e-08 1.857733434e-08 1.489427433e-08 1.40398827e-08 1.739158093e-08 1.894000342e-08 1.881841007e-08 2.599878509e-08 1.992221734e-08 2.521779939e-08 2.263879844e-08 2.9988029e-08 2.949347695e-08 2.936796305e-08 3.083944147e-08 3.025154573e-08 3.071788045e-08 2.833927592e-08 2.866418632e-08 3.723448942e-08 3.273193127e-08 3.275735149e-08 2.697436507e-08 2.441106089e-08 3.713189263e-08 2.620394995e-08 3.590548351e-08 2.563613124e-08 2.796228987e-08 2.459444342e-08 2.90403538e-08 2.547739658e-08 2.234503786e-08 2.520924768e-08 1.79222949e-08 1.61275816e-08 1.611011424e-08 1.592140803e-08 1.5099125e-08 1.538184967e-08 1.678092979e-08 1.016349135e-08 1.349615683e-08 1.421059726e-08 1.487479514e-08 1.42171623e-08 1.546807483e-08 8.04380265e-09 1.037718432e-08 1.252255133e-08 8.156808979e-09 1.704477132e-08 1.405954131e-08 9.021209707e-09 1.141688987e-08 8.605465004e-09 9.275467848e-09 9.501730028e-09 1.359759509e-08 1.026026323e-08 8.334274692e-09 1.243613668e-08 1.737284696e-08 1.29139422e-08 8.583114383e-09 7.86766776e-09 1.068314413e-08 1.421969577e-08 1.270516614e-08 1.801799546e-08 1.62607937e-08 1.708440797e-08 1.651964737e-08 1.34765613e-08 1.597879965e-08 1.160547444e-08 1.709585888e-08 1.230259243e-08 1.86009155e-08 1.454233293e-08 1.668671138e-08 2.984178581e-08 2.853620386e-08 2.873809744e-08 1.965768178e-08 3.33946831e-08 2.471805612e-08 2.92419216e-08 3.138576449e-08 3.023597459e-08 3.094593153e-08 3.315716282e-08 2.688096651e-08 2.874114269e-08 3.312263392e-08 2.945824303e-08 3.942280468e-08 2.593013124e-08 2.614967232e-08 3.083826223e-08 2.701572754e-08 2.988850995e-08 2.098286237e-08 2.816475343e-08 1.735705121e-08 1.735657534e-08 2.225272289e-08 2.207914291e-08 1.837976646e-08 1.724168506e-08 1.686308338e-08 1.458506493e-08 1.600583852e-08 1.437433221e-08 1.109167969e-08 1.257500053e-08 9.610264635e-09 1.217896541e-08 8.504010961e-09 6.89282455e-09 8.257244719e-09 6.104833419e-09 5.266012846e-09 4.25247704e-09 4.519488651e-09 2.871629135e-09 1.492647326e-09 1.083178837e-09 3.230403141e-10 4.270012525e-10 3.071057584e-10 8.612118371e-11 1.177369393e-10 3.727676665e-11 1.735639177e-12 2.665107952e-13 1.118995982e-13 8.563210196e-16 2.792004879e-15 1.754910525e-17 4.618008406e-17 4.455873852e-19 4.230349408e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.007019744e-18 3.892631733e-17 9.343579934e-17 1.918194802e-16 3.007564776e-15 1.059211151e-13 4.132228947e-14 4.252185756e-14 1.841702822e-12 1.874716925e-10 2.503298598e-10 3.712437382e-10 1.244659527e-10 6.098026733e-10 1.369287209e-09 1.67964692e-09 2.562099317e-09 5.24725822e-09 5.07993987e-09 5.352527516e-09 4.760670612e-09 5.846169572e-09 7.158450227e-09 1.062270053e-08 8.905734021e-09 1.090745009e-08 9.76054198e-09 1.060836804e-08 1.241918558e-08 1.342290214e-08 1.860294813e-08 1.629045181e-08 1.683538288e-08 1.523703272e-08 2.003641262e-08 1.604507836e-08 2.357516894e-08 2.297652079e-08 2.676462736e-08 2.097477339e-08 2.355686819e-08 2.887466265e-08 2.87684993e-08 3.188153629e-08 3.077776319e-08 3.224182091e-08 2.609544871e-08 3.057165048e-08 3.310198936e-08 2.636833701e-08 2.542576569e-08 2.987215625e-08 3.247158972e-08 2.635020111e-08 2.516348936e-08 2.982612109e-08 2.795039607e-08 2.433705853e-08 2.365204983e-08 1.491146563e-08 2.539053052e-08 2.131255592e-08 1.668961933e-08 1.612614588e-08 1.531546637e-08 1.299754043e-08 2.569360759e-08 1.981923904e-08 1.5687337e-08 1.697272254e-08 1.156885239e-08 1.925321326e-08 1.615485824e-08 1.506440637e-08 1.156386257e-08 8.827818238e-09 1.318897234e-08 1.039400772e-08 1.758231326e-08 1.312361793e-08 1.102558622e-08 1.621437728e-08 1.073644066e-08 7.414812538e-09 1.480340373e-08 7.345090183e-09 1.261330962e-08 1.181127763e-08 5.422030508e-09 1.24139628e-08 5.578606409e-09 1.175283147e-08 1.131334762e-08 1.370322635e-08 1.495368916e-08 8.10165996e-09 1.011521224e-08 6.900982451e-09 1.602911101e-08 1.235248163e-08 1.493987106e-08 1.165786465e-08 1.533727419e-08 1.385161065e-08 1.845718782e-08 1.576960725e-08 1.06478668e-08 1.904832389e-08 2.448791909e-08 1.746463386e-08 1.892987606e-08 2.023932156e-08 2.253740628e-08 2.776907962e-08 2.436424537e-08 2.654111102e-08 2.694463163e-08 2.324776782e-08 3.133103356e-08 2.360415206e-08 3.731532727e-08 3.014229361e-08 3.09586862e-08 2.778053049e-08 3.012596876e-08 2.815227617e-08 2.502801999e-08 2.603319613e-08 3.093108416e-08 2.492414273e-08 2.840255594e-08 2.047836179e-08 2.241855834e-08 2.169582372e-08 2.172561348e-08 2.057949099e-08 2.063314785e-08 1.646898151e-08 1.517855465e-08 1.804796261e-08 1.394279382e-08 1.276330531e-08 1.583651329e-08 1.116189093e-08 1.593975002e-08 1.274123107e-08 1.328185654e-08 1.064619302e-08 1.097221872e-08 9.049497332e-09 8.844703953e-09 7.990176565e-09 4.672891956e-09 5.074211454e-09 3.675059117e-09 2.476850846e-09 1.277177717e-09 1.697035611e-09 5.345834327e-10 1.440313702e-10 8.960318304e-10 9.243759045e-11 2.300839984e-11 2.4008198e-12 3.596113374e-14 1.938123654e-13 7.820729207e-15 1.16066011e-15 3.100524239e-16 1.115804472e-16 9.31500586e-21 4.063989923e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.575309011e-19 1.254513921e-17 0 1.554158e-17 7.95387416e-16 1.887336163e-15 4.917595787e-14 5.919437835e-15 7.312514827e-12 1.364962909e-10 1.943264981e-11 3.581054927e-10 1.426541874e-10 1.895730687e-10 7.610462682e-10 1.386555437e-09 2.882191454e-09 5.753874142e-09 5.521657618e-09 5.749175527e-09 7.390136036e-09 5.790939739e-09 7.140120073e-09 9.48846319e-09 9.090931405e-09 1.321960562e-08 9.114318648e-09 1.323680849e-08 1.158860991e-08 1.457479248e-08 1.361521851e-08 1.875786388e-08 1.636734163e-08 1.656017454e-08 1.910992966e-08 2.444278872e-08 2.608927768e-08 2.088386203e-08 2.01389416e-08 2.255168635e-08 2.672966247e-08 2.861392862e-08 1.913057155e-08 2.732472858e-08 3.025810539e-08 2.375603146e-08 2.240432635e-08 2.33945407e-08 2.74455233e-08 2.890786274e-08 3.437689764e-08 2.911846661e-08 3.029851104e-08 3.047237618e-08 2.681142821e-08 3.133803388e-08 3.919801439e-08 2.382332055e-08 3.228929608e-08 2.563268629e-08 2.406614677e-08 2.337251523e-08 2.326112528e-08 1.697856529e-08 1.761127388e-08 1.608758509e-08 1.080747311e-08 6.665372851e-09 1.874874521e-08 1.415791261e-08 1.207493882e-08 8.831745877e-09 1.084373165e-08 9.27434881e-09 5.751614744e-09 8.213100999e-09 8.89040743e-09 1.147920963e-08 1.108190128e-08 9.087348091e-09 6.287836917e-09 1.136042829e-08 9.208468412e-09 1.190445165e-08 6.979679929e-09 1.454416281e-08 1.078187454e-08 8.200642328e-09 7.7659757e-09 1.379119387e-08 1.119690713e-08 1.306029679e-08 1.715537529e-08 1.358802371e-08 1.124946651e-08 9.186585126e-09 1.397140032e-08 1.042171912e-08 1.011033249e-08 1.328492977e-08 1.050189788e-08 1.073245175e-08 9.700765804e-09 1.579195253e-08 1.080569e-08 2.022689292e-08 2.216184021e-08 1.364049638e-08 1.777608437e-08 1.364326421e-08 2.14093301e-08 2.466357261e-08 2.369005578e-08 3.101975415e-08 2.839349829e-08 2.78271677e-08 2.617419848e-08 3.211502113e-08 2.716745361e-08 2.53248614e-08 2.452255088e-08 2.420567561e-08 2.701807889e-08 2.479086505e-08 3.105708013e-08 3.123038865e-08 2.811499389e-08 2.996805562e-08 2.288996895e-08 2.818003719e-08 2.533276632e-08 2.697012277e-08 2.314879582e-08 2.538953436e-08 1.957875296e-08 1.947303791e-08 1.718366905e-08 1.921760236e-08 2.250830653e-08 1.580265366e-08 1.069328878e-08 1.483932863e-08 1.4160555e-08 1.2795979e-08 9.789365462e-09 1.119147033e-08 1.300768743e-08 9.778593341e-09 7.418478751e-09 7.888660574e-09 5.871532436e-09 5.682226759e-09 6.634385154e-09 5.950596967e-09 3.183439436e-09 1.814208934e-09 1.616878895e-09 9.822337623e-10 3.714778319e-10 2.108215596e-10 2.555195341e-10 3.197558815e-10 7.396239497e-12 7.903029386e-13 1.09380243e-13 6.142958765e-14 3.091233215e-15 3.838997044e-16 2.42415722e-15 2.127032829e-18 0 0 4.303404135e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.863774587e-19 9.756291994e-18 7.608993263e-17 1.469712757e-16 1.23413834e-16 8.35018109e-16 4.879129764e-13 1.126622291e-13 2.183784636e-12 6.026206191e-12 2.817991281e-10 1.254209376e-10 9.559063782e-11 5.934330793e-10 5.369674462e-10 8.169093913e-10 2.754905229e-09 2.608685812e-09 3.480198598e-09 5.418258163e-09 7.475767944e-09 6.158690313e-09 9.966422564e-09 6.635679485e-09 9.450557051e-09 1.288711455e-08 1.088781336e-08 1.272847462e-08 1.020358035e-08 1.297543979e-08 1.02629805e-08 1.395162496e-08 1.726739723e-08 1.651690189e-08 1.742005967e-08 1.928183533e-08 2.342129336e-08 2.065166816e-08 2.422466652e-08 2.164981701e-08 2.622760248e-08 2.584774015e-08 2.92069077e-08 2.701214927e-08 2.633007542e-08 2.62853579e-08 2.373748366e-08 3.035477902e-08 2.405692985e-08 2.940747637e-08 2.682304698e-08 2.450969091e-08 2.381886566e-08 3.412475328e-08 2.407624132e-08 2.532025018e-08 2.000515166e-08 3.280387907e-08 2.636025172e-08 1.791335007e-08 1.691351413e-08 2.13974344e-08 1.517506872e-08 1.918293997e-08 1.41283396e-08 1.982668433e-08 1.770419047e-08 1.638289303e-08 2.077208606e-08 1.189397979e-08 1.479117746e-08 1.074988246e-08 1.333126283e-08 9.718540506e-09 1.413976264e-08 7.150609794e-09 9.244580623e-09 8.298679685e-09 1.40323878e-08 9.644053347e-09 8.323128998e-09 9.806434883e-09 1.656742929e-08 1.281249258e-08 6.740937995e-09 9.129713165e-09 9.735056237e-09 1.105697033e-08 9.225143556e-09 9.669338036e-09 1.445905038e-08 1.012131066e-08 9.349324798e-09 1.430472941e-08 7.175510655e-09 1.054668591e-08 8.558124291e-09 8.315806005e-09 1.216034311e-08 8.714854462e-09 1.220329289e-08 2.039171822e-08 6.865382301e-09 1.268486363e-08 1.078796335e-08 1.697469415e-08 7.835519987e-09 1.405479205e-08 1.748019185e-08 2.29867381e-08 2.46401959e-08 2.874434812e-08 2.360004736e-08 2.824983555e-08 2.666539151e-08 2.674669358e-08 2.163170365e-08 2.237646067e-08 2.76090021e-08 2.378231046e-08 3.22473588e-08 2.795863116e-08 3.12589272e-08 2.37567684e-08 3.040811423e-08 2.605317e-08 3.005924874e-08 2.660615987e-08 2.21255274e-08 2.411385094e-08 2.942889255e-08 2.393804537e-08 2.319441517e-08 2.557600216e-08 2.293327268e-08 1.860608257e-08 2.356940221e-08 1.96822852e-08 1.505141685e-08 1.60623142e-08 1.445491478e-08 1.630794444e-08 1.550642727e-08 1.045563659e-08 1.248216586e-08 8.417646953e-09 8.577683689e-09 1.064062119e-08 8.127883344e-09 3.643995199e-09 6.01545173e-09 5.316853008e-09 4.809932508e-09 4.611422501e-09 3.659595602e-09 2.20684802e-09 1.469916527e-09 6.210981493e-10 2.466647382e-10 3.556370684e-10 1.907880784e-10 1.653292962e-10 2.998157842e-12 1.149683182e-11 2.906212438e-12 3.961472031e-13 4.077227791e-15 7.609164253e-16 1.049810898e-16 3.86956805e-17 4.073017322e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1.147088497e-18 0 2.409489567e-17 5.666252267e-16 5.284057798e-18 2.73274601e-17 6.847583985e-14 1.766153774e-15 3.709988693e-13 1.249257446e-12 1.435983736e-11 5.402062105e-10 3.183335749e-11 5.615387679e-10 5.649504157e-10 3.762526528e-11 1.869102195e-09 2.447859287e-09 3.951795513e-09 4.467751353e-09 4.337221451e-09 7.34197633e-09 5.451428532e-09 9.01821176e-09 9.258670475e-09 9.293120705e-09 1.056099206e-08 1.02056275e-08 1.283163292e-08 1.235679997e-08 1.214846196e-08 1.476991807e-08 1.563511429e-08 1.671178311e-08 1.461446164e-08 1.595481724e-08 1.729609149e-08 2.219233411e-08 1.599449949e-08 1.919783971e-08 2.092943851e-08 2.344579498e-08 2.3860097e-08 2.337548194e-08 2.637268638e-08 2.56162607e-08 2.490224171e-08 3.389610864e-08 3.395623907e-08 2.633389025e-08 3.100291885e-08 2.344125578e-08 2.825604516e-08 2.343128984e-08 2.629978717e-08 2.897093671e-08 2.422321333e-08 3.009373174e-08 3.079141086e-08 2.546611946e-08 2.144437938e-08 2.554447224e-08 2.312597429e-08 1.510403398e-08 1.427775545e-08 1.39606647e-08 1.532720815e-08 1.964913727e-08 1.192022054e-08 1.180831104e-08 1.359587067e-08 1.583713885e-08 1.200461963e-08 1.503917407e-08 1.387441401e-08 1.221402111e-08 1.177988567e-08 1.291344007e-08 1.574769875e-08 1.193808969e-08 1.226953402e-08 8.696488807e-09 8.652478898e-09 7.027165414e-09 9.555831524e-09 9.835128655e-09 1.405885603e-08 1.525817499e-08 1.497541101e-08 1.123821111e-08 1.338684094e-08 1.164347574e-08 1.289462957e-08 9.025563978e-09 8.66825169e-09 8.016816939e-09 6.96729027e-09 9.776181973e-09 1.644977411e-08 6.677978583e-09 8.912240434e-09 1.084190028e-08 9.01977021e-09 1.286964023e-08 1.17311057e-08 1.771162066e-08 1.822172049e-08 1.343864508e-08 1.486472406e-08 2.515519445e-08 1.294538361e-08 1.689162436e-08 2.633045818e-08 2.44578307e-08 2.601383086e-08 2.798529693e-08 2.764478313e-08 2.584049285e-08 2.448989073e-08 2.662031313e-08 3.448338651e-08 3.541930627e-08 2.545839917e-08 2.317437008e-08 2.30909972e-08 2.739023318e-08 2.77097236e-08 2.66918302e-08 2.670219026e-08 2.700643332e-08 2.802887944e-08 2.580680651e-08 2.53660364e-08 2.215494174e-08 1.954550736e-08 2.127462479e-08 2.048018179e-08 2.042049349e-08 1.622503999e-08 1.811427876e-08 1.72230324e-08 1.293782131e-08 1.357006934e-08 1.07359771e-08 1.659517854e-08 1.2035297e-08 8.691255397e-09 1.292900073e-08 1.009087071e-08 1.207835006e-08 7.144842637e-09 7.219270047e-09 5.515329228e-09 4.345351703e-09 4.054611575e-09 2.980870966e-09 2.785121106e-09 1.778279226e-09 3.545540319e-10 2.586554539e-10 3.663724751e-10 4.720564672e-10 2.122516117e-10 4.364011704e-12 1.225082023e-11 1.198025935e-12 7.332672361e-14 3.47164037e-15 4.639587731e-15 2.128694488e-15 5.245222751e-20 0 7.45518294e-18 3.538909711e-22 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.06376142e-17 2.129179831e-16 7.184901455e-16 7.103938255e-15 1.905568553e-13 1.557104855e-13 5.158694756e-12 2.040416025e-11 2.038042349e-10 1.768342378e-10 7.058722289e-10 4.431275387e-10 3.631445494e-10 7.385169017e-10 2.529001169e-09 1.374352167e-09 3.858769488e-09 3.957782782e-09 6.015722677e-09 5.465611765e-09 7.395394642e-09 8.894104534e-09 8.219445861e-09 9.952854842e-09 1.122615239e-08 1.218047971e-08 1.269192776e-08 1.170730758e-08 1.337975377e-08 1.320404043e-08 1.700623671e-08 1.769287618e-08 1.694415546e-08 1.665189584e-08 2.04525287e-08 1.840360295e-08 1.872168101e-08 2.020521036e-08 2.162145392e-08 2.275476829e-08 2.474215704e-08 2.717115486e-08 2.492731097e-08 2.653234357e-08 1.432789944e-08 2.359334069e-08 2.716596193e-08 2.625703118e-08 2.458326024e-08 2.535843525e-08 2.430354177e-08 3.176835988e-08 2.348585128e-08 1.882209968e-08 2.18191945e-08 2.269107664e-08 2.352121948e-08 2.400059195e-08 2.247167502e-08 2.250973322e-08 2.353519168e-08 1.528253792e-08 2.818525262e-08 1.32235552e-08 9.927743691e-09 1.690897167e-08 1.399801147e-08 1.508704739e-08 1.105073416e-08 9.640016881e-09 1.414157144e-08 6.599478498e-09 1.124570523e-08 8.138508578e-09 1.256044666e-08 1.07610596e-08 6.673462747e-09 8.612840409e-09 7.215360135e-09 1.287781277e-08 8.542332055e-09 1.166493111e-08 7.397902075e-09 7.502006832e-09 5.971850311e-09 5.966418448e-09 7.579987138e-09 9.731660138e-09 1.039633392e-08 1.043800729e-08 5.941928718e-09 1.196351689e-08 9.887712332e-09 1.107436596e-08 1.280692993e-08 1.409372654e-08 1.086054995e-08 8.330572686e-09 1.063950606e-08 1.311371212e-08 1.125404061e-08 9.086979104e-09 8.285278673e-09 1.300499405e-08 1.212310201e-08 2.600113524e-08 2.020063819e-08 1.506971901e-08 1.834775552e-08 1.838235953e-08 2.056715949e-08 3.217392704e-08 2.773567768e-08 1.756415365e-08 1.841390213e-08 2.535990657e-08 2.906495028e-08 2.52373372e-08 2.734262008e-08 3.059745752e-08 3.328545352e-08 3.027359484e-08 1.903219554e-08 2.701606793e-08 3.189886178e-08 2.587112562e-08 2.177688767e-08 1.863806259e-08 2.171154827e-08 2.268058038e-08 1.741203135e-08 1.547141895e-08 1.601040157e-08 1.797226695e-08 1.839884505e-08 1.555782203e-08 9.010536567e-09 1.577589875e-08 1.450179507e-08 1.155674791e-08 1.168193268e-08 1.208838596e-08 8.833896513e-09 1.08855909e-08 9.627251198e-09 5.322155903e-09 8.544095416e-09 7.566568504e-09 5.4397994e-09 7.663526947e-09 3.633787169e-09 5.214171329e-09 2.642248457e-09 2.279025822e-09 2.207972777e-09 4.067803536e-10 4.186015465e-12 3.335588555e-10 3.564684458e-11 2.793621986e-10 7.351383815e-11 4.811184575e-13 3.95788506e-12 6.747357178e-14 1.381185941e-14 1.034980486e-15 6.273060218e-16 2.091159498e-16 6.32895247e-16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 5.06234054e-14 0 0 0 0 0 0 0 0 0 0 0 0 5.893544736e-23 1.245835447e-17 6.214908234e-17 7.095807819e-15 5.921950879e-15 1.679147385e-13 1.955137732e-12 9.271266492e-13 8.341502991e-11 8.206576265e-11 1.675603475e-10 2.493421775e-10 3.885187767e-10 1.533395849e-09 1.204587813e-09 2.033653067e-09 2.840336749e-09 4.714650167e-09 5.092139055e-09 3.336580717e-09 5.175159262e-09 7.751276229e-09 7.638995963e-09 1.004356712e-08 1.121746745e-08 1.194740367e-08 1.238134571e-08 1.254330142e-08 1.35914051e-08 1.422341494e-08 1.205335332e-08 1.44647248e-08 1.392352578e-08 1.35645876e-08 1.740173562e-08 1.363460149e-08 1.842106177e-08 2.243315177e-08 2.036307142e-08 2.596875715e-08 2.565610261e-08 2.091124976e-08 2.364078547e-08 2.890879121e-08 2.279333091e-08 2.244058168e-08 2.531484474e-08 2.400614766e-08 2.394711461e-08 2.193439207e-08 2.01192526e-08 2.41680073e-08 2.625983137e-08 2.692686324e-08 2.018511572e-08 2.420723144e-08 1.769824064e-08 2.064152953e-08 1.51321183e-08 2.427967784e-08 1.624367761e-08 1.980616101e-08 8.330839942e-09 1.460891261e-08 1.383306679e-08 1.202533364e-08 1.62662197e-08 1.356876085e-08 1.493857181e-08 1.525790919e-08 1.334446632e-08 6.591426138e-09 9.071732199e-09 7.269217418e-09 1.210470534e-08 8.289100707e-09 1.402916044e-08 1.251010076e-08 8.245217954e-09 6.430323348e-09 7.348864275e-09 7.841407349e-09 1.120687713e-08 1.047872353e-08 9.603888101e-09 9.589411163e-09 9.405697117e-09 1.150010927e-08 8.616363015e-09 1.121563416e-08 5.666047989e-09 6.123919566e-09 1.241735254e-08 7.404949909e-09 4.31184051e-09 8.686364477e-09 5.848139703e-09 1.081685885e-08 1.39525166e-08 8.711683772e-09 7.247285764e-09 1.25428643e-08 8.518920984e-09 1.255529293e-08 1.559530069e-08 1.404553852e-08 1.315210497e-08 1.324328829e-08 1.759207286e-08 1.712238489e-08 1.934855222e-08 2.088349125e-08 2.3183189e-08 2.129660759e-08 2.618754422e-08 2.541979691e-08 1.903202044e-08 2.647750831e-08 2.421099403e-08 2.233412828e-08 2.243039844e-08 2.95913955e-08 2.334079881e-08 2.469182005e-08 2.591775205e-08 2.498145794e-08 2.301701917e-08 2.612386141e-08 2.629789638e-08 2.35503457e-08 2.060865518e-08 1.999522345e-08 2.069726062e-08 1.728851995e-08 1.637113245e-08 1.788480084e-08 1.707296744e-08 1.358048477e-08 1.483919552e-08 1.448190361e-08 1.747651918e-08 1.07262194e-08 1.389944525e-08 1.235476536e-08 1.039716932e-08 1.37860745e-08 9.342685783e-09 8.431596221e-09 6.773855065e-09 5.748565946e-09 3.851859768e-09 5.473142277e-09 3.549029623e-09 4.039793926e-09 2.732565796e-09 1.307700069e-09 3.64859978e-10 5.470875713e-10 1.725902985e-10 3.893147537e-10 1.250485717e-10 1.356352106e-10 1.790647844e-11 1.266824246e-14 6.442786635e-15 1.5014874e-15 6.915714237e-17 1.185577725e-15 1.087828026e-17 0 8.620604571e-19 1.868677775e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 6.158117571e-19 0 5.623849974e-19 7.841656423e-18 1.84531186e-16 4.151855405e-17 1.42761958e-14 4.973023601e-13 7.37488016e-14 2.022763132e-11 6.168800963e-11 2.645407493e-10 9.131895501e-11 3.531851012e-11 4.945755585e-10 7.706315345e-10 1.003792307e-09 2.49397766e-09 3.200941267e-09 3.599729561e-09 4.807384942e-09 5.512155195e-09 2.868731166e-09 5.984228622e-09 7.229653768e-09 8.22862748e-09 5.879818239e-09 1.032296215e-08 7.59338357e-09 1.209665943e-08 1.603032417e-08 1.257228401e-08 1.100154901e-08 1.303405402e-08 1.509005269e-08 1.747864796e-08 1.386468067e-08 1.438942032e-08 1.541601468e-08 2.440121629e-08 2.019004411e-08 2.028514968e-08 2.579123164e-08 2.372389695e-08 2.289205421e-08 2.60933124e-08 1.86490849e-08 2.202355039e-08 2.128138344e-08 2.610454662e-08 2.433134624e-08 2.184230046e-08 2.493606986e-08 2.386703931e-08 2.885243233e-08 2.290831267e-08 2.516920408e-08 2.337627707e-08 2.113878276e-08 1.668694306e-08 1.35911983e-08 1.110694482e-08 1.460646805e-08 1.206844228e-08 1.494558184e-08 2.2201817e-08 1.432231024e-08 1.624569816e-08 1.409436066e-08 1.011361536e-08 9.351731271e-09 6.331262018e-09 1.112173318e-08 9.698240725e-09 1.430085085e-08 1.203309025e-08 8.158595938e-09 6.310493817e-09 7.777479584e-09 9.495163003e-09 1.028395575e-08 5.87893149e-09 9.847656228e-09 8.404445101e-09 6.4475491e-09 7.516598772e-09 6.913437785e-09 9.594164485e-09 4.016423853e-09 9.759561317e-09 5.825188027e-09 1.256457566e-08 7.996279719e-09 8.949384512e-09 4.322842427e-09 1.313049051e-08 5.891637239e-09 5.581363102e-09 9.982048242e-09 1.505522811e-08 1.138454083e-08 1.029947581e-08 1.000693456e-08 1.223605554e-08 7.042935142e-09 1.048565238e-08 1.357293166e-08 1.708387631e-08 9.771162294e-09 1.800547043e-08 1.637376087e-08 2.34087984e-08 1.799325638e-08 2.31279525e-08 1.780388454e-08 1.938185121e-08 2.590864121e-08 2.034604032e-08 2.170929455e-08 2.045575388e-08 1.988466683e-08 2.537755919e-08 2.034053055e-08 3.137831154e-08 2.172962162e-08 2.744663956e-08 2.562784841e-08 2.20122288e-08 2.045734493e-08 1.964773876e-08 1.700919033e-08 1.794732409e-08 2.203813818e-08 1.802040042e-08 2.123542704e-08 1.717558958e-08 1.767550007e-08 1.718428946e-08 1.41001425e-08 1.445208345e-08 1.289560593e-08 1.472860542e-08 1.115011581e-08 1.165887686e-08 8.384470247e-09 1.470473025e-08 1.049282232e-08 8.968269194e-09 9.106361446e-09 6.221591777e-09 8.774656248e-09 6.944604115e-09 5.155100493e-09 3.66404057e-09 5.140378105e-09 1.630534471e-09 1.778059284e-09 1.053688691e-09 5.135888022e-10 9.596037061e-11 5.201078658e-10 3.038334797e-10 1.861204353e-10 9.433091855e-12 3.02772718e-13 1.180803747e-12 5.863747373e-13 2.981085724e-15 5.977946279e-17 1.124111158e-16 9.027777486e-17 6.762224252e-19 3.567081055e-26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 9.052116486e-23 0 8.383057968e-18 3.077628278e-17 6.212497367e-17 5.542953518e-16 1.222267105e-14 2.355311713e-13 1.820499085e-12 1.679817322e-12 1.693510431e-10 5.907923934e-11 4.341267725e-10 3.047753077e-10 3.659305673e-10 1.167247056e-09 7.875094861e-10 1.376790483e-09 2.064848784e-09 2.471872765e-09 3.531656163e-09 4.059347e-09 5.818654834e-09 6.002240871e-09 6.970722933e-09 7.172111737e-09 9.846012815e-09 9.193914065e-09 9.694062297e-09 1.139875333e-08 1.034078967e-08 1.441588519e-08 1.14844976e-08 1.639377048e-08 1.586123473e-08 1.504900815e-08 1.516281169e-08 1.370019034e-08 1.600998326e-08 1.941122993e-08 1.986666199e-08 1.92493331e-08 1.665584562e-08 2.076432701e-08 2.388830654e-08 2.469593129e-08 1.769581406e-08 1.84428814e-08 2.092600521e-08 2.376811849e-08 2.336786642e-08 2.091805641e-08 2.625976794e-08 1.561754311e-08 2.163272608e-08 1.790499648e-08 1.322685771e-08 2.104776765e-08 2.063718769e-08 1.94916791e-08 2.092965452e-08 2.596973757e-08 2.037719986e-08 2.668448523e-08 1.258939844e-08 1.195296488e-08 1.153712965e-08 1.239670878e-08 9.176290247e-09 9.028953211e-09 1.130956668e-08 9.471114679e-09 1.20469623e-08 1.418785288e-08 1.641536298e-08 9.070950038e-09 9.388502526e-09 1.068785659e-08 7.501952919e-09 9.263223007e-09 1.072452649e-08 1.025362502e-08 8.660816902e-09 7.370210267e-09 5.502423923e-09 6.954683442e-09 4.109771486e-09 6.41007045e-09 7.290094129e-09 8.08726162e-09 7.894997801e-09 9.051695835e-09 4.242445081e-09 1.12132853e-08 6.368793874e-09 1.058174432e-08 1.25095993e-08 1.212094844e-08 8.537769608e-09 1.354145283e-08 8.78612447e-09 1.867972546e-08 1.436274751e-08 1.340164455e-08 1.643856377e-08 1.761845885e-08 1.58360414e-08 1.160250053e-08 1.763023856e-08 1.814086588e-08 1.904140163e-08 1.531757441e-08 2.441675308e-08 2.259506174e-08 2.572024422e-08 2.291582619e-08 2.344078873e-08 1.871016372e-08 2.058946206e-08 1.897614114e-08 2.420607501e-08 2.528602814e-08 2.21016674e-08 2.558726476e-08 2.297996041e-08 2.271192085e-08 2.093439738e-08 2.658126658e-08 1.835483354e-08 1.592040856e-08 2.222001752e-08 1.882025113e-08 2.057263974e-08 2.069024581e-08 2.112249869e-08 1.763530886e-08 1.590734456e-08 1.20237546e-08 1.33699423e-08 1.496319235e-08 1.214675178e-08 1.331074296e-08 1.224714837e-08 1.401292206e-08 9.639911451e-09 1.097297003e-08 9.050348869e-09 8.697560968e-09 7.31343852e-09 4.87776731e-09 5.874330939e-09 6.452621005e-09 3.189530071e-09 4.410582707e-09 4.021511804e-09 2.335656679e-09 1.666588927e-09 1.206827552e-09 3.842461235e-10 3.916910288e-10 2.751093727e-11 2.294119211e-10 2.92571764e-11 6.0951441e-11 1.429409202e-11 1.29448069e-12 1.295651654e-13 5.090303416e-15 1.710241709e-15 4.172236421e-17 4.667831038e-17 1.61018898e-17 9.626038834e-25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.824998996e-18 1.736197032e-18 3.426993381e-18 3.679679852e-16 1.013540646e-17 3.603913816e-17 1.973529236e-14 7.020630243e-13 1.002276031e-11 9.770483321e-11 7.307871095e-11 1.576849591e-10 7.80801491e-10 8.133688279e-10 1.070587073e-09 1.078968792e-09 2.420997479e-09 2.910411806e-09 1.932607671e-09 3.253537093e-09 7.325201459e-09 4.22026323e-09 6.200058754e-09 7.220341795e-09 7.888634031e-09 7.401850998e-09 1.016336321e-08 8.80255036e-09 9.280531469e-09 1.246237934e-08 1.219397728e-08 9.830533246e-09 1.056455136e-08 1.461902739e-08 1.527619511e-08 1.778218369e-08 1.627104781e-08 1.702793238e-08 1.609583846e-08 1.980629488e-08 1.858073697e-08 1.692825126e-08 2.524045899e-08 2.039205067e-08 2.302179555e-08 2.537601301e-08 2.406996183e-08 2.037226527e-08 2.243690643e-08 1.387214882e-08 1.832648987e-08 2.568448668e-08 1.551847804e-08 2.049596894e-08 2.680671146e-08 2.256136505e-08 1.807958587e-08 2.487182413e-08 2.416009815e-08 1.884144028e-08 2.079024671e-08 1.956799414e-08 1.434033658e-08 1.55936624e-08 1.867873826e-08 1.096026973e-08 2.169502628e-08 1.487501549e-08 1.101284112e-08 8.889491207e-09 9.022837919e-09 9.134406611e-09 9.296166728e-09 8.238648915e-09 6.867209176e-09 6.951731207e-09 1.209968289e-08 1.413987755e-08 1.301995616e-08 7.801048392e-09 5.044758803e-09 8.95765521e-09 6.22348464e-09 7.494227178e-09 4.146842722e-09 8.955729583e-09 6.343332779e-09 9.027962695e-09 1.043880174e-08 6.685820324e-09 8.279968369e-09 1.373838703e-08 6.650212673e-09 6.15261223e-09 5.71142377e-09 5.671792123e-09 4.131436003e-09 8.187824143e-09 1.110234204e-08 7.699030486e-09 1.112253238e-08 9.019234482e-09 1.292250302e-08 1.503997609e-08 1.014803597e-08 2.025832312e-08 2.155765486e-08 2.133488833e-08 1.424063734e-08 1.321697841e-08 1.66583554e-08 2.528122838e-08 1.739633572e-08 2.132281226e-08 1.648667557e-08 1.370237176e-08 1.718132836e-08 2.045848363e-08 1.715735025e-08 2.013957122e-08 1.894668344e-08 2.57848347e-08 1.971857392e-08 2.217657473e-08 1.961731685e-08 2.253366991e-08 2.733154667e-08 2.089290721e-08 2.460333134e-08 1.766252359e-08 1.66434336e-08 1.50442927e-08 2.158173686e-08 1.993493646e-08 2.030873407e-08 1.361001758e-08 1.364640576e-08 1.422016414e-08 1.661855782e-08 1.465183336e-08 1.593468868e-08 1.252648727e-08 1.271430544e-08 1.2178706e-08 6.397668928e-09 9.095658533e-09 8.522601076e-09 9.563948521e-09 8.115902832e-09 8.22625461e-09 4.813525203e-09 5.08035146e-09 4.427369621e-09 3.490906619e-09 2.595848907e-09 1.976983045e-09 5.334432475e-10 2.408389817e-10 4.810838723e-11 4.052193376e-10 1.883865392e-10 1.762849545e-10 4.528070895e-12 4.796627715e-13 1.605008185e-12 2.031710467e-14 1.308507694e-16 2.032702025e-16 4.585739791e-16 1.88407488e-17 6.562328742e-18 1.773382552e-24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.160245211e-18 2.087895155e-18 3.568571071e-17 7.820508095e-16 7.87596916e-15 2.668674383e-15 1.593830062e-13 5.875865398e-14 4.48631327e-12 3.908282023e-11 1.962710616e-10 1.868697683e-11 2.773084373e-10 8.329231319e-12 3.959543586e-10 1.77864299e-09 2.826974356e-09 2.495458564e-09 3.67112976e-09 6.44292264e-09 2.975725417e-09 5.112324135e-09 7.933431371e-09 5.617847351e-09 8.893316491e-09 7.943713093e-09 1.097719631e-08 9.225000581e-09 7.786584707e-09 8.382065801e-09 1.134285962e-08 8.537717027e-09 1.101733116e-08 1.2107187e-08 1.515087391e-08 1.478009092e-08 1.168777966e-08 1.632930575e-08 1.673180513e-08 1.464656993e-08 1.618119115e-08 1.848395373e-08 1.711931134e-08 2.235207304e-08 2.443347912e-08 1.938565996e-08 2.048604203e-08 2.242172582e-08 2.007036793e-08 2.407106344e-08 2.360859548e-08 2.521654518e-08 2.480169957e-08 2.335965927e-08 2.413343224e-08 2.043366365e-08 1.536213516e-08 2.301552099e-08 2.085701326e-08 1.494738678e-08 1.645935521e-08 1.233378076e-08 1.295515334e-08 1.4075832e-08 1.192093549e-08 1.155617981e-08 1.487589784e-08 1.014516172e-08 1.363922177e-08 7.223481919e-09 7.742520277e-09 6.74674594e-09 1.159899436e-08 1.17958253e-08 1.185223749e-08 1.086751566e-08 8.794845581e-09 1.14338702e-08 8.419119105e-09 1.056472441e-08 1.078728036e-08 5.927866836e-09 1.137943187e-08 9.037804172e-09 1.509814598e-08 6.655136354e-09 8.574279681e-09 7.220790765e-09 7.568583224e-09 1.112804953e-08 9.333883455e-09 8.283296966e-09 4.91196255e-09 6.819915346e-09 7.014107308e-09 1.097367765e-08 6.716446832e-09 7.036701552e-09 8.973940534e-09 1.133421602e-08 1.279842827e-08 5.480143522e-09 9.139385341e-09 1.090643948e-08 1.787029376e-08 6.1750198e-09 8.815140692e-09 1.257672769e-08 1.671590334e-08 1.923974382e-08 1.327073149e-08 2.010051413e-08 1.588423026e-08 1.811244257e-08 1.971625952e-08 2.028764163e-08 2.007343203e-08 2.261955726e-08 2.248497799e-08 2.577335167e-08 2.089174879e-08 2.25832652e-08 2.548792827e-08 2.356352827e-08 1.992260987e-08 1.859221122e-08 1.639598175e-08 1.69728534e-08 1.982950362e-08 1.741090614e-08 1.968024596e-08 2.339885042e-08 1.654246584e-08 1.41104144e-08 1.539021256e-08 1.316568411e-08 1.971750532e-08 1.250801796e-08 1.386858845e-08 1.62533303e-08 1.126226201e-08 1.355899044e-08 8.376197732e-09 9.991098908e-09 1.071724227e-08 1.043136073e-08 9.61102316e-09 7.910044642e-09 6.447694568e-09 6.292744238e-09 5.497085972e-09 5.341224662e-09 5.940666231e-09 2.598191493e-09 2.017569575e-09 2.317875155e-09 8.032334121e-10 1.085042251e-09 5.625815153e-10 3.576258233e-10 1.319278165e-11 8.041686149e-11 9.144233591e-12 1.672891378e-13 1.050313465e-12 1.015627862e-12 2.633825018e-15 7.385269872e-16 1.930679646e-17 5.371905422e-19 0 9.517530387e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.126516577e-19 0 5.04877686e-18 1.940752604e-16 1.811096013e-15 3.226441152e-15 1.167455027e-14 2.757070412e-13 3.067905518e-11 1.519989446e-11 2.503026586e-11 3.86292779e-10 4.577233447e-10 1.062244907e-10 8.048610782e-10 1.381076594e-09 1.196966952e-09 3.39630425e-09 5.035769027e-09 2.88143366e-09 4.15436372e-09 5.585926949e-09 6.002383532e-09 6.459404744e-09 8.459081947e-09 7.322914519e-09 8.687286074e-09 9.969888395e-09 5.95100737e-09 1.067746852e-08 1.104305386e-08 9.713884539e-09 1.252774582e-08 1.071161088e-08 1.529513722e-08 1.419884029e-08 1.74619402e-08 1.451007039e-08 1.618742037e-08 1.765783616e-08 1.527994778e-08 1.96340291e-08 1.791688922e-08 1.692053455e-08 2.001966982e-08 2.007643811e-08 2.662618359e-08 1.903566066e-08 1.84032878e-08 2.353413466e-08 1.820074509e-08 2.164452568e-08 1.800325647e-08 2.29894711e-08 1.941858679e-08 1.845496514e-08 1.926100665e-08 1.794148518e-08 1.915226789e-08 2.417927378e-08 1.793922044e-08 1.309813651e-08 1.551665515e-08 1.065261601e-08 1.690058242e-08 1.128422247e-08 7.465164876e-09 1.810384133e-08 1.116691179e-08 1.083048071e-08 1.375799849e-08 8.527759369e-09 1.193784563e-08 8.983812931e-09 1.069002583e-08 1.192094137e-08 1.031375245e-08 1.021894714e-08 1.028040742e-08 6.453195049e-09 7.376231617e-09 9.699186356e-09 7.154318035e-09 1.028986731e-08 1.010500069e-08 1.34719501e-08 1.110687758e-08 1.215079839e-08 1.028072469e-08 1.375298285e-08 9.633585142e-09 1.142056676e-08 8.581638218e-09 1.254009218e-08 1.157580192e-08 1.505051263e-08 1.074320193e-08 1.125206266e-08 1.158499232e-08 1.09970923e-08 1.168758713e-08 9.195352122e-09 1.315953484e-08 1.21493854e-08 1.967383505e-08 9.545154941e-09 1.33463253e-08 1.200880519e-08 1.013011505e-08 1.593430246e-08 1.532071116e-08 1.907921105e-08 1.880585295e-08 2.21295097e-08 2.075628118e-08 2.114377971e-08 1.974684663e-08 1.985046026e-08 1.835357614e-08 1.794279367e-08 1.950730238e-08 1.630055999e-08 1.558089759e-08 1.910616064e-08 1.611758396e-08 1.979183741e-08 2.170014129e-08 2.624917725e-08 1.667123303e-08 1.793096429e-08 1.607293585e-08 1.759687026e-08 1.928685037e-08 1.768886876e-08 1.594897983e-08 1.398427456e-08 1.523639013e-08 1.052436847e-08 1.398274376e-08 1.160076212e-08 1.316971508e-08 1.050257088e-08 1.146149885e-08 1.010253632e-08 7.818980408e-09 6.481099836e-09 7.42330907e-09 6.566158415e-09 7.590522512e-09 5.585505649e-09 6.422282599e-09 3.221616361e-09 3.82051835e-09 3.26969681e-09 2.230024177e-09 1.544025269e-09 1.248161352e-09 2.507491173e-10 3.759096671e-11 3.182326882e-10 2.674976564e-11 2.251728622e-11 2.738227103e-11 2.077455224e-11 5.064365408e-13 3.46345843e-15 3.428997573e-14 1.109634001e-17 1.599898048e-16 4.054680133e-17 2.916239431e-17 2.396738646e-21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.144122401e-18 2.427071253e-17 1.107388084e-16 2.536302501e-15 2.40826856e-15 3.114997263e-14 3.023186933e-12 4.35321195e-12 6.875269761e-11 8.550410251e-11 3.851998405e-10 1.032345443e-10 4.034565401e-11 7.261264898e-10 4.166121465e-10 1.121888501e-09 2.953823481e-09 1.250566302e-09 2.45626537e-09 5.20398637e-09 3.289638199e-09 5.892116969e-09 5.669211237e-09 6.671739164e-09 6.370864381e-09 7.314441341e-09 6.200361391e-09 1.044266192e-08 9.685788426e-09 9.540023611e-09 1.288400208e-08 1.032837233e-08 1.36944755e-08 1.093746579e-08 1.475594642e-08 1.456282283e-08 1.516796897e-08 1.370043548e-08 1.604230581e-08 1.797834548e-08 1.469788764e-08 2.178725512e-08 1.952313272e-08 2.047389399e-08 2.33569325e-08 1.973118181e-08 2.197756577e-08 2.066565769e-08 1.713850162e-08 1.6397671e-08 1.714945436e-08 2.155607808e-08 1.820454046e-08 1.892866738e-08 2.231847533e-08 2.283658868e-08 1.810577993e-08 2.066880573e-08 1.424559984e-08 1.416247503e-08 1.862600903e-08 1.059796262e-08 1.250340449e-08 1.047114975e-08 1.355596653e-08 1.767651867e-08 1.165236483e-08 1.744738309e-08 8.666717258e-09 1.74799834e-08 9.923172193e-09 1.400003358e-08 1.083539023e-08 1.117086768e-08 9.538490332e-09 8.5693504e-09 8.333938616e-09 7.335718998e-09 1.167200049e-08 6.030134065e-09 1.09600734e-08 1.193693863e-08 8.416725702e-09 9.754090748e-09 1.305368061e-08 1.12740452e-08 9.43865822e-09 7.873856416e-09 1.139447634e-08 9.744819745e-09 6.680123703e-09 1.165380237e-08 1.048051197e-08 1.136727946e-08 1.107462657e-08 8.298045377e-09 1.010518598e-08 1.817454647e-08 1.035472992e-08 1.52459661e-08 1.204576608e-08 7.457065726e-09 1.157946701e-08 1.126137646e-08 9.586318802e-09 1.265711503e-08 1.496267008e-08 9.150505893e-09 1.653562273e-08 1.735759173e-08 2.313499969e-08 2.035928641e-08 2.126094062e-08 1.779158392e-08 2.337298977e-08 2.45038073e-08 1.503944786e-08 2.009668536e-08 1.797964802e-08 2.030842397e-08 2.526291101e-08 2.140211023e-08 2.402591823e-08 1.539520695e-08 2.315086456e-08 1.711904927e-08 1.946083932e-08 1.843926656e-08 1.324974908e-08 2.083781789e-08 1.31905669e-08 1.689425505e-08 1.318291046e-08 1.572167885e-08 1.487308756e-08 1.512055945e-08 1.16095225e-08 1.264065376e-08 1.310706689e-08 1.026769893e-08 9.486735639e-09 8.583997403e-09 1.016672882e-08 7.803081647e-09 7.663904877e-09 8.878639212e-09 7.044548956e-09 6.42160016e-09 4.06985584e-09 4.575007753e-09 3.782170234e-09 5.0324857e-09 2.155780127e-09 1.354330142e-09 1.566652367e-09 1.627486851e-09 7.849030293e-10 5.404842287e-11 2.305601098e-10 2.768828715e-11 4.530892633e-11 6.963794931e-12 3.669900656e-11 2.229369499e-12 1.02392204e-13 1.657240428e-15 6.987240865e-15 4.965048021e-16 4.049477723e-18 3.948251187e-18 5.869202629e-18 0 0 0 6.652406414e-13 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 3.683608826e-19 3.976917579e-19 1.368362247e-18 1.030943115e-18 6.680242004e-17 4.720643586e-15 6.876387477e-15 3.69006783e-14 2.893229432e-12 1.653438483e-12 1.735148439e-11 7.368101523e-11 2.943346645e-10 5.318654433e-10 1.045354481e-10 2.583032578e-10 1.790833567e-09 1.940504761e-09 2.198878504e-09 4.668623037e-09 2.916228963e-09 3.144577946e-09 3.84111545e-09 5.639868953e-09 5.744634301e-09 5.742755788e-09 7.674054196e-09 8.279109314e-09 8.606016791e-09 6.231318527e-09 9.278910328e-09 8.299257324e-09 1.182123746e-08 1.129347242e-08 9.173443393e-09 1.283538707e-08 8.169949275e-09 1.273289598e-08 1.212443724e-08 1.645810316e-08 1.405650401e-08 1.44180439e-08 1.382628862e-08 1.656900178e-08 1.770384033e-08 2.150671871e-08 1.540859378e-08 2.061825472e-08 1.729320224e-08 1.828725976e-08 1.910090329e-08 1.61322287e-08 1.554369556e-08 3.004905028e-08 2.222123837e-08 1.812919176e-08 1.736805778e-08 2.095550824e-08 1.59460153e-08 1.546465429e-08 2.082104548e-08 1.961687479e-08 1.129958342e-08 1.267390929e-08 1.142808477e-08 1.84282306e-08 1.452983345e-08 1.566411108e-08 1.465427293e-08 1.468883464e-08 1.342850006e-08 8.168010103e-09 1.420951991e-08 7.930979992e-09 1.351980356e-08 1.487649252e-08 1.04201224e-08 1.73597313e-08 1.475622512e-08 1.63960169e-08 1.00026358e-08 7.1543759e-09 1.258806688e-08 1.293456939e-08 1.116936688e-08 1.218396911e-08 1.110620628e-08 1.039715953e-08 1.016283701e-08 1.068925147e-08 1.096680631e-08 1.092651498e-08 1.122388291e-08 1.242684359e-08 1.260463244e-08 1.150683792e-08 1.502837105e-08 1.136284157e-08 9.141806056e-09 1.141802141e-08 1.295749684e-08 9.963738234e-09 1.55859684e-08 1.098835917e-08 1.198563401e-08 1.402523312e-08 2.022668585e-08 1.237390803e-08 8.740785334e-09 1.420170982e-08 1.061977024e-08 2.071003837e-08 1.639600739e-08 2.361212022e-08 1.369940186e-08 1.848874183e-08 1.974473731e-08 2.120732384e-08 1.582177986e-08 2.063046023e-08 1.479644477e-08 1.890126112e-08 2.247014994e-08 1.800878427e-08 2.417590354e-08 2.047112064e-08 2.213719184e-08 1.548512609e-08 1.833898863e-08 1.378550646e-08 2.018454584e-08 1.263596816e-08 2.105720988e-08 1.46793822e-08 1.486485417e-08 1.443664277e-08 1.254799744e-08 1.223759564e-08 9.420625918e-09 1.177628775e-08 1.176948794e-08 9.661999652e-09 6.857803096e-09 9.613330983e-09 6.673834854e-09 9.598386535e-09 6.652745987e-09 6.558331036e-09 6.530514634e-09 6.728082062e-09 8.181858371e-09 4.208122766e-09 3.888425792e-09 5.393069284e-09 3.790975566e-09 2.19316758e-09 1.854771725e-09 9.619493122e-10 2.56505342e-10 7.744761272e-10 2.979914548e-11 3.070985992e-10 1.209689298e-11 2.960513541e-11 1.159257682e-11 6.692555544e-14 1.523656603e-13 9.0556988e-14 1.993039558e-14 2.147081931e-16 2.68622055e-17 5.986608756e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.785746456e-19 1.388478603e-18 5.252308302e-17 6.823797448e-16 5.002227973e-16 7.924115758e-15 5.302824777e-13 1.157608802e-14 4.398237294e-13 3.695378018e-11 1.048063485e-10 2.119962774e-10 1.129457029e-10 2.424159583e-10 3.723066042e-10 7.26807931e-10 1.272471493e-09 1.03974189e-09 3.253964238e-09 5.200528741e-09 5.290127989e-09 3.948310187e-09 3.571164901e-09 5.144187051e-09 6.920608313e-09 5.262388292e-09 4.780189951e-09 8.439494906e-09 8.605000806e-09 7.782023347e-09 1.010915941e-08 6.501656979e-09 1.077382463e-08 9.480305648e-09 1.136667963e-08 1.125584682e-08 1.22195702e-08 1.907921426e-08 1.341686322e-08 1.740220779e-08 1.600011714e-08 1.867762449e-08 1.416834408e-08 1.711747177e-08 1.698944878e-08 1.261961192e-08 1.810838422e-08 1.779312632e-08 2.345549309e-08 2.006303696e-08 1.550041883e-08 1.281936852e-08 1.542718804e-08 2.21111535e-08 1.797354369e-08 1.852029656e-08 1.731351681e-08 1.984050322e-08 1.764838095e-08 1.812495723e-08 1.226706839e-08 2.108827285e-08 1.213812693e-08 1.752665754e-08 1.484241097e-08 1.648484059e-08 1.784082269e-08 1.190279179e-08 8.105970231e-09 1.415047585e-08 9.750733334e-09 1.429272207e-08 1.068303703e-08 1.132259466e-08 9.026540756e-09 1.266092743e-08 1.178259678e-08 1.673072006e-08 1.078596572e-08 1.564646133e-08 1.443469707e-08 1.269349477e-08 1.06001286e-08 1.076313783e-08 1.042025604e-08 1.282753965e-08 1.151588853e-08 9.254653749e-09 1.54349625e-08 1.364549917e-08 1.182045732e-08 1.58983319e-08 1.336259012e-08 1.08938427e-08 1.275925651e-08 1.224943414e-08 1.303485884e-08 1.363906166e-08 9.827742882e-09 1.399862118e-08 7.53027161e-09 1.21163197e-08 1.154581074e-08 1.374181075e-08 1.44070128e-08 1.428844559e-08 1.269451284e-08 1.353758303e-08 1.169249143e-08 1.976830537e-08 2.341759553e-08 1.651184898e-08 1.751767215e-08 1.477913267e-08 1.80104566e-08 1.987863869e-08 2.741362715e-08 1.706564336e-08 2.020712814e-08 2.0404952e-08 1.8445483e-08 1.744612321e-08 1.675817051e-08 1.837748905e-08 1.813959836e-08 1.887942634e-08 1.933139571e-08 1.276074394e-08 1.33809768e-08 1.286573309e-08 1.861643656e-08 1.887274684e-08 1.354652578e-08 1.598774841e-08 1.278448061e-08 9.903971221e-09 1.28945647e-08 1.094211099e-08 1.104486065e-08 1.103357102e-08 1.071121534e-08 1.177429602e-08 7.217801745e-09 9.417976882e-09 5.839448904e-09 7.409386456e-09 4.882061054e-09 8.168600635e-09 3.79121426e-09 3.397894754e-09 3.610374462e-09 3.429543076e-09 2.870518629e-09 4.694413349e-09 1.590137621e-09 2.065082768e-09 5.834307233e-10 4.147996376e-10 3.147720742e-10 3.234810248e-11 3.333659776e-10 1.559302653e-11 1.51340054e-10 8.530788572e-12 1.436528504e-13 1.205945439e-13 5.117113379e-15 2.027985157e-16 4.012021495e-16 2.160993115e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.055754684e-19 1.787774895e-17 2.288425317e-17 1.549635157e-16 3.062264386e-15 3.126408974e-13 1.600384984e-12 9.95915227e-12 1.068793738e-12 2.841861834e-10 3.24446392e-10 3.357894084e-10 1.215060865e-10 2.314597243e-10 1.514563214e-09 1.205441272e-09 1.467644916e-09 2.235352978e-09 4.516877851e-09 1.854856442e-09 5.299110925e-09 3.957123983e-09 5.475788454e-09 6.779990806e-09 6.864379235e-09 5.531729974e-09 6.038020629e-09 9.458367646e-09 9.929408948e-09 8.648926734e-09 6.969398232e-09 1.138171555e-08 9.701428032e-09 1.29456409e-08 9.730303794e-09 1.590791595e-08 1.135253103e-08 1.067328762e-08 1.089508965e-08 1.173193162e-08 1.143490082e-08 1.231650162e-08 1.711074727e-08 1.780690311e-08 1.987397781e-08 1.240673217e-08 2.294725958e-08 1.699693916e-08 1.499954666e-08 2.08209016e-08 1.594344372e-08 1.969997095e-08 1.348890164e-08 2.123527544e-08 1.822385325e-08 1.615157478e-08 1.630361459e-08 1.629114093e-08 1.705102349e-08 1.684283476e-08 1.347030548e-08 1.391454427e-08 1.212184471e-08 9.928185869e-09 1.069306255e-08 1.384566613e-08 1.612991908e-08 1.376277754e-08 1.380617383e-08 1.289853157e-08 1.643512857e-08 1.696511838e-08 1.810200116e-08 1.336296867e-08 1.260429121e-08 8.451314134e-09 1.779422872e-08 1.430586508e-08 1.417314227e-08 1.532299312e-08 1.241825615e-08 1.072871047e-08 1.530943309e-08 1.085048845e-08 1.074874937e-08 1.22965991e-08 1.487026924e-08 1.538766008e-08 1.214080842e-08 1.209491337e-08 1.347089333e-08 1.224425937e-08 1.277628715e-08 1.146189593e-08 1.142238762e-08 1.22322605e-08 1.479733027e-08 1.011354379e-08 1.343121707e-08 1.010423929e-08 1.208496279e-08 1.149425331e-08 1.245290428e-08 1.295373637e-08 1.525410121e-08 1.167877596e-08 1.391828254e-08 1.660648313e-08 1.404683721e-08 1.777986463e-08 2.144109357e-08 1.563731434e-08 1.809679971e-08 1.485192996e-08 1.79523666e-08 2.136735924e-08 1.589847833e-08 1.901177863e-08 1.939609409e-08 1.925286117e-08 1.952237978e-08 1.864059302e-08 1.629288649e-08 1.369036805e-08 1.780962349e-08 1.703525057e-08 1.799418523e-08 1.59002219e-08 1.898922867e-08 1.387159322e-08 1.277516654e-08 1.348275591e-08 1.330689728e-08 1.26340868e-08 1.228383052e-08 7.656337494e-09 1.190320253e-08 1.360744542e-08 9.038628737e-09 1.076987882e-08 1.016197232e-08 8.688250906e-09 6.99471903e-09 7.478081881e-09 6.29750084e-09 5.438357629e-09 6.611793383e-09 5.584679783e-09 3.468216071e-09 2.837954023e-09 4.665841077e-09 2.45382882e-09 2.345211818e-09 2.645517063e-09 6.861617979e-10 2.825804899e-09 4.578924034e-10 3.246186106e-10 1.08578028e-10 2.084264078e-10 3.38907736e-10 4.031244011e-13 3.870131644e-11 3.871955045e-13 4.166341237e-13 1.29668531e-14 9.469615533e-16 3.429750004e-16 2.243817568e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.313057196e-19 2.129116923e-18 4.659076072e-18 1.918231236e-16 6.212670539e-17 2.891489383e-14 5.172148459e-15 1.457733756e-12 8.814491079e-13 8.913221357e-12 5.675094715e-10 4.27179806e-12 2.460681211e-10 3.938569773e-10 9.828519648e-10 9.333534313e-11 7.652747049e-10 1.775538494e-09 3.219835438e-09 3.809965377e-09 1.901585524e-09 3.620208035e-09 5.110834509e-09 6.206208034e-09 5.948736917e-09 5.893931406e-09 5.698487658e-09 7.511324405e-09 9.682391627e-09 9.258780522e-09 8.392282847e-09 9.324827316e-09 7.033006394e-09 1.029463583e-08 9.546023447e-09 1.023325238e-08 1.214643928e-08 1.331921258e-08 1.266910947e-08 1.067743485e-08 1.456834566e-08 1.397570155e-08 1.36727433e-08 1.672791017e-08 1.317042332e-08 1.818836354e-08 1.593714367e-08 1.476832158e-08 1.576886042e-08 1.535048877e-08 1.676600836e-08 1.778164961e-08 1.887172295e-08 1.778042552e-08 1.229315232e-08 1.95708301e-08 1.969241778e-08 2.035345551e-08 1.734015728e-08 2.078172667e-08 2.014690409e-08 1.484328424e-08 1.342161852e-08 1.722240837e-08 1.23867373e-08 1.285305635e-08 1.32027031e-08 2.453694407e-08 1.233953671e-08 1.108962389e-08 6.485082074e-09 1.651782115e-08 1.221590755e-08 1.321795262e-08 1.157088089e-08 1.352430042e-08 1.471219268e-08 1.531136194e-08 1.351422984e-08 1.122971322e-08 1.39337817e-08 2.13471538e-08 1.29907247e-08 1.454536766e-08 1.322147965e-08 1.123092497e-08 1.437745853e-08 1.669627549e-08 1.022904116e-08 1.258883932e-08 1.291830663e-08 1.50799612e-08 1.359177316e-08 1.242805859e-08 1.596791461e-08 1.247304612e-08 1.355037874e-08 1.119851575e-08 1.32374498e-08 1.71836998e-08 1.275649387e-08 1.377312604e-08 1.544041838e-08 1.633185919e-08 1.473636566e-08 1.799073644e-08 1.828286526e-08 1.418008559e-08 2.019253353e-08 1.767107209e-08 1.929930162e-08 1.413116805e-08 1.876085861e-08 1.691245432e-08 2.256418232e-08 1.872962434e-08 1.446689272e-08 1.610527679e-08 1.647964241e-08 1.75644079e-08 1.654435637e-08 1.629529262e-08 1.418416151e-08 1.89214568e-08 1.765580589e-08 1.80499653e-08 1.319337371e-08 1.705098963e-08 1.096228445e-08 1.587707622e-08 1.334652929e-08 1.220399949e-08 1.357500219e-08 1.008484729e-08 1.012087851e-08 1.139824274e-08 1.14391641e-08 1.064623109e-08 1.058947196e-08 1.047638394e-08 7.555362994e-09 7.65621239e-09 8.067461859e-09 1.075713955e-08 6.449381654e-09 6.942284579e-09 8.189466588e-09 5.382998261e-09 6.654031992e-09 3.69207977e-09 2.805569007e-09 3.518619879e-09 3.085488705e-09 3.852713164e-09 2.185081592e-09 1.684827591e-09 1.560383041e-09 2.335394358e-10 3.112493369e-10 3.618151587e-10 3.524226877e-10 1.409367911e-11 8.288652206e-11 4.443705502e-14 1.358041008e-12 9.76183906e-14 8.385856572e-15 4.335648332e-16 1.152686495e-17 5.812156504e-18 1.170981346e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 4.473326265e-19 0 1.078160628e-18 6.651080451e-22 1.732071905e-17 4.272973019e-15 1.781966984e-17 8.208717143e-15 7.46127514e-13 4.000338153e-12 1.263097843e-10 6.776493627e-12 2.216279459e-10 3.673320732e-10 1.114986722e-12 8.450780049e-10 1.019017521e-09 1.644291495e-09 4.08484693e-10 3.006227925e-09 2.281480895e-09 2.537029687e-09 2.922403946e-09 5.853503165e-09 3.879393899e-09 2.312720246e-09 3.903351217e-09 5.37458977e-09 6.660483602e-09 7.332630193e-09 9.017003756e-09 6.729964466e-09 6.918413634e-09 6.980013082e-09 7.548303669e-09 1.000248114e-08 8.795342844e-09 1.10573911e-08 1.140067885e-08 8.743281987e-09 1.272832891e-08 1.21951014e-08 1.642729596e-08 1.234849185e-08 1.068029461e-08 8.901544764e-09 1.506168227e-08 1.258159518e-08 1.51083815e-08 1.667163502e-08 1.535709568e-08 1.456355189e-08 1.982086906e-08 1.821783165e-08 1.701414329e-08 1.399557386e-08 1.761542578e-08 1.798117828e-08 2.162354904e-08 1.956415785e-08 2.015429709e-08 1.278446483e-08 1.49790974e-08 1.228064077e-08 1.62696218e-08 1.570795717e-08 1.547897911e-08 1.340420542e-08 1.50858647e-08 1.556537117e-08 1.62265632e-08 1.70085227e-08 2.134688759e-08 1.461672948e-08 1.384516476e-08 1.357328136e-08 1.298909677e-08 1.733476065e-08 1.718240803e-08 1.827692879e-08 1.541051085e-08 1.385067737e-08 1.653098111e-08 1.593323681e-08 1.342090882e-08 1.318619597e-08 1.31099727e-08 2.058179783e-08 1.425262031e-08 1.654642651e-08 1.749477059e-08 1.4639114e-08 1.42486014e-08 1.310839266e-08 1.392450515e-08 1.632867361e-08 1.324752803e-08 1.448323831e-08 1.757922134e-08 1.474009819e-08 1.484745672e-08 1.405586045e-08 1.431418328e-08 1.723798073e-08 1.469422074e-08 2.050676711e-08 1.720609916e-08 2.324255031e-08 1.346498281e-08 1.278920388e-08 1.48766327e-08 1.542325011e-08 1.231822839e-08 1.637457072e-08 1.895973435e-08 2.179419985e-08 2.184256764e-08 1.584602515e-08 1.14661169e-08 2.162995562e-08 1.454297729e-08 1.808726698e-08 1.702093453e-08 1.41707037e-08 1.239990447e-08 1.491669428e-08 2.332782406e-08 1.334199666e-08 1.353342063e-08 1.476937554e-08 1.17662469e-08 1.591771207e-08 1.100487659e-08 1.302755365e-08 1.208845304e-08 1.166171286e-08 8.219026891e-09 8.453091893e-09 9.95183093e-09 8.315236612e-09 6.408607439e-09 1.27379848e-08 8.517030542e-09 6.904466938e-09 6.789830318e-09 7.133211632e-09 5.522264637e-09 6.459757007e-09 7.379743197e-09 4.153164229e-09 2.600586599e-09 6.570589457e-09 1.766838e-09 2.247724779e-09 2.087845633e-09 2.068281465e-09 1.180191737e-09 4.040634108e-10 2.021442843e-10 3.268873071e-10 5.784607837e-11 2.338473514e-11 1.996118396e-10 2.734458034e-12 6.61337418e-13 2.828841403e-13 1.348050781e-16 1.069737469e-15 1.420410833e-15 2.651165705e-20 5.952970439e-19 7.265312222e-23 5.663984599e-19 5.308461521e-19 0 0 0 0 0 0 0 9.264983953e-11 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.767443746e-18 1.347924792e-16 4.248922705e-17 5.154520306e-17 1.135577959e-16 3.501588776e-15 4.342045387e-14 5.225947701e-12 1.28654573e-14 1.555135148e-10 5.906393728e-11 7.986631699e-11 1.794551517e-10 5.707352492e-10 6.585310893e-10 1.711797785e-09 1.61308478e-09 2.449160639e-09 2.208893626e-09 1.917080003e-09 3.31851745e-09 3.156740229e-09 4.402733236e-09 4.237859874e-09 4.662554391e-09 4.093880542e-09 5.470656346e-09 4.978373006e-09 5.77145356e-09 6.431165189e-09 5.409833183e-09 6.510403662e-09 5.558154951e-09 9.785434103e-09 1.153896872e-08 9.210882586e-09 9.901925681e-09 1.218795277e-08 7.333534458e-09 1.335922293e-08 1.132964053e-08 1.214881233e-08 1.417552008e-08 1.56053422e-08 1.226869168e-08 1.395739265e-08 1.523930514e-08 1.845281033e-08 1.304264127e-08 1.554266158e-08 1.304461002e-08 1.372700959e-08 1.485542884e-08 1.713403204e-08 1.608444804e-08 1.30662068e-08 1.918089503e-08 1.517364804e-08 1.690143135e-08 1.63922563e-08 1.593605871e-08 1.847492236e-08 1.809647536e-08 1.165784811e-08 1.659813779e-08 2.27066683e-08 1.594536175e-08 1.195078236e-08 1.205817464e-08 1.219810211e-08 1.312238419e-08 1.400004423e-08 1.640898621e-08 1.526879807e-08 1.216249456e-08 1.471532965e-08 1.405535589e-08 1.213272112e-08 1.265197145e-08 1.286102612e-08 1.640077125e-08 1.859499306e-08 1.406983387e-08 1.670462797e-08 1.496205605e-08 1.382668959e-08 1.445827076e-08 1.743555016e-08 1.224609669e-08 1.19271228e-08 1.530710675e-08 1.514533397e-08 1.388515878e-08 1.610053537e-08 1.997476403e-08 1.814380187e-08 1.435188634e-08 1.028142911e-08 1.499443633e-08 1.593102213e-08 1.43693886e-08 1.334758473e-08 1.36807695e-08 1.597296058e-08 1.724931272e-08 1.267626977e-08 1.787442686e-08 1.719997831e-08 1.490993893e-08 1.67902917e-08 1.572071273e-08 1.497699335e-08 1.831204538e-08 1.813285926e-08 1.292068038e-08 1.530815894e-08 1.800173373e-08 1.164183615e-08 1.526983211e-08 1.493025078e-08 1.798392603e-08 1.704485583e-08 1.483627833e-08 1.588443985e-08 1.412679629e-08 1.530703569e-08 1.186768866e-08 1.687896398e-08 1.196805733e-08 1.182662758e-08 9.80325067e-09 1.217923505e-08 1.131863161e-08 1.000276262e-08 8.517451095e-09 7.973630926e-09 1.156290735e-08 8.513941122e-09 6.910967535e-09 7.125991759e-09 6.021264612e-09 8.539182629e-09 6.156946828e-09 5.771856642e-09 4.722141735e-09 6.185158478e-09 6.945880933e-09 3.931478034e-09 3.849084542e-09 3.900331605e-09 3.192592861e-09 2.107960088e-09 2.657170479e-09 1.347032845e-09 1.206605086e-09 6.314536452e-10 3.023438155e-10 4.50117764e-10 1.434706622e-10 3.323828154e-10 1.195111958e-10 1.705143325e-14 1.148268111e-12 3.951870701e-13 1.215017048e-14 2.943970252e-14 1.637193757e-15 1.460143156e-17 6.591533499e-19 0 1.127374372e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.798888054e-27 0 1.21010506e-17 1.25909721e-15 4.486827572e-15 5.349519875e-16 3.635931695e-13 1.465898032e-14 4.687988194e-12 4.765483457e-12 3.72171418e-12 2.116424105e-10 7.302430621e-13 2.860016123e-10 3.157620832e-10 1.346994844e-09 7.530867269e-10 1.638771157e-09 3.280183769e-09 1.404290489e-09 2.576899181e-09 3.241494051e-09 3.574742042e-09 3.717054519e-09 6.158633163e-09 3.215779195e-09 6.724570725e-09 7.111283591e-09 7.121065464e-09 7.425940202e-09 5.756748522e-09 7.618650787e-09 8.47703149e-09 6.533474629e-09 7.820183356e-09 8.551650098e-09 8.918968228e-09 9.381456893e-09 9.417012916e-09 7.667595838e-09 9.858820893e-09 1.136427624e-08 1.339791037e-08 1.416020308e-08 1.110922613e-08 1.169604696e-08 1.737725988e-08 2.059825848e-08 1.91604927e-08 1.346399929e-08 1.972753787e-08 1.363999413e-08 1.45591022e-08 1.640565846e-08 1.481058886e-08 1.383811824e-08 1.608283173e-08 1.42641232e-08 1.46492468e-08 1.817928441e-08 1.488870035e-08 1.270240389e-08 1.392243129e-08 1.500327514e-08 1.251026149e-08 1.823874394e-08 1.490405893e-08 2.0183488e-08 2.109919936e-08 1.468739856e-08 1.331994162e-08 1.539269186e-08 1.838425086e-08 1.679266543e-08 1.569559675e-08 1.634465923e-08 2.079424795e-08 1.65753045e-08 1.500697675e-08 1.451688926e-08 1.938033982e-08 1.892779927e-08 1.550287742e-08 1.14063977e-08 1.637493342e-08 1.471613098e-08 1.921036157e-08 1.657471632e-08 1.460718904e-08 1.31395062e-08 1.570419261e-08 1.496104384e-08 1.452751231e-08 1.463243649e-08 1.189175812e-08 1.256582606e-08 1.388043219e-08 1.75020186e-08 1.631305528e-08 1.577577224e-08 1.737936752e-08 1.112685449e-08 1.587005826e-08 1.306874821e-08 1.449886082e-08 1.337875599e-08 1.263199972e-08 1.206610118e-08 2.166951409e-08 1.564034781e-08 1.578105938e-08 1.392043574e-08 1.669404487e-08 1.206277212e-08 1.186787258e-08 1.484804654e-08 1.555722145e-08 1.504934323e-08 1.528593494e-08 1.460485655e-08 1.498964653e-08 1.228073176e-08 9.74996234e-09 1.007766099e-08 1.08934062e-08 8.494474026e-09 1.290335473e-08 1.260483595e-08 1.261599772e-08 1.270892745e-08 1.427920896e-08 8.955468988e-09 9.297572383e-09 1.346491144e-08 1.071021057e-08 9.208640826e-09 9.775720948e-09 8.819310781e-09 7.73012419e-09 6.820125603e-09 6.963655804e-09 5.252975285e-09 5.901153615e-09 6.970203617e-09 3.922137902e-09 5.507046824e-09 3.980366603e-09 4.540807656e-09 3.153318229e-09 2.920682415e-09 1.802903448e-09 3.044728108e-09 3.198920556e-09 6.397930267e-10 1.339723192e-09 7.737892828e-10 3.418257289e-10 3.016762272e-10 5.460847728e-10 2.650290057e-10 2.336487566e-10 2.163545621e-10 2.56507601e-14 3.229257019e-13 6.84450597e-13 3.717107145e-13 1.232850083e-17 1.124288593e-16 3.547997332e-17 1.570764202e-18 7.843874272e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.330979225e-16 2.788067133e-16 5.189645836e-17 2.935413681e-14 1.904831012e-14 5.68942436e-14 3.80624552e-12 1.15807352e-12 1.158687779e-10 3.811456679e-10 9.358254817e-12 2.485770708e-10 2.872993745e-10 1.174137913e-09 1.246833157e-09 1.287733613e-09 2.213593777e-09 1.74578689e-09 2.334783621e-09 2.500615632e-09 4.440618634e-09 2.954546809e-09 4.472328223e-09 4.345112662e-09 4.156338136e-09 6.384858296e-09 4.774505682e-09 3.603803131e-09 8.296034661e-09 5.575083861e-09 7.30378735e-09 8.322792579e-09 5.258657301e-09 7.888318484e-09 1.003598071e-08 1.10509506e-08 9.977785548e-09 7.83893803e-09 1.486230064e-08 1.313911866e-08 1.084895431e-08 9.610257692e-09 1.024598823e-08 1.218040994e-08 1.171050936e-08 1.308749131e-08 1.543653476e-08 1.218593241e-08 1.563396721e-08 1.256059811e-08 1.51951304e-08 1.50901455e-08 1.624767854e-08 1.566240946e-08 1.65650343e-08 1.237550646e-08 1.39905902e-08 1.660349779e-08 1.375503004e-08 1.444555364e-08 1.643565952e-08 1.366316974e-08 1.156917215e-08 1.753332449e-08 1.564782365e-08 1.721944038e-08 1.573142176e-08 1.430840515e-08 1.412936253e-08 1.492755251e-08 1.690863411e-08 1.487575421e-08 1.228448021e-08 1.410500909e-08 1.583220374e-08 1.349822921e-08 1.863641838e-08 1.224217606e-08 1.782359012e-08 1.874049628e-08 1.593153234e-08 1.667164164e-08 1.380250993e-08 1.831257088e-08 1.744072062e-08 1.262687222e-08 1.619110754e-08 1.683438547e-08 1.727754487e-08 1.388795427e-08 1.694640966e-08 1.279935917e-08 1.214331198e-08 1.688460443e-08 1.668848587e-08 1.630368188e-08 1.77050969e-08 1.69230972e-08 1.39657027e-08 1.425968871e-08 1.795986836e-08 1.409686394e-08 1.69432791e-08 1.580393856e-08 1.755918769e-08 1.143722088e-08 1.6794294e-08 1.714225383e-08 1.59131082e-08 1.580902318e-08 1.525242753e-08 1.926994032e-08 1.481604769e-08 1.78301732e-08 1.268877943e-08 1.541638596e-08 1.302681772e-08 1.162860016e-08 1.350157231e-08 1.232632828e-08 1.150517094e-08 1.224329773e-08 1.029139242e-08 1.466256762e-08 1.358755014e-08 1.185565286e-08 1.189677425e-08 8.223142887e-09 1.267817547e-08 1.023989758e-08 7.604773968e-09 1.061415307e-08 9.453477856e-09 1.111087357e-08 9.130167708e-09 8.726683018e-09 8.355657958e-09 9.329544907e-09 4.92867882e-09 6.486420425e-09 5.073710795e-09 5.330549756e-09 7.103740897e-09 5.182913859e-09 5.830354811e-09 4.431086572e-09 4.716700068e-09 4.962855189e-09 2.950328854e-09 2.756318702e-09 1.948718125e-09 1.653300406e-09 2.418484613e-09 1.186851384e-09 1.166474999e-09 4.153488468e-10 4.717903405e-10 1.435323514e-10 1.178351137e-10 1.139152148e-10 8.069340164e-12 3.498208964e-13 6.478709121e-13 9.629624444e-16 5.156418289e-19 1.301605219e-16 2.574129078e-17 5.649691241e-17 0 6.507646986e-23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.448368382e-19 0 3.724087794e-17 2.62316105e-16 1.720573281e-15 7.358775344e-14 7.350854883e-15 4.99260224e-16 8.599547489e-13 2.951966906e-13 7.126270808e-11 1.54697007e-11 2.44964473e-10 1.099628561e-10 3.017777108e-10 5.09971357e-10 1.837983246e-09 9.183196823e-10 1.496686257e-09 2.218303264e-09 7.322078859e-10 2.02217471e-09 3.087318106e-09 4.344763491e-09 3.016321601e-09 5.072645745e-09 3.163959314e-09 3.85898022e-09 8.590409338e-09 7.096781175e-09 4.156307507e-09 6.184135217e-09 9.031288454e-09 5.666180101e-09 6.829880508e-09 7.600144903e-09 9.407519926e-09 7.629637182e-09 1.054864432e-08 8.212201607e-09 7.366354394e-09 1.134015309e-08 9.363807344e-09 9.546076309e-09 1.008590288e-08 8.966844609e-09 1.030896843e-08 1.155611485e-08 1.287729591e-08 1.281646224e-08 1.32367928e-08 1.316564255e-08 1.13005056e-08 1.573066842e-08 1.747181809e-08 1.544869361e-08 1.439051685e-08 1.620051487e-08 1.387825094e-08 1.539449545e-08 1.256858379e-08 1.460363316e-08 1.067452632e-08 1.429376759e-08 1.447305561e-08 1.744567213e-08 1.353622845e-08 1.493142528e-08 1.475863115e-08 1.385523404e-08 1.570447651e-08 1.591339634e-08 1.318521951e-08 1.274540412e-08 1.313761786e-08 1.483676105e-08 1.932623386e-08 1.937041818e-08 1.608404089e-08 1.589794355e-08 1.517804257e-08 1.552147549e-08 1.70270117e-08 1.168626833e-08 1.414349021e-08 1.617171367e-08 1.553181448e-08 1.370927346e-08 1.325116725e-08 1.379886805e-08 1.321630359e-08 1.467348564e-08 1.693031339e-08 1.409310051e-08 1.402329537e-08 1.521594504e-08 1.470533548e-08 1.546722755e-08 1.418440454e-08 1.270133183e-08 1.451035886e-08 1.66735164e-08 1.590866933e-08 1.81919579e-08 1.588589174e-08 1.668180445e-08 1.524994583e-08 1.702910031e-08 1.527096937e-08 1.589763072e-08 1.517154813e-08 1.597084471e-08 1.538925967e-08 1.680687178e-08 1.217128735e-08 1.473277463e-08 1.539907499e-08 1.197529001e-08 1.362364381e-08 1.54404762e-08 1.525868496e-08 1.486850301e-08 1.036723179e-08 1.54973061e-08 1.025031372e-08 1.152608475e-08 1.560904443e-08 1.068220116e-08 1.355990395e-08 8.445775203e-09 9.939556713e-09 8.876918378e-09 8.70852714e-09 9.527581359e-09 8.984129775e-09 8.168847462e-09 8.348456016e-09 9.174038208e-09 7.480778724e-09 7.477559727e-09 6.24797121e-09 3.828440541e-09 4.260432717e-09 5.391059936e-09 3.715616626e-09 3.401873508e-09 2.514532782e-09 4.164261045e-09 2.121495414e-09 1.752913473e-09 2.443860355e-09 1.730913737e-09 2.396309793e-09 5.438893744e-10 1.031281658e-09 1.597716972e-09 8.609578996e-10 2.287609058e-10 2.210006232e-10 8.810436744e-11 2.997785612e-10 1.108789197e-10 7.352464408e-11 1.467293921e-12 3.22984506e-13 1.924792097e-14 5.779871665e-14 1.950166096e-15 1.527987343e-15 0 2.719140548e-17 6.555969913e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.459836928e-19 0 1.698338511e-17 6.509070761e-18 3.415530178e-17 1.226412148e-13 7.961108159e-14 1.936234705e-11 3.034765813e-11 1.119569635e-12 1.475865804e-10 6.766047741e-11 1.741216827e-10 4.148697378e-10 1.219455622e-09 8.113169902e-10 1.147324229e-09 1.316640647e-09 2.015972168e-09 1.406745673e-09 3.071181119e-09 4.452684609e-09 3.210908503e-09 4.013515642e-09 2.518852512e-09 4.770225734e-09 3.52680971e-09 6.559195741e-09 8.495911582e-09 5.126441813e-09 5.746839682e-09 8.624549784e-09 7.458202098e-09 6.71345946e-09 7.049451854e-09 7.338017456e-09 7.776272045e-09 7.325366754e-09 9.887426847e-09 7.862877774e-09 6.430388806e-09 1.006439917e-08 1.084441331e-08 8.225704165e-09 1.277050011e-08 9.857245307e-09 8.911493561e-09 1.302869351e-08 1.152827325e-08 1.400523385e-08 1.331143833e-08 1.223157375e-08 1.367724185e-08 1.432036235e-08 1.582285738e-08 1.345834849e-08 1.288494778e-08 1.329494251e-08 1.027001605e-08 1.577550796e-08 1.265047485e-08 1.395034926e-08 1.181372995e-08 1.10515247e-08 1.675052231e-08 1.536816385e-08 1.587300439e-08 1.777574204e-08 1.041904602e-08 1.063016181e-08 1.351058399e-08 1.615812968e-08 1.164230734e-08 1.335733145e-08 1.37416765e-08 9.862704969e-09 1.625427103e-08 1.446019006e-08 1.655034913e-08 1.617489162e-08 1.221695917e-08 1.176854545e-08 1.741085318e-08 1.540223177e-08 1.494854232e-08 1.357456654e-08 1.575648196e-08 1.443308975e-08 1.437191612e-08 1.107188775e-08 1.538364204e-08 1.592907101e-08 1.814479148e-08 1.33123887e-08 1.610369382e-08 1.319512594e-08 1.592629323e-08 1.32677656e-08 1.495521054e-08 1.7957761e-08 1.349547363e-08 1.615860908e-08 1.623612389e-08 1.123927516e-08 1.63741903e-08 1.442040011e-08 1.542408768e-08 1.064732575e-08 1.535687963e-08 1.537618732e-08 1.331323075e-08 1.155328871e-08 1.012909943e-08 1.225478361e-08 1.571967509e-08 1.349731265e-08 1.585029805e-08 1.098139579e-08 1.080558563e-08 1.203112908e-08 1.731497719e-08 1.199237908e-08 1.110046602e-08 8.534216577e-09 1.50236012e-08 8.827566248e-09 1.204139372e-08 9.568247327e-09 1.161069936e-08 7.152949988e-09 8.447104365e-09 8.025717095e-09 5.885430178e-09 4.216030724e-09 5.693143109e-09 4.704814453e-09 6.605453955e-09 6.081448211e-09 4.589634799e-09 4.470008541e-09 5.911821732e-09 7.618075993e-09 5.414811415e-09 5.199937717e-09 2.748889193e-09 3.078871018e-09 3.884717575e-09 2.467326069e-09 1.093441195e-09 2.480585276e-09 3.010580117e-09 3.815632576e-10 1.531634268e-09 1.162526365e-09 9.645587501e-10 8.07776985e-10 7.976859703e-10 1.113954993e-10 1.72582578e-10 1.365942065e-10 6.122393879e-11 1.533276688e-13 2.529313016e-11 2.75808971e-13 2.888146805e-15 1.48322798e-16 8.259091403e-17 5.011135532e-17 2.682751609e-22 8.338871273e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.507374977e-19 8.948190061e-19 2.143795478e-18 1.190245163e-15 2.245121642e-17 1.876694176e-16 1.743924975e-14 4.606526174e-14 6.113521505e-13 2.927595361e-11 2.063572989e-15 8.241981797e-11 2.947135018e-10 6.562153259e-11 2.982606644e-10 1.219803217e-09 9.752678207e-10 4.623964885e-10 1.252136006e-09 8.912747621e-10 2.611023911e-09 1.761543185e-09 1.4701697e-09 1.285828394e-09 3.751283166e-09 3.447983581e-09 5.217825988e-09 3.640605667e-09 2.86854712e-09 5.335258222e-09 3.735229515e-09 4.91116807e-09 5.326861173e-09 5.585149572e-09 7.521272491e-09 4.403621955e-09 5.27884554e-09 7.615872825e-09 9.123623672e-09 6.064188616e-09 6.95432406e-09 8.690480111e-09 4.405306628e-09 1.024133575e-08 8.564233099e-09 9.136965454e-09 1.300618498e-08 1.293116607e-08 1.139946432e-08 1.021897378e-08 1.185841511e-08 1.12909074e-08 1.08403397e-08 8.198567185e-09 1.30144685e-08 1.367084472e-08 1.239825157e-08 1.011032089e-08 1.339280647e-08 1.080155475e-08 1.401467013e-08 8.010491106e-09 1.276731336e-08 1.258824323e-08 1.398485851e-08 1.212811727e-08 1.07539811e-08 1.363973002e-08 1.451438015e-08 1.16560344e-08 1.155355589e-08 1.077285911e-08 1.148393726e-08 1.140660029e-08 1.132566014e-08 1.221142257e-08 1.382385729e-08 1.752094644e-08 1.470988738e-08 1.673206998e-08 1.476547567e-08 1.118265862e-08 1.457266335e-08 1.736377899e-08 1.298302534e-08 1.353536255e-08 1.687816833e-08 9.94603589e-09 1.216993778e-08 1.289989636e-08 1.171920062e-08 1.338699919e-08 1.811690562e-08 1.13795538e-08 1.097655006e-08 1.774036721e-08 1.282537064e-08 1.164060655e-08 1.192328936e-08 1.401775311e-08 1.207849742e-08 1.176036941e-08 1.109458106e-08 1.338137563e-08 1.033455968e-08 1.086669548e-08 1.362555535e-08 1.332841967e-08 1.558268919e-08 1.379466905e-08 1.355289355e-08 1.229117921e-08 1.288744325e-08 1.271570183e-08 1.343525165e-08 1.096836799e-08 1.396614538e-08 1.180139252e-08 1.039264176e-08 8.069369313e-09 9.700616677e-09 1.157860162e-08 8.785812183e-09 9.948508453e-09 1.009745726e-08 9.653095693e-09 7.937413136e-09 5.08681188e-09 8.323577303e-09 8.306885046e-09 6.089594839e-09 8.304991367e-09 7.317198011e-09 5.792969187e-09 7.357670593e-09 6.17796518e-09 8.502482023e-09 6.493943155e-09 5.979560381e-09 5.370527581e-09 4.921780753e-09 6.523944774e-09 3.243482645e-09 4.747960946e-09 3.50190603e-09 5.284701805e-09 3.321113643e-09 3.62965986e-09 2.58588193e-09 1.868535625e-09 2.56454854e-09 2.227473768e-09 1.14705975e-09 1.175422566e-09 1.392863604e-09 1.16938141e-09 3.530495969e-10 7.718774042e-10 1.877312041e-10 2.354309816e-10 1.523240803e-11 4.333284089e-11 2.657009059e-12 1.433429384e-11 3.576768122e-13 2.283112272e-13 3.037524513e-16 3.310320419e-15 8.86510828e-16 1.567340042e-17 1.02948533e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.581360771e-19 2.375108997e-25 7.413197393e-20 9.522952627e-20 2.020039193e-15 3.569542425e-15 1.017514517e-16 1.289666555e-12 1.385739502e-12 9.703487175e-12 8.729005128e-11 9.362746806e-13 7.402513906e-11 2.566009912e-10 3.389004413e-10 5.652442318e-10 5.672942918e-11 1.109649619e-09 1.168868905e-09 5.372689308e-10 2.227353267e-09 1.200997017e-09 2.018938607e-09 2.233421847e-09 3.85617971e-09 3.213271643e-09 2.545147704e-09 3.896742627e-09 4.024317029e-09 2.554463584e-09 5.485643905e-09 3.786353694e-09 3.519250789e-09 4.999376003e-09 6.3934938e-09 7.003331266e-09 6.556099572e-09 8.062182694e-09 5.929872777e-09 6.928877628e-09 5.79602142e-09 6.217030607e-09 8.378547978e-09 6.327081036e-09 6.120824414e-09 1.035123777e-08 1.142107369e-08 8.308897255e-09 7.831588873e-09 7.989545151e-09 7.910111302e-09 8.794279843e-09 8.100707739e-09 1.207562092e-08 1.022504002e-08 1.06573864e-08 1.47970511e-08 1.415192094e-08 9.75378147e-09 1.566975283e-08 1.352331333e-08 8.959533799e-09 1.230915395e-08 1.320622711e-08 1.115051456e-08 1.002311463e-08 1.200681826e-08 9.609130806e-09 1.29109e-08 8.090589774e-09 1.435014639e-08 1.209115543e-08 1.046863325e-08 1.501182684e-08 9.324522869e-09 9.820088334e-09 1.299314557e-08 1.206014967e-08 1.371437591e-08 1.294518018e-08 1.203326937e-08 1.382223024e-08 1.428834118e-08 1.234148549e-08 1.169267825e-08 1.321762163e-08 1.107159634e-08 1.464133729e-08 1.230208265e-08 1.233349672e-08 1.070100697e-08 1.157206498e-08 1.26290602e-08 1.425605544e-08 1.108830539e-08 1.087738828e-08 1.387792107e-08 1.16511826e-08 1.090820382e-08 1.222866976e-08 1.566882638e-08 1.355788611e-08 1.235296799e-08 1.072358127e-08 1.179166822e-08 1.171922836e-08 9.072811241e-09 1.219630325e-08 1.430634436e-08 1.344375366e-08 1.445003032e-08 8.361251941e-09 1.2349456e-08 1.168402697e-08 9.791719639e-09 1.035714867e-08 1.224461153e-08 1.218533728e-08 8.575613998e-09 1.015778013e-08 1.120263611e-08 9.226717903e-09 1.315701324e-08 7.227435286e-09 8.06277185e-09 1.214994602e-08 1.056793087e-08 9.647743553e-09 8.213272811e-09 9.616141739e-09 7.404511471e-09 7.917506304e-09 8.032564805e-09 6.078266901e-09 4.616416001e-09 7.844702381e-09 5.020036919e-09 8.170608138e-09 5.842900697e-09 7.283391187e-09 6.154501857e-09 4.743540462e-09 3.343037798e-09 2.226234555e-09 3.16367036e-09 3.591250064e-09 1.822172258e-09 2.555383465e-09 2.922391899e-09 2.216564941e-09 1.508941827e-09 8.688140422e-10 1.575767906e-09 9.371174632e-10 2.105583689e-09 1.018249482e-09 6.924392321e-10 9.915067048e-12 1.470207792e-13 6.457033302e-13 2.885996471e-11 1.523908355e-11 1.655971892e-10 8.699838313e-15 2.425564497e-14 1.041861013e-16 5.27849929e-15 2.549491025e-15 1.470911486e-16 1.029930767e-17 1.596806595e-27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.28107182e-23 0 0 3.418661329e-14 8.960529355e-14 1.066654342e-14 4.113128475e-13 4.909160802e-13 6.909878712e-13 1.066422758e-10 9.226940569e-11 1.128464335e-11 3.744052469e-11 9.806514322e-13 3.547929283e-10 3.011748786e-10 3.60651991e-10 1.670096118e-09 2.502222665e-09 8.90394428e-10 9.908306328e-10 2.295844186e-09 7.944405829e-10 2.501756469e-09 2.738891759e-09 2.093331957e-09 3.571616776e-09 2.638356448e-09 3.565289285e-09 7.407327729e-09 3.055126584e-09 3.702062901e-09 3.563119502e-09 4.167626218e-09 7.651229596e-09 5.779066624e-09 6.72399344e-09 6.769627062e-09 7.303693218e-09 5.258705197e-09 6.914713476e-09 7.511535408e-09 6.646700229e-09 7.319125102e-09 6.347206124e-09 1.02414319e-08 7.747334933e-09 8.175388176e-09 7.379663517e-09 6.747254114e-09 7.742065632e-09 7.653420555e-09 5.541856043e-09 1.072077119e-08 8.93257695e-09 8.903704521e-09 1.021268437e-08 9.916131151e-09 7.512662771e-09 1.259704356e-08 1.155283817e-08 1.277451552e-08 8.98502843e-09 8.681694057e-09 1.071356867e-08 9.362600665e-09 1.338345946e-08 8.013516362e-09 7.837408059e-09 1.482952795e-08 8.328492681e-09 1.137655716e-08 6.127779086e-09 1.175135962e-08 1.014282086e-08 9.457808413e-09 8.044680625e-09 1.345698346e-08 1.106431781e-08 1.052167915e-08 1.069670822e-08 1.172080519e-08 9.527749118e-09 1.27936481e-08 1.042959282e-08 8.512149253e-09 9.848579099e-09 9.910345427e-09 8.80810375e-09 1.367190042e-08 1.25118135e-08 8.580622251e-09 1.077788448e-08 8.478610067e-09 1.152503547e-08 8.563354808e-09 1.162151149e-08 1.012596021e-08 7.20190996e-09 1.231362435e-08 9.107836356e-09 8.507777838e-09 1.042366796e-08 9.876374874e-09 9.726173928e-09 1.118497126e-08 1.082024447e-08 8.287585832e-09 1.01908179e-08 9.704360006e-09 7.621557386e-09 1.058690376e-08 1.0816859e-08 1.143271305e-08 9.949084558e-09 7.604112376e-09 1.282044353e-08 8.51395891e-09 8.676335953e-09 1.111708209e-08 7.470486414e-09 9.919568629e-09 7.821667849e-09 7.144874625e-09 6.409244178e-09 7.666581662e-09 6.230094744e-09 6.360798277e-09 8.730849718e-09 3.783597928e-09 5.692939824e-09 5.879717926e-09 8.873888331e-09 6.050981055e-09 4.393835765e-09 3.99522603e-09 6.314062905e-09 4.392497415e-09 5.10967993e-09 4.628202349e-09 4.41577706e-09 5.472129798e-09 3.999733012e-09 4.353034286e-09 2.668001366e-09 3.492339984e-09 1.993143409e-09 2.460932217e-09 1.92693804e-09 1.610891403e-09 1.403706497e-09 2.30741506e-09 1.189966613e-09 3.306188061e-10 7.034811029e-10 8.248715156e-10 9.371049947e-11 3.346603758e-10 1.179569882e-13 5.542024314e-11 1.311633621e-13 9.461566417e-12 5.491834702e-15 7.546001755e-17 1.39514944e-13 1.469654988e-16 8.940265692e-17 1.896521689e-16 7.757176022e-17 6.630652746e-22 8.275672875e-26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.043809755e-21 2.082124374e-16 1.326588931e-16 1.444139351e-15 1.396722035e-14 8.103577152e-15 3.907486108e-13 1.159337969e-12 2.426868193e-11 5.612667045e-11 1.23091296e-12 1.592559621e-10 7.193323368e-11 4.83578082e-10 9.005043377e-10 1.180856654e-09 1.14417168e-09 2.106887469e-09 1.149988968e-09 2.11727899e-09 2.045266645e-09 1.406523359e-09 9.73865854e-10 1.58277623e-09 2.801189455e-09 2.505041534e-09 2.957471088e-09 3.646778927e-09 4.355827509e-09 3.659824459e-09 3.210368629e-09 3.801707352e-09 4.33731401e-09 3.992020681e-09 5.044531531e-09 5.309245799e-09 5.157077294e-09 8.019016821e-09 4.936882223e-09 5.44911857e-09 5.469791274e-09 6.754661115e-09 7.915915059e-09 6.432470322e-09 6.72956892e-09 7.769410064e-09 5.892041926e-09 6.935215344e-09 6.965252316e-09 7.518491766e-09 6.257071176e-09 8.887806014e-09 9.485021546e-09 9.178130015e-09 8.552957155e-09 8.169157876e-09 9.050944557e-09 7.513377147e-09 8.319186916e-09 8.784433136e-09 9.374179521e-09 7.659576357e-09 9.593867411e-09 1.295900024e-08 7.584850765e-09 9.211368718e-09 7.640834745e-09 1.171057863e-08 1.006937844e-08 9.341746582e-09 8.293417246e-09 9.336072916e-09 7.40567217e-09 7.095887793e-09 9.984576031e-09 1.041376695e-08 9.855680263e-09 1.0144911e-08 1.045877954e-08 8.670589762e-09 1.329704481e-08 6.897849393e-09 1.063269021e-08 7.106414648e-09 9.874739189e-09 1.040272777e-08 9.256824314e-09 1.215078013e-08 9.267790715e-09 8.157879946e-09 9.152610281e-09 1.202253564e-08 1.370094242e-08 1.060649009e-08 8.965360487e-09 8.282059138e-09 8.052046409e-09 7.284034209e-09 8.357830149e-09 1.08674707e-08 9.094046395e-09 8.939076422e-09 8.918095802e-09 1.154215876e-08 9.696045414e-09 1.014621589e-08 9.799879005e-09 8.816974067e-09 8.783013178e-09 9.380713695e-09 1.124353022e-08 1.000939649e-08 8.267401097e-09 9.978407197e-09 8.593178538e-09 8.97409983e-09 6.772646524e-09 5.864872906e-09 1.036914434e-08 8.855808993e-09 7.84793372e-09 5.940437835e-09 8.04034472e-09 7.730498717e-09 8.183836286e-09 7.566673642e-09 7.615110443e-09 8.038579155e-09 6.569558131e-09 6.215479457e-09 6.370898461e-09 5.574112208e-09 4.165973513e-09 4.823757708e-09 3.660102421e-09 3.668041323e-09 5.304665534e-09 3.921413064e-09 4.557469533e-09 3.729228772e-09 3.908445789e-09 3.37233525e-09 1.9937429e-09 1.995342137e-09 2.470411217e-09 3.434207218e-09 2.735366529e-09 1.978007261e-09 2.138870115e-09 1.584199123e-09 2.051183954e-09 4.137315721e-10 8.17431711e-10 1.097705442e-09 8.707621139e-10 2.760999388e-13 1.456028714e-10 3.543012299e-10 5.131162772e-11 3.680732707e-13 2.073019302e-13 7.913759661e-14 6.708191549e-15 3.298298551e-12 2.006548408e-15 4.022461397e-14 4.813004929e-16 2.541873599e-16 4.162024346e-18 7.330874789e-19 3.231198355e-21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.658888358e-19 2.098750637e-18 5.446683223e-23 3.957817658e-18 2.359079913e-17 3.363771362e-15 2.528798013e-16 5.044067107e-14 2.640972545e-14 5.260689069e-14 5.067396485e-15 5.988651986e-12 4.757345833e-11 5.329427259e-12 3.725701624e-13 4.898613251e-10 6.287774098e-10 1.826574588e-09 6.822236681e-10 1.480377372e-09 9.801092139e-10 1.429954519e-09 7.498253875e-10 1.64086886e-09 1.385832461e-09 2.00954621e-09 1.041856044e-09 2.401816176e-09 3.634377547e-09 2.872214348e-09 2.134263313e-09 4.096448201e-09 3.936405752e-09 3.134474789e-09 4.529903428e-09 5.61843273e-09 2.680090895e-09 4.514735025e-09 3.916145087e-09 5.218973157e-09 3.715203253e-09 7.479145916e-09 2.984910489e-09 5.188584768e-09 4.484454817e-09 6.246926884e-09 4.952734857e-09 6.881654783e-09 6.298262313e-09 4.127012407e-09 7.065241917e-09 5.396481167e-09 5.456675412e-09 9.240888074e-09 1.059172166e-08 7.191281378e-09 9.198087768e-09 7.116492071e-09 6.271814391e-09 7.568152567e-09 7.448749946e-09 7.47457059e-09 9.108995942e-09 9.607749381e-09 1.063452896e-08 9.34883806e-09 8.328385833e-09 9.989669629e-09 7.760621719e-09 8.134493993e-09 6.371412412e-09 8.834928738e-09 7.244930022e-09 9.624397312e-09 6.523187675e-09 8.888802547e-09 7.053152805e-09 9.621060803e-09 7.137149771e-09 1.04692197e-08 7.110356308e-09 9.45516696e-09 6.945598325e-09 7.271931178e-09 7.410233198e-09 5.472934453e-09 7.164481489e-09 7.484441454e-09 8.080816987e-09 5.468160434e-09 1.049418379e-08 8.188559842e-09 8.226255872e-09 8.836179901e-09 7.489421832e-09 6.249429515e-09 4.849400319e-09 7.12581109e-09 7.629109076e-09 9.847354211e-09 1.046548209e-08 7.290347607e-09 6.797116084e-09 7.809960493e-09 6.161120406e-09 1.074734338e-08 6.8395064e-09 7.666382189e-09 7.14365941e-09 7.668518442e-09 8.471257984e-09 9.963214421e-09 8.985658644e-09 9.00732721e-09 7.223428641e-09 9.605413924e-09 4.746409526e-09 6.43689599e-09 7.404272301e-09 6.943333673e-09 5.640040473e-09 6.448663169e-09 6.690933767e-09 6.42191696e-09 6.13784019e-09 5.849416173e-09 4.788376858e-09 6.781249401e-09 3.912485673e-09 3.752490347e-09 2.901378634e-09 5.690028834e-09 3.127381052e-09 6.462371619e-09 4.008581038e-09 5.341759124e-09 4.643066841e-09 3.690456896e-09 3.605303701e-09 2.533622368e-09 4.608480212e-09 1.715544483e-09 3.331342999e-09 2.972512718e-09 1.876883127e-09 2.083507494e-09 2.872430674e-09 2.5037365e-09 1.980450725e-09 1.270303187e-09 6.015969905e-10 1.81142293e-09 1.386400564e-09 6.000467036e-10 4.758159339e-10 5.752421882e-11 2.469546886e-10 5.767863403e-11 2.218556067e-10 7.712354958e-12 6.912615212e-11 3.802105369e-14 3.744590363e-14 6.856883597e-14 2.754833618e-15 2.21290146e-16 1.192699298e-15 9.373276751e-16 1.469505084e-16 0 4.24626154e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.024804936e-16 1.193710987e-16 4.654994249e-16 9.391387446e-15 5.035725207e-14 1.474324603e-15 4.717246656e-14 1.367728628e-14 6.889936915e-12 1.040726505e-11 1.852666204e-10 3.405408726e-10 3.230580742e-11 6.06022771e-10 5.567172144e-10 1.085653164e-09 1.127081094e-09 7.494649234e-10 9.891191819e-10 1.577240215e-09 1.181674123e-09 9.314113339e-10 1.132399041e-09 2.84943947e-09 2.79073388e-09 2.120492417e-09 2.659228253e-09 3.587101148e-09 2.715560916e-09 2.276278986e-09 3.968589745e-09 4.652977372e-09 3.279468685e-09 1.451773991e-09 4.27417699e-09 2.993170359e-09 4.01384381e-09 5.873709358e-09 5.540149311e-09 5.232823051e-09 3.718900645e-09 4.887423755e-09 3.967651074e-09 5.026219383e-09 5.864290988e-09 5.148429418e-09 3.926010036e-09 4.172111892e-09 7.334838092e-09 6.77473702e-09 6.052251872e-09 5.785226694e-09 7.647345333e-09 8.37656301e-09 6.070747929e-09 4.240301584e-09 7.519721996e-09 6.864820046e-09 6.43918656e-09 7.472134065e-09 5.110468504e-09 5.930744286e-09 6.790615779e-09 7.883904803e-09 6.535914342e-09 7.216264055e-09 9.590546177e-09 7.528562444e-09 6.38737625e-09 8.054347482e-09 7.069274356e-09 7.705442497e-09 6.198964082e-09 5.381680279e-09 6.71798154e-09 5.71992025e-09 7.810719573e-09 7.065192797e-09 5.234727534e-09 8.307886595e-09 7.150324464e-09 6.621659563e-09 9.071983605e-09 7.999972744e-09 4.700217948e-09 5.676318242e-09 8.054540915e-09 6.089832258e-09 8.569336318e-09 8.609581619e-09 8.777743241e-09 6.250539749e-09 8.765849638e-09 8.025408887e-09 6.679544182e-09 5.765862346e-09 6.101866122e-09 6.105437025e-09 6.576740205e-09 7.748670669e-09 5.656079102e-09 6.307508178e-09 7.941945723e-09 4.078120279e-09 6.697719146e-09 4.758653737e-09 6.981674619e-09 6.671816721e-09 6.844280318e-09 8.490275071e-09 6.263602905e-09 8.026292033e-09 7.519306471e-09 4.876148478e-09 1.078070628e-08 5.186264403e-09 5.202102169e-09 5.537866521e-09 6.827161946e-09 3.297893985e-09 4.484718503e-09 7.932773824e-09 4.380311686e-09 3.785676437e-09 6.458721269e-09 4.30519535e-09 5.333692243e-09 3.911011418e-09 4.56701446e-09 3.323795074e-09 2.27533521e-09 2.889634565e-09 2.161301621e-09 4.011502273e-09 2.45839515e-09 2.659135133e-09 4.274537392e-09 7.233014537e-10 1.908800814e-09 2.71236247e-09 1.72795322e-09 1.93979391e-09 1.711023047e-09 1.300557088e-09 2.427301173e-09 1.00506221e-09 2.27384365e-09 1.135524425e-09 9.543680473e-10 5.593130075e-11 3.127609358e-10 2.067366535e-10 3.068786704e-10 1.256309812e-10 1.103663071e-12 1.915338241e-11 2.00831131e-10 1.590925485e-16 1.440726437e-10 6.654015471e-13 3.790941661e-15 1.534223769e-15 4.077028056e-14 1.433232524e-16 3.11598178e-18 4.104128782e-17 3.579162888e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.210575479e-18 2.743143427e-24 4.715953733e-19 5.84315045e-16 1.575178874e-16 5.926759047e-14 1.809482853e-12 4.704815993e-15 5.22353149e-13 2.084447019e-10 3.260642139e-11 1.950306728e-10 8.075629672e-12 1.397275683e-10 2.472834426e-10 1.395228208e-10 6.401771546e-10 5.575994583e-10 1.687885795e-13 1.264842821e-09 3.161484508e-10 1.1339559e-09 2.022522703e-09 6.719886566e-10 1.350714962e-09 1.941526026e-09 3.353005166e-09 1.265563241e-09 7.125745174e-10 2.472047148e-09 2.398343887e-09 2.862444213e-09 1.153289101e-09 3.279897536e-09 2.133771274e-09 2.272307365e-09 3.153035467e-09 3.048890523e-09 4.424163031e-09 2.662047295e-09 3.459520409e-09 3.24092886e-09 5.558217088e-09 5.977771922e-09 4.638617859e-09 4.857670368e-09 5.637269133e-09 4.371421185e-09 5.457314759e-09 4.53962533e-09 5.273013333e-09 5.19125384e-09 3.84477226e-09 2.782798228e-09 4.93390177e-09 4.814960515e-09 4.655037673e-09 4.825474751e-09 5.037312498e-09 4.453033653e-09 5.428141854e-09 3.559083002e-09 6.110203549e-09 5.592184682e-09 5.263980486e-09 4.913823923e-09 4.586826175e-09 7.43135376e-09 3.39976087e-09 4.943586782e-09 6.061444652e-09 6.316239928e-09 4.256169409e-09 5.662539974e-09 4.512993388e-09 5.805586154e-09 6.252464807e-09 5.994914518e-09 5.172213456e-09 7.688084255e-09 6.196542625e-09 7.29706782e-09 5.537892447e-09 6.540369966e-09 3.816170212e-09 5.494737576e-09 7.454962404e-09 4.989156307e-09 5.510706276e-09 5.114177037e-09 8.671046938e-09 5.234149406e-09 6.88858663e-09 3.748405734e-09 7.399877939e-09 4.395111691e-09 2.728844519e-09 5.302610876e-09 6.041143167e-09 6.540867404e-09 8.056368647e-09 4.670548571e-09 7.549297705e-09 8.270975379e-09 6.27738687e-09 6.154430536e-09 5.859208283e-09 5.766689601e-09 6.950483876e-09 7.262100321e-09 8.492955389e-09 5.072215616e-09 3.342715411e-09 5.531414688e-09 5.463827304e-09 4.18969218e-09 5.519417777e-09 4.374697815e-09 3.981904208e-09 3.48281504e-09 3.145096122e-09 4.611808854e-09 4.277356517e-09 5.278999538e-09 4.358637496e-09 4.3052458e-09 4.677057304e-09 3.545461064e-09 3.191976116e-09 3.733012996e-09 2.605372475e-09 6.159081157e-09 3.326083038e-09 2.232955079e-09 2.268597643e-09 1.969834593e-09 2.707459169e-09 2.731819855e-09 3.169178927e-09 2.537186682e-09 2.475221579e-09 2.407737807e-09 3.033539521e-09 1.905366434e-09 2.669038682e-09 1.627504843e-09 1.874566952e-09 1.864826772e-09 9.493533415e-10 8.530372551e-10 1.447880293e-09 5.180380974e-10 8.98215912e-10 6.605815862e-10 1.775755135e-10 2.424502409e-10 3.056770911e-10 1.444177176e-10 5.117585564e-12 9.174205856e-11 4.485766071e-14 7.161285124e-11 1.924829566e-13 1.150955607e-18 2.479873834e-14 2.396657104e-15 7.621193179e-19 1.948709762e-16 4.682070191e-19 1.111728861e-21 7.350934022e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1.821450158e-20 1.26007754e-26 0 4.34640522e-19 2.464943803e-17 1.618826011e-24 6.834805731e-18 6.592095345e-18 6.375422458e-15 1.152889231e-18 9.862829486e-12 2.425766413e-13 2.254670482e-11 1.805361553e-13 1.013382363e-10 3.296139259e-10 2.564424929e-10 5.112720795e-10 3.876355487e-10 3.349423803e-10 3.007074049e-10 1.957687271e-10 3.641801699e-10 1.211375793e-09 8.792214129e-10 1.341155384e-09 1.222670031e-09 2.296885751e-09 7.527814313e-10 6.261305891e-10 1.512576037e-09 2.071123128e-09 3.104840723e-09 1.86146158e-09 2.805868262e-09 1.79417184e-09 2.188797443e-09 2.208886586e-09 2.237674688e-09 2.362007309e-09 2.027091011e-09 1.112040182e-09 3.970931837e-09 4.219297094e-09 4.543664349e-09 2.371643073e-09 1.837322304e-09 2.752406281e-09 3.323484024e-09 3.357608711e-09 3.989782712e-09 4.515094716e-09 4.572507309e-09 3.403162688e-09 1.767418857e-09 5.647652745e-09 1.981128536e-09 3.798416937e-09 4.788204545e-09 6.186066807e-09 4.673517782e-09 4.622780229e-09 3.973679873e-09 3.923198997e-09 4.123228982e-09 3.665952545e-09 4.137727705e-09 5.109661825e-09 5.589770631e-09 4.553854699e-09 5.752071096e-09 2.384955364e-09 4.1184186e-09 5.721897872e-09 3.984658416e-09 5.295527377e-09 5.010361183e-09 3.117241558e-09 5.338636215e-09 5.287047878e-09 5.418183368e-09 3.946612408e-09 4.298395914e-09 3.098225137e-09 5.463229035e-09 4.959020913e-09 5.538324442e-09 4.582410336e-09 4.755416494e-09 3.465495483e-09 3.692731707e-09 4.084437827e-09 5.383102584e-09 3.579236881e-09 2.434297652e-09 3.847115278e-09 5.475181438e-09 3.743047682e-09 6.927571131e-09 5.49834174e-09 5.422253681e-09 3.894810034e-09 4.432627244e-09 4.527281878e-09 3.554453518e-09 4.739588158e-09 3.345679258e-09 3.584755481e-09 5.074242029e-09 4.333040817e-09 5.039047169e-09 4.084868285e-09 4.066205517e-09 3.713700924e-09 5.278180929e-09 3.467628921e-09 5.802812297e-09 3.743139149e-09 4.553870655e-09 5.816127877e-09 4.702044407e-09 3.578160484e-09 2.383085332e-09 6.315696285e-09 4.935297437e-09 3.660180933e-09 3.661292031e-09 3.304292067e-09 2.210012653e-09 3.854576391e-09 2.601666634e-09 3.465418437e-09 3.499959312e-09 2.138825338e-09 4.346234828e-09 3.173380351e-09 1.866585519e-09 1.728490286e-09 8.031913625e-10 3.109649532e-09 2.962956833e-09 1.815928491e-09 1.44028004e-09 1.367420687e-09 9.926560219e-10 4.243377102e-10 7.341144037e-10 1.768801787e-10 2.032966187e-09 7.401257088e-10 1.370203004e-09 6.715193472e-10 8.293756204e-11 3.163167943e-10 7.321562333e-10 2.49092891e-10 5.103566055e-14 1.328195422e-10 1.251744018e-10 7.443383648e-13 6.301741953e-11 5.96201786e-13 1.413184452e-10 8.719716567e-14 3.390504595e-14 2.148107925e-12 1.953419538e-16 7.427013603e-16 1.361357847e-17 2.869203844e-23 0 0 4.001276306e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.996060554e-25 8.479902128e-24 1.748038052e-14 2.912386371e-15 2.499333823e-14 4.189871805e-12 1.373433026e-14 7.596327598e-14 2.03668614e-10 7.91366166e-11 2.215576022e-10 2.496398745e-15 4.042283383e-11 3.568386595e-10 8.819155588e-10 2.344864765e-10 2.378914518e-10 8.679304117e-10 5.542462215e-11 6.122249301e-10 3.928698782e-10 9.532794858e-10 8.210605359e-10 6.066904355e-10 7.627499953e-10 4.275496962e-10 1.321949981e-09 7.650426883e-10 1.42992876e-09 6.053825811e-10 1.298307366e-09 2.936437945e-09 1.780364778e-09 1.758472523e-09 2.01929225e-09 1.812631268e-09 1.805404653e-09 1.863507758e-09 2.838633351e-09 1.803231997e-09 2.247597754e-09 1.738918169e-09 2.344004887e-09 1.334742783e-09 2.831485818e-09 1.712004743e-09 2.517529355e-09 3.091708252e-09 4.584002852e-09 3.330628418e-09 2.964405598e-09 2.350894343e-09 1.883574477e-09 2.564737949e-09 2.044140176e-09 2.660842169e-09 2.303343662e-09 3.894197515e-09 2.495429749e-09 1.793620714e-09 3.043642077e-09 3.516970097e-09 3.113260141e-09 2.276184413e-09 3.682806835e-09 4.256716679e-09 2.863891437e-09 3.023047745e-09 1.898111434e-09 3.026045382e-09 4.70129113e-09 2.966376349e-09 3.509054451e-09 2.830754019e-09 2.385043662e-09 3.839208534e-09 2.344485912e-09 4.366610754e-09 2.034835956e-09 2.405744934e-09 3.441197082e-09 3.020498204e-09 3.026450261e-09 3.188099382e-09 3.931825985e-09 4.446220262e-09 2.028682166e-09 3.184572078e-09 3.666824204e-09 2.40939871e-09 3.792106585e-09 1.94402121e-09 4.205955549e-09 3.074080892e-09 3.254956627e-09 4.073782966e-09 1.958912151e-09 3.086693381e-09 5.818799752e-09 4.988640738e-09 2.784318096e-09 3.113571914e-09 3.709790279e-09 3.063667552e-09 1.957357214e-09 3.706286286e-09 3.246211881e-09 2.442205261e-09 3.060405487e-09 5.638247469e-09 4.766846153e-09 2.287547633e-09 3.324863175e-09 2.322896567e-09 3.458244831e-09 1.958354816e-09 1.676583153e-09 2.202782639e-09 2.357038072e-09 2.176048376e-09 1.90631972e-09 2.929244171e-09 2.64684178e-09 1.420984206e-09 2.937822498e-09 2.155458982e-09 1.14211876e-09 1.989557972e-09 8.452014797e-10 1.595983955e-09 1.159914461e-09 1.598396396e-09 1.594543919e-09 1.18914251e-09 1.36546361e-09 2.201449637e-09 1.421191069e-09 1.088783973e-09 8.33245201e-10 1.278045009e-09 8.942296749e-10 4.325290975e-10 7.293582024e-10 9.115086644e-10 1.078966183e-09 2.300226119e-09 5.466903106e-10 4.796542825e-10 9.781034521e-10 2.652292203e-10 1.696508535e-10 6.031133583e-10 4.580755129e-10 1.255582364e-10 1.799360857e-12 1.813370053e-13 1.678760481e-10 1.221921081e-13 4.602377045e-14 1.188941408e-13 1.673696406e-14 5.162466156e-15 1.400789106e-15 4.465857781e-18 2.441559306e-17 1.923783041e-17 5.100435695e-21 1.405887406e-25 3.587669295e-22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.171323206e-21 0 2.977075953e-17 4.124534787e-20 8.878804543e-17 1.059633653e-22 5.057593923e-14 3.173934159e-13 7.431090725e-18 1.389366121e-11 1.745696633e-15 6.527890268e-14 1.105065203e-13 1.532177853e-10 1.208509354e-13 1.184651973e-11 3.054427227e-10 1.688797604e-10 7.346124517e-11 5.191793975e-10 5.290627713e-10 7.484606653e-10 5.340634313e-10 9.009768196e-10 1.193490252e-09 7.338852194e-10 3.005522005e-10 3.893444427e-10 4.540343607e-10 4.760800548e-10 1.44333e-09 4.785745371e-10 3.681554826e-10 5.63102577e-10 6.32400553e-10 5.604420088e-10 1.126781308e-09 1.473137662e-09 4.997677904e-10 3.372007451e-10 1.590271143e-09 2.473534496e-09 4.68996733e-10 1.856761579e-09 1.175234687e-09 1.338873516e-09 1.517788679e-09 2.101564869e-09 1.196401564e-09 2.267866057e-09 2.449234749e-09 2.693747086e-09 1.57136569e-09 1.498236638e-09 1.96937705e-09 1.649819648e-09 1.764221881e-09 2.651396016e-09 2.326631017e-09 2.36385125e-09 1.732105386e-09 2.156214354e-09 2.49473725e-09 1.885148622e-09 2.375917843e-09 1.121839869e-09 2.387491725e-09 1.365065413e-09 2.313608534e-09 1.948326978e-09 1.081736968e-09 3.147499949e-09 2.42309986e-09 3.045623378e-09 1.49005364e-09 2.021393272e-09 1.54287347e-09 2.299832002e-09 1.471939506e-09 2.711916554e-09 3.918539373e-09 2.640575166e-09 2.080271568e-09 2.434731032e-09 2.588062452e-09 2.059889084e-09 2.357943218e-09 3.088545052e-09 1.837027681e-09 1.791094183e-09 2.67576842e-09 2.898332945e-09 2.090829788e-09 1.584380631e-09 2.822151457e-09 3.886638907e-09 3.568776499e-09 2.540291037e-09 1.746462081e-09 1.320234262e-09 2.970873685e-09 3.837101872e-09 1.575259615e-09 2.470583617e-09 1.362571072e-09 2.456543027e-09 1.265894452e-09 2.30165903e-09 3.442292474e-09 2.34210323e-09 1.415135724e-09 3.025455202e-09 1.53820848e-09 3.574799638e-09 2.733352983e-09 2.968995454e-09 1.416298709e-09 2.421947885e-09 2.164948998e-09 2.914184704e-09 1.296787442e-09 1.125010908e-09 1.168022567e-09 2.075492673e-09 7.367769969e-10 1.338026367e-09 9.408266398e-10 8.49479002e-10 1.158205631e-09 7.862323403e-10 1.271500053e-09 9.798106261e-10 9.889200296e-10 1.518501225e-09 4.042626781e-10 9.484235985e-10 1.288620742e-09 1.144182023e-09 9.944145241e-10 1.601258232e-09 7.334843912e-10 6.596210979e-10 6.66066155e-10 7.636416725e-10 6.519857055e-10 2.126629385e-10 4.380929647e-10 9.127719596e-10 3.384495922e-10 8.082018667e-11 3.061217842e-10 3.703751937e-11 3.167896311e-10 3.120843412e-10 4.004037825e-10 5.449201109e-12 1.42517814e-10 3.434767479e-11 8.799497936e-13 1.236205244e-13 9.509740025e-13 7.192200786e-11 3.514288015e-13 7.151441357e-13 4.961157207e-14 1.56805699e-17 1.506760412e-22 1.597150556e-17 1.933369084e-24 2.534747415e-20 1.434228917e-18 5.285874886e-23 0 0 0 0 0 0 0 0 0 1.076021668e-10 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.034193158e-24 0 1.142047391e-17 1.184198808e-19 8.195702134e-20 8.08844736e-15 2.408443247e-16 5.503333791e-15 7.681943835e-18 6.16082568e-14 2.533378992e-14 1.541877105e-16 1.003034107e-11 1.280151731e-12 1.442942279e-12 2.999609079e-10 7.016738247e-11 1.47370682e-10 9.239571521e-13 1.692585037e-10 1.846063879e-10 4.217129868e-10 5.733650819e-10 1.925063587e-10 2.547390384e-11 6.174101154e-10 3.517351688e-10 1.450799667e-10 2.41696906e-10 2.160092532e-10 6.763281986e-10 3.239257551e-10 3.98822378e-10 9.148939687e-10 1.235092179e-10 3.642697141e-10 5.340352177e-10 2.068555816e-11 1.847513503e-10 8.222460419e-10 8.976926786e-10 3.858868754e-10 3.056344213e-10 1.030998799e-09 7.115421413e-10 3.089834862e-10 6.315173725e-10 1.301244225e-09 1.658226362e-10 1.837689721e-09 5.749784099e-10 1.740281636e-09 1.036393843e-09 3.129268454e-10 8.548855399e-10 7.495869534e-10 5.566802763e-10 1.198763851e-09 8.149949869e-10 4.059952452e-10 1.2407372e-09 1.038919605e-09 7.996805156e-10 6.709157273e-10 6.996182281e-10 7.531485032e-10 4.162413297e-10 1.464480248e-09 6.865703791e-10 3.940237601e-10 7.319631533e-10 1.513517259e-09 1.00316287e-09 4.276033471e-10 3.757924754e-10 1.743731262e-09 6.869014332e-10 8.42715851e-10 1.049673694e-09 5.283252702e-10 1.571424142e-09 9.671204235e-10 5.47155557e-10 9.615594022e-10 1.327130336e-09 3.761811527e-10 5.758751275e-10 7.273879477e-10 4.781848836e-10 1.075806424e-09 1.288838745e-09 4.583874444e-10 8.42285518e-10 5.167694419e-10 8.283061174e-10 1.114892111e-09 1.302361087e-09 6.751204429e-10 7.80026221e-10 6.031587023e-10 7.39289835e-10 1.483895212e-09 1.06980982e-09 1.083107887e-09 8.050095381e-10 6.127016258e-10 6.183729715e-10 1.329720472e-09 1.126941975e-09 5.194656009e-10 1.349451986e-09 6.642409858e-10 8.274023628e-10 5.825587277e-10 1.326848842e-09 1.909205409e-10 8.712404362e-10 8.540618946e-10 4.661141024e-10 6.81036551e-10 8.697101006e-10 6.509672325e-10 6.90620123e-10 7.058905705e-10 1.255914004e-09 5.653057713e-10 5.239627263e-10 4.807853354e-10 6.136449326e-10 1.383035092e-09 1.099460572e-09 2.084460998e-10 3.197948574e-10 6.596591753e-10 1.354479286e-09 4.781723251e-11 2.392703939e-10 2.321672786e-10 5.790926591e-10 5.657995953e-10 3.355232913e-10 2.921976449e-10 2.037080388e-11 2.709829336e-10 2.461586394e-10 3.842530683e-12 3.589743358e-13 3.025442574e-10 3.111563222e-10 6.680305743e-10 1.655276552e-12 4.951126649e-11 2.051007529e-11 3.5266674e-12 1.445255694e-12 1.358419816e-11 7.733653887e-14 1.447481366e-11 1.14389921e-14 4.159535212e-13 6.568363487e-14 1.35859471e-16 2.87648333e-17 4.485172649e-20 4.186418404e-19 5.273125615e-14 1.782768182e-18 7.080037442e-20 1.592241806e-21 1.696505725e-19 5.315031999e-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.437781786e-22 1.518779674e-21 7.945414297e-22 0 6.205636322e-17 1.754071246e-17 7.101667447e-18 3.678185118e-14 2.033322353e-16 2.185443725e-16 1.002756627e-13 8.617797786e-16 3.278058842e-16 1.402339555e-10 1.352770514e-15 1.066748107e-10 1.392652068e-12 1.387375087e-14 4.560949916e-12 2.953593208e-12 2.023153915e-10 1.097923543e-11 2.168050791e-12 5.383566853e-12 2.038626022e-10 2.444427121e-11 4.361372735e-12 7.432020813e-11 1.619538355e-11 1.924875837e-10 1.240288105e-10 4.417446639e-11 1.429949381e-11 3.508860683e-11 1.443646131e-10 1.516065013e-10 1.823595159e-10 1.699285757e-10 7.995012607e-11 1.542262957e-10 1.293860636e-10 1.25783814e-12 3.613242072e-11 2.410705341e-10 2.130720521e-10 3.05541311e-11 6.807233269e-11 1.422262811e-10 2.961831786e-10 4.897017888e-10 1.927740833e-10 4.814191663e-10 3.57563573e-10 2.608717009e-10 4.127701451e-10 1.182655424e-10 6.561604687e-11 1.813269282e-10 4.054468687e-10 2.245512839e-10 3.926286e-10 7.991787513e-11 1.720825101e-10 5.176142411e-10 3.095827307e-10 5.737571985e-11 6.276217073e-11 2.501775425e-10 9.644681539e-11 4.801408698e-10 3.883381777e-10 4.179540016e-11 1.440043578e-10 1.770941488e-11 4.42116924e-10 3.166054455e-10 2.685446285e-10 4.210014045e-10 1.357216725e-10 1.197735741e-10 3.348072301e-10 1.678826297e-10 1.452448753e-10 4.515743836e-10 6.986414924e-10 2.190981819e-10 2.115936349e-10 3.226640499e-10 2.006581515e-10 3.39774394e-10 1.476556059e-10 8.890348561e-11 2.346423778e-10 5.181564186e-10 4.119937259e-10 2.365505972e-10 1.973022168e-10 2.893690504e-11 5.890340174e-11 3.939032032e-10 3.034880448e-10 3.261288862e-10 4.768124765e-11 2.244682722e-10 2.153887133e-10 2.549738091e-10 1.785493914e-10 1.659625491e-10 4.286328774e-10 2.900619539e-10 6.393077189e-10 5.888230604e-11 3.238091972e-11 4.155014475e-10 2.829086062e-10 1.695048586e-10 2.042136897e-10 1.001207158e-10 3.464727316e-10 6.916559906e-11 7.903026409e-11 2.788954999e-10 4.095349774e-12 1.49720192e-10 7.099303883e-11 4.903413926e-10 2.0974067e-10 3.59747008e-10 2.707080061e-10 4.29556481e-11 3.520654456e-10 2.559032861e-11 1.131413929e-10 2.566031522e-11 2.65922918e-10 2.275446078e-10 1.280450143e-10 1.323250401e-10 1.769243326e-10 9.051253789e-11 3.949462958e-12 2.201982728e-10 7.691619567e-11 1.824169662e-10 5.37142317e-12 3.617376824e-10 1.186869951e-10 7.815152898e-11 1.739405892e-12 1.348265315e-10 5.165181979e-13 1.907018694e-11 1.750781975e-10 4.67540043e-11 2.098554799e-11 2.203487731e-14 2.10144476e-12 7.701219134e-12 8.549808452e-12 1.009170845e-11 1.483942617e-15 1.491580896e-15 5.419048783e-17 9.604557799e-15 3.611830049e-18 1.019529686e-15 4.110878369e-16 8.475359968e-21 2.696603674e-20 5.521137854e-23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.31676135e-20 0 0 5.952247339e-19 9.203474439e-24 9.659342781e-18 1.793498414e-18 4.08540719e-14 5.723630949e-18 2.640109624e-17 7.991576221e-13 1.628625642e-13 1.663460408e-19 3.359605136e-15 4.580552584e-14 5.177957876e-15 2.932163822e-12 1.086890404e-13 1.665520705e-13 4.211612467e-16 2.139258788e-11 8.587059808e-12 5.910896405e-12 1.989598001e-11 3.183570584e-11 6.674830858e-12 5.15132676e-11 7.738471151e-11 1.102345245e-10 1.897405636e-12 7.698011594e-12 1.33629417e-13 9.698476015e-11 2.528325965e-11 1.400979777e-11 3.05831084e-11 1.743564068e-11 7.603459135e-11 7.593185078e-11 9.153230098e-14 1.699138988e-11 1.645342028e-10 1.067997939e-10 3.743673929e-11 7.458731369e-11 1.665584094e-11 1.669909383e-10 2.711128814e-11 1.277907915e-11 1.624055575e-11 2.013046488e-11 1.113899954e-10 2.63602756e-11 3.438178149e-11 6.207672205e-11 4.993437769e-11 2.339114833e-10 1.040602616e-10 4.712649053e-11 1.343071441e-10 8.021966077e-11 6.904117924e-11 5.332292848e-11 1.364652592e-10 8.057418076e-11 8.565208673e-12 9.114668031e-11 3.349192224e-11 3.935236414e-11 2.4681007e-11 6.573643051e-11 1.39056841e-10 1.379722658e-11 4.007607111e-11 2.525612503e-11 2.554021044e-11 2.913316451e-11 7.342387446e-11 9.039154736e-11 5.951400623e-12 1.101847663e-10 1.009179466e-10 7.434285208e-11 7.76013972e-11 7.084639409e-11 9.040798789e-11 5.380365957e-11 2.702981654e-10 4.906099602e-11 5.677279648e-12 2.758688706e-11 1.479867496e-11 2.172810987e-11 2.119750758e-11 1.630846413e-10 2.439234704e-10 1.235003184e-10 1.331482416e-11 3.011004041e-11 1.154857326e-10 4.976663417e-11 2.162382133e-11 8.96290647e-11 2.774595222e-11 5.167989663e-11 3.803902815e-11 1.081039985e-10 6.374494581e-11 7.401523052e-11 1.15371534e-10 9.663120681e-11 2.267987379e-11 5.431807367e-12 5.274766128e-11 9.809271339e-11 1.160288057e-10 2.523948361e-11 2.317665278e-11 2.514774833e-11 1.799483537e-10 3.074562701e-11 1.423218397e-11 2.696752159e-11 2.310439223e-11 1.393520957e-10 1.708294384e-11 2.094148309e-11 5.950937063e-13 5.39072533e-11 1.370048722e-11 9.860477582e-11 8.914344927e-13 1.245449196e-10 3.672009359e-12 3.196377961e-12 2.523146697e-11 8.953751066e-12 1.664766799e-12 2.440436177e-12 2.133704718e-12 2.369402715e-12 8.168478579e-11 3.779846459e-11 1.066632446e-13 2.746936472e-12 1.01118709e-11 2.59316794e-13 1.55550937e-12 1.994612917e-11 1.478730099e-11 4.361548762e-11 5.655016374e-14 1.074210512e-12 4.319618938e-11 1.91922092e-15 9.763576366e-11 6.837159926e-14 1.018521086e-14 6.154920697e-14 1.960827994e-12 7.485883438e-15 1.418366642e-18 1.137160793e-18 3.289739525e-17 2.352178767e-22 1.113278243e-15 0 1.493306273e-19 9.763840627e-24 4.080886201e-20 6.109109471e-24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.01161195e-27 7.38394355e-22 5.307924029e-21 3.627880132e-20 7.902195499e-22 2.245715358e-20 2.971725327e-17 2.986173122e-22 1.420099418e-17 4.94005764e-21 1.860667027e-14 1.418113383e-13 4.32213581e-16 1.697354599e-13 4.798848959e-13 6.33940864e-16 4.502720014e-14 4.6294088e-14 6.915839497e-14 1.499965867e-13 3.053281589e-13 6.712873345e-13 3.47072814e-14 3.07091824e-12 8.155161719e-12 4.316658838e-13 1.46914018e-12 2.477647705e-13 3.072165233e-13 2.45516927e-11 9.660317048e-13 6.346176472e-12 3.792204845e-12 5.13162742e-12 1.341952804e-11 3.193605198e-12 3.563009644e-11 5.996474906e-12 3.821996018e-11 1.415127599e-11 1.86700629e-11 2.603202521e-11 1.437044611e-12 2.607738957e-11 2.460480315e-13 8.321809405e-12 2.409764145e-12 7.956514594e-14 1.188606038e-11 2.720308063e-12 3.104823805e-12 1.354374821e-11 1.062150847e-11 5.944749159e-11 3.106097751e-12 1.921350003e-12 3.360777091e-11 2.708675216e-11 9.924777841e-12 2.89412983e-12 6.062945516e-12 1.186545896e-11 2.085821411e-12 1.420664725e-12 1.344170986e-12 3.873083597e-12 2.111061516e-11 1.433396854e-12 3.180586405e-12 2.254219367e-12 4.304806245e-11 5.584278128e-12 1.535941249e-11 1.715633647e-11 6.587506933e-12 3.7023729e-11 7.042816891e-12 2.779719075e-11 3.526680192e-12 2.03439341e-12 2.25194939e-11 1.943115139e-12 1.735887054e-11 2.004500046e-11 5.432842645e-12 5.787912631e-12 1.646698047e-11 3.645846113e-12 1.291740267e-11 1.229758257e-11 4.609163068e-12 9.352590732e-12 1.606940741e-11 1.354031434e-11 5.908821575e-11 7.467523175e-12 6.842819982e-12 1.227960069e-11 7.830155673e-12 2.335142938e-11 1.013955223e-11 7.608477277e-12 5.423216505e-12 1.608475853e-11 2.706108582e-12 3.85421742e-11 3.985780887e-11 2.404762441e-11 4.261558497e-12 1.094476847e-11 5.89036982e-11 6.235521391e-11 1.467997929e-11 9.287537988e-12 9.989658624e-12 2.297737011e-11 5.941440624e-12 6.262462504e-12 5.678694227e-12 1.53655497e-11 1.235945485e-12 2.239059648e-11 2.147953799e-11 1.410846133e-11 4.242451618e-13 2.412148839e-11 2.52588897e-12 3.351621635e-12 2.078065441e-11 4.45018507e-13 3.27881629e-12 9.355014991e-13 2.088397075e-13 1.387560268e-11 1.779708538e-12 9.47452847e-12 9.553283301e-12 2.309358542e-12 1.671224009e-12 2.388522076e-13 1.298009581e-12 3.794635905e-13 2.523647643e-14 1.403118326e-11 1.541211314e-11 9.106093145e-12 1.328497381e-13 1.458340147e-13 5.714100248e-14 1.134686169e-16 1.42205057e-13 7.720313902e-15 1.707149742e-12 8.991367555e-14 3.216772008e-13 1.9849852e-15 3.945380689e-18 4.267391288e-17 4.554380664e-15 3.252255483e-17 8.740159513e-19 4.457599018e-16 2.048100084e-18 5.240496094e-20 7.611059574e-17 2.241122107e-19 5.327323852e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.075658749e-25 2.830700876e-22 3.020029418e-25 6.469837012e-20 0 9.344695108e-26 3.95360878e-19 1.973367395e-19 1.468453411e-18 3.278103453e-16 3.639886856e-16 2.707012713e-15 2.119291837e-14 9.201718149e-18 8.130407992e-16 1.602411392e-14 3.949431178e-12 1.575996332e-12 4.433996816e-14 4.247271291e-14 3.35760899e-15 6.857132666e-17 2.251836488e-12 3.240020086e-13 1.321153025e-14 5.763836304e-12 1.212380816e-14 1.563113973e-15 3.310569633e-14 3.212774434e-14 1.084490302e-13 5.125421167e-14 9.696574652e-13 7.702636287e-13 1.285647714e-12 1.962158354e-12 7.683003601e-13 1.308886762e-14 1.084157707e-12 2.157180219e-12 7.008590619e-13 6.919801994e-13 1.410465338e-12 5.682124739e-14 4.005163733e-12 1.588733511e-12 3.881622334e-13 2.462164215e-12 3.147989571e-13 8.58523415e-13 6.589145916e-13 8.839310698e-13 3.182941944e-12 6.168606718e-13 1.254940198e-11 7.053423214e-13 1.145622521e-13 3.822858462e-13 2.790563515e-13 1.004837775e-11 9.359824387e-12 4.118269772e-14 1.782811099e-12 4.036555285e-12 3.594266405e-12 1.850229589e-12 3.664823573e-13 1.139828912e-12 1.219407124e-12 4.233713909e-13 3.563291698e-12 2.17065074e-12 5.574739205e-13 2.854895771e-12 3.943129878e-12 8.258569711e-13 1.295789155e-12 2.218703159e-12 4.12626925e-14 4.528611433e-12 1.156860252e-13 8.726402445e-14 1.50157048e-12 1.312287366e-13 3.842732551e-12 2.610180821e-13 5.883642625e-12 5.39616732e-13 5.727059653e-12 3.36385216e-12 2.221041164e-12 6.451327298e-12 4.052563569e-12 1.175851167e-13 3.330493741e-13 1.327769529e-12 2.410108953e-12 1.48813566e-12 5.507676202e-12 5.806859035e-13 4.58805492e-13 1.265112969e-12 9.200955036e-14 5.757955871e-12 1.267230181e-12 4.252974358e-12 1.38741369e-12 1.415485762e-12 1.134669554e-13 3.903454618e-12 1.804578833e-12 3.078604196e-14 1.812533166e-12 2.598005801e-13 3.235078125e-12 9.480408966e-13 1.574330638e-12 1.568040323e-12 7.409605807e-13 6.635195268e-13 6.084389593e-13 2.103431712e-14 8.159138789e-12 1.891442035e-13 3.929937225e-12 4.220639689e-12 1.825295265e-12 1.439893013e-13 4.127946206e-12 1.804385008e-12 2.918637892e-12 1.905059447e-13 7.406617012e-13 3.935527783e-14 3.59985445e-13 8.701508021e-14 2.36453186e-13 2.363108419e-12 2.571859892e-15 5.891480665e-13 6.544620194e-12 3.261905651e-14 2.061636515e-13 6.748067648e-15 2.811778554e-13 2.407092532e-14 2.753884197e-14 4.070750553e-16 1.768634256e-14 1.985729242e-15 2.33202981e-13 1.567391338e-14 5.187942953e-13 1.038430178e-10 3.974791367e-16 1.679900838e-17 1.789347749e-17 1.495542671e-17 1.618077372e-20 2.57836925e-18 9.456871527e-19 1.12603775e-16 1.086214552e-15 6.62875655e-22 0 8.160357482e-23 3.87560673e-20 9.872123026e-22 0 4.117238906e-21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.571512541e-23 4.666070257e-23 1.363468467e-27 1.58615029e-21 0 1.375782762e-19 3.165160127e-23 6.434536067e-17 4.786391264e-14 3.211715433e-14 2.205475631e-17 1.442283347e-16 1.101708569e-17 1.562097232e-16 5.825052567e-14 3.168717146e-15 1.605969121e-13 1.911474861e-14 5.56984134e-14 1.706732301e-18 8.428211079e-15 5.542168527e-15 2.665848655e-15 4.190315637e-13 1.453890803e-13 3.511370502e-15 2.365889478e-15 3.833293287e-13 2.576079925e-16 2.313825479e-15 1.870545038e-13 2.546247293e-13 8.802922765e-14 1.204557832e-13 7.180945892e-13 2.282445547e-15 1.472357179e-13 3.245040604e-13 3.808218676e-13 4.353756264e-15 1.349369339e-14 1.013177576e-13 8.977883528e-14 9.575310091e-14 5.629404497e-14 1.807889821e-13 3.416084697e-13 4.61176593e-15 7.198804885e-14 1.317573595e-13 2.793381828e-13 1.80516594e-13 1.214595581e-13 9.922423834e-14 2.39913696e-13 1.150421764e-13 4.806965015e-14 1.167335729e-12 1.964313073e-13 4.128415189e-13 1.30797966e-14 9.190140696e-14 6.789791231e-14 3.214036894e-13 6.429022528e-13 3.700527703e-14 3.877891395e-13 5.959567281e-14 2.004153628e-14 1.87506529e-14 4.338795842e-14 6.234841197e-14 2.050113972e-13 5.371658413e-13 1.095808948e-13 8.112312211e-14 9.482868861e-14 6.38185522e-13 1.18990045e-12 4.557360842e-13 2.88845303e-14 1.135275419e-13 2.423729093e-13 3.886569312e-13 4.585212431e-14 3.006521955e-13 5.288046813e-14 1.278534588e-13 5.668942809e-14 3.994137008e-13 1.934028452e-13 3.767058807e-14 1.340597085e-13 1.474220905e-13 6.933906606e-14 9.745616484e-14 8.935904658e-14 3.840202152e-13 8.31119738e-14 3.877945488e-13 7.339327207e-14 5.664586306e-14 3.895962771e-14 2.569076861e-13 1.630868021e-14 1.359857064e-12 6.308884881e-14 1.352565942e-13 1.441359948e-13 5.428362257e-14 3.849545162e-14 2.934524679e-13 1.73791949e-14 5.236438252e-13 5.038606135e-15 1.849722183e-13 5.888958651e-13 7.861130716e-14 7.047813142e-16 2.812285387e-13 6.296003295e-14 1.365498569e-13 1.552087174e-12 1.962085867e-15 1.321713774e-13 8.889636493e-14 5.171141441e-14 1.912199453e-13 3.338988715e-14 2.16662879e-15 2.288532548e-13 8.296675269e-13 4.64753673e-14 6.258205035e-15 8.692341346e-14 1.543891433e-14 1.200066928e-13 9.739628818e-14 8.583899828e-13 8.633933892e-14 5.49241248e-15 3.066516336e-15 1.341696174e-14 5.868008293e-15 2.732552665e-14 9.17975388e-13 3.99892082e-14 1.791906429e-15 2.969017712e-13 8.387244917e-18 1.759578807e-16 4.958548481e-16 7.427353068e-16 2.0113831e-14 1.069937883e-16 9.898577607e-19 3.901505104e-15 2.494246092e-19 1.42571238e-18 2.774305979e-15 3.658948391e-18 2.338109761e-15 1.565924374e-23 3.052678269e-22 0 3.171256319e-19 1.110970629e-25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.239688903e-23 3.438580368e-25 2.368551149e-25 3.88236781e-21 8.128126695e-26 8.062257695e-24 3.244326938e-19 9.684540085e-20 1.105238286e-14 6.747898483e-16 1.477295075e-25 1.955344619e-16 1.60212711e-16 3.759790925e-17 8.722944115e-15 1.097356729e-15 2.921848612e-15 4.830328483e-16 6.79125097e-16 6.609783244e-15 1.808224559e-14 3.921685094e-15 7.682678756e-15 2.432161817e-16 4.281785287e-15 1.796809329e-15 1.559257671e-15 7.205597073e-14 4.818076578e-14 8.469808645e-15 3.161079583e-16 8.622752726e-15 2.172279669e-15 1.898533441e-14 5.797798228e-17 2.639290563e-15 7.807751362e-14 4.971140189e-15 7.321177104e-15 2.551606743e-13 7.236271778e-15 3.84891298e-14 5.237385182e-14 1.373903126e-14 2.065441321e-15 6.500407104e-14 1.025564514e-16 9.100864386e-15 6.949122528e-15 8.373075406e-14 5.337416943e-15 2.455032099e-15 2.429094331e-14 2.901878721e-14 1.530388203e-14 3.211385114e-14 4.63480065e-15 3.969167866e-13 3.261938474e-14 1.187497979e-14 9.021418347e-15 1.445362054e-14 7.116592299e-15 2.100329311e-14 3.711803715e-14 2.725383872e-14 4.016086026e-14 2.572044825e-13 2.037518723e-14 4.942442481e-14 2.182628302e-14 2.967314272e-15 3.610824324e-14 3.578865568e-14 1.110483722e-14 1.29743618e-15 8.251214024e-14 1.665065292e-15 1.15007378e-13 8.109983858e-15 1.223917037e-13 4.601759025e-14 6.582781881e-14 4.838824562e-14 6.206398713e-14 3.908761578e-14 8.545508819e-14 7.741898734e-15 1.74588036e-14 1.593261335e-15 5.906840065e-14 1.875097185e-14 1.139945722e-14 7.709467853e-15 2.284886339e-14 9.685605373e-14 2.720176682e-14 6.513512528e-14 6.920423387e-14 4.60196859e-14 1.275988239e-14 1.773445489e-15 2.116867124e-14 2.648361149e-15 2.845541333e-14 6.399608525e-14 1.951514007e-14 3.279832603e-14 6.580618705e-14 1.529248367e-13 3.337872571e-14 3.313219436e-15 1.888239775e-14 2.57747759e-14 4.832076361e-14 7.475124598e-15 1.757950758e-14 9.667650225e-15 3.906606291e-15 2.594604106e-14 4.090693506e-15 2.860400004e-14 1.59863618e-15 7.931862288e-14 3.798605444e-14 1.217434386e-16 7.042674065e-15 1.485580897e-13 6.840813794e-17 6.144362905e-14 5.990538577e-15 6.119287523e-15 4.345334334e-15 1.248871028e-15 6.611035921e-15 2.519286033e-16 3.494536585e-15 2.624623387e-14 1.617496307e-15 6.427545414e-16 5.594493764e-16 2.947478323e-15 2.900194608e-14 1.200110165e-17 4.981387954e-16 4.996689742e-15 6.764511859e-15 1.060176881e-15 2.336078261e-15 2.910016352e-15 2.153699571e-16 1.653662348e-15 1.639955967e-17 3.975744961e-17 3.858466936e-20 4.248163092e-15 1.966599402e-18 4.048881067e-18 1.919215155e-20 6.525757987e-25 1.563934037e-24 3.149662081e-22 1.897208141e-21 7.554272878e-23 7.331569951e-21 2.028827207e-21 2.829382125e-26 2.617462817e-23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.820767587e-26 0 8.02370891e-21 0 1.295535542e-21 2.628609061e-17 2.466858192e-20 8.938510027e-21 1.216319005e-19 1.858787812e-19 3.159069071e-17 1.3328975e-20 1.136446116e-17 1.349887447e-17 3.397409447e-17 4.452845121e-18 1.618757378e-16 1.838373276e-16 9.014703195e-17 5.041391648e-16 8.900604868e-18 7.577109485e-16 7.022313299e-16 2.609187004e-14 9.895244182e-17 8.633123298e-17 6.840686597e-16 2.721954323e-15 3.35822763e-17 2.780051261e-16 6.86386104e-16 7.391473224e-16 1.511926415e-15 1.715229451e-14 8.337912948e-16 7.406344898e-15 4.311107559e-16 1.241790956e-15 1.201315524e-15 3.994061407e-17 2.518866677e-15 1.62250101e-14 7.428355035e-16 3.671583452e-14 1.218575584e-15 2.434065248e-15 1.588903853e-15 6.648549164e-15 2.228790634e-15 1.537208024e-14 1.419824277e-15 3.066032597e-15 4.006304387e-15 3.085529368e-15 8.087080152e-16 2.357530954e-15 2.684728215e-15 3.19741663e-16 7.574893916e-16 1.112573823e-15 3.603555679e-15 2.360591691e-15 7.792659241e-16 1.454409613e-14 1.450937368e-15 3.327493627e-15 5.507533769e-16 2.850718875e-15 4.3327187e-15 6.311109434e-15 3.005045694e-15 4.265785685e-15 3.325623111e-15 1.174439218e-15 1.712683734e-15 5.08413711e-15 1.372036326e-15 1.741481753e-15 3.975037351e-15 2.624962491e-14 4.464820869e-15 4.854815045e-15 1.755436153e-16 3.375607617e-15 4.472445076e-16 2.952904029e-15 5.207392793e-15 3.387410675e-15 1.982251643e-16 6.787269471e-15 2.669952523e-14 2.57620513e-16 3.141637744e-14 3.674016549e-16 5.003174189e-15 5.527998939e-15 3.36432925e-15 8.854782159e-16 3.941271396e-15 9.930086544e-16 3.997835468e-15 3.013963115e-15 1.676785963e-15 2.01290072e-14 4.534205855e-15 3.295249151e-15 4.657478974e-15 7.918527243e-15 1.444121987e-15 1.301324236e-14 2.983268154e-15 3.160080592e-15 8.66972705e-16 8.778567905e-15 5.724274619e-15 3.362677899e-15 5.353989192e-16 1.706842289e-14 1.667792795e-15 1.517480504e-15 1.196294782e-15 3.66918411e-17 1.173059144e-15 1.803536373e-15 6.722258752e-16 2.634241252e-16 1.574652247e-16 5.124663258e-17 9.731799789e-16 8.016741108e-15 2.118847445e-15 5.9085115e-15 9.276796827e-16 1.337688268e-15 6.153293854e-16 1.809993581e-15 2.627699501e-16 2.941515273e-15 1.575642824e-14 2.184482029e-16 6.171453268e-19 1.194404404e-18 2.205404183e-15 9.668621633e-20 7.246636168e-16 8.549063275e-16 1.943190088e-16 3.431318505e-18 5.408299988e-16 1.168736808e-15 1.417646231e-17 1.924177069e-17 1.035039026e-21 2.053001525e-17 3.431783748e-22 2.52526398e-19 3.866972393e-19 7.512194456e-22 1.596164524e-17 1.774893575e-17 2.655443576e-20 5.713434089e-21 3.789520961e-22 2.881393867e-22 3.403249759e-20 0 2.722615711e-25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.254309967e-24 0 0 0 2.747795724e-25 0 1.495566176e-23 0 0 5.755993556e-21 0 8.731767271e-23 5.034121708e-23 4.006437875e-20 4.858925543e-19 8.918948781e-19 1.823634133e-19 1.022009906e-15 4.075241989e-17 3.31309109e-16 6.265693925e-18 5.405679757e-17 4.763454721e-16 2.319270211e-17 3.223677669e-19 1.854041672e-15 7.358447516e-18 6.850269536e-17 2.572250395e-17 2.094274079e-17 1.487479955e-16 1.237901393e-15 1.912960221e-15 8.253843019e-16 6.471644745e-19 1.012761493e-17 2.598648189e-16 2.53896138e-17 1.325991018e-16 9.278333598e-16 8.835449724e-16 2.720977882e-16 4.815953082e-16 2.551426171e-18 3.031810413e-17 1.15573232e-17 8.108163286e-17 1.758148686e-16 2.078072745e-16 7.253943171e-16 8.472549721e-16 3.767293625e-15 3.692712277e-16 4.897578733e-16 8.600380848e-17 1.009975549e-15 1.976504686e-16 5.36854892e-16 2.283839576e-15 1.046215603e-16 1.05562375e-15 2.361454055e-16 9.967473036e-17 8.553956496e-18 2.57312201e-15 2.334978378e-15 7.342198493e-16 1.14785025e-15 3.153497674e-16 7.603869604e-16 2.050059886e-17 2.294312578e-15 4.629321418e-17 7.817541063e-16 5.019762014e-17 2.23757016e-16 1.458478261e-17 1.236196315e-16 2.701316403e-17 1.289600328e-15 1.684511007e-15 1.415566772e-15 1.29938374e-15 9.119252873e-16 8.361476224e-17 3.195275038e-17 6.146321483e-16 3.454340294e-16 7.964836714e-17 9.762039417e-16 6.059723085e-16 7.462485221e-16 9.74709447e-17 1.265027028e-15 6.277612168e-16 1.340399417e-16 3.350657116e-16 5.075120321e-17 2.616849957e-16 1.274020634e-15 2.344633043e-15 1.242668556e-15 5.356386436e-16 2.11875192e-15 7.819341112e-16 5.630852336e-25 8.010959037e-16 6.886219331e-16 9.2276108e-16 1.102726479e-16 4.38448296e-16 4.886658528e-16 4.93568594e-15 2.192027138e-15 4.140562855e-16 1.100817095e-17 2.974126582e-16 5.953720939e-18 7.680325401e-16 8.010364907e-17 9.881912841e-16 2.035030079e-16 2.844994947e-16 3.504273397e-16 1.994865211e-16 1.077439223e-15 1.119831845e-15 4.187279514e-17 1.071912142e-15 2.584923105e-17 1.591202311e-15 7.412952662e-16 1.710630953e-16 2.408603253e-16 2.173419399e-16 2.648547449e-16 1.34606117e-15 3.569421326e-17 1.700576658e-15 2.400862026e-17 5.6221611e-17 5.421747556e-18 9.17047853e-17 0 4.552528337e-17 1.509522793e-18 4.380798414e-17 2.981329165e-17 1.587638176e-17 3.807883051e-18 7.065248248e-22 8.253283697e-17 4.049961331e-19 5.29091007e-19 1.125713682e-16 1.755146268e-18 1.099190409e-22 1.666655011e-21 9.26897303e-27 3.522454579e-26 0 0 0 0 8.702033408e-25 0 4.376969316e-25 0 0 1.901158504e-26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.770103758e-27 6.734022645e-25 0 0 0 4.043482272e-20 0 1.165021421e-25 0 0 4.9942793e-23 1.45245796e-24 6.004449725e-22 2.348063191e-22 7.74833e-16 7.480895062e-19 2.705504802e-17 0 2.030321934e-17 1.615348547e-17 1.001237165e-16 1.771670435e-18 6.433148694e-19 1.001169626e-18 4.748931063e-19 1.203978226e-18 8.90326755e-17 5.885126627e-19 6.801987038e-19 3.774231001e-18 3.334053934e-27 1.129514794e-16 2.612379558e-16 7.41878364e-18 1.547148894e-18 1.329421147e-17 1.58150666e-17 1.999901959e-16 1.55273648e-16 2.403375835e-16 4.430321004e-18 1.795622862e-16 1.127709633e-18 1.440242172e-17 7.17366508e-16 1.153338638e-17 5.166368813e-16 5.271461185e-18 2.715067368e-17 1.110764661e-18 1.177117948e-16 9.668304759e-18 1.498031648e-16 1.832225015e-18 2.785450012e-16 1.570006552e-17 1.152941605e-16 5.955570619e-17 4.42243095e-18 2.16240512e-17 3.699635798e-18 2.907294096e-16 2.256428106e-17 2.735592013e-16 6.962126305e-17 3.958736812e-17 7.951088688e-17 4.20251925e-16 7.207730006e-17 3.172384368e-18 1.908236918e-17 1.155104476e-23 1.061784587e-16 2.581592838e-17 3.510402748e-17 4.863773938e-16 5.634118631e-17 5.71290673e-17 9.481481197e-18 1.132345684e-16 8.591088233e-18 6.248025743e-17 5.373876767e-17 1.151966787e-16 1.906914945e-16 1.749423742e-16 1.512937565e-16 2.678430007e-17 3.303292685e-17 1.917679576e-17 5.813073313e-18 8.556418711e-17 5.816033365e-17 1.609307764e-16 4.939566259e-17 3.941637063e-17 1.849416137e-16 2.427068954e-17 3.904472572e-16 1.843673956e-16 2.863552281e-17 3.047490663e-17 2.440534366e-17 3.517548296e-16 6.256061386e-17 1.387323375e-17 7.725240873e-17 3.051758847e-17 2.57913909e-16 7.102712932e-19 2.053721625e-16 7.639963162e-17 5.599934652e-17 6.961816139e-17 1.641759651e-17 7.876688406e-17 1.049843515e-17 1.05733205e-16 1.652044841e-17 1.704647177e-16 3.080855356e-17 1.037526435e-17 1.552653174e-18 8.517352283e-17 1.63341687e-17 1.076290635e-17 2.134144052e-17 1.300324459e-16 1.512738796e-17 1.601711209e-17 2.578973033e-17 3.053340857e-17 2.449938134e-17 6.112372341e-22 1.044876935e-17 1.573128015e-17 1.142450264e-16 1.482099959e-18 1.948708522e-17 3.270262238e-18 2.525072144e-17 8.498828965e-24 2.425742442e-19 2.400501905e-26 1.660835283e-17 3.784715221e-17 2.808004123e-17 0 0 8.570239533e-17 6.430712644e-19 1.326453299e-18 1.505220866e-18 3.212237496e-19 6.87856954e-23 0 4.670352523e-23 2.872694887e-21 4.948548778e-23 3.281126609e-25 4.614866357e-22 0 0 0 0 0 0 2.475699598e-25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.48063213e-25 0 4.409955364e-24 0 0 2.342567313e-23 6.439308894e-25 0 0 0 0 0 2.809546237e-22 2.457926519e-18 1.38309616e-18 8.177305555e-17 0 5.006954375e-18 3.268703834e-18 1.589012296e-17 7.21352681e-19 3.497410168e-17 3.990811365e-17 3.382448908e-18 1.477097639e-17 9.316956365e-23 1.434042201e-17 9.195344911e-23 9.076867543e-23 2.452049002e-17 5.866226577e-19 4.608149618e-17 7.720126902e-19 4.113239804e-17 1.748029116e-17 0 3.384245061e-18 1.265829206e-18 7.382414336e-19 2.446963133e-18 9.745237154e-18 0 1.256984028e-17 5.850823163e-18 3.320481591e-18 7.348255717e-18 2.626694817e-17 3.052648237e-17 1.812679684e-17 8.708291513e-17 8.803998338e-19 3.878921274e-17 8.536210731e-19 2.129354716e-17 2.80893434e-17 4.913948668e-17 1.607331756e-17 1.975644295e-18 1.145976858e-17 8.786007746e-18 3.084320479e-17 4.908612916e-18 1.735119376e-18 9.349101194e-18 8.237101215e-18 7.077495337e-33 2.559412592e-18 3.610577375e-17 2.777157291e-17 7.348232061e-19 0 2.569538066e-17 1.012750764e-17 6.542410102e-17 5.853151367e-18 1.036233743e-17 2.054377105e-17 3.827680283e-18 3.153442835e-17 0 8.754029566e-17 1.215606446e-17 8.730777729e-19 1.294040874e-17 3.53469432e-17 9.758555095e-18 4.461318837e-18 3.124435949e-19 3.199675713e-18 4.992468798e-17 1.197046968e-18 1.299889746e-17 1.839677204e-17 7.497907352e-17 4.954149158e-17 2.472019445e-18 3.569875534e-18 8.857655284e-19 1.02243985e-18 1.889124919e-17 2.36373431e-17 3.745208444e-17 5.395918776e-18 4.561910153e-18 4.534939744e-19 2.468755355e-18 1.582124174e-17 0 1.287525939e-18 8.627363657e-18 1.035208252e-18 4.217935482e-18 4.884128069e-18 2.326860276e-18 9.852903551e-18 3.403725676e-18 1.0109187e-17 7.427985701e-19 0 3.01677713e-20 3.706795467e-18 2.848844556e-18 1.016022094e-17 1.280126455e-17 1.80324392e-17 5.44653808e-18 0 0 0 3.312922084e-20 0 7.096398726e-18 7.764152758e-18 1.784488794e-17 1.330326531e-21 1.208684721e-17 6.660869307e-18 1.588962376e-18 2.7344045e-17 7.101294417e-22 0 7.719491358e-26 6.826110808e-17 0 1.60295663e-17 2.248588745e-19 0 4.947296144e-22 0 1.270945243e-18 0 8.97914719e-24 3.129196799e-20 2.212854406e-26 0 1.414752255e-22 0 0 0 0 8.608219558e-23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.357111943e-27 0 0 0 0 0 9.30157525e-22 1.417003355e-25 1.639646276e-22 0 0 0 2.493082561e-21 5.6164162e-19 0 2.35110629e-20 0 1.090299914e-18 0 0 0 0 1.058095709e-22 0 0 9.109141407e-19 4.388196155e-19 9.849368928e-25 8.724101284e-24 1.495486985e-18 0 9.471041659e-19 2.833939545e-18 0 0 1.363710407e-18 4.212949601e-18 3.922637964e-18 5.917348844e-19 1.362452705e-18 0 4.117989659e-18 1.576412521e-18 3.659447382e-18 2.323624502e-18 9.474230788e-19 0 5.021201742e-19 0 4.629557793e-19 4.21889653e-19 5.867224877e-18 1.170549986e-18 0 0 0 0 1.858793846e-18 4.47899884e-19 3.966573595e-18 0 1.56421563e-18 5.174306116e-18 1.185822827e-18 5.234878755e-19 7.453705235e-18 2.237860878e-18 1.461552618e-18 1.649134296e-18 3.211572784e-18 2.243629483e-18 3.415002114e-18 3.549855267e-29 5.007838655e-18 1.414451161e-18 1.041438005e-17 0 5.654985423e-18 1.84276859e-18 0 9.191265816e-18 1.61142059e-18 9.406878396e-19 2.920955309e-18 0 5.418196431e-19 0 0 3.068641534e-18 0 4.486919792e-18 2.506024681e-18 0 1.568446365e-18 1.940459676e-30 0 4.809438328e-18 2.72271424e-18 4.844858829e-18 4.146313683e-19 0 6.700313406e-18 1.888823286e-18 4.195511006e-19 1.319918276e-18 2.700665389e-18 0 6.590849696e-18 0 2.088091528e-18 2.049041226e-18 1.933485594e-18 4.199561355e-18 9.579383599e-19 0 0 0 1.354426347e-18 0 0 0 3.595000271e-18 4.750317023e-19 1.007844721e-10 3.456754813e-20 9.865828213e-21 4.779108676e-18 6.997121723e-19 6.553030948e-19 0 2.332834592e-18 9.829756444e-19 0 5.764796766e-18 0 3.866493732e-18 0 0 0 4.455168518e-24 7.591457497e-19 0 0 8.910272248e-19 5.97504447e-18 0 0 0 8.565750175e-19 3.296612117e-26 5.165254175e-20 0 0 0 0 0 0 0 0 0 9.06294655e-22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.072939993e-28 0 0 0 0 0 0 0 7.517723976e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.473552128e-18 0 0 0 0 0 0 0 0 9.125498918e-19 0 0 0 0 0 0 0 6.593499059e-19 0 1.054857702e-18 8.629709186e-19 0 0 0 0 0 0 3.556936577e-33 0 4.674903398e-19 3.614130381e-19 0 4.535470213e-19 1.112340254e-28 0 0 9.050246902e-19 0 0 7.106370899e-19 0 0 0 4.687864649e-33 0 4.388208066e-29 0 0 0 0 0 9.786860917e-19 0 0 6.318186188e-19 0 0 0 0 0 0 6.869110242e-16 4.15745543e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.129007927e-19 0 4.064117855e-19 6.062760184e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.458992654e-26 1.342151185e-25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 1.213592735e-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.15355523e-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 2.107871958e-17 3.491413224e-25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.515047946e-15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.735160167e-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.124563959e-14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.021173085e-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.758430277e-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.885004098e-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.449516867e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +# Errors [PSD/PSD.dat] I_err: +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.883361597e-11 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.13138197e-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.176303142e-18 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.111208884e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.512569703e-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.304089484e-11 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.068813319e-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.13889238e-14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.340218913e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.732642742e-24 0 1.433948998e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 2.461044926e-22 0 0 1.343194535e-18 0 1.121747477e-18 0 0 5.148744315e-19 4.610252444e-21 0 0 0 0 0 4.470662612e-19 0 0 0 0 0 0 1.722787491e-18 1.074015018e-19 4.835681448e-19 0 0 0 0 0 0 0 4.554417581e-19 3.478796283e-19 0 8.187606379e-19 0 0 0 0 0 0 0 0 0 3.555714916e-19 0 8.104780338e-19 0 0 0 5.386018288e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 1.25990799e-19 0 0 5.941281407e-19 0 0 7.946341814e-19 0 0 9.781469164e-19 0 0 0 0 0 0 0 0 0 9.802436043e-19 0 0 0 3.486975412e-19 0 0 0 0 3.799111561e-19 0 0 0 1.476254179e-24 2.621303867e-19 0 0 0 0 0 0 0 0 0 6.866524162e-11 0 0 0 0 0 4.33000772e-12 0 0 9.088757162e-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.675351311e-26 0 0 0 0 0 0 9.254864586e-18 0 0 0 1.257706491e-22 3.641269306e-18 1.393328074e-23 0 2.213685524e-18 0 0 4.067980837e-18 0 0 0 0 0 1.62241405e-18 0 4.790007151e-19 5.456807638e-19 1.023205441e-18 5.676098889e-19 0 3.834609551e-18 0 0 9.036645786e-19 0 5.396075115e-18 5.005305026e-19 1.440816483e-18 2.069354936e-18 0 9.631043691e-19 9.799640231e-19 2.002189523e-18 0 3.671594357e-18 1.670522712e-18 3.215065596e-19 4.707066091e-18 1.054194872e-22 4.941363018e-18 1.335506612e-18 0 0 0 1.533401513e-18 2.784066172e-18 2.795933431e-18 0 1.522478718e-34 0 0 6.131642129e-19 2.362057132e-18 2.688487103e-18 9.034013004e-19 5.422219555e-18 1.075882266e-34 1.757360745e-18 0 8.947752732e-19 0 3.902534062e-19 5.071115275e-18 4.273719033e-18 0 2.259041574e-19 1.554348251e-17 4.40603543e-18 0 8.760000355e-18 9.76210066e-18 4.802924516e-18 3.421699799e-18 4.982595876e-19 1.706012427e-18 7.397561191e-31 5.429361333e-19 2.009887769e-33 1.382574757e-18 5.113213296e-18 0 2.917097928e-18 0 0 0 0 0 0 1.336362181e-18 1.948537217e-18 7.423373011e-19 1.7850617e-18 1.398351856e-35 1.416345762e-18 2.635478376e-18 1.271812994e-18 2.172851301e-18 0 0 1.034692914e-20 0 1.040946656e-18 0 0 0 1.367063636e-18 5.135909176e-22 0 0 9.562537001e-19 2.291733282e-18 0 0 0 0 0 1.120282766e-18 0 7.120141225e-19 0 3.164405469e-18 0 0 0 5.173878507e-23 0 0 1.043594648e-23 0 0 0 0 1.510286312e-18 0 0 2.247638843e-18 0 0 0 1.008970517e-20 0 1.769195779e-20 3.033848292e-26 0 0 0 1.895800982e-26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.932381537e-25 0 0 6.336407602e-27 0 4.446441783e-22 0 1.155937215e-18 0 3.652495405e-25 9.335596068e-19 0 0 0 1.924196487e-18 3.630143839e-26 1.133528559e-20 2.925970566e-27 1.988210149e-18 1.188532696e-18 0 6.174557857e-18 5.83693688e-22 0 3.291807841e-18 1.197329691e-18 0 2.227395619e-17 4.034084608e-18 3.488070272e-18 3.138821924e-17 4.945540487e-19 1.13120098e-18 1.321689816e-17 4.812798449e-17 1.027674316e-18 2.310641008e-18 5.631009401e-18 9.678773675e-18 1.789901923e-17 3.863804425e-18 3.131308899e-18 1.270353875e-18 6.677564025e-18 2.522347465e-13 4.236072517e-18 7.574118677e-18 1.47975112e-17 9.786492594e-19 3.606266719e-20 1.767172204e-17 8.403634482e-19 2.685239407e-17 9.907931671e-18 1.509830635e-10 5.585995369e-17 3.556164482e-17 2.874603326e-18 5.710880138e-18 0 1.961983154e-17 1.836474572e-17 2.877488255e-18 5.789340226e-17 2.075314245e-18 6.507095701e-18 8.07000274e-19 1.24046056e-17 2.347950613e-17 1.903094553e-18 2.225546667e-18 4.604383502e-18 4.334042929e-17 7.775479704e-19 6.017982141e-18 8.886707327e-19 1.043065778e-33 9.560540608e-18 1.033093951e-18 1.538488743e-17 3.291155414e-18 3.673261961e-17 1.641956125e-17 1.544550693e-18 4.786928056e-18 2.528659306e-18 4.896094432e-17 7.921068397e-18 1.14750188e-16 1.53358916e-17 8.632005439e-19 3.985236529e-18 2.397782578e-17 5.651384964e-17 1.917147778e-17 1.195818386e-17 7.703628681e-19 3.013905259e-18 1.348262271e-17 4.230831629e-18 6.719453254e-18 2.893605072e-18 3.447024676e-18 4.46961172e-18 4.683119735e-18 1.605918406e-17 1.29006474e-17 8.769201457e-18 1.329471482e-17 2.323522533e-18 9.182492569e-18 6.604651066e-17 2.964121455e-17 0 8.647441513e-18 2.482000778e-18 5.860273547e-19 4.515386244e-18 0 0 9.236553988e-19 4.001925491e-22 5.624068367e-17 1.079878941e-17 1.042698643e-16 7.899012146e-21 8.460900553e-19 3.272722628e-18 3.498309841e-17 1.446293448e-18 0 3.122775726e-18 6.328565203e-17 7.653474364e-24 8.498529489e-19 3.318607757e-18 7.483438533e-19 6.938259447e-21 0 1.729028439e-27 1.331324709e-17 0 8.580237849e-18 7.402719012e-20 1.475971641e-20 5.419869723e-18 9.701698354e-24 0 3.106455003e-22 0 0 3.780087351e-20 3.427941887e-19 3.918498513e-19 0 0 5.574788499e-24 0 4.308052104e-24 0 0 0 1.150551558e-25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.618978547e-25 0 0 0 0 2.705283451e-24 0 2.93209447e-20 1.069397461e-18 3.122454229e-27 0 1.453145883e-19 4.948090053e-19 2.00489967e-26 9.016857389e-19 3.235393234e-19 1.957484878e-18 0 3.097935153e-20 6.713949387e-22 4.171607681e-19 2.183114014e-18 7.548350908e-18 1.047675344e-17 1.820159513e-17 4.197002783e-18 1.503682242e-17 6.137737745e-18 9.310556881e-18 4.319118263e-19 2.351850358e-18 1.45794005e-18 4.769791312e-17 4.604264344e-17 5.381539879e-18 2.763387847e-17 2.576584808e-16 4.045381808e-18 5.045071329e-17 1.281284589e-18 6.125446644e-19 1.437833838e-17 2.305178506e-18 1.673032691e-17 2.642481452e-16 1.278232541e-17 1.399141102e-17 7.173750651e-18 2.974586552e-16 1.660535246e-18 1.920560646e-17 3.361090747e-17 6.517240253e-17 6.260833788e-18 1.232508819e-17 1.600386087e-16 1.890906301e-16 1.235000979e-17 1.499579734e-17 2.345416345e-17 6.812254654e-18 1.706661384e-16 1.846423423e-17 2.384348197e-18 1.611452774e-17 7.869571731e-17 3.228995502e-16 5.977624069e-18 1.467968235e-17 3.819507358e-17 5.738609801e-16 1.129090447e-17 7.469378618e-17 1.176340863e-17 2.364731202e-17 3.809428408e-18 3.623432195e-17 8.712530073e-17 1.012218119e-16 5.121911327e-17 1.876334827e-17 4.803861631e-17 1.21696831e-16 6.488249599e-17 1.973651771e-16 1.383741433e-17 1.906002983e-17 8.419678252e-19 4.395239443e-17 1.137992594e-16 8.471424697e-17 2.244598459e-17 2.438088382e-17 2.232578376e-17 9.599382955e-17 3.893416653e-17 6.580621796e-18 2.757854855e-16 4.515247964e-18 2.100409772e-16 1.029818783e-17 3.475343004e-16 4.504911743e-17 1.809525172e-16 2.087152632e-17 1.323765555e-17 4.379806897e-16 1.351494329e-16 1.253621995e-16 1.792945344e-17 1.68840589e-17 2.007614393e-16 3.696258591e-17 1.075041406e-16 1.374269462e-16 1.728874795e-17 5.752575664e-17 1.545230866e-16 3.692735243e-16 5.164702299e-16 9.576956409e-18 2.327598975e-17 9.847196384e-17 9.142878931e-18 6.596950075e-18 1.423623407e-16 2.001307632e-17 8.862981689e-18 9.665385432e-17 4.299470074e-17 2.74463601e-17 2.037452575e-18 1.004173762e-17 6.101608391e-17 2.244571895e-16 0 2.323921634e-16 3.58250994e-17 1.228407788e-16 5.721707631e-17 2.124904082e-16 2.197438564e-17 6.882833905e-19 8.019036727e-19 7.301845712e-23 1.875230458e-23 4.90690842e-19 1.13502509e-16 1.869964545e-19 2.445762542e-16 2.244668623e-18 0 7.380075469e-20 5.340894583e-23 2.476386315e-18 0 3.765582972e-24 0 1.140935596e-21 3.054202701e-20 0 0 0 3.125260257e-27 6.176499882e-24 3.379199665e-27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.149531011e-27 0 1.435926142e-23 4.732426088e-25 0 8.52613378e-23 5.806270476e-22 7.559303246e-27 1.073877291e-21 6.105426775e-20 1.888044785e-18 7.106926755e-20 3.681729348e-19 7.811934775e-19 1.809465843e-18 1.029771123e-17 1.366625714e-23 6.274725768e-18 1.801512453e-18 7.890171907e-18 4.490018757e-22 1.024314631e-18 1.660972585e-22 4.303233705e-17 1.032778912e-15 1.36150002e-23 4.04593707e-15 3.525322455e-17 9.210003269e-18 2.847947739e-17 8.249432452e-17 9.332493658e-16 1.104293184e-18 8.97915797e-17 1.229076574e-15 1.93559857e-17 3.082728526e-16 3.503563139e-16 1.621637479e-16 1.839597921e-16 2.118744454e-16 8.697115749e-17 2.098300691e-16 6.624286801e-17 1.89209731e-17 5.023985577e-16 7.94747752e-16 1.956914498e-15 2.954657653e-16 2.381148711e-16 1.170008785e-16 3.479342621e-16 8.610143832e-17 4.741007495e-16 1.34769932e-17 1.530523845e-15 1.76871577e-16 6.451397825e-16 2.553158906e-17 3.487095714e-16 1.057500129e-15 5.470876909e-17 5.249897567e-17 9.52977954e-16 1.711577744e-15 6.204494796e-16 1.331833847e-15 5.080734831e-17 4.607933701e-17 3.595636206e-16 2.273732292e-16 2.584301943e-15 6.961431108e-16 2.040711456e-15 5.073944221e-15 8.781917912e-17 2.958634938e-16 1.689898432e-16 6.671449578e-17 5.802198925e-16 2.299756854e-16 6.11036699e-17 1.566957158e-15 1.824078915e-16 2.048987506e-15 2.168750675e-16 1.220426537e-16 7.637907797e-18 8.9404611e-17 1.151899316e-16 6.182435831e-16 2.427988184e-16 4.144803952e-16 2.807444532e-16 2.603803748e-16 4.041195328e-16 2.152817211e-16 3.027447283e-17 3.702668676e-15 8.450874751e-16 7.868084246e-16 7.260254573e-16 4.02021313e-16 1.211943187e-16 6.783272067e-16 1.021121513e-16 1.823427341e-16 1.891508559e-16 4.655467269e-16 1.050845606e-16 1.919017577e-16 5.289805747e-16 1.77886067e-15 1.907577731e-15 1.560050419e-15 1.717969835e-16 1.59265799e-16 6.86527627e-16 7.796480271e-17 2.006843981e-16 8.313930679e-17 5.449568789e-17 5.660573404e-16 8.71626987e-16 4.291544055e-16 1.095032363e-15 7.057032964e-16 1.730092601e-16 1.312555737e-16 4.593190254e-17 2.403005332e-17 3.405218896e-16 9.493799407e-16 1.704164995e-16 5.670660207e-17 7.993534754e-17 2.21474594e-15 5.12635396e-17 5.34277825e-19 8.011507592e-16 1.759073988e-17 2.706063813e-16 2.558753364e-17 8.338381376e-17 6.371814156e-18 2.156484855e-18 1.14504054e-17 5.862259839e-17 8.288613997e-18 1.02733281e-16 1.48589618e-18 1.428505221e-16 1.57590457e-16 1.409713185e-21 2.159986917e-15 2.724846668e-17 2.179531999e-18 2.55680838e-24 9.960538558e-19 3.063926861e-26 1.633689922e-19 8.27294002e-19 1.571584618e-18 4.970876495e-21 1.974330465e-27 1.111032839e-26 7.914502251e-25 8.050245653e-26 0 0 2.928780552e-25 0 0 7.022157843e-15 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 2.953196914e-11 0 0 0 0 0 0 0 0 2.866898892e-24 0 0 2.835237518e-24 1.474856661e-24 2.953480738e-21 2.308150206e-22 2.345221609e-23 0 1.038434369e-25 0 5.233937475e-18 3.758051981e-19 1.243596756e-16 6.525265491e-18 3.46100738e-19 5.551134848e-18 2.373835595e-22 2.166108343e-16 2.099400053e-15 9.092986883e-16 1.859835771e-17 3.373562543e-16 1.493711245e-15 1.343790371e-17 6.545869885e-17 6.823725571e-15 1.327610273e-17 1.473275473e-15 1.397829746e-15 1.226003591e-14 5.798615087e-16 2.62954931e-17 5.521253475e-15 2.940214756e-15 5.32331487e-17 6.900403103e-15 2.155751111e-16 2.795011023e-15 1.4296717e-24 2.175095527e-15 4.084726329e-17 1.277673027e-16 2.177967974e-15 2.700955742e-15 3.383043181e-15 7.503877661e-16 6.016529883e-16 3.463221759e-15 5.112949569e-16 3.823130909e-16 1.377084181e-15 2.217600734e-15 9.216771539e-15 5.120655112e-15 1.04858113e-14 3.738131909e-16 1.234074694e-15 4.53397329e-16 2.506245872e-15 2.922248057e-15 1.386304759e-15 9.388554108e-16 2.152134785e-15 2.381729351e-16 1.46944359e-17 1.276142396e-15 3.196058956e-16 6.96726917e-15 2.15520469e-15 4.758469093e-15 2.167352001e-15 3.045498742e-16 1.497299137e-15 4.670882484e-15 4.483626556e-15 9.009312718e-16 8.814604592e-16 7.932030022e-15 2.747472314e-16 3.909760948e-15 1.199057455e-14 2.793722331e-15 1.293870919e-14 8.889831525e-15 2.008108309e-14 1.127461816e-15 4.014113945e-15 3.699027272e-15 2.052913273e-15 3.866833218e-15 1.715902288e-15 4.768230582e-16 2.335937778e-14 6.862184315e-15 3.007975742e-15 8.621263372e-16 1.162323983e-15 1.820797146e-14 1.543561141e-15 4.575278763e-16 3.049128686e-16 3.954284837e-15 5.734951237e-15 4.669176691e-16 1.808462092e-16 4.990941641e-15 1.577201749e-14 5.038394475e-16 3.258451638e-15 9.382578919e-15 3.573650239e-15 1.52908273e-14 1.223164803e-14 9.474676212e-17 6.7526608e-16 2.039827934e-14 6.063639819e-15 1.860377157e-16 3.221148852e-15 3.605110196e-15 2.108930339e-14 4.524095213e-16 1.224291551e-16 5.406526481e-16 1.622715178e-15 7.878919695e-17 2.84837536e-15 5.718848235e-16 7.574019499e-16 2.609700204e-16 4.543197077e-15 2.491959318e-15 2.392568605e-15 5.296597689e-16 2.073457016e-15 4.633118296e-16 3.192742154e-16 4.051311091e-17 2.555131307e-17 8.838469556e-17 8.86194708e-15 1.538548543e-16 4.697724962e-18 6.367243242e-15 1.27835412e-15 3.503375043e-17 1.497370504e-15 4.386400877e-17 3.671503563e-17 2.695575184e-15 5.760453381e-16 1.390186937e-18 3.811200379e-16 1.910738195e-17 2.117791646e-18 3.067548569e-24 5.567350216e-22 4.617476377e-18 1.009586673e-20 5.14107124e-19 2.30891713e-20 2.139306473e-19 7.708219254e-19 9.009874504e-26 0 7.61790199e-25 2.268051779e-24 0 0 0 0 0 1.642097949e-12 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.137638324e-26 0 0 0 0 1.508863804e-18 1.429700526e-24 3.077730433e-18 3.144138597e-21 4.578665532e-16 1.713885257e-18 1.066473442e-21 1.071726363e-18 6.175169306e-15 5.832632274e-16 2.664416901e-20 5.974623249e-18 2.50183066e-18 1.392728635e-15 7.266847999e-21 2.859483695e-14 9.64502664e-11 2.697837551e-20 1.156645233e-14 5.058626714e-16 3.409813176e-14 1.396300834e-14 1.271265642e-14 1.104966107e-14 2.23267844e-14 3.060131351e-14 3.851046475e-14 7.914232956e-15 1.228219969e-16 1.583692046e-16 2.054168764e-15 5.860378816e-14 6.295147981e-15 2.857970218e-14 7.919109617e-15 1.559305361e-14 1.923707586e-14 8.107604948e-15 9.712683546e-15 2.094190049e-15 5.313712189e-14 2.314951193e-15 1.186835589e-14 5.034676989e-16 3.007546947e-15 2.440267186e-14 2.118938599e-14 1.627824515e-14 1.082759731e-14 3.960232334e-14 1.778616704e-14 4.866350355e-14 4.245322073e-14 7.575790245e-11 1.802952819e-14 2.676538787e-14 4.775566807e-15 7.571297933e-16 1.720769869e-13 3.031359765e-14 2.961962225e-14 2.233143685e-15 4.046540883e-15 2.08920872e-14 3.576721138e-14 2.825011891e-15 4.19610903e-15 5.943829849e-15 1.021236813e-14 5.668705833e-15 2.077372394e-14 9.596585816e-15 5.835315462e-14 9.877059065e-14 3.090694725e-15 3.688138827e-14 3.415259867e-14 2.49101696e-14 4.7689407e-15 3.129677836e-14 6.937038795e-14 6.140598365e-14 4.317695467e-14 1.053511638e-14 8.94445887e-16 1.043839754e-13 1.200689183e-15 1.362893866e-14 5.94272186e-15 1.033359812e-14 7.95636582e-14 3.821713913e-14 5.650656938e-15 3.032910964e-15 2.090944655e-15 4.458324731e-15 1.015070963e-14 2.549196059e-15 1.09689417e-13 1.380483539e-15 1.052630863e-14 5.603654413e-14 2.397074917e-15 8.248232802e-15 1.430902487e-14 5.387026623e-14 1.096074428e-13 9.007312584e-15 4.882894495e-14 7.107577751e-14 1.352939221e-14 9.769586223e-11 3.115261709e-15 9.754707577e-16 3.922537797e-13 1.917014845e-14 1.32868935e-15 2.328276875e-14 7.146301647e-14 1.222317149e-14 9.965617987e-15 1.862163648e-14 1.098581375e-14 6.882800039e-15 3.423055234e-14 3.095177538e-15 4.649095386e-15 5.013591378e-16 9.774672697e-15 3.26871746e-14 2.313875269e-15 6.080527227e-14 2.369110537e-14 3.629576203e-14 1.952169815e-14 4.542907121e-15 4.585339358e-15 5.754004739e-15 4.042153462e-15 7.046995297e-18 2.429681102e-17 1.682344219e-15 6.192409949e-15 1.020749275e-15 1.863461191e-15 2.515416513e-16 1.450168774e-13 2.870452331e-16 0 2.002268057e-17 7.671219132e-18 1.1053394e-19 3.720871061e-15 0 3.538604614e-18 3.947564343e-19 9.5899933e-17 4.810361711e-18 4.844415861e-24 0 0 3.691166512e-27 1.947910812e-21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 1.050143151e-10 0 0 0 0 0 0 0 0 0 0 0 2.787857845e-23 1.178445438e-26 0 4.20323023e-19 1.412001986e-21 2.897301178e-16 2.251161176e-22 5.455335779e-17 4.633476263e-18 1.497535726e-14 1.147590824e-15 8.012220063e-15 2.680949272e-17 9.886948682e-16 1.294798872e-16 1.658589596e-13 2.83856109e-13 9.272570781e-15 1.640411625e-14 7.877657524e-14 1.265615542e-13 2.597324297e-13 8.783960199e-15 2.753691543e-14 3.031012153e-15 3.971495904e-14 1.59169141e-13 1.146507561e-14 7.898891333e-14 1.40461833e-14 2.046454488e-15 3.705085793e-13 4.542285394e-14 4.541935193e-13 1.719202844e-14 8.168525485e-15 3.023975656e-13 4.187903336e-16 9.312561221e-14 3.687995698e-15 7.204934455e-13 5.070125204e-15 1.175170821e-13 5.842002862e-14 4.814576034e-14 1.303737567e-14 8.2238284e-14 2.998308179e-15 2.872459688e-14 6.978547559e-14 1.59937555e-13 6.790098962e-14 1.032192679e-14 2.348738774e-13 2.168766088e-13 2.44735133e-14 3.973716792e-14 5.945011303e-13 1.471373158e-14 1.763655635e-14 9.174551671e-14 2.336925868e-13 9.224974643e-15 9.686006436e-14 1.23669909e-12 6.505693262e-14 3.939326694e-13 7.392217088e-14 8.985613917e-14 6.50687244e-15 6.42808997e-13 1.168270735e-13 5.657186563e-14 2.108341102e-13 1.002898297e-13 8.512878598e-15 1.311493036e-14 2.666228188e-13 9.004700034e-14 3.914115774e-13 3.015850174e-14 4.578853584e-13 2.211080389e-14 6.198369822e-14 4.555308028e-14 6.617838241e-14 8.103902494e-14 1.764005056e-13 3.663912549e-13 2.271713065e-14 1.750650218e-13 3.510003499e-13 1.620321536e-12 2.143367153e-13 1.70920372e-14 2.766566567e-13 1.015846282e-13 3.269341541e-13 2.317951585e-13 1.053696752e-13 2.81652339e-14 5.399917992e-14 1.39219853e-13 5.514042598e-14 7.697100672e-14 4.961969464e-14 8.828907893e-14 1.196230515e-12 3.613636756e-13 2.10603595e-13 1.660264709e-12 1.207459804e-13 2.472425221e-14 4.018903387e-13 2.562141441e-14 2.331271741e-13 1.619798389e-14 2.653789022e-13 3.024210394e-13 7.004035337e-15 1.989746186e-15 1.846053647e-13 7.331221481e-14 1.18171081e-13 4.633965706e-13 1.257245115e-13 4.796609667e-14 2.013391009e-13 2.966840231e-14 5.9097021e-14 4.289311923e-13 1.737958118e-14 2.94808907e-13 2.070568665e-15 9.623551669e-15 1.234099167e-14 8.73600399e-15 2.133356425e-14 1.251259509e-15 4.697264333e-14 6.924070758e-14 4.424365861e-16 1.545495778e-13 9.799836309e-15 7.705017745e-13 8.282899314e-14 3.52283767e-15 1.816993989e-16 3.35465183e-16 1.771643556e-15 2.028527642e-17 4.624582621e-18 3.0752531e-16 2.00592508e-13 5.278390332e-20 2.015811858e-16 4.28863304e-18 1.190789717e-15 2.117916e-20 3.036646492e-18 3.444506404e-19 5.030125215e-19 8.09742831e-24 2.165386905e-20 1.304748388e-23 7.43658833e-24 2.850899248e-21 0 0 6.65680438e-22 0 0 0 6.665385663e-11 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.012486027e-21 1.091106345e-26 3.564813698e-19 7.561145476e-22 1.476831331e-16 2.363419866e-16 3.67704124e-22 2.732011806e-17 4.732275453e-19 1.714829757e-25 2.179754841e-17 1.14087211e-14 7.363299568e-15 1.00242774e-18 8.734608409e-14 8.932742643e-17 2.023453386e-15 2.53348418e-15 1.166415083e-14 3.159511925e-14 2.896910262e-13 1.464965629e-13 1.422098974e-17 2.586135203e-14 1.530107782e-15 9.241778429e-13 1.552494169e-13 2.393800932e-14 3.692431989e-12 1.55276888e-14 1.786590189e-13 3.255701452e-13 2.923361265e-13 4.514124067e-13 7.454203007e-14 9.125561604e-12 1.869195135e-13 4.166445915e-15 3.662284739e-12 1.646184289e-12 1.578261057e-13 7.914676462e-15 2.719498145e-13 8.278992932e-13 2.443977536e-13 3.912920643e-13 1.324415371e-12 1.151047584e-12 1.110599259e-12 2.126927481e-13 2.459475152e-12 2.008000892e-12 3.35604641e-13 1.474292556e-12 9.117848847e-14 1.501214314e-12 1.104674754e-12 1.550390338e-12 1.973580922e-12 2.057684247e-12 1.00395295e-12 8.635963494e-13 9.305686361e-13 8.395325615e-14 7.590074977e-13 2.153888534e-13 2.204437798e-12 8.58440284e-13 6.630037857e-13 5.878997395e-13 4.437561785e-13 3.458605209e-14 9.10089176e-12 1.501996224e-12 1.174555131e-12 1.251172294e-12 3.499586732e-13 2.682424681e-13 2.183290579e-12 1.46183133e-12 4.924747485e-13 2.167261085e-12 3.221897208e-13 6.100328787e-13 4.660385965e-12 4.644535751e-13 1.028155502e-12 6.029862127e-13 2.753923393e-13 4.178511017e-12 2.750170453e-12 2.410586829e-13 4.54280724e-12 4.398055819e-13 3.647801179e-13 9.454855487e-13 1.161460043e-12 2.183587098e-12 9.3830507e-13 3.810598237e-12 3.344702527e-13 2.468578504e-12 1.036931727e-12 3.700948671e-13 6.892938525e-13 2.543393242e-13 1.153701546e-12 1.406471201e-12 1.176421398e-14 4.143372255e-12 1.441265947e-12 1.032481887e-11 1.084977325e-12 1.274285927e-13 6.276926466e-13 2.521855401e-12 6.022088788e-13 6.745614894e-13 2.536054466e-12 1.12273177e-12 8.571053131e-14 8.228379611e-13 3.49737309e-13 1.947085023e-13 1.143656299e-12 1.958090738e-12 5.75991088e-12 9.21170088e-13 1.170221612e-12 5.018709137e-13 2.292867959e-13 4.607335226e-14 2.259617551e-12 5.113958158e-14 8.546897963e-13 2.412961269e-12 1.0728798e-13 4.024306668e-14 8.158630097e-13 4.910311576e-12 2.167951277e-15 1.075171718e-13 7.454178317e-13 4.433128114e-12 8.229862686e-14 3.369292039e-17 8.638454633e-13 5.479314517e-13 9.84433293e-15 3.337386774e-12 1.81125159e-13 5.059749796e-15 5.187239392e-14 2.046157885e-15 1.702295057e-16 1.421795824e-16 1.46462601e-21 1.179415899e-17 6.135679033e-16 8.702752954e-19 1.515060401e-21 1.354937402e-19 6.010341067e-25 0 3.062069644e-16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.32827645e-23 0 5.897454098e-24 0 1.39635897e-20 1.31775771e-18 1.538134668e-16 1.898037636e-13 7.973605481e-21 5.116267266e-15 6.967344041e-17 2.80264087e-14 1.627500601e-17 1.065810198e-13 6.830466225e-16 5.108272013e-16 4.880512515e-13 2.211703571e-14 3.932617699e-15 2.291746989e-13 4.695867681e-13 1.023477989e-12 8.538407131e-14 1.816990303e-11 8.442650335e-12 9.034543166e-12 1.06915502e-11 8.473283185e-13 4.903463684e-14 2.199254169e-11 6.564218796e-13 7.01157834e-14 6.802335945e-12 5.01316096e-12 4.985604881e-12 2.186524681e-14 1.039826047e-11 1.629232068e-12 4.643671843e-12 2.118833394e-11 3.022121922e-12 2.208097202e-11 3.985324769e-13 1.030406419e-11 2.465360881e-13 1.584577348e-12 3.774951061e-12 3.492948112e-12 2.354643121e-11 9.884709336e-12 1.374374981e-12 3.292322156e-12 2.307065565e-11 1.188526824e-11 2.897664629e-12 3.10562045e-13 1.059774759e-11 1.592778497e-11 8.899162816e-12 2.794260271e-12 3.19393e-12 1.534325414e-11 1.988839064e-12 8.691975785e-12 1.852745781e-12 1.867516399e-12 1.034600956e-11 2.872414886e-11 1.31312367e-11 6.946766761e-12 2.944331544e-12 7.12174304e-12 7.591491231e-12 1.99875946e-12 3.75515159e-11 4.554122317e-13 6.221613822e-12 8.952407549e-13 7.438454594e-12 5.541895357e-12 1.417069701e-11 6.854977162e-12 3.179928191e-12 4.053301544e-12 1.953542422e-11 1.88962001e-11 9.38963825e-12 1.129008675e-11 1.847503943e-12 4.984961255e-12 1.240721176e-12 4.912054449e-12 8.961507201e-12 2.125962614e-11 5.972768047e-12 1.599299465e-13 6.291330629e-12 2.051535072e-12 2.470234208e-11 6.545217453e-12 2.755173317e-11 4.179062634e-12 2.109020515e-13 1.609283578e-11 7.972189747e-12 1.718649627e-11 5.455474537e-13 1.397110113e-12 4.669850944e-13 1.916368527e-12 1.160188144e-11 1.253120819e-12 1.226461409e-11 3.781182439e-12 1.23373868e-12 1.671017336e-12 1.178826541e-11 1.71704722e-12 1.255761254e-11 2.641584382e-11 1.367091164e-12 2.476489225e-12 3.554709445e-12 1.173663178e-11 4.45463272e-12 3.092471596e-12 1.704402921e-11 1.485122264e-11 2.657893521e-12 2.660946523e-11 8.537885873e-12 7.619775007e-13 1.209152243e-12 2.602217868e-12 1.718251418e-11 2.252119515e-13 2.959480397e-12 1.463009058e-11 9.114853056e-12 2.803428489e-13 1.99983894e-12 3.34107903e-12 5.640795675e-14 3.003644048e-12 1.042188721e-13 2.08774768e-14 1.158796328e-13 7.490995561e-12 1.582666808e-14 3.241884786e-14 6.317936885e-12 5.226954542e-13 8.88917246e-15 9.380506135e-13 1.997566517e-15 6.776352756e-16 2.636324049e-13 3.398867307e-16 3.95188692e-19 9.371321462e-19 4.390691396e-17 1.388093652e-17 5.225602302e-16 1.995567705e-17 6.498457827e-21 1.957684666e-26 2.032000125e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.772035261e-22 0 1.391397208e-21 4.610290859e-20 6.468799685e-21 1.706692693e-18 1.021939977e-20 2.25209339e-16 8.513869358e-21 1.918789157e-11 9.392794263e-14 2.980692476e-12 8.457327446e-14 1.455524612e-13 1.465552766e-16 1.456317548e-13 3.028449738e-12 1.224849181e-15 7.778181544e-12 1.186798498e-12 2.192517515e-13 8.815129011e-13 8.559894893e-12 2.197006893e-11 1.116968513e-11 1.096551689e-10 2.852419812e-12 1.882167499e-13 4.324677141e-11 1.642652581e-11 6.587656451e-12 4.68677078e-12 7.461979626e-11 1.074570253e-10 3.248817552e-11 1.207390351e-10 2.365315482e-12 1.047681379e-10 4.442860891e-13 1.771943765e-12 1.4857276e-10 1.527112962e-11 5.734019783e-12 5.80971851e-11 4.203063507e-11 8.047222339e-13 3.44237835e-11 1.500956394e-11 1.199636831e-10 3.422531757e-11 7.566474027e-12 6.594119685e-11 7.311232382e-11 1.945187132e-11 2.966774449e-12 3.314094739e-11 8.722705287e-11 3.695335622e-11 8.092811069e-12 5.88946949e-11 1.935096889e-11 6.525638039e-11 6.535672048e-11 3.947539117e-11 1.605782029e-11 1.128330261e-10 1.500500931e-11 2.874322625e-11 5.435853733e-11 2.340803197e-11 3.433547087e-11 1.419612726e-11 7.33990123e-11 6.026978444e-11 6.271321825e-11 1.446399202e-10 1.236232728e-10 5.716355974e-12 2.009225756e-11 8.673964309e-11 3.211842094e-11 2.37387858e-11 8.55996969e-11 1.166458133e-10 7.433451425e-11 1.721128338e-11 2.743040104e-12 4.58170443e-11 6.466038757e-11 1.640021042e-11 4.051812192e-11 1.833356617e-11 5.176413341e-11 4.297206211e-11 6.910962489e-11 1.234141679e-11 4.258707941e-11 5.903131055e-11 1.698456399e-11 9.172663947e-12 6.754672018e-13 1.01973916e-10 3.369684835e-11 8.978613102e-11 2.048617137e-11 2.972538576e-12 8.581650733e-11 6.542417573e-11 4.456405199e-11 1.107826956e-11 9.170445862e-12 6.703536175e-11 1.001729528e-10 6.395314919e-11 6.209663051e-11 1.687506328e-10 3.455339649e-11 1.067913428e-11 1.526804232e-11 1.051635394e-10 5.043738437e-12 1.821906896e-11 8.369810613e-11 1.798321547e-11 1.968477683e-11 1.020661185e-11 5.791226419e-13 2.006211013e-12 2.166802019e-12 2.075353435e-11 9.582264971e-12 1.166387096e-11 6.760212152e-11 5.124334863e-11 4.910399757e-13 3.480008124e-12 3.490345958e-11 4.768661447e-11 1.541554979e-11 5.19674639e-12 8.720201345e-11 3.988841625e-11 8.955860305e-12 3.077780495e-12 2.935946073e-12 8.204764303e-13 1.154191003e-11 1.324565537e-11 5.21579395e-11 3.215437746e-11 4.458943646e-13 4.286821225e-12 3.746226707e-11 3.139043806e-17 1.628218552e-16 2.856704974e-19 4.913789104e-12 6.170454808e-12 8.671790584e-18 6.002187308e-18 2.561670729e-19 9.080378829e-21 1.265712926e-19 2.949191295e-19 4.595686214e-15 2.434644643e-18 1.581688628e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.551660816e-21 1.709847097e-24 1.749627705e-21 4.428909596e-24 2.628802957e-20 3.486495955e-16 5.073225697e-18 4.008704004e-22 6.144522171e-12 9.505050686e-14 2.430603773e-16 7.18067083e-12 9.466549242e-14 1.032346759e-15 8.800050148e-13 5.140667652e-11 3.575017538e-12 1.287447636e-13 4.223507006e-11 2.193908977e-10 1.035347726e-12 2.262864102e-11 2.202816809e-12 1.138996872e-11 3.347918716e-13 1.059106295e-10 1.024336832e-10 7.073824741e-12 2.15392513e-11 8.790093324e-11 1.983643713e-10 2.317136712e-10 1.441936691e-10 6.499837775e-11 1.359066117e-10 4.682924e-11 2.043892065e-10 1.290484652e-10 1.046919308e-10 3.668261866e-11 5.871423337e-11 1.853500846e-11 1.783790014e-10 3.085265164e-11 1.881910082e-10 1.862741675e-11 2.045883042e-10 1.532335363e-10 9.488446856e-11 2.64839334e-11 1.718070835e-10 1.699982617e-10 1.018887633e-10 7.358346579e-11 1.565353071e-10 1.740943294e-10 9.683452724e-11 2.394284345e-10 1.488199408e-10 1.891506758e-10 6.614212844e-11 1.187480502e-10 1.234673483e-10 4.562715528e-11 8.993231105e-11 1.05357026e-10 2.427837439e-10 1.713576056e-10 1.572245506e-10 3.421446339e-11 3.262265852e-10 2.650029049e-11 1.654779364e-10 2.056677169e-10 2.78434508e-10 9.425143318e-11 2.047950029e-10 8.219965727e-11 3.371752323e-11 1.504915736e-10 6.036648817e-11 1.46250711e-10 2.829215651e-10 1.34519522e-10 3.168022379e-10 2.29644413e-10 3.329112665e-10 1.210163301e-10 9.182576036e-11 4.082769265e-11 8.276644985e-11 2.436000854e-10 2.613578173e-10 1.791375908e-10 2.780778101e-10 2.606872814e-10 2.714994766e-10 1.851629125e-10 2.456623156e-10 1.652452042e-10 6.628098064e-11 8.893270103e-11 1.054529745e-10 1.732335705e-10 1.23463814e-10 1.46368722e-10 4.505581062e-11 2.822271654e-10 6.956708388e-11 2.539648005e-10 1.609051846e-10 2.335766348e-10 2.002702504e-10 1.580683028e-10 6.757489055e-11 9.836721162e-11 1.222095859e-10 1.413420811e-10 3.405973092e-10 2.65941214e-10 1.343372517e-10 1.336903962e-10 4.009796354e-11 1.367045375e-10 1.984382316e-10 2.059219406e-10 6.573786027e-11 2.598321538e-10 1.336674882e-10 4.773721953e-11 2.409272406e-10 1.340974789e-10 1.809718753e-10 9.827015235e-11 1.869808474e-10 2.613438105e-11 2.358592474e-10 8.252051742e-11 1.819550557e-10 1.794032095e-10 6.851662409e-12 1.212373602e-11 1.068940544e-12 9.038876064e-11 2.122714486e-10 1.751179687e-11 5.907163481e-14 9.140194374e-12 4.909034535e-12 2.424787293e-12 2.767043625e-11 1.277930686e-10 2.91211638e-13 1.007658766e-11 1.089831149e-12 1.631940888e-13 2.983571959e-12 8.430483793e-15 2.18282112e-14 4.651219216e-17 3.514373408e-18 2.385691646e-14 3.347412184e-13 2.720451936e-13 1.956951029e-21 5.744435177e-26 1.580151973e-24 1.544793806e-19 4.60246138e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.034211037e-24 1.006439909e-19 2.083540214e-18 8.855063931e-16 2.329148784e-20 5.985016769e-18 4.354397658e-15 1.31801143e-18 3.359800805e-17 6.312340332e-18 3.293437154e-11 1.288821963e-10 2.568771078e-13 1.748298674e-10 8.565242975e-15 1.749236912e-10 7.17654414e-14 3.492453809e-10 1.716389657e-10 4.555105205e-12 1.843014202e-10 1.624384875e-10 1.422855009e-10 4.407660318e-10 2.231104742e-11 3.070374917e-10 1.431116299e-10 4.349931646e-11 3.282154867e-10 4.006937111e-11 3.051522718e-10 3.558135994e-10 1.839839746e-10 4.512235046e-10 1.899567126e-10 4.047440212e-10 2.20179733e-10 2.969299493e-11 3.065230831e-10 1.546389874e-10 5.777829273e-11 3.502154402e-10 5.112106723e-10 3.151705853e-10 3.989346483e-10 1.516556244e-10 1.22553801e-10 2.969680875e-10 6.471258991e-10 4.052721276e-10 3.53695124e-10 4.556576256e-10 3.162021748e-10 2.996033329e-10 4.765455722e-10 4.562433271e-10 2.067795045e-10 3.14826411e-10 5.334987126e-10 3.425972299e-10 5.14853821e-10 1.547953402e-10 5.991062412e-10 7.896156813e-11 6.464086994e-10 3.091721147e-10 4.289201309e-10 4.141232577e-10 4.961295123e-10 5.49045512e-10 4.840620472e-10 4.047592154e-10 6.39876762e-10 4.55278856e-10 2.241754924e-10 5.570954467e-10 6.342032893e-10 3.682207214e-10 6.635821133e-10 3.803351441e-10 5.461564294e-10 2.21840242e-10 3.239119997e-10 4.835198703e-10 4.873425134e-10 3.962453186e-10 6.508240062e-10 4.387478032e-10 5.650887348e-10 4.82392863e-10 1.851031485e-10 3.931882646e-10 7.045084181e-10 2.823107046e-10 3.827943795e-10 4.619225309e-10 3.060733462e-10 2.547276514e-10 4.172387927e-10 8.210457766e-10 6.058127877e-10 7.478975077e-10 4.090499254e-11 2.286580686e-10 3.810125955e-10 4.743471227e-10 3.678500609e-10 4.392541465e-10 4.716019154e-10 6.179054912e-10 5.142997168e-10 3.892470259e-10 6.477194014e-10 3.437634111e-10 3.196430127e-10 5.812786425e-10 5.939188305e-10 3.768407567e-10 5.692122983e-10 5.775556107e-10 1.404514563e-10 2.843237894e-10 5.666256055e-10 1.436787825e-10 5.26520562e-10 2.935422667e-10 5.249819883e-10 1.753075924e-10 4.497058997e-10 1.687161355e-10 1.901251983e-10 2.459115384e-10 4.692068726e-10 4.600459292e-11 1.454743411e-10 4.079154716e-10 1.284500334e-11 3.18755351e-10 1.22758648e-11 4.880625565e-10 2.327494056e-10 2.253360775e-10 4.718258189e-12 3.148971242e-10 1.22766893e-12 3.113007558e-10 4.467639466e-10 2.865650109e-11 3.312975464e-10 6.210457804e-11 5.053827256e-11 1.511972421e-11 1.248262804e-10 5.101436857e-13 4.537784426e-12 3.368340275e-13 7.270434758e-13 1.066472471e-16 7.353112875e-14 1.091902741e-16 2.944745343e-19 2.732288191e-14 3.437605279e-19 4.304979038e-15 7.711809055e-27 2.430696736e-19 0 6.545455871e-26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.461729271e-18 2.584512781e-24 3.249584474e-23 5.758222442e-17 6.027963898e-19 7.356696923e-18 5.025440628e-19 5.884040056e-16 2.617800322e-12 3.96032924e-17 1.429389769e-17 6.067062934e-14 3.54273153e-11 1.151451775e-11 4.751310259e-11 6.115095511e-18 1.105800701e-10 4.36557903e-10 1.499153263e-10 9.224476252e-12 1.339926082e-10 3.463741492e-10 3.814220706e-10 5.831309036e-10 1.896110083e-10 3.193226228e-10 4.312144021e-10 4.380844427e-10 6.966702703e-11 5.882937218e-10 4.308172721e-10 5.204153224e-10 3.0772733e-10 9.91919927e-11 5.277433048e-10 2.560578024e-11 6.893863021e-10 6.687574665e-10 6.479679523e-10 8.141796586e-10 5.612513257e-10 5.840604934e-10 4.959136863e-10 4.885360778e-10 6.959358904e-10 8.585870437e-10 4.356180435e-10 7.470036189e-10 7.09948596e-10 5.659839967e-10 9.016089082e-10 4.953325838e-10 6.465326206e-10 6.197199392e-10 6.918380148e-10 8.340384193e-10 8.528324421e-10 5.489292201e-10 9.627694934e-10 8.262761864e-10 7.291496207e-10 7.393039484e-10 5.116905689e-10 6.222356495e-10 8.315248204e-10 8.777739866e-10 8.478418398e-10 7.58234382e-10 5.082733936e-10 7.735501494e-10 8.183593113e-10 7.844863232e-10 7.280091779e-10 8.19352109e-10 1.064052816e-09 6.184208285e-10 8.282733801e-10 9.553750708e-10 6.454166406e-10 6.653108009e-10 7.334063285e-10 6.239635144e-10 7.639331673e-10 6.893074825e-10 4.901337195e-10 7.613105801e-10 6.792751941e-10 6.693436254e-10 6.994289208e-10 5.32748491e-10 6.743686855e-10 6.529151937e-10 7.122156699e-10 8.310801368e-10 7.872034046e-10 6.986725527e-10 7.912922104e-10 5.569209072e-10 8.957274269e-10 8.353687711e-10 6.193951732e-10 7.192608915e-10 5.445503805e-10 5.147017179e-10 7.30313483e-10 9.111110904e-10 6.258383921e-10 6.198135147e-10 5.60362341e-10 9.255345235e-10 7.522658034e-10 7.673504336e-10 6.137067595e-10 8.081041494e-10 5.706988863e-10 3.019424518e-10 6.750587581e-10 8.316832932e-10 8.351272476e-10 8.19990912e-10 7.048142753e-10 8.175406904e-10 6.568854225e-10 6.120415137e-10 4.808786436e-10 9.735572422e-10 5.426271675e-10 8.046531299e-10 4.240687721e-10 3.70628764e-10 5.499457358e-10 3.190247922e-10 6.433576632e-10 3.563512865e-10 6.071786012e-10 3.871356282e-10 4.664494767e-10 4.584027843e-10 3.916826733e-10 1.587261786e-10 4.771846078e-10 4.866792666e-10 4.55237966e-10 3.676474862e-10 3.130087297e-10 4.559705273e-10 2.967802059e-10 3.172969134e-10 3.074140938e-10 4.35202811e-10 3.085577005e-10 3.077712503e-10 1.208284744e-11 1.379499378e-10 1.872365965e-10 8.869756789e-14 2.227899442e-10 3.118319046e-13 1.771434064e-13 1.449127393e-11 1.754534232e-12 7.535923063e-13 1.000359637e-16 2.433446287e-15 3.262048226e-14 2.889309696e-19 3.413483071e-19 2.98602077e-19 1.932311218e-17 1.338259868e-19 7.118524738e-18 1.525806499e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.219169326e-23 1.34425023e-22 1.279694218e-14 2.418680845e-15 1.687097155e-17 2.765467693e-13 2.478143511e-14 7.050318061e-14 1.401786687e-10 3.628771922e-11 8.214200579e-15 2.873378719e-12 3.368840711e-13 4.961033012e-11 3.146053732e-10 1.691599411e-10 7.585775086e-15 4.346294352e-10 4.386641512e-10 5.423360131e-10 5.435335573e-10 3.170852026e-10 3.619297974e-10 3.058167486e-10 5.991560563e-10 4.35907256e-10 4.058842032e-10 5.291674178e-10 4.324552813e-10 4.384853775e-10 6.11053882e-10 5.296475769e-10 6.281296812e-10 4.391240016e-10 5.864505006e-10 6.989012763e-10 8.098182935e-10 7.938731309e-10 7.154463271e-10 7.499793668e-10 1.099128036e-09 7.78491526e-10 9.782682315e-10 6.756700277e-10 1.050918064e-09 9.085627521e-10 8.231715724e-10 5.942890464e-10 9.472649778e-10 9.343461542e-10 9.286327028e-10 6.111552234e-10 9.682859295e-10 8.106813726e-10 8.413661007e-10 8.818663282e-10 7.289669786e-10 8.055521274e-10 9.177310154e-10 8.726471297e-10 8.847208516e-10 7.851347691e-10 8.018802062e-10 1.075281511e-09 8.380158333e-10 8.986139193e-10 8.937828889e-10 1.042636245e-09 1.019709572e-09 1.071328413e-09 1.083513834e-09 9.71803105e-10 1.001810098e-09 9.350017749e-10 8.085980242e-10 1.078423863e-09 8.880076302e-10 9.175014777e-10 5.238564535e-10 7.799124467e-10 9.578637355e-10 1.192755468e-09 1.192749536e-09 1.077512206e-09 9.20036307e-10 7.659919356e-10 1.050703303e-09 9.585351742e-10 9.295439471e-10 8.768750551e-10 8.413187854e-10 8.248894317e-10 9.461957688e-10 8.638925111e-10 6.663715985e-10 1.184585195e-09 9.185770556e-10 1.094068316e-09 7.160129159e-10 1.124890661e-09 6.367647693e-10 9.084111874e-10 1.023740622e-09 5.49807288e-10 8.976868985e-10 9.220852151e-10 8.526075669e-10 1.051947071e-09 7.880319845e-10 9.480808649e-10 1.012894269e-09 9.351950577e-10 7.304498275e-10 8.249506234e-10 7.997859039e-10 5.945545864e-10 1.08837582e-09 1.002793713e-09 9.241699887e-10 9.170163469e-10 1.026757974e-09 9.928034391e-10 1.01242461e-09 7.559935001e-10 8.659787947e-10 7.75836816e-10 6.581977262e-10 9.029592311e-10 9.198542137e-10 7.12034509e-10 3.916552281e-10 5.993806448e-10 6.524248569e-10 7.477338391e-10 5.605544798e-10 7.56721064e-10 8.097811872e-10 5.840315199e-10 6.717236861e-10 4.266345236e-10 6.939875059e-10 4.446034896e-10 4.822804104e-10 5.456710445e-10 4.946829217e-10 4.000427885e-10 5.8387669e-10 1.747073924e-10 4.322723991e-10 3.747332548e-11 4.346203479e-10 1.740208405e-10 1.305248031e-12 3.128764175e-10 4.336979837e-10 2.650341626e-11 2.384895255e-11 1.472824292e-10 1.701536708e-11 2.464723563e-11 2.399490723e-15 4.4852481e-15 2.090934679e-16 1.030360776e-16 9.060651065e-20 1.304206257e-17 1.115535514e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.750899232e-20 3.372566979e-17 6.320765111e-23 6.146432519e-15 4.810650396e-15 2.255866221e-14 1.304993784e-11 5.901368822e-15 1.354198165e-11 1.029065374e-11 2.298999798e-13 4.259652947e-12 7.435633368e-16 3.991266836e-10 3.922129364e-10 3.541529194e-10 5.321400194e-10 4.345284975e-10 5.277816272e-10 5.316310853e-10 7.261445874e-10 5.293373409e-10 6.591296947e-10 6.109323212e-10 7.849381465e-10 8.026088035e-10 8.80831367e-10 4.927758005e-10 7.379262836e-10 8.710633491e-10 7.348888818e-10 7.669542264e-10 7.29513846e-10 7.443097502e-10 7.199647066e-10 7.357686724e-10 8.389270291e-10 9.392886675e-10 7.887794057e-10 7.730418187e-10 8.584403359e-10 8.055850266e-10 1.062868225e-09 6.526655632e-10 1.071279313e-09 8.174718717e-10 9.814012713e-10 8.905709038e-10 9.438051656e-10 1.033359844e-09 7.208444591e-10 1.185315685e-09 1.1257214e-09 1.027136172e-09 7.847113268e-10 9.525204268e-10 1.450389646e-09 1.216477527e-09 1.051250101e-09 8.612535829e-10 9.081124463e-10 1.183506819e-09 9.517838215e-10 1.137714275e-09 1.329110473e-09 1.284729213e-09 9.392945559e-10 1.250991346e-09 1.098396777e-09 1.225293707e-09 1.230016406e-09 9.209159905e-10 8.550921832e-10 1.207384301e-09 9.507535635e-10 1.205526402e-09 8.521105969e-10 9.895410389e-10 1.174613239e-09 1.17972365e-09 1.354233651e-09 9.769580765e-10 1.046304481e-09 1.287327049e-09 9.30817059e-10 8.596018326e-10 1.26598737e-09 1.141261924e-09 1.085665748e-09 1.182379381e-09 1.213199009e-09 1.174001316e-09 9.150935676e-10 7.453024562e-10 1.24922007e-09 1.242553265e-09 1.103587152e-09 1.090288626e-09 1.065732156e-09 1.065705856e-09 1.040109284e-09 1.176443269e-09 1.158612121e-09 1.218277733e-09 9.934478907e-10 8.643616831e-10 1.217065852e-09 9.781009909e-10 1.036592515e-09 1.191728802e-09 1.180509012e-09 1.136189058e-09 1.082294127e-09 9.601134448e-10 1.312236774e-09 1.072135991e-09 1.130578322e-09 1.010491495e-09 8.910047468e-10 1.084902173e-09 9.772099794e-10 1.063430819e-09 1.067427356e-09 1.047870121e-09 9.295671181e-10 7.1780882e-10 7.905205637e-10 1.004619289e-09 8.631742024e-10 1.037808486e-09 8.838467661e-10 1.019787606e-09 3.752598391e-10 7.321057238e-10 5.501603676e-10 7.152586431e-10 7.620310444e-10 6.346531059e-10 6.577044827e-10 7.466345039e-10 5.466133456e-10 5.293121269e-10 7.712778226e-10 3.625454329e-10 3.061604015e-10 3.132776735e-10 4.379798778e-10 5.100193193e-10 3.362502536e-10 5.331236245e-10 6.169637358e-10 5.432602906e-10 2.802720703e-11 9.730984712e-12 5.26922299e-14 1.429058664e-11 1.747654026e-12 7.16621465e-12 8.985204804e-11 5.314850545e-18 6.771534731e-12 4.438460438e-14 3.568911769e-16 6.030155035e-14 5.569177874e-16 4.408466482e-17 7.428107508e-19 3.890394703e-19 1.66932662e-22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.27175689e-18 9.952534287e-19 1.999807624e-20 3.218159662e-23 2.003283406e-16 2.475609596e-14 1.127966667e-13 1.067492217e-14 1.301033797e-12 7.728468445e-18 8.645303695e-12 6.623476547e-11 7.542982451e-14 2.175114085e-12 3.42118276e-13 1.77185538e-10 4.322639727e-10 3.22076358e-10 4.365938671e-10 4.622059597e-11 1.401190921e-10 1.816941029e-10 5.343677962e-10 4.521948659e-10 7.479736058e-10 5.188869119e-10 8.673392349e-10 5.378418796e-10 1.031022359e-09 9.692487873e-10 7.206089802e-10 7.79378047e-10 8.610400102e-10 8.518183525e-10 7.902224201e-10 7.456322514e-10 9.996011177e-10 1.039887266e-09 9.337476021e-10 7.88527832e-10 8.041056974e-10 9.57165818e-10 9.240739673e-10 6.89951149e-10 1.02240873e-09 1.238763906e-09 9.239467863e-10 9.905104624e-10 1.177890934e-09 1.333542862e-09 1.216066823e-09 1.04482621e-09 1.173953916e-09 9.710227942e-10 1.049954706e-09 1.221163693e-09 9.820398028e-10 1.289559759e-09 1.4863012e-09 1.069144572e-09 1.257811799e-09 1.262763077e-09 1.350143503e-09 1.096108503e-09 1.278993179e-09 1.047314718e-09 1.250875476e-09 1.340110878e-09 1.137138409e-09 1.11533843e-09 1.363711012e-09 1.062086389e-09 1.252023291e-09 1.232746043e-09 1.317394931e-09 1.197465203e-09 1.290154114e-09 1.230057483e-09 1.179864371e-09 1.4712672e-09 1.182733516e-09 1.115018058e-09 1.245046648e-09 1.278430973e-09 1.337259399e-09 1.129963943e-09 1.152620138e-09 1.25737251e-09 1.262888673e-09 8.149467578e-10 1.636854693e-09 1.110598634e-09 1.232916899e-09 1.180350702e-09 1.194838317e-09 1.258091219e-09 1.131438611e-09 1.175014843e-09 1.148236793e-09 1.131654088e-09 9.877283329e-10 1.304414291e-09 1.261346854e-09 1.127651385e-09 1.140203553e-09 1.033623074e-09 1.415724748e-09 1.346646869e-09 1.165118231e-09 1.003706457e-09 9.642533468e-10 1.237325996e-09 1.302863549e-09 8.387657489e-10 1.495951807e-09 1.378006241e-09 1.133022684e-09 1.234729466e-09 1.334710063e-09 9.439669431e-10 9.224474693e-10 1.25927681e-09 1.042344394e-09 8.58662115e-10 9.042710098e-10 9.434965492e-10 9.1934286e-10 1.027708061e-09 1.036705841e-09 8.325209026e-10 9.478904498e-10 9.38626239e-10 7.455303179e-10 9.186771249e-10 1.135229633e-09 8.537814837e-10 1.037145815e-09 9.922715272e-10 9.898577412e-10 7.374867632e-10 8.668912855e-10 8.745159048e-10 7.737114551e-10 6.085979976e-10 7.137061647e-10 8.987011766e-10 7.918819914e-10 4.430021084e-10 4.389087497e-10 6.870305309e-10 4.965635123e-10 6.978864028e-10 4.434392135e-10 4.75948739e-10 1.595830809e-10 6.157308299e-11 3.132931203e-10 8.333957501e-13 1.208658207e-12 7.933846452e-12 2.039368741e-10 2.428182337e-12 2.254123041e-12 3.129294924e-15 3.460727801e-15 3.377406909e-14 1.231459289e-16 6.071587264e-15 7.467413168e-16 5.317280925e-19 5.585253364e-22 0 4.802508042e-20 0 0 9.724421158e-13 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.757188552e-18 2.35359422e-18 1.52353478e-17 3.308248111e-18 1.008391154e-15 1.52701119e-14 1.593365897e-12 2.526942768e-11 5.531158101e-14 1.631846238e-10 3.959137196e-11 7.235347848e-11 3.565518227e-13 1.400780227e-10 3.399879742e-10 5.5200488e-10 4.339194499e-10 4.889059366e-10 4.469650204e-10 5.907620729e-10 4.90730097e-10 5.602870064e-10 5.88981309e-10 6.115105591e-10 6.546123794e-10 8.00055712e-10 9.573036908e-10 6.745869343e-10 9.003224413e-10 7.347263365e-10 1.098070007e-09 9.299838938e-10 8.286100879e-10 1.111356322e-09 1.016760567e-09 1.04945247e-09 8.893332956e-10 1.175264616e-09 1.104166147e-09 9.897683276e-10 1.167353448e-09 1.097376393e-09 8.7245304e-10 1.157501098e-09 1.278070469e-09 9.508974693e-10 1.401566715e-09 1.049426584e-09 1.100226116e-09 1.29137183e-09 1.323870203e-09 1.161933777e-09 1.347582881e-09 1.346078234e-09 1.092331285e-09 1.398246593e-09 1.390170528e-09 1.264160764e-09 1.315174548e-09 1.395319221e-09 1.392723492e-09 1.313686562e-09 1.388991339e-09 1.575111628e-09 1.232280598e-09 1.403683617e-09 1.258060377e-09 1.403399373e-09 1.284097879e-09 1.255667873e-09 1.37449725e-09 1.244407088e-09 1.110556294e-09 1.289546601e-09 1.232741252e-09 1.254163944e-09 1.177492104e-09 1.30388444e-09 1.130817182e-09 1.406476549e-09 1.072887125e-09 1.470068544e-09 1.452459029e-09 1.365392199e-09 1.32697202e-09 1.080889508e-09 1.270793577e-09 1.225627452e-09 1.191686701e-09 1.226370919e-09 1.437826224e-09 1.562458314e-09 1.558764923e-09 1.310695242e-09 1.368947079e-09 1.33655762e-09 1.297135768e-09 1.348885492e-09 1.416163856e-09 1.699370435e-09 1.450963931e-09 1.082077013e-09 1.275005443e-09 1.35747149e-09 1.582391567e-09 1.188766967e-09 1.305823467e-09 1.678882991e-09 1.282335228e-09 1.202397332e-09 1.461008022e-09 1.238630059e-09 1.251023679e-09 1.284569152e-09 1.4335536e-09 1.23006178e-09 1.431293584e-09 1.039964749e-09 1.237089399e-09 1.188938125e-09 1.143537597e-09 1.203884134e-09 1.275810831e-09 1.164503524e-09 1.269878721e-09 1.280126217e-09 1.229979391e-09 1.268897825e-09 1.130307129e-09 1.150945386e-09 7.894636452e-10 1.037419785e-09 1.071453371e-09 9.697522589e-10 9.679704487e-10 1.040341757e-09 7.088797352e-10 8.017074348e-10 8.463882077e-10 9.429737389e-10 8.571255914e-10 9.11258744e-10 8.448916121e-10 6.764986433e-10 6.431288551e-10 6.947333076e-10 6.15765269e-10 4.501636163e-10 7.932380608e-10 4.327916175e-10 1.416736135e-10 4.222899614e-10 3.812054471e-10 8.257753472e-11 3.104906434e-10 5.363899116e-13 1.475080256e-10 2.115245972e-11 1.506431855e-10 1.062700786e-10 5.653952568e-12 7.164137788e-12 3.001077782e-12 1.030810715e-13 1.403670171e-18 3.098463067e-17 3.84450651e-18 4.107584425e-18 3.019208553e-19 7.323806116e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.437372797e-21 1.382917264e-18 6.272731099e-18 1.93088126e-18 5.210929557e-17 1.002689937e-15 1.416771837e-15 4.250899846e-16 3.327536833e-13 3.751819612e-12 1.625872657e-11 1.491505539e-10 5.666388906e-12 8.041630063e-11 2.361999735e-10 3.609943263e-10 4.522052296e-10 1.751680211e-10 7.440119752e-10 4.512625808e-10 5.559562047e-10 6.459654044e-10 4.586925005e-10 7.033362745e-10 7.952303679e-10 6.813935562e-10 9.492769765e-10 7.277047669e-10 4.602655779e-10 9.419857403e-10 1.143315587e-09 1.112223582e-09 1.186901276e-09 1.051743063e-09 7.890738638e-10 1.187395001e-09 9.545888008e-10 1.118317152e-09 1.269188304e-09 9.899436455e-10 1.143149911e-09 9.516181018e-10 1.374950286e-09 1.130718352e-09 1.198474998e-09 1.256667352e-09 1.45175779e-09 1.091419309e-09 1.231955933e-09 1.500056074e-09 1.280541573e-09 1.489992575e-09 1.546144976e-09 1.491462347e-09 1.354701749e-09 1.570533596e-09 1.213278498e-09 1.554904017e-09 1.431828385e-09 1.651199442e-09 1.405044236e-09 1.438431225e-09 1.411492039e-09 1.271144083e-09 1.739088603e-09 1.672821211e-09 1.589610349e-09 1.593812072e-09 1.288776703e-09 1.323109913e-09 1.407588833e-09 1.587167459e-09 1.546374505e-09 1.261135908e-09 1.402288877e-09 1.653307786e-09 1.725114989e-09 1.636592014e-09 1.792148141e-09 1.406797746e-09 1.406881449e-09 1.271490522e-09 1.378537781e-09 1.479751294e-09 1.368713535e-09 1.73618779e-09 1.423253309e-09 1.499760022e-09 1.278052659e-09 1.30764288e-09 1.528495907e-09 1.576481267e-09 1.241159623e-09 1.450856824e-09 1.545024093e-09 1.190828852e-09 1.344859475e-09 1.297430842e-09 1.429099783e-09 1.478005218e-09 1.395310406e-09 1.433474847e-09 1.723293205e-09 1.304939163e-09 1.688387965e-09 1.527901314e-09 1.519941266e-09 1.507924036e-09 1.343040737e-09 1.492441784e-09 1.644251277e-09 1.318833392e-09 1.244691532e-09 1.392786849e-09 1.447177363e-09 1.352787903e-09 1.243105789e-09 1.579215715e-09 1.439091734e-09 1.33988809e-09 1.474436075e-09 1.455337625e-09 1.300852497e-09 1.399215493e-09 1.287953403e-09 1.034509482e-09 1.296555394e-09 1.395422912e-09 1.278430407e-09 1.281370878e-09 1.185964358e-09 1.368184367e-09 9.386165613e-10 1.15001799e-09 1.224993113e-09 1.038347878e-09 9.887986963e-10 9.846339373e-10 8.008751545e-10 9.575991141e-10 8.114984173e-10 8.465742346e-10 7.590317844e-10 8.341768828e-10 9.329166922e-10 8.311405866e-10 8.478602254e-10 7.064299438e-10 6.46521887e-10 7.454303471e-10 4.340497566e-10 6.103692657e-10 7.165577685e-10 3.73293251e-10 5.290065986e-10 3.192738197e-10 4.364189589e-10 9.678734435e-11 8.853421094e-11 5.940901727e-12 1.129627906e-10 5.316377721e-12 3.65185455e-13 4.338691135e-12 2.069096766e-16 4.638126741e-14 1.780040229e-17 4.297106404e-15 1.416093935e-15 0 8.168031355e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.631798198e-19 7.099570849e-24 7.969968007e-20 4.536618159e-21 2.169391544e-15 5.796573888e-18 1.820380592e-12 5.2090217e-15 4.183325776e-12 3.844494049e-11 9.1148208e-15 1.6870321e-10 2.517778726e-15 1.748385534e-10 2.258908188e-10 3.113753227e-10 4.679499412e-10 3.935025903e-10 4.65678593e-10 6.935119981e-10 7.073616573e-10 7.716188984e-10 7.550933599e-10 7.23804868e-10 7.532142616e-10 7.854973416e-10 8.261816041e-10 8.750182843e-10 1.027902417e-09 8.743561847e-10 9.636377489e-10 1.027278529e-09 1.024234378e-09 9.381419109e-10 1.133925033e-09 9.558874259e-10 1.131995536e-09 9.557743187e-10 1.130629388e-09 1.31402731e-09 1.396791593e-09 1.182542382e-09 1.232294876e-09 1.363300472e-09 1.248303068e-09 1.153691754e-09 1.435538772e-09 1.379496902e-09 1.659458254e-09 1.531873073e-09 1.441388721e-09 1.69520147e-09 1.311470762e-09 1.466135462e-09 1.715982303e-09 1.747711622e-09 1.65697261e-09 1.388574702e-09 1.528471333e-09 1.711980303e-09 1.816698455e-09 1.47635406e-09 1.502593236e-09 1.577184352e-09 1.531633687e-09 1.38956338e-09 1.506786152e-09 1.732405196e-09 1.529339926e-09 1.616212384e-09 1.447730653e-09 1.65184049e-09 1.836531432e-09 1.47087973e-09 1.640110137e-09 1.79272522e-09 1.418692227e-09 1.425399605e-09 1.682927199e-09 1.338979259e-09 1.599022374e-09 1.664530552e-09 1.560094546e-09 1.431333141e-09 1.544803417e-09 1.461257459e-09 1.564433141e-09 1.525403616e-09 1.593099925e-09 1.584588321e-09 1.730633486e-09 1.649764626e-09 1.727470404e-09 1.458005187e-09 1.521272735e-09 1.692001998e-09 1.751832781e-09 1.51114112e-09 1.556619081e-09 1.597819784e-09 1.54463152e-09 1.497544089e-09 1.634078909e-09 1.413401318e-09 1.572306568e-09 1.415694187e-09 1.389842725e-09 1.631813315e-09 1.694452515e-09 1.569591008e-09 1.54148027e-09 1.54681244e-09 1.573940145e-09 1.507531512e-09 1.55500607e-09 1.660782806e-09 1.720904888e-09 1.641408933e-09 1.327469996e-09 1.481035406e-09 1.504897304e-09 1.588131462e-09 1.507540176e-09 1.302431473e-09 1.432724247e-09 1.123396216e-09 1.338432757e-09 1.08100665e-09 1.32475174e-09 1.382930555e-09 1.197826613e-09 1.161913026e-09 1.104146028e-09 1.227336368e-09 1.20540922e-09 1.055422657e-09 9.586951836e-10 1.194711972e-09 9.537718406e-10 5.419055877e-10 1.110591962e-09 9.12745738e-10 9.495381703e-10 9.831116017e-10 7.78530672e-10 8.502136886e-10 8.809663666e-10 8.696026763e-10 7.311380121e-10 7.587712876e-10 6.609814215e-10 7.775869398e-10 7.964775074e-10 4.169825684e-10 3.863267103e-10 3.099455194e-10 1.253621804e-10 2.817655999e-10 2.114894367e-10 1.032980899e-10 7.181145225e-13 1.000266241e-10 5.61180108e-12 1.408030492e-14 2.600755541e-16 1.065685089e-17 1.554507714e-15 2.286166193e-18 9.024505704e-18 7.410371059e-22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 6.58031316e-19 3.085770788e-26 5.811288108e-18 2.403673884e-20 2.825827476e-18 3.63275357e-15 3.089895141e-15 2.224221059e-15 1.971619541e-13 7.2483267e-14 3.504221356e-11 4.036170946e-11 9.041630014e-11 8.53068163e-11 6.415074375e-11 1.848864688e-11 4.412759248e-10 1.20755246e-10 4.936983959e-10 6.521256925e-10 3.12229588e-10 3.728829878e-10 3.852730187e-10 8.22492275e-10 8.909426636e-10 7.622801184e-10 9.223798272e-10 1.120771053e-09 9.83498609e-10 1.131882635e-09 9.502085486e-10 1.118548587e-09 1.113902117e-09 1.44563669e-09 1.052969662e-09 1.202780486e-09 1.035990695e-09 1.264104459e-09 1.210805149e-09 1.323217367e-09 1.456002862e-09 1.167929721e-09 1.394418115e-09 1.34045517e-09 1.508142344e-09 1.49082099e-09 1.572958597e-09 1.196767607e-09 1.596289908e-09 1.494061548e-09 1.414593045e-09 1.511791147e-09 1.542666169e-09 1.777340183e-09 1.629470385e-09 1.70905306e-09 1.555278377e-09 1.747559618e-09 1.734618232e-09 1.498750321e-09 1.641872484e-09 1.544601385e-09 1.400124706e-09 1.70912408e-09 1.850090571e-09 1.780231736e-09 1.821393667e-09 1.730980206e-09 1.668637418e-09 1.82209498e-09 1.511726754e-09 1.866334709e-09 1.594032812e-09 1.568099598e-09 1.513485128e-09 1.705437287e-09 1.61397787e-09 1.468087051e-09 1.655354433e-09 1.760351318e-09 1.929438888e-09 1.488972282e-09 1.647305506e-09 1.675782999e-09 1.775063709e-09 1.61924731e-09 1.943474387e-09 1.804771654e-09 1.642164594e-09 1.595987378e-09 1.788508683e-09 1.759826041e-09 1.722310006e-09 1.560046018e-09 1.484576316e-09 1.720631498e-09 1.613623852e-09 1.519842456e-09 1.64980867e-09 1.926255619e-09 1.770558839e-09 1.694504973e-09 1.672047879e-09 1.778184162e-09 1.65191225e-09 1.676793491e-09 1.538359004e-09 1.54747758e-09 1.686350407e-09 1.679352736e-09 1.619005735e-09 1.471491703e-09 1.451497198e-09 1.601519814e-09 1.421898243e-09 1.564553911e-09 1.731085003e-09 1.900759864e-09 1.317849146e-09 1.456069199e-09 1.521408003e-09 1.654020729e-09 1.661627252e-09 1.791262599e-09 1.511204514e-09 1.397251018e-09 1.309428015e-09 1.337163421e-09 1.45983732e-09 1.45763009e-09 1.200445362e-09 1.177250827e-09 1.504849512e-09 1.168529039e-09 1.329285071e-09 1.024354532e-09 1.474097939e-09 8.116913931e-10 1.196351838e-09 1.166940159e-09 8.212434641e-10 1.075428843e-09 1.018658311e-09 1.236638083e-09 8.558991514e-10 1.053461926e-09 1.080216791e-09 4.869129951e-10 9.56345621e-10 7.385683323e-10 6.799158431e-10 8.791159607e-10 6.405533244e-10 6.994751144e-10 4.876314852e-10 4.357740732e-10 3.103504216e-10 1.694230414e-11 3.345442036e-10 1.725718153e-11 2.282193576e-10 5.168755001e-11 3.055857461e-11 2.700833524e-13 3.016023111e-14 5.336168445e-14 1.14617373e-15 5.27537773e-16 1.371417016e-17 3.656955311e-18 3.211143452e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.650062463e-19 2.045320317e-17 2.936064368e-17 3.33425628e-17 1.564464074e-15 1.208976672e-14 5.989715214e-13 5.280907462e-12 2.817745337e-11 3.79481668e-12 1.037727142e-10 5.144366528e-11 1.32051684e-11 1.080570142e-10 5.419796878e-10 3.99600162e-10 5.369767181e-10 7.927864771e-10 4.25146348e-10 5.865310012e-10 6.862709628e-10 6.21463483e-10 7.679580476e-10 8.533222656e-10 9.047057423e-10 1.039702956e-09 9.475533533e-10 1.169339466e-09 1.250686493e-09 1.097976979e-09 1.143100843e-09 1.233120908e-09 1.088361385e-09 1.002917794e-09 1.416419686e-09 1.12309901e-09 1.479972111e-09 1.564844426e-09 1.360326189e-09 1.533802477e-09 1.454487079e-09 1.634737327e-09 1.555868275e-09 1.345125052e-09 1.553917194e-09 1.187538209e-09 1.498158085e-09 1.79309443e-09 1.417434353e-09 1.537620887e-09 1.831169078e-09 1.42047604e-09 1.8967198e-09 1.654307656e-09 1.854736703e-09 1.707093857e-09 1.692380282e-09 1.863499221e-09 1.658699156e-09 1.902192642e-09 1.783213761e-09 1.750897455e-09 1.756296542e-09 1.822965416e-09 1.506842354e-09 1.920955286e-09 1.822483833e-09 1.797192468e-09 1.58961495e-09 2.060029801e-09 1.692915051e-09 1.680112073e-09 1.772138922e-09 1.811458851e-09 1.678083968e-09 1.874106415e-09 1.790456318e-09 1.91825035e-09 1.915523722e-09 1.990732085e-09 1.768523766e-09 1.712691789e-09 1.908859866e-09 1.478404059e-09 1.812690058e-09 1.759570991e-09 1.769413483e-09 1.871318892e-09 1.527217782e-09 1.324438071e-09 1.792440322e-09 1.843061756e-09 1.796152093e-09 1.875447991e-09 1.62137352e-09 1.77551267e-09 1.876109885e-09 1.940346484e-09 1.596250545e-09 1.943195413e-09 1.886419825e-09 1.830082236e-09 1.853309548e-09 1.940106958e-09 1.70090596e-09 1.803126269e-09 1.541736725e-09 1.985267565e-09 1.847308865e-09 1.846389711e-09 1.808443358e-09 1.910259138e-09 1.684588404e-09 1.534416287e-09 1.27820315e-09 1.632516811e-09 1.591799385e-09 1.755479133e-09 1.614205421e-09 1.690490664e-09 1.735646433e-09 1.638022591e-09 1.488426819e-09 1.665927239e-09 1.429684989e-09 1.470213367e-09 1.444073432e-09 1.213187026e-09 1.317084529e-09 1.629726062e-09 1.292514477e-09 1.512425019e-09 1.578349102e-09 1.381157461e-09 1.334070136e-09 9.761051315e-10 1.187812054e-09 9.734992458e-10 1.128130802e-09 1.256913381e-09 1.255429153e-09 1.443542531e-09 1.270017043e-09 1.025071708e-09 9.966111802e-10 1.112424688e-09 9.838650822e-10 9.216878977e-10 6.640649902e-10 6.164655166e-10 5.93852352e-10 5.266176273e-10 5.289993663e-10 6.503820006e-10 5.611383505e-10 3.112898529e-10 9.147125699e-11 2.979335311e-11 5.366917013e-13 7.238445799e-11 6.860860853e-13 4.958675108e-13 3.916379384e-13 1.325835952e-14 4.260414735e-13 1.280658668e-14 1.677682469e-17 3.601051409e-16 1.419784762e-18 3.522593047e-22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.817551757e-24 8.923183409e-21 3.899179751e-16 3.224922793e-17 5.596199947e-14 7.785311419e-15 4.903888241e-13 2.300419942e-15 3.987679553e-11 2.656188725e-11 5.193986887e-12 2.048651376e-10 1.565672301e-10 2.290603152e-10 4.883224755e-10 5.317107285e-10 4.461503085e-10 6.25321817e-10 8.484894745e-10 8.907758319e-10 7.351682416e-10 1.011541868e-09 9.324328948e-10 9.233696421e-10 7.828796069e-10 1.049239482e-09 1.154779822e-09 8.578207736e-10 1.130145002e-09 1.420221691e-09 7.182501717e-10 1.224229498e-09 1.100613448e-09 1.332164974e-09 1.252850653e-09 1.293981551e-09 1.297312138e-09 1.35660048e-09 1.632483492e-09 1.434979193e-09 1.470896449e-09 1.628523292e-09 1.423047697e-09 1.732957875e-09 1.639863083e-09 1.708849372e-09 1.597739374e-09 1.807355858e-09 1.760825282e-09 1.677970664e-09 1.923575827e-09 1.499702942e-09 1.865206517e-09 1.703612715e-09 1.690655529e-09 2.058019389e-09 1.816865948e-09 1.903370922e-09 1.710886955e-09 1.897576515e-09 1.815048756e-09 1.761290394e-09 1.629739033e-09 1.758443139e-09 1.899141949e-09 1.964068572e-09 1.768954764e-09 1.949901127e-09 1.678206245e-09 1.733524298e-09 2.070889655e-09 1.953445024e-09 1.820347656e-09 1.848150307e-09 1.839720584e-09 1.917928368e-09 1.929683256e-09 2.046466281e-09 1.662087076e-09 2.013164487e-09 1.910373621e-09 1.891133567e-09 2.10774383e-09 1.736446966e-09 1.667077242e-09 1.914221552e-09 1.907353662e-09 2.088222113e-09 1.88863832e-09 2.043032586e-09 1.95514803e-09 2.049296827e-09 1.523893489e-09 1.547150483e-09 2.073332128e-09 1.947844421e-09 1.846570783e-09 1.883472571e-09 1.722464242e-09 1.807723649e-09 1.954188019e-09 1.784038054e-09 1.886649881e-09 1.664129708e-09 1.786777169e-09 1.679480954e-09 1.870716381e-09 1.808782137e-09 1.651630516e-09 1.945080785e-09 1.75598048e-09 1.75874884e-09 1.581807635e-09 1.917933021e-09 1.578866016e-09 1.854207921e-09 1.825200683e-09 1.76826747e-09 1.810323175e-09 1.744264176e-09 1.482751788e-09 1.742547629e-09 1.562697576e-09 1.57638538e-09 1.91524638e-09 1.681247087e-09 1.666034412e-09 1.526885239e-09 1.576830232e-09 1.676357242e-09 1.460642808e-09 1.522203633e-09 1.49160473e-09 1.192202471e-09 1.585552012e-09 1.500930274e-09 1.033811668e-09 1.338847812e-09 1.185093332e-09 1.085208529e-09 1.096392252e-09 9.286824526e-10 8.577007526e-10 1.143632711e-09 1.013086016e-09 9.778648237e-10 7.506486422e-10 1.005080539e-09 7.211474932e-10 4.759341392e-10 8.838405896e-10 5.402564797e-10 5.328850264e-10 6.878035672e-10 3.915371282e-10 4.098280694e-10 2.171322652e-10 5.564480718e-11 9.559134831e-13 7.509824143e-11 6.283089031e-12 1.612661566e-12 1.639471526e-12 4.06188653e-12 1.996363119e-15 8.134802491e-15 3.518427692e-17 7.772698429e-18 3.89838956e-18 1.670741128e-21 2.521972392e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.097402873e-18 6.698699997e-19 7.223496121e-18 4.392387826e-17 1.090108385e-17 4.429861715e-16 4.83979895e-14 8.330133542e-12 5.401844841e-12 2.122929859e-10 1.02528858e-10 5.053212359e-13 1.960928858e-10 4.495242417e-10 4.122077512e-11 4.662130153e-10 7.808865825e-10 5.468879421e-10 8.063420038e-10 8.421869739e-10 8.699368323e-10 1.039119828e-09 7.692241755e-10 6.080119329e-10 1.150265488e-09 9.188627794e-10 8.469363703e-10 1.167449538e-09 1.219059857e-09 1.382715043e-09 1.230768505e-09 1.16828594e-09 1.237516509e-09 1.362038934e-09 1.398165275e-09 1.497747549e-09 1.543098878e-09 1.290109921e-09 1.485261317e-09 1.582251006e-09 1.59101324e-09 1.8134051e-09 1.650904649e-09 1.287865124e-09 1.554806142e-09 1.635153796e-09 1.684271693e-09 1.75828744e-09 1.851644672e-09 1.673087523e-09 1.709290731e-09 1.931012692e-09 2.30517217e-09 1.962165515e-09 1.92683465e-09 1.968046078e-09 1.921939162e-09 1.956098836e-09 1.973625107e-09 1.832746691e-09 1.851669541e-09 2.184147203e-09 1.737896328e-09 1.956257559e-09 1.9325457e-09 2.177290225e-09 1.83645613e-09 1.899972775e-09 1.956715285e-09 1.863003625e-09 2.023389091e-09 2.00924694e-09 2.050460536e-09 1.938000523e-09 1.996689395e-09 1.78546931e-09 1.855708096e-09 2.371175262e-09 1.980180484e-09 1.83050351e-09 2.014940689e-09 2.296927439e-09 2.33867822e-09 2.139341965e-09 1.918512381e-09 2.026786529e-09 1.728804538e-09 1.994283478e-09 1.950722886e-09 1.786402478e-09 2.133130318e-09 1.586395168e-09 2.114142796e-09 1.990929398e-09 1.923176406e-09 2.03948986e-09 2.019058127e-09 2.176355035e-09 1.884412947e-09 1.646452981e-09 1.873353453e-09 1.847088191e-09 2.120708251e-09 1.863666958e-09 1.940475719e-09 1.966313334e-09 1.882661994e-09 1.849845231e-09 1.677093384e-09 2.073326724e-09 1.936913873e-09 1.859183396e-09 1.859405191e-09 1.574129951e-09 1.883939832e-09 1.730343738e-09 1.731789094e-09 2.245420825e-09 1.812001817e-09 1.730179128e-09 1.655699766e-09 1.740470489e-09 1.550762677e-09 1.597485854e-09 1.819760594e-09 1.544172849e-09 1.613885286e-09 1.444081813e-09 1.640278879e-09 1.666213908e-09 1.66071505e-09 1.565328536e-09 1.662561207e-09 1.619124879e-09 1.311403665e-09 1.319793315e-09 1.491887498e-09 1.32703145e-09 1.248473104e-09 1.115817684e-09 1.23956627e-09 1.109783394e-09 1.082051883e-09 1.243617568e-09 1.047324584e-09 9.96979394e-10 8.471667316e-10 8.405697618e-10 1.033896285e-09 6.449070895e-10 7.411932754e-10 8.273561393e-10 6.145933475e-10 3.985843377e-10 5.790812204e-10 9.092658862e-11 2.288270817e-10 1.556529624e-10 2.004413871e-10 1.51265364e-10 7.873771368e-11 6.069602924e-11 2.797091468e-13 1.213718913e-12 2.54336104e-13 2.843273291e-14 5.076114655e-15 6.979321311e-17 8.759061628e-19 0 8.630711256e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 3.630999724e-11 0 0 0 0 0 0 0 0 0 0 1.401585135e-18 2.396127986e-17 1.116383156e-17 2.903441784e-16 5.624755398e-16 5.924265098e-15 8.112618518e-13 5.42385593e-14 4.246765988e-11 2.05789022e-10 1.29536213e-10 1.814669983e-10 2.391854407e-10 4.707117063e-10 3.696425591e-10 3.129033732e-10 7.474352341e-10 9.149082762e-10 7.214370205e-10 7.754658738e-10 7.88429676e-10 8.504128743e-10 1.005039209e-09 7.911535921e-10 9.401131563e-10 1.183880424e-09 1.079853782e-09 1.055322967e-09 1.172196848e-09 1.462075061e-09 1.329632791e-09 1.41942326e-09 1.623047966e-09 1.424936445e-09 1.219871383e-09 1.502194217e-09 1.600081897e-09 1.44072307e-09 1.596085502e-09 1.697417019e-09 1.885186569e-09 1.749655801e-09 1.803313369e-09 1.881180796e-09 1.507156953e-09 1.600101459e-09 1.84695944e-09 1.933593258e-09 1.909417814e-09 1.9551011e-09 1.79273456e-09 1.987216681e-09 1.812553375e-09 1.87862021e-09 1.798742404e-09 2.003147904e-09 2.064644193e-09 1.832930286e-09 2.17801265e-09 1.998724118e-09 1.852033113e-09 1.9996935e-09 1.742745074e-09 2.179470663e-09 1.925961392e-09 1.889604385e-09 1.967900535e-09 2.061151455e-09 1.954576877e-09 1.974018844e-09 2.05982515e-09 1.744987742e-09 2.008814174e-09 2.022123304e-09 2.577997968e-09 2.021233199e-09 2.392363648e-09 1.977429971e-09 2.29109585e-09 1.952403899e-09 2.288096009e-09 2.072963945e-09 2.284754346e-09 2.096952048e-09 2.073622872e-09 1.802961429e-09 2.002799493e-09 1.858954895e-09 1.975773257e-09 1.848248361e-09 1.9022652e-09 1.961060908e-09 2.154127891e-09 1.918562398e-09 1.81401019e-09 2.049793321e-09 2.188456858e-09 2.062881074e-09 2.097089895e-09 2.17976266e-09 2.16147487e-09 2.083212571e-09 2.095053256e-09 1.893644884e-09 2.245346316e-09 2.081254141e-09 2.485786822e-09 1.963200293e-09 1.959685031e-09 1.880791917e-09 1.908975421e-09 2.029140442e-09 2.010490129e-09 1.946635709e-09 2.08196772e-09 1.977960727e-09 1.685363569e-09 1.974938291e-09 1.973518401e-09 1.716546505e-09 1.623103649e-09 1.958586608e-09 1.79975281e-09 1.310175265e-09 1.940485238e-09 1.80767683e-09 1.643222373e-09 1.75104283e-09 1.441675712e-09 1.891242786e-09 1.456988546e-09 1.602400259e-09 1.679071089e-09 1.321721238e-09 1.559932725e-09 1.436533307e-09 1.465325578e-09 1.360313205e-09 1.237709208e-09 1.282637732e-09 1.012253547e-09 1.075822664e-09 8.380860467e-10 1.171154208e-09 1.100301222e-09 9.003598432e-10 8.98639277e-10 8.731091181e-10 9.24198018e-10 1.009035792e-09 7.289199655e-10 7.278433266e-10 6.106629732e-10 3.665492351e-10 2.799750749e-10 3.820313495e-10 1.067128381e-10 1.711906618e-11 5.17143312e-11 7.762690199e-12 3.618058355e-12 6.842761731e-13 8.468449212e-13 8.401619857e-13 7.083291996e-15 3.187866069e-15 1.843574607e-16 1.634491816e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.504075964e-18 5.645047823e-27 3.674364133e-17 3.60911927e-16 8.858220138e-16 7.880147543e-14 1.762241219e-13 9.381107491e-14 5.000501567e-13 1.035997585e-11 2.22707601e-10 4.722443442e-11 1.859518013e-11 1.933216585e-10 3.139280492e-10 5.952114935e-10 5.530801948e-10 7.903447321e-10 7.605270904e-10 8.515056925e-10 6.950325228e-10 8.212095775e-10 9.055080983e-10 7.97240895e-10 8.364497818e-10 9.505726649e-10 1.220752099e-09 1.01461085e-09 1.030271077e-09 1.234803297e-09 1.493939759e-09 1.269519316e-09 1.776123887e-09 1.49597181e-09 1.544491505e-09 1.404303749e-09 1.20342477e-09 1.452583534e-09 1.776457727e-09 1.766000526e-09 1.714603502e-09 1.85295559e-09 1.503989625e-09 1.834701974e-09 1.619022091e-09 1.991276491e-09 1.949823521e-09 1.968015434e-09 1.752103905e-09 1.9274512e-09 1.919680438e-09 2.166852716e-09 2.218845287e-09 2.036709165e-09 1.974004547e-09 2.129938487e-09 1.886619023e-09 2.218720528e-09 2.19861385e-09 2.019661482e-09 2.17228476e-09 2.317128223e-09 2.100517748e-09 1.980789039e-09 2.421743469e-09 1.920730085e-09 2.144906723e-09 2.415698873e-09 2.008170396e-09 2.071944343e-09 1.996040509e-09 1.920945916e-09 2.259097421e-09 2.090317891e-09 1.927066707e-09 2.379193371e-09 1.953291523e-09 2.259470787e-09 2.006542383e-09 2.182047889e-09 2.218611895e-09 2.763279586e-09 2.322844402e-09 2.251820645e-09 2.359211999e-09 1.968740101e-09 2.136421043e-09 2.230932435e-09 1.959677823e-09 2.426198149e-09 2.194823696e-09 1.884996748e-09 2.269545305e-09 1.969157711e-09 2.114536813e-09 2.814695576e-09 2.061961825e-09 2.176853773e-09 2.08353758e-09 2.041195782e-09 2.182391888e-09 2.159055956e-09 2.295258827e-09 2.100372473e-09 1.993001331e-09 2.083922251e-09 2.277743937e-09 1.943097894e-09 2.051964331e-09 2.079146138e-09 2.123211726e-09 2.487563598e-09 2.236192384e-09 2.101557969e-09 1.795234011e-09 1.975603314e-09 1.936462201e-09 1.825095663e-09 1.931538164e-09 2.278036014e-09 1.811022594e-09 1.864770764e-09 2.177714519e-09 1.966244586e-09 1.956618996e-09 1.689970602e-09 1.610985917e-09 1.814057378e-09 1.804005057e-09 1.746381501e-09 1.641705868e-09 1.583510908e-09 1.498443214e-09 1.325796283e-09 1.364972906e-09 1.590677914e-09 1.461134758e-09 1.241272603e-09 1.341223733e-09 1.452798113e-09 1.697547011e-09 1.400315096e-09 1.232242279e-09 1.261405785e-09 9.647319735e-10 1.238174321e-09 1.241457979e-09 9.256314565e-10 9.324750067e-10 9.989049635e-10 8.499410846e-10 6.904920052e-10 9.495522528e-10 4.953908225e-10 5.195509092e-10 2.879778008e-10 1.338751092e-10 3.813312743e-10 1.270367251e-10 1.594469941e-11 2.223435036e-12 5.255729953e-11 1.802386348e-13 1.283520053e-14 6.818782499e-14 1.239450959e-14 5.422583283e-18 3.154944204e-20 9.966769401e-21 3.342055427e-18 0 1.820306286e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.712132271e-19 3.095431961e-18 3.44440442e-17 2.310294488e-17 2.120233844e-16 1.974970874e-14 1.575434119e-14 1.362033916e-13 3.134485404e-12 2.958353492e-12 1.546076e-10 2.459031068e-11 1.906333966e-10 1.130792257e-11 3.280665581e-10 7.948904949e-10 6.470951731e-10 6.409757381e-10 5.0099804e-10 9.0785295e-10 8.714128038e-10 8.138978313e-10 7.440107982e-10 1.09016252e-09 9.394492088e-10 1.04682482e-09 1.339905545e-09 1.119545993e-09 1.178070134e-09 1.611095854e-09 1.454556944e-09 1.385199303e-09 1.577096733e-09 1.368973254e-09 1.242519057e-09 1.690153003e-09 1.450644268e-09 1.564348351e-09 1.721967988e-09 1.584220018e-09 1.830622991e-09 1.483234734e-09 1.536894843e-09 1.778197621e-09 1.971106216e-09 1.830080396e-09 2.125592384e-09 1.793312107e-09 2.054022125e-09 2.408096858e-09 2.255852654e-09 2.057274749e-09 1.908678803e-09 1.852049589e-09 2.570292026e-09 1.850977775e-09 2.257378007e-09 2.641200764e-09 1.9814933e-09 2.815819372e-09 2.112091979e-09 1.751984979e-09 2.486522476e-09 2.618936304e-09 2.315913164e-09 3.021855288e-09 1.821493962e-09 2.736770115e-09 2.547375448e-09 1.845384039e-09 2.222695045e-09 2.026418764e-09 2.289268629e-09 2.134940748e-09 1.972199384e-09 2.008111184e-09 2.04422607e-09 2.10926772e-09 2.902592691e-09 1.591677713e-09 2.133622634e-09 2.016427086e-09 2.503475936e-09 2.159041118e-09 1.981315006e-09 1.943067081e-09 2.336749667e-09 1.887833156e-09 1.954150563e-09 3.631204453e-09 2.145293129e-09 2.961613451e-09 2.35168112e-09 2.212383221e-09 2.290309458e-09 2.137930171e-09 2.196096605e-09 2.287979899e-09 1.940489177e-09 2.305556586e-09 1.633991999e-09 1.682589313e-09 2.084147183e-09 2.302927847e-09 2.502015291e-09 2.660598935e-09 2.005209924e-09 1.782702952e-09 2.598416181e-09 1.981675539e-09 2.00860233e-09 2.211306012e-09 2.230581438e-09 2.653152679e-09 1.988539128e-09 2.263760713e-09 1.912238965e-09 2.337781202e-09 1.920614748e-09 1.903556579e-09 1.931061069e-09 2.101749186e-09 2.117531693e-09 2.289649529e-09 2.033361935e-09 1.831351639e-09 1.858851057e-09 1.916784687e-09 1.777547532e-09 1.901479815e-09 2.00454824e-09 1.813138073e-09 1.465639371e-09 1.526122334e-09 1.517157371e-09 1.863810867e-09 1.692852404e-09 1.408807728e-09 1.505381682e-09 1.662299888e-09 1.467455713e-09 1.312405226e-09 1.50975486e-09 1.051475949e-09 1.056371012e-09 1.447025407e-09 1.353810347e-09 1.023183106e-09 1.165346154e-09 1.215019391e-09 9.989004558e-10 7.296034826e-10 8.476304222e-10 7.161074261e-10 6.108839283e-10 7.459882665e-10 3.893575961e-10 2.287948449e-10 1.820523184e-10 2.289796198e-10 5.806102618e-11 1.70129318e-10 2.823621348e-11 5.465001099e-12 2.743315684e-14 6.187905737e-17 1.50992617e-14 1.146521942e-14 3.667477785e-18 2.518438942e-19 3.330123168e-17 2.930851828e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 1.134038824e-31 0 0 1.112182709e-17 6.053468319e-18 6.162966746e-23 4.524452924e-16 1.896160738e-16 2.714852471e-16 7.790413216e-13 5.161311021e-14 1.321755692e-13 1.423396828e-11 8.216062436e-11 1.007415238e-10 1.425273261e-10 2.123207563e-10 6.855186095e-10 4.323462767e-10 5.676327741e-10 7.411636533e-10 8.502357188e-10 7.923544879e-10 1.066164078e-09 1.100527293e-09 9.847947938e-10 1.133963199e-09 1.23083654e-09 1.116752961e-09 1.184260128e-09 1.551484542e-09 1.409816463e-09 1.456365351e-09 1.575414673e-09 1.309872389e-09 1.370601066e-09 1.539587418e-09 1.542645343e-09 1.88393098e-09 1.967171595e-09 1.704711735e-09 1.812527552e-09 2.127159506e-09 2.032783052e-09 1.9251448e-09 2.046999025e-09 1.800258697e-09 1.997722308e-09 1.972495729e-09 1.876809537e-09 1.963935581e-09 2.265066028e-09 2.419272783e-09 2.257558218e-09 2.379673632e-09 2.025597247e-09 2.301363747e-09 3.520694186e-09 1.967596522e-09 2.233626679e-09 2.726038218e-09 3.693981522e-09 2.776570062e-09 3.356228078e-09 3.342742375e-09 1.987557616e-09 1.929776796e-09 2.442061957e-09 1.932747231e-09 3.316586069e-09 2.470730921e-09 2.315339589e-09 2.161026201e-09 3.179725227e-09 2.846898332e-09 2.418223432e-09 2.075038904e-09 1.966438273e-09 2.478197497e-09 1.951025716e-09 1.876341334e-09 1.813527027e-09 2.245366192e-09 2.237972596e-09 2.545775899e-09 2.341939981e-09 1.810267993e-09 3.478505095e-09 2.435890997e-09 2.694671846e-09 2.016034409e-09 2.16214306e-09 2.122038481e-09 2.056721043e-09 1.970926459e-09 1.910651825e-09 1.931295455e-09 2.012054434e-09 1.808285865e-09 2.439233474e-09 2.096443816e-09 2.174268145e-09 2.086669052e-09 1.856533344e-09 2.411846052e-09 2.092279961e-09 2.055822944e-09 3.015360307e-09 2.623469933e-09 2.371436118e-09 3.707647721e-09 2.736867989e-09 1.723538256e-09 3.13235665e-09 2.971582695e-09 2.510563046e-09 1.940170051e-09 2.791929273e-09 2.337233788e-09 2.285543439e-09 2.375849621e-09 2.161631245e-09 2.052455591e-09 2.093281769e-09 1.932544046e-09 1.784935851e-09 2.000646096e-09 2.048151968e-09 1.96857489e-09 2.221947925e-09 1.69263246e-09 1.762366377e-09 1.508417463e-09 2.020732534e-09 1.803436161e-09 1.918710496e-09 1.324035495e-09 1.609621287e-09 1.589021814e-09 1.571446892e-09 1.581586598e-09 1.287391649e-09 1.5707655e-09 1.426875822e-09 1.726835973e-09 1.492230153e-09 1.267976371e-09 1.106032186e-09 1.138225321e-09 9.1411147e-10 1.010751247e-09 9.755755733e-10 6.323216172e-10 9.808091384e-10 6.389732447e-10 7.6170944e-10 8.065858788e-10 9.486808243e-10 5.727015865e-10 8.708891421e-11 2.84723209e-10 1.577317856e-11 9.22752498e-11 8.967326513e-11 1.228012407e-11 1.380180341e-13 2.998513858e-12 1.813803524e-15 1.247491891e-14 2.80339098e-15 1.901364389e-18 5.749339913e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.027948716e-16 2.160574674e-17 2.057835207e-15 1.392183384e-14 2.212978874e-13 9.653466681e-13 7.508342411e-13 2.876374212e-12 1.056631513e-10 2.214115492e-10 5.476242579e-11 1.543712394e-10 1.787006343e-10 6.259732013e-10 5.534796042e-10 9.767397426e-10 6.290451155e-10 5.753454947e-10 8.142250158e-10 8.766607415e-10 9.29093105e-10 1.226901962e-09 1.407229033e-09 1.102061901e-09 1.452275727e-09 1.172174146e-09 1.347167936e-09 1.32035666e-09 1.586694048e-09 1.502486184e-09 1.530800653e-09 1.516130383e-09 1.687497739e-09 1.624092168e-09 1.546815627e-09 1.612697795e-09 1.687834098e-09 1.78824164e-09 2.013605714e-09 1.64932149e-09 1.827140028e-09 1.915184938e-09 1.889023032e-09 1.989047728e-09 2.007121241e-09 2.016788829e-09 2.156067097e-09 1.962558703e-09 2.121519282e-09 2.654527251e-09 2.388052965e-09 2.798666862e-09 2.637000159e-09 2.323361442e-09 2.928307846e-09 1.965902791e-09 2.3354731e-09 2.21430522e-09 1.745559935e-09 4.400579167e-09 2.175211724e-09 2.231213305e-09 1.787630354e-09 2.350853849e-09 1.702891412e-09 2.321180016e-09 2.654613682e-09 1.839596757e-09 2.34053566e-09 3.111278566e-09 1.972477077e-09 2.491581235e-09 2.564218271e-09 2.489188126e-09 2.097707846e-09 2.009342266e-09 2.698537886e-09 2.250338967e-09 2.181525896e-09 1.771188072e-09 2.687038286e-09 2.13491993e-09 1.95789115e-09 1.995635647e-09 1.834978692e-09 2.043175272e-09 2.312629457e-09 2.115279217e-09 3.04329072e-09 2.243152623e-09 2.109028519e-09 2.124155057e-09 2.036421038e-09 2.045793326e-09 1.9211541e-09 2.5884432e-09 1.96264471e-09 2.447558555e-09 2.812645347e-09 3.309553769e-09 3.172283835e-09 1.940069222e-09 2.889635907e-09 3.341290456e-09 2.364665392e-09 2.187952724e-09 2.978828884e-09 3.584194104e-09 3.090122233e-09 1.941446083e-09 2.293068024e-09 3.298766687e-09 2.480946693e-09 2.346504411e-09 2.913729387e-09 3.893260994e-09 1.876355536e-09 2.26575555e-09 2.882529747e-09 2.378071176e-09 1.93238286e-09 2.511179051e-09 1.895305761e-09 1.810315341e-09 1.714967951e-09 1.909565634e-09 2.14310679e-09 2.025497911e-09 1.919888205e-09 1.915198762e-09 1.582100217e-09 1.87596441e-09 2.120442377e-09 1.567013521e-09 1.642578657e-09 1.48841962e-09 1.603390412e-09 1.625953802e-09 1.622635957e-09 1.229645943e-09 1.402920393e-09 1.348966992e-09 1.126924282e-09 1.374996745e-09 1.20722619e-09 1.2865922e-09 1.331451512e-09 1.202079161e-09 7.570058962e-10 8.981586375e-10 8.396202179e-10 8.181518577e-10 7.64937785e-10 8.047683996e-10 5.325989599e-10 1.284195441e-10 4.047074564e-11 1.308922923e-10 1.45188003e-13 1.043306061e-10 6.467684122e-12 1.831863252e-12 1.858754661e-13 1.723516108e-13 1.972815155e-14 6.78556233e-17 7.868396398e-18 4.331619851e-18 2.731553752e-20 9.840243227e-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +6.774001001e-11 0 0 0 0 0 0 0 0 0 0 0 0 0 1.565558915e-24 2.835333701e-18 5.024919585e-18 4.285466605e-16 2.698794626e-16 3.545734968e-17 2.211365173e-13 9.47466741e-15 2.5315547e-12 4.171351424e-12 1.742279399e-10 2.25075153e-10 1.236455345e-10 1.148702959e-10 4.718015326e-10 6.178683367e-10 6.417431283e-10 5.283645176e-10 8.148436974e-10 7.135280981e-10 1.20491829e-09 1.272435369e-09 1.11590972e-09 9.520821716e-10 1.065270258e-09 1.334261768e-09 1.518181791e-09 1.323840976e-09 1.408934626e-09 1.404847902e-09 1.8485303e-09 1.542081013e-09 1.551358035e-09 1.70674769e-09 1.491399501e-09 1.904831288e-09 1.698750091e-09 1.935342691e-09 1.552094822e-09 1.875143736e-09 1.88916514e-09 1.666321965e-09 1.870668763e-09 2.447161633e-09 2.02864264e-09 2.047690365e-09 2.186989721e-09 2.06445492e-09 2.349669958e-09 2.845624006e-09 2.380431347e-09 2.298415974e-09 1.853159479e-09 2.730481191e-09 3.086392726e-09 2.277233308e-09 1.957652394e-09 3.742361037e-09 2.642478478e-09 2.906228359e-09 1.929119821e-09 1.968707603e-09 3.06310408e-09 3.893014826e-09 4.171400138e-09 3.239193644e-09 2.758872767e-09 2.176151243e-09 2.820286703e-09 2.705387945e-09 2.627203205e-09 2.273863238e-09 2.638511959e-09 2.331716133e-09 2.149763156e-09 2.341394078e-09 2.509864092e-09 1.895777935e-09 2.200532138e-09 2.386709938e-09 1.906442845e-09 1.986933824e-09 2.53654692e-09 1.831795687e-09 3.209449459e-09 2.099111592e-09 2.599795001e-09 3.21851405e-09 2.121860547e-09 2.337934485e-09 1.522437012e-09 1.984371681e-09 2.253681706e-09 3.381681258e-09 2.232952087e-09 2.198110007e-09 2.358375571e-09 2.2643086e-09 2.6373998e-09 1.852115795e-09 2.537537858e-09 2.492967509e-09 3.139423034e-09 2.876705745e-09 2.763975185e-09 3.664351775e-09 2.487040087e-09 2.038873802e-09 4.257725487e-09 2.386346443e-09 2.984220885e-09 3.815279953e-09 2.73011981e-09 4.063986053e-09 3.022747838e-09 2.318693574e-09 2.462977918e-09 3.68740221e-09 2.099809404e-09 2.937524023e-09 2.623315183e-09 1.686029382e-09 2.156623006e-09 2.16049629e-09 2.776775923e-09 2.663438696e-09 2.07887769e-09 2.13703456e-09 2.016864428e-09 1.713494299e-09 1.621517294e-09 1.989908135e-09 1.790988786e-09 1.888459256e-09 1.948102594e-09 1.467314894e-09 1.920710499e-09 1.606911073e-09 1.336143511e-09 1.438361676e-09 1.744994847e-09 1.286399719e-09 1.57069187e-09 1.513076942e-09 1.116376334e-09 1.165139961e-09 1.451553916e-09 1.31158941e-09 1.252573097e-09 1.197010013e-09 9.612253886e-10 9.738784621e-10 1.080128853e-09 9.343118259e-10 7.587424348e-10 6.124684211e-10 3.811820781e-10 3.847784413e-10 3.028969033e-10 2.277593044e-10 1.786265956e-10 2.738412767e-10 6.924947752e-11 1.174078052e-11 4.602671295e-13 2.75342942e-14 6.433645696e-16 2.56264717e-15 6.173718748e-16 3.049046698e-17 2.713880003e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.877765923e-18 8.934277024e-18 2.931716861e-17 8.023365814e-16 1.925187328e-15 7.340353332e-14 1.251097955e-12 5.936203247e-13 1.371725667e-11 1.854885381e-10 1.938635316e-10 2.69682989e-10 2.347381688e-10 2.772043858e-10 6.624256203e-10 5.444175964e-10 7.520279047e-10 6.380946828e-10 7.379675996e-10 1.142476258e-09 1.161972976e-09 8.845010203e-10 9.805718523e-10 1.123562878e-09 1.434830013e-09 1.216076521e-09 1.358553706e-09 1.549669602e-09 1.59944392e-09 1.50936822e-09 1.378944255e-09 1.667494544e-09 1.64343556e-09 2.0538217e-09 1.922544392e-09 1.730847864e-09 2.096590899e-09 2.001736152e-09 1.874400136e-09 1.88732785e-09 2.147812557e-09 1.819148322e-09 1.952773432e-09 1.759907376e-09 2.117160891e-09 2.46521364e-09 1.870368663e-09 2.329517949e-09 2.641558989e-09 3.139483486e-09 2.790167402e-09 2.206376585e-09 2.294808344e-09 1.969030546e-09 2.870110817e-09 1.885249275e-09 2.376765889e-09 3.641199487e-09 2.317693855e-09 2.452981327e-09 2.142389095e-09 2.673894024e-09 2.57550012e-09 2.956597228e-09 2.597118455e-09 2.687787222e-09 2.419088469e-09 1.593560034e-09 2.517495819e-09 1.538790267e-09 2.464090524e-09 1.694410682e-09 1.954263631e-09 2.208175682e-09 2.934884485e-09 2.384867902e-09 2.060062129e-09 2.109260929e-09 1.906746581e-09 1.880628193e-09 2.328284597e-09 2.426244034e-09 1.762199393e-09 2.404558449e-09 2.327300859e-09 2.248322305e-09 2.288160782e-09 2.595457556e-09 2.278206452e-09 2.302399262e-09 2.06081121e-09 2.109988988e-09 2.05637895e-09 2.311226041e-09 2.543908331e-09 2.383521571e-09 3.462955939e-09 2.500587071e-09 2.236298357e-09 2.729707647e-09 2.357727591e-09 2.096780903e-09 2.228027974e-09 2.278909634e-09 3.005252084e-09 3.246268882e-09 2.316499813e-09 3.699098487e-09 3.293834982e-09 3.867531488e-09 3.203613359e-09 2.775029843e-09 2.70112588e-09 4.150521862e-09 2.743143456e-09 2.467980597e-09 3.282576575e-09 2.350914777e-09 2.50474559e-09 3.868769117e-09 1.893613355e-09 2.195930964e-09 2.743839065e-09 2.662220229e-09 2.183115827e-09 2.221809819e-09 2.144362014e-09 2.033612117e-09 2.136521761e-09 2.042674517e-09 1.768926307e-09 2.187008351e-09 2.012362364e-09 1.996389313e-09 1.893148108e-09 1.670685982e-09 1.835897318e-09 1.562900276e-09 1.543414556e-09 1.43017982e-09 1.566852248e-09 1.454937857e-09 1.58197629e-09 1.54634214e-09 1.279302969e-09 1.643500953e-09 1.178561135e-09 1.225415625e-09 1.213996034e-09 1.056322201e-09 1.044713595e-09 7.266627099e-10 7.460176513e-10 9.088606757e-10 5.997390597e-10 3.391085728e-10 2.47713964e-10 1.490632901e-10 6.463389193e-11 1.606199941e-10 9.198030174e-11 4.557200301e-11 4.967482769e-12 2.154153321e-12 1.574855455e-14 2.359732864e-15 3.448483261e-16 1.964657791e-16 7.579463372e-17 7.075607557e-19 2.226787197e-21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.180055316e-18 1.943186303e-18 2.904737057e-26 5.797175055e-17 2.066292769e-18 2.624886079e-14 8.976327847e-15 3.4735739e-13 1.330080929e-11 3.179218733e-11 1.90679803e-10 2.289802425e-10 1.820555671e-10 3.398181716e-10 3.622350754e-10 6.243920383e-10 4.516497668e-10 6.491345309e-10 7.86938044e-10 8.161678898e-10 1.110361573e-09 1.264267638e-09 1.06395665e-09 1.395944896e-09 1.435579328e-09 1.760316348e-09 1.257086126e-09 1.463117066e-09 1.380806687e-09 1.480765394e-09 1.73117433e-09 1.88167746e-09 1.75138103e-09 1.638065319e-09 1.851474524e-09 1.945900953e-09 1.842832617e-09 2.118828598e-09 2.056339076e-09 1.697873763e-09 2.070806586e-09 2.073039277e-09 2.172331453e-09 1.969105614e-09 2.089857189e-09 2.138237454e-09 3.879486137e-09 2.892747105e-09 1.931597855e-09 2.401163338e-09 2.38718683e-09 1.967753144e-09 3.057659821e-09 2.453329443e-09 2.462663338e-09 3.094043259e-09 3.103829551e-09 2.551498121e-09 2.574330958e-09 4.075219059e-09 2.523570085e-09 2.624414546e-09 2.523061846e-09 4.373968e-09 2.513805191e-09 3.948303631e-09 1.333494779e-09 2.973150625e-09 3.253920012e-09 2.822725106e-09 2.592310714e-09 2.644972226e-09 2.322150941e-09 2.101889937e-09 2.294830887e-09 1.608686878e-09 2.889846981e-09 1.936876589e-09 2.421855963e-09 1.847181378e-09 2.423985941e-09 1.581013732e-09 2.612168747e-09 1.690147121e-09 2.196481415e-09 3.055773218e-09 2.25647231e-09 2.527187472e-09 2.47499086e-09 1.641385766e-09 2.220756781e-09 2.796601164e-09 2.226541063e-09 2.356778478e-09 2.176992163e-09 1.886993705e-09 2.105906154e-09 2.606612543e-09 2.63636116e-09 2.698071389e-09 2.412414683e-09 2.518578551e-09 2.512201122e-09 3.385554465e-09 2.829446634e-09 2.720810012e-09 3.306729166e-09 4.1574935e-09 3.509243847e-09 3.751584695e-09 2.902694892e-09 3.194144804e-09 3.543675511e-09 2.622778823e-09 2.654643544e-09 2.620567904e-09 2.13647297e-09 2.706692229e-09 2.209159666e-09 3.529360603e-09 2.048487886e-09 3.898825111e-09 2.194837001e-09 2.326045203e-09 2.800519254e-09 2.655329333e-09 2.868557369e-09 2.050144101e-09 2.049907626e-09 1.881339295e-09 2.119965718e-09 2.130139862e-09 1.840888379e-09 2.050893663e-09 2.053546293e-09 2.149689675e-09 1.89566628e-09 1.869235366e-09 1.745566024e-09 1.749085455e-09 1.760165939e-09 1.543763004e-09 1.673633147e-09 1.519223652e-09 1.43224622e-09 1.426150376e-09 1.228557256e-09 1.086989648e-09 1.273292859e-09 1.152709284e-09 1.086800087e-09 9.401978014e-10 7.945760694e-10 8.649537159e-10 6.631028379e-10 9.357456547e-10 3.970424901e-10 1.795925158e-10 3.606845607e-10 2.01953924e-10 1.730559186e-10 2.367440355e-11 1.159158794e-10 3.221806605e-13 6.692008165e-13 4.856064422e-13 3.111161649e-15 3.979054126e-15 6.47863698e-16 6.839440818e-18 5.235601694e-18 4.34631343e-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.093616276e-27 8.84195737e-19 2.371595272e-17 1.392268186e-15 8.822102346e-16 2.329124189e-14 4.115550976e-14 1.583118191e-14 6.408940641e-12 2.178049437e-11 1.4365674e-10 6.55389558e-12 2.357641074e-10 9.968104273e-11 4.795221559e-10 3.671634791e-10 4.922365201e-10 7.924800717e-10 6.519246685e-10 9.9108892e-10 8.297017615e-10 1.284089787e-09 1.17246589e-09 1.300777263e-09 1.204712668e-09 1.429402908e-09 1.574503338e-09 1.482440888e-09 1.563974712e-09 1.443468251e-09 1.747220031e-09 1.644473323e-09 1.920843495e-09 1.992314772e-09 1.911759643e-09 1.840486259e-09 2.024382478e-09 2.09678672e-09 2.017610729e-09 2.097185746e-09 1.98844315e-09 2.184819607e-09 1.994880868e-09 2.226684131e-09 2.711544112e-09 2.424235652e-09 3.890587677e-09 2.732141123e-09 3.765767599e-09 2.217339405e-09 3.988518899e-09 3.027848291e-09 2.097451421e-09 4.002428622e-09 3.753940063e-09 3.320577287e-09 3.855541298e-09 3.567442618e-09 2.291425673e-09 3.09965584e-09 3.457574451e-09 2.242205554e-09 4.267375179e-09 3.657437189e-09 3.424903457e-09 2.96752789e-09 3.003886013e-09 3.460276214e-09 3.825517537e-09 2.549358565e-09 2.820779886e-09 3.086009826e-09 2.630487766e-09 2.552830579e-09 1.876976232e-09 1.864612424e-09 2.569588091e-09 2.951175776e-09 2.303166976e-09 1.822167898e-09 2.409584e-09 2.116713722e-09 2.310931524e-09 2.07267946e-09 2.539485585e-09 3.419700342e-09 1.988900317e-09 2.601481636e-09 1.974490524e-09 2.790549487e-09 1.843836453e-09 2.320029646e-09 2.134889075e-09 2.173687028e-09 1.804746648e-09 2.07298108e-09 1.631486802e-09 2.856010579e-09 2.232539027e-09 2.355584335e-09 2.542900397e-09 2.480820608e-09 2.582617947e-09 2.79647076e-09 3.093905218e-09 3.418607112e-09 2.582570685e-09 3.32262534e-09 3.745370688e-09 3.955726698e-09 3.380255125e-09 3.174893098e-09 1.754928114e-09 3.872466149e-09 3.836733299e-09 4.354664513e-09 1.960637315e-09 3.083258037e-09 2.737885119e-09 4.244214952e-09 2.522208863e-09 3.134312671e-09 2.406499384e-09 2.306645032e-09 2.02902277e-09 2.801257944e-09 2.015912896e-09 1.966000129e-09 2.286569846e-09 2.468452875e-09 2.101618093e-09 1.989817692e-09 2.202018445e-09 2.093431512e-09 2.068888729e-09 1.74091388e-09 1.916160332e-09 1.800405715e-09 1.727388822e-09 1.992835836e-09 1.708458992e-09 1.546518654e-09 1.511026065e-09 1.469669209e-09 1.460852053e-09 1.316149733e-09 1.402214733e-09 1.392156483e-09 1.128901924e-09 1.091598947e-09 8.102578497e-10 1.150819884e-09 7.856251278e-10 8.587928949e-10 1.063079878e-09 5.995947242e-10 3.831416278e-10 3.911767009e-10 2.142157861e-10 3.451907084e-10 1.91753802e-11 5.012856157e-11 1.986473564e-11 2.226373744e-11 9.920298039e-14 8.532684576e-14 2.763125131e-16 1.666188174e-16 4.266017332e-16 0 6.82812125e-19 2.148103305e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.761382366e-18 2.053260193e-17 3.377793055e-16 5.384736762e-15 5.962414957e-15 4.324105431e-15 4.493355282e-13 3.514742941e-11 1.62202786e-12 2.467053152e-12 1.627886768e-10 3.998971697e-11 1.187344559e-10 2.86960051e-10 4.311296481e-10 6.920526828e-10 9.24528992e-10 8.828586727e-10 9.930560331e-10 1.131975673e-09 1.25531292e-09 1.238730697e-09 1.054542737e-09 1.322358495e-09 1.443026848e-09 1.508298743e-09 1.314124731e-09 1.629436394e-09 1.793528582e-09 1.651681575e-09 1.70719244e-09 1.59763961e-09 2.047353212e-09 1.772433081e-09 2.019743527e-09 1.77106696e-09 1.590966165e-09 1.968679058e-09 2.005570067e-09 2.353256682e-09 2.215172968e-09 2.195941196e-09 2.136029468e-09 2.068940021e-09 3.210006624e-09 2.160182409e-09 2.630619127e-09 2.311591053e-09 2.549997809e-09 3.024101984e-09 3.83855229e-09 2.852737271e-09 4.230574898e-09 2.886325474e-09 3.639318591e-09 2.141503298e-09 4.045335141e-09 3.309041999e-09 2.331881567e-09 2.226328211e-09 3.54719627e-09 5.156205728e-09 3.06923767e-09 3.799277053e-09 3.638378887e-09 3.860615833e-09 3.88044909e-09 2.490309126e-09 3.031934956e-09 2.897259202e-09 2.437924533e-09 3.337037353e-09 2.541522175e-09 1.60726995e-09 2.074419469e-09 2.679090725e-09 1.976053898e-09 2.483145547e-09 2.010370501e-09 2.014256327e-09 2.793584034e-09 1.91459381e-09 2.054849021e-09 2.598350372e-09 2.068816374e-09 2.333747543e-09 2.349879521e-09 2.7344187e-09 1.826988025e-09 1.943113543e-09 1.741254038e-09 2.410165525e-09 1.939154285e-09 2.146431952e-09 2.935216942e-09 2.361933636e-09 2.284101664e-09 2.396421072e-09 2.916326e-09 2.256516751e-09 2.737305388e-09 3.295958282e-09 3.287619308e-09 2.843105686e-09 3.837305507e-09 3.009434054e-09 3.895681067e-09 3.709534053e-09 2.547751174e-09 2.482102906e-09 2.294209072e-09 2.487061831e-09 3.545070814e-09 4.412859756e-09 3.721354173e-09 3.653721863e-09 3.069907228e-09 3.477954861e-09 3.844032201e-09 3.647559956e-09 3.408534032e-09 3.820044752e-09 3.163348413e-09 2.288864772e-09 3.218894161e-09 2.360747946e-09 2.150516535e-09 2.133117054e-09 2.343666095e-09 2.373155257e-09 1.919057672e-09 2.327830582e-09 1.919154102e-09 1.753927061e-09 2.012612981e-09 2.089240873e-09 1.673016225e-09 1.814570559e-09 1.754012468e-09 1.691853756e-09 1.723824435e-09 1.590997897e-09 1.398762904e-09 1.416522212e-09 1.72408998e-09 1.266086517e-09 1.567379008e-09 1.258906468e-09 1.124473154e-09 9.259947631e-10 8.764431713e-10 1.092179752e-09 1.047873333e-09 9.678994335e-10 7.178646066e-10 5.064018855e-10 2.866966477e-10 2.307392546e-10 4.107848625e-11 1.917579486e-10 2.160633143e-11 7.035238864e-13 3.256650205e-12 2.375231432e-13 2.238593055e-14 7.053928141e-15 1.226548917e-15 6.721626383e-16 4.92843191e-16 2.701534272e-17 7.885072461e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 4.436249688e-19 1.555133773e-18 6.923331492e-18 6.927867031e-20 1.539598009e-15 1.43032413e-15 1.454810141e-15 3.236495383e-15 1.55014105e-13 2.277228481e-11 1.070424602e-11 5.714722015e-12 2.790665308e-11 2.387796813e-10 1.973426158e-10 2.243055337e-10 5.844417013e-10 8.389471742e-10 4.215214779e-10 8.881050211e-10 9.406855831e-10 1.101542225e-09 1.08878894e-09 1.076966686e-09 1.237860421e-09 1.124302909e-09 1.73677343e-09 1.577118293e-09 1.920497297e-09 1.568981255e-09 1.738776388e-09 1.755654611e-09 1.576740663e-09 1.832474759e-09 1.97273535e-09 1.945209632e-09 2.016050027e-09 1.952061408e-09 2.16794624e-09 1.95459264e-09 2.002231542e-09 2.132100541e-09 2.468574745e-09 2.130443656e-09 1.803448582e-09 2.217331266e-09 2.324908221e-09 2.094821045e-09 3.03906479e-09 2.629750079e-09 3.047813536e-09 4.001636155e-09 4.462201516e-09 3.809634976e-09 2.466785465e-09 4.506906894e-09 3.595495721e-09 3.066571591e-09 3.277488515e-09 3.038108691e-09 3.419844944e-09 4.09668115e-09 2.980517942e-09 3.32533438e-09 3.154896472e-09 3.204979796e-09 4.122850665e-09 3.509068751e-09 2.892331779e-09 2.961039603e-09 3.529835997e-09 2.348203433e-09 3.026996276e-09 3.073683446e-09 2.726396797e-09 3.607146264e-09 2.31829027e-09 2.857483282e-09 1.786999229e-09 2.658707384e-09 2.274879174e-09 2.783876683e-09 3.216143719e-09 2.0289292e-09 1.719856588e-09 2.444129065e-09 2.790174223e-09 2.222161778e-09 1.880986862e-09 2.449492614e-09 2.258970675e-09 2.521366868e-09 2.38498367e-09 2.405605557e-09 1.923176487e-09 2.395814922e-09 2.273255364e-09 1.913430791e-09 2.1988977e-09 3.153787689e-09 2.279704664e-09 2.284205162e-09 2.157072951e-09 2.912464409e-09 2.400803559e-09 3.747926759e-09 2.943253986e-09 2.697842933e-09 4.772778779e-09 3.797460362e-09 4.501480234e-09 3.433597304e-09 1.950290266e-09 3.179380927e-09 3.492588949e-09 2.754247836e-09 2.956555786e-09 4.215432434e-09 3.709658582e-09 4.3329686e-09 3.290204284e-09 1.77353712e-09 3.431713326e-09 3.880695401e-09 3.043841218e-09 2.630875403e-09 2.682635132e-09 2.785708685e-09 2.398378013e-09 2.1781767e-09 2.348804885e-09 2.261228867e-09 2.118445196e-09 2.190661137e-09 1.964715083e-09 2.077869569e-09 1.992892367e-09 2.003961986e-09 1.860466538e-09 1.763477649e-09 1.80805749e-09 1.754316062e-09 1.81740363e-09 1.561982309e-09 1.692186967e-09 1.503149646e-09 1.507844107e-09 1.59993765e-09 1.442673109e-09 1.406714051e-09 1.175608948e-09 1.40772896e-09 1.264177534e-09 1.095959129e-09 5.498598653e-10 6.651229906e-10 8.07382312e-10 6.724887929e-10 4.544033182e-11 2.980193304e-10 3.150390891e-10 1.056947882e-10 3.46704569e-11 3.96048377e-12 7.830563741e-13 1.913861403e-14 3.564264692e-13 1.357958257e-14 3.061831611e-16 5.8726977e-16 5.809871637e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.90159414e-18 9.190238667e-18 5.535129756e-16 1.418225731e-16 5.818427658e-16 3.492024854e-15 1.086736079e-15 7.778763941e-11 2.340244623e-11 6.685059874e-11 7.830272863e-12 1.926056832e-10 2.226935305e-10 2.083622382e-10 1.362642793e-10 3.181473173e-10 7.188884613e-10 7.16419501e-10 8.138659878e-10 9.931479215e-10 7.21796063e-10 1.417624009e-09 1.19507624e-09 1.148365727e-09 9.676465492e-10 1.473027562e-09 1.660032768e-09 1.49478059e-09 1.619121899e-09 1.723240182e-09 1.57507365e-09 1.9205194e-09 1.692739358e-09 1.824837643e-09 2.133105244e-09 2.012523282e-09 2.071423112e-09 2.059210782e-09 1.992561121e-09 2.35052344e-09 2.201220048e-09 2.653611045e-09 2.319814149e-09 2.309311653e-09 2.326747535e-09 2.717226935e-09 2.344300642e-09 2.353601183e-09 3.805289272e-09 3.019781931e-09 2.392757824e-09 4.443644241e-09 3.317569774e-09 3.651508393e-09 3.45820424e-09 4.039247461e-09 4.013779404e-09 3.118790801e-09 5.648774568e-09 4.435616254e-09 4.045677498e-09 3.299693176e-09 3.686488061e-09 3.483147557e-09 3.894580986e-09 3.137045802e-09 3.655848008e-09 4.214894834e-09 4.687457732e-09 2.904515137e-09 2.494176845e-09 2.639849724e-09 2.538945284e-09 2.517532767e-09 3.011404762e-09 2.951729748e-09 2.666346363e-09 2.657246393e-09 2.550626241e-09 2.423208715e-09 2.657200122e-09 2.556026848e-09 2.108621426e-09 2.167722388e-09 1.827603219e-09 1.996479796e-09 2.245542031e-09 1.573443175e-09 2.349609781e-09 2.380048362e-09 2.288014438e-09 2.086938254e-09 2.79603221e-09 2.024561431e-09 2.142702387e-09 2.644963215e-09 2.457465808e-09 2.929702928e-09 2.815640372e-09 3.090713119e-09 3.237367027e-09 2.227398711e-09 3.004830128e-09 3.352090334e-09 3.956612285e-09 3.927202536e-09 4.221788878e-09 3.51020071e-09 4.08591019e-09 3.764719727e-09 4.114689902e-09 3.485213217e-09 3.681064191e-09 4.012664992e-09 2.570164714e-09 2.929990833e-09 4.252150736e-09 3.280221569e-09 3.515884752e-09 2.767315584e-09 4.196902464e-09 2.82309717e-09 2.125180822e-09 2.932130506e-09 3.099636192e-09 2.494303812e-09 2.537858706e-09 2.474787142e-09 2.448454546e-09 2.189292668e-09 2.116748391e-09 2.301568039e-09 2.045152039e-09 2.072979641e-09 2.030250866e-09 1.807617285e-09 2.017283461e-09 1.879874691e-09 1.786804233e-09 1.777637147e-09 1.937999189e-09 1.44130949e-09 1.628982393e-09 1.892936225e-09 1.588891825e-09 1.655735437e-09 1.490937278e-09 1.285858434e-09 1.235994159e-09 1.292065552e-09 1.299373904e-09 9.68398793e-10 8.937460054e-10 1.081908878e-09 1.077889866e-09 6.336368665e-10 5.210117949e-10 2.275410279e-10 1.592792458e-10 3.212336178e-11 1.075194541e-10 7.348308943e-11 8.599825234e-11 1.798617236e-11 2.185787896e-12 8.613956296e-16 2.316412776e-14 6.398001856e-16 2.090033906e-16 4.455238167e-17 1.59663034e-17 8.224094122e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 5.371258264e-20 0 0 2.783486497e-18 1.401160146e-15 6.656792023e-15 4.056195971e-14 3.992057566e-15 2.850690942e-13 1.675828246e-11 1.902619821e-11 2.844821025e-11 1.49621195e-10 2.080662404e-10 1.074363564e-10 4.18154891e-10 6.223735781e-10 8.179104593e-10 7.168621692e-10 9.166230485e-10 7.371000544e-10 1.070821308e-09 9.980338351e-10 1.461142593e-09 1.530903697e-09 1.320642402e-09 1.64581928e-09 1.439508142e-09 1.443336199e-09 1.707475117e-09 1.647528202e-09 1.998608728e-09 1.853580824e-09 2.174951269e-09 1.809167223e-09 1.887644354e-09 1.730327604e-09 1.941847411e-09 2.238825603e-09 2.214510633e-09 2.19049343e-09 2.426246528e-09 2.329983059e-09 2.129374825e-09 2.409188864e-09 2.527698007e-09 2.950322039e-09 2.881438871e-09 3.682196905e-09 2.447100635e-09 2.61736479e-09 3.735264069e-09 2.837038892e-09 4.260406966e-09 3.243208638e-09 3.664590674e-09 3.891376333e-09 4.219498123e-09 2.99067177e-09 4.080712506e-09 4.796985401e-09 3.580270083e-09 1.738523137e-09 4.166834276e-09 2.73287193e-09 3.295499362e-09 3.096936743e-09 4.123665007e-09 3.718148837e-09 4.613095177e-09 3.529309628e-09 2.308559244e-09 3.296293194e-09 2.890473722e-09 2.458763581e-09 2.18934305e-09 2.234017533e-09 2.922940609e-09 2.105124267e-09 1.935376465e-09 2.289935782e-09 3.217201185e-09 2.388191414e-09 2.783318946e-09 1.758733329e-09 2.401019217e-09 2.355031365e-09 2.813270364e-09 2.572220371e-09 1.716563506e-09 1.805627563e-09 1.886131493e-09 2.778877569e-09 2.234696129e-09 2.722242181e-09 2.820381504e-09 2.294949455e-09 2.787434343e-09 2.059749213e-09 2.043712258e-09 2.837811962e-09 2.548134385e-09 3.423764396e-09 3.052626906e-09 2.361631518e-09 2.976366216e-09 4.155083087e-09 3.543708287e-09 3.858353819e-09 3.144503503e-09 3.465571052e-09 2.978379056e-09 3.869737931e-09 3.497441866e-09 2.219189316e-09 3.092326784e-09 5.418600873e-09 3.065494602e-09 3.417698893e-09 3.525453479e-09 3.040084734e-09 4.052612443e-09 3.204309292e-09 2.646920122e-09 5.65298672e-09 3.629410158e-09 2.671538048e-09 3.530024894e-09 2.645250078e-09 2.51563068e-09 2.435504206e-09 2.236356809e-09 2.257479469e-09 2.388411044e-09 2.286092211e-09 2.210995737e-09 2.208088794e-09 2.147742526e-09 1.836809667e-09 1.909833493e-09 1.648543115e-09 1.821482367e-09 1.805467151e-09 1.725642406e-09 1.607673149e-09 1.843542234e-09 1.573588838e-09 1.335623621e-09 1.529363412e-09 1.36461227e-09 1.154478652e-09 1.110659894e-09 1.232934075e-09 8.498272167e-10 1.235236773e-09 8.444775376e-10 6.830971424e-10 5.461926205e-10 3.012657427e-10 2.088876035e-10 1.535228927e-10 9.440611283e-11 1.690221836e-10 6.648188721e-11 5.361405007e-12 7.741027424e-11 2.037239923e-14 2.293567363e-14 1.909224542e-15 1.031797682e-16 2.363828217e-17 4.32476681e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1.954283371e-18 3.276206406e-18 1.990239335e-18 5.90169678e-17 7.665319706e-16 5.451232986e-16 3.384775904e-15 1.190098438e-14 5.937498493e-14 3.323155824e-12 2.496646499e-11 6.690168034e-11 2.77374208e-10 1.973001838e-10 1.138673956e-10 4.377640016e-10 5.185292761e-10 6.53459046e-10 9.032793233e-10 7.645320963e-10 9.49513565e-10 9.679371029e-10 1.166373117e-09 1.290511292e-09 1.566213127e-09 1.311064118e-09 1.617338076e-09 1.127404549e-09 1.565569818e-09 1.732870553e-09 1.461505418e-09 1.758022371e-09 1.960495914e-09 1.856178678e-09 2.073737817e-09 2.060276942e-09 1.856264239e-09 2.023250248e-09 2.060759842e-09 2.329415421e-09 2.383280246e-09 2.425592012e-09 2.587933453e-09 2.090682895e-09 2.365166108e-09 2.646106013e-09 2.945249586e-09 2.548786416e-09 2.665168505e-09 3.19591623e-09 3.790981838e-09 4.446620376e-09 3.102487129e-09 2.764263584e-09 3.928356363e-09 2.196573406e-09 3.418731747e-09 3.640517002e-09 4.696636865e-09 3.085408228e-09 3.582419379e-09 2.955365968e-09 3.361379427e-09 3.574132913e-09 2.2290193e-09 2.916189955e-09 3.720780758e-09 3.405550615e-09 3.446897389e-09 3.655960397e-09 2.908547397e-09 3.148204227e-09 2.706154856e-09 2.767509802e-09 2.337090477e-09 2.174811845e-09 1.566920808e-09 2.461717208e-09 2.456936178e-09 2.237550548e-09 2.476283717e-09 2.544511939e-09 2.514007804e-09 2.502421014e-09 2.348041865e-09 2.44776605e-09 2.350497907e-09 2.83894231e-09 2.746880741e-09 2.58865138e-09 2.423618447e-09 2.494876772e-09 2.238842279e-09 2.523132947e-09 2.505203876e-09 2.033696383e-09 2.695670613e-09 2.049624608e-09 2.289568899e-09 3.043511167e-09 2.184364524e-09 2.676947509e-09 2.822621819e-09 3.811459278e-09 3.401549882e-09 2.470334763e-09 3.870652979e-09 4.343905535e-09 3.410947822e-09 3.917980518e-09 4.178627793e-09 3.25132843e-09 3.265760754e-09 3.968454902e-09 3.20982716e-09 4.164572751e-09 3.389799267e-09 4.037914116e-09 3.308476135e-09 3.997742185e-09 2.867467881e-09 4.102234439e-09 3.020050819e-09 4.298321013e-09 4.739810256e-09 3.071302526e-09 3.354619513e-09 3.22226375e-09 2.950793832e-09 2.41096269e-09 2.380966846e-09 2.259443341e-09 2.410650277e-09 2.037872001e-09 2.197920139e-09 2.217308715e-09 1.911904873e-09 2.146019873e-09 2.009523914e-09 1.954156661e-09 1.732556924e-09 1.52771402e-09 1.776034855e-09 1.767683193e-09 1.520373254e-09 1.368769581e-09 1.516490514e-09 1.366122753e-09 1.380459949e-09 1.540846357e-09 1.522960938e-09 1.227439368e-09 9.584931921e-10 1.166932885e-09 1.160408328e-09 5.746627788e-10 6.850095928e-10 4.309994908e-10 1.779557286e-10 3.544355072e-10 2.466644362e-10 2.197370582e-10 2.416870866e-10 6.298063174e-11 9.324761545e-12 3.828684e-14 4.752115624e-14 2.68606856e-15 3.441854178e-17 3.459846133e-15 2.734542928e-16 1.325314037e-18 1.758410842e-18 0 0 0 6.672225859e-20 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 2.89441481e-24 0 0 0 4.173526173e-19 1.680488034e-25 2.521579411e-16 5.558474838e-17 4.614011626e-16 2.659193592e-14 2.931753381e-14 5.292190367e-14 3.541134273e-13 2.496210887e-12 6.087100112e-11 8.256567009e-11 2.805469325e-10 2.449849689e-10 3.164065246e-10 2.68104853e-10 6.596740216e-10 9.09052337e-10 8.708868127e-10 9.036565558e-10 1.143356434e-09 1.256657218e-09 1.365025284e-09 1.579658365e-09 1.578819348e-09 1.617487599e-09 1.604579592e-09 1.745104782e-09 1.448012274e-09 1.879046906e-09 1.921662583e-09 1.903793159e-09 1.943279653e-09 2.228450334e-09 2.224968881e-09 2.147820318e-09 2.043812393e-09 2.212858386e-09 2.230851773e-09 2.242262485e-09 2.512645441e-09 2.482255064e-09 2.605208925e-09 2.547223702e-09 3.142503808e-09 2.58064726e-09 2.631829681e-09 3.1447015e-09 3.159216221e-09 3.109378504e-09 3.927072375e-09 3.376800125e-09 2.304021785e-09 4.394408889e-09 4.698221077e-09 2.936111774e-09 4.46439662e-09 4.081230447e-09 3.497160805e-09 4.399335382e-09 3.82237157e-09 3.279853883e-09 3.598847236e-09 2.934289396e-09 3.929416304e-09 3.885750068e-09 2.84717469e-09 2.374769373e-09 3.805953455e-09 3.113664623e-09 3.243545964e-09 2.620537871e-09 3.343570832e-09 3.150888955e-09 2.913681774e-09 2.409951552e-09 2.601974067e-09 2.975113939e-09 3.022592164e-09 2.596420867e-09 2.23804431e-09 2.464637618e-09 1.910680954e-09 1.828910035e-09 1.924727153e-09 2.37925734e-09 2.808919852e-09 1.892242943e-09 1.925689137e-09 2.607667519e-09 2.793363729e-09 2.061689897e-09 1.749934325e-09 3.033775975e-09 2.713583359e-09 3.34333968e-09 2.732336545e-09 1.632877576e-09 2.615222726e-09 3.88801923e-09 2.515125488e-09 4.255742463e-09 3.124884918e-09 2.251282685e-09 4.54494246e-09 4.646167205e-09 4.405517776e-09 3.492531127e-09 4.241467606e-09 2.175860359e-09 4.206624748e-09 3.43268973e-09 5.001817125e-09 4.132386656e-09 5.256360418e-09 5.060045514e-09 3.582400228e-09 3.526985267e-09 5.515015696e-09 2.746255344e-09 2.927835443e-09 3.618504414e-09 3.425485038e-09 3.588350578e-09 3.673469476e-09 2.990749771e-09 2.467166915e-09 2.454056138e-09 2.896816011e-09 2.333666811e-09 2.22216126e-09 2.40849825e-09 2.258805136e-09 2.431761808e-09 2.084692838e-09 1.948083805e-09 2.207373975e-09 1.926393944e-09 1.943153008e-09 1.96227065e-09 2.038741475e-09 2.062504477e-09 2.101005454e-09 1.707844583e-09 1.734321604e-09 1.772673439e-09 1.352368404e-09 1.583799739e-09 1.359585822e-09 1.513940338e-09 1.473343852e-09 1.518602026e-09 9.227149705e-10 7.705485265e-10 6.246304518e-10 6.984079966e-10 4.665933017e-10 3.337930653e-10 1.886749817e-10 2.243318897e-10 2.63525143e-10 2.416669561e-11 2.741085681e-11 7.891130881e-12 3.330161897e-13 6.70344145e-14 3.561609722e-14 4.277388673e-15 2.613740725e-17 1.43460265e-16 5.428960626e-17 3.655556623e-18 2.318253623e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1.563262394e-27 0 6.852804312e-19 4.883259776e-17 1.294431391e-16 6.387109822e-17 1.036114965e-15 1.337828274e-14 1.601932444e-13 5.346366369e-12 2.196806657e-11 1.781363895e-12 9.272189142e-12 2.289174876e-10 2.538653726e-10 2.892968566e-10 7.469673399e-10 9.328488262e-10 9.568942676e-10 8.541603267e-10 1.112483519e-09 1.216832007e-09 1.381886454e-09 1.234995999e-09 1.453411836e-09 1.326637172e-09 1.729029588e-09 1.533519989e-09 1.827822609e-09 1.599508055e-09 1.834836208e-09 1.865563508e-09 1.840195912e-09 1.842123663e-09 2.163495651e-09 1.993628093e-09 2.165092876e-09 2.168018173e-09 2.224656809e-09 2.190001241e-09 2.218416314e-09 2.689786753e-09 2.428301773e-09 2.299192631e-09 2.254840207e-09 2.535082553e-09 2.556216276e-09 3.105658454e-09 3.651443078e-09 4.066307738e-09 4.128151792e-09 4.266333051e-09 2.878098049e-09 4.005762173e-09 3.61372005e-09 4.557761498e-09 3.418075835e-09 4.925722749e-09 3.002936075e-09 4.23499835e-09 2.687914562e-09 3.259310768e-09 3.204045692e-09 4.147038726e-09 3.775245261e-09 2.98108761e-09 3.94620663e-09 5.093769407e-09 3.661218383e-09 3.099971067e-09 3.612254577e-09 3.344821359e-09 3.221218839e-09 3.069224978e-09 3.391135375e-09 2.624573465e-09 2.955384822e-09 2.7007458e-09 2.540315033e-09 2.873908118e-09 1.846443815e-09 2.44064757e-09 2.48123242e-09 2.350402796e-09 2.753213589e-09 2.665423847e-09 1.792456526e-09 2.237120476e-09 2.376770047e-09 2.145712343e-09 2.226895881e-09 2.295410979e-09 2.562561236e-09 2.45728887e-09 2.538796042e-09 2.729603434e-09 2.081481412e-09 2.494938102e-09 2.760813177e-09 2.729925247e-09 2.903303035e-09 2.957208433e-09 2.948729116e-09 3.952443986e-09 2.917583514e-09 4.194215171e-09 3.416541683e-09 3.682088616e-09 4.122164831e-09 3.453683286e-09 4.482397268e-09 4.906985055e-09 5.146126355e-09 4.573698023e-09 4.480569486e-09 3.955151491e-09 6.457136892e-09 3.490273586e-09 5.362260995e-09 3.698202818e-09 3.1419752e-09 4.851784997e-09 2.435415042e-09 3.830996237e-09 4.211120142e-09 3.72402023e-09 4.045126293e-09 3.435957686e-09 2.414542801e-09 2.654903691e-09 2.35290339e-09 2.855786166e-09 2.274415395e-09 2.236215337e-09 2.600827763e-09 2.321596615e-09 2.576637586e-09 2.174185467e-09 2.148805064e-09 1.783982492e-09 2.018211176e-09 1.949725947e-09 1.883142602e-09 1.534021885e-09 1.717435975e-09 1.606993634e-09 1.760838304e-09 1.765358077e-09 1.603771028e-09 1.499295356e-09 1.326484871e-09 1.464327855e-09 1.372416111e-09 8.765758685e-10 1.018559947e-09 9.123908942e-10 3.826881645e-10 8.013098592e-10 2.523570198e-10 2.613526264e-10 1.760493864e-10 3.763730322e-12 2.462552032e-11 7.420533971e-13 1.886776505e-12 5.432108019e-15 3.267164636e-13 3.787454616e-16 5.47795142e-15 5.602714701e-17 4.638765109e-17 2.817186665e-18 0 5.704011616e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.633181623e-20 3.013404584e-15 1.207035065e-15 8.121617716e-16 2.136007725e-14 1.75893415e-13 2.300736612e-11 6.173546127e-11 2.041903791e-11 1.867213718e-10 3.004638206e-10 2.387701075e-10 6.029174389e-10 7.679082066e-10 5.748976419e-10 1.158430145e-09 6.243799018e-10 9.528926234e-10 1.134589331e-09 1.1991589e-09 1.41478774e-09 1.665989771e-09 1.584942749e-09 1.452527486e-09 1.559082245e-09 1.682707957e-09 1.9029487e-09 1.812959463e-09 1.914475632e-09 1.989323212e-09 1.878369166e-09 2.249107398e-09 2.213859418e-09 2.215156857e-09 2.319856184e-09 2.211220821e-09 2.351790238e-09 2.380031617e-09 2.675172394e-09 2.530900499e-09 2.356782993e-09 2.585682389e-09 3.373812598e-09 2.753206758e-09 3.548364378e-09 2.829150603e-09 2.36072969e-09 3.035199861e-09 2.465779692e-09 3.484504219e-09 4.678784914e-09 2.291485689e-09 3.502775931e-09 3.348966408e-09 4.751178854e-09 5.03303244e-09 2.882515827e-09 5.661802024e-09 4.232897959e-09 4.140351601e-09 3.672914104e-09 3.315345733e-09 4.607918503e-09 3.08178932e-09 3.585972281e-09 3.760451246e-09 3.76734407e-09 3.017268114e-09 2.775370668e-09 2.920062449e-09 3.870102209e-09 2.721961474e-09 2.954770616e-09 2.31302127e-09 2.606838115e-09 2.840467579e-09 2.501049605e-09 2.445767132e-09 2.688421272e-09 2.263418548e-09 2.134865594e-09 2.707284642e-09 2.531269765e-09 1.976672078e-09 2.50414687e-09 2.304177145e-09 2.081436657e-09 2.458475592e-09 2.400928784e-09 2.74040075e-09 2.484273517e-09 3.121059557e-09 2.508947417e-09 2.859572708e-09 3.065594103e-09 3.146822495e-09 2.567328539e-09 2.593001675e-09 2.894427223e-09 3.15266811e-09 3.464209923e-09 3.867130169e-09 3.289860385e-09 3.732430048e-09 5.065734402e-09 3.968823013e-09 4.540960987e-09 3.045287531e-09 5.068919531e-09 2.67075661e-09 2.910868933e-09 5.169108392e-09 3.871483519e-09 4.333197782e-09 4.669375576e-09 3.008235279e-09 4.481089297e-09 4.406575773e-09 4.177401967e-09 3.575228944e-09 2.465591555e-09 3.386870983e-09 2.701811716e-09 3.703464521e-09 3.387746832e-09 2.624906789e-09 2.332731875e-09 2.674844694e-09 2.705185519e-09 2.438007194e-09 2.313300065e-09 2.497235472e-09 2.313946481e-09 2.282757657e-09 2.088368455e-09 2.183465503e-09 1.852632319e-09 2.03744141e-09 1.875626846e-09 2.141840037e-09 1.588827716e-09 1.880913978e-09 1.747879986e-09 1.61632622e-09 1.780426134e-09 1.52220441e-09 1.394213925e-09 9.856677598e-10 1.290709632e-09 1.299583887e-09 1.119907293e-09 9.775323123e-10 7.413026118e-10 7.445610767e-10 5.735491856e-10 2.231184578e-10 1.595417236e-10 1.2807619e-10 1.124609535e-10 9.165732577e-11 3.910301773e-12 2.640447079e-11 7.685949311e-14 1.775175555e-13 1.052285022e-14 1.020402754e-14 4.156471926e-16 3.500372172e-17 4.240956807e-18 4.301273409e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 8.806550581e-11 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.632755587e-18 1.348123021e-18 5.195150822e-16 8.478093272e-16 1.081655787e-13 8.827634781e-14 1.412946929e-14 1.95528081e-12 1.785789785e-11 1.760628698e-10 1.371749871e-10 7.081601483e-11 3.367957188e-10 4.168999871e-10 3.953366305e-10 9.49962414e-10 9.409717256e-10 1.095825442e-09 1.115659779e-09 1.154236228e-09 1.277219971e-09 1.42273161e-09 1.46594447e-09 1.659836699e-09 1.754744748e-09 1.807070365e-09 1.694642174e-09 2.109792622e-09 2.080498532e-09 1.919782502e-09 1.95733762e-09 1.997378427e-09 1.877657444e-09 2.479049258e-09 2.341274327e-09 2.327125151e-09 2.325349772e-09 2.389596063e-09 2.510776205e-09 2.498236069e-09 2.673141543e-09 2.722821691e-09 3.059832397e-09 2.875231822e-09 3.232754533e-09 3.397135302e-09 2.527053785e-09 2.871474469e-09 2.854786499e-09 4.552090487e-09 4.114147656e-09 4.567505671e-09 3.252451118e-09 3.779816531e-09 4.748460482e-09 3.425067532e-09 4.978549376e-09 5.260447654e-09 5.266865198e-09 4.384572284e-09 5.011231434e-09 3.730622002e-09 3.426586856e-09 3.702535627e-09 2.576523538e-09 4.274736216e-09 3.932163121e-09 2.860723584e-09 4.238989377e-09 3.211171617e-09 2.697782662e-09 2.634177749e-09 2.751059213e-09 2.671918472e-09 2.678133297e-09 3.313354702e-09 2.514858598e-09 2.110645763e-09 2.163846344e-09 2.529117816e-09 2.291181244e-09 1.728402751e-09 2.7115196e-09 3.15818241e-09 2.379314128e-09 2.296016739e-09 2.829557081e-09 2.334289447e-09 2.16585519e-09 3.283013825e-09 2.961370029e-09 2.926707827e-09 1.883695364e-09 2.764297859e-09 2.787790477e-09 3.107974577e-09 3.1399527e-09 3.401808195e-09 2.251730362e-09 2.980692821e-09 3.67171253e-09 3.456606664e-09 3.946629284e-09 4.007508465e-09 4.802454119e-09 4.140336096e-09 4.058684565e-09 3.920855969e-09 4.502366069e-09 3.152699192e-09 3.182513829e-09 4.323382799e-09 5.157687338e-09 3.886598602e-09 4.845001441e-09 5.080363969e-09 3.665269478e-09 3.1036524e-09 4.2896048e-09 3.950505335e-09 2.618755175e-09 3.908641032e-09 3.671982334e-09 2.757815941e-09 2.813191299e-09 3.257627448e-09 2.970976904e-09 2.605821269e-09 2.5452703e-09 2.685605863e-09 2.397522457e-09 2.581930344e-09 2.301945129e-09 2.341915637e-09 2.366062757e-09 2.348223244e-09 2.283935138e-09 2.054682422e-09 2.188555352e-09 2.102231009e-09 2.02527013e-09 1.933563128e-09 1.942337062e-09 1.898592055e-09 1.838045045e-09 1.645885179e-09 1.234824738e-09 1.395212244e-09 1.712928333e-09 1.216022078e-09 1.1800904e-09 1.310754599e-09 1.022023332e-09 6.892353087e-10 8.794733349e-10 6.227979903e-10 4.283993537e-10 2.40959872e-10 2.17964763e-10 2.638636278e-10 2.3271563e-10 2.212039254e-11 4.447064064e-12 2.630184313e-13 2.013047578e-13 1.824603035e-14 2.202824641e-15 8.83805873e-16 1.757870523e-17 9.420715042e-19 2.329920993e-18 0 0 0 0 0 0 0 0 7.809620173e-11 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.819998604e-17 2.116521139e-18 3.841692704e-17 9.78043026e-18 2.302833347e-15 4.78871773e-14 2.025288024e-14 4.138730449e-13 1.49298857e-11 3.841627326e-11 1.562632716e-10 1.840825626e-10 3.673277514e-10 3.749618438e-10 1.096657628e-10 5.635717575e-10 8.981616692e-10 8.474724056e-10 1.089055266e-09 1.08416289e-09 1.154795361e-09 1.050295518e-09 1.394312783e-09 1.598101805e-09 1.359055894e-09 1.597974427e-09 1.569307668e-09 1.965749332e-09 1.548936027e-09 2.123770428e-09 1.957404287e-09 1.587776476e-09 2.054896336e-09 2.282082474e-09 2.312597277e-09 2.069068162e-09 2.263555561e-09 2.36460957e-09 2.868350835e-09 2.505113951e-09 2.478789656e-09 2.74569428e-09 2.701392631e-09 2.712827927e-09 2.833415186e-09 3.13807564e-09 2.472337104e-09 3.263018452e-09 3.39532275e-09 2.882009794e-09 4.692572505e-09 2.410637469e-09 4.739232141e-09 4.473029915e-09 4.68811815e-09 4.431028087e-09 4.367414705e-09 2.992460728e-09 4.47907146e-09 3.179599693e-09 5.270697647e-09 3.619844103e-09 4.117382469e-09 3.919139657e-09 4.018747045e-09 4.122754846e-09 3.718973747e-09 3.708134173e-09 2.595043984e-09 2.476015052e-09 3.512655644e-09 3.575488386e-09 2.894447089e-09 2.770430674e-09 2.600428002e-09 3.260282063e-09 2.48238794e-09 3.255552297e-09 2.44100788e-09 3.004584067e-09 2.581102431e-09 2.331691743e-09 2.555460258e-09 2.817634387e-09 2.993426705e-09 2.476396043e-09 3.183767524e-09 2.792833128e-09 2.668170126e-09 3.002481665e-09 2.043906065e-09 1.893121827e-09 3.324742711e-09 3.164841376e-09 3.295491521e-09 2.979782321e-09 2.831178721e-09 2.454097637e-09 2.085305669e-09 3.309469122e-09 2.822348602e-09 3.046349916e-09 4.057060898e-09 2.542035841e-09 3.379051699e-09 5.694550892e-09 6.030844281e-09 3.945823559e-09 3.854381215e-09 5.079511853e-09 4.095116189e-09 5.035982127e-09 5.064922088e-09 4.334511198e-09 4.12111163e-09 4.585355517e-09 4.697018816e-09 3.570320315e-09 3.574678733e-09 4.500467621e-09 2.867483743e-09 3.957596403e-09 4.086333499e-09 5.162324487e-09 3.591810635e-09 4.558583653e-09 2.599653378e-09 2.743723812e-09 2.866101949e-09 2.5996279e-09 2.178883063e-09 2.410011431e-09 2.523706863e-09 2.417584882e-09 2.166807617e-09 1.937496539e-09 2.352234139e-09 2.165308274e-09 2.347154727e-09 2.215896218e-09 2.111671161e-09 2.022755881e-09 2.021801564e-09 1.850559789e-09 2.033590336e-09 1.650904827e-09 1.42078996e-09 1.635217435e-09 1.600594438e-09 1.553035079e-09 1.616062779e-09 1.227506059e-09 1.29805821e-09 1.027397261e-09 8.454505142e-10 9.794706677e-10 5.635600557e-10 4.273077799e-10 2.31967288e-10 8.349723988e-11 2.401897599e-10 8.791931352e-11 8.80062918e-11 2.268467543e-14 4.759689038e-13 1.838522002e-13 1.745136195e-14 6.846253996e-15 2.003709736e-17 2.460093987e-17 1.382301884e-18 3.531333061e-22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.708196219e-18 2.469689563e-21 5.626090779e-18 4.957044146e-17 2.440128154e-16 1.280647063e-14 6.888770387e-14 2.463263617e-12 8.336878426e-12 4.368542169e-11 1.253056054e-10 2.170778087e-10 2.928161349e-10 1.944365864e-10 6.803966798e-10 7.783545995e-10 8.44826816e-10 9.496722149e-10 1.186363136e-09 9.697373741e-10 9.888772146e-10 1.035941806e-09 1.297378462e-09 1.653566426e-09 1.432763772e-09 1.372580406e-09 1.790408808e-09 1.698942602e-09 1.867522588e-09 1.872149318e-09 2.128792081e-09 2.060371371e-09 2.368874584e-09 2.228370197e-09 2.47561684e-09 2.234251196e-09 2.429480757e-09 2.584644177e-09 2.254870046e-09 2.491983653e-09 2.518935164e-09 2.686803256e-09 2.621044983e-09 2.695373729e-09 2.902270786e-09 3.405450661e-09 3.384750914e-09 3.362575389e-09 4.334897164e-09 3.295508334e-09 3.034271609e-09 5.167981724e-09 4.608825802e-09 4.138179111e-09 3.821081532e-09 4.508318022e-09 5.01911464e-09 5.043018986e-09 3.806042558e-09 4.800316979e-09 4.122753664e-09 4.846377755e-09 4.912860821e-09 3.558658472e-09 3.349845686e-09 3.5430691e-09 4.138685519e-09 4.591749238e-09 4.235087887e-09 3.127479002e-09 3.628520679e-09 3.009012238e-09 3.791233312e-09 2.973755857e-09 2.695955512e-09 2.986533571e-09 3.200494878e-09 2.60648833e-09 3.150170412e-09 2.879607533e-09 2.509334891e-09 2.850265817e-09 2.418518451e-09 2.99835292e-09 2.342372608e-09 3.17108311e-09 2.552801468e-09 2.298919873e-09 2.54385335e-09 3.116317881e-09 2.205256496e-09 2.332497907e-09 2.712093666e-09 2.353062662e-09 2.737811898e-09 3.154306985e-09 3.038403045e-09 3.232432185e-09 3.610550774e-09 3.470388459e-09 4.320056606e-09 3.297746689e-09 3.194990343e-09 4.284653872e-09 3.765802246e-09 4.256325877e-09 4.789877867e-09 4.909391041e-09 4.251040135e-09 3.63185634e-09 4.446446805e-09 4.862729461e-09 4.184226787e-09 4.302510517e-09 5.034815021e-09 4.752228556e-09 5.082870773e-09 3.824500704e-09 3.027137659e-09 4.178856827e-09 3.161069386e-09 2.953071222e-09 3.834967989e-09 2.848193578e-09 2.759115267e-09 3.723824087e-09 2.609917751e-09 2.757600693e-09 2.992855344e-09 2.658270972e-09 2.670364939e-09 2.542575442e-09 2.408603668e-09 2.481212566e-09 2.408169355e-09 2.618176695e-09 2.175266478e-09 2.2778299e-09 2.196361784e-09 2.271185952e-09 2.274611578e-09 2.037102225e-09 1.676509723e-09 1.968427403e-09 1.689163525e-09 1.452032732e-09 1.77185704e-09 1.428972796e-09 1.646224065e-09 1.476694408e-09 1.454321739e-09 1.344873615e-09 1.156802529e-09 9.13725002e-10 7.651632022e-10 9.559070826e-10 4.154490296e-10 4.086469501e-10 1.974578479e-10 2.641283271e-10 4.549108154e-11 1.559066605e-10 2.579909633e-13 1.04170771e-11 1.999723891e-12 3.147567349e-13 1.805604017e-12 3.284397133e-16 6.13843984e-17 9.104414102e-17 4.019924871e-19 7.858230716e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.590743662e-17 1.329032279e-17 6.12123019e-16 1.175381563e-15 1.897771756e-14 4.039941955e-13 1.074006778e-12 1.765488251e-12 4.12558639e-11 2.290134128e-11 2.509775438e-10 2.957823984e-10 2.616317225e-10 3.816522364e-10 8.387399285e-10 7.972069731e-10 1.149879225e-09 1.24452792e-09 1.316683766e-09 1.244910254e-09 1.096683844e-09 1.621283116e-09 1.467550718e-09 1.795394202e-09 1.884057668e-09 1.727255262e-09 1.623546956e-09 1.870900123e-09 2.05294825e-09 2.023693e-09 2.273685637e-09 2.040412809e-09 2.351569799e-09 2.320030682e-09 2.457379911e-09 2.629394472e-09 2.659791483e-09 2.658813061e-09 2.259192029e-09 2.69522015e-09 2.435491591e-09 2.961592532e-09 2.54219999e-09 2.478948328e-09 3.55136425e-09 3.484547328e-09 3.431807878e-09 2.536877755e-09 4.7023737e-09 2.977990949e-09 4.27850559e-09 4.508236464e-09 4.046979296e-09 3.178273872e-09 4.375947694e-09 6.416798176e-09 5.113804122e-09 4.212223369e-09 5.079251446e-09 3.374118481e-09 4.31018218e-09 4.131635058e-09 5.242844387e-09 3.791357934e-09 3.578635077e-09 4.702504339e-09 3.882114352e-09 2.248496688e-09 3.369974457e-09 3.637705123e-09 3.797986196e-09 3.172605407e-09 3.493565982e-09 2.261404099e-09 2.674984001e-09 2.738197312e-09 2.577374196e-09 2.993960061e-09 3.436872155e-09 2.929620085e-09 2.753384785e-09 2.440201437e-09 2.400550509e-09 2.984977052e-09 2.673853065e-09 2.653953985e-09 2.585278573e-09 2.399860936e-09 3.060531548e-09 2.453422259e-09 2.6942519e-09 3.148666208e-09 2.80036801e-09 1.969794123e-09 3.311111735e-09 3.184795318e-09 2.485396012e-09 3.616680713e-09 3.51640503e-09 3.369062039e-09 3.408917505e-09 3.813975843e-09 3.306166284e-09 5.017232383e-09 4.170322813e-09 4.931888711e-09 4.558016936e-09 3.320371973e-09 4.425064225e-09 5.254371236e-09 3.554459758e-09 4.691764795e-09 5.733900958e-09 5.056603016e-09 3.405130305e-09 5.321626503e-09 4.676828718e-09 3.602669947e-09 3.644828655e-09 5.325071837e-09 4.425073026e-09 3.412070011e-09 3.704448438e-09 3.555923658e-09 3.198717382e-09 2.738120061e-09 3.418488734e-09 2.600155435e-09 2.667493963e-09 2.812484466e-09 2.7777695e-09 2.739019271e-09 2.644684457e-09 2.329608028e-09 2.388551978e-09 2.478143477e-09 2.415878683e-09 2.149553717e-09 2.20004793e-09 2.272702052e-09 1.874987511e-09 2.155321059e-09 1.845375418e-09 1.762764801e-09 1.701790554e-09 1.736131773e-09 1.876807372e-09 1.558043056e-09 1.395045137e-09 1.504291568e-09 1.384719357e-09 1.075104892e-09 1.199931961e-09 9.808192167e-10 6.456476352e-10 6.275859736e-10 3.528322664e-10 8.8691559e-11 1.504880217e-10 2.235656477e-10 9.485845159e-11 3.176721423e-11 1.11196013e-11 1.312662983e-13 1.164987086e-13 2.018361995e-16 1.025671681e-15 1.640083179e-15 2.486822816e-17 5.903748519e-17 2.386607119e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 4.436207229e-19 2.58145449e-18 5.560175954e-18 1.196854257e-16 3.174811577e-17 2.941727631e-16 7.483116419e-14 2.425265231e-14 1.191128908e-10 3.403726702e-12 4.945885716e-11 8.736274742e-11 1.433154714e-10 1.952312235e-10 6.783841498e-11 4.868964165e-10 7.234963655e-10 9.693402332e-10 9.860835303e-10 1.290850666e-09 1.096953761e-09 1.340451714e-09 1.341298764e-09 1.289158429e-09 1.533355128e-09 1.691737343e-09 1.732332487e-09 1.72376191e-09 1.664037592e-09 1.980349069e-09 2.043352146e-09 1.889800491e-09 1.93808635e-09 2.197196283e-09 2.342586865e-09 2.385468511e-09 2.255439756e-09 2.569929678e-09 2.611573054e-09 2.840560244e-09 2.570497688e-09 2.868303525e-09 2.811395526e-09 2.637318898e-09 2.864248009e-09 2.801618588e-09 3.010794252e-09 3.336359039e-09 3.811957209e-09 3.894462708e-09 3.111542761e-09 3.248929673e-09 3.523511744e-09 4.131877608e-09 4.50826481e-09 5.101266829e-09 4.369217666e-09 4.540251435e-09 4.026818624e-09 4.187549695e-09 4.11930283e-09 4.191162522e-09 4.319545111e-09 3.480390784e-09 5.027916172e-09 3.682617919e-09 3.36744455e-09 5.262678131e-09 3.296710062e-09 2.86924161e-09 4.294832856e-09 3.402156508e-09 3.04176028e-09 2.932845666e-09 2.766724652e-09 3.1418591e-09 3.111485497e-09 2.895787254e-09 2.942962425e-09 3.108014824e-09 2.825672195e-09 2.648500972e-09 2.488068188e-09 2.960346329e-09 2.590826399e-09 3.007987547e-09 2.440560099e-09 2.794425138e-09 2.639642684e-09 2.704582217e-09 2.67329292e-09 2.959917844e-09 2.464667398e-09 2.245861933e-09 3.52410513e-09 2.740287558e-09 2.376962212e-09 2.935091361e-09 3.149894673e-09 3.210545961e-09 2.800250762e-09 3.487053317e-09 4.097804149e-09 3.680476256e-09 3.847640664e-09 4.859455806e-09 3.562163792e-09 4.387552979e-09 4.739455819e-09 4.593041902e-09 3.893774122e-09 5.031725437e-09 4.153157531e-09 4.436964072e-09 2.38138402e-09 3.362459031e-09 4.908767716e-09 4.476768222e-09 3.345636712e-09 4.450791274e-09 2.8620239e-09 3.580504241e-09 3.930591369e-09 3.13384249e-09 3.808315584e-09 3.310348341e-09 2.982077844e-09 3.218942077e-09 3.272795126e-09 3.048753597e-09 2.773479998e-09 2.775182368e-09 2.749353407e-09 2.686601614e-09 2.532192013e-09 2.676396981e-09 2.339453031e-09 2.550781326e-09 2.330593646e-09 2.35767051e-09 2.235286317e-09 2.224537735e-09 2.36317478e-09 2.242961764e-09 1.719204637e-09 1.724162588e-09 1.790101256e-09 1.937869931e-09 1.695360413e-09 1.678345174e-09 1.30499462e-09 1.441251326e-09 1.104599088e-09 1.05499856e-09 1.310845282e-09 8.471088711e-10 5.183333993e-10 7.391287244e-10 3.200966625e-10 2.201769994e-10 2.821585773e-10 2.584403765e-10 2.694449488e-11 5.915950675e-12 1.321902908e-11 1.021661603e-13 1.556355501e-14 2.577386358e-14 2.238078764e-15 3.106186083e-23 4.718649469e-17 0 0 0 4.501460116e-19 0 0 0 0 0 0 0 9.837076548e-11 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.241767896e-24 7.938646167e-19 1.01268612e-16 1.675135505e-16 2.600724289e-15 3.800872734e-14 8.225979086e-16 5.651022673e-14 1.562426258e-11 1.668215393e-10 8.778756124e-13 9.224025794e-11 3.007214552e-10 3.216677571e-10 4.839100827e-10 5.85482296e-10 1.000296679e-09 1.010153769e-09 9.505273889e-10 1.081413544e-09 1.350961648e-09 1.702792954e-09 1.535899283e-09 1.748171627e-09 1.743611096e-09 1.876355766e-09 1.859377421e-09 2.045314468e-09 2.065134313e-09 2.240106168e-09 2.093924278e-09 2.149965607e-09 2.324888034e-09 2.08715596e-09 2.247868809e-09 2.320869797e-09 2.765479971e-09 2.652914994e-09 2.619419446e-09 2.363491551e-09 2.636831332e-09 2.698165495e-09 2.89277898e-09 2.629553202e-09 2.828649783e-09 3.143538706e-09 3.121725733e-09 4.191051716e-09 3.352662734e-09 2.739614934e-09 2.988110462e-09 5.408983979e-09 4.461786431e-09 3.456196035e-09 3.536095206e-09 4.812860969e-09 4.976083007e-09 5.059438224e-09 4.606788671e-09 4.81944763e-09 4.575748505e-09 3.173311988e-09 4.303608277e-09 4.577688137e-09 4.101795051e-09 4.139449668e-09 4.249020074e-09 3.75603226e-09 3.433879868e-09 3.842350261e-09 3.522914096e-09 3.754728205e-09 3.23614643e-09 3.140161276e-09 3.479141068e-09 2.910672194e-09 2.851838774e-09 2.73052491e-09 2.517286622e-09 3.344657015e-09 3.362488408e-09 2.628953102e-09 2.734637962e-09 3.145577087e-09 2.389347433e-09 2.298612718e-09 2.711005921e-09 2.96434422e-09 2.875407415e-09 3.106692411e-09 2.922406481e-09 2.811030393e-09 2.717934959e-09 2.714475264e-09 2.607238347e-09 2.691142542e-09 2.299874159e-09 2.320939758e-09 2.986431928e-09 2.298690438e-09 3.253807307e-09 3.475220702e-09 3.750577099e-09 4.166825283e-09 3.983684775e-09 5.136002924e-09 4.316531447e-09 3.344562292e-09 3.656577275e-09 4.67441342e-09 4.988702543e-09 3.220247097e-09 4.46111201e-09 3.352771328e-09 4.228229953e-09 4.925466883e-09 5.52693512e-09 3.851079702e-09 3.299086683e-09 4.972065166e-09 4.785725892e-09 3.805017556e-09 4.024351741e-09 4.383257021e-09 3.358764337e-09 3.580974337e-09 3.039178713e-09 2.941233617e-09 3.148040079e-09 2.786566935e-09 2.868698937e-09 2.637639498e-09 2.561993882e-09 2.458884082e-09 2.4511433e-09 2.525825181e-09 2.443735285e-09 2.226774962e-09 2.075365223e-09 2.228541754e-09 2.147910598e-09 2.209973319e-09 2.140319253e-09 1.932262883e-09 1.816498137e-09 1.719255349e-09 1.494496151e-09 1.673392183e-09 1.800475754e-09 1.803961968e-09 1.352821428e-09 1.38702541e-09 1.221242953e-09 1.00434307e-09 1.007512207e-09 9.784403158e-10 5.384306731e-10 4.323943495e-10 2.529053075e-10 2.295204034e-10 2.271107437e-10 2.173433707e-10 5.566580188e-12 2.738893363e-11 2.736578958e-12 4.679212247e-14 7.288862311e-14 1.583218282e-15 7.488726383e-17 1.433327795e-17 3.899151803e-18 1.288514929e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.111921524e-17 4.102905154e-20 3.847739009e-17 2.242419122e-16 6.921916869e-16 3.411461582e-15 8.115904514e-15 2.034842212e-12 4.603191509e-13 1.159607051e-12 2.061415587e-12 1.199651341e-10 2.625857174e-10 3.448523556e-10 4.865699127e-10 7.879700245e-10 9.454435039e-10 1.27606908e-09 1.243527223e-09 1.357061876e-09 1.234568596e-09 1.467023758e-09 1.582333781e-09 1.545778124e-09 1.90949119e-09 1.754930611e-09 1.953239576e-09 2.064826046e-09 2.054313648e-09 2.260955017e-09 2.36112961e-09 2.351963293e-09 1.962849447e-09 2.40273748e-09 2.135465697e-09 2.462275902e-09 2.318982895e-09 2.718045665e-09 2.377232975e-09 2.6732461e-09 2.794913556e-09 2.829434633e-09 2.799186443e-09 3.052997857e-09 2.764918597e-09 4.328643609e-09 4.33235082e-09 4.10834083e-09 5.045541559e-09 4.421934999e-09 4.509225519e-09 3.560319989e-09 3.783383028e-09 4.776745504e-09 4.239190986e-09 5.851322738e-09 5.309423389e-09 4.836628324e-09 4.984262491e-09 4.304896142e-09 4.858692587e-09 6.723682471e-09 4.085791599e-09 4.265356794e-09 3.99462724e-09 4.723763412e-09 5.165409612e-09 4.415047639e-09 4.37799141e-09 4.210033078e-09 3.734771199e-09 2.810427136e-09 2.81948051e-09 3.082854741e-09 2.810828739e-09 3.129883343e-09 2.897258065e-09 2.696997291e-09 3.090729604e-09 2.899732687e-09 3.022369607e-09 3.15041633e-09 2.354174418e-09 3.092468378e-09 2.884769434e-09 2.86053488e-09 2.902060084e-09 2.669500952e-09 2.556010768e-09 2.589635426e-09 2.923202584e-09 2.49345826e-09 2.833586973e-09 3.302019461e-09 2.732466155e-09 3.155878234e-09 2.989056084e-09 2.394493476e-09 3.465670978e-09 2.967374331e-09 3.151696116e-09 3.102152201e-09 3.935684872e-09 5.162794631e-09 3.293625504e-09 4.956689713e-09 4.42123771e-09 3.404406239e-09 6.043841881e-09 5.079200966e-09 4.439159263e-09 4.154227954e-09 5.069144372e-09 5.268121234e-09 3.823501536e-09 4.805215568e-09 3.668954351e-09 4.074126572e-09 3.669143705e-09 4.266125888e-09 4.925619531e-09 5.225125253e-09 3.770352078e-09 4.425501622e-09 3.026194574e-09 3.927887619e-09 3.369862413e-09 2.885114543e-09 3.008892103e-09 2.772664756e-09 2.626529672e-09 2.673443913e-09 2.563331615e-09 2.399051969e-09 2.481409024e-09 2.840513477e-09 2.631565777e-09 2.207410644e-09 2.299355592e-09 2.441742737e-09 2.28738898e-09 2.319051571e-09 1.624114937e-09 2.185607135e-09 1.860296292e-09 1.678356138e-09 1.656848039e-09 1.546627624e-09 1.475731482e-09 1.420323615e-09 1.288726307e-09 1.313239176e-09 1.400222416e-09 1.051573414e-09 9.871325734e-10 8.661074914e-10 7.76729691e-10 1.459087118e-10 3.849033839e-10 1.800010617e-10 2.253806737e-10 2.024098794e-10 2.021817561e-11 1.880619864e-11 2.95731874e-12 5.382659757e-14 4.502111401e-15 1.635190161e-14 1.604159219e-17 1.136058256e-17 2.277833156e-18 1.602844533e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 2.174437605e-19 0 0 0 0 1.060786446e-18 1.149956756e-17 2.596834874e-17 6.175749335e-16 3.816617211e-16 1.20591479e-15 2.924388506e-14 1.038043301e-12 1.866607711e-11 6.200415475e-13 1.421589098e-10 8.496578776e-11 2.63766716e-10 2.394589614e-10 3.604656664e-10 5.240045991e-10 9.78669754e-10 1.164464998e-09 9.394245594e-10 1.266512498e-09 1.583324308e-09 1.352387901e-09 1.730895842e-09 1.504315937e-09 1.728128911e-09 1.932035728e-09 1.937327991e-09 1.851415185e-09 2.094994411e-09 2.152719455e-09 2.030123396e-09 2.29913797e-09 2.434462462e-09 1.98813203e-09 2.68374606e-09 2.58759933e-09 2.356990952e-09 2.531936473e-09 2.750143441e-09 2.88851276e-09 2.749912489e-09 2.986199364e-09 2.97716632e-09 3.04648605e-09 3.240224663e-09 3.156354526e-09 3.827004837e-09 3.247207358e-09 3.270853893e-09 5.670409462e-09 5.400274653e-09 3.737987375e-09 4.810727528e-09 6.21797956e-09 4.474938539e-09 5.198549428e-09 4.149101825e-09 5.165217186e-09 5.319867274e-09 5.623230627e-09 4.998825714e-09 3.93375328e-09 3.966843846e-09 5.704594522e-09 5.287033533e-09 3.575937997e-09 3.449001109e-09 4.687051728e-09 5.083992062e-09 4.394255439e-09 2.679667371e-09 3.380941447e-09 3.142473733e-09 3.491344696e-09 2.962470524e-09 2.697234538e-09 3.384012719e-09 3.069855323e-09 3.321689091e-09 2.977395999e-09 3.100535134e-09 2.560726413e-09 3.183740306e-09 3.135529379e-09 2.741263173e-09 2.627894169e-09 2.642858666e-09 2.759557383e-09 3.140397444e-09 3.176094233e-09 2.716414447e-09 2.999049516e-09 2.820265549e-09 2.732092665e-09 3.104516894e-09 3.561440799e-09 2.840984637e-09 3.670881744e-09 2.331030382e-09 3.077704251e-09 3.042294717e-09 2.841406374e-09 2.740344939e-09 4.165671448e-09 4.853188921e-09 3.365847539e-09 4.982210578e-09 5.361294924e-09 4.340783164e-09 4.750683936e-09 4.133389034e-09 4.496375203e-09 5.136796908e-09 6.598683138e-09 5.155932781e-09 5.310884914e-09 5.612159928e-09 3.831463163e-09 2.983315107e-09 4.18411046e-09 4.078040811e-09 5.127301448e-09 4.251210323e-09 3.329093027e-09 3.451743538e-09 3.844171712e-09 2.984626088e-09 3.041832362e-09 2.877483941e-09 3.288070446e-09 2.623622359e-09 2.875353374e-09 2.781934952e-09 2.661702819e-09 2.807527841e-09 2.607023578e-09 2.361680726e-09 2.383795661e-09 2.489435998e-09 2.447382091e-09 2.205879839e-09 2.075737035e-09 2.10171768e-09 2.065867856e-09 2.047718918e-09 1.879301633e-09 1.967207404e-09 1.797023157e-09 1.77427751e-09 1.624806886e-09 1.505029836e-09 1.520954135e-09 1.383863296e-09 1.097437684e-09 5.531153174e-10 8.98773382e-10 7.839251394e-10 6.786429279e-10 3.555483581e-10 1.971427039e-10 1.756176186e-10 5.727298101e-11 2.858361044e-11 7.299576088e-12 9.361623956e-13 1.458336421e-12 1.598201627e-14 8.301050917e-15 6.479167078e-17 4.371248554e-18 2.036615367e-18 2.475090344e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1.970715951e-21 4.469540096e-19 2.547310552e-18 4.443129952e-17 7.453137407e-16 3.220539153e-15 2.117378008e-14 1.124583831e-13 7.682518892e-14 1.81455935e-12 1.261550832e-11 7.037586867e-11 7.480165047e-11 2.30220753e-10 3.471873836e-10 4.625695295e-10 8.355542569e-10 7.615089318e-10 1.047350811e-09 1.290991205e-09 1.203043761e-09 1.210075738e-09 1.425530045e-09 1.645691455e-09 1.868230325e-09 1.62348018e-09 1.800216462e-09 1.555977239e-09 2.121856894e-09 2.273421526e-09 1.842808955e-09 2.14566702e-09 2.523867605e-09 2.691869694e-09 2.662466921e-09 2.549561183e-09 2.569614722e-09 2.514468063e-09 2.76581016e-09 2.697515712e-09 2.568177985e-09 2.696161738e-09 2.872794174e-09 2.963646388e-09 3.128443513e-09 2.748671668e-09 4.015133708e-09 4.34967154e-09 3.738413236e-09 3.552856571e-09 3.931511641e-09 4.05285759e-09 4.299416226e-09 5.115283946e-09 4.313432863e-09 2.842669173e-09 5.711534811e-09 5.746573001e-09 3.802894751e-09 4.404631653e-09 5.76300308e-09 4.994105872e-09 4.436567397e-09 3.791500691e-09 4.856229718e-09 4.736187743e-09 4.139088558e-09 4.442349137e-09 4.863298732e-09 5.035477255e-09 3.998268585e-09 3.41226176e-09 3.636727427e-09 3.586169001e-09 3.304188538e-09 3.13494067e-09 3.065334222e-09 2.756123598e-09 2.491100464e-09 3.085497914e-09 2.829547645e-09 2.786940568e-09 3.193453816e-09 2.618721526e-09 2.911047491e-09 2.63506698e-09 3.528572121e-09 2.847858707e-09 2.375135256e-09 1.913183377e-09 3.23542172e-09 2.736317469e-09 2.723856492e-09 2.478757524e-09 2.529942197e-09 3.274033381e-09 2.918031651e-09 2.824647382e-09 2.989726049e-09 4.312200236e-09 3.843720272e-09 3.195409025e-09 3.562894853e-09 3.466739942e-09 3.864079557e-09 5.073693953e-09 5.126563453e-09 4.162930835e-09 3.923603831e-09 4.817357498e-09 5.062545531e-09 5.258619295e-09 4.513675064e-09 5.566473785e-09 4.646244896e-09 4.384705409e-09 5.302162509e-09 5.113336929e-09 3.548776024e-09 3.7301619e-09 3.938115674e-09 3.650074785e-09 3.169365659e-09 5.758824366e-09 3.845738679e-09 3.960409194e-09 3.505930161e-09 3.454519007e-09 3.529877533e-09 2.8987712e-09 2.844802409e-09 3.016642259e-09 2.693687181e-09 2.797786613e-09 2.531638994e-09 2.639804006e-09 2.410346421e-09 2.406221006e-09 2.68183491e-09 2.563665666e-09 2.495334425e-09 2.26063749e-09 2.285672554e-09 2.164830329e-09 1.933065309e-09 1.849988993e-09 1.939597874e-09 1.521495184e-09 1.595571229e-09 1.446046063e-09 1.682938841e-09 1.350394349e-09 1.434332173e-09 1.059659594e-09 1.148232836e-09 9.021121932e-10 9.672610585e-10 7.423765482e-10 4.782161225e-10 3.025802209e-10 1.747005902e-10 2.011500884e-10 3.915978958e-11 1.288431294e-10 9.824468515e-13 1.289936487e-12 8.478918567e-14 4.841520368e-15 6.797236383e-16 1.218534363e-16 4.026756304e-16 4.319933781e-18 2.297781635e-18 4.991235939e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.839865879e-18 9.089274946e-19 1.551434656e-17 5.728298187e-16 1.277086053e-15 1.885494485e-15 3.869937769e-14 3.879669947e-13 6.413374593e-12 1.103449239e-10 1.692427707e-10 2.304867442e-10 1.881648843e-10 3.377010268e-10 6.302545395e-10 7.779292932e-10 8.539424039e-10 1.040359359e-09 1.046725178e-09 1.30200121e-09 1.389727967e-09 1.742868051e-09 1.702170828e-09 1.71298774e-09 1.788808683e-09 1.657498341e-09 1.689770093e-09 2.20070809e-09 1.82609713e-09 2.053826925e-09 2.118592579e-09 2.644111939e-09 2.291480695e-09 2.378248693e-09 2.393034517e-09 2.427794535e-09 2.545383298e-09 2.809729792e-09 2.738195645e-09 2.858858599e-09 2.851110717e-09 2.801710942e-09 3.157997852e-09 3.120442683e-09 3.202339355e-09 3.329276463e-09 4.364509411e-09 3.104428165e-09 4.257405662e-09 4.24657299e-09 3.843682316e-09 4.526457994e-09 5.136880018e-09 5.372998034e-09 5.450857706e-09 4.235029148e-09 3.040161182e-09 5.337582317e-09 5.127206011e-09 5.098977824e-09 3.898882679e-09 4.861950741e-09 5.616295441e-09 3.103883365e-09 4.816435505e-09 3.953223838e-09 4.662202754e-09 4.859153521e-09 3.504429249e-09 3.392448187e-09 3.80950192e-09 3.460313961e-09 3.819847377e-09 2.896936186e-09 2.956316157e-09 3.624340243e-09 2.843207934e-09 2.747438661e-09 2.959012799e-09 3.377448595e-09 3.731826612e-09 3.650897139e-09 3.013117015e-09 2.514355919e-09 2.81658719e-09 2.877900753e-09 2.982359122e-09 3.121722053e-09 2.930724483e-09 2.7441968e-09 3.123320105e-09 3.094221611e-09 2.356850321e-09 2.84914164e-09 2.124992733e-09 2.927562945e-09 3.903935518e-09 2.849011636e-09 4.373963492e-09 3.215762984e-09 3.004241788e-09 3.081089791e-09 3.730178903e-09 3.411808367e-09 4.595970989e-09 4.122344863e-09 4.69758155e-09 4.960182032e-09 5.005015558e-09 5.431835529e-09 4.880419659e-09 4.976335856e-09 6.050174281e-09 4.98803343e-09 5.612503643e-09 5.779270269e-09 4.891500705e-09 3.72462718e-09 5.393232331e-09 4.595573409e-09 3.274170654e-09 4.222799194e-09 3.465987781e-09 3.2559925e-09 2.919669024e-09 3.467824734e-09 3.303567554e-09 3.089758009e-09 3.282142922e-09 2.829575579e-09 2.614172397e-09 3.061725277e-09 2.734445683e-09 2.675452737e-09 2.420455984e-09 2.64169129e-09 2.38449283e-09 2.464219742e-09 2.366059501e-09 2.316732823e-09 2.227432179e-09 2.310500633e-09 2.115770665e-09 2.164049462e-09 1.90668718e-09 1.945146969e-09 1.920558265e-09 1.767107613e-09 1.547560861e-09 1.532651491e-09 1.556636394e-09 1.125514116e-09 1.392446811e-09 1.320658699e-09 9.637582365e-10 1.008028306e-09 9.702265695e-10 6.909460181e-10 2.507187726e-10 3.523802389e-10 1.759891022e-10 9.926147613e-11 9.093893512e-11 8.742053803e-13 7.704576544e-13 1.822256316e-13 4.82171775e-14 1.147508974e-15 1.905218829e-16 3.017708714e-16 8.716852561e-19 1.792564356e-18 0 0 0 0 0 0 0 0 0 5.191240241e-18 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 7.351642825e-19 2.026157018e-19 2.371044413e-23 2.903024139e-17 1.379908718e-16 1.07943081e-16 5.058195587e-15 9.118703488e-15 3.962137978e-13 5.067552641e-12 1.701888283e-11 5.666132648e-11 2.655178936e-10 1.522526092e-10 2.85221854e-10 3.603260808e-10 8.340419859e-10 7.752443935e-10 8.976673743e-10 1.251757103e-09 1.314067535e-09 1.585562911e-09 1.401787268e-09 1.688052749e-09 1.481710471e-09 1.905761998e-09 1.898981037e-09 1.899446614e-09 2.018834756e-09 2.113028619e-09 2.136121736e-09 2.38676833e-09 2.267497878e-09 2.304347267e-09 2.265602118e-09 2.297213517e-09 2.993870788e-09 2.706396122e-09 2.798196098e-09 2.962257866e-09 2.794982968e-09 3.239498096e-09 2.948461179e-09 3.102972031e-09 2.741270088e-09 3.121299558e-09 3.320572657e-09 3.363157784e-09 4.585832101e-09 3.270392323e-09 4.02473039e-09 3.140359099e-09 4.740224085e-09 4.3994598e-09 4.243005911e-09 3.57570187e-09 4.350886368e-09 4.861286919e-09 4.110662654e-09 3.89372342e-09 4.445731432e-09 4.227259723e-09 4.653173897e-09 4.885334344e-09 4.815128373e-09 4.669215267e-09 3.763014363e-09 3.816085986e-09 3.96426436e-09 3.97519905e-09 4.358619532e-09 3.245043463e-09 4.57211049e-09 3.110660085e-09 3.783421156e-09 2.62592288e-09 3.308957048e-09 3.516383255e-09 3.304717119e-09 3.32573363e-09 2.735616817e-09 3.02902743e-09 2.72648643e-09 2.806229077e-09 2.698732552e-09 2.918006307e-09 3.100808165e-09 2.43917685e-09 2.179421417e-09 2.168657855e-09 2.75165016e-09 2.80254371e-09 2.637578736e-09 2.594418347e-09 3.3263112e-09 3.421262865e-09 3.760499529e-09 3.199847813e-09 3.463611383e-09 3.848991446e-09 3.548543477e-09 3.311784538e-09 4.018320749e-09 3.748604277e-09 4.718697735e-09 3.530708918e-09 4.238166591e-09 5.470878562e-09 5.327454347e-09 5.279681459e-09 4.96822895e-09 5.252888508e-09 5.796837845e-09 6.116158969e-09 4.45647103e-09 4.697785484e-09 4.803482764e-09 4.666977361e-09 4.602172827e-09 5.086881445e-09 5.484343171e-09 4.422732499e-09 4.696690302e-09 3.776558002e-09 3.855216124e-09 3.702440733e-09 3.912445452e-09 3.142447869e-09 3.571359132e-09 2.897046465e-09 2.94174939e-09 2.915219191e-09 3.051558409e-09 2.952985609e-09 2.834471827e-09 2.663657105e-09 2.709207983e-09 2.432349371e-09 2.637590397e-09 2.552714753e-09 2.519532903e-09 2.189250749e-09 2.23213905e-09 2.355649823e-09 1.978647654e-09 2.144794628e-09 2.140135995e-09 1.925010844e-09 1.756406883e-09 1.546501271e-09 1.793839991e-09 1.401210562e-09 1.331459617e-09 1.262344704e-09 1.150548365e-09 8.214747907e-10 9.17457097e-10 6.080046751e-10 5.313311746e-10 7.313276622e-11 1.248242935e-10 6.183450154e-11 1.190852017e-10 1.706102964e-10 1.074332603e-11 5.192949953e-14 3.140756347e-15 1.3527345e-14 2.954005007e-16 9.859840476e-16 2.498335586e-18 5.634968611e-18 2.515242886e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 9.62533952e-11 0 1.774602739e-18 2.301663285e-17 2.913990617e-18 6.775783412e-16 5.925297324e-15 3.008558962e-15 1.689803596e-13 1.234132831e-12 4.21967004e-12 1.2169326e-11 1.093703596e-10 2.412326811e-10 1.836617859e-10 1.901108845e-10 5.036555118e-10 5.660173384e-10 9.2373887e-10 1.300445224e-09 1.280118966e-09 1.311873712e-09 1.355029052e-09 1.42597231e-09 1.964103604e-09 1.665639525e-09 1.662566213e-09 1.935243862e-09 1.960405373e-09 2.074031706e-09 1.94342526e-09 2.280020391e-09 2.185908459e-09 2.380371193e-09 2.639054723e-09 2.449040053e-09 2.778568957e-09 2.517276257e-09 2.381572874e-09 2.591452171e-09 2.741869243e-09 2.803980737e-09 2.767171518e-09 2.945309739e-09 3.117652891e-09 2.993609891e-09 3.092225387e-09 3.181680982e-09 2.997180516e-09 3.919848879e-09 3.533235238e-09 3.650752425e-09 4.428442211e-09 5.720528945e-09 3.792775164e-09 3.890270199e-09 5.473307123e-09 5.890096022e-09 4.010771506e-09 5.551503122e-09 4.924948002e-09 4.260280142e-09 5.459301121e-09 5.910351167e-09 5.437326034e-09 4.850520316e-09 4.564830526e-09 4.050656827e-09 3.735263103e-09 5.225166484e-09 4.040776044e-09 3.172253259e-09 4.158186378e-09 2.903882163e-09 4.307519141e-09 3.648733484e-09 3.486307038e-09 3.236440549e-09 3.429611094e-09 3.351700479e-09 2.539762425e-09 2.926992216e-09 3.054186363e-09 2.935947723e-09 2.882071267e-09 3.218367404e-09 2.527513512e-09 2.586149334e-09 3.639015916e-09 3.032436514e-09 2.440796648e-09 2.870316771e-09 2.746021435e-09 2.254261192e-09 3.028497431e-09 3.17011917e-09 2.538943112e-09 2.930283511e-09 3.545330665e-09 3.626516078e-09 3.898507906e-09 3.118120901e-09 3.901848129e-09 3.430425021e-09 3.56111875e-09 3.661825725e-09 5.114861917e-09 4.555274619e-09 4.551409923e-09 4.516238076e-09 5.892089923e-09 4.802091859e-09 4.858050364e-09 5.181975114e-09 5.378524459e-09 3.380858181e-09 3.087389622e-09 4.431468427e-09 4.302257773e-09 4.285139582e-09 3.971326741e-09 5.0256547e-09 5.265573873e-09 3.930604035e-09 4.251154862e-09 4.594362965e-09 3.578108641e-09 3.836057008e-09 4.422202846e-09 3.177156367e-09 3.203554777e-09 3.021817321e-09 3.045533856e-09 2.959179966e-09 2.510078068e-09 2.797334451e-09 3.078736812e-09 2.7680049e-09 2.55349561e-09 2.552248923e-09 2.465864297e-09 2.345745859e-09 2.266152839e-09 2.450231107e-09 2.332943275e-09 2.057637825e-09 2.160975535e-09 1.829480762e-09 1.83593101e-09 1.792319377e-09 1.680047057e-09 1.310613761e-09 1.699095116e-09 1.314680608e-09 1.335740803e-09 1.208098989e-09 9.91704955e-10 1.04533517e-09 6.065451117e-10 5.185399052e-10 3.040088841e-10 2.011305616e-10 2.183718055e-10 1.410815599e-10 3.742996701e-11 1.256435152e-11 7.190669358e-14 3.497735524e-11 1.586020952e-15 3.478933877e-16 1.011824004e-15 2.05543711e-16 1.432537669e-17 2.157905535e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.792959187e-19 8.921130669e-19 6.069901886e-18 4.419733088e-16 1.218552299e-14 1.468168411e-14 5.580470683e-13 2.42553308e-13 7.856005544e-12 1.73269402e-10 1.732386432e-10 3.157786341e-10 2.075552819e-10 2.443943755e-10 5.733843625e-10 8.757837479e-10 9.172468061e-10 1.118473508e-09 1.226184967e-09 1.42779904e-09 1.656043074e-09 1.61968286e-09 1.742049771e-09 1.935880683e-09 1.842784018e-09 1.899160364e-09 2.077720957e-09 2.02061391e-09 2.195573763e-09 2.313418878e-09 2.297626192e-09 2.36319787e-09 2.126239358e-09 2.442451506e-09 2.734292991e-09 2.432715518e-09 2.701526184e-09 2.849926389e-09 2.942534485e-09 3.183064285e-09 3.137946971e-09 2.965813345e-09 2.930997171e-09 3.117041573e-09 3.495792477e-09 3.43526628e-09 4.254228989e-09 3.725136677e-09 3.769156087e-09 3.116624852e-09 4.827553194e-09 5.195312102e-09 4.701188225e-09 3.941113948e-09 4.534064405e-09 3.858755275e-09 5.67519264e-09 4.765569718e-09 4.970501792e-09 4.682368332e-09 3.300609378e-09 4.854056675e-09 5.708622978e-09 4.553840302e-09 4.179683254e-09 4.620269754e-09 4.888055549e-09 3.488941414e-09 3.304250228e-09 3.469848207e-09 3.5627024e-09 4.101880167e-09 3.460034676e-09 3.257447984e-09 3.074714131e-09 2.87879696e-09 3.080587579e-09 3.363973084e-09 2.788919845e-09 2.278252145e-09 2.895538827e-09 3.029460217e-09 2.745957942e-09 2.658269533e-09 2.275483582e-09 2.906409633e-09 2.987811826e-09 2.860081575e-09 3.245589026e-09 3.621844979e-09 2.98542922e-09 2.96790395e-09 2.937272447e-09 2.981724053e-09 3.667640285e-09 3.102848677e-09 3.627185966e-09 3.906097741e-09 3.873296622e-09 3.904401237e-09 2.574023518e-09 4.085785161e-09 2.789052816e-09 5.006485688e-09 4.611380317e-09 4.096627119e-09 5.104109805e-09 3.828127234e-09 4.180134496e-09 6.480860294e-09 4.414157766e-09 4.413224395e-09 4.081410907e-09 4.400867984e-09 4.53951535e-09 4.885137762e-09 6.193896067e-09 4.934530423e-09 5.759664698e-09 5.749882067e-09 4.603959743e-09 3.113951147e-09 5.163004835e-09 3.487951238e-09 3.472308734e-09 4.780138046e-09 3.651212448e-09 4.35557346e-09 2.984001748e-09 2.879619468e-09 2.862127207e-09 2.853849986e-09 2.93387213e-09 2.829308933e-09 2.488870901e-09 2.551045638e-09 2.79038726e-09 2.509866486e-09 2.467256906e-09 2.46722836e-09 2.179797091e-09 2.439997999e-09 2.321155747e-09 2.135422135e-09 2.150490718e-09 1.821884862e-09 2.075252724e-09 1.767577901e-09 1.594130706e-09 1.56216948e-09 1.637373262e-09 1.272572441e-09 1.26855094e-09 1.143102062e-09 7.334986452e-10 9.496256747e-10 7.111043126e-10 3.641130816e-10 3.220447723e-10 1.766300047e-10 1.711965181e-10 9.912355545e-11 1.199221924e-11 9.845437713e-12 5.912223004e-14 4.34322544e-14 1.249911775e-14 1.661834991e-15 1.243643382e-15 0 5.537552732e-18 9.427628322e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 5.966619982e-19 2.695972574e-18 1.141192998e-17 3.143070062e-17 2.009875936e-16 6.305656196e-15 4.385292826e-14 1.457013219e-13 4.086199313e-13 2.567933188e-11 1.347696288e-11 9.731944159e-11 1.483205682e-10 2.850087288e-10 3.336777185e-10 5.509306056e-10 5.968887249e-10 1.210458508e-09 1.099078787e-09 1.026497669e-09 1.331809442e-09 1.42700599e-09 1.304512647e-09 1.667310009e-09 1.692463051e-09 1.952320195e-09 1.785934496e-09 2.002115976e-09 2.026152645e-09 2.165187777e-09 2.332354421e-09 2.519051724e-09 2.321703087e-09 2.537171941e-09 2.318083109e-09 2.541936166e-09 2.559023989e-09 2.696321445e-09 3.004561251e-09 2.714543188e-09 3.124412077e-09 2.933840024e-09 2.931286679e-09 3.086488146e-09 3.315471254e-09 3.094168387e-09 3.406906385e-09 5.416141401e-09 3.539762793e-09 3.661830012e-09 3.790836196e-09 5.259245835e-09 4.399262786e-09 4.369910739e-09 4.3493496e-09 4.811964203e-09 5.187198308e-09 5.829007543e-09 4.033994636e-09 4.802891757e-09 4.886464595e-09 5.460457437e-09 4.754925577e-09 4.56428355e-09 4.434895619e-09 4.997781409e-09 3.827408355e-09 3.789969126e-09 4.954849672e-09 4.539500793e-09 4.80384274e-09 3.410996238e-09 4.196444001e-09 2.955665038e-09 3.335421976e-09 3.832134439e-09 2.951357126e-09 3.421855116e-09 3.233905928e-09 3.398973536e-09 2.486434867e-09 2.620581122e-09 3.098287819e-09 3.469178611e-09 2.891076566e-09 2.913927509e-09 2.589692192e-09 3.194460202e-09 2.684740647e-09 3.362696938e-09 3.660110347e-09 2.48873818e-09 3.801354972e-09 2.975732229e-09 3.673306923e-09 3.142604731e-09 3.361025907e-09 2.861910405e-09 2.790242867e-09 3.379806503e-09 3.051935247e-09 3.561371095e-09 3.2248535e-09 3.73439617e-09 4.087238849e-09 4.847030023e-09 4.066179393e-09 4.450712292e-09 4.397174454e-09 5.602132976e-09 5.059631984e-09 5.503894993e-09 4.075505238e-09 4.834616492e-09 4.409948991e-09 5.702362075e-09 6.246139039e-09 5.939257336e-09 3.226652214e-09 4.936570504e-09 4.674014299e-09 4.264703025e-09 5.15769545e-09 4.541279706e-09 4.083943982e-09 3.413761707e-09 3.422380206e-09 4.120701597e-09 2.937305096e-09 3.204303993e-09 3.027737597e-09 3.103685503e-09 2.951951857e-09 3.078943779e-09 3.129668118e-09 2.88810664e-09 2.708492506e-09 2.593831848e-09 2.553111648e-09 2.564314885e-09 2.570649921e-09 2.228603143e-09 2.261048005e-09 2.289128068e-09 2.219531437e-09 1.831309178e-09 1.989090644e-09 1.769341487e-09 2.08900414e-09 1.760843827e-09 1.634060765e-09 1.394603162e-09 1.328950229e-09 1.255261103e-09 1.414592354e-09 9.867629088e-10 9.912683148e-10 7.783134403e-10 4.98509817e-10 1.965548096e-10 1.585648233e-10 2.362223527e-10 1.0918969e-10 2.189076382e-11 6.085868648e-12 1.471121652e-13 8.673078858e-13 3.195046138e-15 9.702042608e-16 6.896523042e-16 4.534945996e-17 1.836559518e-17 1.70598692e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.15282461e-19 1.297533411e-16 2.019500692e-17 7.172432434e-15 1.725720369e-14 6.589085851e-15 4.694996253e-13 7.559449132e-12 3.42390847e-11 1.507119994e-10 5.109061188e-11 1.442956421e-10 2.864799468e-10 4.151329558e-10 8.854718273e-10 1.101092687e-09 1.09978775e-09 1.400294676e-09 1.152363033e-09 1.513348194e-09 1.385667904e-09 1.644501183e-09 1.668655767e-09 1.996258641e-09 1.897041919e-09 2.212869882e-09 2.056903285e-09 2.184682554e-09 2.422288802e-09 2.572051252e-09 2.528764969e-09 2.395890305e-09 2.303477093e-09 2.450118847e-09 2.967710538e-09 2.879884648e-09 2.883584104e-09 2.868988633e-09 3.091268722e-09 2.733715686e-09 3.06204955e-09 3.241727611e-09 3.619341792e-09 3.173993702e-09 5.032516365e-09 3.697508409e-09 4.256768917e-09 4.942646652e-09 4.766528922e-09 4.05831371e-09 4.813799867e-09 4.439722627e-09 4.650405524e-09 4.398065841e-09 4.511048173e-09 4.598649646e-09 4.826878292e-09 6.097059076e-09 4.532519124e-09 4.537171179e-09 4.990544095e-09 4.2179487e-09 5.87247965e-09 4.467321343e-09 4.29044049e-09 5.108313713e-09 4.949448948e-09 4.903283608e-09 4.248260536e-09 3.196105363e-09 3.809074088e-09 3.741832531e-09 3.59194678e-09 3.686535451e-09 4.021632325e-09 3.250819923e-09 3.534946911e-09 2.395744666e-09 3.544330279e-09 2.940779006e-09 2.62309105e-09 2.85744367e-09 2.754996822e-09 3.221280968e-09 2.924194377e-09 2.904849316e-09 3.148454458e-09 2.714175965e-09 2.718955179e-09 3.475430757e-09 3.503333547e-09 2.569097469e-09 3.026920428e-09 3.360931508e-09 2.724170357e-09 3.484690628e-09 2.835986284e-09 3.363456924e-09 3.700541099e-09 3.523012365e-09 3.603377865e-09 4.289119108e-09 3.968290593e-09 5.40833742e-09 5.359652755e-09 5.286651791e-09 5.316151307e-09 4.480537438e-09 4.971194351e-09 4.128050948e-09 5.517730939e-09 4.61816095e-09 4.293016496e-09 3.357685267e-09 5.565449556e-09 4.894094095e-09 5.409965827e-09 4.841312121e-09 4.262879369e-09 4.182796795e-09 3.778746899e-09 3.346697248e-09 4.146599068e-09 4.315926954e-09 3.819269408e-09 3.069733145e-09 3.198587711e-09 3.325661086e-09 3.250616998e-09 3.079352547e-09 2.88748011e-09 2.973862784e-09 2.924924485e-09 2.720377753e-09 2.905971953e-09 2.507218998e-09 2.734801718e-09 2.407501669e-09 2.545233868e-09 2.065483512e-09 2.345974431e-09 2.130211613e-09 2.313505624e-09 2.357937581e-09 2.090861065e-09 1.95611032e-09 1.979149426e-09 1.790370974e-09 1.756440881e-09 1.399452623e-09 1.327991447e-09 1.557602347e-09 1.147672571e-09 1.31040812e-09 1.09753151e-09 7.917670636e-10 4.438823557e-10 2.2606582e-10 9.824247727e-11 3.247640278e-10 1.441514544e-10 3.900358871e-11 3.940880287e-13 3.429672179e-12 4.021862481e-14 3.214604529e-14 7.544805606e-16 1.57175806e-16 2.09966791e-16 3.792115562e-14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 7.831660717e-19 2.355919465e-18 7.153569628e-19 5.57422422e-17 4.448369675e-15 4.914659714e-16 3.307606189e-14 5.254999106e-14 7.659886401e-13 3.875061823e-12 6.684397081e-11 9.872088587e-11 1.914545016e-10 2.416322346e-10 2.069448227e-10 7.28008133e-10 4.20235458e-10 1.028574464e-09 1.179324662e-09 1.319327368e-09 1.293067943e-09 1.602889763e-09 1.358061096e-09 1.716740439e-09 1.505094798e-09 1.978802706e-09 2.024522337e-09 2.220680827e-09 2.078901078e-09 2.50035182e-09 2.398740769e-09 2.165439753e-09 2.506870617e-09 2.498541254e-09 2.703517172e-09 2.6605991e-09 2.893659277e-09 3.095021393e-09 2.85461689e-09 3.107821875e-09 2.730350299e-09 2.997164746e-09 2.714383592e-09 3.017064472e-09 3.295871731e-09 3.297880534e-09 3.43945511e-09 4.58921905e-09 4.180933399e-09 4.134374747e-09 4.51790673e-09 4.748116947e-09 4.635028887e-09 4.531995398e-09 5.501106523e-09 4.846889022e-09 4.284789189e-09 4.6690363e-09 7.791731771e-09 5.628447915e-09 4.409009527e-09 5.69768912e-09 4.721469378e-09 5.708281204e-09 3.808650719e-09 4.291799596e-09 3.915733147e-09 3.261348285e-09 4.357186148e-09 4.748754534e-09 3.366055012e-09 4.281435954e-09 4.110061351e-09 3.714141407e-09 3.10027177e-09 3.808102846e-09 3.66565604e-09 3.247610953e-09 3.014511013e-09 3.528757827e-09 2.879629137e-09 2.716951619e-09 3.218395516e-09 2.81200248e-09 2.928414068e-09 3.197989006e-09 2.906379482e-09 2.79402195e-09 2.92001276e-09 3.117525207e-09 3.130532657e-09 2.820869082e-09 3.120751239e-09 3.490684876e-09 3.379413271e-09 2.912253908e-09 2.822284129e-09 3.710109971e-09 3.203569728e-09 3.130808887e-09 3.884974811e-09 2.937938643e-09 4.204320176e-09 4.144898708e-09 4.02215999e-09 3.851537257e-09 4.668279295e-09 4.550194015e-09 5.646692867e-09 4.963477009e-09 5.466830272e-09 5.377682787e-09 5.454837281e-09 5.054415531e-09 3.978845644e-09 6.253740317e-09 4.397666246e-09 6.129510579e-09 4.580860942e-09 5.330867022e-09 4.286551517e-09 4.766466435e-09 4.80302401e-09 4.500412839e-09 3.977566251e-09 4.070541355e-09 4.821981426e-09 4.544110728e-09 3.239591647e-09 2.896192016e-09 3.380017311e-09 3.082517707e-09 2.901530884e-09 2.862962912e-09 3.011226508e-09 3.04978112e-09 2.729347918e-09 2.910800342e-09 2.05348678e-09 2.539621112e-09 2.54645498e-09 2.290835233e-09 2.486087004e-09 2.168872521e-09 2.117317092e-09 2.466011475e-09 1.952328071e-09 1.910249899e-09 1.737653182e-09 1.748446558e-09 1.739449222e-09 1.586847821e-09 1.25509093e-09 1.434796885e-09 1.257078137e-09 1.10254592e-09 9.370370973e-10 8.932446852e-10 3.943318505e-10 2.042999189e-10 2.010044118e-10 6.852935374e-11 6.023784462e-11 2.051608191e-13 3.149971709e-12 1.389755634e-13 3.012822973e-13 2.085407586e-14 1.553652225e-14 1.306143564e-17 0 1.164085597e-17 4.311279884e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.569786736e-18 2.173521502e-16 4.102076716e-17 1.968045404e-16 8.007620918e-14 7.366727531e-15 1.124020778e-12 3.902221472e-12 9.694278553e-11 1.405952219e-10 1.062831302e-10 2.509389375e-10 2.636583106e-10 5.545038779e-10 6.199155378e-10 9.713104191e-10 1.376297648e-09 1.523988775e-09 1.600574516e-09 1.731906353e-09 1.860989602e-09 1.660235358e-09 1.650398192e-09 1.895057484e-09 2.139360687e-09 1.825483088e-09 2.161294675e-09 2.040642405e-09 2.325438133e-09 2.592572472e-09 2.609806512e-09 2.590238674e-09 2.592308999e-09 2.629293437e-09 2.720984308e-09 2.74788431e-09 2.896381626e-09 2.907422234e-09 2.951106965e-09 2.769352844e-09 3.03994971e-09 3.199067956e-09 3.593123841e-09 3.402188811e-09 4.014822907e-09 4.18268977e-09 3.443479955e-09 4.989602492e-09 4.682393246e-09 4.402742787e-09 4.589786058e-09 5.133435312e-09 4.505338389e-09 6.169651123e-09 5.411401276e-09 3.846537185e-09 5.618717828e-09 4.819816687e-09 5.110637971e-09 6.093265025e-09 5.309607286e-09 5.274815746e-09 4.470865201e-09 5.052954143e-09 4.764634835e-09 4.775017897e-09 4.425848879e-09 4.94156914e-09 3.804725938e-09 3.820384743e-09 4.136183223e-09 3.922628436e-09 3.781144955e-09 2.091497361e-09 3.808099228e-09 3.624483932e-09 2.69047835e-09 2.942392222e-09 3.089612264e-09 3.190733282e-09 2.821472664e-09 3.62564593e-09 2.991210693e-09 2.95727719e-09 2.927930423e-09 3.741643921e-09 2.681053497e-09 2.96829702e-09 2.858877807e-09 3.27948367e-09 3.437869649e-09 2.314950268e-09 3.225497688e-09 3.349690938e-09 3.605326864e-09 3.511231763e-09 3.645402752e-09 3.384656428e-09 3.397361394e-09 4.064714403e-09 3.869779318e-09 4.588730872e-09 3.961819503e-09 4.409115188e-09 5.544422104e-09 5.850997917e-09 4.762100592e-09 4.771848794e-09 3.814448104e-09 3.744492386e-09 6.378243841e-09 4.046291526e-09 4.150874133e-09 4.530148281e-09 5.832625705e-09 4.854784531e-09 4.318917854e-09 3.230462582e-09 5.496463627e-09 4.998999348e-09 4.005424392e-09 3.857758633e-09 4.754839061e-09 4.126712858e-09 3.874077155e-09 3.045118577e-09 3.335899696e-09 3.147429152e-09 3.16172743e-09 3.188178967e-09 3.131134651e-09 3.025149321e-09 2.730191882e-09 2.797090304e-09 2.80277977e-09 2.662382036e-09 2.810105347e-09 2.733103313e-09 2.580605516e-09 2.38837587e-09 2.377360897e-09 2.152267591e-09 2.230691196e-09 1.942441524e-09 2.188051817e-09 2.146509979e-09 1.887901987e-09 1.664053922e-09 1.553126727e-09 1.991285921e-09 1.551190128e-09 1.576903078e-09 1.343210574e-09 1.336497014e-09 8.423652374e-10 6.721982857e-10 1.967994731e-10 4.004093044e-10 3.065781478e-10 2.33121839e-10 1.083229439e-10 1.425488598e-10 3.528457776e-12 5.985782448e-14 2.255870439e-13 8.590627228e-14 1.153592955e-14 4.80291218e-17 9.394443078e-17 2.163056652e-17 1.87821886e-19 8.374127495e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 5.137652218e-19 4.422187335e-18 3.724269932e-17 3.639757321e-17 6.683413264e-17 5.34349369e-15 1.664135853e-13 2.410131033e-13 4.047352394e-12 8.519530595e-12 6.510583352e-12 2.659004607e-10 2.151191912e-10 2.06684051e-10 2.750238395e-10 3.57498671e-10 8.989013348e-10 1.142683065e-09 1.100427272e-09 1.121048016e-09 1.661632453e-09 1.513843363e-09 1.487316153e-09 1.739799614e-09 1.876669376e-09 1.795205529e-09 2.1601414e-09 1.876146449e-09 2.033723177e-09 2.283644875e-09 2.285710661e-09 2.362566702e-09 2.514902886e-09 2.921964947e-09 2.26135508e-09 2.803063236e-09 2.765900815e-09 2.744846396e-09 2.796954978e-09 2.718972659e-09 2.914232166e-09 3.356536709e-09 3.11746324e-09 3.153876357e-09 3.627420184e-09 3.310522101e-09 3.282829057e-09 4.40010139e-09 3.27025246e-09 5.169599991e-09 5.316260461e-09 3.568532686e-09 4.718305329e-09 4.758259446e-09 4.618013389e-09 4.496319659e-09 5.47589804e-09 4.133905735e-09 5.947501164e-09 4.223764587e-09 4.079513745e-09 6.643564257e-09 6.300805831e-09 5.000535424e-09 5.934267117e-09 4.930426225e-09 5.661590262e-09 4.535283401e-09 5.199816498e-09 4.833628028e-09 3.921602551e-09 4.167032829e-09 3.901082922e-09 3.319905812e-09 3.662142008e-09 3.771508656e-09 2.806769755e-09 3.016979953e-09 3.851114305e-09 3.290370302e-09 3.063713221e-09 3.365472558e-09 3.277490213e-09 3.564377615e-09 2.870962202e-09 3.470675297e-09 2.903333164e-09 3.06882446e-09 3.639229652e-09 3.729445774e-09 3.240950696e-09 3.096591335e-09 3.155561632e-09 3.415012134e-09 3.017482857e-09 3.16905802e-09 2.655001463e-09 3.686069565e-09 4.115827148e-09 3.875974993e-09 3.505726505e-09 3.872911092e-09 3.561905797e-09 4.297716592e-09 4.74820441e-09 4.648420679e-09 3.556866182e-09 4.642698414e-09 5.082044819e-09 5.004915061e-09 4.050365581e-09 4.463127727e-09 5.373855413e-09 4.186289028e-09 4.548429641e-09 5.474502577e-09 5.129102261e-09 5.43536237e-09 5.541160553e-09 5.805469101e-09 3.474465191e-09 4.421679122e-09 3.894852467e-09 4.998722427e-09 3.278330059e-09 4.114706619e-09 4.011902665e-09 3.815092158e-09 3.382196179e-09 3.065554495e-09 3.244725152e-09 3.046554473e-09 3.259019758e-09 3.064766058e-09 2.874076762e-09 2.926738767e-09 2.627927478e-09 2.842789063e-09 2.813519399e-09 2.737121471e-09 2.560916026e-09 2.440840002e-09 2.3764327e-09 2.358403225e-09 2.210085016e-09 2.02520289e-09 1.99347628e-09 1.867502887e-09 1.825770242e-09 1.812280461e-09 1.626050543e-09 1.498535212e-09 1.397320367e-09 1.520729565e-09 1.279245361e-09 1.159156622e-09 9.290876969e-10 8.594463882e-10 4.826003824e-10 2.450734898e-10 5.858863789e-11 1.14142387e-10 1.004658322e-11 1.252831683e-11 2.612039838e-12 1.82829617e-12 1.092701784e-14 3.140649556e-14 3.913973546e-15 5.179074329e-16 6.70276814e-17 2.579381501e-17 6.164442136e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.903337161e-19 7.004715655e-17 4.711982589e-17 1.689538077e-15 3.961948591e-16 8.159427261e-15 5.090031337e-15 1.487242943e-11 8.101482758e-12 3.554280532e-12 1.351896932e-10 2.47769063e-10 1.93360833e-10 3.594585108e-10 5.816450225e-10 9.210118208e-10 9.972477165e-10 9.775196179e-10 1.169015896e-09 1.103202066e-09 1.671402989e-09 1.676240661e-09 1.897515792e-09 1.750038959e-09 1.691292374e-09 1.907130842e-09 2.047392034e-09 2.168363885e-09 2.450313453e-09 2.428672783e-09 2.362664855e-09 2.266320034e-09 2.40647853e-09 2.656820726e-09 2.554097376e-09 2.629855537e-09 2.973603857e-09 2.947318356e-09 2.694524692e-09 3.206725934e-09 2.824946473e-09 3.125965927e-09 3.240588783e-09 3.038222294e-09 3.469607921e-09 3.735998234e-09 4.359240596e-09 4.553885752e-09 4.200497528e-09 4.321802959e-09 4.11263407e-09 4.840865943e-09 5.317715718e-09 4.509583313e-09 4.570086148e-09 3.217788249e-09 4.347953329e-09 4.901112629e-09 5.48801225e-09 5.299303629e-09 4.669114177e-09 4.547590438e-09 4.099254792e-09 4.60469107e-09 5.386766425e-09 4.26188401e-09 4.522341936e-09 4.308614672e-09 4.819415521e-09 4.718132851e-09 3.540296906e-09 4.313170133e-09 3.789638805e-09 3.417122446e-09 4.031987887e-09 4.145110152e-09 3.402081968e-09 3.763017757e-09 3.582920615e-09 3.037876362e-09 2.917852969e-09 2.973121829e-09 2.779741548e-09 3.170298805e-09 2.660165784e-09 3.253156104e-09 3.256784478e-09 3.074455876e-09 3.065663536e-09 2.763880198e-09 2.783425787e-09 3.347919817e-09 3.013199714e-09 2.786394469e-09 3.346125419e-09 3.406119213e-09 3.138335542e-09 3.607930804e-09 3.727970434e-09 3.992894501e-09 4.926397123e-09 4.019635562e-09 4.319007208e-09 3.102275154e-09 4.229527108e-09 4.078999638e-09 5.35981127e-09 4.640079344e-09 4.674066852e-09 3.493263485e-09 5.745832037e-09 4.498055588e-09 5.626520339e-09 5.323349015e-09 3.740698989e-09 6.528529245e-09 5.523199993e-09 5.928199742e-09 5.058532506e-09 5.040119945e-09 4.045864781e-09 5.039049173e-09 4.399522019e-09 4.416845853e-09 4.246147917e-09 4.017414439e-09 3.274207571e-09 3.361161895e-09 3.084306559e-09 3.269954557e-09 3.198657275e-09 3.224676274e-09 2.891218034e-09 2.880533389e-09 2.842386066e-09 2.921573563e-09 2.549398157e-09 2.586634534e-09 2.621677726e-09 2.441312137e-09 2.353108329e-09 2.320327268e-09 2.579116646e-09 2.118483328e-09 2.255111386e-09 2.375400343e-09 2.124224266e-09 2.148061847e-09 1.829524829e-09 1.789766536e-09 1.796278989e-09 1.590501242e-09 1.400926864e-09 1.134626361e-09 1.136226883e-09 1.063377852e-09 5.87007023e-10 4.015962811e-10 2.669807024e-10 2.390586398e-10 4.748023521e-10 1.633784775e-10 3.127591372e-11 6.841210018e-12 3.590205041e-12 7.069219809e-13 2.85009919e-15 1.493536375e-15 3.341544971e-17 3.647448444e-16 1.389047228e-17 8.742432183e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.89913133e-19 5.837130609e-18 8.692258408e-17 6.206452627e-17 2.020004037e-15 2.848430005e-14 2.505934104e-13 1.660065545e-13 5.965046169e-12 4.130225667e-11 1.268984033e-10 1.394404258e-10 2.040750521e-10 3.022830544e-10 5.619105774e-10 8.853354537e-10 8.302616174e-10 1.26458766e-09 1.281847335e-09 1.488283379e-09 1.638384867e-09 1.948730997e-09 1.606263198e-09 1.658622856e-09 2.131784752e-09 2.231577733e-09 1.739083128e-09 2.472795503e-09 2.063904639e-09 2.331587176e-09 2.365671524e-09 2.638297442e-09 2.670320639e-09 2.490658345e-09 2.73779125e-09 2.627132925e-09 2.591158216e-09 2.853215328e-09 2.999379043e-09 2.92929819e-09 3.188065178e-09 3.050120088e-09 3.262083753e-09 3.457123557e-09 3.842247432e-09 3.741747341e-09 3.966548687e-09 5.048957645e-09 3.858958473e-09 4.14215531e-09 4.541432031e-09 4.235781537e-09 4.780695145e-09 4.970877696e-09 4.783584055e-09 5.046860286e-09 4.690170458e-09 5.454000054e-09 4.063548366e-09 5.00957666e-09 5.589641729e-09 5.293141209e-09 4.27025302e-09 5.157805315e-09 5.765704616e-09 5.804389757e-09 4.790174993e-09 4.581041006e-09 4.274744531e-09 4.321189041e-09 3.036978375e-09 4.726014123e-09 3.518101454e-09 3.915456016e-09 3.452778555e-09 3.390272493e-09 3.17339772e-09 3.160681735e-09 3.883800413e-09 2.697345411e-09 3.442188439e-09 2.863804441e-09 3.498932046e-09 2.471632668e-09 2.770034171e-09 2.64418425e-09 3.003071785e-09 3.168196049e-09 3.043046554e-09 2.82838587e-09 3.063495197e-09 3.000466622e-09 2.674017552e-09 3.105154729e-09 4.065515449e-09 2.544061796e-09 3.418311089e-09 3.430108168e-09 3.846744766e-09 3.842527168e-09 4.169345529e-09 3.869090614e-09 4.609827002e-09 4.501635898e-09 3.989075483e-09 5.334360923e-09 5.304991571e-09 2.770901001e-09 5.103005509e-09 5.087363578e-09 4.412002093e-09 5.801198146e-09 5.265904094e-09 4.511195086e-09 4.603469756e-09 4.754387004e-09 4.268761052e-09 6.003120119e-09 4.844077916e-09 4.655333966e-09 4.570463754e-09 4.318481724e-09 3.816395808e-09 4.605242386e-09 3.79170874e-09 4.220126183e-09 3.158031643e-09 3.157431302e-09 3.209063899e-09 3.204449035e-09 3.066470756e-09 3.141394222e-09 2.924144689e-09 3.080183055e-09 3.013198342e-09 2.54928906e-09 2.842938669e-09 2.80309346e-09 2.667279298e-09 2.457592831e-09 2.733688339e-09 2.508673832e-09 2.376704361e-09 2.174712325e-09 2.170374854e-09 2.413847901e-09 2.114765785e-09 2.058699467e-09 1.765345235e-09 1.945651645e-09 1.558486517e-09 1.495840928e-09 1.536023355e-09 1.472113777e-09 1.203323923e-09 8.842408207e-10 6.996110591e-10 5.652031869e-10 3.60263639e-10 1.921948132e-10 1.515485757e-10 4.612716047e-11 7.895540692e-12 4.896557444e-12 1.684913324e-12 1.808482551e-13 8.134826324e-16 1.037425055e-15 1.252866644e-17 2.438189531e-17 9.03889009e-19 1.740282054e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 5.470964463e-36 1.126756479e-18 7.831569373e-18 9.768588816e-17 2.556741595e-16 2.076788633e-15 2.267777495e-15 1.13190076e-13 1.817182353e-13 2.71890495e-11 2.816061195e-11 2.394386892e-10 1.999404329e-10 1.345000342e-10 2.173374268e-10 5.685155139e-10 9.435896592e-10 9.048968438e-10 1.048643655e-09 1.415382555e-09 1.476847301e-09 1.526884551e-09 1.731939027e-09 1.589663054e-09 1.792755346e-09 2.211289048e-09 1.930957562e-09 1.784289293e-09 2.229504686e-09 2.358822029e-09 2.362578549e-09 2.524930658e-09 2.447027132e-09 2.553427156e-09 2.516585956e-09 2.793143047e-09 2.792177581e-09 2.771208602e-09 2.885566621e-09 3.219277757e-09 2.997164163e-09 2.991646766e-09 3.050124037e-09 3.443930516e-09 3.216635009e-09 3.587445782e-09 3.280404169e-09 3.553325355e-09 4.381811937e-09 4.642543679e-09 4.646921331e-09 5.01110169e-09 4.319947483e-09 4.618417754e-09 5.582624648e-09 5.206314084e-09 4.988368053e-09 5.331024519e-09 4.645960658e-09 5.013057576e-09 6.231666452e-09 6.666014989e-09 4.366181376e-09 5.613845506e-09 6.438006668e-09 5.365562783e-09 5.786356352e-09 5.041357545e-09 5.040848233e-09 4.121550678e-09 4.539358336e-09 3.218039597e-09 2.923191977e-09 2.374033209e-09 3.659172332e-09 4.110293239e-09 3.663770108e-09 3.377749722e-09 3.163889421e-09 3.29764206e-09 3.116771519e-09 3.173819337e-09 2.784928962e-09 2.95082797e-09 3.135075675e-09 3.108310422e-09 2.740370779e-09 3.323785819e-09 3.145746711e-09 3.424188932e-09 2.897108881e-09 2.606903814e-09 2.627782611e-09 3.328608125e-09 3.077319437e-09 2.858337457e-09 2.637606994e-09 2.675427642e-09 2.890589442e-09 3.616969758e-09 3.978180665e-09 3.015557444e-09 4.072694347e-09 4.766752016e-09 3.348090781e-09 4.085990897e-09 4.445678733e-09 4.631478684e-09 4.103676983e-09 4.502929403e-09 5.768026566e-09 6.544450569e-09 6.119620663e-09 5.334668492e-09 4.631217803e-09 4.97743076e-09 5.888399366e-09 4.156753073e-09 5.757895365e-09 4.869828267e-09 3.914536557e-09 6.157425975e-09 4.130401768e-09 4.666788329e-09 4.015590577e-09 3.228133087e-09 4.238421779e-09 3.118942837e-09 3.212331525e-09 3.025692918e-09 3.144965017e-09 3.093253534e-09 3.039512497e-09 3.081154549e-09 3.129072688e-09 2.738023317e-09 2.623966197e-09 2.710137535e-09 2.733341567e-09 2.840579927e-09 2.395735781e-09 2.495207979e-09 2.562375032e-09 2.378712306e-09 2.317102696e-09 2.308745885e-09 1.989758181e-09 2.081994754e-09 2.112643145e-09 1.738521798e-09 1.839931746e-09 1.554599046e-09 1.775477565e-09 1.253993111e-09 1.238077869e-09 1.289755611e-09 9.015366678e-10 8.024762791e-10 5.301740388e-10 2.461540327e-10 3.100368723e-10 2.463441183e-10 3.676694861e-10 3.249360768e-11 3.558897989e-11 1.230338044e-12 5.747553536e-14 4.680426583e-14 5.587792991e-15 2.644855422e-16 4.148219943e-17 4.77057622e-18 1.018171674e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.680971343e-18 2.077903081e-17 3.656861744e-17 1.392733489e-15 1.076233398e-15 1.996415815e-14 7.656264952e-13 3.168966629e-12 1.810423125e-11 2.576952555e-11 7.080625387e-12 1.33339801e-10 4.212621743e-10 2.083962446e-10 2.170042733e-10 8.328673517e-10 1.093349097e-09 1.105889398e-09 1.152120793e-09 1.233456336e-09 1.508971472e-09 1.663630931e-09 1.970533277e-09 1.727134151e-09 1.960465924e-09 2.042524886e-09 2.179759905e-09 2.33598246e-09 2.278006663e-09 2.34650651e-09 2.259079477e-09 2.443131071e-09 2.628028737e-09 2.674533214e-09 2.599669442e-09 2.766693774e-09 2.723219394e-09 2.917060521e-09 3.166251655e-09 3.118304291e-09 3.239152791e-09 2.962011699e-09 3.226084068e-09 3.119314344e-09 3.05831125e-09 3.367634924e-09 3.788180736e-09 4.630635905e-09 4.557290041e-09 4.174476688e-09 4.987757064e-09 4.471568584e-09 5.625006623e-09 5.422132183e-09 5.618486984e-09 3.411173562e-09 5.673325964e-09 5.509416448e-09 4.808296934e-09 5.911259244e-09 5.501426305e-09 3.862652959e-09 6.980337764e-09 4.437490744e-09 4.763831897e-09 4.556727534e-09 4.706654624e-09 3.990119263e-09 4.47350378e-09 4.809191208e-09 4.670030288e-09 4.023118595e-09 2.929740459e-09 3.506985604e-09 3.74039138e-09 3.245731296e-09 3.300821962e-09 3.331050336e-09 3.58564032e-09 2.898093235e-09 3.194472814e-09 3.00973089e-09 2.764836696e-09 2.66885765e-09 3.021306713e-09 3.074550497e-09 2.642379796e-09 2.959671124e-09 2.91484468e-09 2.746464069e-09 3.853344658e-09 3.303212943e-09 3.204244373e-09 4.106590986e-09 2.629622743e-09 3.092831081e-09 3.321478225e-09 3.817174291e-09 3.589167123e-09 4.167018394e-09 4.299514709e-09 4.280848315e-09 4.317299915e-09 5.452430339e-09 6.16017863e-09 5.592193332e-09 5.124162242e-09 4.46192052e-09 4.90684353e-09 4.326239942e-09 5.903326637e-09 6.143903016e-09 6.095953397e-09 4.159413529e-09 5.155465644e-09 5.004365141e-09 5.861315339e-09 5.782849999e-09 4.981526181e-09 6.051070086e-09 5.198715545e-09 6.607795106e-09 5.384661468e-09 5.485166154e-09 3.815277223e-09 3.206244086e-09 3.702857063e-09 3.352233072e-09 3.342658655e-09 3.235760319e-09 3.290389422e-09 3.212459462e-09 2.995176341e-09 2.88308058e-09 3.086409513e-09 2.969463454e-09 2.744405153e-09 2.626487951e-09 2.6059111e-09 2.769695436e-09 2.12296352e-09 2.327203191e-09 2.297065297e-09 2.194934533e-09 2.287862053e-09 1.950686593e-09 2.090436953e-09 1.808082796e-09 1.988847531e-09 1.667073569e-09 1.542353002e-09 1.425907618e-09 1.303297265e-09 1.315003697e-09 8.904050545e-10 6.377660229e-10 8.225228332e-10 4.76226268e-10 3.471493281e-10 3.422566924e-10 2.563125162e-11 2.71239594e-10 1.786093254e-10 1.409076915e-11 4.644976925e-14 1.705459041e-14 3.190517951e-15 1.755616545e-14 6.731801742e-17 6.282131327e-17 6.584217758e-19 6.549856934e-19 8.391786069e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 4.168385093e-19 1.698428905e-18 4.87217859e-19 4.724364891e-16 9.223004971e-16 2.947266989e-15 5.694830144e-16 1.607480966e-13 2.056270437e-13 5.105525454e-13 1.720884313e-11 3.322431287e-11 3.10872795e-10 1.68184766e-10 1.77808202e-10 6.068676491e-10 7.500248717e-10 7.557289075e-10 1.02789248e-09 1.200953327e-09 1.365029149e-09 1.485499935e-09 1.51422454e-09 1.693897947e-09 1.655795591e-09 1.687462532e-09 2.057162701e-09 1.711190489e-09 2.265967693e-09 2.295024518e-09 2.236808502e-09 2.5158795e-09 2.583489714e-09 2.652804354e-09 2.634318576e-09 2.834007561e-09 2.861311818e-09 2.709268871e-09 3.188319765e-09 2.686201223e-09 3.219630069e-09 2.888547109e-09 3.477581741e-09 2.931586361e-09 3.265327673e-09 3.40786333e-09 3.866606711e-09 3.44470565e-09 4.070623422e-09 5.062214321e-09 3.920157213e-09 4.526915697e-09 4.999277338e-09 3.882441365e-09 6.051262279e-09 4.445279448e-09 6.911539366e-09 5.591587264e-09 4.97965904e-09 4.602216415e-09 4.240717904e-09 5.298700764e-09 4.837665583e-09 4.846135243e-09 4.965980443e-09 5.033361752e-09 4.305598018e-09 5.236176035e-09 4.209414299e-09 4.616717814e-09 4.794025064e-09 4.246172642e-09 4.014515533e-09 3.287655983e-09 4.259433043e-09 3.356924316e-09 3.5083391e-09 2.939522366e-09 3.339895232e-09 2.958560549e-09 3.353254052e-09 3.638223435e-09 3.599090387e-09 3.623585375e-09 3.392556823e-09 2.719622782e-09 3.062510279e-09 3.133938766e-09 3.300529769e-09 3.085151333e-09 2.487838704e-09 3.278832592e-09 3.775992595e-09 2.66171691e-09 2.689883875e-09 3.183472762e-09 2.876573133e-09 2.416651943e-09 3.373038402e-09 4.139197272e-09 3.520717974e-09 3.420384735e-09 3.996986926e-09 4.239587838e-09 3.580832347e-09 4.377841526e-09 5.29047691e-09 4.330022707e-09 4.697719138e-09 4.839991232e-09 4.095899202e-09 4.654864547e-09 4.06782103e-09 4.850120416e-09 3.475538751e-09 5.642394644e-09 4.668004411e-09 5.064883415e-09 5.013253836e-09 5.119473214e-09 3.091559816e-09 4.167455382e-09 5.434900291e-09 5.631202676e-09 4.336014926e-09 4.011056929e-09 4.077708026e-09 4.469168256e-09 3.620907798e-09 3.269853403e-09 3.382606429e-09 3.361157969e-09 2.983989773e-09 2.920970218e-09 2.879036783e-09 2.872117085e-09 2.848626406e-09 2.680998957e-09 2.747719502e-09 2.700900467e-09 2.755464399e-09 2.396705783e-09 2.352954976e-09 2.095278609e-09 2.336802121e-09 2.268054981e-09 2.037223527e-09 2.002253792e-09 1.799324193e-09 2.175216379e-09 1.701070737e-09 1.461683211e-09 1.577519831e-09 1.258474027e-09 1.136327686e-09 1.082906725e-09 7.877664918e-10 7.874965463e-10 5.105948111e-10 2.134108276e-10 3.131736311e-10 3.177819784e-10 1.825878894e-10 6.969627483e-11 1.581895467e-11 2.651770514e-12 3.444868796e-13 1.225391399e-14 4.198911922e-15 6.754991754e-16 1.297864803e-16 3.841782081e-17 7.5960882e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.797123014e-18 1.862136515e-17 2.745157612e-18 7.278228988e-16 3.525348186e-15 5.522659777e-14 2.321604522e-13 3.647895873e-13 2.884330599e-12 9.913921425e-12 2.034123753e-11 1.539255787e-10 2.956651108e-10 1.927461192e-10 4.701569941e-10 7.598250528e-10 8.52332615e-10 1.05901588e-09 1.315958062e-09 1.084458938e-09 1.355313901e-09 1.598497465e-09 1.724886696e-09 1.881773248e-09 1.787991785e-09 2.021981868e-09 2.319086254e-09 2.241342438e-09 2.303532999e-09 2.436904603e-09 2.469418612e-09 2.715924635e-09 2.610847029e-09 2.426359727e-09 2.73087597e-09 2.659396275e-09 2.774911785e-09 3.196762897e-09 3.121810194e-09 3.203926055e-09 3.260737017e-09 3.327246126e-09 3.498060585e-09 3.262322737e-09 3.279546683e-09 3.422405695e-09 3.561226758e-09 3.420315799e-09 3.895350842e-09 5.004991645e-09 4.470660302e-09 4.639620678e-09 5.040825336e-09 5.335299815e-09 3.736680224e-09 5.905469711e-09 4.174011531e-09 4.735031227e-09 3.741996189e-09 4.555211662e-09 4.859102598e-09 5.491292003e-09 6.717886276e-09 4.714312266e-09 5.727851129e-09 4.586376013e-09 4.482155014e-09 3.719422309e-09 4.258383308e-09 4.054440357e-09 3.907044497e-09 4.53259235e-09 3.675878202e-09 3.438055791e-09 3.968554602e-09 3.275034469e-09 3.880728453e-09 3.266204488e-09 3.737879899e-09 2.986540023e-09 3.67559312e-09 3.118222552e-09 2.963562035e-09 3.102403894e-09 3.609383035e-09 4.007824227e-09 3.145268807e-09 2.778351918e-09 3.484516503e-09 3.097090166e-09 2.873199364e-09 3.337304819e-09 3.802875192e-09 4.032519749e-09 3.213819866e-09 3.746141551e-09 4.18471386e-09 3.497247138e-09 4.435365161e-09 4.101348309e-09 3.921516313e-09 4.089884296e-09 4.452886506e-09 5.159513209e-09 4.484038241e-09 4.679372925e-09 4.842738904e-09 4.948278538e-09 5.981057401e-09 4.390544661e-09 4.422864072e-09 5.931553916e-09 5.872388966e-09 5.213034102e-09 3.864261586e-09 4.924763058e-09 5.525342359e-09 5.529050463e-09 5.412062512e-09 3.552811895e-09 5.166746814e-09 3.856072451e-09 5.009721482e-09 4.303031302e-09 4.027600534e-09 4.22565361e-09 4.174487686e-09 3.24126252e-09 3.506367938e-09 3.139201722e-09 2.98450714e-09 3.318566765e-09 3.068848329e-09 2.933595288e-09 2.682875319e-09 2.748395329e-09 2.926048793e-09 2.667730646e-09 2.597131362e-09 2.569039923e-09 2.529017171e-09 2.569028896e-09 2.229303197e-09 2.117247905e-09 2.239036602e-09 1.947211978e-09 2.081175253e-09 2.189719463e-09 1.749128011e-09 1.891423586e-09 1.692613181e-09 1.562051933e-09 1.387025886e-09 1.271337533e-09 1.089259008e-09 8.739344705e-10 8.819128358e-10 5.062281397e-10 3.010908423e-10 3.574838847e-10 2.639693222e-10 2.309440027e-10 6.63571215e-11 9.921565075e-13 3.405153472e-13 1.466292998e-13 1.188658172e-13 9.390746871e-16 6.552789877e-16 1.291712992e-16 1.31226547e-17 2.243829602e-18 5.297487412e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.994871651e-18 2.804364119e-17 1.163449833e-16 4.350193755e-18 6.382919635e-16 6.699722427e-14 2.117135134e-14 9.798387665e-13 2.137620809e-11 7.203700275e-11 2.022650549e-10 3.143610058e-10 4.074540453e-10 2.334327204e-10 6.573277956e-10 9.445063889e-10 1.046751015e-09 1.200807291e-09 9.37397997e-10 1.383253763e-09 1.472943037e-09 1.602092876e-09 1.72747224e-09 1.731854718e-09 2.092008753e-09 1.924002599e-09 2.192621079e-09 2.371971143e-09 2.214009811e-09 2.199475952e-09 2.488259611e-09 2.344088081e-09 2.557656961e-09 2.550657598e-09 2.60303475e-09 3.110710338e-09 3.066083694e-09 2.987841963e-09 3.029946543e-09 3.261184082e-09 2.785142215e-09 3.100346318e-09 3.228410693e-09 3.708201087e-09 3.711172744e-09 4.437956884e-09 3.939264176e-09 4.778994964e-09 3.692006973e-09 3.508220829e-09 4.464211654e-09 5.12072984e-09 3.774832715e-09 5.20751363e-09 4.09273976e-09 5.429597001e-09 4.241118394e-09 6.093111228e-09 5.29431921e-09 6.283482202e-09 4.43558364e-09 4.505889548e-09 4.812669767e-09 5.40555494e-09 4.407355487e-09 5.165488421e-09 3.387330183e-09 4.184726233e-09 3.94961113e-09 4.32580257e-09 4.088978278e-09 2.991377543e-09 3.496934226e-09 3.072676748e-09 3.432481247e-09 3.220909051e-09 3.435280532e-09 3.23484364e-09 3.199466694e-09 2.690950867e-09 3.286573096e-09 2.802984229e-09 2.985081476e-09 3.012141664e-09 2.972140378e-09 3.201373761e-09 3.157596918e-09 2.887741015e-09 3.133706505e-09 2.985088448e-09 2.847343382e-09 2.974218081e-09 3.04848086e-09 3.165612101e-09 3.208488502e-09 3.789396331e-09 3.419594772e-09 4.205701845e-09 3.810461414e-09 3.834935661e-09 3.809560992e-09 4.494215928e-09 3.595652529e-09 4.558739035e-09 4.77730838e-09 4.188259156e-09 4.827358332e-09 4.381416022e-09 3.88421035e-09 6.478290982e-09 4.959711775e-09 5.182540502e-09 5.914822433e-09 4.610539366e-09 5.205096616e-09 5.714340396e-09 4.441810883e-09 5.515336887e-09 5.075461977e-09 4.515919536e-09 3.649372833e-09 4.411164075e-09 4.118751305e-09 3.784537541e-09 4.653528193e-09 4.10121085e-09 4.826033365e-09 3.193390323e-09 3.157128698e-09 3.2330349e-09 3.29250951e-09 3.203103862e-09 3.12622833e-09 3.029183719e-09 3.209365266e-09 2.92359277e-09 2.7862091e-09 2.762391039e-09 2.48717947e-09 2.537151423e-09 2.625744313e-09 2.363786239e-09 2.495570928e-09 2.235753758e-09 2.176771295e-09 2.272102916e-09 1.983623737e-09 1.61371361e-09 2.072928956e-09 1.585864795e-09 1.558851217e-09 1.474804889e-09 1.356887348e-09 1.3045772e-09 1.141097923e-09 1.074727739e-09 1.055842328e-09 4.793954316e-10 2.483608101e-10 3.108322575e-10 1.927958895e-10 1.404403237e-10 3.111291901e-11 1.185805461e-11 3.470172139e-13 2.664014872e-13 1.610408547e-14 3.886053469e-16 1.340364836e-16 1.26294232e-16 1.100738712e-17 5.304654902e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.287014047e-18 5.295776812e-19 7.055118779e-17 6.929096974e-17 6.196314576e-15 4.218758877e-14 3.189316421e-13 2.198076954e-12 7.122669024e-12 7.644382406e-12 1.93276092e-10 2.73176616e-10 3.549828784e-10 3.225684937e-10 4.963017413e-10 4.438283234e-10 8.774330079e-10 1.049069984e-09 1.433609587e-09 1.51560292e-09 1.508846351e-09 1.614668728e-09 1.865155245e-09 1.748187601e-09 2.034779844e-09 1.94530462e-09 2.034814314e-09 2.286468284e-09 2.350512275e-09 2.289261245e-09 2.524428753e-09 2.712909738e-09 2.881732957e-09 2.626416332e-09 2.546970219e-09 2.911094342e-09 2.858105517e-09 2.701923193e-09 2.84388589e-09 3.183794345e-09 2.905434219e-09 3.071694677e-09 3.343148192e-09 3.580544903e-09 3.545998092e-09 3.618317496e-09 3.361464672e-09 3.390514864e-09 4.401365713e-09 4.516529937e-09 4.29493476e-09 4.402839028e-09 4.502836932e-09 4.701009269e-09 4.198775767e-09 5.281328434e-09 5.519181972e-09 4.772984608e-09 5.291293552e-09 5.735284236e-09 5.331076608e-09 5.599363751e-09 4.196629293e-09 4.06445343e-09 4.179287758e-09 4.750097665e-09 4.586004656e-09 4.376642716e-09 4.603251149e-09 4.409899943e-09 4.367427144e-09 4.188843044e-09 3.986521095e-09 4.202053854e-09 3.343103426e-09 3.703428707e-09 3.548660344e-09 3.468217188e-09 2.461475663e-09 3.548897852e-09 3.197712528e-09 3.454821407e-09 3.070853679e-09 3.158341355e-09 3.191138879e-09 2.598668395e-09 2.846277204e-09 2.826438774e-09 3.087192973e-09 3.279516482e-09 2.881604326e-09 3.164116258e-09 3.106786935e-09 2.591592306e-09 3.355989797e-09 3.39091186e-09 3.287862598e-09 3.432415536e-09 3.592979858e-09 3.737620717e-09 4.659844113e-09 4.363652025e-09 3.953088234e-09 4.73559296e-09 4.112665002e-09 5.823365643e-09 5.436015949e-09 4.324011687e-09 5.176659836e-09 6.372667716e-09 4.278312712e-09 3.730224272e-09 3.967895488e-09 5.162972479e-09 5.183274042e-09 5.534154505e-09 5.470575022e-09 3.812864943e-09 5.746875805e-09 4.423970835e-09 4.212578542e-09 3.446362896e-09 3.73761636e-09 4.228866728e-09 4.618802185e-09 4.129745517e-09 3.32206959e-09 3.356282096e-09 3.335665479e-09 3.126291406e-09 3.055448488e-09 2.888720597e-09 2.896679773e-09 3.004953025e-09 2.809502315e-09 2.953595727e-09 2.856073142e-09 2.627785655e-09 2.57980098e-09 2.541182888e-09 2.226580531e-09 2.42106482e-09 2.392931422e-09 2.285310116e-09 2.44622953e-09 2.270754761e-09 2.103059031e-09 1.97600367e-09 1.617726153e-09 1.644012458e-09 1.839820816e-09 1.428428963e-09 1.307993381e-09 1.311383738e-09 1.133870904e-09 6.704602899e-10 6.535317885e-10 3.334517298e-10 3.99643321e-10 3.569736283e-10 2.100279152e-10 2.261789689e-10 1.032317945e-10 1.937468471e-11 6.556043727e-13 8.102100783e-14 1.342824807e-13 2.308914762e-16 6.426257258e-16 3.763219993e-17 2.675052007e-18 7.495428759e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.70224063e-19 5.780041638e-17 5.445779092e-17 9.497721935e-16 7.642009457e-15 1.518763697e-14 1.023340165e-12 2.004942929e-12 1.161417182e-11 1.296929571e-10 9.877744993e-11 2.699303833e-10 1.884826682e-10 2.152583945e-10 3.892769619e-10 8.612481812e-10 8.675158379e-10 1.135321672e-09 1.148940207e-09 1.339309727e-09 1.455028825e-09 1.553101283e-09 1.610507233e-09 1.76199937e-09 1.831022616e-09 2.098405306e-09 2.200304371e-09 2.277197622e-09 2.333626108e-09 2.48574535e-09 2.389434721e-09 2.706251943e-09 2.474898117e-09 2.6626784e-09 2.732139867e-09 2.77210172e-09 2.833325826e-09 2.968437803e-09 3.229368136e-09 3.217727293e-09 3.018738007e-09 3.19477561e-09 3.509811774e-09 2.998209124e-09 3.185705173e-09 3.490096637e-09 3.681337152e-09 3.536812641e-09 4.763466962e-09 3.853899007e-09 3.993651065e-09 4.680492429e-09 6.60558235e-09 4.824455342e-09 5.883337371e-09 5.797843075e-09 3.694812509e-09 5.392638417e-09 5.213330128e-09 6.469099684e-09 6.061617456e-09 5.7287938e-09 6.554249517e-09 4.837575768e-09 5.065354344e-09 5.153184133e-09 4.943049692e-09 5.194159142e-09 4.767174589e-09 4.01909433e-09 4.593019212e-09 3.837290867e-09 3.441555027e-09 3.856640347e-09 3.251407572e-09 3.742576502e-09 3.250400005e-09 3.085564283e-09 3.196029014e-09 3.21994056e-09 3.251270839e-09 3.102530555e-09 3.178809439e-09 3.310789911e-09 3.2514046e-09 3.428590289e-09 3.214865254e-09 3.788382585e-09 2.676156588e-09 3.699149836e-09 3.179862312e-09 3.09952158e-09 3.285637493e-09 3.024977765e-09 3.701544968e-09 3.417613834e-09 3.632225726e-09 3.264488404e-09 3.86483436e-09 3.288533615e-09 4.170684878e-09 3.398774786e-09 5.093334317e-09 4.487880769e-09 4.793488275e-09 4.784276665e-09 5.414966192e-09 4.44745424e-09 5.091149884e-09 5.159989961e-09 5.074305181e-09 4.175691951e-09 4.590562972e-09 5.699942504e-09 5.118052783e-09 5.321552231e-09 4.940687943e-09 5.795131689e-09 5.219998073e-09 3.655191635e-09 4.275088886e-09 3.651069134e-09 5.906730623e-09 4.283734191e-09 4.078770239e-09 3.52920365e-09 3.61085961e-09 2.794255353e-09 3.522801579e-09 3.139784328e-09 3.092259755e-09 3.167257841e-09 2.958309014e-09 2.914288691e-09 2.940402482e-09 2.866660487e-09 2.766718992e-09 2.675641225e-09 2.662257085e-09 2.512202397e-09 2.534501189e-09 2.34721948e-09 2.422554693e-09 2.498447043e-09 2.369316039e-09 2.106934672e-09 1.803516848e-09 1.757241954e-09 1.873529387e-09 1.797235175e-09 1.709633792e-09 1.556729618e-09 1.411079167e-09 1.357069636e-09 1.290238844e-09 8.212945841e-10 5.033026822e-10 4.042451791e-10 2.243398177e-10 1.167685931e-10 2.279279552e-10 4.189457666e-11 2.658083849e-11 4.369922532e-12 7.686039704e-14 5.551559148e-14 1.412827373e-14 1.061154714e-15 1.144314573e-15 5.439117003e-17 2.505412153e-18 9.667205195e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.71155213e-18 7.648754553e-18 7.56522706e-16 2.066153075e-16 1.373868406e-15 1.203488069e-13 4.000488312e-13 4.847692559e-13 1.919348615e-11 1.646786451e-11 1.676487007e-10 3.419181995e-10 3.023749158e-10 2.92140361e-10 4.8323413e-10 7.485792662e-10 7.510642172e-10 9.723212363e-10 1.254878442e-09 1.524564351e-09 1.385748243e-09 1.694234963e-09 1.795790641e-09 1.79110614e-09 1.730922683e-09 2.139906456e-09 1.982743325e-09 2.341358082e-09 2.189885872e-09 2.288917651e-09 2.473444945e-09 2.477510041e-09 2.494191222e-09 2.604562787e-09 2.586551486e-09 2.847604464e-09 2.629222425e-09 2.827079984e-09 3.074542608e-09 3.252614983e-09 3.171643267e-09 3.182803976e-09 3.177577211e-09 3.245731828e-09 3.392263292e-09 3.691911973e-09 4.070881537e-09 4.306883271e-09 4.243474656e-09 4.29748855e-09 4.844383233e-09 5.135723503e-09 5.128984058e-09 4.215976887e-09 5.134583466e-09 4.10437052e-09 3.994414068e-09 4.292811651e-09 6.109439331e-09 5.284039493e-09 3.220392905e-09 6.444965096e-09 3.928880518e-09 5.288284606e-09 5.421684618e-09 4.305676581e-09 5.257259045e-09 4.071482802e-09 4.302773571e-09 4.540901682e-09 4.277760024e-09 4.094269643e-09 3.249830399e-09 3.294474572e-09 3.530041554e-09 2.803659612e-09 3.15673143e-09 2.789688148e-09 2.406269953e-09 3.458162157e-09 2.657673357e-09 3.5312748e-09 3.35881234e-09 3.263918618e-09 2.67513952e-09 3.206537236e-09 3.198401903e-09 2.970046347e-09 3.339856475e-09 3.360924982e-09 3.331204406e-09 3.634721366e-09 3.01371767e-09 3.377217722e-09 3.819372121e-09 3.269003448e-09 3.800400665e-09 4.637683102e-09 3.021389177e-09 3.8917803e-09 4.214729261e-09 4.84570013e-09 4.67596308e-09 4.241287157e-09 4.052310067e-09 5.695174057e-09 5.108952221e-09 5.5909074e-09 4.394198245e-09 4.908513861e-09 5.936871622e-09 5.623619214e-09 4.908933714e-09 4.651975816e-09 4.106042326e-09 4.476959263e-09 3.382795088e-09 4.528595195e-09 4.874462173e-09 4.332561965e-09 4.263442986e-09 4.835054429e-09 4.533194437e-09 4.316846124e-09 4.214796743e-09 4.641948465e-09 3.530612654e-09 3.552187624e-09 3.245722178e-09 3.058121337e-09 3.027896661e-09 3.093822531e-09 3.262681947e-09 3.149788384e-09 2.663199002e-09 3.02425744e-09 2.862039028e-09 2.787501914e-09 2.684198587e-09 2.470999632e-09 2.686329975e-09 2.494723899e-09 2.48844999e-09 2.483587228e-09 2.186626949e-09 2.05782571e-09 1.995014427e-09 1.82991032e-09 2.075635706e-09 1.568259814e-09 1.718749803e-09 1.426758648e-09 1.439160942e-09 1.119092504e-09 1.149011758e-09 9.928512405e-10 8.441365664e-10 4.24500508e-10 1.947709609e-10 3.373198924e-10 9.469904671e-11 1.021649953e-10 1.954238112e-11 2.090147638e-12 7.276152061e-13 5.480825794e-13 3.594739184e-15 7.917009155e-16 4.635088918e-16 3.257784358e-18 3.410059408e-18 4.019045793e-18 5.511962491e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 4.125068956e-19 3.018755e-25 1.830917746e-18 4.826718888e-17 4.240420653e-16 1.437421101e-15 2.00665382e-14 6.965748619e-14 3.515888597e-13 5.594995837e-12 6.741714487e-13 1.157597099e-10 3.050282642e-10 2.584919223e-10 2.901846286e-10 4.419860965e-10 7.832799395e-10 9.216896123e-10 1.290210645e-09 1.198604222e-09 1.511764274e-09 1.881003175e-09 1.620704996e-09 2.063046708e-09 1.819669744e-09 1.867179255e-09 1.826416415e-09 2.17150541e-09 2.102674798e-09 2.216455023e-09 2.319234461e-09 2.489394967e-09 2.233564217e-09 2.557125562e-09 2.665104707e-09 2.683021973e-09 2.834460485e-09 2.68764377e-09 2.934348735e-09 3.174571407e-09 2.98459998e-09 3.023285845e-09 3.175994862e-09 3.224450447e-09 3.389411692e-09 3.101910414e-09 3.32945714e-09 3.852197946e-09 3.634474505e-09 4.473118236e-09 4.160474811e-09 5.357707039e-09 5.44981843e-09 5.155308642e-09 4.936896019e-09 4.871972686e-09 6.319714094e-09 4.789956861e-09 4.700562416e-09 4.581933791e-09 5.971696208e-09 4.149831857e-09 5.279840396e-09 5.950747889e-09 4.906989802e-09 4.510510014e-09 4.619241207e-09 3.969156787e-09 4.238713801e-09 4.352192072e-09 4.09175621e-09 4.070783388e-09 4.249601451e-09 3.120604325e-09 3.06389988e-09 2.838316903e-09 3.571104939e-09 3.266440881e-09 3.126556731e-09 3.037247862e-09 3.526728644e-09 2.945513792e-09 3.685443731e-09 3.545021481e-09 3.304782574e-09 3.02590751e-09 2.832520486e-09 3.345749632e-09 2.624395076e-09 3.066602538e-09 2.180262226e-09 3.34050387e-09 3.42467868e-09 3.264837039e-09 3.409871978e-09 3.242921849e-09 3.656262354e-09 3.378473281e-09 3.219466288e-09 3.74671106e-09 3.500370898e-09 3.170269037e-09 4.9288583e-09 4.188813479e-09 3.858594866e-09 4.372151344e-09 4.811006612e-09 3.960485665e-09 3.034428571e-09 4.248609586e-09 5.201334128e-09 5.675814778e-09 4.335876789e-09 4.413792706e-09 4.420603495e-09 4.482032439e-09 4.751215096e-09 5.047155443e-09 6.320120811e-09 6.243991899e-09 5.437637158e-09 4.420211602e-09 5.325203286e-09 4.962796696e-09 3.995920885e-09 4.285914585e-09 4.188564734e-09 3.596599817e-09 3.566206909e-09 3.25958547e-09 3.153558809e-09 3.262590011e-09 2.99420364e-09 3.061220039e-09 2.988545204e-09 2.833810263e-09 2.966796267e-09 2.650453767e-09 2.573561998e-09 2.667203488e-09 2.730613222e-09 2.332299473e-09 2.606993966e-09 2.528834708e-09 2.484467991e-09 2.269615274e-09 2.1585319e-09 1.98072478e-09 1.981462248e-09 1.79094659e-09 1.862419284e-09 1.531261283e-09 1.595070894e-09 1.440451515e-09 1.315025301e-09 1.148316844e-09 1.230808451e-09 7.208429417e-10 2.583308577e-10 2.523886507e-10 2.447414291e-10 1.814014017e-10 1.414642711e-10 1.994926166e-11 2.630048591e-12 6.79912869e-13 3.602864607e-13 1.009623472e-13 2.077214464e-16 7.978644096e-16 2.931710291e-16 0 8.23693801e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.510017589e-19 1.232667144e-18 5.933818787e-17 5.661786419e-17 5.458331209e-15 1.388878401e-14 3.23592941e-13 1.583190068e-13 7.359435137e-13 1.423126814e-11 2.105098784e-10 3.093552425e-10 2.249855569e-10 2.446471121e-10 6.720662167e-10 7.763953009e-10 1.157622536e-09 1.19257398e-09 1.132194777e-09 1.381135687e-09 1.6400086e-09 1.516962006e-09 1.73017468e-09 1.781170617e-09 1.979627509e-09 1.952849193e-09 2.022177378e-09 2.347199569e-09 2.289984678e-09 2.501714164e-09 2.342094428e-09 2.431209806e-09 2.570080062e-09 2.805302029e-09 2.775988414e-09 3.131761776e-09 3.003607495e-09 2.876353727e-09 2.807110265e-09 3.198437472e-09 2.888321484e-09 3.150684543e-09 3.363628881e-09 3.021829579e-09 3.428202612e-09 3.167004164e-09 4.373902067e-09 4.277027198e-09 4.55753827e-09 4.064421853e-09 3.413810437e-09 4.175713022e-09 4.093636123e-09 4.935315449e-09 5.945574929e-09 5.066242975e-09 4.934446256e-09 5.325721669e-09 6.407351774e-09 7.106602055e-09 5.488637534e-09 3.506037963e-09 5.03805956e-09 5.366087484e-09 4.420670635e-09 5.309056882e-09 4.498025987e-09 4.603278945e-09 4.943864354e-09 4.359093523e-09 3.375347772e-09 4.975939919e-09 3.538140184e-09 3.760961262e-09 3.517071363e-09 3.897608393e-09 3.449359522e-09 3.272192171e-09 3.319129405e-09 3.446517501e-09 3.025617034e-09 3.761352266e-09 3.141395425e-09 3.413320746e-09 2.923118987e-09 2.611987129e-09 3.403720002e-09 3.48480133e-09 2.590371036e-09 3.586071461e-09 3.134553308e-09 2.977412296e-09 3.180082285e-09 3.465716062e-09 3.238862061e-09 3.615534811e-09 3.347025076e-09 3.728228179e-09 3.809734545e-09 4.124838887e-09 3.775856932e-09 3.885812196e-09 4.280785744e-09 5.079157448e-09 3.905809288e-09 4.662475868e-09 4.848595965e-09 4.886739947e-09 4.713470048e-09 5.484482132e-09 4.319852355e-09 5.300090114e-09 5.388597284e-09 5.938010817e-09 5.011111677e-09 6.351387814e-09 6.313949219e-09 4.035026055e-09 4.839423041e-09 3.94656987e-09 5.59944186e-09 6.083193582e-09 4.741521991e-09 4.47783395e-09 3.989313766e-09 4.733635009e-09 3.791549209e-09 3.793020511e-09 3.497382561e-09 3.112498515e-09 3.080141884e-09 3.100030436e-09 2.812358381e-09 3.072437336e-09 2.923927116e-09 2.939812139e-09 2.523210154e-09 2.618153611e-09 2.769587012e-09 2.620721716e-09 2.41058404e-09 2.439453749e-09 2.359569849e-09 2.271946731e-09 2.207442471e-09 1.960458865e-09 1.8934445e-09 2.223203045e-09 1.69112286e-09 1.88191136e-09 1.45636379e-09 1.60200175e-09 1.589638147e-09 1.457747951e-09 1.360793367e-09 9.415156779e-10 6.366106767e-10 6.133113897e-10 2.460536468e-10 1.020472374e-10 2.576294554e-10 1.183555021e-10 1.219978144e-11 1.894596392e-12 6.033590846e-14 1.562110926e-13 5.843438573e-14 1.090492911e-14 1.8842496e-15 2.067210887e-17 1.026759686e-17 1.311833071e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 3.920210491e-19 1.686694955e-18 1.922786e-17 8.024505422e-18 7.759648504e-16 1.340202693e-14 1.693786165e-15 9.67698632e-14 6.495565308e-14 4.681451987e-13 9.525720163e-11 1.442304169e-10 1.194953762e-10 2.710201924e-10 3.045751047e-10 5.558143917e-10 8.961417926e-10 1.019743369e-09 1.188508517e-09 1.382254391e-09 1.291819327e-09 1.596833534e-09 1.624094008e-09 1.531962586e-09 1.891407609e-09 1.921476136e-09 2.133083746e-09 2.051609469e-09 2.377890192e-09 2.282652231e-09 2.145736377e-09 2.692273934e-09 2.443906554e-09 2.557987475e-09 2.824855345e-09 2.754166992e-09 2.830795562e-09 2.943059138e-09 2.911509531e-09 2.837209338e-09 3.013653868e-09 2.942509089e-09 2.866032988e-09 3.25302206e-09 3.388259586e-09 3.528182873e-09 3.791463671e-09 3.689594985e-09 4.0278645e-09 4.003434269e-09 5.481772641e-09 4.612778514e-09 4.422279316e-09 4.970260371e-09 5.080856683e-09 5.450483227e-09 5.292904289e-09 6.001137454e-09 4.008928084e-09 5.202142374e-09 4.571866048e-09 4.98999442e-09 6.679417317e-09 4.175432766e-09 4.73795028e-09 5.409988719e-09 5.585914558e-09 4.867879285e-09 3.811654366e-09 4.929889866e-09 3.783217819e-09 5.007172497e-09 3.583386474e-09 3.938442081e-09 3.774014456e-09 3.579868803e-09 3.092802378e-09 3.777483493e-09 2.838393101e-09 3.635831954e-09 2.984930659e-09 3.436883537e-09 2.748093943e-09 3.380015013e-09 3.116736803e-09 2.91672837e-09 3.182989032e-09 2.934794783e-09 3.228650687e-09 3.052664353e-09 3.479170953e-09 3.019606175e-09 3.194380476e-09 3.568075337e-09 3.447326399e-09 3.078853157e-09 3.117127134e-09 3.651378908e-09 3.813971005e-09 4.034569677e-09 2.739317513e-09 3.493025148e-09 4.190331808e-09 4.422259168e-09 4.348610325e-09 4.648114351e-09 5.37940711e-09 5.717966491e-09 4.509363582e-09 4.478929564e-09 5.188394403e-09 5.280624044e-09 5.155862248e-09 5.41393873e-09 5.744488762e-09 5.618383814e-09 4.45397044e-09 4.922736234e-09 4.451947485e-09 4.930533182e-09 4.865849835e-09 4.531977909e-09 4.61460429e-09 4.239912895e-09 4.247816764e-09 3.58731612e-09 3.93707974e-09 3.646863253e-09 4.214955182e-09 3.503330231e-09 3.387103594e-09 3.118242234e-09 3.074898639e-09 3.106420474e-09 2.797178036e-09 2.939273056e-09 2.94500734e-09 2.642214145e-09 2.923020356e-09 2.497514957e-09 2.618317471e-09 2.461580527e-09 2.446972317e-09 2.467181278e-09 2.167238621e-09 2.477076092e-09 2.236269483e-09 2.147718968e-09 1.891255938e-09 1.853585964e-09 1.729905082e-09 1.662207485e-09 1.718292284e-09 1.228792496e-09 1.417694268e-09 1.152249217e-09 9.498366133e-10 7.388131369e-10 6.12159318e-10 2.905679763e-10 4.50818146e-10 8.708804413e-11 2.534821254e-10 3.092401325e-11 8.308218464e-12 2.187168517e-12 1.974603555e-14 2.805661303e-14 3.613719363e-15 6.655962214e-16 1.228524859e-16 9.580483041e-18 2.659356271e-18 7.817625372e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.81975312e-22 7.169973963e-19 4.32109446e-18 7.919313061e-16 4.584767974e-15 1.254981507e-14 1.297766847e-13 3.644599687e-14 1.672636776e-11 1.322892051e-11 1.33810861e-10 2.945038759e-10 6.005098516e-11 2.081302865e-10 3.18091949e-10 4.928272835e-10 7.145420389e-10 1.014317742e-09 1.263210803e-09 1.345791122e-09 1.624697484e-09 1.732161693e-09 1.956637017e-09 2.094754065e-09 1.950906503e-09 1.986984209e-09 1.821077197e-09 2.137591743e-09 2.245080413e-09 2.32806677e-09 2.592776441e-09 2.647330451e-09 2.552150905e-09 2.568847695e-09 2.776523457e-09 2.849691934e-09 2.989450135e-09 3.045458878e-09 2.86687024e-09 3.080109716e-09 3.121906079e-09 3.289633755e-09 3.331002435e-09 3.058805993e-09 3.76504969e-09 3.308310043e-09 4.64092653e-09 4.28217967e-09 3.970522135e-09 3.508131801e-09 4.740473866e-09 4.617247004e-09 4.406798854e-09 4.142061866e-09 4.362990539e-09 5.506333848e-09 4.640939356e-09 4.385285824e-09 5.402972888e-09 4.534908197e-09 4.104532945e-09 4.902438556e-09 5.290658763e-09 4.359370706e-09 4.098644494e-09 6.160224926e-09 5.408552718e-09 3.597891734e-09 4.321086795e-09 3.85330804e-09 4.150810975e-09 3.81663584e-09 3.68482027e-09 3.555109139e-09 4.257272994e-09 2.919621001e-09 2.801755555e-09 2.979579328e-09 3.303440295e-09 2.629063274e-09 3.711084132e-09 3.533441485e-09 2.925056573e-09 3.929435681e-09 3.263596693e-09 2.682362194e-09 3.474868659e-09 2.467700097e-09 3.106829643e-09 1.988857901e-09 2.540328764e-09 3.304145005e-09 4.002616929e-09 3.430280445e-09 3.479255731e-09 3.118517349e-09 3.777956303e-09 3.768327416e-09 3.459671354e-09 3.455881197e-09 2.898411767e-09 4.500303023e-09 3.907432898e-09 4.31228098e-09 4.635716423e-09 4.614389905e-09 4.067696742e-09 5.110478241e-09 5.163428695e-09 3.313941623e-09 5.468116986e-09 4.800663613e-09 6.289004909e-09 4.517489455e-09 5.849760409e-09 5.003322129e-09 5.043045463e-09 4.922636146e-09 3.831035505e-09 4.383584421e-09 4.186850014e-09 4.369638748e-09 5.330551863e-09 5.046311596e-09 4.647258194e-09 3.286703145e-09 4.150007191e-09 3.24899837e-09 3.631293536e-09 3.107747e-09 3.139025065e-09 3.27376603e-09 3.02864364e-09 2.967314476e-09 2.90169984e-09 2.748138312e-09 2.702550687e-09 2.817144409e-09 2.673459323e-09 2.462945087e-09 2.464702157e-09 2.645154676e-09 2.070618855e-09 2.237477351e-09 2.255646442e-09 2.165104459e-09 2.031051473e-09 1.719360732e-09 1.694482055e-09 1.755161204e-09 1.328412808e-09 1.554302195e-09 1.474967667e-09 1.174346301e-09 1.385410093e-09 1.080293141e-09 6.51023666e-10 7.000856117e-10 3.127813826e-10 2.816444055e-10 1.637061019e-10 8.861780435e-11 2.553487673e-11 3.159249611e-12 4.214840306e-13 4.163489238e-14 7.358493523e-16 1.826974947e-14 1.877988123e-15 3.133505229e-17 5.497472219e-17 1.492814561e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 5.555771919e-19 2.611028445e-18 4.174968935e-29 1.969842911e-17 1.921960967e-16 6.747483731e-17 1.526765447e-14 8.249447003e-15 1.074252879e-12 1.005726444e-11 3.871933061e-11 8.662629085e-11 2.120763341e-10 1.007646551e-10 5.078886691e-10 6.701508869e-10 9.58981215e-10 4.740540928e-10 1.056799876e-09 1.196466474e-09 1.21291543e-09 1.901999667e-09 1.734418388e-09 1.766894736e-09 1.742603712e-09 1.901148901e-09 2.23745868e-09 2.153294962e-09 2.467143947e-09 2.282916212e-09 2.323429918e-09 2.562892233e-09 2.532134765e-09 2.426054841e-09 2.773739379e-09 2.946577169e-09 2.850639812e-09 2.808452704e-09 2.750405417e-09 2.903003773e-09 3.076063327e-09 2.94945042e-09 2.992764982e-09 3.231749262e-09 3.702281134e-09 3.492254536e-09 3.342130512e-09 4.378604162e-09 3.730108538e-09 5.831962718e-09 5.756011939e-09 4.394927308e-09 4.456189601e-09 5.231284054e-09 4.273433799e-09 5.009219359e-09 5.48134322e-09 5.752175139e-09 4.976226855e-09 4.194320973e-09 4.230243854e-09 6.318917414e-09 5.585598535e-09 5.379336557e-09 4.583801846e-09 4.865921454e-09 5.086193306e-09 3.624647376e-09 3.709412735e-09 5.197840165e-09 4.4000015e-09 3.787906492e-09 4.223425711e-09 4.113633108e-09 3.865626623e-09 3.285234192e-09 3.400613421e-09 3.184195319e-09 3.363802436e-09 3.297609983e-09 2.850513339e-09 2.735854478e-09 2.863701293e-09 3.363915847e-09 3.336404593e-09 3.076226975e-09 2.870991586e-09 3.565019291e-09 2.790705702e-09 3.360263994e-09 2.940346464e-09 3.340056703e-09 3.310511748e-09 3.432560436e-09 3.081089056e-09 3.682647745e-09 3.401225771e-09 3.223913003e-09 2.971916448e-09 4.240458187e-09 4.70408601e-09 4.454496007e-09 4.194733535e-09 4.179691561e-09 4.746221996e-09 3.967269939e-09 4.62030632e-09 4.378041441e-09 4.965057329e-09 5.241700534e-09 5.656236548e-09 5.005001445e-09 6.392047632e-09 4.285467269e-09 5.510885097e-09 4.680886033e-09 5.106413376e-09 5.188876718e-09 5.24903233e-09 5.061540781e-09 5.060250263e-09 5.935914523e-09 3.801385512e-09 3.210134095e-09 4.414591334e-09 4.2339958e-09 3.747072018e-09 3.388898053e-09 3.581945348e-09 3.374965201e-09 3.208481217e-09 2.985760734e-09 3.171915901e-09 3.157948803e-09 2.878086579e-09 3.117381257e-09 2.837707952e-09 2.857652231e-09 2.698488573e-09 2.641707624e-09 2.616624667e-09 2.448517384e-09 2.663187645e-09 2.51896092e-09 2.326901027e-09 2.201078686e-09 2.098560753e-09 2.108486435e-09 2.132532486e-09 2.039508743e-09 1.826472409e-09 1.858051937e-09 1.455233647e-09 1.603892108e-09 1.302485893e-09 1.154808008e-09 1.078624222e-09 7.253731399e-10 4.441888298e-10 1.406716771e-10 2.979096262e-10 3.099596485e-10 1.81702439e-10 4.842790411e-11 3.563634427e-12 1.252902231e-12 8.993630353e-15 3.397243526e-14 5.493087419e-15 1.023502049e-16 1.76365318e-16 8.084448789e-18 4.020881475e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.851693361e-19 1.807900438e-17 9.929779836e-17 2.492395455e-16 2.219903217e-15 8.11074517e-14 2.927002283e-13 1.655624581e-12 1.108139316e-11 1.700627217e-10 1.882743176e-11 2.280776686e-10 2.492802861e-10 2.595494299e-10 3.180599115e-10 8.911919411e-10 1.076320605e-09 1.007668583e-09 1.136682508e-09 1.197036454e-09 1.629394115e-09 1.526918981e-09 1.760868334e-09 1.810376752e-09 1.863521663e-09 2.104398257e-09 1.925129899e-09 2.184633567e-09 2.332386368e-09 2.258662188e-09 2.429310589e-09 2.4661644e-09 2.432507263e-09 2.560401867e-09 2.59864344e-09 2.666805213e-09 3.112897944e-09 3.004445556e-09 2.984812243e-09 2.790221623e-09 3.1349718e-09 3.3500095e-09 3.159083472e-09 3.404199237e-09 3.410398466e-09 3.342060665e-09 4.161168521e-09 4.607822912e-09 4.075264759e-09 3.541848752e-09 4.831702151e-09 4.155179091e-09 5.975406457e-09 3.140229157e-09 5.320213167e-09 5.111516985e-09 5.060497069e-09 5.094912726e-09 5.922403565e-09 4.85457592e-09 5.588036732e-09 5.579055577e-09 5.246330036e-09 5.96713236e-09 5.275058823e-09 5.183374251e-09 3.384987324e-09 5.7520958e-09 3.800900363e-09 4.008457969e-09 4.274590005e-09 3.650971881e-09 4.420443231e-09 2.804903761e-09 3.438396612e-09 2.697913702e-09 3.081108399e-09 2.598817994e-09 3.380129993e-09 2.836616345e-09 2.836012037e-09 3.302328912e-09 2.997390849e-09 2.776487473e-09 3.168184795e-09 3.088260785e-09 3.472907904e-09 3.767520178e-09 2.949691631e-09 2.854229278e-09 3.259251982e-09 3.034900118e-09 3.335204762e-09 3.459530926e-09 3.434752971e-09 3.158144164e-09 3.20088501e-09 3.356401438e-09 3.797014512e-09 3.852720581e-09 3.661701267e-09 3.773947213e-09 3.636664461e-09 3.353983917e-09 4.06467436e-09 4.646762559e-09 4.204500689e-09 5.387371631e-09 4.821659464e-09 5.349013027e-09 6.298152677e-09 6.176821595e-09 5.757784794e-09 5.013851776e-09 5.738903081e-09 5.255569116e-09 4.133911093e-09 6.480507381e-09 5.111848277e-09 5.339496964e-09 4.821619978e-09 4.291107419e-09 3.866258231e-09 3.828874479e-09 3.563734437e-09 4.651776776e-09 3.845886714e-09 3.129673139e-09 3.206429849e-09 3.117932462e-09 3.212738144e-09 3.050209451e-09 2.931877655e-09 2.977166221e-09 2.776162277e-09 3.052115891e-09 2.70750628e-09 2.574723694e-09 2.580171923e-09 2.428143652e-09 2.831076051e-09 2.396563937e-09 2.38599625e-09 2.350117932e-09 2.318062827e-09 2.114933404e-09 1.917187057e-09 1.870384023e-09 1.887376298e-09 1.560842156e-09 1.580075044e-09 1.432110122e-09 1.666429709e-09 1.428232684e-09 1.019429268e-09 1.066207912e-09 6.700182565e-10 3.729704132e-10 1.978925758e-10 1.267065773e-10 3.300807418e-10 1.670570317e-10 3.621769133e-11 9.836084853e-12 2.610989079e-12 2.473001163e-13 3.216205267e-14 4.168770346e-15 4.290664905e-17 8.069333463e-17 2.619788441e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.295720791e-18 2.076436781e-18 1.231743008e-16 3.519813533e-16 2.354624526e-14 1.60841543e-14 1.354023108e-13 1.146404182e-12 5.147278997e-12 4.419880103e-12 2.005245642e-10 2.31125289e-10 2.483974329e-10 2.648818208e-10 4.38604981e-10 5.081562553e-10 9.958073678e-10 1.108829627e-09 1.48596236e-09 1.185819304e-09 1.648974022e-09 1.643410271e-09 1.565773006e-09 1.97078876e-09 1.803081398e-09 2.085343233e-09 2.076242229e-09 2.352885058e-09 2.351453198e-09 2.120169716e-09 2.381016241e-09 2.222806552e-09 2.392907532e-09 2.489505065e-09 2.761519047e-09 2.991481946e-09 2.851989687e-09 2.942135181e-09 2.984024793e-09 2.929808236e-09 2.959542415e-09 3.183448092e-09 3.061910855e-09 3.279189856e-09 3.638131972e-09 3.880146013e-09 4.400967485e-09 4.484110606e-09 3.374552658e-09 4.455702906e-09 3.934798487e-09 5.588367416e-09 4.15881673e-09 4.335765581e-09 4.57038824e-09 4.257482697e-09 4.692857762e-09 4.182162277e-09 4.163586808e-09 5.551217527e-09 5.102396353e-09 4.796377498e-09 4.506205152e-09 4.839821107e-09 4.662556607e-09 5.704732547e-09 4.925851454e-09 4.28737699e-09 4.271600426e-09 3.839465591e-09 3.809029895e-09 3.597671276e-09 3.667418966e-09 3.743188735e-09 3.034363463e-09 3.81441322e-09 3.321621673e-09 3.010572148e-09 2.771542278e-09 3.34332244e-09 3.227836923e-09 3.625920624e-09 3.407497844e-09 3.251306599e-09 3.087169168e-09 3.025187337e-09 2.553414306e-09 3.193750084e-09 3.114622888e-09 3.586910224e-09 2.76746673e-09 3.375844091e-09 3.590434888e-09 3.176585683e-09 3.497489597e-09 3.157499925e-09 3.490631145e-09 3.584760435e-09 3.342284359e-09 2.928325188e-09 3.421970968e-09 4.351470471e-09 4.34254391e-09 4.544079008e-09 4.135114558e-09 4.288305756e-09 5.461296272e-09 5.393568195e-09 4.57383412e-09 3.797111088e-09 4.693256101e-09 5.55192379e-09 5.222677757e-09 4.638270147e-09 6.16260504e-09 4.586111315e-09 4.727259728e-09 4.767132656e-09 4.340011563e-09 4.343647225e-09 4.609741107e-09 4.696992457e-09 4.583862615e-09 3.968130895e-09 3.816294741e-09 4.48995686e-09 3.38674729e-09 3.815347751e-09 3.187861755e-09 3.329907323e-09 3.373077901e-09 3.205667528e-09 3.274601173e-09 3.118129908e-09 3.042997602e-09 3.005319259e-09 2.901460881e-09 2.928534136e-09 2.673819182e-09 2.609268697e-09 2.108486699e-09 2.544882564e-09 2.557981715e-09 2.501990833e-09 2.102918654e-09 2.152116146e-09 1.934742983e-09 2.05274613e-09 1.847701375e-09 1.937567428e-09 1.606380415e-09 1.423755663e-09 1.432089982e-09 1.335601124e-09 8.155359294e-10 9.218008564e-10 7.863137271e-10 4.925531183e-10 2.863412352e-10 3.320537573e-10 2.768997089e-10 1.815848031e-10 1.67201101e-10 1.998106859e-11 8.979406727e-13 5.587424187e-14 3.970073517e-14 3.911539998e-16 2.004782654e-16 4.880385127e-18 4.302345167e-34 7.80803938e-18 6.54946558e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1.632979012e-18 5.066494509e-19 8.039201675e-17 2.090005193e-16 2.658731437e-17 2.340306338e-15 7.345790749e-15 2.466846032e-13 2.438688074e-12 1.893063703e-11 3.949086588e-11 4.580121672e-11 1.895789893e-10 3.395096954e-10 1.834564518e-10 5.797789269e-10 8.643645765e-10 1.044679892e-09 1.053205955e-09 1.272545935e-09 1.400661897e-09 1.629561404e-09 1.828129681e-09 1.572404855e-09 1.841343364e-09 1.845792518e-09 2.090004194e-09 2.23862248e-09 2.167172918e-09 2.323502822e-09 2.533546653e-09 2.058343214e-09 2.37569836e-09 2.391009339e-09 2.726895533e-09 2.593700547e-09 2.575295678e-09 3.040252239e-09 2.916586073e-09 3.035362964e-09 3.14066622e-09 2.935938232e-09 2.913800319e-09 3.300575316e-09 3.134540539e-09 3.327978611e-09 4.045528095e-09 4.015710836e-09 3.823592551e-09 4.639171574e-09 4.302158347e-09 4.693230034e-09 3.540777666e-09 5.379154621e-09 4.811298766e-09 4.959767367e-09 4.391741258e-09 5.223553924e-09 5.181453749e-09 3.96423784e-09 5.206022032e-09 5.596303224e-09 4.088609966e-09 5.617050196e-09 4.867707498e-09 4.814789584e-09 5.263043374e-09 5.584360077e-09 5.143279679e-09 4.027012648e-09 3.82657947e-09 3.259189204e-09 4.450984956e-09 3.325652975e-09 3.450560613e-09 3.78794334e-09 3.623310459e-09 3.220730727e-09 3.563725859e-09 3.524620974e-09 3.173576066e-09 3.210260346e-09 3.234633476e-09 3.433625377e-09 2.542461296e-09 3.019798747e-09 2.798481906e-09 2.241592573e-09 2.954270152e-09 3.722509497e-09 2.363406955e-09 3.187866172e-09 2.966761353e-09 3.750899611e-09 3.472306098e-09 3.140682732e-09 2.967892912e-09 3.476446723e-09 3.3175623e-09 3.774100831e-09 3.9588833e-09 4.259522224e-09 4.410983683e-09 4.030531038e-09 4.62691728e-09 4.474122112e-09 5.119772407e-09 4.882880849e-09 4.554850057e-09 5.440412932e-09 4.786807209e-09 5.440859937e-09 3.639300736e-09 4.459334565e-09 5.338106669e-09 4.952831668e-09 3.865723589e-09 3.660432073e-09 5.509340025e-09 5.337976546e-09 5.698788327e-09 4.729013125e-09 5.076675179e-09 4.097664697e-09 4.032916633e-09 4.050830905e-09 3.534720554e-09 3.549003591e-09 3.909446072e-09 3.31932349e-09 3.2050281e-09 3.097108915e-09 3.086021381e-09 3.081232053e-09 3.081234006e-09 2.939814102e-09 3.034527094e-09 2.679336259e-09 2.768404649e-09 2.648028014e-09 2.477404672e-09 2.427789558e-09 2.513260269e-09 2.169202173e-09 2.190872868e-09 2.32051833e-09 2.069928142e-09 1.94441751e-09 1.932546761e-09 1.951875218e-09 1.924393479e-09 1.7773638e-09 1.707768359e-09 1.435879044e-09 1.179183358e-09 1.234575891e-09 1.067626333e-09 7.544921091e-10 6.381029342e-10 2.825657765e-10 3.164413398e-10 1.643639236e-10 1.162335273e-10 4.172121726e-11 9.12825097e-12 8.931440487e-13 7.204826084e-13 1.157504006e-14 5.795611018e-15 2.007035302e-15 6.968623706e-19 5.177639828e-18 1.405098798e-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.034382314e-18 3.788772428e-18 5.548893122e-18 1.634809311e-17 2.943387908e-14 3.512069953e-15 1.26553911e-13 2.74519906e-13 8.619167454e-12 2.448648803e-11 4.832653193e-11 1.081942912e-10 4.195392298e-10 3.640590681e-10 7.143489087e-10 7.932504107e-10 1.172428532e-09 1.019722785e-09 1.401470758e-09 1.262782277e-09 1.390631313e-09 1.635184743e-09 1.688409148e-09 1.909926929e-09 1.793109871e-09 2.018558412e-09 2.162254288e-09 2.290117471e-09 2.537931346e-09 2.26761821e-09 2.196536651e-09 2.817868377e-09 2.59093625e-09 2.590713248e-09 2.67662155e-09 2.78242139e-09 3.070596706e-09 2.801061612e-09 2.811475828e-09 3.064470239e-09 3.079810656e-09 3.220779007e-09 3.413934624e-09 3.023434198e-09 3.493561165e-09 3.86454467e-09 3.409113896e-09 3.57465905e-09 3.588792012e-09 3.102892562e-09 4.424861333e-09 5.941146675e-09 4.618765115e-09 4.629139059e-09 4.612447002e-09 4.704668247e-09 5.119298009e-09 3.597749506e-09 3.010661681e-09 5.64357225e-09 5.03176742e-09 5.416613999e-09 4.388905628e-09 4.677043121e-09 5.267757358e-09 4.974703441e-09 4.682840522e-09 4.584711074e-09 4.263417003e-09 4.574493695e-09 3.75764952e-09 3.517640857e-09 2.86219081e-09 3.545546396e-09 3.480885331e-09 3.13096325e-09 2.556495288e-09 3.445223566e-09 3.739699253e-09 3.565343171e-09 3.311609148e-09 2.864906391e-09 3.908212793e-09 3.486470789e-09 3.034770021e-09 2.314039338e-09 3.111732444e-09 3.232893266e-09 2.250243485e-09 3.454818042e-09 3.095152803e-09 3.186627402e-09 2.555520943e-09 3.00985457e-09 3.163448053e-09 3.425850913e-09 3.687679266e-09 3.377140754e-09 3.343078247e-09 3.411502343e-09 3.839175644e-09 3.966159598e-09 4.822825477e-09 4.523212847e-09 4.493885577e-09 5.594781772e-09 5.401497187e-09 3.6715927e-09 5.42451882e-09 4.547832357e-09 4.69700172e-09 5.293890536e-09 6.940503452e-09 5.95023684e-09 5.692252734e-09 4.521210206e-09 5.860159734e-09 4.249044769e-09 5.123915407e-09 4.291064005e-09 4.632505993e-09 3.639569189e-09 5.989583702e-09 5.543761567e-09 3.974876558e-09 4.846642304e-09 3.601578598e-09 3.508104582e-09 3.283118373e-09 3.042275623e-09 3.154093439e-09 3.132142107e-09 3.102067154e-09 2.94135807e-09 2.980608112e-09 2.945688677e-09 2.651080406e-09 2.914295265e-09 2.779030195e-09 2.605224295e-09 2.452279562e-09 2.422203195e-09 2.259684936e-09 2.404051872e-09 2.248831263e-09 2.1559139e-09 2.089214514e-09 1.952841802e-09 2.061290157e-09 1.64532057e-09 1.575115996e-09 1.578608242e-09 1.275324904e-09 1.171908818e-09 1.270701247e-09 8.89012016e-10 7.594957633e-10 5.326136593e-10 3.909332541e-10 1.248453523e-10 2.829604719e-10 1.589390996e-10 1.616604043e-11 1.367468919e-11 7.769260189e-13 5.379873039e-13 5.58008688e-15 5.332749308e-16 5.286779758e-16 2.005101262e-17 3.336892049e-18 1.883317302e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1.449751269e-18 2.691950736e-23 4.229802583e-17 1.17115069e-16 1.795613873e-15 6.046507005e-15 8.209859283e-15 3.954214824e-14 1.229951305e-12 2.21219014e-12 1.546222027e-11 1.444845713e-10 3.043657795e-10 2.621849173e-10 2.312566925e-10 3.453177718e-10 6.65731325e-10 1.056557792e-09 1.037205221e-09 1.427157582e-09 1.528320351e-09 1.541503985e-09 1.671924371e-09 1.77835553e-09 1.768902981e-09 1.982826424e-09 2.330952689e-09 2.042317708e-09 2.131712102e-09 2.197158914e-09 2.422333099e-09 2.474360229e-09 2.38689802e-09 2.685064435e-09 2.673446774e-09 2.576095834e-09 3.122404728e-09 2.690019678e-09 2.915296771e-09 2.976124268e-09 3.247936306e-09 2.904558378e-09 3.357527647e-09 3.221553936e-09 3.503804208e-09 3.288889246e-09 3.377047196e-09 3.386248392e-09 3.833441158e-09 3.856744076e-09 2.94572509e-09 3.440228349e-09 3.616018619e-09 6.487706048e-09 5.34192099e-09 5.718869181e-09 5.091973644e-09 6.512329749e-09 5.757944844e-09 4.847592135e-09 5.6901021e-09 4.428221023e-09 5.446169692e-09 4.033190737e-09 4.789371151e-09 5.17692077e-09 4.833928639e-09 4.217107073e-09 3.876542463e-09 5.464672198e-09 3.617326807e-09 4.371676443e-09 3.303018147e-09 3.31817977e-09 3.211697215e-09 3.398547095e-09 3.284642388e-09 3.581198552e-09 3.585272139e-09 2.706223892e-09 2.967036519e-09 1.916408714e-09 3.051027269e-09 3.560963274e-09 3.131324384e-09 2.80713098e-09 3.593828802e-09 3.185343233e-09 3.517749969e-09 2.801227503e-09 2.714358046e-09 2.667711219e-09 2.877298008e-09 3.391692375e-09 3.032249127e-09 3.23577636e-09 3.450377943e-09 3.248996045e-09 3.736863567e-09 3.621375267e-09 3.970632179e-09 3.946258778e-09 4.317604418e-09 4.40138552e-09 4.772555015e-09 4.197426927e-09 4.675412582e-09 5.097308106e-09 5.019085537e-09 6.233672246e-09 5.718324043e-09 5.854775869e-09 4.432395256e-09 5.757434255e-09 4.816346677e-09 5.297783496e-09 4.768302354e-09 5.482777917e-09 4.952136443e-09 5.246448806e-09 4.714296197e-09 4.918772632e-09 5.067818854e-09 5.041742802e-09 3.905661228e-09 4.479365372e-09 4.032818158e-09 4.222833327e-09 4.253991384e-09 3.09219546e-09 3.441026161e-09 3.202604184e-09 3.236589963e-09 3.032747555e-09 2.727300371e-09 2.868375376e-09 2.991358191e-09 2.767529698e-09 2.390410359e-09 2.546857032e-09 2.767481244e-09 2.636480244e-09 2.511031155e-09 2.242018037e-09 2.163843804e-09 2.08608256e-09 2.016270972e-09 1.96770228e-09 2.161692041e-09 1.873169193e-09 1.856838644e-09 1.699846565e-09 1.371665212e-09 1.262068096e-09 1.212349476e-09 1.046183659e-09 9.058150157e-10 7.828172823e-10 5.28452372e-10 2.642426452e-10 1.811490518e-10 1.277936418e-10 3.534394836e-11 3.139516216e-11 6.62027127e-12 4.384496123e-13 6.179658109e-14 1.918522569e-15 1.034422383e-15 7.606093733e-16 8.584658241e-18 1.183056921e-18 2.861564143e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.338832383e-17 3.083963365e-17 7.094093828e-16 1.723123926e-14 1.688761473e-15 2.886812106e-14 3.439204235e-13 3.509937534e-11 7.092923665e-12 2.184585392e-10 9.517061952e-11 2.44457595e-10 2.024212924e-10 7.795473791e-10 9.273160163e-10 8.981018926e-10 1.125221593e-09 1.128965351e-09 1.509144655e-09 1.558393008e-09 1.532556938e-09 1.607145835e-09 1.637681633e-09 1.908891267e-09 1.794684709e-09 2.169770899e-09 2.219745078e-09 2.421430211e-09 2.330485645e-09 2.479366839e-09 2.496909559e-09 2.52529746e-09 2.77666768e-09 2.563947084e-09 2.908437854e-09 3.003478437e-09 2.824894421e-09 2.937618039e-09 2.770930651e-09 3.031915256e-09 3.22539684e-09 3.108098338e-09 3.388957526e-09 3.200950226e-09 3.532163066e-09 3.82091043e-09 4.273672299e-09 3.913429512e-09 3.941427571e-09 4.802232251e-09 4.571164942e-09 4.556868588e-09 4.026550593e-09 4.394646421e-09 4.034990578e-09 5.643463476e-09 5.13065942e-09 5.111969644e-09 4.442487087e-09 4.922141119e-09 5.093693675e-09 4.036654164e-09 5.466594826e-09 4.817755708e-09 4.373425085e-09 4.755589343e-09 4.231106587e-09 4.387059721e-09 3.898634784e-09 3.797456256e-09 3.392951683e-09 4.130440174e-09 4.247714376e-09 3.148003759e-09 2.78659855e-09 3.930354211e-09 3.286322983e-09 2.877979204e-09 2.909887278e-09 3.478932017e-09 3.227316583e-09 3.385036034e-09 2.805057797e-09 2.471303252e-09 2.748460992e-09 2.733366957e-09 2.978759706e-09 2.78227985e-09 2.837483185e-09 3.017893137e-09 3.595564195e-09 3.25117184e-09 3.581282787e-09 3.105036548e-09 2.801464103e-09 3.009269711e-09 3.160151635e-09 3.647423303e-09 4.265084619e-09 4.623829918e-09 3.846080306e-09 3.639918543e-09 4.058350313e-09 4.436245807e-09 4.764785245e-09 5.009522551e-09 4.772227099e-09 5.086530755e-09 5.009426e-09 4.251401088e-09 5.44819287e-09 4.638535419e-09 5.41191951e-09 4.856524626e-09 4.370876054e-09 4.860680488e-09 5.183062254e-09 4.060227099e-09 5.883724123e-09 4.914579562e-09 5.667314333e-09 4.248662039e-09 4.597484964e-09 3.415857902e-09 3.486574056e-09 3.763155244e-09 3.622360458e-09 3.49234286e-09 3.216480963e-09 2.96054877e-09 2.941454179e-09 3.109548864e-09 3.006353089e-09 2.936005183e-09 2.693962327e-09 2.628609791e-09 2.871902261e-09 2.759295481e-09 2.54054709e-09 2.542478356e-09 2.475856618e-09 2.515559687e-09 2.383337613e-09 2.34629222e-09 2.099485387e-09 2.145617692e-09 2.020730735e-09 1.747084813e-09 1.718326646e-09 1.536794907e-09 1.455480066e-09 1.434029904e-09 1.329535389e-09 7.778906433e-10 9.386060104e-10 7.627022358e-10 3.546063388e-10 3.148062247e-10 2.588064947e-10 3.86347657e-10 7.979607425e-11 2.795341735e-11 4.423360871e-12 6.177646606e-13 9.640442065e-14 2.08285263e-15 1.778038409e-15 3.259861768e-16 1.795873509e-17 5.557324885e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1.591990613e-35 3.136019842e-18 8.378564114e-19 2.514249577e-18 1.764300101e-16 5.541416494e-15 2.395254694e-14 2.853440877e-13 3.016891174e-12 1.421967568e-12 6.733695119e-11 6.737949242e-11 1.191500203e-10 2.449471825e-10 1.363526123e-10 4.486108495e-10 8.520487444e-10 1.054364554e-09 1.141863914e-09 1.239772228e-09 1.223320364e-09 1.350116912e-09 1.519298537e-09 1.777101512e-09 1.865202602e-09 2.084609141e-09 1.996980728e-09 2.143007883e-09 2.023801383e-09 2.231249097e-09 2.017195759e-09 2.481890749e-09 2.415601494e-09 2.686559256e-09 2.746675039e-09 2.561533307e-09 3.085288656e-09 3.017101278e-09 3.028904028e-09 3.180343229e-09 3.251922534e-09 3.040170658e-09 3.030926754e-09 3.230368445e-09 3.596018075e-09 3.334875313e-09 3.254898746e-09 3.707782343e-09 4.313799932e-09 4.711666207e-09 4.724681967e-09 5.48846372e-09 5.396778178e-09 3.619045865e-09 4.622536072e-09 5.243428449e-09 5.42651985e-09 4.612925648e-09 4.422986225e-09 3.50036595e-09 5.215543959e-09 5.280755229e-09 4.557550986e-09 5.397837906e-09 4.610486959e-09 4.912603806e-09 5.450185107e-09 4.848085412e-09 5.107270517e-09 4.380699657e-09 3.902609054e-09 4.595305197e-09 3.907427358e-09 3.896585214e-09 3.512603922e-09 3.584283793e-09 4.136456148e-09 3.032603576e-09 2.995789811e-09 3.714179232e-09 3.286857217e-09 3.214391675e-09 3.06258108e-09 2.724265421e-09 3.357441005e-09 3.073997294e-09 2.852005434e-09 3.822046176e-09 2.8979364e-09 3.39708047e-09 3.569965765e-09 2.956100177e-09 2.834483516e-09 3.555094951e-09 3.524972776e-09 3.477530542e-09 3.113871715e-09 3.403543977e-09 3.796081146e-09 3.913122814e-09 3.544203717e-09 3.439426419e-09 4.369414265e-09 3.539307197e-09 4.330837463e-09 4.555631062e-09 5.295929586e-09 5.187143987e-09 5.275366884e-09 5.835586995e-09 4.427649885e-09 5.398949783e-09 5.096421928e-09 5.368374618e-09 4.708971461e-09 5.422079077e-09 3.979275598e-09 5.635175356e-09 4.785732683e-09 5.139498131e-09 4.213022762e-09 4.376973615e-09 5.575937964e-09 5.129203116e-09 4.789836653e-09 4.264224185e-09 4.440390607e-09 3.640358287e-09 3.170036295e-09 3.232942179e-09 3.364256771e-09 3.31618662e-09 3.259596886e-09 2.90204216e-09 3.02535547e-09 2.78690705e-09 3.018802777e-09 2.714723189e-09 2.686369686e-09 2.706103241e-09 2.487268817e-09 2.597890501e-09 2.656970486e-09 2.370281009e-09 2.088089956e-09 2.307102225e-09 2.232521425e-09 1.880214244e-09 1.830116831e-09 1.709850183e-09 1.810386948e-09 1.71164906e-09 1.608447944e-09 1.423179844e-09 1.369069412e-09 1.052668382e-09 1.087553537e-09 7.381653219e-10 4.912495803e-10 4.164002838e-10 1.673962262e-10 2.182040928e-10 9.633015456e-11 7.830009912e-12 6.399211148e-12 2.288164184e-12 3.710922017e-14 1.001492972e-13 1.519216423e-14 9.040142103e-16 4.18382077e-17 1.084825712e-20 4.706581489e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 4.627783945e-19 3.361379776e-18 6.301207417e-18 6.747964323e-17 9.460962784e-17 5.214440868e-15 2.153036688e-15 1.793033632e-13 3.603215423e-13 1.110406612e-11 5.44456025e-11 1.019077449e-10 2.022264209e-10 2.542097292e-10 6.208554929e-11 5.253381299e-10 7.299693291e-10 9.310553275e-10 1.007489164e-09 1.216186819e-09 1.394835871e-09 1.62201703e-09 1.713298607e-09 1.602047381e-09 1.991366658e-09 1.781494115e-09 2.148938169e-09 2.089499914e-09 2.164048853e-09 2.379385452e-09 2.440517157e-09 2.529828574e-09 2.60798773e-09 2.816540136e-09 2.868065434e-09 2.637878143e-09 2.514369577e-09 2.886601833e-09 3.056320791e-09 2.912707131e-09 2.808038808e-09 3.017049642e-09 3.28497706e-09 3.058318118e-09 3.251917447e-09 3.41903103e-09 3.722149045e-09 4.621299364e-09 3.669690697e-09 4.919942812e-09 5.274403018e-09 4.868557978e-09 5.196547831e-09 5.274540749e-09 5.860959298e-09 5.377039664e-09 4.93940539e-09 4.381436894e-09 4.732604485e-09 4.89592585e-09 5.617403217e-09 4.636955386e-09 4.246424697e-09 5.217928017e-09 5.537938182e-09 5.339664331e-09 4.278371197e-09 5.761720678e-09 4.281910207e-09 4.679921826e-09 4.494864924e-09 3.844146734e-09 4.611010545e-09 3.424756134e-09 3.899275764e-09 3.313440168e-09 3.194974523e-09 3.658041149e-09 3.874912041e-09 3.663750974e-09 3.425327815e-09 3.162564966e-09 3.128722106e-09 2.581662378e-09 2.750855761e-09 3.318444537e-09 2.44908064e-09 3.27970207e-09 3.032979105e-09 3.320882668e-09 3.011797821e-09 3.374271127e-09 3.767244817e-09 3.113543006e-09 2.633167365e-09 3.395529353e-09 3.130660114e-09 3.441706738e-09 4.116305927e-09 3.792613773e-09 3.964916563e-09 3.477327555e-09 4.381675195e-09 3.736132491e-09 3.536087958e-09 4.161085618e-09 5.280991621e-09 5.36688667e-09 5.411993481e-09 5.269022075e-09 5.432374739e-09 5.411477314e-09 6.076370286e-09 4.788363373e-09 6.496388398e-09 5.221676719e-09 4.354966824e-09 4.80810089e-09 5.24406414e-09 4.30379559e-09 3.801046469e-09 5.293423744e-09 4.476727324e-09 4.555078641e-09 3.929536284e-09 3.920642854e-09 4.302555827e-09 4.095860197e-09 3.216822982e-09 3.154916993e-09 3.114244663e-09 3.323070929e-09 3.117588939e-09 3.022620586e-09 2.971535839e-09 3.018115743e-09 2.797290722e-09 2.843640853e-09 2.702370833e-09 2.561955365e-09 2.46337112e-09 2.619541021e-09 2.405294697e-09 2.356376569e-09 2.126195906e-09 2.086429806e-09 2.115463861e-09 1.855523789e-09 1.807590169e-09 1.979108015e-09 1.529533552e-09 1.537315046e-09 1.516715539e-09 1.378776542e-09 1.362987762e-09 1.203275414e-09 7.688299134e-10 8.696823358e-10 6.981346639e-10 4.114784735e-10 3.610161647e-10 2.816013597e-10 2.063738521e-10 3.506961492e-12 1.703227956e-12 7.363742131e-13 7.030651984e-13 6.89657568e-14 4.152027766e-16 7.307751291e-16 5.31661916e-17 1.196181964e-18 1.723265046e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.822821058e-19 1.940614349e-17 8.057218941e-17 4.014606639e-17 4.310154973e-15 3.996750346e-14 9.641019544e-13 8.71479305e-13 8.764268339e-13 6.161486629e-12 5.737121275e-11 3.842442829e-10 3.047177024e-10 2.251809347e-10 5.873772563e-10 6.264404118e-10 1.014030386e-09 9.883304905e-10 1.132199418e-09 1.181311444e-09 1.292933154e-09 1.603342301e-09 1.875893286e-09 1.992688981e-09 2.140074183e-09 2.066341234e-09 2.178530285e-09 2.117381874e-09 2.184636794e-09 2.393907691e-09 2.255966614e-09 2.350625863e-09 2.463819058e-09 2.645404781e-09 2.821995164e-09 2.713925554e-09 2.780453788e-09 2.954874459e-09 2.988006894e-09 2.677134564e-09 3.18025717e-09 3.1607112e-09 3.367785082e-09 3.201739084e-09 3.579921608e-09 3.508853299e-09 3.315170102e-09 5.361274836e-09 4.259847016e-09 4.200062732e-09 4.495607693e-09 4.877498862e-09 5.691971544e-09 6.593486373e-09 4.725973133e-09 4.263392363e-09 5.427568925e-09 4.501605464e-09 4.855063173e-09 7.421428522e-09 5.299241552e-09 4.382721735e-09 4.565464017e-09 3.77768862e-09 4.222143137e-09 4.137356494e-09 4.371227082e-09 4.292939073e-09 3.939442275e-09 4.613267911e-09 3.739771165e-09 3.841454496e-09 3.565228274e-09 4.033712648e-09 3.653657012e-09 3.409163142e-09 3.40488246e-09 3.801338091e-09 3.022319603e-09 3.186592581e-09 2.819948668e-09 3.474329341e-09 3.189019047e-09 3.031190927e-09 3.085425634e-09 2.889979983e-09 3.828192259e-09 2.943259558e-09 3.318644455e-09 2.836410093e-09 3.255248314e-09 3.494994765e-09 3.612273183e-09 2.748730981e-09 3.215014825e-09 3.52714242e-09 3.297617457e-09 3.541244278e-09 3.711891853e-09 3.807747317e-09 3.504022797e-09 4.96854346e-09 3.266605804e-09 4.473364238e-09 4.531198316e-09 5.891203446e-09 5.84742193e-09 3.381439069e-09 4.63146458e-09 5.610846042e-09 5.405962161e-09 5.61760479e-09 4.914995084e-09 6.362816381e-09 4.983307956e-09 5.213294102e-09 5.399665179e-09 5.710943307e-09 4.234040355e-09 4.077753098e-09 5.009072979e-09 5.765250929e-09 4.667804187e-09 5.733983867e-09 3.52287048e-09 3.853568016e-09 3.202280888e-09 4.020804503e-09 3.348527493e-09 3.246178881e-09 3.100574451e-09 3.096767346e-09 3.066921603e-09 2.995285642e-09 2.813485813e-09 2.981050899e-09 2.862505263e-09 2.810305937e-09 2.563858643e-09 2.770718027e-09 2.432259895e-09 2.327812742e-09 2.204809234e-09 2.538760292e-09 2.011949644e-09 2.055711791e-09 2.033416599e-09 2.068614412e-09 1.86318036e-09 1.722259023e-09 1.69056736e-09 1.563153714e-09 1.382564563e-09 1.223886294e-09 1.249283937e-09 7.367214542e-10 8.066779785e-10 4.224175648e-10 1.771280471e-10 2.869061256e-10 2.056552608e-10 1.55354712e-10 2.780914489e-11 5.805393447e-12 1.334476139e-12 1.123547377e-13 3.393571448e-15 4.467272608e-15 9.616324598e-17 8.482105534e-18 3.413078752e-17 1.551246932e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.659215909e-19 2.139623473e-17 9.689322866e-17 5.106889432e-16 2.233001586e-16 7.047319023e-14 8.694930093e-14 5.095827733e-13 1.019452328e-12 9.098103792e-12 1.337241996e-10 3.254627618e-11 2.76020062e-10 3.03707125e-10 6.519597625e-10 8.156494847e-10 1.043463633e-09 1.245110342e-09 1.187925297e-09 1.428876205e-09 1.514147379e-09 1.680806759e-09 1.745163482e-09 1.746328405e-09 2.028507522e-09 2.100917493e-09 2.070454542e-09 2.050189928e-09 2.240636144e-09 2.569643761e-09 2.281159417e-09 2.533804195e-09 2.800133197e-09 2.635210898e-09 2.619582145e-09 2.844370843e-09 2.877748163e-09 2.797464232e-09 3.100502704e-09 3.064770188e-09 3.1024675e-09 2.764338968e-09 3.066235447e-09 2.907963886e-09 4.092747829e-09 4.442059895e-09 3.991779042e-09 5.514400581e-09 3.994406226e-09 4.902203924e-09 4.310359609e-09 6.016888808e-09 5.029273436e-09 5.321745198e-09 6.35197404e-09 4.973875178e-09 3.892423317e-09 5.665399832e-09 6.51651399e-09 5.345454739e-09 4.989958147e-09 5.90227706e-09 4.638527771e-09 5.896374009e-09 5.2274305e-09 6.138610635e-09 3.879989819e-09 4.54281856e-09 4.873040315e-09 3.94723864e-09 3.722020362e-09 3.624154208e-09 2.993828338e-09 2.733048174e-09 2.905188768e-09 4.012409964e-09 3.369991951e-09 3.651334091e-09 4.217233433e-09 3.724918788e-09 3.658638428e-09 2.789034358e-09 3.282932445e-09 3.383031501e-09 2.623073234e-09 3.277551578e-09 3.043258757e-09 2.550853225e-09 3.460999716e-09 2.868998166e-09 2.528452589e-09 3.182459944e-09 3.256031249e-09 3.732989405e-09 3.356951248e-09 3.091398636e-09 3.216847969e-09 4.2189507e-09 4.20565412e-09 2.54288383e-09 3.895722965e-09 3.066684844e-09 3.278111649e-09 5.383360061e-09 5.155943772e-09 5.270172586e-09 4.206982457e-09 4.445842504e-09 4.0591722e-09 4.138733605e-09 5.222131106e-09 5.032665144e-09 5.321317869e-09 4.288901396e-09 4.133475226e-09 4.207730149e-09 3.549363699e-09 4.991669351e-09 5.572991964e-09 5.862024946e-09 5.580497828e-09 4.912379402e-09 4.008383891e-09 4.90195431e-09 4.194942995e-09 3.87218286e-09 3.352946502e-09 3.171794177e-09 3.628856946e-09 3.475357163e-09 2.968580273e-09 3.088524439e-09 3.100818104e-09 2.739966812e-09 2.984801887e-09 2.883358157e-09 2.759979268e-09 2.687022135e-09 2.566812752e-09 2.545595086e-09 2.37109341e-09 2.192776598e-09 2.267627693e-09 2.178333383e-09 2.140309017e-09 2.153190122e-09 2.14906198e-09 2.090730545e-09 1.767537196e-09 1.936755172e-09 1.693589162e-09 1.59820591e-09 1.371487592e-09 1.147575488e-09 9.108222954e-10 9.839317117e-10 9.10686973e-10 3.511341701e-10 2.383824257e-10 1.65317632e-10 3.277643615e-10 1.639666635e-10 4.345924384e-11 6.144886425e-12 7.148234775e-13 8.117114904e-14 1.593916606e-14 3.78378458e-15 3.487665871e-15 7.738326606e-17 5.021399336e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.289220961e-24 3.285863183e-18 1.811858091e-17 1.346124447e-15 9.498385336e-15 2.056806615e-15 1.649493484e-13 2.727186767e-13 1.44270454e-11 2.724900664e-11 1.949032995e-10 9.7397057e-11 3.025075147e-10 3.294551415e-10 5.799575205e-10 9.193248741e-10 8.982272266e-10 9.068388295e-10 1.326608139e-09 1.411134125e-09 1.427333903e-09 1.567989455e-09 1.620376305e-09 1.870820498e-09 2.311090158e-09 2.155820793e-09 2.07276798e-09 2.083892333e-09 2.165320091e-09 2.365671988e-09 2.710837939e-09 2.462806648e-09 2.61436606e-09 2.669882934e-09 2.61247857e-09 2.722135555e-09 2.55801687e-09 2.698811324e-09 2.824993169e-09 2.97914907e-09 3.053389004e-09 3.213543317e-09 3.256933906e-09 3.802110904e-09 4.149290684e-09 4.459489934e-09 4.652953004e-09 3.875529521e-09 3.588751596e-09 4.936950836e-09 4.663643562e-09 5.784950043e-09 4.341346883e-09 4.862834e-09 5.564536812e-09 5.104375838e-09 6.157718846e-09 4.469004843e-09 5.101410914e-09 4.802548512e-09 4.838614164e-09 5.484160776e-09 4.786674935e-09 5.613509769e-09 4.920651618e-09 5.180240205e-09 4.456113564e-09 4.537294199e-09 3.932382358e-09 3.914974357e-09 3.779055305e-09 3.692693571e-09 2.992631828e-09 3.393091838e-09 3.391120523e-09 3.42708865e-09 3.176075695e-09 3.57835043e-09 3.549991744e-09 2.9833381e-09 3.224746092e-09 2.766598061e-09 2.82925043e-09 3.128725958e-09 2.935095819e-09 3.016989377e-09 3.774102445e-09 2.45429983e-09 3.144268368e-09 2.980444123e-09 3.146174628e-09 2.56771747e-09 3.777227782e-09 3.22800004e-09 3.172698263e-09 3.361487042e-09 3.617149141e-09 3.900450024e-09 3.233871774e-09 3.194704598e-09 4.824143273e-09 4.388589114e-09 4.814748173e-09 5.064071753e-09 5.28495843e-09 4.594864127e-09 3.440911068e-09 5.269061316e-09 4.770386941e-09 6.215997786e-09 5.069492206e-09 4.931179613e-09 5.144010071e-09 5.522817488e-09 5.047653715e-09 4.722832909e-09 5.350461765e-09 4.477749272e-09 4.580031986e-09 4.082751416e-09 5.425515924e-09 4.759104162e-09 3.869971096e-09 4.081461638e-09 3.394058499e-09 5.27921764e-09 3.529802996e-09 3.245702137e-09 3.246211092e-09 3.141717851e-09 2.960211452e-09 3.371694525e-09 3.176235392e-09 2.831464181e-09 2.852879581e-09 3.04701785e-09 2.774893601e-09 2.640919759e-09 2.54909721e-09 2.68223397e-09 2.727281874e-09 2.589585587e-09 2.397025132e-09 2.349604029e-09 1.999831143e-09 2.113001941e-09 1.980446336e-09 1.863862782e-09 1.984025104e-09 1.788301547e-09 1.565680322e-09 1.510846304e-09 1.394498599e-09 1.017045583e-09 1.221839271e-09 9.070054215e-10 6.320251135e-10 6.399827604e-10 3.05756206e-10 1.726763965e-10 1.081476133e-10 2.098801493e-10 3.130432432e-11 7.082440047e-13 3.799325774e-12 1.508603084e-13 3.320395787e-14 1.586553284e-14 1.704526844e-15 7.392246099e-17 1.369099279e-17 4.615574491e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.035257388e-19 3.922338786e-17 2.418096133e-17 7.990780609e-16 2.080289219e-15 8.09521317e-15 1.928043011e-13 9.677453409e-12 7.755840865e-12 6.626465275e-11 1.618005604e-10 2.273896215e-10 2.350325386e-10 3.399135493e-10 6.177040366e-10 8.71323386e-10 8.683027718e-10 1.201550921e-09 1.385860136e-09 1.553969003e-09 1.578836629e-09 1.721645751e-09 1.694550785e-09 1.862961027e-09 1.900305248e-09 1.730647371e-09 2.158030363e-09 2.101311214e-09 2.165998582e-09 2.430088659e-09 2.41898128e-09 2.482438729e-09 2.501472829e-09 2.558257083e-09 2.559036329e-09 2.609686583e-09 2.848812072e-09 2.760632352e-09 2.761297102e-09 2.995709013e-09 3.295057135e-09 3.157460462e-09 3.297991467e-09 3.172679373e-09 3.631554672e-09 3.731118582e-09 3.91444087e-09 4.107889813e-09 4.450493112e-09 3.55251561e-09 4.579447665e-09 3.320024018e-09 3.850245496e-09 5.160351376e-09 3.383178679e-09 3.286032356e-09 5.643002596e-09 5.182525832e-09 5.603346017e-09 5.244860451e-09 6.497130428e-09 5.081410642e-09 6.565907401e-09 5.130071475e-09 6.442117827e-09 6.156911582e-09 5.297584178e-09 5.025397273e-09 4.477820805e-09 4.425779933e-09 3.379303886e-09 3.061818383e-09 4.098621149e-09 3.387533503e-09 3.226697715e-09 3.328349382e-09 4.029567967e-09 2.819700288e-09 3.130116562e-09 2.93412055e-09 3.274846761e-09 2.850392863e-09 2.932804072e-09 2.800095747e-09 2.692573646e-09 2.566722374e-09 3.582357416e-09 2.750308023e-09 3.24104694e-09 2.662525018e-09 3.431110502e-09 3.261009667e-09 3.043082152e-09 3.062824964e-09 3.510309007e-09 3.03383075e-09 3.540190567e-09 3.397281592e-09 3.471560206e-09 3.661426148e-09 3.974547046e-09 4.042045585e-09 3.876189011e-09 4.220466152e-09 4.776361167e-09 4.402989547e-09 4.227431397e-09 4.230593816e-09 5.116376909e-09 4.8932043e-09 4.721641791e-09 6.303055664e-09 5.954011107e-09 5.607511555e-09 5.464836963e-09 4.688964136e-09 5.218531158e-09 4.616866327e-09 5.116566624e-09 3.334015002e-09 5.559425853e-09 3.037962761e-09 4.79045047e-09 4.211374703e-09 4.482305617e-09 3.446378998e-09 3.598887134e-09 4.03853259e-09 3.275782023e-09 2.963819731e-09 3.19488149e-09 3.181485034e-09 2.944642184e-09 2.913151968e-09 3.075569093e-09 2.711528903e-09 2.723393565e-09 2.828020358e-09 2.533771734e-09 2.342786049e-09 2.361268089e-09 2.575624317e-09 2.115526731e-09 2.432207679e-09 2.321508001e-09 2.232513982e-09 2.11610582e-09 1.821725896e-09 1.893769492e-09 1.898445163e-09 1.692676809e-09 1.422478459e-09 1.385628771e-09 1.481884524e-09 1.159474832e-09 1.088745072e-09 5.052077642e-10 4.792492674e-10 1.618163259e-10 2.502076528e-10 7.534101896e-11 2.417020191e-10 3.258373988e-11 3.399639229e-13 7.033922635e-13 9.057398581e-14 2.248885664e-14 3.862712864e-15 2.007527412e-15 2.157980992e-16 9.955568462e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 4.667850452e-31 5.641277647e-19 1.274012808e-18 8.73939206e-18 1.146142011e-15 2.543948578e-15 1.040684653e-13 4.034140449e-13 1.180774398e-12 3.372675891e-11 2.577593324e-11 2.531704772e-10 3.183579645e-10 2.096092841e-10 2.544957724e-10 5.797328399e-10 7.438421541e-10 1.032817167e-09 1.136775348e-09 1.353627371e-09 1.470269553e-09 1.421179421e-09 1.797061548e-09 1.667152441e-09 1.754527086e-09 1.901059378e-09 2.013681414e-09 2.021599454e-09 2.244441513e-09 2.278610226e-09 2.28694842e-09 2.344297655e-09 2.232831408e-09 2.53062807e-09 2.38112673e-09 2.553411123e-09 2.829796847e-09 2.851616746e-09 2.975914381e-09 2.812996689e-09 3.034533132e-09 3.304051247e-09 3.399384822e-09 3.504649422e-09 3.251970017e-09 3.549546961e-09 4.465047716e-09 4.08635525e-09 3.193936914e-09 5.199844051e-09 4.597437678e-09 4.434931601e-09 4.490909955e-09 3.629220264e-09 4.133786338e-09 5.017182056e-09 5.752236894e-09 4.643095569e-09 4.466418315e-09 6.469982886e-09 5.439881362e-09 5.658880483e-09 5.314394549e-09 5.975757145e-09 5.792732111e-09 4.311925469e-09 4.935942486e-09 4.435404623e-09 4.389426179e-09 4.268301538e-09 3.69643574e-09 3.62062778e-09 5.278048777e-09 3.666553355e-09 3.655439319e-09 3.416839804e-09 3.704618487e-09 3.625735542e-09 3.324129615e-09 3.079354006e-09 2.789775203e-09 2.893728861e-09 3.077525297e-09 2.672813433e-09 3.039306124e-09 2.964365686e-09 3.509680086e-09 2.735323531e-09 3.344744699e-09 2.5082538e-09 3.13441976e-09 2.223306963e-09 3.389583744e-09 3.834962594e-09 3.057570999e-09 3.569860938e-09 3.780235169e-09 4.052247746e-09 3.421624964e-09 3.193259246e-09 3.988095308e-09 3.990015488e-09 4.199076305e-09 4.142484846e-09 4.879510933e-09 3.856436843e-09 5.471382419e-09 5.419446305e-09 5.467578319e-09 4.655323993e-09 4.669669824e-09 5.860464172e-09 3.443943144e-09 6.126183639e-09 5.97995114e-09 5.650722788e-09 5.362000739e-09 5.212979087e-09 4.017330115e-09 4.647110733e-09 4.041285083e-09 4.067171957e-09 5.665564685e-09 3.325540673e-09 4.30417984e-09 4.38729629e-09 3.532203791e-09 3.074125567e-09 3.338955652e-09 3.257324243e-09 3.102384778e-09 2.954756964e-09 3.18641765e-09 2.875743558e-09 3.099484839e-09 2.62332374e-09 3.072126642e-09 2.426329915e-09 2.514992434e-09 2.333064132e-09 2.392622921e-09 2.515314264e-09 2.413367927e-09 2.108097142e-09 2.037647427e-09 2.079701092e-09 2.180487961e-09 1.998320023e-09 1.885150011e-09 1.833795512e-09 1.822235955e-09 1.411460805e-09 1.578061686e-09 1.25820986e-09 1.543394695e-09 9.718012724e-10 7.96977914e-10 7.986352775e-10 4.449111633e-10 2.03185376e-10 5.81481266e-11 2.378126456e-10 2.40729333e-10 3.607210242e-11 1.268977095e-11 1.714304425e-12 2.013034636e-13 9.67792069e-15 7.205797059e-16 2.351698373e-16 2.455768772e-17 7.250339768e-18 2.967837855e-18 4.205620187e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 3.131810023e-20 1.856993134e-18 3.910784763e-17 8.476142529e-18 9.327299857e-16 1.145528063e-14 7.440711209e-15 5.608771504e-14 8.342871059e-13 2.057950567e-12 1.237730699e-11 2.966935128e-11 3.121507118e-10 6.124406781e-11 2.904062757e-10 4.255402954e-10 6.036515487e-10 1.135142056e-09 9.579821699e-10 1.33037015e-09 1.45932948e-09 1.298074357e-09 1.783499403e-09 1.740829349e-09 1.943699768e-09 1.892905339e-09 2.116261219e-09 1.91926789e-09 2.413448541e-09 2.307802003e-09 2.352730928e-09 2.251515661e-09 2.309701969e-09 2.617694493e-09 2.739283111e-09 2.503444626e-09 2.887333989e-09 2.859196032e-09 2.818692506e-09 2.959839335e-09 3.020509303e-09 3.035098378e-09 2.916686908e-09 3.243742876e-09 3.313560163e-09 3.796537188e-09 4.043221374e-09 3.984350128e-09 3.508608137e-09 3.883569915e-09 4.773882179e-09 5.086514509e-09 5.243332875e-09 5.343671829e-09 4.837031843e-09 5.93426513e-09 5.366229304e-09 5.399824109e-09 5.09645555e-09 6.307968356e-09 5.065553021e-09 5.198601854e-09 4.873947687e-09 4.851602949e-09 4.879401409e-09 5.82135445e-09 4.654897719e-09 3.502779358e-09 4.938876052e-09 4.966384053e-09 4.432716951e-09 4.144492956e-09 2.945260005e-09 3.383202438e-09 3.61427321e-09 3.370786354e-09 3.295354722e-09 3.685773726e-09 3.558562846e-09 2.721673701e-09 3.091836276e-09 3.17200436e-09 3.467480482e-09 3.317122472e-09 3.293135619e-09 2.834795551e-09 2.426249583e-09 3.0932068e-09 2.674377168e-09 3.682784288e-09 3.140803489e-09 3.00195215e-09 3.328919503e-09 2.997385731e-09 3.249521725e-09 3.575785886e-09 2.642995735e-09 3.14996414e-09 3.667339322e-09 3.104825617e-09 4.293655962e-09 4.40470037e-09 4.016807776e-09 4.6341192e-09 4.614029088e-09 4.979349234e-09 5.086242017e-09 5.117640798e-09 4.579919263e-09 3.907144541e-09 6.54632598e-09 5.331712005e-09 4.913250359e-09 4.200921994e-09 5.513697129e-09 5.42704221e-09 5.122773564e-09 6.628636299e-09 4.014501217e-09 4.42792322e-09 4.885491468e-09 4.345617149e-09 4.540147514e-09 5.391188563e-09 4.091584761e-09 3.221708493e-09 4.555038442e-09 4.174575304e-09 3.186596979e-09 3.281247923e-09 3.440833903e-09 3.114657253e-09 3.039636123e-09 3.045973386e-09 3.032783546e-09 2.963819914e-09 2.923441189e-09 2.810703748e-09 2.885821544e-09 2.465794416e-09 2.637892066e-09 2.375919459e-09 2.495293599e-09 2.221091424e-09 2.461241875e-09 2.107034168e-09 2.028891931e-09 1.937484517e-09 1.988978672e-09 1.717335262e-09 1.985915328e-09 1.537756341e-09 1.45372053e-09 1.55513849e-09 1.490739888e-09 1.067021035e-09 6.908091522e-10 4.540530957e-10 5.571537815e-10 1.038593836e-10 2.597513414e-10 2.177344473e-10 9.074637491e-11 8.778084474e-11 4.237935238e-12 3.143751732e-13 2.387001149e-14 1.435930554e-14 1.205308571e-15 7.273586545e-16 1.995585627e-16 7.061144762e-18 7.225891018e-18 9.155203623e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.320650089e-33 1.62797e-17 6.645993004e-16 1.87171563e-17 2.16258162e-15 6.447006841e-14 3.518675241e-13 1.246019899e-12 1.303216775e-11 5.026898912e-11 1.411047426e-10 1.199571357e-10 2.173505186e-11 2.311925321e-10 5.629075524e-10 7.175244557e-10 1.072901863e-09 1.2621982e-09 1.157847853e-09 1.308319195e-09 1.439657033e-09 1.74450405e-09 1.567202148e-09 1.762264082e-09 1.875257475e-09 2.188155389e-09 2.139621337e-09 2.099755641e-09 2.250434455e-09 2.297389514e-09 2.601755252e-09 2.503999132e-09 2.719321592e-09 2.503969418e-09 2.780888083e-09 2.823213596e-09 2.4672245e-09 3.229476404e-09 3.068362234e-09 3.333509183e-09 3.016608631e-09 3.350375156e-09 3.242560131e-09 3.15219511e-09 4.11424705e-09 3.171006589e-09 5.000141934e-09 4.955244357e-09 4.138554538e-09 4.220847067e-09 4.553294198e-09 5.071167487e-09 5.461136919e-09 4.081776113e-09 3.77955208e-09 4.41691542e-09 4.935779599e-09 4.615045471e-09 5.063578196e-09 4.647384261e-09 6.774475143e-09 4.97010508e-09 4.855309073e-09 6.257830378e-09 5.238407525e-09 5.975835648e-09 5.060323864e-09 5.549766135e-09 4.905852282e-09 4.417822481e-09 4.663175735e-09 3.957558815e-09 3.246665226e-09 4.134005797e-09 4.068742644e-09 3.602235773e-09 3.809089864e-09 3.435767887e-09 3.465053387e-09 3.189333659e-09 3.058714157e-09 3.053481231e-09 3.200839959e-09 3.391613722e-09 3.44731915e-09 2.860408812e-09 2.758440426e-09 3.64324495e-09 2.417806349e-09 2.924948796e-09 3.010382364e-09 3.201906053e-09 3.299403435e-09 3.353684438e-09 3.620850353e-09 3.950106144e-09 2.975463926e-09 3.785684648e-09 3.409334733e-09 3.365870711e-09 3.600660428e-09 4.292595921e-09 4.455556034e-09 5.177462559e-09 5.789979915e-09 5.208505901e-09 4.940438984e-09 5.649939807e-09 5.500162118e-09 5.848994533e-09 5.012708741e-09 5.560365677e-09 4.195114361e-09 5.734160368e-09 4.758119943e-09 4.597223293e-09 5.076474149e-09 3.562143198e-09 4.758657971e-09 5.62683501e-09 4.360927661e-09 4.349735619e-09 3.668368223e-09 3.160548052e-09 3.842673782e-09 3.904058681e-09 4.41074829e-09 3.837382825e-09 3.361057089e-09 3.38639241e-09 3.080239557e-09 2.994904202e-09 2.870576371e-09 2.615646637e-09 3.106269892e-09 3.011453065e-09 2.93896842e-09 2.653764927e-09 2.574816877e-09 2.261729725e-09 2.730437221e-09 2.286081988e-09 2.287006477e-09 2.212121389e-09 2.265709522e-09 2.181092963e-09 2.262802114e-09 1.801338837e-09 1.833480454e-09 1.821327956e-09 1.401085298e-09 1.785599849e-09 1.529800614e-09 1.195432163e-09 1.259266883e-09 8.078749294e-10 9.405290893e-10 5.659447003e-10 2.767804201e-10 3.680724842e-10 2.523979289e-10 2.514618435e-10 2.184760554e-11 2.434429801e-12 3.496039183e-12 1.822622233e-13 5.627782517e-15 1.045905027e-14 2.28421235e-16 2.14312198e-17 1.83506368e-18 3.130029539e-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.861160195e-17 1.085562308e-16 6.2419054e-16 9.188327713e-15 2.85254666e-14 7.192359073e-15 3.388371523e-13 8.678029368e-12 9.649648124e-11 6.43023002e-11 2.925399008e-10 2.247858553e-10 4.198382386e-10 3.259810915e-10 7.32933034e-10 1.009484194e-09 1.058969339e-09 1.239127221e-09 1.153653402e-09 1.552608001e-09 1.599690084e-09 1.70110543e-09 1.92834309e-09 1.949039457e-09 2.013804495e-09 2.059871814e-09 2.094559326e-09 2.240116997e-09 2.212459755e-09 2.408960354e-09 2.756718248e-09 2.503450826e-09 2.790165149e-09 2.547432703e-09 2.618017483e-09 2.676226699e-09 2.808225749e-09 2.914052584e-09 2.961167162e-09 3.060550945e-09 3.372556577e-09 3.085119641e-09 2.964713121e-09 3.207216623e-09 4.44867296e-09 4.880330652e-09 3.849472917e-09 4.680461262e-09 6.479864978e-09 5.804859126e-09 5.814795961e-09 5.661771079e-09 4.794537058e-09 4.467647681e-09 6.0544852e-09 6.151909456e-09 3.881999314e-09 3.77433922e-09 6.252930705e-09 4.579589714e-09 5.433569779e-09 4.384640381e-09 4.9468053e-09 5.676273162e-09 4.369843847e-09 3.821145175e-09 4.030005002e-09 4.596479355e-09 3.459597933e-09 3.7598607e-09 3.762526464e-09 3.433632675e-09 3.709459034e-09 4.164272963e-09 3.606771254e-09 3.853129714e-09 2.952391993e-09 3.1725619e-09 3.136022091e-09 2.858962815e-09 3.080058638e-09 2.873724584e-09 2.691472298e-09 2.766419506e-09 3.075503044e-09 2.448653048e-09 2.728023389e-09 3.157158826e-09 2.756074457e-09 2.809197108e-09 2.895390331e-09 3.361085733e-09 3.389571601e-09 3.142689499e-09 3.095097091e-09 3.287807396e-09 3.628926163e-09 3.991491865e-09 3.141867782e-09 3.87578583e-09 4.46990602e-09 4.185816835e-09 4.01348701e-09 4.822191743e-09 4.710872325e-09 5.124128706e-09 4.934491226e-09 5.140688418e-09 5.279464557e-09 4.896869074e-09 5.124505051e-09 6.028243824e-09 5.411315504e-09 4.724521359e-09 4.591864965e-09 4.55420282e-09 5.276645472e-09 5.169016682e-09 4.906581705e-09 5.006873639e-09 4.408509069e-09 5.223820083e-09 4.326152039e-09 4.614602203e-09 3.545788136e-09 3.700732544e-09 3.324324634e-09 3.53965923e-09 3.345370328e-09 3.151849418e-09 2.953839802e-09 3.128139244e-09 2.988759959e-09 2.922980175e-09 2.916543984e-09 2.801567834e-09 2.680323113e-09 2.452248601e-09 2.570122601e-09 2.551635943e-09 2.515950082e-09 2.204094271e-09 2.36809305e-09 2.280318322e-09 2.107748661e-09 1.959171715e-09 1.808957294e-09 1.917159377e-09 1.71099071e-09 1.518222778e-09 1.363156456e-09 1.271343695e-09 1.139773399e-09 9.328167378e-10 7.628496028e-10 9.062142669e-10 5.67494266e-10 4.015074534e-10 2.094550572e-10 2.632835033e-10 1.168773485e-10 3.32868692e-11 2.849357953e-12 3.205992762e-12 1.437276866e-13 1.305294272e-14 2.509815847e-14 3.043932756e-15 4.628379377e-17 1.375518723e-18 1.599713557e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.114348723e-18 3.695837362e-18 2.684970475e-17 1.571243535e-16 7.90071613e-16 7.610038174e-14 6.464933577e-14 2.385191851e-13 2.335305761e-12 3.029097125e-11 3.292507646e-11 1.930315185e-10 1.792649743e-10 6.989163628e-11 4.915770613e-10 7.609138725e-10 8.678379584e-10 8.823242883e-10 1.113098335e-09 1.25023499e-09 1.407306719e-09 1.403174513e-09 1.811952847e-09 1.981660928e-09 2.183902956e-09 2.077093116e-09 2.154057623e-09 2.046132907e-09 2.179949107e-09 2.123034172e-09 2.467338084e-09 2.580379458e-09 2.526159683e-09 2.735827015e-09 2.963732221e-09 2.833229474e-09 2.747618498e-09 3.065210385e-09 3.161844578e-09 3.210154395e-09 3.2822842e-09 3.230440347e-09 3.427298928e-09 3.898470405e-09 3.244176494e-09 3.601434572e-09 3.591677134e-09 4.574168879e-09 3.82994829e-09 3.375418765e-09 4.574381115e-09 2.954355426e-09 6.123714237e-09 5.467788404e-09 4.903474474e-09 5.297237181e-09 4.320289255e-09 5.000834552e-09 6.366623368e-09 6.288708557e-09 4.536815529e-09 3.788618043e-09 5.752980592e-09 5.680347082e-09 3.96304462e-09 4.478790523e-09 3.758802408e-09 4.529824685e-09 3.879523111e-09 3.098170703e-09 4.841361253e-09 2.96449325e-09 3.028130815e-09 3.257485517e-09 3.868185906e-09 3.30484461e-09 3.254661733e-09 2.306337193e-09 2.610583797e-09 3.28000157e-09 2.869071076e-09 2.904767574e-09 2.734225779e-09 3.116477669e-09 3.334833357e-09 3.070298809e-09 3.013983982e-09 3.640892832e-09 2.792407031e-09 3.176129342e-09 3.638014593e-09 2.984444972e-09 2.928782821e-09 3.656252333e-09 2.974734704e-09 2.87994842e-09 3.431723644e-09 2.373003161e-09 3.913523752e-09 4.177346531e-09 3.955033037e-09 4.280891046e-09 4.115626919e-09 4.927548192e-09 4.499058264e-09 4.17104027e-09 4.515076109e-09 3.529059201e-09 5.056139468e-09 4.006501574e-09 5.304839808e-09 5.150663073e-09 6.510777016e-09 5.101417687e-09 5.469197019e-09 4.415549613e-09 5.371073012e-09 5.078560225e-09 5.408978948e-09 6.289173488e-09 5.243880141e-09 4.543544183e-09 4.504456526e-09 4.190725745e-09 4.212953642e-09 4.097975896e-09 3.844838623e-09 3.111914461e-09 3.008872261e-09 3.212075689e-09 3.068877574e-09 3.089431957e-09 3.075078239e-09 2.955043816e-09 2.939590383e-09 2.990854034e-09 2.702812998e-09 2.89577158e-09 2.368444346e-09 2.422237093e-09 2.614665589e-09 2.482411904e-09 2.569867225e-09 2.448419498e-09 2.201989796e-09 2.031173792e-09 1.708600012e-09 2.012878913e-09 1.753777222e-09 1.597011536e-09 1.631958938e-09 1.592088833e-09 1.306800838e-09 1.331256231e-09 1.048356336e-09 1.010426998e-09 8.169952732e-10 6.458581656e-10 1.580078817e-10 1.556687704e-10 9.615420941e-11 2.321952173e-10 1.284399711e-10 1.07366513e-12 9.535413301e-13 4.841656509e-13 2.496827282e-14 6.911882469e-15 6.64936371e-16 1.175893508e-17 6.041823264e-19 3.490803903e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 3.744650962e-19 4.181293972e-19 4.390777327e-18 1.102102106e-17 2.643196802e-16 4.639825661e-15 5.268683334e-15 3.208473107e-13 3.165998101e-13 6.241636807e-11 4.127287397e-11 1.590727431e-10 2.458484598e-10 3.240813006e-10 3.541216613e-10 4.990836234e-10 6.276732976e-10 1.050286938e-09 1.09286007e-09 1.398018149e-09 1.353001657e-09 1.168640756e-09 1.617428537e-09 1.830890251e-09 1.979337421e-09 1.987398985e-09 1.952188435e-09 1.926511835e-09 2.118313303e-09 2.45017939e-09 2.542633641e-09 2.209975916e-09 2.551935967e-09 2.70514923e-09 2.751888487e-09 2.698401793e-09 2.778896333e-09 2.982422818e-09 2.943248535e-09 2.940313566e-09 2.826659233e-09 3.134337961e-09 3.313522173e-09 3.340355279e-09 3.39411473e-09 3.464324063e-09 3.458206846e-09 4.219925218e-09 3.926345932e-09 5.324127337e-09 4.892940597e-09 4.913914131e-09 6.003978603e-09 3.970094984e-09 5.288671788e-09 5.781966432e-09 5.363142403e-09 5.164518827e-09 5.498543595e-09 4.470574194e-09 3.443967202e-09 4.41950255e-09 4.735353496e-09 5.327359988e-09 5.083497976e-09 4.863142045e-09 4.555046483e-09 5.234572681e-09 5.672544215e-09 4.033963154e-09 4.276494326e-09 3.631870531e-09 3.59826032e-09 3.507249197e-09 3.920651894e-09 3.911913782e-09 2.974645519e-09 3.724626888e-09 3.366403169e-09 3.151841644e-09 3.194116995e-09 3.162564827e-09 3.001423299e-09 3.324838448e-09 3.06605219e-09 3.378346424e-09 2.785126433e-09 2.787668258e-09 3.124285525e-09 2.947239785e-09 2.580815354e-09 3.083411854e-09 3.090480066e-09 3.29766668e-09 2.665568048e-09 3.013724038e-09 3.858546207e-09 3.554948383e-09 2.820369896e-09 3.313003971e-09 3.716396943e-09 3.637812628e-09 4.036121354e-09 4.146464789e-09 4.881355021e-09 4.475632641e-09 4.978449152e-09 5.770525435e-09 4.945510155e-09 5.976461378e-09 5.081250016e-09 5.315866518e-09 5.481417721e-09 5.808827202e-09 4.268812797e-09 4.553002692e-09 4.908067333e-09 5.611715754e-09 4.790500432e-09 4.164095894e-09 4.486133239e-09 6.280207284e-09 5.245158133e-09 5.853118006e-09 4.104701593e-09 3.913700995e-09 3.838535408e-09 3.370425377e-09 3.24700898e-09 3.410790045e-09 3.281365707e-09 3.049582151e-09 3.009978369e-09 2.999119985e-09 2.602171837e-09 2.707264543e-09 3.026502446e-09 2.786963399e-09 2.793547494e-09 2.467756199e-09 2.504061682e-09 2.648617006e-09 2.39503174e-09 2.558936259e-09 2.286103064e-09 1.922211443e-09 2.136516594e-09 1.593206561e-09 2.119803355e-09 1.586525803e-09 1.671253243e-09 1.463141881e-09 1.385562442e-09 1.421252832e-09 1.102098521e-09 1.367506477e-09 1.166847556e-09 9.029137045e-10 3.295602728e-10 4.006768836e-10 1.744163825e-10 1.634596599e-10 1.71465507e-10 3.976850539e-11 3.93132798e-13 5.046155857e-13 2.09106243e-14 9.583236448e-15 2.875882911e-15 2.42423721e-16 7.685858095e-17 7.778026833e-18 3.634767018e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 8.035599391e-19 2.394271653e-20 1.757877804e-17 1.598113829e-17 4.724453754e-16 3.629171884e-15 5.756685303e-15 4.47030947e-14 8.125330479e-13 2.206864875e-12 8.111255695e-11 5.572754285e-11 2.206489448e-10 2.023083542e-10 3.08081289e-10 4.694632665e-10 7.225455189e-10 1.080424911e-09 1.269893138e-09 1.22842068e-09 1.364251333e-09 1.898402166e-09 1.716216819e-09 1.789655331e-09 1.994391612e-09 1.887470672e-09 2.011512691e-09 1.994729016e-09 2.152327957e-09 2.302756736e-09 2.546866673e-09 2.555845437e-09 2.555523359e-09 2.499120239e-09 2.526650665e-09 2.732943748e-09 2.854507385e-09 2.801167544e-09 2.980385012e-09 3.066193768e-09 2.895930978e-09 3.000262071e-09 3.220864097e-09 3.050913309e-09 3.241279645e-09 3.129663267e-09 4.241079374e-09 3.795184881e-09 3.823338329e-09 4.869835657e-09 4.281715188e-09 5.631091064e-09 3.704861345e-09 3.922893e-09 4.711578572e-09 4.737120918e-09 4.527214157e-09 4.216054325e-09 4.673548806e-09 6.293387501e-09 5.082681771e-09 4.991620708e-09 5.311906359e-09 5.305349727e-09 6.028100968e-09 4.40791994e-09 4.206080798e-09 4.579619423e-09 4.978278762e-09 4.248593089e-09 3.666550633e-09 3.554988632e-09 3.540974643e-09 4.023602258e-09 2.97369065e-09 3.187184212e-09 3.024744153e-09 3.411826967e-09 3.246841904e-09 3.375325678e-09 3.302641442e-09 3.084872273e-09 3.103986449e-09 3.448510211e-09 2.886982202e-09 3.047191119e-09 2.751244022e-09 2.751046787e-09 3.152444603e-09 3.204990783e-09 3.298945413e-09 2.983269144e-09 3.292598256e-09 3.08293832e-09 3.292214098e-09 3.237365014e-09 3.089652855e-09 3.725584732e-09 3.302599717e-09 3.731406445e-09 3.371077271e-09 4.632901982e-09 3.738685075e-09 3.603087459e-09 4.568556576e-09 4.505414088e-09 4.513874803e-09 5.780482405e-09 4.760353219e-09 5.197662936e-09 4.25755514e-09 4.316582593e-09 5.737758409e-09 5.861446555e-09 4.425961102e-09 3.25709481e-09 5.429646407e-09 5.742638646e-09 4.13940275e-09 4.517701161e-09 4.363532819e-09 4.928530748e-09 5.28307553e-09 5.178138273e-09 3.815669823e-09 3.946114355e-09 4.223704244e-09 3.525883561e-09 3.633034774e-09 3.319412344e-09 3.147196269e-09 3.10563287e-09 2.942583587e-09 2.855255232e-09 2.792115469e-09 2.60635263e-09 2.52022927e-09 2.766270687e-09 2.630053897e-09 2.604300416e-09 2.670108189e-09 2.513824359e-09 2.225973434e-09 2.517584876e-09 2.212518043e-09 2.326802443e-09 1.947618229e-09 1.946451851e-09 1.60906222e-09 1.888830561e-09 1.548991076e-09 1.698299671e-09 1.784202141e-09 1.522936102e-09 1.538011301e-09 1.021483017e-09 1.103994632e-09 7.017938567e-10 3.960959109e-10 4.287454957e-10 2.449434466e-10 1.167010811e-11 3.360030759e-11 1.874246525e-11 1.212573737e-12 4.605384543e-12 5.163922952e-14 1.073836423e-14 5.053713208e-15 2.281127593e-15 2.877048584e-16 6.140443882e-18 9.963603875e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.378624917e-17 1.167098006e-16 1.115990855e-16 1.851638032e-15 1.854137502e-14 3.933422029e-14 8.231742177e-13 1.916552928e-11 7.422387182e-11 2.221134535e-10 2.574813151e-10 3.220024817e-10 3.107363532e-10 4.706375711e-10 9.631299603e-10 1.121501055e-09 1.132967633e-09 1.374730152e-09 1.290794384e-09 1.535133391e-09 1.707947561e-09 1.764700248e-09 1.822781406e-09 1.82773558e-09 1.646304739e-09 2.058716759e-09 2.034404845e-09 2.241096045e-09 2.321212974e-09 2.516598259e-09 2.482275254e-09 2.641075135e-09 2.900637861e-09 2.877916863e-09 2.72644415e-09 2.75219825e-09 3.105485176e-09 3.038200652e-09 3.09899018e-09 3.122113949e-09 3.159783811e-09 3.12455581e-09 3.085098456e-09 3.519259105e-09 3.343368262e-09 4.175106436e-09 3.755530947e-09 3.239847098e-09 4.826365042e-09 3.846337075e-09 4.885385913e-09 5.511207291e-09 3.732293462e-09 4.557771983e-09 4.049835832e-09 4.900275077e-09 4.946982313e-09 3.386817885e-09 4.930518256e-09 4.630731255e-09 5.546855292e-09 4.428326433e-09 4.75076929e-09 4.29933996e-09 5.26075345e-09 2.831750825e-09 4.076934573e-09 4.28630064e-09 4.335974883e-09 4.634079172e-09 4.500438979e-09 3.508695235e-09 4.147060653e-09 3.051862572e-09 3.924160725e-09 2.739195896e-09 2.99215134e-09 2.913248253e-09 3.070236302e-09 2.915802864e-09 2.679913102e-09 2.978387397e-09 3.141351345e-09 3.408264976e-09 3.497654097e-09 2.523581321e-09 3.101831571e-09 2.890420176e-09 3.043745021e-09 2.979913058e-09 3.062773592e-09 3.087142234e-09 3.337678574e-09 2.913673695e-09 3.255279418e-09 3.823432968e-09 3.201660279e-09 3.433273475e-09 3.566890801e-09 3.543455827e-09 4.386794481e-09 3.995320655e-09 4.957716737e-09 4.597854823e-09 4.6413908e-09 4.406753267e-09 4.752904442e-09 5.10861985e-09 5.297071904e-09 4.014286124e-09 4.328826441e-09 5.30022961e-09 4.957754042e-09 5.406759731e-09 3.562371713e-09 5.773317121e-09 5.043464955e-09 4.849933068e-09 4.372011881e-09 4.534865358e-09 5.14486161e-09 4.63149427e-09 4.920336641e-09 3.939031277e-09 3.178698627e-09 3.855214176e-09 3.354360881e-09 3.099307823e-09 3.253980026e-09 3.158164385e-09 3.220948194e-09 3.146715175e-09 2.88670094e-09 2.948651287e-09 2.742004203e-09 2.879729874e-09 2.552731332e-09 2.573677669e-09 2.570032819e-09 2.649638437e-09 2.224092453e-09 2.259218971e-09 2.319641626e-09 1.948803681e-09 2.237383127e-09 1.91697834e-09 2.028784987e-09 1.915590144e-09 1.866220271e-09 1.705147617e-09 1.619575149e-09 1.439932016e-09 9.604572191e-10 7.78695492e-10 6.95339013e-10 7.340371463e-10 6.379772447e-10 4.519123904e-10 2.106333718e-10 1.951811828e-10 9.070628373e-11 1.174312371e-10 9.210581154e-12 7.705494189e-12 5.107735265e-15 3.238133779e-14 9.309530562e-16 9.70614052e-18 3.713888922e-17 1.327338976e-17 1.280161206e-18 6.665678581e-28 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 6.359571834e-11 0 0 2.181662224e-30 1.084355683e-18 1.820072024e-17 5.633499034e-17 1.781064918e-15 1.423178798e-15 1.067402128e-15 9.754077229e-13 7.835254926e-14 6.13023e-13 9.26541147e-11 1.440339924e-11 1.782217617e-10 2.764197368e-10 2.317921264e-10 5.733431071e-10 8.161539768e-10 9.611793532e-10 1.088408409e-09 1.278527616e-09 1.311618387e-09 1.509156316e-09 1.679615718e-09 1.928362383e-09 1.81404957e-09 1.900450339e-09 2.010417963e-09 2.010586744e-09 2.238678737e-09 2.231280437e-09 2.288916737e-09 2.485416691e-09 2.180087373e-09 2.503873267e-09 2.870582774e-09 2.490991156e-09 2.528294785e-09 2.680766254e-09 2.856825958e-09 2.97028291e-09 2.999159939e-09 3.089876745e-09 3.238075701e-09 3.276205233e-09 3.207775243e-09 3.196647009e-09 4.553653534e-09 4.073626183e-09 4.272893688e-09 3.835269244e-09 4.827205593e-09 5.778731397e-09 4.846239501e-09 4.979579066e-09 4.26075236e-09 4.835905419e-09 4.913672436e-09 5.94482078e-09 5.453207748e-09 4.502839578e-09 6.051318323e-09 4.818146489e-09 6.449810706e-09 4.995668477e-09 5.23876262e-09 4.168683168e-09 4.165146887e-09 3.538893911e-09 4.505323742e-09 5.066721758e-09 3.651504621e-09 3.956953466e-09 3.700187195e-09 2.969105955e-09 3.396313969e-09 3.549204149e-09 3.208547839e-09 3.207671711e-09 3.204970636e-09 2.982181909e-09 2.401682882e-09 3.096958598e-09 3.237165355e-09 3.425780087e-09 3.183851726e-09 2.947011937e-09 2.955790578e-09 3.374467367e-09 3.064918563e-09 2.940061995e-09 2.779686207e-09 3.175784645e-09 2.888505309e-09 3.725987378e-09 3.008183781e-09 2.945604467e-09 3.155515236e-09 3.615315934e-09 3.597035984e-09 3.866585953e-09 3.513350567e-09 3.024429221e-09 3.682334013e-09 4.102105868e-09 4.992366538e-09 5.099224183e-09 4.331779965e-09 5.251096688e-09 5.365594931e-09 4.774699475e-09 4.855605504e-09 6.463099664e-09 4.051368907e-09 4.455853163e-09 4.177663643e-09 5.93549285e-09 5.773738535e-09 4.963513759e-09 5.661754636e-09 4.086041327e-09 4.728867583e-09 4.482853641e-09 3.995420905e-09 4.964576671e-09 3.52584748e-09 4.483721525e-09 4.09170791e-09 4.795683002e-09 3.434883219e-09 3.389000692e-09 3.250073305e-09 2.980606549e-09 3.165372042e-09 2.913641427e-09 2.699510482e-09 2.960552911e-09 2.872550217e-09 2.836110352e-09 2.652077459e-09 2.669130935e-09 2.486813665e-09 2.268694889e-09 2.345413425e-09 2.06664455e-09 2.306098382e-09 2.100116944e-09 1.803361392e-09 2.124548083e-09 1.957455943e-09 1.795489996e-09 1.809672019e-09 1.455971886e-09 1.492499894e-09 1.496373849e-09 1.362072129e-09 1.309411325e-09 7.77645033e-10 5.853320531e-10 7.094381751e-10 3.802740786e-10 2.940861548e-10 3.386463726e-10 1.65806802e-10 2.11228737e-11 8.083869864e-12 1.407909623e-12 2.176737207e-14 1.201908719e-13 9.292954467e-16 3.391385889e-16 7.684525183e-17 2.275479522e-17 1.235675799e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 5.276041825e-19 1.796495064e-19 2.086092633e-18 1.630518707e-16 1.790766027e-15 1.285738031e-16 6.773889246e-15 5.43248702e-14 9.739080775e-13 4.117166933e-12 9.820841151e-11 3.062167093e-10 2.494344477e-10 2.040710932e-10 3.65413953e-10 3.610252991e-10 6.974381202e-10 1.093671645e-09 1.18479998e-09 1.447111463e-09 1.164134025e-09 1.67420842e-09 1.549546935e-09 1.96107128e-09 1.855670274e-09 1.964081083e-09 2.091582807e-09 2.068498431e-09 2.237537162e-09 2.366444953e-09 2.318461117e-09 2.405859023e-09 2.555282746e-09 2.419030906e-09 2.687219894e-09 2.825059751e-09 2.957678417e-09 2.872204818e-09 2.646083477e-09 2.970248674e-09 3.171945169e-09 2.979878384e-09 3.1265763e-09 3.283311137e-09 3.21355811e-09 3.476953886e-09 3.429045321e-09 4.308359919e-09 3.277778992e-09 4.885680418e-09 5.4082709e-09 5.458046698e-09 3.786942392e-09 6.496048046e-09 6.398761057e-09 6.555782137e-09 3.57946221e-09 3.734774785e-09 5.593284064e-09 4.454547018e-09 4.762115277e-09 6.449342739e-09 4.410828488e-09 5.462320527e-09 6.212503277e-09 4.605699327e-09 5.81694493e-09 4.996254436e-09 5.157649364e-09 4.840558351e-09 4.176056239e-09 4.605283651e-09 2.757172883e-09 3.829642256e-09 3.236888065e-09 3.989129133e-09 3.8321039e-09 3.106320008e-09 3.075112479e-09 3.543099726e-09 2.982730417e-09 2.62860779e-09 2.725231283e-09 2.779412891e-09 3.182070204e-09 3.353650113e-09 3.026001608e-09 2.968788563e-09 3.282266906e-09 2.805598881e-09 3.568164808e-09 3.587062058e-09 3.2578853e-09 3.029469346e-09 2.932578516e-09 3.704058014e-09 3.092555138e-09 2.74265137e-09 3.121858861e-09 4.249696023e-09 3.617863129e-09 3.266870543e-09 4.495654331e-09 4.333544854e-09 4.22543087e-09 5.002961732e-09 4.604099564e-09 4.690084027e-09 5.172897676e-09 4.681084703e-09 4.922975973e-09 4.749335418e-09 5.581466768e-09 6.099256276e-09 5.003859638e-09 4.109240842e-09 5.211618137e-09 3.949835422e-09 4.816329011e-09 5.802629172e-09 3.875534315e-09 4.360236626e-09 5.165997186e-09 4.46835467e-09 4.201200062e-09 4.44859215e-09 4.685829414e-09 3.917540219e-09 3.687029136e-09 3.477097307e-09 3.457150336e-09 3.11898645e-09 3.06138543e-09 3.169444309e-09 2.939236613e-09 2.834717943e-09 2.586644135e-09 2.897823527e-09 2.906540326e-09 2.442012969e-09 2.605047877e-09 2.614654288e-09 2.346057234e-09 2.406495473e-09 2.42399173e-09 1.954252611e-09 2.086896314e-09 1.934136351e-09 1.871450336e-09 1.780286874e-09 1.64454125e-09 1.462741154e-09 1.554873426e-09 1.465187498e-09 1.363523761e-09 1.10194913e-09 1.187752391e-09 7.550444186e-10 5.652036891e-10 3.140048453e-10 4.408616887e-10 3.334311823e-10 6.724426982e-11 6.26731076e-11 9.690246302e-12 1.86457875e-12 3.0281978e-13 3.715624669e-14 7.396602163e-16 1.087527805e-15 1.523021685e-17 1.520618487e-18 3.834756375e-18 7.192800495e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.344954375e-18 8.0396707e-18 9.231112622e-17 5.293063896e-16 2.748358803e-17 4.695070229e-15 4.007615517e-14 1.497907399e-12 8.08697995e-13 4.088704893e-11 2.120403977e-10 2.209256851e-10 1.508701786e-10 2.778783833e-10 3.246494245e-10 1.050468012e-09 7.701883609e-10 1.150201317e-09 1.40311035e-09 1.359409422e-09 1.583414605e-09 1.644240155e-09 1.690545203e-09 2.007103678e-09 1.965020016e-09 1.772009101e-09 2.460244455e-09 2.284926402e-09 2.212296929e-09 2.355463812e-09 2.418160208e-09 2.333848456e-09 2.744527627e-09 2.577001765e-09 2.541570737e-09 2.498561753e-09 2.692347227e-09 2.829346476e-09 2.887888372e-09 2.854955724e-09 3.136172288e-09 3.149365175e-09 3.219405632e-09 3.165706968e-09 3.227547879e-09 3.79688875e-09 4.244136709e-09 3.317867745e-09 4.509004941e-09 3.126382602e-09 4.408187096e-09 5.294602074e-09 4.400586201e-09 5.124440376e-09 4.627648442e-09 5.796623365e-09 5.578254663e-09 4.908953994e-09 5.408014522e-09 5.557715669e-09 6.35765233e-09 4.921049888e-09 4.152854165e-09 4.465084617e-09 5.647697097e-09 4.76834872e-09 5.36257696e-09 4.84610338e-09 4.789142082e-09 3.747125852e-09 4.189614159e-09 3.821704205e-09 3.305211175e-09 3.922317192e-09 3.751289632e-09 2.924928493e-09 3.63902722e-09 3.442628306e-09 3.837397034e-09 2.987788445e-09 2.689808296e-09 2.969698335e-09 3.096797459e-09 2.964049136e-09 3.226646292e-09 3.00379672e-09 2.754157017e-09 3.145542135e-09 3.121623613e-09 2.745726739e-09 2.92601931e-09 2.846383782e-09 3.12020826e-09 3.13482978e-09 3.434607552e-09 3.962315562e-09 3.241415379e-09 3.793822472e-09 3.698802992e-09 3.267267217e-09 4.439642228e-09 4.021934842e-09 3.609046148e-09 4.567799025e-09 3.928843108e-09 5.276003041e-09 5.859466634e-09 4.829557025e-09 4.402463864e-09 3.668319856e-09 4.847201664e-09 5.280532723e-09 5.676887434e-09 4.080461776e-09 5.021243225e-09 4.620566392e-09 6.186185549e-09 4.678668136e-09 4.932493011e-09 4.847293358e-09 4.137675918e-09 4.972308072e-09 4.106656215e-09 4.034862587e-09 3.794935427e-09 3.69549506e-09 4.139338295e-09 3.560083036e-09 3.213129514e-09 3.192483959e-09 3.200146718e-09 3.130956216e-09 2.948731306e-09 2.915096675e-09 3.059961563e-09 3.084030615e-09 2.898339967e-09 2.475099996e-09 2.685633687e-09 2.701827437e-09 2.435100698e-09 2.536058501e-09 2.185132109e-09 2.278197575e-09 2.266698081e-09 2.233875514e-09 2.096604549e-09 1.914888306e-09 1.794338265e-09 1.617269087e-09 1.424530836e-09 1.627976597e-09 1.441688898e-09 1.149602382e-09 1.194057054e-09 8.35229349e-10 7.1787379e-10 5.322153647e-10 4.205011796e-10 3.323808493e-10 2.861367458e-10 1.451241929e-11 2.400149867e-11 1.07076597e-11 1.282000613e-12 5.499723028e-13 2.519600778e-15 1.205791544e-14 1.062318527e-17 5.924894597e-17 8.148924051e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.564953868e-18 8.149814268e-19 4.16343251e-17 8.531986109e-16 2.379950403e-15 2.68387406e-14 1.587862735e-15 2.476103398e-12 8.256638113e-12 8.759461975e-11 1.5251234e-10 2.426771445e-10 1.237097193e-10 4.107171302e-10 4.022094858e-10 7.759696577e-10 1.019869031e-09 1.302658139e-09 1.112498292e-09 1.244489816e-09 1.606434623e-09 1.649294815e-09 1.421660529e-09 1.832939124e-09 1.98457109e-09 1.853724994e-09 2.259432881e-09 2.183873658e-09 2.450024632e-09 2.361957633e-09 2.434776107e-09 2.395995131e-09 2.509520332e-09 2.899889377e-09 2.741910626e-09 2.73420695e-09 2.75480884e-09 2.992771493e-09 2.782315183e-09 2.913326474e-09 3.050994653e-09 3.22044629e-09 3.087476988e-09 3.216900064e-09 3.734901104e-09 3.449253472e-09 3.822437446e-09 3.745975802e-09 4.207262636e-09 5.268352856e-09 5.080096089e-09 4.558078918e-09 4.515411531e-09 4.911988706e-09 4.205969651e-09 6.287562784e-09 5.70845995e-09 6.221581835e-09 4.993875576e-09 6.096002542e-09 4.666967779e-09 5.474607241e-09 4.352660368e-09 5.264933276e-09 3.502764582e-09 3.910954026e-09 4.429001152e-09 4.885766359e-09 5.025632591e-09 4.378496895e-09 4.238322586e-09 3.165224191e-09 3.796199668e-09 4.053257992e-09 2.916358119e-09 2.447926577e-09 3.465399257e-09 3.540296187e-09 3.341413653e-09 3.38014732e-09 3.324583836e-09 2.964129287e-09 2.576764561e-09 3.008120587e-09 2.522552546e-09 3.216189299e-09 3.515081772e-09 3.553409118e-09 3.480808346e-09 2.666176892e-09 3.414180867e-09 2.86983761e-09 3.720538661e-09 3.40602847e-09 3.023663751e-09 3.616912008e-09 3.297251981e-09 2.772188761e-09 3.896951573e-09 4.643321252e-09 3.537611556e-09 3.338695176e-09 3.523907979e-09 4.992886073e-09 4.369259847e-09 4.702678864e-09 4.280179599e-09 5.527549688e-09 4.060254976e-09 5.913513102e-09 4.671727605e-09 6.225788184e-09 5.128150834e-09 4.730383237e-09 5.088403608e-09 6.133599418e-09 4.518902119e-09 4.436640627e-09 5.135992692e-09 5.218853728e-09 5.370909128e-09 5.760360605e-09 5.639290771e-09 3.337549994e-09 3.436874666e-09 3.807827552e-09 3.613901245e-09 3.254727305e-09 3.118643557e-09 3.125013656e-09 3.241884358e-09 3.237947542e-09 3.154948676e-09 3.024023732e-09 2.813701899e-09 2.728642543e-09 2.598506193e-09 2.736517666e-09 2.454783236e-09 2.522374737e-09 2.414588432e-09 2.480195991e-09 2.539242822e-09 2.304988912e-09 2.433783374e-09 2.049041195e-09 1.878056781e-09 1.932207649e-09 1.54945579e-09 1.935064171e-09 1.772432217e-09 1.366594353e-09 1.436967912e-09 1.484592137e-09 1.126542762e-09 1.174359387e-09 7.51912852e-10 5.56430183e-10 3.303825879e-10 2.132467869e-10 1.045516799e-10 5.21040664e-12 1.37374754e-11 1.073839099e-12 2.916412471e-12 1.391216237e-13 1.028636499e-14 3.251942926e-15 1.027357687e-16 8.696687054e-17 2.392006481e-18 3.114799963e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 8.021393894e-19 1.442559552e-18 2.478626206e-18 5.801854603e-18 2.937608612e-16 7.0335956e-16 5.163445945e-15 1.232119504e-12 9.298812851e-13 5.203266338e-12 4.012445971e-11 1.978725662e-10 2.571959049e-10 1.642658451e-10 2.417299877e-10 3.295880008e-10 7.954744974e-10 1.084177879e-09 1.144667423e-09 1.360067962e-09 1.218905144e-09 1.660549231e-09 1.767673011e-09 1.93947936e-09 1.775869114e-09 1.939801446e-09 1.993657863e-09 2.266604908e-09 2.139523491e-09 2.29952204e-09 2.039004089e-09 2.381510186e-09 2.504375472e-09 2.820064778e-09 2.711741909e-09 2.833200656e-09 2.85052657e-09 2.816333522e-09 3.034657505e-09 2.801394051e-09 3.169438092e-09 2.975188129e-09 3.162850725e-09 3.397150318e-09 3.231268928e-09 3.968102764e-09 3.263073056e-09 3.813806212e-09 4.564407428e-09 3.648955181e-09 5.18296305e-09 5.766410815e-09 4.149949704e-09 4.40671722e-09 4.028604906e-09 4.432567446e-09 4.919460567e-09 5.029595977e-09 4.427864798e-09 5.542010968e-09 4.245218404e-09 5.87081188e-09 6.439869999e-09 4.762978017e-09 5.843392633e-09 5.045269232e-09 4.549039295e-09 5.162045801e-09 4.190362779e-09 4.04427008e-09 4.236586015e-09 4.388807783e-09 3.521164856e-09 3.804387374e-09 3.197736873e-09 3.788738948e-09 3.168352589e-09 3.358596682e-09 3.681507784e-09 3.113614592e-09 3.157962979e-09 2.204593921e-09 3.444147347e-09 2.590432298e-09 2.863144012e-09 3.641877034e-09 2.507971564e-09 2.964623577e-09 3.586577164e-09 2.760191858e-09 3.256009029e-09 3.558468968e-09 2.821354331e-09 3.385343664e-09 3.533749622e-09 3.328810287e-09 2.907625455e-09 2.799223572e-09 3.371910435e-09 3.255390942e-09 3.373962019e-09 4.357066271e-09 4.270795089e-09 4.902997414e-09 3.406057235e-09 5.204923014e-09 4.102924644e-09 5.286751547e-09 4.855859915e-09 5.618836645e-09 4.890142095e-09 5.703907785e-09 5.661607769e-09 4.387449488e-09 4.065011901e-09 5.283673963e-09 7.174962325e-09 7.068771908e-09 4.849450369e-09 4.686905983e-09 6.027882401e-09 4.677394166e-09 5.710426675e-09 4.938282388e-09 5.824890133e-09 4.062279643e-09 3.946130388e-09 4.404531153e-09 3.922328342e-09 3.248443438e-09 3.129079352e-09 2.993672401e-09 3.239903607e-09 3.308963174e-09 2.90373877e-09 2.838113283e-09 2.923414607e-09 2.791940731e-09 2.550701116e-09 2.529571714e-09 2.533129239e-09 2.50094356e-09 2.4706815e-09 2.427234374e-09 2.190856271e-09 2.208791575e-09 1.730781948e-09 1.981397685e-09 2.110478818e-09 1.780308511e-09 1.775683495e-09 1.727534734e-09 1.667440281e-09 1.1625793e-09 1.233893991e-09 1.18002498e-09 1.049227487e-09 7.610956343e-10 3.470185561e-10 1.94068977e-10 3.398279205e-10 1.30459039e-10 7.121452684e-11 1.849799969e-11 2.06960538e-11 2.632012491e-14 2.490597269e-13 8.024344711e-14 7.917664268e-15 4.131897882e-15 1.696000432e-16 2.618479775e-18 0 9.514040691e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.203734312e-18 3.793056554e-19 1.901017711e-17 2.65904439e-17 4.714894318e-15 1.793684447e-14 1.695062589e-12 1.545491335e-12 5.591089851e-12 3.309914442e-11 3.177322967e-10 3.091250789e-10 3.022368973e-10 2.645971519e-10 2.217845879e-10 4.937267947e-10 8.089441658e-10 1.326505506e-09 1.447159275e-09 1.662378615e-09 1.67891081e-09 1.646073281e-09 1.361644365e-09 1.983727159e-09 1.78617423e-09 1.994097014e-09 2.055292817e-09 2.249048491e-09 2.304253621e-09 2.358111622e-09 2.611083436e-09 2.429135255e-09 2.6707006e-09 2.494257683e-09 2.71885411e-09 3.047056085e-09 2.721439231e-09 3.053646417e-09 3.0055774e-09 2.780801118e-09 3.039856084e-09 3.377004064e-09 3.337751594e-09 3.299495796e-09 3.591919655e-09 3.503063054e-09 4.690572383e-09 4.092055951e-09 3.881294633e-09 4.262191091e-09 4.16306393e-09 5.012675996e-09 4.303967178e-09 4.565494672e-09 4.94858311e-09 4.623521227e-09 3.45377993e-09 4.307135423e-09 5.646147505e-09 5.144295413e-09 3.985991699e-09 4.566763575e-09 5.849663627e-09 4.393809388e-09 5.630576339e-09 4.356101675e-09 4.957885131e-09 4.86188529e-09 4.136913041e-09 4.780413536e-09 4.126925338e-09 3.765133194e-09 4.035609723e-09 3.702201914e-09 3.511734214e-09 3.178119825e-09 3.83336985e-09 3.638875781e-09 2.921462577e-09 3.207999502e-09 2.805163672e-09 3.417631601e-09 3.570535423e-09 3.120369014e-09 3.004940917e-09 3.049395397e-09 2.951570031e-09 3.686194421e-09 3.027994958e-09 3.161133276e-09 3.067483713e-09 2.721010838e-09 2.845658499e-09 3.479778254e-09 3.454774834e-09 3.796153946e-09 3.080781271e-09 4.456295395e-09 4.046496797e-09 3.942881679e-09 3.612913652e-09 4.277370211e-09 4.145963434e-09 3.917766713e-09 4.908821205e-09 4.080862966e-09 4.76655998e-09 5.54272635e-09 4.918659869e-09 4.7524935e-09 4.592894678e-09 4.038895817e-09 4.446462072e-09 5.093160322e-09 6.01262091e-09 4.709098904e-09 4.736866244e-09 3.87321958e-09 4.663399414e-09 4.842063528e-09 4.435661204e-09 4.199820155e-09 4.125662719e-09 4.959015369e-09 3.680038286e-09 4.063000287e-09 3.713044636e-09 3.325394076e-09 3.230930559e-09 3.289935611e-09 3.067276931e-09 3.010331588e-09 2.966724111e-09 2.902029412e-09 2.787760611e-09 2.890653759e-09 2.617840252e-09 2.770622691e-09 2.852575592e-09 2.408769244e-09 2.439871167e-09 2.309479348e-09 2.053592764e-09 2.147119577e-09 2.193008046e-09 2.162762105e-09 2.306623547e-09 1.907226487e-09 1.719852472e-09 1.641213335e-09 1.56780514e-09 1.309150833e-09 1.398615486e-09 1.239148915e-09 1.190095555e-09 7.297265203e-10 6.264174244e-10 5.388652395e-10 2.476757141e-10 3.768594454e-10 6.930415761e-11 2.137055171e-10 8.739721019e-12 7.730165964e-12 1.404978426e-13 1.165545875e-13 7.002227024e-15 3.85598049e-16 3.921643221e-16 1.541974573e-16 1.985039891e-17 5.779109181e-19 2.943883649e-21 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 5.249484928e-19 2.012712581e-17 6.463901966e-17 2.186263302e-17 2.570722379e-16 7.096803241e-16 1.138895102e-13 6.056723979e-13 1.068663018e-12 1.01904544e-11 1.160368981e-10 2.271630516e-10 2.107775677e-10 2.015540856e-10 3.114691328e-10 2.833599703e-10 8.333962224e-10 9.275592938e-10 9.723727799e-10 1.330691284e-09 1.542605408e-09 1.35714922e-09 1.603385247e-09 1.610434994e-09 2.134211708e-09 2.249802574e-09 2.09156825e-09 1.772396618e-09 2.274374741e-09 2.308147184e-09 2.591645796e-09 2.513501689e-09 2.545654595e-09 2.700876823e-09 2.582292509e-09 2.514671598e-09 2.811852192e-09 2.77059636e-09 2.988162219e-09 3.093221386e-09 3.10614533e-09 3.168966866e-09 3.12976041e-09 3.332088563e-09 3.185543583e-09 3.448751193e-09 3.105754438e-09 4.114066562e-09 3.636648818e-09 3.713620009e-09 5.120840384e-09 5.680603932e-09 5.284319731e-09 4.578900217e-09 5.052318092e-09 5.634284419e-09 3.9985261e-09 5.273080518e-09 5.453505957e-09 6.243156848e-09 4.25814473e-09 4.111105933e-09 5.250308767e-09 3.846361909e-09 4.607194754e-09 4.08124034e-09 5.162962302e-09 5.16432877e-09 3.802690748e-09 4.785242507e-09 4.628633248e-09 4.189644477e-09 4.018456129e-09 3.958420725e-09 3.263059222e-09 3.125914243e-09 3.469441035e-09 3.577504627e-09 3.147857796e-09 2.326601598e-09 3.391935157e-09 3.366863972e-09 3.159374269e-09 3.240068064e-09 3.217605815e-09 2.977569121e-09 3.202207063e-09 3.465039506e-09 2.715004541e-09 3.366067503e-09 3.301259883e-09 2.940979857e-09 3.066694733e-09 2.884958297e-09 3.200546924e-09 3.393481753e-09 3.518676013e-09 3.120111899e-09 3.523089511e-09 4.001931842e-09 3.687559201e-09 3.301197298e-09 3.718690667e-09 3.753465504e-09 5.080939565e-09 4.525229523e-09 4.877286859e-09 5.219045682e-09 4.345747177e-09 4.587368786e-09 6.000419162e-09 6.333518389e-09 4.287100983e-09 5.355812784e-09 4.800302202e-09 4.521648116e-09 5.103046972e-09 5.852556096e-09 5.094548973e-09 4.957996348e-09 4.857943549e-09 4.245964622e-09 4.506897956e-09 3.46496392e-09 3.660332255e-09 4.822709823e-09 3.596100159e-09 3.442519215e-09 3.144511198e-09 3.192558128e-09 3.273164316e-09 2.891663127e-09 3.155586459e-09 3.063669427e-09 2.967057646e-09 3.059745532e-09 3.078711023e-09 2.7254423e-09 2.527423008e-09 2.565551395e-09 2.648605972e-09 2.381898576e-09 2.538305132e-09 2.260407413e-09 2.299556761e-09 2.168180774e-09 2.400658953e-09 1.861873884e-09 2.016301999e-09 1.9599014e-09 1.812428042e-09 1.601837567e-09 1.426254209e-09 1.380668321e-09 1.246282588e-09 1.228933401e-09 1.179116216e-09 6.24328978e-10 2.826134911e-10 4.158698634e-10 2.290588715e-10 1.813351848e-10 1.341316436e-10 4.102348819e-12 1.095610491e-11 1.044243289e-12 3.802901942e-15 1.403250245e-14 1.063449289e-15 2.538427326e-16 7.684035575e-17 1.75962153e-17 4.240417106e-19 5.086684156e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.736813588e-18 1.05331569e-17 1.725601334e-17 4.012459411e-16 8.768267738e-15 3.520916166e-14 3.696576538e-13 9.693969889e-13 1.934105929e-12 3.068651616e-11 1.088965862e-10 2.612132544e-10 2.527367778e-10 1.574407455e-10 6.585806047e-10 8.064370697e-10 1.049672921e-09 1.132479268e-09 1.233611802e-09 1.451425419e-09 1.440912393e-09 1.561230263e-09 1.653239898e-09 2.141577588e-09 1.919170052e-09 2.101118242e-09 1.892312445e-09 2.047995563e-09 2.183203867e-09 2.443020218e-09 2.612112135e-09 2.626511424e-09 2.782370129e-09 2.782604135e-09 2.487218086e-09 2.861570795e-09 2.714286397e-09 3.164764153e-09 2.964166813e-09 2.962370993e-09 3.10939571e-09 3.282186774e-09 3.361989521e-09 3.572048722e-09 3.118227487e-09 4.016543045e-09 3.992728252e-09 4.129410425e-09 4.53373761e-09 4.905520824e-09 4.626603393e-09 3.656721629e-09 5.272663884e-09 4.946177334e-09 4.473789158e-09 5.259807216e-09 4.573973085e-09 5.821122878e-09 5.578479702e-09 5.100843828e-09 5.434129472e-09 5.216832715e-09 6.372994805e-09 4.192607884e-09 4.892869558e-09 4.6947003e-09 5.459476812e-09 5.229837139e-09 4.953357667e-09 3.864611176e-09 3.785152719e-09 3.765414492e-09 3.63663388e-09 4.13270494e-09 3.52322115e-09 3.435627224e-09 3.812213809e-09 4.0090352e-09 3.321247923e-09 2.978895451e-09 3.317172086e-09 2.85628584e-09 3.163194611e-09 3.063287534e-09 3.906121502e-09 2.865027746e-09 3.601977898e-09 2.841399932e-09 3.026849138e-09 2.993264169e-09 3.154154177e-09 3.075543752e-09 4.050951506e-09 3.346744752e-09 3.049236277e-09 3.07576635e-09 3.040747909e-09 3.578063387e-09 3.715847736e-09 3.57329045e-09 3.873211885e-09 3.678294936e-09 3.798122353e-09 3.671488412e-09 5.062094428e-09 5.173089149e-09 4.919803483e-09 4.960601673e-09 5.26628761e-09 5.004566445e-09 5.360465981e-09 4.965870027e-09 5.442992076e-09 5.354072439e-09 4.776678505e-09 6.144624041e-09 5.631202177e-09 5.270716636e-09 4.695226918e-09 5.078892031e-09 5.139619776e-09 4.461698324e-09 4.647393436e-09 4.103213596e-09 4.91488523e-09 4.325004076e-09 3.495789207e-09 4.005979367e-09 3.161206361e-09 3.394632656e-09 3.075017358e-09 3.064065691e-09 2.947233322e-09 2.863889448e-09 2.902277924e-09 3.074502684e-09 2.854153222e-09 2.654949074e-09 2.552643923e-09 2.466886582e-09 2.38073385e-09 2.400102797e-09 2.366881107e-09 2.337457112e-09 1.876133045e-09 2.087314053e-09 2.013967668e-09 2.084768279e-09 1.894844642e-09 1.766450708e-09 1.624684803e-09 1.563271264e-09 1.447119719e-09 1.031084571e-09 1.07597192e-09 7.491145959e-10 8.090842422e-10 5.531826154e-10 1.666325442e-10 3.265708434e-10 2.749524381e-10 1.597178081e-10 4.801563681e-11 1.918776592e-11 5.006944881e-13 4.313784784e-14 6.436007084e-15 6.493101001e-15 1.689394865e-17 1.666931643e-16 5.857948178e-19 3.954087651e-18 3.787007971e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.533993021e-19 1.597155241e-17 5.470762621e-16 2.828930219e-16 3.103157516e-15 1.247342154e-14 1.737030239e-14 3.276534957e-13 3.074924308e-11 1.374094377e-10 5.444122919e-11 1.996163552e-10 6.050315768e-11 1.690036875e-10 5.330163445e-10 6.891360623e-10 9.151596009e-10 1.232294851e-09 1.178384829e-09 1.427294245e-09 1.706797481e-09 1.586848891e-09 1.549009324e-09 2.038934285e-09 1.796607576e-09 2.040275942e-09 1.931585903e-09 2.092295484e-09 2.269661544e-09 2.337959336e-09 2.419009829e-09 2.358125496e-09 2.615856312e-09 2.884959736e-09 2.643632267e-09 2.868080541e-09 2.647878122e-09 2.987932767e-09 2.813156773e-09 2.860819145e-09 3.117565464e-09 2.999531957e-09 3.145941565e-09 3.174551483e-09 3.777580548e-09 3.45770208e-09 3.969660089e-09 4.051081202e-09 4.418113403e-09 4.250138088e-09 4.352396817e-09 3.073946118e-09 4.511511577e-09 4.126185492e-09 5.948384893e-09 3.938946997e-09 4.429802584e-09 4.859295557e-09 4.37393228e-09 4.552790823e-09 5.866138523e-09 5.882744402e-09 5.312324723e-09 4.878305311e-09 4.884167718e-09 5.689335774e-09 5.184213279e-09 4.117053225e-09 3.704686253e-09 3.793939071e-09 4.257303094e-09 4.101404097e-09 4.079213659e-09 3.954983681e-09 3.361977972e-09 2.552090227e-09 3.15822647e-09 3.349904477e-09 3.294246165e-09 3.005229258e-09 2.729294651e-09 3.848436199e-09 3.470542497e-09 3.435301669e-09 3.131289458e-09 3.056973303e-09 3.166798056e-09 2.599374696e-09 2.677756607e-09 2.781852864e-09 3.517263493e-09 3.011682439e-09 2.872186705e-09 3.287023963e-09 3.257578519e-09 3.255344432e-09 3.249549227e-09 4.34739496e-09 3.854032242e-09 3.822846974e-09 3.249337202e-09 4.251803167e-09 5.768950774e-09 3.135605532e-09 4.02178407e-09 3.438337504e-09 4.674921743e-09 3.969005786e-09 5.561584212e-09 4.612574451e-09 5.296002437e-09 5.743044229e-09 5.621291996e-09 4.702033496e-09 5.134316545e-09 5.422400736e-09 4.637456599e-09 4.615986293e-09 3.812510085e-09 3.651549214e-09 4.826291854e-09 4.714970222e-09 4.363147469e-09 3.891558484e-09 4.276055409e-09 4.215126579e-09 3.38638769e-09 3.425541368e-09 3.067940436e-09 3.086538608e-09 3.130178315e-09 3.223955771e-09 3.13489602e-09 2.990354704e-09 2.696000401e-09 2.811346937e-09 2.810660345e-09 2.810573455e-09 2.802568285e-09 2.481504476e-09 2.60377236e-09 2.340302679e-09 2.497637234e-09 2.559439989e-09 2.108975553e-09 2.063309853e-09 1.938974076e-09 1.935866964e-09 1.756589102e-09 1.607875436e-09 1.65985961e-09 1.555904185e-09 1.470588967e-09 1.539319125e-09 1.260211851e-09 8.17370435e-10 7.575864812e-10 4.755287525e-10 5.13299333e-10 1.197465032e-10 9.870820637e-11 1.576659747e-10 2.457668175e-11 9.013608535e-12 3.984898733e-13 1.450043079e-13 1.341492754e-14 9.398011256e-15 5.393592456e-17 8.138915375e-18 9.719819992e-18 3.713122787e-34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.118457764e-19 4.017101736e-19 1.397776977e-16 2.018629505e-17 1.2122622e-15 1.749698855e-13 4.145200809e-13 1.935667845e-13 9.938320762e-12 2.210086511e-11 2.284406911e-10 1.234240098e-10 3.455868908e-10 2.71344432e-10 8.452024696e-11 7.567936036e-10 1.062044583e-09 1.221200356e-09 1.421495531e-09 1.308705243e-09 1.484393723e-09 1.509793134e-09 1.664419953e-09 1.818283004e-09 1.997560942e-09 1.926122956e-09 1.984182813e-09 2.322645309e-09 2.186215304e-09 2.182497017e-09 2.56073693e-09 2.517727719e-09 2.476477843e-09 2.629917498e-09 2.711159731e-09 2.590990484e-09 2.591533723e-09 2.963036551e-09 2.872988546e-09 2.999143729e-09 3.101606802e-09 3.076400462e-09 3.312668378e-09 3.24337609e-09 3.233396587e-09 4.151940266e-09 4.315736482e-09 3.967737043e-09 4.017388575e-09 4.723860217e-09 4.973695566e-09 5.429079107e-09 5.135868678e-09 5.372956589e-09 4.093229332e-09 4.744737323e-09 4.590047064e-09 5.643970471e-09 4.638462146e-09 5.523019244e-09 3.599493245e-09 4.977348643e-09 5.748544477e-09 4.654334072e-09 5.575336637e-09 4.416713533e-09 5.688907952e-09 5.533023936e-09 5.082605641e-09 4.476819585e-09 3.79772352e-09 3.181981387e-09 3.32414296e-09 4.556304948e-09 4.301030038e-09 3.392221112e-09 4.549310486e-09 3.083503995e-09 3.732940433e-09 2.796815414e-09 3.190578702e-09 3.346093792e-09 3.312445374e-09 2.813413804e-09 2.54683637e-09 3.22246742e-09 3.281830543e-09 2.343991574e-09 3.100816442e-09 2.50092497e-09 2.847675282e-09 2.545193195e-09 3.091280585e-09 2.914130438e-09 2.917339003e-09 2.846558442e-09 3.277608804e-09 2.762103325e-09 4.063969046e-09 3.952998416e-09 3.331473938e-09 3.629248548e-09 3.665554381e-09 3.479717999e-09 4.977398598e-09 3.620178901e-09 3.621707747e-09 5.297733966e-09 5.178789529e-09 5.432396525e-09 6.482746732e-09 4.720816178e-09 4.671845555e-09 5.479262883e-09 4.913419921e-09 4.998705219e-09 4.493799814e-09 4.949920363e-09 5.740164831e-09 4.998972137e-09 5.221620349e-09 6.752808433e-09 4.588431045e-09 4.000292284e-09 4.012903918e-09 3.815961338e-09 3.231714153e-09 3.467029597e-09 3.278978334e-09 3.396216431e-09 3.133165288e-09 3.153071803e-09 3.008192399e-09 3.008040553e-09 2.855256228e-09 2.750735151e-09 2.912686051e-09 2.777506556e-09 2.591015438e-09 2.602455364e-09 2.585283449e-09 2.577600382e-09 2.260445714e-09 2.357016863e-09 2.406474634e-09 2.124634187e-09 1.937208434e-09 1.987382771e-09 1.968805797e-09 1.920253013e-09 1.513711193e-09 1.399023589e-09 1.220493829e-09 1.201870375e-09 9.259922304e-10 9.461858009e-10 6.518131915e-10 4.054572433e-10 1.444595494e-10 3.69454224e-10 2.459052943e-10 8.993318766e-11 4.441662026e-11 9.038176609e-12 5.913349613e-12 1.083687512e-14 8.259199164e-15 2.80134888e-15 1.54975668e-16 4.542405702e-16 3.355728369e-18 4.618565894e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.003112746e-18 9.804548579e-19 5.249776988e-18 2.21146221e-16 1.239513185e-15 9.466327504e-14 9.376753961e-14 6.579694471e-13 8.328822252e-12 4.287582697e-12 4.551277031e-11 3.428379834e-10 1.922442524e-10 3.283886746e-10 5.33862877e-10 8.871414672e-10 9.533964967e-10 1.252693293e-09 1.246713129e-09 1.20897937e-09 1.627305018e-09 1.81803995e-09 1.711063407e-09 1.874635548e-09 2.046980528e-09 2.015412878e-09 1.974150049e-09 2.287702677e-09 2.294762657e-09 2.15662744e-09 2.425332045e-09 2.721177099e-09 2.76795214e-09 2.660468654e-09 2.786059212e-09 2.953597617e-09 2.846021059e-09 3.063878706e-09 2.831621478e-09 2.75260021e-09 3.223281333e-09 3.324407526e-09 3.1525898e-09 3.342081843e-09 3.126417451e-09 3.512852615e-09 4.549404561e-09 3.456134309e-09 5.569602524e-09 4.758943701e-09 5.170326298e-09 5.641942197e-09 4.438661524e-09 5.124741916e-09 5.12970856e-09 5.281579211e-09 5.641193798e-09 4.484322448e-09 5.958533445e-09 6.047902533e-09 4.746043193e-09 4.869713398e-09 6.386548039e-09 4.4083636e-09 5.149052044e-09 4.925934155e-09 4.763067604e-09 4.867691609e-09 4.525076315e-09 4.353662149e-09 3.883122325e-09 3.452448591e-09 3.733258731e-09 3.582475089e-09 3.442301804e-09 2.950947074e-09 3.29302051e-09 3.853544897e-09 3.206388416e-09 2.985411888e-09 3.660233665e-09 3.036889017e-09 3.100302531e-09 3.211097372e-09 3.15020755e-09 3.019095243e-09 3.361616401e-09 3.216727386e-09 2.779309424e-09 3.202015805e-09 3.024441304e-09 3.765502314e-09 2.863899055e-09 3.146389923e-09 2.935712471e-09 3.029189432e-09 3.210081614e-09 3.097196061e-09 4.122916603e-09 2.851164357e-09 3.469678501e-09 3.748535409e-09 4.25325187e-09 3.961606965e-09 4.993933444e-09 5.128913422e-09 4.360805993e-09 4.439533617e-09 4.77892118e-09 3.938965657e-09 4.600515568e-09 4.189567002e-09 6.83923578e-09 5.490920842e-09 5.118287035e-09 5.800760346e-09 3.855816787e-09 4.927985457e-09 4.250640182e-09 5.209386108e-09 5.167041723e-09 5.157213129e-09 3.506471757e-09 4.132639335e-09 3.435295429e-09 3.26483567e-09 4.14165155e-09 3.23739042e-09 3.155043173e-09 3.188794433e-09 2.771472017e-09 3.138334582e-09 3.080616015e-09 2.940141605e-09 2.866316852e-09 2.674873647e-09 2.793593351e-09 2.81407453e-09 2.642613339e-09 2.853565837e-09 2.271241481e-09 2.447981563e-09 2.599912855e-09 2.331327819e-09 2.370044207e-09 2.43867859e-09 2.161467477e-09 1.961731519e-09 1.818789758e-09 1.780910232e-09 1.571778313e-09 1.11450532e-09 1.265422169e-09 1.195930045e-09 1.142316348e-09 9.370963906e-10 7.215125208e-10 2.981626117e-10 3.164026984e-10 3.298359188e-10 2.486380987e-10 1.178406756e-10 4.244299137e-11 1.583466233e-12 1.33891087e-13 4.119111991e-13 1.465982653e-13 7.077432859e-15 8.328795282e-17 2.940039054e-17 1.125327466e-17 4.77494857e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.558885298e-18 3.166097679e-17 9.508180707e-16 1.863559235e-14 6.368074986e-14 2.079977971e-14 1.812199265e-12 8.160026494e-13 1.548472428e-11 1.616961927e-10 2.851934897e-10 3.209885031e-10 2.306152184e-10 3.789921735e-10 9.098351124e-10 1.087316179e-09 9.183953068e-10 1.124961019e-09 1.203792267e-09 1.559929592e-09 1.70680424e-09 1.889237685e-09 1.821394661e-09 1.878819698e-09 1.920449138e-09 1.98456125e-09 2.243727296e-09 2.442849909e-09 2.473423754e-09 2.4152441e-09 2.488973701e-09 2.666777141e-09 2.660437487e-09 2.594301926e-09 3.013902157e-09 2.853907593e-09 2.837023487e-09 3.22777321e-09 3.159629836e-09 3.070260653e-09 2.973393996e-09 3.27090055e-09 3.471774551e-09 3.596825391e-09 3.081763789e-09 3.237066999e-09 3.827944439e-09 5.031526816e-09 4.292248721e-09 5.59431552e-09 5.017555999e-09 4.589749071e-09 4.829344032e-09 5.616988405e-09 4.890080204e-09 4.240559491e-09 4.279167883e-09 4.274471371e-09 5.404185287e-09 4.453370527e-09 4.901101573e-09 5.117494282e-09 4.216952274e-09 5.004471304e-09 5.169489692e-09 4.508728065e-09 4.242652941e-09 4.13879443e-09 4.317620639e-09 3.3753259e-09 4.230589265e-09 3.436044795e-09 3.350071494e-09 3.311003104e-09 2.846425972e-09 3.370922168e-09 3.216111405e-09 2.899239701e-09 3.012602505e-09 3.052353812e-09 2.986918233e-09 3.196517304e-09 3.451019993e-09 3.232688321e-09 3.18979596e-09 2.460282618e-09 2.978268651e-09 3.267655226e-09 2.911458362e-09 3.118764388e-09 3.390535192e-09 2.906023753e-09 3.107555728e-09 3.374604091e-09 4.125935998e-09 2.412095318e-09 3.163425235e-09 3.997387382e-09 3.983828404e-09 3.362382963e-09 4.356354488e-09 4.269760752e-09 4.797389942e-09 5.114458536e-09 5.291204872e-09 4.790069971e-09 4.493123616e-09 5.512772373e-09 5.17906974e-09 4.175387657e-09 4.574689998e-09 5.764147132e-09 5.355841725e-09 4.580765986e-09 5.17120325e-09 5.01606485e-09 3.489433773e-09 4.395803745e-09 4.458135009e-09 5.142397279e-09 4.701616146e-09 4.100369505e-09 3.792622491e-09 3.883986218e-09 4.778128213e-09 4.498579567e-09 3.313339778e-09 3.410254172e-09 3.279675382e-09 3.301823386e-09 2.947902567e-09 3.273763323e-09 2.917446648e-09 2.846789188e-09 2.919298391e-09 2.985452861e-09 2.529536262e-09 2.644483554e-09 2.65173354e-09 2.637554264e-09 2.413551911e-09 2.257237101e-09 2.210395821e-09 1.904004027e-09 2.260158236e-09 2.350921363e-09 1.906839041e-09 1.92250159e-09 1.558555951e-09 1.657250464e-09 1.469381476e-09 1.282177689e-09 1.076049762e-09 1.336707409e-09 8.74822478e-10 9.104734871e-10 5.385095506e-10 2.689598988e-10 3.638698595e-10 1.086916093e-10 1.405503464e-10 5.157942582e-11 4.942335134e-12 3.133805323e-12 8.189694345e-14 6.584780836e-14 1.328664479e-14 1.808014589e-15 1.818695117e-17 2.62853604e-18 5.004504424e-18 0 0 0 0 0 0 0 0 0 3.189110819e-26 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 6.223342043e-19 9.87665529e-31 2.786081341e-17 2.172451625e-16 6.707337256e-17 4.670240749e-15 7.072645018e-15 2.859460004e-14 2.052036962e-13 5.370015836e-11 5.41802828e-11 1.186277032e-10 3.081671241e-10 2.721465606e-10 2.63652162e-10 4.085814902e-10 6.138904768e-10 1.1099426e-09 1.221026414e-09 1.19534404e-09 1.36602268e-09 1.283540828e-09 1.599881401e-09 1.514827115e-09 1.920677094e-09 2.1444586e-09 2.094286739e-09 1.991356422e-09 2.33263485e-09 2.11550715e-09 2.532030185e-09 2.246898378e-09 2.218936826e-09 2.460562545e-09 2.675744152e-09 2.770941785e-09 2.948921227e-09 2.619614243e-09 2.811700587e-09 3.090590872e-09 3.031977106e-09 3.124640803e-09 3.45062754e-09 3.02167487e-09 3.744513502e-09 3.337357685e-09 3.425466902e-09 3.939892705e-09 4.629250935e-09 4.876886092e-09 4.278788059e-09 4.849591624e-09 4.690597993e-09 5.412452089e-09 5.774239369e-09 5.607384675e-09 4.942065129e-09 4.990337305e-09 5.444205115e-09 6.491542231e-09 4.481187601e-09 5.070329612e-09 4.350727631e-09 5.179135538e-09 3.767755041e-09 5.251911688e-09 4.300767141e-09 3.783603425e-09 3.823113005e-09 4.701621901e-09 4.819035406e-09 3.291294438e-09 3.095948416e-09 4.046470892e-09 3.391003985e-09 4.141906345e-09 2.960256633e-09 3.525494621e-09 3.080998822e-09 2.967037686e-09 2.852162027e-09 3.722427958e-09 2.867062953e-09 2.8300397e-09 3.312855635e-09 2.706876422e-09 3.020037098e-09 3.345427098e-09 3.218991536e-09 3.355651946e-09 3.267734552e-09 3.308093887e-09 3.534153793e-09 3.24168193e-09 3.590976631e-09 2.883721854e-09 3.344931619e-09 3.721392885e-09 3.322411719e-09 3.711103884e-09 4.042052981e-09 3.146851676e-09 3.877270883e-09 3.328832356e-09 3.624432936e-09 4.834405376e-09 6.107427926e-09 4.657471276e-09 5.3355869e-09 5.033823067e-09 4.845547667e-09 5.814329807e-09 3.854911482e-09 5.679972709e-09 4.290469635e-09 4.426078591e-09 4.88949006e-09 5.452651693e-09 3.618512385e-09 3.573588633e-09 4.864322836e-09 4.698588634e-09 3.769466971e-09 4.393447187e-09 5.742693258e-09 4.020660814e-09 4.008626546e-09 3.246282786e-09 2.999139385e-09 3.095366955e-09 3.114816432e-09 3.106466812e-09 3.000667743e-09 3.014481485e-09 3.03991819e-09 3.049455985e-09 2.788981101e-09 2.921707632e-09 2.571019398e-09 2.607956193e-09 2.338401305e-09 2.422343855e-09 2.287080607e-09 2.539104758e-09 2.312842706e-09 2.277020141e-09 2.111610632e-09 2.087966821e-09 2.037150916e-09 1.837462628e-09 1.631441017e-09 1.237880539e-09 1.466697296e-09 1.553230618e-09 1.461299084e-09 1.156611312e-09 1.08195748e-09 7.00911089e-10 3.322141846e-10 4.048826893e-10 2.8477796e-10 2.635859789e-10 2.453233317e-10 2.760842979e-11 2.213929496e-11 1.155973066e-12 1.602653262e-13 4.151197458e-15 1.195959973e-14 3.25483177e-15 2.195832579e-17 3.612162572e-17 5.155050681e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.005115391e-18 6.958539457e-19 8.722685145e-18 8.544020042e-17 2.849940882e-17 3.220793691e-14 7.515019828e-15 4.52331703e-13 6.05992955e-12 3.497730085e-11 1.172312851e-10 2.934009392e-10 3.955773199e-10 2.463952442e-10 4.278063375e-10 5.36021877e-10 1.269729817e-09 1.051385918e-09 1.380966476e-09 1.610934665e-09 1.450289691e-09 1.824612429e-09 1.765939747e-09 1.54026568e-09 1.7715256e-09 2.205735353e-09 2.103387818e-09 2.211245562e-09 2.093827512e-09 2.433773806e-09 2.457596921e-09 2.647737885e-09 2.376205743e-09 2.749695597e-09 2.472399609e-09 2.812569078e-09 2.854043528e-09 3.077954049e-09 2.935343521e-09 3.01754829e-09 2.920752594e-09 3.136762787e-09 3.159718977e-09 3.173567307e-09 3.422605231e-09 3.725869895e-09 3.989572881e-09 4.182841309e-09 4.162762989e-09 4.316448442e-09 4.972509472e-09 5.026512121e-09 4.670571523e-09 4.755626138e-09 4.531218001e-09 4.478745371e-09 5.571194407e-09 5.970956376e-09 5.044535498e-09 4.778645175e-09 6.112936987e-09 6.324739875e-09 3.927845976e-09 4.880278725e-09 4.540234469e-09 4.170651905e-09 4.010694218e-09 5.168645864e-09 4.51000051e-09 4.621881104e-09 4.056708214e-09 3.253341594e-09 3.969822712e-09 3.852889158e-09 3.409178018e-09 3.586297825e-09 3.052559851e-09 2.647287445e-09 2.990011977e-09 3.633928025e-09 3.147327546e-09 3.18921525e-09 3.417183328e-09 3.223680187e-09 2.494821926e-09 3.290816365e-09 2.65974201e-09 3.142196852e-09 3.257058618e-09 2.771608386e-09 3.096844177e-09 3.222118945e-09 3.333038812e-09 3.104684806e-09 2.651142197e-09 3.796308748e-09 2.941031556e-09 3.932374496e-09 3.470064163e-09 3.979531994e-09 2.870851986e-09 3.717601432e-09 4.169700543e-09 5.286162619e-09 5.38826395e-09 3.914723645e-09 4.48890421e-09 5.320369386e-09 6.217006738e-09 3.643785e-09 5.21208308e-09 5.918508971e-09 4.232372568e-09 4.205076867e-09 4.377842249e-09 6.307045884e-09 3.440085412e-09 5.004306575e-09 6.383010567e-09 5.964724058e-09 4.574872395e-09 4.605276712e-09 4.310749954e-09 3.551830244e-09 3.838361439e-09 3.499187775e-09 3.499214462e-09 3.30303823e-09 3.166207883e-09 3.255539695e-09 3.200819903e-09 3.34238798e-09 2.995958399e-09 2.794511269e-09 2.82886427e-09 2.536125507e-09 2.896186386e-09 2.4600873e-09 2.896150267e-09 2.421815779e-09 2.305352049e-09 2.368817936e-09 2.422043277e-09 2.298751862e-09 2.161350241e-09 1.907686545e-09 2.004034475e-09 1.973037079e-09 1.744738731e-09 1.719999652e-09 1.839325317e-09 1.787528302e-09 1.407462179e-09 1.200753532e-09 1.017113982e-09 8.951167369e-10 8.023653053e-10 7.330010623e-10 1.946893664e-10 2.714323739e-10 1.858287598e-10 1.122708381e-10 1.148905029e-10 1.613795899e-11 6.45619827e-13 1.337629521e-14 1.408053026e-13 5.089331422e-15 1.787756831e-16 4.69162953e-18 1.778221803e-17 0 7.590786231e-19 0 0 0 0 2.939538045e-26 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 8.91895241e-19 2.944137424e-18 1.777197348e-17 1.316531965e-17 8.623355699e-17 9.741498796e-16 2.523175261e-14 2.054064086e-13 1.093678105e-12 2.305240788e-12 4.462611912e-11 1.375683545e-10 5.140306856e-11 1.437087542e-10 2.167419788e-10 1.325319851e-10 8.058082588e-10 1.042873336e-09 1.137582115e-09 1.496554494e-09 1.293641299e-09 1.500903241e-09 1.485134141e-09 1.730530993e-09 1.804324085e-09 1.672937627e-09 2.277021847e-09 2.237390767e-09 2.171773373e-09 2.31273173e-09 2.479492669e-09 2.443373642e-09 2.288554572e-09 2.73478144e-09 2.544056797e-09 2.855455931e-09 2.700182018e-09 2.827550572e-09 2.861085741e-09 2.974021422e-09 3.114819226e-09 2.912818728e-09 3.213251516e-09 3.254423003e-09 3.453225513e-09 3.352022718e-09 3.91893685e-09 3.920773421e-09 3.844460099e-09 4.583180421e-09 4.545284166e-09 5.438029455e-09 4.265189355e-09 4.164863591e-09 5.415746534e-09 4.859385763e-09 4.371360973e-09 5.666147062e-09 5.430795041e-09 5.425969325e-09 4.970266542e-09 4.822806625e-09 4.744838555e-09 6.728005299e-09 4.744257425e-09 5.546242733e-09 4.298353401e-09 3.533451671e-09 5.377117641e-09 4.239454726e-09 4.799262514e-09 4.652453117e-09 3.781044735e-09 3.687642277e-09 3.166235054e-09 3.462357535e-09 3.388467071e-09 2.952864937e-09 2.972466791e-09 3.460070931e-09 3.681647442e-09 3.443883171e-09 2.265318561e-09 3.631252133e-09 3.252190151e-09 2.932627874e-09 3.090600014e-09 3.161399967e-09 3.305886751e-09 3.049370923e-09 3.512164837e-09 3.563846448e-09 3.799118576e-09 3.048530487e-09 3.305767527e-09 3.632473739e-09 4.308665774e-09 3.678579389e-09 3.554394583e-09 4.198211326e-09 3.391253994e-09 3.78426419e-09 3.964330787e-09 4.335308114e-09 4.59100939e-09 3.197023793e-09 4.930340765e-09 5.207853328e-09 5.672366071e-09 5.839416217e-09 4.356930747e-09 5.442074282e-09 5.057052612e-09 4.945435171e-09 6.096393751e-09 3.770262462e-09 5.002205453e-09 5.634220232e-09 5.143344531e-09 5.03951441e-09 5.100550668e-09 5.01131325e-09 4.532833353e-09 3.725880582e-09 3.569413587e-09 4.037269027e-09 3.86030811e-09 3.497857633e-09 3.334675067e-09 3.391856995e-09 3.231880999e-09 3.445455879e-09 2.912054472e-09 2.672126495e-09 2.964325714e-09 2.967378275e-09 2.999769807e-09 2.804738642e-09 2.521980436e-09 2.673634835e-09 2.636220116e-09 2.369046958e-09 2.514089425e-09 2.529673067e-09 2.279978336e-09 2.062948238e-09 2.036979718e-09 1.998113274e-09 1.944490377e-09 1.864566184e-09 1.322181774e-09 1.63282897e-09 1.474280611e-09 1.473001099e-09 1.307532419e-09 1.205567443e-09 7.224035147e-10 5.664951736e-10 4.601748126e-10 2.227253255e-10 2.420957567e-10 1.321358684e-10 1.886401831e-10 5.343979003e-11 6.645243735e-13 1.790677866e-13 5.210825464e-14 7.135170902e-14 2.955529116e-15 6.635042522e-17 9.091489088e-18 1.48168459e-17 3.878147992e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.927345148e-19 1.192641052e-17 7.161945048e-17 8.810045544e-17 1.203733757e-16 1.319219356e-14 1.489285524e-13 7.200275074e-12 5.579961812e-12 4.270422959e-12 1.6033431e-10 2.805677992e-10 3.546888941e-10 2.686603771e-10 1.932976531e-10 8.888851501e-10 8.4196106e-10 1.067380395e-09 1.234183358e-09 1.461668823e-09 1.351537527e-09 1.230106151e-09 1.813038677e-09 1.824257856e-09 1.92015717e-09 2.209596753e-09 2.278798825e-09 2.2409493e-09 2.331122179e-09 2.228290762e-09 2.18631918e-09 2.590516032e-09 2.816879605e-09 2.547307384e-09 2.630459893e-09 2.949638461e-09 2.808144743e-09 2.713426901e-09 2.978584241e-09 2.996440714e-09 3.26614619e-09 2.986885641e-09 3.009705789e-09 3.362668659e-09 3.367221239e-09 3.402133331e-09 3.82308152e-09 4.847088777e-09 3.211458744e-09 5.010560707e-09 5.609103747e-09 4.15649226e-09 3.643136871e-09 3.704663109e-09 4.822377873e-09 5.650858761e-09 4.286292624e-09 4.328034419e-09 5.788843581e-09 6.064573031e-09 5.292638155e-09 3.617648861e-09 5.00436283e-09 6.313262427e-09 3.770348362e-09 5.781037103e-09 4.480207455e-09 5.455052169e-09 4.097163764e-09 3.89895679e-09 4.035552924e-09 3.424644689e-09 3.757365587e-09 4.183119641e-09 3.738213115e-09 3.699599343e-09 3.53866282e-09 2.641225533e-09 2.969717625e-09 3.787341195e-09 3.113260761e-09 3.509745005e-09 3.105156876e-09 2.621029087e-09 3.045328246e-09 3.063469912e-09 3.412226074e-09 2.340184824e-09 3.170844504e-09 2.888403821e-09 3.036934669e-09 3.380585035e-09 3.087360348e-09 3.520792576e-09 2.977522869e-09 3.562466863e-09 3.827898869e-09 4.019723858e-09 3.798968421e-09 4.22447487e-09 4.281777604e-09 3.756758913e-09 4.51741247e-09 4.508478228e-09 4.645050953e-09 5.140257914e-09 5.439176912e-09 4.682071804e-09 4.959304182e-09 5.379045335e-09 5.146815932e-09 4.051501062e-09 4.911795146e-09 5.074549957e-09 6.921351619e-09 5.036069381e-09 5.579487787e-09 5.841191851e-09 4.259983576e-09 5.638774453e-09 4.872163178e-09 4.256818384e-09 5.605218739e-09 5.483693361e-09 3.559402001e-09 3.882768166e-09 4.138964247e-09 3.377095697e-09 3.312454568e-09 3.378616477e-09 3.121920458e-09 3.100225344e-09 2.936750882e-09 3.014222166e-09 2.85496584e-09 2.910537806e-09 2.996315292e-09 2.775707747e-09 2.691279726e-09 2.630218508e-09 2.3227732e-09 2.356679815e-09 2.746117315e-09 2.4435336e-09 2.254413774e-09 2.147742411e-09 1.976416018e-09 1.943526077e-09 1.954875403e-09 1.956779097e-09 1.972838715e-09 1.402193127e-09 1.321057797e-09 1.340092847e-09 1.043046678e-09 9.281862396e-10 8.064702906e-10 4.584515543e-10 2.182139115e-10 3.26011933e-10 1.546109677e-10 1.394653006e-10 8.469175148e-11 4.262942256e-12 5.775126546e-13 1.090770096e-13 1.058772982e-14 1.325517094e-15 4.055777884e-15 2.961898078e-17 9.241473442e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 3.569973985e-19 5.594737361e-19 3.102221959e-18 3.737473564e-17 1.964590321e-17 3.761172161e-15 2.73872068e-14 9.931947287e-11 1.837546512e-13 3.352844507e-13 5.119642215e-11 1.541723021e-10 3.15815883e-10 3.295580902e-10 4.158800943e-10 4.747239348e-10 9.397176737e-10 8.828020463e-10 9.013022902e-10 1.239151675e-09 1.275494265e-09 1.429971219e-09 1.654408009e-09 1.717935723e-09 1.646532607e-09 2.170448372e-09 1.996993567e-09 1.895972975e-09 2.198493498e-09 2.206527379e-09 2.34399871e-09 2.469208846e-09 2.516791553e-09 2.530256808e-09 2.643846989e-09 2.728338324e-09 2.754283314e-09 2.955683415e-09 2.849663742e-09 3.001084932e-09 3.110738323e-09 3.171442401e-09 3.231724949e-09 3.385604332e-09 3.537830574e-09 3.10423667e-09 4.353548891e-09 4.094166805e-09 4.680626149e-09 4.451320768e-09 4.436174133e-09 5.796964524e-09 4.354083089e-09 5.767891815e-09 4.417796842e-09 6.312717097e-09 5.344083982e-09 5.130220494e-09 4.822833905e-09 4.363384096e-09 4.72650734e-09 5.213320334e-09 5.191263931e-09 6.52573481e-09 5.616771209e-09 5.463262375e-09 4.543838416e-09 4.65567207e-09 5.088941387e-09 3.955938316e-09 3.719007561e-09 3.305615033e-09 3.480914334e-09 3.723279805e-09 3.726971384e-09 3.044666095e-09 3.753058061e-09 3.774174595e-09 3.563324689e-09 3.144687753e-09 3.474859523e-09 2.601384305e-09 3.048108937e-09 3.330919957e-09 3.340799216e-09 3.041003561e-09 3.646189999e-09 3.648969211e-09 3.432337454e-09 3.35085129e-09 2.920172645e-09 2.843668141e-09 3.170795012e-09 3.017754983e-09 3.451099924e-09 3.874432848e-09 3.532785518e-09 3.424621785e-09 3.673310072e-09 3.330105363e-09 3.985061436e-09 3.663612086e-09 4.991017722e-09 3.984569537e-09 3.632088771e-09 5.193156502e-09 5.375752384e-09 5.462830605e-09 4.646671247e-09 5.234886736e-09 5.052895267e-09 4.472601713e-09 4.801786249e-09 4.881091911e-09 5.313023577e-09 3.862535551e-09 5.061775266e-09 5.911342021e-09 5.665355182e-09 3.89154806e-09 4.884273627e-09 4.284790038e-09 4.749791561e-09 4.539730137e-09 3.439603954e-09 4.074402214e-09 4.122103154e-09 3.479400798e-09 3.773244827e-09 3.14968868e-09 3.392624889e-09 2.907657327e-09 3.083813973e-09 2.892225182e-09 2.952272837e-09 2.960600483e-09 2.941661973e-09 2.736220578e-09 2.674397489e-09 2.655082522e-09 2.437996239e-09 2.600557758e-09 2.512707059e-09 2.419105191e-09 2.130428787e-09 2.095602269e-09 2.260867346e-09 2.057113906e-09 1.952259086e-09 1.756098761e-09 1.95317546e-09 1.648037236e-09 1.808901312e-09 1.594879221e-09 1.427407653e-09 1.10146718e-09 1.046518475e-09 8.739460706e-10 4.863511563e-10 2.983436706e-10 9.428327818e-11 1.512332353e-10 9.859700683e-11 5.378624721e-11 3.17091621e-11 1.942442893e-12 2.429563645e-13 2.989484213e-14 3.560425908e-15 5.583055214e-16 8.357763381e-17 3.199251734e-18 1.569887262e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.543066105e-18 1.518613955e-18 4.576860933e-16 1.66183413e-16 2.237530014e-16 4.321604955e-14 2.6956672e-13 1.947239119e-12 1.850104433e-11 2.476679984e-11 7.815169652e-11 2.951025141e-10 2.506606651e-10 2.901980724e-10 4.419582655e-10 8.312158262e-10 1.06664086e-09 1.014456454e-09 1.305289713e-09 1.496582917e-09 1.568448275e-09 1.822019296e-09 1.869528942e-09 1.889539699e-09 2.063140041e-09 1.953558629e-09 2.003338791e-09 2.256640251e-09 2.487374098e-09 2.330967085e-09 2.283212129e-09 2.608695053e-09 2.18405078e-09 2.571160393e-09 2.640380021e-09 2.85127623e-09 2.891975949e-09 3.003425053e-09 3.066028052e-09 2.99481473e-09 2.990906889e-09 3.343781594e-09 3.315475618e-09 3.407491073e-09 3.436580686e-09 3.684625948e-09 4.229765253e-09 3.625281038e-09 3.915668897e-09 4.109383291e-09 4.549378337e-09 5.382228902e-09 5.178392113e-09 5.118381518e-09 4.99735964e-09 5.085336521e-09 4.897010176e-09 5.686727227e-09 4.000378024e-09 5.068431397e-09 4.949129803e-09 4.747703146e-09 6.599173391e-09 4.958882977e-09 4.566684549e-09 3.895222316e-09 4.087349473e-09 4.731892426e-09 3.992098506e-09 3.922974052e-09 4.309794735e-09 3.812832549e-09 3.057158369e-09 3.4138046e-09 3.354374715e-09 3.439897442e-09 3.23387111e-09 3.656711456e-09 3.21880274e-09 3.314513407e-09 3.072153578e-09 3.599083781e-09 3.398134568e-09 3.465335058e-09 2.585378448e-09 3.373584478e-09 2.819055576e-09 2.532810389e-09 3.495586902e-09 3.022278481e-09 3.054421401e-09 3.278156876e-09 2.766155797e-09 3.846970147e-09 3.105952306e-09 3.3164466e-09 3.269656674e-09 3.27881325e-09 4.112430326e-09 3.602833593e-09 3.649829769e-09 4.934852235e-09 3.193744699e-09 3.362666583e-09 3.15052494e-09 4.528168095e-09 4.802522574e-09 4.054323447e-09 4.554403543e-09 6.11782166e-09 5.86040514e-09 5.348619451e-09 5.403879436e-09 6.014329153e-09 5.285423473e-09 5.378188824e-09 5.410517604e-09 4.662448142e-09 5.433995098e-09 5.490829739e-09 5.8538903e-09 5.076392772e-09 3.597254502e-09 4.266506725e-09 4.048207336e-09 3.084286025e-09 4.158384191e-09 3.981148865e-09 3.376256195e-09 3.127377213e-09 3.2873911e-09 3.263381636e-09 3.301320312e-09 2.848851582e-09 2.904831126e-09 3.048325794e-09 2.973569901e-09 2.94801905e-09 2.875564437e-09 2.966826335e-09 2.419258076e-09 2.377777785e-09 2.062017402e-09 2.314904816e-09 2.152841396e-09 2.076917555e-09 1.836015872e-09 1.856187683e-09 1.970198652e-09 1.774546799e-09 1.424028847e-09 1.574543333e-09 1.549664557e-09 1.250588975e-09 1.185748872e-09 7.734597441e-10 9.612115773e-10 5.037259358e-10 3.490172045e-10 2.357999069e-10 1.776157906e-10 1.000690071e-10 6.582974728e-12 6.212704005e-12 8.264566638e-14 7.272795653e-14 1.795299512e-14 4.926905307e-15 1.406244061e-15 2.363452205e-17 1.552809044e-17 5.201958557e-19 6.179354965e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 4.496637627e-19 3.354881506e-18 1.322186397e-17 2.741691787e-17 4.385641787e-16 2.169210601e-14 2.068738041e-15 1.169888721e-13 1.204814803e-12 3.101851805e-11 1.194744218e-11 2.197406974e-10 1.966698452e-10 1.697281328e-10 1.784450473e-10 3.067486766e-10 8.230876146e-10 8.165284631e-10 1.300461043e-09 1.12044995e-09 1.519610474e-09 1.382451487e-09 1.593538128e-09 1.723168867e-09 1.689508845e-09 2.029423001e-09 2.231841021e-09 1.942456544e-09 2.306258449e-09 2.267536849e-09 2.064277172e-09 2.675975423e-09 2.596370353e-09 2.715412645e-09 2.553194484e-09 2.762171518e-09 2.851255321e-09 2.843712235e-09 2.980505497e-09 3.169308763e-09 3.024134439e-09 3.14807805e-09 3.20756396e-09 3.114057366e-09 3.268909502e-09 2.977286799e-09 3.651532108e-09 4.028116895e-09 3.488558147e-09 4.616713317e-09 3.892983499e-09 4.781459261e-09 4.993577838e-09 6.326063734e-09 4.665172881e-09 5.040739653e-09 4.499076825e-09 5.77159029e-09 4.765041233e-09 5.451822473e-09 5.354013139e-09 4.223526069e-09 4.386549173e-09 6.103949197e-09 5.343517408e-09 5.436225103e-09 5.597158691e-09 5.209271662e-09 5.049625253e-09 4.184791478e-09 4.938704914e-09 3.200753009e-09 2.737031192e-09 3.945498761e-09 3.009876109e-09 3.215616546e-09 3.564978484e-09 3.916805743e-09 2.907361174e-09 3.510021793e-09 3.09958752e-09 3.202632392e-09 3.18516302e-09 3.077515124e-09 3.269471657e-09 3.490243633e-09 3.212794252e-09 3.057046864e-09 3.157165397e-09 3.393637645e-09 2.641029934e-09 3.436175199e-09 3.702851217e-09 3.247229878e-09 3.238461199e-09 3.737615279e-09 2.974529337e-09 3.302859423e-09 3.071358479e-09 2.608806739e-09 3.428939017e-09 4.238985502e-09 3.393996354e-09 4.209132044e-09 4.360012005e-09 4.446040988e-09 4.637706909e-09 4.324994021e-09 6.004575753e-09 5.724194894e-09 5.444052406e-09 5.156104301e-09 5.860430158e-09 5.864488332e-09 5.365925638e-09 5.395186326e-09 5.734275359e-09 4.657165718e-09 4.990104031e-09 4.223090946e-09 4.575688164e-09 4.479672722e-09 4.615532219e-09 4.159611541e-09 4.643419755e-09 4.296285589e-09 3.975747456e-09 3.297885637e-09 3.211828996e-09 3.02305763e-09 3.210720938e-09 3.251144833e-09 3.103050204e-09 3.098723373e-09 2.908514319e-09 2.934491556e-09 2.910006631e-09 2.857126805e-09 2.628607289e-09 2.592337251e-09 2.632738524e-09 2.383998616e-09 2.546243721e-09 2.528827721e-09 2.181251036e-09 2.300542523e-09 1.977553075e-09 1.858884921e-09 1.798505158e-09 1.929409629e-09 1.76969192e-09 1.866252228e-09 1.499400454e-09 1.042203332e-09 1.509324566e-09 1.201558602e-09 7.687105773e-10 8.949531055e-10 6.706319257e-10 4.106242014e-10 1.791406773e-10 2.915055864e-10 1.687720354e-10 8.680455585e-11 8.292828716e-13 1.408652914e-12 8.035431828e-14 5.252246616e-16 1.903403519e-15 3.988152207e-16 1.38967009e-18 0 1.840595937e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 2.245288981e-19 0 7.528527114e-18 2.233093314e-17 9.568880845e-16 2.304865811e-15 3.049495309e-14 1.608872588e-13 1.850716115e-12 2.730706496e-11 6.575444391e-11 1.829075357e-10 2.207331811e-10 1.795846123e-10 3.689606436e-10 6.856106963e-10 9.328704242e-10 9.49688446e-10 1.043068835e-09 1.106248448e-09 1.471828261e-09 1.182700128e-09 1.507685307e-09 1.87249527e-09 1.61555463e-09 1.918833928e-09 2.0069016e-09 2.096498889e-09 2.233336208e-09 2.086329646e-09 2.079682953e-09 2.565889861e-09 2.256814325e-09 2.401609036e-09 2.522110751e-09 2.76140514e-09 2.846899696e-09 2.815241483e-09 2.911956208e-09 2.966499789e-09 3.044911373e-09 3.171590654e-09 3.265289567e-09 3.208147028e-09 3.377518511e-09 3.398501037e-09 4.025232936e-09 4.630260536e-09 3.786504292e-09 3.655565929e-09 4.884865365e-09 5.381137291e-09 4.470691526e-09 4.095749189e-09 3.87200441e-09 5.118306656e-09 4.64986367e-09 5.323614179e-09 4.423099107e-09 5.473810583e-09 6.119408519e-09 5.069549734e-09 5.50135096e-09 5.021478126e-09 6.254437238e-09 5.988371414e-09 4.593917913e-09 4.43997253e-09 4.907758941e-09 4.426515534e-09 4.017177942e-09 3.280624846e-09 2.98015866e-09 4.149782077e-09 3.674369887e-09 3.417602488e-09 3.593262097e-09 3.068156402e-09 3.7713738e-09 2.971185103e-09 3.668381886e-09 3.452250771e-09 2.919707121e-09 2.840861121e-09 3.221763676e-09 2.956198218e-09 2.794281596e-09 3.387002002e-09 3.130933906e-09 2.614418056e-09 3.113035634e-09 2.777179169e-09 3.249337553e-09 3.223932714e-09 3.500827973e-09 2.942158059e-09 3.615032186e-09 3.933569601e-09 3.61515123e-09 3.583823465e-09 3.740142059e-09 3.299142183e-09 3.913515896e-09 4.02946263e-09 5.278566031e-09 3.520429758e-09 4.670523611e-09 4.561187895e-09 5.164546606e-09 5.490100474e-09 4.791235035e-09 5.632364817e-09 4.9118207e-09 6.421599628e-09 5.298585986e-09 4.136468212e-09 4.89963451e-09 4.941092423e-09 5.11288094e-09 5.174996714e-09 3.615925267e-09 5.113833862e-09 4.944667183e-09 4.852685404e-09 5.41560752e-09 3.763213848e-09 4.01446979e-09 4.127401789e-09 3.340454251e-09 3.641692266e-09 3.393417192e-09 3.337031633e-09 3.073730381e-09 2.826411924e-09 2.960874087e-09 3.118726159e-09 2.963388353e-09 2.780853466e-09 2.766764623e-09 2.710134079e-09 2.481146828e-09 2.672471165e-09 2.576975454e-09 2.222404032e-09 2.064214562e-09 2.320101477e-09 2.140443606e-09 1.957178796e-09 1.858659097e-09 1.937266848e-09 1.648553208e-09 1.817864021e-09 1.547849993e-09 1.558559956e-09 1.319270868e-09 8.815382273e-10 1.007584168e-09 7.775138204e-10 4.821729536e-10 2.625495214e-10 2.241458364e-10 3.206265132e-10 4.334838686e-11 3.902329327e-11 1.355570859e-11 7.33453656e-13 6.260434186e-13 2.850760958e-15 2.936131278e-15 4.22497408e-17 2.890040919e-17 1.915379064e-17 3.529495204e-18 4.423639168e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 6.628526114e-19 3.604254733e-18 2.09993579e-17 4.516085717e-17 4.881206484e-16 3.16475428e-15 6.652150167e-15 4.348946375e-13 5.631471861e-12 2.021955466e-11 1.094888696e-10 3.050753729e-10 1.970229085e-10 2.573968461e-10 3.645933853e-10 3.663259516e-10 8.88550524e-10 8.255027263e-10 1.193196276e-09 1.410100248e-09 1.620417351e-09 1.560313164e-09 1.897695118e-09 1.846515046e-09 1.988088048e-09 1.891359236e-09 1.950877871e-09 1.841929482e-09 2.133430267e-09 2.142286092e-09 2.092908323e-09 2.241778337e-09 2.546517321e-09 2.386316877e-09 2.781578747e-09 2.389426643e-09 2.737187929e-09 2.892270816e-09 2.78627861e-09 2.950403004e-09 2.988634653e-09 2.91662716e-09 3.322594213e-09 3.289050048e-09 3.066480621e-09 3.097727209e-09 4.114509204e-09 4.991519511e-09 4.71206618e-09 3.17902208e-09 3.285065175e-09 4.286522771e-09 3.777939479e-09 5.240224545e-09 4.611399677e-09 4.401007933e-09 5.473833753e-09 5.989570629e-09 4.813976325e-09 4.955271046e-09 4.110036277e-09 6.067627976e-09 3.849381229e-09 4.783678323e-09 5.7222464e-09 4.24291386e-09 4.486083582e-09 5.220200357e-09 5.252324552e-09 3.950784005e-09 4.450099712e-09 3.472091731e-09 3.885587542e-09 3.501432456e-09 3.696352691e-09 4.052170758e-09 3.510527635e-09 3.708585132e-09 3.692909042e-09 1.977294224e-09 3.220152727e-09 2.844932536e-09 3.025201869e-09 3.400667e-09 3.686772909e-09 4.216080473e-09 2.943079109e-09 3.071659605e-09 3.245911099e-09 3.294211556e-09 3.377604886e-09 3.112193544e-09 2.981847937e-09 3.296692456e-09 3.239674619e-09 3.52684669e-09 3.387274291e-09 3.42727273e-09 3.842661786e-09 3.404911056e-09 3.723103352e-09 3.437064346e-09 3.579578494e-09 4.787402451e-09 5.165121807e-09 3.623268171e-09 4.350438309e-09 4.996778925e-09 4.719442823e-09 4.477939163e-09 5.19753611e-09 4.993789915e-09 5.179414154e-09 5.326618765e-09 3.324866965e-09 3.699459522e-09 5.15715104e-09 4.845015025e-09 4.759792614e-09 5.05829552e-09 4.271792406e-09 4.945968992e-09 4.687072796e-09 4.308271374e-09 3.901622863e-09 4.658511977e-09 3.702767688e-09 3.113248243e-09 4.062742013e-09 3.544808213e-09 3.250159807e-09 2.907164223e-09 3.195082023e-09 3.093410712e-09 2.923735028e-09 2.99192403e-09 3.102219208e-09 2.588833158e-09 2.756866872e-09 2.615358984e-09 2.472059903e-09 2.575542495e-09 2.423302418e-09 2.042260619e-09 2.387651826e-09 1.886587414e-09 1.975264883e-09 1.936345829e-09 1.950381794e-09 1.965345299e-09 1.634709309e-09 1.463277645e-09 1.615013971e-09 1.468162408e-09 1.205082739e-09 1.002164162e-09 9.558937853e-10 7.281514051e-10 5.386303847e-10 2.749845033e-10 2.320796261e-10 1.9111285e-10 8.179105431e-11 8.584573442e-11 6.707551613e-12 4.845154147e-13 5.853728734e-13 1.728460147e-14 1.148229461e-14 1.550883448e-17 1.309564578e-16 1.341591163e-18 5.646219583e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.544945528e-18 3.124266404e-17 6.782939534e-17 3.940338764e-15 1.274918003e-14 2.019828885e-14 1.115188132e-12 3.168673779e-11 1.800155572e-11 6.33342522e-11 3.359178756e-10 2.855312004e-10 2.501805999e-10 5.980713944e-10 6.393655003e-10 1.067481891e-09 1.28142956e-09 1.287530002e-09 1.373211833e-09 1.375145671e-09 1.62313503e-09 1.5682584e-09 2.022654716e-09 1.838075381e-09 1.930562764e-09 1.998402296e-09 2.225565797e-09 2.206309681e-09 2.289666056e-09 2.294445191e-09 2.437623906e-09 2.80073882e-09 2.292998357e-09 2.541100659e-09 2.663558417e-09 3.00414856e-09 3.125092528e-09 2.745083926e-09 3.094984768e-09 2.76545123e-09 3.019382294e-09 3.240604778e-09 3.387105411e-09 3.221020306e-09 3.73386563e-09 4.235135377e-09 4.332755921e-09 2.910940441e-09 4.713106749e-09 4.719116713e-09 5.257322282e-09 5.474521662e-09 5.050502366e-09 5.969381884e-09 4.251629994e-09 4.349357008e-09 4.668458768e-09 5.144807342e-09 5.463373765e-09 5.821525529e-09 4.110911521e-09 4.848831714e-09 5.583676022e-09 3.870679607e-09 5.316319529e-09 5.36891772e-09 4.549634936e-09 3.94123135e-09 3.969650972e-09 4.255274624e-09 3.519204555e-09 4.270062367e-09 3.824433561e-09 3.900860773e-09 3.915241257e-09 3.454724757e-09 3.032908676e-09 2.970067466e-09 3.008034587e-09 2.973123923e-09 3.44549703e-09 2.780555838e-09 2.723035216e-09 3.229291532e-09 2.909771149e-09 3.06694129e-09 2.578402863e-09 3.120332465e-09 2.148450292e-09 3.066092633e-09 3.562915947e-09 3.39149938e-09 3.542096484e-09 3.616535698e-09 2.925327733e-09 3.682246784e-09 3.913916511e-09 2.898684127e-09 3.482815006e-09 4.262188972e-09 3.449480945e-09 4.450367189e-09 4.538710229e-09 3.967926423e-09 4.875743939e-09 4.736355155e-09 5.754846769e-09 3.996847292e-09 5.87102663e-09 5.563214624e-09 5.085816005e-09 4.597903336e-09 5.105060998e-09 6.001468746e-09 4.84517491e-09 4.964635368e-09 5.799391061e-09 6.486764596e-09 4.828422737e-09 5.573364518e-09 4.567669251e-09 4.242388778e-09 5.172781004e-09 3.581805758e-09 3.572105635e-09 4.623201218e-09 3.917523785e-09 3.191538685e-09 2.982201728e-09 2.865490515e-09 2.98783291e-09 2.935629766e-09 3.164827177e-09 2.890303578e-09 2.943701787e-09 2.774623537e-09 2.707017894e-09 2.609986577e-09 2.523036044e-09 2.559778606e-09 2.562350976e-09 2.301549312e-09 2.035103774e-09 2.240059957e-09 2.028215068e-09 1.977839842e-09 2.149749945e-09 1.865485659e-09 1.642397268e-09 1.602554767e-09 1.490263763e-09 1.499362996e-09 1.321129447e-09 1.272708748e-09 7.436248408e-10 7.955260151e-10 3.247506261e-10 2.16133269e-10 7.176823738e-11 2.924897779e-10 1.744551612e-10 5.044551561e-11 1.065206663e-11 6.504719898e-13 4.650017931e-15 1.805934184e-14 6.941023122e-15 2.613178826e-16 2.486679285e-16 2.144223359e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.703376144e-19 2.906309224e-17 1.072384658e-17 9.3690206e-17 1.042463951e-14 4.153683246e-14 1.447000202e-13 8.870201171e-12 1.86024294e-11 1.608114016e-10 1.631619172e-10 3.416154978e-10 3.097624696e-10 3.214279498e-10 3.449019697e-10 6.162389409e-10 1.005677052e-09 1.071356125e-09 1.234066676e-09 1.039452101e-09 1.734171091e-09 1.497157921e-09 1.657479916e-09 1.414151182e-09 1.911003386e-09 2.144120948e-09 2.044178855e-09 2.330803826e-09 2.292987207e-09 2.396727669e-09 2.403011587e-09 2.53051837e-09 2.477132387e-09 2.528043773e-09 2.814545827e-09 2.398651834e-09 2.869523083e-09 2.932578028e-09 3.013007088e-09 2.938979213e-09 3.071987012e-09 3.147958711e-09 3.083087793e-09 3.296047438e-09 3.426138775e-09 3.026484568e-09 3.601595354e-09 4.123068971e-09 3.497521469e-09 4.654925721e-09 4.07018247e-09 5.802446092e-09 4.13491293e-09 6.296484852e-09 5.537196663e-09 4.224280378e-09 5.337186615e-09 5.566361582e-09 3.843505197e-09 4.896411216e-09 5.414634622e-09 4.287894805e-09 6.873148198e-09 5.734495922e-09 4.725889028e-09 4.615718312e-09 4.020070112e-09 5.412588949e-09 4.284155984e-09 4.029245082e-09 4.470291177e-09 3.937985256e-09 3.0965651e-09 3.207938415e-09 3.084861792e-09 4.216071268e-09 3.717664162e-09 3.201559715e-09 2.7348182e-09 3.572625507e-09 3.652039806e-09 2.882657623e-09 2.83257965e-09 3.508408008e-09 3.257944997e-09 2.434118531e-09 2.813120336e-09 3.165462168e-09 3.032553143e-09 3.683360686e-09 2.723032729e-09 2.588772777e-09 3.271372495e-09 3.103290298e-09 3.09806336e-09 3.022343197e-09 4.098171666e-09 3.070691295e-09 3.275205422e-09 3.562158631e-09 2.835049062e-09 3.965160052e-09 4.42232404e-09 4.603922444e-09 3.456870245e-09 5.621613198e-09 4.697941091e-09 5.011234664e-09 3.93346055e-09 6.221140975e-09 5.855412109e-09 5.478046763e-09 5.002034086e-09 4.684072717e-09 5.442560526e-09 4.458765491e-09 5.779576407e-09 4.512949366e-09 5.472685343e-09 5.548794134e-09 4.291904854e-09 5.046499497e-09 5.313962639e-09 4.760984238e-09 4.610746378e-09 4.268727308e-09 3.906841749e-09 3.002064828e-09 3.159475549e-09 3.595241967e-09 3.034550212e-09 3.187125137e-09 2.87158799e-09 2.823215469e-09 2.81821957e-09 2.768655624e-09 2.867466621e-09 2.64168132e-09 2.674581343e-09 2.688621828e-09 2.19852218e-09 2.542268249e-09 2.368609477e-09 2.417064588e-09 2.094392354e-09 2.284732409e-09 1.795551884e-09 1.843416068e-09 1.963025601e-09 1.409125812e-09 1.725690241e-09 1.595421206e-09 1.308354572e-09 1.149423889e-09 7.311368426e-10 1.020822815e-09 8.939905244e-10 5.440526653e-10 3.45986143e-10 2.86860264e-10 3.240828165e-10 4.518271178e-12 6.543997927e-12 8.336323033e-13 1.376130855e-12 1.156388222e-13 4.132087196e-14 1.444190297e-15 2.814163378e-16 1.968569011e-17 7.097570016e-17 0 3.856721948e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.221377194e-18 5.760250636e-18 3.557679111e-18 1.182830153e-16 8.30065922e-16 9.694068145e-16 3.305145998e-14 2.719510126e-12 1.211027528e-11 4.320543933e-11 1.679749134e-10 3.010913737e-10 1.927508098e-10 2.188728738e-10 7.41188249e-10 7.964023141e-10 8.714264789e-10 1.047928033e-09 1.22265134e-09 1.461153547e-09 1.65019824e-09 1.621884225e-09 1.718283878e-09 1.973014417e-09 2.010193513e-09 2.122830545e-09 2.040730654e-09 2.279948653e-09 2.375781834e-09 2.250595225e-09 2.535383064e-09 2.067178103e-09 2.509104975e-09 2.555448849e-09 2.651570084e-09 2.599767055e-09 2.951288074e-09 2.879225769e-09 2.719925676e-09 2.965507716e-09 3.173427384e-09 3.037160523e-09 2.979846687e-09 2.996704623e-09 3.822534167e-09 4.247799739e-09 3.463112311e-09 4.337894238e-09 4.45760086e-09 3.007520351e-09 4.31571581e-09 4.34919765e-09 4.327909893e-09 5.434686047e-09 4.039693882e-09 5.478067944e-09 5.753330205e-09 6.002227817e-09 4.803996506e-09 4.709167254e-09 5.904251797e-09 5.243563738e-09 3.459961392e-09 5.290254197e-09 4.607719482e-09 4.083204788e-09 4.8203275e-09 4.967177231e-09 4.399289566e-09 4.603544887e-09 4.913001629e-09 4.497852326e-09 3.520939471e-09 3.476274609e-09 3.201101903e-09 4.331725718e-09 4.03417113e-09 3.025004526e-09 3.618577617e-09 3.066428918e-09 3.792462209e-09 3.061708159e-09 3.08389002e-09 2.452961379e-09 2.859873743e-09 3.119868098e-09 2.85112349e-09 3.15140469e-09 2.465392164e-09 3.495114273e-09 3.023985808e-09 3.100953952e-09 2.572932586e-09 3.251843924e-09 3.209798071e-09 3.546007471e-09 1.762021326e-09 3.027745601e-09 3.977085893e-09 3.41010038e-09 3.682718999e-09 3.075886667e-09 4.437509618e-09 4.42347214e-09 3.60299353e-09 4.695403483e-09 5.43753337e-09 3.980954139e-09 5.301942224e-09 4.084269545e-09 4.286079302e-09 5.915552101e-09 3.695911667e-09 5.180219543e-09 6.154715087e-09 4.643978397e-09 3.307884323e-09 5.198809586e-09 4.158956478e-09 4.738973272e-09 4.398883763e-09 4.402761761e-09 3.469649872e-09 3.331294058e-09 4.055709194e-09 4.165431081e-09 2.944944445e-09 3.232997587e-09 3.190315843e-09 3.286678286e-09 2.840072197e-09 2.770254484e-09 2.908511273e-09 3.053345966e-09 2.947308257e-09 2.465062771e-09 2.871075956e-09 2.396097071e-09 2.55476888e-09 2.626650116e-09 2.240101641e-09 2.480514042e-09 2.147954208e-09 1.884944396e-09 2.150207067e-09 2.114819867e-09 1.908625347e-09 1.844845493e-09 1.486794206e-09 1.683643001e-09 1.529676456e-09 1.762751549e-09 1.531665768e-09 1.318566588e-09 1.374725272e-09 8.074962484e-10 6.855104722e-10 3.58117341e-10 1.796732713e-10 2.577531138e-10 2.039273455e-10 2.137127766e-10 4.352394176e-11 2.451523029e-12 1.388446155e-13 9.891213239e-13 1.184037374e-15 2.425561843e-15 1.839293563e-16 7.430415243e-17 1.030586147e-17 1.123513121e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.257947457e-18 2.058963404e-17 7.107503448e-17 2.618083398e-16 3.187936085e-15 1.619809555e-13 1.775806573e-13 4.238409729e-12 2.16060653e-11 7.582028565e-11 8.022622586e-12 3.460631958e-10 2.293302896e-10 2.398978203e-10 5.26811402e-10 7.844738395e-10 8.140519686e-10 1.083305535e-09 9.395485071e-10 1.336277553e-09 1.262457812e-09 1.22117681e-09 1.546852042e-09 1.631671861e-09 1.94532877e-09 1.911776089e-09 2.210012672e-09 2.126819064e-09 2.14340166e-09 2.243439607e-09 2.46509136e-09 2.556886129e-09 2.539312068e-09 2.762650009e-09 2.737085933e-09 2.715167233e-09 2.742151427e-09 2.666995537e-09 3.034714951e-09 2.985902998e-09 2.905152529e-09 3.151156044e-09 2.980857381e-09 3.209648619e-09 3.206916254e-09 3.945023391e-09 3.845469332e-09 3.636771959e-09 3.923666967e-09 5.220816224e-09 4.413312016e-09 4.922234727e-09 4.909179634e-09 4.209561578e-09 4.216225266e-09 4.725970559e-09 4.769648525e-09 5.388595506e-09 4.634260002e-09 4.893977533e-09 4.878758241e-09 4.673470163e-09 5.07638326e-09 5.057953854e-09 5.245621986e-09 4.211409769e-09 4.18015179e-09 4.727791468e-09 3.730147706e-09 3.069804084e-09 2.734106634e-09 4.550783639e-09 3.568878827e-09 3.172283546e-09 3.819721455e-09 2.348814257e-09 3.038591187e-09 3.16625707e-09 3.302994747e-09 3.151729591e-09 3.256054712e-09 3.416402895e-09 3.505906619e-09 2.890907559e-09 3.671203043e-09 2.528178577e-09 3.050316029e-09 3.275823768e-09 3.105541312e-09 3.495953999e-09 3.077945313e-09 2.997061771e-09 3.34119075e-09 2.492630116e-09 3.630248237e-09 2.82774234e-09 3.97382494e-09 3.978970542e-09 2.93624507e-09 3.616930954e-09 3.303863995e-09 3.674920512e-09 3.524035076e-09 4.097067592e-09 4.405683708e-09 5.479490163e-09 5.122226167e-09 4.150056789e-09 4.01702245e-09 5.299374515e-09 3.092371762e-09 5.488719437e-09 4.807367994e-09 5.709225672e-09 5.19544021e-09 4.738181909e-09 3.809827571e-09 5.361120949e-09 4.639645458e-09 4.115933454e-09 4.038003447e-09 6.516463335e-09 4.934016058e-09 4.129100093e-09 3.962034058e-09 3.870158624e-09 4.149834233e-09 3.259388187e-09 3.162056914e-09 3.136796746e-09 3.26536844e-09 3.235041158e-09 2.906258905e-09 2.895097705e-09 2.881460465e-09 2.696334606e-09 2.614047974e-09 2.73501845e-09 2.247702796e-09 2.609985189e-09 2.304315291e-09 2.331305971e-09 2.272122415e-09 2.235414873e-09 1.991647073e-09 2.139163718e-09 1.8124319e-09 1.496116378e-09 1.673672775e-09 1.592879737e-09 1.58331005e-09 1.30704969e-09 1.26556668e-09 1.030286273e-09 9.179911158e-10 9.191521031e-10 7.956238987e-10 5.405479011e-10 2.817310287e-10 3.278665318e-10 1.396366859e-10 2.285272546e-10 8.204069636e-11 2.344711949e-12 2.200697381e-12 4.143795743e-14 1.371559855e-13 8.218648271e-16 3.57995729e-17 9.774546053e-19 6.91466345e-18 0 0 0 0 0 0 0 0 0 0 0 8.902682706e-11 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.721997922e-18 1.260243675e-18 6.123129915e-17 9.30508877e-17 1.267434938e-14 5.066512942e-15 3.701301944e-13 9.530531254e-14 3.602709435e-12 1.147621767e-11 1.810225244e-10 2.659897734e-10 2.412504038e-10 3.165844531e-10 4.075585794e-10 6.88263605e-10 1.006936624e-09 1.22420309e-09 1.384196185e-09 1.377754528e-09 1.291903556e-09 1.36704492e-09 1.871738232e-09 2.002582684e-09 1.939967355e-09 1.935702948e-09 2.005894826e-09 2.091199346e-09 2.227733355e-09 2.322169316e-09 2.29745962e-09 2.357836239e-09 2.600954816e-09 2.643029468e-09 2.293941277e-09 2.829309248e-09 2.73936554e-09 2.860563546e-09 2.903304572e-09 3.087876786e-09 3.061324354e-09 2.986175633e-09 3.203033788e-09 3.619876646e-09 3.566213054e-09 3.584146448e-09 3.059231047e-09 4.246522141e-09 3.618468981e-09 3.986112329e-09 5.317451445e-09 3.67452121e-09 3.998710712e-09 5.115630793e-09 3.98631083e-09 5.260297643e-09 5.613555122e-09 3.858901986e-09 5.874407674e-09 4.116013102e-09 3.435327047e-09 5.207178358e-09 4.884208555e-09 4.517073614e-09 3.385547037e-09 4.737594064e-09 4.498880563e-09 4.798977249e-09 4.041371225e-09 3.843788051e-09 4.018932193e-09 4.027282665e-09 3.178217407e-09 3.947923242e-09 3.809616567e-09 3.639543183e-09 3.215255404e-09 2.972368761e-09 3.040377766e-09 3.137398617e-09 3.622042889e-09 2.718092936e-09 2.742896514e-09 2.47303933e-09 2.693207217e-09 3.04436843e-09 2.636888451e-09 3.224907699e-09 2.657387953e-09 2.879140129e-09 3.122686164e-09 2.716305416e-09 3.396243674e-09 3.675285242e-09 2.836619991e-09 2.917116762e-09 2.706301347e-09 3.639363566e-09 4.267177158e-09 3.214534411e-09 3.549876394e-09 4.31981846e-09 4.300083095e-09 4.775705109e-09 4.453615673e-09 3.694727507e-09 3.582428297e-09 4.04795133e-09 4.598950174e-09 5.653205498e-09 2.937590666e-09 4.919312962e-09 4.747957072e-09 3.991938642e-09 6.497108238e-09 5.095277e-09 4.924941541e-09 4.612179701e-09 4.720335033e-09 3.636478328e-09 5.476196167e-09 4.950945112e-09 4.758344598e-09 3.343067469e-09 3.095170603e-09 4.060968438e-09 4.136324245e-09 3.294391798e-09 3.234475679e-09 2.924731484e-09 2.76408637e-09 2.971388042e-09 2.790728838e-09 3.045096325e-09 2.741324707e-09 2.791135355e-09 2.741432819e-09 2.754894182e-09 2.417902142e-09 2.358416663e-09 2.348567627e-09 2.302926366e-09 2.451182729e-09 2.319905607e-09 2.26129891e-09 1.778441213e-09 2.05071608e-09 1.704745945e-09 1.776366096e-09 1.653582698e-09 1.472952475e-09 1.746679509e-09 1.374173236e-09 1.280399267e-09 9.652544675e-10 8.422289829e-10 7.556078757e-10 7.599279498e-10 1.641840706e-11 2.991452862e-10 3.078774347e-10 1.814908261e-10 5.506408252e-11 6.580438328e-12 1.712188528e-12 7.581581383e-14 2.381202021e-15 4.633606389e-15 5.602759608e-16 3.240652412e-18 7.454891922e-18 2.679943313e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.95590017e-18 2.038484731e-18 1.390311797e-17 6.077441028e-16 6.068388658e-16 3.787059307e-14 1.540325757e-13 7.536304209e-14 1.718755468e-11 4.829878493e-11 6.312602764e-11 2.722480463e-10 1.972794191e-10 3.875458159e-10 3.720218647e-10 8.827031288e-10 1.004557818e-09 8.598575924e-10 1.187189368e-09 1.361687188e-09 1.47364073e-09 1.74384045e-09 1.659796942e-09 1.652172139e-09 1.719289232e-09 1.906463622e-09 2.096762042e-09 2.055516216e-09 2.047394515e-09 2.319327361e-09 2.286142449e-09 2.333031853e-09 2.506839009e-09 2.222892484e-09 2.635006564e-09 2.704307408e-09 2.604893134e-09 2.70606718e-09 2.80503196e-09 2.82607005e-09 2.832289102e-09 3.175247567e-09 3.052796955e-09 2.979315934e-09 3.430755967e-09 3.479720571e-09 3.671300371e-09 3.155182171e-09 3.278208944e-09 5.065985646e-09 4.428843727e-09 4.580912311e-09 4.619683481e-09 4.805896239e-09 4.820283747e-09 3.407177187e-09 3.921424552e-09 4.773857908e-09 4.946573485e-09 4.645399666e-09 5.982500348e-09 5.274785634e-09 5.033458425e-09 4.835202951e-09 4.658831013e-09 5.246453948e-09 2.44524597e-09 4.559874995e-09 4.654627565e-09 3.668551904e-09 3.691333231e-09 3.289646532e-09 3.99362034e-09 3.567749185e-09 2.607359586e-09 3.052909995e-09 3.388278736e-09 2.876709333e-09 2.83351871e-09 3.272527049e-09 2.712670632e-09 3.125955276e-09 2.541551741e-09 3.162161499e-09 2.531123863e-09 2.282821857e-09 3.308151264e-09 2.76454973e-09 2.88750691e-09 3.020800075e-09 3.381902564e-09 2.320917613e-09 2.839447702e-09 2.688109714e-09 3.280040628e-09 3.231210608e-09 3.046489887e-09 3.60173357e-09 3.128125161e-09 4.1974329e-09 2.9074233e-09 3.831865865e-09 2.843737406e-09 4.892385748e-09 4.443128564e-09 3.419132196e-09 4.342381775e-09 4.986080527e-09 5.35072227e-09 4.331334523e-09 5.410108134e-09 3.337505613e-09 5.798839599e-09 4.648682684e-09 5.112837872e-09 3.816537077e-09 3.447040301e-09 4.762868156e-09 5.418171178e-09 4.593761067e-09 3.914710914e-09 3.847671917e-09 4.158122786e-09 3.66307988e-09 3.11222775e-09 4.051298421e-09 3.289257827e-09 3.720303081e-09 3.159708875e-09 2.778557301e-09 2.960507206e-09 2.863870421e-09 2.755915608e-09 2.953718832e-09 2.544326349e-09 2.788802184e-09 2.832314638e-09 2.745472057e-09 2.664628207e-09 2.122552271e-09 2.327576631e-09 2.3003737e-09 2.176647048e-09 2.04482722e-09 1.593175533e-09 1.689482214e-09 1.806716881e-09 1.977761191e-09 1.648717845e-09 1.384770156e-09 1.45378621e-09 1.457775605e-09 1.319008884e-09 1.192355363e-09 1.028567748e-09 9.41697141e-10 9.835916938e-10 4.529731464e-10 3.630080305e-10 2.35299757e-10 8.024950197e-11 2.601160934e-11 3.792895457e-11 4.382686293e-12 2.549496306e-12 1.940207144e-13 7.320010656e-15 1.428981104e-15 1.500557697e-15 1.470397376e-17 4.355550543e-18 8.275909228e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.929241389e-20 0 1.286619976e-17 5.005213786e-16 8.42448423e-15 1.18609645e-13 1.176135717e-14 2.136697614e-12 1.671858232e-11 1.476277851e-11 1.752230617e-10 8.001645906e-11 2.792027814e-10 3.367734542e-10 5.06343221e-10 6.21952013e-10 1.006048777e-09 1.24186195e-09 9.897479397e-10 1.114686238e-09 1.399057866e-09 1.329473114e-09 1.691087853e-09 1.748160379e-09 1.772219659e-09 2.219393382e-09 2.133301661e-09 1.967259049e-09 2.431467285e-09 2.244572755e-09 2.45867682e-09 2.365827574e-09 2.11043419e-09 2.697642758e-09 2.504846917e-09 2.568667044e-09 2.598956768e-09 3.007577547e-09 2.793614692e-09 2.980379447e-09 2.923526681e-09 2.940999315e-09 3.098653669e-09 3.083522442e-09 3.843957541e-09 3.633627745e-09 3.613968122e-09 4.084598272e-09 3.092358388e-09 3.078355088e-09 4.508239992e-09 4.227500333e-09 5.006233254e-09 4.054216968e-09 4.910640634e-09 3.610703329e-09 3.878653103e-09 4.18399467e-09 4.210928522e-09 4.70681852e-09 4.852029077e-09 5.351009456e-09 5.029793466e-09 4.840729753e-09 4.581983718e-09 4.94922168e-09 4.685896407e-09 4.540524039e-09 3.869741077e-09 3.944364491e-09 4.601282534e-09 3.797857919e-09 4.006118359e-09 3.290611013e-09 3.311625916e-09 3.654355429e-09 3.720738252e-09 2.923351736e-09 2.962501966e-09 2.32114089e-09 3.412321581e-09 3.450460613e-09 3.096715462e-09 1.907688485e-09 3.085836471e-09 3.126188265e-09 2.983373408e-09 2.717512671e-09 2.302262761e-09 2.672173096e-09 2.911724907e-09 2.889286807e-09 2.96791059e-09 2.714142669e-09 3.663647457e-09 2.969637124e-09 3.537662199e-09 3.109033703e-09 3.838337158e-09 3.554881914e-09 4.082598883e-09 3.993102718e-09 4.236925182e-09 3.796610006e-09 4.090503457e-09 4.892727145e-09 4.356276601e-09 2.957940413e-09 5.83513816e-09 5.123153239e-09 4.244836773e-09 4.133375031e-09 5.192105442e-09 4.658806298e-09 5.579468114e-09 4.319489686e-09 4.240431273e-09 5.538211948e-09 4.80098814e-09 5.36330502e-09 5.643278008e-09 3.42556845e-09 4.40776675e-09 4.914436028e-09 3.367134805e-09 3.302351049e-09 4.357939167e-09 3.040004268e-09 3.011158785e-09 2.971838157e-09 2.930922372e-09 2.571728282e-09 2.827529803e-09 2.81458333e-09 2.775013905e-09 2.648269587e-09 2.518569509e-09 2.764456513e-09 2.42206445e-09 2.250449396e-09 2.405954514e-09 1.945903845e-09 2.25731196e-09 2.216365522e-09 2.064862e-09 1.74667339e-09 1.782931041e-09 1.983421469e-09 1.553905871e-09 1.695881637e-09 1.763449556e-09 1.315729332e-09 1.109069117e-09 9.57259526e-10 1.125267358e-09 9.610100316e-10 6.705703164e-10 2.145471513e-10 2.701649242e-10 2.254319299e-10 1.233327676e-10 2.271063807e-10 1.892904625e-11 1.249525943e-11 3.023266921e-13 6.721427525e-14 6.963051571e-15 6.685931619e-16 1.151663864e-16 8.224112102e-17 3.193009477e-18 3.606551808e-19 8.991130009e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.011653654e-18 1.211803014e-18 4.121830319e-17 7.663221692e-17 1.069347931e-15 1.441844379e-14 2.024969971e-13 9.258382612e-13 3.098186112e-11 6.306342691e-12 1.388198563e-11 1.056172596e-10 2.238371174e-10 9.460141677e-11 6.983025495e-10 7.27331073e-10 8.21043115e-10 7.285527602e-10 1.215147978e-09 1.219685601e-09 1.31737951e-09 1.254458246e-09 1.621028616e-09 1.609927156e-09 2.045916107e-09 1.599680929e-09 1.883017638e-09 1.934222624e-09 2.20662611e-09 2.117890933e-09 2.064750628e-09 2.238630516e-09 2.561512108e-09 2.523038321e-09 2.468484605e-09 2.53231857e-09 2.765174587e-09 2.876814765e-09 2.772558032e-09 2.488062807e-09 2.562263486e-09 3.14797603e-09 2.811315942e-09 2.94394492e-09 3.093371475e-09 3.477287534e-09 3.247153957e-09 3.670099605e-09 4.114551953e-09 4.565310384e-09 4.317189553e-09 4.154943492e-09 4.392947265e-09 4.849921597e-09 4.672687526e-09 3.722713365e-09 3.99736173e-09 5.321036154e-09 4.164019037e-09 3.894296749e-09 3.195038015e-09 4.326810885e-09 5.293117886e-09 4.569254839e-09 4.8937661e-09 4.222922402e-09 4.387303785e-09 5.229545883e-09 3.800732181e-09 4.673885159e-09 4.132840368e-09 2.880801062e-09 3.443657204e-09 3.18513652e-09 3.063123445e-09 3.102866256e-09 3.422134802e-09 3.26073724e-09 3.226551548e-09 2.266329679e-09 3.226034999e-09 2.886768816e-09 2.733384379e-09 2.834591081e-09 3.145467945e-09 2.946482635e-09 2.425259776e-09 2.572708764e-09 3.010134284e-09 3.092032325e-09 3.037096642e-09 3.234751108e-09 2.605402763e-09 3.179200143e-09 2.609705868e-09 3.157676307e-09 3.492542473e-09 3.457862964e-09 3.955482048e-09 3.618684759e-09 3.763293418e-09 3.677473036e-09 4.652017303e-09 4.164012837e-09 3.942802964e-09 4.875841832e-09 3.547045683e-09 4.212389603e-09 4.1677545e-09 3.465790996e-09 5.470540108e-09 4.951902124e-09 4.996055171e-09 4.495063069e-09 3.293608377e-09 4.168321047e-09 4.40537652e-09 4.161783998e-09 3.889678448e-09 4.390337851e-09 4.429011559e-09 3.920989713e-09 3.347160408e-09 4.134663007e-09 3.74411856e-09 3.065180854e-09 4.007470223e-09 3.611628988e-09 3.025070557e-09 3.134815081e-09 3.111012786e-09 2.76273186e-09 2.951783228e-09 2.530389471e-09 2.634162393e-09 2.694440488e-09 2.540250775e-09 2.442513491e-09 2.480636722e-09 2.394813513e-09 2.357886339e-09 2.584342788e-09 2.030546989e-09 2.542259051e-09 2.058879504e-09 2.018738757e-09 1.818520086e-09 1.755830641e-09 1.648272487e-09 1.538925104e-09 1.632351983e-09 1.398302098e-09 1.219142341e-09 1.365556401e-09 1.097189537e-09 8.857499145e-10 5.607590815e-10 5.573858528e-10 2.430225087e-10 3.034345299e-10 2.180281101e-10 9.8256767e-11 3.8121595e-11 1.112102499e-11 3.82699233e-12 3.427745306e-14 1.331228172e-13 2.669722981e-15 1.821535398e-15 1.318889381e-18 3.548255388e-18 4.572936243e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.452377242e-19 4.729098224e-18 3.694192531e-17 2.930665708e-17 6.907372908e-15 1.152007409e-13 6.302667488e-13 1.035086302e-13 1.010219291e-11 1.358125518e-11 4.801173849e-11 2.99197798e-10 2.233451857e-10 3.094083549e-10 5.086428046e-10 7.418469349e-10 9.522362498e-10 9.726466577e-10 1.124018171e-09 1.408304697e-09 1.448537399e-09 1.389195003e-09 1.750665143e-09 1.66359685e-09 1.952027058e-09 1.880117444e-09 1.771313859e-09 1.919938495e-09 2.400148703e-09 2.225456561e-09 2.219487643e-09 2.258854361e-09 2.512992238e-09 2.451311963e-09 2.229251941e-09 2.612736383e-09 2.521855061e-09 2.639627469e-09 2.781859594e-09 2.68202389e-09 2.628065762e-09 2.641565208e-09 2.807527371e-09 2.909784265e-09 3.411124714e-09 2.936082504e-09 4.057497607e-09 3.784413315e-09 3.825818836e-09 3.725022765e-09 3.088569218e-09 5.466485778e-09 5.685598525e-09 4.218290023e-09 5.400621082e-09 5.007991006e-09 4.084480326e-09 5.06509134e-09 3.958030013e-09 5.775723519e-09 4.145634357e-09 5.873185293e-09 3.668464146e-09 5.358618249e-09 4.454902606e-09 4.299193446e-09 5.130139943e-09 5.135163236e-09 3.361985376e-09 3.875332691e-09 2.627897467e-09 3.254152991e-09 5.114972738e-09 3.1671842e-09 3.238425572e-09 3.800079081e-09 3.307727608e-09 2.668530354e-09 3.054945349e-09 2.865263012e-09 2.507368462e-09 2.597425361e-09 2.631039112e-09 2.636089234e-09 2.749914256e-09 2.841115357e-09 2.832345671e-09 2.381453249e-09 3.263994666e-09 3.055463284e-09 3.807731729e-09 2.43873851e-09 2.721567221e-09 3.073486895e-09 3.24221094e-09 3.048519874e-09 2.941305504e-09 3.698674159e-09 3.956565873e-09 4.070359872e-09 2.845159462e-09 4.249520143e-09 4.040027244e-09 3.352729889e-09 3.990337008e-09 4.856858108e-09 5.024748533e-09 5.668593016e-09 5.277773105e-09 4.730215363e-09 4.05735788e-09 5.84147022e-09 4.35436223e-09 4.73198709e-09 4.349579222e-09 4.64773852e-09 4.16501152e-09 5.580755933e-09 3.442144492e-09 3.161135138e-09 3.708058239e-09 4.44564859e-09 4.55172219e-09 3.094443319e-09 2.875733415e-09 4.009097479e-09 3.58004287e-09 3.618706788e-09 2.966215224e-09 3.081041059e-09 2.922788586e-09 2.657393499e-09 2.636158345e-09 2.627174972e-09 2.657473046e-09 2.528299622e-09 2.457503359e-09 2.58727424e-09 2.419144282e-09 2.372018865e-09 2.282733863e-09 2.251472594e-09 2.140308212e-09 2.135904832e-09 2.073546998e-09 2.024640517e-09 1.979802429e-09 1.884327356e-09 1.834303119e-09 1.637825313e-09 1.395558182e-09 1.278356081e-09 1.425691461e-09 1.062056309e-09 7.21173222e-10 9.403928297e-10 7.544658018e-10 4.435878462e-10 9.873480693e-11 3.426230288e-10 2.705759584e-10 8.867206104e-11 1.091325148e-11 3.154393019e-12 4.382367358e-12 7.8739544e-14 6.735344753e-14 1.652482398e-15 1.537318706e-17 1.574577668e-17 2.200914185e-17 1.149844383e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 5.664555233e-19 0 1.714978846e-18 4.020365998e-17 1.135509816e-15 9.060388537e-15 9.169189196e-15 7.096261602e-14 1.595388659e-12 4.658226849e-12 3.615883944e-11 1.8366112e-10 1.207204989e-10 2.682065696e-10 2.362246789e-10 3.458022088e-10 7.083354254e-10 8.719775351e-10 9.505153727e-10 1.255053656e-09 1.461764654e-09 1.419431214e-09 1.32680275e-09 1.241364813e-09 1.896572677e-09 1.721194339e-09 1.718061222e-09 1.772743796e-09 1.963945568e-09 2.101756969e-09 2.462329484e-09 2.216366838e-09 2.210695051e-09 2.413711896e-09 2.478103244e-09 2.469257287e-09 2.50866648e-09 2.486922222e-09 2.60784465e-09 2.764777329e-09 2.981704087e-09 2.824585292e-09 2.833233119e-09 2.757097135e-09 3.176206102e-09 3.077494446e-09 2.984694001e-09 4.951199882e-09 3.603915231e-09 3.858133439e-09 4.577636284e-09 3.77985211e-09 3.972225116e-09 4.916667743e-09 4.769338363e-09 4.024161441e-09 2.819118499e-09 3.178802307e-09 5.516720772e-09 4.352409742e-09 4.542383928e-09 3.923272973e-09 3.608952053e-09 4.6126246e-09 2.900276125e-09 3.518388171e-09 5.170370455e-09 4.517089311e-09 3.541775981e-09 3.651333833e-09 4.266816224e-09 3.036430598e-09 3.698433726e-09 4.20838657e-09 4.280313422e-09 3.200427872e-09 2.700533604e-09 3.030180872e-09 2.794197343e-09 2.06405872e-09 2.902671422e-09 2.045130107e-09 3.025650437e-09 2.891336265e-09 2.831195581e-09 3.335993481e-09 2.703352856e-09 2.509640785e-09 2.98852728e-09 2.711696674e-09 3.179167984e-09 3.422988449e-09 2.439551241e-09 2.517160361e-09 2.365513375e-09 2.700089942e-09 3.121496214e-09 3.016093429e-09 2.422920029e-09 3.450535396e-09 3.880665494e-09 2.353085972e-09 3.310036896e-09 4.041745885e-09 3.968280127e-09 5.557143815e-09 5.194818259e-09 4.039994183e-09 4.940548896e-09 5.835467655e-09 4.282563133e-09 4.093202106e-09 5.266706686e-09 4.884222489e-09 5.507717643e-09 4.741275197e-09 5.38326204e-09 4.742602142e-09 4.923893054e-09 4.372147603e-09 4.582846113e-09 4.285735027e-09 3.647009017e-09 3.988349904e-09 3.914028289e-09 3.332753401e-09 3.587853371e-09 3.961090735e-09 2.919228619e-09 2.76080844e-09 3.105178429e-09 2.668845675e-09 2.639202656e-09 2.581972567e-09 2.664798823e-09 2.53677116e-09 2.413365754e-09 2.606723538e-09 2.401794139e-09 2.224470077e-09 2.118838287e-09 2.080562903e-09 2.017941801e-09 2.086818407e-09 2.058983157e-09 1.90246276e-09 1.992544571e-09 2.017310266e-09 1.8374836e-09 1.968678204e-09 1.857386219e-09 1.421888087e-09 1.285206809e-09 1.411785648e-09 1.128854671e-09 9.812345729e-10 8.900352909e-10 5.203193045e-10 3.44821409e-10 2.728237236e-10 1.897662311e-10 1.580673511e-10 1.329469457e-11 4.453460811e-12 3.591042952e-12 1.849232957e-12 1.86668606e-13 3.139543317e-14 1.466689093e-14 2.037327043e-17 1.661129314e-17 5.121889594e-18 1.115549525e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.46203202e-18 3.152240043e-16 4.60122549e-17 2.059723932e-15 8.284631911e-15 5.040646771e-14 3.170691826e-12 3.138774329e-12 2.103843068e-11 6.456331119e-11 2.109649084e-10 6.829167146e-11 1.020665411e-10 4.081417227e-10 7.661228395e-10 8.023976858e-10 1.003118238e-09 1.242128951e-09 1.237373059e-09 1.310961448e-09 1.427126652e-09 1.611663456e-09 1.536423336e-09 1.506664476e-09 1.84172032e-09 2.099539018e-09 1.801138862e-09 2.147286925e-09 1.824913887e-09 2.101450119e-09 1.962575564e-09 2.088209809e-09 2.422705112e-09 2.406902604e-09 2.530748351e-09 2.547121946e-09 2.83295941e-09 2.773791884e-09 2.843657579e-09 2.834843271e-09 2.780100953e-09 2.849259661e-09 2.912370729e-09 3.015864431e-09 3.777515189e-09 3.244656744e-09 3.498033125e-09 4.267846288e-09 4.218333778e-09 4.47723768e-09 3.749050502e-09 3.732137745e-09 3.71728446e-09 3.486154356e-09 3.23276698e-09 5.402855679e-09 5.984132049e-09 3.665692248e-09 4.45699578e-09 5.383121675e-09 4.701994158e-09 4.565697973e-09 3.770453882e-09 4.516618251e-09 4.552345701e-09 3.860535023e-09 4.061940534e-09 3.024958734e-09 4.155722736e-09 4.108195273e-09 3.097378446e-09 3.776115104e-09 3.661855812e-09 3.480870269e-09 3.512439287e-09 2.913840365e-09 2.10361436e-09 2.666714131e-09 2.580421763e-09 1.970469378e-09 2.937584e-09 3.006538537e-09 3.199564351e-09 2.809228437e-09 2.891401231e-09 3.663333891e-09 3.033583695e-09 2.717329804e-09 2.93862176e-09 2.779579172e-09 3.420659749e-09 2.610036097e-09 2.411900005e-09 3.001021796e-09 3.24509454e-09 3.15160278e-09 3.636919349e-09 3.516344101e-09 4.13744343e-09 3.151782811e-09 4.493474178e-09 3.2676932e-09 3.930041735e-09 4.215800264e-09 5.132381511e-09 4.215377917e-09 5.098581346e-09 4.016385569e-09 5.109997344e-09 4.908383977e-09 5.640977643e-09 2.952725607e-09 5.915079265e-09 3.998206998e-09 4.349188566e-09 4.194485908e-09 5.880865815e-09 4.768926142e-09 3.698794496e-09 4.342882387e-09 5.003409831e-09 3.586017728e-09 4.641819263e-09 3.262118885e-09 3.467355917e-09 3.066836777e-09 2.93610124e-09 3.032707556e-09 2.894224759e-09 2.717852957e-09 2.62582485e-09 2.812152749e-09 2.644308621e-09 2.746185564e-09 2.463919551e-09 2.54991815e-09 2.751134319e-09 2.176092038e-09 2.376530168e-09 2.295851687e-09 2.152208408e-09 1.782469093e-09 2.01986159e-09 1.825618674e-09 2.001343337e-09 1.610500322e-09 1.572613571e-09 1.402973984e-09 1.579363574e-09 1.23018999e-09 1.289162634e-09 1.34252982e-09 1.082872311e-09 1.199125251e-09 8.11948209e-10 7.20314876e-10 4.775861322e-10 1.156321635e-11 1.792743382e-10 4.892500884e-11 7.497059384e-11 4.550666347e-11 6.772578575e-13 9.583584268e-13 4.462747375e-14 1.335895106e-15 8.049989171e-17 7.44461188e-17 2.052650773e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.442276351e-19 4.657098473e-18 5.218873713e-17 1.28885961e-16 1.07845845e-15 2.983391679e-14 6.561246502e-14 9.863661877e-13 1.772818066e-11 3.440692732e-12 4.922504684e-11 4.023371963e-10 2.8692796e-10 1.293110958e-10 5.749746274e-10 5.954734659e-10 5.72207954e-10 1.173075802e-09 9.542792352e-10 1.27277119e-09 1.412438392e-09 1.255458847e-09 1.171744622e-09 1.580279208e-09 2.016597899e-09 1.745859584e-09 1.931149886e-09 1.782942166e-09 1.935413746e-09 2.236869527e-09 2.432135992e-09 2.170589533e-09 2.168108264e-09 2.101400286e-09 2.32007045e-09 2.321875794e-09 2.651126205e-09 2.625841842e-09 2.805354626e-09 2.746258641e-09 2.71303712e-09 2.8947037e-09 3.021111868e-09 2.96107188e-09 3.53406331e-09 2.87945697e-09 3.86709981e-09 3.058885362e-09 2.901555783e-09 3.404009921e-09 4.351611625e-09 3.054699065e-09 4.530748903e-09 4.21173599e-09 4.207555162e-09 4.989694146e-09 5.476528409e-09 4.145218085e-09 4.795747474e-09 5.315460291e-09 4.713447897e-09 4.224580898e-09 4.33221759e-09 4.949874646e-09 4.726926458e-09 4.755498663e-09 4.339648649e-09 3.828515965e-09 3.630355655e-09 4.625377145e-09 2.912882163e-09 3.922909782e-09 3.995693348e-09 3.387062529e-09 3.638155554e-09 2.685898876e-09 3.084504205e-09 2.980740511e-09 2.832496975e-09 2.347710994e-09 2.923979793e-09 2.342424338e-09 3.173059317e-09 2.80933508e-09 2.741893334e-09 3.060882059e-09 2.491203329e-09 3.172294565e-09 2.952962453e-09 2.985916817e-09 2.898221363e-09 2.205876677e-09 2.801717515e-09 3.103266878e-09 3.145995499e-09 2.674886949e-09 2.860225078e-09 3.473223039e-09 3.22108008e-09 3.155733411e-09 3.098200775e-09 4.113491238e-09 3.607454131e-09 4.016059699e-09 4.390890242e-09 4.438397742e-09 4.554895829e-09 4.142311386e-09 4.225886565e-09 4.479020023e-09 4.88578338e-09 4.643747641e-09 5.499384481e-09 4.781961589e-09 4.389063245e-09 6.776189739e-09 5.29796707e-09 4.26803133e-09 4.011916995e-09 5.592174025e-09 4.305371338e-09 3.084597237e-09 4.291121599e-09 3.222355353e-09 3.164736387e-09 3.083953448e-09 3.911134605e-09 3.046697417e-09 3.083600655e-09 2.806895585e-09 2.744054614e-09 2.740665781e-09 2.616752955e-09 2.892895351e-09 2.648225014e-09 2.410318289e-09 2.473826536e-09 2.268935681e-09 2.186380547e-09 2.161376133e-09 2.249554473e-09 2.166596732e-09 1.991971665e-09 2.018217986e-09 1.954199837e-09 1.998798071e-09 1.889894449e-09 1.702509418e-09 1.551662976e-09 1.356403419e-09 1.456266984e-09 1.217456385e-09 1.523270726e-09 1.159770312e-09 7.762905337e-10 7.636712151e-10 7.286697941e-10 5.07053759e-10 2.531113019e-10 2.172747701e-10 2.016107061e-10 5.988681559e-11 1.824412555e-11 1.875705633e-11 2.751516428e-12 1.888487799e-14 3.099270984e-14 4.941758928e-15 2.610178947e-16 7.234630241e-18 1.711397107e-17 2.336752587e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 6.670822162e-27 0 1.682909253e-18 5.484003121e-17 1.992878942e-17 1.736648866e-15 3.310640699e-15 6.057490936e-13 1.890597252e-12 8.946829121e-12 7.315362405e-12 1.128662921e-11 1.17634426e-10 3.732731865e-10 1.979119992e-10 5.436347733e-10 5.547087323e-10 8.636514055e-10 1.11011947e-09 1.142484249e-09 1.10402166e-09 1.349369991e-09 1.505262162e-09 1.244669392e-09 1.401416113e-09 1.559956856e-09 1.808607334e-09 1.902272026e-09 2.088604556e-09 1.968262838e-09 2.174532562e-09 2.013606761e-09 2.076002264e-09 2.442307918e-09 2.355218059e-09 2.385283367e-09 2.594178187e-09 2.510489548e-09 2.639728629e-09 2.56155527e-09 2.592004469e-09 2.730458072e-09 2.402080554e-09 3.072874789e-09 2.834884352e-09 2.633023896e-09 3.52643621e-09 4.027471854e-09 2.903240012e-09 4.044875083e-09 3.855909455e-09 3.523776866e-09 3.941534228e-09 4.425111423e-09 5.380727622e-09 4.318737052e-09 4.558711201e-09 4.542050297e-09 3.232197715e-09 4.086832907e-09 5.018587985e-09 6.044706254e-09 3.367957386e-09 2.561062929e-09 3.665040548e-09 3.208953589e-09 3.904644625e-09 4.472567816e-09 4.392026561e-09 4.100039324e-09 3.789987411e-09 3.678269951e-09 3.342911637e-09 3.043957629e-09 3.257871305e-09 2.691028558e-09 2.828643597e-09 2.611386139e-09 2.968285386e-09 2.829917643e-09 2.957469823e-09 2.501300624e-09 2.640497698e-09 2.768069396e-09 2.92997882e-09 2.898101303e-09 2.774215912e-09 2.027406097e-09 2.804170189e-09 2.532436159e-09 2.008103849e-09 3.06970972e-09 2.723374807e-09 3.843144478e-09 2.950725554e-09 2.789315528e-09 3.73847776e-09 2.617496342e-09 2.929127087e-09 3.101833398e-09 3.888028649e-09 3.211584039e-09 3.459702676e-09 3.543089322e-09 4.530038997e-09 3.927461484e-09 4.051928849e-09 4.247882416e-09 3.894863603e-09 4.823217009e-09 3.93766631e-09 5.206662947e-09 3.349559767e-09 4.093999223e-09 3.675069679e-09 4.661516783e-09 3.947712723e-09 3.396166887e-09 4.595719726e-09 4.570844207e-09 4.012214363e-09 4.382901509e-09 3.540755775e-09 2.735294499e-09 3.118977733e-09 2.782600658e-09 2.953852963e-09 3.028232074e-09 3.018226189e-09 3.066123285e-09 2.766637929e-09 2.749272036e-09 2.590245899e-09 2.473049673e-09 2.72564431e-09 2.762494782e-09 2.611028587e-09 2.601702759e-09 2.136280948e-09 2.498807949e-09 2.049657093e-09 2.155662055e-09 2.158645282e-09 2.132267623e-09 2.07516432e-09 2.018553123e-09 1.901751451e-09 1.846247625e-09 1.994199322e-09 1.417370149e-09 1.6995708e-09 1.478918742e-09 1.275121532e-09 1.287656014e-09 1.237704229e-09 7.48694098e-10 7.108711964e-10 3.739356251e-10 5.963611714e-10 2.498242941e-10 3.009483551e-10 1.979710788e-10 1.36522226e-10 3.064998646e-12 1.662607794e-12 1.46416009e-12 7.994701227e-15 3.380322297e-14 1.21123346e-14 1.274724403e-16 3.390765293e-17 4.593296411e-19 2.884528664e-18 1.166473686e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.999012966e-18 1.867442865e-17 6.200293882e-16 6.80049729e-17 1.827763653e-14 1.587483369e-13 6.191507547e-13 1.942072322e-12 8.867140491e-13 1.807984597e-10 1.932975121e-10 2.985406671e-10 1.869677645e-10 4.018527381e-10 6.266197794e-10 9.153645419e-10 1.112575307e-09 1.13331032e-09 1.321959462e-09 1.090459484e-09 1.366070306e-09 1.502180796e-09 1.508628159e-09 1.577641196e-09 2.038254822e-09 1.891470341e-09 2.06407789e-09 2.095585657e-09 1.81235198e-09 2.211571251e-09 2.269529353e-09 2.025629358e-09 1.969250026e-09 2.19844675e-09 2.266613917e-09 2.297533448e-09 2.709830195e-09 2.299771606e-09 2.638795596e-09 2.490024728e-09 2.899488966e-09 2.861788473e-09 2.804627534e-09 2.93693501e-09 3.174553264e-09 3.210132068e-09 3.438912241e-09 2.86464972e-09 4.361960036e-09 3.91190079e-09 3.924029831e-09 3.829141797e-09 2.984220276e-09 4.74959648e-09 4.034651763e-09 5.096129884e-09 3.698109374e-09 4.7105095e-09 4.627047749e-09 5.23769258e-09 4.207364774e-09 4.353021907e-09 5.531912014e-09 3.806213168e-09 4.044326656e-09 3.748463811e-09 4.026227451e-09 3.636107389e-09 3.761450691e-09 4.031704658e-09 2.812118476e-09 3.320578947e-09 3.322474654e-09 3.343207332e-09 3.222205357e-09 3.386157154e-09 2.272236642e-09 2.609400771e-09 2.849377965e-09 2.351973435e-09 3.368769432e-09 2.994424102e-09 2.467627905e-09 2.799613659e-09 2.357083737e-09 2.524847432e-09 2.508519531e-09 2.969647218e-09 2.52936665e-09 2.35873849e-09 2.920826439e-09 3.404673898e-09 2.964996686e-09 2.532674515e-09 2.361927876e-09 2.722151984e-09 3.344881386e-09 3.192026421e-09 3.724538395e-09 3.606590182e-09 3.894590977e-09 3.916008052e-09 3.439740396e-09 3.98301663e-09 3.115399879e-09 4.239942621e-09 3.24006588e-09 4.067489097e-09 3.056922036e-09 3.632142019e-09 5.509151754e-09 4.837908949e-09 5.015457767e-09 3.145561867e-09 5.061520473e-09 4.036774023e-09 4.101267428e-09 5.054718236e-09 4.280988835e-09 4.125351016e-09 4.931741287e-09 3.12728831e-09 3.260550082e-09 3.688402258e-09 2.915349447e-09 4.383121493e-09 2.687257898e-09 3.294966703e-09 2.917313322e-09 2.730132689e-09 2.860184373e-09 2.386293879e-09 2.798027847e-09 2.172667844e-09 2.156157148e-09 2.485287686e-09 2.488198527e-09 2.235227583e-09 2.17804624e-09 2.148983989e-09 2.000136955e-09 2.075681165e-09 1.984092218e-09 1.737172099e-09 1.870174732e-09 1.592838109e-09 1.837843284e-09 1.505068696e-09 1.358552643e-09 1.507389715e-09 1.291846013e-09 1.209572406e-09 1.0502251e-09 1.069606107e-09 8.740955837e-10 6.308234263e-10 4.092094265e-10 2.280843031e-10 2.84304994e-10 2.039450669e-10 4.789272236e-11 1.163524281e-10 3.391392461e-11 1.400860776e-12 2.317868008e-13 9.991348385e-14 5.281747052e-16 1.895156862e-15 1.515249305e-17 4.520028477e-17 4.455873852e-19 4.230349408e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.007019744e-18 2.599811481e-17 9.507393589e-17 1.841112019e-16 2.348361592e-15 6.908526454e-14 2.953077216e-14 3.211243128e-14 1.225125187e-12 1.681973041e-10 1.874967565e-10 2.590385124e-10 7.203576639e-11 3.140234016e-10 5.659024117e-10 6.269588244e-10 8.517644676e-10 1.17079893e-09 1.148360361e-09 1.168246497e-09 1.160709816e-09 1.245803796e-09 1.387629297e-09 1.693014753e-09 1.580779331e-09 1.724155455e-09 1.613668557e-09 1.716442449e-09 1.833854904e-09 1.946316436e-09 2.276146701e-09 2.118796516e-09 2.120334746e-09 2.044228376e-09 2.339007289e-09 2.070606222e-09 2.538874697e-09 2.500336585e-09 2.743652586e-09 2.398530849e-09 2.520212406e-09 2.814771722e-09 2.823338193e-09 2.970735041e-09 3.027979419e-09 3.013442501e-09 2.846985984e-09 3.615338376e-09 4.629077865e-09 3.919435892e-09 3.049279189e-09 3.714210851e-09 4.692600115e-09 3.903319027e-09 3.791645242e-09 4.714979647e-09 4.216754187e-09 4.493929839e-09 4.617358245e-09 2.125945104e-09 4.614204025e-09 4.528627585e-09 3.558019189e-09 3.832249312e-09 3.074171959e-09 3.324500193e-09 5.416616041e-09 4.467320955e-09 3.745595738e-09 4.181377311e-09 3.199735741e-09 4.083325433e-09 3.625922933e-09 3.503464723e-09 2.90157708e-09 2.500551005e-09 3.17261284e-09 2.78807515e-09 3.53866179e-09 3.155240364e-09 2.722324363e-09 3.289929974e-09 2.666524869e-09 2.285664851e-09 3.212720806e-09 2.258021937e-09 2.975892037e-09 2.812464551e-09 1.783941193e-09 2.993303354e-09 1.945437777e-09 2.895872038e-09 2.79140891e-09 3.056607739e-09 3.30565577e-09 2.228960306e-09 2.755717464e-09 2.223932296e-09 3.576643228e-09 3.080414137e-09 3.430646012e-09 3.274433614e-09 3.753202885e-09 3.632548778e-09 4.353663796e-09 3.929033921e-09 3.615269124e-09 4.023400889e-09 4.644488823e-09 3.553370762e-09 4.056286352e-09 3.380076198e-09 4.401212215e-09 5.168509451e-09 4.642621231e-09 4.902909542e-09 3.751351926e-09 2.823751149e-09 4.526453633e-09 3.657560755e-09 4.804281807e-09 4.499756716e-09 4.050187409e-09 3.135391425e-09 3.661048871e-09 3.035075619e-09 2.65773322e-09 2.697300673e-09 2.966891491e-09 2.640022417e-09 2.796795751e-09 2.369075737e-09 2.501110655e-09 2.433363065e-09 2.455967923e-09 2.40358121e-09 2.390985778e-09 2.105676309e-09 2.048588809e-09 2.213068952e-09 1.940717815e-09 1.885989253e-09 2.081471584e-09 1.732952992e-09 2.109160382e-09 1.896186254e-09 1.905699001e-09 1.718459191e-09 1.759800593e-09 1.607679436e-09 1.549516439e-09 1.510968322e-09 1.14444726e-09 1.179142896e-09 9.494754473e-10 8.11713724e-10 6.052593571e-10 5.993749069e-10 2.747001715e-10 1.026706318e-10 3.618867086e-10 6.054872899e-11 1.968180306e-11 1.154302273e-12 2.125544784e-14 1.942548537e-13 6.423537951e-15 9.500214901e-16 2.081353248e-16 8.774872294e-17 1.140848482e-20 4.063989923e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.575309011e-19 1.21700112e-17 0 1.565348167e-17 4.698108346e-16 1.59166778e-15 3.991937865e-14 3.654179889e-15 4.956944925e-12 7.536051711e-11 1.138850764e-11 1.777053542e-10 7.633910957e-11 1.214021351e-10 4.025937037e-10 5.635931771e-10 8.184998846e-10 1.229113029e-09 1.229291289e-09 1.233735707e-09 1.386889372e-09 1.256384521e-09 1.386514703e-09 1.631983033e-09 1.569032703e-09 1.925576069e-09 1.596216117e-09 1.90470111e-09 1.802974333e-09 2.018064177e-09 1.962872642e-09 2.286149706e-09 2.096333923e-09 2.117460425e-09 2.280679346e-09 2.581012177e-09 2.669555873e-09 2.409846592e-09 2.336850224e-09 2.520934889e-09 2.726610368e-09 2.848331051e-09 2.294754485e-09 3.307459562e-09 3.450397842e-09 3.265992232e-09 2.931573882e-09 2.600082434e-09 3.281684102e-09 3.419449366e-09 5.125255863e-09 4.870891291e-09 4.624310325e-09 4.88711314e-09 3.409080412e-09 4.746782761e-09 6.161155849e-09 4.180850422e-09 5.153597657e-09 3.82576683e-09 4.431228926e-09 4.081276127e-09 5.079892142e-09 3.642106024e-09 4.217367253e-09 3.434514038e-09 3.241394898e-09 2.434414467e-09 4.526424614e-09 3.609400962e-09 3.365641285e-09 2.749910192e-09 2.827881184e-09 2.627164942e-09 1.957509825e-09 2.507773406e-09 2.462638761e-09 2.749837076e-09 2.783066703e-09 2.56002068e-09 2.123528513e-09 2.723748397e-09 2.442324262e-09 2.770173268e-09 2.06344892e-09 3.02195463e-09 2.624217534e-09 2.377239795e-09 2.315162881e-09 3.125205539e-09 2.727543187e-09 2.890921166e-09 3.507904119e-09 3.113091729e-09 2.804337799e-09 2.71927015e-09 3.20445698e-09 2.834267747e-09 2.816458238e-09 3.383950007e-09 3.026736563e-09 3.047313966e-09 2.905307037e-09 4.006179348e-09 3.090474281e-09 4.824311055e-09 4.481459966e-09 3.170826298e-09 3.841879583e-09 2.972034118e-09 4.162644684e-09 4.385843077e-09 3.888058658e-09 4.337857713e-09 4.820506538e-09 4.597126834e-09 3.885004424e-09 4.696695191e-09 4.47597556e-09 3.399194734e-09 2.966393834e-09 3.361218506e-09 2.771574704e-09 2.826857713e-09 3.79654844e-09 3.439899024e-09 3.641791202e-09 2.909453218e-09 2.522249924e-09 2.810213686e-09 2.616214646e-09 2.745926488e-09 2.523753315e-09 2.678883068e-09 2.342419884e-09 2.301461544e-09 2.174563861e-09 2.295196524e-09 2.509909155e-09 2.081259155e-09 1.694398381e-09 2.0164363e-09 1.961504182e-09 1.86176514e-09 1.598903442e-09 1.706334194e-09 1.872975427e-09 1.649713698e-09 1.407721357e-09 1.450075714e-09 1.28110434e-09 1.240723765e-09 1.313253047e-09 1.243239261e-09 9.448229309e-10 7.178054984e-10 6.222059385e-10 4.437302194e-10 1.965597856e-10 1.358883455e-10 1.784138284e-10 1.661710827e-10 3.660811922e-12 7.030073354e-13 7.465221335e-14 5.252171346e-14 2.988047699e-15 3.639257379e-16 2.13119769e-15 1.545963253e-18 0 0 4.303404135e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.863774587e-19 9.613001725e-18 8.400557902e-17 1.376142202e-16 8.302899905e-17 5.226566114e-16 4.345780127e-13 9.598889271e-14 1.220083426e-12 3.842917524e-12 1.716225915e-10 8.776739991e-11 5.788466453e-11 3.048166106e-10 3.785101743e-10 4.184505519e-10 8.490631568e-10 7.775172021e-10 9.216096427e-10 1.215568362e-09 1.442705875e-09 1.311569262e-09 1.649294613e-09 1.373347244e-09 1.605284212e-09 1.888982618e-09 1.744144513e-09 1.85787997e-09 1.651362358e-09 1.895185647e-09 1.664217908e-09 1.976093574e-09 2.185617846e-09 2.099932491e-09 2.193637179e-09 2.303640644e-09 2.569414695e-09 2.406518745e-09 2.569998683e-09 2.458546851e-09 2.693787742e-09 2.671184584e-09 2.867514967e-09 2.957414744e-09 2.709161545e-09 3.058282623e-09 2.869047192e-09 3.423562994e-09 2.891548334e-09 4.266770206e-09 3.078260683e-09 2.649602804e-09 4.007496609e-09 4.704212389e-09 3.522476601e-09 3.808259411e-09 3.048379184e-09 5.210951842e-09 4.241371227e-09 3.582700079e-09 3.021886191e-09 4.236410738e-09 3.594496097e-09 4.095952153e-09 3.492768043e-09 4.543213045e-09 3.981774403e-09 3.910994771e-09 4.67432526e-09 3.224242345e-09 3.605785017e-09 3.078815067e-09 3.272017885e-09 2.625783399e-09 3.373873973e-09 2.12351691e-09 2.673633076e-09 2.370834539e-09 3.179527769e-09 2.709775698e-09 2.486382594e-09 2.626386409e-09 3.406549352e-09 2.998588732e-09 2.243608415e-09 2.438977365e-09 2.56208231e-09 2.664796541e-09 2.533269055e-09 2.556996649e-09 3.06205974e-09 2.634940039e-09 2.343067012e-09 3.089405913e-09 2.306439297e-09 2.673229579e-09 2.5557687e-09 2.492545143e-09 2.93753914e-09 2.70741006e-09 3.30346563e-09 4.273913809e-09 2.46398498e-09 3.572523935e-09 3.304598354e-09 3.991782103e-09 3.073695753e-09 3.089183403e-09 4.029883711e-09 5.124911077e-09 4.478783129e-09 4.966708629e-09 4.20811216e-09 4.689868932e-09 4.930187805e-09 4.792969033e-09 3.750744166e-09 3.342489913e-09 4.459736388e-09 2.755018439e-09 4.837219307e-09 4.171055052e-09 3.297182928e-09 2.754141631e-09 3.503211619e-09 3.116659026e-09 2.917704007e-09 2.70462004e-09 2.470532427e-09 2.574967499e-09 2.861977273e-09 2.591998991e-09 2.513807981e-09 2.653147423e-09 2.540640713e-09 2.260854771e-09 2.590791404e-09 2.329144255e-09 2.04322269e-09 2.084716833e-09 2.012022781e-09 2.112313144e-09 2.038569587e-09 1.730788117e-09 1.831721048e-09 1.47142768e-09 1.519636112e-09 1.725452687e-09 1.478473737e-09 9.660304325e-10 1.26968393e-09 1.18939998e-09 1.125127603e-09 1.107111229e-09 1.006042656e-09 7.352839395e-10 5.745346544e-10 3.515840401e-10 1.77604487e-10 2.498528393e-10 1.586557771e-10 1.176308195e-10 2.697076262e-12 8.247152802e-12 1.888122047e-12 2.276847192e-13 3.376587415e-15 4.695617259e-16 8.044968741e-17 1.894880057e-17 4.984170627e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1.147088497e-18 0 2.409489567e-17 5.823090905e-16 3.829321301e-18 1.895400947e-17 3.898184191e-14 1.370761377e-15 2.69817431e-13 1.12213516e-12 1.01442639e-11 2.951511933e-10 2.403543341e-11 2.961171109e-10 2.614152521e-10 1.901237482e-11 6.531586754e-10 7.191589927e-10 1.052758724e-09 1.109148661e-09 1.071186203e-09 1.421121321e-09 1.244052033e-09 1.584728687e-09 1.618295094e-09 1.594044554e-09 1.700698629e-09 1.692379941e-09 1.882859693e-09 1.867818791e-09 1.766666778e-09 2.012641024e-09 2.04813109e-09 2.142593733e-09 2.025570372e-09 2.106264192e-09 2.173380042e-09 2.483967235e-09 2.099136294e-09 2.311887138e-09 2.407254774e-09 2.548672113e-09 2.542211814e-09 2.531897057e-09 2.68240977e-09 2.891734655e-09 3.073064613e-09 4.287120573e-09 4.134121093e-09 3.786826552e-09 3.914265905e-09 3.573773666e-09 4.527412967e-09 2.69322586e-09 4.458496384e-09 4.263027811e-09 3.48671778e-09 5.612462692e-09 5.20251099e-09 4.929290305e-09 4.469196383e-09 5.140675502e-09 4.338069827e-09 3.468446411e-09 3.310580205e-09 3.507233165e-09 4.041947941e-09 4.620359756e-09 3.48994398e-09 3.232250175e-09 3.504060814e-09 3.733965654e-09 3.274146754e-09 3.521756727e-09 3.33741349e-09 2.97677014e-09 2.998174304e-09 3.038650566e-09 3.352851342e-09 2.859746513e-09 2.988823431e-09 2.447371323e-09 2.402267497e-09 2.156338749e-09 2.465414246e-09 2.604987387e-09 3.020394842e-09 3.141815411e-09 3.117261259e-09 2.737124471e-09 3.066781276e-09 2.787394316e-09 2.974412534e-09 2.383961848e-09 2.558939331e-09 2.52610267e-09 2.213511299e-09 2.79525136e-09 3.59269649e-09 2.251958518e-09 2.620933886e-09 3.014448012e-09 2.837420251e-09 3.526710329e-09 3.306974888e-09 4.726854425e-09 4.715893126e-09 3.949474153e-09 3.577492834e-09 5.199005985e-09 3.270792098e-09 4.046106192e-09 5.353027496e-09 5.202957706e-09 4.08035228e-09 4.7744989e-09 4.353196177e-09 4.404335696e-09 4.031596956e-09 3.31730822e-09 5.156626043e-09 5.429358081e-09 3.481894297e-09 3.604570593e-09 3.523428413e-09 3.016585966e-09 3.607428904e-09 2.935142757e-09 3.190210319e-09 2.731699382e-09 2.774166915e-09 2.68727417e-09 2.640428693e-09 2.452060398e-09 2.308342341e-09 2.435567226e-09 2.342938727e-09 2.390834205e-09 2.110676557e-09 2.250625792e-09 2.152120539e-09 1.939024454e-09 1.916516277e-09 1.710729164e-09 2.147769933e-09 1.809040433e-09 1.530613327e-09 1.888530985e-09 1.666014576e-09 1.810648505e-09 1.394426441e-09 1.438926355e-09 1.225741959e-09 1.010186862e-09 1.046158972e-09 8.929304128e-10 8.440691778e-10 6.713478207e-10 2.294551459e-10 2.020535282e-10 2.289439864e-10 2.589908014e-10 9.778816879e-11 2.268586834e-12 6.129932266e-12 7.958551191e-13 4.774562039e-14 2.711373575e-15 3.729814909e-15 2.034648687e-15 6.056655824e-20 0 7.45518294e-18 3.538909711e-22 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.615785448e-17 2.294286867e-16 6.490641901e-16 7.085553091e-15 1.617910676e-13 1.358447726e-13 4.882540396e-12 1.341474248e-11 1.993526491e-10 9.158765283e-11 3.198751547e-10 2.095133704e-10 1.855367731e-10 3.831997359e-10 7.978031843e-10 5.822770023e-10 1.004268628e-09 1.022893865e-09 1.28065735e-09 1.234326536e-09 1.420103568e-09 1.515190426e-09 1.489564136e-09 1.637525103e-09 1.765512586e-09 1.848406284e-09 1.854302055e-09 1.767790633e-09 1.935296925e-09 1.91531899e-09 2.167920576e-09 2.210136198e-09 2.159653776e-09 2.141817692e-09 2.374163586e-09 2.251503637e-09 2.276250542e-09 2.354163334e-09 2.444049103e-09 2.456386852e-09 2.662415764e-09 2.748065056e-09 2.632810638e-09 3.205626846e-09 1.99783562e-09 3.09782293e-09 3.370247258e-09 2.947822503e-09 3.35988338e-09 3.972144255e-09 3.280305465e-09 4.401765779e-09 3.947110865e-09 2.869684333e-09 4.233013518e-09 3.929073871e-09 4.172549653e-09 4.601657261e-09 3.816401366e-09 4.371997029e-09 4.384145477e-09 3.462363507e-09 5.867562204e-09 3.674830967e-09 2.993491887e-09 4.50639795e-09 4.06381121e-09 3.772985653e-09 3.312475635e-09 2.830180261e-09 3.484595832e-09 2.252379595e-09 2.996805245e-09 2.489708998e-09 2.961005816e-09 2.73680617e-09 2.215632222e-09 2.398751173e-09 2.162608205e-09 2.987855921e-09 2.362970263e-09 2.829966077e-09 2.225080507e-09 2.210297226e-09 1.918652808e-09 1.920439951e-09 2.207281742e-09 2.600922142e-09 2.664813554e-09 2.681725397e-09 2.042441937e-09 2.954284947e-09 2.700447625e-09 2.764660517e-09 2.998954976e-09 3.286334953e-09 3.003697359e-09 2.592408943e-09 3.181263281e-09 3.310166607e-09 3.320682872e-09 3.002542218e-09 2.796619322e-09 3.569960526e-09 3.759597905e-09 5.996254539e-09 4.891638795e-09 3.098792664e-09 3.589884828e-09 3.45633145e-09 4.513537088e-09 4.959205042e-09 4.701370743e-09 2.862874905e-09 3.194799766e-09 3.035308654e-09 4.76077717e-09 3.862980017e-09 4.538796555e-09 4.927531197e-09 5.31304889e-09 3.430364947e-09 2.329264946e-09 3.238472784e-09 3.33602749e-09 2.72876893e-09 2.456106994e-09 2.266422668e-09 2.443356827e-09 2.481712158e-09 2.188576548e-09 2.060624815e-09 2.108389654e-09 2.216823071e-09 2.263714109e-09 2.070981622e-09 1.567977574e-09 2.070544853e-09 1.974530611e-09 1.76823839e-09 1.786386173e-09 1.821285725e-09 1.518095139e-09 1.698108267e-09 1.612131766e-09 1.188996469e-09 1.555016407e-09 1.409494469e-09 1.214123894e-09 1.429501123e-09 9.613577751e-10 1.179523626e-09 8.26281209e-10 7.316583891e-10 7.810583288e-10 3.120971854e-10 1.817870074e-12 2.333850282e-10 1.903384382e-11 1.590194619e-10 5.34986611e-11 4.692392486e-13 4.015782325e-12 2.857745816e-14 8.386685308e-15 1.042455631e-15 4.218854913e-16 2.013490111e-16 6.749269011e-16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 5.06234054e-14 0 0 0 0 0 0 0 0 0 0 0 0 5.893544736e-23 1.28353881e-17 4.519441537e-17 6.728568841e-15 4.457153203e-15 1.7300278e-13 1.267056466e-12 9.062361276e-13 4.944082597e-11 5.622852397e-11 1.516138923e-10 1.619473195e-10 2.375966592e-10 5.529580594e-10 5.793531645e-10 7.113676169e-10 8.773738634e-10 1.122229467e-09 1.162170078e-09 9.653315125e-10 1.194447952e-09 1.470915633e-09 1.431269821e-09 1.661471681e-09 1.775278724e-09 1.811059362e-09 1.846310394e-09 1.88010521e-09 1.940974869e-09 1.973492862e-09 1.824704028e-09 2.007683737e-09 1.936356097e-09 1.920413641e-09 2.187902147e-09 1.935742021e-09 2.249112291e-09 2.480933113e-09 2.399131762e-09 2.713417961e-09 2.676031557e-09 2.396087684e-09 2.552025657e-09 2.858916529e-09 2.883666891e-09 2.51808805e-09 3.740350761e-09 3.015576881e-09 2.669107389e-09 2.999163806e-09 2.617873553e-09 3.873695314e-09 4.286859785e-09 4.180321953e-09 3.205412985e-09 3.90060561e-09 3.526006858e-09 3.569075241e-09 3.080890335e-09 4.628672905e-09 3.187731771e-09 4.520174958e-09 2.041732773e-09 3.817428916e-09 3.491493032e-09 3.08040792e-09 4.361218559e-09 3.683655791e-09 3.773000958e-09 3.578803858e-09 3.439245188e-09 2.191732283e-09 2.659597028e-09 2.325193621e-09 3.094616996e-09 2.525740435e-09 3.161235558e-09 3.061760485e-09 2.34339234e-09 2.169189027e-09 2.201243097e-09 2.303473666e-09 2.742975617e-09 2.644523627e-09 2.501615689e-09 2.559665046e-09 2.464276215e-09 2.753865409e-09 2.397360567e-09 2.770648386e-09 1.929839674e-09 2.010695113e-09 2.95934543e-09 2.335871507e-09 1.772268692e-09 2.589743375e-09 2.169413578e-09 2.949734892e-09 3.401578539e-09 2.59892697e-09 2.605970228e-09 3.462336012e-09 2.952827835e-09 3.373176436e-09 4.009063487e-09 3.708953794e-09 3.31209915e-09 2.924372843e-09 3.883736324e-09 3.759556686e-09 3.894307752e-09 3.614893993e-09 3.699517228e-09 3.059572904e-09 4.699645173e-09 4.212536109e-09 2.931295738e-09 4.256458377e-09 3.128480588e-09 3.226457468e-09 3.274944656e-09 4.748623837e-09 2.572331238e-09 2.889156947e-09 3.180190938e-09 2.851171341e-09 2.538716443e-09 2.706745361e-09 2.6975383e-09 2.542579918e-09 2.378799234e-09 2.373073293e-09 2.404031169e-09 2.194957261e-09 2.104439084e-09 2.194099084e-09 2.162976314e-09 1.956234325e-09 2.01102671e-09 1.982920095e-09 2.191042182e-09 1.745374991e-09 1.946915265e-09 1.842904257e-09 1.674809657e-09 1.922659295e-09 1.614750408e-09 1.530513785e-09 1.340282056e-09 1.273692576e-09 9.894854728e-10 1.238575567e-09 9.856911671e-10 1.047194323e-09 8.281180038e-10 5.703459957e-10 2.071843286e-10 2.239222118e-10 1.504174969e-10 2.000446058e-10 8.67474335e-11 1.316751841e-10 1.754913691e-11 7.775722314e-15 4.77824247e-15 9.463667293e-16 4.839173228e-17 9.224269199e-16 1.01429039e-17 0 1.055803945e-18 1.868677775e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 6.158117571e-19 0 5.623849974e-19 7.346897295e-18 1.655134837e-16 3.624182042e-17 7.502401802e-15 4.105296891e-13 5.836964995e-14 1.663268585e-11 6.286343206e-11 1.720754085e-10 5.707644065e-11 2.582447004e-11 2.94019406e-10 3.610447047e-10 4.567634402e-10 7.84656874e-10 9.40479412e-10 9.573110147e-10 1.161004193e-09 1.178131741e-09 9.114729505e-10 1.290990431e-09 1.424284978e-09 1.468687495e-09 1.283382016e-09 1.646210335e-09 1.451907923e-09 1.82107526e-09 2.112561224e-09 1.832143509e-09 1.73518531e-09 1.883910254e-09 2.023677032e-09 2.181038408e-09 1.977882331e-09 1.97215165e-09 2.041892864e-09 2.61098295e-09 2.357787782e-09 2.363025156e-09 2.691299943e-09 2.563813408e-09 2.972569886e-09 2.710372211e-09 2.304586658e-09 2.519152868e-09 3.070461458e-09 3.286253358e-09 3.516205031e-09 2.988094721e-09 3.391496148e-09 3.252080811e-09 4.507504216e-09 3.644759968e-09 4.113303124e-09 4.017434902e-09 4.122867398e-09 3.241221434e-09 2.697024158e-09 2.366881168e-09 3.15215066e-09 3.118877149e-09 3.816156445e-09 4.620573272e-09 3.548048195e-09 4.121762299e-09 3.777308191e-09 3.154261667e-09 2.804026446e-09 2.255821598e-09 3.148658173e-09 2.912690533e-09 3.359566006e-09 3.059081872e-09 2.521116107e-09 2.194245079e-09 2.367579575e-09 2.503371362e-09 2.68235518e-09 2.013448751e-09 2.601411906e-09 2.436980794e-09 2.109356337e-09 2.244520744e-09 2.197851369e-09 2.454371196e-09 1.624380377e-09 2.592872404e-09 2.025488207e-09 3.004640397e-09 2.344092005e-09 2.546413404e-09 1.785343932e-09 2.992147111e-09 2.041920782e-09 2.080670669e-09 2.732288777e-09 3.545455212e-09 3.127550459e-09 2.799807483e-09 3.125541945e-09 3.505021594e-09 2.626242008e-09 3.644528313e-09 3.685677118e-09 4.384103455e-09 2.76134353e-09 3.946628952e-09 3.59642391e-09 5.108263684e-09 3.618456639e-09 4.295171898e-09 3.325689066e-09 3.035349165e-09 3.959289297e-09 3.181741545e-09 3.198320684e-09 3.074179512e-09 3.716530145e-09 4.005010034e-09 2.724741098e-09 4.799752442e-09 3.145667866e-09 4.022324301e-09 2.71892118e-09 2.921018847e-09 2.384455436e-09 2.324783332e-09 2.128434631e-09 2.221006139e-09 2.465281752e-09 2.261540988e-09 2.393910469e-09 2.179906603e-09 2.223227729e-09 2.163691375e-09 1.981767221e-09 1.957773254e-09 1.901918476e-09 1.98623141e-09 1.754219031e-09 1.787380192e-09 1.521747562e-09 2.006552287e-09 1.67473023e-09 1.559276576e-09 1.588150686e-09 1.315841682e-09 1.546643914e-09 1.362641873e-09 1.201285949e-09 1.000531614e-09 1.189238227e-09 6.669263977e-10 6.672209394e-10 4.364599873e-10 3.168288501e-10 4.842006135e-11 2.763975289e-10 2.200767902e-10 1.845793456e-10 5.135153258e-12 2.018166057e-13 7.046612326e-13 5.614700688e-13 2.626428452e-15 4.697394223e-17 7.554751838e-17 6.107074087e-17 6.762224252e-19 3.567081055e-26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 7.92390845e-23 0 8.740000553e-18 2.098178651e-17 4.928098876e-17 3.549122359e-16 1.059640595e-14 1.736308753e-13 1.259196295e-12 1.411363212e-12 1.30674583e-10 3.282048298e-11 2.902713624e-10 1.508608385e-10 1.920702621e-10 5.063529179e-10 4.342034737e-10 6.005724379e-10 7.347177965e-10 8.134898929e-10 9.68779425e-10 1.057543753e-09 1.241796335e-09 1.256048208e-09 1.404082402e-09 1.397960015e-09 1.633412183e-09 1.560419174e-09 1.66653014e-09 1.765365889e-09 1.668343396e-09 2.002856383e-09 1.763789442e-09 2.083416686e-09 2.087182755e-09 2.042414703e-09 2.011981066e-09 1.957500378e-09 2.065376343e-09 2.295375731e-09 2.338791675e-09 2.32263589e-09 2.152788672e-09 2.395980814e-09 3.241220661e-09 2.638299114e-09 2.219919279e-09 2.266434786e-09 3.132146142e-09 3.103650597e-09 2.881547114e-09 2.580168874e-09 4.318196372e-09 2.62609285e-09 3.376416982e-09 2.826797563e-09 2.557899634e-09 4.266435647e-09 3.536398751e-09 4.409396956e-09 4.421400698e-09 4.636710356e-09 4.412169355e-09 5.168478828e-09 3.526501595e-09 3.319830043e-09 3.331906392e-09 3.531157522e-09 2.980154488e-09 2.899760507e-09 3.255423799e-09 3.094830592e-09 3.159341208e-09 3.412784057e-09 3.691867187e-09 2.663295176e-09 2.574445599e-09 2.865395369e-09 2.24321398e-09 2.551785353e-09 2.736646367e-09 2.527358889e-09 2.395840934e-09 2.171917315e-09 1.919925251e-09 2.215268003e-09 1.734679332e-09 2.100094407e-09 2.235222154e-09 2.274864415e-09 2.253152754e-09 2.586400157e-09 1.794106702e-09 2.766343697e-09 2.09297158e-09 2.699152743e-09 3.070640386e-09 3.093439865e-09 2.558934637e-09 3.254743404e-09 2.646593344e-09 4.067474251e-09 3.602081365e-09 3.522495828e-09 4.215512255e-09 4.465560977e-09 3.891435918e-09 3.330064859e-09 4.500630162e-09 4.206437684e-09 4.716375565e-09 3.57525865e-09 4.914924125e-09 4.567980204e-09 4.55392299e-09 4.127213667e-09 4.440877071e-09 3.622366767e-09 3.178768101e-09 2.750777886e-09 4.883576156e-09 3.690058338e-09 3.440961591e-09 3.653140464e-09 3.045548643e-09 2.966828433e-09 2.443748064e-09 3.429234672e-09 2.270212972e-09 2.104843729e-09 2.467099355e-09 2.278909804e-09 2.384408453e-09 2.418165155e-09 2.39516376e-09 2.195054739e-09 2.099893332e-09 1.775609304e-09 1.932568832e-09 2.042176003e-09 1.828702336e-09 1.906196644e-09 1.840402734e-09 1.961563284e-09 1.633103515e-09 1.747352083e-09 1.568334374e-09 1.53098024e-09 1.419784028e-09 1.155074215e-09 1.23568392e-09 1.295495626e-09 9.510203954e-10 1.120251279e-09 1.05353153e-09 8.077212832e-10 6.286558318e-10 5.173313085e-10 2.205007842e-10 2.529244852e-10 1.788119557e-11 1.553004549e-10 2.495790701e-11 5.792122477e-11 1.362546441e-11 1.308713259e-12 7.897601497e-14 4.154385896e-15 1.232640023e-15 2.938835533e-17 3.567137621e-17 1.907242923e-17 9.626038834e-25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.053340369e-17 1.736197032e-18 3.18591064e-18 2.607238328e-16 1.042685583e-17 2.559515684e-17 1.938071335e-14 4.420836494e-13 7.814313019e-12 7.232148138e-11 5.796570221e-11 1.572632564e-10 3.327275909e-10 4.080741929e-10 5.14175637e-10 5.042456953e-10 7.935070957e-10 8.922528387e-10 6.745520419e-10 9.376397973e-10 1.405696789e-09 1.088192544e-09 1.282073086e-09 1.413652355e-09 1.489896082e-09 1.409993292e-09 1.675177543e-09 1.565154969e-09 1.59799329e-09 1.825957212e-09 1.834975474e-09 1.650349542e-09 1.685185122e-09 1.982804591e-09 2.059443539e-09 2.232712588e-09 2.140274991e-09 2.134302736e-09 2.081171996e-09 2.342083784e-09 2.264859486e-09 2.1581747e-09 2.644270074e-09 2.36790895e-09 3.01294861e-09 2.679659023e-09 2.608778061e-09 2.834878674e-09 2.90820465e-09 2.052272581e-09 2.303920199e-09 4.503620722e-09 2.209426584e-09 3.590088199e-09 4.962500805e-09 3.534465452e-09 2.937866736e-09 4.112574367e-09 3.87655999e-09 3.289871928e-09 3.963747722e-09 3.888839774e-09 3.387445924e-09 3.699052459e-09 4.457247265e-09 3.272146563e-09 4.706389838e-09 3.886320024e-09 3.28644006e-09 2.691943656e-09 2.649891713e-09 2.564492688e-09 2.627374143e-09 2.548917954e-09 2.223304433e-09 2.135874292e-09 2.852890613e-09 3.038933716e-09 2.917026307e-09 2.191851365e-09 1.809672833e-09 2.441853604e-09 1.904356304e-09 2.176094587e-09 1.61612281e-09 2.27996414e-09 2.041086805e-09 2.340359505e-09 2.630930476e-09 2.039674523e-09 2.313919563e-09 3.171029371e-09 2.030944514e-09 1.993216685e-09 2.056994394e-09 1.97849367e-09 1.631716764e-09 2.360372437e-09 2.837412395e-09 2.3725351e-09 2.952345612e-09 2.967933243e-09 3.639299214e-09 3.559363576e-09 3.122820045e-09 4.577334591e-09 4.459279502e-09 4.824628128e-09 3.679506825e-09 3.626208057e-09 3.180628728e-09 5.258035972e-09 2.941449958e-09 3.901796915e-09 3.602430826e-09 2.474874207e-09 2.972549908e-09 4.183514274e-09 2.474059829e-09 2.907086048e-09 3.55220357e-09 4.288442202e-09 2.86910925e-09 3.237773711e-09 2.3586313e-09 2.821092348e-09 3.113865054e-09 2.610471817e-09 3.143699407e-09 2.19489069e-09 2.147328623e-09 1.98586742e-09 2.423349312e-09 2.327935028e-09 2.377412913e-09 1.934213552e-09 1.940445518e-09 1.995849522e-09 2.167800295e-09 1.965199233e-09 2.129946216e-09 1.895232286e-09 1.872316325e-09 1.83163376e-09 1.336057957e-09 1.580410026e-09 1.457511577e-09 1.608388071e-09 1.499114684e-09 1.484169535e-09 1.080126943e-09 1.140331788e-09 1.088494686e-09 9.527757478e-10 8.01085849e-10 7.16300552e-10 3.242998722e-10 2.13582109e-10 3.809039207e-11 1.954048449e-10 1.457717217e-10 1.139379182e-10 3.877100675e-12 4.310447928e-13 1.290153088e-12 1.624356885e-14 8.888459669e-17 1.042125224e-16 4.046388878e-16 1.006602762e-17 5.47027572e-18 1.773382552e-24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.253181528e-19 1.508221249e-18 2.265574713e-17 8.850446504e-16 8.061207737e-15 1.638463944e-15 1.558616292e-13 4.181480128e-14 3.603805674e-12 3.601500086e-11 1.14308443e-10 1.025952901e-11 1.5141977e-10 4.253301563e-12 3.087309873e-10 6.728295034e-10 8.610352142e-10 8.03566998e-10 9.932223027e-10 1.34575789e-09 8.855165965e-10 1.170763011e-09 1.466834145e-09 1.244703883e-09 1.54327647e-09 1.476805177e-09 1.760286357e-09 1.605451932e-09 1.439897193e-09 1.484893868e-09 1.725567606e-09 1.499560159e-09 1.73454692e-09 1.820119467e-09 2.030858795e-09 1.98179235e-09 1.773287375e-09 2.120138658e-09 2.150167022e-09 2.002020304e-09 2.096014925e-09 2.274837848e-09 2.152033501e-09 2.992361054e-09 2.650002622e-09 2.700509057e-09 2.413456898e-09 2.899763382e-09 4.052750845e-09 3.657056986e-09 2.592690428e-09 3.93336827e-09 4.312873263e-09 3.58682664e-09 3.946237729e-09 3.92337643e-09 2.890665329e-09 4.51492237e-09 3.943972376e-09 3.114504573e-09 3.447421097e-09 2.857621408e-09 3.209979141e-09 3.201646994e-09 2.912013291e-09 2.931180329e-09 3.371416086e-09 3.380447378e-09 3.619379879e-09 2.520414488e-09 2.316210886e-09 2.139082422e-09 2.80017958e-09 2.843988275e-09 2.745606155e-09 2.702304651e-09 2.141637583e-09 2.847131384e-09 2.310873075e-09 2.44062585e-09 2.425678364e-09 1.849347721e-09 2.647667444e-09 2.333728289e-09 3.007015604e-09 2.028156708e-09 2.107224859e-09 2.057849749e-09 1.961539262e-09 2.535719234e-09 2.327901713e-09 2.150256225e-09 1.747181919e-09 2.046057419e-09 2.102508266e-09 2.773409376e-09 2.09451654e-09 2.173942935e-09 2.399829242e-09 2.911312146e-09 2.956387654e-09 1.936168779e-09 2.641915783e-09 2.714854587e-09 4.000720168e-09 2.054238415e-09 2.429113417e-09 3.432599196e-09 4.40600025e-09 4.428546674e-09 2.978472233e-09 3.970018714e-09 2.699307978e-09 3.280517041e-09 3.804179545e-09 3.456329405e-09 3.538302842e-09 3.951608407e-09 3.796322974e-09 4.254674385e-09 3.914549029e-09 2.635292722e-09 4.1459132e-09 2.602120888e-09 2.868329171e-09 2.310323554e-09 2.139827345e-09 2.22269521e-09 2.337005182e-09 2.149415796e-09 2.34757918e-09 2.550582995e-09 2.133376475e-09 1.979337115e-09 2.069169047e-09 1.881337705e-09 2.336114186e-09 1.834268627e-09 1.978681962e-09 2.114161421e-09 1.715279476e-09 1.936755702e-09 1.503065749e-09 1.652670098e-09 1.694152976e-09 1.698239609e-09 1.632112517e-09 1.432500396e-09 1.305663275e-09 1.314295016e-09 1.21455993e-09 1.190004904e-09 1.295300382e-09 8.267584552e-10 7.558198966e-10 7.541016625e-10 4.145651973e-10 5.515419895e-10 3.213012682e-10 2.536531794e-10 6.069473687e-12 4.466236502e-11 5.573993837e-12 1.657630299e-13 6.392343944e-13 9.577683405e-13 2.314208377e-15 4.844120224e-16 9.042352174e-18 6.579213255e-19 0 6.341673081e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.126516577e-19 0 4.097915028e-18 1.657997473e-16 1.599360166e-15 2.945074211e-15 1.148038151e-14 2.187133069e-13 3.100440429e-11 1.260581471e-11 1.601220376e-11 1.939583662e-10 2.611965638e-10 5.903780004e-11 4.261696023e-10 5.992597931e-10 5.61253875e-10 9.284434951e-10 1.176482349e-09 8.76644745e-10 1.066132802e-09 1.253607615e-09 1.269088539e-09 1.326381528e-09 1.543305939e-09 1.437053431e-09 1.566815226e-09 1.662316057e-09 1.284345935e-09 1.705846422e-09 1.758797736e-09 1.621888638e-09 1.824912114e-09 1.712374856e-09 2.031546548e-09 1.971051621e-09 2.214325611e-09 1.983474526e-09 2.114224198e-09 2.192755373e-09 2.082981034e-09 2.318359717e-09 2.228332387e-09 2.177298704e-09 2.376814315e-09 2.73830057e-09 3.234797174e-09 2.529337692e-09 2.661499393e-09 3.228142275e-09 2.612848896e-09 2.672487768e-09 2.819756544e-09 3.439635203e-09 3.401198481e-09 3.827498881e-09 3.152426579e-09 3.164009105e-09 4.096701669e-09 4.96894271e-09 3.292644121e-09 2.554585927e-09 3.831602496e-09 2.576731154e-09 3.940694425e-09 3.008162481e-09 1.96238451e-09 4.30263145e-09 3.072398354e-09 2.66703064e-09 3.114767717e-09 2.144173874e-09 2.574661801e-09 2.523652299e-09 2.59209378e-09 2.76081896e-09 2.649822248e-09 2.435445733e-09 2.40324963e-09 1.686787006e-09 1.939248834e-09 2.265794113e-09 1.85444516e-09 2.301233816e-09 2.260663099e-09 2.797375211e-09 2.448380321e-09 2.733900318e-09 2.503991701e-09 2.683689565e-09 2.385855714e-09 2.486882937e-09 2.011944226e-09 2.684999367e-09 2.459341178e-09 3.048838347e-09 2.578323781e-09 2.816168449e-09 2.70913302e-09 2.735238409e-09 2.892474398e-09 2.468827894e-09 3.345493141e-09 3.399949264e-09 4.238112087e-09 2.336059235e-09 3.554276165e-09 3.112863631e-09 2.009483963e-09 3.695787717e-09 3.751450822e-09 3.834113777e-09 3.883265352e-09 4.176502457e-09 3.850737312e-09 3.449053126e-09 3.106564152e-09 3.533556424e-09 2.768522423e-09 2.39726333e-09 3.158091449e-09 3.349673931e-09 2.106873124e-09 2.463589768e-09 2.129995314e-09 2.364442314e-09 3.100109388e-09 2.74043284e-09 2.147454971e-09 2.240371099e-09 2.132736562e-09 2.206775256e-09 2.325785219e-09 2.236804141e-09 2.110217265e-09 1.951302076e-09 2.054624625e-09 1.703084335e-09 1.934355222e-09 1.757722615e-09 1.899321844e-09 1.686191183e-09 1.767627601e-09 1.658885247e-09 1.4766766e-09 1.361648416e-09 1.387784208e-09 1.260108912e-09 1.416420102e-09 1.231032638e-09 1.34701249e-09 9.423663889e-10 9.949384695e-10 8.951665157e-10 7.90281469e-10 6.177097736e-10 5.514126413e-10 2.010328693e-10 2.47634318e-11 2.327373316e-10 2.003625376e-11 1.55882929e-11 2.702210132e-11 1.460371744e-11 5.215249064e-13 2.053776978e-15 2.53312723e-14 8.970471038e-18 1.162803293e-16 3.562479194e-17 2.916239431e-17 2.396738646e-21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.144122401e-18 2.529863529e-17 1.110604234e-16 2.255657195e-15 1.852369265e-15 2.346489618e-14 2.693643825e-12 2.830711616e-12 3.666992981e-11 7.249210538e-11 2.065306798e-10 7.005964886e-11 3.438953886e-11 3.12731441e-10 3.164311819e-10 5.431609711e-10 8.327780315e-10 5.289439272e-10 8.102534526e-10 1.1716015e-09 9.073348005e-10 1.289659507e-09 1.234676203e-09 1.341619853e-09 1.333076183e-09 1.404212741e-09 1.285600383e-09 1.669533221e-09 1.617772187e-09 1.592340459e-09 1.907332227e-09 1.682114578e-09 1.952439963e-09 1.708480175e-09 2.015280535e-09 1.942978872e-09 2.03969696e-09 1.925290615e-09 2.112636794e-09 2.224893966e-09 2.029556582e-09 2.4388259e-09 2.332804496e-09 2.382941424e-09 2.949457928e-09 2.706094178e-09 3.133339019e-09 2.780223068e-09 2.491533633e-09 2.374970129e-09 2.602811555e-09 3.554110763e-09 3.289944973e-09 2.501778976e-09 4.052507846e-09 3.962720933e-09 3.610086646e-09 2.985763165e-09 2.914850869e-09 2.543024742e-09 4.069719023e-09 1.84867174e-09 2.679591092e-09 2.483252616e-09 3.381922873e-09 4.207549043e-09 2.811793568e-09 3.601007172e-09 2.357949173e-09 3.485196775e-09 2.267830988e-09 3.20087838e-09 2.531031934e-09 2.554896089e-09 2.377111537e-09 2.248790359e-09 1.902780775e-09 1.835485785e-09 2.431921584e-09 1.706261463e-09 2.191723259e-09 2.358383965e-09 2.029659995e-09 2.158309922e-09 2.525003842e-09 2.403249063e-09 2.143072639e-09 1.672796643e-09 2.283779592e-09 2.061620642e-09 1.851763548e-09 2.460441844e-09 2.196254119e-09 2.406332684e-09 2.742506747e-09 1.880123191e-09 2.279873769e-09 3.388614722e-09 2.326813159e-09 3.362498281e-09 2.775975116e-09 1.837226012e-09 3.161539477e-09 2.8160617e-09 2.53435969e-09 3.118873989e-09 2.990276989e-09 2.053640647e-09 2.660133629e-09 3.619012383e-09 3.899573207e-09 4.100052663e-09 4.312515168e-09 3.046269259e-09 3.717888007e-09 4.41537454e-09 2.176095262e-09 3.176991854e-09 2.980436708e-09 2.814839281e-09 4.137371964e-09 4.183110354e-09 2.617517289e-09 2.113239346e-09 2.605434361e-09 2.202443133e-09 2.340884931e-09 2.231224689e-09 1.928761067e-09 2.395189637e-09 1.892750108e-09 2.170852834e-09 1.871591047e-09 2.06149927e-09 2.027183934e-09 2.035867353e-09 1.821120989e-09 1.848155452e-09 1.922161363e-09 1.674215605e-09 1.616691825e-09 1.551185921e-09 1.643192262e-09 1.452720354e-09 1.453123347e-09 1.574848747e-09 1.393214969e-09 1.325320538e-09 1.053628995e-09 1.099840936e-09 9.826934473e-10 1.20150946e-09 7.111268756e-10 5.308652729e-10 6.223364536e-10 6.080726971e-10 3.289597968e-10 3.581150999e-11 1.456657683e-10 1.607276606e-11 2.984345387e-11 6.801450113e-12 2.077777321e-11 1.766913146e-12 8.529785827e-14 1.50579244e-15 7.138678395e-15 4.728986537e-16 4.959429352e-18 3.948251187e-18 5.869202629e-18 0 0 0 6.652406414e-13 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 3.683608826e-19 3.976917579e-19 1.092859704e-18 7.396883651e-19 7.437338148e-17 4.968107921e-15 6.872449131e-15 3.049337269e-14 2.85877005e-12 1.462649012e-12 1.756429914e-11 6.971238659e-11 2.272652834e-10 2.998657871e-10 8.287537583e-11 1.960948215e-10 6.598944112e-10 6.998898261e-10 7.383032005e-10 1.138352025e-09 8.860375209e-10 8.884750435e-10 1.000810752e-09 1.225346312e-09 1.199568044e-09 1.26018823e-09 1.431481222e-09 1.474653023e-09 1.55271115e-09 1.294985348e-09 1.613324245e-09 1.496990207e-09 1.811502458e-09 1.777238448e-09 1.597347218e-09 1.892889655e-09 1.459442786e-09 1.903124945e-09 1.812435131e-09 2.116898654e-09 1.946889525e-09 1.988636042e-09 1.952192857e-09 2.105705307e-09 2.207814278e-09 2.422666521e-09 2.099401234e-09 2.690187504e-09 2.755198757e-09 2.278558648e-09 2.886247342e-09 2.836772606e-09 2.240271453e-09 5.849939182e-09 3.664763329e-09 2.985277443e-09 3.422459481e-09 3.677511719e-09 2.885722257e-09 2.949556579e-09 3.761995821e-09 3.996425209e-09 2.134706964e-09 2.91570319e-09 2.525733269e-09 3.617020467e-09 2.759498096e-09 3.572691648e-09 3.260290507e-09 3.236539937e-09 3.293289375e-09 1.926885758e-09 2.904373165e-09 2.061886913e-09 2.900220211e-09 2.764162976e-09 2.325170455e-09 3.043088418e-09 2.818356861e-09 2.935927962e-09 1.94661046e-09 1.605963497e-09 2.521638137e-09 2.405042035e-09 2.194631016e-09 2.39088506e-09 2.178679726e-09 2.394695191e-09 2.238017073e-09 2.103891737e-09 2.271726744e-09 2.304991815e-09 2.420695589e-09 2.381831875e-09 2.387091951e-09 2.420222075e-09 2.701693304e-09 2.426556132e-09 1.919237922e-09 2.506940758e-09 2.649249101e-09 1.977210971e-09 3.000079331e-09 2.624637178e-09 2.659057084e-09 3.380382212e-09 3.521155131e-09 2.800379871e-09 1.911089048e-09 3.600984455e-09 1.997014462e-09 4.422985477e-09 2.951848382e-09 3.864303016e-09 2.660942511e-09 3.6169282e-09 3.903810209e-09 3.964999539e-09 2.107721226e-09 3.894713009e-09 2.364571853e-09 2.837857176e-09 2.734356488e-09 2.362262208e-09 2.981168936e-09 2.922036645e-09 3.469591731e-09 2.07401391e-09 2.288537412e-09 1.966608495e-09 2.380193235e-09 1.864090384e-09 2.425944996e-09 2.006026241e-09 2.024294661e-09 2.024765423e-09 1.856192964e-09 1.849976262e-09 1.636629135e-09 1.824345371e-09 1.800677669e-09 1.618861093e-09 1.358513458e-09 1.613155485e-09 1.342802004e-09 1.629653147e-09 1.376182818e-09 1.335705599e-09 1.306375808e-09 1.343978004e-09 1.497918424e-09 1.07659947e-09 1.000123661e-09 1.197506655e-09 1.018507402e-09 7.409509248e-10 6.937741264e-10 4.899087729e-10 2.14894335e-10 3.331033224e-10 2.07321124e-11 1.792445657e-10 8.671384468e-12 2.124038562e-11 9.749318344e-12 5.020430495e-14 1.460381085e-13 5.707601406e-14 2.080542248e-14 2.195424465e-16 3.266432951e-17 5.986608756e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.785746456e-19 1.576461869e-18 5.128740795e-17 3.345341548e-16 3.447748423e-16 4.529592463e-15 4.23868321e-13 9.752503189e-15 3.835124022e-13 2.473108777e-11 8.068094778e-11 1.801585661e-10 7.88954197e-11 1.835142423e-10 3.076363662e-10 3.892775919e-10 5.39745993e-10 5.134441406e-10 9.428383575e-10 1.193218484e-09 1.206116225e-09 1.041137245e-09 9.249807472e-10 1.185768639e-09 1.393957324e-09 1.151975136e-09 1.125970372e-09 1.512339343e-09 1.564879552e-09 1.467200221e-09 1.669052613e-09 1.368466988e-09 1.701930957e-09 1.611124306e-09 1.764114242e-09 1.745055565e-09 1.837624957e-09 2.292536882e-09 1.91139649e-09 2.18575105e-09 2.0846101e-09 2.289478234e-09 1.962166704e-09 2.192720917e-09 2.476801537e-09 1.880712315e-09 2.860243119e-09 2.823794172e-09 3.440478653e-09 3.256715617e-09 2.401094959e-09 2.037215836e-09 2.88921895e-09 3.128166611e-09 3.267786657e-09 2.980318522e-09 2.741462464e-09 3.348100753e-09 2.653464526e-09 2.928631144e-09 2.592606909e-09 3.607627559e-09 2.468386443e-09 2.988399319e-09 2.775710793e-09 3.002662421e-09 3.695996136e-09 2.828947162e-09 1.826813695e-09 2.923793513e-09 2.269874135e-09 2.797590621e-09 2.392716371e-09 2.369549963e-09 1.907465853e-09 2.307570234e-09 2.164458335e-09 2.898975122e-09 2.001614787e-09 2.994589917e-09 2.589424715e-09 2.335424568e-09 2.059164997e-09 2.0033537e-09 2.073909881e-09 2.354761221e-09 2.120571606e-09 1.911502368e-09 2.540001019e-09 2.607612524e-09 2.122418457e-09 2.724209314e-09 2.27923254e-09 2.16747744e-09 2.523334263e-09 2.154088199e-09 2.404716699e-09 2.367856182e-09 2.04347323e-09 2.824096758e-09 1.655438259e-09 2.683508255e-09 2.389864615e-09 2.78175025e-09 3.129051026e-09 3.583183697e-09 2.808282085e-09 2.403306986e-09 1.904997243e-09 3.81531738e-09 4.56918516e-09 2.721012018e-09 2.891736857e-09 2.68088962e-09 2.857642458e-09 3.858558254e-09 4.597616268e-09 2.21476658e-09 3.788633491e-09 3.10764283e-09 2.434862552e-09 2.904343537e-09 2.885728317e-09 2.487276517e-09 2.450430189e-09 2.313719228e-09 2.738908152e-09 1.872464843e-09 1.921693147e-09 1.887753044e-09 2.24581248e-09 2.289953736e-09 1.947224937e-09 2.092308062e-09 1.875291231e-09 1.660419812e-09 1.855802875e-09 1.756410154e-09 1.716781294e-09 1.73421391e-09 1.731769116e-09 1.798608789e-09 1.385285337e-09 1.587133507e-09 1.248065879e-09 1.414836622e-09 1.154352444e-09 1.492055078e-09 1.033856682e-09 9.299867993e-10 9.876543205e-10 9.824073981e-10 9.057564838e-10 1.118459101e-09 6.306480667e-10 7.355063496e-10 3.489883747e-10 2.492111475e-10 1.995468625e-10 2.440798463e-11 2.032406453e-10 1.078330443e-11 8.966204606e-11 5.541227938e-12 8.54628187e-14 8.204861089e-14 4.84456397e-15 2.134243395e-16 4.38061615e-16 1.958988848e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.055754684e-19 1.472461735e-17 1.481973155e-17 9.179606548e-17 2.765378161e-15 3.213866556e-13 1.604955658e-12 7.857763012e-12 7.30512476e-13 1.656665414e-10 2.212690376e-10 2.007485149e-10 6.480452259e-11 1.047983504e-10 5.719436867e-10 5.224516272e-10 6.450829769e-10 7.792385998e-10 1.134984375e-09 7.004265708e-10 1.199810942e-09 1.039132216e-09 1.238219803e-09 1.371461007e-09 1.346212567e-09 1.220320684e-09 1.306363639e-09 1.618571561e-09 1.6504096e-09 1.509450739e-09 1.354088887e-09 1.751221273e-09 1.609115616e-09 1.922674557e-09 1.668887978e-09 2.107252944e-09 1.77574356e-09 1.707941999e-09 1.735042555e-09 1.777906566e-09 1.774739589e-09 1.844015914e-09 2.171599622e-09 2.237619013e-09 2.389740938e-09 1.868137273e-09 3.682386709e-09 2.296481423e-09 2.40139154e-09 3.635727821e-09 2.149359629e-09 3.185183749e-09 2.383451225e-09 3.4302799e-09 2.982117496e-09 2.591788262e-09 3.028382219e-09 2.91876024e-09 3.624345951e-09 2.943486856e-09 2.460473512e-09 2.603410039e-09 2.803691192e-09 2.039856432e-09 1.768209399e-09 2.651972693e-09 2.766736852e-09 3.313548587e-09 3.006474613e-09 2.627558356e-09 2.719732897e-09 2.77000292e-09 2.978588925e-09 2.192972335e-09 2.375485858e-09 1.675750118e-09 2.694871735e-09 2.393321157e-09 2.329529653e-09 2.438322153e-09 2.289025124e-09 1.929515453e-09 2.745703179e-09 1.989597617e-09 1.809983321e-09 2.18540981e-09 2.21654618e-09 2.605937509e-09 2.390532999e-09 2.138621427e-09 2.341028921e-09 2.061572497e-09 2.077208448e-09 2.230031482e-09 2.143741582e-09 2.348882848e-09 2.279402506e-09 2.325701448e-09 2.965107525e-09 2.117898787e-09 2.239871021e-09 1.901940952e-09 2.223408645e-09 2.058673776e-09 3.152623415e-09 3.583106928e-09 2.354288678e-09 3.014099467e-09 2.426581903e-09 4.014047721e-09 3.758366876e-09 3.05339533e-09 3.272778673e-09 2.644161135e-09 3.002394023e-09 3.196612102e-09 2.065116958e-09 3.33529352e-09 2.834199265e-09 2.333439323e-09 2.87805166e-09 2.511784516e-09 2.147881818e-09 2.128036984e-09 2.819981052e-09 2.182601913e-09 2.250822918e-09 2.104774647e-09 2.287869536e-09 1.917874801e-09 1.871183717e-09 1.911302377e-09 1.867013765e-09 1.879367848e-09 1.809695351e-09 1.424266277e-09 1.810210246e-09 1.956946796e-09 1.556169027e-09 1.706749486e-09 1.6724634e-09 1.534520788e-09 1.38296511e-09 1.425355064e-09 1.279384415e-09 1.224868711e-09 1.357229738e-09 1.183534441e-09 9.585347329e-10 9.109439655e-10 1.082207292e-09 8.213540933e-10 7.605535712e-10 8.308149524e-10 4.355682915e-10 9.122196555e-10 2.472937381e-10 1.958550551e-10 6.436608663e-11 1.191486514e-10 2.311085732e-10 3.672767038e-13 3.580451438e-11 2.48560481e-13 2.292971297e-13 1.150569734e-14 1.158342112e-15 4.200559598e-16 1.249205675e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.313057196e-19 2.129116923e-18 3.667107622e-18 1.792037075e-16 4.791763593e-17 2.437642122e-14 3.636025359e-15 1.46098973e-12 8.948143235e-13 5.630808669e-12 2.939983354e-10 3.282367739e-12 1.807138719e-10 2.721181296e-10 4.527415241e-10 5.808492573e-11 4.080665279e-10 6.841965873e-10 9.012665047e-10 1.021008409e-09 6.957156053e-10 9.490371839e-10 1.174444772e-09 1.300889103e-09 1.276371368e-09 1.250866396e-09 1.250108026e-09 1.447397183e-09 1.634209606e-09 1.582828246e-09 1.481860264e-09 1.615257124e-09 1.331916839e-09 1.694005546e-09 1.610230409e-09 1.666148097e-09 1.778840764e-09 1.917991916e-09 1.827452457e-09 1.729140855e-09 2.019587518e-09 1.919476451e-09 1.91620047e-09 2.129577525e-09 1.881534005e-09 2.805645639e-09 2.127160668e-09 2.042341383e-09 2.100717304e-09 2.05083695e-09 2.145720294e-09 2.463291457e-09 2.71468661e-09 3.091551179e-09 2.324524237e-09 2.878499735e-09 3.377082076e-09 3.233520381e-09 2.304458212e-09 3.497389956e-09 3.127414451e-09 2.232953864e-09 2.494986248e-09 2.853251631e-09 2.24414767e-09 2.242934421e-09 3.134555729e-09 4.460646434e-09 2.542516209e-09 2.170416152e-09 1.488520238e-09 2.761036439e-09 2.396982929e-09 2.369683234e-09 2.111358278e-09 2.331273856e-09 2.249823504e-09 2.541098406e-09 2.268261095e-09 2.014431049e-09 2.134939961e-09 3.245548496e-09 2.173087563e-09 2.445534092e-09 2.138285675e-09 1.824836365e-09 2.324022247e-09 2.51445661e-09 1.988587716e-09 2.121280475e-09 2.183707725e-09 2.307969142e-09 2.091950225e-09 2.180281134e-09 2.744036531e-09 2.050504637e-09 2.390615393e-09 1.834943591e-09 2.169077986e-09 2.890621151e-09 2.42522842e-09 2.227752808e-09 2.547767135e-09 3.022295714e-09 2.2271161e-09 3.878745689e-09 3.326200038e-09 2.70200773e-09 3.717656176e-09 2.953506874e-09 3.554788369e-09 2.027653553e-09 3.116579605e-09 2.659462857e-09 3.08697843e-09 2.634481604e-09 1.947642853e-09 2.788554135e-09 2.184562524e-09 2.388572159e-09 2.490497134e-09 3.403395296e-09 2.238839127e-09 2.662677232e-09 2.611355708e-09 2.404426747e-09 1.919066668e-09 2.833054998e-09 1.726939854e-09 2.112365006e-09 1.876644333e-09 1.809719504e-09 1.96768546e-09 1.653233768e-09 1.667223379e-09 1.7823774e-09 1.775458821e-09 1.741605429e-09 1.700889494e-09 1.707444675e-09 1.445545351e-09 1.423533866e-09 1.516858379e-09 1.694688083e-09 1.33807291e-09 1.365617987e-09 1.485427716e-09 1.194325701e-09 1.319146358e-09 1.015215389e-09 8.590182963e-10 9.731922128e-10 9.039159455e-10 9.769715697e-10 7.140025603e-10 6.448341582e-10 6.200619436e-10 1.977834512e-10 2.056036366e-10 1.896335046e-10 2.49156365e-10 8.728039589e-12 8.017979887e-11 3.194696412e-14 1.330201261e-12 7.958405052e-14 5.311290391e-15 3.745986077e-16 8.568441354e-18 3.635976713e-18 1.434153278e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 4.473326265e-19 0 1.226054841e-18 6.651080451e-22 1.096360554e-17 4.278994125e-15 1.663086502e-17 7.532653305e-15 7.532462436e-13 3.995886774e-12 1.240927195e-10 4.465936479e-12 1.301944461e-10 2.047075688e-10 9.16012225e-13 4.519720214e-10 5.120859399e-10 6.556109226e-10 3.129940572e-10 8.998905226e-10 7.416069342e-10 8.397351288e-10 8.551499099e-10 1.262884185e-09 1.020905267e-09 7.691122833e-10 9.995215512e-10 1.23756811e-09 1.38202611e-09 1.434968665e-09 1.580347968e-09 1.3229781e-09 1.371160324e-09 1.387273689e-09 1.390258736e-09 1.668297234e-09 1.520839854e-09 1.694250747e-09 1.764461332e-09 1.581197796e-09 1.830386163e-09 1.803084355e-09 2.128479949e-09 1.859081229e-09 1.726623218e-09 1.578863445e-09 2.066256954e-09 1.888467365e-09 2.036441941e-09 2.185670602e-09 2.072359685e-09 2.023812328e-09 3.029866009e-09 2.422909776e-09 2.947577572e-09 2.315259852e-09 3.251035044e-09 2.535219806e-09 4.197385428e-09 3.382985417e-09 3.560945137e-09 2.030307088e-09 2.331569828e-09 2.348280692e-09 2.476697004e-09 2.416529816e-09 3.162287377e-09 2.556127386e-09 2.821672518e-09 3.001500434e-09 3.578058779e-09 2.660124756e-09 3.900698175e-09 2.417506592e-09 2.039300214e-09 2.217084313e-09 2.048252924e-09 2.29631821e-09 3.31055837e-09 2.69604944e-09 2.268020838e-09 2.258186927e-09 2.256194408e-09 2.440712663e-09 1.999746476e-09 2.107038856e-09 2.176434797e-09 2.609551111e-09 2.196489986e-09 3.257891764e-09 2.342390414e-09 2.272753113e-09 2.079700352e-09 2.221808024e-09 2.262118231e-09 2.546146908e-09 2.150184565e-09 2.352267404e-09 3.538554837e-09 2.260858313e-09 2.275772272e-09 2.119362572e-09 2.124446035e-09 3.344791064e-09 2.471354371e-09 3.372802728e-09 3.648366142e-09 3.195368055e-09 1.924170678e-09 1.900881106e-09 2.310571409e-09 2.750991827e-09 1.862792576e-09 2.632428802e-09 3.438874874e-09 2.858918415e-09 4.637707015e-09 2.193288527e-09 1.788540116e-09 3.075155188e-09 1.999954236e-09 2.476805683e-09 2.352372649e-09 3.096904019e-09 1.862715189e-09 2.049841917e-09 3.918663454e-09 1.925098181e-09 1.952607936e-09 2.007017517e-09 1.814062242e-09 2.087830434e-09 1.729547598e-09 1.869943114e-09 1.778252779e-09 1.805758297e-09 1.47803794e-09 1.524645006e-09 1.669724103e-09 1.507967713e-09 1.301163156e-09 1.885899919e-09 1.537055302e-09 1.401393754e-09 1.329146049e-09 1.391718721e-09 1.188656789e-09 1.336940643e-09 1.450673947e-09 1.055054964e-09 8.728170186e-10 1.345664757e-09 6.673442131e-10 7.578710046e-10 7.135838631e-10 7.766705161e-10 5.531089607e-10 2.769033416e-10 1.198633401e-10 1.782375107e-10 3.944510867e-11 2.002721841e-11 1.964691357e-10 2.142062528e-12 5.245115105e-13 2.051705412e-13 1.045912457e-16 6.916327552e-16 1.506399832e-15 2.042571027e-20 5.952970439e-19 7.265312222e-23 5.663984599e-19 5.308461521e-19 0 0 0 0 0 0 0 9.264983953e-11 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.767443746e-18 1.36435232e-16 3.456429789e-17 3.600925272e-17 1.058030265e-16 2.150231231e-15 4.246351739e-14 4.59193616e-12 9.046952019e-15 1.037351428e-10 5.222347012e-11 6.859419223e-11 1.531888611e-10 3.739928424e-10 3.994764849e-10 6.516605873e-10 5.419659633e-10 8.190280698e-10 7.627176623e-10 6.847464655e-10 9.598197528e-10 8.869921514e-10 1.084060748e-09 1.047833866e-09 1.137928362e-09 1.018197525e-09 1.235385699e-09 1.19149268e-09 1.241349784e-09 1.336593779e-09 1.225207522e-09 1.322855009e-09 1.212992645e-09 1.639130671e-09 1.801829571e-09 1.567267931e-09 1.660686156e-09 1.831869171e-09 1.377158634e-09 1.895171098e-09 1.779373309e-09 1.803058301e-09 2.066819851e-09 2.087688413e-09 2.426316808e-09 2.261060611e-09 2.35651761e-09 2.555754546e-09 1.892572638e-09 2.087129894e-09 1.88870025e-09 2.779085689e-09 2.042637143e-09 2.527688828e-09 2.110107328e-09 1.895641335e-09 3.121187865e-09 2.070980536e-09 2.34391004e-09 2.787238396e-09 3.631889209e-09 3.156483227e-09 2.738866509e-09 1.844602633e-09 2.314458411e-09 4.394045025e-09 2.336214232e-09 2.150328351e-09 1.845691978e-09 1.834251928e-09 2.218637777e-09 2.425433067e-09 3.049467323e-09 2.447450107e-09 1.834208785e-09 2.19545912e-09 2.656466552e-09 1.893941181e-09 1.940574497e-09 1.89315999e-09 2.942582796e-09 2.547007588e-09 2.136992086e-09 2.242301484e-09 2.129860789e-09 2.043595845e-09 2.213358912e-09 2.338938989e-09 1.871903772e-09 2.282071625e-09 2.948207751e-09 2.380152926e-09 2.146820948e-09 2.115317869e-09 2.526910137e-09 2.418116302e-09 2.000708703e-09 1.847574744e-09 2.221862667e-09 2.707057913e-09 2.503030401e-09 1.973891049e-09 3.000445769e-09 2.619811564e-09 2.675966295e-09 2.00999893e-09 2.38587026e-09 2.45350342e-09 2.186328903e-09 2.764875012e-09 2.498056079e-09 2.198027742e-09 3.047875316e-09 2.739419072e-09 1.905320132e-09 2.371879547e-09 3.119967781e-09 1.869324667e-09 2.063317157e-09 2.125989e-09 3.080303136e-09 2.17958211e-09 2.047576521e-09 2.158658008e-09 2.362739379e-09 2.064344414e-09 1.823199587e-09 2.156797809e-09 1.845724535e-09 1.787919686e-09 1.607653723e-09 1.817953872e-09 1.743117725e-09 1.668650128e-09 1.49575496e-09 1.473973621e-09 1.787804607e-09 1.557059579e-09 1.370662894e-09 1.403913334e-09 1.270018025e-09 1.509839813e-09 1.276801101e-09 1.277817459e-09 1.149297785e-09 1.328706745e-09 1.388885984e-09 1.014384786e-09 1.017555774e-09 1.031965037e-09 9.706738759e-10 7.440097967e-10 8.525367298e-10 5.446761793e-10 5.237620258e-10 3.823146478e-10 3.070280753e-10 2.566406164e-10 9.852857663e-11 2.466786952e-10 8.800086706e-11 1.342376692e-14 7.959294115e-13 2.822907492e-13 1.088867499e-14 2.211391412e-14 1.992934963e-15 9.477015389e-18 7.710894086e-19 0 1.127374372e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.798888054e-27 0 1.03490057e-17 1.36424871e-15 4.890940125e-15 4.501210012e-16 3.748854644e-13 1.369579128e-14 4.787096042e-12 3.412896878e-12 3.845798618e-12 1.51212955e-10 4.698687942e-13 2.174099807e-10 3.057881589e-10 6.023885816e-10 4.480902785e-10 6.885702487e-10 9.703915338e-10 6.068427751e-10 8.497206992e-10 9.866554139e-10 9.866337097e-10 9.573529883e-10 1.300196027e-09 9.428488962e-10 1.351514978e-09 1.395663789e-09 1.377035973e-09 1.420215288e-09 1.216494525e-09 1.426123877e-09 1.54714692e-09 1.324693589e-09 1.440182875e-09 1.503091449e-09 1.538936242e-09 1.576129732e-09 1.616221165e-09 1.430395801e-09 1.638658692e-09 1.75060886e-09 1.944604876e-09 1.966314647e-09 1.739975313e-09 1.79902273e-09 2.657334175e-09 3.143351012e-09 2.376955778e-09 1.952471444e-09 2.922989906e-09 1.949337654e-09 2.123112139e-09 2.148509472e-09 2.036259042e-09 2.192059356e-09 2.59892709e-09 2.010729475e-09 2.068455983e-09 2.413462351e-09 2.502464904e-09 1.843693275e-09 2.015475543e-09 2.047451161e-09 1.833547647e-09 2.288525717e-09 2.009020936e-09 2.672142248e-09 3.420070615e-09 2.022998219e-09 2.166534673e-09 3.415131897e-09 2.260093405e-09 2.175661435e-09 2.181854306e-09 2.15917071e-09 2.425953026e-09 2.566668087e-09 2.181825143e-09 2.312436516e-09 3.199329097e-09 2.650615439e-09 2.148363173e-09 1.792155616e-09 2.153375769e-09 2.004339411e-09 3.104553488e-09 2.19288843e-09 2.015466364e-09 1.895753571e-09 2.244053417e-09 2.599343704e-09 2.060620085e-09 2.015737074e-09 1.804901601e-09 1.860314254e-09 2.030533268e-09 2.192965503e-09 2.398027318e-09 2.96785061e-09 2.368572304e-09 1.725304809e-09 2.135125451e-09 1.884589129e-09 2.010489598e-09 1.94208873e-09 1.834004873e-09 1.926375859e-09 2.850224374e-09 2.30424133e-09 2.061530192e-09 1.947415964e-09 2.683578746e-09 1.822959353e-09 1.789482539e-09 2.031886188e-09 2.067048854e-09 2.070219392e-09 2.082929202e-09 2.013503261e-09 2.010747479e-09 2.056627067e-09 1.662741049e-09 1.664046207e-09 1.721606672e-09 1.510381432e-09 2.300433494e-09 1.879395288e-09 1.883087647e-09 1.896625508e-09 1.984893682e-09 1.552890803e-09 1.594504085e-09 1.91882023e-09 1.694042405e-09 1.56357544e-09 1.635023989e-09 1.552276054e-09 1.432134929e-09 1.384375894e-09 1.397363561e-09 1.226328326e-09 1.26317088e-09 1.402477037e-09 1.030634588e-09 1.254927222e-09 1.052864811e-09 1.114510731e-09 9.321802199e-10 8.725766075e-10 7.047499322e-10 8.769596571e-10 9.668985363e-10 4.326016497e-10 6.186820901e-10 4.453659249e-10 3.059153228e-10 3.070307312e-10 2.967107873e-10 1.411453899e-10 1.691666874e-10 2.083505568e-10 1.524409648e-14 2.190087687e-13 4.068485556e-13 3.852811168e-13 9.788161393e-18 1.155424854e-16 3.304786919e-17 1.855050438e-18 9.606743596e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.422274014e-16 3.04534974e-16 3.445050253e-17 2.765257306e-14 2.028161451e-14 4.629377515e-14 3.216864201e-12 9.412551504e-13 9.571574982e-11 2.770685393e-10 7.269191567e-12 2.223236045e-10 2.011496006e-10 5.621616699e-10 5.190225219e-10 5.465717113e-10 7.607657409e-10 6.500536132e-10 7.899352786e-10 8.169421463e-10 1.10537605e-09 8.814970491e-10 1.095907595e-09 1.05312313e-09 1.076352662e-09 1.350510646e-09 1.142002929e-09 9.700786791e-10 1.525856212e-09 1.199931159e-09 1.37816411e-09 1.542346285e-09 1.157700468e-09 1.424062162e-09 1.638908933e-09 1.781361341e-09 1.651323271e-09 1.48850433e-09 2.005533986e-09 1.921224541e-09 1.665341202e-09 1.598494885e-09 1.68882759e-09 1.824457651e-09 1.814885171e-09 1.907246465e-09 2.087192579e-09 1.854289006e-09 2.084427586e-09 1.825726756e-09 2.086591346e-09 2.011936765e-09 2.120666187e-09 2.16806497e-09 2.129933462e-09 1.829277448e-09 1.935330079e-09 2.136925967e-09 1.970294384e-09 1.968790052e-09 2.115878942e-09 1.907259363e-09 1.797320698e-09 2.586351943e-09 3.100136066e-09 2.164376531e-09 2.09510059e-09 1.991072403e-09 1.958667239e-09 2.044535e-09 2.185459114e-09 2.022972679e-09 1.829630788e-09 2.281766097e-09 2.04764275e-09 1.971204672e-09 2.271326666e-09 1.807897206e-09 2.192948124e-09 2.346421326e-09 2.132910821e-09 2.126197541e-09 1.933136014e-09 2.61061726e-09 2.227269563e-09 1.857490379e-09 2.097694793e-09 2.460941052e-09 2.190369684e-09 1.985916256e-09 2.136663802e-09 1.866769016e-09 1.809460778e-09 2.132991834e-09 2.122703347e-09 2.133562773e-09 2.267403716e-09 2.40225167e-09 1.957505567e-09 1.970051899e-09 2.246851548e-09 1.988519844e-09 2.205613708e-09 2.131334569e-09 2.190840027e-09 1.791500669e-09 2.477055312e-09 2.159600531e-09 2.084686485e-09 2.07669737e-09 2.03201063e-09 2.309596548e-09 2.008698043e-09 2.230434435e-09 1.867757711e-09 2.058011576e-09 1.904653662e-09 1.785374507e-09 1.912967253e-09 1.845813073e-09 1.751272089e-09 1.844717973e-09 1.693562145e-09 2.028451366e-09 1.921066091e-09 1.81952299e-09 1.829148971e-09 1.426554018e-09 1.888886574e-09 1.672576766e-09 1.430465906e-09 1.731644252e-09 1.625033313e-09 1.718030476e-09 1.590165861e-09 1.50222352e-09 1.511694291e-09 1.599884009e-09 1.144773526e-09 1.352791608e-09 1.125793893e-09 1.235142542e-09 1.381461923e-09 1.185766227e-09 1.251489094e-09 1.103147571e-09 1.155391463e-09 1.158292841e-09 8.984268781e-10 8.630215792e-10 7.427657109e-10 6.617950983e-10 7.899190263e-10 5.550401882e-10 5.553166586e-10 3.141992427e-10 3.012166071e-10 1.11645673e-10 1.226281097e-10 1.10027011e-10 7.409810951e-12 3.196040362e-13 5.757836185e-13 6.483286326e-16 5.11057656e-19 8.838101277e-17 2.124620066e-17 5.970630906e-17 0 7.953715213e-23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.997796531e-19 0 3.724087794e-17 2.86838466e-16 1.603985924e-15 7.5228688e-14 7.692644729e-15 4.479077584e-16 8.695077703e-13 2.934433512e-13 4.113221725e-11 1.503330466e-11 1.649825445e-10 1.114755756e-10 3.112891747e-10 3.083534511e-10 6.899514463e-10 5.284236267e-10 6.212329618e-10 7.741049411e-10 3.836525825e-10 7.467560973e-10 9.3425333e-10 1.088747817e-09 8.756321895e-10 1.168939573e-09 9.685218551e-10 1.039980585e-09 1.52233153e-09 1.423269815e-09 1.047263013e-09 1.246671025e-09 1.575119683e-09 1.239686073e-09 1.316980252e-09 1.454537139e-09 1.60283129e-09 1.452338663e-09 1.707584076e-09 1.536134793e-09 1.431627133e-09 1.782011473e-09 1.569685444e-09 1.638743531e-09 1.66344873e-09 1.554267577e-09 1.68952221e-09 1.799555684e-09 1.88930279e-09 1.880030593e-09 1.916063327e-09 1.864924155e-09 1.754488579e-09 2.101545758e-09 2.156542694e-09 2.010746712e-09 2.164741077e-09 2.158343013e-09 1.951455158e-09 2.035275687e-09 1.84345597e-09 1.95731799e-09 1.672533289e-09 1.944403442e-09 2.561437498e-09 2.17696945e-09 1.904406731e-09 2.016989168e-09 1.950394566e-09 1.912438541e-09 2.014275866e-09 2.075225332e-09 1.888065528e-09 1.837496446e-09 1.900615089e-09 1.977752879e-09 2.520177763e-09 2.219409704e-09 2.035321896e-09 2.043970959e-09 2.023610812e-09 2.067432593e-09 2.134174386e-09 1.735829758e-09 1.991851e-09 2.071329296e-09 2.035920977e-09 1.909532254e-09 1.860070443e-09 1.923662523e-09 1.880106726e-09 1.978075502e-09 2.423222727e-09 1.933270155e-09 1.92885088e-09 1.991016967e-09 1.995515983e-09 2.042191458e-09 1.938826334e-09 1.820385563e-09 1.965870431e-09 2.098330735e-09 2.053372808e-09 2.194919428e-09 2.093931415e-09 2.244899586e-09 2.014127299e-09 2.271762668e-09 2.002055266e-09 2.077979277e-09 2.016508009e-09 2.082342447e-09 2.032958775e-09 2.142464355e-09 1.796362304e-09 1.992527999e-09 2.061759449e-09 1.801059556e-09 1.912352097e-09 2.021254482e-09 2.026196199e-09 2.034735107e-09 1.660325069e-09 2.088589786e-09 1.660288555e-09 1.783457933e-09 2.079478246e-09 1.706906305e-09 1.923762522e-09 1.538549578e-09 1.651702989e-09 1.602712139e-09 1.556039465e-09 1.623582221e-09 1.556544929e-09 1.495172128e-09 1.521341443e-09 1.61616343e-09 1.422470684e-09 1.431285598e-09 1.317568513e-09 1.0326696e-09 1.057031792e-09 1.221225764e-09 1.035106495e-09 9.753586726e-10 7.80607234e-10 1.072484107e-09 7.559337476e-10 6.714085891e-10 8.300014298e-10 7.192132994e-10 8.293677699e-10 3.509185463e-10 5.080854985e-10 6.670948775e-10 4.46177096e-10 1.528915643e-10 2.279641088e-10 6.390204746e-11 1.984410818e-10 1.115917139e-10 6.95045537e-11 1.34191321e-12 3.353651743e-13 1.936746867e-14 5.499021356e-14 2.007058349e-15 1.682969443e-15 0 2.719140548e-17 7.568133376e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.459836928e-19 0 1.11442523e-17 7.849868071e-18 4.051570382e-17 8.640094558e-14 8.103351214e-14 1.950746303e-11 2.439459891e-11 1.01514007e-12 1.376461987e-10 6.594163837e-11 1.320279486e-10 2.95954786e-10 5.496935843e-10 4.751425805e-10 5.138637836e-10 6.189071626e-10 7.086564979e-10 6.07214745e-10 9.38581716e-10 1.104898216e-09 9.075173375e-10 1.060919846e-09 8.304825966e-10 1.120412449e-09 9.839408553e-10 1.343085712e-09 1.537667336e-09 1.168644945e-09 1.271989467e-09 1.562272522e-09 1.435828887e-09 1.350043733e-09 1.372131347e-09 1.401690048e-09 1.466436593e-09 1.437836159e-09 1.657203388e-09 1.487817916e-09 1.341573086e-09 1.617944836e-09 1.75699486e-09 1.488181978e-09 1.888885749e-09 1.652302955e-09 1.529193202e-09 1.915674501e-09 1.769865794e-09 1.983771114e-09 1.907109846e-09 1.829595293e-09 1.934868571e-09 1.975567482e-09 2.057341318e-09 1.859932159e-09 1.856578123e-09 1.858434318e-09 1.644859695e-09 2.048671247e-09 1.823730671e-09 1.909728401e-09 1.775472798e-09 1.709704874e-09 2.125594303e-09 2.019268469e-09 2.052938136e-09 2.195999115e-09 1.638641028e-09 1.668095644e-09 1.897715201e-09 2.036241826e-09 1.746875127e-09 1.881948995e-09 1.889854665e-09 1.61872195e-09 2.066386161e-09 1.936853507e-09 2.099593179e-09 2.060876818e-09 1.754040841e-09 1.739268179e-09 2.129054899e-09 2.012873248e-09 2.002318354e-09 1.883416561e-09 1.998329469e-09 1.91746115e-09 1.950919406e-09 1.701760717e-09 1.989591809e-09 2.048695309e-09 2.197660775e-09 1.851759e-09 2.022201012e-09 1.847460822e-09 2.003249493e-09 1.858866238e-09 1.982247729e-09 2.152067838e-09 1.861534512e-09 2.068238659e-09 2.082068413e-09 1.750311166e-09 2.093410788e-09 1.945968326e-09 2.009894195e-09 1.684058683e-09 2.029821243e-09 2.04146209e-09 1.893112364e-09 1.738204254e-09 1.645065358e-09 1.792193981e-09 2.075643737e-09 1.905350856e-09 2.072932684e-09 1.72229521e-09 1.72559859e-09 1.791493574e-09 2.166680969e-09 1.788113269e-09 1.746071833e-09 1.555284479e-09 2.033320468e-09 1.56118202e-09 1.851106509e-09 1.611894892e-09 1.799922396e-09 1.400564248e-09 1.513763823e-09 1.48640709e-09 1.294429655e-09 1.033684599e-09 1.215465944e-09 1.138831621e-09 1.372094187e-09 1.287526639e-09 1.135078549e-09 1.104989562e-09 1.291799743e-09 1.473905845e-09 1.198686042e-09 1.195343411e-09 8.811069482e-10 8.98945948e-10 1.05294225e-09 8.220508602e-10 4.957841375e-10 8.583560999e-10 9.585134966e-10 3.09297639e-10 6.265484565e-10 5.239050791e-10 5.088906923e-10 4.538838259e-10 4.586743351e-10 6.144707364e-11 1.588012322e-10 1.406463602e-10 5.408053629e-11 1.442578161e-13 2.57725837e-11 1.665828055e-13 2.73698571e-15 1.579508715e-16 8.63730825e-17 5.78098155e-17 2.682751609e-22 7.508788993e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.507374977e-19 1.095887552e-18 2.475341099e-18 8.526263387e-16 2.245121642e-17 1.502978013e-16 1.826727647e-14 2.521867549e-14 6.028322661e-13 3.08466419e-11 1.447481693e-15 5.572081607e-11 2.162142364e-10 3.138631126e-11 2.063282501e-10 6.112819452e-10 5.366751174e-10 3.26749904e-10 5.596240556e-10 4.932921026e-10 8.540409111e-10 6.975108191e-10 5.812312413e-10 6.085651354e-10 1.022533732e-09 9.806520968e-10 1.211437227e-09 9.769019194e-10 8.487359392e-10 1.185962342e-09 9.921366313e-10 1.150378296e-09 1.216333766e-09 1.259360924e-09 1.433533563e-09 1.09630794e-09 1.190450538e-09 1.442903275e-09 1.59263433e-09 1.249670935e-09 1.374882788e-09 1.526315817e-09 1.119552547e-09 1.707524689e-09 1.540323466e-09 1.5895914e-09 1.917958616e-09 1.875741718e-09 1.794057951e-09 1.678279645e-09 1.809877424e-09 1.72665793e-09 1.737249553e-09 1.497564905e-09 1.891160752e-09 1.945458569e-09 1.808954009e-09 1.629430197e-09 1.854940617e-09 1.656709607e-09 1.943683463e-09 1.447516238e-09 1.835137955e-09 1.811582009e-09 1.896661533e-09 1.808486413e-09 1.667811455e-09 1.891389075e-09 1.963674231e-09 1.777824258e-09 1.758686246e-09 1.630845512e-09 1.721372462e-09 1.743539915e-09 1.691913569e-09 1.790196092e-09 1.886729163e-09 2.178053358e-09 1.943850631e-09 2.092340651e-09 1.961461031e-09 1.692836726e-09 1.948812127e-09 2.11744586e-09 1.846901386e-09 1.865940791e-09 2.082123692e-09 1.601930448e-09 1.758582296e-09 1.870975462e-09 1.720239486e-09 1.856661636e-09 2.188528057e-09 1.699010828e-09 1.695705921e-09 2.20637117e-09 1.834635423e-09 1.709041389e-09 1.765182104e-09 1.89471965e-09 1.763634386e-09 1.760513201e-09 1.706354424e-09 1.869592832e-09 1.643319893e-09 1.696244684e-09 1.904638089e-09 1.887432345e-09 2.040893457e-09 1.904938349e-09 1.881531676e-09 1.834999568e-09 1.83058804e-09 1.826098902e-09 1.941606013e-09 1.702510819e-09 1.938414117e-09 1.774497453e-09 1.665193092e-09 1.492746441e-09 1.594228301e-09 1.768642843e-09 1.562865601e-09 1.629344683e-09 1.653758234e-09 1.645824123e-09 1.471221574e-09 1.159012813e-09 1.515546178e-09 1.503173601e-09 1.298345116e-09 1.516237287e-09 1.397011988e-09 1.280743574e-09 1.407367521e-09 1.307921288e-09 1.522876877e-09 1.326709404e-09 1.285901383e-09 1.195266729e-09 1.174916748e-09 1.300470554e-09 9.609343218e-10 1.155559085e-09 9.841882129e-10 1.220466413e-09 9.63068646e-10 1.022366369e-09 8.221750999e-10 7.310703145e-10 8.558291219e-10 7.539068281e-10 5.070049334e-10 5.523399639e-10 6.222075118e-10 4.833209872e-10 2.062539541e-10 3.934735203e-10 1.064736282e-10 1.59722716e-10 1.46950831e-11 3.216048561e-11 2.326536599e-12 1.313040831e-11 3.46865783e-13 2.333738083e-13 2.665087747e-16 3.799783886e-15 9.40928214e-16 1.567340042e-17 1.02948533e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.581360771e-19 2.375108997e-25 6.265210812e-20 9.522952627e-20 2.154261157e-15 3.01966038e-15 7.420375877e-17 1.316367902e-12 8.449657607e-13 7.578732428e-12 8.481226742e-11 9.561137047e-13 5.150254027e-11 1.765206813e-10 2.601431501e-10 3.88036582e-10 3.161019038e-11 5.675166953e-10 5.296369081e-10 3.533837495e-10 7.433792733e-10 5.711597439e-10 7.282015421e-10 8.088174066e-10 1.0746521e-09 9.118387917e-10 8.620782855e-10 1.026429132e-09 1.042743756e-09 8.12096885e-10 1.214208603e-09 9.975713438e-10 9.474034222e-10 1.171387685e-09 1.355296119e-09 1.370623529e-09 1.323278666e-09 1.526304621e-09 1.262441326e-09 1.397355192e-09 1.257914318e-09 1.295845338e-09 1.524592277e-09 1.284651033e-09 1.288832304e-09 1.702521319e-09 1.773859601e-09 1.535454923e-09 1.465792572e-09 1.495182254e-09 1.46452357e-09 1.556697258e-09 1.488585901e-09 1.811260973e-09 1.635206958e-09 1.694609777e-09 2.019676103e-09 1.943497034e-09 1.581986557e-09 2.021985908e-09 1.908578129e-09 1.499495026e-09 1.81417517e-09 1.862810654e-09 1.685511192e-09 1.616913012e-09 1.787163786e-09 1.584293096e-09 1.863595325e-09 1.449870336e-09 1.983427093e-09 1.799473837e-09 1.650813005e-09 1.965782248e-09 1.562544708e-09 1.614036796e-09 1.844738145e-09 1.800766988e-09 1.872307883e-09 1.831796757e-09 1.776951984e-09 1.904309702e-09 1.941664471e-09 1.785866154e-09 1.698412333e-09 1.855835781e-09 1.682466671e-09 1.974750807e-09 1.746493329e-09 1.775883569e-09 1.689643451e-09 1.746042406e-09 1.807756778e-09 1.94220785e-09 1.635998067e-09 1.643125507e-09 1.932571603e-09 1.770434083e-09 1.683446911e-09 1.798581614e-09 2.072837888e-09 1.888185426e-09 1.818616207e-09 1.696106998e-09 1.704846011e-09 1.771495327e-09 1.540225245e-09 1.827768638e-09 1.993140019e-09 1.882941246e-09 1.96045374e-09 1.487011647e-09 1.808415273e-09 1.759906432e-09 1.608023988e-09 1.657939055e-09 1.814907056e-09 1.821324664e-09 1.513260097e-09 1.631722014e-09 1.698098549e-09 1.590571183e-09 1.882647465e-09 1.388295951e-09 1.492319831e-09 1.861741765e-09 1.7230444e-09 1.619077659e-09 1.486578571e-09 1.616925172e-09 1.419677381e-09 1.487323187e-09 1.511172801e-09 1.291682116e-09 1.126151095e-09 1.478896105e-09 1.151227295e-09 1.522714812e-09 1.262151786e-09 1.428014734e-09 1.294733644e-09 1.139303546e-09 9.341026861e-10 7.909788461e-10 9.148141749e-10 9.942468674e-10 6.593164722e-10 7.729088857e-10 8.987384066e-10 7.868418268e-10 6.798419137e-10 4.608816719e-10 6.693331964e-10 5.296927354e-10 8.043162618e-10 5.205229558e-10 3.944062924e-10 7.17231019e-12 1.240394987e-13 6.483984531e-13 2.983987856e-11 9.478009951e-12 1.518021011e-10 7.59721263e-15 1.81767304e-14 6.227529155e-17 5.602003833e-15 2.376816397e-15 1.671225717e-16 1.078446573e-17 1.596806595e-27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.28107182e-23 0 0 3.746535973e-14 9.444392983e-14 7.775098439e-15 3.578777755e-13 4.73172004e-13 5.39154699e-13 1.11129703e-10 8.13130566e-11 6.094652828e-12 3.885233457e-11 8.695588357e-13 2.467760722e-10 3.077537192e-10 1.941458542e-10 6.884188492e-10 7.869061136e-10 4.817124593e-10 4.980256259e-10 8.162778126e-10 4.522094812e-10 8.206467242e-10 8.819067517e-10 7.328281562e-10 9.773970729e-10 8.435860311e-10 9.691807224e-10 1.463890848e-09 8.981249243e-10 9.708571762e-10 9.825438173e-10 1.091533677e-09 1.483071029e-09 1.250045704e-09 1.362024084e-09 1.373835891e-09 1.429856053e-09 1.212967169e-09 1.379393994e-09 1.434839191e-09 1.36327903e-09 1.444088085e-09 1.29597581e-09 1.706672835e-09 1.465645452e-09 1.48941616e-09 1.409857507e-09 1.341087017e-09 1.429801444e-09 1.409121582e-09 1.181170927e-09 1.688675397e-09 1.555993985e-09 1.553445302e-09 1.628203412e-09 1.636382003e-09 1.423503703e-09 1.816178931e-09 1.728403784e-09 1.82686033e-09 1.518911608e-09 1.489603144e-09 1.686551611e-09 1.574581605e-09 1.903514118e-09 1.454869117e-09 1.418985298e-09 1.974650728e-09 1.508153836e-09 1.722559833e-09 1.249318869e-09 1.759785959e-09 1.603161099e-09 1.530215987e-09 1.445730375e-09 1.899859891e-09 1.675684711e-09 1.644895452e-09 1.65921401e-09 1.749474064e-09 1.573767773e-09 1.802172284e-09 1.65306824e-09 1.440982456e-09 1.590670252e-09 1.607765276e-09 1.517801105e-09 1.868700084e-09 1.818694708e-09 1.44592325e-09 1.653187623e-09 1.45841209e-09 1.727947196e-09 1.477388496e-09 1.739835846e-09 1.616769786e-09 1.359236199e-09 1.797496419e-09 1.54658277e-09 1.469152184e-09 1.670525853e-09 1.622132413e-09 1.601639074e-09 1.717994732e-09 1.686118522e-09 1.413463442e-09 1.602669574e-09 1.592458624e-09 1.404224193e-09 1.67678179e-09 1.714117562e-09 1.742623471e-09 1.615436559e-09 1.42343235e-09 1.898886004e-09 1.514786978e-09 1.506087591e-09 1.745037922e-09 1.446729829e-09 1.666004362e-09 1.468740102e-09 1.386504214e-09 1.345740449e-09 1.437190083e-09 1.292662629e-09 1.299795914e-09 1.579238516e-09 1.024689473e-09 1.211091434e-09 1.283117293e-09 1.577003819e-09 1.28858562e-09 1.097529557e-09 1.044897965e-09 1.340633315e-09 1.099181886e-09 1.184237574e-09 1.079399173e-09 1.100688469e-09 1.254695936e-09 1.061926362e-09 1.126177743e-09 8.558372841e-10 9.9496117e-10 7.078043498e-10 8.099613323e-10 7.525555202e-10 6.925216604e-10 6.164413182e-10 8.003087246e-10 5.441561391e-10 2.463373709e-10 4.441299259e-10 4.904078398e-10 9.709543886e-11 2.23305667e-10 1.173722406e-13 4.243690158e-11 8.361991341e-14 8.833842861e-12 4.346962715e-15 5.657605057e-17 1.506524145e-13 1.69190623e-16 6.87656272e-17 1.81202487e-16 9.444989021e-17 8.006736221e-22 8.275672875e-26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.043809755e-21 2.082124374e-16 1.624732986e-16 1.461389306e-15 1.529849043e-14 7.531818339e-15 3.358114426e-13 1.228851571e-12 2.483212141e-11 5.547029234e-11 1.063858794e-12 1.625549539e-10 5.147039862e-11 2.998549343e-10 5.315734508e-10 5.725117392e-10 5.166279371e-10 7.25237176e-10 5.790264464e-10 8.061040863e-10 7.613255394e-10 6.030505666e-10 4.619665846e-10 6.820290192e-10 8.392959597e-10 8.023576592e-10 9.032304881e-10 1.003563053e-09 1.107202532e-09 9.771510234e-10 8.752110324e-10 1.026054746e-09 1.108201128e-09 1.013393585e-09 1.170010222e-09 1.219008804e-09 1.191135495e-09 1.451330556e-09 1.180930898e-09 1.221376713e-09 1.232208349e-09 1.361280328e-09 1.470530523e-09 1.346322529e-09 1.327856242e-09 1.478648188e-09 1.293849144e-09 1.392377851e-09 1.379415493e-09 1.427723049e-09 1.24289982e-09 1.56944959e-09 1.586740256e-09 1.552150037e-09 1.468227056e-09 1.483366233e-09 1.546938954e-09 1.413653882e-09 1.475681936e-09 1.484209957e-09 1.583389715e-09 1.440967338e-09 1.571592623e-09 1.834775563e-09 1.396982581e-09 1.579103287e-09 1.385355341e-09 1.758715428e-09 1.655764369e-09 1.527401293e-09 1.500970835e-09 1.575885138e-09 1.388507253e-09 1.331167975e-09 1.642548025e-09 1.65276485e-09 1.604686134e-09 1.654914418e-09 1.675142947e-09 1.504432212e-09 1.876704689e-09 1.296349695e-09 1.69398502e-09 1.367218102e-09 1.614564464e-09 1.63986691e-09 1.571331465e-09 1.786949422e-09 1.535762927e-09 1.426616679e-09 1.557736898e-09 1.764758317e-09 1.901031331e-09 1.662472497e-09 1.539327125e-09 1.452343469e-09 1.424022368e-09 1.387925143e-09 1.499718883e-09 1.678614589e-09 1.510909692e-09 1.511345972e-09 1.558555792e-09 1.759608824e-09 1.57571095e-09 1.643320269e-09 1.610136414e-09 1.515200748e-09 1.504191202e-09 1.550798479e-09 1.739864983e-09 1.661730394e-09 1.481776691e-09 1.572296792e-09 1.492667055e-09 1.582873818e-09 1.369239902e-09 1.247734899e-09 1.689062301e-09 1.547658401e-09 1.429898733e-09 1.254858592e-09 1.49592706e-09 1.46458962e-09 1.485092665e-09 1.470365706e-09 1.463599335e-09 1.488120388e-09 1.338061163e-09 1.253342816e-09 1.324203856e-09 1.27544584e-09 1.064150105e-09 1.161223089e-09 1.003038453e-09 1.000068356e-09 1.18448738e-09 9.958314649e-10 1.132529105e-09 1.030554751e-09 1.058243667e-09 9.788826599e-10 7.170423968e-10 7.21585173e-10 8.054991912e-10 9.972819617e-10 8.667371549e-10 7.497676159e-10 7.356841785e-10 6.644968924e-10 7.69871853e-10 3.276600907e-10 4.289490573e-10 5.695007353e-10 4.618880637e-10 1.767315333e-13 1.054906964e-10 2.340926766e-10 3.364712374e-11 3.342209991e-13 1.871767875e-13 8.051736184e-14 5.212906099e-15 2.564387876e-12 1.780363088e-15 3.303074943e-14 4.961349278e-16 2.565091833e-16 5.097283352e-18 6.537558091e-19 3.231198355e-21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.658888358e-19 2.098750637e-18 5.446683223e-23 3.957817658e-18 2.677149276e-17 3.519784017e-15 2.73134864e-16 4.581367853e-14 2.523711189e-14 4.300774153e-14 4.417508221e-15 3.596525528e-12 4.088944381e-11 5.693006178e-12 1.989637323e-13 3.402108765e-10 4.345912557e-10 7.459790959e-10 3.869263639e-10 6.290577543e-10 5.305487611e-10 5.980409011e-10 4.425765614e-10 6.56427313e-10 5.780577565e-10 7.018349118e-10 5.365091825e-10 8.247403696e-10 9.666522289e-10 9.162598805e-10 7.786092143e-10 1.047560613e-09 1.060417397e-09 9.284149992e-10 1.099506662e-09 1.251732937e-09 8.464370542e-10 1.114988164e-09 1.016489463e-09 1.202076428e-09 9.753003655e-10 1.462836069e-09 8.89914156e-10 1.196361199e-09 1.084984154e-09 1.337451378e-09 1.150241873e-09 1.391147907e-09 1.332114209e-09 1.041708641e-09 1.386090955e-09 1.181214166e-09 1.19648157e-09 1.5801442e-09 1.717780844e-09 1.387428882e-09 1.560582086e-09 1.388284421e-09 1.251999494e-09 1.366023594e-09 1.38021635e-09 1.401694215e-09 1.561738076e-09 1.564630611e-09 1.664482101e-09 1.571689129e-09 1.476788838e-09 1.625629187e-09 1.413130668e-09 1.467533299e-09 1.285738195e-09 1.498589704e-09 1.364049727e-09 1.604451493e-09 1.27046921e-09 1.484270285e-09 1.356220666e-09 1.601129237e-09 1.337019042e-09 1.665353333e-09 1.310991505e-09 1.570369527e-09 1.342575675e-09 1.371405123e-09 1.330268675e-09 1.188682666e-09 1.36128269e-09 1.399122886e-09 1.45228514e-09 1.159276073e-09 1.640285446e-09 1.413817281e-09 1.429060048e-09 1.494717338e-09 1.411914186e-09 1.236768188e-09 1.105355766e-09 1.3189893e-09 1.408601577e-09 1.60620211e-09 1.672030293e-09 1.356165642e-09 1.293095262e-09 1.429618731e-09 1.276475041e-09 1.69875831e-09 1.328132206e-09 1.431298618e-09 1.387164931e-09 1.40926554e-09 1.503304631e-09 1.642027661e-09 1.536948233e-09 1.537050644e-09 1.345370596e-09 1.601941371e-09 1.09353238e-09 1.343567575e-09 1.421218017e-09 1.361391144e-09 1.218734646e-09 1.304522457e-09 1.355587746e-09 1.310635013e-09 1.299037232e-09 1.288720933e-09 1.12138784e-09 1.368085961e-09 1.02404916e-09 9.807414178e-10 8.68842341e-10 1.275339462e-09 9.302106102e-10 1.326535438e-09 1.065318067e-09 1.203799016e-09 1.142104727e-09 9.976688077e-10 9.725596361e-10 8.366030364e-10 1.101713662e-09 6.955110049e-10 9.091782514e-10 9.145438685e-10 7.224284877e-10 7.663860977e-10 8.955534751e-10 8.33228611e-10 7.007605692e-10 5.626772533e-10 4.312149346e-10 7.098056927e-10 6.360558129e-10 4.346361286e-10 3.265657851e-10 5.540363065e-11 2.237488822e-10 5.560754943e-11 1.982405644e-10 7.160711172e-12 7.125353846e-11 2.934730774e-14 2.66350352e-14 6.5679041e-14 2.075925874e-15 2.179468125e-16 9.821101431e-16 9.360791446e-16 1.163812085e-16 0 4.24626154e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.252128639e-16 1.461988326e-16 3.883180889e-16 1.013670644e-14 5.439097514e-14 1.079278394e-15 4.952820015e-14 1.353522302e-14 6.797088879e-12 1.067630693e-11 1.609936695e-10 1.915138214e-10 3.302870792e-11 4.341419105e-10 3.489989807e-10 5.497240413e-10 5.315066737e-10 4.478055149e-10 5.318637909e-10 6.824636054e-10 5.750582717e-10 5.281913446e-10 5.438871507e-10 8.86932273e-10 8.963040158e-10 7.650742689e-10 8.56656132e-10 9.918105932e-10 8.251712729e-10 7.857937096e-10 1.071033739e-09 1.147993271e-09 9.443989699e-10 6.441564761e-10 1.104131608e-09 8.887292106e-10 1.04145847e-09 1.283139375e-09 1.247542254e-09 1.200084608e-09 9.555083552e-10 1.161337964e-09 1.063902271e-09 1.156033913e-09 1.222095574e-09 1.20337398e-09 1.030067182e-09 1.043857824e-09 1.423332849e-09 1.378335327e-09 1.277985753e-09 1.238535721e-09 1.45873269e-09 1.479446985e-09 1.280815731e-09 1.034679337e-09 1.437998126e-09 1.359509654e-09 1.299045917e-09 1.38340696e-09 1.13041391e-09 1.243884211e-09 1.336897883e-09 1.415203985e-09 1.304769599e-09 1.362037753e-09 1.589490549e-09 1.379173861e-09 1.251620551e-09 1.423775567e-09 1.33439123e-09 1.441007244e-09 1.250730242e-09 1.144377942e-09 1.309424678e-09 1.216338368e-09 1.400898492e-09 1.373699954e-09 1.166541612e-09 1.456405766e-09 1.339831369e-09 1.296090844e-09 1.503856127e-09 1.461475145e-09 1.119339052e-09 1.205149704e-09 1.439979239e-09 1.230130169e-09 1.474797173e-09 1.473741844e-09 1.518479223e-09 1.242392425e-09 1.508887929e-09 1.428191124e-09 1.324151485e-09 1.245994155e-09 1.272820877e-09 1.234936431e-09 1.335569909e-09 1.429301902e-09 1.22840694e-09 1.261425705e-09 1.437255399e-09 1.07868638e-09 1.326943405e-09 1.099662669e-09 1.359297587e-09 1.364015692e-09 1.351167337e-09 1.519281634e-09 1.286858724e-09 1.45183112e-09 1.422112998e-09 1.131673144e-09 1.711869089e-09 1.180855616e-09 1.153828375e-09 1.195267333e-09 1.385702497e-09 9.440586895e-10 1.091972146e-09 1.495496959e-09 1.075161915e-09 9.782069249e-10 1.336326077e-09 1.047149667e-09 1.162277986e-09 1.032286577e-09 1.118002685e-09 9.708222909e-10 7.86301634e-10 9.161691173e-10 7.722901696e-10 1.046387738e-09 8.237846018e-10 8.591430627e-10 1.076998274e-09 3.65748674e-10 6.974811407e-10 8.798391639e-10 7.044184936e-10 7.306383834e-10 6.646631534e-10 6.008722611e-10 8.36033508e-10 4.871811939e-10 7.941009946e-10 5.688258149e-10 4.727226843e-10 4.039980129e-11 3.11332381e-10 1.820553608e-10 3.078028671e-10 1.262710705e-10 9.040191495e-13 1.618439712e-11 2.124642623e-10 1.276575264e-16 1.273834385e-10 6.819000025e-13 2.724562072e-15 1.427058667e-15 3.194991357e-14 1.497798656e-16 2.865907038e-18 4.520663654e-17 3.579162888e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.481941585e-18 2.743143427e-24 4.715953733e-19 6.236669005e-16 1.563039767e-16 4.769843686e-14 1.899178364e-12 5.011340024e-15 5.331489244e-13 2.277515141e-10 3.29844833e-11 1.977082015e-10 8.154681871e-12 1.283416906e-10 2.425940115e-10 9.970898946e-11 4.358976065e-10 3.640343635e-10 1.000129305e-13 5.775346436e-10 3.070867192e-10 5.55771055e-10 7.254604265e-10 3.860654294e-10 6.198073776e-10 7.434003442e-10 9.915770028e-10 5.593761109e-10 4.465104198e-10 8.341160269e-10 7.328078588e-10 8.696620497e-10 5.533013005e-10 9.549481421e-10 7.037883761e-10 7.817782899e-10 9.351976065e-10 8.946861877e-10 1.09008666e-09 8.262307205e-10 9.129672395e-10 9.222156461e-10 1.235203924e-09 1.303897002e-09 1.157874883e-09 1.152655343e-09 1.217336666e-09 1.056083434e-09 1.239533951e-09 1.122095302e-09 1.196347289e-09 1.18719957e-09 9.858431748e-10 8.615384614e-10 1.125248452e-09 1.105458598e-09 1.125243749e-09 1.127611037e-09 1.180669132e-09 1.053847353e-09 1.171538282e-09 9.894483374e-10 1.236978928e-09 1.220229585e-09 1.171205528e-09 1.142976848e-09 1.110169454e-09 1.423590761e-09 9.0417173e-10 1.10990768e-09 1.242227907e-09 1.254165504e-09 9.850141736e-10 1.205633098e-09 1.074137837e-09 1.186455578e-09 1.264508587e-09 1.228044458e-09 1.128369162e-09 1.407300489e-09 1.262421389e-09 1.371270535e-09 1.153627106e-09 1.320197625e-09 9.527604249e-10 1.182256016e-09 1.39560465e-09 1.129105458e-09 1.209408318e-09 1.137750903e-09 1.522844874e-09 1.176646745e-09 1.377713718e-09 9.333164406e-10 1.383363171e-09 1.084114678e-09 8.329442685e-10 1.180094868e-09 1.263673444e-09 1.311720616e-09 1.438388204e-09 1.100355183e-09 1.431211317e-09 1.464829607e-09 1.277233991e-09 1.243466201e-09 1.212924423e-09 1.270676437e-09 1.359427831e-09 1.377371792e-09 1.493144771e-09 1.140696119e-09 9.348028051e-10 1.160350323e-09 1.206947623e-09 1.031671186e-09 1.195516396e-09 1.055543129e-09 1.031893647e-09 9.81889245e-10 9.167369596e-10 1.121955113e-09 1.060388668e-09 1.215568539e-09 1.053582496e-09 1.030292221e-09 1.142279301e-09 9.469901671e-10 9.240710992e-10 9.879759678e-10 8.473472607e-10 1.284863131e-09 9.147707757e-10 7.489059944e-10 8.087381608e-10 6.729976033e-10 8.546862731e-10 8.135889993e-10 9.177352946e-10 8.660846458e-10 8.331700703e-10 8.030894101e-10 9.034625929e-10 7.470539161e-10 8.571001644e-10 6.657108956e-10 7.061204167e-10 7.113481669e-10 4.580220669e-10 4.71271064e-10 6.538894553e-10 3.555785724e-10 4.722477563e-10 4.37176527e-10 1.586182613e-10 1.771967802e-10 3.092057582e-10 1.531019067e-10 3.217431083e-12 9.604752659e-11 3.959557432e-14 7.446672315e-11 2.028742135e-13 1.326955273e-18 2.145378729e-14 2.616553792e-15 9.332622605e-19 2.386672266e-16 4.682070191e-19 1.111728861e-21 7.350934022e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1.821450158e-20 1.26007754e-26 0 5.018146337e-19 2.731974999e-17 1.618826011e-24 7.887002864e-18 6.528999636e-18 6.76808516e-15 1.152889231e-18 1.08487315e-11 1.52926956e-13 2.134320133e-11 1.480309239e-13 1.049566704e-10 2.293277978e-10 1.7010796e-10 3.815337168e-10 3.187488332e-10 3.077656186e-10 3.073770349e-10 2.008715945e-10 2.445225673e-10 5.152971364e-10 4.898137483e-10 5.546696631e-10 6.080902368e-10 7.787808993e-10 4.288364696e-10 3.174124226e-10 6.439507687e-10 7.806813832e-10 9.033071783e-10 6.815216521e-10 8.590300154e-10 6.983888768e-10 7.582295278e-10 7.770565666e-10 7.530903486e-10 8.18631999e-10 6.949904816e-10 4.747174201e-10 1.039910856e-09 1.073794616e-09 1.110270609e-09 7.776160767e-10 7.200439871e-10 8.589701539e-10 9.682605986e-10 9.603712677e-10 1.002704499e-09 1.083543714e-09 1.119070047e-09 9.468094644e-10 6.76669199e-10 1.242256159e-09 6.729569076e-10 9.80285377e-10 1.131516234e-09 1.263368617e-09 1.100850734e-09 1.096666334e-09 9.72892147e-10 9.717504428e-10 1.047978541e-09 9.790704191e-10 1.034155678e-09 1.113643161e-09 1.193433272e-09 1.074271374e-09 1.236952293e-09 7.437299666e-10 1.030357122e-09 1.191116197e-09 9.813102439e-10 1.154382751e-09 1.139035953e-09 8.664905275e-10 1.192254639e-09 1.140040862e-09 1.197448877e-09 9.910657709e-10 1.040126967e-09 8.355970167e-10 1.163686303e-09 1.10962817e-09 1.182766386e-09 1.081257599e-09 1.112449011e-09 9.370148879e-10 9.362395737e-10 1.020279628e-09 1.17885986e-09 9.446581777e-10 7.994897397e-10 9.685210312e-10 1.15843019e-09 9.807933789e-10 1.37010149e-09 1.175530091e-09 1.147243888e-09 1.003698861e-09 1.056897519e-09 1.083165509e-09 8.810754541e-10 1.084817516e-09 9.392999303e-10 9.199935308e-10 1.151253469e-09 1.076976621e-09 1.141288764e-09 1.048659055e-09 1.011501542e-09 9.644339634e-10 1.186092598e-09 9.929261164e-10 1.234980812e-09 9.712369842e-10 1.06242967e-09 1.26296398e-09 1.070936195e-09 9.714537952e-10 7.926906533e-10 1.313158787e-09 1.174981533e-09 1.005418909e-09 1.003467096e-09 9.276796779e-10 7.805237321e-10 1.013491505e-09 8.514718162e-10 9.974203724e-10 9.773613636e-10 8.039930157e-10 1.114229798e-09 9.25937366e-10 6.439973907e-10 6.288649636e-10 4.324376158e-10 9.180490967e-10 9.029315078e-10 7.43893383e-10 6.130086779e-10 6.208275133e-10 5.34855465e-10 2.59433198e-10 4.382376044e-10 8.728800526e-11 7.758134712e-10 4.091853492e-10 5.973469828e-10 4.363640991e-10 7.700071816e-11 3.092955704e-10 4.361288941e-10 2.379909007e-10 4.598537993e-14 1.154964848e-10 1.222959205e-10 7.265025022e-13 5.88032659e-11 6.284177045e-13 1.110664774e-10 8.811850972e-14 3.295850789e-14 2.264202511e-12 2.06308979e-16 7.667633977e-16 1.048780645e-17 3.493011134e-23 0 0 4.90054259e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.654801297e-25 8.479902128e-24 1.914874903e-14 3.301481955e-15 2.597345324e-14 4.386633333e-12 1.504446992e-14 8.039877713e-14 2.144765437e-10 8.234445218e-11 2.359282369e-10 2.389418362e-15 4.232099731e-11 3.135962269e-10 4.665675432e-10 2.189720543e-10 2.349670857e-10 4.725324545e-10 4.208785667e-11 4.342224959e-10 3.185505253e-10 4.348258289e-10 4.354334042e-10 3.612010298e-10 4.2305511e-10 3.285421133e-10 6.073562337e-10 3.610392135e-10 6.500534186e-10 4.319903477e-10 5.760274638e-10 9.063005663e-10 6.989247752e-10 6.701753249e-10 7.191542337e-10 7.438222344e-10 7.429184268e-10 7.063378005e-10 8.807555195e-10 6.927719128e-10 7.716370877e-10 6.587545802e-10 7.738749005e-10 5.462423572e-10 8.563993358e-10 6.685074491e-10 7.220245159e-10 8.789582691e-10 1.108311809e-09 9.236678273e-10 9.073484014e-10 7.441569272e-10 7.02058682e-10 8.141269492e-10 7.025932087e-10 8.431122072e-10 7.306891027e-10 1.008023594e-09 8.162557937e-10 6.697899405e-10 8.948998445e-10 9.120642784e-10 8.854597543e-10 7.746936348e-10 9.638845224e-10 1.051963752e-09 8.556536926e-10 8.401357062e-10 6.968974298e-10 8.444168612e-10 1.093325816e-09 8.769436966e-10 9.118121146e-10 8.38719039e-10 7.177210702e-10 1.012792584e-09 7.426541348e-10 1.074034424e-09 6.861449748e-10 7.845735624e-10 9.393025649e-10 8.544025698e-10 8.704066465e-10 9.151734082e-10 9.663055418e-10 1.055052112e-09 7.234689162e-10 9.091305979e-10 9.307920756e-10 7.967044515e-10 9.950061802e-10 6.704801184e-10 1.022500859e-09 8.468810235e-10 8.905417653e-10 1.065896419e-09 6.705560819e-10 8.628207818e-10 1.214211651e-09 1.125047783e-09 8.301928019e-10 8.900065338e-10 9.721095496e-10 8.564561828e-10 7.080448083e-10 1.00935907e-09 8.754058403e-10 7.726374257e-10 8.643894888e-10 1.181636979e-09 1.104249043e-09 7.887883615e-10 9.772910006e-10 7.756731297e-10 9.008037769e-10 7.409370561e-10 6.254980212e-10 7.303156094e-10 8.256745232e-10 7.693820734e-10 7.087984048e-10 9.031384016e-10 8.264377352e-10 6.12498169e-10 8.735868405e-10 7.631388168e-10 5.280699879e-10 7.171395831e-10 4.873031427e-10 6.666101162e-10 5.301470152e-10 6.300108985e-10 6.359501219e-10 5.259448869e-10 6.143625498e-10 7.919809851e-10 6.223661128e-10 4.837451494e-10 4.575444944e-10 5.553255924e-10 4.971121233e-10 3.16924475e-10 3.999837998e-10 5.297674367e-10 5.02379575e-10 8.295226216e-10 2.596485205e-10 2.55604282e-10 4.900371967e-10 1.691832543e-10 1.194196444e-10 4.357509722e-10 2.392732148e-10 9.055010154e-11 1.921841293e-12 1.486300396e-13 1.729976974e-10 1.268466748e-13 4.84453247e-14 1.159317271e-13 1.378217599e-14 5.48524206e-15 1.115902328e-15 5.082967422e-18 2.636799989e-17 1.469442331e-17 4.341168314e-21 1.071516795e-25 3.587669295e-22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.171323206e-21 0 3.543855915e-17 4.124534787e-20 8.878804543e-17 1.025987352e-22 5.839446434e-14 3.476813667e-13 5.61240646e-18 1.429329054e-11 1.632116055e-15 6.753308811e-14 1.154017336e-13 1.527528962e-10 1.351153727e-13 1.241407225e-11 3.086698741e-10 1.350644545e-10 7.275243349e-11 3.585366652e-10 3.39747636e-10 4.485234669e-10 3.54714715e-10 4.966935575e-10 5.594638203e-10 4.557967966e-10 3.070288526e-10 3.177013388e-10 3.246058568e-10 3.481253236e-10 6.232001511e-10 3.235913542e-10 3.106441044e-10 3.906863696e-10 3.667381688e-10 3.644914791e-10 5.417107557e-10 6.096136865e-10 3.180011561e-10 1.963307826e-10 6.367275349e-10 8.283950912e-10 3.355918012e-10 6.832935157e-10 5.068327277e-10 5.815535637e-10 6.272756026e-10 7.232258371e-10 5.389389937e-10 7.68457291e-10 7.606456375e-10 8.532224659e-10 6.210872999e-10 6.253839156e-10 7.01267437e-10 6.651365137e-10 6.617653097e-10 8.216132264e-10 7.539073099e-10 7.551861245e-10 6.788874703e-10 7.425362121e-10 7.893084773e-10 6.991628147e-10 7.898227108e-10 5.240206421e-10 7.819512429e-10 5.633075916e-10 7.729032237e-10 6.773130447e-10 5.039073111e-10 8.838401163e-10 7.71674101e-10 8.861374403e-10 5.534102747e-10 7.018188497e-10 6.207995639e-10 7.03661887e-10 5.442541065e-10 7.887210317e-10 1.025101522e-09 7.873482236e-10 7.322453591e-10 7.879801093e-10 8.073287955e-10 7.136423392e-10 7.326398747e-10 8.974182173e-10 6.553651794e-10 6.464405523e-10 8.284644577e-10 8.063622132e-10 7.528733631e-10 6.067558638e-10 8.205169399e-10 1.010950946e-09 9.655546045e-10 8.361433708e-10 6.370286745e-10 5.339901792e-10 8.448893641e-10 9.894431079e-10 5.88972879e-10 8.006216588e-10 5.563870096e-10 7.767405069e-10 5.508678019e-10 7.662178741e-10 9.345110088e-10 7.920034898e-10 6.065056391e-10 8.611566559e-10 6.612326016e-10 9.51794696e-10 8.015188661e-10 8.985469638e-10 5.812935243e-10 7.736692858e-10 7.502054052e-10 8.736433434e-10 5.623381905e-10 4.92724293e-10 5.579035308e-10 7.336292546e-10 4.40671183e-10 6.129976779e-10 4.915932868e-10 4.149923481e-10 5.279963218e-10 3.747632743e-10 5.625203919e-10 5.287718864e-10 5.273999416e-10 6.787563001e-10 3.13068144e-10 4.992089204e-10 6.113947519e-10 5.782620856e-10 4.959068074e-10 5.806909784e-10 4.429201823e-10 3.812721226e-10 4.396363009e-10 4.469557741e-10 4.351815425e-10 1.605140586e-10 3.331581467e-10 5.30152015e-10 3.109765545e-10 7.79774322e-11 3.073861831e-10 2.575088587e-11 3.083560946e-10 3.082793965e-10 3.204109278e-10 5.592992537e-12 1.386930607e-10 3.491746879e-11 8.558514594e-13 1.021982562e-13 7.845633324e-13 7.412614035e-11 3.577401727e-13 7.326530527e-13 5.358620849e-14 9.813822825e-18 1.67319461e-22 1.844193681e-17 2.320806132e-24 2.475265417e-20 1.434228917e-18 5.285874886e-23 0 0 0 0 0 0 0 0 0 1.076021668e-10 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.034193158e-24 0 1.142047391e-17 1.450312657e-19 1.000854796e-19 8.997578863e-15 2.140803792e-16 4.183701167e-15 8.287155282e-18 6.428530629e-14 2.770174771e-14 1.097588668e-16 1.05078382e-11 1.368426493e-12 1.156370583e-12 3.285907111e-10 6.706012952e-11 1.180563904e-10 6.674270212e-13 1.6058673e-10 1.680525949e-10 3.32707853e-10 3.684517922e-10 1.730741517e-10 1.571789683e-11 3.860957718e-10 2.332259744e-10 1.352149367e-10 1.224373484e-10 1.435382315e-10 4.372997021e-10 3.055710063e-10 2.50149002e-10 4.102001593e-10 8.404185664e-11 2.154453671e-10 3.350339563e-10 1.217378646e-11 1.064206717e-10 4.198657598e-10 4.580161748e-10 3.114500097e-10 1.896189395e-10 4.030945351e-10 4.442208987e-10 1.727786535e-10 4.254206247e-10 5.553886089e-10 1.031138933e-10 6.841748448e-10 2.679157841e-10 6.301485254e-10 4.773030572e-10 1.957519076e-10 4.200136564e-10 4.318444215e-10 3.264686845e-10 5.444541976e-10 3.66020812e-10 3.020133606e-10 5.13418745e-10 4.303229066e-10 3.16886669e-10 4.064857943e-10 3.548598575e-10 3.668304434e-10 2.517675475e-10 4.925400345e-10 3.072516554e-10 1.802144944e-10 3.8518413e-10 5.928474233e-10 4.767442576e-10 2.720926632e-10 2.779390675e-10 6.365155634e-10 4.312877623e-10 4.276649835e-10 5.228164436e-10 3.296875715e-10 6.240835504e-10 4.257148567e-10 3.061278375e-10 4.330391408e-10 5.304939077e-10 1.618150278e-10 3.303587535e-10 4.274104278e-10 2.975156276e-10 4.932718013e-10 5.096725788e-10 2.948149155e-10 3.715835666e-10 2.610416259e-10 4.212280137e-10 4.214431704e-10 5.446674043e-10 3.480864093e-10 4.345895646e-10 3.628423274e-10 3.86575285e-10 5.860475653e-10 4.723829152e-10 5.021071197e-10 3.989027175e-10 3.651215497e-10 3.796922361e-10 5.505986446e-10 5.18353606e-10 2.817022438e-10 5.782405164e-10 3.484308411e-10 3.313293621e-10 2.966378444e-10 4.908718298e-10 1.698948733e-10 4.252872058e-10 4.297681878e-10 2.857138328e-10 3.423075935e-10 4.548608593e-10 4.30082394e-10 3.759386618e-10 3.93922997e-10 5.393779056e-10 3.300751881e-10 3.460502268e-10 3.441285479e-10 3.502062565e-10 5.592661803e-10 5.16304716e-10 1.313663055e-10 1.758108635e-10 3.56694698e-10 5.478456412e-10 3.445420694e-11 2.336375061e-10 2.164191865e-10 3.428638607e-10 3.859870539e-10 3.061923074e-10 1.980432235e-10 1.943048662e-11 2.445944303e-10 2.3688883e-10 3.610421007e-12 2.447195313e-13 3.132919796e-10 2.111793971e-10 2.912954226e-10 1.418415065e-12 4.482599232e-11 1.63300342e-11 3.213415989e-12 1.133383877e-12 9.885613686e-12 6.689354168e-14 1.535247878e-11 1.156262332e-14 4.306950056e-13 6.077347706e-14 9.823789318e-17 2.522590775e-17 4.444570154e-20 4.679988172e-19 5.592874005e-14 1.950003488e-18 5.908039682e-20 1.592241806e-21 2.077685172e-19 5.980051566e-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.437781786e-22 1.518779674e-21 7.945414297e-22 0 6.936677579e-17 1.903759546e-17 5.36673237e-18 3.969195592e-14 1.21847423e-16 1.577490783e-16 7.169163351e-14 6.433733596e-16 3.06006789e-16 1.247228369e-10 8.062941957e-16 1.118786529e-10 9.68870634e-13 1.222200194e-14 3.200824842e-12 2.134667731e-12 1.155634634e-10 9.333595476e-12 1.810986997e-12 3.066815807e-12 1.475823627e-10 1.542722823e-11 2.923537362e-12 7.538948551e-11 8.152723747e-12 1.398865824e-10 8.798544317e-11 2.499833289e-11 7.385645386e-12 2.274444548e-11 8.229504924e-11 1.544216383e-10 1.102276755e-10 1.546575057e-10 5.999533931e-11 1.427181421e-10 8.336135825e-11 6.436380115e-13 2.479726182e-11 1.583241214e-10 2.036204013e-10 1.446175224e-11 4.805358371e-11 1.060361706e-10 1.646914075e-10 2.52477182e-10 1.049827461e-10 2.37443598e-10 2.138554537e-10 1.320314283e-10 1.9726365e-10 6.201221524e-11 5.079141619e-11 9.332458362e-11 1.72676547e-10 2.047491365e-10 2.190142384e-10 4.331297037e-11 1.119526028e-10 2.372579118e-10 2.082921778e-10 2.637264369e-11 4.346254258e-11 2.025164848e-10 5.74613315e-11 2.099946498e-10 2.49331265e-10 3.529335441e-11 9.097194258e-11 8.237116204e-12 1.790437483e-10 1.60614044e-10 1.94751118e-10 1.758141545e-10 8.96981876e-11 8.053724407e-11 1.728005342e-10 7.43575937e-11 6.477401375e-11 2.307103884e-10 2.846204661e-10 1.448142988e-10 1.637035409e-10 1.600286929e-10 1.118389925e-10 2.218669749e-10 7.544841046e-11 6.759047688e-11 1.594990497e-10 2.692412153e-10 1.836416572e-10 1.4737659e-10 1.105900689e-10 1.597041208e-11 3.416382758e-11 2.151997462e-10 2.07392411e-10 1.765897258e-10 2.503280732e-11 1.370707619e-10 1.247831121e-10 1.429083519e-10 1.535060616e-10 1.447043133e-10 2.239934418e-10 1.763813211e-10 3.128581648e-10 3.579140857e-11 2.314068216e-11 2.055894291e-10 1.312403702e-10 1.117132887e-10 1.155432594e-10 6.01616477e-11 2.317134039e-10 4.180756473e-11 3.864686107e-11 1.341625364e-10 1.990191158e-12 8.8682606e-11 4.111831273e-11 2.58902053e-10 1.051375471e-10 2.062026891e-10 1.960981124e-10 2.791641819e-11 2.195895913e-10 1.436875534e-11 9.04186255e-11 1.50781392e-11 1.47941757e-10 1.567733771e-10 8.567500932e-11 9.484860541e-11 1.624055119e-10 4.796939189e-11 2.271464395e-12 1.903764213e-10 7.877128085e-11 1.202074149e-10 3.019642727e-12 1.97561153e-10 1.201856321e-10 7.999522285e-11 9.885546999e-13 1.402969319e-10 4.853621288e-13 1.149910754e-11 1.551169238e-10 4.95769549e-11 2.156729373e-11 1.644040096e-14 2.204007207e-12 5.681774822e-12 9.010184599e-12 1.058422742e-11 1.22423105e-15 1.5062213e-15 4.319885779e-17 9.604557799e-15 2.57723722e-18 1.177251364e-15 5.034076078e-16 6.982907317e-21 2.696603674e-20 5.521137854e-23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.31676135e-20 0 0 5.952247339e-19 9.203474439e-24 7.728664838e-18 1.963983701e-18 4.364065492e-14 3.572768762e-18 3.170635005e-17 8.535975971e-13 1.740345821e-13 1.266323323e-19 3.502697936e-15 4.82409132e-14 3.750921216e-15 2.362882731e-12 9.286891462e-14 1.579326242e-13 4.40513529e-16 1.524175911e-11 8.416882171e-12 5.706595862e-12 1.500640019e-11 3.03708885e-11 3.762381608e-12 5.268936641e-11 4.643547445e-11 8.794414446e-11 9.486151872e-13 7.446963515e-12 6.996703395e-14 7.236985317e-11 1.410148049e-11 7.612058665e-12 2.60045924e-11 1.744973726e-11 5.487206602e-11 5.276136443e-11 5.673841614e-14 8.696792985e-12 1.051391079e-10 7.150278939e-11 2.582301809e-11 6.498736083e-11 1.138201293e-11 1.053149382e-10 2.640449804e-11 1.251008426e-11 9.141161649e-12 1.088463651e-11 5.820902513e-11 1.534940293e-11 2.222880367e-11 5.58690974e-11 2.86080596e-11 1.404823005e-10 6.363621835e-11 2.288223916e-11 1.143691166e-10 6.932744994e-11 6.688934605e-11 4.169312914e-11 1.047841659e-10 7.15896189e-11 4.757564242e-12 9.050747763e-11 2.119592658e-11 2.843105543e-11 2.114142484e-11 3.463197846e-11 1.108924634e-10 7.626312394e-12 3.291607562e-11 1.550560124e-11 1.254917315e-11 1.919749804e-11 6.520707544e-11 6.225315853e-11 4.507391885e-12 6.628967914e-11 6.802377713e-11 4.134106158e-11 5.935392001e-11 4.853906546e-11 5.901325548e-11 2.497622739e-11 1.427419327e-10 3.433305615e-11 1.935194708e-12 1.69057972e-11 8.386139024e-12 1.182679121e-11 1.083080226e-11 1.179919989e-10 1.398574317e-10 9.157030162e-11 7.521531134e-12 2.711094751e-11 8.348166441e-11 3.751326658e-11 1.274576162e-11 7.042317412e-11 1.664757728e-11 3.001121619e-11 1.819595712e-11 8.630253474e-11 6.148889149e-11 6.054667166e-11 8.412875687e-11 8.172838674e-11 1.22578347e-11 5.140455185e-12 3.615708853e-11 9.903037024e-11 8.712624533e-11 2.380249521e-11 1.245766549e-11 2.108423072e-11 1.605715631e-10 2.64775738e-11 9.175191266e-12 1.658636076e-11 1.165505928e-11 9.134501736e-11 1.248233377e-11 1.254745969e-11 4.905433983e-13 3.438845509e-11 8.754389677e-12 8.794837617e-11 6.843169333e-13 1.236647345e-10 3.522024827e-12 2.439621723e-12 2.132133125e-11 7.961086906e-12 1.556393373e-12 1.715827119e-12 1.752556628e-12 1.6216288e-12 6.977556712e-11 3.086218829e-11 6.172208121e-14 2.383010869e-12 9.924747994e-12 1.818007975e-13 1.247807572e-12 2.061666796e-11 1.077158516e-11 4.339327965e-11 4.69035715e-14 9.151553175e-13 4.523255152e-11 1.768026934e-15 1.054287573e-10 7.136953902e-14 1.097446988e-14 4.18598686e-14 2.117682098e-12 8.192262396e-15 1.341157916e-18 1.097187503e-18 2.505844857e-17 2.764929622e-22 1.162119997e-15 0 1.801326056e-19 9.763840627e-24 4.080886201e-20 6.109109471e-24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.01161195e-27 7.38394355e-22 6.500843322e-21 3.905259246e-20 5.58321194e-22 2.583243781e-20 2.427197385e-17 2.986173122e-22 1.328299484e-17 4.94005764e-21 1.973999617e-14 1.238232622e-13 4.018090699e-16 1.74318095e-13 4.971093955e-13 4.725499539e-16 3.511670587e-14 4.874539475e-14 5.206414957e-14 1.322191795e-13 2.298941916e-13 5.844996743e-13 2.66266882e-14 2.56421012e-12 6.692230893e-12 3.301708606e-13 1.29624201e-12 2.18960713e-13 1.870968485e-13 1.247784958e-11 5.514692422e-13 6.11866898e-12 2.887936035e-12 3.13441155e-12 9.510639459e-12 1.938088376e-12 2.928549826e-11 5.697246095e-12 3.76607655e-11 1.266568931e-11 1.156052967e-11 2.59839153e-11 1.224811036e-12 2.102599155e-11 1.110166427e-13 4.803804743e-12 2.279087882e-12 3.97586416e-14 5.382830492e-12 2.480616313e-12 2.061406255e-12 1.005511442e-11 5.65437988e-12 2.898491325e-11 2.213375095e-12 7.199613098e-13 2.712554094e-11 1.482644787e-11 5.707977381e-12 2.411951122e-12 3.886017403e-12 5.639928415e-12 1.484780216e-12 1.008649698e-12 8.936464839e-13 2.360327614e-12 1.250842833e-11 7.851175334e-13 1.693527689e-12 1.836990628e-12 3.793168697e-11 4.487931452e-12 9.705912385e-12 1.618949746e-11 5.151515925e-12 2.372491238e-11 4.906687472e-12 1.345550361e-11 2.336315847e-12 1.097329118e-12 1.637736444e-11 1.490152548e-12 8.731205166e-12 1.40648e-11 4.761745289e-12 5.141424247e-12 9.680346881e-12 1.819135111e-12 1.013094117e-11 7.173842516e-12 2.648461758e-12 7.413964955e-12 1.299684981e-11 6.891344665e-12 4.925480439e-11 3.52621148e-12 3.303273603e-12 5.609493845e-12 4.656719548e-12 1.641142707e-11 5.142827467e-12 3.794809796e-12 2.984386046e-12 1.231292765e-11 1.473523775e-12 2.562182661e-11 2.938006648e-11 1.329570181e-11 1.842482525e-12 8.681592703e-12 5.231196639e-11 6.131872881e-11 8.678444675e-12 6.582329113e-12 9.04284019e-12 1.847788998e-11 3.128182313e-12 4.74210864e-12 5.562391783e-12 1.266362035e-11 6.237673368e-13 1.458102262e-11 1.645749898e-11 1.389575626e-11 4.143948272e-13 1.580868184e-11 1.503461922e-12 2.262313962e-12 1.435985402e-11 4.123411973e-13 2.671089458e-12 6.259619371e-13 2.005460492e-13 1.256837533e-11 1.434949368e-12 6.725508078e-12 8.932695933e-12 1.628142128e-12 1.106937594e-12 1.894908071e-13 9.396323346e-13 3.836066861e-13 2.045170233e-14 1.299359327e-11 1.575296678e-11 9.338603875e-12 1.020264664e-13 1.06869774e-13 3.597428699e-14 1.232749598e-16 1.491667164e-13 5.439179662e-15 1.767560542e-12 8.928849947e-14 2.421861667e-13 2.143859187e-15 3.243014338e-18 4.923982804e-17 4.590907125e-15 3.5119425e-17 9.571070268e-19 4.786083826e-16 2.36319217e-18 4.411865785e-20 8.309545088e-17 2.744791621e-19 5.327323852e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.144005932e-25 3.464185455e-22 3.268225115e-25 6.469837012e-20 0 9.344695108e-26 4.157533503e-19 1.502942726e-19 1.44175447e-18 3.566386698e-16 3.519790468e-16 2.787521845e-15 2.321261051e-14 7.753613631e-18 8.776644413e-16 1.191666186e-14 4.326374869e-12 1.650412878e-12 4.659575579e-14 4.376285341e-14 2.899934085e-15 5.473417234e-17 2.131752569e-12 2.201720855e-13 1.082241846e-14 5.907475137e-12 1.172413779e-14 9.62356875e-16 1.88359762e-14 2.377432749e-14 1.028542669e-13 3.547104769e-14 7.727446881e-13 4.356225477e-13 1.315574294e-12 1.01661622e-12 7.604428102e-13 9.841636634e-15 7.423953565e-13 2.163642648e-12 4.611210885e-13 3.791867515e-13 1.123970281e-12 4.085590436e-14 2.506169509e-12 1.011476749e-12 2.1692671e-13 2.107646263e-12 2.605299861e-13 5.900625903e-13 5.181040932e-13 7.192100946e-13 3.224812361e-12 4.490665211e-13 7.099763077e-12 3.59915522e-13 1.067296702e-13 2.809398217e-13 1.72355417e-13 7.905908524e-12 8.354757269e-12 2.801013186e-14 8.283473745e-13 1.90356166e-12 3.070479748e-12 1.480561432e-12 2.557415762e-13 4.470539446e-13 8.485166865e-13 2.913645684e-13 2.041086311e-12 1.492367839e-12 3.910997938e-13 1.769540807e-12 1.686296629e-12 6.137368439e-13 8.555709252e-13 1.717556318e-12 3.296802945e-14 3.879368444e-12 5.753723888e-14 5.927546903e-14 8.321789481e-13 6.433442166e-14 3.65872622e-12 1.728392713e-13 4.782300692e-12 3.543097932e-13 3.382592183e-12 1.719495073e-12 1.96527986e-12 5.661420311e-12 2.455222481e-12 7.074195128e-14 2.005862794e-13 8.539560076e-13 2.387932218e-12 1.387879116e-12 4.794122532e-12 3.15581804e-13 4.07450179e-13 7.880133088e-13 4.823185551e-14 3.267543954e-12 7.034786622e-13 3.147499559e-12 1.279091848e-12 7.578543801e-13 6.957306492e-14 2.901951026e-12 1.127344483e-12 1.94307374e-14 8.49051996e-13 1.396379889e-13 2.857892805e-12 5.106429001e-13 1.040478773e-12 1.102314864e-12 5.759630533e-13 5.228789169e-13 4.109252625e-13 1.415765757e-14 8.204756702e-12 1.043433445e-13 4.024035806e-12 4.036960613e-12 1.607667809e-12 8.532041583e-14 3.970355105e-12 1.870158079e-12 2.78103446e-12 1.291893499e-13 4.708366241e-13 2.9843947e-14 3.063421902e-13 6.987910977e-14 1.199803241e-13 2.22548615e-12 1.462232065e-15 5.248971948e-13 6.730631886e-12 2.10596189e-14 2.080759214e-13 6.434256026e-15 2.707141803e-13 1.80648906e-14 2.841598276e-14 3.965483627e-16 1.845531413e-14 1.57706582e-15 2.442278899e-13 1.505898309e-14 5.057998574e-13 1.101398237e-10 2.47768699e-16 1.789468563e-17 1.288526179e-17 1.724843485e-17 1.857565139e-20 2.974017071e-18 8.080287423e-19 1.300236182e-16 1.328873865e-15 8.116974136e-22 0 8.160357482e-23 4.690902892e-20 9.872123026e-22 0 4.117238906e-21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.571512541e-23 5.69925946e-23 1.363468467e-27 1.074728076e-21 0 9.733213922e-20 3.805957738e-23 7.880660756e-17 5.243215494e-14 3.360204541e-14 2.334284704e-17 1.540139185e-16 9.138552337e-18 1.445733221e-16 6.104609258e-14 2.364907641e-15 1.351806144e-13 1.711965564e-14 5.683651001e-14 1.969990551e-18 6.113342078e-15 5.972107755e-15 2.054154673e-15 3.836511047e-13 1.069073772e-13 3.573427896e-15 1.491558338e-15 3.456747968e-13 2.426931843e-16 1.580625675e-15 1.92321801e-13 2.597797787e-13 7.343734984e-14 7.662785456e-14 7.154595312e-13 2.283375752e-15 1.513251162e-13 2.488565702e-13 3.576248786e-13 3.135079457e-15 1.143771686e-14 7.662061025e-14 6.593176051e-14 8.015440443e-14 4.655370209e-14 1.202250628e-13 2.618339445e-13 2.432428175e-15 6.628110168e-14 7.272650636e-14 1.284748531e-13 1.099194615e-13 1.085497387e-13 8.339520766e-14 1.420100198e-13 6.790030752e-14 2.699540405e-14 9.108008528e-13 1.583574593e-13 3.579538099e-13 5.407141469e-15 4.845638472e-14 2.533448315e-14 2.483140981e-13 5.258744523e-13 1.867915902e-14 2.517721591e-13 4.723146724e-14 9.790665795e-15 9.295082254e-15 3.151093685e-14 5.655837234e-14 1.642234488e-13 4.308765251e-13 5.99881632e-14 4.804943177e-14 6.336812439e-14 3.766335673e-13 6.909490249e-13 2.579994221e-13 2.128861377e-14 9.11628768e-14 1.40052629e-13 2.126906742e-13 2.773727826e-14 1.886790161e-13 2.277999516e-14 5.607453286e-14 4.970420153e-14 2.368531977e-13 1.089333607e-13 3.340015624e-14 9.942396877e-14 6.177748721e-14 6.06454202e-14 6.055263451e-14 5.377647454e-14 2.521449929e-13 6.455352687e-14 2.721405717e-13 6.700117468e-14 3.354093336e-14 2.531566645e-14 2.066716681e-13 8.46016289e-15 1.296156691e-12 2.967060806e-14 1.302794852e-13 1.291086317e-13 3.885719752e-14 1.801845753e-14 1.862125989e-13 1.094544608e-14 3.822418852e-13 3.267389818e-15 9.530735543e-14 4.30492039e-13 4.365765987e-14 3.354724963e-16 2.551525527e-13 5.352575848e-14 1.023660588e-13 1.518305686e-12 1.155487942e-15 1.316592407e-13 5.248677419e-14 5.166477859e-14 1.18577341e-13 3.029319502e-14 9.5444247e-16 2.296580165e-13 8.310897214e-13 2.792787764e-14 4.093382883e-15 8.416989718e-14 9.86150059e-15 1.037247434e-13 9.373021738e-14 8.82623766e-13 6.374241967e-14 3.793834973e-15 2.217771687e-15 1.277597247e-14 5.704807292e-15 2.237201876e-14 8.109085865e-13 3.511612639e-14 1.706558067e-15 2.185763974e-13 5.991534412e-18 1.685865344e-16 5.146629349e-16 6.87060062e-16 2.077797647e-14 1.13684585e-16 1.104975183e-18 2.963191938e-15 2.70162368e-19 1.179398846e-18 2.292621337e-15 3.878226417e-18 2.463126021e-15 1.565924374e-23 3.50876144e-22 0 3.171256319e-19 1.110970629e-25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.515420606e-23 3.438580368e-25 2.148340405e-25 3.88236781e-21 8.128126695e-26 8.062257695e-24 3.255806452e-19 9.684540085e-20 1.276218255e-14 7.699970757e-16 1.477295075e-25 2.165290357e-16 1.712555975e-16 2.964219039e-17 8.57528022e-15 1.157512893e-15 3.575312662e-15 5.291223e-16 6.454133873e-16 4.59584652e-15 1.75034146e-14 3.645805213e-15 5.503385898e-15 1.342584021e-16 4.624856527e-15 1.791408301e-15 7.306619434e-16 6.509163612e-14 4.498759422e-14 7.392877451e-15 3.028933589e-16 8.547152399e-15 1.363574733e-15 1.739913183e-14 4.097118661e-17 1.622898282e-15 6.752904967e-14 2.84202e-15 6.464274454e-15 2.287110742e-13 6.119092581e-15 2.144277175e-14 3.123153843e-14 1.285184287e-14 1.681051227e-15 4.01895499e-14 7.660802233e-17 7.830201412e-15 5.267958289e-15 7.180684842e-14 3.105700203e-15 1.312561575e-15 2.366465867e-14 1.7314971e-14 7.443399766e-15 2.406646999e-14 4.473557488e-15 2.673237795e-13 2.407365263e-14 8.36924674e-15 8.022282119e-15 8.220707605e-15 4.367721505e-15 1.482686908e-14 2.215298036e-14 1.808091254e-14 2.600633243e-14 2.182601869e-13 1.497392836e-14 2.906760385e-14 2.208526645e-14 2.000491527e-15 1.87408611e-14 3.007246768e-14 5.065391972e-15 7.56314304e-16 5.951614491e-14 1.283726466e-15 1.046619107e-13 4.447688603e-15 9.687085704e-14 3.971566822e-14 4.535828602e-14 2.155868232e-14 4.462594749e-14 2.291359538e-14 6.663508018e-14 5.016384124e-15 1.570565138e-14 7.981277229e-16 3.709960091e-14 1.210661562e-14 6.812804513e-15 5.808615789e-15 1.827536607e-14 8.01989114e-14 2.242269805e-14 5.630041488e-14 3.838423893e-14 2.688741037e-14 1.276691408e-14 9.017995845e-16 1.602594511e-14 1.713167335e-15 2.6307007e-14 3.739430696e-14 1.494874714e-14 2.948774409e-14 6.012871575e-14 1.187466167e-13 3.179535934e-14 2.39030244e-15 1.474962906e-14 1.751012312e-14 4.297655512e-14 7.098355838e-15 1.465669556e-14 6.414166598e-15 3.227721458e-15 2.600722706e-14 3.94757531e-15 2.933858097e-14 8.938173653e-16 6.798374966e-14 2.957980393e-14 7.725824722e-17 6.482538897e-15 1.443906005e-13 5.557479206e-17 6.375342433e-14 4.105376629e-15 6.212736359e-15 4.21810771e-15 7.195782703e-16 3.777585025e-15 1.942845673e-16 3.280205185e-15 2.045404367e-14 1.588606623e-15 5.043900209e-16 3.684127352e-16 2.3838606e-15 3.043547117e-14 9.63751853e-18 4.728250556e-16 4.228579393e-15 7.189939949e-15 1.142016452e-15 1.354200737e-15 3.185732795e-15 2.299092993e-16 1.711884109e-15 1.892441055e-17 4.590295314e-17 3.278515208e-20 4.748969078e-15 1.371647718e-18 3.682385212e-18 2.081883346e-20 6.525757987e-25 1.563934037e-24 2.809736285e-22 2.156274087e-21 8.748980579e-23 8.465734685e-21 2.028827207e-21 2.075498534e-26 2.617462817e-23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.820767587e-26 0 9.820173286e-21 0 1.295535542e-21 2.628609061e-17 3.021160182e-20 7.50097587e-21 1.328371415e-19 1.448196731e-19 3.645377353e-17 1.183609834e-20 1.045540928e-17 1.148276975e-17 3.397409447e-17 4.978386857e-18 1.765112497e-16 1.85741034e-16 6.748068209e-17 4.233858329e-16 7.029781244e-18 7.07915828e-16 7.268590316e-16 2.137861562e-14 6.020604744e-17 7.191070193e-17 5.459955298e-16 2.680422937e-15 3.472291784e-17 2.969119344e-16 6.978360775e-16 7.544643537e-16 1.141441793e-15 1.788985002e-14 5.881597255e-16 7.134058055e-15 3.874745781e-16 7.478227443e-16 9.848793722e-16 4.138228834e-17 2.535491941e-15 1.322238314e-14 5.918415326e-16 2.416523151e-14 8.834907204e-16 1.259598102e-15 1.57783302e-15 5.275551362e-15 1.639621826e-15 1.300641546e-14 8.467927103e-16 1.357596164e-15 2.4967597e-15 2.323954503e-15 3.5688169e-16 2.105942822e-15 1.445217543e-15 2.200268518e-16 3.824677997e-16 8.075241453e-16 2.493128006e-15 1.611830007e-15 4.917921204e-16 9.696615624e-15 1.1694418e-15 1.675131668e-15 5.339114004e-16 2.266273124e-15 3.257015641e-15 4.915325788e-15 1.661968174e-15 3.083240328e-15 1.967765016e-15 1.018423775e-15 1.365436525e-15 2.581711936e-15 1.270713538e-15 9.489541898e-16 3.612332555e-15 1.868270376e-14 1.759303172e-15 3.244537271e-15 1.224070585e-16 2.063713177e-15 3.244583504e-16 2.832524509e-15 3.210459749e-15 2.138498326e-15 1.335344022e-16 4.978510473e-15 1.905053359e-14 1.73197883e-16 2.638671185e-14 2.510618e-16 4.083139269e-15 3.51437916e-15 2.829975854e-15 3.962801271e-16 3.727186266e-15 9.35518911e-16 3.817827934e-15 2.242550821e-15 1.04767267e-15 1.396498386e-14 2.507454311e-15 2.917812916e-15 3.208076198e-15 5.501105273e-15 1.08749349e-15 9.573079253e-15 2.099373866e-15 2.84341055e-15 5.507301449e-16 6.863329392e-15 4.207589559e-15 1.79754477e-15 3.150826701e-16 1.341813277e-14 1.118530294e-15 8.616417472e-16 1.021891299e-15 3.528585381e-17 9.386939237e-16 1.201122066e-15 5.340449926e-16 1.533557059e-16 1.311298228e-16 3.45461236e-17 5.183546239e-16 8.642940128e-15 2.057099521e-15 6.00744319e-15 9.210111636e-16 7.182041702e-16 5.550006455e-16 1.631268338e-15 2.745795034e-16 3.039421794e-15 8.462530214e-15 2.232603412e-16 6.593993665e-19 1.378771893e-18 2.4016955e-15 9.929756875e-20 8.065622801e-16 8.701705307e-16 1.797753964e-16 3.535703819e-18 5.806851857e-16 1.136157013e-15 1.734475667e-17 2.107456035e-17 1.111352149e-21 2.294341714e-17 3.447724432e-22 3.092777733e-19 3.526883333e-19 8.513521153e-22 1.942034861e-17 1.960256049e-17 3.252089477e-20 4.570450423e-21 4.641157456e-22 2.881393867e-22 3.804605058e-20 0 2.722615711e-25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.254309967e-24 0 0 0 2.747795724e-25 0 1.495566176e-23 0 0 6.083686693e-21 0 1.008095583e-22 5.034121708e-23 3.131508197e-20 5.591173618e-19 7.177858151e-19 2.105635032e-19 9.886005845e-16 3.659060599e-17 3.576660851e-16 7.673362107e-18 5.143169806e-17 4.934672814e-16 1.841238889e-17 3.776948673e-19 1.336701496e-15 6.496483129e-18 8.262438991e-17 2.426784332e-17 1.745227618e-17 1.769849819e-16 1.297296983e-15 1.28405786e-15 7.729017404e-16 6.471644745e-19 7.745715848e-18 1.453525118e-16 1.451454189e-17 1.56792092e-16 9.452917575e-16 7.407148973e-16 1.826475015e-16 4.294148144e-16 1.957008926e-18 2.284415484e-17 5.441134621e-18 4.580230608e-17 2.125997636e-16 1.388285268e-16 5.943720492e-16 7.06114418e-16 3.188541604e-15 3.164898967e-16 3.185707874e-16 5.918221162e-17 1.069828937e-15 1.368486504e-16 2.51454664e-16 1.925163548e-15 7.738528638e-17 6.872564511e-16 2.337669946e-16 4.071336625e-17 7.751091358e-18 2.416852594e-15 2.353095846e-15 4.41746529e-16 6.830539658e-16 1.993282455e-16 6.7577175e-16 1.744289809e-17 1.424030671e-15 3.029019088e-17 5.206967941e-16 3.384185228e-17 2.185570647e-16 7.028905233e-18 6.74993199e-17 1.795553987e-17 9.826565837e-16 1.24994152e-15 1.213892739e-15 7.93852338e-16 5.61850162e-16 5.559641222e-17 2.293346972e-17 4.723265648e-16 1.982611583e-16 4.184851098e-17 8.908023191e-16 4.086475987e-16 3.534673287e-16 8.816395069e-17 6.891322751e-16 4.175199704e-16 1.029037867e-16 2.082459287e-16 3.545154137e-17 1.25839103e-16 6.990530357e-16 2.082644997e-15 9.934858927e-16 3.188934599e-16 2.260966312e-15 5.500973515e-16 5.630852336e-25 5.573246074e-16 6.32706833e-16 7.150051077e-16 1.157755081e-16 3.639636571e-16 2.263847817e-16 4.179642787e-15 1.658907786e-15 4.059381459e-16 7.985160084e-18 1.839249573e-16 4.34549414e-18 4.287080913e-16 6.59881056e-17 8.246687659e-16 1.68408733e-16 2.822217516e-16 2.970968057e-16 2.081803737e-16 6.876108025e-16 1.032429025e-15 3.807935788e-17 7.091877045e-16 1.496036065e-17 7.646791078e-16 6.314025285e-16 1.696974908e-16 1.85097355e-16 1.588955664e-16 2.894241286e-16 1.377011918e-15 2.578522146e-17 1.01990441e-15 2.934143564e-17 5.6221611e-17 3.611072923e-18 1.118461449e-16 0 4.45892817e-17 1.509522793e-18 3.833762652e-17 2.123028095e-17 1.234726915e-17 2.593919571e-18 8.648482014e-22 6.571164128e-17 4.948208646e-19 5.878947095e-19 1.299768203e-16 1.962265905e-18 1.339947444e-22 1.666655011e-21 9.26897303e-27 3.522454579e-26 0 0 0 0 8.702033408e-25 0 2.934312065e-25 0 0 1.901158504e-26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.770103758e-27 6.734022645e-25 0 0 0 4.043482272e-20 0 1.165021421e-25 0 0 4.9942793e-23 1.45245796e-24 6.004449725e-22 1.699288353e-22 7.74833e-16 7.480895062e-19 3.161465898e-17 0 2.138553376e-17 1.141072572e-17 1.025271324e-16 1.814645757e-18 6.583441794e-19 1.1054412e-18 5.814788287e-19 1.230340072e-18 6.798647571e-17 5.885126627e-19 7.820506778e-19 2.929446427e-18 3.334053934e-27 9.345530423e-17 2.188700833e-16 6.1386307e-18 1.231607323e-18 1.433824055e-17 1.685534628e-17 1.479936119e-16 9.403630695e-17 2.629319841e-16 3.110233068e-18 1.782971543e-16 1.381071777e-18 9.95365478e-18 4.042067406e-16 6.514484849e-18 6.319580207e-16 4.403262543e-18 1.767359313e-17 1.352649363e-18 9.770836784e-17 8.539113429e-18 1.128552254e-16 2.108869213e-18 1.786035184e-16 1.922714992e-17 1.249901374e-16 4.508025098e-17 2.635835511e-18 1.259563152e-17 2.615492563e-18 2.024651166e-16 1.882062868e-17 2.316407876e-16 5.628994296e-17 3.388333781e-17 7.878486677e-17 3.65121492e-16 4.85438786e-17 1.92162238e-18 9.582737315e-18 1.291446065e-23 6.153664402e-17 1.524706328e-17 2.357389498e-17 4.88808656e-16 4.135765028e-17 5.505284286e-17 1.136763716e-17 9.353509248e-17 5.257436456e-18 5.270108464e-17 4.196396838e-17 6.725266522e-17 1.934739319e-16 1.647453077e-16 1.473917241e-16 1.416349834e-17 2.301785698e-17 1.495490388e-17 5.382765902e-18 5.405553702e-17 4.055191286e-17 1.382076809e-16 4.307719094e-17 3.126293087e-17 1.120545801e-16 1.452715112e-17 2.198914541e-16 2.009507559e-16 2.077681432e-17 2.694177856e-17 1.339166086e-17 1.982613078e-16 5.775666612e-17 9.184294993e-18 4.060272965e-17 2.440609723e-17 1.653134094e-16 5.485690018e-19 1.527025892e-16 7.510570727e-17 4.047807076e-17 6.609948694e-17 8.332077541e-18 5.073048054e-17 6.378364279e-18 8.787931415e-17 1.069620509e-17 9.624100177e-17 2.6539275e-17 1.270703269e-17 1.372341296e-18 6.001525637e-17 1.940905339e-17 7.93726925e-18 1.628014296e-17 1.226540189e-16 1.095696618e-17 1.709122437e-17 2.311262055e-17 2.155129179e-17 1.743935077e-17 6.925699539e-22 1.140567285e-17 1.037141612e-17 1.123785068e-16 1.482099959e-18 1.105311848e-17 3.038140428e-18 2.837332903e-17 8.498828965e-24 2.425742442e-19 2.400501905e-26 1.660835283e-17 2.814296141e-17 3.242243616e-17 0 0 9.641208201e-17 6.430712644e-19 1.326453299e-18 1.726439714e-18 3.934170577e-19 6.164816364e-23 0 4.670352523e-23 2.872694887e-21 4.948548778e-23 3.281126609e-25 5.644677097e-22 0 0 0 0 0 0 2.475699598e-25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.48063213e-25 0 4.409955364e-24 0 0 2.342567313e-23 6.439308894e-25 0 0 0 0 0 2.809546237e-22 2.457926519e-18 1.468209482e-18 7.964046279e-17 0 6.132239748e-18 3.268703834e-18 1.190796079e-17 7.21352681e-19 3.426553809e-17 4.47821773e-17 3.382448908e-18 9.773397283e-18 9.316956365e-23 1.096893634e-17 9.195344911e-23 1.078494182e-22 1.877067174e-17 5.866226577e-19 5.218773421e-17 9.355629876e-19 3.025822575e-17 1.84343881e-17 0 2.445055803e-18 9.745692097e-19 7.382414336e-19 2.446963133e-18 6.154978787e-18 0 8.479472996e-18 4.543109309e-18 2.649974808e-18 7.206182815e-18 2.692199149e-17 3.052648237e-17 2.121852415e-17 6.762337356e-17 8.803998338e-19 4.104977203e-17 8.536210731e-19 1.782626081e-17 2.837657733e-17 3.047655524e-17 1.607331756e-17 1.975644295e-18 9.799987978e-18 5.915499908e-18 1.812632356e-17 3.530399197e-18 1.394432239e-18 5.229419861e-18 6.381149484e-18 7.077495337e-33 1.827522733e-18 3.366582762e-17 1.346686552e-17 5.21800859e-19 0 2.372426549e-17 6.219468684e-18 6.577085862e-17 5.095311402e-18 8.061832912e-18 2.441390296e-17 2.639170267e-18 2.586378268e-17 0 6.068070944e-17 9.560613825e-18 1.069297525e-18 1.266639013e-17 1.698963295e-17 5.936264039e-18 3.135508694e-18 3.124435949e-19 2.352237164e-18 2.881412882e-17 1.197046968e-18 9.165292437e-18 1.395659562e-17 6.286098328e-17 4.000516828e-17 2.976797111e-18 2.590561771e-18 8.857655284e-19 7.947993916e-19 1.125128104e-17 1.902842689e-17 3.128803073e-17 3.091627624e-18 3.285223192e-18 4.534939744e-19 1.484316264e-18 1.166469777e-17 0 1.002552137e-18 8.313367808e-18 1.035208252e-18 2.090369336e-18 4.43260956e-18 1.816359119e-18 7.402258461e-18 3.403725676e-18 6.678004087e-18 7.427985701e-19 0 3.69448255e-20 3.706795467e-18 2.848844556e-18 6.02494915e-18 1.184824738e-17 1.650088975e-17 3.876698307e-18 0 0 0 3.312922084e-20 0 5.491191551e-18 8.213364694e-18 1.677666123e-17 1.330326531e-21 1.282742561e-17 5.428263223e-18 1.588962376e-18 3.157417525e-17 7.101294417e-22 0 5.692322057e-26 5.493992488e-17 0 1.606741531e-17 2.248588745e-19 0 4.947296144e-22 0 1.270945243e-18 0 8.97914719e-24 3.129196799e-20 2.212854406e-26 0 1.414752255e-22 0 0 0 0 1.050446045e-22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.357111943e-27 0 0 0 0 0 9.30157525e-22 1.417003355e-25 1.639646276e-22 0 0 0 2.493082561e-21 5.6164162e-19 0 2.35110629e-20 0 1.090299914e-18 0 0 0 0 1.058095709e-22 0 0 9.109141407e-19 4.388196155e-19 9.849368928e-25 8.724101284e-24 1.142729737e-18 0 7.057632142e-19 2.012253814e-18 0 0 1.66782797e-18 3.863370802e-18 3.922637964e-18 5.917348844e-19 1.362452705e-18 0 2.807212819e-18 1.249243108e-18 3.659447382e-18 1.412600415e-18 6.950532933e-19 0 5.021201742e-19 0 4.629557793e-19 4.21889653e-19 5.105629912e-18 1.170549986e-18 0 0 0 0 1.858793846e-18 4.47899884e-19 2.947223457e-18 0 9.837464525e-19 5.073980498e-18 1.185822827e-18 6.392905481e-19 9.12783371e-18 1.410418791e-18 1.178769e-18 1.649134296e-18 2.12741468e-18 2.243629483e-18 3.174248198e-18 3.549855267e-29 4.885430492e-18 1.235295247e-18 1.065216184e-17 0 4.976095695e-18 1.725008029e-18 0 8.204957241e-18 1.241108176e-18 9.406878396e-19 2.233956396e-18 0 5.418196431e-19 0 0 3.068641534e-18 0 3.6157194e-18 1.131469365e-18 0 1.1807478e-18 1.940459676e-30 0 4.30683269e-18 2.152511379e-18 4.676862643e-18 4.146313683e-19 0 6.700313406e-18 1.389198226e-18 4.195511006e-19 1.319918276e-18 2.27095265e-18 0 4.699900522e-18 0 1.484300666e-18 1.742212614e-18 1.933485594e-18 4.199561355e-18 9.579383599e-19 0 0 0 1.354426347e-18 0 0 0 2.814030263e-18 4.750317023e-19 1.234352643e-10 3.456754813e-20 9.865828213e-21 4.235659799e-18 8.569592244e-19 6.553030948e-19 0 2.085909292e-18 9.829756444e-19 0 5.764796766e-18 0 4.063043927e-18 0 0 0 4.455168518e-24 7.591457497e-19 0 0 8.910272248e-19 4.57742462e-18 0 0 0 8.565750175e-19 3.296612117e-26 6.326117461e-20 0 0 0 0 0 0 0 0 0 9.06294655e-22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8.072939993e-28 0 0 0 0 0 0 0 7.517723976e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.762764403e-18 0 0 0 0 0 0 0 0 6.474781039e-19 0 0 0 0 0 0 0 6.593499059e-19 0 1.054857702e-18 1.024248326e-18 0 0 0 0 0 0 3.556936577e-33 0 4.674903398e-19 3.614130381e-19 0 4.535470213e-19 1.112340254e-28 0 0 9.050246902e-19 0 0 5.487045849e-19 0 0 0 4.687864649e-33 0 4.388208066e-29 0 0 0 0 0 9.786860917e-19 0 0 7.738160787e-19 0 0 0 0 0 0 6.869110242e-16 4.15745543e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.129007927e-19 0 4.064117855e-19 6.062760184e-19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.458992654e-26 1.342151185e-25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 1.213592735e-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.15355523e-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 2.107871958e-17 3.491413224e-25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.515047946e-15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.735160167e-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.124563959e-14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.021173085e-10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7.758430277e-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.885004098e-20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.449516867e-18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +# Events [PSD/PSD.dat] N: +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 2 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 0 2 0 1 1 1 2 0 1 0 0 1 0 1 1 2 1 0 1 1 3 0 1 2 1 3 1 3 2 0 0 0 2 2 4 0 1 0 0 1 1 3 1 4 1 1 0 2 0 1 3 3 0 1 3 2 0 5 2 4 4 1 1 2 1 1 2 3 0 4 0 0 0 0 0 0 4 3 1 3 1 1 2 3 2 0 0 1 0 2 0 0 0 3 1 0 0 2 1 0 0 0 0 0 1 0 2 0 2 0 0 0 2 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 2 0 0 0 1 1 1 1 3 1 0 4 2 0 3 2 0 4 2 4 2 1 2 2 3 1 1 4 7 2 5 4 1 2 3 1 3 3 2 2 3 2 3 2 2 4 2 6 2 0 4 5 6 6 1 6 2 2 2 5 3 3 5 3 6 2 1 3 2 6 5 4 4 4 3 5 6 5 7 4 2 5 4 5 5 7 2 4 4 3 4 2 1 3 5 5 1 1 5 5 5 6 3 0 3 3 1 2 0 0 1 1 4 4 4 3 2 1 3 3 0 1 2 2 1 3 3 1 0 1 1 0 3 1 2 3 1 0 1 0 0 3 1 1 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 2 2 1 0 1 1 1 2 1 1 0 3 2 1 3 2 4 3 1 1 3 4 1 3 1 5 5 3 6 2 4 2 2 1 8 3 6 7 6 4 4 7 3 6 3 2 4 6 7 8 5 4 7 2 7 5 2 7 6 4 5 12 5 8 4 5 8 10 4 6 6 3 8 7 6 5 11 12 8 4 2 6 9 5 6 6 4 7 7 5 7 9 6 2 6 11 7 6 4 6 8 8 7 4 7 7 4 7 7 7 5 3 4 7 4 5 5 4 3 3 2 2 4 8 3 2 5 6 0 5 2 7 3 4 7 2 3 1 1 1 3 3 5 4 0 2 1 1 0 1 0 3 1 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 3 0 1 1 1 4 2 3 1 5 1 1 2 2 2 2 3 2 2 1 3 9 1 7 7 4 3 6 3 3 3 6 4 9 5 5 3 8 6 8 7 10 13 5 13 6 8 6 8 8 9 5 11 13 14 6 11 2 11 9 13 11 10 8 11 8 10 9 14 13 13 12 14 12 13 15 12 10 6 8 5 11 14 12 9 11 10 15 4 16 14 7 14 15 10 12 14 8 17 11 7 13 11 14 8 12 6 7 9 7 14 8 11 8 14 7 9 9 7 13 8 2 7 10 7 7 7 6 10 10 8 6 7 5 4 1 5 2 3 5 7 3 2 4 2 2 3 2 2 3 3 2 4 2 1 1 1 4 5 2 1 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 2 1 4 3 2 0 1 0 4 5 4 1 1 4 3 5 6 8 2 6 3 5 2 9 6 8 7 8 13 7 11 11 10 12 6 8 1 10 5 19 6 10 13 7 12 14 14 16 14 11 13 9 19 15 22 13 20 17 15 16 11 11 9 21 18 16 11 20 16 17 17 26 11 13 12 19 14 17 20 20 21 18 13 14 18 19 19 21 15 18 11 13 19 24 20 26 9 15 5 24 17 7 13 19 22 10 15 14 4 17 11 11 10 12 18 14 11 9 12 12 6 5 9 12 8 11 11 7 11 16 9 7 11 8 7 14 2 7 10 4 5 13 4 6 5 5 6 6 4 3 8 4 2 1 2 2 3 2 2 7 3 1 0 2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 3 2 3 3 4 4 4 3 3 4 4 4 3 6 3 5 8 1 7 8 12 6 9 12 11 16 13 16 17 11 11 7 11 12 15 12 17 11 8 14 13 11 21 15 13 24 17 13 17 17 15 22 21 16 18 15 14 22 16 16 29 21 13 26 20 21 21 21 25 16 16 20 25 24 13 24 18 23 23 22 32 25 23 22 17 20 19 17 22 31 23 23 17 22 17 24 21 15 21 13 25 25 18 19 23 19 14 21 18 18 19 16 22 17 15 13 15 15 21 16 12 5 11 8 12 13 13 9 5 9 11 16 9 10 11 7 6 12 11 4 3 6 4 6 10 7 9 2 0 4 2 8 3 0 4 3 5 3 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 2 0 2 5 7 4 7 2 7 8 3 7 9 3 6 5 4 14 10 8 9 6 7 5 8 12 10 9 13 12 15 15 12 22 18 23 18 14 11 17 12 21 17 20 20 22 20 24 14 23 22 20 22 22 26 22 27 23 27 21 16 22 20 25 23 31 22 34 28 15 34 23 31 26 22 25 29 32 28 26 23 35 28 32 33 30 31 43 31 38 36 25 25 29 25 32 32 22 25 17 26 33 29 24 36 18 24 28 31 22 21 23 26 16 30 18 13 29 24 17 29 10 25 13 24 22 19 17 18 25 19 22 14 19 12 15 11 15 19 10 12 19 9 12 8 9 5 10 5 6 2 5 11 2 8 4 7 4 3 6 4 3 2 3 2 2 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 2 1 3 4 1 7 2 1 6 8 11 10 5 8 7 6 17 12 16 9 6 14 13 14 20 15 16 14 15 19 15 15 26 18 19 19 15 25 20 20 22 30 15 31 22 19 27 24 27 20 21 23 23 31 30 35 27 27 33 32 33 23 30 27 36 34 33 45 38 34 39 39 33 38 32 35 29 41 34 42 39 37 31 36 29 34 34 38 35 36 42 39 29 29 41 40 34 30 35 36 34 38 39 34 34 25 19 33 27 28 34 32 21 24 29 27 26 17 22 26 19 19 21 25 25 20 18 15 31 13 20 16 17 18 18 21 16 8 16 18 8 20 6 12 11 10 8 8 11 8 6 7 5 3 2 3 7 4 2 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 0 6 6 6 4 4 10 9 5 5 8 6 10 15 8 11 9 8 16 15 12 15 12 15 25 17 16 18 23 13 24 21 17 27 30 33 25 25 29 20 39 18 27 24 28 27 34 29 31 38 35 38 38 43 41 31 31 35 45 39 43 45 47 50 39 39 43 32 41 52 38 43 36 27 27 48 44 38 36 28 48 37 35 45 45 29 42 35 50 35 46 31 32 50 42 40 54 36 41 29 28 31 30 26 28 24 33 44 36 34 43 33 32 33 32 28 32 33 32 26 30 30 26 19 32 18 25 37 20 23 25 27 17 20 24 10 17 18 14 12 16 14 11 12 9 11 10 12 13 7 11 4 9 4 7 4 6 5 5 4 2 4 1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 3 4 4 5 8 9 6 7 7 10 12 15 9 15 16 12 15 20 15 18 16 20 15 23 26 24 25 20 36 26 29 36 29 23 17 29 41 32 25 34 26 34 34 27 34 40 37 39 40 39 37 46 48 42 49 39 43 40 51 68 45 43 46 47 44 33 49 43 46 46 51 46 52 48 66 53 47 40 51 42 44 37 52 55 48 43 48 51 36 36 39 64 33 49 41 47 42 54 50 33 39 46 50 45 45 43 43 36 39 44 49 31 31 29 35 42 38 37 20 32 22 29 34 27 31 25 24 29 30 21 21 28 18 21 19 20 19 27 19 19 12 17 15 11 18 6 13 14 9 8 5 10 8 7 6 6 7 6 8 5 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 3 2 6 8 4 6 3 12 11 5 8 12 11 9 10 19 9 17 17 19 13 17 15 25 32 22 25 28 39 25 24 33 32 26 35 31 24 25 35 39 30 37 52 37 35 46 38 53 34 58 42 46 44 55 48 44 34 36 36 50 49 49 48 44 39 60 53 61 48 52 54 70 53 45 50 59 66 62 47 46 56 59 57 63 58 55 50 57 48 44 58 58 48 66 54 59 44 56 55 45 61 42 36 33 54 42 62 39 50 41 44 55 35 40 39 39 38 37 34 30 27 36 44 21 36 26 29 31 37 31 30 24 29 18 23 31 29 19 25 18 25 20 20 12 23 21 17 14 17 12 8 18 10 16 9 9 7 3 5 6 7 2 1 1 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 7 5 2 5 6 9 4 8 8 6 5 14 12 10 15 11 19 19 21 14 16 23 32 28 19 21 27 25 29 33 33 32 33 33 31 29 32 28 27 36 39 38 39 33 41 45 52 44 38 50 53 43 49 50 51 50 53 51 50 42 58 54 72 62 51 57 66 56 70 61 49 63 52 53 56 58 73 51 64 52 49 62 54 62 61 51 60 57 58 49 58 60 62 66 56 65 78 85 64 66 54 51 55 64 71 50 50 57 51 47 64 50 50 49 43 51 39 47 50 41 50 53 48 43 35 48 39 40 44 42 31 24 22 30 37 29 21 23 35 38 27 25 20 13 13 17 25 12 18 9 13 12 10 15 14 5 10 5 5 8 3 7 1 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 1 4 6 4 6 3 10 5 11 13 15 10 19 18 19 13 16 16 23 22 28 24 37 29 24 26 28 26 23 22 38 37 30 44 30 53 37 38 38 35 47 52 31 42 45 53 49 49 35 52 52 58 71 47 70 65 57 60 55 63 58 69 61 48 50 61 67 65 65 60 80 61 82 72 74 73 58 70 71 63 91 72 59 58 62 55 71 64 68 79 63 51 74 63 67 71 54 68 56 48 64 67 55 73 51 63 75 44 49 59 44 47 59 64 62 69 48 42 49 46 48 57 39 45 45 41 38 40 41 35 31 37 36 34 23 32 29 29 31 28 22 21 20 14 25 18 18 20 14 12 14 16 21 14 12 6 10 11 1 10 8 3 2 2 2 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 4 4 5 9 11 11 10 14 8 8 18 10 10 11 13 19 16 17 20 14 29 26 29 28 29 27 26 22 30 27 49 43 38 36 49 46 45 38 44 46 54 59 67 48 37 43 53 55 64 48 57 60 59 56 45 62 55 60 61 64 70 65 67 75 76 65 88 74 87 78 75 65 64 73 75 89 68 48 83 84 76 87 67 67 63 81 98 58 64 62 73 74 71 75 73 82 58 86 68 59 91 59 83 67 68 71 80 77 69 67 64 83 53 57 46 58 56 54 70 48 60 41 60 52 33 53 50 31 32 28 35 32 40 46 26 31 39 31 44 33 35 27 24 26 22 18 25 19 20 16 17 15 21 13 15 12 9 8 9 7 4 6 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 2 6 10 9 14 9 13 14 11 9 13 19 20 31 18 22 25 26 16 27 22 35 32 46 38 30 37 47 30 35 33 41 42 42 54 41 54 57 51 52 55 37 65 57 49 68 59 62 56 75 66 56 62 73 87 74 66 62 66 79 67 95 81 86 71 87 79 90 85 85 69 80 76 81 69 64 80 79 75 66 89 103 73 79 86 73 77 88 86 87 59 69 83 90 80 83 83 85 83 75 56 84 81 71 78 61 70 80 72 77 51 53 82 56 66 63 56 58 55 69 62 49 57 63 54 44 33 45 54 41 39 34 30 30 38 38 33 33 26 30 24 26 24 18 14 23 12 22 19 14 16 12 4 8 10 10 12 4 12 5 7 6 5 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 3 4 6 8 10 10 10 14 6 10 18 20 25 16 16 23 12 27 32 24 24 33 36 29 50 30 29 49 49 50 46 38 47 53 52 37 34 60 47 49 58 58 49 61 64 65 71 63 60 69 73 71 78 91 89 68 83 79 78 86 81 71 101 80 82 74 72 65 90 72 79 92 95 82 69 87 90 77 93 93 89 80 75 102 86 69 107 81 85 86 72 85 88 75 72 88 84 71 88 66 88 70 82 76 76 47 74 79 64 51 90 64 66 63 67 67 46 73 61 71 65 56 61 53 47 52 60 53 38 60 51 34 44 55 55 47 41 42 32 31 42 44 40 29 28 29 27 32 21 26 23 14 11 13 17 16 14 12 10 6 10 4 8 6 7 2 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 7 3 4 7 10 10 15 5 15 16 9 12 16 24 21 21 29 28 27 29 36 28 22 29 33 40 35 31 38 50 39 42 58 44 50 42 47 54 62 53 65 49 64 67 67 78 54 74 90 71 85 67 82 69 73 73 82 69 67 73 93 87 97 75 84 81 93 112 90 93 93 85 94 82 88 95 91 91 92 86 96 101 94 99 96 96 103 92 97 101 108 85 93 108 93 100 105 110 115 102 78 87 79 94 85 81 98 76 73 75 66 77 69 79 68 78 71 60 73 59 64 66 64 56 60 64 62 58 59 45 44 37 54 39 45 26 31 36 38 30 40 36 27 30 33 26 32 37 25 22 26 17 23 14 18 17 12 18 11 9 11 14 4 4 4 4 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 4 5 3 3 9 4 10 10 11 12 12 19 12 19 26 25 29 24 27 28 26 31 34 29 39 35 34 38 42 47 52 39 36 54 57 56 58 56 60 56 79 59 63 56 67 52 97 80 76 90 107 79 77 76 70 91 80 92 77 96 90 100 112 98 99 97 69 103 103 100 89 96 89 118 119 104 106 104 117 91 87 101 83 108 91 104 88 109 99 109 83 110 107 103 84 80 86 96 96 95 114 82 103 101 87 115 74 95 95 69 77 87 98 70 88 77 74 73 86 82 79 62 58 71 81 74 60 56 66 60 49 55 52 49 53 47 39 43 34 39 41 37 45 33 36 32 39 38 27 25 22 16 25 26 16 22 16 10 26 10 10 10 11 9 3 6 5 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 1 7 1 12 9 18 16 13 19 6 19 21 21 33 23 35 26 26 22 39 30 33 37 32 39 47 33 42 49 45 68 45 50 52 49 49 72 78 69 68 64 65 76 81 70 90 69 68 90 68 79 87 106 95 86 82 98 94 91 80 91 97 88 94 115 102 98 92 94 101 78 103 91 89 92 102 102 114 97 85 78 106 102 119 100 110 103 112 107 103 105 88 98 109 93 113 109 100 105 106 89 107 88 87 102 101 99 90 90 85 85 95 86 93 90 77 82 84 89 69 57 83 54 63 57 57 80 71 59 58 58 61 54 63 52 49 34 47 42 43 32 42 38 40 35 34 35 31 31 35 20 32 16 11 15 16 17 15 17 12 9 7 6 7 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 1 4 8 5 10 10 10 21 16 20 18 15 21 19 25 23 25 21 31 35 35 40 38 46 45 34 58 37 47 59 56 52 55 57 59 54 69 83 57 66 83 78 72 76 70 78 76 75 73 79 87 89 87 80 101 78 84 94 78 72 98 106 107 108 92 105 108 94 104 121 99 87 98 96 94 93 87 118 87 86 98 100 101 120 119 106 100 118 106 115 100 100 100 94 92 110 114 110 108 103 111 98 102 102 87 94 87 86 78 75 94 100 88 95 86 77 77 65 73 87 92 72 64 62 74 72 67 67 60 75 50 62 68 61 41 53 48 52 44 55 47 45 49 48 33 41 30 38 34 27 19 34 17 21 12 17 18 14 12 16 14 13 11 9 7 4 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 5 7 5 12 17 13 16 18 17 14 18 13 29 26 12 39 30 29 39 24 33 44 42 47 51 42 59 46 57 56 53 57 68 51 63 68 72 70 67 77 87 59 79 78 69 95 69 71 95 72 109 80 96 91 87 93 88 96 87 101 88 109 83 102 100 104 79 110 95 92 101 104 94 97 97 103 92 116 96 105 109 94 98 89 110 116 90 83 95 98 100 100 78 89 105 93 87 113 98 98 94 92 102 90 75 107 100 101 93 102 90 76 59 96 81 80 83 83 91 104 74 86 81 76 68 53 61 82 69 77 69 64 59 55 60 50 57 62 57 53 53 43 48 47 34 47 27 26 24 23 25 28 25 13 19 18 19 22 23 16 10 12 9 14 4 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 5 4 7 9 8 11 14 11 16 13 22 19 29 23 27 24 40 32 38 43 40 40 32 53 51 49 61 58 49 63 62 70 58 64 54 69 71 75 68 84 61 76 78 77 81 82 82 77 94 74 86 83 73 104 87 102 88 88 87 76 71 95 108 111 113 86 82 104 100 99 103 99 90 91 93 117 77 104 97 96 107 88 86 95 96 114 82 108 86 91 69 86 104 110 109 92 99 97 113 88 90 74 82 87 97 86 82 100 92 70 67 106 74 84 79 104 93 78 65 95 71 86 83 80 78 70 64 87 66 70 69 62 63 65 53 71 61 48 45 43 37 57 44 46 40 44 30 21 41 34 30 34 20 18 17 19 12 25 19 18 14 8 8 10 5 4 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 10 6 6 15 11 10 26 23 15 24 24 21 22 34 24 25 40 38 54 39 30 48 40 46 51 61 64 66 61 60 61 61 66 76 65 63 82 90 91 86 65 73 82 72 110 81 89 72 86 119 89 84 95 87 87 78 76 83 102 71 84 106 90 83 90 78 90 97 82 93 91 101 81 77 113 92 82 89 107 99 104 90 99 82 83 94 77 99 79 90 91 91 86 92 90 84 76 99 92 95 90 94 89 78 71 70 88 79 77 90 69 80 83 75 106 80 75 79 90 73 73 84 74 79 66 89 78 80 75 92 69 67 58 60 63 65 60 57 47 53 64 55 41 38 32 46 29 30 44 25 28 18 28 18 23 23 28 20 14 8 10 8 7 3 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 5 4 6 8 11 18 17 14 18 17 20 23 16 24 21 33 51 43 34 41 32 43 41 46 56 46 63 68 70 55 68 86 75 68 74 76 66 73 101 85 91 83 72 70 74 81 81 90 84 86 83 85 77 82 75 87 70 84 93 74 80 74 90 77 81 77 86 88 82 97 65 75 91 97 76 106 80 96 75 85 79 76 83 81 78 80 72 77 72 74 81 93 70 64 80 61 88 86 94 86 87 87 79 100 83 97 67 74 86 82 91 88 95 92 77 76 86 89 78 80 92 89 80 101 84 81 82 61 89 71 90 82 68 63 72 66 58 57 70 44 54 54 50 47 43 49 38 51 40 32 37 29 23 24 22 23 22 11 20 20 17 16 13 13 4 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 6 4 6 8 13 18 22 28 24 16 22 22 23 27 25 33 37 29 35 36 48 36 38 66 46 58 41 54 53 61 90 72 75 48 68 77 84 101 95 83 76 94 71 95 92 89 81 83 85 85 102 91 81 83 82 92 87 81 91 94 86 83 91 83 87 96 92 85 67 68 95 82 73 87 76 86 67 84 82 75 91 83 93 70 91 91 76 103 85 71 89 77 79 82 79 86 76 71 81 90 79 89 66 86 97 73 81 82 78 87 94 82 79 79 83 89 86 90 84 87 86 78 93 76 81 84 93 90 79 68 80 63 76 80 69 55 63 66 64 59 58 68 48 44 56 35 36 58 47 32 30 36 27 31 36 29 27 17 15 18 22 10 10 5 5 1 3 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 2 6 8 6 10 9 15 18 19 17 15 18 19 40 25 28 34 40 39 44 48 46 49 48 57 50 74 84 73 68 72 57 55 79 64 85 85 81 96 67 68 85 95 80 111 81 87 103 92 84 83 79 81 75 92 89 79 80 94 72 73 79 87 72 68 68 68 73 74 70 88 80 68 67 76 77 70 50 81 71 62 71 79 67 69 76 66 67 75 74 66 76 83 69 80 74 63 90 60 63 86 89 66 86 80 71 77 74 80 73 78 74 77 92 79 107 79 80 91 92 98 94 100 74 86 87 84 97 96 107 82 85 81 88 93 66 68 75 69 68 71 51 55 60 58 50 50 57 45 26 39 31 29 26 24 23 21 16 26 20 19 16 15 8 9 10 2 2 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 2 1 10 10 4 17 20 15 26 21 21 27 24 44 27 34 29 35 33 49 48 52 52 50 49 62 61 62 64 69 54 70 78 64 86 101 86 91 97 78 96 90 83 83 84 86 91 84 76 91 106 83 103 79 86 92 94 80 89 84 74 84 72 65 74 72 74 87 73 70 84 75 67 64 66 66 64 61 57 69 89 66 57 63 67 56 66 73 62 71 66 66 61 68 51 60 76 72 81 63 72 69 76 73 67 85 74 90 59 72 98 86 76 91 88 97 78 86 96 85 88 70 105 102 83 90 84 81 72 103 85 98 76 93 77 79 88 59 79 62 79 69 56 54 63 45 56 42 37 42 33 25 40 35 25 33 22 24 32 16 26 14 11 17 6 14 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 3 7 6 19 13 23 26 21 20 23 34 27 31 31 37 27 32 40 46 57 51 57 48 59 53 58 63 68 73 70 74 93 73 74 79 83 91 99 79 80 91 85 83 97 86 102 85 91 89 85 86 68 92 90 79 93 74 65 66 63 77 67 81 66 72 72 61 68 63 58 59 68 59 62 54 62 66 60 51 61 78 59 64 59 70 69 59 61 70 65 52 67 44 66 60 59 69 67 79 85 71 76 71 84 82 64 67 69 76 75 89 81 80 79 98 69 89 84 103 95 102 84 81 75 89 101 98 88 104 85 94 100 82 83 64 81 77 82 66 67 62 53 62 61 60 56 61 37 31 46 37 40 28 32 26 21 22 19 15 14 22 14 13 12 3 3 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 5 11 4 16 14 17 19 27 23 30 20 32 39 39 35 28 40 61 55 45 58 57 61 64 67 68 64 87 83 83 79 78 87 91 100 73 92 95 76 83 98 90 99 83 80 104 97 79 88 77 72 98 91 72 80 85 70 72 77 63 64 87 73 71 60 68 72 72 57 76 70 53 56 63 55 63 52 52 66 64 48 48 60 66 77 64 49 41 59 52 64 64 66 73 46 67 48 61 55 62 52 62 63 56 65 81 59 79 76 83 79 80 80 86 98 77 91 91 78 84 105 81 96 96 94 95 71 82 96 96 96 95 78 79 77 71 80 83 71 70 76 61 57 53 61 70 68 52 36 56 37 33 28 31 29 28 23 30 23 21 14 15 15 13 7 5 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 6 7 5 14 22 19 22 36 26 32 32 26 30 40 41 45 41 51 48 40 53 43 69 47 70 70 60 67 55 74 87 117 83 89 99 99 89 94 102 76 88 89 86 79 70 96 101 97 102 98 88 75 86 77 89 83 67 70 67 62 68 69 62 66 48 60 71 56 53 47 60 52 69 51 44 48 46 42 57 53 49 57 56 51 60 55 70 57 47 58 57 61 59 52 50 57 51 64 53 67 54 50 60 79 83 62 78 72 72 74 72 85 79 79 82 82 85 95 82 104 87 89 95 91 94 93 98 89 95 123 101 101 107 78 84 83 77 73 82 70 65 73 62 70 61 53 57 57 52 30 50 39 45 36 33 38 22 31 26 26 19 16 14 14 11 6 5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 2 1 5 9 18 8 25 17 19 30 31 22 22 29 38 49 34 50 41 57 44 61 68 73 54 79 69 76 70 89 79 78 76 103 95 109 123 91 108 100 101 78 91 99 102 90 78 98 100 82 75 88 97 74 95 86 84 79 70 63 63 64 58 76 48 54 61 57 54 57 47 38 50 47 45 46 50 51 56 42 59 41 43 60 57 56 46 36 48 49 36 62 50 41 44 48 58 56 51 62 49 75 62 59 68 82 62 62 62 64 81 57 79 86 85 98 82 101 89 88 91 93 96 92 109 89 84 82 108 112 101 106 100 112 100 90 86 83 78 75 85 74 77 64 62 52 60 54 52 52 34 53 44 41 34 24 35 27 25 15 31 12 15 7 13 11 11 7 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 7 10 11 19 18 16 19 25 19 30 25 29 33 37 51 39 42 52 64 54 56 56 71 67 70 73 86 75 81 101 91 103 86 106 100 93 106 101 107 94 99 100 87 111 124 107 89 109 93 85 87 79 92 86 80 87 61 78 65 59 74 62 42 55 57 61 65 51 52 55 40 39 30 56 43 42 36 47 32 39 52 49 45 48 51 36 44 36 52 43 38 43 40 39 36 39 47 45 55 56 49 51 60 56 68 59 74 65 78 63 69 92 106 71 72 87 100 82 96 98 102 88 94 85 92 104 112 94 112 128 118 108 98 95 83 82 101 89 80 79 71 65 54 63 56 57 44 41 52 47 37 44 27 23 33 24 32 31 29 18 19 16 15 14 5 6 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 7 11 8 17 20 21 24 20 27 40 32 36 39 43 36 49 59 51 72 68 43 53 74 79 61 80 89 70 92 76 113 92 99 101 83 104 99 116 122 104 97 88 107 91 111 95 89 89 83 75 85 90 78 80 77 76 70 50 57 75 63 63 56 59 42 40 57 45 42 45 38 44 29 41 34 38 39 43 49 30 34 41 38 33 41 41 40 34 27 39 37 31 40 47 29 39 45 44 46 64 50 50 57 46 67 50 64 56 68 80 80 96 77 68 84 97 75 88 100 106 119 94 104 95 93 101 119 120 92 119 93 95 102 103 91 80 88 91 80 83 75 68 75 58 72 74 60 44 61 46 42 50 37 37 33 25 32 25 22 23 21 17 14 14 6 8 3 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 4 1 7 11 13 13 14 27 31 26 26 40 34 38 27 43 35 40 47 61 64 55 55 56 85 72 95 71 100 90 95 90 110 103 98 109 120 106 97 111 141 94 83 99 82 98 95 102 104 100 106 94 92 92 80 76 75 73 76 52 55 65 63 45 56 52 54 51 56 48 44 39 40 34 42 34 22 36 31 38 38 27 21 31 42 31 31 39 38 40 40 34 39 39 37 30 23 52 32 37 38 47 55 41 60 58 59 46 59 56 53 63 72 88 86 90 84 89 94 70 90 102 100 90 103 76 106 100 113 125 110 113 110 106 113 107 91 88 96 98 82 70 77 81 94 73 74 82 54 64 69 58 50 50 48 29 31 26 29 17 32 16 15 11 15 11 5 7 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 6 6 8 12 8 16 23 26 23 23 27 26 33 28 42 36 49 49 64 59 64 51 47 81 76 65 84 89 76 91 92 93 96 110 105 110 118 131 108 139 100 119 100 103 100 97 108 84 99 91 91 85 86 72 96 84 81 62 65 64 51 38 56 56 43 40 63 41 34 36 33 26 33 37 35 34 26 29 31 34 38 25 26 28 24 19 31 24 25 25 30 25 23 30 23 32 27 24 47 34 42 39 46 50 60 47 62 62 64 46 79 76 82 73 101 94 90 82 88 101 88 103 105 110 115 108 112 105 102 110 95 99 116 102 103 103 89 98 94 78 82 103 77 89 67 62 68 59 59 51 47 44 52 41 46 37 35 22 33 29 20 22 20 12 15 9 8 5 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 3 8 7 11 14 21 26 22 21 27 31 31 29 41 34 40 48 41 55 45 69 80 59 85 79 79 74 87 102 92 101 91 93 97 108 124 121 137 131 106 104 108 111 117 119 111 105 88 107 104 110 89 90 90 88 82 88 77 50 48 49 58 44 44 36 44 50 47 31 33 30 28 20 17 32 18 29 18 33 21 29 17 21 27 23 30 20 20 17 26 26 30 29 23 27 21 20 27 31 38 35 36 39 43 48 52 58 49 49 66 59 69 93 84 69 88 77 92 116 83 84 123 95 109 122 116 118 127 107 117 128 133 122 116 113 94 103 92 99 83 85 73 80 92 73 78 68 58 61 66 53 48 44 35 38 29 29 23 28 33 26 27 22 13 16 8 7 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 10 7 7 20 12 18 21 30 43 38 35 36 39 28 49 37 59 45 56 57 71 84 70 77 70 92 78 93 86 103 98 113 112 111 103 108 124 134 122 120 102 102 113 107 114 101 104 111 93 94 101 87 91 86 91 80 78 75 52 53 53 36 48 49 39 31 37 42 42 24 25 21 14 17 24 18 21 24 24 22 23 24 20 25 24 29 26 29 22 20 28 18 20 29 15 18 30 21 26 29 35 40 33 32 52 44 48 41 55 75 63 76 63 98 73 90 91 82 94 111 101 103 94 113 120 107 116 120 111 124 118 127 125 100 120 107 109 80 64 85 75 79 66 66 72 71 66 71 55 48 64 55 41 47 33 35 39 42 35 25 29 17 22 11 10 8 5 4 3 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 4 6 10 11 15 26 21 24 28 30 36 26 40 39 47 55 52 59 60 61 72 79 71 73 84 91 84 95 102 100 103 124 131 113 110 115 120 124 134 124 133 120 139 118 95 101 122 113 111 82 83 99 98 81 99 75 78 75 52 47 48 57 41 50 45 27 47 33 45 31 40 28 23 18 24 29 28 29 19 20 13 18 16 22 24 19 20 27 28 21 12 29 26 36 24 12 25 41 25 48 44 39 39 42 50 40 62 40 76 65 79 79 77 84 93 77 104 84 99 109 90 104 105 107 109 96 135 129 99 127 119 136 126 106 115 126 106 109 105 114 117 90 86 100 69 72 67 85 67 78 43 52 38 43 42 39 39 29 29 39 21 27 26 17 10 12 4 3 6 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 4 6 11 6 28 17 37 33 18 26 36 45 36 41 49 45 61 55 63 75 68 83 73 76 79 89 93 105 104 96 94 111 112 119 125 110 131 138 150 107 101 95 111 99 109 94 95 127 95 84 94 103 89 86 96 94 78 64 70 56 66 55 47 44 43 56 38 41 43 37 32 27 28 23 24 24 28 16 20 25 20 24 20 17 30 25 21 23 22 27 24 23 25 19 21 22 29 33 31 36 54 50 47 43 42 66 57 53 62 64 65 67 77 93 69 98 95 102 96 90 128 117 120 111 117 114 134 119 155 132 140 151 124 139 121 113 94 119 100 97 91 97 82 89 97 87 73 65 67 66 41 40 53 38 46 32 40 35 32 42 23 18 22 19 17 12 10 3 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 12 11 9 17 21 25 21 38 45 39 32 41 40 49 59 34 56 61 65 65 81 65 96 84 80 108 96 104 104 103 124 121 128 138 120 136 132 144 122 116 120 130 120 126 104 93 110 87 100 118 96 109 114 89 79 77 71 86 71 50 62 53 35 41 44 47 39 41 42 33 27 22 21 24 23 24 19 27 18 27 22 26 19 24 22 18 21 27 24 22 37 29 23 29 30 26 22 32 42 49 39 40 48 60 58 62 40 67 74 74 82 93 93 105 83 93 104 108 107 96 120 117 100 124 117 112 146 151 143 119 139 136 122 117 117 95 107 89 115 89 88 93 99 97 75 69 47 82 61 51 54 42 45 41 39 42 32 37 40 34 33 21 17 11 10 10 7 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 8 9 18 26 26 25 31 34 38 39 50 27 36 56 47 58 54 64 68 77 81 88 88 92 103 120 104 111 108 101 104 131 134 126 140 133 132 142 136 148 127 142 124 119 112 121 101 102 100 103 102 107 102 97 89 78 69 60 70 57 57 57 52 53 46 38 47 28 32 36 33 22 26 31 24 16 27 19 24 21 29 33 21 23 32 25 18 38 37 28 15 26 23 24 32 25 22 34 50 46 48 41 46 54 63 56 56 66 61 75 74 89 100 86 99 98 86 122 110 109 128 102 113 128 151 131 140 138 122 162 136 132 146 144 143 123 120 112 116 106 107 108 96 84 62 77 84 54 70 61 48 37 69 44 41 39 44 42 36 33 25 19 17 18 10 9 7 2 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 5 5 11 16 13 29 22 27 33 35 45 42 35 35 49 49 57 60 53 65 74 91 77 96 88 96 83 128 109 97 123 132 133 106 113 122 165 134 140 157 145 127 112 143 107 118 108 109 125 109 116 110 111 97 81 71 96 75 78 71 56 55 47 52 46 42 30 44 37 43 30 26 28 23 20 28 20 34 25 21 20 25 28 21 33 30 26 26 19 14 32 31 35 27 25 21 19 24 36 37 45 35 42 54 68 54 62 61 75 71 85 77 97 96 86 102 114 111 108 111 111 117 125 135 109 122 148 144 116 128 141 140 118 113 137 127 141 104 126 118 102 93 94 88 88 97 72 70 74 64 69 52 51 51 57 45 43 38 34 38 25 25 15 18 10 12 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 6 4 10 18 15 24 16 38 26 35 38 34 41 48 38 53 65 58 62 59 67 89 84 76 98 98 103 84 115 128 132 140 149 127 125 148 145 163 142 142 139 132 129 134 122 130 128 126 102 115 129 112 89 98 104 95 86 79 63 77 67 63 63 50 55 48 42 40 38 31 36 26 18 31 24 25 32 29 30 29 19 26 26 26 25 20 26 29 17 22 24 23 21 28 30 32 33 33 56 46 38 52 33 56 47 57 56 53 81 81 93 88 96 91 107 98 97 116 110 120 113 125 121 130 126 126 128 133 149 154 137 141 123 151 143 123 116 128 115 121 98 111 87 66 92 92 95 79 76 77 61 60 65 55 52 43 29 44 38 40 21 27 28 16 15 14 4 6 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 6 10 11 10 16 22 30 31 32 39 36 42 51 47 53 78 73 67 80 82 96 86 90 102 93 98 95 113 118 121 120 132 131 157 157 150 147 133 145 127 154 125 106 135 111 126 103 122 117 117 103 105 90 95 114 89 97 71 65 75 67 53 51 40 41 38 47 57 53 43 28 32 22 22 26 26 27 37 24 29 24 23 28 26 26 26 27 29 21 34 28 27 18 33 34 26 33 39 37 44 48 49 54 55 70 66 60 63 70 60 90 96 92 77 97 102 105 104 108 117 98 128 124 131 132 130 129 137 154 170 177 161 133 141 139 137 109 135 120 96 116 105 84 92 83 92 94 78 64 78 67 60 58 44 43 38 38 55 34 35 44 40 19 22 11 5 10 5 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 5 7 8 10 18 16 29 33 30 37 33 49 39 36 48 50 53 66 66 62 83 70 88 91 89 94 83 105 125 97 109 129 136 131 131 154 152 192 143 170 156 143 148 130 144 123 109 120 127 104 102 105 138 109 86 100 94 99 90 68 74 70 56 56 46 59 47 48 47 43 29 28 27 26 23 28 33 33 26 23 26 37 24 29 23 31 31 27 21 29 27 21 31 18 21 21 25 33 31 51 56 55 39 49 54 44 64 52 68 76 80 82 81 95 85 110 114 125 106 113 126 146 131 122 139 117 140 133 149 160 153 158 149 144 145 170 119 127 138 119 122 126 97 81 80 95 105 90 75 82 60 63 67 64 40 55 51 37 35 41 29 34 23 17 20 12 9 3 5 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 6 4 10 25 12 23 28 32 35 35 38 46 48 57 50 61 52 66 69 96 83 108 96 93 88 109 116 121 102 122 135 114 137 128 155 151 150 145 164 140 158 130 138 124 134 131 136 113 114 107 94 109 127 95 104 97 85 85 97 62 61 61 59 62 55 52 48 40 40 36 34 26 36 22 22 30 21 31 32 20 28 31 24 21 25 33 25 28 29 27 22 28 25 28 20 23 27 26 33 56 57 51 54 62 55 53 45 74 83 75 88 81 109 108 102 97 106 119 138 140 106 131 138 141 122 137 169 157 167 163 152 153 145 140 150 139 118 135 116 132 106 108 104 97 82 93 102 69 77 72 64 59 58 54 47 49 47 41 39 40 45 26 29 21 17 12 11 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 4 8 11 15 13 30 23 35 37 40 56 45 54 53 61 68 64 72 68 91 90 73 105 90 109 108 106 125 136 144 112 128 104 149 156 157 130 165 163 150 148 160 136 151 138 155 145 133 124 104 116 113 121 99 103 96 98 89 88 94 60 73 70 55 56 56 52 59 52 42 29 33 22 27 32 27 28 27 35 31 28 31 30 33 28 26 19 22 28 21 26 36 25 27 29 16 38 31 44 43 51 54 40 68 52 56 66 78 73 84 104 92 98 94 110 117 105 134 120 133 111 138 127 133 131 137 155 142 154 146 158 141 136 175 155 133 123 135 135 130 101 128 113 82 104 90 84 79 73 91 87 60 48 58 54 41 44 39 48 43 32 26 24 19 18 7 6 6 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 3 4 3 12 14 23 30 41 35 36 47 42 42 45 56 53 62 65 72 86 87 90 83 105 97 108 110 114 115 120 134 150 102 146 150 125 145 170 181 163 175 152 154 154 157 137 144 147 151 131 120 120 141 121 124 111 109 106 90 74 59 76 70 68 48 61 60 71 49 43 41 26 27 32 21 36 29 38 30 35 25 33 33 30 34 26 25 33 36 29 37 31 20 29 34 25 37 26 33 36 42 45 51 55 53 69 54 59 72 72 93 89 107 109 120 121 99 102 115 108 124 108 142 134 119 133 153 133 183 131 175 165 171 172 157 139 122 153 138 121 113 120 113 121 104 122 98 96 96 86 83 85 70 52 63 50 47 42 44 44 38 42 32 23 17 18 13 5 3 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 4 9 3 14 17 20 26 33 29 44 43 38 46 52 54 47 61 76 87 71 87 108 104 115 90 116 120 125 106 124 144 151 161 142 150 147 188 166 149 157 156 160 162 136 152 157 141 148 131 149 138 133 135 101 112 117 116 91 103 83 88 84 72 66 58 55 57 61 48 38 39 36 29 28 25 22 23 35 30 22 29 26 32 32 45 30 28 19 39 28 27 24 23 29 30 35 32 43 37 45 46 46 55 46 55 56 69 63 80 67 97 88 107 95 115 115 108 123 128 113 120 136 129 130 170 139 134 141 156 175 143 170 165 153 145 137 167 140 147 131 129 130 111 117 107 86 94 99 79 68 79 58 66 62 57 43 52 42 46 47 38 55 32 24 24 16 12 11 7 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 8 5 10 8 15 24 24 37 50 41 43 45 59 61 50 68 61 83 80 98 90 97 99 96 92 131 110 123 119 155 143 133 155 136 164 178 156 176 175 152 180 149 166 145 163 125 158 138 122 147 125 131 130 127 106 126 104 95 84 88 80 64 70 64 62 53 46 58 43 46 39 26 33 34 23 26 29 34 35 34 26 33 27 29 28 35 29 30 36 34 22 35 22 30 42 24 41 39 35 47 68 51 47 52 61 72 71 89 84 81 86 128 108 111 111 120 126 117 113 121 127 140 136 152 167 150 177 151 147 184 155 174 151 158 153 156 145 143 120 138 127 126 119 121 105 89 80 95 91 70 79 76 60 63 65 69 49 42 46 33 33 35 36 21 19 15 9 8 1 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 3 10 12 17 22 25 38 34 49 54 42 49 46 63 55 60 72 65 81 74 109 94 92 112 116 120 124 121 144 125 124 145 142 177 165 178 175 153 208 175 171 151 152 170 148 152 138 149 127 135 111 135 109 118 126 115 105 94 83 87 74 78 75 54 57 54 64 56 51 58 39 37 27 29 40 30 36 30 34 30 33 30 28 36 22 24 23 24 33 24 22 35 31 43 27 28 38 40 33 47 53 61 48 56 81 71 74 89 80 84 98 99 117 119 110 130 158 131 123 141 134 156 163 152 157 164 147 160 159 178 180 175 176 165 143 145 149 155 133 128 148 113 111 122 121 116 91 105 98 81 83 64 57 41 53 51 36 44 53 40 37 44 28 18 10 12 10 5 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 5 5 6 12 13 22 32 20 36 38 38 52 45 51 52 81 72 82 72 80 92 106 98 103 109 101 128 129 127 128 143 133 157 159 152 142 155 164 175 160 162 168 159 155 157 142 153 133 149 139 150 131 134 120 117 119 120 108 79 80 87 86 63 71 64 48 68 54 38 55 42 48 44 37 31 38 33 26 30 29 34 30 36 26 30 37 29 26 25 32 17 33 29 18 26 33 37 37 43 52 41 49 69 58 62 66 62 84 74 92 87 89 117 118 108 126 122 127 131 147 140 142 152 157 165 168 164 181 172 176 168 148 185 188 180 152 162 154 138 139 151 156 134 120 96 96 105 94 76 85 78 97 73 62 72 52 50 50 54 43 52 33 30 20 31 13 17 10 4 9 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 2 11 12 15 18 19 37 40 50 54 41 55 61 58 67 61 71 92 77 81 100 113 97 113 105 106 137 140 153 142 125 150 169 150 180 171 182 188 184 158 159 163 165 140 151 163 151 137 155 135 128 147 117 130 120 116 110 103 86 79 93 86 70 65 62 54 51 61 53 52 40 34 38 25 32 35 26 20 31 25 31 30 23 34 38 33 36 41 30 37 28 31 38 35 30 39 34 32 32 57 43 53 56 63 76 70 76 85 91 90 90 102 111 126 127 130 130 164 170 131 176 144 138 161 164 186 165 170 156 175 181 189 155 161 173 163 157 174 143 144 133 117 119 107 119 90 78 77 100 80 79 66 45 68 52 63 45 55 38 41 43 41 22 24 15 15 15 0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 4 11 12 18 35 25 34 36 53 49 38 46 54 68 76 69 77 76 90 89 101 96 117 111 124 119 129 145 165 143 165 149 161 170 166 210 181 198 169 174 183 188 162 176 137 148 150 146 139 131 148 132 145 104 118 124 110 102 121 84 80 73 67 57 56 62 53 62 52 50 42 29 34 31 41 35 30 30 27 35 42 27 35 29 39 30 41 44 24 45 34 43 35 34 24 27 37 35 46 44 47 55 55 58 67 76 90 88 85 75 101 88 132 117 152 129 134 132 147 147 159 147 163 151 148 154 173 170 178 188 189 195 192 157 171 154 159 162 125 137 146 143 105 132 115 128 106 97 85 75 67 83 55 76 57 52 49 49 39 38 34 35 22 21 14 11 11 9 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 7 10 10 25 27 30 27 40 45 44 57 53 63 55 62 76 85 79 74 94 108 92 125 102 123 120 126 153 167 147 153 139 164 185 193 184 186 189 163 185 184 188 166 186 166 177 157 178 148 172 129 124 134 133 115 105 113 106 99 87 81 85 98 56 67 62 76 63 38 38 49 30 34 45 30 36 26 42 31 25 28 34 35 32 27 43 29 30 32 32 28 29 37 28 35 28 31 40 40 57 57 49 63 75 74 78 73 87 86 92 116 117 119 123 130 142 139 128 152 145 161 168 166 168 152 156 179 188 191 156 190 190 182 189 150 164 142 168 128 124 120 159 137 116 122 122 90 113 84 98 89 71 69 70 57 58 30 47 42 54 46 28 33 17 13 11 10 10 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 3 11 13 20 26 23 31 33 42 48 48 51 66 81 76 74 72 89 105 90 95 92 115 125 126 124 158 152 131 147 164 169 164 186 217 204 186 173 195 157 175 186 190 196 183 135 175 151 157 167 156 131 139 131 131 134 107 112 88 81 89 71 65 61 70 52 53 46 62 55 41 32 37 45 40 33 40 33 26 29 25 27 38 35 31 32 42 42 31 34 37 37 22 31 38 28 34 47 41 56 66 64 56 64 66 75 88 102 109 115 103 100 113 136 147 138 144 139 123 148 160 163 149 183 190 164 149 197 195 176 189 210 212 178 209 129 165 162 126 139 143 118 144 117 120 97 106 99 93 80 84 70 89 62 70 54 40 51 47 47 33 31 24 30 20 15 8 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 5 13 13 16 18 27 28 42 39 58 48 51 53 70 69 70 91 86 94 111 109 109 114 131 115 160 108 141 169 153 165 164 166 177 184 195 188 197 171 177 196 195 193 180 163 163 181 165 149 154 160 159 142 144 98 127 113 102 102 98 80 68 76 82 73 62 74 53 57 54 38 40 16 44 34 26 29 39 28 31 38 32 31 40 42 30 33 30 39 38 26 38 33 35 33 43 38 39 48 56 71 58 58 75 75 80 84 75 79 99 87 99 141 143 126 130 150 161 175 157 146 156 168 150 164 167 182 183 192 207 206 185 185 189 175 196 174 172 152 160 159 134 115 126 133 116 110 76 117 93 85 87 81 57 47 55 58 58 63 55 40 35 22 30 16 10 9 11 10 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 6 4 15 16 26 24 29 37 33 62 48 48 47 59 61 88 64 92 100 88 89 114 117 110 137 125 119 157 122 158 159 171 139 180 193 199 168 171 189 234 179 182 178 181 149 170 180 158 160 132 158 162 131 137 129 140 114 125 89 121 110 80 82 81 75 72 65 78 62 58 50 34 34 38 29 28 45 31 31 35 36 39 32 47 36 32 44 46 35 31 37 41 37 35 32 38 46 42 32 58 47 68 66 50 53 73 91 87 86 109 104 99 120 119 147 122 130 160 141 153 143 155 156 183 161 183 189 180 190 197 221 206 174 189 175 187 187 190 165 164 147 151 130 138 127 117 114 119 103 109 71 81 84 71 71 81 54 57 57 50 61 35 39 26 24 14 14 11 10 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 4 13 20 21 26 26 32 43 53 49 52 49 49 69 76 67 64 85 98 114 110 104 109 128 122 138 150 156 152 149 149 177 160 182 195 217 195 205 188 205 199 181 197 168 159 180 154 159 136 146 176 138 144 108 134 113 122 113 91 94 88 75 83 69 74 55 66 74 56 51 48 29 47 46 30 46 41 32 30 36 28 34 29 38 39 38 38 34 34 38 40 24 38 39 34 35 39 56 63 59 86 52 57 63 93 75 86 77 103 82 102 120 94 139 133 143 132 145 160 167 167 182 178 177 159 191 175 199 202 203 183 201 201 201 172 169 161 156 154 141 171 138 153 138 136 146 104 118 109 75 90 75 75 85 58 65 56 58 53 51 41 52 41 33 19 19 9 5 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 9 8 16 13 22 38 40 49 53 56 48 48 50 76 64 90 92 89 100 109 105 110 123 134 114 159 137 139 155 161 174 168 186 178 172 191 190 189 210 188 203 201 214 177 183 191 167 157 161 157 162 162 161 131 139 132 109 116 102 99 82 86 92 77 64 61 60 64 41 65 48 39 30 43 36 29 46 25 42 37 40 26 33 40 37 43 43 32 38 35 30 35 46 23 30 36 43 47 48 51 82 68 55 68 74 65 73 88 96 127 132 108 147 125 142 140 142 148 162 172 138 184 206 185 177 165 179 192 190 205 202 206 212 161 189 165 190 157 167 158 161 141 132 147 133 128 108 122 90 85 91 78 82 72 67 67 47 55 47 46 43 47 39 30 20 10 8 4 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 6 11 14 20 28 36 46 38 63 48 48 50 72 79 71 66 76 92 94 107 108 107 141 126 132 147 166 147 174 162 173 158 194 182 186 193 219 206 202 199 228 190 205 175 181 179 193 163 177 155 138 174 143 127 139 133 116 114 108 98 85 95 88 71 63 75 57 84 65 45 32 37 41 38 42 37 34 29 34 27 33 31 38 35 42 34 48 39 35 29 33 35 28 27 25 34 45 40 50 65 70 61 69 76 68 89 85 91 100 105 104 120 140 131 131 166 145 178 160 150 166 159 154 180 168 182 177 198 196 195 218 229 183 178 189 177 193 156 164 174 146 155 129 120 123 146 117 132 110 117 84 86 84 59 68 64 48 59 53 57 54 43 28 27 21 12 15 7 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 7 8 14 19 33 30 35 49 37 54 61 60 49 69 83 86 83 79 98 103 123 124 128 121 141 160 156 149 161 166 163 174 158 202 195 204 206 205 229 186 195 180 159 184 199 203 190 173 162 181 159 132 159 123 129 135 119 109 97 100 96 88 78 69 88 58 73 89 66 43 43 36 32 37 30 42 42 33 39 38 35 33 37 34 40 28 32 30 55 40 33 43 28 33 35 43 37 50 62 65 66 75 79 79 85 70 83 78 111 93 106 119 138 162 148 163 148 182 180 164 188 210 191 169 177 201 198 209 239 212 206 195 193 210 177 180 172 202 136 154 142 142 144 126 131 134 123 103 106 106 99 91 70 68 65 65 46 60 48 63 53 49 30 22 18 13 11 8 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 6 8 9 13 30 32 43 41 39 56 42 45 45 64 77 80 84 95 100 105 110 112 102 139 111 146 148 159 162 166 164 174 208 179 194 240 213 222 188 240 178 205 195 172 156 181 182 174 173 195 158 170 150 151 146 141 121 118 111 125 78 83 89 66 64 70 71 59 49 55 45 47 36 46 30 41 36 48 44 53 44 37 35 39 33 39 30 28 40 43 28 29 36 34 25 39 48 42 40 67 73 78 74 78 86 75 84 91 99 103 109 133 138 133 151 147 178 142 148 168 180 194 184 190 179 208 191 220 234 197 209 211 210 201 181 187 187 183 168 162 150 157 141 126 129 119 147 107 89 99 94 92 72 66 60 64 57 57 53 56 47 53 43 22 14 13 13 9 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 5 4 9 17 27 28 36 46 42 32 59 48 58 68 66 83 84 84 79 85 94 117 113 107 127 149 151 161 168 171 193 182 178 178 194 191 240 233 233 229 224 239 197 199 218 187 189 194 186 187 161 182 171 158 156 152 144 146 106 103 95 120 106 82 75 61 61 85 84 54 58 42 37 41 35 45 43 41 40 40 41 44 42 46 54 35 29 47 36 38 38 39 43 39 36 45 37 41 56 53 70 82 77 82 70 89 105 102 84 93 117 142 128 114 144 154 161 165 162 170 168 170 196 201 174 195 202 197 196 206 239 224 203 209 206 202 184 172 165 169 156 156 166 134 138 127 136 116 116 99 104 86 95 77 75 79 52 46 64 53 54 58 42 31 25 21 21 10 8 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 5 9 6 15 15 28 33 38 42 52 54 65 62 66 96 68 85 78 109 104 113 125 121 147 133 164 168 150 161 182 137 188 184 169 241 215 203 218 230 188 201 217 202 216 188 208 192 198 190 188 171 167 180 143 158 148 156 154 126 125 117 100 98 89 77 61 55 69 71 66 44 47 34 34 30 42 35 48 31 38 28 37 37 40 46 46 37 38 33 40 36 36 46 40 40 38 55 38 53 52 68 69 72 76 68 82 88 76 112 97 118 128 125 123 150 130 156 168 178 199 182 177 203 210 187 242 190 188 217 218 246 230 229 253 216 212 200 169 186 175 174 170 147 174 166 120 116 128 124 102 109 87 75 94 76 81 67 62 68 65 50 42 49 37 27 22 15 11 10 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 5 14 16 20 31 48 40 52 64 60 58 68 90 71 75 77 101 113 110 111 115 111 139 136 128 163 174 180 195 201 215 191 177 227 194 209 213 242 205 230 211 212 231 190 201 189 202 178 182 177 175 168 145 161 147 130 133 123 130 102 97 82 74 77 81 69 65 70 52 53 60 54 40 41 42 37 38 40 38 47 43 44 45 31 31 37 44 40 33 35 40 34 37 47 39 40 35 46 68 64 71 79 69 88 81 89 80 102 113 117 123 129 144 161 152 153 165 173 162 163 179 185 181 196 209 194 219 204 206 200 213 229 207 209 204 182 183 180 161 165 158 151 163 166 149 151 123 105 134 90 103 96 88 91 51 62 57 52 57 53 47 34 32 31 15 15 14 7 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 12 15 13 23 32 44 28 69 50 62 64 74 74 74 59 94 82 101 108 119 122 124 136 135 171 162 172 179 154 197 188 204 193 195 221 226 239 251 218 218 246 192 197 187 202 194 193 172 165 173 149 192 167 164 143 138 131 132 114 122 129 101 99 88 71 80 75 62 82 62 49 48 40 44 33 31 38 36 37 33 49 55 43 44 52 50 33 43 40 47 42 31 55 44 42 40 42 40 61 56 75 85 82 79 91 87 101 98 115 112 125 134 136 157 144 143 153 165 170 184 183 166 217 192 195 178 226 196 216 218 226 220 224 207 207 194 201 174 187 174 163 160 157 158 139 127 131 114 120 98 82 98 85 67 68 65 65 58 75 54 44 34 29 33 28 11 10 10 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 9 5 19 16 27 29 27 35 47 63 63 57 61 71 82 71 71 92 113 107 112 113 115 131 152 149 163 150 154 191 169 181 190 190 222 195 230 235 246 232 230 213 209 188 211 198 205 177 185 179 188 173 164 163 145 153 138 141 128 101 131 110 88 85 96 101 65 62 89 76 65 33 36 44 23 43 33 32 46 35 41 41 44 34 40 40 40 51 37 51 57 34 51 44 45 56 62 37 53 69 72 77 61 73 92 102 85 104 114 105 132 132 150 159 144 165 186 163 176 151 221 180 199 171 188 201 223 225 203 216 221 236 242 197 226 213 197 197 188 192 184 183 173 151 155 146 134 142 107 127 116 108 94 103 82 72 55 71 59 64 63 60 37 36 34 22 23 13 3 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 11 17 17 21 30 34 45 51 59 64 72 80 80 92 74 87 91 106 115 125 151 122 138 129 149 149 155 177 176 168 181 183 201 210 199 238 241 247 238 219 212 240 198 191 230 205 215 217 197 193 167 181 163 151 152 141 136 133 112 107 106 104 79 91 67 83 93 80 74 66 47 38 33 45 27 33 41 49 36 51 47 46 37 35 47 36 39 29 50 46 47 44 36 46 31 36 45 42 52 71 65 83 60 81 92 84 87 105 118 115 126 123 150 147 179 181 184 159 175 195 190 202 212 198 198 204 207 216 227 224 232 223 219 225 194 186 193 197 163 194 193 176 179 176 152 143 129 122 117 111 113 92 76 82 75 63 59 60 50 59 55 40 37 25 29 12 10 10 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 8 15 17 17 27 37 59 56 59 58 61 59 78 86 103 102 102 104 111 119 129 131 127 129 151 177 171 188 179 184 195 222 206 237 258 216 236 242 222 231 226 207 219 200 223 190 204 188 198 188 165 161 163 150 144 166 153 120 112 88 116 104 104 93 86 82 70 90 67 74 47 55 50 47 46 41 39 46 38 50 39 45 37 28 48 51 41 54 42 38 46 54 34 42 47 45 39 53 59 71 72 84 67 77 82 88 96 108 112 117 119 151 155 160 165 129 174 184 200 195 187 201 198 203 196 250 202 214 204 236 216 260 234 245 202 199 194 185 188 175 177 178 164 140 143 150 129 144 116 108 103 102 102 77 71 58 66 57 72 66 54 47 32 30 26 19 12 8 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 5 9 19 21 24 28 39 46 42 44 53 54 66 65 78 74 107 100 91 118 121 128 137 143 169 154 182 180 162 204 169 177 223 191 211 233 219 224 229 218 186 213 235 227 229 203 220 203 223 209 187 159 166 163 156 173 147 143 127 127 89 106 83 98 83 77 79 83 78 82 63 53 44 44 29 47 41 51 37 47 37 49 40 39 43 51 48 43 45 38 50 50 49 48 42 51 48 47 50 54 75 73 83 76 66 95 94 93 108 115 139 138 153 148 171 189 177 171 162 171 212 205 196 201 203 228 251 249 248 233 243 252 226 233 224 209 222 193 187 204 186 189 171 168 152 161 146 132 144 116 129 83 104 108 81 73 67 69 82 66 60 55 71 37 26 26 15 14 7 3 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 6 19 16 18 26 39 34 49 56 59 63 66 69 80 84 79 118 98 121 131 127 142 131 154 152 152 166 181 188 208 193 215 228 231 237 248 226 231 220 254 249 195 217 211 224 197 209 182 201 170 181 186 165 160 174 156 133 122 119 130 115 95 82 104 86 77 80 83 77 65 63 40 47 43 38 43 48 33 51 51 39 51 49 38 60 40 53 35 36 51 57 52 45 45 52 43 49 44 50 79 83 77 77 82 92 92 108 101 116 126 125 142 172 181 159 152 196 191 174 196 192 210 208 216 204 208 212 214 232 245 240 249 212 223 227 200 206 185 195 192 153 185 159 165 137 125 139 143 116 118 99 106 93 80 74 73 61 76 65 57 47 48 44 32 21 18 16 9 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 6 12 13 30 32 32 57 55 60 57 56 67 63 80 72 96 90 97 127 124 127 125 147 150 163 189 177 164 214 198 186 213 225 240 254 225 225 245 227 223 231 248 219 217 207 196 190 186 175 195 213 196 189 180 172 166 140 121 137 98 105 100 94 101 84 56 91 80 75 64 58 54 34 43 41 49 43 36 42 42 46 53 43 42 46 43 47 41 40 49 46 35 48 50 41 36 51 52 59 64 75 89 88 74 88 110 100 101 106 123 134 168 161 176 164 170 170 169 198 196 181 210 203 197 225 222 225 226 222 250 245 232 246 223 247 222 189 177 194 199 180 183 170 162 148 145 139 130 132 108 119 93 102 83 71 81 60 61 56 61 44 54 43 23 31 16 17 10 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4 8 14 22 31 31 40 55 57 54 71 55 57 72 88 89 88 80 117 135 130 119 135 138 153 136 193 164 187 170 174 194 204 200 204 252 246 239 228 250 278 225 228 235 218 199 211 223 206 200 185 208 172 194 158 153 151 130 147 115 94 109 115 97 86 69 88 87 63 86 62 64 33 41 35 35 37 35 36 37 46 45 39 37 47 44 54 41 42 48 42 42 43 44 42 44 38 50 51 50 68 58 78 66 82 91 106 102 116 128 136 138 143 158 144 181 176 178 188 190 180 201 210 180 213 244 208 218 225 234 235 237 229 219 246 223 201 196 202 216 183 170 172 177 161 128 143 140 121 119 109 115 114 79 96 79 61 59 65 73 65 64 52 41 30 28 20 21 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 11 13 19 23 28 40 43 47 47 60 75 61 85 76 96 84 104 106 116 113 127 134 150 144 153 165 168 159 188 173 178 193 217 248 231 239 242 235 246 239 224 221 198 238 195 217 199 186 199 187 193 190 154 150 165 164 151 125 119 101 102 95 101 113 84 74 69 75 68 59 53 54 41 53 37 47 31 45 43 57 44 37 50 44 37 46 41 44 39 48 51 48 43 40 43 45 38 41 57 65 74 95 75 80 96 99 91 101 102 126 110 144 134 142 151 174 186 166 197 196 197 203 222 223 222 210 204 251 266 250 266 247 232 258 231 215 227 210 153 186 188 206 175 161 127 141 135 131 110 111 119 105 73 75 94 86 75 66 61 75 47 34 31 34 15 14 9 4 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 5 5 9 13 22 39 43 53 55 69 54 59 64 68 92 95 75 100 103 133 119 127 154 148 163 166 178 183 193 168 186 197 206 214 194 250 214 246 248 211 219 225 209 210 209 191 204 213 215 195 192 196 191 185 171 166 141 110 148 123 115 121 91 82 87 81 86 76 76 56 61 40 38 41 48 42 48 46 45 42 38 41 40 46 34 34 46 51 33 40 42 46 47 33 38 47 39 49 58 61 72 72 68 68 85 90 94 103 92 119 112 124 155 157 186 133 153 182 185 161 213 220 215 215 207 201 220 206 239 223 233 256 245 260 247 212 235 201 207 178 206 164 163 161 144 144 152 151 138 118 112 108 109 79 86 67 72 57 66 55 58 43 54 34 37 18 20 12 4 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 5 4 9 12 25 37 47 61 46 53 54 72 75 76 75 83 95 110 111 98 115 136 142 147 163 150 165 184 151 175 219 212 182 205 217 241 252 225 249 238 224 245 218 193 235 209 205 203 181 188 179 154 167 167 173 170 163 145 123 148 125 99 106 102 91 71 75 69 98 61 46 43 38 44 35 40 40 50 46 43 41 62 53 42 32 48 42 30 42 42 38 40 38 41 47 40 39 36 49 42 73 84 93 78 86 111 76 104 125 117 116 138 144 167 137 161 171 184 171 216 204 217 208 212 217 235 212 233 224 223 238 246 235 265 244 216 218 222 210 179 178 172 179 157 163 145 137 157 136 102 123 94 77 84 86 83 68 60 61 65 60 57 43 46 17 20 19 12 7 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 7 8 19 17 21 22 25 58 53 51 67 54 54 53 78 84 96 100 113 98 119 123 127 143 163 136 153 178 169 170 177 200 200 197 245 229 256 240 243 225 263 243 241 223 226 203 189 190 176 182 165 197 165 183 159 167 155 164 143 121 110 94 94 95 98 64 71 78 75 78 46 57 40 46 43 46 41 27 37 29 36 45 51 34 52 45 52 37 39 42 41 43 34 41 42 41 44 48 52 62 66 59 75 74 98 90 98 110 111 117 136 155 134 185 165 164 163 181 182 180 189 199 195 208 225 203 233 202 216 222 254 235 217 245 222 224 183 207 215 197 186 171 167 161 139 163 178 145 128 151 118 116 85 81 106 78 71 75 54 46 62 43 51 39 37 26 18 11 6 6 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4 19 23 29 20 33 42 51 51 64 62 45 79 66 93 91 102 104 123 119 120 114 154 114 169 147 156 186 195 192 205 210 200 226 251 242 241 207 243 252 216 243 212 207 218 182 212 197 189 198 168 163 143 154 173 156 148 129 125 121 109 98 98 80 85 81 82 74 62 50 57 58 26 38 50 36 33 49 39 42 40 47 38 38 40 33 36 34 45 41 37 57 40 30 35 37 43 60 58 80 71 78 85 80 88 83 102 115 113 99 146 125 160 164 168 176 168 200 174 218 196 201 194 208 229 225 255 238 239 223 250 231 214 215 217 218 236 187 198 180 192 179 178 168 151 146 151 121 104 104 95 106 88 75 83 82 52 61 75 73 47 46 34 39 25 13 7 7 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 4 9 13 17 28 33 34 31 50 65 65 67 72 75 83 85 93 124 96 114 112 126 144 156 173 148 154 164 153 199 188 207 201 210 248 214 229 267 251 226 206 238 211 223 213 210 216 222 225 193 174 189 166 168 155 146 134 150 133 131 120 101 109 104 99 91 72 81 82 75 73 56 47 55 57 48 47 49 42 45 38 35 44 39 37 56 32 44 44 42 35 52 51 42 47 40 48 47 51 58 77 72 52 85 79 87 94 114 90 119 128 126 139 151 153 159 159 186 178 200 175 218 204 186 198 245 210 213 234 248 259 239 247 223 230 204 220 208 198 207 199 172 168 172 151 138 140 135 134 137 108 88 105 103 95 75 64 73 56 63 68 60 34 42 31 28 27 12 9 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 7 5 11 19 29 31 43 35 43 60 51 70 72 70 77 79 97 91 111 106 129 120 133 133 146 167 174 206 189 180 200 224 211 207 193 245 230 226 226 256 242 220 223 236 199 202 202 204 202 216 173 172 180 180 178 154 163 149 154 120 97 108 108 89 79 90 77 87 91 64 69 37 47 37 43 42 50 53 50 44 37 35 34 49 34 46 47 48 32 44 47 36 32 44 35 36 41 38 47 61 69 72 60 80 89 97 96 106 123 119 117 131 145 146 123 160 176 178 177 197 188 189 226 211 218 220 210 235 230 261 235 244 232 242 199 212 203 199 207 213 169 178 168 152 142 140 151 138 115 114 118 124 94 81 81 77 69 55 57 57 71 45 45 37 38 26 12 11 5 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 8 13 16 24 25 38 38 56 52 68 78 54 71 77 88 98 84 102 111 108 132 127 169 141 169 141 173 181 169 172 192 223 247 235 230 246 239 215 262 243 235 227 251 211 215 193 189 207 182 218 189 178 165 160 182 161 143 158 134 111 102 104 84 83 78 67 73 73 89 60 52 53 51 47 42 51 43 48 40 45 49 43 42 34 64 38 49 38 47 50 50 51 41 47 43 37 49 43 57 82 57 77 71 93 93 100 102 109 117 127 138 145 143 173 169 164 168 175 182 205 226 199 185 214 196 239 222 244 217 246 247 239 233 228 217 210 205 220 187 174 145 193 150 154 162 156 140 130 128 112 125 104 95 97 86 69 76 65 67 54 56 49 44 31 19 22 13 2 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8 10 15 14 28 21 35 38 52 76 59 65 68 71 75 75 99 83 114 117 136 137 125 151 172 168 152 158 197 194 173 222 196 203 237 221 235 258 245 242 203 224 208 214 220 234 213 223 241 194 195 179 186 169 175 150 148 164 139 139 109 93 111 102 98 78 68 79 91 59 52 52 36 35 43 51 47 48 45 57 42 46 46 39 45 41 39 49 39 43 40 45 47 51 38 41 48 55 39 63 64 82 88 77 88 82 103 96 103 120 117 128 131 138 139 162 189 201 178 182 174 211 215 176 198 195 195 210 256 215 250 224 220 236 242 217 197 220 217 183 170 159 159 155 166 159 143 149 133 131 137 111 84 90 96 92 71 73 71 72 74 51 55 28 32 18 22 13 13 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8 13 8 26 17 30 53 56 58 63 73 70 54 79 83 94 93 92 110 99 107 113 122 155 156 165 154 149 176 208 208 191 203 214 188 185 230 229 237 254 239 237 233 228 210 202 204 220 192 203 203 185 188 178 156 159 157 157 118 124 124 98 120 99 105 86 64 70 78 61 51 40 48 34 54 48 40 56 37 44 40 38 39 46 38 65 33 36 45 40 42 50 42 37 52 47 50 41 45 69 89 88 73 94 77 70 107 103 112 98 130 154 156 126 167 151 174 179 194 173 210 197 190 203 209 184 222 210 228 193 261 236 247 221 230 224 226 202 194 209 192 174 152 149 164 158 141 150 134 106 107 101 102 116 78 77 73 66 61 64 46 52 40 44 36 22 17 12 7 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4 8 8 23 25 33 48 38 59 47 63 64 61 80 73 82 97 100 102 103 111 125 140 142 140 155 156 165 182 188 175 189 186 218 204 227 227 239 241 263 243 254 211 203 224 211 230 187 171 212 176 173 188 141 154 171 160 154 135 130 128 110 105 100 85 94 77 86 80 57 52 59 41 42 34 47 41 43 47 45 38 44 37 41 50 48 40 52 39 53 52 40 46 47 31 40 44 38 60 63 70 77 68 86 86 91 78 99 106 99 134 134 142 166 147 170 172 205 179 192 168 210 204 223 237 222 238 218 199 235 256 223 247 248 207 214 230 214 158 184 185 168 169 168 185 155 148 130 141 124 110 98 110 93 101 77 73 57 88 69 49 45 41 37 30 22 15 11 6 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 4 3 11 17 33 26 30 46 73 71 73 67 69 83 84 78 93 108 113 107 119 136 127 155 155 176 168 188 192 194 177 217 187 200 223 229 236 234 258 262 266 244 221 230 220 205 190 205 199 176 194 183 187 185 156 143 164 152 141 135 114 118 110 108 78 87 66 74 70 69 67 56 41 46 41 38 43 48 39 47 38 30 43 52 42 35 45 31 43 38 41 51 38 48 52 51 45 39 54 65 76 81 85 78 85 92 87 106 113 112 135 151 127 158 157 178 147 184 209 184 229 201 213 208 210 188 232 223 216 236 269 224 260 212 244 210 221 175 193 186 184 161 166 165 177 147 141 151 143 118 104 95 125 81 70 91 81 68 61 57 53 57 40 33 35 23 25 14 8 7 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 7 9 8 20 30 29 47 50 57 37 57 60 63 61 78 78 95 112 100 88 121 134 146 130 165 145 184 182 201 172 184 191 218 201 232 238 223 253 262 222 217 246 215 214 245 212 195 185 199 185 200 183 184 169 196 162 147 136 134 150 110 106 92 98 87 75 98 89 73 65 56 54 46 43 47 53 48 44 41 43 46 52 48 40 31 41 44 46 41 40 38 35 41 45 37 45 49 37 71 70 64 71 83 76 79 90 87 127 114 119 116 123 125 152 161 174 178 174 200 155 192 203 216 188 206 235 208 222 249 231 248 246 260 233 224 221 251 199 207 178 195 155 185 170 158 125 156 124 141 128 113 123 115 70 71 78 78 63 61 67 63 49 55 36 33 23 17 15 6 4 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 9 10 24 27 22 34 52 64 63 63 65 63 67 68 81 98 95 112 104 146 123 159 146 146 153 160 201 177 198 198 217 198 215 249 202 278 245 262 222 267 237 220 243 204 239 218 211 201 195 193 196 164 162 156 168 164 141 142 113 134 124 85 103 85 95 97 100 84 66 61 46 51 41 48 51 52 45 46 34 37 51 44 54 40 34 50 40 42 41 47 52 44 52 51 42 45 43 36 55 67 84 111 92 78 93 113 93 122 128 128 113 151 139 159 178 171 164 174 187 189 198 204 192 207 228 232 239 246 231 226 240 200 247 236 248 197 200 201 194 177 178 170 168 148 173 137 138 117 111 126 106 92 85 80 80 77 78 65 73 54 56 52 44 23 21 19 13 4 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 11 13 19 33 33 40 48 50 67 75 67 52 84 81 82 77 94 113 115 135 115 144 134 152 159 159 163 167 181 213 207 220 198 212 209 238 230 241 244 241 210 206 226 210 228 220 203 201 173 176 196 171 175 185 172 157 129 139 108 118 101 97 110 95 79 80 82 74 66 58 49 51 59 44 41 35 35 52 36 49 40 41 37 44 29 35 39 36 39 38 38 48 40 42 46 49 54 41 66 64 79 78 67 73 97 86 99 118 105 116 144 146 145 181 158 178 172 183 186 168 194 192 214 199 193 216 223 237 228 218 261 272 242 216 225 219 188 206 195 181 167 176 157 168 145 133 139 152 109 106 96 95 86 81 74 92 64 54 60 59 50 41 39 30 25 21 11 8 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 4 15 21 24 27 47 39 59 52 63 63 57 70 77 69 74 87 94 123 120 139 152 158 159 165 149 181 183 166 212 185 200 241 213 203 272 239 249 256 229 244 190 224 212 181 218 194 195 196 179 192 165 189 180 154 150 153 132 125 113 123 97 96 90 81 78 65 70 67 43 43 51 47 44 54 24 34 41 37 44 42 30 44 40 44 58 38 50 55 45 40 50 39 43 44 26 45 56 61 68 81 77 75 77 92 77 118 102 126 129 128 122 166 173 175 175 180 179 209 193 186 199 206 209 218 205 187 224 232 255 257 246 215 249 207 233 192 185 218 209 180 186 145 132 113 174 126 109 133 114 108 95 112 91 68 75 78 60 56 54 56 42 34 36 32 13 7 9 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 6 9 7 15 23 33 36 49 44 67 51 68 61 85 99 100 91 103 132 86 106 126 143 137 151 155 169 174 207 185 205 199 215 217 226 240 224 240 224 260 255 246 244 220 233 207 190 214 215 199 186 157 203 178 156 161 157 153 127 125 120 111 89 90 105 80 82 94 76 64 59 44 45 60 39 50 40 36 45 39 44 48 42 54 42 51 38 34 37 43 40 46 42 41 50 40 41 43 46 56 66 74 78 65 74 91 91 104 100 105 127 119 155 150 165 170 184 171 166 192 201 213 196 217 201 197 206 239 254 233 239 225 211 225 233 258 239 197 193 220 182 209 170 151 164 128 161 137 129 116 118 104 101 101 80 78 72 75 67 59 40 59 35 39 39 17 20 14 9 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 3 6 9 23 23 39 42 46 54 65 56 62 58 71 75 105 88 110 107 140 127 141 145 147 138 160 156 172 181 190 206 202 210 201 229 210 249 247 247 218 228 242 210 199 232 236 206 208 212 204 172 184 185 162 182 159 156 164 138 132 120 98 110 105 88 81 75 87 70 78 57 55 40 42 34 41 43 40 46 47 40 54 35 45 36 42 50 55 38 37 38 45 55 50 38 48 43 42 52 74 72 74 70 81 89 100 96 116 103 109 112 120 144 141 166 179 152 176 167 192 196 193 192 212 203 199 242 210 209 216 225 226 231 227 187 220 215 196 221 209 165 204 172 186 150 149 115 139 123 121 133 111 96 85 102 75 75 79 69 60 57 39 46 37 27 26 18 15 5 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 12 9 19 23 28 33 49 55 70 67 63 67 73 87 94 97 94 93 116 133 121 148 129 143 148 156 162 173 197 182 197 229 246 221 238 261 238 261 229 270 230 208 249 227 225 219 211 218 179 206 170 183 163 161 138 145 127 151 121 119 101 97 104 82 73 70 78 83 72 72 45 54 48 42 36 43 36 43 40 39 44 44 42 53 32 48 36 48 38 34 40 47 33 39 55 35 40 53 53 74 69 83 60 105 101 96 100 93 106 125 137 149 160 153 151 186 176 191 173 175 209 214 215 209 208 225 223 250 236 259 255 234 232 207 261 217 225 194 204 156 165 169 163 154 145 162 133 125 128 126 106 91 69 84 74 63 60 72 53 47 52 45 38 23 24 21 6 8 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 1 0 0 1 3 6 9 16 22 19 41 36 44 57 54 57 77 72 76 75 83 96 96 99 100 141 141 152 140 162 150 150 173 169 184 171 193 236 209 209 226 226 241 251 248 245 232 224 207 221 196 214 179 191 189 192 155 156 176 161 156 173 166 120 133 112 107 106 85 98 79 76 88 87 68 66 41 39 42 42 43 40 34 34 49 46 39 43 37 41 43 44 40 38 46 37 55 40 45 44 49 45 41 40 59 81 77 84 77 68 86 95 95 101 109 117 123 147 154 152 164 199 188 175 189 196 195 191 222 224 225 229 239 229 226 249 256 214 244 226 217 222 210 195 183 197 162 169 162 144 150 153 145 153 114 107 107 110 80 72 72 68 60 57 65 51 52 47 43 31 26 19 12 6 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 7 10 11 11 29 38 34 46 52 59 60 48 78 67 84 93 88 107 98 97 105 158 140 156 164 157 185 187 174 190 192 187 194 216 262 260 219 240 240 244 264 225 218 225 215 203 210 214 215 198 189 179 174 204 158 156 153 122 149 129 124 111 108 94 105 79 76 86 71 84 38 54 41 54 51 35 46 39 41 34 31 42 41 45 38 44 55 41 49 46 40 47 39 47 46 28 42 46 47 42 82 81 74 81 65 93 105 98 103 99 125 146 152 143 156 146 184 182 187 207 192 201 198 216 212 213 222 236 236 232 253 258 241 242 216 230 224 190 193 197 170 186 170 161 148 150 135 131 121 115 115 125 95 102 98 69 74 59 63 57 71 49 40 42 27 24 12 12 8 6 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 7 10 15 18 31 32 45 36 62 64 58 64 61 69 85 93 94 122 103 106 124 142 129 149 141 159 166 166 164 192 186 207 209 194 218 197 216 221 239 226 261 242 214 196 236 218 204 194 181 205 199 173 181 163 142 177 171 145 150 139 118 110 112 97 94 72 74 81 68 75 61 49 50 47 34 50 45 48 54 37 48 45 39 43 34 41 38 52 49 44 37 44 33 51 43 36 45 49 39 50 85 85 75 69 82 87 79 92 107 99 136 144 147 142 165 158 164 183 182 183 189 194 209 199 198 226 197 222 227 239 251 230 264 235 239 210 201 205 210 189 195 170 177 168 151 160 144 120 131 114 134 120 91 112 91 63 73 67 70 69 50 40 46 44 30 31 15 7 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 11 10 18 26 29 49 37 54 61 65 77 69 80 95 93 104 94 94 111 111 121 138 144 157 175 180 177 210 182 194 199 219 208 231 201 247 237 227 240 228 221 214 210 224 228 233 214 193 201 169 183 176 170 176 175 152 142 131 126 124 104 98 102 83 78 83 80 88 64 71 62 45 39 35 47 47 45 40 46 40 42 45 32 45 46 54 47 39 47 33 48 38 39 45 41 39 44 64 49 67 92 85 85 86 86 108 99 127 105 128 147 141 148 163 161 153 196 180 174 208 213 198 194 189 210 220 204 222 258 242 270 262 231 231 195 213 199 171 189 186 179 176 198 143 150 143 122 142 137 102 112 111 94 80 77 72 62 44 55 43 55 43 27 30 24 20 13 9 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 4 9 12 19 21 36 41 48 53 46 56 77 51 62 81 97 99 107 98 107 120 133 151 141 141 165 155 156 167 180 183 218 221 232 231 256 242 243 242 238 243 264 208 220 202 199 181 183 208 213 189 177 183 192 162 168 145 161 137 111 114 108 122 88 95 109 71 72 70 53 66 57 34 48 32 43 45 40 50 42 57 37 37 50 33 41 53 32 49 46 42 54 49 42 34 40 38 42 49 65 66 100 64 71 80 84 85 106 122 118 118 142 134 141 160 191 157 168 196 179 217 215 206 185 220 214 244 227 222 216 255 270 232 242 230 215 224 206 208 189 207 173 151 161 125 145 130 136 126 135 109 110 107 97 88 79 86 71 69 69 56 44 46 49 30 31 22 14 8 5 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 3 15 19 20 39 37 48 56 66 78 75 66 69 73 95 97 104 134 120 127 114 134 150 145 153 168 174 169 181 188 203 199 211 220 222 236 237 234 247 247 241 232 213 217 217 200 182 192 184 199 150 167 166 150 159 132 150 134 111 105 114 99 87 84 96 80 61 77 70 51 50 44 39 38 46 51 32 41 34 47 48 47 38 43 52 48 32 38 37 38 43 56 40 43 42 56 52 44 59 67 89 76 80 81 83 102 100 90 117 119 119 143 161 158 160 184 198 187 189 198 215 210 220 214 222 206 226 248 241 243 225 228 221 218 190 218 212 178 199 190 163 165 169 168 163 159 136 113 113 112 103 103 94 81 85 70 58 63 61 53 39 41 34 36 17 16 16 12 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 6 6 17 21 21 37 48 41 47 64 77 72 75 76 71 91 93 82 123 102 126 105 163 158 159 134 175 184 193 194 184 204 196 178 215 220 218 252 247 265 227 230 223 228 190 225 173 194 211 193 192 194 172 190 160 179 151 147 121 98 123 119 94 101 80 92 77 78 83 65 61 54 48 37 53 44 42 23 46 44 47 43 46 38 41 56 33 46 30 44 48 41 45 45 45 38 41 49 63 62 88 79 91 67 65 93 91 97 112 123 100 125 159 151 151 182 165 189 181 181 180 162 199 207 190 217 194 238 225 225 242 250 232 238 253 206 213 211 202 163 195 194 184 142 189 153 152 153 125 121 104 105 104 95 96 79 62 65 68 58 58 58 42 36 36 26 16 8 10 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 4 11 18 37 47 43 35 46 63 48 46 56 80 67 96 99 116 109 109 117 121 150 137 155 148 154 156 172 198 201 220 223 209 205 211 253 241 224 229 242 246 221 195 196 181 239 199 216 222 178 165 187 166 176 156 111 141 141 129 119 99 101 102 87 85 84 75 69 77 52 58 54 43 46 48 59 38 42 38 33 40 40 54 38 47 42 40 47 44 42 56 42 39 31 46 45 45 52 55 64 79 61 82 97 97 111 111 109 102 115 125 143 164 157 160 174 180 159 176 176 210 202 205 236 210 239 230 233 241 210 225 238 252 250 218 223 201 181 175 184 196 188 146 150 142 166 143 116 115 113 110 108 98 85 68 74 63 83 57 64 50 43 29 30 30 18 4 2 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 7 13 22 23 17 38 36 58 66 58 64 66 51 58 82 83 102 115 108 125 112 135 161 167 155 159 162 173 189 164 195 225 205 212 219 238 218 232 266 221 229 214 222 212 218 204 206 205 176 178 194 183 167 162 152 141 124 125 116 111 109 107 81 115 90 85 71 91 81 64 52 54 43 29 35 45 37 42 35 49 48 54 40 47 42 29 42 31 46 42 39 44 44 38 47 58 40 46 44 78 84 58 69 67 82 99 129 88 100 128 135 160 159 164 149 159 156 182 182 202 201 207 228 211 201 224 222 219 230 250 253 237 204 214 218 211 220 204 187 173 189 177 165 147 147 139 122 119 123 117 98 106 89 86 75 60 80 64 73 68 43 38 41 21 24 20 11 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 11 15 20 19 32 41 44 60 57 65 65 60 61 70 85 84 111 94 95 100 111 134 146 138 150 190 164 180 190 190 198 209 203 224 184 225 217 227 243 231 252 217 206 195 210 191 188 208 208 178 189 181 177 152 149 152 141 129 85 135 113 86 95 80 88 78 79 87 75 55 38 55 48 33 63 51 41 35 37 45 48 39 39 48 45 32 37 35 31 40 37 36 32 30 40 35 49 54 53 69 70 72 69 72 77 94 105 110 130 97 137 150 142 167 138 174 187 171 170 176 185 211 198 188 192 203 224 227 226 238 238 223 227 212 221 218 199 198 187 186 179 159 164 142 132 136 144 126 104 107 98 93 82 77 73 73 65 64 69 54 48 46 35 21 21 12 8 12 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 8 16 11 23 27 46 57 43 57 60 55 66 76 88 93 102 98 81 125 129 117 134 137 165 158 160 160 158 170 201 197 202 208 213 223 239 240 220 243 247 210 209 202 211 204 200 199 186 193 190 161 171 160 152 174 139 129 109 123 121 121 96 95 97 71 75 69 81 72 52 55 50 50 41 40 43 43 41 49 45 42 46 35 45 50 43 41 46 39 48 44 41 35 37 34 51 47 48 57 57 79 75 81 88 82 80 97 102 108 112 138 117 131 166 146 164 176 186 186 186 171 202 205 209 222 215 221 207 192 229 237 236 221 190 225 214 205 211 178 188 186 168 160 163 155 147 118 148 97 88 94 96 85 99 68 77 65 66 71 57 58 48 28 30 22 23 6 6 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 15 12 22 28 24 36 34 48 53 57 63 66 70 80 92 82 114 88 119 125 126 129 159 143 150 153 173 187 182 183 199 179 210 248 226 230 251 258 225 213 205 219 200 191 201 189 178 202 197 218 163 168 162 138 147 136 140 116 123 115 85 88 91 86 82 77 78 84 50 52 48 39 40 33 45 41 36 39 37 41 46 44 45 41 29 46 40 39 37 46 33 38 36 46 25 31 49 56 55 66 75 71 76 79 90 74 111 110 93 110 122 152 137 142 158 136 163 182 176 169 190 218 203 195 227 201 214 218 221 218 266 219 234 219 224 206 182 210 195 177 159 179 153 149 162 129 138 110 114 106 106 74 78 71 84 80 59 51 60 51 49 38 40 30 23 28 8 10 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 10 10 15 20 18 37 58 52 54 59 70 80 50 68 79 93 94 99 109 119 92 123 154 147 134 166 145 169 164 148 160 205 184 236 204 222 238 250 226 247 182 262 195 208 189 207 197 210 175 168 169 167 158 169 166 145 126 137 109 96 99 98 87 90 71 76 79 75 63 45 50 44 54 38 36 39 38 38 45 37 42 48 44 34 41 49 44 44 45 46 43 42 33 36 45 36 44 56 51 78 64 68 64 80 90 101 97 97 113 98 130 150 135 151 155 165 163 180 180 186 194 201 212 201 208 174 198 222 234 213 231 235 226 202 208 200 177 166 173 151 171 155 156 159 150 133 114 127 101 106 112 108 68 75 67 67 73 73 53 58 53 33 29 38 35 25 15 11 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 5 15 9 17 19 46 40 38 43 60 56 63 59 67 80 93 98 104 111 113 143 100 127 162 141 166 152 170 185 188 180 205 190 208 213 268 242 233 192 199 215 212 179 195 188 189 189 177 181 177 182 160 158 133 148 147 136 105 117 102 96 100 70 86 84 68 71 72 69 44 43 53 47 40 32 29 40 40 42 39 37 38 38 41 40 41 45 42 52 41 42 41 26 42 39 49 40 56 58 53 83 85 75 73 81 112 91 99 108 117 124 126 134 148 148 162 192 176 144 179 171 170 214 195 199 196 201 222 216 230 232 217 205 194 215 177 205 186 167 176 191 154 146 130 139 135 111 107 120 104 99 106 78 77 89 67 50 69 58 62 47 46 27 30 29 15 8 6 5 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 7 8 6 14 28 25 30 43 53 67 57 53 51 59 79 82 75 97 99 103 120 121 130 135 144 151 163 155 170 165 158 204 196 211 204 225 199 217 221 210 219 219 188 199 206 192 167 185 171 187 166 183 153 151 159 137 143 124 123 110 99 122 91 90 75 59 90 72 88 76 57 53 45 32 43 38 34 42 43 44 31 52 46 32 50 40 41 48 47 52 49 42 34 41 52 40 43 54 46 45 69 65 69 55 71 89 100 96 110 106 112 127 142 107 147 159 169 150 162 181 175 172 201 216 187 183 204 220 224 231 200 201 207 208 226 189 183 181 187 147 183 174 155 143 152 136 117 157 109 119 115 102 79 96 68 69 59 80 53 59 49 57 38 33 25 25 17 9 7 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 7 12 18 23 26 43 30 37 48 53 63 58 55 81 71 69 92 90 106 83 112 105 131 145 145 144 154 146 144 173 181 185 177 202 202 184 215 216 229 198 180 196 208 171 180 193 166 196 188 163 146 170 141 159 144 114 123 127 122 88 107 101 83 92 66 78 84 77 52 56 38 49 41 42 41 25 36 48 35 46 40 32 38 33 44 32 34 47 38 42 32 49 35 47 42 46 45 45 56 71 66 66 74 74 98 91 97 106 91 115 119 125 119 151 157 156 136 165 154 182 172 184 186 178 197 191 203 217 205 214 212 235 208 204 219 202 197 194 158 155 184 159 145 143 138 125 123 136 126 115 98 99 66 69 71 60 55 60 61 62 42 31 35 32 23 10 16 6 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 6 9 7 14 13 29 33 29 50 44 54 67 44 67 87 67 63 98 97 102 114 110 115 141 128 123 135 133 160 170 169 185 194 196 185 213 200 212 225 216 211 218 225 163 227 184 176 172 171 171 173 152 147 150 156 153 142 125 118 107 101 101 95 80 90 74 69 66 65 51 48 47 48 30 42 37 40 40 42 36 37 42 47 34 55 48 50 48 34 27 47 42 34 53 43 38 45 35 48 53 65 53 58 74 78 84 73 79 89 87 102 117 147 112 131 161 157 153 161 180 172 171 167 206 174 204 213 196 222 184 200 210 211 203 216 200 188 173 172 189 177 164 140 133 146 131 138 125 125 101 110 106 94 67 85 69 60 56 70 52 47 43 37 36 27 22 14 11 9 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 3 6 12 21 22 37 47 49 48 64 49 67 67 65 95 90 84 99 106 128 121 120 142 139 127 145 160 142 170 169 146 181 199 204 207 193 221 214 202 232 219 230 196 184 191 184 173 164 178 152 161 158 140 153 125 136 125 133 120 111 102 89 86 80 64 72 67 71 60 46 32 28 32 36 36 41 41 35 37 45 37 44 28 47 36 34 40 28 47 39 31 39 39 29 35 29 44 49 47 74 64 68 57 77 62 64 78 98 83 126 123 144 150 132 130 149 158 169 170 171 167 190 183 153 193 210 216 186 220 226 250 196 198 226 196 196 194 206 156 161 132 160 136 134 134 133 136 116 94 109 91 100 81 64 87 62 55 55 63 46 43 30 29 21 24 12 10 8 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 3 12 10 13 15 32 33 31 35 46 48 49 62 61 78 72 92 74 114 92 106 96 117 144 139 127 145 139 120 165 168 180 166 197 196 171 203 219 221 193 208 177 195 160 151 168 164 177 159 169 172 186 163 169 127 140 120 121 125 87 105 88 92 92 79 71 59 65 84 57 38 42 39 43 40 42 30 35 37 39 35 32 42 37 34 39 35 42 37 41 47 37 40 46 36 32 41 27 37 60 51 72 67 60 58 87 83 86 76 94 107 128 146 134 147 134 115 147 143 155 177 169 181 185 176 179 184 172 201 210 195 201 215 188 185 190 174 161 170 158 164 169 137 146 114 113 120 122 132 120 91 71 102 94 75 71 71 64 68 57 49 36 31 38 32 15 17 14 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 7 9 18 16 32 32 33 27 55 53 64 59 59 74 60 81 71 81 96 93 114 99 134 126 131 153 133 127 159 146 157 160 186 176 179 187 202 214 207 199 197 188 193 176 168 154 167 185 156 158 138 130 138 135 130 125 131 115 106 87 69 97 69 89 79 63 57 59 38 47 51 42 38 45 32 41 39 45 33 32 32 43 37 36 43 37 28 37 28 34 38 42 30 37 40 39 37 35 46 51 70 66 53 75 80 78 94 97 100 109 105 101 132 131 130 164 161 134 173 161 179 186 164 179 176 190 164 205 213 206 199 212 222 171 188 180 173 159 183 168 136 129 151 130 124 112 126 93 110 89 88 88 76 81 70 51 66 42 53 50 47 30 33 41 26 11 6 7 5 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 8 11 14 19 28 39 35 42 53 44 50 52 55 63 70 72 80 99 107 118 107 120 107 129 122 155 156 140 139 179 142 167 170 184 201 203 194 204 189 208 197 173 171 179 178 169 164 143 165 148 146 135 123 150 151 124 113 100 105 92 77 81 76 66 72 73 64 64 51 56 38 38 45 34 39 40 29 35 38 38 37 46 54 34 42 39 40 34 35 32 34 42 39 31 41 34 33 51 42 57 64 70 59 60 75 80 83 92 83 106 130 120 151 126 156 137 156 143 149 175 160 159 180 187 151 208 205 177 188 227 205 200 198 207 166 184 163 166 169 164 128 132 120 122 125 113 118 95 108 107 92 90 75 79 60 64 58 52 49 56 52 47 28 28 17 12 9 7 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 8 11 11 19 25 34 45 46 41 58 55 60 62 54 66 78 79 84 84 91 101 121 98 120 130 120 134 162 145 152 189 132 174 166 196 207 173 198 170 199 195 203 175 190 165 179 156 168 173 163 145 126 132 140 108 139 110 106 92 66 86 77 87 66 77 68 55 64 59 43 50 37 40 48 34 31 34 35 33 40 34 25 38 29 35 28 36 23 35 37 37 37 42 31 38 45 28 51 41 49 56 61 53 69 65 91 81 70 84 99 105 108 128 140 133 160 139 163 157 157 163 132 170 159 179 156 188 174 176 169 187 213 208 184 198 179 178 144 156 140 135 132 134 129 117 136 116 102 109 82 101 83 69 65 66 63 54 64 46 48 38 36 35 21 23 15 12 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 10 11 17 23 22 36 35 37 49 69 56 42 53 67 66 73 78 69 96 90 110 74 107 126 112 140 139 144 152 164 159 174 191 166 197 189 200 192 193 201 179 195 142 154 167 158 148 173 162 150 152 152 123 131 112 123 127 99 106 74 106 92 71 71 58 56 57 53 60 48 36 30 33 51 46 33 25 41 39 33 35 37 40 31 23 35 30 38 31 27 38 34 31 36 46 25 29 42 49 58 62 56 43 65 68 96 67 100 96 94 117 112 114 120 128 153 151 150 140 159 141 163 169 151 177 155 164 221 183 207 199 174 192 172 190 178 168 178 144 155 147 148 124 124 104 116 118 94 104 93 80 78 66 65 79 62 61 49 47 44 53 26 34 36 19 16 6 5 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 2 12 13 15 20 30 31 54 45 46 52 55 56 62 53 64 64 96 95 94 97 108 116 141 130 131 147 129 144 117 178 167 169 160 187 188 185 185 193 185 175 166 177 152 154 155 166 142 161 139 134 136 129 167 116 135 118 114 88 85 72 81 69 65 69 57 65 79 67 51 44 34 31 41 49 32 44 31 41 32 30 26 35 36 31 34 31 38 37 30 27 37 39 33 14 35 41 40 46 50 60 79 69 66 71 63 90 82 97 89 100 115 133 120 132 123 140 128 142 156 154 154 169 179 147 169 180 209 180 173 190 210 178 165 183 145 154 155 125 142 122 109 135 119 112 105 94 101 100 97 92 84 79 70 62 55 53 69 57 41 37 39 28 27 20 19 13 5 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 4 8 13 19 38 35 48 36 44 55 55 60 57 54 54 82 72 83 74 68 87 87 124 104 122 128 125 139 149 180 137 181 185 164 189 171 189 205 187 208 163 179 173 168 149 149 163 169 162 159 118 131 147 123 134 140 121 117 85 91 76 85 88 76 53 54 57 48 43 62 44 34 37 20 38 30 34 33 35 45 41 29 44 24 36 41 35 35 34 28 39 31 36 33 39 34 41 35 43 39 56 70 50 72 64 61 73 93 68 100 112 111 112 125 139 146 121 139 141 151 154 183 156 169 172 172 170 173 191 189 193 197 195 170 175 183 146 166 144 142 156 123 127 132 103 87 108 92 78 82 70 69 61 61 61 56 54 42 40 42 37 39 40 25 16 8 9 2 4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 3 6 16 19 25 30 24 44 45 44 51 43 67 69 61 85 92 84 83 81 125 114 98 113 128 127 135 159 138 149 157 149 140 185 166 197 181 193 186 167 181 188 152 164 156 156 173 141 149 145 136 124 132 132 114 111 130 93 87 82 86 72 73 68 57 53 37 44 59 46 31 33 40 35 31 30 31 37 44 30 26 28 29 33 27 35 29 24 38 24 36 42 24 34 28 35 48 32 36 61 63 52 63 74 52 65 91 81 64 90 90 96 110 144 113 127 147 111 157 164 132 144 155 191 180 179 178 173 171 166 175 195 169 200 170 176 138 137 158 140 147 142 140 113 108 103 106 97 98 104 80 76 65 49 64 65 43 53 43 46 39 30 30 27 15 15 8 3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 4 14 14 21 28 19 42 30 45 36 43 42 54 62 64 74 82 83 87 107 108 90 95 117 138 119 114 149 150 136 170 148 172 179 161 167 191 188 188 173 180 164 158 153 145 150 144 148 145 148 140 135 131 97 110 115 125 88 98 78 73 69 77 56 45 54 62 57 36 42 39 36 27 31 32 30 27 30 23 34 25 31 24 17 33 25 31 35 42 30 22 28 34 34 29 33 35 52 41 45 60 58 53 61 61 65 76 82 103 85 94 113 117 124 112 127 125 129 143 158 163 165 144 149 147 159 179 140 186 188 175 192 165 179 167 183 163 135 134 135 131 131 91 110 106 118 103 84 87 87 76 66 77 65 62 51 51 57 48 29 38 39 25 25 19 12 13 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 10 12 20 16 25 27 36 34 46 35 53 50 51 50 61 58 68 75 89 108 92 113 126 117 109 118 132 138 147 133 160 151 168 148 187 166 189 189 152 190 170 186 180 153 151 132 147 149 135 140 111 128 114 110 107 103 93 90 85 81 62 58 63 55 57 55 49 61 37 37 32 34 33 37 28 36 30 37 32 28 23 37 32 33 37 21 21 31 36 28 19 42 35 30 25 36 38 37 52 58 53 37 72 70 59 86 64 78 96 113 120 118 126 139 138 143 137 131 134 134 146 139 153 173 148 155 169 167 154 166 184 179 165 163 171 148 148 140 112 137 130 109 115 104 101 92 94 84 79 62 65 60 50 66 51 51 42 45 48 43 36 39 20 20 14 6 5 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 9 8 11 15 33 23 33 34 40 48 42 51 54 48 61 58 82 80 85 67 75 89 109 89 97 98 129 128 127 128 157 143 132 156 167 180 184 178 140 187 140 153 163 139 169 145 156 122 159 144 126 127 125 121 100 107 100 104 88 73 86 73 74 56 61 62 48 67 60 38 37 38 27 36 34 29 35 19 29 27 32 38 39 35 26 23 35 44 31 30 25 36 24 26 29 28 44 34 49 55 59 50 45 65 60 74 85 66 76 85 78 107 98 119 114 121 137 128 159 114 148 154 138 144 177 156 146 182 173 169 176 153 168 161 164 150 151 144 132 148 115 155 131 120 94 105 86 88 88 72 57 79 57 46 56 51 48 49 48 40 24 23 27 17 21 12 9 3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 5 14 18 21 26 29 40 41 33 52 58 39 63 74 56 60 78 98 81 87 98 115 107 97 106 139 123 133 129 155 139 147 161 154 175 171 172 158 144 138 160 145 146 139 136 136 129 113 142 114 147 103 114 95 119 107 99 83 88 61 81 65 73 56 60 55 61 53 36 50 33 30 37 36 25 38 22 23 38 29 21 26 30 29 25 33 33 38 23 22 31 30 36 28 32 43 51 34 54 58 56 52 72 68 63 74 97 78 89 81 99 122 111 123 122 121 116 143 132 149 144 140 152 149 160 146 173 166 146 167 151 167 138 145 152 139 139 133 121 109 117 115 127 112 112 105 86 74 72 59 67 62 46 56 36 51 50 50 33 40 30 26 21 16 16 8 4 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 5 10 14 17 23 30 29 28 43 34 47 41 37 57 59 59 83 82 71 81 86 91 82 85 112 99 115 128 124 113 141 144 143 152 148 160 169 177 169 161 142 175 150 152 164 120 142 141 115 134 131 130 102 105 93 123 89 85 69 92 87 54 70 56 63 54 61 67 36 42 45 47 29 21 32 29 21 23 18 37 29 34 45 27 21 27 32 28 33 22 32 23 28 34 26 22 36 44 26 47 57 57 62 57 65 61 67 77 69 82 83 88 126 104 106 123 117 115 128 142 159 148 132 145 147 140 143 171 138 154 155 162 153 152 139 122 140 108 113 107 115 113 103 104 99 115 119 98 90 73 77 71 64 69 47 43 50 44 43 40 36 28 23 22 26 13 10 4 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 5 9 11 17 28 27 54 36 45 40 38 44 47 56 60 72 81 75 85 97 66 105 100 115 111 122 89 122 120 114 147 143 147 174 195 162 172 161 146 151 147 136 135 134 157 166 126 151 109 115 102 109 105 115 127 100 93 88 97 81 60 64 68 57 55 43 57 42 39 35 40 38 32 37 19 24 24 19 30 30 31 32 29 36 38 26 29 23 37 24 29 32 32 25 34 40 39 31 58 46 48 55 62 64 61 72 76 81 80 88 99 91 117 108 113 107 117 118 138 151 137 145 140 156 156 155 154 154 145 178 178 157 142 161 161 132 146 134 103 115 109 111 113 100 98 90 78 76 80 67 72 67 54 61 41 36 50 34 35 32 29 27 16 17 12 7 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 11 8 10 25 17 19 21 39 41 35 62 37 52 64 50 67 52 70 70 76 67 74 94 108 100 91 105 125 133 127 126 125 140 132 164 167 185 164 149 157 172 154 140 126 118 141 143 135 129 106 110 100 106 102 106 120 85 92 82 73 66 80 63 60 46 48 53 59 37 35 38 32 32 27 27 25 33 22 26 23 27 27 24 33 25 24 39 31 34 18 25 30 29 28 28 33 34 29 41 58 47 56 59 53 59 68 74 69 70 89 89 107 92 123 112 112 107 119 117 138 154 134 141 127 162 163 149 155 138 138 146 178 172 135 150 114 131 125 124 121 112 103 112 106 92 81 72 87 82 70 91 62 54 55 52 33 40 43 42 31 40 36 20 17 20 12 14 5 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 3 3 14 17 27 23 34 40 39 41 50 42 39 50 56 67 72 60 73 80 74 78 93 98 115 115 108 131 111 115 140 135 132 144 153 158 153 143 148 124 158 147 122 141 145 138 136 109 119 132 106 104 115 97 98 107 87 89 86 73 55 60 61 46 60 49 45 50 52 32 33 32 32 24 19 31 28 30 23 30 22 27 25 27 17 28 27 22 31 24 37 29 20 37 26 27 25 39 32 45 48 58 47 50 51 71 62 62 68 76 74 105 87 95 109 103 111 104 109 105 114 125 121 137 150 139 161 157 145 150 140 164 161 160 145 121 145 123 126 128 118 105 121 105 102 104 86 83 90 73 75 57 52 59 42 40 38 41 44 41 38 24 32 23 21 9 3 4 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 4 10 4 13 15 24 29 33 38 38 37 41 50 44 47 63 58 72 60 66 70 93 87 109 100 112 117 103 119 116 98 106 120 133 129 147 142 166 143 140 149 149 151 139 127 128 137 140 135 129 116 106 128 97 114 100 82 76 81 86 66 59 56 50 58 43 57 46 37 29 41 39 29 29 35 25 29 29 24 35 27 24 30 25 28 24 38 31 24 26 34 35 19 24 23 31 31 40 47 51 53 54 58 51 49 54 67 63 55 79 87 99 77 109 86 111 121 130 125 110 113 131 143 123 165 120 113 151 152 173 140 160 130 125 153 153 131 128 131 101 120 118 100 96 89 103 79 78 82 66 62 64 54 54 45 48 49 44 44 29 38 25 29 20 17 13 8 5 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 6 9 7 12 15 12 30 36 32 42 32 43 48 41 55 65 49 71 59 76 77 82 72 91 92 97 97 99 112 116 121 115 132 134 158 153 168 145 134 163 139 149 143 147 127 120 135 110 120 122 107 102 98 95 100 82 87 77 78 50 65 46 62 58 53 55 48 43 48 46 33 33 25 26 32 27 33 28 26 33 27 22 30 20 31 27 16 26 14 27 29 30 28 20 33 22 34 32 45 47 58 59 43 63 42 68 68 62 52 73 70 82 80 81 106 103 112 104 134 124 114 127 134 132 121 124 144 123 150 129 139 148 144 133 142 125 128 125 103 95 107 99 108 110 112 97 96 81 78 82 62 65 63 62 50 45 36 45 58 33 38 27 22 15 12 12 10 5 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 0 5 11 8 15 16 32 38 25 47 41 39 32 51 70 60 53 67 82 67 78 84 86 90 74 114 92 107 99 128 118 114 117 149 159 143 140 140 145 154 117 132 131 104 100 115 120 118 121 98 116 103 113 101 102 90 96 93 78 77 56 65 56 59 37 36 42 45 37 36 41 23 17 22 20 25 25 19 21 28 25 26 19 36 27 21 21 29 26 26 34 28 30 19 35 23 27 32 28 38 41 58 47 47 52 51 64 58 71 78 87 99 103 100 106 110 97 103 112 107 120 123 126 131 123 143 114 142 142 165 142 157 113 126 130 127 143 124 106 122 113 99 97 95 105 81 73 74 69 59 68 74 55 55 48 42 42 31 50 42 28 22 22 19 13 10 7 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 2 4 11 13 23 25 40 28 42 37 41 42 37 42 48 58 62 57 73 79 88 67 81 101 93 93 98 96 87 101 112 112 122 122 146 142 150 131 146 144 154 132 133 124 109 129 106 115 127 116 96 126 97 99 77 106 92 74 68 63 57 65 48 61 49 39 42 43 45 41 32 27 22 24 23 26 30 24 23 23 31 35 17 22 23 23 30 23 38 26 24 35 19 28 18 22 31 31 37 61 40 46 36 51 39 54 55 67 75 88 73 93 96 84 88 100 96 116 125 103 135 108 122 119 131 131 112 127 161 140 137 148 149 139 131 127 102 103 107 119 112 82 115 93 87 85 86 64 68 69 71 62 50 63 45 43 48 31 40 33 32 23 29 21 12 6 4 12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 10 5 8 19 17 26 28 23 31 28 37 39 44 48 66 63 49 61 70 62 78 76 83 95 77 93 101 107 107 107 120 107 132 123 136 125 127 130 137 145 123 135 122 126 133 126 105 130 98 96 102 90 111 97 93 104 84 70 74 73 50 56 49 48 56 47 50 40 53 33 31 28 29 24 33 31 30 26 18 24 17 21 20 29 38 30 30 34 29 30 28 21 21 19 22 33 19 30 35 41 35 47 45 45 40 52 57 48 58 70 63 95 102 93 95 98 109 115 115 107 98 99 116 125 116 120 126 143 144 142 149 130 142 142 127 121 124 103 95 109 93 120 104 78 99 71 102 68 57 61 53 58 50 50 38 37 40 45 47 35 31 28 27 18 10 14 6 3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 6 21 22 27 25 37 29 43 41 36 36 40 39 48 63 52 63 65 67 86 68 88 88 91 103 103 103 112 119 120 116 117 132 117 135 134 121 139 130 132 124 132 89 117 117 119 113 115 100 121 104 85 72 87 81 80 85 63 65 59 69 48 41 42 45 38 31 26 41 17 23 16 26 30 17 20 14 34 24 21 18 25 19 19 24 20 29 26 15 26 26 28 31 29 26 22 35 54 30 29 33 48 49 53 44 54 64 64 68 97 91 82 81 106 118 102 98 109 122 132 94 127 135 117 119 116 130 127 112 108 128 117 132 117 82 109 132 84 96 97 89 83 84 59 72 75 65 80 51 66 51 41 48 40 33 38 31 38 34 21 23 16 10 11 8 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 2 8 11 11 11 23 28 27 25 33 31 34 38 30 44 41 60 55 49 63 73 76 83 77 95 97 96 99 89 103 109 101 90 125 97 130 151 122 140 144 122 122 146 110 119 112 112 112 97 94 91 100 98 80 98 72 83 71 84 65 52 47 51 56 45 33 44 52 38 39 21 22 22 24 20 29 28 24 18 21 20 24 23 23 20 27 29 21 26 18 19 28 17 17 19 19 20 28 29 27 39 26 43 46 36 55 56 59 60 63 70 93 88 87 94 82 104 107 95 117 121 116 108 119 131 116 124 134 136 136 136 128 108 128 111 113 97 109 113 117 77 99 89 89 101 78 88 78 69 46 60 48 56 58 40 38 40 34 40 37 33 31 15 11 10 9 6 2 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 3 4 8 14 17 15 27 22 30 34 25 30 37 48 53 45 44 71 69 57 63 65 82 59 93 59 92 103 102 92 108 107 117 95 110 132 141 121 129 135 133 114 127 92 95 109 108 101 102 102 113 102 82 90 93 77 66 69 54 55 43 53 62 59 46 42 33 40 30 31 20 27 21 17 17 22 20 21 17 25 20 21 20 14 23 16 21 21 32 28 25 12 28 16 20 22 27 31 30 33 34 38 39 38 45 49 51 58 51 67 78 69 81 86 86 92 95 84 102 93 120 96 120 121 98 101 113 100 114 136 106 135 113 114 125 98 119 91 107 82 86 89 102 88 80 80 68 85 74 49 50 66 55 31 40 38 38 38 31 27 25 28 21 14 15 11 8 6 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 3 7 5 7 12 13 29 21 25 36 25 41 38 35 39 48 40 47 56 59 54 72 63 80 86 78 74 83 92 94 102 119 114 101 110 95 114 125 129 118 116 117 106 117 92 97 94 107 112 96 99 81 87 83 61 74 82 76 72 76 58 64 49 36 44 44 41 33 39 33 32 29 28 16 23 22 23 17 26 28 25 24 14 20 14 16 16 26 20 18 11 25 24 30 29 21 27 27 25 35 42 41 46 36 52 43 46 56 53 52 70 63 73 73 91 74 88 97 77 94 98 102 102 109 100 111 101 88 129 112 125 123 134 116 112 90 106 105 104 95 84 98 81 77 80 70 77 58 67 63 51 54 63 35 41 52 30 31 27 33 26 25 33 19 18 15 10 6 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 3 9 4 5 10 18 22 34 31 32 49 38 45 46 38 42 59 50 66 55 63 72 81 77 94 66 80 89 86 95 79 111 112 121 124 126 106 126 120 99 121 101 118 122 116 102 107 81 92 99 86 87 87 92 85 91 90 71 64 66 50 51 56 39 50 52 42 36 42 43 23 20 21 24 24 32 33 20 18 22 29 22 14 21 20 22 27 23 21 34 22 18 17 16 11 24 31 29 43 37 44 52 44 52 63 54 56 42 60 58 78 76 65 69 75 74 84 93 83 99 96 102 101 108 118 103 115 104 113 119 124 137 133 90 107 86 103 112 105 94 99 93 52 77 74 88 76 74 58 59 50 55 51 46 36 36 34 38 29 35 27 20 21 18 10 14 9 5 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 7 3 11 13 10 22 30 21 35 28 25 25 38 43 47 42 53 62 46 57 62 62 83 71 79 77 68 82 98 73 93 96 99 103 91 115 119 103 100 101 105 105 119 92 100 104 93 105 111 95 98 100 89 83 70 66 77 71 64 46 50 54 50 68 47 38 41 34 31 29 32 33 32 28 27 33 26 29 36 20 35 28 40 22 27 28 29 34 21 23 25 22 29 29 25 18 29 34 44 36 41 53 47 32 46 41 41 51 53 57 71 79 68 90 81 91 88 91 82 109 102 115 103 87 90 93 108 114 112 136 117 105 102 97 127 90 106 101 96 104 78 82 93 86 86 68 71 67 51 53 47 47 38 45 37 35 35 29 36 35 31 19 24 19 12 11 8 2 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 8 12 11 16 14 21 25 33 41 36 31 35 32 48 41 50 54 53 58 51 66 79 67 73 82 57 86 93 90 113 87 107 100 117 103 109 117 103 123 100 107 108 97 120 82 96 106 90 99 85 102 84 69 74 80 68 75 62 54 55 44 61 48 45 43 42 49 54 42 41 38 37 37 28 32 34 26 27 34 26 31 40 38 35 35 29 39 32 35 34 40 38 36 36 26 44 37 43 43 53 49 53 54 41 40 59 63 51 73 71 82 89 81 88 78 85 92 93 70 81 95 84 97 97 125 94 106 103 114 126 120 116 97 97 89 101 81 97 77 86 84 76 56 78 74 75 59 52 46 47 45 40 33 34 30 28 27 35 30 28 26 13 17 13 5 6 3 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 8 6 12 8 26 26 30 30 40 26 21 35 34 34 46 46 42 57 52 68 65 66 61 66 64 83 83 80 100 84 96 86 90 113 123 109 110 119 103 118 108 114 107 99 104 106 84 88 83 97 77 94 89 92 72 87 58 70 57 66 56 48 52 53 61 62 44 55 39 47 32 41 35 33 40 31 50 28 39 44 37 44 49 42 41 36 39 38 30 38 45 42 37 37 36 63 43 50 53 47 42 45 43 56 68 47 77 65 85 75 69 83 92 93 79 91 73 93 111 89 108 95 119 99 116 101 86 115 106 120 104 104 102 117 80 104 88 86 90 69 91 68 70 70 62 52 53 48 46 49 41 38 40 30 42 21 27 14 25 15 22 19 14 8 11 5 2 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 3 7 10 20 21 23 15 26 22 23 29 34 35 42 45 46 49 49 51 55 66 58 64 66 72 60 75 75 84 86 71 82 72 98 92 114 109 93 100 98 105 126 90 109 81 93 89 78 81 85 95 89 66 84 80 72 77 67 69 50 48 76 63 56 60 50 54 40 63 42 43 53 39 51 45 50 48 34 44 44 44 49 47 36 39 43 44 39 38 43 49 43 52 44 34 36 51 51 56 43 67 54 77 40 51 55 55 56 67 77 64 72 71 80 78 77 72 84 106 94 125 103 97 87 102 85 102 96 122 109 107 98 95 89 91 87 98 83 72 84 64 80 65 59 63 56 56 51 46 54 47 45 38 28 32 40 28 23 34 24 16 9 15 9 7 5 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 5 11 9 12 11 17 26 17 29 27 22 34 27 35 40 32 44 59 63 56 47 63 56 60 71 75 71 62 84 70 97 81 85 102 91 110 100 105 113 121 102 98 97 82 84 102 103 95 80 72 83 100 92 75 80 77 77 81 67 78 56 71 63 68 71 52 57 59 44 58 45 44 43 48 50 65 45 55 53 57 51 45 57 47 44 41 64 47 45 53 54 45 41 49 47 53 46 47 38 48 56 71 57 55 54 70 65 78 76 74 83 80 84 84 104 97 79 97 100 86 102 90 91 101 101 86 76 81 116 122 111 103 97 90 101 86 75 98 88 85 71 83 70 70 69 68 45 52 58 48 43 50 30 40 30 40 38 24 33 22 29 31 19 20 8 7 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 5 6 8 13 14 15 20 33 25 32 26 29 35 27 30 40 55 37 53 52 48 71 55 66 60 77 73 83 67 89 82 97 70 117 84 98 83 86 74 79 101 97 103 81 96 89 84 86 88 96 70 89 88 80 74 73 75 76 69 61 53 57 67 56 69 58 47 55 69 68 67 57 46 47 68 57 63 58 56 52 56 47 52 49 67 55 48 54 66 57 55 49 46 55 65 39 48 46 62 65 68 73 70 55 64 75 64 71 79 75 80 76 75 91 95 96 99 113 102 87 94 82 99 98 106 93 112 98 95 100 120 87 102 68 94 102 91 94 85 70 54 68 60 64 66 64 46 40 57 38 51 45 24 36 26 25 26 24 28 17 13 19 23 10 2 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 7 10 11 11 19 12 16 27 18 24 29 25 21 42 32 50 42 41 49 52 68 61 61 61 65 73 75 80 74 64 90 80 82 100 88 100 96 113 101 100 109 88 96 93 92 85 91 95 105 95 87 67 87 81 85 91 76 89 79 57 77 63 64 58 87 52 68 44 66 51 59 54 58 63 57 53 48 61 76 55 55 55 53 55 64 51 67 50 62 57 48 64 66 57 57 58 68 63 74 77 66 76 67 68 68 75 83 67 67 77 78 101 85 77 86 88 89 84 81 75 102 95 108 78 101 79 89 91 94 94 87 87 88 87 85 91 78 69 64 69 81 70 59 77 60 52 39 47 50 42 45 41 36 17 21 23 21 31 19 22 22 12 15 13 7 5 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 1 6 15 7 14 12 19 16 18 28 25 20 30 28 35 25 36 38 41 46 66 39 40 50 56 62 73 73 66 71 60 82 75 76 89 80 84 99 105 104 89 83 66 83 91 93 86 82 98 97 94 87 75 75 96 82 78 81 73 65 63 73 74 70 61 66 82 72 85 79 72 59 59 59 76 69 73 68 66 83 61 61 60 57 79 59 72 76 71 72 54 61 69 65 59 59 69 67 77 75 70 76 78 77 92 79 63 69 65 73 82 82 103 97 93 62 94 78 96 102 72 82 88 107 88 95 96 79 103 94 93 91 92 77 72 77 70 66 83 67 60 74 67 61 63 73 53 36 60 38 37 41 38 34 23 23 31 25 21 20 26 19 17 8 6 4 4 1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 4 4 6 10 11 14 13 35 19 30 22 27 25 42 37 38 31 39 39 40 68 41 60 57 53 53 67 67 59 66 72 85 85 86 68 91 73 106 85 89 84 91 93 93 90 98 90 101 77 76 82 84 86 82 90 86 86 71 72 75 82 57 86 87 74 64 74 66 68 63 56 68 64 77 61 66 63 67 70 78 75 81 78 64 67 73 63 52 62 66 61 70 79 82 72 59 77 62 68 75 65 89 75 75 83 87 72 88 80 79 84 87 78 85 90 65 84 83 101 96 89 101 81 90 81 102 93 101 80 109 99 80 75 82 80 77 58 65 57 78 63 49 53 61 56 51 54 41 41 38 33 31 28 27 21 26 17 19 21 10 28 15 14 10 2 9 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 5 5 9 12 14 19 16 13 22 21 28 26 33 30 31 34 34 40 35 49 43 49 42 62 62 76 74 55 74 70 78 75 78 83 94 79 81 91 81 81 85 83 77 102 92 101 93 108 86 87 95 80 81 74 80 84 94 76 70 76 85 78 93 77 96 81 73 72 67 94 69 77 80 98 76 68 67 84 86 83 63 77 70 86 75 70 65 72 64 66 62 71 62 70 91 75 69 83 72 85 72 85 70 74 62 97 78 84 76 85 68 79 72 89 81 87 77 89 80 64 71 74 75 82 81 83 81 94 72 73 98 92 73 86 70 76 68 53 57 46 52 51 46 50 53 40 41 36 44 46 27 30 26 32 21 30 23 19 21 16 19 18 13 5 5 3 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 7 8 6 9 15 19 19 26 20 21 27 27 32 31 35 37 35 32 48 44 56 43 53 59 52 46 86 54 66 70 56 64 84 76 77 64 104 99 84 79 80 73 85 80 90 80 84 82 85 86 94 82 92 76 84 92 72 81 96 78 73 89 70 79 72 71 77 82 83 84 71 73 87 63 93 67 90 90 76 99 73 77 78 66 87 84 85 77 88 68 62 98 89 79 86 87 73 75 92 67 85 87 79 56 82 90 87 86 70 99 89 86 74 79 69 78 87 74 77 91 79 83 93 72 90 82 88 89 74 78 71 90 76 83 70 74 65 75 48 48 53 56 50 43 47 49 43 37 40 34 38 30 25 31 20 25 12 18 26 18 15 10 6 8 3 5 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 1 5 5 13 6 9 11 12 22 16 19 18 13 28 42 27 22 32 34 37 39 49 50 49 43 46 69 56 56 74 70 66 66 70 71 69 98 77 77 99 73 85 84 75 75 69 91 81 88 81 81 91 98 91 82 85 75 85 75 82 67 86 82 88 78 84 84 81 89 77 70 72 73 82 99 100 85 84 86 78 100 67 82 87 85 82 75 78 76 80 81 77 83 87 76 90 76 82 79 93 91 93 77 85 81 93 85 89 91 90 88 94 74 95 93 82 80 82 89 91 77 103 80 70 92 83 82 69 74 80 68 72 75 70 70 64 56 64 60 50 45 56 46 52 44 38 37 35 35 28 33 34 28 33 20 27 14 24 27 16 16 15 10 13 6 10 4 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 5 2 2 12 14 15 10 16 23 15 21 26 29 26 18 35 33 35 38 45 47 51 49 47 46 54 66 49 54 65 53 66 61 81 73 63 93 92 53 86 78 67 89 73 77 84 93 89 83 90 85 85 94 94 84 82 73 92 83 77 82 79 94 84 90 110 77 69 87 100 70 84 91 71 87 95 96 100 87 70 103 90 86 84 101 90 91 74 93 95 103 90 93 84 99 92 91 98 84 96 100 71 91 85 85 74 81 93 86 80 71 77 90 79 102 74 81 87 115 75 73 81 103 67 81 79 89 74 75 67 68 48 65 59 57 61 50 50 56 58 49 44 36 45 35 31 34 40 35 26 32 35 17 21 25 17 17 13 17 20 15 15 8 7 7 3 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 7 1 5 8 15 12 9 13 17 16 22 15 23 19 23 21 29 24 28 34 37 43 41 62 52 47 64 54 55 53 67 66 59 59 69 65 61 69 67 48 74 67 62 87 99 76 84 73 85 79 75 90 89 87 76 98 71 104 69 94 92 96 89 84 92 104 87 89 90 83 83 87 99 90 114 100 113 99 82 101 115 89 89 108 80 93 77 89 91 112 80 97 101 96 100 74 101 97 96 92 106 81 88 101 90 107 87 101 72 84 99 83 77 90 86 81 84 88 88 69 78 78 80 74 72 78 68 58 67 72 64 70 66 90 59 62 54 48 59 41 45 35 44 42 41 34 29 37 46 30 24 21 35 15 27 24 24 23 18 13 14 9 10 8 3 5 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 3 1 6 11 8 8 15 15 17 14 21 19 33 14 19 23 27 31 39 25 34 32 41 40 44 32 54 35 67 40 52 46 54 75 71 61 75 82 58 71 69 71 69 75 90 70 75 77 74 70 76 101 83 95 113 92 78 112 87 83 96 95 82 88 93 84 98 88 89 104 80 99 97 79 95 98 114 103 88 108 105 98 101 106 83 96 104 98 85 98 111 113 82 92 102 89 94 96 104 100 91 84 99 94 81 100 90 97 101 78 104 86 98 89 86 90 81 80 98 83 93 62 71 89 75 84 66 82 65 71 75 65 53 63 52 69 55 63 60 50 57 34 46 48 36 48 39 40 32 23 23 26 29 23 26 19 13 10 14 19 13 8 10 7 7 6 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 4 8 9 7 14 11 11 18 22 8 15 21 19 16 31 29 29 24 37 37 43 40 42 49 38 46 58 47 61 48 50 64 55 63 57 71 57 65 72 60 67 70 75 72 80 57 71 75 84 78 102 85 86 93 88 88 101 98 98 94 80 103 76 104 92 87 112 84 101 84 104 113 98 83 94 97 95 99 108 103 115 93 89 91 101 86 118 107 89 103 98 104 87 97 89 92 115 85 89 93 95 92 84 95 86 89 91 78 88 101 90 85 74 88 77 78 82 90 76 80 80 67 71 68 66 69 67 62 63 77 67 56 47 62 58 54 57 46 51 50 42 42 42 38 36 29 20 25 36 35 17 24 20 12 14 12 17 17 14 9 9 6 3 3 4 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 5 5 7 11 8 17 18 11 23 21 23 19 19 22 27 22 23 29 32 28 34 36 34 39 46 44 52 48 44 45 49 55 59 54 77 53 61 52 57 75 73 75 70 56 68 79 82 71 77 87 99 79 90 96 81 96 88 87 78 105 101 83 77 96 109 87 98 91 96 86 98 99 119 101 95 96 68 122 102 101 77 91 113 100 109 97 99 97 117 112 95 90 100 88 94 101 115 108 108 88 105 84 105 94 94 87 86 95 86 63 95 89 87 64 83 87 81 80 80 74 63 72 74 68 69 67 69 67 67 55 57 50 52 60 67 61 45 42 38 47 33 41 30 40 28 31 29 30 21 27 16 16 16 18 18 13 17 13 12 9 18 9 9 7 4 2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 6 6 18 11 7 9 16 18 7 14 19 20 27 16 26 37 31 30 24 30 34 29 31 38 42 34 46 41 47 52 49 36 44 46 65 65 67 49 64 59 70 57 71 65 62 70 61 75 78 95 78 80 84 79 92 86 82 92 99 114 89 98 95 104 90 85 93 100 97 83 109 101 94 90 104 115 99 89 96 88 91 98 99 96 78 110 97 88 103 97 86 82 106 99 114 96 88 97 98 89 116 93 101 86 83 91 91 84 85 89 91 81 76 74 69 62 67 68 71 71 55 64 73 58 62 57 69 44 67 47 63 59 35 45 44 53 36 42 46 33 36 29 29 34 30 29 29 21 19 29 21 20 15 19 14 15 15 12 11 5 9 5 9 7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 5 6 6 12 9 7 11 13 13 20 16 20 17 25 30 18 26 27 30 29 22 27 41 32 38 45 44 39 48 46 46 34 44 45 53 57 42 55 58 63 62 60 70 57 63 71 77 63 78 71 75 77 61 70 81 76 87 92 67 83 91 95 80 85 91 92 110 87 83 88 86 87 95 92 82 90 88 100 86 86 98 89 82 97 90 91 98 99 102 92 110 104 84 84 78 100 86 100 77 78 83 60 87 67 73 75 81 78 78 76 78 79 83 76 69 74 65 62 55 76 53 64 65 59 68 58 50 47 45 45 33 49 35 34 50 44 38 43 35 30 36 27 30 29 32 36 26 21 13 20 19 18 16 12 8 10 10 9 9 9 7 6 4 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 7 4 4 7 7 10 5 18 15 12 10 15 15 18 20 16 23 21 19 33 31 22 36 33 40 25 49 45 45 40 47 41 49 44 50 58 41 56 45 64 65 55 50 63 69 67 62 67 63 57 64 71 72 69 65 69 69 73 71 82 76 84 83 77 82 68 80 82 95 81 85 97 91 93 84 92 112 88 74 80 97 72 91 90 92 76 88 91 65 88 78 102 74 91 77 92 82 98 84 82 95 87 85 100 66 87 88 83 71 63 65 79 67 56 68 54 56 54 64 64 65 53 71 50 51 48 52 36 51 38 50 34 46 44 47 32 36 47 41 43 33 37 44 38 29 25 20 29 22 20 17 23 18 16 8 13 10 13 9 9 3 7 5 2 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 3 4 1 3 2 7 1 4 7 9 5 13 14 16 11 14 22 20 17 24 23 29 28 34 30 28 36 32 31 43 52 50 40 43 39 44 49 46 50 49 55 45 51 49 51 50 58 58 61 58 62 64 64 55 67 76 69 67 67 66 81 58 72 71 84 72 83 76 77 70 82 80 74 89 74 72 87 92 80 77 79 80 82 85 93 83 70 83 67 78 83 74 76 83 71 83 81 90 72 88 89 74 82 78 72 82 67 74 62 57 61 71 59 62 67 60 67 79 57 46 61 60 54 55 72 45 59 45 45 52 32 63 49 51 47 36 39 45 34 33 30 29 24 21 27 29 28 26 19 19 16 25 17 15 13 15 15 12 9 18 7 11 9 8 7 6 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 5 3 10 10 5 8 9 12 7 8 10 17 19 21 20 19 22 20 26 29 23 24 29 18 30 26 24 26 25 50 31 45 44 32 39 57 38 46 42 42 49 35 51 39 57 65 48 63 66 53 46 57 66 60 55 63 61 64 63 64 51 64 77 69 72 63 75 83 81 68 60 60 67 75 75 64 70 72 73 75 69 65 70 83 63 71 70 63 72 69 70 62 64 74 74 67 87 80 71 62 72 71 60 52 65 62 61 66 68 51 68 56 54 44 67 69 51 45 52 51 42 43 44 44 38 46 38 33 37 44 45 30 36 39 43 39 27 36 29 18 17 23 29 25 21 24 19 21 26 17 19 16 7 7 16 8 6 17 3 7 8 3 4 2 4 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 1 1 2 3 5 5 11 7 13 11 9 4 10 17 24 17 17 22 23 26 26 26 18 21 21 28 30 32 37 31 35 28 31 39 35 30 27 37 36 27 39 39 55 43 45 36 61 57 60 55 36 45 55 46 58 60 61 50 42 60 51 66 64 65 67 69 64 59 72 70 69 67 64 61 70 72 76 71 78 67 60 66 76 64 72 55 57 61 77 64 65 74 74 73 64 66 61 73 78 58 63 64 66 62 64 68 63 52 53 56 64 55 56 76 49 55 53 44 36 46 45 45 47 40 38 36 42 41 34 41 34 27 41 35 32 31 52 25 37 19 27 21 30 27 22 16 13 20 17 18 18 18 13 19 11 9 13 13 14 10 18 6 6 3 3 2 3 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 2 4 6 7 6 11 5 8 10 7 21 5 10 16 22 18 16 14 20 19 20 26 21 19 31 29 26 28 31 35 30 29 34 29 35 42 40 20 27 46 32 51 40 45 37 38 36 46 42 30 59 55 48 53 58 61 51 47 52 51 46 52 56 65 57 52 66 60 73 57 45 57 49 64 57 63 72 55 68 61 69 60 52 44 53 67 56 60 60 61 69 51 52 64 51 61 65 56 66 60 59 59 48 59 47 57 47 54 45 54 69 40 49 52 43 42 52 46 47 41 63 48 36 32 31 47 40 42 36 37 39 26 23 24 27 38 28 24 21 16 22 13 22 11 15 28 18 16 13 18 14 9 13 8 10 13 6 10 6 7 4 8 3 4 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 4 4 11 6 9 7 7 8 5 16 11 10 8 10 16 12 19 17 15 19 16 20 25 24 21 22 22 15 31 22 26 20 36 30 29 36 35 34 29 46 36 32 31 34 45 52 34 41 49 54 54 47 34 49 44 40 45 59 49 47 48 54 49 38 56 50 53 57 48 56 63 59 45 55 61 56 58 50 54 60 66 57 47 57 50 56 59 45 43 56 53 49 59 46 53 50 50 59 47 51 54 35 41 47 61 50 53 29 43 48 48 36 47 50 55 37 44 47 33 40 33 33 48 49 39 33 36 33 32 30 36 19 32 27 25 31 20 21 15 20 22 18 19 19 24 12 13 21 17 8 14 9 10 8 9 10 6 6 6 1 9 3 2 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 5 5 7 7 2 7 7 5 11 9 10 13 7 9 7 20 16 18 18 13 25 14 25 23 17 13 29 27 26 26 26 24 22 31 17 34 36 32 47 30 31 41 28 32 25 35 46 40 35 29 35 56 32 51 47 42 39 40 48 53 49 35 48 49 38 42 50 33 58 54 46 39 52 48 41 44 45 56 48 51 41 47 51 54 58 43 48 47 48 56 35 55 48 44 62 58 45 44 52 43 49 39 41 47 32 53 39 38 41 40 30 42 38 43 31 30 34 38 35 40 29 28 16 24 37 20 26 22 20 20 21 19 21 25 38 25 26 19 21 14 19 16 21 14 12 17 7 11 10 6 6 11 6 12 6 4 6 3 9 2 5 0 2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 4 3 8 1 8 1 6 11 6 11 11 8 9 9 14 8 14 15 15 9 13 19 11 22 16 21 19 17 18 24 25 26 27 14 27 39 26 30 28 36 26 37 21 20 32 22 25 35 32 39 27 40 39 39 46 26 34 42 44 30 36 45 39 30 35 40 36 45 38 36 35 54 43 56 36 41 45 40 40 38 49 43 40 39 35 44 50 52 44 47 46 37 51 45 35 35 34 39 44 46 31 39 33 34 35 25 33 33 27 32 23 37 37 33 20 29 29 32 30 21 15 32 28 35 40 18 14 31 16 16 20 25 18 19 25 17 18 15 13 17 21 13 17 16 18 5 7 8 13 7 9 6 6 3 9 6 5 6 3 6 5 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 3 1 0 1 7 5 5 3 8 6 5 8 6 8 5 10 9 14 9 10 11 9 6 15 8 11 12 15 15 22 18 21 14 24 15 18 25 18 18 20 27 19 22 23 31 30 34 28 19 22 23 26 32 26 23 33 25 29 31 20 40 38 31 39 22 28 37 34 38 43 31 28 41 38 22 29 37 34 33 29 46 38 32 34 32 38 51 44 34 32 28 30 37 34 28 27 41 31 31 32 28 35 38 28 32 35 31 33 28 21 42 38 29 31 31 35 20 26 24 17 25 19 20 24 23 19 28 13 11 28 20 18 21 16 21 21 15 16 16 15 16 11 18 8 14 8 11 9 7 9 7 8 8 6 8 3 3 3 8 3 2 2 0 1 2 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1 4 0 2 2 2 5 8 6 5 9 6 10 8 4 6 13 3 9 6 6 11 16 11 14 17 9 9 12 15 17 18 16 9 16 16 21 17 14 22 20 20 21 17 28 11 17 20 25 23 30 24 20 24 25 26 31 27 27 22 37 30 26 28 38 26 28 31 22 21 26 29 26 23 26 30 22 25 23 25 28 24 27 31 32 27 27 38 25 25 25 32 26 25 26 32 26 23 23 35 27 18 27 29 21 19 21 22 21 25 23 22 23 25 28 20 14 21 19 23 27 16 25 24 9 15 17 21 13 11 16 13 12 14 18 14 11 11 10 8 10 9 14 11 9 8 8 8 5 6 3 9 6 4 6 5 3 4 8 6 1 3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1 2 1 1 1 4 1 3 3 1 4 6 8 6 7 2 5 7 10 6 6 13 10 6 9 10 10 13 8 6 10 17 11 8 14 11 17 15 16 11 11 19 15 15 23 8 13 16 20 21 14 16 19 23 19 12 26 18 21 19 23 14 13 18 31 26 20 19 16 16 17 18 26 26 20 24 14 24 20 18 22 31 21 28 22 22 26 21 19 28 12 22 21 31 15 18 20 18 21 15 17 23 14 16 19 15 21 16 18 21 23 15 20 10 18 20 19 15 18 14 13 15 13 13 10 16 17 8 8 22 11 17 12 10 10 11 11 7 11 10 11 7 6 8 5 7 6 13 5 7 8 3 3 4 4 7 5 3 1 1 2 3 2 3 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 1 1 2 3 5 4 3 6 3 6 1 4 4 5 9 6 5 9 6 10 8 3 10 10 2 5 9 7 10 9 13 13 7 12 8 5 6 7 9 6 8 20 10 9 10 20 12 15 12 13 18 15 12 12 16 9 16 16 17 16 11 17 15 16 18 21 16 15 15 16 11 26 11 15 18 24 26 16 12 19 13 12 19 21 14 13 20 12 17 13 13 13 13 18 16 13 14 15 13 13 12 18 13 12 11 22 9 7 14 20 10 17 13 16 8 13 10 3 11 11 4 12 8 9 11 6 8 8 7 13 7 10 6 11 9 7 7 3 5 2 4 4 5 2 4 4 2 5 4 4 4 2 4 3 2 4 2 6 2 1 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 4 0 3 1 7 3 4 3 3 3 5 2 5 4 6 2 9 3 2 6 6 2 7 7 4 1 5 7 7 2 6 9 9 11 2 10 6 9 2 9 7 9 13 5 6 5 5 10 14 7 9 10 6 10 6 14 11 12 10 10 12 5 17 5 15 10 9 6 9 7 12 17 10 9 7 9 9 9 10 13 18 13 11 5 14 10 12 16 9 12 17 7 10 8 5 11 1 10 7 10 3 5 12 14 9 7 6 11 6 9 5 9 4 6 9 6 10 8 6 7 6 12 8 7 8 9 5 9 10 9 2 1 4 2 0 6 1 5 5 6 4 2 4 2 4 3 4 2 1 1 1 0 0 0 0 1 0 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 1 1 2 1 1 2 0 4 8 3 2 3 4 2 2 4 1 3 3 1 3 4 4 2 3 3 8 6 3 5 6 2 7 7 6 2 2 5 2 5 4 11 2 7 2 4 4 4 7 3 10 6 7 9 5 6 9 7 3 6 4 8 8 4 9 5 6 2 7 8 5 9 10 6 7 8 9 9 4 5 9 10 8 4 6 7 7 11 5 5 6 6 10 3 5 8 5 6 2 6 10 9 4 7 9 5 8 4 9 4 2 3 6 2 5 4 7 5 2 4 3 4 2 3 5 4 1 4 3 3 1 1 1 1 5 3 0 0 3 1 1 3 2 2 0 1 1 1 1 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 1 3 2 0 2 1 2 1 4 3 1 4 1 2 1 2 3 1 3 2 5 3 0 2 3 1 1 4 0 4 3 2 3 3 1 2 6 1 4 1 2 3 6 1 1 4 5 9 5 2 6 3 1 2 4 7 2 0 5 6 4 2 2 2 4 3 0 6 5 2 3 9 5 4 1 4 7 1 4 5 7 3 2 4 1 3 4 4 4 5 3 1 3 3 0 2 3 1 6 2 4 2 1 4 1 0 2 1 1 3 2 4 3 0 0 0 1 0 3 3 3 1 3 3 1 3 1 0 2 2 0 2 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 1 0 1 0 1 0 0 0 0 1 0 0 1 1 1 1 4 0 2 2 0 0 2 2 1 1 1 0 3 2 1 3 2 0 1 0 1 1 2 1 0 0 0 0 1 1 2 0 4 2 1 2 2 3 3 1 3 1 2 1 2 3 2 0 4 2 0 3 4 1 2 0 1 0 0 1 0 3 5 0 2 1 0 2 2 3 1 0 1 2 1 1 2 0 3 0 2 4 1 1 1 0 0 0 1 0 0 0 4 1 2 1 1 3 2 1 0 2 1 0 1 0 2 0 0 0 1 1 0 0 1 2 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 1 2 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 1 0 0 2 0 0 0 1 0 1 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 diff --git a/mcstasscript/tests/test_data_set/PSD_4PI.dat b/mcstasscript/tests/test_data_set/PSD_4PI.dat new file mode 100644 index 00000000..8d173c4e --- /dev/null +++ b/mcstasscript/tests/test_data_set/PSD_4PI.dat @@ -0,0 +1,933 @@ +# Format: McCode with text headers +# URL: http://www.mccode.org +# Creator: McStas 2.5 - Dec. 12, 2018 +# Instrument: jupyter_demo.instr +# Ncount: 5000000 +# Trace: no +# Gravitation: no +# Seed: 1557975068 +# Directory: jupyter_demo3 +# Nodes: 4 +# Param: wavelength=1 +# Date: Wed May 15 08:19:54 2019 (1557901194) +# type: array_2d(300, 300) +# Source: jupyter_demo (jupyter_demo.instr) +# component: PSD_4PI +# position: 0 0 11 +# title: 4PI PSD monitor +# Ncount: 20000000 +# filename: PSD_4PI.dat +# statistics: X0=-0.142189; dX=140.285; Y0=0.299127; dY=15.4061; +# signal: Min=0; Max=1.99345e-05; Mean=5.17405e-09; +# values: 0.000465664 4.478e-07 4.36906e+06 +# xvar: Lo +# yvar: La +# xlabel: Longitude [deg] +# ylabel: Lattitude [deg] +# zvar: I +# zlabel: Signal per bin +# xylimits: -180 180 -90 90 +# variables: I I_err N +# Data [PSD_4PI/PSD_4PI.dat] I: +0 0 0 0 0 0 0 0 0 7.311770765e-13 1.086283723e-16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.04074204e-13 0 0 0 0 4.372287023e-27 0 0 0 0 0 7.338159334e-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.19836707e-12 0 0 0 0 0 0 1.34440804e-20 1.409925914e-15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.567822131e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.006369923e-12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.823578936e-12 0 0 0 1.581600341e-11 0 0 0 0 0 2.52316499e-11 0 0 0 0 0 0 0 0 0 0 0 0 0 2.768962386e-14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.479387877e-17 0 0 0 +0 8.517303687e-11 0 0 0 0 0 3.815294543e-12 0 2.442504202e-16 0 0 0 8.585725385e-12 0 0 0 1.18689567e-11 0 0 0 8.063387771e-12 0 2.083024398e-11 0 0 0 7.451009623e-11 0 0 2.936428675e-11 1.610876254e-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.479774634e-11 0 0 0 0 1.818014746e-28 7.999288633e-12 0 1.072510484e-10 0 1.971338827e-29 1.077206918e-10 0 0 0 0 0 0 7.177600902e-12 0 0 0 0 0 0 8.204526367e-11 1.965579281e-11 0 1.265837487e-17 0 0 4.405670268e-11 0 0 0 5.864044209e-15 0 5.055879007e-12 0 4.72280282e-18 0 0 7.710046852e-11 0 6.221063302e-13 3.474742052e-12 0 0 0 0 0 0 0 4.049869765e-11 0 0 0 0 0 1.411892429e-11 1.719163157e-28 0 0 0 6.296212256e-12 0 0 0 1.88694897e-11 2.279290946e-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.655680112e-11 0 4.587989947e-11 0 2.558962808e-26 0 0 4.052695203e-12 0 0 0 4.245717898e-12 0 0 0 0 0 0 0 3.956172084e-11 1.190956741e-11 0 0 0 4.788015179e-12 0 0 0 0 0 0 0 0 0 0 0 1.001402989e-16 0 0 0 0 0 0 0 0 0 7.970063061e-11 0 0 0 3.002906945e-18 0 0 0 3.23997849e-16 3.404433578e-11 4.621971532e-11 1.941154762e-23 0 0 0 2.927762415e-11 1.21247893e-17 0 4.820040092e-11 0 1.746126751e-11 0 5.879403455e-11 0 0 2.527075748e-16 1.20880524e-11 0 0 5.074132122e-11 1.836572848e-11 4.010435349e-14 1.992191956e-11 6.148071372e-13 0 1.238416366e-11 0 6.620561004e-11 1.049466699e-10 4.985926437e-14 0 0 0 9.102654831e-12 3.236637614e-11 0 0 0 0 1.182791876e-11 0 0 3.086825549e-11 7.340547264e-11 0 6.177464553e-11 0 0 0 4.170170915e-11 0 0 2.842355119e-11 0 0 0 0 0 0 4.649380996e-14 0 0 0 0 3.225547512e-11 1.705681648e-25 1.370733607e-13 1.682252696e-15 8.082019803e-12 0 2.321736025e-11 3.354467782e-15 0 0 1.847477308e-18 0 6.014249183e-11 0 0 1.904343242e-11 1.25962928e-11 0 1.995118043e-11 9.090684898e-20 1.024149271e-17 0 5.283351724e-15 0 3.249739386e-17 1.115832061e-11 0 8.464503531e-11 0 9.565529174e-18 0 4.014721842e-11 7.824972066e-15 8.951580783e-12 0 0 0 0 5.290844364e-21 0 0 0 0 0 0 +9.005860865e-11 0 0 5.174786953e-20 0 0 6.337912832e-11 0 9.347356602e-15 2.457351334e-11 0 0 9.627031306e-13 2.849397984e-17 0 4.416271937e-12 0 0 2.423284106e-10 0 4.065930118e-11 2.636539054e-11 4.910931437e-12 3.509609691e-11 0 0 0 0 2.992194202e-14 3.683549903e-11 5.023215161e-12 7.08741223e-12 1.426317258e-28 0 0 1.074732238e-14 0 1.892312606e-10 4.795395388e-11 0 1.988703579e-15 1.426377528e-15 9.340781134e-14 2.349442943e-11 0 0 0 1.101807342e-11 0 1.427194823e-18 5.565797145e-11 0 0 2.320321388e-25 4.789117001e-11 4.401394665e-11 0 0 1.115716366e-11 0 0 1.265292414e-11 2.985039142e-11 3.088252604e-11 0 0 4.036993061e-11 0 0 1.110358076e-13 0 0 1.210370463e-25 5.067289121e-15 2.229879146e-10 6.703627714e-17 0 1.090331837e-10 0 0 3.638321077e-11 0 5.147970611e-11 0 0 3.868887215e-23 0 1.022269991e-10 0 7.074383244e-23 0 0 1.327084478e-16 0 3.427876481e-11 0 0 0 1.206686582e-11 2.782339466e-11 6.319870709e-12 0 5.57767408e-11 0 0 0 2.970955253e-11 0 0 0 2.794598943e-11 0 0 0 0 0 0 0 0 0 2.547823968e-15 0 3.318438294e-19 5.239804704e-11 0 0 3.261289317e-16 0 0 0 5.255417388e-13 0 1.630680193e-11 6.27538136e-11 0 3.915102824e-12 1.329519383e-11 2.380907718e-15 0 4.575326364e-11 1.619144684e-11 2.842331526e-11 0 6.327046366e-15 0 0 1.314948798e-11 0 0 5.829998406e-11 3.248144631e-11 3.64654712e-11 0 0 2.668750105e-11 2.897460656e-11 0 0 4.459135773e-11 1.506313375e-11 0 1.530969826e-11 8.508780976e-12 0 0 7.635776161e-12 4.221107982e-11 9.33272812e-11 3.0468383e-12 9.021107021e-12 1.021007011e-25 8.503943188e-12 0 0 0 0 0 0 0 0 7.077762662e-18 9.981368907e-11 0 0 0 6.365375831e-11 1.980893995e-10 2.798378223e-11 0 0 2.383258458e-11 7.862896136e-11 0 1.263634123e-11 3.34885375e-17 5.981314249e-16 0 1.154601802e-11 1.800939379e-12 0 0 0 6.426574648e-11 0 2.042013657e-15 1.265856067e-20 3.592720772e-10 0 1.175275947e-10 0 0 0 1.380412394e-13 1.360289294e-11 0 0 0 0 5.479519804e-11 9.96664885e-11 2.48368137e-11 0 0 7.913255262e-16 2.267924724e-11 0 2.964320671e-11 1.785428406e-16 0 3.163447497e-15 0 1.174133569e-11 0 3.13489229e-12 0 1.157801125e-11 0 0 0 9.291380646e-13 4.339881175e-16 9.424870508e-12 3.113564668e-11 0 8.980124428e-14 7.863657133e-14 1.849520197e-11 0 0 5.656188227e-11 3.653591242e-23 3.550941751e-11 0 1.965445952e-11 0 0 0 1.350011296e-11 0 0 0 3.825770839e-11 2.433493276e-12 1.313475072e-11 3.747620146e-18 2.484725095e-11 0 3.405191922e-11 5.247819004e-11 2.309106144e-12 2.361417304e-11 1.929961488e-11 5.826967472e-24 0 2.085596774e-11 1.01547371e-11 0 1.285156563e-11 4.68858002e-11 3.720490392e-11 0 4.532549275e-12 2.611053083e-11 0 6.708277403e-12 4.594753596e-11 2.898632669e-26 1.194051024e-11 7.24916938e-11 5.128728437e-18 0 1.551314705e-11 0 2.775618522e-10 0 9.953300897e-20 1.334247546e-29 0 7.790535026e-12 1.080051128e-11 +2.140918005e-11 0 0 0 0 0 5.035420566e-11 0 3.174790463e-16 0 9.126307932e-12 2.590174462e-28 1.550623546e-11 3.15398733e-16 2.592046104e-15 3.904306364e-24 0 1.661960361e-12 1.524779577e-13 1.210776281e-15 0 4.213560472e-11 4.623573916e-11 9.171400709e-11 1.937724202e-11 0 7.340831493e-14 1.676390722e-23 0 0 2.7858071e-11 0 5.592763907e-11 6.998076533e-11 1.044148084e-10 0 9.76852302e-12 0 2.21362765e-11 7.299124578e-11 0 4.851055023e-11 0 8.828653092e-16 1.982336692e-12 0 5.615590117e-11 0 7.270964786e-12 1.43009853e-15 1.328363911e-11 2.882206442e-11 4.179303773e-11 0 0 4.079014337e-11 2.689920489e-12 3.214484188e-16 0 4.436527558e-11 0 1.045695617e-10 2.2676016e-11 0 5.374010508e-11 1.432454158e-12 1.042859697e-10 1.862275913e-16 2.824222027e-11 1.2791587e-11 0 1.371985284e-11 0 8.545393476e-12 0 3.316955834e-11 1.350940646e-11 1.876522834e-10 1.255163316e-13 8.884210847e-11 0 2.50856234e-11 0 7.497340339e-12 2.222580974e-21 4.236306034e-11 0 1.062118691e-11 1.804159321e-11 3.400939896e-26 3.835657226e-20 6.147333703e-17 4.557387788e-17 5.796786499e-11 4.17390913e-14 1.868994508e-28 0 0 1.053964157e-11 0 0 0 0 4.073501498e-11 7.272679305e-16 2.436044885e-11 6.670976032e-13 4.772382279e-18 0 1.44532783e-11 1.741337863e-17 0 0 8.563113782e-11 3.629425562e-12 3.440147239e-11 3.113928592e-11 0 1.146040476e-11 1.164638277e-10 2.213999241e-11 1.053759986e-10 3.11156888e-12 0 4.202200755e-11 1.593670677e-16 2.370786008e-11 4.368013854e-13 0 0 1.539930644e-11 3.070135895e-12 5.798415285e-12 0 3.863204204e-12 7.821684307e-11 1.025314139e-11 0 3.061640325e-11 7.327907509e-11 0 2.500736059e-11 5.944331264e-11 9.920321461e-11 1.665503827e-10 2.221693687e-11 0 1.014630187e-10 0 2.34896338e-11 1.111537752e-10 1.914069445e-12 6.863878309e-11 0 1.269982101e-11 6.194565175e-11 0 0 1.190533729e-11 6.43814809e-11 1.062881572e-11 1.051340487e-11 5.815172319e-13 0 0 0 0 9.779113251e-12 2.742418333e-14 0 3.104227677e-12 5.408087257e-11 5.094978673e-11 1.951703591e-11 0 0 1.368109587e-16 1.78459121e-10 2.734223446e-11 2.626619055e-11 1.77132854e-14 0 7.771285707e-11 0 2.934097667e-11 0 0 7.629635731e-12 1.834895612e-14 2.733540697e-11 0 0 0 4.572302242e-16 1.751714616e-11 4.473456524e-11 3.48512633e-11 2.276499662e-11 6.624311208e-17 3.219513155e-11 0 0 4.005802799e-11 1.126206507e-27 0 2.664464582e-11 0 6.30254143e-12 0 1.393067291e-11 0 0 0 3.450374322e-11 0 0 1.678554691e-11 9.781603749e-11 5.875409239e-19 0 1.14130517e-10 7.923973796e-12 0 1.513769415e-18 3.337840356e-17 1.070160093e-15 2.519503599e-11 1.72949397e-11 3.271532226e-14 4.316085313e-12 1.33946275e-11 4.488373179e-12 0 0 0 0 6.986455521e-13 0 0 7.093714579e-12 1.520985103e-11 8.973864696e-11 5.98718303e-14 1.225371244e-12 2.94023983e-13 4.123151324e-11 4.737829477e-11 4.194372846e-28 3.215887852e-11 0 6.971350298e-11 3.804568338e-14 0 2.470685249e-18 6.818024254e-12 0 4.345929799e-11 0 4.187888533e-25 2.906219463e-12 0 0 5.45180877e-11 0 8.883129646e-12 0 0 4.441878092e-11 1.185510862e-11 0 0 1.106072065e-11 4.675705128e-12 3.085179365e-11 0 2.867109637e-11 0 2.7886058e-20 3.203361191e-11 0 0 1.429137914e-10 1.061527815e-11 0 9.435831563e-13 2.307504712e-11 0 5.733649422e-26 9.132786309e-11 3.445771948e-11 4.697744543e-23 2.234388929e-11 2.415503511e-11 6.448752689e-11 0 0 4.22838609e-11 5.070644475e-11 0 2.389085825e-14 +2.527144241e-11 1.537334562e-10 0 7.07957154e-12 4.958196923e-16 2.827551676e-10 3.036369688e-11 1.462794591e-20 0 3.345552749e-12 0 6.76352942e-11 9.558625882e-21 8.009195622e-12 0 0 2.984072978e-11 4.77429829e-12 1.48257141e-10 2.996332898e-11 9.631042416e-17 3.222428847e-12 0 6.524263911e-20 0 1.682061635e-10 1.66188914e-11 9.064882167e-24 2.553648426e-11 1.082073315e-11 0 4.881815193e-12 5.004543753e-11 1.754577609e-11 1.576474921e-11 9.20791207e-12 4.164473644e-11 4.091459654e-12 9.092571531e-14 5.424292282e-11 3.890017157e-11 4.139949722e-11 0 0 5.95958098e-13 0 2.076004216e-11 7.83235608e-14 8.325587707e-12 0 9.523287746e-21 2.948293333e-24 2.506662127e-11 0 3.730619271e-11 3.980193175e-11 0 2.70128343e-11 0 1.987461942e-12 1.50515753e-10 1.385884833e-11 6.744310047e-11 1.043230525e-11 0 5.648645475e-15 4.383503008e-13 0 0 1.724077801e-10 6.097317999e-13 1.019457183e-11 4.628345455e-11 3.143916914e-12 0 6.154992866e-12 1.191213267e-15 0 2.657996639e-11 7.915742442e-17 0 0 3.003352936e-11 3.470220413e-10 1.527081124e-11 1.553823286e-10 3.271687425e-11 1.80614695e-10 3.01225071e-11 0 2.598324623e-11 4.329380717e-11 1.130598975e-13 4.109758926e-14 1.721877983e-10 2.573976161e-11 2.62566687e-11 0 5.404048063e-12 1.971057181e-11 7.630889368e-11 2.095143612e-11 2.065973746e-16 4.413964476e-11 1.432107449e-11 3.163118527e-11 3.574408191e-14 1.611268697e-11 8.694879743e-12 0 3.446398549e-15 0 3.833808746e-11 2.402530411e-11 0 1.582736317e-15 0 1.665821674e-13 0 0 2.609454049e-18 3.84242038e-11 2.172978762e-11 1.760418309e-11 0 2.566501931e-11 4.702794736e-21 3.004823226e-11 2.915372998e-11 0 5.161816581e-11 0 0 0 0 7.351714338e-11 3.829495172e-15 1.439057323e-11 4.559241646e-19 6.612231656e-11 2.616239597e-11 3.235065339e-11 4.616228175e-11 9.093392964e-11 2.28001721e-11 1.179709482e-10 1.713285976e-11 1.347547238e-10 0 1.065699125e-11 0 7.27234652e-11 1.744334025e-19 0 0 0 0 5.230360608e-12 0 3.890186526e-11 0 0 2.199515574e-11 1.631106328e-10 2.203634547e-12 0 3.291726128e-11 1.323832735e-11 0 4.150703179e-13 5.897030589e-11 9.357468127e-11 0 1.273555468e-11 2.631231667e-11 3.080609247e-11 4.453311702e-11 3.042183051e-11 5.478820611e-11 0 0 3.533980543e-11 3.472999841e-12 3.429679898e-11 0 0 0 5.181337534e-11 8.83467687e-11 3.542505652e-11 3.813800311e-11 0 1.184894524e-11 0 7.304380455e-11 3.866214045e-18 1.171906009e-21 3.178503951e-11 1.558967308e-11 0 1.116980781e-11 2.829223595e-11 0 4.896548143e-11 9.47298617e-11 0 1.787071019e-11 1.2972293e-18 8.656760304e-12 0 4.592965758e-21 0 4.063075032e-11 6.454628003e-12 1.170396216e-10 3.627387051e-11 0 0 0 1.914309218e-11 7.454407619e-12 0 2.63857655e-19 1.28444494e-10 3.170483487e-11 4.048692623e-29 1.701430114e-11 3.7670182e-11 6.728558214e-11 1.213564111e-11 1.091601316e-11 9.115128831e-16 3.243569134e-14 1.809108943e-10 0 1.030633103e-10 1.836943404e-11 7.676187072e-13 1.887909297e-11 2.482424321e-11 3.838332303e-20 8.780828267e-11 2.880118843e-15 1.052456192e-16 1.559608879e-10 3.041423603e-11 2.635724339e-13 0 0 4.766632647e-12 4.248567981e-12 0 0 8.314889182e-11 1.314711394e-13 1.225339377e-11 0 1.882761192e-11 9.510609637e-12 1.656295274e-11 2.680275042e-11 0 1.271151124e-14 1.523136944e-10 4.517331166e-11 6.786691447e-11 1.691482389e-11 9.373338316e-12 2.203151009e-11 7.171379468e-11 0 1.790186581e-11 0 0 1.849242023e-11 3.16134004e-11 0 0 6.578395779e-11 5.917928226e-15 1.554318622e-10 1.298937656e-11 4.242735415e-11 1.020418586e-10 4.937921585e-13 2.828058931e-11 2.649205371e-11 1.034942447e-10 0 3.846287907e-17 1.274512732e-10 0 8.483479641e-11 1.71721196e-11 0 7.055661384e-22 0 2.485694779e-12 4.73680869e-14 1.281503514e-10 +1.717264423e-11 1.227464437e-10 5.965107604e-11 6.645673671e-11 0 7.939511721e-11 0 1.318667258e-11 1.211332166e-14 1.002252585e-12 1.188861681e-10 2.151732847e-14 2.149359689e-11 8.869605637e-12 7.625423522e-12 4.885593787e-12 0 0 1.631565892e-11 2.716853429e-15 5.462236886e-11 2.093784664e-10 0 1.12546965e-10 1.998378324e-10 4.947790583e-11 3.5411358e-11 9.347349414e-11 2.139568718e-13 3.265203979e-18 1.281732218e-14 6.506800942e-11 8.912607622e-11 4.478817012e-11 1.198346882e-10 1.469779699e-11 2.102207721e-11 8.064808673e-11 1.562874095e-10 7.673531232e-12 1.473881925e-18 4.564179941e-11 3.434301964e-11 1.838890369e-11 6.777053103e-11 1.42316491e-10 1.274818104e-10 3.347060964e-11 5.665116472e-11 1.473362707e-10 3.271513108e-11 5.060449229e-11 3.818409669e-17 0 6.382533596e-11 5.302882673e-16 6.389714179e-11 1.680467677e-11 3.431021859e-11 1.854412442e-11 8.163401896e-11 2.315191322e-11 2.077999457e-11 7.400479012e-11 2.777793825e-11 8.629015696e-11 2.718342738e-11 2.591469287e-11 0 0 3.607575451e-11 1.69794018e-11 2.166054259e-11 1.133817873e-11 3.298302727e-11 1.045010874e-14 4.463484855e-11 1.071686887e-10 0 6.208148359e-11 1.043697702e-12 2.238595168e-11 4.856918226e-11 7.500531915e-18 1.301910343e-10 4.768876739e-11 1.202212688e-15 2.034972771e-10 1.826728827e-11 1.115026323e-10 0 9.364146967e-14 3.746996805e-11 6.898138296e-19 7.761279788e-12 0 1.306771134e-10 5.200811754e-11 0 1.593359405e-11 2.584679516e-10 1.660733613e-10 2.963739954e-11 0 1.70032612e-10 0 7.215751677e-12 1.515235207e-10 1.246645974e-15 1.004520388e-11 1.23791417e-10 7.3368334e-12 0 6.500089001e-15 0 7.774718899e-11 2.055709066e-32 5.237313741e-11 0 5.485571472e-11 5.634136941e-14 1.999003441e-11 3.724761165e-11 4.031715063e-12 3.82143945e-11 0 0 4.016163758e-11 1.522775896e-10 1.762515266e-10 6.300049575e-11 1.655446302e-25 2.884905907e-12 5.615265195e-11 1.407061283e-11 6.190785231e-11 4.690024179e-11 0 3.905927963e-17 9.789187076e-11 1.408306202e-11 0 0 0 1.204115289e-10 0 1.62939296e-11 5.604703257e-11 6.268186411e-11 2.236290365e-16 1.446487142e-11 2.651149609e-12 3.319737694e-11 7.168456444e-11 1.272870033e-10 3.321709568e-11 4.213705713e-11 1.808959435e-11 0 0 5.180505107e-11 4.77065735e-13 7.808480678e-22 1.15180695e-10 0 2.724645196e-24 1.069157341e-10 1.345851659e-11 8.354303969e-11 2.491918665e-10 5.177212745e-11 1.772764201e-15 3.273019633e-11 0 7.345930835e-11 0 0 1.088525067e-11 0 1.931003357e-11 3.055819587e-11 0 0 5.644780232e-11 4.229793604e-12 0 1.374447349e-28 0 1.064970848e-14 6.398263754e-11 1.580974408e-11 2.764167127e-12 2.154805282e-11 2.48878254e-11 1.368314925e-10 2.862515048e-13 2.986768361e-11 5.854460693e-11 1.423713558e-11 1.343993764e-11 2.728024613e-11 4.117220104e-13 7.265668348e-11 0 1.544069103e-11 1.022940684e-10 1.534250601e-10 0 7.72763191e-13 8.627477316e-25 0 6.240766818e-12 3.01439794e-18 3.718770499e-11 4.795120719e-11 2.485451146e-15 8.964887842e-11 1.093696204e-10 1.106524723e-10 0 0 4.634191985e-11 1.785625674e-10 1.434616919e-11 7.873662789e-11 5.080801413e-12 0 2.476961563e-11 1.527236638e-10 1.820464218e-11 0 5.570687623e-28 1.789072295e-11 1.714287726e-10 5.248297696e-11 2.891581781e-11 2.850145353e-11 1.896215661e-11 1.265764035e-10 2.173881103e-10 2.38114242e-11 0 0 4.687331581e-12 0 3.431033902e-13 1.510941422e-11 2.185047552e-12 8.856210435e-12 0 2.8681481e-11 2.75951857e-11 4.221463111e-14 4.230533316e-11 3.350190072e-21 3.458552121e-11 1.728833614e-14 3.827423358e-18 7.857737817e-11 2.993664199e-12 1.188596502e-12 0 1.139737904e-11 5.344569538e-18 5.614564043e-17 3.584127463e-18 2.144246766e-11 6.030208302e-11 6.359344851e-11 4.576096368e-11 5.010304466e-11 1.986607059e-10 3.785704691e-11 1.172187311e-21 2.676781489e-11 6.875469929e-12 7.240525473e-11 7.757386347e-21 1.171708767e-10 5.694737071e-11 5.312844654e-13 1.844028811e-10 6.264069218e-11 2.421323463e-11 0 0 4.755305081e-11 1.601882909e-11 3.222239444e-11 3.963158758e-11 8.965558444e-19 8.919241221e-13 8.504147961e-11 0 4.806962174e-11 8.938979128e-12 4.252405957e-11 3.632280422e-11 8.589794008e-28 0 +2.271115015e-11 0 0 6.596567938e-11 1.505302208e-11 7.954179756e-12 6.393733851e-11 1.975174312e-10 3.907294799e-10 4.412128916e-12 8.775230731e-11 0 1.054169191e-12 1.158022224e-10 0 8.377150195e-11 3.675793675e-11 1.485962696e-10 2.27366819e-11 2.542300338e-21 3.525994808e-11 3.151989319e-11 0 0 9.106716256e-11 2.01198078e-11 1.449602306e-11 1.003334649e-10 1.563588897e-11 1.333555343e-12 2.551338323e-11 1.023241376e-10 7.143286647e-11 2.44960366e-11 1.77773761e-11 2.434566798e-33 1.780298841e-10 1.68461754e-10 9.561903172e-12 1.126969453e-10 0 5.277857116e-11 7.89980814e-11 2.557914056e-10 1.670951282e-10 3.262900581e-11 7.40557243e-11 7.392821422e-11 7.401381095e-11 6.30532881e-11 8.14777428e-11 5.904772529e-11 4.954679279e-14 7.237249103e-12 8.95170439e-11 8.694486272e-11 0 1.381772868e-10 2.052396003e-13 1.458327964e-11 0 8.883374818e-11 2.560906788e-18 0 1.035894953e-10 1.075155452e-10 3.788542848e-11 8.882698699e-21 4.448433956e-11 1.687166539e-11 1.143446696e-11 8.872577747e-11 7.315224185e-12 1.375876511e-10 1.020986976e-10 1.321073559e-10 1.438208875e-11 1.70504749e-10 0 1.049083124e-19 3.443018097e-11 5.346465752e-11 9.209469338e-11 1.214886378e-11 9.607228276e-12 4.022618102e-16 5.433475653e-11 4.081608121e-12 7.295934963e-12 7.591492928e-12 5.910227389e-12 3.040263837e-12 1.006329613e-11 5.140195936e-11 1.160595569e-11 2.630202073e-17 7.301193572e-11 5.614030719e-11 0 3.76968372e-12 0 0 2.614519649e-11 5.764276166e-11 4.353389922e-11 9.597646352e-20 6.68562583e-17 8.112691321e-11 1.564579106e-11 0 2.859389362e-11 8.780068239e-13 0 5.883749652e-11 2.61591885e-10 0 9.10963906e-11 2.902742346e-12 1.322014274e-10 5.829187226e-11 0 1.540015392e-17 0 1.843816972e-10 1.657783357e-17 7.715288535e-11 0 3.192781671e-11 0 0 0 2.288126446e-13 1.649032122e-11 6.2767206e-11 8.801276964e-12 1.528266525e-11 1.053836422e-10 1.511637822e-11 1.848080941e-18 3.602912642e-11 0 5.201583953e-15 1.228162651e-22 3.190408386e-11 3.988962543e-11 3.761910487e-11 5.583583215e-13 0 4.253299986e-11 5.028336067e-15 2.453964846e-12 3.131066435e-11 9.032873118e-14 0 4.078186347e-12 8.126924658e-11 0 5.69864321e-12 0 6.190248427e-11 0 5.787243634e-11 1.6935813e-10 0 1.165432869e-21 1.036105438e-10 1.373340328e-13 4.718615904e-11 2.026968907e-11 4.849305561e-11 6.59309907e-11 1.203291003e-10 1.783518107e-10 7.870987371e-11 2.017772084e-10 3.308239413e-12 1.232110901e-25 3.602487508e-11 8.96638652e-14 1.892570413e-11 2.009885784e-11 4.974487968e-11 3.291062464e-12 5.046494939e-11 7.387324125e-11 0 4.540551432e-12 6.4573393e-11 9.403030317e-11 3.74476117e-11 5.12523166e-14 1.20645941e-11 6.805495939e-11 1.490787294e-11 5.904052573e-15 8.391216996e-11 2.162332339e-10 7.268340324e-11 1.296037245e-10 3.17864094e-11 2.056379106e-11 1.081082322e-11 3.108186159e-11 4.051511649e-12 3.204763034e-11 6.510401187e-14 5.869458617e-15 0 6.737058865e-11 3.276693291e-11 4.664834438e-11 6.110089782e-11 6.708297025e-14 2.760479777e-18 0 1.882715884e-11 3.073528539e-11 0 6.06575415e-11 1.044267826e-10 4.415428194e-19 6.315163512e-11 0 3.543075336e-17 3.623884142e-11 6.579457693e-11 9.954958199e-15 1.062160851e-10 7.910063415e-11 1.795748026e-11 7.156462719e-11 4.575654629e-11 1.491720917e-10 6.794512286e-15 2.392279457e-23 0 3.139306769e-11 6.117973225e-11 5.44343757e-11 9.220955874e-12 1.084100939e-10 1.826732543e-11 1.246696686e-10 1.281037772e-11 2.04609107e-10 1.232341761e-11 6.456980072e-11 1.420562959e-11 2.476180911e-12 2.104710231e-12 0 0 4.577335597e-11 1.9507133e-28 6.299388633e-11 2.247647341e-10 5.87880267e-11 1.44174509e-11 5.478300569e-11 2.615457284e-10 3.630110854e-11 1.291260978e-10 3.040418964e-11 2.734444008e-20 4.366145588e-11 6.449563973e-11 0 1.683777027e-11 1.926083205e-11 2.741477136e-11 8.863053472e-11 1.067022566e-11 3.62229083e-11 1.696474308e-10 4.442017468e-11 3.464409553e-11 1.359948525e-31 9.424365626e-15 5.001506004e-11 1.182594185e-11 7.820484816e-12 7.336001933e-12 1.922473235e-10 1.058735079e-10 5.605778208e-11 1.335019131e-11 1.189442376e-10 4.040889857e-11 5.682960662e-11 1.345953761e-20 1.102216832e-10 8.078099317e-13 3.04525133e-16 5.102883246e-11 0 1.743966932e-10 0 0 6.300021972e-14 2.39634554e-11 +2.534115152e-11 7.450285334e-11 7.396545341e-11 3.681961093e-11 0 4.896292185e-12 6.508621873e-11 1.695931739e-11 2.439982836e-11 2.300136555e-10 3.006878544e-11 1.171697693e-11 2.525475179e-12 9.525889717e-11 2.833351481e-11 6.62608894e-11 3.165388097e-11 3.618136669e-11 1.1541088e-12 4.809223973e-19 2.821202539e-11 7.547221644e-11 2.232481982e-11 1.269517531e-10 0 0 2.481885124e-26 5.580782769e-11 0 4.97320843e-11 1.78382164e-10 4.06071247e-11 1.070985576e-10 3.455174956e-11 1.182607745e-10 2.665289644e-10 7.598068655e-11 4.923966495e-11 2.305390745e-11 1.26022462e-11 3.279670575e-15 1.519506096e-10 5.941949045e-11 1.118782143e-11 4.082812946e-12 7.682146571e-11 1.894606798e-10 2.578992624e-11 1.779912736e-11 2.011368537e-10 9.130553773e-12 1.962192239e-11 3.549995742e-18 1.593412334e-10 1.169089343e-10 8.573445737e-12 1.299545657e-10 1.585843493e-11 6.725378872e-11 0 3.767874192e-11 1.155075035e-10 2.337007284e-10 1.043533288e-13 6.563597933e-11 3.881423215e-11 2.181140554e-17 4.880108587e-11 5.305764923e-11 9.956815877e-11 2.001099843e-11 2.101809545e-11 2.531803292e-11 1.148521328e-10 7.982661776e-13 1.472769505e-11 2.383368982e-11 2.398668597e-11 1.912061401e-11 9.654397897e-11 3.759426695e-11 3.907067315e-11 3.342849866e-12 6.453434026e-11 5.775336324e-11 1.120702438e-10 9.535057e-18 8.205903416e-11 2.10031543e-11 6.848963239e-11 3.477622523e-11 8.135863547e-11 9.079708723e-11 7.765981109e-12 1.738044125e-10 2.115239036e-10 1.518155745e-10 2.428309748e-12 1.665099681e-11 6.177681206e-11 2.054075345e-13 8.340619464e-11 1.518627227e-10 9.073180061e-11 0 3.915028397e-11 2.655622815e-11 2.005207439e-10 6.99674864e-11 0 4.490491315e-19 1.806731919e-15 1.365820493e-11 4.526814035e-11 1.956707845e-11 0 7.487651092e-27 1.637007963e-11 7.960205123e-12 1.228257322e-11 9.348647543e-11 5.320898227e-11 6.158825582e-11 1.118488358e-10 1.23742875e-10 7.789663425e-11 9.631242367e-11 9.450222983e-11 1.320490987e-11 5.879838524e-11 4.024932962e-11 1.396989696e-11 9.529096073e-19 0 9.245024473e-11 2.30497462e-11 9.07600968e-11 0 1.898628663e-11 2.888818556e-11 1.755082783e-11 1.237577714e-10 1.569595565e-10 0 0 3.782258845e-11 8.462864614e-12 3.690347285e-16 5.939250476e-11 5.629792979e-18 1.003344659e-10 5.607443112e-11 4.455547548e-11 2.903504219e-11 7.703445279e-11 7.817332898e-11 2.034211307e-11 1.69746316e-10 6.078682335e-11 2.178574316e-15 4.250594916e-13 3.875161495e-12 6.561863652e-12 0 2.62064279e-11 1.446990266e-11 2.487598735e-11 5.421034324e-11 8.261546191e-12 1.468031998e-10 2.253103762e-11 0 1.97811566e-11 3.398508082e-11 1.816069209e-11 4.55054532e-11 1.298714493e-10 4.176847683e-11 4.082127433e-11 6.679346045e-12 4.454222657e-11 2.044141538e-11 4.70844108e-11 8.671585391e-15 2.773859033e-11 5.366493726e-11 3.304327283e-11 9.285715035e-13 1.639603459e-11 7.083709351e-11 1.282808833e-10 4.319482529e-11 1.054563609e-10 8.505935041e-11 3.717457278e-11 1.464365783e-11 2.891695834e-11 2.331452666e-10 3.036858972e-10 2.421846662e-11 4.882044314e-11 7.605685436e-11 6.05829108e-11 1.475233609e-16 4.008740501e-11 1.102528301e-10 1.183087759e-11 8.720400965e-11 1.016253772e-10 1.118906259e-10 1.340690007e-10 1.381142371e-10 1.187099212e-10 1.597880775e-11 1.177826908e-10 2.289448873e-11 4.397703854e-11 2.301046401e-14 2.503271775e-12 9.584818213e-12 1.271291934e-13 0 3.832136378e-15 7.554179207e-11 1.268401338e-10 2.336267297e-10 1.633118575e-10 3.879939256e-13 5.209530874e-11 2.376551878e-10 1.730641506e-10 1.744149025e-10 2.024948732e-11 1.111092304e-10 4.249651709e-11 1.637482802e-10 1.739437311e-11 7.632622106e-11 1.742234774e-10 9.664368646e-14 4.857012966e-11 3.360382325e-11 3.841553796e-11 6.652781782e-11 5.2799794e-11 0 1.010444406e-11 3.691469982e-11 5.824655864e-11 4.10714152e-10 1.02573858e-10 9.311257458e-12 1.327053802e-10 7.473041782e-11 7.883352056e-11 9.756059022e-11 1.525673173e-10 2.357438497e-10 5.259229344e-18 2.451764973e-11 8.937182695e-12 2.523156503e-12 2.945188379e-11 4.33924445e-11 1.469752401e-10 3.001771264e-12 1.048095831e-11 4.101892123e-11 7.13672272e-13 2.381570372e-11 3.941714004e-11 1.255702587e-10 3.456402083e-11 1.64558001e-11 5.571355751e-11 4.318092818e-11 2.689364403e-11 4.023590651e-15 1.007271128e-11 1.005541285e-11 1.870783322e-11 2.07206298e-11 5.761976864e-11 4.699865791e-11 1.786182665e-11 4.04106231e-11 6.833964861e-11 2.430848934e-12 2.816401054e-10 8.838733927e-11 3.605899116e-11 3.463248322e-11 1.01733001e-10 1.271540011e-10 4.969741055e-11 6.918819765e-11 2.447965061e-11 5.75284914e-11 6.978678847e-11 5.140677873e-11 +9.32820314e-11 4.382476823e-11 3.133252521e-12 2.559591047e-10 5.421146666e-11 1.170450885e-10 3.425945171e-12 1.339211782e-10 2.115890445e-11 6.915951487e-11 2.834758339e-11 1.067375831e-10 9.041893394e-11 1.641921323e-10 6.110153419e-11 7.062476733e-11 2.228506197e-11 3.368388127e-11 3.804712981e-12 5.233148961e-11 2.16039898e-10 1.421884937e-11 2.172603177e-10 1.356230873e-10 1.199196009e-10 1.227524463e-10 3.972661602e-10 2.456981773e-11 8.880255086e-12 3.153798059e-11 6.382533581e-11 8.044882947e-11 2.207440728e-17 2.254683458e-11 1.246596859e-11 1.044634464e-15 2.653711216e-11 2.531952798e-14 9.756985689e-11 3.668297955e-12 1.677731952e-10 1.343433164e-11 1.835906118e-12 1.354264043e-10 2.024192776e-10 1.106197398e-11 2.687291831e-10 4.632901525e-11 6.746012982e-11 4.331707383e-11 7.781609788e-11 2.43713177e-12 1.041437998e-11 1.196669805e-10 9.216648741e-11 1.853758506e-11 1.417607991e-11 1.447374354e-10 6.239565595e-12 1.746117821e-10 8.041457683e-11 1.554259769e-10 7.278303797e-11 2.597565626e-12 2.792802182e-11 2.578645179e-10 1.028305058e-10 1.31907426e-10 1.875009772e-10 0 6.455751311e-11 0 8.903552408e-12 2.560597258e-11 1.110353342e-10 8.746703082e-11 9.735599718e-11 2.065994361e-14 0 4.529507447e-11 2.464145055e-10 0 1.905528748e-11 4.743439937e-11 1.357882628e-10 4.053855752e-11 4.377698912e-11 2.719928387e-10 1.57867387e-10 3.237845806e-11 8.823976178e-11 4.934509849e-12 8.946387122e-11 6.121361685e-11 2.844944099e-11 1.940743279e-11 2.990711735e-10 1.490385433e-11 1.820574392e-10 3.203626807e-11 1.606332548e-11 4.772829253e-11 9.387000676e-11 1.089576736e-11 2.094730948e-11 3.606907416e-11 8.890316131e-11 1.535717337e-11 2.627245037e-11 6.111711601e-11 9.967723668e-11 2.505396092e-10 4.763817917e-11 4.008774522e-11 1.426743496e-10 1.870453601e-10 0 2.161392828e-10 4.077049229e-11 6.245398126e-11 7.390696106e-11 0 9.107830705e-11 2.122404582e-10 1.415131253e-13 2.203662702e-11 1.240798821e-10 9.836765841e-11 1.264348587e-10 1.254068527e-11 3.775867685e-22 5.00538434e-11 1.463447452e-10 4.348998001e-11 1.012321319e-10 5.583054758e-11 3.915316285e-11 0 5.719894642e-11 7.195559579e-11 3.95945625e-11 3.795238363e-10 2.050001934e-10 1.516762407e-10 3.733319632e-11 3.304147537e-11 2.185565061e-11 9.663299497e-11 4.530837278e-11 2.625926188e-11 1.358113035e-10 5.950231052e-11 8.706117913e-11 7.47518917e-11 1.830329826e-10 3.481433982e-11 4.30512705e-11 4.384450007e-11 2.566814248e-11 7.457853956e-12 3.19941603e-10 1.322660994e-10 7.383558363e-12 4.678766441e-13 3.340078967e-11 1.931153595e-11 1.335694422e-10 9.0833612e-24 6.964575712e-11 2.156277356e-10 1.322103347e-17 8.139713814e-11 0 1.329673992e-10 5.924779185e-11 2.312800626e-11 9.348201648e-11 1.696455918e-10 1.744082757e-10 4.593239332e-12 7.390059227e-11 2.610038996e-10 4.826739041e-11 0 6.059258705e-11 1.069781975e-16 1.720285182e-14 9.265923694e-11 1.35335965e-27 1.039328472e-10 4.168577336e-11 1.181076602e-11 0 3.221200996e-11 0 4.73909222e-11 1.206026869e-10 4.379417505e-12 5.771917333e-11 9.632740801e-16 1.246427505e-17 8.364347083e-12 1.144066014e-10 4.004204562e-11 0 6.790406716e-11 1.463141057e-11 1.944335555e-10 6.222794311e-11 2.830841302e-11 5.951365451e-11 7.078667975e-11 1.060069965e-10 1.662891855e-10 6.604723085e-12 1.328965918e-10 4.06882032e-11 1.310873603e-11 2.910600401e-11 9.638699721e-11 1.176463026e-10 6.058374563e-12 1.349250613e-12 1.185178617e-12 5.41871206e-13 8.591446504e-11 1.523740588e-10 5.474227434e-11 5.249664511e-11 1.802410063e-10 9.436597991e-11 4.918186097e-13 3.438117041e-10 5.840440458e-11 5.220986649e-11 1.081712971e-11 1.066751068e-10 2.019078986e-10 3.250044203e-11 0 3.001300008e-17 7.8958224e-11 5.639787813e-11 2.836735726e-11 1.218366742e-10 1.630943929e-10 1.285141334e-10 0 2.512764212e-11 4.568189441e-11 1.698252419e-11 1.821523611e-11 1.796747732e-18 1.11104992e-16 6.942836477e-11 2.157346443e-10 2.037134579e-10 6.796448527e-11 0 2.294086278e-10 5.718302184e-13 2.548134227e-10 5.171592347e-16 4.96251576e-13 0 4.090914419e-11 0 6.773506684e-11 7.984164688e-12 3.53941359e-11 4.536048422e-11 3.211255278e-16 1.666644856e-11 8.322309154e-11 2.238577658e-10 4.888515568e-11 5.840347661e-11 2.487666847e-11 4.960171398e-11 1.762189579e-10 6.235891489e-11 2.969006431e-11 0 1.412077759e-10 6.194754033e-11 3.101996115e-10 7.968652737e-11 4.912778149e-11 1.649475329e-11 4.083859164e-10 2.384459272e-10 1.242128479e-10 7.076864133e-11 9.974571024e-11 6.432971369e-11 1.650873276e-10 2.855752763e-10 8.063608854e-11 2.138998169e-11 3.204601565e-11 +1.104757264e-10 5.600847361e-11 1.045696091e-10 2.306402657e-10 5.951217014e-11 4.32249949e-11 2.538150911e-11 2.376988735e-11 9.032748384e-11 8.863885457e-11 1.190077709e-10 3.691588506e-11 1.072902512e-10 5.444432841e-14 1.977934511e-11 3.535350236e-11 6.555666869e-11 6.438372105e-11 1.563702676e-11 6.872317721e-11 6.882931744e-11 8.100875507e-11 6.69951947e-17 2.62276995e-11 3.931239199e-11 3.782299726e-11 2.179130054e-11 1.015961898e-10 1.080637913e-10 4.380962349e-11 2.220917206e-10 3.992048375e-11 5.541716773e-11 1.628775735e-11 4.386694154e-19 7.302653205e-11 5.159339617e-11 1.26415031e-10 8.617430505e-12 5.379371499e-11 4.116470471e-11 2.549933784e-18 8.807242509e-11 0 0 1.069686521e-10 1.579899202e-10 7.156612539e-11 1.062488963e-10 1.128156764e-11 4.99141975e-13 1.131815166e-10 9.76770892e-12 2.413766782e-11 1.7197034e-10 1.308515433e-10 1.179043718e-11 5.082098219e-11 3.352830133e-15 1.943794854e-10 1.038670861e-10 5.820880808e-11 5.654640748e-11 2.74236691e-11 1.068170331e-10 1.626993721e-11 6.717681437e-11 4.150607381e-11 1.487286359e-10 3.64841618e-19 2.028282809e-10 4.161575134e-12 1.413911068e-10 4.479767106e-11 1.119188049e-10 4.830510487e-14 7.863481058e-11 2.357927953e-10 1.64583998e-16 1.007359489e-11 1.103112233e-11 5.632453446e-11 7.056537476e-11 3.381820993e-12 3.385878853e-11 1.014154998e-10 3.8817588e-11 7.71530317e-11 1.08503286e-11 7.280975458e-11 2.213191348e-11 1.665697976e-11 4.945753408e-11 3.087405914e-11 1.279588023e-10 2.0382679e-11 5.631838045e-11 1.505249554e-10 7.124121508e-11 2.68933654e-11 1.298425425e-14 1.291844981e-10 1.40603211e-10 2.859961712e-10 0 4.083233213e-11 2.705300293e-11 4.981637951e-14 1.977353865e-10 4.014232952e-12 2.645208562e-20 9.439233552e-16 1.278782725e-10 1.630835454e-10 6.642239101e-11 5.842698845e-11 1.171032156e-10 4.185733689e-11 3.274596607e-10 1.162010332e-10 3.246144247e-11 4.054498998e-11 8.65500566e-11 4.135449618e-11 2.953110739e-11 6.281093651e-11 1.281805717e-10 0 9.999125987e-11 1.468873186e-10 2.035758731e-11 1.55482481e-11 2.236616122e-11 2.221825691e-11 4.911830429e-11 1.007620385e-10 1.075022607e-11 7.810028334e-11 7.56822378e-11 1.738297451e-11 7.194742434e-11 9.165189396e-17 1.565361277e-10 1.094115514e-10 4.678269609e-11 2.37179197e-10 1.788950777e-10 6.027621794e-11 1.706011473e-11 7.157345578e-11 5.983364714e-11 1.334036708e-10 6.451117106e-11 1.319167232e-11 1.975779126e-10 9.279997541e-11 5.914180414e-11 1.918915739e-10 1.73231252e-10 2.578665345e-11 1.899210258e-10 3.728157589e-11 4.164207861e-11 3.143833892e-13 6.196850229e-11 3.088832139e-10 1.037245634e-16 5.623462929e-12 6.31253403e-14 2.039297195e-11 2.869563848e-26 1.488259698e-11 3.891352243e-11 9.241703289e-11 8.53102094e-11 1.577144237e-10 2.993047448e-11 1.37359853e-11 1.259957656e-10 1.33084496e-10 5.628004358e-11 3.135353705e-10 3.111695246e-12 3.099955615e-10 0 1.893463902e-16 2.988696761e-11 3.795011116e-11 0 8.457751847e-11 2.054017803e-14 1.58325387e-10 5.719310216e-11 1.742374596e-10 0 5.412430111e-11 8.082697779e-11 5.341732684e-16 2.827317812e-11 6.242678204e-11 7.439674185e-12 1.688912332e-10 1.266633163e-10 7.024788469e-11 2.220656662e-11 4.64351138e-11 0 7.243554117e-24 0 1.382612044e-10 2.658922377e-13 3.644377324e-11 4.726342198e-11 1.410764604e-10 1.335295781e-10 4.946119829e-11 2.968245982e-19 1.34168349e-10 7.188667164e-11 9.606472883e-12 1.67330043e-10 8.040834248e-11 2.024784701e-11 9.190666341e-11 1.253654574e-10 7.843475034e-11 1.144054339e-10 1.056027192e-10 2.282358632e-12 1.613959247e-10 7.867922151e-11 1.08364291e-11 4.330413971e-11 1.359301708e-10 1.004216382e-10 2.456396047e-10 1.681504004e-12 1.670485788e-11 7.461129401e-11 4.355607292e-12 7.658512869e-33 1.051558979e-13 1.762454317e-11 2.792170927e-10 1.107753521e-21 6.850482634e-12 3.186344701e-11 3.661554425e-11 4.81432106e-11 8.290262826e-11 5.325694211e-11 1.202115047e-10 2.619471003e-11 7.912615199e-12 2.656631964e-11 3.073675409e-11 1.353891622e-11 7.416619515e-11 3.377386107e-11 4.664514478e-11 1.25257156e-10 1.976841886e-10 4.993513664e-11 7.385072625e-11 4.989979317e-11 1.365336575e-10 3.954826152e-11 1.154119798e-10 3.111229336e-10 6.029627407e-18 2.647401178e-10 7.611551456e-11 2.764428332e-12 1.469453661e-10 2.049566219e-10 2.042128489e-10 8.28508543e-11 7.853547952e-11 1.09844391e-10 1.126385482e-10 1.974114463e-10 5.80007445e-11 6.010999381e-11 1.094316037e-11 6.698971394e-11 1.556386495e-10 1.083681609e-10 0 4.063374823e-11 1.5352862e-11 2.166300441e-10 2.260961017e-10 1.541626286e-10 5.560691381e-11 4.657895664e-10 1.700915075e-10 1.831947539e-10 1.721769063e-10 1.062707747e-10 3.764917348e-11 +3.533362757e-11 3.924630929e-11 1.397782639e-10 2.777013439e-10 3.710567423e-11 1.034783027e-23 1.329851879e-10 7.006308293e-11 2.939387383e-10 6.164254668e-11 2.975179879e-10 5.036843362e-11 1.040337971e-10 8.697494842e-11 4.210075443e-11 9.858847506e-11 3.098239411e-11 3.224262107e-11 5.940564245e-11 1.617938688e-10 1.680190625e-10 6.323886906e-11 2.627105029e-11 1.952970334e-19 2.210741848e-10 1.159249505e-10 1.193577703e-10 2.117144967e-10 2.038370939e-11 1.612089769e-10 0 6.841675648e-11 3.54350868e-11 2.035387285e-11 8.738949145e-11 6.521398915e-11 1.14417472e-10 1.792445779e-10 9.06306003e-11 6.016484933e-12 3.893863543e-11 3.252286973e-10 5.52114038e-12 1.505970264e-10 2.037097086e-10 2.227257119e-11 5.024831496e-11 1.21684062e-10 3.489798782e-11 0 8.231448868e-12 3.963116432e-11 1.163957892e-10 3.493634012e-10 1.702923737e-10 6.336761593e-12 4.1729321e-11 1.349413661e-11 1.545895953e-10 9.257163086e-12 2.199960072e-10 2.617821887e-11 2.187685041e-11 5.482395893e-11 4.985432603e-11 3.452872367e-11 6.34992935e-11 2.878110922e-10 1.267087408e-18 1.264857768e-11 5.261438551e-11 9.152315848e-13 1.491072253e-11 2.797710339e-10 2.835012263e-10 2.976354269e-11 2.627830673e-11 8.591094108e-11 1.134050163e-10 5.743013698e-12 6.141517036e-11 2.61949796e-11 9.82099539e-11 8.177048341e-11 3.29752561e-10 2.312592247e-11 4.297539258e-10 4.342787362e-11 1.541078317e-10 3.785353922e-11 1.647935027e-26 7.495437583e-11 1.453865908e-10 2.464958034e-10 2.072696862e-13 0 3.716079181e-11 2.230732615e-11 1.59359969e-11 1.765797121e-10 1.742555154e-11 3.497610512e-10 3.657378486e-11 6.1242417e-18 8.717590985e-11 5.870989003e-11 2.285581917e-11 8.157328801e-11 1.925901362e-12 3.639869949e-13 1.782565421e-10 5.920386854e-11 1.628210711e-10 4.94462747e-11 2.156815384e-11 5.338795831e-15 1.842838174e-10 2.103092602e-10 1.805591426e-11 1.36063559e-10 3.399742805e-10 3.06858758e-11 1.484902065e-11 1.482287896e-10 8.088934237e-11 2.673632429e-10 1.34141254e-10 1.41813925e-10 2.1234125e-10 5.553998821e-10 5.898498387e-11 7.877169797e-28 1.818483321e-10 1.544184357e-10 2.64038029e-10 1.351271927e-10 4.898622947e-11 2.198221992e-10 8.484401926e-11 2.158872879e-10 4.42200385e-10 3.308711715e-10 6.210278793e-12 1.715725466e-10 3.573408683e-11 2.818653546e-11 4.373190078e-11 2.071482702e-10 3.57049262e-10 2.637014161e-10 1.40333003e-10 7.092212436e-11 2.839686835e-10 9.59916591e-11 2.112955792e-10 2.664616864e-10 1.576547119e-11 7.684246334e-11 5.906481328e-12 3.885479125e-10 6.81681925e-11 1.363060232e-10 1.404736204e-10 5.962938964e-11 2.587081756e-11 2.13339752e-10 4.929987699e-11 3.022017266e-11 1.561169465e-10 1.254734155e-11 3.348353002e-11 1.282060583e-10 3.831751867e-10 3.588145311e-10 9.062611827e-12 6.700065805e-11 2.358212819e-11 1.650605317e-11 2.001110957e-10 1.142560294e-10 1.094588309e-12 1.383633495e-10 4.858497893e-11 6.137320822e-11 0 1.03326635e-10 2.367978068e-11 7.139791319e-11 2.480371578e-11 1.861542609e-10 4.601151237e-11 1.637066224e-11 1.598677924e-10 7.354737198e-11 1.505793967e-19 1.04674859e-10 7.177260635e-12 5.956944004e-11 4.789847753e-11 2.816181368e-11 9.828990375e-11 3.945161903e-19 7.845933591e-11 6.054143726e-11 2.609652225e-12 8.471746428e-11 7.284663636e-11 1.354765234e-10 7.01393581e-11 2.647171233e-11 4.786492177e-11 0 3.126017477e-11 4.839359429e-11 5.818554861e-12 4.073024699e-11 2.115472195e-10 1.0244309e-11 2.383010915e-13 4.497682023e-10 6.82885197e-11 5.131927874e-11 7.63176142e-11 1.810605584e-10 2.054611581e-10 1.92947128e-11 1.793161991e-10 1.064328621e-10 1.191403142e-10 1.812626318e-11 1.525673198e-18 8.429196096e-11 1.678646354e-11 7.002155866e-17 6.059814387e-11 0 2.298735128e-10 5.362389639e-12 2.932408787e-11 8.784616379e-11 9.587238972e-11 2.395165688e-13 1.341009797e-10 3.246426159e-11 2.89008888e-12 1.124168356e-11 1.727536371e-31 7.466024992e-11 2.825943467e-15 1.749239369e-10 5.024719905e-11 9.247521858e-11 1.013790438e-14 5.931977241e-11 8.89738532e-11 4.51489402e-11 4.78172085e-11 1.511015443e-16 1.365993148e-10 5.035313853e-11 2.066875483e-10 1.008748878e-10 7.908480547e-11 4.621386291e-11 3.589409506e-10 9.9426929e-11 1.982361935e-10 8.380078849e-11 1.016035502e-10 3.750206793e-10 1.368043458e-10 9.948569251e-11 7.553151428e-11 6.504377169e-11 5.867805547e-11 2.572627224e-11 2.544473061e-10 5.455387632e-11 1.436585668e-10 2.070066795e-10 7.318829961e-11 9.402189499e-11 7.628097483e-11 1.587002101e-11 2.015926908e-10 5.819434123e-11 4.348638004e-11 6.532746864e-13 1.38447533e-10 3.809795987e-11 1.698283409e-10 1.245833462e-10 4.201667871e-10 3.735732638e-10 1.284396061e-10 3.306764309e-11 1.406405347e-10 2.386921861e-25 9.792852321e-12 1.775276197e-10 +5.6222363e-11 1.205141898e-10 2.548419084e-10 1.826671008e-10 2.586179825e-10 1.545635494e-10 9.953360395e-11 5.01932499e-11 1.32404835e-10 5.014729361e-11 9.942215975e-12 1.383374038e-10 8.428488749e-11 4.637914539e-12 5.79034141e-11 4.628439787e-10 1.691246974e-11 7.455045094e-11 5.232567767e-11 2.110889869e-10 7.239292167e-11 1.736302887e-10 1.222568652e-10 8.550791253e-11 1.806720315e-10 2.474955329e-10 2.619619344e-10 1.473957694e-26 1.854298514e-11 4.98554761e-11 1.712230429e-10 1.817420818e-11 1.401815945e-10 1.085552146e-10 8.80241498e-11 1.929801451e-10 2.806759427e-11 1.237514488e-10 9.721054326e-11 8.724606705e-11 1.065808614e-10 2.552327599e-10 6.914967213e-11 1.130750729e-11 1.455296988e-10 5.650872953e-12 1.960505768e-10 8.71881082e-12 2.475855502e-11 2.647025738e-10 8.635669436e-11 7.418977994e-11 1.636965922e-10 2.304629859e-10 6.26400032e-11 6.905901825e-11 8.155068369e-11 3.45491121e-11 3.715198701e-11 3.686209506e-11 4.441619617e-11 4.050031835e-11 4.341869117e-11 3.082023861e-11 2.444925347e-10 1.276670376e-11 7.270817261e-11 6.739245017e-11 1.348472649e-10 1.380032962e-10 4.639087386e-11 5.475070625e-11 1.824110391e-10 8.810024526e-11 4.105549265e-11 9.892963427e-16 1.030619581e-10 9.696834317e-12 4.450054872e-11 5.114504639e-11 2.491415286e-11 0 2.820523923e-10 7.707108649e-12 2.164602545e-10 7.756639253e-13 1.355341792e-10 4.556424626e-11 1.012306829e-10 5.797508288e-11 1.259325468e-10 9.435781487e-11 2.499313608e-11 2.174796903e-10 5.723691644e-10 9.807990669e-11 5.706115165e-21 1.004330452e-10 3.373074483e-11 9.726532593e-11 3.6700998e-11 2.246945447e-10 1.042145068e-10 1.187583879e-10 9.281604612e-11 1.332378175e-16 1.579558659e-12 3.371176453e-11 1.060048365e-10 1.783224228e-10 1.289605312e-10 1.407952264e-10 2.750884414e-10 2.098636087e-10 4.40468051e-10 1.861345005e-10 7.852399019e-11 1.608085202e-10 4.143481976e-10 2.193089023e-10 1.104389836e-11 8.096082644e-16 3.877064224e-10 1.384169127e-10 6.966781102e-11 1.88217251e-11 2.218426003e-10 9.759871324e-11 6.749849222e-11 8.869512758e-11 9.955431698e-11 4.139532976e-10 1.27472923e-10 2.448142881e-10 3.354175226e-10 9.794734749e-11 3.279960126e-11 3.574956419e-10 1.456114585e-10 5.402086085e-11 4.900982177e-11 1.690683249e-10 4.685567185e-11 2.075210606e-10 1.502725974e-10 5.62969141e-11 3.62872971e-11 3.086417548e-10 2.897605537e-13 7.057549546e-11 1.253000188e-10 1.93055893e-10 5.40297416e-10 2.202106597e-10 1.630148926e-10 2.164375565e-10 3.591387529e-17 9.362697181e-11 6.295739383e-11 1.579354163e-10 2.871171059e-10 3.712449446e-10 2.423893144e-10 2.565834969e-10 2.263837659e-10 2.900784351e-11 3.901698714e-11 6.387852456e-11 2.626284688e-24 1.055450136e-10 1.532324726e-10 5.181777494e-11 8.355748818e-11 5.806958862e-11 3.753750802e-10 1.250418336e-10 1.964561755e-10 7.106693783e-11 5.894691265e-11 3.071726771e-17 3.489681917e-11 8.629481968e-11 1.771623497e-11 4.872612896e-10 1.365195182e-10 1.688259686e-11 1.482025129e-10 1.135620073e-10 2.477414694e-10 6.218258608e-12 1.590216419e-10 1.591225312e-10 6.882321825e-11 6.765052712e-11 0 1.822617841e-10 4.394933384e-11 1.409525146e-11 8.606738789e-11 1.719727428e-10 7.526175197e-11 9.659900162e-11 3.899977267e-11 6.419650437e-16 1.84574159e-10 9.269304823e-11 5.034983579e-18 6.445943016e-11 1.714768494e-10 1.184769714e-10 2.16408603e-11 1.976605298e-10 1.156744976e-10 0 2.142925284e-19 5.693669091e-11 1.570163506e-10 1.913851185e-11 1.169617899e-10 2.001188198e-11 1.617093792e-11 3.767634273e-10 1.942471989e-10 0 8.657293626e-11 2.230066653e-10 5.733004213e-11 3.839771553e-11 3.050062539e-10 3.093400577e-11 3.598684221e-11 5.230993319e-11 2.235629165e-10 1.519684606e-17 1.241394868e-10 8.058301785e-11 9.980958396e-11 8.424156968e-11 1.959476123e-10 1.423257482e-10 1.92198294e-12 3.926757142e-11 1.462104325e-10 7.939439721e-11 2.350460519e-10 1.248523905e-10 2.965365916e-10 6.214737973e-11 1.049249392e-10 3.541504345e-11 2.406012486e-16 3.008031919e-11 4.997913647e-17 2.250606539e-11 8.800932454e-11 1.854910305e-10 1.241088419e-16 5.063119154e-10 1.342452871e-10 5.855169671e-11 2.790799728e-11 2.53346145e-10 9.937852178e-12 2.100117517e-10 9.430926792e-11 2.186802188e-10 2.664427214e-11 6.650261231e-11 1.2493137e-10 3.718954391e-11 1.002140012e-10 3.942712472e-10 1.919726803e-11 6.369485151e-11 1.043802191e-10 2.462474483e-10 5.331256631e-11 8.998276799e-11 6.062025849e-11 3.794557904e-11 6.090288478e-11 2.389147881e-11 3.337342869e-11 1.92940369e-10 2.25462026e-10 1.167886692e-10 1.539484854e-10 3.588168605e-10 8.782331921e-11 5.573603518e-11 6.37513588e-14 2.064736439e-10 4.328266595e-11 1.760746454e-10 4.001115011e-11 7.215357203e-11 1.089012753e-10 3.252938851e-10 4.224259751e-12 1.222337504e-11 +4.533007809e-11 2.430820585e-10 3.823539886e-11 5.211767611e-11 3.300013075e-10 1.009112472e-10 2.160742153e-10 1.434053034e-10 8.623970299e-11 8.72841787e-11 1.458202511e-10 8.221246271e-12 1.297760828e-10 3.276504599e-11 1.100640593e-10 2.179521117e-10 1.395736017e-10 9.458578269e-11 2.80966299e-11 1.085396192e-10 2.986639007e-11 1.076374047e-10 7.339537767e-11 2.773548413e-11 9.247175877e-11 1.09267537e-10 4.415148433e-10 1.111972451e-10 3.666886605e-11 2.772762924e-10 1.69666721e-10 4.098801465e-10 7.937154534e-11 1.300049558e-10 6.711160256e-11 2.203129548e-10 9.483358497e-11 4.01665665e-10 1.769047491e-10 7.488076813e-11 3.798240423e-10 3.648698995e-11 2.090160901e-11 3.605518743e-11 1.165533565e-10 4.177949531e-12 2.272587337e-10 4.252918022e-11 8.267603851e-11 4.343768973e-11 1.336938241e-10 8.106915966e-11 8.845353037e-11 1.932737709e-11 1.248728095e-10 1.122767318e-10 3.551692558e-11 1.535809206e-10 1.463806162e-10 1.2919615e-11 4.503642058e-11 1.802776028e-10 6.537108994e-11 1.048356001e-10 3.205027874e-11 2.95313368e-11 6.487987795e-11 1.217817756e-10 1.266153939e-10 6.902149537e-11 1.4136069e-12 2.385199227e-10 1.682036663e-10 2.806134454e-10 1.615155805e-10 1.058797346e-10 7.708517857e-11 3.752041021e-11 1.846582746e-15 2.498299129e-10 8.050555955e-11 6.025984704e-11 3.315373186e-11 3.843460776e-11 4.240292127e-11 2.520923119e-11 1.842411923e-10 4.436626917e-11 3.147629762e-11 5.59384148e-12 5.160476549e-11 7.060636842e-11 9.589871221e-12 1.254767058e-10 6.346839915e-11 4.173838631e-11 5.785247865e-11 1.103850542e-10 1.111082039e-10 8.145040023e-16 1.149879207e-10 3.971138832e-11 2.312601267e-11 2.84494069e-10 1.165694216e-10 3.576021082e-12 1.48293099e-10 4.495551706e-12 1.431130914e-10 8.358825269e-11 8.522100351e-11 9.681199029e-11 6.533793394e-11 2.213737069e-11 8.893035848e-11 1.281715793e-10 4.156696278e-10 1.6616483e-10 1.902903785e-10 1.386626979e-10 1.57292035e-10 4.446250052e-11 5.454093365e-11 7.606399932e-11 4.88447916e-11 1.36308304e-10 1.111674104e-11 7.705765475e-11 2.69274976e-10 3.050803438e-10 1.725251767e-10 1.199781652e-10 1.580456809e-10 1.234698135e-10 1.777513414e-10 1.422077678e-10 1.25433027e-10 1.447988433e-10 4.095893209e-10 1.541717638e-10 3.160416389e-10 5.65710694e-11 4.312266583e-11 1.787853046e-10 1.497044266e-10 2.005900901e-10 5.58808641e-10 1.973852946e-10 4.978853702e-11 9.363041405e-11 2.029860105e-10 1.855893012e-10 1.320808685e-10 2.642555625e-10 1.026281764e-14 4.50540576e-11 1.369677629e-10 8.895714556e-11 2.522019422e-10 3.570619402e-10 1.850404576e-10 3.291080094e-10 2.427146838e-10 5.292222653e-10 3.747916767e-10 3.141649492e-10 1.13310095e-10 1.675532547e-10 2.107489796e-10 4.277907632e-10 6.645655378e-11 4.592065468e-10 1.833924605e-10 1.395735634e-10 1.006772616e-11 1.325577664e-10 6.273502066e-11 1.443724982e-10 1.721625037e-10 1.337639871e-10 2.889339827e-10 2.456269411e-10 1.441677328e-10 1.74595638e-10 3.744225376e-11 3.17659567e-10 7.286927007e-11 4.086494397e-11 2.244867101e-10 1.487878425e-10 0 1.619373678e-10 1.754307758e-10 4.056114141e-12 1.547032978e-13 1.458457206e-10 1.623422742e-10 1.555088638e-10 3.325061634e-11 1.762630497e-10 1.821023764e-10 3.670463409e-22 1.226487796e-10 4.172280059e-11 6.466788134e-11 1.773969558e-11 1.618647226e-10 6.045053505e-11 1.774058146e-10 1.42101346e-10 1.43432523e-10 5.931220082e-11 1.911863519e-11 2.46478948e-10 1.655212507e-11 5.029499956e-11 1.573641926e-11 5.546869644e-11 2.899314246e-11 4.380592843e-11 1.760509223e-10 5.333994612e-11 2.154745449e-11 9.945437243e-12 2.598512317e-10 2.630909559e-10 2.611363344e-10 2.625825605e-11 1.009024554e-11 1.902605442e-10 1.290408071e-10 5.789595844e-11 6.693235433e-11 7.414193886e-11 1.730947942e-10 4.870629455e-11 4.901794726e-11 3.509503048e-11 1.848147787e-10 2.033648318e-10 5.164500623e-11 2.559012886e-28 6.379152606e-12 6.261614412e-11 1.54580799e-11 4.057847012e-11 8.612364603e-11 8.796109022e-11 1.150611829e-10 2.050167355e-10 2.715053769e-10 2.77542456e-11 2.651409149e-10 9.521234671e-11 1.16165369e-11 1.116754691e-10 3.924480614e-10 7.971860879e-11 1.029008175e-10 1.40741538e-11 9.124413552e-11 1.704108218e-10 1.427113747e-10 1.290847981e-11 6.974165177e-11 6.169037916e-12 1.920561618e-10 3.049298545e-10 2.564747031e-10 1.097513222e-10 5.255781623e-11 4.664915197e-11 3.577525622e-11 3.430407519e-11 9.918060358e-11 7.203773421e-12 6.889157895e-11 3.05859196e-10 8.098450717e-11 3.897067988e-11 1.668567831e-11 3.72595251e-10 8.953709988e-11 7.271674724e-11 2.401850381e-10 1.349142749e-11 9.475025048e-12 1.606639221e-10 6.728774225e-11 5.348314426e-10 6.882505649e-11 1.460905028e-10 2.931719404e-10 4.102676602e-11 7.203872839e-11 1.235656912e-10 2.797054528e-10 3.255028312e-10 4.993961363e-13 8.355048196e-11 +7.833855688e-11 7.265455284e-11 4.319581554e-11 1.447958269e-10 5.956485868e-11 4.120423986e-11 4.40072632e-11 2.199612188e-10 1.435841437e-10 6.273942477e-11 6.416176306e-11 4.554476293e-17 1.508037234e-10 3.748686718e-11 4.998437336e-11 4.861879066e-10 2.007424954e-11 8.146531153e-11 3.146208758e-10 8.304054795e-11 2.053257679e-10 2.01477134e-10 9.550905206e-12 5.330449326e-11 9.363216724e-11 2.425171039e-10 1.473977247e-11 1.255366437e-10 1.384712934e-10 3.388577189e-11 1.576568222e-10 1.2705051e-10 1.731128831e-10 9.143291849e-11 2.887582337e-11 1.015397269e-10 2.300196984e-10 1.185426188e-10 1.230189775e-10 9.543120981e-11 6.281220888e-11 9.094213597e-12 6.948773128e-13 1.789473605e-10 2.279358454e-10 1.19000409e-10 2.405850718e-11 2.574906924e-11 1.515870003e-10 2.356930447e-10 6.102421779e-11 5.079691697e-11 7.890788912e-11 1.698282478e-10 6.731914299e-11 2.988649959e-10 5.125089166e-11 2.857978026e-10 2.25113214e-11 6.8237591e-18 3.227123549e-10 6.435770663e-11 1.301995641e-10 1.95487669e-11 7.971616493e-11 5.048591428e-11 1.0326774e-10 1.085580756e-14 8.909955372e-11 1.410593382e-10 1.147169032e-10 3.387342263e-13 1.05328989e-11 1.14152948e-10 1.754275549e-11 1.024592171e-10 3.757095644e-15 2.685275604e-10 7.068971882e-11 2.130057825e-10 1.002561324e-11 0 1.582103529e-10 6.912560903e-11 2.695800835e-10 9.490326664e-11 1.040212768e-10 1.229411453e-22 1.601959058e-12 2.484178611e-11 7.704460237e-11 3.096990032e-11 3.107578445e-10 2.630180141e-10 1.441684478e-10 1.024398809e-10 8.472490645e-11 8.044491254e-12 2.308104124e-10 1.212161657e-10 5.437213879e-11 2.864131085e-11 1.023480985e-10 2.61604841e-11 1.971641505e-10 2.041830744e-11 2.241890033e-11 2.292393808e-10 5.809548878e-11 3.361065659e-11 1.734710842e-10 5.461454927e-11 2.317190968e-10 1.445607256e-10 2.654490234e-10 2.034872671e-10 1.915364118e-11 2.89348372e-10 7.556719812e-11 1.635615638e-10 1.364438931e-10 1.672289138e-10 1.347182267e-10 5.662081834e-11 3.934656462e-10 4.231078822e-10 1.412109809e-10 3.166632475e-10 1.970781593e-10 1.534373159e-10 1.79968349e-10 1.601391321e-10 2.3515599e-10 2.05271726e-10 2.402472099e-10 5.321483401e-10 3.489524544e-10 5.480256994e-10 2.298317119e-11 4.118153173e-11 2.603831082e-10 2.078787918e-10 1.200056617e-10 1.931979312e-10 1.631973804e-11 2.711144699e-10 5.595919729e-11 3.871185679e-10 2.84185864e-10 2.002817864e-10 3.161834733e-10 4.569366686e-10 2.235888379e-10 1.606350364e-10 6.317691292e-11 1.941780531e-10 4.901497805e-10 2.265347548e-10 2.218582529e-10 1.082711982e-10 1.479917104e-10 3.773753966e-11 1.415187245e-10 9.815659109e-11 4.64914883e-10 3.823628599e-10 1.508466291e-10 7.546999406e-11 1.035730987e-10 5.38838679e-11 2.214407454e-10 2.296680836e-10 1.51900228e-10 5.0231278e-10 2.074014327e-10 3.751096823e-10 2.147350729e-10 3.42597541e-11 2.374945077e-10 9.993825196e-11 1.650579636e-10 5.298819494e-10 2.293670095e-11 1.271033867e-10 3.991887135e-11 8.461252013e-11 1.550721661e-10 7.101897197e-11 8.855867195e-12 9.921758149e-15 2.310838944e-10 3.466039569e-11 2.35394816e-10 7.991309271e-11 4.372342975e-11 2.480526198e-10 2.050912227e-10 2.54194534e-11 6.220331114e-11 6.313895369e-11 3.403340343e-11 6.218491686e-11 4.092320017e-11 6.516689533e-11 2.722956553e-10 4.163704527e-16 3.519927125e-11 4.824017657e-14 4.502431657e-11 1.787591192e-10 1.034088916e-11 9.579787489e-11 6.473118771e-11 2.502091345e-10 5.165439259e-14 2.356019475e-10 4.391749782e-11 2.093459033e-10 9.11376842e-11 4.005276178e-11 2.96608889e-11 2.73570495e-10 5.184004115e-11 4.146063563e-11 1.927689575e-10 4.46066919e-11 1.481727166e-10 1.379768852e-10 2.926367804e-11 6.522267918e-12 1.531564014e-11 7.068611492e-11 1.192182546e-10 1.659767749e-10 6.225323512e-11 3.575269691e-15 1.406728363e-10 1.768438016e-10 1.005700013e-10 2.806834716e-11 7.908616463e-11 9.133461612e-12 1.793030441e-10 2.327144058e-10 2.673868467e-10 1.405597426e-10 7.08846607e-11 5.057657054e-11 6.731618834e-12 4.475460385e-11 7.266059217e-12 1.696792514e-11 2.427398722e-11 1.039386729e-10 1.782451563e-10 6.410440549e-11 1.675416852e-10 9.152501212e-11 1.971086428e-11 5.954693282e-10 1.168295933e-10 1.155339032e-10 6.215268038e-11 8.824493911e-11 1.084427655e-10 1.235430208e-10 3.499026688e-10 3.631411284e-11 6.097095777e-11 1.953391736e-10 8.04616518e-11 3.197682983e-11 4.230055018e-10 1.673293935e-10 3.514703451e-10 8.593093886e-11 1.596049696e-10 2.641968808e-10 7.103176913e-11 6.348710001e-11 2.37711089e-10 2.978617741e-10 4.801595305e-11 1.933392774e-11 8.996021247e-13 2.363661069e-10 1.73076648e-10 1.172653754e-10 4.711883186e-11 1.128179834e-10 5.60405423e-11 2.953444681e-11 6.153012392e-11 1.508098406e-10 1.363431098e-10 8.099340676e-11 1.56511101e-10 2.654043932e-10 1.641982728e-10 1.143016445e-10 +9.233647334e-11 2.449811995e-11 7.656185664e-11 1.081488513e-10 2.362657967e-10 5.20598865e-12 1.439996714e-10 1.200603031e-10 2.507949467e-10 1.816684993e-10 1.342621975e-10 6.468551972e-11 1.091316503e-10 1.071496688e-10 1.731385648e-10 1.853610307e-10 4.394726125e-11 1.731209965e-10 3.040461992e-11 2.771463929e-11 4.847282423e-11 1.667852297e-11 1.263788354e-10 2.976035533e-10 2.09755234e-10 6.997565789e-11 1.403000874e-10 4.130554539e-11 7.424977427e-11 2.021783004e-11 1.075033608e-10 1.775411466e-10 6.84782352e-11 2.007880608e-10 1.632804851e-10 2.297640122e-10 1.15629181e-10 5.099762202e-11 4.248166319e-11 3.03318797e-10 2.250090297e-11 2.436956563e-10 8.987057917e-11 1.661292745e-10 2.589357362e-10 5.680805202e-11 1.279702531e-10 2.37585663e-10 1.562286225e-10 5.830099011e-17 1.641742682e-10 1.432548859e-10 7.217273542e-11 6.664783731e-12 3.525812848e-11 9.099501854e-11 2.063931049e-10 2.240839431e-28 6.800602471e-11 1.207027754e-10 1.802703652e-11 4.701003872e-10 1.175967315e-10 4.946895479e-11 1.167130744e-10 1.743080887e-11 5.016570614e-11 6.313861983e-11 6.759893986e-13 6.111140362e-11 1.624157678e-10 6.906042809e-11 4.687844009e-11 2.148047137e-11 3.137729843e-10 7.773791944e-11 1.817587621e-10 1.175640747e-10 8.327297024e-16 4.642108881e-11 5.911588667e-11 1.065516961e-10 2.297475014e-10 7.624413137e-11 6.000319993e-11 4.455198008e-11 3.538837462e-11 1.978857796e-10 4.784469302e-11 1.10823709e-10 3.298895494e-11 3.116390582e-10 8.596975376e-11 1.831436402e-11 4.069646904e-11 1.580658234e-10 1.243123679e-10 1.56503898e-10 1.285588196e-10 8.236858993e-11 4.805310887e-11 1.180806432e-10 2.400299433e-10 6.372480665e-11 5.502701169e-11 2.9451126e-10 2.836152487e-10 9.856220404e-11 6.115221444e-11 0 1.917305181e-11 1.937249247e-10 3.823122632e-11 1.114365467e-10 4.508055353e-11 5.284588325e-11 1.597188187e-10 2.800633482e-10 2.076717876e-10 6.265201298e-12 2.372324374e-10 7.181598988e-10 2.384152178e-10 5.476515834e-10 3.829579764e-10 2.185742539e-10 1.076202446e-10 1.125511453e-10 2.425523046e-10 1.412872094e-10 5.588363881e-11 2.0656055e-10 1.604998664e-10 1.33879955e-10 6.794841438e-10 4.353128738e-10 2.368483637e-10 2.265564707e-10 3.177773063e-10 3.444666306e-10 3.017030155e-10 2.686152843e-10 4.36914098e-10 5.690342579e-10 2.375921105e-10 3.230867662e-10 1.19229727e-10 3.295561964e-10 9.851769152e-11 2.459417726e-10 1.271792385e-10 3.186101725e-10 9.503979946e-11 4.748220314e-10 2.440483151e-10 9.497602633e-11 4.580930156e-11 5.949589544e-11 7.519320098e-11 1.615863247e-10 1.487321491e-10 2.926948272e-10 4.447033384e-10 9.082897766e-11 9.275362606e-11 2.880915359e-10 1.23727787e-10 3.146146654e-10 1.769153778e-10 1.004006931e-10 3.213820992e-10 8.163776449e-11 3.035256726e-10 6.254716859e-11 1.727988258e-10 4.037804685e-10 6.319635014e-11 2.579570364e-10 1.32061911e-10 1.101238312e-10 3.352493797e-10 2.606364368e-10 1.736980089e-10 2.69509877e-10 1.23632652e-10 1.539836724e-10 1.603509871e-10 8.79920778e-11 8.351736126e-11 2.280073974e-10 5.75057018e-11 1.9848527e-10 1.362861358e-10 5.929264074e-11 3.055918489e-10 2.434515689e-10 1.90048534e-11 6.759118015e-11 2.183637118e-10 1.788826807e-10 2.000704299e-10 2.002854523e-10 5.085317137e-11 1.855867413e-10 8.917766898e-12 7.692950043e-11 7.102284673e-11 9.344475279e-11 1.480513918e-10 7.947679576e-11 1.107575306e-10 1.72752488e-10 2.965840852e-10 1.416554736e-10 2.912469125e-11 1.60737375e-10 6.262799403e-11 1.104490455e-10 7.423458186e-11 1.502845792e-11 5.409237178e-11 6.91028046e-11 1.427342543e-10 6.099005466e-11 1.130000783e-11 1.763746746e-10 2.164251901e-10 6.864261165e-12 2.335737733e-10 6.002709338e-11 7.630987508e-11 1.060977101e-10 2.759616104e-10 9.241308997e-11 1.680277694e-11 2.319378973e-10 2.446591032e-10 6.534049147e-12 2.745237562e-10 1.534972657e-14 1.140317673e-10 1.16779247e-10 2.047242557e-10 5.513903479e-11 1.705755121e-10 4.031155514e-11 1.494903619e-10 9.092964105e-11 3.731494802e-11 7.941668249e-11 1.024277788e-10 1.032765131e-10 3.62465635e-11 1.894087917e-10 3.211563414e-12 6.048350509e-11 8.383182031e-11 2.26541736e-10 5.775810038e-11 6.219994288e-11 9.762534208e-11 1.283048622e-10 1.636719925e-10 3.406049409e-10 1.970648921e-10 2.098318103e-10 7.643941687e-11 3.05208302e-11 2.331694186e-10 3.141175642e-10 3.422123459e-11 1.589589396e-10 1.147623724e-13 7.883354299e-11 1.374776762e-11 1.412035608e-10 1.642888267e-10 3.22829902e-11 8.026670116e-11 2.939500823e-10 1.739474602e-10 1.560182727e-10 2.295947911e-11 3.104456228e-10 6.375218686e-11 7.082987722e-11 1.194395768e-10 9.479856799e-11 2.380502397e-10 1.069937094e-10 1.733086731e-10 1.129420054e-10 8.591224391e-11 1.01432588e-10 6.537271352e-11 1.706828606e-10 1.998965524e-10 1.255751145e-10 8.424199009e-11 1.646564747e-10 +1.41628105e-10 7.217994386e-11 1.749469914e-10 5.364787541e-11 3.672609505e-10 3.286555376e-10 9.791276556e-12 9.635947974e-12 1.872878856e-10 3.672807352e-11 3.892746517e-10 8.731866332e-11 3.5922651e-10 1.899644636e-10 1.18470531e-10 7.101800788e-11 3.608403231e-11 1.485913262e-10 8.4218893e-11 9.85329099e-11 2.132215303e-11 3.2621413e-10 1.780741958e-10 1.895708751e-10 7.701197612e-11 2.784877102e-10 2.599508539e-10 9.736845201e-11 1.95197323e-10 5.0737005e-11 4.057379877e-10 2.309452643e-10 2.601444341e-10 4.228499751e-15 9.498422356e-11 2.307981071e-10 1.333754897e-10 4.266389656e-10 1.565703336e-10 2.949614731e-10 4.84482743e-12 7.675500141e-11 2.645282776e-10 3.709789774e-10 3.369379519e-11 2.930729021e-10 2.583638892e-10 1.873075436e-11 1.184460884e-11 3.897757795e-10 7.220854706e-11 3.262447104e-10 1.126412952e-10 1.830121177e-10 1.113169781e-10 1.309151608e-10 6.685468413e-11 4.976905001e-11 1.243889137e-10 1.918489579e-11 4.865574391e-11 7.625141308e-11 7.771438507e-11 6.141445375e-11 2.505717594e-10 1.741218588e-10 1.024052771e-11 9.452983755e-12 1.413151338e-10 1.548117296e-10 2.918682156e-10 3.058914453e-10 1.0102483e-10 1.043255466e-11 8.120608277e-11 1.664889784e-10 2.23460051e-11 1.47896267e-10 6.935269758e-11 1.587841391e-10 2.640076867e-10 9.462610784e-11 7.718524837e-11 2.184962033e-10 2.848912576e-10 1.03486037e-10 2.389821731e-10 7.445167823e-11 2.671888376e-21 9.672629552e-11 1.019548405e-10 7.532141039e-11 1.212053296e-10 2.332294892e-10 2.710896522e-11 1.760315986e-10 1.373509388e-10 2.170406987e-10 2.407327721e-10 2.054370224e-11 3.112375869e-10 1.592304365e-10 8.316669816e-11 8.277386191e-12 3.827411402e-11 4.646653053e-11 1.449601649e-10 3.326558976e-10 4.502177912e-11 1.566485217e-10 7.566431721e-11 5.722228777e-10 2.16439448e-10 8.257413239e-11 5.23287052e-11 2.533203095e-10 2.151389087e-10 2.429326085e-11 2.219707326e-10 3.493619673e-10 3.171798949e-10 9.304595317e-11 1.526725719e-10 3.585523993e-10 4.388957e-10 3.384997009e-10 3.850417071e-10 1.814126129e-10 1.290464279e-10 1.512974267e-10 2.879334482e-10 3.347184046e-10 4.862112062e-10 2.934553706e-10 1.134756559e-10 3.678601207e-10 1.691233821e-10 2.711348071e-10 3.319339228e-10 1.160311106e-10 3.330498617e-10 1.419252409e-10 3.461445614e-10 3.935767824e-10 2.754164104e-10 2.123328852e-10 7.358786247e-11 1.507628065e-10 1.871794936e-10 2.035778855e-10 3.335446262e-10 4.091840033e-10 1.04203188e-10 2.370895805e-10 1.006251006e-10 3.139182403e-10 4.231957931e-10 2.681662723e-11 4.841173343e-10 1.624569629e-10 5.951601929e-10 2.287719141e-10 1.27143306e-10 1.091873059e-10 2.086261914e-10 5.685239143e-11 2.396499709e-10 3.850453969e-10 5.890952085e-10 2.212410003e-10 4.950697444e-10 4.579452193e-10 2.848036827e-10 2.561696752e-11 4.652730434e-10 3.748995712e-10 2.908094398e-10 2.70923687e-10 9.961897554e-11 4.023144603e-10 9.96673786e-11 3.322639335e-10 1.353328707e-10 1.127526225e-10 2.257039307e-10 1.590454936e-10 2.03404641e-10 4.813906018e-11 4.221234575e-10 4.970085943e-11 1.130987685e-10 1.223704115e-10 3.526377002e-10 2.442500129e-11 2.039052936e-10 9.444887633e-11 9.98029689e-11 1.324802997e-10 8.399078048e-11 4.04407038e-11 2.038760887e-10 1.61441238e-10 6.205924848e-11 1.878451473e-11 5.335677692e-11 1.066868959e-10 2.26107967e-10 3.480790326e-11 9.044287172e-11 8.297508873e-11 3.138648095e-11 1.055586764e-12 1.252495597e-10 2.749998603e-10 1.199147432e-10 1.806282892e-11 2.657896683e-10 1.164491839e-10 3.62328652e-11 2.360923929e-10 6.886736537e-11 6.502159882e-11 1.776863396e-11 2.031134847e-10 5.516614188e-11 4.176618762e-10 6.496334374e-11 1.34115922e-10 1.084062379e-10 1.683031205e-10 1.435607682e-10 7.2232253e-15 3.549377784e-11 5.988442595e-11 1.575760894e-10 1.62429817e-10 2.28349579e-11 8.79497473e-11 1.277933269e-10 1.27773306e-10 6.017741383e-11 7.52347775e-11 3.951720184e-11 2.58896882e-10 1.75708437e-10 1.366476384e-10 1.420816097e-12 1.130537448e-10 2.872715822e-10 8.35467175e-11 1.034117979e-10 1.607941634e-10 3.171995402e-10 1.45557376e-10 2.65375452e-10 2.822949056e-11 3.973003899e-11 3.824575133e-11 5.449095529e-11 7.82554974e-11 6.795374467e-11 3.289779783e-11 1.336129114e-10 2.59547218e-10 2.730255625e-10 3.964761805e-11 4.870971235e-11 5.361526553e-11 1.432681453e-10 2.909855119e-11 1.313114407e-10 2.536633028e-10 1.483967694e-10 1.331621711e-11 2.509449093e-10 5.803045037e-11 9.842375348e-11 1.018241567e-10 1.50514141e-10 1.120046525e-10 8.49925852e-11 6.271176447e-11 1.594965304e-11 2.680638728e-10 1.292530664e-11 1.847284018e-10 2.56685849e-10 1.733179505e-10 1.871648893e-10 2.486792759e-10 8.960844252e-11 1.40297179e-10 4.21417903e-11 2.396899787e-10 1.441543872e-11 3.25222735e-10 2.176447844e-10 3.297437332e-11 3.053841426e-11 3.39645201e-10 +1.050099659e-10 1.817658253e-10 1.706195814e-10 1.85464053e-10 5.087433815e-11 2.98788246e-10 9.596782572e-11 1.241974467e-10 1.724583406e-10 2.21449672e-10 1.142719385e-10 1.131522579e-10 1.605522842e-10 2.258141692e-10 3.770087537e-11 2.81357443e-10 1.159625365e-10 1.585767584e-10 1.139992806e-10 2.511815094e-10 2.681867093e-10 4.261821438e-11 5.53383528e-11 2.649795361e-10 1.625707255e-10 1.613487848e-10 1.138837298e-10 1.864142621e-10 1.258585948e-10 6.246498326e-11 9.499873058e-11 1.175732916e-10 2.497684797e-10 1.146709687e-10 3.371126369e-10 1.210536927e-10 2.833308988e-10 7.696331861e-11 5.449806115e-11 1.819270635e-10 4.684382811e-11 1.849415661e-10 3.601109849e-10 4.603921949e-10 1.814513002e-11 5.13462378e-10 1.32614574e-10 2.540730061e-10 5.623858776e-11 2.482353642e-10 1.391810795e-10 4.619400107e-11 2.923404427e-10 1.171678256e-10 1.323513017e-10 2.675300731e-10 2.369454775e-10 1.393566008e-10 3.102691692e-10 1.615057201e-10 2.262592965e-10 5.844518679e-11 8.43363275e-11 3.077364093e-11 2.354976784e-11 1.794639567e-10 1.207187833e-10 1.087736612e-15 3.0795577e-11 1.420482996e-10 1.256286646e-10 7.078947421e-11 1.686031557e-10 2.304881476e-10 8.245653317e-11 1.250319854e-10 9.075259467e-11 2.962866323e-11 2.080076273e-10 8.99830701e-12 1.73539152e-10 2.197585528e-10 1.231671958e-10 1.421056187e-10 8.69901358e-12 8.921201893e-11 7.269359207e-12 1.449561023e-10 1.370790404e-10 2.378219207e-10 1.181148196e-10 2.271352675e-11 7.409234342e-11 2.121059781e-10 3.966422773e-10 2.394667603e-10 1.367045185e-10 4.963602547e-11 4.365462272e-10 4.135965945e-10 3.008667359e-10 1.746930645e-10 1.205815722e-10 1.694468282e-10 9.519117989e-11 1.910537073e-10 3.568732581e-10 1.343692568e-10 3.936069709e-10 1.766202813e-10 9.418719328e-11 2.556998763e-10 3.726455774e-10 8.529141938e-11 1.076426958e-10 3.22389696e-10 4.118231527e-10 2.291123855e-10 1.00667235e-10 2.102899813e-10 3.272154527e-10 3.906040465e-10 1.968623701e-10 1.611379706e-10 3.164804763e-10 3.483366737e-10 4.039981067e-10 1.8876136e-10 2.771133194e-10 1.72943772e-10 2.311746896e-10 6.597374985e-11 4.805687057e-10 5.22835721e-10 9.118947212e-11 2.554410999e-10 2.625007419e-10 2.500470205e-10 1.437339351e-10 1.845764388e-10 8.89389037e-11 3.573154455e-10 5.49591053e-10 3.715165324e-11 5.470842792e-10 2.202772578e-10 4.409956761e-11 3.582676587e-10 4.693978928e-10 1.968447587e-10 4.139140475e-10 1.604280148e-10 3.053854963e-10 2.42563922e-10 2.309642791e-10 3.223936134e-10 1.730090657e-10 4.174974412e-10 2.141585215e-10 3.512137791e-10 1.491384243e-10 3.637229008e-10 3.504965155e-10 2.941886099e-10 2.645613818e-10 1.476315954e-10 1.376946449e-10 2.685009818e-10 4.031729872e-10 2.745397419e-10 8.253575435e-11 4.361311328e-10 2.480022623e-10 1.351102573e-10 4.932182942e-11 3.680691678e-10 2.744218538e-10 2.606184137e-10 1.491267999e-10 6.556203549e-10 8.435929295e-11 3.9999014e-10 3.908949586e-10 1.381958916e-13 4.412970998e-10 5.481287566e-10 5.14020792e-11 9.384732169e-11 2.253991277e-10 2.860272457e-10 9.963555855e-13 6.10205522e-11 2.006598687e-10 2.648879436e-10 4.678097948e-11 1.397029004e-10 3.405896207e-10 1.645655761e-10 1.366577635e-10 6.787439174e-19 1.098671848e-10 2.953040575e-10 2.749638465e-10 1.885769912e-10 1.379160662e-11 3.975980142e-12 7.192781169e-12 1.457130608e-10 2.267451662e-10 4.530142691e-11 1.406837729e-10 2.295920724e-11 3.040309479e-10 1.230077685e-10 4.144691949e-11 3.135507899e-11 3.497137945e-11 2.408902757e-11 1.483868662e-10 3.328035415e-10 1.768651852e-10 2.077236085e-10 7.231945193e-11 2.559634919e-11 1.418640587e-10 2.562299016e-11 7.132009374e-11 2.595247783e-10 5.022586234e-11 4.442935527e-11 6.848367415e-11 1.301133294e-10 3.112296403e-10 5.944922762e-11 3.772699893e-11 2.329961799e-11 4.16167258e-11 2.969038592e-10 3.994044908e-11 1.117803699e-10 3.768224546e-11 5.770504451e-11 1.602620961e-10 2.368774598e-10 1.765439664e-10 1.849459003e-10 3.303314004e-11 1.976039912e-11 3.630541959e-11 1.344179336e-10 1.784951209e-10 1.630143276e-10 9.214931987e-11 1.588091371e-10 2.917252133e-12 1.56304426e-10 1.998325088e-11 1.151577726e-10 3.43823135e-10 1.219805999e-10 1.126366127e-10 2.341127508e-10 3.200328377e-10 8.95587979e-11 8.777704218e-11 1.470888044e-10 2.108315824e-10 2.781759426e-10 4.769181979e-11 1.219600228e-10 8.461720169e-11 8.548578126e-11 5.221267408e-11 7.740825956e-11 1.161962908e-10 1.471875697e-10 2.071528098e-10 3.081261136e-10 2.444231205e-10 1.231634527e-11 1.467850881e-10 9.247399265e-11 2.79045372e-10 8.883658778e-11 1.904937377e-10 1.929114728e-10 3.445382094e-11 1.173500447e-10 2.985384414e-10 2.687835628e-11 1.935343621e-10 1.706480186e-10 2.323238234e-10 9.439141837e-11 4.189732012e-11 1.109492798e-10 1.113323371e-10 1.816397e-10 1.046973792e-10 1.40957221e-10 +2.25316931e-10 2.361133566e-10 1.302854829e-10 2.218367446e-10 1.329899962e-10 1.220129186e-11 2.834502888e-10 1.458830689e-10 2.392697498e-11 1.950416267e-10 2.319500864e-10 4.044072253e-10 3.073997187e-11 2.805529422e-10 1.054831512e-10 1.910904771e-10 1.310057392e-10 5.321671174e-11 2.592530279e-11 1.077607765e-12 1.071491791e-10 4.668265943e-10 8.580003155e-11 1.286162474e-10 5.106012723e-11 8.261595894e-11 1.582390873e-10 3.363252139e-10 2.003440435e-10 7.846036136e-11 2.353782919e-11 2.344276874e-10 8.653932298e-11 1.868896813e-10 4.831675983e-11 2.45166605e-10 6.838558997e-11 3.675687447e-10 1.059657411e-11 3.767676003e-10 2.656994658e-10 1.257646487e-10 3.984575257e-28 1.727961306e-10 1.499975762e-10 1.864069682e-10 9.4007938e-11 2.017023263e-10 1.489218e-10 5.737865306e-11 3.37860662e-10 8.542923511e-11 7.704508581e-10 2.817821576e-10 4.429197393e-10 5.033788628e-11 2.084691615e-10 1.70816021e-10 3.187049409e-10 3.303811848e-10 1.265407707e-10 4.709331194e-10 6.821646664e-11 3.925464193e-11 3.130696215e-11 1.91325946e-10 2.194039342e-10 2.9086252e-10 1.046344639e-10 1.493364599e-10 8.96217103e-11 5.17234546e-11 5.372279361e-11 2.896996269e-11 1.734218656e-10 1.048395085e-10 1.594204986e-10 3.201670774e-10 1.433491826e-10 1.980668913e-10 2.208764806e-10 2.749729069e-10 7.579962325e-11 2.976729917e-10 4.455114785e-10 1.92466108e-10 2.581528356e-11 8.09328402e-11 9.850515805e-11 1.564935358e-10 1.290171152e-10 2.402698064e-11 1.940319541e-10 4.044386935e-10 1.390270848e-10 1.580899128e-10 1.52796951e-10 1.322259283e-10 4.044505802e-10 1.982143684e-10 3.527861411e-10 4.259489232e-10 1.648218506e-10 1.618231277e-10 3.317737563e-10 2.906239966e-10 2.52577558e-10 1.624130999e-10 3.462623228e-10 1.716043305e-10 1.930165398e-10 1.707435095e-10 3.027670456e-10 7.564839295e-11 6.131290986e-10 7.815180227e-11 2.732155482e-10 2.615931495e-10 1.121261235e-10 3.320457562e-10 2.50595446e-10 2.373363641e-10 2.983524905e-10 6.237337089e-11 1.363433639e-10 3.695969698e-10 1.813674425e-10 3.919084072e-10 3.162409744e-10 7.108662652e-11 3.004396927e-10 5.054700295e-10 2.711117811e-10 2.551872794e-10 1.342198871e-10 4.088492865e-10 4.204009776e-10 3.654570665e-10 2.048574864e-10 7.758201252e-11 7.817011265e-11 3.033987597e-10 1.96673659e-10 1.78757499e-10 2.731443265e-10 2.68405279e-10 4.549896219e-11 3.308758239e-10 1.183635173e-10 1.90680382e-10 1.711393925e-10 3.073911079e-10 1.680270337e-26 3.267032819e-10 2.678135421e-10 2.155354399e-10 1.597244217e-10 2.561538865e-10 2.217367853e-10 2.603805057e-10 4.156685946e-10 3.281695154e-10 2.463529141e-10 7.445647267e-12 2.538838861e-10 1.316931701e-10 5.72408651e-10 1.30370401e-10 2.14139214e-10 7.278175864e-11 2.606074163e-10 2.694723937e-10 4.099838915e-10 3.373611143e-10 1.612355074e-10 2.222376718e-10 1.807137069e-10 6.600836235e-11 3.436841954e-10 1.219789089e-10 5.61215264e-10 2.771753505e-10 1.567739503e-10 4.889219147e-10 3.384766955e-10 3.719837232e-10 3.506506335e-10 4.174359409e-10 2.31729003e-10 4.411736001e-10 2.664925673e-10 2.024347084e-10 1.522015119e-10 2.113807171e-10 1.506965046e-10 6.844217709e-11 2.812177856e-10 2.569927693e-10 1.502910574e-10 2.913906496e-10 2.809372482e-10 7.673615309e-11 3.784361815e-10 2.42391883e-10 1.775503731e-10 2.553274589e-10 5.423657704e-11 1.290765326e-10 1.355658676e-10 2.459555167e-10 8.219769962e-11 1.414588961e-10 3.129055024e-11 1.454803786e-10 1.759746113e-10 4.897458968e-11 8.92602086e-11 8.093420194e-11 6.543139751e-11 1.745221014e-11 1.854695716e-10 1.130020597e-10 1.811606177e-10 4.548491862e-10 2.409273069e-10 2.139656998e-10 1.463426797e-10 1.176199682e-10 7.867095607e-11 1.48077818e-10 1.790231057e-10 9.357037518e-11 1.797101996e-12 2.333115816e-11 9.35700183e-11 2.631323051e-10 3.149770488e-10 2.119256675e-10 2.126330803e-10 1.863871337e-10 1.297886294e-10 9.021753752e-11 1.979612298e-10 5.411294912e-10 5.256465429e-11 2.380827789e-10 3.104131374e-11 2.738690947e-10 2.39567613e-10 1.26852217e-10 8.522445394e-11 3.09625293e-10 1.267116132e-11 2.574861849e-10 1.429471781e-10 1.593975949e-10 1.455613351e-10 4.636961592e-10 1.041064e-10 1.894162672e-10 6.569949633e-11 5.961728464e-11 4.249624555e-12 1.548817249e-10 2.451659732e-10 1.854387662e-10 1.503939757e-10 4.882286637e-11 1.229202512e-10 9.190823419e-11 3.142217213e-11 3.955876394e-11 1.716504883e-10 1.322746265e-10 1.341364962e-10 1.987686412e-10 7.355873186e-11 2.097621923e-10 3.686868814e-11 2.421630802e-10 2.141489862e-10 1.047151495e-10 1.013105947e-10 2.049792318e-10 6.128083489e-11 3.133537674e-10 2.895245092e-10 2.389678973e-10 2.642077921e-10 1.227098888e-10 4.457896576e-11 3.28924301e-10 4.085134425e-10 7.907437936e-11 3.6820067e-10 9.50127143e-11 5.563486522e-11 2.622825254e-10 1.010700148e-10 1.034132444e-10 +9.897974209e-11 6.89038755e-11 1.09286928e-10 1.94359869e-10 5.849008013e-11 1.622485496e-11 4.026329874e-10 9.855027768e-11 5.27277033e-11 9.784704118e-12 1.319429511e-10 2.384101852e-11 2.355234575e-10 8.134582001e-11 3.229934916e-10 2.188806128e-10 3.164796309e-10 4.177597408e-10 1.039669167e-10 1.369587127e-10 1.144568868e-10 9.943995371e-11 2.558637333e-10 1.052854257e-11 9.17392934e-11 1.025710181e-10 5.721187104e-11 2.969862729e-10 9.458544569e-11 1.143927004e-10 5.557529384e-11 1.777416765e-10 6.182712759e-11 1.040366891e-10 1.745941165e-10 8.83997067e-11 3.89553079e-11 3.419510894e-10 6.156581821e-11 2.759240652e-10 5.64973251e-10 3.290817275e-10 4.964425696e-10 8.717510828e-11 3.677241076e-10 8.117740351e-11 1.232538481e-10 6.311888621e-11 1.073442038e-10 5.713426482e-11 1.800427391e-10 1.876058699e-10 1.289335093e-10 1.614099651e-10 3.238771417e-10 1.685964521e-10 3.156653531e-10 1.287634292e-10 2.916089294e-11 7.868449281e-11 1.152417976e-10 8.792314833e-13 1.832505712e-10 4.523978348e-11 1.011787501e-10 1.101919743e-10 1.991778485e-10 1.518933249e-10 3.557385718e-10 8.763880796e-11 1.826697629e-10 1.276426253e-10 3.162111434e-11 5.513033199e-11 1.05397568e-10 1.986868318e-10 2.724774552e-10 1.210871669e-10 8.602595754e-11 3.370044601e-11 1.472477867e-10 4.941884321e-10 1.577179238e-10 8.23353335e-11 1.518498076e-10 0 2.331263128e-10 6.576009492e-11 2.244756652e-14 1.880638879e-10 1.900096386e-11 1.017008009e-10 2.406872917e-10 2.60544486e-10 1.514346251e-10 1.600693939e-10 1.591700841e-11 1.996628408e-10 1.443731046e-10 2.492036258e-10 2.355590457e-10 5.646420292e-10 8.313262811e-11 1.52901455e-10 2.041794838e-10 2.190550228e-10 8.191525409e-11 4.083671006e-10 5.51954336e-10 6.08523796e-11 5.471477353e-10 4.643679959e-11 1.759999417e-10 7.120626232e-10 1.84698325e-10 2.914951034e-10 1.750779343e-10 2.004131297e-10 3.283808679e-10 3.474499077e-10 3.087237301e-10 2.866879551e-10 3.267471075e-10 2.247082588e-10 2.932289034e-10 6.252076063e-10 4.176654959e-11 2.46485692e-10 2.218616389e-10 1.964595196e-10 3.458585361e-10 3.001976034e-11 1.826224246e-10 6.927595469e-10 1.138616421e-10 1.449654706e-10 3.693650231e-10 1.510100919e-10 4.34450792e-10 1.261737776e-10 1.264133739e-10 8.192910772e-11 1.562305528e-10 5.616941725e-10 4.096726867e-10 4.252375948e-10 1.224834e-10 5.495734892e-10 3.98684426e-10 1.354728824e-10 1.892677408e-10 3.331832484e-10 2.021787461e-10 3.507806217e-10 8.206130914e-11 1.880764751e-10 1.86952711e-10 1.260485832e-10 1.297018463e-10 1.488405568e-10 1.652291709e-10 2.256539703e-10 1.006598659e-10 2.19012125e-10 1.241702592e-10 2.763675856e-10 2.752982265e-10 3.876077337e-10 3.147818939e-10 4.319577038e-10 7.554574893e-10 1.679308323e-10 7.884802117e-11 2.132161489e-13 3.289231224e-11 3.296923523e-10 1.134399984e-10 1.60069852e-10 1.223360526e-10 2.745105769e-10 4.552051949e-10 1.516406602e-10 4.424628388e-10 3.720047057e-10 2.306985235e-10 1.07218239e-10 2.96306792e-10 2.920879592e-10 3.766320129e-10 3.885548784e-10 3.633749255e-10 1.766142554e-10 3.24641613e-10 4.787033743e-10 1.416151292e-10 2.187687714e-10 1.234146922e-10 2.637849805e-10 3.94999342e-10 1.430395141e-10 1.701293087e-10 4.213206969e-10 9.844162233e-11 1.293972818e-10 8.940643874e-11 5.363164312e-11 1.445710919e-10 1.00432543e-10 1.180032097e-10 1.314520197e-10 1.07144239e-10 1.409162444e-10 2.583056328e-10 7.371629413e-14 2.24906612e-15 1.690110709e-10 1.556449425e-20 1.762966626e-11 7.718440063e-11 1.147355801e-10 1.148210316e-10 1.31627278e-11 7.645698642e-11 3.993673859e-11 8.304546017e-11 1.571920316e-10 2.09065515e-12 2.699248515e-10 1.496231149e-10 1.63387506e-10 5.058766458e-11 2.046340227e-10 6.055017826e-12 1.025451192e-10 1.085372116e-10 2.742080833e-10 1.700998616e-10 1.424838158e-10 1.222453336e-10 2.161994085e-10 7.40066588e-11 5.273676669e-10 4.462547804e-11 3.080375873e-10 6.815447627e-11 2.588256653e-10 2.727583e-10 2.188468699e-10 1.922060826e-10 4.08115851e-10 2.744540405e-10 9.166896531e-11 2.391547581e-10 1.900033113e-10 1.805680961e-10 7.746792268e-11 3.624077661e-10 2.440301099e-11 6.12529281e-11 2.486946333e-10 2.381160635e-10 1.6249317e-10 2.274719306e-10 1.326517617e-10 4.753574025e-11 2.402307883e-10 2.952457972e-11 1.75101659e-10 1.100243162e-10 1.434542821e-10 1.345133392e-10 3.637719479e-10 3.044437941e-10 8.584543345e-11 2.01724833e-10 1.627823722e-10 1.6696343e-10 1.432830288e-10 1.577249024e-11 1.368144817e-10 1.724077596e-10 2.687324362e-10 1.051024803e-10 4.648592279e-10 6.675709029e-11 5.072803288e-11 9.681296235e-11 4.483879012e-11 8.73425089e-11 1.061870491e-10 1.035181868e-10 1.074398216e-10 1.545384243e-10 1.892944481e-10 1.767154841e-10 8.075283583e-11 3.58677516e-11 1.616338098e-10 1.627568982e-10 1.607577561e-10 +2.670302656e-10 1.560648058e-10 2.660031506e-11 1.190571013e-10 7.489164257e-11 4.806654292e-11 3.067769181e-10 5.781118066e-11 1.144396e-10 1.580489102e-11 3.869017495e-10 6.278415767e-11 3.003680229e-10 6.39972802e-10 1.489076569e-10 1.815679043e-10 7.850513967e-11 2.288712373e-10 3.886586703e-10 1.751759734e-10 5.727191018e-11 1.1812639e-10 2.539886954e-10 1.620160256e-10 9.454575051e-11 1.664713286e-10 7.235778964e-11 1.45961743e-10 7.115236014e-11 2.190597871e-10 1.880503905e-10 1.305107065e-10 1.066666296e-10 2.51014301e-10 1.288176983e-10 1.159283717e-10 2.80680622e-10 2.029259304e-10 1.536438484e-10 1.847238217e-10 3.074637972e-11 1.808716888e-10 2.623034954e-10 1.385842228e-10 2.788107032e-10 5.889171384e-10 1.996257869e-10 4.813680036e-10 6.472921758e-11 6.287201302e-11 1.4951868e-10 1.151283476e-10 3.03702648e-10 8.529622056e-11 1.274832647e-10 1.920392529e-10 3.189881849e-10 3.886234977e-10 1.212096566e-10 2.560308756e-10 4.238928834e-11 3.010688117e-10 2.181324707e-10 1.320706559e-10 2.148794351e-10 1.118558442e-12 1.524214709e-10 7.34452403e-11 1.077280538e-10 1.025242885e-10 2.537407978e-10 4.136053122e-10 2.048591927e-10 1.925828946e-10 9.963189896e-11 1.826235528e-11 2.794693077e-10 1.980026822e-10 3.47844759e-10 1.342316368e-10 1.482673391e-10 2.568063609e-10 6.137932531e-11 1.710878587e-10 9.244170695e-11 2.804895533e-10 6.181717673e-11 2.179094282e-11 8.251338656e-11 2.054005696e-13 8.280043713e-11 8.969183607e-11 2.010391725e-10 2.658996881e-10 1.609239638e-10 2.412980702e-10 2.362490452e-10 1.957261138e-10 2.861647326e-10 6.428929531e-11 6.13021943e-11 2.205436401e-10 2.588234327e-10 4.510972297e-10 3.824027525e-10 9.440994783e-11 6.159570381e-11 2.130486844e-10 3.292806375e-10 1.943115606e-10 1.988232068e-10 2.779991412e-10 9.76649401e-11 1.812800096e-10 5.682867735e-10 3.434620834e-10 2.616422255e-10 3.835365863e-10 3.402732159e-10 1.789079118e-10 1.560496992e-10 4.860535479e-10 2.314117587e-10 1.909426276e-10 4.98125321e-10 1.620008343e-10 4.698630906e-10 3.293566586e-10 3.448273715e-10 2.105492271e-10 3.024179421e-10 1.901213594e-10 2.252723705e-10 4.779221856e-10 3.098981879e-10 2.812121889e-10 3.494903198e-19 1.884183933e-10 1.684043891e-10 2.353434762e-10 4.172335366e-10 3.304764602e-10 2.497885455e-10 3.370098876e-10 5.484822842e-10 9.11634779e-10 2.13925664e-10 6.291206179e-10 6.066108498e-10 0 5.598253982e-11 4.366255762e-10 3.495212728e-10 1.11531425e-10 1.146459503e-10 1.566735823e-10 3.875284167e-10 1.670314834e-10 3.192735112e-10 2.79036301e-10 6.125186397e-11 4.218988154e-10 2.236209583e-10 2.36235732e-10 4.377508149e-10 2.985319048e-10 4.268062761e-10 7.754040791e-11 5.50804917e-10 2.049645776e-10 3.013223261e-10 1.575579454e-10 4.077281405e-10 8.364812514e-11 4.079438185e-10 1.965673848e-10 6.897073435e-10 1.950052168e-10 2.642005961e-10 3.420227584e-10 1.87217133e-10 1.803033144e-10 3.581158045e-10 2.45454314e-10 3.447818871e-10 4.563581414e-10 2.582031794e-10 2.798433086e-10 1.9724874e-10 3.811042566e-10 2.336106723e-10 3.013722527e-10 2.548173938e-10 8.860986007e-10 2.890133683e-10 9.795283226e-15 1.788576941e-10 1.407573151e-11 2.566637339e-10 3.501466227e-10 2.68656864e-11 1.815535417e-10 2.772108054e-10 4.305431625e-11 1.992636919e-10 4.013571921e-10 2.842110615e-10 1.535676841e-10 1.385835316e-10 2.894885831e-10 1.115715116e-10 1.240410552e-10 1.879326512e-10 3.147513624e-10 9.643256135e-11 1.468110261e-11 1.217658161e-10 1.733177899e-10 2.272427456e-10 2.257798981e-10 1.498687408e-10 1.265242862e-14 1.212312641e-10 1.155016131e-10 8.780145074e-11 7.469716466e-11 1.796302087e-10 6.522105252e-10 2.975818602e-11 3.036013871e-10 1.283203467e-10 2.847925149e-10 1.450877345e-10 3.253465e-10 1.482109625e-10 5.127308211e-10 1.482221527e-10 2.567512349e-10 8.8247153e-11 9.47803121e-12 4.604963681e-10 2.282026855e-10 1.218383783e-10 6.397147467e-11 3.517491368e-10 2.918431959e-10 4.016610691e-10 3.8477277e-10 1.435075252e-10 2.845542643e-10 1.835899485e-10 3.234588534e-10 3.059079504e-10 2.196991473e-10 3.640131497e-10 6.146778685e-11 9.086800574e-11 2.050351335e-10 1.024678356e-10 1.202285108e-10 1.23329345e-10 2.644766201e-10 1.101469801e-10 7.604534615e-11 1.45731026e-10 1.326498813e-10 9.651022276e-11 2.921483408e-10 1.412143282e-10 3.503809984e-11 6.949027522e-11 5.543973697e-11 3.392318913e-11 2.066423115e-10 2.392328366e-10 1.175442841e-10 3.010983311e-10 6.421302405e-11 2.245441899e-10 2.01559989e-10 7.671515554e-11 6.095811807e-11 3.468825598e-10 3.149769235e-10 2.47938618e-10 1.954203629e-10 1.319898839e-10 1.061358739e-10 5.118820872e-11 1.501676776e-10 1.819279922e-11 1.302929977e-10 2.536404361e-10 2.149922669e-10 7.756252941e-11 1.954637641e-10 3.078144828e-10 1.109105103e-10 4.349859623e-10 1.978809333e-10 +3.795609872e-10 2.550478572e-10 1.295182391e-10 1.964376817e-10 1.882160005e-10 1.018213813e-10 3.983776147e-10 1.223658882e-10 4.8612198e-10 2.731461823e-10 5.110905739e-10 5.235126885e-11 1.241537807e-10 1.751523499e-10 2.212712679e-10 3.576064707e-10 6.352045612e-11 3.520525455e-10 1.669360471e-10 8.09461804e-11 1.198094199e-10 1.250904044e-10 2.250151181e-10 8.28845564e-11 3.970194628e-10 1.56540732e-10 1.415257308e-10 7.898940489e-11 2.269564617e-10 1.248089037e-10 7.067447954e-11 1.455559585e-10 9.481827957e-11 3.0198961e-11 2.992226438e-10 2.877859475e-10 1.022856802e-10 2.114165042e-10 2.877727709e-10 2.994003778e-10 6.300003508e-11 3.639945368e-10 5.152774882e-11 8.065076244e-11 3.148454009e-10 3.789634636e-10 1.129086587e-10 2.971158744e-10 1.405341884e-10 1.643604438e-10 2.716640853e-10 8.391657629e-11 2.744542344e-10 1.964462908e-10 1.924595337e-10 1.977315824e-10 8.18919249e-11 3.082903563e-10 1.71463723e-10 1.499453669e-10 2.769143368e-10 1.941322987e-10 7.269068692e-11 3.154178519e-10 4.178163387e-11 1.930275568e-11 3.486514087e-10 2.667427514e-10 1.488165307e-10 1.876066095e-10 3.642863863e-10 1.5224123e-10 3.333288077e-10 2.34694608e-10 1.192127608e-10 1.175012964e-10 1.742857358e-10 1.592597588e-10 7.207878277e-11 2.759728531e-10 3.288791236e-11 3.404831803e-12 2.196014361e-18 5.015223758e-11 2.344181889e-10 5.634758495e-11 8.63831997e-11 1.527367666e-10 7.199682465e-11 6.086929582e-11 3.803431204e-10 1.399865615e-10 2.213096835e-10 1.500770063e-10 1.959900933e-11 2.143012976e-10 3.582725841e-10 4.381338121e-11 2.466146619e-10 1.987014617e-10 4.548419664e-10 1.852759519e-10 1.145551439e-10 3.859923784e-10 3.642302305e-10 5.135902934e-10 4.38015801e-10 1.249701537e-10 2.307117599e-10 1.211102012e-10 1.701638626e-10 4.092284106e-10 2.143610246e-10 2.870669124e-10 4.089117712e-10 1.824323391e-10 3.606122103e-10 1.844017079e-10 2.448016687e-10 5.143210929e-10 6.073445929e-10 6.874322154e-10 1.359580829e-10 3.873792483e-10 2.21724405e-10 2.152227157e-10 3.085694607e-10 5.118702127e-10 3.090389372e-10 4.029213341e-10 3.257111613e-10 2.490259755e-10 1.16067925e-10 2.728483501e-10 5.294236064e-10 2.182551444e-10 1.28445778e-10 3.731784192e-10 1.555898757e-10 5.156841218e-10 3.06113304e-11 3.430980421e-10 2.831243417e-10 2.112745312e-10 3.976205688e-10 4.93626508e-11 4.199893294e-12 4.800188397e-10 1.126150336e-10 5.126027708e-10 3.993067099e-10 3.326904671e-10 1.808057595e-10 4.080830157e-10 3.037081263e-10 2.029607824e-10 3.622595995e-10 6.117151085e-11 1.548594983e-10 2.454122795e-10 1.710341377e-10 1.10621795e-10 3.412600066e-10 6.465080583e-11 1.393789819e-10 1.464446679e-10 1.487174652e-10 3.113602287e-10 2.03625477e-10 5.103125194e-10 4.836370819e-10 4.250744471e-10 5.624871899e-11 1.492826324e-10 2.110816959e-10 1.635035314e-10 3.169997904e-10 2.269779964e-10 3.771449891e-10 4.452324743e-10 4.553787027e-10 1.379253732e-10 1.173610103e-10 3.015286728e-10 4.775970284e-10 1.938107499e-10 1.758231582e-10 4.74324585e-10 3.867466597e-10 2.514353518e-10 1.849666217e-10 3.112696999e-10 4.556670911e-10 4.717007006e-10 2.197448509e-10 2.106211369e-10 1.79196225e-10 3.520122541e-10 4.195081675e-10 5.794997657e-10 1.139519402e-10 4.407945217e-10 2.861574799e-10 2.731469369e-10 3.790291953e-11 3.262553705e-10 1.122595389e-10 4.821257021e-11 2.335978505e-10 3.512050125e-11 3.031638535e-11 1.092790516e-10 1.834615365e-10 1.903317377e-10 1.007310609e-10 4.963775767e-11 5.560900606e-11 1.748804259e-10 4.833107068e-10 8.577471322e-11 1.648947464e-10 1.08446439e-11 3.436938692e-11 2.960645583e-10 9.784911542e-11 1.468758563e-10 1.227652822e-10 3.894168908e-10 1.071143194e-10 4.530980637e-10 1.39436362e-10 2.02449322e-11 2.695924751e-10 2.649485163e-11 3.293572262e-11 1.012074943e-10 3.437919021e-10 8.276860216e-11 1.521883049e-10 2.315757052e-10 5.190353096e-10 1.967051594e-11 4.419537518e-10 2.006150763e-10 7.271023579e-11 1.152332869e-10 2.729579571e-10 4.684196495e-10 7.400494386e-11 2.562249067e-10 3.336963948e-12 3.876557138e-10 1.009946467e-10 1.924713805e-10 2.074700326e-10 3.605940696e-10 1.084742618e-10 7.480809908e-11 3.293205713e-10 2.067261588e-11 2.678577871e-10 9.639078649e-11 2.486610951e-10 3.179332565e-10 6.985242976e-11 3.338787964e-11 3.212899313e-10 1.03929849e-10 1.850892473e-10 1.113339111e-10 2.415104622e-11 1.450059414e-10 1.832294532e-10 1.659681159e-10 7.80104349e-11 2.204741346e-10 1.009044639e-10 2.611847186e-11 3.268411779e-10 2.172876898e-10 2.248862031e-10 3.316917219e-10 4.789362783e-10 6.802356117e-11 7.840730699e-11 6.731759627e-11 1.644186162e-10 1.039075022e-10 4.435951271e-10 2.89116729e-10 4.698036317e-10 5.240094712e-10 4.635814891e-11 2.310178499e-10 1.553491621e-10 1.437515389e-10 2.834913472e-11 1.495545602e-10 1.657712831e-10 1.600232256e-10 +3.022994356e-10 1.514287526e-10 3.606539403e-10 8.746187591e-11 2.299011765e-10 1.018170003e-10 5.350847972e-11 4.053792106e-11 2.313899326e-10 5.772538612e-11 3.256930423e-10 4.311418814e-10 3.960586861e-10 1.809991414e-10 1.02779925e-10 7.472919709e-11 2.020541503e-10 1.132871931e-10 2.217574914e-10 1.699358638e-10 5.312922771e-10 1.90871385e-10 3.00613633e-11 1.873341896e-10 3.414127119e-10 6.524529662e-11 1.973833928e-10 5.116462288e-10 1.946731672e-10 1.685553393e-10 6.5033729e-11 1.388673596e-10 5.779523936e-10 6.256192981e-10 6.946773088e-11 1.546729771e-10 2.70094157e-10 1.57913235e-10 1.443230206e-10 1.510487324e-10 3.790833433e-10 2.082898856e-10 1.120386834e-10 1.755663107e-10 4.452056244e-10 1.033386837e-10 3.162209326e-10 4.265205043e-11 1.403906322e-10 1.157605654e-10 7.154395877e-11 2.680375953e-10 1.928974231e-10 6.234521469e-10 6.706879635e-11 2.938222332e-10 1.731627214e-10 2.550649708e-10 1.974276695e-10 2.621537245e-11 4.435982966e-10 1.263768384e-10 7.726736647e-11 2.266749712e-10 1.080623854e-10 2.823640154e-10 3.255958706e-10 2.912554586e-10 1.894778101e-10 2.381883152e-10 7.207925695e-11 1.288164798e-10 2.301744491e-10 1.332638079e-10 6.711805578e-11 1.725270156e-10 1.146475323e-10 2.549177059e-10 2.387150535e-10 3.447138724e-10 1.09204042e-10 1.620145755e-10 3.281166599e-10 1.151573801e-10 5.934795789e-11 2.209415281e-10 1.009024947e-10 2.181139463e-10 5.872413856e-10 2.099227255e-10 4.625981729e-11 2.126779832e-10 1.014937099e-10 8.51547345e-11 4.576518501e-10 4.13101857e-10 4.662626621e-10 3.711322425e-10 9.1035718e-11 2.529989247e-10 4.223440089e-10 2.400467229e-10 3.584780805e-10 1.874661962e-10 6.136032649e-10 3.513982829e-10 1.916594452e-10 4.568194602e-10 1.687866358e-10 8.224441134e-11 5.353928858e-10 3.264625472e-10 7.268879013e-10 1.656159112e-10 2.216289764e-10 5.289079761e-10 3.955108547e-10 1.051882966e-10 2.36109831e-10 3.910240057e-10 2.368065961e-10 2.3504512e-10 2.218506128e-10 3.357569234e-10 4.401272887e-10 5.784903528e-10 2.809074376e-11 2.467024131e-10 3.453265318e-10 9.473017425e-11 2.253441787e-10 1.335528359e-10 7.831148665e-11 2.373933622e-10 4.793269018e-10 1.251250819e-10 3.193053631e-10 2.852732008e-10 9.35091782e-11 2.723868105e-10 1.593642602e-10 2.79051841e-10 1.536625368e-10 1.285629837e-10 9.034563077e-11 2.498951364e-10 2.033244365e-10 3.493541505e-10 1.139288506e-10 1.652401335e-10 5.917544499e-10 3.199250461e-10 6.879234074e-11 4.052434269e-10 3.944246749e-10 2.566614459e-10 2.590189932e-11 6.176709128e-10 7.504759156e-11 2.163429586e-10 2.266522474e-10 2.080874994e-10 1.581893715e-10 3.107115641e-11 1.146951769e-10 7.446776995e-11 4.047477914e-10 4.636144274e-10 1.956407687e-10 4.787634444e-10 5.741187562e-10 2.320500333e-10 1.884014136e-10 1.658372915e-10 2.006855327e-10 4.871164296e-10 8.585412068e-11 2.193498497e-10 3.351513404e-10 3.584413101e-10 4.643971503e-10 3.693456727e-10 2.312437438e-10 2.560138835e-10 5.015260477e-10 2.736076915e-10 1.415039443e-10 3.562157259e-10 1.742790007e-10 3.429077347e-10 3.024120477e-10 4.980132765e-10 4.594714098e-10 1.674621974e-10 7.134831581e-10 8.402504226e-10 2.316308254e-10 4.185376254e-10 5.585494191e-10 2.975491559e-10 5.025317161e-10 1.56974891e-10 3.943114365e-10 1.646183249e-10 3.119260305e-10 8.239380407e-11 3.867130492e-10 2.140517105e-10 1.259343775e-10 3.14611234e-10 7.459812326e-11 4.491052767e-11 8.6136625e-11 1.862929661e-10 1.600247758e-10 7.628802138e-11 2.30540028e-10 2.749385711e-10 1.148471332e-10 6.999971611e-11 2.282723166e-10 3.241903294e-10 2.739360507e-10 7.21834464e-11 6.926764403e-11 5.877994665e-11 1.733364775e-10 2.156413166e-10 1.896643109e-10 2.653140057e-11 3.106609505e-10 3.662603415e-10 1.581423112e-10 2.476261877e-10 1.456576659e-10 7.809603226e-11 1.35674114e-10 1.088700968e-10 1.199438058e-10 3.258341104e-10 2.548465765e-11 2.585029101e-10 9.497623934e-11 1.684193877e-14 3.315202205e-10 2.316237682e-10 1.899514454e-10 3.977747062e-10 2.592243579e-10 9.343103371e-11 2.59861523e-10 4.782368974e-10 5.135815991e-11 2.034464882e-10 1.1607541e-10 3.074258179e-10 1.681808756e-10 6.669330138e-11 2.416216018e-10 1.607132477e-10 6.142895054e-11 2.396228821e-10 5.140300466e-11 2.002093422e-10 1.839104852e-10 3.050876001e-10 3.005058265e-10 3.323908624e-10 7.282570797e-11 9.350803416e-11 6.045811519e-11 2.909118964e-10 3.196811522e-10 1.717005872e-10 1.048921209e-10 5.228166132e-11 1.782552966e-10 1.841292253e-11 1.563649041e-10 7.800354663e-11 4.594241213e-11 3.046718422e-10 1.817960532e-10 3.635622085e-11 2.957145229e-10 1.084880488e-10 1.62225601e-10 5.641104508e-11 2.71973563e-10 2.380271674e-10 1.626176863e-10 3.610160117e-10 7.751427175e-11 1.03826262e-10 3.006514268e-12 1.980765985e-10 3.899645117e-10 1.797951617e-10 1.069279576e-10 2.032614221e-10 +3.301403337e-10 3.916166579e-10 1.537313245e-10 1.968307627e-10 2.137494968e-10 4.607604982e-11 1.852926617e-10 4.747629538e-10 5.704396567e-10 4.008009745e-10 1.834401976e-10 1.035255092e-12 2.701114624e-10 3.330181627e-10 2.762965587e-10 1.052648424e-10 2.699327732e-11 1.23813479e-10 1.930552132e-10 1.149988661e-10 1.159658918e-10 1.28713345e-10 2.270569345e-10 7.699284961e-11 1.966676455e-10 1.772329452e-10 1.437947091e-10 1.628670983e-10 3.316236026e-10 4.502902298e-10 1.022458323e-10 9.079143608e-11 8.205004529e-10 2.021167001e-10 1.450212873e-10 1.54128128e-10 3.030390859e-10 2.055281381e-10 6.089499805e-10 2.997795092e-10 8.59251731e-11 7.456702364e-11 1.857776502e-11 2.037443653e-10 5.673339096e-10 2.533212037e-10 1.382305355e-10 3.727240732e-10 7.20712799e-11 1.757484367e-10 2.494272143e-10 2.284807712e-10 4.06127153e-10 4.877129435e-10 3.603884661e-11 2.118808848e-10 2.319317613e-10 1.771577523e-10 2.354651755e-10 3.841991297e-10 1.916094516e-10 5.953039105e-10 4.080674667e-16 3.048062661e-10 2.406137867e-10 2.995567743e-10 1.17566325e-10 1.342211133e-10 8.013831807e-11 3.262216643e-10 2.943241109e-10 1.093569791e-10 6.214832103e-11 6.864931254e-11 2.396987398e-10 3.037461575e-10 3.383902911e-10 4.593899234e-10 2.475005669e-10 2.872504633e-10 2.787485981e-10 1.168614904e-10 4.804472402e-11 1.837882361e-10 1.026076789e-10 2.090349792e-10 1.234394395e-10 3.110271542e-10 1.101374814e-10 3.611009185e-10 1.294805445e-10 1.866490986e-10 4.586837494e-10 2.851487324e-11 1.657005723e-10 2.225029191e-10 2.05376972e-10 1.678730865e-10 4.162372614e-10 4.069087171e-10 2.951106691e-10 5.083549386e-10 8.623964926e-11 3.562571797e-10 3.402930325e-10 6.132555274e-10 3.191870012e-10 5.230911827e-10 3.698830572e-10 4.602919008e-10 3.808900302e-10 3.770495556e-10 2.823495947e-10 2.968285209e-10 4.50344023e-10 8.494142904e-11 5.650551749e-10 8.765734675e-11 4.884980793e-10 6.463054128e-10 3.038566987e-10 2.02370267e-10 3.759470482e-10 1.881532509e-10 1.149413186e-10 2.817268107e-10 2.991219929e-10 3.179643266e-10 2.453042619e-10 2.512095958e-10 1.758870776e-10 2.504211353e-10 1.808388752e-10 3.874400949e-10 2.787764925e-10 4.065354305e-10 4.125278825e-10 1.43828275e-10 1.579368424e-10 5.921634671e-10 1.499576385e-10 4.805466438e-10 5.43982808e-10 3.941657596e-10 3.880848091e-10 2.083869625e-10 3.965211273e-10 3.362237558e-10 2.304080911e-10 1.824490354e-10 1.518641758e-10 4.148938173e-10 1.995824372e-10 9.430072171e-11 4.100343675e-10 4.356323638e-10 3.169751674e-10 3.063255766e-10 5.5656673e-10 2.204413669e-10 4.678427921e-10 6.157377267e-10 2.647913035e-10 2.013606954e-10 1.260265131e-10 3.025589257e-10 2.823036181e-10 3.802585656e-10 1.917292148e-10 2.113073994e-10 4.557096817e-10 1.703915308e-10 7.021564214e-11 3.528247273e-10 2.715818562e-10 7.638050558e-10 3.575363854e-10 8.331349259e-11 2.715906917e-10 2.684299183e-10 6.965621999e-10 2.721724745e-10 6.466884374e-11 5.582769578e-10 1.493994663e-10 3.524590493e-10 2.341163929e-10 2.648601869e-10 1.78606682e-10 2.526533904e-10 3.787700661e-10 3.58171559e-10 3.564318811e-10 1.897601361e-10 3.400169345e-10 4.961824191e-10 2.682386182e-10 3.6294825e-10 2.159028547e-10 4.937196371e-10 1.211762211e-10 2.47225998e-10 6.770975378e-10 2.080908811e-10 2.400462116e-10 1.00310294e-10 2.955021826e-10 2.393768937e-10 3.652023191e-10 9.46900959e-11 3.045534176e-10 4.397215848e-10 1.16808428e-10 2.907125625e-10 1.635079519e-10 2.729146487e-11 9.018524595e-11 4.887342374e-11 4.070023513e-10 2.543496703e-13 1.18411625e-10 1.737417905e-10 7.901642977e-11 1.815928465e-10 6.260599104e-11 1.827912228e-10 1.849795387e-10 2.659687553e-10 2.67490332e-10 2.008682153e-10 1.943870196e-10 5.144264079e-10 6.217418629e-11 2.402416233e-10 2.86408973e-10 2.652321393e-10 2.103631569e-10 9.158385503e-11 1.959041281e-11 1.455514989e-10 9.417696138e-11 4.526359867e-10 1.859334767e-10 1.545060505e-10 1.512116297e-10 1.439695281e-10 9.105945842e-11 6.461636359e-10 3.01338137e-10 2.633748195e-10 1.689461064e-11 2.370638795e-10 3.491322175e-10 9.263712007e-11 1.21584245e-10 2.289570292e-10 2.969980033e-10 3.641355338e-10 2.904201391e-10 1.689370184e-10 2.143787286e-10 1.684308551e-10 2.444690305e-10 1.693280443e-10 5.377400193e-11 1.269392852e-10 3.957313634e-10 2.453758757e-10 1.77268454e-10 3.443184154e-10 2.032210114e-11 2.017964871e-10 9.432943218e-11 1.063448257e-10 1.680502064e-10 3.546314377e-10 1.452206677e-10 2.802143524e-10 4.042734852e-10 1.50844029e-10 2.853318462e-10 3.121982519e-10 2.088535591e-11 2.956720238e-10 2.696715332e-10 3.402993643e-11 1.382840831e-10 2.07605817e-10 3.669739801e-10 1.072573181e-10 2.949815663e-10 1.832240747e-10 2.390697481e-10 1.139859379e-11 8.875988183e-11 1.672415769e-10 5.63845289e-11 3.713284639e-10 7.523082275e-11 1.782338517e-10 +5.213778577e-10 5.32172134e-10 4.268276164e-10 4.753876426e-10 6.086689009e-11 9.230654619e-11 1.061205409e-10 3.269935567e-10 3.773129388e-10 5.079416753e-11 1.99841268e-10 3.227609531e-10 6.246475292e-10 3.781168867e-11 3.003233931e-10 3.168592597e-10 2.209959438e-10 1.540785026e-14 1.788691945e-10 9.072124087e-11 3.233441053e-10 6.77661737e-11 8.616248205e-11 1.589986318e-10 3.705546608e-10 6.714104925e-12 7.655328264e-11 7.217907057e-11 3.113677613e-11 4.622651421e-10 1.805593568e-10 1.119304967e-10 3.4091883e-10 3.29411173e-10 1.644631216e-10 1.770017519e-10 1.115824759e-10 3.685670723e-10 2.374481297e-10 1.238742965e-10 8.122199688e-11 5.260727433e-11 1.485792321e-10 4.243129247e-10 1.562315832e-10 4.255264759e-10 7.874062748e-11 8.786494052e-11 8.673692115e-11 3.272498419e-10 2.97402456e-10 4.017281742e-10 9.07011386e-11 3.766524812e-10 2.020169424e-10 2.804424624e-10 2.737451642e-10 2.520401022e-11 1.598274602e-10 2.815272006e-10 1.282063666e-10 1.268403147e-10 1.902999481e-10 7.020158679e-11 9.192800141e-11 1.630600913e-10 1.646882511e-10 2.570485644e-10 2.903405534e-10 2.687015087e-10 1.338745829e-10 2.054623777e-10 2.105587719e-10 8.00026964e-14 4.764416544e-10 3.510795104e-10 1.887528746e-10 1.027334662e-10 2.331935941e-10 8.296868698e-11 4.616632802e-10 3.57120895e-10 3.054186584e-10 9.433990175e-11 2.594067687e-10 1.737791363e-10 3.72300137e-10 1.649746216e-11 3.163005509e-10 1.751533983e-10 2.281464421e-10 2.90657318e-10 1.159152857e-10 1.490299443e-10 5.33290696e-10 1.513611292e-10 4.739572557e-10 8.091709421e-11 2.788143126e-10 3.455313463e-10 2.608124798e-10 3.094598436e-10 5.362584547e-10 4.413284542e-10 2.689029373e-10 7.137239231e-11 4.621264058e-10 1.164325791e-10 5.343918097e-10 2.435807153e-10 1.536380393e-10 1.649942049e-12 2.182350703e-10 3.356496467e-10 3.146010952e-10 6.305415225e-10 5.910862347e-10 1.424925728e-10 2.401274458e-10 3.058999361e-10 3.362348634e-10 3.284023906e-10 3.594806297e-10 2.981425638e-10 2.185560911e-10 9.398694948e-11 2.121553746e-10 1.074772429e-09 7.37846852e-11 4.119576926e-10 2.353767369e-10 1.937313645e-10 6.076702516e-10 2.013749166e-10 3.189851605e-10 1.629337422e-10 3.830262698e-10 6.304643438e-10 8.103602606e-10 1.273941316e-10 1.3908832e-10 7.673678854e-11 2.284127993e-10 4.721920432e-10 3.904989213e-10 1.48692428e-10 4.295266665e-10 2.306045367e-10 3.207593805e-10 3.297216029e-10 2.975064514e-10 1.933579794e-10 2.33792089e-10 7.431717232e-11 2.370851302e-10 1.988477164e-10 2.196776793e-10 4.330947474e-10 4.932922668e-10 9.494203698e-11 1.021351603e-09 1.653458902e-10 1.807569181e-10 3.297282159e-11 2.967238828e-10 1.398703499e-10 4.453127226e-10 5.890247661e-10 4.046494327e-10 3.30314183e-10 5.885742314e-11 7.044923387e-10 3.668211678e-10 1.315928583e-10 2.460423148e-10 3.155095134e-10 3.578730655e-10 3.272690214e-10 4.08425158e-10 1.750434744e-10 2.322756676e-10 2.199231875e-10 5.618665752e-10 1.217751888e-10 6.959370557e-10 2.902407788e-10 3.85057699e-10 3.368527959e-10 4.621163725e-10 5.31201833e-10 1.164072266e-10 4.1029442e-10 4.762806241e-10 2.293460032e-10 3.06244439e-10 4.484841077e-10 8.18163855e-10 3.317082576e-10 4.250525888e-10 1.4591241e-10 4.252589112e-10 4.459092157e-10 3.645600285e-10 2.660389694e-10 5.407217615e-10 4.88650203e-10 3.463960473e-10 2.991706042e-10 3.210861528e-10 1.759324962e-10 2.226739121e-10 1.839554471e-10 6.793997877e-10 4.868837782e-11 6.348387546e-10 6.90518946e-11 8.952671968e-11 3.118204434e-10 2.688452752e-10 4.100235891e-11 1.249811323e-10 2.50850997e-10 3.574063516e-10 1.684235699e-10 1.300284199e-10 2.52121009e-10 7.977610621e-11 3.372680623e-10 2.236961104e-10 6.28728876e-11 9.40929929e-11 2.73633464e-10 1.677618854e-10 1.0628838e-10 2.186740326e-10 2.792780899e-10 1.994738829e-10 4.419103147e-10 1.10763798e-10 7.388464808e-11 1.898258636e-10 3.189239547e-10 8.646453146e-11 4.014606349e-10 2.195290481e-10 3.150292274e-10 2.396601627e-10 2.499590261e-10 1.984202488e-10 5.099690895e-10 7.278410565e-11 3.397208865e-10 4.123306724e-10 1.928097573e-10 2.377769215e-10 4.115383786e-11 1.060479883e-10 4.700830527e-11 2.555159257e-10 1.655522898e-10 1.290142755e-10 2.661384845e-10 1.193413916e-10 6.0248387e-10 2.339330225e-10 7.724092688e-10 2.610949233e-10 2.391824192e-10 2.503409865e-10 6.32352303e-11 2.445764798e-10 2.583925408e-10 3.68642491e-10 2.190521479e-10 3.262069274e-10 3.35273781e-10 3.894325894e-10 6.503072815e-11 1.103009421e-10 1.339093992e-10 2.043285445e-10 1.380311395e-10 3.302307868e-10 2.785464155e-10 1.640953132e-10 2.03493737e-10 3.801854773e-10 2.711215031e-10 2.526602356e-10 2.155126694e-10 9.999902016e-11 1.729864586e-10 5.756539676e-10 2.478092727e-10 4.131574678e-10 5.172928155e-11 2.527040033e-10 8.543035387e-11 1.226790899e-10 1.258578978e-10 +2.419049737e-11 1.572186404e-10 2.4959601e-10 4.883002051e-10 3.114108332e-10 1.130575738e-10 1.044591615e-10 5.28423011e-10 8.11857062e-11 5.550044452e-10 1.128318911e-10 2.996456346e-10 9.022467827e-11 2.392804863e-10 3.522668324e-10 2.217491623e-10 2.648109959e-10 1.105877848e-10 4.785462313e-10 2.38977961e-10 1.173088879e-10 3.472459789e-10 2.816060265e-10 7.223753218e-10 5.212991722e-11 3.484307954e-10 2.020550633e-10 2.131555628e-10 2.270283153e-10 1.558273227e-10 1.045343757e-10 1.855608025e-10 4.033131978e-10 1.739574965e-10 2.379699721e-10 2.186621968e-10 6.778446586e-10 1.912304435e-10 1.446835439e-10 3.136008271e-10 2.299182443e-10 4.632931335e-10 1.499414691e-10 1.268732916e-10 2.098480313e-10 2.694375887e-10 2.852121584e-10 3.553965476e-10 2.157246025e-10 3.439139004e-10 7.144528659e-10 2.837989907e-10 1.866917712e-10 5.355652835e-10 5.018239932e-10 1.455050102e-10 2.032168766e-10 1.882543552e-10 1.655022283e-10 1.276928516e-10 2.051342235e-10 2.200919982e-10 1.558061468e-10 5.194825359e-11 3.571887702e-10 8.872140878e-11 1.35650691e-10 4.75551242e-10 3.764910704e-10 1.091894437e-10 2.269342619e-10 2.448927311e-10 3.023562462e-10 2.077290618e-10 5.774466116e-10 8.529292558e-11 4.286656203e-10 1.45606739e-11 3.555115826e-10 1.711809286e-10 3.15689455e-10 2.057168196e-10 1.701620472e-10 3.204101464e-10 2.069871906e-10 2.421819605e-10 3.222625289e-10 1.898804442e-10 1.700247121e-10 2.224573031e-10 7.907024555e-10 3.625085008e-10 5.377572047e-10 2.064705228e-10 1.525140536e-10 4.043883041e-10 2.395208522e-10 2.745028028e-10 1.843608992e-10 1.051395656e-10 4.112766361e-10 3.221063004e-10 5.679676741e-10 5.707439869e-10 3.905920906e-10 5.005533141e-10 5.262353266e-10 3.538758262e-10 1.093794936e-10 2.011520721e-10 1.557380407e-10 1.118266535e-10 3.238821206e-10 2.250041503e-10 2.963367061e-10 2.556505282e-10 1.867067725e-10 5.905320452e-10 4.163748058e-10 2.951689552e-10 3.723248268e-10 3.405637728e-10 2.034824195e-10 5.97885826e-10 1.633693373e-10 1.515074479e-10 9.155927762e-10 3.594394642e-10 3.929575796e-10 2.926781329e-10 1.378853162e-10 1.831208124e-10 1.602219817e-10 2.433450066e-10 1.499947825e-10 3.829228007e-10 1.766417274e-10 1.306358302e-10 1.956874429e-10 2.660014397e-10 5.611151947e-10 5.247974164e-10 3.06243164e-10 4.066273625e-10 2.987808415e-10 4.527838441e-10 3.510103802e-10 1.97021621e-10 8.056713292e-10 2.423245272e-10 1.600798407e-10 2.782670243e-10 3.131556843e-11 2.696655504e-10 2.461147346e-10 4.159578079e-10 2.364401268e-10 2.912237173e-10 3.485687795e-10 2.569710237e-10 3.087286642e-10 2.254594791e-10 7.305898665e-10 4.708537867e-10 2.670105371e-10 2.2291469e-10 5.973793449e-10 2.546831474e-10 1.732835876e-10 2.915393587e-10 3.358184186e-10 4.532873374e-10 1.944319684e-10 3.948975505e-10 3.098321902e-10 1.31377453e-10 2.325563721e-10 2.471655194e-10 1.877437855e-10 5.312888913e-10 3.402523147e-10 2.341221307e-10 3.380167231e-10 1.999702497e-10 1.733915372e-10 3.685014083e-10 3.496567534e-10 3.459034812e-10 4.617848858e-10 2.134793751e-10 1.862573057e-10 1.845312775e-10 7.159993591e-10 4.411275211e-10 5.899239279e-10 3.325347252e-10 2.453740283e-10 5.121593573e-10 2.531072027e-10 1.787008757e-10 3.095205895e-10 4.209195361e-10 5.182424345e-10 3.030415618e-10 2.377464698e-10 3.430456413e-10 1.422217205e-10 1.332188686e-10 4.605217027e-10 4.040087038e-10 1.451378045e-10 2.646618826e-10 4.707082898e-11 2.165128432e-10 2.33996512e-10 2.179073734e-10 1.339353888e-10 1.452351151e-10 1.63631152e-10 1.336899331e-10 1.845197147e-10 6.023419982e-11 3.441869994e-10 8.504029787e-10 3.332061064e-10 1.070345998e-10 1.938327134e-10 1.024430656e-10 9.34808249e-11 1.862926847e-10 2.716403228e-10 1.182811771e-10 2.128566645e-10 2.233630697e-10 2.252550669e-10 5.440109653e-10 1.744029493e-10 2.40566686e-10 5.497122626e-11 4.056423814e-11 2.335208688e-10 3.294406739e-10 5.600060329e-10 3.179933938e-10 3.621553614e-10 1.453337301e-10 1.155832977e-10 1.828129919e-10 1.286226613e-10 1.736662059e-10 1.465705344e-10 2.911746898e-10 1.694293635e-10 1.038736158e-10 2.315511252e-10 3.425859063e-10 3.979829776e-10 7.985137811e-11 2.638248512e-10 1.047780629e-10 1.368600177e-10 1.455973274e-10 1.551391261e-10 1.615950842e-10 1.182170114e-10 3.584953007e-10 9.839748916e-11 3.879972199e-10 1.569722244e-10 2.438688666e-10 4.21130063e-10 2.405967618e-10 2.830504541e-10 5.298964314e-10 2.776677048e-11 5.058375576e-10 1.005743123e-10 6.836406811e-10 3.41892101e-10 1.130384713e-10 2.145943994e-10 2.173965078e-10 3.215537203e-10 3.319361189e-10 1.068756619e-10 5.19031206e-10 7.79872654e-11 4.476266733e-10 1.57263887e-10 1.084555287e-10 2.529037652e-10 6.072233015e-11 2.232126409e-10 2.193337926e-10 1.26256235e-10 2.034698141e-10 2.51936333e-10 8.50329973e-11 2.75507918e-10 9.309564581e-11 +3.577727744e-10 2.788349044e-10 1.944912479e-10 5.383161336e-10 4.574008587e-10 2.385401792e-10 9.574925942e-11 2.964551572e-10 3.031989266e-10 3.263092494e-10 2.397644112e-10 8.704303438e-11 5.721622751e-11 1.299329583e-10 4.572883716e-10 2.323642256e-10 3.562507485e-10 2.840006954e-11 2.10642724e-10 3.475651626e-10 1.278467245e-10 1.913520528e-10 2.749977302e-10 1.855350425e-10 9.843357829e-11 2.235847668e-10 2.657430192e-10 2.631015992e-10 1.133496891e-10 1.923093285e-10 7.733677338e-11 3.852341736e-10 8.114061874e-11 1.259726741e-10 3.52372493e-10 1.948255713e-10 2.470072639e-10 2.132831313e-10 1.280475875e-10 2.262795347e-10 7.375047348e-11 9.396082494e-11 2.740887925e-10 1.813431626e-10 4.319716524e-10 3.037047282e-10 2.248247039e-10 1.170598019e-10 8.107314206e-11 3.309689435e-10 1.677692399e-10 2.563727161e-10 2.316000821e-10 1.466352212e-10 7.358429285e-10 5.197053126e-10 4.20076752e-10 2.216336793e-10 2.408526124e-10 2.434134875e-10 2.593966591e-10 5.283333686e-11 2.584930824e-10 2.742985793e-10 7.469500084e-11 4.337529877e-11 3.712532097e-10 1.135245952e-10 2.22790786e-10 1.574266301e-10 3.004478091e-11 1.601805262e-10 2.610666871e-10 2.267752986e-10 1.758744805e-10 1.645425643e-10 5.718184817e-11 9.473831515e-11 6.270879971e-11 1.733107638e-10 2.96526718e-10 1.380476643e-10 1.127686722e-10 1.268738371e-10 2.839025704e-10 8.684186356e-11 1.11631595e-10 1.503006058e-10 3.478695562e-10 3.788927217e-10 4.931441795e-10 2.09603333e-10 9.249699309e-11 2.669285268e-10 5.180161704e-10 6.497241909e-11 2.799364818e-10 3.038950093e-10 7.143984558e-10 3.951234796e-10 2.768187288e-10 2.909029923e-10 5.238967594e-10 2.448991817e-10 1.508513171e-10 5.053046571e-10 4.451872377e-10 2.374195428e-10 4.100670634e-10 2.071767435e-10 2.799949153e-10 2.462247221e-10 1.300589065e-10 8.21948861e-11 2.140576881e-10 9.017410317e-12 4.326886706e-10 6.170798515e-10 2.919568825e-10 4.956327375e-10 5.851826441e-10 8.77571499e-10 2.388725351e-10 4.542880878e-10 5.082976219e-10 4.804624406e-10 6.502477996e-10 1.168706047e-10 3.721306483e-10 3.7898703e-10 1.512216072e-10 1.153973949e-10 4.615712164e-10 2.005953051e-10 1.593117897e-10 5.591756418e-10 4.161914026e-10 1.690865614e-10 2.951701122e-10 4.546723962e-10 2.177850034e-10 1.063118297e-09 3.06349684e-10 2.328572713e-10 2.902507039e-10 4.108588337e-10 2.355303927e-10 2.948544355e-10 4.591233448e-10 4.706892361e-10 4.675156269e-10 1.532967099e-10 4.053326764e-10 6.675427429e-10 2.396513184e-10 9.388467821e-11 4.607427286e-10 3.750394247e-10 1.074888542e-10 1.816223735e-10 3.515007715e-10 2.62168627e-10 3.366936923e-10 2.970191453e-10 5.755369163e-10 3.911953757e-10 1.941831198e-10 3.195518493e-10 3.129488773e-10 4.474127852e-10 1.99900385e-10 3.884753682e-10 3.319621874e-10 3.209575705e-10 4.06987265e-10 1.667570756e-10 8.43845249e-11 3.719739926e-10 2.890275716e-10 4.469690617e-10 4.002219475e-10 5.098134686e-10 3.357998679e-10 5.245483431e-10 9.232171638e-11 4.968295539e-11 2.818294768e-10 2.642549683e-10 3.571224051e-10 1.914339506e-10 3.715964149e-10 2.015535251e-10 4.813718122e-10 7.197777889e-10 3.225663686e-10 6.338006961e-10 1.126018306e-09 5.535699446e-10 2.221377917e-10 5.151201013e-10 5.178972441e-10 1.684514094e-10 6.519943555e-10 3.302396504e-10 4.846424738e-10 4.721625577e-10 1.13078799e-10 4.019032882e-10 3.820076632e-10 3.138366335e-10 4.23043291e-10 2.598248083e-10 3.95100766e-10 4.986471411e-10 2.309032254e-10 1.567585421e-10 1.170398436e-10 3.310493738e-10 1.388122442e-14 1.771163837e-10 1.774879838e-10 6.687846641e-10 3.319531808e-10 7.082457159e-11 1.124999583e-10 1.638306663e-10 2.380299403e-10 1.617507483e-10 9.745531533e-11 2.128682965e-10 4.102941578e-10 4.144135076e-10 1.134993875e-10 1.010827259e-10 2.000020139e-10 9.035483744e-11 6.837785275e-11 5.691680353e-10 4.116986901e-11 1.213451862e-10 1.212626317e-10 1.188363518e-10 5.120019887e-10 4.651704984e-11 2.978623361e-10 2.633637276e-10 1.116873225e-10 2.147413411e-10 3.196269702e-10 3.549422791e-10 1.271564215e-10 9.297674132e-11 1.397904498e-10 2.78145293e-10 1.379982875e-10 2.457267246e-10 3.574946145e-11 2.559571899e-10 1.894438894e-10 2.458246534e-10 4.612449254e-10 2.521394076e-10 4.545690179e-10 1.884141589e-10 1.839493877e-10 9.477901995e-11 1.758079305e-10 1.221075657e-10 3.305362399e-10 2.253981961e-10 8.575596202e-11 4.578166521e-10 2.100590207e-10 1.552396061e-10 1.711596505e-10 2.058305308e-10 3.573082685e-10 1.081609171e-10 8.99099223e-11 3.257639399e-10 1.88945412e-10 1.996731312e-10 2.913485438e-10 1.193798257e-10 2.322775347e-10 1.289717099e-10 2.044974564e-10 1.676150324e-10 3.614006101e-10 1.65393083e-10 8.944705538e-11 1.919170275e-10 3.187463291e-10 3.058458976e-10 1.69430417e-10 6.110152478e-11 2.308448653e-10 2.849967379e-10 1.793846775e-10 2.474903326e-10 +9.613104391e-11 5.257629022e-10 1.075149632e-10 3.717491088e-11 1.912921218e-10 8.621156777e-11 1.790940334e-10 1.578464997e-10 3.128215032e-10 1.285920596e-10 2.379982153e-10 1.019888304e-10 3.122182318e-10 4.757661587e-11 1.276913445e-10 1.052502521e-10 1.336576138e-10 1.026991035e-10 1.465473325e-10 4.238843023e-10 2.735374379e-10 1.528390671e-10 2.56656267e-10 3.861707996e-10 3.706427435e-10 2.356801591e-10 1.49625609e-10 3.473864635e-10 1.350048755e-10 3.060735289e-10 8.474698367e-11 4.665351066e-10 2.107699828e-10 3.062837896e-10 2.802760251e-10 4.466019993e-10 8.991197024e-11 3.099054241e-10 2.710987688e-10 3.219738478e-10 9.078327373e-11 4.502381279e-10 2.142383667e-10 3.974166152e-10 2.093725877e-10 1.568321165e-10 2.853580061e-10 1.580584626e-10 1.777456899e-10 2.543699461e-10 1.544146877e-10 2.252155975e-10 3.562536122e-10 2.552926363e-10 1.173086328e-10 5.533495509e-10 4.846516395e-10 2.300144505e-10 3.851180972e-10 6.85733492e-11 1.556683806e-10 1.056025375e-10 2.49096902e-10 1.665103611e-10 2.073616539e-10 3.286040787e-10 1.233111589e-10 2.499721355e-10 5.649306145e-10 1.349674854e-10 2.354192175e-10 9.461888109e-11 2.307952524e-10 1.274629107e-10 1.613971379e-10 2.329481142e-10 1.725265135e-10 2.645171011e-10 3.526449981e-10 3.075983921e-10 5.729240195e-10 3.554159158e-10 2.320522121e-10 2.248208959e-10 4.848234532e-11 9.261045021e-11 1.351159507e-10 3.915324093e-10 3.516723018e-10 2.423299664e-10 2.892012568e-10 2.550733695e-10 1.986018351e-10 5.593642823e-10 2.474432164e-10 3.185464497e-10 3.757398957e-10 3.396835388e-10 4.075972748e-10 3.163147128e-10 5.522490496e-10 2.929052868e-10 4.898468479e-10 1.083085922e-10 2.12167298e-10 9.335159364e-11 5.902383032e-10 3.042476035e-10 2.132625968e-10 5.382483142e-10 4.56542033e-10 3.27396488e-10 4.601521153e-10 4.837764818e-10 2.948391387e-10 5.201518095e-10 6.359172552e-10 3.258826145e-10 7.080233208e-10 3.644546147e-10 5.700227286e-10 1.536937694e-10 4.525943402e-10 5.838040835e-10 2.320901708e-10 6.885662408e-11 4.938862801e-10 4.10099285e-10 1.648495718e-10 4.975330368e-10 4.139274261e-10 1.009575628e-10 4.329593404e-10 3.659848496e-10 4.74995461e-10 2.023939965e-10 3.603056016e-10 4.000526623e-10 2.094324026e-10 4.314471839e-10 1.071817366e-10 3.063512288e-10 2.301470766e-10 2.442193848e-10 1.095513288e-10 2.438875524e-10 3.724785635e-10 3.193153169e-10 5.085614008e-10 7.066988165e-11 5.051391971e-10 3.689159134e-10 4.30910717e-10 1.97863704e-10 3.986200597e-10 3.950029726e-10 2.558436326e-10 4.152787608e-10 1.546944135e-10 7.701854678e-10 4.980468603e-10 3.187852085e-10 5.156970808e-10 2.328731905e-10 8.116894245e-10 9.216653642e-10 5.149068009e-10 4.280754723e-10 3.782487803e-10 4.609768369e-10 4.184537351e-10 5.350945759e-10 7.843883277e-10 3.41852314e-10 2.995208661e-10 4.617571049e-10 5.313768369e-10 3.73493243e-10 6.004644856e-10 3.944697337e-10 1.283868078e-10 6.91713576e-10 2.261016187e-10 3.555162161e-10 3.712548034e-10 1.617287973e-10 4.824571739e-10 2.492362402e-10 3.430578051e-10 4.782956513e-10 2.473487106e-10 4.574406291e-10 7.789846019e-10 5.339265818e-10 1.70803083e-10 4.987334908e-10 3.130323386e-10 3.324289188e-10 2.972290849e-10 8.207968101e-10 3.761459603e-10 3.654272882e-10 1.976489294e-10 1.186462879e-10 5.522534746e-10 3.252855274e-10 6.529128012e-10 2.843479525e-10 4.224705528e-10 1.708662335e-10 6.369798836e-10 3.819024192e-11 2.341905714e-10 2.124284249e-10 4.041392518e-10 2.098110645e-10 1.728384029e-10 5.593499007e-11 3.571580931e-10 2.928381168e-11 9.879259834e-11 2.450946387e-10 4.950871531e-10 3.413701518e-10 1.860085744e-10 2.12237127e-10 1.940855256e-10 7.264028508e-11 2.585815525e-10 2.379265696e-10 3.17394052e-10 8.647304363e-11 6.38198255e-11 2.795072054e-10 2.357923401e-10 4.873334156e-11 3.521382238e-10 2.281100948e-10 1.334483802e-10 2.099862131e-10 1.98083932e-10 4.292835046e-10 2.625627645e-10 3.16272788e-10 4.210334305e-10 4.283011455e-10 2.074978392e-10 2.199865768e-10 3.785028155e-11 1.39417521e-10 4.562948316e-10 2.323672242e-10 3.661064291e-11 9.078026377e-11 2.361387439e-10 3.334570451e-10 8.293410471e-11 2.076046199e-10 2.775581241e-10 1.409588758e-10 2.576748697e-10 2.911619757e-10 5.911690897e-10 5.412890539e-11 3.733098906e-10 2.527710761e-10 2.364557676e-10 3.602124264e-10 6.365539996e-11 3.35639044e-10 4.974669586e-10 2.033053102e-10 2.373926966e-10 1.217750564e-10 4.685622627e-10 2.101267024e-10 6.299153278e-11 2.753934069e-10 3.429917814e-10 2.507997633e-10 4.340766684e-10 2.319102961e-10 3.928648949e-10 1.921236541e-10 1.907732543e-10 2.69710741e-10 2.077992406e-11 2.622607872e-10 1.750187016e-10 8.950879646e-11 9.180945976e-11 3.178618028e-10 2.266168e-10 1.366372311e-10 3.27059998e-10 6.033642637e-10 4.531721744e-11 3.606595234e-10 3.978988542e-10 2.984787644e-11 +6.418665215e-11 5.0371589e-10 1.485901527e-10 1.557071638e-10 9.088869855e-11 8.366798272e-11 6.125488053e-10 5.393252835e-11 1.43240773e-10 1.476008174e-10 1.799677297e-10 1.842156666e-10 2.372709148e-10 2.911199905e-10 5.63298033e-11 2.003931039e-10 4.657985185e-10 9.563055363e-11 9.801532333e-11 4.86391654e-10 2.407821892e-10 3.201010661e-10 2.108311785e-10 2.019987707e-10 2.318862157e-10 7.617573624e-11 3.83598812e-10 2.300585132e-10 5.380816191e-10 4.434526301e-10 3.65996971e-10 3.602405918e-10 3.639806494e-10 4.244721097e-10 4.013892972e-10 4.669672314e-10 4.601476584e-10 2.862916081e-10 1.001320266e-10 2.000842981e-10 6.193190138e-10 3.139000798e-10 4.303800365e-10 3.425927607e-10 2.782832326e-10 1.60202663e-10 6.777367509e-10 4.424394995e-10 3.585727266e-10 2.171714752e-10 2.929717911e-10 3.380460645e-10 5.27222585e-10 2.725144058e-10 9.690816741e-11 3.342274753e-10 2.840000019e-10 2.601902964e-10 3.525476722e-10 1.739603372e-10 4.084835233e-10 4.26609473e-10 2.369075591e-10 4.984832158e-10 1.656577578e-10 3.874466502e-10 2.439106263e-10 8.546263321e-11 2.32722524e-10 2.867115207e-10 2.608621569e-10 3.195214326e-10 1.867353486e-10 4.479149405e-10 6.047967121e-10 8.347060269e-11 3.332437401e-10 2.601864827e-10 1.290817904e-10 1.574000446e-10 4.713358582e-10 2.040876589e-10 2.995892102e-10 2.384069005e-10 7.079502098e-11 2.292372646e-10 6.242381411e-10 2.210597545e-10 2.480440134e-10 6.984930459e-11 1.975985123e-10 3.381686366e-10 2.344583146e-10 3.230389541e-10 6.339997677e-10 2.321534073e-10 5.556431406e-10 4.774263787e-10 4.407405848e-10 4.216487315e-10 6.5683464e-10 8.883298937e-10 2.348370903e-10 4.345569236e-10 7.290484908e-10 2.165237829e-10 4.374604235e-10 6.350466396e-10 3.070048317e-10 5.881431277e-10 1.688274075e-10 5.184091481e-10 3.088436768e-10 3.194143829e-10 2.228460344e-10 5.989700447e-10 5.121449809e-10 1.861903934e-10 1.157064797e-10 1.705032619e-10 3.561950736e-10 4.49546247e-10 3.096705461e-10 8.89386492e-10 1.734998701e-10 2.659517734e-16 2.387888754e-10 4.094832199e-10 2.754616134e-10 5.854858342e-10 5.611432003e-10 1.999211882e-10 1.399629259e-10 7.655272254e-10 5.213770151e-10 2.204140746e-10 5.478611601e-10 1.651867741e-10 1.133775236e-10 2.823317511e-10 5.179871192e-10 3.827722228e-10 1.759775388e-10 2.55428524e-10 2.604289927e-10 2.837215211e-10 2.81544217e-10 4.151707634e-10 3.395435033e-10 4.496257537e-10 1.858810036e-10 2.247833975e-10 6.050791522e-10 6.756123264e-10 4.428009701e-10 5.231442868e-10 2.816786342e-10 3.0296103e-10 9.15849803e-10 1.495182969e-10 4.506424252e-10 1.026338822e-10 4.474026313e-11 5.664162345e-11 4.332084991e-10 3.092538238e-10 1.916811248e-10 1.278399538e-10 8.446475176e-10 2.019737671e-10 2.867721646e-10 1.551276098e-10 6.00219382e-10 2.852861259e-10 7.226508774e-10 3.04318435e-10 5.701621363e-10 3.752442917e-10 1.28492319e-10 3.335877782e-10 3.330389264e-10 4.40562508e-10 2.388125948e-10 2.428972028e-10 1.903789675e-10 3.402355914e-10 1.120230855e-10 4.564025161e-10 2.913181223e-10 8.678721918e-10 2.684449859e-10 8.943725956e-10 2.034748822e-10 5.771098216e-10 1.682089006e-10 3.871976374e-10 8.022614092e-10 7.307891206e-10 3.833106601e-10 4.327263583e-10 6.611368882e-10 5.217706336e-10 5.921548441e-10 4.166567348e-10 2.557375242e-10 3.03518067e-10 1.564185397e-10 4.309449175e-10 6.98067202e-10 1.197191593e-10 1.837146223e-10 2.084282258e-10 1.659690855e-10 2.521010878e-10 2.630744682e-10 2.16311785e-10 2.332974116e-10 2.914057677e-10 2.181952229e-10 5.042107743e-10 3.545523977e-10 4.629441983e-11 8.752829028e-11 1.128702258e-10 1.232921658e-10 4.458542136e-11 3.225441443e-10 3.538505377e-10 2.651774004e-10 3.523610236e-10 2.02266895e-10 1.759370637e-10 4.407397111e-10 2.196189382e-10 9.55275197e-11 1.025651364e-10 4.250818792e-11 1.067314843e-10 3.32951032e-10 2.058291701e-10 5.115458691e-10 1.88203054e-10 8.848815484e-10 1.4951531e-10 4.149985626e-10 1.715691306e-10 5.175117802e-10 5.197222411e-11 2.432976154e-10 2.113737316e-10 1.983597875e-10 2.800260992e-10 4.459560039e-11 3.390902969e-10 2.814960436e-10 1.943394831e-10 2.385368348e-10 2.576040887e-10 4.484568421e-10 2.638113317e-10 3.663578273e-10 2.852617482e-10 1.771940009e-10 1.919652248e-10 4.211132895e-10 1.238580606e-10 4.613764256e-10 1.98380507e-10 4.033304658e-10 1.956920374e-10 4.79804377e-10 3.784296954e-10 6.929846436e-10 1.691938877e-10 2.799313332e-10 5.201139636e-10 3.095720752e-10 4.074874566e-10 2.747556592e-10 1.94392917e-10 2.101136841e-10 7.223073179e-11 3.678067727e-10 1.329029011e-10 1.036083277e-10 3.273809801e-10 7.758167368e-11 2.409592608e-10 2.185013696e-10 4.790374895e-12 3.079219766e-10 2.934004103e-10 1.938239503e-10 1.067130393e-10 1.253054571e-10 1.842284847e-10 1.359839463e-10 2.360180114e-11 1.066956701e-10 1.058103428e-10 +3.412693755e-10 1.421928479e-10 1.383259356e-10 1.323798284e-10 1.502235534e-10 1.419568835e-10 2.767672939e-10 2.019103093e-10 2.519677752e-10 1.536780444e-10 4.485489046e-10 1.207113781e-10 2.330366551e-10 3.9177085e-10 5.609184806e-10 1.259424953e-10 2.444623837e-11 3.383878049e-10 2.776960455e-10 1.362948552e-10 1.679416155e-10 1.913305482e-10 1.549416231e-10 9.063634413e-11 1.728496843e-10 3.203045794e-10 3.704889096e-10 4.517152589e-10 3.144369319e-10 3.320827833e-10 1.751596193e-10 2.562709531e-10 2.734430369e-10 7.25802137e-11 1.37123514e-10 4.200322642e-10 1.809516626e-10 1.454646945e-10 2.865629755e-10 1.998724682e-10 2.927570218e-10 2.106876746e-10 1.783773521e-10 3.740045923e-10 2.427790319e-10 1.362936068e-10 1.238266542e-10 4.328232468e-10 2.946060636e-10 3.722124011e-10 2.048132763e-10 3.975763673e-10 1.740931241e-10 5.35277803e-10 2.095263526e-10 4.477345552e-10 2.015832878e-10 6.329845834e-10 3.218108467e-10 2.434931906e-10 1.525890495e-10 2.268317586e-10 1.346946753e-10 2.017997009e-10 3.255599096e-10 7.717688134e-11 6.419076101e-10 1.34791451e-10 2.775483905e-10 1.511353804e-10 1.531585067e-10 6.190471621e-10 2.356282117e-10 1.275871307e-10 2.837817232e-10 1.466442794e-10 2.957980966e-10 1.855681839e-10 7.896086061e-11 1.085152742e-10 2.978068647e-10 1.816255579e-10 1.88289147e-10 1.911937256e-10 4.880608881e-10 2.591196671e-10 1.725489005e-10 3.483744185e-10 2.514649421e-10 4.276289712e-10 3.600321236e-10 1.701111742e-10 2.854384616e-10 1.026187662e-09 4.295374764e-10 3.615905829e-10 4.038057691e-10 2.697930056e-10 8.870964543e-10 9.333290649e-10 3.514642226e-10 6.09338769e-10 7.302369578e-10 6.416639123e-10 6.602503806e-10 3.208146601e-10 3.204157153e-10 6.132342199e-10 5.647684681e-10 5.154894353e-10 4.679014051e-10 6.039631875e-10 4.473292439e-10 2.105149299e-10 1.954220852e-10 7.683649022e-10 2.535243338e-10 2.968075886e-10 3.890365966e-10 3.568503346e-10 4.797607671e-10 2.54339881e-10 2.172237792e-11 2.209665576e-10 3.276217658e-10 5.973501137e-10 3.829956432e-10 1.02525403e-09 4.886765478e-10 3.090183179e-10 5.956382325e-10 2.16532681e-10 4.796252586e-10 7.054658406e-10 3.088803465e-10 3.279228437e-10 4.869068955e-10 3.594325268e-10 6.207972674e-10 6.61002504e-10 4.356230907e-10 2.339944979e-10 2.706803808e-10 2.831672761e-10 5.061096416e-10 5.29248824e-10 1.774155049e-10 2.349488983e-10 3.784964222e-10 7.232320791e-10 2.288325827e-10 1.861976887e-10 1.764824926e-10 3.575863789e-10 3.294630118e-10 5.622953301e-10 2.115582378e-10 1.770663435e-10 3.562614692e-10 9.669695494e-11 4.516994115e-10 1.749194792e-10 4.030691643e-10 1.248691914e-10 4.137617965e-10 3.43522115e-10 4.826838501e-10 5.87362428e-10 4.027539586e-10 4.483883136e-10 4.47032506e-10 6.126679301e-10 4.938945825e-10 2.991018308e-10 3.132498296e-10 2.667217157e-10 3.273573595e-10 6.058558058e-10 3.04412584e-10 5.066681085e-10 1.853591283e-10 3.583864983e-10 4.302539096e-10 5.219409734e-10 1.717948928e-10 2.872414762e-10 4.802943019e-10 4.119438078e-10 2.548042865e-10 9.981151674e-10 4.102428034e-10 2.271495015e-10 5.071273761e-10 7.284732934e-10 3.555351135e-10 3.25496815e-10 5.645337e-10 6.330319032e-10 4.710015941e-10 4.733062189e-10 5.485467679e-10 7.42842915e-10 7.093726986e-11 3.0628145e-10 5.87675198e-10 4.13613733e-10 1.336443424e-10 5.558393713e-10 5.517604706e-10 3.221270383e-10 5.677967531e-10 6.862379199e-10 4.309330052e-10 3.497002521e-10 3.350515478e-10 2.042875343e-10 8.442818795e-11 2.505435779e-10 1.536145515e-10 2.649132053e-10 1.035687437e-10 7.722688996e-11 1.958384718e-10 3.222112996e-10 3.409746393e-10 1.754284807e-10 4.34245356e-11 1.152256017e-10 4.724585164e-10 4.08408952e-10 3.539186148e-10 1.806989361e-10 2.500835855e-10 4.275535993e-10 2.187330236e-10 2.294619921e-10 1.29096998e-10 2.780944348e-10 2.536464569e-10 5.264536848e-10 6.814555561e-10 6.691055975e-11 4.125192929e-10 3.757947965e-10 5.223063207e-10 1.215588972e-10 2.684853965e-10 2.148557284e-10 3.932226404e-10 3.660889948e-10 1.854221572e-10 2.507563369e-10 5.213543866e-10 2.065021547e-10 1.740857873e-10 1.967952613e-10 1.034945018e-10 5.343829722e-10 1.535557487e-10 3.088190315e-10 1.030345941e-10 8.06219414e-11 2.771640667e-10 2.506837138e-10 3.765515766e-10 3.325022611e-10 4.262827139e-10 1.612846624e-10 3.536516003e-10 2.172365141e-10 5.730188304e-11 2.446330289e-10 3.614832217e-10 3.384308917e-10 1.730779382e-10 9.093526889e-11 1.194182741e-10 1.66846585e-10 4.606902894e-10 2.036932271e-10 2.191345604e-10 2.293652418e-10 1.012503989e-10 3.062432962e-10 9.832464023e-11 6.731849651e-11 2.839722624e-10 1.323540393e-10 1.894759002e-10 2.572167331e-10 6.78705357e-11 2.168589914e-10 1.867056236e-10 2.170153818e-10 5.048272711e-10 1.633085187e-10 1.235891386e-10 4.305377571e-10 2.18356034e-10 2.636281468e-10 +1.200309842e-10 1.521326191e-10 2.842404311e-10 6.196928108e-11 5.647945815e-10 2.125536745e-10 1.259057332e-10 9.024285266e-11 1.627640567e-10 2.829468461e-10 9.812973395e-11 7.010062557e-11 1.886900397e-10 2.21010953e-10 2.786666843e-10 2.018809552e-10 6.508790755e-11 1.132015636e-10 2.849558452e-11 1.58785209e-10 2.306711775e-10 1.659395032e-10 9.037315344e-11 8.550247185e-11 3.808377872e-10 6.904268642e-11 9.783753411e-11 2.276237446e-10 1.982126005e-10 1.30613658e-10 4.3996434e-10 4.677539835e-10 3.889859317e-10 2.335898069e-10 2.75541343e-10 5.514775116e-10 2.512647374e-10 1.195557766e-10 2.568524242e-10 5.31130919e-10 6.037644412e-10 6.884080893e-10 1.652091074e-10 4.158262956e-10 2.710620837e-10 4.03615787e-10 1.78751341e-10 1.909495118e-10 4.705395457e-10 6.268212569e-10 3.305764788e-10 1.802817936e-10 2.485226375e-10 4.229243189e-10 3.110622805e-10 2.006430004e-10 2.735191163e-10 4.171639772e-10 1.920614761e-10 4.546260577e-11 4.923679845e-10 1.780601335e-10 7.660881827e-10 1.553362605e-10 4.81228831e-11 1.001780162e-09 2.100821782e-10 2.139165335e-11 8.519102496e-11 1.536954622e-10 1.530304792e-10 1.380142899e-10 2.626711716e-10 1.439592183e-10 2.109517992e-10 1.142694976e-10 2.771367056e-10 3.137498814e-10 1.916741631e-10 4.210107463e-10 1.981628777e-10 5.603794679e-12 2.213626266e-10 4.542403473e-10 3.298248554e-10 1.909332528e-10 2.062108535e-10 4.459303588e-10 8.16964125e-11 2.307326452e-10 5.288269256e-10 2.590978888e-10 3.033170707e-10 9.639379666e-11 3.881234054e-10 4.76568173e-10 2.988306154e-10 1.700463831e-10 7.360391479e-10 2.046531884e-10 5.191964841e-10 2.89637972e-10 9.053197061e-11 6.793104894e-10 6.13385926e-10 3.357391842e-10 2.631646502e-10 2.154378094e-10 2.800511767e-10 7.227728664e-10 3.064713215e-10 4.385080211e-10 3.252179917e-10 4.851539497e-10 4.232468628e-10 5.054938801e-10 2.064758371e-10 6.21208347e-10 5.343930248e-10 3.980135322e-10 4.747071137e-10 2.815748124e-10 1.153491827e-09 2.202845127e-10 4.720414214e-10 4.337998315e-10 6.334606847e-10 2.965900026e-10 5.311070321e-10 2.11482049e-10 7.913100068e-11 2.128903466e-10 5.990629288e-10 2.836366062e-10 4.092681938e-10 6.048530986e-10 3.086282747e-10 2.402368917e-10 6.061882187e-10 4.51957813e-10 2.534145287e-10 5.294295299e-10 3.854854023e-10 5.098162637e-10 3.722989521e-10 2.296199792e-10 8.895668785e-10 1.172753184e-11 4.33728995e-10 3.765959471e-10 5.792523874e-10 1.589008369e-10 6.883398567e-10 3.709618039e-10 2.134195839e-10 1.107627311e-10 4.078768555e-10 4.436931034e-10 1.810940081e-10 5.047345114e-10 5.473475507e-10 1.59241012e-10 2.320147996e-10 5.189840149e-10 3.930346276e-10 2.918558328e-10 5.078246383e-10 7.540108374e-10 3.144939788e-10 3.302482231e-10 2.497229035e-10 6.125000318e-10 6.108093537e-10 3.811105738e-10 2.726746153e-10 8.006090485e-10 5.167284281e-10 3.192127932e-10 2.350700657e-10 5.844802577e-10 5.52883712e-10 8.743926854e-10 9.175981039e-10 9.206911204e-11 9.67026637e-11 1.183615713e-10 5.349453754e-10 1.742016935e-10 4.161481891e-10 4.572817955e-10 1.378510508e-10 4.532880324e-10 3.274009665e-10 4.535055358e-10 4.0413985e-10 1.082531667e-09 2.838178868e-10 1.257240942e-09 7.255600392e-10 3.041732629e-10 6.593575707e-10 2.579118857e-10 4.734617612e-10 3.974661876e-10 5.585014953e-10 8.647256158e-10 5.630012356e-10 1.630548929e-10 2.281512342e-10 3.529003523e-10 5.688211614e-10 1.635785134e-10 2.411640615e-10 2.278005256e-10 3.119535458e-10 2.116304685e-10 1.881842056e-10 1.214356269e-10 3.825264971e-10 1.267813628e-10 7.601191616e-11 1.305683853e-10 3.298317021e-10 4.41095108e-10 2.63378636e-10 5.529098605e-10 2.540793882e-10 2.805475103e-10 1.882044315e-10 2.731113157e-10 2.555166232e-10 1.854130166e-10 3.062494208e-10 4.054707348e-10 6.350308675e-10 1.676211818e-10 2.415363528e-10 4.71947153e-10 3.503623575e-10 5.430904208e-10 5.286477251e-11 2.233657998e-10 1.746069923e-10 4.078563331e-10 2.937072307e-10 4.125299829e-10 3.752764408e-10 4.093081838e-10 1.745789002e-10 2.969269331e-10 4.042155722e-10 1.780833162e-10 2.361811326e-10 2.750865479e-10 2.187063093e-10 3.74573362e-10 3.232083204e-10 2.503413639e-10 4.033626047e-10 5.41282529e-10 1.727582384e-10 2.057410526e-10 1.373426168e-10 2.900360156e-10 3.463780137e-10 6.232033533e-10 1.473334009e-10 5.571424161e-10 1.390645327e-10 2.837661088e-10 2.354751703e-10 1.710320905e-10 4.656395434e-10 2.696658793e-10 1.63225842e-10 3.823955609e-10 3.500267439e-10 4.264449809e-10 2.786807164e-10 1.442825894e-10 3.292435223e-10 1.000908251e-10 2.679310769e-10 1.905229184e-10 4.764664968e-10 3.610392935e-10 1.829397018e-10 1.24117039e-10 1.30083224e-10 1.978140121e-10 1.631614918e-10 1.277877864e-10 3.077152981e-10 6.703977535e-11 2.951188675e-10 1.147364079e-10 9.796260441e-11 2.226676919e-10 3.8858202e-10 3.975850772e-10 +1.001274541e-10 6.074540546e-11 5.521010016e-10 4.988394757e-10 2.67001808e-10 2.936553823e-11 1.843394328e-10 3.602600455e-10 1.82262794e-10 1.199240219e-10 2.34529439e-10 3.643443855e-10 1.084305419e-10 3.516663563e-10 8.157498544e-11 2.788519876e-10 3.262404037e-10 5.584247286e-10 7.546344933e-11 6.281302362e-11 1.433255016e-10 2.932311934e-10 2.040833945e-10 2.684559823e-10 1.925486637e-10 7.695030374e-10 1.657052228e-10 2.34465922e-10 2.92877625e-10 4.239771904e-10 7.1592965e-10 2.576879908e-10 1.297842856e-10 4.591673126e-10 3.428014899e-10 3.415324199e-10 4.064388442e-10 2.55498678e-10 6.404365213e-10 3.01884891e-10 9.850485807e-11 1.805964299e-10 4.586177598e-10 1.388292268e-10 5.352473767e-10 1.916067329e-10 5.090056858e-10 4.254102101e-10 1.08416987e-10 3.595214701e-10 1.183690583e-10 2.645999836e-10 2.837118566e-10 5.415002726e-10 3.430534459e-10 2.763458758e-10 1.151488968e-10 6.843579012e-10 2.439093106e-10 3.117804364e-10 6.603860794e-10 2.194158125e-10 5.608429006e-10 2.518223843e-10 3.474171521e-10 3.177754594e-10 1.703979165e-10 3.018105654e-10 9.247791155e-11 4.218668926e-10 3.885811372e-10 3.835141862e-10 7.667373777e-11 8.073937992e-10 7.374642543e-10 2.173166072e-10 1.290982487e-10 1.263372525e-10 8.017288585e-11 3.324876204e-10 1.734277276e-10 3.212824368e-10 6.561542109e-11 3.027267241e-10 1.90547173e-10 1.631958868e-10 2.816236463e-10 4.550702164e-10 3.137612427e-10 4.308464618e-10 3.949805476e-10 4.621607423e-10 5.311400917e-10 4.221070722e-10 2.630737853e-10 6.23211556e-10 5.294203216e-10 2.690800828e-10 1.013872795e-09 3.035117041e-10 8.90524551e-10 3.128193113e-10 6.907780075e-11 4.555685766e-10 6.566766006e-10 1.854760588e-10 4.336463869e-10 7.425615496e-10 5.574392921e-10 1.226077985e-10 3.368936938e-10 8.817651813e-10 2.703712783e-10 4.876563429e-10 4.422509862e-10 5.099105747e-10 4.255000178e-10 6.118790908e-10 5.100432185e-10 2.929381872e-10 9.793184831e-10 4.268629448e-10 3.005909235e-10 4.355453603e-10 3.519797573e-10 6.441144024e-10 6.411688879e-10 3.954050144e-10 3.708285819e-10 5.064644835e-10 2.661576505e-10 4.777635367e-10 3.820291864e-10 4.514333686e-10 3.437298147e-10 7.648917668e-10 3.084745818e-10 2.980941906e-10 4.256151572e-10 1.864807878e-10 6.355888432e-10 7.318700047e-10 3.547120713e-10 3.982560571e-10 2.017038626e-10 6.529321549e-10 1.334715187e-10 4.110770674e-10 2.574508164e-10 4.91350967e-10 6.217333588e-10 2.510931049e-10 3.811225263e-10 2.298679668e-10 3.417873783e-10 1.01729504e-10 4.913921723e-10 1.934333532e-10 3.793119413e-10 1.052785627e-10 5.912495182e-10 4.308934977e-10 1.911346964e-10 3.34872879e-10 3.319123276e-10 8.088217169e-10 2.026894364e-10 3.109577934e-10 1.892565156e-10 1.106769188e-10 3.862432795e-10 4.057472436e-10 1.087426563e-09 5.413511231e-10 2.018130039e-10 2.532851901e-10 2.328216545e-10 4.030094251e-10 2.75007991e-10 3.128729184e-10 2.412124945e-10 5.735981768e-10 1.053164481e-09 4.071283616e-10 3.222036286e-10 7.689340307e-11 6.03839883e-10 6.211378932e-10 4.622765332e-10 4.229607936e-10 4.155475392e-10 7.749168528e-10 4.472653754e-10 2.467311367e-10 6.420627485e-10 3.266581515e-10 4.754946293e-10 4.609973552e-10 4.101564992e-10 4.450665272e-10 8.527457664e-10 8.583303692e-10 1.995984899e-10 2.505101301e-10 6.705300707e-10 1.163157486e-09 6.508367845e-10 6.999789463e-10 4.093376819e-10 1.020116622e-09 2.973205433e-10 2.235708995e-10 5.180266059e-10 2.672581926e-10 6.625726502e-11 1.545352363e-10 3.816720833e-10 8.832295114e-11 1.916260916e-10 1.626329172e-10 1.615241647e-10 4.643620429e-10 2.422092706e-10 1.123445131e-10 4.460289529e-10 4.917956795e-10 5.849879395e-11 4.51677786e-10 2.962515198e-10 5.134198775e-10 3.307018318e-10 3.218469713e-10 1.499855394e-10 2.431521738e-10 2.115820775e-10 1.479613552e-10 2.587873036e-10 5.048443931e-10 4.079876356e-10 1.780507442e-10 3.232462253e-10 9.079297434e-12 3.79470684e-10 3.711123219e-10 2.454727088e-10 4.684537511e-10 3.086157531e-10 1.510268244e-10 2.460338065e-10 4.267477324e-10 2.977743564e-10 1.303418198e-10 3.031457409e-10 2.446949531e-10 5.498416302e-10 4.567710596e-10 8.570764228e-11 7.652677032e-10 3.687890899e-10 4.29175933e-10 7.78854478e-11 3.188142012e-10 2.414729168e-10 1.175860687e-10 1.474142061e-10 1.162765049e-10 3.711308599e-10 4.285449278e-10 6.452717472e-10 4.079813851e-10 2.428597591e-10 3.859718228e-10 3.86392734e-10 5.077641742e-10 2.317721374e-10 2.886288537e-10 1.101150878e-10 4.381241392e-11 2.116378329e-10 2.640813104e-10 2.364670575e-10 1.351516747e-10 1.758279741e-10 3.033445586e-10 1.02437196e-10 3.201422993e-10 3.160128235e-10 9.926835331e-11 5.171299819e-10 3.945545038e-11 1.072862388e-10 3.351917168e-10 4.168703302e-10 2.766249947e-10 8.857472948e-10 2.162199625e-10 1.984741183e-10 8.147417878e-11 2.742867572e-10 2.447652363e-10 +2.400098758e-10 1.561154161e-10 1.139519313e-10 2.772906139e-10 5.324134918e-10 1.941830648e-10 3.028925917e-10 8.462516758e-11 1.159516812e-10 1.242210071e-10 1.869528831e-10 4.998553994e-10 2.954063586e-10 1.195751174e-10 1.162207027e-10 1.414023496e-10 8.998835842e-11 2.361083084e-10 2.055853616e-10 1.348749748e-10 1.972571875e-10 1.518135638e-10 1.264992114e-10 8.449145638e-11 2.985680167e-10 3.638802116e-10 2.317383564e-10 2.049370254e-10 3.319985964e-10 4.159062649e-10 2.920150964e-10 3.357033939e-10 2.032121689e-10 3.639805928e-10 7.227433419e-10 3.540610489e-10 2.893544287e-10 3.261932871e-10 2.729757537e-10 5.003850364e-10 1.941174819e-10 3.614888624e-10 3.17300916e-10 1.668866878e-10 2.194939868e-10 5.563131156e-10 1.156521642e-10 2.386885346e-10 2.275244431e-10 1.012122564e-10 1.209318908e-10 2.686445265e-10 2.084607539e-10 2.550430553e-10 5.415060044e-10 1.635100378e-10 4.731359113e-10 2.736104122e-10 7.03064333e-10 1.987291654e-10 2.875461299e-10 4.926717088e-10 2.010973376e-10 6.488488668e-10 7.152056252e-10 3.324932817e-10 1.439026017e-10 3.283983857e-10 2.708649494e-10 4.272227156e-10 2.614872798e-10 3.1009421e-10 4.195122978e-10 6.022727579e-10 8.788078974e-11 8.644918766e-12 4.33802596e-10 1.661321009e-10 4.663820335e-11 3.481679425e-10 4.121980947e-10 2.762844031e-10 1.013791866e-09 2.50958314e-10 5.939194261e-10 6.291165025e-10 5.170791417e-10 7.832989981e-11 5.579953123e-10 7.134359222e-10 4.150879131e-10 3.706468868e-10 1.764039115e-10 3.796258277e-10 4.758986569e-10 1.193766753e-09 4.237737165e-10 9.675690292e-10 1.673201714e-10 9.678905969e-10 2.341259861e-10 9.538871867e-10 3.603232249e-10 3.011623433e-10 5.325455359e-10 3.424886043e-10 5.502972253e-10 7.417656046e-10 4.920174777e-10 3.010653234e-10 7.211673991e-10 1.109187595e-10 1.085050448e-09 4.106563475e-10 2.782443025e-10 3.398324198e-10 4.496738612e-10 4.359156883e-10 3.537106417e-10 3.575743921e-10 5.212000226e-10 3.970973147e-10 3.17149591e-10 3.962482182e-10 3.342188627e-10 4.335084741e-10 3.592820984e-10 3.043686936e-10 3.568981794e-10 5.666465889e-10 4.359476686e-10 4.963373433e-10 2.079045918e-10 6.412367119e-10 1.637633105e-10 2.452035021e-10 3.071704376e-10 4.934652893e-10 2.648569527e-10 3.699629312e-10 3.471225143e-10 9.519688423e-11 2.846672061e-10 3.088564983e-10 4.658967188e-10 5.097393638e-10 1.915817236e-10 4.232722892e-10 4.000136296e-10 1.066762509e-09 6.335431549e-10 2.857897294e-10 6.140899722e-10 6.866296111e-10 5.522362258e-10 3.683720426e-10 4.633750751e-10 3.016577226e-10 1.72424024e-10 3.547843423e-10 3.991342431e-10 2.08330595e-10 2.237451011e-10 6.688042923e-10 4.093651249e-10 7.842781909e-10 1.83281369e-10 2.383541951e-10 4.246170249e-10 2.689225378e-10 3.360880541e-10 3.278484279e-10 8.288829496e-11 1.78751598e-10 4.577052148e-10 8.417339101e-10 3.895952589e-10 6.415390816e-10 3.620957337e-10 5.439827452e-10 2.647088677e-10 1.366834077e-10 5.083149416e-10 2.612822114e-10 2.878455137e-10 3.519191252e-10 2.431352273e-10 2.440865971e-10 4.469048411e-10 1.05201948e-10 4.097456239e-10 7.868663081e-10 2.081492502e-10 4.4944871e-10 3.290955348e-10 4.155260431e-10 5.708020031e-10 4.085722724e-10 4.652405728e-10 5.606065216e-10 6.682965188e-10 7.478779814e-10 8.059818425e-10 4.004667489e-10 3.588491704e-10 5.388599803e-10 4.760139468e-10 4.051407331e-10 3.464755204e-10 6.178852559e-10 9.945487546e-10 4.911928369e-10 3.177175676e-10 3.62844476e-10 6.03431439e-10 1.028044293e-10 4.816972781e-11 1.572194962e-10 9.678778728e-11 1.219322083e-10 4.706946942e-10 2.998601731e-11 2.311357518e-10 2.596912083e-10 1.188689039e-10 4.047922993e-10 2.903100427e-10 2.690938637e-10 1.030775067e-10 4.976892595e-10 2.541995596e-10 3.981764875e-10 3.024180971e-10 1.958299033e-10 1.144446004e-10 3.372150694e-10 2.585021919e-10 1.04929088e-10 3.051447733e-10 7.827149456e-10 1.027866619e-10 4.579159729e-10 4.545854336e-10 2.575687433e-10 7.252635702e-10 2.971294142e-10 2.601736648e-10 3.839182641e-10 3.999396648e-10 2.174225237e-10 2.393365745e-10 3.18816789e-10 6.65477994e-11 2.479948404e-10 1.826711198e-10 7.203835855e-10 2.751542067e-10 1.825652948e-10 2.844525316e-10 2.616846588e-10 1.244346552e-10 5.15880839e-10 3.209474156e-10 1.19330928e-10 2.578974398e-10 5.227929349e-10 1.859895666e-10 1.805019256e-10 3.816837504e-10 1.400539468e-10 1.235698788e-10 3.763089858e-10 3.838307555e-10 1.758984493e-10 2.664543022e-10 1.746820331e-10 9.358881209e-11 1.404729416e-10 3.254962933e-10 3.110062854e-10 2.568139288e-10 3.722297492e-10 2.045596107e-10 3.731495499e-10 1.052536688e-10 2.999122248e-10 1.85947255e-10 9.148677489e-11 2.014457661e-10 1.943711772e-10 3.153916067e-10 1.832715991e-10 2.894324056e-10 1.890729104e-10 1.1482834e-10 2.683765713e-10 2.929967043e-10 1.509576427e-10 3.708562803e-10 3.24007653e-10 +1.110002164e-10 2.283671037e-10 3.46788913e-10 4.383866038e-10 2.40883717e-10 4.202311939e-10 3.687676451e-10 3.921233256e-10 3.471274959e-10 4.026593294e-10 5.291365378e-10 4.737427662e-10 2.667175994e-10 6.127560509e-11 3.727057315e-10 2.433477014e-10 2.28824452e-10 1.962258259e-10 8.663038246e-11 3.989162982e-11 1.205648585e-10 1.758744407e-10 2.892530664e-10 2.179042245e-10 8.298105117e-11 2.870624236e-10 5.644233012e-10 2.804397959e-10 1.9395137e-10 1.737735636e-10 1.269284597e-10 2.648104076e-10 3.411658559e-10 4.618909371e-10 5.291211171e-10 1.281602139e-10 4.185837784e-10 2.921683635e-10 2.893816728e-10 4.810537557e-10 2.899181613e-10 1.602935078e-10 2.880096694e-10 4.33390944e-10 1.246692331e-10 4.560460289e-10 9.10963517e-11 2.930056421e-10 2.409263496e-10 1.386759148e-10 5.28345319e-10 1.097038833e-10 2.158328696e-10 3.894694323e-10 5.87774845e-10 3.18866063e-10 4.752221292e-10 1.34604983e-10 4.781636179e-10 2.180053309e-10 1.917085013e-10 1.501927887e-10 5.474176243e-10 1.634568157e-10 1.843789015e-10 1.353453133e-10 6.030405932e-10 1.764612366e-10 3.154047364e-10 3.841657551e-10 2.344355844e-10 8.352968455e-10 4.33510504e-10 1.482230326e-10 3.904682245e-10 5.270139245e-10 1.721959543e-10 4.333766962e-10 1.648848584e-10 5.224321892e-11 5.675076273e-10 3.626823677e-10 2.32641056e-10 2.807440366e-10 2.49913887e-10 4.885895487e-10 6.980348575e-10 5.629996969e-10 7.017219277e-10 5.49834615e-10 1.874387863e-10 3.252184984e-10 3.817740367e-10 4.661303698e-10 1.091541456e-09 9.037988463e-10 8.759671561e-10 1.243394563e-09 2.000408475e-10 2.629760043e-10 3.407269252e-10 4.422425588e-10 4.442138654e-10 7.052933315e-10 5.791381764e-10 1.100088126e-09 3.008654911e-10 3.611708748e-10 1.160190461e-09 4.621451656e-10 8.178211353e-10 7.001930749e-10 2.328277847e-10 6.853812517e-10 4.466882099e-10 3.642265703e-10 6.215380487e-10 1.619917348e-10 5.326007109e-10 4.805566219e-10 3.311261975e-10 3.383235963e-10 5.240300005e-10 1.516699695e-10 3.095805104e-10 3.991573969e-10 4.612678209e-10 5.387791115e-10 1.777863603e-10 3.243299346e-10 3.735461778e-10 3.930914619e-10 3.123078024e-10 7.129416392e-10 3.877333681e-10 3.611554484e-10 5.253153456e-10 4.855455385e-10 6.251677228e-10 3.583771269e-10 4.938870593e-10 3.311957678e-10 1.010788684e-09 6.288996093e-10 2.266731035e-10 4.07623707e-10 3.201563862e-10 4.972840565e-10 3.37258486e-10 4.164726024e-10 5.870842305e-10 4.305335353e-10 2.790619493e-10 8.58293121e-10 3.088833856e-10 4.493529454e-10 2.822926829e-10 3.967915819e-10 4.654024595e-10 4.393142998e-10 3.100019052e-10 3.308112631e-10 5.888186338e-10 4.391972595e-10 3.338868055e-10 4.312544838e-10 3.874570978e-10 5.636956603e-10 5.41766794e-10 4.027554282e-10 4.069660027e-10 8.942155294e-10 6.099661449e-10 2.746862099e-10 7.038845364e-10 3.212254669e-10 3.772802806e-10 5.888858527e-10 3.262429387e-10 3.542492473e-10 5.491397607e-10 4.012348247e-10 6.400444329e-10 6.632897067e-10 4.660789255e-10 4.08182065e-10 4.864451549e-10 7.432084624e-10 3.838570056e-10 3.877198824e-10 7.031019312e-10 4.840508949e-10 3.177590841e-10 5.058535983e-10 7.360884967e-10 1.736515759e-10 4.033327937e-10 5.492899035e-10 6.717810705e-10 7.051523678e-10 7.93314013e-11 7.568700687e-10 6.455665521e-10 6.295673722e-10 1.167690912e-09 4.125491014e-10 4.913018515e-10 3.996690379e-10 4.503997753e-10 1.782039016e-10 7.11752167e-10 8.214553875e-10 5.292408943e-10 2.441226016e-10 8.900849008e-10 2.340178608e-10 2.391274105e-10 5.422662684e-10 1.779667092e-10 6.525909686e-11 1.525103667e-10 1.551593374e-10 3.314764669e-10 1.607929404e-10 3.11137716e-10 4.917694217e-10 2.60243257e-10 1.246843372e-10 4.031708335e-10 2.574471008e-10 4.633569933e-10 5.572156254e-10 3.390910287e-10 7.37781458e-11 2.586022481e-10 3.785023017e-11 5.836357782e-10 2.713334354e-10 3.632892069e-10 3.278974141e-10 3.520959137e-10 1.136686975e-10 3.458316831e-10 3.741615632e-10 8.064862669e-11 2.308841392e-10 3.97890153e-10 4.484776507e-10 3.405712324e-10 2.630256533e-10 2.361130237e-10 3.414986144e-10 1.679615022e-10 2.769882253e-10 1.779060189e-10 1.654643088e-10 4.394541949e-10 2.518866327e-10 3.103001409e-10 5.267444283e-10 4.726993163e-10 3.430325657e-10 3.458863544e-10 2.244070277e-10 2.62367535e-10 2.412678895e-10 5.778289865e-10 3.31490987e-10 2.661748143e-10 1.140856251e-10 8.543725573e-11 2.405209281e-10 3.58982338e-10 9.302176529e-11 3.812639191e-10 2.223159309e-10 2.438475426e-10 2.775192354e-10 3.764720356e-10 6.612439933e-11 1.928298948e-10 4.010808464e-10 1.606237685e-10 2.957463883e-10 3.476102721e-10 2.171801716e-10 2.25814751e-10 1.736906855e-10 2.062603872e-10 9.704968272e-11 1.222422806e-10 5.18263698e-10 2.304705667e-10 7.235132165e-11 4.167030907e-10 1.601309486e-10 2.394827301e-10 4.480411829e-10 4.009084539e-10 7.726834193e-11 +3.81299901e-10 2.795851229e-10 3.513549571e-10 9.46225934e-11 5.850911358e-10 2.831067059e-10 1.724266899e-10 1.240223656e-10 2.269058655e-10 8.492232994e-11 1.791708778e-10 1.269342649e-10 1.3805835e-10 2.80685919e-10 2.096428405e-10 1.135864845e-10 5.689948991e-10 2.168709484e-10 1.420481219e-10 2.907754184e-10 6.346636854e-11 1.266640331e-10 3.218852983e-10 1.038994889e-10 3.268724984e-10 1.660547394e-10 1.45105165e-10 1.12030982e-10 2.260002293e-10 1.213410703e-10 4.837861542e-10 2.249874004e-10 3.641840293e-10 4.715546081e-10 2.380295822e-10 4.335348725e-10 5.426098915e-10 3.022733453e-10 3.9018073e-10 4.362383168e-10 1.052626654e-10 3.178165841e-10 4.258004249e-10 2.939145471e-10 3.124057522e-10 2.978470544e-10 7.194303036e-10 3.686811149e-10 5.513493726e-10 2.576363046e-10 2.262555343e-10 1.662407637e-10 1.48683934e-10 3.964627165e-10 4.510007384e-10 4.955148392e-10 2.466417699e-10 4.23764281e-10 3.89900421e-10 4.799995797e-10 6.322651287e-10 6.411057184e-10 3.410705762e-10 6.115261501e-10 4.985075147e-10 2.740019978e-10 2.079540893e-10 2.480828562e-10 3.0648019e-10 2.879733362e-10 4.142417132e-10 1.221820491e-10 2.798555618e-10 4.004925188e-10 1.887173946e-10 3.985576188e-10 1.602245072e-10 7.679708657e-10 2.407783149e-10 1.39984603e-10 1.435405893e-10 3.770062816e-10 1.65805592e-10 1.20614406e-10 3.874351976e-10 7.601274195e-10 4.174932245e-10 8.430775126e-10 5.586636947e-10 1.969650669e-10 5.118199463e-10 3.396886541e-10 4.060670514e-10 4.048083579e-10 3.376398441e-10 6.057036025e-10 6.315176261e-10 3.28738125e-10 3.154070144e-10 5.348353081e-10 6.788783731e-10 3.714392491e-10 6.284368965e-10 1.712548513e-10 2.983237045e-10 2.949005321e-10 5.328957629e-10 3.582683742e-10 5.990428482e-10 9.173001313e-10 8.173066983e-10 2.389452698e-10 3.081678226e-10 7.146969559e-10 5.026809249e-10 6.626073531e-10 3.024142729e-10 4.938317768e-10 4.651416916e-10 1.998467808e-10 3.947613124e-10 9.624829238e-11 7.347449643e-10 2.304177584e-10 6.339453672e-10 5.301925877e-10 2.056468881e-10 3.796565701e-10 8.753977695e-10 2.014778677e-10 4.056354747e-10 6.328891664e-10 2.787528542e-10 3.075159514e-10 3.823424267e-10 2.145676918e-10 3.632508122e-10 3.786923545e-10 1.587307041e-10 3.359633164e-10 3.823001962e-10 4.793107337e-10 2.682170656e-10 2.233658641e-10 2.658421275e-11 3.530518025e-10 3.888739457e-10 1.797603585e-10 5.031733181e-10 3.954057904e-10 7.152892402e-10 4.963291568e-10 2.881210019e-10 8.730048459e-10 7.120921368e-10 5.22723554e-10 7.445233626e-10 6.206251523e-10 4.535822215e-10 4.027823778e-10 5.819295288e-10 2.494095593e-10 7.756191336e-10 7.410684785e-10 3.997975137e-10 2.682041859e-10 5.054351198e-10 4.050958932e-10 5.208082855e-10 5.018613818e-10 2.970020839e-10 6.667730147e-10 3.32074079e-10 6.979308951e-11 4.012231699e-10 4.879641191e-10 3.452188582e-10 4.077625667e-10 2.624261156e-10 6.604603899e-10 3.129689736e-10 5.664147616e-10 3.73020702e-10 3.964961856e-10 4.401549815e-10 4.243512377e-10 6.938642507e-10 3.271396006e-10 2.547895661e-10 2.762341837e-10 7.190999662e-10 3.663506004e-10 8.788591344e-10 2.484316119e-10 5.041817929e-10 2.702935333e-10 6.242772862e-10 2.819161333e-10 2.583592726e-10 7.335094391e-10 6.857058033e-10 4.255233737e-10 7.675201046e-10 5.133456754e-10 6.350491102e-10 1.315953377e-10 5.744295547e-10 4.065508417e-10 4.15262405e-10 4.616628491e-10 6.384787164e-10 9.847970871e-11 4.223185653e-10 1.385286194e-10 2.836564814e-10 1.234643315e-10 3.471175132e-10 3.324764984e-10 2.631294157e-10 1.401261031e-10 4.330832142e-10 2.579880378e-10 3.600186185e-10 2.489982786e-10 1.155442292e-10 1.437033937e-10 4.87706228e-10 7.09964466e-10 1.41413831e-10 4.755045498e-10 4.270273055e-11 2.768050788e-10 1.327002548e-10 2.542892284e-10 2.108416393e-10 3.500910947e-10 2.545154362e-10 1.482567383e-10 4.110219767e-10 4.114396727e-10 7.235411522e-10 2.277448143e-10 2.610772294e-10 1.977266986e-10 8.134965023e-10 3.807332473e-10 1.628430773e-10 2.483163953e-10 1.89194042e-10 6.435112637e-10 3.749614862e-10 3.941681403e-10 7.811643561e-11 2.209116394e-10 5.748139992e-10 3.725538665e-10 8.56412888e-10 2.03653083e-10 2.596237561e-10 7.582488786e-10 3.651828095e-10 9.371567597e-11 1.01247848e-10 2.530567478e-10 5.692842757e-10 8.968126491e-11 4.295417308e-10 1.753736341e-10 9.782385767e-11 1.700844607e-10 1.172512917e-10 2.926638103e-10 1.039511243e-10 2.054795611e-10 3.766800363e-10 1.396822999e-10 2.22519181e-10 1.359688064e-10 1.964810973e-10 1.018876548e-10 2.07449244e-10 3.805290649e-10 3.964071597e-10 2.002844798e-10 6.716702834e-11 3.192691272e-10 1.355362397e-10 1.604834174e-10 3.774687769e-10 1.611176221e-10 2.857365472e-10 4.736627198e-10 2.063924593e-10 1.682505414e-10 4.211097133e-10 3.916853068e-11 1.725562951e-10 9.153725796e-11 4.058412328e-10 2.083581122e-10 +2.521668444e-10 6.356011158e-11 3.779461229e-10 2.491100453e-10 1.733777978e-10 3.67972186e-10 1.437399937e-10 1.833817924e-10 1.404483457e-10 2.540526932e-10 4.040493964e-10 7.773209479e-11 4.424108574e-10 4.090986809e-10 2.903888522e-10 2.32918127e-10 4.353188607e-10 3.490369274e-10 5.066653782e-10 2.780449308e-10 4.107441119e-10 4.559822022e-10 1.374372927e-10 1.937446722e-10 2.97443694e-10 2.487411175e-10 1.553739813e-10 2.065556786e-10 7.579511106e-10 4.51435356e-10 1.457632523e-10 2.418906788e-10 2.772567545e-11 3.355113346e-10 2.960002051e-10 2.790288571e-10 3.926758706e-10 3.763728303e-10 2.967620682e-10 1.845169015e-10 3.566629259e-10 5.021610547e-10 1.938609822e-10 5.068281433e-10 3.273413783e-10 3.288537239e-10 3.234793935e-10 2.663529888e-10 4.164859419e-10 1.828169321e-10 3.525659797e-10 3.07976671e-10 2.209769642e-10 4.366771344e-10 2.49435836e-10 2.843153031e-10 5.612289935e-10 4.337549524e-10 2.01366121e-10 5.840192386e-10 3.436126947e-10 4.576187299e-10 9.698243309e-11 4.0375715e-10 2.385066567e-10 4.270902347e-10 2.145607258e-10 4.035209189e-10 3.531512903e-10 4.009601324e-10 1.897132446e-10 2.060127914e-10 4.503061733e-10 1.694850823e-10 1.929422391e-10 1.245118067e-10 2.96329138e-10 2.750412266e-10 1.037074203e-10 2.688118062e-11 1.844909165e-10 1.919959556e-10 2.353453311e-10 2.353094507e-10 4.972892191e-10 5.200094863e-10 2.21873673e-10 5.448630582e-10 1.525597614e-10 4.934108414e-10 6.234977347e-10 7.107009989e-10 6.450998777e-10 7.884013695e-10 4.422967503e-10 6.361720065e-10 5.155172672e-10 5.140331056e-10 2.111445535e-10 3.327262753e-10 8.860944228e-10 2.5447712e-10 4.031104782e-10 6.103157518e-10 6.672465255e-10 8.433737911e-10 2.325285177e-10 3.129577528e-10 6.693626664e-10 4.746651799e-10 3.128122506e-10 7.872901768e-10 5.23697299e-10 2.649031457e-10 2.452869431e-10 3.125684881e-10 5.198811667e-10 4.2944397e-10 3.02457337e-10 2.704431232e-10 2.585400981e-10 1.568684562e-10 8.951086675e-10 5.934340112e-10 4.957291474e-10 8.899200629e-10 3.830155142e-10 7.912236064e-10 4.814889616e-10 1.501077136e-10 1.818943024e-10 3.231003786e-10 5.281560495e-10 1.792558989e-10 2.83035448e-10 4.987583408e-10 5.70045167e-10 5.980305285e-10 4.163837858e-10 2.360519128e-10 2.490182048e-10 1.018352276e-09 2.897841985e-10 3.360704054e-10 3.31586393e-10 1.957495117e-10 7.030292011e-10 3.882192396e-10 6.200943441e-10 2.936373457e-10 2.12242395e-10 1.977960925e-10 5.185070682e-10 1.627401426e-10 3.7165556e-10 4.073549439e-10 5.9825994e-10 2.938673131e-10 7.014532386e-11 3.060404721e-10 2.916099428e-10 3.792639192e-10 1.675640243e-10 5.148522935e-10 5.202322948e-10 4.72930563e-10 4.392597983e-10 3.666664488e-10 7.63726276e-10 6.974643094e-10 4.28077202e-10 6.923729471e-10 2.542930805e-10 3.994509653e-10 4.357515936e-10 7.600659038e-10 3.724388822e-10 2.460937809e-10 3.447626401e-10 3.809954249e-10 2.689684823e-10 3.044368169e-10 4.498943954e-10 3.743185977e-10 6.086726707e-10 4.941465457e-10 5.079810953e-10 4.438552068e-10 5.055324934e-10 2.649351996e-10 5.544186842e-10 7.667361556e-10 3.348328075e-10 5.664586734e-10 8.409163514e-10 9.368092337e-10 5.464045938e-10 2.708729786e-10 3.263313264e-10 5.892956621e-10 4.171319102e-10 4.366300277e-10 8.045150406e-10 6.158797988e-10 6.454914771e-10 4.628115346e-10 9.814605155e-11 4.515487326e-10 6.120370028e-10 5.294422837e-10 5.844788846e-10 3.916648784e-10 8.396160658e-10 2.95839883e-10 2.794820646e-10 3.859152709e-10 5.518193612e-10 1.438147209e-10 2.577602846e-10 3.055407693e-10 3.813526439e-10 2.663135324e-10 2.08372131e-10 4.052296607e-10 6.08966806e-11 3.125122011e-10 2.384059378e-10 2.851676844e-10 1.319868093e-10 4.597754549e-10 2.988362668e-10 2.723951093e-10 5.941312489e-10 3.859651591e-10 3.895907396e-10 2.253775825e-10 2.375121609e-11 5.565504503e-10 4.136038693e-10 1.376149652e-09 3.086557087e-10 4.266080381e-10 4.363587985e-10 3.173858884e-10 2.170403498e-10 1.620805281e-10 2.694214238e-10 5.222918962e-10 7.083049758e-10 2.589866038e-10 2.700568165e-10 2.722238835e-10 2.490126396e-10 1.207688881e-10 4.362502197e-10 1.891370178e-10 3.918346857e-10 4.500298968e-10 3.820496001e-10 4.363337636e-10 1.679056428e-10 2.48776998e-10 6.80558209e-10 2.732105352e-10 3.731362324e-10 2.170956794e-10 2.8142467e-10 4.366892561e-10 3.338235675e-10 4.598953255e-10 4.416802492e-10 2.757963431e-10 2.201382796e-10 6.313622327e-11 1.500365683e-10 3.11075309e-10 1.439050085e-10 8.676346096e-11 2.665966076e-10 1.144797956e-10 3.583992643e-10 2.545515051e-10 1.224644954e-10 3.460273946e-10 5.219028878e-10 3.986136592e-10 4.667932689e-10 6.39343083e-11 3.430327037e-10 2.179352371e-10 4.402278528e-10 4.378373305e-10 1.590982166e-10 3.434453296e-10 1.969346261e-10 1.195728925e-10 2.480595094e-10 1.980576138e-10 2.660062461e-10 3.559873948e-10 +1.668270356e-10 2.134570731e-10 3.879284682e-10 2.18393392e-10 4.667609882e-10 3.868817991e-10 4.255734109e-10 2.092526349e-10 3.271982764e-10 6.406330637e-10 5.4019946e-10 3.121249261e-10 5.279753992e-10 1.262170577e-10 4.316063357e-10 1.25743387e-10 5.061051967e-10 4.078200195e-10 8.653809163e-10 3.802018657e-10 1.098523498e-10 3.161186404e-10 2.40553103e-10 2.77767128e-10 1.090139485e-10 2.637373676e-10 1.275093047e-10 3.065780661e-10 1.499275818e-10 7.213379726e-10 3.096694185e-10 3.331350809e-10 5.554057845e-10 2.904800693e-10 1.610717773e-10 1.764008793e-10 1.725036141e-10 1.932641994e-10 5.433657128e-10 3.056239974e-10 3.697989068e-10 5.451756997e-10 7.02732e-10 3.556369237e-10 7.24654212e-10 6.168390502e-10 4.059563547e-10 3.618821221e-10 7.178586401e-10 2.614742046e-10 2.687203496e-10 4.117220826e-10 1.800451517e-10 2.414197584e-10 4.734614647e-10 6.131626133e-10 4.188051647e-10 3.51050417e-10 5.834800066e-11 3.615838463e-10 1.811587841e-10 3.648089922e-10 2.633511297e-10 2.958129241e-10 5.437907083e-10 2.790711923e-10 2.698902473e-10 4.866215089e-10 7.655593224e-10 4.225775508e-10 5.778216889e-10 5.505747161e-10 7.841941613e-10 2.152579978e-10 2.696520056e-10 2.553287713e-10 6.041433888e-10 6.380955502e-10 4.293725355e-10 5.06777049e-10 9.538331341e-11 3.29782979e-10 4.718378701e-10 2.520143985e-10 1.754789415e-10 4.137901972e-10 5.332013276e-10 8.577577092e-10 5.191799704e-10 2.123306045e-10 6.17417708e-10 4.621652607e-10 5.002831996e-10 1.003639282e-09 3.076977962e-10 3.771747134e-10 4.614199618e-10 3.136551645e-10 2.387142762e-10 7.331515341e-10 4.527957084e-10 6.134187351e-10 3.583604638e-10 5.794430945e-10 3.178426358e-10 4.167167319e-10 5.294453105e-10 4.315015914e-10 5.424824583e-10 8.315239167e-10 8.295475914e-10 2.64840753e-10 2.186763382e-10 6.342984207e-10 4.635725189e-10 3.244214554e-10 8.077881197e-10 3.345890508e-10 3.083365247e-10 4.702389532e-10 4.323416282e-10 2.61781489e-10 4.206194601e-10 3.32989595e-10 6.168217547e-10 7.285092935e-10 7.676821449e-10 3.677345709e-10 7.349051439e-10 6.221485845e-10 2.712037582e-10 2.751835236e-10 5.993432366e-10 4.398966953e-10 2.262671644e-10 2.772259169e-10 4.027305921e-10 4.060486006e-10 5.352994897e-10 5.981914581e-10 1.996662162e-10 1.243602059e-10 3.378797949e-10 4.645646619e-10 1.179431283e-10 3.417890566e-10 1.927240219e-10 2.780450891e-10 5.730789342e-10 8.285010265e-10 4.517148125e-10 1.346347443e-10 5.564719992e-10 3.060162258e-10 4.396827787e-10 9.140298707e-11 2.473082287e-10 3.531014386e-10 4.984611147e-10 6.218923113e-10 1.794755872e-10 3.847044332e-10 1.933983661e-10 3.751421346e-10 4.710098338e-10 3.689693391e-10 4.220776746e-10 4.060794554e-10 3.242246927e-10 2.190547607e-10 4.101051829e-10 1.3099711e-10 7.96916175e-10 1.401668848e-10 6.6998846e-10 4.141771947e-10 4.431793533e-10 1.841129285e-10 4.005579355e-10 3.910243837e-10 4.804563977e-10 9.083211347e-10 6.555912888e-10 5.768680371e-10 6.655378656e-10 2.423548171e-10 3.794907913e-10 3.217299088e-10 3.036835017e-10 4.166859579e-10 9.285953616e-10 2.558648053e-10 4.49909865e-10 6.878655859e-10 6.971240917e-10 5.057195627e-10 1.19765889e-09 6.958145737e-10 6.718840095e-10 7.914378191e-10 6.482350749e-10 8.112117798e-10 7.180919727e-10 3.382183404e-10 6.105557413e-10 1.166001165e-09 5.071088698e-10 4.331004707e-10 6.168135702e-10 5.762555177e-10 6.57147361e-10 2.818154944e-10 5.63871102e-10 4.21483833e-10 4.398188877e-10 4.113400118e-10 3.058339392e-10 6.753478292e-10 3.853178989e-10 1.948865613e-10 3.673102848e-10 2.334059684e-10 2.655512284e-10 6.547111259e-10 9.272623015e-11 6.338915105e-10 3.56523692e-10 3.594181288e-10 7.589224689e-10 3.309506103e-10 3.345326692e-10 1.939958658e-10 3.11642724e-10 1.324658179e-10 8.487467022e-11 6.77908252e-11 5.274814189e-10 3.591564605e-10 1.315860041e-10 3.648430089e-10 4.169019087e-10 3.547746607e-10 2.545547213e-10 1.825283782e-10 3.125736158e-10 3.641928878e-10 3.60844631e-10 5.52340515e-10 2.699555683e-10 1.884033014e-10 2.113476808e-10 1.173575245e-10 1.659435086e-10 1.666351811e-10 3.465018085e-10 5.844046362e-10 2.354844391e-10 4.0567374e-10 1.03280271e-10 3.784854546e-10 2.109367511e-10 5.548537775e-10 9.094830737e-11 4.906978736e-10 1.417353897e-10 5.39399079e-10 6.785975398e-10 1.78167466e-11 3.026739225e-10 3.223112438e-10 3.24661915e-10 2.12168957e-10 1.946233929e-10 3.662773699e-10 2.815455686e-10 6.023413207e-11 1.681600488e-10 3.785259582e-10 2.101011341e-10 3.200774758e-10 9.516978455e-11 1.624733686e-10 2.836909278e-10 1.785513919e-10 2.149652912e-10 5.111316052e-10 8.075338875e-10 3.112543328e-10 2.553041276e-10 4.184870494e-10 5.255451454e-10 3.688011631e-10 1.733404852e-10 3.290755563e-10 2.510741015e-10 2.29558721e-10 4.56578033e-10 3.494509264e-10 1.316403427e-10 5.889349709e-10 +1.869797579e-10 3.476791691e-10 9.294119677e-11 4.861737818e-10 5.683953337e-10 2.790160539e-10 5.866684064e-10 3.306811293e-10 2.324043262e-10 7.095529435e-10 2.688562506e-10 2.289710976e-10 2.358461588e-10 1.582732322e-10 5.403946464e-10 1.535306039e-10 3.640449946e-10 5.52266407e-10 4.114224671e-10 1.84058502e-10 5.073140555e-10 1.686391344e-10 1.282621115e-10 4.254047673e-10 5.816527019e-10 2.289261692e-10 4.465244465e-10 3.974360793e-10 4.484327049e-10 6.725038591e-11 4.933224298e-10 3.166164898e-10 1.3539132e-10 1.576392326e-10 2.173825579e-10 2.605834368e-10 1.225508249e-10 4.40302027e-11 2.729836701e-10 4.810200955e-10 5.063319685e-10 3.095866031e-10 4.160889856e-10 3.843731836e-10 7.670867439e-10 3.835913385e-10 4.314599197e-10 2.629818421e-10 7.651704216e-11 1.788865256e-10 3.625639904e-10 2.296137868e-10 2.416068958e-10 4.644628147e-10 2.326635837e-10 5.666562795e-10 3.711334019e-10 5.597179446e-10 3.711886829e-10 3.041661832e-10 4.117133876e-10 6.194275759e-10 4.385292086e-10 6.260576157e-10 4.040792625e-10 2.580730962e-10 5.371585536e-10 1.900845219e-10 2.315341497e-10 4.503743289e-10 3.89133539e-10 1.981364395e-10 2.217631022e-10 5.257040168e-10 1.226599267e-10 2.407888862e-10 3.21342274e-10 2.553331536e-10 3.081297889e-10 4.005425587e-10 3.628881462e-10 1.384002752e-10 4.445935138e-10 5.296947016e-10 2.397960403e-10 7.500362104e-10 2.848451056e-10 1.097755208e-09 8.406795188e-10 3.333963172e-10 1.616110071e-10 4.59447056e-10 3.421232678e-10 7.619469896e-10 8.152910206e-10 7.933003067e-10 5.061768936e-10 4.625504789e-10 5.783936155e-10 4.063732334e-10 4.935811343e-10 6.397388172e-10 4.078846649e-10 5.010060312e-10 6.390878937e-10 7.117451048e-10 3.591881287e-10 2.385249747e-10 1.011010824e-09 1.823205741e-10 1.020276681e-09 5.714861879e-10 7.181894644e-10 4.16349215e-10 7.087409313e-11 4.962991766e-10 6.342508551e-10 4.875270857e-10 1.022652005e-09 5.623375518e-10 3.759924305e-10 4.877170562e-10 5.270923358e-10 5.453006743e-10 4.481048548e-10 5.681820337e-10 5.711222422e-10 5.012334679e-10 3.614331929e-10 7.151462741e-10 3.027531679e-10 6.568178941e-10 5.806547453e-10 5.735381755e-10 3.920734785e-10 9.060376504e-10 2.755172497e-10 1.467173895e-10 5.055605805e-10 4.662096073e-10 7.321528982e-10 3.114520583e-10 5.871355065e-10 2.590106898e-10 8.536569625e-10 5.584552807e-10 6.396579234e-10 3.550791728e-10 5.173341092e-10 7.341959275e-10 4.080701768e-10 3.303667823e-10 4.384019031e-10 3.360325768e-10 1.143581707e-09 4.594344673e-10 2.890125122e-10 5.232625252e-10 5.539193029e-10 7.31855995e-10 3.514916981e-10 6.564326917e-10 4.140580049e-10 5.600317022e-10 3.054084462e-10 4.191173438e-10 2.458271102e-10 2.319277143e-10 6.166515619e-10 5.389917249e-10 2.770515344e-10 7.817617505e-10 4.933251637e-10 6.60450233e-10 4.623150502e-10 7.842561998e-10 2.080885108e-10 2.182296933e-10 4.657829758e-10 3.631758551e-10 4.076141508e-10 5.195998981e-10 6.493492569e-10 3.558285196e-10 2.936050012e-10 4.175893628e-10 5.259295247e-10 6.900483027e-10 3.046219243e-10 5.858414724e-10 3.876196102e-10 6.411637842e-10 5.688486648e-10 5.98944243e-10 5.846841048e-10 8.067449103e-10 4.358719767e-10 7.549912606e-10 3.993416404e-10 5.928238413e-10 6.434428029e-10 1.064934703e-09 5.697725245e-10 3.852960314e-10 1.02744587e-09 6.82957612e-10 9.046669321e-10 5.689603672e-10 5.374700698e-10 6.861200091e-10 2.674996067e-10 3.150445635e-10 4.623746669e-10 4.772722521e-10 1.377853607e-10 4.569136816e-10 6.868135434e-10 2.483950029e-10 1.706756542e-10 4.74603536e-10 2.433875715e-10 4.54268372e-10 5.482377293e-10 3.498635165e-10 3.538921496e-10 2.220682972e-10 4.722561214e-10 3.249318088e-10 4.189535309e-10 2.316070678e-10 4.858857979e-10 3.329534691e-10 2.857094101e-10 2.17937106e-10 3.146191771e-10 6.004812369e-10 1.734452451e-10 1.95105094e-10 4.665418563e-10 5.347699719e-10 2.463707493e-10 2.912711714e-10 3.324712228e-10 5.676891526e-10 3.622668202e-10 5.362812364e-10 3.997707181e-10 6.980640137e-10 2.955250703e-10 3.461146428e-10 3.29107988e-10 2.269570641e-10 2.720007187e-10 4.744177989e-10 6.164183327e-10 8.51464511e-11 2.413845643e-10 2.010999368e-10 2.637379549e-10 8.50135761e-10 2.368654319e-10 1.479178458e-10 9.730852545e-10 1.113419202e-10 4.343173323e-10 2.734733535e-10 3.781640917e-10 2.368424917e-10 5.009027114e-10 2.099711811e-10 3.20570839e-10 2.436933602e-10 2.489995593e-10 3.017107709e-10 3.605859091e-10 2.588280616e-10 2.8724722e-10 4.479122653e-10 2.468439514e-10 1.384114631e-10 2.559712611e-10 2.014990078e-10 6.712471891e-10 3.918605506e-10 2.548673011e-10 2.997203169e-10 6.278975264e-10 9.740091742e-10 1.787311596e-10 1.806403123e-10 2.630838043e-10 7.725230114e-10 2.136361853e-10 4.662569593e-10 1.270630197e-10 4.624249898e-10 3.604073032e-10 2.840069587e-10 2.295064103e-10 6.063098081e-10 +5.409919273e-10 1.791157166e-10 2.635420609e-10 1.842969582e-10 2.727635683e-10 2.714031281e-10 4.579904788e-10 3.715897293e-10 7.020605891e-10 3.176535198e-10 2.590517455e-10 4.906050461e-10 3.957710431e-10 2.562525085e-10 7.266650944e-10 7.384752318e-11 1.613819112e-10 2.184670462e-10 2.160380352e-10 1.421680589e-10 2.600506599e-10 5.061419443e-10 5.573927843e-10 5.546886756e-10 1.350273368e-10 6.069955741e-10 1.930401805e-10 1.351284273e-10 7.733075479e-10 2.420555813e-10 1.484356246e-10 1.920727691e-10 1.483402843e-10 1.508405208e-10 6.568845033e-11 9.064939035e-11 5.174032318e-10 3.120034418e-10 3.377362662e-10 1.951315467e-10 5.097762235e-10 1.944170699e-10 5.723058732e-10 3.417931022e-10 3.815434541e-10 6.676219274e-10 4.459802223e-10 3.140099805e-10 2.406918044e-10 2.249527218e-10 5.819401733e-10 5.213283138e-10 7.931354638e-11 2.558849861e-10 6.469367782e-10 1.789853242e-10 1.586418839e-10 2.713128557e-10 6.791975622e-10 2.798891388e-10 3.029305424e-10 3.062475814e-10 3.41170197e-10 3.436747499e-10 5.169885491e-10 5.910507049e-10 2.425339676e-10 1.76572607e-10 4.2907182e-10 2.478073682e-10 3.000243647e-10 2.747521082e-10 3.751039071e-10 2.509826929e-10 3.176414626e-10 7.144409098e-11 6.76263289e-10 1.347054034e-10 2.571378329e-10 3.715821747e-10 1.590377206e-10 4.409688775e-10 3.321791758e-10 5.006876471e-10 4.690356345e-10 6.473504895e-10 2.856700222e-10 4.979516739e-10 3.363975664e-10 4.48861438e-10 9.616906308e-10 9.42412549e-10 9.664558987e-10 5.90009657e-10 7.177311388e-10 3.185564786e-10 3.114644084e-10 5.312555913e-10 1.031689675e-09 8.292055192e-10 4.356078423e-10 7.826549791e-10 5.414476567e-10 5.804400617e-10 3.671940647e-10 6.476647549e-10 2.483516105e-10 2.961218669e-10 2.740470564e-10 3.372737096e-10 4.828685823e-10 4.157401585e-10 5.206557457e-10 4.203089771e-10 7.528331688e-10 3.700166439e-10 2.968318055e-10 2.757643674e-10 5.817928108e-10 5.736591353e-10 3.901315641e-10 6.914680414e-10 8.814008557e-10 1.930473505e-10 3.52401956e-10 3.462991701e-10 7.87796159e-10 5.581480069e-10 8.982622698e-11 4.204743562e-10 4.907819435e-10 6.168907935e-10 3.835837366e-10 4.89243955e-10 7.878841581e-10 4.661671996e-10 3.899592947e-10 5.103946182e-10 7.482835158e-10 8.758886787e-10 4.275113016e-10 7.493849112e-10 6.873211105e-10 2.33922239e-10 2.951137359e-10 3.713607908e-10 2.632315861e-10 2.88806157e-10 5.63888706e-10 5.547845497e-10 2.064349083e-10 2.480543353e-10 1.6390181e-10 3.684099232e-10 9.540768951e-11 3.917240702e-10 2.029748279e-10 3.694294146e-10 3.018518174e-10 5.418650931e-10 5.893386537e-10 1.285164015e-10 3.322464004e-10 1.012830188e-10 6.363987462e-10 3.359101326e-10 6.1934166e-10 3.298788827e-10 1.654001727e-10 4.51752955e-10 6.303380463e-10 4.335401397e-10 3.195601477e-10 3.541142943e-10 4.506194376e-10 3.672067882e-10 2.78265051e-10 2.471799667e-10 7.346101496e-10 2.159608645e-10 5.796688208e-10 3.481574705e-10 3.141017779e-10 4.638500471e-10 7.947350232e-10 2.693270354e-10 3.615742213e-10 4.765205163e-10 3.768502535e-10 7.420203947e-10 7.459179228e-10 2.878012429e-10 7.305615439e-10 4.389717989e-10 3.769145215e-10 4.992783173e-10 6.224066268e-10 5.586347973e-10 7.640249854e-10 6.358367021e-10 6.121000378e-10 6.859491935e-10 1.017695861e-09 8.671390735e-10 2.069993939e-10 7.625597093e-10 5.720271965e-10 8.839234628e-10 9.743961458e-10 6.685522113e-10 7.260488979e-10 6.824252703e-10 5.871798619e-10 2.359195441e-10 5.224851382e-10 4.654421046e-10 3.391125011e-10 4.864432298e-10 1.844996723e-10 2.260235006e-10 3.656036872e-10 2.607054526e-10 4.288755504e-10 4.432395373e-10 3.660836714e-10 3.465060758e-10 4.22038766e-10 5.396559108e-10 2.553912633e-10 3.219570086e-10 8.586780669e-11 2.573956726e-10 2.554169838e-10 3.280193328e-10 4.98237173e-10 6.678999931e-10 4.028892679e-10 4.757260216e-10 7.242110769e-10 2.009074737e-10 3.491228688e-10 2.944590269e-10 1.703802153e-10 2.698848162e-10 2.53329793e-10 2.73208932e-10 4.838549221e-10 2.36834158e-10 5.247793855e-10 4.612539299e-10 5.927891507e-10 1.928229107e-10 3.951037778e-10 4.506770445e-10 1.651123761e-10 2.348726843e-10 3.291757866e-10 3.852952544e-10 6.311087521e-10 3.126158552e-10 3.177082498e-10 1.411127499e-10 2.523495439e-10 2.141618048e-10 2.55327282e-10 1.523758688e-10 7.070212118e-10 2.394127079e-10 1.044363855e-10 6.789592675e-11 3.517705445e-10 3.018787074e-10 1.470459739e-10 3.393762537e-10 3.392875791e-10 2.124054774e-10 2.742997378e-10 4.447952429e-10 2.790549946e-10 2.7873444e-10 1.476061931e-10 2.113356538e-10 1.487126179e-10 6.760661191e-10 1.521132084e-10 3.988958734e-10 1.405108325e-10 2.546555425e-10 3.390272677e-10 7.35655946e-10 3.860918924e-10 5.099428868e-10 2.117504156e-10 2.447771429e-10 3.046485831e-10 6.03589144e-10 2.987303737e-10 3.546191273e-10 1.667540726e-10 4.147116349e-10 +2.794340345e-10 8.989258888e-11 3.509745167e-10 4.548221412e-10 3.655058575e-10 4.250164134e-10 3.343078161e-10 2.748893509e-10 3.445198582e-10 2.114119959e-10 2.199437557e-10 3.790530814e-10 1.732050893e-10 2.132842574e-10 7.285851941e-10 2.303766033e-10 4.425468721e-10 3.637818023e-10 3.278657664e-10 1.656507831e-10 1.592367895e-10 4.97606597e-10 4.860189917e-10 2.571223279e-10 4.906009693e-10 2.378372923e-10 1.863812287e-10 3.211734658e-10 3.122563731e-10 4.094507347e-10 4.070010799e-10 5.02107314e-10 3.419046667e-10 1.545237043e-10 1.3469246e-10 2.242832449e-10 6.917919206e-10 4.88935082e-10 1.798593854e-10 1.442431744e-10 2.626264389e-10 3.702991415e-10 5.081468618e-10 4.399371143e-10 2.653434437e-10 3.443088976e-10 6.479417819e-10 5.009787711e-10 4.204944426e-10 1.369281303e-10 6.007155923e-10 3.301415332e-10 2.930591675e-10 6.397441786e-10 5.335640292e-10 7.846968615e-11 2.095030288e-10 8.856452425e-10 2.489494332e-10 8.10485591e-10 3.690348487e-10 3.11783832e-10 3.161517757e-10 7.994332327e-10 3.185724854e-10 1.113181651e-10 4.839616759e-10 5.368282622e-10 6.730118774e-10 4.459949814e-10 2.771210335e-10 2.259399929e-10 4.812127112e-10 1.87556602e-10 2.173609712e-10 1.091974265e-10 5.206104065e-10 1.873999228e-10 3.475759884e-10 3.030589668e-10 3.572132361e-10 4.811970209e-10 1.045202573e-10 2.62099924e-10 6.689499465e-10 8.486629037e-10 2.975393126e-10 6.65960694e-10 5.565993106e-10 3.6810657e-10 6.512751023e-10 6.119985238e-10 7.797787349e-10 1.082732669e-09 7.667236584e-10 7.872177228e-10 4.071362254e-10 7.505781574e-10 5.414429154e-10 4.222236751e-10 4.80608551e-10 2.505352406e-10 6.975178643e-10 8.310385422e-10 5.296000406e-10 3.537414263e-10 4.173062418e-10 4.725093869e-10 3.360234584e-10 8.033767499e-10 5.962337594e-10 8.718090584e-10 9.133146833e-10 6.817952261e-10 4.884124637e-10 4.845434556e-10 5.886879839e-10 4.42212775e-10 4.917038897e-10 8.179840737e-10 6.314726106e-10 5.594828452e-10 4.735386322e-10 2.426141043e-10 5.554517533e-10 6.848605554e-10 6.068312796e-10 2.568014522e-10 3.020103839e-10 6.258231556e-10 7.07748186e-10 2.445164983e-10 4.232918255e-10 2.50339076e-10 7.794535908e-10 3.212183511e-10 4.167504137e-10 6.554706866e-10 4.903871952e-10 4.592025493e-10 4.006262284e-10 4.895273459e-10 3.200989098e-10 2.35978251e-10 2.38460282e-10 5.946846296e-10 1.754852403e-10 3.258792875e-10 2.822815141e-10 1.148350932e-10 2.402278941e-10 4.903318436e-10 2.657333771e-10 2.655157591e-10 5.207042385e-10 9.07627207e-11 3.045051752e-10 5.888842621e-10 5.914463166e-10 4.528899796e-10 3.369278232e-10 4.046280995e-10 3.952467105e-10 5.132005976e-10 2.038932267e-10 5.345116857e-10 9.915593121e-10 5.867790262e-10 4.415120833e-10 1.406117075e-10 6.287695154e-10 3.271994555e-10 5.069373948e-10 6.186051074e-10 5.087571584e-10 6.385762064e-10 6.940592187e-10 6.06846448e-10 2.405803837e-10 3.187598279e-10 4.615236251e-10 8.216645147e-10 2.847466062e-10 1.334832247e-09 5.22507114e-10 6.025707979e-10 4.78977334e-10 5.368909674e-10 2.875293888e-10 3.438016651e-10 4.412090031e-10 8.597578929e-10 3.879533349e-10 2.038487021e-10 5.384005243e-10 6.674113416e-10 4.230125566e-10 7.310253226e-10 3.328955961e-10 7.324671288e-10 6.733369994e-10 4.896262892e-10 6.348780433e-10 3.694931654e-10 9.196114611e-10 4.457721888e-10 7.990079553e-10 5.953194043e-10 5.577219838e-10 6.102640969e-10 7.947892375e-10 5.653774885e-10 5.854121427e-10 4.681679047e-10 6.761244324e-10 3.963324371e-10 3.731816515e-10 6.765239191e-10 1.060182716e-10 2.736196048e-10 2.054395006e-10 1.512346295e-10 2.425025935e-10 6.600595375e-10 4.485484151e-11 2.478420548e-10 3.482536173e-10 7.265497048e-10 5.946771681e-10 3.1659682e-10 1.401542187e-10 4.875673458e-10 2.647919428e-10 5.100849597e-10 5.976059948e-10 2.013153704e-10 3.701146576e-10 3.685764763e-10 8.858572596e-10 1.631992687e-10 6.76715515e-10 7.126803887e-10 4.512178116e-10 5.462702073e-10 1.412259146e-10 5.611015498e-10 3.406561045e-10 4.100542023e-10 3.66943208e-10 6.037692636e-10 2.791140251e-10 6.612317492e-10 4.509523101e-10 4.31226445e-10 4.627974141e-10 2.407512906e-10 4.931524928e-10 2.273587306e-10 5.34698917e-10 5.389479783e-10 4.073862318e-10 5.636667462e-11 1.655947079e-10 1.864415034e-10 5.049198432e-10 7.794712585e-11 1.088577331e-10 1.019063662e-10 3.911665222e-10 3.549576604e-10 3.315287725e-10 1.814141678e-10 4.045236143e-10 1.469831711e-10 3.169743526e-10 5.012899606e-10 3.876980441e-10 2.256913885e-10 3.826940131e-10 4.083723736e-10 6.32320125e-10 2.529649485e-10 3.728559443e-10 3.690007333e-10 1.045787675e-09 4.398970965e-10 4.10901121e-10 1.981568439e-10 3.139918096e-10 1.112870903e-10 1.392526005e-10 2.254110982e-10 5.128383485e-10 7.816541036e-10 7.870328507e-10 1.446867967e-10 3.52864071e-10 3.613593004e-10 3.370806243e-10 3.931388283e-10 +1.243343878e-10 4.265356379e-10 3.452990519e-10 3.901231915e-10 4.3438638e-10 2.402491566e-10 5.251333615e-10 4.766862654e-10 7.112302513e-11 4.062733389e-10 5.011365618e-10 1.257705705e-10 4.680695411e-10 5.814469801e-11 9.485077354e-11 2.148733754e-10 2.932674479e-10 6.021620185e-10 5.279321547e-10 1.792255607e-10 7.105456658e-10 1.604987823e-10 3.905055408e-10 5.21245703e-10 7.831343891e-10 2.440842058e-10 4.495150252e-10 4.716372438e-10 3.628194496e-10 3.843271696e-10 5.031327282e-10 4.557214503e-10 3.778361988e-10 2.263462969e-10 5.76512408e-10 5.091271813e-10 3.971502718e-10 5.574414118e-11 1.382816792e-10 8.572048873e-11 4.305794886e-10 8.628943374e-10 1.254136362e-10 2.999731147e-10 3.737481902e-10 2.758927555e-10 1.648649758e-10 4.130758108e-10 5.029216434e-10 2.095763017e-10 5.317455226e-10 2.856322484e-10 2.72544743e-10 5.113945303e-10 5.15355989e-10 1.636432924e-10 3.319921632e-10 5.975526335e-10 4.873762108e-10 7.891311152e-10 7.027440209e-10 3.274096917e-10 4.509521136e-10 5.10643617e-10 2.828188925e-10 3.877938189e-10 4.380199046e-10 6.140683371e-10 5.526625092e-10 3.76560238e-10 1.733516171e-10 2.316379935e-10 2.720801186e-10 3.512688913e-10 4.019645178e-10 9.203563231e-12 2.536102846e-10 4.140929079e-10 5.44211473e-10 5.195196597e-10 2.131417427e-10 5.555616955e-10 7.802080803e-10 6.51447468e-10 9.882173102e-10 4.159225666e-10 3.498586518e-10 9.252130016e-11 4.927900818e-10 5.385903534e-10 1.036466957e-09 5.51410247e-10 1.206862688e-09 1.144709876e-09 7.579240774e-10 4.176114024e-10 3.991235896e-10 7.212448392e-10 3.920684958e-10 4.416197148e-10 8.259009612e-10 5.539492044e-10 6.916684622e-10 8.489624224e-10 7.092277579e-10 6.301379128e-10 5.518996878e-10 6.705636969e-10 2.397041016e-10 6.220772732e-10 6.005685821e-10 6.837501709e-10 1.602719239e-10 5.135108586e-10 6.077778362e-10 6.766977926e-10 2.588425677e-10 5.116662074e-10 5.079582888e-10 6.293131055e-10 8.060722612e-10 3.887864738e-10 4.788764402e-10 6.896707547e-10 3.193884573e-10 3.812630383e-10 7.074642829e-10 3.749967852e-10 2.801889133e-10 4.812187718e-10 2.036383595e-10 5.089945947e-10 2.000111498e-10 3.438537951e-10 3.893439103e-10 4.595862653e-10 2.180773578e-10 3.587393769e-10 1.750723109e-10 2.91619671e-10 7.052593178e-10 6.911544787e-10 4.025686073e-10 1.963746547e-10 5.872389664e-10 5.285347976e-10 3.454175327e-10 1.329859431e-10 4.334600152e-10 7.089352103e-11 4.111361467e-10 3.081297164e-10 2.821913017e-10 6.15807611e-10 9.217467259e-11 2.08168708e-10 2.188364003e-10 2.183592252e-10 9.541139117e-10 3.613517208e-10 5.262128699e-10 1.824711058e-10 2.879416533e-10 5.015908175e-10 6.106479617e-10 3.60057167e-10 3.798493251e-10 6.058784228e-10 5.816618587e-10 2.603885281e-10 2.724295632e-10 6.112623621e-10 7.621195724e-10 2.850734076e-10 2.201305244e-10 7.038293614e-10 6.481225159e-10 7.721370334e-10 6.694099853e-10 5.695957267e-10 6.652761777e-11 5.984747355e-10 2.341492289e-10 4.751825508e-10 8.695288333e-10 5.57990651e-10 3.534290472e-10 4.412005076e-10 1.054327956e-11 6.148773165e-10 6.185382325e-10 7.131375466e-10 3.674192737e-10 4.745608325e-10 3.380650837e-10 4.943265047e-10 4.179802783e-10 5.914980358e-10 3.88941291e-10 9.616689058e-10 4.787953494e-10 1.821579838e-10 4.691671148e-10 2.533774153e-10 8.242868441e-10 5.763233344e-10 1.177239194e-09 8.787557347e-10 1.223922181e-09 9.50233383e-10 6.946321793e-10 7.230750239e-10 4.792474045e-10 4.199191585e-10 7.47245006e-10 1.073787194e-09 8.267827044e-10 5.829166594e-10 2.695647903e-10 8.293166167e-10 1.933051431e-10 3.175565195e-10 5.006177715e-10 2.888871737e-10 1.414492325e-10 1.894565026e-10 4.641477404e-10 3.949335632e-10 6.190285622e-10 6.410331841e-10 4.373692463e-10 1.794413802e-10 6.314208114e-10 2.927498192e-10 1.143924419e-10 6.245644455e-10 6.127939118e-10 1.932444477e-10 3.488399208e-10 2.532013477e-10 4.006763705e-10 3.644471976e-10 2.540500668e-10 5.030229572e-10 4.214081298e-10 4.99824361e-10 3.188811621e-10 2.731868105e-10 5.521556739e-10 1.7665266e-10 5.33616168e-10 3.082148698e-10 4.159459836e-10 4.67366634e-10 4.116699262e-10 5.115155077e-10 4.039302405e-10 2.013545454e-10 3.174976755e-10 2.370017756e-10 4.620138615e-10 6.190562602e-10 2.257622168e-10 2.399911749e-10 3.330076944e-10 2.853532616e-10 6.677758366e-10 2.480050524e-10 6.555935287e-10 8.736431266e-10 2.162922581e-10 4.616373812e-10 4.123200319e-10 3.802734258e-10 2.326168034e-10 6.421660534e-10 1.635214805e-10 2.913219185e-10 4.248867828e-10 8.70765741e-10 7.926664739e-10 3.690482814e-10 3.486673581e-10 4.579978283e-10 2.488427665e-10 6.021392955e-10 3.869743664e-10 4.858000108e-10 8.976014849e-10 3.498465043e-10 1.765913999e-10 3.865917763e-10 2.025525713e-10 1.257326251e-10 2.852235341e-10 5.814064062e-10 3.50081666e-10 1.156500224e-10 5.575408459e-10 4.704660339e-10 +6.741340019e-11 6.902957479e-10 4.867178883e-10 4.416398525e-10 2.086803439e-10 3.957772929e-10 2.606295415e-10 5.878913579e-10 3.420993477e-10 3.657981046e-10 2.268525182e-10 6.196902874e-10 4.815324509e-10 3.155979958e-10 3.943883268e-10 5.532757137e-10 5.728840077e-10 3.078559434e-10 2.572075634e-10 8.085197061e-10 5.347008853e-10 2.204288457e-10 3.72380524e-10 1.784079103e-10 2.096893386e-10 5.148644584e-10 3.799950494e-10 2.002652645e-10 4.171088162e-10 3.692960798e-10 4.374763246e-10 9.789768578e-10 1.025781732e-10 2.272171218e-10 4.975167847e-10 4.987574906e-10 9.906775434e-10 4.463761256e-10 5.617820742e-10 3.621468263e-10 6.798560275e-10 3.733670414e-10 2.925465731e-10 3.532404759e-10 4.539702977e-10 4.519383416e-10 1.363770882e-10 2.329674107e-10 5.89358499e-10 6.150244487e-10 3.693003733e-10 2.503077105e-10 2.30089287e-10 1.413930255e-10 5.823615283e-10 2.69754188e-10 5.683002642e-10 1.25078799e-10 1.005321145e-10 3.808379933e-10 2.910686966e-10 3.147945861e-10 6.477055459e-10 7.635908879e-10 1.191405452e-10 2.025966208e-10 1.215274474e-10 6.766081781e-10 3.11688778e-10 5.941576057e-10 5.662355179e-10 4.968638746e-10 2.012240204e-10 9.663072105e-10 1.772706112e-10 1.856977863e-10 3.949257711e-10 4.016486757e-10 1.4681e-10 5.491472941e-10 4.425544264e-10 2.051815927e-10 1.471871392e-10 1.178955318e-10 6.777551818e-10 4.952312147e-10 3.498287982e-10 6.320579902e-10 8.98335598e-10 9.869561574e-10 8.823653819e-10 8.561413285e-10 6.762234179e-10 1.138762189e-09 7.342681692e-10 8.296817138e-10 7.622609927e-10 5.005648981e-10 9.243158632e-10 1.401796323e-10 8.166105901e-10 4.887941083e-10 3.068404201e-10 4.193120925e-10 2.423445887e-10 3.259966786e-10 1.016294233e-09 3.150807339e-10 3.582573274e-10 7.612579122e-10 9.03064365e-10 3.690972103e-10 4.102051858e-10 2.630059414e-10 3.233344075e-10 5.114899323e-10 4.908558526e-10 3.911338837e-10 4.496951487e-10 4.592714353e-10 6.869758073e-10 1.506381787e-10 3.3535792e-10 7.940785203e-10 5.29462242e-10 1.042846361e-09 4.40332895e-10 6.306998008e-10 3.065933773e-10 5.398938907e-10 5.487184383e-10 4.875075056e-10 1.0000936e-09 1.979739494e-10 4.554462398e-10 1.851327478e-10 3.020491509e-10 5.93370538e-10 1.682803976e-10 1.860347835e-10 2.186579786e-10 3.723024125e-10 2.677969937e-10 4.24922839e-10 2.17796427e-10 2.60676196e-10 2.600560162e-10 1.580976541e-10 2.200840205e-10 2.209467538e-10 4.317953348e-10 1.034634403e-10 2.258493478e-10 2.173422723e-10 5.26893845e-10 3.96332093e-10 2.78727928e-10 5.110951048e-10 4.661099943e-11 3.390732755e-10 1.477122707e-10 3.322484199e-10 2.788439806e-10 3.048578307e-10 3.953922433e-10 3.665426694e-10 5.032161031e-10 5.037256982e-10 3.288836935e-10 4.681520389e-10 4.471867093e-10 6.485330317e-10 6.472132294e-10 5.358217081e-10 5.798093754e-10 6.291791107e-10 6.422057193e-10 4.65822147e-10 7.533541192e-10 1.955858908e-10 3.755277949e-10 4.503147281e-10 5.84896194e-10 4.773737368e-10 7.059344822e-10 6.280974154e-10 4.811802014e-10 5.421615019e-10 3.074910713e-10 5.599395538e-10 5.143107182e-10 5.738916681e-10 2.694214592e-10 5.441874426e-10 8.746529608e-10 9.88675243e-10 4.105941479e-10 2.572426694e-10 7.128022162e-10 5.687774687e-10 4.754012774e-10 9.897497569e-10 5.847116691e-10 6.551861448e-10 7.934471673e-10 4.664427157e-10 8.271784383e-10 7.173720982e-10 5.077164601e-10 9.780332707e-10 6.626317422e-10 7.373792837e-10 6.566167352e-10 4.930577523e-10 7.205487767e-10 2.52959306e-10 2.888703707e-10 5.16838749e-10 3.669241294e-10 4.357908586e-10 3.335094532e-10 4.328680006e-10 2.218442713e-10 3.155261051e-10 3.609788983e-10 4.865903846e-10 1.868484997e-10 2.291985049e-10 3.367105354e-10 4.982909292e-10 4.621783976e-10 3.747097612e-10 1.473050901e-10 4.168330823e-10 4.144832377e-10 1.925446922e-10 2.945725281e-10 2.70002105e-10 6.296126751e-10 2.439707771e-10 1.985785099e-10 5.244281188e-10 3.231984928e-10 6.876219412e-10 6.869607306e-10 1.633114658e-10 4.70976935e-10 3.535995539e-10 6.563683822e-10 2.615564184e-10 5.351827475e-10 3.577023089e-10 9.128920234e-10 1.630107338e-10 2.530771752e-10 5.86939329e-10 5.070680685e-10 2.342673086e-10 2.04642296e-10 7.853755988e-10 8.861593831e-10 2.997839014e-10 3.285192503e-10 2.636464691e-10 3.124646545e-10 3.484204081e-10 3.293050651e-10 3.976056631e-10 2.727198633e-10 2.404584156e-10 7.125880232e-10 5.924782895e-10 1.355944602e-10 4.688213117e-10 3.884831984e-10 2.845421605e-10 1.836646701e-10 7.109091255e-10 3.545763626e-10 3.431540141e-10 7.007827906e-10 1.857192618e-10 3.113167987e-10 6.674263412e-10 6.596053129e-10 1.544957504e-10 2.000410841e-10 1.301618219e-10 2.480747814e-10 2.573870188e-10 4.539928636e-10 3.278395742e-10 2.97590819e-10 6.367994614e-10 2.248921646e-10 4.614986383e-10 1.910865202e-10 2.411009969e-10 6.535811716e-10 4.787625765e-10 +4.418711802e-10 6.209545677e-10 1.700662176e-10 2.942472271e-10 4.463555263e-10 2.724937393e-10 2.44089176e-10 2.91627039e-10 3.058419603e-10 2.38029063e-10 5.365215701e-10 4.412206754e-10 7.57327569e-10 1.391185705e-10 8.886697935e-11 4.117027241e-10 7.474941207e-10 3.528482668e-10 5.260808052e-10 2.056621785e-10 2.043736459e-10 2.635659437e-10 6.266509121e-10 4.698279025e-10 2.49849767e-10 5.087803762e-10 1.722354433e-10 2.599888584e-10 5.932009091e-10 2.313582489e-10 4.205940824e-10 5.146386881e-10 4.029287422e-11 1.488602118e-10 7.058955439e-10 4.553752153e-10 3.96918957e-10 7.210917223e-10 4.639136451e-10 2.061822524e-10 2.586346302e-10 3.361230124e-10 8.771139034e-11 3.82971823e-10 3.704738805e-10 4.812460411e-10 3.514831613e-10 5.97161881e-10 1.271816661e-09 3.744434316e-10 4.006420469e-10 3.060827634e-10 4.194976617e-10 2.882943923e-10 4.113334442e-10 6.408743344e-10 6.157291691e-10 2.450007678e-10 4.946659146e-10 5.194184499e-10 5.310904176e-10 3.895889379e-10 3.558242008e-10 2.412703818e-10 2.874326358e-10 5.060010289e-10 2.672745677e-10 2.54970062e-10 4.231809867e-10 3.82525503e-10 3.257883646e-10 1.257137939e-10 2.642164574e-10 1.037099167e-09 2.091708499e-10 4.205618948e-10 4.149960925e-10 3.061569655e-10 4.7054702e-10 4.359681419e-10 4.329691695e-10 5.827569728e-10 9.80910934e-10 5.914850664e-10 3.682065159e-10 3.062519819e-10 4.777935944e-10 9.167096091e-10 2.048157273e-10 8.061724799e-10 9.564466994e-10 9.852288053e-10 1.083790972e-09 8.768846832e-10 5.417599238e-10 1.10839288e-09 8.122711404e-10 5.272734682e-10 5.527799536e-10 4.309794895e-10 6.366204066e-10 3.198521553e-10 8.322605997e-10 1.216926022e-09 6.391977782e-10 7.635885957e-10 6.256120983e-10 5.747309945e-10 8.994168184e-10 5.947991577e-10 6.788064848e-10 1.65841401e-10 4.777343416e-10 5.463501334e-10 4.734792495e-10 5.492856278e-10 8.509920434e-10 5.029330867e-10 3.897665218e-10 3.894215546e-10 5.668092702e-10 5.096078694e-10 2.782459693e-10 6.687495882e-10 3.446802308e-10 6.861514632e-10 6.057005544e-10 6.279703846e-10 5.257558297e-10 4.553594966e-10 2.487705305e-10 2.353690325e-10 2.23605803e-10 6.317748684e-10 3.457025292e-10 2.498163667e-10 4.191970015e-10 5.845672267e-10 2.659767037e-10 3.31646355e-10 1.879609776e-10 2.140325465e-10 1.386581742e-10 2.941419656e-10 9.573457782e-11 1.309807526e-10 3.97201575e-10 3.909473107e-10 1.262361425e-10 2.761592563e-10 1.995315731e-10 1.856934275e-10 8.260765073e-11 1.731148027e-10 2.213988552e-10 2.918687705e-10 1.9125801e-10 9.901602157e-11 4.267324696e-10 1.096313916e-10 1.253772625e-10 1.121449632e-10 2.606940155e-10 3.496609154e-10 1.685992231e-10 4.106218577e-10 8.082904866e-10 2.875692977e-10 3.572771991e-10 4.735945613e-10 4.542621253e-10 5.685631825e-10 3.222710685e-10 6.870295768e-10 3.403884847e-10 9.740289741e-10 6.056716531e-10 5.723855584e-10 5.897858962e-10 3.838439468e-10 5.636303722e-10 4.32889487e-10 6.027640196e-10 6.24161463e-10 7.321775246e-10 3.655316492e-10 4.739431767e-10 6.647678531e-10 1.081285509e-09 5.303405387e-10 7.032584701e-10 7.29236393e-10 9.959107891e-10 5.415816758e-10 6.656708096e-10 5.906240186e-10 8.177425161e-10 5.660574522e-10 7.003659993e-10 5.772851492e-10 1.12222443e-09 1.499566329e-10 5.857264601e-10 6.764186106e-10 7.191311222e-10 2.348597335e-10 5.807365604e-10 1.594027954e-09 6.731769958e-10 9.254622452e-10 8.476640295e-10 3.626236292e-10 2.911674023e-10 2.259015363e-10 5.310670973e-10 1.620072812e-10 6.172404145e-10 2.507103251e-10 3.010658514e-10 1.408720548e-10 5.463303952e-10 2.70192508e-10 5.763796207e-10 3.692512942e-10 5.558256709e-10 5.627470016e-10 3.440381693e-10 3.719308379e-10 5.27942715e-10 2.770987013e-10 5.147124783e-10 2.868622102e-10 3.961781901e-10 3.350174719e-10 3.819496871e-10 9.593074322e-10 8.219710813e-10 5.816641225e-10 3.594432466e-10 5.675481827e-10 2.167201166e-10 5.358470998e-10 3.603891318e-10 3.917706705e-10 3.571565017e-10 4.320505072e-10 4.668961371e-10 2.613543872e-10 5.954112552e-10 5.347814403e-10 3.057121086e-10 7.212905766e-10 5.528081655e-10 3.361667733e-10 4.270096964e-10 4.582208256e-10 1.706672068e-10 4.268971097e-10 1.926495558e-10 8.384131827e-10 2.826316945e-10 1.880139499e-10 6.910132506e-10 2.655660864e-10 1.156959446e-10 6.676116556e-10 2.282521426e-10 1.804994339e-10 3.799044272e-10 4.385031694e-10 5.136622312e-10 5.40378808e-10 3.044695411e-10 3.932950882e-10 6.253821156e-10 1.393651442e-10 4.883309453e-10 5.124690529e-10 4.910883897e-10 2.98571473e-10 3.635918557e-10 9.072354714e-10 6.47557075e-10 6.09948903e-10 3.679594365e-10 4.339982867e-10 5.781759058e-10 3.725219087e-10 3.880871945e-10 7.120811015e-10 5.393972367e-10 7.718985742e-10 1.983103458e-10 1.518348905e-10 3.552159092e-10 2.058292751e-10 5.485845942e-10 6.514967297e-10 3.369945661e-10 2.163304756e-10 +2.272048705e-10 3.675410434e-10 2.64293405e-10 9.441430946e-11 4.480003209e-10 3.794770795e-10 5.491168993e-10 3.257276213e-10 4.315103309e-10 2.851463583e-10 7.52192297e-10 1.935742963e-10 5.186050862e-10 4.682983783e-10 6.31282426e-10 1.074985541e-09 2.763857006e-10 7.827098901e-10 4.722393768e-10 2.180767855e-10 2.751304216e-10 4.616900702e-10 5.685736354e-10 5.985705648e-10 4.471986785e-10 2.674999419e-10 3.952940665e-10 3.441733924e-10 3.217221938e-10 3.038492707e-10 8.672886833e-11 4.594431849e-10 5.277801624e-10 2.817078697e-10 2.923543031e-10 1.814512683e-10 2.277369706e-10 4.074079308e-10 6.95687819e-10 4.442190255e-10 2.542967551e-10 8.368027428e-11 5.765749126e-10 5.75423591e-10 3.706584838e-10 4.298387546e-10 4.898122367e-10 2.94236044e-10 5.542374982e-10 3.055295248e-10 7.296335258e-10 2.899685368e-10 4.211450393e-10 5.765137635e-10 4.122636902e-10 3.042976574e-10 2.486882385e-10 3.160245566e-10 5.497058528e-10 3.302915317e-10 2.069228294e-10 3.569684921e-10 5.896934993e-10 5.658179991e-10 6.78741998e-10 6.106868891e-10 1.246173625e-10 2.916761634e-10 3.817783133e-10 6.794063331e-10 4.045582344e-10 1.606879096e-10 3.719650644e-10 2.792419043e-10 4.228058944e-10 1.749584355e-10 2.52367309e-10 2.212596264e-10 2.502646847e-10 2.70820645e-10 4.75895409e-10 8.970283656e-11 5.076015968e-10 4.7029714e-10 8.03980505e-10 4.176458462e-10 1.623350023e-10 7.048775606e-10 6.04966665e-10 6.499132469e-10 8.312832389e-10 8.814943361e-10 1.211229777e-09 4.972825504e-10 6.474624696e-10 1.019610422e-09 8.395324623e-10 6.439832574e-10 8.196431164e-10 1.302056046e-09 9.814344613e-10 2.480384266e-10 8.213032663e-10 3.178858617e-10 3.152617502e-10 2.253450909e-10 9.251709121e-10 7.482892785e-10 2.614753176e-10 7.880504386e-10 7.483674654e-10 8.614422384e-10 9.618244521e-10 4.13453407e-10 3.578655202e-10 1.966090931e-10 5.744327864e-10 4.744432428e-10 6.733545329e-10 2.208964724e-10 3.050271128e-10 4.702586261e-10 5.280104917e-10 2.611645927e-10 5.788638555e-10 3.83645496e-10 3.831470453e-10 1.335496519e-10 6.282668049e-10 1.358377196e-10 2.177430466e-10 3.96123847e-10 1.664576409e-10 4.631254695e-10 1.813175565e-10 3.334891028e-10 1.813439499e-10 1.271413355e-10 1.618547344e-10 2.799082834e-10 3.768937308e-10 2.733112692e-10 3.449944934e-10 3.059496929e-10 4.191127675e-10 5.357515914e-11 2.633614015e-10 6.258996645e-11 4.423059066e-11 2.198680624e-10 1.575104475e-10 9.02395031e-11 1.248734787e-10 2.157158624e-10 1.426822721e-10 1.65200977e-10 2.930311674e-10 2.040368105e-10 3.649352895e-10 1.571897788e-10 2.361236082e-10 4.109426038e-10 1.679926063e-10 1.396450811e-13 3.359793419e-10 2.815240572e-10 2.798115701e-10 2.155656607e-10 4.850039212e-10 1.484746435e-10 1.826454774e-10 5.337812836e-11 5.074710801e-10 5.441531384e-10 3.76782712e-10 3.995486542e-10 2.182347969e-10 8.572620834e-10 4.966059028e-10 5.120059056e-10 6.625726081e-10 6.133458569e-10 7.629231516e-10 6.457139461e-10 3.428946779e-10 5.094606589e-10 4.825134297e-10 1.211575547e-09 6.10384961e-10 4.497785043e-10 4.637032597e-10 6.417674034e-10 5.404292182e-10 8.295988529e-10 4.206409901e-10 5.257725931e-10 7.643336987e-10 9.20881803e-10 7.508916369e-10 8.83510546e-10 7.530440307e-10 7.259961494e-10 7.938710643e-10 1.13736961e-09 3.564622576e-10 4.518122178e-10 6.770784356e-10 4.877963253e-10 6.80208985e-10 9.907419851e-10 1.072814531e-09 2.182177182e-10 5.171693056e-10 4.150051989e-10 7.044478322e-10 5.169635273e-10 3.380949538e-10 3.572118799e-10 5.57576089e-10 3.74518171e-10 2.625366026e-10 4.687991089e-10 3.400244989e-10 2.886815103e-10 3.10864797e-10 6.004746592e-10 3.499136841e-10 5.44280759e-10 1.736167726e-10 5.967311436e-10 2.422896124e-10 5.800475156e-10 2.056097025e-10 6.164352608e-10 6.177245143e-10 5.790753412e-10 4.285885915e-10 9.183967263e-10 4.41812687e-10 4.915203695e-10 4.665830767e-10 6.78294467e-10 7.971349848e-10 3.461945669e-10 6.495403552e-10 6.352414305e-10 6.071124966e-10 2.642104646e-10 4.510398967e-10 3.62041537e-10 2.211498995e-10 6.810604585e-10 5.549051899e-10 2.497811667e-10 2.154399055e-10 5.614867904e-10 4.253835336e-10 5.551950123e-10 4.806137686e-10 1.951640723e-10 4.94155343e-10 3.778862524e-10 5.091044531e-10 5.193404632e-10 2.087979414e-10 2.283323546e-10 6.171043225e-10 1.602094698e-10 3.350703975e-10 7.759139567e-10 1.885472855e-10 2.447168241e-10 2.844637196e-10 2.66099713e-10 4.788711284e-10 4.39233372e-10 2.535200743e-10 5.302417253e-10 2.123826136e-10 2.989951906e-10 3.059877925e-10 6.530632e-10 3.816480573e-10 3.500080675e-10 7.489045923e-10 3.962339006e-10 6.78582933e-10 9.009222993e-10 3.587730808e-10 5.021527546e-10 7.07846793e-10 2.181160187e-10 2.855670079e-10 5.027654648e-10 2.82867107e-10 5.70552435e-10 4.491157707e-10 4.867434655e-10 6.54879024e-10 6.383114523e-10 +3.431234458e-10 7.881928094e-10 4.73540841e-10 2.30550583e-10 4.14827119e-10 3.62088288e-10 3.35455433e-10 5.594141467e-10 2.518859711e-10 3.751767938e-10 5.585475814e-10 8.124775296e-10 1.10517465e-09 5.641337844e-10 2.047903271e-10 5.099209431e-10 4.554065207e-10 6.597997612e-10 3.145412979e-10 4.194674545e-10 9.567365729e-11 4.656187094e-10 3.952693676e-10 5.84968566e-10 5.004718831e-11 7.410873268e-10 3.614962754e-10 5.873126986e-10 3.360087306e-10 1.866383525e-10 6.587757421e-10 2.898022023e-10 4.575952618e-10 1.972023738e-10 5.803784871e-10 4.384105747e-10 2.391228756e-10 1.350615541e-10 3.189000081e-10 2.906342078e-10 4.04218126e-10 4.559867198e-10 3.814943897e-10 2.755000119e-10 9.938889178e-11 1.553890737e-10 6.893794552e-10 4.382908778e-10 3.337996393e-10 6.515554027e-10 6.257914865e-10 6.553206736e-10 4.086878428e-10 5.535255536e-10 1.987943453e-10 7.605362726e-10 5.185259077e-10 5.50276043e-10 5.120794768e-10 5.675700688e-10 4.745146428e-10 3.655784723e-10 1.425252412e-10 5.4781521e-10 6.42859655e-10 3.054648957e-10 6.631513104e-10 3.266592232e-10 3.010463319e-10 5.054196068e-10 2.610288046e-10 3.972328258e-10 4.583895153e-10 2.729546252e-10 2.063737433e-10 3.701720372e-10 3.172354704e-10 1.948975832e-10 4.009785001e-10 1.344156374e-10 2.735534739e-10 8.050472106e-10 4.932105659e-10 2.138154456e-10 8.328540297e-10 7.429549831e-10 6.142283864e-10 5.427213003e-10 3.867006105e-10 3.737725077e-10 7.503653944e-10 9.977271601e-10 6.179688722e-10 7.029144336e-10 1.276539116e-09 5.817904969e-10 9.96104268e-10 4.2422978e-10 1.036560459e-09 8.808788919e-10 9.370582473e-10 6.359852277e-10 8.826946645e-10 7.250210408e-10 4.623890998e-10 8.034916377e-10 3.731729676e-10 4.047362404e-10 5.101437489e-10 2.427271081e-10 5.2872572e-10 5.262277096e-10 5.950133101e-10 6.539108499e-10 3.370757451e-10 9.225507555e-10 8.145890936e-10 3.088439275e-10 8.198095675e-10 8.552718817e-10 5.170478342e-10 3.629277562e-10 5.130810008e-10 1.65814759e-10 4.884875146e-10 6.778883227e-10 3.813029387e-10 3.030247713e-10 4.622537792e-10 2.469749242e-10 3.47726924e-10 2.803361221e-10 2.955169697e-10 1.013117398e-10 1.078241657e-10 2.124226827e-10 2.798916441e-11 1.51428147e-10 3.006657484e-10 2.871306655e-10 3.47844044e-10 3.186508601e-10 2.709767262e-10 3.929011427e-10 1.818014895e-10 2.180260967e-10 5.463063723e-11 5.289807378e-10 9.657071813e-11 1.284292999e-10 1.427323823e-10 6.88812432e-10 8.271370492e-11 1.415262762e-10 2.047383315e-10 9.158587368e-11 2.158415472e-10 1.714381008e-10 1.682535925e-10 2.512313304e-10 1.581456824e-10 3.196205734e-10 3.20186463e-10 2.733842468e-10 4.991882139e-10 3.760936673e-10 2.168613237e-10 2.109515359e-10 4.670987011e-10 1.261414334e-10 4.308189661e-10 2.901820346e-10 9.354208078e-10 3.590068364e-10 5.736215101e-10 8.393555462e-10 7.114185651e-10 5.641278459e-10 3.971198306e-10 2.652151105e-10 4.603320996e-10 3.128050871e-10 5.293150869e-10 3.520748421e-10 3.317482518e-10 7.561713044e-10 4.311068557e-10 5.615489513e-10 5.520321319e-10 4.848994509e-10 8.161853713e-10 3.389307911e-10 8.978837676e-10 3.546856742e-10 9.632530824e-10 9.548478605e-10 3.983432282e-10 5.777634442e-10 8.743039048e-10 8.058310702e-10 1.101988453e-09 1.017284417e-09 6.391040729e-10 1.179228371e-09 4.025100313e-10 5.746048272e-10 8.067657465e-10 7.749945853e-10 6.134662064e-10 7.174163651e-10 8.183534916e-10 5.852141416e-10 1.138672272e-09 1.15497155e-09 3.760772491e-10 3.922355857e-10 2.180697429e-10 2.095330987e-10 4.424812747e-10 4.98478991e-10 1.971674877e-10 5.145767213e-10 3.054869312e-10 2.873203323e-10 4.529363014e-10 5.594715164e-10 9.991822601e-10 4.99803848e-10 7.481148223e-10 9.925276365e-11 3.34675734e-10 6.104174115e-10 2.049842515e-10 5.644706681e-10 6.560249668e-10 5.251571954e-10 5.78255195e-10 2.834483248e-10 1.90132395e-10 5.303456595e-10 1.502785823e-10 1.996280367e-10 4.68381822e-10 1.410132214e-10 2.825227598e-10 7.23481997e-10 7.013911181e-10 8.253496031e-10 4.552102198e-10 3.033458995e-10 8.67525829e-11 4.498760861e-10 3.009817206e-10 7.061669726e-10 4.833840155e-10 3.709719038e-10 1.937323496e-10 2.341157336e-10 2.861188689e-10 9.717698585e-11 4.257968349e-10 6.584068286e-10 4.312405907e-10 4.652755654e-10 3.118329663e-10 6.210695607e-10 2.07498449e-10 1.360620595e-10 4.385682601e-10 5.648410456e-10 7.571019962e-10 7.288519363e-10 2.606788843e-10 4.074740662e-10 3.244281826e-10 4.554271857e-10 5.222451485e-10 8.997417292e-10 3.607264869e-10 2.389585572e-10 3.172778508e-10 8.23574832e-10 3.490981587e-10 5.095382663e-10 2.734028935e-10 3.532174971e-10 1.826382718e-10 2.988873856e-10 6.495361195e-10 5.533008864e-10 1.614807272e-10 3.15709354e-10 3.893724381e-10 3.64171302e-10 5.859087436e-10 4.24024078e-10 4.697308164e-10 1.492402756e-10 2.649603738e-10 5.856771572e-10 +2.875709513e-10 3.820811424e-10 2.170232582e-10 6.149699499e-10 3.868435641e-10 1.331324234e-10 2.58504131e-10 5.583646753e-10 2.948124303e-10 1.133733161e-09 4.616913318e-10 5.018609573e-10 6.948359807e-10 6.728177191e-10 3.118774268e-10 9.726481281e-10 4.193968332e-10 9.932500179e-10 3.969117783e-10 7.346014139e-10 7.175061409e-10 4.385742704e-10 4.405500389e-10 2.960224526e-10 5.507043705e-10 4.660038909e-10 6.150670825e-10 4.1137602e-10 2.819825191e-10 3.910883866e-10 4.370566013e-10 1.629586035e-10 9.482636512e-10 1.264767755e-10 1.680295731e-10 3.533502599e-10 1.273805993e-10 6.22597972e-10 4.264152369e-10 8.249771586e-11 2.998979093e-10 4.846293234e-10 3.740511604e-10 4.882232469e-10 2.200193341e-10 2.677648408e-10 2.82893039e-10 5.246902317e-10 6.29600802e-10 6.104651767e-10 3.770176446e-10 1.235967235e-10 5.52690129e-10 5.644175313e-10 3.773033597e-10 9.240185292e-10 5.316648491e-10 5.293261555e-10 4.755726294e-10 8.302430236e-10 5.574995437e-10 5.030675731e-10 2.930490085e-11 6.685236952e-10 5.026084389e-10 6.239606931e-10 2.957164872e-10 2.372790454e-10 3.283626559e-10 7.163992758e-10 6.995264845e-10 3.488176826e-10 5.797475219e-10 9.50103165e-10 3.159630816e-10 7.31600298e-10 3.952678618e-10 3.505453256e-10 4.343450167e-10 5.393178619e-10 4.418598737e-10 2.480948301e-10 4.914815761e-10 6.688757933e-10 6.529181967e-10 4.375977254e-10 4.861816532e-10 1.109890389e-09 6.253290229e-10 5.772037434e-10 7.358459066e-10 6.116634744e-10 6.154959868e-10 4.804705924e-10 7.286937689e-10 6.512769384e-10 5.873489252e-10 5.761949453e-10 7.461812038e-10 5.534514575e-10 7.427814435e-10 8.28557331e-10 5.015627905e-10 1.070414692e-09 5.642103194e-10 6.498330895e-10 1.05764819e-09 5.857401377e-10 9.267569746e-10 6.041600723e-10 8.268878833e-10 8.486976143e-11 6.703976076e-10 5.257754228e-10 3.772331007e-10 5.948531424e-10 5.820307875e-10 5.914256541e-10 6.832328006e-10 5.140978129e-10 6.820052436e-10 3.512721074e-10 5.496549665e-10 5.49233557e-10 3.478202337e-10 5.506890817e-10 4.849623068e-10 2.097156146e-10 1.513015511e-10 3.53298446e-10 1.375648551e-10 2.460974676e-10 4.300485779e-10 2.005572632e-10 1.409789611e-11 2.444844523e-10 8.325188973e-11 2.279501088e-10 3.036148669e-10 7.03244124e-11 1.815234353e-10 2.267129974e-10 2.965590976e-10 2.394200752e-10 3.281024509e-10 5.137121211e-11 2.743515442e-10 2.926378452e-10 3.592879283e-10 1.692990852e-10 3.656980191e-10 1.154372319e-10 2.849075556e-10 4.232985777e-10 5.21749303e-10 4.043872826e-10 1.488313112e-10 2.409220843e-10 2.955895292e-10 1.182954389e-11 2.086812035e-10 2.381167627e-10 1.942243342e-10 1.431938047e-10 3.951303806e-10 4.247826849e-10 4.875770552e-10 5.458238805e-11 2.760252135e-10 4.914230957e-10 6.711173971e-11 6.295416957e-10 1.98516047e-10 2.561736414e-10 3.425164529e-10 3.996950483e-10 3.43255222e-10 8.213315069e-10 7.979080694e-10 5.113933852e-10 5.543890168e-10 1.048986018e-09 7.060138101e-10 9.869168722e-10 6.801755454e-10 8.444216085e-10 3.852554599e-10 6.506822611e-10 4.337500194e-10 6.774966284e-10 3.823797571e-10 4.513821432e-10 7.027148464e-10 5.831731311e-10 9.403284602e-10 5.580723928e-10 5.764413282e-10 5.767011371e-10 5.904773884e-10 7.11440439e-10 3.555913171e-10 5.376046591e-10 8.190679846e-10 5.355712939e-10 1.035497188e-09 5.306918253e-10 3.236892583e-10 8.462594678e-10 7.361844428e-10 7.18471388e-10 8.310541355e-10 1.17098865e-09 4.797930781e-10 1.195276431e-10 1.033088507e-09 4.26892155e-10 3.928701725e-10 4.258187741e-10 4.28654105e-10 6.262935385e-10 3.069705061e-10 3.563479519e-10 4.098731474e-10 3.043871312e-10 3.526872027e-10 1.503026e-10 2.061589902e-10 3.225952438e-10 5.624091171e-10 5.45886031e-10 5.197702126e-10 4.860019812e-10 4.857634304e-10 4.143815139e-10 8.004606386e-10 7.011859024e-10 6.412852127e-10 4.075932077e-10 1.819778199e-10 4.194175291e-10 7.271044085e-10 5.004234397e-10 3.012583714e-10 4.396861868e-10 3.333656898e-10 7.870580313e-10 3.891948098e-10 7.000102874e-10 2.235786683e-10 2.844435583e-10 3.006072606e-10 2.946136229e-10 6.958158404e-10 5.408211029e-10 5.230512145e-10 3.739909182e-10 5.146832005e-10 1.951777689e-10 1.182593139e-10 6.693571956e-10 3.975234494e-10 1.201046069e-10 4.507759276e-10 2.628545637e-10 3.996823938e-10 5.623289167e-10 4.733148071e-10 4.242476553e-10 7.328692948e-10 3.009509397e-10 4.980082964e-10 3.019210229e-10 4.262570257e-10 1.489278692e-10 1.149307415e-10 4.683692882e-10 4.246046023e-10 3.631478724e-10 2.610048873e-10 1.268871213e-09 1.881172811e-10 8.206367074e-10 3.405431375e-10 2.53020587e-10 1.306317732e-10 2.358732378e-10 7.044133022e-10 4.673166797e-10 5.124782576e-10 3.363519881e-10 7.991428253e-10 2.898620392e-10 2.208980566e-10 3.805941578e-10 3.006492925e-10 7.339199475e-10 3.996859149e-10 3.256585368e-10 1.796568136e-10 1.944070304e-10 +6.595945303e-10 2.819684055e-10 3.774882571e-10 2.805399199e-10 3.714286356e-10 2.532083698e-10 4.507936704e-10 2.48881665e-10 2.864551633e-10 1.50169288e-10 2.441474474e-10 2.488029195e-10 6.270418698e-10 4.473253085e-10 4.258743651e-10 5.464954048e-10 2.694772129e-10 3.987562032e-10 3.935706825e-10 4.579821128e-10 6.016188575e-10 4.923995566e-10 4.488587029e-10 2.72519771e-10 5.264785869e-10 5.327997887e-10 8.00447682e-10 4.775539565e-10 5.852415527e-10 1.007669905e-09 1.563282318e-10 1.797421804e-11 6.271185685e-10 4.374202601e-10 3.55276338e-10 5.706956159e-10 3.940174175e-10 5.205150317e-10 6.622963096e-10 1.404792819e-10 7.293857421e-10 5.15543447e-11 5.865822545e-10 4.232628538e-10 3.275772603e-10 1.961033864e-10 2.555092007e-10 1.872517879e-10 2.629728797e-10 2.831719469e-10 8.367747329e-10 8.826853572e-10 3.688910915e-10 6.188898515e-10 2.266895967e-10 5.958273094e-10 7.530390514e-10 5.141124588e-10 6.210973235e-10 4.878698638e-10 3.111526528e-10 4.375072598e-10 3.472562169e-10 4.935497302e-10 4.034689977e-10 5.248087273e-10 4.311103211e-10 4.267756797e-10 8.247242741e-10 5.21769266e-10 4.765730149e-10 2.151119256e-10 2.104133464e-10 2.900207708e-10 2.570310296e-10 5.557176749e-10 1.176209577e-10 1.208135114e-09 3.600219964e-10 4.387432307e-10 6.721574665e-10 2.613002138e-10 5.295228329e-10 3.047548122e-10 4.210196512e-10 7.777524456e-10 7.69839126e-10 8.413454101e-10 5.683825846e-10 8.085572958e-10 8.833949815e-10 1.049556277e-09 8.224695583e-10 6.925328113e-10 4.284487899e-10 5.405111093e-10 7.393271099e-10 7.949829506e-10 8.43336631e-10 7.9250904e-10 6.126077926e-10 8.664944657e-10 4.510354847e-10 5.111464242e-10 4.046730224e-10 8.090791321e-10 5.213520541e-10 5.712175244e-10 6.735365413e-10 2.174496611e-10 3.065196714e-10 4.621943141e-10 2.257918058e-10 8.000729328e-10 8.998525377e-10 1.964937344e-10 7.143898112e-10 8.951425675e-10 3.962296682e-10 5.476010386e-10 8.425629566e-10 4.35722134e-10 7.047901994e-11 4.246698778e-10 5.004493681e-10 3.88155743e-10 1.991817639e-10 3.50572815e-10 2.442132243e-10 4.842558763e-10 3.623793478e-10 3.74715144e-10 7.332978353e-10 1.157835193e-10 2.281619575e-11 2.193653101e-10 3.979708454e-10 2.852330051e-10 2.933821161e-10 2.095736286e-10 3.908116782e-10 1.412680713e-10 3.214346881e-10 3.078219051e-10 3.067725232e-10 3.066804825e-10 3.555028793e-10 3.97541794e-10 1.597033168e-10 8.267570003e-10 2.814532223e-10 4.85012164e-10 8.128891686e-10 3.466124462e-10 2.885015403e-10 2.320487685e-10 2.111705226e-10 5.39535438e-10 1.655538693e-10 3.454889183e-10 8.876221888e-11 3.351528616e-10 3.087122135e-10 5.848345565e-10 4.408695367e-10 1.412966733e-10 1.847569961e-11 2.130346002e-10 1.172261291e-10 1.32887485e-11 5.918139306e-11 2.607397213e-10 5.455948016e-10 4.270597339e-10 3.596521787e-10 9.737205611e-10 5.026050773e-10 2.917970977e-10 6.016607212e-10 4.802926772e-10 6.997633811e-10 6.347245451e-10 8.047545674e-10 4.18581215e-10 3.029055284e-10 5.089081972e-10 2.093110539e-10 6.794736356e-10 4.131290735e-10 4.902127693e-10 5.577424912e-10 6.713912213e-10 3.478427962e-10 3.752295706e-10 4.454837803e-10 5.98583737e-10 9.11116539e-10 5.337984278e-10 7.152907347e-10 5.103156253e-10 4.071794862e-10 7.949660598e-10 7.573436103e-10 5.417423853e-10 9.653422416e-10 7.55691219e-10 4.652971967e-10 7.853670433e-10 9.319614069e-10 9.752961674e-10 8.144363942e-10 6.670317684e-10 1.069697089e-09 7.423292771e-10 9.406319583e-10 2.889126733e-10 5.447746232e-10 4.446393814e-10 2.321549542e-10 3.618469479e-10 2.949927777e-10 4.254417499e-10 3.561326126e-10 4.49483607e-10 3.776148688e-10 3.762306537e-10 4.267633442e-10 3.992466067e-10 6.331016494e-10 4.233990877e-10 3.891934362e-10 5.668226443e-10 8.046867844e-10 3.163418078e-10 3.130586283e-10 6.103382522e-10 4.659000087e-10 4.210668098e-10 6.696397163e-10 4.71024274e-10 5.03584074e-10 4.755894987e-10 2.034133469e-10 4.55808536e-10 4.340956705e-10 6.524926756e-10 5.409493775e-10 5.046511444e-10 4.65320591e-10 3.912267704e-10 4.438843214e-10 9.622936261e-10 6.05637431e-10 3.797928124e-10 4.000661327e-10 2.364512186e-10 2.165430589e-10 1.965224276e-10 7.706838071e-10 1.550376332e-10 5.038512727e-10 2.410955447e-10 7.046558207e-10 5.959174754e-10 3.232585893e-10 1.610462688e-10 3.104712267e-10 2.515328985e-10 2.440446617e-10 4.981585812e-10 2.59165235e-10 3.097882811e-10 5.141702696e-10 3.54413374e-10 3.668027731e-10 9.198057966e-10 1.628977171e-10 1.304322429e-10 2.134614484e-10 2.840900508e-10 4.573213833e-10 4.303715839e-10 4.874227374e-10 8.990620626e-10 3.59816109e-10 4.558582257e-10 3.525325411e-10 5.605035216e-10 6.34817165e-10 1.973756629e-10 5.34844561e-10 4.315617689e-10 5.003305219e-10 5.031020859e-10 3.564092576e-10 5.362766602e-10 4.244875394e-10 4.231560701e-10 2.68328075e-10 8.656649638e-10 +1.624517072e-10 6.384719546e-10 3.579663198e-10 3.037757665e-10 4.559536127e-10 1.946014736e-10 5.03524167e-10 7.540952101e-10 2.693306012e-10 1.447798151e-10 7.189438241e-10 9.638849665e-11 5.218725398e-10 4.619321521e-10 4.875656337e-10 3.221968327e-10 4.422922929e-10 1.026346272e-09 3.939665001e-10 1.312254901e-10 5.02230263e-10 2.47267765e-10 4.808254634e-10 4.913608964e-10 8.30646249e-10 4.597915185e-10 2.358330717e-10 4.399148965e-10 3.990224117e-10 4.547099609e-10 4.828976689e-10 1.491632318e-10 4.283578726e-10 1.510065638e-10 3.082998719e-10 6.676568194e-11 5.352393257e-10 5.582681785e-10 2.265988484e-10 3.895907824e-10 1.552572491e-10 2.608793828e-10 2.447090489e-10 5.949971625e-10 5.374812727e-10 4.523744295e-10 4.246593837e-10 4.508469137e-10 3.602034637e-10 3.288522636e-10 3.883109476e-10 3.760658993e-10 7.002632007e-10 4.446724019e-10 3.459964062e-10 5.720310273e-10 5.650883551e-10 5.659839747e-10 5.065404689e-10 5.026699538e-10 3.923233547e-10 5.384698281e-10 1.309396563e-10 4.804043203e-10 6.014818936e-10 7.258423303e-10 2.834462096e-10 2.619899322e-10 6.646954204e-10 6.223224051e-10 2.698808351e-10 5.28680209e-10 1.523686433e-10 4.182730444e-10 4.349598197e-10 3.617354477e-10 2.415462847e-10 1.801557885e-10 3.214840527e-10 2.768769305e-10 1.681161601e-10 3.418024043e-10 8.621965348e-10 9.037137699e-10 4.762196722e-10 5.600879673e-10 8.704153328e-10 1.16668902e-09 9.574785259e-10 1.071331377e-09 8.126863632e-10 1.071694889e-09 6.846418854e-10 7.875346306e-10 7.768210658e-10 9.248923789e-10 5.594735967e-10 5.510267239e-10 4.105933543e-10 6.002771938e-10 4.738463546e-10 4.875872605e-10 4.828365796e-10 3.187729934e-10 1.064695365e-09 8.611526875e-10 1.01240582e-09 7.843957952e-10 8.328896481e-10 4.862467708e-10 4.055635576e-10 1.071312942e-09 7.707116017e-10 6.860329377e-10 9.750839404e-10 5.676590335e-10 1.022847206e-09 3.616292894e-10 3.563962361e-10 7.385841559e-10 2.757174483e-10 4.65762797e-10 3.377351849e-10 4.894739151e-10 3.463437425e-10 1.93235674e-10 3.05676933e-10 4.742494606e-10 2.960684402e-10 1.765581067e-10 8.667565911e-11 7.924287716e-11 4.637657295e-10 2.573800037e-10 2.156284979e-10 6.062382965e-11 3.165621364e-10 3.922521645e-10 2.918450418e-10 2.517404556e-10 6.241439024e-10 5.07016284e-10 6.042292051e-10 5.116223161e-10 4.604779149e-10 4.567950411e-10 5.967519978e-10 4.455236041e-10 1.864439015e-10 4.47859763e-10 3.45043713e-10 3.296783388e-10 4.907323236e-10 3.147140568e-10 3.647957274e-10 4.265947466e-10 6.275675273e-10 2.955836097e-10 2.202429486e-10 4.396709429e-10 4.544729241e-10 1.15957566e-10 2.477338058e-10 4.564839128e-10 4.738693917e-10 3.021029668e-11 1.494850504e-10 5.645611443e-11 3.858356963e-10 1.667680718e-10 2.331175655e-10 2.590591787e-10 2.31414984e-10 2.187502395e-10 2.69070535e-10 3.940829818e-10 4.997865196e-10 6.042665978e-10 1.090785155e-10 8.730380798e-10 7.485595008e-10 7.772362582e-10 5.625562793e-10 2.846762108e-10 7.130183162e-10 7.651097071e-10 4.564592339e-10 8.900348547e-10 1.266819955e-09 5.055800888e-10 6.060850452e-10 5.202116138e-10 6.483872779e-10 7.052498372e-10 8.928344824e-10 3.945052343e-10 3.798174978e-10 4.832308044e-10 1.364040769e-09 9.346230728e-10 7.275649288e-10 6.355498912e-10 2.501294893e-10 7.018970991e-10 3.709484271e-10 1.016226105e-09 8.00481152e-10 3.754159755e-10 1.065088755e-09 7.000363856e-10 1.046243215e-09 8.842993924e-10 6.10158991e-10 4.824896111e-10 7.068714428e-10 5.133007627e-10 3.676981823e-10 1.174825013e-09 5.128018234e-10 2.856469811e-10 4.494814202e-10 2.990593301e-10 1.140550429e-10 1.437605394e-10 8.339194175e-10 4.930952155e-10 3.3178035e-10 7.304495092e-10 1.23704789e-09 4.939179662e-10 2.606513433e-10 4.591337988e-10 2.458510868e-10 9.230461218e-10 2.018083055e-10 4.380321539e-10 8.899186078e-10 5.922776297e-10 2.046012291e-10 5.950411697e-10 4.666485716e-10 7.407353975e-10 4.647413084e-10 7.97916824e-10 4.999336109e-10 5.775544145e-10 5.050900893e-10 4.518323994e-10 3.101769434e-10 2.900193469e-10 5.659622356e-10 7.389360562e-10 1.981236508e-10 2.490679362e-10 1.751934998e-10 3.587747713e-10 3.41895441e-10 5.390500656e-10 2.545121557e-10 2.52621424e-10 9.872318737e-11 5.558583124e-10 1.543308836e-10 4.78202416e-10 2.582512526e-10 7.318375115e-10 4.08493784e-10 4.728487879e-10 1.766096642e-10 3.702989022e-10 2.441162708e-10 9.912057076e-10 8.391227531e-10 2.879481686e-10 4.714109864e-10 6.331702119e-10 4.6016766e-10 3.996633246e-10 7.000450198e-10 2.378028968e-10 9.057543541e-10 3.188609284e-10 8.596495253e-10 5.959250264e-10 4.15764717e-10 4.874829768e-10 5.890939946e-10 5.763804077e-10 3.788514364e-10 5.908737029e-10 4.710876192e-10 4.588897302e-10 4.328184155e-10 8.037526914e-10 3.920215267e-10 1.361778403e-10 3.994931649e-10 1.074514685e-10 4.781454037e-10 1.155157146e-09 +1.321446577e-10 4.973595313e-10 4.073193547e-10 8.715728561e-10 5.057461802e-10 5.476654345e-10 5.980996571e-10 3.294008861e-10 8.936980143e-10 2.452904867e-10 5.496126309e-10 1.347767831e-10 3.891348243e-10 4.361663065e-10 6.540237636e-10 4.857520826e-10 4.650036195e-10 2.828059949e-10 5.25386521e-10 2.05271632e-10 5.712381711e-10 4.633348279e-10 4.493020229e-10 3.566112439e-10 6.837254061e-10 3.358080338e-10 3.345945314e-10 7.123316627e-10 5.90699888e-10 1.889427904e-10 3.244386347e-10 5.800092076e-10 4.293077078e-10 8.049924239e-10 8.816509537e-10 5.749557769e-10 8.576773658e-10 2.305855401e-10 2.968476616e-10 4.079676029e-10 3.821834884e-10 1.96852178e-10 4.081692045e-10 5.164131654e-10 4.804259571e-10 5.414821227e-10 6.184128566e-10 1.038128185e-10 3.83337771e-10 8.974552973e-10 2.372401393e-10 5.389771139e-10 1.634531189e-10 3.50194008e-10 6.794371386e-10 2.873338126e-10 3.962332317e-10 1.326658537e-10 4.833574944e-10 8.028356392e-10 5.220746551e-10 3.49790026e-10 5.373132771e-10 4.923650944e-10 7.314041909e-10 7.520791788e-10 4.836910334e-10 4.540640215e-10 3.83647309e-10 2.503379578e-10 9.426246573e-10 3.825855902e-10 4.166987336e-10 6.691983849e-10 3.703762912e-10 7.426739843e-10 4.210412463e-10 4.447548108e-10 4.19667116e-10 5.160908338e-10 3.33341938e-10 2.261903858e-10 7.452764e-11 8.93896152e-10 5.006882191e-10 5.477056178e-10 6.748615904e-10 6.805411979e-10 8.515699463e-10 1.27575451e-09 1.291552062e-09 8.039213344e-10 4.837654476e-10 1.022189868e-09 6.338282032e-10 6.153062183e-10 8.53972783e-10 1.257741918e-09 5.969363377e-10 1.116764073e-09 3.696232976e-10 9.300571399e-10 7.341041522e-10 7.600889065e-10 9.81006639e-10 5.020383031e-10 3.009330302e-10 7.493327201e-10 3.972596067e-10 5.139398003e-10 8.992802876e-10 6.118597609e-10 3.703135234e-10 4.911610519e-10 5.091068182e-10 2.634111947e-10 7.095915068e-10 7.869215285e-10 3.600452655e-10 7.073681799e-10 7.866173096e-10 4.023593161e-10 4.683145193e-10 1.568269937e-10 1.440560432e-10 3.791088844e-10 2.345444718e-10 2.793632944e-10 4.484906806e-10 1.752134543e-10 4.779711069e-10 2.794302317e-10 2.793191014e-10 6.879013717e-11 1.834891308e-10 2.775002556e-10 6.274551922e-10 2.483719389e-10 3.672401418e-10 3.553284254e-10 6.899875434e-10 3.925179659e-10 2.288820492e-10 5.981385804e-10 6.54647102e-10 7.477223086e-10 2.411423733e-10 5.76801199e-10 2.801408966e-10 7.984667701e-10 6.023362816e-10 2.561606257e-10 4.768216217e-10 7.193099859e-10 3.944173865e-10 5.665620145e-10 6.906572784e-10 2.303179702e-10 6.352091971e-10 1.830698173e-10 5.167123141e-10 4.335368304e-10 3.274763772e-10 3.816983301e-10 2.199061594e-10 1.437482088e-10 2.908591048e-10 1.161063383e-10 3.435749442e-10 2.08469743e-10 7.205330506e-11 1.883387209e-11 2.497171027e-10 1.587487288e-10 2.838650318e-10 2.867129011e-10 5.160899997e-10 2.228826305e-10 1.430661253e-10 1.927980457e-10 2.00763966e-10 2.317227303e-10 3.525823668e-10 5.587054314e-10 5.188641111e-10 6.496660458e-10 5.537517578e-10 6.916814883e-10 9.214814408e-10 5.007869301e-10 4.804932536e-10 7.162985301e-10 7.344141557e-10 5.688046117e-10 6.580229878e-10 2.808265246e-10 6.545486583e-10 6.352991379e-10 4.491210885e-10 9.370910529e-10 6.536638546e-10 1.036127413e-09 6.272472784e-10 6.79231235e-10 7.170367259e-10 6.383065987e-10 6.891235908e-10 1.353835835e-09 7.688257667e-10 1.011197581e-09 6.144197162e-10 7.975498116e-10 9.691703615e-10 8.580701609e-10 7.035375309e-10 4.041264685e-10 7.515101515e-10 5.995964611e-10 4.075412936e-10 3.76306282e-10 1.566210661e-10 4.96150369e-10 4.776443942e-10 3.329705596e-10 3.811251738e-10 3.958441915e-10 2.215005118e-10 5.795392939e-10 4.809428023e-10 3.836055874e-10 2.453470549e-10 2.679103357e-10 6.446368231e-10 8.691932849e-10 1.07382093e-09 3.852599094e-10 7.379294583e-10 5.24531247e-10 5.464121275e-10 7.016838904e-10 7.371860561e-10 7.571543931e-10 5.162790462e-10 7.931271952e-10 3.253497129e-10 4.408947875e-10 4.087123658e-10 4.136911429e-10 3.573180949e-10 2.990140415e-10 9.115979982e-10 5.439339203e-10 5.61034064e-10 3.126940149e-10 4.679961772e-10 7.15469068e-10 4.694242137e-10 3.537763868e-10 5.349398638e-10 3.993309087e-10 2.456038417e-10 4.835738559e-10 2.53066328e-10 3.343337554e-10 7.485711054e-11 3.768276928e-10 5.448857047e-10 2.762279593e-10 6.941327275e-10 6.51337832e-10 7.365579468e-10 2.925760986e-10 4.421912919e-10 6.782167354e-10 4.874006437e-10 6.263383832e-10 7.735026529e-10 5.51026184e-10 9.581001495e-10 7.874797022e-10 4.867031085e-10 5.046993757e-10 7.557410776e-10 1.79340399e-10 4.13732465e-10 2.003160883e-10 7.380221882e-10 7.038588889e-10 6.369029219e-10 1.036620637e-09 3.185898276e-10 5.994909363e-10 4.229788022e-10 4.160477514e-10 7.918918163e-10 1.564476219e-10 8.887196666e-10 3.823304838e-10 3.134159898e-10 4.30844906e-10 +6.464081877e-10 6.24723416e-10 3.391335651e-10 3.486017548e-10 6.915130525e-10 8.171232641e-10 3.391514279e-10 4.509359655e-10 4.367029266e-10 3.627904624e-10 6.238109514e-10 1.830728932e-10 2.742638434e-10 5.80507401e-10 2.706169981e-10 4.549477878e-10 1.326662262e-10 5.4883565e-10 6.260366975e-10 7.365902118e-10 3.758278548e-10 2.859048038e-10 7.704022801e-10 2.387917606e-10 2.421927968e-10 4.724966271e-10 3.63063424e-10 4.015420238e-10 7.500850583e-10 3.323602833e-10 4.468038883e-10 4.862224977e-10 6.581802502e-10 2.957301706e-10 1.521943433e-10 1.940060928e-10 2.406182239e-10 2.777965982e-10 5.433926982e-10 4.026658575e-10 6.071194096e-10 3.13381821e-10 4.547136662e-10 6.279412587e-10 2.976683788e-10 4.994368687e-10 1.824424714e-10 5.884073405e-10 3.235183138e-10 2.580409392e-10 1.74064272e-10 3.735098417e-10 1.294380171e-09 2.721292175e-10 1.592842458e-10 2.557978046e-10 2.4057609e-10 2.437498576e-10 6.789523185e-10 4.165474907e-10 4.513940084e-10 6.182784133e-10 7.960741937e-10 8.958416172e-10 6.865672156e-10 5.854532438e-10 2.845457037e-10 5.308734762e-10 3.722863001e-10 4.789448119e-10 5.491248262e-10 2.474818383e-10 3.175873782e-10 4.670017861e-10 4.843927016e-10 2.208424581e-10 3.959465042e-10 3.925197959e-10 2.55077507e-10 3.773316729e-10 6.483839171e-10 4.586299024e-10 7.797545783e-10 5.635479176e-10 5.340702204e-10 5.748741019e-10 5.067654737e-10 1.646137635e-09 1.412189352e-09 7.557212053e-10 9.044417789e-10 1.291228068e-09 1.129582643e-09 6.832379839e-10 1.260383503e-09 8.432388846e-10 7.75183214e-10 5.64174494e-10 4.914863426e-10 1.137093227e-09 5.730964811e-10 1.036156476e-09 4.950412757e-10 6.405024996e-10 5.773270173e-10 5.529404181e-10 8.505140535e-10 1.491680495e-10 6.662756206e-10 6.883210127e-10 6.241900106e-10 4.34893668e-10 9.83778085e-10 7.82681807e-10 3.344280419e-10 1.01062077e-09 3.450667126e-10 6.08036163e-10 5.48074517e-10 2.812687165e-10 3.546094534e-10 5.72852822e-10 3.291712856e-10 2.094193374e-10 7.909769207e-11 2.667260275e-10 1.541078486e-10 1.436912962e-10 5.5399176e-11 4.474805428e-10 5.735933044e-10 2.921309021e-10 3.542292541e-10 2.797194526e-10 5.863038785e-10 5.362750065e-10 3.012901984e-10 2.600468293e-10 4.087332685e-10 3.238062521e-10 6.692480577e-10 3.828886678e-10 2.454733416e-10 4.17188237e-10 7.712958882e-10 7.131825115e-10 2.796334351e-10 5.17430939e-10 6.015360126e-10 4.63351627e-10 8.347260623e-10 1.238331225e-09 5.899701421e-10 3.626825263e-10 8.604836941e-10 4.368381908e-10 5.791110647e-10 5.737814253e-10 4.421328584e-10 6.342006153e-10 6.810244542e-10 4.044352156e-10 5.00915661e-10 3.463522299e-10 3.370687731e-10 1.862191707e-10 4.192193368e-10 2.483932917e-10 1.462526317e-10 2.940145429e-10 1.939455756e-10 2.145251976e-10 3.093315285e-10 4.50472741e-11 2.143288984e-10 2.552197076e-10 2.384691525e-10 2.67050747e-10 8.357996604e-11 5.849172392e-10 4.58860395e-10 2.986349301e-10 4.407289952e-10 2.656664727e-10 6.871004255e-10 8.284212685e-10 7.349610175e-10 1.08655467e-09 6.51025473e-10 5.149675644e-10 5.46264726e-10 4.104792808e-10 1.042181563e-09 7.763916334e-10 6.365751157e-10 8.77506575e-10 7.904311527e-10 2.752723681e-10 4.969438908e-10 1.332139074e-09 7.846402346e-10 8.592883029e-10 8.55835614e-10 5.955528329e-10 9.74425556e-10 5.07034268e-10 7.356352254e-10 7.47112006e-10 6.888961511e-10 1.008927947e-09 1.066476091e-09 9.875618062e-10 1.720626763e-09 1.449655924e-09 8.377590143e-10 9.965509581e-10 6.174915679e-10 6.500505503e-10 9.353110316e-10 2.595528899e-10 9.883425702e-10 1.705942353e-10 2.152554213e-10 6.572588888e-10 2.32263201e-10 4.410524478e-10 4.334877673e-10 6.735666616e-10 8.777851592e-10 3.863740471e-10 5.93010878e-10 5.33502076e-10 5.111829304e-10 8.779631268e-10 7.033378041e-10 4.717551582e-10 2.348785081e-10 9.329405828e-10 2.770039529e-10 4.225069031e-10 8.692622985e-10 7.456926039e-10 5.947037966e-10 6.767522205e-10 1.086782426e-09 3.126786151e-10 7.387136415e-10 7.044053925e-10 3.649370009e-10 1.796230375e-10 6.898051594e-10 4.247742676e-10 3.515911441e-10 3.136521954e-10 2.773114147e-10 3.470593916e-10 1.106424092e-09 6.084887429e-10 4.002291614e-10 3.613343318e-10 1.005327077e-09 4.16417128e-10 3.013987582e-10 8.019600105e-10 2.645840477e-10 3.895204704e-10 3.888373605e-10 6.80240706e-10 3.246184602e-10 4.85647476e-10 3.60651132e-10 6.189125762e-10 4.0433428e-10 2.453662202e-10 6.118253505e-10 7.472562856e-10 4.748082433e-10 5.459900134e-10 6.858166411e-10 5.660148945e-10 4.466808672e-10 4.794588758e-10 2.185647523e-10 3.946609676e-10 4.119986703e-10 3.645045611e-10 2.576427545e-10 2.154761262e-10 2.013366854e-10 5.613592707e-10 4.211247549e-10 3.864588009e-10 1.782039622e-10 2.304800089e-10 2.293138469e-10 4.245278339e-10 7.999791949e-10 3.730036886e-10 6.408041238e-10 5.820850422e-10 +3.755214343e-10 1.553624845e-10 7.386839259e-10 3.103153685e-10 2.864612175e-10 4.796387525e-10 1.906703756e-10 2.625386036e-10 4.699607306e-10 6.423705057e-10 5.43587039e-10 7.10980575e-10 3.029271536e-10 2.174748914e-10 2.93306502e-10 7.65902992e-10 6.058671497e-10 3.767482673e-10 3.621668647e-10 2.865565405e-10 5.728361842e-10 3.550354139e-10 5.477809877e-10 2.847394201e-10 2.821636856e-10 6.789955494e-10 3.571463801e-10 3.693040774e-10 2.116445053e-10 5.314682308e-10 5.84369006e-10 8.712696618e-10 3.279742693e-10 3.235342386e-10 3.364468119e-10 8.466611228e-10 2.096694012e-10 2.04952908e-10 3.22569839e-10 5.188260929e-10 3.700532579e-10 6.861842789e-10 5.752340388e-10 3.173234303e-10 2.932441207e-10 5.648403551e-10 4.591438772e-10 5.487965314e-10 2.872339775e-10 6.423509212e-10 7.86801332e-10 3.696006615e-10 3.707550535e-10 5.237855404e-10 6.408252078e-10 5.558294051e-10 6.961935855e-10 3.827622863e-10 2.696456013e-10 4.668240717e-10 5.577236678e-10 5.213125202e-10 4.321269662e-10 8.456609382e-10 8.932440288e-10 5.003159795e-10 6.650958282e-10 3.508544713e-10 6.058372526e-10 7.639226371e-10 4.672198946e-10 6.347708906e-10 1.781609042e-10 2.862255444e-10 7.195232066e-10 3.110809205e-10 3.841598121e-10 6.058139817e-10 4.352289478e-10 8.052440225e-10 5.052320133e-10 9.074437314e-11 9.354282124e-10 8.663762251e-10 5.652069016e-10 7.860765361e-10 3.573549079e-10 1.6409193e-09 6.707734412e-10 1.225944862e-09 1.001326927e-09 6.825671097e-10 1.743760295e-09 5.056328006e-10 7.116962952e-10 5.899301933e-10 8.786272305e-10 1.179423523e-09 1.173650433e-09 8.52933868e-10 6.835414127e-10 6.241643991e-10 6.511301362e-10 9.525390828e-10 4.768291976e-10 1.163774141e-09 1.090533795e-09 1.105142391e-09 4.245846353e-10 1.075448089e-09 1.127203528e-09 2.022612907e-10 4.010371292e-10 4.144653704e-10 9.334170884e-10 6.216724079e-10 6.657242354e-10 3.623450048e-10 1.528054038e-11 3.625181803e-10 3.968130868e-10 4.27381076e-10 1.875089268e-10 2.960838718e-10 3.497581615e-10 4.047926322e-10 6.255766498e-10 3.612195493e-10 3.784216661e-10 1.854205701e-10 5.449702289e-10 6.766889531e-10 3.359486922e-10 5.848500346e-10 5.056256019e-10 5.237779722e-10 1.52837659e-10 6.745981148e-10 2.648377447e-10 2.798680997e-10 7.520285644e-10 4.898181057e-10 1.296821825e-09 5.220262873e-10 1.130495169e-09 1.357376473e-09 4.371565018e-10 1.429931898e-09 1.523456558e-09 1.643469118e-09 7.243012978e-10 1.469811678e-09 1.227466799e-09 9.580950454e-10 4.248718011e-10 1.49382295e-09 5.921712954e-10 7.186536508e-10 1.111975279e-09 6.348274192e-10 6.621217945e-10 8.858148012e-10 8.277262703e-10 3.871440975e-10 4.75840512e-10 3.189657263e-10 3.061867573e-10 3.407572688e-10 5.33377699e-10 4.26658867e-10 7.024887756e-11 2.716102979e-10 3.445097616e-10 1.715213883e-10 1.628095114e-10 6.441167943e-11 2.987913273e-10 1.272540996e-10 4.734247875e-10 1.551544114e-10 4.463213312e-10 5.082549242e-10 2.98162264e-10 5.60997526e-10 4.378395901e-10 1.857570578e-10 5.461415787e-10 9.902321823e-10 3.460620755e-10 1.698402601e-10 2.790055725e-10 5.463352855e-10 5.800704849e-10 7.806968372e-10 4.602008759e-10 3.804964002e-10 9.931798957e-10 5.85128477e-10 5.443734784e-10 5.914133578e-10 1.994390087e-10 1.254594551e-09 1.082439828e-09 8.516606852e-10 7.102131585e-10 8.140126845e-10 8.712018024e-10 6.431363099e-10 6.17529347e-10 8.406813724e-10 1.24421516e-09 9.289216688e-10 7.701440739e-10 1.254719412e-09 1.016242826e-09 6.620619507e-10 7.45890249e-10 2.888469466e-10 4.234857481e-10 7.87987584e-10 8.606467474e-11 2.667953631e-10 2.664193551e-10 3.321525414e-10 8.59818904e-10 5.327898089e-10 6.012976873e-10 5.407501573e-10 3.820719127e-10 6.950978451e-10 5.70672847e-10 3.179797354e-10 5.901650057e-10 5.557740811e-10 7.983502683e-10 3.359710342e-10 4.350256126e-10 5.414934787e-10 4.907847517e-10 1.010101669e-09 7.146222027e-10 2.256795261e-10 6.681709814e-10 3.712760375e-10 4.696374311e-10 4.06786655e-10 3.958291227e-10 1.924202155e-10 2.852719632e-10 6.280392673e-10 5.055885709e-10 1.676542283e-10 3.316904094e-10 1.711097923e-10 5.054371791e-10 2.528217209e-10 2.151577323e-10 6.145202783e-10 5.465934794e-10 2.780128823e-10 4.087056698e-10 5.173239589e-10 3.278359467e-10 5.394945607e-10 2.329139286e-10 2.754870969e-10 6.279185464e-10 3.895393963e-10 5.691397724e-10 3.200883446e-10 3.296635804e-10 3.409965135e-10 4.751771619e-10 3.577634704e-10 6.321833603e-10 1.420176193e-10 8.687550868e-10 3.354184713e-10 6.584302818e-10 5.791780349e-10 7.026275114e-10 4.598149131e-10 3.990519575e-10 4.200203908e-10 4.361514143e-10 7.478925576e-10 2.007568749e-10 2.418762831e-10 7.49307142e-10 7.676669597e-10 2.896867927e-10 4.905393933e-10 3.734158942e-10 4.204919173e-10 3.91322333e-10 6.923325807e-10 3.45157963e-10 5.307816181e-10 6.695085183e-10 4.257320206e-10 +2.465154582e-10 4.311906443e-10 1.99648947e-10 1.019038648e-09 3.596546004e-10 5.222786162e-10 6.920215981e-10 4.155197336e-10 3.244185807e-10 2.033076528e-10 3.783452556e-10 1.016068191e-09 3.184165329e-10 9.397725321e-10 3.465149671e-10 7.619717524e-10 5.733184616e-10 4.949053386e-10 2.037295505e-10 2.315024947e-10 2.166499403e-10 5.709445288e-10 6.030421668e-10 5.432557855e-10 4.371977955e-10 5.606493423e-10 9.782035393e-10 1.531035179e-10 2.722037162e-10 4.339266389e-10 6.616311546e-10 2.875378634e-10 6.163195668e-10 8.560120966e-10 6.201232237e-10 4.439830115e-10 1.63044871e-10 2.457028821e-10 3.886844058e-10 2.847009175e-10 1.568969298e-10 1.783181037e-10 8.322865262e-10 9.910774327e-10 4.038661077e-10 4.638579368e-10 3.696656749e-10 1.751826227e-10 2.010032133e-10 2.165930462e-10 2.181529396e-10 5.489834981e-10 2.600669281e-10 3.892517609e-10 6.294604399e-10 6.055423217e-10 6.418337066e-10 4.773555484e-10 5.770028765e-10 5.697039332e-10 4.015564745e-10 2.330219454e-10 5.054471748e-10 1.826338509e-10 8.452229318e-10 3.439924863e-10 6.810847377e-10 2.975144515e-10 6.483614869e-10 3.324401537e-10 6.001800164e-10 4.52336487e-10 5.663047927e-10 4.6792471e-10 9.436909791e-10 5.48707444e-10 3.422144529e-10 3.394883751e-10 8.798178007e-11 1.375437149e-10 7.25176713e-10 6.840969539e-10 5.514829654e-10 8.20393738e-10 8.901586154e-10 1.107674485e-09 1.252693064e-09 1.110007002e-09 1.241473372e-09 5.189346764e-10 6.112706269e-10 4.324760597e-10 9.056498385e-10 8.12558424e-10 5.130298577e-10 8.386843609e-10 7.619207619e-10 8.492732407e-10 4.578209665e-10 5.774893778e-10 1.112882479e-09 7.993012389e-10 5.395169305e-10 6.977694146e-10 1.22181769e-09 6.259863498e-10 4.540229628e-10 1.063683696e-09 1.0108098e-09 8.442134246e-10 5.7942748e-10 1.433651978e-10 3.170400367e-10 3.921655904e-10 4.557340553e-10 4.803666939e-10 4.895289511e-10 2.397063172e-10 3.347603934e-10 6.534234896e-10 1.669026524e-10 3.425182894e-10 1.524770945e-10 1.342715141e-10 1.814523952e-10 1.108043141e-10 1.730702641e-10 2.719654489e-10 4.928599798e-10 6.366574102e-10 4.029425924e-10 3.499035239e-10 5.153353594e-10 2.686854743e-10 1.759415635e-10 4.73804361e-10 4.707032478e-10 1.158472575e-09 1.154047737e-09 1.363782385e-09 1.449305805e-09 2.126843794e-09 7.509015527e-10 1.023442755e-09 1.15112938e-09 1.05106174e-09 7.21862604e-10 1.010261242e-09 8.226895748e-10 1.229536421e-09 1.140485956e-09 1.069914876e-09 1.581848707e-09 1.038767778e-09 1.006393884e-09 7.542206826e-10 1.488724832e-09 6.224232284e-10 6.786901835e-10 1.097582247e-09 7.952923192e-10 4.145042146e-10 5.743375567e-10 6.127305348e-10 6.646470942e-10 4.089107637e-10 2.513065207e-10 6.325691356e-10 1.380529793e-10 3.137980349e-10 3.522001396e-10 4.001349029e-10 2.442217007e-10 3.052182973e-10 1.172426453e-10 5.251316121e-10 1.148707784e-10 2.301912509e-10 1.835311341e-10 2.842758114e-10 2.907423523e-10 1.358305528e-10 4.697077689e-10 5.684720091e-10 5.282742332e-10 1.032120881e-09 5.312661778e-10 7.523209826e-10 9.121362506e-10 9.217804436e-10 3.294427454e-10 8.054193517e-10 5.348887165e-10 8.155034145e-10 6.153498932e-10 5.982424956e-10 4.482289245e-10 6.927830357e-10 9.965894098e-10 7.65413514e-10 5.806759838e-10 5.777794395e-10 6.45643627e-10 3.785087165e-10 4.295037172e-10 1.05219846e-09 4.286447113e-10 1.278270229e-09 4.867640197e-10 7.269645458e-10 1.14347425e-09 1.400123202e-09 1.251477881e-09 1.221384891e-09 7.394763913e-10 7.078741394e-10 1.110458679e-09 6.975077335e-10 1.084564823e-09 4.680251785e-10 2.961754552e-10 3.330722573e-10 4.426132434e-10 2.230871132e-10 3.64610405e-10 2.515092638e-10 9.074790147e-11 5.753305525e-10 8.958408496e-10 3.553435409e-10 3.508947646e-10 3.818567636e-10 1.060993565e-09 1.001507434e-09 4.017162436e-10 4.301464334e-10 8.851028219e-10 6.147053425e-10 3.590022312e-10 4.488933558e-10 1.067653332e-09 1.744101144e-10 8.677155755e-10 5.354675293e-10 7.410616674e-10 5.638409448e-10 4.276631287e-10 4.154811829e-10 2.70911403e-10 9.703073342e-10 4.925853499e-10 2.6321813e-10 5.466582166e-10 2.646955206e-10 2.026046886e-10 3.946485643e-10 2.648445038e-10 1.950370594e-10 4.677532893e-10 2.648025347e-10 6.511590254e-10 1.875238706e-10 4.847452932e-10 5.487542866e-10 5.106107722e-10 8.609879786e-10 3.338503907e-10 5.401535691e-10 4.350620498e-10 3.926362692e-10 4.334393819e-10 3.378655807e-10 4.204726015e-10 5.207379012e-10 5.593555891e-10 8.706456969e-10 6.439491426e-10 4.524773704e-10 6.30152525e-10 9.546267295e-10 5.17577562e-10 4.839752363e-10 8.41724682e-10 5.304816813e-10 2.561043297e-10 3.699011917e-10 2.569563713e-10 5.638550467e-10 2.62825664e-10 5.640346316e-10 7.379942284e-10 5.542491067e-10 2.100930491e-10 2.124768174e-10 1.014401242e-10 4.257433805e-10 3.451909143e-10 6.611239344e-10 4.814477915e-10 3.770996606e-10 +3.818705354e-10 4.966873388e-10 4.801995413e-10 4.980313458e-10 2.930631158e-10 2.638070005e-10 3.871953907e-10 2.349133931e-10 6.835310788e-10 7.412687539e-10 5.074958522e-10 1.565002257e-10 4.080196174e-10 1.165170253e-09 4.061606431e-10 1.067575136e-09 7.303615533e-10 3.522636105e-10 4.280843648e-10 5.564038424e-10 4.830381541e-10 8.068031545e-10 8.673373753e-10 6.774721825e-10 4.875278294e-10 3.0553308e-10 4.656625831e-10 4.510611231e-10 5.07875419e-10 5.912126584e-10 3.151322298e-10 4.575661993e-10 6.027856264e-10 8.956338925e-10 3.185768203e-10 5.297432387e-10 2.187064318e-10 3.730169259e-10 1.282359637e-10 3.668837722e-10 8.440981599e-10 1.013873983e-10 1.513607372e-09 1.571200067e-10 2.075794948e-10 7.304050328e-10 5.672543113e-10 9.271972563e-10 5.03601674e-10 8.131565936e-10 7.643417626e-10 5.977730342e-10 1.599472448e-10 1.053714803e-09 3.725937336e-10 9.103500172e-10 7.362459233e-10 1.034706753e-10 2.706748425e-10 8.366261529e-10 7.931981289e-10 2.737204758e-10 3.782505873e-10 6.353416825e-10 7.268670264e-10 3.544131714e-10 3.612248647e-10 7.17221513e-10 4.619424819e-10 4.580531429e-10 1.042137488e-09 5.256648353e-10 3.625868944e-10 4.298753242e-10 4.647809785e-10 5.245885595e-10 4.761948491e-10 3.882053064e-10 3.90928127e-10 8.62191656e-10 6.982497846e-10 2.377375189e-10 1.037499864e-09 1.360153035e-09 6.983567535e-10 6.66116214e-10 8.523707371e-10 8.348283622e-10 1.09860069e-09 1.068216808e-09 1.027685223e-09 6.110883923e-10 5.800923446e-10 1.090366802e-09 7.395530528e-10 1.564859857e-09 8.036909553e-10 5.603287917e-10 8.905645477e-10 6.544669816e-10 9.220671365e-10 5.043028599e-10 6.348864824e-10 7.52892829e-10 4.464574524e-10 7.167915957e-10 4.876981994e-10 4.374199074e-10 3.472226938e-10 6.579171449e-10 8.091330873e-10 8.082855465e-10 7.042640029e-10 5.921903689e-10 9.558045237e-10 5.309325109e-10 7.929569582e-10 5.704014212e-10 3.610986139e-10 4.551228973e-10 2.39759222e-10 2.934816591e-10 1.93432206e-10 3.285274115e-10 3.225822924e-10 5.070366857e-10 4.908296534e-10 2.497092196e-10 3.308511042e-10 8.021655345e-10 7.321873893e-10 4.800861259e-10 6.204005747e-10 5.057897211e-10 3.299828463e-10 1.126242031e-09 7.962764954e-10 9.174316617e-10 1.171801065e-09 7.904925118e-10 1.494157982e-09 1.606930859e-09 1.333433851e-09 1.337606571e-09 4.831551946e-10 7.827655926e-10 1.166554785e-09 1.256837547e-09 1.644784053e-09 1.363052983e-09 2.116659989e-09 9.402483274e-10 5.671056005e-10 1.048227987e-09 1.444442224e-09 1.078514783e-09 1.019549435e-09 2.041936697e-09 8.652235768e-10 8.688177141e-10 1.461063037e-09 1.162602984e-09 8.858351736e-10 1.149998951e-09 7.937344391e-10 8.854126218e-10 5.798669803e-10 1.686319821e-10 3.209855663e-10 1.510465805e-10 5.988173759e-10 5.427935522e-10 5.252525337e-10 3.258897167e-10 5.05232365e-10 2.509520098e-10 4.662846616e-10 5.001715218e-10 3.551312981e-10 3.865929081e-10 3.935884122e-10 2.98283646e-10 1.275702218e-10 3.420557219e-10 3.621942567e-10 4.295527099e-10 6.196988272e-10 6.235418467e-10 4.093156273e-10 4.856903996e-10 1.236489236e-09 5.612984652e-10 8.769363399e-10 9.69432929e-10 1.141209073e-09 6.64497927e-10 1.262466242e-09 7.178204722e-10 1.00676971e-09 1.205515283e-09 7.083659602e-10 4.946033135e-10 5.4597854e-10 1.326664971e-09 3.428047084e-10 1.362060361e-09 1.246706326e-09 1.750523062e-09 1.484317912e-09 1.393958195e-09 1.027617316e-09 8.224282316e-10 7.869934474e-10 6.354350794e-10 8.843815804e-10 4.411185659e-10 9.670146569e-10 1.223008247e-09 7.897664419e-10 4.863870977e-10 3.962656386e-10 4.344567468e-10 7.039246388e-10 3.049201113e-10 5.369379417e-10 7.197994655e-10 5.739796069e-10 5.805938264e-10 3.497737303e-10 3.064095401e-10 3.697863369e-10 3.608049758e-10 5.404849332e-10 9.219322408e-10 5.804297402e-10 5.55106051e-10 4.085496915e-10 2.059334575e-10 6.947614144e-10 5.926198487e-10 4.589035516e-10 1.295597358e-09 5.90309077e-10 5.520613889e-10 4.983270989e-10 4.186626964e-10 2.764597705e-10 4.047053881e-10 6.248139285e-10 5.690887937e-10 3.645812578e-10 3.252795046e-10 5.652304025e-10 9.410101778e-11 4.939785189e-10 3.737804567e-10 2.388767242e-10 1.272398652e-10 4.103311803e-10 4.26973189e-10 2.38983057e-10 6.19320989e-10 2.936617206e-10 4.509469967e-10 3.977497308e-10 1.674039299e-10 3.290436487e-10 1.0753651e-09 6.801714175e-10 2.572324615e-10 9.071441107e-10 4.179306489e-10 5.718638378e-10 7.839150225e-10 4.260184862e-10 6.195892804e-10 5.764607369e-10 6.26114102e-10 3.253880522e-10 5.981188051e-10 5.975741515e-10 8.418052908e-10 5.312438686e-10 4.372723169e-10 7.750496271e-10 6.317333301e-10 3.214289679e-10 6.06626467e-10 8.484699843e-10 3.763758991e-10 5.306497455e-10 4.172116119e-10 5.1580081e-10 1.189900874e-09 2.847428721e-10 3.38223013e-10 4.608470668e-10 7.310431046e-10 3.917939713e-10 1.954060602e-10 +5.887969019e-10 3.433055596e-10 3.860476531e-10 2.718080304e-10 3.23881697e-10 2.039477741e-10 5.772129948e-10 8.849158985e-10 8.636474618e-10 4.797635382e-10 3.678937031e-10 5.943669866e-10 3.381267201e-10 2.475224582e-10 3.963627532e-10 2.205583998e-10 6.535462048e-10 5.143787668e-10 3.342322807e-10 2.656273862e-10 5.975775504e-10 4.757330782e-10 5.41346562e-10 7.6569254e-10 7.047655907e-10 5.068937741e-10 4.733572985e-10 5.473907512e-10 4.321036697e-10 1.529733085e-10 3.406714699e-10 3.828642933e-10 2.737128206e-10 4.726750805e-10 5.321934415e-10 3.469327104e-10 2.20944377e-10 5.603359927e-10 4.171163409e-10 6.950258331e-10 7.373584328e-10 2.027112138e-10 1.911930729e-10 1.101270435e-10 3.265119064e-10 5.662205058e-10 1.361147349e-10 1.655631496e-10 3.332389899e-10 3.681209232e-10 7.971478672e-10 2.700666759e-10 5.968644053e-10 8.821408699e-10 2.399760741e-10 7.787589148e-10 5.415062031e-10 3.222301511e-10 7.185505021e-10 7.350430401e-10 6.924041089e-10 5.082128187e-10 4.271170465e-10 3.466595928e-10 5.215023386e-10 7.838524764e-10 4.323822455e-10 5.91072844e-10 4.977152685e-10 4.627059019e-10 1.943918967e-10 9.619590719e-10 4.796361188e-10 3.87013745e-10 5.052969528e-10 3.830511737e-10 3.61696016e-10 2.06031455e-10 3.981074358e-10 2.67961374e-10 4.07974561e-10 5.448612059e-10 8.317544534e-10 7.803947698e-10 9.073645831e-10 1.01391739e-09 1.655433415e-09 1.689542072e-09 1.222784657e-09 1.145583952e-09 6.912318226e-10 5.255958002e-10 7.68019044e-10 4.59459689e-10 6.181976431e-10 4.57253764e-10 5.397295371e-10 7.822452665e-10 6.738779067e-10 7.611086771e-10 6.776118778e-10 1.059025215e-09 6.914722043e-10 4.009685217e-10 1.409373361e-09 6.239610283e-10 7.842446576e-10 5.995583591e-10 8.477547768e-10 5.698149353e-10 9.219102237e-10 6.933108044e-10 6.808963862e-10 4.70847832e-10 5.227745925e-10 3.163687807e-10 7.094710978e-10 3.997464369e-10 3.351549635e-10 1.491903615e-10 1.372216344e-10 9.019153907e-11 5.333533453e-10 1.063376225e-10 3.582158358e-10 4.22771512e-10 3.026866086e-10 3.005962154e-10 3.550231625e-10 4.724385253e-10 4.18790469e-10 8.024685091e-10 9.749408331e-10 9.412244985e-10 1.198118319e-09 9.370725928e-10 1.794829238e-09 1.896077422e-09 7.628447469e-10 1.403773941e-09 1.511846156e-09 1.24373756e-09 1.291180737e-09 1.612798484e-09 4.821080212e-10 1.451441203e-09 8.029475298e-10 1.39260595e-09 1.292583779e-09 1.328247626e-09 1.587801919e-09 1.215526106e-09 9.082268662e-10 9.188197054e-10 1.715213861e-09 2.474773821e-09 7.659887219e-10 1.343048807e-09 1.460669231e-09 1.962610354e-09 1.416113198e-09 1.685715387e-09 1.507265005e-09 1.203649307e-09 7.678592897e-10 1.153938783e-09 1.325266112e-09 1.576010798e-09 3.452671917e-10 5.733748369e-10 4.360573698e-10 5.021546037e-10 3.78303871e-10 3.281139933e-10 7.272098426e-10 3.750915209e-10 2.565034456e-10 1.644869842e-10 1.306984302e-10 1.293513941e-10 1.750249002e-10 1.675670079e-10 4.507257627e-10 1.997658689e-10 2.982771899e-10 4.989935839e-10 1.014745633e-09 9.162495157e-10 6.142549262e-10 2.81456635e-10 6.403299261e-10 6.495392783e-10 4.995463865e-10 6.240957707e-10 7.012734463e-10 6.908251095e-10 9.787892825e-10 8.988367359e-10 1.087606501e-09 1.015143148e-09 7.710433223e-10 8.800405126e-10 4.816210621e-10 6.742776947e-10 9.024730545e-10 5.152964188e-10 7.616779231e-10 1.479295053e-09 2.485896312e-10 8.341024614e-10 1.009069553e-09 7.205235008e-10 6.728829084e-10 9.398368153e-10 9.981223562e-10 7.705712665e-10 8.097673064e-10 9.542022239e-10 8.731317647e-10 7.793147603e-10 5.109808775e-10 3.070792919e-10 5.27022836e-10 2.90648307e-10 1.084922089e-09 4.987623091e-10 4.792712305e-10 3.549199814e-10 1.427637647e-10 2.565033578e-10 1.812620554e-10 5.89416431e-10 1.622613213e-10 4.25891428e-10 4.853783031e-10 6.542052306e-10 3.487932388e-10 4.886771931e-10 3.265987967e-10 6.108974055e-10 1.223123886e-09 5.071996387e-10 9.767115527e-10 3.654851653e-10 4.00585169e-10 1.156500919e-09 2.86795645e-10 3.841324654e-10 8.737197724e-10 6.489398989e-10 5.219459978e-10 6.530471464e-10 2.48578932e-10 2.524416927e-10 2.58286791e-10 4.146672783e-10 6.689055038e-10 3.657090946e-10 4.31723034e-10 5.50182648e-10 5.737602063e-10 4.664700296e-10 5.533747803e-10 7.990896244e-10 5.76932465e-10 5.254242245e-10 6.106718732e-10 3.836131843e-10 4.327152219e-10 5.641413515e-10 7.706188648e-10 2.114680874e-10 4.474633913e-10 6.53855279e-10 5.977633688e-10 5.077987714e-10 2.263299582e-10 4.199585795e-10 6.806982361e-10 4.869239204e-10 6.289868626e-10 2.875135776e-10 3.722054972e-10 6.105905214e-10 4.171144175e-10 4.124568055e-10 5.048558553e-10 4.033362363e-10 2.71037375e-10 6.513128896e-10 2.875153482e-10 7.287534286e-10 4.581879688e-10 3.444794129e-10 3.328685974e-10 9.617140351e-10 1.227225818e-10 8.962721782e-10 3.080441734e-10 2.041258176e-10 +3.426059404e-10 7.265226644e-10 4.288832785e-10 8.038376661e-10 4.402728419e-10 5.204886217e-10 9.372533716e-10 2.555538175e-10 5.348948355e-10 3.266920337e-10 3.513295916e-10 3.633495657e-10 2.106208652e-10 6.388825888e-10 4.417823897e-10 8.09769549e-10 5.805931062e-10 4.602168663e-10 3.658966039e-10 4.324178554e-10 3.424119115e-10 6.453451413e-10 5.524264758e-10 5.115781097e-10 2.229785329e-10 4.394202021e-10 1.092801916e-09 9.351210054e-10 6.834559002e-10 3.363015684e-10 6.095321293e-10 2.23239819e-10 5.172620579e-10 1.915979611e-10 6.659276556e-10 8.293112706e-10 6.402227291e-10 3.314445372e-10 1.06473033e-09 7.110569428e-10 2.660963203e-10 3.273810916e-10 3.892040893e-10 3.371192922e-10 2.20920099e-10 8.72407115e-10 4.907941101e-10 2.329639104e-10 4.128416551e-10 5.255957914e-10 3.010975811e-10 6.304757063e-10 3.898141933e-10 3.459464462e-10 4.133001902e-10 5.594654513e-10 5.442670673e-10 5.813805083e-10 4.223947203e-10 3.12093385e-10 4.473448864e-10 5.144834842e-10 5.512650142e-10 6.246887044e-10 5.347253518e-10 7.40279375e-10 4.628584508e-10 8.524155163e-10 5.256405372e-10 6.783821362e-10 1.931380542e-10 9.760332256e-10 3.179438578e-10 3.784749045e-10 1.05710474e-09 1.960452739e-10 7.853668818e-10 4.85238967e-10 3.462048968e-10 9.296647159e-10 8.080134032e-10 8.402112576e-10 4.213077085e-10 6.096675373e-10 1.165135569e-09 6.96484213e-10 5.490237114e-10 6.850564987e-10 1.04759514e-09 7.974734624e-10 6.907241399e-11 1.176939853e-09 5.639044121e-10 1.004205943e-09 1.132568752e-09 8.208554829e-10 8.180800926e-10 9.976745121e-10 3.365387135e-10 5.764801855e-10 4.983834869e-10 9.124750442e-10 6.912482071e-10 6.917140947e-10 7.842047507e-10 3.820578487e-10 1.084022016e-09 9.464109925e-10 5.217362349e-10 3.198627916e-10 2.52301798e-10 7.69321534e-10 1.649246026e-10 1.002110375e-09 1.051949655e-09 5.720688331e-10 3.856470106e-10 1.880033249e-10 4.015481384e-10 2.195558301e-10 4.162641285e-11 2.10670766e-10 2.427328201e-10 3.848817611e-10 5.295277263e-10 4.387066254e-10 3.952918163e-10 5.347448596e-10 8.739736629e-10 7.956713943e-10 8.486798345e-10 1.736543588e-09 8.565316608e-10 1.264071915e-09 6.966961695e-10 9.960081903e-10 1.830364659e-09 7.645438939e-10 9.980362575e-10 9.944813222e-10 7.762492384e-10 1.459154139e-09 9.430858539e-10 7.865901713e-10 1.845855205e-09 9.043412269e-10 9.690575817e-10 8.294634194e-10 8.369668588e-10 9.317748562e-10 1.685120552e-09 1.342800075e-09 1.940525131e-09 1.464333827e-09 2.323130664e-09 1.240421409e-09 1.818167576e-09 7.098866922e-10 6.826285455e-10 1.558659423e-09 1.065482694e-09 1.314185682e-09 1.797997306e-09 9.296911655e-10 1.076836477e-09 1.535990963e-09 1.623376422e-09 1.398544363e-09 7.158614206e-10 1.132877468e-09 4.913008318e-10 7.861424931e-10 3.037109988e-10 4.819610485e-10 6.390257348e-10 2.312488425e-10 3.959112855e-10 3.320461682e-10 2.145746795e-10 1.780221809e-10 2.159140685e-10 8.88552016e-11 2.95819822e-10 2.760137644e-10 9.900048854e-11 1.247224993e-10 2.357039674e-10 3.179325884e-10 9.053017436e-10 6.66004851e-10 8.89835866e-10 1.216651269e-09 5.939996401e-10 8.394683424e-10 8.388212381e-10 6.286395934e-10 1.463329089e-10 1.567158919e-09 4.982354306e-10 7.312347165e-10 2.687090249e-10 1.247237073e-09 8.262374926e-10 7.513028515e-10 9.831246991e-10 7.872627461e-10 6.330028659e-10 9.217500744e-10 1.434992838e-09 1.17806776e-09 1.39437679e-09 1.592111925e-09 9.781606277e-10 4.567668674e-10 4.360955586e-10 9.788302649e-10 5.360971236e-10 7.040829913e-10 6.777785997e-10 5.226756517e-10 1.710102339e-10 4.728840768e-10 2.04673658e-10 5.831325906e-10 1.091928496e-09 4.324893772e-10 7.146136561e-10 7.519510178e-10 5.15613258e-10 2.859428601e-10 5.067694898e-10 5.228736993e-10 4.730797579e-10 6.247053982e-10 4.861540749e-10 7.519652377e-10 4.981344455e-10 2.529467381e-10 9.152028481e-10 7.420034359e-10 4.961757484e-10 5.653125654e-10 4.959617043e-10 2.628158205e-10 2.808807741e-10 8.507357674e-10 7.382409707e-10 4.489356414e-10 2.287008109e-10 8.319511882e-10 4.77877668e-10 4.85517942e-10 5.95179806e-10 3.68601995e-10 1.778204939e-10 2.177624466e-10 3.19180706e-10 2.400358895e-10 3.946869268e-10 3.097166445e-10 7.603604753e-10 8.501736779e-10 3.465502367e-10 4.058309297e-10 2.602592818e-10 1.888747949e-10 7.13708353e-10 4.799470698e-10 5.999239057e-10 5.498200034e-10 9.01824117e-10 6.306108172e-10 6.417907945e-10 7.125486605e-10 7.128106484e-10 3.198199341e-10 4.643144651e-10 3.343049882e-10 9.482793318e-10 4.564276945e-10 7.078891824e-10 3.599291537e-10 5.851994214e-10 2.037277575e-10 2.963491412e-10 5.23795306e-10 3.086664685e-10 4.756191305e-10 2.967473708e-10 6.232727648e-10 9.316057912e-10 4.048253337e-10 2.899747745e-10 5.34588919e-10 4.460803958e-10 2.788080958e-10 4.864871404e-10 3.798166172e-10 7.467904534e-10 4.889748525e-10 +4.004726235e-10 3.804145506e-10 7.279219128e-10 4.819154747e-10 5.845629384e-10 5.580925788e-10 6.577580593e-10 3.528757608e-10 2.954726393e-10 6.578450884e-10 5.802022387e-10 4.217062495e-10 2.006499165e-10 2.169549854e-10 1.772766911e-10 5.377447378e-10 8.152842007e-10 6.152290164e-10 1.045250475e-09 5.188737193e-10 6.787669613e-10 2.934219788e-10 3.936641686e-10 2.581589044e-10 5.158282823e-10 1.099876623e-09 5.474724864e-10 2.905178863e-10 4.041886136e-10 2.824513595e-10 7.543730998e-10 7.528550021e-10 3.96472053e-10 4.525212735e-10 4.357765929e-10 4.92300283e-10 5.332067697e-10 3.168143217e-10 4.307277903e-10 3.809785267e-10 4.918582154e-10 3.518463103e-10 4.947036293e-10 1.043203051e-10 2.734818372e-10 3.945963499e-10 8.062728844e-10 5.137028773e-10 4.077101998e-10 6.822551549e-10 5.926503411e-10 2.698587353e-10 3.696112368e-10 4.719804932e-10 9.187383526e-10 7.581810804e-10 7.06618854e-10 3.523891514e-10 6.388640363e-10 4.129160741e-10 2.315238215e-10 3.072527287e-10 6.30020097e-10 3.586476366e-10 5.443375984e-10 4.434344263e-10 5.79106237e-10 5.598707822e-10 7.888085686e-10 5.935701358e-10 8.029052536e-10 2.344402316e-10 5.240791074e-10 3.315348416e-10 2.88472376e-10 2.984043631e-10 1.91444611e-10 7.147394603e-10 4.702043517e-10 2.215385421e-10 3.580916086e-10 4.435471834e-10 5.384607975e-10 9.576902224e-10 9.823018632e-10 1.039339789e-09 9.529094722e-10 1.280158777e-09 9.295369759e-10 6.801902994e-10 9.625766016e-10 8.886153617e-10 4.69969053e-10 9.625612638e-10 1.03949307e-09 9.661250909e-10 7.247347806e-10 1.000209349e-09 5.367104148e-10 2.392636166e-10 5.482470672e-10 1.102487729e-09 8.793794724e-10 1.114190064e-09 7.960907554e-10 3.904788782e-10 5.378268663e-10 5.736942244e-10 5.871798093e-10 6.993087433e-10 5.664916749e-10 1.004715217e-09 5.440595748e-10 8.126994625e-10 4.702478763e-10 3.774836743e-10 3.330779821e-10 2.388515035e-10 1.590891895e-10 3.418564496e-10 9.342783132e-11 3.112407995e-10 3.194203437e-10 5.158119529e-10 3.404263208e-10 1.444275546e-10 6.226977432e-10 3.452803578e-10 6.672612657e-10 1.76804932e-09 1.096681696e-09 7.966143809e-10 9.728591914e-10 1.044384519e-09 1.659973162e-09 1.21935513e-09 1.830557491e-09 1.148716751e-09 1.588016203e-09 1.668784751e-09 9.432043732e-10 8.599474376e-10 9.099156305e-10 1.012890428e-09 1.39373233e-09 1.688184226e-09 9.723285498e-10 1.070418579e-09 1.523226443e-09 1.136486301e-09 8.081400296e-10 9.50466925e-10 5.554112003e-10 1.783563049e-09 2.477802837e-09 1.482037817e-09 1.377760396e-09 1.448128274e-09 1.281520646e-09 6.590218364e-10 2.63195777e-09 1.390663029e-09 1.30491374e-09 1.616309836e-09 1.548060254e-09 1.298978806e-09 1.098667678e-09 7.689243996e-10 1.379806278e-09 1.073006255e-09 9.682306064e-10 9.941610498e-10 4.36261611e-10 4.500402357e-10 3.800221914e-10 4.343348721e-10 6.098642608e-10 5.356509936e-10 3.143280026e-10 2.992383754e-10 7.52970163e-11 4.803633203e-11 1.496897285e-10 3.081862313e-10 3.972310978e-10 4.738251957e-10 5.730305972e-10 5.574574829e-10 5.224019673e-10 4.325096373e-10 1.203296171e-09 7.560465299e-10 7.246192607e-10 1.031127106e-09 5.469928691e-10 7.38291949e-10 7.390641205e-10 1.232346027e-09 5.659218206e-10 7.617663529e-10 6.87687802e-10 9.235439018e-10 8.409138247e-10 6.960022962e-10 1.036198163e-09 7.593409756e-10 9.487998833e-10 6.65606924e-10 7.260351419e-10 6.089524448e-10 6.945414807e-10 1.181046437e-09 1.46164337e-09 1.892783412e-09 9.525535871e-10 9.892274878e-10 1.008387975e-09 7.38135377e-10 7.649839572e-10 2.543169083e-10 2.682200911e-10 2.642911649e-10 6.513227692e-10 5.947799232e-10 1.333383373e-10 3.334518932e-10 6.349092599e-10 3.273113511e-10 5.867855651e-10 6.074998334e-10 2.048205396e-10 4.198532353e-10 5.17949377e-10 9.993344136e-10 7.773452228e-10 6.050737151e-10 1.070342328e-09 3.019030853e-10 5.137193634e-10 5.021852631e-10 5.044554447e-10 3.538971772e-10 6.296268653e-10 6.680987346e-10 4.906702514e-10 4.736075245e-10 5.695302127e-10 7.550113213e-10 2.919683027e-10 4.701964026e-10 5.784200189e-10 4.336755636e-10 2.365462824e-10 2.509780706e-10 4.050711327e-10 3.393205618e-10 3.695733271e-10 3.36646446e-10 4.680792289e-10 2.264869718e-10 2.434319053e-10 4.713369828e-10 3.655835246e-10 4.488914137e-10 6.492507082e-10 4.804898752e-10 6.175497343e-10 5.572366634e-10 3.96989584e-10 4.498423364e-10 8.188905746e-10 6.146591655e-10 5.414968603e-10 6.392246365e-10 2.908689327e-10 5.919222447e-10 9.611612938e-10 6.79885825e-10 7.548943306e-10 1.072954381e-09 4.678528508e-10 7.945031556e-10 5.030451784e-10 7.197216515e-10 2.653847591e-10 4.298690262e-10 7.623384918e-10 1.006447108e-09 2.419662051e-10 7.00787504e-10 2.926516939e-10 2.655859201e-10 3.566960568e-10 8.152883167e-10 5.673236967e-10 2.991335858e-10 7.372815834e-10 1.242619447e-09 2.482027922e-10 3.118965807e-10 +5.607847094e-10 8.289122665e-10 5.750553972e-10 3.674754705e-10 5.544785591e-10 7.530694766e-10 2.558485853e-10 8.202595797e-10 6.51960657e-10 6.650257203e-10 2.768340549e-10 5.494168337e-10 3.955893511e-10 5.29610591e-10 6.463649439e-10 4.388005259e-10 4.469851302e-10 7.123576943e-10 6.276106871e-10 6.896091416e-10 3.460540565e-10 6.288662508e-10 5.702987778e-10 5.478572492e-10 3.739723534e-10 4.876197379e-10 5.353308502e-10 7.665992421e-10 6.435132514e-10 5.653646643e-10 2.352433643e-10 5.936831256e-10 3.225590659e-10 5.866245294e-10 3.066900979e-10 2.506911858e-10 1.77903877e-10 5.671431568e-10 4.709959672e-10 5.51313003e-10 4.556282682e-10 3.929727496e-10 4.176469877e-10 2.188970865e-10 6.100163559e-10 4.959507073e-10 4.506082891e-10 5.584568742e-10 4.562754119e-10 8.477289409e-10 3.449438573e-10 5.515201514e-10 6.475012533e-10 7.41449074e-10 6.589178161e-10 6.550001922e-10 8.515962535e-10 5.279324802e-10 7.925972038e-10 3.49018938e-10 4.532396934e-10 4.529173894e-10 5.481256813e-10 3.544666221e-10 4.624416299e-10 7.649301307e-10 7.111893033e-10 5.323658609e-10 5.702265461e-10 6.310962089e-10 2.724629746e-10 2.151902812e-10 2.454303462e-10 6.589409496e-10 5.120250978e-10 6.8715283e-10 3.984919816e-10 6.879857716e-10 4.604243899e-10 7.792707278e-10 7.009256677e-10 6.904436659e-10 1.11766638e-09 4.638712995e-10 5.813133864e-10 1.179449385e-09 1.844781844e-09 8.807959382e-10 7.529143656e-10 8.500659445e-10 9.414019527e-10 9.341993988e-10 9.085676514e-10 9.321106842e-10 1.166547532e-09 6.130322882e-10 1.036114052e-09 6.105440179e-10 6.100075467e-10 6.382894713e-10 6.428172414e-10 6.548262957e-10 5.534905203e-10 3.773800406e-10 6.439949268e-10 5.641022786e-10 1.058756079e-09 7.856372732e-10 7.307303206e-10 3.163956778e-10 5.636622047e-10 4.54057228e-10 4.691578264e-10 1.9051948e-10 1.607571196e-10 4.384215866e-10 3.055504159e-10 4.51677622e-10 3.454987562e-10 4.414090646e-10 3.334458408e-10 4.196441379e-10 5.515526686e-10 2.735919945e-10 5.701095855e-10 6.546755158e-10 9.753891378e-10 1.440656183e-09 1.091580794e-09 1.525700619e-09 1.081473056e-09 6.851947773e-10 1.593586828e-09 1.796243602e-09 8.85146827e-10 1.094271478e-09 1.293385524e-09 1.337781387e-09 1.210410304e-09 1.693426585e-09 1.52660903e-09 1.307898047e-09 7.373136724e-10 1.395299248e-09 1.271181206e-09 1.507791225e-09 9.19594712e-10 1.421376805e-09 2.514030004e-09 9.984136348e-10 1.632832769e-09 3.722787041e-10 1.364803257e-09 1.483575415e-09 1.360559192e-09 1.312051883e-09 1.124739521e-09 1.832140375e-09 9.147386297e-10 1.084287978e-09 8.236265529e-10 1.126926021e-09 1.268880911e-09 9.672384842e-10 1.741917894e-09 6.401968658e-10 2.468198978e-09 8.430384821e-10 8.492615073e-10 1.45553844e-09 1.702605756e-09 1.36295245e-09 6.652852948e-10 9.239691722e-10 5.31049576e-10 7.386305774e-10 2.730998832e-10 5.357994726e-10 6.534745947e-10 2.199954786e-10 1.748404397e-10 9.158801414e-11 1.016706921e-10 4.74975961e-10 2.487188162e-10 5.21256333e-10 8.110619664e-10 3.764490314e-10 7.311369444e-10 5.484541718e-10 1.141073281e-09 4.334211405e-10 4.891342653e-10 4.420129052e-10 5.744100558e-10 3.044413213e-10 9.175937385e-10 6.194783426e-10 1.019462622e-09 1.120555998e-09 4.684007952e-10 7.152006904e-10 8.708617539e-10 9.212096791e-10 1.28301516e-09 6.91200259e-10 1.106083683e-09 7.794354302e-10 9.733699631e-10 1.1517792e-09 1.080447167e-09 1.531138298e-09 7.783411009e-10 9.805056403e-10 1.132242623e-09 7.042814111e-10 8.786187916e-10 5.436094535e-10 9.010854395e-10 8.54258247e-10 7.119785979e-10 5.021173069e-10 7.851963989e-10 3.730647822e-10 5.935629853e-10 6.594647179e-10 6.185792285e-10 1.261570861e-09 5.416301349e-10 3.895435914e-10 9.063763071e-10 1.429612201e-09 8.844554954e-10 5.598519583e-10 8.548026072e-10 2.277791562e-10 5.220455531e-10 2.421146249e-10 2.273590086e-10 2.841242389e-10 1.046030001e-09 5.997666504e-10 6.727029587e-10 7.311842031e-10 6.153455839e-10 6.57279135e-10 7.285267196e-10 5.435133436e-10 7.766014222e-10 3.130835564e-10 3.768638272e-10 4.316426291e-10 7.301207492e-10 2.819590825e-10 4.548190307e-10 5.443507963e-10 6.133569142e-10 4.208231295e-10 6.633156731e-10 6.170876089e-10 9.737671005e-10 4.269545083e-10 3.39997857e-10 4.334476406e-10 3.938717635e-10 5.832635501e-10 3.210579232e-10 6.211582195e-10 4.939682057e-10 3.626374335e-10 6.783649188e-10 4.744083681e-10 5.739091193e-10 4.217363801e-10 5.210633759e-10 4.46497866e-10 3.720859441e-10 4.423432317e-10 6.29806236e-10 3.817383244e-10 2.960162423e-10 5.235526035e-10 8.459305135e-10 8.655200088e-10 6.235718289e-10 3.521084777e-10 7.005808621e-10 2.419391331e-10 8.307623338e-10 4.322672646e-10 7.159932536e-10 2.718137395e-10 6.710809528e-10 5.483403117e-10 7.793204784e-10 2.990173433e-10 1.115849443e-09 4.214502687e-10 4.948919596e-10 5.681961489e-10 +2.284622869e-10 4.870269152e-10 8.846758832e-10 4.166287422e-10 4.732786623e-10 6.177332741e-10 6.216897277e-10 8.835730401e-10 2.730586566e-10 9.471163579e-10 1.188785518e-09 3.620987382e-10 5.442440733e-10 6.995165773e-10 6.999697345e-10 1.809638454e-10 8.292483547e-10 1.111272615e-09 6.750084929e-10 1.881734153e-10 3.672106028e-10 1.569860893e-10 8.125514495e-10 7.349120888e-10 4.479187795e-10 5.886171168e-10 5.983105042e-10 5.062520363e-10 5.426884104e-10 6.447169477e-10 4.606206646e-10 4.137861849e-10 5.805250598e-10 7.462990746e-10 3.777647958e-10 3.32670617e-10 5.34286542e-10 6.99219732e-10 9.074083156e-10 6.214188485e-10 9.243382079e-10 6.655452819e-10 4.114558078e-10 3.081382101e-10 6.547541617e-10 5.779790374e-10 4.167098793e-10 5.027905699e-10 3.551389269e-10 3.079567387e-10 5.553297396e-10 1.818646623e-10 3.861232434e-10 6.31914737e-10 4.955018517e-10 2.857845378e-10 2.970668971e-10 2.909561175e-10 1.183930995e-09 9.500311321e-10 7.65985728e-10 2.819271108e-10 6.300235081e-10 4.403518002e-10 6.095821511e-10 4.197570014e-10 1.179792664e-09 1.152319191e-09 5.03663419e-10 6.15072445e-10 5.033531274e-10 5.246761331e-10 4.403537166e-10 5.949379312e-10 3.933767294e-10 6.166616192e-10 3.960464501e-10 5.714012744e-10 2.461101361e-10 3.779993992e-10 9.437884834e-10 1.155153025e-09 6.078158694e-10 8.848670547e-10 8.612697964e-10 1.074933962e-09 6.918448992e-10 1.498797628e-09 1.063422954e-09 1.897008947e-09 1.162889128e-09 6.887718032e-10 8.085726806e-10 8.594852679e-10 1.034630028e-09 8.131388569e-10 6.517894197e-10 1.365453826e-09 9.575669774e-10 1.086433056e-09 1.109340793e-09 9.443327947e-10 1.12494355e-09 3.77228202e-10 4.007086996e-10 1.018310893e-09 6.633226207e-10 1.041604055e-09 6.967139187e-10 9.532624344e-10 4.956447234e-10 4.564695644e-10 6.025952599e-10 1.031339668e-09 3.228340785e-10 1.361979226e-10 1.578962174e-10 1.834221031e-10 1.695449017e-10 4.785848828e-10 2.516141028e-10 5.18904829e-10 3.414432844e-10 7.389443221e-10 9.294369311e-10 8.075508058e-10 1.558321976e-09 9.313238884e-10 7.867733674e-10 1.479382123e-09 9.907494205e-10 1.220745886e-09 1.618857395e-09 1.314494774e-09 1.347198407e-09 1.418602331e-09 2.329370954e-09 1.03727324e-09 1.902390882e-09 8.704765379e-10 9.207500542e-10 1.092475842e-09 1.320493668e-09 8.829233088e-10 1.085252933e-09 1.791542679e-09 1.004730175e-09 1.856648423e-09 8.145287912e-10 1.443358394e-09 1.151392282e-09 1.218125182e-09 1.449719375e-09 1.022457031e-09 1.400537457e-09 1.821310083e-09 1.029158798e-09 1.194083136e-09 6.458561263e-10 1.313326648e-09 2.020785018e-09 1.802126083e-09 1.218194011e-09 9.178741954e-10 2.055900787e-09 2.13177733e-09 2.156161232e-09 1.390481713e-09 1.149423576e-09 1.85715212e-09 1.925348408e-09 7.250194895e-10 1.083405666e-09 1.213738358e-09 6.310056486e-10 1.105587325e-09 7.329578402e-10 6.167078247e-10 6.608784939e-10 3.771526761e-10 3.83000634e-10 5.591803387e-12 6.745520076e-11 2.395593211e-10 4.240074563e-10 3.583075323e-10 3.037788008e-10 2.663021983e-10 2.490674442e-10 6.745503906e-10 8.419457123e-10 7.64236942e-10 4.423549164e-10 8.827304274e-10 6.444123765e-10 8.285360465e-10 1.094105097e-09 8.470686751e-10 1.15783253e-09 9.686412126e-10 6.032319425e-10 8.705335845e-10 1.277995714e-09 1.17039243e-09 1.2131007e-09 8.146881172e-10 9.743800961e-10 1.201857706e-09 6.876618393e-10 7.900422734e-10 1.873091447e-09 1.191193598e-09 1.070047204e-09 1.94789651e-09 9.134062273e-10 8.673589419e-10 7.049070002e-10 6.209885335e-10 8.388914593e-10 5.191264147e-10 5.452533502e-10 1.052761501e-09 1.482679628e-10 6.971870734e-10 4.653453206e-10 7.408867867e-10 5.407422986e-10 5.794619481e-10 3.583967112e-10 5.115581455e-10 5.60682471e-10 5.165701385e-10 4.88787338e-10 1.748182787e-10 4.883663454e-10 7.814966709e-10 4.572266617e-10 6.094162948e-10 6.447648062e-10 2.803965168e-10 3.851827717e-10 3.916731723e-10 4.444250721e-10 6.217648075e-10 1.108736798e-09 4.34323648e-10 6.066124768e-10 2.8814052e-10 5.681857626e-10 4.702880575e-10 6.149456943e-10 4.679352233e-10 1.064901948e-09 3.6972754e-10 5.215256765e-10 4.869823304e-10 4.739929942e-10 3.437907741e-10 1.218787972e-09 4.706203839e-10 2.576790788e-10 1.494653597e-10 6.970960974e-10 8.496128201e-10 8.190596371e-10 4.889113583e-10 7.817085246e-10 2.609060616e-10 9.605635134e-10 5.581405299e-10 9.423053486e-10 5.48668497e-10 4.070639521e-10 4.765960137e-10 2.809758259e-10 5.754662602e-10 7.559882287e-10 5.3649273e-10 6.959059421e-10 6.290493501e-10 2.986447358e-10 5.511104622e-10 3.608882012e-10 1.827370796e-10 6.951914608e-10 7.595291987e-10 4.391916884e-10 3.786394738e-10 5.756241876e-10 5.570619622e-10 5.635309872e-10 9.4896854e-10 8.087377444e-10 2.481702416e-10 6.095670087e-10 4.78342105e-10 7.784008321e-10 4.277096354e-10 7.573951118e-10 5.651772846e-10 +5.636274706e-10 3.547627789e-10 4.001596928e-10 8.259177825e-10 4.834807604e-10 5.183068047e-10 1.049045165e-09 2.011626485e-10 6.28808618e-10 9.591767591e-10 2.098422537e-10 4.544940543e-10 8.368995075e-10 5.903608197e-10 3.317641044e-10 6.073809338e-10 8.392835408e-10 7.109108326e-10 6.183811672e-10 1.365334156e-10 7.069478347e-10 1.194878375e-09 5.356140599e-10 3.669890575e-10 5.310764614e-10 3.097939891e-10 4.442426976e-10 7.225700002e-10 4.994264758e-10 5.607619361e-10 4.359669887e-10 7.582001746e-10 3.9523426e-10 5.878463101e-10 5.626461684e-10 6.780936245e-10 8.192258187e-10 5.155717066e-10 5.617508229e-10 5.629685659e-10 8.427192103e-10 3.652182012e-10 4.304664425e-10 3.080798612e-10 7.958200761e-10 4.490612131e-10 2.390881061e-10 7.570061671e-10 6.590719627e-10 4.406339859e-10 2.747751601e-10 2.761497251e-10 4.085993725e-10 8.483919568e-10 5.212951491e-10 6.254296539e-10 5.792155811e-10 6.019793572e-10 6.709308502e-10 4.12452018e-10 7.620142549e-10 7.850777743e-10 4.032430922e-10 6.866370009e-10 2.656891167e-10 2.924927653e-10 6.027926703e-10 3.001815086e-10 2.902567813e-10 7.360288159e-10 5.154640416e-10 6.83930237e-10 6.718119088e-10 3.39694671e-10 5.637412379e-10 6.477579002e-10 2.765696239e-10 2.190055334e-10 5.009367258e-10 7.641374899e-10 9.0087696e-10 2.75015898e-10 2.561410948e-10 1.082879244e-09 6.766469963e-10 1.277418979e-09 1.542049586e-09 1.144634898e-09 7.374110275e-10 1.457241968e-09 1.08093073e-09 5.697975618e-10 1.205609309e-09 8.520616491e-10 1.329117807e-09 1.383879384e-09 6.902505609e-10 1.503234619e-09 7.870702007e-10 8.001361176e-10 9.095057677e-10 1.072076939e-09 7.569006611e-10 9.963129697e-10 6.540050869e-10 8.607732354e-10 7.518637905e-10 7.272032688e-10 1.244482055e-09 2.984589422e-10 5.149881613e-10 3.799732412e-10 2.731185328e-10 2.15325749e-10 2.783703936e-10 2.142763314e-10 1.396635865e-10 9.010293358e-11 5.096778293e-10 3.518156987e-10 4.153080195e-10 5.292617924e-10 6.337617273e-10 8.631885048e-10 1.235168732e-09 1.239818778e-09 7.513125112e-10 1.113929517e-09 1.805529715e-09 1.826409498e-09 1.215622797e-09 1.500573362e-09 1.682814862e-09 2.108197273e-09 1.712578093e-09 1.26816538e-09 2.365205701e-09 1.323367749e-09 1.057874307e-09 6.010809153e-10 1.52252669e-09 1.573760531e-09 1.719197805e-09 1.431764524e-09 6.16871905e-10 1.45644466e-09 1.634557445e-09 2.051270633e-09 1.43232538e-09 1.685181409e-09 1.562607837e-09 1.000416182e-09 1.721545433e-09 6.757539478e-10 1.070086185e-09 2.000852359e-09 7.31310457e-10 1.797462659e-09 1.166436974e-09 1.936032961e-09 2.525282304e-09 1.734860386e-09 1.939935334e-09 1.354371162e-09 8.398746086e-10 1.026078096e-09 4.156015412e-10 1.101633927e-09 1.628664928e-09 1.519989638e-09 9.68493499e-10 1.34894912e-09 1.86247652e-09 6.855475215e-10 9.898610576e-10 5.237670553e-10 5.624534008e-10 3.099664946e-10 9.359684199e-10 3.8109054e-10 4.834949923e-10 2.976378083e-10 4.840342521e-10 6.488877431e-11 5.101823541e-10 1.425843476e-10 5.026850286e-10 6.977908661e-10 2.980383775e-10 5.790384914e-10 6.395654317e-10 6.453541202e-10 5.996969659e-10 4.120492839e-10 4.064376069e-10 3.095884945e-10 6.452717439e-10 7.430816078e-10 7.949496274e-10 6.422027501e-10 7.149581289e-10 6.190429918e-10 1.056332182e-09 1.030813859e-09 9.008208915e-10 1.259424491e-09 4.199630328e-10 8.50679768e-10 6.718161374e-10 8.589825049e-10 8.524466079e-10 5.291488124e-10 1.554210752e-09 1.362832626e-09 8.361201711e-10 8.254908157e-10 3.058076335e-10 1.223970661e-09 8.360563743e-10 3.375999771e-10 6.997372167e-10 2.939897356e-10 1.070278358e-09 4.267037941e-10 3.397288815e-10 5.355408343e-10 6.627796578e-10 8.123997783e-10 1.186981122e-10 6.058597171e-10 9.40849918e-10 4.089376617e-10 6.297834883e-10 7.460440434e-10 5.598790317e-10 3.669548385e-10 6.160320517e-10 7.06858697e-10 8.945918888e-10 5.431955276e-10 9.473221028e-10 6.821458614e-10 7.497640858e-10 1.332903049e-09 8.066987702e-10 5.669746493e-10 3.494755638e-10 7.236024776e-10 6.763104368e-10 1.98615775e-10 6.231359623e-10 3.844428906e-10 5.683920173e-10 9.04942864e-10 3.908099555e-10 4.118604858e-10 7.03524136e-10 3.791110775e-10 5.667027959e-10 3.218313415e-10 5.068968357e-10 8.968392108e-10 8.572908751e-10 7.004770239e-10 4.932461785e-10 3.78178206e-10 1.598219575e-10 9.301258348e-10 1.032178351e-09 5.977574044e-10 9.70926322e-10 7.811736265e-10 3.545991806e-10 3.628767741e-10 8.964392001e-10 3.619312105e-10 4.867277422e-10 6.25545201e-10 4.539533825e-10 5.535564881e-10 4.318597388e-10 6.017926293e-10 4.258922099e-10 1.073048223e-10 3.539334988e-10 2.700521163e-10 4.829944398e-10 7.951882255e-10 4.731634367e-10 5.416771065e-10 7.595809051e-10 4.141355474e-10 4.570482396e-10 5.389585084e-10 5.700987907e-10 1.004426973e-09 2.535227412e-10 7.93500619e-10 4.279953735e-10 4.373666863e-10 +2.001211433e-10 3.85201562e-10 6.600815848e-10 6.184265787e-10 3.790654439e-10 6.539534916e-10 8.728805647e-10 7.347649552e-10 5.481192715e-10 5.585233556e-10 5.132797696e-10 7.860951456e-10 3.499939502e-10 6.657773911e-10 4.363533624e-10 7.488894189e-10 6.556546826e-10 3.053540781e-10 7.14987223e-10 4.610694793e-10 3.020684506e-10 8.616137705e-10 5.491768999e-10 4.861287539e-10 7.978719469e-10 5.081088952e-10 3.543348272e-10 4.717747939e-10 4.546984046e-10 5.891374914e-10 7.910604947e-10 4.215882985e-10 8.923932286e-10 6.037465696e-10 8.044308801e-10 8.035379476e-10 5.162521771e-10 6.955055375e-10 5.613651001e-10 9.690706878e-10 7.165880641e-10 2.715369937e-10 7.532824641e-10 6.904169464e-10 5.752653732e-10 5.624517321e-10 2.187809123e-10 4.676420669e-10 1.455625532e-10 8.625286552e-10 3.079572159e-10 1.458162853e-10 2.025256949e-10 2.652643295e-10 3.297286002e-10 7.26878048e-10 4.813703022e-10 7.404850114e-10 4.947657919e-10 5.711329045e-10 7.263683525e-10 4.560771898e-10 7.19739933e-10 3.7014033e-10 5.578580714e-10 4.4013473e-10 8.954743193e-10 3.984318694e-10 3.87599546e-10 4.26431447e-10 4.692904399e-10 4.362752075e-10 2.711308558e-10 5.129848104e-10 5.792749839e-10 4.136127867e-10 5.066663544e-10 6.22575566e-10 4.681760531e-10 3.558018386e-10 4.224332933e-10 4.844323204e-10 6.555664733e-10 5.32461123e-10 1.006696454e-09 1.218562653e-09 1.350985656e-09 1.576099824e-09 9.641557347e-10 1.253336264e-09 9.303700455e-10 7.29886236e-10 1.304305974e-09 5.547641314e-10 1.053958396e-09 6.989141505e-10 8.00813416e-10 6.2940523e-10 7.554039345e-10 6.819756852e-10 1.046695899e-09 1.142493573e-09 8.829280046e-10 1.892033785e-09 2.567004337e-10 7.201324088e-10 7.520427203e-10 8.843136519e-10 8.595330136e-10 7.433417238e-10 3.630060036e-10 4.923758516e-10 4.122854677e-10 6.860597744e-10 2.524733556e-10 8.132246135e-11 3.091342505e-10 8.200112243e-10 4.367614349e-10 2.593120631e-10 4.428498874e-10 4.092881361e-10 3.732618949e-10 1.245648495e-09 1.044984297e-09 9.027659398e-10 6.302892966e-10 2.578735508e-09 1.1911706e-09 2.187659697e-09 1.016118714e-09 1.00778681e-09 9.842616074e-10 1.528325308e-09 1.581640973e-09 1.78154965e-09 8.098410011e-10 1.299627163e-09 1.501936568e-09 1.056865249e-09 7.140387144e-10 2.941684115e-09 2.486080959e-09 1.164130821e-09 1.393845869e-09 1.834244039e-09 1.565033746e-09 1.553936607e-09 1.600929461e-09 8.117599993e-10 8.731717756e-10 8.430452959e-10 1.211700385e-09 7.77543735e-10 5.922002397e-10 1.662031675e-09 1.26677305e-09 1.888449422e-09 9.517802091e-10 1.520847618e-09 8.744271247e-10 8.974366905e-10 1.475856257e-09 1.668072024e-09 1.719957803e-09 7.266537774e-10 1.094867775e-09 1.672565539e-09 1.658813499e-09 1.52241501e-09 1.180945955e-09 1.293342038e-09 2.037253557e-09 2.233431982e-09 1.373975233e-09 1.883009856e-09 7.524899901e-10 8.9335238e-10 6.496818535e-10 5.842763618e-10 1.852046201e-10 3.37824875e-10 3.383780179e-10 4.69537948e-10 2.6136101e-10 2.54438092e-10 3.765443023e-10 2.936090466e-10 4.96845886e-10 4.650282593e-10 1.057672457e-09 8.357472557e-10 8.74793948e-10 7.737977692e-10 8.869298109e-10 1.017337381e-09 9.939445532e-10 1.099861796e-09 8.711902586e-10 6.881786546e-10 7.112358437e-10 7.782391207e-10 8.279912474e-10 6.593108946e-10 1.030734365e-09 9.255337088e-10 1.072406649e-09 8.285567325e-10 8.877968315e-10 5.996765131e-10 9.1476286e-10 1.060333323e-09 1.413871847e-09 1.029224894e-09 4.75622752e-10 6.667177287e-10 1.167978065e-09 4.921023849e-10 3.427697396e-10 5.118245519e-10 5.159073279e-10 4.942017686e-10 1.174541526e-09 3.843673227e-10 2.880917424e-10 4.366730357e-10 4.285072553e-10 6.663418389e-10 7.172868011e-10 6.112724326e-10 6.247215423e-10 6.306393478e-10 7.880450589e-10 5.800802998e-10 2.87637972e-10 9.414947549e-10 4.419294113e-10 7.480876011e-10 9.76254221e-10 6.341411635e-10 5.750498585e-10 8.685791496e-10 3.896088978e-10 8.170952891e-10 5.218133904e-10 4.592605401e-10 3.574960321e-10 3.850896893e-10 3.868857255e-10 6.036276198e-10 2.708420474e-10 5.966478049e-10 2.669667044e-10 4.814169771e-10 2.802611848e-10 5.919319653e-10 1.631364596e-10 7.623966425e-10 5.757998823e-10 6.353729976e-10 1.069191564e-09 2.006766417e-10 1.129763025e-09 6.711411488e-10 3.061786579e-10 5.79904875e-10 5.015359935e-10 5.195285913e-10 3.446706817e-10 4.114337635e-10 5.46213254e-10 3.246483094e-10 4.965252582e-10 7.193933769e-10 3.550638091e-10 4.820600804e-10 3.958788333e-10 6.427150573e-10 4.317300848e-10 3.667562423e-10 2.474429688e-10 4.131704195e-10 6.703041797e-10 4.839933693e-10 4.483850712e-10 6.542855236e-10 3.240087726e-10 8.629843211e-10 4.253276725e-10 3.120552514e-10 2.739617617e-10 7.607827577e-10 2.449239227e-10 2.42391169e-10 8.981579804e-10 3.706386759e-10 1.115369911e-09 2.643637755e-10 5.411847185e-10 3.276071737e-10 +7.392956795e-10 4.231388714e-10 3.621018369e-10 3.293415999e-10 1.067934032e-09 1.050045431e-09 7.068358187e-10 1.004714017e-09 7.118194673e-10 7.901780383e-10 6.468990584e-10 7.687548231e-10 7.728754426e-10 4.895058143e-10 4.390878885e-10 3.282802304e-10 4.929566845e-10 3.505797843e-10 1.227986749e-09 9.710856109e-10 6.458416137e-10 3.778762961e-10 5.842674971e-10 5.406094471e-10 6.337060195e-10 3.944441477e-10 5.428281279e-10 4.0530918e-10 3.681869919e-10 6.644698857e-10 8.562365548e-10 1.093252434e-09 4.731807475e-10 6.787278191e-10 5.590269929e-10 5.063870112e-10 7.517412249e-10 5.944851145e-10 5.912573871e-10 1.095356452e-09 4.693224337e-10 4.963345666e-10 2.586528987e-10 3.901401308e-10 1.017961646e-09 4.330300422e-10 6.756447266e-10 2.408103876e-10 6.775630419e-10 6.055969565e-10 7.497476002e-10 7.237671198e-10 8.921005582e-10 9.575140244e-10 9.283887968e-10 3.399670138e-10 3.402466685e-10 3.961146813e-10 7.008354613e-10 9.170740649e-10 8.641167163e-10 7.557879458e-10 5.785065085e-10 7.325788292e-10 6.029918487e-10 7.197865548e-10 7.776033228e-10 5.182853883e-10 6.241196882e-10 6.502182572e-10 6.369297828e-10 1.26936026e-09 5.074842195e-10 5.679406958e-10 6.884580731e-10 5.052348517e-10 2.269197833e-10 5.099606383e-10 5.12324065e-10 6.828736097e-10 3.595604889e-10 6.713559905e-10 1.066567475e-09 1.092881844e-09 5.429885593e-10 1.48264697e-09 1.136099976e-09 8.003043937e-10 8.722152078e-10 1.264208449e-09 9.209318708e-10 8.94755235e-10 4.965999119e-10 6.568564746e-10 8.268254075e-10 4.599132837e-10 9.715793686e-10 4.597873601e-10 3.296887136e-10 1.045247476e-09 6.760608797e-10 1.100821819e-09 7.538649292e-10 6.231866119e-10 1.182598873e-09 7.558256519e-10 5.100429245e-10 7.115148491e-10 1.016707417e-09 4.382176677e-10 3.786042177e-10 3.441875102e-10 1.547214678e-10 1.992930084e-10 1.235042805e-10 1.936765335e-10 2.364648586e-10 4.005202507e-10 4.31944128e-10 6.264838689e-10 4.095171908e-10 3.72032726e-10 4.005113453e-10 2.023392889e-09 1.480738457e-09 1.527069606e-09 2.349688602e-09 1.009288793e-09 1.071214527e-09 9.391303277e-10 7.316833339e-10 1.385692006e-09 9.903386129e-10 1.58274373e-09 1.106719874e-09 1.198222321e-09 1.562702739e-09 7.71717136e-10 1.108645762e-09 5.460860544e-10 1.528336405e-09 1.073335035e-09 1.288004741e-09 1.893793293e-09 1.077158838e-09 1.576574247e-09 9.155384991e-10 1.481092361e-09 1.652166e-09 9.684128111e-10 8.546212547e-10 1.060720911e-09 1.429576295e-09 1.066512749e-09 1.296499358e-09 1.781827807e-09 1.887031399e-09 1.48623905e-09 1.856561855e-09 8.231354785e-10 1.554618497e-09 1.395929429e-09 1.817848404e-09 8.884427194e-10 1.536482578e-09 1.027896988e-09 1.550612843e-09 7.207877496e-10 1.39085972e-09 1.736900281e-09 1.862592986e-09 1.354303039e-09 1.891095168e-09 1.601178336e-09 1.514658223e-09 1.349021129e-09 1.617063906e-09 8.877733565e-10 1.202281621e-09 6.24541909e-10 3.761582828e-10 3.125601582e-10 7.003409725e-10 3.577322346e-10 3.324027515e-10 5.88874754e-11 1.70059651e-10 7.050684878e-10 4.468248203e-10 4.763239676e-10 6.897335973e-10 6.907194221e-10 8.075606546e-10 5.66261923e-10 6.629108048e-10 8.914206504e-10 1.035982981e-09 1.069537934e-09 4.120004262e-10 1.217917672e-09 5.748686822e-10 8.973368945e-10 8.068518023e-10 6.115871455e-10 1.557976037e-09 1.151330363e-09 1.31443108e-09 8.993245842e-10 5.091802097e-10 1.072328801e-09 1.067056926e-09 1.1415016e-09 1.596635032e-09 1.349695871e-09 8.167877596e-10 8.958150044e-10 7.055100941e-10 6.746360519e-10 7.107820181e-10 4.592986162e-10 7.061733361e-10 5.421605045e-10 5.16498034e-10 9.182863536e-10 5.816203692e-10 4.53237891e-10 6.421560875e-10 8.124825642e-10 5.01162015e-10 7.713297296e-10 7.952394021e-10 8.683735494e-10 6.599689192e-10 5.873107276e-10 8.199493451e-10 3.497597684e-10 1.174641104e-09 7.788327453e-10 4.334991132e-10 3.810679776e-10 6.793803981e-10 6.587029719e-10 8.972767789e-10 8.17925255e-10 1.070498683e-09 5.955399609e-10 3.859432674e-10 6.270553063e-10 4.512858984e-10 3.624447461e-10 4.874435325e-10 2.50644822e-10 5.329430266e-10 3.911972132e-10 6.058992827e-10 7.209532564e-10 7.128373053e-10 1.561160509e-10 2.041908343e-10 6.497479422e-10 5.781750473e-10 3.740019323e-10 4.681252117e-10 1.974404857e-10 6.483003165e-10 8.873029867e-10 5.440732581e-10 4.211846147e-10 7.560205438e-10 7.371161952e-10 7.718608585e-10 1.176593434e-09 6.531080841e-10 4.745274407e-10 2.836966289e-10 1.133698935e-09 3.627672125e-10 4.615427657e-10 3.961287729e-10 1.216796042e-09 5.872573361e-10 2.365931232e-10 8.429624094e-10 4.762090963e-10 1.121133549e-09 4.384823881e-10 4.032727935e-10 4.078993152e-10 7.276397105e-10 1.048319403e-09 5.645069079e-10 5.690098577e-10 4.813470693e-10 7.176372523e-10 8.737660474e-10 7.59694265e-10 4.296779061e-10 8.041806835e-10 5.555347859e-10 3.535609324e-10 +8.603675922e-10 1.31635596e-09 8.93914007e-10 9.443506438e-10 6.913948801e-10 7.156698262e-10 5.904684024e-10 6.902314897e-10 2.468050382e-10 5.223722732e-10 5.489998174e-10 8.445274702e-10 6.937577018e-10 4.865419116e-10 2.995540405e-10 1.065681205e-09 3.666701459e-10 5.959001523e-10 4.587865263e-10 5.389533557e-10 6.811530396e-10 2.525435721e-10 5.921436633e-10 3.457234964e-10 2.498858718e-10 7.43017502e-10 5.566160365e-10 3.886842073e-10 9.498456634e-10 5.476600491e-10 7.09777354e-10 3.81175998e-10 7.369681228e-10 6.046995975e-10 8.51951467e-10 3.79764028e-10 6.554207722e-10 4.837704154e-10 1.494404254e-09 8.45986894e-10 3.839846164e-10 6.986924207e-10 6.071258696e-10 6.53692155e-10 8.272740033e-10 4.181718326e-10 4.909046374e-10 5.265580185e-10 2.476761487e-10 5.648432714e-10 1.128683978e-09 7.084060624e-10 5.421646462e-10 5.359674938e-10 7.018169368e-10 6.046107884e-10 7.019762903e-10 6.663309622e-10 6.0990824e-10 3.004221491e-10 6.876061464e-10 6.002506852e-10 6.275865322e-10 6.019234283e-10 5.780172681e-10 3.169646628e-10 9.351124836e-10 1.175989022e-09 5.542726193e-10 3.258574871e-10 4.212664201e-10 6.259941045e-10 1.877377532e-10 5.709717105e-10 2.183413703e-10 2.574790626e-10 5.874529305e-10 8.564916052e-10 4.010744551e-10 5.247883865e-10 7.078277873e-10 5.299852621e-10 6.709411628e-10 9.999848967e-10 1.870945014e-09 7.800045183e-10 9.104924489e-10 1.109047564e-09 1.342077481e-09 8.193546227e-10 8.838040841e-10 8.129592216e-10 1.542624676e-09 5.566117002e-10 6.357538714e-10 9.664899659e-10 6.863341552e-10 9.360795549e-10 1.019331014e-09 1.149290079e-09 7.178129445e-10 1.086502781e-09 1.176466915e-09 3.806428656e-10 5.044260014e-10 5.710740121e-10 1.120085983e-09 1.261175516e-09 8.940176275e-10 5.929636702e-10 5.442001674e-10 3.774275503e-10 5.61524497e-10 2.802502475e-10 1.247391568e-10 5.500121145e-10 3.825152234e-10 3.479662742e-10 9.060942432e-10 6.112825385e-10 1.153821184e-09 1.543889353e-09 5.217203891e-10 8.823057874e-10 1.762544807e-09 2.063725721e-09 8.533370818e-10 1.653202907e-09 1.330135521e-09 2.232455674e-09 2.340346785e-09 2.141827823e-09 1.119403116e-09 1.410218909e-09 1.319955859e-09 1.603814924e-09 1.807506079e-09 1.040943063e-09 1.17775744e-09 1.372374426e-09 1.731761463e-09 1.37839314e-09 1.797236e-09 1.213762195e-09 1.018941688e-09 2.637234029e-09 1.394626592e-09 9.72335745e-10 8.236432659e-10 6.070367189e-10 1.237207124e-09 1.812003908e-09 1.077659345e-09 1.756108367e-09 1.202930493e-09 2.367132832e-09 1.073889476e-09 1.103530289e-09 1.416030078e-09 1.302304704e-09 1.861389191e-09 1.355331644e-09 1.792696433e-09 4.776731874e-10 1.664545357e-09 1.667937733e-09 1.241413218e-09 1.44510906e-09 4.691966019e-10 1.602726619e-09 1.72416343e-09 1.513577627e-09 1.099026881e-09 2.23273355e-09 1.874924203e-09 1.162088841e-09 9.340943327e-10 1.179165111e-09 8.38068025e-10 1.077996527e-09 5.758066582e-10 4.224794503e-10 5.595108353e-10 5.701782721e-10 7.560906681e-10 5.162733882e-10 2.968149823e-10 8.045781006e-11 4.520129347e-10 3.414035751e-10 5.037060832e-10 5.480415953e-10 5.533556315e-10 6.446927934e-10 3.550736995e-10 6.978347963e-10 9.833507309e-10 9.514963474e-10 5.877425845e-10 9.236678355e-10 1.401010232e-09 5.872213353e-10 6.285969244e-10 1.267275118e-09 1.302565269e-09 1.193997053e-09 4.204682053e-10 9.987743194e-10 8.321356797e-10 7.616377392e-10 5.966480644e-10 1.629120435e-09 1.15231112e-09 1.386886909e-09 9.576883206e-10 1.497732489e-09 1.324344822e-09 8.206324259e-10 7.047618846e-10 8.237185297e-10 5.831931559e-10 5.669271902e-10 8.420201288e-10 2.476079864e-10 7.73847247e-10 3.789473381e-10 3.74844902e-10 3.873391608e-10 4.373595142e-10 6.791244742e-10 9.696954707e-10 7.460912531e-10 1.111323796e-09 4.661745987e-10 8.577842738e-10 3.716148881e-10 4.888990165e-10 6.4431152e-10 5.364440776e-10 5.883208379e-10 5.114957481e-10 1.132513475e-09 7.039553166e-10 7.254666986e-10 3.486132051e-10 6.427041101e-10 4.503810875e-10 5.148349596e-10 3.126150458e-10 6.760806283e-10 1.061466606e-09 5.058561709e-10 3.740450554e-10 5.229261399e-10 6.641054163e-10 3.839228755e-10 5.65686395e-10 5.616583555e-10 5.957814559e-10 6.495421157e-10 7.161805088e-10 5.354263173e-10 1.072511423e-09 2.432109636e-10 4.024382885e-10 6.909058547e-10 5.390563027e-10 7.279219026e-10 7.856432927e-10 2.975076265e-10 1.915719086e-10 8.226327501e-10 3.710685992e-10 2.088463968e-10 2.834186906e-10 8.311794113e-10 4.953802238e-10 9.181137898e-10 7.342492978e-10 6.92423706e-10 3.346111021e-10 5.809939688e-10 4.677287135e-10 7.210612836e-10 6.177642338e-10 2.690141378e-10 1.033639206e-09 5.216495522e-10 3.551915336e-10 6.955648174e-10 3.058861506e-10 5.911194949e-10 5.689934998e-10 1.936977389e-10 8.210296743e-10 4.453478744e-10 6.374167711e-10 5.713611497e-10 7.044846817e-10 7.025428398e-10 +6.478410427e-10 5.844835766e-10 6.46686856e-10 4.863949304e-10 9.8863368e-10 4.951434471e-10 4.044657173e-10 3.018947719e-10 2.898242441e-10 1.133049996e-09 2.761241466e-10 6.087649785e-10 6.769900871e-10 6.019654609e-10 7.260992048e-10 5.761225528e-10 4.411027041e-10 4.002074722e-10 3.44007448e-10 8.886398701e-10 9.705444814e-10 4.503455043e-10 7.190797985e-10 4.74944112e-10 4.008980431e-10 4.612336004e-10 8.313094541e-10 4.346713128e-10 5.33415828e-10 5.415042522e-10 5.708163592e-10 5.554249317e-10 6.480412962e-10 3.576735421e-10 7.121367767e-10 5.526774611e-10 7.420839047e-10 1.261620983e-09 5.621866042e-10 5.672506237e-10 1.369823346e-09 1.147687016e-09 1.112854296e-09 4.579153873e-10 6.75648044e-10 6.432077536e-10 2.797248417e-10 5.392443101e-10 4.868556483e-10 5.564389233e-10 7.097765724e-10 2.143244548e-10 4.777911769e-10 7.256704544e-10 1.078894354e-09 6.90878143e-10 6.533139285e-10 8.556270933e-10 9.650250513e-10 4.694727735e-10 5.135978909e-10 3.237573365e-10 8.984347468e-10 8.825779566e-10 4.984857146e-10 8.080675891e-10 7.711945641e-10 9.90113691e-10 5.170830726e-10 6.504590209e-10 2.086295527e-10 5.29892948e-10 6.407870191e-10 4.682665067e-10 2.818640986e-10 3.621268325e-10 5.832920175e-10 2.479511334e-10 7.00878777e-10 2.7999322e-10 7.034522484e-10 1.100680273e-09 8.226354034e-10 9.050425932e-10 9.733638653e-10 1.620335902e-09 6.854539123e-10 8.095400899e-10 7.233994612e-10 9.107511065e-10 1.682658506e-09 1.199322371e-09 5.376652965e-10 9.164108037e-10 1.326661277e-09 4.338755027e-10 9.716169132e-10 1.074271369e-09 1.218748528e-09 8.735810231e-10 7.815370895e-10 9.133793672e-10 9.549620569e-10 8.791844527e-10 6.359637202e-10 6.474042344e-10 9.132017606e-10 7.288871373e-10 5.871881912e-10 5.292145976e-10 2.169239284e-10 4.870519708e-10 2.223407424e-10 1.766795362e-10 3.16884683e-10 2.365507233e-10 5.86103381e-10 4.133324373e-10 6.138915411e-10 4.386466575e-10 9.602429235e-10 1.814280688e-09 1.843460865e-09 1.466601724e-09 1.259221347e-09 1.640219682e-09 1.81789461e-09 2.730705053e-09 6.1196716e-10 1.731254195e-09 1.820555132e-09 2.210077267e-09 8.981975185e-10 1.54052803e-09 1.758622351e-09 1.99129245e-09 1.735811453e-09 1.014029995e-09 1.609102403e-09 1.643499104e-09 1.356131404e-09 1.123735665e-09 2.466173744e-09 1.772412441e-09 6.737736177e-10 9.847670505e-10 6.969906585e-10 7.049397869e-10 1.686560289e-09 9.775782738e-10 1.128313797e-09 8.066897087e-10 1.230878764e-09 1.089778541e-09 1.605641563e-09 1.209151888e-09 6.448690855e-10 1.831017208e-09 1.836464039e-09 1.356385138e-09 1.507324967e-09 1.489440852e-09 1.18613515e-09 7.626286212e-10 1.383845954e-09 2.131704068e-09 2.525380887e-09 2.204671946e-09 1.200875934e-09 1.587391164e-09 1.072799182e-09 1.411685064e-09 1.899241926e-09 1.978735737e-09 1.879613434e-09 2.031244431e-09 1.400329108e-09 2.111100492e-09 1.286393509e-09 1.897743162e-09 3.384141002e-10 2.29516059e-10 6.053490286e-10 3.425419249e-10 5.902097192e-10 3.42625037e-10 4.584830974e-10 4.141533929e-10 2.281135305e-10 6.248597582e-10 4.870601983e-10 5.800377561e-10 9.521095419e-10 1.17000569e-09 7.539600346e-10 6.528917774e-10 2.220224338e-10 1.473683406e-09 1.124330322e-09 7.345087038e-10 6.91307735e-10 6.688883767e-10 1.300432108e-09 9.099650174e-10 8.518765704e-10 9.092888666e-10 4.594392278e-10 8.507393273e-10 1.585279934e-09 9.632392441e-10 6.998695339e-10 7.006688851e-10 1.480176976e-09 1.399423835e-09 1.274583401e-09 9.991512264e-10 1.523708584e-09 9.794062408e-10 9.350091781e-10 4.676816415e-10 3.207741654e-10 3.156400898e-10 1.592102259e-10 7.42143748e-10 4.08471027e-10 7.584933369e-10 3.216953085e-10 1.1639534e-09 4.282790375e-10 6.928945955e-10 4.369318981e-10 1.016351055e-09 5.91523131e-10 3.244986977e-10 9.113834461e-10 5.530735523e-10 7.901430219e-10 6.0819185e-10 9.643708354e-10 7.805117358e-10 7.498073483e-10 2.708015576e-10 3.487630239e-10 7.97212074e-10 4.176864313e-10 9.020483599e-10 5.403370429e-10 3.067923802e-10 7.621916189e-10 8.005436315e-10 5.723310897e-10 4.148737125e-10 3.439805014e-10 6.054109142e-10 6.878092961e-10 8.736615717e-10 7.141370986e-10 8.140352533e-10 1.046808046e-09 6.405238099e-10 8.539265578e-10 6.069224344e-10 8.002758028e-10 6.831154857e-10 5.869393618e-10 8.56952941e-10 3.449788431e-10 1.167324924e-09 1.004282522e-09 6.987689497e-10 7.086822241e-10 4.802941475e-10 1.569060638e-10 3.812165105e-10 6.56556131e-10 6.236167198e-10 9.331969445e-10 8.778276455e-10 3.784150755e-10 5.420625576e-10 5.911181793e-10 5.511365759e-10 3.903017503e-10 3.673377238e-10 6.190035031e-10 9.426318924e-10 1.183827946e-09 8.76891433e-10 6.765423418e-10 6.118824258e-10 5.521043858e-10 5.209582838e-10 5.906024754e-10 4.162291771e-10 1.080059223e-09 2.161013287e-10 7.279803192e-10 9.73855875e-10 1.073488691e-09 1.257452099e-09 +4.730013751e-10 5.249760858e-10 2.585828426e-10 5.155509911e-10 6.536715398e-10 5.265334189e-10 3.666581726e-10 6.204094267e-10 8.093069681e-10 7.237433452e-10 2.809300809e-10 1.210901965e-09 6.870851914e-10 7.532636094e-10 3.163294041e-10 9.506050411e-10 5.527453787e-10 6.39239659e-10 6.136692206e-10 3.355565926e-10 4.671252446e-10 3.061065308e-10 8.160077486e-10 6.414345871e-10 7.665013312e-10 4.533867246e-10 4.175405043e-10 6.97723303e-10 6.974806839e-10 7.252428957e-10 8.504264772e-10 9.031342593e-10 6.412309134e-10 4.17062215e-10 6.356960119e-10 5.985647024e-10 4.956156994e-10 8.880074403e-10 4.095853504e-10 3.140576624e-10 6.752325692e-10 6.67842584e-10 5.340654079e-10 4.436898434e-10 6.163906132e-10 9.057749916e-10 7.174442654e-10 6.918796181e-10 5.958696721e-10 2.617011117e-10 1.001700884e-09 4.973856994e-10 2.15030351e-10 6.528607341e-10 4.074574191e-10 5.522938421e-10 2.303407026e-10 7.975972794e-10 1.018231703e-09 7.988006394e-10 6.519497165e-10 8.336661372e-10 4.723605185e-10 7.749089317e-10 1.00410473e-09 1.116323705e-09 9.412436448e-10 9.417603898e-10 5.208345155e-10 1.099408817e-09 9.061290236e-10 9.764990875e-10 7.966539036e-10 7.331940093e-10 4.702849609e-10 3.622421211e-10 5.134408382e-10 4.49173189e-10 2.621691516e-10 2.172532183e-10 7.084357417e-10 9.663009616e-10 8.729318326e-10 1.001486536e-09 1.263241577e-09 1.498573081e-09 1.255590642e-09 6.634567151e-10 1.608823352e-09 9.39737387e-10 1.815545152e-09 1.074982074e-09 8.002577704e-10 1.020782007e-09 1.369974763e-09 8.452980913e-10 8.060456691e-10 1.465223101e-09 5.011204517e-10 7.201244599e-10 6.734875685e-10 7.109179776e-10 9.730708092e-10 8.935155532e-10 9.874520423e-10 1.040949664e-09 2.602933004e-10 6.910532304e-10 7.631498485e-10 5.961815946e-10 4.584334e-10 3.18324574e-10 2.444380684e-10 4.053491845e-10 6.378853224e-10 9.393600422e-10 4.510600433e-10 6.809119974e-10 5.27575637e-10 7.462600948e-10 1.802363847e-09 1.911788483e-09 1.852572173e-09 1.751007562e-09 1.170072392e-09 1.072634735e-09 2.138255832e-09 1.24274662e-09 1.035109609e-09 9.445357263e-10 1.795944227e-09 1.354403823e-09 1.174842757e-09 1.264133537e-09 1.883328023e-09 1.939862542e-09 1.812985575e-09 2.793213754e-09 2.246750572e-09 1.916770641e-09 1.930226505e-09 1.624639674e-09 1.290750312e-09 2.743028557e-09 1.358948125e-09 1.192275753e-09 1.065043716e-09 1.536417667e-09 9.27286674e-10 1.074658016e-09 9.052310528e-10 1.64770841e-09 1.793084996e-09 1.623847829e-09 2.477682998e-09 8.776676617e-10 9.648722258e-10 9.35736986e-10 9.57444157e-10 2.408088264e-09 4.88160478e-10 1.465845161e-09 1.507501069e-09 1.024640576e-09 1.334868643e-09 1.43885276e-09 1.672772731e-09 2.242129402e-09 9.037763541e-10 1.715283621e-09 7.904854288e-10 2.206538041e-09 5.16380582e-10 2.017056152e-09 1.453126449e-09 2.099600102e-09 1.143516424e-09 1.897133202e-09 1.079386151e-09 1.27404765e-09 2.063708665e-09 4.659697901e-10 5.571970852e-10 4.805169118e-10 6.716345282e-10 2.291705862e-10 7.004529429e-10 2.587296441e-10 5.268756385e-11 3.879302761e-10 6.116883015e-10 8.200479523e-10 6.724868868e-10 7.789489108e-10 4.659339163e-10 7.314830498e-10 9.66728736e-10 1.370917534e-09 7.090197508e-10 6.027999293e-10 7.836610551e-10 1.269926082e-09 5.709547894e-10 9.500710689e-10 7.939850084e-10 7.443654432e-10 8.080660371e-10 6.321658402e-10 5.935269985e-10 1.530653624e-09 7.8964012e-10 1.833621838e-09 1.001322311e-09 1.269333732e-09 1.167709364e-09 1.159137584e-09 5.720186907e-10 8.568959716e-10 8.035898209e-10 8.670129636e-10 6.713342821e-10 2.736897381e-10 9.909446766e-10 4.36544219e-10 6.350636999e-10 6.780022802e-10 5.356204895e-10 1.201180836e-09 6.378604158e-10 4.684676015e-10 1.069089865e-09 7.991156209e-10 6.452675846e-10 8.651462956e-10 4.520598956e-10 5.208072439e-10 8.881513724e-10 1.032323079e-09 1.076416003e-09 1.166528893e-09 3.281971294e-10 4.559465584e-10 6.807297226e-10 1.057780152e-09 3.996733697e-10 6.379827243e-10 4.46573351e-10 2.529341222e-10 3.131277557e-10 4.388791319e-10 6.360470414e-10 3.416592862e-10 5.561681152e-10 2.200412172e-10 8.213933801e-10 5.208769513e-10 8.251978753e-10 7.063147388e-10 5.691439495e-10 5.748426485e-10 5.285936234e-10 5.851886529e-10 7.463104139e-10 5.459766494e-10 4.439194445e-10 5.935632449e-10 8.614461788e-10 4.564894071e-10 6.2060509e-10 3.619678828e-10 4.852458917e-10 6.427476121e-10 7.646099516e-10 7.646303052e-10 8.739422681e-10 4.401826962e-10 6.89565458e-10 3.998245715e-10 4.688602311e-10 2.009470477e-10 8.395310371e-10 2.445692569e-10 3.642528152e-10 5.003441695e-10 4.232858991e-10 4.752326423e-10 7.977417937e-10 7.576773913e-10 9.198715124e-10 7.421013939e-10 6.481062902e-10 8.470666407e-10 9.094122707e-10 3.164337803e-10 5.997848362e-10 3.072711136e-10 6.082355467e-10 7.273389106e-10 3.805917974e-10 6.82847941e-10 +5.665978476e-10 1.23944725e-09 3.48917172e-10 6.28404173e-10 4.286908074e-10 4.600390141e-10 7.545219042e-10 8.490338992e-10 6.455840707e-10 4.116350747e-10 5.661601904e-10 8.291603403e-10 3.504962085e-10 7.448705306e-10 7.289104334e-10 4.791156059e-10 6.112583984e-10 3.834115705e-10 8.689930606e-10 1.207281752e-09 4.970234285e-10 8.179282305e-10 6.398512495e-10 8.596066418e-10 9.834204421e-10 4.919240243e-10 1.4670681e-10 2.370035522e-10 4.760068232e-10 5.449367014e-10 6.36926328e-10 1.172070137e-09 1.021131624e-09 9.064653811e-10 3.498073754e-10 7.304391639e-10 3.799743162e-10 1.335558987e-09 7.355543111e-10 6.168152793e-10 2.899160538e-10 4.151358864e-10 7.924660621e-10 3.937208737e-10 3.253356473e-10 2.624925658e-10 4.438902899e-10 2.912060264e-10 3.145725719e-10 2.614959223e-10 3.872856209e-10 4.74964981e-10 8.108676795e-11 7.011333891e-10 5.124292204e-10 5.371160973e-10 1.042781087e-09 4.101388666e-10 7.645372589e-10 1.123284411e-09 3.511734099e-10 1.111483456e-09 5.356309143e-10 3.249432596e-10 4.793868344e-10 5.674158317e-10 9.081727396e-10 5.239974433e-10 6.478276228e-10 7.25176797e-10 5.772428236e-10 7.095056066e-10 8.082681495e-10 6.234478811e-10 1.393240885e-09 1.017009272e-09 4.847521069e-10 4.043407366e-10 7.550973382e-10 1.294403565e-10 7.455351491e-10 9.875436236e-10 1.190378959e-09 5.881599087e-10 9.606573441e-10 9.542294993e-10 1.899233702e-09 1.05278189e-09 7.246669705e-10 1.009583626e-09 9.584070976e-10 1.349917401e-09 9.032511267e-10 4.44020255e-10 1.186932903e-09 5.716570256e-10 1.742689555e-09 9.236651716e-10 6.622008709e-10 5.566382898e-10 8.420545572e-10 9.569374762e-10 8.963891495e-10 4.13279561e-10 7.395826693e-10 6.296698035e-10 6.328426564e-10 4.411486559e-10 4.380039023e-10 7.882642232e-10 4.512631078e-10 1.09212877e-10 2.784236334e-10 5.108821816e-10 5.229722433e-10 8.994848207e-10 6.035987244e-10 5.338972115e-10 1.149916353e-09 1.311972526e-09 1.008971343e-09 1.90646924e-09 2.321240562e-09 1.213399142e-09 1.831623475e-09 1.154137576e-09 1.033490137e-09 1.649638728e-09 1.703000227e-09 1.868219816e-09 9.106599482e-10 1.514197529e-09 1.724436109e-09 1.982874774e-09 1.923103819e-09 1.533439327e-09 2.023905923e-09 1.457915138e-09 1.430779122e-09 1.910288044e-09 1.704817633e-09 2.133442584e-09 1.446009682e-09 1.010168074e-09 9.700710461e-10 1.862727805e-09 1.718817815e-09 2.204289023e-09 2.096560575e-09 1.392159402e-09 1.206054836e-09 7.836649742e-10 9.032942462e-10 1.145461577e-09 1.182738297e-09 1.533411318e-09 8.851868536e-10 1.845112196e-09 1.267984352e-09 2.196130022e-09 7.324016084e-10 1.875951296e-09 9.796491564e-10 8.867311476e-10 1.296959152e-09 1.043971002e-09 2.060758947e-09 1.422040011e-09 1.470174782e-09 1.431300924e-09 1.637013734e-09 1.25423836e-09 1.284019963e-09 1.54443249e-09 1.941767705e-09 1.143606941e-09 1.253568731e-09 1.116130919e-09 1.277710912e-09 2.450849938e-09 1.698568868e-09 1.030574668e-09 4.631218636e-10 4.413062203e-10 4.949266054e-10 5.155620028e-10 2.402188914e-10 3.170703549e-10 4.156901375e-10 2.126756558e-10 4.315081572e-10 2.669979783e-10 7.561792781e-10 4.553365248e-10 5.561077755e-10 6.096106471e-10 4.917974776e-10 1.002178129e-09 1.138033195e-09 1.064272707e-09 1.151377719e-09 1.207198731e-09 6.885492119e-10 1.296404651e-09 1.514956647e-09 9.516161884e-10 5.919814156e-10 6.172135535e-10 9.2828831e-10 6.045617287e-10 8.612565734e-10 9.725029953e-10 1.177222793e-09 1.111733105e-09 1.147126671e-09 1.804151505e-09 9.834397929e-10 9.069429079e-10 1.073024586e-09 3.786705964e-10 5.307639069e-10 7.170652008e-10 4.482688508e-10 8.450610663e-10 3.043725427e-10 1.123935519e-09 2.519879162e-10 5.81009692e-10 1.008226924e-09 4.454409189e-10 7.443862366e-10 6.183282457e-10 1.583383418e-09 8.421310395e-10 5.441479026e-10 5.374985391e-10 5.70072016e-10 1.066683609e-09 8.73294936e-10 6.013036537e-10 6.976549734e-10 9.357734157e-10 6.300466768e-10 2.901101426e-10 9.578578124e-10 3.781544457e-10 4.952579844e-10 4.677640838e-10 4.881665745e-10 3.085051383e-10 8.399470371e-10 7.906270208e-10 4.202649531e-10 4.298633221e-10 9.149900691e-10 4.655610586e-10 8.274819169e-10 6.914886591e-10 5.183944559e-10 3.080312949e-10 4.353033484e-10 9.621038582e-10 5.818144927e-10 6.64383462e-10 1.191600907e-09 9.615229195e-10 1.136433194e-09 8.989879193e-10 1.293948289e-09 6.541467468e-10 5.705678538e-10 3.747087397e-10 5.615136043e-10 7.793860341e-10 7.753207465e-10 3.715121842e-10 7.46951501e-10 1.760861724e-10 7.285118076e-10 7.365776228e-10 7.2876648e-10 5.305674915e-10 5.423765541e-10 5.571463419e-10 7.922475964e-10 7.114034082e-10 4.515342432e-10 3.111096993e-10 7.016727213e-10 1.413851526e-09 7.709251553e-10 5.253258947e-10 7.995223964e-10 2.132814464e-10 7.177088106e-10 6.989170774e-10 5.381803686e-10 9.72938025e-10 9.734196602e-10 7.553805351e-10 +4.720753448e-10 6.683880854e-10 7.97502653e-10 4.818985738e-10 1.43538466e-09 2.73288705e-10 1.063005957e-09 8.988812687e-10 3.074259382e-10 8.95249784e-10 6.485815866e-10 7.50432457e-10 5.973809965e-10 7.224795965e-10 4.936245165e-10 4.028535635e-10 8.61800085e-10 5.80761249e-10 7.643196185e-10 8.3667425e-10 4.175902551e-10 9.401048193e-10 4.774010855e-10 5.99976026e-10 7.416607183e-10 1.330032004e-10 7.714214429e-10 6.136300641e-10 4.418665339e-10 5.397834994e-10 8.381045596e-10 8.292775844e-10 6.450728054e-10 4.075990677e-10 1.092374957e-09 6.044029795e-10 5.785015705e-10 5.090080463e-10 4.741251216e-10 9.99848779e-10 4.248159964e-10 3.596471015e-10 8.634773761e-10 7.594453756e-10 2.560785305e-10 4.900033069e-10 5.977814887e-10 3.16030395e-10 1.037295323e-09 5.510937393e-10 4.618261254e-10 5.618783697e-10 6.909245488e-10 3.958294895e-10 4.931502082e-10 8.527658686e-10 5.935725722e-10 1.36154965e-09 5.176943763e-10 7.688871633e-10 2.834512047e-10 3.423338055e-10 4.703475071e-10 9.404204088e-10 6.06462792e-10 1.211018578e-09 5.743381171e-10 5.639411462e-10 3.981340396e-10 9.53307513e-10 5.165122075e-10 1.092899739e-09 6.571448846e-10 3.607750471e-10 8.750891639e-10 3.35676441e-10 4.641202489e-10 6.104368675e-10 4.0193476e-10 1.025934006e-09 6.32838784e-10 1.23067123e-09 1.116547462e-09 1.869740463e-09 9.543540278e-10 1.09470943e-09 1.036441548e-09 1.327195181e-09 8.992754752e-10 9.853595614e-10 9.293961033e-10 1.551684121e-09 1.268148974e-09 8.095824306e-10 6.289751699e-10 1.25463234e-09 1.232208013e-09 1.016503461e-09 7.969949334e-10 1.151364017e-09 7.173086661e-10 9.705399688e-10 5.144531147e-10 9.7191796e-10 7.666888552e-10 7.675112321e-10 4.957784575e-10 3.372726029e-10 8.056040296e-10 1.147191786e-10 2.67320889e-10 3.76573575e-10 5.736566474e-10 7.504696779e-10 9.399822675e-10 5.457703083e-10 3.684873858e-10 9.895976993e-10 1.621246077e-09 1.282199106e-09 1.819420317e-09 2.235963309e-09 9.699878315e-10 1.11204897e-09 1.64510284e-09 1.562103746e-09 9.180795895e-10 1.928892023e-09 1.571958228e-09 1.003572308e-09 1.067485045e-09 1.812796053e-09 1.709637642e-09 1.804202583e-09 1.506734687e-09 1.260743421e-09 8.217899497e-10 1.823462836e-09 9.604964845e-10 1.783482293e-09 1.317480276e-09 1.235591797e-09 1.268776478e-09 8.983783977e-10 2.009864999e-09 1.446687129e-09 2.138953909e-09 1.551123508e-09 1.00255222e-09 8.274451015e-10 1.15849369e-09 1.07748132e-09 9.456453238e-10 2.14858675e-09 2.022766056e-09 1.671510957e-09 1.275452117e-09 1.138595084e-09 1.76824065e-09 1.981294339e-09 2.547155768e-09 1.025622158e-09 7.653619489e-10 2.157114303e-09 1.183198338e-09 1.273639753e-09 9.936792456e-10 1.360809652e-09 1.181061805e-09 1.014733275e-09 1.70592495e-09 2.330367253e-09 1.152942633e-09 2.004606765e-09 1.220592353e-09 1.423871302e-09 2.183196944e-09 2.047921015e-09 1.754514041e-09 2.015770578e-09 8.960020254e-10 1.339972976e-09 6.621824772e-10 3.37272313e-10 4.550760979e-10 6.383059252e-10 5.225641382e-10 3.135468615e-10 3.063308198e-10 1.318045908e-10 3.003490603e-10 5.336646332e-10 4.547316865e-10 8.852776212e-10 5.714936444e-10 6.724729133e-10 8.603211153e-10 9.039748829e-10 6.820890874e-10 1.129076681e-09 9.024041462e-10 1.409692276e-09 1.290756939e-09 4.270581782e-10 9.124579366e-10 1.226653981e-09 1.397724395e-09 7.934999673e-10 9.320007231e-10 7.448160945e-10 1.040211725e-09 6.518077385e-10 1.175234226e-09 1.013931076e-09 1.445838414e-09 1.076139392e-09 1.042775221e-09 1.211285103e-09 6.029814372e-10 1.158676419e-09 2.58669524e-10 5.31824063e-10 3.668455016e-10 5.198163357e-10 4.870210504e-10 5.104869667e-10 1.105156079e-09 5.345752621e-10 1.315231091e-09 4.211889957e-10 7.203504293e-10 4.787139206e-10 5.921142714e-10 9.952822269e-10 9.437952569e-10 7.69704209e-10 8.507413675e-10 1.089803013e-09 5.421633328e-10 5.713657834e-10 7.653726355e-10 6.967616592e-10 1.099398957e-09 3.878452086e-10 7.362434309e-10 5.833390695e-10 3.618134283e-10 6.212262617e-10 5.944852364e-10 6.090906835e-10 3.367535241e-10 3.50766517e-10 6.314328503e-10 7.771341891e-10 5.376115269e-10 3.465163792e-10 6.016430598e-10 1.216280152e-09 8.750449915e-10 4.140763041e-10 7.945640131e-10 5.616374458e-10 6.477600331e-10 6.226414232e-10 1.240999009e-09 3.417786997e-10 8.569730613e-10 9.680541625e-10 4.256041478e-10 2.23815724e-10 8.17771532e-10 7.423837648e-10 8.948332062e-10 8.214261978e-10 5.83281949e-10 6.952000079e-10 7.893409591e-10 8.202669689e-10 4.902488886e-10 1.093732562e-09 6.907084209e-10 1.616436387e-09 6.57088125e-10 4.622226707e-10 8.087572643e-10 7.657587079e-10 4.025888653e-10 4.339609187e-10 5.97549514e-10 3.826349789e-10 7.763019248e-10 9.490479532e-10 4.877940665e-10 6.976775409e-10 6.668393724e-10 1.144484068e-09 6.630485585e-10 6.776478071e-10 6.063528007e-10 5.739558337e-10 +4.952301178e-10 7.548666195e-10 3.075536113e-10 3.299989476e-10 4.228615573e-10 1.04183939e-09 6.38924497e-10 7.725815593e-10 4.078211119e-10 5.665878612e-10 8.066062541e-10 4.774577391e-10 8.661131588e-10 8.86684425e-10 3.507213166e-10 7.881504247e-10 3.590733145e-10 5.86546413e-10 4.775706023e-10 3.807166219e-10 7.359979359e-10 1.064163288e-09 4.747875288e-10 1.257521386e-09 5.965047108e-10 3.74847735e-10 7.466215114e-10 1.607257705e-10 3.884202452e-10 5.833644162e-10 6.609686937e-10 2.823992993e-10 9.349192338e-10 9.986664934e-10 8.996812946e-10 7.212111044e-10 1.142792689e-09 6.990410443e-10 7.097612637e-10 6.505053006e-10 7.449973667e-10 4.8129708e-10 3.573031915e-10 7.053324493e-10 5.523495917e-10 4.142151131e-10 3.977711204e-10 4.68234216e-10 5.108443794e-10 2.260891617e-10 4.030495754e-10 5.804526151e-10 3.61509263e-10 4.254800134e-10 3.388803918e-10 1.140276898e-09 9.304477962e-10 7.762092968e-10 4.495752355e-10 1.013211251e-09 1.119224043e-09 5.573013251e-10 7.456168639e-10 7.145997041e-10 7.800763968e-10 3.723013415e-10 4.935124503e-10 6.615592859e-10 8.344452299e-10 3.905546599e-10 5.572192959e-10 8.867983758e-10 1.440798285e-10 7.725932993e-10 6.553867596e-10 2.661064326e-10 5.012218551e-10 3.348497268e-10 5.302163655e-10 1.02778073e-09 6.402929571e-10 1.328300668e-09 7.90213366e-10 1.17607502e-09 6.491441929e-10 1.051941639e-09 1.162883346e-09 1.751698625e-09 7.525543119e-10 6.304766849e-10 1.112497895e-09 6.328315781e-10 1.390058839e-09 1.016114065e-09 1.522409301e-09 1.083236641e-09 1.126069579e-09 1.120732503e-09 1.177897507e-09 1.166760524e-09 2.91391232e-10 8.324997985e-10 6.131530649e-10 7.444424488e-10 1.206971357e-09 6.798717473e-10 7.721884299e-10 8.375634312e-10 6.102972993e-10 1.610605848e-10 1.368923512e-10 3.444732318e-10 5.174283831e-10 4.615508866e-10 6.682780629e-10 6.180937842e-10 4.898928952e-10 1.635214467e-09 2.0569145e-09 1.395784806e-09 1.482049874e-09 9.809623933e-10 1.641653261e-09 2.570525308e-09 1.842677698e-09 1.377029701e-09 1.022573616e-09 1.621156029e-09 1.681399959e-09 9.712672404e-10 1.530000565e-09 1.756771056e-09 9.659160329e-10 1.145536966e-09 1.31151016e-09 1.880695289e-09 1.401530787e-09 9.047483788e-10 2.226463952e-09 1.127339524e-09 1.713661461e-09 1.394669968e-09 1.361492039e-09 1.399312834e-09 1.66928979e-09 2.406728619e-09 1.245007852e-09 2.467405405e-09 1.467655301e-09 2.567223644e-09 1.7463622e-09 2.150234679e-09 1.202165039e-09 2.320219483e-09 2.14325389e-09 1.967834231e-09 1.802251796e-09 2.066038065e-09 1.807275522e-09 1.783108783e-09 1.357242928e-09 1.11697665e-09 1.778193342e-09 1.515356172e-09 1.239755066e-09 9.856516495e-10 1.673218455e-09 7.745916347e-10 1.71139393e-09 2.346282981e-09 1.347070979e-09 9.095695086e-10 2.492316957e-09 1.07320156e-09 2.301111325e-09 1.179169776e-09 8.755305835e-10 1.395074976e-09 1.691502177e-09 1.0383372e-09 1.219802826e-09 1.072854332e-09 8.553217741e-10 6.481087686e-10 3.97247647e-10 7.123004815e-10 2.448664208e-10 3.49499193e-10 5.212408856e-10 2.262046186e-10 3.532774189e-10 6.235064322e-10 4.044519259e-10 5.263548483e-10 7.262737751e-10 1.267406388e-09 1.181838436e-09 6.933146395e-10 7.398021664e-10 1.112455233e-09 1.081811745e-09 4.895130223e-10 1.424056168e-09 9.647824213e-10 8.068061119e-10 6.946891484e-10 1.325233409e-09 1.234856445e-09 5.803017231e-10 9.999753371e-10 6.122734481e-10 1.108576855e-09 1.48664392e-09 1.096408387e-09 1.40016436e-09 1.451803351e-09 3.417794362e-10 7.697420274e-10 1.664277772e-09 6.383433597e-10 4.694468561e-10 4.656321685e-10 1.686635753e-10 7.305271023e-10 4.705747923e-10 3.953180906e-10 5.393210537e-10 7.775610082e-10 6.354632317e-10 7.583404122e-10 3.775785637e-10 4.530541441e-10 3.883556957e-10 6.978978907e-10 5.314805805e-10 6.288035614e-10 1.19551819e-09 2.608066522e-10 3.471008587e-10 7.203994817e-10 8.687124155e-10 8.685039055e-10 4.622432149e-10 1.169693675e-09 6.361632261e-10 3.666582432e-10 9.085014926e-10 2.520651992e-10 3.051042224e-10 5.127281856e-10 3.743721643e-10 7.092533109e-10 6.813273613e-10 5.306415108e-10 7.066116118e-10 3.866457488e-10 7.155370873e-10 5.261893463e-10 7.098584414e-10 9.248783637e-10 7.060843684e-10 6.01281937e-10 5.960310415e-10 6.050567166e-10 5.942504361e-10 8.411685157e-10 6.961480987e-10 5.970786381e-10 4.225406755e-10 7.884122667e-10 3.605810486e-10 6.52117472e-10 3.65720531e-10 2.548141787e-10 4.80219714e-10 7.809563662e-10 8.158046422e-10 9.266421307e-10 6.352559531e-10 3.856712389e-10 5.598165076e-10 5.211589311e-10 8.752550889e-10 5.930174682e-10 7.289046143e-10 3.78001853e-10 5.989363269e-10 4.674667879e-10 3.95816417e-10 9.550174884e-10 6.528559513e-10 4.765923776e-10 9.732012688e-10 4.309182365e-10 3.684481336e-10 7.025003881e-10 5.336688492e-10 4.410547658e-10 4.651789887e-10 2.508234677e-10 +3.934943845e-10 4.62673211e-10 7.763140255e-10 3.99849162e-10 5.481779306e-10 5.651280603e-10 3.261065445e-10 9.529575964e-10 1.059556665e-09 3.629006811e-10 4.859186577e-10 7.35166488e-10 6.276896453e-10 8.254360027e-10 9.196014273e-10 7.725194261e-10 5.165109278e-10 9.219809623e-10 1.094742972e-09 3.710089127e-10 5.879940669e-10 9.781820509e-10 7.356269766e-10 1.161398312e-09 6.898873204e-10 1.292393509e-09 1.165323531e-09 4.115532586e-10 4.690729946e-10 5.462013715e-10 4.008115986e-10 3.592479555e-10 6.019734331e-10 7.817741898e-10 1.045042044e-09 1.169818782e-09 8.45248471e-10 4.257737309e-10 7.245079364e-10 5.853469691e-10 4.72914672e-10 7.600923034e-10 8.122379634e-10 5.578837551e-10 6.216157087e-10 5.902259397e-10 6.167106768e-10 1.08675324e-09 2.943113571e-10 1.316471051e-10 2.450378663e-10 7.66754346e-10 8.290607561e-10 9.912546454e-10 4.391815188e-10 5.619843768e-10 5.137727458e-10 7.68745877e-10 8.125281449e-10 9.024309757e-10 4.905071133e-10 8.856983075e-10 6.438045751e-10 4.111936878e-10 1.140767575e-09 1.089805003e-09 1.186565313e-09 6.361053419e-10 8.796452351e-10 4.622918839e-10 4.953295723e-10 4.677785571e-10 3.792689471e-10 3.057485521e-10 1.127524123e-09 4.781403058e-10 1.034521599e-09 2.722763095e-10 4.557594038e-10 6.913447836e-10 2.113583077e-10 3.323528027e-10 7.996988798e-10 4.778294821e-10 1.07587303e-09 1.768755792e-09 1.197647863e-09 1.324696536e-09 7.214343535e-10 1.66225982e-09 6.355789705e-10 1.17384848e-09 6.089025276e-10 1.432021337e-09 1.273444906e-09 8.135242744e-10 9.675535916e-10 9.023174692e-10 1.331717212e-09 1.450234854e-09 1.137483212e-09 7.975974187e-10 9.871006848e-10 6.137049039e-10 7.811442747e-10 3.535969738e-10 8.038967279e-10 5.31040029e-10 2.294585104e-10 2.380056973e-10 3.699207516e-10 6.393958652e-10 3.745773913e-10 6.620426042e-10 8.66397462e-10 4.890225916e-10 1.4240271e-09 2.168794322e-09 1.603777739e-09 1.432828239e-09 2.463486048e-09 1.677654162e-09 2.225777343e-09 1.804422681e-09 1.252443524e-09 1.765009607e-09 1.430476881e-09 1.294795935e-09 1.604552523e-09 1.2431663e-09 2.142591491e-09 1.597231965e-09 2.677199486e-09 1.605785495e-09 1.536879735e-09 1.469883235e-09 1.493725194e-09 2.236650362e-09 1.680511084e-09 1.925312481e-09 2.208678118e-09 1.3348535e-09 1.670882081e-09 1.869079081e-09 1.739635887e-09 2.028608634e-09 2.360998269e-09 2.278820561e-09 1.645468898e-09 2.068417145e-09 2.645655035e-09 2.332832242e-09 1.695634235e-09 2.042398213e-09 2.294704853e-09 1.979619585e-09 1.931105066e-09 1.21798933e-09 2.060869305e-09 1.881765406e-09 2.308690619e-09 1.74203455e-09 2.580103055e-09 1.137120908e-09 1.773774575e-09 1.653519849e-09 1.992097262e-09 1.162458486e-09 1.966522036e-09 1.471329758e-09 2.411996849e-09 1.030816084e-09 8.806918593e-10 1.377538229e-09 1.656420119e-09 1.252394405e-09 2.647758239e-09 2.787698606e-09 1.530806868e-09 2.15701528e-09 2.101409157e-09 1.685262345e-09 1.034477301e-09 1.280744376e-09 6.398881443e-10 7.307086589e-10 5.010204843e-10 4.752232902e-10 2.665552685e-10 1.907657009e-10 4.329407241e-10 9.912253521e-11 5.081655477e-10 7.557015267e-10 5.20318046e-10 3.443277221e-10 8.211402986e-10 9.608909176e-10 1.696545365e-09 9.603843243e-10 1.271012414e-09 1.256356048e-09 1.057606359e-09 6.197114061e-10 1.09000017e-09 5.72405055e-10 9.260454096e-10 1.250460368e-09 7.342032645e-10 1.895039819e-09 1.042435443e-09 1.014728247e-09 1.04933103e-09 1.537970416e-09 1.540242707e-09 1.137452624e-09 1.667650804e-09 1.538746387e-09 9.599180503e-10 7.285033188e-10 3.439070813e-10 5.959778542e-10 3.491066804e-10 6.859327441e-10 5.638537645e-10 3.872452453e-10 1.111782334e-09 7.224351469e-10 8.538114281e-10 5.543101585e-10 2.769922856e-10 8.084967723e-10 1.362804619e-09 7.402864467e-10 6.513086591e-10 8.423811299e-10 9.359528045e-10 1.203245584e-09 4.059295993e-10 9.472074046e-10 6.283065315e-10 1.000315203e-09 1.156142356e-09 7.610661271e-10 2.894080687e-10 2.969504535e-10 6.653804231e-10 8.944065015e-10 1.249451229e-09 7.736723388e-10 4.401053754e-10 8.43903439e-10 6.976507144e-10 7.060702011e-10 4.809101849e-10 8.992485184e-10 7.792840617e-10 1.112498973e-09 5.274970001e-10 5.258448921e-10 9.138638223e-10 8.638054216e-10 6.76187329e-10 4.921496094e-10 4.361951138e-10 8.426360655e-10 5.863277048e-10 1.057366614e-09 6.201160557e-10 6.884939652e-10 6.096874217e-10 4.856084722e-10 1.178978178e-09 9.95720084e-10 1.61430611e-09 6.736628784e-10 4.227137739e-10 1.241624739e-09 8.469080851e-10 4.055808741e-10 7.702171966e-10 1.21635807e-09 7.328338392e-10 4.476463922e-10 7.526356122e-10 6.309123201e-10 5.512606544e-10 7.444138412e-10 6.046029849e-10 6.393331834e-10 3.565370514e-10 1.115474448e-09 4.963193808e-10 5.1529706e-10 3.620321313e-10 1.843718452e-10 3.913895778e-10 4.680194323e-10 4.949538051e-10 3.504896826e-10 +4.663225877e-10 4.359618789e-10 3.946445127e-10 3.911873232e-10 5.158855517e-10 5.909204141e-10 4.694725891e-10 3.803596462e-10 2.034926089e-10 7.791995539e-10 2.872439765e-10 7.31525129e-10 5.752619888e-10 3.856459725e-10 6.193761131e-10 6.239620335e-10 4.809310027e-10 5.936384331e-10 7.795097244e-10 6.009335065e-10 5.918137546e-10 2.980027755e-10 3.88237765e-10 4.735235239e-10 4.628351152e-10 5.21344239e-10 6.872649836e-10 2.960721112e-10 5.1206429e-10 5.520190657e-10 6.280155098e-10 3.178630138e-10 8.242067261e-10 1.014068498e-09 9.026872073e-10 5.109097741e-10 5.473224668e-10 8.533594395e-10 7.358051248e-10 7.155902254e-10 6.814455268e-10 9.813607043e-10 6.691214224e-10 5.434688499e-10 5.818211585e-10 1.875726241e-10 6.964168492e-10 7.557024316e-10 6.373241392e-10 6.159917174e-10 4.876598066e-10 2.825564971e-10 2.65491581e-10 7.437589031e-10 7.609610636e-10 9.453468948e-10 6.863404282e-10 1.264911874e-09 9.757622861e-10 4.357078559e-10 5.103253468e-10 6.218693619e-10 1.337350607e-09 1.030590157e-09 4.940330718e-10 8.045811634e-10 5.726162435e-10 7.128654129e-10 9.060264034e-10 7.910562163e-10 1.154469238e-09 7.454382947e-10 6.44621459e-10 6.684286219e-10 1.008752e-09 9.521850229e-10 3.313274871e-10 1.232428544e-09 4.847168145e-10 4.374598176e-10 1.21528773e-09 1.072673115e-09 8.441788021e-10 1.114746215e-09 1.331427847e-09 1.849434712e-09 9.682527311e-10 4.905467738e-10 9.296583633e-10 9.231753444e-10 9.626609405e-10 5.653008616e-10 1.088069434e-09 1.119129305e-09 8.05460561e-10 7.605234098e-10 1.145559738e-09 8.005697723e-10 1.276380978e-09 6.937460311e-10 8.554462933e-10 1.030688902e-09 1.160146389e-09 1.254336165e-09 8.071347584e-10 7.510410778e-10 3.458123913e-10 5.306313253e-10 3.936931985e-10 1.487857277e-10 1.872965735e-10 4.03672552e-10 6.31007689e-10 8.115742111e-10 5.478602672e-10 8.169997392e-10 1.405941845e-09 1.560099383e-09 1.988486598e-09 1.69255264e-09 1.392508022e-09 1.374403412e-09 1.968320196e-09 1.994081404e-09 1.76540845e-09 9.045105303e-10 1.221517465e-09 1.25702534e-09 1.112553345e-09 1.694502538e-09 1.304923894e-09 1.512643416e-09 9.683973816e-10 1.751331449e-09 1.282453788e-09 1.290981781e-09 2.19598855e-09 2.380563894e-09 1.744102725e-09 2.178369683e-09 2.406469923e-09 7.306353194e-10 2.790237577e-09 1.796087838e-09 2.138311669e-09 8.95145509e-10 1.533122204e-09 1.352167445e-09 2.224425962e-09 2.760906124e-09 2.271783388e-09 1.990690751e-09 2.092911383e-09 1.625650436e-09 1.758978201e-09 1.773872169e-09 1.998051521e-09 2.265353817e-09 1.998424702e-09 1.68743299e-09 1.380938609e-09 2.322173205e-09 1.730357423e-09 1.477818454e-09 2.185360996e-09 1.389736982e-09 2.184797442e-09 1.136552594e-09 1.031703077e-09 1.750924376e-09 1.8222864e-09 1.20585992e-09 1.016074076e-09 2.284669359e-09 1.845091887e-09 1.712358784e-09 1.188824728e-09 2.90818534e-09 7.160094974e-10 1.23059851e-09 1.690819674e-09 1.875451417e-09 8.55590876e-10 1.219659517e-09 1.964368677e-09 6.883792078e-10 3.666776165e-10 4.358938896e-10 2.412241168e-10 4.73255687e-10 1.694969556e-10 4.229917269e-10 3.138434173e-10 2.378487883e-10 6.505454036e-10 9.620869447e-10 5.543994236e-10 1.131658379e-09 7.456487281e-10 5.417372757e-10 8.144530638e-10 1.019580626e-09 1.11440722e-09 1.214165608e-09 6.246109e-10 6.566961532e-10 9.280828163e-10 1.172143229e-09 1.799098041e-09 1.197858065e-09 1.672749498e-09 1.104068367e-09 6.729187762e-10 2.650691272e-09 1.841667898e-09 9.432088174e-10 9.401918657e-10 7.816402618e-10 8.254529232e-10 7.581204946e-10 4.01195352e-10 1.116183669e-09 4.033925725e-10 3.76700401e-10 8.148068572e-10 2.995524573e-10 6.354642234e-10 1.01502306e-09 6.002503448e-10 5.852855553e-10 5.066742414e-10 1.109506575e-09 7.584267808e-10 4.836047905e-10 7.482152275e-10 6.146766459e-10 6.156664142e-10 7.17886518e-10 3.740732751e-10 8.496083686e-10 5.914127091e-10 7.410943088e-10 9.03030853e-10 4.905941917e-10 5.042064245e-10 6.82225164e-10 2.441005015e-10 6.199664234e-10 1.202920945e-09 6.951941234e-10 5.453569598e-10 4.954441262e-10 2.100706692e-10 8.338247636e-10 7.731420557e-10 5.778362254e-10 7.543894032e-10 8.009698503e-10 8.531240854e-10 1.271884627e-09 4.029999574e-10 5.287823959e-10 8.649478099e-10 3.403946097e-10 8.403329942e-10 5.942121573e-10 9.310392123e-10 2.58742974e-10 3.96537922e-10 7.772212228e-10 6.587722943e-10 3.28201557e-10 3.3672029e-10 3.251771898e-10 3.041105293e-10 5.685942368e-10 7.790206704e-10 1.325984617e-09 6.779637918e-10 8.772496969e-10 6.234205759e-10 5.284426281e-10 7.676442196e-10 5.29072674e-10 5.527378213e-10 3.277987312e-10 6.724487488e-10 1.201539303e-09 8.408077413e-10 5.331503176e-10 3.455677599e-10 5.505615892e-10 6.4748043e-10 3.4670725e-10 8.895524849e-10 5.510809207e-10 2.672019017e-10 4.040365083e-10 7.176958982e-10 2.532250559e-10 +3.86649978e-10 2.811171096e-10 1.963220912e-10 3.998606958e-10 4.162692018e-10 4.750614706e-10 1.269494628e-10 3.575533255e-10 5.624920993e-10 5.038433974e-10 4.170316705e-10 2.675102654e-10 4.080601482e-10 2.346784088e-10 4.407683685e-10 5.920613882e-10 3.890162761e-10 1.206745736e-09 5.731528224e-10 4.190944982e-10 6.381371479e-10 3.245116436e-10 3.372118852e-10 5.60261849e-10 1.018559449e-09 3.572731784e-10 4.103499927e-10 2.420107706e-10 7.383851196e-10 5.614694627e-10 6.525208945e-10 6.366624389e-10 7.666887854e-10 6.438602219e-10 8.157427443e-10 5.518264401e-10 7.905475768e-10 7.485646434e-10 4.515593358e-10 4.663455562e-10 1.107220727e-09 6.919592355e-10 9.445220551e-10 5.160340273e-10 6.74961687e-10 5.872207476e-10 7.312148615e-10 8.795688624e-10 7.078649766e-10 4.82527899e-10 5.21414139e-10 8.664851674e-10 4.633227737e-10 3.821085499e-10 4.830618434e-10 1.442239191e-09 6.649197958e-10 3.23846502e-10 3.773521883e-10 8.584289753e-10 6.16707201e-10 6.632183863e-10 8.52161694e-10 7.347234394e-10 7.839136303e-10 2.640613657e-10 8.561808615e-10 8.195989192e-10 8.87917994e-10 1.103574766e-09 8.78779461e-10 9.226668939e-10 6.800594385e-10 7.841872248e-10 2.694715695e-10 8.599815046e-10 7.013627982e-10 4.68810683e-10 2.446659617e-10 1.034215488e-09 8.908737683e-10 1.214767265e-09 7.034933416e-10 2.086705434e-09 1.939630855e-09 1.053978777e-09 1.304631465e-09 1.216630737e-09 1.548448749e-09 8.552580514e-10 1.1976355e-09 1.48457176e-09 1.077679617e-09 1.252954012e-09 1.178717637e-09 8.864981794e-10 8.466978491e-10 3.937487628e-10 1.006987222e-09 8.034091212e-10 7.358228111e-10 7.899891095e-10 5.807966736e-10 7.562174575e-10 1.011064027e-09 9.635033857e-10 6.265752123e-10 4.559876958e-10 1.879806957e-10 1.951982302e-10 3.609441766e-10 6.695699682e-10 7.691806305e-10 5.653279765e-10 1.602257993e-09 1.199354788e-09 1.451052851e-09 1.227526347e-09 2.38501992e-09 1.48442479e-09 2.19541901e-09 1.352977797e-09 1.647135888e-09 2.645679448e-09 1.535478353e-09 2.465116586e-09 2.576883542e-09 6.395574299e-10 1.318850606e-09 1.562179033e-09 1.340790104e-09 1.432711633e-09 1.890486434e-09 1.776360624e-09 1.221635114e-09 1.770413939e-09 1.918837627e-09 1.248278345e-09 1.528196485e-09 1.925954737e-09 2.763357637e-09 2.039340221e-09 1.399113085e-09 1.223741856e-09 2.095993676e-09 2.168438086e-09 2.190867072e-09 1.09968509e-09 1.720047982e-09 1.104439481e-09 2.036621226e-09 1.823946692e-09 1.631529872e-09 2.273244514e-09 1.964891502e-09 1.564469695e-09 2.328545731e-09 2.157393338e-09 2.737848714e-09 2.84239583e-09 1.854961879e-09 1.618494592e-09 2.212728976e-09 1.963374963e-09 2.525136196e-09 7.809121615e-10 1.522782946e-09 1.803638688e-09 1.920695745e-09 1.26205395e-09 2.64840254e-09 1.218756668e-09 1.144198069e-09 1.662803321e-09 1.819758046e-09 1.061691522e-09 1.951369473e-09 2.454230518e-09 1.477544682e-09 2.588039704e-09 1.48279062e-09 1.473658864e-09 2.522809405e-09 1.203838286e-09 1.57767058e-09 1.003096348e-09 1.131051397e-09 6.933519182e-10 5.090482953e-10 2.433170986e-10 3.23258609e-10 2.712042321e-10 2.972058418e-10 2.858580283e-10 6.848566236e-10 9.079261275e-10 7.559794023e-10 1.187447902e-09 1.365236968e-09 1.59222737e-09 8.21594077e-10 1.274717107e-09 1.26112352e-09 1.445053952e-09 1.442840651e-09 9.599510423e-10 1.088823269e-09 7.047411946e-10 1.194293503e-09 7.204009771e-10 1.573151344e-09 1.735621039e-09 1.538181337e-09 1.075756151e-09 1.393385187e-09 9.558556836e-10 1.429584035e-09 1.711217508e-09 1.301061941e-09 7.151340735e-10 6.77705781e-10 8.019032723e-10 5.756405025e-10 1.134231581e-09 3.424175838e-10 1.09601994e-09 3.41856765e-10 9.685282755e-10 5.595674879e-10 3.518233274e-10 1.131905052e-09 5.617401418e-10 6.259415036e-10 5.25048421e-10 3.909187924e-10 3.5184822e-10 3.848341797e-10 7.829817514e-10 1.295912977e-09 5.915745968e-10 7.358596105e-10 8.515279444e-10 8.249281031e-10 5.023121215e-10 3.242287629e-10 4.361219253e-10 7.703172913e-10 6.04306162e-10 7.504173262e-10 5.246554986e-10 7.691818118e-10 5.959676109e-10 2.502166443e-10 9.752451699e-10 8.765454452e-10 5.313777644e-10 4.071776034e-10 8.669737266e-10 6.362201286e-10 5.781769174e-10 6.270038147e-10 8.270644798e-10 6.988704292e-10 1.427723734e-10 1.233784901e-09 4.154561376e-10 3.720928831e-10 4.953604627e-10 4.279984842e-10 5.837981116e-10 5.510737163e-10 7.792358605e-10 1.044987835e-09 7.178378661e-10 4.484778125e-10 8.73924584e-10 2.28392553e-10 1.067044926e-09 4.122103588e-10 7.482869211e-10 4.49906621e-10 1.000760973e-09 6.485060998e-10 5.903804633e-10 7.250307576e-10 5.868057584e-10 5.099970347e-10 3.061048823e-10 6.129478216e-10 3.965929599e-10 3.219001215e-10 2.280693411e-10 4.425818823e-10 3.545114622e-10 8.686141575e-10 5.238611933e-10 1.57202267e-10 5.586382178e-10 3.603070804e-10 6.218478131e-10 +5.909749052e-10 3.815079715e-10 4.122842683e-10 4.045221246e-10 6.776245216e-10 3.606707002e-10 3.063458819e-10 1.229017014e-10 5.142932396e-10 7.021480881e-10 3.106230024e-10 5.675208334e-10 1.327349817e-10 3.384160999e-10 9.026177619e-10 5.586261881e-10 1.320025441e-09 1.008349164e-09 3.175631463e-10 6.207668686e-10 4.452124223e-10 5.53930673e-10 3.897436678e-10 5.850665078e-10 7.892907361e-10 7.200783265e-10 6.857491905e-10 9.774869954e-10 8.054445842e-10 5.214347021e-10 6.570473204e-10 8.137538005e-10 6.058530097e-10 6.679048403e-10 3.807006664e-10 4.690186323e-10 8.921695856e-10 6.041275193e-10 4.469759296e-10 6.056196193e-10 1.03518719e-09 7.886540716e-10 1.482781389e-09 4.493399373e-10 4.076269388e-10 2.310644963e-10 6.768258026e-10 5.229626436e-10 9.679710859e-10 6.103118726e-10 2.573564928e-10 4.342244225e-10 4.938001963e-10 6.366595199e-10 4.420434595e-10 9.510684933e-10 4.765866529e-10 1.280650925e-09 1.070930483e-09 1.234494801e-09 5.186160589e-10 7.380313502e-10 8.95265996e-10 5.618461177e-10 6.584861498e-10 6.419240806e-10 1.002488067e-09 6.405217958e-10 1.002985107e-09 4.446813579e-10 3.86095355e-10 5.767113381e-10 4.47966964e-10 9.623284973e-10 8.023383343e-10 7.354166863e-10 6.425573325e-10 5.476656728e-10 5.112664587e-10 8.217603457e-10 5.188624979e-10 9.380441622e-10 6.510008942e-10 1.106195629e-09 1.46171611e-09 1.365800557e-09 1.238777184e-09 1.124552835e-09 9.761087915e-10 1.006242033e-09 7.8382346e-10 1.597546429e-09 7.382769983e-10 1.396250694e-09 9.311904339e-10 1.14620988e-09 1.423434386e-09 4.60713816e-10 1.557169591e-09 1.025677781e-09 8.344169145e-10 1.38497159e-09 8.442336922e-10 1.222368672e-09 6.887666623e-10 6.917049721e-10 6.230346281e-10 1.842465901e-10 5.752817431e-10 3.728024583e-10 3.199978195e-10 6.200597563e-10 8.063883905e-10 1.487173088e-09 6.675395078e-10 1.027920624e-09 9.030152097e-10 1.717198242e-09 1.954989565e-09 1.46541305e-09 2.342470852e-09 2.332399942e-09 1.488012305e-09 9.544786941e-10 2.351045504e-09 1.234643921e-09 1.594136566e-09 1.52924218e-09 2.502554191e-09 1.633363378e-09 2.58377973e-09 6.620016698e-10 1.125874609e-09 2.742293171e-09 3.240961843e-09 1.139124188e-09 1.882869061e-09 2.191567155e-09 2.55365969e-09 2.904906721e-09 1.95556692e-09 1.881059186e-09 2.216728379e-09 2.062561364e-09 9.939622514e-10 1.272055141e-09 2.177639183e-09 1.268122624e-09 1.117688459e-09 2.809153296e-09 1.626446463e-09 2.201849855e-09 1.258669127e-09 1.481336238e-09 1.372672865e-09 2.172569752e-09 1.167252279e-09 2.246540148e-09 1.865131116e-09 2.427487084e-09 1.919066501e-09 2.31721635e-09 2.485292323e-09 2.751538599e-09 2.289223541e-09 1.144694948e-09 1.184872816e-09 1.211519103e-09 1.221891522e-09 1.706032388e-09 1.178619556e-09 1.860894628e-09 1.707136619e-09 1.275471141e-09 1.451626983e-09 1.624188628e-09 2.370642321e-09 1.15892468e-09 1.703663563e-09 2.040714493e-09 1.945929074e-09 1.170778928e-09 7.166450197e-10 1.284140932e-09 1.34550074e-09 1.17867656e-09 2.722773962e-10 6.996156287e-10 5.603999077e-10 4.549762358e-10 2.730251929e-10 3.848249516e-10 2.525878611e-10 1.53802314e-10 3.3762346e-10 3.985435051e-10 7.953928951e-10 7.074403883e-10 9.637959017e-10 6.067816149e-10 9.058704846e-10 1.07344378e-09 3.057202574e-10 1.358259004e-09 1.234253671e-09 1.237306503e-09 1.255431664e-09 7.250218863e-10 1.150747012e-09 1.222089609e-09 1.287666017e-09 1.63925648e-09 7.390994671e-10 5.953243359e-10 1.915491853e-09 1.727367789e-09 8.356580262e-10 7.812927055e-10 4.082169163e-10 1.018207381e-09 4.796676932e-10 2.531050172e-10 5.617336385e-10 7.601578363e-10 5.930115381e-10 7.390869047e-10 1.011850383e-09 3.216837104e-10 7.5437808e-10 6.65291165e-10 7.24891238e-10 6.369659673e-10 5.209691109e-10 9.350545317e-10 5.522780118e-10 6.22030393e-10 6.859552444e-10 7.091688851e-10 8.101469895e-10 6.276275164e-10 7.514288533e-10 6.675048246e-10 5.619935827e-10 9.12366706e-10 5.017842951e-10 6.747638607e-10 9.056334238e-10 5.302061353e-10 4.728238115e-10 2.9230247e-10 3.274926023e-10 1.001567937e-09 4.413419634e-10 3.621668964e-10 4.820048901e-10 8.530042704e-10 7.827697049e-10 7.782623346e-10 7.130066767e-10 4.2095721e-10 6.428056202e-10 3.4538916e-10 6.45036618e-10 7.275138737e-10 1.060157153e-09 5.688844826e-10 5.458762014e-10 3.291143482e-10 8.33287256e-10 7.24907994e-10 1.051739132e-09 6.107806612e-10 5.534080372e-10 9.446834873e-10 7.008552685e-10 5.412119927e-10 1.398096837e-09 5.772563339e-10 1.325029183e-09 7.527801564e-10 6.079092965e-10 7.719779646e-10 9.512511518e-10 1.203799069e-09 8.61668698e-10 5.873289429e-10 3.452392762e-10 3.698748124e-10 2.931024855e-10 4.772356673e-10 6.756727181e-10 2.078897787e-10 4.178818151e-10 6.114284516e-10 3.601851169e-10 2.187285232e-10 4.062474291e-10 4.337226817e-10 7.344671466e-10 2.641574991e-10 +7.790456143e-10 2.593539094e-10 8.216126313e-10 4.50113702e-10 1.988822086e-10 4.286341863e-10 2.31762395e-10 5.709501504e-10 4.661043413e-10 3.18121316e-10 8.400062677e-10 1.826608187e-10 3.762579339e-10 8.03558113e-10 7.491599629e-10 3.041154953e-10 3.579733262e-10 5.371857964e-10 3.479593675e-10 6.637591848e-10 1.120093462e-09 1.018887071e-09 1.008927563e-09 8.340193534e-10 9.763214091e-10 6.906088831e-10 8.005841857e-10 5.75573045e-10 6.338926535e-10 8.72635295e-10 4.47337266e-10 1.026581756e-09 7.945823878e-10 8.173687249e-10 7.130681297e-10 5.524099882e-10 4.444066036e-10 5.905577302e-10 8.099455073e-10 8.916341904e-10 3.092319664e-10 1.037368449e-09 7.014596757e-10 6.817108255e-10 6.759367656e-10 1.079174871e-09 9.735985712e-10 8.614917328e-10 9.961488317e-10 4.525291599e-10 6.994076501e-10 4.057547522e-10 9.967277673e-10 3.256137854e-10 9.111198055e-10 7.90771875e-10 6.733237795e-10 1.019891671e-09 1.24150952e-09 9.310839597e-10 6.109137963e-10 8.196330862e-10 1.072228995e-09 1.119264471e-09 1.021597781e-09 2.693976882e-10 8.082749681e-10 6.033095496e-10 1.10010215e-09 7.201180933e-10 7.130566744e-10 8.443627543e-10 1.076173331e-09 7.374007102e-10 8.965256144e-10 7.033119898e-10 9.088274762e-10 5.256778396e-10 5.053581315e-10 7.784725731e-10 8.565382126e-10 3.497292245e-10 6.552950158e-10 6.114005671e-10 1.775782313e-09 1.393331053e-09 1.453081345e-09 1.323845465e-09 1.016547597e-09 9.435842288e-10 1.174847528e-09 1.371159718e-09 1.016665672e-09 9.605642676e-10 9.191737974e-10 1.658471725e-09 1.115838952e-09 7.470242716e-10 7.031350834e-10 1.206967601e-09 1.468814529e-09 1.299141431e-09 1.326859471e-10 1.401264486e-09 4.332195542e-10 7.929721002e-10 2.206479011e-10 2.911453548e-10 1.572693005e-10 5.338382351e-10 4.241600832e-10 5.247345103e-10 2.448934736e-10 2.146680942e-09 6.523291851e-10 1.203746809e-09 1.252418194e-09 2.114870207e-09 1.871513179e-09 2.748039005e-09 1.87483975e-09 1.563672958e-09 2.035419827e-09 1.939058845e-09 7.268823598e-10 1.325474156e-09 1.254074296e-09 1.867058828e-09 1.556294203e-09 1.384210999e-09 1.710676567e-09 1.877863005e-09 2.27028998e-09 2.439593111e-09 2.440976248e-09 1.960388527e-09 1.537329899e-09 2.455765248e-09 3.047313046e-09 1.522134392e-09 2.485443114e-09 1.660103356e-09 1.700348945e-09 2.094821216e-09 2.570054664e-09 1.53697993e-09 2.10277346e-09 2.277667686e-09 9.479697207e-10 1.625547187e-09 9.944961842e-10 1.626260123e-09 1.119780807e-09 1.313879079e-09 1.166168938e-09 1.056320499e-09 1.451386516e-09 1.671348456e-09 2.199932755e-09 1.734291268e-09 2.828172172e-09 3.701776164e-09 2.176315879e-09 2.01569256e-09 1.690072319e-09 1.669626269e-09 1.92260633e-09 1.086516648e-09 1.158508994e-09 1.229715857e-09 1.034538407e-09 1.210277465e-09 7.416845369e-10 1.181983804e-09 5.790695792e-10 1.546413922e-09 1.170024108e-09 3.082542372e-09 1.462243491e-09 1.828976234e-09 1.427530757e-09 2.397091676e-09 1.666769083e-09 1.886281961e-09 1.457498257e-09 2.062770659e-09 3.191332733e-10 4.220261287e-10 7.920438841e-10 8.428847315e-10 4.500846907e-10 3.101578701e-10 4.908031131e-10 2.185999642e-10 6.494713192e-10 8.033026828e-10 8.476538094e-10 6.980698118e-10 1.213416291e-09 9.395730633e-10 8.279077447e-10 9.700856268e-10 1.004185318e-09 4.730679528e-10 5.762009585e-10 1.265300227e-09 6.525237931e-10 1.510384738e-09 1.068982874e-09 1.403564533e-09 1.341718826e-09 1.018724528e-09 1.228883621e-09 1.73244494e-09 1.749155216e-09 1.497155644e-09 1.40968099e-09 1.27022019e-09 9.626221207e-10 1.144857589e-09 2.24370601e-10 6.082668128e-10 5.621008952e-10 4.318884055e-10 2.317011777e-10 1.404851855e-09 1.001882917e-09 6.596398875e-10 9.572195996e-10 3.121853863e-10 8.219327359e-10 1.347931157e-09 8.641164476e-10 5.413990837e-10 9.883511524e-10 4.544826394e-10 7.986264787e-10 9.46426911e-10 7.020801127e-10 1.244859423e-09 6.818736871e-10 8.729825176e-10 7.440220758e-10 6.565454009e-10 5.940140784e-10 8.854527383e-10 4.856102657e-10 8.646499325e-10 6.069468445e-10 5.565525017e-10 1.082992847e-09 6.804916598e-10 7.779044888e-10 7.65484786e-10 5.221745017e-10 4.137589869e-10 1.074297823e-09 9.019426534e-10 8.175646852e-10 6.666217422e-10 6.064552435e-10 1.166165903e-09 1.194251794e-09 5.122549816e-10 4.743510774e-10 5.549088094e-10 4.698965962e-10 6.432315074e-10 5.525226696e-10 5.023220392e-10 7.979392667e-10 4.954508596e-10 9.546695141e-10 4.349943967e-10 5.180943186e-10 6.269047625e-10 1.032552764e-09 7.399454936e-10 3.769685582e-10 5.872216821e-10 2.545729566e-10 6.510604468e-10 5.691990203e-10 7.815314835e-10 5.908886658e-10 2.4032251e-10 4.922209737e-10 1.303590037e-09 1.833519936e-10 3.925614534e-10 6.350318051e-10 2.27505906e-10 2.145355709e-10 5.341351803e-10 1.017791341e-10 3.763968097e-10 4.694234173e-10 4.712315571e-10 3.748269124e-10 7.193879196e-10 +2.374834707e-10 2.061076446e-10 2.688710747e-10 1.897682182e-10 5.971707578e-10 2.942352774e-10 1.124339478e-10 4.754905136e-10 4.532412424e-10 3.716445156e-10 4.413257414e-10 3.770531512e-10 3.236735022e-10 9.763859918e-10 4.003784285e-10 5.011396278e-10 3.710293179e-10 4.891639933e-10 4.486605169e-10 7.25831575e-10 5.956118526e-10 8.148928839e-10 9.707322293e-10 8.278690693e-10 6.676255303e-10 6.31315151e-10 4.5529952e-10 4.213580845e-10 4.778573319e-10 2.792775121e-10 9.115269687e-10 9.27433401e-10 7.934527865e-10 9.919081934e-10 8.327076778e-10 8.497808676e-10 8.001105682e-10 8.078384261e-10 5.288604381e-10 7.870353747e-10 7.086170258e-10 8.374199512e-10 5.657287066e-10 8.836596369e-10 6.979550124e-10 5.780628309e-10 6.0761685e-10 8.688418813e-10 6.801923475e-10 3.144321548e-10 1.890119267e-10 5.616066039e-10 5.162847147e-10 2.466152677e-10 3.524078866e-10 3.650906387e-10 3.414024298e-10 7.334563065e-10 9.9175565e-10 9.080973551e-10 1.124715205e-09 8.266126754e-10 8.998307514e-10 6.452055283e-10 6.423939497e-10 7.825693718e-10 9.626566837e-10 7.607700089e-10 1.382043675e-09 5.540939709e-10 6.908945368e-10 6.139101183e-10 8.840011822e-10 1.112534664e-09 3.908069845e-10 4.891727544e-10 5.723840128e-10 6.965719281e-10 1.945498002e-10 9.910509677e-10 8.453843429e-10 5.736842543e-10 1.431179763e-09 1.332382227e-09 2.12603837e-09 1.718197599e-09 1.378006514e-09 1.393729936e-09 1.604986472e-09 8.849828012e-10 1.131092935e-09 1.016849466e-09 6.172209403e-10 1.157097872e-09 7.299739888e-10 1.638068324e-09 1.423460043e-09 7.126623934e-10 9.974832664e-10 1.157258109e-09 8.003205119e-10 1.364416335e-09 1.156826692e-09 5.771511104e-10 4.634302018e-10 5.579162104e-10 2.125657741e-10 2.751246952e-10 2.631116489e-10 2.617258925e-10 4.519583633e-10 3.371696822e-10 6.128340397e-10 1.142192414e-09 2.051353693e-09 1.249237219e-09 1.437503936e-09 1.667316416e-09 2.113442034e-09 1.939263162e-09 1.968980431e-09 1.221177536e-09 1.177238458e-09 1.345773005e-09 9.563067157e-10 1.718338878e-09 3.636974439e-09 2.043654321e-09 1.625468534e-09 1.958398224e-09 2.116882015e-09 1.544959627e-09 2.49216991e-09 1.815319173e-09 3.527496562e-09 2.460291604e-09 2.031957434e-09 3.29712964e-09 2.402534013e-09 1.834976538e-09 2.041781132e-09 1.460857268e-09 1.614452714e-09 9.821809965e-10 8.64885848e-10 1.256695471e-09 1.447854043e-09 1.197045328e-09 1.257172394e-09 1.29886155e-09 1.850335943e-09 9.934314506e-10 1.352490876e-09 8.601789464e-10 5.610943589e-10 6.421710653e-10 1.149770765e-09 2.160574942e-09 2.181626771e-09 2.185843011e-09 2.308151051e-09 2.029238618e-09 1.720784698e-09 2.800638516e-09 2.446920538e-09 2.356042818e-09 3.682393111e-09 1.426488363e-09 1.8234387e-09 1.088005696e-09 1.780324828e-09 2.597974717e-09 1.742615592e-09 1.72725942e-09 1.906863115e-09 1.768211117e-09 2.098133773e-09 1.019527327e-09 9.641786482e-10 2.289053873e-09 1.141894299e-09 1.431990133e-09 1.408066997e-09 1.424586153e-09 1.757862844e-09 2.106355035e-09 1.311522305e-09 7.856150032e-10 4.185199407e-10 8.343848206e-10 6.751815689e-10 4.949595135e-10 8.315527123e-10 3.311993366e-10 9.981731497e-10 4.127541038e-10 8.692025499e-10 1.214767019e-09 6.871623098e-10 6.458375975e-10 7.114387206e-10 1.125773834e-09 1.356125335e-09 5.596848138e-10 1.124523259e-09 6.425171661e-10 9.891053132e-10 9.53446933e-10 9.484139838e-10 1.838355884e-09 8.606973349e-10 8.805656091e-10 1.695617418e-09 1.441449763e-09 1.560106754e-09 1.384185774e-09 1.242181421e-09 1.22785905e-09 8.525808134e-10 1.005462795e-09 6.891366614e-10 4.051556846e-10 4.575313049e-10 5.643707319e-10 9.33467354e-10 6.679225088e-10 7.4755282e-10 7.124828385e-10 9.587292097e-10 9.0401185e-10 1.0591867e-09 1.109305526e-09 1.266978097e-09 7.617413167e-10 3.629960087e-10 7.121287339e-10 6.123767296e-10 8.799123777e-10 7.417277923e-10 7.348487143e-10 9.95393402e-10 6.193086615e-10 6.531358015e-10 1.003685597e-09 7.148655902e-10 2.110826017e-10 8.286260363e-10 4.169594175e-10 3.98552314e-10 8.863778183e-10 1.109759677e-09 1.249613605e-09 3.856952227e-10 8.458777269e-10 4.450034705e-10 1.375549749e-09 5.204189819e-10 5.368315653e-10 6.867496405e-10 4.203042059e-10 8.204464083e-10 5.094083936e-10 6.105146833e-10 3.369447475e-10 6.189045522e-10 3.712056589e-10 6.957144383e-10 7.405980317e-10 1.164701147e-09 6.124519851e-10 1.232000285e-09 8.623059507e-10 7.403981755e-10 4.880948402e-10 1.174179333e-09 6.641615512e-10 1.081911726e-09 9.357276851e-10 4.403512309e-10 6.364886715e-10 3.616581172e-10 3.634938927e-10 6.800315105e-10 1.881433623e-10 5.241943329e-10 4.706843082e-10 4.981199262e-10 1.149904977e-10 4.38968292e-10 2.819896394e-10 7.582988853e-10 6.971300569e-10 4.742005412e-10 4.471566312e-10 3.177977654e-10 5.228255936e-10 2.568024468e-10 1.83340268e-10 6.032454543e-10 1.338755368e-10 +3.667457489e-10 3.419960031e-10 3.738296435e-10 2.778446355e-10 1.700128088e-10 4.677547972e-10 5.459554877e-10 3.018286209e-10 4.695459728e-10 1.721520722e-10 5.584222971e-10 4.500275967e-10 3.471064902e-10 4.192495037e-10 6.268544968e-10 2.833409842e-10 6.191042257e-10 4.947143095e-10 1.376221153e-10 3.562476296e-10 7.528397355e-10 4.129786451e-10 8.038904954e-10 4.816887348e-10 1.07064193e-09 1.417168964e-09 6.382530014e-10 4.716849667e-10 3.802827206e-10 8.155233158e-10 7.00010778e-10 5.27606473e-10 8.88638361e-10 7.666269845e-10 6.970373574e-10 5.232455717e-10 9.147722836e-10 7.131129955e-10 8.265892012e-10 1.175530337e-09 6.252334575e-10 1.596033301e-09 8.69857524e-10 1.060036303e-09 1.211391891e-09 4.274243226e-10 6.763059536e-10 7.691497458e-10 5.091400936e-10 2.649725803e-10 4.953964402e-10 6.532464223e-10 5.697659525e-10 6.975391857e-10 9.744319975e-10 1.01411206e-09 3.148594238e-10 7.804783139e-10 4.061782743e-10 1.439467313e-09 7.92212679e-10 9.380740067e-10 9.068991168e-10 8.233308181e-10 9.70516196e-10 5.52005318e-10 1.077903163e-09 7.364627853e-10 8.308619704e-10 9.87405035e-10 4.402335469e-10 7.330999254e-10 1.004313754e-09 5.433051632e-10 6.50827133e-10 3.248418514e-10 5.410385344e-10 7.815330626e-10 7.636294036e-10 4.454545208e-10 7.198835858e-10 4.160461372e-10 8.537251746e-10 7.275146283e-10 1.58843263e-09 1.199199696e-09 1.823878345e-09 8.907825819e-10 1.310552455e-09 8.697857255e-10 6.947113717e-10 1.048323283e-09 5.163317481e-10 1.115468557e-09 6.916480905e-10 7.889266654e-10 1.645932938e-09 7.857286013e-10 1.233747841e-09 4.22541046e-10 8.359485842e-10 1.027230917e-09 7.986570571e-10 7.475591946e-10 7.63378603e-10 4.452374161e-10 1.645649536e-10 4.542027001e-10 6.441583419e-11 2.088390099e-10 6.271279481e-10 5.62086669e-10 1.052119827e-09 1.856768586e-09 1.478853558e-09 8.672902981e-10 2.334976094e-09 2.115852709e-09 2.290616276e-09 1.577119539e-09 3.393903381e-09 8.673178314e-10 1.672089836e-09 1.237195781e-09 1.63961079e-09 1.726921276e-09 1.739206523e-09 1.667489714e-09 1.273704983e-09 2.368149279e-09 1.5903205e-09 2.988676401e-09 2.684560495e-09 3.192504869e-09 1.805064347e-09 2.343352274e-09 2.394107783e-09 1.773429768e-09 9.748274812e-10 1.76037209e-09 1.561364218e-09 8.08712307e-10 1.131787111e-09 9.795806098e-10 1.130490237e-09 1.857556441e-09 1.076577545e-09 1.597470003e-09 7.13453086e-10 8.039781776e-10 1.606246359e-09 1.587260706e-09 1.595898077e-09 1.700953752e-09 1.573829079e-09 1.520460157e-09 1.66355224e-09 1.133214236e-09 7.502138057e-10 2.147645872e-09 1.407249703e-09 1.368493479e-09 1.751599677e-09 2.523595558e-09 2.259697616e-09 2.558950796e-09 2.38753988e-09 2.923927239e-09 1.51520564e-09 2.940859772e-09 1.620002914e-09 1.597876489e-09 1.15691082e-09 1.323877894e-09 1.390549436e-09 1.850205508e-09 1.230373011e-09 1.247628779e-09 1.802427193e-09 1.818753713e-09 1.733673073e-09 1.832633062e-09 1.928075935e-09 1.290860008e-09 1.853627936e-09 2.093966397e-09 2.626905671e-09 1.025665436e-09 1.003569048e-09 6.035748784e-10 5.621323715e-10 3.964909913e-10 3.42951378e-10 6.174767631e-10 7.272137765e-10 5.260163606e-10 1.025187824e-09 8.912225606e-10 7.36534161e-10 7.613806331e-10 9.584392217e-10 1.450291491e-09 1.43272712e-09 5.479305557e-10 1.458057056e-09 6.896578024e-10 8.296368406e-10 1.364533123e-09 1.242634677e-09 1.114424378e-09 1.258482402e-09 8.604034174e-10 1.142228521e-09 1.138622716e-09 1.545789212e-09 1.674564146e-09 2.244563595e-09 3.884159312e-10 1.119023179e-09 1.244578638e-09 4.234363809e-10 8.018180228e-10 8.739825706e-10 8.15714587e-10 4.137591704e-10 9.248877716e-10 3.971356994e-10 2.601655481e-10 4.137473334e-10 1.291346474e-09 8.533630461e-10 8.467224629e-10 7.794385035e-10 5.696034199e-10 7.526638349e-10 6.490171267e-10 1.434208017e-09 7.444575438e-10 8.45145745e-10 7.529619554e-10 1.09868595e-09 5.829831233e-10 8.609568867e-10 4.022397047e-10 4.215046885e-10 8.701767653e-10 2.424147859e-10 3.213133468e-10 6.651269126e-10 1.468704741e-09 7.344032285e-10 9.434049357e-10 6.484747005e-10 7.436674122e-10 4.505153595e-10 6.386242748e-10 8.186078067e-10 9.486782073e-10 7.580308835e-10 8.096103889e-10 6.147282626e-10 7.584516737e-10 8.13509634e-10 3.452670247e-10 5.142418393e-10 1.17716848e-10 6.778108883e-10 4.783484526e-10 4.734028584e-10 7.632298912e-10 8.337085527e-10 2.499475237e-10 8.009291348e-10 1.053842297e-09 7.460680594e-10 8.844055781e-10 1.548121686e-09 8.383105725e-10 5.860888126e-10 6.779971339e-10 5.686147761e-10 2.637572889e-10 3.496550028e-10 4.697920303e-10 3.858377703e-10 7.599966784e-10 3.944284972e-10 4.13265252e-10 6.418172895e-10 5.805981573e-10 1.483182049e-10 2.772908041e-10 3.041573121e-10 5.199179948e-10 3.774746237e-10 7.378992517e-10 6.173421303e-10 2.455388286e-10 3.233250979e-10 1.506211426e-10 +4.265772593e-10 1.44060189e-10 3.529575304e-10 2.446758923e-10 5.394970663e-10 2.697338684e-10 1.208370574e-10 4.55363303e-10 2.086227468e-10 1.81439949e-10 3.88425297e-10 5.03038295e-10 4.214819107e-10 3.105674148e-10 6.369945543e-10 8.727776746e-10 3.554241583e-10 5.277496742e-10 2.168857554e-10 5.996487838e-10 3.985902598e-10 6.537911273e-10 8.845500239e-10 8.294274242e-10 3.382160147e-10 1.145004462e-09 7.372294833e-10 1.097311287e-09 1.274751789e-09 6.092358523e-10 6.681867153e-10 6.368696134e-10 7.425676166e-10 8.532356456e-10 2.434859356e-10 1.178850975e-09 3.528122173e-10 7.812937582e-10 5.09329245e-10 5.633053624e-10 1.06393178e-09 1.023302358e-09 9.012421152e-10 9.714047114e-10 1.72262282e-09 9.312426573e-10 7.821866156e-10 8.321501212e-10 7.44653178e-10 3.781319452e-10 2.84718301e-10 5.648096971e-10 8.227941009e-10 5.572158025e-10 5.797270871e-10 8.822827554e-10 9.080203061e-10 5.78561162e-10 8.663563353e-10 8.363817559e-10 8.071903193e-10 7.194237361e-10 7.992950287e-10 9.315905073e-10 5.850478209e-10 1.111311096e-09 6.753241157e-10 1.031220538e-09 7.810221851e-10 9.803572969e-10 5.576410445e-10 4.881033315e-10 6.054192056e-10 6.07057177e-10 3.730108687e-10 1.018885856e-09 6.8460243e-10 1.131145363e-09 4.027842262e-10 9.815884533e-10 1.164605808e-09 1.071957325e-09 9.040332487e-10 1.060184901e-09 1.219442427e-09 1.678341827e-09 2.029654276e-09 1.696251865e-09 1.39973275e-09 1.084591409e-09 1.473325311e-09 9.68019972e-10 8.330219817e-10 1.098834563e-09 1.341456879e-09 1.506537484e-09 1.22585676e-09 9.422571352e-10 8.672853071e-10 8.152128352e-10 8.590894919e-10 8.634533596e-10 7.158593192e-10 7.24571435e-10 4.048864233e-10 3.455375977e-10 1.540103536e-10 3.307413642e-10 5.984965566e-10 5.556873995e-10 3.583631356e-10 3.310255032e-10 2.484805145e-09 2.617488241e-09 1.337220721e-09 1.437888487e-09 2.711578654e-09 1.973729402e-09 1.166579385e-09 9.566456776e-10 1.320941162e-09 1.360550031e-09 2.138242304e-09 9.629626088e-10 2.030090588e-09 1.61568412e-09 1.196413969e-09 2.27555597e-09 2.104137185e-09 2.022385031e-09 3.283486725e-09 2.602532105e-09 2.667482717e-09 1.780902204e-09 2.093776821e-09 1.487628967e-09 9.586704193e-10 7.37968833e-10 1.801972681e-09 1.073680745e-09 1.83023472e-09 1.589615511e-09 1.597737423e-09 1.029816047e-09 1.266103775e-09 1.751522333e-09 1.509322934e-09 8.096916581e-10 1.482642619e-09 1.81111587e-09 1.586776533e-09 1.213082068e-09 1.247161066e-09 9.310988368e-10 9.657560579e-10 1.532514118e-09 1.342308275e-09 1.703081871e-09 6.844768252e-10 2.040750555e-09 5.25759688e-10 1.160065914e-09 1.643253774e-09 7.794745408e-10 1.67513673e-09 2.116706216e-09 2.956530802e-09 2.740765754e-09 1.649245001e-09 1.711292248e-09 1.832901939e-09 2.886703393e-09 2.18998615e-09 1.327942965e-09 1.94127568e-09 1.863090929e-09 1.426215044e-09 2.327548479e-09 1.324554651e-09 1.266888364e-09 2.071879007e-09 1.803377117e-09 1.424989381e-09 2.727003578e-09 2.484603157e-09 2.792590765e-09 1.229971354e-09 2.580813875e-09 6.241199111e-10 7.618343597e-10 6.216938858e-10 4.340454815e-10 2.461024758e-10 1.123649499e-10 2.558186674e-10 5.646933491e-10 3.470997349e-10 1.067235211e-09 1.09988228e-09 5.710496081e-10 1.127025834e-09 1.312060868e-09 9.34091903e-10 1.35565785e-09 7.162275976e-10 1.054591561e-09 7.909178662e-10 8.237663185e-10 6.159801031e-10 1.243725209e-09 1.980334806e-09 1.17004847e-09 1.202814651e-09 1.36730742e-09 1.580566409e-09 1.608038678e-09 1.229634034e-09 1.491891384e-09 1.408632452e-09 3.897061034e-10 9.385789365e-10 5.870727517e-10 8.514514068e-10 1.446121933e-09 8.204531262e-10 5.869657343e-10 7.560560725e-10 8.825987141e-10 4.129181274e-10 7.594267943e-10 7.370045605e-10 7.81357209e-10 9.777889523e-10 8.959691142e-10 1.231503002e-09 9.29625374e-10 6.735961084e-10 8.991402388e-10 5.430044023e-10 6.965142788e-10 8.484091916e-10 7.452832386e-10 6.557804538e-10 1.374954376e-10 4.575225706e-10 3.23481554e-10 4.14600292e-10 8.048543834e-10 7.953223409e-10 8.733205074e-10 4.200068521e-10 8.078235095e-10 6.098909867e-10 1.015284198e-09 1.126882741e-09 7.126807675e-10 5.805377126e-10 1.284080198e-09 6.270732483e-10 5.968090374e-10 1.087338029e-09 7.979555559e-10 8.461258351e-10 4.494516636e-10 9.528545874e-10 7.607734893e-10 1.792041403e-10 7.654023843e-10 6.879076319e-10 4.449381418e-10 7.06476356e-10 6.392399628e-10 8.486574044e-10 8.709987291e-10 7.609629627e-10 8.661000931e-10 4.006590136e-10 6.292264769e-10 1.016779391e-09 4.685569304e-10 5.735956427e-10 4.312705143e-10 6.833890043e-10 1.124596768e-10 2.522389571e-10 4.438745142e-10 4.039372331e-10 6.654450852e-10 2.201478216e-10 2.868375646e-10 6.455049671e-10 9.556625953e-11 4.632584141e-10 2.337024654e-10 2.815932452e-10 5.286006851e-10 2.003839196e-10 5.478048422e-10 2.097777619e-10 3.09293953e-10 +4.524601147e-10 2.29595191e-10 4.481892722e-10 3.815762197e-10 2.19760369e-10 3.962273003e-11 3.395835171e-10 2.536861205e-10 2.030055781e-10 3.143513263e-10 8.586095895e-10 4.187126069e-10 5.06333753e-10 3.538207561e-10 4.505759639e-10 5.75438466e-10 4.864548026e-10 4.962191671e-10 3.451800615e-10 5.620052512e-10 5.983946807e-10 2.928882197e-10 4.530095563e-10 1.176267167e-09 2.404982881e-10 1.117830814e-09 8.358580396e-10 5.592452643e-10 7.336356669e-10 7.09939298e-10 4.370011378e-10 8.727004512e-10 1.001730282e-09 6.753920705e-10 6.625541374e-10 5.745341676e-10 1.030732211e-09 5.205295243e-10 7.271621851e-10 9.447300248e-10 8.155761191e-10 6.093655667e-10 8.367406138e-10 5.812985849e-10 8.844287636e-10 5.517110845e-10 6.096556635e-10 1.084421099e-09 1.154374347e-09 1.231350161e-09 8.66124661e-10 7.162046875e-10 5.982317041e-10 4.145731734e-10 8.51179355e-10 2.303354767e-10 3.193091994e-10 1.105302475e-09 6.426178774e-10 4.111198761e-10 9.436008586e-10 5.683830108e-10 9.336336922e-10 1.029279413e-09 5.928761046e-10 8.421960801e-10 9.141328688e-10 7.166439999e-10 6.164166516e-10 7.497452663e-10 4.239348602e-10 8.278257663e-10 8.231755338e-10 5.275025719e-10 8.167257282e-10 2.821844329e-10 1.054080167e-09 8.908938934e-10 7.994028107e-10 6.844197093e-10 5.799277962e-10 1.051108849e-09 1.851106058e-09 1.369155199e-09 1.756940826e-09 1.066216782e-09 1.098106409e-09 2.218729682e-09 1.721234413e-09 1.478726044e-09 1.359444565e-09 6.962039441e-10 6.325581684e-10 1.252627935e-09 7.161002351e-10 1.249780431e-09 4.893356838e-10 1.210466544e-09 8.070000245e-10 9.736595915e-10 1.062971071e-09 1.032419316e-09 1.03572105e-09 7.57526382e-10 2.340889382e-10 4.31340699e-10 8.458670577e-11 9.9869653e-10 5.30999879e-10 6.966439499e-10 6.923408895e-10 2.080136184e-09 1.197842544e-09 3.578401529e-09 1.910780546e-09 2.472787062e-09 1.745933867e-09 1.00570444e-09 1.421668404e-09 1.260916367e-09 9.333559683e-10 3.542011038e-09 1.427814784e-09 2.189831809e-09 1.986351618e-09 1.241155522e-09 2.604064189e-09 3.14274326e-09 1.970025602e-09 7.6130695e-10 3.096664467e-09 2.087369175e-09 1.550194274e-09 2.207661477e-09 1.688664926e-09 1.421419093e-09 1.458420676e-09 1.246819132e-09 2.166064338e-09 1.282439995e-09 1.543356389e-09 1.505370247e-09 7.37162679e-10 1.09096855e-09 1.978909934e-09 1.772897746e-09 1.644282096e-09 1.037818702e-09 1.051392815e-09 9.4259679e-10 1.536064948e-09 1.074562703e-09 9.54123327e-10 1.99740888e-09 1.004951221e-09 8.289755317e-10 1.218235668e-09 9.973020016e-10 1.827941121e-09 1.299878309e-09 1.604607174e-09 1.443141218e-09 1.805487502e-09 1.560399759e-09 9.688760121e-10 1.415939201e-09 1.498812082e-09 3.141929604e-09 1.932109384e-09 2.717924165e-09 2.722162566e-09 2.148694355e-09 1.000292309e-09 2.171824026e-09 1.633539368e-09 1.130305734e-09 1.463786874e-09 1.07857247e-09 1.516915509e-09 2.411569385e-09 1.763872776e-09 1.758677759e-09 1.764599039e-09 2.359833697e-09 1.906693092e-09 1.973400817e-09 1.405374742e-09 2.142478391e-09 3.655937893e-10 5.387348977e-10 3.203668915e-10 9.629290836e-10 3.093593076e-10 6.687203313e-10 1.635099598e-10 6.072343435e-10 5.889159366e-10 8.170348807e-10 8.547209428e-10 8.017777341e-10 1.283833551e-09 5.121437538e-10 8.706897797e-10 1.441848203e-09 6.819562759e-10 1.634557573e-09 1.272835552e-09 1.529045168e-09 8.079394469e-10 9.690031289e-10 4.471100168e-10 1.725837911e-09 1.668187635e-09 8.265987582e-10 1.23446012e-09 8.96528412e-10 1.225303874e-09 7.183015915e-10 1.201305875e-09 1.070907815e-09 9.44762211e-10 6.298196961e-10 1.245012405e-09 6.032527737e-10 8.533899217e-10 7.077466966e-10 6.49225937e-10 7.20933839e-10 1.255978365e-09 9.48914791e-10 7.4476496e-10 9.736409248e-10 1.238919449e-09 9.14082723e-10 7.298545207e-10 6.63644325e-10 8.816920291e-10 5.302351052e-10 1.104872536e-09 5.583408829e-10 6.607549561e-10 7.780035615e-10 8.99036419e-10 2.949672895e-10 7.686773211e-10 6.831960276e-10 4.540396925e-10 2.487926962e-10 6.070172184e-10 9.9829765e-10 6.441438958e-10 7.390908619e-10 6.944954727e-10 7.072741924e-10 8.360512284e-10 6.282434274e-10 6.070792898e-10 7.174724044e-10 6.748760708e-10 1.026879462e-09 9.557486972e-10 1.253754241e-09 4.202196062e-10 7.106527776e-10 7.218633802e-10 6.352736024e-10 9.849198804e-10 1.37758844e-09 8.946775867e-10 1.330959665e-09 1.460201926e-09 1.0420659e-09 6.398598999e-10 9.541956609e-10 5.576068826e-10 3.37698517e-10 9.880094135e-10 6.522560715e-10 3.540966122e-10 4.255514135e-10 9.193609846e-10 3.4402707e-10 4.316639131e-10 6.362901345e-10 2.639552188e-10 6.573048208e-10 4.798610249e-10 2.16888879e-10 3.70473909e-10 1.112328483e-10 4.363530805e-10 6.677617667e-10 1.064171475e-10 1.779234311e-10 6.313638735e-10 2.761024614e-10 4.145689114e-10 2.888626567e-10 7.037644326e-10 1.286809693e-10 +8.501381181e-10 2.621349582e-10 8.173658598e-11 4.966550245e-10 1.477279763e-10 1.587521885e-10 4.765177278e-10 3.624243201e-10 2.942770893e-10 8.536370739e-10 2.47570821e-10 5.649380762e-10 1.716577406e-10 2.009489309e-10 3.301735547e-10 3.782673861e-10 5.386171637e-10 4.544509835e-10 7.174191315e-10 7.148257331e-10 4.323926321e-10 3.484249765e-10 4.06924902e-10 2.920015047e-10 7.437253533e-10 3.830312222e-10 1.209735623e-09 3.406428958e-10 7.319195072e-10 1.057505126e-09 6.60752233e-10 6.946025815e-10 8.816690399e-10 1.089699663e-09 1.208424617e-09 3.548063427e-10 6.628103198e-10 8.992451216e-10 1.170171649e-09 6.075063317e-10 6.146488322e-10 1.304785895e-09 1.144192557e-09 4.981745017e-10 5.631916868e-10 9.471402266e-10 6.06320104e-10 5.92138858e-10 2.409495787e-10 9.19235134e-10 1.089089747e-09 4.694969048e-10 4.048584806e-10 5.304587323e-10 4.519854866e-10 3.49534374e-10 4.228786821e-10 8.441915738e-10 1.363803729e-09 9.301404371e-10 1.030256642e-09 1.141780962e-09 9.568830456e-10 9.841055915e-10 3.190952359e-10 2.927236e-10 5.987392197e-10 1.46507784e-09 7.508274647e-10 1.001272334e-09 1.161003045e-09 8.84717283e-10 4.036049683e-10 1.039751638e-09 8.475536832e-10 1.079121259e-09 3.572470202e-10 7.181343293e-10 9.849143796e-10 4.694359093e-10 9.18258273e-10 1.564552417e-09 6.466777557e-10 1.485547027e-09 9.550114091e-10 1.408641365e-09 8.619532707e-10 8.790616467e-10 9.935576563e-10 8.777159611e-10 1.114863494e-09 1.282372672e-09 9.837769858e-10 1.680771316e-09 7.194594003e-10 1.360948285e-09 1.234551229e-09 1.141766447e-09 8.276993772e-10 1.363396323e-09 1.746110345e-09 1.257042155e-09 8.984302882e-10 9.285472245e-10 3.684388223e-10 4.605837312e-10 2.274416239e-10 5.35109411e-10 2.423042656e-10 6.72854578e-10 8.87698016e-10 1.574904277e-09 2.265086261e-09 1.188813584e-09 1.31744042e-09 2.014371498e-09 1.810129676e-09 2.442769503e-09 1.581025739e-09 1.386666841e-09 1.915674453e-09 2.312290344e-09 1.743267624e-09 1.262056546e-09 2.077790479e-09 1.891885201e-09 2.964608351e-09 3.00902425e-09 2.48657877e-09 2.667724434e-09 3.18162929e-09 2.027419507e-09 2.184719345e-09 2.027268475e-09 1.608942369e-09 1.299764765e-09 6.249377427e-10 8.340492207e-10 1.45947055e-09 1.173855081e-09 1.21882739e-09 1.423744681e-09 9.630397027e-10 1.094554177e-09 9.160282129e-10 5.590540685e-10 1.056166072e-09 8.089362642e-10 1.15029242e-09 7.805338716e-10 7.807266481e-10 1.103954349e-09 1.385510269e-09 1.188259297e-09 1.27312501e-09 1.349900944e-09 1.022620049e-09 1.300454914e-09 1.135987822e-09 1.01481574e-09 1.452504211e-09 1.164196317e-09 1.582757186e-09 1.081066635e-09 1.569846414e-09 1.148438116e-09 1.929602532e-09 1.99364738e-09 2.506002582e-09 1.512137012e-09 1.835266931e-09 2.469930335e-09 2.043971161e-09 2.668974405e-09 2.210372384e-09 1.554011533e-09 1.49534391e-09 2.705386327e-09 1.355061359e-09 1.512797159e-09 1.678883603e-09 3.00835045e-09 2.140941989e-09 1.835768435e-09 1.430529376e-09 1.531676346e-09 1.84644052e-09 1.476505011e-09 1.477572671e-09 4.537970345e-10 7.111347544e-10 5.181167545e-10 2.707398237e-10 2.978948992e-10 3.308225572e-10 3.945628196e-10 7.259559129e-10 5.12133307e-10 7.80685963e-10 1.029129306e-09 9.243759567e-10 1.298691385e-09 7.288999061e-10 6.556718465e-10 8.297395144e-10 1.267966108e-09 8.847201783e-10 1.328070666e-09 8.982863243e-10 1.810100474e-09 1.64778198e-09 1.485211823e-09 8.932924954e-10 1.376008851e-09 7.843272779e-10 1.675266804e-09 2.281687843e-09 1.151025969e-09 1.028913798e-09 1.1324956e-09 8.543020666e-10 7.221294252e-10 5.165385316e-10 1.000777883e-09 8.860891973e-10 7.817406382e-10 6.46552995e-10 5.032458018e-10 8.036334738e-10 8.029805402e-10 7.135468216e-10 8.143140708e-10 6.4537428e-10 9.801055964e-10 6.537644684e-10 4.692090758e-10 9.23582812e-10 8.302985165e-10 9.996801153e-10 1.031644991e-09 6.802130429e-10 9.650116684e-10 8.238422757e-10 7.105464799e-10 6.015623655e-10 3.953274014e-10 4.615453826e-10 6.162227796e-10 3.282726175e-10 9.261546035e-10 5.003491003e-10 4.487928716e-10 5.463233485e-10 7.733404594e-10 9.288927715e-10 1.117658347e-09 5.072857904e-10 9.071614072e-10 8.88794722e-10 1.143742081e-09 7.103694729e-10 5.396667811e-10 9.43882393e-10 1.032558576e-09 6.525175827e-10 6.601064195e-10 6.466367652e-10 6.693653607e-10 7.661678684e-10 5.845640072e-10 4.343123462e-10 9.052370254e-10 5.523705007e-10 8.159450154e-10 7.850359459e-10 9.959525521e-10 7.823863272e-10 5.143277567e-10 3.572812829e-10 5.644904195e-10 3.58011556e-10 6.155358904e-10 3.634637061e-10 6.275324765e-10 1.203461556e-09 5.598923373e-10 4.624772792e-10 2.109059702e-10 1.601445878e-10 7.92457816e-11 3.702753567e-10 4.182687061e-10 1.836833149e-10 3.759833438e-10 5.18651129e-10 3.959448191e-10 4.314436988e-10 4.497874124e-10 4.636884164e-10 3.675057025e-10 +1.877962524e-10 6.046925164e-11 4.132090752e-10 4.46999041e-10 1.800707503e-10 2.823997927e-10 6.04439735e-10 2.655541073e-10 2.409511097e-10 1.757649415e-10 3.890708037e-10 3.887830929e-10 5.341559767e-10 3.707799954e-10 3.380505903e-10 1.589814781e-10 8.347276274e-10 3.466814285e-10 3.904067927e-10 7.283652132e-10 7.758458425e-10 3.612139284e-10 7.16942157e-10 3.098162821e-10 8.20782102e-10 7.115223644e-10 5.66189265e-10 6.94873796e-10 9.58103572e-10 1.064005337e-09 9.269479178e-10 1.235934127e-09 9.268946184e-10 6.224641892e-10 8.777764123e-10 5.319913693e-10 8.656741745e-10 4.950268326e-10 8.586380174e-10 6.02324628e-10 6.676740338e-10 9.242809109e-10 7.470872652e-10 4.801617325e-10 7.22384945e-10 6.736320105e-10 8.389197606e-10 4.558388412e-10 6.83780336e-10 8.341458274e-10 9.882344757e-10 5.850324292e-10 7.963887543e-10 7.467174996e-10 4.745410001e-10 4.376969485e-10 5.361656298e-10 1.127259298e-09 6.973011428e-10 7.601691329e-10 2.735016598e-10 9.248591251e-10 7.236049281e-10 4.650205614e-10 7.290970027e-10 1.114872968e-09 8.671327021e-10 4.140535089e-10 1.131686898e-09 2.73466038e-10 7.18274544e-10 7.602164547e-10 5.381392876e-10 4.818155813e-10 1.09301283e-09 1.049368146e-09 6.308758386e-10 5.297014453e-10 1.865384016e-10 1.028126248e-09 9.814880292e-10 1.351115561e-09 1.380233142e-09 1.378615327e-09 9.805852262e-10 1.275193207e-09 1.459573972e-09 8.896605826e-10 1.028410375e-09 1.215007835e-09 6.711200176e-10 1.309882665e-09 9.255778786e-10 1.605255867e-09 7.674389086e-10 8.695079485e-10 1.36095445e-09 1.086533895e-09 1.113034482e-09 1.656573061e-09 1.187141811e-09 6.907972249e-10 7.678548881e-10 5.32129107e-10 3.354808579e-10 2.448519208e-10 7.058529545e-10 1.132352997e-09 6.546200487e-10 4.700954815e-10 1.567751303e-09 1.872001403e-09 1.011875837e-09 2.471687872e-09 1.610753139e-09 2.04680585e-09 1.860566536e-09 1.810907456e-09 1.012206141e-09 1.879131377e-09 1.065943094e-09 1.382876024e-09 1.293322754e-09 1.276324176e-09 1.613726345e-09 1.983754509e-09 1.086793736e-09 1.888844912e-09 2.31212522e-09 2.532771685e-09 3.225622724e-09 1.748062199e-09 1.11507621e-09 2.440998857e-09 1.190758384e-09 1.385228741e-09 1.388453564e-09 8.03102656e-10 1.022928008e-09 1.760578181e-09 1.394358153e-09 1.715020303e-09 1.055464917e-09 1.783397669e-09 1.412122537e-09 1.318566046e-09 1.739156528e-09 6.642927491e-10 1.129819491e-09 1.210967742e-09 1.166158835e-09 1.169187855e-09 8.53751937e-10 9.32239429e-10 1.582338919e-09 1.321488042e-09 1.312313028e-09 1.78208446e-09 2.333710389e-09 1.277018646e-09 2.257091046e-09 1.272404704e-09 1.591174652e-09 8.72793713e-10 1.123407498e-09 1.386876502e-09 1.879649969e-09 9.895056243e-10 1.728645383e-09 1.55313403e-09 2.60356995e-09 2.683312416e-09 2.539234832e-09 2.620483562e-09 2.186189129e-09 1.013869034e-09 1.96074317e-09 1.439009421e-09 1.611064459e-09 2.439074549e-09 1.335466396e-09 1.968383137e-09 1.379320775e-09 1.921937785e-09 1.138020425e-09 2.420761154e-09 1.967358496e-09 1.799123395e-09 2.280440952e-09 1.130188994e-09 1.008523304e-09 5.435177282e-10 9.238458009e-10 5.016684583e-10 4.056112561e-10 3.969148091e-10 5.487612081e-10 5.852517885e-10 6.262105257e-10 1.186770771e-09 1.156818348e-09 6.92874619e-10 1.065503986e-09 8.835579433e-10 1.133390557e-09 1.206371658e-09 7.625302053e-10 1.365647858e-09 9.791049567e-10 1.068850618e-09 1.028845381e-09 5.195270127e-10 8.471688214e-10 1.091453118e-09 1.420806992e-09 1.381459654e-09 1.636087025e-09 1.232170574e-09 4.638119249e-10 1.085822669e-09 7.459464519e-10 1.170824186e-09 5.148140343e-10 7.309652689e-10 7.987476024e-10 1.167440773e-09 8.246658519e-10 1.34270575e-09 1.155679245e-09 8.574974655e-10 6.184368805e-10 1.08358418e-09 1.06386489e-09 9.219168327e-10 7.743586882e-10 9.088149397e-10 9.543348444e-10 6.21659448e-10 1.243073198e-09 9.782597961e-10 1.004313898e-09 1.157478551e-09 9.166940751e-10 7.554379898e-10 4.151191751e-10 3.804486575e-10 8.588287154e-10 5.457750986e-10 4.695423457e-10 8.153165825e-10 3.812977694e-10 7.682960288e-10 8.166321443e-10 3.005082928e-10 6.33340918e-10 5.904159518e-10 1.317872614e-09 6.728924416e-10 4.23871711e-10 7.729967483e-10 4.189768921e-10 5.033937478e-10 7.645931188e-10 5.387827018e-10 7.420673721e-10 5.758824641e-10 9.56799489e-10 3.068075948e-10 4.998842889e-10 9.161676398e-10 4.626144392e-10 1.000591852e-09 5.8246209e-10 1.338714515e-09 8.724263755e-10 7.683759371e-10 8.506731414e-10 7.436484976e-10 7.374285821e-10 7.359543883e-10 6.4032251e-10 5.508863455e-10 4.261523175e-10 4.611556152e-10 3.794043826e-10 1.977924236e-10 3.163932827e-10 2.425521013e-10 2.848138909e-10 3.131330822e-10 4.954571804e-10 5.703723767e-10 2.561994985e-10 4.841663769e-10 2.546022433e-10 3.810658581e-10 4.01149472e-10 2.504842414e-10 3.010402054e-10 5.812752953e-10 +7.631484526e-10 1.369929241e-10 1.0000299e-10 3.776621573e-10 5.439989543e-10 2.359885788e-10 1.539577134e-10 1.94350511e-10 6.230225387e-10 1.792858777e-10 3.938912159e-10 4.468785333e-10 5.889257159e-10 3.776999438e-10 6.572026608e-10 6.558095599e-10 4.944347037e-10 8.757545597e-10 4.450610161e-10 4.54093033e-10 6.6175333e-10 5.346393474e-10 4.530884355e-10 5.058750123e-10 5.097144803e-10 9.856294777e-10 5.675785283e-10 7.99115499e-10 1.053551068e-09 1.257140864e-09 7.798712451e-10 4.746828181e-10 1.143008337e-09 1.411701951e-09 1.254146178e-09 8.586427521e-10 7.114030848e-10 7.729847746e-10 4.376140709e-10 4.017255363e-10 1.242559246e-09 9.100437093e-10 6.487337369e-10 7.097677908e-10 6.031408101e-10 5.561953786e-10 1.113798959e-09 9.676029372e-10 7.82215534e-10 8.462777668e-10 8.358067678e-10 7.063102665e-10 1.531184144e-10 5.171447958e-10 4.61113438e-10 6.390312591e-10 4.207188142e-10 6.000797963e-10 8.744900099e-10 7.191401815e-10 7.482167835e-10 1.18645765e-09 6.488524989e-10 6.074222633e-10 5.934997041e-10 8.917602698e-10 4.608604189e-10 7.333694382e-10 7.653951613e-10 9.462372147e-10 6.369689282e-10 7.88463288e-10 1.392724711e-09 8.704587524e-10 8.586353304e-10 5.655336544e-10 6.704373501e-10 6.056044013e-10 7.876972425e-10 1.025768112e-09 9.827461241e-10 6.085296992e-10 1.700368906e-09 1.594893596e-09 9.529732217e-10 9.923860018e-10 1.249014069e-09 1.365469905e-09 1.570292293e-09 1.428371144e-09 1.660988629e-09 1.497196861e-09 9.740516574e-10 9.718800868e-10 8.021250237e-10 1.285396352e-09 1.558915418e-09 9.589229172e-10 1.600253585e-09 1.001864657e-09 8.545090715e-10 6.499625814e-10 7.276212415e-10 7.483154241e-10 2.360419034e-10 3.260880364e-10 3.561209299e-10 7.823658149e-10 5.45459604e-10 1.623905439e-09 1.391643908e-09 1.804094433e-09 1.660057946e-09 1.37718321e-09 1.886874895e-09 2.157266379e-09 1.855852903e-09 1.321755804e-09 1.853522784e-09 1.709673398e-09 1.629495935e-09 2.022195519e-09 1.205357104e-09 1.405127383e-09 1.502884558e-09 2.307319064e-09 2.14420281e-09 2.072192986e-09 2.413307992e-09 1.907796682e-09 1.962109362e-09 1.425555421e-09 1.803617372e-09 1.446988641e-09 1.313623514e-09 1.248714051e-09 1.027794491e-09 1.281658098e-09 1.431457807e-09 1.564934829e-09 1.667473791e-09 1.24971133e-09 1.69272473e-09 7.592744536e-10 1.378748767e-09 1.679247126e-09 1.503652778e-09 1.766437646e-09 1.762469387e-09 1.307249378e-09 9.973177839e-10 7.590495553e-10 1.041690484e-09 1.0662627e-09 1.252613714e-09 1.283499738e-09 1.756255288e-09 1.321622525e-09 1.187083073e-09 1.413881446e-09 9.953022775e-10 1.133664365e-09 1.861306651e-09 1.857265492e-09 1.413845571e-09 1.322808374e-09 1.625490924e-09 1.263495992e-09 8.472461254e-10 2.50368961e-09 2.067871627e-09 2.227996068e-09 2.212017413e-09 1.908809089e-09 2.50870133e-09 1.096887586e-09 1.748985054e-09 1.782470193e-09 1.900123468e-09 1.963208973e-09 2.105645711e-09 2.104451556e-09 1.929692564e-09 1.840841887e-09 1.89321681e-09 2.080928748e-09 3.560257763e-09 1.541770489e-09 2.05029349e-09 1.672314562e-09 5.370043559e-10 5.886830558e-10 6.498044908e-10 3.364653268e-10 2.166326486e-10 5.471434325e-10 5.303465149e-10 5.184220517e-10 1.025024272e-09 9.231525168e-10 1.612229386e-09 8.650345937e-10 9.431162817e-10 9.190158579e-10 1.509391605e-09 1.015337557e-09 1.580087699e-09 1.553268573e-09 1.353820017e-09 2.138536307e-09 1.21882336e-09 1.215850307e-09 1.818200142e-09 1.760572799e-09 1.379770808e-09 1.97342512e-09 1.307732039e-09 1.074888234e-09 1.968971603e-09 1.357876973e-09 5.398679777e-10 4.84239063e-10 6.499804226e-10 2.078367208e-10 4.001656854e-10 7.649522086e-10 4.70558158e-10 8.169672342e-10 8.266510878e-10 8.720182418e-10 6.086259357e-10 1.628620204e-09 1.137755769e-09 1.114842925e-09 8.785964897e-10 1.023844986e-09 7.901258771e-10 4.709014429e-10 1.29731938e-09 9.823492811e-10 7.033562502e-10 6.750748923e-10 6.674795106e-10 1.154910861e-09 1.461041087e-10 5.338746685e-10 5.138824908e-10 7.531211807e-10 4.636306382e-10 8.254847278e-10 8.961494154e-10 7.000310483e-10 8.664231514e-10 9.928827579e-10 2.92312849e-10 9.334202678e-10 8.033367556e-10 1.137505151e-09 1.024331676e-09 1.013714543e-09 5.283943536e-10 1.505063471e-09 1.014507725e-09 8.255269515e-10 5.096517919e-10 1.082969842e-09 5.593208471e-10 6.906008281e-10 8.353240196e-10 4.840926196e-10 1.086323596e-09 4.34880023e-10 4.367568847e-10 8.92504064e-10 8.880992428e-10 5.354829503e-10 6.574232534e-10 8.801279442e-10 5.614391427e-10 4.201600451e-10 8.093449518e-10 2.60966448e-10 2.476254714e-10 4.677634459e-10 1.456626549e-10 4.118704203e-10 3.114138365e-10 7.129013777e-10 1.259657993e-10 7.755751117e-10 2.443355183e-10 2.252337663e-10 3.826363671e-10 4.576126757e-10 5.424823992e-10 2.766522646e-10 3.251595634e-10 5.466582573e-10 3.898785786e-10 3.267451484e-10 +5.320896639e-10 4.226561856e-10 5.070257766e-11 1.8480068e-10 4.326115479e-10 7.958710667e-11 3.701209e-10 1.997460106e-10 2.651188231e-10 5.814926945e-10 2.936643285e-10 1.654105246e-10 1.070417727e-09 3.245954508e-10 9.811851183e-11 2.86134857e-10 6.322255596e-10 4.720536833e-10 3.395215096e-10 4.157870201e-10 1.19775139e-09 7.334530246e-10 3.706879413e-10 5.793711398e-10 2.743446784e-10 7.513991591e-10 6.614788566e-10 5.904024507e-10 1.02066481e-09 9.381738269e-10 1.453483106e-09 8.324740604e-10 1.082916733e-09 3.20423119e-10 5.687157385e-10 9.434667979e-10 4.129239545e-10 9.365864894e-10 8.748318732e-10 6.766216608e-10 1.813005115e-09 9.742746174e-10 1.232767754e-09 9.501388344e-10 1.037129295e-09 1.184658769e-09 5.467944397e-10 3.519477666e-10 5.453025386e-10 5.871183825e-10 1.283631845e-09 7.328829349e-10 8.016056978e-10 5.504012048e-10 1.031046338e-09 5.600050414e-10 3.876033112e-10 7.191559059e-10 6.942364392e-10 6.990860822e-10 6.822996385e-10 6.19960101e-10 8.989160318e-10 3.53581773e-10 9.187507655e-10 7.233544415e-10 6.78005159e-10 4.639207263e-10 1.019455389e-09 1.015063945e-09 5.065210158e-10 5.452183082e-10 1.199644354e-09 5.974148528e-10 7.804564786e-10 1.010172225e-09 1.038107589e-09 8.011160376e-10 3.293938249e-10 7.394551417e-10 1.213261716e-09 1.31461847e-09 1.025310553e-09 1.461254763e-09 1.473402525e-09 1.828199638e-09 1.233163264e-09 1.104803262e-09 7.488973716e-10 1.763515037e-09 9.932795326e-10 7.763007155e-10 9.155383516e-10 1.876809103e-09 1.327392697e-09 1.322201015e-09 9.668377896e-10 7.965191994e-10 1.128584037e-09 1.121413249e-09 1.41738342e-09 1.49023411e-09 3.528187017e-10 5.397897021e-10 3.581020738e-10 3.749905959e-10 5.672841939e-10 5.961649041e-10 5.948402704e-10 6.911073031e-10 1.991438729e-09 1.692116344e-09 2.175686474e-09 3.024259651e-09 1.50735196e-09 2.430908266e-09 1.647368607e-09 2.47732222e-09 1.622778823e-09 1.532531037e-09 1.223477027e-09 1.068322007e-09 1.888000462e-09 1.811965831e-09 2.546079501e-09 1.537556937e-09 3.536365191e-09 2.20411974e-09 2.488014152e-09 1.018468535e-09 1.90078843e-09 1.442257072e-09 2.395660321e-09 1.166262175e-09 2.06979014e-09 1.428308027e-09 2.136449363e-09 1.378838742e-09 1.080869239e-09 1.280905311e-09 1.815126056e-09 6.296492558e-10 1.093392182e-09 9.399592404e-10 1.411057362e-09 1.612944784e-09 1.759868034e-09 1.058321966e-09 1.11761356e-09 7.349754878e-10 8.466232871e-10 1.544352676e-09 1.385213321e-09 1.43284058e-09 1.361109164e-09 6.355267033e-10 1.319322849e-09 8.650205377e-10 1.272521537e-09 2.006065601e-09 1.321073442e-09 1.894694729e-09 1.376990455e-09 1.973066072e-09 9.245670247e-10 1.594585279e-09 1.745471e-09 1.30952534e-09 9.302566859e-10 1.263635791e-09 1.845031725e-09 1.468731441e-09 2.415595124e-09 3.175705573e-09 3.170481625e-09 2.264555675e-09 1.97349914e-09 1.715500868e-09 1.807822321e-09 1.632386287e-09 1.701243674e-09 1.184443192e-09 2.68743057e-09 3.265470696e-09 2.520354354e-09 2.145282658e-09 1.757052251e-09 2.261757415e-09 1.714173998e-09 2.760013282e-09 8.171447407e-10 5.920912728e-10 1.022888132e-09 8.071388375e-10 5.585977139e-10 5.00237085e-10 5.168009623e-10 6.840383016e-10 1.006284994e-09 8.685873746e-10 7.94812979e-10 1.170433163e-09 9.442277338e-10 1.012275502e-09 1.226129661e-09 1.263553196e-09 9.4764013e-10 1.044352373e-09 1.566489186e-09 1.275344585e-09 2.36146458e-09 8.388169572e-10 7.010281397e-10 1.056912181e-09 1.543879145e-09 1.175943461e-09 1.57278452e-09 9.782160592e-10 1.022441431e-09 1.25721054e-09 6.357213772e-10 6.266430694e-10 8.322277598e-10 3.570595578e-10 1.097496781e-09 5.106758495e-10 6.567471486e-10 7.209637559e-10 9.014992784e-10 9.187999114e-10 8.28253562e-10 1.406241936e-09 7.524576441e-10 7.329589806e-10 4.59827311e-10 6.340291249e-10 1.138020239e-09 6.354620739e-10 1.223490877e-09 1.186615215e-09 5.122274049e-10 9.655629948e-10 4.668316617e-10 7.419716174e-10 5.142499845e-10 1.056015221e-09 9.691457494e-10 5.712898788e-10 6.3396528e-10 8.172592296e-10 1.12222616e-09 4.420069488e-10 7.905380436e-10 6.195884249e-10 1.097632521e-09 7.201002459e-10 6.351169009e-10 9.951072576e-10 7.287451153e-10 1.160471201e-09 3.623876981e-10 6.057571835e-10 8.508835742e-10 5.753732628e-10 6.368768108e-10 6.99710551e-10 5.263966012e-10 1.296006661e-09 2.940126872e-10 6.917316463e-10 1.099481284e-09 1.110922247e-09 7.301918815e-10 6.777616585e-10 5.686613318e-10 6.781970527e-10 5.126624037e-10 3.099969137e-10 4.444276261e-10 7.309491951e-10 9.491536576e-10 6.215707667e-10 2.401275848e-10 4.311890925e-10 4.413150567e-10 2.633280449e-10 4.448402602e-10 1.875416318e-10 3.75714211e-10 4.671554542e-10 1.993340999e-10 2.075496196e-10 4.583245705e-10 4.403436007e-10 5.83224794e-10 7.690577873e-11 2.295028449e-10 4.578247907e-10 1.720706945e-10 1.985805007e-10 +3.829696375e-10 2.1498097e-10 3.1749009e-10 4.152114506e-10 4.686743344e-10 1.2165119e-10 7.343414863e-10 5.102020928e-10 4.223634624e-10 1.149211611e-10 3.779689434e-10 3.594637279e-10 2.648829636e-10 1.558221745e-10 2.667041128e-10 3.302212627e-10 5.165503987e-10 6.729850199e-10 2.853410192e-10 4.591313457e-10 2.697411347e-10 7.492213774e-10 3.711745194e-10 5.613028925e-10 2.764082746e-10 5.596009451e-10 6.744599281e-10 7.090109515e-10 7.220091159e-10 8.191080397e-10 7.71015931e-10 1.083802032e-09 4.926362007e-10 9.111283861e-10 6.675759471e-10 1.647073032e-09 5.85311243e-10 6.269489731e-10 9.187166841e-10 1.195631872e-09 4.384152138e-10 5.359634917e-10 5.350748878e-10 5.998094312e-10 5.918007186e-10 9.183979874e-10 5.75236378e-10 1.351959093e-09 7.173082344e-10 4.399056664e-10 1.220158073e-09 4.152455681e-10 5.906133133e-10 6.191751611e-10 8.24172772e-10 5.983439847e-10 6.799264843e-10 3.882661246e-10 1.263084149e-09 1.209781362e-09 7.07688671e-10 8.880957748e-10 6.971673933e-10 6.818415337e-10 1.179849161e-09 9.917076827e-10 4.629747077e-10 1.250440678e-09 1.16497884e-09 9.17867368e-10 1.350042355e-09 7.95370388e-10 1.230669006e-09 7.251585006e-10 7.593527944e-10 7.62477916e-10 5.489036169e-10 8.243042056e-10 5.729914756e-10 1.025568687e-09 1.361611693e-09 1.296779112e-09 1.088708238e-09 1.710710264e-09 1.542528736e-09 1.309688359e-09 8.007294091e-10 1.095970286e-09 1.295159251e-09 1.830146008e-09 1.591372511e-09 9.323064149e-10 5.378143321e-10 6.943358349e-10 1.738531782e-09 7.189835987e-10 8.715222977e-10 1.401400171e-09 7.062806317e-10 1.271155566e-09 8.512444573e-10 6.37506751e-10 7.217714992e-10 4.512838295e-10 3.420215824e-10 2.846121223e-10 8.786489118e-10 5.270352443e-10 7.200248216e-10 8.044910874e-10 1.860101328e-09 2.416116134e-09 3.865082198e-09 1.313959438e-09 1.792424926e-09 2.130052943e-09 2.490967193e-09 1.895189624e-09 1.019137061e-09 1.267297007e-09 2.611393964e-09 1.51288012e-09 1.79167036e-09 1.894019659e-09 2.424481199e-09 2.460806118e-09 2.80977634e-09 1.93877797e-09 2.245588514e-09 2.253156769e-09 1.199905244e-09 1.437596206e-09 1.61343124e-09 1.482937914e-09 1.665386299e-09 1.3865281e-09 1.390056336e-09 1.56203134e-09 1.217657822e-09 1.141852468e-09 6.748712548e-10 6.320098395e-10 1.251688993e-09 1.179587095e-09 7.859738079e-10 1.874434065e-09 1.388600393e-09 1.222756325e-09 1.343432886e-09 1.986576911e-09 1.781829388e-09 7.532072861e-10 1.039259011e-09 1.273903456e-09 6.594184015e-10 1.160258106e-09 1.685132298e-09 1.418503173e-09 1.146211166e-09 1.353766203e-09 1.39497238e-09 1.13688027e-09 1.486392501e-09 1.091628942e-09 1.737266041e-09 1.439595023e-09 1.389841001e-09 7.812516213e-10 1.313318016e-09 9.21310142e-10 1.049549357e-09 2.393228902e-09 1.376408593e-09 2.758608469e-09 2.078815568e-09 3.109495023e-09 2.730758876e-09 1.677987183e-09 2.23985243e-09 1.216980492e-09 1.80058914e-09 1.597975553e-09 2.00879695e-09 1.493802376e-09 1.320641555e-09 3.419361623e-09 2.271876244e-09 1.850031371e-09 2.801316823e-09 2.355745106e-09 1.675952562e-09 5.535305198e-10 4.097206072e-10 4.61503998e-10 4.684964608e-10 1.931437121e-10 3.540883768e-10 7.226357913e-10 5.403746392e-10 1.162100945e-09 7.737491017e-10 8.596580997e-10 8.851531392e-10 9.213855358e-10 1.093390865e-09 1.248029668e-09 8.166135445e-10 1.568563603e-09 1.219674306e-09 1.03562793e-09 1.077502451e-09 1.641822912e-09 1.958523129e-09 8.06001604e-10 2.08525563e-09 1.419302719e-09 1.06028311e-09 1.638867451e-09 1.931401327e-09 8.110769899e-10 8.25746563e-10 3.594906192e-10 2.672100958e-10 8.081344737e-10 1.09877877e-09 9.302375515e-10 4.744150751e-10 6.086306362e-10 1.39269125e-09 7.141035768e-10 1.317924273e-09 1.499907045e-09 6.596245735e-10 8.560308873e-10 8.925482968e-10 1.056692966e-09 9.911916498e-10 7.800322462e-10 6.711352709e-10 1.749120947e-09 1.018744021e-09 1.093678548e-09 9.184745066e-10 4.16475921e-10 3.077667376e-10 2.658636581e-10 7.701957706e-10 3.828726272e-10 1.968798415e-10 7.875407898e-10 8.583216261e-10 7.099860607e-10 7.403367658e-10 1.1761308e-09 3.661057554e-10 9.730607024e-10 5.957850167e-10 7.470234026e-10 5.594781351e-10 5.779560127e-10 5.516680606e-10 7.566954361e-10 8.839249429e-10 4.340362308e-10 5.130745343e-10 6.259684946e-10 7.699852724e-10 1.236771935e-09 9.63346158e-10 8.748777855e-10 4.897820023e-10 4.895709783e-10 8.87190942e-10 5.269220802e-10 6.954081634e-10 3.512702103e-10 4.049759606e-10 5.919781693e-10 4.748560265e-10 3.657255467e-10 3.67722069e-10 2.972304929e-10 4.590478006e-10 2.906160327e-10 3.290605047e-10 8.480089874e-11 5.925502749e-10 2.231589506e-10 1.529861793e-10 2.253218439e-10 3.135196722e-10 2.146756543e-10 5.490519433e-10 1.994306585e-10 4.839088835e-10 5.535990521e-11 2.717846107e-10 3.395798151e-10 6.060040369e-10 3.424980359e-10 +4.68276736e-10 9.549319321e-11 2.611191196e-10 4.713809332e-10 2.989782225e-10 2.628909552e-10 2.616257988e-10 4.668829425e-10 7.970952761e-10 3.453741692e-10 2.588512566e-10 4.36294455e-10 2.675394341e-10 6.182359493e-10 5.806283202e-10 5.553955539e-10 2.968387581e-10 7.782723122e-10 2.746984272e-10 3.478346374e-10 2.339613793e-10 7.973829533e-11 3.304630798e-10 6.038608573e-10 5.796372063e-10 3.067493021e-10 6.92962688e-10 7.638077151e-10 6.975208214e-10 7.746534034e-10 7.016795615e-10 8.122238102e-10 1.955876289e-10 6.644756774e-10 8.583209637e-10 9.275757594e-10 6.471652809e-10 1.143208125e-09 1.145551955e-09 5.57458028e-10 5.966841267e-10 1.011221435e-09 8.014789212e-10 1.282088734e-09 1.049712057e-09 4.42975439e-10 7.77837604e-10 6.847804729e-10 8.736489883e-10 1.498294506e-09 7.2129119e-10 9.534878642e-10 2.374820309e-10 5.748075596e-10 4.421830004e-10 4.056711318e-10 7.174130425e-10 4.651668268e-10 9.929492127e-10 7.00123666e-10 1.186507653e-09 9.633139454e-10 6.406898833e-10 6.553212785e-10 7.758856449e-10 6.639614876e-10 1.594851965e-09 3.853252553e-10 1.089027254e-09 5.944377974e-10 8.85341778e-10 1.175179445e-09 7.538730502e-10 9.052793416e-10 6.004784495e-10 7.934927692e-10 6.152201571e-10 3.402288996e-10 8.20672575e-10 6.157072273e-10 1.849162687e-09 1.112905987e-09 1.55717923e-09 2.151616992e-09 1.661716527e-09 1.432204823e-09 1.118997808e-09 1.633619593e-09 1.527311475e-09 2.153527772e-09 1.050843867e-09 6.958781552e-10 1.175502026e-09 7.828619046e-10 1.270274787e-09 1.284212689e-09 1.353691274e-09 1.003214771e-09 1.883820478e-09 5.335499905e-10 9.053636859e-10 7.996408357e-10 6.55079604e-10 3.947898467e-10 9.525477342e-11 7.500182569e-10 9.374261335e-10 6.661218409e-10 8.682024095e-10 1.499923314e-09 1.521442479e-09 1.942501325e-09 1.202185244e-09 1.778584043e-09 2.032103716e-09 2.524812779e-09 1.123753575e-09 1.652790277e-09 6.676503461e-10 7.487588872e-10 1.231561333e-09 9.548800078e-10 2.97251516e-09 1.70711755e-09 3.031880468e-09 2.066656524e-09 2.164285702e-09 1.784417029e-09 1.543340973e-09 1.642944941e-09 1.792275548e-09 2.068809212e-09 1.670539577e-09 9.941094018e-10 1.545912527e-09 1.561487564e-09 1.729387113e-09 1.245268988e-09 1.041679869e-09 1.947213668e-09 1.306173594e-09 1.342709498e-09 2.027613997e-09 1.511687032e-09 6.847354327e-10 1.118216905e-09 1.057062363e-09 1.189396327e-09 8.692396972e-10 8.507819463e-10 7.238771662e-10 9.879754296e-10 9.908070419e-10 1.139364349e-09 6.122439708e-10 1.549517239e-09 1.135884281e-09 1.474107091e-09 1.519467049e-09 1.212888222e-09 1.192016156e-09 1.735313842e-09 1.058009836e-09 1.024018277e-09 2.21090517e-09 1.774973061e-09 2.118641013e-09 1.730106957e-09 1.359209398e-09 1.512054017e-09 1.363050295e-09 1.412619455e-09 1.070669958e-09 1.605662358e-09 1.777236889e-09 1.805317432e-09 1.598483173e-09 1.325153485e-09 2.12512051e-09 3.143961928e-09 2.501877622e-09 1.928980685e-09 2.033901e-09 3.010642575e-09 1.654525954e-09 1.906308768e-09 1.963665081e-09 1.031599216e-09 2.425433543e-09 3.375232298e-09 8.005262266e-10 6.492195659e-10 6.77008833e-10 1.123874082e-09 7.106879269e-10 4.972540561e-10 4.639383246e-10 5.244345399e-10 1.06847994e-09 6.732528726e-10 1.122294898e-09 1.011022024e-09 1.075222803e-09 1.166348415e-09 1.205350489e-09 1.57945586e-09 7.592421564e-10 1.071168386e-09 2.474846432e-09 1.249049347e-09 1.260852202e-09 1.305066726e-09 1.272081067e-09 1.422423375e-09 1.18311935e-09 7.548611532e-10 1.878591153e-09 1.301437277e-09 1.901979193e-09 1.005664348e-09 9.969483608e-10 4.167646899e-10 3.649622658e-10 1.805992534e-10 5.181640444e-10 1.036066889e-09 1.144865235e-09 7.110549022e-10 6.757778365e-10 6.809034465e-10 7.059270306e-10 8.10559715e-10 5.410823048e-10 9.812946505e-10 4.950716997e-10 4.497989845e-10 8.63481144e-10 1.409838647e-09 1.223504945e-09 6.144860984e-10 8.84102317e-10 5.028083032e-10 9.358837129e-10 4.28922647e-10 4.964234821e-10 5.928497625e-10 1.150079461e-10 1.33604019e-09 1.021586173e-09 1.032274305e-09 9.487050351e-10 9.390931073e-10 5.708546506e-10 1.432216055e-09 6.845945874e-10 8.785309378e-10 6.961856842e-10 8.457085328e-10 7.320099551e-10 7.450133548e-10 5.027710279e-10 3.453886094e-10 7.682268789e-10 8.475046738e-10 7.851210669e-10 8.061801828e-10 4.736462343e-10 1.225842459e-09 7.784679335e-10 4.605481441e-10 1.02337803e-09 8.555207072e-10 8.798225488e-10 8.237087247e-10 5.184723116e-10 6.596820961e-10 3.956833086e-10 3.730187096e-10 4.434205636e-10 4.969113402e-10 4.351671611e-10 5.38747459e-10 2.995051996e-10 3.835347057e-10 2.154102393e-10 2.339079038e-10 1.417728237e-10 3.46371685e-10 2.783631859e-10 5.464027698e-10 9.325987054e-10 3.417927557e-10 2.335654672e-10 3.471875441e-10 4.153667074e-10 6.555701023e-10 5.958806953e-10 7.146462861e-11 3.78836425e-10 4.744817931e-10 +2.729693993e-10 6.732990819e-10 2.852685976e-10 4.219447814e-10 7.32161041e-10 3.597833453e-10 2.407324761e-10 2.774192198e-10 4.948799099e-10 1.496474149e-10 8.631651418e-10 2.541359622e-10 2.567649535e-10 3.578784534e-10 1.870410885e-10 3.978692085e-10 5.272357295e-10 2.729857319e-10 6.002605458e-10 5.773493706e-10 3.033793871e-10 3.169155616e-10 4.907055826e-10 5.533765878e-10 4.208526328e-10 7.19879765e-10 8.808634843e-10 3.032636592e-10 5.387016597e-10 7.517991737e-10 1.30038048e-09 7.216387203e-10 7.370999475e-10 7.112934426e-10 6.279516406e-10 8.598450874e-10 1.127304883e-09 7.125036779e-10 6.451185907e-10 7.414860397e-10 5.974018315e-10 1.07345537e-09 6.013756486e-10 8.510494829e-10 7.363904249e-10 6.673771357e-10 8.997628086e-10 6.573514781e-10 5.319385535e-10 1.207653769e-09 5.190506124e-10 6.394048937e-10 1.248082722e-09 9.405976867e-10 5.947567196e-10 8.759420384e-10 4.934122892e-10 6.358899082e-10 6.594353333e-10 7.899525034e-10 8.799405469e-10 5.971142022e-10 6.51711777e-10 1.086246755e-09 6.601325403e-10 9.918206379e-10 1.003737659e-09 1.060476782e-09 5.445183797e-10 8.40726907e-10 3.326738185e-10 1.310002824e-09 4.036268267e-10 5.661620438e-10 9.087666364e-10 7.604284246e-10 1.221111615e-09 7.167295832e-10 6.46933096e-10 6.421191264e-10 1.207560346e-09 1.369546242e-09 1.623737462e-09 1.830556159e-09 1.43901717e-09 1.379825865e-09 9.05825122e-10 1.865994208e-09 1.655558886e-09 5.119428456e-10 1.389708821e-09 9.846907642e-10 2.065589384e-09 9.372559593e-10 1.090044044e-09 1.157178978e-09 1.359715495e-09 1.541880616e-09 1.133867829e-09 1.295329571e-09 1.202327929e-09 6.692475333e-10 2.448431871e-10 2.281014528e-10 3.972242001e-10 4.468002896e-10 6.352966745e-10 7.296253937e-10 9.624758438e-10 2.540640536e-09 2.005768805e-09 2.274618197e-09 2.097734435e-09 1.813680684e-09 1.625761012e-09 2.977003717e-09 1.05008121e-09 1.776970603e-09 2.308424456e-09 1.472211881e-09 1.585847372e-09 1.638869419e-09 1.66668696e-09 1.937032365e-09 2.839356014e-09 2.366657408e-09 2.189614433e-09 1.56494336e-09 9.732121994e-10 1.969912794e-09 1.362343968e-09 1.981107141e-09 1.111087688e-09 1.397528733e-09 9.360256668e-10 1.9932983e-09 2.002608789e-09 1.311616623e-09 9.258243588e-10 9.612638632e-10 1.619614164e-09 1.160962459e-09 1.190597352e-09 8.931681753e-10 1.10749171e-09 6.058737613e-10 6.511733326e-10 6.347332002e-10 6.266644697e-10 6.282228316e-10 2.348036942e-10 6.030537952e-10 1.477528092e-09 7.082399546e-10 9.478509171e-10 1.29790646e-09 9.317963399e-10 1.448305798e-09 1.498070737e-09 1.351998816e-09 9.191581994e-10 1.459761209e-09 1.509594195e-09 1.896387088e-09 9.954159108e-10 8.044069456e-10 1.709670777e-09 1.179566062e-09 7.85889862e-10 1.81676681e-09 1.692763351e-09 1.302620346e-09 1.876077094e-09 2.723213109e-09 2.755602042e-09 2.490719765e-09 1.653029184e-09 3.151345243e-09 2.796562835e-09 1.431714372e-09 1.820093703e-09 7.516475247e-10 2.699441997e-09 2.043102788e-09 1.860895264e-09 2.249643618e-09 1.362618563e-09 1.698988983e-09 1.995299359e-09 3.168947857e-09 2.419576122e-09 1.272874942e-09 5.695257367e-10 6.120992503e-10 4.810699516e-10 4.42243942e-10 2.350608437e-10 6.250347505e-10 8.276423305e-10 8.880802487e-10 1.15350106e-09 6.991878188e-10 1.112294441e-09 1.040766215e-09 1.114668515e-09 1.19936042e-09 9.791007514e-10 1.258680897e-09 1.151214625e-09 1.007650803e-09 1.470319066e-09 1.620793252e-09 7.415038647e-10 6.979838167e-10 1.916271517e-09 2.10707318e-09 1.620060926e-09 1.447571456e-09 1.160863948e-09 1.029514619e-09 6.113955229e-10 4.937500927e-10 3.48553334e-10 4.790647574e-10 5.622593338e-10 5.991865347e-10 9.609124862e-10 1.481220439e-09 1.410167011e-09 4.221467169e-10 1.507607297e-09 1.108408321e-09 8.612281627e-10 5.59502531e-10 7.559844592e-10 4.909991395e-10 1.113461569e-09 9.751823711e-10 6.945377689e-10 1.052423783e-09 7.541692777e-10 8.456389326e-10 4.727758268e-10 3.119386177e-10 6.638887164e-10 5.636815371e-10 4.970429555e-10 6.663528642e-10 1.098971183e-09 6.103814541e-10 8.113798992e-10 7.921447586e-10 6.032015972e-10 6.489154415e-10 7.711007771e-10 8.690132645e-10 1.116971001e-09 8.844023458e-10 1.177174507e-09 4.332175143e-10 8.998860137e-10 1.027417399e-09 5.892126268e-10 1.647594572e-09 1.002051187e-09 9.657092553e-10 9.091184146e-10 4.550661849e-10 6.692194634e-10 1.050153881e-09 9.188981338e-10 6.080918576e-10 5.129756465e-10 5.863277007e-10 7.808150435e-10 3.622309117e-10 4.416394014e-10 9.156057676e-10 5.455501048e-10 2.264687334e-10 2.822432901e-10 2.9051884e-10 8.194469788e-10 4.279418904e-10 6.055294142e-10 4.637778593e-10 3.113715642e-10 2.579064461e-10 2.049734467e-10 3.559000451e-10 4.239474394e-10 4.766015035e-10 5.606165015e-10 1.519831335e-10 7.98284914e-10 4.103821821e-10 4.443542172e-10 1.024263453e-09 8.136574804e-10 4.296663648e-10 +2.969822848e-10 5.279101138e-10 7.587992025e-10 4.429605404e-10 3.675169389e-10 9.492281189e-10 4.159105225e-10 5.182782264e-10 8.610167697e-10 3.219164718e-10 3.20854616e-10 2.114893895e-10 4.918433986e-10 6.179824082e-10 5.071238016e-10 2.139789975e-10 2.273379365e-10 2.502326605e-10 1.700875854e-10 4.52988349e-10 5.838799135e-10 3.331649057e-10 8.327927092e-10 4.234903234e-10 3.600531595e-10 5.670859924e-10 1.018137753e-09 3.580505329e-10 5.299586765e-10 7.052616919e-10 1.081425048e-09 9.790319407e-10 8.648569362e-10 6.499870629e-10 6.883955314e-10 9.984535498e-10 8.563202617e-10 6.802109872e-10 8.049306486e-10 4.445903113e-10 5.396076893e-10 3.015657589e-10 6.052779053e-10 1.061967605e-09 1.000627253e-09 1.632022475e-09 5.929233973e-10 6.716568693e-10 8.671282947e-10 1.017535799e-09 1.022364373e-09 4.615805639e-10 6.377875347e-10 9.367661073e-10 8.12294476e-10 5.776951471e-10 6.608746561e-10 6.11603924e-10 6.156206732e-10 9.118298441e-10 1.189925591e-09 6.145541785e-10 7.014244787e-10 5.564916585e-10 4.811559326e-10 8.109034844e-10 8.960960683e-10 6.02578925e-10 1.122376654e-09 1.150183433e-09 1.187828186e-09 8.18979991e-10 9.602379886e-10 8.356609038e-10 9.986881124e-10 9.876055856e-10 7.708221503e-10 9.701210459e-10 6.292659159e-10 1.187819554e-09 1.616348555e-09 1.016333418e-09 1.291978174e-09 1.84152695e-09 1.806915237e-09 9.377261059e-10 1.205800631e-09 1.502483947e-09 6.110373348e-10 1.29743331e-09 1.58842034e-09 1.150990667e-09 1.518473396e-09 1.53218615e-09 1.712466489e-09 8.136081566e-10 9.317235348e-10 1.224340316e-09 9.860424026e-10 7.228477628e-10 7.340556421e-10 6.503329458e-10 5.533355198e-10 3.08027101e-10 2.784586286e-10 5.86423944e-10 5.339004843e-10 1.309709868e-09 1.195705757e-09 2.063307283e-09 1.177985677e-09 2.238357364e-09 1.98447865e-09 1.649187229e-09 1.827266581e-09 1.824078696e-09 1.641325736e-09 1.961971106e-09 1.491808979e-09 2.772295036e-09 1.715709608e-09 3.357905948e-09 2.606626311e-09 2.182750656e-09 2.763467858e-09 2.248990312e-09 1.990295508e-09 1.861910008e-09 2.205178727e-09 1.598634797e-09 9.401256355e-10 2.460734439e-09 1.257844548e-09 2.398746627e-09 1.441457421e-09 1.115523589e-09 1.649124095e-09 9.835907945e-10 1.592816148e-09 1.218146465e-09 5.740946509e-10 1.404513454e-09 8.565808268e-10 6.856532414e-10 5.720655604e-10 9.416778197e-10 2.31277789e-10 6.596482522e-10 8.386426446e-10 5.614978466e-10 4.298526158e-10 4.226749491e-10 7.437825179e-10 5.682365646e-10 4.601959683e-10 5.235451465e-10 6.752603649e-10 9.216017297e-10 4.99830262e-10 1.274811307e-09 1.072907041e-09 1.712899739e-09 1.506184821e-09 1.26370476e-09 1.987013443e-09 1.45219775e-09 2.296307147e-09 1.306305793e-09 1.146876388e-09 1.016369137e-09 1.378390292e-09 1.715379245e-09 1.543754656e-09 1.471866152e-09 2.352262738e-09 2.267337979e-09 3.204163163e-09 2.023096553e-09 2.05211919e-09 1.754118977e-09 2.152862706e-09 2.150579225e-09 1.624658596e-09 1.615758112e-09 2.003141927e-09 2.220245486e-09 1.31818208e-09 2.10923649e-09 1.392542127e-09 1.784128681e-09 2.753392392e-09 2.652217477e-09 5.589000774e-10 6.51915007e-10 5.25944861e-10 8.903087869e-11 2.962538365e-10 2.808577853e-10 7.605672939e-10 7.217761841e-10 1.099595713e-09 1.133623075e-09 1.216983342e-09 1.374924827e-09 1.104149755e-09 1.288461839e-09 2.004882863e-09 1.566040184e-09 1.5340236e-09 6.552499506e-10 6.111470712e-10 9.873478476e-10 1.269996741e-09 1.767429756e-09 1.231717674e-09 1.730297365e-09 1.93483523e-09 1.830352532e-09 9.887355021e-10 1.557780495e-09 4.334300126e-10 1.269755004e-09 4.386533053e-10 5.938454549e-10 8.173831316e-10 9.992469786e-10 6.956345385e-10 1.083343433e-09 7.930799377e-10 1.236798165e-09 8.083952341e-10 8.504781652e-10 1.108508297e-09 8.831897642e-10 7.564521335e-10 6.143619846e-10 9.415347476e-10 7.054421356e-10 8.918305543e-10 7.244445566e-10 7.794284625e-10 1.263367782e-09 6.954212486e-10 3.736762264e-10 4.112732332e-10 6.187801572e-10 2.883026892e-10 3.191253365e-10 6.463296611e-10 6.336355986e-10 1.254003388e-09 6.236071465e-10 5.479336802e-10 3.570008896e-10 5.231136306e-10 4.809578746e-10 6.085202558e-10 8.786735521e-10 1.199092355e-09 9.25286219e-10 6.02787538e-10 7.879805411e-10 7.304935098e-10 1.110343862e-09 5.798396278e-10 8.843931171e-10 4.344748968e-10 7.808901019e-10 5.894983224e-10 6.053156022e-10 8.148300727e-10 5.630437246e-10 4.124329579e-10 8.071489904e-10 5.131519837e-10 5.506021775e-10 8.182845706e-10 7.332218766e-10 3.950921048e-10 3.385744246e-10 2.784936462e-10 4.56586251e-10 3.535179327e-10 3.974054944e-10 4.416875238e-10 4.461499997e-10 2.230776449e-10 3.765938775e-10 1.392626144e-10 4.697894221e-10 4.935793159e-10 2.961035935e-10 3.083139525e-10 5.197409474e-10 1.395194905e-10 2.665217608e-10 3.009962841e-10 1.278144533e-09 5.892113863e-10 5.949879791e-10 +1.986435363e-10 2.873536888e-10 1.531503638e-10 6.495887671e-10 4.067977378e-10 3.059409238e-10 3.995150851e-10 3.586398459e-10 3.318989735e-10 2.69445737e-10 4.923832777e-10 3.050557462e-10 5.572233255e-10 3.898171694e-10 2.827103288e-10 8.137011386e-10 2.275236875e-10 5.152047675e-10 2.326848197e-10 2.978814497e-10 2.789416096e-10 3.955157625e-10 4.869793084e-10 7.102866709e-10 6.231275189e-10 5.526916329e-10 6.5569238e-10 6.078943469e-10 9.253736936e-10 8.149641676e-10 6.677419588e-10 9.896425061e-10 6.245225559e-10 6.479885845e-10 9.922533461e-10 1.066587232e-09 8.448995697e-10 5.018309847e-10 8.301086107e-10 1.011413204e-09 5.246741226e-10 7.024104815e-10 6.577780021e-10 1.370742546e-09 1.363626127e-09 6.107494669e-10 1.247313388e-09 8.829389947e-10 5.726847997e-10 8.771384863e-10 9.364567584e-10 6.47183269e-10 1.381241243e-09 7.388984486e-10 7.422430625e-10 4.603275855e-10 1.003898166e-09 6.444448324e-10 4.34908525e-10 1.228590128e-09 1.147417873e-09 5.434753258e-10 9.742156393e-10 5.302919814e-10 1.00904852e-09 5.295579949e-10 4.918166973e-10 1.528613199e-09 8.091264427e-10 1.030224154e-09 1.051806776e-09 8.964430582e-10 7.253736566e-10 8.004433027e-10 1.188148714e-09 8.570747251e-10 1.424083685e-09 1.212851265e-09 6.514495806e-10 7.007971414e-10 1.455220976e-09 1.087764094e-09 1.37409285e-09 1.284735746e-09 2.472335944e-09 1.456628508e-09 1.044056286e-09 1.948439951e-09 1.032526276e-09 7.715896411e-10 1.164604658e-09 1.185401724e-09 1.809944541e-09 1.127741491e-09 1.397061894e-09 7.706002715e-10 9.431886459e-10 4.754775933e-10 1.871880581e-09 9.468547096e-10 4.330578937e-10 4.992596134e-10 2.392344366e-10 2.575743879e-10 3.018650882e-10 4.492897971e-10 8.27548671e-10 1.609218499e-09 1.800690546e-09 1.688031296e-09 2.131473011e-09 3.393224793e-09 3.462030717e-09 1.854378601e-09 1.419371487e-09 1.338507011e-09 2.127959029e-09 2.559132218e-09 2.063065652e-09 1.634887579e-09 2.06270744e-09 1.848556127e-09 1.618890328e-09 2.064456207e-09 1.871419687e-09 2.824410879e-09 1.66679493e-09 1.380370974e-09 2.030760811e-09 1.277580405e-09 1.117680922e-09 1.228985539e-09 1.173662643e-09 1.193593197e-09 1.603287192e-09 1.327851316e-09 1.622938326e-09 1.576732113e-09 1.150869477e-09 7.318439761e-10 7.838839047e-10 6.944155573e-10 7.717976877e-10 4.079854823e-10 5.497537563e-10 4.797729374e-10 2.99472462e-10 1.067612214e-10 9.980438259e-11 4.304639523e-10 3.3473483e-10 1.676423993e-10 2.600472896e-10 4.29542812e-10 3.974178095e-10 2.383428305e-10 3.049785512e-10 4.977715323e-10 4.796632971e-10 4.234852501e-10 1.240461894e-09 5.580347846e-10 7.265279008e-10 1.572085218e-09 2.014645213e-09 1.0735036e-09 1.860347389e-09 1.513832006e-09 1.93491299e-09 1.802759647e-09 1.174879898e-09 1.507328184e-09 5.690118559e-10 1.162127228e-09 1.564682722e-09 2.517439147e-09 3.345211933e-09 2.306719606e-09 2.24205582e-09 2.095341814e-09 2.767015031e-09 2.11282493e-09 1.651911981e-09 2.274024944e-09 1.807094761e-09 2.013973802e-09 2.233237242e-09 2.539106031e-09 2.450380878e-09 2.485830044e-09 2.380838287e-09 1.727979217e-09 9.430570192e-10 1.587747621e-09 4.117661256e-10 8.340517146e-10 5.482912019e-10 3.760529481e-10 6.64372514e-10 8.216665794e-10 1.549284303e-09 1.178280283e-09 1.066199414e-09 1.279778343e-09 9.306698221e-10 1.887703805e-09 1.364383171e-09 2.180952661e-09 8.62681372e-10 1.585402542e-09 8.503709639e-10 1.163718112e-09 9.146746454e-10 1.096403789e-09 1.983143507e-09 2.076239611e-09 1.739707514e-09 1.056672204e-09 1.070088953e-09 1.264834811e-09 8.23499447e-10 9.202973394e-10 6.655916901e-10 8.39374766e-10 9.970019364e-10 4.640551125e-10 9.694017015e-10 1.238352702e-09 1.233078215e-09 9.327021244e-10 1.141889936e-09 1.745989448e-09 1.025483612e-09 1.030409746e-09 9.31410376e-10 1.173616532e-09 5.82198288e-10 1.107138968e-09 3.845482781e-10 3.37198979e-10 1.303314104e-09 1.2290607e-09 7.589841979e-10 5.483705075e-10 5.777503915e-10 6.39386324e-10 5.480135242e-10 7.268786356e-10 5.767452725e-10 8.12149642e-10 6.275953042e-10 3.988041731e-10 6.289653193e-10 9.217017655e-10 8.297598167e-10 4.119859172e-10 1.092954328e-09 1.029742056e-09 7.532331948e-10 1.452485648e-09 8.5968276e-10 5.360190464e-10 7.023238682e-10 8.319316144e-10 7.336039752e-10 9.86056417e-10 7.265669459e-10 8.589585614e-10 9.354856818e-10 1.859059148e-09 7.1316195e-10 9.008748409e-10 7.849092045e-10 2.783924813e-10 5.06437882e-10 3.498060551e-10 3.96382825e-10 3.39569909e-10 5.005969687e-10 2.403262801e-10 2.365938715e-10 4.51927534e-10 4.47978449e-10 3.926434202e-10 4.303170812e-10 6.27857685e-10 1.938826084e-10 3.184358673e-10 2.132875049e-10 1.813997621e-10 4.655097732e-10 4.350726937e-10 4.441266479e-10 3.108632029e-10 2.458555604e-10 3.712915609e-10 3.02927014e-10 5.611291761e-10 5.607526028e-10 1.671442392e-10 +1.941042262e-10 4.14676788e-10 3.998902909e-10 3.527655133e-10 5.148347439e-10 1.115235248e-09 3.692816017e-10 3.11028483e-10 7.144623945e-10 8.513072059e-10 2.589265777e-10 1.960955459e-10 4.667688548e-10 2.221706135e-10 2.118203304e-10 1.622476134e-10 3.237529034e-10 6.435880458e-10 8.122996831e-10 3.950157567e-10 3.673059751e-10 2.257517531e-10 3.486348265e-10 7.142427528e-10 1.134990721e-09 8.979289723e-10 6.981467722e-10 4.714625257e-10 8.607981371e-10 6.7963473e-10 3.138940909e-10 6.731675251e-10 9.436072162e-10 7.4156806e-10 1.113332746e-09 9.106217642e-10 6.841103005e-10 2.791702342e-10 9.92937784e-10 5.338928829e-10 8.315643578e-10 7.169081072e-10 5.341415674e-10 8.235278939e-10 1.436845859e-09 4.945339591e-10 8.405398788e-10 6.65256585e-10 5.059489098e-10 8.479984594e-10 9.130852872e-10 6.921125854e-10 3.580759448e-10 4.93506996e-10 4.009372883e-10 4.482463273e-10 4.504064048e-10 8.834356391e-10 8.468773097e-10 6.864945388e-10 1.125376005e-09 8.402852459e-10 1.082532197e-09 7.817151077e-10 1.29755119e-09 1.108115706e-09 1.190376273e-09 8.805428612e-10 9.388910248e-10 1.075123439e-09 1.235710073e-09 7.43105076e-10 7.6531261e-10 7.413954387e-10 9.320799747e-10 2.06216635e-10 9.801931655e-10 7.77375587e-10 4.023753315e-10 7.285288113e-10 2.165760487e-09 1.689294164e-09 2.011194498e-09 1.881338326e-09 1.714295502e-09 1.364464925e-09 1.283020259e-09 9.841200215e-10 1.484351674e-09 2.075878669e-09 2.206915955e-09 1.813106158e-09 1.280687439e-09 9.462945343e-10 1.507155965e-09 1.006172842e-09 1.23480343e-09 1.20646697e-09 1.051274572e-09 6.141700334e-10 1.095950757e-09 5.203422105e-10 3.706798128e-10 3.450533673e-10 4.275306034e-10 5.80475426e-10 8.604552476e-10 1.848448471e-09 1.413653063e-09 3.117712998e-09 2.613438346e-09 9.896551502e-10 1.776644606e-09 3.167748501e-09 2.100155288e-09 1.48346078e-09 1.570404352e-09 1.483343752e-09 1.436250939e-09 1.731925617e-09 1.96634431e-09 1.907061981e-09 3.021078348e-09 1.816013895e-09 2.178361703e-09 1.022584235e-09 9.397539758e-10 1.858142965e-09 1.692398309e-09 1.933007193e-09 1.497670332e-09 1.342027609e-09 1.063218285e-09 1.520443716e-09 1.394239088e-09 8.153701974e-10 9.536306994e-10 9.806660265e-10 8.518704107e-10 1.81238674e-09 6.37241428e-10 2.996220844e-10 2.614049741e-10 2.853557399e-10 4.368815458e-10 3.054178447e-10 1.701166386e-10 1.7127161e-10 1.574041463e-10 1.457491891e-10 2.914745546e-16 1.814972653e-10 2.437805862e-10 1.47225756e-10 1.087031121e-10 1.11630691e-10 5.295126287e-11 2.343032902e-10 4.286203568e-10 6.313650829e-10 4.344191818e-10 7.521169003e-10 5.423168889e-10 9.645003455e-10 1.009146393e-09 8.145372505e-10 1.743010156e-09 1.332608698e-09 1.456130647e-09 1.780947663e-09 1.945860803e-09 1.307340514e-09 1.653983552e-09 1.02651276e-09 1.714046305e-09 2.009883842e-09 2.996285748e-09 3.672401957e-09 3.280145296e-09 3.176688519e-09 2.195487864e-09 1.752984774e-09 2.076192181e-09 1.426130267e-09 1.467329212e-09 1.100858107e-09 2.562220487e-09 1.663274985e-09 2.562244317e-09 2.533669042e-09 2.502104543e-09 2.514844132e-09 1.294341461e-09 5.427505564e-10 8.121078627e-10 8.811639174e-10 3.098440946e-10 4.443170359e-10 5.969977689e-10 7.436751538e-10 1.391935379e-09 1.08175419e-09 1.494109565e-09 1.492154663e-09 7.498854489e-10 1.105721272e-09 1.128812523e-09 8.589608883e-10 6.069252622e-10 1.291611835e-09 1.985018586e-09 1.431182812e-09 1.411314148e-09 9.609001328e-10 1.557096435e-09 1.508902693e-09 1.404713187e-09 9.106252506e-10 9.737989104e-10 1.01352322e-09 6.594089511e-10 9.98439791e-10 3.648487025e-10 7.365228559e-10 6.900317644e-10 9.154730904e-10 6.320726874e-10 7.560503545e-10 5.252832821e-10 4.989964797e-10 1.341309748e-09 1.425189401e-09 7.424401482e-10 7.087849536e-10 6.651074959e-10 8.62024452e-10 9.720987736e-10 9.727021943e-10 8.384165767e-10 8.977003659e-10 1.018615457e-09 5.271738343e-10 6.943838305e-10 5.089458338e-10 5.027393674e-10 7.521705983e-10 5.226189433e-10 1.209574262e-09 1.007170478e-09 7.598529531e-10 6.461945154e-10 4.390241033e-10 1.038339423e-09 1.189139839e-09 7.546098978e-10 9.279604433e-10 7.495638452e-10 7.918487573e-10 5.520562965e-10 9.117818319e-10 4.153944002e-10 9.28988021e-10 6.896996608e-10 1.229739978e-09 6.112486762e-10 1.135885279e-09 4.884273768e-10 8.482696262e-10 5.022905556e-10 7.917768497e-10 5.216176153e-10 6.175035179e-10 4.922901052e-10 3.509416891e-10 6.566819292e-10 6.468998659e-10 4.846979805e-10 4.919162667e-10 1.006358958e-09 4.473931835e-10 9.411610404e-10 8.16211087e-10 2.383852966e-10 9.5428943e-10 3.413366042e-10 4.93757988e-10 3.486469794e-10 5.869750218e-10 3.184855593e-10 4.456252877e-10 2.616250562e-10 1.464878285e-10 5.369656222e-10 8.281942246e-10 2.133670859e-10 3.098502263e-10 9.634302789e-10 4.084752889e-10 2.291844403e-10 2.703540779e-10 +2.502347546e-10 2.06414141e-10 1.371642437e-10 3.220722552e-10 1.551486308e-10 8.667601875e-10 3.710774355e-10 4.099303093e-10 5.082866406e-10 3.866999957e-10 1.555708786e-10 2.783910378e-10 4.136367663e-10 4.205200808e-10 5.936537119e-10 1.325830965e-10 3.866533038e-10 7.125906522e-10 2.341783931e-10 3.486506985e-10 4.570328088e-10 5.236856465e-10 1.784242027e-10 4.841677381e-10 5.260203989e-10 1.497727435e-10 8.096746264e-10 9.3304294e-10 3.881899118e-10 5.097309084e-10 1.217328954e-09 8.978012241e-10 5.163094936e-10 1.080414924e-09 1.213494871e-09 1.016156493e-09 1.359492662e-09 6.534064526e-10 4.701556431e-10 3.60285832e-10 4.580125286e-10 1.08275353e-09 8.595453677e-10 1.028155623e-09 8.503806825e-10 9.232806491e-10 6.375936022e-10 7.187112577e-10 1.064988686e-09 4.093672275e-10 5.06887186e-10 4.48286258e-10 1.023840246e-09 6.916078493e-10 4.917108972e-10 1.149103645e-09 7.43872431e-10 8.428924384e-10 6.753445898e-10 8.908146657e-10 8.562947578e-10 9.711016705e-10 1.055841071e-09 1.248627599e-09 7.233159233e-10 7.65882677e-10 6.160458501e-10 7.307461137e-10 6.49385192e-10 9.504869293e-10 8.142139711e-10 1.14719047e-09 6.779058863e-10 1.108094047e-09 1.12764276e-09 6.625729825e-10 6.349284122e-10 8.65288717e-10 1.40640924e-09 1.828179722e-09 1.338539999e-09 1.070380566e-09 2.108357263e-09 8.863433321e-10 1.07118446e-09 1.86719741e-09 1.349065095e-09 1.207303645e-09 1.353888012e-09 1.367169617e-09 1.025752471e-09 1.736732928e-09 1.278714296e-09 9.406570648e-10 7.323719917e-10 9.030021657e-10 1.224072969e-09 1.435867588e-09 9.969942756e-10 7.263686772e-10 5.230728877e-10 1.034125857e-09 3.031481165e-10 4.861592954e-10 1.190730192e-09 6.318757759e-10 7.962348137e-10 3.894985962e-09 2.365011328e-09 2.433230161e-09 4.106914975e-09 1.629537307e-09 1.012688928e-09 1.344141735e-09 1.42569707e-09 2.130737527e-09 2.150022549e-09 1.563300615e-09 1.357553022e-09 2.179417001e-09 2.568062166e-09 3.376478279e-09 2.337101265e-09 2.656681395e-09 1.670403455e-09 1.000183859e-09 2.450064583e-09 9.820820812e-10 9.841443284e-10 1.406526183e-09 1.921592075e-09 1.891020799e-09 1.756974582e-09 1.29624873e-09 1.563001624e-09 8.142893438e-10 9.13212008e-10 5.46431899e-10 2.948728356e-10 5.149098614e-10 6.03810088e-10 3.899693931e-10 1.13534256e-10 1.068060699e-10 5.887686385e-11 1.723539115e-10 7.413980991e-11 4.334242159e-11 6.297240054e-11 7.131579915e-11 8.984872631e-11 1.578585655e-10 3.912378003e-10 2.717043172e-10 1.427829114e-10 7.156069166e-11 7.159275533e-10 6.877326416e-11 2.517752948e-10 2.872876097e-10 6.505232847e-11 4.369504782e-10 7.149452366e-10 9.427596592e-10 1.325162479e-09 8.964139299e-10 1.257310534e-09 1.005426271e-09 1.253099516e-09 2.010506706e-09 1.779769988e-09 1.992971806e-09 1.436914919e-09 1.940994815e-09 1.660803739e-09 2.090546149e-09 2.038283089e-09 2.887049903e-09 2.230108287e-09 1.277835748e-09 2.930728032e-09 2.186481226e-09 1.778811301e-09 2.063535652e-09 2.766601894e-09 1.152601151e-09 3.162824169e-09 1.282042999e-09 1.105646127e-09 2.117876121e-09 1.85668878e-09 2.438109213e-09 1.751899213e-09 1.119852729e-09 7.552499881e-10 9.702880613e-10 3.630789951e-10 3.943556317e-10 7.121919828e-10 4.339400612e-10 5.835574153e-10 1.072775247e-09 1.958292127e-09 1.443013822e-09 1.849877362e-09 1.902081743e-09 9.778381345e-10 6.028564368e-10 1.016743112e-09 9.068000858e-10 1.671246223e-09 1.697193591e-09 1.820490569e-09 1.502168845e-09 1.37554334e-09 1.860577447e-09 1.037926102e-09 1.604907196e-09 1.674533609e-09 1.444007083e-09 9.135872734e-10 1.487711674e-10 8.359757896e-10 5.17945994e-10 6.669422897e-10 1.05425322e-09 1.484092038e-09 1.093171272e-09 9.140334811e-10 8.681567821e-10 8.423294568e-10 1.235158372e-09 6.684663549e-10 9.045397308e-10 1.053074277e-09 1.073643949e-09 9.30287809e-10 9.169372414e-10 1.198369835e-09 1.054636847e-09 9.401939299e-10 5.310948284e-10 1.075469074e-09 8.486042822e-10 6.146436952e-10 7.363763016e-10 8.530766239e-10 7.558896748e-10 6.414196045e-10 5.834270052e-10 4.552810239e-10 1.238376438e-09 1.286750258e-09 8.374145719e-10 4.978049445e-10 6.660581399e-10 1.466905408e-09 1.036996118e-09 5.474851675e-10 4.127915483e-10 5.496080946e-10 9.969020233e-10 8.152994721e-10 1.171978182e-09 7.652780651e-10 6.956396215e-10 8.217802788e-10 7.408400765e-10 7.751721062e-10 8.352047275e-10 5.724178034e-10 4.609871991e-10 6.22002608e-10 4.730338511e-10 7.795617479e-10 2.938282564e-10 2.450328874e-10 1.551418171e-10 4.154075682e-10 4.755187002e-10 1.962365127e-10 5.165963902e-10 3.812185493e-10 7.072782225e-11 2.532426863e-10 4.573507537e-10 5.801074422e-10 2.302090585e-10 6.477228444e-10 6.45741595e-10 3.405166731e-10 4.609417409e-10 1.0325782e-10 3.997522975e-10 4.899869936e-10 1.089953025e-10 4.110853088e-10 3.950846263e-10 4.209908248e-10 3.456171847e-10 +1.908806822e-10 7.732782481e-10 3.125949877e-10 4.024711164e-10 3.460398477e-10 1.001262877e-09 1.279005204e-10 2.979231738e-10 3.040326065e-10 3.063881904e-10 3.619510028e-10 3.808396523e-10 5.979270594e-10 5.785386536e-10 3.539436685e-10 6.086922094e-10 6.716311147e-10 1.907763804e-10 5.475638689e-10 4.152832866e-10 3.117536991e-10 2.156973626e-10 6.581482738e-10 7.735927484e-10 6.636898367e-10 7.876520995e-10 6.657006572e-10 8.16834748e-10 5.206344183e-10 8.765245298e-10 5.37431041e-10 7.156972437e-10 4.396693644e-10 9.066915444e-10 8.427016601e-10 1.149002165e-09 1.17416794e-09 9.937680585e-10 7.777387371e-10 7.515803927e-10 7.315506449e-10 3.913713372e-10 4.474757322e-10 1.497464684e-09 4.122755155e-10 9.077367175e-10 1.142522039e-09 7.837102207e-10 8.797287704e-10 1.191271234e-09 5.065051025e-10 4.384682158e-10 7.483222646e-10 1.153296713e-09 9.761653351e-10 1.072524442e-09 9.890120105e-10 4.783671316e-10 8.015510144e-10 3.772937505e-10 7.811185639e-10 9.080454345e-10 6.285508029e-10 6.299174609e-10 9.480454719e-10 1.161149991e-09 7.993577529e-10 1.112858843e-09 8.340917211e-10 2.104739664e-09 1.048600854e-09 1.056199861e-09 8.482516096e-10 4.444378004e-10 7.060930918e-10 8.123045367e-10 1.141030681e-09 7.147178992e-10 6.032296598e-10 7.598339696e-10 1.021697835e-09 8.507326604e-10 8.963505179e-10 1.734356952e-09 1.563034266e-09 1.091956606e-09 1.107983119e-09 1.063631481e-09 1.132073018e-09 1.391272644e-09 1.163841456e-09 1.485791735e-09 7.194439391e-10 1.680423651e-09 1.629400594e-09 1.303514207e-09 1.44989623e-09 1.097614659e-09 9.483464365e-10 8.755678867e-10 5.271605345e-10 5.220266744e-10 5.864067173e-10 4.819571278e-10 7.173362562e-10 1.115963835e-09 9.702791714e-10 1.695536369e-09 2.87887487e-09 2.839014641e-09 1.787751103e-09 2.036096292e-09 1.931392058e-09 1.124142319e-09 2.104922806e-09 3.262186754e-09 1.606002977e-09 2.194152303e-09 1.036200187e-09 2.207944232e-09 3.004033808e-09 2.388964195e-09 2.767839714e-09 1.257776437e-09 1.507576816e-09 2.13340792e-09 1.442339972e-09 1.719016718e-09 1.252054473e-09 1.918368994e-09 1.184598815e-09 1.431159329e-09 1.53018583e-09 1.392688259e-09 1.867825608e-09 9.356613073e-10 8.250637674e-10 2.020256876e-10 7.529847695e-10 3.064967172e-10 2.118844838e-10 1.847493751e-10 1.15569052e-10 4.380702876e-10 2.152596682e-10 7.564643539e-11 2.149214814e-10 3.995835034e-10 1.520899541e-10 2.193330424e-10 3.217715998e-10 0 3.131753163e-10 3.111423484e-10 8.272118933e-11 8.896053155e-11 4.598069704e-10 5.68882249e-10 7.605715073e-11 1.479883487e-10 5.668605187e-10 5.61636348e-10 5.210658104e-10 8.662794058e-10 6.207283509e-10 1.185686862e-09 4.27110756e-10 1.285716002e-09 5.283686143e-10 1.562280753e-09 1.18602068e-09 1.37605397e-09 1.559487083e-09 1.551421905e-09 8.83836118e-10 1.637332295e-09 1.847946151e-09 1.758309734e-09 1.95214091e-09 2.811443708e-09 2.201269179e-09 1.657359533e-09 1.866472938e-09 2.667047338e-09 1.331338341e-09 1.412791102e-09 2.218115328e-09 2.707833402e-09 1.500861399e-09 1.94754512e-09 1.723285827e-09 2.073051596e-09 2.84207516e-09 1.293106074e-09 7.161169038e-10 8.201277911e-10 7.373196691e-10 3.396966963e-10 4.78261681e-10 7.599961076e-10 8.022556024e-10 6.707181445e-10 8.963059992e-10 1.080343812e-09 9.287422516e-10 1.014942146e-09 1.244642046e-09 1.488562665e-09 1.030149336e-09 1.456629718e-09 1.857141028e-09 2.377468879e-09 7.726479161e-10 1.453809191e-09 1.773721744e-09 8.840932901e-10 1.143079668e-09 2.456229519e-09 1.052825525e-09 1.264726018e-09 6.566931419e-10 7.87812744e-10 6.110372568e-10 9.996368803e-10 7.129875369e-10 7.185172407e-10 6.41800923e-10 9.388945416e-10 7.731497581e-10 8.282174863e-10 1.927566018e-09 1.432059576e-09 1.295021355e-09 1.146781657e-09 1.039366859e-09 1.507987481e-09 1.294355686e-09 1.01194358e-09 4.920441129e-10 6.584204662e-10 9.242409711e-10 6.27142567e-10 7.791668698e-10 1.19291494e-09 8.13943361e-10 6.703883128e-10 6.527971529e-10 4.236189123e-10 1.181619852e-09 4.559902569e-10 4.70310005e-10 7.577296861e-10 4.078390997e-10 8.478786877e-10 1.067675302e-09 5.902161863e-10 8.590597615e-10 8.334101103e-10 4.827812218e-10 8.725189188e-10 1.12179784e-09 8.693451478e-10 1.553923729e-09 2.282930388e-10 8.259507703e-10 8.394568532e-10 6.947692591e-10 9.792989929e-10 5.456192748e-10 5.655606542e-10 3.292693796e-10 5.97110054e-10 4.574553859e-10 3.006596672e-10 6.092203428e-10 1.266031558e-10 3.728052402e-10 2.823138404e-10 4.244987527e-10 2.889596261e-10 6.991258725e-10 3.19449144e-10 2.279164593e-10 6.009660046e-10 5.986131379e-10 7.069478062e-10 1.077544338e-10 2.332924911e-10 1.03603011e-09 3.532951149e-10 3.486188636e-10 8.55447865e-10 4.528039456e-10 4.85064059e-10 3.466306531e-10 2.467175806e-10 7.934760209e-10 2.794008037e-10 2.657909543e-10 8.125939217e-10 +7.326423498e-10 5.141128206e-10 4.786903876e-10 2.763222983e-10 1.089501259e-09 6.548455753e-10 7.119274354e-10 6.841445729e-10 4.638075945e-10 4.504960522e-10 2.326212704e-10 3.326208555e-10 3.347898521e-10 4.610425739e-10 1.761581193e-10 5.42660898e-10 4.19019534e-10 8.732128115e-10 3.614219542e-10 4.959636201e-10 3.527104924e-10 9.028554141e-10 1.853901568e-10 2.040105965e-10 2.612015224e-10 2.769720805e-10 3.957912167e-10 4.727815511e-10 3.68124012e-10 7.482527538e-10 5.856122942e-10 9.887411099e-10 7.661036552e-10 1.158601527e-09 5.894813934e-10 7.436050314e-10 1.034778094e-09 6.725167424e-10 5.499849048e-10 9.695127241e-10 7.771210275e-10 4.002292029e-10 5.806535487e-10 7.290681712e-10 4.917570255e-10 1.244042715e-09 1.487411307e-09 7.374310364e-10 1.079625026e-09 1.010628907e-09 5.554329402e-10 8.204820105e-10 6.043710137e-10 4.454472722e-10 1.285857773e-09 5.951639907e-10 3.098544553e-10 8.437798018e-10 1.013034195e-09 8.849156875e-10 8.348534974e-10 7.360866826e-10 1.071709629e-09 9.832860917e-10 1.258988396e-09 1.314246716e-09 7.993728289e-10 1.265968881e-09 9.285008461e-10 7.532022276e-10 1.22264693e-09 1.206705038e-09 6.086690839e-10 4.524991813e-10 8.496527222e-10 2.894670112e-10 9.71935688e-10 8.75877245e-10 8.463433128e-10 8.407637939e-10 1.59416811e-09 9.826755245e-10 1.870251583e-09 2.441265927e-09 1.108234201e-09 1.445466798e-09 1.333448512e-09 2.051294372e-09 9.860426181e-10 6.358882688e-10 8.911551164e-10 1.537085596e-09 8.693889406e-10 1.04076501e-09 1.025753673e-09 1.511631224e-09 1.136856214e-09 1.709116727e-09 1.107158177e-09 8.17604205e-10 9.330184435e-10 6.696456956e-10 2.875963161e-10 5.770831855e-10 1.103084628e-09 1.051378092e-09 1.295969258e-09 2.23190749e-09 2.058787954e-09 2.221755921e-09 1.906479615e-09 1.98447605e-09 1.865408613e-09 1.953682756e-09 1.624459507e-09 2.778004306e-09 1.807339585e-09 1.806967559e-09 2.169796502e-09 2.782921241e-09 3.070419428e-09 2.094464637e-09 1.189034132e-09 2.105638665e-09 1.298780992e-09 1.311344326e-09 1.708344318e-09 1.1109532e-09 1.844563161e-09 1.821431459e-09 1.592548341e-09 1.128690939e-09 1.127445659e-09 8.691532076e-10 7.356756456e-10 7.684414593e-10 3.382678275e-10 3.630204506e-10 7.764913394e-11 4.898150289e-10 5.546248769e-10 2.379006322e-10 1.286605442e-10 1.869774006e-11 1.761189548e-10 8.867969557e-11 2.468853644e-10 1.417793125e-10 3.326861854e-10 2.471765367e-19 2.517005612e-10 8.048757213e-11 1.419751533e-10 5.382060427e-11 2.736601191e-10 2.020308768e-15 2.059172581e-10 1.722712394e-10 9.091062529e-11 1.444525104e-10 7.931179574e-19 1.044644134e-10 2.530675625e-10 2.516221486e-10 2.809285374e-10 9.920681443e-10 1.20795828e-09 1.335415778e-09 1.52856201e-09 1.005840922e-09 1.850919713e-09 1.241344933e-09 2.260095742e-09 1.078689728e-09 1.647181877e-09 2.376082551e-09 1.624210836e-09 3.123056795e-09 1.934570404e-09 1.846225352e-09 4.52419377e-09 1.66672628e-09 1.990254626e-09 1.598418551e-09 3.145048112e-09 1.06807158e-09 1.468613673e-09 2.259680236e-09 3.395122999e-09 2.172873796e-09 2.315103578e-09 1.718315415e-09 1.708008399e-09 1.993959622e-09 9.619678431e-10 1.068534933e-09 9.666585955e-10 1.501366765e-10 5.418040479e-10 8.067376664e-10 1.032920452e-09 9.652991317e-10 1.89761168e-09 8.296970999e-10 7.889011148e-10 1.053516293e-09 5.489648112e-10 1.091906303e-09 9.950054788e-10 1.981794074e-09 6.773678589e-10 1.623512535e-09 1.829892906e-09 1.653913536e-09 1.545046797e-09 2.181463002e-09 1.963345778e-09 1.259344915e-09 1.279409231e-09 7.528141305e-10 9.489928754e-10 9.932504723e-10 7.841095474e-10 1.032957411e-09 4.078728729e-10 1.483429542e-09 9.489907417e-10 5.911670682e-10 8.435221061e-10 7.779631799e-10 1.008251916e-09 1.279380725e-09 9.000031784e-10 7.567672303e-10 1.183488569e-09 1.250511504e-09 6.442176129e-10 9.259326648e-10 1.216860001e-09 6.503437642e-10 9.98010534e-10 1.10212433e-09 8.833777869e-10 4.831132872e-10 3.092060554e-10 1.029280451e-09 6.909091553e-10 8.380672125e-10 1.490182632e-09 6.865794377e-10 1.020239888e-09 1.364694731e-09 1.417984289e-09 6.178870207e-10 9.936835014e-10 8.259499845e-10 6.329924562e-10 1.096741455e-09 6.693892168e-10 7.501393908e-10 7.809724328e-10 9.659938591e-10 7.546833729e-10 8.978456573e-10 8.529333495e-10 1.222784635e-09 7.140429934e-10 5.330250038e-10 3.868335265e-10 5.44375161e-10 5.498942398e-10 7.241629645e-10 4.049718588e-10 3.798400732e-10 3.034175603e-10 3.32306354e-10 4.453011281e-10 3.497740434e-10 4.451559041e-10 1.369272207e-10 3.458427561e-10 4.655773766e-10 2.203363766e-10 1.794300401e-10 5.695398557e-10 4.215593408e-10 1.724748286e-10 6.308532285e-10 4.449945579e-10 9.960686977e-10 3.455072837e-10 1.436421334e-10 3.486324901e-10 1.616505841e-10 7.45029027e-10 2.900508118e-10 5.586225585e-10 1.728786302e-10 1.262968681e-10 3.424243415e-10 +1.205953434e-09 3.502734571e-10 5.445467029e-10 1.489522468e-10 2.634676688e-10 4.608079372e-10 4.596156672e-10 7.168451303e-10 2.256609902e-10 7.143763022e-10 4.045039364e-10 8.883283885e-10 6.995552082e-10 1.908272297e-10 4.816261192e-10 4.928343926e-10 3.421619988e-10 5.355626098e-10 6.709445065e-10 4.069638315e-10 4.043514262e-10 5.063545544e-10 3.190890185e-10 4.299247068e-10 1.459256793e-10 7.773359155e-10 7.422111515e-10 8.902848275e-10 7.054650572e-10 4.388932859e-10 5.051414656e-10 6.441285037e-10 7.679899124e-10 8.975428082e-10 5.69219503e-10 6.204838599e-10 4.043470048e-10 8.687983736e-10 8.732917402e-10 1.555789869e-09 6.467485969e-10 4.900252928e-10 6.975232164e-10 6.217727249e-10 1.504905937e-09 5.938382979e-10 3.280175e-10 8.037998309e-10 4.993069035e-10 7.334372581e-10 1.381426116e-09 1.167837103e-09 7.937608597e-10 9.658977116e-10 5.853529856e-10 7.223031252e-10 7.323057189e-10 5.69322268e-10 8.878768985e-10 1.127645022e-09 8.46957657e-10 6.344066122e-10 7.551252514e-10 8.621629755e-10 6.700584996e-10 7.465784508e-10 9.064284359e-10 1.106932028e-09 1.560274502e-09 1.217631537e-09 1.523864653e-09 8.97818699e-10 9.276143327e-10 1.307570259e-09 6.541024163e-10 1.269251348e-09 5.457142572e-10 1.017977287e-09 9.630268256e-10 1.402547291e-09 7.239834035e-10 1.114226328e-09 1.443521383e-09 1.788643349e-09 2.097242481e-09 1.78402995e-09 1.33631621e-09 1.62569529e-09 9.994328727e-10 1.260989426e-09 4.725499217e-10 1.788675418e-09 1.907932737e-09 1.059502613e-09 1.102867582e-09 1.1495615e-09 1.2242108e-09 8.082644957e-10 1.782148318e-09 7.577834078e-10 6.387639383e-10 2.668365643e-10 6.133420653e-10 6.324448679e-10 7.575682424e-10 8.352031873e-10 9.895721794e-10 1.606874376e-09 3.422897055e-09 1.302421365e-09 1.879874742e-09 2.468733086e-09 2.244963277e-09 2.246581222e-09 1.691537896e-09 1.513596349e-09 1.497191304e-09 2.996924113e-09 1.646305568e-09 2.558316138e-09 4.300526978e-09 2.74862434e-09 1.157596713e-09 1.376542951e-09 8.600362046e-10 2.151223735e-09 1.390882414e-09 1.335015749e-09 2.173899901e-09 1.813487494e-09 1.665308789e-09 8.216380413e-10 7.927097016e-10 1.027880033e-09 4.235519208e-10 5.865643073e-10 9.136020899e-11 2.190940137e-10 6.313922247e-10 1.986229098e-21 1.10058596e-10 8.07683794e-12 1.632009804e-10 1.644984037e-10 3.027516905e-10 0 2.526364248e-10 1.402366213e-10 8.155287959e-11 1.043316793e-10 1.36416126e-10 1.563338588e-10 1.985223799e-10 1.453057781e-10 5.696443283e-10 9.421641465e-11 7.495730434e-13 2.473322637e-10 3.045746511e-10 1.523482075e-10 3.102220491e-10 3.250147778e-10 3.664819066e-11 2.531730219e-10 1.550194075e-10 5.441277234e-10 5.203535627e-10 1.140477087e-09 1.31469832e-09 1.844031189e-09 2.080995447e-09 1.430672101e-09 2.017579095e-09 1.207652047e-09 1.180328476e-09 1.919637061e-09 1.131819557e-09 1.166077811e-09 2.514885431e-09 2.264213573e-09 1.940543748e-09 3.8938835e-09 2.914871489e-09 1.496744126e-09 2.452410981e-09 2.205226955e-09 7.634497267e-10 2.036362723e-09 1.992000216e-09 1.11497168e-09 2.512081371e-09 2.394870902e-09 2.686084322e-09 2.943309586e-09 8.958107482e-10 8.134484905e-10 5.946498406e-10 2.900155529e-10 1.910116177e-10 5.147936119e-10 7.672926889e-10 8.485736306e-10 9.562544336e-10 1.334882697e-09 1.628275134e-09 6.535973856e-10 1.451345596e-09 1.713452012e-09 1.155750996e-09 1.503094335e-09 1.34781208e-09 1.264479e-09 1.445215646e-09 1.746744454e-09 1.441820066e-09 1.303567682e-09 1.285227529e-09 1.982346796e-09 1.603203628e-09 6.041410223e-10 9.713484779e-10 8.529788465e-10 8.24224082e-10 6.006881361e-10 7.245740231e-10 8.302925335e-10 1.559949553e-09 1.313903934e-09 7.983431484e-10 7.374343388e-10 9.279996455e-10 1.349865068e-09 1.090768532e-09 1.0905818e-09 5.009300684e-10 7.16923577e-10 9.683576426e-10 4.510011256e-10 6.034095972e-10 8.288961274e-10 1.226585154e-09 7.330103472e-10 4.824048321e-10 9.128206018e-10 3.881730177e-10 9.330280457e-10 7.505007888e-10 8.189699039e-10 7.821086336e-10 7.010836976e-10 1.110614325e-09 1.317897282e-09 7.105298141e-10 6.252477168e-10 9.382692278e-10 7.939582596e-10 1.444519688e-09 8.329391167e-10 4.180728612e-10 1.359305771e-09 9.678867775e-10 6.230744735e-10 1.001037466e-09 4.416513027e-10 5.317413402e-10 9.40124057e-10 8.427461825e-10 9.403829677e-10 6.555340139e-10 4.055162688e-10 3.729345009e-10 6.762848343e-10 4.274239277e-10 1.168148283e-10 4.779949167e-10 3.522027606e-10 4.23178126e-10 6.199462833e-10 3.296642395e-10 1.720118242e-10 4.428697899e-10 4.000625354e-10 7.714625854e-10 1.41162996e-10 6.92803841e-10 3.228252729e-10 2.866184066e-10 5.006588365e-10 1.809034059e-10 4.514312439e-10 2.344063387e-10 2.377784229e-10 6.404818025e-10 9.00193834e-10 2.621238441e-10 4.631317685e-10 3.61366124e-10 3.065670348e-10 3.863362516e-10 6.143161269e-10 +1.940203861e-10 3.918693303e-10 4.715942164e-10 3.037207669e-10 2.69387277e-10 4.006510602e-10 6.615934761e-10 1.214542383e-10 4.009847214e-10 7.164780306e-10 2.725659048e-10 4.238301e-10 7.144720995e-10 3.27090918e-10 8.41178884e-10 2.062027774e-10 6.026365894e-10 2.125251709e-10 7.470052016e-10 8.060279866e-10 5.130200708e-10 4.495821934e-10 6.828771021e-10 3.235687483e-10 3.379383282e-10 4.940706055e-10 5.501575596e-10 5.469814686e-10 1.038670558e-09 8.299996431e-10 9.211105283e-10 4.465592576e-10 1.179551421e-09 7.522429626e-10 8.496284454e-10 1.323155353e-09 1.01299696e-09 5.845403378e-10 9.458356226e-10 6.263785427e-10 5.302818681e-10 7.655434107e-10 6.760639022e-10 5.367279329e-10 9.313934573e-10 8.895187653e-10 8.396540807e-10 5.646535415e-10 6.888328534e-10 1.158682105e-09 1.510491928e-09 3.844020242e-10 1.02735971e-09 9.724430374e-10 7.561763528e-10 5.821870019e-10 6.602159368e-10 1.405169174e-09 8.79480063e-10 7.441097976e-10 1.073589171e-09 7.345914641e-10 7.858571859e-10 8.833308876e-10 9.498207559e-10 9.591476439e-10 1.294216705e-09 5.966877909e-10 7.875979278e-10 2.303366753e-09 4.265005629e-10 1.35489706e-09 2.960646416e-10 1.058786092e-09 6.373227632e-10 6.061700567e-10 3.859743197e-10 1.089577077e-09 7.273624801e-10 9.215070477e-10 1.780713239e-09 1.205118984e-09 1.433243749e-09 2.894271962e-09 2.399790775e-09 1.826210443e-09 1.605510913e-09 1.988451608e-09 1.57317206e-09 1.486526911e-09 1.084427428e-09 1.415219336e-09 1.44651547e-09 1.331024184e-09 1.18999337e-09 1.521036608e-09 8.481498963e-10 9.601904596e-10 7.425683063e-10 9.268713605e-10 3.574799457e-10 3.759823911e-10 3.148705192e-10 9.529568216e-10 1.091013398e-09 7.151888704e-10 1.641390617e-09 2.365638277e-09 3.183920696e-09 3.252659806e-09 2.739336545e-09 2.823129011e-09 1.769329563e-09 1.734540654e-09 2.076699011e-09 1.924077101e-09 2.108238822e-09 2.635976465e-09 2.447011758e-09 2.008113675e-09 1.825815652e-09 2.428520026e-09 1.139018044e-09 1.357131021e-09 1.027733242e-09 1.319255503e-09 1.529839515e-09 1.922708772e-09 1.929751318e-09 2.021598761e-09 6.687279519e-10 1.054887839e-09 6.884973406e-10 2.927795445e-10 1.754620527e-10 1.27253545e-10 2.01126183e-10 1.242573665e-10 1.02046336e-10 8.806624405e-11 1.167518374e-10 1.323846607e-10 2.38635356e-10 3.925221398e-10 1.307294006e-10 9.106549858e-11 1.054347507e-10 2.620388093e-10 3.94164816e-10 2.409473639e-10 1.832371624e-10 1.447436536e-10 3.118648957e-10 6.756049048e-10 6.443134062e-11 1.289474095e-10 2.192348829e-10 2.339643862e-10 2.666934255e-10 1.631419618e-10 1.079022455e-10 8.580499309e-11 2.769755955e-10 1.36305511e-10 2.132225679e-10 4.542837052e-10 2.903678123e-10 1.165991077e-09 1.549686391e-09 1.275726242e-09 1.857880939e-09 1.712046315e-09 1.741350822e-09 1.710337162e-09 1.791797937e-09 8.592573445e-10 1.02868632e-09 1.743820617e-09 1.734989719e-09 2.583305761e-09 3.787054091e-09 2.915807552e-09 1.67656206e-09 2.116544648e-09 2.721277389e-09 2.087950406e-09 1.911194106e-09 1.701582442e-09 3.290573891e-09 1.918767938e-09 1.714671326e-09 1.252229812e-09 2.41919948e-09 1.877196208e-09 8.672651909e-10 1.227742448e-09 7.312163052e-10 6.376666323e-10 2.929849231e-10 3.146046643e-10 3.233416609e-10 8.170466795e-10 1.186810904e-09 1.47574482e-09 1.10905929e-09 1.22871961e-09 7.524811644e-10 7.973211108e-10 1.573120571e-09 1.544493896e-09 8.837319197e-10 1.088442274e-09 1.081707672e-09 1.285654496e-09 1.46309282e-09 2.094260928e-09 1.408746645e-09 1.510987813e-09 1.588409026e-09 1.016843259e-09 8.282213773e-10 3.544390151e-10 2.926405679e-10 9.91140751e-10 1.410460399e-09 9.123479666e-10 1.141103784e-09 1.377298433e-09 1.840152433e-09 1.345163762e-09 1.14721856e-09 1.2880269e-09 5.523865953e-10 8.439897216e-10 9.340297707e-10 7.447897968e-10 7.977763324e-10 6.019885197e-10 1.896567594e-09 7.199313829e-10 3.980588453e-10 1.225967735e-09 8.285178864e-10 3.983970075e-10 1.121501999e-09 3.45357819e-10 9.021550539e-10 7.104799563e-10 9.693340375e-10 5.930083903e-10 1.010914477e-09 1.032185293e-09 1.123347342e-09 1.02075721e-09 8.235083032e-10 8.680774283e-10 3.639027627e-10 9.945759366e-10 1.131839246e-09 6.044202053e-10 1.246287412e-09 9.141505748e-10 8.752262564e-10 6.613370045e-10 1.329308828e-09 1.086927265e-09 6.724005532e-10 1.024476382e-09 5.347347783e-10 6.628432207e-10 4.645784139e-10 4.30853578e-10 5.942178975e-10 3.978751493e-10 2.445801896e-10 4.342954749e-10 1.564043181e-10 5.397948831e-10 4.235083793e-10 1.506579121e-10 4.036603817e-10 3.999095229e-10 3.699889707e-10 6.25522243e-10 1.27879938e-10 5.121047914e-10 8.065844697e-10 7.520000955e-11 5.896574041e-10 7.476002779e-10 8.839677799e-10 6.132017012e-10 3.471879891e-10 3.931510238e-10 2.788453257e-10 2.592965349e-10 6.099842279e-10 2.989034714e-10 4.480983716e-10 9.617325985e-10 +2.912663065e-10 3.778178015e-10 7.677964104e-10 8.029437729e-10 5.455066022e-10 5.069153261e-10 8.797452076e-10 8.431262694e-10 2.844743907e-10 3.412638019e-10 4.736181885e-10 2.139374756e-10 3.897339024e-10 2.976821294e-10 5.682477972e-10 2.432744021e-10 1.864039381e-10 6.904528987e-10 2.871478585e-10 4.238189134e-10 4.611532434e-10 4.37582962e-10 7.431862713e-10 2.662610146e-10 2.378577849e-10 4.962897983e-10 3.707896251e-10 4.081796642e-10 5.146379579e-10 6.448973322e-10 6.267078033e-10 9.048148162e-10 6.616539551e-10 9.136362808e-10 1.366148565e-09 9.317349601e-10 8.72161347e-10 1.172653845e-09 1.471387042e-09 8.76672022e-10 1.219023752e-09 5.595948278e-10 8.025658115e-10 5.846606845e-10 1.059599806e-09 5.336976914e-10 5.103621615e-10 9.631141753e-10 5.571257577e-10 6.454850347e-10 8.266417658e-10 8.762917547e-10 6.121069676e-10 9.725430986e-10 7.084386157e-10 7.06911886e-10 1.162347657e-09 4.07577152e-10 3.646580234e-10 7.453580679e-10 8.241629839e-10 1.418189537e-09 1.065941411e-09 1.216009004e-09 9.265461145e-10 1.233707369e-09 1.230827486e-09 8.397134455e-10 1.518978518e-09 1.079927964e-09 1.53101177e-09 7.700484479e-10 7.834440451e-10 6.037545813e-10 8.592924576e-10 1.199966535e-09 5.453653074e-10 1.056483503e-09 1.156061714e-09 1.373341333e-09 9.508090207e-10 8.525399727e-10 1.582032845e-09 2.409656612e-09 1.200705619e-09 1.605326251e-09 7.87024077e-10 1.811022738e-09 1.208177026e-09 1.084627588e-09 1.195454591e-09 7.668975809e-10 1.442279058e-09 1.732454135e-09 8.863490466e-10 8.320852794e-10 1.058893195e-09 1.622522993e-09 6.695274805e-10 9.776760917e-10 4.286526692e-10 4.53579764e-10 2.872619272e-10 6.763424681e-10 8.683878289e-10 1.535837448e-09 2.185280744e-09 3.861568375e-09 1.530033109e-09 2.71228865e-09 1.950563273e-09 1.192828665e-09 3.519175439e-09 1.815226505e-09 3.494925669e-09 1.896495837e-09 1.29164383e-09 2.371559436e-09 2.463736917e-09 2.291982014e-09 1.59789378e-09 1.720196903e-09 1.482458851e-09 1.241072122e-09 1.385376934e-09 1.186086024e-09 2.001624239e-09 1.538758573e-09 1.680112889e-09 1.155428323e-09 1.016286496e-09 1.687231072e-09 4.639248836e-10 9.75101924e-11 3.327623527e-10 3.014528283e-10 0 1.804946022e-10 0 3.469884285e-10 8.967671059e-11 4.796983851e-10 4.561421352e-10 1.588801521e-10 4.542981899e-10 3.802033916e-10 7.679772506e-10 7.609877076e-10 1.134424982e-09 6.080795241e-10 1.434267316e-09 1.283350076e-09 6.150644522e-10 7.420031512e-10 6.768309409e-10 4.268425969e-10 5.29301765e-10 3.709474529e-10 7.850270448e-11 2.526017215e-10 2.949814979e-10 8.924501117e-11 2.228876916e-10 1.788916166e-10 2.197702737e-10 1.430773889e-10 5.169212334e-10 7.746196313e-10 1.074100127e-09 1.012363293e-09 1.633154325e-09 7.929929831e-10 1.481021651e-09 1.252980874e-09 1.538007582e-09 1.095880471e-09 1.17445278e-09 1.246057288e-09 1.491114385e-09 3.365767476e-09 2.534099263e-09 3.533024489e-09 3.394764071e-09 1.96446593e-09 1.319133145e-09 1.922535753e-09 1.166852815e-09 2.027913868e-09 3.285209309e-09 2.047143869e-09 2.167595698e-09 1.685613234e-09 3.215293256e-09 1.823881619e-09 2.376847683e-09 7.013090419e-10 9.007788473e-10 8.266980912e-10 2.156548105e-10 6.127443237e-10 5.414714553e-10 1.596660456e-09 1.016293339e-09 1.577088108e-09 1.237038872e-09 1.735862204e-09 8.881818195e-10 1.640930395e-09 1.719767387e-09 1.915607452e-09 1.088484946e-09 1.623546035e-09 1.46065547e-09 1.239588553e-09 1.757920752e-09 6.144141583e-10 2.58880519e-09 9.879052268e-10 1.786243451e-09 1.67877448e-09 1.164324468e-09 1.214295879e-09 5.790116167e-10 7.269500601e-10 1.123514033e-09 9.220729641e-10 5.841912327e-10 8.480631678e-10 7.472791676e-10 1.046817521e-09 1.316464173e-09 1.538666129e-09 2.287604397e-10 8.658929567e-10 7.159628544e-10 9.46800171e-10 1.265452064e-09 5.795334259e-10 5.918025106e-10 1.359740765e-09 1.552443773e-09 1.167798313e-09 3.804528026e-10 6.802749311e-10 5.920239155e-10 3.574332198e-10 3.66167746e-10 4.293140792e-10 1.315971651e-09 9.656940104e-10 7.468711136e-10 7.829377212e-10 5.850993657e-10 8.514375091e-10 1.076401633e-09 8.892015012e-10 8.690527795e-10 4.882449693e-10 6.683477743e-10 4.484072754e-10 5.028721065e-10 9.043424663e-10 5.226807665e-10 9.247587685e-10 1.105814394e-09 7.157933272e-10 6.427785254e-10 7.001418905e-10 3.240358486e-10 4.351267465e-10 6.560893421e-10 5.854399069e-10 6.211984405e-10 4.20045109e-10 5.529955758e-10 4.282546023e-10 5.849577895e-10 4.190301958e-10 3.646453437e-10 1.930618634e-10 4.246296871e-10 4.730385863e-10 5.944240392e-10 5.227151183e-10 8.321021366e-10 2.88340665e-10 3.330072275e-10 4.82183415e-10 3.719645674e-10 5.178715885e-10 2.061986939e-10 7.17217096e-10 4.126061771e-10 3.326221232e-10 2.693919269e-10 6.834898515e-10 8.359964653e-10 6.492172473e-10 3.310295862e-10 3.718601643e-10 +8.068336622e-10 3.6283844e-10 4.17489881e-10 3.759080541e-10 5.59677671e-10 3.506790579e-10 5.061808562e-10 2.432080073e-10 2.104069017e-10 8.16878901e-10 2.836038612e-10 4.579119665e-10 3.235931421e-10 7.874089733e-10 7.199873487e-10 7.936626028e-10 3.313542234e-10 5.454737264e-10 2.575997143e-10 3.426094203e-10 5.26698554e-10 4.664033523e-10 2.601208608e-10 6.172609555e-10 3.874191632e-10 9.061741841e-10 2.330877234e-10 3.904014996e-10 3.744913568e-10 6.40250462e-10 4.928657741e-10 4.423275404e-10 4.033354589e-10 5.250313621e-10 1.140275118e-09 1.176036328e-09 1.150197422e-09 3.812060297e-10 8.496842572e-10 5.923843594e-10 9.874835089e-10 7.560969193e-10 4.132021311e-10 7.512527096e-10 5.211691785e-10 2.206934519e-09 1.709324306e-09 9.212764081e-10 7.700659653e-10 8.612369908e-10 1.200200775e-09 1.055688912e-09 8.696043506e-10 8.96814766e-10 4.04797513e-10 1.191513158e-09 4.193727277e-10 9.085871569e-10 5.827490434e-10 8.673314295e-10 7.97719445e-10 7.318890571e-10 6.273481732e-10 9.03290256e-10 8.787447866e-10 7.121963873e-10 1.357470396e-09 8.210902782e-10 1.632585883e-09 1.097092623e-09 9.102161423e-10 4.548800789e-10 1.460254654e-09 1.315914756e-09 8.354659542e-10 8.8490206e-10 1.08334201e-09 2.655636595e-10 7.387645644e-10 9.4537694e-10 9.437026585e-10 1.360529821e-09 1.674130686e-09 1.869535778e-09 1.435908883e-09 9.218456007e-10 1.677872435e-09 1.25640854e-09 2.106016009e-09 1.045637374e-09 1.587374154e-09 1.69303336e-09 8.808117697e-10 1.94554085e-09 1.053404474e-09 9.201974234e-10 1.055638921e-09 7.965605758e-10 1.22071727e-09 5.326169353e-10 4.025660026e-10 9.842311581e-10 4.519808847e-10 8.754522199e-10 1.204122875e-09 1.675417125e-09 2.08998859e-09 2.242466689e-09 1.854557729e-09 1.903665502e-09 3.101302135e-09 2.89218244e-09 2.052315119e-09 7.735683336e-10 2.201488004e-09 2.181772872e-09 2.43345438e-09 3.099352706e-09 1.784847607e-09 2.122033022e-09 2.118270458e-09 2.216670218e-09 1.204022125e-09 1.839585361e-09 1.11843091e-09 2.503819985e-09 1.434236669e-09 1.683001292e-09 1.804396778e-09 1.297624992e-09 8.47610386e-10 4.746388075e-10 2.395043715e-10 1.913044616e-10 7.846398172e-20 1.619476511e-10 8.30391815e-11 2.358659771e-15 1.008605566e-10 1.529123731e-10 2.681975441e-10 5.798434866e-10 7.176515251e-10 9.611548355e-10 9.209200754e-10 8.730639561e-10 7.134805959e-10 1.284745665e-09 1.493511869e-09 2.105494926e-09 9.022434841e-10 1.40738713e-09 1.14721224e-09 1.451816712e-09 1.127154606e-09 5.361389151e-10 9.259905519e-10 5.652474473e-10 5.688466463e-10 1.778318902e-10 7.47465819e-11 1.410779735e-10 1.456539752e-10 4.968183339e-10 2.084610697e-10 3.354406948e-10 3.30777485e-10 2.397118392e-10 6.058345977e-10 7.820130689e-10 1.065362766e-09 1.742212662e-09 9.648860848e-10 1.387516629e-09 1.245167448e-09 1.308282498e-09 1.664201523e-09 1.915174142e-09 1.26904648e-09 2.772500343e-09 3.22887382e-09 2.558637279e-09 2.76009277e-09 2.387808096e-09 1.634873503e-09 1.82402009e-09 1.542621786e-09 1.613465464e-09 2.872261988e-09 1.379602034e-09 2.591347559e-09 2.349070615e-09 2.333036821e-09 2.426264015e-09 1.638373779e-09 7.096036484e-10 8.942818579e-10 1.074881375e-09 1.593798223e-10 4.043323071e-10 8.932134682e-10 9.263440098e-10 8.322104371e-10 7.433120203e-10 9.370329023e-10 2.15924993e-09 1.706660402e-09 1.03970855e-09 1.128374052e-09 8.536081059e-10 1.639370256e-09 1.38236551e-09 1.839598299e-09 1.922479406e-09 1.154224854e-09 1.767029181e-09 2.356960216e-09 1.429438175e-09 1.589536551e-09 1.789146917e-09 1.593502591e-09 4.428712682e-10 7.476910732e-10 2.252000089e-10 6.513513018e-10 8.769119854e-10 6.95889344e-10 3.618829124e-10 6.844649097e-10 1.504728976e-09 1.107239318e-09 1.18906339e-09 1.586577356e-09 6.855743416e-10 6.956906485e-10 5.511585431e-10 1.552174917e-09 1.093586763e-09 1.072371898e-09 1.893628515e-09 1.033691011e-09 6.813984705e-10 9.041936626e-10 3.9508699e-10 3.584733861e-10 5.246136439e-10 1.348519888e-09 8.621519408e-10 1.174537129e-09 6.896077483e-10 7.964942297e-10 9.598106852e-10 6.002248043e-10 6.007545518e-10 8.938875739e-10 9.408026229e-10 1.093945689e-09 5.29931951e-10 6.831520797e-10 1.211591294e-09 1.118828237e-09 1.08350196e-09 9.921983278e-10 1.287915969e-09 8.807793015e-10 1.225478526e-09 6.071012538e-10 7.527881241e-10 5.295877788e-10 7.603778833e-10 4.774544094e-10 8.760681172e-10 2.096596152e-10 1.587277089e-10 2.646590118e-10 3.833091563e-10 5.377786748e-10 3.046514338e-10 1.770542171e-10 5.90296539e-10 3.930713498e-10 6.406178347e-10 2.717484609e-10 5.78365243e-10 3.197899621e-10 4.721908377e-10 8.415797664e-10 4.568567198e-10 1.009830083e-09 2.103608102e-10 3.923253973e-10 3.78084381e-10 3.019996597e-10 3.759811749e-10 6.86406466e-10 1.986303522e-10 2.974497194e-10 1.201633731e-10 7.200007224e-10 6.40234496e-10 +3.590700536e-10 3.273002226e-10 1.431924408e-10 9.230867072e-10 7.923820413e-10 5.580855264e-10 3.070351696e-10 3.480110595e-10 4.650357127e-10 4.963704627e-10 4.05190801e-10 2.678391828e-10 4.843427077e-10 1.690724415e-10 5.403511328e-10 3.395570975e-10 5.4084698e-10 2.468234782e-10 5.975802313e-10 5.578398434e-10 6.686950039e-10 3.529088693e-10 6.366281015e-10 3.451012961e-10 3.463703107e-10 2.285214303e-10 2.015850344e-10 4.680480355e-10 7.690070631e-10 8.429096836e-10 7.234664452e-10 7.741676901e-10 8.921313513e-10 8.739191866e-10 7.418338593e-10 1.205008494e-09 7.856551012e-10 7.084460877e-10 1.078890438e-09 8.810525058e-10 1.319301353e-09 4.092865544e-10 1.019345075e-09 3.742589896e-10 1.320848956e-09 6.422367616e-10 1.367573894e-09 7.749201627e-10 3.069135604e-10 1.207661312e-09 1.748933033e-09 7.259354368e-10 1.464750866e-09 5.009694547e-10 7.595593157e-10 1.243187037e-09 6.414987224e-10 1.035115214e-09 6.680785338e-10 2.983044477e-10 1.076679738e-09 1.170398172e-09 8.42177016e-10 7.952504342e-10 6.767614678e-10 1.027586439e-09 9.678406631e-10 4.768107392e-10 7.633617233e-10 1.016260617e-09 8.723266772e-10 5.398591121e-10 7.846950337e-10 1.199922259e-09 1.106553222e-09 4.823619754e-10 7.466555731e-10 9.50401101e-10 1.344814349e-09 1.421469276e-09 1.302419652e-09 1.907505103e-09 1.821112286e-09 2.229908068e-09 1.886048882e-09 1.428314316e-09 8.143938699e-10 1.084749405e-09 1.188241459e-09 1.284429825e-09 1.726568007e-09 1.895555815e-09 1.312831547e-09 1.558872916e-09 1.798094049e-09 1.143504696e-09 1.290388775e-09 9.240182058e-10 5.905789995e-10 7.172567817e-10 2.800677691e-10 5.472383763e-10 1.012727543e-09 6.916395256e-10 6.272784858e-10 1.96756995e-09 1.694228205e-09 3.065134429e-09 2.090228188e-09 1.030602343e-09 1.510986597e-09 2.184873231e-09 2.117365175e-09 3.063349984e-09 2.314620016e-09 1.558938221e-09 4.307737324e-09 2.963779828e-09 1.805542461e-09 2.433947324e-09 1.185532182e-09 2.435152994e-09 1.805222887e-09 1.728245992e-09 1.857478921e-09 1.157023831e-09 1.438331684e-09 1.168864179e-09 1.191557458e-09 1.11787933e-09 7.786303313e-10 1.479137717e-10 1.262840211e-10 1.417350506e-10 0 2.1118388e-10 1.838745465e-10 1.77896545e-10 4.430108584e-10 2.393782979e-10 4.785812912e-10 1.132785625e-09 1.649837329e-09 1.876054518e-09 1.078866437e-09 2.08532967e-09 1.671540959e-09 1.556129681e-09 1.946050392e-09 2.237393236e-09 1.869958705e-09 1.776974927e-09 2.528902167e-09 1.939037159e-09 1.590106084e-09 1.126530681e-09 1.470793351e-09 1.00114138e-09 8.769539856e-10 4.674630293e-10 7.195421515e-11 1.516708728e-10 1.528622241e-10 2.400229961e-10 2.691898768e-10 2.284948138e-10 1.910011951e-10 7.931847003e-11 4.674560759e-10 4.526954822e-10 1.545929814e-09 1.384742879e-09 1.809567114e-09 1.096330921e-09 2.027067838e-09 1.671682746e-09 1.6833872e-09 1.957593888e-09 1.591192457e-09 1.754710505e-09 2.401974678e-09 2.367338688e-09 5.438808691e-09 2.563006962e-09 2.573302184e-09 2.77344999e-09 1.300035933e-09 1.840662976e-09 1.256623968e-09 8.526159453e-10 2.72839735e-09 3.454161606e-09 2.052875081e-09 1.665238767e-09 2.036890512e-09 9.00522545e-10 1.030585428e-09 4.17444623e-10 7.435835753e-10 1.309258531e-10 7.686105245e-10 7.064793195e-10 4.877942121e-10 8.379714622e-10 8.923391579e-10 1.598721241e-09 1.313581942e-09 1.395677715e-09 1.588193594e-09 9.344438531e-10 1.018711896e-09 1.400849065e-09 1.006971124e-09 1.545550665e-09 2.371116804e-09 1.566807871e-09 1.576905471e-09 1.561029359e-09 1.451102099e-09 1.268474097e-09 1.63704674e-09 9.877051049e-10 2.868675911e-10 8.851803351e-10 8.704036144e-10 9.594239771e-10 6.557717101e-10 9.073963569e-10 1.539816496e-09 9.976208839e-10 1.085723986e-09 3.61202041e-10 1.006865202e-09 9.895471251e-10 6.631902491e-10 1.003187095e-09 8.812238097e-10 1.227503692e-09 1.801415505e-09 8.504089912e-10 4.965279833e-10 8.614310572e-10 7.269557252e-10 1.09317603e-09 1.030258559e-09 1.121290506e-09 8.490600998e-10 1.260061093e-09 1.072722604e-09 5.786654288e-10 1.345693223e-09 1.294186523e-09 4.807991721e-10 9.101511898e-10 7.667803162e-10 1.494694603e-09 1.28596437e-09 1.163843655e-09 5.833945225e-10 6.526841701e-10 6.011433919e-10 1.142214745e-09 6.573782511e-10 1.120987054e-09 1.400151903e-09 1.010887845e-09 1.019163489e-09 8.008352333e-10 7.22785709e-10 2.624592432e-10 1.151504411e-10 5.444058346e-10 5.631318483e-10 1.546584923e-10 8.133300204e-10 4.652300703e-10 5.310975313e-10 1.910927603e-10 4.532764962e-10 4.857458365e-10 2.550965433e-10 1.355776117e-10 2.020835095e-10 3.569033567e-10 4.601373187e-10 7.121106422e-10 3.044618792e-10 6.279382507e-10 8.924554007e-10 1.250160351e-10 1.648326237e-10 3.542654422e-10 2.081205467e-10 5.246454892e-10 4.684948371e-10 3.344223322e-10 4.501968709e-10 5.657962396e-10 4.943658993e-10 2.706320587e-10 +4.113607596e-10 8.109091622e-10 5.656388512e-10 5.23158635e-10 2.224269259e-10 4.56926941e-10 5.90777718e-10 5.928508037e-10 5.887487109e-10 3.002257374e-10 3.168863534e-10 4.70198369e-10 3.907261748e-10 1.092876307e-10 3.375726204e-10 6.291343996e-10 2.76477204e-10 8.441187503e-10 4.877285292e-10 8.182173612e-10 2.783320519e-10 7.573054031e-10 4.162665861e-10 4.90971938e-10 2.339826276e-10 6.417726599e-10 4.081603989e-10 4.443824158e-10 4.288092676e-10 1.153570192e-09 7.001562115e-10 7.556223673e-10 6.643759114e-10 4.988749978e-10 1.124695349e-09 8.159515646e-10 9.858286927e-10 8.691729825e-10 1.016641791e-09 1.234537668e-09 7.988263677e-10 1.127401122e-09 1.098380751e-09 7.189466769e-10 1.1453794e-09 1.251191725e-09 9.389768008e-10 7.182158026e-10 1.288210775e-09 8.775061422e-10 1.35703616e-09 1.29295988e-09 9.798863504e-10 7.334410848e-10 6.351464566e-10 6.265629398e-10 8.105613523e-10 1.285314807e-09 7.478442919e-10 6.701578651e-10 5.048104838e-10 9.058392916e-10 9.036105681e-10 8.473217756e-10 7.216302786e-10 8.178034478e-10 6.863392956e-10 1.268733054e-09 8.582829368e-10 1.084219076e-09 9.640744871e-10 6.25485414e-10 1.337668505e-09 3.655078079e-10 7.247739237e-10 7.809686592e-10 1.058634413e-09 9.581338554e-10 4.507676645e-10 1.002243218e-09 1.599787113e-09 9.573425556e-10 2.481449169e-09 2.082402328e-09 1.760782777e-09 9.539848396e-10 1.33125328e-09 1.3772257e-09 9.537247909e-10 1.072721103e-09 1.447730727e-09 1.075015723e-09 1.337712234e-09 1.099877001e-09 1.231817377e-09 1.070582452e-09 1.696118194e-09 9.745239849e-10 9.715315057e-10 9.821389079e-10 1.835730503e-10 5.079295608e-10 5.057758512e-10 1.170976948e-09 1.191400489e-09 1.588993207e-09 2.744312949e-09 1.965640862e-09 1.707343688e-09 2.962799176e-09 3.008805784e-09 3.447294994e-09 1.83948805e-09 2.446626823e-09 2.310588126e-09 1.86589448e-09 3.485019006e-09 2.252864548e-09 2.745004887e-09 1.47870844e-09 9.649124878e-10 1.014740169e-09 1.257428573e-09 1.571299704e-09 1.375472878e-09 1.025859687e-09 1.228573646e-09 1.320210328e-09 1.131634054e-09 9.179787555e-10 7.869734258e-10 2.741704268e-10 2.163907452e-10 1.15438313e-10 9.858860632e-11 9.609265296e-11 1.203514298e-10 1.651140522e-14 2.653927327e-10 7.525837638e-10 1.130346336e-09 6.67249282e-10 1.082944342e-09 1.639740232e-09 2.002863787e-09 2.293816533e-09 2.353642873e-09 2.328609578e-09 2.351523511e-09 3.386050212e-09 2.386854591e-09 2.283610334e-09 2.019727194e-09 2.926178097e-09 2.440510967e-09 2.097890491e-09 2.34185143e-09 1.978086044e-09 1.806807102e-09 1.268594959e-09 5.841630963e-10 2.62057646e-12 3.207349846e-10 7.528792423e-17 6.571650801e-11 4.281558195e-10 5.394366069e-18 1.03405758e-10 1.868960409e-10 5.675507883e-10 1.153937588e-09 1.220225396e-09 1.343305267e-09 1.636660885e-09 7.481738869e-10 1.738522779e-09 2.055299943e-09 1.719264599e-09 2.810919433e-09 1.18504399e-09 2.065869273e-09 2.597674807e-09 3.059479172e-09 3.287053461e-09 2.652257195e-09 2.406401884e-09 1.809982662e-09 2.056105128e-09 2.646603367e-09 1.373382575e-09 2.81250493e-09 1.780848366e-09 1.869858564e-09 2.806975157e-09 2.008678429e-09 1.034273537e-09 9.856565517e-10 3.286725283e-10 2.720749955e-10 3.565791736e-10 7.948335758e-10 4.733902201e-10 1.13296471e-09 1.137493904e-09 9.021104145e-10 9.757091592e-10 9.436445077e-10 1.974881763e-09 1.111255898e-09 1.357841444e-09 9.618131098e-10 1.352503625e-09 1.127127879e-09 1.572519034e-09 1.644789098e-09 1.698893783e-09 1.925229052e-09 2.700332956e-09 1.851051539e-09 9.106596497e-10 6.295434246e-10 1.186140101e-09 1.103716465e-09 1.199788136e-09 7.733386758e-10 1.358769095e-09 8.186941131e-10 7.285153651e-10 9.091655421e-10 8.782551723e-10 1.433598092e-09 1.254402672e-09 9.390367605e-10 1.368634439e-09 5.68362253e-10 1.207131752e-09 1.203590239e-09 1.805598735e-09 1.112937912e-09 1.116011839e-09 9.443000222e-10 8.760168693e-10 8.018023404e-10 6.511893913e-10 9.190352851e-10 1.175591759e-09 1.469404566e-09 9.857150259e-10 3.381511681e-10 1.020714031e-09 1.015840085e-09 1.080343709e-09 1.351504655e-09 8.707729202e-10 6.96554365e-10 1.164971952e-09 7.730723636e-10 1.461156884e-09 1.211806686e-09 5.271170036e-10 6.979184815e-10 1.073457123e-09 1.205135791e-09 1.259612308e-09 1.464629465e-09 4.422819561e-10 3.700812228e-10 3.519506073e-10 3.602334199e-10 2.076785099e-10 6.496952276e-10 2.327659358e-10 4.08174301e-10 4.675682633e-10 2.374013291e-10 2.332866268e-10 2.065430844e-10 5.370186528e-10 6.086316142e-10 3.090981613e-10 5.205902406e-10 3.397197032e-10 7.872637382e-10 3.76507004e-10 3.246861798e-10 1.332028701e-10 2.559656235e-10 3.932460546e-10 3.739470023e-10 3.689293702e-10 2.668017871e-10 8.458190716e-10 8.357325521e-10 2.365196938e-10 4.4160324e-10 6.549422297e-10 4.663429884e-10 8.917224523e-10 2.782052933e-10 5.615564122e-10 +2.659946724e-10 4.248972397e-10 4.162615169e-10 3.613389191e-10 4.838791617e-10 1.133137294e-09 8.541478516e-10 1.846193374e-10 5.720600462e-10 5.836318527e-10 5.387058056e-10 5.267872403e-10 2.579323386e-10 5.146952182e-10 9.031092796e-10 2.277644219e-10 5.003211419e-10 2.689273277e-10 8.957761101e-11 8.633335306e-10 6.500962131e-10 4.527106068e-10 6.782079205e-10 4.007657736e-10 5.056517199e-10 6.166831507e-10 2.780647018e-10 4.368192026e-10 3.451453199e-10 7.827339732e-10 8.756922079e-10 5.572902928e-10 4.343269684e-10 6.0954464e-10 7.668597986e-10 9.373691309e-10 4.100826923e-10 7.332190334e-10 1.117122439e-09 7.265382925e-10 9.623616835e-10 1.228772344e-09 7.775867849e-10 5.865409542e-10 9.397701758e-10 4.920849463e-10 8.638031987e-10 9.893334959e-10 1.015116874e-09 8.25554654e-10 7.017738897e-10 7.836438845e-10 6.903212375e-10 7.138135748e-10 1.285074591e-09 8.480924295e-10 9.477398436e-10 3.40066706e-10 1.025617882e-09 5.729953327e-10 8.627125512e-10 8.981459637e-10 1.995030026e-09 1.346771899e-09 1.204478043e-09 1.028197708e-09 9.411392691e-10 1.17024959e-09 8.994794563e-10 6.520489811e-10 4.807024271e-10 7.653730607e-10 5.813667676e-10 1.384207394e-09 9.98736118e-10 6.966750766e-10 7.929699202e-10 8.166454532e-10 1.626478077e-09 1.195160297e-09 1.19968222e-09 2.106032119e-09 1.8918442e-09 1.206926677e-09 1.446283076e-09 1.032108951e-09 1.561061544e-09 1.431495786e-09 1.316517838e-09 6.683540799e-10 1.832628012e-09 1.840968337e-09 7.547445267e-10 1.273134682e-09 1.304970008e-09 1.640297476e-09 9.176995959e-10 1.168782593e-09 1.076712281e-09 6.463428944e-10 7.796763134e-10 5.249345782e-10 1.371557827e-09 1.066708677e-09 1.96894728e-09 2.895339431e-09 2.194583879e-09 1.40162613e-09 1.73925027e-09 3.90697981e-09 2.64395965e-09 2.488862926e-09 2.323324516e-09 2.173717284e-09 1.721029683e-09 2.573070573e-09 3.322216443e-09 3.710282593e-09 2.679848166e-09 1.630337026e-09 2.009294661e-09 1.543634027e-09 9.312819616e-10 1.36292643e-09 1.466487602e-09 1.278691624e-09 9.671846226e-10 1.799115721e-09 1.523909616e-09 5.986510493e-10 8.482035904e-11 2.734464661e-10 2.544495252e-10 3.31486505e-10 4.287193477e-18 1.147669187e-10 1.035006509e-10 6.571363264e-10 5.101536752e-10 9.153102696e-10 1.816137909e-09 1.66341254e-09 2.695201085e-09 1.992493662e-09 2.514543982e-09 2.264664569e-09 3.317847368e-09 3.060526417e-09 1.515886151e-09 2.608380202e-09 2.13056612e-09 2.046540841e-09 3.164704248e-09 1.76494083e-09 2.923347622e-09 2.258998949e-09 2.471576129e-09 3.00197471e-09 1.919039596e-09 1.772710764e-09 1.02806651e-09 4.387315288e-10 6.296165355e-10 5.47767541e-10 1.216414351e-10 7.486413038e-12 3.644768875e-11 1.399988424e-10 1.559157484e-10 2.008202119e-10 3.741676207e-10 1.226103846e-09 1.357526573e-09 1.20099151e-09 1.739940115e-09 1.789793468e-09 1.513061513e-09 2.062797823e-09 1.101081279e-09 9.31654232e-10 1.494957061e-09 2.417167154e-09 2.619552524e-09 2.166236017e-09 2.52315215e-09 2.498606226e-09 2.085229185e-09 4.193931978e-09 2.888602432e-09 2.14137124e-09 4.321133067e-09 1.76535038e-09 2.391954174e-09 1.594078347e-09 3.165767237e-09 1.358298385e-09 7.714618665e-10 9.473795298e-10 1.713749207e-10 3.550461755e-10 1.475010253e-09 1.199236564e-09 6.716566164e-10 1.155584511e-09 6.095175281e-10 1.446335898e-09 1.482651728e-09 1.329817041e-09 1.430414485e-09 1.523435146e-09 1.274880011e-09 1.198444568e-09 1.703022502e-09 1.197350758e-09 2.052020438e-09 2.47984067e-09 1.624909182e-09 2.196248303e-09 2.480573863e-09 1.151999913e-09 1.098282681e-09 7.045368909e-10 1.149352852e-09 8.841889004e-10 1.319932668e-09 1.078244037e-09 1.303979778e-09 1.088004063e-09 1.056060072e-09 1.28880404e-09 8.07871716e-10 9.559568165e-10 5.296589497e-10 8.777433386e-10 1.066234854e-09 7.484429849e-10 1.116020545e-09 1.228958358e-09 1.582542905e-09 8.408308892e-10 5.691863805e-10 6.928538176e-10 6.228854471e-10 4.000294559e-10 5.150046918e-10 1.434808352e-09 8.367076308e-10 1.213118788e-09 9.827211896e-10 1.252247322e-09 8.482105997e-10 1.199373014e-09 1.155057083e-09 9.762141514e-10 6.261172659e-10 5.662282348e-10 5.006152875e-10 7.422791065e-10 5.084527133e-10 6.133075673e-10 1.067331352e-09 7.378221976e-10 5.736714517e-10 6.604491334e-10 9.328196075e-10 6.274247389e-10 7.889540649e-10 6.915602711e-10 5.902622549e-10 7.439747679e-10 2.856037437e-10 5.196464821e-10 4.042081206e-10 1.946027003e-10 5.614849286e-10 4.562829868e-10 1.498724853e-10 4.835775815e-10 6.980309089e-10 8.375878588e-10 5.553776216e-10 2.580355055e-10 4.778044741e-10 5.328733162e-10 8.784351209e-10 6.602419135e-10 4.362139687e-10 4.249631328e-10 4.629441633e-10 1.14713914e-10 7.786717096e-10 5.017819963e-10 3.997423117e-10 3.923443141e-10 5.145104364e-10 2.004310426e-10 3.753462932e-10 4.949493986e-10 5.125643188e-10 3.903773023e-10 +2.922787933e-10 5.474747029e-10 5.479236577e-10 2.546979993e-10 4.118002624e-10 5.683062768e-10 2.694639561e-10 2.547515126e-10 1.675116063e-10 9.782652842e-10 4.640443817e-10 2.865848116e-10 3.724445481e-10 5.386458134e-10 3.683328945e-10 5.637414206e-10 4.605272588e-10 5.715046555e-10 3.960559408e-10 5.550059269e-10 2.908741877e-10 6.299851395e-10 3.952126963e-10 3.291933832e-10 5.720790059e-10 5.557161957e-10 4.573539714e-10 3.901852724e-10 4.397468488e-10 5.343941201e-10 4.52356557e-10 5.812775478e-10 8.276640795e-10 4.481512534e-10 1.075774168e-09 1.124131168e-09 5.928767125e-10 1.242000588e-09 1.10527282e-09 6.360337224e-10 7.800377497e-10 3.982413894e-10 8.393100312e-10 1.113596982e-09 7.036910191e-10 1.055635756e-09 1.14243236e-09 1.33771212e-09 1.53797299e-09 1.760295882e-09 1.212451438e-09 9.365446064e-10 1.109695113e-09 7.265919954e-10 6.914026404e-10 5.566932771e-10 8.109831859e-10 1.022781217e-09 8.312911183e-10 5.775750003e-10 7.779900073e-10 7.713977717e-10 1.189182061e-09 1.06722753e-09 9.590099234e-10 8.216417974e-10 8.006857577e-10 1.113441574e-09 1.043291063e-09 1.343587267e-09 1.360993239e-09 6.649633712e-10 8.125011286e-10 6.2682089e-10 3.857022617e-10 9.598134458e-10 6.967942093e-10 6.125414162e-10 4.480725284e-10 7.084250408e-10 1.657876195e-09 2.289084302e-09 1.662915314e-09 1.979175586e-09 1.524639341e-09 1.861305815e-09 1.118154923e-09 1.556252297e-09 1.045945351e-09 2.533092122e-09 1.299813016e-09 1.791422333e-09 8.579628231e-10 9.898506923e-10 1.740868473e-09 9.513795745e-10 1.182737104e-09 1.043199035e-09 5.106508667e-10 7.201296361e-10 1.586241074e-10 5.482641722e-10 1.045122366e-09 1.011982345e-09 1.320564407e-09 2.075940829e-09 2.068968811e-09 1.485856437e-09 2.284743338e-09 3.064478332e-09 1.967425322e-09 2.07128567e-09 1.321973441e-09 2.639683561e-09 3.109980844e-09 2.773775229e-09 2.797507139e-09 3.42118531e-09 1.656446929e-09 1.426886231e-09 1.709559264e-09 1.541337972e-09 9.67967627e-10 1.433346149e-09 1.091488908e-09 2.197384133e-09 1.442984336e-09 4.603071251e-10 3.340206595e-10 6.035876982e-10 1.806436495e-10 2.037592269e-10 1.226779179e-10 1.589264639e-10 9.142652151e-11 1.956314903e-10 5.334570716e-10 7.193316251e-10 1.939023074e-09 1.851037292e-09 2.554394636e-09 2.225817033e-09 2.459354597e-09 2.81526124e-09 2.029951598e-09 2.215998581e-09 3.194788689e-09 3.328698782e-09 2.860998037e-09 2.104055321e-09 3.413313984e-09 2.317342375e-09 3.360111857e-09 2.684711884e-09 2.801469387e-09 2.631233395e-09 2.148857043e-09 2.226346316e-09 3.281160535e-09 1.560380882e-09 2.655743146e-09 1.481655192e-09 9.313864226e-10 8.494958238e-10 3.169859552e-10 5.38356035e-11 1.226155424e-10 1.991595281e-10 9.093563698e-11 7.145435771e-13 4.170554469e-10 3.855149031e-10 1.450881456e-09 1.213563717e-09 1.118602233e-09 1.691628827e-09 1.37992504e-09 1.424658693e-09 2.252649485e-09 2.046657723e-09 1.869128608e-09 2.783376599e-09 3.01442316e-09 2.982388388e-09 3.128749052e-09 2.533599862e-09 3.035022049e-09 2.104668961e-09 3.109177229e-09 2.809747517e-09 1.52676441e-09 1.335812711e-09 2.400738032e-09 3.450219741e-09 2.761653748e-09 1.959500344e-09 1.414825299e-09 1.23738599e-09 6.369752816e-10 3.215328687e-10 4.703515701e-10 6.214334177e-10 5.909816077e-10 8.951211544e-10 1.052973631e-09 9.861196132e-10 1.429059676e-09 1.010794977e-09 1.661877912e-09 1.831381261e-09 7.358186824e-10 1.239317173e-09 1.227508838e-09 1.222747555e-09 2.184740398e-09 1.598526083e-09 1.039398582e-09 1.686527661e-09 1.391273416e-09 9.604364118e-10 1.836691076e-09 8.231400008e-10 7.546277623e-10 6.223508879e-10 1.183749883e-09 7.038154813e-10 6.750974507e-10 1.244932842e-09 1.585397646e-09 8.444431634e-10 8.5605148e-10 8.705061817e-10 9.060451698e-10 8.231672979e-10 1.598638699e-09 1.021509202e-09 8.845052284e-10 9.497401054e-10 1.064400207e-09 1.498834447e-09 8.980711869e-10 4.289280824e-10 5.949881747e-10 8.086495241e-10 7.651624971e-10 6.025991785e-10 6.086710251e-10 4.444171595e-10 1.709286028e-09 1.011884603e-09 1.404514122e-09 1.227152524e-09 6.930303023e-10 8.876058167e-10 9.506498209e-10 7.096414262e-10 1.320205635e-09 8.677138778e-10 5.197516481e-10 6.423525721e-10 1.198183986e-09 7.024875622e-10 8.377474408e-10 8.440311481e-10 6.860951755e-10 5.217016178e-10 5.052641423e-10 4.025057448e-10 5.842645018e-10 4.593120792e-10 3.333039819e-10 3.714707528e-10 5.66354017e-10 3.005151471e-10 5.67550993e-10 7.75254587e-10 3.847482936e-10 4.719810468e-10 5.467914188e-10 3.7185311e-10 6.53223737e-10 5.754167131e-10 6.056465978e-10 6.932767385e-10 3.850306483e-10 3.89418813e-10 3.34896346e-10 3.243549386e-10 4.429275682e-10 4.594894396e-10 7.840614007e-10 3.979004962e-10 5.013848691e-10 4.024817202e-10 5.013888692e-10 7.11706504e-10 5.409121663e-10 4.863114979e-10 2.972002912e-10 5.007159588e-10 +1.854693246e-10 3.404679503e-10 2.928452174e-10 7.553098651e-10 4.459231425e-10 4.388352511e-10 8.681119325e-10 6.224708765e-10 4.923689438e-10 1.712407199e-10 7.180988603e-10 3.686539938e-10 7.573277112e-10 3.697179947e-10 3.120971489e-10 7.218219136e-10 5.499197697e-10 7.256519842e-10 4.578532293e-10 4.533850442e-10 4.065062122e-10 4.644165165e-10 3.977091067e-10 4.276201078e-10 3.40080619e-10 4.051807762e-10 6.122277035e-10 6.206057087e-10 8.859408111e-10 7.660965352e-10 5.502672324e-10 4.679460035e-10 8.289048925e-10 1.098097107e-09 4.178053257e-10 1.529912164e-09 7.570941387e-10 7.364479424e-10 7.907427446e-10 6.00743535e-10 8.388660368e-10 1.267337388e-09 1.237593674e-09 1.015947436e-09 6.223677308e-10 8.471885677e-10 8.892037453e-10 1.436988089e-09 8.403065755e-10 1.130950314e-09 4.824080941e-10 1.563626512e-09 1.265937288e-09 1.22251402e-09 1.225148592e-09 5.825600287e-10 6.956294667e-10 1.289232062e-09 4.909112531e-10 5.343211204e-10 8.91856172e-10 1.065149784e-09 1.02739043e-09 1.277188579e-09 1.526582112e-09 8.812643067e-10 3.206493784e-10 5.605146559e-10 1.346580282e-09 1.277265832e-09 9.19628763e-10 1.340026911e-09 1.391568733e-09 6.96229436e-10 6.292411199e-10 6.126653852e-10 8.96599342e-10 8.909979229e-10 1.028587502e-09 1.275026696e-09 1.454000157e-09 1.461554817e-09 1.513781479e-09 1.637632309e-09 1.790896993e-09 1.558302749e-09 1.8906807e-09 1.732282241e-09 2.188764391e-09 1.596382224e-09 1.643670483e-09 1.704238776e-09 1.429230683e-09 2.045682302e-09 1.536119521e-09 1.397070156e-09 2.437657048e-09 5.413718031e-10 7.016136599e-10 8.612777935e-10 5.058845908e-10 6.158296256e-10 4.402825142e-10 1.606593599e-09 2.246630225e-09 2.395965567e-09 2.714804007e-09 1.587389138e-09 2.43522899e-09 4.531838653e-09 1.646038353e-09 2.113622229e-09 1.612601532e-09 1.646613703e-09 1.915183337e-09 2.446955145e-09 2.993671839e-09 2.252215089e-09 2.052888897e-09 1.339390802e-09 2.127977042e-09 1.816472824e-09 2.353598072e-09 1.450783351e-09 2.154210264e-09 1.316506652e-09 1.41119571e-09 1.698324213e-10 5.120612459e-10 2.312066811e-10 1.82869625e-10 2.830491832e-10 2.218833233e-12 6.913666006e-11 2.133193252e-10 9.066727014e-10 1.274827244e-09 1.914191907e-09 2.649023081e-09 1.756671202e-09 2.877577235e-09 2.560685219e-09 2.435714563e-09 2.589367268e-09 2.744852982e-09 2.772679137e-09 2.351259418e-09 2.06717716e-09 1.986145807e-09 3.20950049e-09 1.937250945e-09 2.615956551e-09 1.620962937e-09 2.316571074e-09 2.415154059e-09 2.052000581e-09 2.744638312e-09 2.465916683e-09 2.898361976e-09 2.542168624e-09 2.882301549e-09 1.873522556e-09 1.398821094e-09 1.169575791e-09 5.172813543e-10 1.828530726e-10 9.058448371e-11 1.837294181e-10 2.791103668e-10 2.916902864e-10 4.022857238e-10 3.529444809e-10 7.348980987e-10 9.930559848e-10 1.119783071e-09 1.253642802e-09 1.898856094e-09 1.860376666e-09 1.126640443e-09 1.104287731e-09 1.373055585e-09 1.56514057e-09 3.067130817e-09 3.470292542e-09 2.171347922e-09 3.341564552e-09 1.512942353e-09 3.17386529e-09 1.949592484e-09 3.086379701e-09 2.438474014e-09 2.432203534e-09 2.774755839e-09 2.940821631e-09 1.985949257e-09 1.938168367e-09 1.049057466e-09 1.269676842e-09 7.62054416e-10 5.738924572e-10 2.427476823e-10 5.061967106e-10 1.114349695e-09 1.921128992e-09 1.1216316e-09 1.165709817e-09 1.626141278e-09 1.018844724e-09 2.371590917e-09 1.388509372e-09 9.164138026e-10 1.392876931e-09 2.065009123e-09 2.3650406e-09 1.270405025e-09 1.102221726e-09 1.452133763e-09 2.147448088e-09 1.134701474e-09 9.112101624e-10 1.335948858e-09 7.175356955e-10 7.01773733e-10 7.318803905e-10 8.44791349e-10 1.091543781e-09 9.028358303e-10 5.739077981e-10 1.24905842e-09 8.413769832e-10 7.469409502e-10 1.807053759e-09 1.458581329e-09 6.454597673e-10 1.085439396e-09 1.548789407e-09 6.612189652e-10 8.451957777e-10 7.852389546e-10 5.498166806e-10 5.332224052e-10 5.21131519e-10 1.156521378e-09 4.885050156e-10 1.132451777e-09 6.451487096e-10 1.03487399e-09 1.356865699e-09 7.726375519e-10 1.220675606e-09 1.08762113e-09 5.272221492e-10 1.589461557e-09 1.027817339e-09 8.56854761e-10 5.347537577e-10 1.3361026e-09 1.139195934e-09 1.094883263e-09 7.599388249e-10 1.109593678e-09 9.985982822e-10 1.438942612e-09 1.153687248e-09 6.085130097e-10 4.271756917e-10 6.340486957e-10 5.631398134e-10 4.781671472e-10 5.341423826e-10 3.087191203e-10 4.089639654e-10 5.387712992e-10 2.678469047e-10 4.087689093e-10 4.289206779e-10 4.338201492e-10 5.759255646e-10 2.09127878e-10 4.802740137e-10 7.579643673e-10 3.638273232e-10 3.836684956e-10 7.507742698e-10 5.138775361e-10 4.068008349e-10 4.989975219e-10 4.496236924e-10 4.632625031e-10 2.084493129e-10 5.413207939e-10 7.189306545e-10 6.18293722e-10 1.851333594e-10 3.766706387e-10 4.61085892e-10 8.673071003e-10 5.412149647e-10 3.898642773e-10 4.804099281e-10 +6.515619845e-10 7.239739609e-10 4.836523296e-10 1.684732579e-10 2.43545679e-10 5.325323574e-10 5.114569451e-10 7.05474159e-10 4.826916443e-10 1.094946005e-09 6.505271632e-10 4.457377981e-10 5.150224832e-10 3.976919546e-10 1.631054806e-10 9.298377715e-10 5.427243633e-10 4.155030513e-10 2.955943359e-10 3.913132905e-10 4.941134e-10 6.814529518e-10 6.564961301e-10 5.378192443e-10 2.62556227e-10 3.285795848e-10 2.744689039e-10 4.820260013e-10 2.566473284e-10 4.063868281e-10 3.345446471e-10 6.085666296e-10 8.034747282e-10 8.286921782e-10 5.284126006e-10 3.870309647e-10 1.177758179e-09 1.035137684e-09 5.09714977e-10 6.248167886e-10 1.151324062e-09 6.433179234e-10 9.046075182e-10 6.351416626e-10 9.911613815e-10 8.788506066e-10 9.007496799e-10 7.619371824e-10 1.270547738e-09 1.253025712e-09 1.198546151e-09 1.699500122e-09 8.613598571e-10 9.428441376e-10 5.214242505e-10 9.093696148e-10 7.788515641e-10 9.130161827e-10 8.905130359e-10 3.592806199e-10 1.192195121e-09 1.542715103e-09 1.417436513e-09 1.130970061e-09 1.107012673e-09 8.639767497e-10 7.45593967e-10 1.209143745e-09 9.431358862e-10 1.827455915e-09 1.328234832e-09 9.140057675e-10 1.677648018e-09 1.031034079e-09 7.918045812e-10 8.338354015e-10 8.628675937e-10 1.047921622e-09 9.73774976e-10 1.587750563e-09 7.311108436e-10 1.937957533e-09 2.117117889e-09 2.238969472e-09 1.254992953e-09 1.572360443e-09 1.133170501e-09 1.528024945e-09 9.767294779e-10 1.059559055e-09 1.142890379e-09 1.37284221e-09 1.485881125e-09 1.68301037e-09 2.276551616e-09 1.450122426e-09 1.10347064e-09 1.628964342e-09 6.854799933e-10 1.939391147e-10 6.256842189e-10 8.805053835e-10 9.016463062e-10 2.333023613e-09 2.173598808e-09 2.315558065e-09 2.842243748e-09 3.654091278e-09 2.277625568e-09 2.232694267e-09 2.120097072e-09 1.784857303e-09 2.881924123e-09 2.730305319e-09 2.86409259e-09 4.706523606e-09 2.368924683e-09 2.038050767e-09 1.757824943e-09 2.14079782e-09 1.742417989e-09 1.233496154e-09 1.632499112e-09 1.751579292e-09 1.595927612e-09 9.485151143e-10 3.560069593e-10 6.868531619e-10 3.676266632e-11 7.273167439e-11 6.002279637e-10 1.145973941e-20 2.369303223e-10 3.527502453e-10 3.543940037e-10 1.177234362e-09 1.901909527e-09 1.555873491e-09 2.807248871e-09 3.294154809e-09 3.013936749e-09 3.022969021e-09 1.820233807e-09 2.167717389e-09 2.393632151e-09 2.020868513e-09 2.907742602e-09 3.415425014e-09 3.343838209e-09 3.503616498e-09 3.202107729e-09 3.133917787e-09 3.408573799e-09 2.755073318e-09 2.417531506e-09 2.980598548e-09 2.306321524e-09 3.33960857e-09 2.310345367e-09 2.623153704e-09 2.634038288e-09 2.183978151e-09 3.232167834e-09 2.338369833e-09 1.35875334e-09 1.599144448e-09 2.974797546e-10 8.386923455e-11 3.28012009e-10 2.661567485e-10 5.6501959e-10 4.743879463e-12 5.252496767e-10 7.600656553e-10 1.327763633e-09 1.415560339e-09 2.568945936e-09 1.586509078e-09 2.003159962e-09 1.792077836e-09 2.243833489e-09 1.841291075e-09 1.746042253e-09 3.447995805e-09 2.889131213e-09 2.552217771e-09 2.655910397e-09 3.307565246e-09 1.429480989e-09 2.732007129e-09 3.080308674e-09 2.965764259e-09 1.323779806e-09 2.265923408e-09 2.635368142e-09 1.322099186e-09 1.541989689e-09 7.627167083e-10 7.153106932e-10 1.775477761e-10 3.111005048e-10 8.137918117e-10 1.128758375e-09 8.208123981e-10 1.97576777e-09 1.666573039e-09 9.886546507e-10 1.957784423e-09 1.198228825e-09 1.424112574e-09 1.662672776e-09 2.077007747e-09 1.958984982e-09 1.055560127e-09 1.876002339e-09 1.769593828e-09 1.390925237e-09 2.402120376e-09 1.87331212e-09 1.422098368e-09 1.244949535e-09 1.163841336e-09 5.404942835e-10 6.249143026e-10 9.44626758e-10 1.188889512e-09 1.296635056e-09 7.725150068e-10 1.033789079e-09 8.801864426e-10 5.414931813e-10 9.244702785e-10 6.888822331e-10 1.176507983e-09 4.234704454e-10 7.559335923e-10 5.984368836e-10 1.059529204e-09 5.643928549e-10 5.912500782e-10 9.656435153e-10 5.697554881e-10 7.646291955e-10 3.741765444e-10 1.093021421e-09 4.402476595e-10 8.016911355e-10 1.300275047e-09 9.451603977e-10 1.20120144e-09 4.637765519e-10 1.084498247e-09 1.019131032e-09 1.354596153e-09 1.031748098e-09 1.051541697e-09 1.351456615e-09 5.328590135e-10 1.031646101e-09 6.537607929e-10 8.046921542e-10 3.820900376e-10 7.366332082e-10 6.432072182e-10 3.153497593e-10 1.068506515e-09 1.002738819e-09 1.085135777e-09 4.58082624e-10 2.282890014e-10 6.386117276e-10 6.630572779e-10 5.843367085e-10 6.815285104e-10 4.733977555e-10 1.321634237e-10 4.076371007e-10 2.499676584e-10 5.671000772e-10 2.974464234e-10 5.895779044e-10 1.006455388e-09 2.160761816e-11 1.462462758e-10 3.632933354e-10 4.484043571e-10 4.362803636e-10 4.572390904e-10 4.544709131e-10 1.910143966e-10 2.705060089e-10 2.640670873e-10 3.941799813e-10 1.046262451e-09 3.718945928e-10 5.977282376e-10 5.292125506e-10 3.979424749e-10 3.580658808e-10 2.539987186e-10 +2.567082415e-10 1.045584859e-09 5.992939151e-10 3.953307478e-10 4.680443448e-10 1.851463094e-10 7.998266044e-10 3.456302273e-10 3.809836015e-10 8.151064943e-10 4.622446366e-10 6.465847234e-10 2.571804788e-10 1.63720723e-10 1.105910969e-09 1.715833664e-10 7.063839942e-10 4.44871226e-10 5.624704527e-10 6.05291225e-10 4.107782767e-10 1.175927355e-10 4.08232333e-10 1.645616849e-10 3.839259641e-10 3.555266842e-10 4.807597463e-10 3.681467536e-10 3.340784926e-10 2.895182495e-10 1.273706238e-09 4.139654226e-10 3.096583787e-10 8.043677252e-10 8.180797014e-10 6.769783686e-10 7.750237212e-10 4.512394023e-10 4.750553986e-10 5.643037559e-10 8.736977861e-10 9.274209149e-10 1.291068974e-09 1.318658716e-09 9.0920783e-10 9.471976011e-10 1.153031947e-09 1.015970569e-09 7.918394243e-10 6.178442466e-10 1.024421131e-09 4.154413318e-10 6.487259042e-10 8.699025369e-10 1.279234666e-09 2.709086378e-10 3.877881125e-10 5.564440911e-10 6.601541618e-10 4.43421168e-10 1.435450781e-09 1.174953472e-09 9.873525622e-10 7.332347485e-10 8.470560875e-10 1.007130591e-09 9.696849078e-10 1.790927205e-09 1.044713448e-09 9.687506398e-10 1.131710069e-09 6.333826226e-10 1.083608235e-09 7.576167865e-10 6.970200991e-10 5.706558623e-10 1.636351099e-09 1.160738699e-09 1.15365082e-09 9.191770783e-10 1.223553878e-09 1.565367108e-09 1.827151381e-09 1.192825176e-09 9.861202455e-10 1.8390058e-09 1.860673681e-09 1.488415103e-09 7.082659178e-10 1.112277e-09 9.549742006e-10 1.942477846e-09 1.538418665e-09 1.558015221e-09 1.766605078e-09 1.242443391e-09 7.228347429e-10 4.970349718e-10 9.026772959e-10 3.388578925e-10 2.125454474e-10 1.150867989e-09 1.290856616e-09 1.413201067e-09 2.323864908e-09 2.862289706e-09 1.62819524e-09 1.937289566e-09 2.23532618e-09 1.740017243e-09 1.254667966e-09 2.139098121e-09 2.329319377e-09 2.628724219e-09 1.488483135e-09 4.986224867e-09 1.903003857e-09 1.893755605e-09 2.223169814e-09 9.052458676e-10 1.786734882e-09 1.164783963e-09 1.163984898e-09 1.629590733e-09 1.908887656e-09 1.604699203e-09 6.291899209e-10 2.231901816e-10 3.644255371e-43 5.882980552e-11 9.941970774e-11 2.504275516e-10 3.696493432e-10 8.229373691e-10 1.252649094e-09 1.654888029e-09 2.00915151e-09 2.752166639e-09 2.147822462e-09 3.580683181e-09 3.351013457e-09 3.219150623e-09 2.757078379e-09 3.405886108e-09 4.11338644e-09 3.521385699e-09 4.666259658e-09 3.213494955e-09 5.059637037e-09 3.397798121e-09 3.933514452e-09 4.245966753e-09 4.929571736e-09 3.450993074e-09 3.834877099e-09 3.18797641e-09 2.632656535e-09 2.774684362e-09 2.326653735e-09 3.193634029e-09 2.499762894e-09 2.251629357e-09 2.645398358e-09 2.14680463e-09 1.894654899e-09 1.284256216e-09 3.572530127e-10 2.843589584e-10 1.36825407e-10 7.539845027e-11 9.0165637e-11 1.214904648e-10 3.76240954e-10 3.612710022e-10 1.268381457e-09 6.068698705e-10 8.816645011e-10 2.346805345e-09 9.258291186e-10 1.521241703e-09 9.489349801e-10 1.464635271e-09 2.267440978e-09 3.432879342e-09 3.012322859e-09 2.755330271e-09 1.888936754e-09 2.346369552e-09 2.070517449e-09 2.890350539e-09 2.383292937e-09 2.793619276e-09 3.178364812e-09 1.754288715e-09 1.960715834e-09 2.049735072e-09 2.396392553e-10 8.591066603e-10 6.551792985e-10 6.254499273e-10 1.663985725e-10 7.098309938e-10 1.045451677e-09 1.45097952e-09 4.931696208e-10 1.464534914e-09 1.919431616e-09 7.180808336e-10 1.509183309e-09 1.266627274e-09 1.790922286e-09 1.690934648e-09 2.240156898e-09 1.43382855e-09 1.633996271e-09 2.538624375e-09 1.515234645e-09 1.948686437e-09 1.486513716e-09 9.483282883e-10 1.484841575e-09 4.898217481e-10 7.251798154e-10 5.226827586e-10 6.284957981e-10 1.058371347e-09 1.233229999e-09 1.3636608e-09 1.424592732e-09 7.159794613e-10 9.648054738e-10 9.44210884e-10 1.700345318e-09 8.101200616e-10 7.132845034e-10 1.403819402e-09 1.495441397e-09 1.057011023e-09 9.730169651e-10 5.302986767e-10 8.288728175e-10 5.47034349e-10 6.165654553e-10 8.54229223e-10 3.987942311e-10 6.411477533e-10 9.62074724e-10 8.25085489e-10 7.642415765e-10 6.468666305e-10 5.225195991e-10 6.354595803e-10 7.307167296e-10 9.367915497e-10 6.713995552e-10 8.613816086e-10 6.239703552e-10 6.258857435e-10 1.132302405e-09 9.283211392e-10 6.429362309e-10 6.888995303e-10 6.519601447e-10 7.830939142e-10 5.391251334e-10 4.171383547e-10 6.345947959e-10 4.910310885e-10 3.254898881e-10 5.359432671e-10 5.415021179e-10 4.836783639e-10 4.749442126e-10 4.906245108e-10 1.818916436e-10 3.210674784e-10 6.976185569e-10 5.696477303e-10 2.731707321e-10 6.566094531e-10 6.11152042e-10 2.127958428e-10 2.452498773e-10 5.748171928e-10 2.755700471e-10 3.093032972e-10 5.349381373e-10 3.212005982e-10 3.473433591e-10 2.862800715e-10 9.411149448e-10 1.510251984e-10 2.531783028e-10 6.470347484e-10 6.77492529e-11 3.166309497e-10 1.884941344e-10 5.5147662e-10 3.12901014e-10 4.954960739e-10 +4.690410679e-10 2.309807889e-10 4.827187141e-10 7.457519018e-10 3.863753735e-10 2.228250598e-10 3.665115891e-10 4.066209312e-10 3.379957008e-10 3.982128471e-10 3.776378583e-10 4.978697948e-10 5.011751901e-10 3.099191993e-10 7.57389921e-10 3.364112542e-10 1.786581231e-10 7.634444038e-10 9.00224237e-10 7.764495576e-10 2.243050027e-10 4.16898042e-10 3.965098135e-10 3.295413316e-10 4.575952887e-10 3.011011083e-10 9.304021554e-10 7.144748763e-10 6.434496662e-10 2.081006485e-10 2.167941576e-10 6.9192052e-10 4.327494933e-10 6.045148338e-10 5.975024577e-10 5.144380732e-10 5.690457695e-10 8.823303738e-10 9.545919314e-10 9.214077832e-10 6.23531712e-10 1.10369359e-09 1.15399216e-09 1.223467351e-09 8.252609687e-10 5.836382114e-10 1.550204671e-09 9.800957289e-10 1.198279366e-09 1.048815395e-09 5.596810489e-10 7.5198775e-10 9.118547222e-10 8.00642111e-10 5.110445976e-10 9.881631155e-10 9.365336845e-10 1.065798023e-09 1.037272752e-09 1.429469556e-09 4.833128425e-10 1.144209512e-09 9.685410421e-10 1.029225469e-09 9.291678682e-10 1.090647695e-09 6.015738183e-10 7.556724252e-10 1.446864105e-09 9.31191382e-10 1.296406664e-09 1.220723582e-09 9.410442746e-10 9.127887392e-10 1.041129201e-09 7.807033567e-10 1.242099826e-09 1.025917899e-09 1.057239543e-09 9.312432777e-10 2.294643907e-09 1.72258556e-09 1.941518604e-09 1.438796049e-09 1.36262347e-09 1.350927236e-09 1.443309143e-09 2.163279285e-09 1.077550798e-09 9.227435121e-10 1.271802136e-09 1.237151256e-09 1.036093952e-09 1.202137027e-09 1.434269129e-09 1.002768469e-09 1.393131544e-09 3.587348554e-10 9.122121719e-10 3.237030655e-10 5.079996923e-10 9.899549323e-10 1.028732778e-09 1.513038457e-09 1.956952993e-09 1.671054358e-09 2.842393986e-09 2.137837658e-09 2.477190814e-09 2.245273876e-09 1.220115779e-09 1.844456427e-09 1.31789811e-09 1.50977147e-09 2.554414499e-09 2.454671188e-09 2.433221741e-09 2.475670807e-09 1.804322356e-09 9.002096571e-10 2.667567245e-09 1.802092831e-09 1.003658142e-09 1.532998183e-09 1.467028545e-09 1.10269279e-09 5.451537426e-10 1.411593038e-10 9.327299876e-11 1.82748561e-10 1.658824104e-10 3.23336624e-10 2.849249636e-10 1.250000836e-09 1.703691829e-09 2.315129756e-09 2.172948412e-09 3.58703249e-09 3.633420853e-09 1.993574029e-09 1.990746496e-09 3.313797814e-09 3.453208911e-09 5.548917028e-09 3.527891356e-09 5.432781561e-09 5.720795642e-09 6.698583991e-09 4.634306043e-09 5.224973142e-09 4.579247954e-09 6.119415803e-09 4.621299511e-09 5.239226835e-09 3.981726991e-09 4.230563535e-09 3.915087477e-09 3.025515258e-09 3.229549266e-09 2.103213488e-09 2.685084946e-09 2.721860336e-09 2.877507236e-09 2.03443066e-09 2.68087996e-09 1.92100587e-09 8.102015872e-10 2.344918553e-10 2.216195524e-10 7.762034948e-11 4.155066417e-10 7.043685551e-18 3.383827702e-10 1.288853908e-10 6.201888331e-10 1.49643208e-09 1.286880415e-09 1.60376169e-09 1.145285105e-09 1.520535892e-09 2.494042588e-09 1.637027405e-09 1.932830779e-09 2.146738045e-09 3.505448139e-09 3.443872778e-09 1.817338627e-09 1.290346048e-09 2.073845139e-09 2.169361634e-09 1.837218071e-09 2.460451208e-09 2.344139023e-09 1.800750217e-09 1.839100227e-09 3.382497667e-09 1.387350793e-09 9.061709697e-10 9.162229789e-10 7.466375231e-10 3.985313913e-10 4.525795847e-10 9.170109027e-10 1.002131999e-09 1.064509175e-09 1.366207571e-09 1.883774526e-09 1.282683434e-09 1.894191513e-09 1.091837119e-09 1.694519784e-09 2.239331403e-09 1.813786951e-09 1.556019952e-09 1.525177025e-09 2.03626767e-09 2.287967245e-09 2.166965792e-09 1.561557853e-09 1.482647304e-09 1.20229462e-09 1.818506567e-09 1.483049237e-09 9.326437917e-10 6.794770702e-10 1.104786701e-09 5.258781647e-10 1.212647667e-09 2.068587697e-09 1.728726323e-09 1.01492005e-09 1.445325331e-09 1.212367288e-09 7.220163048e-10 1.433511747e-09 9.207105155e-10 4.645194812e-10 1.011617517e-09 1.087603189e-09 1.108800054e-09 6.093740021e-10 2.489149447e-10 5.501174721e-10 9.051026534e-10 7.179649655e-10 1.347943561e-09 1.046345342e-09 1.022376542e-09 4.729733542e-10 1.060227135e-09 8.246777453e-10 4.726169339e-10 8.693022203e-10 1.290225162e-09 1.129694036e-09 1.078264662e-09 4.474204805e-10 5.039985745e-10 1.013523969e-09 1.039957159e-09 1.094375985e-09 1.226797089e-09 6.646194858e-10 5.136755041e-10 9.318722949e-10 6.215635517e-10 6.953949118e-10 6.445291007e-10 4.409383869e-10 4.387706359e-10 5.585369813e-10 5.116860371e-10 3.268904762e-10 1.690025972e-10 4.920345049e-10 2.916114286e-10 3.612676902e-10 6.878069928e-10 3.874384401e-10 4.101440527e-10 7.344741198e-10 7.749923142e-10 5.153722862e-10 4.8228001e-10 3.351426995e-10 4.496790686e-10 4.353377666e-11 5.649011531e-10 3.477582333e-10 7.3634437e-10 2.307220088e-10 2.736154692e-10 3.221851692e-10 5.615390353e-10 4.843695943e-10 2.986271691e-10 3.890774265e-10 3.832540905e-10 7.237510424e-10 6.133067057e-10 +3.510737765e-10 2.030202995e-10 7.078369058e-10 6.399111816e-10 3.753082444e-10 7.003034971e-10 4.152039589e-10 9.693033429e-11 6.497278061e-10 3.119940451e-10 3.305403441e-10 4.276727955e-10 4.817140298e-10 7.452572151e-10 3.816358798e-10 2.756805074e-10 1.049960665e-10 6.028908911e-10 2.87547687e-10 5.001511814e-10 5.534384488e-10 2.773716238e-10 8.939990514e-10 7.932958101e-10 3.220274967e-10 5.71856266e-10 9.299236328e-10 6.05954531e-10 1.19728477e-10 3.614420678e-10 2.533079208e-10 8.829739574e-10 8.758273617e-10 4.448112508e-10 4.450737601e-10 6.012948877e-10 8.239814431e-10 1.189547831e-09 1.178606757e-09 1.048611535e-09 4.375237747e-10 6.668160887e-10 8.733264276e-10 9.001163942e-10 8.138083025e-10 6.19062835e-10 1.09139055e-09 8.135425458e-10 9.519705332e-10 1.198385079e-09 1.317748839e-09 1.079733932e-09 9.178321192e-10 1.252730761e-09 7.713368688e-10 6.926615369e-10 7.22908541e-10 4.784204145e-10 8.120553317e-10 8.356232628e-10 5.218957055e-10 1.161189784e-09 6.004808807e-10 1.23191454e-09 1.273913715e-09 1.005316096e-09 9.772338538e-10 1.291326599e-09 8.921386416e-10 9.872930436e-10 1.066772741e-09 1.165247643e-09 1.645308808e-09 4.24361033e-10 8.186056662e-10 5.533201528e-10 1.115223426e-09 9.987688051e-10 1.057422432e-09 1.072342288e-09 1.599618365e-09 1.758697613e-09 2.889444239e-09 1.890418468e-09 1.143659335e-09 1.947530035e-09 1.316173046e-09 1.828681208e-09 1.915695267e-09 1.933538781e-09 1.674643223e-09 1.750068955e-09 7.954664468e-10 1.127169787e-09 9.368517675e-10 1.548520376e-09 8.790268128e-10 7.017477156e-10 7.325549904e-10 4.271714915e-10 1.295273014e-09 9.970889277e-10 9.529148117e-10 2.27744285e-09 1.673585227e-09 4.278677752e-09 2.285115967e-09 2.315229546e-09 2.699129424e-09 2.454751662e-09 1.393020091e-09 2.28876393e-09 2.696866544e-09 2.98994919e-09 3.650503456e-09 4.14959261e-09 2.324410195e-09 1.892773216e-09 1.946721182e-09 1.677226888e-09 2.612395071e-09 1.45371707e-09 1.485687833e-09 2.131938331e-09 1.480518328e-09 6.304810039e-10 1.465835518e-10 9.172944212e-11 2.081737984e-10 2.641471448e-10 7.482699524e-11 1.396499973e-10 1.588866854e-09 2.607811967e-09 2.467559151e-09 2.559741128e-09 2.464663049e-09 2.699819696e-09 2.444321726e-09 2.36012904e-09 3.56873195e-09 2.760674053e-09 3.2314386e-09 4.406381297e-09 5.070773829e-09 7.234551962e-09 6.484767802e-09 4.956055298e-09 5.983293124e-09 6.517584577e-09 6.366802803e-09 7.01922451e-09 6.8007203e-09 7.544916831e-09 5.504003827e-09 5.234776513e-09 5.348202067e-09 5.604912558e-09 3.346020914e-09 2.903562306e-09 2.499984248e-09 3.096039914e-09 2.683745202e-09 3.755076426e-09 2.725800061e-09 3.226845444e-09 1.872892779e-09 8.344964412e-10 9.900596327e-11 4.920881607e-10 4.775038986e-13 2.004912008e-10 1.719784285e-13 1.066907422e-10 6.50006798e-10 1.52536156e-09 2.090112987e-09 2.311592468e-09 1.851558836e-09 1.008333567e-09 1.098727259e-09 2.408696706e-09 1.971669538e-09 2.342286466e-09 2.920512047e-09 2.32642856e-09 4.240051981e-09 2.396797807e-09 2.900207007e-09 2.677022166e-09 1.242258763e-09 9.197255464e-10 2.73924444e-09 2.88090458e-09 2.665806189e-09 2.025351448e-09 2.473391451e-09 7.446938148e-10 8.791017264e-10 4.671287099e-10 4.858894525e-10 6.874919488e-10 1.372457567e-09 1.565833044e-09 1.850700693e-09 1.653969204e-09 1.32030677e-09 1.085890523e-09 1.930659369e-09 8.421540993e-10 1.122657387e-09 1.526475272e-09 1.550273505e-09 1.455588368e-09 1.53307968e-09 2.009881287e-09 2.192530988e-09 1.888093663e-09 1.126202445e-09 1.180550546e-09 6.091811142e-10 1.251007669e-09 9.965334395e-10 9.003246416e-10 1.264146963e-09 5.69058931e-10 1.188439179e-09 7.89601505e-10 7.721064678e-10 8.022948181e-10 1.328459003e-09 1.374268531e-09 7.10813537e-10 1.076353172e-09 5.538775399e-10 9.861474173e-10 9.437646245e-10 9.402762446e-10 1.295295087e-09 1.018136708e-09 7.98653738e-10 9.412360737e-10 6.217239004e-10 1.04547426e-09 1.545745939e-09 7.160153447e-10 5.651518988e-10 1.07787373e-09 1.14953174e-09 1.332398499e-09 9.80904587e-10 7.029611942e-10 6.362106419e-10 1.369212958e-09 1.194767627e-09 7.231972614e-10 5.454635954e-10 1.124391275e-09 1.542013877e-09 1.111189776e-09 6.514301875e-10 1.40924372e-09 1.246931297e-09 7.281554058e-10 7.934902776e-10 4.295045798e-10 9.948444503e-10 3.336673706e-10 7.171318525e-10 2.880609219e-10 4.805478336e-10 9.499037617e-10 2.207055589e-10 4.704538653e-10 6.675658352e-10 2.398793986e-10 3.606675454e-10 6.92082787e-10 6.075609114e-10 4.88023812e-10 6.35270614e-10 2.215836418e-10 4.568142789e-10 7.203848568e-10 7.253421126e-10 3.750139842e-10 3.641298989e-10 3.700858305e-10 2.210386434e-10 7.286520232e-10 2.067369629e-10 3.23280724e-10 8.264616796e-10 1.758275159e-10 3.501353894e-10 3.717045368e-10 6.237355361e-10 5.293648389e-10 9.390424907e-11 2.169585453e-10 +2.807634903e-10 1.671325138e-10 4.551396376e-10 1.494784618e-10 1.098878487e-09 2.506843667e-10 3.634289003e-10 6.103501669e-10 3.455900578e-10 4.590059035e-10 3.407430965e-10 3.628799587e-10 1.163136543e-09 2.543902681e-10 7.297444207e-10 4.114962283e-10 7.300953748e-10 2.791817794e-10 3.727581389e-10 5.475412352e-10 5.09151117e-10 6.837777007e-10 4.421697849e-10 2.038502604e-10 6.561568098e-10 2.190899839e-10 7.288082643e-10 2.363445766e-10 4.07652274e-10 7.246977724e-10 1.485639236e-10 2.81366661e-10 3.516116552e-10 4.922549673e-10 1.006541338e-09 7.775671491e-10 8.863857964e-10 7.719843595e-10 1.186979061e-09 5.85611824e-10 1.275232345e-09 1.42306352e-09 6.676199953e-10 1.382499067e-09 4.818466567e-10 7.378562747e-10 1.268043824e-09 8.68123827e-10 8.815983241e-10 9.798571599e-10 1.302528986e-09 7.952851971e-10 1.636751017e-09 1.31083761e-09 1.519203569e-09 1.288343151e-09 4.468958641e-10 9.885969492e-10 8.216353686e-10 1.287524291e-09 4.247773406e-10 1.536360155e-09 1.173308595e-09 8.880258002e-10 9.047357246e-10 1.142012855e-09 6.286969604e-10 1.851651096e-09 1.478468344e-09 1.719699305e-09 9.529939668e-10 5.267698087e-10 1.25489051e-09 1.267094257e-09 9.749020486e-10 1.142289097e-09 1.004822805e-09 9.707818319e-10 1.331672739e-09 7.547098567e-10 1.47897229e-09 1.758682205e-09 1.305420601e-09 1.234683967e-09 2.137481722e-09 1.041176059e-09 1.319877386e-09 2.465755819e-09 1.482404822e-09 1.886683494e-09 1.182427042e-09 1.309577176e-09 1.377704668e-09 1.673128417e-09 1.446420129e-09 1.376635546e-09 7.446257846e-10 6.121641909e-10 6.583522098e-10 7.068666664e-10 1.043214282e-09 1.139549044e-09 1.148244417e-09 1.917613373e-09 2.613660679e-09 1.971774755e-09 2.629466737e-09 2.017849918e-09 2.127009507e-09 2.027984206e-09 2.199844479e-09 1.526416819e-09 3.278136171e-09 2.330200697e-09 2.687822959e-09 2.638783247e-09 1.114312696e-09 1.186809346e-09 1.756170102e-09 2.537804643e-09 2.01443772e-09 2.339808535e-09 1.52280215e-09 8.533286021e-10 1.07885009e-09 3.037084849e-10 7.288659449e-11 1.938494118e-10 8.525529898e-11 3.462482145e-10 4.67736364e-10 7.277604442e-10 1.203638901e-09 2.276438013e-09 2.536016543e-09 2.560448311e-09 2.770250922e-09 2.426326381e-09 1.850938814e-09 3.007946766e-09 3.519144556e-09 4.093258516e-09 5.725489721e-09 5.774201734e-09 6.260090755e-09 7.460178441e-09 5.828294813e-09 7.077669351e-09 8.638258068e-09 6.317363414e-09 6.068922809e-09 6.916347324e-09 7.291878119e-09 5.442029822e-09 6.543530144e-09 8.000285421e-09 4.839574794e-09 3.924079629e-09 4.935992965e-09 3.029973274e-09 3.513300474e-09 2.894775143e-09 3.674801264e-09 2.830652352e-09 2.702201498e-09 3.287482105e-09 1.389405534e-09 2.055774061e-09 5.839261051e-10 2.296455106e-10 1.857442927e-10 2.926791742e-13 8.347738143e-11 1.09786934e-10 1.215964785e-10 7.064384446e-10 1.186852388e-09 2.325807003e-09 1.629646247e-09 1.057715061e-09 2.013079877e-09 2.373389406e-09 1.58415874e-09 2.26665688e-09 2.352728875e-09 3.557374754e-09 3.327303189e-09 1.524155307e-09 1.040135486e-09 1.774571121e-09 2.911845903e-09 4.269196668e-09 4.18652859e-09 1.146081694e-09 2.722039107e-09 2.787563892e-09 1.614484756e-09 5.169730204e-10 1.208734784e-09 5.026370555e-10 5.393860073e-10 6.179767847e-10 1.120236941e-09 1.187107215e-09 8.547009254e-10 1.765239096e-09 1.395402834e-09 1.433573399e-09 9.258692627e-10 8.218676025e-10 1.409966595e-09 9.265604621e-10 1.458903127e-09 1.312858309e-09 1.658726204e-09 1.737610709e-09 1.564364131e-09 1.931488298e-09 1.858690458e-09 1.132532331e-09 1.011534478e-09 9.385802173e-10 5.942748347e-10 1.161106112e-09 9.852957211e-10 7.521400627e-10 7.503985682e-10 1.686424729e-09 7.329266816e-10 1.278993092e-09 1.288689265e-09 1.658214405e-09 9.926349728e-10 4.877745574e-10 1.368264322e-09 7.557995495e-10 5.861916983e-10 9.84933002e-10 7.614618486e-10 1.070572981e-09 9.162888783e-10 7.11158595e-10 6.563186073e-10 1.209497662e-09 9.429722769e-10 8.15764014e-10 1.14717481e-09 8.488186454e-10 9.80272805e-10 8.756878221e-10 1.294811127e-09 1.002815574e-09 9.186647777e-10 6.685122559e-10 2.897876392e-10 7.75002329e-10 6.267609824e-10 7.764732709e-10 1.420166176e-09 9.777370096e-10 6.208768117e-10 9.349608417e-10 8.958465631e-10 6.629658081e-10 5.599670649e-10 6.875720694e-10 4.345406206e-10 4.714956936e-10 5.038147581e-10 3.773906098e-10 8.511353061e-10 6.380419193e-10 5.749396867e-10 8.872604509e-10 4.139345676e-10 7.887024028e-10 2.942090964e-10 1.910644553e-10 3.68907357e-10 5.320754272e-10 3.201045429e-10 5.197793582e-10 9.749258228e-10 6.959022368e-10 7.203151124e-10 5.930673641e-10 2.849613983e-10 4.682771457e-10 4.577385112e-10 3.849193947e-10 6.664080794e-10 3.36198851e-10 7.379040136e-10 5.655612475e-10 1.697531668e-10 8.240668714e-10 2.396740844e-10 3.169504999e-10 7.511177422e-10 2.933518085e-10 +3.932074448e-10 3.990126229e-10 2.28869968e-10 4.083146681e-10 3.493330969e-10 4.850503932e-10 2.040775482e-10 2.124718441e-10 1.782760948e-10 3.483558876e-10 4.835916108e-10 5.289888574e-10 3.471437158e-10 5.201779212e-10 4.285689677e-10 3.292697826e-10 8.395298977e-10 6.51103437e-10 5.844999874e-10 3.178358498e-10 5.314564728e-10 5.039492041e-10 8.861156964e-10 4.462800334e-10 3.461998179e-10 4.129878885e-10 5.673869676e-10 4.190354471e-10 4.019954445e-10 4.796636826e-10 4.407185365e-10 3.302863412e-10 1.589475845e-09 2.372559996e-10 4.118762439e-10 9.55696631e-10 7.518984912e-10 8.133630502e-10 8.530517952e-10 1.323063363e-09 1.561634782e-09 1.035064411e-09 6.839880893e-10 1.040747846e-09 9.224968621e-10 1.371685096e-09 1.101698753e-09 7.702135416e-10 5.917367057e-10 8.706026303e-10 1.012425544e-09 1.854280504e-09 1.11048445e-09 1.064996712e-09 7.763558298e-10 1.263936733e-09 5.33964831e-10 1.579918798e-09 7.470692524e-10 9.020010263e-10 5.969541144e-10 7.705188397e-10 6.342475427e-10 1.099325255e-09 1.015751171e-09 9.772087204e-10 6.788185182e-10 9.191513292e-10 1.181680379e-09 1.205801362e-09 1.564820567e-09 9.886642813e-10 4.086991806e-10 1.741948636e-09 1.435985124e-09 1.311226153e-09 4.490028394e-10 5.381760137e-10 9.022915523e-10 1.868342241e-09 2.014562115e-09 1.500631537e-09 2.724699183e-09 2.188894752e-09 1.647242484e-09 8.041427907e-10 1.550985428e-09 1.864011617e-09 8.541484104e-10 1.257929816e-09 1.036490439e-09 2.093840705e-09 7.207405093e-10 1.3936059e-09 1.170545588e-09 9.093248122e-10 1.614082587e-09 1.086827746e-09 6.953898712e-10 5.783431319e-10 8.172439655e-10 9.417860208e-10 1.305433015e-09 1.675577551e-09 1.884085373e-09 2.698855371e-09 3.597593903e-09 2.784186708e-09 3.577448527e-09 1.902609505e-09 1.554372414e-09 3.191519777e-09 1.855936152e-09 2.563512031e-09 3.537348027e-09 1.744870376e-09 1.053743864e-09 1.938372123e-09 1.645473321e-09 9.294254148e-10 1.430898666e-09 1.35778583e-09 2.096911646e-09 1.145751586e-09 7.975113784e-10 5.910294076e-11 1.399242523e-10 1.28693482e-10 6.280858967e-11 2.08079851e-10 3.703774023e-10 9.67350122e-10 1.158930526e-09 2.566449705e-09 3.164806516e-09 3.333453233e-09 2.949703232e-09 2.846350605e-09 3.076602768e-09 4.859711516e-09 3.64726449e-09 4.948714715e-09 7.055674423e-09 6.134724928e-09 6.995099243e-09 5.832549703e-09 7.618320657e-09 7.363425806e-09 7.729124115e-09 6.953333721e-09 6.291587239e-09 7.956112605e-09 5.200404791e-09 5.406860546e-09 5.968155033e-09 7.517043643e-09 7.187800944e-09 6.958990529e-09 5.658679231e-09 4.935649691e-09 5.343068922e-09 4.348014802e-09 3.111879193e-09 2.714721808e-09 3.054379081e-09 3.214998389e-09 2.199025931e-09 2.657584992e-09 1.923139237e-09 4.231803768e-10 1.527838457e-10 3.218194052e-10 6.272854123e-11 1.72733353e-10 2.431296076e-10 9.255891717e-10 7.612989513e-10 1.721375262e-09 1.61541248e-09 2.057708805e-09 2.637343353e-09 1.229093724e-09 2.402246148e-09 1.693249809e-09 3.727019675e-09 3.70503518e-09 2.574720686e-09 1.950811143e-09 2.934746068e-09 2.177340999e-09 2.58538237e-09 3.193552359e-09 2.045668479e-09 3.118979613e-09 2.708567442e-09 1.922472854e-09 2.242388742e-09 9.420401347e-10 1.03453304e-09 7.493624824e-10 4.487502008e-10 3.714366296e-10 1.046261861e-09 9.910858427e-10 1.155965909e-09 1.318238583e-09 1.395200934e-09 1.754659375e-09 1.839160225e-09 2.156916166e-09 1.534076554e-09 1.214947623e-09 1.696003922e-09 2.202769723e-09 1.077441372e-09 1.342103767e-09 2.007584167e-09 2.138462575e-09 1.216602278e-09 2.392544371e-09 2.145675254e-09 7.143597831e-10 9.837330291e-10 1.126878142e-09 1.210008161e-09 5.408402414e-10 1.23111302e-09 8.734380795e-10 1.430539205e-09 1.135309397e-09 1.201341469e-09 1.20310365e-09 8.681360699e-10 7.259634178e-10 1.073859497e-09 9.034039685e-10 1.303748946e-09 7.167858114e-10 9.34090937e-10 6.487820038e-10 1.068417887e-09 6.541362566e-10 1.067357074e-09 6.035971917e-10 5.018519175e-10 1.08371512e-09 1.311161412e-09 5.63121705e-10 8.348482667e-10 9.699810351e-10 4.92642377e-10 7.009921192e-10 8.380373078e-10 7.731969078e-10 1.196571565e-09 6.151704684e-10 9.080389362e-10 7.937537262e-10 9.222938417e-10 8.810374658e-10 1.24586125e-09 1.036164717e-09 8.697639208e-10 1.006202365e-09 2.63053239e-10 4.715105432e-10 4.271995394e-10 2.749401046e-10 4.122227123e-10 7.850017841e-10 5.979352845e-11 6.365556529e-10 7.821805931e-10 2.139389413e-10 3.946180966e-10 2.888614866e-10 5.163201525e-10 6.097463048e-10 3.5957987e-10 2.839762698e-10 9.904945156e-10 6.290778396e-10 4.568241722e-10 4.99820744e-10 8.787840532e-10 5.227610283e-10 5.052933963e-10 2.806611313e-10 5.399990596e-10 5.684657287e-10 3.604948191e-10 3.544464424e-10 5.018142031e-10 7.885214654e-10 4.408339264e-10 7.060240252e-10 5.226441561e-10 6.339718898e-10 5.801983489e-10 7.782556362e-10 +3.291283144e-10 4.236069457e-10 5.147428594e-10 5.875710687e-10 9.879745594e-10 5.549371639e-10 2.151845407e-10 5.888145399e-10 3.801671596e-10 3.53956993e-10 9.14185103e-10 3.785690239e-10 2.155583368e-10 1.080728353e-09 3.535262118e-10 6.200244922e-10 3.449129325e-10 7.162936518e-10 3.449047525e-10 7.063080972e-10 7.154986035e-10 2.553472836e-10 6.030155749e-10 1.485593663e-10 5.350284399e-10 3.235497987e-10 5.025517983e-10 6.62985553e-10 3.030231043e-10 8.214593354e-10 4.699527031e-10 5.047031961e-10 5.039828228e-10 4.093821762e-10 7.844101969e-10 7.087802928e-10 1.017069669e-09 3.424907399e-10 1.357270006e-09 9.543041687e-10 5.260035615e-10 1.035716995e-09 1.204049831e-09 1.059982244e-09 1.043018078e-09 1.187360346e-09 1.532483615e-09 1.20337265e-09 1.410741776e-09 9.340232435e-10 1.115661915e-09 8.973965305e-10 1.189203975e-09 1.274346255e-09 1.022718531e-09 1.443667562e-09 9.892164413e-10 9.904725757e-10 1.030971164e-09 9.641839482e-10 7.533434077e-10 9.498013757e-10 1.231572889e-09 9.73723361e-10 1.130160493e-09 6.519100574e-10 9.266924101e-10 1.178556157e-09 4.392019954e-10 1.548597461e-09 1.257317037e-09 1.082627356e-09 7.768609748e-10 8.360068613e-10 7.612420533e-10 1.459610144e-09 9.017339589e-10 8.689265898e-10 1.001656628e-09 2.163056535e-09 1.761968648e-09 1.933796968e-09 2.499228802e-09 1.841141033e-09 1.146201409e-09 2.14780099e-09 1.779053059e-09 2.382525028e-09 1.458216859e-09 1.703972893e-09 1.674943171e-09 1.18982116e-09 1.953082729e-09 1.303382545e-09 1.162699021e-09 1.426276641e-09 1.255808759e-09 9.23305534e-10 3.483679416e-10 1.237145362e-10 7.295826338e-10 5.94008837e-10 1.242715095e-09 2.400360299e-09 2.269025378e-09 1.841998316e-09 2.311765915e-09 2.347494816e-09 2.455393963e-09 3.079699978e-09 2.341327154e-09 2.957583657e-09 2.512970046e-09 3.253535072e-09 2.956663897e-09 3.242621785e-09 1.995055507e-09 1.174929081e-09 1.557388538e-09 1.935041739e-09 1.282920384e-09 1.886659091e-09 8.761644491e-10 1.147237021e-09 3.139665125e-10 1.757985657e-10 9.104113891e-11 1.769068666e-10 2.126665647e-10 2.866379057e-10 7.441552793e-10 1.421004859e-09 1.382650299e-09 2.234926562e-09 3.251722028e-09 2.040405764e-09 2.791337049e-09 4.526518526e-09 4.035405269e-09 6.016835881e-09 6.172718129e-09 8.893548494e-09 6.862603387e-09 5.633635617e-09 7.151933935e-09 7.121260283e-09 6.349831978e-09 7.323819888e-09 7.218396846e-09 4.15908354e-09 7.651680394e-09 7.061910496e-09 7.65524343e-09 6.506190084e-09 4.968446446e-09 5.354942648e-09 6.017500767e-09 7.212259264e-09 7.334781349e-09 6.721560175e-09 5.952204474e-09 3.77986152e-09 3.578994716e-09 2.318987554e-09 3.306569399e-09 2.784093198e-09 3.655441167e-09 2.614507029e-09 1.61924725e-09 9.949533043e-10 1.557496856e-10 1.317498173e-10 1.350942473e-10 3.126995723e-10 1.272442027e-10 2.893755714e-10 6.825070507e-10 7.628277265e-10 1.338900358e-09 2.163886433e-09 1.135113541e-09 1.637775459e-09 2.144997647e-09 2.223254297e-09 1.866764572e-09 3.376346948e-09 2.178479711e-09 2.780002236e-09 2.316155911e-09 1.489113508e-09 2.870546436e-09 1.998023787e-09 2.546079756e-09 3.20330116e-09 3.046820709e-09 2.271382492e-09 2.694282335e-09 1.061772905e-09 1.277003787e-09 7.501594055e-10 3.991403907e-10 5.52476128e-10 7.827800756e-10 1.331851515e-09 1.648990469e-09 1.531477572e-09 1.503801811e-09 1.304745598e-09 1.892084407e-09 1.028569808e-09 1.286206788e-09 8.099496322e-10 2.177269461e-09 1.553679713e-09 2.170762799e-09 1.6925666e-09 2.256396455e-09 2.344747508e-09 1.780710005e-09 1.382387116e-09 1.031865979e-09 1.042650424e-09 1.745065782e-09 1.461663753e-09 5.189575173e-10 1.717984191e-09 9.147701218e-10 8.879709262e-10 4.052224005e-10 1.228519438e-09 1.83444982e-09 1.204776547e-09 5.879662387e-10 8.272949634e-10 1.39280861e-09 1.303061798e-09 1.847258441e-09 1.437227285e-09 1.016299019e-09 9.420385677e-10 8.204740034e-10 3.926266543e-10 3.05336026e-10 5.429918235e-10 1.058111649e-09 6.916626448e-10 9.253421988e-10 9.18971638e-10 1.218219928e-09 5.993118018e-10 1.165565871e-09 1.150910113e-09 1.068432964e-09 1.044270272e-09 1.160969331e-09 8.079016978e-10 1.238832934e-09 1.512009265e-09 1.133966152e-09 1.099164091e-09 1.077834992e-09 7.541898283e-10 1.001643071e-09 1.152596237e-09 4.978134832e-10 6.30050621e-10 3.358954688e-10 7.583933553e-10 1.89532453e-10 3.439463542e-10 6.923315811e-10 5.217432637e-10 7.525657509e-10 7.972462852e-10 8.862029822e-10 5.521425307e-10 2.286168175e-10 2.087326649e-10 4.232255086e-10 3.944179136e-10 3.624149262e-10 4.611152534e-10 3.839673714e-10 4.905160157e-10 4.212820448e-10 7.016841994e-10 3.915313453e-10 7.766699415e-11 2.925984803e-10 4.946604682e-10 2.504059187e-10 2.236246081e-10 1.722007239e-10 3.424371062e-10 5.46908744e-10 5.30195775e-10 1.30289836e-10 5.859825974e-10 3.773334376e-10 3.924560095e-10 +5.561535619e-10 2.416041361e-10 1.784936905e-10 4.489426003e-10 5.679062136e-10 3.5075853e-10 2.930338704e-10 6.946688402e-10 2.647945018e-10 7.026137583e-10 7.869936008e-10 1.168877995e-10 3.23717761e-10 7.657084584e-10 3.59141861e-10 1.288914843e-09 8.824277037e-10 3.920203545e-10 5.387767494e-10 4.563867898e-10 4.814436783e-10 3.077071698e-10 3.864729188e-10 5.920969198e-10 1.953152295e-10 7.037288491e-10 3.926496152e-10 2.271689068e-10 5.546832528e-10 7.874053132e-10 6.203686504e-10 4.764294803e-10 4.515438118e-10 4.734248073e-10 6.03866005e-10 6.986595884e-10 1.270850913e-09 6.309185074e-10 6.731925075e-10 1.226467566e-09 5.978506644e-10 1.743505315e-09 7.676755959e-10 7.537887675e-10 1.141590692e-09 8.746557745e-10 7.446010951e-10 1.370193381e-09 8.745960757e-10 7.979098976e-10 1.241291255e-09 6.872951299e-10 9.917349393e-10 1.203978427e-09 1.14811927e-09 9.28868373e-10 9.869470694e-10 7.503716102e-10 8.524119702e-10 8.578140332e-10 9.110362734e-10 9.045037387e-10 1.52596829e-09 6.678991802e-10 8.436274842e-10 1.103998984e-09 1.680332699e-09 7.608885507e-10 6.675650314e-10 1.154229286e-09 1.24668465e-09 1.30563728e-09 9.91869825e-10 3.427218546e-10 1.038599307e-09 1.020222141e-09 9.450771611e-10 5.889800262e-10 8.458276428e-10 1.444353799e-09 1.647273445e-09 2.092589016e-09 1.621955652e-09 2.222229152e-09 1.75284381e-09 1.705276683e-09 1.032412432e-09 1.540593724e-09 1.64008838e-09 2.011972441e-09 1.540999115e-09 2.192764446e-09 1.47818142e-09 1.423219542e-09 1.477454447e-09 1.555140511e-09 7.80904799e-10 9.636859772e-10 5.033743078e-10 4.800849926e-10 9.427761165e-10 8.613006407e-10 1.703504158e-09 2.863647405e-09 2.418467659e-09 2.062435507e-09 3.282333366e-09 1.759368119e-09 1.904062269e-09 1.790024584e-09 2.794174197e-09 2.412008089e-09 3.891726798e-09 2.911066769e-09 3.711892045e-09 3.226151474e-09 1.260087826e-09 1.745624424e-09 2.10440747e-09 2.104952275e-09 1.353833068e-09 1.102652071e-09 1.210160864e-09 8.418202186e-10 4.174264025e-10 1.241078048e-10 1.505768616e-10 3.14913874e-13 2.963718221e-10 3.589863099e-10 2.05606398e-09 1.913170732e-09 3.257534536e-09 3.594311225e-09 3.170676996e-09 1.976621199e-09 4.206434691e-09 3.931100422e-09 6.884296199e-09 9.350330602e-09 6.290754298e-09 7.01703661e-09 5.297321001e-09 7.646257721e-09 8.115725787e-09 4.922186811e-09 5.101641506e-09 6.032430286e-09 4.583186957e-09 5.547930064e-09 3.867594607e-09 4.380818546e-09 4.8894295e-09 4.559211641e-09 4.863800111e-09 5.751795913e-09 7.518480914e-09 6.441271294e-09 5.928678526e-09 7.1249124e-09 8.069729731e-09 5.42244747e-09 4.028902328e-09 3.155165608e-09 3.091037762e-09 3.110107452e-09 2.955543637e-09 3.246294927e-09 2.182857259e-09 1.541318074e-09 6.073050339e-10 2.170140229e-10 1.235185563e-10 9.188857728e-11 3.232088806e-10 2.901040071e-10 7.357056857e-10 1.620275954e-09 2.288302506e-09 1.500704102e-09 1.77143079e-09 1.988708799e-09 2.350118802e-09 1.465297636e-09 2.249272827e-09 4.430870713e-09 2.434331664e-09 2.31936607e-09 2.336834965e-09 3.36376632e-09 2.823409442e-09 2.51230243e-09 3.77756809e-09 1.770270738e-09 2.634845942e-09 2.874747872e-09 3.009069461e-09 1.748197406e-09 6.345838471e-10 7.760881967e-10 3.857205262e-10 2.978179664e-10 9.780232939e-10 7.017811955e-10 1.849416122e-09 1.750606467e-09 1.641987059e-09 1.5851568e-09 1.489414622e-09 1.870644306e-09 1.756971309e-09 1.221100214e-09 1.410875516e-09 1.166080571e-09 1.594389459e-09 1.733058717e-09 1.892989227e-09 3.351478778e-09 1.575738472e-09 1.42064141e-09 1.899694278e-09 1.399852793e-09 6.829895e-10 1.0418668e-09 7.026230863e-10 1.198435502e-09 8.61509193e-10 8.521008055e-10 1.432618539e-09 9.388720251e-10 1.316391807e-09 1.150238229e-09 1.283938734e-09 1.106570872e-09 7.912817743e-10 8.822036225e-10 1.128269145e-09 1.523149964e-09 6.42811453e-10 1.113135035e-09 6.614405784e-10 1.260492216e-09 1.196287574e-09 4.922396395e-10 9.639106474e-10 1.543437039e-09 1.441848995e-09 7.325364407e-10 1.302149958e-09 1.468970014e-09 9.912404904e-10 1.046192603e-09 7.152252485e-10 7.03615146e-10 5.57558458e-10 9.422264044e-10 1.022114531e-09 1.144534421e-09 5.90673302e-10 6.825436457e-10 8.409778065e-10 9.085036522e-10 1.263639704e-09 6.512476169e-10 7.865819292e-10 4.746486095e-10 6.39483272e-10 5.982600519e-10 1.64827493e-10 7.177503047e-10 7.731733776e-10 4.07788456e-10 6.438042598e-10 7.865512086e-10 4.52285507e-10 4.285005545e-10 2.192337089e-10 3.592764898e-10 4.8831372e-10 8.703975375e-10 8.372801916e-10 4.386430144e-10 2.733698759e-10 5.257198291e-10 3.46974562e-10 7.350976442e-10 6.444067765e-10 8.018698373e-10 3.945069121e-10 6.554510929e-10 3.873433974e-10 3.565560809e-10 3.948073456e-10 5.41348181e-10 5.225679228e-10 2.811807912e-10 7.523675404e-10 1.669442157e-10 4.686779029e-10 1.996860245e-10 +3.53085704e-10 6.995615715e-10 4.523500528e-10 4.684740324e-10 6.045313434e-10 6.671009549e-10 3.027359793e-10 4.361147733e-10 4.271523246e-10 1.426900361e-10 7.741351089e-10 3.204001725e-10 2.061284515e-10 4.477102709e-10 2.760982743e-10 1.081535374e-09 2.567801659e-10 1.077831899e-10 2.693252184e-10 1.160453594e-09 4.710192207e-10 8.622229593e-10 3.49910453e-10 1.102652427e-09 4.539689815e-10 3.001750572e-10 7.005102449e-10 2.013758495e-10 3.202642164e-10 6.359810761e-10 3.629284177e-10 6.516739224e-10 3.127680013e-10 7.713252838e-10 9.794412097e-10 5.278881964e-10 5.925972975e-10 1.404913305e-09 1.084902208e-09 1.23010944e-09 1.218803834e-09 1.223117364e-09 1.139091883e-09 7.244916968e-10 1.163371251e-09 7.798239376e-10 1.17662116e-09 1.342531608e-09 7.853261459e-10 1.05516288e-09 5.666163459e-10 1.007172446e-09 8.466179416e-10 1.176174628e-09 9.27652288e-10 9.573036172e-10 7.661966025e-10 9.441313241e-10 4.087441749e-10 9.669480669e-10 1.047029794e-09 7.371679733e-10 1.879170078e-09 1.10170032e-09 1.661565379e-09 1.07037791e-09 1.15428525e-09 1.179216341e-09 1.125993472e-09 1.357904123e-09 8.456117655e-10 1.352163144e-09 1.140106141e-09 1.56730334e-09 9.507672589e-10 8.418726504e-10 8.116985579e-10 5.630699603e-10 1.247480231e-09 1.20994862e-09 1.593731601e-09 2.484879731e-09 1.840943662e-09 2.180134665e-09 1.933412695e-09 1.729199905e-09 1.722192761e-09 1.753488839e-09 1.34785625e-09 1.141582699e-09 1.143857835e-09 1.401607839e-09 1.496013126e-09 1.921702586e-09 1.497116845e-09 1.286640719e-09 1.143514056e-09 9.090824703e-10 6.109468809e-10 2.697808209e-10 1.032072782e-09 1.25912106e-09 1.97533854e-09 3.365465142e-09 1.665441386e-09 1.758898949e-09 1.776176767e-09 3.334616322e-09 1.261154697e-09 2.46888639e-09 1.503595453e-09 3.284164519e-09 2.404491055e-09 3.440005677e-09 2.575571509e-09 2.225060564e-09 1.980545303e-09 1.291113706e-09 2.182268234e-09 1.168598547e-09 1.080017217e-09 1.634170526e-09 8.275343834e-10 4.274026168e-10 1.840151e-10 8.978528306e-21 1.122263946e-11 8.315548227e-19 4.651205688e-10 7.205929688e-10 2.153624066e-09 2.670661454e-09 3.584038001e-09 2.741151599e-09 2.317549869e-09 2.948482479e-09 4.660491721e-09 6.543772164e-09 6.111228518e-09 7.165123869e-09 7.031270815e-09 6.796679105e-09 7.008696839e-09 4.859857729e-09 5.041257393e-09 5.909888686e-09 6.726597021e-09 5.07464068e-09 4.556818843e-09 6.379537795e-09 4.965540196e-09 4.810653877e-09 5.395680839e-09 6.133120553e-09 4.455916857e-09 6.925467427e-09 5.945792841e-09 5.426809701e-09 5.206093445e-09 8.044157346e-09 6.245493111e-09 8.250526505e-09 7.379405178e-09 4.715938104e-09 2.223175793e-09 2.684378262e-09 3.628642906e-09 3.641636852e-09 3.219913746e-09 1.856020851e-09 8.590101646e-10 4.625807989e-10 5.685070993e-10 2.963173055e-10 2.978140862e-10 7.22845453e-11 8.782079106e-10 1.397622897e-09 1.920420413e-09 2.022580323e-09 1.720695965e-09 1.406853389e-09 2.09788792e-09 1.982220573e-09 1.368709443e-09 2.737160674e-09 2.701758704e-09 2.184555458e-09 2.244150366e-09 2.60057477e-09 1.571134458e-09 2.322902553e-09 1.939180832e-09 2.157447377e-09 1.388078598e-09 4.025942721e-09 1.768010504e-09 8.804810198e-10 6.453632072e-10 1.128524713e-09 4.095490101e-10 3.478150668e-10 4.942876413e-10 7.99651979e-10 9.165987886e-10 1.28492058e-09 1.596587087e-09 9.721474889e-10 1.960651196e-09 9.483216062e-10 1.434219506e-09 1.867426998e-09 1.600592283e-09 2.22416758e-09 1.562397191e-09 1.662341293e-09 2.620052466e-09 2.250911005e-09 1.283492467e-09 2.095260311e-09 9.149454943e-10 6.423793793e-10 1.347557034e-09 7.343073454e-10 6.691883834e-10 1.3162949e-09 1.123761913e-09 8.254030791e-10 8.967033834e-10 9.815108505e-10 1.113232479e-09 5.6360801e-10 1.262831719e-09 1.513641556e-09 1.495020123e-09 9.69454136e-10 6.854163212e-10 9.985141467e-10 8.417191447e-10 6.736347931e-10 6.972413196e-10 9.122569795e-10 1.140062978e-09 8.505445516e-10 9.501812788e-10 1.579097824e-09 9.846930538e-10 6.951586756e-10 7.744344539e-10 1.044457702e-09 9.757975735e-10 8.958790412e-10 8.727301758e-10 9.80643252e-10 1.070448019e-09 1.157381842e-09 1.051617049e-09 9.823603265e-10 1.454554873e-09 8.00365535e-10 1.033315734e-09 9.656560731e-10 1.305531432e-09 6.314242707e-10 2.28593001e-10 4.889799762e-10 5.391098228e-10 4.630185635e-10 6.853339302e-10 6.388308207e-10 3.379965387e-10 3.547427212e-10 7.360352424e-10 3.283987407e-10 1.530679299e-10 7.501191732e-10 9.518427575e-10 1.053309442e-09 5.066970818e-10 3.613071341e-10 3.17631896e-10 3.819711191e-10 3.395974891e-10 3.185326593e-10 7.233989062e-10 5.553639736e-10 6.272845464e-10 1.600778905e-10 2.254583454e-10 4.677000539e-10 2.427193602e-10 3.167512731e-10 6.039310084e-10 1.505161123e-10 6.144744729e-10 2.741696837e-10 2.59709941e-10 7.791997953e-10 4.058570381e-10 1.754480088e-10 +6.790599133e-11 3.662073538e-10 7.815126082e-10 3.45705708e-10 1.619223213e-10 6.630284328e-10 4.792109854e-10 4.930808052e-10 5.104582884e-10 1.559068526e-10 2.751006484e-10 6.62622254e-10 1.237160152e-10 4.015384339e-10 3.755055385e-10 4.834631334e-10 3.363715502e-10 3.871227011e-10 5.360185715e-10 2.969994874e-10 4.389471072e-10 4.804513608e-10 7.367696486e-10 8.511254198e-10 4.522450378e-10 6.401900338e-10 5.71340714e-10 8.486314955e-10 1.562167285e-10 3.306860062e-10 3.612228165e-10 5.478598285e-10 6.00723903e-10 3.575685702e-10 9.072583038e-10 8.018896784e-10 6.217274169e-10 3.396563696e-10 9.101971444e-10 2.986440793e-10 6.664451519e-10 1.14112723e-09 9.45987738e-10 1.139019802e-09 7.965431004e-10 1.225775966e-09 8.649249294e-10 8.047091815e-10 1.166415877e-09 8.146134035e-10 1.48074667e-09 1.044694178e-09 9.816674408e-10 1.140722498e-09 1.322943918e-09 1.192295054e-09 1.100243043e-09 5.743171944e-10 5.927174489e-10 4.233369747e-10 1.327103509e-09 8.668696987e-10 1.082661969e-09 9.349526934e-10 1.435258887e-09 8.795970799e-10 1.111931072e-09 9.152841627e-10 1.568956026e-09 1.316188676e-09 1.234300173e-09 9.906234759e-10 1.156718198e-09 4.919765744e-10 1.481990227e-09 8.204058321e-10 6.299396134e-10 1.101375285e-09 1.110635426e-09 1.576865708e-09 1.011964443e-09 2.323229138e-09 2.32846641e-09 1.721448546e-09 2.080082858e-09 2.430627888e-09 1.443064376e-09 1.51350859e-09 2.169435859e-09 1.610562691e-09 1.835184039e-09 1.483122232e-09 1.098495793e-09 1.002588994e-09 1.654904269e-09 1.314628052e-09 6.888026853e-10 4.368713608e-10 1.031349147e-09 7.117182389e-10 7.8464943e-10 7.886393259e-10 2.640193909e-09 2.948260384e-09 4.17812727e-09 4.024414997e-09 2.472225377e-09 3.305471931e-09 1.962351055e-09 1.735963518e-09 3.595635777e-09 2.379761928e-09 2.955056978e-09 3.063417608e-09 1.570596417e-09 2.422930178e-09 2.480236809e-09 1.643437155e-09 1.749546386e-09 1.866119809e-09 1.682563549e-09 1.535088089e-09 6.786879238e-10 2.629280504e-10 3.554342081e-11 8.93945593e-11 2.583679332e-10 1.789705803e-10 5.864198381e-10 1.642140763e-09 2.783048816e-09 3.194615651e-09 2.291560271e-09 2.758706476e-09 2.703475163e-09 4.797795051e-09 4.510657691e-09 8.700019728e-09 6.368318191e-09 7.269491754e-09 5.614127643e-09 7.350458135e-09 5.745600367e-09 5.146753665e-09 5.26030639e-09 6.752100358e-09 4.564484958e-09 5.000863184e-09 4.254516628e-09 5.312017245e-09 4.094343362e-09 6.218161712e-09 5.139248563e-09 5.121719028e-09 5.010609513e-09 5.372217858e-09 7.24120203e-09 7.244997097e-09 6.351731835e-09 7.511421341e-09 4.54054558e-09 6.253892774e-09 7.021958413e-09 5.469730279e-09 3.227197765e-09 2.259997637e-09 2.617782392e-09 3.218372589e-09 1.573836434e-09 3.338648871e-09 1.211561139e-09 6.991717168e-10 2.251228148e-10 5.805756841e-11 9.169943505e-11 3.014349038e-10 9.357171338e-11 9.346049963e-10 1.565576204e-09 1.559459425e-09 1.556396858e-09 1.369493672e-09 1.851329946e-09 1.598154711e-09 1.76462067e-09 2.674213555e-09 3.548342881e-09 2.974654063e-09 3.632100691e-09 2.49347185e-09 3.711898986e-09 2.634412606e-09 3.38918384e-09 3.042202666e-09 4.032977032e-09 2.308798417e-09 2.750197009e-09 8.935783369e-10 7.935519997e-10 8.283317499e-10 7.085782356e-10 3.187099296e-10 7.650049498e-10 6.84982267e-10 1.225297013e-09 1.423356512e-09 9.6163252e-10 1.471154067e-09 1.914348584e-09 1.76322888e-09 2.503542678e-09 1.440840431e-09 1.279888229e-09 1.907465622e-09 1.589265424e-09 1.288812597e-09 2.452997304e-09 1.436723064e-09 2.147663673e-09 8.2381253e-10 1.616374952e-09 7.069394314e-10 1.009702304e-09 6.318069667e-10 9.843372485e-10 1.438727391e-09 1.394120291e-09 7.375388282e-10 8.199029179e-10 9.678555062e-10 1.182250028e-09 8.934774933e-10 1.077393366e-09 7.728514625e-10 8.908317527e-10 7.689565914e-10 1.385822122e-09 1.084165857e-09 1.014892661e-09 3.946885978e-10 3.027843985e-10 4.491477264e-10 5.928031738e-10 1.235539004e-09 6.106500046e-10 6.205384289e-10 8.922840482e-10 5.945124417e-10 1.559587e-09 1.529506113e-09 1.22360633e-09 1.387448464e-09 1.109383915e-09 1.410997893e-09 1.024187072e-09 1.035840241e-09 9.487898709e-10 1.333846958e-09 7.375340444e-10 1.205901781e-09 7.618611579e-10 8.240975624e-10 9.064949674e-10 6.474361228e-10 8.986818715e-10 6.452549835e-10 2.874448503e-10 3.00581407e-10 5.992777711e-10 2.744130075e-10 6.298856282e-10 5.958939461e-10 3.49623299e-10 8.854634972e-10 3.205784423e-10 4.132158873e-10 8.466817468e-10 7.190553996e-10 3.794570783e-10 3.140189266e-10 3.651539925e-10 3.420736096e-10 7.61957481e-10 4.469696854e-10 6.486107029e-10 4.199905684e-10 2.00258676e-10 4.103193933e-10 3.85257098e-10 5.043951078e-10 6.469548974e-10 1.326921317e-10 4.170114727e-10 5.550265981e-10 2.59238162e-10 1.503337782e-10 4.38453005e-10 4.887987484e-10 6.545955607e-10 7.219218652e-10 +1.418058552e-10 6.66468445e-10 5.332106283e-10 1.226723129e-10 7.23498796e-10 1.554769493e-10 4.032251781e-10 2.834988732e-10 3.458006629e-10 4.251186918e-10 2.376986861e-10 1.024207826e-09 4.211971601e-10 2.240353787e-10 3.579212079e-10 1.3276735e-09 6.119766201e-10 6.216308539e-10 1.853170716e-10 5.245677226e-10 2.848823907e-10 5.835377684e-10 5.685030278e-10 8.029546528e-10 8.079428532e-10 4.356180624e-10 4.497814127e-10 4.596330735e-10 5.746372443e-10 1.957450397e-10 6.119755968e-10 1.087297317e-09 8.70152182e-10 2.888208958e-10 3.597208589e-10 1.033475941e-09 9.580391156e-10 3.709477961e-10 9.004046406e-10 9.28275554e-10 1.026587802e-09 1.62686528e-09 1.054902739e-09 1.056393256e-09 1.731538242e-09 7.534353182e-10 8.212533056e-10 1.002003457e-09 8.993372188e-10 1.562139165e-09 9.054570107e-10 8.551547559e-10 2.106113755e-09 8.739859795e-10 1.120078127e-09 8.746923156e-10 6.313942331e-10 5.105178531e-10 1.090589682e-09 9.719063026e-10 1.208356769e-09 1.088533387e-09 1.402354067e-09 1.766608015e-09 1.298056739e-09 2.211394535e-09 1.36506375e-09 1.652829102e-09 1.318760845e-09 1.470583161e-09 1.609032113e-09 8.419305041e-10 1.907613543e-09 8.473244949e-10 1.404468879e-09 5.492942487e-10 9.539751336e-10 6.848269745e-10 7.04962069e-10 8.1874344e-10 2.08283431e-09 2.345073718e-09 2.509226669e-09 1.460225917e-09 1.286383615e-09 1.599177681e-09 2.627980965e-09 1.150522237e-09 1.520605995e-09 1.663380337e-09 1.706410563e-09 1.489378825e-09 2.013678797e-09 2.292865391e-09 1.474682463e-09 1.736070085e-09 1.446668574e-09 9.084334952e-10 2.985287895e-10 2.977810055e-10 1.503015088e-09 1.028878582e-09 2.616642802e-09 2.028809035e-09 3.036227652e-09 1.738421976e-09 2.724841745e-09 1.223838452e-09 2.70085611e-09 8.169038668e-10 2.592315319e-09 2.795696594e-09 3.626382808e-09 2.832122028e-09 1.652490962e-09 1.294738545e-09 1.036574567e-09 2.309976945e-09 1.160688699e-09 1.746236538e-09 1.790275101e-09 1.55385954e-09 5.99327769e-10 4.27917079e-10 1.444647661e-10 2.726489666e-10 2.67049843e-10 3.618171079e-10 1.100275226e-09 2.740293939e-09 1.534068509e-09 2.429061517e-09 3.503601805e-09 2.186733555e-09 2.80299578e-09 3.484020206e-09 5.732270069e-09 7.580593083e-09 7.129084729e-09 5.601720603e-09 5.201722405e-09 7.699841367e-09 6.23660547e-09 5.922341024e-09 4.561558763e-09 5.345786748e-09 4.635901469e-09 2.918735594e-09 5.367911335e-09 2.943472763e-09 5.055195944e-09 4.635977498e-09 3.923555531e-09 5.334006674e-09 5.191577473e-09 4.957761006e-09 5.905262093e-09 3.878395586e-09 4.290405123e-09 7.572677253e-09 5.025593669e-09 6.883589898e-09 8.392304236e-09 6.473766066e-09 4.942972858e-09 4.314052944e-09 3.437765479e-09 2.954741445e-09 2.63418115e-09 3.523281335e-09 2.145612803e-09 1.3522793e-09 9.81185404e-10 6.164795023e-11 2.294190814e-10 2.14796052e-10 2.929599072e-10 8.377385209e-10 1.714604834e-09 1.35693157e-09 1.165017993e-09 1.448496007e-09 1.534957616e-09 1.215254271e-09 1.499849287e-09 1.778676475e-09 3.554836724e-09 3.611127702e-09 2.298808423e-09 2.334957941e-09 1.630259262e-09 3.212291823e-09 2.821097617e-09 2.472388259e-09 1.742147628e-09 3.23710898e-09 1.051786146e-09 3.070917022e-09 1.132146807e-09 6.583780307e-10 6.748416702e-10 5.659586111e-10 5.304836854e-10 1.068579707e-09 9.644378011e-10 1.373026634e-09 1.741561566e-09 1.952027847e-09 1.927885051e-09 2.104494426e-09 1.835576299e-09 1.193626384e-09 1.32574876e-09 2.521237517e-09 1.432089238e-09 1.791221475e-09 1.676916968e-09 2.242133999e-09 1.623266702e-09 1.039651921e-09 1.376312115e-09 8.28680576e-10 9.112186198e-10 1.329867689e-09 8.430367878e-10 1.832892094e-09 1.216521729e-09 1.243825537e-09 1.544554326e-09 1.293405906e-09 1.290879744e-09 1.489693619e-09 9.651835643e-10 9.274723729e-10 8.662491098e-10 1.172611289e-09 7.873299638e-10 1.501771525e-09 3.869017825e-10 6.881884469e-10 7.954752021e-10 6.215077604e-10 8.795098153e-10 5.835304902e-10 7.829599475e-10 5.608234573e-10 1.103786833e-09 9.31754214e-10 1.576239825e-09 1.059646313e-09 1.783528847e-09 1.123611136e-09 6.64291513e-10 8.970592323e-10 1.327329973e-09 3.144429322e-10 1.042730214e-09 1.081215075e-09 1.052394857e-09 1.128835093e-09 6.118385653e-10 1.02536557e-09 8.830549258e-10 5.896198506e-10 5.848218018e-10 2.514682486e-10 4.628694922e-10 3.926920336e-10 6.887170088e-10 2.437213843e-10 4.517156185e-10 2.881878707e-10 3.842209831e-10 6.159321826e-10 9.162591798e-10 5.800931491e-10 6.616382697e-10 7.248242146e-10 6.327353377e-10 3.619736208e-10 7.096585161e-10 5.007849673e-10 1.061505278e-10 6.936607374e-10 7.319683719e-10 1.924514494e-10 5.6620421e-10 1.253805216e-10 3.978884154e-10 4.855172524e-10 4.682726609e-10 2.758213433e-10 1.939661379e-10 4.527897593e-10 3.889308559e-10 4.483110205e-10 3.44769957e-10 4.30738765e-10 4.998789842e-10 3.537566745e-10 +5.571418632e-10 6.984056815e-10 5.504121454e-10 4.437997397e-10 2.207230696e-10 1.623938557e-10 6.305413847e-10 2.20027855e-10 8.274168974e-10 5.021326408e-10 4.11060086e-10 6.077661167e-10 2.639391629e-10 7.322410879e-10 2.733618513e-10 7.812661551e-10 2.084899849e-10 7.21016214e-10 7.3087124e-10 1.025143185e-10 4.106069204e-10 4.844980696e-10 2.31379967e-10 3.494481878e-10 5.368911865e-10 4.439293162e-10 2.886792234e-10 8.708686723e-10 3.39295686e-10 2.163041384e-10 3.40133558e-10 3.828407971e-10 3.589990957e-10 2.986984849e-10 5.879378095e-10 6.849685181e-10 6.935043727e-10 5.105196011e-10 1.136375744e-09 7.480883694e-10 1.134965927e-09 1.453598778e-09 1.023127429e-09 5.355544517e-10 9.842443017e-10 1.084026274e-09 1.652078233e-09 1.087036967e-09 8.66154583e-10 1.060321803e-09 1.418405607e-09 9.413534349e-10 1.496549547e-09 1.056933448e-09 8.759712577e-10 1.850738655e-09 8.762770425e-10 1.005063003e-09 7.241609493e-10 7.25413555e-10 1.044605515e-09 8.0551387e-10 8.423300367e-10 1.259082336e-09 1.386726665e-09 1.126145296e-09 1.277077285e-09 1.913980778e-09 6.703287466e-10 1.032630817e-09 5.825743148e-10 5.567703564e-10 1.236918791e-09 1.033466454e-09 9.592044272e-10 1.212031846e-09 1.208854639e-09 1.087367146e-09 7.405867964e-10 1.669365117e-09 1.463529526e-09 2.319411229e-09 8.907076881e-10 2.150415821e-09 1.568741115e-09 2.048003027e-09 1.655608912e-09 1.081502504e-09 1.711683506e-09 1.762833675e-09 1.384112196e-09 2.187986634e-09 1.164116353e-09 9.041645531e-10 9.992242337e-10 1.393378443e-09 7.023895829e-10 5.391093971e-10 2.211122243e-10 8.635611271e-10 4.726886667e-10 1.282533632e-09 1.444305169e-09 3.310135619e-09 2.257159302e-09 2.050725472e-09 2.38438844e-09 2.47573488e-09 2.169229305e-09 1.93111131e-09 9.700982693e-10 1.693963999e-09 4.013244237e-09 3.387428473e-09 2.595917826e-09 2.380269581e-09 1.788126825e-09 1.467493141e-09 1.739002892e-09 1.948340971e-09 1.341854159e-09 4.731458625e-10 4.094425414e-10 5.352802277e-11 2.248532864e-10 1.917707897e-15 1.817854648e-10 3.267701298e-10 2.111028915e-09 1.478373131e-09 2.817373948e-09 2.336122779e-09 2.172250635e-09 3.618268344e-09 4.074403883e-09 5.993080017e-09 7.201182373e-09 7.188198513e-09 6.875246172e-09 6.004881762e-09 5.255931747e-09 5.700997613e-09 5.93863046e-09 5.41588616e-09 4.840255441e-09 2.898810601e-09 4.190051958e-09 3.056533964e-09 2.821649243e-09 2.811627783e-09 2.816998619e-09 3.842843667e-09 3.202772663e-09 2.608270505e-09 5.343785745e-09 4.88680398e-09 5.649130848e-09 5.379474339e-09 5.315889724e-09 5.925444189e-09 4.877449343e-09 7.019669097e-09 1.094192192e-08 8.001562245e-09 7.259869551e-09 4.466596774e-09 3.227681504e-09 2.644798165e-09 3.720099762e-09 2.669052762e-09 3.606982826e-09 1.531955092e-09 4.199214895e-10 1.880727637e-10 2.043300732e-10 3.16307868e-10 1.389602416e-10 3.834039998e-10 1.075357821e-09 1.484222019e-09 2.040463684e-09 1.103887933e-09 2.626249487e-09 1.59414183e-09 1.75690659e-09 2.329540593e-09 3.613769841e-09 3.134589308e-09 1.706759646e-09 3.821995474e-09 2.303895929e-09 2.400987664e-09 2.356144989e-09 3.067631423e-09 3.666760643e-09 3.114704576e-09 2.925245724e-09 1.904180947e-09 1.222012828e-09 7.833215823e-10 7.648237012e-10 3.365555717e-10 8.166354512e-10 4.18627483e-10 1.365421661e-09 2.276887523e-09 1.488798366e-09 1.421462419e-09 1.74412083e-09 1.347824945e-09 7.587290921e-10 1.504338365e-09 1.724222749e-09 1.936895576e-09 2.352552112e-09 2.175392947e-09 2.091838717e-09 1.455757203e-09 1.845050551e-09 8.707320939e-10 1.245733985e-09 1.025687826e-09 8.267109656e-10 7.542186816e-10 6.029733682e-10 1.000059113e-09 1.298632389e-09 1.488061891e-09 7.968236129e-10 1.217947059e-09 1.287246999e-09 5.048612236e-10 1.181319235e-09 1.083998902e-09 8.590409528e-10 1.309948774e-09 1.013206173e-09 1.011554518e-09 7.216831574e-10 4.885578385e-10 1.153338292e-09 7.591623303e-10 5.130725273e-10 1.178125543e-09 1.005684222e-09 8.082784871e-10 1.068473352e-09 1.726137282e-09 1.234074968e-09 6.977992893e-10 1.039502562e-09 1.355043494e-09 8.449154827e-10 6.86436624e-10 6.394599388e-10 1.024085728e-09 1.265920634e-09 1.377716331e-09 8.275208526e-10 4.937765315e-10 1.04358641e-09 5.917153638e-10 9.175781781e-10 1.093349392e-09 1.229205571e-09 4.079508953e-10 5.630445115e-10 4.386849301e-10 6.186581252e-10 4.899439296e-10 3.80667506e-10 4.071861934e-10 2.211526384e-10 5.671483468e-10 4.112984731e-10 5.840404384e-10 6.412653569e-10 3.817816761e-10 6.660343819e-10 9.775519082e-10 8.002267093e-10 3.803368797e-10 4.025051888e-10 4.002753517e-10 3.074175224e-10 3.793006945e-10 5.146468769e-10 4.963841782e-10 1.28995248e-10 4.848871434e-10 7.450614724e-10 1.725661179e-10 4.842894794e-10 2.980652658e-10 3.396610193e-10 5.678946902e-10 3.457045498e-10 3.228671582e-10 8.86527042e-11 5.37166432e-10 +2.095128839e-10 2.454754253e-10 2.259854398e-10 1.87457332e-10 5.446314856e-10 2.929600794e-10 5.526121874e-10 6.179448258e-10 5.709588239e-10 9.392258031e-10 2.822285386e-10 3.31754479e-10 5.813390472e-10 4.434186732e-10 7.831584554e-10 1.771179624e-10 3.914058723e-10 3.881176232e-10 4.483209595e-10 5.535723842e-10 5.792333846e-10 2.282153692e-10 3.002982138e-10 3.750784759e-10 9.004157343e-10 5.073575534e-10 5.60708858e-10 8.932844664e-10 4.799292714e-10 8.118429778e-10 1.973833901e-10 5.462570757e-10 6.708056081e-10 2.754615588e-10 1.633673221e-10 6.791857708e-10 3.162764635e-10 9.309697128e-10 7.464720574e-10 7.0264129e-10 7.548846264e-10 1.032397241e-09 1.043799369e-09 1.34232615e-09 8.037043337e-10 8.9831276e-10 1.1258208e-09 8.761902292e-10 1.766221101e-09 1.29720698e-09 8.82301315e-10 1.221520151e-09 1.673878908e-09 1.039406854e-09 3.275877662e-10 6.10357665e-10 6.99505766e-10 7.366914574e-10 1.143453395e-09 6.41312988e-10 8.475128466e-10 8.017920062e-10 1.215083931e-09 1.217105685e-09 9.887383551e-10 7.745735842e-10 1.078928225e-09 1.008423587e-09 1.400688377e-09 1.054204873e-09 1.535760222e-09 6.802765189e-10 1.147062572e-09 8.827395712e-10 7.75155293e-10 8.162625075e-10 8.873511603e-10 1.331615471e-09 1.277937012e-09 1.673650006e-09 1.797265337e-09 1.633478049e-09 1.469246247e-09 2.195052753e-09 1.728318365e-09 1.687081094e-09 2.05900419e-09 2.73789256e-09 1.982304897e-09 1.104867459e-09 1.624792831e-09 1.164574633e-09 1.737970923e-09 1.157462781e-09 1.586795062e-09 1.529778931e-09 5.881965875e-10 4.124072817e-10 2.376528266e-10 8.094182774e-10 1.268052516e-09 1.358391568e-09 3.716488794e-09 2.788258604e-09 2.145977974e-09 2.24100617e-09 2.240418034e-09 2.572536062e-09 2.649030001e-09 3.530649338e-09 2.602525406e-09 2.51696423e-09 3.440609956e-09 1.576578733e-09 1.725471237e-09 2.031590496e-09 2.307512251e-09 2.619411361e-09 2.01121438e-09 1.926281565e-09 1.506007686e-09 7.107266814e-10 4.726798118e-15 1.941222775e-10 2.803256883e-10 2.970363e-10 1.244016581e-10 1.532068464e-09 2.350819391e-09 3.683547001e-09 2.457041903e-09 1.97113874e-09 2.878350129e-09 4.17339074e-09 5.544814881e-09 6.947924637e-09 7.291238699e-09 6.814507248e-09 3.884317731e-09 4.683691144e-09 4.847389443e-09 4.864065941e-09 6.163543408e-09 3.827140619e-09 3.472745483e-09 2.704303616e-09 2.766103051e-09 2.401712607e-09 3.127917851e-09 2.501243676e-09 2.075961281e-09 2.476048572e-09 1.989817688e-09 3.480722489e-09 4.949498578e-09 2.893681324e-09 3.10046618e-09 5.050429284e-09 4.619903603e-09 5.700652995e-09 5.411704352e-09 5.553289853e-09 7.871829076e-09 8.639535928e-09 9.406826431e-09 5.351578317e-09 4.275579357e-09 2.624195568e-09 2.256530879e-09 3.260181212e-09 2.997325791e-09 1.820836756e-09 1.672599814e-09 6.396743774e-10 2.695092275e-10 3.830393076e-10 1.512634471e-10 5.372629553e-10 1.314988505e-09 2.080639088e-09 1.383500978e-09 2.011198229e-09 1.9574535e-09 1.743054926e-09 1.893866807e-09 2.891781038e-09 2.768335586e-09 3.292397762e-09 3.026518727e-09 1.675961403e-09 1.850726768e-09 2.518734228e-09 2.885361801e-09 2.455995056e-09 2.346515623e-09 2.401779569e-09 3.333897335e-09 1.987150559e-09 1.060388294e-09 1.202852065e-09 1.093208751e-09 7.993847504e-10 2.904426861e-10 7.403564555e-10 1.064153776e-09 1.228388936e-09 9.219194044e-10 1.259557519e-09 1.997987429e-09 1.388822241e-09 1.474175792e-09 1.935363533e-09 9.20182469e-10 1.390479719e-09 1.713617764e-09 1.106383227e-09 2.078441579e-09 2.146604064e-09 1.706407899e-09 1.407599559e-09 1.917256343e-09 1.157073096e-09 5.589374632e-10 9.538181055e-10 7.749448959e-10 7.910690827e-10 1.122344571e-09 9.979933969e-10 6.351519175e-10 1.474545576e-09 1.358728817e-09 1.360438256e-09 9.393491006e-10 9.118593738e-10 1.096372465e-09 6.160341452e-10 1.073503837e-09 1.118892854e-09 1.050918484e-09 7.918292696e-10 1.224062542e-09 8.442882251e-10 1.324470897e-09 9.781708414e-10 1.148632063e-09 1.146613715e-09 1.013881025e-09 7.637317932e-10 1.203648881e-09 1.062156597e-09 9.590189135e-10 8.002483947e-10 7.216767423e-10 7.161126988e-10 5.815186614e-10 9.07499489e-10 1.38339672e-09 1.628069208e-09 1.301743087e-09 1.459792328e-09 9.460186999e-10 8.640964483e-10 1.288727646e-09 5.133529821e-10 1.072280261e-09 4.767308457e-10 2.629531697e-10 8.925058155e-10 2.864286879e-10 1.044743468e-09 5.972238346e-10 3.168714932e-10 5.315662612e-10 4.226659154e-10 2.663301718e-10 6.942854175e-10 3.087414504e-10 4.810904392e-10 3.367666628e-10 5.108814643e-10 8.601868113e-10 5.372124331e-10 4.627399982e-10 3.702327169e-10 4.143390922e-10 3.695491599e-10 3.879053669e-10 1.004954684e-09 5.919068419e-10 3.778001338e-10 5.337406499e-10 3.46404017e-10 3.389871122e-10 1.596476994e-10 5.033778878e-10 4.923754001e-10 3.622835945e-10 1.849721263e-10 2.338154605e-10 7.252683946e-10 +7.562307809e-10 6.525686331e-10 8.430908078e-10 5.435065841e-10 8.992793582e-10 1.110715235e-10 1.962406721e-10 8.221850045e-10 3.852955082e-10 2.429016293e-10 8.583977539e-10 2.237920398e-10 2.821825646e-10 2.260700538e-10 3.80305191e-10 2.337659419e-10 3.536582093e-10 5.972510313e-10 3.669907469e-10 1.970248067e-10 5.377853743e-10 1.958027726e-10 6.802110871e-10 2.687376856e-10 6.173834862e-10 3.873402026e-10 8.032676727e-10 6.820336818e-10 6.934401699e-10 6.22996709e-10 3.466668438e-10 5.113200569e-10 3.30245907e-10 7.626511827e-10 3.386796218e-10 2.218074258e-10 5.144476381e-10 5.560387145e-10 5.403083143e-10 1.07856145e-09 5.748912257e-10 1.626154386e-09 6.991308319e-10 6.325188502e-10 7.514918385e-10 6.99417139e-10 1.133075554e-09 1.170977724e-09 8.728133862e-10 1.121334151e-09 1.062154823e-09 1.733461966e-09 7.462264894e-10 1.041357432e-09 9.163633024e-10 1.119576661e-09 6.737077037e-10 1.397285447e-09 1.317546825e-09 6.586719555e-10 4.250681967e-10 1.263859264e-09 5.236402469e-10 1.074730113e-09 1.534449088e-09 1.14731394e-09 1.397800555e-09 8.66111429e-10 1.343529545e-09 1.290279943e-09 1.26854077e-09 1.185521269e-09 1.071029014e-09 5.021850619e-10 1.588621415e-09 1.213617723e-09 5.678687776e-10 1.251860287e-09 9.295786393e-10 1.60663612e-09 1.174122198e-09 2.463990125e-09 2.256441979e-09 1.580528853e-09 1.901922468e-09 1.719842615e-09 1.059186493e-09 1.491823408e-09 1.063207126e-09 1.031327722e-09 1.631181668e-09 1.957253837e-09 2.179649653e-09 1.07784913e-09 1.474518302e-09 7.542528145e-10 8.450703634e-10 5.114656981e-10 4.322636328e-10 7.221652202e-10 1.050922225e-09 1.374530876e-09 2.221109826e-09 3.869032345e-09 3.02718085e-09 1.539027043e-09 2.783092942e-09 1.780904169e-09 2.161625594e-09 2.826494229e-09 3.289081489e-09 4.052374427e-09 3.796079286e-09 2.577617303e-09 2.310916651e-09 1.864334542e-09 2.637176098e-09 2.0929086e-09 1.2453908e-09 1.204587018e-09 1.080024631e-09 1.17035004e-09 1.845518715e-10 8.787222518e-11 9.213829607e-11 1.119921276e-10 6.880249765e-10 1.733527543e-09 4.026357865e-09 3.042207704e-09 3.466797041e-09 3.376360284e-09 4.485096465e-09 3.966959659e-09 6.697062973e-09 7.242506594e-09 7.886773791e-09 7.192948119e-09 5.713596015e-09 5.67988443e-09 7.035736451e-09 4.857503274e-09 3.975243085e-09 3.060147496e-09 2.63391114e-09 1.580778893e-09 8.558318751e-10 1.518799519e-09 9.417833803e-10 6.170968571e-10 3.992067242e-10 1.09211445e-09 1.081174287e-09 1.641782746e-09 2.41832034e-09 2.515188458e-09 2.551880957e-09 4.65696674e-09 4.095726461e-09 4.850488113e-09 5.533053662e-09 5.385950449e-09 7.771108207e-09 6.604986971e-09 6.996474252e-09 8.4832631e-09 6.467825052e-09 3.155862114e-09 2.244854468e-09 2.283148281e-09 3.083525926e-09 1.745740359e-09 2.071147757e-09 1.034396092e-09 1.057828847e-10 2.491297536e-10 3.570620266e-10 2.260268555e-10 5.988069954e-10 1.166739954e-09 9.166056217e-10 2.430949697e-09 1.640383818e-09 1.096900157e-09 1.945805924e-09 2.404250047e-09 2.495386881e-09 3.316694047e-09 2.118334014e-09 2.79258172e-09 2.940444076e-09 3.2145703e-09 2.907108604e-09 1.019575987e-09 3.291347806e-09 3.355272451e-09 1.790954202e-09 3.515265825e-09 9.340431014e-10 6.239396161e-10 7.269644565e-10 1.978955251e-10 5.874935516e-10 1.523420728e-09 8.291329105e-10 8.244975955e-10 1.503345945e-09 2.077155196e-09 1.331111833e-09 1.345053541e-09 2.161042679e-09 1.966856133e-09 2.804202063e-09 2.199491127e-09 1.908302719e-09 1.647410924e-09 1.923907915e-09 1.846096389e-09 2.025665e-09 1.679824692e-09 1.212709166e-09 9.289112594e-10 1.648533093e-09 1.12179446e-09 1.055403744e-09 1.194561666e-09 1.062080378e-09 4.403735721e-10 1.575699411e-09 1.750257605e-09 1.322929208e-09 1.071259329e-09 1.190560331e-09 1.124392254e-09 6.203042502e-10 1.402759599e-09 1.088629917e-09 1.159627543e-09 8.533460005e-10 3.240733002e-10 1.04463433e-09 4.216365902e-10 1.226325276e-09 1.330672394e-09 5.535279477e-10 9.382763132e-10 1.115996646e-09 1.171878888e-09 1.12879969e-09 9.861938306e-10 1.23305402e-09 1.111035688e-09 1.423650764e-09 1.054735834e-09 1.108166649e-09 1.435058094e-09 1.456196333e-09 8.873044785e-10 1.116297543e-09 1.244791523e-09 7.489749391e-10 6.107609059e-10 8.143687745e-10 4.302557192e-10 5.795395176e-10 2.309647043e-10 4.069774041e-10 2.951140194e-10 6.469533801e-10 6.16230852e-10 4.666703254e-10 2.723282909e-10 3.477094988e-10 5.9895925e-10 3.592281508e-10 5.606226722e-10 5.217816709e-10 7.049809636e-10 5.617700778e-10 1.060650421e-09 5.270605662e-10 6.749495381e-10 7.139159632e-10 5.877397109e-10 3.345082559e-10 8.568244701e-11 1.910803781e-10 3.317704445e-10 4.099193808e-10 4.787135956e-10 9.213996917e-10 3.787290862e-10 4.168033049e-10 4.261431634e-10 4.55548844e-10 7.3904706e-10 3.171211136e-10 3.612564155e-10 2.033035238e-10 6.07146137e-10 +3.803862732e-10 4.608001547e-10 7.805867839e-10 3.961677773e-10 3.209428455e-10 2.535473876e-10 1.845217102e-10 8.632505121e-10 4.910507157e-10 1.988996741e-10 8.802112201e-10 5.383783917e-10 5.093532808e-10 2.754497908e-10 5.382532917e-10 5.26885155e-10 7.932883677e-10 2.346295848e-10 3.783056078e-10 5.04502407e-10 4.294756302e-10 1.001989993e-09 1.918258542e-10 9.708430367e-10 4.07912617e-10 6.741701041e-10 2.037803753e-10 6.403069143e-10 2.287956948e-10 5.632954432e-10 3.80921854e-10 5.792848861e-10 4.717462431e-10 9.229582021e-10 3.503122648e-10 6.56211424e-10 2.939136583e-10 7.682466054e-10 6.569680191e-10 8.175110816e-10 7.018010111e-10 9.854495368e-10 1.107519483e-09 6.794606174e-10 1.643045328e-09 1.615408781e-09 1.504073506e-09 7.756874647e-10 1.487214259e-09 5.177060671e-10 1.587115847e-09 8.772668807e-10 1.091791686e-09 5.388253927e-10 5.316823117e-10 1.07246858e-09 1.101111122e-09 6.636511872e-10 4.074977262e-10 7.685954042e-10 1.330519729e-09 5.407707331e-10 1.522958069e-09 8.75517568e-10 1.319674731e-09 1.310029757e-09 1.337202181e-09 7.201277065e-10 1.307850814e-09 2.070603819e-09 1.084940817e-09 1.415981542e-09 1.414152278e-09 8.416497468e-10 1.904049564e-09 8.45054021e-10 1.164553942e-09 1.078762499e-09 8.678932946e-10 6.71022892e-10 1.730939291e-09 1.223209005e-09 1.638242915e-09 1.642305909e-09 1.755406355e-09 2.279079267e-09 1.488023549e-09 1.23713454e-09 1.678079458e-09 1.734654347e-09 1.980139168e-09 1.588991102e-09 1.524578318e-09 1.723698952e-09 1.619529849e-09 9.94744999e-10 8.784851535e-10 3.598285846e-10 2.347852645e-10 8.722148531e-10 1.201129779e-09 2.513094354e-09 3.334385203e-09 2.096002009e-09 2.075184163e-09 1.798322105e-09 1.309998513e-09 1.820954267e-09 2.407535898e-09 3.005344071e-09 2.468978733e-09 2.926510804e-09 4.102393171e-09 2.616622582e-09 1.258627471e-09 1.1800005e-09 2.944720821e-09 2.200408369e-09 1.79717927e-09 1.447433057e-09 8.910589849e-10 3.336332326e-10 2.056283945e-10 1.402168643e-10 2.745203735e-10 2.54906881e-10 7.334791846e-10 1.504534269e-09 2.958375442e-09 2.836306757e-09 2.865032855e-09 3.479777745e-09 4.014105614e-09 7.079803101e-09 6.778709456e-09 6.69954556e-09 7.074669052e-09 4.630323334e-09 4.778414421e-09 4.378671584e-09 3.895339197e-09 2.372174041e-09 3.168033936e-09 8.780818577e-10 1.317366912e-09 8.628261906e-10 7.78070036e-10 1.593966125e-10 3.149917777e-10 4.39422401e-10 6.007698122e-10 4.268426338e-10 3.480888539e-10 1.042790532e-09 9.803693672e-10 1.234967064e-09 1.577335984e-09 2.673753899e-09 4.124592154e-09 4.387216816e-09 4.635797092e-09 6.057995638e-09 5.581759028e-09 6.54279129e-09 7.208185108e-09 6.957429881e-09 5.592235893e-09 4.169531407e-09 2.375411207e-09 2.285153563e-09 3.280180583e-09 2.202645936e-09 2.147510243e-09 9.86195532e-10 5.667119872e-10 2.830023383e-10 4.901058552e-10 2.707937593e-10 4.392329233e-10 1.245949758e-09 2.093440322e-09 2.335078529e-09 1.164466909e-09 2.904517418e-09 2.903355775e-09 2.548317962e-09 2.043684716e-09 3.221911643e-09 3.762373603e-09 2.439787089e-09 2.217735325e-09 3.411917882e-09 2.26779026e-09 2.381948826e-09 2.39251406e-09 3.154181875e-09 3.778157381e-09 2.802090328e-09 2.13508895e-09 9.325158766e-10 1.137261899e-09 2.888509046e-10 8.115880674e-10 8.158677382e-10 8.021814455e-10 1.526968272e-09 1.865641512e-09 1.287193769e-09 1.527122421e-09 2.001283759e-09 1.279985615e-09 1.809753554e-09 2.147124354e-09 1.992760158e-09 2.124218898e-09 2.217494047e-09 1.879893046e-09 1.471732087e-09 2.381107267e-09 1.075474696e-09 1.185351359e-09 1.722172548e-09 8.207225751e-10 1.394103999e-09 1.32393669e-09 4.712139295e-10 4.032998207e-10 1.087095551e-09 5.294474824e-10 6.130174589e-10 1.070592856e-09 1.273401602e-09 8.3678142e-10 1.216133484e-09 1.217264661e-09 1.001655956e-09 1.499072161e-09 1.819286784e-09 1.315962355e-09 5.736375339e-10 1.152967294e-09 8.600759224e-10 1.359992934e-09 7.639306482e-10 1.017841566e-09 8.023518198e-10 1.506082782e-09 1.828711954e-09 1.116396129e-09 7.032329344e-10 1.100859937e-09 1.220755624e-09 1.290736289e-09 9.384580693e-10 1.211115151e-09 1.436211224e-09 8.161637192e-10 8.47123082e-10 1.073641881e-09 1.129448674e-09 7.971747463e-10 8.567083045e-10 7.447077885e-10 6.998719706e-10 3.981265171e-10 4.357054648e-10 4.67151575e-10 6.239375567e-10 6.904305894e-10 4.096799336e-10 6.166312626e-10 7.990587654e-10 5.009307912e-10 5.078171004e-10 7.876610869e-10 6.306496758e-10 5.910974937e-10 5.800304062e-10 4.644866387e-10 7.517187398e-10 1.049985242e-09 1.171120808e-09 7.79324389e-10 1.639830275e-10 3.782943958e-10 4.518476356e-10 5.710217384e-10 8.042156852e-10 4.123770325e-10 2.704878037e-10 2.596044646e-10 1.950738688e-10 8.334429587e-10 7.455582849e-10 9.622681327e-10 1.215280347e-10 1.919799118e-10 1.704782639e-10 4.233449033e-10 3.843064765e-10 +5.378407044e-10 4.001468818e-10 2.871956101e-10 2.907718623e-10 3.085180633e-10 5.080855234e-10 7.227880852e-10 2.060678647e-10 3.54773323e-10 4.519517943e-10 3.355640215e-10 6.509756248e-10 3.988846616e-10 5.778632407e-10 3.808766676e-10 6.790692978e-10 3.700045125e-10 3.500476091e-10 7.707303927e-10 3.837510263e-10 5.965785627e-10 3.314603785e-10 1.071657118e-09 7.805437741e-10 4.019747164e-10 9.055030197e-10 3.936965258e-10 4.887200612e-10 6.544742196e-10 7.380971856e-10 3.337689605e-10 5.581782163e-10 5.707998404e-10 6.891549994e-10 2.881343748e-10 7.538979817e-10 4.867979202e-10 4.04190116e-10 4.981984133e-10 8.296347567e-10 1.219343924e-09 1.10723746e-09 1.28990131e-09 1.117926554e-09 9.132493523e-10 9.99490835e-10 1.248176035e-09 7.652375914e-10 1.379078095e-09 1.524215079e-09 1.041248871e-09 7.729803328e-10 8.506039172e-10 1.209710061e-09 5.704633867e-10 1.205881071e-09 4.779406655e-10 8.041669834e-10 1.063755622e-09 7.679692363e-10 7.776310031e-10 7.800841469e-10 9.114992183e-10 1.082848644e-09 7.776719845e-10 1.272972847e-09 1.140297503e-09 7.387289811e-10 1.614512257e-09 1.580060309e-09 6.561580286e-10 1.330918473e-09 5.685425489e-10 1.515221216e-09 1.064188562e-09 8.904249847e-10 8.504389285e-10 4.08675817e-10 4.8564136e-10 1.084718085e-09 1.933195348e-09 1.192272681e-09 1.708196404e-09 2.021121852e-09 2.208927896e-09 1.555451047e-09 1.803269174e-09 1.998322459e-09 1.72739343e-09 1.255217302e-09 1.182629968e-09 1.415361129e-09 1.128110408e-09 2.194362818e-09 8.937066809e-10 5.816542395e-10 5.297910595e-10 4.472812289e-10 5.987304385e-10 9.928495166e-10 8.286408381e-10 1.380117861e-09 2.741918524e-09 1.64439328e-09 4.500344671e-09 2.969892742e-09 3.592522673e-09 1.837564957e-09 2.206707909e-09 2.330239704e-09 2.945942549e-09 3.28915379e-09 3.428877896e-09 2.460866946e-09 9.637215786e-10 2.038338789e-09 2.026114542e-09 2.091856496e-09 2.186783823e-09 1.13430551e-09 7.64569658e-10 3.210616363e-10 4.210366936e-10 0 1.764003804e-10 2.660184309e-10 2.146446146e-09 2.868599663e-09 3.538128708e-09 3.333329605e-09 2.474581989e-09 5.288056823e-09 5.983841991e-09 7.801866022e-09 6.568299785e-09 5.639930137e-09 4.824049459e-09 6.742709523e-09 5.281359547e-09 4.424067619e-09 4.381998618e-09 2.216278126e-09 1.937390883e-09 6.714517914e-10 7.00537546e-10 4.193874652e-10 1.927628366e-10 2.500002792e-10 2.056028667e-10 5.583738206e-11 1.818370508e-10 5.809813182e-10 2.724391907e-10 2.218571591e-10 3.089881862e-10 6.259200318e-10 9.93384323e-10 1.780593464e-09 2.113100427e-09 2.883760305e-09 3.957531447e-09 4.904952683e-09 7.507757386e-09 7.011187023e-09 5.37724185e-09 6.67493611e-09 9.289644356e-09 6.78444815e-09 3.937324299e-09 1.980772931e-09 3.252791544e-09 2.56357923e-09 2.637396633e-09 2.112835127e-09 2.003472542e-10 6.300276355e-11 2.772671715e-10 4.830807441e-10 1.83629867e-10 4.383400986e-10 1.963843437e-09 1.989849027e-09 9.677416799e-10 1.391566281e-09 1.750339792e-09 2.082552756e-09 1.771871059e-09 3.372294439e-09 4.531880464e-09 2.746709107e-09 3.022479086e-09 2.874847946e-09 2.0612579e-09 2.757221726e-09 1.842529146e-09 2.830700686e-09 4.344449879e-09 2.8038826e-09 2.3169411e-09 9.124011854e-10 6.066503008e-10 7.80471e-10 5.178689387e-10 7.879019133e-10 1.100831311e-09 1.415116969e-09 1.361259338e-09 9.525788227e-10 1.220935325e-09 9.259192086e-10 1.48211774e-09 1.818508573e-09 2.716544786e-09 1.707322383e-09 1.066047856e-09 1.936298218e-09 1.153327199e-09 2.106387064e-09 1.660412743e-09 1.781139465e-09 1.955493566e-09 1.418452952e-09 7.150364426e-10 1.041190834e-09 1.280605199e-09 1.114020017e-09 7.942357449e-10 1.12349927e-09 1.10981405e-09 8.688959882e-10 1.951504847e-09 1.029020077e-09 1.104875901e-09 1.245588943e-09 7.471639712e-10 1.377100764e-09 1.542330865e-09 1.186287567e-09 1.001292442e-09 5.877747398e-10 1.041403318e-09 8.993463404e-10 1.31943545e-09 9.619951711e-10 1.111474469e-09 1.04004834e-09 1.113298718e-09 4.835117103e-10 1.432331889e-09 1.371157997e-09 7.622809064e-10 1.001846896e-09 1.040291143e-09 9.450708256e-10 1.394232355e-09 3.759072332e-10 1.04193856e-09 4.701460666e-10 7.303859158e-10 9.575651314e-10 7.013290919e-10 7.018778237e-10 7.907998239e-10 5.746824573e-10 8.057153346e-10 5.699737859e-10 4.602526832e-10 4.697959508e-10 2.607927848e-10 2.886354592e-10 3.76793784e-10 4.758580456e-10 4.7445804e-10 2.540881613e-10 3.884371282e-10 5.774418099e-10 2.777908649e-10 4.90841283e-10 7.322112093e-10 4.456803412e-10 3.540866128e-10 2.784588026e-10 5.440286938e-10 4.362678062e-10 2.928576195e-10 2.762357578e-10 4.432941454e-10 3.557037485e-11 8.156226687e-10 3.565537715e-10 2.821930904e-10 4.262229127e-10 3.876770377e-10 2.86121638e-10 6.957654153e-10 1.724157571e-10 2.010054737e-10 3.615216842e-10 7.690470263e-10 5.179343372e-10 +8.661882692e-10 2.36414084e-10 1.948340053e-10 6.59926138e-10 3.384646922e-10 7.352072394e-10 5.591667226e-10 3.293711363e-10 4.582665272e-10 3.451981633e-10 2.607879201e-10 3.272895625e-10 4.763698463e-10 3.560754868e-10 1.975576311e-10 5.542761889e-10 4.380274251e-10 2.800939732e-10 6.730382444e-10 1.056906373e-09 4.222033581e-10 2.627592634e-10 5.762921335e-10 5.526941379e-10 4.543807917e-10 1.187378587e-09 7.988180506e-10 8.647809721e-10 2.641764432e-10 4.407038567e-10 2.014707915e-10 7.891239739e-10 6.381188062e-10 2.790801351e-10 3.770432796e-10 4.580888564e-10 5.794048349e-10 4.626103861e-10 8.05717824e-10 8.686006385e-10 1.96207724e-09 8.32208636e-10 1.427290566e-09 8.142959528e-10 1.521164052e-09 1.847359862e-09 7.127021334e-10 9.717574166e-10 1.107524662e-09 8.926661238e-10 1.307123773e-09 9.138371565e-10 1.32270587e-09 1.584166341e-09 1.063167698e-09 6.551516871e-10 7.995694004e-10 9.006273414e-10 1.305618362e-09 8.903693264e-10 6.470750738e-10 8.828419719e-10 1.093088329e-09 9.645072404e-10 1.102650318e-09 1.671053914e-09 7.803536038e-10 1.319329935e-09 1.267357765e-09 1.350836699e-09 1.45725508e-09 7.695505434e-10 1.006214907e-09 1.248936545e-09 8.624802971e-10 9.01270495e-10 6.813422419e-10 1.281975776e-09 1.483535864e-09 1.44280472e-09 1.819667331e-09 1.606652637e-09 2.787746454e-09 1.977037583e-09 1.16135167e-09 2.274292489e-09 2.890864856e-09 1.550169387e-09 2.273354412e-09 9.479214133e-10 1.418218123e-09 8.61099744e-10 1.428230549e-09 1.585690754e-09 1.341014737e-09 1.240198586e-09 1.362017842e-09 8.206343633e-10 6.197503797e-10 5.63995015e-10 1.035070134e-09 9.47353022e-10 1.699289018e-09 4.260537646e-09 1.972486712e-09 2.37810307e-09 2.043432946e-09 2.925237913e-09 2.19703163e-09 1.981447231e-09 1.973895541e-09 3.797281913e-09 3.216511994e-09 1.732044697e-09 8.350970487e-10 1.923915786e-09 1.06885766e-09 2.033417117e-09 1.482598039e-09 2.003173831e-09 8.527221773e-10 3.016889549e-10 7.226371131e-11 3.849079688e-27 2.645669402e-10 7.056111253e-10 2.125207353e-09 2.308192176e-09 2.191583879e-09 3.220615799e-09 3.668728731e-09 5.859304584e-09 7.041892072e-09 7.558068496e-09 8.243961056e-09 6.155035294e-09 4.844372759e-09 6.238515227e-09 4.595940483e-09 3.610718254e-09 2.907446788e-09 1.989235986e-09 3.0658043e-10 3.926909716e-10 3.464128554e-10 3.459319222e-10 1.232372315e-10 2.03964239e-10 2.039392951e-10 3.045100379e-10 6.96419428e-11 2.018989756e-10 2.27079754e-10 1.699923157e-10 1.918464296e-10 2.282048466e-10 9.713124713e-11 5.964154948e-10 1.420101463e-09 2.818561537e-09 3.996918929e-09 4.898951842e-09 5.773122063e-09 5.382548545e-09 4.699868377e-09 9.105648974e-09 7.53591057e-09 6.921033622e-09 5.991631317e-09 2.807895891e-09 3.484962502e-09 3.244591406e-09 3.103943926e-09 2.378754072e-09 6.412649597e-10 2.992976954e-10 7.707286843e-13 1.972386645e-10 3.008583782e-10 6.7522716e-10 1.524162292e-09 5.715689707e-10 1.634601065e-09 1.922525896e-09 2.097281038e-09 1.480622584e-09 1.653359791e-09 2.940459092e-09 3.972571034e-09 3.594895836e-09 3.109231809e-09 2.085261827e-09 1.894676468e-09 3.540002706e-09 2.945923536e-09 2.732206688e-09 2.928555109e-09 2.377701166e-09 1.05088985e-09 8.380808979e-10 5.377157984e-10 5.482769966e-10 4.545332e-10 5.210786708e-10 8.173069564e-10 1.838639655e-09 1.660842881e-09 1.580959252e-09 2.123615008e-09 1.471620191e-09 1.552479954e-09 1.320790673e-09 1.962415096e-09 1.977916144e-09 1.032176057e-09 1.916133811e-09 1.999129589e-09 2.098033654e-09 2.445205074e-09 1.748269833e-09 1.204970298e-09 9.577847638e-10 8.613986949e-10 1.424046774e-09 1.215583362e-09 9.385283433e-10 4.63129924e-10 1.063382253e-09 1.149834127e-09 1.365976284e-09 1.401586172e-09 1.122454439e-09 9.325991948e-10 8.293619977e-10 1.277695228e-09 9.830616139e-10 8.31791286e-10 1.215087516e-09 1.031749012e-09 7.007402558e-10 7.733274038e-10 9.624687595e-10 5.542667383e-10 8.677414102e-10 9.374438012e-10 1.12814952e-09 7.752764439e-10 1.250225042e-09 1.293737557e-09 1.70763692e-09 1.182910109e-09 7.317787943e-10 1.200081597e-09 8.887353323e-10 1.042455739e-09 7.577106858e-10 1.142507959e-09 1.498379397e-09 9.173372368e-10 9.373342416e-10 7.333146702e-10 3.451214888e-10 5.084896086e-10 2.496950926e-10 5.281791343e-10 6.152056637e-10 1.600513686e-10 7.623400298e-10 3.15186484e-10 8.267062939e-10 2.881153135e-10 7.531360108e-10 4.300559336e-10 2.410275831e-10 4.189557682e-10 8.718024686e-10 3.218442828e-10 4.180136194e-10 2.8740507e-10 5.519172162e-10 6.221640565e-10 8.794139629e-11 5.574121576e-10 6.088293838e-10 5.893968041e-10 1.251141078e-10 2.4921512e-10 9.335196795e-10 1.228628891e-10 3.811970864e-10 3.390195648e-10 6.706689492e-10 9.620549487e-10 3.267531632e-10 6.961921833e-10 4.812124202e-10 4.204942761e-10 3.271362995e-10 5.841571636e-10 5.100825134e-10 +3.161406346e-10 4.746990995e-10 2.378907259e-10 6.732752355e-11 4.180570417e-10 5.459879885e-10 2.080553588e-10 2.276591432e-10 3.777354299e-10 2.543192418e-10 7.547218272e-10 1.925214309e-10 6.322102371e-10 3.053885372e-10 3.626143025e-10 2.608870522e-10 4.296535223e-10 3.348248038e-10 2.543304882e-10 5.712955421e-10 9.754638049e-10 4.284333125e-10 4.850773045e-10 3.430794159e-10 5.178243228e-10 8.579329982e-10 1.091451636e-09 6.832866512e-10 4.465804048e-10 3.407766901e-10 7.479521581e-10 3.187333755e-10 6.649550364e-10 5.002818424e-10 4.641274281e-10 3.041214449e-10 4.589406786e-10 7.136861495e-10 7.364454205e-10 5.209290774e-10 5.9619404e-10 1.270576728e-09 7.079935366e-10 8.447187685e-10 9.515788481e-10 6.708146643e-10 1.081332303e-09 1.771738645e-09 9.480086702e-10 9.267932859e-10 1.226875829e-09 2.006778014e-09 1.269300001e-09 9.2637458e-10 9.299211078e-10 1.150328924e-09 6.093680985e-10 1.477396323e-09 8.675219509e-10 6.882613916e-10 6.137829954e-10 1.08805727e-09 1.472877141e-09 1.228518413e-09 1.766179411e-09 1.212358978e-09 1.059776828e-09 1.25489318e-09 1.014236757e-09 9.749786363e-10 1.128585926e-09 1.291621323e-09 7.645935121e-10 1.234541077e-09 9.479285722e-10 1.024392586e-09 1.221944183e-09 8.136619513e-10 1.043354786e-09 1.407087424e-09 1.758047589e-09 2.333126316e-09 1.670469156e-09 1.574950211e-09 1.003774416e-09 1.647447197e-09 1.66952564e-09 9.921352468e-10 1.557805666e-09 1.861308603e-09 1.218044949e-09 1.903650556e-09 1.918697178e-09 9.129725122e-10 1.321103307e-09 1.289646299e-09 4.8492008e-10 1.927223389e-10 7.680565574e-10 7.650372415e-10 1.230798195e-09 2.450330119e-09 1.959639059e-09 2.824390612e-09 2.338001865e-09 2.652376693e-09 2.449253266e-09 2.500491701e-09 1.703811404e-09 3.463744713e-09 4.540929603e-09 3.296800273e-09 2.749604596e-09 1.55839298e-09 1.690648398e-09 2.17876895e-09 1.829059329e-09 2.111582121e-09 2.778801782e-09 1.362800509e-09 6.739945763e-10 1.010218407e-11 2.483156994e-10 1.089289589e-10 1.927120012e-10 1.411548541e-09 2.427464563e-09 2.565237855e-09 3.584933895e-09 3.062972263e-09 4.031213894e-09 3.660201708e-09 7.26873694e-09 6.197510207e-09 6.703389488e-09 5.367640317e-09 5.025255869e-09 5.65332333e-09 3.974104188e-09 2.512463466e-09 1.542203317e-09 7.582458684e-10 3.165374413e-10 2.57981776e-10 9.266868606e-11 2.231438075e-10 1.906802727e-10 2.624627446e-10 2.827368085e-16 2.553160056e-10 6.634251558e-13 3.1613207e-10 1.439292308e-10 2.383160856e-10 1.321044687e-13 2.02195168e-10 3.414296492e-10 4.152708227e-10 3.872838441e-10 1.174014564e-09 2.435327953e-09 4.022907043e-09 4.506762736e-09 5.310165618e-09 6.90292483e-09 5.036424484e-09 9.431775126e-09 7.314082314e-09 5.501923156e-09 3.608170161e-09 2.905485862e-09 2.603245259e-09 3.285907754e-09 2.884469072e-09 1.498613466e-09 2.050033426e-10 1.269492646e-11 2.451777816e-11 2.900100672e-10 4.291618439e-10 1.721192735e-09 2.336306635e-09 1.224021714e-09 1.617339447e-09 2.133672184e-09 1.029477319e-09 1.736196025e-09 2.364111854e-09 3.027401001e-09 2.595778624e-09 2.722223475e-09 2.641669146e-09 4.16992196e-09 2.732252228e-09 2.240477621e-09 2.638913722e-09 2.011110938e-09 3.168979693e-09 2.399795083e-09 1.272904698e-09 9.755681178e-10 2.450791881e-10 2.554073522e-10 1.081504192e-09 1.241109156e-09 1.155528226e-09 1.483907734e-09 1.868966511e-09 2.485171401e-09 1.984330758e-09 1.976107072e-09 1.379274954e-09 1.951775755e-09 1.268969041e-09 1.928688475e-09 1.468376538e-09 2.644448221e-09 1.316271824e-09 1.674210868e-09 7.134009129e-10 1.69268553e-09 1.462979769e-09 6.498360744e-10 8.143618972e-10 1.055291197e-09 9.830115241e-10 8.520567067e-10 1.239526998e-09 9.568345836e-10 1.68238277e-09 1.317606483e-09 1.135266457e-09 6.571454096e-10 1.648395391e-09 1.351896084e-09 4.999879061e-10 7.20686319e-10 7.550868415e-10 8.926886653e-10 9.504489756e-10 8.583628477e-10 9.004157711e-10 1.293923762e-09 9.36859538e-10 9.036385585e-10 8.615437858e-10 1.078492644e-09 8.855425944e-10 1.001414493e-09 1.379153755e-09 1.324749447e-09 8.425160443e-10 9.569242024e-10 1.477165489e-09 1.146719182e-09 1.503117235e-09 6.462977929e-10 7.268363844e-10 1.376599658e-09 1.301253822e-09 5.557876727e-10 7.783506362e-10 6.349723151e-10 6.758253606e-10 5.429649131e-10 4.562112229e-10 3.52764098e-10 4.04246245e-10 2.112403286e-10 9.553175551e-10 5.348061021e-10 9.107724671e-10 9.298821209e-10 7.328319368e-10 4.654450744e-10 9.489859571e-10 1.053459973e-09 9.260693244e-10 3.922896899e-10 1.073096202e-09 4.238360469e-10 4.68832898e-10 5.239903934e-10 4.208258351e-10 2.84626931e-10 4.026128314e-10 5.698326149e-10 4.293914849e-10 3.535799499e-10 2.99004464e-10 6.673927729e-10 4.783107313e-10 1.755087815e-10 6.351399216e-10 6.8514459e-10 9.684683658e-11 4.627056116e-10 5.360669757e-10 9.675765736e-10 3.394468877e-10 +1.154407632e-09 3.093086021e-10 4.208743765e-10 6.094903478e-10 4.503081958e-10 5.626810604e-10 2.169293264e-10 1.550914497e-10 3.837277845e-10 6.871689997e-10 2.84503305e-10 1.716972385e-10 3.296276588e-10 5.313936403e-10 3.656421818e-10 3.927363649e-10 1.208135022e-10 3.588286241e-10 8.23420051e-10 3.183534022e-10 3.152907394e-10 3.620105883e-10 5.074108871e-10 4.128233016e-10 4.030502318e-10 6.842298674e-10 2.328793415e-10 4.706002631e-10 6.613215111e-10 5.231027955e-10 4.427819839e-10 9.103150423e-10 7.582543671e-10 3.177775296e-10 3.803527687e-10 6.206999157e-10 1.589660849e-10 6.50490372e-10 3.31675408e-10 6.764573853e-10 1.052037727e-09 1.068700067e-09 1.168818925e-09 9.938756793e-10 8.544592191e-10 9.068202664e-10 1.149347352e-09 1.213018621e-09 2.022714233e-09 1.196527398e-09 9.215334208e-10 7.860649677e-10 9.78279197e-10 7.875565321e-10 1.051593073e-09 6.198396329e-10 4.683928188e-10 5.97731136e-10 1.13956452e-09 7.173044663e-10 1.026701278e-09 7.907850037e-10 5.931864746e-10 9.945578454e-10 1.15469917e-09 9.017864357e-10 1.373278891e-09 7.467358415e-10 1.782701403e-09 1.444468086e-09 1.555242339e-09 1.415288298e-09 1.521004929e-09 1.267577466e-09 9.172487697e-10 8.33816777e-10 1.572921656e-09 6.758180719e-10 1.254256288e-09 1.427710268e-09 1.284884158e-09 3.042615218e-09 2.04944256e-09 1.882389185e-09 2.139707697e-09 3.027347761e-09 1.092466394e-09 1.541041571e-09 1.754342477e-09 1.451646482e-09 2.331720339e-09 1.454241849e-09 1.608948475e-09 1.608114651e-09 1.479528793e-09 5.322425777e-10 5.876483102e-10 3.627935063e-10 1.193651208e-09 8.703781096e-10 1.204137919e-09 2.440423869e-09 2.486972456e-09 2.091260119e-09 2.58782674e-09 4.155928481e-09 2.165108972e-09 4.132393617e-09 2.602253238e-09 3.084650349e-09 2.331720726e-09 3.381318634e-09 2.629741651e-09 1.827824614e-09 2.334782841e-09 1.808678677e-09 2.028704753e-09 1.738163075e-09 1.362184542e-09 1.285866756e-09 2.513101359e-10 1.017747059e-10 4.932753543e-11 2.34956365e-10 2.664934031e-10 2.059359745e-09 2.816005782e-09 2.924437682e-09 2.389147038e-09 3.930122013e-09 5.504787159e-09 5.634933254e-09 5.694449074e-09 7.035110424e-09 5.057334769e-09 4.897192417e-09 5.982290255e-09 3.833778815e-09 2.609962429e-09 1.616799229e-09 5.447589179e-10 3.240390216e-10 1.041380293e-10 3.422920136e-10 3.810044432e-10 1.818870008e-12 1.672346285e-10 4.260150819e-10 3.734388873e-11 3.303082265e-10 3.734575142e-10 3.567738936e-10 1.576426214e-10 6.131411531e-10 1.050262584e-10 1.672751786e-10 2.379298948e-10 1.425685142e-10 3.259405978e-10 8.306659587e-10 1.900272076e-09 2.770900935e-09 3.322269537e-09 5.471189483e-09 6.276260941e-09 5.725002388e-09 6.151534645e-09 7.912961059e-09 6.479951461e-09 4.965098855e-09 3.349640279e-09 3.296400904e-09 3.43356512e-09 3.802414738e-09 1.750954454e-09 6.669540914e-10 7.017964807e-11 3.569049657e-14 2.178871604e-10 1.346912725e-10 7.848732285e-10 1.639281165e-09 2.012588892e-09 2.375131359e-09 1.7010113e-09 1.723783733e-09 2.359767532e-09 2.776909834e-09 4.654372225e-09 4.56948343e-09 2.66611524e-09 1.811780796e-09 2.519843166e-09 2.323310422e-09 1.881294286e-09 2.44631163e-09 2.907597226e-09 2.601140433e-09 1.442434672e-09 1.274769054e-09 8.217013883e-10 1.141040658e-09 6.624591023e-10 6.253227271e-10 1.236282169e-09 1.335178884e-09 5.949429964e-10 2.02589781e-09 1.388676671e-09 1.53272467e-09 1.190327538e-09 4.919803277e-10 1.657783371e-09 1.382085355e-09 2.258068914e-09 2.363512221e-09 1.590113281e-09 2.192618643e-09 2.521867846e-09 2.220966848e-09 8.73112853e-10 1.114935291e-09 9.027231734e-10 1.356228284e-09 9.91384517e-10 1.826747715e-09 1.445608051e-09 8.541566969e-10 7.024391172e-10 1.541800921e-09 9.958334682e-10 9.437290699e-10 1.166551064e-09 1.654195496e-09 1.101009955e-09 9.69699255e-10 1.442659812e-09 1.465262143e-09 1.163230037e-09 9.796597688e-10 1.540129445e-09 6.142980663e-10 8.477900809e-10 6.02029996e-10 1.195318713e-09 1.498628831e-09 9.337682666e-10 1.149150393e-09 8.531919628e-10 7.515596603e-10 1.455472522e-09 1.10392661e-09 1.212890713e-09 8.659756895e-10 6.334935964e-10 6.884716662e-10 1.541878047e-09 1.658699117e-09 9.046451953e-10 7.134434042e-10 1.322195895e-09 7.394158899e-10 6.753694621e-10 4.131814052e-10 6.840841502e-10 5.051957003e-10 5.744952674e-10 6.13518752e-10 4.392844741e-10 3.834621788e-10 7.750862278e-10 2.436729275e-10 3.950546024e-10 4.69323743e-10 8.916547798e-10 7.326283747e-10 5.979609506e-10 9.205772938e-10 4.356095139e-10 8.087182538e-10 4.298346912e-10 2.189165613e-10 4.789781036e-10 5.040236579e-10 5.405668322e-10 7.26397032e-10 4.885132126e-10 4.018998083e-10 3.735625143e-10 1.545122815e-10 3.011405296e-10 4.054687388e-10 4.956347643e-10 1.33765981e-10 4.966374611e-10 4.703187097e-10 2.014379593e-10 3.59379634e-10 3.762804811e-10 8.150094614e-10 +4.372092401e-10 2.985254058e-10 5.570537897e-10 9.322519902e-10 2.483175835e-10 8.606051166e-10 1.167716953e-10 2.621762789e-10 1.675165842e-10 6.961094741e-10 2.538807241e-10 6.456639913e-10 8.917233716e-10 2.645000354e-10 4.486097317e-10 5.566053267e-10 3.118090406e-10 4.709989285e-10 3.83212781e-10 2.343682188e-10 7.010954631e-10 1.042654281e-10 5.134148693e-10 3.840973475e-10 6.578098173e-10 2.510220432e-10 6.963054263e-10 3.63399622e-10 5.556864558e-10 3.906468613e-10 3.796884233e-10 1.078029098e-09 6.093953785e-10 7.775959657e-10 4.471461696e-10 3.178100959e-10 2.865181863e-10 4.925593708e-10 5.134978995e-10 1.045349673e-09 1.001326713e-09 8.276501042e-10 1.73258063e-09 8.676108578e-10 8.987268114e-10 9.679636263e-10 9.754933545e-10 1.270738186e-09 7.443862248e-10 6.788046481e-10 1.27371184e-09 1.051147942e-09 1.123131646e-09 1.270702105e-09 1.14066114e-09 1.230296153e-09 9.558711481e-10 9.265638373e-10 8.492802276e-10 9.027066368e-10 1.543689757e-09 5.185988684e-10 8.770356191e-10 1.012452572e-09 8.211481442e-10 1.030711053e-09 1.688909844e-09 1.018194704e-09 8.220512428e-10 8.135756574e-10 1.824677801e-09 6.376275912e-10 7.137890631e-10 9.534520231e-10 1.392339096e-09 1.27106809e-09 1.099261796e-09 1.693605728e-09 1.249621018e-09 1.533991178e-09 1.257079677e-09 1.387293361e-09 2.379432268e-09 1.12041066e-09 1.589829399e-09 1.54608478e-09 2.252521129e-09 1.168337485e-09 1.734659019e-09 1.209534747e-09 1.816764679e-09 1.401732541e-09 1.232055377e-09 1.737287248e-09 1.44382642e-09 1.156251071e-09 8.15929034e-10 1.959897433e-10 3.996910002e-10 7.007029277e-10 7.288805651e-10 2.458763964e-09 2.468594557e-09 1.541935981e-09 2.41930474e-09 2.723003601e-09 2.991052024e-09 2.878534647e-09 2.855978857e-09 3.389100885e-09 2.74426276e-09 3.742245108e-09 2.893106374e-09 1.986197982e-09 1.530852967e-09 2.331644607e-09 1.4532494e-09 1.790065396e-09 1.511926031e-09 1.010047952e-09 2.432847233e-10 1.713328945e-10 6.984439243e-11 2.380066546e-10 4.684031234e-10 1.706806632e-09 3.184503928e-09 3.371934816e-09 3.049543961e-09 4.11144567e-09 5.780745292e-09 7.362445762e-09 5.729567571e-09 6.747597594e-09 4.400596363e-09 5.628540506e-09 3.742264414e-09 2.721021167e-09 1.93063233e-09 5.429929638e-10 4.86644558e-11 2.770369408e-10 0 6.295548329e-11 2.843918027e-10 1.340977438e-10 5.06782189e-10 6.245982703e-11 1.153780319e-10 6.191569125e-15 1.615900535e-10 1.476114156e-10 5.053538623e-11 5.545089562e-15 6.573828614e-10 1.854824574e-10 1.294276724e-10 3.880299491e-11 9.280456304e-15 2.140898348e-10 3.834553379e-10 1.718054498e-09 3.429083434e-09 5.816872183e-09 6.450218906e-09 4.725978569e-09 5.089092674e-09 6.523181922e-09 6.417220399e-09 5.740521814e-09 3.94706548e-09 2.425159311e-09 2.243469712e-09 4.066360387e-09 2.042770966e-09 1.026175336e-09 1.45058527e-21 3.10347661e-10 1.110934329e-10 2.168814174e-10 8.901231692e-10 1.550735257e-09 1.402141687e-09 8.744366807e-10 1.978068371e-09 1.955382024e-09 2.414911184e-09 2.223525321e-09 3.118392322e-09 3.490245558e-09 3.222666445e-09 2.332941426e-09 3.148093831e-09 1.924309207e-09 2.382046221e-09 2.317410804e-09 3.051965367e-09 3.440851102e-09 3.552891665e-09 9.572121128e-10 1.321606117e-09 8.923066302e-10 5.583967781e-10 7.556698408e-10 1.103436274e-09 1.425153332e-09 1.569851049e-09 2.223684814e-09 1.504662001e-09 1.191015008e-09 1.416037473e-09 7.031224423e-10 1.278759982e-09 2.343005607e-09 1.258806452e-09 1.43995006e-09 1.858472569e-09 1.438192686e-09 1.981471232e-09 1.984600242e-09 1.845859486e-09 1.153668254e-09 8.981793868e-10 7.664945382e-10 8.013513715e-10 6.846158296e-10 9.868666997e-10 1.208464435e-09 7.815703484e-10 2.238923377e-09 1.698299333e-09 8.845984915e-10 9.013160243e-10 9.044795759e-10 1.664458947e-09 1.096415751e-09 1.069716964e-09 1.017882376e-09 5.254553674e-10 9.036430712e-10 5.124450351e-10 1.240886861e-09 6.694603016e-10 1.063799218e-09 7.781877244e-10 7.60532295e-10 6.704543148e-10 1.046231366e-09 1.629293413e-09 1.125530928e-09 6.046479045e-10 5.749644889e-10 8.996073448e-10 1.000351772e-09 7.858124665e-10 1.064717454e-09 9.628462378e-10 1.212324744e-09 1.268840643e-09 8.770317422e-10 8.282908017e-10 6.305938071e-10 6.350595131e-10 4.000480282e-10 1.456015097e-10 7.154682729e-10 6.674390818e-10 2.063803166e-10 4.495358246e-10 1.651194821e-10 3.714620588e-10 7.094840235e-10 6.752921873e-10 9.72718408e-10 7.734640776e-10 6.764189088e-10 5.751218919e-10 4.879975107e-10 9.080779571e-10 8.010066374e-10 3.571879892e-10 3.527138107e-10 3.117988253e-10 3.070185751e-10 7.233739484e-10 4.694807115e-10 5.912541319e-10 3.17029514e-10 7.019566473e-10 3.573809628e-10 9.458518231e-11 3.57271078e-10 8.256004919e-10 1.649431016e-10 4.70735239e-10 4.016519202e-10 9.894952869e-10 1.108465115e-09 1.099409182e-10 5.721104648e-10 +2.883748248e-10 8.386653465e-10 7.136591712e-10 5.081911743e-10 1.811039107e-10 4.394662897e-10 4.672810327e-10 4.135752603e-10 2.542863671e-10 7.845749178e-10 1.769345839e-10 1.233232566e-10 5.863891982e-10 6.591330459e-10 4.203467652e-10 5.294208075e-10 6.67503181e-10 4.055781753e-10 1.403992063e-10 1.936752584e-10 3.750710422e-10 4.330468507e-10 3.538382725e-10 5.043368664e-10 9.002289987e-10 5.916323753e-10 8.683969572e-10 4.042138422e-10 7.161676568e-10 4.890099734e-10 7.698615082e-10 4.675731438e-10 1.045765205e-09 3.395892525e-10 7.781268263e-10 5.043011911e-10 2.071219335e-10 5.518240998e-10 1.056483136e-09 4.404883954e-10 7.714916841e-10 1.248549881e-09 9.142672207e-10 8.500614227e-10 1.082503636e-09 9.666432632e-10 6.962606947e-10 1.114125934e-09 6.946782221e-10 1.020317064e-09 9.387974986e-10 7.061145903e-10 7.199377103e-10 8.62071871e-10 8.129990907e-10 7.686964217e-10 1.108725038e-09 3.728771234e-10 7.172559512e-10 1.092515159e-09 1.172992554e-09 9.553547961e-10 1.430251974e-09 1.035780741e-09 9.713186284e-10 1.153394556e-09 1.349652752e-09 1.400047265e-09 1.02392748e-09 9.112357254e-10 1.141053204e-09 1.31035946e-09 1.124171027e-09 1.103269191e-09 7.940085044e-10 7.288128077e-10 1.160232562e-09 1.072202649e-09 1.518999155e-09 1.59331607e-09 1.843763435e-09 1.844052858e-09 2.153608248e-09 1.742462797e-09 1.839010178e-09 1.832012969e-09 1.538688449e-09 1.988312167e-09 1.020711856e-09 1.205669937e-09 9.973617969e-10 1.442200666e-09 8.645025738e-10 1.451958157e-09 1.702116107e-09 5.756185488e-10 9.914948694e-10 6.79372022e-10 1.013473233e-09 1.333569318e-09 2.37068922e-09 3.251272125e-09 2.510974905e-09 2.185337301e-09 3.016633341e-09 3.050246233e-09 3.619504578e-09 2.309341055e-09 2.785777908e-09 3.055889985e-09 2.437008269e-09 3.862858967e-09 2.01851488e-09 2.276099502e-09 1.984993882e-09 2.117847224e-09 2.227579566e-09 2.272642277e-09 1.88964099e-09 5.768729074e-10 2.308179243e-10 1.612776546e-10 3.158123428e-10 8.661497675e-12 8.802069063e-10 2.990867581e-09 2.950662831e-09 2.64556343e-09 1.651977898e-09 4.030818252e-09 7.598079621e-09 8.240914932e-09 6.231115634e-09 5.983780636e-09 4.942073187e-09 5.855399112e-09 3.258566364e-09 1.816014999e-09 6.493993327e-10 5.318519813e-10 3.46211708e-10 8.896773671e-11 1.028645484e-10 2.412090179e-10 1.375602153e-10 3.425565024e-10 2.213948392e-10 1.171824612e-10 8.321334174e-11 0 3.582658435e-10 0 8.863385951e-11 2.008084221e-10 3.376147802e-10 5.794456134e-11 4.867883585e-11 1.151018239e-10 6.489311259e-11 1.821210612e-10 1.459963267e-10 6.742558083e-10 2.692710759e-09 3.183307599e-09 6.040801873e-09 5.559587629e-09 5.828808146e-09 7.148727839e-09 7.143976132e-09 6.423645201e-09 3.329110994e-09 3.755106483e-09 2.216891934e-09 2.95007304e-09 2.401239092e-09 2.139471007e-09 2.587441575e-10 2.028674923e-15 4.128817896e-14 7.532583387e-14 7.597391832e-10 1.547366468e-09 1.446078795e-09 1.492818881e-09 2.672086472e-09 1.684636884e-09 2.037543924e-09 2.019857812e-09 3.312378274e-09 2.924068386e-09 2.054095756e-09 2.511464018e-09 2.295216755e-09 1.791776918e-09 2.377400881e-09 2.811980444e-09 2.09523886e-09 2.669462734e-09 3.436963182e-09 2.135528564e-09 1.081953214e-09 7.490968549e-10 5.745190831e-10 4.47451417e-10 7.437252178e-10 1.372884117e-09 2.198930544e-09 7.40176348e-10 1.327415686e-09 9.434008828e-10 1.774395258e-09 2.185075224e-09 2.419775295e-09 1.612874793e-09 2.070208563e-09 2.581851756e-09 2.657685021e-09 3.020188684e-09 2.32725389e-09 9.719518921e-10 1.834818309e-09 1.400830844e-09 1.152560385e-09 4.342695901e-10 1.190272975e-09 1.28506737e-09 1.486381577e-09 9.134584259e-10 1.130882704e-09 7.780181183e-10 1.361593275e-09 1.443817659e-09 1.17559971e-09 1.21420295e-09 1.256540505e-09 1.237110412e-09 1.282589484e-09 1.136712626e-09 5.258319637e-10 4.598058551e-10 6.895265313e-10 1.421827269e-09 9.260093988e-10 1.472270606e-09 4.649863274e-10 8.171415082e-10 8.491732405e-10 6.438792123e-10 1.116164945e-09 1.317140194e-09 1.114934476e-09 6.451809993e-10 7.910701777e-10 1.079402686e-09 1.267948222e-09 8.403466612e-10 9.573774344e-10 7.391824567e-10 7.472356222e-10 8.74274312e-10 6.687128472e-10 5.07947714e-10 9.467325835e-10 5.963368107e-10 4.39141262e-10 4.816785381e-10 1.583732253e-09 5.42379188e-10 5.456647849e-10 5.050041357e-10 3.478621658e-10 3.090762668e-10 7.737176495e-10 8.072881074e-10 3.172873622e-10 2.069573489e-10 5.25417854e-10 7.570270215e-10 6.96427387e-10 4.282409042e-10 4.745310593e-10 4.022617742e-10 3.211052428e-10 8.738320962e-10 8.098595431e-10 7.939330431e-10 1.601869227e-10 5.569318035e-10 3.884976506e-10 3.977880746e-10 5.775496623e-10 9.115594427e-10 6.118914996e-10 2.457824133e-10 7.159436847e-10 4.524231553e-10 3.063276027e-10 3.124069685e-10 6.775194713e-10 1.647318955e-10 +4.866257574e-10 5.601917363e-10 4.166932169e-10 7.872856784e-11 2.65356059e-10 3.340292294e-10 3.856532989e-10 2.784241378e-10 3.196817675e-10 8.278501562e-10 2.492249609e-10 3.750037103e-10 6.844374717e-10 6.292815567e-10 4.651634566e-10 5.242978283e-10 2.243019822e-10 2.668861158e-10 6.260461233e-10 1.673694452e-10 5.967216977e-10 3.406904561e-10 3.322047162e-10 6.962576926e-10 4.778132398e-10 4.532473708e-10 1.910791436e-10 9.681365208e-10 4.787283847e-10 4.680455725e-10 3.813642407e-10 8.184286834e-10 3.093778986e-10 3.282231312e-10 6.836833438e-10 4.982137828e-10 3.164438597e-10 9.967288825e-10 8.448351373e-10 5.459735353e-10 1.204207815e-09 1.30184341e-09 8.356501017e-10 1.395790686e-09 1.688848126e-09 1.171453933e-09 1.406198664e-09 1.014348929e-09 1.704205389e-09 1.189956281e-09 1.193784707e-09 1.009784527e-09 4.36237656e-10 8.620892989e-10 8.039664316e-10 7.365247262e-10 1.000285246e-09 9.951394947e-10 6.6839611e-10 7.39711095e-10 8.220212924e-10 1.086176241e-09 1.16524312e-09 6.489165775e-10 1.175383965e-09 8.718833836e-10 1.047927163e-09 1.447120895e-09 9.747398851e-10 1.256214012e-09 9.794425338e-10 1.20823018e-09 1.344606688e-09 7.780804982e-10 9.337678149e-10 1.758889497e-09 1.533719207e-09 9.617438335e-10 1.307940792e-09 1.855972853e-09 1.492461528e-09 2.11033393e-09 2.830551206e-09 1.925298935e-09 2.666872461e-09 9.519696839e-10 1.492753283e-09 1.193898256e-09 2.229797943e-09 1.761722152e-09 2.164048546e-09 1.468576973e-09 1.517389563e-09 1.358750085e-09 1.314716926e-09 1.692522689e-09 6.691442017e-10 4.051740059e-10 9.14811423e-10 1.019691538e-09 1.731544281e-09 3.372098994e-09 2.943409488e-09 3.886554722e-09 3.123955432e-09 2.414680784e-09 4.292632292e-09 1.850961053e-09 2.79032142e-09 2.205656338e-09 5.049756812e-09 3.96781318e-09 2.810827882e-09 1.931955135e-09 2.243057879e-09 2.682897879e-09 1.711292666e-09 2.111947719e-09 2.081135118e-09 2.388471301e-10 2.820718785e-10 4.892880721e-11 1.259106984e-10 4.746032691e-10 1.19501827e-09 2.28551577e-09 3.077275916e-09 3.477178778e-09 3.65765087e-09 4.837449896e-09 7.799272478e-09 7.901226162e-09 7.792111452e-09 6.668796177e-09 5.441408366e-09 4.934292064e-09 3.271421293e-09 1.54805732e-09 1.920542986e-10 2.170539094e-10 2.058880414e-10 1.854764084e-10 9.000494172e-11 2.818329405e-16 3.103249962e-10 3.456787491e-10 1.00288957e-10 4.444805389e-10 1.468839401e-10 9.466765817e-11 2.730961852e-10 2.191175683e-10 2.07237342e-10 5.956019976e-11 3.178807555e-10 2.005769473e-10 1.145746329e-10 2.138131305e-10 2.863410746e-10 2.950661364e-10 9.436160015e-11 2.153713289e-10 1.464287842e-09 2.000639575e-09 4.086789356e-09 5.253776063e-09 6.404322526e-09 6.3820504e-09 9.025066968e-09 8.66128957e-09 5.24645718e-09 3.891179143e-09 2.955946862e-09 2.625508553e-09 3.33480347e-09 2.12718345e-09 2.149536022e-10 5.882360242e-10 5.772408615e-10 1.611323251e-10 5.490618865e-10 1.368391569e-09 1.592927491e-09 1.457905002e-09 1.721900063e-09 1.819044108e-09 2.692351002e-09 2.171981789e-09 3.793185964e-09 3.989451925e-09 2.950938043e-09 2.945981728e-09 3.814601816e-09 2.18715359e-09 3.587630726e-09 2.77818678e-09 1.919694107e-09 4.169279992e-09 2.510468271e-09 8.699749978e-10 9.671427323e-10 9.194210746e-10 5.098015706e-10 6.185888098e-10 1.004072559e-09 1.368691499e-09 1.162022369e-09 1.100690292e-09 1.583907593e-09 2.169113751e-09 1.78114415e-09 1.387462479e-09 1.367361499e-09 1.766046011e-09 2.522052311e-09 2.25569132e-09 3.131094146e-09 1.469458916e-09 1.631972066e-09 1.090042864e-09 1.616658346e-09 1.489968142e-09 1.845076489e-09 9.681847105e-10 5.200589367e-10 5.186854798e-10 7.127175925e-10 1.438521558e-09 6.473265792e-10 1.448595336e-09 8.589136004e-10 8.508497054e-10 1.355756444e-09 7.03825457e-10 1.144458227e-09 1.310489826e-09 1.560510166e-09 9.088589138e-10 1.077918726e-09 1.197351952e-09 1.590503487e-09 5.440062755e-10 8.440592949e-10 1.075922593e-09 9.289324398e-10 9.505254364e-10 1.082746893e-09 1.368582776e-09 6.546729657e-10 9.089372512e-10 9.572677734e-10 7.381968532e-10 1.635663679e-09 9.118213447e-10 1.870922315e-09 5.017725791e-10 1.089220287e-09 1.038303864e-09 1.397521577e-09 1.517797802e-09 7.831916282e-10 6.354382607e-10 6.694851538e-10 4.161874219e-10 2.635039472e-10 4.917899859e-10 5.43452067e-10 6.389800522e-10 5.619687951e-10 1.021948403e-09 6.610668797e-10 7.10545142e-10 6.537137236e-10 5.652295654e-10 9.972816349e-10 9.225182192e-10 7.196544453e-10 1.269391847e-09 4.238823661e-10 3.073916797e-10 6.529212552e-10 2.654414244e-10 6.338451075e-10 1.464200438e-10 2.254996609e-10 4.252606486e-10 6.498058053e-10 2.62101825e-10 4.895520686e-10 1.196547012e-10 4.971381698e-10 6.453382652e-10 3.216962931e-10 2.988280427e-10 6.940746152e-10 4.368309328e-10 2.754781233e-10 1.760060251e-10 4.113353407e-10 3.519864942e-10 +3.712605251e-10 1.041957662e-10 2.760122118e-10 6.55658207e-10 4.574050457e-10 8.531963069e-10 6.382194186e-10 5.079060182e-10 3.990164068e-10 4.977453129e-10 1.14323254e-09 3.133476955e-10 1.019385049e-09 3.001829421e-10 2.687851067e-10 8.668461169e-10 2.102694337e-10 2.509021776e-10 6.085622568e-10 3.513722139e-10 2.281780425e-10 6.201385468e-10 7.890409405e-10 4.135224477e-10 3.100442111e-10 6.440106999e-10 6.856000363e-10 7.170228308e-10 5.613566993e-10 3.376181577e-10 6.023489337e-10 1.050251283e-09 5.575343563e-10 2.104337728e-10 5.28681603e-10 5.346480444e-10 1.846663123e-10 5.804971231e-10 6.373689508e-10 8.187144833e-10 3.537176556e-10 1.155062755e-09 1.412824096e-09 1.305141063e-09 9.657050949e-10 8.565867272e-10 5.758542008e-10 1.092160827e-09 5.314689551e-10 5.671626722e-10 9.121477829e-10 8.562158888e-10 1.241706664e-09 1.166876866e-09 1.27101712e-09 1.465450747e-09 1.238758662e-09 9.353724665e-10 8.13392211e-10 1.056705057e-09 1.021854167e-09 1.076208184e-09 1.080404022e-09 1.327934806e-09 1.130075831e-09 1.880319888e-09 1.468894605e-09 1.514264651e-09 5.50093922e-10 1.506902214e-09 1.284418205e-09 1.149078264e-09 1.55591176e-09 1.5790725e-09 8.866100758e-10 8.595503461e-10 7.880609787e-10 8.225569248e-10 1.61205144e-09 1.821560934e-09 1.465285783e-09 1.489285572e-09 2.953545598e-09 1.90928911e-09 2.407069955e-09 1.349761669e-09 1.297397411e-09 1.54484332e-09 1.616438747e-09 1.58004405e-09 2.10163908e-09 1.744964085e-09 2.108230093e-09 1.474250377e-09 1.04545608e-09 7.49831446e-10 1.348396067e-10 3.607291725e-10 7.402873675e-10 1.016782845e-09 1.601421147e-09 2.713260985e-09 3.712470183e-09 2.890784359e-09 2.660717787e-09 1.767525897e-09 3.332357101e-09 3.295166782e-09 1.737605543e-09 3.516703444e-09 4.936705803e-09 2.41319063e-09 2.092308797e-09 1.744531033e-09 2.290937015e-09 1.709277059e-09 1.639067029e-09 1.368823304e-09 7.628017214e-10 3.994909782e-13 2.254235799e-10 2.896559642e-10 1.975037946e-10 6.835476871e-10 2.280889377e-09 2.591084496e-09 2.499264337e-09 2.104816997e-09 2.881722957e-09 5.525786644e-09 1.010439624e-08 9.827036306e-09 7.071717566e-09 5.179412078e-09 5.143629846e-09 4.346718097e-09 1.109804689e-09 1.136296817e-09 1.049670135e-10 9.39320185e-13 6.88933589e-10 4.19627476e-13 3.201490601e-10 1.106723305e-10 2.343010871e-10 2.884472778e-10 2.28575461e-10 1.754080759e-10 5.290329497e-11 2.73927593e-10 2.353362701e-10 8.333798976e-11 2.645734242e-10 1.674705893e-10 5.860597912e-16 6.024892228e-11 2.282009116e-10 3.439824249e-10 1.199868151e-12 2.165030757e-10 0 2.691464073e-10 5.987259609e-10 1.30119361e-09 3.958669599e-09 5.27305559e-09 6.628825301e-09 6.202183912e-09 6.439761211e-09 6.883708815e-09 7.193582391e-09 3.668682442e-09 3.133910021e-09 2.838974201e-09 2.471581e-09 1.814221684e-09 5.586862339e-10 3.014380098e-10 8.15552584e-11 8.532824457e-11 1.47085991e-10 1.013267952e-09 1.885056709e-09 1.567777924e-09 1.015248187e-09 1.31148068e-09 1.019839304e-09 2.132823884e-09 3.071985546e-09 3.103525682e-09 3.562910492e-09 2.466171153e-09 2.37140953e-09 2.350498168e-09 2.232079615e-09 1.421242989e-09 3.688554446e-09 2.070489623e-09 3.087560775e-09 1.327829656e-09 4.020788843e-10 9.990449186e-10 6.862212309e-10 5.793932274e-10 8.89407262e-10 1.250652175e-09 1.72118462e-09 7.832254011e-10 1.74429451e-09 1.166982218e-09 1.971772331e-09 2.306571016e-09 8.669937248e-10 1.451546381e-09 1.970992704e-09 1.460720968e-09 2.314790732e-09 1.834851127e-09 2.774881836e-09 1.923948493e-09 6.8802826e-10 1.874174162e-09 1.460568326e-09 1.170756923e-09 1.323341253e-09 7.213766077e-10 1.653930969e-09 1.639319659e-09 1.319151923e-09 1.681510582e-09 1.607743e-09 1.255074895e-09 7.758799779e-10 8.17165542e-10 1.199448086e-09 1.323557367e-09 1.353141816e-09 1.178035694e-09 1.030910649e-09 9.36283823e-10 1.461865849e-09 6.38792969e-10 8.007807651e-10 8.58761457e-10 1.063712753e-09 1.485070025e-09 6.036723052e-10 1.615727118e-09 1.002984767e-09 1.378618028e-09 9.062916798e-10 8.470711659e-10 6.865262096e-10 9.139630632e-10 1.079745797e-09 1.067176077e-09 1.494722896e-09 1.156392691e-09 1.522364468e-09 1.161748075e-09 8.234574715e-10 8.583912681e-10 9.522812392e-10 8.152319504e-10 7.421782384e-10 2.823001583e-10 2.384263647e-10 7.836093466e-10 4.398132052e-10 1.913638196e-10 8.607018239e-10 4.565778749e-10 5.979077332e-10 6.402782567e-10 8.353929142e-10 2.773837961e-10 8.249011487e-10 4.881912485e-10 2.33020878e-10 6.007019382e-10 1.452523999e-10 3.331292724e-10 2.83625081e-10 2.912833349e-10 2.507785365e-10 6.986057142e-10 3.120353289e-10 4.220003339e-10 2.648044691e-10 9.240117418e-10 3.322966616e-10 3.420436784e-10 4.130360014e-10 5.284984562e-10 3.932418004e-10 4.952134318e-10 4.433943766e-10 5.152241061e-10 2.085455335e-10 4.422582309e-10 +3.373739622e-10 2.780184952e-10 3.719075718e-10 2.320189711e-10 6.73439017e-10 2.729558209e-10 3.831229042e-10 6.16856416e-10 3.343224672e-10 4.148372689e-10 2.356305866e-10 5.284000902e-10 4.999765167e-10 3.654492471e-10 3.20340538e-10 4.247928965e-10 7.587608943e-10 4.616538863e-10 2.472709633e-10 3.195092238e-10 1.797219263e-10 6.559573775e-10 5.76104485e-10 7.025817352e-10 3.203628101e-10 8.449782567e-10 6.174260117e-10 8.630290342e-10 4.718400969e-10 5.869767999e-10 5.029802311e-10 6.01683714e-10 4.434726292e-10 7.469864149e-10 4.83800355e-10 4.713664967e-10 2.400940786e-10 6.298559231e-10 5.04592406e-10 3.775312499e-10 1.091381037e-09 9.342743361e-10 1.285388853e-09 1.205087088e-09 8.533177669e-10 9.037117608e-10 1.538845788e-09 5.501417143e-10 9.837399632e-10 1.116847283e-09 1.332562339e-09 1.884969341e-09 8.014264925e-10 7.746102159e-10 7.146122044e-10 1.449504512e-09 1.346148958e-09 3.386527227e-10 1.015551085e-09 5.686450452e-10 5.629027113e-10 8.942424231e-10 1.34819169e-09 1.322886344e-09 1.080587356e-09 1.41040349e-09 1.0041984e-09 9.749353079e-10 1.490859466e-09 1.595249738e-09 8.489462173e-10 8.015252524e-10 1.650111232e-09 1.712121396e-09 1.545507857e-09 9.488135208e-10 1.403317586e-09 6.059447505e-10 1.069953979e-09 1.560948286e-09 9.949188121e-10 3.135853163e-09 1.33637973e-09 1.295944604e-09 2.185251689e-09 2.832377155e-09 1.534261004e-09 1.818150376e-09 1.994963684e-09 2.346289128e-09 1.782494236e-09 1.585978096e-09 6.446410941e-10 1.51370945e-09 1.182483667e-09 8.517610295e-10 7.257218465e-10 9.103374719e-10 1.156375848e-09 8.817922586e-10 2.117438747e-09 2.690434292e-09 3.998906301e-09 2.833442516e-09 3.012861796e-09 3.939752612e-09 2.067716635e-09 2.850735605e-09 2.269751517e-09 3.383046735e-09 3.888809046e-09 2.643904795e-09 3.002279222e-09 1.623358065e-09 1.508668188e-09 1.988723119e-09 1.693230748e-09 1.688298127e-09 1.033584639e-09 7.912276963e-11 1.930239853e-10 3.930696452e-10 3.273177675e-10 3.704425551e-10 1.78896248e-09 2.601516112e-09 3.504540763e-09 3.025994095e-09 4.294730861e-09 5.97016743e-09 7.236891937e-09 6.389207216e-09 6.35572072e-09 6.863180906e-09 4.833013439e-09 3.315410506e-09 1.167426994e-09 2.587587416e-10 4.577273837e-15 7.383456907e-12 1.193201484e-10 1.227049013e-10 3.085877426e-10 1.888679719e-10 2.641871888e-10 1.37533801e-10 3.133748549e-10 1.3409205e-10 4.354959003e-10 3.933938745e-10 2.430096485e-10 1.959386926e-10 1.505125017e-10 3.165352855e-10 1.572308887e-10 5.492986304e-11 6.679168116e-11 0 2.412611338e-10 4.188837476e-10 2.298129337e-10 8.538444343e-11 2.378691959e-10 1.326153483e-09 1.302156307e-09 4.853721155e-09 7.244575602e-09 7.203606963e-09 6.60769692e-09 8.880349714e-09 9.088647499e-09 6.197419734e-09 3.202413311e-09 3.261306385e-09 2.548925403e-09 2.448786515e-09 9.847543476e-10 1.265417646e-10 5.858360624e-27 1.988390126e-10 1.658448194e-10 6.254639794e-10 1.723051685e-09 1.201609321e-09 2.653916874e-09 1.890818408e-09 2.646629857e-09 1.947749347e-09 2.765037011e-09 3.271449251e-09 3.925407277e-09 1.631527385e-09 2.626063794e-09 2.544556848e-09 3.273682008e-09 2.368051392e-09 3.818610272e-09 3.836675356e-09 2.723919801e-09 2.024068986e-09 1.056126845e-09 9.225511668e-10 5.112255012e-10 8.921640324e-10 8.509855583e-10 1.537815605e-09 1.216576509e-09 1.602653971e-09 1.340019919e-09 1.341110226e-09 1.494076086e-09 1.143796324e-09 1.981456679e-09 1.819253279e-09 2.41693791e-09 3.268300144e-09 1.04432235e-09 1.810162945e-09 1.964423791e-09 2.393025321e-09 1.96310456e-09 1.21027013e-09 1.16073582e-09 1.431412634e-09 8.333104301e-10 1.063720015e-09 1.37732205e-09 1.529957304e-09 1.364673431e-09 1.434287063e-09 1.650249674e-09 1.222944591e-09 1.707381227e-09 1.457283208e-09 1.047137828e-09 1.546414836e-09 8.021334214e-10 9.915743259e-10 9.303868154e-10 1.152751192e-09 5.873046268e-10 9.992992017e-10 8.33499219e-10 6.594310307e-10 4.701354182e-10 1.095396507e-09 7.237099053e-10 9.441958563e-10 1.23545411e-09 4.891767062e-10 1.438592698e-09 9.690822802e-10 8.618174821e-10 1.077531132e-09 4.949298507e-10 1.169018882e-09 5.910212246e-10 1.060939515e-09 1.047268499e-09 7.024887933e-10 4.912095628e-10 3.88872276e-10 7.986914893e-10 1.493496842e-10 8.216775701e-10 2.211225364e-10 4.250157082e-10 2.807953178e-10 4.399546423e-10 5.298168833e-10 5.320653248e-10 4.975339412e-10 3.326937213e-10 6.367139507e-10 5.859144432e-10 4.754219723e-10 4.070622217e-10 7.165154524e-10 4.888069936e-10 2.058807705e-10 3.308371407e-10 9.164575617e-11 8.03568465e-10 5.605706169e-10 3.120933623e-10 1.484320145e-10 7.584728558e-10 3.423229925e-10 7.20214306e-10 5.753300128e-10 2.713439952e-10 6.991564644e-10 3.164570942e-10 3.967277771e-10 2.702747e-10 5.620343463e-10 4.182153907e-10 1.664514324e-10 2.257135231e-10 8.755355486e-10 +3.141074178e-10 5.195918807e-10 1.78485827e-10 5.656115393e-10 4.316220404e-10 9.484383936e-11 3.561939901e-10 4.222694473e-10 3.09914773e-10 6.271973119e-10 9.034960068e-10 3.349767711e-10 5.215958148e-10 1.396564168e-09 6.601956163e-10 8.692458427e-10 2.944326398e-10 2.227936142e-10 3.082155994e-10 3.300901916e-10 5.028605363e-10 1.118387856e-09 4.058131821e-10 8.18169448e-10 8.02475739e-10 4.75160701e-10 6.337813545e-10 4.41181937e-10 3.163208077e-10 6.78854874e-10 1.943483544e-10 9.709032859e-10 2.638302133e-10 9.865227189e-10 3.654512219e-10 4.854747559e-10 5.323779903e-10 7.10996506e-10 3.899190344e-10 3.890379668e-10 9.807818173e-10 1.017882858e-09 1.209187327e-09 1.364948876e-09 1.397588202e-09 5.69414709e-10 8.228449353e-10 1.792272341e-09 1.1955809e-09 1.124642686e-09 1.745467945e-09 8.327450532e-10 1.328362582e-09 6.636736448e-10 1.071848655e-09 1.268520169e-09 6.235490901e-10 1.043718386e-09 7.47962185e-10 1.0565541e-09 7.592833919e-10 9.559162528e-10 1.09643888e-09 7.32376717e-10 1.127505963e-09 1.241559051e-09 1.681171029e-09 1.338405632e-09 9.947027911e-10 1.502957236e-09 1.338728174e-09 1.140634814e-09 1.874343935e-09 1.344793806e-09 1.084717974e-09 9.02355288e-10 1.117126736e-09 1.498618424e-09 1.124184347e-09 1.809841524e-09 1.709160011e-09 2.273983613e-09 2.94178114e-09 2.383895939e-09 2.034829906e-09 1.342958395e-09 3.092539396e-09 1.891013591e-09 1.881527805e-09 1.154654959e-09 1.617782079e-09 9.019804547e-10 1.298112568e-09 9.371568038e-10 1.106374987e-09 8.520466166e-10 2.497594416e-10 2.256551263e-10 7.058245105e-10 1.050334178e-09 2.709610491e-09 2.516010757e-09 2.02739182e-09 4.500914464e-09 3.601875452e-09 2.614415149e-09 4.05389941e-09 1.762338398e-09 2.505055728e-09 2.124741701e-09 3.914955918e-09 3.036045505e-09 2.958047054e-09 2.404817702e-09 2.558845562e-09 2.107435643e-09 2.240941605e-09 1.345681964e-09 7.125164112e-10 1.605342125e-10 9.144528337e-11 3.169833902e-10 1.51664477e-10 1.401113653e-09 2.742630923e-09 2.771043997e-09 2.84068986e-09 3.947634943e-09 6.851324164e-09 8.826428004e-09 7.149203262e-09 6.506226281e-09 4.623694997e-09 4.845498231e-09 3.684098428e-09 6.82246425e-10 3.93570221e-10 2.974091913e-10 4.575909424e-10 3.652109893e-10 1.392775381e-10 4.834319319e-10 1.667124968e-10 3.666872013e-10 6.961568173e-11 1.678844679e-10 3.164582753e-10 2.431256857e-10 2.456711838e-10 1.839808369e-10 1.837311317e-10 4.497355722e-10 2.318424392e-10 1.35293951e-10 3.944566959e-10 1.163375203e-10 1.044719369e-10 2.139984782e-10 2.663272798e-10 3.070008036e-10 3.232936683e-10 4.349495844e-10 2.095071363e-10 5.069116675e-10 1.50625304e-09 4.481305911e-09 6.178934809e-09 6.509390226e-09 7.583046213e-09 7.887284447e-09 6.693582323e-09 4.851419598e-09 2.419059286e-09 3.214340439e-09 3.4322579e-09 2.139577906e-09 9.382906599e-10 1.216001127e-10 1.846189594e-10 2.485184693e-10 1.55572807e-10 1.16757331e-09 1.648269743e-09 1.644779628e-09 1.940514357e-09 1.228019988e-09 1.713701318e-09 2.595991941e-09 3.23640195e-09 3.15378925e-09 3.764899623e-09 2.585355315e-09 3.034119019e-09 2.982593037e-09 3.504149673e-09 5.111249608e-09 3.210314432e-09 2.923462048e-09 3.212264173e-09 1.498743406e-09 1.170833378e-09 1.059662672e-09 5.031272642e-10 7.92085771e-10 5.809753081e-10 1.711977444e-09 1.43521483e-09 2.158925799e-09 1.106469245e-09 1.409408512e-09 7.164932711e-10 1.209531656e-09 1.822183328e-09 1.8171946e-09 2.126197003e-09 1.16979147e-09 1.335468233e-09 3.033159212e-09 1.763392614e-09 1.660914073e-09 1.548893529e-09 1.402966443e-09 7.551203637e-10 8.433396929e-10 1.043800326e-09 1.252798759e-09 9.458564965e-10 6.954172736e-10 1.062409714e-09 1.491280002e-09 1.35157178e-09 1.418421463e-09 1.374738128e-09 1.170092617e-09 1.851399998e-09 9.862982942e-10 1.424039383e-09 1.89805628e-09 9.979037503e-10 4.997638692e-10 8.785222317e-10 7.402157036e-10 6.801768322e-10 9.191094602e-10 1.116214034e-09 6.674177766e-10 1.003469008e-09 1.333178199e-09 1.246168753e-09 1.331942804e-09 8.01185375e-10 6.910314756e-10 9.269409466e-10 1.525401915e-09 1.599506772e-09 1.288729824e-09 1.461036525e-09 6.602656884e-10 1.052361914e-09 1.063831265e-09 2.936993518e-10 1.341265887e-09 8.736997537e-10 5.738100372e-10 6.973076929e-10 6.98889572e-10 5.026378122e-10 2.851464131e-10 4.132573272e-10 3.557197087e-10 3.35075379e-10 7.925379852e-10 4.096209669e-10 8.230838543e-10 6.431935533e-10 4.730002683e-10 4.630510239e-10 4.539685058e-10 3.221263822e-10 7.118903023e-10 3.592983987e-10 3.880220143e-10 2.916021888e-10 1.964439762e-10 3.805071663e-10 4.980853369e-10 6.598499713e-10 3.116515282e-10 3.593561366e-10 1.007542954e-09 6.909589444e-10 3.630774439e-10 3.995349471e-10 6.490089839e-10 3.427233758e-10 2.200729598e-10 8.450948623e-10 4.127978907e-10 4.641029582e-10 5.184538852e-10 +2.435562893e-10 2.56639247e-10 7.627004563e-10 4.724907169e-10 1.745174827e-10 3.660374171e-10 3.872202955e-10 2.896059745e-10 4.654318089e-10 5.446243364e-10 3.769819736e-10 7.635899255e-10 1.257864567e-10 6.756247747e-10 2.662112003e-10 2.873646981e-10 5.414048443e-10 3.58421064e-10 5.341929596e-10 3.050939807e-10 4.178860826e-10 3.031778595e-10 5.164257277e-10 5.7132119e-10 1.490692367e-09 9.560290985e-10 4.374308447e-10 7.210044084e-10 6.644207017e-10 1.844938614e-10 5.932205521e-10 1.008533338e-09 7.681449688e-10 3.611677927e-10 3.472222252e-10 6.419145344e-10 6.161105191e-10 8.535551345e-10 1.05396098e-09 1.012686283e-09 6.664738059e-10 5.723177481e-10 1.081219183e-09 1.044898402e-09 2.245714228e-09 1.194609208e-09 7.788373368e-10 1.144815618e-09 1.236053525e-09 6.767096841e-10 9.15544828e-10 1.458886322e-09 1.340040708e-09 1.765002858e-09 1.129955352e-09 1.177633227e-09 1.06470261e-09 1.500553014e-09 4.311011018e-10 3.954686472e-10 9.249263243e-10 8.553733135e-10 8.243922876e-10 9.346864063e-10 1.033862927e-09 1.059261832e-09 9.898610885e-10 1.16788226e-09 1.840643249e-09 1.364802867e-09 1.284991353e-09 1.037971316e-09 8.912434412e-10 4.874180365e-10 1.350163747e-09 1.366916367e-09 6.518292684e-10 1.259106916e-09 1.323904359e-09 1.834058202e-09 2.037996167e-09 2.403978654e-09 3.058521008e-09 1.952525803e-09 2.365094576e-09 1.827590741e-09 1.829971935e-09 1.185097372e-09 2.528089467e-09 2.347234128e-09 1.328558099e-09 1.599072875e-09 1.003542961e-09 1.515035471e-09 1.471377659e-09 7.427889411e-10 4.78125257e-10 4.480261315e-10 9.165530525e-10 8.250009302e-10 2.234325962e-09 3.377850278e-09 3.87216228e-09 2.548070366e-09 1.329460058e-09 3.386241645e-09 3.134433913e-09 1.231812467e-09 3.285714736e-09 3.512775097e-09 3.524593542e-09 2.791202904e-09 2.516298444e-09 2.437839091e-09 1.750461611e-09 1.591563589e-09 1.652748027e-09 1.375159697e-09 7.232737483e-10 9.221814895e-11 3.399902728e-11 1.149601214e-10 0 1.525488071e-09 2.187273528e-09 3.005050402e-09 2.922354141e-09 4.093360539e-09 5.587906706e-09 9.488494916e-09 7.234498594e-09 6.095682816e-09 6.316168533e-09 5.527729617e-09 3.488597788e-09 1.219015639e-09 1.826892624e-35 0 3.875619693e-11 0 3.222672348e-10 2.571137456e-12 2.961417622e-10 3.103171225e-10 1.51182245e-10 1.160766571e-10 3.78781006e-27 2.101463773e-10 1.862455196e-10 1.058249236e-10 9.428718595e-11 3.321471137e-11 4.017493159e-10 9.813711655e-11 2.200293817e-10 1.696863179e-10 1.784094836e-10 9.632286602e-13 1.624891538e-10 2.921998646e-10 4.511643597e-10 2.834054965e-10 3.632423159e-10 1.189600523e-10 4.673484591e-10 2.247823576e-09 4.986227257e-09 7.335679035e-09 4.941353298e-09 6.53452656e-09 6.734308105e-09 6.278479878e-09 2.963332385e-09 3.614529502e-09 1.46996819e-09 2.587043576e-09 2.719410127e-09 5.934898038e-10 2.006972458e-10 3.732068908e-10 2.771096836e-10 5.91640004e-10 1.089115616e-09 1.135298881e-09 1.753782845e-09 2.140444527e-09 1.345197473e-09 1.493928492e-09 2.527861259e-09 3.221121032e-09 3.789071899e-09 2.600077825e-09 2.526768482e-09 3.037920839e-09 3.04123438e-09 3.075924584e-09 1.976380664e-09 2.666422659e-09 3.388855987e-09 1.861708159e-09 6.601209748e-10 1.233688098e-09 7.520967606e-10 5.025147875e-10 7.843504014e-10 1.610192338e-09 1.668328934e-09 1.248586072e-09 1.231747309e-09 1.582992554e-09 2.046991167e-09 1.038166962e-09 1.619257431e-09 1.452238839e-09 1.783811893e-09 1.993691383e-09 1.317852425e-09 2.36731912e-09 2.435597793e-09 1.768868167e-09 1.487572682e-09 1.74365246e-09 6.739111691e-10 9.233351768e-10 8.35669375e-10 9.234958385e-10 1.425440221e-09 7.297036199e-10 1.221719314e-09 1.234875948e-09 1.100757075e-09 9.846855926e-10 1.200437315e-09 1.161770178e-09 1.415365591e-09 1.830015584e-09 1.031509618e-09 7.039529801e-10 6.296267954e-10 6.619224238e-10 8.604984516e-10 1.100160868e-09 1.822549967e-09 1.372353024e-09 1.385857421e-09 7.439354473e-10 8.876253449e-10 1.342342764e-09 4.441269931e-10 9.939619031e-10 1.483551066e-09 5.985238386e-10 9.228600703e-10 1.105501721e-09 1.243605648e-09 1.465082366e-09 8.402869805e-10 1.722116845e-09 9.280669415e-10 5.408698436e-10 1.200860365e-09 6.567298281e-10 5.043969754e-10 5.9325807e-10 4.400508177e-10 5.428391581e-10 3.128873019e-10 6.03214681e-10 8.767347543e-10 5.928844896e-10 5.883155572e-10 6.145546459e-10 5.330289406e-10 4.924893258e-10 6.217866762e-10 2.411393172e-10 6.983035681e-10 4.648244394e-10 4.578631783e-10 2.579179278e-10 9.514613405e-10 2.572865281e-10 6.332288685e-10 6.876431955e-10 1.005425817e-09 4.464343368e-10 4.240981648e-10 4.273406173e-10 6.586458919e-10 4.058278776e-10 4.020646897e-10 1.533585963e-10 1.506844567e-10 4.050815533e-10 9.351141982e-10 3.155742569e-10 2.445342214e-10 4.743605837e-10 5.186464195e-10 2.461934601e-10 +2.079550581e-10 1.865206276e-10 5.466592016e-10 5.479582706e-10 4.391555487e-10 3.041742273e-10 4.82978297e-10 2.872830054e-10 8.682535876e-10 5.169759981e-10 2.493962191e-10 5.348906571e-10 3.444399348e-10 3.683264284e-10 4.974585014e-10 2.892942835e-10 4.536903297e-10 2.271090579e-10 8.403086502e-10 2.031238879e-10 2.629510763e-10 1.942274564e-10 2.51569477e-10 5.997056188e-10 3.693498398e-10 6.744550532e-10 3.050977593e-10 3.796083784e-10 4.354300856e-10 8.854474528e-10 4.96984148e-10 4.214688335e-10 3.402165246e-10 2.127120817e-10 4.204627385e-10 4.625166359e-10 7.066127341e-10 2.470666883e-10 6.815203753e-10 5.682290028e-10 3.366803377e-10 1.272684288e-09 8.926438293e-10 6.628166669e-10 1.39039314e-09 5.41402586e-10 9.219336476e-10 1.317842896e-09 1.396164416e-09 9.432842557e-10 8.692662066e-10 2.031385587e-09 1.228739943e-09 1.03961299e-09 1.37553659e-09 1.197486533e-09 8.015476491e-10 5.527339721e-10 5.338235436e-10 9.704404626e-10 8.240868782e-10 1.084336152e-09 8.281834863e-10 1.601157751e-09 1.026572936e-09 1.396246065e-09 1.437267273e-09 1.037184508e-09 1.298695434e-09 2.112452683e-09 1.119527768e-09 6.043959684e-10 1.157077463e-09 9.316527827e-10 1.793861494e-09 1.289231207e-09 7.880159193e-10 9.735699995e-10 1.38530575e-09 1.548971331e-09 1.566243453e-09 2.43796386e-09 2.411011603e-09 2.785510314e-09 1.128783448e-09 1.521128836e-09 1.888106982e-09 2.342253859e-09 1.433551092e-09 1.270367468e-09 2.171883256e-09 1.564722212e-09 1.678172855e-09 2.188235427e-09 1.252437195e-09 1.062748828e-09 4.512048295e-10 5.085666857e-10 1.284495731e-09 1.160693126e-09 2.729496605e-09 3.175859985e-09 2.390311188e-09 1.600980954e-09 2.865513216e-09 3.067426438e-09 2.103162756e-09 2.743510841e-09 2.488001089e-09 3.756985312e-09 2.661484511e-09 2.252717268e-09 2.110313679e-09 1.659284732e-09 1.964326697e-09 2.309905896e-09 1.557539911e-09 1.473846924e-09 3.829359099e-10 2.18119545e-11 1.388540488e-10 4.069417228e-11 8.535395191e-10 2.654483703e-09 3.785098857e-09 3.974639621e-09 2.686199144e-09 5.730967613e-09 7.530425269e-09 7.882872841e-09 8.488901597e-09 5.809437396e-09 6.348386637e-09 3.400427078e-09 1.686997491e-09 4.684185197e-11 4.310429228e-10 1.694834311e-10 4.875190158e-10 1.19116528e-11 2.514181635e-10 2.358533941e-10 2.955034992e-10 2.703668406e-10 3.669740981e-10 1.064382583e-10 7.513993089e-11 2.153231513e-10 8.19184855e-11 2.847067252e-10 3.364585769e-10 9.262234955e-11 1.303458654e-10 1.581734834e-10 1.447934786e-11 1.315440775e-16 1.039814276e-11 3.523813771e-10 3.327410925e-10 6.465392412e-10 1.593367643e-10 2.293134665e-10 3.574325302e-10 1.033076584e-10 5.794699547e-11 1.212454962e-09 2.709109357e-09 3.628426003e-09 6.620636364e-09 5.951617008e-09 7.112288894e-09 6.930195047e-09 3.991544695e-09 3.48699757e-09 2.847120231e-09 3.479274034e-09 1.944117139e-09 5.088290033e-10 1.941433285e-10 3.624496364e-10 4.448749501e-10 3.835848252e-10 1.39835044e-09 1.79298565e-09 1.749258828e-09 2.895409106e-09 1.412234057e-09 1.991182817e-09 2.65160571e-09 3.25031022e-09 4.654942571e-09 3.204685769e-09 2.396060707e-09 2.304352273e-09 3.234586753e-09 3.251315617e-09 3.145571376e-09 3.286672949e-09 2.521116788e-09 2.072078731e-09 1.947559317e-09 1.196618913e-09 3.999648127e-10 2.583498292e-10 8.919571516e-10 1.010131329e-09 1.39399087e-09 1.093631017e-09 1.280148315e-09 1.225421531e-09 1.387804151e-09 2.247291e-09 2.137142669e-09 1.712111837e-09 2.94603659e-09 1.61116764e-09 1.938493432e-09 2.75116316e-09 2.32873749e-09 2.072539462e-09 1.628068436e-09 5.29591376e-10 7.694591386e-10 7.348670393e-10 8.950886548e-10 8.591324148e-10 1.208551142e-09 9.105530896e-10 1.068588732e-09 1.309515446e-09 1.495583616e-09 1.287642438e-09 1.141642228e-09 9.283399194e-10 1.550521982e-09 1.06664446e-09 1.121113297e-09 1.277090269e-09 1.212581387e-09 7.940590901e-10 9.645179133e-10 1.523788227e-09 8.02267132e-10 5.544574189e-10 1.112172428e-09 7.484397135e-10 1.211557091e-09 1.044231468e-09 1.032527328e-09 9.239875684e-10 4.459975806e-10 6.402808017e-10 8.763428682e-10 7.81857665e-10 1.576045267e-09 1.242130435e-09 8.893964785e-10 6.973410841e-10 1.469096599e-09 1.20764629e-09 7.062257478e-10 1.214271441e-09 4.246876099e-10 2.730830329e-10 6.699872696e-10 9.913454104e-10 6.636548996e-10 1.021495495e-09 3.222581263e-10 4.005821519e-10 8.051743436e-10 4.504473351e-10 5.038993748e-10 3.629145019e-10 7.021691753e-10 8.224160152e-10 6.921332837e-10 3.694252684e-10 3.251505924e-10 4.108506667e-10 1.982588337e-10 6.060658014e-10 4.518269199e-10 5.214767111e-10 1.940058507e-10 5.660498241e-10 4.23775649e-10 5.230409421e-10 2.233514295e-10 5.568842014e-10 6.989105019e-10 4.891960041e-11 6.072693021e-10 5.039988168e-10 3.013764563e-10 4.789093512e-10 3.662842989e-10 3.247503877e-10 3.778337933e-10 6.39126058e-10 +6.707577765e-10 2.28593121e-10 5.171878143e-10 7.380887734e-10 7.407825229e-10 4.045697265e-10 6.7802762e-10 5.323356687e-10 1.795200526e-10 4.206954605e-10 2.175841921e-10 2.130847571e-10 7.793776058e-10 4.395990497e-10 4.700452082e-10 4.625837892e-10 1.689334754e-10 2.620789796e-10 9.09978043e-10 3.195460099e-10 3.466204602e-10 5.231131769e-10 7.306001868e-10 1.493520685e-09 4.000156849e-10 5.186527378e-10 4.243221505e-10 7.312763343e-10 6.647014726e-10 7.807914886e-10 2.976231079e-10 7.258657204e-10 4.290260118e-10 2.396047018e-10 5.505037164e-10 7.353960268e-10 5.054205154e-10 4.005589444e-10 4.970911896e-10 5.521934597e-10 6.129780401e-10 1.273304744e-09 9.852913491e-10 9.476033292e-10 1.0504324e-09 9.931658464e-10 6.862186414e-10 5.901890285e-10 5.798167112e-10 9.668343952e-10 5.691026232e-10 1.28289376e-09 1.096172013e-09 1.010047373e-09 9.293333758e-10 1.97867899e-09 1.626071833e-09 1.117502894e-09 1.143787317e-09 7.256226179e-10 1.049801241e-09 1.375624308e-09 1.533437265e-09 8.647415743e-10 1.589762698e-09 1.47165646e-09 1.053080321e-09 9.316187644e-10 1.323622526e-09 1.656026884e-09 1.077507976e-09 5.03090365e-10 1.426387063e-09 1.067514543e-09 6.996480476e-10 1.084308218e-09 9.616013361e-10 8.355715096e-10 1.110717192e-09 1.219174258e-09 1.22421669e-09 3.097806413e-09 3.042942834e-09 1.287434267e-09 1.596270901e-09 2.233048946e-09 2.318969679e-09 1.551739196e-09 2.24899661e-09 1.3768435e-09 2.098884918e-09 1.192675194e-09 1.181525115e-09 1.862878008e-09 1.198644686e-09 1.244213979e-09 4.323290284e-10 1.336650891e-10 5.244528157e-10 1.053622758e-09 2.042948882e-09 2.211587942e-09 3.329615104e-09 3.658318011e-09 2.121942117e-09 3.153283671e-09 2.391782103e-09 2.581220158e-09 3.566354098e-09 3.9623793e-09 4.353043873e-09 2.500710302e-09 2.118446303e-09 1.33691969e-09 2.230218743e-09 1.716597758e-09 7.525141007e-10 1.681628212e-09 1.325095787e-10 2.979110915e-10 1.517706016e-10 5.275035283e-11 6.813643418e-10 1.650731843e-09 3.609881322e-09 2.940534207e-09 2.815114005e-09 5.111044631e-09 9.020152707e-09 6.258152195e-09 7.038706911e-09 5.926040423e-09 3.676162118e-09 3.287208813e-09 9.922800623e-10 2.886947841e-10 1.836374802e-10 7.663297532e-11 3.779026287e-10 1.216101881e-10 2.031011726e-10 2.744001297e-10 1.430631069e-10 2.002790879e-10 8.987672887e-11 9.216509693e-11 2.71460351e-10 4.69206429e-13 8.693341604e-11 2.68220159e-10 1.849526946e-10 3.269809912e-10 1.596698676e-10 8.888884867e-11 6.125578581e-10 6.928179799e-11 1.827891558e-10 1.773896738e-10 1.064987798e-10 1.027934849e-10 2.962816326e-10 4.274066346e-10 1.387258286e-10 7.48260346e-11 3.144072568e-10 6.570906409e-10 3.877241502e-09 4.506276112e-09 4.607402088e-09 6.287484502e-09 7.591861902e-09 6.356008265e-09 4.820080848e-09 3.081525139e-09 2.973145524e-09 3.314718621e-09 2.821921577e-09 1.088598248e-09 2.02288586e-10 2.528634717e-10 3.423292182e-10 3.430293546e-10 1.083508982e-09 2.775636549e-09 1.482476006e-09 2.431111164e-09 2.092713611e-09 1.920057654e-09 2.096341695e-09 2.833869369e-09 3.812885992e-09 2.98930352e-09 2.819091911e-09 2.587068629e-09 2.373240412e-09 3.090046895e-09 2.877321686e-09 2.564150479e-09 4.293617618e-09 1.846181334e-09 1.03071193e-09 5.477284592e-10 4.707017464e-10 7.385263126e-10 1.169698709e-09 1.314644344e-09 1.497592087e-09 1.80768056e-09 1.3237879e-09 1.836000653e-09 2.011350186e-09 1.622635245e-09 2.019607161e-09 1.411425014e-09 1.931085667e-09 2.440088534e-09 1.55955975e-09 2.185060486e-09 2.360802946e-09 1.236270953e-09 1.638540084e-09 1.596754037e-09 1.228965037e-09 8.903880622e-10 1.021950754e-09 6.222055939e-10 1.327745356e-09 7.228581349e-10 1.267585525e-09 1.448909644e-09 1.03700199e-09 1.26446034e-09 5.620148955e-10 8.178118015e-10 8.051008498e-10 1.015357582e-09 1.092357825e-09 1.478120918e-09 1.092053999e-09 1.312923991e-09 1.289063735e-09 1.037231093e-09 9.639129721e-10 1.042461324e-09 9.949243357e-10 1.40393393e-09 9.854568723e-10 1.228085949e-09 1.245345864e-09 1.280636792e-09 9.835613578e-10 1.228354589e-09 6.271407439e-10 8.020421817e-10 8.343652816e-10 1.376222942e-09 1.128422866e-09 1.103717665e-09 6.990067526e-10 5.807625628e-10 9.338312357e-10 3.04536932e-10 4.920007024e-10 3.261040257e-10 5.684804761e-10 6.235418772e-10 9.128069728e-10 5.599644546e-10 6.07727524e-10 8.043476825e-10 7.021328983e-10 4.106417839e-10 5.129036741e-10 7.039622225e-10 3.857186984e-10 5.008098333e-10 2.897193362e-10 4.570045163e-10 1.923452453e-10 4.943738515e-10 1.15405522e-10 2.554619596e-10 4.247708202e-10 2.707901846e-10 1.12328444e-10 4.260036813e-10 4.333410824e-10 3.067469388e-10 1.172155058e-09 2.483868857e-10 4.222210562e-10 6.314911156e-10 2.762680623e-10 5.530741617e-10 1.702117271e-10 2.578467958e-10 5.658988616e-10 4.216772485e-10 1.918197776e-10 3.543328806e-10 +5.840163288e-10 1.689905236e-10 7.694866768e-10 8.706643444e-10 6.419886301e-10 7.814819015e-10 6.609447705e-10 4.447939535e-10 2.090138322e-10 3.457013258e-10 8.729573767e-10 5.901358909e-10 7.067362178e-10 2.102733779e-10 5.757259928e-10 4.780398907e-10 5.13579286e-10 2.432655275e-10 2.311896399e-10 4.237513375e-10 2.324564705e-10 6.072438502e-10 4.29828675e-10 7.208650774e-10 3.701352672e-10 7.449595466e-10 1.01680713e-09 8.861669908e-10 5.409351933e-10 4.292738979e-10 6.874957422e-10 3.331925775e-10 8.001811572e-10 3.850793136e-10 4.044627328e-10 1.396405651e-09 3.509195601e-10 5.001037719e-10 5.680129341e-10 5.461158785e-10 1.121342053e-09 8.539535502e-10 1.028787118e-09 1.451471381e-09 1.667985751e-09 1.30078506e-09 1.517891952e-09 9.861919895e-10 5.021607553e-10 1.101295025e-09 1.160198531e-09 7.330261795e-10 1.763926365e-09 8.250012455e-10 1.555582735e-09 1.167751805e-09 7.821842744e-10 9.353893768e-10 3.983892252e-10 9.713418005e-10 1.008288638e-09 5.486080785e-10 1.269755759e-09 8.344312131e-10 2.013285897e-09 9.817812949e-10 7.33789458e-10 8.200962786e-10 8.720473043e-10 1.638472288e-09 1.478418588e-09 1.230423381e-09 8.76290546e-10 1.376310383e-09 1.328627566e-09 9.918623822e-10 1.128906626e-09 1.376770654e-09 1.466160529e-09 1.140016928e-09 1.082162917e-09 2.568790529e-09 1.732414295e-09 2.747385663e-09 2.693395346e-09 2.480437552e-09 1.230015571e-09 1.968493626e-09 1.875774004e-09 1.738575007e-09 1.435124008e-09 1.056141373e-09 1.49555445e-09 1.320284099e-09 1.421985471e-09 8.680309935e-10 5.359756548e-10 8.179007679e-10 1.054079884e-09 1.039381343e-09 1.711926226e-09 2.844879374e-09 3.877317472e-09 3.356567268e-09 2.228601289e-09 2.154158745e-09 2.071544723e-09 1.848507971e-09 2.372143867e-09 3.556852002e-09 2.612721757e-09 3.564871577e-09 2.37125091e-09 2.424343124e-09 2.24830325e-09 1.399647989e-09 1.807887036e-09 9.196415854e-10 4.885176591e-10 1.854673278e-10 1.436602652e-10 5.283427961e-10 9.417466063e-10 2.678458976e-09 4.135380421e-09 4.296576403e-09 3.426642786e-09 7.598238712e-09 9.355901363e-09 5.827599089e-09 6.487368416e-09 5.99334132e-09 4.946731107e-09 2.08949461e-09 9.368967942e-10 2.629690579e-10 1.362412771e-10 2.36873704e-10 2.406428234e-10 2.892785836e-10 8.527393743e-11 2.141825469e-10 2.909119423e-10 8.769872388e-11 3.407567655e-10 3.729076782e-10 2.443414024e-10 2.544123408e-10 8.490838373e-11 7.310647304e-11 1.841221658e-10 1.568896887e-10 1.994948129e-10 2.7965498e-10 1.553116936e-10 3.218403024e-10 1.797861175e-10 1.724824741e-10 3.257523022e-11 4.182583554e-10 0 1.732652467e-10 2.895421242e-10 1.929799895e-10 1.702161773e-10 6.588080222e-11 2.676071745e-09 3.000545504e-09 5.351298749e-09 5.794711807e-09 7.499344472e-09 8.649975646e-09 7.671013918e-09 3.422477407e-09 2.447113588e-09 2.90916114e-09 3.001347811e-09 1.182210879e-09 3.563366692e-10 3.658371617e-10 2.543274251e-10 3.750393352e-10 7.29512816e-10 2.141158248e-09 1.598692022e-09 2.057354916e-09 2.017387864e-09 2.079834112e-09 2.359092729e-09 3.562383909e-09 3.30484834e-09 1.498336594e-09 3.980280875e-09 2.208016562e-09 3.01169762e-09 3.45278837e-09 2.966247307e-09 3.364486708e-09 2.730967215e-09 2.333631256e-09 9.681792251e-10 5.133366118e-10 6.732394268e-10 5.678493343e-10 9.577516588e-10 1.1163596e-09 1.761174942e-09 2.081985458e-09 1.982500809e-09 1.628789432e-09 1.31491173e-09 1.058572342e-09 1.527341017e-09 2.006233979e-09 2.421875916e-09 1.82595119e-09 1.533127149e-09 2.361491136e-09 2.721359836e-09 9.666087099e-10 1.432807192e-09 7.741313995e-10 9.499032433e-10 9.619703811e-10 8.111308627e-10 1.781547905e-09 9.441667781e-10 8.531966561e-10 1.476161889e-09 1.610543356e-09 1.315596633e-09 1.24058385e-09 1.253053072e-09 9.567788214e-10 9.743619042e-10 1.434159061e-09 1.224441968e-09 1.260309712e-09 1.057881506e-09 8.241319054e-10 5.731531915e-10 5.990139953e-10 1.042810596e-09 3.327663691e-10 1.190162517e-09 1.016948388e-09 1.220697074e-09 6.476587664e-10 1.046255464e-09 1.213970171e-09 1.229288064e-09 9.264721743e-10 1.470201145e-09 1.013950511e-09 8.893424633e-10 8.948649471e-10 5.192017804e-10 8.380066152e-10 7.47467028e-10 1.254953793e-09 1.087058769e-09 6.160943244e-10 4.545297848e-10 1.050433997e-09 3.28521028e-10 6.867039168e-10 4.424415729e-10 5.661554739e-10 2.475984314e-10 6.423322599e-10 2.867742413e-10 3.247764427e-10 4.484062716e-10 5.418969895e-10 5.021280478e-10 5.247904855e-10 9.780402615e-10 3.602536564e-10 3.417292061e-10 6.990429639e-10 3.384199308e-10 2.133483418e-10 2.149973058e-10 3.751615999e-10 3.218872564e-10 7.481310228e-10 4.374128443e-10 2.002834608e-10 7.93143609e-10 5.912070322e-10 4.740752443e-10 3.382198112e-10 2.933772515e-10 2.986879508e-10 5.677602784e-10 4.767898849e-10 4.315382766e-10 1.116102355e-10 8.534537257e-10 3.467826279e-10 +4.955787194e-10 4.830462383e-10 4.028323078e-10 3.116664876e-10 8.574720514e-10 2.27227135e-10 4.794783364e-10 5.201733245e-10 3.719507915e-10 6.984001715e-10 6.192319484e-10 1.035949574e-10 3.961219874e-10 4.670980038e-10 6.524638885e-10 1.236032058e-10 6.734368727e-10 1.80346691e-10 3.161125273e-10 9.281264616e-10 3.178480367e-10 5.555081081e-10 7.400861791e-10 6.457448044e-10 8.592567719e-10 4.648135405e-10 6.48728857e-10 1.143394227e-09 6.739159092e-10 8.531915559e-10 4.961515943e-10 7.885135804e-10 4.834544206e-10 6.154231216e-10 4.261746354e-10 5.417612332e-10 8.413117762e-10 4.242237553e-10 2.559341489e-10 8.651896559e-10 1.006755391e-09 1.304709629e-09 1.464929188e-09 1.298354292e-09 7.832631522e-10 8.807610027e-10 1.310936639e-09 8.364227427e-10 6.429879954e-10 9.906721493e-10 1.64681664e-09 8.103748653e-10 1.344660723e-09 1.14363881e-09 1.05470944e-09 9.757616846e-10 1.596259238e-09 1.047112628e-09 7.854045396e-10 3.137794497e-10 1.011888038e-09 9.603338052e-10 1.740472922e-09 5.81261259e-10 1.292197855e-09 1.425558548e-09 1.334566008e-09 1.159359121e-09 1.148868869e-09 1.136548788e-09 9.354126775e-10 1.576363547e-09 9.6255705e-10 8.770096491e-10 1.372640666e-09 8.164533815e-10 4.172519481e-10 9.197626548e-10 1.173027276e-09 1.922089286e-09 1.780555412e-09 1.750313911e-09 1.779674532e-09 2.322429187e-09 2.596407523e-09 1.607766178e-09 2.207488062e-09 1.466437594e-09 1.486615901e-09 1.580753946e-09 1.773502757e-09 1.84959059e-09 2.184105906e-09 1.633767331e-09 1.057047027e-09 7.334218598e-10 4.656364611e-10 5.908618725e-10 1.523620573e-09 7.509434887e-10 1.15545226e-09 3.40703675e-09 3.274955619e-09 3.790703033e-09 3.234215161e-09 2.127040436e-09 2.160957711e-09 1.399634318e-09 3.341650446e-09 4.262257277e-09 2.047565491e-09 2.1030152e-09 1.614103575e-09 1.460460479e-09 1.66547099e-09 9.572558593e-10 2.026681887e-09 7.718058857e-10 2.513339289e-10 1.560252636e-10 1.230796675e-10 2.886935687e-10 2.090582934e-09 2.643664486e-09 3.387042304e-09 2.565892631e-09 3.623186039e-09 5.639371106e-09 6.711139682e-09 7.011213063e-09 6.410359263e-09 5.726232215e-09 2.302979764e-09 1.332143708e-09 2.682837662e-10 7.605791526e-11 1.714379166e-10 2.071571588e-10 9.724875501e-11 2.32772412e-10 3.827014901e-10 1.664435812e-10 2.295688021e-10 1.180974622e-12 1.851756697e-10 2.057150342e-10 1.400272519e-10 1.543124807e-10 2.675836806e-10 1.081886318e-10 7.286435781e-11 9.869762908e-11 3.952906977e-10 1.534986529e-10 2.918415368e-10 1.015570229e-10 1.620580719e-10 4.375746182e-10 2.358745304e-10 2.750066803e-10 1.618123669e-10 2.184990526e-10 2.868167463e-10 0 9.114694604e-11 7.946261008e-11 1.379450182e-09 4.530374899e-09 5.077580091e-09 4.564239545e-09 8.340837967e-09 8.625529197e-09 6.545674702e-09 3.969236147e-09 3.372464848e-09 3.443608913e-09 3.048305489e-09 1.17536481e-09 4.044449429e-10 2.830285492e-10 1.439338901e-11 1.374018266e-10 1.06948533e-09 1.528107697e-09 1.823586029e-09 1.725056164e-09 1.435089172e-09 2.076733954e-09 2.202034816e-09 4.240987568e-09 2.941223439e-09 2.907667194e-09 2.357607102e-09 3.254998074e-09 3.475933489e-09 3.648168555e-09 2.37613381e-09 2.761387143e-09 3.053665339e-09 3.637461979e-09 1.747315763e-09 3.201604277e-10 6.186198918e-10 4.537701075e-10 1.084824946e-09 1.138705576e-09 1.436622906e-09 1.809090954e-09 1.837972611e-09 1.722349418e-09 2.085168127e-09 1.358231452e-09 1.911093037e-09 9.349457734e-10 1.117624222e-09 1.860068545e-09 1.346224552e-09 1.972459922e-09 3.028297229e-09 1.971619551e-09 1.806589633e-09 2.291708423e-09 1.098671662e-09 1.041031594e-09 1.441930425e-09 1.088010599e-09 2.073197789e-09 5.797478867e-10 1.820933797e-09 1.085195273e-09 7.150757022e-10 8.22095166e-10 9.501670336e-10 7.723287097e-10 9.750981884e-10 1.126725521e-09 1.486750788e-09 5.262997125e-10 3.663224744e-10 6.97271217e-10 1.192155694e-09 1.220758549e-09 1.056027432e-09 7.302434362e-10 1.067827968e-09 9.75346128e-10 9.404634815e-10 1.20802794e-09 9.488054434e-10 1.51621598e-09 1.191312869e-09 9.07197263e-10 1.332068837e-09 5.920563016e-10 8.71712806e-10 1.213788191e-09 1.743634059e-09 1.122737688e-09 1.685224364e-09 7.472858203e-10 7.844783149e-10 5.916392679e-10 4.78581509e-10 7.881152696e-10 2.388180684e-10 8.384492848e-10 5.695395651e-10 2.461076938e-10 6.871709874e-10 3.327381178e-10 5.353400849e-10 2.890521111e-10 2.333701994e-10 3.687093069e-10 5.739603658e-10 3.612896915e-10 6.440312326e-10 3.036500182e-10 4.225511752e-10 1.759748381e-10 2.153004234e-10 6.597011417e-10 2.143763661e-10 3.781437917e-10 7.558020142e-10 5.100996431e-10 5.279471128e-10 3.251362321e-10 3.742903942e-10 7.417729039e-10 4.763935004e-10 2.444968924e-10 3.806679919e-10 7.194089233e-10 1.606797856e-10 2.976664978e-10 5.196472508e-10 3.889421381e-10 2.077863825e-10 2.953192481e-10 +3.554708233e-10 4.419899731e-10 1.605823199e-10 9.472326542e-10 2.301363452e-10 3.077938412e-10 5.165492776e-10 3.635577448e-10 3.34225723e-10 4.631970759e-10 7.084554751e-10 1.136345748e-09 4.76017183e-10 4.358260408e-10 3.478857772e-10 4.530797012e-10 1.144309533e-09 2.366428614e-10 1.813638961e-10 4.321128684e-10 1.900642971e-10 4.791390521e-10 3.522864255e-10 5.441808054e-10 1.189134485e-09 4.062964258e-10 4.923406532e-10 3.873833164e-10 5.971246504e-10 2.916863983e-10 9.372881544e-10 3.666486523e-10 2.651903108e-10 9.145459271e-10 6.514222552e-10 5.989221151e-10 9.066020133e-10 1.288572314e-09 7.23461607e-10 5.060108965e-10 7.862233594e-10 8.135754776e-10 1.120900417e-09 1.503680034e-09 1.208407778e-09 1.459855558e-09 1.131031204e-09 8.673048959e-10 2.093704036e-09 6.968901135e-10 1.355040751e-09 5.964468516e-10 1.53077986e-09 8.654862899e-10 1.326496839e-09 1.19165859e-09 7.728003688e-10 1.002693742e-09 8.658061489e-10 4.005733739e-10 8.750963169e-10 7.69620958e-10 1.21815269e-09 7.641111455e-10 8.575163291e-10 2.111836387e-09 7.595065294e-10 9.145350427e-10 1.15322598e-09 1.525093635e-09 5.720387614e-10 1.567035915e-09 1.214724597e-09 1.337001876e-09 1.527381308e-09 1.044088527e-09 1.862975202e-09 1.520384339e-09 1.322731935e-09 1.316225031e-09 1.413070238e-09 3.084583468e-09 1.852320145e-09 2.204556052e-09 2.209126557e-09 1.634342295e-09 1.674772294e-09 2.050773635e-09 1.653582968e-09 1.38067288e-09 1.507917498e-09 1.896921229e-09 1.388001337e-09 2.052861342e-09 1.2849147e-09 8.696832442e-10 5.632712861e-10 7.926041217e-10 7.974277331e-10 1.46490384e-09 3.059513352e-09 1.162756982e-09 2.972456204e-09 1.117756931e-09 3.541380821e-09 3.33514227e-09 1.652569268e-09 2.356182538e-09 3.806732911e-09 2.762625673e-09 4.401527672e-09 1.24481797e-09 1.449489035e-09 2.970260186e-09 1.993050239e-09 1.748233569e-09 1.591122069e-09 2.873241076e-10 1.61429334e-10 2.748697315e-10 5.023583322e-10 8.808984421e-11 2.548458884e-09 3.129788429e-09 3.828668294e-09 2.553487922e-09 4.884363733e-09 8.470586648e-09 6.258165935e-09 6.936994833e-09 7.624501546e-09 5.729475127e-09 2.137328336e-09 1.078842028e-09 2.190957327e-10 1.663781934e-10 8.851215708e-11 2.60433259e-10 1.148180541e-16 0 2.521682283e-10 1.846915238e-10 2.232573704e-12 9.481161537e-13 2.759053231e-10 7.412786119e-11 3.46296213e-10 9.373457037e-11 3.01637782e-10 2.201452816e-10 3.064093806e-10 1.657454071e-10 1.432030586e-10 3.75400459e-13 9.536057721e-11 9.355088959e-11 4.385259254e-10 0 2.064884591e-10 1.832188046e-10 3.48551595e-10 2.422440128e-10 8.644406489e-11 4.06960825e-10 1.646457602e-10 2.88824448e-10 5.884658766e-10 1.972811581e-09 4.944339354e-09 5.456123439e-09 6.277105418e-09 9.282591261e-09 7.551307956e-09 5.352731748e-09 3.956298286e-09 2.470609158e-09 2.58199039e-09 2.613379998e-09 1.196518717e-10 1.30192491e-18 4.515342218e-10 1.413655032e-10 4.133700424e-10 1.768541832e-09 2.080091411e-09 2.054775875e-09 1.480910766e-09 1.627082024e-09 2.075088081e-09 2.630314468e-09 3.120114539e-09 2.87746797e-09 3.608536892e-09 2.459380624e-09 2.579402157e-09 1.892074594e-09 2.631736523e-09 3.591932115e-09 2.446698593e-09 2.994180236e-09 2.079574785e-09 6.709747425e-10 8.454331717e-10 7.012803347e-10 1.05772795e-09 1.028970769e-09 2.002557073e-09 1.229164049e-09 1.251580263e-09 1.776365808e-09 2.353996634e-09 1.25975067e-09 1.519685194e-09 1.819879082e-09 1.892475799e-09 2.114949505e-09 1.275022358e-09 1.690819299e-09 1.920987737e-09 1.373007776e-09 1.637280308e-09 1.293082663e-09 1.675459249e-09 1.35008975e-09 5.589870316e-10 1.201362321e-09 7.357488344e-10 1.028585714e-09 1.388419717e-09 1.261575375e-09 1.981606876e-09 1.056170808e-09 1.597753763e-09 1.022248991e-09 1.233552464e-09 1.503456473e-09 1.127340917e-09 1.416836483e-09 9.798280797e-10 1.075051615e-09 7.532397106e-10 1.079885257e-09 1.240180084e-09 1.045164978e-09 1.118475198e-09 9.091084101e-10 1.038182941e-09 9.019281676e-10 1.134073271e-09 1.369541251e-09 8.319975586e-10 1.169872392e-09 1.435714672e-09 9.227440286e-10 1.844527422e-09 1.367451162e-09 1.142578768e-09 1.111043754e-09 1.544834997e-09 7.011937528e-10 5.383073198e-10 5.289980999e-10 1.774479344e-10 5.54726851e-10 5.246841412e-10 3.079364457e-10 3.256414162e-10 4.162224251e-10 3.86354792e-10 3.611463565e-10 2.943766043e-10 4.061096536e-10 7.815964948e-10 1.098193849e-09 7.89976626e-10 8.8021066e-10 4.310914986e-10 2.984159893e-10 4.093851639e-10 5.217134059e-10 5.84202559e-10 3.854896214e-10 4.244515415e-10 2.22134033e-10 7.087997664e-10 7.343437018e-10 4.142776349e-10 2.563109995e-10 6.108988179e-10 2.156854873e-10 4.173602127e-10 4.467971868e-10 6.178051853e-10 1.127972637e-09 5.183872867e-10 8.377645579e-10 4.528701993e-10 1.384844133e-09 5.887742134e-10 4.162119081e-10 +3.500389361e-10 3.374422489e-10 1.568923086e-10 5.025648271e-10 3.715254621e-10 4.802444703e-10 3.517111835e-10 2.507047315e-10 1.30433831e-10 3.133525541e-10 4.719036865e-10 2.772698351e-10 3.332834542e-10 3.923243463e-10 5.652049178e-10 1.269378747e-09 6.112787046e-10 7.815664983e-10 3.911382414e-10 3.86187914e-10 5.526769053e-10 1.328333713e-10 5.881469419e-10 2.865354205e-10 4.485990622e-10 5.887783219e-10 5.533157666e-10 5.515606333e-10 4.260525066e-10 6.584819718e-10 5.879966251e-10 5.087317543e-10 4.641191968e-10 8.248281578e-10 2.517141598e-10 3.675214004e-10 1.736903296e-10 4.038238804e-10 4.34950386e-10 9.801646529e-10 6.448231525e-10 1.099002346e-09 1.635573585e-09 1.218980731e-09 1.069616487e-09 9.59109102e-10 9.004610225e-10 1.082744077e-09 3.682092962e-10 1.045669533e-09 2.249562269e-09 1.443427981e-09 1.214409135e-09 1.032123763e-09 1.332416373e-09 1.227384091e-09 1.507472287e-09 1.143830966e-09 1.022089415e-09 1.156359213e-09 1.064443665e-09 6.026202303e-10 7.532376873e-10 9.425271861e-10 1.272586224e-09 1.278597099e-09 1.208908293e-09 1.366366349e-09 1.412421662e-09 1.062844473e-09 9.556024573e-10 1.385400576e-09 1.053131914e-09 1.088878502e-09 1.454792305e-09 6.652080008e-10 6.503824635e-10 1.562428059e-09 1.807799869e-09 1.768110706e-09 2.063068181e-09 3.726735625e-09 2.655783719e-09 2.731346785e-09 1.506129407e-09 1.717203668e-09 1.283299648e-09 1.45252669e-09 1.103589387e-09 1.835779052e-09 1.510556467e-09 1.48778776e-09 1.651658713e-09 1.203641759e-09 7.940415e-10 7.496227165e-10 2.442666101e-10 1.077505608e-09 1.169615283e-09 1.434819899e-09 2.095836038e-09 2.372494624e-09 2.374987425e-09 2.896432696e-09 2.985559658e-09 2.607782505e-09 2.899636109e-09 2.680037749e-09 4.156668256e-09 3.963567686e-09 2.715775573e-09 2.692929132e-09 2.400393174e-09 1.860347521e-09 2.840895213e-09 2.407611922e-09 1.18288638e-09 5.866275156e-10 2.008069916e-10 2.817961937e-10 9.762681428e-12 4.529795487e-10 1.339675769e-09 2.406318638e-09 3.134522966e-09 2.900596916e-09 6.567826727e-09 7.236693605e-09 8.827577916e-09 5.82826333e-09 5.566374757e-09 4.612000167e-09 1.650015745e-09 5.640548257e-10 1.104859794e-10 2.363360891e-10 3.585440921e-10 2.332695399e-10 3.298609802e-10 8.978585834e-11 3.28195607e-10 1.632008936e-10 4.147526105e-10 1.174751236e-10 7.904230037e-11 8.187582422e-11 2.804374064e-10 2.046812551e-10 4.277113609e-10 3.545508473e-10 8.079254326e-11 9.544503933e-11 1.761695305e-10 7.768065592e-11 5.288523627e-11 2.645125698e-10 1.596940469e-10 1.645921737e-10 3.430686552e-10 1.488399537e-10 1.248072545e-10 2.279162101e-10 4.458514383e-10 9.45979292e-11 3.770718274e-10 5.528884651e-11 3.549420148e-10 2.469625084e-09 5.395562853e-09 5.764393762e-09 6.76114298e-09 6.384946484e-09 7.507873504e-09 6.56475532e-09 2.778178302e-09 2.993879769e-09 2.607916494e-09 2.529780471e-09 4.563412766e-10 4.198353347e-11 2.28359755e-10 1.817718063e-10 3.159470534e-10 1.113421404e-09 1.824678187e-09 2.272593765e-09 2.05694461e-09 1.904803435e-09 2.79286584e-09 2.787053977e-09 4.185138635e-09 2.636146449e-09 2.388294752e-09 1.717689843e-09 1.934207889e-09 1.899857327e-09 3.662602722e-09 3.07335938e-09 1.608187463e-09 3.188091446e-09 1.036804024e-09 1.194759203e-09 2.024470723e-10 4.069217565e-10 6.616482605e-10 8.770994568e-10 2.473755772e-09 1.88377489e-09 1.074472197e-09 1.854546835e-09 1.906998094e-09 1.777818063e-09 1.85728671e-09 1.973611296e-09 2.479241485e-09 1.514984565e-09 2.500031373e-09 2.544436658e-09 1.682138904e-09 1.972800161e-09 1.504605413e-09 1.265002971e-09 1.125400534e-09 3.639803886e-10 8.256562689e-10 2.195652539e-09 7.152501012e-10 1.147811068e-09 1.988438294e-09 1.111174078e-09 1.22013332e-09 1.517583386e-09 8.905095584e-10 1.055113859e-09 9.067039878e-10 7.996328013e-10 7.18574367e-10 9.193832849e-10 1.105696422e-09 6.620188555e-10 4.802400335e-10 1.224976639e-09 8.964419221e-10 1.405461299e-09 8.516217719e-10 1.036119908e-09 1.266454715e-09 1.401554856e-09 7.686739541e-10 1.736040337e-09 8.484793962e-10 1.22814955e-09 7.912183051e-10 8.112678215e-10 5.819542677e-10 8.663875189e-10 1.121426448e-09 7.625105013e-10 6.027809933e-10 1.009092354e-09 9.230806303e-10 6.063524546e-10 6.27021649e-10 3.187766561e-10 3.898640055e-10 9.399402135e-10 6.66147432e-10 4.905605345e-10 5.782105434e-10 4.339137043e-10 4.742812416e-10 2.468036157e-10 8.780667661e-10 8.950355316e-10 2.321833802e-10 2.125897981e-10 4.302621526e-10 4.772057637e-10 3.784247141e-10 2.802983199e-10 4.221533663e-10 2.858696802e-10 5.674890353e-10 6.253438812e-10 4.994091919e-10 7.908079265e-10 5.049798829e-10 7.552249236e-10 4.474390058e-10 9.732676759e-10 5.593482908e-10 5.662435763e-10 8.747227773e-11 8.627669092e-10 5.034968747e-10 3.143766452e-10 1.004753026e-09 5.213390283e-10 3.545613561e-10 8.273827399e-10 +3.636065939e-10 2.237606006e-10 6.937368546e-10 4.1217972e-10 6.353573441e-10 3.605005081e-10 3.290675893e-10 4.529556619e-10 4.880236052e-10 1.054323225e-10 8.585603815e-10 2.260311093e-10 4.192106599e-10 7.984997606e-10 6.176678313e-10 5.661262446e-10 6.587925855e-10 9.270218343e-10 3.488359659e-10 5.803347864e-10 4.57104995e-10 7.674339678e-10 1.870157887e-10 2.700822266e-10 8.003297423e-10 5.855561208e-10 4.981117156e-10 6.142044744e-10 6.805641827e-10 6.229792586e-10 5.779725168e-10 6.246415669e-10 5.969739338e-10 6.133505648e-10 4.795160764e-10 4.21367729e-10 2.747445447e-10 4.639314799e-10 2.948238868e-10 5.292567361e-10 5.675877916e-10 7.945225247e-10 1.401299686e-09 1.212757384e-09 6.207997413e-10 1.139507744e-09 8.423705242e-10 9.655188343e-10 1.20630319e-09 1.207721453e-09 2.129422112e-09 9.321873277e-10 1.107342902e-09 8.417403963e-10 1.27878178e-09 6.792989056e-10 4.499782577e-10 1.369307205e-09 8.504508982e-10 8.849704632e-10 1.135336319e-09 1.248409817e-09 1.300036502e-09 1.316583924e-09 8.386332011e-10 1.60003546e-09 6.799696982e-10 1.284403482e-09 9.957884113e-10 1.609037654e-09 1.150636471e-09 1.677018515e-09 1.337042774e-09 1.244675196e-09 1.323639196e-09 1.288094864e-09 8.815771187e-10 1.360547682e-09 8.614854722e-10 1.270660965e-09 2.1469468e-09 2.145512177e-09 1.829438455e-09 1.695375608e-09 2.271651304e-09 1.835626624e-09 1.700311853e-09 2.075527752e-09 1.90591215e-09 2.208968707e-09 1.840392721e-09 2.058814639e-09 1.935492201e-09 1.383737284e-09 8.877629614e-10 6.923817243e-10 6.167636931e-10 9.12182801e-10 1.031076342e-09 1.254571915e-09 2.50821633e-09 2.82027469e-09 3.400041105e-09 3.018533708e-09 3.211913953e-09 2.689184491e-09 2.161500644e-09 1.411008963e-09 3.069081784e-09 3.479107164e-09 2.07992761e-09 1.558063117e-09 2.629833287e-09 2.421392479e-09 2.45013065e-09 1.586421499e-09 1.389443623e-09 4.580340672e-10 1.772412751e-10 1.89229971e-10 5.024272196e-10 1.045086773e-09 3.234093493e-09 3.681933127e-09 3.098333915e-09 3.476725906e-09 4.924822854e-09 7.107371538e-09 6.336025545e-09 6.426148204e-09 5.194241055e-09 5.114505565e-09 1.277825332e-09 2.269850222e-10 3.386968119e-10 4.44536893e-10 6.625985529e-11 3.883256355e-10 2.183584822e-10 1.477724992e-10 3.677523075e-10 5.721487696e-10 1.052008711e-10 1.958168396e-10 1.003780276e-10 5.244049037e-11 0 2.249180841e-10 5.575083973e-10 2.232126661e-10 1.960640162e-10 8.481551033e-11 1.978741693e-10 1.735782044e-10 5.278891751e-10 2.735613812e-10 2.048429217e-10 2.852216985e-10 2.247576051e-10 1.167012694e-10 3.80050416e-10 1.818583947e-10 2.64243722e-10 5.63724467e-10 2.355153515e-10 4.189323649e-10 2.30882905e-10 1.02758044e-09 3.524833446e-09 5.311259977e-09 6.344337626e-09 7.181610986e-09 1.064860151e-08 7.972241538e-09 3.241732748e-09 3.510642699e-09 3.070487404e-09 2.647428883e-09 7.765100024e-10 2.067253756e-10 3.418669006e-10 9.359696319e-11 7.506442438e-10 1.711156564e-09 1.168647663e-09 2.237896108e-09 2.373913941e-09 2.963608518e-09 1.711814188e-09 1.957113861e-09 3.818092815e-09 2.584006816e-09 3.3601255e-09 2.626846503e-09 2.593922143e-09 3.323888583e-09 4.31786384e-09 2.386970765e-09 2.35901436e-09 1.857577254e-09 1.929584828e-09 1.768139355e-09 7.546986563e-10 1.766824718e-10 8.406776656e-10 1.250480847e-09 1.500025788e-09 2.090321671e-09 1.4650443e-09 2.0170233e-09 1.673395553e-09 1.634038937e-09 2.370226075e-09 1.838822011e-09 1.092532868e-09 2.148476564e-09 1.710058593e-09 1.979619861e-09 1.91156113e-09 1.447993784e-09 1.379570494e-09 1.005283028e-09 7.898998665e-10 9.131672028e-10 1.320114287e-09 3.196582317e-10 9.431688355e-10 1.058276334e-09 7.048539035e-10 1.425255638e-09 1.325364206e-09 1.375228694e-09 1.369305145e-09 6.578476518e-10 1.419195839e-09 9.657252005e-10 1.018309005e-09 1.079160545e-09 7.971269993e-10 1.105164326e-09 6.013751678e-10 4.725993558e-10 1.489028804e-09 1.210922434e-09 1.520262719e-09 1.219830661e-09 1.133184998e-09 1.319232497e-09 9.673043642e-10 6.230690325e-10 9.671617405e-10 1.044339048e-09 9.147053701e-10 7.59926992e-10 1.057704347e-09 1.263707358e-09 1.5838921e-09 1.031603144e-09 6.541473172e-10 7.59959955e-10 7.216491333e-10 1.846679096e-10 3.936978599e-10 6.279816926e-10 6.092125045e-10 7.334098921e-10 4.528227125e-10 7.955155251e-10 5.690905364e-10 2.681330749e-10 8.985648604e-10 7.018399318e-10 4.748936888e-10 5.63881159e-10 1.021623454e-09 1.813010307e-10 5.700521143e-10 4.26549721e-10 1.945923105e-10 5.757063507e-10 4.138650438e-10 3.3751971e-10 2.717674283e-10 1.039015678e-09 4.395316675e-10 1.652050575e-10 3.014106787e-10 3.856175838e-10 6.460986056e-10 9.372426236e-10 3.862050352e-10 3.732988969e-10 1.998605889e-10 4.464797329e-10 7.555394876e-10 4.269892086e-10 5.817062425e-10 3.543766688e-10 6.804795417e-10 7.846614334e-10 +4.968023284e-10 5.898290174e-10 6.573421451e-10 1.68823668e-10 5.451750407e-10 2.547078583e-10 3.75346559e-10 8.190275473e-11 3.444769086e-10 5.817651786e-10 6.822864865e-10 1.670618881e-10 1.95925119e-10 4.715754825e-10 4.047333908e-10 4.365586693e-10 3.762838693e-10 1.262501678e-09 5.663103143e-10 4.658916601e-10 4.864096076e-10 3.64928294e-10 1.476512748e-10 2.618551296e-10 2.652064943e-10 1.228522723e-09 6.463237389e-10 5.067292087e-10 2.861738172e-10 5.217801682e-10 5.658484426e-10 3.626649594e-10 9.460922986e-10 3.981300404e-10 5.479643548e-10 6.67320492e-10 8.768401821e-10 1.327235091e-10 4.161588582e-10 6.812388885e-10 6.920608677e-10 1.072241078e-09 1.337967325e-09 1.090307859e-09 1.404541476e-09 1.15698352e-09 1.253478704e-09 4.68126459e-10 5.368940565e-10 8.099901542e-10 1.034390718e-09 1.044475177e-09 1.092942262e-09 1.28941515e-09 1.096186014e-09 1.813271512e-09 9.902648201e-10 1.097724635e-09 1.25810115e-09 1.031245311e-09 7.977315255e-10 9.585146556e-10 1.025492515e-09 1.41674061e-09 1.772016236e-09 8.783453637e-10 1.210351077e-09 9.141313001e-10 1.16558293e-09 8.071984674e-10 9.373861458e-10 8.461110209e-10 1.217445616e-09 1.276792866e-09 7.909347952e-10 1.848931605e-09 1.364860269e-09 9.521466369e-10 1.254477782e-09 1.529781757e-09 1.598233032e-09 3.174737047e-09 2.585247629e-09 1.489087975e-09 1.774957774e-09 1.868356778e-09 1.860306932e-09 2.775264052e-09 1.915399734e-09 1.677922308e-09 1.479712137e-09 1.429081041e-09 1.605825672e-09 1.207062854e-09 1.109699655e-09 9.258411467e-10 1.593701077e-10 9.126700485e-10 7.208041069e-10 6.449746568e-10 2.648034386e-09 2.045721018e-09 3.123446694e-09 1.644749799e-09 2.5182536e-09 2.278286336e-09 2.896663252e-09 2.584927221e-09 4.210269591e-09 3.991811834e-09 2.188492875e-09 1.93107854e-09 1.81283063e-09 2.851655569e-09 1.560801884e-09 9.21556474e-10 1.048779543e-09 3.063137894e-10 1.452123187e-10 1.341711431e-10 5.314373899e-13 9.215763227e-10 3.553648382e-09 3.784856482e-09 3.675940063e-09 4.348414347e-09 5.886904919e-09 1.022833855e-08 6.916763143e-09 6.21033757e-09 4.750798247e-09 3.421918171e-09 8.762237786e-10 8.901138041e-11 2.814542589e-10 5.560236188e-13 3.897649094e-10 3.932282576e-10 3.664091547e-10 4.277619075e-14 3.287717139e-10 5.961177086e-10 1.549603962e-10 2.032308467e-10 4.098032061e-10 1.121499355e-10 3.602364776e-10 1.302849299e-10 1.907159241e-10 2.709829968e-10 2.635697049e-10 3.654427913e-10 9.655163963e-20 1.007877061e-10 5.610797971e-10 9.737226419e-11 2.647934122e-10 1.50536591e-10 5.584055838e-11 9.745063538e-11 1.02411416e-10 9.382041943e-11 5.512781808e-10 2.37929e-10 2.397718895e-10 1.564270885e-10 2.120983416e-10 1.160893366e-09 2.932939115e-09 6.087670592e-09 6.765920943e-09 7.459441904e-09 7.021415954e-09 5.97733447e-09 3.405983453e-09 3.019182561e-09 2.780850735e-09 2.15006058e-09 6.341388899e-10 1.281981995e-10 2.409875832e-10 2.959525241e-10 2.601967709e-10 8.047960218e-10 2.130579038e-09 1.547753263e-09 1.942241352e-09 2.424796221e-09 3.246815757e-09 2.715703503e-09 4.088464457e-09 2.776770883e-09 1.702277856e-09 2.841738231e-09 3.755556297e-09 2.176627468e-09 2.703871342e-09 2.772995348e-09 3.522594389e-09 2.382193274e-09 2.235484079e-09 9.296886249e-10 8.492312563e-10 5.089206687e-10 5.694460385e-10 5.116810143e-10 6.351134529e-10 1.306186482e-09 9.877401816e-10 1.095335236e-09 1.604904921e-09 2.242852088e-09 1.618631426e-09 1.566391623e-09 1.800795906e-09 1.90462229e-09 1.606748918e-09 1.560022347e-09 1.733351346e-09 1.617318607e-09 9.175134493e-10 1.437532159e-09 8.652862849e-10 1.713236366e-09 9.516174495e-10 1.477226156e-09 1.427977298e-09 1.011946741e-09 1.104830397e-09 1.834439891e-09 8.595451611e-10 1.180457031e-09 1.09070704e-09 1.542400598e-09 2.034211149e-09 1.365079051e-09 1.278913355e-09 1.161589588e-09 1.195497798e-09 1.002048843e-09 9.363976416e-10 1.301638364e-09 8.466534545e-10 8.192136578e-10 8.740027268e-10 1.151957511e-09 1.336560732e-09 1.297884596e-09 1.795106959e-09 1.34556526e-09 8.8501037e-10 1.816935873e-09 7.200194328e-10 1.093970471e-09 1.078898078e-09 1.193672087e-09 4.747249105e-10 1.16657363e-09 1.045523468e-09 7.821970457e-10 9.654977472e-10 5.968751193e-10 1.238988022e-09 7.81129422e-10 4.473389616e-10 1.07624795e-09 4.801735222e-10 2.818115554e-10 4.8047211e-10 4.944783226e-10 1.012348125e-09 4.515613076e-10 5.271751069e-10 7.984336396e-10 7.022002681e-10 4.172143807e-10 2.952921361e-10 3.577765093e-10 6.006770903e-10 1.419954162e-09 2.778913072e-10 3.999463896e-10 4.82221188e-10 2.021722326e-10 6.072985616e-10 2.059902387e-10 4.110877613e-10 2.238354399e-10 4.239522574e-10 3.573781119e-10 7.789413797e-10 7.166225721e-10 5.916995418e-10 3.569644794e-10 4.355859324e-10 2.274663632e-10 2.937263904e-10 5.259550242e-10 5.960545343e-10 4.803889024e-10 +2.869231027e-10 3.823004276e-10 4.292801009e-10 3.177502699e-10 2.966592573e-10 5.175481676e-10 1.404991911e-10 3.833376389e-10 7.841465394e-10 7.40791096e-10 6.800844964e-10 3.257348061e-10 4.079415808e-10 8.001326948e-10 2.519892833e-10 2.489051811e-10 7.250900307e-10 2.712777461e-10 7.747013042e-10 3.257490847e-10 4.457234588e-10 4.856884353e-10 3.83317625e-10 4.227677895e-10 4.480420593e-10 7.73275531e-10 1.098923696e-09 5.648004165e-10 4.988425626e-10 7.223688791e-10 4.058903091e-10 5.351834984e-10 5.584654638e-10 3.67769371e-10 5.410294099e-10 4.723330927e-10 3.347338384e-10 5.196687958e-10 5.872125844e-10 7.553169618e-10 5.193482569e-10 8.739856682e-10 7.65345147e-10 1.077719194e-09 1.531014758e-09 1.154303372e-09 9.625176843e-10 8.329796074e-10 7.289475054e-10 8.505883134e-10 1.252989768e-09 1.332016197e-09 1.005192671e-09 9.364613291e-10 1.181010017e-09 7.410174502e-10 8.437695234e-10 1.133575179e-09 1.276216266e-09 1.409613691e-09 7.788709305e-10 1.387475356e-09 9.002557788e-10 9.009392972e-10 7.225510542e-10 9.681116143e-10 1.234476121e-09 9.780478775e-10 1.384307669e-09 8.525007227e-10 1.610724915e-09 1.183008105e-09 1.475966556e-09 1.130647508e-09 1.20201388e-09 4.444522824e-10 6.533226462e-10 1.289465184e-09 1.310522567e-09 2.031518846e-09 2.60453282e-09 1.784058797e-09 1.17601386e-09 2.370866821e-09 1.892296782e-09 1.744058197e-09 1.840535089e-09 1.631974404e-09 1.327251834e-09 1.741466714e-09 1.041373453e-09 1.784886458e-09 1.7091709e-09 1.175380503e-09 9.69804776e-10 7.98996494e-10 2.385293175e-10 8.955380941e-10 5.705843675e-10 7.657234498e-10 2.860231539e-09 2.014629535e-09 3.362390867e-09 1.608056951e-09 2.831508343e-09 2.461638645e-09 2.493798356e-09 2.254986696e-09 5.384002034e-09 3.306417584e-09 3.502288604e-09 2.226261042e-09 2.127292788e-09 1.806066434e-09 1.418959393e-09 2.693249827e-09 1.075080464e-09 8.737506131e-11 3.4345277e-10 4.37234089e-10 1.29665095e-10 1.446150572e-09 1.913100888e-09 4.99459393e-09 2.948557141e-09 4.79812413e-09 7.875599813e-09 6.836078512e-09 6.522254892e-09 7.248632319e-09 4.962128739e-09 2.657788119e-09 7.675514494e-10 1.363458139e-10 2.884202216e-10 1.614596531e-10 8.210112337e-11 2.168103493e-10 7.068839513e-10 3.375228149e-10 2.314260057e-10 0 1.586140299e-10 2.529406072e-10 1.476192603e-10 1.843642574e-10 2.546155392e-10 0 2.405360201e-10 7.464493546e-11 1.862779214e-10 9.205887096e-11 2.804993458e-10 5.807638384e-10 1.907646045e-10 5.903895903e-10 2.946809891e-10 1.721226234e-10 7.766834055e-11 4.521839458e-10 2.229186098e-11 8.290091589e-11 4.266566827e-10 2.99666404e-10 1.112979537e-10 2.592106997e-10 7.499214578e-11 4.15037014e-10 2.9664568e-09 4.744439977e-09 7.7376945e-09 6.009444501e-09 8.424177976e-09 6.809796066e-09 5.03624121e-09 2.792548991e-09 3.47114177e-09 3.203743537e-09 1.639263958e-09 3.364193385e-10 3.698569995e-10 7.30610776e-11 4.223010907e-10 1.306767095e-09 1.413134929e-09 1.865559944e-09 2.023334319e-09 1.947438193e-09 1.773918487e-09 2.572290972e-09 3.863863347e-09 3.915301972e-09 2.015158089e-09 2.454660027e-09 2.454634991e-09 3.659001804e-09 2.56300453e-09 2.384992674e-09 2.589062686e-09 3.277491992e-09 1.839568009e-09 2.731633081e-10 6.609060749e-10 2.894905565e-10 7.31562723e-10 8.103080184e-10 1.444241786e-09 1.64487206e-09 1.151793431e-09 1.416460424e-09 1.893152444e-09 2.307294721e-09 1.927479748e-09 1.397233041e-09 2.020952693e-09 2.005043344e-09 2.201740201e-09 1.520431321e-09 1.686148197e-09 8.27817766e-10 1.622564078e-09 1.252503206e-09 1.188487317e-09 1.582226279e-09 1.0065346e-09 5.302671582e-10 8.630575863e-10 8.427942482e-10 5.438490387e-10 1.207529953e-09 1.064372105e-09 1.349872496e-09 1.561043691e-09 1.146826987e-09 1.265344883e-09 9.252651849e-10 1.638383548e-09 1.044109635e-09 3.886675029e-10 5.591050375e-10 7.356110357e-10 1.003899622e-09 9.513182185e-10 1.028294123e-09 8.510682194e-10 1.334186468e-09 1.356754802e-09 1.120663311e-09 6.98262103e-10 8.558968435e-10 7.918867459e-10 1.112339905e-09 8.510000755e-10 1.605069125e-09 1.546160852e-09 8.234415749e-10 6.723163942e-10 8.481276201e-10 3.433522082e-10 1.025252221e-09 8.757854798e-10 6.217411953e-10 8.512747651e-10 5.154181827e-10 4.217704609e-10 9.357119612e-10 3.390411825e-10 9.97169447e-10 3.235124324e-10 4.117428209e-10 4.915029919e-10 6.144005328e-10 5.016446523e-10 8.293048407e-10 7.67626765e-10 3.406382729e-10 8.357778847e-10 6.377901001e-10 4.545844155e-10 4.193677002e-10 9.745436425e-10 4.357635111e-10 6.736730127e-10 5.428960666e-10 3.051822486e-10 7.306487519e-10 2.096313402e-10 6.442365574e-10 5.227521376e-10 3.520100871e-10 6.027098443e-10 1.431971056e-10 3.92468896e-10 5.731004553e-10 1.048770379e-09 3.065356475e-10 4.530509475e-10 2.480270874e-10 4.514829501e-10 5.145915639e-10 +2.386707555e-10 5.65808073e-10 9.837148982e-10 5.519315679e-10 5.66185077e-10 2.608073761e-10 3.876945033e-10 2.590845711e-10 2.059095343e-10 1.535610644e-10 3.811351403e-10 4.638394793e-10 5.009535746e-10 4.908209302e-10 4.28859318e-10 3.325743993e-10 7.689132357e-10 3.755981993e-10 6.120092942e-10 3.534916581e-10 3.646214508e-10 3.934131967e-10 3.992329455e-10 2.937943728e-10 6.644911638e-10 1.13218042e-09 3.30605567e-10 4.739237537e-10 5.24673853e-10 7.839413004e-10 7.539710447e-10 7.731284655e-10 6.25809568e-10 6.725991381e-10 4.696559017e-10 2.88472383e-10 7.310238069e-10 5.158082925e-10 5.13919523e-10 9.008009208e-10 8.483182422e-10 8.621947923e-10 3.841213069e-10 1.387318608e-09 2.079483986e-09 1.143496415e-09 7.887889523e-10 9.888050188e-10 1.075045296e-09 1.037809987e-09 1.539009845e-09 1.399303955e-09 1.155463797e-09 1.243770067e-09 1.10114987e-09 1.355772876e-09 1.008798022e-09 1.397728349e-09 1.112336363e-09 8.314788439e-10 4.452271548e-10 6.758898676e-10 1.574140674e-09 1.420838802e-09 1.017412362e-09 2.123393586e-09 8.41370469e-10 1.38725587e-09 1.291308636e-09 1.251410416e-09 1.579813123e-09 8.014895753e-10 1.384565864e-09 9.494120612e-10 1.18928233e-09 4.464753463e-10 6.132273572e-10 1.101766156e-09 8.746898898e-10 1.077489623e-09 1.993325728e-09 2.253619647e-09 1.612954538e-09 1.166241766e-09 1.26700015e-09 1.097362132e-09 1.9296149e-09 1.876893618e-09 1.726807195e-09 2.132401478e-09 1.253070906e-09 1.32264038e-09 2.041177977e-09 1.331053434e-09 1.071461145e-09 1.096304036e-09 3.599103576e-10 5.451373481e-10 9.930818272e-10 1.068612083e-09 2.213547791e-09 2.807546791e-09 1.640862488e-09 3.12315106e-09 1.99333891e-09 2.319202035e-09 2.932340439e-09 2.961132352e-09 3.64109802e-09 3.133757215e-09 2.386752486e-09 1.895354925e-09 2.01111972e-09 2.184585229e-09 2.653733277e-09 1.576012665e-09 7.923010546e-10 1.177437835e-10 6.887162807e-11 0 1.42293901e-10 1.916462374e-09 4.099552333e-09 2.884155903e-09 4.167225651e-09 3.993528211e-09 7.90442518e-09 8.216736223e-09 7.062988056e-09 5.33276923e-09 5.660950535e-09 2.142672079e-09 1.727455271e-10 7.580254935e-11 1.706826158e-10 3.268300654e-10 3.122555084e-11 1.555637603e-11 2.323854816e-10 2.850141681e-10 3.181159064e-10 3.399112239e-10 1.957284297e-10 1.632354341e-10 1.719191389e-10 2.255895625e-10 9.468908303e-14 1.893368708e-10 2.302490335e-10 2.636065986e-10 2.055518977e-10 0 2.204367445e-10 2.651515718e-10 2.211108321e-10 1.709217675e-10 1.587778258e-10 2.901627583e-10 5.880824838e-11 2.716298803e-11 7.704079518e-11 1.862663999e-10 0 2.394863988e-10 2.140340417e-10 1.692074689e-10 4.096278554e-10 1.368562873e-10 1.056918005e-09 4.355474109e-09 6.247814137e-09 6.452202412e-09 9.498241988e-09 1.166337831e-08 5.30631423e-09 3.46094476e-09 4.069226111e-09 2.838545613e-09 1.511204408e-09 1.303952657e-10 6.876898156e-10 2.737860919e-10 1.190479687e-10 5.423659421e-10 1.384767738e-09 2.460331181e-09 2.742059219e-09 2.073880646e-09 1.261270479e-09 2.60081003e-09 4.20738425e-09 3.205053221e-09 2.518695147e-09 2.399364684e-09 2.533165738e-09 1.948268566e-09 2.220828345e-09 2.526834809e-09 2.669196354e-09 2.995168047e-09 2.851307416e-09 7.5111435e-10 4.305180728e-10 3.287432389e-10 7.160871044e-10 3.936646896e-10 1.218646562e-09 1.137734232e-09 1.670975823e-09 1.652117276e-09 2.315763713e-09 1.69767637e-09 1.501038889e-09 2.443165506e-09 1.839490043e-09 1.798272784e-09 1.381317388e-09 2.406814889e-09 3.128886669e-09 3.155423139e-09 1.652048955e-09 2.123435835e-09 1.085951795e-09 1.19560597e-09 6.106356284e-10 1.388600642e-09 9.370843241e-10 1.20792581e-09 1.541163816e-09 1.447157821e-09 1.574778739e-09 1.096835825e-09 9.216736884e-10 1.62847341e-09 2.026311145e-09 4.578234884e-10 1.724609648e-09 8.586981122e-10 4.866629884e-10 1.00437287e-09 6.685523133e-10 8.889176371e-10 9.407931906e-10 8.940815703e-10 1.235752039e-09 2.214685007e-09 1.346589886e-09 1.023006406e-09 1.027897291e-09 1.269555359e-09 9.086290476e-10 9.056087428e-10 1.465258964e-09 1.702766926e-09 1.136965897e-09 1.26327966e-09 1.289566437e-09 6.577840642e-10 9.367195023e-10 1.35500525e-09 3.074569533e-10 4.329633505e-10 2.699617568e-10 6.980211156e-10 8.00383498e-10 4.738419025e-10 5.680615158e-10 4.01570995e-10 6.614167788e-10 2.916054467e-10 3.696008688e-10 3.835569746e-10 7.007289613e-10 5.972037892e-10 5.510295424e-10 2.750957143e-10 5.958106084e-10 5.634011213e-10 4.746083861e-10 6.625529763e-10 4.800432085e-10 1.884577876e-10 1.924738495e-10 3.033214547e-10 4.887880046e-10 4.854859971e-10 3.001224726e-10 5.077975151e-10 1.147490634e-09 4.530579967e-10 2.430690431e-10 4.531697063e-10 7.560188488e-10 2.556736225e-10 3.291989867e-10 2.339229022e-10 3.241573162e-10 4.636709786e-10 7.565152305e-10 3.172284765e-10 +5.322141616e-10 3.754305571e-10 3.282044167e-10 4.932577664e-10 2.144211935e-10 2.676005267e-10 7.117563437e-10 7.32287438e-10 2.147801312e-10 4.763492985e-10 5.304250458e-10 5.130525279e-10 4.072549185e-10 6.25997756e-10 7.087788543e-10 4.452195942e-10 2.619305629e-10 5.163893005e-10 6.248474419e-10 7.461863542e-10 6.112674555e-10 5.454308033e-10 4.549803334e-10 2.359773643e-10 5.781350424e-10 3.224654303e-10 1.034001357e-09 5.391673253e-10 4.519148001e-10 3.779009342e-10 3.482884046e-10 4.629292689e-10 8.407457355e-10 1.529925015e-09 7.698144438e-10 4.066584736e-10 7.378101056e-10 2.971358778e-10 2.76855162e-10 7.69317585e-10 5.988504028e-10 5.421138944e-10 9.256594453e-10 6.053912901e-10 8.481524339e-10 1.450114996e-09 1.768712009e-09 1.105092103e-09 1.043298347e-09 1.116106232e-09 1.021511571e-09 9.960472907e-10 1.252296073e-09 1.466387299e-09 8.937753923e-10 1.198887006e-09 8.028828869e-10 1.215286753e-09 1.261559553e-09 1.04008654e-09 6.729420065e-10 7.06389883e-10 1.61689874e-09 1.266286663e-09 9.489642006e-10 1.294391959e-09 1.147042772e-09 1.370205868e-09 1.042696998e-09 1.369523335e-09 1.463172936e-09 1.304023417e-09 1.154870725e-09 1.201166055e-09 1.030976989e-09 1.026775095e-09 1.011718635e-09 6.907489171e-10 7.941812446e-10 1.749220236e-09 1.626156491e-09 2.311336209e-09 2.188742717e-09 2.454712175e-09 2.531676954e-09 1.574211253e-09 2.061207891e-09 2.757030133e-09 2.246377451e-09 1.925690473e-09 1.698776312e-09 1.435320718e-09 2.440242551e-09 1.126094822e-09 1.502761626e-09 4.157390751e-10 2.561478276e-10 1.139437249e-09 1.192641851e-09 2.066030113e-09 2.72199003e-09 4.299240756e-09 2.673442338e-09 3.137615821e-09 3.18710928e-09 3.907606274e-09 3.222909275e-09 2.844278378e-09 3.383010728e-09 3.14313148e-09 3.770437497e-09 2.262172907e-09 2.296802001e-09 1.842419284e-09 2.513958664e-09 1.950834245e-09 1.064039085e-09 3.381944007e-10 2.284056407e-10 1.466616751e-10 3.352408846e-10 1.824181172e-09 3.918583636e-09 2.511407199e-09 3.128433948e-09 4.905385428e-09 7.215034335e-09 6.714638629e-09 5.294344328e-09 8.269182017e-09 4.184760959e-09 1.832557194e-09 2.224373582e-10 2.6739838e-10 1.181787985e-18 5.532218988e-10 6.540458593e-11 1.94520234e-10 3.146392485e-10 2.908544479e-10 3.061266032e-10 1.964953564e-10 2.031900501e-10 1.388292359e-10 1.007324854e-10 2.386578537e-10 2.559059196e-10 2.82181066e-10 2.35656823e-11 2.704532863e-10 1.075299924e-10 3.341416939e-10 3.047608546e-10 8.217217261e-11 8.701082577e-11 9.641520594e-11 2.969046152e-10 4.711501592e-10 9.640330603e-11 1.667017784e-10 6.944400197e-11 1.524227403e-10 2.106443519e-10 4.664393075e-10 8.010167478e-11 3.50855836e-10 4.050130932e-12 1.144544339e-10 7.496870857e-10 5.504099271e-09 4.913215616e-09 5.94494071e-09 7.814566559e-09 8.769801296e-09 5.077668e-09 4.001233346e-09 3.431646434e-09 3.504483022e-09 1.755655464e-09 3.571290121e-10 1.655987643e-10 1.616897234e-10 6.469774571e-11 4.41906027e-10 2.593975479e-09 2.454651157e-09 2.532355201e-09 2.123413457e-09 1.839240158e-09 2.587371111e-09 2.195201282e-09 3.491208175e-09 2.708987321e-09 3.765590369e-09 2.805364649e-09 2.93208668e-09 3.07335065e-09 4.443165718e-09 3.511609245e-09 2.546429082e-09 2.368218246e-09 1.045803613e-09 7.242521903e-10 2.899947328e-10 1.027308839e-09 1.085184837e-09 1.361855386e-09 9.828079223e-10 1.741357377e-09 1.534178573e-09 1.672932992e-09 1.338074452e-09 1.620077875e-09 1.664808019e-09 2.573860338e-09 1.646133449e-09 1.886875596e-09 2.439840176e-09 2.373995954e-09 2.171036877e-09 1.675249635e-09 1.76994899e-09 5.56019928e-10 4.600289921e-10 1.191819368e-09 1.123535824e-09 1.155973882e-09 1.110975564e-09 1.835974648e-09 9.715873447e-10 7.353201338e-10 1.481666959e-09 8.2225319e-10 8.520520189e-10 8.383372456e-10 1.184063266e-09 1.579694564e-09 1.304175459e-09 1.090252096e-09 7.036136819e-10 8.658920191e-10 7.505231422e-10 7.53677999e-10 1.699296501e-09 6.916879514e-10 6.647850991e-10 6.306513656e-10 9.061072254e-10 1.165009208e-09 6.052537994e-10 1.662163561e-09 1.312439095e-09 9.770971684e-10 1.26352773e-09 1.113951727e-09 1.086589503e-09 1.073394857e-09 1.273688695e-09 5.358333066e-10 7.256923056e-10 8.425281444e-10 9.069792733e-10 4.620219942e-10 5.061335828e-10 3.634597265e-10 7.5812969e-10 2.86199489e-10 8.560851307e-10 2.588808612e-10 2.992426952e-10 2.824303963e-10 4.777823337e-10 5.832635956e-10 8.802752894e-10 5.040428071e-10 4.359037827e-10 6.634849333e-10 4.181382279e-10 6.413506773e-10 2.773569603e-10 3.880922031e-10 3.763023648e-10 7.030032474e-10 2.982090971e-10 7.984924415e-10 7.042845682e-10 8.290629482e-10 6.198029493e-10 1.786695484e-10 4.561511844e-10 5.845150433e-10 7.036655578e-10 5.634975442e-10 3.404734196e-10 7.699021154e-10 3.467479664e-10 3.225588875e-10 1.526184312e-10 5.23821649e-10 2.372475583e-10 +7.577204976e-11 4.605634756e-10 5.712059752e-10 3.526776442e-10 3.139702737e-10 7.466225808e-10 8.406766845e-10 5.604491674e-10 1.07452558e-09 1.063080604e-09 3.858296967e-10 9.90574346e-11 2.920945763e-10 2.249062573e-10 3.170298647e-10 5.947725004e-10 3.602314649e-10 2.664259337e-10 4.478535092e-10 6.041367598e-10 6.660495696e-10 5.561944639e-10 5.959515174e-10 2.499575132e-10 7.370798891e-10 3.159329987e-10 8.675627624e-10 8.479982228e-10 1.108983101e-10 6.284801152e-10 4.143552942e-10 6.612275359e-10 2.714279405e-10 3.666081427e-10 2.474684449e-10 7.358988993e-10 4.583451434e-10 6.733056909e-10 7.017028823e-10 8.375576203e-10 3.518735368e-10 1.00977658e-09 7.324437383e-10 7.00077047e-10 1.567345055e-09 4.53405995e-10 7.634566193e-10 1.191889276e-09 1.43274449e-09 6.199574266e-10 1.196624137e-09 9.581788348e-10 7.179173879e-10 1.079640899e-09 1.22211885e-09 1.177916981e-09 9.704637538e-10 1.250482509e-09 6.841162791e-10 9.527235847e-10 1.150001195e-09 5.201149463e-10 1.224499118e-09 9.649225664e-10 1.201369158e-09 1.072953536e-09 8.262705209e-10 1.633631634e-09 1.507701124e-09 1.150086168e-09 1.417614751e-09 1.807441647e-09 8.742304791e-10 1.46170376e-09 9.181966989e-10 8.747473839e-10 1.207184585e-09 7.899625677e-10 1.228813444e-09 1.101383085e-09 2.000816305e-09 2.566680091e-09 2.349994542e-09 2.154326433e-09 1.098185837e-09 2.541208741e-09 2.185396308e-09 2.007298396e-09 2.003347866e-09 2.047443485e-09 1.213147328e-09 2.598476146e-09 1.193480253e-09 1.59797026e-09 9.585284965e-10 5.05672349e-10 6.546878891e-10 1.167774779e-09 6.125224685e-10 1.560834475e-09 2.227968561e-09 2.859155368e-09 1.768125819e-09 2.902025884e-09 1.521112603e-09 2.352346441e-09 2.678284693e-09 2.308072249e-09 3.359298654e-09 3.252510607e-09 1.495605915e-09 2.191320427e-09 2.739930554e-09 2.519210874e-09 1.860746178e-09 2.891240578e-09 6.246207988e-10 1.623611662e-10 3.688057364e-10 2.429528832e-11 5.293881298e-10 2.415886073e-09 3.522633815e-09 3.373316471e-09 3.250231064e-09 7.029746042e-09 8.324048671e-09 6.136603959e-09 6.252382649e-09 7.314641795e-09 2.366806004e-09 6.500217052e-10 1.713302877e-10 8.367970001e-11 1.038599047e-10 3.729836472e-10 3.750593456e-10 1.490681457e-10 7.840386807e-12 3.046319993e-10 1.35326743e-10 4.491187265e-10 2.512027621e-10 2.359023447e-10 7.151379579e-12 1.535641241e-15 1.1410211e-10 1.80256272e-10 4.762335329e-10 2.662433929e-10 3.909416869e-10 7.056793335e-11 6.506487981e-10 3.716363002e-10 2.534442873e-10 3.08050202e-10 2.802943121e-10 2.00520923e-10 7.163150219e-11 9.9942022e-13 2.317555395e-10 1.79353024e-10 8.11696067e-11 2.80816751e-10 1.657415134e-10 2.597727266e-10 0 2.050603003e-10 5.392579542e-10 3.000263319e-09 5.974831508e-09 5.403889346e-09 7.104221768e-09 7.134391405e-09 7.121451804e-09 3.539391229e-09 3.858781123e-09 3.552848279e-09 2.525589534e-09 5.449805852e-10 3.131972482e-10 1.439082463e-10 2.222348882e-10 1.209199714e-09 1.230103984e-09 2.388447438e-09 2.48021041e-09 1.702322438e-09 2.250130383e-09 2.919262872e-09 2.551923447e-09 2.44124199e-09 1.749598097e-09 3.481205456e-09 2.77131813e-09 1.894586981e-09 2.390484236e-09 3.330296733e-09 3.20953359e-09 2.451587497e-09 6.995175016e-10 1.138832106e-09 7.302818917e-10 2.490613918e-10 6.690936316e-10 1.573211328e-09 1.273340752e-09 1.081133006e-09 1.484416874e-09 1.421844177e-09 1.403388187e-09 1.054344728e-09 1.732955437e-09 1.32462803e-09 1.39847702e-09 6.365049902e-10 1.264876269e-09 1.539986453e-09 1.998433729e-09 2.591823051e-09 1.151389299e-09 1.390229221e-09 8.712121961e-10 1.058320973e-09 1.103893054e-09 1.493563699e-09 8.212764174e-10 1.07510925e-09 6.313622675e-10 8.913769492e-10 1.292806773e-09 1.265342691e-09 7.736768139e-10 1.498921512e-09 1.115670209e-09 1.558640101e-09 8.683910523e-10 9.066317118e-10 7.538444617e-10 1.55038517e-09 8.56335583e-10 3.443930634e-10 9.425955568e-10 1.561256616e-09 1.019155459e-09 1.710434267e-09 1.038186989e-09 1.12519824e-09 1.6795471e-09 1.26935579e-09 1.363999458e-09 1.290011033e-09 1.476322687e-09 1.546481906e-09 1.131268037e-09 7.018409688e-10 1.065858821e-09 1.202817431e-09 1.086402807e-09 6.988804247e-10 5.451717891e-10 7.137818875e-10 2.609831024e-10 5.385890396e-10 4.992210946e-10 5.31282522e-10 5.380431889e-10 6.898836794e-10 1.055275291e-09 6.00108838e-10 7.789152464e-10 5.151935225e-10 2.768472818e-10 7.862095298e-10 6.56509013e-10 2.426361285e-10 3.047533926e-10 6.683474947e-10 3.052002775e-10 6.342265402e-10 1.06544935e-10 3.472770229e-10 3.009276661e-10 5.837904276e-10 3.077174639e-10 1.917958403e-10 2.133621004e-10 2.512859596e-10 5.844274239e-10 3.582102084e-10 3.489466234e-10 4.954074304e-10 4.037667598e-10 5.440961589e-10 4.434246856e-10 5.37716997e-10 3.538372441e-10 1.231746342e-10 7.332355649e-10 4.364693614e-10 +2.397681521e-10 2.942736573e-10 5.770472088e-10 1.438976927e-10 4.735462413e-10 2.250032696e-10 5.259587099e-10 5.399084393e-10 7.166837283e-10 3.296208064e-10 2.293002428e-10 6.375478806e-10 3.839098138e-10 7.137501558e-10 1.491396238e-10 6.746493622e-10 3.726717491e-10 3.949507261e-10 6.291953617e-10 3.21984464e-10 3.592241389e-10 3.07676628e-10 4.340444963e-10 7.333540968e-10 3.514280133e-10 5.271975098e-10 6.96439398e-10 4.94183702e-10 4.111926367e-10 1.312964088e-09 5.823177061e-10 5.571251486e-10 6.456247171e-10 2.945992413e-10 4.98086112e-10 7.119582447e-10 4.629964551e-10 6.145151798e-10 8.27195345e-10 9.032319566e-10 6.716498855e-10 7.661730549e-10 7.98676132e-10 7.278449707e-10 9.826011991e-10 1.143237373e-09 6.428075128e-10 1.441063906e-09 1.190772435e-09 8.355981979e-10 8.492452561e-10 9.957883662e-10 1.538526616e-09 1.381338847e-09 1.056632418e-09 1.125854489e-09 6.685971472e-10 7.733698458e-10 6.200931949e-10 9.924880847e-10 9.73698312e-10 8.962611712e-10 1.181613577e-09 1.619130451e-09 1.112585693e-09 1.413455924e-09 1.637992071e-09 9.022972975e-10 8.557848626e-10 1.255958571e-09 1.010641212e-09 8.497890412e-10 1.236485263e-09 1.142974849e-09 8.226441138e-10 1.18732418e-09 8.966322345e-10 5.807314853e-10 9.484416228e-10 1.678728262e-09 1.95346927e-09 2.90902541e-09 2.794376782e-09 1.664733546e-09 1.528471989e-09 3.256758905e-09 2.615934726e-09 1.323037644e-09 2.144227911e-09 1.849244156e-09 1.867519753e-09 1.899768199e-09 1.640377872e-09 5.6935021e-10 1.602660483e-09 1.0656396e-09 3.837206743e-10 1.075060866e-09 9.993672004e-10 1.97094023e-09 2.877671881e-09 3.226416608e-09 3.482351467e-09 1.873930277e-09 2.527812809e-09 1.880860644e-09 3.29185949e-09 3.335692273e-09 3.332515845e-09 4.503969345e-09 2.059577971e-09 2.023864643e-09 2.064213826e-09 1.435708519e-09 2.2648241e-09 1.568549476e-09 5.610121334e-10 4.068026277e-10 4.560646049e-11 3.150491957e-10 1.043089706e-09 2.350236308e-09 4.068504811e-09 2.734744464e-09 3.192592785e-09 6.990781786e-09 8.920664226e-09 7.040002118e-09 6.494385626e-09 4.346784252e-09 2.738050539e-09 5.217212567e-10 1.058613004e-11 1.276132533e-10 1.792409784e-10 2.293597318e-10 1.672345614e-10 1.556884423e-10 3.575471631e-10 2.121571884e-10 2.313793267e-10 1.478369075e-10 4.68750639e-11 7.354962572e-11 1.871017788e-10 2.22712888e-10 1.47756855e-10 1.190589528e-10 2.2970741e-16 1.132544145e-10 3.494246257e-10 1.290446364e-10 2.583278316e-10 5.83186914e-10 9.463461629e-11 1.924983899e-10 1.075940107e-10 3.477070009e-10 2.567779628e-10 1.067058595e-10 4.445473582e-10 4.303413823e-10 1.912204209e-10 3.074950687e-10 5.024231907e-10 2.506082962e-20 5.782335344e-11 1.032958319e-10 3.196465178e-10 4.084187199e-09 6.435222415e-09 6.441482273e-09 5.723207176e-09 9.129470843e-09 6.072542204e-09 3.938049011e-09 3.422801605e-09 3.29764277e-09 2.478014277e-09 6.781415974e-10 2.26363987e-10 5.690288966e-11 2.881996524e-10 3.930533721e-10 1.974620047e-09 1.333262051e-09 2.018783488e-09 1.936463469e-09 2.026648876e-09 2.313852782e-09 4.96880272e-09 2.780853195e-09 2.240532281e-09 1.730036336e-09 3.558504292e-09 3.475056822e-09 3.002848497e-09 2.807277943e-09 2.406283632e-09 2.321064128e-09 9.580772489e-10 7.251663399e-10 8.34837303e-10 3.474175577e-10 1.072000079e-09 8.715813936e-10 1.266004577e-09 1.253375687e-09 2.127124593e-09 1.325739425e-09 1.383734814e-09 2.059320802e-09 2.081429909e-09 1.412735197e-09 1.14200261e-09 1.607758604e-09 1.654059418e-09 2.048698801e-09 3.050571184e-09 2.521919188e-09 1.377375074e-09 1.604239046e-09 1.287091512e-09 6.708008283e-10 1.235844482e-09 1.266181638e-09 4.053196135e-10 1.515342648e-09 1.29232294e-09 1.200936956e-09 8.167126979e-10 1.264431064e-09 1.011304807e-09 1.474338755e-09 5.898609956e-10 8.205504723e-10 1.459823103e-09 1.228427493e-09 1.221147707e-09 5.824578615e-10 1.138752348e-09 8.993678642e-10 1.008690784e-09 1.830151542e-09 1.172925466e-09 4.262375024e-10 1.337793806e-09 2.201066461e-09 1.670023532e-09 1.173423279e-09 1.338829562e-09 1.415179774e-09 1.085803103e-09 8.732920288e-10 1.032050107e-09 7.180420455e-10 6.766799785e-10 1.247525786e-09 5.726242341e-10 6.84543556e-10 8.968723893e-10 5.669380018e-10 5.901002758e-10 1.277094864e-09 7.374903639e-10 5.478086039e-10 9.499174971e-10 3.451731641e-10 4.967408989e-10 5.482134562e-10 5.491462131e-10 2.118855626e-10 5.142456034e-10 3.764249459e-10 6.943367132e-10 6.413229022e-10 2.223119074e-10 5.67909164e-10 9.82165473e-10 4.977877478e-10 7.077568016e-10 6.968903696e-10 7.479094504e-10 5.484242312e-10 2.039239794e-10 2.322597571e-10 3.706484579e-10 5.689377291e-10 5.305658014e-10 3.32922686e-10 3.783313694e-10 1.443098879e-10 4.218079353e-10 2.915917409e-10 1.673136885e-10 3.857640474e-10 4.410867923e-10 7.571250701e-10 2.838427005e-10 6.277488351e-10 +5.795195104e-10 5.453254766e-10 1.420327766e-10 6.386134552e-10 5.074785044e-10 3.221465761e-10 6.769411298e-10 5.351733775e-10 5.198752024e-10 6.906684526e-10 1.247974154e-10 5.219442837e-10 5.108614551e-10 4.289478099e-10 4.079392908e-10 1.964420999e-10 2.897137962e-10 9.668737651e-10 1.045668073e-10 2.121608051e-10 5.832512221e-10 5.209335362e-10 1.646494757e-10 4.275215008e-10 1.89358413e-10 8.590879152e-10 8.044784923e-10 7.814373584e-10 5.73839732e-10 6.23396085e-10 6.33557633e-10 3.78099656e-10 4.283574664e-10 2.941207492e-10 1.518987379e-10 9.072818761e-10 7.694756882e-10 3.342373702e-10 5.700125235e-10 1.311735697e-09 7.920647189e-10 7.696702717e-10 1.042519306e-09 1.106437851e-09 1.182357628e-09 8.860835858e-10 1.809320371e-09 1.494353662e-09 1.230898712e-09 1.829574544e-09 1.291332147e-09 9.990915607e-10 1.095028508e-09 1.336106772e-09 1.082524534e-09 1.572178794e-09 1.077726485e-09 9.16335823e-10 1.008625359e-09 1.037232162e-09 9.50117445e-10 1.331342513e-09 1.057421747e-09 1.705084533e-09 1.104151558e-09 1.528700622e-09 1.342661332e-09 1.098838367e-09 1.933906719e-09 1.371084124e-09 1.683173701e-09 1.817983194e-09 8.369113093e-10 1.251259539e-09 1.740231258e-09 9.542121221e-10 7.265278177e-10 6.548389134e-10 9.210168684e-10 1.994615747e-09 2.283813702e-09 1.127241713e-09 1.825891235e-09 2.013189433e-09 2.243256121e-09 1.658472198e-09 1.604304784e-09 2.886746742e-09 1.948523241e-09 2.052977187e-09 1.492227911e-09 1.457971843e-09 1.757926481e-09 1.701597273e-09 7.304283351e-10 6.150836632e-10 6.716784894e-10 1.236850191e-09 9.077815133e-10 2.414076951e-09 3.051234021e-09 4.52709355e-09 2.632005852e-09 3.107427434e-09 2.994763493e-09 3.70114422e-09 3.054940633e-09 2.43715239e-09 3.455633244e-09 3.377387198e-09 2.14296122e-09 1.514934575e-09 2.451831353e-09 1.795649996e-09 1.786801295e-09 1.759225079e-09 3.788619058e-10 2.288791841e-10 0 1.378033083e-10 8.435964921e-10 2.945833803e-09 2.69166341e-09 3.138376174e-09 3.694937145e-09 7.251545278e-09 1.002434872e-08 7.674963696e-09 5.599836526e-09 5.451912009e-09 2.146076297e-09 2.647249142e-10 4.168626618e-10 3.570108154e-10 2.648650534e-10 2.831738345e-10 4.261538338e-11 8.757791723e-11 3.261223183e-10 1.399574464e-10 8.839653054e-11 6.411766202e-11 1.661372634e-10 3.427824685e-10 4.431682583e-10 9.309325436e-11 1.891911902e-10 8.471875137e-11 1.008095048e-10 3.068833678e-10 2.90760337e-10 1.88803783e-10 1.605345057e-10 1.88965949e-10 1.850517986e-10 3.493990347e-10 1.497547699e-10 2.630397096e-10 2.916003115e-10 4.972387007e-10 4.319363886e-10 1.708009016e-10 8.28991774e-11 1.700395103e-11 2.397548629e-10 1.293378501e-10 2.765647382e-10 9.815813632e-11 2.332787563e-10 2.745712108e-09 6.858429111e-09 6.406712786e-09 5.657720945e-09 7.993043146e-09 7.474445816e-09 3.317844351e-09 2.155340368e-09 3.645542909e-09 3.054310198e-09 8.367031751e-10 3.476196333e-10 5.31593135e-10 8.721957755e-11 5.555622653e-10 1.143159646e-09 3.159431289e-09 1.920639362e-09 1.545488925e-09 1.79194744e-09 2.090154508e-09 3.829646738e-09 3.340466671e-09 3.043346962e-09 2.533852122e-09 2.729862086e-09 2.55731209e-09 2.145043172e-09 2.994147421e-09 2.988246192e-09 2.241620572e-09 1.597605595e-09 9.749627631e-10 4.786082168e-10 8.05252773e-10 6.018073318e-10 1.206188888e-09 1.500391164e-09 9.737113515e-10 2.338629165e-09 1.032554884e-09 1.238521745e-09 2.212317119e-09 2.035341925e-09 2.024551027e-09 2.349045862e-09 1.220989656e-09 1.612164344e-09 2.683704464e-09 1.773991275e-09 1.622873333e-09 1.228941083e-09 1.201161136e-09 1.24403198e-09 1.024710465e-09 1.005796933e-09 7.325176475e-10 1.322897605e-09 1.032073907e-09 1.674403801e-09 1.265818886e-09 1.002707527e-09 8.686566814e-10 1.436610944e-09 1.372676124e-09 9.069368942e-10 1.254650989e-09 1.095608062e-09 1.753175195e-09 7.9958543e-10 1.480532629e-09 7.77126766e-10 1.068875248e-09 9.189109827e-10 9.616939511e-10 1.326378049e-09 1.446096552e-09 1.103659285e-09 1.590714882e-09 1.245902283e-09 9.096394897e-10 7.756272828e-10 1.314264528e-09 8.883686149e-10 1.021886307e-09 7.510203746e-10 1.391095073e-09 1.566140376e-09 7.96291822e-10 5.395885887e-10 8.254443643e-10 2.228323273e-10 4.653318669e-10 6.820805678e-10 3.503680613e-10 5.595765912e-10 3.728988352e-10 5.307874002e-10 3.755272944e-10 4.636082955e-10 4.109926997e-10 8.538327094e-10 5.074462497e-10 8.013916331e-10 1.014743029e-09 9.785274306e-11 8.978492684e-11 4.562879375e-10 5.748982135e-10 6.306206486e-10 7.978369789e-10 6.227591983e-10 4.117496031e-10 7.289670853e-10 4.112694917e-10 6.916378381e-10 4.124535411e-10 2.996940382e-10 2.138169798e-10 1.168287102e-09 9.883972207e-10 8.035562925e-10 3.430952756e-10 5.993064573e-10 5.182282414e-10 5.1793026e-10 2.396198213e-10 4.664397805e-10 5.76169974e-10 5.521470722e-10 2.916656183e-10 +5.082372335e-10 3.885782634e-10 2.728929778e-10 4.165914823e-10 5.634094604e-10 6.19491662e-10 4.688187631e-10 2.864831983e-10 8.939475526e-11 2.781581816e-10 3.317301694e-10 6.844932568e-10 7.466492994e-10 3.189618027e-10 3.085629376e-10 5.859589734e-10 2.160263895e-10 2.937569872e-10 1.708225385e-10 5.457719227e-10 5.518503544e-10 8.106394439e-10 6.044512241e-10 3.883919572e-10 2.794963985e-10 3.672986285e-10 1.839242102e-10 6.32835349e-10 4.946131057e-10 5.124905734e-10 3.642607157e-10 8.480554419e-10 2.554235508e-10 1.006787916e-09 6.527767568e-10 4.2387737e-10 8.826446974e-10 5.461681045e-10 5.357242968e-10 1.050344074e-09 6.629643485e-10 5.822798504e-10 6.857335684e-10 9.59506339e-10 1.200465267e-09 8.574353073e-10 1.007973308e-09 9.221521459e-10 1.477217871e-09 1.375953388e-09 6.153479076e-10 1.244124233e-09 9.467088518e-10 1.114981184e-09 1.248046745e-09 1.045596917e-09 9.264859645e-10 9.756463749e-10 1.311069898e-09 4.877616018e-10 7.197993193e-10 1.101830823e-09 4.6607073e-10 1.555796157e-09 9.272998232e-10 1.286719347e-09 1.01775245e-09 6.098756509e-10 8.05922634e-10 1.001732648e-09 1.757831716e-09 8.195560595e-10 1.111387547e-09 1.42773161e-09 7.374499136e-10 1.330392828e-09 8.492086059e-10 4.757253063e-10 1.877559962e-09 1.841035792e-09 1.525283961e-09 2.642088686e-09 2.385345794e-09 2.717625253e-09 2.01106336e-09 1.839602814e-09 1.866845121e-09 1.736744853e-09 1.622781768e-09 2.452312089e-09 1.005693532e-09 1.294247822e-09 1.58651338e-09 1.114052161e-09 3.608375163e-10 7.116807869e-10 4.765979983e-10 7.447154239e-10 1.294188949e-09 1.552915771e-09 4.001102288e-09 1.591391157e-09 3.941094989e-09 3.180881049e-09 3.080434597e-09 3.226982384e-09 2.197170116e-09 3.699887129e-09 3.878473061e-09 4.00070024e-09 2.121940139e-09 2.146346984e-09 2.679676806e-09 1.946171833e-09 1.398277175e-09 1.406809997e-09 1.180283698e-09 2.841821769e-10 1.434041843e-10 1.819250644e-12 1.058445368e-09 3.253113618e-09 2.419008967e-09 3.593066785e-09 4.338763186e-09 7.203031243e-09 8.577353866e-09 7.468096933e-09 5.098440668e-09 4.570812271e-09 1.188491278e-09 1.894229483e-10 1.521132847e-10 2.26168691e-10 1.634205831e-10 2.000924488e-10 2.252829491e-10 4.021688697e-10 2.131714121e-10 9.628020542e-11 1.232149876e-10 3.7565986e-10 5.558625256e-10 0 3.729962908e-10 2.568248327e-10 8.628629734e-11 1.651774687e-10 2.806390955e-10 2.207594538e-10 9.947259277e-11 2.641019097e-10 2.827681111e-10 1.557534819e-10 1.252481616e-10 2.444673247e-10 3.3835562e-11 1.032340039e-10 4.142209691e-11 7.026469644e-10 1.880054951e-10 2.058697763e-10 1.981285779e-10 2.874953545e-10 2.897381746e-10 1.464926441e-10 2.657045925e-10 9.87350871e-11 2.719405174e-10 2.950341619e-09 4.936365624e-09 6.826228103e-09 8.236222733e-09 8.776525994e-09 7.198852176e-09 3.102788395e-09 2.47270205e-09 3.936263418e-09 2.466033559e-09 4.943615918e-10 2.780640025e-10 3.653148458e-12 2.269152291e-10 1.538352714e-10 1.090181638e-09 1.905373618e-09 1.717278462e-09 2.285136344e-09 1.506862534e-09 2.164323981e-09 3.666571283e-09 3.706593878e-09 3.324368963e-09 1.363044189e-09 2.092317256e-09 2.852131455e-09 2.538822113e-09 2.842807367e-09 2.738350064e-09 2.992648675e-09 1.908618156e-09 1.113030777e-09 8.25659916e-10 4.746339204e-10 7.88165105e-10 1.786490014e-09 1.374297356e-09 1.088259222e-09 1.709972727e-09 1.348460552e-09 1.471655744e-09 1.882453108e-09 1.618084606e-09 3.137505646e-09 1.784915982e-09 1.832966497e-09 1.216688076e-09 1.833777068e-09 2.187551632e-09 1.226041982e-09 1.672141168e-09 1.69795064e-09 1.062443191e-09 7.794327788e-10 9.048897387e-10 1.022040392e-09 1.416452482e-09 1.421570011e-09 6.694828766e-10 1.70637609e-09 1.114093727e-09 1.374313634e-09 9.459010836e-10 1.378192866e-09 1.229958647e-09 1.225508655e-09 1.255239963e-09 7.465995454e-10 8.874086988e-10 1.041758736e-09 1.343548588e-09 8.270606355e-10 9.120809426e-10 8.864372503e-10 1.254729397e-09 1.585388024e-09 8.417261338e-10 1.339817109e-09 1.476046597e-09 2.338333927e-09 7.031760982e-10 9.907304859e-10 5.318389628e-10 1.091335295e-09 1.213218624e-09 4.507003571e-10 1.139216161e-09 6.977298451e-10 7.503901434e-10 3.95857012e-10 6.033148233e-10 5.017677584e-10 7.943809926e-10 2.969385737e-10 6.122404582e-10 1.132874513e-09 1.80279216e-10 4.796182244e-10 4.534208431e-10 6.026378241e-10 3.940877727e-10 2.898764651e-10 8.375438132e-10 5.037591898e-10 3.310122935e-10 5.00807443e-10 9.74590575e-10 6.30949558e-10 8.38990013e-10 1.953188046e-10 7.815403765e-10 6.015692042e-10 3.234423466e-10 3.752513708e-10 8.274036618e-10 2.776449396e-10 6.305994834e-10 3.546063388e-10 3.264721268e-10 3.210552211e-10 6.048170324e-10 7.826749418e-10 5.051411592e-10 6.315586998e-10 3.08373026e-10 5.653785724e-10 2.655275688e-10 2.465755318e-10 4.904422156e-10 5.977463698e-11 +7.515189569e-10 8.943164295e-10 4.562084599e-10 1.796477992e-10 5.451637502e-10 3.586075937e-10 6.329697576e-10 4.507232891e-10 2.924998866e-10 3.935654639e-10 7.079426187e-10 5.979805042e-10 3.738278396e-10 6.395169537e-10 3.864416126e-10 4.001123668e-10 3.314044588e-10 3.840821617e-11 2.211126152e-10 4.844444538e-10 3.90802307e-10 2.587190079e-10 1.742152865e-10 8.558419685e-10 3.258573935e-10 1.610037027e-10 4.045993172e-10 9.898289479e-10 5.220710192e-10 5.45051976e-10 5.469618463e-10 4.969266279e-10 7.037269824e-10 6.053330777e-10 4.205258718e-10 4.347555511e-10 6.514682942e-10 5.91614199e-10 5.340631985e-10 5.85738592e-10 5.649706561e-10 1.252739968e-09 8.068431806e-10 1.064505399e-09 9.718071001e-10 1.157883516e-09 1.167701876e-09 8.906736266e-10 8.869763504e-10 8.902636471e-10 6.545291433e-10 8.231702776e-10 1.482418766e-09 1.619521325e-09 1.405363746e-09 1.098863011e-09 1.660810291e-09 1.44381526e-09 1.225271329e-09 9.441633427e-10 5.117266947e-10 1.077607423e-09 1.01136288e-09 1.333622585e-09 1.03783263e-09 1.067776097e-09 8.083454177e-10 1.58338133e-09 1.077636084e-09 8.661839401e-10 1.502069223e-09 9.786107922e-10 1.319409973e-09 1.22730661e-09 1.009312605e-09 1.10257408e-09 1.403718382e-09 8.582443613e-10 1.382093957e-09 1.735044598e-09 1.933981703e-09 3.418336635e-09 2.214736515e-09 2.056683893e-09 1.589354267e-09 2.13113692e-09 1.100144147e-09 1.975427805e-09 2.330135493e-09 1.855726479e-09 1.488943916e-09 1.289567771e-09 1.364694067e-09 1.384144055e-09 1.019184863e-09 7.251102006e-10 6.243166868e-10 9.270269421e-10 8.370828785e-10 3.047964985e-09 3.412349576e-09 3.092057691e-09 2.16353586e-09 2.758004989e-09 2.295096299e-09 2.492441112e-09 2.548267011e-09 3.371426737e-09 3.979152785e-09 2.404588371e-09 3.936314686e-09 1.083745875e-09 1.348481639e-09 1.648951127e-09 9.872842495e-10 1.546450261e-09 2.396606779e-10 2.669395255e-10 2.679263264e-10 1.5705042e-10 1.587468664e-09 3.153568523e-09 3.222909047e-09 2.863068843e-09 4.237008423e-09 7.068049182e-09 7.610291539e-09 7.431322254e-09 6.037582291e-09 2.821417299e-09 1.320971098e-09 6.405983411e-11 2.3457911e-10 2.962213017e-10 1.853987946e-10 4.578147913e-10 3.06561375e-10 2.623213412e-11 1.828078197e-10 1.3998591e-10 3.602101762e-10 3.021810433e-10 3.714629034e-10 2.051210192e-10 1.12846429e-23 9.665776789e-11 2.734006731e-10 2.266649957e-10 1.084738823e-10 1.463805209e-10 0 3.362841899e-10 0 6.38637277e-11 8.906680056e-11 3.84452562e-10 2.599738687e-10 2.714341133e-10 5.996022461e-11 1.931929592e-10 1.978528853e-10 2.147549709e-10 8.285275224e-11 1.821238913e-10 2.754673502e-10 1.822453795e-11 4.052183223e-10 2.923010427e-10 1.50373418e-11 1.396181197e-09 4.170516482e-09 6.742046342e-09 7.068404256e-09 7.802034168e-09 9.980996634e-09 4.284571557e-09 2.907238463e-09 3.455215909e-09 2.682022382e-09 8.490597583e-10 2.291675993e-16 3.202317998e-10 1.01798769e-10 9.174868663e-10 1.4548168e-09 1.851271285e-09 2.059380548e-09 2.520335144e-09 1.611399559e-09 2.230582818e-09 3.298172872e-09 4.679381693e-09 2.432838044e-09 1.923512276e-09 2.532420138e-09 2.693553423e-09 3.378051248e-09 1.74843657e-09 2.836657015e-09 2.619947468e-09 1.796975159e-09 1.016105878e-09 1.030429127e-09 4.567808243e-10 6.831870574e-10 1.579254439e-09 1.685120642e-09 1.843572381e-09 1.841719569e-09 1.708316643e-09 1.861592348e-09 1.136199252e-09 1.451239006e-09 1.589789449e-09 1.118983786e-09 3.108993417e-09 2.494766755e-09 2.068862691e-09 3.09445202e-09 1.937991203e-09 1.350294649e-09 9.292796524e-10 1.199148448e-09 7.252917471e-10 1.240818765e-09 1.116193881e-09 1.82483098e-09 8.428437864e-10 9.801480223e-10 9.366370078e-10 1.223084742e-09 1.069556268e-09 1.637185211e-09 1.284174712e-09 1.274272892e-09 1.034013042e-09 1.286425962e-09 8.165829769e-10 9.62205735e-10 1.581537893e-09 1.133748621e-09 1.022868855e-09 7.689481136e-10 9.557216385e-10 6.548074635e-10 9.807013937e-10 9.898365869e-10 6.530475808e-10 1.581689562e-09 1.33361037e-09 1.503696458e-09 9.349792197e-10 6.608078902e-10 1.237942659e-09 1.343743229e-09 1.549090807e-09 1.382881459e-09 4.849269689e-10 6.085903278e-10 9.136007539e-10 6.782900656e-10 6.862017405e-10 4.234700606e-10 7.349922745e-10 2.918239685e-10 4.819749118e-10 1.045145258e-09 7.046011864e-10 6.6965751e-10 5.586197438e-10 7.233998552e-10 2.333743414e-10 6.684222367e-10 4.750655137e-10 3.274046764e-10 2.005768984e-10 8.183927046e-10 4.127433432e-10 2.534149264e-10 6.437794357e-10 2.613940533e-10 4.956045673e-10 4.148359608e-10 7.261505677e-10 2.841389788e-10 3.414376721e-10 2.706899332e-10 3.763732995e-10 1.950357865e-10 4.644783037e-10 1.262701603e-09 7.233871908e-10 3.0031913e-10 1.143607185e-09 1.021295404e-09 5.212002472e-10 4.657272217e-10 7.149259751e-10 1.385252049e-10 3.539082344e-10 +3.693284173e-10 2.486886658e-10 3.107740774e-10 2.036685519e-10 2.149481086e-10 7.931248333e-10 1.929501692e-10 5.399046152e-10 6.066129758e-10 3.247998611e-10 6.694196886e-10 4.865571509e-10 6.869388118e-10 2.962911032e-10 3.419789006e-10 2.96971014e-10 3.087462573e-10 3.881678268e-10 1.630743841e-10 2.61163761e-10 3.267346227e-10 2.918071006e-10 9.4828493e-10 5.068212811e-10 6.370108348e-10 7.273632633e-10 4.323875875e-10 7.667301762e-10 5.494432513e-10 1.210065292e-09 4.029929127e-10 2.883995429e-10 4.367691006e-10 8.295389648e-10 4.455816213e-10 5.950496479e-10 6.209123364e-10 6.919796394e-10 5.969008469e-10 5.795893839e-10 5.596148482e-10 3.614363063e-10 8.150299478e-10 9.217689492e-10 7.277929468e-10 4.577774094e-10 8.462454733e-10 1.005280962e-09 7.955302433e-10 1.410948438e-09 1.207365222e-09 1.226069452e-09 1.31179246e-09 1.166524827e-09 1.87509836e-09 1.072380754e-09 1.071699119e-09 1.103945385e-09 5.417369176e-10 8.665778921e-10 1.38354656e-09 1.228835409e-09 7.880444578e-10 1.076582128e-09 1.119110499e-09 1.720500037e-09 1.067970525e-09 1.388602842e-09 1.328612243e-09 8.962809131e-10 1.33757958e-09 9.818787525e-10 1.385321827e-09 7.434282203e-10 4.337661953e-10 9.292691156e-10 8.991687567e-10 9.578234585e-10 7.763023863e-10 9.922781471e-10 1.361744575e-09 1.117477513e-09 2.611028027e-09 1.854531811e-09 1.905940277e-09 2.123092091e-09 1.58936216e-09 2.022355319e-09 1.848415394e-09 1.957973128e-09 1.750883805e-09 2.242938247e-09 1.594852163e-09 1.625148636e-09 9.994079741e-10 9.68292334e-10 4.128026403e-10 6.936715181e-10 1.047030934e-09 1.628033644e-09 2.777184199e-09 2.16460808e-09 3.442947808e-09 4.478368786e-09 3.298743667e-09 2.425678731e-09 1.977306543e-09 3.317445937e-09 3.97764461e-09 2.474614321e-09 2.37600391e-09 1.537249211e-09 1.819512651e-09 1.878695823e-09 1.781427186e-09 1.301875777e-09 4.987128852e-10 3.86927908e-10 1.809426046e-10 1.620661514e-10 7.044852995e-10 3.223802394e-09 3.424279878e-09 3.483625145e-09 3.177896843e-09 7.39027497e-09 7.49458404e-09 7.544397603e-09 6.156997833e-09 3.786942237e-09 1.124861096e-09 0 2.859286323e-10 4.115566548e-10 4.127475644e-10 1.071944354e-10 4.022053718e-10 2.751210781e-10 2.654144531e-10 2.882905661e-10 7.307861564e-11 9.948848089e-11 1.241312492e-10 1.108092855e-10 1.626480136e-10 1.723392433e-10 2.676877203e-10 1.631700611e-10 8.445592878e-11 3.138633761e-10 5.1514763e-10 4.296455199e-10 1.190411823e-10 1.605525285e-10 2.432190188e-10 7.839726404e-11 1.647659678e-10 5.688335308e-11 0 3.704578967e-10 7.480454216e-11 2.081633895e-10 3.288903754e-10 2.472547022e-10 1.125189896e-10 2.184579103e-10 4.914884158e-11 9.211549307e-11 2.091442571e-11 8.435874286e-10 4.01547299e-09 5.012992824e-09 6.928494181e-09 7.914633048e-09 8.036273017e-09 5.377743279e-09 2.356376422e-09 3.250175471e-09 2.983535296e-09 1.313585717e-09 1.39891527e-10 1.870257648e-13 1.652828018e-11 1.926988276e-10 1.326646683e-09 1.436023144e-09 1.71635925e-09 2.497599277e-09 2.18164077e-09 1.310467035e-09 2.42005113e-09 4.527324625e-09 3.258531668e-09 2.626271871e-09 3.209935703e-09 2.48779862e-09 3.294923622e-09 4.305996251e-09 2.17620883e-09 2.601173339e-09 1.627718852e-09 1.334050583e-09 1.023998162e-09 4.850158209e-10 7.799118367e-10 9.729826475e-10 1.318183253e-09 1.446747922e-09 1.904381486e-09 1.719214281e-09 2.039113741e-09 1.339649952e-09 2.621093231e-09 2.824427842e-09 2.529044073e-09 2.302465015e-09 2.460953609e-09 2.613667049e-09 1.694696101e-09 1.58624044e-09 1.439442879e-09 2.193902911e-09 1.088454966e-09 1.281854412e-09 1.172249838e-09 1.372305419e-09 1.072719595e-09 1.25357087e-09 1.490008297e-09 8.816984054e-10 1.837382872e-09 1.813406223e-09 1.111889372e-09 1.543767102e-09 1.622082467e-09 1.093254693e-09 1.156558131e-09 8.491634965e-10 8.320291161e-10 1.026556991e-09 5.82811637e-10 1.140721388e-09 1.390752622e-09 8.932424052e-10 1.231733794e-09 6.636287395e-10 1.578568684e-09 1.049600382e-09 8.259503267e-10 8.705018522e-10 1.201502144e-09 7.672430517e-10 1.076996539e-09 8.318026158e-10 2.211833354e-09 1.118234939e-09 7.09098646e-10 9.200633708e-10 1.148760503e-09 6.774285689e-10 5.916403175e-10 2.784382113e-10 2.547493741e-10 4.504600843e-10 3.196447612e-10 2.957598604e-10 3.607239681e-10 2.314717302e-10 7.094488613e-10 2.668832083e-10 5.134352273e-10 4.505186814e-10 7.615024578e-10 7.494735292e-10 4.863926831e-10 8.548662059e-10 5.989624905e-10 3.71932257e-10 2.290966049e-10 2.370580339e-10 5.974164167e-10 7.782872779e-10 2.352456274e-10 5.256090072e-10 7.27866708e-10 5.514346921e-10 5.336991397e-10 4.66048247e-10 8.168029092e-10 6.289382164e-10 9.425264521e-10 6.420593346e-10 3.85917765e-10 3.027245687e-10 3.17206612e-10 4.015928684e-10 7.209964314e-10 6.512207508e-10 2.085741334e-10 5.408575126e-10 +3.901859346e-10 3.350529154e-10 3.539285522e-10 1.729865048e-10 7.269107515e-10 7.469612049e-10 2.314332072e-10 2.80457869e-10 6.83247087e-10 4.226598443e-10 4.920175649e-10 4.675057715e-10 2.027348593e-10 8.842222608e-10 5.312570307e-10 7.234226864e-10 3.656441622e-10 3.832092524e-10 8.764167026e-10 5.245532284e-10 5.352728883e-10 4.459346415e-10 3.382278942e-10 4.803568896e-10 1.004320176e-09 6.091150164e-10 3.493293449e-10 4.883598728e-10 2.621609135e-10 3.53763417e-10 4.129986943e-10 4.751387467e-10 7.06318583e-10 6.636782419e-10 6.812942611e-10 4.565542476e-10 6.056738767e-10 8.262314646e-10 5.60874403e-10 4.333400219e-10 7.618948888e-10 6.434815185e-10 9.131891143e-10 9.964303148e-10 1.433905814e-09 1.055713144e-09 1.39548474e-09 1.013747744e-09 1.079942554e-09 5.867700721e-10 1.142872158e-09 1.177985425e-09 3.400184933e-10 8.553169683e-10 7.496034392e-10 1.599440838e-09 1.09996951e-09 1.048445617e-09 1.572473567e-09 7.506055009e-10 9.091190574e-10 8.294530114e-10 1.174012271e-09 1.559536836e-09 6.585608096e-10 9.297950084e-10 1.534801252e-09 9.813919581e-10 8.740356225e-10 1.779483838e-09 1.340518734e-09 1.477529573e-09 8.219269042e-10 8.568837399e-10 1.014747165e-09 8.056890989e-10 1.517454053e-09 1.089116959e-09 1.672783361e-09 1.130728045e-09 1.960976507e-09 3.101033668e-09 2.301957939e-09 1.945047462e-09 2.404712268e-09 1.877028095e-09 1.633041329e-09 1.527826336e-09 2.616542929e-09 1.618052442e-09 1.822059341e-09 1.527919028e-09 1.654828002e-09 1.79848721e-09 1.464481036e-09 8.02568382e-10 1.074167974e-09 1.244916366e-09 1.102331053e-09 1.831645725e-09 2.169599898e-09 3.407168176e-09 2.527251211e-09 3.52517852e-09 2.453472501e-09 3.102739228e-09 2.081737892e-09 2.934705569e-09 4.919928608e-09 2.646473816e-09 1.890380339e-09 1.486303527e-09 2.147627008e-09 1.890351024e-09 2.427014781e-09 1.319113784e-09 3.86742108e-10 5.754536544e-10 2.814443599e-10 7.54033923e-11 1.54415592e-09 2.833378917e-09 3.182476423e-09 3.593686549e-09 4.422504872e-09 8.086308631e-09 8.388961784e-09 6.678823372e-09 7.061762712e-09 4.014543604e-09 3.307432925e-10 4.250976581e-10 4.505051512e-10 2.348750387e-10 2.874526342e-10 1.510420058e-10 3.878862722e-10 2.940923562e-10 1.792647995e-10 4.0871011e-10 1.173346971e-10 3.240959977e-10 1.267464923e-10 1.725189397e-10 2.083999543e-10 2.718336472e-10 2.464985679e-10 1.622626718e-10 9.413700798e-11 0 1.488211626e-10 3.049523465e-12 2.046293683e-10 4.123601752e-10 2.314942036e-10 3.790329142e-10 3.39734432e-10 1.614130441e-10 2.26185135e-10 1.303956675e-26 1.050247424e-10 1.477329195e-10 3.400047464e-10 3.9556801e-10 8.448092265e-11 1.763987668e-10 1.601951426e-10 2.920906471e-10 7.559487145e-11 6.2493797e-10 4.360398032e-09 5.334995649e-09 4.900205012e-09 7.670800748e-09 8.951764581e-09 4.988554424e-09 2.557557161e-09 2.737904789e-09 2.350738752e-09 5.402423794e-10 7.863033881e-11 2.204400188e-14 2.773065251e-10 5.714844551e-10 1.895606415e-09 1.249688525e-09 1.873068478e-09 1.837370774e-09 1.923322358e-09 3.228628806e-09 3.290744358e-09 4.24937024e-09 4.825639578e-09 1.893322932e-09 3.09287743e-09 3.526146439e-09 3.050197223e-09 3.848910195e-09 2.566741929e-09 4.581256523e-09 1.745729908e-09 8.396667997e-10 1.137020911e-09 5.976934772e-10 3.671778936e-10 1.564242303e-09 1.259377566e-09 2.152479495e-09 2.162755969e-09 1.886581242e-09 1.74152718e-09 8.644530995e-10 1.355033854e-09 9.374025695e-10 3.116198174e-09 2.033324637e-09 2.622469228e-09 2.788427871e-09 3.005724554e-09 2.152713131e-09 1.434325469e-09 1.495194737e-09 6.759065891e-10 1.608967428e-09 1.09185973e-09 1.053374099e-09 1.345103894e-09 9.748732912e-10 1.845498618e-09 1.006086514e-09 1.496741865e-09 1.127130192e-09 1.386429501e-09 1.110323466e-09 7.71457705e-10 7.607002717e-10 1.169768154e-09 9.790289895e-10 9.377953104e-10 9.272645546e-10 9.360959964e-10 5.364915976e-10 1.509835288e-09 1.316291787e-09 1.277674353e-09 1.747174705e-09 1.128905297e-09 9.838108897e-10 1.156199799e-09 1.634469188e-09 1.405340731e-09 1.323850822e-09 9.34621839e-10 1.221845857e-09 9.575416003e-10 1.156821607e-09 1.197864658e-09 8.13415674e-10 1.311325412e-09 6.437884647e-10 3.159715436e-10 4.211907684e-10 1.075359228e-09 6.255216253e-10 9.492954349e-10 3.365977975e-10 9.345796276e-10 6.567229031e-10 4.243744926e-10 4.533005166e-10 4.003292327e-10 8.35533122e-10 5.449583201e-10 6.161875285e-10 5.886987315e-10 3.796033723e-10 5.520019535e-10 3.590606751e-10 4.017042997e-10 1.012094744e-09 7.80666112e-10 3.311120917e-10 9.671853822e-10 1.28939327e-10 7.491571368e-10 4.69513102e-10 5.439591383e-10 8.820971842e-10 2.033096954e-10 4.822900067e-10 2.816552265e-10 3.676051336e-10 3.145036909e-10 5.370119074e-10 2.118863667e-10 3.505803428e-10 5.028738511e-10 1.434638268e-10 3.657847741e-10 3.682885129e-10 +1.356685237e-10 3.109724566e-10 1.167288906e-10 4.46969559e-10 6.648545489e-10 6.279133447e-11 2.435103304e-10 5.378258679e-10 7.664258703e-10 9.816193668e-10 4.957201755e-10 2.038583134e-10 2.291376991e-10 2.95024892e-10 1.696444295e-10 1.912509612e-10 5.574338638e-10 3.297195127e-10 2.711536839e-10 2.094579082e-10 2.939893627e-10 4.886580129e-10 6.385322432e-10 5.196095029e-10 1.89403024e-10 4.78594391e-10 8.507237309e-10 5.269151985e-10 4.024301639e-10 6.12718146e-10 4.425797169e-10 6.959158911e-10 6.375413814e-10 6.216421711e-10 3.336270008e-10 3.391514325e-10 2.451405922e-10 6.285350105e-10 3.63096682e-10 2.789793407e-10 5.679788831e-10 6.103177893e-10 5.889027456e-10 2.084180061e-09 7.735953692e-10 1.745977696e-09 1.518866101e-09 7.359320537e-10 1.048314437e-09 1.193965337e-09 1.357964118e-09 1.833399947e-09 1.131792737e-09 1.09704506e-09 1.47273366e-09 6.857544177e-10 1.148651428e-09 6.959446523e-10 8.845688585e-10 1.101372243e-09 1.516359446e-09 1.078666544e-09 1.360108484e-09 1.4196488e-09 1.425878905e-09 8.322420131e-10 1.766228183e-09 1.034392318e-09 1.056872475e-09 6.303809266e-10 1.211396831e-09 1.152216755e-09 1.171827338e-09 9.09126261e-10 1.169162911e-09 9.352833073e-10 1.252601168e-09 1.665660198e-09 1.666287948e-09 1.751605823e-09 1.481857543e-09 2.364451948e-09 1.935234266e-09 2.211107397e-09 2.893663528e-09 1.866630399e-09 2.382328433e-09 1.940266877e-09 1.769632764e-09 1.30210177e-09 1.304398191e-09 1.295893326e-09 1.53567936e-09 1.395029669e-09 6.515494647e-10 6.099663123e-10 6.041790061e-10 1.059356235e-09 1.920746287e-09 2.769235646e-09 3.108246294e-09 2.65635124e-09 2.496297605e-09 2.692053095e-09 3.615546949e-09 2.085334024e-09 2.47389267e-09 3.73122718e-09 4.313539822e-09 2.816235711e-09 3.554566663e-09 2.203972029e-09 2.257605729e-09 1.513120445e-09 1.863983435e-09 1.524078037e-09 1.982592174e-10 7.5732954e-12 2.721405799e-10 2.531097535e-10 1.390709257e-09 3.23495508e-09 2.570219408e-09 2.58043578e-09 5.045240024e-09 9.271125187e-09 7.076020874e-09 8.247589032e-09 5.49669762e-09 3.205715949e-09 9.077384449e-10 4.764892559e-10 2.890112916e-10 5.80330695e-11 2.274637988e-10 2.384264978e-10 9.35518539e-11 2.404642227e-10 4.420070444e-10 2.560544595e-10 1.181077952e-10 1.708026063e-10 4.49138493e-10 2.124197465e-10 7.226267546e-11 2.850666941e-10 3.506514652e-10 2.877868254e-10 1.708103184e-10 1.592797055e-10 6.960603893e-11 1.51231015e-10 2.699635104e-10 1.163401697e-10 1.16723084e-10 9.699991094e-13 9.48241433e-11 4.718451321e-10 1.345497574e-10 1.939104157e-10 2.363909245e-10 1.73455775e-10 2.199334209e-10 9.787667543e-11 7.254843722e-10 1.325972475e-10 3.01188253e-10 5.014475756e-11 2.284621868e-10 2.154102798e-10 4.173238584e-09 7.648707246e-09 5.925681644e-09 7.621980693e-09 7.36263442e-09 5.779813238e-09 3.191088334e-09 2.830760823e-09 4.363024164e-09 1.446876752e-09 3.700855693e-10 4.133127933e-10 1.241932659e-10 3.487934479e-10 1.433114735e-09 2.221811409e-09 2.078245558e-09 1.985925136e-09 2.715324249e-09 1.897517671e-09 2.712054832e-09 4.933288682e-09 1.868341465e-09 2.798201584e-09 1.760104422e-09 3.2746453e-09 3.218435927e-09 2.721765839e-09 3.095959007e-09 2.942926409e-09 1.977388234e-09 1.724025984e-09 1.165734358e-09 6.188176536e-10 3.85397739e-10 1.273790954e-09 1.669632438e-09 1.381755433e-09 2.166571267e-09 1.651050042e-09 1.37614919e-09 1.684781734e-09 2.057445611e-09 1.819760913e-09 1.586180536e-09 2.420613073e-09 1.865763149e-09 1.653063545e-09 2.125508311e-09 2.143662624e-09 1.493763243e-09 1.447223155e-09 1.693647183e-09 1.363458275e-09 1.920849401e-09 1.747069769e-09 6.749659943e-10 1.029642304e-09 1.226824494e-09 1.61231566e-09 6.413924917e-10 7.090174436e-10 1.307874618e-09 1.354419284e-09 1.29742901e-09 1.174869488e-09 9.354148773e-10 1.322228855e-09 1.238929472e-09 1.266702483e-09 9.135822909e-10 1.104945146e-09 7.92659735e-10 1.094705045e-09 1.130154561e-09 1.542894842e-09 8.262674338e-10 7.462023114e-10 1.339834667e-09 8.864209941e-10 5.257332908e-10 1.491265851e-09 9.557573014e-10 1.170642788e-09 8.483979326e-10 7.009253811e-10 9.794182211e-10 8.858337965e-10 9.686128247e-10 8.491237533e-10 3.135679426e-10 5.831077653e-10 4.400647576e-10 6.105574162e-10 7.229912138e-10 2.413311672e-10 7.568607393e-10 4.995520433e-10 8.970603089e-10 1.034132132e-09 3.981154877e-10 9.050706686e-10 6.148697912e-10 7.59129332e-10 4.410185563e-10 7.288028477e-10 5.524822533e-10 1.675798536e-10 6.037601115e-10 3.63328226e-10 6.912554425e-10 7.000144994e-10 4.519532193e-10 3.269341271e-10 8.347805335e-10 5.583809523e-10 1.25416433e-10 3.977536476e-10 6.571456325e-10 1.587462077e-10 8.930585642e-10 3.569686749e-10 4.950206082e-10 2.825055812e-10 1.061371219e-09 1.93139984e-10 2.383833575e-10 1.832276576e-10 2.701441423e-10 3.618988483e-10 +1.469472736e-10 7.320263631e-10 3.661117639e-10 2.448734402e-10 3.848571291e-11 5.553169334e-10 2.903368726e-10 3.004613655e-10 4.519055902e-10 3.568914884e-10 6.312725631e-10 3.040913866e-10 5.573435268e-10 3.501770536e-10 5.529027107e-10 3.093703938e-10 4.480754333e-10 5.805140934e-10 3.603768377e-10 5.337120424e-10 4.019623873e-10 7.363728514e-10 2.139189438e-10 1.525521873e-10 7.857030384e-10 7.278093073e-10 3.875301295e-10 3.638366482e-10 9.531462826e-10 5.116574964e-10 3.006553824e-10 8.119203609e-10 3.28942958e-10 4.420377175e-10 6.151725078e-10 3.569113819e-10 6.085503921e-10 4.741367781e-10 5.479860598e-10 5.149272688e-10 8.601743972e-10 3.621590754e-10 1.245154563e-09 9.633882752e-10 5.374754043e-10 1.251860134e-09 9.479241483e-10 1.583567364e-09 1.144155754e-09 1.768885141e-09 1.994558165e-09 8.578497264e-10 1.430286878e-09 1.133228528e-09 1.363879994e-09 6.007915646e-10 8.403616666e-10 1.009042216e-09 7.004937285e-10 1.164778301e-09 3.975114011e-10 9.627790523e-10 2.179408581e-09 1.239383427e-09 1.59748194e-09 1.129778163e-09 1.209831694e-09 8.852603311e-10 1.003693543e-09 8.419977058e-10 1.592576067e-09 1.346247343e-09 1.216119769e-09 1.501611303e-09 1.53630641e-09 1.813325449e-09 1.056842751e-09 6.759693518e-10 1.66514356e-09 1.060465758e-09 1.765881518e-09 2.450513598e-09 2.210972385e-09 1.934085688e-09 2.018929369e-09 2.553096707e-09 2.363630941e-09 1.985206842e-09 1.551598158e-09 1.357050505e-09 1.916432086e-09 1.964574041e-09 1.806469562e-09 1.174407993e-09 9.591550037e-10 5.486348518e-10 3.709960333e-10 6.018060053e-10 1.107175775e-09 3.330108216e-09 2.7616745e-09 3.581939876e-09 1.514431431e-09 1.787799367e-09 3.383267199e-09 1.57298575e-09 2.654167888e-09 2.299073222e-09 3.27668437e-09 3.832919389e-09 1.692744712e-09 1.582458032e-09 2.131956655e-09 1.361136646e-09 1.601304157e-09 1.172824571e-09 5.155412905e-10 8.7000334e-11 2.857072262e-10 1.737948409e-10 9.902460075e-10 3.264276836e-09 3.735569289e-09 4.024011402e-09 5.539023677e-09 8.267313858e-09 7.6270173e-09 5.632708543e-09 6.280934616e-09 3.547759264e-09 4.926746337e-10 2.409797379e-10 3.180862836e-10 3.405437131e-10 2.884359395e-10 3.851994757e-10 1.835891835e-10 6.452945933e-11 8.768403323e-11 4.707689461e-11 2.136530807e-10 8.533222821e-11 1.282750069e-10 3.436956039e-10 1.049703666e-10 1.013897307e-10 2.323754308e-10 2.760914099e-10 6.841288957e-12 1.914278896e-10 5.759279101e-10 2.745618813e-10 5.044581241e-10 1.281151225e-12 2.197619733e-10 2.811154499e-10 3.177164709e-10 4.129048687e-10 1.14560824e-10 2.108988492e-10 1.629734991e-10 2.61124924e-10 2.059572436e-10 7.771382286e-11 1.103087872e-10 1.089728831e-10 7.349975488e-11 1.956143153e-10 1.250403865e-10 1.381402423e-10 2.749385714e-09 5.079859199e-09 5.880495702e-09 8.261668353e-09 7.890624845e-09 5.144947075e-09 3.27356994e-09 4.636378556e-09 3.33166948e-09 1.386813049e-09 1.062890165e-10 9.404864401e-13 2.619101889e-10 2.713041494e-10 1.232233275e-09 2.975466182e-09 1.798959093e-09 2.275494114e-09 1.367863423e-09 2.372524553e-09 3.443322733e-09 3.593263809e-09 4.567389513e-09 2.239659597e-09 2.356295438e-09 2.44131851e-09 2.599731584e-09 2.450328011e-09 3.983292125e-09 3.735008115e-09 2.352166746e-09 9.209154005e-10 1.019220721e-09 5.599550836e-10 3.211870602e-10 3.404967677e-10 1.22351233e-09 2.038316222e-09 2.467098754e-09 1.539821154e-09 2.123117076e-09 2.582355151e-09 2.55556736e-09 2.111509216e-09 1.723960018e-09 1.860843137e-09 2.097555536e-09 2.458823182e-09 3.095012828e-09 3.003875985e-09 1.795180344e-09 2.146689432e-09 1.859470029e-09 1.102290683e-09 8.144662073e-10 9.827201403e-10 1.143189327e-09 9.195552427e-10 1.835985847e-09 1.505818617e-09 1.160775749e-09 1.679109626e-09 1.043608933e-09 1.144825734e-09 1.447077507e-09 8.400648152e-10 1.205015098e-09 6.798327847e-10 7.280502891e-10 7.89068476e-10 8.384306593e-10 8.371939975e-10 1.433867221e-09 1.273776278e-09 1.248180797e-09 1.05141791e-09 2.267844438e-09 1.283841717e-09 9.273800839e-10 5.158829709e-10 1.613370972e-09 1.134574403e-09 1.244782815e-09 1.249078722e-09 8.87244485e-10 9.390797049e-10 8.079309663e-10 1.071700218e-09 1.014169548e-09 6.130953846e-10 9.51207854e-10 6.747411371e-10 4.080853355e-10 5.997625541e-10 4.681724113e-10 5.613797746e-10 5.354637333e-10 6.788020462e-10 7.06403369e-10 8.862914825e-10 7.130883834e-10 7.237330812e-10 9.274431414e-10 6.462573767e-10 1.355371908e-10 3.466386826e-10 7.269456009e-10 4.788462455e-10 3.739641794e-10 2.280112716e-10 2.973894446e-10 4.883254196e-10 4.182286554e-10 4.222737595e-10 3.863362736e-10 2.980488479e-10 5.884416905e-10 1.646198093e-10 4.529272445e-10 2.327200905e-10 5.605234308e-10 1.865748609e-10 8.764557284e-10 2.832401576e-10 1.167379263e-09 2.479742301e-10 5.325903714e-11 6.605213692e-10 4.288851028e-10 1.397368936e-10 +1.161781492e-10 3.178331542e-10 7.665053944e-10 1.86300285e-10 3.228301447e-10 4.906267744e-10 4.72788221e-10 7.749227333e-10 1.748933027e-10 5.627105937e-10 8.795471153e-10 3.111262169e-10 5.603082712e-10 4.734914209e-10 4.589537277e-10 7.885548589e-10 4.521501983e-10 8.90857002e-10 2.483092673e-10 6.308196612e-10 4.100876562e-10 7.314078098e-10 6.027260168e-10 4.956275545e-10 7.016587147e-10 8.91990567e-10 4.301855249e-10 7.963605477e-10 3.760490568e-10 1.039931197e-09 4.636481351e-10 5.156281004e-10 8.414295097e-10 6.896869332e-10 3.865513722e-10 1.036062815e-09 7.923832007e-10 1.875777679e-10 6.767697826e-10 3.996822567e-10 7.653997166e-10 6.688122279e-10 1.65002587e-09 1.005373976e-09 1.32931788e-09 1.092482152e-09 1.884010532e-09 1.142271669e-09 1.070193316e-09 9.422796333e-10 1.26509726e-09 9.460288693e-10 9.196771822e-10 8.995055071e-10 8.165086623e-10 1.196621141e-09 1.024397482e-09 4.502141964e-10 6.038357105e-10 6.58210154e-10 1.435296428e-09 9.737453752e-10 7.410913455e-10 1.145197795e-09 9.839808986e-10 7.35934065e-10 9.685994849e-10 1.335076876e-09 1.35016839e-09 2.204315105e-09 1.916058105e-09 1.286576448e-09 1.585549488e-09 6.764979179e-10 1.5409282e-09 1.597919055e-09 1.328225834e-09 1.248177558e-09 1.983916869e-09 1.928425116e-09 2.850202575e-09 2.265692803e-09 1.609226109e-09 2.027239473e-09 2.625763469e-09 1.594535478e-09 2.147593024e-09 1.758096813e-09 1.506972327e-09 1.226586323e-09 1.263199205e-09 1.241247454e-09 1.178439164e-09 1.169357443e-09 6.384644208e-10 2.917917713e-10 5.142530751e-10 7.890529311e-10 1.152194555e-09 2.834954244e-09 3.747913701e-09 2.465076756e-09 2.612842647e-09 3.592107202e-09 2.68950578e-09 1.834347714e-09 2.559669243e-09 2.839413235e-09 3.335422351e-09 3.294970335e-09 2.555637085e-09 2.25633278e-09 2.710903533e-09 1.816511053e-09 1.841853402e-09 1.633983544e-09 3.044582069e-10 9.104013979e-11 3.543968944e-10 5.943890098e-10 2.181965824e-09 2.763459919e-09 3.420211214e-09 2.849430383e-09 5.132445028e-09 8.445953064e-09 6.688679313e-09 6.276881188e-09 5.519599564e-09 2.78828454e-09 6.841075356e-11 4.088582682e-10 1.98591654e-10 2.969794731e-12 3.87509211e-10 1.446017314e-10 3.066060372e-19 1.76039576e-10 7.941304193e-11 1.511068039e-10 3.682053219e-10 9.740299724e-11 3.975603432e-10 1.563131421e-10 1.950265667e-10 7.977468373e-11 8.236158286e-11 1.534636898e-10 4.078417269e-10 2.89663814e-10 9.550272949e-11 2.118541942e-10 1.109101845e-13 2.333705574e-10 2.179099918e-10 1.680048828e-10 1.542151529e-10 2.067040659e-10 6.531769728e-11 7.936881963e-11 2.907645297e-10 9.992215656e-11 2.376812731e-10 1.159658612e-10 2.094566489e-10 3.69145108e-10 3.148526489e-10 7.161597995e-11 2.59694484e-10 3.822375146e-10 3.011065856e-09 6.787339809e-09 4.923631354e-09 6.236560598e-09 8.696488773e-09 4.201410265e-09 3.070130337e-09 3.573103691e-09 3.308142864e-09 1.153936451e-09 1.091419212e-10 2.947695486e-10 1.16749182e-10 4.937862354e-10 1.604337795e-09 1.617271157e-09 2.348940091e-09 1.740027546e-09 2.214306143e-09 2.227729421e-09 3.23717921e-09 4.642706155e-09 4.553683545e-09 3.170824642e-09 3.290077221e-09 2.193644195e-09 3.65029969e-09 2.03203418e-09 1.932064356e-09 4.449605083e-09 1.88262816e-09 9.337474718e-10 1.369646767e-09 5.152116692e-10 7.999618112e-10 1.050401188e-09 9.971189832e-10 1.748273844e-09 1.874591911e-09 2.190263735e-09 1.767982923e-09 9.035221984e-10 1.844064246e-09 1.669604807e-09 1.742743056e-09 1.473793586e-09 1.381357239e-09 2.160285821e-09 1.878990512e-09 1.774385083e-09 1.355575659e-09 8.925199537e-10 1.076264114e-09 5.511848901e-10 1.242140865e-09 7.180142654e-10 8.657713467e-10 9.590272499e-10 1.188286181e-09 1.887764562e-09 1.189420361e-09 8.855843523e-10 1.188446031e-09 9.290229144e-10 1.466678526e-09 1.34703468e-09 1.122921986e-09 1.350406981e-09 8.222744935e-10 1.404771957e-09 6.89416288e-10 9.20672844e-10 8.625057815e-10 1.161522747e-09 6.514921388e-10 1.157569092e-09 1.220317677e-09 8.409123573e-10 1.896819303e-09 1.102646765e-09 1.26618459e-09 7.644937082e-10 9.5212832e-10 1.355961918e-09 1.732666246e-09 8.13051901e-10 1.052507336e-09 5.441310095e-10 1.136830253e-09 5.07164095e-10 2.385420091e-10 8.570988516e-10 6.21323894e-10 7.589946075e-10 3.534909877e-10 6.96440646e-10 7.583547346e-10 2.05378752e-10 7.537092172e-10 2.452803822e-10 4.35079067e-10 3.501887178e-10 1.207671262e-09 5.830192695e-10 4.774293666e-10 5.338504875e-10 3.059573204e-10 3.912831135e-10 1.439844231e-10 4.887434246e-10 1.952733676e-10 4.405188877e-10 4.757386794e-10 8.073391423e-10 7.418701042e-10 4.224162806e-10 4.519106785e-10 4.588626472e-10 6.878675131e-10 3.901517793e-10 3.797148118e-10 4.571374089e-10 4.641852906e-10 6.318118178e-10 8.283184385e-10 2.296416484e-10 1.126281788e-10 4.701189627e-10 2.307474132e-10 2.706789709e-10 +3.973165548e-10 9.296935372e-11 1.033082469e-10 1.856022253e-10 4.930044427e-10 4.127158479e-10 2.074899186e-10 6.300142317e-11 4.868237473e-10 5.338593807e-10 2.622580157e-10 2.455350552e-10 3.966903812e-10 6.557257739e-10 3.824285738e-10 2.609971394e-10 4.240220266e-10 3.370592415e-10 4.787652545e-10 4.280090954e-10 1.193369215e-10 3.286879256e-10 3.861681656e-10 6.457624937e-10 1.723178685e-10 8.997152042e-10 9.513277948e-10 4.430473151e-10 8.051068708e-10 5.917836967e-10 3.005836125e-10 4.329151968e-10 4.099583372e-10 3.790768024e-10 4.935515433e-10 4.773632637e-10 5.078248793e-10 3.970744488e-10 2.819981515e-10 6.163688354e-10 5.723089607e-10 7.906662935e-10 1.22201571e-09 7.115074219e-10 1.16144877e-09 1.103464911e-09 8.343411975e-10 1.343985875e-09 1.306555693e-09 1.156206249e-09 9.899350842e-10 7.156326983e-10 1.524099437e-09 1.034417756e-09 1.345270598e-09 7.277504917e-10 1.566924505e-09 1.131945418e-09 6.626397929e-10 1.25116368e-09 1.048712531e-09 1.425728501e-09 1.343596973e-09 1.682687807e-09 1.107627638e-09 1.255974471e-09 8.388803996e-10 1.254184765e-09 1.280759472e-09 1.098185832e-09 1.558219333e-09 1.655085451e-09 1.633538805e-09 1.349835226e-09 1.379869739e-09 8.284306301e-10 9.112299336e-10 1.016113112e-09 2.305915903e-09 2.10068103e-09 1.519481242e-09 1.648601318e-09 2.411055053e-09 1.602107468e-09 1.795577603e-09 1.632729773e-09 1.934073626e-09 2.152777402e-09 1.921840269e-09 1.219639624e-09 1.492118228e-09 1.732955138e-09 1.709096743e-09 1.045771923e-09 8.806303897e-10 4.434874296e-10 5.435951217e-10 4.862329135e-10 1.440247664e-09 2.758302809e-09 3.032937418e-09 2.346947665e-09 3.818808618e-09 2.721582085e-09 3.303652628e-09 3.238042549e-09 4.031974398e-09 3.832098716e-09 3.79422921e-09 2.685686429e-09 9.889286103e-10 2.186331751e-09 1.60956759e-09 1.928173117e-09 2.451902815e-09 1.552298777e-09 2.036996998e-10 3.550216444e-10 4.513728597e-10 2.30147783e-10 1.393403512e-09 4.089106046e-09 2.232552206e-09 3.353443967e-09 6.728302576e-09 9.658794006e-09 5.382233904e-09 7.669878258e-09 5.445165491e-09 1.888330844e-09 2.142333948e-10 1.454407534e-10 2.002288771e-10 4.868121152e-10 1.871832505e-10 4.325871943e-10 2.428502965e-10 1.490149151e-10 3.740324305e-10 1.659781137e-10 1.129286092e-13 2.650601736e-10 1.37958855e-10 7.565722825e-11 2.433127219e-10 2.32276515e-10 1.429510089e-10 1.29194964e-10 4.508345515e-10 5.044866255e-11 7.099586971e-11 2.327903179e-10 1.821263204e-10 3.605716729e-10 7.426423357e-11 2.164767107e-10 1.633146785e-10 5.316322082e-10 3.986270851e-10 1.738648389e-10 1.032595258e-10 1.293605172e-10 3.295249303e-10 1.317311785e-10 1.776115406e-10 6.325664556e-11 9.727746041e-11 1.972504632e-10 5.376318903e-10 1.44600493e-10 2.580847326e-09 5.770850277e-09 8.855312892e-09 8.838163157e-09 7.228581285e-09 5.309011824e-09 2.428437961e-09 3.113643544e-09 3.374412751e-09 2.233712069e-09 1.972545029e-10 2.336498254e-10 1.558597839e-10 3.80143121e-10 1.496070402e-09 1.359318925e-09 1.076822222e-09 2.125054275e-09 1.683093419e-09 1.53019052e-09 2.607429256e-09 3.401924253e-09 3.612985182e-09 1.783715356e-09 2.747915132e-09 2.013679883e-09 2.895661988e-09 3.132739362e-09 3.10516475e-09 2.333869736e-09 3.412774262e-09 1.26034409e-09 1.26344843e-09 4.481446853e-10 3.667952685e-10 9.481067157e-10 1.249974411e-09 1.182825204e-09 1.42583922e-09 2.520040523e-09 1.216880233e-09 9.747636584e-10 1.966959338e-09 1.26848233e-09 2.179441206e-09 2.838890017e-09 1.800574604e-09 2.9553597e-09 2.038977376e-09 1.253203252e-09 1.211493816e-09 1.857691886e-09 7.798155843e-10 7.489751383e-10 1.168280126e-09 9.960158452e-10 9.486524335e-10 9.737281036e-10 7.729496096e-10 1.593310018e-09 1.565901159e-09 1.996267436e-09 1.505286646e-09 1.010222596e-09 1.350457215e-09 1.483698476e-09 1.301408156e-09 8.070701228e-10 1.143583788e-09 1.115444819e-09 9.823697978e-10 1.45803568e-09 7.822910204e-10 1.576917174e-09 1.244326196e-09 1.809754071e-09 1.072661151e-09 1.343381092e-09 7.091379675e-10 8.164160931e-10 1.043519079e-09 1.089984018e-09 1.144379304e-09 1.118440003e-09 1.300242178e-09 1.043852186e-09 8.597176516e-10 7.957539391e-10 8.697554894e-10 4.412567759e-10 8.330364336e-10 6.812834857e-10 4.308215761e-10 3.316518155e-10 8.546582707e-10 4.880534697e-10 7.463006417e-10 6.430547026e-10 7.33129908e-10 3.933541274e-10 6.505509209e-10 8.950977175e-10 5.36156595e-10 2.852679936e-10 3.491562607e-10 2.242460103e-10 4.585582482e-10 5.114737221e-10 3.608052542e-10 2.611596278e-10 8.168603224e-10 4.159387297e-10 3.191949968e-10 4.23721489e-10 3.976104825e-10 4.630904621e-10 3.2444499e-10 3.022737503e-10 3.205616386e-10 3.849761794e-10 4.725681416e-10 5.970068838e-10 6.798453932e-10 2.337503758e-10 4.933324512e-10 1.882764632e-10 3.818608557e-10 9.074065366e-11 3.152369711e-10 2.046365711e-10 +2.664617896e-10 3.431010533e-10 2.111045926e-10 6.29725578e-10 2.759425054e-11 2.038002284e-10 5.650822478e-10 4.174588602e-10 2.366329808e-10 3.995182857e-10 3.548833148e-10 3.194165349e-10 5.454788442e-10 5.426260647e-10 4.275595204e-10 3.827286042e-10 2.721313938e-10 2.619316158e-10 4.520887295e-10 4.800031217e-10 2.467779415e-10 3.06838429e-10 2.361704652e-10 4.741458881e-10 2.191424704e-10 8.398887782e-10 6.411876977e-10 8.019104467e-10 4.483427436e-10 1.115327573e-09 6.188028037e-10 5.69266476e-10 1.111803121e-09 7.207743967e-10 7.310083271e-10 4.833028902e-10 5.315485578e-10 6.057050868e-10 4.707375759e-10 7.20099142e-10 4.427194338e-10 8.741576296e-10 7.307686537e-10 9.047705485e-10 1.61670103e-09 9.5817402e-10 7.519512149e-10 1.257536046e-09 9.825338956e-10 1.159957928e-09 9.743823255e-10 1.530478596e-09 1.24559731e-09 1.036522771e-09 1.22917522e-09 1.646814782e-09 7.311819888e-10 1.670925095e-09 1.24748864e-09 1.085362891e-09 1.191154504e-09 6.277995554e-10 8.712580324e-10 1.381927786e-09 1.20235901e-09 1.48566278e-09 1.578586825e-09 1.073924528e-09 1.12650502e-09 1.120143593e-09 1.400286344e-09 7.448688588e-10 1.362720022e-09 1.301989853e-09 1.327220772e-09 6.497620049e-10 1.34330778e-09 1.366184213e-09 1.10853578e-09 1.894820198e-09 1.356045694e-09 2.055109151e-09 1.942943237e-09 2.03397449e-09 1.957740553e-09 1.942991171e-09 1.201023864e-09 1.237186231e-09 1.894793646e-09 1.482660724e-09 1.740994365e-09 1.384666493e-09 1.119399249e-09 1.879493256e-09 5.933582837e-10 6.313870164e-10 1.872563353e-10 1.483092424e-09 7.653345982e-10 2.053023917e-09 2.113984282e-09 3.068312774e-09 2.325027953e-09 4.185203392e-09 2.247839137e-09 2.455878593e-09 2.511091356e-09 2.595512929e-09 3.829903101e-09 2.478060483e-09 2.504424898e-09 1.560470363e-09 1.224701936e-09 2.377863086e-09 2.053554311e-09 1.451106727e-09 1.472613208e-10 9.278184059e-11 1.870180409e-10 9.191790191e-11 1.862888665e-09 3.091942774e-09 3.678958056e-09 2.333375985e-09 6.299104129e-09 9.817117083e-09 6.132324977e-09 7.232763152e-09 7.075883866e-09 2.089850789e-09 1.464766453e-10 1.066119708e-10 1.844264448e-10 3.853621666e-10 3.660649222e-10 2.938123871e-10 6.85339335e-10 4.142483207e-10 0 1.716731539e-10 5.047450797e-10 1.177283321e-10 2.190854387e-10 3.118586183e-10 3.205108401e-10 1.594156684e-10 1.406461954e-10 1.940933862e-10 2.5581831e-10 1.982462149e-10 1.818419135e-10 8.081620795e-11 4.355378133e-10 2.310502573e-10 1.746312652e-10 2.380250229e-10 4.344048426e-11 8.825866404e-11 1.713030696e-10 1.999299272e-10 9.104495176e-11 5.035697053e-10 2.039386617e-10 2.703702403e-10 9.909743294e-11 9.281533799e-11 4.205986506e-10 2.27567605e-10 1.644309684e-10 3.961468848e-10 2.728932535e-09 6.462697932e-09 8.110496478e-09 5.665249133e-09 8.854931157e-09 7.114358887e-09 2.516228263e-09 2.539945376e-09 3.026651038e-09 1.19354202e-09 3.383695191e-10 1.379018942e-15 2.026075388e-10 2.629657447e-10 8.47095875e-10 2.055893507e-09 1.426407974e-09 2.154460933e-09 1.4910512e-09 2.188213873e-09 2.135337382e-09 4.774406788e-09 2.58621042e-09 3.184872426e-09 3.312080097e-09 3.83663785e-09 2.253857185e-09 2.626507097e-09 3.327634213e-09 5.519318428e-09 2.516302843e-09 1.709510193e-09 6.11701797e-10 9.409569967e-10 5.618527831e-10 9.85017454e-10 1.465880191e-09 1.935467873e-09 1.77935246e-09 1.356007186e-09 1.356571031e-09 1.130260614e-09 1.527357609e-09 1.801602776e-09 2.560656793e-09 1.280871114e-09 1.371632525e-09 2.227525196e-09 2.318314444e-09 1.815194145e-09 1.796730451e-09 1.206239077e-09 8.37157178e-10 1.362371938e-09 1.269781129e-09 9.005484306e-10 1.022977133e-09 1.223131463e-09 1.288135137e-09 1.695263921e-09 1.033838722e-09 1.174865781e-09 1.221289976e-09 7.403522726e-10 1.142708995e-09 1.076620426e-09 1.321692684e-09 1.394596083e-09 7.3097184e-10 6.694706007e-10 5.511471254e-10 1.644064185e-09 9.734218551e-10 1.871077756e-09 1.357221936e-09 1.057248583e-09 9.138658289e-10 7.877060904e-10 1.530845306e-09 1.124359913e-09 1.281527787e-09 1.124111417e-09 1.274450552e-09 1.202816253e-09 7.96886512e-10 3.306182653e-10 9.697004123e-10 7.323607195e-10 9.28865727e-10 9.473242554e-10 3.58650154e-10 2.980063733e-10 5.521760667e-10 3.833717032e-10 4.792922488e-10 4.970000144e-10 1.122739183e-09 5.413759584e-10 6.424074607e-10 8.758565558e-10 6.011174811e-10 3.430000219e-10 5.375323553e-10 5.064254847e-10 5.368788664e-10 5.491222398e-10 5.430442017e-10 7.283570003e-10 3.340515385e-10 4.951898237e-10 4.055202925e-10 5.327642635e-10 2.200943491e-10 5.578824282e-10 1.896023648e-10 2.959419485e-10 8.498386026e-10 7.117957615e-10 3.020692812e-10 3.636222249e-10 1.539135423e-10 8.112477913e-10 7.563460902e-10 4.423690651e-10 6.142880685e-10 5.490698606e-10 8.361640653e-10 5.371809044e-10 4.464117687e-10 3.334430673e-10 +1.931310532e-10 1.797187105e-10 4.786506323e-10 1.805447882e-10 5.363660398e-10 6.622034625e-10 6.838829202e-10 8.193571027e-10 8.222152162e-10 5.949104921e-10 5.354578268e-10 5.626629274e-10 2.42268274e-10 4.686100555e-10 7.338247675e-10 5.947905388e-10 9.126643425e-10 3.167279945e-10 1.799952009e-10 3.054170855e-10 8.335186677e-10 3.049723629e-10 4.197936475e-10 3.857560389e-10 2.779752263e-10 2.502634631e-10 6.583734026e-10 5.12676863e-10 6.358519118e-10 5.503267323e-10 6.906180427e-10 7.594169054e-10 6.174345674e-10 2.783399213e-10 6.537335147e-10 6.146188074e-10 7.509231689e-10 6.3643191e-10 4.719677082e-10 4.024063573e-10 1.16948839e-09 8.973986561e-10 5.45634331e-10 1.180050773e-09 7.710575448e-10 9.018288343e-10 1.528589627e-09 1.383411479e-09 1.173374206e-09 1.264513886e-09 9.635539556e-10 1.258412371e-09 1.68576853e-09 8.636619629e-10 1.302886629e-09 1.224037966e-09 1.020456969e-09 8.60843885e-10 8.330452027e-10 4.674063259e-10 5.575531307e-10 9.539187888e-10 1.259948935e-09 1.083102464e-09 1.532401139e-09 1.187845825e-09 1.399839619e-09 1.301389904e-09 9.325517968e-10 1.280461804e-09 1.202357719e-09 1.388923436e-09 1.309340873e-09 1.462198921e-09 1.160061369e-09 7.462765868e-10 1.314636094e-09 1.697035048e-09 7.395157825e-10 1.347125103e-09 1.869460166e-09 2.523327869e-09 1.537707848e-09 2.258082461e-09 1.942517376e-09 2.234744379e-09 2.169982032e-09 2.13580053e-09 1.825238574e-09 1.794839511e-09 1.214166973e-09 1.131493763e-09 1.373627591e-09 1.131133776e-09 1.090740663e-09 8.345096833e-10 9.657543316e-10 1.438549438e-09 1.808922883e-09 2.523730189e-09 2.338007732e-09 3.678124128e-09 2.476668505e-09 2.227023931e-09 2.968874167e-09 3.866613969e-09 3.149807906e-09 3.813374705e-09 4.157262836e-09 1.747673544e-09 1.621195025e-09 1.24183443e-09 2.640681965e-09 2.595394132e-09 1.545506472e-09 9.596139548e-10 1.940869737e-10 1.523429976e-10 2.143631633e-10 4.596863697e-10 1.747807075e-09 3.934147011e-09 3.208640446e-09 4.179793525e-09 5.227611061e-09 7.729982209e-09 7.270079072e-09 6.580205395e-09 5.740198253e-09 2.020169233e-09 4.247306147e-10 1.089485811e-10 1.132499968e-10 5.904104201e-10 4.518117235e-10 5.492049696e-10 4.028121642e-10 3.298025359e-10 2.7063654e-10 9.363373805e-11 3.209331168e-10 1.065744731e-10 3.45785473e-10 2.221930749e-10 3.665879425e-10 2.283674401e-10 3.788383822e-10 2.827546023e-10 9.09341848e-11 2.883170673e-10 2.771429377e-10 1.798765893e-10 2.060263886e-10 2.252284143e-10 3.325786514e-10 1.816489685e-10 1.612483156e-10 1.444792187e-10 2.77194796e-10 2.987650161e-10 7.451265201e-11 2.782822056e-10 2.620925686e-10 2.253367544e-10 2.258317337e-10 2.419203908e-10 7.223590096e-15 9.552654095e-11 1.765216114e-10 2.536337595e-10 2.057637251e-09 5.584668576e-09 5.275940214e-09 8.254886679e-09 7.530747708e-09 6.881783684e-09 2.025051371e-09 3.090253946e-09 3.602914515e-09 1.926488877e-09 1.060011986e-11 3.394241823e-10 5.197670041e-11 2.963039112e-10 9.336419968e-10 1.99068875e-09 1.752829907e-09 2.135693366e-09 2.114462474e-09 1.435042153e-09 3.163221892e-09 3.571686486e-09 2.906085954e-09 3.560006097e-09 2.064862778e-09 3.061378361e-09 1.794510021e-09 2.955447785e-09 2.675971929e-09 3.275309039e-09 1.537357815e-09 1.509250546e-09 1.200333182e-09 8.731266207e-10 5.886353796e-10 8.503893669e-10 1.109705937e-09 1.906490915e-09 1.578706364e-09 2.880208319e-09 1.473244055e-09 1.669217269e-09 1.944909559e-09 2.369102381e-09 1.524195347e-09 1.798365302e-09 1.386443467e-09 2.470009162e-09 1.986593672e-09 2.052092573e-09 1.570576993e-09 9.820695731e-10 9.905147706e-10 7.467768707e-10 1.405521746e-09 1.319987991e-09 6.88019626e-10 7.735872585e-10 1.383587226e-09 1.56629231e-09 1.399506962e-09 1.464543922e-09 8.972837003e-10 1.156209425e-09 1.123933686e-09 9.374267831e-10 1.41149946e-09 9.574735981e-10 1.080759103e-09 1.257243319e-09 1.12732734e-09 8.28612437e-10 1.04897721e-09 1.022995514e-09 1.008151561e-09 5.828541404e-10 1.046430087e-09 1.127415608e-09 1.362375676e-09 1.049712158e-09 1.379921735e-09 6.269477656e-10 1.141949245e-09 9.217012372e-10 1.3279913e-09 1.081007434e-09 1.525123676e-09 8.400932755e-10 7.316982058e-10 5.182430826e-10 7.851141058e-10 6.301997503e-10 5.029651295e-10 1.153353262e-09 3.513692889e-10 5.614012879e-10 7.395655091e-10 6.001616525e-10 7.558925295e-10 3.364559285e-10 4.971564018e-10 8.720764851e-10 4.609492955e-10 7.943876142e-10 2.667252749e-10 3.6225038e-10 4.128591609e-10 6.783092073e-10 6.401661271e-10 7.818955126e-10 2.354246802e-10 3.953700292e-10 3.541839612e-10 2.340388411e-10 3.992184458e-10 3.434507099e-10 1.532298601e-10 4.801815537e-10 5.75157972e-10 5.317009585e-10 5.066748278e-10 8.073783849e-10 5.464353561e-10 1.852779847e-10 1.758405721e-10 2.397868881e-10 3.762243231e-10 2.007561901e-10 1.961477264e-10 4.306171311e-10 +2.909384055e-10 5.499947177e-10 5.710207522e-10 1.670065513e-10 4.96470602e-10 2.604984398e-10 7.668611122e-10 2.44427982e-10 5.685752657e-10 5.99549343e-10 7.621491443e-10 3.766676351e-10 7.308622456e-10 3.718113802e-10 5.838701527e-10 6.868377216e-10 3.654741695e-10 3.350036435e-10 2.735126061e-10 2.790752129e-10 4.471755724e-10 4.229484922e-10 5.969057093e-10 6.76549973e-10 3.90920932e-10 2.429279529e-10 3.709829718e-10 4.433971131e-10 6.364233978e-10 5.781277231e-10 4.928988908e-10 6.913180341e-10 5.706428464e-10 5.57050019e-10 3.764837151e-10 4.803789539e-10 3.255361815e-10 4.353419528e-10 2.625788899e-10 4.637430732e-10 8.951716716e-10 8.109038631e-10 1.057818594e-09 8.925747514e-10 8.798996879e-10 1.556365967e-09 1.396733714e-09 7.385588223e-10 1.005954853e-09 1.607786033e-09 1.628013189e-09 6.377748749e-10 1.063960743e-09 1.33962526e-09 1.143180387e-09 9.864582513e-10 1.057429171e-09 1.067458702e-09 2.786800299e-10 7.302406628e-10 1.083157381e-09 5.712658131e-10 1.405818349e-09 1.547533147e-09 9.588981789e-10 1.393444279e-09 1.462723825e-09 1.126304003e-09 1.048427442e-09 1.588177318e-09 1.197967186e-09 1.653853707e-09 1.378305323e-09 8.995162155e-10 1.206195423e-09 1.082755264e-09 1.061154092e-09 9.796401652e-10 1.784286523e-09 1.661783341e-09 1.653625159e-09 2.196330704e-09 1.903975727e-09 1.990937993e-09 1.660974454e-09 2.523357356e-09 2.040263859e-09 2.158551337e-09 1.975664852e-09 2.389575413e-09 1.494415239e-09 1.312188463e-09 1.670335024e-09 1.405149556e-09 1.137933941e-09 8.553500738e-10 4.881560616e-10 1.088999542e-09 9.057110216e-10 2.686813912e-09 3.560413873e-09 2.420068076e-09 3.644391177e-09 3.44085847e-09 2.687251357e-09 2.604754067e-09 2.984512718e-09 3.199675844e-09 4.067062895e-09 2.278685353e-09 2.155544973e-09 2.458899877e-09 2.764990001e-09 2.339727219e-09 2.680827872e-09 7.669720948e-10 1.833923739e-10 3.034080839e-10 3.844856391e-10 5.34973043e-10 2.530508178e-09 2.929629089e-09 3.920077442e-09 3.246010435e-09 5.792498481e-09 7.412703441e-09 8.182059342e-09 5.63743684e-09 5.158228835e-09 1.495796768e-09 4.422517427e-10 9.812363338e-11 6.180880772e-10 4.198210201e-10 2.952510247e-19 2.926265406e-10 9.356893183e-14 2.773342537e-10 1.421999414e-10 1.903133318e-10 3.393442972e-10 2.406747106e-10 2.977718879e-10 5.236196939e-10 3.43971505e-10 1.507522303e-10 9.665292387e-11 1.040500072e-10 1.96843226e-09 1.299416872e-06 1.343564394e-06 1.081344112e-10 9.725258324e-13 4.449159007e-10 1.083415163e-10 8.805727937e-11 7.965161481e-11 8.984926779e-11 1.126994075e-10 2.963399074e-11 1.430011412e-10 7.387536792e-11 4.008102219e-10 9.999592092e-13 1.223675619e-10 1.197290283e-10 2.174541279e-10 3.019298875e-13 2.894369407e-10 1.934672836e-10 2.082621092e-09 4.832233265e-09 6.026762933e-09 5.873088385e-09 9.453403197e-09 6.129730342e-09 3.68486101e-09 4.194485169e-09 2.550644508e-09 2.351629998e-09 7.366237675e-11 2.657938572e-10 4.680425935e-10 4.855853941e-10 8.203791752e-10 2.214136822e-09 2.009737556e-09 2.447343831e-09 2.521576264e-09 2.624186105e-09 2.590881834e-09 5.120002879e-09 2.9930363e-09 2.887481145e-09 2.672689304e-09 3.201932868e-09 4.124863355e-09 2.12537233e-09 2.25463545e-09 2.992616061e-09 1.35935487e-09 1.500650378e-09 1.108952525e-09 4.577816639e-10 5.249203304e-10 1.265665028e-09 1.600685505e-09 1.733723079e-09 1.451009975e-09 1.344455578e-09 1.514042607e-09 1.621735945e-09 1.065875312e-09 2.65827747e-09 2.419337836e-09 1.498823653e-09 2.371590313e-09 1.977884167e-09 1.716480243e-09 1.497402738e-09 1.537742562e-09 1.381576202e-09 1.381969847e-09 4.506695947e-10 1.37882905e-09 8.798316966e-10 1.318725272e-09 1.441251758e-09 1.292644455e-09 1.113686668e-09 1.234936426e-09 9.646577515e-10 1.108361536e-09 1.719117896e-09 1.045584632e-09 1.255381289e-09 1.333621759e-09 7.466256531e-10 1.104372166e-09 7.482396215e-10 1.001913876e-09 8.892506893e-10 9.286897345e-10 1.792871332e-09 1.374622724e-09 1.288293267e-09 1.351889066e-09 9.937257298e-10 1.168884825e-09 1.131664946e-09 1.192641948e-09 1.030881875e-09 6.159587545e-10 1.423346832e-09 9.730591329e-10 1.143945609e-09 1.050004921e-09 6.911834e-10 8.78875683e-10 7.2463192e-10 3.235655145e-10 5.041868369e-10 5.486583119e-10 3.54698477e-10 2.791240198e-10 3.754912812e-10 2.945293872e-10 7.061311794e-10 6.220063143e-10 6.155454517e-10 5.741946114e-10 7.859659312e-10 8.104056003e-10 1.050192191e-09 7.747439794e-10 2.593300184e-10 2.155358277e-10 4.903165117e-10 4.284490302e-10 4.47938093e-10 2.881305273e-10 4.989071103e-10 3.456136156e-10 6.616021446e-10 3.263693703e-10 3.951587967e-10 1.869603377e-10 5.129118954e-11 3.727213614e-10 2.674901707e-10 6.151354652e-10 5.000369583e-10 6.22129626e-10 3.449347517e-10 1.635787592e-10 5.561182002e-10 1.267055832e-10 2.912172956e-10 6.850836439e-10 3.014331914e-10 +1.993454622e-05 9.346360916e-06 3.365046725e-10 3.913860823e-10 3.063155638e-10 8.76638382e-11 1.945134774e-10 3.048559972e-10 4.854341656e-10 3.284688311e-10 4.332342452e-10 6.954250131e-10 2.842352897e-10 7.667753805e-10 3.820882691e-10 4.136649928e-10 5.822485329e-10 2.385367569e-10 3.914473111e-10 2.71218538e-10 4.84372909e-10 5.725946199e-10 4.578046483e-10 1.55428189e-10 5.564133865e-10 3.456846884e-10 4.20946444e-10 6.833719922e-10 5.180020032e-10 6.559793615e-10 8.775406603e-10 5.66022725e-10 3.508356444e-10 1.098210703e-09 4.92268068e-10 6.644945642e-10 5.645943257e-10 6.453413882e-10 2.903143683e-10 7.242157069e-10 8.017540353e-10 7.143844882e-10 9.29344051e-10 1.1804805e-09 9.712784659e-10 1.024974158e-09 1.034652605e-09 8.542622117e-10 6.886750806e-10 1.110645493e-09 1.01215462e-09 2.195388626e-09 1.196818633e-09 6.183608535e-10 1.299649368e-09 9.152330239e-10 1.368766007e-09 9.905367867e-10 9.415435653e-10 1.567538819e-09 1.256025377e-09 7.261459702e-10 1.370242382e-09 1.569719362e-09 1.678080634e-09 9.132925253e-10 1.375911644e-09 1.087666353e-09 1.013911586e-09 9.585519144e-10 1.200274759e-09 1.835673899e-09 1.617355489e-09 1.802613781e-09 1.597212727e-09 1.099239916e-09 1.481685603e-09 5.492935208e-10 1.39666913e-09 1.683854837e-09 2.190102191e-09 2.043654257e-09 2.040034824e-09 1.499682665e-09 1.222059765e-09 2.663729982e-09 2.209604131e-09 1.567689131e-09 1.210863766e-09 1.355619446e-09 2.254718018e-09 2.116917316e-09 1.918449775e-09 1.42253089e-09 9.84006555e-10 7.110062892e-10 4.117043097e-10 1.377085984e-09 7.209796403e-10 2.137410885e-09 2.470562455e-09 4.295149676e-09 3.517279778e-09 2.669250633e-09 1.789194882e-09 2.302971039e-09 3.099709521e-09 3.615393799e-09 4.386461388e-09 3.94468124e-09 1.930616193e-09 2.543150146e-09 1.621989401e-09 1.675514734e-09 2.167300514e-09 1.131138746e-09 5.528507028e-10 3.580675512e-12 2.964440825e-10 1.763280135e-10 2.564594291e-09 3.861271525e-09 3.896161169e-09 2.214552671e-09 7.240570118e-09 8.352531622e-09 6.737528065e-09 5.675459966e-09 4.551175719e-09 1.648548836e-09 1.460779879e-10 3.183187558e-10 7.330810277e-11 1.626232041e-10 7.225830038e-11 3.021467184e-10 1.394559138e-10 3.135639239e-10 1.091691427e-10 2.600357653e-10 2.136688183e-10 2.531876697e-10 1.702557198e-10 2.484988055e-10 3.45073498e-14 3.028516065e-10 9.833708916e-11 1.699912329e-10 8.613507934e-09 9.069778771e-06 9.295472227e-06 7.842336609e-09 3.706916129e-10 9.48655171e-11 3.453809501e-10 0 2.66411561e-10 1.753147645e-10 1.634114833e-10 1.08356689e-10 1.028674254e-10 8.80903935e-11 1.618396031e-10 3.045570022e-10 3.717097089e-10 2.414339821e-10 2.153816079e-10 1.882214565e-12 4.13495809e-14 2.126655238e-10 1.632828645e-09 3.911619299e-09 7.548504383e-09 6.894054944e-09 8.669769258e-09 5.088757754e-09 4.600725091e-09 3.23988889e-09 3.794236271e-09 2.132897491e-09 6.121314721e-10 1.860516435e-10 3.243994032e-10 1.550968652e-10 1.006057139e-09 1.737278782e-09 2.20194446e-09 1.487093109e-09 2.254902189e-09 2.61335517e-09 2.24906143e-09 3.681382582e-09 3.589564936e-09 2.232012656e-09 2.008012594e-09 3.270173571e-09 3.408420397e-09 2.615076172e-09 1.770042884e-09 3.560533837e-09 3.305255658e-09 1.047712067e-09 1.402834162e-09 6.65820329e-10 7.006009783e-10 9.876770909e-10 1.45726691e-09 1.702914406e-09 9.974189286e-10 1.406683978e-09 1.301116169e-09 1.574031418e-09 1.267352248e-09 2.383870844e-09 2.651767959e-09 2.529579601e-09 1.694260416e-09 2.938897344e-09 2.215257318e-09 2.48249325e-09 1.215964795e-09 1.211204181e-09 9.545742635e-10 9.64877894e-10 8.401548979e-10 1.215825525e-09 8.856573688e-10 1.113546717e-09 9.743378116e-10 1.17648567e-09 1.403198699e-09 1.119498477e-09 1.630344e-09 2.093510711e-09 7.638248415e-10 9.981792209e-10 1.143464408e-09 1.002412713e-09 6.184194268e-10 1.316447203e-09 5.824668637e-10 9.137090104e-10 1.167653371e-09 1.314602527e-09 8.860740814e-10 1.33754085e-09 7.478543605e-10 9.538098009e-10 9.207886195e-10 8.239953561e-10 1.471491667e-09 1.405292482e-09 1.210536249e-09 7.620685566e-10 1.133961691e-09 6.946218738e-10 5.732564463e-10 6.848721025e-10 1.063093594e-09 9.57555157e-10 5.280978662e-10 3.622126579e-10 4.099804212e-10 2.273820587e-10 5.67727738e-10 2.707654189e-10 5.739707099e-10 9.373122667e-10 1.196541652e-09 6.053078605e-10 4.554929462e-10 4.259089636e-10 4.763037832e-10 4.531769922e-10 4.327945073e-10 6.053458974e-10 4.716849901e-10 3.176578129e-10 7.315832027e-10 3.820424198e-10 3.547528082e-10 2.36688069e-10 5.34028581e-10 5.003754868e-10 4.931495641e-10 6.003145159e-10 4.918383061e-10 2.885118612e-10 2.027276787e-10 6.244795923e-10 5.44621051e-10 8.491295086e-10 6.860031157e-10 4.039721475e-10 3.718348552e-10 2.766857257e-10 2.550836692e-10 2.162161218e-10 9.243560204e-06 1.980829137e-05 +1.519488378e-05 1.03135701e-05 3.913306179e-10 1.478341909e-10 2.498588887e-10 2.163905848e-10 7.696793763e-10 4.987046681e-10 3.699309683e-10 5.813240614e-10 2.392322843e-10 4.712418712e-10 2.876702892e-10 4.078884586e-10 7.44113189e-10 6.428460735e-10 7.368649871e-11 7.375907932e-10 5.779418874e-10 1.07963664e-09 2.187964242e-10 4.825123135e-10 6.127750412e-10 6.434463261e-10 1.972652197e-10 2.882397472e-10 6.748283197e-10 4.436336062e-10 2.123393398e-10 6.521796567e-10 8.01166835e-10 7.502148756e-10 4.898388724e-10 8.26494537e-10 5.009429357e-10 8.171999877e-10 5.293547978e-10 7.270410556e-10 3.866226442e-10 7.441946714e-10 7.435950699e-10 5.160430521e-10 7.288838276e-10 8.424413467e-10 7.468762151e-10 1.078963235e-09 1.010247059e-09 1.394924176e-09 1.36654265e-09 1.110089676e-09 8.731383271e-10 8.675850899e-10 1.304528087e-09 1.220906832e-09 1.278739594e-09 8.884682589e-10 1.239612646e-09 3.739050886e-10 1.020003966e-09 1.074867788e-09 1.061683797e-09 3.950279698e-10 8.858717672e-10 1.839702282e-09 9.422250108e-10 1.11090041e-09 1.687745986e-09 1.469399003e-09 1.092579675e-09 1.403221918e-09 1.131809845e-09 1.115263778e-09 1.256040318e-09 1.226112953e-09 8.442741548e-10 1.52218697e-09 9.255070493e-10 8.504494303e-10 1.244265853e-09 1.589179438e-09 2.111388324e-09 2.160507335e-09 2.328496564e-09 1.856010582e-09 1.713826938e-09 1.894803502e-09 1.71377392e-09 1.66254473e-09 1.252134994e-09 1.61966423e-09 1.772458888e-09 2.008233014e-09 1.901879286e-09 1.134979317e-09 1.201194297e-09 3.827730021e-10 9.002745821e-10 8.139543609e-10 1.022600304e-09 2.939035748e-09 2.948876062e-09 3.577153053e-09 2.888202595e-09 3.234343371e-09 2.99635618e-09 3.605347478e-09 2.296410725e-09 2.747875792e-09 3.916900768e-09 2.407166569e-09 1.934413283e-09 2.12173697e-09 1.446216916e-09 2.219589112e-09 1.464768978e-09 1.29681627e-09 3.23771057e-10 4.521389603e-11 1.175694659e-11 9.216203161e-11 3.1016573e-09 2.974388879e-09 3.107254596e-09 2.861124557e-09 6.058854658e-09 8.435700295e-09 8.857635483e-09 8.054597183e-09 6.177930749e-09 2.425902893e-09 2.632054767e-10 9.060070004e-11 2.359109234e-10 0 7.342343764e-15 1.415509043e-10 2.444152386e-10 6.033403497e-16 1.814917988e-10 2.053227753e-10 1.930298507e-10 1.918066895e-10 1.080451672e-10 3.871848737e-10 4.366523376e-11 2.084880321e-10 7.325282602e-13 3.561352888e-10 1.269744711e-08 1.279936251e-05 1.283871493e-05 1.242565155e-08 2.301776854e-10 2.154603808e-10 3.488332258e-10 2.102287232e-10 1.029844302e-10 1.164853904e-10 1.653673352e-10 1.133756117e-10 2.820549965e-10 1.135572376e-10 3.951436149e-10 1.86666786e-10 3.360396478e-10 1.344361823e-10 2.330916035e-10 2.368138931e-14 3.634678228e-10 5.119344065e-10 1.768901764e-09 4.038109627e-09 4.773261173e-09 5.725398687e-09 1.057508846e-08 6.06827243e-09 3.821160375e-09 3.744163722e-09 2.995728723e-09 1.508703973e-09 2.575024334e-10 2.677286567e-10 3.675395834e-10 6.718799993e-11 9.498970552e-10 2.297299646e-09 1.084344625e-09 2.19846333e-09 1.945531847e-09 2.260268045e-09 1.918609714e-09 2.46235173e-09 2.017396454e-09 3.094431362e-09 2.702711539e-09 2.396382072e-09 2.206851441e-09 1.822245669e-09 3.533319678e-09 2.2273434e-09 2.104592161e-09 1.269409206e-09 8.811530998e-10 2.791413202e-10 4.555931622e-10 1.146987018e-09 1.299404178e-09 1.835584498e-09 1.902988751e-09 1.452250217e-09 1.483582326e-09 1.293190661e-09 1.67638762e-09 1.523764038e-09 1.035319507e-09 1.975672546e-09 2.159456118e-09 2.298219136e-09 2.45465627e-09 2.921804656e-09 2.979661806e-09 2.025222977e-09 1.367378531e-09 9.727061388e-10 1.73935478e-09 9.984161712e-10 9.648494736e-10 1.393579915e-09 1.087521426e-09 1.35800844e-09 1.595288668e-09 1.465230468e-09 1.045379648e-09 9.665221006e-10 1.78267872e-09 1.657137858e-09 1.629372758e-09 9.106082718e-10 7.45319557e-10 3.693287176e-10 7.505740391e-10 6.403638074e-10 6.992209126e-10 8.883281014e-10 1.0802636e-09 1.471346363e-09 1.206483087e-09 7.671233851e-10 9.354381974e-10 7.633009074e-10 6.489667234e-10 1.386006809e-09 9.680930499e-10 1.150996313e-09 1.020063523e-09 1.173694586e-09 6.098722694e-10 1.580280602e-09 1.5258144e-09 4.286285744e-10 3.367119045e-10 9.253365843e-10 2.60913623e-10 6.154430189e-10 2.997857953e-10 8.012941836e-10 6.539485235e-10 5.251928399e-10 3.528604396e-10 8.396158695e-10 5.905146849e-10 1.364473026e-10 1.001840602e-09 1.066443821e-09 4.764579843e-10 5.038810738e-10 3.727369529e-10 4.067105819e-10 7.909221943e-10 5.397477393e-10 3.264489476e-10 7.325917777e-10 3.697847034e-10 4.560198554e-10 9.004334649e-10 5.602416871e-10 6.636603024e-10 1.032664445e-10 5.373267762e-10 7.526994787e-10 3.051920236e-10 1.990408854e-10 1.060284256e-09 4.993262698e-10 8.809046306e-10 2.904870832e-10 6.866868422e-10 4.260817206e-10 1.029797534e-05 1.513105403e-05 +1.511190728e-05 1.010965255e-05 1.615023886e-10 2.162820975e-10 4.352083801e-10 5.348343989e-10 3.465570219e-10 6.421902589e-10 5.322146999e-10 4.239864477e-10 5.094972328e-10 1.328078516e-10 3.542633568e-10 4.13914468e-10 2.734027295e-10 3.582561912e-10 4.826944328e-10 3.893455552e-10 4.628272621e-10 6.257406474e-10 6.238606441e-10 3.498831317e-10 5.594560497e-10 5.188618427e-10 7.847506129e-10 2.666189571e-10 5.015433028e-10 5.967271897e-10 4.215253547e-10 8.871881397e-10 6.134835663e-10 6.047445617e-10 5.910455356e-10 7.631695576e-10 5.136657199e-10 1.115726404e-09 6.369331528e-10 5.18750833e-10 6.639351915e-10 6.162490979e-10 8.64864416e-10 6.291638669e-10 9.563377776e-10 8.270691245e-10 1.433372475e-09 1.345781445e-09 1.576584061e-09 1.203077333e-09 1.709455781e-09 9.852544101e-10 5.079100767e-10 1.457422221e-09 1.393844303e-09 1.367755929e-09 1.250408653e-09 1.111232446e-09 9.057286981e-10 9.447841342e-10 1.508946133e-09 8.797481702e-10 9.803333711e-10 1.138497828e-09 1.343203266e-09 1.309739916e-09 1.337046829e-09 1.328021603e-09 1.697873046e-09 1.436092104e-09 1.289291548e-09 7.093525936e-10 9.206157867e-10 2.066288823e-09 1.266142407e-09 1.412049717e-09 1.717300201e-09 8.574272274e-10 9.224903509e-10 1.038160115e-09 1.18643764e-09 2.109238644e-09 1.927654954e-09 3.204364666e-09 2.789835347e-09 1.622128247e-09 1.684771172e-09 2.491327362e-09 1.734726439e-09 6.552578541e-10 1.336011795e-09 1.303722333e-09 1.288252131e-09 1.125401678e-09 1.462286774e-09 1.16123277e-09 7.364138394e-10 8.099150576e-10 1.100630908e-09 1.056048706e-09 1.155070252e-09 2.988734526e-09 3.225050056e-09 3.28197883e-09 3.431106308e-09 3.231134948e-09 3.276706872e-09 2.365606582e-09 1.843587881e-09 4.072198039e-09 3.72301246e-09 2.62180218e-09 2.742189717e-09 1.679298317e-09 2.017961598e-09 1.462559653e-09 2.617711868e-09 1.406833079e-09 5.516692269e-11 2.732660037e-10 1.550481751e-10 1.650124926e-10 2.289138201e-09 3.479118974e-09 4.44167109e-09 2.994132585e-09 6.850380097e-09 1.017861007e-08 5.206728525e-09 8.46975946e-09 3.742871591e-09 1.290078757e-09 1.621540034e-10 1.852508447e-10 4.73347473e-10 2.647281803e-10 1.850967414e-10 2.449065017e-10 2.921734742e-10 2.918194337e-10 4.389762236e-10 1.098897992e-10 2.134849172e-10 2.907273774e-10 4.428968873e-10 2.597053717e-10 1.681439132e-10 0 7.712668793e-11 2.699215771e-10 9.030747234e-09 1.298436624e-05 1.310460447e-05 1.136387339e-08 1.481302265e-20 1.162971853e-10 1.267757508e-10 7.193188727e-11 3.025831585e-15 2.346591385e-10 2.949568919e-13 1.360994849e-10 2.95702231e-12 1.8311557e-10 5.485687733e-10 2.049274344e-10 1.409917781e-10 5.184487216e-10 2.06737398e-10 6.528612138e-11 9.948899923e-11 1.814401414e-10 1.502260966e-09 4.086569869e-09 5.534272992e-09 8.495686573e-09 8.835263253e-09 7.088872557e-09 4.148294825e-09 2.980953144e-09 4.560505751e-09 2.365661833e-09 3.351328495e-13 2.432905811e-10 8.512591394e-11 2.379841795e-10 8.377502608e-10 1.131393821e-09 1.369719048e-09 2.169766694e-09 2.497497936e-09 1.73756787e-09 3.044093961e-09 3.34605236e-09 3.047515231e-09 2.539393389e-09 1.583602717e-09 3.54100551e-09 2.904313713e-09 2.886542974e-09 2.715779366e-09 2.277888108e-09 3.362908138e-09 1.007497864e-09 8.854416489e-10 5.346011666e-10 3.052320511e-10 8.057338549e-10 1.813341338e-09 1.144706286e-09 1.674595601e-09 1.109534037e-09 8.861529511e-10 2.044961113e-09 1.54253346e-09 1.690255646e-09 2.389986363e-09 9.974689337e-10 2.090551884e-09 2.201781038e-09 1.343711262e-09 1.54788097e-09 1.890660862e-09 1.442522687e-09 1.022036793e-09 8.251532838e-10 8.694276275e-10 1.047232512e-09 1.347112757e-09 1.299683973e-09 1.032205496e-09 1.400102369e-09 1.224988384e-09 1.312687083e-09 1.292401386e-09 7.919062262e-10 1.570585084e-09 1.835526067e-09 1.523117356e-09 9.195183665e-10 8.302168828e-10 9.202233435e-10 7.606861432e-10 8.79020781e-10 7.463918542e-10 7.497229178e-10 1.142827958e-09 1.00235049e-09 1.374357674e-09 1.659782625e-09 1.825409827e-09 9.780502035e-10 1.655696519e-09 8.762464682e-10 8.303469415e-10 7.636809954e-10 1.177844792e-09 9.137124816e-10 6.542935984e-10 5.369748514e-10 1.125182574e-09 8.466450041e-10 8.215259915e-10 6.307277394e-10 3.147292813e-10 7.475866961e-10 5.517459439e-10 3.751100972e-10 1.325480139e-09 3.928112943e-10 5.453789786e-10 8.539890676e-10 6.258611236e-10 4.990494295e-10 3.044223459e-10 4.44442242e-10 2.486436353e-10 4.636525016e-10 1.946952473e-10 7.274212117e-10 8.654562945e-10 3.010831465e-10 5.77282338e-10 4.850305921e-10 3.734891762e-10 5.709254203e-10 5.951595944e-10 5.319011119e-10 3.833324858e-10 1.092784452e-09 5.356057614e-10 3.945010516e-10 5.085573757e-10 3.101260794e-10 2.656122374e-10 6.941114682e-10 8.415230098e-10 1.897770778e-10 5.042155864e-10 6.14729508e-10 1.015850035e-05 1.499929213e-05 +1.524107943e-05 1.025153075e-05 3.214181345e-10 4.80551567e-10 4.048462266e-10 3.334554069e-10 2.635953867e-10 7.008453936e-10 4.422817465e-10 9.593205841e-10 2.176349418e-10 3.922933969e-10 7.745695911e-10 2.55955405e-10 7.353572498e-10 4.538928832e-10 2.000101625e-10 6.88505549e-10 7.468588994e-10 2.63159195e-10 1.042019988e-09 4.246541508e-10 5.878792726e-10 8.665271735e-10 3.760486301e-10 3.56767521e-10 5.733077774e-10 4.237019713e-10 6.252247607e-10 5.868539539e-10 4.912253731e-10 2.999912748e-10 2.944394551e-10 4.477608421e-10 4.070197276e-10 9.612364218e-10 5.35507553e-10 5.803929769e-10 2.60081436e-10 7.546239385e-10 1.276940577e-09 8.023725623e-10 6.083645986e-10 1.273254661e-09 2.08557893e-09 1.013855675e-09 1.194306074e-09 1.434396232e-09 6.213919668e-10 9.470712314e-10 8.272373097e-10 1.35342352e-09 9.227590722e-10 1.30921131e-09 1.439853049e-09 6.947206379e-10 8.629269537e-10 1.198562886e-09 1.610727903e-09 1.204325117e-09 6.37946975e-10 1.481098454e-09 3.567762937e-10 8.063841465e-10 1.127629633e-09 1.423913748e-09 1.59430584e-09 1.044326795e-09 9.554602579e-10 1.470958289e-09 1.147493779e-09 1.253742592e-09 1.097889011e-09 5.510034452e-10 1.325383461e-09 1.249860503e-09 1.366815084e-09 7.694049693e-10 1.454109163e-09 1.225373578e-09 2.777725977e-09 2.892671214e-09 2.330191975e-09 1.776816565e-09 1.870366475e-09 2.446903729e-09 1.964783499e-09 1.994287083e-09 1.722327475e-09 1.655794321e-09 1.684616831e-09 1.424471018e-09 1.679208424e-09 1.36938697e-09 5.803266473e-10 7.945662807e-10 8.510655766e-10 7.424610954e-10 1.296880394e-09 3.170457719e-09 3.152496278e-09 2.669282761e-09 2.398357156e-09 2.713739898e-09 2.67413249e-09 4.384070582e-09 2.61961307e-09 4.075724769e-09 3.704246631e-09 2.779500909e-09 2.164110844e-09 1.776521837e-09 1.970210103e-09 1.249218295e-09 2.535869724e-09 9.954893564e-10 3.153594789e-10 5.062073e-10 8.585314098e-11 5.637530488e-10 2.250774685e-09 3.540256819e-09 2.875915427e-09 3.003000078e-09 6.488439649e-09 1.019876139e-08 6.910212782e-09 6.287171018e-09 3.901229967e-09 1.563101703e-09 4.081285554e-10 1.489984571e-19 3.000399591e-10 1.996312817e-10 1.302100154e-10 3.402316354e-10 3.554497214e-10 1.451280203e-10 3.300795902e-10 2.787314716e-10 2.701382886e-10 2.551423467e-10 3.176767045e-10 6.223715089e-11 1.844598806e-10 1.70516243e-10 1.73071535e-10 4.002389307e-12 9.156792177e-09 1.286947162e-05 1.281821534e-05 6.598443942e-09 3.073006854e-10 1.067812768e-10 1.954211975e-10 1.975963664e-10 2.32232482e-10 1.706702855e-10 4.922632192e-10 2.364528595e-10 2.118470953e-10 3.822408022e-10 2.610668052e-10 2.153930745e-10 1.536572217e-10 2.137586227e-10 1.28992451e-10 1.683939201e-10 1.728346327e-10 1.85561847e-10 1.860056611e-09 5.169777349e-09 4.772395114e-09 5.493638736e-09 9.25282536e-09 5.889302694e-09 3.116634731e-09 3.497161885e-09 3.746634624e-09 2.948392398e-09 8.033545961e-10 3.227649045e-10 1.967667951e-10 1.059750963e-10 1.022099929e-09 2.18222442e-09 1.538917003e-09 1.407764119e-09 2.173131619e-09 2.297873228e-09 2.129181259e-09 5.038321128e-09 2.211239893e-09 2.524366772e-09 2.940825338e-09 4.480375095e-09 2.366950883e-09 5.22261125e-09 2.514238291e-09 2.068292099e-09 2.269834462e-09 1.065995698e-09 7.84860563e-10 5.155871445e-10 4.124693207e-10 8.510399683e-10 1.466106429e-09 1.176037107e-09 1.542259614e-09 1.647987782e-09 1.831097222e-09 1.444321486e-09 1.498544082e-09 2.512682883e-09 2.735633645e-09 9.945489844e-10 2.094549723e-09 1.897302898e-09 2.099828408e-09 2.514758616e-09 1.087040707e-09 1.034674662e-09 1.488122014e-09 1.182089912e-09 1.512391044e-09 1.297762282e-09 9.656394767e-10 1.497660739e-09 1.289095869e-09 1.469816316e-09 1.327463747e-09 1.191163879e-09 1.296810013e-09 1.097840085e-09 1.359245224e-09 9.925930135e-10 9.784976101e-10 9.97386806e-10 1.024352986e-09 9.894412502e-10 3.584682723e-10 1.141731576e-09 1.150127073e-09 8.531852907e-10 1.213009127e-09 9.471211085e-10 1.508566507e-09 1.393342354e-09 1.032806894e-09 7.010604478e-10 1.087718982e-09 1.360906125e-09 1.315004824e-09 1.298206288e-09 2.025829876e-09 8.087609125e-10 7.318544434e-10 1.356188651e-09 8.357166746e-10 9.016697953e-10 7.37600113e-10 5.941946396e-10 1.037896464e-09 6.679397753e-10 2.24029238e-10 4.558102982e-10 7.462720242e-10 8.053676102e-10 5.606364384e-10 7.877839881e-10 4.839200682e-10 6.815085057e-10 9.408367166e-10 4.632797853e-10 2.721916149e-10 3.6545897e-10 3.2033503e-10 5.355204171e-10 3.728729675e-10 1.953004863e-10 2.678373792e-10 1.069768955e-09 1.855175919e-10 1.515232538e-10 8.426636594e-11 7.512935264e-10 3.540280784e-10 4.042755841e-10 3.396230112e-10 6.748555241e-10 9.739511169e-10 8.860982406e-10 2.906323294e-10 1.352104052e-10 2.28427976e-10 7.49013101e-11 2.054402637e-10 4.966393636e-10 1.021798492e-05 1.515834356e-05 +1.973854531e-05 9.272650814e-06 3.071666326e-10 2.622176407e-10 4.407227171e-10 8.250763812e-10 2.376666123e-10 4.012058667e-10 3.488248612e-10 4.743054243e-10 5.321636722e-10 4.34522867e-10 4.72223955e-10 5.631576688e-10 7.177964064e-10 9.661537111e-10 5.460866485e-10 4.88624146e-10 5.891804738e-10 1.033794526e-09 5.312781202e-10 8.819589232e-10 4.463945538e-10 5.285069732e-10 5.065470341e-10 5.188400985e-10 3.146235739e-10 4.432032138e-10 6.183228124e-10 3.940609102e-10 4.17505412e-10 5.841630464e-10 5.522549834e-10 7.800714684e-10 3.294811533e-10 5.489038775e-10 5.626379156e-10 4.157143215e-10 3.930849001e-10 1.17601802e-09 7.383501999e-10 8.430241628e-10 6.838048507e-10 5.126511596e-10 5.998643797e-10 1.08178853e-09 1.320794844e-09 1.535042262e-09 1.068404164e-09 1.816418847e-09 7.864719057e-10 1.268531151e-09 1.113418536e-09 1.181719348e-09 1.32034517e-09 9.357700807e-10 9.053984853e-10 3.646364547e-10 9.006708311e-10 7.179914485e-10 8.346958331e-10 1.138515993e-09 1.041913008e-09 1.932051483e-09 1.175560253e-09 1.246827423e-09 1.346704507e-09 1.345881477e-09 1.208067946e-09 1.615314106e-09 1.176421709e-09 7.724002746e-10 1.158739501e-09 8.212021454e-10 9.406583624e-10 9.284710352e-10 7.367203972e-10 1.318071193e-09 1.396916752e-09 2.145092831e-09 1.617234262e-09 2.491266581e-09 1.830898632e-09 2.487920593e-09 1.897099917e-09 1.798528367e-09 1.769478204e-09 1.354208462e-09 1.950743406e-09 1.316290288e-09 1.491148042e-09 1.234495774e-09 1.644250407e-09 1.162689621e-09 9.769184606e-10 1.047652803e-09 5.584674614e-10 5.944266486e-10 1.859833219e-09 2.586381953e-09 2.67932757e-09 3.241855533e-09 2.455799096e-09 1.835831126e-09 2.533556597e-09 1.497489921e-09 2.579358131e-09 3.800298544e-09 3.93849718e-09 3.174491136e-09 9.401343156e-10 1.891952714e-09 1.75676205e-09 1.431157851e-09 1.766101571e-09 2.168724318e-09 2.10753712e-10 1.072253361e-10 7.461241648e-11 3.701925119e-10 2.514484791e-09 2.96184315e-09 3.567457309e-09 2.873702509e-09 6.804167935e-09 7.070012592e-09 8.231261244e-09 6.23117491e-09 5.3944368e-09 2.065202812e-09 4.241282374e-10 2.564058574e-10 2.550709822e-10 0 4.052065974e-11 3.616106198e-10 3.945940869e-10 1.622741875e-10 1.74091934e-10 1.697571862e-10 2.404383718e-10 1.327691489e-10 1.077952726e-10 1.747159129e-10 6.840413368e-11 2.942041445e-10 4.748314908e-10 1.80514792e-10 1.489552441e-08 8.905652814e-06 9.063123311e-06 1.086110164e-08 2.238390738e-10 6.556329706e-11 2.839770487e-10 9.423326312e-11 3.10521761e-10 1.033271602e-10 4.025312647e-10 2.822592196e-10 3.272708037e-10 3.715489371e-10 2.222908426e-10 7.384920421e-11 2.521726374e-10 3.283340849e-10 1.559935248e-10 2.546283568e-10 8.308100508e-11 2.724170996e-10 2.417036719e-09 4.776330855e-09 7.057565875e-09 6.9585459e-09 1.010516811e-08 4.773243244e-09 2.157216403e-09 2.363486997e-09 3.326333458e-09 1.370795208e-09 2.025282135e-10 1.65319852e-10 1.200347585e-10 9.945297651e-11 1.014947724e-09 2.294240929e-09 1.444315837e-09 2.855426796e-09 1.524702783e-09 2.771721016e-09 2.02309512e-09 3.295148231e-09 4.504244975e-09 2.977814628e-09 2.556890045e-09 2.649192312e-09 2.474962615e-09 3.03690947e-09 2.711666855e-09 3.961115045e-09 3.242116166e-09 8.891729776e-10 1.539464448e-09 5.32787093e-10 9.64484114e-10 8.591045866e-10 1.84443753e-09 1.009826962e-09 1.417207375e-09 1.721379787e-09 2.269669971e-09 1.211457636e-09 1.493451713e-09 2.69371796e-09 2.502388355e-09 2.05554771e-09 1.405706525e-09 1.73088521e-09 2.526682515e-09 1.457074251e-09 1.273998403e-09 1.048614488e-09 5.958767445e-10 9.378917855e-10 1.396287777e-09 8.957672379e-10 1.031158097e-09 9.952892009e-10 1.590752379e-09 8.746480987e-10 9.308071778e-10 4.357418129e-10 1.862364675e-09 1.53098277e-09 8.104782761e-10 1.388100756e-09 8.017592288e-10 7.249976525e-10 7.303362317e-10 1.40273859e-09 1.047001166e-09 9.062087247e-10 1.433104129e-09 1.283897597e-09 1.076834712e-09 1.373398018e-09 7.320205292e-10 8.816596594e-10 1.053633593e-09 1.113824504e-09 1.512180535e-09 1.204461233e-09 1.600954239e-09 1.32371649e-09 8.105684638e-10 1.366236112e-09 1.201449975e-09 4.640613696e-10 5.024886232e-10 7.89425047e-10 2.801241292e-10 1.652131761e-10 5.293691675e-10 9.494181879e-10 4.541896559e-10 3.35574125e-10 3.977482718e-10 5.759404961e-10 3.664863905e-10 4.329806683e-10 7.173165393e-10 4.332011664e-10 4.922463435e-10 5.313464439e-10 9.538698022e-10 3.924236678e-10 6.618322222e-10 1.260862959e-10 5.284842305e-10 3.264544741e-10 4.27840858e-10 4.572758849e-10 5.298002511e-10 7.817264487e-10 5.167832776e-10 1.660525971e-10 6.076787077e-10 4.278400097e-10 6.319086366e-10 7.974323552e-10 5.771583823e-10 3.535757888e-10 5.793739408e-10 1.988644221e-10 2.026073712e-10 3.164683388e-10 1.886069002e-10 1.802801695e-10 9.291828289e-06 1.984762269e-05 +3.347512024e-10 9.961722983e-10 6.714604834e-10 2.394633317e-10 5.007059444e-10 2.681935162e-10 2.279556423e-10 2.794428752e-10 4.619512688e-10 9.98202568e-11 2.886801999e-10 3.160070506e-10 3.857108042e-10 5.202733862e-10 8.001536358e-10 4.291316255e-10 1.622982846e-10 6.874003802e-10 2.082206376e-10 2.716583127e-10 6.11810677e-10 5.094567662e-10 5.922657208e-10 1.811094668e-10 6.09045216e-10 2.238287345e-10 4.587794469e-10 3.322913406e-10 5.558107489e-10 5.266884712e-10 2.362709929e-10 4.064827857e-10 6.073780595e-10 8.667360329e-10 7.134834147e-10 9.698876377e-10 9.204341085e-10 4.022427658e-10 5.461533728e-10 3.431216658e-10 1.380625768e-09 8.67488279e-10 7.435563e-10 1.115037068e-09 5.928133274e-10 1.225210043e-09 6.653096847e-10 1.002010137e-09 1.198018336e-09 5.810762558e-10 1.132213812e-09 1.298222793e-09 1.207523306e-09 1.273972297e-09 1.701410974e-09 1.387602944e-09 1.242485684e-09 5.560974595e-10 8.717112203e-10 7.396878487e-10 9.486533808e-10 8.32682335e-10 6.595276983e-10 1.070294305e-09 1.559169717e-09 7.203709243e-10 1.390163624e-09 6.982831866e-10 7.669544413e-10 1.661437705e-09 1.433025077e-09 1.214966405e-09 1.046745026e-09 9.121790396e-10 8.665222143e-10 1.289185835e-09 8.202381534e-10 8.095817788e-10 1.165958557e-09 2.140410744e-09 1.789382103e-09 2.431440052e-09 1.751883538e-09 1.26415531e-09 1.420754684e-09 2.140187387e-09 1.099634446e-09 1.771867905e-09 2.40433062e-09 1.16946596e-09 1.253455134e-09 1.858068637e-09 9.677604844e-10 1.426932623e-09 1.061922397e-09 7.469049055e-10 6.85606875e-10 9.591959405e-10 1.072126745e-09 2.380377627e-09 3.0668578e-09 2.657510433e-09 3.532345398e-09 3.100799642e-09 3.280097039e-09 3.868767186e-09 1.083089183e-09 2.285514396e-09 4.488065616e-09 2.648376298e-09 1.221316532e-09 3.227653644e-09 1.746184611e-09 2.00024176e-09 1.956921498e-09 1.486295283e-09 3.10226137e-10 1.714992819e-10 8.342366003e-11 8.66201449e-11 2.297349732e-09 3.622339628e-09 3.553237127e-09 3.509016563e-09 8.204080679e-09 9.250984869e-09 6.625281764e-09 5.425878264e-09 6.435881003e-09 1.844579787e-09 2.191409031e-10 3.61058322e-10 3.574093643e-10 1.620570451e-10 2.24539972e-10 1.684295522e-10 3.278750418e-10 6.175199753e-11 3.157684368e-10 1.53304247e-10 9.777579465e-11 5.388403884e-10 5.000444921e-10 4.889578876e-10 5.748606122e-11 3.212195388e-10 1.573474733e-10 2.162335437e-10 1.539173134e-09 1.388937582e-06 1.324128595e-06 6.689824721e-10 1.856201276e-10 1.670414894e-10 2.990260505e-10 2.539976143e-10 5.030063916e-10 2.187459784e-10 3.773556639e-10 3.046293613e-10 2.19884226e-10 1.21764144e-10 2.639276471e-10 0 1.0123081e-10 3.075305931e-10 4.461082939e-10 1.514561583e-10 4.256567233e-10 1.471668894e-11 1.74551053e-09 5.590324507e-09 6.233417675e-09 5.955391801e-09 9.31576288e-09 8.20774929e-09 3.723905195e-09 3.795342984e-09 2.308204382e-09 1.85628219e-09 3.862151083e-10 2.442288257e-10 3.464750276e-10 3.599592026e-10 1.835672165e-09 2.47679663e-09 2.35663552e-09 2.229200516e-09 1.725121658e-09 1.447957227e-09 2.250826112e-09 4.059643673e-09 2.679621428e-09 2.132672704e-09 2.640378121e-09 2.061212717e-09 2.240316296e-09 3.827910328e-09 2.478653415e-09 3.422256412e-09 1.622333175e-09 1.249198487e-09 1.547494079e-09 5.984414335e-10 6.999033376e-10 1.469719516e-09 1.990227347e-09 1.78313777e-09 1.619852907e-09 1.517718382e-09 1.130049139e-09 1.972484048e-09 1.612589144e-09 8.960118322e-10 2.232282195e-09 1.858313436e-09 1.818256878e-09 2.174837805e-09 2.140197367e-09 1.768841298e-09 1.290685541e-09 1.343912153e-09 1.403372159e-09 8.868440898e-10 1.493469873e-09 1.221808661e-09 1.000846631e-09 1.332744704e-09 8.986293946e-10 1.762706174e-09 1.278394727e-09 1.146538506e-09 9.107277195e-10 9.769848281e-10 1.193562397e-09 9.649001371e-10 1.272136782e-09 5.661275703e-10 7.328059553e-10 8.753267258e-10 9.133983129e-10 5.126966163e-10 1.209215564e-09 9.871993343e-10 8.604509312e-10 1.0418475e-09 6.772559205e-10 9.271413207e-10 1.907033748e-09 1.178307945e-09 8.43262771e-10 1.027279937e-09 6.437018943e-10 1.380946283e-09 9.141526038e-10 7.924122172e-10 9.679618388e-10 8.44238592e-10 9.118870696e-10 8.948379814e-10 2.96011824e-10 7.535719397e-10 7.048998175e-10 5.824556941e-10 5.465488377e-10 1.774156017e-10 2.072239496e-10 7.202600366e-10 6.772311091e-10 6.299613302e-10 4.854469293e-10 8.126417201e-10 8.24770462e-10 4.504222553e-10 4.675413669e-10 3.970146434e-10 2.138470751e-10 1.79884974e-10 4.536616275e-10 2.439069306e-10 1.729371886e-10 2.898392358e-10 5.167459552e-10 2.604966212e-10 5.306290916e-10 9.581120401e-10 5.401385541e-10 4.502058533e-10 3.478131985e-10 6.317042321e-10 6.08641163e-10 5.061316115e-10 4.23426496e-10 2.413313728e-10 3.124182424e-10 3.70461775e-10 4.248073177e-10 6.396612421e-10 3.807607991e-10 1.434421272e-10 +2.332080164e-10 1.314265381e-10 5.175813309e-10 3.675314362e-10 4.917259293e-10 2.794747364e-10 6.84321698e-10 6.097083305e-10 1.958030058e-10 4.4136023e-10 3.260247478e-10 3.409512369e-10 3.586569498e-10 1.367560454e-10 4.852384958e-10 2.264100111e-10 6.129602309e-10 2.306936664e-10 4.462720893e-10 3.837223079e-10 6.15334329e-10 4.941285717e-10 4.0566897e-10 2.668713581e-10 4.223649068e-10 5.190189592e-10 5.702923807e-10 5.634520423e-10 1.148699201e-09 8.182394645e-10 5.990440337e-10 5.99436602e-10 8.00122385e-10 1.460049232e-09 4.973422324e-10 6.545277567e-10 6.545310454e-10 5.1988254e-10 1.817611629e-10 5.415254524e-10 7.957435975e-10 7.523379067e-10 9.538483262e-10 7.238894494e-10 1.046985362e-09 1.302819608e-09 1.778008995e-09 1.17709134e-09 7.020491151e-10 1.955332572e-09 7.995367946e-10 1.052348555e-09 5.666910864e-10 1.073933824e-09 1.069714457e-09 1.535277889e-09 8.945924898e-10 1.416903028e-09 8.656128052e-10 1.094642298e-09 8.819053123e-10 1.190617868e-09 1.153474721e-09 9.020034106e-10 9.594850979e-10 1.575514362e-09 7.393271647e-10 1.176647936e-09 9.925039059e-10 8.884634648e-10 1.30062908e-09 1.182645085e-09 1.021677793e-09 6.175258932e-10 7.049856458e-10 1.185431065e-09 8.067193656e-10 1.519694114e-09 9.212264022e-10 1.020720598e-09 1.337327112e-09 3.304281859e-09 2.659395659e-09 2.042706374e-09 1.955130435e-09 1.726727673e-09 2.661072309e-09 2.571399356e-09 1.627559207e-09 1.733409308e-09 1.844471023e-09 1.189021973e-09 1.657725721e-09 1.091545751e-09 8.318930063e-10 4.252249915e-10 4.362593709e-10 1.175362021e-09 1.367896678e-09 2.479040703e-09 3.011659149e-09 3.57956964e-09 4.049021655e-09 2.99163272e-09 3.159362102e-09 2.940120762e-09 2.060105286e-09 2.409612572e-09 3.655113717e-09 2.291921528e-09 2.313260716e-09 1.887584606e-09 2.288566601e-09 2.377519758e-09 8.627093916e-10 9.827045768e-10 3.926864733e-10 6.930964043e-10 2.250025914e-10 2.604960694e-10 1.551087571e-09 3.303468555e-09 3.097142602e-09 2.669461723e-09 5.914983055e-09 9.253328554e-09 6.979784812e-09 7.040574107e-09 4.541577105e-09 2.336844722e-09 3.850571067e-10 5.33199952e-11 7.012031162e-11 1.576118542e-10 5.429171333e-16 4.64562947e-11 5.929455371e-11 2.015384952e-10 1.02377515e-10 5.81851952e-26 3.75310412e-10 4.004130364e-10 3.092636033e-10 1.87350718e-10 1.605847166e-10 5.777876148e-10 3.10604928e-10 1.213594209e-10 0 6.358739446e-11 1.911046297e-10 5.221296022e-10 1.076021668e-10 1.737574558e-11 1.977906851e-10 1.152417126e-10 3.847279998e-10 5.657695438e-10 8.340154986e-11 2.954211095e-10 2.596486425e-10 4.096138858e-10 1.672475524e-10 1.161854143e-10 0 2.609629873e-10 2.374141723e-10 2.101722491e-10 2.468649833e-10 9.126876018e-11 2.42644008e-09 5.831430587e-09 6.56986821e-09 7.063248539e-09 7.18411997e-09 7.657145394e-09 3.88902318e-09 2.642096119e-09 4.838668866e-09 1.87806023e-09 8.672350569e-11 2.194760978e-10 0 6.788524835e-10 3.407420591e-10 1.614702493e-09 2.760636554e-09 1.272241588e-09 1.802577214e-09 3.235235661e-09 2.827873269e-09 3.146588505e-09 4.009240157e-09 3.205654382e-09 3.709435256e-09 2.084921322e-09 3.630267541e-09 2.704564061e-09 3.010432744e-09 2.377208425e-09 3.254828947e-09 1.77608935e-09 1.531387162e-09 6.957420897e-10 5.855812108e-10 1.034962261e-09 1.372041764e-09 1.759316898e-09 1.081992401e-09 1.72239082e-09 1.875597629e-09 1.910505496e-09 1.627505623e-09 1.851064744e-09 1.666912283e-09 1.892765617e-09 2.168806105e-09 2.114249241e-09 1.674596448e-09 1.311996504e-09 1.95108764e-09 1.735967234e-09 8.516012107e-10 9.371602696e-10 1.030425647e-09 1.318671916e-09 8.876513829e-10 1.219862961e-09 1.420899728e-09 1.684767804e-09 8.331306679e-10 1.111325761e-09 1.41727438e-09 1.45556225e-09 1.512186994e-09 1.334201141e-09 1.295542074e-09 1.354920402e-09 1.062008366e-09 1.054441847e-09 7.40397866e-10 9.655685816e-10 8.434145629e-10 1.157807234e-09 6.135374535e-10 9.631408525e-10 1.357197802e-09 1.136067979e-09 1.084822747e-09 8.190804953e-10 1.395285517e-09 9.08657236e-10 1.09321954e-09 9.019871386e-10 1.302300838e-09 1.050956729e-09 1.243770312e-09 6.858889646e-10 5.902960112e-10 7.533233928e-10 8.489999389e-10 9.509466602e-10 1.106490089e-10 6.479386855e-10 4.623454561e-10 5.441946262e-10 6.600674338e-10 1.164180937e-09 8.949270471e-10 7.059204503e-10 3.553612269e-10 8.747263911e-10 4.163372312e-10 5.720356441e-10 5.473600786e-10 1.181527847e-09 7.963037308e-10 3.137061366e-10 7.001848103e-10 2.421820519e-10 6.379491394e-10 5.33161765e-10 3.535205195e-10 5.189850594e-10 4.512009984e-10 7.873552869e-10 3.883260876e-10 8.788911335e-10 6.281990529e-10 4.891506503e-10 8.684416287e-10 4.955292563e-10 4.459243176e-10 6.450225089e-10 7.455376796e-10 6.971467744e-10 4.165607471e-10 3.462917152e-10 4.652238703e-10 4.221330627e-11 +2.491567637e-10 8.910818138e-10 2.996656128e-10 6.795595775e-10 5.146583249e-10 5.004447236e-10 3.113246265e-10 2.911598269e-10 5.737849564e-10 4.811791019e-10 4.042531571e-10 5.440663892e-10 2.855452882e-10 3.596071023e-10 5.070935702e-10 4.317893407e-10 6.285211922e-10 5.119313351e-10 6.684899399e-10 5.409352171e-10 5.061958034e-10 6.809231591e-10 6.692549503e-10 6.845996658e-10 5.451494936e-10 4.207757843e-10 5.209192812e-10 6.602114834e-10 5.141105677e-10 5.347226631e-10 6.399265431e-10 4.767876001e-10 5.065154538e-10 3.616623229e-10 6.904351693e-10 4.271652017e-10 3.143457009e-10 8.080635369e-10 4.060897362e-10 5.092361852e-10 9.52500629e-10 3.633661272e-10 9.881299756e-10 1.126463711e-09 6.718339649e-10 1.398958846e-09 1.231433573e-09 1.095345675e-09 1.31107204e-09 6.996178803e-10 1.111099022e-09 1.509619693e-09 9.204607021e-10 1.056126757e-09 1.322199066e-09 8.976213764e-10 1.155880404e-09 8.12718479e-10 8.869178323e-10 8.748233091e-10 1.04327775e-09 9.24976801e-10 1.64291758e-09 1.054698457e-09 1.146790418e-09 1.239130115e-09 1.035669571e-09 1.102029394e-09 1.082218906e-09 1.677445083e-09 1.589954506e-09 1.167009793e-09 7.360009329e-10 1.880404743e-09 1.11711285e-09 6.248015042e-10 9.950130382e-10 1.230708499e-09 1.558047928e-09 2.096496921e-09 1.482154031e-09 2.524235212e-09 1.833456883e-09 1.244189237e-09 2.246217481e-09 1.451966475e-09 2.891613067e-09 2.135305303e-09 2.510428941e-09 1.97370075e-09 2.057677908e-09 1.238076678e-09 2.557055875e-09 1.098268263e-09 7.998127582e-10 6.722738878e-10 5.888756086e-10 7.811061388e-10 8.811114468e-10 1.295551342e-09 3.16884935e-09 2.565542247e-09 2.453453197e-09 4.790694284e-09 3.465802573e-09 2.989720578e-09 3.533424905e-09 2.731642643e-09 5.004611292e-09 2.123819237e-09 2.768740168e-09 1.568953233e-09 2.10432832e-09 2.649398705e-09 1.802238593e-09 8.284333042e-10 3.292768702e-10 1.007415791e-10 2.103136328e-10 2.624843734e-10 1.818106377e-09 3.01681044e-09 3.596502082e-09 2.343526878e-09 7.352235077e-09 8.922530761e-09 7.312498383e-09 4.975658401e-09 4.622859777e-09 2.962775672e-09 2.334249972e-10 1.720792995e-10 0 2.336480597e-10 1.584591262e-10 1.315562119e-10 2.339112781e-10 5.246235725e-10 1.880059307e-10 4.478827901e-12 1.800217442e-10 1.236744102e-10 2.579282531e-10 4.805969025e-10 3.245187977e-10 2.126084982e-10 3.955088441e-10 2.261732424e-10 9.986208979e-11 2.861538087e-10 9.792288465e-11 3.637236712e-12 3.422961819e-10 0 3.717626317e-10 2.931049737e-10 2.497686984e-10 8.888415562e-11 9.92705776e-11 1.804144763e-10 3.535476656e-10 4.108741469e-10 3.119819619e-10 2.326372032e-10 1.061094457e-10 9.526984031e-11 3.21648893e-10 0 3.30154948e-10 2.436213754e-10 2.490421979e-09 5.93620028e-09 5.186474434e-09 8.875836958e-09 1.003494375e-08 5.747256148e-09 4.032651781e-09 2.719824844e-09 4.328454305e-09 1.434104701e-09 2.515258319e-10 4.745891345e-11 6.49603177e-10 2.100893458e-10 1.325021459e-09 2.501096431e-09 1.619281111e-09 1.50063732e-09 1.326241364e-09 2.408073531e-09 3.027714434e-09 4.054658834e-09 3.518661651e-09 2.799918339e-09 2.942352688e-09 2.044943705e-09 2.889315458e-09 3.219928499e-09 3.750612456e-09 3.754357451e-09 3.133382246e-09 6.748262583e-10 1.20211501e-09 2.25757093e-10 5.329081506e-10 7.248675181e-10 1.836175111e-09 1.196020898e-09 8.7599647e-10 1.808004848e-09 1.08988934e-09 3.107435301e-09 1.495481741e-09 2.451667139e-09 2.009041975e-09 1.298280649e-09 1.919476624e-09 2.781441116e-09 2.745919649e-09 2.014803062e-09 1.621266886e-09 1.931083437e-09 1.346790786e-09 7.312540269e-10 9.843009354e-10 9.052819347e-10 1.626023325e-09 1.347731418e-09 1.395655361e-09 9.306953419e-10 1.30692697e-09 9.685334899e-10 7.897893285e-10 9.18765988e-10 1.481868041e-09 7.861263509e-10 1.439505006e-09 6.877979581e-10 7.4566339e-10 7.921576872e-10 6.493631299e-10 1.539246607e-09 1.139703898e-09 1.095118141e-09 7.012831316e-10 1.645328538e-09 1.171380865e-09 1.669319134e-09 1.257553262e-09 1.606071191e-09 1.189646399e-09 1.196614866e-09 1.429212165e-09 5.66685771e-10 1.146858911e-09 9.926202392e-10 1.317237057e-09 5.187912109e-10 8.270548316e-10 3.460854979e-10 4.250024534e-10 5.31185512e-10 3.25881699e-10 5.854247065e-10 8.164196843e-10 4.001903927e-10 6.046291191e-10 3.601502551e-10 7.394343109e-10 4.455702187e-10 6.706198609e-10 3.610758279e-10 1.257410315e-09 5.173364428e-10 2.493730745e-10 2.843442538e-10 1.832168313e-10 4.121901414e-10 8.981907343e-10 4.937596128e-10 3.569770331e-10 1.141769977e-09 5.804527075e-10 6.736386503e-10 6.123749143e-10 4.619617154e-10 6.008232364e-10 4.010029232e-10 3.514276885e-10 6.921264682e-10 2.647335254e-10 5.170953854e-10 4.685184427e-10 6.759082802e-10 2.99484858e-10 1.272755317e-10 6.741721251e-10 4.872018227e-10 6.339780228e-10 6.481482489e-10 +8.149854555e-10 1.140811719e-10 6.260283117e-10 3.0951023e-10 3.114613469e-10 6.970965095e-10 7.112424768e-10 6.441609947e-10 3.271228602e-10 1.092145789e-09 4.294177565e-10 4.093905614e-10 6.851568304e-11 4.715231249e-10 5.281005002e-10 8.174990569e-10 2.303887584e-10 4.419860239e-10 4.344084506e-10 1.207040268e-10 7.769791309e-10 3.165262668e-10 5.24327556e-10 3.301600097e-10 2.480902241e-10 3.574698107e-10 4.312666222e-10 2.989006769e-10 5.367895101e-10 7.580255892e-10 6.309714236e-10 6.727484625e-10 5.19801107e-10 6.078047612e-10 5.216903608e-10 7.403354694e-10 9.687319062e-10 2.607376281e-10 5.125363708e-10 9.858597423e-10 5.258760244e-10 6.644077658e-10 6.584549687e-10 5.435174248e-10 1.565731312e-09 1.137437452e-09 1.715217007e-09 7.621960293e-10 1.231698098e-09 1.210034345e-09 1.300634417e-09 7.651853957e-10 1.3526087e-09 7.995297364e-10 1.285347602e-09 1.33821575e-09 1.383014056e-09 6.286828421e-10 1.026656286e-09 9.678104476e-10 1.43802033e-09 8.25831334e-10 1.867897206e-09 1.350212699e-09 1.536810059e-09 9.227678068e-10 9.674580163e-10 1.416335896e-09 1.839849338e-09 1.121451239e-09 1.191809075e-09 1.558301005e-09 1.145615022e-09 7.64968515e-10 1.085830624e-09 1.101177773e-09 1.215295334e-09 6.844123375e-10 8.138533346e-10 1.696267833e-09 2.535491093e-09 2.398098761e-09 1.906203696e-09 2.430060468e-09 1.916091461e-09 2.292655763e-09 1.223722941e-09 1.219130902e-09 2.704668822e-09 1.601936374e-09 1.747590949e-09 2.660529119e-09 1.525770778e-09 1.480290904e-09 1.385276881e-09 5.18700746e-10 6.024435673e-10 1.081237275e-09 1.184880632e-09 2.151015741e-09 2.865337996e-09 3.161337411e-09 3.220085641e-09 2.667211088e-09 3.372504691e-09 3.670635369e-09 1.522164092e-09 3.222002651e-09 4.103280314e-09 3.32093372e-09 2.100429569e-09 2.186184853e-09 1.772043791e-09 1.602678065e-09 2.306354757e-09 1.009035476e-09 2.491137274e-10 2.238556992e-10 3.637537723e-15 2.696358564e-10 1.345947106e-09 2.821197825e-09 3.354145611e-09 3.09506669e-09 7.840501372e-09 8.889400886e-09 9.558097685e-09 5.438117284e-09 6.205405201e-09 2.545008526e-09 3.841364384e-10 4.601253752e-10 1.649899604e-18 1.783814031e-10 2.402136248e-10 7.594660405e-11 9.571451289e-11 9.359237553e-11 1.778257697e-10 1.661050567e-10 1.224715234e-10 2.397467526e-10 1.898969693e-10 1.991833133e-10 0 1.236397769e-10 6.791670294e-11 8.467065112e-11 1.55751592e-10 1.204335889e-10 1.229276962e-10 2.559013051e-10 2.843248498e-16 1.213342417e-10 3.521680657e-10 2.99550514e-10 6.916081728e-11 1.558113477e-10 2.687059096e-10 2.298313487e-10 0 1.589708168e-10 2.41170484e-10 1.279909545e-10 2.978119313e-10 3.425922331e-10 1.149235342e-10 4.721190359e-10 2.08742886e-11 2.006119778e-10 1.994858241e-09 4.149975229e-09 5.615223729e-09 5.923429191e-09 8.791067524e-09 6.637456995e-09 2.299976028e-09 2.982591153e-09 2.273618436e-09 1.81226262e-09 1.562273253e-10 4.60259553e-10 8.892797585e-11 7.13864978e-11 1.476240361e-09 2.069216381e-09 1.490526366e-09 2.35322536e-09 2.103771251e-09 2.21795723e-09 2.293995828e-09 4.277179082e-09 4.026935036e-09 2.134423358e-09 1.83377541e-09 3.409682264e-09 2.07569556e-09 2.352568781e-09 3.111274782e-09 2.527055647e-09 2.357211532e-09 1.195369583e-09 9.926188107e-10 5.124423757e-10 9.454507314e-10 1.233837742e-09 9.389000171e-10 1.55384878e-09 1.800110155e-09 1.681950467e-09 1.778971604e-09 2.283323013e-09 1.959660966e-09 1.547292563e-09 2.553027694e-09 2.441662813e-09 2.056927309e-09 2.031810846e-09 2.872773287e-09 2.105360979e-09 1.185337313e-09 1.22438225e-09 1.467449139e-09 1.02202138e-09 1.111486228e-09 9.699957041e-10 4.906690501e-10 1.193552062e-09 9.894359077e-10 1.081756475e-09 1.277256719e-09 1.088510598e-09 1.600695829e-09 1.462466462e-09 1.189729007e-09 1.526175905e-09 1.316958976e-09 8.932490271e-10 9.003861469e-10 1.287423706e-09 7.796445784e-10 1.214331929e-09 1.449884108e-09 1.045180828e-09 1.128561042e-09 1.075071893e-09 1.575525326e-09 9.409989547e-10 1.078073008e-09 7.15496019e-10 1.05337908e-09 1.498351404e-09 1.41652182e-09 1.151620835e-09 1.105377243e-09 7.858304283e-10 2.082153103e-09 9.110281374e-10 5.048489771e-10 1.211264821e-09 3.202773192e-10 5.317771e-10 6.247146891e-10 2.514146168e-10 8.257314746e-10 6.033649131e-10 3.103481947e-10 5.888108177e-10 4.942289783e-10 3.784431148e-10 3.516558892e-10 6.162650762e-10 8.447862895e-10 6.975276286e-10 2.350931169e-10 6.737879146e-10 5.461024987e-10 3.839219476e-10 7.992566142e-10 1.732344802e-10 3.726169845e-10 7.375196577e-10 7.766916687e-10 2.107038408e-10 3.863821679e-10 4.989407106e-10 5.667074853e-10 4.619259968e-10 2.182957372e-10 8.839049094e-10 2.514569169e-10 5.642883842e-10 6.656554244e-10 6.283032981e-10 2.076390148e-10 4.256412496e-10 6.823101831e-11 3.901572884e-10 7.128020242e-10 6.137287744e-10 +5.493676554e-10 1.191155192e-10 2.215912109e-10 5.579960764e-10 8.729546663e-10 1.392654186e-10 2.52607233e-10 5.010998202e-10 4.830794159e-10 4.569457552e-10 4.882010739e-10 8.804968766e-10 5.949575107e-10 2.718794922e-10 3.02581851e-10 4.507944811e-10 7.510004517e-10 3.5717746e-10 3.502394251e-10 5.300606782e-10 6.319131537e-10 5.455094451e-10 1.657958836e-10 1.679269974e-10 9.199907226e-10 9.609118686e-10 3.769022442e-10 4.378619287e-10 7.711172364e-10 7.008637715e-10 3.159306034e-10 5.177171156e-10 6.564907318e-10 9.347522447e-10 6.660213178e-10 5.414319847e-10 6.86865527e-10 4.422658903e-10 5.514345186e-10 8.573045212e-10 6.875032753e-10 3.614203673e-10 1.415901714e-09 1.262371178e-09 8.548421411e-10 8.081847876e-10 7.012056874e-10 1.015341352e-09 8.12593014e-10 7.811940428e-10 1.528077779e-09 1.084854788e-09 1.436249905e-09 1.128375728e-09 8.558405204e-10 1.250274789e-09 1.220346236e-09 6.187496623e-10 6.000175036e-10 5.195783126e-10 7.300468484e-10 1.064759744e-09 9.844923311e-10 1.19403059e-09 2.114291278e-09 1.287652232e-09 7.198273151e-10 1.126694789e-09 7.965787047e-10 1.299045876e-09 1.429569828e-09 5.642323499e-10 1.01765891e-09 1.617069847e-09 8.999728503e-10 4.768149903e-10 1.17469917e-09 1.235484503e-09 1.357590305e-09 1.661145758e-09 1.728331496e-09 2.772836424e-09 2.371731448e-09 1.173504531e-09 1.718842667e-09 1.545294232e-09 2.10245165e-09 1.574087266e-09 2.171573856e-09 2.049577689e-09 1.656230388e-09 8.969469029e-10 1.14195219e-09 1.188105232e-09 5.176689592e-10 2.468995373e-10 6.739449392e-10 1.204338007e-09 4.685067701e-10 2.095016093e-09 1.910840679e-09 2.836352164e-09 3.564235875e-09 2.693151784e-09 2.575986393e-09 1.688294892e-09 2.401848266e-09 4.203581224e-09 4.34528703e-09 3.428479401e-09 2.03282697e-09 2.230523473e-09 1.611398041e-09 2.164257762e-09 2.52459877e-09 8.392999215e-10 3.626968191e-10 1.895155819e-10 4.461251733e-10 2.78767904e-10 2.438831855e-09 2.540547897e-09 4.0918811e-09 2.301925792e-09 6.964671202e-09 8.07317933e-09 7.37565296e-09 6.841050839e-09 5.319222424e-09 3.468404315e-09 1.013246212e-10 2.335281951e-10 1.42720545e-10 2.059342182e-10 2.505323277e-16 2.672917595e-10 9.562227314e-11 2.771842987e-10 2.637627417e-10 8.155051769e-11 1.310890184e-10 3.825507176e-10 2.418861638e-10 3.557120337e-13 2.007348942e-10 8.467458246e-11 1.997979839e-10 2.547811476e-10 6.330676492e-11 8.577411026e-12 4.54929365e-10 6.507338883e-11 3.101289295e-10 3.545607766e-10 3.800707636e-11 4.171663261e-18 7.154204426e-11 2.591686529e-10 7.400998616e-11 1.654611703e-10 1.525914564e-10 3.977999678e-10 2.221772642e-10 2.652401503e-10 3.671640888e-15 1.750984119e-10 4.047649258e-12 4.591698399e-12 2.579023971e-10 3.612598108e-10 2.810537828e-09 5.917633626e-09 8.284263116e-09 6.054493811e-09 7.379738606e-09 6.628790113e-09 3.425242929e-09 3.548084067e-09 3.769934507e-09 1.89699217e-09 2.707127677e-10 7.564193417e-11 6.599422152e-11 5.949499609e-10 9.315152252e-10 2.423185195e-09 2.263343341e-09 2.544157203e-09 2.639882813e-09 2.418423261e-09 3.286281455e-09 3.036085412e-09 3.577992478e-09 1.641921098e-09 3.011396022e-09 2.509657407e-09 5.090041878e-09 3.526738772e-09 3.324559522e-09 2.604878341e-09 2.405421655e-09 7.962935033e-10 7.058065934e-10 7.016136468e-10 3.990946862e-10 1.101222398e-09 1.02043131e-09 1.433250097e-09 9.928445433e-10 1.999685762e-09 1.272380486e-09 1.529071295e-09 2.319645612e-09 1.977760901e-09 2.22881856e-09 2.006220474e-09 2.034405386e-09 1.753360527e-09 1.811445427e-09 2.245802316e-09 1.255501126e-09 1.290192311e-09 8.267693564e-10 1.158513012e-09 1.715003805e-09 1.780495111e-09 1.010999376e-09 1.067340481e-09 1.278844365e-09 1.714323771e-09 7.109500696e-10 1.588236811e-09 1.052187143e-09 1.080973057e-09 1.509479684e-09 7.791956324e-10 1.113049804e-09 7.596266594e-10 7.043741166e-10 1.080679209e-09 1.223871522e-09 7.688899205e-10 1.14792066e-09 1.718517322e-09 1.055414531e-09 9.519322164e-10 1.443327684e-09 1.096332547e-09 1.231419299e-09 1.658108985e-09 8.743795627e-10 1.199236019e-09 9.606215955e-10 1.137756646e-09 1.285104171e-09 8.421904592e-10 5.794153658e-10 9.738237348e-10 7.492791627e-10 4.788100194e-10 1.010612174e-09 9.019392548e-10 6.355166931e-10 5.557063447e-10 4.677018659e-10 4.562477572e-10 4.626877764e-10 3.312552384e-10 7.629631972e-10 7.029886507e-10 6.75302516e-10 4.150194266e-10 1.582063651e-09 6.348390087e-10 4.057341749e-10 4.744291033e-10 5.880915924e-10 3.502256961e-11 5.56939941e-10 7.02801344e-10 4.967020021e-10 3.708828916e-10 1.011122441e-09 4.36271688e-10 1.620108052e-10 3.711849349e-10 1.178376135e-09 5.834190143e-10 5.020240557e-10 1.332563555e-09 5.813438686e-10 2.031316186e-10 2.9000257e-10 8.682486138e-10 5.445948099e-10 3.14618549e-10 1.200676472e-10 3.809508082e-10 4.858501412e-10 1.565055552e-11 +8.244654605e-10 3.462660637e-10 1.894373343e-10 4.055741028e-10 2.187507005e-10 6.664963133e-10 5.36542837e-10 1.252609289e-09 4.701932829e-10 5.899580478e-10 7.416387309e-10 1.627101942e-10 7.625132298e-10 2.567821901e-10 2.9824701e-10 5.131565788e-10 6.811917998e-10 1.820811934e-10 7.097930667e-10 3.038464546e-10 1.041718769e-10 5.38610144e-10 5.588052671e-10 3.538446749e-10 4.029277857e-10 5.076760152e-10 5.513609696e-10 5.031025618e-10 2.789035166e-10 5.158899355e-10 8.748881894e-10 2.643471086e-10 2.819650991e-10 7.520813146e-10 8.006449559e-10 2.993409533e-10 2.220127335e-10 4.93521463e-10 6.393195825e-10 4.517381246e-10 1.235356704e-09 5.232268664e-10 8.468323731e-10 9.225659724e-10 1.066277804e-09 1.012473308e-09 1.074993077e-09 7.761508906e-10 1.013407805e-09 9.021830916e-10 8.826030728e-10 7.318179499e-10 7.333884286e-10 9.845854332e-10 1.615510366e-09 1.2216815e-09 1.069163813e-09 1.528748953e-09 1.069436983e-09 1.732168679e-09 3.938276057e-10 7.995755447e-10 8.722338899e-10 1.113131625e-09 9.328562133e-10 1.335287688e-09 1.189984744e-09 7.44705192e-10 7.727141367e-10 1.073588774e-09 1.794772e-09 1.087669941e-09 6.80385735e-10 7.667578545e-10 1.148364761e-09 6.399034597e-10 1.294802539e-09 6.557723974e-10 1.773287137e-09 2.026659823e-09 2.488422764e-09 2.314813615e-09 2.914075305e-09 2.811150303e-09 2.028464121e-09 2.054398069e-09 1.980072618e-09 2.115185872e-09 1.699327643e-09 2.291788777e-09 1.210589148e-09 1.64770908e-09 1.929520725e-09 2.07250257e-09 1.127549611e-09 6.930062265e-10 4.132766151e-10 1.162022782e-09 1.213313373e-09 2.4713333e-09 3.945709481e-09 3.995846923e-09 2.190769945e-09 3.697628068e-09 2.555142229e-09 2.681383204e-09 3.114205933e-09 4.11378061e-09 5.367757806e-09 3.172861928e-09 1.459272607e-09 2.526464848e-09 1.877435909e-09 1.051245566e-09 2.289208739e-09 1.472135337e-09 3.548511194e-10 1.731025002e-10 1.589783535e-10 4.458590525e-10 1.370638147e-09 2.972730752e-09 2.77321906e-09 2.67980136e-09 4.541456089e-09 7.556360634e-09 8.582149751e-09 6.523307109e-09 5.851942777e-09 3.988247385e-09 5.062428287e-10 4.177011678e-10 3.958593349e-10 4.377953284e-10 9.668300016e-11 1.766608667e-10 1.024446694e-10 1.822987015e-10 1.484151266e-10 9.236886757e-11 1.550774285e-10 1.218437562e-10 1.80696987e-10 7.865803131e-11 5.293606477e-10 2.750872027e-10 4.358292748e-10 1.003947739e-14 4.344199568e-10 1.220515309e-10 2.936288318e-10 1.433062543e-12 9.423740177e-11 2.412946792e-10 4.548017307e-10 3.541956146e-10 8.714506212e-11 3.136593691e-10 2.68191342e-10 1.51146796e-10 2.62551295e-10 1.562059665e-10 2.501599214e-10 2.305159834e-11 1.854421469e-10 5.665817675e-11 5.396701685e-11 2.154670622e-10 1.003457338e-10 7.889944138e-10 3.013651374e-09 4.386101938e-09 6.365940783e-09 6.518094047e-09 7.392871218e-09 5.768828414e-09 2.78847775e-09 3.148493184e-09 4.04109314e-09 1.400843578e-09 3.43277177e-10 3.230176698e-10 3.588285529e-11 3.725509183e-10 1.870273735e-09 2.664707401e-09 1.559749371e-09 2.387779408e-09 1.755210387e-09 2.54143311e-09 2.145931672e-09 3.106125622e-09 3.715676797e-09 1.909049667e-09 1.573391181e-09 3.889478382e-09 2.41479372e-09 2.268640614e-09 4.024472992e-09 3.401284782e-09 2.366968116e-09 1.01530817e-09 1.158179442e-09 4.508978738e-10 2.926890169e-10 9.326991435e-10 1.353333105e-09 1.656280635e-09 2.032887043e-09 2.288360151e-09 3.058849275e-09 1.237627976e-09 1.760188232e-09 1.830191078e-09 1.975283864e-09 2.369738e-09 2.19101217e-09 2.132937132e-09 1.601758385e-09 1.927793634e-09 1.326671689e-09 2.323598821e-09 1.319620031e-09 1.465593784e-09 1.2555163e-09 9.879134852e-10 1.117147613e-09 1.551726622e-09 1.217153437e-09 1.649341241e-09 1.312221126e-09 8.817878521e-10 1.096458122e-09 1.386771971e-09 8.899860126e-10 1.012214802e-09 4.989756669e-10 9.282845009e-10 9.817695615e-10 7.104152752e-10 9.838789086e-10 1.53958169e-09 7.744978181e-10 7.014274775e-10 1.178302847e-09 1.389924877e-09 1.797753172e-09 1.075962034e-09 1.186806835e-09 8.942522649e-10 5.634759622e-10 1.156114334e-09 8.385281992e-10 9.689219469e-10 7.559415288e-10 1.07093715e-09 8.565324063e-10 7.491188498e-10 7.552374665e-10 8.278342067e-10 4.981804193e-10 7.967537177e-10 2.593582018e-10 6.479262693e-10 5.620150784e-10 3.048720129e-10 3.899642674e-10 5.518935891e-10 4.74416507e-10 7.993155822e-10 7.714522389e-10 6.99044343e-10 2.811155666e-10 9.358438233e-10 4.746027747e-10 3.542378147e-10 4.852689425e-10 3.304031332e-10 1.112313632e-09 6.144042218e-10 8.123354233e-10 1.041459529e-10 3.422923859e-10 6.577126308e-10 1.849502847e-10 2.956973547e-10 4.273563373e-10 4.858665222e-10 5.724793272e-10 3.454551912e-10 4.958533457e-10 4.422125523e-10 4.505581947e-10 2.75340616e-10 1.96433317e-10 4.383575528e-10 8.213888846e-10 2.431430976e-10 3.43210231e-10 7.886405836e-11 +5.992658582e-10 6.157124432e-10 2.857435236e-10 6.437184088e-10 6.272381671e-10 2.07045026e-10 2.799087165e-10 6.489723328e-10 4.358369256e-10 6.7983018e-10 1.053465985e-10 3.813843331e-10 2.963462827e-10 4.257713245e-10 7.829186326e-10 1.758216891e-10 7.790620824e-10 7.93400057e-10 4.407178963e-10 6.633765846e-10 2.544662979e-10 9.776827284e-10 7.719669158e-10 1.474200673e-10 6.047546035e-10 3.945677166e-10 5.762130198e-10 5.011003738e-10 7.047799304e-10 5.929399342e-10 6.382640719e-10 8.800853451e-10 8.095271536e-10 6.006777098e-10 4.538072546e-10 5.845551041e-10 8.013384872e-10 4.944389574e-10 5.224854426e-10 8.856205527e-10 7.765445104e-10 1.370740606e-09 7.886951416e-10 1.099089134e-09 1.194213592e-09 1.098247716e-09 1.184026345e-09 1.534444919e-09 9.837685104e-10 1.335544899e-09 1.167916691e-09 1.506334001e-09 7.533441839e-10 1.383029048e-09 9.312066326e-10 1.358653293e-09 6.396279382e-10 6.756040203e-10 8.569843993e-10 6.852661599e-10 7.48265575e-10 1.101279632e-09 8.863539403e-10 1.736609432e-09 1.190297175e-09 1.229050473e-09 1.362468358e-09 7.67362891e-10 8.231489549e-10 1.206785644e-09 1.34202038e-09 1.556468298e-09 9.453728752e-10 1.119182651e-09 9.669007436e-10 1.56797739e-09 5.59551786e-10 9.759868778e-10 1.859464068e-09 1.724829315e-09 1.45911621e-09 3.395342657e-09 2.422848312e-09 2.140249764e-09 1.9390162e-09 1.623805648e-09 1.28491228e-09 1.206181603e-09 1.873249848e-09 1.82025981e-09 2.820283049e-09 1.902297203e-09 1.502827068e-09 1.300594664e-09 6.598733154e-10 3.98302308e-10 9.819055396e-10 9.351365736e-10 1.764928787e-09 2.411379321e-09 1.804253613e-09 4.301253305e-09 4.020361386e-09 1.824945421e-09 3.206303647e-09 2.059295229e-09 2.255572943e-09 4.112942544e-09 4.094633432e-09 3.283249156e-09 2.516495657e-09 1.111572105e-09 2.447503387e-09 2.447813181e-09 2.07819444e-09 1.298407664e-09 6.483717793e-10 7.448856645e-11 1.97442436e-33 3.411028644e-13 1.707992518e-09 3.029268997e-09 4.705240635e-09 2.304260642e-09 3.08379986e-09 8.547977775e-09 6.550803858e-09 5.295943024e-09 4.206702341e-09 4.132042569e-09 9.510957707e-10 5.367439766e-10 2.078180665e-10 8.729691375e-15 4.202878698e-10 2.728686695e-10 2.324967607e-10 1.800690995e-10 2.382221424e-17 3.277867567e-10 2.105664268e-10 4.628417591e-10 2.693106044e-10 3.626057253e-10 3.27929944e-10 4.896624364e-10 7.537622798e-11 2.995390526e-10 2.038133816e-10 1.417515292e-10 1.591914166e-11 4.068071492e-10 1.581458338e-10 1.706078953e-10 4.493838203e-10 8.722506467e-11 1.439631081e-11 3.453687352e-10 1.799895344e-10 1.900175925e-10 8.993629641e-11 1.497808751e-10 2.717746173e-10 0 1.655952903e-10 2.761289879e-10 2.00852706e-10 1.308613848e-10 1.585410367e-10 1.108621388e-09 3.198275455e-09 5.919298435e-09 6.599278363e-09 7.137473876e-09 8.142406557e-09 5.080312709e-09 3.887538104e-09 3.724062293e-09 3.270661673e-09 1.124732743e-09 2.151107957e-10 4.737847205e-10 1.021608101e-10 3.624522684e-10 1.451188808e-09 1.176200383e-09 2.242672233e-09 2.607552049e-09 9.219525212e-10 1.916002367e-09 2.965477115e-09 2.914228156e-09 4.993462598e-09 3.511259699e-09 1.982671608e-09 2.506748527e-09 2.896315225e-09 3.093936666e-09 3.140401567e-09 2.598970601e-09 1.668953275e-09 1.343270509e-09 1.439273135e-09 5.918900391e-10 3.33858716e-10 1.163574918e-09 1.761409584e-09 1.756385027e-09 1.56002393e-09 9.415838976e-10 2.673633288e-09 2.129212379e-09 2.064454485e-09 1.703017957e-09 1.739147856e-09 2.412660386e-09 1.981377876e-09 2.043606196e-09 2.13566679e-09 2.346845832e-09 2.70350684e-09 1.146857124e-09 7.422837597e-10 9.663978932e-10 6.804339975e-10 1.528813478e-09 8.292452616e-10 1.539006428e-09 1.444893943e-09 1.484229294e-09 1.373051888e-09 1.403203333e-09 1.455120012e-09 1.943395841e-09 1.128074011e-09 8.077307918e-10 1.345094246e-09 6.436381217e-10 7.841370408e-10 1.012599268e-09 8.813609047e-10 1.270177462e-09 1.158294698e-09 1.026661753e-09 8.732649743e-10 1.183002871e-09 1.211452193e-09 8.805081939e-10 1.518557255e-09 1.238527111e-09 8.662588345e-10 1.364553922e-09 8.290496639e-10 7.616361414e-10 1.443235574e-09 1.599521261e-09 6.037561891e-10 8.310835437e-10 7.998297728e-10 4.625372421e-10 6.189096316e-10 1.492946614e-10 6.457602154e-10 6.518326689e-10 3.895104009e-10 4.86561607e-10 5.684516757e-10 8.304001892e-10 5.947642353e-10 3.540952128e-10 5.570456953e-10 3.207736935e-10 4.121238213e-10 7.805614247e-10 7.334605431e-10 3.979905887e-10 6.968157228e-10 7.774879488e-10 4.840043117e-10 4.315864452e-10 8.783909737e-11 3.567927104e-10 4.274770051e-10 6.00076504e-10 5.974216755e-10 7.386346085e-10 7.016960996e-10 4.483185201e-10 7.5245667e-10 8.5662649e-10 5.98348891e-10 4.902440618e-10 7.612643565e-10 1.651894192e-10 5.878457247e-10 1.575953738e-10 9.147973774e-11 4.898206388e-11 6.212237459e-10 2.162696684e-10 +3.583959743e-10 2.591975692e-10 7.251357138e-10 5.431383867e-10 2.393235104e-10 4.788322101e-10 6.680706266e-10 1.531201074e-10 9.617780555e-10 1.115754773e-09 2.966772327e-10 3.820768969e-10 5.650080872e-10 5.030459253e-10 9.730659924e-10 8.895487667e-10 2.493365134e-10 3.051988015e-10 4.233657694e-10 2.722625874e-10 2.283709542e-10 1.073505408e-09 9.88432038e-11 3.564552218e-10 8.379294231e-10 4.022131936e-10 4.621178268e-10 5.245420833e-10 3.38964226e-10 3.143282952e-10 1.979645567e-10 6.403267788e-10 6.045481718e-10 3.915239213e-10 5.943813719e-10 4.014403588e-10 4.561777482e-10 6.223478411e-10 3.191264321e-10 3.357402143e-10 4.66994628e-10 7.041359795e-10 3.496190784e-10 1.751210442e-09 1.947595893e-09 8.575275811e-10 7.97682905e-10 9.433683227e-10 1.289402978e-09 8.085125372e-10 1.242319822e-09 6.660736479e-10 9.528182346e-10 1.648662642e-09 1.040378095e-09 7.885674081e-10 6.267847666e-10 1.187453144e-09 7.538505355e-10 1.243169627e-09 1.149709673e-09 7.574055453e-10 1.09518311e-09 1.505177406e-09 1.174792334e-09 1.456573653e-09 1.296309879e-09 1.385206879e-09 9.536703704e-10 1.292447421e-09 1.007565891e-09 1.666668902e-09 1.275644744e-09 6.938117938e-10 9.342624971e-10 1.693313314e-09 1.351220895e-09 2.608575904e-10 9.662932129e-10 2.492186806e-09 1.08697382e-09 2.406376587e-09 1.100448446e-09 2.050703617e-09 2.138759564e-09 2.889849164e-09 2.248859997e-09 2.011075984e-09 2.016133625e-09 1.800628777e-09 1.725006766e-09 1.725044559e-09 2.696758061e-09 1.038093853e-09 1.126110599e-09 6.097839835e-10 5.064070418e-10 1.097390737e-09 1.62451335e-09 2.307267088e-09 3.288416611e-09 3.159639623e-09 3.538453417e-09 2.973035322e-09 3.078991886e-09 1.900993184e-09 2.633557532e-09 3.312286344e-09 4.271455349e-09 2.901574308e-09 1.869699415e-09 1.949369464e-09 1.901348278e-09 2.565937607e-09 2.317090457e-09 1.453902264e-09 5.325759751e-10 2.148117229e-10 2.803105517e-10 3.647848946e-10 8.418252057e-10 3.074965014e-09 3.865935262e-09 3.044454242e-09 5.357936977e-09 8.43970482e-09 9.86025053e-09 4.888836082e-09 5.39732533e-09 3.76535234e-09 4.885455357e-10 6.913629631e-11 1.942022185e-10 1.860600306e-10 3.17043092e-10 2.127184838e-10 2.325196643e-10 1.30443179e-10 1.64689861e-10 1.072068664e-10 3.351492481e-10 1.897796241e-10 1.026440355e-10 1.457718584e-10 2.768253599e-10 3.447051752e-15 9.12487132e-11 2.05274969e-10 5.097239904e-10 2.293262655e-15 2.692751752e-10 2.548751917e-10 5.391186075e-10 3.606695921e-19 3.856783018e-10 1.254998134e-10 6.55088599e-17 2.758841327e-10 2.253502167e-10 2.168037699e-10 1.66003603e-10 1.41020486e-10 3.151406013e-10 0 1.632914111e-10 2.017496586e-12 1.04650652e-10 3.497162154e-10 1.032349233e-10 4.269190008e-10 3.856969463e-09 7.14128339e-09 7.87516424e-09 7.013231168e-09 7.18979281e-09 4.675156591e-09 2.744545296e-09 2.487872802e-09 2.295978053e-09 1.667584538e-09 3.247483871e-10 5.781463337e-11 1.774626558e-10 3.844721684e-10 1.288008443e-09 2.324077758e-09 2.249437782e-09 2.476954206e-09 1.560691827e-09 2.400363345e-09 3.365144899e-09 4.74482725e-09 3.270128341e-09 3.144011571e-09 2.453949875e-09 3.715443562e-09 2.698042929e-09 2.223146204e-09 3.118490572e-09 3.09726349e-09 3.147686442e-09 1.278343074e-09 1.040740307e-09 8.904062805e-10 3.262695591e-10 9.290905657e-10 1.207506103e-09 1.594115041e-09 1.15891511e-09 1.49573395e-09 1.906289385e-09 1.508066877e-09 1.408844044e-09 2.506838972e-09 1.388842674e-09 1.492871406e-09 1.292490871e-09 1.865653974e-09 2.233725432e-09 1.535534823e-09 1.964497037e-09 1.543585309e-09 7.790592195e-10 1.495572246e-09 1.013520504e-09 6.530305566e-10 1.751161328e-09 6.692665658e-10 4.674381952e-10 4.875355542e-10 1.237369699e-09 1.146014276e-09 1.163952175e-09 1.706137908e-09 1.223643136e-09 7.90678238e-10 9.612277905e-10 1.270744862e-09 3.385038229e-10 3.928894456e-10 9.738754449e-10 1.272097842e-09 9.088620068e-10 8.252064088e-10 1.045996602e-09 1.279201673e-09 9.43884217e-10 1.834771647e-09 1.33857565e-09 9.290807575e-10 1.245454018e-09 1.734495691e-09 1.025626761e-09 7.143374997e-10 1.100496003e-09 1.037402538e-09 1.031428194e-09 7.952215728e-10 5.245490886e-10 5.372996433e-10 5.537124592e-10 4.748137501e-10 3.200380277e-10 6.438988238e-10 5.48019935e-10 4.828463011e-10 6.377864197e-10 6.65093398e-10 8.312499509e-10 6.287424119e-10 3.525426612e-10 2.837704793e-10 8.561182881e-10 4.065132707e-10 1.606425325e-10 4.409314421e-10 1.560710871e-10 4.029416415e-10 3.038820433e-10 6.072707057e-10 1.710099466e-10 4.494810622e-10 6.782073952e-10 3.844928716e-10 3.543644166e-10 2.794659928e-10 4.190500888e-10 1.799527811e-10 4.483987654e-10 4.548167114e-10 3.767963723e-10 4.323277179e-10 5.003122567e-10 5.354615381e-10 4.721942713e-10 4.004039693e-10 5.532902195e-10 5.806766816e-10 2.345391783e-10 1.347557338e-10 +2.504644336e-10 2.782472613e-10 7.213218404e-10 4.335092149e-10 9.79650058e-10 4.235164366e-10 3.797622583e-10 3.363516092e-10 5.251145349e-10 2.836867751e-10 5.602623902e-10 4.080795e-10 2.646749724e-10 3.020838848e-10 2.121804549e-10 2.51362833e-10 3.430593612e-10 2.497252354e-10 3.145549591e-10 2.085111845e-10 4.806654548e-10 4.484008088e-10 5.353265924e-10 2.89171483e-10 9.209602879e-10 1.258098869e-10 6.794561234e-10 3.572114561e-10 4.436755563e-10 6.509229171e-10 3.59426005e-10 2.680298222e-10 6.619023213e-10 7.757633607e-10 5.232291938e-10 4.556243237e-10 9.090188326e-10 3.879219883e-10 2.387361817e-10 6.019965085e-10 6.299615115e-10 6.875224325e-10 1.040116583e-09 8.82092699e-10 1.278938459e-09 1.302854562e-09 6.877933189e-10 9.299805327e-10 8.126213301e-10 1.033903421e-09 8.262182614e-10 1.085274051e-09 1.327455966e-09 1.278332402e-09 1.322129194e-09 1.101801357e-09 6.515684693e-10 1.314076212e-09 1.133693874e-09 1.222163999e-09 5.240848102e-10 5.440335437e-10 5.540775047e-10 1.505991471e-09 1.312035851e-09 1.230458878e-09 1.074642857e-09 1.16254342e-09 1.386282108e-09 1.900972234e-09 1.118007336e-09 1.908832241e-09 1.261972976e-09 1.913488629e-09 9.156651703e-10 1.120460897e-09 1.784688507e-09 1.142512518e-09 1.34574535e-09 2.495612198e-09 1.956967037e-09 1.890429756e-09 2.315401606e-09 1.86269487e-09 2.194430028e-09 1.113847488e-09 1.677834118e-09 2.5285729e-09 1.721799425e-09 1.921017387e-09 1.711831353e-09 1.999664402e-09 1.49437657e-09 1.169285077e-09 8.916124517e-10 2.916801232e-10 2.671367055e-10 7.588933414e-10 6.304345454e-10 2.353995256e-09 2.475713834e-09 2.293335218e-09 3.624300534e-09 4.018689752e-09 3.931782955e-09 2.19817219e-09 1.541857787e-09 4.163155442e-09 3.156601077e-09 3.894982194e-09 3.061717446e-09 1.726471085e-09 2.024376393e-09 1.948676496e-09 1.389510331e-09 1.39843428e-09 3.447725169e-10 2.492040197e-10 3.58748911e-10 1.612425427e-10 1.590941332e-09 3.431306339e-09 4.011484918e-09 3.649078557e-09 4.584817115e-09 7.377769714e-09 7.815130348e-09 5.826535914e-09 5.383745096e-09 2.778581676e-09 9.416317488e-10 3.00715085e-10 2.24090405e-10 7.614373581e-11 1.152463968e-10 7.784231489e-11 1.388094614e-10 2.901675479e-10 2.970400451e-10 1.764482144e-10 1.377272573e-10 2.27811788e-10 4.287089405e-10 2.035817703e-10 1.766379342e-12 2.108780912e-10 1.655018442e-10 2.753434609e-10 1.781635992e-10 1.753636551e-15 1.484561552e-10 5.67843155e-10 2.72157293e-10 1.100932123e-10 3.177361592e-10 1.579453516e-10 3.118292363e-10 2.600292049e-10 2.784719529e-10 1.121581675e-28 2.951946301e-10 3.840898844e-10 3.415588239e-10 2.226515069e-10 1.873350817e-10 8.579413918e-11 2.986782991e-14 2.776108879e-10 2.86738212e-10 1.120190948e-09 5.531404653e-09 4.752982648e-09 5.494285576e-09 6.621942079e-09 8.079599168e-09 3.267596477e-09 2.470469549e-09 2.997880343e-09 3.121916704e-09 9.431283897e-10 2.127211715e-10 7.087496055e-11 7.100684293e-10 6.696558418e-10 2.08592517e-09 2.261706371e-09 1.972252406e-09 1.994632541e-09 2.972967657e-09 2.614545348e-09 2.405298857e-09 4.861912392e-09 3.693848174e-09 2.592294975e-09 2.906128947e-09 1.852861895e-09 2.905695673e-09 3.208307012e-09 2.930355909e-09 2.666388496e-09 2.45546978e-09 6.157991965e-10 1.054614933e-09 6.1871351e-10 6.152699592e-10 7.078676012e-10 9.231369069e-10 1.105010711e-09 1.341464275e-09 1.097869192e-09 2.371429275e-09 1.8750094e-09 1.966704684e-09 2.236951721e-09 1.772148599e-09 1.458992083e-09 1.42026139e-09 2.06486159e-09 2.65892278e-09 1.610428861e-09 1.08002996e-09 1.256667496e-09 1.216356928e-09 1.599920802e-09 8.054817318e-10 1.07435922e-09 1.566404121e-09 1.362787809e-09 1.156763779e-09 1.129273093e-09 8.137287625e-10 1.460525468e-09 9.084497582e-10 9.197846426e-10 1.13784608e-09 1.134141419e-09 8.778776542e-10 9.811594432e-10 5.859787563e-10 1.178357188e-09 2.739722479e-10 1.006524411e-09 1.498134494e-09 8.433089726e-10 1.385257218e-09 9.503194047e-10 1.428468778e-09 1.012080273e-09 1.161244763e-09 1.736795518e-09 8.11450107e-10 1.013281839e-09 1.941661373e-09 9.489326578e-10 1.082666429e-09 1.277858683e-09 1.847626084e-09 6.024660399e-10 7.893350402e-10 8.307221104e-10 6.888668553e-10 5.911478809e-10 4.939530429e-10 2.455925299e-10 5.597395347e-10 7.625359316e-10 5.857501692e-10 3.834981586e-10 5.998619966e-10 5.3592072e-10 3.483349923e-10 4.530993822e-10 4.95076268e-10 3.249219743e-10 1.643552377e-10 6.333072701e-10 6.951309192e-10 2.67523992e-10 1.033673495e-09 3.387800265e-10 1.533095058e-10 5.283090908e-10 7.65507795e-10 1.218862601e-09 7.061320825e-10 3.413081896e-10 4.295399349e-10 3.541121483e-10 4.53759953e-10 3.812187381e-10 5.92096316e-10 4.319671279e-10 5.64251544e-10 3.012027164e-10 4.067919422e-10 2.424539022e-10 5.890927136e-10 5.363116546e-10 3.777936661e-10 5.575657103e-10 +2.347121362e-10 2.444978108e-10 7.701757585e-10 3.787363002e-10 4.735078027e-10 2.791515063e-10 4.354781009e-10 2.639139156e-10 5.248152517e-10 5.728030857e-10 5.119966702e-10 5.296892731e-10 6.467234698e-10 6.047043186e-10 2.968350128e-10 2.296309001e-10 3.117701762e-10 8.106563442e-10 9.863947202e-10 5.212168848e-10 5.432224445e-10 8.825610505e-10 8.585356459e-10 7.48627826e-10 1.647021131e-10 6.134319601e-10 3.507736724e-10 5.665246087e-10 4.415573628e-10 3.640568878e-10 3.006771848e-10 2.373966926e-10 4.169783299e-10 5.586578355e-10 3.848457299e-10 4.530438082e-10 5.117836917e-10 1.076973045e-09 3.566851462e-10 5.018466909e-10 1.0524916e-09 4.576656165e-10 8.173859301e-10 1.076732609e-09 1.62232048e-09 1.060283084e-09 9.965385939e-10 9.369390859e-10 9.045376068e-10 1.120799617e-09 1.490781978e-09 9.017121905e-10 1.551390839e-09 1.171382968e-09 1.271215523e-09 1.49537756e-09 1.554434454e-09 1.033255802e-09 1.19906499e-09 1.175659856e-09 1.210299182e-09 1.521441426e-09 8.191470669e-10 6.042352384e-10 1.44057652e-09 1.369496095e-09 1.120110362e-09 1.240246401e-09 9.677692479e-10 1.231940756e-09 1.826896386e-09 1.418751293e-09 1.109945438e-09 1.333150071e-09 1.509620708e-09 1.300031119e-09 8.557287025e-10 1.070183132e-09 1.374556926e-09 1.305950763e-09 2.538995141e-09 2.45298881e-09 2.458669801e-09 1.68827645e-09 1.71997655e-09 2.910967619e-09 2.315035431e-09 1.676600976e-09 1.9693915e-09 1.657433984e-09 1.059745764e-09 2.334877462e-09 1.082910583e-09 6.264896837e-10 1.325343776e-09 6.5953424e-10 8.903639033e-10 1.185484801e-09 1.165553647e-09 2.398203612e-09 2.65345776e-09 3.253370273e-09 3.436332e-09 3.224512382e-09 3.965061983e-09 2.65806137e-09 2.848525133e-09 3.019676103e-09 4.026162102e-09 2.291158391e-09 2.446504864e-09 2.510497265e-09 1.399950945e-09 2.409005058e-09 2.730592244e-09 2.331447292e-09 5.387043805e-10 1.690858045e-10 3.131315141e-10 5.459073763e-10 1.024881662e-09 2.84079845e-09 3.638684665e-09 3.340465821e-09 2.901748305e-09 7.610498793e-09 8.226242338e-09 7.380601525e-09 6.888798516e-09 4.416547573e-09 1.495941647e-09 5.060437556e-10 4.707257578e-10 1.708712338e-10 3.518956617e-10 1.997686633e-10 1.757630116e-10 2.952124878e-10 2.110616052e-10 2.000415659e-10 1.689670575e-10 1.061520083e-10 2.126485723e-10 2.640586292e-10 5.567591636e-19 3.521293638e-10 3.273872853e-10 2.181429377e-10 1.927889497e-10 2.596315328e-10 4.208054035e-10 1.961957327e-10 8.910646319e-11 2.570278698e-10 1.582044766e-10 2.732390142e-10 5.054850849e-10 1.553876682e-10 4.262253436e-10 1.347216019e-10 3.481685505e-11 2.472262435e-10 1.207486476e-10 1.701418586e-10 3.019225552e-10 1.503097491e-10 3.927597469e-10 1.731233563e-10 4.09954635e-10 1.445979037e-09 3.58884151e-09 6.892995765e-09 5.354540064e-09 9.031705674e-09 6.154684447e-09 4.490259074e-09 3.348801585e-09 2.518344001e-09 2.532317522e-09 1.204122909e-09 1.590068026e-10 1.971164028e-10 1.168269085e-10 4.265372349e-10 2.587056887e-09 1.616623181e-09 1.800432271e-09 2.11359058e-09 2.077074753e-09 2.437863851e-09 3.582845656e-09 4.33159463e-09 2.707899818e-09 2.263090532e-09 2.953873649e-09 2.980702117e-09 4.404703927e-09 2.855144431e-09 2.679377825e-09 1.70854722e-09 2.798091217e-09 7.660974102e-10 1.17505386e-09 3.612236542e-10 6.197710512e-10 8.788208086e-10 8.763462828e-10 1.985614071e-09 1.314337856e-09 1.798504519e-09 1.510893043e-09 1.508310282e-09 1.508465769e-09 1.281988951e-09 2.019929244e-09 1.071841782e-09 1.246543673e-09 2.593313581e-09 2.478189642e-09 2.175338442e-09 1.499217013e-09 1.562947496e-09 1.35202827e-09 1.923090076e-09 1.11779928e-09 5.455800751e-10 1.049006493e-09 5.638336719e-10 1.4108706e-09 1.435190221e-09 1.401643866e-09 1.660976227e-09 1.204674391e-09 1.370786198e-09 1.063653122e-09 1.109296762e-09 1.098766273e-09 1.017235105e-09 5.444591534e-10 1.357757478e-09 8.609969598e-10 1.342486136e-09 8.058202442e-10 6.746029432e-10 1.579462365e-09 1.059044216e-09 1.000442594e-09 1.010101296e-09 7.931432744e-10 8.005632113e-10 1.482524114e-09 9.775413038e-10 1.396961409e-09 1.065968824e-09 1.824895637e-09 9.653533232e-10 6.790437985e-10 9.878073862e-10 8.009982217e-10 4.975433002e-10 4.439993954e-10 1.027320093e-09 3.732555455e-10 4.712084166e-10 7.530815901e-10 3.202547147e-10 4.804971565e-10 4.261888997e-10 8.486587004e-10 4.6372651e-10 6.679139748e-10 3.827316599e-10 3.232055954e-10 9.14865831e-10 3.005943494e-10 2.697325764e-10 5.247955588e-10 4.590398681e-10 5.587211985e-10 3.121075616e-10 1.622164868e-10 7.026846161e-10 2.244171996e-10 4.732521639e-10 4.635221833e-10 2.893734814e-10 6.731054998e-10 7.014190646e-10 3.383342721e-10 2.192649439e-10 3.449296544e-10 3.799208964e-10 7.251197789e-10 1.772520116e-10 5.209751129e-10 9.472392672e-10 3.70862487e-10 1.475774278e-10 3.880358497e-10 3.147115461e-10 +2.44838634e-10 5.767917503e-10 3.796802505e-10 4.595652981e-10 3.42586318e-10 2.097010945e-10 1.239801753e-09 3.443046978e-10 5.733983121e-10 2.872650294e-10 4.496646039e-10 6.460265772e-10 1.909527496e-10 3.142915318e-10 3.326755624e-10 8.335693853e-10 2.101543098e-10 3.937969247e-10 3.220823331e-10 9.81544536e-10 7.595470139e-10 6.87179285e-10 4.773768135e-10 1.037423783e-09 2.507571678e-10 3.30966071e-10 5.384725113e-10 8.141460882e-10 5.428225504e-10 3.717492254e-10 3.658969013e-10 6.558962982e-10 5.605021184e-10 4.702902911e-10 2.419584127e-10 4.935030973e-10 7.485069935e-10 2.844315824e-10 1.638659522e-10 1.058478936e-09 8.986078571e-10 6.99481002e-10 1.573389668e-09 1.230806911e-09 2.049128799e-09 9.782990362e-10 1.418439675e-09 1.191750897e-09 1.150118079e-09 7.716563355e-10 1.090702628e-09 1.368299234e-09 1.190960564e-09 5.446702756e-10 1.402530151e-09 1.256152355e-09 7.442141994e-10 1.053402181e-09 9.118468067e-10 1.637866902e-09 2.733943954e-10 4.769191646e-10 6.843819619e-10 1.622311643e-09 1.057302915e-09 1.91450953e-09 1.500387011e-09 7.815240335e-10 1.042970811e-09 1.08466179e-09 1.25411833e-09 9.47429068e-10 7.11604633e-10 1.224258078e-09 1.20379717e-09 5.354370077e-10 1.220965324e-09 6.871487519e-10 1.684172015e-09 1.18463455e-09 2.836582343e-09 2.574302367e-09 3.080683206e-09 1.687548504e-09 2.363808929e-09 1.706419119e-09 1.508312371e-09 1.831203992e-09 1.198910274e-09 8.49850045e-10 8.803898923e-10 1.585798016e-09 1.745070714e-09 1.340529423e-09 1.436842953e-09 6.270759161e-10 6.565651e-10 1.250832483e-09 1.076885277e-09 2.250240677e-09 2.09723985e-09 3.372820799e-09 3.053262145e-09 2.941362067e-09 2.802008966e-09 2.60575479e-09 2.059098011e-09 2.295611649e-09 3.640904707e-09 2.872787884e-09 2.739008705e-09 2.070937294e-09 2.251199065e-09 1.709632704e-09 2.441483749e-09 7.229005802e-10 9.734660408e-10 7.643555659e-11 9.801306567e-14 1.837641472e-10 4.093988064e-10 2.423356621e-09 2.735792923e-09 3.526036845e-09 3.375482134e-09 7.399696434e-09 8.303985321e-09 7.595745154e-09 6.072243002e-09 4.882942751e-09 2.407980887e-09 2.027812638e-13 3.133542097e-10 9.402720986e-11 1.593224604e-10 1.049831973e-10 1.500227769e-10 1.676046168e-10 2.864837467e-10 1.747068221e-10 8.721726372e-11 8.613229946e-11 2.373942496e-10 1.793072848e-10 5.462730472e-19 2.963019484e-10 1.466502485e-10 2.021962507e-10 2.817511558e-10 2.879194848e-10 3.451792475e-10 8.388372349e-11 1.430086906e-10 1.651757941e-10 1.681153973e-10 3.084028155e-10 1.602961033e-10 4.528209463e-11 5.982502858e-11 9.908594145e-11 3.141270456e-10 1.042961285e-10 3.046343356e-10 3.619165603e-10 1.018652409e-10 8.947042529e-11 2.343094477e-10 2.21338872e-10 2.176800054e-10 2.296867617e-09 3.417845037e-09 7.420097607e-09 6.473572228e-09 7.265440301e-09 7.207066343e-09 3.740465695e-09 3.291669933e-09 3.304737113e-09 3.24156446e-09 1.072167769e-09 1.611318806e-10 2.216180043e-10 3.72366388e-10 3.270083845e-10 8.224741455e-10 2.061752013e-09 2.493055006e-09 2.190766832e-09 2.788957506e-09 2.475935258e-09 2.228677622e-09 3.0508946e-09 3.788803677e-09 2.080887184e-09 3.174181064e-09 2.136518047e-09 2.10595165e-09 1.997660168e-09 3.509157548e-09 2.045691019e-09 1.845053209e-09 1.153220245e-09 1.005960595e-09 4.721424226e-10 7.41720587e-10 1.453361399e-09 1.525886732e-09 1.604221729e-09 1.753648198e-09 1.750127269e-09 1.293800801e-09 1.268667778e-09 2.205104451e-09 1.390114465e-09 1.486349029e-09 2.281022334e-09 2.262366252e-09 3.29097979e-09 1.988771779e-09 1.953868309e-09 1.282042361e-09 1.596750193e-09 1.289487226e-09 4.858112879e-10 1.15531066e-09 8.576394641e-10 1.227756109e-09 6.881793904e-10 1.489089399e-09 2.265514932e-09 1.380558707e-09 1.58921099e-09 1.17515322e-09 8.289153751e-10 1.041848844e-09 1.622278832e-09 1.303792353e-09 1.026626785e-09 8.103570021e-10 7.842683654e-10 6.598320451e-10 1.161015375e-09 1.211357044e-09 8.064570357e-10 1.51861521e-09 1.037658819e-09 1.128618505e-09 1.715661083e-09 7.7372566e-10 7.001850372e-10 1.670531948e-09 1.123485586e-09 1.582782815e-09 8.444742594e-10 1.333593773e-09 1.232554153e-09 1.209026543e-09 7.886009207e-10 3.588429809e-10 6.588408826e-10 5.051978852e-10 3.194208721e-10 6.265064208e-10 8.225018109e-10 5.41068611e-10 4.145123294e-10 5.627855096e-10 7.818279403e-10 3.576715991e-10 7.364468926e-10 7.427186287e-10 4.381173207e-10 6.671894141e-10 5.270799608e-10 2.949442312e-10 3.354547016e-10 2.630548737e-10 4.238425527e-10 6.435658363e-10 4.732872848e-10 4.179112613e-10 7.844165e-11 4.737658971e-10 6.968060703e-10 9.574355531e-10 1.009993206e-09 5.881185013e-10 4.306220094e-10 2.255977451e-10 7.004787551e-10 8.821807143e-10 7.150178728e-10 3.378418419e-10 4.420860189e-10 4.266546676e-10 3.373392743e-10 3.641180963e-10 4.636053004e-10 6.106602913e-10 5.532705911e-10 +6.659013362e-10 3.208252175e-10 6.914272812e-10 4.080396947e-10 5.329495309e-10 9.662939567e-10 3.288922884e-10 2.166124176e-10 4.764600096e-10 2.907304235e-10 9.351664915e-10 2.486589972e-10 3.378691125e-10 7.63382129e-10 8.094542621e-10 1.157916132e-09 3.554957745e-10 5.332855652e-10 3.140904271e-10 5.916886675e-10 5.77782825e-10 3.228167806e-10 8.220678186e-10 5.780200873e-10 5.257997579e-10 4.064793686e-10 9.425155403e-10 7.144037683e-10 2.448765924e-10 5.483849379e-10 7.77110411e-10 3.091014487e-10 3.749156471e-10 5.175624174e-10 7.060969819e-10 4.973763618e-10 7.160131201e-10 2.31796451e-10 6.774967037e-10 7.31010664e-10 5.39196122e-10 7.450859035e-10 1.341841084e-09 1.664467127e-09 8.956029324e-10 8.228890105e-10 1.583178688e-09 7.762620035e-10 8.432303376e-10 6.969237012e-10 1.633519867e-09 1.074124596e-09 1.134861535e-09 1.768515567e-09 8.051862392e-10 1.031846586e-09 1.903719851e-09 9.120479255e-10 1.264601288e-09 9.778436272e-10 1.060921045e-09 4.839303057e-10 1.367544399e-09 9.021589726e-10 7.985574963e-10 1.118429281e-09 1.016406799e-09 2.027493924e-09 1.270868388e-09 1.74590712e-09 1.027021989e-09 1.21256807e-09 1.300732962e-09 1.390030792e-09 1.175464967e-09 9.304050101e-10 1.049909954e-09 8.093159942e-10 1.197514875e-09 3.260879249e-09 1.795546498e-09 2.954519198e-09 2.789392347e-09 1.757439399e-09 2.562898841e-09 1.501912662e-09 2.393181911e-09 1.9200987e-09 1.811218821e-09 1.701692101e-09 2.100445071e-09 1.091941823e-09 1.080187441e-09 1.20014076e-09 8.544821621e-10 1.064876656e-09 3.327346545e-10 8.077136887e-10 1.34999066e-09 1.170116779e-09 2.883514874e-09 2.583993965e-09 3.050851285e-09 3.001148213e-09 3.221470346e-09 3.153079671e-09 2.309300506e-09 2.373344133e-09 3.670054663e-09 2.745819454e-09 1.736688641e-09 1.710394198e-09 2.618691572e-09 2.139868097e-09 1.234412525e-09 2.032936043e-09 5.909085875e-10 1.762413021e-10 9.673628337e-11 3.610923994e-11 7.838507825e-10 1.381693069e-09 3.02502988e-09 3.36505563e-09 3.531222478e-09 6.665991988e-09 8.515395862e-09 5.65598914e-09 6.389909746e-09 6.571131978e-09 1.735592217e-09 2.785744219e-10 8.597403592e-11 2.11773912e-10 2.843880013e-10 0 3.106145124e-10 8.295259064e-12 2.543043234e-10 2.135058764e-10 6.566139439e-27 0 2.509362476e-10 2.4128665e-10 1.195066837e-10 4.220228422e-10 2.495599491e-10 4.24800786e-11 4.679465945e-11 1.249987395e-10 0 1.520539638e-10 2.863089471e-10 7.782877311e-11 2.90231652e-16 1.516482448e-10 2.514133297e-10 1.815030775e-10 8.351703536e-12 3.06326775e-10 2.641938719e-10 1.389160638e-10 8.154527141e-11 2.681507372e-10 2.863519526e-10 7.139504878e-11 1.358605445e-10 1.325987522e-10 2.612674091e-10 2.014762241e-09 7.030307872e-09 5.547555073e-09 7.404188097e-09 9.190780987e-09 5.840785904e-09 3.118251086e-09 4.080785451e-09 3.917980679e-09 2.963802632e-09 2.938521428e-10 2.208728384e-10 1.405885583e-10 2.856072507e-10 6.499332534e-10 2.432102544e-09 1.633229112e-09 1.547166117e-09 1.553522664e-09 2.538108788e-09 2.237327411e-09 2.863993489e-09 4.039672506e-09 3.219318448e-09 2.595029284e-09 2.204314304e-09 2.814153585e-09 2.922745106e-09 3.133354761e-09 3.420502432e-09 2.784439941e-09 1.923931303e-09 1.052678351e-09 7.843356943e-10 4.056792314e-10 3.144584665e-10 1.03107128e-09 1.414404942e-09 1.936760614e-09 1.238301786e-09 1.61889691e-09 1.252261752e-09 1.954100252e-09 1.73506166e-09 2.379043034e-09 1.814772827e-09 1.542262105e-09 1.885465392e-09 3.27116398e-09 2.545717728e-09 1.705279172e-09 1.3777061e-09 1.69304231e-09 1.450450045e-09 8.027483426e-10 1.605146171e-09 7.16702692e-10 1.227909519e-09 7.947030459e-10 7.853768747e-10 7.772585204e-10 1.05321597e-09 1.213039363e-09 1.220409061e-09 1.132207361e-09 9.747842058e-10 1.255957662e-09 1.522363031e-09 1.459819384e-09 7.898294161e-10 9.572111045e-10 1.333619254e-09 8.438567635e-10 7.489598651e-10 1.319954544e-09 5.828138453e-10 1.240685387e-09 1.186991295e-09 1.779602388e-09 1.356228433e-09 8.185916147e-10 1.034003367e-09 9.650171271e-10 9.0879664e-10 1.438809134e-09 9.535148461e-10 1.486789255e-09 9.578434875e-10 9.776229172e-10 1.144915302e-09 5.858425523e-10 8.983277396e-10 5.994674847e-10 3.652265238e-10 1.198032664e-09 7.609998302e-10 4.588538721e-10 3.467767879e-10 9.875406791e-10 4.025225508e-10 1.513289944e-09 3.375780829e-10 7.352049643e-10 4.949709585e-10 2.054664963e-10 3.725258961e-10 6.98817792e-10 6.07582363e-10 2.978931206e-10 2.388714752e-10 3.345960321e-10 6.396403065e-10 3.775434916e-10 3.52212048e-10 4.813949058e-10 4.817600842e-10 3.460375665e-10 3.452695624e-10 3.675443592e-10 4.862434858e-10 3.654160946e-10 3.285855465e-10 4.910550466e-10 1.789723343e-10 4.278793819e-10 2.564318033e-10 1.899967215e-10 4.036502295e-10 2.505047142e-10 5.318669957e-10 5.58844584e-10 +5.379917896e-10 1.052505925e-09 2.627051946e-10 3.952617616e-10 6.562992657e-10 6.067952965e-10 5.934751387e-10 5.082837063e-10 3.45518674e-10 5.449602822e-10 5.185513677e-10 6.594782788e-10 4.07522943e-10 1.711035883e-10 2.459701227e-10 2.932049455e-10 7.712216379e-10 5.631417001e-10 4.972405072e-10 2.366116719e-10 3.342377553e-10 6.355782293e-10 6.888306647e-10 3.156556801e-10 3.415224006e-10 3.645468712e-10 3.841942413e-10 3.549017145e-10 4.832803898e-10 2.771616489e-10 8.282841369e-10 4.162603146e-10 5.397871939e-10 5.068117277e-10 4.535885028e-10 6.672271672e-10 4.711780273e-10 3.342547689e-10 2.299292464e-10 6.285730796e-10 5.399140456e-10 5.590226353e-10 4.38837079e-10 1.036400277e-09 7.53250326e-10 1.20398826e-09 1.052781632e-09 1.21110796e-09 9.978332121e-10 1.299645865e-09 6.576467386e-10 9.203342816e-10 8.261488016e-10 1.238486852e-09 9.148581843e-10 6.902847845e-10 1.022742955e-09 1.594340574e-09 1.155107939e-09 1.041458068e-09 9.302840127e-10 1.050998042e-09 9.304009187e-10 1.799087289e-09 9.796879562e-10 1.477957904e-09 1.601680915e-09 8.354650561e-10 1.307826321e-09 8.354633985e-10 1.59337968e-09 1.106025423e-09 9.293737128e-10 1.325545655e-09 1.580633197e-09 1.173026869e-09 9.395923405e-10 9.265066043e-10 9.259748043e-10 1.384924735e-09 2.272312527e-09 2.287462836e-09 2.428350304e-09 3.078003445e-09 2.266296069e-09 1.437874619e-09 1.826768372e-09 2.880392297e-09 1.51521523e-09 1.164718562e-09 1.513560517e-09 1.727246243e-09 1.732925593e-09 1.478517629e-09 8.209769772e-10 4.260412404e-10 3.265949503e-10 1.268803916e-09 1.113791522e-09 1.958533562e-09 2.951872032e-09 2.640382374e-09 2.937849684e-09 2.663155875e-09 3.594146945e-09 2.59956474e-09 2.749565768e-09 2.773637965e-09 3.794179481e-09 3.966080602e-09 2.970923006e-09 2.293707528e-09 1.804505252e-09 2.259703191e-09 1.05236523e-09 5.039175841e-10 5.072331692e-10 2.936131355e-10 1.061933677e-10 6.416984916e-10 1.438224519e-10 1.775978881e-09 3.699859012e-09 3.73994676e-09 3.950031637e-09 6.947893752e-09 7.555439796e-09 8.347384885e-09 5.034625628e-09 6.477262686e-09 1.866290282e-09 2.592710458e-10 7.664478537e-11 2.876638946e-10 1.633594573e-10 2.295738764e-10 1.618246601e-10 2.940186307e-10 2.0976502e-10 3.561654278e-11 3.157289877e-10 8.642841488e-12 5.621268553e-10 1.246478351e-10 2.490077408e-10 1.631948586e-10 6.009054044e-11 7.464225382e-11 1.953415945e-10 3.482258905e-10 1.600454617e-10 2.146680933e-10 1.492503399e-10 1.912910906e-10 1.622047207e-10 2.936131321e-10 1.924700781e-10 2.830294561e-10 2.545229328e-10 2.379319099e-10 5.478150383e-13 2.10440079e-10 1.093541346e-10 1.02249216e-10 2.626716171e-10 2.103462323e-10 2.753304451e-10 2.733898434e-10 1.698197535e-10 3.87152415e-09 6.116052387e-09 5.759635927e-09 5.126208179e-09 6.809706502e-09 7.347831702e-09 4.260599011e-09 2.932686962e-09 2.914847753e-09 2.561589688e-09 4.543569156e-10 4.40295364e-10 3.280780199e-10 4.523137195e-11 1.109301547e-09 1.949391858e-09 1.697793607e-09 1.57578131e-09 2.098536163e-09 1.20747066e-09 2.890863787e-09 3.341122383e-09 4.437642219e-09 2.20566477e-09 3.908479421e-09 2.117740327e-09 2.560062123e-09 1.804575358e-09 2.212467662e-09 2.448166217e-09 2.787767171e-09 2.263274931e-09 5.537585311e-10 1.541098609e-09 7.235502019e-10 5.210980865e-10 7.257237038e-10 1.609425106e-09 6.567345891e-10 1.256743057e-09 1.765935419e-09 1.753013283e-09 1.730291381e-09 1.298076673e-09 2.559643635e-09 1.785640048e-09 1.245736556e-09 2.242259878e-09 2.23807296e-09 1.831866166e-09 1.373347696e-09 2.173460894e-09 2.144230574e-09 1.400722523e-09 8.965290744e-10 1.440015218e-09 9.734679788e-10 9.841258954e-10 8.054710806e-10 7.692723116e-10 1.181584426e-09 1.603433628e-09 1.008566745e-09 9.572508289e-10 3.743551453e-10 2.045709551e-09 7.016921318e-10 1.149512825e-09 9.952741138e-10 7.757208037e-10 6.356734818e-10 1.023773472e-09 7.152848743e-10 1.417733327e-09 9.149305305e-10 1.674998017e-09 1.164991311e-09 1.349496072e-09 8.251246903e-10 1.238981705e-09 6.926913758e-10 1.118353939e-09 9.915486562e-10 1.091290729e-09 9.596049542e-10 8.375527508e-10 8.595494355e-10 7.689025915e-10 1.588382264e-09 5.553297209e-10 6.916660284e-10 7.034747492e-10 7.93284306e-10 7.492841002e-10 2.637948406e-10 8.853112298e-10 2.482022509e-10 2.849475426e-10 3.381423732e-10 3.605382283e-10 9.269733308e-10 2.835885027e-10 6.052003762e-10 1.069131994e-09 5.313952786e-10 2.326160421e-10 1.173595729e-10 9.569542151e-10 4.635214957e-10 1.880331881e-10 1.034056457e-09 4.349245811e-10 4.044233264e-10 3.24861115e-10 2.053162337e-10 7.123289431e-10 6.682060872e-10 3.739036578e-10 4.766060796e-10 5.358686754e-10 3.840393278e-10 3.989636011e-10 9.290299572e-10 5.896753247e-10 7.208343835e-10 5.196654713e-10 4.42594609e-10 4.548959714e-10 4.587508203e-10 6.043910995e-10 4.000956187e-10 +1.152044611e-10 9.482588302e-10 3.219982615e-10 2.92527567e-10 5.605999007e-10 4.58772658e-10 2.648765616e-10 5.705563214e-10 8.725159619e-10 7.920013689e-10 4.623886111e-10 1.437626354e-09 1.410782339e-10 3.795803953e-10 3.059989369e-10 2.465612907e-10 6.331219013e-10 5.127250828e-10 4.62754248e-10 8.290396311e-10 7.728347732e-10 6.995084043e-10 4.58167813e-10 8.326060212e-10 2.05161253e-10 2.909406821e-10 7.630332875e-10 8.610830211e-10 1.120516252e-09 4.236896895e-10 4.359575058e-10 9.221315278e-10 3.110765502e-10 5.378166927e-10 3.73798138e-10 8.506153655e-10 2.853369023e-10 1.374665181e-10 6.567541373e-10 4.804190671e-10 5.098893471e-10 8.585202244e-10 7.298831359e-10 1.469334995e-09 6.478011383e-10 1.293855557e-09 1.458944979e-09 6.632073284e-10 9.40984758e-10 9.649070545e-10 1.270936018e-09 1.34670934e-09 1.428312589e-09 9.55028062e-10 1.1015797e-09 9.427359177e-10 1.146864505e-09 7.028775761e-10 8.377596497e-10 9.166607567e-10 5.319671728e-10 9.23938028e-10 9.706746921e-10 1.200023922e-09 1.557719464e-09 9.039472552e-10 7.142786893e-10 9.933768326e-10 9.042456523e-10 8.618864248e-10 1.507369894e-09 9.893101219e-10 1.177590059e-09 1.257340248e-09 1.209589881e-09 1.412736122e-09 9.957645303e-10 1.103893566e-09 1.345214678e-09 1.842777805e-09 2.143725816e-09 2.373198403e-09 2.264760244e-09 1.24061733e-09 1.384735745e-09 1.185270747e-09 1.671019249e-09 1.757886376e-09 2.15603766e-09 2.312144989e-09 1.467549809e-09 8.853799951e-10 2.31473738e-09 1.217852507e-09 8.006172058e-10 5.452065458e-10 7.195188184e-10 1.257511193e-09 8.924812253e-10 1.810617935e-09 3.538454564e-09 3.402389633e-09 1.71781308e-09 4.473339609e-09 3.297439376e-09 1.055385987e-09 2.167000591e-09 1.687603322e-09 4.400653546e-09 3.494843875e-09 3.015304645e-09 2.649176984e-09 1.277741075e-09 1.884749405e-09 2.555415597e-09 1.366294948e-09 8.510092831e-10 2.56227518e-10 7.329513052e-11 3.392782771e-10 3.20730478e-10 2.184653141e-09 4.275945162e-09 2.710167317e-09 2.383545476e-09 5.652067327e-09 1.0016558e-08 7.825578329e-09 7.196197184e-09 4.958367273e-09 2.923320023e-09 7.868011437e-10 2.865016081e-10 3.641386117e-10 1.874592889e-10 4.703919623e-10 2.396516658e-10 1.949777921e-10 3.215491771e-10 4.780059429e-10 3.168894693e-10 7.400765186e-11 2.901672763e-10 9.559685719e-11 2.719754341e-10 1.68371004e-10 1.147700645e-10 3.616912771e-10 2.649022928e-10 1.902139123e-10 1.049562509e-10 4.23195011e-10 1.493195781e-10 9.474779601e-11 1.342104836e-10 2.469212524e-10 1.797975349e-10 6.574715967e-10 2.728963293e-10 1.053110912e-10 3.076524933e-10 1.072664202e-10 2.158478152e-10 8.773282571e-23 1.565475303e-10 1.266983158e-10 1.430633188e-10 1.50690951e-10 8.159424836e-10 4.285556562e-09 6.097416919e-09 4.391040277e-09 7.050682907e-09 9.806993464e-09 7.061426507e-09 3.629788352e-09 2.947345589e-09 1.604425601e-09 2.877764316e-09 8.147200715e-10 5.715812473e-10 1.802808102e-10 7.89783313e-11 7.053339226e-10 2.495507625e-09 2.066563953e-09 2.202646661e-09 2.300659075e-09 2.350169414e-09 2.698006867e-09 3.679290961e-09 4.65978869e-09 2.16933672e-09 1.992650234e-09 2.523520033e-09 2.786989002e-09 2.797782147e-09 4.13846602e-09 3.043509961e-09 2.435377732e-09 1.879993622e-09 1.101791177e-09 9.298931389e-10 8.833681199e-10 8.781246331e-10 1.28748051e-09 1.255242384e-09 8.567636392e-10 1.227110927e-09 1.710334404e-09 1.019753746e-09 2.050303446e-09 2.485027453e-09 2.376738112e-09 1.165957474e-09 2.236632754e-09 1.409437444e-09 2.980306181e-09 1.412820267e-09 2.02224954e-09 8.717659728e-10 1.18720072e-09 9.12579517e-10 6.101071714e-10 1.974929059e-09 1.006856574e-09 1.317776561e-09 1.039877063e-09 1.775330833e-09 1.401024696e-09 1.135613093e-09 1.507529433e-09 7.397990342e-10 1.18566113e-09 1.572875393e-09 1.627774644e-09 2.312161458e-09 1.111010553e-09 1.161766487e-09 4.396820507e-10 1.079579633e-09 1.201712891e-09 1.463281544e-09 5.478317752e-10 6.660823486e-10 7.85923523e-10 1.426352109e-09 1.795841993e-09 9.736761524e-10 1.808205332e-09 1.082499366e-09 1.664174894e-09 9.703729979e-10 1.987335743e-09 1.746751688e-09 6.977357428e-10 9.761413716e-10 3.832615989e-10 8.33263055e-10 5.419620559e-10 1.048444768e-09 4.574584974e-10 5.507736268e-10 4.210399682e-10 8.489430733e-10 6.807767644e-10 5.664189594e-10 6.841451965e-10 3.060652785e-10 6.401168323e-10 6.297369247e-10 3.552530104e-10 4.170507245e-10 7.540207995e-10 7.088192694e-10 5.29647827e-10 2.02303729e-10 4.803564071e-10 3.093524213e-10 5.716285521e-10 5.832764226e-10 5.001190695e-10 5.992603494e-10 6.471409632e-10 4.056375926e-10 6.321916107e-10 2.810746642e-10 5.997898271e-10 2.464452238e-10 7.722327053e-10 2.952881617e-10 6.30691532e-10 3.827746921e-10 5.5093378e-10 5.724466523e-10 4.670955529e-10 1.853451858e-10 3.90851154e-10 3.070185019e-10 4.895883676e-10 +4.874683646e-10 3.792647436e-10 3.917556629e-10 4.499071496e-10 1.951681182e-10 3.263387062e-10 1.670012142e-10 6.132942447e-10 4.4656037e-10 9.727886791e-10 3.963740913e-10 9.000557315e-10 4.155849896e-10 7.679226399e-10 3.139861771e-10 6.711867644e-10 2.287525468e-10 3.758331599e-10 8.354235238e-10 1.275892196e-10 5.310599007e-10 6.274365163e-10 6.704896545e-10 6.979748633e-10 3.268386824e-10 7.481136927e-10 4.981597555e-10 6.308521137e-10 4.597324845e-10 7.72391354e-10 3.536024825e-10 5.634896035e-10 7.804758757e-10 9.370469726e-10 6.412737652e-10 5.886625552e-10 6.726959158e-10 8.438833089e-10 4.403377171e-10 4.294086381e-10 7.320803793e-10 6.077900901e-10 1.014390913e-09 7.383398255e-10 1.058964707e-09 6.690724512e-10 1.359930699e-09 7.349850973e-10 1.134361562e-09 8.766278117e-10 1.099566713e-09 7.915313278e-10 1.135914662e-09 1.082856089e-09 1.261220689e-09 1.103459916e-09 1.255346126e-09 1.11980939e-09 9.043597727e-10 9.826537652e-10 1.469779683e-09 4.617688194e-10 1.074425757e-09 7.907049135e-10 1.748212612e-09 1.65856617e-09 8.874282765e-10 1.186411228e-09 6.97496809e-10 9.657694755e-10 1.313421507e-09 9.094592974e-10 1.253709336e-09 1.738777453e-09 1.718708528e-09 1.218523674e-09 7.976228123e-10 1.253561437e-09 7.249102672e-10 1.927997655e-09 2.34879941e-09 2.323086177e-09 2.338772844e-09 3.113518766e-09 1.904256273e-09 1.54323159e-09 3.527855571e-09 1.340029348e-09 7.705701572e-10 1.621917618e-09 1.255908835e-09 1.231560693e-09 1.458936252e-09 1.718538799e-09 1.662017283e-09 1.022921669e-09 5.933715811e-10 9.244209742e-10 1.639345646e-09 2.03398141e-09 3.574469766e-09 1.858641906e-09 4.896136908e-09 2.359870378e-09 2.430243747e-09 1.827436567e-09 4.091143691e-09 2.631723625e-09 4.054293824e-09 2.381236766e-09 1.474815932e-09 1.960127246e-09 1.619297663e-09 2.175406062e-09 1.643503083e-09 1.347650315e-09 4.649668411e-10 8.719780011e-11 1.219392575e-10 1.653382954e-10 1.083267023e-10 1.241950813e-09 2.848571963e-09 2.989684552e-09 2.715489768e-09 6.360614665e-09 8.52752951e-09 6.870964489e-09 4.971899689e-09 5.954773624e-09 4.883903987e-09 1.016110475e-09 3.73662242e-10 0 7.088064877e-13 3.391138281e-10 4.019182203e-16 1.323416586e-10 1.836895433e-10 1.744090749e-10 1.659063462e-10 2.367768305e-10 2.796098895e-10 1.331926011e-10 2.703831241e-12 4.621191642e-13 3.269913563e-10 2.296216669e-10 3.085002987e-10 1.217073689e-10 3.244199443e-10 2.219237649e-10 2.942429608e-10 2.143126701e-10 1.164553163e-10 3.341002288e-10 1.248638197e-10 1.038351161e-10 2.391352925e-10 0 7.279854505e-11 7.424933409e-11 1.574942751e-10 2.33262142e-10 2.047227478e-10 4.524694584e-10 3.278872185e-10 9.722355049e-11 1.064724864e-09 4.195929579e-09 5.51624901e-09 6.193884229e-09 5.671644362e-09 9.006323776e-09 5.369679529e-09 3.57243982e-09 2.969416061e-09 3.258635218e-09 2.54686979e-09 3.228639498e-10 9.111797941e-34 3.503629419e-10 7.348629577e-11 3.274369109e-10 1.850598319e-09 1.843399504e-09 1.718874932e-09 2.00746938e-09 1.882845263e-09 2.945523792e-09 2.613307891e-09 3.468878487e-09 2.567965944e-09 2.687497298e-09 2.298713081e-09 3.06831207e-09 2.397122813e-09 2.711716234e-09 2.664165939e-09 4.688447853e-09 1.521842352e-09 7.953214694e-10 8.338895232e-10 2.042064189e-10 7.094208846e-10 8.601849626e-10 8.680157513e-10 1.215292895e-09 1.828798561e-09 1.691758267e-09 1.298393104e-09 1.205800112e-09 1.383940964e-09 1.662693184e-09 1.101415426e-09 1.339151123e-09 1.738167358e-09 1.691147358e-09 2.402212897e-09 1.44762871e-09 1.880616076e-09 1.795065645e-09 1.049846348e-09 1.493654095e-09 1.164928121e-09 5.971631853e-10 1.073790639e-09 8.847664405e-10 1.85786419e-09 9.730868399e-10 1.214818358e-09 1.888621769e-09 1.272891164e-09 1.157230201e-09 1.234441652e-09 1.349667588e-09 1.361516083e-09 4.667398463e-10 1.088975777e-09 6.036823286e-10 1.376861519e-09 4.732727563e-10 1.174262556e-09 7.427572422e-10 7.061191255e-10 1.193392647e-09 9.960187513e-10 9.474698837e-10 1.388285564e-09 7.978294429e-10 8.771117104e-10 8.894394153e-10 1.185949934e-09 1.96840614e-09 1.067165589e-09 9.337708042e-10 1.102230828e-09 7.461002553e-10 1.819841383e-09 6.214208549e-10 6.579427105e-10 6.314098665e-10 2.958121528e-10 6.921324381e-10 7.072223574e-10 6.804418709e-10 4.847631927e-10 8.698444713e-10 8.891432071e-10 4.703685479e-10 9.805437459e-10 2.689673652e-10 6.497155361e-10 3.868451304e-10 2.743987571e-10 2.170966526e-10 1.544154368e-10 3.803219248e-10 4.076690209e-10 4.590403085e-10 6.563656142e-10 6.070171338e-10 1.832848512e-10 3.712473444e-10 8.273438472e-10 3.7189472e-10 4.274900632e-10 2.030816492e-10 3.20376647e-10 3.671701739e-10 4.648677611e-10 2.207343793e-10 1.948833796e-10 3.872893497e-10 4.976303692e-10 5.295919315e-10 8.13220559e-10 3.867304132e-10 5.523707347e-10 8.894853065e-10 +8.836538277e-10 2.455064815e-10 1.043725732e-09 9.607239018e-10 7.533792728e-10 6.713147735e-10 7.114811244e-10 5.382054236e-10 9.62760771e-11 2.245852037e-10 3.887544485e-10 8.084061795e-10 5.072693945e-10 8.269464859e-10 1.08685701e-09 3.336827041e-10 4.144456417e-10 3.643068063e-10 1.254541862e-10 5.846331945e-10 2.39766399e-10 5.289686256e-10 4.733719771e-10 3.053311302e-10 5.330922773e-10 2.83782733e-10 6.342676146e-10 8.270331176e-10 5.149998586e-10 2.317605175e-10 3.353721035e-10 3.334377243e-10 6.746824202e-10 6.379071722e-10 6.788133614e-10 4.614933272e-10 4.858677255e-10 6.795414031e-10 4.239564901e-10 6.961036707e-10 8.159905289e-10 4.344704387e-10 1.059967105e-09 1.348734563e-09 1.445387743e-09 1.365789512e-09 9.898525496e-10 7.82263916e-10 9.891015944e-10 7.289643516e-10 1.033063464e-09 9.816325292e-10 1.347834213e-09 1.301164741e-09 1.173503489e-09 1.106915345e-09 7.332216133e-10 9.189477821e-10 4.761242289e-10 7.867413521e-10 4.492745921e-10 1.153229727e-09 1.126029728e-09 1.175605293e-09 1.125996379e-09 1.407615025e-09 1.597809097e-09 9.847415763e-10 1.880571306e-09 1.155746996e-09 1.818863371e-09 1.489390572e-09 8.21006889e-10 1.144732138e-09 1.089253118e-09 1.012521015e-09 8.170423655e-10 1.804245189e-09 1.445330479e-09 1.512455429e-09 1.867407667e-09 1.656727615e-09 1.689923354e-09 1.532250809e-09 2.13419213e-09 2.035656073e-09 2.327917739e-09 1.861601554e-09 1.536917949e-09 1.838852153e-09 1.633342275e-09 1.115171886e-09 1.926698132e-09 9.133383084e-10 1.486979987e-09 5.765693848e-10 6.261643663e-10 8.305157694e-10 1.084852632e-09 1.894745749e-09 2.990564378e-09 2.742306049e-09 3.372062978e-09 2.59208705e-09 2.482122204e-09 1.212415633e-09 2.968913101e-09 2.653445365e-09 3.271668988e-09 4.411104493e-09 2.969093339e-09 1.916799376e-09 1.799670951e-09 1.684240789e-09 2.414930336e-09 1.55012822e-09 4.283833228e-10 8.885003589e-11 3.630294355e-14 1.552782075e-10 9.070626231e-11 1.462754388e-09 3.431708851e-09 3.672183417e-09 2.547456746e-09 6.050735243e-09 8.570690548e-09 8.796871068e-09 5.960813655e-09 6.708410198e-09 5.285748163e-09 1.960794952e-09 1.855691014e-10 9.496207344e-11 6.651007648e-11 2.11835637e-10 6.473961746e-11 1.747997567e-10 2.943005511e-10 1.83536313e-10 0 1.760823607e-12 2.595820943e-11 1.964047328e-10 1.706293935e-10 1.775540499e-10 5.645220309e-10 1.001945245e-10 1.991340302e-10 1.98196966e-10 1.752035869e-10 1.153347312e-10 3.215746567e-10 8.112323885e-11 3.185112253e-10 2.571637341e-10 7.791120782e-11 1.42800706e-10 1.202445225e-10 4.389333552e-28 5.64026235e-10 3.232518858e-10 1.545672395e-10 2.069132326e-10 1.246696389e-16 2.400989714e-10 2.635454032e-10 4.495892807e-10 1.511636501e-09 4.37054813e-09 8.44405647e-09 4.715485215e-09 6.802825483e-09 6.922210461e-09 6.059792515e-09 3.817261932e-09 3.573351977e-09 3.242147265e-09 1.228428719e-09 1.262728161e-10 1.700665424e-10 7.110352448e-11 2.469692054e-10 6.206284739e-10 1.361847447e-09 1.991783969e-09 1.412850214e-09 2.357773638e-09 1.91938933e-09 3.454873346e-09 3.364370779e-09 4.272171628e-09 2.147941925e-09 3.636344078e-09 2.536475863e-09 3.614043149e-09 2.909483315e-09 2.169284536e-09 2.877653081e-09 2.084645633e-09 1.394494362e-09 9.314807808e-10 1.317959422e-09 6.001447924e-10 9.235072726e-10 1.146214106e-09 1.237732114e-09 1.88128513e-09 1.379256794e-09 1.309298712e-09 1.324492138e-09 2.107227956e-09 1.503458503e-09 2.387262429e-09 2.660433674e-09 1.259669455e-09 1.388187277e-09 2.324737893e-09 3.126806678e-09 1.488663735e-09 1.670590225e-09 9.165796663e-10 9.850116163e-10 9.486274317e-10 1.339447995e-09 1.074423123e-09 1.445305679e-09 1.267928492e-09 3.542479329e-10 1.434543834e-09 1.655171011e-09 1.406305233e-09 1.674249105e-09 1.032013713e-09 1.515198467e-09 1.224560625e-09 2.285399388e-09 9.464144528e-10 1.034082052e-09 1.162711145e-09 1.056331841e-09 5.995149639e-10 1.359980062e-09 9.801488875e-10 1.483674622e-09 1.57323894e-09 1.252546794e-09 9.366563883e-10 1.274681217e-09 6.192275912e-10 5.267030912e-10 9.260541372e-10 7.314916934e-10 1.204042975e-09 3.730758581e-10 8.433931726e-10 1.004077849e-09 1.906015394e-09 4.639633395e-10 8.322581818e-10 9.531761296e-10 5.202284127e-10 8.405771097e-10 3.246289626e-10 3.966674993e-10 8.746570235e-10 8.947726831e-10 1.076603167e-09 6.703495203e-10 2.61257973e-10 1.051527214e-09 6.895477446e-10 5.279068235e-10 2.103000135e-10 5.0533949e-10 8.770914885e-10 1.839962878e-10 5.765601969e-10 8.449021399e-11 4.296636046e-10 7.476189964e-10 3.774232548e-10 2.999600065e-10 1.197116421e-09 5.138056167e-10 4.764698834e-10 1.230371857e-10 8.171939261e-10 2.281805621e-10 2.833051104e-10 3.519213946e-10 3.682170855e-10 5.20411646e-10 8.530334405e-10 2.553830262e-10 3.601006312e-10 4.099512058e-10 6.465237583e-10 2.008518433e-10 8.773526018e-10 +8.032753584e-10 8.412563644e-10 2.480723536e-10 6.971427302e-10 6.431730162e-10 8.822327803e-10 2.283006592e-10 3.712271773e-10 6.479480025e-10 3.840760526e-10 4.494290058e-10 2.394212922e-10 5.502436544e-10 4.765766252e-10 3.266127122e-10 3.886727924e-10 6.370273455e-10 6.737272838e-11 4.262152047e-10 5.481200906e-10 7.795671862e-10 4.3869103e-10 9.192021224e-11 4.257139028e-10 5.793983183e-10 4.358440411e-10 7.03060978e-10 4.358117534e-10 6.554312641e-10 7.246998024e-10 8.358646964e-10 5.506144454e-10 4.100333076e-10 6.988060906e-10 3.924962569e-10 2.108186234e-10 6.841597404e-10 2.851315412e-10 3.674347022e-10 4.792539461e-10 7.56483114e-10 1.03769453e-09 1.721711045e-09 9.407900753e-10 1.708843653e-09 1.1259065e-09 9.292894891e-10 8.717195546e-10 1.55280643e-09 1.086268623e-09 1.060666142e-09 1.333942479e-09 2.372278486e-09 1.040956901e-09 1.356304577e-09 1.103118517e-09 1.143591813e-09 1.047836062e-09 1.037513681e-09 9.288368711e-10 5.441787633e-10 1.283643898e-09 8.678834467e-10 1.539612984e-09 1.041968655e-09 7.607976064e-10 1.28643318e-09 1.412514957e-09 1.24726277e-09 1.773887701e-09 1.068889434e-09 1.800671937e-09 1.112259083e-09 9.57992821e-10 6.288282486e-10 4.58044947e-10 1.030523768e-09 1.401642767e-09 1.716673588e-09 1.589398012e-09 1.324428233e-09 2.178892613e-09 1.684218819e-09 1.889057625e-09 1.787172901e-09 1.602203475e-09 1.37557684e-09 1.636280141e-09 1.794153758e-09 2.133563837e-09 2.132022723e-09 1.411102307e-09 1.004547714e-09 2.244293038e-09 1.865128711e-09 9.912891097e-10 4.989232639e-10 8.102020411e-10 9.979848244e-10 9.655932134e-10 4.559101802e-09 3.563737611e-09 2.987569119e-09 4.227059186e-09 3.232631359e-09 3.357264936e-09 3.14283475e-09 1.520804655e-09 2.908978928e-09 3.31850177e-09 2.703932369e-09 2.085432535e-09 1.780186001e-09 1.40457818e-09 1.61510295e-09 1.866230043e-09 9.558864908e-10 5.37737335e-10 3.175907926e-10 3.80924095e-10 1.689489246e-10 8.881945015e-10 2.713404307e-09 2.136988922e-09 3.444303654e-09 3.739523641e-09 7.026552141e-09 6.758644355e-09 5.806741471e-09 5.57889029e-09 5.951600922e-09 2.115515067e-09 5.602043768e-10 5.834764777e-17 2.001440061e-10 1.799580331e-10 7.655281099e-12 1.140829612e-10 1.395930088e-13 1.01199795e-10 1.837034059e-10 3.716264014e-10 2.00415689e-10 3.597203774e-10 1.8226301e-10 7.041400367e-15 8.410947216e-11 8.055361584e-12 3.074465087e-10 2.841392179e-10 2.304873373e-10 1.050125871e-10 4.704709984e-10 0 2.012289772e-10 4.188227538e-10 2.645405477e-10 2.00601592e-10 1.206990039e-10 9.113798304e-11 3.689443866e-10 0 2.283566266e-10 2.39690787e-10 1.066559223e-10 6.990567378e-10 2.441158632e-10 9.435156071e-10 2.306577948e-09 3.346472874e-09 6.861059213e-09 5.514847413e-09 9.405797139e-09 8.444866106e-09 2.785936717e-09 3.526464068e-09 2.609643971e-09 3.501763564e-09 1.89063341e-09 3.170780421e-10 1.057881482e-10 1.938443923e-10 1.61430237e-10 9.740359458e-10 8.457333713e-10 2.129506956e-09 1.777960456e-09 9.776419621e-10 1.340435095e-09 2.944811355e-09 3.021982602e-09 2.205107735e-09 2.36602581e-09 2.043287797e-09 2.236149294e-09 3.621365199e-09 3.497377278e-09 2.624222298e-09 2.782990537e-09 2.538248232e-09 2.071104287e-09 6.420180198e-10 1.61709026e-09 5.374101214e-10 8.486916361e-10 4.852604316e-10 1.479082172e-09 1.517728211e-09 1.113459671e-09 2.004483951e-09 8.607725226e-10 1.699016039e-09 1.350741347e-09 1.742383875e-09 1.728236434e-09 2.471283756e-09 1.841937763e-09 2.819955663e-09 1.424152918e-09 1.684572121e-09 2.094010993e-09 1.849164704e-09 1.838584858e-09 9.747468986e-10 1.060470208e-09 1.14107882e-09 1.160620463e-09 1.113467977e-09 8.16409271e-10 9.971670666e-10 1.613108013e-09 9.433074575e-10 1.312149041e-09 1.138579499e-09 1.124346169e-09 1.071575413e-09 8.238136006e-10 9.53950117e-10 9.21223798e-10 4.06437334e-10 8.718131991e-10 1.190338222e-09 1.090731543e-09 1.107022149e-09 1.814668265e-09 1.602548085e-09 1.297421042e-09 9.139534097e-10 9.863407841e-10 1.165341165e-09 6.587999969e-10 1.008021586e-09 1.236298785e-09 9.146570157e-10 1.270597029e-09 1.361290833e-09 1.48565154e-09 1.369683789e-09 1.010810306e-09 6.662130356e-10 5.653573766e-10 2.810805711e-10 4.547036177e-10 4.554022233e-10 1.044654508e-09 1.079815579e-09 3.862137579e-10 5.684167107e-10 5.49058736e-10 8.549572249e-10 7.12158615e-10 6.951564098e-10 2.889806495e-10 6.028880268e-10 6.917353725e-10 3.927070457e-10 3.462489161e-10 1.325332667e-10 8.351692358e-10 6.792808359e-10 8.507412798e-10 3.847799474e-10 3.588128259e-10 4.379761459e-10 7.503771847e-10 4.219262207e-10 3.151542486e-10 9.199495441e-10 7.574629756e-10 6.899314068e-10 7.854514261e-10 4.220512861e-10 9.09854143e-11 1.542484436e-10 7.588965589e-10 4.505218419e-10 3.143407053e-10 5.467859456e-10 1.599706222e-10 2.115728684e-10 +5.578931219e-10 1.982735912e-10 3.224272918e-10 4.445332005e-10 4.22249265e-10 5.647345754e-10 9.715452749e-10 5.363131414e-10 4.751819086e-10 3.818638299e-10 6.786003352e-10 3.4040448e-10 4.568804204e-10 6.591530913e-10 3.491949535e-10 1.707494869e-10 5.397645061e-10 5.597390684e-10 3.802023636e-10 5.24192852e-10 1.148694726e-09 2.510428428e-10 7.245695189e-10 2.547120493e-10 5.106958971e-10 1.412093977e-09 5.511162051e-10 6.118703145e-10 2.601179482e-10 3.586195554e-10 5.722169011e-10 3.681131888e-10 1.255342126e-09 5.834063745e-10 1.639943142e-10 6.016797496e-10 3.66800676e-10 4.312596482e-10 5.700079865e-10 6.471307754e-10 8.726124258e-10 8.487502786e-10 1.107658811e-09 5.727814136e-10 9.904308397e-10 1.193971989e-09 1.027451908e-09 1.088529464e-09 5.789564217e-10 7.669859965e-10 1.190212784e-09 9.220886871e-10 7.242198898e-10 7.691705888e-10 6.228791485e-10 1.384838798e-09 1.01082624e-09 1.685951379e-09 1.130648299e-09 8.350965366e-10 9.193037095e-10 6.78174079e-10 1.437554156e-09 2.385230635e-09 1.337306876e-09 1.319721356e-09 9.822482655e-10 1.278454058e-09 1.101714273e-09 1.534154573e-09 1.714367146e-09 9.700201511e-10 1.036126761e-09 6.127003339e-10 1.529077601e-09 6.277435561e-10 6.247374791e-10 9.14663322e-10 1.516100708e-09 1.654396127e-09 1.667381925e-09 1.907830517e-09 2.462474093e-09 1.664761119e-09 2.031957681e-09 1.208134127e-09 1.051833272e-09 1.492755964e-09 9.52746335e-10 1.391625795e-09 1.315296055e-09 1.159852364e-09 1.914226123e-09 2.009129316e-09 8.814444758e-10 1.339955965e-09 9.04925515e-10 6.365964396e-10 1.111169968e-09 1.394343592e-09 2.365428506e-09 4.538475159e-09 3.807152742e-09 3.10713463e-09 3.264550803e-09 2.704859988e-09 1.997661433e-09 4.212481029e-09 2.997075059e-09 3.582975723e-09 2.500601184e-09 1.843629263e-09 2.171920428e-09 2.012013585e-09 2.604851778e-09 1.446988508e-09 1.526820175e-09 3.450563234e-10 4.696140057e-10 2.950966203e-10 2.288696124e-10 6.409091371e-10 2.798541792e-09 3.32582289e-09 3.630326164e-09 3.901136816e-09 6.000667936e-09 9.788010169e-09 6.931003144e-09 7.933210935e-09 6.858493719e-09 4.081887089e-09 1.40462317e-09 3.014134195e-10 1.516567603e-10 2.249671483e-10 2.725209977e-10 1.436719265e-10 2.085929352e-10 3.884727066e-10 5.816143345e-11 1.617519393e-10 2.142345751e-10 1.756075997e-10 1.613332678e-10 2.627415188e-10 2.558586343e-10 1.067681216e-10 3.070228902e-10 1.634478993e-10 9.264747028e-11 1.595877466e-10 3.332416574e-10 1.449853699e-10 7.534484248e-11 1.549750434e-10 1.154010808e-10 8.770147551e-11 5.587865554e-10 1.72808656e-10 7.762709924e-11 2.008334557e-10 2.166937879e-10 6.450500684e-18 3.59933184e-10 1.710665283e-10 1.635304635e-15 7.82775437e-10 3.777977251e-09 4.737307049e-09 6.303308173e-09 6.600849721e-09 9.024619265e-09 8.014778015e-09 3.512742816e-09 3.706877303e-09 3.115973035e-09 2.027353563e-09 1.065280269e-09 1.67976038e-10 3.31953908e-10 1.564386079e-10 5.482365947e-10 1.540378961e-09 1.392304283e-09 2.611629245e-09 2.204383855e-09 1.279552348e-09 1.227968987e-09 3.04443546e-09 2.589140877e-09 3.184199019e-09 2.663986469e-09 1.982702426e-09 2.46989233e-09 2.936868814e-09 3.677400612e-09 3.208930533e-09 2.258053081e-09 2.228309548e-09 2.035545112e-09 8.925892962e-10 6.985149597e-10 3.452083928e-10 6.660194694e-10 9.906619459e-10 1.429776526e-09 1.949585534e-09 1.434508479e-09 1.499334323e-09 2.113390748e-09 1.587151806e-09 1.141183394e-09 1.794451128e-09 1.88422102e-09 2.473571398e-09 1.806225939e-09 2.638856501e-09 2.050269352e-09 1.682127507e-09 1.742671147e-09 1.023476773e-09 5.227777268e-10 1.523514108e-09 1.27279991e-09 1.092774365e-09 1.751052901e-09 1.650737629e-09 8.113971835e-10 1.180604032e-09 1.144780561e-09 1.76713237e-09 1.189214616e-09 1.872819805e-09 7.0532119e-10 1.134219144e-09 1.18947092e-09 1.087497797e-09 7.386738439e-10 5.087243666e-10 1.251307719e-09 6.28193247e-10 9.534902104e-10 7.683942968e-10 1.489097415e-09 1.375632591e-09 8.095075971e-10 6.953372455e-10 1.129268129e-09 1.194410586e-09 8.95981589e-10 7.088146019e-10 1.068131027e-09 1.164252641e-09 1.751562444e-09 7.920832001e-10 1.271400073e-09 1.21279189e-09 1.406241346e-09 7.729428555e-10 4.690082219e-10 4.961459771e-10 6.553396386e-10 2.732962391e-10 4.426178927e-10 3.942114935e-10 9.933031427e-10 2.401955961e-10 4.730068602e-10 9.325931552e-10 6.340199926e-10 2.70510445e-10 7.725638511e-10 3.103552921e-10 5.638918437e-10 4.162859146e-10 2.246778135e-10 6.791108534e-10 1.005330191e-09 3.717193395e-10 4.757841592e-10 4.924448856e-10 7.364480088e-10 4.310211579e-10 3.728319762e-10 7.186690231e-10 6.589063146e-10 4.826578063e-10 5.455040296e-10 8.264962291e-10 4.211741996e-10 6.836174138e-10 4.091984497e-10 2.900186074e-10 4.331550855e-10 1.60451167e-10 1.029669817e-10 4.907763652e-10 5.769872642e-10 2.656381495e-10 +2.225056289e-10 4.993008869e-10 4.556202574e-10 5.460104827e-10 1.879074687e-10 2.925744031e-10 4.064432828e-10 6.735837894e-10 2.415753718e-10 4.367943377e-10 2.906704116e-10 5.747241558e-11 5.337230823e-10 2.888805616e-10 5.184266301e-10 2.969154852e-10 6.894613658e-10 2.249791312e-10 4.735001804e-10 4.140172079e-10 2.923382479e-10 3.527091594e-10 2.170215212e-10 1.475129823e-10 4.005441024e-10 9.108231395e-10 3.38950724e-10 1.00469479e-09 4.138238006e-10 3.764341484e-10 5.450910253e-10 7.76715128e-10 1.903765888e-10 3.813508404e-10 2.523925203e-10 5.715362562e-10 2.496058033e-10 2.870198343e-10 3.922657627e-10 6.973715254e-10 7.888187178e-10 1.203051407e-09 1.14399388e-09 1.391229157e-09 1.025709049e-09 1.485059389e-09 8.8454322e-10 1.209143852e-09 7.6038008e-10 1.492011669e-09 1.313178774e-09 1.100033325e-09 1.203920664e-09 1.072895808e-09 9.58718684e-10 1.463013465e-09 6.56004603e-10 1.024727952e-09 4.726299257e-10 1.129279983e-09 1.119409804e-09 6.059785615e-10 1.05022635e-09 1.771696319e-09 1.372912931e-09 1.498984098e-09 8.390477648e-10 9.950365927e-10 1.454179631e-09 1.527132312e-09 1.488955707e-09 1.570337714e-09 1.391101714e-09 1.357068826e-09 1.237926044e-09 1.666271726e-09 5.470122956e-10 6.271789108e-10 1.440742273e-09 1.823322513e-09 2.952032689e-09 3.031898478e-09 1.661672264e-09 1.837272887e-09 1.622544027e-09 1.246329558e-09 2.383771757e-09 1.976245765e-09 1.775729759e-09 1.472228819e-09 1.485514546e-09 1.677440405e-09 1.533772157e-09 1.54113652e-09 1.661250943e-09 1.180696443e-09 3.38245039e-10 9.704626637e-10 8.142301239e-10 2.264671211e-09 2.223517376e-09 4.387815558e-09 3.461296051e-09 3.237873024e-09 2.826098094e-09 1.984864942e-09 2.40259324e-09 2.319410673e-09 3.532732502e-09 4.618634822e-09 2.305174117e-09 3.029511106e-09 1.602224725e-09 1.951793079e-09 2.352356222e-09 2.103808332e-09 9.359414597e-10 4.253325054e-10 4.358034165e-10 3.872895112e-10 1.777823652e-10 6.070746225e-10 3.156169387e-09 3.260559229e-09 2.457179498e-09 2.971612225e-09 6.652950426e-09 1.118993498e-08 7.250608518e-09 8.66289277e-09 5.063361663e-09 4.157589921e-09 9.508153393e-10 1.951409193e-10 2.51680753e-10 7.066001749e-11 8.11127964e-11 1.475333002e-10 6.46367614e-11 3.414663096e-10 4.902781651e-10 1.625375302e-10 2.409841947e-10 3.254423268e-10 3.325280203e-10 2.413935252e-10 4.48392218e-10 8.21654008e-11 1.0952422e-10 4.094672373e-10 8.779935269e-11 1.51824057e-10 1.988311918e-10 0 7.521482474e-11 1.49169786e-10 7.002678074e-11 6.784072899e-11 4.966647721e-10 3.63965669e-10 2.454869178e-10 1.147439758e-10 1.907178267e-10 6.510568436e-11 3.360280153e-11 4.085005181e-10 0 1.491942341e-09 4.518277525e-09 5.074154476e-09 6.328564192e-09 6.306594016e-09 1.00062392e-08 5.263533715e-09 3.049198129e-09 3.759982912e-09 3.248520914e-09 2.010279605e-09 5.265701799e-10 4.561062723e-10 2.689260985e-10 1.190315058e-10 7.5021465e-10 1.821506563e-09 1.68302603e-09 1.282117097e-09 2.197468003e-09 2.126905081e-09 1.9876518e-09 3.860147163e-09 4.033899131e-09 3.750830436e-09 2.690752451e-09 2.07962368e-09 3.201175627e-09 2.921464459e-09 2.239483187e-09 3.357848939e-09 2.073192569e-09 2.407209562e-09 1.276991846e-09 1.326799005e-09 6.451201747e-10 2.896076464e-10 9.081898841e-10 1.080410029e-09 1.514898935e-09 1.161633171e-09 2.016368482e-09 1.540284935e-09 9.797091382e-10 1.830177979e-09 1.847528266e-09 1.028548778e-09 2.529523354e-09 1.786001924e-09 3.25469345e-09 2.426537576e-09 1.866459793e-09 1.766359757e-09 1.666049354e-09 9.720873525e-10 8.882526985e-10 1.326184503e-09 1.194872304e-09 1.263573173e-09 1.067419631e-09 9.170971028e-10 5.149804864e-10 7.19324098e-10 1.319496892e-09 7.356230001e-10 7.238969175e-10 7.167250722e-10 7.48754328e-10 1.184906906e-09 1.325826759e-09 8.966909839e-10 1.325753563e-09 9.15121789e-10 1.042598502e-09 2.845125629e-10 1.34105325e-09 1.082452002e-09 1.366541992e-09 9.043387199e-10 9.259347151e-10 1.13554138e-09 1.032472281e-09 8.405781704e-10 1.316272653e-09 8.499123936e-10 8.176313098e-10 1.038922176e-09 8.676338566e-10 7.802667433e-10 1.029449831e-09 7.231884555e-10 1.248147303e-09 6.397926015e-10 5.715740204e-10 7.562538283e-10 5.981969414e-10 6.031545832e-10 4.745577236e-10 3.795481846e-10 6.570966618e-10 4.442106553e-10 5.109344835e-10 4.890234674e-10 1.169374057e-09 6.483539702e-10 2.915838446e-10 9.4288714e-10 1.587733908e-10 6.716363177e-10 3.950409054e-10 2.912198313e-10 6.993287586e-11 4.998021492e-10 3.142392833e-10 5.833843165e-10 4.082674895e-10 7.391390644e-10 5.512829812e-10 1.710703642e-10 2.429340853e-10 5.766539236e-10 3.580809773e-10 4.001998072e-10 4.148918333e-10 5.908052483e-10 6.149657978e-10 5.76519977e-10 4.832593009e-10 5.449430363e-10 3.381716952e-10 5.141917077e-10 7.433934071e-10 5.947638989e-10 +3.104302389e-10 2.844941221e-10 7.961049697e-10 2.819881067e-10 3.959178208e-10 3.51241851e-10 7.80203923e-10 8.285650141e-10 2.725180362e-10 9.382934126e-10 2.989999281e-10 2.955069632e-10 5.648662523e-10 7.625028761e-10 6.351577091e-10 6.373947229e-10 7.756460519e-10 3.497268721e-10 1.754046241e-10 1.88278673e-10 4.811069511e-10 2.510383319e-10 4.387947981e-10 6.662104941e-10 5.225581553e-10 4.217462956e-10 6.324222533e-10 3.37578539e-10 7.490411979e-10 5.631726227e-10 6.813400068e-10 6.157157091e-10 4.595740357e-10 4.438209718e-10 6.25155608e-10 3.136929521e-10 4.665578833e-10 5.65749429e-10 3.320120031e-10 5.219539566e-10 6.468081037e-10 9.024557814e-10 2.004086138e-09 8.087217616e-10 7.720557851e-10 1.413068805e-09 1.461964013e-09 1.117262733e-09 1.179220256e-09 1.407195278e-09 1.314159519e-09 2.262886371e-09 7.112613953e-10 7.407441831e-10 1.684511725e-09 1.202411866e-09 1.301176001e-09 8.865211033e-10 1.079340903e-09 7.692500925e-10 7.3258436e-10 1.356267926e-09 1.100723881e-09 1.662624264e-09 7.487904649e-10 5.556350071e-10 1.345938812e-09 1.21701586e-09 1.048947142e-09 9.059242741e-10 1.378107775e-09 7.863656936e-10 8.98011301e-10 7.682482123e-10 9.000791549e-10 9.152565573e-10 1.335601522e-09 4.985555389e-10 1.789307991e-09 1.045250241e-09 2.048879352e-09 2.775274108e-09 2.959012717e-09 1.678461763e-09 1.883581715e-09 1.625693878e-09 2.481962878e-09 1.508008242e-09 2.377746457e-09 8.917132321e-10 1.555268789e-09 1.577321227e-09 1.156649112e-09 1.281218439e-09 1.471916585e-09 8.207562546e-10 5.700392274e-10 1.059306577e-09 7.638881967e-10 8.337314181e-10 2.3574409e-09 2.724081877e-09 2.398753779e-09 2.521403734e-09 4.161327711e-09 2.950430315e-09 2.647739493e-09 2.129993191e-09 2.752844446e-09 3.107146565e-09 3.229632381e-09 1.207705285e-09 2.598792031e-09 1.839505746e-09 1.657473464e-09 1.704497508e-09 1.063927488e-09 8.025301037e-10 2.11608321e-10 1.368273047e-10 3.736048595e-11 1.976940648e-10 2.026123627e-09 3.658934858e-09 3.000635979e-09 3.189719069e-09 4.738088538e-09 8.378206457e-09 6.925222799e-09 6.948238611e-09 6.326654206e-09 5.840564504e-09 2.292982741e-09 3.086053218e-10 1.495489456e-10 2.578596127e-10 1.043076778e-10 1.853446267e-10 3.360647609e-16 1.031036378e-10 6.514606602e-11 1.414769429e-10 1.697863955e-10 3.007401496e-10 2.057013014e-10 2.991146555e-10 2.589268831e-10 2.73131984e-10 7.1163615e-11 2.118226288e-10 3.728737805e-10 1.568477571e-10 1.927591849e-10 5.931186304e-11 2.533839319e-10 2.40736525e-10 2.918053439e-10 3.402362343e-10 1.32091468e-10 7.639026387e-11 3.898705123e-10 2.91016411e-10 2.603444015e-10 1.263598972e-10 1.74356437e-15 1.464613842e-10 1.813408174e-10 1.82522475e-09 3.74222584e-09 5.526910728e-09 7.775522334e-09 6.314583968e-09 6.942924765e-09 5.48433552e-09 3.293204838e-09 3.829599113e-09 2.490387193e-09 2.008146561e-09 3.553265077e-10 1.035768918e-10 1.613838476e-10 1.449114657e-14 4.225611315e-10 1.170407693e-09 1.94671438e-09 1.32238051e-09 2.425593771e-09 2.461195664e-09 1.553220943e-09 3.031278442e-09 5.123857901e-09 2.309911991e-09 1.990489319e-09 2.336045905e-09 2.285288535e-09 2.182997929e-09 3.055777639e-09 3.808708841e-09 3.246558257e-09 2.307064931e-09 1.099033042e-09 1.347867575e-09 6.446342121e-10 2.451910567e-10 1.277018264e-09 1.173875406e-09 1.180475403e-09 1.346464525e-09 1.776362306e-09 1.277640674e-09 1.3894065e-09 1.915543249e-09 1.883873171e-09 1.839598309e-09 1.54721543e-09 1.282824562e-09 1.477932464e-09 2.72171464e-09 2.335096393e-09 3.397656988e-09 2.200234382e-09 1.805943948e-09 7.134389705e-10 1.59539249e-09 6.210740907e-10 1.140081475e-09 1.046457051e-09 1.172668817e-09 1.385542681e-09 1.470655316e-09 9.833196395e-10 6.810951165e-10 6.592024155e-10 1.676101624e-09 1.024133369e-09 1.228756228e-09 9.566525785e-10 1.08479037e-09 8.550506478e-10 9.895235349e-10 1.034103595e-09 7.557644374e-10 9.094191822e-10 4.92142968e-10 7.992824034e-10 1.573348237e-09 1.511498591e-09 1.364558192e-09 9.157340426e-10 9.643574697e-10 9.280146492e-10 1.934664514e-09 1.32134706e-09 1.42753904e-09 1.425623042e-09 9.859643011e-10 7.051883642e-10 2.114976851e-09 7.660441702e-10 9.864068728e-10 1.160849065e-09 4.133610373e-10 2.353881967e-10 5.671997214e-10 4.634942202e-10 2.924973328e-10 4.385120772e-10 4.775942711e-10 1.73132112e-10 4.36647217e-10 3.399299757e-10 4.513401945e-10 8.399398501e-10 2.70312727e-10 5.561658623e-10 5.525277565e-10 2.513223776e-10 8.4398462e-10 3.152153655e-10 3.619058552e-10 3.441135216e-10 2.350421262e-10 4.532103414e-10 9.913306132e-10 3.525286812e-10 1.987885164e-10 2.284072637e-10 4.726985787e-10 7.170791182e-10 6.057040855e-10 6.688918936e-10 1.148067795e-10 3.531836705e-10 3.638973131e-10 3.974539386e-10 2.495400327e-10 2.16082854e-10 2.813740447e-10 4.360384681e-10 7.879652606e-10 +4.353713559e-10 2.877813942e-10 4.54366996e-10 9.932157449e-10 2.732147859e-10 4.621626212e-10 2.52181077e-10 2.499019204e-10 2.464402641e-10 4.754729076e-10 6.097746036e-10 3.399292534e-10 1.115184459e-09 2.654348265e-10 9.845441641e-10 8.484671511e-10 4.128453542e-10 2.665444032e-10 3.754380418e-10 5.684172626e-10 2.552494564e-10 7.102253627e-10 3.232048618e-10 4.941588084e-10 8.008390313e-10 3.112809448e-10 5.718765395e-10 4.405959525e-10 4.159164582e-10 7.164666148e-10 1.588837841e-10 1.120395197e-09 4.910662203e-10 6.366298053e-10 4.313370414e-10 2.184245567e-10 7.208641385e-10 2.853701318e-10 5.731871068e-10 7.722641495e-10 5.803208755e-10 6.629067171e-10 1.125722946e-09 1.133390629e-09 1.485976718e-09 8.686962479e-10 9.164416167e-10 7.569917707e-10 6.759724225e-10 1.568725445e-09 1.350188382e-09 8.372853097e-10 7.56306684e-10 1.020593218e-09 7.493775501e-10 1.065884009e-09 1.149313879e-09 8.647730756e-10 9.300517734e-10 9.861329097e-10 1.654591528e-09 1.154832893e-09 1.044428223e-09 9.214521092e-10 1.249323958e-09 1.583099705e-09 9.593508825e-10 1.147902219e-09 1.492167346e-09 1.853158043e-09 1.529741335e-09 9.599551002e-10 1.0013167e-09 1.207871637e-09 1.078369857e-09 1.698202726e-09 9.096252518e-10 8.241979175e-10 1.153886017e-09 6.417227302e-10 1.630489791e-09 2.170763539e-09 1.897711336e-09 1.611416806e-09 1.826966348e-09 2.7116315e-09 9.707500226e-10 2.007456885e-09 1.672288011e-09 1.810144158e-09 1.509981694e-09 1.949739914e-09 2.250704008e-09 1.463214577e-09 1.215185829e-09 4.608746978e-10 5.999095394e-10 6.663896245e-10 8.355103257e-10 1.735650921e-09 2.767893553e-09 2.819651882e-09 2.992424478e-09 1.887194679e-09 3.592941741e-09 2.460560392e-09 1.621915589e-09 1.025728674e-09 3.971283311e-09 3.039610309e-09 2.904621725e-09 3.240175915e-09 1.92346363e-09 2.992663064e-09 1.930413312e-09 2.213974344e-09 2.020806791e-09 9.706742807e-10 2.187125131e-10 7.445024699e-11 3.415123014e-10 3.771330753e-10 2.105450031e-09 2.599652526e-09 3.885653841e-09 2.620509619e-09 4.395545209e-09 8.17736246e-09 7.67908651e-09 7.187239281e-09 7.65583317e-09 5.075070691e-09 2.786384909e-09 3.180991164e-10 2.407464659e-10 3.340921517e-10 2.461400832e-10 4.322658917e-10 7.292598772e-14 2.12363969e-10 8.932048305e-11 4.068912002e-16 2.559020799e-13 1.354576798e-10 9.989663422e-11 1.832801566e-14 9.334179204e-11 1.851480628e-10 3.68671716e-10 5.024820017e-10 3.327245712e-10 1.922638252e-10 7.245555302e-11 3.256170833e-10 4.02560999e-10 2.440813592e-10 1.948421959e-10 1.79447544e-10 1.663867748e-10 3.556142675e-14 2.348979952e-10 2.858012379e-10 2.581153456e-10 2.362273359e-10 6.151604829e-18 8.323625475e-11 1.009981142e-09 3.444570669e-09 5.321859733e-09 6.568731805e-09 6.651429948e-09 7.938754756e-09 8.702538534e-09 4.588628268e-09 2.772671003e-09 3.660174576e-09 4.119481333e-09 2.004181011e-09 3.847907658e-10 1.976123947e-10 4.187319557e-10 1.34730318e-11 6.124115866e-10 1.33770469e-09 1.888928705e-09 2.239719812e-09 2.484747086e-09 1.577291904e-09 1.434245767e-09 3.353320605e-09 4.426021645e-09 3.23753034e-09 3.192602795e-09 2.395304285e-09 2.763488688e-09 2.228670201e-09 2.185974616e-09 3.766268683e-09 4.247319549e-09 2.384187419e-09 1.374948669e-09 5.189228454e-10 8.626195173e-10 4.867474677e-10 5.441304684e-10 1.043817603e-09 1.261234608e-09 1.460647006e-09 1.577301222e-09 1.358785053e-09 1.515371202e-09 1.425078828e-09 2.000566442e-09 1.335760832e-09 1.272110552e-09 1.838150337e-09 1.134757366e-09 2.492896512e-09 1.830792995e-09 2.066170465e-09 1.774673387e-09 1.189405265e-09 1.217640143e-09 9.567092502e-10 1.398364319e-09 1.729203981e-09 1.407060349e-09 4.364602214e-10 9.47960157e-10 2.178737394e-09 1.086836574e-09 1.220375414e-09 1.253759387e-09 9.635788655e-10 1.155139916e-09 1.090414782e-09 1.194756879e-09 8.258074706e-10 8.788281095e-10 7.093296599e-10 1.427418242e-09 6.76177676e-10 8.123874383e-10 9.194977241e-10 5.719356492e-10 1.406187125e-09 8.433821435e-10 1.472039562e-09 9.082092212e-10 1.032498768e-09 7.607158825e-10 7.850707676e-10 1.485039056e-09 7.62657114e-10 1.721387399e-09 7.974816339e-10 1.711417154e-09 9.207600613e-10 1.373168069e-09 8.913541218e-10 9.118003505e-10 6.576031403e-10 3.441053812e-10 5.450608292e-10 4.087605853e-10 3.912838189e-10 1.011335237e-09 9.577931109e-10 4.257914925e-10 2.584341352e-10 7.155674441e-10 7.641242087e-10 5.396971199e-10 4.5524853e-10 7.293987744e-10 4.562985546e-10 3.487115383e-10 6.031658545e-10 1.405461231e-10 4.224808413e-10 7.202346707e-10 9.658801271e-10 4.18912973e-10 6.73574526e-10 2.7734762e-10 7.826696841e-10 4.394035613e-10 4.907294551e-10 2.975005474e-10 5.110079325e-10 5.026221529e-10 4.421129469e-10 6.102411989e-10 4.765804724e-10 4.043246169e-10 4.66934823e-10 3.187082895e-10 8.34488498e-10 8.047627319e-10 5.050256374e-10 +1.291402221e-09 2.057631759e-10 2.426041904e-10 5.47992016e-10 2.364174857e-10 3.388054925e-10 4.295920043e-10 4.371346412e-10 4.51342033e-10 3.442106553e-10 2.836657579e-10 3.274089373e-10 6.038581698e-10 4.985838984e-10 1.514908086e-10 6.329443176e-10 5.187140071e-10 8.222387279e-11 6.280192291e-10 6.131444948e-10 6.190947789e-10 5.298428262e-10 7.656195155e-10 5.248841968e-10 2.206167166e-10 6.17431361e-10 3.600170902e-10 3.314014287e-10 1.703098452e-10 9.754923028e-10 4.176370927e-10 1.093521176e-09 1.231426141e-09 2.712251949e-10 4.893186751e-10 5.605989635e-10 5.614811801e-10 1.166294412e-10 9.638147486e-10 3.275391705e-10 1.285190079e-09 9.245354852e-10 1.074852333e-09 1.141273579e-09 9.07234002e-10 1.384279164e-09 1.222011342e-09 1.16513742e-09 1.395599193e-09 6.428382661e-10 8.646625991e-10 1.399338768e-09 1.127058139e-09 1.197564879e-09 1.146392832e-09 6.926321078e-10 1.347393275e-09 1.323368201e-09 5.549295284e-10 1.172183885e-09 9.842701772e-10 1.285912331e-09 1.223108171e-09 9.645196025e-10 1.179063763e-09 1.262091925e-09 1.493465059e-09 9.931422322e-10 1.313876711e-09 1.708618656e-09 1.736096396e-09 1.513171985e-09 8.534907868e-10 9.205784792e-10 1.161818421e-09 1.053965334e-09 1.549807755e-09 9.521261228e-10 9.898044815e-10 1.192702276e-09 1.48627202e-09 2.237515058e-09 2.848934481e-09 2.318387997e-09 1.72593151e-09 2.753081749e-09 1.390622804e-09 1.722185639e-09 1.561796797e-09 1.949697929e-09 1.202837169e-09 1.38918118e-09 2.061963084e-09 1.485106392e-09 1.154538949e-09 4.905188672e-10 8.901847839e-10 6.629109224e-10 1.1934899e-09 1.032680794e-09 2.887498341e-09 4.165852871e-09 3.99878388e-09 2.495267846e-09 2.090511669e-09 2.116842913e-09 2.980621223e-09 2.500522875e-09 4.326992014e-09 4.793832283e-09 2.851462518e-09 2.650527584e-09 1.453477348e-09 2.09521756e-09 2.493229652e-09 2.226131273e-09 2.263977845e-09 7.45423656e-10 2.557074397e-10 2.196672382e-10 5.630079504e-11 3.921921352e-10 2.337747635e-09 3.191270726e-09 4.214064317e-09 3.647007126e-09 3.456531436e-09 8.827534791e-09 8.563289378e-09 6.764699376e-09 5.842543203e-09 5.418124912e-09 3.952971263e-09 1.039427041e-09 1.19004152e-10 1.089774196e-15 4.783353204e-13 3.670324873e-10 1.720419531e-10 0 2.163045862e-10 1.48038694e-10 1.934888013e-10 0 1.695536011e-10 9.319914341e-11 1.108558979e-10 1.906558636e-10 5.011293278e-10 1.306156738e-10 1.051067361e-10 3.181608144e-10 1.893770925e-10 1.797635245e-10 1.641723598e-10 2.236787127e-10 1.671595374e-10 2.91858766e-10 1.572962499e-10 9.875045128e-11 2.138145548e-10 2.951399581e-10 1.820182106e-10 2.38374654e-10 4.013925318e-10 5.912219504e-10 1.135283555e-09 3.982173864e-09 4.150950336e-09 5.784906315e-09 6.619250825e-09 7.507591132e-09 6.770632144e-09 4.290742304e-09 4.720445163e-09 3.414493594e-09 3.22231092e-09 1.741592199e-09 2.295294422e-10 3.408550598e-10 2.290039875e-10 1.602165058e-10 8.305306463e-10 1.701012643e-09 1.084748983e-09 1.837805564e-09 2.295042515e-09 1.317412952e-09 1.772482172e-09 4.069572598e-09 4.065844425e-09 3.803719728e-09 1.907028005e-09 2.418019996e-09 3.284048592e-09 2.293653585e-09 2.955584067e-09 1.242347224e-09 4.144027486e-09 2.371888769e-09 1.030985592e-09 8.776135738e-10 9.255006369e-10 3.812477977e-10 6.057538854e-10 1.667343601e-09 1.576314488e-09 1.897543114e-09 1.590622155e-09 1.955935632e-09 2.053240441e-09 1.831163927e-09 1.78277187e-09 1.955619132e-09 2.128504109e-09 2.257819639e-09 1.935398958e-09 2.400028359e-09 3.149392596e-09 1.717345345e-09 1.671218047e-09 1.321535993e-09 6.83732418e-10 1.005190307e-09 1.164280455e-09 8.150080816e-10 1.239716994e-09 1.216690066e-09 1.269827121e-09 7.83688847e-10 1.36402168e-09 5.964956548e-10 9.00437612e-10 1.245479614e-09 6.848767143e-10 1.372147215e-09 1.127110004e-09 1.578539575e-09 1.050756263e-09 4.359164976e-10 9.048415451e-10 6.619680324e-10 1.090332256e-09 1.162066676e-09 6.007038858e-10 1.124783016e-09 1.172566857e-09 8.253332591e-10 1.726836639e-09 1.16025224e-09 9.106445854e-10 1.084693596e-09 7.064234734e-10 8.278585479e-10 7.280064192e-10 9.553764507e-10 1.184458982e-09 9.218383999e-10 7.607729394e-10 1.351816217e-09 8.969519003e-10 3.636077018e-10 9.939267302e-10 9.976403563e-10 5.408570195e-10 5.914827287e-10 3.890648025e-10 2.798597246e-10 5.58416848e-10 5.405093161e-10 2.495595953e-10 1.336825933e-09 5.684748105e-10 6.529239233e-10 4.294606409e-10 8.167016452e-10 4.095238441e-10 4.498427922e-10 6.952010524e-10 6.826749299e-10 4.784551682e-10 2.043139273e-10 5.928503009e-10 5.992101814e-10 7.637617075e-10 5.162306413e-10 5.173420035e-10 3.76953787e-10 5.947978513e-10 3.927461957e-10 4.072866218e-10 2.870466949e-10 4.990636923e-10 1.851724537e-10 2.222411382e-10 8.143312849e-10 2.174830513e-10 5.007405322e-10 3.156180354e-10 3.216806854e-10 +4.126625908e-10 5.683831253e-10 4.113044105e-10 3.151690151e-10 8.628206157e-10 6.991326734e-10 3.713306515e-10 7.559955933e-10 5.13605847e-10 3.10901969e-10 6.046864798e-10 6.238215748e-10 5.108295653e-10 2.68538018e-10 1.955261305e-10 6.897247466e-10 9.345120377e-10 4.48278159e-10 3.519602595e-10 5.288581142e-10 1.813800855e-10 6.331621301e-10 6.373194666e-10 5.735870353e-10 4.995377613e-10 1.316461633e-09 7.052576897e-10 7.874446107e-10 1.365410437e-09 2.715682584e-10 5.607139275e-10 8.436459454e-10 4.732219572e-10 5.51260034e-10 3.230529865e-10 3.918518423e-10 3.146283156e-10 9.758004087e-10 3.797456499e-10 1.020332792e-09 7.161762662e-10 5.980908876e-10 1.02370109e-09 9.250235385e-10 1.004281185e-09 7.547597064e-10 1.051937195e-09 9.786963484e-10 1.044848447e-09 7.161009771e-10 1.186413282e-09 1.128495043e-09 9.149614109e-10 1.546331417e-09 1.21809966e-09 1.081282662e-09 6.283408639e-10 5.370767924e-10 1.038686042e-09 1.310216752e-09 6.320053513e-10 1.042699594e-09 1.363004169e-09 1.575880821e-09 6.663414287e-10 1.099336581e-09 1.310164379e-09 8.802785245e-10 9.52876509e-10 7.462798417e-10 1.04103489e-09 1.524713009e-09 1.446266877e-09 1.526498124e-09 1.06086063e-09 1.264824481e-09 7.788775703e-10 1.202007453e-09 1.883663664e-09 1.52562259e-09 2.317999103e-09 1.74794933e-09 1.800476689e-09 1.422592536e-09 2.30136598e-09 2.094004444e-09 1.23074222e-09 1.650048941e-09 1.396296207e-09 1.831179964e-09 9.599877293e-10 2.022625538e-09 1.305678115e-09 2.252284172e-09 1.16490987e-09 8.613257493e-10 2.957598723e-10 9.613763192e-10 1.138674005e-09 1.370507924e-09 2.475220711e-09 2.445027235e-09 2.453387296e-09 2.998669223e-09 3.08974016e-09 2.858720893e-09 2.946866942e-09 2.137868383e-09 3.183181858e-09 3.940287133e-09 3.429029478e-09 2.160632739e-09 1.725962976e-09 2.450957707e-09 1.375962949e-09 2.055082899e-09 1.603447635e-09 1.658630717e-09 1.289156366e-10 1.051576318e-10 6.78895395e-11 3.561591638e-10 9.704268389e-10 1.77375534e-09 2.390376781e-09 3.348104721e-09 2.792757396e-09 6.990960669e-09 8.811951267e-09 6.836746662e-09 5.915184297e-09 5.060168297e-09 5.181482414e-09 1.690915895e-09 4.543040472e-10 1.950766052e-10 2.246191826e-10 2.29487768e-10 2.238162581e-10 0 2.046121858e-10 5.286671056e-11 4.835959558e-10 7.434057573e-11 1.4282352e-10 3.318050075e-10 2.84337114e-10 8.095757508e-11 3.204936248e-10 1.650669657e-10 2.872876533e-10 2.589737199e-10 2.234936401e-14 8.307417904e-11 2.191061257e-10 3.251328892e-10 1.649101732e-10 4.152349756e-12 2.667547991e-10 8.986848637e-11 2.667559408e-10 9.13846866e-11 7.237531559e-11 7.652228331e-11 2.58258224e-10 1.840507977e-10 1.455281814e-09 5.224687716e-09 6.084886976e-09 3.851769993e-09 6.504997601e-09 9.672849743e-09 8.274562817e-09 2.064356043e-09 3.301875e-09 3.040615091e-09 3.186441968e-09 9.063124987e-10 1.743032819e-11 3.670635511e-10 2.96457838e-10 3.120163853e-10 1.293846692e-09 1.37663387e-09 1.126768402e-09 2.527262079e-09 2.129705507e-09 2.241712486e-09 1.845575817e-09 3.168111245e-09 3.931686001e-09 3.577573558e-09 3.721754575e-09 2.514684986e-09 3.653200753e-09 2.421947441e-09 2.558328986e-09 2.639948768e-09 3.349890909e-09 1.308274954e-09 1.154040533e-09 8.601338186e-10 9.462716572e-10 2.984122748e-10 6.655795417e-10 1.333247108e-09 1.294267145e-09 1.820110414e-09 1.41259655e-09 2.075513994e-09 1.261170352e-09 2.240988436e-09 1.38625406e-09 1.167339598e-09 2.171113783e-09 1.779032718e-09 2.767598312e-09 1.717296412e-09 1.577592829e-09 1.952388067e-09 1.158776536e-09 1.256059908e-09 7.907551975e-10 9.068912665e-10 8.864633634e-10 9.569692934e-10 1.206624759e-09 9.983438227e-10 1.841344935e-09 1.548572673e-09 9.512700979e-10 7.368563407e-10 1.046458359e-09 1.177168866e-09 9.329543853e-10 1.495489148e-09 1.110390041e-09 7.275443412e-10 1.05185821e-09 8.352911508e-10 1.339540441e-09 1.637480378e-09 6.305992485e-10 1.111888465e-09 1.206766879e-09 1.365010309e-09 1.19868231e-09 1.012045985e-09 1.323419657e-09 1.335771188e-09 1.220828237e-09 7.485664154e-10 1.884321981e-09 1.265530399e-09 7.17431666e-10 1.272187987e-09 6.469104916e-10 1.238496325e-09 9.509072375e-10 5.47053146e-10 5.436638228e-10 6.089168945e-10 6.634431924e-10 5.169572216e-10 4.565616123e-10 5.332152136e-10 6.541752372e-10 3.418790911e-10 3.739782859e-10 7.630599792e-10 3.647512736e-10 5.241453006e-10 1.012705221e-09 4.173067568e-10 3.652274944e-10 3.309697555e-10 7.451134772e-10 4.288204254e-10 2.995487106e-10 6.051524019e-10 5.927412432e-10 4.812481156e-10 6.713118432e-10 5.26326606e-10 1.844911539e-10 6.597550627e-10 3.014693135e-10 5.084302606e-10 3.358671558e-10 7.31699497e-10 6.620262412e-10 1.186840283e-09 5.210606531e-10 3.77198147e-10 5.563808189e-10 2.451136492e-10 1.367980732e-10 4.570841413e-10 3.945976368e-10 4.392686114e-10 +3.13962731e-10 8.815162218e-10 4.522238183e-10 2.74499927e-10 5.014296631e-10 4.510886971e-10 5.675751262e-10 2.410334217e-10 3.666542543e-10 2.503867694e-10 3.29791466e-10 1.01954098e-09 3.066210974e-10 9.287800738e-10 4.627726783e-10 7.635880652e-10 8.20642688e-10 5.506384217e-10 5.240255215e-10 4.724081035e-10 2.26551928e-10 2.273457759e-10 5.373377272e-10 6.649689712e-10 4.567746751e-10 6.6109834e-10 4.794356899e-10 1.905819664e-10 5.689029917e-10 7.342670727e-10 8.012986769e-10 2.311398733e-10 8.321269971e-10 8.236320114e-10 5.511119096e-10 3.793651382e-10 7.460330397e-10 6.240364802e-10 5.066544807e-10 4.24671839e-10 6.723508788e-10 9.428761081e-10 7.28485223e-10 1.370062671e-09 5.164330936e-10 1.01795434e-09 1.615754258e-09 1.182717596e-09 1.119282278e-09 1.070013822e-09 7.867393083e-10 1.557126633e-09 1.057288275e-09 8.942965196e-10 9.856468901e-10 7.363889164e-10 9.193332615e-10 1.5109406e-09 1.083873175e-09 1.148883996e-09 6.767196949e-10 6.919340596e-10 1.626829877e-09 1.184079554e-09 1.460500391e-09 1.400958302e-09 7.79775667e-10 7.135914332e-10 6.485121078e-10 9.939933629e-10 5.370563932e-10 1.856111333e-09 1.132401999e-09 1.497327688e-09 9.619559888e-10 1.283309235e-09 6.305410151e-10 1.246400292e-09 1.096485195e-09 9.542514445e-10 1.937482087e-09 2.182934668e-09 1.747052771e-09 2.168332502e-09 1.914768273e-09 1.580738348e-09 1.212875854e-09 1.35370853e-09 1.871349168e-09 2.162718909e-09 2.017267866e-09 1.368195801e-09 2.00337218e-09 1.53011464e-09 9.396061872e-10 5.470421004e-10 3.206571342e-10 1.03623008e-09 8.34191454e-10 9.59369753e-10 1.955523178e-09 3.612554507e-09 2.987398898e-09 3.484123697e-09 2.508491727e-09 3.531300239e-09 2.484041813e-09 1.504510477e-09 2.21720918e-09 3.586665277e-09 2.969960348e-09 1.887351485e-09 1.96390413e-09 1.888956068e-09 1.181849578e-09 1.683494938e-09 1.849524319e-09 1.161459686e-09 3.262630123e-10 2.033602577e-10 1.746414421e-10 4.456504872e-10 5.57648406e-10 2.474223657e-09 3.9828474e-09 3.390249697e-09 2.70414489e-09 4.532999257e-09 8.740032797e-09 6.471616486e-09 5.804515942e-09 5.228343311e-09 5.844644715e-09 2.686296107e-09 7.121496127e-10 2.018850405e-10 1.409146854e-10 7.827698336e-11 2.891269358e-10 1.985768964e-10 2.461051684e-10 8.319371935e-11 1.597096949e-10 2.347933814e-10 8.110523801e-11 1.802245694e-10 9.309780117e-11 2.251381463e-10 2.518299702e-10 3.238020565e-10 1.319724191e-10 3.841872856e-10 1.414975838e-13 1.450339273e-10 1.237947664e-10 4.444163817e-23 2.080328313e-10 2.24703295e-10 1.239289898e-10 3.38710994e-10 9.120857711e-11 4.231988089e-10 4.485003016e-10 2.036123649e-10 1.555628757e-10 5.725352811e-10 3.559001487e-09 3.596593856e-09 5.61982077e-09 8.66569106e-09 7.568094228e-09 1.023650805e-08 4.788865009e-09 3.56783321e-09 2.713080642e-09 3.348359078e-09 3.195343697e-09 5.637723061e-10 9.935840959e-11 1.850103789e-10 5.186855644e-10 4.900902207e-10 1.51944072e-09 1.852849269e-09 2.342451043e-09 2.258193214e-09 1.736192192e-09 1.934414303e-09 2.68712693e-09 3.331739679e-09 4.556133775e-09 3.248643274e-09 2.597624103e-09 3.427735282e-09 2.127506373e-09 3.547823255e-09 3.439723811e-09 3.203536455e-09 3.65896995e-09 1.575955889e-09 1.786829121e-09 9.632989168e-10 5.975198185e-10 6.760710647e-10 8.675587452e-10 9.775432019e-10 1.637492378e-09 1.673711557e-09 1.375404299e-09 2.300414076e-09 1.263762982e-09 1.873587579e-09 1.552452105e-09 1.487609108e-09 2.364241031e-09 1.608592586e-09 1.672249489e-09 2.184383921e-09 2.271385972e-09 1.855666761e-09 1.533970743e-09 1.448100603e-09 1.097263086e-09 9.956487802e-10 7.599642888e-10 9.258840495e-10 9.703818493e-10 1.169424402e-09 1.703514881e-09 1.282819169e-09 1.844811127e-09 6.921214498e-10 1.290756884e-09 1.108546259e-09 1.446221739e-09 6.200320166e-10 1.297582481e-09 1.07341641e-09 1.027216188e-09 1.333498916e-09 6.793374091e-10 9.619920329e-10 8.387993048e-10 7.192449898e-10 1.205980139e-09 1.278305364e-09 9.154942073e-10 1.902816057e-09 1.243355612e-09 1.610895929e-09 7.08793805e-10 1.041117783e-09 5.839781804e-10 1.307896956e-09 7.072158568e-10 1.775043014e-09 1.403327121e-09 1.277108579e-09 9.428826229e-10 8.501401661e-10 8.16611447e-10 5.811623369e-10 5.595127439e-10 3.371334295e-10 3.648099611e-10 6.932739449e-10 8.768671191e-10 1.056212354e-09 4.086171695e-10 3.794250824e-10 6.105956642e-10 8.344444965e-10 2.045179107e-10 2.856509296e-10 8.799990656e-10 5.939846526e-10 7.714084012e-10 7.262077238e-10 9.568259329e-11 5.963023509e-10 3.267894046e-10 4.534026153e-10 5.138652858e-10 7.869415532e-10 5.548669847e-10 5.789491878e-10 4.667091084e-10 2.208555888e-10 6.9405043e-10 4.720799596e-10 3.699620461e-10 2.439003204e-10 2.765196464e-10 1.094565244e-10 4.45854531e-10 1.342228191e-10 7.554011675e-10 7.693595498e-10 2.441543139e-10 1.764793262e-10 +4.070028681e-10 3.524972154e-10 3.537134479e-10 7.575238894e-10 3.955617037e-10 3.807711831e-10 7.241605792e-10 7.746602597e-10 4.61434878e-10 1.99608303e-10 3.527156531e-10 1.269755701e-10 6.86997455e-10 7.965158446e-10 4.047514989e-10 2.900731986e-10 2.91676928e-10 3.915214296e-10 6.903788791e-10 3.511926514e-10 3.483799282e-10 5.081446436e-10 4.149681713e-10 3.256434175e-10 2.33611924e-10 4.408569818e-10 5.808025254e-10 8.694788569e-10 4.728956325e-10 4.33613851e-10 1.115369632e-09 2.600573467e-10 6.84363692e-10 3.571304918e-10 5.235463169e-10 2.626660225e-10 1.094398767e-09 2.902329295e-10 8.055767858e-10 7.693539727e-10 9.117879114e-10 1.125188631e-09 9.616473013e-10 7.081935137e-10 7.294307486e-10 6.186454599e-10 1.339554951e-09 1.767162566e-09 1.520052639e-09 1.620379669e-09 9.195738562e-10 8.927392677e-10 1.434179594e-09 1.149540304e-09 1.453544996e-09 1.212472979e-09 1.296432223e-09 1.36908442e-09 7.885898169e-10 5.187344641e-10 1.134543174e-09 7.271516433e-10 1.386735979e-09 9.607379296e-10 1.048047363e-09 1.255053381e-09 8.500202343e-10 1.128595974e-09 1.231545329e-09 1.379420246e-09 1.179739661e-09 3.691773988e-10 9.090679858e-10 1.162893227e-09 1.67496319e-09 5.693531276e-10 8.601267135e-10 1.66130297e-09 7.798515551e-10 1.410303181e-09 1.972407991e-09 2.584467514e-09 3.011684167e-09 1.207011178e-09 1.056127969e-09 1.79670089e-09 2.091045193e-09 2.048137511e-09 1.948855355e-09 1.345547479e-09 1.760036794e-09 8.759075042e-10 1.182845058e-09 2.050864083e-09 1.074508384e-09 1.033661171e-09 4.174240028e-10 5.319261818e-10 6.132851114e-10 1.007497077e-09 1.336642644e-09 2.676524614e-09 2.303412852e-09 1.683794995e-09 2.607950192e-09 2.526208814e-09 1.670793183e-09 2.493060856e-09 4.637461625e-09 2.762018197e-09 3.456689229e-09 4.145305847e-09 1.48217207e-09 2.071846349e-09 2.853373643e-09 1.877599985e-09 2.055511477e-09 1.596640863e-09 6.058302289e-10 2.744688509e-10 2.178802277e-11 9.089025892e-12 3.952973628e-10 2.593023807e-09 2.340557163e-09 3.267544894e-09 2.940351056e-09 4.445514721e-09 7.85111252e-09 8.840120805e-09 7.817322399e-09 6.084436362e-09 5.346902649e-09 4.01607834e-09 2.404137472e-09 7.657485903e-10 8.416395966e-11 6.052925924e-11 1.268125291e-10 3.455927232e-11 9.29741784e-11 2.288642178e-10 5.538251933e-11 2.351140317e-10 1.814372596e-10 7.821392852e-11 2.414095339e-10 2.498642674e-10 7.53625698e-11 1.923369111e-10 1.193820945e-10 2.218473175e-10 8.587628746e-11 1.255302097e-10 1.435375141e-10 8.527137401e-11 2.72057082e-10 1.726710706e-10 1.558677102e-10 3.659553936e-13 4.229146751e-10 3.574374735e-10 2.129316931e-10 1.228005489e-12 2.695593383e-10 2.011063115e-09 3.938413302e-09 5.178351809e-09 6.161906846e-09 5.531630351e-09 8.483107839e-09 7.452719458e-09 5.030364464e-09 3.347861008e-09 3.375579283e-09 3.520426724e-09 2.036413373e-09 1.859055672e-10 2.06416455e-10 1.873400213e-22 1.163195564e-26 5.862373826e-10 1.500436188e-09 1.615735998e-09 1.642331791e-09 1.716023181e-09 1.863325472e-09 1.772501198e-09 2.3516375e-09 4.486379273e-09 3.759786244e-09 2.824632405e-09 3.869327714e-09 2.486672962e-09 2.309244453e-09 1.848662673e-09 3.26900905e-09 2.463325521e-09 1.89463352e-09 2.458514158e-09 7.221685011e-10 5.57531102e-10 4.697803857e-10 3.823923041e-10 7.808050056e-10 9.2552185e-10 1.794677828e-09 1.655018775e-09 1.669839161e-09 1.537242937e-09 2.019744789e-09 1.157917367e-09 1.651599958e-09 1.684944718e-09 1.855737892e-09 1.054657821e-09 1.287646207e-09 2.037700973e-09 2.386883001e-09 1.322795058e-09 1.464324889e-09 1.002981621e-09 6.43491698e-10 1.13414005e-09 2.725274972e-10 4.729370555e-10 1.29002483e-09 1.721707169e-09 1.301180402e-09 1.313821858e-09 1.28391854e-09 9.604066548e-10 8.458526045e-10 1.571634909e-09 1.216139444e-09 1.628912456e-09 1.959613427e-09 1.511625461e-09 1.083352885e-09 9.285514173e-10 9.527598749e-10 8.747016197e-10 5.738554218e-10 1.033124432e-09 7.096453123e-10 1.404035169e-09 4.699033465e-10 1.184481451e-09 1.012171381e-09 9.1901535e-10 2.118846933e-09 1.313353826e-09 6.931932247e-10 1.205854042e-09 1.195190578e-09 1.622596488e-09 2.104954371e-09 4.176733456e-10 9.478755815e-10 6.495063726e-10 4.984593295e-10 9.684321905e-10 6.064209208e-10 2.872443868e-10 7.130205484e-10 3.857811792e-10 8.593828277e-10 3.753870818e-10 3.446653147e-10 3.535699904e-10 8.336449829e-10 5.63745043e-10 5.503917818e-10 6.60490446e-10 3.636852789e-10 6.282053947e-10 1.957156292e-10 2.041682168e-10 1.256801948e-10 2.115436852e-10 9.171868331e-10 3.285760058e-10 5.586543177e-10 4.820119517e-10 2.164477079e-10 1.207814385e-10 4.486781813e-10 7.164155264e-10 2.981247942e-10 5.76652058e-10 2.508925539e-10 8.872185146e-11 1.027061297e-09 1.413070855e-10 3.717815906e-10 6.880752652e-10 1.074375979e-09 4.1198605e-10 7.688895242e-10 8.0662192e-10 +5.603919759e-10 1.136430321e-10 2.951399208e-10 2.383895347e-10 7.680850575e-10 3.16752959e-10 8.573686933e-10 3.454240816e-10 4.445237741e-10 9.028105005e-10 5.682370968e-10 3.563199794e-10 5.63093451e-10 6.735354922e-10 1.513674153e-10 8.293916073e-10 6.178585155e-10 4.154105853e-10 6.248047178e-10 3.077836537e-10 1.605134746e-10 7.165108828e-10 4.501495115e-10 3.654306477e-10 7.152929186e-10 4.62289655e-10 3.846858879e-10 4.38160545e-10 2.515482424e-10 5.569744968e-10 9.195459428e-10 3.509582293e-10 6.327481385e-10 5.372990696e-10 2.063294816e-10 7.832976319e-10 4.297329774e-10 7.009872551e-10 1.006443173e-09 6.529510501e-10 6.81756143e-10 1.97362379e-09 7.823405352e-10 1.246148057e-09 1.372800007e-09 6.003453457e-10 1.602318591e-09 4.468002815e-10 9.761646051e-10 1.353448896e-09 1.446290267e-09 1.131969501e-09 5.477556693e-10 9.758929979e-10 7.131562223e-10 1.30899888e-09 1.907604543e-09 6.884377349e-10 8.531083055e-10 5.315781831e-10 5.278687251e-10 1.107511058e-09 1.187795641e-09 1.371151294e-09 1.259662769e-09 1.434411661e-09 1.770020185e-09 1.076512201e-09 6.227070946e-10 1.660893947e-09 2.772791317e-09 9.569684992e-10 7.272111903e-10 1.53733612e-09 1.738900334e-09 8.675697683e-10 9.160185044e-10 7.707829859e-10 1.865698199e-09 1.553045795e-09 1.356756024e-09 2.126933224e-09 2.287603523e-09 1.487424126e-09 1.53195585e-09 2.135860046e-09 2.368470228e-09 1.773508946e-09 1.778648599e-09 1.439731646e-09 1.800540262e-09 1.302926061e-09 1.399475591e-09 1.258587446e-09 1.327153338e-09 1.077932397e-09 3.765328605e-10 3.917151273e-10 1.094700598e-09 7.684262633e-10 1.16072575e-09 1.951917031e-09 2.933527612e-09 1.955938394e-09 2.226316884e-09 3.289593657e-09 3.085782135e-09 1.788035603e-09 1.935598763e-09 4.361059643e-09 4.225723131e-09 1.18370144e-09 1.957998462e-09 2.0106944e-09 1.87010053e-09 2.042182573e-09 1.728810079e-09 1.163090731e-09 3.148358333e-10 0 2.405499936e-10 1.594016052e-10 1.810707449e-10 1.824824417e-09 1.161189651e-09 3.553394106e-09 3.110041898e-09 3.083346833e-09 5.773401331e-09 5.725315232e-09 8.67820985e-09 6.462137066e-09 6.541054072e-09 4.524885906e-09 2.139683633e-09 1.077356321e-09 2.932981454e-10 8.706451083e-11 9.229877651e-11 2.228403151e-10 9.592213043e-11 1.889691053e-10 8.855987825e-11 1.624446344e-10 1.460127785e-10 0 1.986192073e-10 3.715724151e-10 9.951770177e-11 1.292307238e-10 6.87770374e-11 2.057431804e-10 2.197842952e-10 8.278265207e-11 4.313527203e-10 1.778059096e-10 1.308675461e-10 2.737046052e-10 8.135807732e-11 4.782782065e-11 5.794732205e-31 2.700667222e-10 1.53295995e-10 1.010558879e-10 9.62603423e-10 2.675430604e-09 5.285463284e-09 3.18023913e-09 6.954046569e-09 6.666854843e-09 7.179040699e-09 7.194538876e-09 3.519545608e-09 2.982129301e-09 3.792150658e-09 3.69458701e-09 2.048596276e-09 4.058979162e-10 1.531932812e-10 2.243811155e-10 1.479206273e-10 3.746293993e-10 1.863788748e-09 2.211522829e-09 9.342357307e-10 1.172684897e-09 1.913467801e-09 1.551254399e-09 2.718011894e-09 4.79401432e-09 3.341380434e-09 1.457891793e-09 2.409053312e-09 3.015365018e-09 3.759580364e-09 2.92096643e-09 2.462422083e-09 2.893391475e-09 3.293519018e-09 1.73518515e-09 1.30645044e-09 1.054230796e-09 5.24270206e-10 5.360417424e-10 1.083588692e-09 1.308725896e-09 1.776264768e-09 2.518471078e-09 1.300538579e-09 1.569134704e-09 1.799137998e-09 1.572241331e-09 1.566631849e-09 1.704901622e-09 1.489825168e-09 2.453444345e-09 1.871246489e-09 1.654665181e-09 2.58255636e-09 1.199998312e-09 7.951811737e-10 5.31024197e-10 4.09309662e-10 6.902406649e-10 6.976834636e-10 9.451561455e-10 1.359901263e-09 1.83630041e-09 7.280249754e-10 1.151687959e-09 9.563961061e-10 1.461243304e-09 8.687628161e-10 9.174202736e-10 9.051412373e-10 1.89404135e-09 1.190538072e-09 1.234809337e-09 7.080406296e-10 1.013141361e-09 4.62632892e-10 6.227168694e-10 1.103572986e-09 1.206719105e-09 7.068237439e-10 7.514320885e-10 7.848049112e-10 1.168553634e-09 9.118107149e-10 1.501153231e-09 7.224649994e-10 1.215396837e-09 8.196450391e-10 7.837609214e-10 7.685588096e-10 8.155131246e-10 1.160077624e-09 1.383051742e-09 7.512502903e-10 7.662201769e-10 5.455554337e-10 7.105572778e-10 8.232775587e-10 4.228261607e-10 6.066735027e-10 9.006085362e-10 9.412845894e-10 5.633591948e-10 2.751867098e-10 8.96654349e-10 6.844146277e-10 3.790386886e-10 8.5079917e-10 1.038791082e-09 1.658967001e-10 9.511913884e-10 6.031604336e-10 7.467648071e-10 6.635149942e-10 4.137764494e-10 2.7806857e-10 2.022903669e-10 3.22017382e-10 2.374908306e-10 3.249713754e-10 2.177663563e-10 1.191816905e-10 4.633567597e-10 2.339785227e-10 2.936632767e-10 3.864977056e-10 1.615905484e-10 7.955657522e-10 7.39331757e-10 5.850514118e-10 4.284770929e-10 2.961344604e-10 2.830531254e-10 2.621860381e-10 5.09344354e-10 +5.747308273e-11 1.340619384e-10 3.251031948e-10 5.943525544e-10 2.008413397e-10 3.439532193e-10 7.569881437e-10 6.307882702e-10 2.392086869e-10 9.040935798e-10 2.529229525e-10 5.887624693e-10 1.091487307e-09 3.799867901e-10 4.167925344e-10 2.375705882e-10 2.938968052e-10 2.289969727e-10 2.795283164e-10 4.747738294e-10 3.058124818e-10 4.85848963e-10 3.477165124e-10 1.259491722e-09 6.61025033e-10 2.557518262e-10 3.797136713e-10 3.127703105e-10 4.10563401e-10 8.951993525e-10 4.000508436e-10 2.845140267e-10 3.695768464e-10 6.811496892e-10 2.580560306e-10 2.369979351e-10 4.062138174e-10 3.766355861e-10 3.711265796e-10 6.249538527e-10 5.569180661e-10 1.044508106e-09 1.194727397e-09 7.779467537e-10 1.45615659e-09 1.855472472e-09 8.514911257e-10 7.746572241e-10 1.084307386e-09 1.309588053e-09 6.196899689e-10 9.541291597e-10 6.20747242e-10 5.736933181e-10 1.293927824e-09 8.795306044e-10 9.109702758e-10 1.070640783e-09 5.482239622e-10 4.987150382e-10 1.22739613e-09 7.82194178e-10 1.352279835e-09 1.018106556e-09 5.953635022e-10 9.561631186e-10 1.185302343e-09 9.96732897e-10 8.641163401e-10 1.584585486e-09 1.239358333e-09 7.80292843e-10 1.069268242e-09 1.256880165e-09 1.059048836e-09 1.423953137e-09 9.081888375e-10 7.024696597e-10 1.769095405e-09 2.082412705e-09 1.947528176e-09 1.473191598e-09 1.254990029e-09 2.241160254e-09 1.290408861e-09 2.468839407e-09 1.407411559e-09 1.928867343e-09 1.230783491e-09 1.318826865e-09 1.639585283e-09 1.889343191e-09 1.72419272e-09 1.850038051e-09 6.064024728e-10 6.214539639e-10 2.833338244e-10 4.215815746e-10 1.032949993e-09 1.195401502e-09 2.677872269e-09 3.360114317e-09 3.145026213e-09 2.760655315e-09 2.307674791e-09 2.376070027e-09 1.985788929e-09 2.723315591e-09 1.787095668e-09 3.548027315e-09 3.380673767e-09 2.549713664e-09 1.943738732e-09 1.293707547e-09 2.238426684e-09 1.554730943e-09 1.866513684e-09 1.214526639e-09 5.639067121e-10 6.001392958e-28 1.021318697e-10 1.340528879e-11 1.120601696e-10 1.928976873e-09 2.755651177e-09 3.741516253e-09 1.815401631e-09 2.924148136e-09 5.204649018e-09 7.882178597e-09 8.349133253e-09 6.066149244e-09 6.059798305e-09 4.234005613e-09 3.779457286e-09 2.232047989e-09 6.576241388e-10 1.681214019e-10 2.907040622e-10 2.465843841e-10 2.481162334e-10 2.73058462e-10 2.909160093e-10 1.236491957e-10 3.081253283e-10 3.257742207e-10 1.881916576e-10 8.82490244e-11 6.700049455e-11 1.832183237e-10 1.109714152e-10 2.18808167e-10 9.456156552e-11 4.736870125e-10 5.752777027e-11 4.90579093e-10 3.124281757e-10 2.908516023e-10 1.706094188e-10 3.449274881e-10 1.677773347e-10 1.064537552e-10 1.649530935e-10 6.883166249e-10 1.463463402e-09 3.971926114e-09 4.148551108e-09 6.109581092e-09 5.365246448e-09 5.91302064e-09 8.617119036e-09 6.963278216e-09 2.876697157e-09 3.689235332e-09 2.956292017e-09 3.470547353e-09 1.427355387e-09 3.026045475e-10 8.013562913e-11 1.16424655e-10 3.807468289e-10 1.12355267e-09 1.575170224e-09 1.512215056e-09 7.877011722e-10 1.346448471e-09 1.889248501e-09 2.897149124e-09 1.75075363e-09 3.360292528e-09 3.05175791e-09 2.021073019e-09 1.929417313e-09 1.116804551e-09 2.253544674e-09 1.995247032e-09 2.858173899e-09 1.974102027e-09 3.315863288e-09 1.419499006e-09 8.698342972e-10 1.456275698e-09 9.046234021e-10 1.790392153e-10 1.468666576e-09 8.911122834e-10 1.518927118e-09 2.038852185e-09 1.460511692e-09 1.590672872e-09 1.341462428e-09 1.998439833e-09 2.055074876e-09 1.328139869e-09 2.145719574e-09 2.310804855e-09 1.079924418e-09 2.032686928e-09 3.039667417e-09 1.481463224e-09 1.716382526e-09 1.325880538e-09 9.184561873e-10 1.417812401e-09 4.713500927e-10 9.682829336e-10 1.188748408e-09 1.186284287e-09 1.402641848e-09 1.383796681e-09 1.299522298e-09 1.095220253e-09 6.734451674e-10 1.13518594e-09 9.881921436e-10 1.593824812e-09 1.298370245e-09 9.097123688e-10 9.284912406e-10 1.134668791e-09 1.134985339e-09 6.386750846e-10 9.021461176e-10 1.104078581e-09 1.602084236e-09 1.086017303e-09 5.673805306e-10 9.706529361e-10 1.039901016e-09 1.249655054e-09 1.081636521e-09 1.629162787e-09 1.269567808e-09 9.259065792e-10 7.946987339e-10 1.557094893e-09 9.82762074e-10 1.35859759e-09 1.144201962e-09 7.825672129e-10 7.792590867e-10 6.264246816e-10 7.747776328e-10 4.437584954e-10 4.352654427e-10 2.489561756e-10 7.238244662e-10 1.077253448e-09 4.413567206e-10 4.24561311e-10 2.996838761e-10 3.357155369e-10 4.634755385e-10 8.805750127e-10 5.263375012e-10 7.697685599e-10 4.162184937e-10 2.563083677e-10 4.385827422e-10 2.816856709e-10 3.106865277e-10 5.894711735e-10 4.850653848e-10 6.665457868e-10 8.84525907e-10 2.99394508e-10 2.104381145e-10 4.910629745e-10 6.379666633e-10 5.97085251e-10 3.266291036e-10 3.853417497e-10 2.676799467e-10 4.9352163e-10 8.684111262e-11 3.088551815e-10 7.529097276e-10 1.783694814e-10 4.523160271e-10 4.136430975e-10 +7.385755421e-10 3.548532797e-10 7.073353e-10 4.869481224e-10 9.128473448e-11 4.008692778e-10 3.032996032e-10 3.142356588e-10 2.514079015e-10 3.795315911e-10 3.838472279e-10 5.623099947e-10 4.762879743e-10 3.757597603e-10 4.371984683e-10 3.629799994e-10 5.951708958e-10 2.009722852e-10 2.397012507e-10 5.711061828e-10 3.142004663e-10 7.437102437e-10 4.10738136e-10 6.433217866e-10 5.497440255e-10 6.457609891e-10 8.579771026e-10 3.608041149e-10 6.61365617e-10 3.893125141e-10 4.753633777e-10 6.33645385e-10 5.749126533e-10 7.627863548e-10 5.743424559e-10 3.92721554e-10 2.215358031e-10 3.409311551e-10 6.841753119e-10 7.050936464e-10 3.096897477e-10 1.052047679e-09 1.108991147e-09 1.941983896e-09 8.968537561e-10 8.533233532e-10 7.087075353e-10 9.9941868e-10 1.419985212e-09 8.425336929e-10 1.043996016e-09 1.077671205e-09 1.908746762e-09 6.912860467e-10 1.24972673e-09 1.17357239e-09 1.144600749e-09 5.401438211e-10 9.137253292e-10 1.56282835e-09 5.329887637e-10 1.034907369e-09 8.939316914e-10 1.444823958e-09 1.441250922e-09 1.514950553e-09 1.231847554e-09 8.993770141e-10 9.922236543e-10 1.721381648e-09 1.407694019e-09 9.805425339e-10 1.699941258e-09 7.658956461e-10 7.115816332e-10 1.205916754e-09 6.214573446e-10 8.615675841e-10 1.049746956e-09 8.43310541e-10 2.048146007e-09 1.660434004e-09 1.45103956e-09 1.630886259e-09 1.595090457e-09 1.773699945e-09 1.341095081e-09 1.738216634e-09 2.015960423e-09 6.880442552e-10 1.737760707e-09 1.902796375e-09 8.856156802e-10 1.552137576e-09 9.889043916e-10 1.242483062e-09 1.020600007e-09 2.460771872e-10 1.100007383e-09 1.289104247e-09 2.645543438e-09 1.912655894e-09 3.02300142e-09 3.564411696e-09 2.830737999e-09 2.108085577e-09 2.783565605e-09 1.785934528e-09 2.139237158e-09 2.517308791e-09 4.397290048e-09 2.744850859e-09 1.656563835e-09 1.708270179e-09 1.79380918e-09 1.675877217e-09 2.724074008e-09 1.650347591e-09 1.073499004e-09 4.055884528e-10 1.953851684e-10 4.573173136e-11 2.909572392e-10 4.827563896e-10 2.177619149e-09 2.34101941e-09 3.453968517e-09 3.531434369e-09 3.556998026e-09 6.142699511e-09 8.732415614e-09 7.919682465e-09 6.574990363e-09 5.437836934e-09 5.027398568e-09 2.064599486e-09 9.158202643e-10 1.031355715e-10 7.542781261e-29 2.788427339e-10 4.732443089e-18 2.563230442e-10 1.420478858e-10 1.671838656e-10 1.836952235e-10 7.818057937e-11 3.050669138e-10 3.537597953e-10 3.411863583e-10 2.719638969e-10 1.522652856e-10 4.575900461e-10 1.673642097e-10 1.289440873e-11 1.627369639e-10 7.982460577e-11 1.007952372e-13 2.776083171e-10 0 2.44832078e-11 3.537333001e-10 1.388022155e-10 1.1843969e-10 8.428982161e-10 1.443866052e-09 5.481771451e-09 7.046351639e-09 4.863093139e-09 6.096151401e-09 7.013201818e-09 7.813318023e-09 3.733787567e-09 3.54634376e-09 2.9637424e-09 2.747416931e-09 2.766067008e-09 5.656176647e-10 1.743588685e-10 4.593143761e-10 1.595426821e-10 1.395888924e-10 7.318178275e-10 1.514580057e-09 1.436038148e-09 2.453874282e-09 1.93567413e-09 2.377173281e-09 2.222379039e-09 3.278077589e-09 1.98696239e-09 3.016870603e-09 2.007788155e-09 3.206987602e-09 3.736581348e-09 3.257629029e-09 2.666442916e-09 2.710578054e-09 4.208618859e-09 2.678676083e-09 1.409134701e-09 1.024163209e-09 7.395337209e-10 5.069991337e-10 3.787016177e-10 7.46266531e-10 9.624712326e-10 1.569682368e-09 1.072884525e-09 2.249001288e-09 1.224490471e-09 1.22325467e-09 1.663063184e-09 1.454537294e-09 2.132219642e-09 1.632424529e-09 2.154454086e-09 1.957629332e-09 2.940851773e-09 1.518059822e-09 2.797140543e-09 1.95026626e-09 1.07900671e-09 1.017539726e-09 1.383045333e-09 7.198127916e-10 6.848223647e-10 1.345850321e-09 8.356469944e-10 1.106326146e-09 1.513701217e-09 1.066247694e-09 1.618943511e-09 6.273668496e-10 1.268851884e-09 7.03748534e-10 2.101463816e-09 8.366117058e-10 9.099914514e-10 9.937957662e-10 9.06906759e-10 8.139845706e-10 1.237169885e-09 5.515792533e-10 1.195566687e-09 1.364185917e-09 1.244519309e-09 7.416415381e-10 8.797665807e-10 2.319118137e-09 9.313277122e-10 1.544551044e-09 1.776799272e-09 1.246039073e-09 9.92222614e-10 9.45397547e-10 8.239941054e-10 8.788169737e-10 1.032730929e-09 9.480786552e-10 8.446304997e-10 8.377033633e-10 6.887819287e-10 3.90128565e-10 6.70104884e-10 3.576989932e-10 4.815780815e-10 5.739664572e-10 5.4956025e-10 5.752970025e-10 6.897791866e-10 2.207399708e-10 5.081579433e-10 7.390956433e-10 3.046517431e-10 3.585957472e-10 2.861197175e-10 3.284079804e-10 8.146266274e-10 4.90441612e-10 7.399278995e-10 6.172491738e-10 4.82615941e-10 7.275826868e-10 6.672770104e-10 3.958212533e-10 4.926309011e-10 4.935372167e-10 5.189210948e-10 5.783489549e-10 2.347094393e-10 3.816635982e-10 4.831299513e-10 4.261117128e-10 2.794276415e-10 5.572663648e-10 9.199939154e-10 1.079477831e-09 2.207180292e-10 2.205746779e-10 2.178094847e-10 +4.555973733e-10 2.055552672e-10 2.852328281e-10 9.049565359e-10 3.156424772e-10 2.643169787e-10 5.642518253e-10 2.904895152e-10 1.188703024e-10 4.716637156e-10 6.74565817e-10 3.740834037e-10 5.023771242e-10 1.367607122e-10 4.039556902e-10 8.412611041e-10 6.224341989e-10 3.694379778e-10 4.928024914e-10 2.737881043e-10 7.879846191e-10 1.08599329e-09 4.430718924e-10 7.577141294e-10 4.827713595e-10 5.378887927e-10 5.885150282e-10 5.804939771e-10 3.793719393e-10 7.411413321e-10 6.33065631e-10 8.691764378e-10 3.303013136e-10 6.203147981e-10 7.285528347e-10 7.479888513e-10 4.003390392e-10 3.785339243e-10 7.605019188e-10 1.002506891e-09 8.950426454e-10 9.773979505e-10 1.662789026e-09 9.97709961e-10 1.383886839e-09 1.008104065e-09 1.11625731e-09 6.16696566e-10 1.478545455e-09 8.955326728e-10 1.083542996e-09 1.271805711e-09 1.136226659e-09 5.286796526e-10 1.097922036e-09 8.526849462e-10 1.186738527e-09 4.693602358e-10 7.01835623e-10 1.220881256e-09 3.801159244e-10 1.328319576e-09 1.169512217e-09 7.051396037e-10 1.3637192e-09 9.929371194e-10 7.135737354e-10 7.210667534e-10 1.144986165e-09 1.105927562e-09 1.442848474e-09 1.556675335e-09 1.825341314e-09 1.265882719e-09 1.53699705e-09 9.913948892e-10 6.908204644e-10 5.993790116e-10 1.322553201e-09 1.579299362e-09 1.472102127e-09 1.885876712e-09 2.561987213e-09 2.399022022e-09 1.587533501e-09 9.489809812e-10 1.854130743e-09 1.776979437e-09 1.478876564e-09 1.721699805e-09 1.6913364e-09 1.373688396e-09 1.521337899e-09 6.9386523e-10 8.52879183e-10 7.454358724e-10 6.624314668e-10 3.544439307e-10 6.400090303e-10 1.117199976e-09 1.952991725e-09 2.635967741e-09 2.954532867e-09 1.927114363e-09 2.624664441e-09 3.430071992e-09 1.724203672e-09 2.468530481e-09 2.334095172e-09 3.467624928e-09 3.682251474e-09 3.577481986e-09 2.160672932e-09 1.830553381e-09 1.602123218e-09 3.419840349e-09 1.547252172e-09 1.534939623e-09 8.602438441e-10 3.217843426e-10 1.444121577e-10 0 4.781294074e-11 8.039344014e-10 1.984186381e-09 2.479162946e-09 2.604349275e-09 2.313665244e-09 3.769886879e-09 6.672206234e-09 8.545738101e-09 5.976500256e-09 5.571510109e-09 5.90821227e-09 5.540014464e-09 2.592567531e-09 1.919442695e-09 1.594396593e-10 1.397783251e-18 6.462114892e-11 1.433408632e-10 2.166684481e-10 3.265139957e-10 4.781815899e-11 4.04122639e-10 3.124267806e-10 1.853332692e-10 7.873878416e-11 1.804115816e-10 1.639395262e-10 1.909565335e-10 4.550964996e-10 1.558741848e-10 4.388481347e-10 1.956979884e-10 1.935366557e-10 0 1.283218843e-10 1.733130499e-10 1.687209776e-10 4.107910337e-10 0 2.584162833e-10 1.094584572e-09 3.770349314e-09 4.33289543e-09 5.574752005e-09 4.02794415e-09 6.321271081e-09 6.212131213e-09 5.534384135e-09 3.735015715e-09 4.069094888e-09 1.969432131e-09 2.926359492e-09 1.964527663e-09 7.826753586e-10 1.408328973e-10 3.124579524e-10 1.082842049e-10 4.057838958e-10 1.076289726e-09 1.861321338e-09 1.86327896e-09 1.962403092e-09 2.391973528e-09 1.574215723e-09 2.40409508e-09 2.631352528e-09 3.477624919e-09 1.878495583e-09 1.553801217e-09 2.56318854e-09 2.016512684e-09 2.308903921e-09 3.366202267e-09 2.426582221e-09 2.898498927e-09 2.827366425e-09 2.829498031e-09 9.188376577e-10 7.944080522e-10 5.315511724e-10 1.864211149e-10 1.209827314e-09 1.977417583e-09 1.264746968e-09 9.903812634e-10 1.790441355e-09 1.818835096e-09 1.751862932e-09 1.993987608e-09 9.767510852e-10 1.764095732e-09 1.200670124e-09 2.301811502e-09 1.713929691e-09 1.866831031e-09 1.75228578e-09 1.178980837e-09 1.483458028e-09 1.593896085e-09 6.725617593e-10 1.104561418e-09 1.460530539e-09 1.319025641e-09 9.269250283e-10 7.093519518e-10 8.556765589e-10 1.67766216e-09 1.391157901e-09 1.144263687e-09 1.492446318e-09 1.555485187e-09 1.293884246e-09 1.346533952e-09 1.30957568e-09 1.717190914e-09 5.855069135e-10 6.258524437e-10 7.031369009e-10 6.369245874e-10 5.973574706e-10 1.149424887e-09 8.433521317e-10 9.746900589e-10 5.502324767e-10 1.117623815e-09 8.914081378e-10 1.131255624e-09 3.927492158e-10 1.019302726e-09 1.063906963e-09 1.307885819e-09 9.546908002e-10 9.657467819e-10 9.461076399e-10 1.080484846e-09 1.204049147e-09 6.795744038e-10 4.973286612e-10 7.185258571e-10 6.14438245e-10 4.606006219e-10 5.529772414e-10 2.600089399e-10 1.035910091e-09 7.40517631e-10 5.592029447e-10 4.870402276e-10 6.8125505e-10 6.168795909e-10 8.217272113e-10 6.399838109e-10 7.22520466e-10 4.307676442e-10 2.410062803e-10 4.241839165e-10 7.761681272e-10 5.237475605e-10 1.017782772e-09 6.992156674e-10 2.152341446e-10 7.239473866e-10 6.225556894e-10 2.161709213e-10 3.195342577e-10 2.766887239e-10 3.957140445e-10 3.700018754e-10 5.584074999e-10 8.385830214e-10 4.747335865e-10 3.229441795e-10 7.580608656e-10 2.903576683e-10 2.812784433e-10 3.351306231e-10 5.550429743e-10 6.091225413e-10 +9.00439924e-10 1.427132468e-10 5.751082362e-10 4.816878433e-10 3.000652646e-10 5.937657838e-10 6.52654663e-10 4.00765994e-10 4.503328434e-10 1.960561367e-10 4.541335369e-10 4.04594835e-10 7.71963542e-10 4.665736219e-10 5.639410525e-10 4.649102894e-10 5.536932997e-10 4.970336609e-10 8.809642988e-10 5.83287117e-10 5.044189235e-10 2.220311547e-10 6.968304142e-10 3.626287193e-10 5.119691018e-10 6.157340838e-10 1.1702128e-09 3.554457323e-10 2.204965366e-10 4.157877566e-10 7.797926764e-10 6.221691545e-10 2.657008257e-10 1.032742118e-09 4.976165684e-10 5.249669466e-10 2.492333025e-10 6.311285421e-10 1.100677141e-09 4.368891275e-10 6.921721558e-10 1.189565484e-09 9.80951025e-10 1.452668328e-09 8.281092392e-10 6.53216659e-10 8.626560896e-10 1.843043097e-09 5.672950578e-10 1.066092206e-09 7.966515417e-10 4.514137624e-10 9.163966413e-10 9.552527965e-10 9.965415516e-10 1.494590609e-09 8.7888772e-10 9.351897648e-10 1.259187094e-09 1.44280926e-09 4.923305472e-10 4.74519843e-10 1.300666371e-09 1.050642812e-09 9.714375091e-10 9.396460988e-10 1.157908892e-09 8.921875044e-10 1.075684878e-09 9.536785875e-10 1.079725199e-09 9.391095311e-10 1.109188245e-09 8.712295292e-10 9.890367272e-10 1.469136433e-09 9.480862597e-10 1.328868765e-09 7.674790873e-10 1.093961492e-09 1.077775727e-09 2.512262552e-09 1.760600915e-09 1.958851525e-09 1.850349954e-09 1.754156605e-09 2.48971256e-09 1.640947938e-09 1.927784878e-09 1.64319549e-09 2.492766554e-09 9.335315964e-10 1.746896655e-09 1.970840293e-09 1.428517968e-09 8.564152622e-10 7.382504426e-10 5.349256594e-10 9.850170626e-10 1.164551631e-09 1.244859389e-09 3.148629621e-09 2.148793102e-09 1.680209774e-09 2.532814341e-09 2.642854747e-09 1.504723509e-09 2.461042777e-09 3.262291629e-09 3.405633485e-09 4.433672957e-09 3.325376563e-09 1.730082731e-09 1.386673159e-09 1.897172229e-09 1.49867974e-09 2.104281436e-09 1.372253667e-09 1.417705227e-09 2.383880546e-10 1.681192795e-10 7.616056108e-11 1.928098702e-10 2.606671174e-10 2.103114771e-09 2.171724053e-09 3.778865244e-09 3.11748023e-09 2.871433752e-09 5.228690878e-09 6.47360436e-09 8.005405108e-09 6.635420529e-09 6.408685989e-09 6.339692925e-09 4.390976384e-09 3.637347815e-09 9.999843028e-10 1.56628558e-10 4.210526142e-10 2.832665273e-10 3.625779519e-10 2.226144873e-10 2.978709129e-10 1.748133853e-10 2.30413997e-10 8.045982357e-11 7.9003869e-13 1.711671716e-10 1.421722898e-10 1.593668637e-10 0 2.681879646e-10 2.950780735e-10 3.809182078e-11 1.590754818e-10 3.944195954e-10 1.90351262e-20 3.226555265e-10 2.199829886e-10 1.322785642e-10 5.713685783e-10 2.045055979e-09 3.791655117e-09 5.47445681e-09 5.883956638e-09 4.980047178e-09 7.278635089e-09 7.932431001e-09 8.679536884e-09 5.745262651e-09 2.929849013e-09 2.490216327e-09 3.023196572e-09 2.565199719e-09 1.726885423e-09 5.873333178e-10 1.841120786e-10 4.50921362e-10 5.70649561e-10 3.97164345e-10 1.354017054e-09 2.201008209e-09 1.852660378e-09 1.792783874e-09 1.753099372e-09 1.259712219e-09 2.743354733e-09 3.302861171e-09 2.064541871e-09 2.435868026e-09 2.854600129e-09 1.532680893e-09 3.136917191e-09 2.782092908e-09 3.279493835e-09 2.681621052e-09 1.325406438e-09 3.169823435e-09 1.110025545e-09 1.44399046e-09 9.123383035e-10 4.653131257e-10 5.524689898e-10 1.09977956e-09 1.256718011e-09 1.250912432e-09 1.984117798e-09 1.630968445e-09 1.634824761e-09 8.70346814e-10 1.786848349e-09 1.25295012e-09 1.589810822e-09 1.445221335e-09 1.506520796e-09 1.557767502e-09 2.015968044e-09 1.532020732e-09 2.498921022e-09 1.063831324e-09 1.012823493e-09 1.148504154e-09 4.971920328e-10 9.387782654e-10 8.259953779e-10 1.107531091e-09 1.084102468e-09 1.092931212e-09 1.610564555e-09 1.296640843e-09 1.169758708e-09 1.050418477e-09 1.13607874e-09 9.71107321e-10 1.494870775e-09 1.107982585e-09 1.478268521e-09 6.65807864e-10 8.392519769e-10 7.588982163e-10 8.089594129e-10 3.793861217e-10 1.380497402e-09 9.816975766e-10 9.224036366e-10 1.181391738e-09 8.103301705e-10 1.067924117e-09 1.44576758e-09 8.660430534e-10 5.64920108e-10 6.356367075e-10 8.887289022e-10 4.083170522e-10 7.637745882e-10 1.251057131e-09 1.048041922e-09 1.348966803e-09 7.32271246e-10 3.405272589e-10 6.245428152e-10 4.570182496e-10 7.788051196e-10 4.262644851e-10 7.051268007e-10 3.466398383e-10 7.425905409e-10 5.0607565e-10 5.145055777e-10 5.983260313e-10 4.639058119e-10 1.083982178e-09 5.53185265e-10 9.465922346e-10 2.477313538e-10 1.03549328e-09 7.150264354e-10 7.911915897e-10 4.300228743e-10 3.445537263e-10 3.473882634e-10 2.13832615e-10 3.252400204e-10 6.269542614e-10 2.110686893e-10 3.586305554e-10 1.023993083e-09 5.800713816e-10 5.002387849e-10 1.517183614e-10 6.019852956e-10 4.356139835e-10 4.212380764e-10 2.135428708e-10 4.2586614e-10 4.31728541e-10 9.696450396e-10 2.684892051e-10 3.096756493e-10 +1.786579459e-10 4.069071282e-10 5.561459344e-10 6.604108574e-10 3.810861202e-10 6.010866972e-10 8.998438524e-10 2.2585015e-10 2.002290271e-10 2.598830726e-10 1.925080368e-10 4.138584714e-10 4.653215751e-10 4.215799294e-10 5.82165306e-10 4.082883509e-10 2.417088673e-10 3.327943679e-10 5.345094652e-10 3.163112196e-10 2.401151031e-10 4.559118023e-10 4.274350812e-10 9.14278812e-10 8.646609524e-10 6.668588281e-10 7.611628237e-10 2.766437682e-10 8.906422333e-10 2.61305513e-10 9.252733327e-10 3.347481298e-10 4.017465118e-10 2.704709135e-10 3.998874427e-10 4.225208802e-10 6.957212275e-10 4.812706029e-10 1.051713529e-09 5.481983675e-10 9.185840419e-10 6.282427766e-10 4.920771509e-10 1.076452724e-09 1.375442567e-09 1.494924254e-09 1.470657762e-09 1.236213693e-09 1.03234238e-09 1.424697469e-09 1.186108187e-09 1.129437313e-09 1.375158977e-09 1.046734157e-09 1.42622401e-09 9.171205319e-10 1.100507471e-09 9.135778749e-10 4.786302442e-10 1.021594032e-09 1.186369093e-09 4.805258949e-10 9.02747642e-10 8.135102206e-10 1.407985146e-09 8.616419914e-10 1.358839806e-09 8.20004294e-10 1.119017283e-09 1.302313695e-09 1.730288038e-09 9.313026939e-10 1.281387668e-09 8.839955782e-10 1.106897683e-09 1.208888169e-09 7.165709028e-10 4.354474167e-10 1.162402755e-09 1.705942116e-09 1.471445733e-09 1.719601293e-09 1.767979052e-09 2.277544314e-09 1.204265985e-09 2.050610729e-09 2.123861269e-09 1.865513987e-09 1.444400293e-09 1.526505238e-09 1.563058181e-09 2.042432881e-09 2.402720361e-09 2.054654583e-09 1.385112098e-09 9.21356293e-10 6.90460191e-10 6.881115525e-10 5.107762424e-10 1.076741927e-09 1.301182769e-09 2.444346956e-09 3.827511729e-09 1.932332942e-09 2.761675157e-09 1.49469012e-09 4.095862418e-09 2.231762435e-09 3.262939637e-09 2.227032086e-09 2.64675139e-09 3.45153133e-09 2.429703121e-09 1.526233359e-09 1.754041958e-09 1.849797537e-09 1.56078639e-09 1.710203525e-09 8.374403596e-10 7.265669067e-10 7.57694891e-11 2.632713731e-15 1.824238384e-13 4.127083546e-10 1.364939022e-09 2.527526707e-09 2.734142193e-09 3.182553753e-09 4.050656152e-09 4.647100192e-09 6.909774707e-09 8.380211146e-09 5.092285691e-09 6.699244301e-09 7.001952187e-09 6.235819389e-09 2.994105552e-09 2.032489073e-09 6.190208596e-10 1.702701949e-10 4.630688074e-11 9.628440996e-14 3.049909564e-10 3.195739395e-10 3.671563613e-10 1.594746924e-10 2.07027808e-33 1.539378e-10 1.652180015e-10 2.022897887e-10 2.901120721e-10 2.131288223e-10 1.493779534e-18 8.167906035e-11 1.628343333e-10 4.025531621e-10 2.160559692e-10 3.278184902e-10 8.686673373e-11 3.800605738e-10 6.13286714e-10 8.577074902e-10 2.049141257e-09 2.54646568e-09 6.023703247e-09 4.80704531e-09 5.454075686e-09 7.852413705e-09 6.961658808e-09 5.927402431e-09 2.912160389e-09 2.892427503e-09 2.409579801e-09 2.656515771e-09 2.232731192e-09 1.139578876e-09 4.419967292e-13 3.971120556e-10 2.987327932e-10 8.459307833e-11 1.160169805e-09 1.554849587e-09 1.490383193e-09 2.789988913e-09 2.315912845e-09 2.428582302e-09 1.23305278e-09 2.152764358e-09 2.072752178e-09 4.004090834e-09 4.544203548e-09 2.151257865e-09 1.487238778e-09 2.858287373e-09 2.04981302e-09 5.11374503e-09 2.253525361e-09 2.653539216e-09 2.427268854e-09 1.295915314e-09 7.654057417e-10 1.402526436e-09 7.929019846e-10 6.661169469e-10 1.648690986e-09 1.270511814e-09 1.438465604e-09 1.23758526e-09 1.166859584e-09 1.012011783e-09 2.456644804e-09 1.472687973e-09 1.133802766e-09 1.268367153e-09 1.852641118e-09 2.27939834e-09 1.90986029e-09 1.858748605e-09 1.893322824e-09 1.517396327e-09 2.0645411e-09 9.588900883e-10 6.742902083e-10 1.439575626e-09 1.172700304e-09 1.014804424e-09 1.269550121e-09 1.254498252e-09 1.142333353e-09 6.007348254e-10 1.550192438e-09 8.346176845e-10 1.099776844e-09 9.161915701e-10 1.333009572e-09 8.618075737e-10 1.079663552e-09 9.501579853e-10 1.562843363e-09 6.951831937e-10 7.868060594e-10 9.254506233e-10 7.669501054e-10 1.018023203e-09 7.34465361e-10 1.163997729e-09 9.784680547e-10 1.37202181e-09 1.006613223e-09 6.865892648e-10 1.32721521e-09 7.560536341e-10 9.885428998e-10 9.090985055e-10 1.304177946e-09 5.167485547e-10 1.244820696e-09 8.185858197e-10 1.275424505e-09 1.034575088e-09 1.028607579e-09 6.105951218e-10 6.345250014e-10 4.943434323e-10 5.459788541e-10 5.269421326e-10 2.902799966e-10 6.371846996e-10 1.481434451e-10 5.564291779e-10 6.619981369e-10 9.000235402e-10 7.356602353e-10 5.115354446e-10 9.868752793e-10 3.115546669e-10 7.64404071e-10 8.013377543e-10 5.10130285e-10 3.161123092e-10 4.900195241e-10 6.54474687e-10 2.275750559e-10 2.93484385e-10 9.439464807e-10 7.176886128e-10 5.892370834e-10 6.418975269e-10 5.264792271e-10 1.971061601e-10 2.231584681e-10 3.422443553e-10 4.973195894e-10 4.234383164e-10 8.10013835e-10 1.75526576e-10 5.085757332e-10 2.816484173e-10 7.772328882e-10 3.276211808e-10 +4.161477849e-10 6.592255752e-10 1.631845875e-10 1.677223184e-10 2.396192949e-10 5.513697699e-10 3.605793173e-10 4.846420139e-10 3.897641995e-10 3.061227006e-10 3.219805392e-10 4.74156996e-10 3.523725256e-10 2.333458619e-10 1.465787402e-09 1.411259876e-10 1.146672292e-10 6.570988217e-10 1.538150368e-10 8.304754866e-10 4.69763986e-10 8.677811938e-10 3.30774791e-10 2.853291607e-10 3.951786898e-10 8.131300199e-10 6.91397749e-10 3.71892653e-10 3.733084076e-10 3.96684112e-10 5.659103502e-10 5.43573315e-10 1.026951187e-09 6.6156431e-10 2.188435202e-10 4.568430778e-10 8.821650429e-10 3.184952554e-10 7.543790905e-10 6.1348836e-10 9.703958223e-10 7.952723704e-10 1.237773013e-09 7.949094272e-10 8.989736743e-10 8.250644331e-10 8.867348925e-10 9.062150293e-10 1.207944362e-09 1.156983021e-09 1.041836235e-09 1.969864186e-09 7.173297155e-10 1.324974625e-09 1.512828442e-09 1.080679624e-09 8.397515097e-10 5.281106792e-10 8.283342836e-10 8.961985223e-10 8.858572437e-10 7.269670417e-10 1.321511566e-09 9.747177126e-10 1.230153604e-09 8.85261043e-10 8.429886436e-10 1.13775375e-09 1.045108778e-09 1.676489535e-09 1.298193412e-09 1.21362188e-09 7.612461576e-10 1.305146606e-09 1.052313676e-09 1.427982592e-09 1.119992616e-09 8.921144497e-10 1.025263748e-09 1.403321272e-09 1.422745866e-09 2.190286765e-09 2.090494401e-09 2.263833267e-09 1.194923655e-09 1.681920118e-09 1.51073934e-09 1.960793683e-09 2.62147879e-09 1.920759124e-09 1.897266645e-09 1.446166317e-09 1.190284021e-09 1.559371268e-09 1.472877797e-09 4.835607878e-10 1.185286208e-09 4.198074516e-10 7.585619459e-10 1.036385729e-09 1.002082986e-09 1.737657036e-09 2.416768119e-09 3.310686864e-09 3.18520798e-09 2.705032232e-09 3.140962421e-09 2.602964844e-09 2.429789338e-09 3.878517044e-09 4.709214853e-09 4.821915108e-09 2.321842042e-09 2.244766933e-09 3.07605244e-09 1.933242601e-09 1.168938881e-09 1.818247422e-09 1.692532351e-09 5.065585775e-10 2.431488752e-10 4.03255243e-10 0 1.379822967e-10 6.844177973e-10 1.711038356e-09 1.976536133e-09 3.215332696e-09 3.325467104e-09 2.574627504e-09 5.626398008e-09 6.468091793e-09 8.41259843e-09 7.160697932e-09 4.790306667e-09 5.75380275e-09 3.944478287e-09 1.689813369e-09 1.511856327e-09 9.264308616e-10 3.728408017e-10 2.54165041e-10 3.507027703e-10 4.491449375e-10 3.939774552e-11 2.364582975e-10 8.433191344e-11 2.711348838e-10 1.711564985e-10 2.248562039e-10 3.741966871e-10 2.323390254e-10 1.503411709e-10 6.208668841e-11 4.696017136e-10 3.338650066e-10 2.433230848e-10 2.558562132e-12 2.512027036e-10 3.786287015e-10 8.524617423e-10 2.453476741e-09 3.238397558e-09 3.954335352e-09 4.724940466e-09 5.537489394e-09 5.285264503e-09 6.284719918e-09 9.132149089e-09 5.762789878e-09 3.680894985e-09 2.90474384e-09 3.250148709e-09 2.906704497e-09 1.292427988e-09 3.23441097e-10 7.624328025e-11 2.915434496e-10 8.727449811e-11 1.833851011e-10 1.093712053e-09 1.473860872e-09 2.262399594e-09 2.065472108e-09 1.408512187e-09 1.960845783e-09 2.802269016e-09 1.602915711e-09 1.910138623e-09 4.573374345e-09 3.988629387e-09 3.396233727e-09 2.415505494e-09 3.010693482e-09 2.435098209e-09 1.640308156e-09 2.266630476e-09 2.688016059e-09 2.197870112e-09 1.036979006e-09 5.644716617e-10 1.331414993e-09 5.505194507e-10 8.801968454e-10 1.103594062e-09 1.349504143e-09 1.026262346e-09 1.508747729e-09 2.275154275e-09 1.755352083e-09 1.782295094e-09 9.574018484e-10 1.416008149e-09 1.930243624e-09 1.158432066e-09 1.560391886e-09 1.5606922e-09 2.581417918e-09 1.990548042e-09 1.281552165e-09 8.333225082e-10 9.210975092e-10 8.914157478e-10 1.084732375e-09 1.64722665e-09 4.517777589e-10 7.468181611e-10 7.578924355e-10 8.595583156e-10 1.709323852e-09 1.171854793e-09 1.003933747e-09 1.340003125e-09 1.155485343e-09 6.803092378e-10 7.500078256e-10 1.35524687e-09 1.609068478e-09 1.121329808e-09 6.222463257e-10 1.142687478e-09 8.039696348e-10 1.086121382e-09 6.762195508e-10 1.024576436e-09 9.739909148e-10 7.380170575e-10 1.619851563e-09 1.19770913e-09 5.483488212e-10 9.714102911e-10 8.73397191e-10 7.267513325e-10 1.215493658e-09 1.136661088e-09 1.138931682e-09 9.097597388e-10 1.071083683e-09 1.132280213e-09 5.433158992e-10 9.646300329e-10 1.0356287e-09 4.145219556e-10 5.013528407e-10 4.146338102e-10 5.282278723e-10 4.764323049e-10 8.185033433e-10 4.904029595e-10 2.388435562e-10 2.953068918e-10 1.033500162e-09 5.533399516e-10 4.817138413e-10 6.548162403e-10 6.380899531e-10 1.143584246e-09 5.078798618e-10 1.537153512e-10 1.968681738e-10 3.803584681e-10 1.852015189e-10 3.293126917e-10 4.699021398e-10 3.321962977e-10 3.90097431e-10 2.232225949e-10 2.532379654e-10 3.799368269e-10 6.990571351e-10 6.172248829e-10 4.773097144e-10 1.848286939e-10 4.344537533e-10 4.328822153e-10 7.523927668e-10 8.309866413e-10 3.521569834e-10 4.942594743e-10 4.425210576e-10 +2.931692164e-10 2.974127756e-10 3.578600699e-10 2.888027489e-10 5.611615306e-10 3.851322702e-10 4.648104382e-10 2.572961644e-10 2.208948718e-10 8.50534444e-11 1.203515493e-10 4.950645362e-10 3.512702529e-10 2.175563241e-10 6.113111358e-10 5.975911503e-10 2.719818194e-10 6.52192137e-10 4.476645877e-10 1.387401922e-10 3.034692944e-10 9.776045901e-10 5.474607246e-10 7.803806948e-10 4.954939244e-10 8.015025061e-10 8.232389487e-10 5.766067897e-10 8.302902946e-10 7.557545592e-10 6.570251983e-10 3.467381216e-10 7.831112778e-10 6.052447021e-10 4.762971121e-10 3.02065824e-10 6.312844766e-10 5.999338663e-10 5.010984037e-10 2.424181535e-10 6.835261916e-10 5.756691287e-10 1.655556607e-09 8.908614727e-10 1.062423512e-09 1.374322804e-09 1.249253275e-09 1.022528357e-09 1.30495205e-09 1.335645548e-09 1.64101566e-09 1.813268898e-09 9.909962052e-10 6.970387226e-10 9.9686538e-10 1.253611211e-09 1.58488756e-09 1.569780883e-09 8.496722729e-10 1.2565273e-09 5.220197787e-10 8.620435543e-10 1.104352686e-09 1.184893547e-09 7.187179271e-10 8.40966191e-10 1.087180357e-09 7.179420103e-10 1.035851378e-09 1.197919827e-09 1.171262832e-09 1.684276783e-09 1.127569519e-09 1.659236128e-09 5.694125908e-10 1.125862347e-09 7.188306501e-10 1.013772389e-09 1.281675976e-09 1.563253684e-09 1.824526053e-09 2.285013482e-09 1.817823595e-09 1.301753618e-09 2.602608916e-09 1.756394902e-09 1.147051456e-09 1.588104016e-09 1.946601283e-09 1.041036923e-09 1.225829483e-09 9.359634331e-10 1.698432431e-09 2.212607589e-09 1.067347266e-09 4.562165515e-10 8.079198027e-10 3.042927534e-10 4.196767932e-10 1.362382066e-09 8.209777089e-10 3.683616177e-09 2.938161679e-09 2.09447348e-09 2.620104611e-09 2.05972956e-09 2.129649147e-09 2.589675167e-09 2.801237456e-09 2.439061299e-09 3.594499918e-09 2.176529805e-09 3.482621737e-09 1.380404537e-09 2.903259395e-09 1.846374962e-09 1.705345859e-09 1.200860944e-09 1.518932088e-09 8.420080991e-10 1.325464925e-10 1.718004518e-10 1.600434149e-10 1.602100974e-10 3.97335819e-10 2.283023502e-09 2.878471869e-09 2.061353392e-09 2.90459601e-09 2.653664663e-09 4.106929783e-09 6.747908548e-09 7.305022308e-09 8.341117268e-09 5.615354506e-09 5.233881228e-09 5.527356221e-09 3.291275002e-09 3.058573327e-09 1.249913195e-09 3.557191971e-10 9.377241197e-11 8.109203865e-11 6.826999222e-11 1.925013218e-10 9.078117387e-11 1.613992173e-10 3.124952773e-10 2.040456173e-10 1.790115898e-10 2.192756137e-10 3.671970386e-10 1.472929826e-10 3.451588439e-12 2.221654055e-10 0 1.947100153e-10 3.852780924e-10 2.566306477e-10 4.189291773e-10 1.7029969e-09 3.57574598e-09 4.716094999e-09 5.232901032e-09 5.278778579e-09 6.165750237e-09 7.156536804e-09 7.293198591e-09 7.123562709e-09 5.218469064e-09 3.121890669e-09 1.929557914e-09 2.994809807e-09 2.484355389e-09 1.263766502e-09 2.868745971e-10 1.438962936e-10 2.153812164e-10 4.316719116e-10 2.518435248e-10 5.588859086e-10 1.518096987e-09 2.402382148e-09 8.710143245e-10 1.821671932e-09 2.342984274e-09 1.839313845e-09 3.341267047e-09 2.854102661e-09 5.398219202e-09 3.09623281e-09 3.222603917e-09 2.421142089e-09 2.045904932e-09 1.463353896e-09 3.214453752e-09 2.804098708e-09 2.971357681e-09 1.337923711e-09 1.356361944e-09 1.057745725e-09 8.467128858e-10 6.733155506e-10 7.589117424e-10 1.087836511e-09 1.66969991e-09 1.998428037e-09 1.283125976e-09 1.925210203e-09 6.884626536e-10 1.443767889e-09 2.780064893e-09 1.992817211e-09 1.588543604e-09 2.219077499e-09 2.875587887e-09 1.87266212e-09 2.244977612e-09 2.77902148e-09 1.389937991e-09 1.61295449e-09 8.239515636e-10 1.769602135e-09 6.405898425e-10 1.247546906e-09 9.589732896e-10 8.967779088e-10 1.04335558e-09 6.926833851e-10 1.532644431e-09 9.303525034e-10 1.318141092e-09 1.340101079e-09 7.947495085e-10 8.37372441e-10 9.009368489e-10 1.778383627e-09 1.506425126e-09 1.767245019e-09 1.319222873e-09 8.654793116e-10 8.083169655e-10 6.707904803e-10 1.028730804e-09 1.017588839e-09 1.409843534e-09 1.020392912e-09 1.598826243e-09 1.062470029e-09 1.016171419e-09 9.115644277e-10 7.202579936e-10 1.272118965e-09 1.205221152e-09 1.15744798e-09 9.440726279e-10 1.37280456e-09 3.515810904e-10 5.935509112e-10 4.477350325e-10 6.456448166e-10 4.692559068e-10 5.943807062e-10 3.993784519e-10 4.301251065e-10 4.361560167e-10 5.641490198e-10 1.349026208e-10 5.353041992e-10 9.477633939e-10 4.203586294e-10 4.743831386e-10 5.075577449e-10 7.705972228e-10 6.697784407e-10 3.425121492e-10 7.646936504e-10 3.755640069e-10 5.417472423e-10 4.455870853e-10 3.871687979e-10 2.371908149e-10 5.343900515e-10 3.724737613e-10 1.109953179e-10 7.008598694e-10 4.030723114e-10 4.164425369e-10 2.822847563e-10 8.056040591e-11 8.021298987e-10 1.798952489e-10 4.458204752e-10 2.685556096e-10 3.427530679e-10 2.454989619e-10 2.085116351e-10 7.843751854e-10 9.249511516e-10 3.494283611e-10 +2.442886923e-10 4.622665437e-10 1.948161013e-10 5.582679092e-10 8.64150494e-10 3.962870403e-10 4.893317249e-10 5.536019824e-10 4.922240561e-10 3.813245838e-10 7.687909529e-10 5.228674535e-10 3.368613397e-10 2.826402085e-10 5.861177043e-10 3.378597943e-10 6.189587928e-10 4.467991461e-10 5.789139157e-10 4.275867856e-10 7.399092239e-10 6.737331074e-10 5.411805821e-10 2.454338931e-10 5.775209034e-10 3.171888097e-10 4.881567399e-10 5.965435457e-10 5.07044252e-10 6.119194426e-10 5.284106882e-10 5.454716109e-10 8.951045097e-10 4.825167008e-10 3.001781177e-10 3.119179272e-10 3.565085186e-10 7.527063325e-10 9.776864379e-10 1.533669693e-09 6.601671206e-10 1.037054461e-09 1.227238545e-09 8.51584814e-10 1.631858968e-09 1.205467004e-09 8.346962491e-10 9.459431084e-10 1.230759325e-09 6.784667662e-10 1.013251542e-09 2.087051425e-09 7.58167021e-10 8.526800919e-10 1.7337378e-09 1.124648072e-09 6.38775186e-10 3.111902206e-10 5.346457079e-10 8.929595764e-10 4.958532759e-10 8.228503174e-10 1.054900373e-09 1.401189038e-09 1.41837532e-09 7.560223443e-10 1.234674672e-09 1.621183284e-09 6.106438738e-10 1.488766885e-09 2.15119314e-09 6.50184284e-10 9.928469652e-10 8.080037388e-10 9.22261417e-10 1.224366931e-09 9.124224304e-10 7.0902596e-10 1.388776615e-09 1.117043466e-09 2.192507279e-09 1.487265924e-09 1.571791866e-09 1.425174593e-09 2.262631206e-09 1.221079668e-09 1.517992517e-09 1.886866171e-09 1.674303866e-09 1.18763638e-09 9.527702732e-10 1.441791807e-09 1.453560399e-09 1.566896846e-09 1.284928224e-09 1.082900142e-09 9.59050466e-10 2.912827905e-10 8.465732518e-10 1.27736812e-09 1.154224976e-09 1.911657265e-09 2.912349508e-09 3.550276537e-09 2.787241829e-09 2.792465529e-09 1.191039169e-09 2.058875655e-09 3.268517035e-09 3.485891424e-09 4.386538143e-09 3.872891692e-09 2.701598046e-09 2.734013497e-09 2.656600022e-09 1.126403103e-09 2.005977281e-09 2.509772693e-09 1.934240976e-09 1.01254932e-09 5.798706876e-10 1.846779226e-12 7.011573329e-11 2.56922854e-10 2.733300085e-10 1.201741894e-09 2.867302155e-09 2.576886739e-09 1.864961077e-09 3.006259039e-09 2.709510354e-09 5.975083243e-09 4.883083743e-09 7.096244091e-09 6.737644871e-09 5.356304754e-09 7.339097805e-09 6.192333355e-09 3.692091658e-09 3.078953453e-09 1.014419981e-09 1.830156219e-10 3.324859823e-10 6.683696538e-11 2.456237349e-10 5.772679346e-10 2.662509113e-10 4.349506014e-10 1.20472672e-10 8.226541432e-11 2.324649487e-10 5.264612183e-10 2.071431553e-10 9.245771607e-11 2.4662659e-10 1.948949228e-10 4.8476554e-10 2.897156627e-10 3.713909861e-10 8.102203181e-10 2.5979806e-09 3.781740294e-09 3.855841209e-09 5.978248401e-09 5.966668166e-09 5.263992324e-09 7.691358864e-09 7.898609366e-09 5.522444571e-09 4.336224764e-09 2.963307593e-09 3.814407054e-09 3.064903672e-09 3.052603786e-09 1.294916002e-09 6.655434341e-10 1.614739703e-10 2.022144033e-10 5.577173196e-11 6.035303205e-10 1.261932678e-09 1.73634621e-09 1.092157439e-09 1.677569212e-09 1.894767901e-09 1.387251779e-09 2.537604648e-09 2.250431812e-09 2.925652326e-09 2.863870535e-09 2.104873606e-09 4.065681372e-09 3.41181764e-09 3.163726334e-09 2.240546257e-09 2.309353895e-09 1.797120264e-09 2.909177017e-09 1.879085336e-09 2.049342195e-09 1.107423553e-09 4.267402594e-10 5.969980154e-10 5.486571851e-10 5.839186761e-10 1.705750191e-09 1.527160817e-09 1.582162079e-09 2.168026239e-09 1.147584174e-09 1.394129359e-09 1.76930001e-09 2.15230357e-09 1.938947366e-09 1.518456014e-09 1.799437723e-09 1.287103545e-09 1.596817467e-09 2.05727954e-09 1.699699572e-09 1.698365208e-09 5.75516691e-10 9.491786223e-10 1.510385864e-09 1.314028659e-09 1.23138849e-09 1.458483281e-09 1.351050138e-09 1.259010062e-09 1.102373617e-09 1.200277604e-09 1.425547992e-09 1.218571281e-09 9.074714558e-10 1.337739974e-09 1.204408968e-09 1.102568255e-09 1.767423885e-09 8.211913517e-10 5.575586825e-10 5.07631796e-10 7.634224806e-10 9.674039583e-10 5.901231404e-10 6.370118661e-10 1.238111637e-09 8.915103289e-10 1.500532859e-09 1.122605346e-09 8.466127759e-10 8.430241634e-10 9.295192648e-10 1.013035656e-09 5.092130188e-10 1.041554961e-09 1.547427813e-09 1.406120848e-09 1.015790849e-09 5.789802355e-10 1.363037281e-09 9.065716249e-10 8.460031919e-10 8.326830157e-10 9.840076327e-10 5.669291142e-10 2.581159786e-10 4.669163807e-10 3.309886996e-10 3.070586519e-10 7.116991222e-10 4.717485057e-10 7.66580166e-10 4.323523307e-10 4.732133537e-10 8.068078916e-10 4.894925668e-10 7.101831201e-10 7.343917228e-10 5.161699258e-10 3.720321687e-10 2.124074826e-10 2.117120824e-10 2.752158239e-10 1.461928581e-09 4.12591996e-10 3.302522147e-10 4.851650918e-10 4.482750834e-10 3.854509625e-10 2.706061205e-10 3.205789802e-10 2.27170739e-10 5.060364862e-10 6.423219362e-10 4.658373793e-10 5.254215391e-10 7.704359053e-10 3.181188561e-10 6.112636368e-10 4.623690625e-10 +4.646165744e-10 7.220931098e-10 4.840479633e-10 2.270387191e-10 4.545890715e-10 5.338106899e-10 1.747932637e-10 5.205918119e-10 5.917130285e-10 2.322852117e-10 7.684365804e-10 5.536119083e-10 4.025760879e-10 4.430238632e-10 3.847742422e-10 4.817013745e-10 9.471444824e-10 2.567154369e-10 4.456715684e-10 4.319889618e-10 4.398761422e-10 2.366947444e-10 4.955609536e-10 5.981392321e-10 5.560148251e-10 4.420662552e-10 3.171494859e-10 5.937977368e-10 2.572076829e-10 2.19717558e-10 8.711100761e-10 7.12511549e-10 3.549597185e-10 3.79526775e-10 1.122010927e-09 8.370420019e-10 5.053946555e-10 6.05439191e-10 5.865320048e-10 8.149138129e-10 1.174083001e-09 8.342059702e-10 1.270812606e-09 5.664320327e-10 9.44141041e-10 1.063098758e-09 7.826839339e-10 7.929744602e-10 8.155300941e-10 9.739014129e-10 9.454612919e-10 7.477537558e-10 1.365910744e-09 1.033126838e-09 7.985110797e-10 1.290097206e-09 1.132995981e-09 1.338831749e-09 1.317008038e-09 7.965051967e-10 1.090109991e-09 6.372691482e-10 1.148248417e-09 6.513059907e-10 1.178024451e-09 9.532727152e-10 9.539495872e-10 1.12476836e-09 1.480186071e-09 1.403825117e-09 8.591898816e-10 9.335416054e-10 1.058519387e-09 9.053724742e-10 7.035336806e-10 1.014619374e-09 7.717146888e-10 7.895967148e-10 1.468117867e-09 1.335312924e-09 1.489373309e-09 1.527833539e-09 1.840794943e-09 1.425136668e-09 1.494508197e-09 1.583226055e-09 1.59945021e-09 2.753602466e-09 1.11214177e-09 1.783037392e-09 1.433386386e-09 9.653219911e-10 1.160181878e-09 1.311298377e-09 1.544004323e-09 1.042556939e-09 5.481470697e-10 3.737375262e-10 4.186072655e-10 8.824211888e-10 1.566666116e-09 2.489291516e-09 2.420550436e-09 2.005467559e-09 2.631304949e-09 3.987105205e-09 2.477322321e-09 1.785511337e-09 2.636112413e-09 1.649527796e-09 3.854489667e-09 3.263591172e-09 2.637014991e-09 1.573312296e-09 1.417768124e-09 1.596920027e-09 1.326798437e-09 1.686765268e-09 2.030409602e-09 1.238990635e-09 3.892234626e-10 6.383493259e-10 8.813029039e-11 7.277388738e-11 1.156249314e-10 4.463610302e-10 1.627935859e-09 2.779455691e-09 2.970764112e-09 3.495983359e-09 1.870264122e-09 5.867249972e-09 5.795319633e-09 8.079241965e-09 6.968695384e-09 5.551951871e-09 7.044250483e-09 5.950450123e-09 5.584271131e-09 3.282149989e-09 2.116658939e-09 1.051364993e-09 4.483623994e-10 1.201917401e-10 7.080606663e-11 3.532999641e-10 2.516971365e-10 1.16931105e-10 2.125734454e-10 6.941472461e-14 4.909277765e-10 2.033057766e-10 1.655454774e-26 0 2.681331399e-10 5.021290166e-10 5.630006338e-10 3.632949642e-10 8.07781116e-10 1.127919911e-09 3.081282195e-09 4.273184426e-09 5.356095651e-09 2.778020815e-09 6.553745369e-09 6.922461154e-09 7.195708797e-09 6.95415527e-09 3.99252903e-09 4.542327769e-09 2.729584409e-09 4.141831867e-09 2.140070156e-09 2.190933377e-09 4.95568652e-10 3.262925374e-10 8.539146522e-11 1.862076517e-10 2.98362349e-10 7.49904314e-10 1.94227553e-09 2.019330413e-09 1.787862689e-09 1.657555859e-09 1.671879471e-09 1.316351947e-09 2.438855017e-09 3.795636284e-09 2.275030943e-09 3.744672174e-09 2.634697903e-09 1.952569974e-09 3.083545733e-09 1.315560836e-09 2.604201448e-09 3.04207737e-09 2.160980355e-09 2.220033617e-09 1.448223271e-09 1.131230385e-09 8.192722907e-10 1.058031365e-09 7.676283132e-10 7.761565982e-10 7.29894239e-10 1.899226438e-09 1.067908742e-09 2.005524225e-09 1.117565923e-09 1.522742839e-09 1.368834296e-09 1.976491323e-09 2.322754509e-09 1.605487952e-09 2.099915748e-09 1.539913649e-09 1.591080738e-09 1.622239354e-09 1.351868276e-09 2.068539815e-09 1.011356873e-09 1.200280205e-09 1.020053414e-09 1.013002207e-09 4.860940805e-10 1.038805109e-09 1.191967184e-09 1.461808273e-09 1.191842877e-09 9.056925587e-10 1.509966312e-09 7.57251338e-10 9.787106236e-10 1.446554539e-09 1.041549e-09 1.073454029e-09 1.656540609e-09 1.657832497e-09 1.058356242e-09 9.007521752e-10 5.200116018e-10 1.606274278e-09 8.913740939e-10 6.682750501e-10 1.247486364e-09 9.536158937e-10 7.960102971e-10 5.49884783e-10 7.087864086e-10 9.871451199e-10 1.568661806e-09 1.47121563e-09 9.075586735e-10 1.064022647e-09 1.21806819e-09 6.809605938e-10 7.539546511e-10 1.489706023e-09 1.566851257e-09 4.372230305e-10 7.247486896e-10 7.05840532e-10 7.013093634e-10 6.545527248e-10 6.678575521e-10 7.371915351e-10 6.817503676e-10 1.941370946e-10 3.308311374e-10 3.9344597e-10 3.917464159e-10 5.565913759e-10 6.306096182e-10 9.826420583e-10 5.116875864e-10 3.912486103e-10 9.056977731e-10 9.305457858e-10 7.02523977e-10 5.228931746e-10 1.513520044e-10 4.965938769e-10 4.35871887e-10 4.864300205e-10 4.531009653e-10 4.763834697e-10 3.845966255e-10 5.230910518e-10 2.655607065e-10 2.139801971e-10 1.908974511e-10 2.739085577e-10 8.291733255e-10 4.700067339e-10 5.657105906e-10 3.716918854e-10 3.043500941e-10 4.684967756e-10 3.542014884e-10 4.236549339e-10 +5.057013224e-10 9.119583838e-10 2.261229114e-10 4.122097417e-10 5.310211184e-10 3.41940691e-10 3.721307908e-10 1.971783577e-10 1.872938329e-10 2.512368291e-10 3.2370584e-10 7.109539732e-10 3.251804239e-10 2.195628121e-10 3.599619895e-10 1.156692465e-09 6.256154334e-10 7.53402884e-10 6.078589331e-10 6.672311484e-10 5.205207179e-10 6.47785248e-10 6.830573094e-10 1.615561556e-10 5.3958028e-10 4.581159927e-10 5.282922329e-10 7.77797254e-10 4.109398121e-10 6.029364656e-10 3.373887386e-10 6.593790398e-10 8.474398407e-10 5.351930226e-10 4.548317283e-10 4.042399585e-10 5.664584623e-10 1.132049441e-09 1.33817346e-09 1.214558343e-09 1.063898202e-09 1.009470082e-09 1.231116063e-09 9.421588347e-10 9.141743967e-10 1.017618814e-09 1.183880551e-09 9.181374128e-10 7.245943765e-10 1.075027078e-09 9.661030979e-10 1.023330191e-09 6.594794662e-10 6.021092322e-10 1.019126931e-09 1.168434021e-09 9.780933131e-10 9.153644786e-10 7.404172027e-10 5.517013601e-10 5.376275559e-10 1.392838149e-09 1.369210884e-09 1.35133055e-09 1.705599116e-09 1.337652201e-09 1.173177781e-09 1.164032548e-09 1.046559866e-09 1.052232454e-09 9.207572727e-10 6.955008615e-10 1.555218479e-09 1.819243802e-09 7.670239466e-10 1.05131424e-09 7.122596252e-10 6.493628579e-10 8.038688824e-10 1.319500591e-09 1.428179789e-09 2.023451099e-09 2.395083369e-09 2.070238306e-09 1.775023931e-09 1.219215058e-09 1.717684594e-09 2.137742354e-09 1.368882803e-09 2.041986406e-09 1.276401006e-09 1.275605332e-09 1.517490175e-09 1.509117964e-09 1.380245906e-09 1.376905266e-09 1.263819057e-09 4.952614371e-10 6.02312306e-10 1.06356106e-09 1.003348473e-09 1.974897351e-09 2.330914227e-09 3.078554324e-09 1.93561593e-09 2.107824647e-09 3.648837213e-09 2.339646446e-09 2.552368126e-09 2.305964076e-09 3.070918514e-09 2.155444987e-09 3.200526674e-09 1.515736734e-09 2.332611464e-09 2.671645664e-09 1.610381085e-09 1.456680272e-09 1.368745097e-09 1.352582039e-09 8.365584438e-10 2.164871474e-10 8.267215825e-11 1.020003905e-10 7.338245204e-11 5.836088583e-10 1.545082482e-09 3.295600716e-09 3.049688026e-09 3.444727962e-09 2.453975741e-09 4.119951164e-09 5.41818313e-09 8.470340974e-09 6.547756913e-09 7.483243542e-09 5.473053901e-09 5.566250664e-09 4.798464316e-09 5.341692293e-09 3.200337735e-09 2.488148839e-09 1.586927892e-09 4.420197674e-10 5.260230137e-10 1.507319848e-10 1.626646438e-25 9.709151075e-11 1.470127129e-10 2.645875659e-10 0 1.765027969e-10 7.814361734e-11 4.711180018e-12 3.229688669e-10 1.178747315e-09 5.940991054e-10 1.559301503e-09 2.074155807e-09 4.486366181e-09 5.029998173e-09 5.49811674e-09 6.784640527e-09 5.715624647e-09 6.545433456e-09 6.700903747e-09 6.540932911e-09 5.226691051e-09 3.221152949e-09 3.444053788e-09 3.722965049e-09 2.547529662e-09 2.977144996e-09 2.39471136e-09 4.560185562e-10 3.828192484e-10 4.235756484e-10 3.798475302e-20 4.086667437e-10 4.977140991e-10 1.146677389e-09 1.15661666e-09 1.988288e-09 1.432974644e-09 1.565225344e-09 2.855772508e-09 2.339779038e-09 2.452648803e-09 2.606490006e-09 2.947589141e-09 2.119361868e-09 2.982860361e-09 2.383755267e-09 3.338149164e-09 2.28628467e-09 2.907550662e-09 2.170732226e-09 4.670224799e-09 2.200873916e-09 6.766629515e-10 6.158317652e-10 4.968271559e-10 7.367956784e-10 8.057336431e-10 8.454713916e-10 1.202435032e-09 1.737091575e-09 1.547144269e-09 1.223603209e-09 2.431254417e-09 1.6873259e-09 2.146278187e-09 1.235974798e-09 1.136544156e-09 1.567554139e-09 1.840119004e-09 1.458726313e-09 1.369658519e-09 1.775441368e-09 1.747110582e-09 1.40697009e-09 7.796164592e-10 1.081420156e-09 1.268408482e-09 1.528947081e-09 7.533238103e-10 9.565431478e-10 1.164066044e-09 5.757215624e-10 1.584968118e-09 1.331510223e-09 1.319925532e-09 1.122537349e-09 1.376455979e-09 1.044257291e-09 1.072280846e-09 9.976985178e-10 1.191606919e-09 8.710106533e-10 8.387982198e-10 1.000913817e-09 8.191139685e-10 1.103142669e-09 7.478647759e-10 1.053849724e-09 1.515897517e-09 1.406939489e-09 1.529962557e-09 1.186959236e-09 2.780913946e-10 9.490759741e-10 1.145082798e-09 1.199100899e-09 1.587888941e-09 6.401550091e-10 6.809637925e-10 9.383344393e-10 1.423196358e-09 1.074972789e-09 7.165051476e-10 5.467628496e-10 1.02141308e-09 5.526717741e-10 7.300168529e-10 7.027698306e-10 6.176788511e-10 5.464510098e-10 6.088543243e-10 3.590368703e-10 3.658053754e-10 4.964799202e-10 3.601900799e-10 2.289887847e-10 4.850209014e-10 5.088487247e-10 6.769217479e-10 6.64850591e-10 5.4642916e-10 3.990628828e-10 7.176168044e-10 5.09525099e-10 3.314129173e-10 2.388723509e-10 5.68309803e-10 6.314129309e-10 2.764307088e-10 5.035413639e-10 7.043428165e-10 2.38642133e-10 4.167617057e-10 3.064061408e-10 4.898317829e-10 1.604071177e-10 7.705069318e-10 1.865415021e-10 3.169453923e-10 1.175870951e-10 2.270792977e-10 5.273024206e-10 6.918596117e-10 +4.046084916e-10 2.132134985e-10 3.238460069e-10 2.253800918e-10 2.238359412e-10 6.113269159e-10 5.630189066e-10 5.62159278e-10 4.017308909e-10 5.544532996e-10 2.988107625e-10 3.904697533e-10 2.207739293e-10 1.907064825e-10 3.968652567e-10 3.302389277e-10 4.253170074e-10 3.78627402e-10 4.128186792e-10 1.047654207e-09 2.284811609e-10 5.762935058e-10 3.337485521e-10 3.854751176e-10 7.377446792e-10 3.639139871e-10 5.592566958e-10 5.43929073e-10 4.380694982e-10 2.206389497e-10 4.670827671e-10 8.326323484e-10 8.597919859e-10 4.914320675e-10 3.251375394e-10 4.773615562e-10 1.134163954e-09 8.027966176e-10 6.758867588e-10 1.66765223e-09 1.264460959e-09 9.908576423e-10 1.229202931e-09 1.208599671e-09 1.059806964e-09 6.98247389e-10 1.478139209e-09 7.2253278e-10 8.010823352e-10 7.065843809e-10 1.087638615e-09 9.873950612e-10 4.335930191e-10 7.087514009e-10 9.663757202e-10 8.395724485e-10 4.901146403e-10 6.761679095e-10 8.051411481e-10 7.317501281e-10 7.437911622e-10 1.012594727e-09 8.287887851e-10 4.134471705e-10 1.296010596e-09 9.238749945e-10 9.57202641e-10 8.740320463e-10 8.24234559e-10 1.060676374e-09 1.721002874e-09 9.203327396e-10 1.796870386e-09 1.319144943e-09 1.096474112e-09 9.04042648e-10 7.32224541e-10 5.763588836e-10 1.541090727e-09 1.682215751e-09 1.884736989e-09 1.933558739e-09 1.600899162e-09 1.935078042e-09 1.853240633e-09 2.209738644e-09 1.937828542e-09 2.456411063e-09 1.508549288e-09 1.367578949e-09 1.423407994e-09 1.926000258e-09 9.207671789e-10 6.360533688e-10 1.12994795e-09 9.766861431e-10 1.628793424e-09 5.095274682e-10 4.160149889e-10 1.119571783e-09 1.049575227e-09 1.351308193e-09 3.151746672e-09 1.804319399e-09 2.900390544e-09 1.830805544e-09 1.688033745e-09 2.152157076e-09 2.804819611e-09 2.042771193e-09 2.996709073e-09 4.313853681e-09 2.864810711e-09 2.329508221e-09 2.179994059e-09 1.944098401e-09 1.758812724e-09 2.157857857e-09 2.186851016e-09 2.544568806e-09 4.416804715e-10 2.705472655e-10 1.591603367e-10 3.12091175e-10 2.300457171e-10 1.288451599e-18 7.142694662e-10 2.295330564e-09 3.380340259e-09 2.912521732e-09 3.42676972e-09 3.59224086e-09 6.577872232e-09 8.320410589e-09 6.190708154e-09 5.689085481e-09 5.582833368e-09 4.075519355e-09 4.837071088e-09 4.254967991e-09 5.045133486e-09 4.01994341e-09 3.120133752e-09 2.977080988e-09 1.116771468e-09 8.154497553e-10 4.38021483e-10 3.233064958e-10 1.454390032e-12 9.105283103e-11 2.829264798e-10 7.700854069e-11 5.03144301e-10 5.276115379e-10 9.499879792e-10 1.271306014e-09 2.262986504e-09 2.952284633e-09 2.589717216e-09 4.404411886e-09 3.368019668e-09 5.729435635e-09 6.363673447e-09 6.889736444e-09 7.411895377e-09 6.956954181e-09 8.062940404e-09 4.762448957e-09 2.710374753e-09 2.58550834e-09 3.132121338e-09 2.33419909e-09 1.478068879e-09 1.694723859e-10 2.982392357e-10 1.506618636e-10 4.660916569e-11 1.774623118e-14 1.411407546e-10 1.482790859e-09 1.928752203e-09 2.366137286e-09 1.545413492e-09 2.525250338e-09 2.734470394e-09 1.824900855e-09 2.603132926e-09 4.470783161e-09 3.288182739e-09 3.02207777e-09 2.083832508e-09 2.604694819e-09 1.928802299e-09 2.192497319e-09 1.227881633e-09 3.299278309e-09 1.614510623e-09 1.827088619e-09 1.102230465e-09 6.238542627e-10 7.047014581e-10 7.893904339e-10 4.160456264e-10 5.871004321e-10 8.072461127e-10 1.442112279e-09 2.418301531e-09 1.939926134e-09 9.236138482e-10 1.689189844e-09 2.007541574e-09 1.787706013e-09 2.021528926e-09 2.113059732e-09 1.502943064e-09 1.919038585e-09 2.045454448e-09 1.87864596e-09 2.454676098e-09 1.629812677e-09 1.041568126e-09 6.568533582e-10 7.277415069e-10 6.45681482e-10 1.02263054e-09 8.741093118e-10 7.604939469e-10 8.756790835e-10 1.175208598e-09 7.616327496e-10 1.139437968e-09 1.164657883e-09 1.018655206e-09 1.041259314e-09 1.484441743e-09 1.366111003e-09 7.600845314e-10 1.342664752e-09 1.133092995e-09 6.618404665e-10 4.357185341e-10 9.711880715e-10 8.231577541e-10 6.917920725e-10 6.040851514e-10 3.298134791e-10 9.210113413e-10 1.557879162e-09 8.704558214e-10 1.492827063e-09 1.01876569e-09 8.259048885e-10 2.042241439e-09 8.316090675e-10 1.383703886e-09 1.065922776e-09 7.180467074e-10 1.030463316e-09 7.839246739e-10 8.134741355e-10 7.459914407e-10 8.644715106e-10 9.102282079e-10 8.537653044e-10 1.187581633e-09 7.428831313e-10 5.282504717e-10 3.051436368e-10 4.915176824e-10 5.560031293e-10 6.09760537e-10 9.050181187e-10 7.095731785e-10 7.001654039e-10 4.651295571e-10 3.388122703e-10 1.076592034e-09 3.605744739e-10 6.20105328e-10 1.408552481e-10 5.911836447e-10 1.255973769e-09 9.311922395e-10 5.782084977e-10 4.328579189e-10 5.787842185e-10 2.675770092e-10 1.964009924e-10 4.499243368e-10 2.238347943e-10 3.202520221e-10 6.554202036e-10 3.143032433e-10 5.872806098e-10 2.619909687e-10 5.845128098e-10 2.155129974e-10 4.898393396e-10 3.440508587e-10 3.205748982e-10 +9.757619216e-10 3.747607989e-10 1.092616979e-09 1.245936918e-10 2.52190926e-10 8.335588704e-10 5.838620769e-10 2.614564795e-10 2.047231534e-10 1.819324997e-10 7.115290516e-10 6.158327183e-10 1.723719619e-10 2.561902491e-10 2.065992908e-10 3.229037529e-10 2.571767338e-10 2.322719637e-10 3.740181268e-10 5.461258772e-10 7.102122946e-10 2.179701435e-10 4.088594527e-10 4.886943232e-10 4.45558743e-10 5.49698214e-10 5.680923246e-10 3.886185092e-10 4.932451452e-10 3.305577012e-10 3.210472326e-10 4.719715103e-10 2.994796038e-10 2.249039559e-10 7.917736351e-10 3.126795671e-10 6.227577224e-10 1.177236355e-09 6.441043926e-10 8.24597831e-10 8.294771189e-10 1.521594454e-09 1.328723944e-09 8.269800376e-10 5.646982413e-10 1.250755774e-09 9.31736084e-10 1.484609997e-09 1.355375194e-09 9.16042196e-10 1.0437422e-09 1.301842082e-09 9.784448629e-10 8.903497742e-10 6.995130605e-10 1.094723905e-09 9.301240408e-10 1.0398236e-09 7.218529552e-10 8.959110682e-10 9.901646415e-10 8.650682315e-10 7.271845617e-10 1.481956985e-09 8.055313041e-10 6.144086823e-10 1.205945878e-09 8.753369566e-10 7.248933862e-10 9.928276918e-10 2.239237236e-09 1.497189244e-09 8.056740635e-10 1.421584251e-09 1.89522348e-09 9.275201015e-10 3.832879828e-10 5.501596279e-10 1.774403334e-09 9.826312472e-10 1.056643031e-09 1.894857893e-09 2.371285201e-09 2.186767696e-09 2.348550179e-09 1.29271822e-09 1.775305539e-09 1.756115683e-09 1.213904808e-09 1.617234996e-09 1.372754367e-09 1.582224351e-09 1.161993475e-09 2.709172372e-09 1.831211471e-09 1.867194582e-09 1.465656598e-09 6.303488584e-10 7.303461046e-10 1.134688077e-09 5.144813607e-10 1.766281278e-09 2.474980721e-09 2.809450275e-09 1.455321299e-09 1.466178666e-09 4.023020697e-09 2.218606281e-09 1.356397302e-09 1.565762857e-09 2.85740096e-09 3.226506662e-09 3.071574237e-09 2.318969084e-09 1.990851294e-09 2.128473005e-09 2.103719784e-09 1.504499761e-09 1.481356346e-09 1.934457657e-09 1.264093129e-09 7.061748974e-10 2.838749969e-17 1.019056324e-10 2.341747247e-10 1.290525953e-10 7.315116708e-10 1.531118497e-09 2.768828315e-09 3.467720676e-09 3.25844896e-09 3.417013086e-09 5.656134223e-09 4.424847585e-09 6.395555185e-09 6.804703084e-09 8.10454688e-09 7.409908183e-09 4.560862022e-09 5.440975904e-09 4.107815488e-09 3.956087928e-09 3.497249986e-09 3.04050929e-09 2.882061542e-09 1.945260655e-09 1.715333655e-09 1.05481333e-09 6.740471603e-10 1.661183137e-09 8.160797496e-10 1.162117685e-09 1.274114636e-09 1.378560886e-09 1.678540627e-09 2.619763204e-09 2.787421144e-09 3.0282811e-09 5.243526074e-09 5.922449304e-09 5.669547384e-09 5.128621963e-09 7.090181519e-09 6.644553878e-09 8.0439239e-09 7.191657784e-09 5.573225058e-09 3.711170448e-09 2.325346657e-09 3.239885014e-09 2.597120868e-09 2.713447559e-09 1.37289182e-09 7.394768357e-10 7.987871434e-11 1.460740185e-10 2.240076422e-10 1.203785569e-10 4.04484306e-10 6.296315833e-10 1.274911341e-09 2.277356729e-09 1.3695007e-09 2.256733032e-09 2.303112056e-09 2.590533628e-09 2.639400205e-09 2.72712274e-09 2.679446093e-09 2.543831678e-09 1.480614609e-09 2.9662025e-09 3.341725514e-09 1.921328855e-09 2.353387422e-09 2.695238604e-09 3.317421515e-09 1.644275331e-09 1.215051951e-09 8.701536559e-10 9.158421401e-10 6.844229349e-10 3.049343662e-10 3.856281549e-10 1.020679805e-09 1.402338279e-09 1.699935889e-09 1.304671554e-09 1.589632577e-09 2.043242699e-09 1.575397321e-09 1.183734376e-09 1.577039089e-09 1.55277073e-09 1.089272933e-09 1.818243627e-09 1.736983427e-09 2.347731217e-09 2.499887027e-09 1.739264347e-09 1.558251217e-09 1.172138487e-09 1.092880263e-09 1.173788449e-09 7.749014362e-10 7.834281705e-10 9.42857799e-10 1.459534096e-09 7.190313196e-10 1.647141286e-09 1.622978406e-09 1.35414723e-09 1.060633875e-09 9.150930087e-10 1.130418955e-09 1.009792545e-09 1.009935722e-09 1.096634696e-09 1.248263534e-09 1.03532898e-09 1.298049774e-09 1.30402503e-09 4.723630226e-10 8.640007141e-10 8.902653468e-10 5.83421801e-10 1.717310029e-09 1.035401031e-09 1.023634637e-09 8.042356427e-10 8.364194387e-10 1.040102833e-09 1.672900196e-09 9.807180521e-10 9.128588173e-10 1.238565194e-09 7.758770428e-10 1.214245415e-09 5.624044857e-10 1.026709531e-09 1.621069161e-09 1.070161912e-09 4.996013361e-10 6.951977328e-10 3.722445925e-10 9.484364722e-10 7.265214947e-10 8.172657998e-10 4.401468162e-10 4.981400003e-10 2.430880696e-10 3.307882637e-10 2.670927698e-10 5.737606271e-10 4.970011026e-10 5.652663361e-10 4.466096902e-10 9.50927337e-10 7.163051869e-10 4.977293079e-10 5.027336025e-10 5.994294613e-10 6.142592214e-10 5.358573319e-10 3.0028984e-10 4.546743506e-10 5.050526948e-10 3.46370814e-10 4.1919994e-10 3.419699822e-10 3.823667953e-10 6.554361807e-10 6.479899322e-10 3.801424105e-10 3.047670183e-10 2.631891179e-10 6.757317147e-10 9.882182947e-11 4.084867095e-10 2.415417925e-10 +4.303676883e-10 2.042765871e-10 1.89331903e-10 1.136853784e-10 7.62811554e-10 1.432044803e-10 6.978456431e-10 3.447888781e-10 5.776910423e-10 8.225098807e-10 5.797047988e-10 3.654791088e-10 3.027902084e-10 3.360454283e-10 3.277481716e-10 5.771080031e-10 5.416463429e-10 5.438856423e-10 3.71713568e-10 9.806027699e-10 3.604756197e-10 4.927739921e-10 6.153673666e-10 7.600622162e-10 5.043360166e-10 7.231795582e-10 8.596062337e-10 5.409510462e-10 3.394034427e-10 1.739594236e-10 3.271108826e-10 4.884033579e-10 8.543783015e-10 8.181190721e-10 8.484182009e-10 7.280561121e-10 4.492829108e-10 1.05710217e-09 1.108938416e-09 7.358438593e-10 6.738197913e-10 6.053373082e-10 1.508306408e-09 7.388197207e-10 4.642796048e-10 1.606203559e-09 1.222126433e-09 1.0496357e-09 1.225533143e-09 9.618864728e-10 5.713368532e-10 1.577671463e-09 8.010867563e-10 6.592193376e-10 8.911051129e-10 1.20318551e-09 1.085974285e-09 1.309932101e-09 1.21955485e-09 7.741494669e-10 1.104637656e-09 1.078036336e-09 1.18152374e-09 8.464992515e-10 1.149811935e-09 1.063882704e-09 5.9894437e-10 1.100230967e-09 1.181069095e-09 1.265612233e-09 9.124088615e-10 1.07999484e-09 1.234912e-09 5.74360145e-10 6.801425588e-10 8.081697002e-10 1.238774555e-09 7.854877039e-10 8.035500034e-10 1.087666632e-09 1.501235128e-09 2.081593955e-09 1.872974774e-09 2.853488541e-09 9.37390976e-10 1.76193385e-09 1.772397228e-09 1.605931323e-09 1.946859401e-09 1.664102015e-09 1.764385347e-09 1.397443532e-09 1.08010807e-09 1.183596954e-09 1.107920355e-09 1.284032265e-09 7.808024424e-10 4.891241733e-10 5.752932819e-10 4.766242228e-10 9.641616599e-10 1.314582562e-09 2.441171636e-09 3.151665124e-09 2.813403685e-09 3.193113533e-09 3.543510085e-09 2.484175581e-09 1.668785782e-09 2.160661375e-09 2.590899661e-09 3.948295785e-09 3.560999616e-09 2.71723362e-09 1.651694443e-09 8.510627286e-10 5.855322713e-10 2.285534362e-09 1.391759602e-09 1.718867328e-09 1.685394682e-09 1.169780038e-09 3.018938947e-10 2.761253061e-10 2.408652522e-10 2.321746333e-10 1.914231215e-10 1.879283291e-09 2.740596292e-09 2.921399159e-09 3.645735834e-09 3.516086625e-09 2.106949937e-09 5.861743525e-09 6.224742228e-09 7.284200978e-09 6.945650448e-09 7.031134485e-09 5.234697454e-09 7.462077396e-09 6.22018807e-09 5.360773635e-09 4.1048223e-09 5.660873561e-09 3.257171108e-09 2.520799424e-09 1.929843785e-09 2.571571841e-09 2.056242064e-09 1.936030892e-09 1.839445249e-09 2.261640976e-09 2.462934342e-09 2.287379959e-09 2.639498577e-09 4.767928046e-09 3.272574762e-09 3.776798731e-09 5.818615103e-09 5.359019905e-09 4.175318515e-09 4.975054659e-09 7.56950067e-09 6.238776712e-09 8.538766401e-09 6.869407479e-09 3.172298194e-09 2.927833628e-09 4.383794233e-09 4.177909696e-09 2.492439625e-09 2.643934963e-09 1.842546551e-09 2.260583123e-10 3.177683023e-10 4.762960317e-10 1.272752832e-10 3.693252386e-10 5.677951436e-11 1.949694627e-09 1.181271068e-09 1.487356788e-09 1.874271815e-09 1.826389248e-09 1.828346653e-09 1.818917517e-09 2.561586406e-09 2.995328953e-09 2.476687123e-09 2.603681161e-09 2.947749462e-09 2.215371371e-09 2.314175725e-09 2.580243598e-09 2.369274245e-09 3.498414781e-09 3.672974945e-09 2.956361945e-09 1.232610499e-09 1.06705009e-09 5.727074895e-10 7.616085556e-10 5.907037946e-10 1.563904841e-09 1.381843953e-09 1.666047589e-09 1.227168364e-09 1.398927979e-09 1.425747301e-09 1.419486716e-09 1.83244834e-09 1.467511833e-09 1.243019763e-09 8.984368895e-10 1.753243593e-09 1.664311586e-09 1.839725498e-09 2.120263969e-09 2.447140642e-09 1.574030304e-09 1.549827899e-09 1.661348853e-09 1.630195076e-09 4.264677001e-10 9.767500859e-10 6.887394886e-10 9.528133176e-10 1.46259845e-09 1.547614251e-09 1.169038596e-09 9.299983965e-10 8.637246616e-10 3.912615988e-10 8.772469392e-10 1.234850802e-09 1.981691559e-09 1.291592748e-09 2.007514518e-09 1.002577778e-09 1.026748857e-09 9.88938383e-10 8.057468588e-10 6.80327506e-10 6.486826403e-10 8.008215332e-10 1.186878799e-09 8.505498095e-10 1.027260734e-09 2.094116066e-09 1.09536491e-09 1.326001501e-09 1.135990103e-09 5.781329944e-10 1.289990062e-09 1.139131691e-09 8.011526126e-10 1.132216502e-09 1.22273171e-09 7.164141409e-10 9.676787295e-10 1.06220484e-09 8.084155515e-10 6.106236965e-10 1.087127064e-09 3.45302132e-10 3.54755009e-10 5.454956407e-10 1.474176415e-10 4.118336412e-10 5.208927609e-10 5.570886641e-10 2.537945771e-10 5.983766056e-10 4.309258665e-10 5.113050353e-10 1.430546311e-09 3.76870405e-10 4.999662125e-10 1.121406575e-09 3.157167815e-10 9.047632783e-10 2.835119931e-10 2.131856521e-10 6.614626135e-10 7.070776695e-10 1.005211069e-09 6.075983879e-10 5.203322284e-10 1.732965966e-10 7.445376781e-10 2.990721926e-10 3.373796136e-10 4.422286499e-10 2.827409296e-10 2.639721407e-10 6.62272647e-10 3.453042552e-10 4.377413363e-10 5.151659348e-10 2.913334332e-10 +3.724879392e-10 2.803979436e-10 2.626935183e-10 1.125207679e-09 6.645106095e-10 4.160151829e-10 4.871381458e-10 9.357050893e-10 4.888858959e-10 2.289749864e-10 4.322002677e-10 7.964154018e-10 2.146588095e-10 5.291226731e-10 4.985229288e-10 5.519838866e-10 5.279348297e-10 7.064602314e-10 4.870109458e-10 1.0778917e-09 2.594380918e-10 6.875620836e-10 6.939220969e-10 2.598398389e-10 4.999671744e-10 5.218264451e-10 3.035638064e-10 3.663520999e-10 5.392952147e-10 5.989222776e-10 5.643752636e-10 4.964854304e-10 5.589021634e-10 8.265297423e-10 6.125403516e-10 6.183314846e-10 5.139942075e-10 1.02079558e-09 6.885621786e-10 6.463593104e-10 1.458251618e-09 1.159287053e-09 1.363615605e-09 1.699921332e-09 1.346502116e-09 8.21540438e-10 7.392256385e-10 5.327708063e-10 1.208967843e-09 1.177927608e-09 9.198877829e-10 1.074297483e-09 8.229617071e-10 9.632343656e-10 1.295674131e-09 6.602215452e-10 5.097945697e-10 5.368814771e-10 1.004203849e-09 8.020934386e-10 1.032234124e-09 1.102793168e-09 9.681984315e-10 1.715248843e-09 1.716504509e-09 1.254891865e-09 7.034273907e-10 1.200000248e-09 1.207721254e-09 9.541919106e-10 5.6411503e-10 1.166654602e-09 1.044020808e-09 7.02344504e-10 1.279930421e-09 1.438240753e-09 8.596909661e-10 1.224404164e-09 4.516267204e-10 1.353214298e-09 1.671785101e-09 1.23786732e-09 2.204498024e-09 1.876928091e-09 1.343568137e-09 1.782156165e-09 1.871153187e-09 1.579614108e-09 1.648515095e-09 1.360725998e-09 1.726770815e-09 1.275865313e-09 1.263359323e-09 1.389139955e-09 1.811754059e-09 1.454404042e-09 8.861274664e-10 8.041095617e-10 1.900368117e-10 6.18835272e-10 1.252933643e-09 1.208240731e-09 2.03194285e-09 2.021903078e-09 2.148763197e-09 2.326634652e-09 3.023908241e-09 2.333962705e-09 2.010403938e-09 2.0787839e-09 2.06762695e-09 3.348647216e-09 2.884177424e-09 3.153105125e-09 2.825876168e-09 1.784107243e-09 1.558150348e-09 2.040444852e-09 9.414846229e-10 1.501664626e-09 1.345258552e-09 1.341386357e-09 4.702638612e-10 5.48669875e-10 2.285027799e-10 2.898308026e-10 2.996759837e-10 4.122938795e-10 2.760039987e-09 3.468641671e-09 2.864230968e-09 3.708398698e-09 2.460182009e-09 3.831388946e-09 4.8165377e-09 6.275611183e-09 8.159193074e-09 5.641474873e-09 4.084479791e-09 4.712922304e-09 6.453590848e-09 5.680220239e-09 4.232753844e-09 6.051322721e-09 5.491006908e-09 3.502007501e-09 4.21258301e-09 3.701677296e-09 3.243104303e-09 4.933976674e-09 2.746338493e-09 3.220892806e-09 3.805031934e-09 3.634903008e-09 4.746740616e-09 3.666186134e-09 5.415848008e-09 5.238709173e-09 5.033138345e-09 5.617275755e-09 5.908384407e-09 8.576076245e-09 8.69741518e-09 6.100818897e-09 6.725882143e-09 4.476892885e-09 3.676996901e-09 3.125929587e-09 2.990549783e-09 2.733504007e-09 2.133494296e-09 2.44909626e-09 9.383249995e-10 1.744336012e-10 5.109825871e-10 7.788197273e-11 3.135539023e-10 1.573078974e-10 1.037870727e-09 2.714747868e-09 9.953906196e-10 1.823104402e-09 1.742574696e-09 2.859660719e-09 2.028317052e-09 1.589382137e-09 3.87932396e-09 3.289669288e-09 3.005268359e-09 1.889676294e-09 1.853175346e-09 1.752395589e-09 3.586926103e-09 3.117456539e-09 2.445418476e-09 1.918730026e-09 2.941749938e-09 3.315696986e-09 1.080714211e-09 1.46407237e-09 7.266705744e-10 4.597411036e-10 6.702022989e-10 6.931993881e-10 1.207812945e-09 8.238747321e-10 1.201538891e-09 2.170412635e-09 2.546799208e-09 1.384547593e-09 1.724376401e-09 1.725779481e-09 1.74104117e-09 1.673597385e-09 1.518319829e-09 1.915735831e-09 1.970095249e-09 1.48917724e-09 1.839067953e-09 1.407681215e-09 1.077362233e-09 9.665375476e-10 1.02789777e-09 1.112696181e-09 1.107366217e-09 9.310979898e-10 9.669815687e-10 7.526357032e-10 8.372917433e-10 1.447654253e-09 1.118160149e-09 9.09908265e-10 1.461024985e-09 8.905808614e-10 1.053557153e-09 9.817452283e-10 9.380933115e-10 1.256188726e-09 9.195566375e-10 1.223752065e-09 1.070101291e-09 7.441493652e-10 6.676283241e-10 1.422835372e-09 1.042019077e-09 7.748729508e-10 8.259343425e-10 9.610891004e-10 5.896744596e-10 1.273505301e-09 1.121720219e-09 9.572148419e-10 5.657032329e-10 7.059354243e-10 5.369133027e-10 9.259845767e-10 5.345657837e-10 1.009044635e-09 6.333728197e-10 6.196187579e-10 9.117462334e-10 1.128078576e-09 3.645894945e-10 5.361205592e-10 5.753462334e-10 7.549468715e-10 6.064763929e-10 2.492304192e-10 2.528247139e-10 3.199391574e-10 5.23495471e-10 9.431228234e-10 5.965483335e-10 7.047190788e-10 2.761049708e-10 6.080935022e-10 6.227151716e-10 7.722924851e-10 8.608341193e-10 7.548171845e-10 4.11484919e-10 5.363019661e-10 3.50801184e-10 5.050777132e-10 8.595719856e-10 4.413581726e-10 4.413729944e-10 3.143140839e-10 6.222922177e-10 3.522538949e-10 2.369704144e-10 2.941430989e-10 5.903003906e-10 5.905010108e-10 2.489293104e-10 3.134430601e-10 2.32121721e-10 4.609778971e-10 4.035849569e-10 3.294487989e-10 +3.362096353e-10 3.484781397e-10 5.683855342e-10 3.309633851e-10 3.660998938e-10 9.339004968e-11 4.505979524e-10 1.846868788e-10 3.888172693e-10 9.191824851e-10 3.78142899e-10 2.874494524e-10 8.056413724e-10 8.518144204e-10 3.575795077e-10 2.704610921e-10 3.919419951e-10 8.142465761e-10 2.957507965e-10 3.27087631e-10 5.698364369e-10 5.148800242e-10 6.268426279e-10 3.777455183e-10 1.837736055e-10 5.753463297e-10 2.074766972e-10 3.469914982e-10 1.872681143e-10 3.668666501e-10 1.874332912e-10 7.543861751e-10 5.089792345e-10 2.471111796e-10 2.806747056e-10 9.804125561e-10 9.457633709e-10 8.222787262e-10 8.348292179e-10 5.563346016e-10 6.968670769e-10 1.073106196e-09 1.486426663e-09 1.284145266e-09 1.138358773e-09 1.252485346e-09 1.184297388e-09 9.780540627e-10 5.290930689e-10 1.789345407e-09 7.18511838e-10 9.169545079e-10 7.017867394e-10 8.817069634e-10 1.091009162e-09 1.069354981e-09 7.494972667e-10 5.260296781e-10 9.293723099e-10 7.374155596e-10 8.494596992e-10 1.17381484e-09 1.167927394e-09 1.56916616e-09 7.918195391e-10 6.884549791e-10 1.604057122e-09 1.058269727e-09 8.697419021e-10 9.787510579e-10 5.133590224e-10 1.426467496e-09 7.275783205e-10 1.167749709e-09 8.237530113e-10 1.017890636e-09 7.69936176e-10 1.780507109e-09 1.010549488e-09 1.003429808e-09 2.429974915e-09 2.056428553e-09 1.517235783e-09 1.46539784e-09 8.330714255e-10 1.224762755e-09 2.042538615e-09 1.589033308e-09 1.095991544e-09 1.596069693e-09 1.673518249e-09 2.065105855e-09 7.909652265e-10 1.38912017e-09 9.706700354e-10 8.39057094e-10 1.166421979e-09 5.753459749e-10 6.416355789e-10 9.490241714e-10 1.231873984e-09 1.387467239e-09 2.291076131e-09 2.841558706e-09 2.619929422e-09 1.396953256e-09 2.676081697e-09 2.480172365e-09 2.825141176e-09 2.261097228e-09 1.401014458e-09 4.223874357e-09 4.166504844e-09 3.233706418e-09 2.995266151e-09 1.755308532e-09 1.116261484e-09 1.359237405e-09 2.095147615e-09 2.15966303e-09 2.040353004e-09 1.098757303e-09 8.471989819e-10 1.652800198e-10 2.522141156e-10 2.232795395e-10 2.586924911e-10 3.188961927e-10 1.00754313e-09 2.302064456e-09 2.695785399e-09 2.91537114e-09 3.380488038e-09 3.025611104e-09 4.199611466e-09 4.62090202e-09 6.200743341e-09 5.062301854e-09 6.009356055e-09 5.73385959e-09 7.578130491e-09 6.847578467e-09 5.233826719e-09 5.179659426e-09 4.688784614e-09 4.160298348e-09 5.276801184e-09 5.030267705e-09 4.434408673e-09 3.60170126e-09 4.742013852e-09 4.935391156e-09 4.650798495e-09 4.527131371e-09 6.111135858e-09 5.053808177e-09 4.029989554e-09 6.390293763e-09 6.708954118e-09 6.800956394e-09 5.892036814e-09 7.368868843e-09 7.397435669e-09 7.167204775e-09 6.160886214e-09 3.387693777e-09 2.503079104e-09 1.923808244e-09 3.126098703e-09 3.207606576e-09 2.543669396e-09 7.334777328e-10 8.182915174e-11 3.848866625e-10 1.68412926e-10 6.457272881e-11 1.112360537e-10 7.19263165e-10 1.07040177e-09 1.152105372e-09 2.477919162e-09 1.465055383e-09 2.063823848e-09 2.453614097e-09 2.51376456e-09 2.854589453e-09 2.650823819e-09 2.573033157e-09 2.094666309e-09 3.109364332e-09 2.814314359e-09 2.25653368e-09 2.604538975e-09 3.446767531e-09 1.980959372e-09 2.566672692e-09 3.048014973e-09 3.267292915e-09 1.280248629e-09 7.419773302e-10 7.418353926e-10 4.822955371e-10 5.975672674e-10 5.081878982e-10 1.569544402e-09 1.723415882e-09 1.532758986e-09 1.919751617e-09 1.522950853e-09 1.69429442e-09 1.291291584e-09 1.482666429e-09 1.331491147e-09 1.080829608e-09 2.75566504e-09 1.90984182e-09 2.080608567e-09 2.055115845e-09 1.664799482e-09 1.299311134e-09 1.564421433e-09 1.053735692e-09 6.980370741e-10 9.795469626e-10 1.455654914e-09 8.159502005e-10 8.644800304e-10 1.776863324e-09 1.017098733e-09 1.11888967e-09 9.703526818e-10 1.525256101e-09 1.328958079e-09 1.070650364e-09 1.197161016e-09 1.133419366e-09 1.34614415e-09 7.353729901e-10 1.254080121e-09 6.669883471e-10 9.23634461e-10 6.294046199e-10 6.827217261e-10 1.192404786e-09 1.409594638e-09 7.299361065e-10 1.193626339e-09 1.312288757e-09 7.152177436e-10 1.31820298e-09 9.63870552e-10 9.936085794e-10 8.639391081e-10 7.116016645e-10 1.079730626e-09 1.141163067e-09 1.320813784e-09 1.147852563e-09 8.595871204e-10 5.923473231e-10 5.461953811e-10 7.965829013e-10 4.075004085e-10 8.377380612e-10 5.203753944e-10 8.38502676e-10 4.023833003e-10 1.384132035e-10 1.031448181e-09 3.919627245e-10 3.912275278e-10 3.36834167e-10 2.832866198e-10 4.39576135e-10 9.670921424e-10 3.530017191e-10 4.318141085e-10 6.315822017e-10 7.490778808e-10 3.386960365e-10 3.232223011e-10 1.29189114e-09 5.848256249e-10 2.511619204e-10 2.783711558e-10 4.355412054e-10 2.619299174e-10 3.542089691e-10 4.962923453e-10 2.533932355e-10 2.958628355e-10 6.759393078e-10 4.451845671e-10 2.248196437e-10 3.106265682e-10 4.752386634e-10 2.765458548e-10 4.459040487e-10 2.94612702e-10 4.75913872e-10 +5.090454609e-10 2.870240607e-10 2.070645884e-10 3.554471105e-10 7.578818308e-10 3.52213442e-10 5.892280219e-10 2.604699355e-10 2.680626443e-10 3.711053973e-10 4.085619146e-10 3.890157352e-10 1.072647007e-10 6.58389085e-10 4.093309865e-10 2.788753794e-10 9.162681345e-10 5.577019711e-10 1.193010522e-09 8.113528317e-10 5.210236403e-10 2.559671112e-10 4.769348393e-10 3.261154554e-10 5.321195437e-10 5.622727785e-10 6.299215039e-10 4.816532387e-10 9.416861426e-10 3.345926883e-10 8.647014211e-10 3.98278087e-10 5.882964002e-10 6.155131884e-10 3.50717129e-10 4.937059842e-10 6.171298528e-10 7.970941932e-10 5.649347476e-10 6.41235533e-10 1.056402584e-09 8.604268725e-10 1.234435104e-09 7.325364507e-10 1.331919835e-09 7.554859192e-10 8.148277243e-10 3.870493674e-10 1.250578442e-09 1.990349026e-09 8.929854258e-10 6.971872638e-10 1.287322771e-09 7.140414578e-10 7.828967723e-10 8.797418868e-10 7.705647489e-10 9.283299947e-10 8.428131187e-10 1.209349513e-09 7.535057271e-10 8.152096266e-10 1.141675397e-09 1.460526768e-09 8.143260381e-10 6.895866813e-10 1.178469491e-09 5.913631766e-10 9.629555681e-10 6.707539237e-10 5.897192252e-10 1.593976437e-09 1.15590631e-09 9.149380625e-10 1.137011975e-09 1.188152204e-09 6.421050919e-10 4.894914566e-10 1.306250927e-09 1.854579054e-09 1.773059528e-09 1.982689561e-09 2.931450999e-09 2.399154521e-09 2.314201915e-09 1.136635031e-09 2.28369078e-09 1.039637534e-09 1.758808127e-09 1.361441376e-09 1.584060591e-09 1.103099014e-09 7.106899215e-10 1.992643208e-09 1.055978869e-09 1.600843495e-09 1.287075252e-09 8.280835733e-10 4.435369978e-10 4.286697733e-10 7.848115236e-10 1.264664771e-09 2.253118707e-09 2.366733123e-09 2.026765845e-09 2.919485574e-09 2.313752423e-09 2.115594308e-09 1.034114356e-09 2.270221915e-09 2.11451341e-09 2.823531021e-09 4.388822316e-09 4.027907211e-09 2.072358959e-09 1.86560958e-09 1.138963752e-09 1.371236359e-09 2.757518647e-09 1.95027379e-09 2.20078346e-09 1.048338206e-09 9.993514486e-10 2.984955638e-10 1.37894536e-10 1.94181068e-10 1.044292562e-10 1.236006993e-10 1.161185332e-09 1.571919631e-09 2.627401042e-09 3.467827345e-09 2.718850012e-09 2.518240484e-09 2.454511125e-09 4.212232545e-09 5.264289536e-09 7.984585532e-09 7.637432093e-09 7.75801114e-09 7.348375773e-09 6.937981081e-09 5.055203229e-09 5.038017281e-09 4.54311289e-09 5.503782303e-09 6.424665373e-09 6.565557093e-09 4.388371938e-09 4.833096878e-09 3.342212044e-09 3.966193745e-09 4.344471477e-09 4.845260368e-09 5.990427179e-09 6.576121109e-09 5.218736674e-09 5.560589159e-09 7.24426277e-09 8.322351558e-09 8.895812588e-09 8.396769954e-09 6.489356884e-09 5.693678579e-09 3.027616637e-09 2.817629008e-09 2.696900817e-09 3.073036494e-09 2.411010291e-09 2.087594934e-09 1.911499296e-09 1.34301634e-10 3.103183741e-10 6.406133376e-21 6.059128917e-11 0 4.607765251e-10 7.659382394e-10 1.697404386e-09 1.37810964e-09 2.097704822e-09 1.437423233e-09 2.263391021e-09 1.792082447e-09 2.393013947e-09 2.509675908e-09 3.58016399e-09 2.687457335e-09 2.265937935e-09 1.779994358e-09 1.984202867e-09 2.857780276e-09 3.361060729e-09 2.049600917e-09 3.109315904e-09 2.823942658e-09 2.936188304e-09 1.479179141e-09 7.878174019e-10 7.801195029e-10 8.850274745e-10 1.852560267e-10 6.238568371e-10 7.943508077e-10 1.676505552e-09 1.104885061e-09 1.556340867e-09 1.563003854e-09 1.234891242e-09 1.129690579e-09 1.97733187e-09 1.81036788e-09 1.355265301e-09 1.461690179e-09 2.586617293e-09 1.374842256e-09 2.171314421e-09 1.246574991e-09 1.697028474e-09 2.412142448e-09 8.043845774e-10 1.009818192e-09 1.173389712e-09 7.611619928e-10 3.741147508e-10 1.216050021e-09 1.118699903e-09 7.913222808e-10 6.107848032e-10 8.882847387e-10 1.134814412e-09 7.111044116e-10 1.056823154e-09 1.596061188e-09 6.498360534e-10 1.495723509e-09 1.360796165e-09 1.046975466e-09 1.115404867e-09 9.500888706e-10 5.005768622e-10 7.701570666e-10 7.372646387e-10 1.010611578e-09 1.007369994e-09 6.529270694e-10 9.289703691e-10 1.359461964e-09 1.391415354e-09 1.464217176e-09 1.425239783e-09 5.812102879e-10 1.630232796e-09 1.132405604e-09 7.0645521e-10 1.211938846e-09 1.147805558e-09 4.970114557e-10 8.036329439e-10 1.433223605e-09 9.955582518e-10 1.042325672e-09 9.235419993e-10 5.878907974e-10 8.35284253e-10 9.096041437e-10 3.956816454e-10 2.146660901e-10 5.732240739e-10 5.781092544e-10 5.751829194e-10 4.018970814e-10 5.694187662e-10 1.105361741e-09 1.680324598e-09 1.007707637e-09 2.765267948e-10 2.811193857e-10 2.807559263e-10 4.481945011e-10 7.906745675e-10 5.996568689e-10 5.481184993e-10 2.616954556e-10 2.339542241e-10 3.326930417e-10 2.485244349e-10 1.587719014e-10 3.108706643e-10 4.23546944e-10 3.125305306e-10 1.168781331e-10 6.426502769e-10 1.000202552e-09 4.688690801e-10 2.727393687e-10 7.682025879e-10 2.586396183e-10 1.937319733e-10 1.84801384e-10 +1.757109485e-10 3.515888811e-10 3.302242814e-10 4.506645039e-10 1.681005695e-10 5.668346899e-10 7.830743338e-10 2.43283898e-10 3.964465396e-10 3.356568483e-10 4.437714504e-10 3.535305336e-10 1.323795289e-10 7.011991537e-10 2.704321066e-10 3.704924325e-10 6.966288622e-11 5.814490743e-10 2.134768863e-10 4.072070696e-10 1.079294603e-09 2.397232817e-10 6.697948953e-10 7.0645067e-10 5.431909136e-10 4.510898184e-10 5.121707445e-10 1.901006408e-10 5.825343074e-10 2.880182563e-10 3.821201577e-10 5.059740712e-10 6.919335145e-10 4.157502545e-10 8.636590061e-10 4.02399685e-10 1.108631892e-09 5.286008061e-10 1.567529688e-09 1.012420338e-09 1.293241223e-09 2.135150568e-10 7.92747638e-10 1.129765014e-09 4.678765703e-10 8.2070779e-10 6.969012936e-10 1.187807533e-09 1.135496812e-09 1.317673248e-09 1.261850132e-09 1.375295969e-09 1.048207652e-09 8.13524317e-10 5.182294548e-10 4.821082497e-10 5.224982987e-10 7.4231239e-10 8.658522906e-10 8.227521817e-10 8.023229882e-10 1.103952248e-09 1.207005573e-09 9.102309687e-10 7.829803559e-10 1.149978326e-09 1.3352806e-09 1.003342159e-09 9.129642709e-10 1.303888234e-09 1.302896731e-09 1.181813095e-09 9.799234908e-10 6.247195747e-10 3.860317337e-10 9.366050965e-10 9.893693755e-10 1.121372921e-09 8.718275076e-10 2.789033362e-09 1.564989103e-09 2.282689446e-09 2.382481743e-09 2.273153527e-09 2.358355764e-09 1.665988865e-09 2.398889006e-09 1.207689365e-09 1.612090086e-09 1.691121232e-09 2.018900786e-09 1.08923185e-09 2.131063442e-09 1.784700108e-09 1.439338202e-09 1.901791333e-09 7.441898561e-10 4.280324985e-10 5.837888781e-10 9.354199792e-10 1.223468272e-09 7.192227619e-10 1.505569493e-09 3.392399866e-09 3.624397204e-09 3.020240903e-09 2.872883753e-09 2.805803951e-09 3.519755146e-09 3.193644577e-09 2.823557498e-09 1.944499783e-09 2.0648487e-09 4.210127446e-09 3.442712272e-09 2.555273455e-09 2.220061328e-09 1.628082969e-09 2.337546245e-09 9.742328726e-10 1.515245171e-09 1.664069455e-09 1.034008236e-09 3.096488703e-10 1.353824656e-13 1.429022606e-10 1.021959036e-10 4.018167422e-11 1.936179056e-15 1.024386719e-09 2.45462783e-09 3.256291222e-09 2.102075972e-09 2.900247858e-09 2.393994097e-09 3.402264558e-09 3.343688508e-09 4.506982169e-09 6.845999716e-09 7.321544343e-09 6.569594486e-09 8.140258597e-09 5.183991924e-09 5.865647711e-09 3.874738266e-09 5.087930532e-09 5.027757094e-09 5.074130721e-09 4.058053877e-09 5.562684054e-09 5.061804627e-09 6.20170662e-09 4.807145015e-09 6.583793163e-09 4.274343649e-09 6.726527896e-09 4.936002689e-09 6.171434197e-09 6.756868292e-09 7.906424513e-09 7.752145704e-09 6.493554068e-09 8.144778356e-09 4.397034123e-09 3.349450577e-09 2.747944513e-09 3.192254166e-09 2.589303942e-09 2.313096565e-09 2.298777672e-09 9.331380113e-10 4.795654221e-10 5.739189559e-11 1.569312222e-10 8.159800851e-11 1.265162982e-10 2.692953196e-10 8.862521649e-10 7.762999645e-10 1.070047331e-09 1.256195747e-09 1.327616032e-09 1.682541345e-09 2.904631032e-09 2.064229701e-09 2.372695727e-09 3.759580521e-09 3.132451812e-09 2.170138075e-09 2.938795217e-09 1.693486563e-09 2.749599009e-09 4.107757518e-09 1.901342422e-09 2.457550294e-09 2.394429421e-09 2.578135118e-09 1.360361159e-09 1.061214261e-09 1.094519723e-09 9.32192718e-10 7.139130106e-10 8.990957609e-10 7.906805394e-10 1.602511608e-09 1.040869686e-09 1.657516746e-09 1.575518083e-09 1.496036446e-09 1.20762181e-09 1.052748459e-09 1.228234405e-09 1.662571936e-09 1.042915485e-09 9.805105294e-10 2.246044882e-09 1.953009792e-09 1.887187913e-09 1.692435195e-09 1.553207908e-09 1.887935871e-09 1.534041818e-09 1.544573028e-09 5.409465331e-10 1.167671267e-09 1.056334251e-09 1.17803337e-09 7.530581527e-10 1.157427409e-09 1.058474118e-09 1.802297169e-09 1.578236257e-09 1.357553119e-09 1.024194486e-09 1.152333116e-09 1.701789673e-09 1.280753481e-09 3.996336164e-10 1.020439215e-09 1.112743909e-09 9.195446026e-10 1.439342398e-09 5.687073065e-10 9.095607905e-10 8.668687199e-10 1.273549717e-09 1.399112054e-09 1.382074306e-09 5.749748952e-10 1.051800942e-09 7.225513796e-10 6.487645479e-10 1.365243806e-09 1.195527066e-09 6.079905307e-10 8.991351956e-10 1.034735051e-09 1.002061833e-09 9.091371989e-10 1.209975867e-09 7.933941599e-10 1.27704777e-09 5.313597899e-10 3.885290491e-10 6.709216349e-10 5.627311187e-10 1.298207233e-09 3.487451875e-10 4.192340445e-10 5.531436816e-10 1.189154144e-09 4.785665445e-10 4.754459891e-10 2.370410736e-10 1.126167498e-09 3.042862118e-10 5.777994256e-10 8.69486756e-10 6.709065179e-10 6.942935615e-10 7.905450348e-10 2.240920003e-10 3.476399528e-10 3.113836525e-10 3.363022339e-10 7.145601231e-10 6.447804904e-10 6.799550357e-10 4.708075504e-10 3.373403225e-10 1.393297825e-10 8.606839063e-10 1.061395219e-09 5.371214299e-10 5.525897399e-10 5.048000994e-10 1.045124427e-10 3.71438523e-10 8.566445336e-10 5.120079888e-10 +2.711087819e-10 4.221145912e-10 2.101033398e-10 2.005841569e-10 7.021246507e-10 4.156966246e-10 3.660628567e-10 5.337034578e-10 5.014548025e-10 4.434631643e-10 2.941911658e-10 1.510001887e-10 3.402899803e-10 5.363420861e-10 7.381858096e-10 2.5594674e-10 8.141574297e-10 8.441240979e-10 4.664278204e-10 4.447685091e-10 7.033951883e-10 5.199124703e-10 5.810403751e-10 3.844621708e-10 2.617252423e-10 3.396454723e-10 2.248529956e-10 3.368790718e-10 2.378863277e-10 1.536056725e-10 2.181633819e-10 4.71287692e-10 7.128576001e-10 1.129085038e-09 4.859037726e-10 4.191780289e-10 4.941723446e-10 8.460258353e-10 6.5582284e-10 1.618867636e-09 7.684071651e-10 1.11386518e-09 1.055924948e-09 1.004525684e-09 7.66377426e-10 8.993765593e-10 7.859651963e-10 8.804614439e-10 1.304174836e-09 9.342292779e-10 7.103104932e-10 9.560968698e-10 1.035658496e-09 1.115500658e-09 9.573442869e-10 1.227659886e-09 1.025963039e-09 6.552828154e-10 8.421709081e-10 7.593710849e-10 8.656742355e-10 1.211979808e-09 6.212227662e-10 7.01567892e-10 7.105867939e-10 1.706876431e-09 7.090228398e-10 9.165818242e-10 1.141565634e-09 9.939770257e-10 6.521994127e-10 1.036985769e-09 1.132200148e-09 1.420418331e-09 9.341792627e-10 1.177417704e-09 1.0648001e-09 1.055316108e-09 1.033382017e-09 1.412736163e-09 8.869777741e-10 1.759305686e-09 2.204413475e-09 1.99458365e-09 1.915658865e-09 1.990021953e-09 1.947120808e-09 2.360745632e-09 1.473161014e-09 2.072206092e-09 1.22190165e-09 1.135454107e-09 1.154545581e-09 1.404855319e-09 1.607396439e-09 1.212442351e-09 6.923180486e-10 1.068439927e-09 2.13998261e-10 9.550802159e-10 1.026396244e-09 1.302732056e-09 1.378186699e-09 2.640942076e-09 2.59072289e-09 3.018737815e-09 2.463990939e-09 1.717138978e-09 4.011940738e-09 2.80358772e-09 1.779005075e-09 2.372563092e-09 2.268178262e-09 2.361485798e-09 2.28566243e-09 2.124003678e-09 2.344858778e-09 1.280935423e-09 1.197700987e-09 1.727255686e-09 1.114037776e-09 1.583212535e-09 1.07684768e-09 3.942060676e-10 2.618095291e-10 6.208146802e-11 1.111608307e-10 8.911048755e-15 2.222457829e-10 3.831300078e-10 9.783290261e-10 2.31673949e-09 2.737488183e-09 2.699382763e-09 3.035480414e-09 3.268250546e-09 2.571180548e-09 4.614193954e-09 5.02907704e-09 7.127344039e-09 7.279648165e-09 7.453039333e-09 7.009104328e-09 7.388173037e-09 7.556782506e-09 7.161268574e-09 5.960936818e-09 3.917530523e-09 6.701749878e-09 5.561725694e-09 5.291163023e-09 4.947939326e-09 4.758552392e-09 5.848603417e-09 5.346187432e-09 4.069133699e-09 6.457069558e-09 6.489777536e-09 6.808078592e-09 7.300765149e-09 6.819923164e-09 5.629452872e-09 3.829747587e-09 2.584208697e-09 3.415423326e-09 2.84096298e-09 2.932756244e-09 2.728105457e-09 2.368682271e-09 1.944284708e-09 7.820810412e-10 2.568196905e-14 6.94817869e-11 6.844669772e-10 6.897222073e-11 4.991099645e-10 4.357527284e-10 1.324501229e-09 1.253065881e-09 2.176102232e-09 1.716425563e-09 2.489455997e-09 2.56026029e-09 1.732679565e-09 2.02317058e-09 2.035587218e-09 3.205319868e-09 4.827788118e-09 1.812068822e-09 2.447997097e-09 2.462415038e-09 1.919644421e-09 2.151946403e-09 3.884692556e-09 3.313427363e-09 2.462352164e-09 2.333118634e-09 2.102893594e-09 1.127889881e-09 6.785055892e-10 4.949782078e-10 3.96845027e-10 6.258565948e-10 1.001603179e-09 1.085478974e-09 9.67078811e-10 1.459541652e-09 6.176598434e-10 1.501144875e-09 1.330515159e-09 1.538054118e-09 2.080734883e-09 1.249177058e-09 1.401664601e-09 1.660562865e-09 1.879092671e-09 2.140708813e-09 1.985312956e-09 2.563932136e-09 1.995161219e-09 1.136222549e-09 1.188723498e-09 5.383341037e-10 4.936011519e-10 1.086824786e-09 8.509906892e-10 8.289371648e-10 5.890453015e-10 1.111857128e-09 1.583214009e-09 7.797599136e-10 1.592209612e-09 7.45103607e-10 1.373384935e-09 5.844062699e-10 1.102171306e-09 1.433118638e-09 9.328020107e-10 1.29310728e-09 7.249324604e-10 1.05619295e-09 1.107244633e-09 1.409998836e-09 8.226084975e-10 7.658997322e-10 8.848557642e-10 8.840176402e-10 1.495790971e-09 9.029127008e-10 1.280057357e-09 7.744278693e-10 1.411652035e-09 6.781506002e-10 6.542993951e-10 1.151387177e-09 6.69369722e-10 8.000934127e-10 3.761124211e-10 1.257497547e-09 1.109331779e-09 6.527249672e-10 1.247221411e-09 1.109305005e-09 1.152234606e-09 5.566207863e-10 3.959193403e-10 3.022607424e-10 6.914709589e-10 5.42363583e-10 6.120649412e-10 6.691020171e-10 7.550696003e-10 4.662831406e-10 7.09863652e-10 6.638134235e-10 4.855854794e-10 4.197967886e-10 4.503998796e-10 5.614170515e-10 3.815558099e-10 1.723793178e-10 3.765495133e-10 9.510146878e-10 6.439274703e-10 4.111479367e-10 7.681611243e-10 4.501952263e-10 4.522069367e-10 6.807899122e-10 1.002842658e-09 1.873760329e-10 4.717847921e-10 4.405546588e-10 1.768439084e-10 3.518292211e-10 2.790611069e-10 4.637902738e-10 2.862164573e-10 3.370847216e-10 6.926720892e-10 +7.517640532e-10 2.183895259e-10 3.674871009e-10 6.11397448e-10 5.872646247e-10 6.914935405e-10 1.356387106e-10 6.751942104e-10 3.101317479e-10 4.151402913e-10 2.36430243e-10 2.834845815e-10 2.566008359e-10 3.574058736e-10 7.113668495e-10 4.451216419e-10 2.902442324e-10 2.726789957e-10 9.496600497e-10 5.515934996e-10 6.580162176e-10 6.019701447e-10 4.552207799e-10 4.087759898e-10 3.449978298e-10 6.544465197e-10 4.750011343e-10 8.08973302e-10 2.635848273e-10 3.640046051e-10 3.03893397e-10 3.793001985e-10 6.346323037e-10 5.059307853e-10 4.048855879e-10 1.138087236e-09 1.147951539e-09 1.182921145e-09 6.973130073e-10 9.29977397e-10 5.400713531e-10 6.890795314e-10 1.357613372e-09 8.835060637e-10 1.530412579e-09 9.619950997e-10 1.159325026e-09 1.518373526e-09 8.797431317e-10 1.219247422e-09 1.102341429e-09 8.410145503e-10 4.713646007e-10 9.855546174e-10 8.339403422e-10 8.143085854e-10 1.157718888e-09 7.7789912e-10 6.728101645e-10 6.983378562e-10 4.79202027e-10 1.259251501e-09 1.181428015e-09 8.337561488e-10 1.25875695e-09 2.053955467e-09 8.309888009e-10 1.142605636e-09 5.841735234e-10 1.261101327e-09 1.265861055e-09 1.493831185e-09 1.252539527e-09 1.032132402e-09 1.236886883e-09 9.462719306e-10 1.048203971e-09 9.073790652e-10 9.05125063e-10 1.87232168e-09 1.057853066e-09 7.314741134e-10 2.66705886e-09 2.344006713e-09 1.973373166e-09 1.88412499e-09 2.439059921e-09 2.144509378e-09 1.321350614e-09 1.710049644e-09 1.522677451e-09 1.1528909e-09 1.796667511e-09 1.831367815e-09 1.240715163e-09 1.180989348e-09 1.694054152e-09 7.763097832e-10 5.06717084e-10 7.579564147e-10 6.521375441e-10 5.252297197e-10 1.443243411e-09 2.094230539e-09 2.346592006e-09 2.882959275e-09 2.215895447e-09 2.224120299e-09 3.662227471e-09 2.632977516e-09 2.706919288e-09 3.027149672e-09 3.038993018e-09 4.89313662e-09 3.233992837e-09 2.349389683e-09 2.073485458e-09 2.043844111e-09 1.826324165e-09 1.564930763e-09 1.087141477e-09 1.48212731e-09 1.145623247e-09 9.661810118e-10 5.051469445e-10 4.453340107e-10 1.216614648e-10 1.765084123e-10 4.552083509e-10 7.397593653e-10 9.362703242e-10 1.777241957e-09 2.760322914e-09 2.556665023e-09 2.947819861e-09 2.862253114e-09 2.562338569e-09 3.035488233e-09 4.545932324e-09 3.84327561e-09 6.918140778e-09 6.910040167e-09 6.997768661e-09 7.019133668e-09 6.856657892e-09 5.099127609e-09 7.701601206e-09 7.392786365e-09 5.306124765e-09 5.580564258e-09 5.685146718e-09 5.154994686e-09 7.640085029e-09 4.560940016e-09 6.407468406e-09 7.424922109e-09 9.275531767e-09 6.274055609e-09 6.938993181e-09 5.475128962e-09 6.724539996e-09 4.972480481e-09 3.515292131e-09 3.234383543e-09 2.61173209e-09 3.72022015e-09 2.484099825e-09 2.736687492e-09 2.082162307e-09 1.092747084e-09 3.632030499e-10 1.48280964e-10 1.51787749e-10 4.088006897e-10 4.393710513e-10 3.455670895e-10 6.786779902e-10 1.198194947e-09 1.141620408e-09 1.817085499e-09 1.435323857e-09 1.292781793e-09 1.701977418e-09 2.768537921e-09 2.479873992e-09 2.884518427e-09 2.70991625e-09 1.909864028e-09 2.566342508e-09 2.115550457e-09 1.558725697e-09 2.218190837e-09 2.01097787e-09 1.580015497e-09 2.232186061e-09 2.301971794e-09 2.491876367e-09 1.490327067e-09 7.129258324e-10 9.134380947e-10 4.181736752e-10 6.368916208e-10 7.428876766e-10 7.588616995e-10 1.234790026e-09 1.435236441e-09 1.172162466e-09 1.630162297e-09 1.054116081e-09 1.267346829e-09 1.409388998e-09 2.003230308e-09 1.949369893e-09 2.321391863e-09 2.058525567e-09 1.453460646e-09 1.433642463e-09 1.428139589e-09 2.08145003e-09 2.178546317e-09 1.112597966e-09 6.776358319e-10 7.168677373e-10 8.226151508e-10 8.388444408e-10 9.55385058e-10 1.266842238e-09 7.936385689e-10 8.641985765e-10 1.272238378e-09 1.417169497e-09 6.973212121e-10 9.521762149e-10 1.103788422e-09 1.365251864e-09 1.39427671e-09 8.868371673e-10 9.632263885e-10 1.249041547e-09 9.419622516e-10 6.239604695e-10 4.499100064e-10 1.074065415e-09 1.240963281e-09 1.24910958e-09 9.132278669e-10 8.928421181e-10 9.039786395e-10 8.451248146e-10 1.08989276e-09 1.129177969e-09 1.096693964e-09 1.034419967e-09 9.356632093e-10 8.02322507e-10 7.818643594e-10 1.179069875e-09 9.462513585e-10 1.223581359e-09 1.239096408e-09 1.443867443e-09 9.45099812e-10 6.039151263e-10 4.239943705e-10 4.78013997e-10 5.859394902e-10 5.941702921e-10 5.757151077e-10 3.953979861e-10 5.951127615e-10 4.762839805e-10 1.377391333e-10 2.630564743e-10 6.115377254e-10 3.389653083e-10 4.896083952e-10 5.9635313e-10 3.417958102e-10 3.534858976e-10 4.186472309e-10 3.772217373e-10 4.994923973e-10 3.807517931e-10 4.687922856e-10 3.880719997e-10 9.13823101e-10 3.223686852e-10 6.798060045e-10 4.184370705e-10 2.341172776e-10 2.758153338e-10 2.310129965e-10 2.137983874e-10 4.056479381e-10 2.121351902e-10 1.05344092e-09 4.176770051e-10 2.118166063e-10 4.96969936e-10 4.414716562e-10 +4.944862451e-10 3.940679129e-10 5.10533225e-10 4.84672112e-10 5.01681466e-10 1.759929926e-10 6.267658965e-10 2.729401158e-10 4.312115893e-10 3.203121846e-10 3.438661985e-10 2.418489701e-10 5.140773088e-10 1.035736625e-10 8.88820292e-10 8.419699687e-10 6.330870416e-10 7.610163678e-10 6.853368709e-10 6.25565512e-10 4.430600693e-10 4.207883185e-10 6.685466106e-10 1.737196901e-10 5.171708798e-10 5.451905484e-10 3.073099699e-10 1.966058052e-10 4.210387035e-10 9.858187656e-10 2.885136169e-10 6.599720973e-10 3.951833599e-10 3.153613761e-10 6.809266081e-10 7.310304341e-10 7.249127725e-10 6.864752736e-10 1.347377855e-09 9.092845116e-10 9.513668797e-10 6.790432492e-10 1.493901109e-09 1.023262774e-09 7.369218205e-10 1.11342637e-09 1.053407124e-09 1.040196487e-09 1.239509185e-09 7.671088202e-10 7.430041378e-10 9.51264229e-10 9.343927264e-10 6.866220835e-10 5.945689764e-10 1.049832671e-09 3.97445691e-10 3.691605569e-10 1.176534599e-09 6.545663755e-10 7.390042541e-10 1.220883113e-09 2.13405561e-09 8.81315985e-10 1.416406687e-09 1.316443095e-09 1.521294016e-09 4.671091075e-10 1.526536996e-09 1.029538604e-09 1.0983175e-09 8.148732087e-10 6.896828564e-10 1.361166116e-09 4.07815588e-10 1.182838084e-09 1.082765728e-09 4.693043878e-10 9.398047735e-10 1.335018244e-09 1.964747279e-09 2.283218936e-09 1.61192679e-09 2.203288569e-09 8.889678807e-10 1.9076934e-09 1.87747971e-09 1.247491579e-09 1.467139255e-09 1.728987088e-09 1.516606639e-09 1.811498234e-09 1.539197412e-09 1.272707465e-09 2.301538139e-09 1.280256596e-09 9.771596044e-10 1.08304404e-09 3.781272449e-10 3.553155774e-10 9.466574e-10 1.166110366e-09 6.001408261e-10 2.454040302e-09 2.785475841e-09 2.646946674e-09 2.867639536e-09 2.788204623e-09 1.635958212e-09 2.861141482e-09 2.080252856e-09 2.704121547e-09 2.455923956e-09 3.240595554e-09 2.519052654e-09 2.04041303e-09 1.461224379e-09 2.419764294e-09 1.808919923e-09 1.691465118e-09 2.424519001e-09 1.579371216e-09 1.158090358e-09 1.93477433e-09 5.186231883e-10 3.264848798e-10 3.208722233e-10 1.875027086e-10 0 1.127802934e-11 8.235567247e-10 1.852044195e-09 1.31750184e-09 2.17370897e-09 3.203185126e-09 3.812799929e-09 2.885323049e-09 2.250519024e-09 2.94567214e-09 3.936271551e-09 5.43698111e-09 4.68726923e-09 4.8833463e-09 5.986457643e-09 7.83348227e-09 6.669482151e-09 6.122166827e-09 5.837457617e-09 6.513651267e-09 5.940494922e-09 7.401343248e-09 6.493979783e-09 6.984906375e-09 5.826718393e-09 7.518681089e-09 5.661105197e-09 8.199622119e-09 6.316932996e-09 5.495041666e-09 5.914848387e-09 6.108375097e-09 3.678611173e-09 3.01026422e-09 2.733039714e-09 3.726968349e-09 3.311012195e-09 3.239274788e-09 2.409585867e-09 1.547308739e-09 3.591488605e-10 1.598168355e-10 3.457079151e-10 2.549037103e-10 7.917872544e-11 1.987953918e-10 4.809727723e-10 9.985323058e-10 2.02296288e-09 2.099429509e-09 1.179576151e-09 1.944780176e-09 2.315664299e-09 1.080297636e-09 3.143831706e-09 2.499785196e-09 3.955336935e-09 3.776535645e-09 3.063264683e-09 3.129094085e-09 2.815008821e-09 2.117030885e-09 1.976634991e-09 2.532046188e-09 1.670907505e-09 3.125089026e-09 3.560510241e-09 2.589466201e-09 8.052004894e-10 7.713759449e-10 9.720209105e-10 3.731956153e-10 5.5539967e-10 5.761536706e-10 8.172731036e-10 1.660881245e-09 1.163004394e-09 1.488532074e-09 2.603447223e-09 2.148782933e-09 1.332356153e-09 8.162011115e-10 8.20573873e-10 1.990783507e-09 1.911970135e-09 1.654311856e-09 1.544338831e-09 1.372206978e-09 1.392586981e-09 2.164666226e-09 1.673611824e-09 1.360824494e-09 7.015479287e-10 1.031968553e-09 1.240766578e-09 1.825961523e-09 1.302612305e-09 1.105911281e-09 1.055828649e-09 1.017755424e-09 1.907124582e-09 8.836688279e-10 7.391354926e-10 1.268038864e-09 1.093600374e-09 1.376700973e-09 1.036184541e-09 1.531854388e-09 1.523893897e-09 7.432266804e-10 9.881472436e-10 6.636698404e-10 7.650196325e-10 3.984977581e-10 3.582094099e-10 8.665678363e-10 7.228918492e-10 1.197399378e-09 8.64186544e-10 1.057595113e-09 1.267389965e-09 8.740668124e-10 7.020625555e-10 1.148511649e-09 8.950440427e-10 6.045934211e-10 4.412396652e-10 1.273900747e-09 1.099385684e-09 9.629954332e-10 8.903804927e-10 8.736696594e-10 9.928959193e-10 5.341034554e-10 3.636376343e-10 7.983374047e-10 2.900300464e-10 7.679797831e-10 6.958513959e-10 5.971253416e-11 2.426601274e-10 2.781152186e-10 4.897368004e-10 3.62102179e-10 7.578188866e-10 4.68972663e-10 8.373204676e-10 5.428927539e-10 4.501305731e-10 6.970498767e-10 3.701442014e-10 7.71166081e-10 2.874888962e-10 5.963275931e-10 6.017237133e-10 2.476680371e-10 5.009823224e-10 6.967338194e-10 2.397751445e-10 4.013147357e-10 6.146942393e-10 4.182650744e-10 4.135788946e-10 3.371216121e-10 2.841332291e-10 2.772952972e-10 3.332643989e-10 2.161348552e-10 3.858663082e-10 3.457429728e-10 5.018921053e-10 +4.824514098e-10 4.201062391e-10 3.64638934e-10 2.099631537e-10 2.709385491e-10 1.836963212e-10 5.528651707e-10 3.343307687e-10 6.54528078e-10 3.815308756e-10 1.876091734e-10 4.038288145e-10 6.470088068e-10 5.595896535e-10 5.381845285e-10 5.248423883e-10 4.410054194e-10 5.792480071e-10 4.476244593e-10 1.918918665e-10 7.097054195e-10 3.508906246e-10 4.319079122e-10 5.694163892e-10 4.119594818e-10 6.070256488e-10 4.896686855e-10 4.151202878e-10 6.556321668e-10 3.466246521e-10 4.977156522e-10 3.9836858e-10 8.594287597e-10 4.734189587e-10 3.646206107e-10 8.762171053e-10 5.354495888e-10 5.506891985e-10 8.694368989e-10 6.42863574e-10 1.074361168e-09 5.866882746e-10 9.319663104e-10 7.08778958e-10 9.70957185e-10 8.079619306e-10 4.370142104e-10 9.968925788e-10 8.813994792e-10 1.066612587e-09 1.287038831e-09 6.886919833e-10 1.326898798e-09 9.089875201e-10 1.190721048e-09 6.530753696e-10 9.822738096e-10 7.832608728e-10 1.534014463e-09 8.502692327e-10 7.892579829e-10 1.558183188e-09 9.296699379e-10 1.371978017e-09 9.619656904e-10 1.164278012e-09 6.227568292e-10 1.209122468e-09 6.183596097e-10 9.785423044e-10 9.086188732e-10 1.164787794e-09 1.054336333e-09 6.522217286e-10 7.619861533e-10 9.96274286e-10 7.696572941e-10 8.813406119e-10 1.194290351e-09 1.21574647e-09 2.340415848e-09 1.936617381e-09 1.925219542e-09 1.600784923e-09 2.098139525e-09 1.118737011e-09 1.49102459e-09 1.540381445e-09 1.599627093e-09 1.744918897e-09 1.334749147e-09 1.569579507e-09 1.398477395e-09 2.046992627e-09 1.175009714e-09 1.013573609e-09 1.057340069e-09 7.274630318e-10 7.860423047e-10 5.85679031e-10 1.062733214e-09 1.167091592e-09 9.829762637e-10 1.674445753e-09 2.777559837e-09 2.898663807e-09 2.621392427e-09 1.531610543e-09 3.017302679e-09 9.590061923e-10 2.023563476e-09 2.222365666e-09 2.901574942e-09 2.555682779e-09 3.496253608e-09 2.362337628e-09 2.287352588e-09 1.709292503e-09 2.006232322e-09 7.764452465e-10 1.689618518e-09 1.655355894e-09 1.420622428e-09 1.508521539e-09 6.556784627e-10 2.207905552e-10 1.261592093e-10 1.17247745e-10 9.623389662e-11 7.650335584e-11 2.843190688e-10 5.46107184e-10 1.45628739e-09 1.941462062e-09 1.623455171e-09 2.584891292e-09 2.652089461e-09 2.663771869e-09 3.689442676e-09 2.328763694e-09 3.304631491e-09 3.668227687e-09 4.736049151e-09 5.457809921e-09 4.270365261e-09 7.080172325e-09 6.434959235e-09 6.807769023e-09 5.833174346e-09 6.762247235e-09 6.632851914e-09 6.857478072e-09 5.705446548e-09 6.813724338e-09 7.476145079e-09 5.757059779e-09 7.549269135e-09 5.970664174e-09 3.832895904e-09 3.360161671e-09 4.52449543e-09 3.049139389e-09 3.066914853e-09 2.792322004e-09 3.364650794e-09 3.002935489e-09 2.095694682e-09 5.969097842e-10 6.775923465e-10 1.358464384e-10 2.239772401e-10 1.938505182e-10 1.426032793e-10 3.468829155e-10 1.324517635e-10 7.266577995e-10 1.254747652e-09 1.820181384e-09 2.639126287e-09 1.740662882e-09 1.336865683e-09 2.349742246e-09 1.378463103e-09 1.808449238e-09 3.018168895e-09 3.384686627e-09 4.053708077e-09 1.518250662e-09 2.449590634e-09 2.404464655e-09 1.726725908e-09 2.728952596e-09 2.646742956e-09 1.597692879e-09 2.935558406e-09 2.346144511e-09 2.355996857e-09 8.4992587e-10 8.91031999e-10 9.587187044e-10 1.736576683e-10 3.276234522e-10 3.718787916e-10 7.817927381e-10 1.081272203e-09 1.895582839e-09 1.395202283e-09 1.174290668e-09 1.638248885e-09 1.861634963e-09 2.123784179e-09 1.24510748e-09 2.325000765e-09 9.156955422e-10 1.381565291e-09 1.774728984e-09 2.231297275e-09 2.170936507e-09 1.593643786e-09 1.089034998e-09 1.479236919e-09 7.854919466e-10 1.121291582e-09 6.973060833e-10 5.9526602e-10 9.641549292e-10 7.003401904e-10 1.284518597e-09 9.041266724e-10 1.40643953e-09 1.138466674e-09 1.48101096e-09 5.925149683e-10 1.164530536e-09 9.853465986e-10 8.38071727e-10 1.197567209e-09 1.009542832e-09 7.2101821e-10 7.53690037e-10 7.827188849e-10 1.076888947e-09 1.099818216e-09 5.90828164e-10 9.598236267e-10 7.672273711e-10 6.685935515e-10 1.034401063e-09 9.395399546e-10 1.069231299e-09 1.117670789e-09 8.080673937e-10 1.22515926e-09 1.292009688e-09 7.741394176e-10 7.617778657e-10 6.562781851e-10 5.87326201e-10 1.369165394e-09 8.830494393e-10 7.287189058e-10 1.419851579e-09 8.619156945e-10 5.052951613e-10 4.543221733e-10 8.343319244e-10 5.532057649e-10 5.45705009e-10 2.563851105e-10 8.094662804e-10 9.674756162e-10 3.565147112e-10 2.409288068e-10 6.445542948e-10 8.150153691e-10 9.213676143e-10 5.784969734e-10 5.332451418e-10 7.588592466e-10 3.414813417e-10 3.551913499e-10 1.871993664e-10 3.410766896e-10 5.033158158e-10 2.314770567e-10 4.446624552e-10 3.900341962e-10 3.419677763e-10 3.359588279e-10 6.943953665e-10 7.390470251e-10 4.115073117e-10 3.503954314e-10 6.518794204e-10 1.479879843e-10 6.763831553e-10 5.237923695e-10 2.451398954e-10 1.323658798e-10 2.841187964e-10 +1.524192911e-10 3.290247174e-10 7.892286066e-10 1.188071603e-09 3.394690631e-10 1.174955905e-10 4.185299706e-10 3.532796903e-10 1.600245569e-10 3.8139873e-10 5.887076449e-10 6.142084802e-10 6.961199671e-10 5.819344345e-10 6.738858199e-10 5.287433046e-10 4.138991037e-10 6.213842738e-10 8.019603058e-10 3.186700703e-10 4.273404759e-10 5.109268799e-10 2.411132223e-10 4.427012606e-10 4.641122409e-10 4.169286787e-10 6.524009483e-10 4.465902609e-10 8.405167916e-10 8.321675168e-10 6.939620136e-10 7.54866811e-10 5.315343478e-10 1.016726251e-09 3.082945089e-10 1.045114291e-09 1.026268879e-09 5.43589849e-10 5.65603744e-10 1.040828078e-09 8.930982663e-10 7.756794058e-10 1.072214127e-09 1.498538837e-09 1.080336933e-09 6.15777982e-10 7.271092162e-10 8.25917147e-10 8.893169272e-10 1.019355949e-09 5.4294755e-10 8.861439784e-10 9.039893512e-10 4.762167648e-10 8.179193491e-10 7.14218864e-10 6.23684745e-10 6.372367611e-10 8.777701455e-10 1.054713983e-09 8.575385502e-10 5.937809371e-10 1.155600327e-09 1.131160681e-09 8.335924951e-10 1.338484484e-09 8.263825962e-10 8.483005719e-10 1.080605591e-09 1.227701396e-09 6.539524082e-10 7.653257907e-10 8.018050008e-10 9.750491945e-10 1.072468176e-09 1.391450882e-09 1.177032356e-09 9.496913668e-10 7.80867573e-10 1.662364203e-09 9.876126317e-10 1.748306691e-09 2.485993689e-09 2.020718409e-09 1.648465657e-09 2.017353862e-09 1.153949407e-09 1.965430988e-09 1.524627611e-09 1.196130044e-09 1.064186745e-09 1.02919935e-09 1.45869879e-09 1.789959294e-09 1.24538066e-09 6.34118306e-10 1.395231818e-09 8.272022464e-10 6.047637515e-10 7.643929141e-10 8.407281233e-10 1.080670837e-09 5.517760968e-10 2.344854607e-09 2.905080813e-09 2.661797989e-09 1.951709786e-09 3.943951577e-09 1.779967672e-09 2.442404721e-09 1.232694838e-09 2.627176754e-09 2.259093506e-09 2.185993714e-09 3.937586678e-09 2.178406604e-09 2.497239912e-09 2.113373383e-09 2.259405816e-09 1.373859632e-09 1.321397969e-09 1.7797988e-09 1.866835275e-09 1.110764144e-09 1.533486654e-09 6.799298301e-10 1.205667662e-10 1.810481545e-10 1.485470646e-10 5.6458082e-11 9.867671086e-11 2.038240551e-10 8.762097396e-10 2.287637451e-09 2.430931683e-09 2.386728867e-09 2.495457938e-09 2.647547686e-09 2.178275336e-09 2.110318531e-09 2.488254387e-09 4.054271856e-09 5.821471014e-09 5.388150363e-09 4.412972999e-09 7.25836e-09 6.691583507e-09 5.527460512e-09 7.449108785e-09 5.937334415e-09 4.356732525e-09 6.086776441e-09 6.601734311e-09 5.43516211e-09 5.496736891e-09 5.385654807e-09 4.128709377e-09 4.880612321e-09 3.475237218e-09 3.286749837e-09 2.465713165e-09 1.57626967e-09 2.951352697e-09 2.483018715e-09 3.003673067e-09 2.545368542e-09 9.54509026e-10 1.793256571e-10 9.883337639e-10 1.666592846e-17 5.723542104e-11 1.067379125e-10 5.698577162e-11 4.697657216e-10 7.573639568e-10 1.250015679e-09 7.767450786e-10 1.657637859e-09 1.333034648e-09 2.173919199e-09 9.394738393e-10 1.668412459e-09 2.171844229e-09 1.881321749e-09 2.71928092e-09 3.515402742e-09 2.659057942e-09 2.57950944e-09 2.431391125e-09 1.787958002e-09 1.53683284e-09 2.955909756e-09 3.414197713e-09 3.016354965e-09 2.002326851e-09 3.601088846e-09 3.030002575e-09 1.275009311e-09 3.300430419e-10 4.644958147e-10 5.642517137e-10 6.93124239e-10 5.955316318e-10 1.582972399e-09 1.102948726e-09 1.468192467e-09 1.54381036e-09 1.55553422e-09 1.887990358e-09 1.668163516e-09 1.428166159e-09 1.238521077e-09 1.382733632e-09 1.403985039e-09 2.62718332e-09 1.08963585e-09 1.898755324e-09 1.565306402e-09 1.81646e-09 1.247858264e-09 1.316882598e-09 5.891672588e-10 7.860117556e-10 6.39893083e-10 1.318615121e-09 6.186963776e-10 1.157238577e-09 1.117673923e-09 1.136645741e-09 6.255893423e-10 1.174029591e-09 8.979749475e-10 7.071477923e-10 1.261908112e-09 1.267940676e-09 1.263217834e-09 7.237252256e-10 6.10918841e-10 1.136045064e-09 1.270203085e-09 1.491737902e-09 4.966847967e-10 9.387853401e-10 8.832852843e-10 9.750524453e-10 1.060013807e-09 1.516569951e-09 8.927571077e-10 8.728134617e-10 8.514468996e-10 9.707769277e-10 9.01655572e-10 9.624431521e-10 1.534134764e-09 1.278566563e-09 9.24644943e-10 4.693725408e-10 8.195868762e-10 7.188700465e-10 4.586012044e-10 1.768816059e-09 1.296488926e-09 6.144354718e-10 1.461838451e-09 5.561910364e-10 6.177640477e-10 7.66753723e-10 6.411595036e-10 9.371072044e-10 4.106340754e-10 4.006910396e-10 1.930874949e-10 4.65141809e-10 2.321290547e-10 3.166085075e-10 3.690244787e-10 5.961122489e-10 2.571567523e-10 3.175177611e-10 6.557949747e-10 4.470152888e-10 4.995021129e-10 4.21317784e-10 3.370758621e-10 7.484186088e-10 9.627866881e-10 4.411358912e-10 4.737510515e-10 3.266868365e-10 2.672192068e-10 2.984904212e-10 1.817405081e-10 4.791330995e-10 2.420981567e-10 2.275273452e-10 4.140100625e-10 4.275787682e-10 6.245982936e-10 4.290229984e-10 1.669870523e-10 +2.912968123e-10 4.054604637e-10 5.602464921e-10 3.960496777e-10 4.036265921e-10 7.232444958e-10 3.322799216e-10 9.346427367e-10 4.331515641e-10 3.828686694e-10 3.073058833e-10 4.618222981e-10 1.855151069e-10 7.566479061e-10 8.231330185e-10 8.232974266e-10 8.013719734e-10 2.884175696e-10 4.088865342e-10 3.529815329e-10 6.558040584e-10 8.001441399e-10 2.238106531e-10 3.324440642e-10 5.208076086e-10 1.631145529e-10 2.303522469e-10 1.216387164e-09 2.107040915e-10 2.677223259e-10 3.572153352e-10 2.766484764e-10 1.819728972e-10 9.44669507e-10 6.099802195e-10 1.079849719e-09 9.039889022e-10 1.815529261e-09 7.905586993e-10 9.093545258e-10 1.253956801e-09 1.045149837e-09 8.158937794e-10 5.967580385e-10 5.558749028e-10 8.308559322e-10 8.297051764e-10 1.038549405e-09 1.256462461e-09 1.011891611e-09 9.760360578e-10 8.313434926e-10 6.974445506e-10 3.971150709e-10 8.376753139e-10 6.051032468e-10 9.902392966e-10 1.034440894e-09 1.053983025e-09 4.605318126e-10 8.098211623e-10 1.02231791e-09 6.569108702e-10 1.118626022e-09 1.541957946e-09 3.518176664e-10 9.132512713e-10 9.357684805e-10 1.290250128e-09 1.267175856e-09 1.323229334e-09 6.066734544e-10 8.694655758e-10 1.177057706e-09 4.453828433e-10 1.536116581e-09 8.958123361e-10 1.099719453e-09 9.258592613e-10 8.163396905e-10 1.329654821e-09 1.296761387e-09 1.832430438e-09 1.692091688e-09 1.885428207e-09 1.634153637e-09 8.558251075e-10 1.935870625e-09 1.330371154e-09 1.264650157e-09 1.590957427e-09 1.124561679e-09 1.493648079e-09 1.060504899e-09 6.388328887e-10 1.295940169e-09 1.210783552e-09 8.313156052e-10 9.325807625e-10 4.3614939e-10 3.445810467e-10 1.007041583e-09 5.044012405e-10 1.702432116e-09 1.750615063e-09 2.583606162e-09 2.743095633e-09 2.771227826e-09 3.005138684e-09 2.181566147e-09 2.496964868e-09 3.026382941e-09 2.465112553e-09 2.168864713e-09 3.005948363e-09 3.801052798e-09 1.891093917e-09 1.808125344e-09 2.407719212e-09 1.565612684e-09 1.822448402e-09 1.078529654e-09 1.118645555e-09 1.388130505e-09 1.583611184e-09 9.160541821e-10 2.357355354e-10 2.987953614e-10 1.938984313e-10 1.624917468e-10 3.383138704e-14 1.684058223e-10 6.123151591e-10 1.300783693e-09 1.737864014e-09 3.638483606e-09 2.596666183e-09 2.440845421e-09 2.620995202e-09 3.595599653e-09 2.738295278e-09 1.697331388e-09 2.704814789e-09 2.888071916e-09 3.785486866e-09 5.37315549e-09 4.914187862e-09 4.819103352e-09 5.758804785e-09 4.847136809e-09 5.002222566e-09 5.918981253e-09 5.796300593e-09 4.293618418e-09 4.904114276e-09 5.639314335e-09 3.747388644e-09 3.747453294e-09 2.080145551e-09 2.150216589e-09 3.563245478e-09 2.863506864e-09 2.570908391e-09 2.788796649e-09 1.814466113e-09 1.969508829e-09 1.234839679e-09 7.449284544e-10 2.806314426e-10 3.327064554e-10 1.450224383e-10 7.488052302e-11 8.164232116e-11 2.265923284e-10 9.765067285e-10 1.061115039e-09 6.367111533e-10 2.155741431e-09 1.795843826e-09 1.450698631e-09 2.458133744e-09 1.873877786e-09 2.624441059e-09 1.831175906e-09 4.509990024e-09 4.305463178e-09 2.921974491e-09 1.246611475e-09 2.568426005e-09 2.313827252e-09 2.174037058e-09 2.296354215e-09 1.38384318e-09 1.643379511e-09 3.841577586e-09 2.650741022e-09 1.665283315e-09 1.122109742e-09 5.403491092e-10 6.820178195e-10 2.018472328e-10 7.427927915e-10 1.307117225e-09 1.377950156e-09 1.656344854e-09 5.82487505e-10 1.716860275e-09 1.330451315e-09 1.416340006e-09 1.847482293e-09 1.038156664e-09 1.13906905e-09 1.864017911e-09 1.505261933e-09 1.687639542e-09 1.594796007e-09 1.718336131e-09 1.585642303e-09 1.320840027e-09 8.596652538e-10 1.214950846e-09 8.151884051e-10 8.389774243e-10 7.731880032e-10 8.982750956e-10 1.371424184e-09 6.951909423e-10 8.702746127e-10 1.036093121e-09 5.71519462e-10 1.282302687e-09 1.188806151e-09 9.842121802e-10 7.297305378e-10 1.076028549e-09 9.44545843e-10 9.737610737e-10 1.614559099e-09 1.041554089e-09 1.0231341e-09 8.953040297e-10 3.68202539e-10 5.243017548e-10 8.087914064e-10 1.303572741e-09 3.187218475e-10 7.67387876e-10 8.686633795e-10 4.711678134e-10 1.031590966e-09 5.815999911e-10 1.008571522e-09 7.425018901e-10 1.285808205e-09 1.341363351e-09 8.094652624e-10 8.186275005e-10 4.226489372e-10 5.515114718e-10 7.597066204e-10 9.113309557e-10 1.22799522e-09 7.854105864e-10 8.761073973e-10 4.379472304e-10 8.242682786e-10 4.836866134e-10 2.917692031e-10 3.834107753e-10 8.713070849e-10 4.572032365e-10 4.700491592e-10 2.827451988e-10 3.096360694e-10 4.205833148e-10 3.763519894e-10 5.758835367e-10 5.749341747e-10 2.699919316e-10 7.904803539e-10 4.05511523e-10 3.503575972e-10 7.410547129e-10 6.507361921e-10 7.158468101e-10 8.067172227e-10 3.228303578e-10 5.415437298e-10 9.691725783e-10 8.211402057e-10 7.266839327e-10 3.280807599e-10 5.291591234e-10 1.856744207e-10 6.731692424e-10 4.034305061e-10 2.93467113e-10 6.867637516e-10 4.647075976e-12 6.658150351e-10 +1.8866813e-10 4.306993194e-10 3.515041672e-10 6.467630878e-10 4.744122882e-10 3.824732221e-10 3.074451391e-10 7.989382014e-10 2.914269616e-10 3.136793054e-10 3.582424879e-10 3.063543936e-10 8.142211037e-10 5.96030698e-10 4.018594114e-10 2.335384319e-10 5.13255809e-10 2.6263263e-10 5.866148185e-10 4.753459617e-10 6.222853219e-10 3.378119552e-10 1.476131163e-10 5.643664086e-10 6.593082567e-10 4.992356326e-10 2.143431309e-10 2.420080966e-10 5.56179383e-10 4.416373304e-10 8.476189577e-10 2.155423949e-10 9.039809445e-10 6.988909226e-10 6.040391934e-10 6.399538951e-10 1.222842216e-09 5.855261683e-10 1.137467689e-09 7.572614793e-10 7.747587309e-10 1.075441819e-09 1.017734961e-09 5.430179288e-10 6.628021054e-10 5.792446946e-10 7.072495969e-10 9.518375124e-10 8.151338344e-10 1.091744079e-09 1.765165502e-09 4.272353247e-10 1.149219067e-09 1.236978651e-09 1.134585836e-09 5.637623813e-10 7.312708928e-10 5.712040585e-10 8.671414377e-10 5.49449525e-10 9.967290481e-10 9.589314883e-10 1.015893412e-09 7.352388453e-10 9.847025387e-10 1.033604308e-09 8.991385443e-10 8.339426453e-10 1.262876551e-09 7.400026023e-10 6.73054842e-10 1.013724889e-09 1.253855032e-09 8.629491057e-10 9.536950228e-10 9.871501355e-10 1.27590444e-09 5.753284986e-10 8.508920747e-10 1.333977831e-09 1.217946397e-09 1.404495522e-09 2.810006706e-09 1.583909559e-09 1.205397484e-09 3.046519372e-09 2.139327145e-09 1.478140253e-09 1.952988858e-09 1.614062632e-09 9.066756011e-10 1.653292579e-09 1.612938369e-09 8.423382467e-10 1.270188269e-09 1.836793317e-09 1.108057523e-09 7.291311878e-10 6.440486444e-10 7.853447593e-10 4.236141678e-10 9.725079481e-10 7.966843332e-10 1.165893063e-09 2.382095545e-09 2.155441098e-09 2.593088085e-09 3.768706984e-09 2.944269915e-09 1.751734897e-09 2.481916221e-09 2.406445871e-09 2.106200682e-09 2.305271855e-09 2.871390605e-09 2.345432445e-09 3.783624686e-09 1.320275438e-09 2.674203349e-09 1.571554931e-09 1.531187386e-09 1.002713433e-09 2.306041491e-09 1.272708417e-09 1.234201146e-09 1.105281104e-09 3.139858945e-10 1.176576014e-10 4.711258009e-10 2.694904941e-17 9.722915436e-11 0 3.062234634e-10 9.712977649e-10 7.295658188e-10 1.97518895e-09 2.67951008e-09 2.878846404e-09 3.332069412e-09 3.245667592e-09 3.348178636e-09 2.061150366e-09 2.475146583e-09 2.80522808e-09 3.029677625e-09 4.332529371e-09 2.966468908e-09 4.1508277e-09 3.933643116e-09 2.599346049e-09 3.685886564e-09 3.913314225e-09 3.551712037e-09 3.153885234e-09 2.255903746e-09 3.686359326e-09 2.043183795e-09 2.699780457e-09 1.915414811e-09 2.079952352e-09 2.097227729e-09 2.159593851e-09 2.666195915e-09 1.330540313e-09 1.158823887e-09 1.0932504e-09 4.237526545e-10 4.732330066e-14 6.456925202e-15 2.419436229e-10 7.784834995e-11 1.725682385e-10 1.886110071e-10 7.058429948e-10 1.314478992e-09 6.646452602e-10 1.365826425e-09 1.577832024e-09 1.180759242e-09 1.551798625e-09 1.763556187e-09 2.285616705e-09 2.138782048e-09 3.209643098e-09 3.291224487e-09 3.800478129e-09 1.22060794e-09 2.397619572e-09 1.994367623e-09 2.740835979e-09 1.259070686e-09 1.972661499e-09 9.111274046e-10 1.359617915e-09 1.815842391e-09 2.04058416e-09 1.236209565e-09 6.090374362e-10 9.060229102e-10 4.567893788e-10 6.573543067e-10 6.562532195e-10 1.550291628e-09 1.291930236e-09 1.491898012e-09 1.426900214e-09 1.244770861e-09 1.288360755e-09 1.206013398e-09 1.531650992e-09 1.938185596e-09 2.158799629e-09 1.69750811e-09 1.409841699e-09 2.367677985e-09 1.254348063e-09 1.75841618e-09 1.144731614e-09 1.475197955e-09 1.062139506e-09 1.183853741e-09 7.560695851e-10 6.78310671e-10 5.990823272e-10 6.641171615e-10 1.381169406e-09 1.413690717e-09 1.028354836e-09 8.487010159e-10 1.103288223e-09 1.274177528e-09 5.271548111e-10 1.343197122e-09 1.020756508e-09 5.848215652e-10 6.658698111e-10 1.888560433e-09 9.276805603e-10 1.529401064e-09 1.529266444e-09 3.38086365e-10 9.935987568e-10 5.874518677e-10 9.212452387e-10 5.857277819e-10 1.069574502e-09 1.059879603e-09 1.339684112e-09 7.974437343e-10 9.563253737e-10 8.081405837e-10 1.115438495e-09 5.98590643e-10 7.574570347e-10 8.800482515e-10 1.311816857e-09 1.078201236e-09 5.79066227e-10 9.64298903e-10 8.36423324e-10 7.958711022e-10 1.270706873e-09 9.568981413e-10 1.224642285e-09 3.964599826e-10 8.278495658e-10 7.431998093e-10 7.86010824e-10 4.53186398e-10 4.291039967e-10 3.339457939e-10 2.328723195e-10 5.947789605e-10 3.104339623e-10 4.670584196e-10 3.723608905e-10 3.568421739e-10 9.821816549e-10 3.944131192e-10 4.245098386e-10 4.498986336e-10 1.519397195e-10 6.070117384e-10 4.404984448e-10 4.896851366e-10 1.963477385e-10 3.797719582e-10 4.386359856e-10 6.577854251e-10 7.198094701e-10 2.082854431e-10 4.618838595e-10 1.44541286e-10 9.142708471e-10 5.637254679e-10 3.457061857e-10 6.249130688e-10 3.558381597e-10 2.793557859e-10 1.127493677e-10 +3.40416151e-10 3.690015463e-10 6.451742316e-10 4.690673267e-10 3.97872104e-10 5.98664076e-10 5.504442842e-10 4.555005054e-10 6.349046688e-10 8.020227997e-10 7.672027897e-10 5.208531599e-10 3.722362173e-10 5.680324076e-10 6.038898474e-10 6.535980377e-10 4.345768295e-10 7.584509635e-10 9.399889569e-10 3.598737244e-10 8.218752782e-10 7.122438553e-10 6.024146209e-10 9.272042542e-10 2.832749699e-10 9.685712292e-10 3.939110163e-10 1.765852401e-10 4.323625087e-10 4.626647024e-10 5.810399799e-10 3.317500313e-10 4.012881929e-10 7.970602749e-10 3.888539065e-10 1.200508634e-09 1.159043871e-09 6.57013584e-10 6.163683827e-10 8.871947349e-10 6.801313899e-10 3.321020931e-10 9.030194276e-10 1.52673662e-09 6.129660941e-10 1.015547759e-09 1.249528725e-09 1.682039655e-09 9.361369098e-10 1.775404485e-09 1.080910972e-09 1.044486638e-09 6.898041367e-10 1.126576529e-09 7.524443736e-10 7.959031523e-10 5.68683849e-10 6.479837583e-10 2.046911246e-10 7.805078476e-10 1.429531923e-09 1.29288238e-09 1.159140114e-09 1.844303252e-09 1.056871657e-09 5.270421868e-10 8.157200146e-10 5.792936275e-10 4.842606397e-10 1.244905298e-09 7.552852023e-10 4.762821189e-10 1.140359251e-09 1.523247786e-09 9.627938622e-10 3.666488792e-10 1.15405988e-09 6.099474978e-10 1.047189566e-09 1.045789407e-09 2.199978679e-09 1.158546868e-09 1.47749071e-09 1.399647287e-09 2.015443099e-09 1.755733325e-09 2.026123969e-09 2.049309829e-09 1.296252513e-09 1.404758693e-09 1.209716204e-09 1.516243315e-09 1.300960565e-09 1.773193261e-09 1.513273572e-09 1.163496555e-09 1.572381764e-09 9.771149779e-10 6.657817637e-10 7.766677453e-10 4.403462042e-10 6.677052786e-10 1.014177959e-09 1.211263038e-09 1.545683405e-09 3.160553681e-09 2.502687687e-09 3.132000979e-09 2.643062042e-09 2.55705384e-09 2.873911184e-09 1.675916756e-09 2.795147016e-09 2.226239347e-09 3.002150039e-09 3.401833064e-09 2.414511438e-09 2.593079304e-09 1.702996625e-09 2.320090439e-09 1.530288911e-09 2.046951498e-09 1.121301628e-09 1.319433165e-09 1.103608644e-09 1.286150997e-09 1.178157157e-09 3.978060737e-10 2.053673467e-10 1.546500378e-10 1.18626461e-10 3.267644695e-11 4.716582233e-10 1.509455271e-10 5.967952222e-10 1.679381714e-09 1.329559212e-09 2.460741995e-09 1.868058237e-09 3.152700205e-09 3.189797145e-09 2.753022542e-09 2.457268003e-09 2.646438516e-09 2.168967945e-09 2.791879579e-09 2.082002056e-09 3.39233917e-09 3.010678874e-09 2.859126654e-09 3.535262203e-09 3.417726773e-09 2.637373656e-09 3.29113468e-09 3.131527478e-09 2.883065263e-09 2.250477469e-09 2.110338378e-09 2.508287411e-09 2.752664125e-09 3.035866731e-09 1.951435236e-09 2.243742226e-09 1.305475076e-09 7.857298703e-10 4.338786275e-10 1.307672142e-10 2.208412509e-10 1.194354202e-10 1.018438339e-10 8.463859867e-13 1.877554979e-11 4.161884643e-10 3.755168703e-10 1.985794568e-09 1.362938504e-09 2.76980801e-09 1.919695502e-09 1.42295219e-09 1.383115606e-09 1.317806477e-09 1.766304002e-09 2.24401359e-09 2.889030894e-09 3.291542776e-09 2.600208392e-09 2.116624121e-09 1.417455973e-09 2.359502812e-09 2.496425086e-09 2.856059669e-09 1.800839332e-09 2.292780617e-09 3.020984298e-09 3.924555611e-09 2.433017092e-09 6.906070601e-10 9.854230039e-10 1.047229889e-09 5.717862765e-10 3.111435156e-10 1.037871024e-09 1.178237032e-09 8.348088608e-10 1.735692987e-09 1.21210715e-09 7.672412914e-10 1.06233179e-09 1.485545783e-09 1.348661381e-09 9.568396027e-10 1.813823125e-09 2.254273039e-09 1.971841138e-09 1.147108011e-09 1.571303317e-09 1.88962904e-09 1.464081896e-09 1.984188024e-09 1.248166869e-09 1.161630541e-09 1.413356306e-09 6.448715069e-10 8.025476118e-10 6.373031119e-10 7.097686039e-10 9.780163007e-10 1.097875707e-09 9.197295774e-10 1.537643882e-09 1.559951009e-09 6.415930353e-10 9.446396152e-10 7.834887822e-10 5.777813677e-10 6.723769e-10 1.186687577e-09 7.231656814e-10 1.011469174e-09 8.379262851e-10 5.650133398e-10 2.733329498e-10 6.825397164e-10 7.943578179e-10 1.082172026e-09 4.606487213e-10 5.359037431e-10 1.099562251e-09 1.040866088e-09 5.761319525e-10 1.18211522e-09 1.139259961e-09 4.614365873e-10 8.141479505e-10 8.19023832e-10 1.035963861e-09 1.366534621e-09 9.930218166e-10 1.035510711e-09 7.682283334e-10 6.604469123e-10 1.235416989e-09 6.985990518e-10 9.90533155e-10 3.384705183e-10 6.642513738e-10 4.983886266e-10 4.524699846e-10 4.633303846e-10 2.270966491e-10 4.610881117e-10 7.757060463e-10 9.399690272e-10 4.611631465e-10 5.850466478e-10 4.425304121e-10 3.051478459e-10 3.47118118e-10 6.168277107e-10 2.519573279e-10 4.894302243e-10 8.532646203e-10 3.802572141e-10 5.994975122e-10 6.235109039e-10 2.826093643e-10 5.113915337e-10 3.818501978e-10 7.093676909e-10 2.075093858e-10 4.606960525e-10 6.345807695e-10 4.99181905e-10 4.788508604e-11 3.130897853e-10 4.139507732e-10 3.796723401e-10 4.237169105e-10 6.283857401e-10 2.888536819e-10 +7.094526093e-10 5.533981558e-10 5.133415735e-10 4.398541952e-10 5.07645172e-10 6.859773328e-10 6.720767366e-10 8.325981751e-10 5.409603129e-10 3.031047163e-10 1.534361797e-10 2.36964635e-10 6.496802921e-10 9.776400542e-10 1.79334854e-10 5.156775416e-10 4.697191416e-10 6.504070727e-10 5.08438898e-10 1.99474648e-10 4.30153678e-10 5.610746193e-10 3.415098215e-10 3.396026998e-10 4.594507813e-10 3.522628571e-10 3.701410329e-10 2.508290151e-10 6.432048588e-10 4.611948045e-10 7.17893842e-10 8.430030265e-10 6.808481485e-10 4.769576851e-10 3.856448006e-10 1.004636681e-09 1.02094448e-09 1.126058871e-09 9.794289056e-10 6.414037994e-10 1.092940496e-09 1.021297727e-09 1.265044062e-09 9.807244075e-10 8.525730334e-10 9.46889642e-10 6.521399399e-10 7.791708674e-10 6.645194321e-10 6.439781351e-10 1.181536437e-09 9.414201003e-10 8.618120417e-10 6.595662157e-10 6.404839385e-10 7.220556872e-10 4.963154273e-10 1.029082897e-09 7.883567772e-10 1.179810504e-09 6.095825933e-10 8.993214489e-10 8.804520059e-10 1.204955134e-09 1.251459721e-09 9.869748749e-10 8.848672604e-10 9.868692491e-10 9.118893489e-10 1.790121953e-09 1.082905942e-09 1.098919342e-09 1.181276964e-09 8.819815517e-10 5.959418936e-10 8.583578144e-10 8.657883748e-10 8.381245474e-10 1.210126384e-09 1.431097003e-09 1.081672793e-09 1.975769153e-09 1.872264484e-09 1.780216759e-09 1.09349744e-09 8.735536997e-10 7.804902817e-10 2.682333133e-09 8.686773454e-10 1.132807602e-09 9.864271242e-10 8.049890795e-10 1.76214493e-09 1.768195455e-09 1.058797576e-09 1.095052265e-09 8.488414158e-10 8.130658226e-10 1.118160115e-09 1.064104814e-09 3.264641117e-10 9.586046595e-10 7.758634207e-10 7.557094184e-10 1.347432553e-09 2.023010373e-09 1.849628283e-09 2.299994653e-09 2.366663563e-09 2.682650347e-09 2.926388169e-09 1.540225893e-09 3.0264338e-09 1.618574209e-09 1.720059236e-09 2.835625669e-09 2.259686744e-09 1.961604155e-09 2.561301422e-09 2.278350163e-09 2.205080486e-09 1.877196961e-09 1.961761364e-09 1.024552906e-09 1.267082552e-09 1.295393816e-09 1.541780686e-09 7.566613216e-10 6.519448846e-10 2.039113678e-10 3.39085935e-18 1.043016476e-10 3.348097878e-10 8.702677298e-11 5.155759568e-10 2.875716306e-10 1.252730659e-09 2.363390929e-09 2.834757477e-09 2.369942052e-09 1.891518999e-09 2.271209835e-09 2.939408252e-09 1.759549607e-09 3.337737568e-09 3.260512172e-09 2.630436232e-09 3.109333141e-09 2.937405449e-09 2.950144544e-09 2.427325424e-09 3.220054344e-09 1.947640959e-09 2.409835842e-09 2.505818269e-09 2.496302989e-09 2.182719934e-09 2.913477435e-09 3.452234329e-09 2.601993542e-09 2.350316615e-09 2.6115786e-09 1.941998222e-09 1.553239228e-09 7.569310978e-10 5.508302004e-10 3.023784071e-10 5.446882833e-11 2.257738734e-10 1.242577194e-10 1.192709046e-10 5.643030307e-10 8.037991939e-10 1.370616774e-09 1.309013436e-09 1.095522786e-09 9.256936434e-10 1.323665256e-09 1.723220355e-09 1.642040244e-09 1.195029669e-09 1.529401045e-09 3.408412797e-09 1.816676695e-09 2.644721998e-09 1.914372006e-09 3.559535698e-09 2.434713982e-09 1.523299558e-09 2.953742571e-09 2.826546425e-09 2.994888826e-09 2.031206087e-09 3.025107279e-09 3.743979166e-09 2.445338892e-09 1.023795331e-09 9.621841012e-10 6.279982624e-10 5.085143804e-10 4.696162995e-10 1.390670905e-09 9.553866918e-10 9.662668228e-10 2.128205446e-09 1.461945769e-09 1.371202798e-09 2.142182108e-09 1.29099703e-09 1.740543309e-09 1.683492033e-09 1.016915367e-09 1.693708162e-09 1.872650255e-09 1.121479337e-09 1.293096004e-09 2.656394912e-09 1.832782927e-09 1.513581541e-09 1.726354443e-09 1.510549037e-09 8.969485653e-10 1.626148501e-09 4.710270892e-10 6.837413273e-10 9.187972838e-10 1.318015153e-09 8.870944636e-10 1.053082569e-09 1.324479734e-09 1.615938653e-09 1.159195439e-09 7.35247949e-10 7.283176176e-10 5.183756779e-10 7.832156661e-10 1.351961356e-09 9.320532187e-10 1.383175665e-09 6.081954674e-10 9.803226314e-10 1.008476996e-09 9.417645136e-10 1.058082801e-09 4.485104746e-10 1.272865036e-09 1.032468689e-09 9.987958504e-10 4.66520444e-10 1.830071331e-09 1.07890295e-09 7.327237502e-10 1.028554899e-09 7.451323583e-10 1.178576779e-09 1.126464537e-09 6.256713066e-10 5.384963519e-10 5.692839737e-10 9.136405097e-10 7.060169087e-10 1.507628764e-09 8.97107448e-10 1.006407605e-09 5.509265443e-10 1.004011277e-09 8.783884512e-10 4.350491932e-10 2.825189618e-10 3.29083593e-10 5.201768654e-10 5.665499765e-10 4.917797601e-10 2.769336343e-10 3.267089376e-10 3.512305707e-10 3.348990881e-10 2.880958386e-10 5.784873735e-10 2.814855501e-10 1.573667365e-10 6.97004969e-10 2.953234858e-10 2.230380268e-10 2.403853149e-10 6.586589303e-10 7.250605692e-10 2.883309254e-10 6.519612173e-10 1.122112854e-10 5.780600274e-10 5.01312623e-10 6.376663542e-10 9.73380134e-10 7.359565552e-10 5.941471537e-10 2.804606782e-10 6.501429612e-10 6.264318858e-10 3.192657335e-10 +7.025299756e-10 3.711032854e-10 2.8143647e-10 2.126063898e-10 6.858507896e-10 3.582578712e-10 8.537192507e-10 7.637582158e-10 4.015541909e-10 1.22538986e-09 5.495566332e-10 5.220990012e-10 2.314198812e-10 1.327638947e-10 3.37626012e-10 3.957067907e-10 1.739530692e-10 2.912863888e-10 1.035473822e-09 2.57566607e-10 4.802080654e-10 4.748278532e-10 6.752522535e-10 9.938496337e-10 6.894077045e-10 3.684533562e-10 3.154649988e-10 5.095120531e-10 3.541399585e-10 6.464092454e-10 4.912657768e-10 5.925925824e-10 1.091048554e-09 6.946541992e-10 5.4999565e-10 9.654877549e-10 1.122670806e-09 1.25970083e-09 1.524644236e-09 1.43896278e-09 1.909376217e-09 1.21513149e-09 1.124654292e-09 8.880212512e-10 1.556021543e-09 7.941825522e-10 9.282690644e-10 9.181341468e-10 8.526793495e-10 9.365070095e-10 6.85671597e-10 1.064352939e-09 5.985197957e-10 5.743772182e-10 6.057422803e-10 9.752863242e-10 3.321161442e-10 9.733814512e-10 9.42757695e-10 4.93189285e-10 5.197282897e-10 1.557637672e-09 1.024694736e-09 9.528729609e-10 8.519627908e-10 8.437053443e-10 1.471285348e-09 5.854113414e-10 9.71143305e-10 6.375324937e-10 5.893596724e-10 7.373538489e-10 1.031359879e-09 1.032955231e-09 1.071688739e-09 9.291471433e-10 1.21652212e-09 8.894661147e-10 1.512008798e-09 1.047911867e-09 1.068973839e-09 1.680992832e-09 1.745191144e-09 1.162133987e-09 2.840731994e-09 1.652591745e-09 1.575680131e-09 2.100840324e-09 1.190115684e-09 1.624827064e-09 1.748324642e-09 1.392038998e-09 7.946533178e-10 1.056903332e-09 9.921526985e-10 8.091981893e-10 1.087938326e-09 8.2294858e-10 7.821526134e-10 3.424810787e-10 4.436915368e-10 6.146985003e-10 1.132646359e-09 9.546700806e-10 1.603905472e-09 2.220719072e-09 2.158388079e-09 2.020560539e-09 1.579136049e-09 2.298118232e-09 2.432987371e-09 2.380061143e-09 4.277890586e-09 1.981155245e-09 2.1896064e-09 1.923682455e-09 3.672131718e-09 3.199175101e-09 2.860360824e-09 2.725370081e-09 1.623755078e-09 1.051872115e-09 8.688799077e-10 1.475752954e-09 1.019008699e-09 1.731289442e-09 8.968432908e-10 1.095653562e-09 5.340672074e-10 3.129498122e-10 0 3.13221445e-10 1.624040636e-10 8.999879217e-19 7.360064128e-11 4.412258722e-10 6.116886991e-10 1.59926965e-09 1.493385101e-09 2.184211859e-09 2.585902685e-09 2.715654549e-09 2.41869182e-09 2.853177157e-09 2.392730531e-09 2.525600629e-09 3.290052582e-09 3.543211846e-09 2.429665418e-09 2.267456425e-09 3.115048577e-09 2.185546051e-09 3.012159711e-09 2.959889683e-09 2.494683186e-09 2.706793572e-09 2.655739084e-09 2.832266676e-09 3.248039678e-09 2.197933267e-09 2.379504711e-09 2.033709305e-09 1.472504437e-09 7.185177165e-10 1.062845383e-10 1.106675514e-10 3.300426791e-10 2.438433678e-10 2.26912074e-15 1.780395678e-10 9.884809148e-11 9.446625249e-10 9.684228159e-10 1.417527845e-09 1.604607307e-09 9.722489908e-10 1.88190571e-09 1.844944686e-09 1.606386166e-09 1.50666817e-09 1.731662975e-09 1.482165837e-09 1.696566484e-09 2.934664897e-09 2.858380801e-09 2.3143898e-09 1.48235619e-09 2.292278806e-09 2.751791076e-09 1.242362207e-09 4.421783488e-09 1.303505634e-09 1.791080418e-09 2.565602273e-09 3.092674068e-09 2.083330248e-09 5.498571002e-10 6.851141053e-10 5.851290354e-10 5.477810372e-10 6.611593167e-10 5.198459733e-10 8.860935045e-10 1.246223677e-09 1.17446771e-09 8.869185403e-10 1.103201094e-09 1.599843169e-09 1.54217995e-09 1.111396878e-09 1.070364046e-09 2.111922954e-09 1.88506513e-09 1.398988934e-09 8.04704996e-10 1.859377568e-09 2.031580164e-09 2.081987014e-09 1.37247803e-09 1.297300122e-09 1.046571118e-09 7.622347012e-10 4.425409635e-10 8.656974498e-10 1.417516194e-09 9.967649405e-10 1.183574958e-09 9.775508497e-10 1.188145365e-09 7.287022113e-10 6.742396449e-10 9.454695573e-10 1.108713987e-09 9.911319789e-10 1.065362483e-09 1.117422594e-09 9.392856862e-10 1.054329282e-09 1.472655608e-09 9.126312545e-10 1.041782091e-09 8.597769788e-10 9.002434356e-10 4.182281612e-10 9.806772169e-10 1.10380111e-09 7.402948835e-10 1.369995283e-09 9.38417777e-10 1.125905163e-09 1.218070154e-09 1.174646657e-09 1.596255926e-09 8.911814452e-10 6.868257761e-10 1.134721682e-09 1.106161651e-09 6.828351929e-10 8.686486207e-10 1.103283955e-09 3.722515122e-10 1.123173717e-09 1.218389392e-09 9.234822029e-10 7.172931301e-10 6.746006966e-10 4.318914679e-10 3.266633342e-10 2.597937397e-10 2.715523782e-10 3.664703425e-10 5.485593046e-10 8.006647352e-10 4.229901666e-10 6.616787747e-10 2.726286317e-10 3.208394069e-10 4.104235688e-10 3.355384728e-10 6.533372513e-10 7.627664691e-10 4.700485574e-10 2.013765411e-10 2.655420923e-10 1.018096262e-09 8.248694548e-10 6.405712433e-10 8.049927612e-10 5.039749115e-10 5.293585765e-10 6.526991187e-10 5.673156984e-10 8.690689301e-10 4.268072192e-10 6.238289989e-10 2.30188828e-10 3.967648823e-10 5.315018594e-10 2.464948839e-10 3.430709537e-10 +2.240671711e-10 4.050535347e-10 4.580154503e-10 4.52201204e-10 2.481634745e-10 3.603988493e-10 7.130686472e-10 5.402280055e-10 9.581350446e-10 2.573472698e-10 2.859447992e-10 3.105147329e-10 2.878542588e-10 1.358503629e-10 3.329688102e-10 4.033517331e-10 4.681334569e-10 5.670076034e-10 2.510006257e-10 4.458815172e-10 4.297623598e-10 8.386939269e-10 8.452811828e-10 5.616026032e-10 6.08456641e-10 3.051465419e-10 2.562475614e-10 2.846000282e-10 3.849632384e-10 3.575121066e-10 2.034788213e-10 6.08884704e-10 4.405601391e-10 1.035958333e-09 6.321276561e-10 9.758814873e-10 6.188523448e-10 1.337464921e-09 9.117510438e-10 9.795687184e-10 1.437441289e-09 7.601609236e-10 7.92964982e-10 7.013038639e-10 1.194498653e-09 1.082352796e-09 6.913500603e-10 8.932924915e-10 6.906394193e-10 5.704347735e-10 9.975041484e-10 1.121207003e-09 9.09557884e-10 7.199411589e-10 7.099466592e-10 8.86520639e-10 5.945465188e-10 5.836277512e-10 4.656523536e-10 1.145018652e-09 1.114772136e-09 8.72520403e-10 6.764543829e-10 1.711296782e-09 6.021792575e-10 1.117497735e-09 8.93951138e-10 1.120323722e-09 1.001187826e-09 1.134607995e-09 1.022870407e-09 7.84571268e-10 1.706349886e-09 6.666752986e-10 7.808393313e-10 7.946240388e-10 7.072891077e-10 7.450751044e-10 1.440811511e-09 8.121793407e-10 5.831356232e-10 1.847028418e-09 2.037988284e-09 1.541863109e-09 1.007491031e-09 1.692510591e-09 1.208660809e-09 1.988354126e-09 1.527624042e-09 2.414244175e-09 9.652569518e-10 1.221822868e-09 1.337674479e-09 1.708539227e-09 1.449000557e-09 1.40059973e-09 1.586727556e-09 1.11760504e-09 6.09997582e-10 9.664130638e-10 6.519328422e-10 4.817986537e-10 8.16672772e-10 1.249912872e-09 1.723626785e-09 1.577388155e-09 1.924214307e-09 2.382392546e-09 1.483963377e-09 1.708256172e-09 2.133754763e-09 2.657309834e-09 2.323103421e-09 2.623815869e-09 2.240128798e-09 3.880317921e-09 2.969055338e-09 2.931503438e-09 2.008729671e-09 1.38784725e-09 1.328653462e-09 1.417677482e-09 1.776212297e-09 1.213864137e-09 1.301731537e-09 1.854274429e-09 1.928584753e-09 1.456338722e-09 9.431557529e-10 3.534477854e-10 1.94633419e-10 5.114495139e-10 0 2.125920814e-10 3.792698723e-10 2.626270807e-10 1.130777675e-10 3.703223968e-10 6.672608276e-10 8.393566626e-10 1.149398845e-09 2.110087831e-09 2.991747447e-09 3.021012042e-09 2.260068871e-09 1.780280779e-09 2.101969128e-09 2.545047292e-09 2.274802153e-09 2.947928203e-09 2.649470256e-09 2.049978478e-09 2.150055626e-09 1.529921164e-09 1.73872282e-09 2.929429367e-09 2.485803339e-09 2.223351268e-09 2.18183928e-09 2.02660414e-09 1.334330732e-09 5.604056961e-10 4.541367913e-10 4.112778949e-10 1.977928167e-10 8.09838509e-11 1.147022017e-10 2.875793975e-10 1.173457438e-10 2.029838007e-10 3.617855926e-10 6.79202824e-10 1.381942442e-09 8.347341606e-10 1.684014264e-09 1.607363628e-09 1.438132623e-09 2.047155925e-09 1.768838449e-09 1.837729908e-09 2.82063005e-09 3.208611688e-09 4.429210493e-09 3.920587315e-09 2.16052134e-09 2.393355025e-09 3.038814242e-09 2.23217975e-09 2.224861778e-09 2.692212576e-09 2.40212609e-09 3.407924322e-09 2.711781094e-09 1.847477843e-09 2.831764934e-09 1.747770087e-09 8.248350773e-10 8.582400364e-10 5.355209368e-10 4.381276073e-10 7.750149741e-10 9.922699176e-10 1.251589502e-09 1.357797104e-09 1.031241439e-09 1.0021618e-09 1.863112031e-09 1.704680992e-09 8.199114688e-10 1.012155967e-09 2.020889905e-09 1.834724322e-09 1.491768296e-09 1.217720949e-09 1.972528391e-09 1.522913523e-09 2.206302921e-09 1.209559611e-09 8.364354581e-10 1.845000946e-09 1.010874483e-09 1.624396722e-09 8.017146231e-10 1.301102415e-09 5.801310346e-10 8.758864793e-10 1.013820813e-09 9.978541383e-10 1.744791611e-09 7.648871331e-10 8.493871221e-10 1.231937688e-09 5.891641994e-10 1.201882804e-09 8.099464693e-10 9.655470134e-10 7.1812717e-10 1.030258993e-09 1.507423932e-09 9.757520388e-10 1.22380946e-09 7.442113344e-10 7.660711342e-10 1.40003612e-09 6.9561289e-10 8.375397842e-10 6.169661752e-10 9.098439386e-10 1.030735462e-09 9.741605641e-10 1.384302375e-09 6.238116595e-10 1.107336973e-09 1.593205433e-09 9.239845042e-10 8.826413144e-10 5.649249919e-10 7.721811908e-10 7.210202215e-10 5.751545372e-10 8.282609557e-10 1.228799052e-09 1.026425201e-09 7.473727467e-10 1.101191586e-09 4.016720459e-10 4.491085869e-10 3.882718606e-10 1.484498533e-09 4.967466468e-10 5.296783503e-10 4.180359515e-10 2.825384707e-10 2.28802351e-10 2.687248584e-10 4.268537565e-10 2.376129006e-10 2.230040955e-10 4.189755452e-10 7.358040248e-10 4.674183693e-10 2.049957224e-10 4.383468599e-10 2.299033024e-10 5.687611348e-10 4.483769376e-10 3.933166673e-10 2.854610775e-10 3.61919275e-10 3.746926929e-10 6.036909913e-10 2.924796526e-10 2.746970863e-10 5.75363203e-10 6.498067979e-10 4.085689704e-10 4.920367868e-10 1.079220639e-09 5.420363215e-10 5.033905499e-10 +5.532159245e-11 3.984323607e-10 2.158524133e-10 4.193388091e-10 4.23551114e-10 9.491793558e-10 6.33802882e-10 3.781050185e-10 5.278087314e-10 4.609054695e-10 6.465272872e-10 4.419063526e-10 5.986461244e-10 4.406234767e-10 7.127500018e-10 6.766733732e-10 5.228926861e-10 2.676842548e-10 2.675490229e-10 3.581416918e-10 2.913286563e-10 2.617169802e-10 3.695674252e-10 3.833555222e-10 5.968947082e-11 1.057659285e-09 1.238734747e-09 5.021941122e-10 1.61971187e-10 3.866694353e-10 6.710320749e-10 4.270019881e-10 3.926119019e-10 2.906035295e-10 8.527415939e-10 4.904603837e-10 6.487906759e-10 1.27843799e-09 1.25044775e-09 9.341039029e-10 7.325669324e-10 1.117917332e-09 5.781933373e-10 1.040536183e-09 8.623974374e-10 8.80878157e-10 8.384813975e-10 9.259140353e-10 1.146683592e-09 8.880083192e-10 5.909392507e-10 1.079417647e-09 6.390090373e-10 1.027001691e-09 7.676242505e-10 4.068146765e-10 7.986833648e-10 8.914127196e-10 5.854777691e-10 6.793748832e-10 1.005078709e-09 1.177106259e-09 8.709187551e-10 7.159843776e-10 1.69660078e-09 3.71027809e-10 1.549065716e-09 9.916992427e-10 1.95829833e-09 9.125310026e-10 5.219830165e-10 1.062495288e-09 1.071694621e-09 6.876374467e-10 6.748686881e-10 1.261999237e-09 1.221828866e-09 7.738125209e-10 6.044169268e-10 1.209258285e-09 1.366521926e-09 1.240695047e-09 1.739261868e-09 1.422314307e-09 1.074984804e-09 8.809537907e-10 1.769937699e-09 7.947202938e-10 1.837651237e-09 9.697765256e-10 2.317217891e-09 1.524206815e-09 1.377096139e-09 1.299556344e-09 1.774092744e-09 1.962714861e-09 1.151785884e-09 8.918997008e-10 6.613145805e-10 6.412751817e-10 4.365895128e-10 6.009150325e-10 7.288530516e-10 1.028472727e-09 1.853625843e-09 2.191071083e-09 2.804674267e-09 1.960106757e-09 2.25653622e-09 1.774041818e-09 2.481496522e-09 2.412104905e-09 2.583494009e-09 2.261196418e-09 2.471896041e-09 3.652784363e-09 2.4501812e-09 3.66135232e-09 1.98213966e-09 1.186664288e-09 1.02016341e-09 2.670539475e-09 9.297082844e-10 1.850373044e-09 1.779796849e-09 7.698783962e-10 1.428285883e-09 1.289816152e-09 1.519485888e-09 7.716010902e-10 4.132754506e-10 4.072796107e-10 1.991321132e-10 3.924157805e-10 2.06042027e-10 3.598568714e-10 1.87284098e-10 2.681618936e-10 9.372888399e-10 8.259507857e-10 9.320195454e-10 7.382414371e-10 1.492132264e-09 1.81873839e-09 1.94287313e-09 2.269644643e-09 2.128820425e-09 1.870216398e-09 2.425238364e-09 3.703670172e-09 3.078850309e-09 2.861348288e-09 2.46334107e-09 1.909923964e-09 1.693389395e-09 1.869985778e-09 2.008140131e-09 1.716915953e-09 1.36404967e-09 1.473316711e-09 6.182068988e-10 3.856026327e-10 4.432376156e-10 2.832897788e-10 5.220601622e-10 4.463714591e-10 5.162852448e-11 3.590165168e-10 1.480032339e-10 4.030986238e-10 4.410442612e-10 1.610107729e-09 1.335885111e-09 1.45566415e-09 1.270088611e-09 1.064956879e-09 1.241860268e-09 1.419928843e-09 2.02744051e-09 2.731191242e-09 1.281932864e-09 3.699629384e-09 2.54879388e-09 1.94781337e-09 3.33794498e-09 1.616821057e-09 2.092162486e-09 2.724809813e-09 1.981274089e-09 3.337128001e-09 2.572850749e-09 1.639226925e-09 2.323375163e-09 2.061749965e-09 2.719643841e-09 8.896231323e-10 8.522062351e-10 8.208186083e-10 7.77542907e-10 4.274472573e-10 9.765094579e-10 9.615707119e-10 1.39140744e-09 1.099384355e-09 1.244686716e-09 1.199911138e-09 1.020321896e-09 1.925240852e-09 1.167290757e-09 1.146592212e-09 1.333187557e-09 1.107110394e-09 1.379951699e-09 1.87974336e-09 1.686408901e-09 1.383886804e-09 2.348757389e-09 8.897417121e-10 1.221360684e-09 1.64679099e-09 1.1634329e-09 5.854024956e-10 9.338749023e-10 1.134814726e-09 6.933029604e-10 3.854000851e-10 4.24984777e-10 6.945918505e-10 8.401236158e-10 7.173059787e-10 1.027343647e-09 8.183296545e-10 1.042855319e-09 4.659898855e-10 9.035539022e-10 1.199402147e-09 7.228348003e-10 1.045696273e-09 1.145371721e-09 9.73068032e-10 5.341312901e-10 5.413391395e-10 5.634921673e-10 2.920501163e-10 6.19275462e-10 8.2202411e-10 8.533703109e-10 1.102621829e-09 5.002334854e-10 1.010994567e-09 1.822809898e-09 6.180011903e-10 8.546812e-10 5.74539783e-10 4.978984406e-10 6.923447409e-10 4.897592512e-10 4.693965246e-10 1.145325343e-09 1.56289327e-09 1.155895222e-09 5.375846902e-10 5.869482634e-10 6.159556262e-10 8.176512756e-10 8.936832715e-10 7.815662589e-10 6.364643066e-10 1.15929008e-09 7.858469493e-10 2.07575321e-10 3.063385838e-10 2.109984162e-10 1.60416257e-10 1.380977516e-10 3.904200132e-10 9.415715846e-10 5.195241312e-10 4.321312525e-10 4.655543605e-10 3.306534622e-10 5.395259779e-10 8.822933219e-11 2.408477298e-10 2.143808251e-10 5.346302822e-10 3.467076956e-10 2.065182674e-10 4.501307982e-10 4.52601791e-10 6.559046383e-10 5.215951715e-10 1.049097207e-10 3.457342506e-10 7.173485154e-10 2.867463249e-10 7.793697691e-10 2.618127406e-10 4.155996697e-10 7.429185873e-10 +9.79348728e-10 1.295521693e-10 5.076703897e-10 4.168438628e-10 5.598783306e-10 2.608265587e-10 6.227208089e-10 1.071275906e-09 5.684410673e-10 4.5513287e-10 7.364486264e-10 4.005603529e-10 5.562851554e-10 7.424594364e-10 9.40982129e-11 6.506685446e-10 1.161187216e-10 6.970438364e-10 3.66571983e-10 6.796566197e-10 1.656075375e-10 6.084128327e-10 4.815558221e-10 5.581717044e-10 4.345550261e-10 4.200671592e-10 4.399754095e-10 1.948433257e-10 4.581634147e-10 2.931514734e-10 5.992261133e-10 5.447794208e-10 3.471618045e-10 6.415577107e-10 6.783201493e-10 1.239055452e-09 7.813906337e-10 8.497518646e-10 1.323223812e-09 6.468750542e-10 1.523396906e-09 6.47863055e-10 6.152512027e-10 5.58369643e-10 2.658669351e-10 8.935239039e-10 6.7425745e-10 3.594210853e-10 1.055237313e-09 4.394736016e-10 1.092326712e-09 4.87835091e-10 5.737756932e-10 1.011567874e-09 9.459207401e-10 7.113783822e-10 5.541858396e-10 6.988840865e-10 9.481831846e-10 6.309274761e-10 6.724592777e-10 1.292888077e-09 3.730055782e-10 7.656533074e-10 7.69582002e-10 9.635537959e-10 7.997802584e-10 1.121548754e-09 1.14372016e-09 1.047717434e-09 1.361022372e-09 1.940415494e-09 5.988969701e-10 5.600835751e-10 7.801872592e-10 9.015165154e-10 1.012722166e-09 4.73288982e-10 5.948498622e-10 1.501091179e-09 1.208159545e-09 1.775084185e-09 5.990948224e-10 1.374872997e-09 1.299613823e-09 1.1841895e-09 2.141286997e-09 2.202652774e-09 1.116415681e-09 1.732898058e-09 1.86492471e-09 1.733858042e-09 6.452212328e-10 1.572616233e-09 1.564472173e-09 1.070303979e-09 7.123090492e-10 6.656309075e-10 1.044385159e-09 6.318625329e-10 4.201014303e-10 3.075215125e-10 7.333743655e-10 9.042031897e-10 1.690436909e-09 1.983984599e-09 2.118628207e-09 2.29623564e-09 1.765593398e-09 2.227665625e-09 3.187936043e-09 2.07496048e-09 1.251866271e-09 2.33278565e-09 2.272762775e-09 2.264586274e-09 1.804694431e-09 3.218162383e-09 2.360778887e-09 2.41835038e-09 1.480798103e-09 1.489953213e-09 2.207935375e-09 1.619251549e-09 2.426758377e-09 7.447748453e-10 1.033666649e-09 1.5273863e-09 1.397936574e-09 1.14978989e-09 1.073538777e-09 2.280812124e-10 1.085793532e-10 7.390581823e-11 1.144144273e-10 1.368048387e-10 1.305465372e-10 2.380306054e-10 1.129819967e-15 1.210576327e-09 6.244159865e-10 1.81307574e-09 8.776120415e-10 1.486272741e-09 1.410735238e-09 2.909450214e-09 2.268327286e-09 2.881662008e-09 2.399496496e-09 2.123208576e-09 2.857650981e-09 2.339893998e-09 1.78690561e-09 1.502368038e-09 1.342741746e-09 1.678786209e-09 1.95333473e-09 1.092882719e-09 9.746800517e-10 7.699956131e-10 5.523881055e-10 4.453839585e-19 3.046036229e-10 1.251109412e-10 2.812187015e-10 2.025864709e-12 0 7.777693437e-11 2.741629766e-10 6.9631207e-10 8.022825135e-10 1.589061002e-09 1.102294803e-09 1.142341141e-09 1.920660251e-09 1.419098507e-09 1.172682493e-09 1.469198182e-09 1.741456956e-09 1.902736805e-09 2.122942386e-09 2.885783489e-09 1.961439444e-09 2.265360678e-09 2.656602271e-09 2.895992604e-09 3.002279747e-09 2.425303572e-09 1.974383024e-09 1.759467563e-09 3.145135465e-09 3.376996488e-09 1.315966627e-09 3.443524827e-09 2.040641351e-09 1.139611322e-09 6.364473265e-10 6.846351377e-10 4.218241046e-10 5.48287185e-10 1.168262422e-09 1.105804744e-09 9.828578008e-10 1.059271701e-09 1.383178885e-09 1.278846982e-09 5.841826451e-10 1.30156528e-09 1.575306454e-09 1.489655483e-09 1.281345248e-09 1.43013652e-09 1.879836649e-09 1.52238174e-09 1.706917064e-09 1.505463222e-09 1.838712446e-09 1.660506282e-09 1.502030455e-09 1.534036317e-09 1.115497192e-09 1.874755523e-09 5.745082519e-10 7.114738006e-10 1.090129414e-09 8.795963968e-10 6.909298534e-10 8.392520713e-10 1.397623901e-09 1.019610443e-09 9.652732785e-10 1.449620822e-09 1.112813365e-09 1.327083611e-09 1.481356839e-09 8.698568195e-10 9.726649021e-10 8.811314824e-10 1.116616272e-09 7.079810588e-10 8.664380578e-10 8.419848972e-10 1.828234442e-09 6.321530368e-10 6.01620894e-10 1.05982477e-09 6.743634902e-10 7.601834358e-10 5.099683299e-10 7.485551442e-10 1.167683043e-09 1.453336303e-09 6.810361009e-10 9.026196174e-10 9.311235057e-10 8.773734878e-10 1.069615906e-09 1.20407858e-09 6.379836036e-10 8.620310147e-10 1.332655775e-09 4.146888424e-10 9.929650571e-10 6.245407992e-10 7.230228329e-10 6.625993614e-10 8.5245118e-10 6.295935686e-10 6.725328813e-10 4.946552139e-10 9.709716995e-10 4.906479963e-10 9.324927555e-10 2.335961752e-10 6.882255428e-10 4.865482609e-10 6.094823158e-10 3.903693948e-10 3.925332443e-10 3.583476121e-10 4.783406408e-10 9.639417685e-10 2.502388261e-10 3.595555113e-10 6.956796995e-10 3.767487136e-10 4.257452169e-10 5.34792063e-10 8.125319072e-10 3.747833922e-10 5.084601234e-10 2.602921765e-10 3.094729362e-10 9.4666835e-10 5.258920856e-10 3.340218463e-10 2.653675956e-10 4.884105061e-10 2.344631458e-10 1.410488769e-10 +5.541555752e-10 2.08356208e-10 3.250456989e-10 3.891432704e-10 6.891438147e-10 7.898787838e-10 2.452376042e-10 7.257981543e-10 3.585459287e-10 5.173237654e-10 8.100478306e-10 8.618090858e-10 4.145430488e-10 1.395023526e-09 6.875290312e-10 4.998581417e-10 5.144660032e-10 4.556571512e-10 8.063461164e-10 4.314149164e-10 3.228006981e-10 5.4608303e-10 1.73379877e-10 2.376028569e-10 3.063833675e-10 4.057489586e-10 2.482441077e-10 5.531140344e-10 5.392750928e-10 4.014701574e-10 6.827570397e-10 8.766540935e-10 1.066691342e-09 5.995488454e-10 4.481477001e-10 6.34456055e-10 1.659649286e-09 4.958939747e-10 1.026785225e-09 5.834096034e-10 1.339251972e-09 4.142305789e-10 6.528098372e-10 6.594163654e-10 1.128983852e-09 9.791679309e-10 9.33569455e-10 9.299453305e-10 7.463991438e-10 1.009753094e-09 1.432437069e-09 7.876896365e-10 7.612835819e-10 7.096032694e-10 1.259424503e-09 5.780719704e-10 8.353689433e-10 1.036358754e-09 4.712942297e-10 9.496811884e-10 6.202720432e-10 1.349715175e-09 1.367814251e-09 7.612867362e-10 9.382649281e-10 5.537895777e-10 9.547804525e-10 4.98566811e-10 1.794303166e-09 1.023673913e-09 6.471930732e-10 3.812987279e-10 1.087606118e-09 9.994931856e-10 7.303178493e-10 6.17196018e-10 6.504784196e-10 9.705015519e-10 1.048493695e-09 1.592020937e-09 1.342172458e-09 2.007667571e-09 2.874597016e-09 2.594822774e-09 1.657023771e-09 8.797103952e-10 1.87832133e-09 1.386838302e-09 1.218538348e-09 2.118806787e-09 1.357006276e-09 9.82420263e-10 1.028163052e-09 1.658524557e-09 9.713772907e-10 2.071798131e-09 1.073635495e-09 8.492902541e-10 9.425683884e-10 6.373587547e-10 4.696443181e-10 6.149563509e-10 5.599145063e-10 5.659488773e-10 9.363355206e-10 1.692978568e-09 2.092340952e-09 2.373439732e-09 2.047426287e-09 2.133953769e-09 1.488763844e-09 2.65928892e-09 1.757758691e-09 3.15378326e-09 2.055535402e-09 1.753121881e-09 2.034073155e-09 3.720052961e-09 2.996736596e-09 2.006898675e-09 2.094682375e-09 1.073371756e-09 1.31610539e-09 1.412474503e-09 1.382789295e-09 9.430066961e-10 1.037685117e-09 1.184842778e-09 1.228914658e-09 1.782534014e-09 6.518073447e-10 5.425272451e-10 3.479200102e-10 1.619559745e-10 1.321920645e-10 1.888262989e-10 5.471591426e-11 6.411456919e-11 8.593753478e-11 3.343568781e-10 6.074447924e-10 4.083179088e-10 4.25013151e-10 1.049640651e-09 9.460889138e-10 1.139999209e-09 1.300256517e-09 1.363159385e-09 1.339905729e-09 2.064995373e-09 1.510037342e-09 1.733898296e-09 1.533990509e-09 7.982734167e-10 7.93737625e-10 9.519440407e-10 1.09901946e-09 7.918482402e-10 3.924668063e-10 1.992734867e-10 2.10944503e-10 7.97623841e-11 5.512463007e-10 1.733642767e-10 1.922802506e-13 8.931336801e-11 9.986827666e-12 5.567451142e-10 3.447048292e-10 1.248121782e-09 1.295171608e-09 1.372421131e-09 1.718504967e-09 9.63505772e-10 2.518192714e-09 1.301508774e-09 1.376399531e-09 1.735582403e-09 1.85979093e-09 1.430624881e-09 2.671655669e-09 4.165159703e-09 2.756806063e-09 2.688721226e-09 1.667016094e-09 1.679436078e-09 2.754020856e-09 1.437934841e-09 2.357913887e-09 2.916238453e-09 1.956601469e-09 1.790542003e-09 2.782778477e-09 2.976398026e-09 1.70735322e-09 8.679525119e-10 8.038583864e-10 1.177276979e-09 2.411337361e-10 3.260718343e-10 9.632235391e-10 7.597332201e-10 5.58656594e-10 1.248887468e-09 1.759533883e-09 8.460178163e-10 1.405951308e-09 1.083926525e-09 1.863067175e-09 1.536075215e-09 2.067643802e-09 2.157256032e-09 1.314025464e-09 1.033907027e-09 1.326268683e-09 1.519203281e-09 2.126165059e-09 1.522738914e-09 9.35459288e-10 1.187277153e-09 1.156826178e-09 9.717177618e-10 4.750063423e-10 7.706443857e-10 6.266750916e-10 6.397077244e-10 8.830833278e-10 8.512718866e-10 1.035832196e-09 6.714125196e-10 7.311771365e-10 9.591538688e-10 6.752430176e-10 1.000273967e-09 1.289715533e-09 8.609319893e-10 5.582907618e-10 7.80452501e-10 6.907034282e-10 8.343791414e-10 4.622264059e-10 6.852377547e-10 5.1718912e-10 6.008061343e-10 8.512337082e-10 7.049304862e-10 1.111459734e-09 1.226523859e-09 1.190167144e-09 1.295126612e-09 9.505714054e-10 4.802765722e-10 7.019757802e-10 9.727762492e-10 6.844653863e-10 7.304673741e-10 4.005168193e-10 7.900784265e-10 1.675094002e-09 4.700947841e-10 8.813739033e-10 4.067178582e-10 5.330064121e-10 5.680533746e-10 5.803880694e-10 1.055553561e-09 9.96355757e-10 1.340099565e-09 9.518161054e-10 7.647778376e-10 7.434050565e-10 6.673139909e-10 2.589566774e-10 7.373439972e-10 4.100777549e-10 9.117487076e-10 1.716185023e-10 2.15006081e-10 9.368623015e-10 6.485736244e-10 4.642477761e-10 3.571805442e-10 1.880846032e-10 7.12257782e-10 2.746708225e-10 1.858185362e-10 4.391097355e-10 3.693357797e-10 3.19798662e-10 6.813928254e-10 5.974642426e-10 6.476390497e-10 5.791750512e-10 8.42505947e-10 3.970618867e-10 2.225079631e-10 4.836605648e-10 6.654497417e-10 6.762850375e-10 3.943455692e-10 +7.399326601e-10 5.662960248e-10 2.544505169e-10 4.178280959e-10 2.740930011e-10 3.380124037e-10 5.01203645e-10 3.199763901e-10 5.744667555e-10 6.498032759e-10 1.273097798e-10 4.733516283e-10 2.003602968e-10 2.413554878e-10 6.684678627e-10 4.999690033e-10 2.155025404e-10 1.454738899e-10 3.620070863e-10 4.470756287e-10 4.52217091e-10 5.452255903e-10 8.985424726e-10 5.549519771e-10 5.230643786e-10 6.800814949e-10 8.616195454e-10 2.306743306e-10 5.292487185e-10 3.409906031e-10 7.079212046e-10 5.595617328e-10 7.942962117e-10 3.454383685e-10 8.286312386e-10 9.771659648e-10 9.549896402e-10 9.758821402e-10 9.743359834e-10 7.768005757e-10 1.29816051e-09 5.711161571e-10 6.897501918e-10 9.127697208e-10 6.433382025e-10 1.132415775e-09 7.783514723e-10 9.501719219e-10 7.092847394e-10 7.021541228e-10 1.027061425e-09 1.242584648e-09 5.478860303e-10 8.445090343e-10 5.462503906e-10 7.004158506e-10 6.391342857e-10 7.855304822e-10 4.594355188e-10 5.415055472e-10 7.015202997e-10 9.590314935e-10 9.035617036e-10 1.576747037e-09 7.471711626e-10 1.216476067e-09 1.036690532e-09 8.913804332e-10 1.467799895e-09 1.257450768e-09 4.776759355e-10 1.395163434e-09 6.059090295e-10 1.240311032e-09 8.371868305e-10 1.362690347e-09 8.890346283e-10 7.426989638e-10 1.420728108e-09 1.610499851e-09 1.402478107e-09 2.046504117e-09 1.960546299e-09 2.292800062e-09 1.988654718e-09 2.092930683e-09 1.842027448e-09 1.670906406e-09 8.976504576e-10 1.926988659e-09 9.768536649e-10 1.76635914e-09 1.27929609e-09 1.921812136e-09 9.354732628e-10 7.314852542e-10 1.116651907e-09 5.596701477e-10 6.417058208e-10 5.171207588e-10 4.371649664e-10 3.913337004e-10 6.749986927e-10 4.931206687e-10 8.956757418e-10 1.042549549e-09 2.480218247e-09 2.409898932e-09 2.225679184e-09 2.287518107e-09 2.935837451e-09 1.868011526e-09 2.431240103e-09 2.668528158e-09 2.624138876e-09 1.550643615e-09 2.569959343e-09 1.809313351e-09 2.747516127e-09 2.618899121e-09 2.66515727e-09 1.50954857e-09 1.232069809e-09 1.315404355e-09 1.322508562e-09 1.472718334e-09 1.140611263e-09 1.068300906e-09 6.320974142e-10 1.228219283e-09 1.486080125e-09 1.01904692e-09 4.169820618e-10 4.026675525e-10 5.337367375e-10 6.224581205e-11 1.128444357e-10 5.699464124e-11 8.889545976e-11 2.481877315e-10 1.503451627e-10 1.805312273e-10 2.719211994e-10 2.891831745e-12 5.01738722e-10 5.492848123e-10 1.026473453e-09 8.886980844e-10 7.587457746e-10 1.440275062e-09 9.251176263e-10 7.898211713e-10 1.657407827e-10 6.009105817e-10 8.98498838e-10 7.15309429e-10 6.945439036e-10 3.062416866e-10 3.062317742e-10 7.728243128e-11 9.78033837e-11 9.174494692e-11 2.442040538e-10 2.050510159e-10 8.105405615e-11 2.541595606e-10 2.318648671e-13 4.027613773e-10 1.353099076e-09 8.762083635e-10 9.403957504e-10 1.122895224e-09 1.037802811e-09 1.273398933e-09 1.012631124e-09 1.508328226e-09 1.566546809e-09 1.509511104e-09 2.38728743e-09 1.469928343e-09 2.055078737e-09 2.743782177e-09 1.926484706e-09 1.746120516e-09 2.05694334e-09 1.627449487e-09 1.230057963e-09 1.838891388e-09 2.069001912e-09 1.115445529e-09 2.23202947e-09 1.38706897e-09 2.236609259e-09 1.436351814e-09 5.327254013e-10 6.639451486e-10 7.428823935e-10 3.631583115e-10 5.428509215e-10 9.875126397e-10 6.087209555e-10 9.358687315e-10 5.624235554e-10 1.609314345e-09 1.217965077e-09 1.320851822e-09 1.43452116e-09 1.481545046e-09 1.521565303e-09 2.124607896e-09 1.314245959e-09 1.212906131e-09 5.300997246e-10 1.140504182e-09 1.553169184e-09 2.14514396e-09 1.269081465e-09 2.195569922e-09 2.092303929e-09 1.476069467e-09 8.494819272e-10 7.252260392e-10 1.572352249e-10 9.052587682e-10 7.267830736e-10 7.635691887e-10 1.021997332e-09 9.316325644e-10 1.106036697e-09 1.045094243e-09 1.071963173e-09 1.103313143e-09 7.168536544e-10 1.054706558e-09 1.222118013e-09 1.043048972e-09 9.317980453e-10 8.1263236e-10 7.652766384e-10 9.568638249e-10 1.077521908e-09 7.308518302e-10 1.550347643e-09 9.514429314e-10 7.712142235e-10 6.504390497e-10 1.226719094e-09 1.168952192e-09 1.307720632e-09 9.438693567e-10 4.557984281e-10 1.36372955e-09 6.209377712e-10 1.012989045e-09 1.016198728e-09 1.660284153e-09 9.411099377e-10 9.688802619e-10 9.614679802e-10 1.05202691e-09 8.154653979e-10 1.250151565e-09 5.514790859e-10 1.424332311e-09 1.331445959e-09 9.326248645e-10 8.620741044e-10 3.815717089e-10 1.199380348e-09 7.716915528e-10 1.018556564e-09 7.760211491e-10 2.295490638e-10 3.135499281e-10 2.172649134e-10 5.876797764e-10 4.584432804e-10 2.00980163e-10 5.52085226e-10 1.974045096e-10 2.570311459e-10 2.668748417e-10 8.107162683e-10 1.012770156e-09 4.236506999e-10 7.137161948e-10 6.898231755e-10 3.140048788e-10 3.274163947e-10 3.064809002e-10 4.497849352e-10 3.499960911e-10 4.604763182e-10 3.247783016e-10 3.142908709e-10 3.862487992e-10 5.029904805e-10 6.907661535e-10 4.36391016e-10 8.222294425e-10 +4.80042318e-10 3.149276559e-10 5.932836159e-10 3.871043638e-10 9.070371386e-10 3.573471192e-10 1.147073395e-10 5.308319673e-10 5.488649655e-10 6.370845709e-10 5.035878303e-10 4.40444213e-10 3.543891306e-10 6.161549196e-10 3.813246648e-10 6.113079886e-10 5.714322816e-10 3.233352113e-10 2.831574974e-10 3.385421947e-10 1.046871159e-09 3.309282354e-10 7.071318094e-10 5.139206763e-10 4.150563827e-10 2.894896455e-10 7.456573501e-10 1.041937202e-09 4.986675701e-10 6.50108399e-10 6.412411682e-10 8.676693227e-10 8.96557519e-10 2.700423014e-10 6.543770117e-10 5.541410363e-10 4.528456139e-10 1.483704505e-09 8.148870484e-10 7.528494916e-10 4.608892224e-10 6.704712812e-10 8.66408827e-10 7.670803607e-10 9.570226414e-10 7.535276699e-10 1.022256596e-09 8.152629575e-10 9.29046076e-10 4.155553041e-10 9.965314069e-10 1.188846192e-09 1.036916521e-09 8.047203783e-10 9.726269737e-10 6.025965957e-10 4.869710199e-10 1.125153967e-09 1.231190638e-09 6.841712016e-10 1.473432188e-09 6.417405741e-10 1.015164171e-09 5.213147547e-10 1.064316526e-09 1.191827034e-09 1.142742065e-09 1.069130972e-09 7.907642195e-10 9.62700415e-10 1.109440446e-09 9.616833423e-10 1.113993623e-09 6.723781805e-10 1.275905888e-09 6.946353041e-10 4.434292104e-10 6.225470777e-10 1.33769767e-09 1.132200739e-09 1.661292672e-09 9.934409955e-10 1.267154104e-09 2.277904232e-09 1.149171231e-09 1.789470164e-09 1.556919953e-09 1.588667711e-09 6.488839625e-10 1.254535969e-09 1.497111284e-09 1.088799849e-09 1.008881842e-09 1.075186557e-09 1.502112036e-09 2.218395637e-09 1.24286574e-09 1.080647118e-09 7.380726332e-10 6.307144564e-10 2.175081024e-10 5.369725785e-10 6.154131613e-10 6.257377767e-10 8.657591033e-10 8.632408035e-10 1.861781566e-09 1.102885188e-09 1.881040807e-09 2.187580343e-09 2.255750825e-09 2.600341166e-09 2.012709163e-09 3.416462768e-09 1.279288876e-09 1.648101151e-09 2.288356985e-09 2.583188061e-09 2.109780484e-09 1.961260943e-09 2.494127829e-09 2.40783243e-09 1.120966261e-09 1.407326737e-09 2.891324252e-09 1.705560121e-09 1.790790147e-09 1.491915197e-09 1.03816672e-09 1.767517254e-09 8.566567653e-10 1.478557027e-09 1.353450619e-09 3.336572573e-10 1.762571076e-10 1.100898997e-10 6.323991862e-11 1.935297803e-10 2.007795477e-10 1.282594793e-10 1.887002263e-10 1.361005885e-10 2.739920712e-10 1.474222537e-10 1.694921423e-10 6.126576228e-10 2.385843691e-10 3.510373526e-10 4.304587915e-10 2.456132978e-10 4.734541374e-10 3.102844774e-10 6.354347519e-10 3.687869745e-10 3.981598852e-10 0 7.038778805e-11 5.336320499e-11 1.538527348e-12 1.230420753e-10 1.702190562e-10 0 2.397436192e-10 8.037566655e-11 1.027898534e-10 2.375075647e-10 7.243846994e-10 1.105456666e-09 6.842556216e-10 1.674345037e-09 1.998530912e-09 2.072722235e-09 5.362627204e-10 1.696269751e-09 1.304418636e-09 1.596717744e-09 1.57292008e-09 1.872815874e-09 2.535001488e-09 2.344322272e-09 4.177753062e-09 3.575157941e-09 2.116110363e-09 3.141922767e-09 1.116243078e-09 1.79965252e-09 2.61218117e-09 1.69104368e-09 1.977131284e-09 2.193214863e-09 2.261648721e-09 2.38617699e-09 2.36636929e-09 2.419369889e-09 6.895161069e-10 7.989896707e-10 6.251768362e-10 3.102660643e-10 4.651168219e-10 4.281495263e-10 4.427703578e-10 9.639414732e-10 1.164851144e-09 1.400865591e-09 1.430011535e-09 2.213460755e-09 8.725666841e-10 1.294820689e-09 1.390777071e-09 1.701281318e-09 1.025976848e-09 1.641824991e-09 5.855886522e-10 2.44113268e-09 2.030232865e-09 1.695398716e-09 1.71833516e-09 2.904209874e-09 1.726678978e-09 1.062140118e-09 1.004321766e-09 9.031223846e-10 9.812504251e-10 9.403902879e-10 9.743836395e-10 1.004816113e-09 1.129695165e-09 1.367801877e-09 7.438557853e-10 9.916097196e-10 1.338027148e-09 7.876776204e-10 4.948865483e-10 7.630770462e-10 9.881912007e-10 8.540971104e-10 1.770924513e-09 1.147481484e-09 7.72257645e-10 1.333911704e-09 9.328413394e-10 1.012703129e-09 6.777924782e-10 6.565526794e-10 8.370689108e-10 5.65208683e-10 1.021938773e-09 1.014980731e-09 1.041075337e-09 6.041130494e-10 4.816470279e-10 1.156314439e-09 1.196356802e-09 8.811537481e-10 1.325816921e-09 5.294778704e-10 5.133022838e-10 7.087832848e-10 3.42657465e-10 9.069810981e-10 7.237606315e-10 9.150959566e-10 1.177728105e-09 1.188910543e-09 6.442458918e-10 9.393547946e-10 8.028854994e-10 6.340837524e-10 5.586734439e-10 6.132121617e-10 6.633746501e-10 7.379924944e-10 3.344616437e-10 2.428465797e-10 3.795476299e-10 2.720980311e-10 4.60574736e-10 2.497126544e-10 2.699628284e-10 9.890571165e-10 4.087015218e-10 6.072365554e-10 2.437117611e-10 5.467210138e-10 3.206517824e-10 7.692632443e-10 4.220113648e-10 4.653090018e-10 4.478768793e-10 4.348644296e-10 3.087970424e-10 2.670092604e-10 4.652670252e-10 2.228182867e-10 1.383725215e-10 3.727535923e-10 8.046379806e-10 5.940260524e-10 2.146942491e-10 5.262015944e-10 +3.598109018e-10 1.027608081e-10 6.157597158e-10 3.461208228e-10 7.544648768e-10 5.954791405e-10 7.130066043e-10 3.485249207e-10 4.931124996e-10 7.73658359e-10 8.072919444e-10 4.557997759e-10 1.096089032e-10 1.953686936e-10 6.133424334e-10 3.659663952e-10 2.87708277e-10 3.240327043e-10 4.626125423e-10 1.320605053e-10 6.660359081e-10 4.080079899e-10 5.132868965e-10 9.29598045e-10 5.687840759e-10 3.377900034e-10 1.506289652e-10 5.04251939e-10 7.020727742e-10 7.079970238e-10 6.93861931e-10 6.535893045e-10 9.451188857e-10 1.10171786e-09 9.411165798e-10 1.073842444e-09 9.06788795e-10 8.905161811e-10 6.286095776e-10 8.284692253e-10 7.363643459e-10 9.379492626e-10 1.286408123e-09 3.859020788e-10 1.401224535e-09 8.718929708e-10 9.625138666e-10 2.143896656e-09 4.240732712e-10 1.113632389e-09 7.589178287e-10 5.424734985e-10 4.878795982e-10 9.408135873e-10 1.160161504e-09 4.345732659e-10 7.233052413e-10 7.534517373e-10 7.650155542e-10 9.992245047e-10 9.744485672e-10 1.085032824e-09 6.372112006e-10 9.3945553e-10 9.912201895e-10 8.839879456e-10 7.340834998e-10 8.337332788e-10 1.096469191e-09 1.582806087e-09 8.9075773e-10 7.879392048e-10 1.119331355e-09 5.349583067e-10 1.440917402e-09 6.336606548e-10 7.002491295e-10 2.5550615e-10 9.017641662e-10 1.202607817e-09 1.306625719e-09 1.625983341e-09 1.613195308e-09 1.728260803e-09 2.302486178e-09 1.678434528e-09 9.961847487e-10 1.408405478e-09 1.221032809e-09 1.699497452e-09 1.153955358e-09 9.046583365e-10 1.099469884e-09 7.192715108e-10 1.365715886e-09 1.647640815e-09 1.275164351e-09 1.134450602e-09 7.808532689e-10 7.733637869e-10 3.736221607e-10 3.24921312e-10 3.770979028e-10 6.422748161e-10 5.353958974e-10 8.147242134e-10 6.872146418e-10 1.959995368e-09 1.773381881e-09 2.78070496e-09 2.312429362e-09 2.454188809e-09 1.339608838e-09 2.459437878e-09 1.854385961e-09 8.901555808e-10 2.526696462e-09 1.528835522e-09 2.073288812e-09 2.958103406e-09 2.517503876e-09 2.109664044e-09 1.818664743e-09 2.011809307e-09 1.775222621e-09 2.644315353e-10 1.761177849e-09 1.445463095e-09 1.126847238e-09 1.272786651e-09 2.199051383e-09 1.768737214e-09 1.217365493e-09 8.865093347e-10 4.635288541e-10 5.217739037e-10 1.540813211e-10 0 8.310838625e-28 1.338042105e-15 2.518223336e-10 3.503507075e-10 4.109142661e-11 2.527937015e-10 0 3.074663915e-10 1.428468167e-10 7.482277542e-16 2.385560709e-10 3.010597798e-10 2.621691441e-10 8.551949762e-11 3.094581431e-10 4.344711318e-13 1.768346132e-10 2.86758136e-10 5.029769981e-12 1.13984665e-10 1.563703464e-10 3.658036034e-10 1.045068697e-10 2.310485434e-10 2.406298447e-10 1.243484575e-10 3.642000439e-10 6.490180608e-10 7.397955742e-10 7.276652431e-10 1.51310457e-09 1.241517131e-09 9.315021719e-10 7.159543473e-10 2.041054676e-09 1.523817705e-09 2.090575092e-09 1.673816461e-09 1.467480039e-09 2.45493211e-09 2.26018687e-09 2.178693703e-09 3.167209498e-09 2.163010058e-09 1.962788096e-09 2.836616432e-09 2.243391662e-09 2.028628316e-09 1.272224231e-09 1.720351763e-09 1.300521707e-09 2.178028242e-09 1.84304028e-09 1.873166014e-09 1.856447002e-09 2.228940749e-09 6.022231262e-10 6.321867502e-10 1.171539798e-09 8.499319992e-10 1.788154016e-10 8.901410605e-10 5.296116568e-10 9.323129422e-10 1.181162451e-09 1.070087915e-09 1.196163791e-09 1.06171741e-09 1.101778067e-09 6.921705544e-10 2.03023371e-09 1.465821953e-09 1.963534248e-09 1.804045061e-09 9.523062236e-10 1.397756993e-09 1.522864203e-09 1.942527435e-09 2.321269037e-09 9.598957757e-10 1.787150069e-09 1.060634404e-09 1.374639937e-09 1.300465647e-09 1.478944287e-09 1.239145852e-09 7.128839085e-10 6.268669587e-10 4.004785849e-10 9.50401582e-10 1.086975218e-09 5.172601794e-10 5.744386801e-10 1.54818766e-09 1.045021375e-09 8.521920779e-10 1.004901862e-09 8.216239683e-10 9.307052993e-10 6.847940804e-10 8.788323802e-10 8.551228336e-10 6.019127122e-10 9.931346413e-10 3.908001304e-10 4.723626548e-10 8.092431243e-10 5.917747368e-10 1.037204294e-09 8.43944831e-10 5.962849313e-10 9.040853603e-10 7.234381311e-10 3.929953063e-10 1.106444996e-09 4.602013278e-10 6.362566918e-10 1.254803544e-09 1.009605132e-09 1.044198399e-09 5.081200257e-10 1.137004734e-09 1.007266938e-09 1.011657862e-09 1.173059104e-09 3.929386768e-10 1.224825533e-09 1.318926484e-09 7.629226079e-10 2.386621926e-10 4.739258683e-10 7.12006848e-10 5.361060988e-10 4.454189534e-10 5.825240934e-10 6.485845415e-10 6.772884766e-10 1.582657082e-10 6.589129138e-10 4.249060323e-10 1.139621479e-10 4.038591627e-10 3.119832534e-10 4.643847445e-10 2.485025006e-10 4.147125966e-10 9.528180566e-10 3.800930952e-10 3.574112224e-10 7.170014859e-10 4.039894943e-10 1.015667564e-09 4.839907231e-10 3.920078924e-10 3.467764194e-10 1.217766866e-10 7.020017661e-10 6.715289868e-10 1.124742938e-09 2.427841791e-10 3.151124091e-10 3.910872278e-10 +1.644873639e-10 3.011452143e-10 5.331702794e-10 3.559793249e-10 1.906460834e-10 2.634835855e-10 4.193138177e-10 1.752567205e-10 2.631651135e-10 5.081696626e-10 4.103473437e-10 2.030942525e-10 8.627369627e-10 1.015924803e-09 5.287961019e-10 6.931128694e-10 6.857789254e-10 3.676349047e-10 2.159942579e-10 3.920482303e-10 3.919613509e-10 3.454568817e-10 2.701229161e-10 4.245877502e-10 7.304423887e-10 5.122914789e-10 3.922868837e-10 4.856447953e-10 8.704767022e-10 1.173287239e-09 7.170826587e-10 4.829615699e-10 3.529608328e-10 1.453070443e-09 8.928644275e-10 3.738848183e-10 6.125632585e-10 1.13970486e-09 7.134898846e-10 5.998564266e-10 9.681819379e-10 5.614935082e-10 1.166457465e-09 5.098536311e-10 8.701500773e-10 1.048304892e-09 1.106946254e-09 8.648112653e-10 3.978394348e-10 6.816523555e-10 6.493789107e-10 7.224039589e-10 6.585337109e-10 1.226830536e-09 7.583633404e-10 2.145400252e-10 1.058735867e-09 5.616339971e-10 9.884614042e-10 5.6234165e-10 6.885124766e-10 1.733413544e-09 1.126830184e-09 6.89477757e-10 1.452134715e-09 9.274131105e-10 7.321974721e-10 7.894433467e-10 1.537513787e-09 7.925372739e-10 9.03081928e-10 5.522906675e-10 7.119098622e-10 5.071012963e-10 3.862597866e-10 3.635733218e-10 7.370320935e-10 6.319348884e-10 6.279584227e-10 1.207260593e-09 8.587056559e-10 1.124295684e-09 2.563716945e-09 2.465468496e-09 3.191516656e-09 1.063221917e-09 6.726150859e-10 1.694166187e-09 1.962018543e-09 1.514665702e-09 1.571446137e-09 1.050337942e-09 9.985769796e-10 1.281097788e-09 1.557662826e-09 1.032938901e-09 1.006277916e-09 8.499036036e-10 1.248812545e-09 8.123496021e-10 4.696069613e-10 3.931863e-10 3.4031391e-10 6.079954479e-10 9.426048471e-10 7.981330238e-10 1.535335877e-09 2.468985068e-09 1.729831316e-09 1.268721516e-09 2.554642858e-09 2.267956644e-09 3.109546083e-09 2.754813275e-09 1.757860777e-09 1.944165903e-09 1.904585894e-09 2.474507437e-09 2.294892708e-09 2.497663741e-09 4.326522491e-09 2.031710271e-09 2.426746878e-09 1.27174762e-09 1.439536322e-09 1.775335312e-09 2.046839999e-09 1.924632733e-09 1.462785979e-09 1.303865377e-09 9.02425535e-10 1.009682379e-09 1.556390578e-09 1.451525852e-09 9.904746743e-10 2.308887867e-10 1.44271611e-10 1.106561418e-10 0 3.552371666e-10 2.790757287e-10 9.087251021e-11 1.985204416e-10 1.692598523e-15 4.028717085e-10 1.476253487e-10 2.578987573e-10 2.98387141e-10 1.391203984e-10 8.159776724e-11 2.583430393e-10 5.236555362e-11 2.609471257e-10 2.494110269e-12 3.243247712e-10 1.132590363e-29 4.88914719e-10 2.889328552e-10 3.831811223e-10 1.824915301e-10 7.568318604e-11 7.096946132e-11 1.126766709e-10 4.081125412e-10 5.228465038e-10 1.098644702e-09 6.367858049e-10 8.394527394e-10 4.2605239e-10 1.909819908e-09 1.964557147e-09 1.982657684e-09 1.874800242e-09 1.153454905e-09 1.773825456e-09 1.656854578e-09 1.63668932e-09 1.37686608e-09 2.824287067e-09 2.470229455e-09 3.641077289e-09 2.222833745e-09 1.734552824e-09 2.315981406e-09 2.048000245e-09 2.115729537e-09 2.031578239e-09 2.170067598e-09 3.141111876e-09 2.108087947e-09 2.134987514e-09 2.580501633e-09 2.443598247e-09 1.782350384e-09 1.192800485e-09 6.581455049e-10 5.48702062e-10 3.114535739e-10 4.43795889e-10 8.396045114e-10 1.259494124e-09 1.223118019e-09 9.395884957e-10 1.904399526e-09 1.249341334e-09 1.453053982e-09 1.291554191e-09 1.675536901e-09 2.176342463e-09 6.834301431e-10 9.503350567e-10 4.172898472e-10 2.137450202e-09 1.283224352e-09 1.131460651e-09 1.267264014e-09 1.737948344e-09 1.425167005e-09 7.368412142e-10 1.056100219e-09 5.731385825e-10 4.39581761e-10 1.003003695e-09 5.889675116e-10 5.912587222e-10 1.049486878e-09 1.030538127e-09 1.458638834e-09 8.596663692e-10 9.660601274e-10 1.171909888e-09 1.113804963e-09 7.360493455e-10 7.862051248e-10 9.553038479e-10 1.186449832e-09 9.601821874e-10 1.050772348e-09 1.052274464e-09 9.092098232e-10 1.234957039e-09 7.115567783e-10 6.233808237e-10 9.830745903e-10 5.255689554e-10 1.247817869e-09 8.444409916e-10 5.445108683e-10 7.890256566e-10 9.472197505e-10 7.927649057e-10 1.539520627e-09 1.002472051e-09 7.281941583e-10 1.009508562e-09 1.023954596e-09 1.289753299e-09 5.966824607e-10 5.953321037e-10 1.210884141e-09 6.457962629e-10 6.908276748e-10 7.973668401e-10 7.146700956e-10 4.173520559e-10 8.89876666e-10 8.336240513e-10 8.071440042e-10 8.101494273e-10 2.593937241e-10 4.502197293e-10 7.106065668e-10 3.743648347e-10 4.573582059e-10 3.183785649e-10 6.302761976e-10 6.335515928e-10 3.797315709e-10 4.447038464e-10 2.891595945e-10 3.337540334e-10 4.216155216e-10 2.895832499e-10 2.86489812e-10 2.632076581e-10 5.678563918e-10 4.278561285e-10 2.027865326e-10 4.104979356e-10 4.919790557e-10 3.300944834e-10 5.615977524e-10 4.361738905e-10 2.634771618e-10 4.216596276e-10 7.436739879e-10 5.915467952e-10 3.734217891e-10 4.564702587e-10 6.046438569e-10 +2.143852121e-10 3.583300865e-10 4.176743059e-10 2.045772046e-10 7.436847747e-10 4.213667257e-10 6.592012177e-10 5.298507129e-10 1.548898088e-10 4.27685507e-10 5.961886225e-10 2.973513e-10 3.472580913e-10 7.120441492e-10 2.983556719e-10 4.332277317e-10 4.205537109e-10 5.937824634e-10 3.076565701e-10 5.355918112e-10 3.488441395e-10 5.018853166e-10 3.344658264e-10 3.287962048e-10 2.870997111e-10 6.287262546e-10 2.138880575e-10 4.097321085e-10 3.152209572e-10 9.264523343e-10 6.086513438e-10 1.025575171e-09 7.975286772e-10 1.231682541e-09 7.518869492e-10 1.168046021e-09 9.847748427e-10 6.221453491e-10 8.420407131e-10 7.158604654e-10 7.375519989e-10 8.645070894e-10 8.660131053e-10 7.970554438e-10 1.108310609e-09 9.068055221e-10 1.047523451e-09 6.2984141e-10 9.793620802e-10 7.446973705e-10 9.508083416e-10 7.640485144e-10 1.007926507e-09 8.407830816e-10 5.140150959e-10 3.993833151e-10 6.079523575e-10 6.791407887e-10 7.139064955e-10 1.170552554e-09 1.568760034e-09 1.347350618e-09 6.816452676e-10 7.806763605e-10 8.778586032e-10 6.034834808e-10 1.201015105e-09 4.844319927e-10 1.017157003e-09 1.580637093e-09 9.07525747e-10 8.431161298e-10 1.354264363e-09 6.956915648e-10 1.161231163e-09 6.760759418e-10 6.051695766e-10 5.290098991e-10 7.706974273e-10 7.095662135e-10 1.39408453e-09 6.806879959e-10 1.089236843e-09 1.472899491e-09 1.564601407e-09 1.189570514e-09 1.436232805e-09 1.332346594e-09 1.770091245e-09 1.273637299e-09 1.907374157e-09 1.414760174e-09 9.668732853e-10 1.381398748e-09 6.961368914e-10 1.004515753e-09 1.205598505e-09 9.229907087e-10 1.211689622e-09 1.052520221e-09 6.115631251e-10 3.765838701e-10 9.822164786e-11 6.3035724e-10 5.317346248e-10 5.028385559e-10 1.293512799e-09 1.639105262e-09 2.10665773e-09 2.032345726e-09 1.287981864e-09 1.474912916e-09 1.540441817e-09 2.332053232e-09 2.216591293e-09 1.894643003e-09 1.059457047e-09 2.848177965e-09 1.717930062e-09 3.765811781e-09 2.745130272e-09 3.695892285e-09 1.650497144e-09 1.546383176e-09 2.302695761e-09 1.955988771e-09 1.582258103e-09 1.809405379e-09 1.731308648e-09 1.802952797e-09 1.832983667e-09 1.409250915e-09 1.18218488e-09 1.481202898e-09 1.502531246e-09 9.481164517e-10 6.849181293e-10 8.734615548e-10 4.668035995e-10 3.582960214e-10 2.064466847e-10 8.123784763e-11 2.965870038e-10 4.590319242e-11 1.484489109e-12 2.182669586e-10 3.126391201e-28 8.798165907e-11 2.360761916e-10 1.793133235e-10 1.001647126e-10 1.276140714e-10 2.755001932e-10 2.933558035e-10 1.366798619e-25 2.048311958e-10 3.707795298e-11 3.928170026e-17 9.486483177e-11 1.704949689e-10 2.760902689e-10 5.570221651e-10 3.362679883e-10 1.049435565e-09 1.044170402e-09 8.670776089e-10 1.084922079e-09 1.133588658e-09 1.15878318e-09 1.329789366e-09 5.692538005e-10 1.430476856e-09 1.00773218e-09 1.670853443e-09 1.854466753e-09 1.687336077e-09 1.547246929e-09 2.466016785e-09 3.160344626e-09 1.654643825e-09 2.214963216e-09 1.534207883e-09 1.452662882e-09 2.685100459e-09 2.137303707e-09 2.208569886e-09 2.465122421e-09 2.04447679e-09 2.23826653e-09 2.487936451e-09 3.392369082e-09 1.404104893e-09 2.038592505e-09 1.020834072e-09 8.9576493e-10 1.054337705e-09 5.261750958e-10 2.147591787e-10 7.11445342e-10 4.465037297e-10 9.591202786e-10 1.312635318e-09 1.021629136e-09 1.150496382e-09 1.586299627e-09 1.154360124e-09 2.142301034e-09 1.223259651e-09 1.122880194e-09 1.437005617e-09 1.499104906e-09 1.496373271e-09 1.855055418e-09 1.120769712e-09 1.375578513e-09 8.121534857e-10 2.146891921e-09 1.207171439e-09 1.63350455e-09 1.406167073e-09 9.398626637e-10 9.008225005e-10 3.417551061e-10 1.062854024e-09 1.331936542e-09 9.536299625e-10 5.90234406e-10 9.788429249e-10 1.065450046e-09 9.770988031e-10 1.169958118e-09 7.415385538e-10 1.158750672e-09 7.795496061e-10 7.066943124e-10 5.464488155e-10 8.248610498e-10 6.67983403e-10 1.073013311e-09 8.718457194e-10 1.308243632e-09 5.52466353e-10 8.358891705e-10 5.511650893e-10 8.515882765e-10 5.448427524e-10 4.542693724e-10 7.612356518e-10 6.471049653e-10 1.208421864e-09 1.477033385e-09 1.091486215e-09 1.343696788e-09 9.51141205e-10 8.404565379e-10 6.515288797e-10 1.028581658e-09 6.066274442e-10 1.098853987e-09 5.491909911e-10 5.715684448e-10 1.359549792e-09 6.520758619e-10 1.155483061e-09 1.339894676e-09 4.644476318e-10 1.212260363e-09 4.815247084e-10 6.021074541e-10 8.628561351e-10 4.923465387e-10 8.996246271e-10 5.655124191e-10 5.960371108e-10 6.120152932e-10 2.406713688e-10 6.207233794e-10 8.629544225e-10 2.433763392e-10 3.700363076e-10 5.555481072e-10 3.480064987e-10 2.758306301e-10 4.185794038e-10 2.020518423e-10 5.021378939e-11 2.385271285e-10 3.569078166e-10 9.814049911e-10 4.158035414e-10 6.857397258e-10 6.904745444e-10 8.171057855e-10 5.122879421e-10 6.716006927e-10 3.982886786e-10 2.486778598e-10 2.392159538e-10 5.210291797e-10 4.468441574e-10 +6.40164359e-10 5.540034061e-10 5.930820358e-10 7.560599118e-10 3.627558324e-10 3.848290907e-10 4.349261277e-10 4.103785079e-10 3.725409875e-10 2.257052654e-10 2.062085983e-10 5.032464135e-10 2.760910179e-10 4.047112179e-10 1.245639481e-10 2.26887182e-10 5.839747007e-10 5.822510335e-10 1.768397578e-10 3.773503571e-10 2.342242187e-10 4.348416639e-10 6.815506478e-10 3.397776487e-10 2.44238595e-10 5.067793344e-10 4.637149598e-10 4.102823568e-10 5.976523782e-10 7.28134626e-10 5.75435347e-10 6.979771223e-10 7.652580552e-10 5.522904903e-10 7.607845762e-10 9.241235458e-10 1.527133046e-09 7.518371357e-10 7.040416525e-10 9.544806132e-10 1.411461695e-09 7.098028549e-10 7.417279732e-10 7.732261162e-10 1.016773683e-09 1.03490172e-09 5.353176162e-10 1.27633172e-09 5.304968624e-10 9.254328147e-10 1.39326211e-09 8.041356079e-10 9.000039684e-10 1.063542757e-09 5.470377001e-10 1.424967583e-09 6.367159857e-10 1.259489132e-09 4.44491521e-10 6.622869367e-10 5.483266558e-10 1.061221449e-09 8.309713912e-10 8.833558285e-10 6.180212293e-10 8.36120886e-10 5.687658217e-10 6.035239928e-10 9.241365358e-10 4.772394619e-10 1.459047781e-09 1.103159724e-09 9.406140649e-10 1.227942365e-09 1.412674676e-09 4.864323501e-10 6.584894995e-10 4.458573801e-10 9.767336685e-10 1.089007025e-09 1.49323467e-09 1.265472926e-09 9.753408755e-10 1.635183358e-09 1.754196652e-09 1.572294141e-09 1.106456923e-09 1.829882381e-09 1.496910383e-09 1.664676603e-09 1.147989962e-09 9.130513451e-10 8.176075184e-10 1.522767038e-09 2.07813044e-09 1.15936999e-09 1.635129397e-09 1.238520727e-09 1.279118044e-09 7.937573689e-10 6.658955167e-10 7.8252729e-10 4.397091434e-10 4.48352591e-10 1.032286992e-09 6.45885013e-10 7.676645776e-10 1.253947659e-09 1.551751937e-09 1.811687595e-09 1.224559468e-09 2.213473935e-09 2.048007646e-09 3.027455359e-09 1.563614905e-09 1.180945651e-09 1.985980332e-09 1.467474887e-09 1.93696462e-09 2.352738247e-09 2.759266261e-09 2.071941111e-09 2.722047853e-09 1.861219178e-09 1.17544175e-09 1.836168069e-09 1.317378179e-09 1.383253548e-09 2.279484381e-09 2.319273263e-09 1.852027604e-09 2.320098255e-09 2.236301029e-09 1.146108758e-09 1.398460162e-09 1.228220204e-09 1.374278882e-09 1.39836582e-09 3.490382695e-10 4.405933667e-10 3.98471841e-10 1.509366523e-11 0 8.345719102e-16 1.655155649e-10 2.519617024e-10 1.721267922e-19 1.782948355e-10 0 2.693812815e-11 8.680187911e-11 2.421090084e-10 3.827567396e-25 4.923635265e-11 9.095461183e-11 3.372848555e-12 4.480759294e-10 1.607872867e-10 1.621288424e-10 2.547001198e-10 5.008825587e-10 3.544975502e-10 8.968938999e-10 1.174367668e-09 7.539609124e-10 8.248456678e-10 1.268747343e-09 1.143600153e-09 1.496808998e-09 1.781407767e-09 8.380198417e-10 1.449411778e-09 1.821213657e-09 1.197578803e-09 1.230712791e-09 2.249097387e-09 1.789033788e-09 2.28534345e-09 2.418822638e-09 3.650754275e-09 3.403821752e-09 1.797915843e-09 3.488140414e-09 1.855444383e-09 1.529035266e-09 8.896345687e-10 1.564603033e-09 4.096579763e-09 2.422993815e-09 1.126627948e-09 2.924199813e-09 2.31406496e-09 1.300855617e-09 4.484220088e-10 7.286222248e-10 2.61888522e-10 6.085549e-10 3.162378501e-10 5.632669305e-10 3.275685592e-10 1.01673945e-09 1.525151754e-09 1.308900247e-09 1.296033584e-09 1.112742888e-09 7.537339037e-10 2.072608236e-09 1.153759485e-09 1.189920745e-09 1.727655715e-09 2.302413098e-09 1.533560111e-09 2.075844006e-09 1.466395354e-09 1.663372859e-09 8.243720888e-10 1.627915588e-09 1.646034428e-09 1.294929659e-09 1.13643024e-09 1.25609384e-09 8.927177204e-10 8.349012168e-10 6.463270439e-10 4.526768309e-10 4.644261566e-10 1.324560721e-09 1.17012123e-09 9.824434146e-10 1.268574437e-09 1.08154677e-09 4.879970721e-10 1.15948632e-09 1.045658704e-09 8.602393658e-10 7.997021387e-10 1.269221139e-09 1.302041371e-09 1.230288695e-09 1.283707398e-09 4.848777692e-10 9.236357888e-10 3.873300977e-10 1.46667781e-09 9.225272581e-10 4.843426016e-10 1.394852429e-09 1.192936132e-09 7.143379542e-10 6.513510519e-10 8.010803403e-10 8.8618369e-10 7.184791829e-10 4.876614921e-10 9.366362974e-10 1.145151163e-09 9.236006879e-10 6.91584668e-10 2.812648438e-10 9.202934389e-10 3.070395953e-10 5.204266519e-10 1.252408637e-09 5.897597547e-10 3.260085323e-10 8.364621761e-10 8.181029659e-10 1.055021358e-09 3.867859663e-10 5.510559555e-10 9.412785695e-10 1.038794525e-09 1.021350076e-09 7.675169184e-10 4.925603114e-10 5.574976224e-10 2.992796559e-10 4.73768028e-10 5.232824533e-10 2.967266905e-10 5.359573892e-10 2.768067049e-10 5.458958132e-10 2.090593638e-10 5.837555727e-10 4.806881146e-10 2.564459732e-10 5.413234708e-10 1.730969865e-10 4.000180109e-10 3.516130347e-10 7.324281823e-10 3.413195673e-10 9.618469063e-10 2.582106878e-10 4.574077819e-10 3.49965178e-10 3.421776327e-10 3.729844073e-10 3.546606539e-10 +5.628695446e-10 3.399530396e-10 3.170346404e-10 2.25548413e-10 4.352147216e-10 2.819545119e-10 4.000466376e-10 4.952398325e-10 4.243164969e-10 1.609935e-10 4.583054088e-10 5.530568908e-10 2.880482008e-10 7.705609666e-10 2.789034938e-10 1.024938919e-09 2.722969882e-10 3.38521267e-10 4.727806613e-10 1.120034265e-09 2.510259019e-10 2.726069585e-10 1.652045575e-10 8.600005774e-10 2.055777825e-10 4.405205018e-10 6.081636917e-10 6.283392651e-10 2.870298731e-10 5.015123394e-10 3.645625689e-10 7.42924517e-10 6.287818613e-10 1.183784145e-09 1.008284322e-09 8.003321968e-10 6.339128971e-10 5.193523461e-10 8.313172712e-10 1.045127903e-09 8.610611508e-10 9.332225861e-10 7.195773596e-10 6.62242571e-10 9.603563611e-10 1.011673685e-09 9.532922082e-10 5.879188768e-10 9.275444881e-10 8.54673044e-10 9.123379339e-10 1.152722865e-09 7.248906256e-10 8.252020173e-10 9.591325974e-10 4.979640197e-10 9.145148764e-10 4.884517297e-10 7.65304049e-10 7.29822482e-10 4.906753985e-10 6.020125485e-10 1.059180031e-09 1.715968108e-09 9.027611515e-10 6.932738758e-10 7.142218845e-10 7.919425586e-10 1.061697575e-09 6.720166925e-10 9.028759575e-10 5.394180254e-10 6.901268131e-10 4.863863394e-10 4.444137142e-10 4.577969279e-10 7.408579038e-10 9.658541804e-10 5.11175115e-10 9.947490729e-10 1.802981695e-09 1.01419195e-09 6.701239927e-10 1.922596062e-09 1.499977227e-09 1.52054631e-09 1.085937779e-09 1.145636437e-09 1.352391999e-09 1.540698392e-09 2.181723448e-09 1.174841556e-09 2.043186885e-09 1.149279181e-09 1.057297547e-09 1.235372219e-09 1.115786846e-09 1.42577479e-09 1.69634003e-09 1.225157006e-09 9.839446721e-10 4.612343768e-10 3.17427027e-10 1.596503357e-10 7.945886329e-10 8.66349256e-10 6.22639036e-10 2.385430064e-09 1.364424697e-09 2.948704398e-09 2.654070667e-09 2.367605397e-09 2.138055721e-09 1.735655991e-09 1.429873163e-09 1.291632941e-09 1.810889342e-09 1.807232976e-09 1.305538214e-09 2.257249296e-09 2.287671541e-09 2.335705872e-09 2.2256528e-09 3.09916982e-09 2.15610511e-09 1.480773028e-09 2.097117656e-09 2.16780697e-09 7.454583971e-10 1.723241606e-09 1.764572812e-09 9.858899339e-10 1.237880411e-09 1.61836003e-09 1.105330672e-09 2.051509637e-09 1.22894777e-09 9.517612708e-10 6.869417162e-10 6.336219382e-10 3.855135895e-10 7.575646627e-11 7.858581157e-10 9.573866108e-11 8.367975076e-11 1.43952923e-10 2.439895936e-10 3.383515176e-19 9.288514729e-11 6.033770417e-11 1.740837278e-10 7.528043381e-11 9.930937284e-11 8.909944554e-15 2.693952429e-10 4.111009088e-10 2.693323775e-28 3.474622597e-10 3.981468776e-10 3.206836752e-10 7.91248724e-10 9.495138354e-10 5.826543084e-10 9.954832607e-10 1.804330954e-09 1.143156016e-09 1.461308466e-09 1.972890042e-09 1.363990161e-09 9.146466865e-10 8.892447935e-10 1.721079711e-09 1.422928566e-09 1.439724044e-09 8.290896048e-10 1.773147191e-09 3.712873198e-09 3.683362766e-09 2.122203383e-09 2.04926452e-09 2.927490588e-09 8.089370092e-10 1.119865637e-09 1.238870813e-09 1.843002726e-09 1.240981475e-09 1.784434176e-09 2.239773247e-09 1.843200397e-09 2.577665879e-09 2.258596851e-09 3.100185341e-09 1.354255955e-09 7.431969315e-10 9.264244003e-10 3.126516724e-10 3.163439421e-10 6.982279796e-10 4.941414009e-10 7.895508545e-10 1.063823027e-09 6.427842287e-10 1.003296772e-09 1.467234255e-09 1.180111554e-09 1.943571456e-09 1.184292862e-09 6.532440604e-10 1.868686291e-09 6.481633696e-10 1.739433859e-09 1.462948835e-09 2.012418302e-09 2.150652109e-09 1.159589941e-09 2.006059899e-09 1.767221793e-09 1.484034662e-09 9.384313046e-10 1.200159924e-09 6.978073789e-10 6.945238505e-10 1.186465682e-09 3.013227287e-10 8.821538139e-10 7.864425741e-10 7.900450072e-10 8.200686306e-10 1.000180705e-09 1.187584198e-09 7.181756957e-10 1.087581628e-09 9.194060061e-10 5.22279933e-10 8.968963028e-10 1.135248877e-09 8.575581672e-10 8.487987136e-10 7.076340545e-10 1.185576273e-09 1.028772494e-09 8.032435614e-10 6.402398167e-10 4.15354407e-10 6.548054173e-10 3.945897677e-10 1.37021423e-09 8.943095381e-10 7.870493222e-10 7.538841551e-10 4.839039013e-10 8.133863628e-10 6.585364925e-10 1.110368513e-09 1.397219894e-09 6.611098094e-10 3.479974767e-10 4.600619053e-10 6.70958768e-10 7.940633733e-10 3.911784462e-10 1.019281986e-09 8.071430839e-10 1.202528777e-09 6.457897366e-10 1.023897278e-09 8.939023755e-10 8.086837486e-10 8.54655443e-10 1.075095679e-09 7.572147892e-10 4.344360023e-10 6.71470405e-10 8.691387079e-10 4.977207443e-10 4.926112601e-10 5.25398593e-10 6.191234789e-10 4.415168244e-10 2.085791557e-10 7.529266011e-10 5.107278431e-10 1.598178787e-10 3.840012344e-10 4.490196004e-10 3.264828703e-10 5.484683547e-10 5.650181604e-10 2.442298371e-10 2.263263323e-10 4.72178131e-10 4.002999461e-10 3.216352824e-10 4.58518223e-10 5.430336302e-10 3.423309116e-10 4.581391944e-10 6.17636168e-10 6.536839231e-10 1.892079882e-10 +1.65165571e-10 3.594496973e-10 4.159557485e-10 2.707322342e-10 2.824439177e-10 8.83662048e-10 4.404540567e-10 3.083980254e-10 2.201008387e-10 3.064846091e-10 4.68054983e-10 5.461264679e-10 6.49327369e-10 6.244403135e-10 7.566133829e-10 5.35831075e-10 2.061450865e-10 3.714811681e-10 3.841218671e-10 6.004509243e-10 3.730628152e-10 1.436919167e-10 4.587886197e-10 3.544191787e-10 6.064934806e-10 6.613744361e-10 4.799883418e-10 4.476122155e-10 6.056070158e-10 6.80868038e-10 8.303721283e-10 8.007475991e-10 8.936534305e-10 8.018787695e-10 1.013888359e-09 8.232446849e-10 1.030689121e-09 7.22995711e-10 8.488253025e-10 9.320582133e-10 9.66879802e-10 6.126597925e-10 1.482285636e-09 9.839414048e-10 4.047599755e-10 1.131784344e-09 1.149955191e-09 7.757333112e-10 4.016376761e-10 7.21382268e-10 8.072493748e-10 1.306305677e-09 5.088402057e-10 3.928361349e-10 5.630445473e-10 7.896779947e-10 4.100803436e-10 5.301736867e-10 1.086818425e-09 8.625026348e-10 9.816608645e-10 6.938788847e-10 5.385555697e-10 7.653606582e-10 6.77821198e-10 1.035659232e-09 8.001274159e-10 8.137811059e-10 9.629582337e-10 1.270845748e-09 9.815693923e-10 6.037006764e-10 9.381216895e-10 2.079865527e-10 9.00574149e-10 6.228241738e-10 6.739969716e-10 5.8204591e-10 1.022154513e-09 1.377477261e-09 9.024999385e-10 1.4662363e-09 1.437439919e-09 9.080289873e-10 1.862455986e-09 1.095873207e-09 1.031499828e-09 1.490958064e-09 2.061755646e-09 1.342162994e-09 1.232276538e-09 1.339589817e-09 8.680481475e-10 1.119593324e-09 1.178455024e-09 6.200059843e-10 9.376627606e-10 1.250748467e-09 1.229226391e-09 4.673115971e-10 6.040459536e-10 6.850205129e-10 3.406049819e-10 3.970669652e-10 5.751864217e-10 3.167810979e-10 1.24239432e-09 1.784790107e-09 2.523167004e-09 1.251356309e-09 2.147855566e-09 2.466563581e-09 1.125191057e-09 1.000025121e-09 2.847340445e-09 1.484752627e-09 9.502000852e-10 2.718722783e-09 1.997896366e-09 1.185314085e-09 2.357167607e-09 3.214775772e-09 3.517155193e-09 1.993582608e-09 3.44834913e-09 2.06021831e-09 1.41498114e-09 2.157766385e-09 1.511426994e-09 1.142494132e-09 1.3953423e-09 9.061171894e-10 1.458640276e-09 9.986868702e-10 1.564233469e-09 1.063114111e-09 7.089189032e-10 1.801571422e-09 1.738794632e-09 9.933363826e-10 1.02846688e-09 6.177030567e-10 4.565562926e-10 7.136758811e-10 8.542513853e-11 7.565493785e-10 3.726039854e-10 1.263504894e-10 4.694883379e-10 2.493815581e-10 1.728646727e-10 5.284371075e-10 3.134896677e-10 3.027649367e-10 3.805502036e-10 7.006497232e-10 3.453825375e-10 6.831971691e-10 9.976362758e-10 8.946661507e-10 3.7896532e-10 1.395510203e-09 9.599750192e-10 1.593337668e-09 1.841583151e-09 1.110311109e-09 1.82154642e-09 1.292825967e-09 1.248147507e-09 1.565055032e-09 1.739335701e-09 1.813469783e-09 1.987953011e-09 1.752082677e-09 1.65079619e-09 2.158042606e-09 2.217388845e-09 2.660252023e-09 2.335373057e-09 2.723457689e-09 2.135014637e-09 1.885017486e-09 8.829990392e-10 2.324704008e-09 2.169175422e-09 2.086938428e-09 2.791265897e-09 1.438134672e-09 1.318850769e-09 2.878415058e-09 9.180480739e-10 2.57016249e-09 1.017045835e-09 8.294604229e-10 6.977141914e-10 4.440983568e-10 2.538655741e-10 5.549649387e-10 7.266512933e-10 5.60518426e-10 9.120095167e-10 1.034724094e-09 8.892830828e-10 8.258820923e-10 1.409448787e-09 8.802302636e-10 1.06328473e-09 1.860552165e-09 9.335380393e-10 1.434923353e-09 2.144625577e-09 1.15346366e-09 1.723771449e-09 1.166527399e-09 1.215601334e-09 1.648073409e-09 1.683287403e-09 2.125368275e-09 9.324843849e-10 1.574004948e-09 6.649192396e-10 6.186036353e-10 9.700239819e-10 6.976755111e-10 4.612020844e-10 5.781271844e-10 4.695547987e-10 1.030017676e-09 3.297099333e-10 8.045335263e-10 1.036099975e-09 7.430421531e-10 9.454196885e-10 4.844310406e-10 1.034458284e-09 6.857576454e-10 7.165978241e-10 8.624706134e-10 4.992064154e-10 1.057345647e-09 8.137884748e-10 5.207453813e-10 8.548970534e-10 9.071710875e-10 9.049343998e-10 6.803717589e-10 4.411602582e-10 4.744013579e-10 7.959634389e-10 5.016241886e-10 9.638967917e-10 1.17051974e-09 1.047326272e-09 8.078905711e-10 5.241198913e-10 8.145751454e-10 9.255386707e-10 9.201388973e-10 8.321924829e-10 1.180364105e-09 5.865063128e-10 9.677213603e-10 7.750380192e-10 6.954084503e-10 9.910978425e-10 4.944237256e-10 5.940636573e-10 9.69353874e-10 1.01247933e-09 6.71640787e-10 9.757331201e-10 6.546527241e-10 3.601637256e-10 5.494407759e-10 6.886581512e-10 4.904338709e-10 3.840122019e-10 4.206015846e-10 1.560716161e-10 5.009677617e-10 4.527274457e-10 3.562885248e-10 6.446487151e-10 4.277100384e-10 1.967295436e-10 2.893929038e-10 3.670471362e-10 4.8045015e-10 4.508051794e-10 3.895984716e-10 1.264207258e-10 4.163657631e-10 3.07812009e-10 3.043232698e-10 4.682306735e-10 3.222978412e-10 4.876479728e-10 4.456615114e-10 5.619182556e-10 6.502191975e-10 +6.885498807e-10 1.981735039e-10 3.786587922e-10 3.685863894e-10 8.181362858e-10 5.942934413e-10 3.44370026e-10 2.446467076e-10 1.980747673e-10 3.107154629e-10 4.251122216e-10 7.458689062e-10 5.862506155e-10 4.837376754e-10 9.534801517e-10 1.014810429e-10 4.456075029e-10 3.954602734e-10 6.110459303e-10 4.018732769e-10 3.220589028e-10 5.281021569e-10 3.288255692e-10 9.214868593e-10 1.689223101e-10 3.903531412e-10 5.350310715e-10 3.582168514e-10 3.457227436e-10 1.007621219e-09 5.947820619e-10 5.256857784e-10 9.147960092e-10 3.971850168e-10 1.288747701e-09 7.95115702e-10 4.966566156e-10 8.289506096e-10 6.097204736e-10 5.625185498e-10 8.121984669e-10 1.176302064e-09 1.576426394e-09 6.708681827e-10 9.880291862e-10 7.564418639e-10 5.122516003e-10 6.56039802e-10 9.405050499e-10 1.273369882e-09 8.428963398e-10 1.054198278e-09 1.092681847e-09 1.068858367e-09 5.46590266e-10 7.616386537e-10 5.147083793e-10 8.691526885e-10 1.235694723e-09 1.244408387e-09 1.5012636e-09 1.055015038e-09 1.092587602e-09 7.669421365e-10 6.923668793e-10 8.682955166e-10 5.849363976e-10 7.58628717e-10 5.838195903e-10 9.40713777e-10 8.326868745e-10 6.102329491e-10 7.627611497e-10 9.172924319e-10 9.981506176e-10 1.006812135e-09 8.163349178e-10 6.272339352e-10 7.967059978e-10 1.637542254e-09 1.083359446e-09 1.175324799e-09 1.996143855e-09 1.336433919e-09 1.041860028e-09 1.059575351e-09 1.170084893e-09 1.384817064e-09 8.599511166e-10 1.299472649e-09 1.314669103e-09 6.238138399e-10 1.747113177e-09 7.099224946e-10 1.483103821e-09 8.598918476e-10 1.237842384e-09 1.430133353e-09 1.365775935e-09 3.794469247e-10 1.513636657e-09 1.002836949e-09 3.106401419e-10 2.907041838e-10 6.126458983e-10 8.110802316e-10 8.953764807e-10 9.06156825e-10 1.783912611e-09 1.670859177e-09 1.921953862e-09 2.02358249e-09 1.329746578e-09 2.594645441e-09 2.356491158e-09 2.691918982e-09 1.714649759e-09 1.31235251e-09 1.826742909e-09 1.085401326e-09 1.758337805e-09 1.545434247e-09 2.287123525e-09 1.899836201e-09 2.219920865e-09 2.096285919e-09 1.601000275e-09 1.89781667e-09 1.567745551e-09 1.719968753e-09 1.481564439e-09 1.450113147e-09 1.495219614e-09 1.692174782e-09 7.248379778e-10 1.115802216e-09 2.226987224e-09 1.406993031e-09 1.763584422e-09 1.051543215e-09 1.434377603e-09 8.167505588e-10 1.117844644e-09 7.783881721e-10 3.960378329e-10 5.882901989e-10 6.397281388e-10 4.242030778e-10 2.842414083e-10 6.5979427e-10 3.519915598e-10 4.191970451e-10 6.698021212e-10 8.885241794e-10 8.15291408e-10 1.129986885e-09 6.687178694e-10 7.818568609e-10 1.024062051e-09 9.688905985e-10 1.678760024e-09 1.233866975e-09 1.349155975e-09 2.207885963e-09 1.574187193e-09 8.450147899e-10 1.90826568e-09 6.592449537e-10 7.527203681e-10 2.025885174e-09 1.156842203e-09 1.313129562e-09 1.507578701e-09 4.998072792e-10 2.168746799e-09 2.044965016e-09 2.496485853e-09 3.016220394e-09 2.957271787e-09 1.886323885e-09 2.551151172e-09 1.653965902e-09 2.201079057e-09 2.224595178e-09 1.785197154e-09 2.395515738e-09 2.09147612e-09 2.797605858e-09 2.057164887e-09 2.200589237e-09 1.29159317e-09 1.773619137e-09 8.370388213e-10 1.27418057e-09 8.401570922e-10 2.410104204e-10 3.525299264e-10 5.686025274e-10 9.746380056e-10 4.518014828e-10 6.144763154e-10 9.672691025e-10 1.124773124e-09 9.332633965e-10 1.235150228e-09 1.395434027e-09 1.201215892e-09 1.263443602e-09 1.599694429e-09 1.084565652e-09 9.596070007e-10 1.11208087e-09 1.579246621e-09 2.00391264e-09 1.784526638e-09 1.153186588e-09 1.338077599e-09 1.563409208e-09 9.939016521e-10 1.737161243e-09 1.355405384e-09 1.054092363e-09 8.292419772e-10 6.842050053e-10 7.408850687e-10 1.182543889e-09 7.898107317e-10 1.543746016e-09 9.505292971e-10 7.564959888e-10 9.441229268e-10 1.056426539e-09 1.001668827e-09 7.487394331e-10 8.706252306e-10 7.945884806e-10 1.145769181e-09 6.077423046e-10 1.04013783e-09 8.901797381e-10 8.216850844e-10 5.198597799e-10 1.977786661e-10 6.947587908e-10 1.238116778e-09 6.900619363e-10 1.19870748e-09 8.081362348e-10 7.383149984e-10 5.279576753e-10 9.839782332e-10 9.610174432e-10 6.487785758e-10 7.188356635e-10 6.926876994e-10 5.610402783e-10 3.979210833e-10 6.489219273e-10 6.020842713e-10 4.473494654e-10 9.249590934e-10 5.416212646e-10 6.696650838e-10 8.824857658e-10 7.567592236e-10 5.666078123e-10 6.290171162e-10 1.08380728e-09 7.37916597e-10 7.099351746e-10 7.524388653e-10 6.823857628e-10 4.594459313e-10 8.504518134e-10 6.44077358e-10 4.290487548e-10 2.95822695e-10 2.657950324e-10 3.841914694e-10 6.438891309e-10 3.928379537e-10 4.892129075e-10 4.055027093e-10 6.314845042e-10 5.890542902e-10 2.344653781e-10 3.497148551e-10 3.936879032e-10 3.890003396e-10 2.423474263e-10 1.918567988e-10 6.366652918e-10 4.182200193e-10 2.306865602e-10 4.535303896e-10 5.310895475e-10 2.977517391e-10 5.700858754e-10 4.857948786e-10 4.175535665e-10 +2.376502154e-10 4.581984508e-10 4.442853667e-10 4.352114129e-10 5.243370635e-10 2.236930888e-10 4.410183287e-10 5.7360119e-10 2.783802098e-10 5.011189947e-10 3.527163525e-10 7.183491292e-10 2.155523333e-10 3.789097003e-10 3.876693566e-10 4.124362145e-10 8.65248001e-11 3.144283047e-10 2.878567909e-10 4.309773844e-10 3.55254643e-10 4.011613562e-10 5.536150954e-10 6.747062894e-10 4.65296688e-10 4.77369406e-10 6.210252803e-10 8.826004666e-10 6.005312957e-10 1.157464277e-09 8.672137746e-10 5.204176225e-10 5.277098566e-10 5.207560738e-10 8.884653587e-10 1.203736454e-09 7.5412771e-10 9.172372658e-10 1.566380551e-09 8.151112026e-10 1.097517638e-09 7.50645404e-10 1.34784178e-09 5.613181074e-10 1.570818534e-09 6.916021269e-10 7.339262699e-10 5.59717011e-10 4.748994824e-10 4.66644761e-10 7.416232533e-10 1.379602748e-09 5.592435784e-10 5.203115789e-10 7.333271804e-10 7.892231814e-10 7.61983401e-10 7.814156395e-10 6.056953103e-10 1.070297875e-09 6.757669333e-10 1.062288933e-09 1.008586108e-09 7.607394244e-10 4.244219375e-10 6.873527963e-10 8.793877803e-10 9.575402011e-10 8.054096483e-10 4.059739693e-10 5.937592108e-10 1.113497931e-09 7.279919513e-10 6.049153358e-10 1.19801172e-09 1.040226306e-09 7.004720975e-10 4.733211296e-10 1.093155074e-09 6.954978996e-10 8.129271317e-10 5.584960856e-10 1.99103576e-09 1.29640004e-09 1.574259568e-09 1.514682415e-09 1.212610656e-09 7.084849507e-10 1.83474025e-09 1.317838302e-09 1.23688377e-09 1.075758368e-09 1.042784742e-09 1.12094196e-09 1.179352462e-09 1.002667399e-09 1.140698275e-09 4.094251047e-10 1.167421698e-09 8.358589374e-10 1.075990448e-09 6.949655678e-10 3.40211211e-10 1.82482156e-10 4.682030983e-10 2.584643105e-10 7.177029983e-10 8.480815521e-10 1.750826126e-09 1.265389794e-09 2.078335172e-09 2.256239231e-09 1.814688208e-09 1.620883703e-09 1.621435321e-09 1.236446139e-09 2.107646901e-09 2.056860489e-09 1.761382663e-09 2.19737068e-09 1.020825332e-09 1.53390535e-09 3.131257861e-09 1.81542922e-09 1.987857223e-09 1.930116375e-09 2.108312935e-09 7.530553053e-10 9.873253897e-10 2.026020962e-09 1.511260411e-09 1.648363707e-09 6.316848407e-10 1.460703911e-09 1.416547805e-09 1.326649104e-09 1.445378548e-09 1.182768867e-09 1.218866932e-09 1.454498979e-09 1.062860411e-09 1.481973343e-09 6.052625956e-10 1.07035578e-09 9.780401072e-10 7.919569199e-10 3.70228211e-10 5.808110375e-10 5.019659962e-10 9.237259305e-10 5.716535538e-10 4.767707639e-10 7.990901618e-10 8.765517786e-10 8.035233317e-10 7.911186637e-10 1.271896374e-09 3.395217459e-10 8.364926297e-10 1.050686665e-09 1.463152149e-09 1.306544105e-09 1.844537388e-09 1.322944088e-09 1.39459299e-09 1.011796473e-09 1.265786119e-09 1.486142825e-09 1.27821406e-09 1.18842925e-09 1.917355075e-09 2.395531107e-09 9.827236699e-10 1.557127798e-09 2.41153258e-09 2.446588716e-09 2.61938136e-09 2.442055971e-09 2.113723475e-09 1.229007996e-09 1.492819559e-09 1.397724228e-09 1.51754141e-09 2.673187789e-09 2.124146838e-09 3.233186261e-09 1.950817958e-09 2.565071932e-09 2.455157933e-09 2.292203026e-09 2.205388289e-09 1.280428452e-09 3.995595529e-10 8.235566886e-10 7.801158265e-10 3.448023778e-10 1.998202162e-10 2.704582048e-10 1.402629076e-09 8.130541481e-10 1.256688099e-09 1.27471846e-09 1.820613357e-09 1.131792247e-09 1.067744798e-09 1.007220371e-09 6.522928524e-10 1.242380949e-09 9.438077798e-10 1.034718498e-09 1.982077831e-09 1.172528965e-09 1.222435147e-09 1.797757854e-09 2.265693225e-09 1.165827028e-09 1.322669963e-09 1.65079052e-09 1.536424867e-09 9.717297188e-10 2.859896918e-10 2.929737138e-10 4.442154005e-10 1.099100792e-09 6.005639152e-10 9.184904624e-10 6.818345781e-10 8.652945489e-10 1.123470535e-09 5.43881901e-10 1.538279342e-09 6.726510987e-10 8.029909913e-10 3.869572764e-10 1.307830028e-09 8.17032631e-10 8.698833126e-10 7.90814147e-10 9.59230557e-10 9.815712469e-10 5.11372799e-10 7.960294748e-10 1.06858462e-09 9.02842455e-10 5.356470012e-10 3.71251299e-10 9.642152898e-10 7.893836427e-10 9.268615214e-10 1.155416378e-09 7.770388718e-10 7.598924233e-10 3.90041937e-10 9.261928648e-10 6.366993578e-10 8.745642256e-10 4.771766072e-10 1.1943943e-09 3.857002483e-10 9.088760711e-10 5.027215267e-10 9.192741272e-10 8.91675566e-10 7.166292966e-10 6.363316603e-10 6.210218044e-10 8.154104101e-10 8.108010563e-10 7.614387692e-10 1.547644844e-09 1.163527341e-09 6.473440066e-10 1.039245156e-09 3.897218207e-10 8.719540504e-10 5.640411261e-10 4.048267716e-10 1.08871335e-09 3.32832007e-10 6.449921383e-10 2.440048694e-10 1.214584308e-10 3.220651077e-10 5.521327995e-10 3.595896184e-10 5.076007867e-10 2.756602682e-10 4.123092766e-10 6.630954797e-10 3.373819153e-10 4.685010334e-10 1.963430686e-10 2.144800104e-10 2.89206395e-10 6.162016068e-10 3.38167935e-10 2.945939222e-10 6.952617403e-10 3.571864623e-10 6.457186978e-10 +2.764752361e-10 3.101375707e-10 5.837141899e-10 3.875173458e-10 8.776578021e-10 4.349892816e-10 2.887929634e-10 1.806913352e-10 5.575595497e-10 3.008360099e-10 2.113788404e-10 5.555952556e-10 7.975652669e-11 2.109739763e-10 2.148652032e-10 2.531390261e-10 5.992563771e-10 2.795487031e-10 2.124110114e-10 3.305361049e-10 6.790745356e-10 4.69112894e-10 4.117625708e-10 1.081702299e-09 4.266700141e-10 7.247314347e-10 5.552382832e-10 5.402897623e-10 1.39483224e-09 6.432789988e-10 6.999840982e-10 8.109358436e-10 4.816225935e-10 8.297808263e-10 1.022658344e-09 9.480561842e-10 3.004260418e-10 5.492334637e-10 1.00296498e-09 4.878364458e-10 7.598854555e-10 6.286411765e-10 7.459402749e-10 4.083972948e-10 9.091735983e-10 1.112553871e-09 1.053185635e-09 4.273577609e-10 5.415892851e-10 9.371685477e-10 7.357677765e-10 8.38075852e-10 7.114656439e-10 4.89360194e-10 6.738341043e-10 5.073231233e-10 1.344836447e-09 5.911422027e-10 8.215624344e-10 9.539311008e-10 1.125747444e-09 9.36567243e-10 7.023538525e-10 3.444776955e-10 8.155494289e-10 7.46437059e-10 7.559751205e-10 7.771999055e-10 9.91766085e-10 5.265631714e-10 7.094094146e-10 1.309461368e-09 7.982268173e-10 8.08437333e-10 7.725847844e-10 8.357956914e-10 1.142774588e-09 6.59066253e-10 4.560982854e-10 4.294301794e-10 1.293584894e-09 1.293949267e-09 1.488526287e-09 1.768314261e-09 2.15167953e-09 1.491442673e-09 1.431223115e-09 1.477464142e-09 1.468515338e-09 1.629399124e-09 7.697887869e-10 1.581105308e-09 1.116086819e-09 5.674337151e-10 9.488499964e-10 1.582854877e-09 1.15619784e-09 1.03070871e-09 1.29051233e-09 1.170442167e-09 1.271670419e-09 7.701576498e-10 3.620843894e-10 2.268108163e-10 3.955964423e-10 3.631907206e-10 1.112069297e-09 8.854092855e-10 3.514054398e-10 2.364380797e-09 3.266156066e-09 2.183960212e-09 2.036798088e-09 2.470604656e-09 1.765090051e-09 1.769234364e-09 2.509109773e-09 1.703737565e-09 9.889813128e-10 1.616758251e-09 2.316091482e-09 1.520784544e-09 2.807259043e-09 2.089358277e-09 2.812994307e-09 4.200011675e-09 2.516321927e-09 2.035515249e-09 1.581097441e-09 1.087603196e-09 1.470667536e-09 2.101373131e-09 1.442114619e-09 1.409835896e-09 9.653640043e-10 1.267656581e-09 1.122511129e-09 1.526030409e-09 1.063380067e-09 8.8814518e-10 1.672453072e-09 5.574708576e-10 9.843897909e-10 1.268479636e-09 1.145289214e-09 2.095701256e-09 1.12229759e-09 1.293542783e-09 8.283198218e-10 1.788072795e-09 6.987964977e-10 1.085702719e-09 6.760624721e-10 1.302033819e-09 8.705714149e-10 1.069363191e-09 7.662009685e-10 1.454068057e-09 1.189825995e-09 1.606131276e-09 1.037949068e-09 2.088573307e-09 1.104563167e-09 2.079892805e-09 2.220111026e-09 1.654553915e-09 8.590608884e-10 1.367285665e-09 1.944261699e-09 1.477011936e-09 8.579014467e-10 8.565135249e-10 2.042233343e-09 2.323106555e-09 2.283034285e-09 2.9786797e-09 1.411227925e-09 1.567341501e-09 2.052614792e-09 1.385151064e-09 2.207490015e-09 1.525469929e-09 1.743862372e-09 1.954120048e-09 1.897996809e-09 1.723059504e-09 2.564620761e-09 2.093695315e-09 1.716651082e-09 1.463297215e-09 2.026594042e-09 9.082249529e-10 5.385191892e-10 3.749681436e-10 2.641774862e-10 1.182418928e-10 3.042970072e-10 5.590374049e-10 4.051064863e-10 1.179743516e-09 6.269604052e-10 7.183984304e-10 1.366238626e-09 1.111077933e-09 1.357548936e-09 6.244901381e-10 1.192921727e-09 1.123944942e-09 1.720306623e-09 1.071769597e-09 1.413836912e-09 9.564931646e-10 8.27568645e-10 1.299423336e-09 1.872340141e-09 1.964351521e-09 1.156360516e-09 1.210059385e-09 9.925199068e-10 1.007841744e-09 7.413452018e-10 7.188295089e-10 1.044718655e-09 2.747914668e-10 6.841086456e-10 8.611531767e-10 9.873731252e-10 7.040994716e-10 2.759194304e-10 6.893667437e-10 8.439540963e-10 1.194902142e-09 7.095231115e-10 4.529762283e-10 1.110251479e-09 1.209650591e-09 7.092343183e-10 8.673085251e-10 1.06838204e-09 6.788552985e-10 1.063829489e-09 1.462115645e-09 5.281290115e-10 4.109021244e-10 3.116487452e-10 5.362794382e-10 1.134106279e-09 5.634168035e-10 4.575653836e-10 1.153634979e-09 4.716499586e-10 1.065823459e-09 5.510445582e-10 8.870404349e-10 7.658753817e-10 8.209185144e-10 1.226645262e-09 5.471557245e-10 7.808510073e-10 5.082952651e-10 7.908509397e-10 8.83923894e-10 1.596995218e-10 9.913812085e-10 5.880368486e-10 9.387302722e-10 1.080785721e-09 7.112646102e-10 7.187464747e-10 8.056901588e-10 1.191313869e-09 7.672556249e-10 5.345760696e-10 4.524737665e-10 9.895295141e-10 2.298615521e-10 4.389066862e-10 6.962302789e-10 8.110467948e-10 1.61489309e-10 2.419291333e-10 1.849863433e-10 6.545206802e-10 7.423334204e-11 3.447418151e-10 6.727169922e-10 4.093946295e-10 2.328833201e-10 2.615984132e-10 2.607692135e-10 5.056267263e-10 1.749897069e-10 3.753111237e-10 2.982819192e-10 2.942418276e-10 3.862584035e-10 4.325711749e-10 2.133637629e-10 4.567137985e-10 3.438963943e-10 +2.40157168e-10 4.042858117e-10 4.570818389e-10 3.304956919e-10 3.036238402e-10 4.267676982e-10 4.853107471e-10 3.655007077e-10 3.638770638e-10 3.153010338e-10 6.137611496e-10 3.561572692e-10 4.416568931e-10 3.3414825e-10 1.989535073e-10 1.971254522e-10 1.511958391e-10 7.534572928e-10 5.254860071e-10 2.943872369e-10 6.065362301e-10 3.748269209e-10 9.891448503e-10 5.628206107e-10 6.697000533e-10 5.599643046e-10 1.081464629e-09 6.047953548e-10 1.159213674e-09 1.059824882e-09 7.449114361e-10 9.189087657e-10 7.1845626e-10 1.011454139e-09 7.136600463e-10 2.406627957e-10 8.500060239e-10 3.839231663e-10 7.638775766e-10 7.564701268e-10 1.191085639e-09 1.11461523e-09 8.286654441e-10 8.835253673e-10 1.048778648e-09 1.098114635e-09 1.259112102e-09 1.106144451e-09 6.721072821e-10 8.294540643e-10 6.500052456e-10 3.344316757e-10 6.526428825e-10 3.853155513e-10 7.22676437e-10 7.541063599e-10 4.70720121e-10 8.931937225e-10 1.026994894e-09 4.789622532e-10 7.518098171e-10 7.494561949e-10 1.324709587e-09 5.62286962e-10 1.297408037e-09 1.606699148e-09 5.643045274e-10 1.391808361e-09 9.240483265e-10 1.062769554e-09 1.196193011e-09 7.856483337e-10 7.290544357e-10 8.50394975e-10 1.187415929e-09 7.582298913e-10 1.013874251e-09 8.861875777e-10 2.977936724e-10 3.217980082e-10 7.223819672e-10 8.735059379e-10 1.770971376e-09 2.100729222e-09 1.756526886e-09 1.807970746e-09 1.662016488e-09 2.053308361e-09 1.159261877e-09 1.149612297e-09 1.610148873e-09 1.062510948e-09 2.158261235e-09 9.669951385e-10 9.42301571e-10 1.204048957e-09 9.837483784e-10 7.342073785e-10 1.686068966e-09 1.040805394e-09 9.509523364e-10 3.082239071e-10 7.66594286e-10 5.198277255e-10 1.490183295e-10 3.537525322e-10 7.413816468e-10 9.199663762e-10 4.969548831e-10 2.129660521e-09 2.493968366e-09 1.964957251e-09 1.640458556e-09 1.452761257e-09 2.574741776e-09 2.016339081e-09 2.003946834e-09 2.008523125e-09 1.480113872e-09 2.20484743e-09 1.792294838e-09 1.193952535e-09 1.974725663e-09 1.686584738e-09 1.899631327e-09 2.661933676e-09 1.990078304e-09 2.617234862e-09 2.376707017e-09 2.142116002e-09 1.407383963e-09 2.253049867e-09 1.311216278e-09 8.607057462e-10 1.347546261e-09 1.085021951e-09 1.703803351e-09 1.386706864e-09 1.337800419e-09 1.05355249e-09 1.091352348e-09 1.47814648e-09 7.528142108e-10 1.097067122e-09 1.263488152e-09 1.049635897e-09 1.373043823e-09 1.142183984e-09 1.169247531e-09 1.412143639e-09 9.43021627e-10 1.583100205e-09 8.778726739e-10 1.528004913e-09 1.667842552e-09 1.656375078e-09 1.007267185e-09 6.072076653e-10 1.970531104e-09 1.652037757e-09 1.305698318e-09 1.987648713e-09 1.326799721e-09 1.329954788e-09 1.994495806e-09 1.18655469e-09 1.623039689e-09 1.175583289e-09 8.368034685e-10 2.411823551e-09 1.631030317e-09 1.195707837e-09 1.882481351e-09 2.668019185e-09 2.651399421e-09 3.161374475e-09 2.419696247e-09 2.112818427e-09 1.5200359e-09 1.949306482e-09 2.036257888e-09 2.16278592e-09 1.447859668e-09 2.078887696e-09 2.071982593e-09 2.25556833e-09 2.586041638e-09 1.659801148e-09 2.718778668e-09 3.146855308e-09 1.577185334e-09 9.507731678e-10 1.035079234e-09 1.109385239e-09 5.843874436e-10 2.602914773e-10 2.520130409e-10 1.209950767e-09 1.290870486e-09 5.67390018e-10 1.228910444e-09 6.85370039e-10 1.378202105e-09 9.84216368e-10 9.148414773e-10 1.010834427e-09 1.665954369e-09 1.266704733e-09 1.589985864e-09 1.407051431e-09 1.514915094e-09 1.565832597e-09 1.379482271e-09 1.523602524e-09 1.523034803e-09 1.405588646e-09 1.567981088e-09 1.079239515e-09 3.186372161e-10 1.145771897e-09 1.360735712e-09 1.248640692e-09 9.97932401e-10 5.542482433e-10 1.098828446e-09 6.74543772e-10 8.798676426e-10 6.869801381e-10 8.194407532e-10 5.240360547e-10 9.436902219e-10 6.064542595e-10 7.979035749e-10 9.463542648e-10 1.078975533e-09 1.109612173e-09 9.314431102e-10 7.790208067e-10 7.804441743e-10 5.546798136e-10 5.569882794e-10 9.199730602e-10 8.450831146e-10 2.856652894e-10 7.096968126e-10 5.479563361e-10 5.52605605e-10 1.159630437e-09 3.458048632e-10 8.682011666e-10 8.526991404e-10 5.373668907e-10 5.519233214e-10 9.804722803e-10 3.673250724e-10 9.128329166e-10 8.515551674e-10 1.503352935e-09 3.92098444e-10 1.285018433e-09 7.582657945e-10 1.056338257e-09 1.06279331e-09 1.083091436e-09 2.137842271e-10 1.138583265e-09 8.984862271e-10 1.146680838e-09 1.064285655e-09 4.798020283e-10 1.014525707e-09 5.29482888e-10 6.744994127e-10 4.125932855e-10 5.1724319e-10 3.826149965e-10 4.588998197e-10 7.272505416e-10 4.530975783e-10 2.891541686e-10 4.125966107e-10 7.221676231e-10 1.897484891e-10 5.122297086e-10 5.951133042e-10 3.56222857e-10 3.019514322e-10 2.991448779e-10 7.145752314e-10 4.017371006e-10 3.187469426e-10 2.38815045e-10 4.029889668e-10 4.137963227e-10 6.35668096e-10 2.606494625e-10 3.142643786e-10 6.881222135e-10 3.633143508e-10 4.119202661e-10 +3.344863684e-10 4.966762016e-10 2.90375715e-10 3.723177371e-10 3.525615478e-10 3.835082442e-10 3.619986965e-10 7.680561897e-10 1.597831454e-10 5.873513471e-10 3.919721099e-10 5.607894472e-10 1.259628212e-10 3.462669213e-10 4.550989633e-10 3.489744672e-10 4.807296433e-10 5.210146355e-10 6.375551821e-10 4.291253622e-10 4.635403795e-10 6.927655168e-10 4.314260579e-10 9.048143491e-10 1.307636216e-09 6.759915366e-10 6.283263191e-10 6.921384055e-10 7.815334187e-10 3.808011037e-10 7.5298942e-10 7.247583499e-10 8.446339943e-10 9.354162367e-10 7.131835797e-10 1.067100302e-09 7.04175824e-10 8.640489027e-10 1.230035489e-09 4.640228637e-10 8.273722548e-10 7.545494904e-10 7.862195733e-10 8.274109446e-10 8.040114837e-10 1.145570824e-09 6.18083583e-10 1.336575105e-09 7.204055454e-10 5.48993209e-10 3.713212437e-10 6.430585022e-10 2.436401469e-10 7.528751287e-10 1.037261239e-09 5.385828114e-10 6.836245628e-10 9.255742291e-10 7.881143547e-10 1.033390823e-09 8.992051246e-10 5.658238717e-10 1.273071685e-09 1.203622982e-09 3.42029907e-10 8.984010141e-10 8.94215998e-10 1.097587177e-09 1.491433842e-09 7.925065981e-10 8.497471626e-10 9.074189868e-10 9.583444132e-10 8.285007948e-10 1.196275734e-09 5.43531607e-10 5.700942255e-10 5.634532493e-10 3.525256038e-10 7.735923709e-10 1.546225745e-09 1.23926127e-09 1.530292753e-09 9.460111298e-10 2.172045149e-09 1.20471426e-09 1.675290325e-09 9.268408923e-10 1.46214085e-09 1.384763151e-09 1.700844997e-09 9.931256656e-10 6.685992837e-10 1.092964769e-09 1.032439656e-09 1.01376754e-09 1.199454814e-09 1.303215521e-09 1.667447662e-09 1.527281749e-09 9.249029388e-10 7.026615576e-10 4.853843442e-10 4.142795383e-10 4.135025796e-10 2.471904626e-10 6.650859431e-10 9.576577574e-10 4.260293221e-10 1.805392143e-09 1.655095149e-09 1.781213941e-09 1.90357839e-09 1.444529322e-09 2.339491234e-09 1.343736747e-09 1.224408131e-09 2.23619773e-09 2.195232114e-09 1.48220471e-09 1.7243078e-09 2.368998375e-09 8.894731697e-10 3.548180682e-09 1.768812601e-09 2.710163787e-09 2.941926803e-09 2.514390435e-09 1.158888631e-09 1.947699855e-09 1.176960008e-09 1.479430038e-09 8.135030148e-10 9.475612924e-10 1.513198047e-09 1.532264877e-09 1.134544678e-09 1.436748682e-09 1.217018687e-09 1.093820423e-09 1.504535138e-09 1.090124907e-09 8.293180762e-10 1.43315929e-09 5.156719382e-10 1.349282213e-09 5.69923512e-10 1.430144568e-09 1.742550784e-09 1.694125769e-09 1.484698552e-09 1.629650849e-09 1.58469996e-09 1.686214801e-09 8.630457482e-10 1.221884477e-09 7.973619782e-10 9.898915104e-10 1.922311778e-09 6.544846209e-10 2.036651614e-09 1.185833712e-09 9.244600901e-10 1.482805758e-09 1.415637053e-09 2.128970421e-09 1.798901055e-09 1.248271289e-09 1.279907788e-09 2.72362113e-09 2.303937302e-09 2.03216762e-09 2.775004119e-09 2.252202221e-09 3.056465172e-09 2.619115016e-09 1.978071336e-09 1.737404153e-09 1.74954143e-09 1.523188472e-09 1.494645638e-09 2.736130891e-09 1.381600257e-09 9.713203047e-10 3.285036023e-09 2.135067543e-09 1.461421808e-09 2.363140193e-09 1.988548007e-09 1.278855792e-09 9.886921149e-10 7.659400627e-10 4.815695258e-10 5.60628422e-10 1.533777652e-10 5.482266674e-11 7.346388651e-10 3.220226878e-10 8.260280031e-10 8.395313115e-10 1.272385939e-09 1.603965131e-09 9.158942707e-10 1.469181337e-09 1.574917955e-09 8.900092642e-10 1.550128218e-09 8.75557488e-10 1.117142387e-09 1.51019224e-09 1.217936458e-09 1.800365236e-09 7.836648409e-10 1.009108364e-09 1.646327957e-09 2.544889638e-09 9.286998486e-10 1.664219173e-09 1.526326446e-09 9.861783712e-10 8.055751009e-10 9.391947941e-10 9.98285407e-10 8.418536416e-10 3.337164714e-10 7.809599773e-10 6.021064436e-10 1.135316445e-09 6.856600239e-10 1.057193713e-09 1.077552598e-09 9.498751235e-10 8.728219467e-10 1.097106214e-09 7.778491936e-10 1.158006779e-09 8.323291721e-10 6.750279074e-10 5.978217634e-10 4.454173745e-10 7.338490277e-10 9.348568658e-10 7.831212173e-10 3.863912142e-10 1.459679871e-09 1.114042107e-09 7.464591095e-10 1.085161965e-09 4.659786231e-10 9.16200332e-10 4.210650367e-10 1.001342747e-09 7.004191417e-10 6.422026552e-10 1.028877073e-09 7.979003722e-10 3.881224669e-10 6.268035709e-10 8.343671972e-10 5.131128334e-10 8.927484956e-10 6.114158326e-10 8.316419826e-10 1.209022813e-09 7.769958001e-10 1.365613576e-09 4.945538013e-10 8.757327543e-10 1.092226875e-09 1.11847346e-09 7.304100381e-10 1.319096485e-09 9.882250293e-10 7.249027816e-10 2.161689631e-10 3.7702785e-10 5.178609084e-10 6.848673394e-10 3.675170149e-10 1.607962877e-10 4.158367626e-10 2.253610892e-10 4.758941566e-10 3.641574911e-10 5.91169703e-10 5.102296629e-10 2.175102727e-10 4.683751636e-10 1.724260979e-10 5.476293007e-10 2.197288895e-10 5.244391523e-10 8.174415529e-11 3.423103812e-10 6.016248281e-10 4.306310528e-10 5.712319103e-10 4.510261908e-10 3.424422942e-10 2.367109656e-10 +2.059451805e-10 2.471525349e-10 2.266860303e-10 5.491597111e-11 5.394608797e-10 5.74587814e-10 4.495744225e-10 5.835182282e-10 3.394837305e-10 5.525840339e-10 5.400006644e-10 2.579653717e-10 4.027921161e-10 2.841262695e-10 1.984107376e-10 3.637726628e-10 3.060943357e-10 2.458768236e-10 2.095002876e-10 2.802001493e-10 1.810001843e-10 4.364362088e-10 2.580738198e-10 6.908584882e-10 4.710028825e-10 5.64689393e-10 1.901735008e-09 8.100660195e-10 8.318776879e-10 4.114717481e-10 5.229819244e-10 8.133453563e-10 8.606533181e-10 7.812381357e-10 7.02134151e-10 1.358320827e-09 4.64764611e-10 4.41624338e-10 5.348872061e-10 7.928459385e-10 1.179832562e-09 8.921956134e-10 6.931796121e-10 1.355163165e-09 5.876220566e-10 1.052893886e-09 2.495875993e-10 7.482088463e-10 7.958629898e-10 4.74287915e-10 9.565349858e-10 3.020908158e-10 7.178318713e-10 6.892990336e-10 7.271218429e-10 6.567676111e-10 5.089911572e-10 5.897486675e-10 6.964476409e-10 9.116449453e-10 5.200057177e-10 3.598561968e-10 9.132119071e-10 7.493579182e-10 8.061431609e-10 6.868081341e-10 6.024695435e-10 1.374684289e-09 1.027951066e-09 8.632780263e-10 6.053949255e-10 6.181522084e-10 5.597231554e-10 5.532323563e-10 5.317883946e-10 7.384226664e-10 7.240046669e-10 8.504057519e-10 1.083337204e-09 5.592333663e-10 1.01163541e-09 1.069862509e-09 1.094782268e-09 2.226042181e-09 1.30444131e-09 1.686550861e-09 1.313333483e-09 1.058876887e-09 1.958132279e-09 1.226942183e-09 1.455455161e-09 1.427468796e-09 1.023632224e-09 9.089509867e-10 1.93059487e-09 8.632677258e-10 1.472263402e-09 7.852932601e-10 7.112357433e-10 1.069207484e-09 8.895521834e-10 7.467919014e-10 8.520922092e-10 5.865531424e-10 3.010346458e-10 5.400740041e-10 2.261577894e-10 5.589560833e-10 6.512306107e-10 1.125761727e-09 1.402804937e-09 1.262531065e-09 1.439891676e-09 5.417064243e-10 2.541472787e-09 1.568319732e-09 1.164857935e-09 2.451521843e-09 1.457373085e-09 1.820393007e-09 2.084631781e-09 1.626845219e-09 1.392578137e-09 1.310295157e-09 1.787914832e-09 2.118410411e-09 2.240725277e-09 2.8922574e-09 2.278935548e-09 2.051707548e-09 2.370386212e-09 1.060482683e-09 1.25809051e-09 1.507174907e-09 2.443879778e-09 1.406291112e-09 1.703533355e-09 1.371942839e-09 2.054573811e-09 8.943232935e-10 1.133670208e-09 1.569168789e-09 1.124014356e-09 1.530280881e-09 7.176396211e-10 1.000740009e-09 1.303643561e-09 8.749357502e-10 1.422678417e-09 1.539218098e-09 2.165587133e-09 1.335208936e-09 1.495433483e-09 1.199421094e-09 1.186486381e-09 1.685540461e-09 1.648042424e-09 7.546607755e-10 7.679455502e-10 1.401766007e-09 1.642049162e-09 1.518681622e-09 1.271867003e-09 1.30212892e-09 1.032343632e-09 2.022078062e-09 1.000849412e-09 1.56401239e-09 1.182241741e-09 1.750419634e-09 1.579249575e-09 2.428839395e-09 2.865813759e-09 2.755931978e-09 2.842124033e-09 2.930636812e-09 2.086049768e-09 1.216882074e-09 1.814807252e-09 1.656876258e-09 2.319286415e-09 2.421256781e-09 1.944399978e-09 5.317960081e-10 2.397160271e-09 2.895554665e-09 1.557456412e-09 1.713909949e-09 1.986690507e-09 1.452321228e-09 4.969573713e-10 5.348614861e-10 7.360206564e-10 4.288310269e-10 3.578568196e-10 2.717159323e-10 5.048359089e-10 5.257110805e-10 5.711913409e-10 1.214588685e-09 1.112802337e-09 9.043614577e-10 5.058711127e-10 9.439846972e-10 9.923671629e-10 1.399182294e-09 9.789901432e-10 1.115682464e-09 7.143843587e-10 1.054386265e-09 1.584971665e-09 1.399143594e-09 1.163760151e-09 9.939862748e-10 1.318282343e-09 1.209494553e-09 1.28250708e-09 8.623514115e-10 1.214679759e-09 1.058683446e-09 1.430473302e-09 4.635463369e-10 3.812868625e-10 5.130193559e-10 9.558788184e-10 6.014951776e-10 9.24067924e-10 7.603757101e-10 1.313906913e-09 5.664174158e-10 3.25689617e-10 1.034817559e-09 8.151506802e-10 5.784983232e-10 4.195827143e-10 4.009320713e-10 1.103754567e-09 7.106954025e-10 8.564464372e-10 1.16829559e-09 1.090661559e-09 9.591004412e-10 6.65541394e-10 5.582320172e-10 4.251628968e-10 9.374276752e-10 6.437120101e-10 6.688358379e-10 7.738506251e-10 7.117907518e-10 7.102072134e-10 8.205013139e-10 8.137740491e-10 8.698844406e-10 1.014226243e-09 8.083687889e-10 6.155986326e-10 9.257197359e-10 9.726289326e-10 8.191209626e-10 1.188465984e-09 9.885335812e-10 6.183438328e-10 6.295438836e-10 5.328894254e-10 6.443603947e-10 5.573529581e-10 1.01102503e-09 7.280040565e-10 4.976416637e-10 4.816395055e-10 7.328743894e-10 4.99596797e-10 5.501238666e-10 8.780548545e-10 1.248376711e-09 4.538491108e-10 2.641895133e-10 2.813305812e-10 5.572898409e-10 2.963391555e-10 1.18275756e-10 5.362540047e-10 4.821848927e-10 5.173183044e-10 1.392066062e-10 5.345229576e-10 1.101689934e-10 6.077253263e-10 2.378571859e-10 4.767656577e-10 7.737839644e-11 2.207050227e-10 4.337734578e-10 4.799291471e-10 4.914493702e-10 7.405469083e-10 8.296023171e-10 6.37817502e-10 5.328155752e-10 +2.921048435e-10 2.892014533e-10 4.770690965e-10 2.79727839e-10 3.963718083e-11 3.220378927e-10 2.025732278e-10 6.822793681e-11 4.427554825e-10 8.296583809e-10 3.166954433e-10 4.698145185e-10 2.617681895e-10 4.151811703e-10 4.536813273e-10 4.981245742e-10 9.529329404e-10 4.738300196e-10 3.041706229e-10 7.147238103e-10 7.855262069e-10 1.61755348e-10 9.029150527e-10 3.371118074e-10 3.039338214e-10 7.018386288e-10 4.233758553e-10 6.385291198e-10 6.671421901e-10 1.25556014e-09 7.485861151e-10 7.348647687e-10 1.16708504e-09 5.126393088e-10 7.656516635e-10 6.934314425e-10 4.921512242e-10 6.72990072e-10 8.333911812e-10 4.739357859e-10 7.077506277e-10 4.017300366e-10 7.491628241e-10 4.069257026e-10 8.028540235e-10 1.424304784e-09 5.869740767e-10 8.371977069e-10 1.214465448e-09 9.194812491e-10 6.330239099e-10 2.01454087e-10 6.832630479e-10 6.125891271e-10 8.039611048e-10 4.818629945e-10 5.742883872e-10 7.513867721e-10 9.161749406e-10 8.511739714e-10 9.067493618e-10 8.708475339e-10 1.218106142e-09 7.139120145e-10 3.251611878e-10 8.953939847e-10 4.620135982e-10 1.304248163e-09 1.093844462e-09 8.965795434e-10 8.78171928e-10 1.072257101e-09 1.332997711e-09 6.192775762e-10 4.417253139e-10 7.76036187e-10 5.517049359e-10 3.580013882e-10 4.283896845e-10 6.852922388e-10 1.014376815e-09 1.018455479e-09 1.110574055e-09 1.522795966e-09 1.411528303e-09 1.379857842e-09 9.109959247e-10 1.366884996e-09 1.640874719e-09 9.707959337e-10 1.466413367e-09 5.544718947e-10 1.562144026e-09 1.225135923e-09 5.930718922e-10 1.427519358e-09 9.696351271e-10 8.320488278e-10 7.287152958e-10 7.456072522e-10 6.685345352e-10 9.407076554e-10 9.572573971e-10 9.545775073e-10 5.732788488e-10 4.49482307e-10 5.354048945e-10 3.631782011e-10 7.229595326e-10 1.01912705e-09 1.195284816e-09 2.07027013e-09 1.864530433e-09 2.600735771e-09 1.577646871e-09 1.47856211e-09 1.359356312e-09 1.691950086e-09 1.323706581e-09 1.829291225e-09 1.78679735e-09 2.069722847e-09 1.776993552e-09 1.202436738e-09 2.749932229e-09 2.129900702e-09 1.611107571e-09 3.774480729e-09 3.391017622e-09 3.83888516e-09 1.060459455e-09 2.604006675e-09 9.63648486e-10 1.552118024e-09 1.744524494e-09 1.160355345e-09 1.691960429e-09 1.609849177e-09 1.196380105e-09 1.116860442e-09 1.187638097e-09 1.488011893e-09 1.223388692e-09 1.366246039e-09 1.023525198e-09 1.615977017e-09 1.37964502e-09 1.593686849e-09 1.33767356e-09 8.196536721e-10 9.568185989e-10 1.048923462e-09 8.471514854e-10 1.70883292e-09 1.82568537e-09 1.447456191e-09 1.424944276e-09 1.05896292e-09 1.494279765e-09 1.025856681e-09 1.027055191e-09 2.148067058e-09 1.770584147e-09 1.082781456e-09 1.180606826e-09 1.321035734e-09 1.35312825e-09 1.801444875e-09 1.993077346e-09 2.012160569e-09 2.897771226e-09 1.925116561e-09 1.594402481e-09 2.266030179e-09 1.903286311e-09 1.062593644e-09 1.276714119e-09 1.728651315e-09 1.108581657e-09 1.460290201e-09 2.235189778e-09 1.44984031e-09 1.929454006e-09 2.194711437e-09 2.325988077e-09 2.069717303e-09 1.715849573e-09 2.026462345e-09 1.015300068e-09 4.392105764e-10 5.616032422e-10 7.89687007e-10 5.499860105e-10 3.821727668e-10 2.256002631e-10 2.767048597e-10 5.246689827e-10 7.330277356e-10 4.942633608e-10 1.148420532e-09 1.134315368e-09 7.410789019e-10 8.227535944e-10 1.739849251e-09 1.402317018e-09 1.147878973e-09 1.0316835e-09 9.971282508e-10 1.222506012e-09 1.37238472e-09 1.913436843e-09 7.215358461e-10 9.01003596e-10 1.747521223e-09 1.642691991e-09 1.852050338e-09 1.565216428e-09 9.808740656e-10 1.525905938e-09 1.482934148e-09 8.467562407e-10 1.04127031e-09 8.451532336e-10 4.916767586e-10 9.447452339e-10 5.69405705e-10 3.676504881e-10 1.599559348e-09 7.548524308e-10 5.891264337e-10 6.893602637e-10 2.956976559e-10 1.382221933e-09 2.093426894e-10 6.01955741e-10 1.043651797e-09 1.386979116e-09 8.396383053e-10 8.731342015e-10 8.558613957e-10 4.348704403e-10 4.851320116e-10 5.870454703e-10 5.843963439e-10 3.918976466e-10 6.108316214e-10 6.753157585e-10 5.473431387e-10 1.02504655e-09 4.205927132e-10 6.63930625e-10 4.466289186e-10 4.77586745e-10 1.2638187e-09 9.887151565e-10 4.054088944e-10 1.272757039e-09 7.158455812e-10 6.931398836e-10 5.12613408e-10 4.547179287e-10 6.091931567e-10 4.759004067e-10 5.734608509e-10 9.306223136e-10 9.276973439e-10 5.445140311e-10 1.157168945e-09 5.808285838e-10 1.166937472e-09 1.468024912e-09 1.079040589e-09 6.846468107e-10 1.312359769e-09 1.058458519e-09 3.080013378e-10 2.723433581e-10 8.76667799e-10 5.420954931e-10 6.631239546e-10 1.89794982e-10 5.69147918e-10 3.300189433e-10 3.276734969e-10 6.257738536e-10 5.50867695e-10 3.593146698e-10 4.516264004e-10 8.526834414e-10 2.583149953e-10 1.01683801e-09 3.589635694e-10 9.418411849e-10 2.240332526e-10 9.383402993e-11 3.543607049e-10 2.561686052e-10 5.097739469e-10 3.537560563e-10 7.323784021e-10 +1.766498531e-10 3.720578742e-10 3.377276077e-10 3.017547481e-10 2.260016134e-10 4.220467405e-10 4.306304095e-10 4.752715751e-10 6.793686825e-10 2.60525931e-10 5.544589332e-10 2.292200945e-10 3.516507407e-10 3.184070139e-10 5.629459057e-10 5.002334326e-10 3.311770155e-10 4.73647793e-10 4.837337124e-10 6.081750378e-10 7.937084605e-10 3.198139468e-10 6.399749514e-10 5.34352201e-10 6.590645087e-10 5.103364534e-10 7.444898634e-10 1.320975894e-09 9.334603735e-10 7.237433064e-10 6.924524231e-10 6.088016804e-10 5.540519074e-10 7.737099473e-10 6.721133935e-10 7.582309023e-10 9.052669233e-10 5.879128238e-10 5.583544016e-10 1.141225443e-09 8.262125349e-10 4.644112011e-10 8.094870975e-10 3.95705763e-10 6.830685078e-10 5.067446987e-10 5.884504711e-10 4.441004126e-10 5.784931658e-10 7.13674486e-10 8.256255451e-10 6.398889112e-10 5.591000902e-10 6.924336538e-10 8.95723192e-10 1.258968037e-10 7.132850163e-10 8.058246609e-10 8.846007561e-10 4.885777286e-10 8.428273868e-10 7.789362281e-10 8.791522877e-10 8.051946015e-10 5.343079599e-10 5.271215926e-10 9.480939544e-10 8.205662056e-10 1.119523452e-09 1.427104505e-09 9.605362952e-10 6.000161927e-10 4.831990761e-10 6.303473869e-10 6.319684898e-10 6.510682766e-10 7.164471061e-10 7.977332585e-10 3.306701629e-10 5.578911724e-10 1.445809238e-09 4.987863625e-10 1.972310066e-09 1.582716267e-09 2.284312405e-09 1.901594478e-09 1.15159939e-09 1.011701334e-09 1.527416236e-09 1.379242203e-09 1.319851473e-09 5.631324037e-10 1.056627985e-09 1.202139059e-09 1.26027618e-09 6.051227766e-10 1.488769093e-09 7.55186554e-10 9.949614857e-10 9.332909798e-10 4.082396759e-10 5.370321517e-10 8.740637242e-10 5.84718846e-10 3.49398449e-10 1.884392467e-10 3.441341707e-10 6.510656349e-10 5.755529638e-10 7.32748952e-10 8.456992602e-10 1.745873075e-09 2.065064537e-09 1.817258274e-09 2.060672962e-09 1.44418007e-09 1.277310426e-09 1.475996977e-09 1.615076634e-09 1.767955531e-09 1.146047768e-09 2.358265802e-09 1.763705273e-09 1.840176989e-09 9.340006177e-10 2.002976688e-09 1.982584416e-09 1.598668322e-09 2.29131883e-09 1.812331571e-09 2.228809489e-09 1.656043124e-09 1.156231752e-09 1.654290573e-09 9.9462334e-10 1.353113716e-09 1.283529657e-09 1.468042699e-09 1.569779367e-09 9.741952225e-10 7.539273001e-10 7.60395039e-10 1.181215258e-09 1.176492213e-09 8.095389847e-10 1.749238756e-09 1.230823798e-09 1.296682083e-09 1.531066368e-09 1.923973277e-09 1.008294386e-09 8.804041922e-10 1.784303106e-09 6.900587036e-10 1.674529593e-09 1.205708396e-09 1.022758622e-09 1.255713729e-09 1.721203548e-09 1.13838101e-09 1.282270558e-09 1.358594354e-09 6.872730766e-10 1.018672841e-09 1.042727374e-09 1.413538403e-09 2.051135887e-09 2.002496647e-09 3.090436024e-09 1.877649927e-09 2.079848193e-09 2.209250636e-09 2.965112594e-09 3.396970255e-09 1.218929489e-09 1.218057711e-09 1.709337649e-09 3.049477215e-09 1.226743512e-09 1.898519547e-09 1.884347106e-09 2.027303796e-09 2.022478172e-09 1.321550616e-09 1.867410905e-09 2.46619478e-09 3.394924247e-09 1.727835786e-09 1.670934625e-09 1.036686174e-09 7.211118197e-10 6.539630182e-10 4.861499565e-10 2.642851468e-10 4.99380299e-10 7.603588328e-10 9.863312269e-10 1.084661934e-09 7.900254113e-10 1.30272865e-09 9.970801302e-10 8.073841671e-10 1.162474629e-09 1.060512022e-09 5.528493839e-10 1.310651397e-09 7.181019042e-10 1.145600734e-09 1.966305342e-09 8.557325577e-10 1.238302508e-09 5.423039753e-10 1.132460118e-09 1.184196606e-09 1.037441485e-09 1.330508682e-09 1.156757745e-09 1.142461913e-09 1.517840281e-09 5.047968287e-10 8.124421834e-10 7.485033069e-10 7.318327213e-10 6.997266372e-10 3.602543572e-10 1.383223803e-09 6.733382036e-10 9.709818731e-10 9.966332139e-10 8.005790197e-10 8.936216571e-10 1.200413124e-09 1.253208164e-09 4.936770245e-10 7.646802253e-10 7.781542187e-10 7.014020209e-10 9.437577704e-10 2.429511082e-10 1.123540369e-09 7.20983593e-10 1.010392031e-09 7.320426786e-10 6.035223723e-10 4.923837657e-10 7.404238768e-10 6.694341348e-10 6.101566469e-10 4.611252225e-10 6.918270479e-10 3.878912335e-10 6.067062695e-10 7.032318968e-10 5.2569299e-10 7.738264312e-10 1.081712829e-09 7.538016174e-10 8.327285566e-10 7.074842531e-10 1.66165905e-09 1.140365223e-09 4.389172911e-10 9.184927261e-10 4.71950757e-10 3.509881824e-10 4.522621963e-10 8.340146973e-10 8.810500547e-10 5.613653435e-10 6.239093866e-10 4.549453316e-10 7.606396734e-10 1.349051893e-09 7.980780145e-10 4.312522268e-10 8.42803026e-10 8.750850159e-10 1.059809055e-09 3.693000857e-10 9.395231811e-10 4.669218128e-10 7.870507172e-10 4.753910225e-10 6.991236224e-10 3.780260105e-10 2.85931813e-10 6.486845455e-10 8.442691575e-10 4.252431735e-10 8.682081706e-10 2.313233141e-10 4.465992596e-10 5.032828201e-10 3.481305895e-10 2.721317733e-10 6.906368872e-10 3.3222395e-10 3.659597877e-10 4.021162893e-10 2.643370168e-10 +2.453319992e-10 3.905966212e-10 3.373063324e-10 5.779620247e-10 1.374614251e-10 1.987105979e-10 1.898068702e-10 3.354802619e-10 2.300216599e-10 4.835299507e-10 1.641274066e-10 6.831093287e-10 4.294061686e-10 3.912616241e-10 4.768895866e-10 6.719752717e-10 3.697712325e-10 2.800626492e-10 8.019064049e-10 5.736323747e-10 4.898236225e-10 6.9623812e-10 9.153788148e-10 5.910923421e-10 7.12508731e-10 5.497122599e-10 1.174547839e-09 9.990466803e-10 6.983186066e-10 6.277037211e-10 5.276987648e-10 1.032375775e-09 6.740546105e-10 1.369519504e-09 7.797093747e-10 6.51620007e-10 9.866196617e-10 7.858723707e-10 8.694514209e-10 7.544837838e-10 1.064172442e-09 1.201656719e-09 8.236636906e-10 5.222324062e-10 6.658011058e-10 6.850191038e-10 6.396127814e-10 8.624997504e-10 6.374859479e-10 1.113502474e-09 5.064828439e-10 3.203462505e-10 4.597240666e-10 5.260150925e-10 5.500325226e-10 9.409807258e-10 7.384991471e-10 7.121416881e-10 8.540956978e-10 8.075444372e-10 8.439740638e-10 1.183446031e-09 6.983827565e-10 6.475281484e-10 6.655770531e-10 7.182056972e-10 9.906397784e-10 8.594237314e-10 5.502238163e-10 6.595511404e-10 5.664142591e-10 1.040533487e-09 1.425488161e-09 8.195713788e-10 1.777121714e-10 1.54923984e-09 9.48635205e-10 1.39438265e-09 4.825334928e-10 9.769747542e-10 8.29669866e-10 6.393398802e-10 1.327312826e-09 2.015760862e-09 1.135848074e-09 1.96847347e-09 1.39861188e-09 1.163279168e-09 1.337610015e-09 1.30614291e-09 1.504514541e-09 1.007953393e-09 1.233972481e-09 6.453434132e-10 6.333008077e-10 1.080841586e-09 6.000768072e-10 1.680069303e-09 1.236071298e-09 9.221181724e-10 8.702127851e-10 7.824478061e-10 7.976195006e-10 8.034951104e-10 3.950147198e-10 1.2202156e-10 3.25750693e-10 3.495670691e-10 4.383229341e-10 7.909166126e-10 6.044603316e-10 2.567258117e-09 1.072679791e-09 1.493114949e-09 2.013804941e-09 2.044531211e-09 1.67984264e-09 2.412559779e-09 1.629764925e-09 1.143180255e-09 3.00471418e-09 2.021232484e-09 1.476725019e-09 2.027679909e-09 1.665071195e-09 1.80273736e-09 1.693917785e-09 2.213145386e-09 2.549397147e-09 2.677912904e-09 2.324135225e-09 2.588611485e-09 2.21218482e-09 1.743012823e-09 1.786067639e-09 1.043337693e-09 1.03822831e-09 1.328365967e-09 1.881102303e-09 1.513350936e-09 1.141373368e-09 2.278172992e-09 1.95559323e-09 1.028471687e-09 8.444247777e-10 1.556912379e-09 1.588167437e-09 1.303603761e-09 1.124292395e-09 1.884948672e-09 1.367777412e-09 1.506591032e-09 1.855870086e-09 1.303273967e-09 1.133455175e-09 1.303266544e-09 1.123925263e-09 1.612700306e-09 1.040696211e-09 1.706315431e-09 1.683344584e-09 1.096440453e-09 1.600574563e-09 2.054783114e-09 1.430919922e-09 2.626597373e-09 1.687946922e-09 2.384542348e-09 3.478383118e-09 1.512619655e-09 1.78915482e-09 1.29305989e-09 1.603796237e-09 1.78273196e-09 1.787309373e-09 1.668703574e-09 1.04119332e-09 2.544571098e-09 2.026567346e-09 1.575934266e-09 2.000165404e-09 1.732461154e-09 1.659541399e-09 1.107704785e-09 1.50764956e-09 1.132350336e-09 1.719228701e-09 1.993311176e-09 8.733220447e-10 7.151115092e-10 7.593442628e-10 4.949642461e-10 9.447970787e-10 7.086439549e-10 2.033300281e-10 7.131903839e-10 7.822131302e-10 7.991531107e-10 9.859979192e-10 9.704365692e-10 1.291885896e-09 9.725673593e-10 5.502008993e-10 1.438660382e-09 6.881895933e-10 7.356437005e-10 1.011580902e-09 6.506862601e-10 4.577794783e-10 1.492817486e-09 1.784048126e-09 1.560430394e-09 1.295244837e-09 1.460344381e-09 1.628837457e-09 9.46652372e-10 1.260600087e-09 2.585310534e-09 8.470407709e-10 1.309318707e-09 1.345007652e-09 9.913198491e-10 5.059892269e-10 7.278757602e-10 6.833957239e-10 7.113684552e-10 8.992542533e-10 1.034315684e-09 6.516056537e-10 9.324809944e-10 1.543482276e-09 1.377644194e-09 1.177724617e-09 8.183652165e-10 7.921757874e-10 7.558791006e-10 5.666624373e-10 6.0881857e-10 5.498973326e-10 8.453801708e-10 7.505210773e-10 6.608345933e-10 5.883958005e-10 2.761799223e-10 8.084175085e-10 1.144565634e-09 9.319008329e-10 6.008039148e-10 5.30662546e-10 6.922273048e-10 7.524228483e-10 8.700048262e-10 5.740916334e-10 6.069409061e-10 9.517286083e-10 8.747237827e-10 7.506105658e-10 5.600882873e-10 1.131869975e-09 5.934657323e-10 5.847223246e-10 5.049044596e-10 7.711658855e-10 7.421860453e-10 1.021517244e-09 1.055862837e-09 7.220586493e-10 5.235935229e-10 7.533794573e-10 5.45221431e-10 5.576611427e-10 6.818205783e-10 4.941933976e-10 3.948423807e-10 7.17011419e-10 4.902625024e-10 4.15335021e-10 3.352496518e-10 5.440888063e-10 4.582780191e-10 4.359673692e-10 1.089621831e-09 7.840872274e-10 6.847304984e-10 1.01872688e-09 4.330349697e-10 8.483428871e-10 1.910396774e-10 1.424327407e-10 3.657685829e-10 1.553619305e-10 2.597487874e-10 1.397933876e-10 3.688037392e-10 1.463540253e-10 1.006733562e-10 4.626889288e-10 5.633184265e-10 7.75923392e-10 4.897159214e-10 +6.701377104e-10 4.065585827e-10 1.380425532e-10 4.146974082e-10 1.516061714e-10 1.496018889e-10 5.047365315e-10 2.896123656e-10 2.866050279e-10 5.008262241e-10 3.782750105e-10 4.129967436e-10 5.530113325e-10 3.352538569e-10 5.612823026e-10 6.926490884e-10 4.55671836e-10 6.77747616e-10 5.435510885e-10 4.783637168e-10 3.07274658e-10 7.339889581e-10 5.357339428e-10 4.094155018e-10 1.259540279e-09 8.903990899e-10 1.020697972e-09 3.756663412e-10 5.204890547e-10 1.142384194e-09 8.351722584e-10 9.319365405e-10 4.551372673e-10 1.183709126e-09 9.594128616e-10 6.530016883e-10 6.025119808e-10 2.908321977e-10 4.112759295e-10 7.81564622e-10 7.685837106e-10 1.113715907e-09 7.909340073e-10 5.561465958e-10 1.043222477e-09 9.574136069e-10 6.06660955e-10 7.083394882e-10 9.814256289e-10 8.159681416e-10 9.087807845e-10 1.02271032e-09 2.428592628e-10 4.711481523e-10 5.427110948e-10 7.528834556e-10 7.185407008e-10 1.005306442e-09 6.858249842e-10 5.721088181e-10 3.673336077e-10 7.320408223e-10 7.426916635e-10 8.853689354e-10 6.473363653e-10 4.687923684e-10 6.385415784e-10 1.535760919e-09 1.257761063e-09 8.041180701e-10 9.181636184e-10 1.732627682e-09 3.320980919e-10 9.272374147e-10 5.167696597e-10 9.851923992e-10 9.658553255e-10 9.636688192e-10 5.420789596e-10 1.154720091e-09 8.254005801e-10 1.712807977e-09 8.237799283e-10 1.308076854e-09 1.766492257e-09 8.454503133e-10 2.024873568e-09 9.482753127e-10 1.020183512e-09 6.80694719e-10 9.130418487e-10 1.029289735e-09 1.248525198e-09 8.996668526e-10 9.299737836e-10 1.165695013e-09 1.104740801e-09 8.455665634e-10 1.058712438e-09 3.275894706e-10 1.04640413e-09 1.230691504e-09 3.435038568e-10 6.660090396e-10 2.219391189e-10 5.175039175e-10 3.157227994e-10 4.316390152e-10 7.674923496e-10 6.103696524e-10 3.904369583e-10 1.187699712e-09 1.673072848e-09 1.470357853e-09 2.192056333e-09 2.396622887e-09 8.146402547e-10 1.303225656e-09 1.577759152e-09 2.849429341e-09 1.709972714e-09 2.356292892e-09 2.29076162e-09 1.278976607e-09 2.548533016e-09 1.239718109e-09 1.73057338e-09 1.934208377e-09 1.71455639e-09 1.518099605e-09 2.320510473e-09 2.217741792e-09 2.775835961e-09 2.99584731e-09 1.676093947e-09 1.336735746e-09 1.910662229e-09 1.109896594e-09 1.153761279e-09 1.503812961e-09 1.109812822e-09 6.698554214e-10 1.341295155e-09 8.700267084e-10 1.202116683e-09 1.126173876e-09 1.127239361e-09 1.525501765e-09 1.324343964e-09 1.722924165e-09 3.220848268e-10 1.315677055e-09 9.422026323e-10 2.184535509e-09 1.464882039e-09 5.968869229e-10 1.526090401e-09 1.32685486e-09 1.258556573e-09 1.288441156e-09 1.34436567e-09 1.055696967e-09 1.809573546e-09 1.904210722e-09 1.216683943e-09 2.029312503e-09 1.999433292e-09 1.993606304e-09 3.710489143e-09 2.733546741e-09 1.78273323e-09 2.05200757e-09 2.032193922e-09 1.085182377e-09 2.547180504e-09 1.212692471e-09 2.134746959e-09 1.486046982e-09 2.377686711e-09 1.576377973e-09 1.278955158e-09 1.751714292e-09 1.295018742e-09 1.139521023e-09 2.539562048e-09 1.652425129e-09 1.656373098e-09 8.438426518e-10 1.534601696e-09 5.433693571e-10 3.409895485e-10 5.059629746e-10 1.506862434e-10 1.742054674e-10 3.262696694e-10 5.097373501e-10 5.297957764e-10 4.874470908e-10 8.530990138e-10 1.345935384e-09 1.410663844e-09 8.12851264e-10 1.29450961e-09 5.979116745e-10 7.628742742e-10 1.174840304e-09 8.350813785e-10 1.192298421e-09 6.644251657e-10 1.046565855e-09 1.435175484e-09 1.348933723e-09 1.117954992e-09 1.480735854e-09 1.765814145e-09 1.917024346e-09 1.694716027e-09 5.041380557e-10 7.613937165e-10 1.583256944e-09 6.666262694e-10 4.111797679e-10 1.13930302e-09 8.476925571e-10 8.326528962e-10 1.057058571e-09 4.001074321e-10 9.931888022e-10 6.249907961e-10 3.560467772e-10 1.023421674e-09 1.133759595e-09 9.144108346e-10 4.586214667e-10 6.095632202e-10 6.646897102e-10 5.288645091e-10 6.569612375e-10 4.613889602e-10 8.63395437e-10 7.191929775e-10 1.083240467e-09 9.265877157e-10 8.561865569e-10 7.268529936e-10 7.634121863e-10 7.160082771e-10 8.787057491e-10 1.132959484e-09 3.977472378e-10 1.029708574e-09 1.04390851e-09 3.592828505e-10 5.095937633e-10 1.003493793e-09 6.184244032e-10 7.323880462e-10 7.204364192e-10 1.208952753e-09 6.08573074e-10 4.979549307e-10 1.024928083e-09 2.89220246e-10 8.542069715e-10 1.110914825e-09 8.00328648e-10 8.641696898e-10 4.283451503e-10 9.27771409e-10 6.302451755e-10 5.500404956e-10 1.165394494e-09 4.026423455e-10 9.162596234e-10 1.200242781e-09 6.248683693e-10 8.579455412e-10 6.757873587e-10 4.155587655e-10 2.756226356e-10 3.616137258e-10 3.189309498e-10 7.332364097e-10 3.604834306e-10 3.482830282e-10 6.104980571e-10 3.741891164e-10 7.930201503e-10 1.690045368e-10 3.925161157e-10 5.455826603e-10 3.438124638e-10 9.460875592e-11 2.814843059e-11 1.04494337e-10 2.216442262e-10 1.250791525e-10 4.086526641e-10 3.563163878e-10 7.385129071e-10 +3.209952977e-10 6.73610509e-10 3.178895058e-10 2.612512071e-10 6.376178503e-10 2.751747621e-10 3.045384706e-10 6.32537071e-10 2.089122295e-10 4.285900179e-10 4.177946804e-10 1.670117256e-10 3.544164652e-10 6.54568137e-10 2.42321392e-10 2.272396323e-10 4.593955427e-10 3.310135334e-10 4.417868798e-10 5.253140338e-10 6.949099662e-10 1.162248243e-09 1.240975514e-09 6.60525351e-10 9.606244176e-10 8.063112357e-10 7.44099202e-10 6.572734036e-10 6.820782424e-10 8.552874251e-10 5.529831649e-10 1.031045073e-09 6.125246175e-10 6.792242415e-10 2.927826755e-10 8.487781341e-10 4.847687286e-10 6.759146347e-10 9.755520916e-10 9.015217493e-10 1.194558624e-09 8.691417965e-10 2.532613857e-10 4.813278125e-10 1.279111025e-09 1.804492985e-09 9.514216763e-10 8.048704217e-10 5.433595826e-10 8.968413518e-10 7.024733567e-10 3.08574969e-10 3.616422186e-10 6.150919892e-10 7.478455212e-10 7.113192705e-10 4.999781568e-10 9.383962192e-10 9.412750113e-10 7.237717548e-10 7.609443132e-10 9.751184227e-10 4.187308142e-10 1.173482125e-09 1.025281346e-09 5.778255526e-10 7.410239517e-10 7.101574145e-10 1.333470132e-09 4.03875384e-10 7.688449112e-10 7.319666524e-10 8.340036138e-10 8.652202119e-10 3.809428366e-10 9.917672537e-10 7.737238767e-10 6.676168816e-10 1.149505296e-09 8.195346666e-10 6.318194399e-10 4.128204772e-10 8.824745753e-10 1.094463715e-09 2.321926957e-09 1.469616448e-09 1.653004463e-09 1.35199014e-09 6.727306923e-10 1.079120516e-09 8.260636543e-10 8.944258957e-10 1.677296247e-09 6.473007141e-10 7.435540742e-10 1.316287459e-09 4.187654719e-10 7.196152036e-10 1.412726786e-09 1.377247656e-09 1.364033734e-09 9.049878438e-10 5.38598446e-10 6.458999581e-10 8.961554913e-10 3.479161355e-10 4.815229022e-10 1.599872524e-10 4.564995009e-10 5.059442637e-10 7.322488836e-10 8.07103476e-10 2.071232953e-09 1.66062524e-09 1.17507862e-09 1.680243364e-09 1.952288064e-09 1.686966235e-09 2.767518612e-09 1.191465438e-09 1.568574398e-09 1.451392816e-09 2.379224119e-09 1.546184563e-09 1.454778698e-09 2.058423636e-09 1.584222882e-09 1.580495148e-09 1.967495634e-09 1.551239771e-09 1.905479336e-09 1.717063759e-09 2.293930721e-09 1.990202747e-09 1.432575428e-09 2.63415945e-09 1.585446066e-09 2.814058397e-09 1.08320704e-09 1.56351107e-09 1.04234178e-09 1.405428774e-09 8.842461673e-10 1.674867954e-09 9.382649202e-10 1.170565147e-09 1.493887271e-09 1.451066188e-09 1.869535255e-09 1.698417607e-09 1.495747777e-09 1.351018806e-09 1.595122339e-09 8.342137081e-10 1.224117881e-09 7.796519701e-10 1.585731887e-09 8.868761255e-10 1.628794525e-09 1.19222277e-09 1.510912547e-09 1.415435059e-09 2.012694261e-09 2.054941894e-09 1.924775646e-09 2.757027421e-09 1.769440888e-09 2.178791744e-09 2.540725674e-09 1.566798406e-09 1.785305812e-09 1.610866514e-09 1.231923029e-09 1.337445686e-09 2.044041935e-09 1.909235702e-09 1.898780738e-09 1.138698932e-09 1.88252018e-09 3.266725146e-09 1.467477305e-09 2.01408795e-09 1.708040487e-09 1.847317632e-09 1.574711925e-09 1.936994267e-09 1.159638322e-09 1.182979732e-09 8.063367609e-10 3.645862744e-10 6.401244032e-10 3.883416668e-10 1.793307345e-10 4.941158453e-10 3.602463697e-10 9.806565195e-10 6.049001393e-10 9.145161287e-10 8.195402198e-10 1.162775071e-09 9.32789319e-10 7.531232142e-10 1.174149081e-09 1.334306441e-09 1.276989206e-09 1.219447404e-09 5.313049863e-10 7.477023814e-10 7.25421153e-10 9.837975091e-10 1.130941829e-09 8.310292058e-10 9.085088586e-10 7.383135868e-10 1.246637367e-09 7.717416636e-10 1.092170969e-09 7.845433384e-10 7.715916872e-10 7.563487559e-10 4.36890432e-10 5.292516547e-10 6.063818713e-10 6.978147886e-10 3.041858946e-10 9.075422785e-10 5.103951095e-10 6.650588294e-10 6.628096189e-10 7.110356177e-10 6.605653791e-10 6.455850188e-10 9.634979631e-10 1.254002377e-09 6.755668402e-10 5.266762832e-10 8.417629501e-10 7.179052566e-10 6.319445276e-10 1.096057812e-09 1.200639719e-09 1.162942715e-09 1.198410643e-09 5.312101807e-10 3.895758729e-10 1.239958861e-09 4.467807704e-10 5.004318804e-10 5.917780534e-10 3.294110873e-10 7.976469006e-10 9.123623512e-10 6.718473347e-10 9.601350807e-10 5.500298024e-10 6.920552129e-10 6.480789396e-10 4.147405855e-10 5.425765847e-10 6.390139709e-10 8.899833809e-10 6.696017528e-10 5.024939983e-10 1.013971388e-09 1.236647838e-09 3.49721851e-10 7.246583164e-10 6.72206602e-10 9.781111454e-10 9.111301639e-10 6.418534726e-10 2.759232817e-10 8.516781128e-10 3.87334071e-10 3.631376524e-10 4.625354637e-10 3.937249412e-10 3.865072696e-10 1.028761763e-09 3.308632407e-10 8.127675313e-10 5.584141812e-10 5.949105249e-10 1.708092908e-10 6.577235902e-10 5.991743415e-10 9.581853226e-10 8.979442257e-10 2.312062233e-10 3.866760626e-10 3.746481575e-10 3.048139656e-10 7.5587519e-10 3.931551895e-10 3.277365208e-10 7.366182835e-11 1.368784434e-10 6.579372661e-10 5.318467929e-10 3.538333222e-10 +2.145864365e-10 3.213332588e-10 2.914474967e-10 6.359031334e-10 2.457793982e-10 2.102091713e-10 4.397317639e-10 3.44194765e-10 4.437423844e-10 2.716397748e-10 2.440242397e-10 3.013498138e-10 5.826166936e-10 6.837783383e-10 4.72080441e-10 4.789913932e-10 3.47110382e-10 3.131501647e-10 4.689047116e-10 2.575723323e-10 7.29218744e-10 9.449639153e-10 8.367984652e-10 7.785362845e-10 4.3327181e-10 7.662054052e-10 1.087652246e-09 3.951756362e-10 6.963554603e-10 8.196302279e-10 7.2376786e-10 7.617014278e-10 7.033738907e-10 5.526666792e-10 1.257846164e-09 9.996957041e-10 9.286142672e-10 1.279982534e-09 7.201464758e-10 4.500191418e-10 8.495211666e-10 3.86891647e-10 9.964715246e-10 6.631616337e-10 5.304907843e-10 9.207078526e-10 8.165053878e-10 5.591864099e-10 6.072738698e-10 9.063214639e-10 5.092769204e-10 5.68439533e-10 4.202813847e-10 2.755701573e-10 3.314505587e-10 9.813906761e-10 3.601389314e-10 6.510884324e-10 7.977763483e-10 8.201608459e-10 3.47578977e-10 1.107499767e-09 9.237143358e-10 4.170113709e-10 3.508375812e-10 7.790690222e-10 3.774817102e-10 9.458552038e-10 7.627555455e-10 6.616736791e-10 9.14938671e-10 7.509791308e-10 9.989547721e-10 9.209625868e-10 4.44428752e-10 5.40011306e-10 3.595450283e-10 7.135750085e-10 8.424381424e-10 1.134500364e-09 9.921699706e-10 8.175531195e-10 1.101714822e-09 1.423470903e-09 1.711876626e-09 1.728834316e-09 4.93047881e-10 5.284590476e-10 1.638025815e-09 8.828702538e-10 1.122718619e-09 1.715884555e-09 1.071523303e-09 8.003787932e-10 9.822973371e-10 1.162303663e-09 5.817078555e-10 9.087599547e-10 1.144125376e-09 1.016743837e-09 1.536186374e-09 8.008247403e-10 1.29307509e-09 8.232651665e-10 6.800496107e-10 4.69224008e-10 1.453483345e-10 6.725527413e-10 2.764521476e-10 6.198504762e-10 3.471221973e-10 6.358886249e-10 1.301788682e-09 1.436389062e-09 1.681802039e-09 1.960420839e-09 1.184635321e-09 1.611817102e-09 2.105521996e-09 1.5887494e-09 1.288811114e-09 1.250853984e-09 1.122897734e-09 1.608433484e-09 1.669017121e-09 1.77646024e-09 2.530644517e-09 1.41374413e-09 1.161248316e-09 1.702366824e-09 1.238506076e-09 1.972851584e-09 2.375455926e-09 2.212702569e-09 2.284403225e-09 2.150608749e-09 2.20168746e-09 2.032220384e-09 2.05162841e-09 1.763559463e-09 1.424254042e-09 1.6153173e-09 1.870492877e-09 1.32292129e-09 7.528410466e-10 1.451084538e-09 1.552690855e-09 1.888029531e-09 1.825975806e-09 1.41711774e-09 1.633572186e-09 1.078852168e-09 1.25337362e-09 1.625400176e-09 1.569227138e-09 1.344145986e-09 1.489542319e-09 1.808942911e-09 9.79154608e-10 1.491784525e-09 1.289289928e-09 9.575263467e-10 2.672441044e-09 2.071390391e-09 3.014878566e-09 3.022723201e-09 2.561773058e-09 2.326097534e-09 1.547519088e-09 1.669959384e-09 1.788793963e-09 1.951206972e-09 1.095911991e-09 1.864821595e-09 2.29912836e-09 2.20524404e-09 1.009255678e-09 9.055414445e-10 1.854445502e-09 1.517254323e-09 1.906825997e-09 1.490718322e-09 1.557369901e-09 1.823950321e-09 1.935549916e-09 1.56038832e-09 1.274857799e-09 7.353029142e-10 9.127083218e-10 3.267522655e-10 6.41632739e-10 2.451396567e-10 3.828136165e-10 2.242504908e-10 1.197077394e-10 9.434305094e-10 7.4460278e-10 9.449995387e-10 7.762057151e-10 9.104401028e-10 1.008144495e-09 1.07708901e-09 1.473029522e-09 9.12590198e-10 5.06151633e-10 1.104111882e-09 9.199981602e-10 1.120794133e-09 1.312563315e-09 1.072065826e-09 1.576619618e-09 1.173727576e-09 9.715202497e-10 8.696674081e-10 9.576707038e-10 2.201030632e-09 1.233402301e-09 1.123493266e-09 1.393115507e-09 7.382446866e-10 4.631659663e-10 8.749666969e-10 2.175741561e-10 8.977702073e-10 7.761727512e-10 3.616781381e-10 8.583023925e-10 8.826976688e-10 5.848637303e-10 4.054576832e-10 1.253084282e-09 8.455085678e-10 5.995386294e-10 1.133676873e-09 6.52378888e-10 5.462228686e-10 7.191082699e-10 1.108067762e-09 1.146654454e-09 5.252833197e-10 6.845131397e-10 6.569281204e-10 2.939817205e-10 6.859128875e-10 2.992641329e-10 8.129768272e-10 5.04325619e-10 4.97330085e-10 4.306642435e-10 4.963407115e-10 6.712306967e-10 2.976968561e-10 9.375851724e-10 4.738447099e-10 1.108955499e-09 8.278838937e-10 9.422756966e-10 7.155662096e-10 6.557660104e-10 1.401085066e-09 5.942957176e-10 1.359387013e-09 1.156039456e-09 1.230793217e-09 4.538726916e-10 8.842285564e-10 3.859891764e-10 5.297265153e-10 4.391128085e-10 6.74636575e-10 1.361188412e-09 5.422441406e-10 7.056283957e-10 8.182939687e-10 5.147492913e-10 5.961697758e-10 5.563814779e-10 8.275169864e-10 7.336279865e-10 4.420451167e-10 6.089999545e-10 5.355065166e-10 5.932824961e-10 6.449435635e-10 1.562125823e-10 2.391054359e-10 8.485555515e-10 2.367433818e-10 2.803754248e-10 6.154422499e-10 2.947518079e-10 2.614400462e-10 5.190473907e-10 7.82124647e-11 1.583915447e-10 1.423145909e-10 9.425971725e-11 4.018721733e-10 4.318350685e-10 3.884810204e-10 +1.649972041e-10 4.638219235e-10 2.306318732e-10 6.9331226e-10 3.795732558e-10 1.973215805e-10 4.750105316e-10 7.721997283e-10 4.420456616e-10 2.67211216e-10 4.225683631e-10 3.225853387e-10 5.668184311e-10 5.170209076e-10 2.719435902e-10 6.112824874e-10 4.89489017e-10 5.033685549e-10 5.001924448e-10 4.344016522e-10 9.187141479e-10 1.040720678e-09 5.262724748e-10 4.997011511e-10 5.100468467e-10 5.999641028e-10 8.384301149e-10 3.527090233e-10 1.24144208e-09 6.65589064e-10 5.766173537e-10 3.136127867e-10 5.88680021e-10 1.139252949e-09 5.501902864e-10 5.101068401e-10 6.752741401e-10 9.17725607e-10 8.833115109e-10 4.743044004e-10 8.543051078e-10 1.209033448e-09 4.491736415e-10 8.664823812e-10 6.262259584e-10 9.157537181e-10 5.045787581e-10 3.542361898e-10 1.186505874e-09 5.184177917e-10 7.559241787e-10 3.722803454e-10 3.141245953e-10 4.449698319e-10 5.473172882e-10 5.504304653e-10 8.985715431e-10 1.348412441e-09 5.894981711e-10 9.407111427e-10 4.737676415e-10 1.074874871e-09 8.801083358e-10 6.175900987e-10 7.267530553e-10 9.755800867e-10 5.438282603e-10 7.094939674e-10 1.036360646e-09 1.136270916e-09 1.281783734e-09 8.902939166e-10 6.526029057e-10 8.121531968e-10 5.528093698e-10 5.977322526e-10 8.0341435e-10 7.84449977e-10 8.130637362e-10 5.895247192e-10 1.23362857e-09 1.027889738e-09 1.3991203e-09 6.734397603e-10 1.219827743e-09 1.616542203e-09 5.465192122e-10 1.359314306e-09 1.269951137e-09 1.326014871e-09 1.103823948e-09 1.826427548e-09 4.011549408e-10 8.062438502e-10 1.061395375e-09 8.598052095e-10 1.354268779e-09 1.088426745e-09 1.066609719e-09 5.574442405e-10 9.505169384e-10 9.423531739e-10 8.62558263e-10 4.070485004e-10 5.245562353e-10 5.217925702e-10 5.327497773e-10 2.452597875e-10 7.125915951e-10 5.293728225e-10 4.503148325e-10 8.981892333e-10 5.305423123e-10 2.252879828e-09 2.041732008e-09 2.924408095e-09 1.921905207e-09 1.318515665e-09 1.068349384e-09 2.836156569e-09 1.978885929e-09 1.8077116e-09 1.797712918e-09 1.636016816e-09 1.734257152e-09 1.42361497e-09 1.521297047e-09 1.37279511e-09 1.376496759e-09 2.31250434e-09 2.390410898e-09 1.333909336e-09 2.321705644e-09 2.644949742e-09 1.270906944e-09 3.015879416e-09 2.706285399e-09 2.015205024e-09 2.460125641e-09 2.390814277e-09 1.542087457e-09 2.040607859e-09 1.074105167e-09 1.749765767e-09 1.296446783e-09 1.763209958e-09 1.132810558e-09 1.204388972e-09 2.118671655e-09 1.48047845e-09 1.464033962e-09 1.752504099e-09 1.447828597e-09 8.585528732e-10 1.72169582e-09 1.321616732e-09 1.804793602e-09 1.812410103e-09 1.403150308e-09 3.01969899e-09 1.744062655e-09 1.66559735e-09 1.758844139e-09 2.702331278e-09 1.499817229e-09 2.228286636e-09 8.744738662e-10 1.803413302e-09 1.795203011e-09 1.324403063e-09 1.783332969e-09 1.141188772e-09 9.675598337e-10 1.487646124e-09 1.244267552e-09 1.561368072e-09 2.234640395e-09 1.314955516e-09 1.99526768e-09 2.009830005e-09 2.260808764e-09 2.708706066e-09 1.726204901e-09 1.521611835e-09 2.068245983e-09 2.109421524e-09 6.348447504e-10 1.013932192e-09 6.630538111e-10 2.80099888e-10 2.498661653e-10 3.15874645e-10 3.030868204e-10 4.698432627e-10 9.998771709e-10 9.142711466e-10 8.209724327e-10 4.084546781e-10 6.610246825e-10 9.110819081e-10 1.095011402e-09 9.829442748e-10 8.308387637e-10 9.868987744e-10 1.42368719e-09 9.745211513e-10 1.035987471e-09 1.350219667e-09 1.317903222e-09 1.917336843e-09 1.558504767e-09 1.273569359e-09 1.029095715e-09 1.428958123e-09 1.137714058e-09 1.572224647e-09 8.092763369e-10 9.439560965e-10 1.0092528e-09 6.38716939e-10 3.741557568e-10 1.035758831e-09 2.975787384e-10 3.860551272e-10 3.977247517e-10 5.184425433e-10 6.805842941e-10 1.062727382e-09 8.500193971e-10 1.349252197e-09 7.197783404e-10 1.077522685e-09 9.700507637e-10 8.270070808e-10 5.044838749e-10 1.254706406e-09 1.225609296e-09 4.964526016e-10 1.072648446e-09 9.063753345e-10 1.361907822e-09 9.365369805e-10 9.431991894e-10 8.335453192e-10 3.425918025e-10 5.517625735e-10 5.61945333e-10 4.626683282e-10 5.016488826e-10 4.875133173e-10 3.667153774e-10 5.363767035e-10 8.78629368e-10 1.034001519e-09 5.99628846e-10 7.094161178e-10 4.0920492e-10 3.436740384e-10 1.121875548e-09 3.318193704e-10 5.011516003e-10 1.226886163e-09 1.032478196e-09 1.171943247e-09 1.164771307e-09 7.616806146e-10 5.742299468e-10 7.732854748e-10 1.152733909e-09 8.88289847e-10 3.518143444e-10 6.148824517e-10 4.000250814e-10 1.192860225e-09 1.336266212e-10 6.576567631e-10 8.086543062e-10 5.876664391e-10 5.910724401e-10 4.370050381e-10 2.281761e-10 4.99831439e-10 6.534672356e-10 6.186952126e-10 6.576715991e-10 7.420336137e-10 5.231328041e-10 5.843011125e-10 5.213097077e-10 3.415839397e-10 3.267582886e-10 5.568321187e-10 1.025490465e-09 3.187645587e-10 7.109967518e-10 1.748467568e-10 3.096854349e-10 8.210868422e-10 3.756124927e-10 5.118193317e-10 +7.281107493e-10 3.818592937e-10 5.405266197e-10 5.744718984e-10 8.700242681e-10 7.715912805e-10 4.58464319e-10 2.159373682e-10 4.732877781e-10 3.351783381e-10 1.943438956e-10 3.703141608e-10 5.245491981e-10 3.448975584e-10 1.377031663e-10 3.518950641e-10 9.489991504e-10 3.39666303e-10 3.762787649e-10 1.137758784e-09 1.037765799e-09 1.208176753e-09 3.329117707e-10 9.693444087e-10 6.671794659e-10 3.486389865e-10 3.622976866e-10 1.307382868e-10 4.308711516e-10 1.135677548e-09 5.377856921e-10 3.522479095e-10 6.639644462e-10 4.859942433e-10 9.834448576e-10 5.863789546e-10 1.260471981e-09 8.539480056e-10 7.035733801e-10 4.209506596e-10 5.826840476e-10 6.947068076e-10 3.75113474e-10 1.081145833e-09 2.7853322e-10 1.106920923e-09 6.549286753e-10 8.725468748e-10 5.172794341e-10 3.385457621e-10 5.380343913e-10 4.236878728e-10 2.635256556e-10 7.708597411e-10 4.782031414e-10 5.155263251e-10 1.135389433e-09 8.03247548e-10 1.102441395e-09 1.301911346e-09 4.293079555e-10 5.355069007e-10 7.485985189e-10 4.174862186e-10 9.582071311e-10 2.241251809e-10 6.953144722e-10 1.23840995e-09 1.09417889e-09 1.493724464e-09 7.660969895e-10 7.058358865e-10 8.774283811e-10 5.386699576e-10 4.455773269e-10 4.695597157e-10 6.276399125e-10 2.711767529e-10 3.136204045e-10 6.539798874e-10 8.238693655e-10 1.082433508e-09 1.399768869e-09 1.530450923e-09 2.641389393e-09 8.525162547e-10 1.099026462e-09 1.197419466e-09 1.184696049e-09 1.179726218e-09 1.489751888e-09 1.305418428e-09 1.735634894e-09 1.11633906e-09 9.299320912e-10 1.141792238e-09 8.824773979e-10 8.778806255e-10 5.812891235e-10 8.879798624e-10 1.336444817e-09 4.997842631e-10 6.206072933e-10 8.747808762e-10 8.489446399e-10 7.826481786e-10 4.841371272e-10 2.318774018e-10 1.709285032e-10 4.397756687e-10 4.104291411e-10 1.133570092e-09 1.004641091e-09 6.416312086e-10 1.041201552e-09 1.975093317e-09 2.008648115e-09 2.14479369e-09 2.194035297e-09 2.447571271e-09 2.408748239e-09 1.526965857e-09 2.537159202e-09 1.386090342e-09 1.711959708e-09 1.92130723e-09 1.599648003e-09 1.52287073e-09 1.232856116e-09 1.31039825e-09 9.696338474e-10 1.95196625e-09 1.249261999e-09 1.771780046e-09 2.555618055e-09 1.837033999e-09 2.131374463e-09 1.073904033e-09 3.308680777e-09 1.803233944e-09 1.339343992e-09 2.177203551e-09 2.102193029e-09 2.523897555e-09 1.615229454e-09 1.712530299e-09 1.644850291e-09 1.594418696e-09 1.477721759e-09 1.526230674e-09 1.835169705e-09 1.284282533e-09 1.467280124e-09 1.11019999e-09 1.656279161e-09 1.860100249e-09 2.702943543e-09 1.9238567e-09 2.307718953e-09 1.872762451e-09 2.290789652e-09 2.307353538e-09 1.327637702e-09 1.601159606e-09 2.275413237e-09 1.680437151e-09 1.654361781e-09 1.80579811e-09 9.211594199e-10 9.40388254e-10 2.069658801e-09 2.016194091e-09 1.077463595e-09 1.678272082e-09 1.329367662e-09 2.341563637e-09 1.786903041e-09 2.310644814e-09 2.297700301e-09 1.267199198e-09 2.41835012e-09 2.01384146e-09 1.008539193e-09 2.005218602e-09 1.647890068e-09 2.49943833e-09 4.042560921e-10 8.049666244e-10 7.711917037e-10 3.168044271e-10 3.372296244e-10 2.13967721e-10 5.557142745e-11 4.137016783e-10 4.354824115e-10 7.73718329e-10 6.7573217e-10 1.000062246e-09 1.357853896e-09 1.006103979e-09 6.593508074e-10 7.8398625e-10 1.186775109e-09 7.326510701e-10 9.406236822e-10 1.103784811e-09 1.109583069e-09 8.660754286e-10 1.18304146e-09 1.225945065e-09 5.765995258e-10 1.180841046e-09 2.058599948e-09 1.081468073e-09 1.389084044e-09 1.385256409e-09 1.22016774e-09 9.664275043e-10 8.738988768e-10 1.115725081e-09 3.475997734e-10 1.018340609e-09 5.750107702e-10 4.211869946e-10 9.205838758e-10 6.017217071e-10 6.958510449e-10 5.473470403e-10 5.522683097e-10 9.564906242e-10 5.853890129e-10 8.826267269e-10 7.35138489e-10 1.062706747e-09 5.859317242e-10 7.746470343e-10 3.974718274e-10 6.336758847e-10 7.357678475e-10 5.019116599e-10 7.117200244e-10 1.008879995e-09 8.111262021e-10 7.047656542e-10 4.899726911e-10 6.163072803e-10 1.22244102e-09 9.312466216e-10 8.022813562e-10 7.979536487e-10 8.006760731e-10 9.981064478e-10 7.2497036e-10 7.478961392e-10 1.105405866e-09 5.665323533e-10 2.166759189e-10 3.729056864e-10 1.058084314e-09 7.469952662e-10 6.074188706e-10 1.05970081e-09 4.347225729e-10 6.766131388e-10 6.741773022e-10 7.176917383e-10 6.036600024e-10 5.878512413e-10 5.744867153e-10 6.169010344e-10 8.95847765e-10 4.428001812e-10 4.598660801e-10 7.415488978e-10 4.898109518e-10 8.076853688e-10 7.046061973e-10 1.392482793e-09 9.072280306e-10 4.664062561e-10 2.324801258e-10 7.244685874e-10 3.217584786e-10 2.969992602e-10 5.564858737e-10 6.158291313e-10 3.882641586e-10 3.860275863e-10 3.964644333e-10 4.471392757e-10 5.246274192e-10 5.067577212e-10 4.320159114e-10 4.875768193e-10 3.136466324e-10 1.99298973e-10 2.892905274e-10 3.944657609e-10 1.009798985e-09 4.333466955e-10 +3.418866372e-10 2.970103614e-10 3.373573337e-10 4.520227531e-10 4.389068957e-10 3.500543582e-10 3.984160958e-10 4.501359871e-10 2.49246113e-10 3.559596559e-10 3.13176592e-10 3.515138051e-10 3.036066814e-10 5.383722374e-10 5.556117217e-10 3.874140186e-10 5.674863364e-10 5.622056678e-10 5.156981766e-10 1.008244197e-09 7.507599708e-10 7.647351597e-10 7.619546323e-10 8.877614227e-10 4.567128234e-10 8.121306802e-10 8.312181438e-10 6.93051288e-10 6.711448148e-10 7.362733151e-10 3.257619142e-10 4.300818527e-10 5.252000655e-10 8.952672985e-10 5.906412215e-10 8.616462487e-10 5.604828058e-10 1.461671682e-09 7.426665835e-10 8.539642427e-10 8.299120581e-10 7.793758225e-10 6.472888779e-10 6.236453034e-10 4.013053556e-10 1.296003693e-09 9.438092018e-10 8.156548548e-10 8.597790989e-10 4.044702351e-10 7.176598707e-10 7.890798268e-10 8.328240981e-10 5.033499754e-10 8.733506178e-10 3.723510332e-10 1.015379394e-09 6.514974079e-10 8.118639575e-10 1.041702931e-09 8.240450396e-10 4.638094834e-10 3.856658852e-10 1.350864555e-09 7.108819777e-10 9.193914717e-10 7.769892674e-10 6.815081357e-10 7.30939425e-10 7.248358193e-10 1.506862328e-10 1.115307368e-09 7.936423317e-10 6.554240208e-10 5.528536497e-10 1.952314445e-10 4.831380662e-10 1.225228019e-09 5.312990604e-10 7.606610155e-10 1.115705202e-09 1.0704322e-09 1.456715884e-09 1.764533292e-09 9.526016123e-10 1.740974817e-09 1.433673832e-09 8.037127208e-10 1.247583716e-09 1.339722637e-09 1.358227445e-09 5.990396146e-10 7.757973143e-10 1.152344767e-09 1.222364347e-09 9.125322213e-10 1.307035268e-09 1.148546543e-09 9.903530305e-10 1.001028967e-09 4.177854686e-10 6.839139891e-10 9.866945576e-10 7.329672773e-10 6.289224282e-10 4.396307117e-10 9.537604475e-10 3.225678374e-10 2.81913065e-10 2.014872574e-10 4.684288976e-10 7.249396933e-10 6.943262409e-10 7.563310026e-10 1.072712814e-09 9.974294491e-10 1.569415855e-09 2.400276514e-09 1.631338737e-09 1.67733373e-09 1.208633207e-09 2.55206263e-09 2.171766585e-09 9.117959461e-10 2.319011317e-09 2.650959591e-09 1.884794644e-09 2.700072065e-09 1.840391271e-09 1.176359881e-09 1.692754752e-09 1.713965446e-09 1.57028464e-09 8.062028861e-10 1.700731107e-09 1.896586963e-09 2.810851678e-09 2.324467842e-09 2.852659642e-09 1.400265995e-09 1.985016855e-09 1.460373763e-09 1.211210671e-09 2.308950061e-09 1.810777111e-09 2.459744857e-09 2.404651942e-09 1.233142788e-09 2.313492421e-09 1.953104696e-09 2.632518154e-09 1.247788847e-09 2.005558834e-09 1.764811114e-09 1.372166322e-09 1.414585544e-09 3.148591265e-09 1.705967149e-09 1.788173333e-09 2.185955649e-09 3.107649215e-09 2.517604154e-09 1.542741493e-09 1.958491806e-09 1.948817586e-09 1.609506449e-09 9.564882575e-10 1.864710633e-09 1.599303894e-09 9.063254557e-10 1.316684704e-09 1.349004016e-09 5.981134997e-10 1.672984839e-09 6.199387059e-10 2.095136183e-09 1.604438487e-09 2.075207324e-09 1.679490565e-09 2.159965831e-09 2.022573332e-09 1.543977107e-09 1.846908306e-09 1.402010713e-09 1.052011151e-09 1.182703775e-09 7.231663317e-10 1.211538665e-09 8.964817446e-10 5.038615688e-10 2.732343904e-10 8.786828464e-11 1.540070138e-10 4.673773572e-10 8.951992886e-10 5.080320094e-10 4.399328047e-10 1.170804036e-09 9.732491857e-10 1.421577083e-09 8.937629257e-10 8.559407719e-10 1.077282742e-09 9.765802407e-10 1.479505142e-09 1.204762231e-09 6.498679228e-10 7.189162458e-10 9.594271052e-10 9.392092282e-10 9.346365805e-10 9.055759776e-10 6.773986673e-10 2.452188678e-09 8.435847511e-10 9.981531415e-10 1.052191997e-09 9.790074651e-10 7.463582821e-10 6.359619256e-10 2.874616249e-10 7.093048707e-10 3.804254814e-10 5.158425285e-10 9.400707313e-10 4.291956959e-10 4.604478887e-10 5.887299005e-10 6.962521402e-10 9.263668504e-10 6.436043088e-10 8.646361861e-10 1.141366711e-09 5.63056683e-10 1.110514074e-09 4.392201922e-10 7.006240915e-10 7.844061997e-10 5.359636626e-10 9.109352186e-10 9.488580774e-10 7.128979786e-10 3.27916202e-10 8.447283036e-10 8.280646574e-10 8.135783886e-10 3.612480949e-10 9.167613978e-10 7.267966471e-10 7.461713713e-10 8.171035591e-10 7.293692524e-10 5.99423189e-10 2.038953777e-10 2.880241092e-10 2.748360209e-10 6.556922053e-10 2.683732622e-10 9.593030665e-10 9.390506912e-10 5.085129654e-10 9.403570935e-10 1.018767711e-09 7.251143887e-10 8.268982877e-10 6.125278408e-10 6.107321036e-10 8.703029771e-10 8.237613525e-10 7.054260299e-10 7.924946666e-10 6.837151349e-10 1.061697582e-09 5.810466302e-10 9.786019525e-10 1.300121006e-09 1.515540423e-10 5.548607628e-10 9.352684602e-10 8.583972597e-10 6.80130509e-10 6.292248599e-10 1.034448845e-09 4.309369792e-10 7.559289047e-10 6.772188702e-10 2.110508011e-10 4.333586739e-10 1.031165134e-09 5.780410882e-10 5.859755547e-10 5.889040659e-10 4.739636491e-10 3.679057591e-10 3.712454602e-10 9.220739631e-10 4.854101521e-10 4.439712908e-10 7.137196649e-10 7.104187911e-10 +4.604835028e-10 4.038741967e-10 5.209469585e-10 5.89188268e-10 1.986150304e-10 6.390439775e-10 1.857702264e-10 5.791590343e-10 2.346491898e-10 3.534076941e-10 9.173999085e-10 4.596326997e-10 9.648821058e-10 4.944826533e-10 1.025813097e-09 7.779373478e-10 9.936053651e-10 6.850929883e-10 2.203806105e-10 6.114776807e-10 9.468680004e-10 5.19354275e-10 7.642736581e-10 5.529857654e-10 6.041696581e-10 4.471616321e-10 7.33223214e-10 7.558314157e-10 7.454486701e-10 7.450975269e-10 4.496856737e-10 6.373607514e-10 9.94465556e-10 5.173940232e-10 3.121744542e-10 6.169164132e-10 5.994591306e-10 8.858967387e-10 5.106522589e-10 6.855807715e-10 7.408619725e-10 5.2968679e-10 5.747678346e-10 5.975342736e-10 1.133262018e-09 5.82861996e-10 9.003320672e-10 4.827641763e-10 7.714556148e-10 9.605425749e-10 6.362134934e-10 7.748914353e-10 1.847029277e-10 3.153510281e-10 7.698187648e-10 7.608703718e-10 9.97926101e-10 1.3135544e-09 8.959023305e-10 5.994076955e-10 1.001204132e-09 7.370531031e-10 5.350582799e-10 7.63009815e-10 9.338545348e-10 5.460989693e-10 6.490288544e-10 1.226812851e-09 2.772542368e-10 3.936835848e-10 6.741930745e-10 5.905473972e-10 9.051891749e-10 6.698723358e-10 3.967047589e-10 6.582344356e-10 7.882943171e-10 5.120488181e-10 9.329915608e-10 4.245656181e-10 5.212570971e-10 9.450227545e-10 1.122249559e-09 1.398255879e-09 1.24356758e-09 1.785918931e-09 1.150385784e-09 1.268324667e-09 7.172321256e-10 6.64418285e-10 1.380769227e-09 7.968570974e-10 7.827668004e-10 1.147354628e-09 9.018132672e-10 7.093465558e-10 1.156339773e-09 1.364302952e-09 1.208497924e-09 1.508311622e-09 1.617920139e-09 1.213723671e-09 9.797360466e-10 1.193672449e-09 7.202556319e-10 8.252652858e-10 3.67966941e-10 2.998367763e-10 2.432291556e-10 2.716007885e-10 4.599801341e-10 4.009429529e-10 6.541350923e-10 6.153546776e-10 6.130878554e-10 7.305468206e-10 1.096935077e-09 2.199295308e-09 2.206014136e-09 2.222409994e-09 1.555820031e-09 1.13534863e-09 1.674767676e-09 1.305560062e-09 2.122929757e-09 1.554329977e-09 1.977148503e-09 1.453334291e-09 1.793046087e-09 1.864057728e-09 1.45901011e-09 1.920442105e-09 1.521042423e-09 1.67740962e-09 1.555017747e-09 1.125333939e-09 1.515635818e-09 1.922957646e-09 2.576761354e-09 1.854625434e-09 2.51224119e-09 3.834523276e-09 3.434579912e-09 2.034846804e-09 1.872801354e-09 1.931828353e-09 1.305247852e-09 1.174069371e-09 1.924810312e-09 1.735113107e-09 2.065447355e-09 1.51678903e-09 1.641051969e-09 2.371252136e-09 1.804498504e-09 1.99171121e-09 1.42177962e-09 1.834056118e-09 2.73589036e-09 1.946722492e-09 2.355278007e-09 2.347850878e-09 1.463288471e-09 2.504976458e-09 3.597198748e-10 1.65680452e-09 2.213100402e-09 2.026421185e-09 1.714324416e-09 2.320248268e-09 1.231109912e-09 1.318015986e-09 1.278528474e-09 1.163487613e-09 2.56541591e-09 1.172686591e-09 1.012778141e-09 1.484650755e-09 1.518822144e-09 8.10881874e-10 1.131182777e-09 2.031844378e-09 1.771328773e-09 1.605807555e-09 1.274525894e-09 6.891021819e-10 6.573253781e-10 6.57605966e-10 5.397456329e-10 4.604834477e-10 1.567781564e-10 7.497683897e-10 2.956122073e-10 7.641205774e-10 6.066938971e-10 5.569948475e-10 6.319587773e-10 9.315782126e-10 8.09428301e-10 1.329572051e-09 6.085176798e-10 4.374155604e-10 6.875125341e-10 1.083017749e-09 1.627076755e-09 1.106962816e-09 8.31874236e-10 1.160161414e-09 1.380849802e-09 1.179569837e-09 1.382998737e-09 1.333785751e-09 8.834598852e-10 8.835938819e-10 1.69163234e-09 9.944005132e-10 1.023631463e-09 1.260129158e-09 1.123188627e-09 4.241344643e-10 4.568337213e-10 2.842165092e-10 8.443684338e-10 8.001530057e-10 4.066415846e-10 2.735355614e-10 3.216783799e-10 4.514790717e-10 7.061023934e-10 8.855482177e-10 7.218426347e-10 9.164891144e-10 1.05270778e-09 1.019338118e-09 5.634306648e-10 3.045093031e-10 5.422684026e-10 4.898014941e-10 1.034362774e-09 9.236292613e-10 6.864509466e-10 5.105734658e-10 7.962252431e-10 9.443272237e-10 5.759129632e-10 7.231553964e-10 3.775757906e-10 6.704413472e-10 9.753697046e-10 8.095498698e-10 7.406787956e-10 8.232787434e-10 8.043279388e-10 6.156254077e-10 7.490087191e-10 9.167342323e-10 7.175075397e-10 5.302817156e-10 5.215028219e-10 6.025041611e-10 2.756095621e-10 6.971103291e-10 3.093243647e-10 2.495091686e-10 5.872835107e-10 5.672262538e-10 3.499581761e-10 7.121857984e-10 7.001400911e-10 1.208394614e-09 5.120042165e-10 8.051908572e-10 6.002421846e-10 1.121206994e-09 5.283261854e-10 7.255582948e-10 6.559676349e-10 5.189550594e-10 6.435413718e-10 7.59911579e-10 9.013125076e-10 6.360696498e-10 7.823928495e-10 8.18650412e-10 6.787086252e-10 7.835922585e-10 3.41534089e-10 3.711657064e-10 2.080746897e-10 4.121358068e-10 2.588851054e-10 3.241408051e-10 3.399026981e-10 5.544391068e-10 5.242128164e-10 4.658414598e-10 7.996963954e-10 3.063918556e-10 5.31018665e-10 2.791378672e-10 +5.447177414e-10 7.009502265e-10 3.419558427e-10 1.406500413e-10 1.077327879e-09 3.4712628e-10 6.065060699e-10 6.060792439e-10 1.048109841e-09 3.348158167e-10 4.878214697e-10 8.160925957e-10 6.335767407e-10 6.966476609e-10 7.884031047e-10 6.224767241e-10 8.906791584e-10 8.002467634e-10 4.022734436e-10 5.454123209e-10 7.902036244e-10 7.348732004e-10 4.667686504e-10 4.996211062e-10 3.595236988e-10 6.846643213e-10 4.379147185e-10 1.107918307e-09 9.962023034e-10 7.580409245e-10 7.8621451e-10 1.317708226e-09 5.880634748e-10 1.387048779e-09 6.022834386e-10 3.419356691e-10 5.000301778e-10 5.468185878e-10 1.068364659e-09 1.156289146e-09 5.579883332e-10 8.712879236e-10 7.254066418e-10 1.009792555e-09 2.711747281e-10 5.108276941e-10 4.610823251e-10 7.956719513e-10 2.596436903e-10 7.486688774e-10 3.727047857e-10 6.292124429e-10 5.822226847e-10 4.681191096e-10 6.346025928e-10 8.798799521e-10 4.973900156e-10 9.519568103e-10 4.544201658e-10 6.666478463e-10 9.720749429e-10 8.527106816e-10 1.083646728e-09 1.832296278e-09 8.727244362e-10 1.182332039e-09 9.29550757e-10 9.960660366e-10 9.661734006e-10 4.972349342e-10 5.406443879e-10 1.104788907e-09 3.31768898e-10 8.140313709e-10 8.554836396e-10 5.680777046e-10 2.363678416e-10 6.90916375e-10 4.805383185e-10 6.474938964e-10 1.082610829e-09 8.241360355e-10 8.549533116e-10 1.255552161e-09 1.668926019e-09 9.688215533e-10 1.20207009e-09 1.295688299e-09 9.351577741e-10 1.149812183e-09 7.273781443e-10 9.373630773e-10 1.149734418e-09 1.488966864e-09 1.109544271e-09 9.65579565e-10 5.675997808e-10 7.935585658e-10 6.293301522e-10 9.787680035e-10 9.444614373e-10 7.662892652e-10 1.024047471e-09 1.521751992e-09 1.025435578e-09 6.772807758e-10 3.946708333e-10 2.653734285e-10 4.320849825e-10 2.528971077e-10 3.057747692e-10 3.245567761e-10 5.681224762e-10 7.767540419e-10 5.682451341e-10 3.822146112e-10 1.685899403e-09 1.628912949e-09 2.125165919e-09 1.674249601e-09 1.909031766e-09 1.55043298e-09 1.897967545e-09 1.862570506e-09 1.142291412e-09 2.545232348e-09 1.464939353e-09 1.498658156e-09 1.705291745e-09 1.623761448e-09 1.190545259e-09 1.093470195e-09 1.784021748e-09 1.21139048e-09 2.150717265e-09 1.554825595e-09 1.317576511e-09 2.295219693e-09 1.289244287e-09 2.314907878e-09 2.295010428e-09 1.578970769e-09 1.118454867e-09 1.447518279e-09 1.944748184e-09 1.749517097e-09 8.082433247e-10 3.434624013e-09 2.024451804e-09 2.564132669e-09 2.789991623e-09 1.817698016e-09 1.904904496e-09 1.192447526e-09 1.686886921e-09 2.776097258e-09 2.224459337e-09 1.715856093e-09 1.300184065e-09 1.767421715e-09 2.606262861e-09 2.591081618e-09 1.781769168e-09 1.711452294e-09 1.050595398e-09 8.838277627e-10 1.480195162e-09 1.470967038e-09 1.845305996e-09 1.354247585e-09 1.330547397e-09 8.88902894e-10 1.072892622e-09 2.23890676e-09 1.780357332e-09 1.716817167e-09 1.566387612e-09 2.504987099e-09 3.612096526e-09 1.887856189e-09 1.11352407e-09 1.580279283e-09 1.519410382e-09 9.876593167e-10 1.23438943e-09 7.114788405e-10 6.927547153e-10 9.909619023e-10 4.923119772e-10 5.301973621e-11 1.058010559e-10 5.92825062e-10 5.670197383e-10 8.293268573e-10 7.250475722e-10 1.25997886e-09 1.055150712e-09 6.736767221e-10 1.034992827e-09 1.02909797e-09 1.394381154e-09 9.156322692e-10 1.086714871e-09 8.413483135e-10 1.121178836e-09 9.485297165e-10 1.539776481e-09 1.457201874e-09 7.319358025e-10 9.712627689e-10 1.081806155e-09 1.224683098e-09 1.641318605e-09 1.070628742e-09 1.548360587e-09 1.39451106e-09 1.09639635e-09 6.914849197e-10 1.339275756e-09 9.271869391e-10 5.244174001e-10 4.219043645e-10 5.874032983e-10 8.851882714e-10 6.159412387e-10 8.104884214e-10 3.779236963e-10 6.580236726e-10 7.490485803e-10 4.497791431e-10 1.316884584e-09 7.943050851e-10 7.559481765e-10 8.918648308e-10 6.477383835e-10 7.687395219e-10 4.518875188e-10 4.488473206e-10 4.05017943e-10 8.614738082e-10 1.45791241e-09 1.25392417e-09 8.848473073e-10 4.40869798e-10 5.625197625e-10 9.048988931e-10 6.894442535e-10 4.067846738e-10 6.898640526e-10 2.866989826e-10 6.841630117e-10 1.162794001e-09 5.912548335e-10 9.312797413e-10 4.062769066e-10 9.452557139e-10 5.248276929e-10 8.826921451e-10 5.086249238e-10 8.66733347e-10 5.192031377e-10 9.968883003e-10 5.39307595e-10 7.223698125e-10 1.218842213e-09 1.072146954e-09 6.611588563e-10 8.328928858e-10 1.187641322e-09 7.982740164e-10 9.394894932e-10 8.635334049e-10 7.488138137e-10 8.642149837e-10 6.987764818e-10 7.398485531e-10 1.046990176e-09 6.103616909e-10 9.859945208e-10 1.074046084e-09 7.734546405e-10 5.849220551e-10 4.530456962e-10 5.743124595e-10 3.746138684e-10 2.551215601e-10 6.837013674e-10 6.908514315e-10 7.177537253e-10 9.828764573e-10 6.983182651e-10 5.881730039e-10 6.468582887e-10 5.22679788e-10 5.96342422e-10 2.137713164e-10 3.704362937e-10 6.777542779e-10 6.615671457e-10 6.78984297e-10 +2.601734349e-10 4.332866841e-10 6.804195685e-10 7.240829846e-10 9.355220432e-10 4.841555801e-10 4.110875539e-10 2.68320487e-10 8.528051288e-10 6.363638467e-10 5.449995547e-10 9.96011507e-10 5.988871459e-10 5.630972061e-10 3.674533804e-10 3.740411468e-10 3.39166694e-10 4.388421732e-10 4.094927309e-10 1.066016406e-09 7.683418395e-10 5.934302647e-10 1.113434161e-09 1.112419563e-09 2.938596041e-10 7.719570589e-10 3.971099991e-10 7.084954893e-10 7.630546507e-10 1.206908201e-09 7.031484657e-10 8.031405395e-10 5.841106877e-10 6.135018094e-10 7.317881498e-10 9.377834952e-10 1.087153146e-09 5.421787185e-10 5.312161952e-10 1.096661181e-09 7.165672714e-10 6.772299068e-10 6.415008823e-10 7.514273456e-10 5.036158467e-10 2.825476337e-10 3.85147972e-10 2.253178637e-10 4.638086631e-10 5.982073055e-10 3.677321241e-10 7.068105419e-10 5.403850768e-10 9.686494911e-10 4.274480501e-10 5.480295337e-10 3.500570487e-10 8.205081446e-10 5.534413799e-10 5.674137379e-10 1.12468598e-09 6.152847495e-10 4.577837417e-10 6.148525706e-10 7.826471271e-10 9.279787984e-10 1.439757209e-09 5.705943918e-10 9.887021267e-10 1.071371594e-09 4.553654509e-10 8.12908678e-10 4.571804015e-10 7.373591708e-10 4.70931744e-10 7.783464971e-10 4.897421413e-10 2.904775964e-10 8.924772842e-10 4.76743969e-10 7.437750608e-10 3.50597879e-10 7.007271945e-10 6.932967745e-10 8.857605294e-10 1.066104962e-09 1.352184065e-09 1.729458736e-09 1.171741477e-09 1.088413817e-09 1.833505582e-09 1.466149087e-09 1.660650885e-09 1.652574721e-09 1.245494336e-09 6.609961236e-10 1.270090122e-09 1.169169352e-09 1.298990431e-09 7.044006663e-10 7.483312647e-10 7.24924165e-10 1.080604315e-09 1.404470098e-09 6.800118804e-10 1.020019731e-09 1.483180841e-10 4.781776958e-10 4.028076892e-10 1.194918226e-10 9.530472672e-11 5.132955562e-10 4.94012649e-10 7.492451475e-10 5.488263894e-10 1.163357771e-09 7.670835823e-10 1.826756137e-09 1.149281488e-09 1.044621025e-09 1.360616368e-09 1.774681796e-09 1.555810227e-09 1.686964939e-09 2.515847098e-09 1.40394926e-09 1.535587442e-09 2.229364772e-09 1.26444214e-09 1.365857223e-09 1.508388568e-09 1.358834656e-09 1.301830367e-09 2.412878765e-09 9.425169413e-10 1.205629149e-09 1.480167694e-09 1.810985792e-09 1.221299734e-09 2.079170246e-09 1.6373216e-09 1.469118694e-09 1.508794063e-09 2.106575014e-09 1.515542645e-09 2.450127742e-09 2.118004857e-09 1.92071491e-09 3.035552449e-09 1.636842135e-09 1.50125186e-09 2.015411534e-09 1.364445619e-09 1.73468468e-09 1.620742098e-09 1.956753076e-09 1.494384899e-09 1.658326029e-09 1.372689605e-09 1.119604684e-09 2.15886547e-09 1.078932838e-09 1.271142121e-09 1.323078962e-09 9.581198408e-10 1.053858984e-09 2.745833877e-09 2.146913773e-09 1.046205125e-09 1.703019733e-09 1.478114793e-09 1.2450859e-09 1.183910991e-09 2.07030146e-09 1.879180444e-09 2.248392425e-09 1.561769054e-09 2.229126263e-09 2.121091088e-09 2.556662913e-09 1.622224045e-09 1.655017389e-09 8.544324947e-10 1.989644664e-09 6.46419146e-10 6.122617728e-10 1.040117721e-09 7.494503777e-10 3.330042025e-10 2.608883852e-10 5.888873768e-10 8.229345047e-10 9.43197187e-10 7.636105245e-10 4.616464684e-10 1.370349987e-09 8.077207504e-10 8.490194556e-10 5.096468282e-10 9.85468799e-10 9.284416988e-10 9.475431151e-10 9.572434641e-10 9.257206714e-10 1.27779541e-09 1.189477037e-09 1.028810102e-09 1.161238863e-09 9.999506915e-10 9.676038821e-10 8.706270176e-10 1.107755413e-09 8.688113797e-10 9.279137652e-10 1.054058587e-09 8.220076685e-10 6.109315829e-10 1.590080725e-09 1.153006236e-09 3.585044333e-10 3.071516583e-10 4.67455912e-10 3.981088564e-10 4.865664512e-10 6.403612851e-10 2.648310391e-10 4.788925875e-10 3.245028996e-10 3.527583036e-10 7.493041362e-10 8.407867193e-10 1.295853543e-09 1.330371874e-09 9.776660435e-10 7.778661558e-10 9.469354675e-10 4.136256571e-10 6.381017943e-10 7.432637504e-10 5.156798101e-10 6.753679994e-10 5.80707815e-10 7.63713022e-10 1.969225569e-10 4.17503457e-10 4.640456655e-10 1.189248386e-09 5.427594716e-10 4.186340755e-10 7.842819729e-10 2.799513591e-10 6.095082963e-10 5.399945703e-10 5.028222375e-10 9.316470371e-10 1.19065341e-09 5.068353282e-10 7.911091708e-10 4.660924051e-10 3.742846075e-10 4.641447806e-10 5.314222101e-10 7.684243565e-10 1.076182358e-09 7.091975173e-10 9.353374446e-10 7.357904551e-10 7.321137924e-10 6.21499006e-10 6.971424706e-10 8.136972629e-10 5.225143333e-10 2.596190733e-10 3.762356864e-10 5.967849411e-10 3.583249054e-10 1.150322663e-09 5.359247217e-10 8.966536863e-10 7.228144479e-10 3.399083602e-10 7.807015955e-10 1.180417425e-09 8.104369925e-10 8.768408013e-10 5.32721597e-10 5.43433217e-10 3.159485278e-10 4.135120995e-10 1.824807597e-10 8.55206205e-10 9.121883783e-10 5.708991771e-10 7.701073096e-10 3.928402832e-10 4.384226608e-10 4.984744284e-10 4.514105113e-10 8.062112044e-10 1.310563195e-10 +6.063191585e-10 8.023200042e-10 3.715223266e-10 1.196253974e-09 4.473033063e-10 8.608656748e-10 5.416908512e-10 7.467470477e-10 6.050997176e-10 7.412164989e-10 7.177837483e-10 3.664151123e-10 6.749511214e-10 9.456554721e-10 8.243538773e-10 5.224227801e-10 6.984722275e-10 9.401355399e-10 9.869963026e-10 6.447846806e-10 3.95129422e-10 5.088058978e-10 6.728029211e-10 1.134317921e-09 1.015629333e-09 8.711723936e-10 5.68303541e-10 3.611591337e-10 6.463700657e-10 5.391365379e-10 4.788721857e-10 1.007458124e-09 2.604448778e-10 4.932603657e-10 1.087123415e-09 9.365761152e-10 2.914390448e-10 4.521406022e-10 1.164895342e-09 9.20814923e-10 7.991837818e-10 7.439311187e-10 5.763341907e-10 3.294994017e-10 3.273869707e-10 2.04408259e-10 3.880740805e-10 5.544229047e-10 5.220669324e-10 2.660495748e-10 7.000096263e-10 6.066887543e-10 6.851551642e-10 3.322587013e-10 4.415382346e-10 2.608864159e-10 6.192718599e-10 3.699264748e-10 7.88731416e-10 1.014272048e-09 1.060346398e-09 7.643821625e-10 6.924617372e-10 6.724993019e-10 4.803844913e-10 2.620811818e-10 1.158726973e-09 9.142459226e-10 1.271488318e-09 3.920152925e-10 6.655176387e-10 9.356220002e-10 1.198592745e-09 6.84020451e-10 4.179586947e-10 4.267228472e-10 4.101145275e-10 5.357935565e-10 7.897014861e-10 5.828215009e-10 7.061591387e-10 4.934490441e-10 2.014168902e-09 1.297968385e-09 1.762621435e-09 2.01578136e-09 1.463108936e-09 1.475651805e-09 1.011006649e-09 1.177290121e-09 8.739498367e-10 1.314120638e-09 1.007271821e-09 8.901223882e-10 1.000144106e-09 8.99370491e-10 1.111485011e-09 6.917044642e-10 9.41081187e-10 7.615023126e-10 1.047569814e-09 7.482295766e-10 1.225783008e-09 8.166275414e-10 6.125525796e-10 8.627846895e-10 8.104765474e-10 4.472136595e-10 4.762653252e-10 6.276142573e-10 4.861846341e-10 4.86215987e-10 6.180034636e-10 4.231391112e-10 5.64400022e-10 3.623229875e-10 1.305246119e-09 3.817286519e-10 1.410558563e-09 1.170144867e-09 1.460332453e-09 1.086684812e-09 1.827631405e-09 1.915745451e-09 1.299899891e-09 1.267023236e-09 8.416066012e-10 9.767853734e-10 1.769909583e-09 1.561127168e-09 1.33721621e-09 1.802828969e-09 7.926031561e-10 1.499581589e-09 1.586492885e-09 2.08581053e-09 1.576886212e-09 1.911372535e-09 8.602428355e-10 1.864719095e-09 3.025050921e-09 2.135921545e-09 1.810291831e-09 1.449040487e-09 1.99373502e-09 8.527666942e-10 1.033819644e-09 1.067302391e-09 1.009496096e-09 1.054626603e-09 1.461290511e-09 6.298453449e-10 2.228650331e-09 2.665410075e-09 1.56032822e-09 1.843310238e-09 1.471119952e-09 1.195601356e-09 1.511298177e-09 1.401653866e-09 9.286286671e-10 1.243080184e-09 9.435891081e-10 1.414212108e-09 1.92860732e-09 9.931371111e-10 2.545190491e-09 1.221078075e-09 1.626644345e-09 1.19443084e-09 1.728983431e-09 1.26872608e-09 1.6165714e-09 1.01280196e-09 1.658271355e-09 1.271015091e-09 1.569340697e-09 1.073662641e-09 2.047584079e-09 2.118661523e-09 1.894963594e-09 9.722285154e-10 4.418117733e-10 5.891548053e-10 1.068511874e-09 4.691681693e-10 3.138808978e-10 2.840446429e-10 2.189258269e-10 2.624635463e-10 4.590593196e-10 6.000535048e-10 4.826170223e-10 1.22853979e-09 5.929914248e-10 6.907228719e-10 8.920517974e-10 5.366276035e-10 1.25161582e-09 6.957696073e-10 1.109640254e-09 1.093078967e-09 3.68566797e-10 1.361874587e-09 9.179917501e-10 7.495375629e-10 1.08187597e-09 4.213795204e-10 1.060501003e-09 8.127496266e-10 1.489724216e-09 1.167857547e-09 1.024063744e-09 1.656093886e-09 1.199968094e-09 1.116015247e-09 9.720474412e-10 8.923916638e-10 1.175895499e-09 3.707442033e-10 2.76014547e-10 6.723925953e-10 6.251360819e-10 6.014729205e-10 9.535640787e-10 7.06891482e-10 4.350960208e-10 1.450392128e-09 6.262932173e-10 4.032920271e-10 8.479458068e-10 6.206586145e-10 1.057518081e-09 6.09933996e-10 4.559446539e-10 7.942638267e-10 6.358035708e-10 5.883648916e-10 6.497243121e-10 5.326415616e-10 1.02236721e-09 8.667522986e-10 4.596361939e-10 6.77425844e-10 6.617191196e-10 4.838675567e-10 8.523936767e-10 4.569130056e-10 1.236764999e-10 3.760618238e-10 7.04206274e-10 8.158977765e-10 4.401823785e-10 4.03486207e-10 4.716894148e-10 4.529013429e-10 4.63015048e-10 4.556196446e-10 5.67357851e-10 3.870264396e-10 4.406806797e-10 6.214066021e-10 4.386630452e-10 6.457016346e-10 3.834489765e-10 8.296117994e-10 6.21322322e-10 3.880515796e-10 1.114100574e-10 4.018229374e-10 6.201362744e-10 3.926848163e-10 3.589173763e-10 3.836242561e-10 7.065465587e-10 3.984533775e-10 8.222741811e-10 5.511510579e-10 2.892436529e-10 3.449525966e-10 4.916108996e-10 5.575201658e-10 4.248821587e-10 4.362787224e-10 6.358788489e-10 6.286572017e-10 5.637713717e-10 8.566838092e-10 4.497468456e-10 3.619546896e-10 4.992983983e-10 6.683158223e-10 1.419867829e-09 1.04680629e-09 8.51154882e-10 4.073258388e-10 4.978101209e-10 7.090969877e-10 6.753704289e-10 9.344606785e-10 +5.955619872e-10 3.192487654e-10 5.3436652e-10 2.812672919e-10 2.878329606e-10 9.597084695e-10 2.624327869e-10 4.879219024e-10 6.238959927e-10 4.961366058e-10 9.779762372e-10 4.634423464e-10 3.608243647e-10 6.52600544e-10 7.368731808e-10 6.606281694e-10 7.622266713e-10 4.262811951e-10 1.43969043e-09 2.647643238e-10 8.192458758e-10 6.889813296e-10 6.082890346e-10 3.750234732e-10 1.174814045e-09 5.277275606e-10 1.206414147e-09 1.878526253e-10 4.823266278e-10 3.593762608e-10 1.254503212e-09 3.233168138e-10 8.706253159e-10 6.116645515e-10 3.634832726e-10 5.940930233e-10 7.313173513e-10 4.756532941e-10 3.337907499e-10 7.453050211e-10 4.257290618e-10 5.512034433e-10 5.385283219e-10 6.922043701e-10 6.739899832e-10 7.63942733e-10 3.836732397e-10 6.198733843e-10 1.009999107e-09 4.970110999e-10 8.385428044e-10 1.789144494e-10 9.585673825e-10 5.043160105e-10 4.482061779e-10 5.14279437e-10 5.910860259e-10 6.925714742e-10 4.997663571e-10 8.113591103e-10 9.0552675e-10 1.143372535e-09 1.476827941e-09 1.05052239e-09 4.824479057e-10 6.600404357e-10 5.337159766e-10 7.006910287e-10 4.441338772e-10 1.090842539e-09 3.773249002e-10 4.939540234e-10 5.850617417e-10 7.407342122e-10 2.676085401e-10 2.79127835e-10 7.073868084e-10 1.185681514e-09 5.343940565e-10 8.598328352e-10 5.513798483e-10 3.322425657e-10 8.023619141e-10 5.149155783e-10 1.268807865e-09 1.216980882e-09 1.042747297e-09 1.814504277e-09 1.41856643e-09 9.68061272e-10 7.940002726e-10 7.823298816e-10 8.848648787e-10 9.788357144e-10 8.197042686e-10 5.93772812e-10 8.109851616e-10 7.981824381e-10 1.224009721e-09 5.213984152e-10 7.316931591e-10 5.04013567e-10 9.814575813e-10 4.169678411e-10 7.222883044e-10 3.918375732e-10 5.565748212e-10 7.472010591e-10 5.729913826e-10 1.277555762e-10 3.732190039e-10 4.958841876e-10 3.920975054e-10 3.636359767e-10 4.583863861e-10 4.269984739e-10 4.84975007e-10 7.714789444e-10 5.528123198e-10 2.611794212e-09 1.315579783e-09 1.970601855e-09 1.246568502e-09 1.661390092e-09 1.473744459e-09 1.530463344e-09 7.200992667e-10 1.472139264e-09 2.016014914e-09 9.939341432e-10 5.354554304e-10 1.294829288e-09 9.907762239e-10 2.280843355e-09 8.524822193e-10 1.187116242e-09 1.11353911e-09 1.059624253e-09 1.171515989e-09 1.50231512e-09 1.328223176e-09 1.317898213e-09 1.467586542e-09 1.255811663e-09 2.027976565e-09 8.987321656e-10 1.624625831e-09 2.061949831e-09 1.304391602e-09 1.352020359e-09 1.411910337e-09 2.021457581e-09 1.560870134e-09 1.045446296e-09 2.059220152e-09 9.863858834e-10 1.478960891e-09 1.310112118e-09 1.401100773e-09 1.219777924e-09 1.648990818e-09 1.046328047e-09 1.212805666e-09 1.362003407e-09 1.029171339e-09 1.327023394e-09 1.67605047e-09 1.745248603e-09 2.040982658e-09 1.788626808e-09 1.690102376e-09 1.280872109e-09 2.226945051e-09 1.954222341e-09 1.858574713e-09 1.374792921e-09 1.394371748e-09 1.594412352e-09 1.669741553e-09 1.493851636e-09 2.160314172e-09 4.843342542e-10 5.76868287e-10 6.214043548e-10 3.380964627e-10 3.288692351e-10 4.975463793e-10 1.611819436e-10 2.934844227e-10 4.5777701e-10 2.250911622e-10 4.943503243e-10 3.124746799e-10 3.10249069e-10 8.604823004e-10 7.503957446e-10 8.114850096e-10 6.721650768e-10 6.08117091e-10 1.245358678e-09 5.204669624e-10 6.1363642e-10 9.401636682e-10 6.106814384e-10 1.34463142e-09 9.577474317e-10 8.654238042e-10 2.124706951e-09 1.17870437e-09 8.235596509e-10 1.15780328e-09 1.246653587e-09 1.200988579e-09 6.059744553e-10 1.198360658e-09 1.00152567e-09 5.102797636e-10 1.134610982e-09 1.089509218e-09 9.521964981e-10 1.006368188e-09 4.481150954e-10 3.549871729e-10 5.273027858e-10 7.870039075e-10 7.444416133e-10 6.299349441e-10 2.643409326e-10 8.510312051e-10 5.764699211e-10 7.261760504e-10 3.648214882e-10 9.514315609e-10 8.692910878e-10 6.374982536e-10 5.121945202e-10 1.10755793e-09 5.294037203e-10 5.529077883e-10 7.385145966e-10 2.688151489e-10 2.435282959e-10 4.904874647e-10 6.535015642e-10 9.927264354e-10 1.026180094e-09 5.176218515e-10 2.545054044e-10 6.437201409e-10 4.324659854e-10 5.84729645e-10 2.626697396e-10 5.237531188e-10 3.478681926e-10 5.724109495e-10 4.129467511e-10 1.150764842e-09 3.948726084e-10 1.305868533e-09 3.89982919e-10 3.593989572e-10 2.709017474e-10 5.755129637e-10 2.315543563e-10 1.059465756e-09 6.349596267e-10 5.903998152e-10 8.445254859e-10 6.668523135e-10 7.676339928e-10 7.672308831e-10 5.820692127e-10 7.229135595e-10 4.284950115e-10 2.789563734e-10 6.003874972e-10 5.204677828e-10 2.503350913e-10 1.018885645e-09 3.723328569e-10 7.948625717e-10 5.234918769e-10 5.611222343e-10 6.232833713e-10 7.384797298e-10 1.165401389e-09 7.178173183e-10 5.767813315e-10 3.847355254e-10 7.263390856e-10 8.176275173e-10 4.774412891e-10 3.3155594e-10 7.889902399e-10 3.29403626e-10 5.537565221e-10 6.459366979e-10 5.200294071e-10 5.036867752e-10 1.11335115e-09 +4.71125353e-10 7.191693882e-10 1.451282676e-09 9.60988564e-10 9.91938676e-10 1.19589575e-10 2.394320028e-10 5.512415508e-10 5.164862366e-10 5.849178036e-10 1.064342287e-09 6.939978327e-10 9.604226736e-10 8.295811726e-10 7.406742262e-10 3.185192869e-10 5.587831589e-10 6.050089907e-10 6.978038894e-10 1.087984582e-09 4.490686539e-10 5.860225697e-10 5.559212457e-10 1.362307649e-09 6.888536503e-10 1.108290436e-09 7.520673456e-10 1.098141325e-09 5.61100324e-10 3.486473379e-10 1.005977234e-09 5.70504131e-10 1.500414245e-09 6.366233561e-10 3.121499484e-10 6.020547016e-10 2.67562663e-10 7.099669079e-10 7.46866172e-10 7.20739601e-10 5.572423464e-10 8.124280835e-10 7.759658924e-10 9.671608702e-10 4.52622361e-10 1.56726866e-10 5.251071735e-10 2.892624344e-10 5.761640248e-10 3.026232216e-10 6.225316433e-10 4.127938715e-10 3.551117916e-10 7.288752805e-10 5.097536386e-10 7.408090376e-10 7.53335523e-10 8.679300554e-10 6.800003862e-10 7.540708243e-10 7.742713522e-10 7.148670276e-10 6.836377567e-10 6.207593458e-10 3.783180352e-10 6.865093382e-10 8.603072588e-10 2.581203435e-10 7.841123576e-10 5.744091921e-10 5.989027053e-10 4.568203944e-10 5.901438094e-10 4.045946426e-10 1.053790021e-09 5.682460039e-10 4.64978572e-10 1.984106272e-10 6.219064761e-10 4.624033151e-10 4.542985638e-10 8.493250651e-10 6.265821497e-10 9.63500754e-10 1.101545704e-09 8.52283225e-10 9.918035865e-10 1.351190357e-09 1.770655868e-09 7.77904731e-10 8.225308567e-10 1.421921363e-09 1.043890064e-09 1.069656012e-09 7.951916149e-10 7.809602353e-10 1.017807275e-09 7.359545697e-10 8.725518629e-10 9.746120232e-10 9.747924604e-10 1.109691676e-09 1.145751542e-09 7.460923629e-10 9.668859238e-10 1.087587555e-09 8.212988729e-10 5.469603153e-10 6.809932793e-10 6.669999329e-10 3.039018728e-10 2.218333886e-10 5.095047036e-10 2.292473732e-10 5.263866968e-10 7.410055267e-10 5.095714788e-10 2.854976578e-10 7.663988784e-10 9.664253614e-10 1.251523765e-09 7.913980718e-10 1.505218227e-09 1.026926819e-09 2.316046824e-09 1.991988912e-09 1.648659827e-09 1.083482029e-09 6.881472345e-10 2.004443427e-09 1.468008946e-09 9.63018856e-10 7.732169867e-10 1.116294583e-09 1.555501164e-09 8.802270759e-10 1.942770523e-09 1.601978967e-09 1.269017312e-09 8.575452775e-10 1.169074859e-09 1.283779721e-09 1.483036624e-09 1.122364446e-09 1.638351701e-09 8.431477291e-10 1.477873195e-09 1.601465559e-09 8.359137986e-10 1.906935631e-09 2.56101829e-09 1.910544082e-09 1.640754534e-09 1.219463769e-09 9.717624108e-10 2.009514718e-09 1.776504796e-09 7.866552803e-10 1.246885584e-09 1.004439617e-09 1.224346656e-09 1.401622033e-09 1.708269578e-09 1.990605063e-09 1.541607468e-09 1.271275793e-09 1.49422234e-09 1.839571594e-09 1.876719209e-09 1.74888084e-09 1.852174487e-09 1.932492402e-09 1.159095449e-09 2.009528888e-09 1.733940379e-09 2.014527035e-09 1.446246762e-09 1.038676471e-09 1.190151681e-09 1.618961836e-09 6.582184203e-10 9.714612888e-10 8.341625186e-10 7.295012507e-10 5.863514618e-10 4.337978611e-10 2.69834137e-10 3.957042858e-10 4.152393953e-10 4.171292674e-10 6.366198255e-10 6.475398144e-10 7.569225263e-10 6.797280938e-10 4.611251173e-10 8.389283885e-10 9.553734803e-10 7.84580278e-10 1.027530169e-09 7.310965947e-10 9.030721707e-10 1.329175896e-09 1.023738054e-09 9.122723733e-10 8.415161308e-10 6.965426223e-10 8.823607767e-10 6.773368367e-10 8.599269797e-10 9.326671293e-10 1.059269325e-09 5.753814149e-10 1.02649827e-09 1.195285017e-09 1.235739569e-09 8.807929178e-10 5.500778968e-10 8.762355886e-10 8.543458457e-10 7.48094305e-10 4.564865582e-10 5.813867591e-10 7.145075962e-10 3.856710142e-10 2.850659223e-10 7.933426435e-10 8.653345893e-10 3.691907262e-10 4.158938063e-10 7.780226079e-10 3.537909769e-10 3.861678257e-10 9.840276383e-10 4.902824311e-10 3.948309221e-10 8.122642023e-10 2.386434018e-10 7.527956783e-10 4.553821412e-10 8.791064711e-10 5.34243242e-10 4.604658593e-10 9.429099393e-10 1.155244946e-09 9.93348819e-10 4.62068711e-10 6.704115726e-10 8.191211477e-10 1.152553252e-10 1.027206897e-09 6.553358854e-10 1.044606431e-09 4.744632388e-10 6.704337433e-10 4.971648298e-10 5.069877896e-10 7.924387685e-10 7.159386766e-10 3.651724564e-10 4.770998206e-10 4.050103668e-10 3.327063057e-10 5.007749931e-10 4.468498837e-10 8.809371162e-10 5.86281845e-10 4.239189134e-10 6.472807092e-10 9.482228477e-10 8.285814974e-10 3.463642064e-10 4.152145761e-10 6.260110431e-10 5.48761665e-10 5.512792615e-10 2.98525859e-10 4.950969089e-10 5.072826892e-10 9.197104325e-10 6.4301759e-10 5.575263898e-10 4.023242026e-10 5.251593371e-10 7.383648582e-10 4.149100288e-10 8.311862573e-10 1.023473467e-09 3.511400541e-10 5.084171881e-10 9.697598409e-10 5.284629636e-10 3.462987759e-10 8.105137109e-10 6.424821634e-10 4.909931675e-10 2.164574003e-10 5.618662143e-10 8.070520152e-10 5.042297144e-10 3.487530793e-10 +3.525024423e-10 1.086553097e-09 8.611829202e-10 7.208962578e-10 3.713181054e-10 6.961245884e-10 8.921386195e-10 4.222501734e-10 5.121155773e-10 7.426630881e-10 7.386465386e-10 7.162456853e-10 6.230531665e-10 4.954108643e-10 4.741225567e-10 4.602734523e-10 2.68713357e-10 8.671690331e-10 2.544615578e-10 8.409739532e-10 1.886774771e-10 9.360823401e-10 4.750121297e-10 2.896094841e-10 4.447899137e-10 7.216523967e-10 3.683882945e-10 6.424337192e-10 3.751988131e-10 4.29118677e-10 4.081067554e-10 4.713757703e-10 4.969763446e-10 9.977565049e-10 8.87150088e-10 6.855688494e-10 9.473702752e-10 5.325914392e-10 4.812000379e-10 7.283167504e-10 6.67637312e-10 9.784446847e-10 4.09518297e-10 7.825619041e-10 1.041847436e-09 9.360946291e-10 5.664264221e-10 8.403801181e-10 7.432934393e-10 4.342964271e-10 1.09889798e-09 8.558927446e-10 5.090363605e-10 5.425596294e-10 8.035247368e-10 9.33669153e-10 8.176332004e-10 7.148385134e-10 1.150016039e-09 6.878760225e-10 5.489398874e-10 6.185615672e-10 5.119971975e-10 4.260783015e-10 7.316877223e-10 6.572013914e-10 6.354529466e-10 6.752605643e-10 6.404721527e-10 4.767190066e-10 3.596208738e-10 9.539606803e-10 9.531139127e-10 9.394012732e-10 1.046490243e-09 4.94428842e-10 2.08011179e-10 9.071786953e-10 3.675540131e-10 5.106578481e-10 1.830958615e-10 1.034790895e-09 5.873563547e-10 8.223042706e-10 1.137338471e-09 1.820920451e-09 1.626489532e-09 7.181037302e-10 1.116648184e-09 5.53746673e-10 1.464573989e-09 8.598565478e-10 1.077023587e-09 8.023607867e-10 9.077573179e-10 6.490313412e-10 3.703532624e-10 1.246624621e-09 1.318996187e-09 1.07816867e-09 6.946696629e-10 1.125067708e-09 7.840798382e-10 1.025598391e-09 9.131088719e-10 1.067452849e-09 9.459082532e-10 9.541324185e-10 5.404496025e-10 5.959218454e-10 4.244171636e-10 1.343306335e-10 1.032194213e-10 1.731442501e-10 2.252433464e-10 6.530965909e-10 5.945790982e-10 7.966320212e-10 5.205683483e-10 5.905905963e-10 1.31050737e-09 1.229345518e-09 1.732187469e-09 1.458417055e-09 1.358126675e-09 1.927117329e-09 7.264730394e-10 1.012364687e-09 2.060595718e-09 1.873650401e-09 1.035346133e-09 1.089483544e-09 1.846304082e-09 1.618489688e-09 8.016710964e-10 1.729756381e-09 1.624694512e-09 8.467249791e-10 1.590033321e-09 1.473157227e-09 1.891194868e-09 1.824334688e-09 1.54659935e-09 9.058103957e-10 9.986047842e-10 1.255347165e-09 1.115187974e-09 1.302451298e-09 2.34076953e-09 5.396499077e-10 1.428368855e-09 1.378889277e-09 1.764783383e-09 1.12157634e-09 1.605944695e-09 2.138217264e-09 1.807294426e-09 1.702541014e-09 1.799683196e-09 1.540010478e-09 1.865712812e-09 1.794567249e-09 2.310626183e-09 9.614259049e-10 2.599414899e-09 1.620520236e-09 9.29083307e-10 1.464663814e-09 1.317809258e-09 1.187558104e-09 1.931319254e-09 1.202104742e-09 2.175104735e-09 1.771105129e-09 1.226877026e-09 1.172106384e-09 1.549163031e-09 1.818863575e-09 1.367378095e-09 1.156998944e-09 1.43511326e-09 2.856204532e-10 5.948912228e-10 5.439449404e-10 1.139202673e-10 3.180824918e-10 3.463794008e-10 5.027260542e-10 4.030184962e-10 2.886215779e-10 9.906988013e-10 4.116285021e-10 6.922969292e-10 3.828476691e-10 5.028350464e-10 6.525872512e-10 8.075870611e-10 8.933871379e-10 4.095863697e-10 1.125323914e-09 1.002737161e-09 9.976941314e-10 7.107900603e-10 1.085302321e-09 1.306213681e-09 6.939470945e-10 3.866936294e-10 6.191075324e-10 9.969329628e-10 9.679568763e-10 9.965103477e-10 8.686397616e-10 1.463856006e-09 7.823427234e-10 9.838254338e-10 6.347726155e-10 6.547665608e-10 9.134335554e-10 6.829124904e-10 3.552456338e-10 8.448811518e-10 1.958395393e-10 5.899358873e-10 3.213804866e-10 7.022623534e-10 3.942359732e-10 3.734761336e-10 2.200824906e-10 8.947439438e-10 1.120441834e-09 9.033827302e-10 7.765662343e-10 9.656872242e-10 2.985125925e-10 5.58498085e-10 2.325707399e-10 5.823378253e-10 8.368390929e-10 8.016944791e-10 4.12926488e-10 6.875233473e-10 5.071787297e-10 9.61105423e-10 3.138438781e-10 1.004709451e-09 6.46891231e-10 6.802773617e-10 5.113746732e-10 1.222714005e-09 5.443732678e-10 6.722314116e-10 5.146071345e-10 2.497592084e-10 7.31879526e-10 2.927502231e-10 2.607210118e-10 3.999497285e-10 5.898172102e-10 5.802840096e-10 4.953508851e-10 1.013483949e-09 4.363816232e-10 7.194954293e-10 5.405325287e-10 5.308233152e-10 4.243107779e-10 7.626149623e-10 5.466073728e-10 8.791027881e-10 4.747138712e-10 4.406717677e-10 8.342419551e-10 4.348611395e-10 2.753510073e-10 5.488004087e-10 2.528100487e-10 3.030172588e-10 3.984341265e-10 6.68419541e-10 7.755880033e-10 2.762048044e-10 1.363328897e-09 1.136329271e-09 7.576322593e-10 2.677322081e-10 1.78973979e-10 3.076258887e-10 6.712899629e-10 2.182354208e-10 6.969974021e-10 5.455019505e-10 4.795074016e-10 7.44632869e-10 6.696787355e-10 4.444505183e-10 6.59272122e-10 1.155018514e-09 1.080329991e-09 4.509346454e-10 7.81283291e-10 +5.793092595e-10 7.524001996e-10 4.03690344e-10 4.985389368e-10 4.649525632e-10 1.070859202e-09 5.74159301e-10 7.882720786e-10 8.546181247e-10 5.192770951e-10 8.891411012e-10 2.522339329e-10 3.159797245e-10 5.208257313e-10 5.13572749e-10 4.10886508e-10 2.670755417e-10 6.917707377e-10 3.108591412e-10 3.043809002e-10 6.002309124e-10 9.643256398e-10 6.050341352e-10 8.919666844e-10 1.866507666e-10 2.948523968e-10 6.213403311e-10 3.943691287e-10 3.546540042e-10 1.039268755e-09 5.088624256e-10 5.603500962e-10 1.64768158e-10 4.658397731e-10 4.100898937e-10 9.333985084e-10 7.584662178e-10 5.664432254e-10 3.973404517e-10 5.120905702e-10 5.781515614e-10 4.969812507e-10 9.525854478e-10 3.454431733e-10 5.397819432e-10 4.179886262e-10 6.924462817e-10 3.158168531e-10 5.849920046e-10 3.297219922e-10 6.318057845e-10 4.307016199e-10 6.300552852e-10 9.274696242e-10 5.443369492e-10 2.907598082e-10 7.902874801e-10 4.441861262e-10 4.466732981e-10 3.612807906e-10 8.755852895e-10 4.557615565e-10 6.390074733e-10 5.764967082e-10 4.853797395e-10 6.127508166e-10 8.581028792e-10 6.958861738e-10 1.005254626e-09 9.206152259e-10 7.772409167e-10 2.820528423e-10 8.136108052e-10 6.216267677e-10 6.951309812e-10 6.073563076e-10 6.290361807e-10 3.976358468e-10 8.081620001e-10 3.734053264e-10 4.495392924e-10 5.491240116e-10 1.314421255e-09 9.386197653e-10 6.534933911e-10 1.696017371e-09 1.368875737e-09 1.396999716e-09 6.96182051e-10 5.858828023e-10 1.537686459e-09 4.011189627e-10 9.187434468e-10 1.332826288e-09 5.582749941e-10 5.672674207e-10 7.209407669e-10 8.793798352e-10 1.223300432e-09 1.174568206e-09 6.255524632e-10 8.621653531e-10 6.630550093e-10 6.49158298e-10 4.42630153e-10 8.283025486e-10 7.167649908e-10 5.491759318e-10 1.045216691e-09 6.031814877e-10 4.784097891e-10 2.201202973e-10 3.175583271e-10 3.38455441e-10 3.200984378e-10 4.104346633e-10 2.277842919e-10 6.31983603e-10 5.653626156e-10 4.893773478e-10 1.028360168e-09 1.710649422e-09 1.199337328e-09 1.443686225e-09 1.33341264e-09 2.093842804e-09 2.266144698e-09 1.159101876e-09 1.329366892e-09 1.673401619e-09 1.883292911e-09 1.05629982e-09 1.363244702e-09 1.438519733e-09 1.454062082e-09 7.147249138e-10 1.390616971e-09 1.426320737e-09 1.079676378e-09 7.737059198e-10 1.961670542e-09 7.616432877e-10 7.724034155e-10 1.064801275e-09 9.129090734e-10 7.822646014e-10 8.716995647e-10 1.089498643e-09 1.681422449e-09 2.037929588e-09 1.088173577e-09 1.574665047e-09 1.285472845e-09 1.581015758e-09 6.850508618e-10 1.348578601e-09 8.127569955e-10 9.170164585e-10 6.978324899e-10 9.93879046e-10 9.055020716e-10 1.801658321e-09 1.577727768e-09 9.009789182e-10 1.450422303e-09 1.285889448e-09 1.162771155e-09 1.751092168e-09 9.546354484e-10 1.310312691e-09 2.037603151e-09 2.316803716e-09 9.743836028e-10 1.513298256e-09 1.016262235e-09 2.160189513e-09 9.035281433e-10 1.61168567e-09 1.103242397e-09 5.074635739e-10 4.765532364e-10 2.9092149e-10 6.286518178e-10 3.439451045e-10 3.523465896e-10 2.317336142e-10 5.275055613e-10 2.713576107e-10 2.379247233e-10 4.311981793e-10 1.152401126e-10 3.798617025e-10 1.201466084e-09 7.478795941e-10 6.747962433e-10 9.751680782e-10 7.915663463e-10 7.980867161e-10 4.756333443e-10 1.149665483e-09 1.087213689e-09 8.724665858e-10 7.371364669e-10 1.041030293e-09 8.119465011e-10 3.058846562e-10 1.213642933e-09 8.842701594e-10 5.884858704e-10 1.391109089e-09 1.737329514e-09 9.419346338e-10 1.134795766e-09 1.136916284e-09 1.291431171e-09 8.384300513e-10 2.837576438e-10 4.001343241e-10 6.84662749e-10 3.86948997e-10 5.190129088e-10 4.382226259e-10 7.256779636e-10 5.577738404e-10 6.497035492e-10 4.723896712e-10 6.453436364e-10 2.822764389e-10 9.011981521e-10 4.933155424e-10 6.07720064e-10 4.912418614e-10 7.253808284e-10 7.455926474e-10 4.43279638e-10 3.496837965e-10 6.800106097e-10 4.486533218e-10 2.920370669e-10 4.518278062e-10 1.135346183e-09 8.258756985e-10 7.063894035e-10 5.268076448e-10 9.524533166e-10 4.029456272e-10 7.002460741e-10 4.445587631e-10 5.99778928e-10 2.650759663e-10 5.099569629e-10 2.544783892e-10 4.325676812e-10 1.254007515e-09 3.9960122e-10 5.231115948e-10 4.713248468e-10 6.188724124e-10 4.256686524e-10 5.680629845e-10 7.904476098e-10 3.18611481e-10 5.099437922e-10 5.427455645e-10 5.256486873e-10 4.464517172e-10 1.067032332e-09 2.926846825e-10 8.030448415e-10 4.701719138e-10 9.400607492e-10 2.99093518e-10 4.359000148e-10 3.022179038e-10 4.961494246e-10 4.913807816e-10 3.659851571e-10 9.271371281e-10 7.535681068e-10 6.936452537e-10 6.754575214e-10 5.552392164e-10 6.716078473e-10 3.881796625e-10 9.475750972e-10 7.732861488e-10 4.403973278e-10 4.561816752e-10 1.049504955e-09 8.35860427e-10 8.350181369e-10 3.078608316e-10 7.716974637e-10 5.050064464e-10 7.017438425e-10 3.623380489e-10 7.433390783e-10 7.62392327e-10 6.4721307e-10 3.181762256e-10 +3.079948437e-10 6.23787815e-10 7.221779351e-10 8.320098529e-10 1.062459132e-09 3.468034678e-10 4.469528919e-10 3.84857248e-10 5.44313248e-10 6.367910486e-10 3.742628823e-10 7.244305915e-10 4.925974758e-10 4.892500523e-10 5.548480813e-10 3.143582975e-10 4.87761281e-10 2.486608919e-10 2.847263522e-10 4.748373996e-10 3.919673753e-10 4.801464482e-10 3.764862416e-10 4.484249325e-10 1.088699382e-09 3.865427612e-10 3.114921003e-10 7.709046666e-10 1.018858684e-09 1.002918115e-09 7.786445501e-10 5.670905777e-10 8.347537707e-10 5.689185076e-10 1.262652634e-10 8.339408427e-10 8.918238807e-10 8.555644307e-10 5.769626829e-10 6.382885679e-10 7.164495047e-10 4.598480982e-10 4.292987202e-10 7.017287571e-10 4.285119044e-10 3.006974729e-10 8.117319782e-10 4.125559495e-10 7.875330804e-10 4.184172356e-10 4.011888208e-10 5.978347551e-10 6.704683376e-10 6.694477938e-10 8.26542278e-10 6.661812083e-10 7.577738032e-10 6.764962592e-10 3.099807403e-10 7.448870987e-10 5.338179097e-10 6.663586068e-10 1.119525488e-09 2.160788778e-10 3.22534989e-10 2.131604978e-10 6.429050912e-10 8.811769351e-10 6.680803554e-10 4.840061501e-10 4.813121557e-10 6.692272905e-10 4.562422774e-10 4.576140615e-10 6.25652725e-11 1.839256829e-10 3.743467107e-10 4.870945502e-10 7.685662906e-10 1.487885976e-10 9.020407161e-10 6.81494597e-10 1.062353626e-09 1.122106767e-09 1.05336103e-10 9.733750922e-10 1.171627462e-09 7.154825661e-10 8.289636105e-10 1.083114167e-09 1.072894406e-09 9.157866025e-10 9.676601645e-10 8.39024593e-10 6.668702037e-10 1.117881939e-09 7.581347813e-10 9.06547834e-10 7.332552129e-10 1.170949948e-09 4.28743714e-10 9.700351577e-10 6.251185652e-10 6.234557236e-10 9.173171971e-10 6.144380573e-10 1.153989604e-09 1.097863559e-09 5.847463545e-10 3.775674944e-10 3.997640884e-10 6.532624838e-10 2.523744328e-10 2.884430129e-10 6.597349854e-10 1.921891555e-10 5.946446621e-10 3.817744466e-10 2.211765339e-10 7.308683064e-10 7.594011057e-10 2.913186869e-10 1.287463081e-09 1.048352195e-09 1.388904111e-09 1.951544247e-09 1.146259758e-09 2.080576835e-09 2.012641542e-09 1.59628202e-09 2.027149311e-09 1.136331463e-09 1.013726323e-09 1.387977382e-09 1.897985847e-09 1.195389983e-09 2.208129538e-09 1.519529488e-09 7.514628063e-10 1.193999883e-09 1.100589957e-09 1.255110741e-09 1.068658893e-09 1.162751278e-09 9.991451719e-10 1.519781435e-09 8.633069411e-10 1.481494792e-09 1.135850445e-09 1.504648011e-09 1.18710956e-09 1.43644571e-09 6.414509487e-10 7.975019834e-10 1.749408154e-09 1.4319216e-09 1.62019861e-09 1.106809608e-09 9.347152258e-10 1.403436376e-09 1.726878334e-09 1.451520888e-09 1.294424049e-09 5.812343707e-10 1.6277678e-09 2.077180597e-09 1.886858542e-09 2.127698693e-09 6.206262297e-10 1.186282401e-09 2.122872466e-09 1.062651603e-09 1.642776267e-09 1.067758996e-09 1.599851719e-09 9.397326567e-10 1.338706924e-09 8.172269603e-10 8.263723961e-10 5.158760096e-10 6.320782341e-10 5.234418705e-10 6.123890199e-10 4.095846197e-10 5.319748232e-10 1.5788581e-10 2.354090958e-10 2.422846044e-10 6.379454132e-10 1.97805618e-10 4.701505271e-10 8.332317048e-10 7.749309997e-10 3.043088562e-10 1.041020747e-09 7.111021628e-10 1.165060101e-09 7.621623694e-10 3.437320329e-10 9.269715881e-10 1.044071805e-09 9.356157783e-10 1.181571415e-09 1.110522075e-09 7.803234905e-10 1.510970573e-09 8.687152135e-10 1.380308341e-09 1.122635665e-09 1.04893893e-09 7.830685015e-10 9.864202772e-10 1.360315368e-09 1.30095649e-09 1.063315823e-09 1.712669777e-09 5.724048036e-10 8.51221781e-10 4.917627524e-10 1.051356538e-09 8.265916982e-10 5.303789246e-10 2.862571978e-10 7.262007399e-10 2.738199925e-10 6.063207307e-10 9.73237147e-10 5.513503194e-10 7.852079856e-10 7.509012079e-10 5.724863266e-10 9.988016468e-10 6.452812261e-10 7.176809795e-10 8.466455783e-10 5.643090966e-10 9.285245345e-10 7.987683182e-10 7.457379121e-10 6.059404958e-10 8.019162e-10 9.342672277e-10 7.318678704e-10 8.351206267e-10 6.595896118e-10 1.013446814e-09 4.256144927e-10 4.107388909e-10 3.478679871e-10 5.632028312e-10 4.803861565e-10 5.589200922e-10 3.212017911e-10 3.262738484e-10 4.833117623e-10 2.712408814e-10 8.38773836e-10 7.634198869e-10 3.101956881e-10 3.22878902e-10 1.035315458e-09 5.642267006e-10 3.704739262e-10 2.867465841e-10 6.58200614e-10 5.353457191e-10 3.315453603e-10 6.542822364e-10 6.535747969e-10 9.321095046e-10 7.813916134e-10 5.937185199e-10 4.56212365e-10 4.076427961e-10 9.993995306e-10 3.094422105e-10 4.388518722e-10 8.396251119e-10 1.723094831e-09 4.254079811e-10 3.530035583e-10 5.4825023e-10 5.08597131e-10 7.016915008e-10 5.648180214e-10 2.380969477e-10 3.193444722e-10 8.263902445e-10 1.096403855e-09 6.835441575e-10 7.557818612e-10 6.514780256e-10 6.157643536e-10 2.581992936e-10 6.345451789e-10 1.011786058e-09 8.618610213e-10 1.117043213e-10 4.571829943e-10 7.760119865e-10 +9.657781977e-10 7.228301399e-10 5.347626688e-10 7.558499168e-10 3.807172227e-10 3.422152402e-10 6.325916728e-10 9.532700677e-10 6.962190904e-10 8.004295503e-10 4.916112143e-10 5.255185203e-10 4.327089832e-10 9.169713358e-10 8.024195862e-10 3.39682501e-10 4.098587843e-10 3.833591099e-10 6.871098081e-10 6.331159602e-10 1.161364372e-09 6.825989467e-10 4.377944144e-10 5.393973966e-10 2.488847744e-10 5.856290894e-10 4.395576815e-10 4.707532771e-10 4.245878619e-10 9.864136736e-10 5.726621109e-10 4.49342526e-10 4.858532847e-10 6.094491046e-10 7.130981292e-10 1.265832327e-10 6.576735846e-10 6.127177932e-10 5.496605846e-10 2.724420582e-10 9.568667301e-10 3.85148861e-10 5.729260889e-10 4.423469715e-10 5.399059165e-10 2.953593585e-10 5.679722641e-10 6.667540451e-10 6.447673947e-10 2.246292864e-10 2.939189418e-10 4.445945635e-10 6.091436756e-10 3.201157507e-10 7.366422165e-10 5.928325272e-10 6.145198116e-10 6.805421268e-10 5.00684972e-10 5.704089657e-10 6.394987072e-10 3.463058417e-10 1.190562358e-09 6.195631175e-10 3.168951452e-10 6.937366971e-10 9.056597781e-10 8.043868347e-10 6.53437749e-10 9.058681292e-10 1.070713768e-09 4.129535773e-10 5.506235638e-10 1.165292865e-09 3.4291291e-10 6.741360937e-10 3.740913e-10 3.968318944e-10 4.555243835e-10 3.303515868e-10 3.977741082e-10 6.277922e-10 9.79400641e-10 1.050908173e-09 6.848674964e-10 1.203046121e-09 9.61976369e-10 1.561669952e-09 8.378401513e-10 1.427210471e-09 7.56063398e-10 9.222586799e-10 1.755575305e-09 1.072848967e-09 5.576469306e-10 7.050711028e-10 1.275826996e-09 8.714085673e-10 1.249606468e-09 6.669008464e-10 7.638362729e-10 8.855682e-10 6.849917381e-10 5.624707872e-10 8.328178153e-10 9.128955991e-10 9.354338312e-10 6.972820518e-10 5.167683823e-10 2.811951852e-10 2.517303857e-10 2.750489864e-10 4.442868976e-10 7.272812033e-11 2.076456604e-10 4.020936674e-10 5.801190955e-10 5.238799492e-10 6.747302258e-10 5.193777017e-10 7.330900943e-10 9.720291701e-10 6.090415123e-10 6.381043026e-10 1.995377296e-09 1.330968487e-09 1.479746988e-09 2.771152003e-09 1.424507722e-09 1.319678568e-09 9.395174638e-10 1.026512597e-09 1.333669774e-09 1.295508081e-09 6.990402809e-10 1.321934133e-09 1.347445096e-09 1.39601455e-09 1.589387773e-09 1.182412191e-09 1.247373469e-09 7.691345722e-10 1.317538773e-09 1.761445198e-09 1.065538938e-09 1.400304562e-09 1.574099895e-09 7.518854348e-10 2.771190414e-09 1.522585463e-09 1.801903377e-09 1.352391562e-09 1.455738015e-09 1.033556872e-09 1.827843568e-09 1.188959939e-09 7.993377293e-10 2.441513109e-09 1.549765145e-09 1.435369161e-09 9.215363311e-10 1.178650519e-09 1.806413177e-09 8.837576458e-10 1.665015302e-09 1.710564881e-09 2.176114868e-09 1.556542883e-09 2.030530809e-09 7.517139719e-10 1.157856628e-09 1.248157287e-09 2.198844754e-09 9.796890117e-10 1.908439543e-09 1.261982851e-09 5.984619038e-10 9.100317181e-10 4.7005309e-10 4.623074997e-10 4.394004217e-10 3.006938614e-10 6.330355248e-10 6.230737097e-10 2.358885023e-10 1.324788492e-10 8.303196922e-10 3.383932912e-10 2.117157931e-10 6.270440765e-10 5.153138964e-10 1.110976806e-09 3.69939191e-10 9.829710552e-10 1.10856512e-09 6.484029115e-10 8.224083537e-10 1.095541074e-09 3.778300055e-10 7.700649769e-10 7.943100544e-10 1.166856177e-09 8.525087863e-10 7.202950759e-10 8.473456214e-10 9.783024795e-10 1.906442054e-09 1.275631269e-09 1.470279146e-09 4.458280321e-10 1.004656151e-09 1.301361095e-09 1.296379958e-09 1.194613826e-09 1.262842031e-09 9.165623785e-10 9.870811351e-10 8.755709039e-10 4.336437685e-10 2.393449707e-10 6.72294535e-10 7.770386586e-10 4.217678268e-10 6.24566596e-10 3.998083715e-10 3.060502688e-10 1.087562383e-09 2.868273908e-10 4.479831176e-10 7.534302158e-10 4.032667128e-10 4.766851501e-10 7.532852806e-10 7.006107101e-10 7.375729092e-10 4.591320364e-10 1.15912191e-09 7.788107345e-10 4.391707139e-10 8.422616684e-10 3.160610227e-10 4.858716763e-10 4.935663367e-10 8.414010081e-10 5.270413926e-10 2.306592102e-10 7.530279447e-10 5.214190352e-10 5.363530748e-10 3.19770316e-10 6.148792927e-10 5.865675563e-10 1.63794482e-10 7.428093248e-10 1.865389293e-10 5.04369799e-10 3.401982867e-10 5.498317167e-10 7.312541072e-10 1.286338099e-09 5.197640772e-10 4.019060321e-10 5.460465714e-10 5.966483711e-10 5.197145032e-10 1.048823666e-09 6.047077631e-10 4.366458635e-10 4.170685997e-10 7.049724374e-10 6.459410964e-10 7.425733928e-10 1.09149223e-09 4.968114428e-10 1.01774994e-09 4.096165406e-10 6.282333223e-10 3.325547517e-10 4.692197533e-10 1.277235914e-09 9.834925839e-10 7.345348391e-10 6.917927303e-10 2.158652602e-10 6.144066297e-10 5.789272741e-10 3.793020898e-10 4.620278755e-10 6.404809979e-10 4.522785173e-10 3.613055261e-10 6.287505619e-10 5.401552767e-10 5.277448392e-10 7.446377041e-10 7.295621067e-10 4.834913214e-10 2.567998463e-10 8.960656734e-10 6.202871022e-10 +3.542990728e-10 1.252422529e-09 7.58217886e-10 4.364852043e-10 5.874888567e-10 3.253576544e-10 4.30873227e-10 5.540197228e-10 8.14969382e-10 3.265468296e-10 6.757651705e-10 4.722545003e-10 1.076004011e-09 6.242221185e-10 8.024978246e-10 4.481182756e-10 7.653551597e-10 7.786067533e-10 5.39769518e-10 5.744244424e-10 6.556443237e-10 7.492943582e-10 5.862690008e-10 6.045292502e-10 2.709722254e-10 2.930249571e-10 6.761895787e-10 7.509194966e-10 3.404705468e-10 3.291555223e-10 2.675178469e-10 9.450239739e-10 4.503837318e-10 4.685312664e-10 3.381557011e-10 4.305392705e-10 7.382322419e-10 3.138438593e-10 6.861692721e-10 2.660209235e-10 5.809886986e-10 5.441934634e-10 4.483759788e-10 4.069504492e-10 6.104007736e-10 6.378084809e-10 4.750590251e-10 4.450889705e-10 6.827329286e-10 2.564291707e-10 3.753936555e-10 6.506216775e-10 5.770314827e-10 4.871028918e-10 4.913114395e-10 5.381144651e-10 2.464670013e-10 5.570927401e-10 4.920273563e-10 5.848335242e-10 7.668691133e-10 5.848074902e-10 8.420683864e-10 3.756407887e-10 4.276429542e-10 7.559424878e-10 8.940084319e-10 6.704903388e-10 5.890864558e-10 1.249574032e-09 5.617710093e-10 3.228512613e-10 6.894253903e-10 3.268636919e-10 7.581516013e-10 5.075016116e-10 8.074509241e-10 4.346091754e-10 7.655808366e-10 4.643620675e-10 9.25214793e-10 6.561995679e-10 8.006646687e-10 7.333600188e-10 3.872394972e-10 1.006189095e-09 7.093637891e-10 6.200238939e-10 1.027979422e-09 1.336612664e-09 1.983219879e-09 7.881705324e-10 5.515101112e-10 1.453194773e-09 1.116125379e-09 1.648139067e-09 9.680607737e-10 1.465972012e-09 6.273682005e-10 6.354766362e-10 9.402102884e-10 8.261723605e-10 8.883108664e-10 5.992607594e-10 8.824987485e-10 3.562356357e-10 1.601364325e-09 8.161593652e-10 9.04782211e-10 5.234147021e-10 4.079978584e-10 3.757784565e-10 6.733325204e-11 6.588322306e-10 2.932520301e-10 3.920509069e-10 2.960118079e-10 6.736595731e-10 4.28513414e-10 6.439786177e-10 4.770063491e-10 6.049752509e-10 5.569560439e-10 7.121865254e-10 6.340897877e-10 1.408781606e-09 5.60601633e-10 9.720947245e-10 1.81411271e-09 2.185703906e-09 1.568624083e-09 1.847365522e-09 8.951829444e-10 1.151963529e-09 1.738412832e-09 7.676772634e-10 1.244356102e-09 6.04926738e-10 1.176898346e-09 1.01960572e-09 7.859188725e-10 9.900799272e-10 1.579876376e-09 9.274107856e-10 1.163258084e-09 1.713217816e-09 1.31519174e-09 9.979992865e-10 9.5272611e-10 1.384204589e-09 1.377159792e-09 2.833802326e-10 1.025604973e-09 1.188875651e-09 1.938833571e-09 1.369090747e-09 1.72181142e-09 8.523210471e-10 1.474198728e-09 1.003489951e-09 7.809559707e-10 1.381226091e-09 2.377410505e-10 1.140236782e-09 1.840426185e-09 2.38729296e-09 1.51033452e-09 1.391167005e-09 1.183349908e-09 1.654820545e-09 1.07470539e-09 1.080555009e-09 1.298260671e-09 7.787884198e-10 8.069378766e-10 5.072374599e-10 7.613022839e-10 4.394764829e-10 8.505242333e-10 3.668560834e-10 6.090555792e-10 1.683306256e-10 3.535770331e-10 2.023533798e-10 2.695264082e-10 2.227670996e-10 2.23446056e-10 4.953984923e-10 3.942688508e-10 2.112503815e-10 5.994936886e-10 6.969386811e-10 5.907862993e-10 1.104431642e-09 3.361147034e-10 7.735808623e-10 5.390392194e-10 7.687147797e-10 9.376155029e-10 9.226795727e-10 8.557922125e-10 4.654476338e-10 6.705815465e-10 5.280822198e-10 1.203313354e-09 1.277462951e-09 6.490312504e-10 1.21351804e-09 1.112097675e-09 8.46118436e-10 1.654500447e-09 1.111075873e-09 1.097308764e-09 1.383673081e-09 1.286628485e-09 8.475326454e-10 1.100249828e-09 1.220793007e-09 5.958625502e-10 4.18755164e-10 7.507696736e-10 4.2921236e-10 8.005082442e-10 9.252710758e-10 4.686377498e-10 6.560699771e-10 4.151640737e-10 5.648767433e-10 6.03389552e-10 8.221790202e-10 1.020851769e-09 4.008307966e-10 4.968554625e-10 4.045912769e-10 4.806300048e-10 5.963821218e-10 5.071254673e-10 6.606997992e-10 1.002981644e-09 8.625800976e-10 3.282532189e-10 4.545810747e-10 3.656821303e-10 5.25756278e-10 4.970566935e-10 6.743230115e-10 4.033815449e-10 2.717964368e-10 3.437403081e-10 2.952038074e-10 8.906578274e-10 4.351090569e-10 4.835485692e-10 8.819503641e-10 3.987625789e-10 4.167294293e-10 2.0014707e-10 9.32300305e-10 4.804202666e-10 5.959294798e-10 7.470426986e-10 4.144562133e-10 6.734810439e-10 2.341284249e-10 1.066239747e-09 8.533589558e-10 4.689716988e-10 7.5789538e-10 5.697943933e-10 5.446921118e-10 5.16872397e-10 4.202569662e-10 7.259655036e-10 9.330862478e-10 5.847013563e-10 7.099144681e-10 3.809163505e-10 1.287248549e-09 4.971788401e-10 8.15339887e-10 4.265907173e-10 6.07077345e-10 5.699922418e-10 6.141259016e-10 3.294494741e-10 6.165546791e-10 8.355453499e-10 1.711896317e-10 5.900949042e-10 4.424008991e-10 6.121687189e-10 4.531654799e-10 4.231128168e-10 1.110654898e-09 3.151744132e-10 3.145278813e-10 3.513476535e-10 3.424587952e-10 4.163545174e-10 1.096369275e-09 +5.363963741e-10 9.808746983e-10 4.485110876e-10 6.180812129e-10 7.118657001e-10 2.235381851e-10 3.332452146e-10 5.251809264e-10 6.68303929e-10 7.186082842e-10 5.546758236e-10 4.606152409e-10 3.431778688e-10 5.727056529e-10 5.212478575e-10 4.411130595e-10 3.848615887e-10 7.973781101e-10 7.332877946e-10 4.58299181e-10 5.571429163e-10 3.045950896e-10 8.228899988e-10 3.761275131e-10 1.319780771e-10 3.94526973e-10 7.375590194e-10 5.481163545e-10 4.326978938e-10 2.350779198e-10 6.941028099e-10 9.429042129e-10 6.704903186e-10 6.96204651e-10 7.773126335e-10 6.132024892e-10 7.064283329e-10 6.570088059e-10 5.477848123e-10 3.06846322e-10 5.183113361e-10 2.641343343e-10 4.837228951e-10 9.911820165e-10 4.025737499e-10 4.454241168e-10 4.423145566e-10 5.138952674e-10 3.46006365e-10 3.043400183e-10 5.869692589e-10 7.492710059e-10 4.966985529e-10 6.013123976e-10 4.880599977e-10 3.546209557e-10 8.009146758e-10 4.148353641e-10 1.017428771e-09 9.922295966e-10 7.093264348e-10 2.669836857e-10 4.591156324e-10 2.698582975e-10 6.142941442e-10 9.376432262e-10 6.998811948e-10 4.287402708e-10 3.537865285e-10 7.716742696e-10 5.236012718e-10 7.115973541e-10 6.254343833e-10 4.438488246e-10 4.255103253e-10 2.200743247e-10 4.021505044e-10 4.485909663e-10 6.328658367e-10 6.473334405e-10 8.92025938e-10 7.710679314e-10 1.072501908e-09 1.048701371e-09 7.9541992e-10 1.185678765e-09 1.244434342e-09 9.065397483e-10 7.555968068e-10 6.203010214e-10 7.963589546e-10 1.050916554e-09 1.457655503e-09 1.040633503e-09 1.311068943e-09 5.224211511e-10 5.961732461e-10 6.406910051e-10 9.354324672e-10 9.218147032e-10 7.506586319e-10 1.411582463e-09 6.051117063e-10 9.593754123e-10 6.16046032e-10 6.723636292e-10 8.786779438e-10 4.709846948e-10 1.549867924e-10 8.86072065e-10 5.854772747e-10 6.304753421e-10 4.673888465e-10 4.735040869e-10 3.421423881e-10 5.191628019e-10 1.414156348e-10 2.403859472e-10 2.208417169e-10 5.066312083e-10 5.317880948e-10 5.734452943e-10 6.211555467e-10 4.897444396e-10 4.525624619e-10 1.321674879e-09 9.60778739e-10 1.132773166e-09 1.542218371e-09 1.326904663e-09 1.159474455e-09 1.837417225e-09 1.269788708e-09 1.217716187e-09 1.165489392e-09 8.967658895e-10 1.34784908e-09 9.105769498e-10 1.069747542e-09 6.832944787e-10 1.115249814e-09 1.843726265e-09 1.097417188e-09 8.769613811e-10 1.170047881e-09 1.039972196e-09 4.940253368e-10 1.858346596e-09 2.016859165e-09 8.630977885e-10 1.466546687e-09 1.016887891e-09 4.073108385e-10 2.179764177e-09 1.617764697e-09 1.805687344e-09 1.126672871e-09 1.018972949e-09 1.632919914e-09 1.563482864e-09 9.035571703e-10 2.460109334e-09 1.023613367e-09 9.737756345e-10 1.572548033e-09 1.718525309e-09 1.274711587e-09 1.61775274e-09 1.516478486e-09 1.558319246e-09 1.230585637e-09 1.475891731e-09 1.139954608e-09 1.264238288e-09 9.713487354e-10 6.28562723e-10 2.803089426e-10 4.202797249e-10 3.919521708e-10 5.077676012e-10 2.900663264e-10 9.428398548e-11 3.074611186e-10 1.928800266e-10 3.665943857e-10 3.790932275e-10 5.748244022e-10 3.375411508e-10 7.29450502e-10 6.189144031e-10 6.012572358e-10 9.112182795e-10 7.080426559e-10 5.88123738e-10 1.01762721e-09 9.751208852e-10 5.443973048e-10 6.918106805e-10 7.086007828e-10 7.197317784e-10 1.457123531e-09 9.937969921e-10 7.552262537e-10 1.001617807e-09 9.404208194e-10 7.466799097e-10 7.752069294e-10 7.307259273e-10 8.284876602e-10 9.540992612e-10 1.25128564e-09 1.067396636e-09 7.689364414e-10 1.418828989e-09 7.299172892e-10 7.743543556e-10 1.329950135e-09 1.083789861e-09 4.513071723e-10 4.263726126e-10 3.563778886e-10 5.600596631e-10 2.246007576e-10 7.073869139e-10 4.201405057e-10 4.520476055e-10 3.292465565e-10 7.497890999e-10 4.109725219e-10 9.387756796e-10 9.114772888e-10 3.294672236e-10 4.114149493e-10 2.623848386e-10 7.397473761e-10 9.438413369e-10 8.428683994e-10 2.729672543e-10 9.653296456e-10 7.002417349e-10 2.802508317e-10 5.556608253e-10 7.101380644e-10 6.334631095e-10 4.26005267e-10 5.855394017e-10 7.617368148e-10 6.631079702e-10 3.495621993e-10 4.35415555e-10 4.107393616e-10 1.076978838e-10 9.682968952e-10 7.802322382e-10 7.895903415e-10 6.52216778e-10 3.751861052e-10 8.75845235e-11 6.89510626e-10 5.945779977e-10 3.59766756e-10 9.152186549e-10 7.879260003e-10 2.465490923e-10 4.757203682e-10 3.596908716e-10 4.289850422e-10 2.402336269e-10 4.285138868e-10 7.314161558e-10 1.323881449e-09 3.929175606e-10 7.776592667e-10 5.463766845e-10 5.888668999e-10 1.510654044e-10 9.76026959e-10 6.310623739e-10 4.87277431e-10 9.056182218e-10 6.707332859e-10 5.414780297e-10 4.761101004e-10 4.947902252e-10 6.107846667e-10 4.552620582e-10 1.760497377e-10 8.99670383e-10 3.562704625e-10 8.759002728e-10 9.198850914e-10 3.3459524e-10 3.8848317e-10 9.695794736e-10 6.175137756e-10 8.089422997e-10 1.080532284e-09 7.714617601e-10 8.051739741e-10 4.935189878e-10 +7.173979425e-10 4.912373912e-10 4.717872635e-10 6.095880916e-10 6.888859771e-10 5.165509637e-10 4.296390659e-10 5.962440414e-10 7.663128153e-10 1.975770547e-10 1.524096788e-10 6.313581301e-10 3.19030004e-10 1.449996764e-09 4.812622341e-10 4.133517134e-10 6.784202538e-10 2.974324692e-10 2.776207637e-10 5.604866532e-10 5.008151971e-10 4.264377598e-10 3.476520422e-10 4.307384342e-10 6.769426351e-10 5.248899355e-10 6.832676855e-10 1.72357573e-10 6.031000533e-10 3.526284901e-10 8.565961314e-10 6.195174608e-10 1.330623895e-09 3.878687831e-10 5.747448248e-10 5.166215085e-10 4.386747045e-10 5.512004143e-10 4.271878276e-10 7.310212967e-10 3.64014021e-10 4.065429778e-10 2.383682232e-10 5.214856594e-10 8.37836097e-10 3.631057304e-10 3.58656256e-10 4.532407421e-10 2.526488213e-10 1.493915391e-10 7.512752031e-10 7.043605637e-10 6.045478414e-10 9.371798027e-10 4.576700334e-10 6.9248184e-10 2.683028563e-10 6.421872454e-10 3.606779981e-10 8.25357318e-10 9.295590742e-10 8.845100021e-10 4.343996237e-10 7.691758631e-10 5.623971512e-10 1.091738385e-09 7.783512082e-10 7.207833404e-10 8.370539107e-10 1.023964427e-09 7.466439931e-10 3.581008998e-10 9.128388758e-10 4.123847125e-10 5.354083082e-10 3.547455903e-10 7.214609887e-10 7.929243614e-10 5.975455976e-10 3.385711711e-10 8.045540669e-10 1.916564305e-10 6.944220622e-10 1.063795814e-09 7.720083385e-10 9.379272491e-10 8.016666728e-10 1.368519325e-09 1.312072938e-09 1.277099021e-09 5.374776886e-10 6.99759129e-10 6.702683008e-10 1.012435474e-09 5.134131145e-10 7.821344146e-10 6.541480625e-10 8.382377878e-10 4.465233824e-10 4.938761091e-10 7.589806064e-10 1.249953525e-09 1.156736524e-09 4.75063674e-10 1.225822055e-09 5.463956796e-10 1.013322018e-09 7.672922742e-10 1.048642357e-09 6.003852857e-10 1.152255193e-09 7.10118537e-10 6.424682336e-10 4.646706825e-10 5.277106641e-10 2.402310804e-10 2.584595069e-10 2.967710723e-10 3.404707589e-10 2.33049289e-10 2.292652805e-10 5.717153715e-10 2.712502032e-10 3.64956111e-10 5.042331121e-10 7.196957779e-10 6.29516024e-10 5.69982766e-10 1.698243921e-09 1.724218272e-09 1.391513352e-09 1.274166667e-09 1.121484197e-09 9.306083073e-10 1.514714012e-09 1.240563605e-09 1.990614162e-09 1.232402635e-09 1.008700731e-09 1.50438338e-09 1.834992169e-09 1.288469384e-09 6.517343868e-10 1.906542646e-09 1.622631525e-09 2.040217351e-09 1.183770748e-09 1.268152039e-09 1.175209388e-09 9.27866968e-10 8.553702041e-10 9.578783664e-10 1.00457278e-09 9.723872046e-10 1.646114938e-09 1.179589595e-09 1.148666636e-09 1.35815099e-09 1.024176701e-09 1.680091504e-09 1.203291169e-09 1.410767171e-09 8.351011252e-10 1.259276892e-09 1.283231332e-09 8.929735822e-10 2.541299469e-09 1.240333891e-09 6.306690943e-10 7.096258668e-10 1.61566622e-09 1.420589758e-09 4.929389612e-10 2.406096273e-10 3.164001528e-10 8.623484804e-10 2.611942584e-10 5.064116438e-10 3.491383944e-10 4.286125909e-10 2.9272281e-10 2.969045965e-10 3.975503373e-11 4.187596734e-10 3.181251159e-10 3.335229318e-10 7.503626683e-10 3.791332255e-10 7.44267559e-10 9.467336614e-10 5.611133742e-10 4.556005194e-10 7.205985379e-10 1.261321192e-09 9.211849715e-10 9.047504855e-10 5.43054705e-10 9.104001106e-10 1.284045028e-09 8.367693892e-10 7.103125379e-10 8.024711002e-10 7.982880375e-10 9.237527877e-10 5.402267474e-10 8.529248185e-10 3.92587764e-10 1.004844388e-09 3.70934216e-10 5.255410143e-10 5.112050712e-10 1.145001664e-09 7.737589655e-10 8.367111988e-10 8.518191972e-10 5.383387907e-10 5.078945525e-10 5.226552712e-10 2.925624141e-10 5.949848055e-10 2.842032362e-10 5.793907196e-10 2.820406572e-10 3.769219645e-10 6.861472821e-10 1.024353102e-09 5.433211055e-10 7.075429384e-10 2.299182277e-10 2.067524097e-10 3.969800801e-10 8.712755508e-10 4.972608214e-10 8.111870244e-10 5.739633154e-10 7.293289922e-10 6.055106991e-10 6.404590521e-10 5.777385193e-10 5.949825745e-10 6.421589795e-10 1.041876667e-09 5.943316119e-10 3.619192016e-10 6.128858951e-10 5.252851316e-10 7.29398031e-10 7.372582344e-10 6.689898071e-10 2.307513063e-10 7.09370948e-10 1.42818125e-10 5.324072369e-10 3.057242499e-10 2.664944266e-10 4.437980854e-10 4.637674584e-10 3.600764611e-10 6.980364043e-10 3.946584914e-10 6.465395326e-10 7.532687074e-10 5.346895329e-10 6.11778028e-10 7.160941907e-10 1.025995518e-09 3.070051324e-10 4.441595069e-10 6.269293754e-10 4.198222317e-10 3.097768919e-10 5.284078611e-10 5.644613848e-10 4.904607101e-10 8.71822193e-10 6.056558315e-10 4.311267134e-10 3.104475342e-10 9.510290419e-10 1.626728076e-10 6.516405883e-10 5.53761853e-10 3.826745288e-10 4.363489442e-10 4.072729995e-10 5.18157536e-10 6.593991914e-10 8.178179785e-10 1.089514077e-09 5.375038184e-10 3.084184955e-10 6.437464507e-10 5.644752315e-10 7.61186632e-10 6.31894694e-10 8.056667896e-10 7.141259605e-10 8.176697657e-10 4.733225679e-10 6.891288193e-10 +4.579074435e-10 2.561521517e-10 4.585584443e-10 5.864349937e-10 1.936442213e-10 4.755981742e-10 8.826017983e-10 3.251620743e-10 4.980746047e-11 5.599368504e-10 4.001811483e-10 5.864518755e-10 4.793446732e-10 5.659216241e-10 3.988958787e-10 6.392205491e-10 6.837669556e-10 7.450215751e-10 1.245578806e-10 2.632938964e-10 4.749091993e-10 6.263890388e-10 5.558279407e-10 2.981032132e-10 3.214047358e-10 6.462894367e-10 3.495021129e-10 2.416446688e-10 7.605102808e-10 5.134466311e-10 3.043150294e-10 7.549055229e-10 7.393943143e-10 3.407304751e-10 3.922133021e-10 2.404076795e-10 4.721133215e-10 4.990595316e-10 4.877191997e-10 2.980324302e-10 5.888396479e-10 4.048946011e-10 9.153500943e-11 1.380992657e-10 3.843079292e-10 6.183500046e-10 8.787022704e-10 3.191292204e-10 2.786386677e-10 1.526791211e-10 4.377210538e-10 5.412306678e-10 7.741202516e-10 1.011538654e-09 7.762560278e-10 9.041635651e-10 3.539697792e-10 7.786280526e-10 5.889408538e-10 5.653828539e-10 7.909732297e-10 5.317485622e-10 2.332731959e-10 7.338270253e-10 3.735255597e-10 3.149659401e-10 5.383927182e-10 4.768730367e-10 6.64630271e-10 7.95113564e-10 1.967612694e-10 6.963365429e-10 4.549786126e-10 2.880900185e-10 8.029584412e-10 6.047126476e-10 4.53453815e-10 6.541502784e-10 5.042653737e-10 3.027471257e-10 7.368418982e-10 6.565536623e-10 6.907629539e-10 4.498247755e-10 6.91130023e-10 8.195012089e-10 1.42973704e-09 1.664856418e-09 9.091707683e-10 1.370511893e-09 9.960327933e-10 6.057456587e-10 7.053819214e-10 9.101491622e-10 6.435660514e-10 7.023766395e-10 7.318942988e-10 1.032839076e-09 9.973100959e-10 7.309360896e-10 2.436121452e-10 2.053000651e-10 4.596065264e-10 3.902081043e-10 8.07619023e-10 8.54165902e-10 5.442369283e-10 5.682840134e-10 6.114857775e-10 5.02770836e-10 3.529202927e-10 6.28867645e-10 6.534421299e-10 9.045422475e-10 4.347080866e-10 6.039747905e-10 1.782180339e-10 2.283381033e-10 2.201872563e-10 2.578402156e-10 6.45033097e-10 3.561890039e-10 3.359746597e-10 7.483748341e-10 2.349563172e-10 3.724872152e-10 5.040291598e-10 4.77912001e-10 1.050297045e-09 7.77022351e-10 6.200848813e-10 8.760463959e-10 1.145182068e-09 1.420267836e-09 2.025709949e-09 1.666875559e-09 1.199979031e-09 6.883420095e-10 4.785943481e-10 8.342741968e-10 6.379541311e-10 1.367609328e-09 1.426147984e-09 1.985428287e-09 1.023339323e-09 1.68495332e-09 1.034838596e-09 9.482053965e-10 1.309018446e-09 9.587890005e-10 1.268600348e-09 1.330250254e-09 1.146829893e-09 1.214325561e-09 1.010869353e-09 1.455942156e-09 1.549489552e-09 8.546267284e-10 1.267659616e-09 1.388714021e-09 1.370707052e-09 1.359866443e-09 1.030906857e-09 2.258604794e-09 7.333182713e-10 1.466041269e-09 2.536715096e-09 1.610519033e-09 9.964312364e-10 1.230521074e-09 1.703590661e-09 7.656568694e-10 9.095770862e-10 6.060400774e-10 7.197919333e-10 4.859608854e-10 5.536784776e-10 3.061739412e-10 4.44000989e-10 2.940272234e-10 2.069957111e-10 1.710450741e-10 1.6113716e-10 2.381690653e-10 4.083414165e-10 3.814591192e-10 5.682305943e-10 4.431008282e-10 5.689806305e-10 4.003756955e-10 5.222902278e-10 2.585413695e-10 4.161689869e-10 9.349844217e-10 7.852928793e-10 8.599508713e-10 8.307659743e-10 1.020634962e-09 5.171155128e-10 3.405651551e-10 1.01098576e-09 8.095777087e-10 1.657950656e-09 9.331056153e-10 6.854391711e-10 4.823040033e-10 6.918916491e-10 1.399057642e-09 8.398485765e-10 1.082821874e-09 7.692691164e-10 9.38301559e-10 9.289399318e-10 1.176723556e-09 9.987617829e-10 9.461315387e-10 6.436524741e-10 7.299081222e-10 6.887997265e-10 4.45929561e-10 6.317438847e-10 2.897326211e-10 8.54672757e-10 5.136773215e-10 3.750599419e-10 4.970074311e-10 5.085831819e-10 1.005925405e-09 4.318454193e-10 3.586238643e-10 4.544474142e-10 4.575763176e-10 5.662697368e-10 6.633545756e-10 7.406145517e-10 6.035747597e-10 1.378456706e-09 2.745404293e-10 5.819564248e-10 7.061227007e-10 7.290362189e-10 1.098891263e-09 5.804864689e-10 4.17563243e-10 2.882186009e-10 7.473768345e-10 4.479652368e-10 2.197945317e-10 5.121989235e-10 4.756058417e-10 4.586987786e-10 5.459705199e-10 6.498187527e-10 5.757329553e-10 3.461935062e-10 4.520109917e-10 4.698074137e-10 2.183917041e-10 5.884130366e-10 7.416684459e-10 2.618316896e-10 5.715822335e-10 9.68699366e-10 3.209276916e-10 5.620167953e-10 4.610917539e-10 2.967520266e-10 3.023931187e-10 5.30691284e-10 6.15901279e-10 7.596986728e-10 9.579554229e-10 5.03704089e-10 2.637043346e-10 5.695327162e-10 3.045370379e-10 5.966865269e-10 9.88052659e-10 4.723475594e-10 8.290466444e-10 8.27300868e-10 5.485415565e-10 4.740121744e-10 1.669735533e-10 1.124582327e-09 2.594600706e-10 4.814576566e-10 5.013397213e-10 8.851081763e-10 9.406062002e-10 8.242410564e-10 4.113767784e-10 5.390194497e-10 3.074927283e-10 2.109696344e-10 9.530987836e-10 5.606333644e-10 5.092013298e-10 3.421718635e-10 6.661292556e-10 +9.297952541e-10 8.437297355e-10 4.940948181e-10 4.746641431e-10 4.396011847e-10 5.183152296e-10 3.806902635e-10 4.046926308e-10 4.29499353e-10 2.233709524e-10 6.58682358e-10 4.552157898e-10 3.381753469e-10 4.714638379e-10 5.909421488e-10 6.228503688e-10 1.063752836e-09 6.302571896e-10 3.680163681e-10 1.035564809e-09 4.10661051e-10 7.891607465e-10 2.215499884e-10 2.551287549e-10 6.964790475e-10 2.139595928e-10 4.731667434e-10 6.322347696e-10 3.245080047e-10 5.682240433e-10 3.683975219e-10 1.068814984e-09 6.309351239e-10 9.166443853e-10 9.112888642e-10 3.78250881e-10 4.419085099e-10 4.314396786e-10 3.349034741e-10 4.250092816e-10 6.679922179e-10 1.941712379e-10 2.362096681e-10 2.759261972e-10 5.765323122e-10 3.65134676e-10 4.376379825e-10 4.373149856e-10 3.509085401e-10 4.399664136e-10 5.889561145e-10 3.998521144e-10 6.148219478e-10 4.171008829e-10 3.041385783e-10 8.855054323e-10 6.781570739e-10 4.149128496e-10 4.492106995e-10 3.399264568e-10 4.265206783e-10 6.868613718e-10 3.055014192e-10 7.412552969e-10 6.638374829e-10 4.239927349e-10 4.803739625e-10 3.275094698e-10 4.232283795e-10 5.126835696e-10 2.601378012e-10 6.783326083e-10 4.060388174e-10 3.755530698e-10 2.688412847e-10 7.293701151e-10 5.545486463e-10 3.940681331e-10 5.804995626e-10 3.69044106e-10 5.780530252e-10 1.26694532e-09 6.25609975e-10 5.78289482e-10 6.398571205e-10 5.729068147e-10 1.318194137e-09 1.314280779e-09 7.646020432e-10 8.41200176e-10 6.44377169e-10 1.260591038e-09 7.709805943e-10 7.197131758e-10 9.503809013e-10 1.345463135e-09 1.209945635e-09 7.336816541e-10 5.579401131e-10 1.031386802e-09 6.355867343e-10 5.497537226e-10 7.105047455e-10 7.718877585e-10 6.826798459e-10 3.922095923e-10 6.523733482e-10 3.364096755e-10 6.113041965e-10 8.599800865e-10 5.24668989e-10 6.903210279e-10 5.069975559e-10 7.015670824e-10 6.985671861e-10 6.459197685e-10 3.270757946e-10 3.910110356e-10 2.91536866e-10 6.803484497e-11 4.547958677e-10 2.489998636e-10 3.630569249e-10 5.204311722e-10 3.778796731e-10 4.772243213e-10 4.349325264e-10 3.574857494e-10 7.244640602e-10 8.31955497e-10 1.293244887e-09 4.973826768e-10 9.13631192e-10 5.461156719e-10 1.461131434e-09 1.507079576e-09 1.016456486e-09 7.02780777e-10 1.1107159e-09 1.068405847e-09 8.580336309e-10 1.476809937e-09 1.322431061e-09 1.25831811e-09 1.448701038e-09 2.146633136e-09 1.221336252e-09 1.424842422e-09 7.307607517e-10 8.177597482e-10 1.715609555e-09 7.176394026e-10 4.03605013e-10 1.869807293e-09 9.457120983e-10 8.091477449e-10 1.064729162e-09 7.188701465e-10 1.169177301e-09 1.655648728e-09 9.43410725e-10 8.394003519e-10 7.290250451e-10 1.382078331e-09 1.535277346e-09 1.386727312e-09 1.320684939e-09 9.939239396e-10 4.350901199e-10 6.845982007e-10 1.6180409e-10 9.306812478e-10 7.155735658e-10 4.607015766e-10 6.543229095e-10 4.854568384e-10 2.288572469e-10 2.347831339e-10 2.779317681e-10 8.931022108e-11 6.839824276e-11 2.843163661e-10 1.952428626e-10 5.147923508e-10 1.573672869e-10 2.684258107e-10 4.845091182e-10 4.551312251e-10 4.826116049e-10 9.698215119e-10 1.12864139e-09 9.600187747e-10 5.637980412e-10 1.188906263e-09 1.178637054e-09 8.680952646e-10 1.118613865e-09 7.497414134e-10 5.675505021e-10 1.099003061e-09 2.898078301e-10 9.502896542e-10 7.198101873e-10 1.215798855e-09 9.302394414e-10 1.79359879e-09 1.008796309e-09 4.548201359e-10 1.263916454e-09 4.154136203e-10 3.568302397e-10 5.729914498e-10 9.944120552e-10 1.092206132e-09 5.199323411e-10 6.934103693e-10 9.13535576e-10 5.849720915e-10 3.536648603e-10 4.866766681e-10 7.628753485e-10 5.274130055e-10 3.422393461e-10 4.596965054e-10 2.7135792e-10 3.840870018e-10 7.832082172e-10 1.565149524e-10 9.325499769e-10 1.472549036e-09 9.872292886e-10 9.365638752e-10 5.53052876e-10 8.093327674e-10 5.826320483e-10 5.805169657e-10 4.57662282e-10 3.942302779e-10 2.382199195e-10 5.518902941e-10 5.142308163e-10 3.979504186e-10 5.235017199e-10 6.199141475e-10 5.808221641e-10 7.22461097e-10 4.028778902e-10 2.610547383e-10 4.212878969e-10 6.929677554e-10 6.492756207e-10 4.9682905e-10 4.203235808e-10 5.011221458e-10 5.256387993e-10 4.819272524e-10 5.246861965e-10 5.962298589e-10 3.627065652e-10 6.208090634e-10 4.076192483e-10 4.762207651e-10 4.323050454e-10 4.884091448e-10 8.229416173e-10 4.873301649e-10 5.006166514e-10 5.49530728e-10 3.04939453e-10 8.421432815e-10 1.7429731e-10 3.744821282e-10 8.976629231e-10 6.881005396e-10 5.212831069e-10 4.3360722e-10 5.632811196e-10 3.717087107e-10 2.757273241e-10 9.316305958e-10 9.553964694e-10 8.122601627e-10 6.565938492e-10 3.581639129e-10 3.93378599e-10 9.152682357e-10 7.386398898e-10 6.408219358e-10 7.94014052e-10 4.229999612e-10 3.004340398e-10 8.490198271e-10 2.684298381e-10 5.72047903e-10 7.669502423e-10 5.346747579e-10 4.044651313e-10 5.236900618e-10 5.719672935e-10 5.54547953e-10 +5.268527924e-10 7.382241238e-10 7.274786693e-10 8.465702143e-10 3.901506113e-10 2.241142341e-10 3.419868608e-10 9.564997867e-10 6.192416833e-10 3.57673353e-10 4.096733398e-10 8.802168157e-10 4.324167932e-10 3.082157871e-10 6.235893711e-10 3.101460912e-10 3.767370136e-10 3.281482302e-10 2.781865499e-10 5.069736884e-10 3.045829136e-10 2.615874546e-10 6.019767322e-10 6.126503893e-10 4.865898356e-10 5.940817834e-10 3.071136881e-10 7.130393744e-10 2.51198069e-10 5.30784087e-10 2.870641917e-10 1.684619106e-10 4.844450736e-10 2.528052171e-10 2.260531403e-10 5.201451389e-10 4.839957831e-10 7.230533041e-10 3.991243291e-10 4.556805265e-10 3.292202704e-10 3.072701351e-10 7.182660106e-10 3.498230063e-10 7.352402725e-10 2.420846301e-10 3.05370014e-10 2.136126031e-10 3.092059593e-10 5.54388664e-10 5.783848277e-10 2.184963002e-10 6.566960458e-10 5.178519255e-10 5.611683466e-10 5.089572908e-10 4.32051821e-10 5.727722647e-10 4.703520621e-10 3.211301142e-10 4.814586653e-10 7.540962906e-10 7.302137417e-10 9.342295245e-10 1.491970348e-10 5.608579029e-10 7.203108066e-10 5.960442555e-10 1.940897422e-10 3.984662867e-10 5.578259714e-10 5.464717687e-10 7.590097044e-10 1.104945074e-09 7.243825084e-10 1.338341142e-10 8.650210081e-10 5.130106657e-10 3.719140066e-10 6.903984387e-10 8.328109291e-10 8.717316389e-10 4.897002086e-10 4.454169433e-10 7.753627766e-10 1.058427926e-09 1.214918055e-09 1.277501912e-09 1.197939436e-09 1.393465175e-09 6.851879831e-10 1.029707376e-09 1.288249256e-09 6.805541518e-10 1.031134248e-09 1.25762935e-09 2.614221528e-10 6.327743449e-10 5.382648416e-10 9.535216173e-10 9.178919119e-10 4.630910672e-10 6.702943148e-10 5.458153355e-10 6.880597322e-10 1.152573058e-09 1.000225712e-09 3.575266056e-10 4.607099223e-10 2.515224595e-10 4.466542476e-10 9.510324986e-10 6.888722338e-10 7.613715408e-10 9.296946207e-10 3.817811581e-10 3.208410333e-10 1.796658356e-10 2.296320717e-10 3.292972395e-10 2.970420581e-10 4.265720644e-10 5.183040112e-10 1.366732351e-10 2.556459994e-10 2.318159375e-10 5.597299927e-10 4.504205178e-10 8.925392978e-10 4.552652773e-10 1.571005255e-09 5.525090385e-10 1.070351808e-09 8.710842269e-10 1.043146306e-09 3.845926428e-10 1.284249766e-09 8.926563545e-10 9.774244296e-10 9.178429016e-10 1.864325385e-09 9.078098357e-10 2.051395083e-09 1.694215212e-09 1.55325738e-09 1.016135811e-09 1.984666752e-09 1.573948168e-09 1.194262804e-09 1.208424268e-09 1.77657653e-09 1.987563853e-09 2.056208164e-09 8.722062857e-10 1.045433725e-09 9.743551902e-10 1.330805443e-09 1.996035449e-09 1.477330935e-09 1.043543365e-09 8.73482477e-10 1.958581201e-09 1.333565448e-09 1.144555396e-09 1.219277335e-09 1.366444997e-09 7.512638777e-10 6.750936647e-10 5.092244698e-10 6.710275699e-10 6.697847326e-10 6.450422076e-10 4.541707381e-10 5.115495656e-10 4.919586828e-10 5.648952414e-10 3.741814011e-10 1.225001417e-10 2.730548653e-10 2.508506382e-10 5.172901738e-11 4.470920024e-10 8.942858017e-10 2.566521722e-10 6.858996091e-10 3.153707096e-10 4.605005729e-10 3.35088509e-10 3.242475807e-10 4.339962014e-10 8.012704649e-10 7.111644772e-10 9.384336161e-10 5.866472399e-10 7.22162558e-10 7.403539007e-10 8.805247977e-10 1.143949474e-09 7.470982633e-10 7.874375032e-10 4.475847581e-10 7.626407654e-10 4.335927494e-10 6.607916763e-10 1.098559016e-09 6.459904494e-10 9.567916352e-10 9.266674739e-10 9.823817109e-10 1.286924668e-09 4.740808667e-10 1.015206889e-09 1.71397959e-09 1.041084526e-09 1.57020337e-09 6.278664127e-10 8.448833392e-10 1.098367212e-09 1.270762042e-09 1.455986545e-10 6.068965904e-10 5.113354613e-10 4.852027668e-10 4.334633767e-10 4.988715432e-10 9.125592509e-10 2.443712881e-10 6.262967408e-10 2.722142435e-10 8.208880957e-10 7.393410788e-10 5.354126277e-10 7.216185026e-10 6.15891918e-10 7.741075798e-10 7.874384283e-10 5.857707913e-10 3.225375434e-10 7.015973199e-10 3.98824758e-10 7.638025276e-10 7.916020407e-10 1.720877748e-10 4.034283221e-10 7.29036124e-10 4.628380952e-10 4.621925471e-10 4.439505438e-10 3.073825947e-10 2.551642145e-10 5.689198586e-10 2.103624179e-10 7.320843505e-10 3.920396103e-10 3.645329028e-10 1.661302204e-10 2.31996796e-10 1.228724307e-10 4.343143768e-10 5.842244036e-10 6.564096798e-10 3.299629984e-10 3.153759924e-10 8.87431893e-10 6.431367335e-10 6.731955014e-10 8.665179782e-10 6.858233326e-10 3.712419266e-10 4.149762028e-10 4.015091464e-10 5.592211252e-10 1.036878127e-09 5.979901479e-10 7.512063104e-10 3.600574298e-10 3.70908416e-10 6.853866922e-10 7.174554477e-10 5.206416711e-10 2.607442513e-10 4.686741819e-10 2.90430426e-10 6.32026415e-10 4.710233414e-10 3.076346313e-10 1.347534542e-10 6.561448e-10 4.842614543e-10 3.387778364e-10 1.130683867e-09 4.018530623e-10 1.048224917e-09 7.562184521e-10 4.345291488e-10 3.15493857e-10 4.301784693e-10 5.320410373e-10 3.860092538e-10 6.320916708e-10 +8.468280678e-10 1.732977334e-10 4.560475188e-10 7.133614403e-10 2.790947176e-10 4.548702023e-10 8.00614035e-10 4.936486343e-10 2.173734953e-10 9.867245727e-10 4.716146978e-10 2.924445458e-10 1.572742225e-10 4.63878887e-10 4.915572289e-10 6.298139639e-10 4.987568601e-10 4.587248609e-10 3.883751332e-10 3.724898925e-10 3.564475074e-10 5.93853768e-10 4.726196925e-10 5.381063726e-10 2.44593377e-10 5.716619727e-10 1.516886515e-10 3.643651048e-10 5.921467e-10 9.51494599e-10 4.445428267e-10 4.444859483e-10 6.212072423e-10 7.984567779e-10 1.78908284e-10 8.525047757e-10 5.054509507e-10 5.276696789e-10 2.090036832e-10 2.97217262e-10 6.761862226e-10 2.507020424e-10 2.625703687e-10 3.19531144e-10 4.986625579e-10 3.954424237e-10 1.878844776e-10 7.128320829e-10 2.333220302e-10 5.958497265e-10 8.114288942e-10 5.396927717e-10 7.554354627e-10 4.514171888e-10 4.369480209e-10 7.022352522e-10 4.590498545e-10 3.835140058e-10 5.19225112e-10 4.497346138e-10 1.01392949e-09 1.582943972e-10 3.695791579e-10 6.637648832e-10 7.152689057e-10 6.295591694e-10 2.937653728e-10 4.331736812e-10 7.063134953e-10 4.598229129e-10 5.67065904e-10 6.852584618e-10 3.263055937e-10 5.75642213e-10 1.684276196e-10 7.991232056e-10 4.028057739e-10 6.694055096e-10 3.769384747e-10 4.482655674e-10 3.550462222e-10 9.105361671e-10 7.944816706e-10 4.973857259e-10 6.627446794e-10 1.408681414e-09 1.050713009e-09 8.245124339e-10 6.804031169e-10 1.19915129e-09 5.652178965e-10 1.027203081e-09 7.444170321e-10 1.181065312e-09 8.332015913e-10 8.126466013e-10 5.70788916e-10 1.107062244e-09 5.679427527e-10 7.551899969e-10 8.171492086e-10 6.665013906e-10 7.323972531e-10 6.689978333e-10 9.541054309e-10 1.0152764e-09 6.020794159e-10 8.243385961e-10 1.295166538e-09 4.739506765e-10 4.41546234e-10 5.234142736e-10 5.207300518e-10 5.344922542e-10 4.869188183e-10 5.873976819e-10 6.718553834e-10 5.854919846e-10 2.140743872e-10 3.455396067e-10 6.589068921e-10 3.09461862e-10 1.818632503e-10 1.243292173e-10 3.99356251e-10 2.082888679e-10 2.703476328e-10 3.788534302e-10 6.820371921e-10 3.429191303e-10 5.434685982e-10 6.336662413e-10 5.709499574e-10 2.62222088e-10 4.109869101e-10 1.200069498e-09 9.578724362e-10 5.796268682e-10 9.169064866e-10 1.283965616e-09 1.072281363e-09 1.369680621e-09 8.327644143e-10 1.13606703e-09 8.526053924e-10 6.132220512e-10 9.706848215e-10 1.676427609e-09 1.283243432e-09 7.087490081e-10 5.504141671e-10 8.023529723e-10 1.998154643e-09 1.505314979e-09 1.844041735e-09 6.199572562e-10 9.910054684e-10 1.297444158e-09 1.154152412e-09 7.166361613e-10 1.306811889e-09 2.403190348e-09 1.204450281e-09 1.042705425e-09 1.075350306e-09 4.080455462e-10 8.240265574e-10 7.864685986e-10 9.473818642e-10 3.609656921e-10 6.017851651e-10 1.095563698e-09 5.858248871e-10 3.537583625e-10 3.488249043e-10 1.35247163e-10 1.004478547e-10 1.373524146e-10 1.244585747e-10 2.159064255e-10 3.213457883e-10 1.866786784e-10 3.308247029e-10 8.088254293e-10 3.435596087e-10 4.968162351e-10 6.533598692e-10 6.424671029e-10 2.495375134e-10 3.699070433e-10 1.075244532e-09 3.656385832e-10 1.106480778e-09 4.513906624e-10 1.049960764e-10 1.0332172e-09 9.683175869e-10 5.533876259e-10 1.122205092e-09 1.139361013e-09 6.962756208e-10 8.738029613e-10 3.253854025e-10 8.175814304e-10 7.03270268e-10 5.304449611e-10 8.761468344e-10 8.423980376e-10 8.836460345e-10 1.407861951e-09 9.912311903e-10 1.435192435e-09 7.885339669e-10 7.634199507e-10 7.675595464e-10 4.833654038e-10 7.870749756e-10 1.382477546e-09 3.834449657e-10 4.934951283e-10 5.148888232e-10 2.366660085e-10 8.126108213e-10 2.460638401e-10 1.014076549e-09 3.542921778e-10 3.657811181e-10 7.493524615e-10 5.204588121e-10 6.681192016e-10 1.128858077e-09 8.24687086e-10 3.262043321e-10 6.334257453e-10 5.025807968e-10 1.006838691e-09 2.646621216e-10 5.942858292e-10 5.90671163e-10 5.343386653e-10 2.587240913e-10 3.160466905e-10 2.675229512e-10 2.416424745e-10 5.078435865e-11 8.095520378e-10 5.227886811e-10 4.836459563e-10 2.404021587e-10 3.983522864e-10 4.561695388e-10 3.212118963e-10 6.440837703e-10 2.929530177e-10 2.08855428e-10 4.083822467e-10 4.907939944e-10 4.588261959e-10 3.459246153e-10 4.955982006e-10 9.233139459e-10 4.211865095e-10 5.056932173e-10 3.850030654e-10 6.174253505e-10 4.186251088e-10 3.963510389e-10 7.339046499e-10 7.288309176e-10 3.06594858e-10 1.088791182e-09 4.988276587e-10 5.237503513e-10 1.378234534e-10 6.688254304e-10 5.243408083e-10 9.687936747e-10 4.258816611e-10 3.816933976e-10 4.004466476e-10 3.754563794e-10 9.441063403e-10 4.228137898e-10 3.920503439e-10 4.067341108e-10 5.161179523e-10 5.102308993e-10 4.117993711e-10 2.560932011e-10 8.179576176e-10 5.765920106e-10 3.957852809e-10 9.873514034e-10 4.465329098e-10 1.004774096e-09 3.192203695e-10 2.692886575e-10 5.326068998e-10 1.103499671e-09 6.389258788e-10 +5.234683666e-10 4.228880667e-10 3.784542463e-10 3.273587279e-10 2.459135198e-10 3.175026761e-10 7.210708916e-10 2.740072655e-10 9.624150248e-10 4.420639952e-10 4.077800019e-10 7.666695275e-10 6.016201935e-10 4.325466996e-10 8.379119284e-10 3.316705545e-10 2.917000317e-10 8.718158651e-10 5.300386307e-10 4.197988051e-10 4.446602407e-10 7.185891947e-10 3.855961043e-10 3.246027445e-10 5.351689382e-10 4.741190688e-10 1.406907308e-09 9.467497917e-10 3.618668887e-10 4.084486271e-10 6.455602691e-10 3.843641017e-10 5.217317976e-10 5.283848978e-10 5.640834568e-10 2.31922966e-10 4.807018434e-10 3.561298657e-10 5.5550641e-10 2.422065601e-10 3.222559262e-10 6.781503466e-10 5.385973236e-10 4.35324803e-10 6.178902946e-10 2.153533702e-10 4.790331583e-10 4.399729278e-10 3.859146055e-10 6.686727232e-10 6.797435358e-10 5.244441377e-10 1.803416072e-10 1.046701863e-09 7.854404636e-10 8.562446147e-10 3.102931924e-10 2.772053774e-10 2.093273505e-10 4.27467539e-10 6.344639262e-10 4.24111675e-10 9.015569359e-10 2.755927536e-10 4.310448503e-10 4.947331216e-10 5.607597461e-10 6.563137942e-10 3.218114102e-10 5.239154866e-10 5.672564093e-10 2.393305715e-10 8.19277761e-10 4.246673922e-10 7.778892625e-10 5.092570387e-10 4.450844941e-10 4.438834141e-10 1.836269156e-10 5.345096217e-10 6.001560215e-10 2.095773622e-10 7.090341682e-10 6.079046872e-10 3.792304428e-10 8.474943621e-10 1.152719031e-09 8.853783548e-10 1.364250526e-09 5.249939257e-10 9.206701991e-10 6.455843177e-10 6.654240529e-10 6.856863806e-10 9.255109287e-10 9.896560927e-10 8.272853811e-10 8.525373128e-10 4.229366246e-10 4.923273157e-10 9.35165751e-10 9.472324144e-10 7.26259904e-10 1.173792251e-09 7.190458388e-10 4.299048578e-10 9.098991389e-10 6.430362878e-10 9.61320727e-10 6.662346257e-10 8.74687852e-10 6.916800853e-10 7.296521108e-10 5.005159212e-10 7.457183565e-10 1.033927057e-09 4.018469947e-10 3.984320342e-10 3.463308692e-10 5.099994244e-10 2.566592083e-10 4.240252517e-10 2.293972354e-10 1.318537463e-10 4.324066287e-10 2.322403936e-10 3.595041459e-10 6.367686552e-10 4.91247702e-10 5.765239562e-10 5.481465235e-10 3.36463702e-10 2.052817778e-10 3.925946374e-10 3.817006555e-10 1.983427318e-10 1.207389383e-09 1.098276306e-09 5.980209825e-10 4.149852536e-10 3.69159624e-10 1.337756155e-09 8.587251117e-10 3.455346741e-10 8.165994002e-10 1.094371858e-09 1.675312267e-09 1.404253071e-09 1.070793051e-09 5.940570513e-10 1.62408837e-09 1.842847127e-09 2.075835991e-09 1.018712777e-09 8.564732999e-10 1.53346728e-09 6.602013075e-10 3.263403691e-10 1.402480401e-09 3.948201262e-10 3.926008715e-10 7.189482643e-10 4.028008924e-10 7.322179319e-10 6.514034894e-10 6.815088725e-10 4.581308859e-10 3.098833363e-10 3.922331689e-10 2.715192656e-10 3.359751138e-10 5.306682177e-10 5.215961963e-10 2.1855379e-10 3.175919482e-10 1.662188002e-10 2.256236176e-10 2.811569875e-10 2.915060994e-10 4.188035476e-10 3.506913835e-10 2.827213426e-10 1.036612467e-09 8.53911246e-10 6.051772843e-10 6.237865522e-10 6.516407458e-10 8.790068947e-10 6.732298375e-10 5.832740724e-10 5.139606482e-10 9.921555368e-10 6.226104208e-10 6.533831089e-10 8.351023419e-10 1.009158448e-09 1.115762974e-09 1.164553758e-09 5.129738262e-10 5.277983147e-10 9.295666441e-10 1.16650769e-09 3.209912142e-10 1.203902267e-09 5.915903957e-10 9.193557688e-10 5.900815597e-10 7.969769892e-10 1.307887102e-09 1.289202885e-09 9.018805174e-10 6.30163982e-10 8.89457871e-10 7.355065222e-10 6.021681511e-10 1.218322143e-09 1.189007479e-09 5.713354645e-10 8.190397321e-10 2.028442514e-10 4.423949434e-10 4.259876599e-10 5.305665e-10 1.965901742e-10 5.505317038e-10 8.790238368e-10 4.489248413e-10 6.570964899e-10 3.551923049e-10 2.55610212e-10 7.70700935e-10 4.285788918e-10 5.314434479e-10 3.259913951e-10 7.736339928e-10 8.69688593e-10 6.337338016e-10 5.676615933e-10 5.016217667e-10 3.968636428e-10 4.278888225e-10 6.021172875e-10 4.00709291e-10 3.124129542e-10 4.031440052e-10 3.808392969e-10 4.746658159e-10 3.473258125e-10 7.099854085e-10 3.163311658e-10 4.048310543e-10 4.224848241e-10 4.711386929e-10 7.22093897e-10 7.330336656e-10 7.721913991e-10 2.742792466e-10 2.305849594e-10 2.197415075e-10 2.731472487e-10 4.165374223e-10 3.176817943e-10 3.294961605e-10 1.015148925e-09 4.384423858e-10 6.691758953e-10 2.61271592e-10 8.458069214e-10 6.000216899e-10 4.218013033e-10 2.357546274e-10 1.044671251e-09 1.984044578e-10 5.57606851e-10 4.656372293e-10 4.308414713e-10 8.308376307e-10 5.081933933e-10 3.18264852e-10 5.728806036e-10 6.609749577e-10 6.336255031e-10 2.367201526e-10 5.195984926e-10 1.711561437e-10 2.379985881e-10 3.99113458e-10 2.929221378e-10 7.091231515e-10 3.223623321e-10 2.616095043e-10 1.913728958e-10 6.209151888e-10 8.483135806e-10 2.010641016e-10 3.624757142e-10 6.380194808e-10 5.059449052e-10 9.592996812e-10 4.185254888e-10 +9.410357716e-10 8.797115851e-10 7.605052206e-10 3.907675873e-10 5.744719928e-10 7.011739333e-10 7.327681482e-10 2.033257801e-10 5.462503992e-10 5.980849221e-10 4.322283245e-10 4.168576791e-10 5.27056775e-10 4.594813874e-10 9.512873998e-10 6.391016153e-10 2.340077348e-10 4.761238744e-10 4.031218195e-10 2.95681448e-10 8.639535326e-10 5.102323939e-10 4.479173729e-10 4.392652508e-10 3.723714756e-10 3.488182176e-10 5.112776475e-10 4.531186013e-10 1.956240031e-10 4.454561625e-10 3.85052181e-10 9.022576596e-10 4.394970428e-10 2.23830021e-10 6.804997493e-10 2.014528631e-10 2.501320159e-10 3.228540848e-10 3.04811309e-10 1.157792897e-09 7.239040739e-10 2.783014048e-10 2.686545266e-10 4.265025027e-10 5.31142016e-10 6.521503556e-10 6.282979046e-10 5.562428139e-10 1.952541531e-10 6.187282363e-10 5.561034795e-10 7.167642868e-10 7.001420041e-10 7.020751598e-10 3.207773202e-10 4.670919304e-10 1.653664903e-10 1.09403528e-09 2.662611662e-10 4.162232606e-10 5.139774635e-10 5.125949866e-10 3.621249886e-10 3.959509181e-10 4.351007512e-10 7.457997761e-10 3.309284955e-10 5.564666595e-10 3.917407709e-10 4.92997691e-10 4.575647339e-10 4.10023785e-10 3.338412349e-10 4.581476148e-10 2.727194806e-10 4.218446665e-10 3.53900962e-10 2.90426375e-10 3.807248888e-10 6.83578386e-10 3.705164517e-10 2.568093428e-10 9.104135151e-10 7.855664421e-10 4.393667394e-10 7.899337546e-10 4.603283827e-10 1.188517256e-09 1.155965673e-09 6.501102208e-10 9.792248801e-10 8.890193652e-10 8.248850347e-10 5.837610163e-10 6.732258588e-10 4.993203029e-10 2.826285458e-10 7.968509915e-10 4.098045652e-10 3.651075564e-10 7.045370733e-10 8.599504393e-10 1.275107194e-09 4.565880719e-10 1.050960585e-09 9.823452287e-10 2.632967366e-10 3.066284314e-10 1.179343265e-09 8.249549829e-10 5.94326842e-10 4.796278035e-10 6.85076326e-10 7.53681195e-10 5.527869434e-10 8.879958666e-10 1.004801709e-09 3.340172268e-10 4.493531801e-10 3.748285112e-10 3.016316587e-10 2.907359227e-10 1.564815108e-10 2.502794289e-10 1.012998167e-10 1.649326505e-10 1.029042977e-10 2.411991325e-10 2.131488639e-10 3.733144645e-10 5.735345906e-10 5.537334156e-10 3.663653092e-10 2.760512847e-10 9.951444205e-10 2.960430148e-10 1.8146786e-10 6.086455004e-10 3.286405293e-10 6.861366694e-10 6.789541743e-10 1.093507931e-09 5.293839619e-10 1.058932375e-09 1.208414318e-09 3.735150781e-10 1.620550915e-09 8.722626461e-10 7.434982837e-10 1.371592198e-09 1.40267237e-09 9.041362298e-10 1.442150801e-09 1.912579178e-09 8.647949463e-10 4.811875693e-10 2.99494647e-10 8.732879273e-10 8.93278694e-10 4.550560592e-10 2.625819348e-10 2.590315733e-10 4.670385064e-10 2.447519298e-10 5.060166867e-10 5.911763736e-10 2.952234414e-10 3.137475797e-10 5.683737675e-10 2.93202604e-10 2.235878691e-10 3.063074473e-10 3.605705095e-10 1.459900719e-10 7.739996759e-11 2.303489505e-10 1.325087546e-10 2.137138056e-10 4.515041424e-10 2.475098012e-10 4.279379754e-10 1.01566629e-09 7.017500714e-10 4.67203497e-10 8.508333426e-10 6.660308957e-10 6.927447098e-10 7.641456092e-10 5.599256149e-10 5.101076076e-10 5.96796319e-10 5.228322925e-10 5.505196165e-10 1.008176303e-09 8.330507985e-10 8.52563926e-10 7.924268619e-10 5.402375067e-10 6.583859087e-10 8.43174452e-10 8.289127683e-10 1.291579969e-09 8.443707833e-10 7.073609049e-10 1.156685406e-09 7.073878502e-10 1.903407439e-10 1.149332619e-09 7.08554062e-10 7.1567185e-10 4.463691511e-10 1.466414414e-09 5.166730581e-10 7.963225705e-10 6.471131321e-10 4.209803651e-10 7.814132596e-10 5.455329494e-10 1.106158663e-09 3.379595751e-10 4.155341036e-10 5.275909261e-10 9.218451611e-10 2.299595205e-10 4.68312707e-10 1.208108624e-09 1.766386585e-10 5.485527617e-10 6.195732653e-10 6.119148392e-10 4.639759577e-10 8.040416757e-10 7.396951394e-10 1.978949264e-10 2.906875954e-10 4.980142758e-10 8.468430455e-10 4.878723767e-10 7.985397492e-10 4.410487205e-10 4.746172238e-10 3.107858926e-10 6.113177096e-10 2.397857956e-10 5.190898043e-10 5.70482876e-10 2.964997928e-10 4.908096826e-10 6.676741559e-10 4.128330335e-10 4.150629994e-10 2.086220102e-10 4.894629209e-10 8.636436926e-10 8.393423467e-11 6.899892907e-10 4.291521395e-10 4.793692539e-10 2.620063778e-10 3.451549688e-10 4.457820278e-10 5.432847343e-10 2.683634753e-10 1.188146543e-10 2.546367247e-10 5.491666055e-10 2.483780028e-10 8.877044575e-10 3.704661e-10 3.552496263e-10 3.196883366e-10 4.52603121e-10 3.313245758e-10 4.897146611e-10 5.189647543e-10 4.079723591e-10 6.650713551e-10 4.248103065e-10 1.774135197e-10 1.978904833e-10 7.133443054e-10 6.96427304e-10 3.938304605e-10 1.924305815e-10 2.291952719e-10 4.066794452e-10 2.805848759e-10 3.913107753e-10 4.88943317e-10 4.004136325e-10 5.604008893e-10 1.067263212e-09 1.335651454e-10 3.412685406e-10 4.455480351e-10 3.59312255e-10 2.574752874e-10 2.691218752e-10 6.855215026e-10 8.844283282e-10 +3.54055601e-10 3.319890778e-10 7.531539273e-10 6.03746395e-10 9.733779816e-10 2.902187178e-10 6.141400945e-10 4.224665681e-10 3.19095147e-10 3.5876566e-10 4.789126087e-10 3.633147381e-10 2.593826424e-10 3.421271714e-10 5.37354789e-10 1.339467803e-10 7.620396392e-10 6.244005653e-10 6.319038018e-10 8.388344456e-10 7.655446919e-10 5.599773774e-10 7.349814048e-10 3.922152923e-10 4.90616534e-10 4.979019447e-10 4.915748082e-10 3.487121086e-10 8.70056398e-10 5.965400086e-10 2.878683816e-10 1.067963787e-10 3.986989048e-10 4.097109161e-10 1.504015413e-10 2.561807189e-10 2.611626004e-10 3.831434753e-10 1.729664633e-10 2.305554604e-10 2.892401543e-10 3.347619053e-10 7.480114575e-10 3.708629355e-10 4.801148612e-10 1.893530527e-10 3.614476498e-10 3.042000578e-10 5.046098064e-10 4.449003605e-10 5.971962992e-10 5.031718459e-10 5.80036028e-10 5.353330851e-10 8.216353985e-10 2.506766079e-10 2.780215754e-10 1.022228825e-09 8.456978169e-10 6.139468567e-10 6.568721145e-10 5.542099849e-10 3.581813622e-10 2.577487284e-10 7.646554768e-10 6.916641274e-10 6.916347936e-10 7.665096328e-10 5.886954991e-10 4.901829387e-10 2.284013928e-10 3.850967475e-10 6.714292291e-10 5.214239936e-10 7.017750889e-10 4.672778268e-10 8.742186891e-10 3.805168477e-10 2.229008743e-10 4.509202798e-10 4.220007844e-10 4.986196534e-10 3.201382778e-10 3.08197483e-10 5.941795254e-10 8.959588661e-10 6.034925075e-10 1.139656998e-09 1.10468515e-09 6.073457857e-10 8.272297887e-10 1.077519845e-09 6.735719862e-10 6.830614327e-10 9.805513696e-10 2.052578149e-10 1.504993895e-09 5.54152418e-10 9.155954228e-10 6.932022123e-10 3.777022875e-10 4.409447335e-10 5.775948309e-10 7.807820478e-10 1.058302275e-09 7.573267408e-10 9.113161545e-10 5.391097928e-10 5.219556883e-10 8.712764457e-10 1.073702098e-09 6.426268096e-10 7.09271585e-10 5.05516449e-10 8.269336316e-10 4.754695109e-10 9.735436266e-10 5.265796769e-10 2.294733501e-10 6.258672873e-10 2.696846326e-10 4.004315548e-10 6.282435728e-10 4.271896697e-10 3.625049775e-10 2.731160819e-10 2.674558367e-10 9.220256517e-11 3.772395043e-10 3.516446854e-10 2.399254436e-10 3.999568742e-10 1.369001635e-10 4.959894691e-10 6.706453852e-10 8.561654188e-11 3.325484555e-10 3.208905918e-10 2.311154277e-10 5.387511868e-10 1.93640136e-10 5.868232213e-10 1.025455192e-09 4.897148083e-10 1.924828936e-10 3.95023586e-10 3.100574183e-10 1.026719568e-09 3.848846629e-10 8.918577091e-10 9.953677909e-10 3.752677986e-10 6.438439145e-10 7.5525625e-10 6.658587295e-10 8.415603864e-10 8.501746797e-10 3.904926262e-10 4.149367633e-10 2.050586169e-10 3.075827771e-10 3.639424587e-10 1.737596994e-10 2.540052621e-10 3.394778064e-10 2.537545283e-10 5.371843388e-10 5.6156959e-10 4.26689018e-10 3.883044853e-10 1.658922699e-10 2.05458353e-10 1.872082192e-10 2.192290351e-10 2.116119191e-10 2.669740724e-10 1.433132983e-10 2.093405674e-10 1.293758753e-10 4.778398755e-10 3.886108854e-10 3.629505658e-10 5.183919283e-10 2.575646953e-10 6.216882955e-10 7.028961415e-10 6.512305725e-10 7.911204891e-10 7.12986688e-10 4.187344352e-10 8.077739234e-10 9.465197254e-10 7.505719742e-10 6.11583657e-10 5.151903177e-10 8.285908187e-10 1.323380611e-09 2.404262802e-10 9.791981318e-10 8.909222138e-10 7.111941251e-10 6.289276268e-10 7.741967515e-10 7.854609454e-10 5.298669479e-10 7.168008814e-10 8.882547582e-10 7.996810051e-10 1.134712554e-09 1.232029416e-09 1.043943626e-09 6.506007676e-10 7.596210918e-10 8.744513162e-10 6.083055587e-10 6.717153415e-10 6.298449005e-10 5.770504613e-10 6.596315251e-10 3.695791843e-10 6.81361494e-10 2.222382607e-10 5.475845371e-10 8.210501511e-10 5.334650375e-10 5.651623503e-10 3.569403064e-10 1.992812951e-10 2.516453269e-10 3.679567287e-10 4.877501247e-10 4.581933988e-10 2.545219468e-10 4.26857911e-10 5.681601753e-10 2.791739415e-10 5.755745512e-10 4.630193948e-10 6.247302335e-10 5.593973892e-10 9.060505746e-10 8.27881556e-11 1.20044638e-09 1.753819888e-10 5.737659561e-10 4.660544673e-10 4.551673434e-10 6.909004643e-10 8.839174079e-11 4.043319347e-10 5.136734769e-10 4.952463086e-10 4.152131127e-10 2.387140239e-10 3.476474851e-10 3.184043204e-10 3.237978738e-10 5.114646118e-10 4.283168639e-10 5.415037436e-10 3.905363422e-10 3.929138455e-10 3.71886543e-10 5.008421383e-10 4.670934553e-10 4.25297422e-10 3.045826412e-10 4.120179983e-10 3.616668258e-10 3.900989131e-10 5.908234736e-10 3.207980317e-10 4.130106104e-10 4.391399108e-10 5.823844008e-10 3.352561326e-10 8.22349383e-10 4.654212579e-10 6.01501649e-10 3.413939239e-10 7.602803844e-10 4.468915197e-10 5.235004659e-10 3.038712603e-10 5.971792181e-10 5.58344886e-10 3.329687316e-10 5.35707887e-10 2.092957884e-10 7.017922342e-10 6.7916216e-10 5.416540003e-10 7.514063588e-10 4.458719096e-10 4.685889677e-10 5.882685483e-10 3.259849129e-10 5.134342576e-10 4.016191573e-10 2.821917566e-10 +2.548513483e-10 2.593101921e-10 7.178619898e-10 1.334944947e-10 7.748985073e-10 4.107032871e-10 5.968425762e-10 4.19792975e-10 6.878353555e-10 7.536051387e-10 5.074810991e-10 1.569988816e-10 4.079514962e-10 4.136758067e-10 6.415268001e-10 4.671824373e-10 6.117749393e-10 4.381542654e-10 5.019956937e-10 2.609374205e-10 8.597483498e-10 4.532410936e-10 3.559387101e-10 3.615625618e-10 2.216187822e-10 4.084201841e-10 3.422560749e-10 3.319956723e-10 5.874971323e-10 3.556309451e-10 1.224458614e-09 2.246031781e-10 6.804659423e-10 8.194304106e-10 6.293212325e-10 8.211656597e-10 4.546948805e-10 4.799335619e-10 1.841071976e-10 2.597938466e-10 3.085203024e-10 5.375644893e-10 4.048329734e-10 6.456100939e-10 5.445585492e-10 9.148741474e-10 4.330347666e-10 9.790453205e-10 5.113742587e-10 7.35428761e-10 7.989476102e-10 6.296196085e-10 5.213186912e-10 5.893242008e-10 4.730391054e-10 7.09877676e-10 8.666255855e-10 4.555588677e-10 2.475885303e-10 8.235199191e-10 5.359844402e-10 4.798078417e-10 3.2642868e-10 5.530675367e-10 5.206629029e-10 1.092757811e-09 2.770480562e-10 6.099042229e-10 7.396780593e-10 4.214397264e-10 4.416151634e-10 3.406307072e-10 2.239942538e-10 5.542155984e-10 5.731079716e-10 8.11758976e-10 2.938762755e-10 2.492833996e-10 3.180247198e-10 3.951866736e-10 5.116826338e-10 4.62405868e-10 7.662991463e-10 6.004185087e-10 6.150107562e-10 1.056586815e-09 1.983432782e-10 9.478103618e-10 9.083921218e-10 9.295924597e-10 8.370123207e-10 7.525490049e-10 7.480026219e-10 1.226890881e-09 7.999768919e-10 3.88667613e-10 6.5623102e-10 7.828031149e-10 3.461982944e-10 8.445489441e-10 1.118312215e-09 1.150645462e-09 8.260101294e-10 9.566998245e-10 1.271216171e-09 5.427440986e-10 5.088652665e-10 7.628573799e-10 6.516463214e-10 2.789700721e-11 7.050384112e-10 5.137867584e-10 7.07859091e-10 8.471065993e-10 5.377059201e-10 9.384586538e-10 3.381352127e-10 6.166104414e-10 5.045454321e-10 5.393894341e-10 3.444386578e-10 4.019115592e-10 4.660380999e-10 3.36139219e-10 2.089485186e-10 1.694233311e-10 1.17488267e-10 3.059145649e-10 3.684880665e-10 2.038337316e-10 1.441666134e-10 8.938112168e-11 1.819648213e-10 2.618811195e-10 5.075277853e-10 3.504135908e-10 4.426229748e-10 4.1600402e-10 6.111223122e-10 5.697253246e-10 5.665728275e-10 4.34970853e-10 4.472894565e-10 4.063738775e-10 3.029049173e-10 4.715886302e-10 5.775728724e-10 4.356591406e-10 8.465429833e-10 2.89820479e-10 4.157865868e-10 3.175625186e-10 2.620723406e-10 6.546752594e-10 5.69806059e-10 6.134764143e-10 5.714555369e-10 4.613343279e-10 4.382220012e-10 5.808590557e-10 4.221605306e-10 4.335408243e-10 2.540318877e-10 6.539800401e-10 6.934402198e-10 2.465022362e-10 3.171767805e-10 4.923782039e-11 9.243146691e-11 2.857596853e-10 1.242721168e-10 3.275491199e-10 1.48926737e-10 2.361779351e-10 2.997941759e-10 1.29466052e-10 3.107821442e-10 5.931831024e-10 3.267194488e-10 5.076005907e-10 3.761782025e-10 4.545160709e-10 6.422452135e-10 3.908209478e-10 2.607420628e-10 2.979365707e-10 3.732077819e-10 6.010903073e-10 7.146553247e-10 3.86487869e-10 3.64633312e-10 3.762373488e-10 5.564353516e-10 6.93461721e-10 6.097118622e-10 6.846551065e-10 6.387093072e-10 6.626980759e-10 8.364574038e-10 6.445696457e-10 6.8277977e-10 2.804413753e-10 1.017928998e-09 4.200081493e-10 1.118898977e-09 1.102961931e-09 1.107036844e-09 1.074467861e-09 6.77914931e-10 1.025140925e-09 8.857636337e-10 6.699585999e-10 8.359876146e-10 7.789724239e-10 1.153320831e-09 6.788673935e-10 2.905253832e-10 9.620526631e-10 4.144673352e-10 5.677535629e-10 5.694153696e-10 9.07657672e-10 5.901452567e-10 1.1896732e-10 9.764588865e-10 5.887677571e-10 5.049210604e-10 4.856918266e-10 8.110120944e-10 6.4586444e-10 1.035109113e-10 4.071901679e-10 3.222112705e-10 7.234100391e-10 9.460680382e-10 5.124303384e-10 7.462793732e-10 5.126183124e-10 3.161195417e-10 2.588380373e-10 2.2337564e-10 3.994178973e-10 5.328076795e-10 3.953095527e-10 5.64479795e-10 2.998294762e-10 9.720756246e-11 4.225403022e-10 4.405158252e-10 2.529696334e-10 4.390580076e-10 6.598263231e-10 2.538037757e-10 5.514432875e-10 5.298385664e-10 3.676947803e-10 3.570053917e-10 5.1440909e-10 2.25201854e-10 2.33340914e-10 2.603040678e-10 3.870537389e-10 3.548576491e-10 7.089536753e-10 4.365347103e-10 5.738821221e-10 1.949372894e-10 1.770193165e-10 3.677645591e-10 4.787647019e-10 2.311632822e-10 3.198279149e-10 3.170808729e-10 3.928804326e-10 3.205446333e-10 3.807121105e-10 5.279504636e-10 5.690333578e-10 8.220133602e-10 6.011549906e-10 5.060397976e-10 2.357120962e-10 2.975617425e-10 3.42656987e-10 3.987423578e-10 2.071692044e-10 3.534797699e-10 6.120440642e-10 3.438621146e-10 3.280895451e-10 3.522290162e-10 4.659231021e-10 1.182163674e-10 1.476304919e-10 2.514926341e-10 2.518145949e-10 2.237711372e-10 1.977654175e-10 3.553302921e-10 5.14050463e-10 +3.038193993e-10 5.066401643e-10 4.8260375e-10 5.008673024e-10 4.649142167e-10 7.724398661e-10 2.200856389e-10 4.948333057e-10 6.740843065e-10 3.927816074e-10 1.624458719e-10 5.0083368e-10 7.052495617e-10 3.380819644e-10 3.510648556e-10 2.690671761e-10 4.66515793e-10 4.4892025e-10 4.35600255e-10 2.166259368e-10 4.828035419e-10 8.631445826e-10 1.014089704e-09 3.496872566e-10 7.613772498e-10 3.710934689e-10 7.267821365e-10 5.053274748e-10 4.171254251e-10 1.341301834e-10 4.313581332e-10 4.344184121e-10 2.45378336e-10 6.575959802e-10 2.06109148e-10 1.804372059e-10 5.923461359e-10 3.881019145e-10 5.8107735e-10 4.974425154e-10 2.189055175e-10 5.54255381e-10 4.99962457e-10 2.779153817e-10 4.471647928e-10 6.69323754e-10 6.115261518e-10 2.816459251e-10 3.364695094e-10 3.734800143e-10 5.773938841e-10 2.984892313e-10 6.99678811e-10 7.193511161e-10 7.697711645e-10 3.606893692e-10 4.265545726e-10 6.195366626e-10 4.59559788e-10 5.121097405e-10 3.918236177e-10 3.214709201e-10 9.486223387e-10 6.309561699e-10 6.393973857e-10 5.214351522e-10 3.437388183e-10 4.892522742e-10 8.331073271e-10 3.273113862e-10 4.109269467e-10 7.851225055e-10 3.007865206e-10 4.637101499e-10 2.60732894e-10 6.135591328e-10 6.409322724e-10 4.109939608e-10 4.557433368e-10 9.15395114e-11 3.561842117e-10 5.275628148e-10 3.722505798e-10 9.453811729e-10 1.026023638e-09 3.719534268e-10 6.938493901e-10 5.791835286e-10 1.135253279e-09 4.716165414e-10 1.159819331e-09 9.05093407e-10 1.213253371e-09 7.096755266e-10 4.286868138e-10 2.455059829e-10 4.97346246e-10 5.274355767e-10 4.443749472e-10 7.865958517e-10 4.2367079e-10 1.290694187e-09 6.957752403e-10 7.653545127e-10 4.478759084e-10 7.964268708e-10 9.573459288e-10 7.795305485e-10 6.54491158e-10 2.796573456e-10 6.431792232e-10 7.040193691e-10 1.048110614e-09 9.009106864e-10 2.390776826e-10 5.429484746e-10 5.604270731e-10 6.336739478e-10 8.336327953e-10 4.593579112e-10 4.337439724e-10 3.186132066e-10 1.033520937e-10 6.870468605e-10 2.809694031e-10 4.20867311e-10 3.991479516e-10 1.539033938e-10 3.566643516e-10 2.578109669e-10 7.286306012e-11 2.403037085e-10 4.324611724e-11 2.11921772e-10 4.317115661e-10 9.064381806e-11 1.356474876e-10 3.968687118e-10 1.688712473e-10 5.015602477e-10 2.721835953e-10 9.194184886e-11 2.65809839e-10 4.7529243e-10 2.752256542e-10 2.186869544e-10 4.876625806e-10 2.305616904e-10 3.292278017e-10 2.013742605e-10 3.530788118e-10 4.955324044e-10 3.416642108e-10 4.559265585e-10 4.643269989e-10 3.642705236e-10 2.037326962e-10 3.190369513e-10 5.500217429e-10 2.903315487e-10 3.164368358e-10 3.278409839e-10 6.298919303e-10 4.063167842e-10 1.84837018e-10 1.975142205e-10 1.908721146e-10 4.073730117e-10 9.558323146e-11 2.562160558e-10 2.351630936e-10 2.604254594e-10 1.739093101e-10 7.042629098e-11 3.871236852e-10 2.518726773e-10 3.712440072e-10 1.757422472e-10 4.108512043e-10 3.025735928e-10 2.464928919e-10 9.613518691e-10 6.486841576e-10 7.709242706e-10 3.430832934e-10 2.435877601e-10 7.892670096e-10 8.464855781e-10 7.444632285e-10 6.585820277e-10 6.584272663e-10 1.062659363e-09 8.405873198e-10 2.253199267e-10 4.512283438e-10 9.153029098e-10 5.911962507e-10 2.415290921e-10 6.036564514e-10 4.089686602e-10 1.78367016e-10 8.996924774e-10 3.586718536e-10 5.869500943e-10 9.748177085e-10 6.981293023e-10 8.947815327e-10 7.381798871e-10 1.373759893e-09 9.712789603e-10 1.64824611e-09 1.037969571e-09 1.430355827e-09 6.05317035e-10 3.656034712e-10 7.980370251e-10 4.587018913e-10 8.86272708e-10 5.838145063e-10 6.604070983e-10 4.717303593e-10 2.60757262e-10 5.262760293e-10 5.122120744e-10 6.91965809e-10 5.244674964e-10 1.57409589e-10 9.386495031e-10 3.798751787e-10 4.195690737e-10 2.963666491e-10 3.944823698e-10 6.995314307e-10 8.68232214e-10 5.049556514e-10 5.050181544e-10 4.787204501e-10 6.175291035e-10 2.556228621e-10 5.184215805e-10 3.32481026e-10 2.746497133e-10 7.04250302e-10 8.553669925e-10 4.522911902e-10 5.298851205e-10 7.747777034e-10 2.749517376e-10 2.586486993e-10 4.439566785e-10 2.396422725e-10 4.419157535e-10 3.770873758e-10 3.003016909e-10 2.103995661e-10 4.14721922e-10 2.362528018e-10 4.825478519e-10 1.635396768e-10 6.040515173e-10 3.721025246e-10 1.508058551e-10 3.765929248e-10 2.385195406e-10 3.636989241e-10 3.555928423e-10 2.552234809e-10 3.522358845e-10 6.365946859e-10 3.904390853e-10 4.559085421e-10 6.011296765e-10 2.112508872e-10 3.393229535e-10 1.845232212e-10 3.811624364e-10 6.097380566e-10 6.660672518e-10 6.736050039e-10 5.384675543e-10 3.80743378e-10 7.792294175e-10 5.941765854e-10 8.524964634e-10 6.665715971e-10 8.627412648e-10 4.344555288e-10 1.468689996e-10 6.480096863e-10 7.306493053e-10 3.008084181e-10 3.538239666e-10 4.981290717e-10 7.773241971e-10 6.33262018e-10 9.725741097e-11 3.437969489e-10 1.742185044e-10 4.117815878e-10 2.825223642e-10 +4.805705332e-10 4.103594102e-10 3.65429702e-10 3.346680623e-10 3.932938024e-10 3.115895071e-10 2.397151068e-10 6.094815588e-10 1.878574707e-10 8.195024695e-10 1.173111423e-09 3.153224005e-10 3.347854313e-10 4.271333041e-10 4.851468699e-10 3.713606853e-10 1.267354241e-09 3.310998265e-10 2.966648355e-10 4.298451439e-10 1.598022707e-10 4.921115025e-10 3.543886313e-10 6.017808685e-10 5.470762665e-10 3.642142464e-10 2.829859155e-10 3.385348047e-10 3.141337437e-10 1.67903907e-10 2.996852158e-10 3.71122524e-10 2.297872705e-10 3.291325651e-10 7.445726606e-10 2.472937608e-10 2.082780484e-10 1.859400569e-10 2.956386604e-10 2.3316334e-10 2.518415863e-10 4.044465929e-10 5.109661158e-10 2.233702494e-10 6.539411706e-10 6.417789282e-10 4.251295871e-10 6.584466511e-10 2.49497804e-10 3.74951171e-10 5.149662585e-10 6.905244267e-10 6.771032783e-10 7.042446841e-10 2.83779442e-10 4.206623008e-10 5.471542634e-10 5.864801431e-10 5.669862491e-10 4.231245503e-10 3.956009348e-10 5.246919586e-10 4.628036645e-10 7.024682836e-10 5.868109702e-10 6.292226938e-10 7.544559802e-10 5.044137632e-10 3.189294876e-10 4.484004071e-10 2.025489758e-10 2.81352583e-10 6.504923553e-10 3.376582777e-10 5.659129607e-10 2.007416804e-10 2.551203472e-10 3.169342038e-10 2.366217434e-10 5.920882668e-10 4.06071091e-10 5.993468599e-10 5.036230792e-10 1.975709447e-10 6.488424611e-10 7.011812158e-10 1.1305019e-09 2.223881269e-10 1.215537309e-09 1.135587242e-09 6.785841417e-10 1.015554087e-09 6.104707623e-10 9.77463821e-10 3.288928815e-10 3.711788795e-10 8.385877256e-10 8.402968111e-10 8.048614799e-10 5.809384824e-10 4.424649498e-10 4.49078852e-10 8.204127954e-10 4.605635323e-10 3.937311597e-10 5.390521733e-10 8.585801105e-10 3.929319494e-10 5.115627232e-10 7.445105682e-10 5.949545664e-10 7.28317477e-10 1.148522675e-09 4.07320218e-10 4.835424516e-10 4.340640853e-10 6.413339468e-10 5.21460858e-10 8.814181121e-10 4.888314064e-10 5.282992328e-10 8.362955277e-10 3.321217069e-10 3.597661544e-10 5.066023628e-10 2.715660697e-10 4.961884005e-10 2.906796736e-10 4.709257403e-10 3.674001403e-10 1.671269976e-10 1.738629529e-10 2.637876047e-10 1.527588956e-10 1.355773776e-10 5.778997723e-10 1.576181996e-10 2.369895092e-10 3.746711221e-10 4.125986478e-10 2.953628593e-10 2.482110117e-10 7.159087675e-10 1.894926111e-10 3.924401589e-10 8.559948359e-10 4.557918615e-10 3.44604658e-10 3.179061885e-10 4.072999366e-10 2.383718219e-10 2.717215815e-10 7.889538726e-10 5.935869185e-10 7.875668599e-10 6.069374501e-10 2.848157728e-10 3.982104639e-10 7.784146896e-10 4.701604141e-10 5.146643847e-10 3.069695489e-10 2.56469084e-10 3.850813337e-10 1.334275541e-10 2.768780866e-10 3.490485037e-10 1.625518807e-10 1.311849092e-10 2.187130521e-10 8.504753055e-11 2.027962393e-10 2.19198132e-10 3.16464643e-10 3.209862258e-10 1.549168672e-10 5.308018877e-10 4.228909574e-10 4.368112244e-10 5.94190085e-10 3.567208777e-10 9.764788311e-10 6.341651916e-10 1.405362476e-10 4.920705553e-10 7.540347003e-10 1.958077791e-10 4.768011891e-10 7.86414475e-10 2.542883151e-10 8.036455625e-10 3.796047095e-10 5.269974018e-10 4.677602483e-10 7.509395531e-10 4.906799756e-10 9.775068261e-10 5.167538228e-10 9.379544916e-10 5.700606204e-10 7.243676552e-10 7.058824009e-10 3.189288264e-10 1.26067292e-09 1.601881959e-09 8.791380328e-10 4.961354457e-10 7.221095066e-10 7.09360214e-10 8.004918193e-10 7.876098205e-10 1.288994842e-09 9.768916067e-10 6.742523762e-10 6.881501709e-10 8.438216577e-10 7.873011963e-10 5.600441055e-10 6.048750601e-10 5.873157854e-10 5.47747393e-10 3.507794564e-10 4.98760067e-10 3.912252968e-10 3.519613122e-10 3.550154214e-10 4.920483306e-10 4.382047094e-10 3.790117596e-10 3.892504422e-10 6.471290886e-10 1.775143369e-10 2.252224532e-10 9.563263992e-10 4.087892227e-10 5.902800365e-10 2.112732005e-10 6.427128983e-10 4.981197331e-10 2.057250321e-10 9.057279923e-10 5.367744944e-10 4.584564074e-10 3.835902896e-10 5.77431736e-10 4.095423435e-10 8.068597865e-10 3.822639952e-10 6.510349894e-10 2.403203207e-10 6.298623941e-10 4.1993763e-10 3.652238393e-10 7.277292071e-10 2.898519603e-10 2.255700378e-10 4.284952001e-10 2.11668797e-10 3.312187767e-10 7.136506888e-10 6.833235791e-11 2.870376216e-10 6.734589793e-10 2.093715769e-10 2.496100974e-10 5.144386908e-10 2.087969445e-10 6.300208651e-10 1.251148607e-10 1.709424248e-10 5.099526222e-10 3.854333917e-10 3.65632309e-10 4.654073961e-10 2.199119242e-10 1.933246304e-10 2.902086196e-10 1.026837968e-09 3.206242402e-10 1.948774295e-10 7.101605598e-10 3.943006167e-10 5.923626604e-10 6.713988268e-10 7.423166629e-10 2.50524944e-10 2.790154114e-10 1.213451657e-10 2.858285948e-10 2.447502405e-10 4.205811237e-10 2.885621587e-10 1.969625347e-10 4.35823421e-10 4.006943053e-10 3.542346268e-10 5.813116879e-10 5.397445919e-10 7.500772029e-10 3.549204256e-10 +4.346872164e-10 2.506915529e-10 1.694738934e-10 5.603403517e-10 5.943980687e-10 2.982384234e-10 2.341318249e-10 3.025532699e-10 3.793220084e-10 1.762986416e-10 8.788174217e-10 4.162570318e-10 3.915462924e-10 4.326506804e-10 4.258425036e-10 4.541610657e-10 6.185681173e-10 2.059723731e-10 2.710723982e-10 2.227447826e-10 3.494025374e-10 5.189631035e-10 7.116300885e-10 2.583563317e-10 6.849487353e-10 4.003754001e-10 2.396004793e-10 3.532381682e-10 3.501865076e-10 4.259586029e-10 2.811174971e-10 1.637702191e-10 2.475831097e-10 5.072275388e-10 2.756922312e-10 4.65242928e-10 8.076493231e-10 4.522084691e-10 2.338899469e-10 8.732877077e-11 2.555676683e-10 3.746895836e-10 6.260410261e-11 3.757756772e-10 3.654944276e-10 2.792502837e-10 2.678833285e-10 4.555104132e-10 5.780186673e-10 2.565567466e-10 6.134933227e-10 6.339588428e-10 2.92643675e-10 5.619916561e-10 3.673057131e-10 2.334462486e-10 5.018468478e-10 1.689425238e-10 4.130843324e-10 1.803427953e-10 1.252580208e-10 5.196924287e-10 8.309437784e-10 5.833929694e-10 3.15096949e-10 4.654894767e-10 3.850517697e-10 3.500603903e-11 5.442961689e-10 3.000026099e-10 4.23077408e-10 7.162250079e-10 4.661541897e-10 5.1254919e-10 1.010862771e-09 2.8696824e-10 3.287289206e-10 3.025264555e-10 3.357500849e-10 1.922292023e-10 2.247765677e-10 7.561187041e-10 5.659521643e-10 6.898068734e-10 4.598218378e-10 3.744073786e-10 6.022289812e-10 7.220921732e-10 9.172506302e-10 1.113607615e-09 9.271022598e-10 6.235513212e-10 5.222256623e-10 3.970780473e-10 1.315627879e-09 1.241604743e-09 1.153576217e-09 1.008876464e-09 7.521609048e-10 1.000751548e-09 7.120103806e-10 1.022763227e-09 6.656029305e-10 4.518809615e-10 8.127268351e-10 4.319988997e-10 4.894443084e-10 6.577512038e-10 4.304184231e-10 8.128138529e-10 5.331481215e-10 6.202597387e-10 5.131767386e-10 8.315239915e-10 4.744075866e-10 4.996944973e-11 1.074363965e-09 9.187940221e-10 6.813694646e-10 4.447097143e-10 9.011427467e-10 5.860875801e-10 3.241679508e-10 6.783804705e-10 5.748112393e-10 2.292007073e-10 3.435690326e-10 1.093642817e-10 4.846038528e-10 1.793257677e-10 2.97056284e-10 1.36164008e-10 2.453949321e-10 3.944878812e-10 2.664998709e-10 2.541979421e-10 2.751641966e-10 3.954600441e-11 5.613136052e-10 2.770369283e-10 2.501345796e-10 5.491990253e-10 3.053640239e-10 2.593141663e-10 1.675532031e-10 2.577261401e-10 4.483328188e-10 4.256448452e-10 3.359827243e-10 3.560713152e-10 3.962720469e-10 3.767391057e-10 7.856586572e-11 3.981122997e-10 3.896156999e-10 3.250346651e-10 2.398719948e-10 2.932321951e-10 5.003359248e-10 2.782699049e-10 1.910532378e-10 3.165159982e-10 1.241182211e-10 2.716693511e-10 2.352168203e-10 7.994817397e-11 2.192186471e-10 1.106536129e-10 2.135412727e-10 1.843790355e-10 4.752969122e-10 1.170743854e-10 3.402044708e-10 2.844485398e-10 2.974294859e-10 3.029131976e-10 2.65361329e-10 4.6890551e-10 3.619974712e-10 7.95896633e-10 1.016155406e-09 5.544223483e-10 4.46005044e-10 2.691852526e-10 4.786590602e-10 7.865925765e-10 8.751395433e-10 3.160072006e-10 4.161477231e-10 5.195821796e-10 8.178981838e-10 3.249004313e-10 6.163571216e-10 4.726325348e-10 6.063959404e-10 1.337092966e-09 6.236799624e-10 9.24412125e-10 8.58222615e-10 6.697101291e-10 4.36184723e-10 7.768289994e-10 2.874497251e-10 3.705687432e-10 1.164574857e-09 8.854666896e-10 3.284435959e-10 3.543681464e-10 1.014168485e-09 7.897493808e-10 3.84623906e-10 6.532202176e-10 3.334314791e-10 7.794768005e-10 9.823904837e-10 1.152048608e-09 4.505564635e-10 2.44253221e-10 2.449668557e-10 1.771009335e-10 3.127411773e-10 4.576745949e-10 4.234760958e-10 4.991092293e-10 5.195565377e-10 3.18162484e-10 7.34571729e-10 7.191486782e-10 5.855226532e-10 6.34208104e-11 4.978846946e-10 4.157940791e-10 2.656673544e-10 1.707447987e-10 8.040636607e-10 2.37006012e-10 2.975494924e-10 5.463863425e-10 3.961674827e-10 3.141747392e-10 4.6406663e-10 7.038349831e-10 2.435045552e-10 6.7977581e-10 2.741251956e-10 5.961236985e-10 4.573814086e-10 2.462060922e-10 3.185322185e-10 8.080663176e-10 1.794865064e-10 2.350617897e-10 5.853235134e-10 9.52457129e-10 3.694017794e-10 4.606971087e-10 5.906976718e-10 8.325275e-11 1.791651059e-10 2.62090959e-10 1.99387415e-10 3.549936116e-10 2.809485569e-10 5.056817913e-10 7.304244728e-10 1.609152682e-10 5.225622956e-10 5.291848026e-10 4.071458613e-10 8.858649048e-10 8.63432102e-10 3.300164231e-10 3.826184686e-10 4.677205659e-10 2.828120092e-10 2.147742757e-10 5.174342484e-10 3.365623901e-10 3.824845564e-10 3.390700444e-10 6.582599233e-10 3.839534168e-10 8.673767173e-11 5.7140856e-10 2.329318898e-10 5.139149573e-10 2.100344611e-10 1.977215591e-10 5.403062369e-10 3.230071004e-10 6.30822505e-10 2.57116577e-10 2.402744952e-10 3.473439581e-10 1.543578306e-10 4.519600678e-10 2.459265426e-10 3.702343795e-10 3.132050729e-10 6.020717435e-10 +2.286903306e-10 3.501632451e-10 6.156363707e-10 6.985772602e-10 4.260170848e-10 2.493216757e-10 5.329574253e-10 2.756986629e-10 1.317349805e-10 1.783635359e-10 6.264495192e-10 8.777661128e-10 7.406334144e-11 4.962458792e-10 8.120363885e-10 1.948508728e-10 7.608822921e-10 5.951087584e-10 5.416950525e-10 1.095159802e-10 1.94938291e-10 2.868460162e-10 4.244871941e-10 2.205449599e-10 3.005386886e-10 5.699315247e-10 2.219721281e-10 1.355796488e-10 5.800247306e-10 3.943461967e-10 2.183281814e-10 2.869435523e-10 3.482434237e-10 4.323494025e-10 1.259098837e-10 4.796862011e-10 4.770605318e-10 3.201770857e-10 1.558648641e-10 2.523040498e-10 1.567266735e-10 7.414150586e-10 3.145532515e-10 1.661292125e-10 2.963649475e-10 2.132220006e-10 4.184969687e-10 5.526405774e-10 3.342820988e-10 2.121552822e-10 4.89095249e-10 5.532354004e-10 5.658555022e-10 5.854208809e-10 2.72718533e-10 5.341600235e-10 2.74334789e-10 4.687254137e-10 4.131152711e-10 4.919422254e-10 6.304596763e-10 4.581536975e-10 6.116199294e-10 1.537734689e-10 6.825597567e-10 6.352139984e-10 8.612595754e-10 6.177310026e-10 4.813663007e-10 5.301874727e-10 6.233812117e-10 6.201655024e-10 5.254172368e-10 1.237015455e-10 4.678244611e-10 2.264900365e-10 5.193213881e-10 4.128359937e-10 2.438768694e-10 1.772181603e-10 5.064471298e-10 1.840592475e-10 1.247498469e-10 6.742424759e-10 3.680874843e-10 6.553147869e-10 8.545997745e-10 9.900057175e-10 5.27608701e-10 3.545651709e-10 7.608041691e-10 8.121468778e-10 7.992043776e-10 7.877556702e-10 4.377563718e-10 5.982514501e-10 3.532786917e-10 6.662916418e-10 1.113171888e-09 8.260856478e-10 6.907106148e-10 9.392997998e-10 1.106168339e-09 8.691501399e-10 7.487800945e-10 7.065510464e-10 5.800874266e-10 7.830630757e-10 5.539133945e-10 6.226242031e-10 6.973778557e-10 7.09298173e-10 5.824440992e-10 2.068766387e-10 5.590563447e-10 6.861739679e-10 2.713271084e-10 2.81690745e-10 8.507774963e-10 6.700626768e-10 5.785534561e-10 6.016811927e-10 5.518898135e-10 6.789639178e-10 4.326034836e-10 3.745811665e-10 2.045946382e-10 2.906743296e-10 3.116222422e-10 2.01521627e-10 1.297886057e-10 7.275872924e-10 2.297231798e-10 5.068692474e-11 1.10592241e-10 2.747770526e-10 8.00034563e-11 2.823005049e-10 2.491004122e-10 2.867293699e-10 2.393479051e-10 1.219825037e-10 4.905570103e-10 2.653368439e-10 4.048350415e-11 4.55369139e-10 2.848008941e-10 1.354166826e-10 2.315565227e-10 1.511757569e-10 8.070188181e-11 1.58355969e-10 1.655406065e-10 1.557516272e-11 1.81659241e-10 3.527010207e-10 1.001014186e-10 2.190212279e-10 5.325691662e-11 2.355770799e-10 1.600077467e-10 8.43703541e-11 7.666022858e-11 2.280565353e-10 2.466078433e-10 1.942536241e-10 3.136730222e-10 3.816900912e-10 3.098832574e-10 3.835856795e-10 3.170290175e-10 3.210767046e-10 2.936225978e-10 3.04085428e-10 1.805444916e-10 5.710211753e-10 3.156485317e-10 4.073508281e-10 6.106390068e-10 6.956189204e-10 8.843148045e-10 6.817681196e-10 3.496359355e-10 3.845525081e-10 5.14733239e-10 6.207303679e-10 6.309576778e-10 9.883242164e-10 4.179102046e-10 7.353031308e-10 5.932391416e-10 1.162752147e-09 5.99651796e-10 4.212914973e-10 9.263242249e-10 4.062230564e-10 8.911771237e-10 1.377780972e-09 7.675630288e-10 3.222506269e-10 4.667163666e-10 5.497338918e-10 1.151207159e-09 5.777203109e-10 5.299658412e-10 3.270021012e-10 8.892992006e-10 6.311017313e-10 1.213934745e-09 6.968501706e-10 1.13146541e-09 2.206175254e-10 5.247841225e-10 9.613154893e-10 3.9233389e-10 5.660686945e-10 4.553721032e-10 1.678108507e-10 3.356296162e-10 6.299802252e-10 3.720704391e-10 4.359238074e-10 3.579678958e-10 8.901656042e-10 4.567103987e-10 2.948317783e-10 5.212654907e-10 1.890228363e-10 2.274012505e-10 7.669299861e-10 2.989842437e-10 4.485445502e-10 4.183612039e-10 3.160266815e-10 1.953808651e-10 2.717768569e-10 6.276722756e-10 6.407438582e-10 7.195021132e-10 4.220020272e-10 8.118792924e-10 2.828808769e-10 3.466809709e-10 5.100344867e-10 4.646306139e-10 4.813999715e-10 4.916977545e-10 4.459633356e-10 4.27862867e-10 4.781627843e-10 3.21751947e-10 4.393446837e-10 4.790220426e-10 2.55214017e-10 7.261689585e-10 4.219163688e-10 1.748937969e-10 5.059646129e-10 1.30683117e-10 4.927426594e-10 4.221704703e-10 2.643444492e-10 2.988619921e-10 6.86177125e-10 5.002633189e-11 4.069193268e-10 5.185470191e-10 2.510845204e-10 3.918013968e-10 1.222482404e-10 3.615569137e-10 4.096643172e-10 5.401835232e-10 6.779368276e-10 1.937867212e-10 2.577731541e-10 4.937618969e-10 1.905671188e-10 3.553706491e-10 4.803379204e-10 4.114154449e-10 6.497000175e-10 6.503087746e-10 3.976441543e-10 2.385129658e-10 2.778960492e-10 2.585610344e-10 5.328913894e-10 4.043065395e-10 2.759250463e-10 5.798545609e-10 8.220284042e-10 4.569807587e-10 3.181939753e-10 3.490205609e-10 2.230429647e-10 4.843411757e-10 2.234371007e-10 1.415563655e-10 7.854432918e-10 +5.293433433e-10 9.084587674e-10 5.143454626e-10 2.762368969e-10 3.311786167e-10 4.563358548e-10 6.153001687e-10 8.600541761e-10 2.154326564e-10 5.26306324e-10 1.877616325e-10 5.574318453e-10 1.883492351e-10 8.599873705e-10 3.282641071e-10 2.669123125e-10 7.241905816e-10 1.65958289e-10 5.355879871e-10 2.508426307e-10 4.834782307e-10 2.3568149e-10 2.508828608e-10 2.650491672e-10 1.133849315e-10 2.853079711e-10 1.69938489e-10 3.975393517e-10 8.932060961e-11 4.662594309e-10 4.422208023e-10 4.110167857e-10 4.820013467e-10 2.915712011e-10 3.070412828e-10 3.576040487e-10 3.431958817e-10 3.194301948e-10 2.447013566e-10 2.533773193e-10 7.509330693e-10 3.89475464e-10 5.554119696e-10 1.314932527e-10 3.524949883e-10 2.44199254e-10 3.179611874e-10 2.140012564e-10 4.098977477e-10 4.76756136e-10 5.853127351e-10 4.499898953e-10 3.244838896e-10 8.362493065e-10 4.125233569e-10 8.407878342e-11 3.034124251e-10 2.6699556e-10 3.383951365e-10 3.308031544e-10 3.247361499e-10 5.862283169e-10 5.331810096e-10 5.924835873e-10 9.760301707e-10 4.553567431e-10 3.80103026e-10 6.82768825e-10 3.918543175e-11 5.083320149e-10 1.889700724e-10 2.53556793e-10 3.212722686e-10 4.469436695e-10 2.864695996e-10 2.639775348e-10 2.123430957e-10 4.47194027e-10 3.975737591e-10 2.159097221e-10 4.3435523e-10 5.063457843e-10 1.030919877e-09 2.966364505e-10 7.969149027e-10 5.498401368e-10 6.651680143e-10 5.246428247e-10 1.405854832e-10 7.294801407e-10 8.802531673e-10 6.135341949e-10 5.848021251e-10 8.256288115e-10 4.966681231e-10 3.640363974e-10 2.984912076e-10 6.614074235e-10 1.20007962e-09 8.418261881e-10 5.91623441e-10 7.626961124e-10 5.870285412e-10 9.812366838e-10 4.063248166e-10 3.564622803e-10 3.211422258e-10 9.295445141e-10 7.621544937e-10 1.096669055e-09 4.044920626e-10 6.161198716e-10 6.429855989e-10 5.704622079e-10 4.856294904e-10 4.862740805e-10 6.20561576e-10 3.812857827e-10 5.10881128e-10 7.579974161e-10 3.078194031e-10 9.132025856e-10 5.855918285e-10 2.632439179e-10 5.596640962e-10 6.848538436e-10 5.711842474e-10 3.369006421e-10 3.044502274e-10 4.986386087e-10 6.073672966e-10 3.809023169e-10 3.195757021e-10 3.766990745e-10 1.850491614e-10 1.137026509e-10 3.079230956e-10 3.734520673e-10 1.902955954e-11 2.798489756e-10 6.514065616e-11 1.016179717e-10 5.570419582e-10 7.589851679e-11 9.873654101e-11 8.148636569e-11 1.667580808e-10 6.20678986e-11 1.420623652e-10 3.101545505e-10 4.125378302e-10 1.166331626e-10 2.121384147e-10 1.254822736e-10 1.582354158e-10 1.397080675e-10 4.492142993e-11 9.348160298e-11 1.473136349e-10 1.730514395e-10 4.69768966e-10 2.951229207e-10 1.19338671e-10 3.3365252e-10 3.883028749e-10 3.474007784e-10 2.659802373e-10 2.746818165e-10 1.786057129e-10 2.017374202e-10 4.396207424e-10 2.204987283e-10 6.115919689e-10 5.561021278e-10 1.994668155e-10 5.15513151e-10 3.009952505e-10 8.936661276e-10 5.485522753e-10 9.764958658e-10 5.00783922e-10 5.741915559e-10 3.246045556e-10 6.773611384e-10 7.193317962e-10 6.229738198e-10 6.076561147e-10 5.0022254e-10 5.656838356e-10 1.169787554e-09 6.049208291e-10 5.167673004e-10 5.419786919e-10 4.861985581e-10 1.923106239e-10 5.668867219e-10 7.866242982e-10 8.416720149e-10 2.771591139e-10 3.77663756e-10 6.999785584e-10 1.028316304e-09 7.795488882e-10 6.899625395e-10 3.071699314e-10 5.221035785e-10 4.20756771e-10 1.052361383e-09 1.258835826e-09 6.895400266e-10 7.385627138e-10 5.308102683e-10 8.879020003e-10 2.876289035e-10 3.639466139e-10 5.247824652e-10 1.859836066e-10 4.028857377e-10 4.657487739e-10 6.554181032e-10 3.329204755e-10 4.122396988e-10 3.288705298e-10 2.141950369e-10 3.222121787e-10 4.230212014e-10 4.608872721e-10 3.296559253e-10 1.77750693e-10 3.754579315e-10 4.114646935e-10 3.316200932e-10 7.201051833e-10 3.503369961e-10 3.200505522e-10 5.736172647e-10 6.106500374e-10 5.054342109e-10 6.11289427e-10 5.549730742e-10 2.690954157e-10 2.695887469e-10 6.027854079e-10 2.450896786e-10 2.095997068e-10 4.3527541e-10 4.461402223e-10 3.698538133e-10 5.917297376e-10 9.892941489e-10 1.576340693e-10 2.13548341e-10 4.688895577e-10 5.57399922e-10 2.697099988e-10 6.581084964e-10 1.710151869e-10 5.636028117e-10 3.410163038e-10 3.115046335e-10 6.982089545e-10 3.789857163e-10 6.968858458e-10 6.508657435e-10 3.467588846e-10 4.698763214e-10 4.589881404e-10 2.548875837e-10 2.589125907e-10 1.215614307e-10 6.003089839e-10 5.031870972e-10 7.19874439e-10 1.47667915e-10 4.539386518e-10 4.019686659e-10 7.285891897e-10 3.980811456e-10 3.159232912e-10 4.544982559e-10 1.354465047e-10 4.306569253e-10 4.293164763e-10 4.385834848e-10 4.909838463e-10 2.214067828e-10 2.570687525e-10 8.485987201e-10 4.13079258e-10 2.703579617e-10 2.750450363e-10 1.813120859e-10 9.131817456e-10 7.486646123e-10 5.196220745e-10 6.431878075e-10 3.914927895e-10 1.624437535e-10 5.641231263e-10 4.643909873e-10 +2.998427764e-10 5.145529601e-10 7.208340808e-10 7.848959808e-10 4.637940431e-10 3.913727631e-10 3.252469681e-10 7.66147776e-10 5.591687047e-10 8.232578544e-10 3.456957539e-10 2.200569874e-10 4.735132844e-10 3.642949801e-10 6.958737328e-10 7.654150502e-10 3.500908933e-10 2.192635087e-10 5.768896896e-10 5.537974068e-10 4.644505655e-10 4.581590673e-10 2.292141289e-10 1.268319237e-10 2.40101091e-10 3.400559324e-10 1.816580416e-10 5.455973233e-10 2.557259425e-10 5.176161233e-10 3.167017453e-10 4.872691588e-10 1.942828534e-10 2.540408819e-10 7.073679775e-10 4.783415155e-10 4.80279761e-10 3.276219684e-10 2.87455921e-10 4.852247466e-10 1.861193368e-10 1.44270476e-10 4.633716284e-10 3.952692367e-10 2.591209123e-10 4.266697094e-10 2.660655881e-10 4.255518964e-10 5.307688165e-10 8.646894913e-11 2.044676423e-10 2.377305125e-10 4.158334708e-10 6.008912066e-10 3.129696024e-10 2.332553694e-10 3.517481128e-10 6.677352119e-10 2.788795452e-10 1.686181441e-10 3.33901863e-10 3.33275369e-10 5.275076867e-10 3.563106039e-10 3.516122846e-10 2.489620913e-10 1.661528338e-10 4.38033679e-10 1.06541247e-10 5.074787735e-10 4.52206807e-10 3.810721718e-10 5.523939411e-10 5.88741963e-10 5.498590634e-10 3.675299295e-10 2.268942538e-10 3.763856948e-10 6.499949546e-10 5.999983941e-10 3.512094574e-10 2.895072166e-10 8.413627473e-10 5.391812696e-10 5.599328157e-10 5.206736707e-10 2.870385457e-10 3.19190819e-10 5.546629753e-10 4.612604028e-10 1.036069256e-09 7.750709519e-10 5.696213999e-10 5.957353535e-10 8.119862195e-10 6.968369291e-10 4.321736854e-10 3.119230227e-10 7.922717334e-10 5.469209674e-10 2.408823197e-10 3.216349664e-10 7.747720986e-10 2.909757808e-10 5.227791637e-10 5.39401958e-10 3.92831416e-10 5.121909269e-10 2.980642809e-10 6.596021057e-10 4.399184358e-10 6.763429427e-10 5.709575055e-10 4.213891741e-10 4.889061755e-10 5.292413798e-10 2.753385981e-10 3.581778807e-10 6.593503375e-10 2.782442767e-10 4.748904274e-10 3.879599366e-10 3.3797043e-10 4.026064506e-10 5.215091824e-10 6.529435768e-10 6.714296437e-10 4.084051761e-10 1.717339233e-10 5.305354148e-10 1.835176263e-10 6.337416422e-10 3.796237501e-10 6.259595871e-10 3.714541968e-10 6.39679625e-10 4.975999566e-10 2.388173421e-10 2.265140403e-10 5.159357932e-11 2.020084264e-10 4.113808239e-10 4.024598537e-10 3.401126487e-10 1.97181478e-10 1.417368259e-10 2.009242491e-11 2.115398095e-10 2.495379298e-10 2.950164716e-10 8.662426036e-11 2.848451323e-10 3.53470676e-10 7.868162024e-11 1.138274822e-10 1.386127257e-10 2.831994773e-10 1.187566517e-10 1.856409614e-10 8.62267463e-11 3.650903247e-10 1.891191746e-10 2.960792961e-10 5.005634765e-11 1.856947122e-10 3.699285272e-10 5.375619199e-10 2.329284153e-10 7.147622876e-10 2.08033204e-10 4.230491008e-10 2.058488127e-10 5.870812189e-10 9.784939982e-10 2.418963953e-10 3.87858347e-10 6.090764776e-10 5.032124825e-10 3.563991858e-10 2.358166425e-10 5.01000645e-10 5.587552011e-10 2.906296825e-10 2.031896762e-10 4.446024644e-10 7.267948833e-10 4.594669361e-10 4.692874827e-10 3.360154296e-10 2.775699136e-10 5.522781442e-10 9.469552476e-10 1.065931152e-09 7.16460421e-10 7.385457701e-10 6.229967039e-10 4.47928124e-10 2.286541587e-10 4.625022421e-10 4.494335403e-10 7.160614931e-10 5.495795553e-10 6.404293605e-10 9.765464441e-10 8.126111014e-10 6.263516396e-10 8.792774094e-10 8.317010466e-10 1.040108297e-09 5.396259434e-10 2.97213225e-10 5.259036384e-10 4.034484947e-10 6.408106774e-10 7.058918874e-10 3.02761102e-10 6.074541587e-10 2.389867961e-10 8.366156142e-11 4.764849222e-10 1.155432132e-10 4.246532882e-10 3.10340854e-10 4.546632706e-10 5.248660245e-10 3.880157469e-10 3.032631354e-10 1.564654688e-10 8.234904214e-10 1.605385239e-10 6.706481669e-10 3.833397075e-10 5.111289344e-10 5.240926779e-10 7.027980343e-10 3.055505839e-10 6.073851532e-10 8.770383794e-10 3.853019401e-10 5.160353954e-10 3.467896024e-10 5.379966112e-10 3.561527625e-10 4.908880214e-10 8.060630322e-11 2.18638064e-10 4.853202998e-10 2.087544583e-10 1.385354454e-10 4.225909062e-10 2.046980827e-10 8.063651326e-10 1.11197747e-10 2.812970204e-10 2.565520789e-10 4.646483811e-10 4.256047689e-10 2.028590589e-10 1.270869202e-10 3.958753182e-10 4.020092895e-10 2.733063678e-10 2.089773897e-10 3.498730671e-10 5.572549237e-10 5.386304505e-10 1.914724419e-10 3.262174345e-10 5.308628717e-10 1.241551461e-10 6.632278045e-10 4.352084087e-10 3.205446032e-10 3.395490724e-10 4.651297767e-10 9.112324979e-10 5.396674108e-10 3.309404797e-10 2.254561064e-10 4.626978731e-10 3.080354869e-10 2.96119438e-10 5.94066629e-10 4.466304087e-10 3.59910097e-10 3.195061659e-10 2.611354881e-10 4.781244462e-10 3.629616271e-10 6.420286037e-10 3.836905033e-10 3.596171342e-10 3.742637237e-10 5.516439413e-10 3.661069284e-10 5.993974586e-10 2.823594977e-10 2.066255974e-10 2.340353214e-10 5.508408877e-10 +4.382563082e-10 4.372428265e-10 3.578691199e-10 6.58727225e-10 6.130381448e-10 8.62809037e-10 6.766970622e-10 3.136353664e-10 3.414962879e-10 2.679409306e-10 4.397497388e-10 2.876704104e-10 1.26416988e-10 6.137505519e-10 5.691298486e-10 4.896720663e-10 5.003424638e-10 5.472861188e-10 5.512747674e-10 2.516968876e-10 6.872984433e-10 1.188611657e-10 1.551356224e-10 2.329001541e-10 2.145045967e-10 4.367405517e-10 1.715216037e-10 1.8441075e-10 3.031800268e-10 6.063294425e-10 4.006948306e-10 5.152782515e-10 2.471599674e-10 1.525680019e-10 1.745873774e-10 1.27394375e-10 2.896517947e-10 1.860790013e-10 2.98471127e-10 6.169854412e-10 4.027334934e-10 4.109645691e-10 2.659165065e-10 2.772099139e-10 3.547508859e-10 5.120333911e-10 7.019098015e-10 5.744866821e-10 7.301369353e-10 2.825715469e-10 3.31280143e-10 5.062845524e-10 5.358694632e-10 3.213206351e-10 4.376578553e-10 1.675738851e-10 4.858666626e-10 5.074632266e-10 9.866381338e-10 4.004432395e-10 2.360305359e-10 5.139514327e-10 2.372132568e-10 3.797287737e-10 3.602926405e-10 2.371944533e-10 4.955614687e-10 3.890875337e-10 3.393639829e-10 4.562789088e-10 2.017400097e-10 3.914338559e-10 2.231207868e-10 5.075398903e-10 3.482394073e-10 4.994813393e-10 2.868068636e-10 1.545490994e-10 3.526164986e-10 2.344269244e-10 9.506460417e-11 3.247725407e-10 9.323674017e-10 1.203411951e-10 4.468284525e-10 4.211400105e-10 4.160936387e-10 6.459671574e-10 8.52275119e-10 9.61544631e-10 7.739916331e-10 6.991657015e-10 5.345047499e-10 8.8836378e-10 1.133033395e-09 5.43624532e-10 9.689432725e-10 1.12497065e-09 8.712641406e-10 2.254722594e-10 9.15380474e-10 4.657762528e-10 3.58923449e-10 7.384137623e-10 7.699931029e-10 5.351320643e-10 7.867246479e-10 1.211440843e-10 6.033788156e-10 3.406759301e-10 6.31989383e-10 3.771500794e-10 3.031374665e-10 8.182318838e-10 1.059176939e-09 2.730214051e-10 3.52031638e-10 7.561434443e-10 9.040370688e-10 6.666698095e-10 3.813914152e-10 4.053447058e-10 6.996181285e-10 3.199968598e-10 4.265148222e-10 4.85411281e-10 6.400876601e-10 4.981034877e-10 6.115029804e-10 6.112816904e-10 3.980758573e-10 6.60391264e-10 5.583221802e-10 1.81070242e-10 1.83055018e-10 1.059930343e-10 5.176733865e-10 5.397659805e-10 3.051637782e-10 2.714852446e-10 2.104287239e-10 4.350946475e-10 1.120727854e-10 4.364429614e-10 2.07924837e-10 2.572625428e-10 3.071624743e-10 4.144984185e-10 3.019688428e-10 2.799131305e-10 1.767726444e-10 1.416936969e-10 2.573345528e-10 2.064842777e-10 1.189733732e-10 1.050436727e-10 3.471379324e-10 1.880220139e-10 3.224664853e-10 4.158046953e-10 3.642391371e-10 4.862763501e-10 2.651227548e-10 2.447370551e-10 3.32755036e-10 1.996082317e-10 3.945198277e-10 6.168259083e-10 3.036234332e-10 2.349354895e-10 7.971455803e-10 5.766565914e-10 5.266718735e-10 4.257641755e-10 5.83289818e-10 5.592979369e-10 2.218419598e-10 1.258637632e-09 5.138359121e-10 3.469299248e-10 6.782659234e-10 7.312051326e-10 7.306223336e-10 4.744101529e-10 5.981067828e-10 8.190339666e-10 2.749637213e-10 4.801996027e-10 5.758266856e-10 4.224294072e-10 2.316215268e-10 2.653092737e-10 5.279264013e-10 9.709484207e-10 3.404405517e-10 4.596801331e-10 7.227934769e-10 7.573134951e-10 4.033650567e-10 5.430621989e-10 6.959170185e-10 7.537650671e-10 3.566854035e-10 5.594219673e-10 4.655167472e-10 7.536261952e-10 1.304481115e-09 6.552876974e-10 8.759180736e-10 4.165348105e-10 6.389154859e-10 5.408704574e-10 4.208272436e-10 6.142221551e-10 3.338207693e-10 6.251793069e-10 5.839996739e-10 2.927918866e-10 5.605919142e-10 1.817885835e-10 1.288379224e-10 2.875130841e-10 3.491224466e-10 3.004085662e-10 1.604264746e-10 2.160400039e-10 3.750373009e-10 2.719063626e-10 2.399314676e-10 4.311981979e-10 4.446807694e-10 7.104039154e-10 6.185475882e-10 3.448417667e-10 6.992060405e-10 5.993550532e-10 7.134056047e-10 2.178006158e-10 6.283215106e-10 6.421902002e-10 4.647532452e-10 7.69098287e-10 4.494965011e-10 2.84321979e-10 4.185237725e-10 2.214747604e-10 6.599889769e-10 1.830833787e-10 5.308363315e-10 9.119933613e-10 3.640611508e-10 7.384022553e-10 8.859278235e-10 2.407026413e-10 6.03310185e-10 4.499046554e-10 3.664823499e-10 1.472666929e-10 1.231485656e-10 1.938727691e-10 1.576386188e-10 1.572294854e-10 2.143773697e-10 2.573182453e-10 2.235007106e-10 1.76933118e-10 6.667552454e-10 1.911668517e-10 3.596022088e-10 6.561372273e-10 5.45972296e-10 3.871416182e-10 4.442504824e-10 5.183686536e-10 3.23953863e-10 3.505313385e-10 4.522539635e-10 2.871100232e-10 1.883828498e-10 1.900568072e-10 2.384558897e-10 5.766713769e-10 8.087125306e-10 4.879467109e-10 4.093188843e-10 1.728172947e-10 5.569242034e-10 1.678878853e-10 4.173227748e-10 1.455509018e-10 5.171400953e-10 2.6889753e-10 4.598349564e-10 5.093890148e-10 5.192000721e-10 2.096883682e-10 1.188999763e-10 3.325205865e-10 4.098962119e-10 3.293878256e-10 +2.597970565e-10 2.859316622e-10 2.961949592e-10 3.619954944e-10 2.069511286e-10 1.69795572e-10 1.924305117e-10 1.986460995e-10 3.474620845e-10 4.046495974e-10 2.902156757e-10 3.808638245e-10 3.143723417e-10 4.847602935e-10 5.080391273e-10 3.444714959e-10 4.381511744e-10 3.281871541e-10 2.584660348e-10 1.406743457e-10 4.72713415e-10 5.491379286e-10 3.738688805e-10 3.507432687e-10 2.101764819e-10 1.388060853e-10 1.511452963e-10 3.500038983e-10 1.924407149e-10 1.226931493e-10 4.33887909e-10 6.992479336e-10 5.815408085e-10 3.885287767e-10 2.55860818e-10 2.620550695e-10 2.943299185e-10 6.673631153e-10 6.096444116e-10 2.451583574e-10 5.690431131e-11 2.760006293e-10 5.262015107e-10 3.333747893e-10 1.730022073e-10 7.669002499e-10 3.399011712e-10 6.904130948e-10 4.371335011e-10 3.490958739e-10 5.047659501e-10 3.084588198e-10 6.547159262e-10 3.64824708e-10 7.764723766e-10 5.998563388e-10 4.101329712e-10 1.538533857e-10 3.040981064e-10 2.548967373e-10 2.303978435e-10 9.285102095e-10 2.372461316e-10 2.083070118e-10 4.714485798e-10 5.16459192e-10 2.385845439e-10 4.84163883e-10 4.396196968e-10 1.155701158e-10 2.278561949e-10 2.515624735e-10 3.358992562e-10 3.359193074e-10 6.411211169e-10 4.396467152e-10 6.089379508e-11 4.129186681e-10 2.255091512e-10 5.467021504e-10 1.217592443e-10 2.409690965e-10 3.930771249e-10 2.098054062e-10 6.920358295e-10 4.588904939e-10 4.017766662e-10 8.816582842e-10 5.003418779e-10 8.555270266e-10 1.327364396e-10 9.585393515e-10 1.022939935e-09 9.650328875e-10 6.898868432e-10 7.570967216e-10 6.872142222e-10 1.035426571e-09 6.969468945e-10 6.342948329e-10 1.027449822e-09 6.72991293e-10 3.140630231e-10 4.458823672e-10 1.094696566e-09 4.57801783e-10 5.134167649e-10 6.949281631e-10 7.655908446e-10 7.467000792e-10 7.10529238e-10 3.51673865e-10 3.064457789e-10 4.875217762e-10 3.424335282e-10 8.016047399e-10 5.252939153e-10 4.420551927e-10 3.614528235e-10 4.646191548e-10 4.835929396e-10 3.75984152e-10 4.12512782e-10 3.973478706e-10 6.277652325e-10 6.06879774e-10 4.698889508e-10 9.015581152e-10 2.597218344e-10 4.022521136e-10 7.899328171e-10 4.856006437e-10 5.683715117e-10 5.124206558e-10 4.398277909e-10 4.122414539e-10 4.97549702e-10 2.610958169e-10 3.702655604e-10 5.320151075e-10 4.463726501e-10 6.737901149e-10 2.15642537e-10 1.461925079e-10 3.378719332e-10 3.750633314e-10 1.337974659e-10 3.9660413e-10 4.045638881e-10 1.678582562e-10 1.826416123e-10 2.974811249e-10 5.366503591e-10 1.676079108e-10 3.000880336e-10 2.792265861e-10 3.574099788e-10 4.364666247e-10 2.229278379e-10 1.508061757e-10 3.710024374e-10 1.952864121e-10 3.86384482e-10 4.480422093e-10 2.360561403e-10 1.200667102e-10 5.128543505e-10 1.418622658e-10 4.854276638e-10 4.90874734e-10 6.056754826e-10 3.397091656e-10 3.635030934e-10 3.640684349e-10 5.85407945e-10 3.409112914e-10 2.732166294e-10 7.664933849e-10 6.597519566e-10 6.006997054e-10 5.398406032e-10 4.399580424e-10 5.540414687e-10 4.094498017e-10 4.948084177e-10 8.472970468e-10 8.873200464e-10 4.466110207e-10 7.316461832e-10 3.108326254e-10 6.66654236e-10 7.865852884e-10 5.059107764e-10 4.761094071e-10 3.841992291e-10 8.740527166e-10 5.816371902e-10 2.61065418e-10 9.042536193e-10 9.791203898e-10 6.539452373e-10 3.481097905e-10 6.055175547e-10 5.246706181e-10 1.271424698e-09 6.282803149e-10 7.766205072e-10 7.193212432e-10 1.071926765e-09 5.993731909e-10 9.54534358e-10 3.672032983e-10 3.953247912e-10 6.343354586e-10 6.500979474e-10 3.929019474e-10 4.600569465e-10 5.22588943e-10 4.568422796e-10 2.767954323e-10 7.047033306e-10 2.127827076e-10 3.9403853e-10 3.619839382e-10 3.94688929e-10 4.447867294e-10 3.32748147e-10 2.283308964e-11 3.206605944e-10 2.265102488e-10 1.824300766e-10 2.200380028e-10 4.463004786e-10 3.977897445e-10 7.383633506e-10 5.302320051e-10 4.552106138e-10 3.041550961e-10 3.244676235e-10 4.087922259e-10 1.097826791e-10 2.00575743e-10 3.440973078e-10 3.985990149e-10 2.717358718e-10 4.000914207e-10 2.980885806e-10 3.58066229e-10 6.655931639e-10 1.208080761e-10 6.361725965e-10 2.519394904e-10 4.83421901e-10 5.688481864e-10 2.13049828e-10 2.408653983e-10 3.600183283e-10 5.424078605e-10 3.965400112e-10 1.889004997e-10 3.171213533e-10 4.955972922e-10 3.602475632e-10 2.450222464e-10 4.00592771e-10 2.607241424e-10 4.062088748e-10 4.219106181e-10 7.51645908e-10 3.007624942e-10 3.461779193e-10 3.547927021e-10 2.324419487e-10 8.198878122e-10 1.362579643e-10 4.214165515e-10 3.380064746e-10 2.261319376e-10 4.005977927e-10 9.812465594e-11 2.638264916e-10 1.733483415e-10 4.316981457e-10 5.177276357e-10 5.766195249e-10 2.528902246e-10 2.291000885e-10 5.96746737e-10 1.923817898e-10 7.719998211e-10 3.947825448e-10 3.708750156e-10 4.819918323e-10 3.757466597e-10 1.918233926e-10 2.278190602e-10 2.222089117e-10 6.009389549e-10 3.620065461e-10 3.779774372e-10 +2.611394225e-10 2.172664102e-10 3.784316357e-10 3.551829061e-10 4.958592645e-10 9.173092521e-10 2.170398664e-10 2.715303357e-10 4.740191681e-10 1.96007322e-10 6.862800923e-10 3.288257667e-10 2.813709365e-10 3.350995472e-10 5.992807519e-10 4.466198311e-10 5.394200817e-10 2.464010365e-10 1.014966771e-10 1.874677563e-10 2.349856668e-10 3.08704985e-10 3.506268184e-10 6.402110249e-10 3.09023043e-10 7.896011796e-11 3.241759615e-10 2.936128634e-10 3.142681962e-10 3.6961529e-10 2.470737362e-10 2.222414755e-10 3.882326081e-10 1.935636876e-10 5.690364419e-10 2.140113538e-10 3.747021478e-10 1.692719875e-10 4.050381393e-10 3.071655335e-10 6.537353056e-10 2.009457026e-10 4.637128899e-10 2.406853815e-10 3.361822998e-10 2.53507465e-10 6.961795906e-10 6.078026828e-10 2.67220067e-10 2.113672449e-10 3.249366065e-10 1.84605834e-10 3.799711462e-10 1.935616906e-10 2.350140029e-10 2.928355681e-10 6.850682511e-10 1.983991211e-10 5.303859835e-10 3.129144831e-10 2.191300832e-10 6.662981711e-10 5.327999877e-10 2.619803248e-10 1.943898454e-10 2.443960459e-10 2.395420972e-10 4.054027465e-10 2.356950007e-10 2.875855204e-10 2.950718505e-10 5.118440792e-10 5.241252368e-10 6.273070183e-10 1.449698844e-10 4.314040467e-10 3.22555586e-10 6.58394308e-11 3.508823e-10 3.0314552e-10 3.039995095e-10 1.163551664e-10 3.872466478e-10 6.632401374e-10 1.529776581e-10 6.539625462e-10 7.351536317e-10 3.930229376e-10 5.040496313e-10 4.071401792e-10 1.264074313e-09 9.295111109e-10 5.039853729e-10 1.14954605e-09 5.057095873e-10 5.275084751e-10 7.103195698e-10 3.685199831e-10 6.251214603e-10 8.87450616e-10 5.229629839e-10 9.355706067e-10 1.192982561e-10 2.338943609e-10 4.216921383e-10 4.665159863e-10 5.972985405e-10 5.380940099e-10 6.468168678e-10 6.141297226e-10 4.5277702e-10 7.464363682e-10 7.888544492e-10 7.082576365e-10 5.665705309e-10 3.516417551e-10 4.548934756e-10 9.832875465e-10 3.319300085e-10 5.568229048e-10 6.592048317e-10 7.970444635e-10 4.175351307e-10 1.962263687e-11 7.229927983e-10 4.359696681e-10 4.640358385e-10 3.118258206e-10 1.72548834e-10 2.30966345e-10 3.694586338e-10 5.270933548e-10 1.093534237e-09 4.201458371e-10 3.186822968e-10 3.287807934e-10 3.549173053e-10 2.954900756e-10 4.137858513e-10 4.385369694e-10 3.414115343e-10 1.916609271e-10 2.063021631e-10 2.569390517e-10 1.603849611e-10 3.923524774e-10 3.916353706e-10 5.573196074e-10 3.686281551e-10 1.529209428e-10 6.040005041e-10 5.793454163e-10 3.50998935e-10 8.750619311e-10 3.452650715e-10 4.738444317e-10 3.269548943e-10 6.694013262e-10 3.333101266e-10 3.086001195e-10 3.112960257e-10 6.140272302e-10 6.75863945e-10 2.694138969e-10 4.980804235e-10 2.639336653e-10 5.714458196e-10 4.886656291e-10 5.572443759e-10 4.395578128e-10 3.251576675e-10 5.52773511e-10 2.329846513e-10 9.214067896e-10 4.24738857e-10 1.162545266e-09 3.957802413e-10 7.424978979e-10 9.067759287e-11 4.220490634e-10 7.787440958e-10 2.211749128e-10 5.669860001e-10 3.255459737e-10 6.780788482e-10 6.560957005e-10 8.188642279e-10 2.022076407e-10 5.635701363e-10 5.000718235e-10 4.895766274e-10 2.424251648e-10 2.704884805e-10 5.806581796e-10 2.634990542e-10 5.007660876e-10 4.29932509e-10 3.652474475e-10 1.022900916e-09 3.731561421e-10 4.455924651e-10 6.965443082e-10 8.879632232e-10 1.231429564e-09 5.023590211e-10 7.747607606e-10 4.864840947e-10 6.018590577e-10 5.091489305e-10 7.427849123e-10 6.153263154e-10 9.974725125e-10 5.120571046e-10 9.186699593e-10 4.295173118e-10 2.307768037e-10 4.601561051e-10 2.801682899e-10 3.816600264e-10 2.633111535e-10 2.702795713e-10 1.995477564e-10 5.813687009e-10 5.197542244e-10 3.316763823e-10 3.514067882e-10 1.498871749e-10 3.312898442e-10 6.249392872e-10 6.548663258e-10 2.528483758e-10 6.121969489e-10 2.333952845e-10 1.350873794e-10 5.020287565e-10 2.787099032e-10 3.868958917e-10 7.93648491e-10 2.943717247e-10 2.693998345e-10 4.986590999e-10 3.191263726e-10 6.020940843e-10 3.99934441e-10 4.407649647e-10 7.036205461e-10 4.539583464e-10 3.890489099e-10 4.068748753e-10 4.07698169e-10 5.30895132e-10 5.534488865e-10 4.96776003e-10 7.228385367e-10 1.790701443e-10 5.273021616e-10 5.536533788e-10 2.588408277e-10 4.599312046e-10 8.13735006e-10 4.784487808e-10 5.950086982e-10 6.244492866e-10 1.389996259e-10 3.664593115e-10 2.057000939e-10 6.57840646e-10 3.628251128e-10 3.793247986e-10 3.464618208e-10 1.215858e-10 1.39925199e-10 4.281950432e-10 3.179055116e-10 3.306276699e-10 2.401228811e-10 4.201315501e-10 3.003036509e-10 2.525090133e-10 6.851340038e-10 2.258277782e-10 1.837805702e-10 2.407462118e-10 3.594130204e-10 2.8975899e-10 3.190987433e-10 3.170140719e-10 2.596578348e-10 2.189346626e-10 2.069218791e-10 8.638935793e-11 2.395771921e-10 2.882259861e-10 3.902044583e-10 1.697475919e-10 2.9350339e-10 1.4619947e-10 3.310230581e-10 3.343131526e-10 1.88472797e-10 +3.602651956e-10 2.090904021e-10 4.846381204e-10 3.187129103e-10 4.445556964e-10 2.025874409e-10 5.157255097e-10 2.765693575e-10 3.830323457e-10 2.536658118e-10 5.655322847e-10 2.999494536e-10 1.555133631e-10 5.913025255e-10 4.027280768e-10 2.232334339e-10 4.596270501e-10 1.831150086e-10 3.078945973e-10 1.393291827e-10 3.974776593e-10 4.487447536e-10 2.339422926e-10 2.400649802e-10 2.312259879e-10 4.027408771e-10 9.466219468e-11 8.556351832e-11 3.330929874e-10 1.243373949e-10 2.195616908e-10 2.319198974e-10 1.990927592e-10 2.427078608e-10 1.911556095e-10 4.976642391e-10 5.171069076e-10 6.154247313e-10 4.972151985e-10 2.173663671e-10 2.707002542e-10 1.644367749e-10 8.080567053e-10 3.734358044e-10 1.349107752e-10 5.361182412e-10 5.659555639e-10 3.974893092e-10 6.079423461e-10 5.695620992e-10 2.744512258e-10 2.96028447e-10 8.496655167e-10 3.268223788e-10 8.335509294e-10 6.200470695e-10 4.812472355e-10 3.192539894e-10 1.234037677e-10 2.220111809e-10 1.271212215e-10 9.425189814e-11 4.772646069e-10 5.474062187e-10 3.063432682e-10 6.943153489e-11 2.1482704e-10 6.526695391e-10 4.298285053e-10 2.161943104e-10 2.190717462e-10 5.006882157e-10 3.564840928e-10 2.899859904e-10 3.372103758e-10 3.329508604e-10 4.566335231e-10 7.737866426e-10 4.498459391e-10 2.306921096e-10 9.472204867e-11 3.268046986e-11 1.410898222e-10 3.985538024e-10 7.640280508e-10 5.570994218e-10 3.978506081e-10 4.583708148e-10 3.391413435e-10 6.356926478e-10 3.763737246e-10 5.656909472e-10 5.80919224e-10 7.955846181e-10 1.086452899e-09 6.775188697e-10 6.704663517e-10 1.057636529e-09 5.57498452e-10 7.634897435e-10 5.593052423e-10 3.697417698e-10 3.865416976e-10 2.941690435e-10 7.504461994e-10 4.973296029e-10 4.887618493e-10 4.606775046e-10 6.489239168e-11 5.088244214e-10 3.436144658e-10 5.245168092e-10 4.418280916e-10 3.250029175e-10 5.110573905e-10 2.071016584e-10 9.941390826e-10 2.758296425e-10 8.333276985e-10 3.501039507e-10 5.376162834e-10 7.016587652e-10 5.603127107e-10 7.538431644e-10 4.007737727e-10 1.098330955e-10 1.009527871e-09 5.217527453e-10 7.64162857e-10 4.316348062e-10 5.356199275e-10 3.62375039e-10 4.280163857e-10 8.491251783e-10 5.214956369e-10 5.717967033e-10 2.865809531e-10 2.73030782e-10 2.238522141e-10 4.363307046e-10 5.750760905e-10 3.470302764e-10 5.375339646e-10 6.698181537e-10 8.879838754e-10 3.810753062e-10 1.287068479e-10 3.482771571e-10 3.335231585e-10 1.082627444e-09 5.466158421e-10 1.914260337e-10 5.731028341e-10 1.164632413e-10 4.038281109e-10 1.394096271e-10 1.734794702e-10 1.999871781e-10 3.639536984e-10 5.433013669e-10 2.210433524e-10 1.461172256e-10 5.386544823e-10 6.488207683e-10 2.640749123e-10 5.732855879e-10 4.48599847e-10 5.423715003e-10 6.594714194e-10 5.896839589e-10 4.313222462e-10 3.296220454e-10 6.310398705e-10 1.587134021e-10 4.707503287e-10 5.535562976e-10 4.713148506e-10 1.505268917e-10 6.418032309e-10 5.805170435e-10 4.355207077e-10 9.59013334e-10 7.234665279e-10 5.371708489e-10 4.467311069e-10 5.473847374e-10 5.37652367e-10 5.609228001e-10 7.651859445e-10 5.564454381e-10 2.426794435e-10 6.114055546e-10 1.739063622e-10 5.506753258e-10 6.710592469e-10 4.811186128e-10 6.118621947e-10 4.243179326e-10 4.739098496e-10 3.505667283e-10 5.359975696e-10 1.048886931e-09 7.209544214e-10 7.443257172e-10 1.061922271e-09 4.733727042e-10 1.214413209e-09 8.949684638e-10 6.739273427e-10 2.535290226e-10 3.643572811e-10 1.865667173e-10 7.710118506e-10 2.827076656e-10 2.481345797e-10 4.483789123e-10 2.302762837e-10 6.1782485e-11 1.915220788e-10 1.588024978e-10 4.602967099e-10 3.657062974e-10 3.469593175e-10 3.922902261e-10 2.340684948e-10 4.461017012e-10 3.897796832e-10 3.661192102e-10 4.388054144e-10 2.822887286e-10 4.896298993e-10 2.393315016e-10 4.206688953e-10 2.839950034e-10 3.011912595e-10 3.3859733e-10 1.425266569e-10 6.826960262e-10 3.371784144e-10 2.587954641e-10 3.197900209e-10 2.013333581e-10 4.702226497e-10 4.114401913e-10 3.532822268e-10 5.5268139e-10 1.984691864e-10 3.764407717e-10 5.464062339e-10 2.380397485e-10 2.038114558e-10 4.018054041e-10 6.991017268e-10 4.681197831e-10 3.554878041e-10 4.286541804e-10 5.243337625e-10 2.362257919e-10 2.129846423e-10 1.349097436e-10 1.564024936e-10 1.128169884e-10 1.346579541e-10 1.991308314e-10 2.938730552e-10 1.764596955e-10 1.992773098e-10 1.105809204e-10 1.520233395e-10 4.800260237e-10 4.155664909e-10 3.141633569e-10 2.334317076e-10 4.93843287e-10 2.679931525e-10 4.906770212e-11 3.726610158e-10 2.164917749e-10 7.363579887e-10 1.244515365e-10 6.524367436e-10 2.712153083e-10 3.191999188e-10 4.120586361e-10 2.125343264e-10 3.245476169e-10 5.040951463e-10 7.65019463e-10 2.998059427e-10 1.399978977e-10 2.222009214e-10 2.854135405e-10 7.082985287e-10 3.16167123e-10 4.076359607e-10 2.201188637e-10 2.60713654e-10 4.553657821e-10 3.912832373e-10 3.407608731e-10 +3.664418818e-10 3.224628534e-10 2.736841847e-10 3.456370623e-10 5.006788905e-10 1.348224338e-10 2.15364581e-10 1.574642089e-10 1.665972731e-10 1.832372012e-10 3.414474632e-10 7.161284581e-10 3.846898962e-10 2.881941737e-10 1.366416975e-10 2.729214304e-10 2.560755075e-10 9.667383253e-10 7.432939966e-10 1.833634595e-10 2.524280777e-10 3.853058232e-10 4.482167743e-10 8.172440348e-10 9.44931119e-11 2.926573879e-10 1.752825184e-10 3.593584948e-10 2.69410885e-10 6.007917321e-10 7.511120026e-11 1.935322781e-10 4.564792894e-10 1.92949035e-10 2.583191309e-10 3.260087719e-10 1.228276268e-10 4.146693416e-10 4.004721049e-10 4.728141966e-10 2.947366076e-10 5.522182121e-10 4.75837427e-10 7.196118476e-10 3.491233407e-10 2.619809741e-10 2.780237735e-10 2.960103878e-10 5.213463787e-10 2.785644455e-10 6.069540903e-10 1.478703289e-10 3.107554043e-10 5.758417955e-10 2.566090945e-10 5.665412327e-10 1.762664415e-10 4.555011884e-10 4.306601412e-10 3.259577894e-10 3.354853228e-10 2.808183704e-10 6.397153391e-10 3.967572785e-10 3.392849931e-10 5.49850782e-10 2.10021789e-10 1.59176342e-10 4.623807603e-10 3.637938705e-11 2.166805609e-10 2.528964444e-10 1.825292186e-10 4.40652116e-10 5.066792559e-10 3.681890571e-10 3.21346058e-10 3.274191234e-10 4.409903424e-10 2.583314808e-10 2.315966107e-10 4.953932935e-10 2.854862484e-10 5.493483652e-10 2.424056099e-10 6.879938096e-10 8.391834773e-10 1.777485339e-10 3.516168553e-10 4.890298344e-10 4.124444612e-10 4.46991331e-10 5.85686267e-10 4.862259434e-10 4.60513134e-10 3.009327743e-10 8.805464045e-10 7.241377241e-10 5.476624587e-10 4.253815194e-10 3.066351354e-10 7.172774948e-10 4.227748591e-10 6.623797945e-10 6.069303596e-10 6.954732065e-10 4.173588849e-10 2.213408843e-10 7.402682963e-10 4.876738563e-10 9.543371977e-10 4.362930166e-10 6.656204423e-10 4.006449515e-10 3.890349678e-10 3.715989715e-10 6.066725007e-10 5.031743716e-10 4.68290304e-10 7.439589007e-10 4.517230665e-10 3.620897406e-10 4.389845466e-10 1.134621344e-09 7.241304764e-10 4.32106891e-10 2.717721574e-10 2.756723527e-10 3.67535661e-10 3.583597155e-10 4.130706747e-10 4.253411429e-10 4.315623177e-10 5.188755608e-10 8.030609426e-10 4.86423602e-10 2.932317962e-10 3.212708932e-10 5.141851155e-10 5.940337011e-10 4.638378558e-10 1.780461335e-10 3.854483995e-10 3.327977048e-10 6.090948472e-10 6.832173212e-10 7.930852916e-10 3.169773529e-10 2.942372931e-10 4.499730567e-10 8.854998592e-10 2.432977351e-10 4.844240491e-10 2.429511078e-10 4.620671696e-10 2.910561296e-10 2.431162786e-10 4.373660419e-10 2.228114182e-10 5.81474486e-10 4.024071743e-10 4.736737455e-10 5.248962289e-10 6.538369836e-10 5.507296989e-10 4.809718239e-10 4.58080568e-10 6.810616515e-10 3.154011696e-10 6.642437697e-10 3.856883316e-10 6.224402607e-10 9.891209745e-10 3.711908593e-10 2.396708938e-10 3.302532686e-10 2.752326802e-10 5.394151533e-10 3.877335121e-10 5.357289322e-10 7.195072513e-10 3.314803225e-10 1.740611766e-10 3.985015413e-10 5.20464798e-10 6.461751238e-10 3.086519489e-10 4.259436687e-10 2.317192113e-10 7.263460477e-10 6.596768304e-10 1.754527122e-10 3.706949181e-10 7.533901088e-10 3.415379629e-10 4.362190478e-10 4.809757629e-10 5.553957389e-10 3.781420969e-10 5.462975826e-10 6.504259396e-10 4.638472234e-10 7.366093902e-10 8.271545901e-10 7.586696194e-10 5.84215537e-10 7.91240604e-10 3.1380031e-10 1.394089458e-10 3.900953939e-10 5.033237414e-10 3.519019539e-10 3.142286525e-10 6.399256384e-10 6.19509181e-10 6.766488798e-10 5.642168837e-10 3.695232487e-10 2.097090862e-10 3.926043502e-10 1.408327876e-10 2.334755927e-10 4.836093469e-10 5.389910779e-10 2.871219065e-10 3.337061854e-10 2.691982484e-10 1.47734233e-10 4.56541156e-10 5.296734217e-10 4.888745144e-10 2.806828357e-10 3.954908159e-10 1.69000637e-10 1.561174583e-10 3.979793877e-10 3.811096591e-10 2.701806759e-10 5.155974876e-10 8.560551778e-10 2.314127297e-10 4.971418058e-10 7.358495799e-10 6.163034748e-10 2.363643369e-10 2.8100514e-10 2.786417161e-10 4.90871498e-10 8.967255059e-10 2.740251898e-10 2.241850518e-10 6.029732265e-10 3.086900017e-10 2.420174348e-11 5.204022492e-10 3.605455293e-10 1.124308668e-09 3.126805952e-10 4.126292487e-10 6.661109041e-10 8.320933965e-11 2.494947041e-10 2.393137235e-10 4.843335874e-10 4.158174344e-10 3.434754795e-10 4.185727188e-10 3.064654003e-10 3.133075092e-10 1.89287578e-10 3.531009366e-10 8.88636382e-11 1.844021947e-10 2.14760011e-10 2.466790172e-10 3.368864722e-10 1.163897482e-10 2.788866832e-10 1.74113372e-10 1.867533544e-10 3.110382907e-10 1.926992043e-10 4.073295334e-10 1.571776638e-10 4.70177679e-10 2.096008242e-10 2.254724223e-10 1.54119552e-10 2.161281381e-10 2.535900565e-10 3.122826221e-10 1.298144918e-10 1.19231359e-10 6.100176363e-10 1.724958131e-10 3.944403852e-10 1.139736598e-10 1.958486233e-10 6.684144926e-10 5.127623693e-10 +1.273110199e-10 6.271549445e-10 4.478558703e-10 1.448741781e-10 3.869616667e-10 2.972013912e-10 1.130730726e-10 1.688419635e-10 1.67475294e-10 9.19699127e-10 6.496973134e-10 8.497767183e-10 5.045405899e-10 2.318746493e-10 2.925315388e-10 3.81367169e-10 2.989666599e-10 2.904614222e-10 2.853834101e-10 3.143438628e-10 5.046655777e-10 3.665649844e-10 3.567603202e-10 9.983258096e-11 2.790865672e-10 8.955542687e-11 4.669223544e-10 2.112883948e-10 1.004785624e-10 2.18911472e-10 3.939462164e-10 2.195178615e-10 2.047460313e-10 2.598796645e-10 3.934296364e-10 1.461033236e-10 3.63487947e-10 2.438336227e-10 3.941259028e-10 2.70234825e-10 3.655250683e-10 6.101378279e-10 6.943794385e-10 2.125387736e-10 4.254313751e-10 3.611709729e-10 2.916625849e-10 2.306587172e-10 5.144007302e-10 5.177229186e-10 4.407929088e-10 3.278534347e-10 2.872753643e-10 4.249965519e-10 2.64636234e-10 2.72247095e-10 2.732747797e-10 4.451624286e-10 1.267969373e-10 1.847418065e-10 2.575695382e-10 1.000402841e-10 3.175795925e-10 3.437665999e-10 5.99297716e-10 4.360150204e-10 7.246260788e-11 1.208065653e-10 1.798379239e-10 1.373534605e-10 3.4862194e-10 1.914190023e-10 5.342527245e-10 4.38452343e-10 9.195305164e-11 2.864053084e-10 3.414380526e-10 4.639621425e-10 1.965546707e-10 2.38331973e-10 6.470843088e-10 1.614582027e-10 4.903559254e-10 4.543274858e-10 4.027093599e-10 2.336991806e-10 7.118291459e-10 6.370483613e-10 2.232070877e-10 6.136831278e-10 6.847160451e-10 6.137328064e-10 6.313908842e-10 6.969643934e-10 8.950511592e-10 6.015291614e-10 1.019856006e-09 4.845449192e-10 5.698331931e-10 6.824649416e-10 2.005610771e-10 4.88666282e-10 1.56130751e-10 5.201610608e-10 3.547197236e-10 9.88514799e-10 7.701940799e-10 3.431657076e-10 7.370489636e-10 6.988600473e-10 1.083034323e-09 3.00558928e-10 3.640875078e-10 7.328983521e-10 5.283438376e-10 4.774325548e-10 2.533218739e-10 3.790180651e-10 2.26406881e-10 6.511331686e-10 6.741898024e-10 2.941849459e-10 3.512771189e-10 2.963808897e-10 5.597548545e-10 4.442512934e-10 4.064669871e-10 4.072399381e-10 2.122390704e-10 4.598807523e-10 6.58751764e-10 2.67320499e-10 3.352770293e-10 6.297842045e-10 4.221643565e-10 1.753082809e-10 1.808603656e-10 4.91904325e-10 3.591484015e-10 6.107617783e-10 4.175072239e-10 2.762100054e-10 5.325839208e-10 2.367701447e-10 1.370361879e-10 3.777766945e-10 5.240302409e-10 4.839030848e-10 4.431164134e-10 2.822257591e-10 4.481797504e-10 6.729335792e-10 2.778313334e-10 1.722977458e-10 2.308080602e-10 3.28442412e-10 8.438664477e-10 3.303580129e-10 2.879642457e-10 4.609497132e-10 4.584834114e-10 4.4190947e-10 4.051223164e-10 2.668799361e-10 3.271283871e-10 3.970559709e-10 3.954122867e-10 3.054688626e-10 5.654813455e-10 5.640384815e-10 4.202117752e-10 5.493337375e-10 2.033703402e-10 3.189517573e-10 7.241257788e-10 5.627933136e-10 5.628388856e-10 5.556977321e-10 2.878982482e-10 3.299996543e-10 4.736760137e-10 4.017911398e-10 4.205611148e-10 3.047613866e-10 2.959007055e-10 7.557981272e-10 5.235680194e-10 7.455478839e-10 7.547636088e-10 6.74943856e-10 8.144825028e-10 3.773368275e-10 1.517345255e-10 6.362805622e-10 4.116904306e-10 6.625082972e-10 5.260089723e-10 1.358688457e-10 4.553706488e-10 5.792208153e-10 6.537506504e-11 3.056623166e-10 5.429733456e-10 5.418748641e-10 5.602136417e-10 5.634878527e-10 7.439805571e-10 5.537868666e-10 5.367081843e-10 3.360611423e-10 4.373277326e-10 1.000050431e-12 4.068715114e-10 4.292028477e-10 5.580460194e-10 7.494865891e-11 5.809025165e-10 1.614556301e-10 3.890102007e-10 3.712674407e-10 5.321082313e-10 6.388100844e-10 3.860962392e-10 8.505285556e-11 1.912987964e-10 2.747294252e-10 3.561851403e-10 7.434484949e-11 5.387282349e-10 6.82663655e-10 2.130389079e-10 3.842590748e-10 2.490088461e-10 5.209039254e-10 9.150313582e-11 4.659454443e-10 6.301028234e-10 4.881110494e-10 5.047010943e-10 4.020092768e-10 2.623006103e-10 5.673189775e-10 4.073832836e-10 2.069207926e-10 2.188883743e-10 1.68259249e-10 2.181175884e-10 3.384137195e-10 1.673556814e-10 3.994567066e-10 2.998638487e-10 3.958385673e-10 4.948908994e-10 2.103254301e-10 3.015339083e-10 6.810624157e-11 3.267117728e-10 3.706435102e-10 1.800885502e-10 3.820603044e-10 4.021079791e-10 1.931525125e-10 1.495244929e-10 5.652709251e-10 1.297028588e-10 8.796025286e-11 4.132324338e-10 3.457281352e-10 2.732411796e-10 6.066993876e-10 1.247229719e-10 3.492878528e-10 4.136693872e-10 1.17728382e-10 7.59718462e-10 2.604911142e-10 2.563134554e-10 4.556767736e-10 2.468083342e-10 2.929938682e-10 2.831051174e-10 2.440605271e-10 4.23911409e-10 1.824848521e-10 7.242928911e-10 1.688297617e-10 2.408148414e-10 2.769710867e-10 3.190690828e-10 2.910603164e-10 2.125028539e-10 2.306208311e-10 6.988699309e-10 2.492761056e-10 5.386263306e-10 3.818896104e-10 2.09776333e-10 2.026957558e-10 2.332076097e-10 1.839653438e-10 +5.217841164e-10 3.873572424e-10 1.945640093e-10 4.619314804e-10 2.040979987e-10 1.68566084e-10 3.907082419e-10 1.994791995e-10 4.889038667e-10 3.940594829e-10 1.283462736e-10 3.39963446e-10 2.946895003e-10 4.277503782e-10 1.517235889e-10 9.808114108e-11 2.831921485e-10 2.169764665e-10 2.404800351e-10 4.996551839e-11 2.382252239e-10 9.692536753e-11 2.944836405e-10 3.950651004e-10 3.234637609e-10 2.974786987e-10 2.832985241e-10 4.733056116e-11 2.190761921e-10 2.826995996e-10 2.407449773e-10 4.913203655e-10 8.922119415e-11 2.009317466e-10 2.592708234e-10 1.726175146e-10 1.79248749e-10 4.961553739e-10 2.173809949e-10 2.083999701e-10 4.293574284e-11 3.168418255e-10 3.714221954e-10 4.550507824e-10 4.958535241e-10 6.31743086e-11 3.221364076e-10 3.338374438e-10 3.192056581e-10 5.720721149e-10 3.068415852e-10 1.966902447e-10 3.002253899e-10 3.453325604e-10 4.87541109e-11 1.611124867e-10 3.367462963e-10 4.904348162e-10 6.905614093e-10 5.948616814e-10 3.654241778e-10 1.504525961e-10 1.440682004e-10 1.520602051e-10 2.475047148e-10 5.257567823e-10 2.862988219e-10 3.987718534e-10 2.721746254e-10 3.497113602e-10 2.189550225e-10 4.029022587e-10 2.513976447e-10 3.326305532e-10 1.205722983e-10 1.227888286e-10 4.551343276e-10 2.056858397e-10 5.525626089e-10 1.696304245e-10 7.639871524e-12 7.701235975e-10 1.447322215e-10 1.275062748e-10 1.79852205e-10 3.508001531e-10 5.847287192e-10 1.039292082e-09 4.781829216e-10 5.248512889e-10 7.260331962e-10 3.296232631e-10 1.963903262e-10 6.269289986e-10 7.940507778e-10 6.328533938e-10 8.086951712e-10 5.135307523e-10 4.948843015e-10 6.967862532e-10 6.632760895e-10 6.971566627e-10 1.109764294e-09 7.31362477e-10 5.327372315e-10 2.078496551e-10 2.931124862e-10 4.97297531e-10 5.53790383e-10 4.355674909e-10 3.881005641e-10 5.106668536e-10 3.184434914e-10 3.493717335e-10 7.328018039e-10 3.789733171e-10 2.831393543e-10 5.542684294e-10 4.893765199e-10 5.466674323e-10 2.821545592e-10 3.942540264e-10 7.280599578e-10 2.800475331e-10 2.7599612e-10 1.125745734e-10 4.453338339e-10 8.020070471e-10 9.247628516e-10 1.186261254e-10 1.701432267e-10 7.484010683e-10 2.367553712e-10 4.848201298e-10 4.71708096e-10 4.38110532e-10 3.891604883e-10 1.537325943e-10 3.273377503e-10 3.446117203e-10 7.164135342e-10 2.344015915e-10 3.646928113e-10 2.322238038e-10 2.845793345e-10 3.577200829e-10 3.813965566e-10 3.171132643e-10 4.134091214e-10 5.684007097e-10 3.773049696e-10 2.15648565e-10 7.446600022e-10 3.670940562e-10 2.932338317e-10 4.324739239e-10 2.698081475e-10 4.633247907e-10 4.374936246e-10 3.469691536e-10 3.062366262e-10 5.75134161e-10 2.622871363e-10 2.939610049e-10 2.566782586e-10 3.187167428e-10 5.072303041e-10 5.055360877e-10 4.276362186e-10 5.21374874e-10 5.962490094e-10 4.031906409e-10 4.711657821e-10 7.039018456e-10 4.818393359e-10 2.911319679e-10 5.841446392e-10 5.014342563e-10 7.227522277e-10 6.039799405e-10 4.897068871e-10 3.290675691e-10 5.734409844e-10 4.428287967e-10 2.634017455e-10 5.069649709e-10 5.447123847e-10 4.047625462e-10 3.829352697e-10 5.440925615e-10 1.864166466e-10 3.248557296e-10 6.042092382e-10 7.254906815e-10 4.618163267e-10 4.16143245e-10 6.597648028e-10 4.30046281e-10 3.647640773e-10 6.130682102e-10 5.612350319e-10 1.079426959e-09 6.780827795e-10 3.29249786e-10 7.774913941e-10 7.323340207e-10 5.807597952e-10 5.693879569e-10 7.292768127e-10 6.018441085e-10 6.003646694e-10 2.206740976e-10 4.206176446e-10 3.599152611e-10 4.727414158e-10 4.030349531e-10 3.910132523e-10 2.688242163e-10 6.292140979e-11 3.850307076e-10 4.019544771e-11 4.946090899e-10 2.715392484e-10 8.863495843e-11 3.781208077e-10 5.738160941e-10 2.722148166e-10 5.084055813e-10 3.518344059e-10 3.324249811e-10 2.043744749e-10 1.727835386e-10 2.963850378e-10 3.623879654e-10 3.531819025e-10 2.825350899e-10 1.245823312e-10 2.735195034e-10 4.43636927e-10 1.315164139e-10 4.821877657e-10 4.467254141e-10 1.684026283e-10 2.532818866e-10 2.25497128e-10 3.429827833e-10 3.333791111e-10 1.607399532e-10 5.121114821e-10 1.984957181e-10 3.031024277e-10 3.580135495e-10 2.70912291e-10 3.204105836e-10 2.437995275e-10 2.19900873e-10 2.691670771e-10 1.568136023e-10 4.711991457e-10 4.933006095e-10 6.446161169e-10 2.323301326e-10 2.298837471e-10 1.436117419e-10 4.954337922e-10 7.890176037e-10 1.982644739e-10 7.228411351e-10 6.904879775e-10 1.972552385e-10 1.247664559e-10 1.697181578e-10 1.890503878e-10 3.0934727e-10 1.794564371e-10 4.018179657e-10 1.471531951e-10 3.062561532e-10 5.252223536e-10 1.049614731e-10 1.960977443e-10 1.896423015e-10 1.161942579e-10 2.19091547e-10 7.483014293e-11 4.160615219e-10 1.852169671e-10 2.877030648e-10 3.174719244e-10 2.744363844e-10 3.726277618e-10 2.468531877e-10 1.877390712e-10 3.260067648e-10 2.735720036e-10 6.172484692e-10 2.416712156e-10 4.067723165e-11 1.377766505e-10 2.743948652e-10 +1.751823084e-10 1.838284585e-10 5.450474201e-10 3.49713558e-10 3.608427491e-10 1.863952415e-10 9.9889322e-11 6.432110628e-11 3.768794896e-10 5.473537837e-11 1.238322991e-10 1.873466761e-10 8.876989852e-11 3.67902395e-10 3.008915637e-10 3.74089287e-10 8.169149255e-11 3.392216124e-10 3.478947688e-10 5.064122636e-10 2.222194864e-10 4.088569901e-10 2.504435021e-10 2.009334515e-10 3.566867789e-10 2.627041639e-10 4.72727342e-10 3.270852577e-11 2.527915499e-10 1.149576519e-11 4.447517157e-11 4.064972477e-10 1.550820741e-10 2.437134176e-10 3.036941432e-10 4.313600853e-10 4.835268619e-10 1.91233484e-10 6.375041593e-10 4.574695078e-10 2.181066296e-10 1.506396003e-10 2.701548734e-10 1.411200543e-10 5.694136746e-10 2.314245354e-10 3.251944367e-10 4.12273482e-10 2.127687088e-10 2.812711752e-10 4.634472159e-10 2.145304067e-10 2.939418463e-10 3.204267701e-10 6.011115551e-10 2.452992779e-10 2.031196171e-10 3.115911615e-10 5.41092353e-10 4.181112046e-10 2.510225975e-10 5.671549365e-10 1.244613373e-10 1.992143819e-10 5.602102747e-10 1.659576469e-10 1.860990922e-10 1.304622405e-10 2.80193435e-10 4.850909842e-10 3.097398838e-10 3.465945192e-10 3.073650544e-10 4.6631307e-10 4.932996719e-10 1.554406649e-10 2.408354516e-10 1.244816415e-10 7.961040123e-11 2.247691024e-10 2.530350599e-10 1.439020313e-10 2.164184003e-11 6.873617276e-11 1.287716017e-10 5.220916197e-10 5.226203913e-10 5.53002976e-10 5.885997657e-10 3.490405616e-10 4.135713254e-10 5.645429498e-10 5.901957628e-10 5.887455291e-10 3.66430203e-10 7.521697892e-10 5.945898625e-10 9.119335626e-10 3.41122323e-10 8.871983224e-10 2.573566433e-10 1.772940962e-10 4.928422195e-10 3.133088021e-10 2.532051634e-10 3.940887223e-10 2.237286878e-10 5.553429234e-10 5.784701938e-10 1.602516284e-10 7.60217671e-10 1.918317848e-10 4.936916565e-10 5.581180187e-10 4.247069627e-10 7.610466117e-10 2.837870673e-10 6.651108697e-11 5.355659912e-10 6.015667576e-10 7.579589342e-10 9.190038122e-10 5.104010878e-10 6.610954673e-10 2.684908379e-10 8.492445371e-10 1.84297918e-10 6.190752879e-10 5.99611929e-10 2.479916572e-10 2.841952279e-10 4.945380052e-10 4.388603071e-10 3.759813648e-10 3.381123577e-10 7.55476636e-10 3.995545283e-10 4.595475178e-10 4.233905305e-10 2.18077069e-10 3.009920018e-10 3.976552877e-10 3.05004987e-10 8.083077352e-10 6.571085823e-10 4.574168563e-10 1.234463436e-10 4.54049633e-10 1.266796503e-10 6.272763054e-10 5.32726725e-10 2.018632919e-10 1.716801662e-10 2.710008765e-10 4.455244414e-10 4.180736922e-10 2.619844421e-10 6.445435015e-10 4.911167698e-10 2.880458126e-10 4.604794734e-10 1.879182916e-10 2.646774033e-10 5.096990439e-10 4.755853113e-10 2.123486247e-10 6.852480915e-10 5.579173913e-10 2.817408716e-10 1.238455747e-09 3.49108615e-10 3.741883173e-10 6.795106046e-10 6.792272501e-10 4.535405255e-10 2.762819807e-10 4.549073015e-10 5.758504541e-10 2.587343911e-10 4.474488805e-10 2.057302362e-10 3.478556767e-10 2.623461236e-10 3.080346684e-10 4.600238443e-10 3.518965197e-10 2.832383565e-10 5.040523991e-10 4.860010846e-10 3.032204304e-10 2.671210009e-10 8.99183013e-10 3.232608541e-10 4.578000772e-10 6.087189821e-10 4.956911156e-10 3.877337871e-10 7.495432604e-10 5.9488604e-10 7.366002445e-10 3.592824632e-10 1.020856796e-09 5.930116798e-10 5.661305412e-10 3.341691799e-10 5.085296639e-10 7.733038567e-10 3.689639881e-10 1.557626254e-10 2.291676169e-10 5.030960069e-10 1.519235949e-10 4.535108005e-10 3.166451544e-10 3.700920691e-10 4.235888115e-10 1.203254681e-10 2.951412412e-10 4.63285199e-10 1.770322753e-10 3.540002846e-10 8.800955112e-11 1.303039396e-10 3.38786173e-10 4.206992315e-10 2.812911548e-10 2.635919112e-10 1.71014877e-10 5.540246418e-10 4.058294142e-10 3.222149138e-10 4.056127639e-10 2.197539987e-10 5.828803603e-10 1.093022806e-10 1.854547333e-10 4.705823324e-10 3.397910376e-10 6.480454237e-10 7.574242784e-10 1.809894509e-10 3.75850207e-10 2.873043753e-10 3.598579748e-10 2.317870496e-10 6.297847868e-10 7.1217125e-10 3.908531387e-10 2.935407621e-10 3.356334189e-10 7.338916234e-10 3.325873614e-10 4.622719684e-10 4.669776479e-10 5.005592996e-10 1.885699679e-10 3.774418048e-10 1.736590295e-10 4.676262714e-10 4.541744373e-10 2.637085233e-10 2.934524613e-10 2.246001801e-10 2.259542115e-10 2.100575184e-10 2.373685071e-10 3.099182981e-10 3.249694565e-10 2.102343249e-10 2.162164298e-10 8.887097179e-11 1.10792848e-10 4.013951566e-10 5.619635784e-10 9.144771441e-11 9.101362988e-11 9.653177757e-11 1.88203938e-10 2.96987107e-10 1.163714407e-10 1.728805249e-10 1.703205947e-10 8.501479664e-11 1.206613949e-10 2.725954787e-10 5.508620534e-10 3.093365833e-10 3.291008388e-10 3.377848764e-10 3.288513101e-10 1.019619685e-10 2.344869245e-10 2.563288871e-10 9.605112135e-12 2.56768399e-10 3.78883674e-10 2.234304484e-10 5.451322594e-10 2.618796216e-10 1.071471659e-10 +3.721656246e-10 1.673074795e-10 9.535422129e-11 2.405956892e-10 3.859068999e-10 1.73210151e-10 3.769387909e-10 3.62677514e-10 3.965712362e-10 4.812937619e-11 2.944285369e-10 2.851847278e-10 4.082549405e-11 4.8882539e-11 2.62961963e-10 2.57175252e-10 3.914768897e-10 3.391907759e-10 9.087153702e-11 6.172486759e-11 6.953019367e-10 1.879201585e-10 1.699766436e-10 2.795493963e-10 1.706423193e-10 1.520284162e-10 5.701260277e-10 2.416032364e-10 7.611630246e-11 9.449436807e-10 4.409296785e-10 1.045057126e-10 2.756305237e-10 6.357276798e-10 1.651534677e-10 2.964015977e-10 3.922777844e-10 3.170700293e-10 4.541117582e-10 4.097694094e-10 1.669749969e-10 2.063747031e-10 1.429460407e-10 2.030417487e-10 3.557393202e-10 2.039672904e-10 1.612203268e-10 5.430525782e-10 1.205538701e-10 2.257558619e-10 1.674446757e-10 8.422277911e-11 5.351083722e-10 4.680623201e-10 4.900009053e-10 3.422091705e-10 6.019121292e-10 4.51504738e-10 4.730624671e-10 4.859943021e-10 3.085182356e-10 3.047881152e-10 1.552503196e-10 4.979196754e-10 1.466724894e-10 1.643795014e-10 1.866852915e-10 5.064466852e-10 3.575201471e-10 6.274120662e-10 1.225967401e-10 2.020346628e-10 2.93917897e-10 3.823919878e-10 1.036147773e-10 2.786369612e-10 2.32724133e-10 2.446679252e-10 3.723588169e-10 1.706061547e-10 6.301631421e-11 2.786071373e-10 4.081317366e-10 2.370120659e-10 5.947997909e-10 5.251245557e-10 2.091517782e-10 6.169723104e-10 4.423746905e-10 7.47817724e-10 4.366434078e-10 3.342698734e-10 1.106792305e-09 4.123282168e-10 7.265272114e-10 3.357384762e-10 4.312627472e-10 4.405115563e-10 2.207009181e-10 4.7492794e-10 5.639076472e-10 6.50283039e-10 1.426532959e-10 7.456773887e-10 6.171208456e-10 5.63649742e-10 4.377533742e-10 5.091441628e-10 1.616914054e-10 1.444866544e-10 3.172778257e-10 7.262289888e-10 1.991656246e-10 5.252717246e-10 4.105860328e-10 5.423516425e-10 4.138690247e-10 7.121801881e-10 7.224640056e-10 4.473686758e-10 4.790355428e-10 3.440515341e-10 3.571055611e-10 3.106087147e-10 3.080903614e-10 2.497464374e-10 5.214681357e-10 8.355923984e-10 5.682619734e-10 3.793018333e-10 3.359028964e-10 3.136501067e-10 3.931694166e-10 5.294077696e-10 6.012208266e-10 2.539122249e-10 5.696522061e-10 1.481986855e-10 6.536650967e-11 5.942354686e-10 3.571387198e-10 2.357149885e-10 3.086665055e-10 7.166904879e-10 1.615065023e-10 2.565464049e-10 2.066440804e-10 5.560844911e-10 3.933223928e-10 1.319217309e-10 4.168495515e-10 4.440567313e-10 4.466815961e-10 6.086366365e-10 3.194500039e-10 4.598618933e-10 5.413569701e-10 3.557823651e-10 1.843871012e-10 7.078785584e-10 3.836209812e-10 5.985799569e-10 6.697724314e-10 2.193745533e-10 1.633312867e-10 3.794376635e-10 6.1823522e-10 4.308144018e-10 4.793918739e-10 2.465575561e-10 2.982607947e-10 1.624871076e-10 2.889538693e-10 3.298434055e-10 5.436482867e-10 3.805806349e-10 3.118641816e-10 5.484503133e-10 5.681959893e-10 5.034535744e-10 5.042296218e-10 2.570462073e-10 5.302702418e-10 1.58611369e-10 5.674189406e-10 3.675177948e-10 4.939943241e-10 1.775634687e-10 2.806372359e-10 1.399243657e-10 4.809775657e-10 4.341387755e-10 7.652452733e-10 1.650965795e-10 4.291662835e-10 8.7740848e-10 4.818965979e-10 6.323922376e-10 3.618584066e-10 5.999032644e-10 5.130076788e-10 4.325521887e-10 8.211083987e-10 7.827606229e-10 5.285288608e-10 4.186103707e-10 5.845317503e-10 6.18788108e-10 4.241740869e-10 4.367620509e-10 7.31918585e-10 4.144643257e-10 3.780774849e-10 1.953478164e-10 3.567480782e-10 8.23201021e-11 1.799060209e-10 5.650582741e-11 1.816328488e-10 2.61228156e-10 2.644393708e-10 3.23122935e-10 2.972909114e-10 1.970406183e-10 2.835195987e-10 3.535222216e-10 3.621737139e-10 2.453164014e-10 9.825137439e-12 5.795173039e-10 4.547533301e-10 6.394544715e-10 3.14507156e-10 2.529440707e-10 2.400117732e-10 3.895235541e-10 2.390307134e-10 2.248054818e-10 4.850268004e-10 4.610913701e-10 3.610690175e-10 5.005769913e-10 3.421777314e-10 1.676831661e-10 1.73453177e-10 2.429828853e-10 2.094510886e-10 4.957582457e-10 2.231026196e-10 5.163322589e-10 4.720975913e-10 4.391415642e-10 1.162666334e-10 1.029005168e-10 6.635557598e-10 6.277860495e-10 2.033804611e-10 4.44217457e-10 4.212885915e-10 3.91324163e-10 4.20079873e-10 4.726097669e-10 2.185025205e-10 2.900316148e-10 3.667301224e-10 4.752904234e-11 3.535408425e-10 2.983066963e-10 3.377061151e-10 4.554951096e-10 7.134136414e-10 2.288618963e-10 3.12657531e-10 4.780685147e-11 3.166076112e-10 2.259221432e-10 1.717840088e-10 2.610537322e-10 2.75714979e-10 4.762018277e-10 1.847565522e-10 2.396640337e-10 2.95950836e-10 2.439099763e-10 4.643879992e-11 1.462114643e-10 4.756595215e-10 6.010893119e-10 1.189884763e-10 2.946625837e-10 1.134384077e-10 2.358552243e-10 3.755856409e-10 5.670718171e-10 1.766889919e-10 1.416794747e-10 1.717714487e-10 2.249136272e-10 3.1081267e-10 6.579425411e-10 +3.42517349e-10 1.661195434e-10 8.785813952e-10 3.234956272e-10 3.321948271e-10 6.275344958e-11 6.072097839e-10 3.905290031e-10 8.618785852e-11 3.55068911e-10 2.881234738e-10 1.144019177e-10 4.192603898e-11 1.255247465e-10 1.676961983e-10 1.943327953e-10 2.359546716e-10 1.007416772e-10 3.093672212e-10 6.022507695e-11 1.593059895e-10 9.267973904e-11 1.192185543e-10 4.115701613e-10 3.450001541e-10 7.2334361e-11 2.898471214e-10 5.969979149e-10 1.391681447e-10 2.222488808e-10 7.011606474e-10 9.173244301e-11 3.395291325e-10 2.336261729e-10 9.786565577e-10 3.120106329e-10 6.444326118e-10 3.042024223e-10 2.499018275e-10 2.873398072e-10 1.294731867e-10 2.970673622e-10 4.018673846e-10 3.171858011e-10 3.476184871e-10 2.504721164e-10 2.239623218e-10 4.109735279e-10 3.910931727e-10 5.186416339e-10 2.503618363e-10 2.676672283e-10 3.29924826e-10 8.073039403e-11 3.026040281e-10 3.889482325e-10 1.723275688e-10 2.030422479e-10 2.460841033e-10 2.714212026e-10 5.029605524e-10 6.505271343e-10 2.901663262e-10 5.450743427e-10 1.802458061e-10 2.018428064e-10 1.968946156e-10 4.996846238e-10 4.707332838e-10 3.809252977e-10 3.101544275e-10 3.21158005e-10 2.055442479e-10 4.456322115e-10 2.092178899e-10 1.76981729e-10 2.755520129e-10 2.049233908e-10 3.00721146e-10 3.124439539e-10 1.566119328e-10 1.405343106e-10 3.419401203e-10 5.8208873e-11 3.946100435e-10 2.62188365e-10 1.571198303e-10 5.360510973e-10 5.201068241e-10 3.294081444e-10 5.503851528e-10 3.493673224e-10 3.978111413e-10 5.442993139e-10 1.179778252e-09 1.039324833e-09 4.839937915e-10 2.472861772e-10 1.658436152e-10 1.28476827e-10 3.336555153e-10 4.587838097e-10 9.420093133e-10 3.032571784e-10 5.979492808e-10 6.705528314e-10 4.770228245e-10 6.005968366e-10 3.639762153e-10 4.309339397e-10 2.780027205e-10 2.132379616e-11 6.244514207e-10 5.477295278e-10 7.196049425e-10 6.298345153e-10 1.966109954e-10 4.782853672e-10 6.181041248e-10 5.654553784e-10 4.369251563e-10 2.67946216e-10 4.917512181e-10 4.343856263e-10 5.305806048e-10 2.962991903e-10 5.141091001e-10 4.696984106e-10 2.385963795e-10 2.264427863e-10 7.396373388e-10 4.267989892e-10 5.204426961e-10 4.06376464e-10 4.598451203e-10 3.847419355e-10 2.148297566e-10 4.944939868e-10 1.401907558e-10 3.782970628e-10 2.962944649e-10 3.642408718e-10 2.500901171e-10 1.135249234e-10 2.30862342e-10 3.154178984e-10 4.256494542e-10 2.041275929e-10 7.527007306e-10 5.506533153e-10 4.405720959e-10 2.048089725e-10 3.040693459e-10 4.063869332e-10 9.177441989e-10 2.310935407e-10 7.090399811e-10 2.912773073e-10 2.316123612e-10 3.387779568e-10 2.520108521e-10 5.734435134e-10 4.89669803e-10 3.422506763e-10 4.474963992e-10 3.763715264e-10 4.494402455e-10 4.026729488e-10 4.724088107e-10 6.888233829e-10 1.505050436e-10 4.566323995e-10 5.971760629e-10 5.175986451e-10 3.872496591e-10 6.445128837e-10 2.072533743e-10 4.005643003e-10 7.889057065e-10 6.604490936e-10 6.398536233e-10 6.631880856e-10 6.073274933e-10 3.691579225e-10 3.371976384e-10 2.913189001e-10 2.229183035e-10 3.129881815e-10 2.594251697e-10 1.254454857e-10 1.378398933e-10 5.011475367e-11 5.549039592e-10 9.53126925e-10 6.263643505e-10 2.234165935e-10 4.348489795e-10 3.709378974e-10 6.420927768e-10 8.514106315e-10 5.53361549e-10 4.387038835e-10 3.459973757e-10 4.813917004e-10 4.449428098e-10 3.249640177e-10 6.887919222e-10 3.667513037e-10 2.547897076e-10 7.133247832e-10 4.517178846e-10 9.662802722e-11 1.996931355e-10 3.357661893e-10 7.469587013e-10 1.950268855e-10 1.256437664e-10 1.135892176e-10 4.303337478e-10 3.222466457e-10 3.949165986e-10 3.180757087e-10 2.108226639e-10 4.667879609e-10 5.550553901e-11 2.999686023e-10 4.162978539e-10 3.003879783e-10 2.737768332e-10 6.755702406e-10 8.913518328e-11 4.146735349e-10 2.817076861e-10 4.079907912e-10 1.432090996e-10 3.806259034e-10 1.169696845e-10 1.597137743e-10 1.725147791e-10 9.652631769e-11 4.190550823e-10 5.531612293e-10 3.926243369e-10 1.106968714e-10 2.980190161e-10 4.308268676e-10 4.704260272e-10 1.445024862e-10 3.640945666e-10 7.71892163e-10 3.631974265e-10 2.734381166e-10 1.099109234e-10 1.244606292e-10 2.724110539e-10 4.318520042e-10 4.925985267e-10 2.034980907e-10 4.892231226e-10 4.783009648e-10 2.443206224e-10 3.123616833e-10 2.485523116e-10 4.1192061e-10 7.798989604e-10 4.173666412e-10 1.537192745e-10 1.187379353e-10 1.387486146e-10 3.78881881e-10 2.400496443e-10 2.491383677e-10 3.667634214e-10 1.629794603e-10 1.529529531e-10 1.385229846e-10 3.117401303e-10 1.053421786e-10 1.230335215e-10 1.647749813e-10 2.72369906e-10 2.73719015e-10 3.311136078e-10 2.110911334e-10 1.436850874e-10 3.776961937e-11 3.872258343e-10 2.902463231e-10 3.128015874e-10 3.235009228e-10 1.696130121e-10 4.959343298e-11 5.222868417e-10 1.295202596e-10 1.790452222e-10 1.80347149e-10 3.638580664e-10 1.089177349e-10 9.176350042e-11 8.855274582e-11 +1.652980905e-10 1.229507373e-10 3.039672641e-10 3.751363592e-10 5.067059281e-11 1.220409449e-10 1.634536961e-10 2.675798127e-10 2.089565458e-10 4.847613703e-10 1.494609029e-10 1.13888701e-10 2.284811567e-10 1.325167416e-10 8.811227482e-11 2.893026699e-10 3.653772787e-10 3.434664044e-10 2.288886573e-10 1.305313218e-10 3.887573819e-10 3.900638162e-10 5.131984104e-10 7.267586124e-11 1.656441433e-11 7.875644009e-10 4.682696349e-10 4.200851703e-10 2.702928146e-10 2.790209257e-10 3.462720031e-10 1.190425866e-10 2.17483263e-10 3.921988244e-10 3.134742748e-10 3.791838877e-10 1.704897249e-10 4.606604605e-10 3.599262811e-10 2.67993859e-10 2.579965482e-10 2.185597665e-10 1.685217631e-10 4.535476306e-10 2.787032714e-10 2.110419e-10 3.644861173e-10 2.436717318e-10 6.953781947e-11 2.574819493e-10 5.614562839e-10 7.012046413e-10 2.488642677e-10 1.82172807e-10 7.099351708e-11 1.745699818e-10 2.449980229e-10 4.199040029e-10 3.56324449e-10 4.553540912e-10 2.827428077e-10 1.185388398e-10 5.287782348e-10 4.336044977e-11 2.783972886e-10 9.846083397e-11 2.19692792e-10 1.43623979e-10 3.74706421e-10 3.46173428e-10 8.275036347e-11 5.560749801e-10 1.179651089e-10 5.690607367e-10 6.412916295e-11 1.526594555e-10 3.721017128e-10 3.151396689e-10 1.18663416e-10 2.245756137e-10 1.113349617e-10 6.291440424e-11 4.635027282e-10 2.974250932e-10 3.299361794e-10 3.629481311e-10 6.303246076e-10 7.309833289e-10 6.189567818e-10 2.303157266e-10 3.552531455e-10 3.160654363e-10 3.880824109e-10 2.168334118e-10 4.412807269e-10 6.812710042e-10 9.586358737e-10 7.600983644e-10 4.941343865e-10 1.7299574e-10 4.162683446e-10 4.813591205e-10 7.989398615e-10 2.972156047e-10 7.723340572e-10 1.972592492e-10 4.254509662e-10 4.097504166e-10 5.722115708e-10 3.555702341e-10 6.143007741e-10 3.062183824e-10 9.396618204e-10 5.376882315e-10 4.429245207e-10 4.992151787e-10 4.71623376e-10 2.422479049e-10 1.758467708e-11 2.108349339e-10 1.794358859e-10 4.118099521e-10 2.996096447e-10 6.297151613e-11 5.305462904e-10 2.65132818e-10 3.94494375e-10 2.507329624e-10 2.682246237e-10 8.044116281e-10 2.538876904e-10 7.530516337e-10 2.532577344e-10 2.643582656e-10 2.985192512e-10 3.506004099e-10 3.497021269e-10 4.041793093e-10 2.280928365e-10 4.188507262e-10 4.319464347e-10 4.607843158e-10 4.455562106e-10 2.911060343e-10 2.488924804e-10 5.73750778e-10 3.695735785e-10 5.423684985e-10 5.864170175e-10 5.549440856e-10 5.383802728e-10 3.539437803e-10 5.038174847e-10 2.835481796e-10 1.528001247e-10 2.236269019e-10 6.363644921e-10 4.652091167e-10 1.553380006e-10 6.201868414e-10 7.022085836e-10 3.253101123e-10 4.873739228e-10 5.39793017e-10 1.012702702e-10 4.68811992e-10 7.806374328e-10 2.769338362e-10 3.156929695e-10 6.262863871e-11 6.204734892e-10 4.46051917e-10 3.983042245e-10 2.553065028e-10 3.682169055e-10 3.400866008e-10 4.487024998e-10 4.51602585e-10 3.925578572e-10 2.560487337e-10 4.994009065e-10 5.004203847e-10 5.264738807e-10 5.048390606e-10 3.69449554e-10 2.395251248e-10 5.086501362e-10 5.347839027e-10 1.984412953e-10 5.405050766e-10 6.112850661e-10 1.912825078e-10 6.069167615e-10 4.382134941e-10 4.17963132e-10 3.896950386e-10 5.060050532e-10 8.163404303e-10 4.52032813e-10 6.196533333e-10 1.117440749e-09 3.042958438e-10 8.307504565e-10 8.378106607e-10 6.657646306e-10 5.12194938e-10 3.209638618e-10 4.127989155e-10 3.478939291e-10 5.983753974e-10 6.378890096e-10 3.461428756e-10 4.78497238e-10 2.62453829e-10 2.425234681e-10 1.951149543e-10 2.976987436e-10 5.252832156e-10 2.119464632e-10 2.070659283e-10 5.080794761e-11 3.975896184e-10 1.462723097e-10 2.399836577e-11 4.994137714e-10 6.513432724e-10 1.833889119e-10 1.197863014e-10 7.765318503e-11 3.882445681e-11 2.288126112e-10 8.311351265e-11 5.068437788e-10 4.359717486e-10 3.015998269e-10 1.572034793e-10 2.892648325e-10 7.28665213e-10 3.901696142e-10 3.459965608e-10 1.743601184e-10 2.338738912e-10 6.323842383e-10 1.603480768e-10 3.05910354e-10 9.324011667e-11 1.241228937e-10 2.704462072e-10 5.717326537e-10 2.164285739e-10 3.125065033e-10 3.017272888e-10 6.777849221e-10 1.949794834e-10 2.719041097e-11 2.769875376e-10 2.607916638e-10 3.522752735e-10 4.660683912e-10 2.634069343e-10 4.755221833e-10 1.640218998e-10 1.442242495e-10 6.020387252e-10 7.54373666e-11 7.936440778e-10 6.844105191e-11 3.084671813e-10 2.712089388e-10 3.197888561e-10 2.237406911e-10 4.452942002e-10 2.744404552e-10 3.080385325e-10 2.472488294e-10 4.872511542e-10 1.031793813e-10 2.174342977e-10 1.870851642e-10 1.080363261e-10 2.132057914e-10 5.776403002e-10 4.813497682e-11 2.893542992e-10 3.737535917e-10 2.660344371e-10 6.106623184e-11 3.906244253e-10 3.378212811e-10 6.251157156e-10 3.338990287e-10 3.82319644e-10 3.249972621e-10 4.870522764e-11 1.409772556e-10 2.567723793e-10 9.414855277e-11 1.62053636e-10 1.837211367e-10 2.324814546e-10 +3.777976179e-10 2.406723251e-10 5.41586075e-10 1.759969466e-10 7.882063066e-11 4.378425829e-10 4.503808119e-10 8.009314937e-11 8.145550367e-11 2.522410772e-10 1.344104093e-10 2.103804092e-10 1.579532461e-10 1.826378813e-10 1.082463621e-11 3.293268107e-10 3.411421001e-11 5.636155943e-11 2.63178028e-10 1.78541082e-10 9.640148721e-11 4.715896422e-10 3.38116971e-10 1.161094345e-10 2.500171201e-10 3.3043189e-10 5.1511797e-10 2.042070209e-10 1.951479337e-10 3.961043929e-11 1.140880551e-10 3.473599945e-10 1.283224411e-10 6.966612775e-10 2.420621255e-10 4.130711752e-11 5.963433093e-10 1.52475596e-10 1.552131222e-10 1.47658004e-10 5.158897982e-10 2.060909006e-10 1.353252239e-10 2.019244391e-10 3.773245758e-10 2.700642128e-10 1.638300572e-10 4.157398505e-10 5.086404035e-10 4.742983031e-10 1.607024415e-10 2.904224375e-10 1.476853477e-10 4.975892571e-10 3.420556128e-10 5.545273436e-10 4.6052514e-10 6.099288998e-10 1.901831284e-10 2.560263875e-10 3.508852003e-10 2.124580135e-10 4.737107065e-10 3.093511851e-10 1.897500816e-10 2.29963795e-10 2.010114155e-10 4.39777642e-10 4.709224122e-10 6.006494193e-10 1.372503682e-10 1.885218347e-10 3.518837936e-11 1.561243868e-10 8.563209564e-11 1.023138464e-10 4.105577794e-10 2.273985472e-10 1.364949166e-10 4.883836504e-10 3.289752403e-10 9.606356737e-11 2.714045033e-10 2.035957077e-10 7.74293071e-11 2.598108267e-10 4.392440877e-10 1.66262934e-10 3.977290891e-10 2.053291966e-10 4.371759671e-10 6.401079862e-10 2.533510847e-10 5.911875662e-10 7.234566837e-10 5.36030914e-10 2.762130235e-10 5.6376178e-10 3.670154305e-10 4.432440924e-10 3.354206306e-10 6.61881215e-10 5.364011483e-10 3.781456711e-10 7.441274205e-10 3.822836796e-10 2.060234206e-10 5.362622017e-10 5.050124594e-10 4.631329475e-10 6.38239258e-10 4.643433331e-10 5.172895558e-10 4.03721685e-10 7.491840744e-10 4.812255592e-10 3.081032921e-10 1.387521623e-10 3.653981167e-10 1.852717536e-10 5.083810819e-10 3.820734703e-10 5.692007219e-10 3.658457589e-10 1.570079309e-10 7.319812052e-10 1.067937475e-10 1.655100546e-10 6.770957843e-10 2.723917402e-10 4.146233988e-10 3.654710688e-10 1.222747925e-10 5.118740762e-10 3.12881867e-10 2.588652962e-10 6.993524604e-10 3.671982282e-10 4.504382527e-10 2.153609595e-10 2.345376032e-10 1.816471754e-10 1.64300066e-10 1.835748277e-10 2.596710603e-10 1.702375118e-10 8.199845735e-10 2.101564947e-10 4.774661098e-10 1.881040634e-10 2.61761866e-10 3.604324744e-10 7.238555614e-10 3.7827172e-10 4.038293919e-10 3.612600613e-10 2.212600672e-10 2.813180266e-10 2.83175941e-10 7.370812652e-10 6.299638014e-10 4.484426217e-10 3.358582338e-10 3.728697065e-10 1.421766033e-10 3.308082614e-10 6.134029458e-10 7.169284809e-10 4.018397581e-10 9.937355695e-11 3.493546822e-10 4.93734614e-10 4.286320188e-10 6.226175458e-10 1.649308993e-10 3.108446965e-10 1.725454119e-10 1.997209522e-10 6.239363484e-10 5.197465192e-10 6.916135736e-10 2.694893138e-10 2.640263113e-10 4.143208442e-10 6.514418693e-10 5.142933828e-10 5.280633665e-10 4.214704534e-10 2.582148462e-10 3.554168296e-10 1.362435643e-10 1.529392117e-10 1.479767938e-10 1.392889856e-10 5.673477033e-10 2.538955244e-10 4.107341357e-10 4.064278787e-10 4.643284033e-10 5.563360847e-10 7.58215017e-10 5.381690236e-10 7.325392588e-10 4.028730852e-10 7.70333755e-10 5.788656802e-10 5.180294122e-10 5.948933862e-10 7.979501058e-10 5.072845172e-13 4.147673942e-10 2.66702006e-10 4.221882836e-10 5.476920483e-10 2.513741227e-11 2.288689535e-10 3.21715534e-10 4.389651883e-10 5.586021157e-11 5.777366665e-11 2.165969179e-10 1.511355867e-10 3.900445823e-10 2.981569023e-11 1.873813751e-10 3.962693678e-10 2.527708638e-10 6.451260999e-11 2.614465559e-10 1.368186353e-10 2.41597505e-10 4.552808477e-11 1.876104229e-10 7.851478471e-10 2.176888363e-10 3.045732983e-10 2.61646411e-10 4.571115266e-10 6.294026119e-10 6.393923158e-10 4.198293133e-10 4.105650582e-10 1.358214199e-10 3.292931408e-10 8.113476659e-11 2.703693182e-10 3.021302596e-10 3.210588649e-10 1.104292767e-10 3.816873301e-10 1.895086737e-10 1.629193014e-10 2.771812089e-10 3.152229873e-10 2.63467335e-10 3.430595203e-10 4.010348536e-10 1.215279393e-10 1.986301723e-10 3.153131068e-10 2.214827148e-10 3.072655463e-10 3.218549686e-11 1.776349265e-10 3.62171264e-10 2.228826047e-10 2.269430527e-10 1.142321909e-10 3.465234099e-10 2.310265296e-10 7.031477334e-11 4.481999653e-10 1.906974927e-10 1.972104566e-11 2.304963239e-10 3.533463867e-10 2.379863519e-10 8.220208135e-11 6.330364043e-11 9.754723469e-11 2.590581945e-10 1.785378038e-10 3.184884657e-10 1.765830046e-10 5.934048954e-11 1.755009881e-10 7.182974489e-11 4.612936033e-10 9.503336924e-11 2.297369485e-10 3.449633927e-10 1.120924221e-10 8.681698909e-11 1.587223357e-10 2.174309378e-10 7.282787021e-11 2.841264963e-10 5.411394314e-11 9.944567191e-11 1.636661469e-10 +3.002117459e-10 2.189129346e-10 1.349250468e-10 4.006478087e-10 1.536492135e-10 3.15268139e-10 3.326704932e-10 4.20826596e-10 1.159820928e-10 9.47438104e-11 1.96788969e-10 1.323538692e-10 1.952455707e-10 1.580218155e-10 1.005901373e-11 1.409636631e-10 5.091937809e-10 2.278973319e-10 2.803625584e-10 9.797826733e-11 1.644918821e-10 4.350500967e-10 1.93785018e-10 9.328227962e-11 1.754711678e-10 8.917483597e-11 3.395309878e-10 2.219803667e-10 1.992169073e-10 3.172667126e-10 4.310871433e-10 4.901018419e-10 6.99029693e-10 4.060237025e-10 2.103802053e-10 1.328141928e-10 3.689790003e-10 1.148898429e-10 4.469648205e-10 4.320113021e-10 2.095039358e-10 1.444138232e-10 3.16280996e-10 4.291328181e-10 1.687105189e-10 3.502938382e-10 4.08874387e-10 3.844203095e-10 5.93794654e-10 2.048208989e-10 2.321264406e-10 2.257343921e-10 6.409589906e-10 2.599645751e-10 7.221225711e-10 3.234745884e-10 5.304098542e-11 2.040969091e-10 3.192068067e-10 3.152881404e-10 3.186842848e-10 3.144438106e-10 5.35855552e-10 2.967675438e-10 4.537658534e-10 1.411640313e-10 2.505499767e-10 4.866458128e-11 8.80836354e-11 1.698898722e-10 2.695201944e-10 2.061769526e-10 3.426909213e-10 1.441324258e-10 1.34745417e-10 1.613974011e-10 2.729041866e-10 2.531731036e-10 2.870494629e-10 1.813296956e-10 7.532218287e-10 3.704077182e-10 3.083235384e-10 2.641130942e-10 2.012958395e-11 1.305056257e-10 1.446210865e-10 2.113005956e-10 4.956525268e-10 2.457135756e-10 2.62834214e-10 7.924210341e-10 3.916652284e-10 3.147858915e-10 1.590231234e-10 6.560803849e-10 3.246768613e-10 9.770677939e-10 8.967771065e-10 4.47266871e-10 4.971969868e-10 4.033854576e-10 5.199034562e-10 4.565921248e-10 5.261588754e-10 3.728338476e-10 3.591634801e-10 4.50784237e-10 3.356775537e-10 3.099784648e-10 5.231818719e-11 9.984811132e-11 3.883258991e-10 3.464501226e-10 2.337505514e-10 3.29505754e-10 6.649935911e-10 5.743663338e-10 4.621657932e-10 2.787307196e-10 2.399266084e-10 4.590983851e-10 3.02266039e-10 8.925517837e-11 2.023081739e-10 3.103985891e-10 1.100024166e-10 5.566128816e-10 5.509007584e-10 3.071278032e-10 3.76077556e-10 7.823847523e-11 2.623952939e-10 1.912842083e-10 3.104055937e-10 3.38324066e-10 3.159280532e-10 2.484957208e-10 4.21530745e-10 3.864169418e-10 4.49746683e-10 2.083802063e-10 6.405595674e-10 2.203351185e-10 2.308578946e-10 1.439724566e-10 4.167448072e-10 6.008938459e-10 6.832463754e-10 3.660033613e-10 3.377438394e-10 8.225317362e-11 5.346206914e-10 3.890844013e-10 2.523363867e-10 3.696327062e-10 8.36029537e-11 5.665529978e-10 3.345103773e-10 3.860707743e-10 5.70078427e-10 3.326993181e-10 6.11757967e-10 6.719354669e-10 2.731572606e-10 4.259010639e-10 3.64965104e-10 3.946936587e-10 5.343676317e-10 4.02457347e-10 4.549083139e-10 5.199101045e-10 2.053912187e-10 2.545525544e-10 2.810784835e-10 3.291977628e-10 8.531399495e-10 2.53590688e-10 3.445840635e-10 1.953753249e-10 4.864812089e-10 2.766976497e-10 4.825067336e-10 3.47972341e-10 2.853182119e-10 3.792565972e-10 3.901445451e-10 1.189253353e-09 4.238282501e-10 3.339167126e-10 4.439223939e-10 2.007251069e-10 2.977736318e-10 8.405478981e-10 5.568411586e-10 6.403609858e-10 3.235228709e-10 3.672401702e-10 3.884976057e-10 4.007224083e-10 6.006905661e-10 7.829235153e-10 4.141601865e-10 5.249625827e-10 6.274712226e-10 3.083838172e-10 5.25551631e-10 4.935242693e-10 6.72059247e-10 9.993653013e-11 6.171277249e-10 5.701129725e-10 7.813856742e-10 2.775195769e-10 6.988616071e-10 1.51393456e-10 4.379752855e-10 1.133562371e-10 2.618457946e-10 1.632888193e-10 3.929008951e-10 2.816413299e-10 4.270184045e-10 2.53959859e-10 8.246649656e-11 1.814889721e-10 1.827220313e-10 6.3019266e-11 3.770168973e-10 2.52905995e-10 4.02982145e-10 1.360375527e-10 1.665627152e-10 8.073563728e-10 1.202150368e-10 3.44127793e-10 1.549267534e-10 1.747762881e-10 3.986158596e-10 3.606050153e-10 3.222402213e-10 6.735789856e-11 1.529987584e-10 5.744827787e-10 5.116759671e-10 3.497381776e-10 1.310183591e-10 2.850344816e-10 1.015072916e-10 2.820931175e-10 3.159698601e-10 1.844941362e-10 8.309770534e-11 2.35539339e-10 2.151880714e-10 2.455089757e-10 3.879498231e-10 5.245311728e-10 6.064418489e-10 1.715706574e-10 2.466512758e-10 3.791393439e-10 1.957907242e-10 3.430899228e-10 2.609194253e-10 1.866606817e-10 3.38949006e-10 1.659106854e-10 2.856686358e-10 2.133461992e-10 2.110964729e-10 5.040429246e-10 3.203155331e-10 3.769367011e-10 1.927872001e-10 4.583153543e-10 1.027007261e-10 1.634679541e-10 1.949215963e-10 2.822021571e-10 4.048786712e-11 2.507441471e-10 2.879796618e-10 3.066263457e-10 2.253201782e-10 1.428468655e-10 6.59961829e-11 3.179404578e-10 2.872236503e-11 7.466809333e-11 1.716645144e-10 4.142528625e-10 2.494300059e-10 2.253256359e-10 2.413887831e-10 9.57657581e-10 2.344846212e-10 5.155960047e-10 2.676962978e-10 3.76718414e-11 +4.234476982e-10 6.141314911e-11 1.86464456e-10 3.350082678e-10 8.192080729e-10 6.318261348e-10 1.212757929e-10 4.948835506e-10 2.727898493e-10 1.021002646e-10 1.417506496e-10 1.998135452e-10 1.297638789e-10 1.43159485e-10 1.272078026e-10 2.637990997e-10 1.631551678e-11 2.095744878e-10 1.380578915e-10 3.134516007e-10 1.509187977e-10 4.23394392e-10 1.252417736e-10 2.454443127e-10 2.546952162e-10 2.13125514e-10 2.312815783e-10 3.459807551e-11 6.56769222e-10 2.112707252e-10 3.240961598e-10 2.335272521e-10 2.439742475e-10 3.579385434e-10 2.828081904e-10 2.48501471e-10 1.352394819e-10 4.622863369e-10 2.069900995e-10 3.979088786e-10 1.603020265e-10 2.398478426e-10 2.044454003e-10 1.322777663e-10 5.097955275e-10 3.435509444e-10 3.423133324e-10 1.719060326e-10 1.558058313e-10 3.204049005e-10 2.767514934e-10 1.043404475e-10 3.114633244e-10 4.841301752e-10 7.570917425e-10 1.934940828e-10 2.529621364e-10 2.017558672e-10 1.012314547e-10 2.411071785e-10 3.941289233e-10 2.552207753e-10 3.696078978e-10 4.048076398e-10 4.564498335e-10 5.86407693e-10 6.053169006e-10 6.720283828e-11 4.180255835e-10 2.255787635e-10 2.18038287e-10 3.445546477e-10 4.000066975e-10 4.074205807e-10 1.131071297e-10 1.419069304e-10 3.256566469e-10 1.190504777e-10 2.959515497e-10 3.30614899e-10 3.727037388e-10 2.052721628e-10 1.386384048e-10 9.116991978e-11 5.415393715e-11 2.21001952e-10 2.518580383e-10 5.38531628e-10 6.258552653e-10 7.421543546e-11 3.93883484e-10 1.644979775e-10 4.730538917e-11 4.327720614e-10 1.472880703e-10 5.557864251e-10 5.019621946e-10 4.60378639e-10 6.491572465e-10 1.256551708e-10 4.377120809e-10 3.94182456e-10 4.640812024e-10 4.840364794e-11 2.021875014e-10 3.29711747e-10 7.427890614e-10 2.617501793e-10 2.562135474e-10 3.727089516e-10 4.174614009e-10 2.913917741e-10 3.981167223e-10 2.162837321e-10 5.438895328e-10 2.250852778e-10 4.652196722e-11 1.456843522e-10 4.572752527e-10 3.392410318e-10 1.593553646e-10 1.831203607e-10 5.795064052e-10 9.67201367e-11 7.029086607e-10 2.434506328e-10 3.579738697e-10 3.633632142e-10 2.937207374e-10 3.046076006e-10 5.321394584e-10 4.725779605e-10 4.853490042e-10 1.467543646e-10 1.766696917e-10 5.207109071e-10 2.981081689e-10 2.141981931e-10 3.044250345e-10 4.32748275e-10 1.272120247e-10 2.489000951e-10 2.414545534e-10 4.6416553e-10 1.974212707e-10 3.240801147e-10 6.83433379e-10 4.221746865e-10 3.167202577e-10 2.862285707e-10 2.332890861e-10 1.452014102e-10 2.432711129e-10 1.028156049e-09 9.536552077e-11 1.059304408e-10 4.706660129e-10 2.951741041e-10 2.570581676e-10 1.141963774e-10 1.538875362e-10 3.992169426e-10 2.032496948e-10 1.730802164e-10 3.419666399e-10 3.326296421e-10 5.306772109e-10 1.193611207e-10 6.643303251e-10 2.193414816e-10 3.436017316e-10 5.197509875e-10 6.824194389e-10 3.482282247e-10 7.089683276e-10 3.139470426e-10 2.964548369e-10 2.597258512e-10 5.388220971e-10 2.917227323e-10 9.03527135e-11 3.627129161e-10 2.634765055e-10 1.977241725e-10 3.754389898e-10 2.139986058e-10 1.207091508e-10 8.834624261e-10 3.414498821e-10 3.731561279e-10 4.586671143e-10 5.43332131e-10 1.52084411e-10 6.761804873e-10 2.647412491e-10 4.536236184e-10 3.207324111e-10 7.363231491e-10 5.525417631e-10 4.785848295e-10 6.935326744e-10 7.089593403e-10 4.998936437e-10 5.696269906e-10 3.028080669e-10 1.968610576e-10 3.545412857e-10 3.181624811e-10 7.15549564e-10 6.140029832e-10 3.480866292e-10 1.166641113e-10 1.53240659e-10 3.019866672e-10 3.57312252e-10 1.057138742e-10 7.753914613e-11 7.673673676e-11 1.683870304e-10 3.048503302e-10 2.34335796e-10 1.266644568e-10 1.330462245e-11 1.148469703e-10 4.372084797e-10 2.936780298e-10 1.489002105e-10 1.895275486e-10 2.670223254e-10 1.425157204e-10 1.976941317e-10 3.249929643e-10 1.295833199e-10 1.392634565e-10 3.858807284e-10 8.739074706e-10 4.22208517e-10 3.477309667e-10 5.776390142e-11 3.707205588e-11 9.886728996e-11 1.909687662e-10 3.48966695e-10 3.468130851e-10 3.869412395e-10 3.381571313e-10 2.451353076e-10 2.162972794e-10 2.170077202e-10 2.634346055e-10 8.553894842e-10 3.194934026e-10 3.424150352e-10 2.413349283e-10 1.795778777e-10 4.702696021e-10 2.651408239e-10 3.380133146e-10 2.650367361e-10 1.428627153e-10 7.890193655e-11 7.352105982e-10 2.621606315e-10 1.395205253e-10 3.238997511e-10 2.391105151e-10 1.134885313e-10 4.845578106e-10 4.453703455e-10 4.937792169e-11 2.557078741e-10 3.156090327e-10 3.216215879e-10 7.470944373e-11 1.030142649e-10 3.130708902e-10 2.264133044e-10 1.229934411e-10 7.439555417e-11 9.348532788e-11 4.235832417e-10 3.079472602e-10 6.603724267e-11 4.214892423e-10 3.415480902e-10 2.045001881e-10 2.923871463e-10 7.931613871e-11 1.531615052e-10 2.934018939e-10 1.277234879e-10 2.762940235e-10 5.29863871e-10 1.653579362e-10 3.094147876e-10 2.047486911e-10 2.417242196e-10 3.857683686e-10 1.872438586e-10 3.388531357e-10 +3.292346167e-11 1.417361282e-10 2.325306548e-11 1.474475391e-10 9.408600688e-11 4.836576575e-10 2.556307206e-10 2.54000903e-11 2.991892781e-10 3.712849024e-10 4.137190815e-10 7.209103308e-11 1.702602983e-10 2.706256259e-10 3.17782345e-10 1.67365085e-10 5.540778372e-10 4.585655242e-10 2.316918823e-10 8.40508539e-11 2.524718283e-10 2.580170472e-10 1.559330923e-10 2.382339277e-10 2.003353101e-10 1.882321784e-10 1.809004001e-10 3.050424413e-10 1.985343429e-10 1.104412846e-10 1.043550481e-10 4.317819896e-10 1.451948179e-10 2.171856425e-10 2.061899326e-10 4.993638289e-10 1.83275132e-10 3.355878824e-10 1.865656888e-10 9.089335207e-11 3.436871533e-10 2.754957478e-10 1.844119402e-10 2.592920681e-10 1.181272185e-10 1.321416482e-10 2.296364356e-10 7.13306861e-10 2.421678124e-10 8.576446259e-11 2.619290006e-10 3.405763105e-10 1.969015876e-10 3.170135275e-10 2.666910439e-10 2.851097858e-10 1.133911589e-10 2.278013363e-10 2.296809502e-10 2.517359775e-10 5.769397574e-10 3.990264043e-10 3.039712711e-10 3.050237108e-10 7.350474745e-11 2.680621954e-10 3.320853209e-10 2.134846612e-10 2.332594581e-10 1.27320576e-10 2.884167107e-10 2.677381153e-10 1.950527876e-10 1.91284328e-10 3.280778085e-10 7.900668097e-11 1.113169355e-10 1.436036786e-10 2.156989217e-10 4.385393849e-10 1.005567099e-10 1.603640002e-10 1.473317301e-10 3.939893053e-10 8.657050536e-11 2.761086622e-10 4.988347887e-10 1.580682816e-10 1.981840318e-10 2.01807006e-10 4.986139527e-10 7.169995915e-11 5.066698462e-10 4.418644224e-10 5.156950997e-10 5.766148562e-10 5.499757685e-10 3.093360013e-10 3.114252451e-10 1.296953669e-10 3.799564908e-10 7.738425075e-10 4.678786463e-10 5.848802248e-10 3.10867326e-10 6.391457876e-10 2.682380592e-10 4.733670887e-10 1.047564088e-09 7.528246774e-10 3.352258856e-10 1.625842329e-10 7.765327415e-10 3.956512991e-10 7.240011039e-11 3.080811424e-10 8.75245531e-11 5.047042339e-10 2.031161349e-10 4.57980448e-10 8.60040656e-10 2.707380508e-10 5.147207854e-10 2.573578045e-10 6.098645626e-10 2.552641839e-10 2.92192811e-10 2.465089167e-10 3.877493743e-10 3.19173966e-10 3.779529903e-10 1.837423274e-10 3.840314132e-10 4.162021115e-10 3.362886092e-10 3.401936044e-10 4.927269762e-10 3.715795661e-10 6.316685536e-10 1.238653122e-10 3.500787447e-10 3.595443809e-10 2.501353934e-10 3.086926629e-10 2.560563523e-10 2.523775279e-10 4.353346789e-10 2.409315345e-10 3.811203367e-10 1.772158304e-10 2.414447801e-10 5.083841469e-10 3.913674673e-10 7.550256057e-10 1.912996065e-10 5.54736052e-10 2.340765185e-10 4.270182206e-10 1.881566428e-10 1.38775604e-10 3.861780524e-10 6.295915907e-10 6.833429286e-10 7.276018956e-10 3.671835895e-10 2.680216741e-10 6.17130864e-10 2.79333104e-10 4.213054029e-10 4.667871716e-10 5.632668762e-10 3.478588361e-10 1.447249517e-10 4.812969642e-10 2.846725674e-10 6.500713163e-10 1.91643255e-10 2.476692855e-10 6.905531079e-10 2.914487113e-10 8.937865882e-10 3.995355567e-10 3.608969682e-10 4.434909386e-10 5.847385661e-10 1.864356663e-10 2.400853857e-10 4.900104878e-10 8.693313053e-10 2.578123527e-10 5.496215543e-10 1.200714854e-10 6.384236825e-10 6.660173862e-10 7.835964385e-10 7.109159963e-10 7.140950861e-10 4.494319412e-10 2.682555246e-10 5.021336124e-10 1.824053509e-10 4.049307181e-10 4.866303032e-10 2.890961545e-10 4.195233956e-10 2.623286881e-10 3.515885594e-10 4.264965502e-10 2.194994075e-10 4.362714957e-10 2.577345893e-10 1.746517969e-10 5.343616364e-10 1.859753595e-10 3.156572742e-10 1.066255031e-10 6.722877765e-11 1.990111388e-10 2.347717484e-10 1.764546832e-10 2.723170185e-10 8.680681984e-11 1.600275645e-10 1.106158533e-10 2.104735894e-10 1.447775202e-10 4.119491837e-11 1.837367477e-10 2.856475162e-10 1.165566682e-10 2.921551845e-10 6.134856979e-11 5.047817566e-10 2.72049925e-10 5.011699478e-10 1.002169196e-10 6.299328949e-11 5.403076775e-10 6.27125585e-10 2.408102157e-10 3.140253683e-10 2.017829526e-10 1.210661894e-10 3.397668608e-10 4.774935048e-10 3.091120615e-10 4.602224969e-10 5.86632042e-10 3.882186354e-10 1.779877456e-10 2.041676598e-10 3.380256304e-10 3.129138393e-10 3.157390079e-10 8.687379876e-11 2.191478918e-10 1.664825863e-10 3.154431411e-10 2.776630417e-10 1.250733108e-10 2.797093918e-10 1.003425537e-10 5.211883276e-10 7.55412091e-10 2.959188933e-10 3.059182571e-10 4.037903419e-10 4.296724664e-10 4.973299736e-10 3.037096409e-10 2.439893773e-10 1.649762488e-10 4.379018971e-10 2.434439725e-10 2.626413771e-10 2.070421608e-10 2.386988141e-10 9.241924827e-11 1.226790906e-10 1.038467696e-10 2.731646548e-10 1.225359579e-10 2.040535667e-10 2.697480039e-10 5.194407865e-11 7.930467336e-11 2.505998888e-10 2.783463437e-10 1.882168728e-10 1.136915005e-10 1.07331959e-09 8.187201985e-11 5.120295653e-11 3.187931135e-10 2.650146945e-10 2.828505647e-10 8.785062909e-11 3.377494224e-10 2.43840565e-10 1.791719817e-10 +1.961708027e-10 1.232488121e-10 3.083475933e-10 3.152553771e-10 2.89430682e-10 2.682603853e-10 7.201593953e-11 6.029074119e-11 3.467380925e-10 2.163272251e-10 2.68478064e-11 2.135028527e-10 2.899861304e-10 4.492667043e-10 1.859967033e-10 2.065315343e-10 7.196123545e-10 1.784776382e-10 3.42279397e-10 4.760491009e-10 2.559447914e-10 1.322524946e-10 2.507119229e-10 2.02251372e-10 7.107220143e-11 2.661665548e-11 2.876942634e-10 4.062595278e-10 8.151857156e-11 6.374667477e-11 5.18657765e-10 1.526242158e-10 1.840737768e-10 7.543739686e-11 3.619849315e-10 2.703427866e-10 3.102278489e-10 3.086315306e-10 2.625493316e-10 2.085565588e-10 2.668563201e-11 1.144074954e-10 3.868872499e-10 1.945544796e-10 2.260672318e-10 3.371136733e-10 1.692804642e-10 1.385804023e-10 1.861379595e-10 3.279433601e-10 1.172267418e-10 1.467004087e-10 2.47935546e-10 3.173993566e-10 2.290650578e-10 1.449409095e-10 1.370838133e-10 1.695212477e-10 4.587634878e-10 4.658791928e-10 2.903968868e-10 2.35077292e-10 1.485728202e-10 4.994781046e-10 4.111340787e-10 1.780001356e-10 2.704709895e-10 2.033382068e-10 3.586321604e-10 1.246277153e-10 4.016637819e-10 2.808994384e-10 1.938072071e-11 3.0081814e-10 6.432609626e-10 2.473083083e-10 4.057198104e-10 7.035947565e-11 1.495937229e-10 4.3573025e-10 1.106309299e-10 1.930468092e-10 2.386143031e-10 1.164882004e-10 4.603578806e-11 5.603264262e-10 1.972253903e-10 3.806778933e-10 2.229533986e-10 1.952440424e-10 1.100659607e-10 5.546993257e-10 2.062104662e-10 4.151843303e-10 6.117437758e-10 4.819574545e-11 5.500980054e-10 7.909550065e-10 2.421463504e-10 2.812028512e-10 5.007043083e-10 7.506357456e-10 5.247627247e-10 6.076629057e-10 2.671704951e-10 2.844690276e-10 1.162141595e-10 5.841604953e-10 3.815086205e-10 1.295580493e-10 3.635685452e-10 2.813595893e-10 3.205484023e-10 3.191613902e-10 3.23804558e-10 7.488967214e-10 4.19046705e-11 4.239612427e-10 4.177275071e-10 3.690217135e-10 3.384441729e-10 3.326178357e-10 2.370066729e-10 4.584195861e-10 1.135776923e-10 3.810107588e-10 6.296580812e-10 3.557915188e-10 2.834129364e-10 7.899251296e-10 1.909965195e-10 4.198173298e-10 5.804681811e-10 1.588507701e-10 5.108358878e-10 2.462610249e-10 3.892916415e-10 3.026571618e-10 3.277184193e-10 1.676439255e-10 4.970494422e-10 2.829975047e-10 2.018650652e-10 2.330177637e-10 1.303661647e-10 5.066870447e-10 2.341454772e-10 2.476567479e-10 6.022665936e-10 5.177975858e-10 1.631407822e-10 1.233547616e-10 4.331205577e-10 2.811856939e-10 1.99237839e-10 1.310684076e-10 5.424403284e-10 7.186335213e-11 4.950942011e-10 3.245270899e-10 2.021495184e-10 2.139250386e-10 4.374812254e-10 3.190236068e-10 3.594064915e-10 2.965936617e-10 4.841731409e-10 4.126715294e-10 3.597159059e-10 3.190471531e-10 1.951401786e-10 2.403397609e-10 2.072908767e-10 2.644649889e-10 3.25059307e-11 3.646669213e-10 3.491241668e-10 8.878482085e-10 2.537937469e-10 7.143377202e-10 4.260735698e-10 3.053413423e-10 3.87935581e-10 3.197250873e-10 2.967970793e-10 4.657801694e-10 4.783719033e-10 1.271743994e-10 5.181121991e-10 5.232780385e-10 2.641911172e-10 4.881461072e-10 3.183176718e-10 1.604262618e-10 3.031921036e-10 6.282794512e-10 6.930613739e-10 1.043198718e-10 7.791099734e-10 5.434129608e-10 3.779322195e-10 4.245126229e-10 2.993639981e-10 3.760128399e-10 1.817409705e-10 2.843810081e-10 3.987231548e-10 3.166475132e-10 3.125586566e-10 3.747237582e-10 2.698364377e-10 2.591218507e-10 3.048289186e-10 1.399965697e-10 1.813919459e-10 3.541837773e-10 3.559951506e-10 5.648240459e-11 4.049954648e-10 1.767265436e-10 6.336332167e-11 1.883964619e-10 1.473699722e-10 1.47088472e-10 4.868433308e-11 3.253855472e-10 2.297017214e-10 2.67234121e-10 1.322391468e-10 1.545272116e-10 6.383266396e-11 2.309387834e-10 5.019813426e-11 2.732126374e-10 2.115557309e-10 3.995944792e-10 1.492943147e-10 1.769558819e-10 1.964356259e-10 3.417932179e-10 1.485669159e-11 1.459721024e-10 7.062199495e-11 1.026295101e-10 4.840247511e-10 2.321560229e-10 1.315022001e-10 1.842086447e-10 4.867378402e-10 5.085911146e-12 1.204630305e-10 3.387061821e-10 1.896450025e-10 1.97571176e-10 3.246978206e-10 1.588917325e-10 6.717446587e-10 3.329126283e-11 1.690103435e-10 3.33486933e-10 1.29528759e-10 6.086716323e-10 4.315230893e-10 7.187303544e-11 7.811648943e-11 4.113125306e-10 1.065036073e-10 3.170103553e-10 2.134464003e-10 2.105962916e-10 5.313472148e-10 2.237197475e-10 3.731351445e-10 2.314554144e-10 2.548070426e-10 2.912309254e-10 2.571485029e-10 4.680006096e-11 5.044079217e-10 2.734240984e-10 3.452507897e-10 1.302423126e-10 3.473627066e-10 4.006170624e-10 1.666694245e-10 2.328609794e-10 1.832413781e-10 1.997297534e-10 1.896289081e-10 3.05333358e-10 5.276756155e-10 6.576927623e-10 2.219006904e-10 2.200435121e-10 4.449643598e-10 1.443063369e-11 3.585211894e-10 2.247774932e-10 4.292179582e-10 6.105400157e-10 +1.807084365e-10 3.085963878e-11 1.028207517e-10 4.718017284e-10 5.136407733e-10 2.280745742e-10 9.172678695e-12 1.156336844e-10 3.104568925e-10 2.788444166e-10 3.394309214e-10 2.152707118e-10 1.735334455e-10 2.259099794e-10 2.39655909e-10 1.094177945e-10 4.567846277e-10 1.390136891e-10 4.261906179e-10 6.206324723e-11 5.400156029e-10 1.64594344e-10 1.384252368e-10 8.421607099e-11 4.079106005e-10 3.814544839e-10 4.249834649e-10 3.279851217e-10 1.740695099e-10 2.454562795e-10 4.695889773e-10 1.818414552e-10 1.535524841e-10 3.059590384e-10 1.672671699e-10 4.098212629e-10 3.140301772e-10 5.580959594e-10 3.25756799e-10 3.376888198e-11 2.067049584e-11 1.443847301e-10 1.569463817e-10 3.727436184e-10 5.091987935e-11 3.40408828e-11 1.342074359e-10 3.146963966e-10 1.674482723e-10 4.355206584e-10 5.219130903e-11 5.952507196e-10 3.638612087e-10 5.073829953e-10 2.251279251e-10 4.049430494e-10 3.338527977e-10 2.987258764e-10 1.68304955e-10 1.910566329e-10 1.453528187e-10 2.762347849e-10 1.556943542e-10 3.221560815e-10 4.515591632e-10 8.319642572e-11 2.374952503e-10 1.385499005e-11 3.695182983e-10 1.242359914e-10 1.374416767e-10 4.900933593e-10 1.897613104e-10 6.314509018e-11 9.075774104e-11 2.160044411e-11 3.197371492e-10 7.508425416e-11 1.480150041e-10 3.934619512e-10 4.905845812e-10 1.54096515e-10 1.542258306e-10 1.8775686e-10 4.077175396e-14 1.881096309e-10 2.947236747e-10 1.709050638e-10 5.940065608e-10 1.582798834e-10 2.601792702e-10 1.395399813e-10 3.261699819e-10 3.559732726e-10 6.880867045e-10 1.375705841e-10 6.093643394e-10 4.485638243e-10 5.029024367e-10 4.277207496e-10 1.542988946e-10 1.04778594e-10 1.098444956e-10 6.700110635e-10 5.225900833e-10 1.278905401e-10 3.210030531e-10 4.281768373e-10 3.726222871e-10 7.265754336e-10 2.05612284e-10 3.646319372e-10 8.131490151e-11 1.462260825e-10 4.162060315e-10 5.648833956e-10 4.048144376e-10 6.934057042e-10 2.7369467e-10 3.795348096e-10 4.96638408e-10 3.077023783e-10 2.483353528e-10 3.975864454e-10 1.936396795e-10 7.084002718e-11 3.714241908e-10 4.403523779e-10 2.117703954e-10 3.774827743e-10 1.906814692e-10 2.088281786e-10 2.710550974e-10 1.700150021e-10 5.939521877e-10 2.334147959e-10 2.959886086e-10 4.187184278e-10 7.171248925e-10 4.49037647e-10 2.252462245e-10 6.362472476e-10 2.233815602e-10 4.809649941e-10 1.046859062e-10 9.356144905e-11 3.245229252e-10 2.063016206e-10 2.756519938e-10 3.140365951e-10 1.046257446e-11 4.319231741e-10 6.175316118e-11 4.238150069e-10 4.901100618e-10 1.976935438e-10 4.223318436e-10 3.660730493e-10 6.406112769e-11 8.05460438e-11 1.979017727e-10 4.517962312e-10 3.045806681e-10 1.260296521e-10 4.38361154e-10 4.784917794e-10 3.587833531e-10 2.625568656e-10 4.521832898e-10 3.479054099e-10 1.555639395e-10 3.021957671e-10 5.762566416e-10 4.390236812e-10 3.037324002e-10 4.804320719e-10 2.255276828e-10 1.553232981e-10 2.053283227e-10 5.219087207e-10 1.103561377e-10 5.004718142e-10 5.487856292e-10 3.303902693e-10 4.242949255e-10 5.279383299e-10 1.576381783e-10 2.406560654e-10 6.872762185e-10 3.869340722e-10 4.462513274e-10 3.837536417e-10 2.357474706e-10 9.448892457e-10 3.712305172e-10 6.03835706e-10 4.604094898e-10 2.498458284e-10 2.328902187e-10 3.135610356e-10 2.064072468e-10 5.640441609e-12 4.712822103e-10 2.203849884e-10 2.131656247e-10 6.92098464e-11 2.588296419e-10 2.957629908e-10 1.153479701e-10 1.599778299e-10 3.156574559e-10 3.519019378e-10 1.711905118e-10 1.623190282e-10 5.987121945e-11 2.46164538e-10 1.686315299e-10 1.709236653e-10 2.851588617e-10 3.743649531e-10 1.085138241e-10 1.40527776e-10 4.624984869e-11 3.804166573e-10 1.587167483e-10 5.087781777e-11 1.82095352e-10 5.879435791e-10 1.275250238e-10 9.001416065e-11 7.127407125e-11 1.707155033e-10 1.8735743e-11 1.240509611e-10 2.993121692e-10 4.78372859e-10 9.18728847e-11 2.697844342e-10 2.292351277e-10 2.775476905e-10 2.202588885e-10 2.456854525e-10 2.229042233e-10 7.023403781e-11 3.10200608e-10 1.84678415e-10 4.376965438e-10 2.101988483e-10 4.030617729e-10 2.415072233e-10 2.399338504e-10 3.899478352e-10 2.368385001e-10 1.585535412e-10 2.638758476e-10 2.567472302e-10 2.34636262e-10 1.82197348e-10 3.291285637e-10 2.503116794e-10 4.530080271e-10 1.800375901e-10 3.387881087e-10 4.945039895e-10 4.513367545e-10 2.281241032e-10 3.398217743e-10 1.120415586e-10 1.876537502e-10 2.086681597e-10 2.328837696e-10 3.378919535e-10 4.762747913e-10 3.415302718e-10 8.7081548e-11 4.787894403e-10 2.911990243e-10 5.772393329e-10 3.73726363e-10 4.994679096e-11 8.514384772e-11 3.920662946e-10 3.2527615e-10 1.577824066e-10 1.165339286e-10 3.933166591e-10 3.503739809e-10 3.473688559e-10 3.862858771e-10 2.165220914e-10 3.78554922e-11 3.455285868e-10 3.154215589e-10 1.424263311e-10 3.955366288e-10 1.49155494e-10 1.203663602e-10 1.867895256e-10 1.496049121e-10 4.446454161e-10 +2.79975814e-10 2.519504786e-10 1.960394853e-10 7.871888313e-11 2.314932624e-10 1.888019197e-11 2.406110704e-10 4.570198836e-11 3.67427532e-10 1.196579362e-10 3.836584086e-10 3.895359455e-10 1.373214632e-10 2.256319324e-10 2.58909074e-10 3.142221481e-10 1.855979359e-10 2.427152086e-10 9.106451552e-11 1.935520814e-10 1.988154188e-10 6.485193995e-11 2.408796615e-10 2.537376565e-10 9.674100527e-11 7.635562392e-11 1.69684767e-10 1.952024197e-10 2.128350891e-10 1.339422565e-10 3.185159812e-10 2.955049011e-10 5.417056324e-11 6.971781011e-11 1.770020321e-10 3.248190865e-11 2.294182242e-10 4.788309022e-10 6.240938584e-10 5.559836123e-11 2.962464974e-10 2.36051562e-10 2.116810333e-10 1.679254457e-10 1.128513201e-10 1.34529605e-10 7.525475391e-10 2.323481352e-10 1.60115703e-10 2.56465576e-10 5.245037846e-10 3.16570847e-10 1.21476945e-10 3.637442034e-10 6.41657387e-10 1.70331223e-10 4.913630397e-10 1.477062744e-10 7.321288894e-11 1.445140164e-10 1.615771897e-10 5.871489726e-11 1.167403559e-10 2.468791712e-10 1.714295754e-10 1.129663033e-10 2.223691373e-10 1.612820496e-10 1.522429798e-10 2.230753635e-10 3.283595629e-10 3.122320958e-10 4.377389899e-11 1.55112473e-10 2.454431075e-10 2.620423402e-10 5.871377784e-11 5.167494442e-11 7.244817164e-11 4.421356732e-10 1.951328442e-10 1.414612628e-10 1.336418898e-10 2.083944218e-10 2.276749869e-10 1.755068716e-10 8.762525965e-11 8.92792597e-11 3.288983514e-10 3.372072478e-10 4.316165617e-10 2.111019798e-10 1.506851989e-10 6.398363477e-10 2.504633854e-10 1.010499651e-10 6.679206128e-10 2.299135789e-10 4.32428643e-10 2.460458724e-10 1.747994418e-10 4.634630822e-10 2.738489082e-10 2.396104585e-10 3.371166431e-10 2.042853106e-10 7.425392545e-10 3.206078664e-10 3.289846437e-10 2.947707072e-10 3.253120652e-10 3.937693362e-10 4.00397606e-10 9.224031824e-11 1.995436461e-10 2.16692714e-10 2.561731948e-10 5.165082466e-10 3.315449277e-10 3.846575857e-10 3.334324216e-10 1.299193749e-10 3.004147913e-10 2.532306953e-10 3.219543856e-10 1.989964692e-10 2.918975451e-10 5.605578372e-10 5.499699765e-10 1.587993378e-10 1.046351085e-10 2.067359048e-10 5.236004349e-11 2.257217791e-10 8.412249248e-11 3.531250082e-10 3.115731582e-10 4.418857117e-10 1.975491334e-10 3.030893837e-10 2.5212481e-14 2.350131913e-10 3.429032691e-10 1.421061798e-10 1.091239282e-10 6.964529768e-11 3.147393338e-10 2.956422024e-10 3.391004717e-10 3.598888024e-10 3.352060247e-10 4.424491509e-10 2.758285068e-10 3.903601999e-10 7.440930711e-10 6.619564381e-11 4.235943315e-10 4.960215438e-10 1.761438988e-10 2.192995946e-10 2.742448395e-10 3.091572809e-10 9.493259569e-11 2.290303551e-10 2.774820666e-10 3.04258134e-10 2.655017716e-10 5.509308239e-10 1.344610583e-10 2.028541402e-10 1.787944454e-10 9.962172298e-11 4.192135362e-10 6.196699126e-10 2.026745037e-10 1.895322104e-10 5.944116323e-10 2.744189616e-10 6.571887429e-10 4.54195932e-10 2.31216972e-10 4.077142815e-10 6.440767478e-10 6.224773216e-10 6.164490464e-10 3.108315693e-10 8.161272867e-10 2.31425538e-10 3.825707264e-10 3.564530998e-10 5.047872228e-10 6.03150985e-10 4.143237108e-10 4.57293218e-10 1.880166329e-10 4.882860414e-10 2.81676271e-10 3.795499086e-10 3.361793323e-10 1.019481718e-10 2.033289582e-10 3.729827583e-10 1.786951352e-10 3.129999819e-10 9.116463053e-11 2.943568454e-10 2.305514427e-10 4.600795606e-10 3.467241478e-10 4.391616583e-10 2.533432795e-10 1.026256063e-10 5.151508872e-10 1.514838062e-10 3.330274295e-10 1.775181224e-10 1.646710818e-10 2.67110014e-11 2.761448997e-10 4.829929853e-11 2.02520788e-10 4.595077235e-11 2.229964061e-10 2.651370998e-10 2.714725086e-10 2.043433548e-10 1.026719177e-10 1.478363095e-10 3.22577315e-10 8.349184243e-10 2.506730726e-10 1.72318099e-10 6.059351616e-11 2.250990546e-10 5.509681287e-11 8.370572985e-11 1.471442172e-10 1.926682285e-10 3.964006699e-10 2.341318999e-10 1.282968436e-10 2.223577354e-10 4.744892166e-10 1.591577674e-10 1.256866576e-10 1.885767788e-10 1.713557307e-10 5.056754264e-11 1.159529897e-10 5.730200385e-10 2.097291664e-10 4.034745915e-10 4.214344172e-10 2.044207599e-10 1.09623363e-10 6.792177447e-11 2.983080048e-10 2.568966445e-10 1.585824878e-10 1.514492579e-10 1.35044306e-10 6.265504191e-11 4.228266107e-10 3.338155613e-10 1.27447842e-10 3.502519648e-10 5.414976602e-10 3.241790864e-10 1.285809588e-10 6.304064748e-11 2.543473487e-10 1.507928255e-10 8.674546523e-11 5.280186007e-10 2.395884805e-10 3.286734899e-10 3.144776216e-10 1.314346239e-10 1.972845587e-10 1.780814851e-10 2.021523512e-10 4.153129428e-10 1.597181143e-10 1.49613123e-10 1.513602963e-10 2.120527885e-10 7.389738349e-11 6.218769108e-10 1.627109947e-10 2.423765625e-10 2.664549017e-10 1.063492754e-10 4.004179879e-10 2.296084827e-10 2.982913085e-10 2.546335377e-10 1.903123187e-10 1.121182382e-10 4.601502835e-10 2.463863971e-10 +7.071550271e-11 1.620107713e-10 3.245811418e-10 3.922882812e-10 2.024760431e-10 9.586069098e-11 2.205261666e-10 2.135501154e-10 1.981972934e-10 1.815313179e-10 2.697095069e-10 2.408513395e-10 2.392080259e-10 3.770826286e-10 4.996124177e-10 5.863435603e-11 2.9964903e-10 2.824919048e-10 3.018829164e-10 1.357458826e-10 3.078697209e-10 4.156869602e-10 1.816570652e-10 1.851903787e-10 1.944653625e-10 7.472061391e-11 4.22208467e-11 1.911917058e-10 6.668837198e-11 4.557600509e-10 1.847208537e-10 7.424045412e-10 6.317691596e-11 1.27735653e-10 1.084070883e-10 2.623469135e-10 6.055824515e-11 4.931201635e-10 2.752853911e-10 1.076111576e-10 5.710540541e-11 2.785792822e-11 1.654016e-10 8.283715594e-11 1.361444066e-10 1.097941414e-10 7.254132224e-11 1.890769223e-10 7.500387237e-11 5.28964715e-10 1.482210226e-11 4.691612426e-10 3.95311054e-10 2.91157899e-10 9.066992263e-11 4.72283854e-11 3.421651486e-10 3.750835646e-10 1.7785738e-10 1.123826463e-10 2.481619561e-10 1.657374829e-10 1.507280822e-10 1.77379144e-10 1.111047868e-10 4.292614168e-10 1.719497697e-10 1.794886172e-10 3.671916631e-10 1.013791954e-10 3.033274098e-10 2.947038433e-10 2.40374269e-10 2.278279107e-10 2.48652031e-10 1.640229705e-11 2.399108825e-10 2.682492955e-10 3.130511363e-10 3.166581893e-11 5.10086359e-10 9.761493509e-11 2.554099901e-10 3.543982952e-10 2.827974242e-10 1.745120991e-10 1.700251084e-10 2.80275851e-10 2.560330243e-11 1.783330732e-10 5.393495586e-11 3.077887621e-10 2.341450725e-10 2.287192726e-10 8.288861474e-11 6.539663308e-10 2.901293424e-10 8.580267162e-11 1.133930218e-10 8.749568598e-11 2.798911119e-10 4.952034062e-10 2.78338806e-10 6.142884582e-11 2.782148998e-10 4.34705225e-10 5.678793023e-10 2.655324351e-10 2.763189065e-10 3.060788435e-10 3.652183884e-10 9.727236456e-11 2.525150749e-10 4.260695865e-10 2.69595599e-10 4.009519084e-10 1.304240742e-10 1.876111141e-10 1.348158882e-10 3.257827513e-10 4.924895264e-10 2.23307241e-10 1.81848281e-10 2.750266659e-10 3.194168659e-10 4.756531386e-10 3.371285004e-10 8.248659282e-11 3.231447693e-10 2.095974902e-10 2.530349552e-10 4.486781944e-10 3.157073871e-10 3.985895482e-10 2.124215759e-10 5.302812119e-10 2.475235722e-11 3.054552595e-10 6.371560467e-10 8.849463874e-11 2.476786968e-10 5.153139283e-11 4.64954762e-10 3.969685194e-10 3.276725555e-10 7.521310219e-10 3.227569354e-10 2.755078871e-10 2.633093429e-10 4.721504875e-10 3.482745313e-10 1.109951995e-10 7.110217066e-11 4.854388615e-11 4.595736567e-10 1.07744831e-10 4.376321365e-10 2.338926755e-10 1.482474409e-10 4.023269757e-10 1.638392049e-10 5.262200663e-10 4.228471377e-10 4.796828879e-10 4.851011835e-10 1.766094311e-10 4.853434354e-10 3.221619927e-10 3.81403719e-10 3.318699853e-10 3.076724721e-10 5.382970938e-10 1.828748132e-10 2.660546276e-10 1.814019413e-10 2.118997441e-10 1.199598636e-10 1.196459473e-10 2.489200812e-10 3.973485025e-10 1.200633749e-10 3.196787457e-10 9.237513854e-11 4.437771812e-10 2.71435067e-10 1.600486985e-10 3.795302727e-10 2.594720599e-10 3.181931948e-10 2.095371628e-10 7.97361141e-10 1.504004168e-10 2.740347971e-10 2.184863806e-10 3.169352846e-10 4.545220032e-10 3.880231409e-10 5.50132207e-10 6.177882822e-10 1.323484276e-10 1.86837459e-10 4.294197775e-10 1.50923041e-10 5.581228651e-10 3.706566881e-10 2.608066993e-10 4.895874792e-10 8.481563322e-11 3.817799889e-10 1.080090423e-10 1.692528241e-10 5.243648039e-10 5.420195181e-11 7.887130563e-11 1.821831883e-10 2.302260646e-10 1.69301532e-10 8.681483636e-11 1.605898043e-10 3.900831912e-10 2.248033996e-10 2.617487818e-10 2.10313849e-10 1.542800196e-10 1.931679913e-10 2.677615654e-10 3.790184186e-10 1.096002787e-10 3.031672953e-10 1.216843941e-10 3.370763314e-10 2.888433446e-10 1.52085903e-10 1.095124095e-10 1.440818057e-10 3.190614046e-10 4.615951242e-11 2.721183609e-10 1.414219324e-10 1.22091909e-10 2.180805572e-10 8.196232807e-11 1.755097854e-10 8.883501141e-11 2.286937096e-10 3.080696525e-10 4.649844756e-10 1.608520859e-10 4.846603968e-11 1.606456129e-10 4.09465787e-10 1.730652815e-10 1.867828104e-10 6.399759633e-11 4.377396776e-13 7.233246992e-11 3.724925876e-10 4.348729367e-10 1.785414851e-10 1.893699353e-10 2.894558084e-10 1.868618863e-10 1.297766309e-10 1.959634734e-10 1.051936648e-10 2.786200998e-10 2.287418729e-10 3.617232169e-10 5.379175727e-10 1.275067032e-10 2.804786957e-10 1.045762097e-10 8.136973792e-11 2.56624159e-10 2.289787242e-10 2.399500925e-10 2.399462017e-10 8.436499509e-11 5.698997283e-10 4.641476408e-10 7.808040634e-11 2.020050903e-10 8.222725293e-11 2.757681812e-10 6.315404602e-11 2.507151861e-10 9.319493848e-11 5.110063458e-12 3.771005206e-10 1.526492275e-10 2.969903124e-10 5.668785891e-11 6.052544848e-10 9.135563116e-11 9.886085934e-11 1.736238813e-10 1.494828009e-10 1.238059326e-10 5.092593784e-11 3.034506885e-10 +6.393917736e-11 1.581587813e-10 1.033493687e-10 9.84204746e-11 4.24314588e-10 1.778597379e-10 9.271604157e-11 2.206519692e-11 1.258884869e-10 5.9284454e-10 3.398031441e-10 1.673957264e-10 2.664052899e-10 2.346192342e-10 2.531917908e-10 2.855628161e-10 8.311050733e-11 1.136342899e-10 4.281678818e-10 1.375843802e-10 5.285308352e-10 1.299521253e-10 9.195022112e-11 5.94811525e-11 1.373051594e-10 1.169652876e-10 2.375739618e-10 1.758069793e-10 9.959527756e-11 4.578535719e-10 1.429316914e-10 4.85735787e-11 2.636736435e-10 2.86202577e-10 1.745007081e-10 1.14685544e-10 8.522591132e-11 1.862611772e-10 4.598475496e-10 2.281407125e-10 4.224021094e-10 2.090881507e-10 5.597191174e-11 1.974391919e-10 5.225577767e-11 1.553300716e-10 3.134048093e-10 2.992860351e-10 1.191329366e-10 2.799367339e-10 1.495858268e-10 1.181847741e-10 2.214051176e-10 1.438245528e-10 6.909472294e-11 3.973614399e-10 2.142313907e-10 5.577762826e-11 2.697617723e-10 4.588857444e-10 1.045857792e-10 7.137393673e-11 4.485197792e-10 1.34279154e-10 1.501537901e-10 2.195196888e-11 2.221709516e-10 3.663679206e-10 2.292756172e-10 1.366509187e-10 3.031579343e-10 2.918421954e-10 2.466388809e-10 1.538913898e-10 1.215291639e-10 2.769432997e-10 1.481634453e-10 1.130485815e-11 2.686829319e-10 2.454513074e-10 1.033235032e-10 5.463917664e-11 1.495821599e-10 2.429906776e-10 7.544140732e-11 2.232728631e-10 1.677931721e-10 3.431788881e-15 1.564278578e-10 2.124931222e-10 2.709856713e-10 2.535636838e-10 1.228316637e-10 3.371703748e-10 3.603831605e-10 6.786900904e-10 3.797705336e-10 8.9577155e-11 2.108291003e-10 3.345405434e-10 1.185195658e-10 4.265377499e-10 3.533787846e-10 2.418609341e-10 1.248456345e-10 1.828580507e-10 2.271332025e-10 3.52704085e-10 5.222405536e-10 3.410547525e-11 6.979149322e-10 5.899482944e-10 4.103317345e-10 1.689948403e-10 1.983616292e-10 3.82124406e-10 1.418441108e-10 2.614157867e-10 3.941936263e-10 1.531271336e-10 3.159324393e-10 1.352570315e-10 3.999318196e-10 9.027185473e-11 3.749839072e-10 4.430957689e-10 4.249040959e-10 3.100428556e-10 4.031222962e-11 1.932096106e-10 1.458783982e-10 3.537936308e-10 1.226665577e-10 4.43525117e-10 2.62041518e-10 1.504664833e-10 4.815076556e-10 4.896098647e-10 3.579459036e-10 1.978369833e-10 4.943804739e-11 4.162226692e-10 2.798372312e-10 2.747207432e-10 3.218011341e-10 6.187425138e-11 1.920086081e-10 5.004316662e-10 3.436252211e-10 1.794181824e-10 1.81514735e-10 2.310938206e-10 2.647459271e-10 4.589409189e-10 2.23536952e-10 3.456945025e-10 3.457705842e-10 1.761973032e-10 1.77970295e-10 4.901352689e-10 5.490254161e-10 2.316399973e-10 1.938262574e-10 2.938929188e-10 3.813934385e-10 3.422788173e-10 1.858763799e-10 3.78204132e-10 1.488909515e-10 4.141939204e-10 1.638118722e-10 5.37065683e-10 7.05832524e-10 2.153821931e-10 1.189249599e-10 7.239207352e-11 3.738343192e-10 1.821250114e-10 3.538817288e-10 3.65090711e-10 2.3280291e-10 5.875773151e-10 3.287299626e-10 1.89094271e-10 3.358883892e-10 2.157202969e-10 6.273036099e-10 4.255644383e-10 1.700474498e-10 4.459810084e-10 5.422486755e-10 5.340822672e-10 3.57787437e-10 1.907371198e-10 1.430937944e-10 2.907992965e-10 7.227271153e-11 2.997622552e-10 3.104237634e-10 4.839649386e-10 2.716604398e-10 1.841069581e-10 1.709026663e-10 2.537404697e-10 2.956868844e-10 5.146926278e-10 6.774462544e-11 2.224107165e-10 1.695500062e-10 3.304070551e-11 2.019943578e-10 4.336078447e-10 5.493378334e-11 4.95140393e-10 6.976042005e-11 3.133399833e-10 2.604600812e-10 1.993728426e-10 2.107244824e-10 1.139070473e-10 1.112955772e-10 2.396477143e-10 1.691763753e-10 7.515967352e-11 2.032852508e-10 4.259702799e-11 2.189095665e-10 1.308935001e-10 3.205040713e-10 1.318799562e-11 1.375216031e-10 3.308537247e-10 1.491970794e-11 2.429641338e-10 4.393386447e-10 2.835063943e-10 1.474121266e-10 1.726961466e-10 1.25475238e-10 2.115787635e-10 4.525152553e-11 1.212774394e-10 8.631292344e-11 6.76145894e-11 2.720908539e-10 4.152530327e-10 2.886937465e-10 1.667651622e-10 2.392571736e-10 3.018344132e-10 2.835945858e-10 7.707916702e-11 1.239404936e-10 2.830830392e-10 6.285737851e-10 2.478353722e-10 2.938104368e-11 2.066706457e-10 1.487392719e-10 2.363755242e-10 1.475319917e-10 4.041098675e-10 1.746501665e-10 3.542543933e-10 7.808702521e-11 2.860211257e-10 1.374668293e-10 2.209221729e-10 1.230603064e-10 4.923780794e-10 1.674771069e-10 1.71664815e-10 2.022936201e-10 8.099779052e-11 9.689259042e-11 2.028764022e-10 2.043649587e-10 2.073764882e-10 3.357361705e-10 2.773072454e-10 3.8767395e-10 4.725591398e-11 5.801833704e-10 6.191085759e-10 8.032305558e-11 9.602470228e-11 1.594890126e-10 3.323246145e-10 1.13865402e-10 2.788820902e-10 2.140463259e-10 3.741888036e-10 3.76468366e-10 2.141049655e-10 1.902903077e-10 2.479231127e-10 1.325694682e-10 4.388138872e-11 1.158761072e-10 1.872952709e-10 +2.44608208e-11 7.062999041e-11 2.551369349e-10 2.245400317e-10 2.046760923e-10 8.643153348e-11 1.427042227e-10 1.221418242e-10 8.726033563e-11 3.358930512e-10 2.380372412e-10 1.776169748e-10 3.458415612e-10 1.846698177e-10 2.531329176e-10 1.383497743e-11 2.92941677e-10 1.494003834e-10 7.742164681e-11 1.486250022e-10 1.795216568e-10 5.233976153e-11 6.89525797e-11 4.170903231e-10 1.987308361e-10 1.774663133e-10 6.375743172e-11 2.313277762e-10 2.355932806e-10 1.54324933e-10 3.621234883e-10 5.6126991e-11 2.754554155e-10 3.6144626e-10 1.466074296e-10 1.999179173e-10 1.17729931e-10 1.521258152e-10 1.841085014e-10 2.323024282e-10 9.467613937e-11 3.444820102e-11 9.564001414e-11 3.356112054e-10 6.340241422e-11 1.807094134e-10 3.680538062e-10 2.684994813e-10 1.226475805e-11 3.674772105e-10 3.201939112e-10 6.605073151e-11 1.039586083e-10 1.435923818e-10 2.477178251e-10 2.681392384e-10 1.325805406e-10 1.72204151e-10 1.393971771e-10 2.350810864e-10 1.19191134e-10 3.710667868e-10 2.249330784e-10 2.313291257e-10 5.324954661e-10 2.428613799e-10 2.063576959e-10 4.304256319e-11 1.195528119e-10 1.736442175e-11 1.091585622e-10 1.854842314e-10 2.95210362e-10 2.453412107e-10 1.682679262e-11 1.307429804e-10 1.057695975e-12 1.109729846e-10 4.601680866e-10 2.114716046e-10 2.115210981e-10 1.64335717e-10 2.348019346e-10 2.226498245e-10 1.05147342e-10 4.15065677e-11 9.745410806e-11 6.209296428e-11 7.775810199e-11 1.97020801e-10 2.077569155e-10 5.323223014e-10 5.200062747e-10 2.576864918e-10 3.949441783e-11 1.337241857e-10 1.215971424e-10 1.456079471e-10 1.747220764e-10 3.619331149e-10 2.531025721e-10 1.369329196e-10 2.13449441e-10 1.432481694e-10 5.199526147e-10 3.963822255e-10 5.04362996e-11 7.474216532e-11 7.067439054e-10 3.532918284e-10 5.382368073e-10 1.927675991e-10 2.158743826e-10 3.842880795e-10 3.350905036e-10 5.90772679e-10 1.72303064e-10 2.46840678e-10 2.772787243e-10 2.940450241e-10 4.521010126e-10 1.701241167e-10 8.479376351e-10 1.903308445e-10 3.483940006e-10 5.305918485e-10 3.088827061e-10 2.828281789e-10 2.286458162e-10 3.396788955e-10 2.178148358e-10 4.685580126e-10 2.778705705e-10 2.439623197e-10 1.409960707e-10 5.835271261e-10 3.292078644e-10 8.835135423e-11 3.689831609e-10 1.974175695e-11 2.468099698e-10 3.254124314e-10 6.723834023e-10 2.94550333e-10 2.722685045e-10 4.817565035e-11 3.787241244e-10 1.278642075e-10 2.231199308e-10 4.552764813e-10 1.139624089e-12 1.553787896e-10 7.529474084e-11 4.285316727e-10 6.102670943e-10 1.804944009e-10 2.569282456e-10 1.633512867e-16 4.402651722e-10 2.595306705e-10 3.322828912e-10 4.332763405e-10 2.347629321e-10 4.931679181e-10 3.283041889e-23 5.319026251e-10 4.399331807e-10 2.804914211e-10 1.750881121e-10 4.366505557e-10 1.930149073e-10 6.012706541e-10 9.172919337e-11 5.829740373e-10 1.203289073e-10 1.228233007e-10 4.696210087e-10 4.672133403e-11 8.307049984e-11 1.223133961e-10 8.248270406e-10 2.607535151e-10 3.304268144e-11 9.173738113e-11 8.70532239e-10 4.701984902e-10 1.252716465e-10 1.802447389e-10 1.837506405e-10 5.923156696e-10 4.165693569e-10 1.007534629e-09 2.524943634e-10 2.832776041e-10 4.069761195e-10 3.46411011e-10 2.889099982e-10 1.844752062e-10 1.484354461e-10 3.287276721e-10 3.478599635e-10 2.199611155e-10 1.273910668e-10 6.875925602e-10 1.211815443e-10 3.39789029e-10 2.148841551e-10 3.032613595e-10 1.45897464e-10 1.539776749e-10 2.021096978e-10 2.709333689e-10 1.63996703e-10 4.65938437e-11 2.53774947e-10 4.11260775e-11 7.739956066e-11 6.268788161e-11 1.214090984e-10 7.018775777e-11 8.326235819e-11 3.946077062e-10 3.656583123e-10 1.707014359e-10 2.711203976e-10 1.036654731e-10 9.700684923e-12 4.902768532e-11 2.327769707e-10 3.601224557e-10 1.380956897e-10 9.06146747e-11 4.620098276e-10 1.946037899e-10 2.463416582e-10 8.832450117e-11 2.139223678e-10 1.057105968e-10 1.311345234e-10 1.88173357e-10 1.575722485e-10 1.47905574e-10 3.497980619e-10 2.098086848e-10 1.613721802e-10 5.894707168e-10 1.588022168e-11 3.294648301e-10 2.463867114e-10 1.370774161e-10 2.733173975e-10 6.920787104e-10 2.245538202e-10 1.161389124e-10 2.32159462e-10 1.047823758e-10 1.075452124e-10 3.353483069e-10 2.620499346e-10 1.402661362e-10 2.81022514e-10 3.510249305e-10 9.200610335e-11 3.394059151e-10 8.63216387e-11 3.250392484e-10 2.172857052e-10 1.107039311e-10 1.526266711e-10 7.989314597e-11 8.769583868e-11 4.420846175e-10 3.614293597e-10 1.888823672e-10 6.775841201e-11 2.86346467e-10 1.065160304e-10 8.554603748e-12 1.653611178e-10 1.544008229e-10 9.378244916e-11 4.075134033e-10 2.398613716e-10 1.533487279e-10 2.2334622e-10 3.170128277e-10 2.419125593e-10 3.430528106e-10 2.54575854e-10 1.609204607e-10 1.535200827e-10 2.265500523e-10 2.963179723e-10 5.874573947e-11 1.188262209e-10 7.615545996e-11 6.648628372e-12 1.798243407e-10 5.714243746e-11 1.677296144e-10 +2.376644505e-10 4.035591096e-10 1.296330674e-10 2.240783968e-11 1.108067055e-10 6.683788167e-11 8.397333343e-11 1.290137225e-10 6.188130676e-11 6.370489684e-11 2.572578988e-10 1.063559465e-10 5.077704514e-11 7.23544891e-11 3.414017111e-10 1.127854849e-10 1.183815058e-10 2.232482345e-11 4.025938231e-10 1.220200851e-10 4.16884302e-10 8.293073062e-11 1.753266028e-10 2.151540715e-10 3.767396293e-10 1.592000897e-10 2.647062669e-10 1.971573013e-10 1.467982863e-11 1.777989349e-10 5.717824542e-11 1.809506144e-10 9.998510413e-11 3.059236151e-10 5.241435069e-10 3.280726349e-10 2.32272416e-10 9.965101124e-11 3.342978212e-10 3.046972912e-10 2.000875291e-10 1.17543143e-10 1.85557747e-10 8.204636871e-11 2.16960868e-10 8.959399416e-11 2.60178499e-10 2.182009034e-10 7.917407547e-10 4.677782852e-11 2.00372482e-10 1.064950807e-10 1.24602285e-10 2.302925629e-10 1.342330997e-10 2.97177496e-10 1.086379226e-10 4.232016671e-10 8.897784925e-11 1.697191384e-10 4.340004174e-11 1.957364583e-10 8.712470101e-21 1.56605895e-10 9.640754033e-11 1.896050813e-10 8.708616625e-11 2.123770645e-10 4.317559187e-11 1.044773427e-10 2.738287403e-10 1.449294378e-10 1.287754011e-11 3.545525933e-11 2.339618658e-10 2.860763737e-10 1.508619641e-10 3.621808298e-11 2.295917386e-10 2.367293388e-10 8.640860549e-11 5.890673161e-11 3.410942953e-10 1.141627616e-10 1.895295985e-10 2.433324275e-10 2.590287252e-10 1.467926746e-10 1.518017479e-10 1.331695654e-10 1.007698069e-10 2.3704123e-10 1.172667977e-10 1.714806904e-10 2.022293533e-10 2.867596047e-10 2.82595367e-10 1.179302113e-10 1.285403491e-10 4.931552659e-10 1.874827241e-10 1.630008958e-10 4.322542789e-10 4.088743939e-10 4.927351502e-10 3.551501281e-10 1.637870793e-10 1.040227974e-10 2.176199292e-10 5.383568253e-10 3.194751921e-10 1.577892739e-10 4.339704071e-10 3.043667476e-10 2.485810828e-10 4.174130361e-10 3.487855715e-10 9.376838759e-11 6.153046515e-10 4.451603992e-10 3.433122559e-13 1.834415217e-10 2.069673749e-10 1.670459398e-10 4.087223126e-10 2.621390056e-10 5.483365512e-10 3.183977184e-10 4.810461393e-10 7.037998801e-11 2.529004241e-10 2.309418955e-10 3.066026587e-10 2.963948816e-10 1.783950747e-10 1.095005365e-10 3.436406911e-10 6.93789037e-11 9.426368385e-10 1.767251125e-10 1.951273626e-10 1.610048291e-16 2.018753842e-10 3.908884873e-10 2.079235978e-10 4.221374227e-10 5.276323961e-10 1.290464772e-10 2.436633548e-10 1.561781012e-10 1.075389584e-10 1.346659562e-10 1.069490157e-10 2.438952977e-10 1.504267001e-10 1.507117341e-10 1.138641502e-10 2.012328386e-10 3.17853579e-10 4.668100653e-10 1.65287912e-10 2.162600107e-10 5.226175717e-10 4.34477639e-10 7.049329909e-11 1.742382171e-10 2.036525451e-10 2.588679306e-10 3.353453037e-10 3.471915834e-10 8.755940894e-11 0 3.351512792e-10 3.301276161e-10 4.253547846e-10 2.233107366e-10 3.438264222e-10 3.894939438e-10 2.366348728e-10 2.646486186e-10 1.097054924e-10 7.194569361e-10 4.619303378e-10 4.514549799e-10 2.768841948e-10 5.380559549e-10 1.152565848e-09 2.92567306e-10 3.059918355e-10 1.130265886e-10 1.790884825e-10 4.379988709e-10 3.691460713e-10 2.847248212e-10 3.360681077e-10 1.637819473e-10 2.40968974e-10 1.154637195e-10 2.575614384e-10 6.416280217e-11 1.467168527e-10 1.587634257e-10 4.778844346e-11 1.210307671e-10 4.97852077e-10 9.226363978e-11 2.845396613e-10 3.012026497e-10 1.342114506e-10 1.764806937e-10 1.395056512e-11 1.371620598e-10 6.653584838e-11 9.699850347e-11 2.108414535e-10 3.223116391e-10 2.382584344e-10 8.109506201e-11 4.189323054e-10 1.401434696e-10 8.334122347e-11 9.503159775e-11 1.138274829e-13 1.434805784e-11 1.057391302e-10 3.066598124e-10 8.210563974e-12 7.99421107e-12 2.767680533e-10 8.09037865e-11 8.308647665e-11 2.479976347e-10 6.859773628e-11 1.895000177e-10 1.674813478e-10 4.523386878e-11 8.653406695e-11 1.948798117e-10 2.223400242e-10 7.952515589e-11 1.786568721e-10 1.836667986e-11 1.278076089e-10 3.662127358e-10 1.619116056e-10 1.170322059e-10 1.918489924e-10 5.554604314e-10 8.470630686e-11 3.368804781e-10 3.232712599e-10 3.804134459e-11 2.719532748e-10 1.151749289e-10 2.032907675e-10 3.230060495e-10 2.21054828e-10 7.637891596e-11 1.032220463e-10 9.664142825e-11 1.055105389e-10 1.784960906e-10 2.063663513e-10 3.809862814e-10 1.222655907e-10 1.047783342e-10 2.097285585e-11 3.858843475e-11 9.245193066e-11 1.335640619e-10 1.537888011e-10 1.622188943e-10 3.108110768e-10 2.971063782e-10 5.40952159e-11 1.035868378e-11 2.51813327e-10 9.649631513e-11 1.686801241e-10 1.602639812e-11 7.131829894e-11 1.659277922e-10 1.250678207e-10 2.439037183e-10 1.595712792e-10 6.951003369e-10 2.561330553e-10 3.27236771e-10 2.830235546e-10 1.049383065e-10 1.155776796e-10 5.757378307e-11 5.522941705e-11 3.338382997e-10 1.504290007e-10 1.37477667e-10 2.045718177e-10 8.012593422e-11 2.25166723e-11 4.560393187e-11 +1.457106813e-10 2.569823727e-10 5.558280198e-11 1.859937927e-10 4.100984799e-12 3.183846031e-10 8.148236936e-11 1.095305934e-10 1.898462864e-10 2.905315815e-11 8.892346444e-11 5.236265688e-11 1.18026752e-10 7.245547322e-11 1.61041181e-10 1.419534894e-10 1.100867309e-10 1.451616974e-10 1.538944421e-10 2.346208761e-10 2.974791099e-10 3.551646917e-11 8.26754457e-11 2.475148308e-10 5.309872146e-10 1.296766456e-10 8.719005431e-11 4.135232035e-11 1.502543034e-10 2.45723667e-10 7.558308993e-10 1.314310812e-11 9.803578157e-11 1.989440785e-10 3.145770111e-10 1.47711093e-10 7.040536373e-11 1.461012782e-10 7.727358718e-11 1.592059094e-10 5.389807158e-11 2.193484966e-11 3.162144174e-10 1.606579006e-10 1.054503456e-10 1.827495138e-10 3.728383139e-10 3.508272931e-11 1.922298907e-10 4.742414806e-11 4.197269957e-10 7.197747912e-11 1.157171575e-10 3.067828566e-10 3.168928125e-10 2.255225598e-10 9.32223192e-11 3.355522127e-10 2.496661777e-10 1.054980302e-11 6.792519083e-11 5.273746715e-11 3.077489116e-10 1.241287872e-10 9.744086256e-11 2.318119292e-10 3.714711508e-11 1.67603171e-10 1.626880472e-10 2.565082421e-11 1.550717077e-10 2.011703993e-10 7.503060622e-11 1.483504716e-10 2.271705631e-10 8.694751868e-11 1.008744837e-10 3.321555892e-11 3.950817969e-10 6.59491746e-11 3.743381215e-11 7.651197593e-11 4.921180152e-11 1.147154674e-10 8.597837207e-11 2.709331513e-10 6.986483694e-11 3.060977537e-10 9.326648584e-11 7.105317888e-11 9.48803106e-13 1.181911735e-10 2.907204831e-10 6.491374773e-11 2.746943056e-10 1.822183144e-10 8.28240892e-12 3.102538923e-10 1.99709715e-10 3.503712727e-10 4.355258421e-11 1.2268231e-10 1.170344378e-10 2.110187177e-10 1.107526543e-10 1.574082165e-10 4.408664959e-10 2.300994179e-10 3.053344585e-10 4.285646373e-10 3.512119826e-10 1.758589381e-10 2.958797493e-10 2.420206387e-10 2.629450402e-10 6.90786929e-10 4.579658454e-10 5.028675941e-10 1.620360395e-10 2.834544436e-10 3.37094749e-10 5.286926526e-10 3.687901718e-10 2.215440811e-10 3.499800378e-10 4.024126389e-10 2.330998209e-10 4.39117984e-10 2.604578676e-10 1.728776689e-11 4.650483029e-10 3.281255191e-10 4.005865943e-10 2.92597613e-10 1.583955978e-10 2.150960195e-10 1.091611411e-10 6.547031052e-10 3.405464962e-10 1.220299842e-10 5.773751884e-10 3.682085078e-10 1.712618512e-10 2.414496244e-10 3.027697145e-10 4.107327e-10 2.333891684e-10 4.532298383e-10 1.16614875e-10 3.628454115e-10 3.413274854e-10 4.311999306e-10 3.954716882e-10 1.34948321e-10 4.35566767e-10 4.226038742e-10 3.871014117e-10 4.296588491e-10 1.756314347e-10 4.217116255e-10 3.188248494e-10 3.653172515e-10 3.672844864e-10 2.282283547e-10 4.544270555e-10 1.172871387e-10 1.385057018e-10 1.295125451e-10 5.156801653e-10 3.194424518e-10 1.508110807e-10 1.404049399e-10 5.268386406e-10 6.853427852e-11 3.065104681e-10 1.449375954e-10 4.282916689e-10 1.02858252e-10 1.898714477e-10 2.35649577e-10 3.882378076e-10 1.278847577e-10 5.261987695e-10 8.317738749e-10 3.832596572e-10 2.266744843e-10 3.23949568e-10 2.859849142e-10 4.397657953e-10 3.821044343e-11 1.065875272e-10 3.124276648e-10 1.863380247e-10 1.563099099e-10 4.440607969e-11 1.837906803e-10 1.918957396e-10 3.848717352e-10 3.172062344e-11 1.473999533e-10 8.298126675e-11 1.539757142e-10 4.063889404e-10 8.545424591e-11 3.501840873e-10 1.81597077e-10 4.797325167e-11 3.945118805e-11 5.298977509e-12 6.55829445e-11 1.623202013e-10 1.728729926e-10 7.340906791e-11 1.773545964e-10 2.97482962e-10 1.105320386e-10 1.54221755e-10 1.756353546e-10 6.814683396e-11 2.23874193e-10 9.151961332e-11 1.900828831e-10 2.968292645e-10 3.241422025e-11 1.026389836e-10 7.362204427e-12 1.179569063e-10 1.028185546e-10 5.011847959e-10 7.1878765e-11 7.881555829e-11 2.591192121e-10 1.949510957e-10 9.458504345e-11 2.124624055e-10 8.655370309e-11 8.837583342e-17 1.260254198e-10 1.745588875e-10 2.332008367e-10 3.654881216e-10 3.108749413e-10 1.322322994e-10 6.286904251e-11 1.452749252e-10 6.104229506e-10 1.398913211e-10 1.863934132e-10 1.116976927e-10 2.044822603e-10 1.392971594e-10 1.187818753e-10 2.083777233e-10 3.208044158e-10 1.578876515e-11 3.140769189e-10 1.007798393e-10 1.024704973e-10 9.623380058e-11 7.926486695e-11 1.495287525e-10 1.037316038e-10 1.357354363e-10 5.842765182e-10 1.54575991e-10 1.780334324e-10 7.162627835e-11 6.528482849e-11 4.795886652e-10 1.082571226e-10 8.371312299e-11 2.59722621e-10 2.453142218e-11 2.038800525e-10 1.548967676e-10 6.287319741e-11 1.388979524e-10 2.715927713e-10 9.000544094e-11 1.785230369e-10 1.07184887e-10 2.699226774e-10 2.29579704e-10 4.879696773e-11 2.098251774e-10 1.702543768e-10 4.750143294e-11 4.052569702e-10 1.910681947e-10 5.641908178e-10 1.349465641e-10 2.009379201e-10 2.197907977e-10 1.070625457e-10 2.100932729e-10 1.331902887e-10 6.977688332e-11 1.744094844e-10 2.157682618e-10 1.778304709e-10 +2.594694101e-10 2.095176672e-10 2.961838988e-10 3.205756353e-10 3.152630334e-11 6.818273283e-11 1.566051856e-10 4.220638564e-10 9.566925769e-11 2.351091997e-10 2.433029781e-10 6.019488097e-10 1.391486996e-10 1.139909553e-10 2.611874467e-10 6.764173713e-11 2.666997145e-10 7.031952933e-11 1.953022065e-10 2.138035318e-10 2.03749966e-10 1.17524611e-10 4.120449539e-11 4.229641206e-10 4.950159764e-11 3.913235993e-10 8.230036472e-11 2.301624251e-10 3.380706527e-10 6.437089678e-11 7.349676362e-11 7.141505647e-11 1.573160998e-11 1.113142547e-10 1.556811966e-10 2.870186686e-11 1.758749237e-10 3.758966085e-10 9.704953405e-11 2.301972035e-10 1.129791853e-10 8.774648908e-11 1.532576038e-10 1.84355939e-10 1.639086663e-10 3.596597e-10 1.265011908e-10 2.793420291e-10 5.06197317e-11 2.286173537e-10 3.710458978e-10 1.409791794e-10 1.385281999e-11 1.480617263e-10 2.430231469e-10 7.003561514e-13 5.366990124e-10 1.256695373e-10 1.648130183e-10 4.946508953e-11 5.302218314e-10 1.614682855e-10 1.726390725e-10 3.813492832e-10 5.867766597e-11 1.244143123e-10 1.039828809e-10 1.710409217e-10 8.967725614e-11 1.877264179e-10 4.607848476e-11 1.601257407e-10 5.99779634e-11 1.339039462e-10 7.782839979e-12 3.208666511e-10 2.266857159e-11 6.251452787e-30 1.464345654e-10 2.314181717e-10 2.468289749e-10 9.80596546e-11 1.284668533e-10 1.076764366e-10 1.865538309e-10 1.84822897e-10 1.593787191e-11 1.066148447e-10 3.875280878e-10 1.931468179e-10 8.988255815e-11 6.990581712e-11 3.268466554e-11 4.697195472e-10 3.911115801e-10 3.421150194e-11 1.65957562e-10 1.069922528e-10 3.049589091e-10 1.405524527e-10 1.636556252e-10 3.179086531e-10 2.109751234e-10 2.206232741e-10 6.510425304e-11 1.035116465e-10 2.805143704e-10 3.592215145e-10 1.798192506e-10 1.478915179e-10 2.750416154e-10 1.2471644e-10 4.361131718e-10 4.611380838e-10 2.294139748e-10 3.469104488e-10 4.613756176e-10 5.942780637e-10 1.173736185e-10 5.352804386e-10 1.44548597e-10 1.831639879e-10 2.211007366e-10 2.442208797e-10 4.043653665e-10 3.689887334e-10 1.53225493e-10 2.70364396e-10 2.159335943e-10 5.722946686e-10 9.247392211e-11 1.122177167e-10 2.390928778e-10 1.510043702e-10 1.158190117e-10 2.938397614e-10 2.011506491e-10 2.283102527e-10 2.189920034e-10 2.2636442e-10 5.486715489e-11 1.145651852e-10 3.240307887e-10 2.938729202e-10 2.353460638e-10 1.349133415e-10 3.524229236e-10 3.555497942e-10 9.711388207e-11 4.698727246e-10 3.022535374e-10 3.811224688e-10 2.283396958e-10 7.104982443e-11 3.539638627e-10 2.930302221e-11 2.633979455e-10 2.281244095e-10 1.328205699e-19 1.270512964e-10 2.111164871e-10 2.498724995e-10 4.108320706e-10 2.776756173e-10 3.048913086e-10 3.733605589e-10 8.815214826e-11 1.510464141e-10 1.14676222e-10 2.445910334e-10 4.424605327e-10 3.862636498e-10 1.811830808e-10 5.616889808e-10 3.81011171e-10 2.135332059e-10 3.180326186e-10 1.657472877e-10 6.31981394e-10 4.423428266e-10 4.725371879e-10 4.954171209e-10 3.581547137e-10 3.175243542e-10 3.635631786e-10 1.650866806e-10 1.543620205e-10 4.374483216e-10 2.17718294e-10 6.837087275e-10 1.471792049e-10 2.065738512e-10 2.320639022e-10 7.289328058e-10 2.495651745e-10 2.410837273e-10 1.165117887e-10 2.531327256e-10 7.948853944e-11 1.006130979e-10 1.048873567e-10 2.987445134e-10 4.761765607e-10 3.004439109e-10 3.25185527e-10 2.779494013e-10 1.95922386e-10 1.492058616e-10 8.687527477e-11 2.147257257e-10 1.147138863e-10 2.613628416e-11 5.321187367e-11 1.077586895e-10 3.07727594e-11 3.746253259e-10 1.634687079e-10 4.961091067e-11 3.609701086e-13 2.730502089e-11 1.07072662e-10 7.022449274e-11 2.551376413e-10 1.085810186e-10 1.076191506e-10 2.666518466e-10 5.460408703e-12 9.943151118e-11 1.165661755e-10 3.808667118e-10 8.923906517e-11 1.292996545e-11 4.802177348e-11 7.141675559e-11 1.056363267e-10 3.871149003e-10 8.921884106e-11 4.755413421e-11 3.993059605e-10 1.957069254e-10 1.7210315e-10 4.846106249e-10 9.902574056e-12 2.569426146e-10 1.184725272e-10 2.046630374e-10 9.299571115e-11 1.760571212e-10 1.91418227e-10 1.36452972e-10 9.005017739e-11 1.341464035e-10 2.889867409e-10 1.253691471e-10 8.398379715e-11 1.87020258e-10 1.257665167e-10 4.372029462e-11 3.756412106e-11 8.169478832e-11 3.851061749e-10 1.394488012e-10 2.888766288e-11 1.049520254e-10 2.169859362e-10 1.177715992e-10 1.245151983e-10 2.516989789e-10 2.391409619e-10 6.859905257e-11 3.653528021e-10 5.607255909e-11 4.21754472e-11 3.554069082e-10 2.500472635e-11 6.287426348e-11 1.719232286e-10 1.957588704e-10 3.159897018e-10 4.63909517e-11 4.004342329e-11 1.951304087e-10 2.713646314e-10 1.953393861e-10 2.272059967e-10 1.192886113e-10 4.560126088e-11 1.845225159e-10 9.129976508e-11 2.04027332e-11 2.72305532e-10 3.192587524e-10 2.599212115e-10 1.689347438e-10 7.355097854e-11 5.941922944e-11 3.911634884e-10 3.568040481e-10 2.483559627e-10 2.26784812e-10 +7.18981444e-11 1.979030545e-10 3.938848782e-10 1.478567636e-10 1.810407164e-10 3.749249165e-11 2.516791537e-10 7.622178377e-11 1.758319132e-10 1.05544596e-10 6.110582002e-11 1.26154211e-10 3.921364414e-10 1.584417187e-10 5.828119549e-11 2.274381235e-10 3.472174732e-11 1.503970927e-10 1.391620418e-10 1.07272772e-10 6.560138858e-11 1.597706473e-10 1.657366398e-10 1.885665905e-10 3.552592541e-11 2.87107121e-10 8.432619817e-11 2.328167698e-10 1.375143242e-10 1.063424502e-10 1.884579579e-10 1.425044609e-10 1.91491332e-10 2.816319262e-10 4.889702481e-11 5.858791456e-11 2.005727574e-10 4.648231417e-11 1.155644616e-10 7.236676e-11 3.638753388e-10 3.895228933e-10 5.493505159e-11 2.169119255e-10 1.400376226e-10 6.661048489e-10 4.066997794e-10 1.443933804e-10 1.209502642e-10 4.568854973e-11 4.05273216e-11 2.695580661e-11 7.702225564e-11 1.969374119e-11 2.562609299e-11 1.104296547e-10 1.157356097e-10 6.977651168e-11 2.923887506e-10 1.424021731e-11 2.140908022e-10 1.319688999e-10 1.655137267e-10 1.298492396e-10 1.067305719e-10 2.065783419e-10 1.010619957e-10 8.538363489e-11 2.809985799e-10 1.516106713e-10 7.423450383e-12 2.141838981e-10 1.161339075e-10 1.590453903e-10 8.161334022e-11 1.713228546e-10 4.300260111e-11 7.014452267e-11 5.637576275e-11 1.992514894e-10 1.223506227e-10 3.326358118e-10 8.273350365e-11 1.356146045e-11 6.773611957e-11 2.987597599e-10 1.954423798e-10 1.265325551e-10 9.123149402e-11 1.731145157e-10 1.259582752e-11 7.667936112e-12 1.603576676e-10 2.355281036e-10 2.026052158e-10 4.503766334e-11 1.651638204e-10 2.403058555e-10 1.175745864e-10 2.450920982e-10 2.787577049e-10 8.278928645e-11 2.647541755e-10 1.133936737e-10 4.772280691e-10 3.301246806e-10 3.380709179e-10 5.70227585e-11 6.078752428e-11 2.894072872e-10 7.797083406e-11 1.331099749e-10 1.748600765e-10 2.33439473e-10 2.492043148e-10 2.51247111e-10 6.101980218e-10 2.179912337e-10 2.777333613e-10 2.806490028e-10 3.198095698e-11 1.670721459e-10 3.147381305e-11 1.207294455e-10 3.984758665e-10 3.290326127e-10 4.188759746e-10 5.868727038e-11 6.522428891e-10 3.996292014e-11 1.724971096e-10 9.726952173e-11 1.839282487e-10 5.942329669e-10 3.023220354e-10 1.94333268e-10 3.716732999e-10 2.409135292e-10 1.448441478e-10 2.826681769e-11 6.739626983e-11 3.253947634e-10 1.927687979e-11 2.697778652e-10 2.74071998e-10 2.348640556e-10 2.077936542e-10 3.1875136e-10 6.200178995e-11 1.427019898e-10 1.489140137e-10 4.359509563e-10 3.781282858e-10 3.26325146e-10 4.026267444e-10 1.612982473e-10 1.46610045e-10 4.938995731e-10 5.558547073e-11 1.567873543e-10 1.910983295e-10 1.714747565e-10 4.897214838e-12 3.196631928e-10 6.462369519e-11 1.064485961e-10 2.350146484e-10 2.621847893e-10 1.656389584e-10 1.891690741e-10 4.401704839e-10 2.674594602e-10 3.164610115e-10 3.740136081e-10 8.201480333e-11 2.640036717e-10 3.102443745e-10 3.355609143e-10 3.939987861e-10 1.603323007e-10 3.020085407e-10 4.077270027e-11 3.432595218e-10 3.307359181e-11 1.197459701e-10 4.821943882e-11 1.440548803e-10 2.496382508e-10 2.731555306e-10 2.76311915e-10 3.06677373e-10 2.09075502e-10 2.989989534e-11 2.000222754e-10 2.083819087e-10 2.798483994e-11 1.01179897e-10 2.031656824e-10 2.207178391e-10 5.971879129e-11 1.946933931e-10 1.580047944e-10 1.313640365e-10 1.037223379e-11 3.72399232e-10 2.554776587e-10 1.5008812e-10 5.644031743e-11 2.121137526e-14 7.224725225e-11 2.936752945e-10 2.387859624e-11 2.095492754e-10 1.413437481e-10 1.991209734e-10 6.706951527e-11 4.225448688e-11 1.807689287e-10 3.545839355e-10 8.906292863e-11 6.766112556e-11 3.003047158e-10 4.255942444e-10 3.165240235e-11 1.386963269e-10 1.383548229e-10 7.205604212e-11 5.577968017e-16 2.275054215e-10 3.046360049e-11 1.070941944e-10 1.139871808e-10 6.347667087e-11 9.085356962e-11 1.938564746e-10 8.677184176e-11 4.772404932e-12 2.077464087e-11 1.996383346e-10 1.06585695e-10 1.973956037e-25 4.884069244e-11 1.491788349e-10 1.107336588e-10 2.073703869e-10 7.818433082e-11 6.014693033e-11 1.2507619e-10 2.198927967e-10 1.577861517e-10 2.765828582e-10 2.97937886e-10 6.153129667e-10 4.342803345e-10 4.870147541e-10 1.272253156e-10 2.05579553e-10 2.531405039e-10 4.516389036e-10 2.711102584e-11 1.861710916e-10 1.806764756e-10 4.433685981e-11 1.231121625e-10 2.584398574e-10 5.372344454e-11 2.853453e-10 7.043828359e-11 1.322392896e-10 1.120363434e-10 4.493096328e-11 3.112955121e-10 5.078328766e-10 1.29462825e-10 3.068333434e-10 8.677172053e-12 2.202804337e-10 1.087243829e-10 1.587033186e-10 2.463160547e-11 2.348662568e-10 3.805485413e-12 6.913732479e-11 1.020576921e-10 2.467422753e-11 1.268182751e-11 1.623765391e-10 5.621816159e-11 1.509378374e-10 1.280270423e-10 1.763425227e-10 9.015748627e-11 1.068427647e-10 6.915297444e-11 1.42296937e-10 8.857357184e-11 3.965656927e-11 9.492302792e-11 3.430742767e-11 6.298178512e-12 +9.229054879e-11 2.64383882e-11 2.15047172e-10 1.657290787e-10 9.038054562e-12 4.102761711e-11 8.41243104e-11 7.984621383e-11 2.010582294e-10 1.556056332e-10 1.409798622e-10 2.187676568e-10 3.543870584e-11 9.300663316e-11 2.062789058e-10 6.7302717e-11 5.407531701e-11 1.170581087e-10 5.179502074e-11 2.461908165e-10 2.414801454e-10 6.055853205e-11 5.378157868e-11 2.469381643e-11 2.112952062e-10 1.090264913e-10 2.297707381e-11 1.912461252e-10 7.315130881e-11 1.053753581e-10 9.816373041e-11 4.72408344e-11 1.789631839e-10 7.723787713e-11 1.573051631e-10 1.706824706e-10 4.354908609e-10 3.609332961e-10 9.900958611e-11 1.534491652e-10 1.80791374e-10 1.935607616e-11 1.080340611e-10 1.573886411e-10 2.379942142e-10 1.21106649e-10 7.87876638e-11 1.114844411e-10 7.920056144e-11 1.279600147e-11 2.579917103e-10 4.367308321e-11 1.048261269e-10 1.322373266e-10 2.314677175e-10 8.347836311e-11 2.639676013e-10 2.898649076e-11 1.867581559e-10 3.036585752e-10 7.117195202e-11 6.710511097e-11 1.166092259e-10 5.58733188e-11 1.953845166e-10 1.857630645e-10 1.537945564e-10 3.598374423e-14 3.539772519e-10 3.103156411e-10 4.058482986e-11 6.274297408e-11 2.638526181e-10 3.502588917e-11 3.419714723e-10 1.327635876e-10 3.284830463e-11 8.461060088e-11 8.202001826e-11 4.162254561e-11 1.257123146e-10 1.457933201e-11 1.451494333e-11 1.583798272e-10 8.500098493e-11 4.011324679e-11 3.732404908e-11 2.054342855e-10 6.423563701e-11 1.604889688e-10 1.718832064e-10 1.52842253e-10 1.703495854e-23 2.880871325e-10 6.432845046e-12 1.289581474e-10 5.419879973e-11 1.769366604e-10 3.554065347e-10 1.371172762e-10 1.367149149e-10 4.887483264e-11 9.335197218e-11 3.188804092e-10 2.396625364e-11 1.143998145e-10 1.041373338e-10 1.246200611e-10 3.909116046e-11 9.149177321e-11 3.236245735e-10 1.473176201e-11 3.039644843e-10 1.307399974e-10 2.537034289e-10 9.156303325e-11 3.30889339e-10 7.289058224e-11 2.577288984e-10 1.188754337e-10 1.615703343e-10 2.8796277e-10 3.18881458e-10 1.759490938e-10 1.205645989e-10 1.730701305e-10 6.69539157e-10 1.823816128e-10 3.555271898e-10 2.248737471e-10 3.380047793e-11 2.990653998e-10 1.719344815e-10 1.178972432e-10 1.143840977e-10 4.166147926e-10 1.530031432e-10 3.532608147e-11 7.447455516e-11 1.881331198e-10 1.860803031e-10 5.045738464e-10 2.332998002e-10 3.832786975e-10 1.333237145e-10 1.510153199e-11 2.79316658e-10 8.144680147e-11 1.184379392e-10 9.258830334e-11 5.449336342e-10 3.634109376e-10 2.647565598e-10 2.433289488e-10 3.254410713e-10 4.332549118e-10 3.176830631e-10 2.596209012e-10 2.295783814e-10 1.226208088e-10 1.996092994e-10 1.970658449e-10 2.742246577e-10 3.652916647e-10 1.768984123e-10 5.553951153e-11 1.015679943e-10 1.246548703e-10 2.028029831e-10 3.076757304e-10 1.662630304e-10 4.152491396e-10 4.511738551e-11 2.961765939e-10 2.515612059e-10 4.803355426e-11 1.787530731e-10 2.504290383e-10 1.660617534e-10 4.979653834e-10 3.257568422e-10 2.209815353e-10 3.375869899e-11 5.05535957e-11 2.053159442e-10 1.844505384e-10 2.136926525e-10 1.97444102e-10 1.972373344e-10 6.261602028e-11 1.318790206e-10 4.177358875e-11 2.576545264e-10 1.135299056e-10 8.959606325e-11 2.736212703e-10 1.619005935e-10 1.063762125e-10 8.833207237e-11 3.247096127e-13 1.051350124e-10 1.135053746e-10 1.371401147e-10 6.610806908e-11 3.918139162e-11 1.120163095e-10 1.11790427e-11 1.313781705e-10 2.14867976e-10 1.544696272e-10 4.225626944e-11 4.3264026e-11 1.416403615e-10 3.005257661e-11 8.562749385e-11 2.119246055e-10 2.384579559e-10 2.266129692e-10 1.887383015e-10 1.494704504e-10 1.692112277e-10 5.279872513e-11 1.041468824e-10 7.416136251e-11 2.290637371e-10 2.031032228e-10 4.232383599e-11 1.759248341e-10 2.956048032e-11 2.2255787e-10 1.853898203e-10 1.697626275e-10 5.430819296e-11 1.475652208e-10 2.538333212e-11 3.00937603e-11 2.906950069e-10 4.781528149e-15 5.11612379e-11 0 4.489894624e-10 1.124098313e-11 2.58747304e-10 3.456369911e-10 8.638249555e-11 3.807587106e-11 8.497053526e-12 0 1.293436e-10 2.891357687e-10 2.182693201e-10 7.377511426e-11 9.638955843e-11 2.364939312e-10 2.073948521e-10 1.727045504e-10 4.463584415e-10 1.610494876e-10 3.10793568e-10 6.107294131e-11 4.150775696e-10 1.584975862e-10 3.346401316e-10 8.265781863e-11 1.802412694e-10 2.371051448e-10 1.883867064e-10 3.954278683e-10 9.356487142e-11 3.183251088e-11 1.828123324e-10 1.181228921e-10 2.922742259e-11 8.281454569e-11 1.075475027e-10 6.769370759e-11 5.385496936e-11 4.233949817e-11 1.335129775e-10 6.483214598e-11 2.284129571e-10 4.554856089e-11 2.156984011e-10 1.818285817e-10 3.857248058e-10 1.29600281e-10 2.962957598e-11 2.164362772e-10 1.459079242e-10 1.064051048e-10 1.610949065e-10 1.429606348e-10 2.656626215e-11 1.147401466e-10 1.202289796e-10 7.704563227e-11 5.238587773e-11 4.662287936e-11 3.045589183e-10 9.423336308e-11 +8.783725313e-11 8.945369242e-11 2.987383729e-10 1.387957502e-11 1.717148218e-10 2.63610301e-11 2.948800978e-10 4.730816503e-10 2.484105499e-10 3.659715328e-10 1.427935736e-10 5.978020408e-11 6.641713083e-11 8.421839868e-12 2.347762863e-10 7.28629714e-11 2.301809517e-10 1.511843334e-10 3.724462646e-11 1.951770116e-10 2.039936667e-10 1.025120867e-10 1.079106545e-10 6.805122318e-11 1.223956657e-10 6.643391829e-11 2.619298777e-10 2.872755304e-10 1.841088796e-10 6.20852994e-11 7.632729822e-11 2.082833348e-10 1.547463206e-10 1.337750172e-10 1.748451518e-10 5.977254835e-11 5.738526733e-11 2.140051789e-10 5.159541655e-11 1.925814108e-10 1.793564512e-10 2.363365382e-10 1.657560348e-10 3.249223955e-10 5.560446907e-11 1.621089003e-10 2.079680997e-10 2.174403822e-10 6.894190749e-11 3.393162846e-10 2.997626724e-11 4.661018643e-11 6.954748108e-11 8.609235108e-11 3.350493112e-10 1.496311439e-10 6.048341229e-11 1.723247774e-10 2.43180421e-10 1.763390243e-10 8.729562567e-12 1.30070767e-10 1.747289899e-11 6.060063674e-11 1.357991893e-10 6.811530637e-11 3.387052811e-11 1.49237686e-10 5.802313761e-11 2.348824537e-10 1.557664947e-10 1.003663248e-10 1.874875437e-10 1.617336443e-10 1.81531069e-10 1.635975845e-11 1.4633709e-10 9.811741127e-11 2.953699811e-11 1.060625857e-10 2.634257105e-10 5.054443712e-11 3.323163864e-11 2.177792602e-10 2.614564138e-10 1.202109837e-10 5.306934384e-11 3.97249206e-13 8.646382733e-11 1.089634313e-11 1.00137505e-10 7.56110554e-11 2.570200171e-10 9.329001747e-11 1.101221545e-10 2.569424368e-10 1.053037692e-10 8.370490754e-11 9.355081486e-11 6.996987426e-11 1.962091755e-10 1.514616706e-10 8.955553477e-11 7.097272512e-11 7.926713666e-11 9.081387146e-11 2.482979587e-10 5.477506089e-10 3.199005907e-10 1.009778462e-10 1.734731238e-11 2.21772642e-10 8.401714717e-11 7.844655399e-11 3.06397887e-10 1.802236227e-10 4.155313729e-10 3.677680037e-11 3.730476452e-10 9.929704019e-11 2.637608043e-10 2.02231592e-10 3.630025093e-10 1.468562349e-10 1.665811941e-10 2.517393671e-10 1.927820223e-10 3.859835918e-10 2.645602181e-10 5.614746487e-11 1.883756052e-10 2.704696788e-10 6.172561986e-11 2.831902423e-10 4.667183772e-10 2.418803443e-10 1.459084482e-10 2.610094082e-10 1.166908741e-10 1.884995422e-10 7.867551817e-10 2.564132528e-10 9.286058494e-11 2.858243367e-10 3.317711911e-10 1.52140106e-10 1.499245828e-10 8.101413182e-11 1.294301693e-10 4.059072462e-10 4.970207987e-10 2.202730397e-10 2.150308923e-10 2.610784077e-10 1.251823576e-10 2.578785292e-10 6.225345555e-10 7.260905835e-10 3.956289412e-10 3.509241959e-10 3.640185446e-10 1.653947874e-10 7.588864918e-11 3.333515674e-10 4.864594647e-10 1.60564711e-10 2.07556247e-10 1.850073311e-10 2.559238003e-10 3.059983853e-10 1.427106031e-10 1.286991749e-10 1.600929297e-10 6.276928582e-12 4.097026925e-11 2.952696483e-10 4.688067879e-10 3.998293542e-10 4.299676468e-10 2.27591563e-10 3.884094367e-10 1.900013694e-10 1.09564861e-10 2.052688612e-10 1.214395371e-11 1.64637679e-10 1.055262885e-10 1.382748172e-10 2.893079832e-10 2.64728931e-11 1.580763826e-10 4.044473828e-11 1.695920094e-10 2.300238459e-10 6.797601674e-11 3.269882809e-11 3.415334072e-10 1.809580041e-11 2.215862133e-10 3.434465929e-11 2.827580362e-10 3.686823864e-11 1.234639068e-13 4.536944044e-11 4.138213607e-10 8.753900924e-11 0 4.794747181e-12 2.417194544e-11 1.564561223e-10 9.007220402e-11 7.016018815e-11 6.469860172e-11 4.73519899e-10 0 2.645065536e-11 1.831408131e-11 1.412222082e-10 2.449335144e-10 1.458466047e-10 2.838312348e-11 1.311726644e-10 6.381427353e-11 1.357245889e-10 2.607434448e-10 2.534567744e-16 1.011760184e-10 7.625999973e-11 1.112993395e-10 3.2172441e-10 1.242182958e-10 6.868598567e-11 6.426125475e-11 1.081375741e-10 8.727861499e-11 1.443905384e-10 7.963922459e-11 7.564689609e-11 2.522256743e-10 1.857890913e-10 2.918637768e-10 2.917073122e-11 4.673690966e-11 3.219458217e-10 5.575063258e-11 1.342291457e-11 1.173337969e-10 2.342738188e-10 1.236858221e-10 5.176723037e-11 3.017013388e-10 2.368451715e-10 1.938659828e-10 8.937647381e-11 8.288044439e-11 3.47413216e-10 2.124782724e-10 1.121241785e-10 4.742692016e-10 2.453034424e-10 8.693886387e-11 1.899394091e-10 9.922076447e-11 8.758820392e-11 1.052150052e-10 3.629845911e-11 1.62606568e-10 5.098226544e-11 9.632626592e-11 3.022511079e-10 2.308426124e-10 1.99764295e-10 1.653296533e-10 9.936081453e-11 4.604287452e-10 2.027426224e-10 3.561386762e-10 1.991196481e-10 1.968418831e-10 1.357940419e-10 4.889004016e-11 3.560203398e-10 3.411883518e-10 1.125776499e-10 4.125724945e-11 1.837010132e-10 2.954663167e-11 1.546415141e-11 1.507543663e-10 1.051010238e-10 2.358885261e-10 1.585080302e-10 6.548649302e-11 2.775423394e-12 2.49950004e-10 8.457491602e-11 3.438153126e-11 2.823694853e-11 7.806698772e-11 2.068888729e-10 +2.670696175e-11 1.152898169e-10 7.818746162e-11 4.629110754e-11 2.06925088e-10 9.783453484e-11 1.181386001e-10 1.693787571e-10 8.782096727e-11 3.979702952e-10 1.889330097e-10 3.087877559e-11 5.047387719e-11 7.988410315e-12 1.880040088e-10 6.354032106e-11 1.492271657e-10 2.143084278e-11 5.363832693e-11 1.856439325e-10 4.221636503e-11 1.225907431e-10 7.394836206e-12 8.998330278e-11 9.897415619e-12 2.488341039e-11 5.677853195e-11 1.099696184e-10 6.287257347e-11 2.218706228e-10 1.229691686e-10 1.102015643e-10 2.473546008e-10 2.362164038e-11 1.140426251e-10 2.832506897e-11 1.315728814e-10 1.864522609e-10 2.219152725e-10 4.056331621e-11 9.376003053e-11 3.078749109e-10 6.159625439e-11 1.131692e-10 4.665050969e-11 2.62027731e-10 2.157806645e-11 1.272447591e-10 1.912990778e-10 1.255638743e-11 3.580597743e-13 2.893844855e-11 1.012080238e-10 3.901915528e-11 4.596929073e-11 2.341164035e-10 9.37200504e-11 1.061297259e-10 6.662737469e-11 1.499953697e-10 3.403024046e-11 3.697421782e-11 2.146445683e-10 3.340628036e-10 5.942378801e-11 4.69194855e-11 3.768414148e-11 1.640173422e-10 1.469165117e-10 8.663663471e-11 2.643614164e-10 1.00839062e-10 9.634407917e-11 1.008725477e-10 1.670730527e-10 1.149543293e-10 3.873338126e-11 1.698063588e-10 1.957389944e-10 3.934763986e-11 1.943676506e-10 1.824154974e-10 4.526352962e-11 2.23467113e-10 1.276034538e-10 3.77703143e-11 0 1.196134182e-16 5.649946008e-11 2.16172237e-10 1.051744446e-10 1.112319863e-10 0 6.125356155e-11 6.416559827e-11 9.800055249e-11 1.119964463e-10 1.002111662e-11 7.721049394e-11 8.211358654e-11 2.227117423e-10 1.883461866e-10 1.265358485e-10 2.351114682e-10 1.891194078e-10 1.878543899e-10 4.518435471e-11 5.175368372e-11 1.797808728e-10 2.448890929e-10 2.058920248e-10 2.734038454e-10 4.514496445e-10 1.913417991e-10 1.122960859e-10 1.951143515e-10 1.461007211e-10 9.872029055e-11 5.38152884e-11 2.076690732e-10 1.614298802e-11 3.732881064e-11 2.892077018e-10 2.326340865e-10 3.799503264e-10 1.173391394e-10 1.1315829e-10 2.041455231e-10 2.740156833e-10 2.424188334e-10 1.297836858e-10 1.502315352e-10 3.057812938e-10 3.295484701e-10 8.982920567e-11 1.146098801e-10 1.94346393e-10 2.002564467e-10 1.765992528e-10 2.974407731e-10 1.627506422e-10 7.966661488e-11 2.384623788e-10 2.243415873e-10 3.542453698e-10 3.429341271e-10 0 4.916391031e-19 2.442962167e-10 2.785780115e-10 4.402175757e-10 2.243865301e-10 8.181709861e-11 9.944641513e-11 1.201695657e-10 7.452079629e-11 2.645278493e-10 2.95469361e-10 3.364946957e-10 2.676774824e-10 1.681357343e-10 2.522920338e-10 1.158258865e-10 2.457986047e-11 4.310109069e-16 6.236765363e-11 5.660841648e-10 3.629136717e-11 8.316017963e-12 1.442126579e-10 7.145402468e-11 2.98645966e-10 4.16459667e-11 6.500552968e-11 1.769403008e-10 2.197623419e-10 3.189883695e-11 7.017383425e-11 3.159317011e-10 1.542478019e-10 1.895583935e-11 3.477713585e-10 1.064800322e-10 1.760958772e-10 6.827935918e-12 2.418492469e-10 2.129873186e-11 1.926326869e-10 3.724658403e-19 3.072051318e-10 9.531507073e-11 1.929046413e-10 9.633887933e-11 5.02267789e-11 1.755048786e-10 3.870534629e-11 4.998937625e-11 2.70562361e-11 4.290497726e-10 3.617504754e-10 1.894870122e-10 6.984165565e-16 1.170293564e-10 7.704980501e-20 6.761793757e-11 8.145892685e-11 1.606522866e-10 1.51580332e-10 1.808895083e-10 5.38558128e-11 1.308768473e-10 2.563171166e-10 1.444357315e-10 1.076268217e-10 1.874231607e-10 1.60136873e-11 3.904671198e-11 2.097039635e-10 1.771412523e-11 4.592371478e-10 2.374140293e-10 1.191939103e-10 2.667103736e-10 3.340225011e-11 1.898284378e-10 2.45429424e-16 9.334122095e-11 2.219727241e-10 4.801827082e-11 9.898777163e-11 5.840143022e-11 1.005164142e-10 1.629327203e-10 1.544713484e-10 3.154721546e-10 1.745058193e-10 1.164479293e-11 1.429036394e-10 8.049882291e-11 1.218016043e-10 2.375618169e-10 4.589264125e-11 1.031438795e-10 1.190563944e-10 1.175575528e-10 9.969110031e-11 9.422184584e-12 2.397771908e-26 1.581561824e-11 1.216103877e-10 8.769543559e-11 1.144632541e-10 3.315640371e-11 1.892017236e-10 7.383149873e-11 4.808633773e-11 3.448228235e-11 2.332572963e-11 1.342170401e-10 1.46761905e-10 7.82328901e-11 1.053308685e-10 1.750363253e-10 7.828832642e-11 1.511006019e-11 1.007873844e-10 1.727269459e-10 2.572520695e-10 4.072732038e-10 4.666531049e-11 5.530936446e-10 4.306605702e-11 9.400020084e-11 8.395346603e-11 8.094766066e-11 1.420478832e-10 1.369007131e-10 2.82461452e-10 1.42001284e-10 5.905515537e-11 4.624955588e-11 3.131283064e-12 8.879113167e-11 3.484041921e-11 3.095669178e-11 1.267767712e-10 2.024795906e-11 2.115997273e-11 1.226031595e-10 2.126308428e-10 3.999136103e-10 1.647134581e-10 3.663591157e-11 2.092063854e-10 7.57875116e-11 1.363911466e-10 1.722610969e-11 8.01050724e-11 9.677190578e-11 4.442276167e-11 +2.852348889e-10 8.506847285e-11 1.833007487e-10 1.108353016e-10 8.063138056e-11 2.336997538e-10 0 9.112637029e-11 5.16455051e-11 6.225810391e-11 4.789358271e-11 1.908124916e-12 2.278817972e-10 1.595904979e-10 1.282930222e-10 1.936147284e-10 1.250374238e-10 9.637747491e-11 3.051601074e-11 1.024900604e-10 1.449394282e-10 3.627634947e-10 7.310613445e-11 3.173785927e-11 2.544327626e-11 6.520142389e-11 2.305812989e-11 2.044909947e-10 2.025772774e-10 3.474128052e-11 3.721123376e-10 3.675039315e-10 1.363582051e-10 1.043159909e-10 2.983909702e-11 4.293554766e-10 6.014480843e-12 1.449588803e-10 7.967291007e-11 2.047947054e-11 1.572178626e-10 1.662188627e-11 1.352949123e-10 2.113866584e-10 8.24437118e-11 2.416608174e-10 1.029754642e-11 1.426938042e-10 4.916561225e-12 2.40540992e-11 2.781515394e-11 1.133170473e-10 3.067838764e-11 1.873164941e-10 1.079691136e-10 2.011316052e-11 1.557434583e-10 2.944779402e-11 5.765604163e-11 1.876228775e-10 3.534664311e-11 2.828436864e-11 1.112907316e-11 8.526035037e-11 1.197754822e-10 1.887544318e-10 2.590093372e-10 6.566054058e-19 6.323627311e-12 6.079985374e-11 1.580127026e-10 1.835814503e-10 2.152316052e-10 1.424433836e-11 3.287955874e-14 6.045571277e-11 1.823791298e-10 2.206216988e-11 9.904889129e-11 4.988035401e-11 2.683250987e-10 1.149064652e-11 5.556465794e-11 1.602409617e-18 2.463121147e-10 9.763805864e-11 5.759807271e-11 0 0 3.97686926e-11 5.258788741e-11 1.53075369e-11 1.727950748e-10 4.668797073e-11 1.824582888e-21 3.433569588e-11 1.246326309e-10 5.764932331e-11 7.828150988e-11 0 8.061453955e-11 1.323296756e-10 1.781522193e-11 1.289166493e-10 9.939350927e-11 1.064811706e-11 2.947653024e-10 2.038890559e-10 3.17711202e-13 5.832316008e-11 6.867777582e-11 1.045316913e-10 2.273859888e-10 3.200369533e-11 2.806859588e-11 2.976552586e-10 1.217585179e-10 1.659712111e-10 4.598314097e-10 1.063886814e-10 5.488893106e-11 8.591116858e-11 1.684145758e-10 3.350574269e-10 7.102824337e-11 1.740922926e-10 4.245722425e-11 6.011606589e-11 6.765810418e-13 1.460283648e-10 1.330637071e-10 8.040366865e-11 2.775219408e-10 2.410397932e-10 2.362251303e-10 2.831793898e-10 2.310185385e-10 2.793341603e-10 2.209794228e-10 3.035468278e-10 2.446968955e-10 3.219313127e-10 3.586307174e-10 7.89102225e-11 3.259655912e-10 4.821766451e-10 1.281770397e-10 4.02785797e-10 6.035912454e-11 2.000631785e-10 1.514252739e-10 1.470023726e-10 2.553849163e-10 9.666228873e-11 8.026610672e-11 1.481799864e-10 3.087214507e-10 1.000735664e-10 3.984331894e-11 1.291325435e-11 4.386617524e-10 9.86121229e-11 2.670277239e-11 1.225674817e-10 2.747469313e-10 2.570384483e-10 5.523316124e-11 4.118832758e-10 2.737526234e-10 3.028289749e-10 2.869685626e-11 6.215959716e-11 2.097713774e-10 4.064091893e-11 1.440002863e-10 2.233375697e-10 1.645791472e-10 6.749214599e-11 4.441589965e-11 5.232074001e-11 2.40939727e-10 3.377758262e-10 1.440558666e-10 5.980075861e-11 2.810126042e-10 1.496428736e-10 5.752618203e-11 1.362560677e-10 7.621571943e-11 1.932213007e-10 5.287440694e-11 1.627760343e-10 2.171951292e-10 8.225555298e-11 7.740201476e-11 1.482534756e-10 4.091115757e-11 1.724937203e-10 5.632856291e-11 1.258287527e-10 5.828837271e-11 1.129895252e-10 6.218933051e-11 4.200701142e-12 9.258139369e-11 8.650992731e-11 8.452328857e-12 3.633736151e-11 4.636546617e-10 1.859434167e-10 5.369475983e-11 1.228022387e-15 2.068350459e-11 7.414035361e-11 2.819235541e-11 3.911168953e-11 1.073657928e-11 2.273786461e-10 7.574314963e-11 7.167556763e-11 9.258355581e-11 5.371985102e-11 1.731139963e-10 1.590644702e-10 4.122238803e-12 8.583534095e-11 7.24812169e-11 3.002429267e-10 1.551687782e-10 6.023513201e-11 2.469651014e-10 5.549277928e-11 2.997640382e-10 7.033420675e-11 4.563747967e-10 1.387800986e-10 1.265688785e-11 2.266543633e-10 1.483482637e-10 8.632912601e-11 1.486143157e-10 5.031143348e-11 1.166917176e-10 1.182566287e-10 1.321747252e-11 1.267025195e-10 2.996795604e-10 7.504815939e-11 8.132184862e-12 6.206375918e-11 8.282464413e-11 2.609349825e-10 3.134421118e-11 2.876979954e-11 4.299634251e-11 2.596913431e-10 4.643689276e-10 7.38305987e-11 1.526361436e-10 2.179280475e-10 1.20771463e-10 2.49067621e-11 1.966474386e-11 4.008204407e-11 3.549689657e-11 1.401578007e-10 1.971685813e-10 1.939565463e-10 1.27896986e-10 1.44729045e-10 8.835959797e-11 1.31721822e-10 2.684152804e-10 7.137383429e-11 1.701335848e-10 5.26318574e-11 1.033198812e-10 1.021626608e-10 9.022185451e-11 1.926641199e-10 1.066674671e-10 7.454608236e-11 9.114514538e-11 2.486454587e-10 5.372622725e-11 6.895960152e-13 8.427961916e-11 2.87560357e-11 3.619593713e-11 1.28119123e-10 1.644227151e-10 7.692511078e-11 6.678794158e-11 7.556206872e-11 6.214369503e-11 2.566572186e-10 5.912300157e-18 1.040115547e-10 8.594614617e-11 1.17357728e-10 +1.6896091e-10 2.003578754e-10 1.813940987e-10 2.349193114e-12 1.602203827e-10 7.202701071e-11 2.231868661e-11 1.744225022e-11 1.960829361e-10 1.555644644e-10 5.165677338e-11 6.461221356e-11 1.639723627e-10 4.424910327e-11 7.306812629e-11 1.155735959e-10 8.699673236e-11 2.242012624e-10 1.106075281e-10 1.140824355e-10 4.019086586e-11 8.188658178e-11 9.211686994e-11 4.066251664e-12 2.006826496e-10 6.15556188e-11 1.505777457e-11 3.395041192e-11 1.550621159e-11 1.31584756e-10 5.294281891e-12 1.500800031e-10 2.008917782e-10 9.019780851e-11 2.23611433e-11 7.056104143e-11 3.798161725e-11 1.653142695e-10 2.068711082e-10 9.570024671e-11 1.755212003e-10 8.433490843e-11 5.689717249e-11 1.527179742e-10 3.631354177e-10 5.583420456e-20 7.627473912e-11 9.679174618e-11 6.195323972e-11 3.479132306e-10 2.337922163e-11 3.429502635e-11 2.792026576e-23 5.841695922e-11 5.691559404e-11 1.378449357e-10 7.945798515e-11 1.117648493e-10 1.249669381e-10 2.685531153e-10 1.793191529e-13 8.15784868e-11 2.088653633e-10 8.066582369e-11 1.269574705e-10 1.539432727e-10 1.561692199e-10 1.371961414e-10 3.966401674e-11 1.263134206e-10 2.307389974e-11 1.082293781e-10 1.000602089e-10 1.180981602e-10 2.0906962e-11 2.65421558e-11 4.085799226e-11 5.304468512e-12 2.561049367e-10 3.28285034e-11 1.486571409e-11 7.632315634e-11 4.471988582e-11 9.92336272e-11 0 2.050393354e-11 7.553013381e-11 3.682487888e-11 4.342079064e-15 8.040616826e-11 4.499038038e-11 6.26025048e-11 3.295339315e-11 2.673541647e-18 2.648439302e-11 4.932152521e-11 1.71303416e-10 2.002052317e-10 9.306014208e-16 1.297042458e-10 1.468987509e-10 1.111532852e-10 1.110217453e-10 4.366434208e-11 5.864095225e-11 2.29889657e-10 3.643823999e-11 1.247930621e-11 1.001376878e-11 9.963927971e-11 3.252888319e-11 1.579069595e-10 5.905728452e-13 7.051891455e-11 1.492290042e-10 1.786312716e-10 7.766220216e-12 2.837106314e-10 1.252270121e-10 1.064098322e-10 1.600599278e-10 6.425687407e-11 1.172872817e-10 1.697648361e-10 1.566439838e-10 2.011779234e-10 5.490880122e-11 2.907210219e-11 2.857856761e-10 3.312430463e-12 6.502764128e-11 7.714698722e-11 1.361476812e-11 4.754243899e-10 1.630629214e-10 3.354299518e-11 2.034278378e-11 1.834357518e-10 1.153965558e-10 0 2.337849981e-10 4.22560787e-10 6.898870547e-11 4.594113902e-11 1.086404086e-10 8.613008377e-11 1.358856496e-10 1.702928666e-10 2.198870883e-10 1.882352883e-11 1.848442933e-10 2.298831643e-10 1.416226571e-10 2.063273658e-10 1.465077056e-10 1.532858591e-10 3.1021578e-10 5.620497812e-11 9.784973143e-11 1.155615098e-10 3.947066715e-10 7.19571146e-11 1.951141013e-11 9.560821248e-11 2.599026899e-11 4.788854871e-10 1.524395776e-11 2.466660259e-10 4.553050195e-11 2.169433113e-10 4.545353855e-11 2.311052372e-10 1.186844734e-10 2.323409383e-10 2.042205544e-10 2.137429312e-10 1.371764855e-11 6.292952114e-12 1.019204598e-10 1.453454464e-10 8.401281792e-11 3.40748338e-11 5.549647864e-11 1.02166001e-10 1.944414638e-10 3.032504023e-10 1.285008792e-18 1.07630376e-10 1.229675065e-10 1.117757895e-10 1.623961341e-10 8.877345126e-11 3.379255538e-10 4.518212256e-11 1.462153219e-10 8.508697515e-11 1.2491453e-10 1.631322989e-10 3.109027491e-19 5.224894608e-11 7.488978213e-12 2.047047802e-11 1.190466567e-10 3.432341567e-11 8.481871616e-11 0 4.135977598e-11 0 3.398160242e-11 6.228560189e-11 8.872781196e-11 3.191769175e-11 1.569661127e-10 2.474792883e-11 5.245935732e-11 1.201403672e-11 7.748990164e-11 1.643553308e-10 3.738376631e-11 1.370678802e-10 4.079538149e-11 1.312144388e-10 5.804261797e-11 1.998640883e-10 3.843100301e-12 1.29183591e-10 1.471513512e-10 1.35586381e-11 9.428758533e-11 5.792660004e-11 2.25640845e-11 2.379080931e-11 2.632116296e-11 2.446601811e-10 0 9.620781603e-13 1.031279405e-10 3.336192998e-10 1.673930145e-10 2.979446814e-10 9.500051801e-11 3.148829718e-11 1.998048738e-10 7.193408056e-12 1.265746132e-12 3.255706684e-10 1.053410462e-10 3.717624681e-11 7.073192241e-11 1.393155988e-11 1.494659454e-10 1.008218592e-10 1.486907259e-11 3.206357119e-11 1.765401776e-13 9.759210357e-11 5.811016509e-11 9.11199999e-11 1.938079422e-10 2.90639236e-10 1.593636811e-10 1.627889046e-10 1.778633123e-10 7.780857488e-11 9.00667145e-12 1.875427831e-10 2.175655869e-10 1.826742594e-10 5.588506997e-11 4.480413479e-11 2.675643135e-10 2.281807184e-10 1.613859119e-10 6.806915432e-11 2.430398839e-11 5.038181703e-12 8.633631721e-11 1.344156856e-10 3.042720241e-14 1.520948499e-10 1.514280532e-10 8.363385707e-11 1.893173071e-10 3.961543014e-11 1.252525366e-11 1.348535183e-10 1.843225786e-11 5.611425349e-11 3.222187401e-11 1.55192515e-10 3.497551569e-11 9.736866848e-11 6.364533194e-12 5.945536039e-11 5.191122963e-11 2.047102217e-11 3.152584768e-11 1.169164553e-10 1.743041954e-10 1.264176043e-10 +3.593227677e-11 3.436379253e-10 5.006807782e-14 3.547390363e-11 1.333207282e-10 1.276483211e-10 9.091969664e-11 1.173497197e-31 1.232390756e-12 2.209563338e-11 6.467476282e-11 3.883262667e-11 3.936819924e-11 1.488892101e-10 1.584086445e-10 5.669612308e-11 1.344968601e-10 2.065143049e-10 1.03791654e-10 1.860297051e-10 1.933842326e-11 2.220824886e-10 9.858597031e-11 1.864412904e-21 1.316340419e-10 5.441651085e-11 1.09715988e-10 7.233610251e-11 1.777010116e-11 4.542000968e-11 1.195466732e-10 1.582636929e-10 6.011387512e-12 1.171955067e-10 4.695880581e-11 2.347346106e-10 2.134900195e-10 5.212492904e-11 1.731977034e-12 1.860349284e-10 8.573575821e-11 5.021323067e-12 4.752617981e-11 3.518852934e-10 3.79005908e-11 3.08806372e-11 1.191956001e-10 1.046467089e-16 1.725194777e-10 1.309020719e-10 1.764592542e-11 2.66402183e-10 4.546747196e-11 2.183609908e-10 1.914814507e-10 1.744287131e-10 3.626043727e-11 5.056500321e-11 2.863569175e-11 1.078396431e-10 2.351790124e-11 3.400589531e-11 3.365305485e-11 1.352376049e-10 8.329868124e-11 6.000539382e-11 1.603091546e-11 3.164926248e-11 1.699693153e-10 4.743879536e-16 2.528919272e-10 1.166459733e-10 8.324035153e-13 3.751180953e-11 2.371063779e-11 3.780047831e-11 7.174153863e-11 1.151724391e-10 3.825346994e-10 6.227892016e-11 6.166197222e-11 1.305020444e-11 5.470276801e-11 1.618001028e-10 4.777322595e-12 6.844944747e-18 1.062230896e-10 2.662207316e-11 5.431379904e-11 1.919825012e-11 2.40571741e-11 4.067241036e-10 2.774563523e-11 1.884627654e-10 1.065024466e-10 7.184354591e-11 7.326407016e-11 5.940403337e-11 2.278545743e-11 1.214506422e-10 2.186498916e-10 0 9.491307621e-11 2.68181738e-10 1.514688434e-10 7.856319277e-12 8.709787061e-11 1.867549355e-11 9.372902308e-12 3.643788412e-11 1.268339308e-10 8.781926211e-11 1.380228776e-10 6.132553373e-11 1.215894794e-15 9.23891013e-12 4.265930215e-11 1.731521271e-10 5.603122522e-11 8.118561131e-11 2.12970365e-10 3.259180442e-11 5.777131496e-11 2.554871893e-10 1.258188683e-10 6.114644606e-11 2.819217957e-10 1.194320088e-10 2.847926381e-13 8.150728814e-11 2.324725949e-10 1.281905705e-10 1.572136185e-10 3.112266831e-11 2.959976636e-10 3.547837615e-11 6.700162024e-11 7.341977501e-11 2.618065404e-10 2.126016157e-10 1.402232041e-10 2.435716799e-10 2.153481678e-10 2.080373385e-11 1.534210922e-10 4.112610326e-12 2.677340089e-10 9.42370078e-11 1.970278929e-11 9.804182389e-11 1.892205235e-11 1.702231949e-10 0 8.088405536e-11 4.910609788e-11 2.461218894e-11 1.649552381e-11 7.435161325e-15 1.078705801e-10 3.549432856e-12 8.64450478e-11 1.193736849e-10 1.61310491e-10 2.051618202e-11 5.336330073e-11 1.305467964e-10 5.82585419e-11 1.748995559e-11 3.065624875e-11 7.772354554e-11 4.944223458e-11 1.668419791e-10 1.509533908e-10 2.432891949e-10 7.755500732e-11 0 2.039891128e-10 1.063109623e-11 5.001489472e-11 5.268033148e-10 3.756001776e-10 1.450834592e-10 1.010855389e-10 1.159754992e-10 7.751063278e-11 2.192666676e-10 0 2.271141321e-10 5.492415224e-11 2.691041016e-11 1.351736486e-14 1.330633957e-16 0 1.924251427e-10 9.507448914e-11 6.680924345e-11 1.571317013e-10 2.812174907e-11 7.241380588e-12 6.545222486e-11 1.860193722e-10 3.37798397e-11 5.848982898e-12 1.288806981e-10 2.048164308e-11 7.126800129e-11 9.468636766e-11 1.924927693e-11 5.481555971e-11 1.068675803e-10 2.60880377e-11 3.805928244e-11 2.026615169e-11 4.056979566e-11 1.678708305e-10 5.992629616e-11 2.449621927e-11 8.685983113e-11 2.849284235e-10 2.712912858e-11 6.645373828e-11 2.018395234e-10 1.172844284e-10 3.344476618e-11 1.209178437e-10 2.625542726e-10 1.706961686e-10 5.048258992e-11 5.292509901e-11 2.232847225e-10 6.488956855e-11 9.665572748e-11 8.14544193e-11 1.156775235e-10 2.443604492e-11 0 7.066869004e-11 1.446836381e-10 1.408995406e-10 1.038835083e-11 1.605432409e-11 6.81007278e-11 2.259187538e-12 4.483286845e-11 0 3.64743275e-12 9.079852888e-11 2.586822775e-11 2.979263531e-11 8.476191843e-11 1.114497591e-10 1.436728973e-10 2.684590627e-11 1.318180106e-10 8.821217843e-11 2.268247583e-11 1.169694762e-10 1.193465712e-10 3.958767164e-11 6.341874618e-11 0 4.244231777e-11 1.793017584e-10 3.092460795e-11 1.853679013e-10 8.923991759e-12 1.190806496e-11 9.990055054e-12 1.318297545e-10 1.463284704e-10 1.582571043e-10 1.275966608e-10 1.233853541e-10 3.328621488e-11 4.660676455e-11 1.149085544e-10 1.493666192e-11 4.95762717e-11 3.135920614e-10 1.560707261e-10 1.504608834e-10 2.67113521e-10 1.385000417e-10 3.684397645e-11 5.06949786e-11 4.016943589e-12 2.650012562e-10 8.233694875e-11 4.836900544e-11 1.244376643e-10 1.326888458e-10 8.982262276e-11 2.938223069e-10 2.232235648e-10 5.884494561e-11 3.309030873e-11 4.785145632e-11 1.009549147e-10 4.302579657e-11 3.346537814e-11 +2.078171443e-10 3.036484839e-10 3.000533394e-10 4.649280126e-11 1.19211623e-10 3.077154304e-11 8.388078865e-11 9.475743515e-23 1.919900707e-12 6.282254087e-11 1.657603218e-10 1.29369742e-10 9.179719976e-11 9.158243354e-14 1.818910366e-10 5.086174071e-11 1.583845354e-18 7.332592134e-11 2.326510763e-12 3.848347341e-11 7.473742568e-12 1.051116819e-10 1.070393944e-10 2.570224619e-10 2.79010025e-11 1.098392641e-11 4.62563553e-11 2.706416399e-10 5.546383259e-11 1.144484633e-10 5.883538589e-11 2.632259744e-10 2.153432636e-10 2.263137735e-11 4.667507614e-11 4.68488466e-11 8.490158106e-11 1.780018947e-10 1.174230993e-10 1.304508112e-11 1.251216882e-10 2.778660469e-13 6.405931373e-12 2.459648676e-11 1.2730657e-10 5.340195146e-11 8.158863863e-11 3.391088012e-11 8.275037197e-11 6.641418289e-11 4.599694975e-11 1.400372119e-10 1.152812058e-10 1.720262139e-10 2.783996554e-11 1.587227133e-10 9.395903806e-11 3.105348029e-10 1.184646278e-10 1.429822303e-11 7.81249253e-11 1.072862907e-10 1.168063116e-10 3.781025892e-11 7.375272574e-11 6.175689427e-11 6.681770693e-12 4.381188605e-11 2.613091511e-11 4.011696238e-10 8.241432928e-27 7.989539729e-14 5.021414695e-11 6.710796011e-11 6.154151014e-15 2.973537416e-11 5.39004042e-12 2.172666733e-10 6.255766619e-11 5.657958517e-11 4.303467106e-12 5.142906056e-11 3.222731768e-11 4.090346485e-11 3.106215113e-11 0 1.522683866e-10 4.910401101e-11 0 8.993690059e-11 7.64659223e-11 1.381665781e-10 5.96853651e-11 1.077266441e-10 2.81461485e-11 1.744349763e-12 1.789312914e-10 9.572028272e-11 4.289726645e-11 1.065335636e-11 8.602060724e-11 8.025679292e-11 1.298110688e-11 2.04228769e-10 1.047791438e-10 0 1.523525722e-10 1.085810748e-10 3.482625149e-11 5.621754015e-11 2.233177144e-11 7.217637049e-11 2.240619585e-10 7.988316333e-12 1.535366236e-11 1.045651595e-10 1.244152228e-10 6.64436373e-12 8.155000788e-11 1.797832267e-13 1.822954159e-11 5.661708834e-11 9.552686504e-12 1.927380776e-10 2.068952586e-11 2.708647519e-10 1.692450984e-10 2.78002621e-10 5.40677473e-13 1.071427128e-11 7.94729955e-11 8.139940717e-11 1.358126692e-10 4.068248142e-11 0 2.461304095e-11 2.660314367e-10 2.530942013e-15 9.649991048e-11 2.27199717e-10 4.82807217e-10 1.081724663e-10 1.257863766e-10 1.532355852e-10 5.201648995e-10 1.227716143e-10 4.05745817e-11 3.629735196e-11 2.852378231e-11 8.0307932e-11 2.235108519e-10 6.818084269e-11 3.415640531e-12 9.41249747e-11 1.862252683e-10 2.241580286e-11 6.380541708e-11 1.080442265e-10 1.306332416e-10 1.444292788e-10 1.302699176e-29 2.844470687e-11 1.868488847e-10 7.680533582e-11 9.705340247e-11 2.861334384e-11 9.981594273e-11 2.213560011e-11 1.364121724e-10 2.212158848e-10 5.252503089e-11 7.046331248e-14 1.645275073e-10 1.150356681e-10 1.597310528e-10 5.147379458e-11 3.3367454e-11 1.148032749e-11 9.957384957e-11 0 3.951980172e-11 2.903615869e-12 6.463198573e-11 1.671891398e-26 1.372679028e-11 0 1.408071628e-11 1.046461534e-11 5.200463138e-10 1.685239304e-16 3.913160429e-11 8.597515835e-12 3.220360229e-11 6.894040297e-11 1.807638181e-10 3.438769707e-11 2.166693711e-10 1.796444235e-10 6.904171213e-12 2.477711575e-11 3.203776521e-11 9.349523506e-11 2.289446752e-19 9.591990007e-11 2.322063962e-11 1.139197192e-10 1.014741728e-10 1.355539557e-27 0 4.563368952e-15 1.238965568e-11 1.765162421e-10 0 1.402447403e-10 1.877676058e-11 3.359608568e-11 6.249317953e-11 1.198637382e-10 1.278408801e-19 2.068805395e-12 4.200944767e-11 1.290440218e-11 1.301123521e-10 2.063899417e-11 5.303924758e-11 0 4.133659002e-11 2.238206093e-10 3.952156683e-11 3.084237282e-11 1.167018698e-11 4.598293385e-11 4.413340443e-11 5.190375268e-11 4.682321908e-26 6.096531363e-11 2.829247008e-11 2.813247581e-10 1.309543491e-10 1.355500471e-10 0 1.153866146e-10 8.599994904e-12 1.439109375e-10 8.83291999e-11 1.55358712e-11 1.295869165e-11 5.274999023e-11 1.513387098e-10 6.26088467e-11 2.248060267e-11 1.059187947e-12 4.663266014e-11 0 1.776317121e-10 2.126166053e-11 2.900931743e-11 5.141126144e-11 1.767172694e-10 1.254166193e-10 3.80223127e-29 1.001587103e-10 1.100787953e-11 2.845139317e-11 6.479291165e-16 2.130221845e-10 2.155174645e-12 0 4.80795635e-11 1.065500055e-10 1.080186542e-10 6.445987606e-11 1.981212127e-10 2.190529042e-10 9.102754077e-11 1.422104872e-10 1.4211281e-10 1.038768917e-10 1.76560083e-10 1.584704749e-10 3.820624774e-11 3.755411412e-11 1.029092325e-10 2.580237685e-11 3.812480264e-11 5.331755198e-11 1.180130214e-10 9.630581863e-11 3.679741739e-28 8.230283778e-11 6.676967113e-11 3.289480047e-11 8.405125678e-13 8.528242745e-11 9.201962083e-11 1.392920272e-10 9.654590657e-11 1.589610768e-10 8.985535457e-11 3.462141542e-11 +4.684777269e-10 3.097563593e-11 4.450409582e-11 2.650349683e-11 8.996066009e-11 9.039986701e-11 1.228467636e-10 2.883766881e-28 1.880855589e-10 1.629640432e-10 0 5.469441864e-11 0 3.950733948e-11 3.369576748e-11 8.151794081e-11 1.715664391e-10 5.61666159e-11 7.579372528e-15 8.195437554e-11 3.554527215e-11 1.121280111e-11 7.985586729e-14 1.668944722e-10 2.449151167e-19 6.163491567e-11 3.946812179e-26 3.62249185e-12 2.258367246e-10 5.314850588e-11 8.930671985e-11 1.342833126e-11 1.840224468e-10 1.940976054e-11 2.554495128e-11 0 1.724837926e-11 5.586436168e-11 2.182849926e-10 9.028270463e-11 3.209498425e-16 2.368351027e-11 2.673151234e-11 6.378613754e-11 7.526958858e-11 2.367138665e-10 1.855668512e-11 1.468019227e-11 8.156204467e-11 9.081822587e-11 6.468384926e-12 6.195244082e-11 9.971414407e-24 7.433005232e-11 3.477314912e-11 6.413572603e-13 4.568767143e-11 1.164142701e-10 4.094224977e-11 8.281257588e-12 4.908781033e-11 1.308547017e-11 3.374859484e-11 0 6.816047991e-22 3.284175843e-10 6.097864397e-11 1.063539952e-11 8.91631509e-11 1.426609405e-10 6.389530605e-11 4.429447988e-13 2.533658409e-11 2.324847798e-10 2.990186215e-11 8.553936742e-11 3.654826769e-23 9.749252533e-12 1.432553691e-10 6.896660783e-12 6.421067139e-11 6.219725106e-11 7.309486575e-11 3.11121825e-10 4.404091336e-11 7.874066698e-12 2.812082885e-15 5.431698265e-11 4.272969894e-10 3.162499631e-14 1.813080778e-10 1.724128456e-11 8.996212148e-11 3.101524605e-11 9.951093975e-11 2.469953026e-10 2.158664834e-11 6.504240065e-11 7.081600583e-11 2.309623799e-11 8.730982273e-12 7.486712121e-11 2.978235107e-14 2.550394047e-11 1.654067824e-10 7.243601766e-12 7.44706704e-11 3.070383996e-11 6.28117331e-11 0 1.26291549e-10 1.123079076e-11 0 1.762260895e-11 1.113665631e-10 7.819684557e-12 1.958856073e-10 4.303038126e-11 2.404379804e-11 9.777162771e-12 1.615168594e-19 2.794543988e-12 0 1.569195985e-10 1.193168744e-10 1.486874491e-10 3.265453837e-12 6.006539001e-11 3.70401343e-11 2.242413604e-13 8.921051178e-11 5.343303347e-11 1.271718742e-10 1.25848463e-10 1.327000684e-11 9.413512609e-11 1.910102242e-10 3.654782761e-11 3.566782241e-11 4.492219337e-11 1.674966923e-10 3.899099143e-11 2.289531687e-10 8.018311434e-21 3.677541965e-11 3.245081717e-10 1.125331747e-10 1.589225209e-10 1.87001263e-11 5.657651748e-11 0 2.830024587e-11 1.509912669e-10 1.990602728e-10 7.864766693e-11 3.598079618e-11 5.067503467e-11 1.28767991e-11 2.501261586e-11 1.814438506e-10 1.129996201e-10 8.945069032e-11 1.044214346e-11 4.155047575e-11 5.079293887e-11 0 2.442501893e-11 1.528097043e-11 2.52806638e-11 3.335411304e-10 8.219063462e-12 3.499762388e-10 1.35941767e-10 6.645904022e-11 2.945704832e-20 1.024067402e-10 1.468443563e-13 1.107226541e-10 2.919137256e-11 2.621708327e-12 1.558219659e-10 1.088048106e-10 7.110208477e-11 1.061343744e-11 3.063273356e-11 4.576967579e-11 2.063271828e-10 1.030127433e-10 0 1.052733856e-10 1.023754592e-10 5.907002545e-11 6.333353655e-11 5.804563884e-11 0 1.186091823e-10 3.334873232e-12 8.282420808e-27 1.129657653e-10 3.143487159e-11 7.445516859e-11 3.679300099e-11 5.68371717e-11 3.623518507e-11 1.941092374e-10 2.033802692e-17 4.336269044e-11 0 9.459523201e-11 1.27959198e-18 4.116209169e-11 7.361805734e-11 9.997115514e-11 1.099997939e-10 3.983688174e-11 0 1.141580268e-11 8.787444014e-11 0 5.059625524e-16 3.618690441e-11 1.755754566e-11 6.8224527e-11 1.806163565e-10 3.645944669e-11 3.289576222e-11 1.527130186e-15 5.386899571e-11 3.830998378e-11 2.57662566e-11 5.411258613e-11 3.087079845e-17 5.996722181e-11 4.436689627e-11 8.868820129e-11 2.43006127e-11 2.989171135e-11 7.406204434e-11 1.551357715e-10 1.208431573e-11 1.448084171e-10 3.301049487e-11 3.783995074e-15 4.71669183e-11 6.012850962e-13 1.514216149e-10 1.359338349e-10 5.081788774e-11 6.269241796e-11 1.601709319e-11 4.434207083e-20 2.28261491e-10 4.251996133e-11 2.647163739e-11 3.539325718e-11 2.013769277e-10 4.808039669e-12 6.921533137e-12 8.923663924e-15 8.375153193e-11 8.791767729e-11 3.597671289e-14 3.399479664e-10 0 1.169120493e-10 4.088677814e-12 2.177463337e-11 9.991970403e-11 3.262922996e-11 3.868587799e-11 1.754307559e-10 1.445626617e-11 1.586074056e-10 4.34537618e-11 4.942083051e-11 1.407412647e-10 1.08605993e-10 1.195920428e-10 9.548165523e-11 4.007449398e-11 5.845254077e-11 1.313189079e-10 4.169177498e-14 1.197726694e-11 1.436380438e-10 1.1757526e-10 1.137538452e-10 1.910945887e-11 7.434091346e-11 8.313396092e-12 2.228213723e-24 7.914344714e-11 1.534907943e-10 4.925575836e-11 1.576596278e-11 9.456295979e-12 0 8.545587777e-12 7.833901694e-11 2.992282734e-11 +2.018907787e-11 1.909660993e-10 2.385518268e-27 2.145120342e-11 1.205479686e-11 1.033813042e-10 4.957249759e-11 1.892106887e-10 0 0 1.825476419e-10 2.850220203e-20 1.378629898e-20 3.591842857e-11 1.567026802e-10 2.125906063e-10 4.029917866e-11 1.620437131e-11 9.917495252e-11 1.357723563e-10 8.608917226e-11 0 2.238740316e-10 2.825382887e-16 7.986482367e-12 8.169757231e-11 1.037795877e-10 9.647502021e-12 1.993930496e-11 2.956692079e-11 1.278340001e-11 2.283574856e-10 4.5421731e-12 2.630538091e-11 1.163192886e-11 7.273849587e-21 1.148550787e-10 1.823615733e-10 3.281357784e-11 2.967825022e-11 9.862055063e-12 5.148217828e-12 1.02069287e-15 1.803508303e-11 1.019938287e-11 4.726417324e-11 2.146251693e-26 1.549243953e-10 7.98866636e-14 9.501368058e-11 4.560274768e-12 3.824707711e-11 7.198777074e-12 0 0 1.123521486e-10 2.209684739e-11 6.723201588e-11 3.807706422e-14 2.238123023e-11 4.172272819e-14 2.37994103e-11 1.67624054e-11 9.268669271e-12 6.457703923e-11 2.149021719e-11 1.820056862e-11 2.567377175e-13 1.09408411e-11 2.583273691e-11 9.003412356e-11 6.98569205e-12 3.596190574e-11 3.821622507e-13 0 3.785855704e-11 8.918578383e-11 2.477566467e-11 2.21923867e-10 2.679936059e-10 5.181489678e-12 3.327281228e-13 0 3.078145093e-11 2.21933935e-11 1.643675884e-12 1.855302894e-10 9.905644116e-11 1.376202361e-10 1.703993961e-11 1.167698215e-11 5.235273129e-35 7.989913935e-11 1.218619193e-11 3.48635927e-11 7.36242165e-11 7.331479012e-11 5.968019206e-11 3.533685298e-11 6.310546277e-13 3.512205297e-11 0 1.498185179e-11 2.650937107e-11 4.222599066e-11 5.660179928e-11 4.419501514e-11 4.492242274e-12 1.814057165e-10 3.313671203e-12 2.246310465e-11 1.695694933e-11 9.637171837e-11 4.789202593e-11 3.607590421e-11 1.122880551e-11 4.447262468e-11 3.484177607e-22 0 0 2.931560047e-11 7.350719817e-11 1.385651216e-11 2.333543802e-10 3.849565877e-11 9.606202005e-11 1.099363353e-11 3.990075867e-11 9.626320408e-11 1.254787176e-10 9.826987445e-11 1.16858499e-10 3.046137961e-10 1.690923445e-19 1.008950259e-10 3.207784564e-10 1.562214771e-10 4.636009497e-15 3.241018622e-11 1.850008671e-11 8.179069462e-11 7.807278526e-11 1.24866792e-10 1.958499725e-11 8.194765002e-12 3.153000258e-28 3.195403438e-10 9.056487434e-11 1.381900006e-11 1.345948063e-10 1.767532697e-11 8.608339598e-11 1.47556738e-10 1.523686144e-10 3.050035645e-12 6.751868642e-11 7.834310963e-11 4.920216705e-12 7.219548925e-11 7.930545164e-11 5.901147484e-11 1.25609866e-10 1.556212646e-11 7.90391261e-12 3.335085238e-11 2.774693348e-11 7.284191198e-11 3.41587234e-26 0 3.682881689e-11 2.230701632e-11 4.50474613e-11 1.18022206e-10 3.329189801e-11 3.378415478e-11 4.307309505e-16 9.213735019e-12 0 5.807124232e-12 3.911835935e-11 0 1.276653581e-10 8.641931446e-11 5.536891091e-11 1.194928767e-11 1.300681706e-32 8.251583195e-11 0 1.613202525e-11 2.376105133e-10 1.748540791e-11 4.958108804e-11 4.767530409e-11 2.93459931e-11 2.437715403e-11 1.627900919e-11 3.310026592e-11 1.064383852e-11 3.12437612e-11 4.676608856e-11 2.332816118e-10 6.474769302e-15 1.508058504e-11 3.505735793e-12 0 1.6846539e-10 4.22161066e-11 2.300834061e-16 8.764333223e-18 0 3.406190487e-12 6.091366882e-13 3.588899018e-11 1.271195506e-10 1.937250817e-10 6.313353237e-11 4.053641403e-11 5.0401898e-11 3.186975978e-11 7.335079269e-11 1.780675538e-10 1.032799025e-10 1.252401045e-10 6.678092422e-12 1.222315842e-10 6.102190117e-11 7.859996307e-11 6.054503279e-11 3.699449279e-12 9.724886465e-11 3.802108389e-14 1.030480434e-11 2.218814488e-11 2.115173321e-11 2.658050762e-22 1.29038121e-11 0 3.144647959e-11 1.080737988e-11 0 3.085996104e-11 1.046269127e-10 9.218987181e-11 2.505418842e-10 3.672767583e-11 2.933003627e-16 3.22330741e-11 1.784677061e-10 3.842045131e-11 4.240008702e-11 2.211833272e-11 1.14000096e-10 6.831707936e-11 1.111707934e-11 9.238753611e-16 3.598045079e-12 8.356585556e-11 1.548776162e-11 1.093507581e-10 3.892619682e-10 1.61361854e-10 4.906864995e-11 4.688788934e-19 1.612010035e-10 7.584091129e-12 5.539254636e-11 4.822971734e-11 5.791561027e-11 4.377836652e-11 2.066805795e-11 3.272996369e-11 2.404624932e-11 1.767174877e-11 0 6.769678606e-20 2.016422786e-15 0 3.216659795e-27 2.376183639e-11 6.193298012e-12 1.171296128e-11 8.147414979e-11 3.810798684e-12 4.953351719e-12 1.106098763e-11 0 1.328288909e-12 3.590537068e-11 5.269762646e-12 3.041179406e-11 4.756692816e-22 1.088340917e-10 8.56187779e-12 1.821498047e-14 8.380130967e-11 1.216063624e-10 2.755545492e-11 3.708478872e-11 4.010018318e-11 1.890335839e-10 +1.65699569e-10 3.70192013e-11 3.257642122e-11 2.653847496e-11 1.626661172e-13 7.927526872e-11 4.770464052e-11 8.505247622e-12 2.790791031e-11 3.718828418e-11 5.00499646e-11 9.351401392e-12 8.141420885e-11 2.484389061e-11 2.799260774e-12 3.119470064e-11 4.380036114e-31 3.597372654e-11 1.094097297e-10 1.129601204e-10 6.950858458e-11 7.99316175e-17 3.411167542e-11 2.120053644e-12 2.544856375e-11 1.443237856e-19 1.324108643e-11 2.565369336e-11 1.804886487e-11 1.777755639e-11 4.614728859e-11 8.222808764e-11 2.951842945e-11 1.692412472e-13 3.195401726e-11 1.678309347e-10 1.793122847e-10 1.78772874e-10 1.350345193e-10 1.112536517e-10 3.681059826e-11 2.080553563e-16 1.420551073e-11 5.419696179e-11 5.860034836e-20 5.768862593e-11 1.618732825e-10 2.278059815e-11 1.803526611e-10 8.84810769e-11 6.373136296e-11 1.567003475e-10 4.201199042e-11 1.020485286e-11 7.172408571e-11 9.629537435e-11 7.298754199e-11 3.542777163e-14 2.302851162e-11 6.71189822e-11 5.407551463e-11 1.796997142e-10 6.690999712e-11 2.757557201e-10 8.234834498e-11 8.745712719e-11 0 1.027834791e-10 1.583916065e-11 6.440836607e-11 4.694168843e-11 1.072317749e-11 1.405697408e-10 2.060650025e-16 3.618266009e-11 5.718767799e-11 6.106929492e-11 4.300261589e-11 0 1.951637508e-17 7.18867775e-11 2.873636692e-13 6.567776734e-11 7.069551457e-12 2.399055716e-10 1.08269598e-10 0 4.490873498e-11 2.852773058e-11 1.089275897e-10 1.298762352e-10 1.183047635e-14 3.998507826e-11 4.851597642e-12 1.337434542e-10 1.134213309e-15 4.581250992e-11 7.769670822e-11 2.201611742e-11 0 0 5.45694755e-11 0 5.021588406e-11 6.363991708e-12 7.019245877e-11 6.092567977e-11 1.153708331e-11 1.453362456e-10 1.072006565e-13 9.925405814e-12 1.198425328e-10 5.456483119e-11 1.379399673e-10 0 0 0 9.210317364e-12 1.753747414e-15 6.922890658e-11 5.865642867e-11 0 3.934838652e-11 0 3.443982831e-11 8.804520095e-11 6.414312046e-11 5.68179397e-12 1.014348956e-11 7.886377893e-11 2.52902441e-12 0 1.125431731e-11 4.314640853e-13 2.879380373e-11 1.002320506e-10 1.885948168e-12 7.525231296e-11 2.512218442e-11 1.525317634e-10 7.548774499e-11 1.712623987e-10 7.649431976e-12 8.251120251e-11 7.297755534e-27 0 3.481039339e-11 2.217307512e-11 9.829747238e-11 3.62769842e-11 0 1.869329431e-16 4.383040119e-14 1.258192415e-10 3.509929279e-11 0 1.084352531e-11 7.071365113e-11 9.720369707e-11 9.574991907e-11 2.962184159e-11 9.488266972e-11 1.171822482e-25 6.296803366e-12 6.167127268e-12 0 0 1.037212576e-10 9.862115531e-11 3.170948104e-10 6.854622902e-11 3.186811174e-11 6.817317218e-11 2.932615935e-10 0 4.290343672e-11 3.203755047e-11 6.69916685e-14 1.56865682e-19 4.987611751e-11 0 2.080538614e-11 1.279553354e-16 1.577021198e-13 2.049104352e-11 2.230643354e-17 5.964322037e-16 1.952480477e-11 0 0 1.237033703e-11 1.687352258e-10 6.876288111e-11 1.542324694e-11 5.583362372e-25 1.662084113e-11 0 1.643984316e-12 8.094029155e-11 1.146221405e-11 2.197352587e-10 6.381168737e-11 2.524521117e-11 3.349760758e-11 2.364170778e-10 3.525709213e-17 7.524641504e-11 1.503452333e-11 5.153051955e-11 1.611177662e-19 2.374570194e-25 1.043644238e-11 2.277531243e-14 9.729785583e-13 4.869037181e-11 2.900922343e-19 1.241759324e-15 5.044249613e-11 1.408717542e-11 1.366203451e-10 7.947375489e-12 6.580399969e-12 1.835000226e-11 1.629790857e-10 5.485967155e-11 3.316541737e-11 5.493442622e-14 7.340781182e-12 6.584078067e-11 2.204990829e-11 6.702204049e-11 1.759704415e-14 1.809161922e-10 8.501764685e-15 4.470162103e-11 3.631823236e-11 5.020027767e-11 1.856244934e-11 1.049462909e-11 2.149172231e-11 1.236042492e-10 4.472509663e-11 9.984152572e-11 0 0 0 3.149470646e-11 9.43055167e-12 1.503612779e-16 7.507500158e-12 4.629132369e-11 5.102380208e-11 6.5928866e-11 0 1.616916754e-10 0 1.957565816e-11 7.891940599e-11 4.482253942e-11 2.472124507e-11 1.480708108e-10 6.226416171e-11 6.526694641e-11 4.875973706e-11 1.696089997e-10 6.866542482e-11 2.694281902e-10 6.961385295e-12 3.440544837e-11 3.536768511e-11 1.630225672e-10 0 1.2521987e-10 1.438788673e-12 7.404178392e-29 1.133714681e-11 0 3.304470441e-11 0 0 1.439021802e-11 5.079503892e-10 2.981457934e-11 4.849326472e-11 2.447026337e-10 5.849284981e-11 1.494416057e-10 1.273805812e-11 9.387677108e-11 3.285005318e-11 1.965608633e-23 0 1.472496896e-10 8.291970632e-11 1.440994549e-11 4.260749918e-11 1.040192943e-11 1.204421279e-10 5.57762436e-11 4.591038239e-11 +1.216237508e-20 7.957832326e-12 7.867535168e-11 9.35952301e-11 1.200425932e-11 0 1.242562342e-11 2.222992134e-11 2.258399687e-12 4.833048026e-12 1.646504913e-10 2.157871789e-11 5.903082171e-11 1.700731857e-11 3.172636297e-28 0 1.35858855e-11 1.249554788e-15 1.75311829e-10 7.634709989e-11 0 7.972193091e-11 4.844535241e-11 4.129156999e-11 8.568445131e-13 2.091585292e-11 4.794709386e-11 1.085926973e-11 0 2.811725049e-11 3.115127624e-11 1.27461156e-10 1.924767357e-11 3.780804172e-11 2.756970774e-11 1.263466368e-17 1.413838931e-11 2.32073312e-11 8.497330852e-11 2.475748605e-11 1.811603004e-11 0 7.98894438e-12 5.714926527e-11 1.225565384e-10 2.363116838e-11 5.47768437e-11 1.17341708e-10 8.503327259e-11 5.836557869e-11 1.437045347e-11 3.224987485e-11 2.34977679e-11 1.634124532e-10 2.827002604e-11 1.417599933e-10 0 3.63651214e-11 1.01934027e-10 2.402838378e-11 1.19067517e-11 4.129536714e-11 0 6.197360822e-11 9.732358261e-11 5.637624057e-11 1.065746858e-10 1.711469743e-10 1.066730117e-11 2.28108996e-11 5.257837738e-11 0 7.915627033e-11 1.503590454e-11 7.358547159e-11 1.246506316e-11 1.475011977e-14 5.00143774e-11 3.849211486e-11 5.059206651e-11 0 1.559145655e-11 8.666944875e-11 1.201846659e-11 4.27767985e-11 7.168036167e-11 2.544557407e-10 1.708969769e-11 0 2.791067539e-11 7.507664139e-11 8.664710013e-11 2.95462739e-11 8.049087991e-11 5.725392487e-12 0 2.571327347e-11 2.845065931e-11 0 3.337008169e-11 2.383478056e-11 0 1.565599094e-11 0 3.914803283e-11 2.09517379e-11 0 3.012693112e-11 0 3.568657115e-12 2.239697452e-10 1.428636312e-11 9.286961942e-11 2.902581646e-14 0 2.056624369e-11 1.097345154e-11 2.787462971e-19 1.95904612e-11 1.409373011e-11 8.396725392e-11 0 0 2.000080276e-15 2.421477237e-11 8.950078592e-11 0 7.595945481e-12 4.562858423e-11 0 4.210621941e-11 0 9.309708388e-12 2.844998395e-14 1.602076855e-11 1.938534485e-11 0 2.480546819e-28 9.626011069e-11 1.059430321e-14 2.222662842e-11 4.056390543e-11 1.117388307e-11 4.380154033e-13 2.52543865e-11 2.354637865e-11 3.214981394e-14 1.094037793e-11 8.202884517e-11 6.061198038e-14 6.336644166e-11 2.126286124e-11 1.636015465e-11 7.788626894e-11 6.667991682e-11 1.248253122e-10 0 1.781642072e-11 6.508065232e-11 4.597337695e-11 2.675834653e-11 2.245183194e-11 0 4.489930926e-19 5.653945577e-12 0 1.617728438e-11 0 2.723598159e-19 3.566072212e-11 2.502197712e-11 7.81422015e-20 3.479284869e-11 1.028478033e-10 0 4.560115746e-12 0 2.005059062e-11 8.444004104e-12 4.476872153e-11 0 0 5.735481338e-13 1.616765969e-11 3.066838354e-11 2.21559578e-12 0 0 2.251909536e-11 4.235437446e-11 7.804534113e-11 0 1.442134077e-10 9.836297321e-11 5.48830118e-11 2.310557634e-18 1.448663505e-15 2.98013589e-12 4.876831353e-12 4.19443769e-26 1.046387089e-10 1.039745249e-10 0 0 5.944937737e-11 8.167312653e-11 0 4.998045293e-11 1.248945248e-11 3.530768979e-22 4.463660621e-11 6.837544861e-11 1.465048967e-26 0 0 1.04503901e-11 5.803384075e-14 5.057175765e-12 2.089082982e-11 0 0 4.220349728e-11 0 3.83865821e-12 1.438419954e-10 7.049319459e-20 0 0 2.182068689e-11 2.479782629e-11 8.423599033e-12 0 6.79505657e-11 2.968362067e-11 1.06854074e-10 7.616772514e-11 3.228525322e-12 1.327563364e-15 7.76026464e-14 3.955677935e-11 3.317174339e-11 3.764686086e-11 9.834756857e-13 2.932264829e-11 1.501109788e-10 3.647328597e-11 0 1.193537764e-10 1.105321991e-11 1.040640838e-28 1.446277857e-16 0 2.524999444e-11 7.822434865e-12 3.903162267e-10 4.338952878e-11 2.02632336e-11 1.87133832e-11 7.932918924e-13 3.812509099e-11 0 2.20750453e-11 1.280547369e-11 3.919950392e-22 2.135053501e-11 4.837938393e-11 8.4640352e-13 4.335406412e-11 8.083658525e-17 7.670325588e-17 3.162690975e-11 1.840054196e-11 2.395482462e-11 6.613538013e-14 1.889822131e-11 3.643699224e-11 0 6.446997668e-15 8.074744618e-12 1.878012087e-10 1.296166412e-15 0 5.466378332e-11 3.581293178e-17 4.051702172e-11 0 2.669716762e-11 1.333884469e-11 2.102616709e-11 1.195936305e-11 5.906670963e-19 0 2.223394523e-11 7.699670267e-12 7.040863837e-11 7.742675404e-11 9.847461319e-12 6.442270131e-12 1.066230842e-10 6.309368687e-12 +1.031389077e-11 9.78104809e-12 1.085923733e-10 0 3.501211166e-12 7.958177074e-18 8.809615233e-11 1.796573588e-11 1.80123704e-11 6.433224386e-11 3.995712134e-11 1.201566666e-11 4.93172625e-11 1.116012669e-10 3.340864008e-11 0 2.025196428e-11 2.553461293e-11 1.174595141e-10 0 9.664426524e-12 1.406517184e-11 1.564748638e-10 2.253005784e-11 0 1.752268795e-12 2.483925675e-13 2.093743252e-11 0 0 0 0 1.656005283e-10 3.570096253e-11 0 6.822367291e-11 0 1.276084483e-11 4.336481288e-11 2.074660985e-11 4.64240044e-11 8.816497362e-11 1.258287318e-11 9.20702515e-15 3.179072888e-11 2.617990835e-11 5.843612581e-11 1.283562556e-11 0 1.072413003e-10 4.531591124e-11 7.666867263e-12 0 9.352876458e-18 0 5.088933299e-11 9.715520579e-12 0 2.110395522e-11 0 0 1.180909571e-14 0 5.339799162e-11 3.697504929e-11 0 5.203199829e-11 7.286728712e-12 1.830953204e-11 2.787160442e-16 6.874745443e-12 1.058765505e-10 2.76729291e-11 4.610978617e-11 0 4.455607639e-12 2.944463327e-11 0 1.195053985e-11 1.866215607e-10 0 2.244701029e-11 1.176899034e-10 1.203382883e-11 4.946471157e-39 4.243900149e-11 1.169083643e-11 3.006211898e-11 1.099339056e-15 1.74826203e-11 1.09904929e-11 2.775338809e-11 3.618104796e-11 3.429366925e-13 0 0 0 8.892900647e-26 8.543811952e-12 0 1.112100484e-11 0 1.269401791e-10 1.953446221e-11 5.112253757e-11 1.261798224e-18 5.329471416e-22 8.20100583e-12 1.81131015e-10 9.896383597e-12 1.163338966e-11 3.664529317e-20 1.648475196e-12 1.361241089e-10 4.447865787e-11 1.206144123e-11 6.658156043e-11 1.137394206e-10 0 0 1.552055102e-10 8.289001668e-15 3.616542386e-11 1.940316599e-10 2.482518113e-15 2.304165752e-11 0 0 9.317759434e-12 8.130694459e-29 9.797815245e-11 4.017347562e-11 3.685634888e-11 1.031139203e-10 0 6.554361113e-13 3.353045568e-12 5.133982566e-11 6.709857412e-12 0 1.810231833e-10 3.300505457e-11 0 9.675224607e-11 1.396675596e-10 0 5.724686669e-11 1.894344231e-12 0 3.42078086e-12 1.98332252e-11 0 3.454456406e-11 2.826953443e-11 3.046959516e-11 0 6.734299737e-11 8.439200475e-29 2.191615468e-11 4.83080782e-11 8.757103816e-11 1.314657622e-11 2.042659784e-11 8.630330128e-11 3.050396297e-11 4.38812978e-12 0 0 4.404528655e-11 8.223959613e-12 6.638185944e-14 0 1.169335924e-10 9.923444529e-27 7.981404419e-12 9.97953922e-11 3.610702093e-11 3.268136788e-11 0 1.631430577e-11 1.073364959e-15 0 3.944614242e-14 9.556025554e-11 0 2.266541104e-11 1.865509886e-11 1.03910456e-11 0 0 2.342333453e-11 1.309744516e-10 6.607227308e-11 1.217623363e-24 1.833555092e-11 2.359086787e-18 1.605376867e-11 0 2.166728925e-11 0 1.351436988e-11 0 2.627597087e-15 6.415212868e-11 1.502248012e-11 2.988197409e-10 3.163999042e-11 0 7.515609409e-11 1.077178428e-11 1.12586153e-10 0 1.632255108e-11 0 2.430830684e-11 2.716401783e-18 0 4.940528826e-11 2.197488639e-11 1.867087362e-11 1.838150708e-11 4.569110155e-17 0 6.205117404e-11 0 0 1.706023951e-11 2.439209627e-11 3.606549084e-11 8.557113771e-12 2.964645996e-11 5.317519533e-11 5.118698901e-11 2.004290325e-11 3.282639694e-24 2.782589451e-11 0 5.834787775e-12 0 2.490375588e-11 2.473986413e-25 4.685296205e-11 8.212389315e-12 7.186767775e-26 0 8.327415315e-12 5.742777664e-11 7.784437882e-16 1.152676269e-10 3.497420404e-11 0 0 0 2.986285635e-11 6.063529966e-11 4.880661685e-13 6.224221597e-11 0 2.43962897e-11 4.742936144e-11 9.291891891e-11 4.67035978e-16 4.281658082e-11 1.557955195e-11 6.61184839e-11 1.173508573e-11 3.450304059e-11 5.222510886e-11 4.219005536e-11 1.520802877e-10 2.425512579e-11 2.372076299e-11 8.519503154e-23 5.895579658e-11 0 5.450827039e-11 1.426749227e-11 0 0 2.327499776e-11 1.746045411e-11 6.469619002e-11 2.192027269e-10 4.844642203e-11 1.596363483e-10 4.250768168e-11 2.139476395e-12 3.822526369e-11 1.610020893e-11 0 6.18089504e-12 5.887748834e-19 4.657136223e-11 0 0 9.317487942e-14 0 4.514762448e-11 0 0 +2.272332163e-11 2.8962394e-18 1.305914561e-11 8.696812351e-17 5.791745034e-16 0 2.242396798e-11 1.725136802e-10 0 1.269158703e-10 1.067350095e-23 1.989831586e-11 1.513136983e-11 1.343889179e-10 2.772921519e-19 1.666465157e-11 0 5.77520175e-11 8.126767051e-11 6.295221187e-11 1.197543121e-11 0 0 0 0 6.075075717e-12 0 0 5.836680003e-14 1.021555783e-10 3.955473755e-11 2.468431379e-12 1.868861051e-11 1.303518991e-16 7.975399803e-15 0 8.079846555e-11 1.014666318e-10 7.766168272e-11 1.823146713e-12 3.199984842e-11 1.308856164e-11 9.37100242e-11 1.783885523e-11 0 4.265718023e-20 1.388380068e-12 1.678858212e-10 6.284212357e-11 6.115101141e-11 1.289564071e-11 0 1.162377879e-20 0 4.011977638e-11 8.27484088e-12 1.208965188e-11 1.859943775e-11 8.501724464e-12 1.663587814e-11 9.876270545e-12 1.964111936e-11 2.167365326e-10 0 1.689102163e-11 0 0 0 6.793529956e-18 7.005063335e-12 1.832052185e-11 1.337781297e-11 0 1.897808517e-11 1.069998469e-10 0 2.756555858e-11 8.93130786e-12 0 0 6.074409823e-11 8.572442597e-22 1.085740738e-12 2.270665709e-10 0 1.117208029e-10 1.270641484e-11 0 4.136192624e-13 7.827590614e-11 1.364432924e-12 1.452356378e-11 8.624654667e-27 0 0 0 0 0 3.376890098e-11 5.806544777e-24 1.966629454e-10 0 1.37800429e-11 0 2.641749876e-25 2.753125976e-11 0 2.744914298e-11 0 1.238548421e-11 0 7.980533624e-11 2.30227782e-11 4.864860191e-15 5.617708001e-12 0 1.52993348e-11 2.809245437e-12 0 1.711089209e-20 0 0 4.557112361e-16 0 3.245558463e-11 5.549718666e-11 1.535655191e-13 0 8.653147897e-11 5.835657019e-18 0 3.473063186e-11 0 0 2.087192742e-11 0 3.183711631e-11 5.311527186e-12 6.978625708e-11 2.530113525e-11 1.461580577e-10 3.156994544e-11 0 1.630601139e-15 8.771884844e-12 6.600796211e-11 0 2.011620366e-11 1.225242507e-11 1.247375516e-15 2.560138309e-13 0 1.154204397e-12 2.32816648e-11 0 2.850144439e-10 1.755657447e-10 0 0 0 6.475255569e-11 1.97794142e-10 0 6.184771306e-11 0 3.703998054e-11 0 1.133070473e-15 1.105431538e-11 0 1.417761447e-11 0 1.834977915e-11 1.12780819e-11 0 0 0 1.182360612e-11 7.762795125e-20 1.2281662e-10 7.9980272e-26 0 9.323905781e-17 0 2.055551627e-15 3.553517077e-21 2.148621856e-15 4.628457185e-11 0 0 0 1.299953151e-10 3.061045031e-11 0 0 0 0 4.231067604e-12 3.148666201e-11 3.373992707e-12 8.440152096e-20 8.569146891e-12 7.167925982e-12 1.53550466e-11 1.333351292e-10 4.894161967e-25 1.726758562e-10 1.046624706e-11 0 1.310554531e-11 3.035555941e-13 3.853602581e-27 0 1.766493919e-27 3.321805372e-12 9.067807318e-12 0 2.016521284e-18 0 8.566748788e-11 0 1.637252305e-11 1.166336943e-11 2.173553465e-27 0 5.988883152e-11 1.398397835e-10 5.105459112e-11 1.931639827e-11 9.11669762e-15 0 2.454174538e-11 0 9.715409992e-12 3.472424246e-11 3.53098426e-27 6.130955807e-11 0 0 5.229591248e-11 2.948841145e-15 0 5.259871409e-17 3.879806748e-22 1.328928899e-10 3.403951757e-12 1.935467647e-11 5.535677467e-15 1.22766591e-11 1.086221948e-11 0 1.375437414e-11 3.099255432e-11 0 8.936606287e-12 5.840069466e-12 1.791070819e-11 1.834146449e-11 9.980613601e-12 4.506276836e-11 0 0 0 0 1.777243564e-11 2.584959209e-10 0 0 8.066619281e-27 5.903653079e-11 3.529867192e-14 2.03338169e-10 4.251033353e-11 0 0 1.348862703e-11 0 1.12087242e-16 1.613386334e-11 9.91601968e-12 2.023813856e-11 3.940143665e-14 2.417553666e-12 9.104792004e-11 6.413873555e-11 1.359073345e-10 8.498994092e-12 0 0 4.466511503e-11 0 1.742740841e-11 3.874236844e-12 0 6.515870329e-14 7.895540656e-22 0 0 1.056348329e-10 0 +3.854143313e-11 1.026657383e-21 9.590040186e-11 5.436890206e-13 0 0 9.791099872e-11 0 1.156728519e-11 4.080787073e-13 9.903547164e-12 8.171669945e-12 0 1.186194434e-11 0 0 0 0 2.093139784e-11 1.003650928e-21 0 0 1.858357254e-11 0 5.034909855e-14 8.472066894e-11 0 1.492592093e-11 0 1.63834511e-11 1.34740017e-11 0 1.913959256e-11 0 0 3.387005092e-12 5.704758297e-17 0 0 0 3.387081462e-22 1.612691594e-22 0 6.178643939e-11 9.452951176e-11 1.635532249e-14 6.776615322e-11 8.49250912e-12 0 0 0 4.421807484e-11 0 0 1.196402897e-10 8.846363689e-15 2.143482751e-11 6.316215678e-12 0 6.342808856e-21 0 0 0 0 7.176768899e-12 0 1.360251211e-17 0 0 6.123577777e-11 2.073355886e-14 1.037369873e-13 1.124598805e-11 1.053053861e-14 1.125343953e-10 9.760141924e-12 1.058923782e-16 0 0 0 0 0 0 1.541277957e-23 5.512202366e-12 3.454008943e-11 0 5.052537321e-12 8.933247552e-11 1.787720876e-10 0 1.33271468e-10 4.040497465e-15 0 7.192940621e-11 0 0 0 0 7.54471202e-11 0 0 0 0 5.063303006e-11 0 8.544821432e-11 5.020583005e-11 0 4.927434072e-11 0 4.495621832e-11 3.905665401e-11 0 0 0 0 0 0 0 3.185107581e-12 0 1.009803637e-22 0 0 0 6.055953796e-11 0 6.012082156e-11 0 5.306824854e-11 0 1.381201342e-19 0 2.100003763e-11 7.197002219e-11 0 0 1.072148099e-11 0 0 0 0 1.458891699e-11 0 0 0 0 0 0 0 0 0 1.874045877e-11 0 0 0 3.653143614e-23 0 2.277664305e-17 0 0 0 0 4.831366603e-11 7.301441544e-11 0 0 0 0 0 4.591518198e-12 0 3.327837528e-17 0 0 0 0 0 0 3.589392133e-11 1.59251708e-11 8.426195708e-14 3.703008937e-11 0 0 0 7.745432924e-12 0 2.030177348e-11 1.143293044e-10 2.988722428e-19 2.802235245e-11 3.04615298e-11 7.213998307e-21 6.460137562e-13 0 0 0 0 4.424737302e-27 4.793004915e-11 1.382790742e-11 0 2.707759212e-11 0 6.348140344e-11 3.908566059e-12 6.733117726e-11 2.199317946e-11 6.820034569e-11 0 0 0 4.179168242e-12 9.961725581e-11 3.518161384e-11 2.744447023e-14 2.156951066e-11 0 2.539986448e-12 0 0 1.203258941e-15 1.87379096e-23 0 0 0 0 0 2.342788044e-14 0 3.864599076e-12 3.030847178e-18 0 2.892029347e-12 2.691829434e-11 5.595637203e-12 1.386051983e-13 0 5.042998488e-11 0 0 6.66132376e-12 4.786488681e-11 2.152342279e-14 4.92422175e-18 0 3.473491927e-11 0 1.362336754e-10 6.525015573e-14 1.711300233e-10 0 2.621302174e-11 3.924011403e-11 0 0 0 1.368009811e-17 4.399831008e-11 1.20898099e-18 6.845478776e-12 0 9.008422471e-12 1.080502466e-11 1.094294668e-10 1.893717142e-11 0 7.233870899e-27 4.457941667e-11 0 0 0 7.62655172e-12 9.480008072e-13 0 5.325047045e-11 0 1.985692292e-11 0 6.650612661e-12 6.009010019e-11 0 3.497885799e-11 0 0 0 2.118001682e-11 1.457184192e-10 0 0 5.536613431e-11 3.651590528e-21 6.898926758e-11 3.313222503e-13 2.576117448e-11 1.012202556e-11 0 0 +1.295779153e-11 1.319099627e-11 1.96547699e-11 0 1.736250259e-13 0 0 0 0 0 0 0 4.191338547e-11 0 8.763651858e-12 0 0 5.308245583e-11 0 2.622501613e-33 0 1.019602285e-10 0 1.683631579e-11 0 1.413867017e-11 3.464976682e-11 1.887003506e-11 0 0 0 3.142851108e-11 0 1.15220549e-19 3.431095415e-24 5.1766246e-11 0 0 0 0 8.003085878e-19 0 0 0 0 5.44481376e-11 1.227137609e-11 4.71992571e-19 1.344556206e-11 0 0 0 0 2.727825877e-11 6.341591893e-15 0 0 3.414777445e-11 8.157447888e-13 0 0 0 8.127969344e-28 0 0 0 1.201381989e-11 2.224508983e-14 0 0 1.478883417e-11 0 0 0 2.86233352e-11 4.651426767e-11 0 0 0 0 2.555977718e-14 0 3.381901564e-11 1.217989082e-11 0 0 0 0 0 0 0 6.257700724e-27 0 7.229932043e-11 0 4.18149144e-11 0 0 2.851837379e-11 0 0 5.602867648e-11 0 0 0 6.734905977e-11 0 0 5.906117316e-12 0 0 0 4.241251463e-26 2.847603158e-11 0 8.727405172e-20 0 0 0 0 1.774580597e-11 0 0 2.254105073e-11 0 2.033088131e-11 0 1.035882009e-11 0 0 0 0 3.861591415e-13 0 0 0 0 0 0 5.587858396e-12 0 3.536690334e-11 6.240006037e-14 0 0 0 1.897802023e-24 8.227556146e-12 0 3.174194315e-11 2.917768757e-21 8.305178859e-11 0 0 0 0 3.53632433e-25 0 1.453155407e-15 0 3.565260025e-11 0 4.003101149e-11 1.231086717e-16 1.23424149e-11 0 0 1.516655371e-19 8.23235104e-12 0 0 1.03520037e-41 2.085612058e-12 0 0 0 9.386284685e-12 0 0 4.6624693e-18 0 0 3.158327793e-14 1.68451955e-11 8.609770793e-11 1.100811418e-14 0 0 0 1.611128942e-26 0 1.561678094e-11 1.108033957e-11 0 0 0 0 0 0 2.712049046e-14 0 0 0 3.265212501e-19 4.121581341e-12 0 0 0 0 0 0 0 0 0 0 0 2.532721583e-14 0 0 0 3.473432651e-15 0 7.548912606e-11 0 0 0 0 0 0 0 2.032140667e-11 3.10785741e-11 2.49945868e-11 0 0 0 1.052237108e-11 0 0 0 3.651740097e-21 0 5.241377288e-12 0 0 4.712311139e-12 0 3.936186209e-11 0 0 0 0 0 0 7.93789828e-16 0 8.953613596e-12 0 2.074966985e-11 0 0 0 4.978129956e-11 0 0 0 1.460012203e-11 3.308446462e-16 0 2.102265695e-14 3.045817511e-11 0 0 0 4.863487271e-11 0 0 0 1.510245272e-11 0 4.278436831e-11 0 0 2.763536447e-11 0 1.343843331e-10 4.380489002e-11 0 0 0 0 0 0 0 0 0 0 0 0 1.021158245e-11 +# Errors [PSD_4PI/PSD_4PI.dat] I_err: +0 0 0 0 0 0 0 0 0 7.311770765e-13 1.086283723e-16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.04074204e-13 0 0 0 0 4.372287023e-27 0 0 0 0 0 7.338159334e-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.19836707e-12 0 0 0 0 0 0 1.34440804e-20 1.409925914e-15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.567822131e-17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.006369923e-12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6.823578936e-12 0 0 0 1.581600341e-11 0 0 0 0 0 2.52316499e-11 0 0 0 0 0 0 0 0 0 0 0 0 0 2.768962386e-14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.479387877e-17 0 0 0 +0 8.517303687e-11 0 0 0 0 0 3.815294543e-12 0 2.442504202e-16 0 0 0 8.585725385e-12 0 0 0 1.18689567e-11 0 0 0 8.063387771e-12 0 1.930403838e-11 0 0 0 7.451009623e-11 0 0 2.936428675e-11 1.610876254e-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.479774634e-11 0 0 0 0 1.818014746e-28 9.79708745e-12 0 1.17606626e-10 0 1.971338827e-29 1.319258579e-10 0 0 0 0 0 0 7.177600902e-12 0 0 0 0 0 0 8.204526367e-11 1.965579281e-11 0 1.265837487e-17 0 0 4.405670268e-11 0 0 0 5.864044209e-15 0 5.055879007e-12 0 4.72280282e-18 0 0 7.710046852e-11 0 6.221063302e-13 3.474742052e-12 0 0 0 0 0 0 0 4.049869765e-11 0 0 0 0 0 1.729208005e-11 1.719163157e-28 0 0 0 6.296212256e-12 0 0 0 1.88694897e-11 2.279290946e-11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.655680112e-11 0 4.587989947e-11 0 2.558962808e-26 0 0 4.052695203e-12 0 0 0 4.245717898e-12 0 0 0 0 0 0 0 3.440792814e-11 1.190956741e-11 0 0 0 4.788015179e-12 0 0 0 0 0 0 0 0 0 0 0 1.001402989e-16 0 0 0 0 0 0 0 0 0 5.635797247e-11 0 0 0 3.002906945e-18 0 0 0 3.23997849e-16 2.97384665e-11 4.621971532e-11 1.941154762e-23 0 0 0 3.135491271e-11 1.21247893e-17 0 5.427315779e-11 0 1.88049523e-11 0 6.913735024e-11 0 0 2.527075748e-16 1.474060837e-11 0 0 5.074132122e-11 1.836572848e-11 4.010435349e-14 1.992191956e-11 6.148071372e-13 0 1.238416366e-11 0 6.681516513e-11 1.042348098e-10 4.985926437e-14 0 0 0 9.102654831e-12 3.236637614e-11 0 0 0 0 1.182791876e-11 0 0 3.086825549e-11 7.340547264e-11 0 6.177464553e-11 0 0 0 4.170170915e-11 0 0 2.842355119e-11 0 0 0 0 0 0 4.713971468e-14 0 0 0 0 3.225547512e-11 1.705681648e-25 1.370733607e-13 1.682252696e-15 9.892616597e-12 0 2.321736025e-11 3.354467782e-15 0 0 1.847477308e-18 0 7.365909488e-11 0 0 1.904343242e-11 1.22654194e-11 0 1.995118043e-11 9.090684898e-20 1.024149271e-17 0 5.283351724e-15 0 3.249739386e-17 1.115832061e-11 0 1.036683695e-10 0 9.565529174e-18 0 2.874358479e-11 7.824972066e-15 1.096244824e-11 0 0 0 0 5.290844364e-21 0 0 0 0 0 0 +1.098043855e-10 0 0 5.174786953e-20 0 0 6.182580417e-11 0 9.347356602e-15 3.009628211e-11 0 0 9.627031306e-13 2.849397984e-17 0 4.416271937e-12 0 0 2.874525972e-10 0 4.978896433e-11 3.228795824e-11 6.014629199e-12 3.509609691e-11 0 0 0 0 2.992194202e-14 4.511408618e-11 5.023215161e-12 7.08741223e-12 1.426317258e-28 0 0 1.315150458e-14 0 1.513979455e-10 4.795395388e-11 0 2.43530807e-15 1.472455061e-15 9.340781134e-14 2.587135372e-11 0 0 0 1.101807342e-11 0 1.427194823e-18 4.634702935e-11 0 0 2.320321388e-25 3.567385151e-11 4.401394665e-11 0 0 1.366467897e-11 0 0 1.449317177e-11 2.985039142e-11 3.088252604e-11 0 0 4.66115436e-11 0 0 1.050369463e-13 0 0 1.210370463e-25 5.067289121e-15 1.429353559e-10 6.703627714e-17 0 1.335367309e-10 0 0 3.638321077e-11 0 6.304950603e-11 0 0 3.868887215e-23 0 1.022269991e-10 0 7.074383244e-23 0 0 1.327084478e-16 0 3.427876481e-11 0 0 0 1.477652309e-11 2.782339466e-11 6.319870709e-12 0 5.57767408e-11 0 0 0 3.638661695e-11 0 0 0 2.022421846e-11 0 0 0 0 0 0 0 0 0 2.547823968e-15 0 3.318438294e-19 5.239804704e-11 0 0 3.205843178e-16 0 0 0 5.255417388e-13 0 1.630680193e-11 6.27538136e-11 0 3.915102824e-12 1.628322046e-11 2.892644287e-15 0 4.575326364e-11 1.619144684e-11 2.842331526e-11 0 6.327046366e-15 0 0 1.314948798e-11 0 0 4.127490783e-11 3.248144631e-11 3.64654712e-11 0 0 3.209275898e-11 3.5482538e-11 0 0 4.459135773e-11 1.506313375e-11 0 1.530969826e-11 8.508780976e-12 0 0 7.635776161e-12 4.221107982e-11 1.039676375e-10 3.0468383e-12 9.021107021e-12 1.021007011e-25 8.503943188e-12 0 0 0 0 0 0 0 0 7.077762662e-18 6.519054783e-11 0 0 0 7.477805718e-11 1.412252831e-10 2.034615048e-11 0 0 2.383258458e-11 9.094663193e-11 0 1.547584253e-11 3.34885375e-17 5.981314249e-16 0 1.154601802e-11 1.800939379e-12 0 0 0 4.810858982e-11 0 2.042013657e-15 1.265856067e-20 3.254919829e-10 0 1.105175638e-10 0 0 0 1.380412394e-13 1.360289294e-11 0 0 0 0 5.479519804e-11 7.630233924e-11 2.068436454e-11 0 0 7.913255262e-16 2.267924724e-11 0 2.964320671e-11 1.785428406e-16 0 3.647691974e-15 0 1.174133569e-11 0 3.13489229e-12 0 1.418010917e-11 0 0 0 1.137957079e-12 4.339881175e-16 9.424870508e-12 2.390649259e-11 0 1.099836133e-13 7.863657133e-14 1.849520197e-11 0 0 6.920640506e-11 3.653591242e-23 3.550941751e-11 0 2.407168603e-11 0 0 0 1.64727896e-11 0 0 0 2.781603969e-11 2.969958435e-12 1.313475072e-11 3.747620146e-18 2.484725095e-11 0 3.405191922e-11 4.603584093e-11 2.309106144e-12 2.361417304e-11 2.213105945e-11 5.826967472e-24 0 1.696035303e-11 1.01547371e-11 0 1.285156563e-11 4.68858002e-11 3.097527282e-11 0 4.532549275e-12 2.611053083e-11 0 6.708277403e-12 4.594753596e-11 2.898632669e-26 1.194051024e-11 7.092407833e-11 6.281383519e-18 0 1.551314705e-11 0 3.39942455e-10 0 9.953300897e-20 1.334247546e-29 0 7.790535026e-12 1.270562083e-11 +2.622078347e-11 0 0 0 0 0 3.90549234e-11 0 3.174790463e-16 0 1.116738466e-11 2.590174462e-28 1.15079732e-11 3.839026047e-16 2.592046104e-15 4.728966335e-24 0 1.661960361e-12 1.867465967e-13 1.398084024e-15 0 4.213560472e-11 5.202054475e-11 9.599637238e-11 1.937724202e-11 0 7.340831493e-14 1.676390722e-23 0 0 2.328173945e-11 0 6.833970138e-11 4.846893065e-11 1.044148084e-10 0 1.196394804e-11 0 1.709954849e-11 7.735751136e-11 0 3.041791415e-11 0 8.828653092e-16 2.427854834e-12 0 4.158991086e-11 0 7.270964786e-12 1.43009853e-15 1.328363911e-11 2.078006545e-11 4.695590695e-11 0 0 4.980733093e-11 3.293840749e-12 3.214484188e-16 0 5.433198064e-11 0 8.748983419e-11 2.2676016e-11 0 4.630295607e-11 1.432454158e-12 7.792526015e-11 1.862275913e-16 2.180999097e-11 1.2791587e-11 0 1.371985284e-11 0 9.814266357e-12 0 3.316955834e-11 1.654557541e-11 1.876522834e-10 1.537254834e-13 1.086014816e-10 0 2.060290277e-11 0 9.181928765e-12 2.222580974e-21 3.929723036e-11 0 1.22642509e-11 1.714656608e-11 3.400939896e-26 3.835657226e-20 6.147333703e-17 5.58163732e-17 6.481002206e-11 3.099825406e-14 1.868994508e-28 0 0 1.053964157e-11 0 0 0 0 3.387990107e-11 7.272679305e-16 2.436044885e-11 6.670976032e-13 4.772382279e-18 0 1.44532783e-11 1.741337863e-17 0 0 7.720159549e-11 3.629425562e-12 4.213302666e-11 3.392747531e-11 0 1.403607195e-11 9.183024065e-11 2.709367629e-11 8.32177654e-11 3.11156888e-12 0 3.725999917e-11 1.593670677e-16 2.900895972e-11 4.368013854e-13 0 0 1.886007514e-11 3.070135895e-12 7.101579383e-12 0 4.730314781e-12 6.826744091e-11 1.025314139e-11 0 2.478101366e-11 8.97481294e-11 0 3.062763628e-11 5.944331264e-11 9.920321461e-11 1.03277413e-10 2.221693687e-11 0 1.014630187e-10 0 2.34896338e-11 1.111537752e-10 1.914069445e-12 8.406499756e-11 0 1.269982101e-11 6.194565175e-11 0 0 1.190533729e-11 7.428824933e-11 1.062881572e-11 7.61201943e-12 5.815172319e-13 0 0 0 0 9.779113251e-12 2.742418333e-14 0 3.792055595e-12 5.408087257e-11 5.094978673e-11 2.390338961e-11 0 0 1.368109587e-16 2.007178418e-10 2.734223446e-11 2.626619055e-11 2.154687755e-14 0 7.771285707e-11 0 2.934097667e-11 0 0 7.629635731e-12 1.834895612e-14 2.453461452e-11 0 0 0 4.572302242e-16 1.575361918e-11 3.205941699e-11 3.317446684e-11 2.276499662e-11 6.624311208e-17 3.219513155e-11 0 0 4.606565888e-11 1.126206507e-27 0 3.263197124e-11 0 6.30254143e-12 0 1.706151662e-11 0 0 0 3.450374322e-11 0 0 1.678554691e-11 1.129482311e-10 5.875409239e-19 0 1.145316616e-10 7.923973796e-12 0 1.513769415e-18 4.088002858e-17 1.070160093e-15 2.519503599e-11 1.72949397e-11 4.005756484e-14 4.316085313e-12 1.33946275e-11 4.488373179e-12 0 0 0 0 7.47941313e-13 0 0 7.093714579e-12 1.520985103e-11 8.973864696e-11 5.98718303e-14 1.225371244e-12 2.94023983e-13 3.676480412e-11 4.737829477e-11 4.194372846e-28 3.215887852e-11 0 5.226716989e-11 3.804568338e-14 0 2.470685249e-18 6.818024254e-12 0 4.345929799e-11 0 4.187888533e-25 2.906219463e-12 0 0 5.45180877e-11 0 1.084101319e-11 0 0 4.441878092e-11 8.755106607e-12 0 0 1.106072065e-11 5.726544471e-12 2.683690805e-11 0 2.34800981e-11 0 2.7886058e-20 2.523375635e-11 0 0 9.871525242e-11 1.061527815e-11 0 9.435831563e-13 2.249781359e-11 0 5.733649422e-26 1.118533306e-10 3.839500561e-11 4.697744543e-23 2.234388929e-11 1.792773654e-11 7.891998277e-11 0 0 3.278058041e-11 5.070644475e-11 0 2.926020611e-14 +3.095106949e-11 1.139482296e-10 0 7.07957154e-12 4.958196923e-16 2.764615836e-10 3.036369688e-11 1.462794591e-20 0 3.345552749e-12 0 6.025693326e-11 9.558625882e-21 8.009195622e-12 0 0 3.404995583e-11 5.847295023e-12 1.098865478e-10 2.996332898e-11 9.631042416e-17 3.222428847e-12 0 6.524263911e-20 0 1.394596647e-10 2.035390197e-11 9.064882167e-24 3.127567813e-11 1.247482659e-11 0 5.976103241e-12 5.655326615e-11 1.754577609e-11 1.930779574e-11 9.20791207e-12 5.099740945e-11 4.091459654e-12 9.092571531e-14 6.643197136e-11 4.764163317e-11 4.51059049e-11 0 0 5.95958098e-13 0 1.586707614e-11 7.83235608e-14 7.467455055e-12 0 9.523287746e-21 2.948293333e-24 2.044192549e-11 0 2.261019113e-11 2.850758586e-11 0 2.577904634e-11 0 2.434133807e-12 1.114315599e-10 1.175347771e-11 5.680350068e-11 1.204618614e-11 0 5.648645475e-15 5.348447987e-13 0 0 1.154337966e-10 6.097317999e-13 1.177167745e-11 3.896496855e-11 3.850496116e-12 0 7.538262298e-12 8.757036896e-16 0 1.990011545e-11 7.915742442e-17 0 0 3.467279383e-11 2.390064311e-10 1.730954858e-11 1.144645805e-10 3.271687425e-11 2.069016757e-10 3.01225071e-11 0 3.115690842e-11 4.329380717e-11 1.384695296e-13 3.174394361e-14 1.632732868e-10 3.132476159e-11 2.62566687e-11 0 5.404048063e-12 1.971057181e-11 5.825839752e-11 2.095143612e-11 2.065973746e-16 3.252256195e-11 1.753966253e-11 3.842662398e-11 4.360470812e-14 1.546121521e-11 1.059852754e-11 0 4.213170052e-15 0 3.271794683e-11 2.402530411e-11 0 1.938448188e-15 0 2.040202224e-13 0 0 3.195915464e-18 3.088370627e-11 2.172978762e-11 2.156063223e-11 0 3.143307384e-11 4.702794736e-21 3.469602617e-11 3.570521815e-11 0 5.161816581e-11 0 0 0 0 5.321487179e-11 3.829495172e-15 1.439057323e-11 4.559241646e-19 6.612231656e-11 2.616239597e-11 3.235065339e-11 4.20517545e-11 1.113681699e-10 1.86900213e-11 8.916578021e-11 1.360556478e-11 1.084183943e-10 0 1.065699125e-11 0 7.27234652e-11 1.744334025e-19 0 0 0 0 5.992261477e-12 0 4.749369812e-11 0 0 2.199515574e-11 9.807109906e-11 2.203634547e-12 0 4.030701193e-11 1.323832735e-11 0 5.082780994e-13 4.662004336e-11 6.588083721e-11 0 1.559780517e-11 3.027390222e-11 3.080609247e-11 4.453311702e-11 3.725897623e-11 5.478820611e-11 0 0 2.554928197e-11 3.472999841e-12 3.429679898e-11 0 0 0 5.181337534e-11 6.289121867e-11 4.338210565e-11 3.892108641e-11 0 1.184894524e-11 0 7.304380455e-11 4.735125823e-18 1.171906009e-21 3.178503951e-11 1.558967308e-11 0 1.116980781e-11 3.448127635e-11 0 3.468677772e-11 8.58483953e-11 0 1.997400966e-11 1.588774772e-18 1.000954006e-11 0 4.592965758e-21 0 4.691328412e-11 6.454628003e-12 1.132978508e-10 3.627387051e-11 0 0 0 2.344509853e-11 6.902724238e-12 0 3.231583091e-19 1.439814647e-10 3.883033333e-11 4.048692623e-29 2.083589497e-11 3.7670182e-11 4.910579674e-11 1.213564111e-11 8.720980077e-12 9.115128831e-16 3.745349785e-14 2.088934434e-10 0 7.805159181e-11 1.489102533e-11 7.676187072e-13 2.312207228e-11 3.022365221e-11 3.838332303e-20 7.345035722e-11 2.880118843e-15 1.052456192e-16 1.637201894e-10 3.510391571e-11 3.227816647e-13 0 0 4.853210097e-12 3.917821544e-12 0 0 5.883343678e-11 1.516628064e-13 1.225339377e-11 0 2.305902114e-11 1.043432212e-11 2.028537806e-11 2.680275042e-11 0 1.271151124e-14 1.521500595e-10 5.190389584e-11 5.111788363e-11 2.071619375e-11 8.706491735e-12 2.698297863e-11 7.171379468e-11 0 2.192521834e-11 0 0 1.630435725e-11 3.16134004e-11 0 0 3.821904885e-11 5.917928226e-15 1.25804271e-10 1.590867232e-11 4.242735415e-11 6.222162576e-11 4.937921585e-13 2.727140246e-11 2.649205371e-11 6.041660754e-11 0 4.656060573e-17 1.560424108e-10 0 6.060406445e-11 1.404982866e-11 0 8.641385094e-22 0 2.485694779e-12 5.80136106e-14 1.333318768e-10 +2.103210795e-11 1.082263515e-10 4.200865186e-11 6.645673671e-11 0 7.04542482e-11 0 1.318667258e-11 1.211332166e-14 7.888585563e-13 1.188861681e-10 2.151732847e-14 1.711423099e-11 8.869605637e-12 8.767478085e-12 5.640137942e-12 0 0 1.883939319e-11 2.716853429e-15 4.489945249e-11 1.905700198e-10 0 1.158263739e-10 1.437826638e-10 3.796403385e-11 4.31883659e-11 7.120139028e-11 2.620389048e-13 3.265203979e-18 1.281732218e-14 7.164965735e-11 7.689685657e-11 3.876804824e-11 6.190020689e-11 1.143426353e-11 2.102207721e-11 5.775895421e-11 1.525372996e-10 9.398086243e-12 1.805125438e-18 3.041260676e-11 2.983482351e-11 2.252171549e-11 5.580482792e-11 1.205190157e-10 1.016954338e-10 4.084181992e-11 6.251146736e-11 1.29120933e-10 4.006767827e-11 3.165701042e-11 4.676577659e-17 0 6.271498708e-11 5.302882673e-16 4.438757844e-11 1.680467677e-11 2.729532658e-11 2.082085793e-11 8.163401896e-11 1.847611416e-11 1.960638534e-11 7.148392487e-11 2.231472024e-11 5.950683558e-11 3.314212617e-11 1.437854102e-11 0 0 3.45082197e-11 1.69794018e-11 2.166054259e-11 1.133817873e-11 2.190206523e-11 1.045010874e-14 4.990327287e-11 1.312543019e-10 0 6.208148359e-11 1.043697702e-12 2.741707951e-11 4.856918226e-11 7.500531915e-18 9.237658364e-11 5.357082978e-11 1.469226338e-15 2.113463352e-10 1.400777632e-11 1.115026323e-10 0 9.364146967e-14 4.32663506e-11 8.438361169e-19 8.952509368e-12 0 1.235299979e-10 5.200811754e-11 0 1.951426212e-11 3.165567026e-10 1.666905241e-10 2.303225816e-11 0 1.70032612e-10 0 8.057021047e-12 1.351464692e-10 1.246645974e-15 1.004520388e-11 8.913500915e-11 7.3368334e-12 0 6.500089001e-15 0 5.93965129e-11 2.055709066e-32 4.800466868e-11 0 5.103791256e-11 5.634136941e-14 1.805075054e-11 4.561882134e-11 4.031715063e-12 3.82143945e-11 0 0 3.774299718e-11 8.746582224e-11 1.627134872e-10 3.867796814e-11 1.655446302e-25 2.884905907e-12 5.615265195e-11 1.623215573e-11 3.740609926e-11 3.670761728e-11 0 3.905927963e-17 1.111939231e-10 1.408306202e-11 0 0 0 6.015955303e-11 0 1.995584861e-11 6.858204551e-11 5.346435612e-11 2.236290365e-16 1.771577708e-11 3.245261152e-12 4.065831322e-11 8.779514787e-11 1.169507728e-10 2.356501791e-11 4.213705713e-11 1.808959435e-11 0 0 4.803672391e-11 4.325377722e-13 7.808480678e-22 9.616037539e-11 0 2.724645196e-24 9.47341088e-11 1.554055635e-11 8.354303969e-11 1.533979568e-10 6.340764757e-11 1.772764201e-15 3.273019633e-11 0 4.764184217e-11 0 0 1.33316508e-11 0 1.931003357e-11 3.055819587e-11 0 0 6.31028849e-11 4.229793604e-12 0 1.374447349e-28 0 1.300537449e-14 4.802271465e-11 1.580974408e-11 3.385398449e-12 2.63706327e-11 3.047680977e-11 1.368314925e-10 2.862515048e-13 3.646940713e-11 4.279663974e-11 1.322401235e-11 1.551292131e-11 2.728024613e-11 4.117220104e-13 7.265668348e-11 0 1.781305546e-11 1.104105702e-10 9.251248854e-11 0 9.46437755e-13 8.627477316e-25 0 7.641283439e-12 3.01439794e-18 4.554545096e-11 5.129275523e-11 3.043937214e-15 1.097635467e-10 8.636016656e-11 6.708586328e-11 0 0 4.090710358e-11 1.709378667e-10 1.756887514e-11 5.277133958e-11 5.080801413e-12 0 1.762925055e-11 1.49955972e-10 1.820464218e-11 0 5.570687623e-28 1.675119162e-11 1.218551797e-10 4.718098471e-11 3.541442444e-11 2.279752531e-11 2.322379056e-11 1.301790551e-10 2.058001673e-10 2.38114242e-11 0 0 5.595593637e-12 0 3.431033902e-13 1.850517757e-11 2.185047552e-12 7.601483043e-12 0 2.199200256e-11 2.401695585e-11 4.221463111e-14 4.884211709e-11 3.350190072e-21 4.235843973e-11 1.932702392e-14 3.827423358e-18 6.105467672e-11 2.993664199e-12 1.455657126e-12 0 1.139737904e-11 5.344569538e-18 6.876405091e-17 3.584127463e-18 1.720185295e-11 6.030208302e-11 5.025264618e-11 3.181870617e-11 5.010304466e-11 2.192108126e-10 3.136324687e-11 1.172187311e-21 2.506805157e-11 6.875469929e-12 7.599609293e-11 7.757386347e-21 1.061132568e-10 6.279165667e-11 5.312844654e-13 2.061686887e-10 7.665622509e-11 2.361820755e-11 0 0 3.975454035e-11 1.943248995e-11 3.919674581e-11 2.843875938e-11 8.965558444e-19 8.919241221e-13 9.39953762e-11 0 5.17418137e-11 6.716722296e-12 4.252405957e-11 3.632280422e-11 8.589794008e-28 0 +1.738664506e-11 0 0 5.005790959e-11 1.738170998e-11 9.741840862e-12 7.376777662e-11 2.419084608e-10 2.393877406e-10 5.076379975e-12 9.028293582e-11 0 1.054169191e-12 1.01409156e-10 0 9.657322466e-11 4.244440924e-11 1.336578633e-10 2.784663455e-11 2.907210486e-21 3.649363285e-11 2.003594666e-11 0 0 1.040847329e-10 2.01198078e-11 1.148915034e-11 6.757537086e-11 1.563588897e-11 1.63323534e-12 2.551338323e-11 1.226509998e-10 5.846134677e-11 3.000139519e-11 2.169150018e-11 2.434566798e-33 1.118461532e-10 1.139196187e-10 9.734430437e-12 6.587350651e-11 0 5.749996276e-11 6.965890943e-11 1.969025782e-10 1.734850144e-10 2.69157997e-11 6.159785629e-11 5.770599255e-11 7.401381095e-11 5.069955228e-11 8.031797116e-11 3.98517227e-11 4.954679279e-14 7.237249103e-12 9.078165915e-11 9.592220077e-11 0 9.975210129e-11 2.194234021e-13 1.683928508e-11 0 6.694207581e-11 2.560906788e-18 0 1.268707025e-10 8.216946898e-11 3.490132774e-11 8.882698699e-21 5.028218596e-11 1.472701574e-11 9.597684209e-12 8.93270814e-11 7.315224185e-12 7.861914885e-11 1.020986976e-10 1.539601604e-10 1.438208875e-11 1.500832459e-10 0 1.284852661e-19 3.232760967e-11 4.085119301e-11 5.640688095e-11 9.002007613e-12 7.559346272e-12 4.022618102e-16 6.65462144e-11 4.130631089e-12 7.295934963e-12 8.357665993e-12 7.238520683e-12 3.510594283e-12 1.223382135e-11 5.623664739e-11 1.019547455e-11 2.630202073e-17 6.794509962e-11 6.629864557e-11 0 3.76968372e-12 0 0 2.031227506e-11 4.445379993e-11 3.037100813e-11 9.597646352e-20 8.042951228e-17 8.471060292e-11 1.564579106e-11 0 2.859389362e-11 9.616742277e-13 0 4.91116353e-11 2.003879912e-10 0 6.444457637e-11 3.351798145e-12 1.068107914e-10 6.404706827e-11 0 1.886037668e-17 0 1.764718087e-10 1.657783357e-17 6.14021789e-11 0 3.192781671e-11 0 0 0 2.288126446e-13 1.649032122e-11 3.43684374e-11 8.801276964e-12 1.528266525e-11 1.216833318e-10 1.745489007e-11 1.848080941e-18 4.387020253e-11 0 5.201583953e-15 1.228162651e-22 3.190408386e-11 3.791567435e-11 3.761910487e-11 6.838419399e-13 0 4.253299986e-11 5.028336067e-15 2.453964846e-12 3.131066435e-11 9.032873118e-14 0 4.078186347e-12 8.066170633e-11 0 5.69864321e-12 0 3.990021351e-11 0 3.183430828e-11 9.80079978e-11 0 1.165432869e-21 8.11227371e-11 1.681317988e-13 4.718615904e-11 1.497943692e-11 4.849305561e-11 8.070237593e-11 1.38899642e-10 2.184354654e-10 7.870987371e-11 1.284768345e-10 3.308239413e-12 1.232110901e-25 3.602487508e-11 1.098125813e-13 2.185352075e-11 2.461597306e-11 5.126325042e-11 3.291062464e-12 5.046494939e-11 7.387324125e-11 0 4.540551432e-12 6.844148438e-11 6.889710845e-11 3.74476117e-11 5.12523166e-14 9.044307868e-12 6.805495939e-11 1.823454407e-11 5.904052573e-15 8.743887041e-11 1.528982465e-10 8.87971271e-11 1.216223435e-10 2.470154873e-11 2.056379106e-11 1.018546938e-11 2.798845046e-11 4.051511649e-12 3.700541001e-11 6.510401187e-14 5.869458617e-15 0 6.737058865e-11 2.138056139e-11 3.751334201e-11 7.05532377e-11 7.746068648e-14 2.760479777e-18 0 2.305846623e-11 2.788818225e-11 0 4.700428072e-11 5.899868558e-11 4.415428194e-19 5.071873987e-11 0 4.339363347e-17 4.171147431e-11 4.748529919e-11 8.437384574e-15 8.72263519e-11 6.670321679e-11 2.165909754e-11 6.956129397e-11 4.813077836e-11 1.102020905e-10 8.321443763e-15 2.392279457e-23 0 2.604086221e-11 4.832878355e-11 6.096979455e-11 9.220955874e-12 1.251803221e-10 1.826732543e-11 1.52688469e-10 1.384366395e-11 1.376478565e-10 1.232341761e-11 3.746100254e-11 1.092819711e-11 2.957665607e-12 2.156301599e-12 0 0 3.6493005e-11 1.9507133e-28 5.357417355e-11 1.723891605e-10 6.018697545e-11 1.44174509e-11 4.228611116e-11 2.737418115e-10 4.445959651e-11 9.700501508e-11 2.33147461e-11 2.734444008e-20 4.130428883e-11 5.686977582e-11 0 1.683777027e-11 1.698059969e-11 3.357260914e-11 8.037643892e-11 1.067022566e-11 3.62229083e-11 1.402171766e-10 5.440338113e-11 3.336844968e-11 1.359948525e-31 1.154244347e-14 6.125568828e-11 8.50669523e-12 9.030262563e-12 8.984730744e-12 1.69808516e-10 9.599161417e-11 6.865648111e-11 1.614595668e-11 1.319829577e-10 4.516181919e-11 5.682960662e-11 1.345953761e-20 1.151270256e-10 9.893575387e-13 3.04525133e-16 5.175049088e-11 0 1.151742764e-10 0 0 7.715651974e-14 1.95828919e-11 +2.100622368e-11 5.62163899e-11 7.671720981e-11 3.028556051e-11 0 5.996708741e-12 7.00553599e-11 1.372841236e-11 1.967175756e-11 2.141075076e-10 2.482602757e-11 1.200358858e-11 2.525475179e-12 8.085701004e-11 2.638735467e-11 4.162746392e-11 3.228898866e-11 3.458503636e-11 1.1541088e-12 4.809223973e-19 2.312782176e-11 8.834302769e-11 2.734220857e-11 1.019817376e-10 0 0 2.481885124e-26 6.835035075e-11 0 2.667232954e-11 1.104065843e-10 3.569452167e-11 8.661306427e-11 4.231625201e-11 1.143252801e-10 1.343779148e-10 8.45487435e-11 5.436211264e-11 2.305390745e-11 1.26022462e-11 4.016729363e-15 1.859798881e-10 6.642679065e-11 1.118782143e-11 5.000404174e-12 6.381930415e-11 1.354700159e-10 2.977077496e-11 1.779912736e-11 1.228985056e-10 1.118259866e-11 2.161095766e-11 3.549995742e-18 1.023784644e-10 1.194745409e-10 8.573445737e-12 1.194338657e-10 1.819791009e-11 4.462577043e-11 0 3.249193126e-11 1.124699006e-10 1.319773199e-10 1.043533288e-13 5.365928149e-11 3.350740335e-11 2.504361575e-17 4.880108587e-11 3.324932383e-11 9.956815877e-11 1.697552085e-11 1.704784966e-11 1.949217248e-11 7.536633203e-11 9.21498202e-13 1.472769505e-11 2.7520628e-11 1.900568779e-11 1.36921726e-11 8.024168887e-11 2.171703501e-11 4.279909836e-11 3.342849866e-12 5.268190306e-11 6.667877478e-11 8.799477639e-11 9.535057e-18 6.395619606e-11 1.918210543e-11 4.486978336e-11 2.242470748e-11 7.231147296e-11 1.110340602e-10 7.765981109e-12 1.901981396e-10 2.115239036e-10 1.126331311e-10 2.966319057e-12 1.320012257e-11 6.478550936e-11 2.054075345e-13 6.846346326e-11 8.993850538e-11 6.370392431e-11 0 4.79491095e-11 2.127540162e-11 2.140985926e-10 6.99674864e-11 0 4.490491315e-19 1.806731919e-15 1.365820493e-11 5.539800453e-11 2.396466672e-11 0 8.296827905e-27 1.637007963e-11 9.748731267e-12 1.504301856e-11 7.54114475e-11 5.320898227e-11 6.746018172e-11 6.437927143e-11 7.813506607e-11 4.739395117e-11 9.678358375e-11 1.152175209e-10 1.523671644e-11 4.757049282e-11 4.668832694e-11 1.51172501e-11 1.167071154e-18 0 6.767120766e-11 2.822967158e-11 1.064092091e-10 0 2.325335656e-11 2.888818556e-11 1.755082783e-11 1.237577714e-10 1.666451798e-10 0 0 2.85314084e-11 9.204566298e-12 3.875197104e-16 7.27406446e-11 5.629792979e-18 1.074916969e-10 5.607443112e-11 5.456908917e-11 3.556051901e-11 4.717007597e-11 7.729146989e-11 2.491389744e-11 8.842681912e-11 6.078682335e-11 2.178574316e-15 3.3992795e-13 3.964716161e-12 6.705989103e-12 0 2.730203119e-11 1.260966484e-11 1.960171944e-11 4.560665961e-11 8.261546191e-12 1.476165587e-10 2.758783182e-11 0 2.422680918e-11 4.162305344e-11 1.300679733e-11 2.817326259e-11 9.671471777e-11 2.488970438e-11 3.161126644e-11 6.679346045e-12 2.912718874e-11 1.647368843e-11 3.130743062e-11 8.671585391e-15 2.407983324e-11 4.115956944e-11 4.046957849e-11 9.285715035e-13 2.008095928e-11 5.522605986e-11 1.070785492e-10 3.405006525e-11 1.136975073e-10 8.146049241e-11 2.839988662e-11 1.464365783e-11 2.362079977e-11 1.663615642e-10 2.250154922e-10 2.340291146e-11 5.979258736e-11 7.605685436e-11 6.05829108e-11 1.314304574e-16 3.066832697e-11 1.090105271e-10 1.183087759e-11 7.603509244e-11 1.016253772e-10 1.304317151e-10 1.343656872e-10 1.381142371e-10 9.513310912e-11 1.730272834e-11 7.455228152e-11 2.641415054e-11 2.224860729e-11 2.301046401e-14 2.503271775e-12 1.154713e-11 1.271291934e-13 0 4.297101054e-15 4.106461989e-11 1.431030372e-10 1.590438383e-10 1.594103116e-10 3.879939256e-13 3.791724855e-11 1.287424827e-10 1.998372679e-10 1.411688073e-10 1.651209906e-11 6.583455051e-11 5.202516818e-11 1.256623845e-10 2.130354762e-11 5.983815891e-11 1.38163044e-10 9.664368646e-14 5.085726856e-11 2.681485736e-11 3.194380967e-11 6.409291491e-11 3.996937453e-11 0 9.568186127e-12 4.521092894e-11 5.86882006e-11 3.047208497e-10 9.369413413e-11 1.139266121e-11 1.269155064e-10 4.39149183e-11 6.025644944e-11 6.656086542e-11 1.591852545e-10 1.55219274e-10 6.441212765e-18 1.758460883e-11 6.04047851e-12 3.089531018e-12 3.292819701e-11 2.962249983e-11 1.167807628e-10 3.466066088e-12 1.048095831e-11 3.269526132e-11 7.13672272e-13 2.381570372e-11 2.868883814e-11 1.052726564e-10 3.597368051e-11 1.230157346e-11 4.487612077e-11 3.771466617e-11 2.40470792e-11 4.023590651e-15 1.007271128e-11 1.161099064e-11 2.290685058e-11 2.53774822e-11 6.653353616e-11 2.978176717e-11 2.053034716e-11 4.04106231e-11 5.731132182e-11 2.976978139e-12 1.633596233e-10 9.302520672e-11 3.741591717e-11 3.03826127e-11 6.497663952e-11 6.380592486e-11 6.086664869e-11 6.101157744e-11 2.818289835e-11 5.652182076e-11 4.409033297e-11 3.825494783e-11 +6.23124716e-11 4.553715195e-11 3.153412947e-12 1.437874603e-10 3.496002986e-11 5.278283007e-11 3.785693752e-12 1.029850031e-10 1.591894915e-11 4.066289507e-11 2.178151952e-11 8.67997436e-11 9.041893394e-11 9.94116315e-11 3.517895143e-11 3.647306955e-11 2.228506197e-11 1.89006249e-11 4.393303608e-12 4.026914078e-11 1.09195522e-10 1.564803138e-11 1.243298374e-10 1.375338559e-10 6.629278424e-11 1.023372859e-10 2.975406784e-10 1.742630807e-11 1.086613779e-11 3.862597998e-11 4.558914162e-11 5.984527238e-11 2.207440728e-17 1.972589033e-11 1.43880915e-11 1.044634464e-15 1.885790658e-11 2.531952798e-14 7.57268668e-11 4.492713758e-12 1.317652851e-10 1.039564331e-11 2.052113462e-12 1.043576457e-10 1.770987841e-10 1.106197398e-11 1.468027375e-10 3.734275457e-11 7.311142802e-11 3.328837023e-11 9.457071687e-11 2.679199213e-12 1.041437998e-11 9.3178405e-11 7.755166362e-11 1.601831061e-11 1.195289673e-11 1.011717358e-10 7.641875962e-12 1.024771319e-10 4.413210399e-11 1.581262672e-10 5.700255717e-11 3.181291426e-12 3.420470134e-11 2.532457987e-10 7.719701914e-11 1.158577908e-10 1.404826008e-10 0 6.597798564e-11 0 9.55203861e-12 1.559767219e-11 1.080473244e-10 8.08113286e-11 1.118021628e-10 1.881001542e-14 0 3.476783223e-11 1.859856374e-10 0 2.200315072e-11 2.83170685e-11 1.417635504e-10 4.648317884e-11 3.160170447e-11 2.755785755e-10 1.206227822e-10 2.291650057e-11 7.127130184e-11 3.922265545e-12 5.936202987e-11 4.342710987e-11 2.237710819e-11 2.268377312e-11 1.843186479e-10 1.617114505e-11 1.375962579e-10 3.923625502e-11 1.247306958e-11 3.534903714e-11 7.453546456e-11 1.089576736e-11 2.563902979e-11 2.83231502e-11 8.958846444e-11 1.880861933e-11 2.904925677e-11 3.428391841e-11 7.504526044e-11 1.861152866e-10 3.829986814e-11 4.909724207e-11 1.311316155e-10 1.366632595e-10 0 1.68202655e-10 4.993238848e-11 6.980754087e-11 4.964292585e-11 0 7.415586511e-11 2.114922944e-10 1.733076417e-13 2.698924591e-11 6.362349527e-11 6.968721531e-11 6.544280902e-11 1.535913997e-11 4.624406277e-22 5.59607176e-11 1.36183932e-10 3.723533737e-11 8.988834624e-11 6.446118392e-11 3.007414659e-11 0 7.005411406e-11 7.195559579e-11 3.028681547e-11 2.421370941e-10 2.187681992e-10 1.114807088e-10 2.898487775e-11 2.293720906e-11 2.523673144e-11 6.53487962e-11 2.891596626e-11 1.934562606e-11 1.075033855e-10 7.287514965e-11 7.236845896e-11 5.361628871e-11 1.986871816e-10 2.822873561e-11 2.605727537e-11 3.370212525e-11 2.869541761e-11 7.62843192e-12 2.021687032e-10 7.796772475e-11 8.345945326e-12 5.402138365e-13 3.856771331e-11 1.659628112e-11 1.460091074e-10 9.0833612e-24 6.525960796e-11 2.279122537e-10 1.322103347e-17 7.243013521e-11 0 1.53537524e-10 6.089414581e-11 2.815422592e-11 8.352681091e-11 1.213607756e-10 1.237450478e-10 5.625223159e-12 6.201689453e-11 2.224670443e-10 5.550738386e-11 0 7.421015435e-11 1.306727841e-16 1.63169326e-14 5.510554074e-11 1.35335965e-27 1.064263216e-10 2.753701248e-11 1.181076602e-11 0 3.944097688e-11 0 3.666242631e-11 1.063484934e-10 3.879296388e-12 4.217349593e-11 9.632740801e-16 1.526555587e-17 9.658314078e-12 1.273542417e-10 4.004204562e-11 0 5.636818109e-11 1.137471214e-11 1.877644278e-10 3.788113014e-11 2.268508617e-11 6.859283392e-11 6.852795495e-11 8.128093846e-11 1.355127861e-10 6.604723085e-12 8.11526614e-11 2.685518046e-11 1.512910302e-11 2.513281752e-11 5.849485744e-11 8.313242283e-11 6.992026073e-12 1.023991138e-12 1.185178617e-12 6.239687405e-13 5.1133171e-11 1.003091644e-10 4.519970401e-11 5.249664511e-11 2.207481787e-10 7.008345083e-11 3.909379743e-13 1.470226774e-10 4.208834922e-11 3.38696314e-11 8.912143489e-12 9.545465018e-11 2.025360692e-10 3.074873456e-11 0 3.001300008e-17 5.065700559e-11 5.639787813e-11 2.807340506e-11 1.165634037e-10 1.68777724e-10 8.611094848e-11 0 2.219080644e-11 4.568189441e-11 1.359409681e-11 1.926796894e-11 1.839212343e-18 1.11104992e-16 4.819210843e-11 1.340223936e-10 2.11127389e-10 6.351213263e-11 0 1.476896894e-10 5.718302184e-13 1.572979168e-10 5.171592347e-16 6.077815726e-13 0 5.010326454e-11 0 6.773506684e-11 9.219319246e-12 2.67872328e-11 4.759650071e-11 3.211255278e-16 2.041214739e-11 5.190341726e-11 1.521606288e-10 3.785365228e-11 4.704647051e-11 2.487666847e-11 5.727512584e-11 1.563315861e-10 4.817149303e-11 2.162782496e-11 0 9.717046937e-11 4.140091272e-11 2.116462132e-10 7.966984009e-11 4.746266903e-11 1.844165776e-11 2.818708463e-10 1.48733817e-10 8.871457839e-11 4.06921938e-11 7.358701793e-11 4.97663404e-11 9.406791166e-11 2.727113143e-10 5.247544734e-11 2.498049902e-11 2.734804241e-11 +6.324775772e-11 5.600847361e-11 7.655282656e-11 1.588764368e-10 5.951217014e-11 4.513302073e-11 2.930062325e-11 1.818442334e-11 6.692638951e-11 4.770026216e-11 6.135628991e-11 3.110979508e-11 9.05510978e-11 6.084303259e-14 2.242735127e-11 3.454789336e-11 8.027388221e-11 4.668268652e-11 1.670118675e-11 7.923766053e-11 4.211398546e-11 5.67443625e-11 8.196815099e-17 2.529130055e-11 2.70592249e-11 4.632352191e-11 2.179130054e-11 8.806084523e-11 8.57194488e-11 3.452528248e-11 1.460352859e-10 3.992048375e-11 3.653337023e-11 1.994834726e-11 4.386694154e-19 6.94422187e-11 5.091525032e-11 9.55856063e-11 8.617430505e-12 3.448616305e-11 4.116470471e-11 2.352397199e-18 5.747487999e-11 0 0 5.463184892e-11 1.422258525e-10 4.798926305e-11 8.228478429e-11 1.302683222e-11 6.11321574e-13 6.865788183e-11 8.495790556e-12 2.956248485e-11 1.489313092e-10 1.388659325e-10 1.179043718e-11 3.778115831e-11 3.352830133e-15 2.377307449e-10 7.054678846e-11 5.820880808e-11 4.23248986e-11 3.35824808e-11 5.403663297e-11 1.331912025e-11 7.510589707e-11 3.214054099e-11 7.042626502e-11 3.64841618e-19 1.109890642e-10 4.161575134e-12 1.202013669e-10 3.033744842e-11 7.033616608e-11 4.830510487e-14 6.314731186e-11 1.491682402e-10 1.64583998e-16 1.233758368e-11 1.35103105e-11 3.508590321e-11 4.525254873e-11 4.141867917e-12 3.385878853e-11 7.995205433e-11 2.735836639e-11 8.625263424e-11 1.08503286e-11 7.852461199e-11 2.312195507e-11 2.040055053e-11 3.447067328e-11 2.854208911e-11 7.016426374e-11 2.496357859e-11 5.173387089e-11 1.843546671e-10 3.73225872e-11 3.293751135e-11 1.391077625e-14 1.358864634e-10 1.721227974e-10 1.378884197e-10 0 4.01978528e-11 2.802165778e-11 4.981637951e-14 2.421753977e-10 4.634491561e-12 3.230571654e-20 9.439233552e-16 1.566182573e-10 1.045734161e-10 6.119418759e-11 4.900116516e-11 7.31839841e-11 3.171268428e-11 2.173508981e-10 9.358706776e-11 2.991056978e-11 4.965726854e-11 7.706473709e-11 4.135449618e-11 2.375190414e-11 3.927511623e-11 7.141353346e-11 0 8.720242146e-11 1.642250146e-10 1.79716684e-11 1.55482481e-11 2.739284124e-11 2.462374665e-11 4.292625506e-11 6.364238743e-11 1.009997742e-11 7.81850012e-11 4.733654886e-11 1.333875404e-11 5.996059536e-11 1.057844183e-16 1.195976608e-10 6.784897517e-11 3.692073761e-11 1.841665675e-10 1.485560708e-10 6.144072818e-11 1.294411835e-11 8.765856284e-11 3.802081591e-11 1.111952509e-10 5.012764925e-11 1.319167232e-11 1.537629857e-10 5.025086582e-11 4.537616835e-11 1.47381989e-10 1.620036558e-10 2.090739386e-11 1.156266579e-10 2.308873034e-11 3.219233532e-11 3.850394404e-13 4.311885188e-11 2.358895788e-10 1.270348602e-16 6.887307382e-12 6.31253403e-14 2.354776529e-11 2.869563848e-26 1.488259698e-11 3.124089183e-11 9.241703289e-11 4.80909243e-11 9.771942735e-11 2.272922358e-11 1.466466991e-11 8.537266088e-11 1.015336893e-10 6.491619143e-11 2.352870974e-10 3.111695246e-12 2.376704463e-10 0 1.735504911e-16 2.988696761e-11 3.795011116e-11 0 5.70183181e-11 2.054017803e-14 1.040876303e-10 5.719310216e-11 1.022963884e-10 0 5.103288271e-11 5.955226803e-11 5.341732684e-16 3.462733303e-11 4.875213049e-11 7.439674185e-12 1.93169151e-10 1.04346482e-10 6.503383346e-11 2.563159617e-11 4.64351138e-11 0 7.243554117e-24 0 9.138181416e-11 2.658922377e-13 4.208164458e-11 5.259249082e-11 1.488611134e-10 1.122768872e-10 4.946119829e-11 2.968245982e-19 7.716268627e-11 5.02640114e-11 9.606472883e-12 9.950107378e-11 5.968919775e-11 2.263765274e-11 4.763477542e-11 1.216401128e-10 7.166623942e-11 1.145675351e-10 1.00804454e-10 2.282358632e-12 8.182005518e-11 5.033001407e-11 1.327186096e-11 3.63141887e-11 7.578589925e-11 8.717222991e-11 1.608197365e-10 1.681504004e-12 1.269828301e-11 4.545798732e-11 5.025488695e-12 7.658512869e-33 1.213484621e-13 1.939888491e-11 2.071450192e-10 1.356715443e-21 8.388317426e-12 3.902459331e-11 4.227992414e-11 3.14042068e-11 7.984507207e-11 3.280615903e-11 1.202115047e-10 1.876513182e-11 8.841887281e-12 1.750192056e-11 3.764468192e-11 1.658171808e-11 5.970547441e-11 3.183797507e-11 4.045838346e-11 1.079523975e-10 1.677305767e-10 4.993513664e-11 5.396586131e-11 3.081415227e-11 1.288513986e-10 4.566324313e-11 6.191345117e-11 2.010856132e-10 7.160446688e-18 1.235285216e-10 3.798670263e-11 3.191753053e-12 1.013926505e-10 1.250868466e-10 1.197967516e-10 8.28508543e-11 6.882229061e-11 9.943066244e-11 5.915806857e-11 1.294718291e-10 5.80007445e-11 5.120191135e-11 1.219125731e-11 3.804698849e-11 9.452267301e-11 6.896589078e-11 0 4.976349901e-11 1.5352862e-11 1.404787177e-10 1.217582745e-10 1.535541816e-10 3.909068523e-11 4.074455805e-10 1.720318777e-10 1.462000737e-10 1.735519074e-10 6.285154564e-11 2.868278252e-11 +1.920330453e-11 4.313618587e-11 1.241134192e-10 3.013162428e-10 2.876275228e-11 1.263630932e-23 9.938141914e-11 5.24141684e-11 3.133106647e-10 4.43094513e-11 1.724205317e-10 3.965376722e-11 1.001011807e-10 7.894643547e-11 3.020297291e-11 7.544152241e-11 2.041289162e-11 2.539006424e-11 3.237507099e-11 8.958383047e-11 1.026778576e-10 4.116235209e-11 3.033511996e-11 2.391889867e-19 2.053697849e-10 1.050500128e-10 7.022467596e-11 1.4858047e-10 2.353139046e-11 1.270830544e-10 0 6.605910146e-11 2.706418824e-11 2.035387285e-11 5.189985845e-11 3.936918297e-11 6.821906102e-11 1.546131559e-10 6.646367079e-11 6.70313146e-12 3.604923787e-11 2.046680306e-10 5.52114038e-12 1.584741428e-10 1.983277524e-10 2.715438885e-11 5.625222343e-11 7.180458606e-11 4.026838305e-11 0 1.007881064e-11 2.74137583e-11 8.536655053e-11 2.519863372e-10 1.064129643e-10 7.736252515e-12 3.918249806e-11 1.53622906e-11 8.669859145e-11 1.008207782e-11 1.677529878e-10 2.617821887e-11 2.44365954e-11 3.968738801e-11 3.788627194e-11 4.227806371e-11 4.527421676e-11 2.02401448e-10 1.267087408e-18 1.091621221e-11 4.677798456e-11 1.120925187e-12 1.674840371e-11 2.40413548e-10 1.960282168e-10 2.976354269e-11 2.627830673e-11 5.662983421e-11 1.260303101e-10 6.980303669e-12 7.091498799e-11 2.018745471e-11 7.004702069e-11 6.3548923e-11 3.05493583e-10 1.215617002e-11 2.434528216e-10 5.014618904e-11 8.654796151e-11 3.869448014e-11 1.647935027e-26 5.085563034e-11 9.298751759e-11 1.500427445e-10 2.072696862e-13 0 3.650700578e-11 2.031633231e-11 1.751179741e-11 1.86592579e-10 1.948234839e-11 2.415114632e-10 3.657378486e-11 6.1242417e-18 6.296065949e-11 4.061064379e-11 2.285581917e-11 9.990631007e-11 2.358737815e-12 3.639869949e-13 1.932715553e-10 5.920386854e-11 9.493604046e-11 5.293367921e-11 2.641537339e-11 5.338795831e-15 1.256796949e-10 1.0854982e-10 1.405359728e-11 1.153545213e-10 1.453130208e-10 2.866970918e-11 1.481153369e-11 1.257375905e-10 9.340296415e-11 1.379804074e-10 9.687679044e-11 1.164355242e-10 1.347992122e-10 2.993428663e-10 4.03818187e-11 7.877169797e-28 1.375089697e-10 1.095645067e-10 1.785124273e-10 1.225787316e-10 3.613001778e-11 1.210038109e-10 4.534577028e-11 1.366258814e-10 2.707620842e-10 2.06734415e-10 7.141145545e-12 1.180173524e-10 4.376513953e-11 1.953695541e-11 4.373190078e-11 1.964454661e-10 1.697904718e-10 2.235960708e-10 1.158087612e-10 5.103597234e-11 1.338781244e-10 9.092593166e-11 1.385037319e-10 1.966487485e-10 1.820391406e-11 4.011701822e-11 6.603306461e-12 2.808209179e-10 7.620437622e-11 1.032146375e-10 1.017936172e-10 4.169744644e-11 2.325371445e-11 1.864738675e-10 4.963634758e-11 3.489505756e-11 1.104209259e-10 1.536728329e-11 2.661116836e-11 8.416696116e-11 1.793008897e-10 1.591682159e-10 1.102093028e-11 6.248526234e-11 1.784892823e-11 2.016768848e-11 1.334872869e-10 7.338750201e-11 1.339550966e-12 7.198492963e-11 2.674540978e-11 4.900383666e-11 0 7.014117887e-11 2.64732253e-11 7.251039572e-11 2.848633489e-11 1.178135145e-10 5.5903201e-11 1.830295173e-11 9.203565561e-11 6.27367245e-11 1.844213437e-19 1.036854475e-10 7.177260635e-12 5.956944004e-11 5.864349223e-11 2.816181368e-11 6.287003395e-11 3.945161903e-19 5.633304213e-11 6.22870085e-11 2.861582816e-12 8.471746428e-11 7.284663636e-11 8.640509988e-11 5.61166184e-11 2.612842887e-11 4.786492177e-11 0 2.118470557e-11 4.131293112e-11 7.126245221e-12 4.63992617e-11 2.058340901e-10 1.128672456e-11 2.383010915e-13 2.300489585e-10 5.419948577e-11 3.924334976e-11 7.88606812e-11 2.088435012e-10 2.238390862e-10 1.647105953e-11 1.446780536e-10 1.186469188e-10 7.995406202e-11 1.875850755e-11 1.868109384e-18 5.647548955e-11 1.920739629e-11 7.002155866e-17 4.69808185e-11 0 1.967485698e-10 6.09066619e-12 2.466268361e-11 9.674975979e-11 5.212024089e-11 2.395165688e-13 1.35845872e-10 1.972812533e-11 3.539621118e-12 6.296387665e-12 1.727536371e-31 4.023131748e-11 3.007710171e-15 9.697722835e-11 4.913700757e-11 6.018120164e-11 1.241634639e-14 6.84963272e-11 5.710066405e-11 4.30306249e-11 3.187420612e-11 1.511015443e-16 9.873691158e-11 3.111367039e-11 1.440051016e-10 7.175532933e-11 7.518834761e-11 5.320302404e-11 2.861609044e-10 5.971441254e-11 1.058540334e-10 8.380078849e-11 7.266967884e-11 3.433242331e-10 1.03961136e-10 8.547991835e-11 5.840847847e-11 5.040032743e-11 5.394055462e-11 2.207279767e-11 1.654463774e-10 4.384114873e-11 1.159074427e-10 1.382377714e-10 6.507598653e-11 7.331870181e-11 5.149157927e-11 1.587002101e-11 1.078946048e-10 5.819434123e-11 3.155326279e-11 6.532746864e-13 1.41484357e-10 2.488899426e-11 1.260214167e-10 8.768432834e-11 3.030326261e-10 2.370870371e-10 1.270498592e-10 2.070031215e-11 1.049915211e-10 2.386921861e-25 1.130692824e-11 8.358014239e-11 +4.2170744e-11 8.493834722e-11 1.64590832e-10 1.077708673e-10 2.15657399e-10 1.141619166e-10 7.120047088e-11 6.147358886e-11 1.221088819e-10 6.099972102e-11 8.538931844e-12 1.081528334e-10 3.69988017e-11 4.927749482e-12 4.812476106e-11 2.971411123e-10 1.83439848e-11 7.12103084e-11 2.700870668e-11 1.092911719e-10 4.534250939e-11 1.384400968e-10 8.775249082e-11 4.772235022e-11 1.005373758e-10 1.596135518e-10 1.652151439e-10 1.805017116e-26 1.163113413e-11 3.541589265e-11 1.02879096e-10 1.582262427e-11 1.128503235e-10 9.636188126e-11 5.358120947e-11 1.435046855e-10 1.592380055e-11 7.840110331e-11 7.052982966e-11 9.126595105e-11 7.153515419e-11 1.624326378e-10 5.652258403e-11 8.182220688e-12 1.62604529e-10 4.155061176e-12 1.376157496e-10 8.71881082e-12 1.891488183e-11 1.511543146e-10 7.285974536e-11 6.962784658e-11 9.990597442e-11 1.509030889e-10 4.208752535e-11 5.957353242e-11 5.575734959e-11 2.093617253e-11 2.102951251e-11 4.514652724e-11 2.79913463e-11 3.922863215e-11 4.854357051e-11 3.312659928e-11 1.147142274e-10 1.063857306e-11 6.484261392e-11 5.798982768e-11 7.770419849e-11 1.050068689e-10 4.074460482e-11 6.250822831e-11 1.234487539e-10 5.756687901e-11 3.314000001e-11 1.10182718e-15 7.271387195e-11 1.18761481e-11 3.479276732e-11 5.114504639e-11 2.929080431e-11 0 1.494211281e-10 8.419604474e-12 2.399022395e-10 6.409987196e-13 9.248844403e-11 2.813410771e-11 6.604451096e-11 4.67937294e-11 8.543278702e-11 8.180697265e-11 2.885939648e-11 1.99646112e-10 3.27672e-10 9.765038495e-11 5.706115165e-21 8.40548019e-11 4.131119297e-11 6.390149591e-11 3.6700998e-11 1.014746352e-10 7.241864558e-11 9.346726613e-11 6.48425842e-11 1.631708564e-16 1.119227553e-12 3.892699255e-11 5.689123201e-11 1.08150164e-10 9.99093522e-11 9.098542524e-11 1.495879428e-10 1.175860585e-10 2.552650752e-10 1.022940702e-10 5.568206358e-11 1.690435969e-10 2.267912546e-10 2.685974532e-10 8.438131141e-12 8.096082644e-16 2.978459874e-10 1.384169127e-10 5.781200769e-11 1.880527324e-11 1.23365019e-10 7.173917234e-11 5.172289591e-11 7.225790335e-11 8.050437509e-11 2.315585838e-10 7.858420601e-11 1.812945928e-10 1.833890219e-10 7.3903155e-11 2.086567574e-11 2.374187605e-10 8.722818226e-11 4.202283854e-11 5.607046694e-11 8.679293251e-11 5.238601652e-11 1.907246312e-10 9.1662991e-11 4.287113471e-11 3.62872971e-11 1.694135192e-10 3.344919329e-13 6.833144422e-11 6.412549075e-11 1.701114338e-10 2.37773837e-10 1.302510118e-10 1.267155595e-10 1.2842297e-10 3.591387529e-17 6.476662313e-11 5.766463247e-11 9.844670334e-11 1.754840308e-10 1.577257212e-10 1.255053625e-10 2.079033667e-10 1.100210125e-10 3.243175469e-11 3.275929698e-11 5.253282144e-11 2.626284688e-24 8.034283201e-11 9.107923938e-11 4.401647745e-11 8.377913822e-11 5.585588609e-11 1.738401986e-10 1.443846788e-10 1.51982132e-10 5.067157246e-11 4.713079713e-11 3.704140637e-17 2.943409088e-11 8.468869515e-11 1.523062476e-11 2.771659571e-10 9.018644175e-11 1.848416889e-11 1.044902327e-10 6.328747213e-11 1.35438824e-10 7.61578034e-12 1.606693866e-10 1.068533345e-10 5.544975755e-11 5.119175611e-11 0 2.232051604e-10 5.074831897e-11 1.679786889e-11 7.552846834e-11 1.732767752e-10 4.777503222e-11 4.998907053e-11 4.276255471e-11 7.862432879e-16 9.186450492e-11 6.369192031e-11 3.930544285e-18 6.828512575e-11 1.189702007e-10 9.195165558e-11 2.490539319e-11 1.545663764e-10 7.190465543e-11 0 2.142925284e-19 5.693669091e-11 1.410596811e-10 1.913851185e-11 8.246223199e-11 1.703897069e-11 1.246261316e-11 2.367981993e-10 1.068692667e-10 0 8.084525153e-11 1.949910744e-10 3.948331274e-11 2.683861527e-11 1.810429966e-10 2.518904301e-11 3.849326478e-11 6.040230792e-11 1.278429284e-10 1.861225928e-17 1.105309251e-10 7.268429107e-11 9.090999088e-11 4.8718078e-11 1.218424412e-10 1.090777728e-10 2.351768305e-12 2.363578609e-11 1.005047396e-10 5.401756563e-11 1.067471084e-10 9.720204682e-11 2.135230684e-10 4.929702951e-11 6.45654863e-11 2.433889629e-11 2.406012486e-16 2.662719939e-11 6.121169082e-17 2.250606539e-11 4.949741555e-11 1.126896535e-10 1.241088419e-16 2.707928565e-10 1.001419468e-10 6.654130102e-11 2.744935585e-11 1.542925896e-10 1.215085897e-11 1.205361486e-10 5.733302439e-11 1.314237911e-10 1.468580385e-11 4.185955853e-11 7.148253344e-11 2.800450985e-11 1.227365831e-10 2.51062941e-10 1.300427812e-11 5.544558851e-11 6.811219276e-11 1.278176884e-10 4.10198533e-11 1.097029238e-10 6.263295646e-11 2.733062046e-11 4.279438764e-11 2.577625573e-11 2.13780515e-11 1.81670092e-10 1.780955093e-10 8.610997451e-11 9.701333942e-11 1.933749777e-10 8.114154866e-11 4.743991463e-11 7.361216804e-14 1.306810323e-10 2.843355968e-11 1.684285827e-10 3.065793854e-11 4.515839095e-11 9.7073985e-11 2.038116551e-10 3.663994241e-12 1.206757766e-11 +2.865305206e-11 2.621681071e-10 3.968381203e-11 4.88432509e-11 1.70113016e-10 7.057396512e-11 2.059954515e-10 9.696913855e-11 7.280712068e-11 8.99984567e-11 1.191291055e-10 5.762177387e-12 1.144425743e-10 2.774702177e-11 5.403984855e-11 1.033192304e-10 8.342129318e-11 1.018594176e-10 2.996909193e-11 5.53728494e-11 3.657870772e-11 6.023681031e-11 7.894002866e-11 2.462839493e-11 5.86816793e-11 8.356989676e-11 2.698530057e-10 9.459254666e-11 2.701063961e-11 1.696093575e-10 9.435895755e-11 3.097790145e-10 4.574883049e-11 1.220306438e-10 3.765822799e-11 1.070328294e-10 1.078734991e-10 2.615535498e-10 1.611202177e-10 6.415400204e-11 1.859499576e-10 2.776020341e-11 1.797477545e-11 2.497928188e-11 7.371993587e-11 4.671035425e-12 1.773698096e-10 4.719090721e-11 6.134014774e-11 3.50810759e-11 1.539198038e-10 4.690895305e-11 7.377462714e-11 1.690021311e-11 5.929558371e-11 5.645917123e-11 2.486764383e-11 7.927255982e-11 1.60865558e-10 1.491827859e-11 3.578135032e-11 1.164945371e-10 4.72242251e-11 1.024655196e-10 2.972556077e-11 2.95313368e-11 7.011183862e-11 7.412326123e-11 7.720284328e-11 4.451421859e-11 1.731307777e-12 1.263176153e-10 1.219846474e-10 2.012786803e-10 1.248557624e-10 1.05742287e-10 5.218707898e-11 3.001757667e-11 1.846582746e-15 1.698782688e-10 8.320579129e-11 4.464418106e-11 2.129503304e-11 2.634069833e-11 3.569930452e-11 2.317756349e-11 1.573925976e-10 5.433504642e-11 3.634569365e-11 5.59384148e-12 3.919789253e-11 4.790977983e-11 1.17451456e-11 8.816203996e-11 7.773214567e-11 2.832922252e-11 3.689701822e-11 7.244857684e-11 7.311011224e-11 9.975595996e-16 8.713568369e-11 4.863623777e-11 2.832346305e-11 2.521074911e-10 7.50134993e-11 3.576021082e-12 1.275418659e-10 5.504428588e-12 1.380467017e-10 6.96743948e-11 9.039957602e-11 5.332367303e-11 3.72062771e-11 2.079366272e-11 4.93553972e-11 1.254024714e-10 1.981148069e-10 9.410582649e-11 1.451252183e-10 7.899109566e-11 1.334596402e-10 2.766527794e-11 4.982252453e-11 4.629007028e-11 4.562824244e-11 1.228943209e-10 1.358280902e-11 4.347412031e-11 1.683821841e-10 1.677627619e-10 8.129330804e-11 8.67391748e-11 9.376640323e-11 8.251617379e-11 1.936029606e-10 6.689981259e-11 1.01472525e-10 9.244744762e-11 1.671053601e-10 1.037105332e-10 1.887906168e-10 4.511986224e-11 3.567739366e-11 9.977272506e-11 7.310221797e-11 9.671657831e-11 4.596205961e-10 1.439412836e-10 3.955842398e-11 7.342326294e-11 1.144496957e-10 1.142829318e-10 8.071216789e-11 1.133087782e-10 9.162069682e-15 2.833923787e-11 8.058346434e-11 8.29712315e-11 1.332413789e-10 2.119793928e-10 1.509469423e-10 1.44110624e-10 1.350519215e-10 2.758961829e-10 2.249997406e-10 1.355809825e-10 8.548714869e-11 8.908880203e-11 1.265274276e-10 3.656815122e-10 4.285362315e-11 3.024752407e-10 1.328882294e-10 9.297957906e-11 1.075675223e-11 9.869814339e-11 4.819585125e-11 1.099826634e-10 1.209851737e-10 1.266672822e-10 1.479907672e-10 1.79070776e-10 7.2826437e-11 1.266837209e-10 2.290614175e-11 2.134153025e-10 5.112675127e-11 3.008012751e-11 1.124263285e-10 1.073443036e-10 0 1.593114197e-10 9.946384748e-11 4.52731513e-12 1.785085722e-13 7.956249794e-11 1.988166506e-10 1.657604549e-10 3.750614846e-11 1.181767932e-10 1.76339884e-10 4.493993915e-22 9.00999061e-11 3.191824009e-11 5.027142704e-11 1.570911409e-11 1.032936365e-10 4.617483294e-11 9.636343632e-11 1.087539246e-10 1.035766558e-10 4.443721448e-11 2.044305924e-11 1.060880813e-10 1.707810908e-11 4.957444332e-11 1.927309878e-11 5.020376725e-11 2.6856108e-11 3.980477512e-11 1.163606955e-10 5.568431308e-11 2.117862696e-11 1.148398159e-11 1.428583536e-10 1.813977676e-10 1.478267582e-10 3.215966442e-11 1.022137174e-11 7.567796289e-11 6.878007856e-11 5.546262569e-11 5.093864933e-11 5.622432432e-11 1.998722641e-10 3.745760902e-11 6.001310741e-11 4.298245856e-11 8.358841046e-11 9.043896688e-11 3.983543877e-11 2.559012886e-28 7.812834438e-12 6.094088357e-11 1.748136313e-11 3.406139507e-11 5.844016653e-11 5.598140591e-11 1.286423128e-10 1.294969757e-10 1.507935454e-10 1.760801268e-11 2.090506239e-10 5.874504164e-11 1.050640244e-11 7.621095089e-11 2.784557674e-10 6.213545288e-11 1.005585559e-10 1.723724763e-11 6.098632692e-11 1.284979801e-10 1.104128252e-10 1.580959445e-11 4.766034094e-11 4.750216707e-12 1.231847268e-10 2.3556507e-10 2.669136227e-10 8.014044582e-11 3.583553886e-11 5.196119732e-11 3.810709333e-11 2.180034993e-11 8.47867571e-11 6.759059686e-12 5.22272571e-11 2.668775337e-10 5.684372495e-11 3.434201691e-11 1.394597131e-11 1.887094765e-10 7.921245355e-11 3.896627357e-11 1.340941091e-10 1.441885875e-11 1.160447363e-11 1.709349261e-10 4.614383764e-11 3.048769372e-10 5.284563191e-11 1.090951136e-10 1.701687605e-10 4.01976153e-11 4.212809692e-11 1.133554911e-10 2.048500629e-10 2.149607139e-10 4.993961363e-13 3.336449983e-11 +7.379997322e-11 3.925708196e-11 3.138398696e-11 8.235026063e-11 4.322674443e-11 3.10133709e-11 3.014157688e-11 1.038448574e-10 8.969493364e-11 5.429882667e-11 6.231975491e-11 4.554476293e-17 9.763369983e-11 2.681677114e-11 3.071793754e-11 2.921622884e-10 1.240249082e-11 4.119021361e-11 2.103531369e-10 4.848614252e-11 1.420698302e-10 1.170126741e-10 7.217429861e-12 3.397454975e-11 6.244878355e-11 2.129000665e-10 1.026206829e-11 1.129387002e-10 7.429041589e-11 2.394864539e-11 8.54380088e-11 1.027979882e-10 1.327962439e-10 9.058429508e-11 3.228211356e-11 7.131869361e-11 1.17387244e-10 8.71993204e-11 8.434940345e-11 8.259547782e-11 3.974277082e-11 8.256213862e-12 7.576758429e-13 8.954406878e-11 1.503245908e-10 6.87334102e-11 2.134515643e-11 2.352748413e-11 8.514080599e-11 1.223438938e-10 7.36968928e-11 4.401825675e-11 7.218185803e-11 8.024219758e-11 4.399204319e-11 1.864609236e-10 3.035996281e-11 1.485591693e-10 1.804465533e-11 6.573243605e-18 2.325161678e-10 3.665288557e-11 8.690898139e-11 2.254065575e-11 4.888620846e-11 5.151445422e-11 4.530449919e-11 1.085580756e-14 8.59446862e-11 8.182366606e-11 8.58461248e-11 3.910166557e-13 1.290011391e-11 6.05023253e-11 1.754275549e-11 5.857837662e-11 3.757095644e-15 1.683292386e-10 5.695731733e-11 2.386689659e-10 1.157652908e-11 0 8.457219415e-11 4.315495883e-11 1.567613016e-10 9.490326664e-11 7.611857699e-11 1.505713405e-22 1.601959058e-12 2.86848238e-11 5.898814987e-11 2.763661151e-11 1.820894316e-10 1.557508412e-10 1.17582858e-10 1.174466552e-10 6.543997156e-11 9.852449303e-12 2.059485038e-10 7.795356308e-11 3.534152635e-11 3.20214898e-11 8.627971973e-11 2.802472539e-11 1.543287335e-10 1.556735048e-11 2.064004991e-11 1.428799135e-10 5.624728171e-11 3.630364904e-11 1.339008798e-10 3.154650983e-11 1.622914702e-10 1.021182452e-10 1.415344042e-10 9.105718024e-11 2.029358563e-11 2.213321945e-10 3.565055086e-11 1.111526146e-10 1.234641986e-10 1.083204678e-10 1.308609805e-10 4.381293035e-11 1.569946116e-10 1.816231386e-10 1.043280718e-10 2.79501523e-10 1.312308766e-10 1.715406003e-10 1.03108761e-10 1.22892338e-10 1.350651795e-10 1.094666888e-10 1.26404771e-10 2.62182966e-10 1.603622176e-10 2.891143452e-10 1.775017609e-11 3.463969506e-11 1.592289185e-10 1.358065391e-10 1.156876796e-10 9.193550712e-11 1.824374175e-11 2.210616366e-10 3.066815308e-11 3.397426234e-10 1.17166613e-10 1.011135071e-10 1.399079271e-10 2.923646315e-10 1.156859932e-10 8.534014103e-11 4.755013194e-11 1.395489503e-10 2.188000905e-10 1.148238774e-10 1.193976389e-10 1.088674737e-10 8.20175248e-11 3.719545157e-11 6.965601568e-11 5.230534661e-11 2.232386216e-10 2.352681757e-10 1.051945601e-10 8.419421287e-11 5.476392025e-11 2.826292203e-11 1.136233441e-10 1.026580604e-10 1.29362037e-10 3.146860723e-10 1.075904334e-10 1.9286444e-10 7.902822838e-11 3.955696884e-11 1.440587017e-10 5.971124375e-11 1.336881354e-10 3.273688073e-10 2.309331124e-11 7.773351253e-11 4.609434144e-11 5.054562076e-11 8.440003854e-11 5.760522472e-11 7.48277299e-12 9.638094011e-15 1.344026837e-10 3.87505262e-11 1.265680115e-10 7.991309271e-11 4.784310428e-11 1.719913827e-10 1.120170464e-10 1.530753708e-11 5.381990052e-11 5.926971395e-11 4.168223496e-11 5.185274891e-11 4.725396221e-11 6.137397751e-11 1.698465513e-10 4.163704527e-16 4.064363843e-11 5.868000086e-14 3.872486784e-11 1.365340624e-10 1.193093474e-11 6.344488519e-11 4.928932884e-11 1.9773163e-10 5.165439259e-14 1.313790589e-10 4.391749782e-11 1.509285786e-10 5.535497625e-11 4.905441457e-11 2.483433689e-11 1.836856614e-10 2.969325835e-11 3.419867388e-11 1.361897715e-10 4.273424647e-11 1.029362851e-10 1.134855614e-10 2.236333741e-11 5.183973849e-12 1.531564014e-11 6.293592492e-11 1.01011724e-10 1.192779308e-10 4.067279204e-11 3.892156376e-15 1.139806442e-10 1.20769684e-10 5.264879339e-11 2.019636103e-11 5.046601693e-11 1.021102617e-11 8.729469096e-11 1.357107278e-10 2.764601085e-10 1.559761797e-10 4.243513968e-11 2.563910869e-11 8.214768407e-12 2.819838893e-11 7.266059217e-12 1.24781614e-11 1.41122633e-11 9.696047564e-11 1.196282688e-10 5.114078364e-11 1.403811555e-10 7.098606887e-11 1.495193727e-11 2.742094153e-10 1.2618269e-10 1.021288694e-10 6.93625474e-11 7.449494499e-11 8.396260311e-11 8.61227512e-11 2.346847475e-10 3.996440255e-11 5.50347519e-11 9.898520193e-11 4.675254277e-11 3.266327948e-11 1.944220414e-10 9.646511089e-11 2.123844367e-10 4.121387755e-11 7.693121489e-11 1.676455831e-10 4.485562618e-11 3.375495105e-11 1.675632139e-10 1.562260418e-10 2.986521202e-11 1.324794876e-11 6.748847231e-13 1.42450331e-10 1.283864511e-10 1.282494123e-10 2.629870506e-11 6.025345973e-11 3.184193049e-11 2.401031869e-11 6.380232489e-11 1.268861855e-10 8.630194207e-11 4.217761857e-11 1.081319038e-10 1.823003084e-10 1.017477827e-10 7.440080814e-11 +4.699710958e-11 1.878324161e-11 6.004281402e-11 7.246365683e-11 1.217069382e-10 4.640385218e-12 7.441058741e-11 7.542562295e-11 1.468220851e-10 1.625388369e-10 6.600392973e-11 4.099108364e-11 8.024739268e-11 5.612360249e-11 7.251787337e-11 1.384182785e-10 2.138354227e-11 9.078644056e-11 3.599762802e-11 2.325847094e-11 3.710709381e-11 1.576192938e-11 1.360608472e-10 2.25862875e-10 1.413200106e-10 5.642316362e-11 1.366320336e-10 2.206226925e-11 8.133637076e-11 2.476168365e-11 5.313102843e-11 1.345520194e-10 5.162897307e-11 1.897921545e-10 1.002982732e-10 1.027070196e-10 8.907576921e-11 3.730502042e-11 3.91167091e-11 1.697487027e-10 1.908046639e-11 1.390965931e-10 7.155078611e-11 1.468407686e-10 1.514845272e-10 4.3151712e-11 8.970776632e-11 1.132240366e-10 8.286560371e-11 4.469283277e-17 1.59564887e-10 8.482887181e-11 5.542655044e-11 4.358486622e-12 2.980447596e-11 7.69982028e-11 1.981100663e-10 2.240839431e-28 3.923504667e-11 6.876435198e-11 1.349455673e-11 2.973285759e-10 9.393432145e-11 3.349357185e-11 6.837856624e-11 2.134799725e-11 5.167642796e-11 5.3277213e-11 7.805653225e-13 3.617322029e-11 1.218223379e-10 4.115408169e-11 4.287937429e-11 2.066968973e-11 2.676195794e-10 8.327853204e-11 1.671317136e-10 1.192818109e-10 7.590118914e-16 3.688956979e-11 4.737638982e-11 7.531946341e-11 1.528864805e-10 7.892389701e-11 3.962310893e-11 3.839990238e-11 3.682154106e-11 1.125648741e-10 2.781387298e-11 6.86244392e-11 2.182059256e-11 1.778675925e-10 7.31004648e-11 1.997416599e-11 4.550002007e-11 8.477185373e-11 1.189333823e-10 1.466462208e-10 9.544909553e-11 5.154607404e-11 5.35422297e-11 9.241745125e-11 1.200725895e-10 7.803412756e-11 5.718827899e-11 1.592574345e-10 1.144973651e-10 5.553346397e-11 5.766236801e-11 0 2.347661268e-11 1.146316697e-10 2.829402427e-11 8.754375769e-11 3.443086115e-11 3.914769064e-11 9.33538221e-11 1.751204889e-10 1.083963378e-10 6.764806389e-12 1.389746283e-10 3.740075229e-10 1.713146563e-10 3.01103744e-10 1.855510291e-10 1.052790476e-10 6.072427871e-11 6.06276912e-11 1.566396281e-10 8.835014683e-11 4.235563444e-11 1.344861119e-10 7.413432822e-11 1.314067383e-10 3.157498601e-10 1.781590811e-10 1.111370849e-10 1.397848032e-10 1.643464741e-10 1.480589857e-10 1.729707314e-10 1.404853275e-10 3.34414469e-10 2.200847386e-10 1.927073468e-10 1.539985368e-10 8.499902377e-11 1.990265965e-10 7.001318692e-11 1.127940554e-10 9.431048284e-11 2.076418233e-10 5.830005345e-11 2.24097282e-10 1.723190551e-10 7.743933241e-11 3.03917188e-11 5.766210017e-11 6.215400124e-11 1.358129048e-10 1.058130226e-10 2.381089439e-10 2.242950678e-10 7.22989979e-11 5.037774366e-11 1.684884259e-10 5.656253561e-11 1.864150191e-10 1.214300569e-10 6.357953631e-11 1.685651086e-10 5.018767694e-11 1.733847755e-10 3.459589965e-11 9.295157548e-11 2.803772146e-10 4.793951212e-11 2.527462552e-10 1.476496283e-10 6.835312336e-11 1.445205452e-10 1.887736246e-10 1.165465232e-10 1.881367927e-10 6.64083623e-11 9.582042899e-11 1.446538535e-10 5.996267493e-11 7.742597913e-11 1.686914513e-10 3.181495918e-11 1.148827072e-10 9.503759931e-11 4.622918399e-11 1.205508824e-10 1.082781518e-10 2.098406584e-11 7.224947519e-11 9.747036928e-11 1.293727023e-10 9.323063084e-11 1.307471353e-10 4.8454895e-11 1.804021155e-10 8.917766898e-12 5.853710501e-11 4.768164703e-11 7.704802124e-11 1.005908357e-10 4.607115042e-11 5.197280361e-11 1.310080073e-10 2.491333727e-10 8.827831513e-11 2.148541801e-11 1.533426528e-10 4.434880509e-11 6.865132947e-11 5.17827103e-11 1.176881822e-11 4.209491397e-11 5.68529464e-11 1.427342543e-10 7.042518853e-11 1.304810415e-11 1.481425612e-10 1.932244716e-10 7.926159422e-12 1.138872254e-10 4.590556431e-11 7.035992474e-11 7.928849592e-11 1.594348254e-10 9.520788593e-11 1.479887479e-11 1.352081056e-10 1.911775652e-10 6.534049147e-12 1.539823331e-10 1.77234281e-14 7.764828461e-11 1.366535747e-10 1.188792897e-10 4.65490289e-11 1.151655714e-10 2.665465591e-11 9.135550558e-11 6.231058149e-11 2.778625686e-11 7.150057514e-11 5.6365201e-11 6.786899106e-11 2.060645459e-11 1.243131305e-10 3.311218042e-12 3.891324255e-11 4.803088445e-11 1.303699221e-10 5.678208149e-11 4.343176035e-11 1.127279943e-10 8.75419304e-11 1.180629297e-10 1.693123667e-10 1.087765429e-10 1.076287895e-10 5.789503946e-11 2.223182531e-11 1.225646804e-10 2.787801904e-10 1.999925367e-11 1.182932957e-10 1.40554627e-13 5.373025104e-11 1.646103094e-11 8.569042623e-11 8.559275728e-11 2.580511055e-11 7.564158357e-11 2.54691935e-10 7.975021063e-11 1.025661095e-10 1.588412224e-11 1.779173623e-10 3.750468044e-11 5.290674458e-11 5.910489647e-11 6.651646405e-11 1.291811014e-10 7.113347569e-11 9.961018124e-11 6.182442879e-11 7.008691423e-11 4.947624059e-11 7.060171734e-11 1.046796125e-10 1.424348792e-10 5.775487752e-11 7.883855244e-11 1.148249755e-10 +9.047202686e-11 3.095807486e-11 1.626194012e-10 5.399975569e-11 1.84734656e-10 1.726672869e-10 7.59688057e-12 1.076942829e-11 9.976262664e-11 2.831734367e-11 2.535963151e-10 5.493939515e-11 2.091691588e-10 9.811166357e-11 7.369028624e-11 5.541375232e-11 2.533778408e-11 1.171548919e-10 4.777993148e-11 6.486526309e-11 1.135583604e-11 2.30165216e-10 9.465415209e-11 1.527325966e-10 7.273671805e-11 1.624939828e-10 1.156675079e-10 7.667290291e-11 1.373731116e-10 2.457699761e-11 3.190007994e-10 1.625679742e-10 1.799194169e-10 5.178812052e-15 1.033201046e-10 1.650445214e-10 6.039975621e-11 2.135426528e-10 8.816136322e-11 1.602931493e-10 5.477295874e-12 5.607133998e-11 1.324003794e-10 1.589829748e-10 3.686273596e-11 1.570640106e-10 2.138230954e-10 1.478670121e-11 1.318549832e-11 1.714309285e-10 5.930303969e-11 1.721341646e-10 6.027667444e-11 8.912875226e-11 7.328917715e-11 9.45110554e-11 6.930312927e-11 6.095041377e-11 8.67699541e-11 2.014340833e-11 4.353353168e-11 5.949992168e-11 3.733470865e-11 4.651945429e-11 2.74551224e-10 1.079122944e-10 1.024052771e-11 1.079258225e-11 9.837003848e-11 1.063020906e-10 2.459296851e-10 1.85790358e-10 6.681265159e-11 7.438394359e-12 4.923734181e-11 1.031801723e-10 2.23460051e-11 1.08059897e-10 5.850505335e-11 8.761572785e-11 1.461949202e-10 6.20888862e-11 4.686174967e-11 1.158941832e-10 1.68297792e-10 8.615085804e-11 1.629864007e-10 9.118430581e-11 2.671888376e-21 7.449280318e-11 1.24868668e-10 4.57794567e-11 9.14644937e-11 1.21129254e-10 2.947751306e-11 1.262113141e-10 1.065479004e-10 1.63085599e-10 2.948362279e-10 1.489454346e-11 2.247005559e-10 7.92397903e-11 1.018579582e-10 6.473807398e-12 3.726260989e-11 3.191009851e-11 9.162498243e-11 1.603434757e-10 3.291024299e-11 1.225059005e-10 5.505594455e-11 2.988024854e-10 1.24421137e-10 6.543686802e-11 5.732277708e-11 1.26628556e-10 1.790092299e-10 2.37756908e-11 1.015060685e-10 2.593013201e-10 1.420199807e-10 6.845904548e-11 1.073946453e-10 2.047399508e-10 1.785360522e-10 1.395177565e-10 2.857357462e-10 1.263058205e-10 1.125049022e-10 7.693294371e-11 1.32720857e-10 1.683941902e-10 2.497587275e-10 2.47533682e-10 8.587909188e-11 1.754221309e-10 1.031419425e-10 1.242603161e-10 2.122163561e-10 9.252852155e-11 1.859725677e-10 8.230338632e-11 2.385105081e-10 2.558350731e-10 1.804740372e-10 9.65389982e-11 5.507326314e-11 8.534070546e-11 7.989429187e-11 1.184940658e-10 1.859993183e-10 1.627403343e-10 7.192677277e-11 1.377780032e-10 7.701762604e-11 1.370537523e-10 2.710488611e-10 2.866673165e-11 2.072570394e-10 8.313617602e-11 3.151755812e-10 1.011820595e-10 7.700655782e-11 1.142379649e-10 1.463704087e-10 4.515000239e-11 1.054354875e-10 1.965025303e-10 2.737127157e-10 1.163216492e-10 2.649525544e-10 1.90926749e-10 1.556235207e-10 1.547807391e-11 2.713948592e-10 2.05774131e-10 1.439879567e-10 1.508037366e-10 6.373529303e-11 1.966266464e-10 6.162024326e-11 1.729288646e-10 7.278838028e-11 8.446407422e-11 1.263345091e-10 8.724625265e-11 1.239775011e-10 3.045790254e-11 1.884868025e-10 3.990228039e-11 5.980526256e-11 7.865395494e-11 1.917370974e-10 2.442500129e-11 1.587476449e-10 7.626118193e-11 5.544658154e-11 8.144268509e-11 5.203663753e-11 4.95295433e-11 1.39148053e-10 9.949298455e-11 6.782270829e-11 2.167688325e-11 4.736405122e-11 6.403613412e-11 1.389188176e-10 4.019263131e-11 4.751973913e-11 4.46488781e-11 2.417658405e-11 1.055586764e-12 8.986879398e-11 1.350394914e-10 1.408411947e-10 9.912052549e-12 2.124627538e-10 9.926149935e-11 4.437601109e-11 1.794730563e-10 4.160821651e-11 4.807559697e-11 1.412486259e-11 1.225395301e-10 4.538801052e-11 2.549090311e-10 4.048620648e-11 8.294082248e-11 9.69780359e-11 9.121763416e-11 1.23964003e-10 8.846412183e-15 2.08225475e-11 6.458543219e-11 8.501641725e-11 7.232207205e-11 2.002568854e-11 4.95592853e-11 1.067705704e-10 1.152517533e-10 4.008973707e-11 5.853741533e-11 3.43058515e-11 1.44652573e-10 1.127558746e-10 8.820785094e-11 1.1838783e-12 5.748777036e-11 2.267209068e-10 5.429110812e-11 6.61699281e-11 1.140534188e-10 1.397132081e-10 1.506218205e-10 1.679656452e-10 1.966161802e-11 3.825055454e-11 2.56847028e-11 3.880600535e-11 4.889279694e-11 5.591856521e-11 2.61903735e-11 9.858608119e-11 1.394251362e-10 1.294247228e-10 4.855820757e-11 4.518530994e-11 3.878307191e-11 5.954291149e-11 1.550893579e-11 7.238157216e-11 2.929049613e-10 9.146569935e-11 1.091941682e-11 1.416644562e-10 3.135114095e-11 7.274117073e-11 5.945273188e-11 1.682821831e-10 9.931972284e-11 6.367325861e-11 3.811528698e-11 1.352346546e-11 1.638238221e-10 1.101426644e-11 1.100780693e-10 1.50294129e-10 9.87741744e-11 1.184347903e-10 1.705099942e-10 9.27548875e-11 8.986154728e-11 2.83408139e-11 1.10755853e-10 1.765523461e-11 1.888354511e-10 1.449447418e-10 2.424890718e-11 2.74555298e-11 1.778199845e-10 +6.448438841e-11 1.050062953e-10 1.056545096e-10 9.49036194e-11 3.116145511e-11 2.602052795e-10 5.766633065e-11 6.392772835e-11 1.208175344e-10 1.316426793e-10 6.032311003e-11 7.570279885e-11 1.372353144e-10 1.023033052e-10 4.128131274e-11 1.818476645e-10 9.850142183e-11 8.616388248e-11 7.49958786e-11 1.776442528e-10 1.470009884e-10 2.598253712e-11 6.029437922e-11 1.70177988e-10 6.939910856e-11 8.884987124e-11 6.151155419e-11 7.330853632e-11 7.072276932e-11 4.249685289e-11 4.83188571e-11 6.734198569e-11 1.375608855e-10 7.329678471e-11 1.9289292e-10 5.829850294e-11 1.405919119e-10 5.378638715e-11 4.599885718e-11 8.856845261e-11 2.883018229e-11 1.305816347e-10 2.144394267e-10 2.640770777e-10 1.643198548e-11 3.155034316e-10 8.328551043e-11 1.136370831e-10 3.638954327e-11 1.004437079e-10 7.433954241e-11 4.969607393e-11 1.563369995e-10 1.112450374e-10 8.095562433e-11 2.05271732e-10 1.859570713e-10 9.89632354e-11 1.866329251e-10 1.045850494e-10 2.407656912e-10 2.720833466e-11 5.38434993e-11 1.750227729e-11 1.976487909e-11 1.266561532e-10 5.738312906e-11 7.404598514e-16 2.448787894e-11 9.268649732e-11 9.029496778e-11 4.331138278e-11 8.722710122e-11 9.254717486e-11 5.944084672e-11 8.336312316e-11 6.545817576e-11 3.152255019e-11 1.467014951e-10 8.99830701e-12 1.73539152e-10 1.729252572e-10 9.974573943e-11 1.145246939e-10 1.065406889e-11 8.114851744e-11 7.172065746e-12 1.235402589e-10 8.216069183e-11 1.693071255e-10 1.446605196e-10 2.450820886e-11 4.926115066e-11 1.190018202e-10 3.395762901e-10 1.351364619e-10 1.264986679e-10 4.360648631e-11 2.508023089e-10 2.758204621e-10 1.401479583e-10 1.007927038e-10 7.388810609e-11 1.081390489e-10 6.856889336e-11 1.312649331e-10 1.819629487e-10 8.839959046e-11 2.058743809e-10 8.315663827e-11 5.622688843e-11 1.700459818e-10 1.949528378e-10 8.092262865e-11 5.685894741e-11 1.567060419e-10 2.027017302e-10 1.081405912e-10 8.431753679e-11 1.019499083e-10 2.013150016e-10 1.767715587e-10 1.417185453e-10 1.245074387e-10 1.505055224e-10 1.608405736e-10 1.666217077e-10 1.300099577e-10 1.895490622e-10 9.642484389e-11 1.064439228e-10 7.615540375e-11 1.940306798e-10 3.356114787e-10 5.284996072e-11 1.266215733e-10 1.575427759e-10 1.056865428e-10 1.02371507e-10 1.301167071e-10 7.849708955e-11 2.26811265e-10 2.716239377e-10 4.065065405e-11 2.789803458e-10 1.300576409e-10 5.40100597e-11 2.183435231e-10 1.795847023e-10 1.018829311e-10 1.445884044e-10 9.025414857e-11 1.890057944e-10 1.534226936e-10 1.112475139e-10 3.061545743e-10 1.080951407e-10 2.493981768e-10 1.659697715e-10 1.553329781e-10 9.466889064e-11 1.838649838e-10 1.653944384e-10 1.841843063e-10 1.596588092e-10 7.241461443e-11 1.454260189e-10 1.393293886e-10 2.099913328e-10 1.874332943e-10 5.108868088e-11 2.963658147e-10 1.156487238e-10 9.901235468e-11 3.813397202e-11 2.456273002e-10 1.219535711e-10 1.463468339e-10 7.198960875e-11 2.091629681e-10 7.154234709e-11 1.673214252e-10 2.158005603e-10 1.490865136e-13 1.608770085e-10 2.0573784e-10 3.794291817e-11 5.101304852e-11 1.349668087e-10 2.26366351e-10 9.882801953e-13 4.872148997e-11 1.201330388e-10 1.426909048e-10 3.61534307e-11 8.947172e-11 2.055833839e-10 1.328913323e-10 8.880905289e-11 8.31167461e-19 7.484083469e-11 1.793961051e-10 1.380649888e-10 9.106688844e-11 1.541842161e-11 3.975980142e-12 7.986957628e-12 8.035716247e-11 1.469978637e-10 4.956635e-11 1.310238778e-10 1.84889376e-11 1.630491997e-10 9.173172361e-11 4.632791683e-11 3.620571217e-11 3.280239135e-11 1.463677114e-11 1.279510233e-10 2.125429974e-10 1.22232651e-10 1.177971513e-10 7.252060899e-11 1.910348419e-11 1.127731648e-10 2.101985255e-11 4.746054726e-11 1.257162635e-10 5.790193569e-11 4.847672584e-11 3.524466465e-11 7.38424653e-11 1.494537013e-10 5.075643173e-11 2.063880717e-11 2.045766053e-11 3.17196678e-11 1.303872656e-10 2.69174271e-11 7.89030601e-11 2.796678077e-11 7.067395732e-11 1.304752445e-10 1.11087504e-10 1.074159311e-10 1.606012084e-10 2.583991063e-11 2.040155965e-11 2.325813287e-11 7.932114213e-11 1.734461449e-10 1.024903826e-10 5.416000334e-11 1.197337687e-10 3.572889588e-12 7.968589509e-11 1.707535594e-11 4.947131454e-11 2.161928473e-10 1.055964093e-10 7.083158003e-11 1.633200038e-10 1.536111519e-10 7.127294091e-11 6.064129361e-11 8.734223331e-11 1.337567366e-10 2.303425402e-10 2.81875118e-11 1.173154441e-10 5.364896359e-11 7.716662237e-11 2.660107855e-11 5.047268478e-11 7.9053851e-11 8.375597381e-11 1.293426106e-10 1.451549373e-10 1.096900864e-10 1.308747927e-11 6.752999929e-11 5.246468205e-11 1.300627416e-10 5.762375707e-11 1.175891744e-10 1.077846984e-10 3.448832522e-11 5.595408565e-11 1.612108923e-10 2.155963726e-11 1.242986123e-10 9.871319469e-11 1.337175066e-10 1.018180278e-10 2.617126708e-11 7.198272278e-11 8.985482024e-11 9.594088297e-11 8.321375912e-11 8.536949547e-11 +1.21236789e-10 1.574827238e-10 1.005049914e-10 1.30174947e-10 9.131452244e-11 8.779799663e-12 1.419083148e-10 6.774012095e-11 2.196640431e-11 9.823102093e-11 1.004749888e-10 1.566912748e-10 1.986659926e-11 1.596811095e-10 7.98625042e-11 1.03835525e-10 1.144751963e-10 4.009501142e-11 2.013940618e-11 1.179254186e-12 7.545672145e-11 2.540899932e-10 5.193550888e-11 7.797655197e-11 2.793958878e-11 5.192477668e-11 8.232312099e-11 1.84047043e-10 1.00552211e-10 7.814988326e-11 1.699523312e-11 1.301381555e-10 4.461861509e-11 1.031094553e-10 2.654071161e-11 1.54268615e-10 5.421232843e-11 1.450561074e-10 6.715087271e-12 2.044573798e-10 1.313392693e-10 7.552721442e-11 3.984575257e-28 8.339115865e-11 1.514392092e-10 1.369081465e-10 7.402724576e-11 9.760349294e-11 8.010118364e-11 3.172286883e-11 1.535968678e-10 5.494120851e-11 3.510392264e-10 1.623718362e-10 3.077317948e-10 3.159098598e-11 1.159681159e-10 1.331270475e-10 1.375162378e-10 1.818513986e-10 8.360776937e-11 2.290634027e-10 5.992192774e-11 3.758285609e-11 3.186798502e-11 1.192397882e-10 1.212069133e-10 2.150929694e-10 9.210820429e-11 9.533332581e-11 7.120181223e-11 5.149124775e-11 4.258486716e-11 3.012450053e-11 1.025687942e-10 6.297840792e-11 1.726394783e-10 1.450476979e-10 9.425447233e-11 8.94513178e-11 1.60310957e-10 1.974752268e-10 8.752586145e-11 2.041626151e-10 2.019408204e-10 1.295505743e-10 1.723073008e-11 7.702052277e-11 6.975510078e-11 1.394479983e-10 7.258626825e-11 2.675118494e-11 9.683251399e-11 2.432061808e-10 8.895413349e-11 8.733515917e-11 7.62610409e-11 8.346570757e-11 1.641298204e-10 1.150536344e-10 1.645659649e-10 2.014070953e-10 1.01328857e-10 1.362104039e-10 2.002797144e-10 1.527198504e-10 1.705569848e-10 1.293685105e-10 1.434383726e-10 1.144631028e-10 1.232005125e-10 1.249522398e-10 2.702680216e-10 3.501913921e-11 2.564039985e-10 6.214530697e-11 1.306007944e-10 1.18917106e-10 8.135936927e-11 1.603562166e-10 1.546837162e-10 1.022453023e-10 1.233287737e-10 5.511488284e-11 9.967483946e-11 1.831864119e-10 1.099365692e-10 1.644042423e-10 1.765777719e-10 6.138330271e-11 1.709910409e-10 3.212173965e-10 1.654078011e-10 1.278359295e-10 9.090162355e-11 2.088508348e-10 2.010674916e-10 1.284895214e-10 1.165841342e-10 4.677480281e-11 6.313074649e-11 2.14744836e-10 1.281533615e-10 1.264568971e-10 1.073070995e-10 1.159208178e-10 5.08693482e-11 1.31734589e-10 6.492376176e-11 1.536897725e-10 8.681967059e-11 1.849357884e-10 1.680270337e-26 1.513011839e-10 1.353076443e-10 1.477737347e-10 9.690095095e-11 1.713314957e-10 2.715709603e-10 1.313748407e-10 2.292692339e-10 1.438425467e-10 1.253707949e-10 8.154761914e-12 1.264387078e-10 8.291983179e-11 2.612485987e-10 8.833840986e-11 1.475220976e-10 6.068331966e-11 1.129957574e-10 1.398886762e-10 2.60542338e-10 1.733625823e-10 1.061413785e-10 1.499990799e-10 8.374653128e-11 5.152993653e-11 1.777557663e-10 6.699531556e-11 2.6713155e-10 1.520468447e-10 9.704683493e-11 2.393040326e-10 1.48721892e-10 1.665394131e-10 1.233325948e-10 2.559045627e-10 1.368810379e-10 2.39603859e-10 1.571545571e-10 1.136733737e-10 1.082213202e-10 1.350787296e-10 8.502197025e-11 5.007621945e-11 1.381125832e-10 1.578679015e-10 1.052866163e-10 1.324849961e-10 1.708279255e-10 6.149457075e-11 3.263330059e-10 1.881429905e-10 8.977471014e-11 2.778395413e-10 3.566631014e-11 1.129020205e-10 1.347948214e-10 1.410733084e-10 6.111138365e-11 1.025922151e-10 2.802835938e-11 1.221716227e-10 9.564777151e-11 3.718545242e-11 7.294038415e-11 9.005445658e-11 4.856697686e-11 2.137422259e-11 1.603350324e-10 1.263118895e-10 9.192988489e-11 2.818301574e-10 1.303205285e-10 1.373363899e-10 1.225217265e-10 8.515893522e-11 6.103738722e-11 1.488637869e-10 1.027250736e-10 1.033416212e-10 2.200991453e-12 2.214260144e-11 6.361904128e-11 1.49493539e-10 1.358066598e-10 1.057226293e-10 1.516779308e-10 1.207283497e-10 6.882307724e-11 1.104934664e-10 1.283115089e-10 2.381859902e-10 3.95753088e-11 2.167025308e-10 3.013381037e-11 1.552121995e-10 1.05756042e-10 6.836395861e-11 6.177309909e-11 1.988679133e-10 1.006349852e-11 1.266619833e-10 9.241331417e-11 9.998373063e-11 8.798803346e-11 2.436974142e-10 4.92166443e-11 1.034751036e-10 4.819127526e-11 4.652001092e-11 4.654827375e-12 9.37398058e-11 1.39743824e-10 1.09738385e-10 6.848568598e-11 3.060704487e-11 5.684941663e-11 5.973378312e-11 2.974661e-11 2.770350231e-11 1.180472145e-10 6.805929879e-11 8.239168315e-11 1.099924651e-10 2.995964389e-11 1.174326091e-10 2.860549906e-11 1.390881973e-10 1.049236078e-10 5.174286955e-11 1.12155306e-10 1.032489967e-10 4.436838477e-11 1.883323183e-10 1.6799833e-10 1.184598608e-10 1.573109122e-10 7.763909272e-11 3.173406603e-11 1.241004394e-10 2.361100195e-10 7.172279261e-11 1.92249098e-10 8.480477361e-11 3.586266431e-11 1.390350809e-10 4.576013558e-11 5.454211653e-11 +7.334866186e-11 4.790063108e-11 7.071899774e-11 1.054627553e-10 4.503313327e-11 1.221410834e-11 2.200857453e-10 5.309082814e-11 3.537438807e-11 1.071859967e-11 9.784963692e-11 1.67052326e-11 1.138799777e-10 4.258134934e-11 1.98841357e-10 1.789578321e-10 1.454232754e-10 2.075125485e-10 4.602602034e-11 5.893850055e-11 8.326926201e-11 7.054828437e-11 1.415021103e-10 7.157547684e-12 4.844972752e-11 7.645296303e-11 3.966912416e-11 1.578611535e-10 4.913523515e-11 8.475598113e-11 4.127483779e-11 1.106965336e-10 5.512692306e-11 6.892121262e-11 1.305357938e-10 5.72265306e-11 2.177397489e-11 2.118623125e-10 3.832965642e-11 1.43592424e-10 2.985854692e-10 1.920459708e-10 3.023035651e-10 7.260707576e-11 2.074771199e-10 6.039371058e-11 5.7031605e-11 3.828434194e-11 7.155274023e-11 4.689949827e-11 9.707232771e-11 1.10227773e-10 7.567435404e-11 1.074407347e-10 2.203427156e-10 1.156545867e-10 1.656854263e-10 6.598986144e-11 2.056804645e-11 3.864103365e-11 5.333310371e-11 9.591486823e-13 1.063628487e-10 3.675739672e-11 6.342699837e-11 5.903872425e-11 9.932591625e-11 1.172563376e-10 1.420409752e-10 5.486364852e-11 8.471568427e-11 8.807861083e-11 2.127194667e-11 4.059368516e-11 6.757493931e-11 1.106977642e-10 1.175290053e-10 9.205339302e-11 5.678126703e-11 3.767786179e-11 7.200147822e-11 2.753955084e-10 1.442636226e-10 5.329541515e-11 6.331630015e-11 0 1.241331832e-10 3.984731437e-11 2.285369865e-14 1.15930939e-10 1.107712606e-11 1.023585477e-10 1.810442903e-10 2.270018207e-10 7.417302099e-11 1.159248855e-10 1.079660433e-11 9.538361445e-11 8.543183671e-11 1.188944682e-10 2.003632122e-10 2.743519645e-10 5.277038452e-11 8.98437568e-11 1.06762762e-10 1.55885767e-10 5.790137331e-11 2.172141915e-10 2.127231633e-10 5.93945943e-11 2.191195294e-10 2.983261224e-11 1.118475847e-10 2.559574008e-10 7.958309696e-11 1.557560697e-10 9.642321034e-11 1.015844403e-10 1.855584707e-10 1.432270987e-10 1.633034684e-10 1.640874267e-10 1.616746872e-10 2.136387982e-10 1.803303045e-10 2.488391662e-10 3.612764632e-11 1.425031317e-10 1.279297217e-10 1.058419327e-10 2.088426055e-10 2.719943714e-11 1.533153211e-10 2.890671756e-10 8.636247236e-11 9.601804392e-11 1.439997879e-10 1.063621483e-10 1.874023397e-10 8.760336504e-11 1.042395341e-10 8.527375231e-11 9.504564122e-11 2.90003143e-10 2.029141913e-10 2.665192378e-10 7.996187636e-11 2.817541979e-10 2.016454251e-10 1.222103184e-10 1.220716745e-10 1.750892038e-10 1.498524752e-10 2.171443321e-10 6.069224145e-11 1.152674436e-10 1.121250369e-10 9.419891562e-11 1.049602689e-10 9.273373431e-11 7.863151284e-11 1.547914642e-10 9.122214574e-11 1.442170054e-10 8.169754491e-11 1.248985182e-10 1.698261924e-10 1.613529956e-10 1.913928579e-10 2.415867573e-10 4.648894575e-10 9.806732495e-11 6.285025908e-11 2.308136916e-13 2.938966293e-11 1.543010752e-10 7.251525756e-11 8.448355019e-11 9.02356086e-11 1.674910658e-10 2.005559856e-10 8.011747735e-11 2.63276445e-10 1.365567361e-10 1.172623101e-10 1.17038849e-10 1.214977634e-10 1.280303056e-10 1.581844315e-10 2.189209291e-10 2.222058818e-10 9.589132186e-11 1.902907913e-10 1.866728321e-10 1.28278483e-10 1.40242553e-10 9.24412676e-11 1.141692534e-10 1.952868924e-10 1.06881316e-10 7.416555969e-11 1.592782316e-10 4.612853484e-11 6.812634744e-11 7.550960396e-11 6.192514953e-11 7.870710358e-11 5.896771941e-11 1.188399869e-10 7.09400475e-11 7.051304661e-11 1.368802719e-10 1.734987796e-10 9.028338203e-14 2.314096086e-15 9.476447668e-11 1.556449425e-20 1.544383899e-11 6.054285679e-11 6.278795546e-11 8.579339092e-11 1.612098336e-11 7.732672666e-11 2.418070375e-11 5.879178024e-11 8.811369076e-11 2.022926764e-12 1.612075156e-10 8.969331326e-11 1.395136765e-10 4.008969964e-11 1.626822441e-10 5.326798201e-12 1.255886674e-10 9.809321964e-11 1.698869411e-10 1.025904722e-10 9.911728575e-11 9.574551819e-11 1.364441878e-10 5.140452268e-11 2.316397329e-10 3.599424922e-11 1.73281697e-10 4.197812297e-11 1.805932651e-10 1.644421454e-10 1.068131065e-10 1.586891677e-10 3.049111266e-10 1.206068158e-10 7.749152233e-11 1.396540135e-10 1.248080883e-10 9.980974771e-11 6.198832943e-11 1.692842867e-10 1.48999377e-11 2.715928651e-11 1.666230957e-10 1.123912058e-10 9.446406811e-11 1.048809792e-10 6.961584747e-11 4.086553512e-11 1.230344745e-10 1.682122111e-11 1.228979239e-10 6.325260033e-11 8.841095427e-11 8.198348863e-11 2.911860027e-10 1.212022948e-10 4.681164105e-11 1.220997714e-10 7.699911547e-11 9.82299761e-11 1.129560936e-10 1.018934712e-11 9.649921048e-11 1.18801686e-10 1.309409017e-10 6.361488599e-11 2.157972091e-10 3.633781176e-11 2.805217787e-11 6.8705434e-11 3.966894739e-11 6.326607664e-11 6.607739479e-11 6.888821213e-11 6.80434393e-11 1.059860027e-10 9.39264219e-11 1.212137379e-10 5.930358096e-11 2.064921505e-11 1.305777116e-10 9.956157693e-11 6.03920438e-11 +1.080057562e-10 7.291817287e-11 1.991815371e-11 6.173834937e-11 4.617574356e-11 3.471503961e-11 1.658009864e-10 4.222779159e-11 1.063940877e-10 1.731331148e-11 2.271810859e-10 3.701759877e-11 1.661656426e-10 3.310575167e-10 1.292394435e-10 6.420473765e-11 4.337700767e-11 1.16632217e-10 1.714732552e-10 1.251458198e-10 3.06895422e-11 6.402929429e-11 1.25600367e-10 1.03199601e-10 6.351615318e-11 5.518597913e-11 5.895965659e-11 9.175389005e-11 4.290481643e-11 1.180244423e-10 1.071864503e-10 7.468965792e-11 5.770515373e-11 1.643741783e-10 9.755777177e-11 5.108394958e-11 1.192278872e-10 1.704913992e-10 1.521715399e-10 7.918104977e-11 1.816290378e-11 8.725579058e-11 2.06062135e-10 1.172096719e-10 1.626752455e-10 3.415801537e-10 1.17008128e-10 2.472718804e-10 3.911081623e-11 5.197291381e-11 1.189640857e-10 7.479754605e-11 1.935066172e-10 6.705166841e-11 6.654761027e-11 1.554378992e-10 1.964170811e-10 2.007801337e-10 6.025994523e-11 1.825901247e-10 4.534131119e-11 3.151608353e-10 1.63228531e-10 1.280072172e-10 1.182160308e-10 1.282209443e-12 9.11293301e-11 5.948128172e-11 7.620340851e-11 5.153158356e-11 1.506085154e-10 2.479625105e-10 1.188220519e-10 8.050111664e-11 5.111422432e-11 1.447098131e-11 2.011227318e-10 1.024137251e-10 1.853402905e-10 1.017565962e-10 8.58284993e-11 1.235915982e-10 4.701873723e-11 1.258566433e-10 6.441898358e-11 1.608504049e-10 6.811119408e-11 1.958784334e-11 7.140338102e-11 2.371610685e-13 9.257235958e-11 8.873147716e-11 1.207886055e-10 1.438974369e-10 1.068392943e-10 1.230079248e-10 1.449455963e-10 9.771022153e-11 1.204256534e-10 3.453386743e-11 5.633097833e-11 1.115342522e-10 1.40852763e-10 1.762821191e-10 1.582255144e-10 5.808490371e-11 3.468882987e-11 1.309881175e-10 1.929365599e-10 1.144415739e-10 1.166791593e-10 1.164631914e-10 7.932884357e-11 8.083729035e-11 2.241817375e-10 1.447022039e-10 1.458107252e-10 1.907362782e-10 1.312175941e-10 9.166693335e-11 9.631973695e-11 2.915326215e-10 1.508461157e-10 1.039811784e-10 3.478119606e-10 1.194836477e-10 2.642286502e-10 1.19905001e-10 1.709542356e-10 1.393611959e-10 1.467450926e-10 1.456147794e-10 1.701482928e-10 2.75482647e-10 1.642171085e-10 1.510666125e-10 3.494903198e-19 1.171580331e-10 1.393795341e-10 1.774927499e-10 2.596133155e-10 1.424304296e-10 1.475769203e-10 1.681160106e-10 3.022737132e-10 3.528688446e-10 9.823582121e-11 2.912701349e-10 3.495174995e-10 0 4.998069429e-11 2.716556398e-10 2.340520109e-10 7.56731583e-11 8.785892624e-11 1.102804384e-10 2.039134865e-10 1.02236684e-10 1.880978155e-10 1.522375602e-10 4.337420408e-11 1.992393641e-10 1.363810779e-10 1.794790844e-10 2.44838052e-10 1.428013145e-10 1.723809797e-10 6.061052979e-11 3.499107443e-10 1.144963242e-10 1.409109236e-10 7.938353173e-11 2.58100916e-10 6.991883845e-11 2.07799595e-10 9.5086863e-11 3.225637834e-10 1.09326958e-10 1.423190872e-10 1.901220594e-10 1.279756999e-10 7.79330676e-11 1.260473558e-10 1.087551393e-10 1.550121333e-10 3.767765612e-10 1.415994821e-10 1.299739994e-10 1.332293593e-10 2.28114391e-10 1.476401439e-10 1.459770204e-10 1.369628964e-10 3.188896153e-10 1.576983257e-10 1.131061881e-14 1.778136291e-10 1.625323591e-11 1.127136206e-10 2.750209433e-10 2.085630044e-11 7.447918564e-11 1.186985055e-10 3.12357478e-11 9.427583015e-11 2.621737689e-10 1.926689672e-10 1.466720552e-10 8.635045624e-11 1.373032578e-10 6.357062446e-11 8.147075254e-11 8.906276824e-11 1.947336053e-10 6.353329798e-11 1.623423599e-11 6.356265068e-11 1.223449278e-10 1.611536925e-10 1.22140877e-10 9.83694031e-11 1.305867703e-14 7.16319119e-11 1.008786492e-10 5.566681816e-11 4.058802717e-11 1.300720511e-10 2.750697926e-10 2.75547241e-11 1.779530689e-10 9.859309128e-11 1.795907348e-10 9.006372652e-11 1.640065035e-10 9.738119649e-11 2.892729669e-10 8.208964681e-11 2.014945013e-10 5.503049424e-11 1.094382105e-11 2.367827422e-10 1.200284951e-10 7.063974732e-11 4.570931606e-11 1.691960956e-10 1.034469175e-10 1.970227269e-10 2.076368718e-10 8.049825637e-11 1.191261965e-10 1.305984564e-10 1.82856102e-10 1.924728914e-10 1.185129528e-10 2.168464502e-10 2.95748643e-11 4.758010597e-11 9.887747686e-11 5.384794541e-11 9.757593032e-11 1.192965839e-10 1.376718731e-10 6.408386944e-11 5.141142772e-11 1.012458628e-10 9.822336983e-11 6.279269631e-11 1.401495831e-10 6.025739677e-11 2.681916508e-11 4.056728565e-11 3.039842892e-11 2.567370266e-11 1.162787435e-10 1.224229041e-10 6.129786848e-11 1.628971776e-10 7.16009302e-11 1.705230339e-10 1.139212028e-10 6.086406058e-11 3.757461398e-11 2.341698418e-10 1.052387719e-10 1.447193095e-10 1.056887821e-10 6.339287842e-11 9.396610428e-11 3.976105577e-11 8.582616035e-11 1.427737603e-11 6.83492703e-11 1.271031541e-10 1.470611817e-10 8.32836278e-11 1.241131487e-10 1.594018253e-10 4.960097296e-11 2.345546725e-10 9.920510515e-11 +2.916462435e-10 1.686712991e-10 9.433770787e-11 1.481755719e-10 8.620233318e-11 5.297194979e-11 2.057765699e-10 8.216116727e-11 2.342407425e-10 1.220210855e-10 2.345798072e-10 2.735382798e-11 7.198203629e-11 1.849353041e-10 1.407403454e-10 2.248169858e-10 5.157461543e-11 2.961291017e-10 1.017979916e-10 5.009010106e-11 5.802381282e-11 7.815131885e-11 1.201903633e-10 7.222598105e-11 2.379151745e-10 1.115428121e-10 7.613065081e-11 4.929354977e-11 1.074551312e-10 1.096383404e-10 5.100288221e-11 8.633557593e-11 4.589664774e-11 2.239907083e-11 1.418520041e-10 1.380974529e-10 4.805877111e-11 1.166122293e-10 1.229019544e-10 1.212808512e-10 2.817797964e-11 2.083054891e-10 2.686690656e-11 3.787436441e-11 1.498635957e-10 1.905584845e-10 9.131410203e-11 2.281255039e-10 8.245300901e-11 8.276915764e-11 9.093795048e-11 5.150686523e-11 1.538479101e-10 9.409443064e-11 1.233823072e-10 1.416718909e-10 8.842081526e-11 1.106756599e-10 9.787012921e-11 1.481580297e-10 1.795999746e-10 1.218530698e-10 4.183080378e-11 1.781285742e-10 3.054020793e-11 1.387135086e-11 1.596895301e-10 1.409582336e-10 7.314847068e-11 1.614524371e-10 1.555988849e-10 1.21662671e-10 1.616956975e-10 1.12750885e-10 7.811234731e-11 9.270015042e-11 1.075776626e-10 8.94087113e-11 5.082078065e-11 1.630374653e-10 1.869493333e-11 3.806003719e-12 2.196014361e-18 3.838447328e-11 1.291607926e-10 5.384376902e-11 7.110934757e-11 9.431996112e-11 5.111854835e-11 4.602132685e-11 2.249224966e-10 9.10425354e-11 1.382102237e-10 1.098851559e-10 2.261179313e-11 1.238917081e-10 2.07104334e-10 3.683449511e-11 2.020596105e-10 1.10119924e-10 1.882493295e-10 1.089966432e-10 6.098117804e-11 1.549949708e-10 1.786042074e-10 2.001786654e-10 1.612306529e-10 5.357125321e-11 1.249060013e-10 7.092022557e-11 9.73781915e-11 1.533516497e-10 9.772681821e-11 1.243216523e-10 2.935382662e-10 1.039288265e-10 1.533175808e-10 1.019534662e-10 1.255851621e-10 2.746883987e-10 2.911640604e-10 2.864014814e-10 1.123277487e-10 1.795667942e-10 1.375499625e-10 1.383955205e-10 1.441718526e-10 2.131409447e-10 1.34470728e-10 1.69140295e-10 1.49755417e-10 1.685405757e-10 7.272510138e-11 1.491749652e-10 3.464736493e-10 1.265616369e-10 6.502875467e-11 1.703131637e-10 1.008362277e-10 2.661575958e-10 3.745370523e-11 2.108264165e-10 1.440144651e-10 1.163312519e-10 1.835392212e-10 3.797673739e-11 3.23443577e-12 2.391309981e-10 7.377845952e-11 2.260374097e-10 1.940066654e-10 1.690893036e-10 1.530207841e-10 2.420747904e-10 1.323586188e-10 1.005697278e-10 1.811732762e-10 5.883268218e-11 7.808551624e-11 1.713680859e-10 8.962627498e-11 6.958105763e-11 1.357674313e-10 7.697814162e-11 7.058136766e-11 7.724010414e-11 7.897022386e-11 1.594603873e-10 1.219560245e-10 2.172549856e-10 1.903431208e-10 2.546897769e-10 3.555718864e-11 9.407476755e-11 1.43658274e-10 1.524034767e-10 1.683323248e-10 1.214753577e-10 1.729909004e-10 2.415463791e-10 2.124724465e-10 7.772071309e-11 9.538258173e-11 1.136776651e-10 2.005618616e-10 8.985849504e-11 8.520029101e-11 2.21678135e-10 1.884998352e-10 1.332625087e-10 1.063846851e-10 1.718842871e-10 2.727170802e-10 1.60315494e-10 1.269427753e-10 1.042235002e-10 8.999506893e-11 2.692239313e-10 1.616297475e-10 2.567342404e-10 7.897671544e-11 1.654843991e-10 1.591822632e-10 1.47206907e-10 4.202150749e-11 1.760418584e-10 8.955774812e-11 2.951070823e-11 1.692504824e-10 2.939604263e-11 2.420989349e-11 5.536686331e-11 9.571419292e-11 1.331267696e-10 1.103453429e-10 3.822919352e-11 6.804048707e-11 1.506053824e-10 2.578050437e-10 7.248377497e-11 9.329580957e-11 1.328192198e-11 3.047572311e-11 1.557127587e-10 6.386891487e-11 7.228169867e-11 7.25225108e-11 1.70941292e-10 1.001684598e-10 3.065849705e-10 7.066374406e-11 1.579031328e-11 1.752295684e-10 1.941024821e-11 2.058938577e-11 8.273181605e-11 1.370656724e-10 7.975920421e-11 1.061132921e-10 1.178397617e-10 2.919331658e-10 1.481331514e-11 1.961827563e-10 9.686320468e-11 6.780257725e-11 8.148936667e-11 1.407463852e-10 2.632513774e-10 5.598557764e-11 1.176506512e-10 3.125105306e-12 2.684533786e-10 6.534016331e-11 1.747205872e-10 1.132000541e-10 1.938729612e-10 8.314335961e-11 3.7260934e-11 1.902386307e-10 1.150539577e-11 1.567865893e-10 6.716235391e-11 1.902256219e-10 1.961834044e-10 4.863353449e-11 3.621826731e-11 1.448507689e-10 7.816575239e-11 1.119570165e-10 5.43996094e-11 1.89499782e-11 9.722196037e-11 9.304113879e-11 1.161556707e-10 3.694776429e-11 1.308336122e-10 4.877481087e-11 2.415023435e-11 1.87942366e-10 1.603551449e-10 8.463302515e-11 1.231706286e-10 2.542363485e-10 4.780364371e-11 4.900640182e-11 3.814471067e-11 9.375196311e-11 6.656304108e-11 1.463553177e-10 1.680778545e-10 2.218691455e-10 3.432255894e-10 4.2125619e-11 1.064947042e-10 9.804186749e-11 5.666206977e-11 2.27076734e-11 1.07784165e-10 1.322109885e-10 1.020534999e-10 +1.617515173e-10 1.083277933e-10 2.718666798e-10 1.068905799e-10 1.093481939e-10 4.897342658e-11 2.959284098e-11 2.680621038e-11 1.120618862e-10 4.86026787e-11 1.64995483e-10 2.396279643e-10 2.231546924e-10 8.544462344e-11 6.846469527e-11 3.970202748e-11 1.21518967e-10 6.120436545e-11 1.06480451e-10 1.048233376e-10 2.834943958e-10 9.548436689e-11 1.966293158e-11 8.915823706e-11 2.524393334e-10 3.60186339e-11 1.094833909e-10 2.613380651e-10 8.989429449e-11 9.490598967e-11 4.631682388e-11 7.82082633e-11 3.673549639e-10 2.167351185e-10 4.401090647e-11 7.86116953e-11 1.389032988e-10 1.500857569e-10 8.565961919e-11 6.696822266e-11 1.610440452e-10 1.002687805e-10 6.631484039e-11 1.064625941e-10 2.056175154e-10 6.110153849e-11 2.76558491e-10 4.451302362e-11 6.388738444e-11 7.073674413e-11 4.346996263e-11 1.214318451e-10 1.170865849e-10 2.743869971e-10 4.078778091e-11 1.128224071e-10 9.593171178e-11 1.694714519e-10 1.06442305e-10 1.976834749e-11 2.592553843e-10 9.148914263e-11 4.447672276e-11 9.566033311e-11 8.026527108e-11 2.359876485e-10 2.101630599e-10 1.678964695e-10 1.124359821e-10 1.650923481e-10 3.700317016e-11 1.261610844e-10 2.060049148e-10 8.638897731e-11 4.055712896e-11 1.753807514e-10 7.831398152e-11 9.820806868e-11 1.662530124e-10 2.411889416e-10 9.845731821e-11 1.462485271e-10 2.325409966e-10 7.101220012e-11 4.561718181e-11 1.190985634e-10 8.591239677e-11 1.314930851e-10 2.902948486e-10 1.574322817e-10 5.158599023e-11 1.149734115e-10 7.781374756e-11 5.268464027e-11 2.073491077e-10 1.538813977e-10 2.185747642e-10 1.715453535e-10 5.735185878e-11 1.345398705e-10 2.100158041e-10 1.369836432e-10 2.792317676e-10 1.419366083e-10 3.605501619e-10 2.04996256e-10 1.595606888e-10 1.599180576e-10 7.797162179e-11 5.286485374e-11 1.900883386e-10 2.037149745e-10 3.507366337e-10 1.251857619e-10 1.046605589e-10 2.162126364e-10 1.7160836e-10 9.357521532e-11 1.245734012e-10 3.689070716e-10 2.078665455e-10 1.253617063e-10 1.063482791e-10 1.578102686e-10 1.832117659e-10 2.760260722e-10 2.979730725e-11 1.623912898e-10 1.698715657e-10 6.144683315e-11 1.158352411e-10 7.190938013e-11 5.567694585e-11 1.082086058e-10 2.318568233e-10 7.691459666e-11 1.957219869e-10 2.328638168e-10 5.066821556e-11 1.794888079e-10 9.584711144e-11 1.458786988e-10 9.844971558e-11 9.751528102e-11 7.981670714e-11 2.403970435e-10 1.159567089e-10 1.760838472e-10 8.455195778e-11 8.775284632e-11 2.946854717e-10 1.62040207e-10 7.444218224e-11 2.531182119e-10 1.980185451e-10 1.373356534e-10 3.172321652e-11 3.280860556e-10 7.411244651e-11 1.073516626e-10 1.977751814e-10 1.014601824e-10 9.435127587e-11 3.247913786e-11 6.962192935e-11 4.776391512e-11 2.220316341e-10 1.901018062e-10 9.563915547e-11 2.94376169e-10 2.607363462e-10 1.517620727e-10 8.901517292e-11 1.113994831e-10 1.198701329e-10 2.298888841e-10 8.457021121e-11 1.196266091e-10 1.56549252e-10 1.834752775e-10 1.867376474e-10 1.941809635e-10 1.00884777e-10 1.140948713e-10 1.941755798e-10 1.325721599e-10 8.370892858e-11 2.023016454e-10 1.01175082e-10 1.412231113e-10 1.598561596e-10 1.667350269e-10 1.979593879e-10 1.502415189e-10 3.102238685e-10 3.188486111e-10 1.159864308e-10 2.868612778e-10 3.194237238e-10 1.938622661e-10 2.15951158e-10 9.316087285e-11 1.693461178e-10 8.715028757e-11 1.67755627e-10 6.029594898e-11 1.500770082e-10 1.302377339e-10 7.53797919e-11 1.956181834e-10 4.301668008e-11 3.779380506e-11 7.121716176e-11 1.595829845e-10 1.166710021e-10 7.171461385e-11 1.259035311e-10 1.494802398e-10 7.869449424e-11 6.999971611e-11 1.497375484e-10 1.732145925e-10 1.609271699e-10 3.849939442e-11 4.066536939e-11 3.151662999e-11 9.401245297e-11 1.243085082e-10 1.17841638e-10 2.473414469e-11 1.736344219e-10 1.755439783e-10 9.835885131e-11 1.311902784e-10 8.852582336e-11 4.069003895e-11 7.175769493e-11 5.237967669e-11 1.011946641e-10 1.386611435e-10 2.172704033e-11 1.807089688e-10 5.969162922e-11 2.062478507e-14 1.539055665e-10 1.200956854e-10 8.682454249e-11 1.731196056e-10 1.029042514e-10 7.601741981e-11 1.30898036e-10 2.731688611e-10 3.869680346e-11 9.311342236e-11 6.075013636e-11 1.324858414e-10 1.420050025e-10 4.48282033e-11 1.216005097e-10 8.839978078e-11 3.254205105e-11 1.073992451e-10 4.524345729e-11 9.813659657e-11 9.630826659e-11 1.825076364e-10 1.844229923e-10 1.74982519e-10 4.713322815e-11 6.875375922e-11 3.791707488e-11 1.735524752e-10 1.345579984e-10 1.256103881e-10 4.804481846e-11 5.727168785e-11 1.307521875e-10 1.62089831e-11 8.895365646e-11 4.21528989e-11 3.773978423e-11 1.721629538e-10 8.970762206e-11 2.270669646e-11 1.093959338e-10 5.732923879e-11 7.44751853e-11 5.162627224e-11 1.156044459e-10 1.427175775e-10 1.735884581e-10 2.819729004e-10 3.360525887e-11 5.472267101e-11 2.623519868e-12 1.309072057e-10 2.633308365e-10 9.833029086e-11 6.978478727e-11 1.38379013e-10 +1.433207596e-10 2.086275781e-10 1.507573656e-10 1.082023252e-10 1.32861172e-10 2.610325089e-11 1.55498741e-10 2.027566703e-10 2.466376286e-10 1.877040566e-10 8.133041262e-11 8.336931706e-13 1.64117721e-10 1.422212137e-10 1.838732678e-10 6.569072762e-11 2.922345201e-11 6.45466071e-11 9.931027169e-11 5.545652384e-11 5.066906765e-11 7.236621461e-11 1.386691677e-10 5.58150337e-11 9.981654271e-11 7.368527735e-11 7.28934841e-11 6.013354562e-11 2.076335578e-10 3.923031142e-10 4.7501567e-11 6.916840698e-11 3.692459962e-10 1.528379566e-10 1.119431646e-10 7.12120876e-11 1.428345497e-10 1.308470398e-10 3.668996422e-10 1.868814853e-10 5.642707995e-11 6.457214424e-11 1.275037785e-11 1.045582303e-10 2.505759588e-10 1.254809454e-10 7.95573539e-11 2.763709539e-10 4.598351724e-11 1.636350853e-10 1.315814416e-10 1.039021729e-10 1.842982416e-10 2.067062374e-10 2.127157007e-11 1.33256453e-10 2.510982846e-10 1.448034175e-10 1.224985564e-10 2.639699692e-10 9.281531775e-11 2.576653421e-10 4.286954902e-16 1.562789982e-10 1.068587059e-10 2.174822221e-10 7.896370064e-11 8.965440665e-11 4.449509301e-11 1.767065251e-10 1.592561303e-10 6.376127998e-11 3.778900088e-11 3.845305085e-11 1.389181339e-10 1.359950061e-10 1.93966565e-10 2.024114844e-10 1.469084237e-10 1.537442946e-10 1.593230302e-10 7.66008791e-11 3.090995997e-11 1.059187226e-10 6.353470197e-11 1.641670354e-10 7.840674195e-11 1.6494481e-10 6.5882957e-11 2.28700719e-10 7.718176751e-11 7.999179793e-11 2.18408837e-10 2.134731549e-11 9.012721603e-11 8.831046868e-11 1.401803365e-10 8.916850936e-11 2.011279263e-10 1.730416216e-10 1.200358232e-10 2.369740718e-10 5.496430299e-11 1.655932992e-10 1.900592065e-10 2.573540774e-10 1.674239693e-10 2.568430028e-10 1.451334585e-10 2.66039891e-10 2.443228326e-10 2.06342028e-10 1.423150142e-10 1.604869381e-10 1.998672939e-10 8.119188169e-11 2.193849816e-10 8.016380683e-11 1.946135855e-10 3.447735111e-10 2.028993598e-10 1.151343602e-10 1.534721178e-10 1.266812735e-10 7.262033276e-11 1.790168037e-10 2.361621705e-10 1.707407633e-10 1.401941811e-10 1.960897662e-10 9.461928858e-11 1.291650813e-10 1.337571203e-10 1.921146147e-10 1.47804817e-10 2.245541651e-10 2.320896395e-10 9.097530027e-11 1.221764676e-10 2.420334119e-10 9.114224865e-11 2.281823395e-10 2.032333519e-10 1.897688519e-10 2.084534791e-10 1.244011109e-10 1.48550375e-10 1.494593357e-10 1.064270328e-10 1.276035801e-10 7.208422297e-11 2.207212506e-10 1.441398244e-10 6.135638929e-11 1.851093568e-10 2.166554303e-10 1.670475409e-10 2.229179088e-10 2.08701692e-10 1.122425371e-10 2.188365724e-10 3.004315962e-10 1.738870229e-10 1.000191822e-10 8.466927418e-11 1.881171112e-10 1.782626832e-10 1.53050781e-10 1.32188827e-10 1.185965988e-10 1.87795134e-10 1.18904429e-10 5.416941535e-11 1.862091427e-10 1.271045917e-10 3.169668365e-10 2.020291587e-10 5.210602274e-11 1.31678202e-10 1.284486129e-10 3.467316696e-10 1.420255544e-10 3.962893946e-11 2.531177635e-10 9.098263824e-11 1.877655107e-10 1.855939483e-10 1.08589534e-10 1.173115853e-10 1.528931874e-10 1.927050652e-10 1.646013615e-10 2.205764003e-10 1.233190038e-10 1.378923936e-10 2.339708965e-10 1.34807041e-10 2.305108927e-10 1.334275655e-10 2.061137847e-10 1.240920274e-10 1.532364466e-10 2.553301672e-10 8.967635588e-11 1.267105544e-10 6.601417374e-11 1.798505101e-10 1.393096459e-10 1.80621354e-10 9.584465698e-11 1.609153783e-10 1.598156066e-10 1.095600239e-10 1.850457313e-10 1.112633685e-10 1.869184849e-11 5.880260941e-11 3.352771753e-11 2.173313265e-10 3.06854802e-13 9.252459975e-11 7.602504565e-11 4.69238382e-11 1.39304117e-10 6.676133891e-11 8.160125837e-11 1.055149042e-10 1.331845896e-10 1.306667483e-10 1.289190554e-10 1.485556632e-10 3.103093871e-10 3.667342217e-11 1.824498919e-10 1.1826303e-10 1.412510459e-10 1.714508441e-10 5.913890595e-11 2.190273747e-11 9.383480495e-11 6.45632546e-11 3.53753872e-10 9.48527666e-11 7.675737356e-11 9.800638353e-11 8.529148582e-11 4.498115829e-11 3.32611663e-10 1.666983305e-10 1.316400456e-10 1.297067211e-11 1.097116287e-10 1.677125539e-10 4.950902964e-11 6.078988514e-11 1.532650774e-10 1.17717001e-10 1.474849097e-10 1.601399968e-10 1.104899236e-10 8.899524302e-11 8.317926759e-11 1.039700381e-10 7.774034453e-11 4.222622885e-11 8.165921485e-11 2.498578683e-10 1.003250189e-10 1.326464731e-10 1.968260947e-10 1.456514663e-11 9.176689451e-11 4.183698745e-11 6.694877694e-11 1.156390883e-10 1.413485919e-10 7.863120657e-11 1.216052886e-10 1.750240369e-10 8.361441821e-11 1.923587344e-10 1.812333029e-10 1.134737987e-11 1.301440777e-10 1.486421521e-10 2.437883899e-11 1.108964053e-10 9.388543824e-11 1.961124334e-10 4.421278413e-11 2.38452e-10 9.718705219e-11 1.493953817e-10 7.006090487e-12 4.976531243e-11 8.582402208e-11 3.109679448e-11 1.756930004e-10 4.315990895e-11 1.547374742e-10 +2.633222503e-10 2.554146503e-10 2.264674761e-10 1.56549097e-10 6.22904475e-11 7.277240527e-11 5.177459233e-11 1.749544956e-10 1.61990442e-10 2.459029602e-11 1.097954906e-10 1.916660457e-10 2.401890536e-10 3.869686887e-11 1.355573851e-10 1.611663969e-10 1.185487967e-10 1.887068558e-14 1.122641515e-10 4.083210818e-11 1.729316887e-10 3.522630414e-11 5.114596435e-11 8.570276889e-11 2.288268155e-10 6.942996381e-12 4.702943388e-11 6.003717758e-11 2.396208472e-11 2.074525591e-10 1.121718076e-10 5.740489518e-11 1.356770303e-10 1.878888335e-10 6.5141733e-11 1.146680092e-10 5.753773318e-11 1.463027589e-10 1.090897235e-10 6.135240693e-11 5.71315267e-11 2.59015734e-11 7.130159328e-11 1.924518741e-10 8.477447932e-11 2.971839467e-10 5.14202803e-11 5.487359795e-11 7.497787272e-11 1.350757159e-10 1.926819326e-10 2.547477616e-10 5.230955205e-11 1.639943683e-10 1.115615971e-10 1.232486498e-10 1.268119586e-10 1.943599699e-11 9.879548705e-11 1.251918774e-10 6.760193715e-11 7.565458784e-11 8.621192027e-11 3.694059627e-11 7.660849506e-11 7.337962251e-11 7.856238839e-11 1.642068161e-10 1.510924039e-10 1.878959622e-10 8.42852964e-11 1.136050331e-10 1.031107743e-10 8.626157447e-14 2.542646334e-10 1.463993604e-10 1.592316902e-10 6.791784436e-11 1.47398872e-10 6.899671778e-11 1.959390958e-10 1.742390454e-10 1.380840206e-10 5.455991698e-11 1.858296932e-10 1.050987545e-10 1.70050292e-10 1.621165177e-11 1.719746429e-10 8.267293068e-11 1.018353531e-10 1.923032148e-10 6.298513941e-11 1.328825756e-10 2.938778509e-10 8.871413006e-11 3.233468e-10 4.911879509e-11 1.135979579e-10 1.292465998e-10 1.561291361e-10 1.73140812e-10 2.471574918e-10 1.783054818e-10 1.418415676e-10 7.9012192e-11 1.884679058e-10 9.652687924e-11 2.343360533e-10 1.236611643e-10 8.076071323e-11 1.355983112e-12 1.493871856e-10 2.278362822e-10 1.470326584e-10 2.758592782e-10 2.438618428e-10 8.864380908e-11 1.146818977e-10 1.45661343e-10 1.557862068e-10 1.626414858e-10 1.968375026e-10 1.504634994e-10 1.110355455e-10 1.085267805e-10 1.017924255e-10 3.76853852e-10 5.210088802e-11 1.563016999e-10 1.183269425e-10 1.052269417e-10 3.578299673e-10 1.459485286e-10 1.922417652e-10 1.08986419e-10 2.062211322e-10 2.589279543e-10 3.851805339e-10 5.765934505e-11 9.194250662e-11 6.419980473e-11 1.538817145e-10 2.372976013e-10 1.554770476e-10 9.647278646e-11 2.426830135e-10 1.531011043e-10 1.829424499e-10 1.586637984e-10 1.496909447e-10 1.126796358e-10 1.181690419e-10 4.461062847e-11 1.279430943e-10 1.22578109e-10 1.50043199e-10 2.864431467e-10 1.681533981e-10 7.631795139e-11 4.346907462e-10 1.071806719e-10 1.030574965e-10 2.633342758e-11 1.651622729e-10 8.897249373e-11 2.589646385e-10 2.267869177e-10 1.929562987e-10 2.563164689e-10 4.328863283e-11 3.737300052e-10 1.361290009e-10 9.546148284e-11 1.612591239e-10 1.390452936e-10 2.720209449e-10 1.38947757e-10 2.081962421e-10 1.064308522e-10 1.084288361e-10 1.753656034e-10 2.141882624e-10 7.547277475e-11 2.736060415e-10 1.334890944e-10 2.231942874e-10 1.676572719e-10 2.105532164e-10 2.42265538e-10 7.554833061e-11 1.957683743e-10 1.907423612e-10 1.42085725e-10 1.283727772e-10 1.783998786e-10 3.616829625e-10 2.576275747e-10 2.288662387e-10 9.599809113e-11 2.061078153e-10 2.183992875e-10 1.731796901e-10 1.444150166e-10 3.629065419e-10 1.753380017e-10 1.85570948e-10 1.184708304e-10 1.537024072e-10 1.154502564e-10 1.283431855e-10 8.583763974e-11 3.797267547e-10 5.462721934e-11 2.573044928e-10 4.169312987e-11 6.271191775e-11 1.340013013e-10 1.308211563e-10 2.52947474e-11 5.701271715e-11 1.738824959e-10 2.943628265e-10 8.820589386e-11 9.716745563e-11 1.462763053e-10 5.156762155e-11 1.765586479e-10 1.307571381e-10 6.545880258e-11 6.655523188e-11 1.40282208e-10 1.488801505e-10 6.501418117e-11 1.430747203e-10 1.312375768e-10 9.042776903e-11 2.340044431e-10 8.668166453e-11 5.138975674e-11 7.817677552e-11 1.585197473e-10 6.04308969e-11 1.592143904e-10 1.117824457e-10 1.408242109e-10 9.828035592e-11 1.514455397e-10 1.388087082e-10 1.8361897e-10 4.493625931e-11 1.327399268e-10 1.966245003e-10 1.056468127e-10 1.052743139e-10 2.772035046e-11 6.590560145e-11 4.082869509e-11 1.146855272e-10 7.368649065e-11 5.459119271e-11 2.031558097e-10 6.865953714e-11 2.729675701e-10 1.178728994e-10 3.64026824e-10 1.191762326e-10 1.163083246e-10 1.479423678e-10 4.337346554e-11 1.219790098e-10 1.127458415e-10 2.394018561e-10 1.601787502e-10 1.850960484e-10 2.015783812e-10 2.382247933e-10 4.93689835e-11 5.341966545e-11 8.58370724e-11 1.302765074e-10 6.987317113e-11 1.777482833e-10 2.037050753e-10 7.630709031e-11 1.120182778e-10 1.675958696e-10 1.420827584e-10 1.302837793e-10 1.171349456e-10 8.031055955e-11 1.00984483e-10 2.890918299e-10 1.802100777e-10 1.790136464e-10 3.707442964e-11 1.193099604e-10 5.127782084e-11 7.248086409e-11 7.107778176e-11 +1.321168026e-11 7.248159153e-11 1.557174115e-10 1.843081793e-10 1.641099542e-10 6.36979021e-11 4.728898558e-11 2.442061612e-10 5.255493578e-11 2.114126328e-10 6.373478953e-11 1.696196461e-10 4.390023524e-11 1.134753394e-10 1.907159278e-10 1.267435934e-10 1.87853765e-10 4.6500297e-11 2.647574635e-10 1.616916287e-10 7.041536934e-11 1.600553157e-10 1.302307959e-10 3.267573022e-10 3.261375359e-11 1.687691742e-10 1.573845183e-10 1.210144391e-10 1.071893785e-10 8.500864127e-11 6.284439944e-11 8.978264966e-11 2.255094029e-10 1.08164033e-10 1.130221247e-10 1.702726674e-10 2.755544975e-10 9.756353489e-11 1.346497735e-10 2.18633742e-10 1.484338515e-10 3.365134687e-10 1.185329254e-10 6.156663615e-11 1.310881104e-10 1.31210191e-10 1.455306373e-10 2.025413492e-10 1.174302749e-10 2.666445927e-10 3.242206547e-10 1.438796388e-10 9.970611694e-11 2.793770233e-10 1.957155892e-10 1.00497658e-10 1.099568836e-10 9.343913305e-11 1.194825048e-10 7.405772513e-11 1.109634469e-10 1.324536595e-10 9.399598483e-11 3.244515747e-11 1.903520175e-10 4.281431166e-11 7.983784242e-11 2.809341303e-10 1.968124794e-10 6.026574301e-11 1.373347307e-10 1.352887707e-10 2.049876296e-10 2.034825463e-10 2.407046507e-10 4.557218125e-11 2.015659331e-10 1.592670015e-11 2.127936104e-10 1.014384551e-10 1.450977651e-10 1.305372e-10 1.121461613e-10 2.611547165e-10 1.162569123e-10 1.257545241e-10 1.557494017e-10 1.30716615e-10 1.021586361e-10 1.668723211e-10 3.96599201e-10 1.898838715e-10 1.993497438e-10 1.126484769e-10 9.231803452e-11 1.736932678e-10 1.202833847e-10 1.689104858e-10 1.338664178e-10 8.502452458e-11 1.493501307e-10 2.942936902e-10 2.342847914e-10 3.090073179e-10 2.068720599e-10 2.173729247e-10 2.751536982e-10 2.157674412e-10 5.84397492e-11 1.408312342e-10 7.11472825e-11 7.087528995e-11 1.495643542e-10 1.012568628e-10 1.701136513e-10 1.481706684e-10 9.201031582e-11 2.240061505e-10 2.307698206e-10 1.636483577e-10 2.292717515e-10 1.84354222e-10 1.341150138e-10 2.663563078e-10 8.682311322e-11 9.163485233e-11 2.874237534e-10 1.620884379e-10 1.646210733e-10 1.305728824e-10 1.038458873e-10 1.301048892e-10 9.73045181e-11 1.880869742e-10 6.827313318e-11 2.321918953e-10 1.158636663e-10 6.64381005e-11 1.119466602e-10 1.61612887e-10 2.683594394e-10 2.022331469e-10 2.149456437e-10 1.902575827e-10 1.650927642e-10 2.37334399e-10 1.762396392e-10 1.222507578e-10 3.006307409e-10 2.03464713e-10 9.5005045e-11 1.464197738e-10 3.298141914e-11 1.357898716e-10 2.448486987e-10 2.202558277e-10 1.066160461e-10 1.423406414e-10 1.648353787e-10 1.295467799e-10 1.924963499e-10 1.111869376e-10 3.07407049e-10 2.351483286e-10 1.288641872e-10 8.972690394e-11 2.236329542e-10 1.494317934e-10 1.256584728e-10 1.470650374e-10 2.143610907e-10 1.611700127e-10 1.235680029e-10 1.792765702e-10 1.339276505e-10 1.104942235e-10 1.472988729e-10 1.860568305e-10 1.112896824e-10 2.26116948e-10 1.443193363e-10 1.185192583e-10 2.076667369e-10 1.21828581e-10 9.047359576e-11 2.243430952e-10 1.523069854e-10 1.572885388e-10 2.152443654e-10 1.130092124e-10 1.138936662e-10 8.818178941e-11 3.286715318e-10 1.598664904e-10 3.187818649e-10 1.666097282e-10 1.29933664e-10 2.099222424e-10 1.509008342e-10 8.6415661e-11 1.796511958e-10 1.939839175e-10 3.148957494e-10 1.458856058e-10 1.255152096e-10 1.720186164e-10 8.447464629e-11 6.849946866e-11 3.488754432e-10 1.782171858e-10 8.44063568e-11 1.32911526e-10 3.916774567e-11 1.412986426e-10 1.505683562e-10 1.525568437e-10 9.024751402e-11 1.162890666e-10 9.551963635e-11 5.2489842e-11 9.540853507e-11 4.377884303e-11 1.252611727e-10 3.894104542e-10 1.776448499e-10 7.12010609e-11 9.55931235e-11 6.679537058e-11 7.197209302e-11 8.629452323e-11 1.484520084e-10 7.648584622e-11 1.401792767e-10 1.321465066e-10 1.969221896e-10 2.177255226e-10 1.033875353e-10 1.352192394e-10 3.304664102e-11 2.264732784e-11 9.797406728e-11 1.439933658e-10 2.20504566e-10 1.514679962e-10 1.628413882e-10 6.495559273e-11 8.194229831e-11 1.136726803e-10 5.891228351e-11 7.176048563e-11 5.769794979e-11 1.360680066e-10 1.06717007e-10 8.0065362e-11 1.120486673e-10 1.742878942e-10 1.694674502e-10 4.931000917e-11 1.747307023e-10 7.758646859e-11 5.827715922e-11 6.41906756e-11 1.214446992e-10 1.116001371e-10 7.100963629e-11 1.652245716e-10 6.116859939e-11 1.861554691e-10 8.107177054e-11 1.389058468e-10 1.919716494e-10 1.220184191e-10 1.348390639e-10 1.855144535e-10 1.944884626e-11 2.005646077e-10 5.348844434e-11 2.380290397e-10 1.570317964e-10 5.772778894e-11 1.302029399e-10 1.271097981e-10 1.936571525e-10 1.617439728e-10 5.028350105e-11 2.338477978e-10 6.390137951e-11 2.002608903e-10 1.241256988e-10 5.381015596e-11 1.506428816e-10 3.814275152e-11 1.285117853e-10 9.21019298e-11 7.162163435e-11 1.107548862e-10 1.854974178e-10 5.645255589e-11 1.253731251e-10 4.126071446e-11 +1.64632631e-10 1.416547094e-10 7.621953479e-11 2.880581635e-10 2.376876719e-10 1.636622162e-10 6.301402579e-11 1.523708748e-10 1.689568857e-10 1.73416985e-10 1.10978262e-10 5.867092944e-11 3.276915143e-11 1.049295822e-10 3.05170082e-10 1.073371256e-10 1.924330764e-10 1.874670158e-11 9.940205543e-11 1.732912519e-10 5.957297521e-11 8.713592278e-11 1.127032782e-10 1.377071115e-10 5.203164781e-11 1.111043584e-10 1.414710193e-10 1.069669687e-10 5.47268682e-11 1.196482071e-10 6.142284286e-11 2.167842884e-10 5.14903254e-11 5.954141354e-11 1.826279901e-10 9.406558875e-11 9.775731494e-11 9.937339071e-11 5.810792696e-11 9.386849355e-11 6.163967637e-11 4.265383309e-11 1.087361316e-10 9.172895212e-11 2.136764808e-10 1.280963606e-10 1.006485747e-10 6.910644418e-11 6.328854418e-11 1.186157852e-10 1.077337585e-10 1.39351423e-10 1.353034438e-10 1.081859054e-10 2.846153564e-10 2.115564639e-10 1.85776163e-10 1.157355328e-10 1.458426174e-10 1.145838574e-10 1.485787021e-10 4.065447114e-11 1.425065366e-10 2.022845556e-10 5.648966766e-11 2.414427382e-11 1.843603984e-10 7.165910989e-11 1.073321163e-10 9.218405401e-11 2.469746906e-11 7.349413294e-11 1.482358476e-10 1.677287922e-10 7.410709354e-11 1.761419379e-10 3.324407074e-11 5.467990738e-11 5.385880276e-11 9.444684502e-11 1.181380509e-10 9.774990752e-11 1.30038411e-10 7.968316028e-11 1.545574996e-10 4.649043869e-11 6.524474364e-11 8.524680928e-11 1.310549377e-10 1.750690174e-10 2.26997142e-10 9.312920942e-11 5.158773601e-11 1.992497105e-10 2.33013793e-10 3.658994927e-11 1.663145846e-10 1.434439713e-10 2.765347109e-10 1.95696515e-10 1.222661262e-10 1.248110595e-10 1.961498981e-10 1.375107412e-10 6.816556866e-11 2.012776057e-10 1.529730852e-10 1.325679649e-10 1.820425807e-10 1.317528817e-10 1.096438647e-10 1.188847363e-10 1.090393914e-10 6.164158328e-11 1.634861816e-10 1.008176346e-11 1.753880726e-10 2.580403528e-10 1.637989199e-10 2.237132371e-10 3.42581202e-10 3.58279645e-10 1.225991848e-10 2.024917852e-10 2.202949355e-10 2.80334243e-10 3.006981438e-10 7.255671901e-11 2.393201375e-10 1.990680023e-10 1.077562239e-10 7.814288658e-11 2.888187952e-10 1.133234961e-10 8.661145692e-11 2.777424223e-10 1.991365714e-10 1.06279299e-10 1.588735896e-10 1.685852676e-10 1.526193431e-10 3.632702859e-10 1.601448602e-10 1.20618485e-10 1.412503491e-10 2.464933337e-10 1.012869958e-10 1.449855485e-10 1.643373329e-10 1.982811847e-10 2.265701616e-10 7.597104412e-11 2.911821581e-10 2.661591971e-10 1.658019646e-10 7.504997331e-11 1.902150494e-10 1.571181838e-10 6.4149869e-11 9.354210238e-11 2.406596648e-10 1.331805719e-10 1.625301723e-10 1.2816359e-10 3.007962238e-10 1.950094208e-10 1.002210708e-10 1.85715049e-10 1.597691322e-10 1.914889826e-10 1.297498205e-10 1.986150131e-10 1.589804536e-10 1.518869072e-10 2.140294056e-10 1.104488784e-10 4.640424942e-11 1.618220943e-10 1.756517154e-10 1.91777323e-10 2.587177066e-10 1.838392397e-10 1.982458299e-10 2.710167839e-10 6.329925575e-11 3.681533523e-11 1.824130117e-10 1.629547116e-10 1.853845599e-10 9.604155279e-11 2.364992137e-10 1.056098724e-10 1.611286752e-10 3.251475087e-10 1.29545003e-10 2.592236242e-10 3.596095302e-10 2.618997414e-10 1.125799559e-10 2.091010129e-10 2.128808048e-10 9.486719626e-11 2.215327256e-10 2.053084219e-10 2.080094282e-10 2.422069283e-10 8.053063996e-11 1.93248107e-10 1.610281945e-10 1.986205911e-10 2.549803161e-10 2.090589092e-10 1.840575348e-10 2.442122508e-10 1.50039554e-10 9.175140778e-11 1.192206463e-10 1.92034204e-10 9.807698686e-15 9.147642726e-11 8.525805369e-11 3.255359558e-10 1.718324316e-10 5.929836919e-11 7.382026992e-11 9.753911554e-11 1.041864088e-10 8.561618769e-11 6.745041657e-11 9.743541865e-11 2.074994702e-10 1.690702341e-10 7.189659808e-11 6.15678152e-11 9.316243012e-11 4.69296867e-11 5.042562444e-11 2.504445021e-10 4.02817616e-11 1.004899882e-10 7.661229134e-11 6.572421721e-11 2.717283223e-10 2.888176517e-11 1.088549103e-10 1.172423952e-10 5.342892896e-11 1.376868905e-10 1.403885151e-10 2.077319785e-10 7.255516568e-11 4.695613278e-11 9.646664608e-11 1.149300331e-10 7.507692612e-11 1.234946534e-10 3.807327379e-11 1.058030578e-10 1.202340328e-10 1.676457935e-10 1.966791953e-10 1.198470767e-10 2.148617927e-10 9.059461953e-11 8.466156834e-11 6.013327201e-11 9.04449394e-11 6.975500385e-11 1.4125472e-10 1.458129462e-10 7.791781067e-11 1.968528614e-10 1.129003029e-10 1.074327116e-10 9.940623223e-11 7.507495007e-11 1.499795165e-10 5.668051672e-11 5.9191814e-11 1.360535653e-10 1.17139288e-10 1.292274471e-10 1.147462605e-10 6.189875819e-11 1.322730574e-10 9.086193803e-11 1.182586176e-10 8.760421918e-11 2.673828915e-10 1.085487676e-10 4.100043782e-11 1.05127363e-10 1.629704843e-10 1.417385381e-10 1.030818511e-10 3.374000587e-11 1.048967162e-10 3.016121223e-10 7.73712062e-11 1.423982482e-10 +4.777776611e-11 3.351173575e-10 6.602221181e-11 2.112493342e-11 1.18060458e-10 4.301640861e-11 9.2766502e-11 7.624504231e-11 1.898783107e-10 8.104229815e-11 1.884815042e-10 6.237609603e-11 1.705644703e-10 2.419059706e-11 6.957112317e-11 5.070985894e-11 6.85125793e-11 5.599706389e-11 8.560151653e-11 2.011735128e-10 1.68325004e-10 6.456282873e-11 9.838109731e-11 1.979133161e-10 1.561162678e-10 9.16193924e-11 8.446285408e-11 1.568828427e-10 6.515293765e-11 1.883291194e-10 5.738987857e-11 2.534599427e-10 1.092095795e-10 1.376141285e-10 1.093701542e-10 1.775909414e-10 6.253213789e-11 1.764664742e-10 1.301290623e-10 1.796105779e-10 4.940863479e-11 2.379627854e-10 1.074483858e-10 2.286956408e-10 1.071950835e-10 6.846498583e-11 1.557994995e-10 6.942476504e-11 1.225909572e-10 1.39065318e-10 6.800363769e-11 1.412556684e-10 1.848221235e-10 1.774191993e-10 8.065365189e-11 2.603418072e-10 2.163338793e-10 1.243796532e-10 1.809768822e-10 3.248146025e-11 1.014120203e-10 7.05885125e-11 1.299100974e-10 7.894060025e-11 7.704496324e-11 1.343188021e-10 8.338534258e-11 1.577593388e-10 2.359207676e-10 8.528931438e-11 1.149434833e-10 4.165465605e-11 1.314718664e-10 6.588721612e-11 1.091727363e-10 8.406206225e-11 1.176091388e-10 1.404827863e-10 2.11721512e-10 1.331802348e-10 2.197342243e-10 1.495941018e-10 1.383290197e-10 1.254740844e-10 5.117317354e-11 8.653885296e-11 7.309591343e-11 1.968847147e-10 1.950624076e-10 1.914350776e-10 1.465694697e-10 1.472818557e-10 1.06956456e-10 3.252569246e-10 1.379233292e-10 1.540220015e-10 1.529242945e-10 2.05511731e-10 2.128857191e-10 1.447019092e-10 1.997404277e-10 2.216098772e-10 2.093068937e-10 6.693295762e-11 9.719918572e-11 5.584011037e-11 2.993308105e-10 1.635642662e-10 1.101348635e-10 2.840795709e-10 1.822133351e-10 1.82797138e-10 1.823066277e-10 2.28452572e-10 2.019143203e-10 1.955151949e-10 2.218623355e-10 1.75193225e-10 2.393669494e-10 1.824056693e-10 1.968942873e-10 5.891193636e-11 2.166726074e-10 3.472504479e-10 1.895530631e-10 5.231038604e-11 1.776802773e-10 1.707030985e-10 1.248449615e-10 2.331665146e-10 1.884383339e-10 5.747779559e-11 2.343257214e-10 1.43253921e-10 1.717047788e-10 1.017181683e-10 1.458871971e-10 1.656313638e-10 1.142036605e-10 1.811455981e-10 6.795214767e-11 1.43815015e-10 1.547013611e-10 1.018379911e-10 6.924551415e-11 1.435779716e-10 2.273346325e-10 2.157526527e-10 2.506538672e-10 5.207623628e-11 3.29002189e-10 1.862443463e-10 1.854891476e-10 1.371337973e-10 1.913501007e-10 2.095960836e-10 1.175377555e-10 1.602879492e-10 8.317239426e-11 2.56921387e-10 2.623697601e-10 1.346496577e-10 2.168334398e-10 9.811135555e-11 3.939943953e-10 3.330728373e-10 1.767430145e-10 1.760365653e-10 2.180524801e-10 2.227199035e-10 2.12625624e-10 2.585641688e-10 3.328498382e-10 1.770383038e-10 1.250074682e-10 1.928703851e-10 2.044986565e-10 1.798282341e-10 2.993580692e-10 1.871253488e-10 7.945357745e-11 2.782634346e-10 1.188050548e-10 1.917265278e-10 1.471748267e-10 8.452551491e-11 2.148064764e-10 1.259229199e-10 1.692540216e-10 1.942791043e-10 1.661619373e-10 2.040855735e-10 3.677325186e-10 2.425451363e-10 8.400037296e-11 2.267820628e-10 1.484740776e-10 1.489134994e-10 1.5583503e-10 3.084254771e-10 1.487036349e-10 1.8528255e-10 1.384661225e-10 7.038629458e-11 2.752974622e-10 1.588974379e-10 2.608843147e-10 1.031219746e-10 1.513062124e-10 1.254513148e-10 2.826483535e-10 2.622526571e-11 1.657348151e-10 1.330264894e-10 2.120317855e-10 1.127460162e-10 1.393798574e-10 4.713880697e-11 2.029692938e-10 2.400493886e-11 4.946547517e-11 1.890188134e-10 2.508026798e-10 1.403425685e-10 1.318264546e-10 7.637119692e-11 1.106193295e-10 3.585900434e-11 1.60030267e-10 1.369578766e-10 2.196110869e-10 6.313971362e-11 4.445224036e-11 1.602962824e-10 1.142898496e-10 3.641686794e-11 2.114263891e-10 1.476802972e-10 1.113482498e-10 1.352290764e-10 7.161360912e-11 2.706280475e-10 1.402402296e-10 1.866220825e-10 2.088463662e-10 2.405260771e-10 9.464021721e-11 1.133985734e-10 3.748801408e-11 9.178921655e-11 1.987158364e-10 8.872486661e-11 2.033981289e-11 4.307614859e-11 1.364357458e-10 1.673234012e-10 5.142011188e-11 1.207535201e-10 1.447965293e-10 7.643359309e-11 1.533942321e-10 1.332822053e-10 2.695007331e-10 2.86766674e-11 1.434858105e-10 1.306675904e-10 1.417252537e-10 1.666567137e-10 3.676501532e-11 1.967771395e-10 2.106603085e-10 1.364399714e-10 1.085311806e-10 6.079743549e-11 2.56454258e-10 9.047252938e-11 3.201961389e-11 1.901339684e-10 2.535656784e-10 1.368678982e-10 1.939106786e-10 1.349855616e-10 2.015230593e-10 9.506581452e-11 8.840829171e-11 2.247612349e-10 1.129063077e-11 1.559444056e-10 1.096042061e-10 4.010493825e-11 5.197846734e-11 2.379134571e-10 1.396530244e-10 7.058022798e-11 1.466276597e-10 2.33758034e-10 3.428458068e-11 1.517799809e-10 1.867389577e-10 3.080345312e-11 +6.131430357e-11 2.887989013e-10 1.095585528e-10 7.23737598e-11 5.53337746e-11 6.6596279e-11 2.44036765e-10 3.768034933e-11 1.133661437e-10 5.800645545e-11 1.256794903e-10 1.320614061e-10 9.398919368e-11 1.542851547e-10 4.187423755e-11 8.420974556e-11 2.454755242e-10 4.597323766e-11 6.112522423e-11 1.887238392e-10 1.476668486e-10 1.47871846e-10 9.929146228e-11 8.791002889e-11 1.296339941e-10 5.896833593e-11 2.117710223e-10 1.418774725e-10 2.085205261e-10 2.075392944e-10 1.850056514e-10 1.573428761e-10 1.539462832e-10 1.550570731e-10 1.507009101e-10 2.006055732e-10 2.479733691e-10 9.520779289e-11 6.216853835e-11 9.810148911e-11 2.866538502e-10 1.939264443e-10 1.904245759e-10 2.393979835e-10 1.340919562e-10 7.545527112e-11 2.688098181e-10 1.611353328e-10 2.157424749e-10 9.874015776e-11 1.203300747e-10 1.335326296e-10 2.868997129e-10 1.305828847e-10 6.069638257e-11 1.773446206e-10 1.246927553e-10 9.754886257e-11 1.822363191e-10 1.486624034e-10 1.51661205e-10 2.074486e-10 1.202096453e-10 1.937749352e-10 9.502466006e-11 1.552643916e-10 1.249627064e-10 5.961031599e-11 9.330748691e-11 1.808077177e-10 1.260763839e-10 1.395142096e-10 8.590374088e-11 2.021396499e-10 2.681147772e-10 5.086251906e-11 1.817060577e-10 1.153170848e-10 1.114024043e-10 1.299457654e-10 2.296972992e-10 1.281724808e-10 1.24538362e-10 1.471569528e-10 5.579421397e-11 1.277007249e-10 2.189597067e-10 1.556395779e-10 1.898975673e-10 5.084551026e-11 9.523487925e-11 1.279697434e-10 1.326994958e-10 1.722917654e-10 2.8091027e-10 1.230650956e-10 2.566178562e-10 1.768408587e-10 2.298426977e-10 2.31405301e-10 2.836365724e-10 2.742033444e-10 1.005295963e-10 1.671654004e-10 3.536201506e-10 8.897164041e-11 2.456880151e-10 2.511941956e-10 1.476100938e-10 2.347284661e-10 8.85309343e-11 2.056620912e-10 1.323405587e-10 1.550481748e-10 1.363693204e-10 2.277954575e-10 2.249181896e-10 1.368231539e-10 7.714150319e-11 1.073013911e-10 1.753455025e-10 1.827349028e-10 2.170528703e-10 3.640612516e-10 1.012649452e-10 3.070946341e-16 1.183973927e-10 2.290437399e-10 1.466720787e-10 2.519262246e-10 2.435026862e-10 1.129262352e-10 8.663614979e-11 2.821206211e-10 2.307520589e-10 1.15149173e-10 2.120165626e-10 1.16214777e-10 4.922507025e-11 1.395841373e-10 2.529454064e-10 1.661217375e-10 9.293025722e-11 1.688710365e-10 1.191994698e-10 1.053976973e-10 1.52865568e-10 2.123109082e-10 1.633060254e-10 2.084365943e-10 1.150331979e-10 1.229194727e-10 2.322858636e-10 2.806105589e-10 1.543862674e-10 2.317258025e-10 1.247729903e-10 1.762743864e-10 2.942090007e-10 9.388396279e-11 2.160324893e-10 5.862344366e-11 3.072467383e-11 3.128857671e-11 2.405646488e-10 1.541570996e-10 1.359616928e-10 7.184704708e-11 2.775254716e-10 1.0696047e-10 1.21379048e-10 9.582315016e-11 3.171565962e-10 1.292356723e-10 3.155609727e-10 1.365412848e-10 2.568459611e-10 2.138775996e-10 1.094774386e-10 1.56480802e-10 1.427902246e-10 1.917037334e-10 1.209194068e-10 1.741640075e-10 9.270162633e-11 1.615529152e-10 8.104295917e-11 3.19513597e-10 2.049559414e-10 2.874993895e-10 1.103072952e-10 2.908268206e-10 1.167098533e-10 2.891668908e-10 1.02988135e-10 1.588321852e-10 2.693025919e-10 2.482410688e-10 1.743995664e-10 1.611659952e-10 1.932105692e-10 1.934609079e-10 1.929077299e-10 2.003666499e-10 1.228028282e-10 1.259235702e-10 1.155410282e-10 2.124448477e-10 3.200082357e-10 8.410192928e-11 8.464033031e-11 1.430780639e-10 9.770631023e-11 1.738016309e-10 1.755250882e-10 1.064192562e-10 1.649170519e-10 1.309809425e-10 1.367658863e-10 2.599967148e-10 1.971853061e-10 4.008630669e-11 5.320106435e-11 7.195097665e-11 6.719971224e-11 2.703181671e-11 1.247917561e-10 1.824734829e-10 1.227564103e-10 1.600710013e-10 1.077751562e-10 1.147412499e-10 2.551270951e-10 9.329917487e-11 4.704409127e-11 5.301488853e-11 3.449421449e-11 5.29693486e-11 2.141789515e-10 8.712381201e-11 2.171873659e-10 8.219274336e-11 3.983955991e-10 7.991554247e-11 2.170003937e-10 9.089804715e-11 2.523363067e-10 2.773771228e-11 1.060583945e-10 1.359628221e-10 1.195915413e-10 1.629349896e-10 3.531537556e-11 2.171594306e-10 1.493414755e-10 9.897275351e-11 1.328872426e-10 1.787727379e-10 1.646738567e-10 1.381889752e-10 1.449865073e-10 1.431811096e-10 1.289109423e-10 9.330884883e-11 2.266143078e-10 7.157315806e-11 2.47344692e-10 8.416898057e-11 2.106170334e-10 6.883426402e-11 2.219957551e-10 1.64294213e-10 3.233171042e-10 7.784678875e-11 1.167606173e-10 3.895797861e-10 1.28066489e-10 1.502476053e-10 1.27479518e-10 9.089031006e-11 7.873788265e-11 4.117698562e-11 1.453652035e-10 1.101360069e-10 4.785158466e-11 1.29286856e-10 5.029229918e-11 1.270818947e-10 1.595310505e-10 3.450992271e-12 1.114602154e-10 1.327396772e-10 1.040244416e-10 6.797825768e-11 6.510916184e-11 1.267530294e-10 9.218477694e-11 2.130655278e-11 6.556843385e-11 7.166133035e-11 +1.447689582e-10 7.951150846e-11 6.412897242e-11 6.357536016e-11 1.222692939e-10 8.077560693e-11 1.442031807e-10 8.6218774e-11 1.541178605e-10 7.438773352e-11 2.370149225e-10 7.817031488e-11 1.710709801e-10 1.524173143e-10 2.118938888e-10 5.275884754e-11 1.561645425e-11 2.298419364e-10 1.405581858e-10 9.62117203e-11 8.095402759e-11 1.21406e-10 6.193847151e-11 6.142465588e-11 9.970175611e-11 1.234364503e-10 1.615191193e-10 1.947132622e-10 1.368144781e-10 1.580625941e-10 1.004097755e-10 9.086005908e-11 2.058609908e-10 3.96922478e-11 6.489104417e-11 1.91636707e-10 9.436244446e-11 7.059840058e-11 1.218240773e-10 8.257303181e-11 1.640429362e-10 1.355781619e-10 1.298371299e-10 1.35563518e-10 9.41201881e-11 7.532659075e-11 5.39594873e-11 2.070058712e-10 1.720953917e-10 2.602436474e-10 9.944060684e-11 1.714979504e-10 1.05631638e-10 3.089366274e-10 1.236393557e-10 2.501994126e-10 1.169032748e-10 3.358029826e-10 1.164901944e-10 1.145800768e-10 8.556502944e-11 1.010334167e-10 6.095832049e-11 8.170181994e-11 1.635168361e-10 5.68674672e-11 2.871373099e-10 7.029918423e-11 1.509369041e-10 7.26418312e-11 8.155356201e-11 2.267768407e-10 1.146529847e-10 9.426922902e-11 1.6564722e-10 1.180598855e-10 1.199752695e-10 9.315944388e-11 8.068469548e-11 7.431118653e-11 2.114260527e-10 1.26650904e-10 1.075005904e-10 1.452381732e-10 2.605375989e-10 1.147327341e-10 9.534912729e-11 1.521055245e-10 1.392859027e-10 1.899832434e-10 1.60897145e-10 1.060578557e-10 1.358796885e-10 4.270795548e-10 1.746308141e-10 2.236123152e-10 1.63434345e-10 1.27540125e-10 2.981273503e-10 3.219152989e-10 1.507252665e-10 2.330693583e-10 2.396781628e-10 2.511232147e-10 2.221675213e-10 1.580314672e-10 1.922391167e-10 3.806273571e-10 2.083811374e-10 2.243076471e-10 2.293531867e-10 2.476600037e-10 2.113670274e-10 1.370046161e-10 1.191023724e-10 3.249844138e-10 1.37431837e-10 1.398444715e-10 1.586343769e-10 1.780699557e-10 2.004023941e-10 1.464628047e-10 2.288206411e-11 1.001843603e-10 1.658774832e-10 2.884814304e-10 2.081977369e-10 3.648320515e-10 2.311178617e-10 1.379923735e-10 3.116974937e-10 1.436185911e-10 2.462304068e-10 2.426622378e-10 1.496801656e-10 1.425702455e-10 1.746525748e-10 1.520917299e-10 2.519483477e-10 1.868560522e-10 1.657672349e-10 9.284648678e-11 1.658474462e-10 1.148317962e-10 2.701665589e-10 1.841447149e-10 1.035419824e-10 1.251470386e-10 1.466249951e-10 2.986678095e-10 9.173670136e-11 1.265204112e-10 1.087958556e-10 1.614759884e-10 1.83721371e-10 2.226023554e-10 1.32563534e-10 1.058635955e-10 1.575577713e-10 4.675791383e-11 2.027239655e-10 1.004730132e-10 1.623073498e-10 5.893270861e-11 1.662800128e-10 1.654884833e-10 2.007194716e-10 2.540371015e-10 1.646352272e-10 2.738321956e-10 1.983125536e-10 3.10650551e-10 2.18611944e-10 1.596857415e-10 1.367833279e-10 1.30436256e-10 1.392766084e-10 2.885214871e-10 2.061908656e-10 1.897506477e-10 1.191654489e-10 1.701562123e-10 1.820684688e-10 2.128023149e-10 1.562378156e-10 1.63086364e-10 1.95081246e-10 1.54070494e-10 1.30770976e-10 3.798670635e-10 2.425282569e-10 1.144580755e-10 2.184245531e-10 3.404395901e-10 1.390719454e-10 1.490737461e-10 3.710658782e-10 2.817675774e-10 1.768298701e-10 2.010234463e-10 2.800873489e-10 3.057157556e-10 3.652171048e-11 1.267729215e-10 2.295995225e-10 1.482324678e-10 7.229809774e-11 2.36568288e-10 2.268982508e-10 1.399385725e-10 2.389132088e-10 2.604244692e-10 2.377069214e-10 1.76097003e-10 1.988631771e-10 1.186160805e-10 5.768157837e-11 1.3639414e-10 6.418945779e-11 1.583961797e-10 5.020041494e-11 5.642062382e-11 9.662007596e-11 1.628854045e-10 1.734121388e-10 9.039214186e-11 2.515210258e-11 5.651409993e-11 1.868963734e-10 2.16451895e-10 1.639479539e-10 8.49702932e-11 1.584581635e-10 1.794473714e-10 1.014607803e-10 1.016204293e-10 5.173640375e-11 1.129843816e-10 1.226793126e-10 2.538644249e-10 2.521448328e-10 5.645259349e-11 1.501084673e-10 1.37403356e-10 2.302286061e-10 5.421261801e-11 1.292098675e-10 1.009502389e-10 2.008326027e-10 1.559398962e-10 6.309792127e-11 1.392358947e-10 2.636663366e-10 1.308726604e-10 1.006842325e-10 8.383499827e-11 7.789705528e-11 2.342704333e-10 7.035745239e-11 1.819357962e-10 5.904820951e-11 5.948842011e-11 1.979880159e-10 1.3947066e-10 2.741615297e-10 1.731446032e-10 1.818880181e-10 8.675481864e-11 1.611257988e-10 8.383421113e-11 4.140608288e-11 8.66948679e-11 1.711419775e-10 2.072067364e-10 8.364069762e-11 5.856276551e-11 7.983979615e-11 1.108978989e-10 2.918288298e-10 1.064618231e-10 1.026655744e-10 1.171879301e-10 7.324099297e-11 1.681038781e-10 4.372398137e-11 5.246446008e-11 1.253676365e-10 5.693199095e-11 1.154161241e-10 1.27036575e-10 6.712538383e-11 1.805106156e-10 1.696604867e-10 1.176516397e-10 2.168847708e-10 6.646300563e-11 9.954482041e-11 2.367697887e-10 1.055916442e-10 1.349995854e-10 +6.475047345e-11 8.870708075e-11 2.009840906e-10 2.984827503e-11 2.898286836e-10 9.482993428e-11 5.955795292e-11 6.273006231e-11 6.972500338e-11 1.665292426e-10 6.996307382e-11 3.547266546e-11 9.8676494e-11 1.133655879e-10 1.57023919e-10 1.474857601e-10 3.340928093e-11 7.068250603e-11 2.19303695e-11 9.270272149e-11 1.731349655e-10 8.963383107e-11 5.827747315e-11 4.75431688e-11 2.216550965e-10 5.25074872e-11 7.304982019e-11 1.443200234e-10 9.328475882e-11 6.006857691e-11 1.966922369e-10 2.201360728e-10 2.24951084e-10 1.278390705e-10 1.310084857e-10 2.27203237e-10 1.011863408e-10 6.727588371e-11 1.089671887e-10 2.569105436e-10 3.719339227e-10 2.774061601e-10 8.892459933e-11 2.028402202e-10 1.706810317e-10 1.858158418e-10 9.501593374e-11 9.809997569e-11 1.975436933e-10 2.131952844e-10 1.522145453e-10 6.628643509e-11 1.165134232e-10 2.218212266e-10 1.457209956e-10 7.689922335e-11 1.244719265e-10 1.933108248e-10 1.139300116e-10 2.383145932e-11 3.010842687e-10 9.605899074e-11 3.355760216e-10 8.763414577e-11 2.622008228e-11 3.779300434e-10 1.104273719e-10 2.276742965e-11 4.157268924e-11 8.16114955e-11 7.487159287e-11 9.290901178e-11 1.096108382e-10 1.357598553e-10 1.00405243e-10 5.80798816e-11 1.318634293e-10 1.51472057e-10 1.393633861e-10 2.474769905e-10 1.010394257e-10 6.138649507e-12 1.349635499e-10 2.171870751e-10 1.618062641e-10 1.038532598e-10 9.291704327e-11 2.19218985e-10 7.921211416e-11 1.336311545e-10 2.690895158e-10 1.297847047e-10 1.57723413e-10 5.833801258e-11 2.244493874e-10 1.908162886e-10 1.245614833e-10 1.173738022e-10 2.542781022e-10 8.083921594e-11 2.03369622e-10 1.433461682e-10 5.535719056e-11 2.564450779e-10 2.322742321e-10 1.704834384e-10 1.101207688e-10 1.235637599e-10 1.471424047e-10 2.847773687e-10 1.437875241e-10 1.731496256e-10 1.659623376e-10 2.670822793e-10 1.944355386e-10 1.887357157e-10 1.076628772e-10 2.42568334e-10 2.05443822e-10 1.845508933e-10 2.063120576e-10 1.469882523e-10 4.391550916e-10 1.120667996e-10 1.902700227e-10 1.838750384e-10 3.553104811e-10 1.322686489e-10 2.165577081e-10 1.004149434e-10 5.856348696e-11 1.095485494e-10 2.510653346e-10 1.194469447e-10 2.17249774e-10 2.011319013e-10 1.52468944e-10 1.20463112e-10 2.551223989e-10 1.688727467e-10 1.135013927e-10 2.188483834e-10 2.425504729e-10 2.593639854e-10 2.110349678e-10 9.691349497e-11 4.015813482e-10 8.579032453e-12 2.078972187e-10 1.349108793e-10 2.132501965e-10 8.140368885e-11 2.589547329e-10 1.436635345e-10 1.034478524e-10 6.428044724e-11 1.552763618e-10 2.083138636e-10 9.195499465e-11 1.894236725e-10 2.027275867e-10 9.002716828e-11 1.729037e-10 1.709075013e-10 1.774358511e-10 1.340359455e-10 2.47008919e-10 3.489019665e-10 1.296483256e-10 1.984893474e-10 1.000221772e-10 2.530710037e-10 2.090635323e-10 1.77190991e-10 1.515663251e-10 3.232789343e-10 2.867560547e-10 1.496260261e-10 1.183692861e-10 2.41097112e-10 2.219420884e-10 3.712390565e-10 3.882359184e-10 6.402906232e-11 8.722730174e-11 8.22846001e-11 1.848200671e-10 1.278829381e-10 2.00205395e-10 1.629068457e-10 8.292521082e-11 1.592124861e-10 2.120006641e-10 1.823177228e-10 1.607023023e-10 4.363149342e-10 1.195180801e-10 4.128600544e-10 2.680511897e-10 1.486054516e-10 2.967965655e-10 1.269509507e-10 1.849508388e-10 2.130965937e-10 2.397084526e-10 3.691648077e-10 2.816370368e-10 8.905553563e-11 1.533356098e-10 1.923574823e-10 2.013635455e-10 1.231334275e-10 1.563507191e-10 1.245656992e-10 1.62374154e-10 1.095761362e-10 1.259160866e-10 6.741420465e-11 2.194572622e-10 7.393334023e-11 5.815148885e-11 7.228605517e-11 1.90488552e-10 2.246940572e-10 1.188599993e-10 2.218254396e-10 1.342808943e-10 1.889484616e-10 1.222288209e-10 1.746700587e-10 1.687656257e-10 1.194268117e-10 1.473598741e-10 2.0002178e-10 3.192830077e-10 9.953345586e-11 9.079965001e-11 1.752853029e-10 1.537890786e-10 1.882194717e-10 4.24438876e-11 1.188970019e-10 1.323046069e-10 1.836545534e-10 1.835214333e-10 1.836939705e-10 1.887439582e-10 1.651359727e-10 1.020101625e-10 1.435104307e-10 2.307309248e-10 7.21790144e-11 1.077363513e-10 1.956082817e-10 1.179935187e-10 1.717683496e-10 1.533166629e-10 1.418921929e-10 2.297620921e-10 3.483201854e-10 1.063296779e-10 1.073648765e-10 6.096998237e-11 1.663703306e-10 1.439620839e-10 3.624420976e-10 8.54096397e-11 2.289433354e-10 7.888922324e-11 2.049360924e-10 1.091992461e-10 1.080425106e-10 2.267118668e-10 1.271701488e-10 8.226127453e-11 1.834682139e-10 2.163562066e-10 1.999279779e-10 1.451468359e-10 7.479124152e-11 1.670568293e-10 5.783781547e-11 1.214744242e-10 9.029525636e-11 2.301474078e-10 2.314992899e-10 9.721672526e-11 7.660199691e-11 8.155668345e-11 1.129425799e-10 8.997658698e-11 9.329643266e-11 1.319657508e-10 5.743516569e-11 1.621291598e-10 6.862018145e-11 7.252951181e-11 1.191960307e-10 2.66333177e-10 1.986008267e-10 +8.039933214e-11 3.212874092e-11 2.348192135e-10 2.262799969e-10 1.35034895e-10 1.675468395e-11 1.024474174e-10 2.021986307e-10 1.192095789e-10 5.334725557e-11 1.140054359e-10 2.382009226e-10 4.892934969e-11 1.453866269e-10 5.825045821e-11 1.462581308e-10 1.842016183e-10 2.07931299e-10 5.57929646e-11 3.351653581e-11 8.600792089e-11 1.656725288e-10 1.027520885e-10 1.811010162e-10 1.748509429e-10 3.002813054e-10 9.073879977e-11 1.075289768e-10 1.417893221e-10 1.849127629e-10 2.679730073e-10 1.266173853e-10 6.240715064e-11 1.694705138e-10 1.346227061e-10 1.476862138e-10 2.119235364e-10 1.017306966e-10 2.892741371e-10 1.279840871e-10 5.139195344e-11 8.115860568e-11 1.829099531e-10 7.59069661e-11 2.84240978e-10 9.186490607e-11 2.187736399e-10 2.344242363e-10 6.705702927e-11 1.772447408e-10 5.155446775e-11 1.242536099e-10 1.463699014e-10 2.055969689e-10 2.007237167e-10 1.555774415e-10 7.620207214e-11 3.380978681e-10 9.894823242e-11 1.417243406e-10 3.131720897e-10 9.177533147e-11 2.090463368e-10 9.057506475e-11 1.348992051e-10 2.005652514e-10 7.752706845e-11 1.208771468e-10 4.263871441e-11 1.64064044e-10 2.087772097e-10 1.284070944e-10 3.479966555e-11 3.368128419e-10 3.224326232e-10 1.560756831e-10 6.179827188e-11 7.45643441e-11 4.293854627e-11 3.197704287e-10 1.294398445e-10 2.525478916e-10 5.85455741e-11 1.385393507e-10 1.243699352e-10 1.072713867e-10 1.267947532e-10 1.78220181e-10 1.351496489e-10 1.840670458e-10 1.488684644e-10 2.00364054e-10 2.484928706e-10 2.189069892e-10 1.265150979e-10 2.012314603e-10 2.314023215e-10 1.262407793e-10 4.927240536e-10 1.326859511e-10 2.873884962e-10 1.247677698e-10 5.736831665e-11 2.01014148e-10 2.545253329e-10 1.027362646e-10 1.683263684e-10 2.631558982e-10 3.244347121e-10 7.733983279e-11 1.846559383e-10 3.603614074e-10 1.264977992e-10 1.872856557e-10 2.260489367e-10 1.990858663e-10 2.066894037e-10 2.383565828e-10 1.972724799e-10 1.368749586e-10 3.417506888e-10 2.902706121e-10 1.49664841e-10 1.491545248e-10 1.569843765e-10 2.619868618e-10 2.387314691e-10 1.676644651e-10 1.533687072e-10 2.107742678e-10 1.415599214e-10 2.298692804e-10 1.901951449e-10 2.01082257e-10 1.3775559e-10 2.585752039e-10 1.255427956e-10 1.500605241e-10 1.918254008e-10 9.040049142e-11 2.6100086e-10 3.262656797e-10 1.231462308e-10 1.582798912e-10 1.030864285e-10 2.158541936e-10 7.968157053e-11 1.664352398e-10 2.568786838e-10 2.838683996e-10 3.377787798e-10 1.113938601e-10 2.13779758e-10 1.731921781e-10 1.634327741e-10 8.283176736e-11 2.050167798e-10 1.001736732e-10 1.577106208e-10 5.960998404e-11 2.674202239e-10 1.786397278e-10 1.109791916e-10 1.803250923e-10 1.724758312e-10 2.537564629e-10 1.145214733e-10 1.54421215e-10 9.899615902e-11 7.827613013e-11 1.374191791e-10 1.806891051e-10 4.7106269e-10 1.910517592e-10 1.102410889e-10 1.359136757e-10 1.050259672e-10 1.748350072e-10 1.269721314e-10 1.455448499e-10 1.059860004e-10 2.419010183e-10 3.292946418e-10 1.75895964e-10 1.68499512e-10 5.383897384e-11 2.304304823e-10 2.468333938e-10 2.496826926e-10 2.09866235e-10 1.857092347e-10 2.774727395e-10 2.751522984e-10 1.219126766e-10 2.994828751e-10 1.684092344e-10 2.712487235e-10 1.850334769e-10 1.832972918e-10 1.742558756e-10 2.677117725e-10 3.770970192e-10 8.774697223e-11 1.082871799e-10 2.557655621e-10 4.991145844e-10 2.268549976e-10 2.386436425e-10 1.924913286e-10 4.543757177e-10 1.45110628e-10 1.881765364e-10 2.212272667e-10 1.328704045e-10 5.044380825e-11 8.947537045e-11 2.593861694e-10 6.635129065e-11 1.045751173e-10 1.107404109e-10 9.93827441e-11 3.553854162e-10 9.799197395e-11 7.28237412e-11 1.587135952e-10 2.282242834e-10 3.104862591e-11 1.982432469e-10 1.248690102e-10 2.077677865e-10 1.9277076e-10 1.511252209e-10 7.095041308e-11 1.143852849e-10 1.316158218e-10 7.99389806e-11 1.5385055e-10 3.04938025e-10 1.554867597e-10 8.03767967e-11 1.215206718e-10 1.04838468e-11 1.653126619e-10 2.293599328e-10 1.149447856e-10 1.550453794e-10 1.49557897e-10 1.045935946e-10 8.763381499e-11 1.976852988e-10 1.761906185e-10 5.882545679e-11 1.246482294e-10 1.047620899e-10 1.928274441e-10 2.201937735e-10 3.885644252e-11 3.718059157e-10 2.247898536e-10 2.386979919e-10 4.458286603e-11 1.078049495e-10 8.765753784e-11 4.944930859e-11 5.75842823e-11 5.731404499e-11 1.359769601e-10 2.901897605e-10 2.413158878e-10 1.793637788e-10 1.10024645e-10 1.661826293e-10 1.414005632e-10 1.727982443e-10 1.776812297e-10 1.566841514e-10 5.35545458e-11 2.276343695e-11 1.16865303e-10 1.384364771e-10 1.297837836e-10 7.152853292e-11 8.154980699e-11 1.741134295e-10 5.118961748e-11 2.409163217e-10 1.284836225e-10 6.442382858e-11 2.296570944e-10 3.01353515e-11 7.163756589e-11 2.335182229e-10 1.958830694e-10 1.447773239e-10 4.760876516e-10 1.214602362e-10 8.391270584e-11 5.353078027e-11 1.036875884e-10 1.192567118e-10 +1.196656141e-10 6.035570203e-11 8.748330641e-11 1.301916701e-10 3.001668542e-10 1.098097681e-10 1.304676877e-10 4.757089622e-11 6.756846844e-11 8.843498867e-11 1.517434516e-10 3.604063893e-10 1.424976357e-10 1.140845856e-10 6.973531494e-11 8.032993146e-11 3.738879032e-11 1.219014004e-10 1.212866578e-10 7.943055427e-11 1.6180235e-10 1.107020783e-10 9.881995809e-11 4.706947027e-11 1.522423497e-10 2.36009496e-10 1.051472892e-10 1.321879482e-10 1.552490023e-10 1.598115604e-10 1.132069368e-10 1.755524933e-10 7.385403378e-11 1.86491734e-10 3.375684084e-10 1.32540511e-10 1.583276522e-10 1.408735133e-10 8.920765123e-11 1.767684902e-10 8.704098084e-11 1.791488361e-10 2.175772818e-10 7.436313499e-11 1.045319515e-10 3.065423297e-10 5.601775547e-11 1.219318842e-10 9.721503718e-11 4.039622843e-11 5.040686147e-11 1.303528944e-10 1.122091333e-10 1.031037528e-10 1.962840503e-10 7.524070682e-11 1.994517845e-10 1.115711498e-10 2.947529295e-10 7.771138532e-11 9.726247985e-11 2.580664975e-10 1.034087597e-10 2.38228686e-10 3.911888459e-10 1.789338341e-10 6.126585636e-11 1.209465726e-10 1.651946576e-10 2.115126701e-10 1.586719433e-10 1.672583723e-10 1.97505516e-10 3.724378656e-10 5.011610147e-11 9.035294771e-12 2.246648811e-10 1.020976539e-10 4.081505575e-11 1.529926568e-10 2.317223944e-10 1.323119789e-10 4.199149501e-10 1.219855333e-10 3.077317124e-10 3.002460761e-10 2.700625087e-10 3.983088407e-11 2.177043595e-10 3.112059316e-10 1.89692219e-10 1.450061781e-10 1.026049391e-10 2.158967001e-10 1.850272566e-10 3.641259752e-10 1.470844212e-10 3.355823578e-10 8.20771144e-11 3.39799089e-10 1.357446838e-10 3.318065165e-10 1.946648508e-10 2.027256772e-10 2.315514061e-10 2.329687832e-10 2.658280118e-10 2.681423521e-10 1.919596497e-10 1.639341168e-10 2.135831141e-10 8.368011915e-11 3.642182727e-10 2.054234603e-10 1.31900224e-10 1.364244152e-10 1.98260662e-10 1.967372974e-10 2.059247103e-10 1.490997455e-10 1.99657819e-10 2.01729808e-10 1.705308178e-10 1.679987652e-10 2.235224835e-10 1.877208383e-10 2.068220214e-10 1.149425504e-10 1.408769274e-10 1.9598778e-10 1.715409075e-10 2.18367893e-10 9.887877254e-11 2.689566047e-10 9.351727118e-11 1.140865284e-10 1.296268519e-10 2.715202655e-10 1.223773595e-10 1.855002934e-10 1.917705199e-10 4.413365966e-11 1.424634707e-10 1.23033779e-10 1.881161816e-10 2.185928166e-10 1.120172038e-10 1.751850034e-10 1.540872543e-10 3.89902748e-10 2.25553669e-10 1.601749692e-10 2.382180576e-10 3.03210054e-10 2.120744134e-10 1.890575252e-10 1.841460102e-10 1.205896978e-10 7.647365409e-11 1.51982633e-10 2.147221764e-10 1.196974864e-10 1.199716938e-10 3.03432071e-10 1.42376753e-10 3.204086107e-10 1.175020894e-10 1.053968748e-10 1.860219541e-10 1.020072313e-10 1.714142751e-10 1.329006423e-10 3.873181212e-11 8.457013392e-11 1.871638422e-10 3.501684587e-10 1.786297397e-10 2.435611637e-10 1.536015251e-10 2.276448724e-10 1.348734242e-10 1.048077998e-10 1.9153616e-10 1.582164912e-10 1.340619361e-10 1.45777915e-10 1.374769667e-10 1.303175516e-10 2.83425358e-10 6.79534715e-11 1.639963052e-10 2.338174759e-10 1.200604846e-10 2.574260005e-10 1.617514153e-10 2.569491504e-10 2.689328552e-10 1.601646028e-10 1.979399981e-10 2.431033235e-10 2.594958254e-10 2.611696617e-10 3.887064321e-10 1.538591466e-10 1.603085459e-10 2.431477152e-10 2.5267997e-10 2.145765017e-10 1.479981131e-10 2.824265968e-10 3.672494824e-10 2.492498813e-10 1.563831092e-10 1.941793307e-10 2.47564042e-10 7.658576755e-11 3.006295347e-11 8.686891849e-11 5.481397173e-11 8.476018898e-11 2.281738528e-10 1.864352188e-11 1.018282248e-10 1.177226874e-10 6.591705594e-11 2.02043391e-10 1.447527389e-10 1.30204803e-10 6.978402806e-11 2.281362181e-10 1.367391126e-10 1.618374197e-10 1.509773475e-10 7.760569044e-11 9.901384019e-11 2.022248486e-10 1.197789177e-10 6.129920578e-11 2.023665986e-10 3.589879391e-10 4.385431787e-11 2.217135573e-10 1.998362151e-10 1.452626605e-10 2.920350242e-10 2.306453218e-10 1.215980472e-10 2.324338712e-10 2.232000311e-10 1.695562955e-10 1.009049619e-10 1.943101856e-10 4.093257703e-11 1.143746567e-10 8.055779996e-11 2.807132044e-10 1.153589861e-10 8.622307362e-11 1.256734242e-10 1.195862805e-10 6.619119364e-11 1.966562798e-10 1.142185567e-10 8.553558315e-11 1.22918963e-10 1.710127513e-10 1.083489409e-10 7.921689225e-11 1.609683423e-10 7.928369555e-11 5.667611867e-11 1.59433469e-10 1.48089036e-10 1.555284426e-10 1.792431899e-10 7.642824274e-11 6.353291479e-11 6.7158747e-11 1.895781415e-10 1.385784214e-10 1.251150291e-10 2.647218319e-10 8.938459069e-11 2.032885519e-10 5.397453269e-11 1.264120519e-10 8.375045504e-11 5.450706765e-11 1.166490007e-10 1.041038183e-10 2.021745209e-10 9.303677912e-11 1.435091687e-10 1.060268972e-10 5.384378171e-11 1.189953103e-10 1.412240092e-10 1.31396222e-10 1.60484602e-10 1.762449558e-10 +7.496922262e-11 1.181917476e-10 2.413518228e-10 2.284886915e-10 1.104521159e-10 2.742425651e-10 1.687489858e-10 1.900859512e-10 1.896176763e-10 1.349214448e-10 2.799840908e-10 2.154965737e-10 1.310343544e-10 4.583647972e-11 2.549826319e-10 1.333766595e-10 1.504184334e-10 9.814641541e-11 4.698123278e-11 2.521673306e-11 6.409036408e-11 1.186247184e-10 1.701243398e-10 8.71717322e-11 4.371886612e-11 1.593157983e-10 3.369741821e-10 2.025197215e-10 9.564359506e-11 1.068111883e-10 6.625717611e-11 2.147903407e-10 1.796616049e-10 2.63866103e-10 2.226747945e-10 6.370501314e-11 1.690180773e-10 1.643340114e-10 1.211189736e-10 2.759615439e-10 1.568491186e-10 7.713274726e-11 1.091505654e-10 2.084617959e-10 6.66311798e-11 1.752427948e-10 6.68851567e-11 1.357449391e-10 9.800521527e-11 1.063449194e-10 1.793454569e-10 6.059555015e-11 9.158937223e-11 1.801769673e-10 2.297228848e-10 1.478071403e-10 1.722454843e-10 6.613595285e-11 2.319791926e-10 9.877833881e-11 8.812172707e-11 9.348591988e-11 1.908615821e-10 7.79382001e-11 8.118139136e-11 6.718048989e-11 2.321104799e-10 6.59215759e-11 1.131014826e-10 1.575740525e-10 9.713402148e-11 2.473391806e-10 2.484107685e-10 7.765010986e-11 1.599696828e-10 2.838532751e-10 7.032075775e-11 2.973568935e-10 8.494264612e-11 3.321484602e-11 2.125302361e-10 2.014207152e-10 1.143696674e-10 1.593697481e-10 1.198133745e-10 3.165972473e-10 3.494745901e-10 2.451785992e-10 2.356676974e-10 3.225811369e-10 9.554867581e-11 1.746138112e-10 1.485290749e-10 2.113403998e-10 3.54681345e-10 2.974779864e-10 3.086811005e-10 4.698881607e-10 1.003692168e-10 1.353343278e-10 2.241438812e-10 1.931026895e-10 2.251946441e-10 3.137186166e-10 1.736984745e-10 3.89953057e-10 1.558239552e-10 1.311484321e-10 4.235601593e-10 1.90029692e-10 3.435469109e-10 2.685721233e-10 1.211050654e-10 2.776624093e-10 2.149695318e-10 1.598599062e-10 2.566825105e-10 8.703025135e-11 1.889475854e-10 1.959305705e-10 1.338699655e-10 1.703462359e-10 2.834809908e-10 8.276489462e-11 1.577119713e-10 1.687550898e-10 2.192093345e-10 2.082926336e-10 1.309650322e-10 1.254143031e-10 1.318916192e-10 1.552632324e-10 1.525864813e-10 2.829889192e-10 1.567560886e-10 1.419791386e-10 2.119072051e-10 2.104416863e-10 2.371079946e-10 2.126203667e-10 1.827449971e-10 1.467720785e-10 3.014270876e-10 2.62200734e-10 1.098479025e-10 1.750080439e-10 1.637138444e-10 2.404276018e-10 1.647303355e-10 2.416703564e-10 2.23711494e-10 2.093123554e-10 1.426584121e-10 3.212179844e-10 1.455204472e-10 1.636141043e-10 1.327694138e-10 1.568088209e-10 1.746434258e-10 1.988876132e-10 1.377857244e-10 1.740344346e-10 2.699015633e-10 1.745977981e-10 1.549532701e-10 1.514350004e-10 1.645370909e-10 2.180171145e-10 2.541870586e-10 1.686347654e-10 2.039547638e-10 3.75487652e-10 2.020887386e-10 2.098872292e-10 2.895284557e-10 1.415701606e-10 1.98617765e-10 2.028006445e-10 1.501719457e-10 1.578076827e-10 1.863310161e-10 1.702536523e-10 2.164462671e-10 2.149408388e-10 2.376493133e-10 1.830870929e-10 1.790123704e-10 2.86803885e-10 2.240722392e-10 1.933369466e-10 3.339481852e-10 3.024107987e-10 1.704060922e-10 2.751697557e-10 2.427755014e-10 1.004860617e-10 2.629598228e-10 2.391314641e-10 2.822055132e-10 2.373488354e-10 5.377680206e-11 3.566801712e-10 2.506191432e-10 2.235121473e-10 3.981160345e-10 2.630741715e-10 1.980520634e-10 1.783225212e-10 2.54509526e-10 9.926088048e-11 2.655228819e-10 2.795708942e-10 2.414008407e-10 1.290040391e-10 3.490087907e-10 1.243755872e-10 1.179102919e-10 1.9809523e-10 6.763352966e-11 4.942467789e-11 8.324644461e-11 9.12930754e-11 1.746783639e-10 9.702496606e-11 1.383030414e-10 1.982678889e-10 1.190989727e-10 6.994123519e-11 1.598756471e-10 1.005347507e-10 1.785518513e-10 2.901418765e-10 1.550447195e-10 4.395153226e-11 1.763622301e-10 3.244006673e-11 2.383692053e-10 1.153122246e-10 2.043727159e-10 2.140860712e-10 1.329973099e-10 5.937465862e-11 1.634947176e-10 1.850174541e-10 4.209675574e-11 1.134271688e-10 1.594698662e-10 2.124086442e-10 1.656830294e-10 1.319215779e-10 9.93076601e-11 1.431141392e-10 7.470813226e-11 1.199189415e-10 1.085558419e-10 5.835939942e-11 2.490494686e-10 1.219088175e-10 1.520269093e-10 1.986175539e-10 2.043391686e-10 1.641642148e-10 1.294192647e-10 1.177317345e-10 1.032979501e-10 9.879592403e-11 2.222884823e-10 1.914515667e-10 1.20916767e-10 4.558973235e-11 4.202753867e-11 1.080355574e-10 1.397124739e-10 5.985549368e-11 1.304487672e-10 1.755338193e-10 9.761827071e-11 1.325573079e-10 1.766824709e-10 3.813156736e-11 1.792142769e-10 1.840394609e-10 1.016464118e-10 2.342124805e-10 1.938794205e-10 8.653453733e-11 1.290249946e-10 8.856732712e-11 9.562227478e-11 8.981225919e-11 7.304514288e-11 2.648371481e-10 1.102542261e-10 3.873344629e-11 2.576671224e-10 8.41455887e-11 1.313592086e-10 2.16114832e-10 1.967358817e-10 4.22456262e-11 +1.697647044e-10 1.300603641e-10 2.029435863e-10 4.884695878e-11 3.833313762e-10 1.55627839e-10 6.836971082e-11 7.856258884e-11 1.073678353e-10 5.894798186e-11 8.654942363e-11 7.535447046e-11 5.046675171e-11 1.499269677e-10 1.063319467e-10 5.282686462e-11 2.457655489e-10 9.215784799e-11 1.061531923e-10 1.410523457e-10 6.270214382e-11 8.227837743e-11 1.515483858e-10 5.390936696e-11 1.3962443e-10 1.106043391e-10 8.738313766e-11 7.637287856e-11 9.963068104e-11 5.45458915e-11 2.248519395e-10 1.182315252e-10 1.544693564e-10 2.047077482e-10 8.967484596e-11 1.710047583e-10 2.664548195e-10 1.512476488e-10 1.644149536e-10 1.778050774e-10 7.69323988e-11 1.465181898e-10 1.870223648e-10 1.186216209e-10 1.274389527e-10 1.838721158e-10 2.784936884e-10 1.18039994e-10 2.126297948e-10 1.128580817e-10 1.443781049e-10 9.533432691e-11 8.497557679e-11 2.289860375e-10 1.698943292e-10 2.352714249e-10 9.845558371e-11 1.826741237e-10 1.967121201e-10 2.916797139e-10 2.935173782e-10 2.680548958e-10 1.575086276e-10 2.676149664e-10 2.368544936e-10 1.236403037e-10 1.574714916e-10 1.253116219e-10 1.785431203e-10 1.577728878e-10 2.414195649e-10 4.920647982e-11 1.395758363e-10 1.357234984e-10 1.014162173e-10 3.059634808e-10 9.241189946e-11 3.534582685e-10 1.13441632e-10 7.207953198e-11 8.177432284e-11 1.494900299e-10 7.766915449e-11 6.290444871e-11 2.076334455e-10 3.880211511e-10 1.85087785e-10 2.82803818e-10 2.798778826e-10 8.830841942e-11 2.306341276e-10 2.004489096e-10 1.990734547e-10 1.726544846e-10 1.494986143e-10 1.958194055e-10 2.17281903e-10 1.450654617e-10 1.564886588e-10 2.006507796e-10 3.438732382e-10 1.73786257e-10 2.222622677e-10 9.768729324e-11 1.493930229e-10 1.834435346e-10 2.086589822e-10 1.907629348e-10 3.112851025e-10 3.127818536e-10 3.498678072e-10 1.110467819e-10 1.443029698e-10 2.488070355e-10 2.379747978e-10 2.587928369e-10 1.731610789e-10 1.940950276e-10 1.888172276e-10 1.227623344e-10 1.585840267e-10 9.526691188e-11 2.724052068e-10 9.186153873e-11 3.326594214e-10 2.074897944e-10 1.008162099e-10 1.494959572e-10 3.019512502e-10 1.200500901e-10 1.955193501e-10 2.328437763e-10 1.154606316e-10 1.181887488e-10 1.441043312e-10 8.738346121e-11 1.251562053e-10 1.994855723e-10 9.597195613e-11 1.528053395e-10 1.760859571e-10 1.763292414e-10 1.002891529e-10 1.923242978e-10 1.959025911e-11 1.581254751e-10 1.352463365e-10 9.732365648e-11 1.660473559e-10 1.975854483e-10 2.155762431e-10 1.802993844e-10 1.286916986e-10 2.817231869e-10 2.225039562e-10 2.018427464e-10 2.455860152e-10 3.410065463e-10 1.532156628e-10 1.354973269e-10 2.593331249e-10 1.266134456e-10 2.510817598e-10 2.5749665e-10 2.147393353e-10 1.321340569e-10 1.895704707e-10 1.683976053e-10 2.206346336e-10 1.748903854e-10 1.164120977e-10 2.452770278e-10 1.337794331e-10 6.550661895e-11 1.948757611e-10 1.758686373e-10 1.068942164e-10 1.538634109e-10 1.152702691e-10 2.287309406e-10 1.2822027e-10 2.557988118e-10 1.747976061e-10 1.753924806e-10 1.825042935e-10 1.661935124e-10 2.949115816e-10 1.698237814e-10 1.24553108e-10 1.594626835e-10 2.624670534e-10 1.679571811e-10 3.990207321e-10 1.312087755e-10 2.083824242e-10 1.824598886e-10 2.78136097e-10 1.403129651e-10 1.934372205e-10 3.277500068e-10 2.744747297e-10 1.68296576e-10 2.80225333e-10 2.424122995e-10 2.495156969e-10 5.705564892e-11 2.113453635e-10 1.379477065e-10 1.884510626e-10 1.851331045e-10 2.804130547e-10 5.909100667e-11 1.663466608e-10 9.534544367e-11 1.401943523e-10 8.502534056e-11 1.48175815e-10 1.488639788e-10 1.187492291e-10 6.716650444e-11 1.978863444e-10 1.193788391e-10 1.51579154e-10 1.380429232e-10 5.666810867e-11 9.38049721e-11 2.348572643e-10 2.655358748e-10 6.440236805e-11 2.26492795e-10 2.181076517e-11 1.676529475e-10 5.713227817e-11 1.046246167e-10 1.104410479e-10 1.572127579e-10 1.154289931e-10 1.004301327e-10 1.50647407e-10 1.70482493e-10 3.267334572e-10 1.621524976e-10 1.212387288e-10 9.243092546e-11 3.704130244e-10 1.6063395e-10 8.405162555e-11 9.36054469e-11 9.672213062e-11 2.446238256e-10 1.524896801e-10 1.555699177e-10 4.877213161e-11 1.069802856e-10 2.858066981e-10 1.733124331e-10 3.190584383e-10 9.448539132e-11 1.135829503e-10 3.474850416e-10 2.137060892e-10 3.920990682e-11 5.749919591e-11 8.207064906e-11 1.98569885e-10 4.775775204e-11 1.990783236e-10 8.533649127e-11 5.957100571e-11 7.312803247e-11 7.09951319e-11 1.142286099e-10 7.088442718e-11 1.094042907e-10 1.461800288e-10 9.935488613e-11 9.698027602e-11 7.721119403e-11 1.144012223e-10 5.738344027e-11 1.52440194e-10 2.074875094e-10 2.001053905e-10 1.138407118e-10 3.711857287e-11 1.406887501e-10 8.436957193e-11 7.998920237e-11 2.102514194e-10 8.669217413e-11 1.346342899e-10 1.809707666e-10 8.585474133e-11 7.664424461e-11 2.464329012e-10 2.392004841e-11 9.588581407e-11 5.654709595e-11 2.736430007e-10 9.860853631e-11 +1.680886201e-10 3.306292814e-11 1.686698517e-10 1.205963284e-10 7.6493723e-11 1.521854713e-10 6.167144773e-11 7.97301276e-11 7.786038334e-11 1.290796127e-10 1.514704082e-10 3.592966773e-11 2.087353885e-10 2.274701184e-10 1.318543822e-10 1.168902162e-10 3.56903235e-10 2.022860297e-10 3.359548135e-10 1.53064968e-10 2.51225754e-10 2.757907856e-10 6.061612226e-11 1.578133795e-10 2.816737034e-10 1.478239614e-10 9.751521229e-11 1.065645586e-10 3.672139254e-10 2.409995202e-10 7.467021164e-11 1.086394322e-10 1.615692458e-11 1.217792621e-10 1.620165459e-10 1.37897989e-10 2.067423658e-10 2.455011536e-10 1.104997453e-10 9.734973748e-11 1.327217343e-10 3.2111521e-10 1.637736236e-10 1.958849417e-10 1.246094028e-10 1.405140518e-10 1.93917176e-10 1.491283187e-10 1.512675654e-10 9.494199122e-11 1.886607023e-10 1.310080448e-10 1.106220549e-10 1.263657715e-10 8.960996546e-11 1.035884255e-10 1.772392204e-10 1.675444508e-10 8.927064355e-11 2.505165804e-10 1.249889827e-10 2.094023869e-10 6.773836656e-11 2.027500538e-10 1.218390959e-10 1.795739238e-10 9.327308979e-11 1.944911865e-10 1.485948398e-10 2.088244654e-10 1.539601387e-10 9.107461291e-11 2.168703211e-10 1.147880514e-10 9.685596423e-11 5.183070748e-11 2.021957233e-10 1.521770916e-10 5.622302403e-11 2.06501347e-11 1.066883091e-10 1.048953908e-10 1.13899135e-10 1.383604361e-10 3.815826646e-10 2.520459606e-10 1.188722069e-10 2.638103593e-10 1.099013267e-10 2.052202255e-10 2.507099712e-10 2.823224706e-10 2.355101447e-10 3.330537717e-10 1.753644478e-10 2.245200338e-10 2.031149838e-10 2.425217803e-10 9.000199986e-11 1.847218894e-10 2.636468219e-10 1.407974247e-10 1.637499288e-10 2.510237409e-10 2.387822291e-10 2.900152793e-10 1.248440747e-10 2.031343847e-10 2.159654796e-10 1.567361868e-10 1.633800668e-10 3.160718145e-10 2.805320359e-10 1.812217193e-10 1.343175089e-10 1.220839722e-10 1.807953573e-10 1.614179966e-10 1.289595923e-10 1.306426376e-10 1.065127561e-10 9.132183116e-11 3.571765959e-10 2.055066838e-10 2.011904397e-10 3.200609279e-10 1.404782199e-10 3.701675742e-10 1.743132045e-10 9.617657779e-11 1.056182779e-10 1.37676565e-10 1.705178458e-10 9.432061924e-11 1.691014571e-10 1.96673262e-10 2.211759508e-10 2.53711245e-10 2.811891319e-10 1.229681889e-10 1.49585205e-10 3.940955238e-10 1.090325229e-10 1.478343249e-10 1.515531024e-10 9.124299057e-11 2.603490024e-10 1.656148976e-10 2.040308211e-10 1.358831684e-10 1.065006846e-10 1.113473484e-10 2.671436004e-10 7.976376238e-11 1.561048947e-10 2.432617749e-10 2.03344771e-10 1.175908305e-10 5.935391386e-11 1.246148789e-10 1.257462264e-10 1.621249484e-10 9.785147062e-11 1.92999209e-10 2.016151103e-10 1.946059025e-10 1.685946212e-10 1.99574233e-10 2.916300692e-10 2.673006533e-10 2.455806202e-10 2.845200002e-10 1.175422786e-10 1.441346301e-10 1.643680537e-10 2.66165922e-10 1.644110116e-10 1.268170219e-10 1.345873096e-10 1.788013602e-10 1.150250929e-10 1.656945562e-10 2.147331107e-10 1.368125945e-10 3.423505994e-10 1.7961926e-10 1.771453754e-10 2.209821887e-10 2.100612934e-10 1.544854845e-10 1.939855753e-10 2.626366343e-10 1.590272479e-10 1.909478575e-10 2.376043344e-10 3.30547265e-10 2.093290236e-10 1.558011879e-10 2.16309923e-10 2.271746424e-10 1.623526818e-10 1.895745867e-10 3.203426381e-10 2.64586102e-10 2.457709583e-10 1.767842588e-10 6.78253822e-11 1.948924919e-10 2.506979538e-10 2.259177525e-10 2.006123346e-10 1.886457841e-10 4.197901607e-10 1.156929821e-10 1.387042005e-10 1.699270917e-10 2.604424166e-10 8.004569469e-11 1.111176645e-10 1.880726371e-10 1.93476807e-10 1.281461422e-10 1.406316459e-10 1.552461946e-10 4.737163814e-11 1.677903168e-10 2.1057406e-10 2.117916774e-10 6.036615379e-11 3.051778036e-10 1.357324724e-10 1.357589259e-10 2.351379181e-10 1.744730966e-10 1.816149189e-10 1.026812817e-10 1.293169525e-11 2.485779883e-10 1.358042468e-10 4.424998917e-10 1.636671276e-10 2.162383717e-10 1.652088298e-10 1.864700802e-10 8.627318941e-11 8.442057793e-11 1.239358187e-10 2.325948524e-10 2.455405089e-10 1.37835054e-10 9.50875052e-11 1.546607826e-10 1.138546635e-10 7.443318669e-11 1.989340249e-10 8.741403785e-11 1.408847348e-10 2.544817417e-10 1.527982767e-10 1.471209006e-10 8.57975046e-11 1.191274237e-10 2.523474597e-10 1.354668775e-10 2.484498818e-10 1.393277959e-10 1.337208161e-10 2.075425439e-10 2.606986075e-10 2.525258154e-10 1.92202082e-10 1.422878576e-10 1.066184618e-10 4.099831089e-11 7.069109184e-11 1.479684494e-10 8.408117152e-11 5.552286227e-11 1.308508457e-10 7.075845558e-11 2.728089004e-10 1.28228407e-10 6.437089465e-11 1.571705433e-10 3.026219086e-10 1.668416578e-10 2.08683182e-10 4.321371786e-11 1.232711009e-10 1.205914942e-10 1.613245506e-10 1.96785644e-10 8.741370411e-11 2.105822596e-10 9.150713512e-11 5.131747632e-11 1.227894514e-10 1.063619466e-10 1.259332582e-10 1.202220481e-10 +6.812977095e-11 9.956616161e-11 2.355278121e-10 1.361553056e-10 1.977152094e-10 1.502801829e-10 1.723226936e-10 7.978656985e-11 1.992343244e-10 2.725373879e-10 1.959319274e-10 1.406006282e-10 2.782267671e-10 6.974457697e-11 1.580694672e-10 1.228679265e-10 1.884473138e-10 1.860930699e-10 4.552454783e-10 2.004817746e-10 4.623093279e-11 1.301164179e-10 1.465898932e-10 1.127651171e-10 6.208317885e-11 1.514527201e-10 6.820890003e-11 2.216870257e-10 8.359608362e-11 3.741682701e-10 1.630499982e-10 1.519767183e-10 1.874744965e-10 1.408243312e-10 1.328146897e-10 9.452186005e-11 1.368587387e-10 8.610656189e-11 1.90521895e-10 1.264760839e-10 1.885164756e-10 2.22945713e-10 2.504923175e-10 1.65594604e-10 3.526276035e-10 2.725187277e-10 2.033173413e-10 1.431491926e-10 2.370134155e-10 1.045673949e-10 9.678195619e-11 2.455526154e-10 7.51351837e-11 1.046130211e-10 1.726944478e-10 2.020975629e-10 2.169032874e-10 2.165315948e-10 3.491980864e-11 1.881304207e-10 8.795889536e-11 1.179376763e-10 9.836475399e-11 1.904243465e-10 2.070833074e-10 1.537524559e-10 1.699385969e-10 2.054439396e-10 2.897653433e-10 2.569418784e-10 2.375152244e-10 2.34075136e-10 2.8871071e-10 1.182164081e-10 9.273381593e-11 1.144150863e-10 3.230049985e-10 2.460327017e-10 2.982805976e-10 2.653054781e-10 4.834766061e-11 1.779696239e-10 2.150165819e-10 1.566074796e-10 9.980929926e-11 1.58693971e-10 2.064924546e-10 3.250555289e-10 1.858658192e-10 9.379701967e-11 2.116135963e-10 1.699293683e-10 1.806706034e-10 3.531032575e-10 1.165125626e-10 1.606816976e-10 1.793576958e-10 1.608785987e-10 1.272088903e-10 3.224996113e-10 2.121126564e-10 2.667158894e-10 1.759527601e-10 2.502113889e-10 1.424576051e-10 2.008830742e-10 2.371743712e-10 2.041358836e-10 2.708270536e-10 3.462321187e-10 3.491315759e-10 1.186817435e-10 1.228267389e-10 2.54796957e-10 1.650909812e-10 1.58479562e-10 3.631367431e-10 1.661308866e-10 1.41418471e-10 1.653204389e-10 2.07698422e-10 1.253528265e-10 1.657541138e-10 1.29570716e-10 2.207355826e-10 2.483859072e-10 3.552508437e-10 1.413303007e-10 2.948882808e-10 3.156475514e-10 1.325636437e-10 1.439774231e-10 2.38762073e-10 1.949565519e-10 1.271956422e-10 1.150001376e-10 1.537760361e-10 1.708570159e-10 2.26276418e-10 2.718542992e-10 1.684253992e-10 1.040357332e-10 1.364150491e-10 1.711467894e-10 5.990109238e-11 1.541943165e-10 9.792365261e-11 1.777918797e-10 1.959840567e-10 3.393332851e-10 2.030867806e-10 8.299103392e-11 2.440872522e-10 1.282324042e-10 1.487392728e-10 6.555143341e-11 1.205455976e-10 1.806967412e-10 2.356017593e-10 2.316980239e-10 8.042933312e-11 1.479076185e-10 9.329361042e-11 1.52543102e-10 1.913230389e-10 1.470165956e-10 1.717433411e-10 1.828592271e-10 1.322568448e-10 9.501568298e-11 1.640186041e-10 7.967452935e-11 2.76169755e-10 9.726503928e-11 2.940883438e-10 1.464250182e-10 1.707260078e-10 9.760150328e-11 1.691979879e-10 1.191576074e-10 1.734329154e-10 2.487025814e-10 2.446366553e-10 1.904455206e-10 2.553460607e-10 1.136807449e-10 2.32565115e-10 1.520670443e-10 1.506052679e-10 1.701911912e-10 3.685872857e-10 1.276421946e-10 2.572989014e-10 3.96922954e-10 3.022751907e-10 2.413341477e-10 3.895916207e-10 3.0604867e-10 2.434820167e-10 3.420354581e-10 2.896193245e-10 2.353567004e-10 2.98073235e-10 1.379606222e-10 2.222239515e-10 3.255730211e-10 1.640739253e-10 1.635270897e-10 2.091377715e-10 2.024467904e-10 3.344213006e-10 1.145539598e-10 2.039661006e-10 1.51245258e-10 2.091237015e-10 3.250209305e-10 1.556216918e-10 2.690068435e-10 1.783764334e-10 8.205094814e-11 1.766590424e-10 1.263540332e-10 1.554225834e-10 2.081093398e-10 6.114069065e-11 2.312845216e-10 1.898527355e-10 1.57660736e-10 3.0207071e-10 1.69393583e-10 1.307548004e-10 1.436054524e-10 1.796162713e-10 7.787855113e-11 4.927570774e-11 5.934606717e-11 2.248820313e-10 1.480265921e-10 5.590592253e-11 1.909510282e-10 1.520602539e-10 1.155479192e-10 1.017141073e-10 9.671004993e-11 1.560256215e-10 1.734825495e-10 1.678003369e-10 2.111224708e-10 1.713967622e-10 8.534148347e-11 8.346348648e-11 4.840502014e-11 6.804116578e-11 7.44306232e-11 1.481319267e-10 2.783370649e-10 1.71176584e-10 1.55710701e-10 4.232499875e-11 1.401420018e-10 7.934820175e-11 2.620733308e-10 4.46408888e-11 2.137901738e-10 5.181074929e-11 2.363662599e-10 4.40694513e-10 1.494299704e-11 1.559054267e-10 1.490275995e-10 1.428723409e-10 1.398833112e-10 9.681555325e-11 2.004178924e-10 1.649324386e-10 4.360752738e-11 6.655774276e-11 1.510645871e-10 1.621117402e-10 1.452774883e-10 5.012111935e-11 6.589468325e-11 1.841035989e-10 7.92954432e-11 1.181140499e-10 2.969466803e-10 3.173477344e-10 1.272973704e-10 1.186401863e-10 2.116156992e-10 2.155168307e-10 1.755926493e-10 7.457378358e-11 1.694092247e-10 9.045487086e-11 1.047090504e-10 1.887787858e-10 1.802890622e-10 6.290628257e-11 1.797034269e-10 +1.327973238e-10 1.256314992e-10 8.103381034e-11 1.839726062e-10 2.481677049e-10 1.181957922e-10 2.151219866e-10 2.907071621e-10 1.319922139e-10 3.304312654e-10 1.145690934e-10 1.047411118e-10 1.056024448e-10 1.032369184e-10 1.975929433e-10 8.883403346e-11 2.015004227e-10 3.124397682e-10 1.488375737e-10 7.707840003e-11 3.048818064e-10 7.60467937e-11 5.58401378e-11 2.54629473e-10 2.562626798e-10 1.017410472e-10 2.008768087e-10 1.985935187e-10 2.625913959e-10 3.667645853e-11 2.884779613e-10 1.526964565e-10 7.337607298e-11 7.045517401e-11 1.45483224e-10 1.167997644e-10 7.551884806e-11 2.655740252e-11 1.519421406e-10 1.890784875e-10 1.693856227e-10 1.027983248e-10 2.692446592e-10 2.00098464e-10 2.494232042e-10 1.953232712e-10 1.814648531e-10 1.268498252e-10 3.463739751e-11 1.00128768e-10 1.28116617e-10 1.615976955e-10 1.350901323e-10 2.430908134e-10 1.138631261e-10 2.342114343e-10 1.395231766e-10 2.161673824e-10 1.583760985e-10 1.366195205e-10 2.044765517e-10 2.166357083e-10 1.887958697e-10 2.472765352e-10 2.181732682e-10 1.212867005e-10 1.904408682e-10 8.950226866e-11 1.222566319e-10 1.733815006e-10 1.861747354e-10 6.975109924e-11 9.258884211e-11 1.947553681e-10 6.804860762e-11 1.34889901e-10 2.182231643e-10 1.161007949e-10 2.043873164e-10 1.621061784e-10 1.94681968e-10 7.953056719e-11 2.090875952e-10 2.125887888e-10 1.160185866e-10 3.033750081e-10 1.418348529e-10 3.985271744e-10 3.556701375e-10 1.328800176e-10 8.554821623e-11 2.176148241e-10 1.480356923e-10 3.252072533e-10 3.340146135e-10 3.115813455e-10 2.277357047e-10 1.953915496e-10 1.986904272e-10 2.452830408e-10 1.84746591e-10 2.592266189e-10 1.71890572e-10 2.267044664e-10 2.512490064e-10 2.40305259e-10 1.776013693e-10 1.32516552e-10 3.308113077e-10 8.482421275e-11 3.986189513e-10 2.244456864e-10 2.284730849e-10 1.762524211e-10 4.221172348e-11 2.645648893e-10 2.588008509e-10 2.563487727e-10 3.483656302e-10 2.590417528e-10 1.65254232e-10 2.013623018e-10 1.724456318e-10 2.055415167e-10 1.86880193e-10 1.984888606e-10 1.979101368e-10 1.66954018e-10 1.607797478e-10 2.144418502e-10 1.367040148e-10 2.149309795e-10 2.89490868e-10 1.962630889e-10 1.282426226e-10 2.981662545e-10 1.30626622e-10 1.02387766e-10 2.005937249e-10 1.817266072e-10 2.190681477e-10 1.440634033e-10 2.174903926e-10 1.298815084e-10 2.810013118e-10 2.305783429e-10 2.291356435e-10 1.498582585e-10 2.085038782e-10 2.105831165e-10 1.827530829e-10 1.615333632e-10 1.494900435e-10 1.280239346e-10 3.591900562e-10 1.885931629e-10 1.69052516e-10 1.913410617e-10 2.10058056e-10 2.443924912e-10 2.020634509e-10 2.636168377e-10 2.364717681e-10 2.15099718e-10 1.325137211e-10 1.801822197e-10 1.207015015e-10 1.072501502e-10 2.312598439e-10 1.92325104e-10 1.440215515e-10 3.485293463e-10 2.538215996e-10 2.824157504e-10 1.848320657e-10 2.535817865e-10 1.08610106e-10 1.185817337e-10 2.098431925e-10 2.205229174e-10 1.557277522e-10 2.497510761e-10 2.189991842e-10 1.48436841e-10 1.287696436e-10 1.626096109e-10 2.109571545e-10 2.642491259e-10 1.862515084e-10 2.84489615e-10 1.882984148e-10 2.741542266e-10 3.119592691e-10 2.746518004e-10 2.015973792e-10 2.988306367e-10 1.679791803e-10 3.470287072e-10 1.774479699e-10 3.240970786e-10 2.273417328e-10 3.313397155e-10 2.095210623e-10 1.441060012e-10 3.455031898e-10 3.057448854e-10 2.558960705e-10 2.999183415e-10 2.057290682e-10 2.198167043e-10 1.007539524e-10 1.234447552e-10 1.835860719e-10 1.868637949e-10 7.689085251e-11 1.751736545e-10 3.245333441e-10 1.129700241e-10 1.123199737e-10 1.837261261e-10 1.133329117e-10 1.892581167e-10 1.979699156e-10 2.038977303e-10 1.308227811e-10 2.1347133e-10 2.56581281e-10 1.664743575e-10 2.648728026e-10 9.894246806e-11 2.118066065e-10 1.522031043e-10 1.28126308e-10 9.705133284e-11 1.811448342e-10 2.481983668e-10 7.228739109e-11 8.988371038e-11 1.929753942e-10 3.09584694e-10 1.00383437e-10 1.272425189e-10 1.715554001e-10 1.893637552e-10 1.49425685e-10 1.807870904e-10 1.555299281e-10 2.978334514e-10 1.099295809e-10 1.626801781e-10 1.468983314e-10 9.722913883e-11 1.426312403e-10 1.614144324e-10 2.202232281e-10 4.653192453e-11 1.119158718e-10 8.959889559e-11 1.282264461e-10 3.296973412e-10 1.210243914e-10 7.783192697e-11 4.164073836e-10 1.1123648e-10 1.873421374e-10 1.343945207e-10 1.584375683e-10 1.275736794e-10 2.323484418e-10 1.09706055e-10 1.53917323e-10 8.958271831e-11 9.187945691e-11 1.566801747e-10 2.644348995e-10 1.749843788e-10 1.269383364e-10 1.646807967e-10 1.686236564e-10 5.569928676e-11 1.869192045e-10 9.371212671e-11 2.933048715e-10 1.64228622e-10 1.045142987e-10 1.176558355e-10 3.030535259e-10 4.028836153e-10 8.62172907e-11 8.460557954e-11 9.429835812e-11 3.862014662e-10 8.566773742e-11 1.79050884e-10 7.307465728e-11 2.706397244e-10 2.008143608e-10 1.148951944e-10 1.33752523e-10 3.459230697e-10 +2.057444032e-10 7.918078168e-11 1.385888065e-10 7.631002138e-11 1.176078677e-10 1.741441049e-10 2.141724604e-10 1.421137388e-10 2.962802246e-10 1.189746038e-10 1.266127549e-10 2.037611362e-10 2.159339747e-10 9.819201516e-11 3.775038591e-10 3.793896283e-11 8.157438113e-11 1.356335345e-10 8.541287113e-11 8.942754637e-11 8.326928846e-11 2.469976313e-10 2.54203254e-10 2.211827668e-10 5.536696265e-11 2.430923015e-10 1.031567588e-10 6.212542189e-11 3.188280441e-10 1.300277807e-10 6.843549238e-11 1.250533906e-10 7.35764962e-11 5.342234249e-11 5.360428188e-11 5.01711752e-11 2.086760614e-10 1.674439415e-10 1.34251122e-10 1.191499275e-10 2.58692064e-10 7.558844815e-11 2.058223456e-10 1.523131232e-10 1.570821188e-10 2.171548224e-10 1.831814336e-10 1.781953837e-10 1.490837115e-10 9.293145916e-11 2.20440595e-10 1.99308601e-10 4.334688749e-11 9.875417535e-11 2.734446202e-10 9.960643482e-11 6.233368079e-11 1.488749786e-10 3.346762329e-10 2.025351102e-10 1.664632389e-10 1.252617593e-10 1.231482293e-10 1.842864373e-10 2.635603775e-10 3.151725802e-10 9.362136443e-11 7.239702613e-11 1.55937795e-10 1.117642674e-10 1.294870532e-10 1.525177631e-10 2.103830417e-10 1.161690542e-10 1.552212096e-10 4.649015374e-11 2.181585734e-10 7.777333548e-11 1.187366868e-10 1.412797184e-10 9.423013153e-11 1.876703551e-10 1.359118628e-10 3.565838733e-10 2.505742593e-10 2.385203605e-10 1.319893615e-10 1.649952478e-10 1.267256613e-10 2.440100174e-10 3.576113358e-10 3.000533234e-10 3.189963648e-10 2.184484998e-10 2.708206178e-10 1.590072872e-10 1.400659711e-10 2.516628597e-10 3.658071994e-10 2.655512533e-10 2.118540654e-10 2.957507604e-10 2.409009472e-10 2.150206276e-10 1.666438917e-10 2.788370533e-10 1.25536856e-10 1.243714874e-10 1.459285908e-10 1.396185285e-10 2.573938951e-10 1.636159298e-10 1.784184018e-10 1.676003093e-10 2.390701312e-10 2.111019029e-10 1.23018528e-10 1.184920267e-10 1.942681754e-10 2.367734649e-10 1.84976023e-10 2.392348291e-10 3.905148655e-10 9.309669716e-11 1.297900062e-10 1.373568048e-10 3.401855549e-10 2.001414018e-10 4.513135049e-11 1.647811571e-10 2.12782493e-10 2.450274318e-10 1.790930311e-10 1.777656087e-10 2.635750374e-10 1.709096453e-10 1.535634253e-10 1.66029779e-10 3.463457638e-10 2.651028723e-10 1.868253717e-10 3.809764476e-10 2.539717365e-10 9.692963026e-11 1.074618723e-10 1.46490607e-10 1.365733651e-10 1.689015772e-10 2.34208647e-10 2.500232502e-10 1.206423171e-10 1.584997964e-10 9.309397871e-11 1.721933148e-10 5.306349031e-11 1.791068165e-10 1.037050444e-10 1.602314869e-10 1.100991167e-10 2.187926945e-10 2.353895177e-10 6.257708367e-11 1.35176814e-10 5.869655126e-11 2.121692167e-10 1.49208287e-10 2.155894471e-10 1.4728436e-10 8.276292704e-11 1.559073122e-10 2.913520853e-10 1.60697647e-10 1.316261619e-10 1.495067367e-10 2.304949338e-10 1.357302011e-10 1.119062788e-10 1.201596599e-10 2.560156576e-10 1.402431545e-10 2.312749131e-10 1.331574012e-10 1.213792299e-10 1.927027495e-10 3.306117634e-10 1.504949365e-10 1.842041381e-10 1.866168338e-10 1.663428397e-10 2.534907951e-10 3.427330445e-10 1.320788398e-10 3.062171542e-10 1.671769625e-10 1.808913192e-10 1.841097263e-10 2.532548781e-10 2.701047324e-10 2.326325794e-10 2.410238578e-10 2.260952349e-10 2.730360165e-10 3.289766759e-10 3.122338151e-10 9.348823266e-11 2.468092632e-10 2.191816466e-10 2.796077817e-10 3.595400902e-10 2.569296995e-10 2.869814184e-10 2.663185118e-10 2.651331572e-10 1.248991339e-10 1.815592474e-10 1.931265292e-10 2.07242178e-10 1.953755262e-10 1.039286375e-10 8.534235436e-11 1.639836007e-10 1.372706666e-10 2.257962662e-10 2.423310026e-10 1.298196812e-10 1.365518719e-10 2.118186458e-10 2.635501637e-10 1.046855967e-10 1.376267696e-10 5.517289755e-11 1.515561791e-10 2.061261736e-10 1.39700303e-10 2.247686429e-10 2.922124352e-10 2.206787582e-10 1.845409905e-10 2.578631729e-10 9.425041759e-11 2.215447725e-10 1.334973926e-10 6.613452759e-11 1.095131592e-10 1.015607048e-10 1.050710729e-10 2.841545855e-10 9.685544934e-11 2.131431676e-10 2.245739038e-10 1.929049087e-10 8.234958935e-11 1.73340593e-10 2.061407405e-10 1.153715479e-10 1.231515943e-10 1.432917183e-10 1.602529786e-10 2.868049921e-10 1.3218521e-10 1.628112003e-10 8.580466914e-11 1.344033215e-10 8.868988891e-11 1.331985007e-10 9.048607299e-11 3.956414989e-10 1.016102609e-10 7.202245888e-11 2.671196282e-11 2.308478334e-10 1.307421259e-10 9.42770651e-11 1.590536136e-10 1.930713697e-10 1.324861648e-10 1.030159004e-10 2.224486267e-10 1.118399655e-10 1.430437806e-10 9.201817281e-11 7.835810262e-11 7.766547614e-11 2.85750506e-10 5.926671426e-11 1.78019287e-10 7.715627471e-11 1.309759488e-10 1.38573441e-10 2.34981293e-10 2.339437619e-10 2.133858771e-10 9.804582596e-11 1.136148367e-10 1.256993339e-10 2.906590967e-10 1.620342302e-10 1.668776375e-10 9.514077509e-11 1.898716473e-10 +1.461742555e-10 6.179206585e-11 1.290949657e-10 1.6253354e-10 1.400524663e-10 1.650911468e-10 1.16068108e-10 1.453377789e-10 1.514940637e-10 7.70170764e-11 6.817839617e-11 1.479422121e-10 7.141071725e-11 9.36982666e-11 2.81635919e-10 1.019498864e-10 1.631124089e-10 1.418770101e-10 1.142081938e-10 6.999530319e-11 1.142453716e-10 2.50731545e-10 2.397932077e-10 1.079350323e-10 1.987176326e-10 1.579731499e-10 7.727602652e-11 1.568732862e-10 3.004701628e-10 1.94605763e-10 1.710962685e-10 2.144646623e-10 1.438029841e-10 9.597851795e-11 6.880297926e-11 1.057187808e-10 2.996002259e-10 2.371816364e-10 9.223158198e-11 5.915582709e-11 1.922317445e-10 2.449896727e-10 2.462091557e-10 1.781192057e-10 1.144159643e-10 1.348399921e-10 3.373762266e-10 1.975584355e-10 1.374520792e-10 6.080854044e-11 1.908772409e-10 2.183980127e-10 1.938642107e-10 2.292823252e-10 2.06527908e-10 4.288508928e-11 1.088482958e-10 3.067624032e-10 1.442467067e-10 2.899666361e-10 1.919886017e-10 1.165674547e-10 1.269272016e-10 2.182887428e-10 1.321543749e-10 6.328015876e-11 2.378821725e-10 2.253533411e-10 3.12321673e-10 1.914592896e-10 1.151844713e-10 1.215868174e-10 1.981850596e-10 9.996397585e-11 9.365958878e-11 5.542053693e-11 2.196422021e-10 1.113447116e-10 1.577528992e-10 1.432345901e-10 1.477848814e-10 1.966411063e-10 5.223300938e-11 1.009557858e-10 2.515727331e-10 3.117204506e-10 1.68288235e-10 3.231838543e-10 1.944199297e-10 1.360332515e-10 2.255805887e-10 2.841199006e-10 2.552740971e-10 3.082277217e-10 2.945731475e-10 3.06396539e-10 1.449112311e-10 2.349044226e-10 2.178200198e-10 1.763956294e-10 2.359777115e-10 1.26128236e-10 2.951316668e-10 2.867255345e-10 1.988998674e-10 1.354791918e-10 2.060652162e-10 1.864690512e-10 1.513928382e-10 3.397215069e-10 2.245271263e-10 2.557882688e-10 4.05612995e-10 3.297303546e-10 1.930188346e-10 2.698657648e-10 2.219868506e-10 1.759823894e-10 1.975833383e-10 2.656297331e-10 2.236890657e-10 2.414364613e-10 1.854508429e-10 1.227364529e-10 2.020460293e-10 3.026631594e-10 2.13858024e-10 1.23148648e-10 1.14902238e-10 2.894344344e-10 2.107461265e-10 1.067192017e-10 1.463259246e-10 1.169575628e-10 3.184378435e-10 1.632120413e-10 1.656976526e-10 2.022551559e-10 2.089213342e-10 1.688853983e-10 1.612532243e-10 2.294953252e-10 1.383233982e-10 9.596273248e-11 9.208901541e-11 2.053838028e-10 8.141655744e-11 1.456163822e-10 1.336712068e-10 7.42733894e-11 1.017541091e-10 1.799612202e-10 1.219007422e-10 1.177546544e-10 1.723351337e-10 7.993071931e-11 1.648139792e-10 3.278549807e-10 2.675186773e-10 1.789707113e-10 1.705899104e-10 2.231175738e-10 1.685543396e-10 1.688244554e-10 1.034359156e-10 2.440505858e-10 2.601146026e-10 2.312133222e-10 1.761329474e-10 7.595845303e-11 2.112953502e-10 1.171506856e-10 1.904742514e-10 2.120784957e-10 2.453935032e-10 2.656361361e-10 2.366646759e-10 2.11633177e-10 1.072237751e-10 1.605538461e-10 1.857080456e-10 2.441564872e-10 1.257970278e-10 4.613183812e-10 2.199627187e-10 2.225821813e-10 2.049086161e-10 2.495808151e-10 1.46971499e-10 1.734410966e-10 1.563957059e-10 3.107562195e-10 1.606966524e-10 1.274322843e-10 2.638446412e-10 2.545389436e-10 2.081793789e-10 2.521432724e-10 1.715396022e-10 2.713026251e-10 2.574778245e-10 2.307310372e-10 2.790628439e-10 1.479217607e-10 2.840193988e-10 1.596102133e-10 3.157155662e-10 2.143428768e-10 2.363676797e-10 2.00649619e-10 2.477741506e-10 2.62837842e-10 2.127748857e-10 1.767265651e-10 2.32193029e-10 2.082719758e-10 1.907837766e-10 2.973060636e-10 5.909664497e-11 1.368970964e-10 1.158886949e-10 8.380772219e-11 9.279546943e-11 2.417019044e-10 3.926267088e-11 1.20746321e-10 1.288816234e-10 2.744812126e-10 2.341614994e-10 1.924144589e-10 1.101411072e-10 1.626564367e-10 1.335042247e-10 2.632725235e-10 2.684869012e-10 1.087209368e-10 1.583542909e-10 1.503865447e-10 2.836813405e-10 9.006782644e-11 2.759228405e-10 3.318623793e-10 1.740793873e-10 2.300348333e-10 5.803949779e-11 1.942533477e-10 1.371790596e-10 1.718263864e-10 2.075221718e-10 2.548409218e-10 1.345741194e-10 2.790699807e-10 1.555949439e-10 1.839136512e-10 1.948450359e-10 1.152342241e-10 1.784619122e-10 1.352038776e-10 1.702448673e-10 2.424978446e-10 1.724091027e-10 2.790680886e-11 8.877273979e-11 8.822656409e-11 2.791856535e-10 7.056588021e-11 6.499607613e-11 7.226999932e-11 2.40319295e-10 2.605360535e-10 1.818454554e-10 9.031619794e-11 1.747531003e-10 8.140632894e-11 1.697082998e-10 2.424091882e-10 1.779379226e-10 1.033874148e-10 2.262382801e-10 1.306239222e-10 3.341294371e-10 1.803661422e-10 2.257520178e-10 1.654750045e-10 4.808184623e-10 1.491192878e-10 1.799675649e-10 8.894769453e-11 1.333760972e-10 5.804755914e-11 6.964787545e-11 8.438344987e-11 2.219490992e-10 3.000222057e-10 4.090839254e-10 6.304989671e-11 1.672066124e-10 2.029004987e-10 1.129835664e-10 1.627619301e-10 +7.381818217e-11 1.548696026e-10 2.039198271e-10 1.408747374e-10 1.495869601e-10 1.091343423e-10 2.788994454e-10 3.123663895e-10 4.444512263e-11 1.648378542e-10 2.432194011e-10 4.624524038e-11 1.631132831e-10 3.091035962e-11 3.982251501e-11 9.212578111e-11 1.612697618e-10 2.952868478e-10 1.73748214e-10 6.620754264e-11 2.530000149e-10 1.0117163e-10 1.339654082e-10 2.207951469e-10 3.549921543e-10 1.114948201e-10 2.896747734e-10 2.752570076e-10 1.153588747e-10 2.037075634e-10 2.440064635e-10 2.597946583e-10 1.389213719e-10 1.439500901e-10 2.328333928e-10 2.178238375e-10 1.686147981e-10 3.186659315e-11 5.862057311e-11 8.238717765e-11 2.135868417e-10 3.463015874e-10 6.167147829e-11 9.464955771e-11 1.822066426e-10 9.849893128e-11 5.475547069e-11 2.097657832e-10 2.072772531e-10 6.889555954e-11 2.284933005e-10 1.295592373e-10 1.087299727e-10 1.532534553e-10 2.256103395e-10 9.106670485e-11 1.39365063e-10 2.422798184e-10 1.848712693e-10 3.407711952e-10 3.343231778e-10 1.563564277e-10 1.699004453e-10 2.099846893e-10 1.135533738e-10 1.638794504e-10 2.145164677e-10 3.280132218e-10 1.872671459e-10 1.778815435e-10 1.02974674e-10 1.06482648e-10 1.541057909e-10 1.632331865e-10 1.593133096e-10 9.224857731e-12 1.3499925e-10 2.10779399e-10 2.007648901e-10 2.079058811e-10 1.846372488e-10 2.505435152e-10 2.882659098e-10 2.551762139e-10 4.027576183e-10 1.533658567e-10 1.637364118e-10 5.385894975e-11 2.313586206e-10 1.705008942e-10 3.55809019e-10 2.125080505e-10 3.415799404e-10 3.893552021e-10 2.173431428e-10 2.307418209e-10 1.860398574e-10 2.516868596e-10 1.560746005e-10 1.955709909e-10 3.434008949e-10 2.460904971e-10 2.648813588e-10 2.572903436e-10 3.239816661e-10 2.275580303e-10 1.806508054e-10 3.118607011e-10 1.156020985e-10 2.561066055e-10 2.102450888e-10 3.079769661e-10 8.301270813e-11 2.206332477e-10 2.66417473e-10 2.516495565e-10 1.311992825e-10 2.540458791e-10 1.680191053e-10 2.495972772e-10 2.384205423e-10 1.510099429e-10 1.740511864e-10 3.151347001e-10 1.480822798e-10 1.577903053e-10 2.136552233e-10 1.635407688e-10 1.553299991e-10 1.748835439e-10 8.552824736e-11 2.012297532e-10 1.114243759e-10 1.620596243e-10 1.506369041e-10 2.186646632e-10 1.051373192e-10 1.660981445e-10 8.368939084e-11 1.260547398e-10 3.273328504e-10 2.021654389e-10 2.019162711e-10 9.457737562e-11 2.511873516e-10 2.419027413e-10 1.655845633e-10 7.127288858e-11 3.113167161e-10 7.552820647e-11 1.913279995e-10 1.558846196e-10 1.28628714e-10 2.215723634e-10 6.767839812e-11 8.753818414e-11 1.138342922e-10 1.098784423e-10 3.304433931e-10 1.31839995e-10 2.087840942e-10 7.745273541e-11 1.245560217e-10 1.833760136e-10 2.135143959e-10 2.109772108e-10 1.419454135e-10 2.534051888e-10 2.113200663e-10 1.3159933e-10 1.266441882e-10 2.890023524e-10 2.699946411e-10 1.484232224e-10 9.923000918e-11 2.601604023e-10 2.785063581e-10 2.893070813e-10 2.875473088e-10 2.112748682e-10 3.570153783e-11 2.516998946e-10 1.05962743e-10 1.838451815e-10 3.027016963e-10 1.993914458e-10 1.353541571e-10 2.222080171e-10 1.019430954e-11 2.544290721e-10 2.079862552e-10 2.830943956e-10 1.467009557e-10 2.199271392e-10 1.43270788e-10 1.947495398e-10 1.892312476e-10 2.3514146e-10 1.458974012e-10 2.667328789e-10 2.133551894e-10 1.540839798e-10 1.856432929e-10 1.100524365e-10 3.6844744e-10 2.442702724e-10 4.021790849e-10 4.453241235e-10 4.26680977e-10 2.879545037e-10 2.270458549e-10 2.798879975e-10 1.836753266e-10 1.767930826e-10 3.466428408e-10 3.24612256e-10 2.90687922e-10 2.742757363e-10 1.298404725e-10 3.3693242e-10 1.004084691e-10 1.470026076e-10 2.455093641e-10 1.149531344e-10 1.172334062e-10 9.931318553e-11 1.703503467e-10 2.603716329e-10 2.618977643e-10 3.063494459e-10 2.320403031e-10 8.433505627e-11 2.61746772e-10 1.71790906e-10 5.698577042e-11 3.222440412e-10 2.377857749e-10 1.433760443e-10 1.45123537e-10 1.609930881e-10 1.413114331e-10 2.665640599e-10 1.031170592e-10 2.228854752e-10 1.644975854e-10 1.759343297e-10 1.192496779e-10 8.91183114e-11 1.938423292e-10 1.102819495e-10 1.738723314e-10 1.301069637e-10 1.34727018e-10 2.092730005e-10 2.137061479e-10 1.889251143e-10 1.476613109e-10 1.035795591e-10 1.372899893e-10 1.2574016e-10 1.69311499e-10 2.556408019e-10 1.0236646e-10 1.184178264e-10 1.419223664e-10 1.866469798e-10 2.785497478e-10 1.510448908e-10 2.872993916e-10 4.199687225e-10 9.261007676e-11 3.069083108e-10 1.897864761e-10 2.067590214e-10 1.364041525e-10 2.831723171e-10 7.290709833e-11 1.547815671e-10 2.170346627e-10 3.231872754e-10 3.359772455e-10 2.354778773e-10 2.04318385e-10 1.506092545e-10 1.227619955e-10 2.212110404e-10 1.451351971e-10 1.846668905e-10 3.957155284e-10 1.577231207e-10 9.087189446e-11 2.002680625e-10 9.351606045e-11 5.424542728e-11 1.813667362e-10 3.057987225e-10 1.408308284e-10 9.158746251e-11 2.821776245e-10 1.624813446e-10 +3.655546344e-11 3.153317703e-10 1.790561717e-10 2.240908811e-10 1.087532609e-10 1.770698004e-10 1.399860867e-10 2.109462806e-10 1.389777696e-10 1.777624529e-10 7.968803811e-11 3.368268453e-10 2.156513556e-10 1.096505055e-10 1.250084791e-10 1.923668554e-10 3.340785245e-10 1.084321858e-10 1.740718085e-10 3.130447673e-10 2.487137004e-10 1.089825234e-10 1.742689728e-10 7.444289647e-11 9.904786854e-11 2.367479205e-10 1.598445696e-10 8.472338783e-11 1.661831304e-10 1.685725863e-10 2.207333234e-10 4.214535745e-10 8.90227828e-11 1.201957783e-10 3.434574016e-10 2.585773231e-10 3.576365257e-10 1.533231319e-10 2.079387323e-10 2.563674863e-10 2.840483276e-10 1.97228739e-10 1.058197475e-10 1.522330499e-10 3.034875001e-10 2.041854992e-10 9.731629471e-11 1.171727427e-10 2.503692852e-10 2.611847308e-10 1.609456092e-10 1.05395111e-10 9.10777914e-11 6.800988064e-11 3.152675273e-10 1.330214439e-10 2.607629916e-10 6.869533468e-11 5.001378102e-11 1.579968843e-10 1.276697032e-10 9.861269626e-11 3.403485907e-10 3.47412982e-10 5.165119872e-11 8.791332152e-11 6.478581643e-11 2.548943081e-10 1.496892787e-10 2.698480076e-10 2.839635965e-10 2.00713276e-10 1.212311363e-10 3.055029287e-10 9.905448237e-11 8.69765098e-11 1.611975777e-10 1.913955754e-10 9.612773135e-11 2.514828946e-10 2.090298006e-10 1.079364464e-10 6.762904494e-11 8.040373243e-11 3.055675095e-10 2.110135352e-10 1.62909308e-10 2.583158447e-10 3.214700624e-10 3.788376922e-10 2.802692644e-10 2.897760966e-10 2.684943063e-10 3.334087165e-10 3.302105967e-10 3.585838461e-10 2.641094831e-10 2.173538789e-10 2.791837144e-10 1.02817059e-10 3.131036374e-10 2.63674394e-10 1.379296676e-10 1.627825833e-10 1.071683117e-10 1.408568061e-10 3.165688741e-10 1.281112249e-10 2.049718442e-10 2.31895974e-10 3.487631257e-10 1.582316969e-10 1.583990946e-10 1.403636141e-10 1.337394129e-10 2.574366226e-10 2.125687286e-10 1.392864272e-10 1.488209254e-10 1.779426292e-10 2.642776136e-10 8.195719004e-11 1.517799766e-10 2.634443347e-10 1.931734724e-10 2.891796007e-10 2.037326693e-10 2.055656564e-10 1.125084763e-10 2.415861111e-10 2.069322199e-10 2.054137226e-10 3.437473817e-10 1.076129753e-10 2.452484197e-10 9.862914983e-11 1.219006756e-10 2.71750924e-10 9.177766855e-11 7.591854731e-11 1.17869244e-10 1.649256723e-10 1.600933086e-10 1.807229457e-10 1.252957201e-10 1.195765134e-10 1.159480573e-10 6.419237006e-11 1.396579428e-10 8.566860391e-11 2.445018255e-10 5.027088397e-11 9.648712572e-11 1.260283326e-10 2.044975393e-10 1.616212041e-10 1.163653239e-10 2.899511521e-10 2.565509621e-11 1.773098204e-10 8.877901893e-11 1.441604376e-10 1.018186209e-10 1.222242493e-10 1.46336987e-10 1.605844247e-10 1.844064197e-10 1.914507307e-10 1.315213388e-10 1.833315787e-10 1.701636628e-10 2.665146931e-10 2.671336542e-10 1.961709428e-10 2.008009441e-10 2.33558955e-10 2.242494181e-10 1.914365366e-10 3.081835945e-10 8.461975552e-11 1.598106733e-10 1.758828331e-10 1.87748465e-10 2.342239913e-10 2.462340606e-10 1.876295308e-10 1.971368379e-10 2.092143008e-10 1.532578258e-10 2.590303252e-10 2.412042651e-10 1.904239018e-10 1.331482114e-10 1.877402392e-10 3.244607985e-10 3.554889487e-10 1.725917474e-10 1.608907006e-10 3.050083702e-10 2.841745209e-10 1.82599114e-10 3.748588101e-10 2.609287467e-10 2.067223322e-10 2.878035499e-10 1.61918461e-10 3.581223435e-10 2.417205446e-10 2.273597699e-10 4.076951504e-10 2.264582332e-10 2.61969225e-10 2.650497588e-10 1.928632774e-10 2.354292837e-10 1.063910695e-10 1.345050384e-10 2.286152007e-10 1.968151756e-10 2.089234193e-10 1.6093359e-10 1.963084306e-10 1.402602063e-10 1.515625158e-10 1.821404919e-10 1.989661144e-10 6.973526397e-11 1.09032723e-10 1.310963754e-10 2.11983382e-10 1.710598457e-10 1.660560228e-10 7.573190918e-11 1.804842097e-10 1.586431938e-10 9.982719959e-11 1.767602603e-10 1.900006879e-10 2.358696025e-10 1.353501595e-10 8.424731974e-11 1.811758262e-10 1.267233415e-10 2.312034659e-10 3.413016549e-10 6.864833882e-11 2.79184122e-10 1.763689856e-10 2.098994202e-10 1.154070543e-10 1.62617819e-10 1.71190265e-10 3.152613008e-10 7.98267229e-11 1.163624922e-10 3.14459216e-10 1.989762881e-10 1.142744923e-10 1.059078239e-10 3.120683518e-10 3.250507427e-10 1.313100445e-10 1.52797436e-10 1.642653043e-10 1.314816687e-10 1.30429585e-10 1.091450198e-10 1.838392662e-10 1.092335841e-10 1.042947324e-10 3.636864055e-10 2.824069247e-10 5.433671605e-11 1.781486999e-10 2.063597954e-10 1.196287817e-10 7.988565325e-11 3.746403796e-10 1.51757136e-10 1.519208645e-10 2.891974256e-10 9.833084634e-11 1.892508906e-10 2.542537697e-10 2.187962707e-10 5.869218419e-11 9.439422565e-11 6.104341567e-11 1.140351015e-10 9.923009759e-11 2.274751189e-10 1.586056259e-10 1.075028832e-10 2.181297783e-10 1.373303739e-10 2.467431049e-10 8.375521504e-11 1.331113241e-10 4.210964263e-10 1.789524956e-10 +2.665971552e-10 2.434512554e-10 7.562078524e-11 1.57455942e-10 1.904448445e-10 9.84961356e-11 9.946298255e-11 1.506835917e-10 1.578012849e-10 1.059705779e-10 2.641436761e-10 1.932993066e-10 4.511593976e-10 6.634499197e-11 3.673530728e-11 1.415999401e-10 3.719376099e-10 1.51797195e-10 1.869570504e-10 1.008818225e-10 8.06674033e-11 1.110337859e-10 2.03630382e-10 1.581893071e-10 9.165672427e-11 2.584989489e-10 7.931358819e-11 1.293983087e-10 2.701665398e-10 1.057295959e-10 1.902633483e-10 2.596464297e-10 2.239587423e-11 8.180862659e-11 2.737288156e-10 1.836518902e-10 1.896609218e-10 3.711779905e-10 1.898264008e-10 1.270032947e-10 1.447990139e-10 1.646909752e-10 3.636757731e-11 1.471512486e-10 1.270957922e-10 2.28777892e-10 2.081153653e-10 2.892735365e-10 3.279070972e-10 2.243931266e-10 1.731605554e-10 1.29759088e-10 2.031799354e-10 1.313916838e-10 1.532154194e-10 3.205260804e-10 2.421790264e-10 1.035168211e-10 2.082895749e-10 2.041274387e-10 2.129202635e-10 1.918604412e-10 1.501211786e-10 8.892705035e-11 1.123966698e-10 1.758593092e-10 1.291984233e-10 1.442810069e-10 1.680706952e-10 1.53583067e-10 1.615142889e-10 7.971508152e-11 1.345017929e-10 3.194821538e-10 9.960755149e-11 1.65045695e-10 2.851319676e-10 1.265906183e-10 1.765610669e-10 1.799243391e-10 2.014932134e-10 2.472216756e-10 4.667640837e-10 2.579497414e-10 1.761059928e-10 1.403386586e-10 2.37559456e-10 3.098057356e-10 9.070135961e-11 3.847032304e-10 3.090662584e-10 2.744782721e-10 3.538224814e-10 3.030738753e-10 2.302280293e-10 3.136797115e-10 3.371666707e-10 1.871478664e-10 2.611595541e-10 2.759516438e-10 2.482109018e-10 1.490303751e-10 2.67434513e-10 3.628056203e-10 2.249427533e-10 2.909267583e-10 2.438729829e-10 2.008501833e-10 3.504584726e-10 2.931644358e-10 2.955033181e-10 7.736202043e-11 1.800290995e-10 2.050129731e-10 2.214724357e-10 2.158617547e-10 3.751609067e-10 1.81015576e-10 2.107531223e-10 2.457406791e-10 2.052008427e-10 1.933091987e-10 1.030848834e-10 2.438262446e-10 1.679523925e-10 2.04631298e-10 2.399233464e-10 2.403188576e-10 1.886140852e-10 1.880820388e-10 1.166167929e-10 1.153162736e-10 1.323061615e-10 1.999154011e-10 1.821988066e-10 1.139068694e-10 1.999512405e-10 2.052561596e-10 1.378071929e-10 1.342424005e-10 1.041996535e-10 1.018161249e-10 1.35578706e-10 1.347570472e-10 6.92961245e-11 6.739751999e-11 1.455707879e-10 1.467976465e-10 9.125867014e-11 9.911435206e-11 8.149224029e-11 8.117978182e-11 7.615875021e-11 9.503823039e-11 9.787528804e-11 1.407968844e-10 9.469619802e-11 5.286219462e-11 1.664938528e-10 7.471224033e-11 6.006251124e-11 8.774300431e-11 1.288531796e-10 1.346826755e-10 8.48924915e-11 1.792933599e-10 2.862293891e-10 1.426114747e-10 1.285057963e-10 1.653465741e-10 2.18902081e-10 2.55140768e-10 1.304295332e-10 3.354650437e-10 1.256563099e-10 2.928040309e-10 1.823457574e-10 2.040335051e-10 2.908815859e-10 1.787793537e-10 2.348606216e-10 1.583824037e-10 2.551043546e-10 2.728567864e-10 3.194792355e-10 1.712629635e-10 1.983107054e-10 2.176366431e-10 3.360500397e-10 2.028938139e-10 2.26556582e-10 2.92172128e-10 3.11819617e-10 2.107090776e-10 3.106260685e-10 2.475863255e-10 2.93218092e-10 2.69507467e-10 2.599115649e-10 2.285767647e-10 4.320479697e-10 9.049221304e-11 3.183508051e-10 2.580723783e-10 2.632294788e-10 9.567384175e-11 1.894776995e-10 4.722272069e-10 2.169661343e-10 3.604360285e-10 2.640559754e-10 1.533331748e-10 1.236546089e-10 1.467600284e-10 1.997907068e-10 9.239830528e-11 2.550963257e-10 1.153019298e-10 1.616504268e-10 8.820623097e-11 2.955735214e-10 1.296368667e-10 1.877905694e-10 1.302737811e-10 2.299237501e-10 2.025014884e-10 1.876089008e-10 1.328349714e-10 1.74804138e-10 1.312587947e-10 1.931309674e-10 1.385957653e-10 1.961507268e-10 1.36684417e-10 1.34186722e-10 3.814300602e-10 3.134907949e-10 2.248983059e-10 1.558625152e-10 2.042831178e-10 9.520497909e-11 1.765964837e-10 1.383568226e-10 1.27032791e-10 1.214202519e-10 2.729662574e-10 2.006178882e-10 8.974913204e-11 2.219369139e-10 2.400151662e-10 1.385595031e-10 2.35003918e-10 2.244935924e-10 1.240161299e-10 1.719126897e-10 1.444341695e-10 8.278874315e-11 2.203538069e-10 1.177835187e-10 4.789763295e-10 2.254530452e-10 7.743771445e-11 3.568627028e-10 1.2604444e-10 5.138744752e-11 4.189860046e-10 1.17103905e-10 1.046940706e-10 1.342033547e-10 1.872039516e-10 1.728152733e-10 2.729704454e-10 1.482482406e-10 2.21384807e-10 2.597513e-10 7.331981968e-11 1.691999374e-10 1.867388306e-10 2.228662934e-10 1.672204114e-10 1.410656902e-10 3.090498239e-10 2.76021383e-10 2.708594721e-10 1.244693459e-10 2.276921151e-10 2.079388289e-10 1.660933804e-10 1.535958089e-10 2.836186682e-10 2.207353621e-10 4.017521687e-10 9.942209173e-11 7.226426264e-11 1.647249394e-10 8.839503988e-11 2.17387271e-10 2.983970133e-10 2.097031903e-10 9.659079541e-11 +1.103818979e-10 1.724070422e-10 1.511287991e-10 8.183886894e-11 2.143665093e-10 1.464026138e-10 1.776225587e-10 1.980808805e-10 1.207533639e-10 1.376277955e-10 3.795684869e-10 7.354420262e-11 1.677770619e-10 1.714585555e-10 2.426637445e-10 3.685577897e-10 1.566577304e-10 3.690307698e-10 1.870704032e-10 1.178132719e-10 1.134042791e-10 1.819495207e-10 2.628592353e-10 1.941140963e-10 1.510607121e-10 1.041773109e-10 1.447405718e-10 1.127923865e-10 1.656500504e-10 9.929828352e-11 4.880344903e-11 1.82857362e-10 2.049650818e-10 1.454968763e-10 1.331563589e-10 1.149110069e-10 2.105061679e-10 1.740659926e-10 3.43943979e-10 1.573364278e-10 1.269485163e-10 4.791974861e-11 2.544038264e-10 2.449860042e-10 1.561587703e-10 1.724628621e-10 1.650133928e-10 1.207083545e-10 2.236971971e-10 1.316088946e-10 2.593520654e-10 1.186768433e-10 1.592333071e-10 2.45025702e-10 1.384675612e-10 1.069813631e-10 1.033625162e-10 1.04197867e-10 1.887801984e-10 1.546394947e-10 9.51914264e-11 1.766107467e-10 2.014370987e-10 2.179946743e-10 2.526960437e-10 2.223798683e-10 6.948311253e-11 1.708163565e-10 1.508383398e-10 2.45468524e-10 1.740942552e-10 8.3541419e-11 1.752533135e-10 1.271445901e-10 1.627757007e-10 9.05421061e-11 1.06288817e-10 1.416232986e-10 1.602614069e-10 1.382912015e-10 1.757405725e-10 3.699176869e-11 2.104539756e-10 2.271296959e-10 2.754201236e-10 1.846872244e-10 6.735378286e-11 2.814249742e-10 2.254654616e-10 2.048119489e-10 3.199872588e-10 3.094100017e-10 3.318337183e-10 2.514203662e-10 2.72452784e-10 3.944112651e-10 4.480273995e-10 2.50440685e-10 4.364893501e-10 3.702430823e-10 3.287571636e-10 1.525604758e-10 3.64657132e-10 1.495582282e-10 1.303985339e-10 1.33916535e-10 3.315286279e-10 2.484982386e-10 1.035294262e-10 3.405294466e-10 2.711730962e-10 2.790955136e-10 3.269370973e-10 1.530255078e-10 1.330490889e-10 7.944430309e-11 1.872426894e-10 1.948815064e-10 3.07115078e-10 1.03286037e-10 1.342694069e-10 1.997747508e-10 1.830552914e-10 1.503869988e-10 2.409075098e-10 1.499172629e-10 1.617760048e-10 5.833497273e-11 2.239320147e-10 7.256502008e-11 1.004854492e-10 2.017421858e-10 9.048507896e-11 2.039815718e-10 1.146232632e-10 1.509021661e-10 8.89586812e-11 8.594179055e-11 7.895229247e-11 1.159754441e-10 1.545358149e-10 1.387345663e-10 1.656127419e-10 1.294839063e-10 2.030009702e-10 3.911786073e-11 1.134944301e-10 3.862999682e-11 2.820211599e-11 1.321872046e-10 9.103581526e-11 6.885013335e-11 7.573576953e-11 1.055043904e-10 5.892866301e-11 8.165502411e-11 2.372953134e-10 1.541633939e-10 1.553218018e-10 1.201129736e-10 1.387542432e-10 3.441866692e-10 8.350770026e-11 1.404309902e-13 1.356688553e-10 1.78466723e-10 1.01496136e-10 8.371971267e-11 2.173686638e-10 7.328828392e-11 1.070336742e-10 3.305533045e-11 1.816992669e-10 2.56864215e-10 1.459679016e-10 1.58882223e-10 1.18846397e-10 2.670306128e-10 1.754059456e-10 2.143620379e-10 2.066609375e-10 2.084742068e-10 2.595267534e-10 2.4031545e-10 1.542229071e-10 2.108376986e-10 2.182137343e-10 3.562144436e-10 2.851726174e-10 1.702207088e-10 1.932331245e-10 2.824362e-10 2.629590956e-10 2.636153168e-10 1.879023758e-10 2.513710602e-10 3.015715473e-10 3.500703532e-10 2.950105872e-10 3.176623732e-10 3.121454497e-10 3.420041687e-10 2.894917389e-10 3.820799427e-10 1.702139489e-10 1.768292885e-10 2.126316962e-10 1.708143687e-10 1.945007191e-10 3.175908745e-10 3.500463303e-10 9.164135338e-11 2.767255466e-10 1.832628308e-10 2.106788183e-10 1.943718274e-10 1.4365691e-10 2.070691709e-10 2.118051973e-10 1.813591353e-10 9.722715426e-11 2.360145156e-10 1.401773032e-10 1.310998273e-10 1.367191361e-10 2.038632009e-10 1.66295067e-10 1.960175589e-10 1.280154941e-10 2.186150146e-10 1.273030132e-10 2.799246295e-10 1.239683337e-10 2.177124873e-10 2.642411544e-10 2.723766899e-10 1.773416536e-10 2.962399805e-10 2.376268038e-10 2.206002476e-10 1.607486308e-10 2.362765789e-10 2.866675218e-10 1.231857801e-10 2.798253972e-10 2.239976059e-10 2.363205329e-10 1.130565543e-10 2.272724864e-10 1.395245107e-10 8.950412544e-11 2.528524368e-10 1.849710361e-10 9.565117105e-11 1.666400456e-10 2.247854219e-10 2.143024617e-10 2.198641994e-10 1.96797987e-10 6.704917377e-11 1.936372548e-10 1.457311729e-10 2.512327632e-10 2.712590929e-10 9.839941728e-11 1.185522412e-10 2.575093761e-10 8.762925459e-11 1.701022669e-10 3.906712861e-10 1.232001737e-10 8.789063015e-11 1.072814697e-10 8.957151094e-11 2.041927412e-10 2.17924029e-10 1.187169189e-10 2.094988121e-10 1.602919381e-10 1.0425797e-10 1.173709449e-10 2.908993742e-10 1.589738748e-10 1.89537537e-10 3.10700097e-10 1.484196554e-10 2.833657964e-10 3.70699068e-10 1.440037207e-10 2.244912568e-10 2.965040069e-10 9.014031822e-11 1.228038175e-10 2.418091063e-10 9.76650267e-11 2.382137701e-10 1.722777719e-10 1.867779408e-10 3.437610495e-10 1.942402855e-10 +1.180573305e-10 2.73080333e-10 2.755731236e-10 1.450171797e-10 1.43243397e-10 1.499167716e-10 1.091580101e-10 2.883283416e-10 9.571282622e-11 1.879362081e-10 3.695407541e-10 3.006167465e-10 4.639860124e-10 1.908796944e-10 8.667752832e-11 1.935952894e-10 1.735051735e-10 3.02240239e-10 1.196924683e-10 1.572671572e-10 4.162421814e-11 2.586923954e-10 1.213793803e-10 3.195354783e-10 2.294277999e-11 2.678142966e-10 1.336639914e-10 2.959520952e-10 1.478923947e-10 9.812398015e-11 2.896627975e-10 1.453926385e-10 1.681007007e-10 9.988156699e-11 1.992031879e-10 2.091475318e-10 1.102540007e-10 7.030625108e-11 1.334221337e-10 1.534337103e-10 1.842752833e-10 1.565492001e-10 1.473665653e-10 1.292265845e-10 5.245413955e-11 6.762259219e-11 2.268050593e-10 1.719181416e-10 1.183115332e-10 1.980299124e-10 4.140368705e-10 3.511339802e-10 1.693608692e-10 2.14692143e-10 7.885097857e-11 2.899803654e-10 2.730541033e-10 2.277853548e-10 2.975673062e-10 2.516239391e-10 1.727005343e-10 1.756066674e-10 5.824191167e-11 1.712270479e-10 2.440476101e-10 1.0672541e-10 2.207148398e-10 1.851483164e-10 1.356711201e-10 2.395539089e-10 1.308151171e-10 1.687201905e-10 1.84268118e-10 1.073028637e-10 8.095167879e-11 1.602894387e-10 1.245110264e-10 7.695878089e-11 1.669471365e-10 6.585116006e-11 1.682983006e-10 3.290014282e-10 1.8424181e-10 1.187532989e-10 2.657675413e-10 3.086724342e-10 2.445872973e-10 1.819302583e-10 1.44292834e-10 1.580979038e-10 2.727549629e-10 3.269917124e-10 2.482576593e-10 2.0649877e-10 4.114066107e-10 3.442271909e-10 3.089071642e-10 2.076320641e-10 3.286589831e-10 3.390584309e-10 3.295716606e-10 2.227391739e-10 2.66502145e-10 2.372190456e-10 1.832900496e-10 4.557081733e-10 1.936409387e-10 1.659309189e-10 2.132179172e-10 1.456927006e-10 1.828733773e-10 2.278194947e-10 2.282555561e-10 2.614373616e-10 1.278942155e-10 3.672688845e-10 2.566408285e-10 1.733516222e-10 2.391804305e-10 3.269187888e-10 2.463312636e-10 1.792071453e-10 2.135996565e-10 1.034892505e-10 1.737381836e-10 2.076451591e-10 1.493469404e-10 1.286390228e-10 2.418047512e-10 1.251241423e-10 1.649547546e-10 1.159694404e-10 1.258735968e-10 7.965519425e-11 5.256382241e-11 9.962587542e-11 3.397177302e-11 9.086870634e-11 1.316238629e-10 1.373016454e-10 1.160185602e-10 1.4279101e-10 9.835725406e-11 1.535656061e-10 7.724363119e-11 1.110093215e-10 3.968360893e-11 1.900211179e-10 6.237934922e-11 8.252209083e-11 6.641284428e-11 2.797762008e-10 7.278788013e-11 1.163705657e-10 1.051276503e-10 6.169034829e-11 1.196221302e-10 8.575463458e-11 7.306008861e-11 1.541258892e-10 9.269611269e-11 1.222950076e-10 1.724998838e-10 1.215623924e-10 2.095180977e-10 1.406832388e-10 9.311387809e-11 1.088405921e-10 1.684348833e-10 6.029746564e-11 1.720355764e-10 1.427842476e-10 3.689986758e-10 1.436346836e-10 2.152185826e-10 3.272280301e-10 2.931542358e-10 3.000613852e-10 1.448512377e-10 1.241501723e-10 1.614145629e-10 1.31544955e-10 2.354525386e-10 1.405039857e-10 1.511735504e-10 2.955916772e-10 1.707849589e-10 2.207652449e-10 2.191013387e-10 1.690406705e-10 2.396777423e-10 1.259300243e-10 3.343204459e-10 1.282708968e-10 3.47699918e-10 3.050438538e-10 1.856608589e-10 2.61723979e-10 4.061092781e-10 3.021069513e-10 4.231807435e-10 2.939870899e-10 2.094882128e-10 3.998467206e-10 1.763782612e-10 2.011062986e-10 2.912079978e-10 2.798711549e-10 2.83757123e-10 2.35802905e-10 2.53909291e-10 2.095947066e-10 4.550242801e-10 3.87652812e-10 1.648697619e-10 1.423161912e-10 1.001726505e-10 1.024297248e-10 1.514757243e-10 2.661276886e-10 1.28778656e-10 1.632068167e-10 1.471457193e-10 1.841817086e-10 1.864902927e-10 2.309240156e-10 3.143732245e-10 2.151733563e-10 2.802873848e-10 8.378899788e-11 1.593476957e-10 2.541228568e-10 8.089965752e-11 1.737605132e-10 1.997795901e-10 2.085270835e-10 2.863516413e-10 1.407007469e-10 9.40390636e-11 2.263525384e-10 7.675812531e-11 1.046041972e-10 2.511557779e-10 5.918397372e-11 1.07588923e-10 2.213787322e-10 2.623321636e-10 2.279637639e-10 2.069248821e-10 1.012757121e-10 6.57963133e-11 2.744251869e-10 9.805003016e-11 2.248742432e-10 3.068934918e-10 2.107011741e-10 1.017982777e-10 7.972806696e-11 1.943269499e-10 5.144424186e-11 2.695295013e-10 2.496905569e-10 1.441960772e-10 1.649224628e-10 1.322324001e-10 2.412863053e-10 1.29216993e-10 8.457419919e-11 1.590671112e-10 2.263749042e-10 3.510664284e-10 3.462860731e-10 1.155194572e-10 1.633188427e-10 1.4952152e-10 1.623984787e-10 1.840502572e-10 2.899988993e-10 1.431387612e-10 1.158691922e-10 1.363486389e-10 4.140517612e-10 1.346446369e-10 1.900107278e-10 1.170023845e-10 1.114379015e-10 8.365747486e-11 1.492714648e-10 2.629545975e-10 2.423957402e-10 6.547704181e-11 1.196688896e-10 1.574783827e-10 1.55618708e-10 2.477773347e-10 1.905797147e-10 1.779221594e-10 6.460287589e-11 1.359434301e-10 2.419410433e-10 +8.894422103e-11 1.362189954e-10 8.1525308e-11 2.826876396e-10 1.451228145e-10 6.045908187e-11 1.095603151e-10 1.883963586e-10 1.056776691e-10 3.952698509e-10 2.007370955e-10 2.339456361e-10 3.539165474e-10 2.642716129e-10 1.261405661e-10 3.649536892e-10 2.035294394e-10 3.97229764e-10 1.75724657e-10 2.480226551e-10 2.78482026e-10 1.966757248e-10 3.009516016e-10 1.019543427e-10 1.765518017e-10 1.77361636e-10 2.439389209e-10 1.651762071e-10 1.063604638e-10 1.385368867e-10 1.82101536e-10 6.73707042e-11 3.385020529e-10 5.727142376e-11 7.210716904e-11 1.315481821e-10 8.905369185e-11 4.001831269e-10 1.603288482e-10 4.70064778e-11 2.433842243e-10 2.322657491e-10 2.002528974e-10 2.187367022e-10 1.203216202e-10 1.403769572e-10 1.464103015e-10 2.505082947e-10 2.796355472e-10 2.08597405e-10 2.106589866e-10 7.397173025e-11 2.075146429e-10 2.34572178e-10 2.590633175e-10 3.004593519e-10 2.179994471e-10 2.337776464e-10 1.949044009e-10 3.794741829e-10 1.797968328e-10 1.706128521e-10 2.363061465e-11 2.743676698e-10 2.170024215e-10 2.266491192e-10 1.43326389e-10 1.176219394e-10 1.152751425e-10 2.991861296e-10 3.752819026e-10 1.38606922e-10 3.115033299e-10 3.562643575e-10 1.767850191e-10 2.864640152e-10 1.840330467e-10 1.283274498e-10 1.901302312e-10 2.591113306e-10 1.377627827e-10 1.168038887e-10 2.147022444e-10 2.870758407e-10 2.392741428e-10 2.165801758e-10 1.720345207e-10 3.398928434e-10 2.469654818e-10 2.499454034e-10 2.044143503e-10 2.135247588e-10 2.463691403e-10 1.944203016e-10 2.689166683e-10 2.449538887e-10 2.230237786e-10 2.371146863e-10 2.754786391e-10 2.075341243e-10 2.80353207e-10 3.998165008e-10 2.197200912e-10 2.832754888e-10 1.928760844e-10 2.207595532e-10 3.836952541e-10 2.080486912e-10 3.15057084e-10 1.878357356e-10 2.977224803e-10 5.13702206e-11 2.438684056e-10 1.926587426e-10 1.707236426e-10 2.358164956e-10 2.193690098e-10 2.905807905e-10 2.479362674e-10 1.987580462e-10 1.818875491e-10 1.516332317e-10 2.412548217e-10 2.171748259e-10 1.605546081e-10 1.712726038e-10 2.243862998e-10 9.912709208e-11 6.869783018e-11 1.410668593e-10 5.817823154e-11 1.228821362e-10 3.077642746e-10 1.14845071e-10 1.493565255e-11 9.390408101e-11 4.172358535e-11 1.000648382e-10 1.352852087e-10 4.233483389e-11 8.80315424e-11 1.162774311e-10 1.126656225e-10 1.165079404e-10 1.753925403e-10 3.530878626e-11 1.114342668e-10 1.302310703e-10 1.864806467e-10 8.138169689e-11 2.41781382e-10 6.136047426e-11 1.226859695e-10 1.546950514e-10 2.385718212e-10 1.70947864e-10 7.369796697e-11 1.219723976e-10 1.26939365e-10 1.321877343e-11 1.10033851e-10 1.062001896e-10 1.386862008e-10 1.216983661e-10 1.666149343e-10 2.904433137e-10 1.542593941e-10 4.587957327e-11 1.151571785e-10 1.899593448e-10 4.213851759e-11 2.589462472e-10 1.074500557e-10 1.337596892e-10 1.463324282e-10 1.615260121e-10 1.232253647e-10 2.666982396e-10 2.392245448e-10 1.894306253e-10 2.391700863e-10 3.013165421e-10 2.426998968e-10 2.775046169e-10 2.207916173e-10 2.556865609e-10 2.078389271e-10 2.360943536e-10 1.771024878e-10 2.790837182e-10 1.600908267e-10 1.664624568e-10 2.073127716e-10 2.490249912e-10 2.889422536e-10 2.659689366e-10 2.38403189e-10 2.470213391e-10 2.293401616e-10 2.351559279e-10 1.54078777e-10 2.639041029e-10 3.005171786e-10 1.883607644e-10 3.321279976e-10 2.513290333e-10 1.423205786e-10 2.33367534e-10 2.093871563e-10 2.277618015e-10 2.761815397e-10 3.038116711e-10 2.093790318e-10 5.77271597e-11 3.297991896e-10 1.783297961e-10 1.905533315e-10 1.855766408e-10 2.173122825e-10 2.035902638e-10 1.338265493e-10 1.491898897e-10 2.072733717e-10 1.195201746e-10 1.73171005e-10 8.98110405e-11 8.605633081e-11 1.906155666e-10 2.34829186e-10 2.142673372e-10 2.111633824e-10 2.22218309e-10 2.214502286e-10 2.081910592e-10 3.189734478e-10 3.069368004e-10 2.599351888e-10 1.605266155e-10 1.082412433e-10 2.025715094e-10 2.567959959e-10 1.554290971e-10 1.056568366e-10 1.307583854e-10 1.413609436e-10 4.150993273e-10 1.318727213e-10 2.550477603e-10 8.700884108e-11 2.270984676e-10 1.006699879e-10 1.127022315e-10 2.547894272e-10 2.497549898e-10 1.844286463e-10 1.450355638e-10 2.003699511e-10 8.369929554e-11 6.936426023e-11 2.579615887e-10 2.084776817e-10 5.934509133e-11 1.809649007e-10 1.29236396e-10 1.93183981e-10 2.99165905e-10 2.148439263e-10 1.797127727e-10 3.555544249e-10 1.259337557e-10 1.673086824e-10 1.322150434e-10 2.00905442e-10 7.399138833e-11 5.528335866e-11 1.653746342e-10 1.233866954e-10 1.267191963e-10 1.428027928e-10 3.932227912e-10 8.233508893e-11 3.833268251e-10 2.125516812e-10 1.070502811e-10 4.917598472e-11 7.801339093e-11 2.83409726e-10 2.238078089e-10 2.161861573e-10 1.230239587e-10 3.818327531e-10 1.14687643e-10 8.517503637e-11 1.28605445e-10 1.235175845e-10 2.513123383e-10 1.468893147e-10 1.176800051e-10 1.079284245e-10 8.602904476e-11 +2.426770955e-10 9.528657266e-11 1.409996796e-10 9.71591289e-11 1.662970102e-10 8.790472978e-11 2.786641856e-10 1.073871852e-10 1.125323841e-10 7.479860228e-11 8.985635449e-11 8.146591272e-11 2.180619078e-10 1.791971067e-10 1.605745157e-10 1.79247339e-10 1.0409974e-10 1.567315323e-10 1.621617697e-10 2.173553743e-10 2.059225651e-10 2.277872826e-10 1.605954523e-10 1.065614449e-10 1.789415924e-10 2.027804155e-10 3.41070546e-10 2.572476181e-10 3.694528521e-10 3.858216491e-10 1.269434107e-10 1.450614413e-11 2.870173525e-10 1.75229409e-10 1.378652465e-10 2.190356596e-10 2.327429644e-10 1.635914106e-10 2.361080313e-10 6.485359344e-11 3.65028207e-10 2.584424891e-11 2.384694424e-10 1.798923315e-10 1.493347169e-10 1.683497066e-10 9.536698177e-11 8.254624275e-11 1.255724372e-10 9.37246941e-11 2.900932038e-10 3.129645413e-10 1.330319608e-10 1.887981313e-10 1.045622054e-10 2.52283275e-10 2.85259849e-10 1.749264026e-10 2.589120307e-10 2.266974204e-10 1.853847996e-10 2.774286864e-10 1.218414723e-10 2.08328754e-10 2.003528824e-10 2.054970671e-10 1.769972998e-10 2.013035773e-10 3.366620219e-10 2.160214907e-10 2.434938547e-10 1.228147075e-10 1.043037481e-10 1.683865323e-10 1.112819933e-10 1.870848483e-10 7.570941138e-11 4.567556e-10 1.507646876e-10 2.792943074e-10 2.366054747e-10 1.472554863e-10 2.53232049e-10 1.320102959e-10 1.518735844e-10 2.879752127e-10 3.286349258e-10 3.208414477e-10 2.516972824e-10 3.089317281e-10 2.837335991e-10 3.033594902e-10 2.866303763e-10 2.353803603e-10 1.956539619e-10 2.178383852e-10 3.911090764e-10 2.463201374e-10 2.954734077e-10 3.018830035e-10 2.340511288e-10 2.648142939e-10 1.877536722e-10 2.017515791e-10 1.454856562e-10 2.537556445e-10 2.513374625e-10 2.334515486e-10 2.174066839e-10 1.29245365e-10 1.425989462e-10 1.643880048e-10 9.535316978e-11 2.749571662e-10 2.951533531e-10 9.874784128e-11 2.818844272e-10 3.283812252e-10 2.006371316e-10 1.987393616e-10 3.076881903e-10 1.662670314e-10 4.013276121e-11 2.026332644e-10 1.701980192e-10 1.445516214e-10 1.059531726e-10 1.501221748e-10 1.193582572e-10 1.657026919e-10 1.740207268e-10 1.510166971e-10 2.893968693e-10 6.471212208e-11 2.541636129e-11 1.147566493e-10 1.998977798e-10 1.357821569e-10 1.371298123e-10 1.067240499e-10 1.587137513e-10 6.278054841e-11 1.506150862e-10 1.551578101e-10 9.38664054e-11 1.295227775e-10 1.502328133e-10 1.284937718e-10 7.791626629e-11 2.921877972e-10 9.652280435e-11 2.772503037e-10 2.807333987e-10 1.589161603e-10 1.024567867e-10 9.099886596e-11 9.229538488e-11 1.820402686e-10 1.273970855e-10 1.187554254e-10 6.017732057e-11 1.465113807e-10 2.624443178e-10 2.134170353e-10 3.57140916e-10 1.242160011e-10 1.368874494e-11 1.233716634e-10 7.143433321e-11 1.046787299e-11 3.886598744e-11 1.574893149e-10 2.330353506e-10 2.600412415e-10 1.482966103e-10 4.063652425e-10 1.648606887e-10 1.498431774e-10 2.17346252e-10 1.90284851e-10 2.415413971e-10 2.584588381e-10 3.014726053e-10 2.036920545e-10 1.485520758e-10 2.488736021e-10 1.251404611e-10 2.182640119e-10 1.810058846e-10 1.821284886e-10 2.079364565e-10 3.083642654e-10 1.240016491e-10 1.353315405e-10 1.516476374e-10 2.279525588e-10 2.921068372e-10 2.154905612e-10 2.629385059e-10 2.324458491e-10 1.642287467e-10 2.626065382e-10 3.027200637e-10 2.014482512e-10 3.512073761e-10 2.269837741e-10 1.732001835e-10 2.297010169e-10 3.593416177e-10 3.597476699e-10 2.382496492e-10 2.248472416e-10 4.189812689e-10 3.024008645e-10 2.958252085e-10 1.546810071e-10 1.938961365e-10 1.793411459e-10 2.000471822e-10 1.913759136e-10 2.035152315e-10 1.70947147e-10 1.497007126e-10 2.123567195e-10 1.684700306e-10 1.611255454e-10 2.554305911e-10 1.703035351e-10 2.638677076e-10 1.632405931e-10 1.498379389e-10 2.385302241e-10 3.487837394e-10 1.285564277e-10 1.344751902e-10 2.378814063e-10 1.834197438e-10 1.536053376e-10 2.433004894e-10 1.670014396e-10 1.637253303e-10 2.279149243e-10 7.448898715e-11 1.551207293e-10 1.460377617e-10 2.270736907e-10 2.027413921e-10 1.754885788e-10 2.419469722e-10 1.230571918e-10 1.519722479e-10 3.289061065e-10 2.427110763e-10 1.913349703e-10 2.141098569e-10 9.393024924e-11 1.088703544e-10 8.505259687e-11 3.907873516e-10 8.12725466e-11 3.541294977e-10 1.238798527e-10 3.701672254e-10 2.631800128e-10 1.223726719e-10 8.818212493e-11 1.47333666e-10 1.158731446e-10 1.063630715e-10 1.705342497e-10 1.125053106e-10 1.496583014e-10 2.1750675e-10 1.437390827e-10 1.472852524e-10 2.876665066e-10 8.610035563e-11 6.537195446e-11 1.015435596e-10 1.403430684e-10 1.273653461e-10 1.436633416e-10 1.90562455e-10 2.765673691e-10 1.385680121e-10 2.217229927e-10 1.123873332e-10 1.730960213e-10 2.734656567e-10 7.365282914e-11 2.221881653e-10 1.932161218e-10 1.677368015e-10 2.096960202e-10 1.340736603e-10 1.926078189e-10 1.751527559e-10 2.095807072e-10 9.285191826e-11 3.630150998e-10 +7.502215572e-11 3.309212888e-10 1.286083637e-10 1.260853421e-10 1.592918031e-10 6.490659968e-11 2.13466073e-10 2.931053575e-10 1.335169801e-10 5.216593138e-11 2.096846821e-10 4.395609526e-11 1.99730386e-10 1.756746761e-10 2.001816627e-10 1.09507295e-10 1.637147596e-10 3.97755677e-10 2.012482405e-10 4.992177471e-11 1.537545706e-10 8.308468288e-11 2.152077189e-10 1.688041549e-10 4.215908607e-10 2.126490083e-10 9.768554375e-11 1.568751389e-10 1.351966046e-10 1.61474753e-10 2.449841886e-10 6.97292244e-11 1.801723753e-10 6.796419345e-11 1.156720577e-10 3.492785266e-11 2.744242536e-10 2.201042913e-10 9.976902281e-11 2.17196751e-10 8.213921352e-11 1.008510114e-10 9.717958085e-11 3.062489948e-10 2.072778212e-10 1.794633328e-10 2.730064716e-10 1.74182682e-10 1.603483484e-10 1.380884344e-10 1.317436293e-10 1.465802945e-10 2.947742229e-10 1.548967374e-10 1.411941732e-10 2.651600435e-10 1.840155536e-10 2.059893101e-10 1.627541105e-10 1.750654481e-10 1.440858551e-10 2.246559317e-10 5.006885688e-11 1.854480535e-10 2.574019363e-10 3.133501992e-10 1.627090588e-10 1.026993089e-10 2.638183629e-10 2.239328394e-10 1.183585958e-10 1.981122179e-10 7.491137293e-11 1.551938223e-10 1.764474347e-10 1.346912185e-10 1.459010793e-10 1.006662924e-10 1.462601606e-10 1.527326303e-10 9.539760657e-11 1.412969001e-10 2.832201369e-10 3.649539752e-10 1.672310681e-10 2.036504553e-10 2.814580026e-10 3.198876098e-10 2.991427334e-10 2.806526953e-10 2.986450968e-10 3.424977928e-10 2.060638069e-10 2.68777161e-10 3.351968725e-10 2.883370485e-10 2.523046872e-10 2.4376178e-10 1.829107139e-10 2.43232675e-10 1.836129729e-10 1.937967473e-10 1.944831291e-10 1.591596568e-10 3.08047354e-10 2.734240203e-10 3.096530002e-10 2.582565904e-10 2.353675179e-10 2.220253427e-10 1.627196637e-10 4.33190991e-10 2.75172623e-10 2.26619185e-10 2.837446711e-10 2.140473959e-10 3.018935741e-10 1.786636717e-10 1.513027603e-10 2.197250401e-10 1.3595088e-10 1.793289276e-10 1.448839271e-10 2.081413344e-10 1.43304565e-10 1.043044587e-10 1.625938369e-10 1.82983206e-10 1.392187418e-10 8.638365669e-11 5.240750854e-11 4.399005293e-11 2.295311881e-10 1.108669912e-10 1.185184606e-10 6.001449114e-11 1.228078244e-10 1.397422884e-10 1.083769603e-10 9.492827625e-11 2.537964797e-10 2.057506102e-10 1.55111333e-10 2.010663746e-10 1.536951995e-10 1.820145433e-10 1.739278317e-10 1.477093471e-10 7.942405104e-11 1.506160678e-10 1.316031374e-10 1.106374832e-10 1.676419579e-10 1.270493306e-10 1.254825934e-10 1.540144393e-10 2.453898576e-10 1.39232366e-10 8.954018321e-11 2.323040107e-10 1.476368132e-10 6.018519632e-11 1.086951923e-10 1.659179197e-10 1.706338123e-10 3.266321743e-11 1.146087157e-10 3.551468535e-11 1.928981374e-10 9.209952179e-11 9.450849701e-11 1.230997385e-10 9.932356246e-11 1.097015445e-10 1.151289662e-10 1.394085257e-10 1.925165792e-10 2.345009507e-10 6.361578978e-11 2.65104616e-10 2.779065926e-10 2.711832607e-10 2.123124475e-10 1.176362963e-10 2.66199364e-10 3.264505323e-10 1.77863501e-10 3.3157544e-10 3.966531232e-10 1.650041264e-10 2.106138498e-10 2.33637771e-10 2.313964247e-10 2.530632419e-10 2.969171933e-10 1.548183845e-10 1.720459084e-10 1.859402899e-10 4.148982684e-10 2.781269232e-10 2.939216445e-10 2.457503932e-10 1.321101468e-10 2.433305468e-10 1.81815079e-10 3.058541537e-10 2.922855779e-10 1.762305781e-10 3.082309036e-10 2.146047415e-10 2.848037617e-10 2.712634055e-10 1.995906036e-10 1.70013266e-10 2.930142847e-10 2.203774458e-10 1.596177892e-10 3.393069218e-10 2.423833864e-10 1.589680847e-10 2.068181393e-10 1.387673159e-10 6.68892764e-11 7.349636981e-11 3.118338745e-10 1.699131744e-10 1.666502213e-10 3.251866583e-10 3.705592345e-10 2.219593582e-10 1.194735418e-10 1.834590816e-10 1.117195725e-10 3.13375908e-10 1.156221112e-10 1.490263147e-10 3.418857498e-10 1.79516511e-10 9.629912543e-11 2.574770377e-10 2.25040068e-10 3.399029128e-10 1.611604923e-10 2.734374423e-10 1.537131335e-10 2.443583523e-10 1.96135646e-10 1.761689251e-10 1.409569549e-10 1.286196914e-10 2.251150143e-10 2.327687736e-10 1.164773909e-10 1.051568274e-10 6.756326064e-11 2.677048636e-10 1.511638608e-10 2.56775989e-10 1.396199079e-10 1.375751479e-10 7.887892007e-11 2.305586739e-10 9.34312448e-11 1.650279765e-10 1.117769756e-10 3.255187945e-10 1.658192542e-10 2.031684111e-10 7.260613552e-11 1.535175673e-10 8.335982615e-11 3.978365137e-10 2.388870202e-10 1.674586948e-10 2.780228637e-10 2.138338981e-10 1.848591607e-10 1.714917568e-10 2.296268152e-10 8.59759037e-11 3.819382165e-10 1.513780303e-10 3.000718952e-10 1.85295181e-10 1.970072294e-10 2.143790729e-10 2.547344791e-10 2.282363929e-10 1.193952375e-10 2.671302168e-10 2.318989353e-10 1.805040796e-10 1.703308377e-10 3.463902014e-10 1.581572684e-10 5.769071093e-11 1.255661308e-10 5.345456586e-11 2.786487987e-10 4.234106166e-10 +6.238291181e-11 1.846223296e-10 1.23901624e-10 3.149255663e-10 1.673829503e-10 2.506505183e-10 1.975905557e-10 1.083770869e-10 3.065113166e-10 8.922317819e-11 1.868652208e-10 6.759243012e-11 1.379657653e-10 2.32404075e-10 2.015607868e-10 2.019522522e-10 1.382211456e-10 1.034205777e-10 2.667145361e-10 1.301699336e-10 2.028707097e-10 2.031867305e-10 1.41618851e-10 1.643055381e-10 3.493341451e-10 9.839035218e-11 1.359981124e-10 2.293642544e-10 2.601252728e-10 1.436870234e-10 1.932563366e-10 2.189463685e-10 1.425132369e-10 3.316913647e-10 3.139941957e-10 1.976700111e-10 2.808863376e-10 8.688455623e-11 1.152920388e-10 1.861308914e-10 2.538318871e-10 8.333144708e-11 3.075274186e-10 2.415913147e-10 1.947147741e-10 1.922156509e-10 2.28580668e-10 5.900972669e-11 2.008356412e-10 3.11261775e-10 1.015711621e-10 1.984723564e-10 5.463804421e-11 1.164814675e-10 2.772700125e-10 1.517768727e-10 1.721453146e-10 7.161787196e-11 2.498992733e-10 2.294654283e-10 2.79615846e-10 1.867643792e-10 2.07038574e-10 2.419351063e-10 2.905199018e-10 2.658944403e-10 1.831894743e-10 2.164052205e-10 1.966058416e-10 9.150415201e-11 2.687102141e-10 1.771515762e-10 1.84094845e-10 2.252121673e-10 1.59161309e-10 3.173904576e-10 2.227434492e-10 2.032155637e-10 2.221175396e-10 2.257348279e-10 1.530699946e-10 1.093395384e-10 4.695856682e-11 3.119486509e-10 2.412529754e-10 2.049921437e-10 2.635746026e-10 2.824425825e-10 2.823194651e-10 3.42096703e-10 4.107943568e-10 2.390845432e-10 2.532163534e-10 3.55991855e-10 2.224066052e-10 2.28971314e-10 3.220654179e-10 3.778070755e-10 2.295289086e-10 2.829852058e-10 1.662870772e-10 3.22781634e-10 2.464650258e-10 2.41280087e-10 2.65228126e-10 1.814575851e-10 1.338074791e-10 2.429571118e-10 1.413856412e-10 2.130500404e-10 2.940350848e-10 1.776107617e-10 1.625893508e-10 1.534256414e-10 1.951289741e-10 1.659002065e-10 2.91741747e-10 2.939193223e-10 1.341472406e-10 2.150286496e-10 2.402997049e-10 1.888831469e-10 2.501070983e-10 9.557123786e-11 7.313370412e-11 2.102586999e-10 1.157679723e-10 1.123073483e-10 1.618711153e-10 1.167121738e-10 2.861247438e-10 1.217463614e-10 1.546812061e-10 4.11999533e-11 9.914307857e-11 1.190455349e-10 1.911657435e-10 9.408421186e-11 1.679447168e-10 1.295707483e-10 2.145919392e-10 1.445639354e-10 9.476769722e-11 2.601942606e-10 2.52548261e-10 3.248605355e-10 1.059123158e-10 2.137753113e-10 1.287222047e-10 4.146800473e-10 2.805898419e-10 1.026885487e-10 1.846159067e-10 4.441641806e-10 1.434682225e-10 1.696513786e-10 2.041436831e-10 8.299117475e-11 2.293511713e-10 8.36154054e-11 1.540041718e-10 1.615790221e-10 1.410333967e-10 1.230242316e-10 1.000809645e-10 8.060610239e-11 1.227486313e-10 8.928810663e-11 1.485449996e-10 1.512903881e-10 4.717576544e-11 2.0202554e-11 1.062694536e-10 9.365556521e-11 1.254238101e-10 1.18066597e-10 1.847472663e-10 1.262244525e-10 9.027755107e-11 1.180178968e-10 1.059819907e-10 9.156179144e-11 1.587271115e-10 2.01065803e-10 1.771701353e-10 2.340763386e-10 1.959049419e-10 2.50620269e-10 3.393584498e-10 1.859916036e-10 2.014618246e-10 2.862689163e-10 2.312602866e-10 2.181849826e-10 2.408494773e-10 1.259158551e-10 2.184068411e-10 2.203651774e-10 2.410736177e-10 2.891252255e-10 2.493083549e-10 3.489192802e-10 3.156503254e-10 2.450009594e-10 2.359735876e-10 2.352904034e-10 3.266475095e-10 4.035957603e-10 3.409721108e-10 3.61293514e-10 2.749652896e-10 2.569973054e-10 3.595096315e-10 2.558863789e-10 2.314272929e-10 2.063641359e-10 3.153290465e-10 2.712766602e-10 1.648214225e-10 1.653241349e-10 8.739769936e-11 1.704581968e-10 2.319624257e-10 1.518055303e-10 1.771596167e-10 1.599432557e-10 1.308685964e-10 1.988600158e-10 1.666891665e-10 1.575973622e-10 1.227468705e-10 1.295981299e-10 3.159815721e-10 4.026525364e-10 3.387112693e-10 1.601775674e-10 2.594265292e-10 2.141458843e-10 2.188686707e-10 2.471611879e-10 3.554803831e-10 3.275293587e-10 1.914527141e-10 3.244312469e-10 1.294739678e-10 1.636412849e-10 1.374275286e-10 1.569721063e-10 1.324628006e-10 1.58750619e-10 3.206488293e-10 2.601290546e-10 2.807499591e-10 1.284295858e-10 1.690390027e-10 3.17268424e-10 1.973529754e-10 1.361072155e-10 2.357780529e-10 1.462943674e-10 1.259363253e-10 2.272275527e-10 1.087907743e-10 1.365907051e-10 4.267816514e-11 2.462081087e-10 1.881533078e-10 1.189474646e-10 2.314901919e-10 2.074351962e-10 3.67729788e-10 1.492383289e-10 1.865830332e-10 2.481226733e-10 1.66048083e-10 3.029850063e-10 2.592550201e-10 2.178715802e-10 3.489991619e-10 2.354027298e-10 1.736839143e-10 1.803152291e-10 3.182440699e-10 7.727253722e-11 2.48185241e-10 7.585934165e-11 2.504586921e-10 2.683117936e-10 2.268720588e-10 4.265971278e-10 1.305135832e-10 1.897400772e-10 1.439704986e-10 1.64502754e-10 2.891760248e-10 7.355359487e-11 3.044488981e-10 2.67200216e-10 1.805154286e-10 1.873440073e-10 +2.990317838e-10 3.180877018e-10 1.530118221e-10 1.481396138e-10 3.072656224e-10 2.978857171e-10 1.526960041e-10 1.588740282e-10 1.525392119e-10 1.359936274e-10 2.661029584e-10 9.299806601e-11 9.13115847e-11 3.041624415e-10 1.026959919e-10 1.617907133e-10 6.287146301e-11 2.568057747e-10 2.280027712e-10 2.676581458e-10 1.895540622e-10 1.162436539e-10 2.22221773e-10 8.265391988e-11 8.812710194e-11 1.937064558e-10 1.339816686e-10 1.367311175e-10 2.372296941e-10 1.417790451e-10 2.086210544e-10 2.747027445e-10 2.896032177e-10 9.474112042e-11 7.370773502e-11 1.083199449e-10 9.051720733e-11 1.263907344e-10 1.810729066e-10 1.692496725e-10 2.286199688e-10 1.234671595e-10 2.228162984e-10 2.937122744e-10 1.466428463e-10 2.232050173e-10 8.180500213e-11 3.480190931e-10 1.990886652e-10 8.735793841e-11 6.895118221e-11 1.763354683e-10 3.401530536e-10 1.095040043e-10 6.915531918e-11 1.289211202e-10 1.361901915e-10 8.664282481e-11 2.143606056e-10 1.561567812e-10 1.829377347e-10 2.277017095e-10 2.779010333e-10 3.642341812e-10 2.609030942e-10 2.154193136e-10 1.113410713e-10 1.983310431e-10 1.392307666e-10 1.744342939e-10 2.040344347e-10 9.564464426e-11 1.49681861e-10 1.79957304e-10 1.728236542e-10 9.544260811e-11 2.444064159e-10 1.9547395e-10 1.439374344e-10 1.674021643e-10 2.425523452e-10 2.539289437e-10 2.688466459e-10 1.935084491e-10 2.153526423e-10 2.279942311e-10 1.899260465e-10 4.705165482e-10 3.799433089e-10 2.339766251e-10 2.575053862e-10 3.776019639e-10 3.830070392e-10 3.123030781e-10 3.740728664e-10 2.605148172e-10 2.734948456e-10 1.924437192e-10 1.739307318e-10 3.765547557e-10 2.117716144e-10 3.281482146e-10 2.114195457e-10 2.17105474e-10 2.014837608e-10 2.239871223e-10 3.266221218e-10 7.033559977e-11 2.259940841e-10 2.265586686e-10 2.024830433e-10 1.535105954e-10 3.058983851e-10 2.517806299e-10 1.505494256e-10 3.010870522e-10 1.34735244e-10 2.09575279e-10 1.973014929e-10 1.127098531e-10 1.454625268e-10 2.170805574e-10 1.369434929e-10 1.183321146e-10 4.50255974e-11 1.136038777e-10 6.119942976e-11 8.208644029e-11 2.753169011e-11 1.706459261e-10 2.134018513e-10 1.217789229e-10 1.309898858e-10 1.049601208e-10 2.034723403e-10 1.714029402e-10 1.031988424e-10 1.008085299e-10 1.537860353e-10 1.316606823e-10 3.952090288e-10 1.285202245e-10 1.082632751e-10 1.509679979e-10 4.325690239e-10 1.843539238e-10 1.252444389e-10 2.082721143e-10 2.477554996e-10 2.766651737e-10 3.515302358e-10 6.852119927e-10 2.700890888e-10 2.199467939e-10 3.50461392e-10 1.293872432e-10 2.088864546e-10 2.916310524e-10 2.904621525e-10 2.673289808e-10 2.415325564e-10 1.222937479e-10 1.530187565e-10 1.30418244e-10 1.465386611e-10 1.243622113e-10 1.450767985e-10 1.04859128e-10 6.944240576e-11 1.21039492e-10 9.757709237e-11 9.680980957e-11 1.907308642e-10 3.975044008e-11 1.300368783e-10 1.210635789e-10 1.191279345e-10 1.147684267e-10 5.978204033e-11 1.866520752e-10 1.8103892e-10 1.270643104e-10 1.799581924e-10 1.236227642e-10 2.320901057e-10 3.16608244e-10 2.30951254e-10 3.370174137e-10 2.78791753e-10 1.850642083e-10 1.952959276e-10 1.719767379e-10 3.386956946e-10 2.838714594e-10 2.365247374e-10 2.502084335e-10 2.419481944e-10 1.341712413e-10 2.742965277e-10 3.88765288e-10 2.426046288e-10 3.410346591e-10 2.659971492e-10 2.318698364e-10 2.889405306e-10 2.092317748e-10 2.656943805e-10 2.788621948e-10 2.411121829e-10 4.327576793e-10 3.265269598e-10 2.768467532e-10 4.134093437e-10 4.291639688e-10 2.785787234e-10 3.169525158e-10 2.083595147e-10 2.294853567e-10 4.310010291e-10 1.355197348e-10 3.056427268e-10 7.658545084e-11 1.03438976e-10 2.44521753e-10 1.336934959e-10 1.7753112e-10 1.360451559e-10 2.931035797e-10 2.700048481e-10 1.848265979e-10 2.24384527e-10 2.480117967e-10 2.044029366e-10 2.900158185e-10 2.562078695e-10 2.057682018e-10 1.025140976e-10 3.089416267e-10 1.44332934e-10 1.945670957e-10 3.003673902e-10 2.631865588e-10 2.093149601e-10 2.213004617e-10 3.708935787e-10 1.633261559e-10 2.681911462e-10 2.892985504e-10 1.258550421e-10 7.163576319e-11 2.467982597e-10 1.88952933e-10 1.633793256e-10 1.657802987e-10 1.092764424e-10 1.146962273e-10 4.347854664e-10 2.747970629e-10 1.5634347e-10 2.121270087e-10 3.584790247e-10 2.369077354e-10 1.116219322e-10 3.284673646e-10 1.089949928e-10 1.843622629e-10 1.404398664e-10 2.793318267e-10 1.051818099e-10 2.971345802e-10 1.401346436e-10 3.157478329e-10 1.981371452e-10 1.022722717e-10 3.117311919e-10 3.969362318e-10 3.006919497e-10 1.998739601e-10 3.739530537e-10 2.460259024e-10 1.25288348e-10 1.895122603e-10 9.391405935e-11 1.311458111e-10 1.212618628e-10 1.571474206e-10 1.015746991e-10 1.269507724e-10 8.820390201e-11 1.821905636e-10 1.665043711e-10 1.587894811e-10 6.671467007e-11 1.417158925e-10 9.903092515e-11 1.603481581e-10 4.109994715e-10 1.231973504e-10 1.997302549e-10 1.983223083e-10 +1.538809125e-10 7.118931149e-11 2.796085428e-10 1.086598205e-10 1.489103502e-10 1.985010304e-10 7.054854915e-11 1.388602986e-10 2.468041722e-10 2.494771155e-10 2.002110331e-10 2.237371724e-10 1.443555156e-10 8.789667831e-11 1.027811751e-10 3.344785569e-10 2.411358913e-10 2.083062471e-10 2.502564713e-10 1.182614815e-10 2.281902099e-10 1.452571341e-10 2.251584641e-10 1.253104399e-10 1.139545769e-10 2.361442473e-10 1.379955544e-10 1.252956259e-10 1.167754275e-10 1.84916578e-10 2.095775558e-10 3.338749409e-10 1.454229796e-10 1.329666669e-10 9.129101386e-11 3.608478251e-10 1.096005557e-10 1.014602662e-10 1.208257091e-10 3.015463705e-10 1.440104602e-10 3.515892741e-10 2.414170471e-10 1.330563578e-10 1.072271129e-10 2.189990399e-10 2.549566041e-10 2.283428077e-10 1.021241585e-10 2.438172137e-10 2.737240723e-10 1.462142249e-10 1.30773202e-10 2.050666987e-10 2.462498043e-10 1.802495088e-10 2.661464524e-10 1.61912647e-10 1.091472591e-10 2.110797058e-10 1.807504449e-10 1.704281859e-10 1.413507631e-10 2.977875164e-10 2.86032329e-10 1.769756115e-10 2.939141829e-10 1.408493633e-10 3.023499854e-10 2.380594977e-10 2.055786195e-10 2.956635953e-10 7.195425845e-11 1.164074356e-10 2.131807814e-10 1.29511326e-10 1.278248085e-10 3.264910361e-10 1.952800811e-10 2.92027176e-10 2.069655146e-10 5.585831597e-11 3.231309468e-10 2.609973515e-10 2.288423828e-10 2.707332725e-10 1.470403565e-10 3.935815165e-10 3.38397566e-10 3.178970459e-10 2.992241054e-10 2.069939518e-10 5.850201301e-10 2.185989809e-10 2.363980356e-10 1.951132546e-10 3.07715629e-10 4.172927838e-10 4.040312058e-10 2.619778442e-10 3.533021077e-10 2.404984121e-10 2.430853819e-10 4.166436537e-10 1.706885926e-10 3.243128623e-10 2.989728694e-10 3.180129183e-10 2.086854436e-10 3.373640582e-10 3.097616407e-10 1.026437267e-10 1.832266324e-10 1.289539113e-10 2.827816621e-10 3.197376194e-10 1.912133135e-10 1.603428393e-10 1.150097928e-11 1.352500059e-10 1.360156909e-10 1.597164585e-10 8.899772845e-11 1.304919433e-10 1.511900965e-10 1.798650579e-10 2.965435915e-10 1.61649898e-10 1.510178227e-10 6.672506491e-11 2.586997852e-10 2.134593392e-10 1.279532551e-10 1.786930218e-10 1.409423779e-10 1.525648483e-10 6.858870223e-11 4.419998719e-10 1.61368614e-10 1.348360744e-10 3.197197972e-10 1.810710772e-10 5.122758503e-10 2.151984853e-10 3.850974795e-10 6.100731647e-10 1.776816381e-10 5.10324333e-10 6.441041355e-10 4.783338186e-10 3.476911061e-10 7.30694873e-10 3.427558486e-10 3.836502723e-10 2.042860491e-10 6.098632585e-10 2.392391166e-10 2.404306955e-10 5.474519623e-10 2.235884255e-10 2.605983298e-10 5.823197722e-10 3.466659667e-10 1.47738953e-10 1.866249365e-10 1.19809819e-10 1.16204028e-10 1.482580363e-10 1.727413651e-10 2.201710838e-10 4.464571386e-11 1.283822902e-10 1.242397253e-10 7.77671174e-11 9.101156508e-11 3.87375466e-11 1.278552543e-10 8.034462039e-11 1.679993512e-10 1.05223931e-10 1.505750281e-10 1.570479418e-10 1.236422369e-10 2.031124753e-10 1.71519244e-10 7.713922205e-11 2.041464388e-10 2.784531789e-10 1.193994055e-10 1.156280703e-10 1.478157934e-10 1.719568983e-10 2.158544996e-10 2.532327451e-10 1.813024287e-10 1.369318948e-10 2.883241667e-10 1.91519537e-10 2.533489182e-10 2.309518399e-10 1.13381055e-10 4.171047059e-10 3.589542128e-10 3.370096859e-10 2.60621747e-10 2.945038545e-10 3.250393321e-10 2.548822535e-10 2.753987087e-10 3.153700971e-10 3.956286518e-10 2.936916912e-10 3.522578848e-10 3.456299298e-10 2.835015424e-10 2.453760451e-10 3.749941668e-10 1.995679142e-10 2.755007367e-10 2.725077013e-10 8.279118796e-11 1.23163346e-10 1.886771042e-10 1.314411592e-10 2.582939311e-10 1.828841629e-10 2.701179729e-10 1.789090188e-10 1.654331644e-10 2.218795795e-10 2.15994024e-10 1.337489967e-10 3.391245328e-10 1.909027921e-10 2.870466167e-10 1.128259397e-10 1.858322005e-10 1.900107988e-10 1.60316749e-10 3.229457228e-10 2.569816056e-10 9.413203252e-11 2.50957318e-10 1.531043278e-10 1.814843771e-10 1.437006205e-10 1.552317197e-10 7.003461095e-11 1.45372779e-10 2.255802049e-10 1.758433457e-10 6.471104481e-11 1.301998384e-10 7.914144633e-11 2.003737628e-10 1.222227743e-10 8.307390628e-11 2.25845407e-10 2.494503584e-10 1.253826157e-10 1.78839675e-10 2.619840945e-10 1.204602815e-10 1.969638664e-10 9.842162528e-11 1.031662826e-10 2.035530227e-10 1.599512906e-10 1.696460084e-10 1.27763974e-10 1.203767275e-10 1.05380933e-10 2.063822221e-10 1.389676045e-10 2.436609544e-10 7.068279817e-11 3.140197056e-10 1.800871338e-10 2.862136038e-10 3.249444161e-10 2.729572118e-10 1.400174989e-10 1.761552472e-10 2.010390255e-10 1.392742955e-10 2.725903846e-10 7.885118801e-11 7.813557837e-11 3.566140769e-10 2.518674887e-10 1.265905065e-10 3.06203088e-10 1.463733662e-10 1.541360697e-10 1.587055731e-10 2.258935939e-10 1.918305951e-10 2.707374717e-10 2.248839315e-10 2.479615879e-10 +1.055733616e-10 1.661222072e-10 1.023616742e-10 3.521988849e-10 1.34907386e-10 1.624877648e-10 2.726017146e-10 1.572743739e-10 1.104554264e-10 8.097707423e-11 1.614221844e-10 4.562916862e-10 2.326602928e-10 3.684883566e-10 1.667537483e-10 3.009456309e-10 2.454966447e-10 3.097273122e-10 9.859705544e-11 1.232858064e-10 8.262276937e-11 2.167000394e-10 1.893246891e-10 2.128840713e-10 1.584502629e-10 2.315628577e-10 3.226168482e-10 7.652163927e-11 1.177153079e-10 1.52258292e-10 2.600061831e-10 8.690053877e-11 2.586073315e-10 3.680222807e-10 3.269557193e-10 1.412038638e-10 6.037697065e-11 1.135707049e-10 1.337519086e-10 1.489908947e-10 6.066823489e-11 6.895195782e-11 3.582680873e-10 2.915161728e-10 1.313439679e-10 1.598671408e-10 2.099170181e-10 6.604803311e-11 1.019622906e-10 1.194576857e-10 1.074516524e-10 2.000669151e-10 9.204144623e-11 1.242244155e-10 2.851481599e-10 2.39186045e-10 2.311410431e-10 1.482627419e-10 2.058938218e-10 1.773140657e-10 1.25088794e-10 1.040661819e-10 1.714212707e-10 6.295907929e-11 3.672740558e-10 1.259612004e-10 3.002223576e-10 1.974432315e-10 2.274833579e-10 1.425128291e-10 2.370072813e-10 1.967378684e-10 2.281997165e-10 1.958612321e-10 3.201370751e-10 2.297945293e-10 1.756147796e-10 1.524047713e-10 5.431661109e-11 8.905095715e-11 2.68704117e-10 2.808546538e-10 2.026329154e-10 2.947856936e-10 3.641735984e-10 3.606116183e-10 3.370866621e-10 3.071385418e-10 3.868705001e-10 2.11189577e-10 2.008350842e-10 1.58598275e-10 3.084831773e-10 2.779865444e-10 1.72907823e-10 2.577473868e-10 2.331288384e-10 2.968496619e-10 2.517942526e-10 2.581378783e-10 3.422482745e-10 2.922477092e-10 2.081348729e-10 2.48559095e-10 3.104793319e-10 2.488741009e-10 1.542007837e-10 3.869702435e-10 3.118279441e-10 2.611849941e-10 2.160562174e-10 6.87622807e-11 1.260600151e-10 1.47107147e-10 2.073991955e-10 1.86892619e-10 1.904940317e-10 9.15985383e-11 1.59260424e-10 2.345522684e-10 7.920881909e-11 1.722288502e-10 6.963560835e-11 6.450388856e-11 7.434541123e-11 5.000363978e-11 8.910494552e-11 9.813026603e-11 1.758845046e-10 2.265838482e-10 1.618610459e-10 1.337664e-10 2.877248356e-10 1.042612656e-10 7.684767677e-11 1.556653855e-10 1.886936017e-10 5.785351494e-10 5.4215995e-10 4.549090577e-10 5.085964366e-10 7.653987656e-10 4.487843077e-10 4.089322338e-10 4.431847785e-10 3.782765573e-10 2.597840546e-10 5.589932868e-10 3.413505565e-10 5.363649398e-10 3.322976123e-10 4.215856898e-10 4.681072059e-10 2.885253339e-10 3.507331391e-10 2.770757096e-10 6.867913779e-10 1.718960709e-10 2.609341923e-10 3.981327726e-10 2.64844181e-10 1.377432768e-10 1.990825108e-10 2.681371591e-10 2.05193378e-10 1.695561658e-10 1.038135747e-10 1.864367939e-10 6.709117183e-11 1.291338602e-10 1.141909068e-10 1.452402823e-10 1.131874371e-10 1.281041327e-10 6.108872015e-11 2.176277686e-10 7.919945968e-11 1.157471874e-10 7.016154052e-11 1.627435286e-10 1.343244402e-10 7.82000909e-11 1.899004104e-10 2.553338756e-10 1.898755144e-10 2.917917998e-10 2.842891307e-10 2.870354368e-10 2.779273875e-10 2.707764891e-10 1.308810144e-10 3.257469624e-10 1.798903332e-10 2.874757857e-10 2.248931067e-10 2.179699718e-10 1.434712437e-10 2.701869441e-10 3.671496524e-10 2.853302463e-10 2.086629696e-10 2.455709829e-10 3.462637995e-10 1.840822138e-10 1.634168131e-10 3.336718601e-10 2.496630544e-10 3.921341913e-10 1.861092945e-10 2.804199832e-10 3.642467725e-10 3.979210798e-10 3.708350855e-10 3.712638849e-10 3.711100437e-10 2.197334739e-10 3.317962908e-10 2.451948723e-10 3.846340481e-10 1.779421119e-10 1.936726958e-10 1.458245345e-10 2.291088249e-10 1.115791265e-10 1.470943668e-10 1.124683125e-10 6.118445157e-11 2.610956308e-10 2.692770144e-10 1.671956846e-10 1.514486119e-10 1.543849497e-10 3.491861135e-10 3.884122531e-10 1.447052534e-10 1.375350018e-10 3.183913221e-10 1.828214838e-10 1.475897954e-10 2.682359764e-10 3.199435218e-10 7.287547675e-11 2.765226345e-10 1.746949353e-10 2.781032114e-10 2.828923897e-10 1.823441015e-10 1.676445377e-10 1.623926504e-10 3.813998339e-10 1.44068251e-10 1.001464356e-10 2.100454285e-10 1.033392457e-10 1.095057921e-10 1.374778318e-10 1.345132184e-10 9.423359399e-11 2.504768974e-10 1.292600115e-10 2.936116053e-10 6.913070468e-11 2.120040484e-10 2.372247659e-10 1.804142616e-10 4.529984364e-10 1.443292207e-10 2.335762851e-10 1.684475883e-10 1.786887599e-10 1.344197178e-10 1.290249409e-10 1.678805696e-10 1.404031053e-10 2.157189148e-10 2.353679142e-10 2.32260469e-10 1.849577438e-10 2.48459304e-10 3.557365601e-10 1.873236446e-10 2.786455919e-10 2.999121803e-10 2.766067914e-10 1.178778431e-10 1.29432888e-10 1.516965988e-10 2.831851102e-10 1.150434004e-10 1.806953758e-10 4.054006086e-10 2.732369624e-10 1.163807046e-10 1.214263926e-10 4.274837685e-11 1.53081043e-10 1.323125559e-10 2.321927813e-10 1.598557013e-10 1.635034022e-10 +2.826881054e-10 2.144677917e-10 2.22720727e-10 1.859105123e-10 1.527099806e-10 1.406330214e-10 1.505816616e-10 8.600566407e-11 2.340453868e-10 4.019084444e-10 2.044636099e-10 6.873235416e-11 1.9223225e-10 4.613261833e-10 1.478716046e-10 4.522461173e-10 2.82388942e-10 1.431120182e-10 1.608029424e-10 1.794865683e-10 1.888271303e-10 2.463012903e-10 3.002666489e-10 2.311209179e-10 1.971997418e-10 9.978893096e-11 1.225828332e-10 2.402000634e-10 2.240588352e-10 2.357455713e-10 1.307178708e-10 1.90519498e-10 2.260333497e-10 2.476228582e-10 1.750525412e-10 2.652028699e-10 1.062225479e-10 1.287478852e-10 6.323384089e-11 1.48804465e-10 4.232385683e-10 5.295358247e-11 4.562362127e-10 7.664857683e-11 9.84104529e-11 3.118596512e-10 2.322134228e-10 4.152006753e-10 1.616467862e-10 2.603340824e-10 2.702414602e-10 2.244973196e-10 6.521588353e-11 3.871096775e-10 1.144648649e-10 3.460996428e-10 3.372676999e-10 4.337483025e-11 1.308276765e-10 3.32842667e-10 3.176476968e-10 1.211808439e-10 1.496916037e-10 1.945592634e-10 2.529408549e-10 1.156023564e-10 1.547207579e-10 3.058111993e-10 1.806092177e-10 1.897232157e-10 4.440857266e-10 1.762594298e-10 1.426113609e-10 2.601590608e-10 1.888588304e-10 3.365333914e-10 1.862110788e-10 1.586365681e-10 1.741190799e-10 3.898090472e-10 2.44130204e-10 1.205392164e-10 3.167208122e-10 4.608888299e-10 3.009682503e-10 2.272864369e-10 3.093142459e-10 2.63729177e-10 3.778420199e-10 2.700967013e-10 4.436840601e-10 2.424316272e-10 2.022741681e-10 3.482933332e-10 2.418082299e-10 4.365587643e-10 2.745479826e-10 3.198732398e-10 3.497589763e-10 2.564679204e-10 2.690288377e-10 2.081830608e-10 3.164042007e-10 2.547922619e-10 1.656279779e-10 3.046371192e-10 1.95544127e-10 1.885092867e-10 1.276145193e-10 2.035662143e-10 2.700932537e-10 2.506689156e-10 2.636251122e-10 2.072591456e-10 2.870881476e-10 2.508758949e-10 3.270062684e-10 1.930701723e-10 1.525015245e-10 1.562098019e-10 9.910311898e-11 1.288972731e-10 1.042220437e-10 1.952691408e-10 1.371057262e-10 1.754135248e-10 2.866130424e-10 1.498335371e-10 1.799323592e-10 2.252035428e-10 1.814265458e-10 1.512908491e-10 2.350861129e-10 1.809507224e-10 1.729454186e-10 5.524151501e-10 3.296322046e-10 2.848816562e-10 5.607204147e-10 3.108799578e-10 3.971586817e-10 4.174330005e-10 3.498668097e-10 4.528893861e-10 2.131159929e-10 2.673181131e-10 3.745261876e-10 3.536336344e-10 4.453994707e-10 4.42110546e-10 8.060930338e-10 3.138478845e-10 1.944742775e-10 3.520294818e-10 4.891092718e-10 4.123218038e-10 3.640706575e-10 8.047062761e-10 2.793221583e-10 2.807448968e-10 4.737922619e-10 3.212329131e-10 4.40485114e-10 3.885770477e-10 3.647390787e-10 3.174996423e-10 3.012370866e-10 1.030536142e-10 1.162002102e-10 7.287763522e-11 1.905744276e-10 1.931195836e-10 1.776153779e-10 1.426318403e-10 1.759627118e-10 1.037731496e-10 2.957889096e-10 2.595070085e-10 1.575525537e-10 1.779709903e-10 1.521266846e-10 1.433520794e-10 9.233645846e-11 1.509930121e-10 1.533741371e-10 1.715670442e-10 1.990460025e-10 1.948621559e-10 2.670016095e-10 1.908283623e-10 4.033941301e-10 2.591157559e-10 2.714035749e-10 2.917266841e-10 3.479392652e-10 2.165868288e-10 4.182629093e-10 2.467445889e-10 3.513829196e-10 3.698954754e-10 2.483071763e-10 1.896664363e-10 2.124153577e-10 4.21959563e-10 1.326467652e-10 4.456873192e-10 3.229972641e-10 4.97151479e-10 5.196104993e-10 3.586523441e-10 3.81344342e-10 2.621476627e-10 2.675110663e-10 2.375394699e-10 3.765239178e-10 2.460958204e-10 2.958827035e-10 4.051789712e-10 2.907388182e-10 1.611325268e-10 1.523840125e-10 1.990515322e-10 2.453350594e-10 1.913000256e-10 2.268089109e-10 2.647913627e-10 2.332555489e-10 2.028053591e-10 1.662922519e-10 1.348564522e-10 1.52839833e-10 1.292575214e-10 2.658018917e-10 3.774365358e-10 2.66413421e-10 1.924495033e-10 2.074187445e-10 8.613777569e-11 2.237019676e-10 1.973155398e-10 1.484757921e-10 3.921588145e-10 1.765551644e-10 1.976037744e-10 1.79311119e-10 1.593852248e-10 1.17593423e-10 1.968046607e-10 2.632782782e-10 3.336474252e-10 1.264583843e-10 1.347687617e-10 2.048257682e-10 4.33727825e-11 1.857681834e-10 1.703955167e-10 1.011249194e-10 6.474986139e-11 2.036287074e-10 1.546886362e-10 1.02763239e-10 3.308482999e-10 1.145640108e-10 1.687762175e-10 1.355812231e-10 6.892519955e-11 2.252086137e-10 4.142825018e-10 2.432996634e-10 9.249398747e-11 3.940305867e-10 2.292148753e-10 3.353780305e-10 4.130062994e-10 1.456786999e-10 2.496613277e-10 2.941118026e-10 3.104908897e-10 1.139214443e-10 2.285146253e-10 2.135699839e-10 2.813853606e-10 2.937200481e-10 1.90501939e-10 3.23128936e-10 2.367569479e-10 1.519737954e-10 2.968437954e-10 3.270299609e-10 1.55104999e-10 2.087095487e-10 1.736796521e-10 2.463754632e-10 4.313475594e-10 1.179066717e-10 1.367227651e-10 2.188160613e-10 3.420656746e-10 1.449949811e-10 7.692793708e-11 +2.587506191e-10 1.167328886e-10 1.655211632e-10 1.36776437e-10 1.41392173e-10 7.854741211e-11 2.14272979e-10 3.25034482e-10 2.523463236e-10 1.557174739e-10 1.194949072e-10 2.606843613e-10 1.186489526e-10 1.379728222e-10 1.378895163e-10 8.081216473e-11 1.999320401e-10 1.811755887e-10 1.231040268e-10 1.333338012e-10 1.700878149e-10 1.63085437e-10 2.173624752e-10 2.261195747e-10 3.126157371e-10 1.722612207e-10 1.372128499e-10 2.631612017e-10 2.196082076e-10 6.862008347e-11 1.358976923e-10 1.311904325e-10 1.188604679e-10 1.846337553e-10 1.903964517e-10 1.499003422e-10 7.166028098e-11 2.062826587e-10 1.489219857e-10 3.201244877e-10 3.661039728e-10 1.216415304e-10 9.23546812e-11 4.965528655e-11 1.845143629e-10 2.643444793e-10 9.404739595e-11 9.197111883e-11 1.414255751e-10 1.275341709e-10 2.394112183e-10 9.580015298e-11 2.68433981e-10 3.081178369e-10 1.198209005e-10 2.8770861e-10 2.146189344e-10 1.289321828e-10 2.032019609e-10 2.007792214e-10 2.164491033e-10 1.859684018e-10 2.023889134e-10 1.517767653e-10 2.732493473e-10 2.704657642e-10 1.459963695e-10 2.14677351e-10 3.062173401e-10 1.813960122e-10 1.002721509e-10 3.163664824e-10 1.944121335e-10 1.404621956e-10 2.198479597e-10 1.312039562e-10 1.624193048e-10 9.970148724e-11 1.960603654e-10 1.6090828e-10 1.380988769e-10 2.235901187e-10 2.369219896e-10 2.438659641e-10 2.958419915e-10 3.359865415e-10 4.721567333e-10 4.381059525e-10 4.426370946e-10 3.264462855e-10 3.302492252e-10 1.885359199e-10 2.944053762e-10 1.637877338e-10 2.458471115e-10 1.779205406e-10 2.12449954e-10 3.099469876e-10 2.228270732e-10 2.754332913e-10 2.48707622e-10 3.323442296e-10 2.175992463e-10 1.829629322e-10 4.372661263e-10 2.539183711e-10 2.631535086e-10 2.289758744e-10 2.884766878e-10 2.162411031e-10 2.971427929e-10 2.34867354e-10 2.373074228e-10 1.879957556e-10 1.825946098e-10 1.519315997e-10 2.471247902e-10 1.474048122e-10 1.606796792e-10 1.101721973e-10 7.184862663e-11 5.602413827e-11 2.105322863e-10 6.205069702e-11 1.56248071e-10 1.821193365e-10 1.200686167e-10 9.973571275e-11 1.269636044e-10 1.625043945e-10 1.363946293e-10 5.93475455e-10 4.736628065e-10 3.474415665e-10 4.602627173e-10 2.788157323e-10 4.78654693e-10 4.793789028e-10 2.505442427e-10 3.923181048e-10 3.783396115e-10 4.918394936e-10 5.627364609e-10 4.651232117e-10 2.136493717e-10 4.126418096e-10 2.882092415e-10 4.333861855e-10 4.90199059e-10 3.794799452e-10 5.21498486e-10 3.539039871e-10 3.597805367e-10 3.041821382e-10 4.512255562e-10 9.63442751e-10 2.456786817e-10 5.067730197e-10 3.991395984e-10 7.036413585e-10 5.787585274e-10 4.184400934e-10 5.425647679e-10 3.490709347e-10 2.177916773e-10 3.894807674e-10 7.264442868e-10 6.990429602e-10 1.140407487e-10 2.014216143e-10 1.683196994e-10 1.630067559e-10 1.310180113e-10 1.429877579e-10 1.957262665e-10 1.470726417e-10 1.065762905e-10 7.311155421e-11 1.055130527e-10 6.846384342e-11 8.866583843e-11 1.004846909e-10 1.732837192e-10 1.194550073e-10 1.981459798e-10 1.920308809e-10 3.230730749e-10 2.753884136e-10 2.167878356e-10 1.200207332e-10 2.221089485e-10 2.53835593e-10 1.723744076e-10 2.164070905e-10 2.33820839e-10 2.426484062e-10 3.381772557e-10 3.065256465e-10 3.689543282e-10 3.111138675e-10 3.050089248e-10 3.074251497e-10 1.790261961e-10 2.599471059e-10 3.219533912e-10 2.160345509e-10 2.650190131e-10 5.135922175e-10 1.111255967e-10 2.682425919e-10 2.943000051e-10 2.428016446e-10 2.659290427e-10 3.139851329e-10 3.605909688e-10 2.577620629e-10 2.42328872e-10 3.25207377e-10 3.632734699e-10 2.78402692e-10 1.827272729e-10 1.25280972e-10 2.084646704e-10 1.368550401e-10 3.286417722e-10 1.772222711e-10 1.42587033e-10 1.500741232e-10 6.563279585e-11 1.204720186e-10 7.549514212e-11 2.455200341e-10 5.832183197e-11 2.10085941e-10 1.913397767e-10 2.397896157e-10 1.259420355e-10 1.34472152e-10 1.16515106e-10 2.593285414e-10 3.566203293e-10 2.26662009e-10 3.165465161e-10 1.522927972e-10 2.305247321e-10 4.753095448e-10 1.171265145e-10 1.856022578e-10 2.819781284e-10 1.942410402e-10 1.982435407e-10 2.226942572e-10 1.488691619e-10 9.742496719e-11 1.486035489e-10 1.71717317e-10 2.053723271e-10 1.821988059e-10 1.656867009e-10 2.149885557e-10 2.421057257e-10 3.24146294e-10 2.179251981e-10 3.448958348e-10 1.829844822e-10 1.957928496e-10 2.829455864e-10 1.383411233e-10 1.484332736e-10 1.801921894e-10 2.514493653e-10 8.058801958e-11 1.670051528e-10 2.142972435e-10 2.86352795e-10 1.987275643e-10 1.049206975e-10 1.386400679e-10 2.433985225e-10 2.53191585e-10 2.080267483e-10 1.050480424e-10 1.947138891e-10 3.350229874e-10 2.027946048e-10 1.51073431e-10 2.32651837e-10 1.533662085e-10 1.24561732e-10 3.085155213e-10 1.414305118e-10 3.294876927e-10 2.052622219e-10 1.468226525e-10 1.320052515e-10 3.360746379e-10 5.216604385e-11 3.564006107e-10 1.243475748e-10 8.38863189e-11 +1.46472268e-10 2.851607869e-10 1.786528188e-10 2.524798795e-10 1.523522722e-10 1.881491538e-10 3.486766561e-10 9.587815097e-11 1.911334752e-10 1.249666326e-10 1.54943022e-10 1.557131642e-10 7.523854336e-11 2.092231201e-10 2.10246059e-10 3.310320989e-10 2.168111021e-10 1.358096085e-10 1.430784737e-10 1.630952828e-10 1.451114986e-10 3.03673082e-10 2.065468972e-10 1.777843983e-10 8.14518774e-11 1.305546013e-10 3.714862786e-10 3.499953588e-10 2.766564969e-10 1.349989948e-10 3.094652031e-10 9.684947066e-11 1.904209695e-10 9.825820072e-11 2.406770719e-10 2.906272658e-10 2.866355929e-10 1.467780625e-10 4.043717576e-10 3.468225446e-10 1.136429941e-10 1.991730129e-10 1.499078201e-10 2.248492025e-10 1.106531989e-10 3.216782375e-10 2.116368907e-10 1.095208207e-10 1.323118833e-10 1.971960071e-10 1.071146758e-10 2.565058602e-10 1.167639892e-10 1.351053477e-10 1.600432494e-10 2.28910568e-10 1.737123271e-10 1.820566826e-10 1.690283002e-10 1.104203483e-10 1.457965693e-10 2.115208196e-10 1.715157945e-10 2.5730432e-10 1.85757601e-10 2.449121727e-10 1.492302591e-10 2.733649799e-10 1.890452973e-10 2.611066043e-10 9.076950055e-11 3.594762586e-10 1.298976911e-10 1.540171291e-10 3.806929272e-10 8.457287371e-11 3.831613398e-10 2.472512912e-10 1.479426214e-10 3.612976726e-10 2.717900614e-10 3.254545307e-10 1.723883521e-10 2.201911024e-10 3.243035027e-10 2.50642254e-10 2.402428542e-10 2.204980369e-10 3.20597935e-10 2.467902942e-10 4.995381275e-11 3.600894468e-10 2.235736098e-10 3.098613749e-10 3.003001329e-10 2.858525436e-10 2.635144831e-10 3.063900986e-10 1.889154576e-10 2.301604044e-10 2.017424601e-10 2.63614433e-10 2.155355764e-10 2.259129743e-10 2.138707052e-10 1.73982554e-10 3.049844858e-10 2.903884248e-10 2.088345277e-10 1.286810966e-10 1.13105409e-10 2.405147243e-10 9.502086702e-11 2.800333262e-10 3.545717176e-10 2.281385017e-10 1.619143782e-10 1.171431522e-10 1.675872431e-10 1.006937354e-10 2.944318574e-11 8.247560836e-11 1.466350447e-10 1.486765406e-10 2.243329379e-10 1.544350437e-10 1.56329331e-10 1.591606758e-10 5.056250854e-10 4.069484072e-10 3.570689766e-10 5.822000269e-10 3.851320323e-10 4.124898699e-10 2.803572061e-10 3.006785319e-10 6.867346335e-10 3.801099574e-10 3.396394467e-10 3.342670484e-10 2.741499357e-10 4.542219522e-10 2.93794572e-10 2.778362745e-10 4.765407941e-10 3.035945174e-10 2.591552825e-10 3.579507935e-10 2.896388415e-10 2.657374221e-10 4.502181932e-10 3.924464397e-10 6.470092221e-10 5.006675862e-10 6.770944284e-10 3.856302928e-10 4.841234431e-10 3.647134714e-10 2.436493523e-10 3.80215619e-10 3.231227333e-10 3.50144992e-10 5.326671173e-10 2.982416368e-10 2.875972742e-10 6.742266243e-10 4.96888824e-10 4.287985743e-10 2.647841501e-10 5.46752443e-10 1.629979423e-10 2.573376462e-10 9.654547951e-11 1.566191103e-10 1.838853861e-10 8.28475265e-11 1.484546269e-10 1.6735218e-10 8.430684229e-11 1.344628471e-10 1.069020251e-10 4.524110065e-11 1.533248001e-10 1.251078921e-10 7.408712478e-11 8.443904118e-11 1.336784019e-10 1.489616939e-10 2.592963658e-10 2.142642284e-10 2.655917118e-10 3.546213309e-10 1.920947924e-10 2.361898692e-10 3.243600251e-10 2.740703804e-10 8.798031741e-11 4.546711251e-10 1.580076992e-10 2.497183347e-10 1.079108853e-10 3.809351949e-10 3.272994815e-10 2.740873268e-10 2.9657685e-10 3.097780478e-10 2.542624433e-10 3.327662245e-10 4.202779276e-10 3.767020111e-10 4.191851621e-10 4.192979816e-10 3.067541096e-10 1.700853171e-10 1.998348097e-10 3.022862625e-10 2.123492941e-10 3.495221033e-10 2.457357786e-10 2.238629667e-10 1.113248478e-10 2.103905183e-10 1.127818034e-10 2.717223617e-10 3.821756965e-10 1.859352243e-10 2.351555713e-10 3.225612764e-10 1.907442446e-10 1.337127214e-10 1.827621061e-10 2.385021393e-10 2.499845932e-10 1.997602986e-10 1.775197003e-10 2.671599772e-10 1.846870497e-10 1.174628331e-10 3.11408218e-10 2.038924798e-10 1.509083655e-10 1.778716317e-10 1.736160324e-10 9.520133161e-11 9.487620902e-11 2.887917361e-10 2.688540288e-10 1.776835211e-10 1.381414604e-10 2.612004882e-10 1.877188019e-10 1.979198421e-10 2.806953004e-10 1.794686985e-10 7.480195641e-11 9.059444165e-11 1.327316968e-10 1.158592205e-10 1.294321308e-10 9.218714043e-11 2.389746032e-10 3.725194223e-10 1.606883094e-10 1.459984582e-10 8.313447834e-11 7.445752436e-11 3.107900461e-10 1.508753933e-10 2.281094251e-10 2.404874189e-10 3.600966805e-10 3.647920508e-10 2.839246013e-10 2.146212303e-10 3.000824033e-10 1.028097701e-10 1.555709528e-10 1.664712495e-10 3.120587624e-10 1.759164698e-10 2.823872158e-10 1.46407172e-10 2.138234054e-10 9.875616009e-11 1.279065683e-10 1.608796678e-10 1.538434581e-10 1.946960906e-10 1.146574573e-10 1.870986512e-10 3.171646303e-10 1.369295433e-10 1.045433617e-10 2.261771626e-10 2.255956828e-10 1.382407566e-10 1.946753016e-10 1.393066304e-10 2.349087341e-10 2.005737009e-10 +1.65891328e-10 1.285717694e-10 2.163090847e-10 1.572929451e-10 2.593589793e-10 2.442416144e-10 2.376370974e-10 1.820407087e-10 1.272926185e-10 2.291417508e-10 2.640071648e-10 1.83468859e-10 7.710621177e-11 9.506856893e-11 7.945153046e-11 2.576203521e-10 3.483378719e-10 2.049171551e-10 4.19321782e-10 3.124977145e-10 3.107374744e-10 1.080653842e-10 1.276971217e-10 1.64019254e-10 1.984956072e-10 5.031889243e-10 1.513918349e-10 9.371940522e-11 1.842651172e-10 1.160226474e-10 2.88046011e-10 2.229903626e-10 1.427089554e-10 1.858821343e-10 1.93530851e-10 2.028384362e-10 1.772677955e-10 1.145452211e-10 1.58131267e-10 1.185731742e-10 1.93792444e-10 1.382549158e-10 1.913609707e-10 4.132916956e-11 1.394122564e-10 1.897034577e-10 2.695326983e-10 2.336220832e-10 1.815001643e-10 2.260273893e-10 2.882367679e-10 9.601975518e-11 1.476389668e-10 1.333757514e-10 2.767254186e-10 2.276344311e-10 2.529223252e-10 1.39831222e-10 2.284184976e-10 1.811820384e-10 9.496928308e-11 1.38915407e-10 2.932243988e-10 1.398721851e-10 2.298288232e-10 2.564930291e-10 1.929626429e-10 2.217254551e-10 2.779104274e-10 2.556353104e-10 2.457324395e-10 9.152830324e-11 2.165123683e-10 1.195736424e-10 1.023350771e-10 1.465094674e-10 9.464334697e-11 2.388084176e-10 2.023388362e-10 9.193455028e-11 1.681083713e-10 1.642739113e-10 2.059696875e-10 3.433431849e-10 2.845005744e-10 3.402887771e-10 3.151007795e-10 3.528549723e-10 2.983531187e-10 2.441111616e-10 3.126733699e-10 2.807415394e-10 1.900919627e-10 3.303740082e-10 3.18974569e-10 3.365120906e-10 2.499029343e-10 3.378930239e-10 2.032273435e-10 1.232612137e-10 1.862598329e-10 3.095607824e-10 2.866621799e-10 4.127988293e-10 2.826405376e-10 1.367070799e-10 1.869897051e-10 2.275479907e-10 1.864973082e-10 2.699318903e-10 1.881077911e-10 3.078577845e-10 1.601340251e-10 2.66099038e-10 1.994971629e-10 1.639404864e-10 1.250455086e-10 9.077957749e-11 1.06411279e-10 1.926424035e-10 5.354977867e-11 1.172049557e-10 1.20465838e-10 1.857000304e-10 1.175711438e-10 6.561050407e-11 1.862178013e-10 1.404964796e-10 2.73626024e-10 7.225111084e-10 3.140616124e-10 2.935009582e-10 2.784801504e-10 3.026036419e-10 4.441042408e-10 4.87150249e-10 5.609605355e-10 4.434840521e-10 4.332629699e-10 5.011719853e-10 3.210555307e-10 3.662640154e-10 2.790823385e-10 2.774998598e-10 4.604811639e-10 4.775834915e-10 2.968711891e-10 3.241578935e-10 5.812985551e-10 3.115400176e-10 2.680848466e-10 2.887074076e-10 2.374657109e-10 6.165657139e-10 8.259218313e-10 4.296291998e-10 4.509250154e-10 4.279454575e-10 4.164092016e-10 2.189253076e-10 7.704190351e-10 4.97908322e-10 3.797685299e-10 5.409234065e-10 4.735802152e-10 4.11172751e-10 3.506860884e-10 3.312447156e-10 4.321744987e-10 3.193141176e-10 3.089880625e-10 3.834596642e-10 1.415636448e-10 2.104046268e-10 1.550919573e-10 1.625647531e-10 1.817772046e-10 1.899356871e-10 1.314703064e-10 1.377368828e-10 6.524967963e-11 3.701430861e-11 1.078850588e-10 1.140328544e-10 1.634446537e-10 2.051559103e-10 1.886260083e-10 2.031190887e-10 1.931017087e-10 1.831907835e-10 3.856070116e-10 2.188879644e-10 2.167091943e-10 3.509443627e-10 1.942825891e-10 2.626143429e-10 2.288021194e-10 3.405886271e-10 2.192597106e-10 2.487776394e-10 2.405350426e-10 2.835285693e-10 2.831617733e-10 2.290777695e-10 3.072610862e-10 3.005268913e-10 2.682107022e-10 2.589915268e-10 2.247922305e-10 2.231796931e-10 2.318883805e-10 3.45831208e-10 3.97250184e-10 5.1967824e-10 2.68766097e-10 2.775866275e-10 2.867418874e-10 2.696916649e-10 2.550680595e-10 1.271718669e-10 1.338663938e-10 1.473851212e-10 3.307638591e-10 2.635281597e-10 4.475616591e-11 1.231831047e-10 2.947915055e-10 1.07798137e-10 2.736343107e-10 1.97530085e-10 1.100247096e-10 1.52125221e-10 2.031883116e-10 3.586978335e-10 3.404149955e-10 2.331209926e-10 4.16624549e-10 9.908873459e-11 1.395844225e-10 1.42448494e-10 1.747626825e-10 1.477665159e-10 2.240144165e-10 2.572185089e-10 1.663074613e-10 1.6099131e-10 1.876126294e-10 2.678017242e-10 1.407921937e-10 1.77009347e-10 2.325356326e-10 2.257892752e-10 1.375603833e-10 1.063466747e-10 1.67889111e-10 1.663466956e-10 1.472034959e-10 9.773691167e-11 2.017201427e-10 9.094264925e-11 9.925789524e-11 1.47431659e-10 1.443977626e-10 1.562682927e-10 2.285319779e-10 1.596354984e-10 2.940732876e-10 2.187015448e-10 1.147409551e-10 2.522986816e-10 3.827701611e-10 2.519677587e-10 2.411878064e-10 2.465484117e-10 1.194091713e-10 1.633466376e-10 2.350745469e-10 3.047260456e-10 3.72627219e-10 3.9882179e-10 2.592581583e-10 3.247781804e-10 2.442375726e-10 3.113477718e-10 1.616469073e-10 1.339125385e-10 2.785457976e-10 3.183387058e-10 1.093389516e-10 3.265014825e-10 9.95107795e-11 9.559285493e-11 1.465138702e-10 3.652526302e-10 2.32065314e-10 1.051427288e-10 2.25818065e-10 4.440822768e-10 1.093087543e-10 1.324911195e-10 +2.639797195e-10 2.85039237e-10 2.010954363e-10 1.42322784e-10 1.968453054e-10 2.897601393e-10 1.152523902e-10 3.431026129e-10 3.024686702e-10 2.987803184e-10 1.062801017e-10 1.627698645e-10 1.811631023e-10 2.094054925e-10 2.468980931e-10 1.817964896e-10 1.561693367e-10 2.929579614e-10 3.149385775e-10 3.350790919e-10 1.239464485e-10 2.538020119e-10 2.366766359e-10 2.022926549e-10 1.146898902e-10 1.484507728e-10 2.137164827e-10 2.516219965e-10 2.49062276e-10 3.077214139e-10 8.901866724e-11 2.381043068e-10 1.164467673e-10 2.042486556e-10 1.154265692e-10 7.822742926e-11 7.39699982e-11 1.794334897e-10 1.782291176e-10 2.055476356e-10 1.756281875e-10 1.152470579e-10 1.43111116e-10 8.45998008e-11 2.83918325e-10 1.482325331e-10 1.646378261e-10 1.984852326e-10 2.113819966e-10 3.33104113e-10 1.283858149e-10 2.054753916e-10 3.024621709e-10 2.744943094e-10 2.093613109e-10 2.169370397e-10 2.916476399e-10 1.876289347e-10 3.053709032e-10 1.304241999e-10 1.284769816e-10 1.62715336e-10 1.923392334e-10 1.196331891e-10 1.75482583e-10 2.518442048e-10 2.342276698e-10 1.728800079e-10 2.062192027e-10 2.421869952e-10 1.0169227e-10 9.349764613e-11 9.737962588e-11 2.084428749e-10 1.568164297e-10 2.387891736e-10 1.963416311e-10 2.737932337e-10 2.075013027e-10 3.98800806e-10 2.663767547e-10 2.280258436e-10 4.133081701e-10 1.618430593e-10 2.314834097e-10 3.341709849e-10 5.041781249e-10 2.914885043e-10 3.209430724e-10 2.969954122e-10 2.769109765e-10 2.589519557e-10 3.331112242e-10 3.852275018e-10 3.525777788e-10 2.183376088e-10 3.165075709e-10 2.286488748e-10 2.359940058e-10 2.249961516e-10 2.849143219e-10 2.2707877e-10 2.094293562e-10 1.490278554e-10 2.759610367e-10 2.278174042e-10 2.94370224e-10 2.492120044e-10 2.407192314e-10 1.678037527e-10 1.790451027e-10 1.765772748e-10 1.536836569e-10 7.663335805e-11 8.949777667e-11 1.690192073e-10 1.08260951e-10 2.056532267e-10 1.525127067e-10 2.058213007e-10 1.226919281e-10 1.731302439e-10 1.63949564e-10 9.682833537e-11 1.984925484e-10 2.03640506e-10 4.102604439e-10 4.860189935e-10 3.977692317e-10 4.340815289e-10 4.451129555e-10 2.765834021e-10 4.383348176e-10 5.428087958e-10 3.427892428e-10 3.467425584e-10 5.269542052e-10 5.411540239e-10 3.711572245e-10 4.402885834e-10 5.092812036e-10 3.662656805e-10 2.725115054e-10 3.633170466e-10 4.361859718e-10 4.544624422e-10 3.371285107e-10 4.422777556e-10 6.012660744e-10 3.162035036e-10 5.770796986e-10 1.938257246e-10 4.24347119e-10 4.842800942e-10 4.986442724e-10 4.198070518e-10 3.929498279e-10 5.897889279e-10 2.954917798e-10 3.096970559e-10 2.878061203e-10 3.875975284e-10 4.02576401e-10 3.563103126e-10 5.715294954e-10 2.421148995e-10 7.06621797e-10 2.800701818e-10 2.856365907e-10 5.193857537e-10 5.700571031e-10 6.211747281e-10 2.448558934e-10 4.712006805e-10 1.422929256e-10 1.895482749e-10 1.030895285e-10 1.662729048e-10 2.581437518e-10 1.03739913e-10 9.651767972e-11 5.577139458e-11 6.222836406e-11 1.626176634e-10 1.024534617e-10 1.976242766e-10 2.76507454e-10 1.441240162e-10 2.652024454e-10 2.233537572e-10 3.700395909e-10 1.570652626e-10 1.947166769e-10 1.580802753e-10 2.039641555e-10 1.300823996e-10 3.13994117e-10 1.920104793e-10 4.197332344e-10 3.15540808e-10 2.108993243e-10 2.785134244e-10 2.874328475e-10 4.672727933e-10 3.519362978e-10 2.312507086e-10 4.430013644e-10 2.885579545e-10 3.487905402e-10 4.105542024e-10 3.382417851e-10 3.995300835e-10 2.440067123e-10 2.765526471e-10 3.745348573e-10 2.59760481e-10 2.739044672e-10 2.159763315e-10 3.267264236e-10 3.956333232e-10 2.58110974e-10 2.258692981e-10 2.566467171e-10 1.267447742e-10 2.492113195e-10 2.400537446e-10 2.427219924e-10 4.226071065e-10 2.149210408e-10 1.390712854e-10 3.236861027e-10 5.105848318e-10 3.896435821e-10 2.110008866e-10 2.713051518e-10 1.100358242e-10 1.590134735e-10 1.198567766e-10 8.691208328e-11 1.37216497e-10 3.373380855e-10 2.505135329e-10 2.049568145e-10 3.104423173e-10 2.23308977e-10 2.455787558e-10 2.373896132e-10 2.308988106e-10 2.787437402e-10 1.809773825e-10 1.577277273e-10 1.63165666e-10 2.607810624e-10 1.678784156e-10 2.134682752e-10 2.019714583e-10 2.101246452e-10 1.757992669e-10 3.155346484e-10 2.396431718e-10 2.858412448e-10 1.624312242e-10 1.240862515e-10 1.482325666e-10 1.249787028e-10 2.427391334e-10 1.028080714e-10 2.120218164e-10 2.082519133e-10 1.345457986e-10 2.482024624e-10 2.091068264e-10 1.780512809e-10 1.680970387e-10 1.723159435e-10 1.532974587e-10 1.768564179e-10 2.152201399e-10 2.616344899e-10 2.007911873e-10 1.400598317e-10 2.273527656e-10 3.3831495e-10 2.861941784e-10 2.082552256e-10 1.281400389e-10 2.918231988e-10 1.044033772e-10 3.57983408e-10 1.417543016e-10 2.636983645e-10 1.340382519e-10 2.431607104e-10 1.887050853e-10 2.923778459e-10 1.057637646e-10 3.607274782e-10 1.772349145e-10 1.746720361e-10 2.251600309e-10 +1.156809373e-10 2.005822628e-10 3.169625035e-10 1.727326177e-10 1.879350854e-10 1.609879205e-10 2.29816442e-10 3.258177592e-10 1.216750088e-10 4.652557071e-10 4.439136983e-10 1.280804193e-10 1.841286369e-10 2.605059828e-10 2.857380743e-10 7.320915015e-11 3.059313046e-10 4.158215826e-10 2.767447473e-10 7.358168048e-11 1.583818459e-10 5.908403032e-11 2.868856812e-10 2.698656351e-10 1.819752218e-10 2.596203592e-10 2.256372116e-10 2.017568763e-10 2.021562051e-10 1.921529897e-10 1.649571758e-10 1.175931909e-10 2.139759912e-10 3.967481893e-10 1.431660048e-10 1.219776629e-10 1.745098536e-10 2.585560143e-10 3.355839228e-10 1.775183773e-10 3.659225149e-10 1.937904418e-10 1.264540974e-10 1.385664345e-10 2.235057803e-10 2.869286138e-10 1.685547548e-10 1.807485047e-10 1.67700474e-10 1.400063619e-10 2.457163538e-10 8.673676004e-11 1.437566773e-10 2.388999545e-10 1.735893762e-10 1.002678807e-10 1.529616967e-10 1.328312787e-10 3.396196421e-10 2.441081836e-10 3.377580061e-10 1.356018706e-10 2.140470373e-10 1.40325472e-10 2.11222773e-10 1.244120659e-10 3.747462525e-10 3.351400086e-10 1.825907612e-10 2.388319561e-10 1.911740053e-10 2.3573711e-10 2.049677878e-10 2.710166834e-10 1.709174705e-10 2.171171049e-10 1.697384502e-10 2.133537906e-10 1.069784308e-10 1.643973254e-10 4.30646161e-10 3.099483006e-10 2.25293278e-10 2.427199045e-10 3.43508746e-10 2.882794827e-10 2.507356928e-10 4.685221515e-10 2.920684432e-10 4.998666234e-10 3.602570266e-10 3.005745526e-10 2.735518831e-10 3.066366376e-10 3.111294306e-10 2.61383853e-10 2.351302777e-10 4.486421044e-10 2.833621236e-10 3.22336167e-10 3.351025687e-10 2.807308459e-10 2.825216169e-10 1.822645654e-10 1.489370594e-10 3.776113867e-10 1.786341745e-10 3.054755879e-10 2.179991787e-10 2.881158932e-10 1.845119107e-10 2.080872037e-10 2.40500292e-10 3.477501903e-10 1.390601138e-10 1.194185705e-10 7.121825796e-11 8.47095575e-11 9.099845838e-11 1.794177819e-10 1.113677816e-10 1.838297245e-10 1.172518689e-10 2.188970107e-10 3.400926425e-10 3.269727098e-10 4.740225537e-10 3.424062535e-10 2.757974822e-10 4.484951696e-10 3.102998787e-10 4.784844627e-10 4.524508135e-10 4.165990002e-10 4.176617421e-10 4.079397261e-10 6.296667002e-10 3.240639769e-10 4.926916624e-10 2.858422404e-10 3.378406638e-10 3.820514354e-10 3.821623008e-10 3.958102889e-10 3.787038502e-10 5.229095637e-10 2.875920556e-10 7.991624121e-10 2.935776385e-10 5.536648766e-10 3.229399303e-10 4.538162592e-10 4.680585471e-10 3.582047319e-10 3.878536238e-10 5.582187709e-10 3.656897416e-10 3.674242193e-10 2.671121808e-10 3.746780979e-10 4.735956094e-10 5.143915655e-10 3.937594433e-10 2.984539875e-10 6.960000376e-10 7.419658833e-10 6.736933896e-10 4.038847685e-10 3.321699101e-10 5.291305662e-10 5.301685082e-10 2.251651016e-10 4.083445892e-10 4.021457796e-10 2.1320782e-10 4.822511462e-10 2.741370946e-10 1.689390523e-10 2.084432565e-10 1.215031765e-10 1.343695586e-10 6.228087791e-12 5.055490496e-11 1.180141393e-10 2.224216715e-10 1.514215596e-10 1.345667234e-10 1.00132369e-10 1.014063703e-10 2.421835487e-10 2.739027735e-10 2.3343494e-10 1.603133039e-10 2.842350368e-10 2.920176669e-10 2.817786348e-10 2.949136761e-10 2.804593456e-10 3.73818883e-10 3.032087194e-10 2.511190116e-10 2.660236797e-10 4.478158051e-10 3.326649761e-10 3.680349479e-10 3.693118279e-10 3.195061082e-10 3.812493791e-10 2.328310646e-10 2.697911619e-10 4.289745285e-10 3.0773612e-10 2.766758904e-10 5.049607109e-10 2.775256894e-10 3.014822619e-10 2.373572794e-10 2.201878295e-10 3.491997042e-10 1.831142859e-10 2.333802143e-10 3.533055485e-10 9.906514459e-11 2.383525356e-10 1.621326306e-10 2.417100469e-10 1.96070312e-10 1.857871262e-10 1.639070519e-10 1.704207328e-10 2.029374085e-10 1.639177639e-10 1.865513854e-10 9.939146156e-11 1.774007086e-10 2.739727473e-10 1.46063e-10 2.303189374e-10 2.264501445e-10 1.195920692e-10 1.578488432e-10 1.490975468e-10 1.838387471e-10 2.267381739e-10 3.385307137e-10 2.272831298e-10 1.806519089e-10 1.426391989e-10 2.092109363e-10 1.708012044e-10 2.556196516e-10 2.192954649e-10 4.0394335e-10 1.340232569e-10 2.252646295e-10 1.839563119e-10 1.752179689e-10 1.527633895e-10 4.860613101e-10 1.311968629e-10 1.018373417e-10 4.887494517e-11 2.801772655e-10 2.447060041e-10 3.050757889e-10 1.987131288e-10 3.151061748e-10 1.685398489e-10 2.773657114e-10 2.562591898e-10 2.516948358e-10 2.041058889e-10 1.779161091e-10 1.605057278e-10 9.995021021e-11 2.759832325e-10 3.283927162e-10 2.245341828e-10 3.04249788e-10 2.077612923e-10 9.871066236e-11 2.021956173e-10 1.743699375e-10 7.259164514e-11 2.993870554e-10 3.678632204e-10 2.392854866e-10 1.457096232e-10 1.830788089e-10 1.746285366e-10 1.866244437e-10 3.509056531e-10 2.911657763e-10 8.750707284e-11 2.127177348e-10 1.939245634e-10 3.774402652e-10 1.938179909e-10 3.66233246e-10 1.65845774e-10 +2.668671525e-10 1.092090714e-10 1.506374386e-10 3.518554412e-10 1.695691971e-10 2.024850171e-10 3.25466797e-10 8.269576138e-11 2.094601381e-10 3.17278855e-10 6.892768642e-11 2.382015205e-10 3.113333772e-10 2.574854666e-10 1.236544826e-10 1.815111945e-10 3.81772687e-10 3.584685744e-10 2.731416092e-10 5.370721132e-11 2.865381911e-10 3.457232055e-10 3.146455998e-10 1.219307187e-10 1.783789747e-10 1.421618084e-10 1.515223208e-10 2.175581715e-10 2.028938522e-10 2.296602011e-10 1.41488467e-10 2.02153137e-10 1.658551768e-10 1.924304059e-10 2.270353446e-10 2.144374325e-10 3.574711845e-10 1.767936879e-10 1.861714142e-10 2.093108214e-10 2.323362785e-10 1.169527549e-10 1.650773e-10 1.086285993e-10 3.710169103e-10 1.979769305e-10 1.028418089e-10 4.355530184e-10 1.992664377e-10 1.684165176e-10 9.970591853e-11 1.202958254e-10 1.311491029e-10 2.226575192e-10 2.659309167e-10 1.729438286e-10 2.005123522e-10 2.396337682e-10 1.991300026e-10 1.77908642e-10 2.284295053e-10 2.727421523e-10 1.22412751e-10 1.982454012e-10 1.073495729e-10 1.045485525e-10 2.572446587e-10 1.026335939e-10 1.359865679e-10 2.273756637e-10 1.738430899e-10 2.075178995e-10 2.645175112e-10 1.169419855e-10 2.063950135e-10 1.962790384e-10 1.208892674e-10 1.2822897e-10 2.014509632e-10 2.733280887e-10 3.171990968e-10 1.25347378e-10 1.623415603e-10 3.997748787e-10 2.582595055e-10 3.552205671e-10 3.554112506e-10 3.564325566e-10 2.849398749e-10 3.990877546e-10 3.832073186e-10 2.46909715e-10 3.226598002e-10 3.10635892e-10 3.644195886e-10 3.977258616e-10 2.466056625e-10 4.335284908e-10 2.836458175e-10 2.823360063e-10 2.532972693e-10 3.424708028e-10 3.054468445e-10 3.443599141e-10 2.352222624e-10 2.709809812e-10 2.342495412e-10 2.125801661e-10 3.196650125e-10 1.476189878e-10 1.98732205e-10 1.371423814e-10 1.486666792e-10 1.195085075e-10 1.196454637e-10 1.179819523e-10 6.522703262e-11 7.656380998e-11 1.891900946e-10 1.392796952e-10 1.751591451e-10 1.862341183e-10 1.924662941e-10 3.597584539e-10 5.984294481e-10 4.724634237e-10 2.504786494e-10 3.588332072e-10 4.328340215e-10 6.139267374e-10 3.666811856e-10 4.038861152e-10 6.171071257e-10 6.106462529e-10 4.754508829e-10 5.206496163e-10 7.182798818e-10 3.631996998e-10 3.583658616e-10 2.989555181e-10 5.408250142e-10 6.651831901e-10 6.252711106e-10 4.451967926e-10 2.037571682e-10 3.902879091e-10 5.378268106e-10 5.51868913e-10 3.732040909e-10 5.109845283e-10 5.639321331e-10 3.598066611e-10 5.267751568e-10 3.485675823e-10 3.371233029e-10 7.380174688e-10 2.813546633e-10 5.404456959e-10 3.665762869e-10 5.184798589e-10 6.601840638e-10 5.163643485e-10 6.14642532e-10 4.700990279e-10 3.39327526e-10 3.537475281e-10 1.867434183e-10 4.128446842e-10 4.41832282e-10 6.078064184e-10 3.735815747e-10 3.830508899e-10 5.664160708e-10 2.505500262e-10 2.81008983e-10 1.411238179e-10 1.762081088e-10 9.977135392e-11 2.663360837e-10 1.3371541e-10 1.994757692e-10 1.012377035e-10 1.969994211e-10 4.219722745e-11 1.811842656e-10 6.109286998e-11 1.792473834e-10 2.310089448e-10 1.317572806e-10 2.502534963e-10 2.293431708e-10 1.935012456e-10 2.661676735e-10 1.576408285e-10 1.795258386e-10 1.265986557e-10 2.740881013e-10 3.124990345e-10 2.867636371e-10 2.258669496e-10 2.369991112e-10 2.426859463e-10 3.022563066e-10 3.762881014e-10 3.263698293e-10 4.16143872e-10 1.969439615e-10 2.858417153e-10 2.766731511e-10 2.700839475e-10 2.937619974e-10 1.763514801e-10 5.627055181e-10 4.178834632e-10 3.502667604e-10 3.24167214e-10 1.347450148e-10 3.628381819e-10 2.994420583e-10 1.418552645e-10 2.318821442e-10 1.397706404e-10 3.508182304e-10 1.568995844e-10 1.53173666e-10 1.84990176e-10 2.146769254e-10 2.560517509e-10 5.47375291e-11 2.07229568e-10 3.579547903e-10 1.817397549e-10 2.392380846e-10 3.243300991e-10 2.041558019e-10 1.456264978e-10 2.452415807e-10 2.097721059e-10 2.808962072e-10 1.995577132e-10 2.998601166e-10 2.772269712e-10 2.580012215e-10 3.519932874e-10 3.26340724e-10 3.292946317e-10 1.425271915e-10 2.649365905e-10 1.979200262e-10 1.003366144e-10 2.587329247e-10 1.723525922e-10 1.936550552e-10 4.031311273e-10 1.360608794e-10 1.324810082e-10 2.649041012e-10 1.599685277e-10 2.988216923e-10 9.833135764e-11 1.723373268e-10 2.846366556e-10 2.748068634e-10 1.975158171e-10 1.68833265e-10 1.091436646e-10 6.381808693e-11 3.183675092e-10 3.603066262e-10 2.481000344e-10 3.753984911e-10 3.953526626e-10 1.488266062e-10 1.338019474e-10 4.188069352e-10 1.835224141e-10 1.511598847e-10 1.728587523e-10 1.659546505e-10 1.63007602e-10 2.044641356e-10 2.710789813e-10 1.654975783e-10 5.300342565e-11 1.449945374e-10 1.599159646e-10 1.859387882e-10 2.833262548e-10 2.259007809e-10 1.910576313e-10 2.094451803e-10 2.044176732e-10 1.539973405e-10 1.767925593e-10 3.115130265e-10 3.96325914e-10 8.532410753e-11 2.749996769e-10 1.499199059e-10 1.66155878e-10 +8.859603546e-11 1.218238821e-10 2.268732504e-10 3.134148346e-10 1.556849778e-10 2.929749663e-10 3.572819292e-10 2.887798805e-10 2.123189188e-10 2.261132604e-10 1.869732984e-10 2.64519262e-10 1.420147384e-10 2.374274113e-10 1.718682122e-10 3.81882832e-10 2.739621395e-10 1.24924157e-10 3.242777165e-10 1.510095753e-10 1.252106616e-10 2.710316746e-10 2.420165141e-10 2.211103014e-10 3.286410524e-10 2.535540752e-10 1.427884034e-10 2.529283351e-10 1.764450536e-10 1.429583923e-10 2.594078689e-10 1.398050976e-10 4.095268279e-10 2.578923579e-10 3.189497803e-10 2.868461061e-10 1.589930588e-10 2.259530443e-10 2.15780062e-10 2.693609468e-10 2.786749892e-10 1.095626749e-10 3.092980921e-10 2.048504173e-10 1.753270816e-10 2.976327212e-10 8.530607768e-11 2.539930524e-10 6.681604852e-11 2.634277623e-10 1.196684533e-10 8.087359817e-11 1.186777723e-10 8.918573896e-11 1.191706761e-10 2.291023334e-10 1.73977869e-10 2.491408152e-10 1.703355597e-10 2.373418073e-10 2.76052537e-10 1.902423792e-10 2.40746388e-10 1.289420456e-10 2.242416744e-10 1.728039253e-10 2.829413554e-10 1.315632396e-10 1.614283393e-10 1.801538415e-10 1.956035167e-10 2.031577082e-10 1.03215538e-10 2.180690421e-10 1.950237316e-10 1.602761407e-10 1.903867415e-10 2.134895417e-10 2.036915393e-10 1.570080904e-10 1.682637956e-10 1.993617279e-10 2.925724996e-10 1.541187769e-10 3.234730272e-10 3.858849398e-10 4.226060645e-10 4.622645148e-10 2.870208829e-10 3.581225808e-10 2.631029128e-10 2.628394779e-10 4.30718086e-10 2.420011271e-10 3.094367683e-10 2.567683748e-10 2.656106218e-10 2.202639995e-10 2.274732234e-10 2.180692462e-10 3.020550267e-10 2.891512411e-10 3.298656858e-10 4.804134006e-10 1.169940941e-10 2.764786558e-10 2.710984758e-10 2.485538035e-10 2.570585727e-10 2.794671388e-10 1.665866084e-10 2.095246315e-10 1.411859561e-10 2.320366809e-10 1.154547114e-10 4.676378883e-11 1.657754359e-10 2.679954774e-10 1.437479333e-10 1.325954579e-10 1.486151488e-10 1.49359666e-10 1.317012712e-10 3.875573987e-10 3.575141741e-10 2.671972647e-10 2.621593434e-10 6.684698198e-10 3.506839126e-10 6.492527647e-10 3.796589692e-10 3.883595364e-10 3.394522428e-10 5.089184494e-10 5.569375904e-10 4.766870038e-10 3.655595917e-10 3.915107094e-10 5.296890906e-10 3.332377208e-10 2.640159002e-10 8.346277895e-10 7.641185927e-10 4.787089826e-10 4.489051541e-10 6.194817614e-10 4.455202929e-10 4.162323455e-10 4.285306906e-10 2.944999827e-10 2.988757803e-10 2.436389932e-10 4.61660899e-10 3.220148657e-10 2.821187679e-10 5.012026001e-10 4.854168691e-10 6.805814912e-10 3.149223663e-10 5.01697725e-10 2.755601761e-10 3.016415169e-10 4.326682367e-10 4.730824328e-10 6.97891674e-10 3.409655088e-10 3.515343157e-10 5.165977713e-10 4.743616354e-10 4.549730549e-10 3.23579362e-10 3.62774363e-10 6.572260271e-10 5.350879604e-10 4.723978965e-10 5.010730305e-10 3.023701999e-10 3.990661272e-10 1.985115415e-10 1.772784058e-10 7.833246498e-11 1.211626479e-10 1.318935082e-10 1.881015636e-10 1.482738921e-10 9.454921566e-11 1.667788014e-10 1.421594107e-10 1.615315541e-10 1.720068334e-10 2.787102713e-10 2.651083583e-10 2.992506876e-10 2.663539129e-10 3.23640779e-10 2.675367093e-10 2.759017411e-10 3.28873332e-10 2.736616118e-10 3.026045417e-10 2.733443056e-10 2.324990548e-10 2.56845871e-10 2.922567857e-10 3.18244666e-10 3.416735442e-10 3.44992516e-10 3.103753523e-10 2.92119059e-10 2.263019729e-10 2.968728055e-10 3.410313866e-10 3.834569323e-10 3.039023799e-10 1.65236633e-10 2.30978894e-10 3.783010433e-10 1.963091615e-10 1.344438726e-10 1.822276046e-10 1.953943846e-10 1.915502733e-10 3.368037568e-10 1.508735551e-10 1.225382735e-10 1.574881171e-10 1.563109045e-10 2.844896228e-10 2.998600227e-10 2.052732184e-10 2.811303766e-10 2.229174737e-10 2.517022252e-10 1.76704037e-10 1.58101618e-10 2.801800602e-10 1.313342463e-10 2.53921802e-10 3.46143754e-10 2.07445884e-10 2.09966059e-10 2.596988214e-10 1.278052701e-10 2.506053776e-10 1.752920425e-10 1.573807766e-10 1.604122704e-10 1.498335751e-10 1.15495085e-10 2.663134816e-10 9.188289604e-11 2.991951662e-10 1.323429835e-10 2.296091484e-10 1.340602083e-10 2.504186212e-10 6.238910512e-11 3.04217456e-10 2.475323012e-10 3.205450999e-10 3.964706805e-10 9.56502425e-11 3.667859499e-10 2.71453514e-10 1.100255043e-10 2.059896729e-10 2.391942264e-10 2.081176544e-10 1.554934468e-10 1.406510976e-10 1.958479044e-10 1.290351295e-10 2.756674193e-10 2.821401874e-10 1.530497171e-10 1.966863489e-10 1.507267103e-10 2.473777204e-10 1.82559003e-10 1.281000054e-10 1.138884301e-10 1.954619124e-10 3.226404706e-10 1.699860892e-10 1.784637238e-10 3.448305444e-10 1.093379593e-10 3.631448849e-10 1.52919807e-10 1.225340237e-10 1.173407599e-10 3.163300175e-10 1.112507687e-10 1.1629456e-10 3.168962378e-10 1.679189484e-10 3.504761233e-10 1.174677719e-10 1.95430794e-10 1.21110044e-10 +2.595554775e-10 2.583627991e-10 1.354057673e-10 1.167208803e-10 3.659898993e-10 2.952758873e-10 2.08923249e-10 4.049532845e-10 2.644752073e-10 2.913298406e-10 1.891881907e-10 3.366323091e-10 2.924090276e-10 1.872106318e-10 1.645670325e-10 9.891163334e-11 2.675332034e-10 1.37797977e-10 3.14330116e-10 4.270411069e-10 2.206531338e-10 1.381814545e-10 2.12518601e-10 1.415255258e-10 2.900210002e-10 1.841221382e-10 2.285945696e-10 1.590765606e-10 1.132387721e-10 2.05995872e-10 3.468797238e-10 3.56984343e-10 1.804746018e-10 2.951945227e-10 1.77504275e-10 1.863777324e-10 2.589984688e-10 1.850657334e-10 1.599388992e-10 3.767135906e-10 1.706285971e-10 2.047256865e-10 1.134179107e-10 1.458982464e-10 3.432796413e-10 1.704873453e-10 1.76967489e-10 1.243447147e-10 2.932708159e-10 3.111569049e-10 3.434513589e-10 3.094745528e-10 3.34174789e-10 2.515444976e-10 2.975556971e-10 1.338192441e-10 1.193098097e-10 1.40196158e-10 2.443424242e-10 2.990623864e-10 2.805035699e-10 2.395180688e-10 2.616452697e-10 2.611394728e-10 2.757747905e-10 2.508450058e-10 2.994959002e-10 1.892035747e-10 2.504049184e-10 2.09078893e-10 2.27382829e-10 3.747636014e-10 1.878608833e-10 2.250313528e-10 2.813445419e-10 1.744921885e-10 9.019564242e-11 2.316780153e-10 2.153780736e-10 3.068337808e-10 1.77066248e-10 2.688407839e-10 3.023028241e-10 2.705401707e-10 2.594502049e-10 3.839726157e-10 3.313137158e-10 2.641955248e-10 3.097073351e-10 3.642114022e-10 2.828097636e-10 2.981822672e-10 1.861943152e-10 2.773682137e-10 2.816436287e-10 1.751882394e-10 2.744083926e-10 2.139270853e-10 1.112795122e-10 3.098079533e-10 1.928803929e-10 3.307358218e-10 2.819436229e-10 2.399810691e-10 3.304221589e-10 2.568262333e-10 2.166143656e-10 2.143670606e-10 3.201337969e-10 1.430983253e-10 1.431473968e-10 1.46304991e-10 1.366637104e-10 8.100275482e-11 5.350006492e-11 8.551170284e-11 1.072914681e-10 1.939641914e-10 1.296355756e-10 1.943108628e-10 1.487018692e-10 1.321860816e-10 1.652820382e-10 5.4115464e-10 3.852405075e-10 3.494333346e-10 7.32770515e-10 3.103192679e-10 4.053345126e-10 3.428620177e-10 3.046390414e-10 3.963432933e-10 3.82022606e-10 6.073926138e-10 3.538470397e-10 3.790355495e-10 4.88111926e-10 2.53343363e-10 3.512676064e-10 1.934624813e-10 4.320322993e-10 3.34339463e-10 4.444270481e-10 6.224920057e-10 3.857511775e-10 4.601193778e-10 3.995185986e-10 4.366570954e-10 4.065358187e-10 3.346427133e-10 2.848679828e-10 3.022878107e-10 5.970576329e-10 3.650091717e-10 4.20102411e-10 4.882636919e-10 5.554399897e-10 5.602595877e-10 6.37727932e-10 3.04760018e-10 4.827872763e-10 4.67094527e-10 5.125630204e-10 3.124502562e-10 5.665565132e-10 4.020173589e-10 4.321456904e-10 3.023954768e-10 4.332621318e-10 5.299015859e-10 4.557818678e-10 4.057367974e-10 4.942462849e-10 6.204024696e-10 4.154995456e-10 3.948704256e-10 5.915059999e-10 3.004121098e-10 4.808069389e-10 2.082471955e-10 1.341900777e-10 9.98627226e-11 2.177688242e-10 1.470522917e-10 1.469372609e-10 3.011124373e-11 1.012325809e-10 2.971325711e-10 1.758609301e-10 1.897294773e-10 2.493250551e-10 2.177127079e-10 2.89323255e-10 2.090939762e-10 1.961918312e-10 3.121066441e-10 2.849711031e-10 3.07314323e-10 1.378570489e-10 3.118834679e-10 1.967680665e-10 2.832624072e-10 2.674681908e-10 2.224569101e-10 4.279912442e-10 3.47994719e-10 4.212544796e-10 2.632461002e-10 2.199364282e-10 3.838129055e-10 3.383834437e-10 3.428626488e-10 3.371880698e-10 3.532994665e-10 2.59546641e-10 2.788392471e-10 2.639578649e-10 2.264624825e-10 2.825038928e-10 1.867485798e-10 2.31117296e-10 2.678806821e-10 1.864656663e-10 3.416071995e-10 2.154479327e-10 2.732544612e-10 3.169705295e-10 2.788520282e-10 1.626138163e-10 2.645852959e-10 2.358921443e-10 2.728221921e-10 2.807856397e-10 1.642655031e-10 2.527831647e-10 1.741700102e-10 2.991059485e-10 2.512718058e-10 1.893678636e-10 1.746178491e-10 2.38696628e-10 2.476940866e-10 3.099739693e-10 1.914682569e-10 3.558021133e-10 1.874982463e-10 1.620934177e-10 2.362691123e-10 1.905272106e-10 1.492055362e-10 1.852173256e-10 1.566502423e-10 1.874135484e-10 1.502414029e-10 2.466273053e-10 2.46303561e-10 3.361984774e-10 7.056658873e-11 7.718555431e-11 1.884034874e-10 2.056480919e-10 1.394375466e-10 1.776796518e-10 7.517651414e-11 2.527907594e-10 2.699614601e-10 1.839234501e-10 1.364919491e-10 2.754376426e-10 2.305786176e-10 2.516677415e-10 3.394347857e-10 1.899836976e-10 2.352768938e-10 1.040898738e-10 3.606705799e-10 1.332151166e-10 2.184666514e-10 1.55583931e-10 3.596755337e-10 2.466386239e-10 6.617840558e-11 2.855244504e-10 2.581133154e-10 3.88692465e-10 1.253033651e-10 1.589402665e-10 1.720464582e-10 2.594350432e-10 3.715478897e-10 2.46680128e-10 1.839035538e-10 1.690251277e-10 2.399382588e-10 4.905855973e-10 3.555148615e-10 1.548417498e-10 3.602188403e-10 2.869447311e-10 1.697886737e-10 +3.426686017e-10 5.029673329e-10 3.288310404e-10 3.825139527e-10 2.548439421e-10 2.466359263e-10 3.598042853e-10 2.10107967e-10 1.147754441e-10 1.780683857e-10 1.773515391e-10 2.854008126e-10 3.301884804e-10 2.089405851e-10 1.029203744e-10 4.311490175e-10 1.374706566e-10 2.097577546e-10 1.519661593e-10 2.369751993e-10 2.165547876e-10 1.230059874e-10 2.081201311e-10 1.381171131e-10 9.098950218e-11 2.593688592e-10 2.144550141e-10 1.348464295e-10 4.134776886e-10 2.464954043e-10 2.577022905e-10 1.372726825e-10 2.663843691e-10 2.851242331e-10 2.678728855e-10 1.506219773e-10 2.098891282e-10 1.595870204e-10 5.189266474e-10 3.626476308e-10 1.637876929e-10 2.125790986e-10 1.945229832e-10 2.275961553e-10 2.888333207e-10 1.576447712e-10 1.721285001e-10 2.185398962e-10 1.044474029e-10 2.710927823e-10 4.538496126e-10 2.542898271e-10 2.005650436e-10 2.069262515e-10 2.960234849e-10 1.666414161e-10 2.545547762e-10 1.840077693e-10 1.69612004e-10 1.293516534e-10 2.047896628e-10 2.521106393e-10 1.906785125e-10 1.867859169e-10 2.71720394e-10 1.158356888e-10 3.023329525e-10 2.997607375e-10 2.202174479e-10 1.155349801e-10 1.86670839e-10 2.196113093e-10 8.036229541e-11 1.763220867e-10 1.008430384e-10 1.166995254e-10 2.011063043e-10 2.953331685e-10 2.413169073e-10 3.395738499e-10 2.994286479e-10 2.337377935e-10 2.070620745e-10 3.39535907e-10 4.583199802e-10 3.212191066e-10 2.611718789e-10 3.102465883e-10 3.32119351e-10 2.450651866e-10 3.161862935e-10 3.055860017e-10 4.704500482e-10 2.154062907e-10 2.756372886e-10 4.189326038e-10 2.041389339e-10 3.299710143e-10 3.058528834e-10 3.659530415e-10 2.41387811e-10 3.254328935e-10 2.816439334e-10 1.563171919e-10 2.495490262e-10 1.939858297e-10 3.207365311e-10 3.512344793e-10 2.742322951e-10 1.948529299e-10 1.993467428e-10 1.514738393e-10 2.767012268e-10 1.420758746e-10 7.933256044e-11 2.186196666e-10 1.989346331e-10 1.253274716e-10 2.518996532e-10 1.99719631e-10 3.988376555e-10 6.949087582e-10 2.384681756e-10 2.891017531e-10 4.485867384e-10 5.487044232e-10 3.531966278e-10 4.158597347e-10 4.078167073e-10 6.158420574e-10 6.26936886e-10 5.346953055e-10 3.826957599e-10 4.655985142e-10 3.996724968e-10 5.265613835e-10 5.085390923e-10 3.13653453e-10 3.379534655e-10 3.953325806e-10 4.570970045e-10 4.362057452e-10 5.407718403e-10 3.86992696e-10 3.418400799e-10 7.585633278e-10 4.595496413e-10 3.316391741e-10 3.804939424e-10 2.228899952e-10 3.878980887e-10 7.550411359e-10 3.572153969e-10 4.154789178e-10 3.40201089e-10 7.541279689e-10 3.525321321e-10 3.217753516e-10 4.267084931e-10 3.502834459e-10 6.696658953e-10 3.550205299e-10 5.522158161e-10 2.178976655e-10 4.712377436e-10 4.901548181e-10 4.640278398e-10 4.369682179e-10 1.997524074e-10 5.656441896e-10 5.315133301e-10 4.694756349e-10 3.842648099e-10 6.896300529e-10 5.695620937e-10 3.865486742e-10 2.956919467e-10 4.273480586e-10 2.506811181e-10 4.544093971e-10 1.67786999e-10 1.382537504e-10 1.618950458e-10 2.382591858e-10 2.723851006e-10 1.740676488e-10 1.373996462e-10 4.70315269e-11 1.421727006e-10 1.407892166e-10 2.174462226e-10 2.252871936e-10 1.811942905e-10 2.223936026e-10 1.440655423e-10 2.240566009e-10 3.767225734e-10 2.741128271e-10 2.106765115e-10 2.587352789e-10 4.368111122e-10 2.240718484e-10 2.033984226e-10 4.055159169e-10 3.37783372e-10 3.640808188e-10 1.813613745e-10 3.214600909e-10 2.579877957e-10 2.309978914e-10 2.322196629e-10 4.339830219e-10 3.14210539e-10 3.204651607e-10 3.2189112e-10 4.578135364e-10 3.413451414e-10 2.642613487e-10 2.660280545e-10 2.457049365e-10 2.330324788e-10 2.472772988e-10 2.686715157e-10 1.025524217e-10 2.870731648e-10 1.661396904e-10 1.465029331e-10 1.56735609e-10 1.299033993e-10 2.21876429e-10 2.537414355e-10 2.364717411e-10 3.322506637e-10 1.774138235e-10 2.8240991e-10 2.407253991e-10 1.438077527e-10 1.929179833e-10 1.60278639e-10 1.744851745e-10 2.26091377e-10 3.407982891e-10 2.781926023e-10 2.305666566e-10 1.114752402e-10 2.224328222e-10 1.820008293e-10 1.792692741e-10 1.193592113e-10 2.645149911e-10 3.804501815e-10 1.61223417e-10 1.766655566e-10 1.701954131e-10 3.028419342e-10 1.675260391e-10 1.843359898e-10 1.922384092e-10 2.579006059e-10 2.274789884e-10 2.973009155e-10 1.939937176e-10 4.463724924e-10 9.479255998e-11 1.101637665e-10 3.285764943e-10 1.765679356e-10 3.036224018e-10 3.640745516e-10 8.334924951e-11 9.077696192e-11 2.609691947e-10 1.926793022e-10 1.348246387e-10 7.760747909e-11 3.275429609e-10 1.902421683e-10 2.917444178e-10 2.564119579e-10 2.229631753e-10 1.055410741e-10 1.875211545e-10 2.099816331e-10 3.814498848e-10 2.463677161e-10 1.207882024e-10 4.676073111e-10 1.698537465e-10 2.344279759e-10 2.558953565e-10 9.112447861e-11 2.556359078e-10 1.606925013e-10 7.745174589e-11 3.208774126e-10 2.028483624e-10 2.19606681e-10 2.072758814e-10 3.421132617e-10 2.23659513e-10 +2.677940279e-10 2.661923115e-10 1.807661759e-10 2.284626049e-10 3.097391109e-10 2.280109667e-10 1.770742062e-10 1.772078649e-10 9.758960764e-11 3.619147135e-10 1.011661917e-10 2.610808331e-10 2.112145715e-10 2.603130923e-10 2.626274836e-10 1.818944609e-10 1.49673663e-10 1.898429228e-10 1.37511649e-10 3.014380965e-10 3.080024706e-10 2.189232329e-10 2.900068148e-10 1.429625339e-10 1.66200248e-10 1.818782919e-10 2.985820947e-10 2.086924668e-10 2.236267613e-10 1.743746051e-10 2.343609068e-10 1.637143684e-10 2.642502184e-10 1.607386715e-10 2.569403725e-10 1.923470506e-10 2.229016766e-10 3.395612175e-10 1.832005592e-10 2.05338144e-10 5.238062866e-10 3.229862607e-10 3.478653131e-10 1.520314386e-10 2.07134822e-10 2.327823319e-10 1.329042618e-10 2.449507632e-10 1.821927336e-10 2.288962228e-10 2.951927368e-10 1.266904496e-10 1.680293649e-10 2.567271836e-10 3.124061343e-10 2.387240568e-10 1.986895285e-10 2.557697109e-10 2.977129666e-10 1.473909883e-10 1.389924467e-10 1.054532706e-10 2.664921352e-10 3.219063656e-10 1.694380258e-10 2.644879614e-10 2.660155938e-10 2.743675415e-10 1.805704217e-10 1.978548797e-10 1.301093762e-10 1.920412853e-10 1.952075741e-10 1.687323191e-10 1.466083403e-10 1.883469752e-10 2.655092056e-10 1.596074527e-10 2.268717257e-10 1.12024368e-10 3.09004342e-10 3.160575094e-10 2.730294301e-10 3.962487903e-10 3.022336006e-10 4.350316437e-10 2.921960242e-10 2.746790134e-10 1.997648801e-10 3.252855808e-10 4.173724955e-10 3.94422943e-10 2.172868435e-10 3.107657441e-10 3.922945779e-10 1.844288817e-10 3.239706592e-10 3.362889334e-10 3.577899902e-10 2.604400779e-10 2.421798514e-10 2.91006236e-10 2.717315568e-10 2.763824798e-10 2.222175649e-10 2.472222524e-10 2.738098842e-10 2.664902342e-10 1.935962814e-10 1.653782797e-10 1.324352665e-10 1.74879795e-10 1.431736669e-10 1.318180258e-10 1.624166407e-10 9.665681165e-11 2.022330385e-10 1.199497269e-10 2.043735266e-10 1.351219742e-10 3.124070653e-10 5.838495395e-10 5.189193432e-10 5.260473465e-10 4.578407943e-10 4.367669519e-10 4.468004938e-10 7.950354637e-10 2.804721839e-10 6.314163539e-10 4.7055513e-10 6.720509449e-10 3.223315302e-10 4.475928613e-10 4.759884806e-10 6.752674397e-10 4.519375562e-10 3.768102361e-10 4.75190809e-10 4.749875747e-10 4.247170916e-10 3.564069655e-10 6.373348262e-10 5.420926143e-10 2.336721285e-10 3.275298241e-10 2.528244288e-10 2.6932522e-10 5.12330672e-10 3.456062659e-10 3.208840158e-10 2.928167295e-10 4.44360044e-10 3.529812353e-10 4.399253222e-10 3.449630705e-10 2.35536607e-10 5.191138606e-10 5.72452633e-10 3.81013875e-10 5.417290876e-10 4.886129372e-10 3.775295744e-10 3.914794899e-10 4.890155845e-10 6.227291785e-10 8.117020028e-10 6.002553448e-10 3.597297038e-10 4.521370357e-10 4.070565726e-10 4.258362429e-10 4.982470343e-10 6.298330649e-10 5.132328921e-10 5.88364587e-10 3.432106165e-10 6.688626332e-10 4.515349681e-10 5.484993268e-10 1.167829475e-10 1.180634901e-10 1.769170489e-10 1.666143763e-10 1.934910758e-10 1.334307904e-10 1.913232816e-10 1.702880256e-10 1.001562278e-10 1.946318445e-10 1.7746229e-10 2.228238884e-10 2.778371308e-10 3.075777728e-10 2.684193821e-10 2.200226999e-10 1.10876413e-10 3.849984314e-10 3.226890583e-10 2.732112833e-10 2.503586845e-10 2.013173502e-10 3.4702917e-10 2.769829416e-10 2.482697488e-10 3.107776403e-10 1.746509975e-10 2.61937925e-10 4.260680535e-10 3.338847554e-10 2.647605446e-10 2.272777254e-10 3.965734723e-10 3.810687095e-10 3.490410511e-10 2.967531773e-10 4.658026069e-10 3.315535546e-10 3.212301594e-10 2.227732333e-10 1.506748726e-10 1.426545765e-10 1.091604671e-10 2.654563877e-10 1.559153407e-10 2.367161286e-10 1.356371383e-10 3.777029322e-10 1.766097191e-10 2.410084692e-10 1.197395903e-10 3.388876664e-10 2.367826884e-10 1.890998345e-10 3.103103449e-10 2.899487225e-10 2.872348181e-10 2.548895299e-10 2.608701563e-10 2.361469576e-10 2.18943909e-10 9.07431295e-11 1.325821395e-10 2.385449537e-10 1.744532847e-10 4.327841792e-10 1.888443976e-10 1.469024816e-10 3.395864698e-10 3.086855435e-10 2.508093465e-10 1.748175562e-10 1.187221772e-10 2.951672445e-10 2.718267508e-10 2.62481531e-10 2.073719153e-10 2.862851528e-10 3.068201779e-10 3.489426729e-10 2.510392634e-10 2.365263634e-10 2.369938942e-10 2.129510684e-10 1.940775869e-10 2.685462834e-10 1.041281747e-10 4.23485951e-10 3.496885171e-10 2.812737512e-10 2.352904164e-10 1.625467786e-10 8.998539638e-11 1.246734126e-10 2.886369626e-10 2.316036321e-10 3.182752204e-10 3.05965286e-10 1.46409978e-10 2.06753234e-10 1.724616533e-10 1.704075436e-10 1.281973556e-10 1.58424005e-10 2.342564682e-10 2.524958006e-10 3.625056907e-10 2.713032335e-10 2.761539249e-10 2.304177055e-10 1.913841053e-10 1.892788847e-10 2.659163008e-10 1.568110915e-10 3.970114872e-10 8.26573231e-11 3.0734663e-10 3.401382733e-10 4.088375172e-10 3.409116892e-10 +1.94215072e-10 2.130418525e-10 8.915753566e-11 1.583108539e-10 2.407535239e-10 1.927555804e-10 1.195512893e-10 1.856783389e-10 3.368189076e-10 2.216285109e-10 1.414794646e-10 3.6721978e-10 3.128039975e-10 2.56170871e-10 1.085586871e-10 3.496790404e-10 2.018783505e-10 2.190292162e-10 1.976187175e-10 1.859148606e-10 1.135121485e-10 2.485627472e-10 2.597856084e-10 2.287205854e-10 2.553830783e-10 1.760798188e-10 1.793582094e-10 2.623759336e-10 2.656162985e-10 2.834926131e-10 3.18362045e-10 3.308739282e-10 2.348609625e-10 1.33348544e-10 2.195581378e-10 2.513538551e-10 2.468668137e-10 3.243234806e-10 1.310070316e-10 1.256446623e-10 2.174099572e-10 2.279323399e-10 1.848130951e-10 1.510198295e-10 2.459008005e-10 2.521146023e-10 2.073471545e-10 2.269887261e-10 2.943969016e-10 1.468748553e-10 3.518547688e-10 1.963730967e-10 8.029379196e-11 2.140011301e-10 1.632697613e-10 1.827165724e-10 7.431408559e-11 3.055938221e-10 2.769766947e-10 2.699365272e-10 2.326316539e-10 2.696050053e-10 1.407803538e-10 2.647578518e-10 2.763123501e-10 3.60784099e-10 2.943307413e-10 2.806895285e-10 1.694872081e-10 4.236407077e-10 3.064682081e-10 3.594869262e-10 2.42235647e-10 2.680219039e-10 1.820980153e-10 1.361912835e-10 1.829122128e-10 1.787551406e-10 1.11546295e-10 8.192666715e-11 3.13564205e-10 3.104620076e-10 3.411379045e-10 3.222387792e-10 3.247993868e-10 3.856776848e-10 3.617699848e-10 2.246171675e-10 4.549887026e-10 3.30771304e-10 4.548186214e-10 3.488288853e-10 2.749681002e-10 3.007441046e-10 3.549593093e-10 2.468707248e-10 2.410119167e-10 4.12462311e-10 2.397098501e-10 2.214018865e-10 2.348808193e-10 2.50073415e-10 2.689776484e-10 2.510530974e-10 3.152723548e-10 3.035578856e-10 1.486745561e-10 2.038818303e-10 2.780694908e-10 2.319523969e-10 1.684568925e-10 1.023379892e-10 1.153142116e-10 2.153535867e-10 2.523734075e-10 2.840620704e-10 1.604158546e-10 2.081640987e-10 1.57071611e-10 2.670589211e-10 6.510217675e-10 5.076942546e-10 5.442452608e-10 4.5282792e-10 3.405595027e-10 3.832451564e-10 6.151472031e-10 4.414024957e-10 3.051635726e-10 3.091621008e-10 6.834871598e-10 3.954834513e-10 4.305508514e-10 4.433355476e-10 5.256556634e-10 6.584534938e-10 4.821370352e-10 6.793438631e-10 6.230854386e-10 5.618155295e-10 4.48720704e-10 5.443051524e-10 3.639521294e-10 8.139365117e-10 5.088659526e-10 3.856355574e-10 3.304576087e-10 4.330933039e-10 3.38429923e-10 3.523361005e-10 3.72603732e-10 4.285607312e-10 5.318457444e-10 5.163088185e-10 6.142416186e-10 3.60593313e-10 3.216904149e-10 3.449226631e-10 3.364858551e-10 6.109555211e-10 2.037766633e-10 3.875968484e-10 4.80658217e-10 3.667200359e-10 4.796850015e-10 3.826394136e-10 4.19001976e-10 6.554033217e-10 3.047777036e-10 5.122134922e-10 2.760879924e-10 5.411116577e-10 1.760060575e-10 5.388144994e-10 4.36459228e-10 4.951605633e-10 4.247161085e-10 6.34082484e-10 3.895892432e-10 5.907138473e-10 6.58870589e-10 1.693291198e-10 1.736390868e-10 1.782855719e-10 2.099015249e-10 8.848997811e-11 2.434078103e-10 1.205895115e-10 3.048385647e-11 1.483316318e-10 2.100263976e-10 2.712918022e-10 1.962422058e-10 2.301521529e-10 1.88907113e-10 2.590860518e-10 3.306808006e-10 3.757866385e-10 2.333010863e-10 2.223722171e-10 3.285101336e-10 3.409891333e-10 1.667375252e-10 3.17841755e-10 2.581443937e-10 2.574304498e-10 3.964888093e-10 2.385308679e-10 2.26234281e-10 4.718085968e-10 2.429611875e-10 4.879166603e-10 3.359248474e-10 3.690229573e-10 3.695272032e-10 3.210597979e-10 1.780516138e-10 2.677165757e-10 2.636945268e-10 2.956746667e-10 2.813813124e-10 1.333224714e-10 3.516868911e-10 2.546803642e-10 2.142645206e-10 2.20635463e-10 2.027078849e-10 3.956796682e-10 1.979065558e-10 2.301271766e-10 3.57846586e-10 2.563658045e-10 2.305372185e-10 2.930202618e-10 2.553795068e-10 1.56888147e-10 3.247671897e-10 3.532953683e-10 3.656046425e-10 3.701022861e-10 1.034201119e-10 1.951102914e-10 3.06212061e-10 3.231386162e-10 1.326952267e-10 2.990731741e-10 1.68857712e-10 9.264290351e-11 1.223218557e-10 1.747784821e-10 3.043060732e-10 1.082064641e-10 1.809581815e-10 9.744537891e-11 2.160648881e-10 1.766309313e-10 2.60909033e-10 2.244162862e-10 2.087171922e-10 1.928307184e-10 1.58640401e-10 2.024375837e-10 2.769200803e-10 1.980749903e-10 2.160419848e-10 2.198223996e-10 2.544695444e-10 1.838200928e-10 1.756055632e-10 1.914037394e-10 1.696137209e-10 3.09556475e-10 2.7777249e-10 2.237499686e-10 3.623511096e-10 1.546065356e-10 2.626888231e-10 1.665939369e-10 1.806760187e-10 6.734147511e-11 3.222766934e-10 1.394042579e-10 1.912465005e-10 1.789956541e-10 2.510021714e-10 2.399425678e-10 2.753036096e-10 2.726099933e-10 4.804405442e-10 1.945345473e-10 1.667302465e-10 2.890734956e-10 3.38889732e-10 1.151492712e-10 2.432426943e-10 9.053274575e-11 2.864336953e-10 3.135920233e-10 2.02308523e-10 2.46671187e-10 +2.238775244e-10 3.961101835e-10 1.9992462e-10 2.082801729e-10 1.64421247e-10 2.212191985e-10 2.572223e-10 3.612266875e-10 2.525265796e-10 1.118638143e-10 2.480522241e-10 2.522507387e-10 1.29023752e-10 2.402993288e-10 2.296922497e-10 1.532411235e-10 3.868597243e-10 1.237813667e-10 2.596587493e-10 3.641823114e-10 2.17774467e-10 3.171092316e-10 2.564991079e-10 3.354039873e-10 3.864576595e-10 3.113099933e-10 6.776521353e-11 9.669153475e-11 1.976184078e-10 1.748764619e-10 1.875766844e-10 4.10858776e-10 3.613805526e-10 2.805877678e-10 1.003548657e-10 2.513285547e-10 1.648494859e-10 5.014873473e-10 3.217766827e-10 2.056126259e-10 8.693551541e-11 1.547084451e-10 2.268152623e-10 1.482250011e-10 1.504753763e-10 9.696052914e-11 1.696084456e-10 1.150281105e-10 1.277948926e-10 1.24860211e-10 1.477870862e-10 1.697822022e-10 4.310615547e-11 2.304659288e-10 1.558334853e-10 1.974651449e-10 2.866556089e-10 1.367050073e-10 2.654466995e-10 2.898640373e-10 1.467147652e-10 3.330315802e-10 1.768318573e-10 1.14120753e-10 1.620843781e-10 1.754294893e-10 3.767606937e-10 1.621340746e-10 2.426433633e-10 2.327465126e-10 2.779323326e-10 2.326408035e-10 2.566697126e-10 2.054651951e-10 3.493507136e-10 3.477904046e-10 2.510502606e-10 1.932446235e-10 3.040720301e-10 5.748129504e-11 2.591967599e-10 2.814112727e-10 3.585726742e-10 1.800861239e-10 2.756489899e-10 2.790613609e-10 4.572009316e-10 2.621444631e-10 2.400331367e-10 3.24582563e-10 2.995673653e-10 3.902104696e-10 2.845227064e-10 1.913500871e-10 3.887294214e-10 2.429668661e-10 5.693196308e-10 3.291361803e-10 2.395632328e-10 2.376880786e-10 2.495172057e-10 2.910942106e-10 3.025641245e-10 1.380417317e-10 2.354940655e-10 2.380461144e-10 2.161384634e-10 1.433314691e-10 1.776611908e-10 2.714677622e-10 1.766855678e-10 1.045268072e-10 1.049810842e-10 1.93581512e-10 1.731111119e-10 2.252261898e-10 1.725056149e-10 1.515329884e-10 3.371148912e-10 4.336759628e-10 2.432184362e-10 4.904134111e-10 5.624729864e-10 4.060041031e-10 5.612812135e-10 4.089871797e-10 3.087131782e-10 5.076341975e-10 4.783603183e-10 4.714566551e-10 2.946518281e-10 4.417294206e-10 5.181721298e-10 5.279468886e-10 4.880194699e-10 4.388307751e-10 6.038143018e-10 4.105794117e-10 4.542229519e-10 6.239909194e-10 5.402866675e-10 5.440820957e-10 5.020854464e-10 3.126908511e-10 3.190644214e-10 6.385175674e-10 5.546898546e-10 7.457818671e-10 6.111900384e-10 4.411489366e-10 3.37407222e-10 2.597759526e-10 3.240924816e-10 3.499170213e-10 3.16323097e-10 4.912925582e-10 3.696283645e-10 6.064195309e-10 3.147665739e-10 6.498026366e-10 2.452105203e-10 4.785569439e-10 2.993724472e-10 3.051577686e-10 4.661318996e-10 4.102726821e-10 5.772219707e-10 5.510354253e-10 4.20621856e-10 5.686237576e-10 5.049650991e-10 4.102481872e-10 3.47068554e-10 5.169077751e-10 4.766934702e-10 3.20371035e-10 3.898001534e-10 3.114480101e-10 3.642092982e-10 8.83955882e-10 5.841451202e-10 3.963742759e-10 1.376236658e-10 1.350004864e-10 2.029232352e-10 1.662288128e-10 1.171342878e-10 1.654089503e-10 1.913516128e-10 9.048382947e-11 1.544157949e-10 1.235376485e-10 2.084050187e-10 1.66803235e-10 2.471869763e-10 2.660702249e-10 2.209293319e-10 3.25616066e-10 3.233695496e-10 2.730437482e-10 3.352612242e-10 4.119012268e-10 1.954291226e-10 3.927006208e-10 3.992279773e-10 2.844476753e-10 2.328571491e-10 2.439187187e-10 2.959948765e-10 3.080600863e-10 2.773623543e-10 2.723544811e-10 3.178710348e-10 3.496184128e-10 3.016134361e-10 4.797188329e-10 3.961048794e-10 3.260043071e-10 3.822161197e-10 1.396845936e-10 1.928261943e-10 2.119634961e-10 1.423505556e-10 2.709441185e-10 1.236794577e-10 4.102606306e-10 1.101768865e-10 2.05115586e-10 2.840041723e-10 1.607668937e-10 2.324673445e-10 2.464587763e-10 3.54918537e-10 2.633981197e-10 1.554898193e-10 1.934460701e-10 2.816217584e-10 3.804329021e-10 3.229432414e-10 2.183740054e-10 2.101134183e-10 2.59132488e-10 2.483032155e-10 1.1683741e-10 3.770828699e-10 1.346179578e-10 2.686259299e-10 2.264964903e-10 2.977088649e-10 1.570424603e-10 2.843290545e-10 2.891965284e-10 1.695010074e-10 2.037036366e-10 3.328363564e-10 1.809706517e-10 3.270358576e-10 2.580988644e-10 2.18171307e-10 1.099968857e-10 2.072948264e-10 3.58910651e-10 2.641256287e-10 3.06694475e-10 3.227935141e-10 2.598064986e-10 4.035940247e-10 3.392714808e-10 4.790148049e-10 2.303791645e-10 2.121487987e-10 1.381318315e-10 2.988824527e-10 2.875682851e-10 3.2711272e-10 1.310564914e-10 2.869435145e-10 6.816924488e-11 2.290744448e-10 4.163321465e-10 2.787378524e-10 2.223249707e-10 3.087661246e-10 2.365547244e-10 2.665010286e-10 2.548712935e-10 1.598908009e-10 1.214888071e-10 2.085588211e-10 4.667526211e-10 2.41939663e-10 2.175776897e-10 2.274251539e-10 9.983664534e-11 2.239490468e-10 3.281225834e-10 1.775647816e-10 4.087265487e-10 3.341520408e-10 2.660557033e-10 +2.173839576e-10 3.133120068e-10 2.809612267e-10 1.921178949e-10 3.918358308e-10 9.199103625e-11 2.79905207e-10 3.859898719e-10 1.067564735e-10 3.000536994e-10 3.23803461e-10 2.373998228e-10 1.93599595e-10 3.116933573e-10 1.953897162e-10 1.673535364e-10 3.258650588e-10 2.843598346e-10 3.148809093e-10 2.878562644e-10 1.87623112e-10 3.237497177e-10 1.917501371e-10 2.291018934e-10 2.832117219e-10 6.609157854e-11 2.583891065e-10 1.767906585e-10 2.046886993e-10 1.684022938e-10 3.136984138e-10 3.47512235e-10 2.40399097e-10 1.508902259e-10 3.874264155e-10 2.080407288e-10 2.076061986e-10 1.720965082e-10 1.838287807e-10 3.700885822e-10 1.423048707e-10 1.285913311e-10 2.902240015e-10 2.530331259e-10 8.202934943e-11 1.484887172e-10 2.322640468e-10 9.393650796e-11 3.604300277e-10 2.893726283e-10 1.638081566e-10 3.059895399e-10 1.920614826e-10 1.310574283e-10 1.554280648e-10 3.101072292e-10 1.837084895e-10 4.258650904e-10 1.72230705e-10 2.558100002e-10 1.13237411e-10 1.229306127e-10 1.382790634e-10 2.814254003e-10 1.944167638e-10 3.428096754e-10 2.405828144e-10 1.683892212e-10 1.613027797e-10 3.276641912e-10 1.611641917e-10 3.301889278e-10 2.155680665e-10 1.295997128e-10 2.594414657e-10 1.435229732e-10 2.646152865e-10 2.5016034e-10 2.179304364e-10 3.216383622e-10 2.663590358e-10 3.493453777e-10 2.976532432e-10 4.427876329e-10 3.331785805e-10 2.839284047e-10 3.242659802e-10 4.520327071e-10 2.569949609e-10 3.875540106e-10 3.613177874e-10 4.294871089e-10 4.084023501e-10 2.716894592e-10 2.173065588e-10 3.790875109e-10 3.315535944e-10 2.962036716e-10 2.811428116e-10 3.175241578e-10 2.696017369e-10 2.936924467e-10 1.741753029e-10 2.58515872e-10 2.563149518e-10 2.169600376e-10 1.846015041e-10 1.652596188e-10 2.858370188e-10 5.656529544e-11 1.199531592e-10 1.666962229e-10 3.015603435e-10 3.398675059e-10 2.648015998e-10 1.688625798e-10 1.224981356e-10 3.432050055e-10 5.167231805e-10 4.173894102e-10 4.754295489e-10 5.833731681e-10 3.246910107e-10 3.596980537e-10 4.256223011e-10 4.99975088e-10 2.945618016e-10 6.067774863e-10 5.026571513e-10 3.742018268e-10 3.540655209e-10 5.373959024e-10 4.860194319e-10 4.23146743e-10 4.418508817e-10 3.877311301e-10 2.712463681e-10 5.230387969e-10 2.993519198e-10 4.459618762e-10 3.819856706e-10 4.043240304e-10 3.037311572e-10 3.531663022e-10 4.595823457e-10 4.766840991e-10 5.794182357e-10 4.531019324e-10 3.37493564e-10 3.085602926e-10 4.235597735e-10 3.507239777e-10 3.736807673e-10 5.934749424e-10 5.100394038e-10 4.646154839e-10 3.846398901e-10 4.246297627e-10 4.722647554e-10 5.031998745e-10 6.587864364e-10 3.286817924e-10 2.363189686e-10 5.714841117e-10 3.666816029e-10 4.139638245e-10 3.869007137e-10 3.999537708e-10 3.75258155e-10 3.017048632e-10 5.576585925e-10 7.304898655e-10 3.461370352e-10 4.850127607e-10 5.039695786e-10 4.335129104e-10 5.374314425e-10 4.680271474e-10 5.942584638e-10 5.92700757e-10 3.093865426e-10 4.181782365e-10 2.59725129e-10 1.120775448e-10 1.457252197e-10 2.053422174e-10 1.427564789e-10 1.311422425e-10 1.277910775e-10 6.273137848e-11 1.422379372e-10 1.795350206e-10 2.142639172e-10 2.940009642e-10 1.769685514e-10 2.3747408e-10 2.729612277e-10 2.569277348e-10 2.461818971e-10 3.835462582e-10 2.59398239e-10 3.547799565e-10 3.552205812e-10 1.669354156e-10 3.18435238e-10 3.919283421e-10 3.533580644e-10 2.966720292e-10 3.222369008e-10 2.318986839e-10 2.922293479e-10 2.095646837e-10 3.203176405e-10 2.699184043e-10 4.893973464e-10 2.975225726e-10 2.938166388e-10 4.381106396e-10 1.888836712e-10 3.992457208e-10 1.676430519e-10 2.050574827e-10 1.645325621e-10 1.919330439e-10 1.736167479e-10 2.039814976e-10 2.953199944e-10 2.099113619e-10 3.413898935e-10 2.380233532e-10 2.539814983e-10 1.547865085e-10 2.464950877e-10 3.450163774e-10 2.573692546e-10 2.601051161e-10 2.915188892e-10 3.545373071e-10 2.501308848e-10 2.322927836e-10 2.364743989e-10 2.326864811e-10 2.932611734e-10 1.171161833e-10 2.862000879e-10 2.215961521e-10 1.214314226e-10 2.33839262e-10 2.533142106e-10 2.038332828e-10 1.208416396e-10 1.296167164e-10 2.520852799e-10 3.812756962e-10 2.088380007e-10 1.349324806e-10 2.171336515e-10 3.810895648e-10 3.297542303e-10 1.470828764e-10 3.084706579e-10 2.202966188e-10 1.932279034e-10 1.889948897e-10 4.302349542e-10 1.452056455e-10 3.133358175e-10 3.50749006e-10 1.367758518e-10 8.733531817e-11 2.591369154e-10 3.016555073e-10 2.970872402e-10 2.737016562e-10 1.89427162e-10 1.984485994e-10 2.714940077e-10 2.885228989e-10 1.732156478e-10 2.502340692e-10 2.568131521e-10 4.732385096e-10 2.100176482e-10 1.367215996e-10 3.007214761e-10 2.971709149e-10 1.519213233e-10 1.746110766e-10 1.901143232e-10 1.307843861e-10 2.458121573e-10 3.084357269e-10 2.080145437e-10 1.802743708e-10 2.276969535e-10 4.106533252e-10 2.303543199e-10 2.568597063e-10 2.358331748e-10 2.419872363e-10 +2.240868029e-10 3.128742919e-10 1.2305469e-10 1.638695072e-10 1.904890251e-10 3.758909578e-10 2.029954184e-10 2.674379473e-10 1.350178143e-10 1.617046153e-10 2.106027642e-10 2.046894135e-10 3.289073932e-10 2.893130967e-10 1.186982251e-10 2.302736341e-10 1.112082411e-10 1.72688881e-10 2.035201381e-10 1.285897121e-10 2.08997563e-10 3.23573465e-10 1.796260647e-10 3.570354932e-10 2.001241622e-10 1.996399722e-10 2.642484978e-10 6.129917683e-11 1.511125752e-10 2.426052301e-10 2.46994157e-10 1.153221375e-10 2.914446777e-10 3.359860979e-10 3.50090698e-10 2.55483549e-10 3.069262565e-10 2.591023096e-10 2.72176893e-10 2.566905764e-10 2.576986417e-10 2.428922853e-10 1.529967352e-10 2.038742023e-10 2.117991048e-10 1.291167274e-10 1.916756488e-10 1.490883873e-10 1.522645161e-10 9.500624064e-11 1.353417233e-10 2.393966786e-10 1.565868081e-10 1.328996845e-10 1.307394447e-10 3.889377408e-10 3.937900791e-10 2.388804962e-10 1.554926874e-10 2.914602521e-10 3.453373954e-10 1.424407969e-10 2.343645445e-10 2.260778098e-10 2.567332291e-10 1.36111399e-10 2.062134759e-10 1.87981173e-10 3.059716387e-10 1.336535344e-10 2.186165194e-10 3.553803732e-10 7.108691254e-11 2.563511671e-10 3.349168062e-10 1.356389851e-10 2.063832642e-10 1.682997887e-10 1.720487187e-10 3.996395327e-10 2.007715772e-10 3.284913223e-10 3.15884976e-10 4.218365637e-10 2.256961598e-10 3.021772946e-10 3.846578842e-10 4.864188392e-10 2.352186026e-10 2.047688825e-10 4.030414731e-10 2.212961773e-10 4.295685729e-10 3.01787858e-10 4.323052726e-10 3.839100819e-10 3.853743188e-10 3.592797138e-10 3.40397725e-10 3.335725608e-10 1.404667174e-10 2.554146939e-10 1.94996727e-10 2.552485981e-10 3.343316231e-10 2.16986178e-10 2.282713868e-10 3.128749619e-10 2.184304234e-10 9.574566574e-11 6.692232901e-11 1.380801804e-10 2.077483352e-10 1.460798739e-10 2.14994444e-10 4.895167613e-10 1.539412818e-10 4.706332144e-10 5.82263022e-10 3.687304148e-10 4.128973718e-10 3.445006925e-10 4.669659156e-10 6.884375294e-10 6.135170532e-10 3.865904644e-10 4.109242136e-10 5.601111425e-10 4.915739603e-10 2.999940605e-10 3.79302894e-10 5.148555019e-10 2.900851174e-10 3.673468398e-10 4.310572071e-10 5.668360191e-10 4.999118457e-10 3.104430633e-10 5.729944037e-10 4.247712405e-10 4.463086503e-10 3.968290061e-10 4.137265631e-10 4.837573013e-10 4.998097559e-10 5.944032864e-10 3.596559148e-10 5.490963667e-10 5.048303688e-10 6.200468168e-10 4.844816364e-10 5.239332364e-10 3.403233093e-10 5.807132228e-10 5.920696067e-10 5.293122924e-10 4.634503893e-10 5.504327634e-10 5.652207911e-10 5.4568594e-10 3.790263159e-10 3.490023653e-10 4.968929792e-10 6.484424242e-10 3.811376623e-10 3.942603355e-10 4.487301323e-10 2.746842168e-10 4.985492447e-10 5.393782514e-10 4.076786826e-10 2.597081894e-10 5.869428024e-10 3.448382352e-10 7.100263644e-10 3.590139932e-10 3.066602712e-10 4.542512872e-10 4.663633931e-10 3.286779607e-10 3.761207022e-10 2.804378928e-10 2.372769506e-10 1.619426111e-10 1.268009916e-10 2.185495341e-10 8.803134118e-11 1.282751578e-10 2.150690473e-10 1.263061015e-10 1.511548887e-10 2.499833097e-10 1.477209235e-10 1.920817383e-10 2.539520594e-10 3.519256754e-10 3.563875489e-10 2.157016001e-10 2.300277034e-10 3.280556854e-10 2.893434492e-10 2.008480091e-10 3.787423217e-10 2.651542868e-10 2.438762022e-10 2.805534215e-10 3.256377162e-10 3.864671556e-10 2.293820478e-10 2.970243661e-10 2.701683709e-10 3.55364707e-10 3.740512021e-10 3.473967285e-10 4.659410636e-10 3.894625706e-10 1.309872427e-10 3.757525829e-10 4.191041648e-10 2.456012064e-10 2.217554274e-10 1.686072196e-10 5.767848643e-11 2.515000616e-10 2.144403376e-10 1.488114419e-10 1.688626008e-10 3.397284726e-10 2.245705396e-10 2.119380217e-10 1.519083884e-10 1.602521239e-10 1.305322034e-10 2.537068701e-10 1.559986403e-10 1.911531979e-10 3.422753478e-10 8.804900531e-11 1.284631111e-10 2.651827676e-10 2.431390138e-10 2.815435696e-10 1.409487093e-10 3.259240539e-10 2.630021418e-10 1.555771823e-10 3.23843842e-10 1.03179869e-10 1.191812706e-10 2.057200831e-10 1.669972862e-10 3.185397956e-10 2.428174898e-10 1.663123459e-10 2.156074547e-10 1.4834023e-10 2.292317253e-10 1.788043364e-10 2.228040251e-10 3.373768058e-10 2.539311826e-10 2.720201595e-10 2.396029821e-10 1.789680895e-10 2.397397657e-10 2.390619053e-10 2.702708781e-10 2.342724107e-10 1.420440706e-10 2.424802529e-10 1.244484912e-10 2.137665561e-10 1.340255995e-10 1.008102629e-10 1.74309259e-10 2.160368678e-10 3.104573833e-10 3.763546715e-10 1.976255916e-10 1.280057526e-10 2.314860762e-10 2.783392466e-10 3.073589925e-10 1.97618473e-10 2.35216076e-10 1.655343445e-10 2.308941455e-10 2.470407591e-10 1.484521379e-10 3.319458968e-10 2.661613239e-10 1.983873913e-10 3.321459971e-10 1.609731719e-10 1.471909762e-10 2.300447941e-10 1.723265544e-10 1.50329935e-10 1.916634209e-10 1.022534997e-10 +1.202564479e-10 1.879717259e-10 3.042223845e-10 1.354670851e-10 1.970251067e-10 3.226304429e-10 1.51629626e-10 4.214391279e-10 3.230527583e-10 1.383733546e-10 1.886074059e-10 2.924193319e-10 2.26766774e-10 3.309044553e-10 3.66791042e-10 2.422912303e-10 1.472767101e-10 3.779863693e-10 4.348326635e-10 1.597812248e-10 2.503322445e-10 3.429985744e-10 2.607172504e-10 4.277916072e-10 2.067700874e-10 3.905299032e-10 3.588776762e-10 1.367998402e-10 1.969070341e-10 1.60684896e-10 2.10261104e-10 1.127613788e-10 2.105520589e-10 2.189126961e-10 3.5245927e-10 3.804569706e-10 3.472461149e-10 1.641614347e-10 3.174932007e-10 2.020662989e-10 1.225288043e-10 2.373703085e-10 2.040381146e-10 1.732907911e-10 1.563025765e-10 1.898197607e-10 2.386921437e-10 2.892415305e-10 1.024958882e-10 7.684676683e-11 8.065827879e-11 2.596809431e-10 3.346947411e-10 3.0065518e-10 1.804734321e-10 2.719081349e-10 1.63755919e-10 2.578710981e-10 2.321180026e-10 3.032918899e-10 1.58637057e-10 2.492379535e-10 1.984044863e-10 1.480192085e-10 3.892216882e-10 3.410806313e-10 3.396309868e-10 1.830212433e-10 2.370462313e-10 1.841351913e-10 2.115392578e-10 1.577844794e-10 2.033044925e-10 1.189226897e-10 3.076926286e-10 1.998998609e-10 3.377877727e-10 1.513124272e-10 2.309591888e-10 2.446307667e-10 1.030797189e-10 1.568858927e-10 3.310163709e-10 1.676487966e-10 3.416895444e-10 4.251323556e-10 4.228311375e-10 4.135282801e-10 2.442873747e-10 5.098972576e-10 2.087820619e-10 3.510506881e-10 2.215241414e-10 4.237759081e-10 4.226809862e-10 2.672814931e-10 3.03017733e-10 2.564271839e-10 3.938006937e-10 3.917671169e-10 3.158160245e-10 3.183632752e-10 4.007864422e-10 1.974073727e-10 2.761825829e-10 1.556731276e-10 2.57326968e-10 2.022826407e-10 8.540553974e-11 1.32008984e-10 1.290232893e-10 2.26347472e-10 1.393212575e-10 2.055353262e-10 2.312388955e-10 1.534516636e-10 3.772477152e-10 5.393427843e-10 4.497502161e-10 5.523254539e-10 6.635769022e-10 4.795119187e-10 5.648708109e-10 6.173473381e-10 4.261466425e-10 5.638663601e-10 4.628980762e-10 4.841337018e-10 4.544202369e-10 3.501171614e-10 7.037578435e-10 4.959103442e-10 7.179154874e-10 4.138517603e-10 4.635966779e-10 5.030209794e-10 4.677918322e-10 6.595513612e-10 4.727024206e-10 4.840852705e-10 5.614334313e-10 4.689563488e-10 4.48404694e-10 5.505709085e-10 4.40742935e-10 5.337657248e-10 6.644433965e-10 5.913898737e-10 4.49510845e-10 5.155773287e-10 5.574094475e-10 5.460864138e-10 4.755649278e-10 5.696873335e-10 6.272175412e-10 5.087447822e-10 5.280605609e-10 3.743120599e-10 5.977740728e-10 6.070184569e-10 6.650823958e-10 5.097146027e-10 6.179553976e-10 3.426460861e-10 5.051254253e-10 4.532750382e-10 5.259592013e-10 3.362231259e-10 6.172272793e-10 4.291980683e-10 8.58814837e-10 3.216368606e-10 3.200180582e-10 5.311323039e-10 4.156489222e-10 4.073465297e-10 7.14269421e-10 7.558764865e-10 5.611513384e-10 5.382515843e-10 5.448501119e-10 5.159780273e-10 3.287766017e-10 4.44412443e-10 2.801605178e-10 2.139486352e-10 1.676897866e-10 1.460534168e-10 1.500190478e-10 1.182804671e-10 1.846515809e-10 4.402823588e-11 2.024572329e-10 2.484207507e-10 2.105845605e-10 1.58106642e-10 2.42953717e-10 2.784913772e-10 4.889702036e-10 2.847639351e-10 4.458210019e-10 4.170566279e-10 2.794396175e-10 1.829299029e-10 3.172964928e-10 1.895913616e-10 3.777754916e-10 3.400732887e-10 2.506504879e-10 4.929344885e-10 3.442875668e-10 3.051837604e-10 3.173612e-10 5.622030513e-10 4.301662591e-10 3.30927507e-10 3.891746212e-10 3.781033647e-10 3.28905604e-10 2.635646226e-10 1.680962641e-10 2.382158621e-10 1.990984333e-10 2.695449896e-10 2.133136172e-10 2.043347449e-10 3.724520742e-10 2.488394697e-10 3.23408966e-10 2.335336976e-10 1.267559689e-10 2.36390304e-10 5.09775622e-10 2.246412569e-10 2.290495102e-10 2.887564204e-10 2.813874976e-10 3.605835661e-10 1.311105635e-10 2.481858884e-10 1.965341163e-10 3.253216887e-10 3.492894018e-10 2.458534985e-10 9.900093666e-11 1.149578202e-10 2.355683657e-10 2.578425701e-10 3.859577781e-10 2.945125914e-10 1.402189985e-10 2.980626392e-10 2.625585542e-10 2.449189929e-10 1.543589238e-10 3.601777779e-10 2.003413371e-10 4.060645486e-10 1.969357255e-10 1.697312976e-10 2.98920657e-10 2.814855101e-10 2.570381461e-10 1.38403237e-10 1.594473169e-10 2.621244632e-10 2.033675387e-10 3.98810731e-10 2.340915304e-10 2.265426398e-10 2.600405432e-10 2.180742329e-10 4.434127044e-10 2.628133232e-10 5.064116802e-10 2.127560725e-10 2.361150406e-10 3.769812886e-10 2.724376771e-10 1.380920999e-10 3.385568189e-10 3.798800904e-10 2.636764068e-10 1.610898051e-10 2.061379945e-10 2.950662481e-10 1.878542113e-10 2.563890699e-10 2.631620738e-10 3.174119132e-10 2.439014564e-10 4.021275542e-10 1.818710392e-10 1.505084877e-10 1.199505937e-10 6.212081885e-11 1.18430425e-10 1.298548477e-10 1.747013733e-10 2.07998292e-10 +1.67358891e-10 1.895767806e-10 2.044107075e-10 1.576632003e-10 1.618887479e-10 2.089825129e-10 1.639843457e-10 1.412080045e-10 1.0358286e-10 2.457648314e-10 1.082954275e-10 3.089042667e-10 1.787460363e-10 1.674875061e-10 2.617018815e-10 2.336191005e-10 1.657323707e-10 1.902063143e-10 2.523946949e-10 2.201719243e-10 2.136197412e-10 1.225969198e-10 1.595551681e-10 1.765743656e-10 1.770079885e-10 1.95458348e-10 2.252230332e-10 1.018753114e-10 1.501642536e-10 2.500490493e-10 2.580876175e-10 1.174328123e-10 3.013756188e-10 4.315267612e-10 2.83842046e-10 2.042934765e-10 1.665784741e-10 2.731532395e-10 2.748801435e-10 2.822605968e-10 1.754053961e-10 2.90102647e-10 1.905689782e-10 1.890530743e-10 1.863167168e-10 7.795564087e-11 2.401069959e-10 3.327099763e-10 1.679166025e-10 1.865073907e-10 2.186196747e-10 1.55843005e-10 9.128147359e-11 3.256265266e-10 2.447696205e-10 2.58996763e-10 2.635339833e-10 3.563397095e-10 2.748009736e-10 1.670061941e-10 1.732322561e-10 1.866084218e-10 3.64957692e-10 3.269522602e-10 1.476383894e-10 2.393235656e-10 1.623189485e-10 2.928721792e-10 2.764264056e-10 2.889919402e-10 4.151632797e-10 2.761275834e-10 1.976914797e-10 2.628528887e-10 3.62460615e-10 3.547385869e-10 1.411953263e-10 3.262766265e-10 1.62228052e-10 1.499325321e-10 3.401805143e-10 3.054448374e-10 3.196014459e-10 3.347512112e-10 3.472985521e-10 5.107371893e-10 2.766204863e-10 1.798847851e-10 3.246665523e-10 3.188906947e-10 3.666068166e-10 2.056443338e-10 3.655631465e-10 4.23227616e-10 2.811737843e-10 2.64933033e-10 2.842004165e-10 2.691675746e-10 3.130269375e-10 2.223714473e-10 2.812610795e-10 3.003821249e-10 3.654931969e-10 3.241686216e-10 2.944859317e-10 2.451237623e-10 1.625300637e-10 1.759931306e-10 1.277728466e-10 7.168527789e-11 8.820462486e-11 1.635195962e-10 2.061211911e-10 2.446415886e-10 1.98182781e-10 3.277693562e-10 4.32055333e-10 4.8287199e-10 5.864916417e-10 4.702614898e-10 4.3811673e-10 3.760658569e-10 6.130084057e-10 6.033947564e-10 4.875238945e-10 3.046527908e-10 3.967933452e-10 3.339290827e-10 4.180658809e-10 4.9292121e-10 3.698328913e-10 3.788972283e-10 3.33077007e-10 4.78944666e-10 3.457735097e-10 4.755296779e-10 5.78151866e-10 5.982804818e-10 4.657222437e-10 5.26549309e-10 5.412908734e-10 2.354048278e-10 7.005516882e-10 4.867382569e-10 5.312128247e-10 3.083769472e-10 4.47075027e-10 3.579603884e-10 6.039752971e-10 6.205090754e-10 6.059551142e-10 4.912034535e-10 5.386833483e-10 4.183868e-10 4.746667782e-10 4.260137943e-10 5.318580519e-10 5.0726389e-10 5.472100498e-10 4.919060519e-10 4.083636676e-10 5.782889245e-10 4.457617413e-10 5.946468994e-10 5.765517607e-10 4.519248343e-10 5.7963562e-10 4.016190038e-10 3.459576874e-10 5.31957204e-10 4.472353723e-10 4.504672918e-10 3.1384413e-10 5.654660825e-10 5.74424763e-10 4.45331775e-10 4.026487197e-10 7.005259704e-10 2.692936877e-10 3.972263393e-10 4.962119643e-10 5.101119865e-10 3.103283455e-10 3.867752514e-10 4.810057783e-10 2.042012016e-10 1.467536754e-10 1.482270027e-10 9.344265301e-11 1.771085136e-10 7.51800936e-11 2.071446079e-10 1.722915902e-10 1.090197719e-10 2.243272827e-10 3.107396081e-10 1.923648616e-10 3.472199781e-10 2.63064108e-10 2.229594186e-10 3.21990882e-10 3.198379555e-10 3.394252961e-10 3.669251524e-10 2.904114675e-10 1.966703655e-10 2.740172063e-10 3.08605286e-10 4.601784374e-10 4.166553147e-10 4.541932619e-10 3.918466257e-10 2.090677872e-10 5.854599741e-10 4.893811883e-10 3.462378312e-10 2.90173331e-10 2.364012752e-10 2.770460862e-10 2.63881766e-10 2.076546439e-10 3.110268436e-10 1.7639767e-10 1.480389026e-10 2.906244975e-10 1.268298678e-10 1.929235279e-10 2.783093552e-10 1.999523572e-10 2.277202073e-10 2.31518374e-10 3.322282593e-10 2.148560759e-10 2.284840339e-10 2.543632879e-10 2.236531033e-10 1.687758575e-10 2.49684278e-10 1.269022627e-10 2.613279159e-10 1.954228796e-10 2.779679047e-10 2.593813549e-10 2.376823036e-10 1.683954061e-10 2.619356483e-10 9.151432628e-11 2.6107161e-10 3.971927791e-10 3.513897222e-10 1.830334925e-10 1.798216538e-10 1.009657904e-10 2.433153999e-10 2.367763008e-10 2.491372261e-10 2.253018129e-10 2.500188384e-10 3.161903993e-10 3.832268577e-10 1.460802818e-10 1.992063098e-10 3.376278914e-10 1.085730619e-10 2.339350868e-10 1.990713486e-10 4.006878397e-10 1.005577735e-10 1.729898479e-10 2.7583541e-10 2.215221993e-10 1.064247593e-10 1.046079735e-10 2.142650688e-10 1.032401764e-10 1.786663464e-10 3.175353412e-10 5.163699608e-10 2.761047423e-10 2.805787071e-10 2.016793138e-10 2.072303794e-10 2.795215715e-10 2.014876641e-10 1.708225367e-10 1.201035319e-10 2.04010862e-10 3.711429479e-10 3.156478925e-10 2.073726e-10 9.294362779e-11 2.185834684e-10 2.056011283e-10 1.23510998e-10 3.64618521e-10 1.669243382e-10 8.592850835e-11 1.388373552e-10 2.399820773e-10 1.024372569e-10 +1.324722117e-10 1.162175444e-10 9.075904804e-11 1.918222449e-10 1.539722265e-10 1.701871363e-10 6.382215711e-11 2.330003633e-10 2.251017064e-10 1.670138976e-10 1.451780822e-10 1.225239779e-10 1.566597773e-10 9.372051102e-11 1.551671783e-10 1.781434936e-10 1.434974197e-10 4.246311937e-10 1.608239804e-10 1.201027717e-10 3.000939945e-10 1.025798634e-10 1.216028198e-10 2.314532668e-10 4.444111837e-10 1.99186977e-10 1.720376318e-10 9.735003767e-11 2.381509739e-10 1.65850274e-10 2.160376937e-10 2.182129898e-10 2.063032376e-10 2.529610862e-10 4.218753046e-10 2.229799028e-10 2.028447598e-10 3.224477098e-10 1.294326798e-10 1.499268813e-10 4.239672063e-10 2.374015743e-10 4.101538891e-10 1.756149571e-10 2.055690403e-10 1.90886091e-10 2.272147661e-10 3.22272042e-10 3.189233425e-10 2.20662022e-10 1.70102863e-10 2.338515459e-10 2.528187326e-10 1.518494199e-10 1.770101771e-10 4.863512888e-10 2.273439824e-10 1.219672097e-10 1.214277999e-10 2.332327429e-10 1.986125452e-10 1.989265166e-10 2.971295127e-10 2.46921792e-10 2.620771235e-10 9.944922698e-11 2.904447165e-10 2.567666576e-10 2.793828175e-10 3.517273151e-10 2.368289511e-10 2.280177199e-10 2.541411244e-10 2.428176298e-10 1.018784354e-10 3.081196263e-10 2.157121027e-10 1.600210974e-10 1.100995012e-10 2.76333945e-10 2.679210517e-10 3.671245501e-10 2.118460634e-10 5.1629383e-10 5.117510469e-10 2.992729054e-10 3.348010609e-10 3.618948423e-10 4.112204643e-10 2.533362753e-10 3.968786082e-10 4.357540597e-10 2.913856012e-10 3.733075367e-10 3.569318364e-10 2.630653277e-10 2.70531123e-10 1.410764938e-10 3.152261725e-10 2.928399397e-10 2.233882143e-10 2.74346321e-10 2.108779283e-10 2.284822435e-10 3.388000631e-10 3.686635007e-10 2.511315438e-10 2.632563131e-10 7.591472536e-11 1.184613622e-10 1.414959243e-10 2.045013688e-10 2.066341372e-10 1.889292711e-10 8.179715618e-10 3.464299626e-10 4.626105226e-10 4.73411018e-10 7.981690385e-10 4.225923818e-10 5.342257634e-10 4.439201674e-10 5.47960773e-10 7.789370893e-10 4.336004022e-10 6.727678039e-10 5.779508642e-10 2.139612902e-10 3.680549999e-10 4.808812225e-10 3.84999054e-10 3.945775349e-10 5.085831873e-10 4.72839687e-10 3.730548118e-10 4.796715625e-10 4.832420766e-10 4.102294564e-10 4.149798106e-10 4.719388848e-10 7.124339115e-10 4.78402588e-10 3.827750194e-10 4.588750181e-10 4.284692466e-10 4.967936869e-10 5.331605066e-10 3.600166636e-10 4.594375651e-10 3.322279189e-10 4.771262323e-10 4.463712979e-10 4.389429038e-10 4.892317835e-10 5.935286593e-10 4.571659365e-10 5.276783748e-10 4.98002231e-10 6.398075972e-10 7.282532497e-10 4.66052728e-10 4.954806215e-10 6.000728622e-10 4.945420863e-10 6.379511317e-10 2.850156308e-10 4.420174754e-10 4.712140411e-10 5.747566141e-10 3.981568268e-10 7.18404122e-10 3.676155266e-10 4.078716275e-10 5.217680808e-10 5.724892443e-10 3.295106609e-10 4.66796149e-10 7.24442489e-10 4.753331374e-10 8.276670301e-10 4.44595051e-10 4.610469799e-10 6.611113162e-10 3.549803873e-10 4.946813464e-10 4.215758048e-10 3.121396479e-10 2.000657345e-10 1.667621172e-10 1.194465491e-10 1.644510445e-10 1.027391803e-10 1.391800048e-10 1.221608108e-10 2.467086609e-10 3.022403438e-10 2.307675318e-10 3.300548975e-10 3.71063168e-10 3.706335914e-10 2.202521636e-10 3.474760808e-10 4.019620601e-10 3.528398255e-10 4.788717756e-10 2.836850381e-10 3.277240232e-10 2.552070168e-10 3.880854671e-10 3.120079348e-10 3.696321878e-10 4.534058792e-10 3.771130754e-10 2.844465909e-10 4.002019594e-10 2.767645584e-10 4.131300771e-10 4.663687773e-10 3.508955993e-10 2.718969944e-10 2.484719251e-10 2.761306908e-10 2.163799371e-10 3.417965106e-10 1.51606695e-10 2.984565001e-10 1.324919021e-10 3.502063268e-10 2.00819481e-10 1.369901697e-10 4.053977938e-10 2.282821081e-10 1.965203302e-10 2.305169353e-10 1.420862976e-10 1.287843337e-10 1.58333695e-10 2.076141927e-10 4.732230016e-10 2.338677782e-10 2.416619329e-10 2.543715553e-10 3.157018904e-10 2.309497175e-10 1.11076804e-10 1.795533644e-10 2.613813575e-10 2.008160244e-10 2.667420681e-10 1.984628726e-10 2.548940205e-10 2.130377801e-10 1.348162419e-10 3.346391724e-10 3.024745113e-10 1.776853148e-10 1.455650878e-10 3.391028617e-10 1.903540951e-10 2.210905096e-10 1.854155157e-10 2.43668063e-10 2.219787407e-10 7.018276555e-11 3.422346855e-10 1.763910477e-10 1.327903805e-10 2.168028278e-10 1.438884077e-10 2.776451377e-10 2.316039863e-10 2.594768655e-10 3.352008516e-10 2.00614569e-10 1.124731409e-10 3.22818263e-10 1.0169628e-10 3.776062063e-10 1.622769017e-10 3.79300962e-10 1.883696291e-10 3.858821033e-10 2.207184658e-10 2.130448559e-10 2.482899705e-10 3.406026609e-10 1.465838985e-10 1.240694498e-10 2.361088149e-10 1.845486196e-10 9.329439999e-11 7.802361293e-11 1.439894352e-10 1.274842939e-10 3.478818084e-10 3.033032699e-10 5.186602889e-11 2.110015075e-10 1.166320541e-10 2.073011203e-10 +2.336741119e-10 1.461543181e-10 1.788260234e-10 1.919898949e-10 3.957636781e-10 1.270214303e-10 8.279679098e-11 6.552852577e-11 2.731433164e-10 2.356142221e-10 1.325886831e-10 2.787758868e-10 5.002366389e-11 1.355098589e-10 3.157965784e-10 2.235715062e-10 4.244924563e-10 5.007000211e-10 1.349600396e-10 2.464281733e-10 1.395823774e-10 2.012327801e-10 1.644817002e-10 2.73521321e-10 2.536219495e-10 2.663637395e-10 2.808883952e-10 4.283575799e-10 3.269213992e-10 1.802463526e-10 3.477107687e-10 3.067256428e-10 2.667729714e-10 2.656841029e-10 1.890686067e-10 1.842309373e-10 2.989226735e-10 2.160147844e-10 1.448901988e-10 2.322189156e-10 3.099528726e-10 3.012315951e-10 4.730012283e-10 1.340316641e-10 1.334816611e-10 7.920442554e-11 2.319757527e-10 1.756411297e-10 2.99391228e-10 3.504697939e-10 9.470607225e-11 1.692191989e-10 2.62042739e-10 2.362456694e-10 1.908063571e-10 3.3603824e-10 1.352301458e-10 3.568258172e-10 2.812143897e-10 4.20987744e-10 1.873315655e-10 2.530546686e-10 3.080594131e-10 1.694537965e-10 2.754452746e-10 2.628894064e-10 2.558294991e-10 1.922149544e-10 2.513925045e-10 1.513671321e-10 1.926716661e-10 2.109636305e-10 1.642400513e-10 2.920411498e-10 2.890618101e-10 2.380579666e-10 2.662831077e-10 2.778660161e-10 2.066620515e-10 2.581485257e-10 2.024846305e-10 3.2042889e-10 2.486899403e-10 3.347896113e-10 3.51820577e-10 3.467133721e-10 3.321386127e-10 3.999816922e-10 3.630072937e-10 2.941288385e-10 2.792008371e-10 3.984037505e-10 2.656012756e-10 3.638190265e-10 2.917588117e-10 3.89803408e-10 4.846499881e-10 1.888359754e-10 4.560465561e-10 3.168607459e-10 2.508948812e-10 3.764053631e-10 3.687255514e-10 3.29529631e-10 2.414318265e-10 2.611917779e-10 2.404897011e-10 8.795415814e-11 2.453701835e-10 1.213884438e-10 1.407532341e-10 2.012394376e-10 2.180258058e-10 5.531162074e-10 2.848739561e-10 3.546236747e-10 3.06979993e-10 5.568019422e-10 5.728624396e-10 5.534398962e-10 6.129093361e-10 7.359478784e-10 4.426649772e-10 2.916513578e-10 6.107274883e-10 4.251127546e-10 5.58882105e-10 4.523515277e-10 7.504043936e-10 5.641912077e-10 6.199657069e-10 2.154094406e-10 3.476354453e-10 7.457641619e-10 7.737687508e-10 4.062368782e-10 4.862850218e-10 5.463876693e-10 5.767672163e-10 6.417133923e-10 4.9105558e-10 4.949863737e-10 4.928239249e-10 4.854703339e-10 3.023568086e-10 3.342849901e-10 6.143284432e-10 3.696682653e-10 3.774161943e-10 5.667237334e-10 4.594357167e-10 5.948093631e-10 3.342551605e-10 3.767896255e-10 3.735410234e-10 5.334599442e-10 3.355820602e-10 5.106272799e-10 4.844836829e-10 5.253721934e-10 4.603992643e-10 6.577779546e-10 5.311122735e-10 6.404698232e-10 6.922706685e-10 3.765345551e-10 3.509604906e-10 4.054883678e-10 3.841628612e-10 6.498437681e-10 4.918853127e-10 4.823644435e-10 4.574847431e-10 3.676362874e-10 4.094388034e-10 5.276525382e-10 8.488185135e-10 3.758644328e-10 4.928566841e-10 5.491846777e-10 5.024395034e-10 4.033223881e-10 2.736456452e-10 3.686696247e-10 4.005224938e-10 3.247673067e-10 1.113451291e-10 1.865369933e-10 1.732147845e-10 1.58547865e-10 1.110467435e-10 1.6617254e-10 1.374168028e-10 7.719573121e-11 1.414936493e-10 1.727567487e-10 2.314998455e-10 1.883756575e-10 2.892044983e-10 1.952816478e-10 2.842916784e-10 3.2281407e-10 1.356625686e-10 4.397969301e-10 4.110210397e-10 3.885821398e-10 3.642775335e-10 2.844934241e-10 3.109820893e-10 3.447854448e-10 4.377547142e-10 5.410310211e-10 2.438169452e-10 1.856030793e-10 5.100779137e-10 5.003660398e-10 2.605024063e-10 2.481791293e-10 1.778048138e-10 3.414728344e-10 1.869459824e-10 1.184209956e-10 2.474038362e-10 3.159661187e-10 2.184384984e-10 3.530137026e-10 3.582814574e-10 1.114206491e-10 2.508856048e-10 2.679844631e-10 2.68503128e-10 2.470962987e-10 1.69266056e-10 2.634909813e-10 2.05840866e-10 1.885742917e-10 1.814865359e-10 2.836274565e-10 2.942684712e-10 2.720878221e-10 2.337896727e-10 2.399926725e-10 2.189864247e-10 3.164447132e-10 1.589557459e-10 2.001137662e-10 3.521094913e-10 1.769097399e-10 1.766962278e-10 1.083205068e-10 1.78320153e-10 4.479231366e-10 1.8942925e-10 1.200020779e-10 2.504267937e-10 2.474161782e-10 2.495104711e-10 3.462762239e-10 2.876823943e-10 1.91643836e-10 2.093183155e-10 1.623198043e-10 2.185249936e-10 2.409820744e-10 3.993919414e-10 2.761446383e-10 3.048284192e-10 1.159588857e-10 3.022521975e-10 2.781980417e-10 4.397502933e-10 2.092902133e-10 2.591095789e-10 3.627347863e-10 2.402236324e-10 1.986668733e-10 4.938719346e-10 1.911767343e-10 4.3349192e-10 2.036025058e-10 2.632715422e-10 2.996635608e-10 2.823877063e-10 3.856541931e-10 3.172938259e-10 2.728620899e-10 1.638664994e-10 1.689929328e-10 1.16575106e-10 1.79437689e-10 2.760471899e-10 8.226445309e-11 1.544248834e-10 2.04656067e-10 2.143521116e-10 8.911900117e-11 2.048180721e-10 1.56035314e-10 3.439912022e-10 1.362078877e-10 +2.793781851e-10 1.257560172e-10 3.625045618e-10 1.696897905e-10 8.180302477e-11 1.597061695e-10 1.471011794e-10 1.743205174e-10 2.331618259e-10 1.285223004e-10 3.827720013e-10 7.455466881e-11 1.332396272e-10 4.074980698e-10 2.835601283e-10 1.258690415e-10 1.203932004e-10 1.740243385e-10 1.083358652e-10 2.066535722e-10 3.363506708e-10 4.198230032e-10 3.44284904e-10 3.386332251e-10 2.938568317e-10 2.695577073e-10 2.768114212e-10 1.73868237e-10 1.876280707e-10 3.685237567e-10 1.357959033e-10 4.149885076e-10 2.890860971e-10 2.710554067e-10 2.880824473e-10 2.148736878e-10 1.354874566e-10 2.015481232e-10 3.128724205e-10 3.223826248e-10 1.316161045e-10 3.011218085e-10 2.325765457e-10 2.1168179e-10 2.364155548e-10 3.5931386e-10 2.83137657e-10 2.283007125e-10 2.913845239e-10 1.556233607e-10 2.306091482e-10 1.708935396e-10 3.940649205e-10 1.285705329e-10 3.888858079e-10 2.471913107e-10 3.20771232e-10 3.290420944e-10 3.334669974e-10 3.419465735e-10 2.056441029e-10 2.220155861e-10 3.548682494e-10 2.990890417e-10 2.921874743e-10 1.037346097e-10 2.555748456e-10 2.269420454e-10 3.666199228e-10 2.294397441e-10 2.606994875e-10 4.029917861e-10 3.033848953e-10 2.163711456e-10 2.912325881e-10 2.495026965e-10 3.055380883e-10 1.820818559e-10 1.784749698e-10 3.288998694e-10 2.809810581e-10 1.582940051e-10 2.27473283e-10 2.466207148e-10 4.462829623e-10 3.672339336e-10 5.737738162e-10 3.644876097e-10 3.538605197e-10 2.993097255e-10 3.951766083e-10 3.844610796e-10 4.28670465e-10 3.127537764e-10 3.021488036e-10 4.110382363e-10 2.949250254e-10 2.129942505e-10 2.724833445e-10 3.279684603e-10 3.327385672e-10 3.543736859e-10 7.757338293e-11 3.282994648e-10 2.031193872e-10 2.386905891e-10 8.717366278e-11 1.310352492e-10 7.911903008e-11 1.909333376e-10 1.439776779e-10 2.086864355e-10 9.077636693e-11 7.178866795e-10 1.891838458e-10 3.923599116e-10 4.330886649e-10 4.698380555e-10 5.043186843e-10 6.569706129e-10 5.148003171e-10 4.459433005e-10 5.217008708e-10 4.866172591e-10 2.414352974e-10 4.773333871e-10 3.509790274e-10 6.46551353e-10 4.692745465e-10 3.688615569e-10 5.212329301e-10 5.225526397e-10 5.974673953e-10 5.758499673e-10 5.667730018e-10 5.272328706e-10 3.917361909e-10 5.312439615e-10 6.188808942e-10 4.36655121e-10 5.45203788e-10 4.359952467e-10 4.671253518e-10 5.651077447e-10 5.62572341e-10 4.77608947e-10 6.102198293e-10 5.207608574e-10 3.182540397e-10 4.702991122e-10 3.189176423e-10 4.259314323e-10 3.510115929e-10 4.490014843e-10 3.597032057e-10 3.065676963e-10 3.837726039e-10 4.158959816e-10 5.117892301e-10 4.404660491e-10 6.383305026e-10 7.456464711e-10 4.968949466e-10 5.096869476e-10 4.784453372e-10 4.459953597e-10 4.958617078e-10 3.244241271e-10 4.160595471e-10 5.084982155e-10 4.187008927e-10 4.531549e-10 2.925793543e-10 4.138266097e-10 2.219080723e-10 3.818274447e-10 3.547479637e-10 6.990814847e-10 4.225294668e-10 5.961836735e-10 4.190778723e-10 7.174413184e-10 5.159479992e-10 5.029186325e-10 4.979785708e-10 5.730994869e-10 1.234004286e-10 1.143901351e-10 2.752191286e-10 2.269679883e-10 1.89417174e-10 1.5157696e-10 1.795902981e-10 1.055885789e-10 2.070712405e-10 2.64889793e-10 2.495816282e-10 2.124123229e-10 3.037132798e-10 2.779103286e-10 2.549774452e-10 2.903696433e-10 2.832527728e-10 1.926041812e-10 1.971052679e-10 3.635937038e-10 2.13024413e-10 4.131240434e-10 2.995763603e-10 4.539012031e-10 3.665891294e-10 3.174353207e-10 4.771433471e-10 4.613457282e-10 4.634289391e-10 3.686655636e-10 4.602982711e-10 3.363859386e-10 3.127711316e-10 3.225963996e-10 8.345491976e-11 2.540121297e-10 2.05563473e-10 1.46233746e-10 1.359468174e-10 3.593121801e-10 2.852379338e-10 2.467552534e-10 2.807707785e-10 1.815025234e-10 2.810012844e-10 4.223147645e-10 2.525827008e-10 1.534002697e-10 3.344755481e-10 1.390643225e-10 2.518108665e-10 3.292573869e-10 2.377093351e-10 3.085835353e-10 2.410807354e-10 2.658534431e-10 2.01054719e-10 3.152334427e-10 2.043451476e-10 3.203062806e-10 1.521141785e-10 2.691305786e-10 2.156282293e-10 1.773921232e-10 2.74201958e-10 2.465126813e-10 1.97049937e-10 2.003779712e-10 1.445004081e-10 1.585844791e-10 4.493207004e-10 3.279459268e-10 2.743349519e-10 2.228713051e-10 2.307379035e-10 3.958557209e-10 4.665860193e-10 1.746629242e-10 1.659292107e-10 2.116025016e-10 2.211442567e-10 1.699063601e-10 2.205026095e-10 1.442610306e-10 3.225808868e-10 2.048882392e-10 3.511330475e-10 1.224124268e-10 2.013871465e-10 2.016442517e-10 2.937985954e-10 3.032994252e-10 1.32817158e-10 2.262073484e-10 9.37346059e-11 2.881283022e-10 1.911373864e-10 2.296973161e-10 1.836156117e-10 7.718550585e-11 1.929876723e-10 4.437448593e-10 7.302960738e-11 1.634566956e-10 2.119166046e-10 1.050198526e-10 7.849953415e-11 1.933658242e-10 5.16159287e-11 1.403107282e-10 2.294083221e-10 2.221994135e-10 1.554431641e-10 3.141178684e-10 +9.939111886e-11 8.921220591e-11 1.000158225e-10 9.484683339e-11 2.42130435e-10 1.016453495e-10 5.612324227e-11 1.631457276e-10 1.644613625e-10 1.336142342e-10 1.679870935e-10 1.546127723e-10 9.625595812e-11 2.835314532e-10 1.67402496e-10 1.895904218e-10 1.377980517e-10 1.485500221e-10 1.327598718e-10 2.963740712e-10 2.560990437e-10 4.296031588e-10 3.606079241e-10 2.740867568e-10 2.385049527e-10 2.892099353e-10 1.378464367e-10 1.959487307e-10 1.846135511e-10 8.764596129e-11 3.172822203e-10 3.236517911e-10 3.276404016e-10 3.035583859e-10 2.986037065e-10 2.681933671e-10 3.424893815e-10 2.478931012e-10 1.781888847e-10 2.864246296e-10 1.817550906e-10 2.613340879e-10 2.161556733e-10 2.834804426e-10 2.431178628e-10 1.830347372e-10 1.851804937e-10 3.554521088e-10 1.798827955e-10 1.448531786e-10 8.337075478e-11 1.547910222e-10 1.87897506e-10 9.8485633e-11 1.425556373e-10 1.514174898e-10 1.472074528e-10 2.414255833e-10 2.66515915e-10 2.654741147e-10 3.145975413e-10 2.19847879e-10 3.211864722e-10 2.22492687e-10 2.132480247e-10 2.586172022e-10 3.239832986e-10 2.807435336e-10 3.822792301e-10 1.954480328e-10 2.622412018e-10 2.159430122e-10 3.176525216e-10 3.285939602e-10 1.334881577e-10 2.163813694e-10 2.365144284e-10 2.714793202e-10 9.276270826e-11 3.713962713e-10 2.714262576e-10 1.940901214e-10 4.698875123e-10 3.674857872e-10 5.24757722e-10 4.250352919e-10 3.39361602e-10 3.437222547e-10 4.668842259e-10 2.863999797e-10 3.580274586e-10 3.863455325e-10 2.075691446e-10 3.721741649e-10 2.851545491e-10 3.690057528e-10 3.82907014e-10 2.102180404e-10 2.912985438e-10 3.54770235e-10 2.785122784e-10 3.647781746e-10 2.965996741e-10 1.987158267e-10 1.926395944e-10 2.394184445e-10 1.159934692e-10 1.06134114e-10 1.077290655e-10 9.422847371e-11 1.480911395e-10 1.23594298e-10 3.441507902e-10 3.745359283e-10 4.954636011e-10 3.633249796e-10 5.474228788e-10 5.253521115e-10 6.310610634e-10 6.163045951e-10 6.044210196e-10 3.798406588e-10 4.505817355e-10 4.899930451e-10 3.312157528e-10 4.114082634e-10 7.848703254e-10 4.817794672e-10 4.738752772e-10 4.807641562e-10 5.531309254e-10 4.35985498e-10 6.49730486e-10 4.735842075e-10 7.101950936e-10 5.537381753e-10 5.502325475e-10 6.673237004e-10 6.824420979e-10 4.695351334e-10 4.851055444e-10 4.445254428e-10 4.655909295e-10 3.049261427e-10 3.008654701e-10 4.277270553e-10 4.084462317e-10 3.840421543e-10 3.533031309e-10 3.46896818e-10 4.278726022e-10 3.484392362e-10 4.069312759e-10 2.941276225e-10 2.234870196e-10 2.569964828e-10 3.51271044e-10 5.965423336e-10 6.062780427e-10 5.886522122e-10 6.208285452e-10 4.977519307e-10 4.503963178e-10 5.59616297e-10 5.296850146e-10 5.608419908e-10 7.001946969e-10 4.763310942e-10 5.845139767e-10 3.607182928e-10 4.600701797e-10 7.940033627e-10 5.569098227e-10 6.236175344e-10 4.825258878e-10 4.028770394e-10 5.645882871e-10 3.445532271e-10 3.216343086e-10 5.854544884e-10 5.377872785e-10 4.730595448e-10 4.641952476e-10 4.149836109e-10 4.708746823e-10 8.700157133e-10 5.222283529e-10 3.847862239e-10 1.39963612e-10 2.423603659e-10 2.549183691e-10 1.948418606e-10 3.160592404e-10 2.1659261e-10 3.463279145e-10 1.577285847e-10 2.92127651e-10 3.336640439e-10 2.229445773e-10 2.141827813e-10 2.142794354e-10 3.412143137e-10 3.792644578e-10 2.191987114e-10 3.408902986e-10 2.344245047e-10 2.999657604e-10 3.300899623e-10 3.247647267e-10 4.367519636e-10 3.178643965e-10 2.80139656e-10 4.057590043e-10 3.490373649e-10 4.712756464e-10 3.870735443e-10 4.258303602e-10 3.665037832e-10 2.909226687e-10 4.144513219e-10 2.448230577e-10 1.536786374e-10 1.435685038e-10 2.037993065e-10 3.874059508e-10 2.295482535e-10 2.724445283e-10 2.270720497e-10 2.842703006e-10 2.622789965e-10 3.513686663e-10 3.176536955e-10 4.338255384e-10 2.562815166e-10 1.336868646e-10 2.514498214e-10 1.926004044e-10 2.570518348e-10 2.078643315e-10 2.013442022e-10 2.936243212e-10 1.746021623e-10 1.792189621e-10 3.595801031e-10 2.331127796e-10 8.142379963e-11 2.44064989e-10 1.453271782e-10 1.916579948e-10 2.871468193e-10 2.796147799e-10 4.499623917e-10 1.35712728e-10 2.611472067e-10 1.566431642e-10 5.077147657e-10 1.738402676e-10 1.785211648e-10 3.19741379e-10 1.275828631e-10 3.116993304e-10 1.718872912e-10 1.896421544e-10 1.156584356e-10 2.709643982e-10 1.203322085e-10 2.183286849e-10 2.401673156e-10 3.92688321e-10 2.486460039e-10 4.167612475e-10 3.583364971e-10 2.118243491e-10 1.581438528e-10 3.465528854e-10 2.306176673e-10 4.047627701e-10 4.205989586e-10 1.695750514e-10 2.731941645e-10 1.650199203e-10 1.219002347e-10 2.338709028e-10 6.10851323e-11 1.55114907e-10 1.679851579e-10 2.289863777e-10 4.916284362e-11 1.284780031e-10 1.001913051e-10 2.934634324e-10 2.331657121e-10 2.483424607e-10 1.782147509e-10 1.01054832e-10 2.549353285e-10 1.05554583e-10 8.36093311e-11 2.381230205e-10 5.737072e-11 +1.388677444e-10 2.224367318e-10 1.799176145e-10 1.280449188e-10 8.030366231e-11 2.855070382e-10 1.968186764e-10 1.177384629e-10 2.042906749e-10 6.613142986e-11 1.70198494e-10 1.495309877e-10 1.049936593e-10 1.721130238e-10 3.302221288e-10 8.976343561e-11 2.043562618e-10 1.954250716e-10 4.863476843e-11 1.463250826e-10 3.514276974e-10 2.166569215e-10 2.824666323e-10 2.662553121e-10 3.654904067e-10 4.603129801e-10 2.464486227e-10 1.669422078e-10 1.609469072e-10 2.394727666e-10 2.260141474e-10 2.598530627e-10 3.249906316e-10 2.309623483e-10 2.664120473e-10 1.582731159e-10 3.288119879e-10 2.163204401e-10 3.294083856e-10 3.386762195e-10 1.855637804e-10 4.743004753e-10 2.397523882e-10 2.708065627e-10 4.622079772e-10 1.625744414e-10 3.094331921e-10 2.569859887e-10 2.207808405e-10 8.736409357e-11 2.194708702e-10 2.01002334e-10 1.742990095e-10 2.750782935e-10 3.511475142e-10 3.526922152e-10 1.134364784e-10 2.395544579e-10 1.268809409e-10 4.516351503e-10 2.589956583e-10 3.3596178e-10 3.173933107e-10 2.667466032e-10 2.871057718e-10 1.658696103e-10 3.130813093e-10 3.048081964e-10 2.766238518e-10 3.392085741e-10 1.695133601e-10 2.710871481e-10 2.901899402e-10 2.111930477e-10 2.098832338e-10 1.484180391e-10 2.692818018e-10 2.205065875e-10 2.295514809e-10 1.590539561e-10 2.495058443e-10 1.656351956e-10 3.215472584e-10 2.407295263e-10 3.586436715e-10 3.800200053e-10 3.876230931e-10 3.091111124e-10 4.748546588e-10 3.21342063e-10 2.473884154e-10 3.887699305e-10 1.82263794e-10 3.694108096e-10 2.30017135e-10 2.587663686e-10 4.592570102e-10 2.515159988e-10 3.261828878e-10 1.541201687e-10 3.006324143e-10 2.81406433e-10 2.509681466e-10 2.95240809e-10 2.488979394e-10 1.68817819e-10 9.020727765e-11 2.168815788e-10 4.231330122e-11 9.008031882e-11 1.854824654e-10 1.827667538e-10 3.433165092e-10 6.101154349e-10 4.178895983e-10 3.216928548e-10 6.441622817e-10 6.179918036e-10 8.092488039e-10 4.64758417e-10 7.750067328e-10 3.802969808e-10 4.731277383e-10 3.660300429e-10 4.387930023e-10 6.16801445e-10 5.797571232e-10 5.170166505e-10 3.247792622e-10 5.779563321e-10 5.27852987e-10 6.544748001e-10 6.076187031e-10 6.461346717e-10 4.31755782e-10 5.363786879e-10 5.073730961e-10 4.466490932e-10 3.240245943e-10 4.355915889e-10 3.999839528e-10 2.571595209e-10 3.615895797e-10 3.085374944e-10 3.177191746e-10 5.121386767e-10 4.268235462e-10 3.896489002e-10 2.612867709e-10 2.944734836e-10 4.009680732e-10 4.441439762e-10 4.120504294e-10 4.874248425e-10 4.538438869e-10 5.248238463e-10 4.211733225e-10 3.946167909e-10 2.518754726e-10 5.088059404e-10 4.237958248e-10 4.348419901e-10 4.789541576e-10 5.825366217e-10 5.472513442e-10 6.000950822e-10 5.651849823e-10 6.201635641e-10 3.991743008e-10 7.505909601e-10 4.633780817e-10 4.825102469e-10 4.336936907e-10 3.621689299e-10 5.691977745e-10 4.797992758e-10 3.696366665e-10 4.248212504e-10 6.16515655e-10 5.165421925e-10 4.662771928e-10 5.233786447e-10 4.621008843e-10 3.626375135e-10 5.19182523e-10 6.113245948e-10 6.981502878e-10 3.292017278e-10 2.379659224e-10 1.873105592e-10 2.023805656e-10 1.600096471e-10 1.655338009e-10 2.384847689e-10 2.3120737e-10 2.084457505e-10 3.195410826e-10 2.745117962e-10 2.430359572e-10 2.217530798e-10 4.005204663e-10 4.046615128e-10 3.651566103e-10 2.183800906e-10 3.383192228e-10 1.963884403e-10 3.363840604e-10 3.704446858e-10 3.554617129e-10 4.120447029e-10 3.963250819e-10 2.818851151e-10 3.677615573e-10 3.682635961e-10 4.039021647e-10 4.766583881e-10 5.36517108e-10 1.393726234e-10 3.23394683e-10 3.866469204e-10 2.112435079e-10 3.43224679e-10 2.621990864e-10 2.805882016e-10 1.78757304e-10 3.387223524e-10 1.485634138e-10 1.065571843e-10 1.522927529e-10 4.09947959e-10 2.72025885e-10 2.430325206e-10 3.149949529e-10 1.64207227e-10 1.956095895e-10 1.863162115e-10 3.36031376e-10 2.035716366e-10 2.432600938e-10 2.899699344e-10 3.40086164e-10 1.773447478e-10 2.606991331e-10 1.401324443e-10 1.792758107e-10 2.924466736e-10 1.363607418e-10 1.104147756e-10 2.807535739e-10 4.95637695e-10 2.757750092e-10 3.449399401e-10 1.830385398e-10 2.721400765e-10 1.733505855e-10 1.936607254e-10 2.436510006e-10 3.607957028e-10 2.474553261e-10 2.878183443e-10 1.848043212e-10 1.95184318e-10 2.856584862e-10 1.727354622e-10 1.845560822e-10 6.137779322e-11 2.603366103e-10 1.949090124e-10 1.675651334e-10 2.513530834e-10 2.47301607e-10 6.786390267e-11 3.42022527e-10 3.491068328e-10 3.025152408e-10 2.971885292e-10 5.307217208e-10 2.428362423e-10 2.706553782e-10 2.939157366e-10 1.917159724e-10 9.577330803e-11 1.217433546e-10 2.003816593e-10 1.321645306e-10 2.449484716e-10 1.382446126e-10 1.313412994e-10 2.342896738e-10 3.46406112e-10 5.744620582e-11 1.436756166e-10 1.148845479e-10 2.176761333e-10 1.23610255e-10 3.219801651e-10 2.17454878e-10 1.156110599e-10 1.714868304e-10 5.605889782e-11 +1.647327008e-10 7.103727226e-11 2.197899482e-10 8.694532655e-11 2.439557249e-10 1.108976847e-10 6.569558116e-11 1.733516511e-10 8.337493353e-11 9.369014821e-11 1.645026145e-10 2.013237225e-10 1.533712159e-10 1.135590539e-10 3.419703191e-10 4.202671955e-10 1.461213022e-10 2.101475004e-10 8.936962119e-11 2.117048313e-10 1.609284363e-10 2.882122864e-10 3.402026365e-10 3.091052391e-10 1.282771321e-10 3.789829807e-10 2.949211961e-10 4.130858983e-10 3.778055542e-10 2.471805867e-10 2.239065739e-10 2.08008901e-10 2.549823046e-10 2.762295599e-10 7.320640278e-11 4.172183569e-10 1.518216055e-10 3.039848165e-10 1.752344101e-10 1.992786068e-10 4.07050014e-10 3.044669972e-10 2.418279941e-10 3.330535691e-10 6.07529622e-10 3.750763899e-10 2.712130088e-10 2.555731462e-10 2.835538609e-10 1.677907945e-10 1.117154122e-10 1.865147631e-10 3.326371766e-10 2.759766446e-10 2.088534881e-10 3.415125141e-10 2.689459451e-10 2.034448032e-10 2.392848014e-10 2.486446274e-10 2.529829202e-10 1.767407557e-10 2.3439621e-10 2.739560235e-10 1.525706688e-10 3.697076849e-10 2.699365986e-10 3.411965082e-10 2.389721136e-10 3.004495282e-10 1.94358458e-10 1.62545845e-10 1.9022822e-10 2.12513466e-10 1.827171906e-10 3.908473081e-10 2.248025854e-10 3.528635168e-10 1.606138229e-10 2.972566964e-10 2.862416431e-10 3.101302872e-10 3.507018297e-10 3.013720506e-10 3.475161038e-10 4.835973669e-10 4.253544046e-10 4.609487789e-10 4.554840749e-10 3.65599234e-10 4.360134796e-10 3.080943368e-10 2.902489832e-10 2.898296554e-10 3.985147073e-10 3.756272101e-10 4.199371608e-10 2.62866104e-10 2.676370326e-10 2.217996126e-10 3.393923455e-10 2.49102583e-10 2.48250382e-10 2.693725377e-10 2.194990396e-10 1.468385255e-10 6.373502484e-11 1.427435165e-10 1.698835768e-10 1.889281868e-10 1.2453615e-10 1.453679781e-10 6.632190153e-10 7.517891254e-10 3.795053581e-10 4.69498085e-10 8.23763307e-10 6.085591283e-10 3.729937945e-10 3.610223877e-10 3.81219998e-10 5.451297104e-10 6.212130148e-10 3.699996903e-10 5.327540247e-10 4.541784944e-10 4.269391067e-10 6.097549181e-10 5.715969932e-10 4.777553653e-10 7.20705792e-10 6.259965446e-10 5.602882942e-10 4.945889956e-10 4.980018209e-10 3.990241726e-10 3.275673885e-10 2.748239849e-10 4.857155427e-10 3.359084077e-10 4.889163041e-10 4.246490472e-10 5.289815684e-10 2.862984789e-10 3.475275072e-10 4.928346457e-10 5.05819044e-10 2.808750057e-10 4.279664993e-10 4.695454099e-10 3.995519393e-10 4.035406733e-10 3.487787509e-10 3.020766349e-10 3.092085185e-10 3.818619947e-10 4.027011468e-10 4.938400357e-10 2.660265713e-10 5.196137943e-10 2.590622775e-10 3.709151922e-10 4.305242087e-10 3.099401272e-10 4.68093478e-10 5.02129201e-10 5.940910929e-10 6.02917432e-10 4.496712634e-10 4.616146857e-10 4.642957792e-10 7.101547349e-10 5.86943061e-10 3.997927316e-10 5.076256301e-10 5.060109641e-10 4.158074322e-10 6.105360541e-10 4.327636546e-10 3.861389123e-10 6.468779327e-10 4.802021038e-10 3.999838298e-10 8.025036843e-10 6.92597513e-10 7.459477373e-10 3.900650392e-10 8.826288966e-10 1.771710385e-10 2.554189483e-10 1.903228247e-10 1.305419491e-10 1.152385381e-10 5.610546141e-11 1.025255364e-10 1.803107264e-10 1.394303762e-10 2.544649714e-10 3.161462804e-10 1.954061738e-10 3.102628754e-10 3.920662551e-10 3.041031086e-10 3.671719264e-10 3.047879499e-10 3.342021179e-10 2.294139797e-10 2.472195758e-10 1.926295127e-10 3.503569575e-10 5.051208712e-10 3.24788338e-10 3.806388612e-10 4.359183084e-10 4.994778335e-10 4.107359482e-10 3.925705877e-10 4.766254412e-10 4.106927127e-10 2.115818061e-10 3.365265015e-10 1.867367959e-10 2.822259462e-10 4.115411264e-10 3.092061322e-10 2.202636595e-10 2.109292569e-10 2.722603365e-10 1.619319587e-10 2.846032423e-10 2.136750765e-10 2.157911104e-10 2.747949257e-10 2.860538252e-10 3.423602444e-10 2.718586192e-10 1.973961152e-10 2.517134349e-10 1.791044975e-10 2.495571833e-10 2.724023057e-10 2.565930445e-10 3.286878177e-10 8.043979852e-11 1.771540374e-10 1.2275359e-10 1.649052088e-10 2.89757112e-10 2.818833197e-10 2.977741167e-10 1.214646555e-10 2.757551779e-10 1.98155099e-10 3.195829208e-10 3.45120651e-10 2.256540568e-10 1.606052688e-10 4.456117263e-10 2.403185272e-10 2.269540265e-10 3.516031581e-10 2.769334834e-10 3.621472968e-10 1.404286896e-10 3.160567216e-10 2.391502652e-10 5.570017108e-11 2.640486293e-10 2.291707944e-10 1.384355194e-10 2.451608808e-10 2.063009568e-10 3.43271578e-10 3.628645801e-10 2.822267271e-10 2.869888889e-10 1.760372552e-10 2.997894928e-10 4.047098694e-10 1.812867077e-10 1.944239197e-10 1.535828718e-10 1.794371995e-10 6.219089889e-11 1.171854447e-10 1.857503971e-10 1.70249029e-10 3.069930673e-10 7.334304917e-11 1.051284568e-10 3.961478113e-10 4.62585106e-11 1.606636498e-10 8.429995943e-11 1.196988958e-10 2.747400329e-10 1.123423367e-10 3.018697326e-10 1.495103706e-10 1.316832953e-10 +1.654884369e-10 8.891201745e-11 2.146964854e-10 2.299874795e-10 9.467283461e-11 1.948704966e-11 1.571379379e-10 1.076619781e-10 8.545586412e-11 1.942883031e-10 3.212766924e-10 1.857764469e-10 2.797568359e-10 1.003824257e-10 2.060447663e-10 2.016358274e-10 1.377904293e-10 2.09886529e-10 1.073391915e-10 1.90477271e-10 1.956793047e-10 1.219765543e-10 1.892636898e-10 4.567569479e-10 9.936018648e-11 3.758924779e-10 3.610841598e-10 1.872011236e-10 2.722439245e-10 2.472704723e-10 1.36296368e-10 3.176881257e-10 4.188516337e-10 2.317865184e-10 2.990244728e-10 1.869526398e-10 3.004020317e-10 2.259884677e-10 3.200254783e-10 3.023270306e-10 2.526534601e-10 2.597784535e-10 2.946941675e-10 1.498041229e-10 2.686839347e-10 1.662255977e-10 2.146829743e-10 3.786520926e-10 3.961873323e-10 4.069042255e-10 2.349027972e-10 2.57574734e-10 2.227621376e-10 1.404044442e-10 3.32451359e-10 9.97088026e-11 1.469761364e-10 3.345722789e-10 2.047739071e-10 1.234884348e-10 3.132439995e-10 2.606557146e-10 3.113613129e-10 3.109205454e-10 2.281763041e-10 2.489050413e-10 3.186788762e-10 2.777796808e-10 2.18062351e-10 3.132993157e-10 1.469191844e-10 2.33754989e-10 2.909381002e-10 1.695586703e-10 3.105074842e-10 1.113453445e-10 3.628368235e-10 3.374695369e-10 2.800004975e-10 2.644287563e-10 2.201692488e-10 3.079333824e-10 4.41530426e-10 4.947692068e-10 4.02141223e-10 3.196144238e-10 3.184359616e-10 5.556761989e-10 4.745081207e-10 4.184363063e-10 4.358991531e-10 2.496514531e-10 2.352028343e-10 3.452279795e-10 2.025204242e-10 3.691521005e-10 1.835556519e-10 3.289013479e-10 2.493404152e-10 2.751147219e-10 3.592569958e-10 3.115126479e-10 2.893968847e-10 3.636019737e-10 1.073663393e-10 1.730923939e-10 4.422496977e-11 3.941105919e-10 1.750983991e-10 1.966430055e-10 1.932947339e-10 7.458101472e-10 2.903024672e-10 7.857199762e-10 5.320776211e-10 5.733133476e-10 4.863310735e-10 3.111240657e-10 4.581798803e-10 3.879406681e-10 3.913284016e-10 7.350734195e-10 4.49890721e-10 6.505831137e-10 4.971670445e-10 3.937875712e-10 5.939764449e-10 7.112556644e-10 5.271315017e-10 2.795555188e-10 6.764042639e-10 5.049099353e-10 4.178561977e-10 5.954053866e-10 4.765194613e-10 3.764980343e-10 4.376527415e-10 3.708916736e-10 7.022355143e-10 3.633189086e-10 4.562910312e-10 4.469360777e-10 2.542225289e-10 4.033780647e-10 4.741581742e-10 5.558446862e-10 4.307186907e-10 3.511552921e-10 3.383469291e-10 3.456716411e-10 4.542754995e-10 3.119963277e-10 3.057723094e-10 4.661663389e-10 3.123230122e-10 3.497312521e-10 3.913492759e-10 3.47818314e-10 5.002555836e-10 3.962812163e-10 4.499752772e-10 4.193987347e-10 4.188493665e-10 4.004488361e-10 2.895908114e-10 3.945666261e-10 4.280827112e-10 7.26538938e-10 4.960788326e-10 6.157223208e-10 7.463305952e-10 5.612665755e-10 3.745188753e-10 5.227459035e-10 5.240257706e-10 3.675701978e-10 3.963123725e-10 3.925182482e-10 4.783888899e-10 7.058215587e-10 4.323710168e-10 5.263205647e-10 4.944434118e-10 5.89754087e-10 5.203480707e-10 4.670736048e-10 5.072062111e-10 5.904784269e-10 1.255655706e-10 1.818163705e-10 1.350565418e-10 2.313993696e-10 1.167801e-10 1.997271636e-10 8.890431822e-11 2.222186832e-10 2.292449337e-10 2.523034353e-10 2.84391343e-10 2.511596288e-10 3.514083718e-10 1.628835424e-10 3.074657597e-10 4.043216121e-10 2.346724745e-10 4.327679361e-10 3.801353311e-10 3.905594773e-10 2.68733677e-10 2.948582363e-10 1.910101091e-10 4.565378114e-10 5.335849972e-10 2.884219135e-10 4.066264024e-10 2.704904099e-10 4.060727076e-10 2.278183875e-10 3.829209474e-10 3.330806606e-10 2.60524239e-10 2.696735229e-10 3.805740371e-10 2.192601709e-10 3.238038676e-10 2.673309457e-10 2.529251716e-10 2.815306044e-10 3.630052621e-10 3.124584712e-10 2.316058162e-10 2.524310877e-10 3.686177021e-10 2.375116027e-10 2.413912329e-10 1.889870683e-10 2.56576324e-10 1.713056008e-10 3.27541373e-10 1.548648239e-10 2.404824444e-10 2.550860292e-10 2.53033722e-10 1.06254123e-10 2.463594019e-10 2.521092365e-10 1.534942183e-10 9.465747062e-11 1.923542215e-10 4.326173812e-10 2.101692136e-10 2.160265157e-10 2.468175674e-10 2.271100131e-10 3.395563684e-10 3.199649084e-10 1.546611196e-10 1.903998672e-10 2.671192771e-10 2.702878325e-10 3.451348268e-10 4.165935991e-10 1.543308522e-10 2.122298537e-10 1.925346479e-10 2.054055156e-10 3.04234776e-10 4.559210646e-10 3.663159443e-10 4.010823322e-10 5.134481738e-10 3.440086309e-10 1.951438276e-10 3.554741619e-10 1.91272539e-10 1.099812942e-10 3.748781099e-10 2.198593344e-10 1.42354123e-10 1.213157118e-10 3.465132769e-10 1.130533069e-10 1.440989141e-10 2.926920866e-10 9.981572316e-11 3.288967696e-10 1.403075839e-10 1.150597587e-10 1.907198591e-10 5.087993829e-11 1.825840581e-10 3.170921784e-10 5.372674546e-11 7.897376228e-11 3.634616293e-10 1.666151144e-10 1.444152941e-10 1.046838691e-10 2.765968544e-10 5.159863113e-11 +3.151819163e-10 1.032745335e-10 5.528186243e-11 1.917638491e-10 7.730028905e-11 8.494581068e-11 2.318555596e-10 1.338814171e-10 1.033344885e-10 5.015772396e-10 1.092563933e-10 3.731703672e-10 8.239064256e-11 8.419951482e-11 1.490472908e-10 1.581694926e-10 2.567119636e-10 1.53552313e-10 3.530931323e-10 2.743721877e-10 1.318519864e-10 1.865194773e-10 1.114436334e-10 9.693281541e-11 3.520033468e-10 1.303801342e-10 3.253255194e-10 1.280631622e-10 3.348745293e-10 3.267459076e-10 3.758343716e-10 2.379820874e-10 2.867909653e-10 4.079190142e-10 4.154508182e-10 1.605729405e-10 3.314326029e-10 2.462506268e-10 4.134355006e-10 1.774715556e-10 2.358289482e-10 3.778095993e-10 4.098899956e-10 1.670233068e-10 2.167481329e-10 3.390159635e-10 2.449127213e-10 1.955805609e-10 1.279450735e-10 2.59367457e-10 3.403115708e-10 2.738993107e-10 1.988281978e-10 1.988721653e-10 2.019185756e-10 1.355845424e-10 1.448181028e-10 3.124897327e-10 3.496200011e-10 2.610967337e-10 2.570080828e-10 2.860003808e-10 2.518139822e-10 2.546571638e-10 1.065399864e-10 1.160072229e-10 2.01803162e-10 4.352624597e-10 2.332990589e-10 3.467043919e-10 3.329675049e-10 2.945403874e-10 1.505141493e-10 3.038471255e-10 2.318093635e-10 3.920349142e-10 1.191260514e-10 2.370047048e-10 3.72326041e-10 2.225033294e-10 2.320607939e-10 3.954550052e-10 2.336538966e-10 4.61195657e-10 3.320732332e-10 3.902588857e-10 2.615367395e-10 2.482506665e-10 3.021254139e-10 2.782026734e-10 3.707855729e-10 3.738751131e-10 2.977775494e-10 4.415428733e-10 2.093845742e-10 3.998298068e-10 3.5526636e-10 3.330963359e-10 2.949446316e-10 4.208444434e-10 4.49006783e-10 3.213449476e-10 3.641613964e-10 2.776828563e-10 2.240943537e-10 1.617380037e-10 9.905507853e-11 1.700557624e-10 9.402100021e-11 2.096959321e-10 3.218961666e-10 4.709985194e-10 7.316897618e-10 3.485223775e-10 4.215167724e-10 5.410939507e-10 4.793343904e-10 7.644102615e-10 5.807991599e-10 4.031949928e-10 5.490065281e-10 5.840767626e-10 4.764468565e-10 4.288131913e-10 6.13339075e-10 4.919016852e-10 7.402979342e-10 7.845881736e-10 5.897362459e-10 5.751871742e-10 7.223322699e-10 5.071264751e-10 4.968862411e-10 5.027346022e-10 4.535003798e-10 3.948623826e-10 2.474226896e-10 2.947292567e-10 4.250892972e-10 3.813485402e-10 3.984075226e-10 4.232435729e-10 3.084589237e-10 3.223237366e-10 2.903423963e-10 2.365154064e-10 3.11202696e-10 2.599399668e-10 3.867636059e-10 2.789669303e-10 2.951233212e-10 3.7504239e-10 3.943796129e-10 3.447939716e-10 4.811337645e-10 3.827027997e-10 3.218614063e-10 3.604916236e-10 3.260416171e-10 3.392514421e-10 4.09007293e-10 3.787191049e-10 4.313052713e-10 3.084516673e-10 5.241837075e-10 3.666494314e-10 5.563169206e-10 5.186338948e-10 6.120543275e-10 4.343627617e-10 4.867061163e-10 5.131417669e-10 5.273342575e-10 7.995004813e-10 6.703012092e-10 4.390008018e-10 4.547175788e-10 7.775813968e-10 3.910466743e-10 3.91153473e-10 4.591778135e-10 7.866048038e-10 6.258071362e-10 4.942432722e-10 3.747964008e-10 5.369401925e-10 7.329633875e-10 4.868042304e-10 5.658122679e-10 1.913755381e-10 2.264855995e-10 1.889455722e-10 8.95796672e-11 1.242098381e-10 1.342781767e-10 1.74596968e-10 2.296778134e-10 1.733441621e-10 2.488258342e-10 3.249870774e-10 2.708162884e-10 3.722899222e-10 2.896072937e-10 2.766946371e-10 2.67519029e-10 3.766684285e-10 2.786036909e-10 3.524411454e-10 3.127825412e-10 4.490271711e-10 4.417434121e-10 4.112126009e-10 2.898715198e-10 4.70713285e-10 2.458295898e-10 3.966475069e-10 5.747227777e-10 3.484019e-10 3.218807402e-10 3.270825487e-10 3.237473832e-10 2.939986247e-10 2.08219647e-10 2.662542043e-10 2.530164179e-10 2.917437039e-10 2.832640506e-10 2.116715368e-10 3.134143576e-10 2.779788425e-10 2.227139463e-10 2.084986621e-10 2.136065656e-10 2.820798815e-10 2.041266106e-10 1.593233246e-10 2.825778087e-10 2.53285804e-10 2.326484719e-10 2.727503211e-10 2.363073754e-10 3.238588162e-10 2.829632031e-10 2.066242535e-10 2.014756209e-10 1.432120598e-10 1.904650643e-10 2.569975701e-10 1.062773994e-10 2.898201714e-10 1.672816178e-10 2.124862795e-10 1.625150721e-10 2.568761707e-10 2.238136879e-10 3.958251294e-10 1.64155374e-10 2.643581494e-10 3.29106453e-10 4.110973778e-10 2.62988524e-10 2.123562769e-10 2.680019011e-10 4.316287544e-10 2.492408779e-10 2.244673656e-10 2.433688523e-10 2.468061858e-10 2.175150888e-10 1.734117292e-10 2.159578942e-10 2.702902013e-10 2.399043259e-10 2.484697954e-10 2.255965214e-10 3.418645065e-10 2.62173326e-10 1.504883146e-10 9.466687053e-11 2.461198623e-10 1.491437495e-10 2.084688256e-10 1.132518896e-10 2.860133522e-10 4.287452686e-10 2.258293176e-10 1.836342371e-10 9.719484962e-11 7.454502697e-11 3.325852615e-11 1.408602704e-10 1.918878175e-10 9.265570489e-11 1.545424559e-10 2.528887278e-10 1.08258293e-10 1.569548468e-10 1.604398302e-10 2.021366382e-10 1.205902101e-10 +8.040730963e-11 2.96518011e-11 1.298314019e-10 2.347035066e-10 9.14181171e-11 1.208114298e-10 2.555047037e-10 1.568067207e-10 9.961118438e-11 9.744284202e-11 1.477246355e-10 1.494777543e-10 2.164695814e-10 1.388173607e-10 1.449017104e-10 8.116424479e-11 3.50210434e-10 1.514637344e-10 1.658150961e-10 2.708777124e-10 2.641484964e-10 1.202256827e-10 3.022391562e-10 1.202829702e-10 2.491403839e-10 2.846990868e-10 1.58104258e-10 2.681074264e-10 3.261684966e-10 3.135871713e-10 3.039547466e-10 4.320111654e-10 2.828734753e-10 1.797005742e-10 3.233546662e-10 1.507844125e-10 2.138316489e-10 1.977348635e-10 2.504426853e-10 2.237465661e-10 2.28210464e-10 2.333543563e-10 4.141791527e-10 1.378048118e-10 2.220928228e-10 2.291727946e-10 3.672236134e-10 1.723613508e-10 2.877608844e-10 3.091637253e-10 2.497665413e-10 1.854389128e-10 2.983216662e-10 2.288974035e-10 1.907280597e-10 1.693025541e-10 2.089536946e-10 3.924874562e-10 2.449327082e-10 2.259424575e-10 8.905929722e-11 2.936834988e-10 2.648492844e-10 1.456659678e-10 2.310885166e-10 3.217063407e-10 3.098373555e-10 1.360476747e-10 3.498793194e-10 1.177772886e-10 3.215710615e-10 2.128896212e-10 1.687507567e-10 1.584160863e-10 3.425018109e-10 3.404723088e-10 2.202809515e-10 2.135077607e-10 7.787162364e-11 3.933686271e-10 3.497265854e-10 3.773192436e-10 4.307315397e-10 3.407152e-10 3.124024036e-10 3.892750113e-10 4.305953867e-10 2.862694629e-10 3.31430081e-10 3.584642583e-10 2.238539233e-10 4.02570261e-10 2.620221165e-10 4.115822889e-10 2.673145384e-10 2.718646301e-10 3.547613486e-10 3.131588656e-10 3.193213093e-10 3.77198539e-10 3.565635111e-10 2.627151568e-10 2.436962958e-10 1.890572121e-10 1.512394311e-10 1.13305561e-10 2.334316662e-10 2.923538626e-10 1.75277956e-10 1.703517394e-10 5.016492916e-10 5.154247154e-10 3.282604867e-10 5.572432999e-10 4.034060352e-10 5.13930669e-10 5.857739064e-10 4.544803539e-10 3.02341066e-10 5.30358271e-10 3.649819635e-10 3.701087645e-10 4.443640486e-10 4.889823333e-10 4.681766392e-10 6.088522576e-10 4.000116254e-10 4.833967149e-10 5.280788167e-10 6.485892309e-10 6.5060229e-10 4.735416802e-10 3.660972499e-10 5.545948845e-10 3.326802901e-10 4.407525826e-10 3.719616463e-10 2.866619157e-10 3.175534216e-10 4.231979118e-10 3.822772791e-10 4.214760003e-10 3.230894039e-10 4.055104761e-10 3.888990862e-10 3.918499014e-10 4.215888631e-10 2.601919549e-10 3.461886509e-10 3.408922929e-10 3.574843902e-10 3.595366422e-10 3.128929235e-10 2.969136574e-10 4.461021239e-10 4.616316125e-10 3.960529226e-10 4.222039493e-10 5.012712677e-10 3.521381537e-10 4.920156091e-10 4.240871749e-10 4.395597214e-10 3.298018598e-10 3.555376656e-10 4.73556635e-10 5.881066506e-10 3.055191137e-10 4.604492763e-10 4.353569377e-10 6.193322722e-10 7.902308414e-10 6.650276007e-10 6.395761695e-10 5.307937643e-10 3.506675026e-10 4.913326512e-10 4.477506755e-10 4.820370732e-10 6.410128955e-10 3.998261084e-10 4.945699285e-10 4.72014366e-10 5.642655195e-10 3.485222893e-10 6.116599485e-10 6.741633577e-10 5.470356732e-10 6.602022889e-10 3.482914623e-10 2.931346134e-10 1.699908779e-10 2.882510196e-10 1.837175862e-10 1.81050347e-10 1.659636883e-10 1.910380038e-10 2.081318654e-10 1.9034158e-10 3.65467181e-10 3.052383958e-10 2.329116463e-10 3.020385018e-10 2.411250054e-10 3.183666109e-10 3.444293338e-10 2.863171013e-10 4.792846692e-10 2.781429238e-10 2.810842007e-10 4.460808127e-10 2.029329722e-10 3.720907298e-10 3.286772239e-10 3.497920266e-10 3.753791933e-10 4.909529332e-10 3.771530722e-10 2.04150018e-10 3.534908922e-10 2.248525714e-10 3.921281341e-10 1.710923395e-10 2.323339199e-10 3.035998762e-10 2.766600087e-10 2.519953573e-10 3.244994134e-10 3.477937831e-10 2.576251362e-10 1.760237602e-10 3.35284054e-10 3.402076673e-10 2.089951652e-10 1.923460129e-10 2.852878049e-10 3.046716555e-10 2.0223468e-10 4.33460305e-10 2.937633166e-10 2.890634498e-10 3.363921376e-10 3.750136065e-10 2.418860389e-10 1.446110979e-10 1.685409792e-10 4.072637984e-10 2.224887837e-10 2.21149219e-10 2.678460855e-10 1.729783819e-10 2.994778233e-10 3.043282382e-10 1.048661721e-10 2.848020574e-10 2.335990513e-10 4.141142969e-10 1.783314115e-10 1.597030936e-10 2.537324582e-10 1.821930839e-10 1.544439787e-10 2.357565595e-10 1.815711582e-10 3.321517018e-10 2.312708329e-10 2.889874998e-10 1.045116208e-10 1.562095449e-10 3.231367285e-10 1.72322683e-10 3.760071156e-10 2.478779767e-10 4.052972319e-10 4.356425012e-10 2.239645363e-10 3.184426041e-10 2.326288212e-10 2.425823242e-10 2.510504721e-10 1.958944763e-10 1.93166954e-10 1.255127918e-10 1.97541085e-10 1.381747934e-10 1.150064246e-10 1.281921878e-10 1.146567997e-10 1.015010533e-10 1.577801099e-10 2.180095263e-10 3.548655007e-10 1.198912064e-10 1.63590529e-10 1.563827766e-10 1.829960265e-10 1.868435397e-10 8.650951995e-11 1.019926263e-10 2.095100629e-10 +2.685049557e-10 6.749780363e-11 5.072103388e-11 2.081004083e-10 2.693323751e-10 8.917587844e-11 6.161552317e-11 8.365646325e-11 3.20436803e-10 9.817897666e-11 1.546367334e-10 1.969137015e-10 3.038202188e-10 1.777892975e-10 2.232621681e-10 2.476896042e-10 2.414819239e-10 3.684963056e-10 1.708450204e-10 1.591406701e-10 1.921900882e-10 2.012293414e-10 2.018925693e-10 2.186606463e-10 1.668691647e-10 3.313220997e-10 2.484357476e-10 2.309475123e-10 3.754598221e-10 4.308792085e-10 2.371585067e-10 1.648412672e-10 3.326016276e-10 5.19608917e-10 4.571426984e-10 3.316598304e-10 1.92269532e-10 2.928625054e-10 1.195435779e-10 1.138780192e-10 3.516105388e-10 2.969845647e-10 2.141521458e-10 3.165155817e-10 2.871796998e-10 1.828707005e-10 3.09573006e-10 3.085529807e-10 1.97152989e-10 2.852193091e-10 2.195021197e-10 2.76439358e-10 6.071510633e-11 1.788750961e-10 2.075505565e-10 2.282426019e-10 1.239803909e-10 1.825226478e-10 2.755222686e-10 2.576485655e-10 2.168528721e-10 3.772189264e-10 2.197378728e-10 2.139198999e-10 1.526856423e-10 2.890190862e-10 1.941810345e-10 2.040070341e-10 2.74839946e-10 2.827775129e-10 2.27107472e-10 2.815223001e-10 4.400056688e-10 3.777757002e-10 2.778649252e-10 1.812851484e-10 3.008893871e-10 2.087669039e-10 2.912256183e-10 3.394056965e-10 3.055630234e-10 2.004864193e-10 4.422834743e-10 4.174246732e-10 2.901642676e-10 2.996218254e-10 3.240339986e-10 3.814654838e-10 4.108161882e-10 3.822709108e-10 3.972069236e-10 3.829372949e-10 3.128372482e-10 3.124734267e-10 2.699376503e-10 3.81388212e-10 3.940604768e-10 2.829035138e-10 4.709301291e-10 3.037872686e-10 2.567352009e-10 2.705392062e-10 2.434434057e-10 2.455989651e-10 1.096920902e-10 1.52955267e-10 1.463448315e-10 2.479975214e-10 1.727060913e-10 6.552271211e-10 6.091317255e-10 4.305549644e-10 4.45339359e-10 3.602755263e-10 5.404257126e-10 6.120298433e-10 5.025039595e-10 4.056823447e-10 5.159602402e-10 5.126413717e-10 4.269027727e-10 4.839129089e-10 3.711323194e-10 3.565176996e-10 4.898029729e-10 5.62289778e-10 5.119195115e-10 5.069598699e-10 5.464572581e-10 4.691446955e-10 4.858756271e-10 3.904959976e-10 4.771413157e-10 3.904903095e-10 4.839556229e-10 4.100024769e-10 3.53398198e-10 3.802330019e-10 3.695718452e-10 4.858919377e-10 4.44439542e-10 3.398970496e-10 4.079805194e-10 2.822800643e-10 3.842846024e-10 4.338939269e-10 5.573637718e-10 4.872060364e-10 5.098467194e-10 3.542557481e-10 3.108351809e-10 3.215290744e-10 3.32324672e-10 3.470156638e-10 3.613299934e-10 3.641502067e-10 4.251224751e-10 3.925336108e-10 3.308127377e-10 3.569281597e-10 3.112811103e-10 3.376819748e-10 4.492541335e-10 4.749020507e-10 3.714033167e-10 3.681568253e-10 3.915481313e-10 4.144842403e-10 2.938309117e-10 5.80817303e-10 5.178007199e-10 4.78893924e-10 5.06321e-10 4.509170423e-10 6.530661221e-10 3.692929236e-10 4.843198351e-10 5.323671636e-10 5.090313922e-10 5.263000763e-10 5.96792668e-10 6.07780955e-10 5.129674143e-10 5.286459162e-10 5.081985258e-10 5.150768443e-10 8.412490256e-10 4.505485058e-10 5.357230342e-10 5.541203164e-10 1.929351495e-10 1.772122478e-10 1.891793402e-10 1.219766433e-10 1.022970503e-10 2.09588649e-10 1.941259947e-10 2.020382319e-10 3.046665424e-10 2.946697568e-10 3.637448288e-10 2.679686891e-10 2.6539279e-10 2.669068724e-10 4.308045763e-10 2.806270627e-10 4.795955549e-10 4.047236224e-10 3.773422923e-10 5.227818878e-10 3.556691779e-10 3.321407028e-10 4.477869696e-10 4.838703063e-10 4.021696946e-10 4.454946967e-10 3.694525427e-10 3.197284811e-10 5.202258404e-10 3.803751236e-10 2.38710285e-10 1.859463217e-10 1.933938163e-10 1.078712238e-10 1.611629136e-10 2.404992154e-10 1.47809818e-10 2.318361752e-10 2.356195581e-10 2.604044084e-10 1.935549623e-10 4.922609012e-10 3.84717445e-10 3.826787654e-10 2.847339344e-10 2.803807755e-10 2.438415083e-10 1.39784085e-10 3.500630315e-10 3.076066872e-10 2.135588392e-10 2.392459462e-10 2.285151074e-10 4.533208509e-10 6.541039791e-11 1.860377469e-10 1.767998975e-10 2.553284465e-10 1.511296957e-10 2.408507069e-10 3.666346026e-10 2.650590363e-10 2.342067054e-10 3.917813397e-10 1.337511453e-10 2.543624458e-10 2.134598821e-10 3.68827385e-10 3.559742704e-10 3.070528942e-10 1.856290115e-10 4.736832418e-10 2.725963468e-10 2.781041233e-10 1.672076438e-10 3.944056946e-10 2.026513734e-10 2.410920544e-10 2.765101697e-10 1.489398879e-10 4.021514321e-10 1.603693479e-10 1.553594429e-10 2.9057687e-10 2.992526219e-10 1.713133176e-10 2.360056209e-10 3.72292992e-10 1.56124603e-10 1.430981149e-10 3.283123631e-10 9.572553149e-11 1.253134973e-10 2.420965536e-10 7.073532086e-11 1.478527885e-10 1.506509371e-10 3.029776777e-10 5.943980197e-11 3.165794815e-10 9.289767659e-11 9.237821111e-11 1.337621178e-10 1.468618088e-10 1.640236686e-10 1.092740553e-10 1.649631098e-10 2.779767542e-10 2.311088782e-10 1.193128606e-10 +2.178616008e-10 1.897238448e-10 2.970357332e-11 9.094053897e-11 2.727832126e-10 3.194211339e-11 1.503417604e-10 6.434038439e-11 9.261770123e-11 2.631972945e-10 1.34924836e-10 8.0713738e-11 5.114783605e-10 1.159748083e-10 4.925952117e-11 1.335277253e-10 2.5445462e-10 1.605089674e-10 1.550766928e-10 1.491215372e-10 3.686133735e-10 3.770187251e-10 1.293035374e-10 2.316000888e-10 1.053837287e-10 2.466121099e-10 1.952062369e-10 2.284970462e-10 2.886956362e-10 2.710343023e-10 3.534619519e-10 2.807427933e-10 3.30837319e-10 9.974612241e-11 1.571498558e-10 2.839757049e-10 1.594848982e-10 2.677587181e-10 2.941196682e-10 2.017767467e-10 3.98821699e-10 3.410398299e-10 4.863943414e-10 2.994833188e-10 3.310595995e-10 4.631534454e-10 1.57511237e-10 1.003291554e-10 1.593768569e-10 1.59531198e-10 3.958232505e-10 2.449191454e-10 2.163824395e-10 1.86726403e-10 3.467898404e-10 1.911053269e-10 1.439149551e-10 2.869899624e-10 2.802589489e-10 1.900464328e-10 1.956419611e-10 1.727402006e-10 2.934496727e-10 2.026138439e-10 2.965256464e-10 2.340068312e-10 1.98353041e-10 1.758062788e-10 3.369868361e-10 2.645129597e-10 1.743188619e-10 1.904006956e-10 4.032774987e-10 2.28492703e-10 2.596728987e-10 3.509665118e-10 3.775870685e-10 2.808119756e-10 1.66287658e-10 2.752177201e-10 3.059954136e-10 3.714178528e-10 3.118362821e-10 4.179436617e-10 4.358916593e-10 4.973348207e-10 3.289669247e-10 3.536928685e-10 2.291190808e-10 4.481986538e-10 2.954756547e-10 2.647013494e-10 2.496835921e-10 5.012289594e-10 3.663212441e-10 3.41656292e-10 3.871696021e-10 2.579580676e-10 2.73813491e-10 3.026079682e-10 3.730400969e-10 4.02968733e-10 1.429816281e-10 1.732272993e-10 1.159330763e-10 2.465391586e-10 1.800642317e-10 2.13775174e-10 1.789141777e-10 2.983268018e-10 5.504227024e-10 6.682877344e-10 6.905088322e-10 7.045901787e-10 4.167154338e-10 6.05358165e-10 5.431759914e-10 6.016874973e-10 5.625818194e-10 4.081161181e-10 3.845887986e-10 3.23496502e-10 4.559740639e-10 5.289730131e-10 6.257712826e-10 4.058378947e-10 6.682480367e-10 5.576422151e-10 5.485268203e-10 3.25258566e-10 4.315411985e-10 4.553380676e-10 5.251303052e-10 3.569131743e-10 5.077740581e-10 4.726331501e-10 5.19058297e-10 3.655572188e-10 3.416824998e-10 3.920691637e-10 4.320282389e-10 2.355298396e-10 3.176886859e-10 3.036204507e-10 3.66437774e-10 4.182732181e-10 4.578670132e-10 3.807877259e-10 3.295757121e-10 2.743073781e-10 3.36228594e-10 4.377140219e-10 3.927550938e-10 4.456319573e-10 3.963799316e-10 2.45738703e-10 3.967075991e-10 2.746896127e-10 3.427932224e-10 4.996400123e-10 4.432824018e-10 4.335063708e-10 3.942313518e-10 4.951859567e-10 2.83292909e-10 4.618754136e-10 4.188267937e-10 4.534925992e-10 2.976229789e-10 4.620332093e-10 4.7508996e-10 4.329895446e-10 5.565885087e-10 6.394971125e-10 7.275460693e-10 6.111135998e-10 5.342254452e-10 4.468329232e-10 7.045882717e-10 4.08612713e-10 4.967412488e-10 3.583256229e-10 6.941156193e-10 8.123657755e-10 5.794271654e-10 5.883857547e-10 5.377457625e-10 6.465625036e-10 4.795838918e-10 7.032715948e-10 1.967634743e-10 1.468388025e-10 2.574693459e-10 2.146674183e-10 2.034645095e-10 2.452352448e-10 1.876778732e-10 2.895481565e-10 3.126620905e-10 2.541617051e-10 2.560640281e-10 3.530587588e-10 2.656894567e-10 2.813694246e-10 3.201334738e-10 3.018625822e-10 2.721897228e-10 2.756127347e-10 4.156571839e-10 3.890704156e-10 5.628231116e-10 3.092598744e-10 2.30167952e-10 3.259574403e-10 4.239762937e-10 3.079433135e-10 4.25250985e-10 3.827957873e-10 2.759129447e-10 3.605215487e-10 2.303306198e-10 2.680463884e-10 3.173557767e-10 1.438750946e-10 3.520306031e-10 1.716822795e-10 2.300694068e-10 2.486338062e-10 4.092289315e-10 3.281036434e-10 3.162625537e-10 3.434469131e-10 2.346240808e-10 2.615292705e-10 1.635919915e-10 2.382867822e-10 3.853402539e-10 2.227823925e-10 3.690009015e-10 4.080550734e-10 1.786096219e-10 3.130700023e-10 1.310183978e-10 2.738553648e-10 2.275379759e-10 3.67054598e-10 3.368887638e-10 2.22697723e-10 1.792977978e-10 2.670334127e-10 2.871746683e-10 1.587903268e-10 2.690354728e-10 1.726629225e-10 3.733320205e-10 1.915918244e-10 2.034909674e-10 2.936908703e-10 2.933907229e-10 3.863047661e-10 1.481106445e-10 1.66623545e-10 2.415213603e-10 1.727515794e-10 1.883508363e-10 1.859991405e-10 1.500701119e-10 3.95070715e-10 1.049245568e-10 2.285659239e-10 4.303715618e-10 3.462959402e-10 2.56080293e-10 2.687208491e-10 2.278887371e-10 2.187286918e-10 2.204636077e-10 1.25926411e-10 1.546767398e-10 3.492465088e-10 3.283299111e-10 1.954767586e-10 8.749210777e-11 3.065196141e-10 2.295291291e-10 9.637173659e-11 2.018615852e-10 9.24865383e-11 1.709161243e-10 1.775536558e-10 1.111210852e-10 6.357774048e-11 1.511125368e-10 2.15748922e-10 1.869782456e-10 6.187891847e-11 1.1305967e-10 1.629239106e-10 6.57777464e-11 1.552200186e-10 +1.595346329e-10 8.842168325e-11 1.302045756e-10 1.864659452e-10 1.76403767e-10 5.225401484e-11 2.394302453e-10 2.209710205e-10 1.922385468e-10 6.750088096e-11 1.430492593e-10 1.638354449e-10 1.142166867e-10 6.154279021e-11 9.489389841e-11 1.221977575e-10 1.735404636e-10 3.75062506e-10 1.362412494e-10 1.465154409e-10 1.166207913e-10 2.701374354e-10 1.582089774e-10 2.143903987e-10 1.139537539e-10 1.895647322e-10 2.556446405e-10 2.190772675e-10 2.42861484e-10 2.352183562e-10 2.450305442e-10 4.355286423e-10 1.375425832e-10 3.534014887e-10 2.084927663e-10 4.880080365e-10 1.760463086e-10 1.781507774e-10 3.185363058e-10 3.40531625e-10 1.768446376e-10 1.702516785e-10 1.851923006e-10 1.825702005e-10 2.170564735e-10 2.473650354e-10 1.893279623e-10 4.091380275e-10 2.203306599e-10 1.495368255e-10 3.92770867e-10 1.408861926e-10 1.759332274e-10 2.453942789e-10 3.200474048e-10 1.919295741e-10 2.575176542e-10 1.28615877e-10 3.640057401e-10 3.164838787e-10 1.953688022e-10 2.533136263e-10 2.617592894e-10 2.773664779e-10 3.759205195e-10 2.807462944e-10 1.711368489e-10 3.124644147e-10 3.688507967e-10 2.380473687e-10 3.553645664e-10 2.357295563e-10 3.419438091e-10 2.357711454e-10 2.273797872e-10 3.172099651e-10 2.808076206e-10 3.401054996e-10 2.174436308e-10 2.846021541e-10 4.002641452e-10 3.601541833e-10 3.401560521e-10 4.34680912e-10 3.764730829e-10 3.579246079e-10 2.771241701e-10 3.604644602e-10 3.663988375e-10 5.137273781e-10 4.120728649e-10 2.938646887e-10 2.086766879e-10 2.68000709e-10 4.573381605e-10 2.487122897e-10 2.62650417e-10 3.631070493e-10 2.349602826e-10 3.217872871e-10 2.308058284e-10 2.201639462e-10 2.926989613e-10 1.77733468e-10 2.557262958e-10 1.143415568e-10 2.856147308e-10 1.705838876e-10 2.611347145e-10 2.337997464e-10 5.374782677e-10 6.240491096e-10 8.840230907e-10 4.312511109e-10 5.317135755e-10 5.494520131e-10 6.317464648e-10 5.558874195e-10 4.218045217e-10 4.029392929e-10 7.191385462e-10 4.476600719e-10 4.271599866e-10 5.794095384e-10 5.552071561e-10 6.049143891e-10 6.821532776e-10 4.756701475e-10 5.926498049e-10 6.621696644e-10 3.462572963e-10 4.245835219e-10 3.999610353e-10 3.823606549e-10 4.238774397e-10 4.061822678e-10 3.886653317e-10 3.801717379e-10 3.778621675e-10 3.358730315e-10 2.375388297e-10 2.467186778e-10 3.523606427e-10 3.237996853e-10 2.674017976e-10 4.352401913e-10 4.182936022e-10 3.542487278e-10 3.934542982e-10 4.534504247e-10 4.465210424e-10 2.935466841e-10 3.34838972e-10 3.375625288e-10 2.522098811e-10 3.23982805e-10 4.666827346e-10 4.71039901e-10 3.255039677e-10 4.386384627e-10 3.831679149e-10 3.852095906e-10 3.740014113e-10 3.57216364e-10 4.472222347e-10 3.837369777e-10 4.466156613e-10 2.861026919e-10 3.882742722e-10 3.127158945e-10 3.244020366e-10 6.256744867e-10 3.944794664e-10 5.932401032e-10 5.44922421e-10 7.382353091e-10 5.729490488e-10 5.51162801e-10 5.655784264e-10 3.599045842e-10 5.568406579e-10 5.162966753e-10 4.516919046e-10 4.823725038e-10 3.812918093e-10 8.021148308e-10 5.708985739e-10 4.381821667e-10 7.172755723e-10 5.739141473e-10 4.16123977e-10 1.979206194e-10 1.313960134e-10 1.482670794e-10 1.54704378e-10 8.529656797e-11 1.133667967e-10 2.829519882e-10 1.827373315e-10 3.149228281e-10 2.385457555e-10 2.585654437e-10 2.927474071e-10 2.842548298e-10 3.174348376e-10 3.678527152e-10 2.482875256e-10 4.162632731e-10 3.742149289e-10 3.176508908e-10 2.876794066e-10 4.474043245e-10 5.122220359e-10 2.29016327e-10 4.586505351e-10 4.579579269e-10 2.861083521e-10 4.109656152e-10 5.794742011e-10 2.594512267e-10 2.486919354e-10 1.528965863e-10 2.298297075e-10 2.633120758e-10 3.106995215e-10 2.655124757e-10 1.866611198e-10 1.817206137e-10 4.482774817e-10 2.506813066e-10 3.517632977e-10 3.999584602e-10 2.071672181e-10 2.890670837e-10 2.305487044e-10 3.304675304e-10 3.21321084e-10 2.625645966e-10 2.015152715e-10 4.534285901e-10 2.709297493e-10 3.224413681e-10 2.919516524e-10 1.582468333e-10 1.259548065e-10 9.858382478e-11 2.466066451e-10 1.162077488e-10 8.632724246e-11 2.65904233e-10 2.844344731e-10 2.6603615e-10 2.04011529e-10 3.70263074e-10 1.037338206e-10 3.850642748e-10 1.654588001e-10 1.861072494e-10 1.963247109e-10 1.818973955e-10 2.86768672e-10 2.34142614e-10 3.484697639e-10 1.243307982e-10 1.417769143e-10 2.245920718e-10 1.923079252e-10 4.62100768e-10 3.128729479e-10 2.635217191e-10 1.452218599e-10 1.469951833e-10 3.328858947e-10 2.729409963e-10 3.530821815e-10 1.295321241e-10 1.683613818e-10 1.795661214e-10 1.809383799e-10 1.39139227e-10 1.200689398e-10 1.526309877e-10 2.968689623e-10 1.16679056e-10 1.274911072e-10 6.42372413e-11 2.655348765e-10 1.130035366e-10 7.140353067e-11 8.886528083e-11 1.917336881e-10 1.066484049e-10 1.582318593e-10 9.084382507e-11 1.958863982e-10 2.494146668e-11 1.139441751e-10 1.794211108e-10 2.017087545e-10 2.468881234e-10 +1.615072604e-10 4.213428842e-11 1.241223687e-10 1.817817605e-10 1.228500478e-10 1.11702185e-10 1.252420782e-10 1.792447428e-10 4.220541732e-10 1.521920317e-10 1.155773272e-10 1.643254377e-10 1.164746847e-10 2.001424821e-10 2.12760573e-10 1.712028175e-10 1.062692208e-10 3.305653437e-10 1.372357412e-10 1.407164519e-10 1.046119747e-10 4.810779124e-11 1.409929643e-10 3.019102435e-10 1.887093727e-10 1.275255691e-10 3.115168901e-10 2.704446917e-10 1.921139651e-10 2.422746141e-10 3.065486095e-10 2.616924936e-10 8.236387098e-11 1.980211137e-10 2.494837608e-10 2.418413235e-10 2.105962639e-10 2.754730216e-10 3.578720584e-10 2.078088485e-10 2.018720649e-10 2.88200956e-10 3.238100281e-10 3.157960646e-10 3.775065357e-10 1.177896005e-10 2.524552595e-10 2.124440368e-10 3.359603394e-10 4.38779621e-10 1.893121884e-10 4.667581721e-10 1.081691069e-10 1.967520023e-10 1.328177927e-10 2.238030984e-10 2.078499877e-10 2.048454718e-10 3.048271299e-10 2.130690923e-10 4.514094766e-10 2.751155321e-10 1.980524681e-10 2.098424897e-10 3.216180058e-10 2.192642173e-10 3.534478684e-10 1.813535407e-10 2.905559495e-10 2.152570412e-10 2.785334281e-10 3.640593364e-10 2.478272021e-10 2.418187438e-10 2.698395171e-10 3.404299763e-10 2.174965884e-10 1.338181483e-10 2.283383113e-10 2.790335984e-10 5.148639157e-10 2.946025935e-10 4.480283963e-10 5.191951815e-10 3.699630948e-10 3.685522573e-10 3.052306317e-10 3.910048463e-10 4.454202994e-10 5.211416903e-10 3.178396988e-10 2.404539561e-10 3.788069873e-10 2.795466717e-10 3.630227432e-10 3.316549744e-10 3.472659016e-10 3.70961521e-10 4.664556223e-10 1.882607982e-10 3.005568267e-10 2.188797298e-10 2.099326175e-10 1.569819222e-10 5.683895539e-11 3.288188162e-10 2.376356674e-10 2.126154276e-10 2.205472161e-10 4.9579964e-10 4.802355385e-10 5.13443083e-10 3.987353158e-10 5.01043017e-10 5.570202542e-10 5.870375525e-10 3.857330639e-10 4.534196153e-10 2.252445494e-10 2.967878754e-10 3.678357224e-10 2.803160868e-10 6.795155854e-10 4.517764691e-10 6.510883539e-10 5.952970733e-10 5.060174664e-10 5.159325402e-10 4.111761685e-10 4.659785994e-10 5.053737781e-10 4.784534762e-10 4.36060915e-10 3.422853698e-10 3.693283195e-10 4.368720037e-10 4.622686275e-10 3.807515152e-10 3.036846137e-10 4.170478353e-10 4.645593948e-10 3.718377165e-10 4.406976562e-10 3.980174491e-10 2.540908614e-10 3.418271619e-10 3.185973727e-10 3.314909287e-10 2.820986663e-10 2.78160729e-10 2.660087808e-10 2.985651914e-10 3.053969552e-10 3.145242768e-10 3.153684643e-10 4.578323941e-10 3.960981511e-10 3.833391278e-10 4.750513302e-10 3.49329472e-10 3.412748313e-10 4.804271556e-10 3.284784359e-10 3.344881188e-10 5.221691906e-10 4.328959032e-10 5.02139378e-10 4.385493724e-10 4.209828437e-10 4.234896856e-10 4.482220114e-10 3.84684883e-10 3.540276318e-10 4.073299752e-10 4.650806603e-10 4.668634639e-10 4.695357159e-10 4.130319703e-10 5.80862465e-10 7.152330043e-10 5.783190488e-10 5.686815455e-10 5.522535124e-10 8.18941912e-10 4.786571767e-10 5.160884417e-10 6.23042824e-10 3.233039574e-10 5.402870718e-10 8.602819083e-10 2.290480671e-10 1.78314601e-10 1.88796332e-10 2.517109973e-10 2.208125962e-10 2.190662496e-10 1.575279729e-10 2.25766069e-10 3.393403531e-10 2.416507774e-10 2.976840487e-10 2.938122456e-10 3.213440484e-10 2.929133609e-10 3.109777302e-10 4.515059258e-10 2.613338633e-10 3.257555686e-10 5.390281432e-10 4.16558188e-10 3.841564184e-10 3.508445026e-10 3.528809679e-10 4.094514769e-10 3.576589295e-10 2.381570652e-10 5.093147725e-10 3.785216085e-10 4.697064633e-10 2.91476915e-10 2.840930429e-10 1.446981652e-10 1.509377429e-10 1.022343632e-10 1.654605494e-10 3.121498044e-10 3.809379825e-10 2.218208621e-10 2.116513879e-10 2.229010379e-10 2.124662543e-10 2.878293716e-10 2.244313822e-10 3.485693626e-10 1.776009446e-10 1.84309941e-10 2.984971134e-10 4.398209854e-10 3.112093244e-10 1.814119174e-10 2.520131283e-10 2.037963196e-10 3.322302429e-10 1.732327931e-10 1.541095424e-10 2.223652346e-10 6.98231312e-11 4.164572461e-10 3.591171568e-10 3.084108738e-10 2.409361033e-10 2.469911128e-10 1.630919107e-10 4.821301192e-10 1.904620461e-10 3.074918788e-10 1.992949177e-10 2.081892666e-10 2.373111701e-10 2.832973382e-10 2.049962269e-10 1.027644421e-10 2.351143729e-10 2.589806938e-10 3.817984774e-10 3.082054653e-10 1.661180814e-10 4.699625368e-10 2.610383043e-10 1.586932113e-10 3.633967449e-10 2.917830097e-10 3.81257793e-10 3.315351478e-10 1.894678712e-10 2.023358734e-10 1.420645045e-10 1.434796486e-10 1.616124703e-10 1.820159491e-10 2.110640186e-10 1.689953275e-10 1.233410224e-10 1.585283e-10 9.192299821e-11 1.367799178e-10 6.317648737e-11 2.42382462e-10 1.33528207e-10 4.299430448e-10 4.683856954e-10 1.589874429e-10 1.084920791e-10 1.207445262e-10 1.561564078e-10 2.677974604e-10 3.403668662e-10 3.066412761e-11 1.180979994e-10 2.854203753e-10 +1.541688089e-10 2.110676685e-10 1.101861201e-10 1.763083332e-10 3.810752606e-10 1.594703742e-10 1.278672108e-10 1.196762737e-10 2.604298511e-10 6.647535697e-11 3.848009355e-10 1.120175897e-10 8.787061435e-11 1.815764867e-10 7.218506346e-11 3.049317417e-10 1.674112025e-10 1.203250212e-10 2.119135991e-10 1.960365674e-10 1.399814516e-10 1.357276578e-10 1.600644112e-10 2.813553371e-10 1.520527334e-10 3.152808679e-10 3.982086995e-10 9.831115908e-11 1.914719581e-10 2.629448786e-10 4.793516679e-10 2.040291603e-10 3.325938792e-10 3.029636764e-10 2.229543986e-10 3.0491093e-10 3.830175753e-10 2.742325059e-10 2.093312035e-10 2.310198361e-10 1.804413789e-10 4.272373025e-10 2.477433788e-10 3.582367449e-10 2.406169341e-10 2.205896488e-10 2.654125718e-10 2.118939411e-10 1.504908169e-10 3.013318897e-10 1.550243095e-10 1.747767672e-10 4.802214308e-10 4.433993755e-10 2.444007464e-10 2.79452211e-10 1.967157617e-10 2.138871148e-10 3.682281341e-10 1.780372009e-10 2.646015913e-10 1.69241894e-10 2.460596573e-10 3.333939481e-10 1.699551132e-10 2.727439113e-10 2.995823283e-10 2.751409352e-10 1.790702679e-10 2.708317188e-10 1.534576652e-10 3.823475583e-10 1.615337366e-10 1.664713733e-10 3.303045981e-10 2.744805637e-10 3.666987155e-10 2.457128321e-10 2.405148969e-10 2.252979399e-10 3.812292648e-10 3.461392384e-10 3.791855001e-10 5.253956025e-10 4.399342336e-10 3.431050724e-10 3.622874695e-10 4.555130601e-10 3.851192585e-10 2.458070346e-10 4.431847396e-10 2.989853542e-10 4.881089919e-10 2.896104858e-10 3.344015764e-10 2.747731234e-10 4.188671884e-10 3.432801593e-10 3.29300928e-10 3.103850874e-10 3.206856929e-10 2.214574993e-10 9.904018664e-11 1.116488671e-10 2.033668024e-10 1.349317794e-10 1.988644522e-10 2.395442186e-10 4.046019917e-10 6.023269955e-10 5.887564986e-10 6.158936199e-10 5.646310195e-10 5.147903368e-10 4.310081381e-10 7.309061102e-10 3.921320908e-10 5.445716454e-10 6.131056628e-10 5.262056036e-10 5.100252179e-10 4.471035517e-10 5.254860045e-10 4.847153076e-10 5.821091669e-10 5.510050607e-10 5.018112877e-10 3.910326279e-10 3.359634809e-10 4.761603358e-10 3.810958739e-10 4.277769523e-10 3.761496046e-10 4.090418946e-10 3.01243477e-10 5.786027275e-10 4.894470754e-10 4.3002692e-10 2.732439405e-10 3.092339238e-10 4.281954646e-10 3.282575628e-10 3.369123267e-10 2.963652528e-10 3.162718021e-10 2.491291151e-10 2.287387839e-10 2.546333023e-10 2.242625895e-10 2.499805563e-10 1.524438949e-10 2.286673225e-10 3.782448979e-10 2.407230107e-10 2.944695694e-10 3.536516035e-10 2.95445273e-10 3.884660527e-10 3.793762241e-10 4.089243048e-10 3.247005692e-10 3.855621995e-10 4.076616064e-10 5.352258849e-10 3.234413962e-10 2.864981138e-10 4.680809894e-10 4.201731979e-10 2.836183603e-10 4.76213412e-10 5.339290014e-10 3.77233131e-10 4.873329096e-10 6.045213523e-10 6.043897951e-10 5.438004011e-10 4.593286207e-10 7.422631696e-10 6.755339736e-10 3.814435013e-10 5.074620849e-10 3.271172606e-10 7.290773746e-10 6.000288654e-10 4.907647673e-10 5.965218486e-10 5.510474962e-10 5.099660232e-10 4.978310028e-10 7.251742535e-10 6.256314141e-10 4.482608489e-10 1.526967731e-10 1.954420063e-10 1.733823295e-10 2.366613193e-10 1.000371935e-10 2.67332166e-10 2.893496561e-10 2.50868602e-10 3.011001975e-10 2.123313915e-10 3.148062519e-10 3.000668696e-10 3.381322505e-10 3.142948036e-10 3.725376754e-10 3.360178445e-10 3.523887031e-10 3.092398572e-10 4.348759593e-10 4.402410002e-10 2.46792509e-10 2.649062731e-10 4.961876907e-10 4.615905986e-10 4.271228953e-10 3.846375949e-10 3.331654059e-10 3.33225429e-10 2.160989833e-10 1.542177319e-10 1.583398291e-10 1.906860061e-10 1.872843892e-10 1.744435726e-10 3.111831448e-10 3.899643227e-10 3.585009359e-10 1.649597875e-10 4.733539982e-10 2.787739497e-10 2.707608155e-10 1.482870372e-10 2.401835937e-10 1.753447321e-10 3.369130709e-10 2.841096018e-10 2.724929872e-10 3.019281855e-10 2.095909887e-10 2.651535493e-10 1.742318807e-10 1.370244471e-10 1.953513569e-10 2.199600885e-10 1.826815542e-10 3.04717567e-10 3.709874053e-10 1.73756235e-10 3.612190427e-10 2.37519985e-10 2.336419071e-10 2.370968558e-10 2.520765858e-10 3.316259668e-10 3.749508824e-10 3.587007951e-10 4.54282538e-10 1.376238038e-10 2.506520418e-10 3.959442189e-10 1.945812482e-10 4.746532155e-10 2.6274061e-10 3.854336828e-10 2.769012602e-10 1.402701961e-10 2.017183946e-10 4.44368229e-10 3.482179783e-10 2.040264553e-10 2.022685324e-10 2.98391616e-10 2.614541943e-10 1.129704283e-10 1.631749206e-10 3.494810158e-10 1.611172628e-10 9.376001079e-11 1.014821322e-10 1.094242479e-10 3.404396552e-10 1.597289464e-10 2.185157602e-10 1.513656182e-10 1.303375802e-10 8.870287755e-11 1.238888218e-10 2.294078048e-10 1.423405493e-10 1.926276048e-10 2.822466594e-10 6.452807569e-11 3.633516034e-10 1.736259229e-10 1.904340605e-10 2.95336721e-10 3.555024978e-10 2.055743958e-10 +9.761906337e-11 2.036457395e-10 3.308996696e-10 1.542592437e-10 1.383493905e-10 3.715811287e-10 1.631578442e-10 2.464663871e-10 3.293484473e-10 1.254149997e-10 1.085334485e-10 9.073738548e-11 2.469529678e-10 2.219643654e-10 1.788284473e-10 8.348556949e-11 8.959462329e-11 1.11661401e-10 6.603499759e-11 2.368631692e-10 2.14822897e-10 1.638273952e-10 4.494523729e-10 1.561603426e-10 1.741372504e-10 2.172372133e-10 3.036371067e-10 1.342272956e-10 1.830315593e-10 3.125857638e-10 3.347523698e-10 4.282085018e-10 3.254225433e-10 2.799871235e-10 2.238653436e-10 2.781700739e-10 2.479839341e-10 2.774111853e-10 2.671956653e-10 1.464740593e-10 1.624231703e-10 1.455749504e-10 1.523570213e-10 3.002284454e-10 2.816913304e-10 4.829957498e-10 2.166507777e-10 2.08824853e-10 2.783816369e-10 3.333790412e-10 4.203699479e-10 1.604116721e-10 2.16704751e-10 2.834640614e-10 2.307961849e-10 1.599451607e-10 3.150583751e-10 1.773413685e-10 1.994529598e-10 3.230819264e-10 3.671935728e-10 2.005223184e-10 2.193197762e-10 1.902656269e-10 1.583521306e-10 2.271661461e-10 3.999653257e-10 2.68661992e-10 3.012229636e-10 3.093563409e-10 3.423123629e-10 2.673919495e-10 3.704183771e-10 2.66463014e-10 3.119245673e-10 3.200386539e-10 2.453234731e-10 3.507038116e-10 2.010781257e-10 3.917175286e-10 3.954714901e-10 3.27997306e-10 3.453486258e-10 4.161460361e-10 4.718376679e-10 2.691594674e-10 3.579658515e-10 4.846762741e-10 2.008673538e-10 3.554199009e-10 4.204021202e-10 3.407329467e-10 3.705056932e-10 3.926409298e-10 4.13315532e-10 2.433264378e-10 2.998039289e-10 3.083217242e-10 2.901483028e-10 2.678861606e-10 2.20523658e-10 2.66130268e-10 2.251755307e-10 1.645143945e-10 1.050084122e-10 1.939840924e-10 1.598431854e-10 3.499622783e-10 3.961130806e-10 4.992713206e-10 3.839577582e-10 6.429628543e-10 5.050993364e-10 4.457466941e-10 5.314706768e-10 5.028743344e-10 5.104897639e-10 6.461489982e-10 4.109181474e-10 7.066822093e-10 4.935588695e-10 7.714466667e-10 5.64684682e-10 5.089709343e-10 6.012838009e-10 4.909669268e-10 5.17671949e-10 4.804224575e-10 5.045892631e-10 4.372680991e-10 2.843122154e-10 5.029975884e-10 3.535876292e-10 5.28718899e-10 4.004846016e-10 3.339501337e-10 4.433987634e-10 3.971908758e-10 4.135262688e-10 3.957523743e-10 2.488408794e-10 3.83659377e-10 2.838908097e-10 2.481732931e-10 2.248383764e-10 3.013314224e-10 1.401339047e-10 2.41552917e-10 2.792113585e-10 2.58080736e-10 2.251769166e-10 1.945372772e-10 2.851787136e-10 2.249018214e-10 1.96592152e-10 2.234297591e-10 2.391488335e-10 2.999191139e-10 2.218547596e-10 3.507052471e-10 3.518400786e-10 4.154500092e-10 3.983822066e-10 3.476805502e-10 4.980616088e-10 3.902974929e-10 5.40928917e-10 3.502361435e-10 3.754935073e-10 3.266615183e-10 3.507880378e-10 4.546490782e-10 4.132548719e-10 4.13763763e-10 5.44082059e-10 5.205929482e-10 6.810500647e-10 5.231562289e-10 5.507561156e-10 4.65460404e-10 5.568398465e-10 5.080824266e-10 4.504678755e-10 5.058954461e-10 5.127957363e-10 6.279011235e-10 4.371369995e-10 5.883631196e-10 3.761348509e-10 5.57782637e-10 6.471521741e-10 8.592044479e-10 2.656737388e-10 2.06528963e-10 1.666735963e-10 5.791029109e-11 1.31002108e-10 1.251153494e-10 3.153346308e-10 2.095085716e-10 3.07887804e-10 3.265037926e-10 3.047674946e-10 3.313900639e-10 3.629898379e-10 3.87832509e-10 4.955243441e-10 3.913241138e-10 4.20047098e-10 2.914592608e-10 2.278122211e-10 3.316170001e-10 3.632765289e-10 4.940344709e-10 3.975398942e-10 3.783209861e-10 4.411240153e-10 4.336415639e-10 2.63234461e-10 4.729987755e-10 1.888135783e-10 3.67650343e-10 1.727359649e-10 1.966008852e-10 2.395825243e-10 3.645612805e-10 2.670099602e-10 3.590345881e-10 2.804466175e-10 3.076640346e-10 2.402286775e-10 2.232751321e-10 2.964229371e-10 2.566486228e-10 2.786344115e-10 2.008950404e-10 2.400219564e-10 2.286593718e-10 3.445942491e-10 2.016859421e-10 3.23332494e-10 3.756355215e-10 2.20394847e-10 1.497513843e-10 1.673701748e-10 2.075089823e-10 9.736241176e-11 1.255079876e-10 2.206091708e-10 2.269537689e-10 3.46299504e-10 2.212219871e-10 2.104346804e-10 1.028917977e-10 1.698552118e-10 1.741348181e-10 1.689936907e-10 3.129884878e-10 4.207970297e-10 3.602826688e-10 1.641787582e-10 3.197506909e-10 2.555592213e-10 3.197271788e-10 2.334148986e-10 3.591208964e-10 1.293100682e-10 2.441578786e-10 2.279254951e-10 1.75282976e-10 2.860145879e-10 1.946995128e-10 1.704388007e-10 2.672405134e-10 1.742535562e-10 1.843347903e-10 2.323143575e-10 2.883823564e-10 1.51503848e-10 1.698637261e-10 1.171732212e-10 1.843512207e-10 1.862826693e-10 1.353272809e-10 1.801063674e-10 2.460509138e-10 9.665877184e-11 1.354444913e-10 5.646629264e-11 1.589906784e-10 2.205377034e-10 1.254240747e-10 1.250775535e-10 2.206426308e-10 5.768508722e-11 1.05386163e-10 1.381312065e-10 5.967769921e-10 3.059632342e-10 2.656115582e-10 +1.485477778e-10 1.611553763e-10 7.32332239e-11 2.409304736e-10 1.407842988e-10 1.042364742e-10 2.130811834e-10 1.128265659e-10 1.313286656e-10 1.582242204e-10 1.849428402e-10 1.35859689e-10 2.247928278e-10 1.390342063e-10 9.269284286e-11 3.102621993e-10 7.880681737e-11 1.621074156e-10 9.964916901e-11 1.028642019e-10 1.069477335e-10 2.768437441e-10 2.025505945e-10 2.58716781e-10 2.635838616e-10 1.448920099e-10 1.915876519e-10 1.597211649e-10 4.120130701e-10 2.932848692e-10 2.140815567e-10 4.188215192e-10 1.779886681e-10 1.801246293e-10 3.217224051e-10 3.506984586e-10 2.959874737e-10 1.708497063e-10 3.302060667e-10 2.911122503e-10 1.990875959e-10 2.030813998e-10 1.932949159e-10 4.472793655e-10 4.239161056e-10 2.421448762e-10 3.256715168e-10 3.193381202e-10 1.97284056e-10 2.33291039e-10 2.739846571e-10 2.086688473e-10 4.626299698e-10 3.121940712e-10 2.657381096e-10 1.569873273e-10 3.430612947e-10 1.895204991e-10 1.874134453e-10 3.824622725e-10 3.063081627e-10 1.712713094e-10 2.712544896e-10 1.582440949e-10 2.853057157e-10 1.870658728e-10 1.352687642e-10 4.223756633e-10 2.476905337e-10 2.674467284e-10 2.968133656e-10 3.188746677e-10 2.889116616e-10 3.662653477e-10 3.883211563e-10 2.736211744e-10 3.591489172e-10 3.969065974e-10 2.608262198e-10 1.893787242e-10 3.480015639e-10 3.931578475e-10 3.334640313e-10 3.362148439e-10 5.628386992e-10 3.549249904e-10 3.43405825e-10 4.886619605e-10 3.300735209e-10 2.349216664e-10 3.908092199e-10 3.011791219e-10 4.224541512e-10 2.87900954e-10 4.444847661e-10 2.168442974e-10 2.964450164e-10 1.618510688e-10 4.682031423e-10 2.955111331e-10 1.556570012e-10 2.273893359e-10 9.508417617e-11 1.685649098e-10 1.195135051e-10 1.463100347e-10 2.453816201e-10 5.393987012e-10 5.035982024e-10 4.387569331e-10 4.758016549e-10 7.717696471e-10 7.144814157e-10 5.939103714e-10 3.797931643e-10 4.034381119e-10 6.201237208e-10 6.51147986e-10 7.047049194e-10 4.43704561e-10 5.985721238e-10 4.77437703e-10 4.73824764e-10 5.314868635e-10 4.530684641e-10 6.170926499e-10 4.855255522e-10 3.835418785e-10 5.200857126e-10 3.654695769e-10 3.28459237e-10 4.126955481e-10 3.779727132e-10 3.937555252e-10 4.479658114e-10 3.521572642e-10 4.227490107e-10 3.770681285e-10 3.195525799e-10 2.751859522e-10 2.750923578e-10 2.593615707e-10 2.805277188e-10 2.114364877e-10 2.463602274e-10 2.673463755e-10 1.593072739e-10 1.190763062e-10 9.397758771e-11 2.024137186e-10 1.952873132e-10 1.31701634e-10 1.56284745e-10 1.919553426e-10 1.883713723e-10 1.72188844e-10 1.865021329e-10 2.321407067e-10 1.90777812e-10 2.011608149e-10 3.431600109e-10 2.379661718e-10 2.903168218e-10 3.981152063e-10 4.882802114e-10 3.459785431e-10 5.226080514e-10 3.8459708e-10 4.695877715e-10 5.076910394e-10 3.412660451e-10 5.334400421e-10 2.296811988e-10 3.452761132e-10 3.969749812e-10 6.11427129e-10 6.503721683e-10 5.640457936e-10 5.71823383e-10 5.487771721e-10 7.351125852e-10 5.190521005e-10 5.437865845e-10 5.810754478e-10 4.635495862e-10 6.134588878e-10 5.580884718e-10 6.017601606e-10 6.392199748e-10 6.116016919e-10 6.215250574e-10 5.500917295e-10 4.245887464e-10 5.622672867e-10 1.761735787e-10 2.396410568e-10 2.344877934e-10 1.4189448e-10 2.43497669e-10 3.193462268e-10 3.488996942e-10 3.391348141e-10 3.188985942e-10 3.120010903e-10 3.124679684e-10 4.876338053e-10 3.611631491e-10 5.239044451e-10 2.938115989e-10 4.415697425e-10 2.521649626e-10 3.31844899e-10 2.838494793e-10 3.203766434e-10 4.824195391e-10 5.427749076e-10 4.668163043e-10 3.360577527e-10 2.709420193e-10 3.39284033e-10 3.084666386e-10 3.201699119e-10 2.404586588e-10 3.253113991e-10 2.99913502e-10 1.405128448e-10 2.701254961e-10 3.178378061e-10 3.232103931e-10 3.048943519e-10 3.597353385e-10 4.620848476e-10 3.237199575e-10 3.371476829e-10 2.873873994e-10 3.540834255e-10 1.767180583e-10 2.99002537e-10 1.387735844e-10 1.190651728e-10 3.692576199e-10 3.415392386e-10 2.119001573e-10 2.533836672e-10 1.771962274e-10 2.484714199e-10 1.683027836e-10 2.416699855e-10 1.696604663e-10 2.737484096e-10 2.597443427e-10 1.379027728e-10 1.79035646e-10 2.372670812e-10 2.95305806e-10 1.365345045e-10 3.626700993e-10 3.298097131e-10 2.6393508e-10 3.959435317e-10 3.0266094e-10 1.4161957e-10 2.012671406e-10 2.704102089e-10 2.692616943e-10 3.464840589e-10 3.232623773e-10 2.911407874e-10 3.300955709e-10 5.248344111e-10 2.56747509e-10 3.272633009e-10 2.992912472e-10 1.474533907e-10 2.097433403e-10 1.479319517e-10 1.336228207e-10 9.99803666e-11 1.816634774e-10 1.016025971e-10 1.195274184e-10 1.520916962e-10 2.154321518e-10 1.584734806e-10 1.681768038e-10 2.226694927e-10 9.810496049e-11 1.65042471e-10 9.900995964e-11 8.616975092e-11 2.837661934e-10 1.341639137e-10 1.663396765e-10 9.861623611e-11 1.065394347e-10 2.216100059e-10 1.362235783e-10 2.885372564e-10 2.622409001e-10 7.365667301e-11 +7.300893037e-11 1.745572194e-10 1.684267336e-10 1.374933085e-10 2.920570045e-10 4.412403118e-10 1.167460676e-10 1.198849732e-10 2.505284554e-10 3.926189215e-10 1.078297096e-10 8.320158091e-11 1.495774218e-10 8.678775607e-11 9.521150186e-11 9.784021488e-11 1.315525259e-10 3.537192826e-10 3.009490216e-10 1.672269894e-10 2.343880863e-10 9.146556419e-11 1.424683108e-10 2.89567677e-10 4.153368056e-10 2.885053238e-10 2.321923962e-10 1.479410762e-10 3.509943481e-10 3.446825481e-10 9.983724662e-11 2.162570968e-10 3.44497993e-10 2.60348366e-10 3.58375874e-10 3.226113073e-10 2.570935423e-10 8.25434361e-11 3.43332789e-10 1.699257015e-10 4.055029162e-10 2.902926184e-10 1.639464227e-10 2.977775751e-10 5.201682109e-10 1.588495399e-10 2.684270039e-10 2.458563495e-10 1.556138579e-10 4.068969409e-10 3.033528547e-10 2.296378719e-10 1.075281576e-10 1.401784019e-10 1.22812101e-10 1.611224526e-10 1.811888908e-10 3.396034e-10 2.831990819e-10 1.739255352e-10 3.446479609e-10 2.342119028e-10 3.990637095e-10 2.387998341e-10 4.179167851e-10 2.730202463e-10 3.644697525e-10 2.404931456e-10 2.953946351e-10 3.290295937e-10 3.084674353e-10 2.609707443e-10 2.314739098e-10 2.964325588e-10 3.108279141e-10 8.199712595e-11 4.256884962e-10 2.780083057e-10 2.839332466e-10 2.311586719e-10 4.788709882e-10 4.833775914e-10 4.359575036e-10 5.094599922e-10 4.406304495e-10 3.916263014e-10 4.069140076e-10 3.367322238e-10 4.415101003e-10 4.767361106e-10 5.216445849e-10 5.227881809e-10 3.431204808e-10 2.888711538e-10 3.776888982e-10 3.162700539e-10 3.382978061e-10 3.422504493e-10 3.400140214e-10 1.862510683e-10 3.281781666e-10 1.881622214e-10 1.244558045e-10 1.516198219e-10 2.114830305e-10 1.831934474e-10 2.372652186e-10 5.297913481e-10 4.102122803e-10 7.640522575e-10 7.371202993e-10 3.059530655e-10 4.819904431e-10 7.627800741e-10 5.192619922e-10 4.54897991e-10 4.809228938e-10 4.358052536e-10 4.741808356e-10 5.355469271e-10 5.606451345e-10 4.678505726e-10 6.505689423e-10 4.343572332e-10 5.074028481e-10 3.141097378e-10 3.625311556e-10 5.254072941e-10 4.91422459e-10 4.737120272e-10 3.704203309e-10 3.774863285e-10 3.271322493e-10 4.136576066e-10 3.931456306e-10 2.74981057e-10 3.067328389e-10 3.241814578e-10 2.816394121e-10 4.313355522e-10 2.546165508e-10 1.605375227e-10 1.633597351e-10 1.735611131e-10 2.16996529e-10 1.699204398e-10 1.37550991e-10 1.216292931e-10 9.731126461e-11 1.110933613e-10 2.914745546e-16 1.15079631e-10 1.513730298e-10 9.717224887e-11 8.689926051e-11 1.288005714e-10 6.485178542e-11 1.423849839e-10 1.995966931e-10 2.402229403e-10 1.972047265e-10 2.612735357e-10 2.155637177e-10 2.990082056e-10 3.018776774e-10 2.756141424e-10 4.211021659e-10 4.748184992e-10 4.502576479e-10 4.528114471e-10 4.419188647e-10 4.29421282e-10 4.791876471e-10 3.560118653e-10 4.07644036e-10 4.708252188e-10 6.328378843e-10 8.040314989e-10 7.341657998e-10 7.109987005e-10 6.251445241e-10 5.488875909e-10 5.466254129e-10 3.736909582e-10 4.716209284e-10 3.768294151e-10 6.133284031e-10 4.463101212e-10 7.262261586e-10 6.465612144e-10 7.06494131e-10 7.468764998e-10 3.163344311e-10 1.653843274e-10 2.204156376e-10 3.026798749e-10 1.537474419e-10 1.704367578e-10 2.229260252e-10 2.340449128e-10 3.729068645e-10 2.835776517e-10 3.642412524e-10 3.52404604e-10 2.338961315e-10 3.235796352e-10 3.327450733e-10 2.869784346e-10 2.578625638e-10 3.581842554e-10 4.79589993e-10 4.065361075e-10 3.935066693e-10 2.99801786e-10 4.723619033e-10 3.736222485e-10 3.764965761e-10 2.783788867e-10 2.998246701e-10 3.216860898e-10 2.309347691e-10 3.523226279e-10 1.659849084e-10 3.106799351e-10 2.394105212e-10 2.81785753e-10 2.124913342e-10 2.711765335e-10 1.74333052e-10 1.773294585e-10 3.754138301e-10 4.833356017e-10 2.225749316e-10 2.165282817e-10 2.33792299e-10 2.734675794e-10 2.81701322e-10 2.817995546e-10 2.268649147e-10 2.792952813e-10 3.410254351e-10 2.261707026e-10 3.125876991e-10 2.198865971e-10 1.503030471e-10 2.694387112e-10 2.268716313e-10 4.233639724e-10 2.933723035e-10 1.916320516e-10 1.820333676e-10 1.402446893e-10 3.112755549e-10 3.01040228e-10 2.007996887e-10 4.112571122e-10 2.746314809e-10 3.272417113e-10 1.977628856e-10 3.564668614e-10 1.374885914e-10 2.64900687e-10 2.515866728e-10 4.05543003e-10 2.215642826e-10 2.976888699e-10 1.873073942e-10 2.474592152e-10 1.745631632e-10 4.055575068e-10 1.57197624e-10 2.122354601e-10 1.429223929e-10 1.134298929e-10 2.098881695e-10 3.164793265e-10 2.33395118e-10 2.522113319e-10 4.157502437e-10 1.565756316e-10 4.131118602e-10 2.997807876e-10 9.544238362e-11 4.130419467e-10 1.280821006e-10 2.176354992e-10 2.290798176e-10 1.849220426e-10 1.248156485e-10 1.965628161e-10 9.019917758e-11 5.884154291e-11 3.017771564e-10 2.843238615e-10 1.056872695e-10 1.263681431e-10 4.235637647e-10 1.606362009e-10 1.059807891e-10 1.129138556e-10 +1.485163268e-10 1.004422009e-10 7.394851297e-11 1.986589054e-10 8.975244634e-11 3.043049426e-10 2.067582444e-10 2.236029506e-10 1.718493154e-10 1.394772334e-10 8.744609113e-11 1.45566596e-10 2.394934473e-10 1.466758187e-10 1.840009528e-10 6.217169155e-11 1.986611839e-10 3.121701451e-10 8.200921849e-11 1.668079699e-10 2.516897809e-10 1.744529446e-10 7.218701459e-11 1.379887175e-10 2.05340419e-10 6.391140652e-11 3.280699349e-10 2.707154122e-10 1.396569075e-10 1.595239269e-10 3.669959304e-10 2.444030777e-10 2.195963131e-10 3.691541361e-10 3.088965437e-10 3.074828947e-10 3.91228854e-10 2.924586794e-10 1.275915005e-10 1.260341419e-10 1.441965905e-10 4.057017534e-10 3.711991088e-10 2.775365208e-10 2.850899326e-10 2.745858716e-10 1.901612068e-10 2.377370114e-10 3.315273926e-10 1.309239884e-10 1.563883871e-10 1.439573915e-10 2.73965357e-10 2.207180476e-10 2.510289892e-10 3.635843958e-10 2.432904612e-10 3.415837997e-10 1.916011234e-10 2.979413621e-10 2.276892097e-10 3.089290888e-10 3.073267932e-10 3.031368977e-10 2.233375902e-10 2.252470444e-10 1.955063198e-10 2.208440934e-10 1.829015251e-10 2.855241826e-10 2.294929362e-10 3.753286061e-10 2.82706962e-10 3.790102783e-10 3.922860556e-10 2.705671186e-10 2.255300752e-10 2.498390581e-10 3.939685132e-10 5.447061285e-10 3.257757019e-10 4.654238616e-10 4.348753527e-10 2.357612728e-10 2.613592335e-10 4.309108927e-10 4.19860915e-10 3.535676299e-10 3.781200384e-10 3.565065373e-10 2.751017607e-10 4.554448598e-10 3.463906381e-10 3.08951755e-10 2.283059163e-10 2.745150267e-10 3.141063308e-10 3.934919746e-10 2.915503718e-10 2.893743388e-10 2.089652764e-10 3.514451692e-10 1.360888864e-10 1.952349494e-10 3.436417185e-10 2.132087491e-10 2.198596805e-10 1.009832671e-09 6.100839997e-10 5.897377567e-10 9.392165305e-10 5.224917196e-10 3.169130486e-10 4.506211102e-10 4.243111675e-10 5.99282313e-10 5.644837843e-10 4.456114747e-10 5.083404969e-10 5.795584219e-10 5.426070304e-10 6.943545344e-10 5.305320836e-10 5.667837293e-10 4.133609559e-10 3.993633753e-10 5.350143271e-10 3.690645851e-10 3.021256594e-10 4.187838302e-10 4.632201828e-10 4.85640034e-10 4.59797346e-10 3.716865263e-10 4.002343216e-10 2.623761288e-10 2.896504283e-10 2.299502492e-10 1.532575086e-10 2.364466002e-10 2.362530443e-10 1.886877311e-10 8.740430409e-11 1.001955064e-10 7.210907828e-11 1.338982139e-10 8.136095722e-11 4.334242159e-11 6.297240054e-11 8.234814006e-11 1.100374369e-10 9.334532369e-11 3.428486775e-10 1.413128379e-10 1.011051074e-10 7.156069166e-11 3.008547763e-10 8.375763956e-11 1.413667992e-10 1.796310673e-10 6.446975189e-11 1.861919981e-10 2.640794327e-10 3.078687602e-10 3.579849373e-10 2.901066226e-10 4.035191964e-10 2.876548091e-10 4.043384586e-10 4.912147895e-10 5.064685746e-10 4.756997186e-10 5.214103486e-10 4.622765106e-10 4.667834126e-10 5.739001399e-10 5.158136521e-10 6.33091427e-10 5.379686114e-10 3.736270297e-10 8.078265104e-10 5.480115218e-10 5.590823881e-10 5.690800745e-10 7.44400458e-10 4.370005227e-10 8.202669874e-10 3.394854264e-10 3.380734986e-10 5.736869519e-10 5.617082111e-10 7.394973315e-10 5.220444763e-10 3.381136288e-10 2.362016618e-10 2.4527274e-10 1.554656278e-10 1.677361299e-10 2.408106786e-10 2.067481928e-10 2.075831198e-10 3.044175332e-10 4.506603113e-10 3.773675612e-10 4.311627592e-10 4.900902783e-10 2.727316749e-10 2.119431415e-10 3.101792365e-10 2.542919319e-10 5.052454448e-10 4.049757113e-10 4.323508874e-10 4.465892713e-10 3.824955756e-10 4.867111906e-10 2.950766736e-10 3.896101987e-10 5.302949185e-10 3.979918466e-10 2.418089553e-10 7.791683877e-11 2.706293277e-10 1.705689425e-10 2.626651828e-10 2.963827326e-10 3.958273504e-10 3.290312532e-10 4.042503946e-10 2.702103402e-10 2.522614588e-10 3.166315596e-10 2.137666112e-10 2.490991439e-10 2.88525591e-10 3.263246995e-10 2.67909245e-10 2.587775345e-10 3.524126818e-10 3.350842909e-10 3.539933339e-10 1.865918958e-10 3.377753085e-10 4.19151243e-10 2.351847707e-10 2.30463434e-10 2.215851599e-10 2.4449312e-10 2.053795626e-10 1.883556418e-10 1.202104027e-10 3.414538728e-10 3.960112537e-10 3.174023952e-10 1.523275461e-10 2.285819201e-10 4.084715351e-10 3.380178878e-10 1.681386959e-10 1.705064541e-10 1.73883823e-10 3.058273508e-10 2.197435176e-10 3.716986418e-10 2.533160855e-10 1.878632389e-10 2.453942096e-10 2.203646932e-10 3.264247376e-10 3.236511147e-10 1.678417529e-10 1.529073814e-10 2.751317839e-10 1.998334975e-10 2.441674234e-10 1.047170884e-10 1.196617966e-10 6.697509319e-11 1.623033201e-10 1.757894002e-10 1.193284194e-10 1.843694762e-10 1.548879987e-10 2.742641807e-11 1.076496581e-10 1.766535221e-10 2.243548888e-10 9.011385676e-11 3.487257278e-10 3.235397783e-10 1.271891124e-10 1.830196914e-10 4.624885324e-11 1.552178286e-10 2.061741417e-10 4.354991117e-11 1.569372715e-10 1.322267461e-10 2.180116695e-10 1.443731018e-10 +6.643870725e-11 2.789704169e-10 1.070534838e-10 1.901089348e-10 1.543246573e-10 3.835433369e-10 8.036553636e-11 1.038956508e-10 1.0972149e-10 1.060009706e-10 1.222494369e-10 1.305583734e-10 2.805963311e-10 2.494129638e-10 1.252748439e-10 1.911454251e-10 1.959637328e-10 1.03756135e-10 2.785110216e-10 1.594116112e-10 1.221698596e-10 1.320178516e-10 3.410168558e-10 4.013584078e-10 2.34006024e-10 3.688770039e-10 2.237877248e-10 3.005260871e-10 1.75743063e-10 3.262787431e-10 1.816829176e-10 2.958836475e-10 1.672442792e-10 3.178477179e-10 2.547413715e-10 3.623590645e-10 4.086837633e-10 3.287794157e-10 2.234330074e-10 2.27030848e-10 2.543100808e-10 1.012515848e-10 1.510860426e-10 3.496999548e-10 1.354771828e-10 3.440246969e-10 3.527276429e-10 2.509918432e-10 2.487785366e-10 4.252008826e-10 2.100853611e-10 1.281244922e-10 2.570042206e-10 4.054519873e-10 2.90659769e-10 4.195951831e-10 2.993499802e-10 1.549531482e-10 2.344930593e-10 1.71128507e-10 2.313185698e-10 2.842806939e-10 1.977965804e-10 1.836863608e-10 3.338121238e-10 3.104986934e-10 2.254112072e-10 4.227031567e-10 2.592455716e-10 5.258476869e-10 3.363343542e-10 3.337409695e-10 2.724546256e-10 1.359766763e-10 2.243295253e-10 2.23275407e-10 4.060237548e-10 2.325814507e-10 2.22227563e-10 2.980364588e-10 4.340795134e-10 2.728284259e-10 2.699906341e-10 3.950681054e-10 4.134805208e-10 3.157497398e-10 3.202759306e-10 3.598558333e-10 3.53871505e-10 3.528085049e-10 3.393267174e-10 3.950259287e-10 2.523293591e-10 4.136205983e-10 4.13944424e-10 4.03837673e-10 3.773797088e-10 3.112197815e-10 3.159418765e-10 2.474277041e-10 2.080038675e-10 2.324022384e-10 2.308139209e-10 1.592768416e-10 2.181007754e-10 2.608878416e-10 4.135848199e-10 5.686829576e-10 7.294265371e-10 8.313225159e-10 4.711274941e-10 5.444187347e-10 4.938232095e-10 3.874280641e-10 6.112255405e-10 8.073317177e-10 4.272028921e-10 5.142091281e-10 3.670210761e-10 6.037184456e-10 6.97550521e-10 5.728198618e-10 5.99060557e-10 3.645757846e-10 3.868459042e-10 5.336295331e-10 4.459576273e-10 4.446519178e-10 3.723887184e-10 4.710142257e-10 3.146842487e-10 3.781989299e-10 4.184202602e-10 4.007908721e-10 4.413675557e-10 3.591738399e-10 2.701623674e-10 1.091199717e-10 2.752790426e-10 1.661447164e-10 1.582109653e-10 1.46574998e-10 9.070794372e-11 2.583299939e-10 1.38397016e-10 9.188696375e-11 1.304895251e-10 2.198584008e-10 1.081991199e-10 1.329623781e-10 2.09275982e-10 0 2.084606035e-10 1.608515963e-10 1.013119454e-10 8.896053155e-11 2.141931581e-10 3.042420894e-10 9.313208447e-11 1.053587393e-10 3.354982144e-10 2.372267772e-10 2.247521078e-10 2.864858955e-10 2.48638001e-10 3.24135753e-10 1.831282275e-10 3.677770461e-10 2.372244353e-10 4.085180948e-10 3.30734253e-10 4.137304726e-10 4.329332834e-10 3.714546374e-10 3.059173611e-10 4.291963406e-10 4.68901564e-10 4.731470902e-10 5.318712198e-10 6.840818776e-10 6.637418941e-10 4.429223232e-10 5.765376774e-10 7.369043321e-10 4.526158035e-10 4.762130248e-10 6.39919982e-10 6.211640133e-10 3.816503634e-10 6.144699155e-10 4.443114739e-10 4.995264411e-10 7.968248138e-10 4.523027849e-10 2.023977926e-10 2.532968278e-10 2.238723613e-10 1.564190647e-10 1.940138618e-10 3.278077119e-10 2.384366923e-10 2.346826911e-10 2.499993751e-10 3.137777958e-10 3.696000466e-10 3.15133011e-10 3.546196445e-10 3.60134437e-10 3.005435087e-10 3.882071634e-10 5.611049679e-10 6.173695178e-10 2.68898634e-10 4.310917083e-10 5.049289163e-10 2.600495597e-10 3.414823253e-10 6.249145359e-10 3.60687895e-10 4.649296059e-10 2.181450634e-10 3.352287678e-10 1.866934642e-10 4.487729949e-10 2.648931017e-10 2.553579489e-10 1.766251842e-10 3.353913082e-10 2.311956959e-10 2.393204232e-10 5.012301836e-10 4.344336064e-10 3.521157462e-10 2.821338466e-10 2.621427089e-10 3.989248405e-10 4.102477406e-10 3.093393702e-10 1.647312539e-10 1.75148916e-10 2.995684025e-10 2.474102405e-10 3.215603486e-10 3.079814532e-10 2.732407443e-10 3.067783444e-10 2.766291394e-10 1.556362031e-10 3.695455997e-10 1.579280534e-10 1.505120879e-10 1.856255135e-10 1.286711895e-10 3.295604688e-10 2.757126178e-10 1.642762295e-10 3.139501296e-10 2.201423581e-10 1.650413641e-10 2.901304831e-10 3.776013202e-10 2.893751667e-10 4.599571947e-10 1.046313939e-10 3.87961571e-10 2.388049712e-10 2.123619604e-10 3.073265552e-10 2.083143757e-10 1.58799103e-10 1.495478878e-10 2.180150182e-10 2.134191225e-10 1.156159021e-10 3.121187411e-10 4.516349848e-11 1.316743175e-10 1.327699217e-10 2.076232974e-10 1.281783464e-10 2.759647422e-10 1.232460571e-10 1.006359054e-10 2.766407721e-10 2.913863958e-10 2.44932004e-10 3.651103484e-11 9.145606549e-11 3.698148097e-10 1.191323478e-10 1.22882719e-10 3.206571765e-10 1.659589742e-10 2.485249098e-10 1.5914928e-10 1.018692102e-10 3.069583171e-10 1.236075983e-10 1.036773129e-10 3.554490683e-10 +1.988920988e-10 2.037802184e-10 1.685320889e-10 1.045199809e-10 3.616539625e-10 3.047882959e-10 2.323845981e-10 2.558137045e-10 1.89501956e-10 2.295439918e-10 1.757882604e-10 1.358390503e-10 1.43465432e-10 1.721392772e-10 7.737558986e-11 2.087405868e-10 1.613109727e-10 3.818673543e-10 1.322673037e-10 1.823270829e-10 2.281435476e-10 3.872598077e-10 7.739959724e-11 9.791942957e-11 1.248279425e-10 9.956203515e-11 1.426963158e-10 1.462379536e-10 1.442908748e-10 2.4821259e-10 2.897160438e-10 3.368734127e-10 2.988633537e-10 3.598298589e-10 1.981896069e-10 2.604401586e-10 3.193061558e-10 2.186555504e-10 1.392057926e-10 2.560697824e-10 2.788533673e-10 1.174702225e-10 1.563000321e-10 2.896659097e-10 1.793928676e-10 4.658050098e-10 4.513746955e-10 2.454325936e-10 3.309685518e-10 2.576360694e-10 1.776677053e-10 2.405471509e-10 1.655222193e-10 1.293329426e-10 4.063504407e-10 2.510869044e-10 1.574213667e-10 2.884333642e-10 3.159237372e-10 3.006476031e-10 2.755734325e-10 2.712073283e-10 2.996114428e-10 2.838028552e-10 4.239520002e-10 3.250711116e-10 2.267174284e-10 3.170994472e-10 2.905549983e-10 2.747431829e-10 4.595366817e-10 3.429279613e-10 2.061681359e-10 1.780548951e-10 3.087534386e-10 1.215225478e-10 2.390051656e-10 2.469158561e-10 2.55059662e-10 2.213529768e-10 4.097533711e-10 2.555568426e-10 4.487355403e-10 5.459499283e-10 3.239283507e-10 3.303753508e-10 3.67229638e-10 4.805204142e-10 3.108122363e-10 2.19700609e-10 2.509526542e-10 4.329669338e-10 2.347635089e-10 2.703131159e-10 2.534148415e-10 3.719140365e-10 3.26080281e-10 4.371558055e-10 3.293347997e-10 3.354526088e-10 2.679181495e-10 1.941026629e-10 1.156387141e-10 1.980702004e-10 2.990830403e-10 4.278197498e-10 3.436363939e-10 5.854747357e-10 5.458017738e-10 6.079949335e-10 5.10336855e-10 6.205446636e-10 5.184092139e-10 5.430886667e-10 6.109725394e-10 6.711495154e-10 4.6564338e-10 4.738244188e-10 5.217120861e-10 6.99702038e-10 6.796963251e-10 4.735033444e-10 3.077748749e-10 5.337486275e-10 4.238913502e-10 3.423401622e-10 4.260025553e-10 4.531455706e-10 5.905465106e-10 5.09491548e-10 4.263814072e-10 3.487551149e-10 3.326566445e-10 2.887926379e-10 2.688752658e-10 2.645750548e-10 1.847733694e-10 2.138205995e-10 9.510037856e-11 2.812828096e-10 3.340619407e-10 1.426780603e-10 9.203891853e-11 1.653118072e-11 1.068692544e-10 8.213429045e-11 1.434006287e-10 1.039515675e-10 1.714506433e-10 3.027281744e-19 1.526806765e-10 9.857674118e-11 1.63938742e-10 6.591428195e-11 1.404676105e-10 2.474362803e-15 1.527824175e-10 1.30837271e-10 1.106602119e-10 1.120144473e-10 5.651956239e-19 1.20607578e-10 1.493482994e-10 1.533960288e-10 1.747385745e-10 3.083379974e-10 3.417911265e-10 3.346591479e-10 3.85005241e-10 3.213298999e-10 4.33757966e-10 3.432061916e-10 5.178538328e-10 3.953945163e-10 4.429837796e-10 6.914823379e-10 4.031869581e-10 6.39766164e-10 5.111877667e-10 4.583012326e-10 8.748189002e-10 4.434180301e-10 6.4670819e-10 4.889604591e-10 7.909892134e-10 3.646920267e-10 4.303074907e-10 5.582703585e-10 7.741408995e-10 5.310981556e-10 6.406444819e-10 4.778871681e-10 4.053247812e-10 5.271182118e-10 2.477651411e-10 2.748734285e-10 2.503825883e-10 7.270671341e-11 2.308949162e-10 2.548305962e-10 3.897493023e-10 2.903319544e-10 4.936309219e-10 2.622395321e-10 2.835724059e-10 3.25267885e-10 2.149357114e-10 2.771117026e-10 2.53153962e-10 4.473538629e-10 2.56854912e-10 3.989738909e-10 4.356904698e-10 4.777462888e-10 5.571787196e-10 4.877317977e-10 4.178967394e-10 3.442963354e-10 3.590057152e-10 3.223234979e-10 3.135994207e-10 2.87478521e-10 2.657882694e-10 3.389911546e-10 1.78120293e-10 3.627189725e-10 2.503142849e-10 2.676638328e-10 2.366591168e-10 2.757871542e-10 2.652173372e-10 4.200255911e-10 2.936365225e-10 2.372629711e-10 3.529072566e-10 3.486750243e-10 2.184978444e-10 2.317283202e-10 3.411683509e-10 2.330002104e-10 3.453943122e-10 3.575792747e-10 2.760508755e-10 1.4961544e-10 1.004779069e-10 3.15348199e-10 2.248654494e-10 2.649918931e-10 4.650072614e-10 2.041762736e-10 3.358264138e-10 4.953733452e-10 4.736554455e-10 1.945025121e-10 3.353574767e-10 2.669050654e-10 1.909159819e-10 3.577297113e-10 2.12675075e-10 3.268223652e-10 3.069857901e-10 3.874362378e-10 3.042019349e-10 2.988691873e-10 2.595150522e-10 2.817333818e-10 2.663999383e-10 1.627298931e-10 1.384678136e-10 2.075970513e-10 2.375613682e-10 2.015255931e-10 1.627941243e-10 1.644021513e-10 1.060639884e-10 1.283024925e-10 1.86975389e-10 1.236368574e-10 2.708387637e-10 7.002985694e-11 1.174587041e-10 1.779447408e-10 1.077980923e-10 9.664919843e-11 2.309243337e-10 2.760101302e-10 8.206424085e-11 3.788769684e-10 1.81629274e-10 3.967910515e-10 1.359886223e-10 1.316109644e-10 1.455561353e-10 8.312472772e-11 3.404825285e-10 1.356982549e-10 2.461827355e-10 7.768192577e-11 5.049521353e-11 1.330976363e-10 +4.19522107e-10 1.173808294e-10 1.937177752e-10 6.022110999e-11 1.113800561e-10 2.597295295e-10 2.759338909e-10 3.355278635e-10 1.040397203e-10 2.355454749e-10 1.422668906e-10 2.925102135e-10 2.928606905e-10 1.065088847e-10 1.693520884e-10 2.382012531e-10 1.23143518e-10 2.075553228e-10 2.061812928e-10 2.122732071e-10 1.495527099e-10 2.134704788e-10 1.337858884e-10 2.044153702e-10 8.33989585e-11 3.179893972e-10 2.893424942e-10 3.877054549e-10 2.046641199e-10 1.22298076e-10 1.650138545e-10 2.602118695e-10 2.137377417e-10 3.791730901e-10 2.021807071e-10 2.439200196e-10 1.35435719e-10 2.120269006e-10 2.221047644e-10 4.994285655e-10 2.329891222e-10 1.368672377e-10 2.001196461e-10 2.460892414e-10 4.229909339e-10 1.883757743e-10 1.182853284e-10 2.812312857e-10 1.42860299e-10 2.099661053e-10 4.331053848e-10 3.574544021e-10 2.426347933e-10 2.443007262e-10 1.925674229e-10 3.545676786e-10 2.553279776e-10 2.126356349e-10 3.381293532e-10 3.307106913e-10 2.342541199e-10 1.664792062e-10 2.598018196e-10 2.091475531e-10 2.247881129e-10 1.78022797e-10 2.390640555e-10 3.430931018e-10 4.653586221e-10 3.107352101e-10 5.035018743e-10 2.818461456e-10 2.608755587e-10 3.739718125e-10 2.004667978e-10 3.683530011e-10 1.90124807e-10 2.939855024e-10 3.06709479e-10 4.733755969e-10 2.399453396e-10 3.671743711e-10 4.151484733e-10 4.581221417e-10 4.912853799e-10 5.12674113e-10 3.954561626e-10 4.313444839e-10 3.131170267e-10 3.396458924e-10 1.770196917e-10 4.415500398e-10 4.418423463e-10 2.843165932e-10 3.014127556e-10 3.074840608e-10 3.917178763e-10 2.455819067e-10 3.798112663e-10 2.256986762e-10 2.012243582e-10 9.610863438e-11 2.285143255e-10 1.874167586e-10 1.837874457e-10 2.070813771e-10 3.223720129e-10 5.017189558e-10 7.282034966e-10 3.751264997e-10 5.535034681e-10 6.03888668e-10 5.863359504e-10 6.379727227e-10 4.656593523e-10 4.499241563e-10 5.413968371e-10 7.433673196e-10 4.339624201e-10 5.616107884e-10 7.443262074e-10 5.949076868e-10 3.34751554e-10 3.874458231e-10 3.2326652e-10 4.823602371e-10 3.830222746e-10 3.768325019e-10 4.778092744e-10 4.86547349e-10 4.558357568e-10 2.665493976e-10 2.739320768e-10 3.155434393e-10 1.876423005e-10 2.478324363e-10 1.11892938e-10 1.70795186e-10 2.519601381e-10 1.986229098e-21 1.270803128e-10 8.07683794e-12 1.161032309e-10 9.888755775e-11 1.54333875e-10 0 1.835043716e-10 1.016422299e-10 8.155287959e-11 1.043316793e-10 1.010324491e-10 1.204650208e-10 1.518434449e-10 1.113840638e-10 2.500188716e-10 9.421641465e-11 7.701571297e-13 1.959970263e-10 1.526145356e-10 1.137902495e-10 2.129881276e-10 2.380893486e-10 4.231756127e-11 1.565785314e-10 1.164951047e-10 2.128682331e-10 2.335456451e-10 3.277900513e-10 3.795608109e-10 4.636435809e-10 4.642667666e-10 3.813781667e-10 4.733658584e-10 3.687726269e-10 3.4114619e-10 4.842477996e-10 3.962483368e-10 3.259543837e-10 5.821504195e-10 5.349118429e-10 6.25836309e-10 8.424236313e-10 7.150551201e-10 4.525193229e-10 7.017649344e-10 5.843617963e-10 3.041188253e-10 6.230080285e-10 4.714763593e-10 3.290410368e-10 7.271395176e-10 5.925623513e-10 8.340777497e-10 7.310999639e-10 2.321940132e-10 2.343714272e-10 1.742816932e-10 1.25807035e-10 7.088968091e-11 1.677898268e-10 2.429817402e-10 2.84330812e-10 2.778739516e-10 3.334321315e-10 3.987088787e-10 1.932255204e-10 4.017276198e-10 4.032253145e-10 3.074501861e-10 3.617812511e-10 3.838335633e-10 3.078773423e-10 4.52051509e-10 4.530401546e-10 4.336269004e-10 3.718933062e-10 3.424850536e-10 4.480209828e-10 4.701078219e-10 2.071099594e-10 3.258811812e-10 2.933419121e-10 2.306520786e-10 2.450441758e-10 2.352289742e-10 2.891390882e-10 4.595510379e-10 3.754164891e-10 2.249431073e-10 2.662392124e-10 2.735717206e-10 3.530818219e-10 2.983790974e-10 2.573387299e-10 2.048128094e-10 2.162589509e-10 2.586427888e-10 1.922507679e-10 1.745100809e-10 3.161721575e-10 3.729193384e-10 2.123891387e-10 2.34180558e-10 3.149309284e-10 1.268397588e-10 2.720843995e-10 2.59882198e-10 3.0350734e-10 2.552772602e-10 2.964796893e-10 4.488381253e-10 3.832047035e-10 2.567208762e-10 1.879541399e-10 2.660079292e-10 2.104978669e-10 4.579038856e-10 3.041624553e-10 1.431300187e-10 3.969522987e-10 3.747708883e-10 1.653108613e-10 2.540755229e-10 1.433182539e-10 1.432125422e-10 2.890077009e-10 2.657988267e-10 2.282568409e-10 2.366207545e-10 1.203799675e-10 1.194036382e-10 2.753809008e-10 1.283388671e-10 4.901012081e-11 2.462580638e-10 1.636150344e-10 1.511267279e-10 3.17527614e-10 1.413841469e-10 6.874570112e-11 2.184359143e-10 1.457812064e-10 3.43172128e-10 5.103689893e-11 2.822949205e-10 1.179275927e-10 1.411783811e-10 1.81735163e-10 9.031179357e-11 1.656136714e-10 1.138948518e-10 1.130935692e-10 2.451686728e-10 3.621422166e-10 1.138744259e-10 1.596217978e-10 1.293925616e-10 1.193287337e-10 1.373378123e-10 2.811608208e-10 +8.465401311e-11 1.530935038e-10 2.443485683e-10 1.5689205e-10 1.207733792e-10 1.405577521e-10 2.483805711e-10 5.596691884e-11 1.506266265e-10 3.110896645e-10 1.121973249e-10 2.838272861e-10 3.222917399e-10 9.885344457e-11 4.091227427e-10 6.607167787e-11 3.508184416e-10 7.040042275e-11 4.136464156e-10 3.662764049e-10 1.689095593e-10 1.935310879e-10 1.939802739e-10 2.08676995e-10 1.368819692e-10 1.832936008e-10 2.519936514e-10 2.131479043e-10 3.110550447e-10 2.040858293e-10 3.189040612e-10 1.507111056e-10 3.326060901e-10 2.42603802e-10 2.566197766e-10 4.855767628e-10 3.440236526e-10 2.253999405e-10 2.595065169e-10 1.913854259e-10 1.53080714e-10 2.606991683e-10 2.516287934e-10 1.504396415e-10 2.884454822e-10 2.944399912e-10 2.508534776e-10 1.606729907e-10 2.838143243e-10 3.059781561e-10 4.722672268e-10 1.22830693e-10 3.534669238e-10 2.233645021e-10 2.375655518e-10 2.194774264e-10 2.1133137e-10 4.050733637e-10 4.321421024e-10 2.574589912e-10 2.645142714e-10 2.16690001e-10 2.029732465e-10 2.441543321e-10 2.469713936e-10 2.605146151e-10 3.808094873e-10 1.807077389e-10 3.118360503e-10 6.423867896e-10 1.516737597e-10 4.107511144e-10 1.127585916e-10 2.885335668e-10 2.394229346e-10 2.518086627e-10 2.140060734e-10 3.905655174e-10 3.029147804e-10 2.512422066e-10 4.511619972e-10 3.263876881e-10 2.990732831e-10 6.214416876e-10 5.43086668e-10 5.742415227e-10 4.766672042e-10 4.76291091e-10 3.971200276e-10 4.206378493e-10 2.65869728e-10 4.695577968e-10 3.667757057e-10 3.705828317e-10 3.184230801e-10 4.342341411e-10 3.263283926e-10 2.653193254e-10 2.224415923e-10 2.778808987e-10 1.605066237e-10 1.405989135e-10 1.630175808e-10 2.12793631e-10 2.543078027e-10 2.695204145e-10 4.283143754e-10 6.003538243e-10 8.056203211e-10 7.397756278e-10 7.52078565e-10 9.310044987e-10 4.741498255e-10 4.535975866e-10 5.965291688e-10 5.378382683e-10 6.675682114e-10 6.891423675e-10 5.651004286e-10 4.909887902e-10 4.720809529e-10 5.917924447e-10 3.56427628e-10 4.255091545e-10 3.229005494e-10 3.498491971e-10 4.823321892e-10 4.623699303e-10 4.992759695e-10 4.469590547e-10 2.471964708e-10 2.982251911e-10 2.49379748e-10 1.533770558e-10 1.311908233e-10 9.732146871e-11 1.553147085e-10 1.150131182e-10 1.015391051e-10 9.537696455e-11 8.973875865e-11 9.901278697e-11 1.904435832e-10 2.153286916e-10 1.006206287e-10 9.802017538e-11 8.501714968e-11 2.021478454e-10 2.105026809e-10 1.887152685e-10 1.405881609e-10 1.772740475e-10 2.257539884e-10 3.854529538e-10 7.396860138e-11 1.04479799e-10 1.567987339e-10 1.711816313e-10 2.121128541e-10 1.278278336e-10 8.859572541e-11 6.86551708e-11 1.81457475e-10 9.801281083e-11 1.439689101e-10 2.115839528e-10 1.56457319e-10 3.289074715e-10 4.029251564e-10 3.791840753e-10 4.812000228e-10 4.39988222e-10 4.397354143e-10 4.435219891e-10 5.137384543e-10 3.141342648e-10 3.275374405e-10 4.229628203e-10 4.462021586e-10 5.836810218e-10 8.903634466e-10 6.736736287e-10 5.147550727e-10 5.738760794e-10 6.068890056e-10 5.686215845e-10 4.543258248e-10 4.438514869e-10 8.06759986e-10 5.541481194e-10 4.539461769e-10 3.724155046e-10 6.180561113e-10 5.387688414e-10 2.464934486e-10 3.184194257e-10 2.096450951e-10 2.832674479e-10 1.671784634e-10 1.924413682e-10 1.438552953e-10 2.5964093e-10 3.196823968e-10 3.539941304e-10 3.470733347e-10 4.08248359e-10 3.166701682e-10 2.263816616e-10 4.338129761e-10 4.312557679e-10 2.76826992e-10 3.963285887e-10 2.850754325e-10 4.111282623e-10 3.658993591e-10 4.994396582e-10 3.612404145e-10 4.941690169e-10 4.551502222e-10 3.689727144e-10 3.129922731e-10 1.265643482e-10 1.112003382e-10 3.002062467e-10 4.218105144e-10 2.902460691e-10 2.987239088e-10 4.075486831e-10 4.669591334e-10 4.741133914e-10 3.695724225e-10 3.785684555e-10 2.454924927e-10 2.360165167e-10 2.583612525e-10 2.197732584e-10 2.870445534e-10 1.480987596e-10 4.923944041e-10 2.877532283e-10 1.307743721e-10 3.551761354e-10 2.521965959e-10 1.569712755e-10 3.691037258e-10 1.053380133e-10 3.248988959e-10 3.129771136e-10 2.855677343e-10 2.061347439e-10 2.782093438e-10 3.695317905e-10 2.978178802e-10 3.016751576e-10 2.317731238e-10 2.828451637e-10 1.141073405e-10 3.404465147e-10 3.325494622e-10 2.412796399e-10 5.038201465e-10 3.146582906e-10 3.12421465e-10 1.699666866e-10 3.087447829e-10 3.19923225e-10 3.197599085e-10 3.562443765e-10 1.471308071e-10 1.874523151e-10 1.746799579e-10 1.32534192e-10 2.189078495e-10 1.505199714e-10 1.124891453e-10 1.920113793e-10 7.077553605e-11 2.31037216e-10 1.332702282e-10 6.465305776e-11 1.44298135e-10 2.434508572e-10 2.180425574e-10 2.397672279e-10 6.418013373e-11 1.771848646e-10 3.417881185e-10 4.294614069e-11 2.673459405e-10 3.439436434e-10 3.568009619e-10 2.770830165e-10 1.398727311e-10 1.435651058e-10 1.083975231e-10 9.388073249e-11 2.248480104e-10 1.173919482e-10 1.874846063e-10 3.791934719e-10 +9.710102167e-11 1.611440079e-10 3.108828182e-10 2.563146353e-10 2.361506333e-10 1.865356621e-10 3.499111686e-10 3.055241499e-10 1.444416414e-10 1.384920806e-10 2.58844924e-10 1.00375107e-10 1.283199319e-10 1.259593176e-10 2.350367769e-10 9.290068342e-11 6.605118647e-11 3.774260482e-10 1.242644612e-10 1.498859881e-10 1.902399775e-10 1.365059041e-10 2.329641783e-10 1.181377192e-10 9.434073147e-11 2.261690886e-10 2.116732785e-10 1.357328356e-10 1.70416438e-10 2.397381707e-10 2.555305125e-10 2.564849214e-10 2.365186349e-10 3.135159238e-10 4.067941015e-10 3.149534098e-10 3.034071278e-10 3.826154777e-10 4.575558763e-10 2.692311603e-10 4.345346995e-10 2.347375656e-10 2.445910342e-10 1.859949657e-10 3.484366553e-10 2.167576093e-10 1.460916919e-10 3.109873253e-10 1.643687662e-10 2.074847989e-10 2.267699667e-10 2.289488239e-10 1.862810748e-10 2.964517276e-10 3.289035523e-10 2.179157378e-10 3.833222813e-10 1.482645325e-10 1.399287954e-10 2.875073937e-10 2.513492847e-10 3.986900055e-10 2.861661641e-10 3.362820453e-10 2.342665807e-10 3.539058211e-10 3.095283168e-10 2.6270237e-10 4.10852409e-10 3.199791129e-10 4.479779448e-10 2.246808694e-10 2.464460407e-10 1.771457066e-10 2.543053385e-10 3.158813535e-10 2.195642764e-10 3.074339384e-10 3.668229387e-10 4.224974849e-10 3.107809589e-10 2.565097204e-10 4.267671776e-10 5.675752434e-10 3.522889769e-10 4.026837123e-10 2.588184255e-10 4.860946771e-10 3.690541262e-10 3.509979803e-10 3.558343945e-10 2.871143127e-10 4.767256189e-10 3.97154308e-10 2.327251086e-10 2.564407214e-10 2.527901573e-10 3.638478191e-10 1.836919372e-10 3.352644624e-10 1.636268651e-10 2.457772041e-10 1.133375034e-10 2.010476725e-10 2.284508229e-10 3.441113694e-10 5.239385188e-10 8.241637888e-10 4.293008067e-10 6.938230405e-10 4.943628102e-10 3.467503516e-10 7.176118533e-10 5.439293265e-10 8.03245167e-10 5.189823267e-10 3.801321964e-10 5.908802977e-10 5.812167133e-10 4.992058665e-10 4.468570837e-10 4.612143596e-10 4.180512924e-10 3.456743593e-10 3.701785263e-10 3.315757753e-10 5.007564843e-10 4.012714931e-10 4.498677385e-10 3.697888863e-10 3.202921904e-10 4.036848082e-10 2.296898041e-10 1.068161091e-10 1.738026773e-10 1.818601603e-10 0 1.361616527e-10 0 1.83807964e-10 6.898648399e-11 2.231649084e-10 4.382478214e-10 1.519133741e-10 2.129094322e-10 1.787876442e-10 2.931866059e-10 2.563459513e-10 3.314587731e-10 2.944017936e-10 4.02039542e-10 5.076171404e-10 3.166868029e-10 3.260979777e-10 3.011169819e-10 2.18024806e-10 2.66844959e-10 2.339930177e-10 8.497462178e-11 1.551724956e-10 1.868472523e-10 8.924501117e-11 1.484357723e-10 1.314352713e-10 1.391821661e-10 1.12416544e-10 2.277113174e-10 2.816930745e-10 3.167185635e-10 3.327384858e-10 3.882251772e-10 3.095009964e-10 3.96156449e-10 3.810446985e-10 4.132271209e-10 3.690053166e-10 3.511990527e-10 4.102394195e-10 4.3587211e-10 6.380697932e-10 6.510688144e-10 7.995047274e-10 6.920796551e-10 5.220852512e-10 4.115270466e-10 5.285182013e-10 3.606675054e-10 5.623830365e-10 8.153243199e-10 5.740521339e-10 5.262711909e-10 3.966926881e-10 7.594348706e-10 5.138379552e-10 6.707316644e-10 2.301895044e-10 2.252786151e-10 2.509838598e-10 7.475304759e-11 2.009030643e-10 2.258299095e-10 4.180876364e-10 2.536559289e-10 4.763618878e-10 3.67714835e-10 4.031659156e-10 3.038363914e-10 4.313385965e-10 4.024724229e-10 5.19555192e-10 3.238177925e-10 4.664970728e-10 4.439969346e-10 3.605591303e-10 4.533227419e-10 2.344204622e-10 4.940411085e-10 3.095385261e-10 4.469466583e-10 4.657747094e-10 3.299192025e-10 4.102572351e-10 2.065371361e-10 2.208050477e-10 3.072400383e-10 2.626591022e-10 1.798054172e-10 2.48581531e-10 2.262508249e-10 2.830765532e-10 3.872733599e-10 4.59243833e-10 7.476617643e-11 2.39799689e-10 2.220170059e-10 2.882537751e-10 3.535973944e-10 1.687924709e-10 1.768939508e-10 3.264975454e-10 4.099978857e-10 3.229279857e-10 1.183367397e-10 2.192896285e-10 2.346651607e-10 1.711404856e-10 1.181510802e-10 1.1815902e-10 3.407600849e-10 2.523536568e-10 2.032280949e-10 2.192126078e-10 1.532379536e-10 2.365697772e-10 2.911857146e-10 2.825953406e-10 2.732115584e-10 1.755828916e-10 2.256413478e-10 1.647056428e-10 1.46701206e-10 3.006123756e-10 1.963438067e-10 2.437225022e-10 3.607883308e-10 2.521960624e-10 2.27597052e-10 2.487903063e-10 1.072879865e-10 1.444821977e-10 2.583943371e-10 1.880439612e-10 2.595937107e-10 2.205879855e-10 1.846898399e-10 2.146423381e-10 2.565107054e-10 1.541097761e-10 1.281318181e-10 9.147782023e-11 2.037547861e-10 2.338239186e-10 2.207468009e-10 1.978575042e-10 2.425723695e-10 9.280979233e-11 1.370674915e-10 1.648584573e-10 1.449737197e-10 1.626628988e-10 8.217906804e-11 2.635735353e-10 2.588169643e-10 1.218594971e-10 8.188638661e-11 2.436509735e-10 2.491085591e-10 2.842709925e-10 1.304106756e-10 2.021719715e-10 +3.683706153e-10 1.17576247e-10 1.495115179e-10 1.237568132e-10 2.24641657e-10 1.315547353e-10 1.582375733e-10 8.39162801e-11 9.685083232e-11 3.845009694e-10 1.359036159e-10 1.633114286e-10 1.492921125e-10 3.341781743e-10 3.02672413e-10 3.933726553e-10 1.306428229e-10 2.182122355e-10 9.480809789e-11 1.215509849e-10 1.754660449e-10 2.383844563e-10 1.107378502e-10 2.148398563e-10 1.296174785e-10 4.707836014e-10 9.618837456e-11 1.636885869e-10 1.221386458e-10 1.888799005e-10 1.518976707e-10 1.376580741e-10 1.310060938e-10 1.876674291e-10 3.374798405e-10 2.972620413e-10 3.05588442e-10 1.140067707e-10 3.016102553e-10 1.988099196e-10 2.582907861e-10 3.162211841e-10 1.269760056e-10 2.214800946e-10 1.359543823e-10 5.161684551e-10 4.14243755e-10 2.760635855e-10 2.009754067e-10 2.831378115e-10 3.220498227e-10 3.095516417e-10 2.423047578e-10 3.51626501e-10 1.489230517e-10 4.514329799e-10 1.314137199e-10 2.942613319e-10 1.643284794e-10 2.975829978e-10 2.770418562e-10 2.621612429e-10 1.635985098e-10 2.537364415e-10 2.289251752e-10 2.20792178e-10 3.212019056e-10 2.665294903e-10 4.340283214e-10 2.980932323e-10 2.453850489e-10 1.430225718e-10 3.855233267e-10 4.481359374e-10 2.281841595e-10 3.517099507e-10 2.656274173e-10 1.152035887e-10 2.285227126e-10 4.290083999e-10 2.843475214e-10 3.5220752e-10 3.904698057e-10 4.187161464e-10 3.232393215e-10 2.691328842e-10 4.882223045e-10 3.415665328e-10 4.867588699e-10 3.395583508e-10 5.261193897e-10 3.768543074e-10 2.801283559e-10 4.653787281e-10 2.970802911e-10 2.698123055e-10 3.286801108e-10 2.526060006e-10 3.354303682e-10 1.657654023e-10 1.318820659e-10 3.92166285e-10 1.569697738e-10 2.500901571e-10 2.85564283e-10 4.855676072e-10 6.082967989e-10 5.906989056e-10 5.813507745e-10 5.430854007e-10 7.854329138e-10 6.232682172e-10 5.302682469e-10 2.638763588e-10 5.445544406e-10 6.40110777e-10 6.286882489e-10 6.570376803e-10 4.852951124e-10 5.069004378e-10 5.339617493e-10 5.065932913e-10 3.859221528e-10 5.241584994e-10 3.515306761e-10 5.563098767e-10 4.625083605e-10 4.368220025e-10 5.057129223e-10 3.686472215e-10 3.044950621e-10 2.157707911e-10 1.451416652e-10 1.465154882e-10 8.932926117e-20 1.246199538e-10 9.432378678e-11 1.621603779e-15 1.008605566e-10 1.142387368e-10 1.66386191e-10 2.467095349e-10 3.096937462e-10 3.614492466e-10 3.232943838e-10 2.848050558e-10 2.359794959e-10 3.620425035e-10 3.881188104e-10 4.58111259e-10 2.606979895e-10 3.398048156e-10 3.076200065e-10 3.892192506e-10 3.295958853e-10 2.401054563e-10 3.63018771e-10 2.149554834e-10 3.230935232e-10 1.130605237e-10 7.297390037e-11 1.204624699e-10 1.456539752e-10 2.742753892e-10 1.526478138e-10 1.948263797e-10 2.008138519e-10 1.492215964e-10 2.609278559e-10 2.768962055e-10 3.188352042e-10 4.856916309e-10 3.196928775e-10 3.544606195e-10 3.693400871e-10 3.635581297e-10 4.075414293e-10 4.552053899e-10 3.941596956e-10 5.699051512e-10 6.720541566e-10 5.571600796e-10 6.443298677e-10 6.65616709e-10 4.827640227e-10 4.576863375e-10 4.091570075e-10 4.189390076e-10 6.828592622e-10 4.192194751e-10 6.435524117e-10 6.356089289e-10 5.9527599e-10 6.084597642e-10 5.210665969e-10 2.023405298e-10 2.343975226e-10 2.655993022e-10 8.794813374e-11 1.400997126e-10 2.450864579e-10 2.923132506e-10 2.784756311e-10 2.392673741e-10 3.293242551e-10 5.033385296e-10 3.617747903e-10 3.302015312e-10 3.379827099e-10 2.841633341e-10 4.207761748e-10 3.773942932e-10 4.360813616e-10 4.277267353e-10 3.335298048e-10 4.622310351e-10 5.516874986e-10 4.19609925e-10 4.291814799e-10 4.6910532e-10 4.318883389e-10 1.979711534e-10 2.829379007e-10 1.012753726e-10 2.059360316e-10 2.565982204e-10 2.006200616e-10 1.572721418e-10 2.040005371e-10 4.052538582e-10 2.965949047e-10 3.392999449e-10 3.600455383e-10 2.06331195e-10 2.234876309e-10 1.750017159e-10 3.990998071e-10 2.690045429e-10 2.705759068e-10 4.924862743e-10 3.238940537e-10 2.275411492e-10 2.837049098e-10 1.594976689e-10 1.292953382e-10 1.319691452e-10 3.383542128e-10 4.033628951e-10 4.308080351e-10 2.339885919e-10 2.547969159e-10 3.397726815e-10 2.547824941e-10 1.905107928e-10 2.114873502e-10 2.876496897e-10 3.086267273e-10 1.730949004e-10 1.988442847e-10 3.947398646e-10 3.135955655e-10 3.652590436e-10 3.992267964e-10 3.846380294e-10 2.77531687e-10 3.195987423e-10 1.887921686e-10 3.910289705e-10 1.656056775e-10 3.96641497e-10 2.199773719e-10 4.064567033e-10 8.711722655e-11 6.619397082e-11 1.255974814e-10 1.496125846e-10 1.827530989e-10 9.240091427e-11 5.026956794e-11 3.148510809e-10 1.411182011e-10 3.404042078e-10 1.233747102e-10 2.997681583e-10 1.782594177e-10 1.797883864e-10 2.614885456e-10 1.609860744e-10 4.418043895e-10 8.289909678e-11 1.777821178e-10 1.489674912e-10 1.586753889e-10 1.254947078e-10 2.682019472e-10 8.320360268e-11 1.313762681e-10 4.417247791e-11 2.979856851e-10 2.54328625e-10 +1.155106492e-10 1.296081889e-10 7.025659539e-11 3.303868867e-10 3.112171348e-10 2.406346916e-10 1.513528921e-10 1.235182156e-10 2.174117004e-10 2.200351999e-10 1.474662574e-10 1.032868135e-10 2.536054902e-10 7.367430678e-11 2.105587475e-10 1.486185026e-10 2.846490401e-10 1.04028329e-10 1.838775239e-10 2.395335702e-10 3.04713041e-10 1.330141128e-10 2.743071382e-10 1.031510109e-10 1.624636033e-10 1.089452405e-10 9.29805459e-11 1.965779549e-10 2.997262152e-10 3.532766657e-10 2.275574739e-10 1.998299078e-10 3.01696682e-10 2.731733829e-10 2.594929527e-10 3.722024898e-10 2.763424671e-10 2.384771675e-10 3.859903558e-10 2.362370582e-10 4.356230329e-10 1.205156756e-10 3.399603809e-10 9.726154907e-11 3.951613581e-10 2.384685141e-10 3.686277493e-10 2.980613256e-10 1.105881525e-10 3.072008182e-10 4.656659605e-10 2.311022837e-10 4.270164181e-10 1.678200505e-10 2.33272565e-10 3.991142534e-10 2.583923873e-10 3.630212315e-10 2.575530863e-10 1.071573625e-10 2.936699433e-10 3.092878584e-10 2.571782246e-10 2.480099974e-10 2.117051569e-10 2.809897172e-10 3.269304082e-10 1.360969253e-10 2.356409748e-10 2.655655783e-10 2.838516629e-10 2.648510457e-10 2.534386407e-10 3.439199228e-10 3.136604595e-10 1.89170907e-10 2.350185341e-10 3.804045802e-10 3.788042252e-10 4.185212003e-10 3.454062721e-10 6.075312323e-10 4.034770001e-10 5.735567966e-10 5.593070649e-10 4.394412045e-10 3.142268588e-10 3.600453977e-10 3.238476652e-10 3.604405367e-10 4.301233015e-10 4.359338713e-10 3.677856574e-10 3.712788661e-10 4.031327682e-10 3.182630508e-10 3.580247322e-10 2.803648592e-10 2.484300826e-10 2.440821653e-10 1.331573117e-10 2.345952275e-10 2.834789859e-10 2.517098484e-10 1.973572781e-10 6.882270318e-10 4.998266136e-10 6.872851093e-10 6.353726766e-10 4.148499779e-10 4.916016137e-10 5.305953897e-10 5.584208868e-10 6.906192255e-10 5.924799301e-10 4.409196535e-10 9.16555792e-10 6.90122037e-10 5.989439932e-10 5.69037732e-10 3.861439559e-10 5.916337111e-10 4.26231572e-10 5.291016027e-10 4.831465919e-10 3.799074319e-10 4.057813922e-10 3.384892878e-10 3.426038113e-10 3.212532501e-10 2.865801884e-10 1.145001879e-10 9.626811115e-11 1.101949551e-10 0 1.273837518e-10 1.408979484e-10 1.259657736e-10 2.250841915e-10 1.557482632e-10 2.464169176e-10 4.239148296e-10 5.274722094e-10 5.419137379e-10 3.601349166e-10 4.238477054e-10 4.381501237e-10 3.568985632e-10 4.123410195e-10 4.14989334e-10 5.530935509e-10 4.154529888e-10 5.516931794e-10 4.011910523e-10 3.591627173e-10 3.27334034e-10 3.287010002e-10 3.320893204e-10 3.743264648e-10 2.187195257e-10 8.812555597e-11 1.183856661e-10 1.186604876e-10 1.416145001e-10 2.555776297e-10 2.004028731e-10 1.174571002e-10 9.158908005e-11 2.103553928e-10 1.994773811e-10 4.258318641e-10 3.47328257e-10 4.319596574e-10 3.535144196e-10 4.883432862e-10 4.052573728e-10 5.002118614e-10 4.9546548e-10 4.102078449e-10 4.968236457e-10 5.442208907e-10 5.725395181e-10 1.018651458e-09 6.395913991e-10 6.489657961e-10 7.215199915e-10 3.962857234e-10 5.149268717e-10 3.783954652e-10 3.474059473e-10 6.095353283e-10 7.955241151e-10 5.094486851e-10 4.815460028e-10 5.39830732e-10 2.43435486e-10 3.004716252e-10 1.367075749e-10 2.589211789e-10 6.185999799e-11 3.066366594e-10 2.897420448e-10 1.73851238e-10 2.641657785e-10 2.759490875e-10 4.169282667e-10 3.924260379e-10 4.102882621e-10 3.941350791e-10 2.666708933e-10 4.217425084e-10 3.90388811e-10 3.094281441e-10 3.859401593e-10 5.113431211e-10 4.826675579e-10 3.489488633e-10 3.665501678e-10 3.608447709e-10 3.560851857e-10 4.001994654e-10 2.835755642e-10 1.331954073e-10 2.932883679e-10 2.810362225e-10 3.314029498e-10 2.874503431e-10 2.615326787e-10 4.307937795e-10 3.38315587e-10 2.818517986e-10 1.285827441e-10 3.052915635e-10 2.355031623e-10 2.208848178e-10 2.744354112e-10 2.609725166e-10 3.440490459e-10 4.306774863e-10 2.095932276e-10 1.285764199e-10 2.827977467e-10 2.115945874e-10 2.95664788e-10 4.437529717e-10 4.037354807e-10 2.481303215e-10 3.733819703e-10 3.145633139e-10 1.824536608e-10 4.090143563e-10 2.608946346e-10 1.573302832e-10 3.236773893e-10 2.179393655e-10 4.072374278e-10 4.022171263e-10 2.972610562e-10 2.01612492e-10 1.974458917e-10 1.770908457e-10 3.763693752e-10 1.923219423e-10 3.798953159e-10 4.182599359e-10 3.476164701e-10 2.635924609e-10 2.011675509e-10 2.514733943e-10 8.15269201e-11 6.24295713e-11 2.615070087e-10 2.283143882e-10 6.522889412e-11 2.67637372e-10 2.160754376e-10 1.849835733e-10 7.928415442e-11 1.962997853e-10 1.779845866e-10 1.407368071e-10 6.7230773e-11 1.008340551e-10 1.505566035e-10 2.259543495e-10 3.272093137e-10 1.161603055e-10 3.027162282e-10 2.992279951e-10 4.971013359e-11 6.10624205e-11 1.216617259e-10 1.053369209e-10 2.248384084e-10 1.734559176e-10 1.347725431e-10 1.349706887e-10 2.292473441e-10 1.775090671e-10 1.087069843e-10 +1.955860365e-10 2.929440316e-10 2.387166828e-10 1.856379154e-10 1.107102042e-10 2.571789744e-10 3.843106722e-10 2.59583283e-10 3.055030991e-10 1.187858792e-10 1.037859719e-10 1.980753734e-10 1.720238648e-10 6.184958448e-11 1.151840131e-10 3.705262267e-10 1.180130488e-10 4.08650979e-10 1.668345087e-10 2.499681197e-10 1.205908203e-10 3.363387288e-10 1.416867138e-10 1.848496153e-10 8.308400095e-11 2.334753586e-10 2.323032921e-10 1.985935107e-10 1.566912758e-10 4.127181724e-10 2.18157431e-10 2.544847987e-10 1.734997309e-10 1.392403154e-10 3.834448867e-10 2.070576624e-10 2.365880742e-10 3.219407643e-10 3.07079377e-10 3.632870043e-10 3.114785025e-10 4.400489561e-10 3.2123696e-10 3.7825349e-10 2.906701564e-10 3.792260331e-10 2.932538424e-10 1.990576422e-10 3.640720755e-10 2.227229717e-10 3.863995927e-10 3.833719037e-10 2.729425994e-10 3.097766978e-10 2.186251132e-10 2.102974168e-10 2.140916496e-10 3.219018631e-10 2.330961656e-10 1.850654835e-10 2.041780409e-10 2.321530591e-10 2.562080916e-10 2.440867243e-10 2.047077369e-10 2.903556287e-10 2.290839834e-10 3.484107524e-10 3.19225755e-10 2.766651167e-10 3.121006128e-10 2.0039729e-10 3.326699048e-10 1.556398787e-10 2.379638771e-10 2.226427191e-10 3.397579144e-10 3.020611294e-10 1.455829585e-10 3.133723621e-10 4.335672446e-10 2.947428303e-10 5.447151948e-10 4.354483715e-10 3.929791332e-10 3.031907774e-10 4.082005102e-10 3.8163377e-10 3.466742874e-10 3.27518869e-10 3.779430684e-10 3.510575391e-10 3.487561438e-10 3.716088217e-10 3.57378257e-10 2.905856342e-10 3.937135302e-10 2.760366439e-10 3.383698718e-10 3.126572872e-10 8.470586337e-11 2.229134334e-10 2.04114643e-10 2.653322508e-10 3.037105749e-10 4.219467748e-10 7.14147554e-10 4.694684231e-10 5.190508816e-10 7.295326886e-10 6.54800457e-10 8.487466588e-10 5.459527381e-10 5.567660831e-10 6.090562792e-10 5.039641112e-10 6.959238594e-10 5.558174802e-10 5.994317549e-10 4.962504292e-10 3.508426573e-10 3.161155381e-10 4.34198394e-10 4.466700901e-10 4.253503158e-10 3.200315435e-10 3.644054693e-10 3.874662926e-10 3.406312029e-10 3.033661745e-10 2.737458308e-10 1.38721633e-10 2.650229567e-10 1.33296679e-10 1.135571922e-10 9.609265296e-11 9.950196691e-11 2.020691179e-14 1.24153228e-10 2.617674517e-10 3.28567915e-10 2.087318545e-10 3.257325651e-10 4.031450106e-10 4.952698319e-10 4.285938054e-10 4.416653332e-10 4.419428637e-10 5.332020799e-10 5.912876248e-10 4.458750133e-10 4.812313547e-10 4.316643963e-10 5.105228403e-10 4.672118345e-10 4.106820072e-10 5.116172739e-10 5.206313036e-10 4.527136464e-10 3.747710333e-10 2.351868287e-10 2.830224643e-12 1.67433864e-10 7.528792423e-17 6.571650801e-11 2.318994676e-10 5.394366069e-18 1.03405758e-10 1.442944327e-10 2.408382824e-10 3.659480608e-10 3.482759948e-10 3.902670312e-10 4.309069534e-10 2.470561595e-10 4.45316934e-10 4.627411658e-10 4.563170346e-10 6.353221347e-10 4.500579127e-10 5.428706912e-10 5.600272052e-10 6.50932753e-10 7.502405813e-10 6.186044586e-10 5.342015914e-10 4.47320283e-10 6.548161373e-10 6.711449672e-10 4.329736355e-10 6.698449965e-10 5.130654818e-10 5.696413099e-10 6.941547055e-10 5.198344597e-10 4.631124478e-10 2.185280962e-10 1.191710608e-10 1.088929982e-10 1.271049757e-10 3.259376733e-10 1.657789599e-10 2.961513556e-10 2.857843508e-10 3.374543059e-10 2.663376857e-10 3.340436032e-10 4.588458343e-10 3.145454452e-10 3.968419125e-10 3.392384854e-10 3.574300329e-10 3.517223945e-10 4.090522386e-10 4.018344651e-10 4.142398829e-10 4.099326604e-10 6.106177848e-10 4.528057314e-10 2.81429706e-10 2.508353605e-10 4.076521085e-10 3.570033873e-10 3.71176882e-10 2.917370923e-10 4.051022474e-10 2.569319115e-10 2.129642825e-10 2.56384473e-10 2.705921408e-10 3.85787732e-10 4.422241199e-10 3.005280717e-10 3.65561296e-10 1.765220562e-10 3.331846907e-10 3.678958913e-10 5.035172621e-10 2.531079455e-10 3.641140833e-10 3.810130688e-10 2.341073735e-10 2.766428115e-10 2.381840696e-10 2.73455661e-10 3.754327643e-10 3.691306071e-10 2.617462003e-10 1.154124261e-10 2.236270854e-10 4.375988969e-10 2.787104922e-10 3.970777758e-10 3.261003428e-10 2.095729003e-10 3.375552152e-10 2.506615321e-10 4.183362071e-10 3.630255044e-10 1.605312861e-10 2.260439086e-10 3.01845604e-10 3.941268413e-10 4.963227454e-10 3.90230511e-10 1.493907811e-10 1.307951177e-10 1.481468305e-10 1.275510759e-10 7.289923111e-11 3.320379381e-10 8.765772016e-11 1.480917666e-10 1.671879841e-10 9.901510931e-11 6.895008106e-11 8.657239385e-11 1.811854072e-10 2.432434894e-10 1.220260834e-10 1.807402502e-10 1.23578298e-10 3.292184141e-10 1.446075715e-10 1.004721753e-10 6.762713483e-11 1.03805931e-10 1.301628088e-10 1.914844959e-10 1.491754246e-10 1.073837074e-10 3.604925391e-10 2.969329663e-10 1.006949575e-10 1.926634608e-10 1.968837826e-10 2.89377808e-10 2.914790656e-10 1.243547953e-10 2.645163611e-10 +9.237271876e-11 1.723917703e-10 1.167337059e-10 1.438668886e-10 1.752505286e-10 4.489480917e-10 3.634119006e-10 6.940797438e-11 2.185535114e-10 2.253637645e-10 2.255134817e-10 2.548289569e-10 1.853669693e-10 2.140717047e-10 3.749099028e-10 1.196728596e-10 2.386919195e-10 1.142006458e-10 4.418237918e-11 4.279440898e-10 2.666963239e-10 1.719607876e-10 2.9500495e-10 1.516196519e-10 1.948265225e-10 2.458450101e-10 1.225660203e-10 1.645489223e-10 1.337663997e-10 3.386121988e-10 2.519217896e-10 1.861129861e-10 1.501478141e-10 2.364541212e-10 2.706927933e-10 2.892965997e-10 1.63789949e-10 2.252411291e-10 4.446185432e-10 2.564665833e-10 3.027747243e-10 3.39384527e-10 2.465857313e-10 1.759191251e-10 3.820364258e-10 1.280801205e-10 2.311655872e-10 2.704408327e-10 2.647937135e-10 2.385084166e-10 1.839697717e-10 2.352912284e-10 2.447770687e-10 2.029890962e-10 4.058997135e-10 3.350133464e-10 2.848795041e-10 1.363456852e-10 2.834149539e-10 2.017990663e-10 2.636737457e-10 2.483710962e-10 4.689646309e-10 3.64900119e-10 3.461427938e-10 2.436365472e-10 1.972051943e-10 3.646873982e-10 2.369393215e-10 1.918816909e-10 1.566537837e-10 2.887089573e-10 2.030805751e-10 4.220470988e-10 3.037659241e-10 1.988088677e-10 2.680620544e-10 2.780155163e-10 4.797257648e-10 3.14964405e-10 4.213708218e-10 4.452883805e-10 4.9195143e-10 4.710147427e-10 3.735342535e-10 3.135067043e-10 4.312011465e-10 3.859502392e-10 3.79159736e-10 2.003693669e-10 4.113480535e-10 4.317295235e-10 2.275060538e-10 3.498422612e-10 3.577920579e-10 4.221143264e-10 2.612209502e-10 3.323822081e-10 3.460014553e-10 2.364207371e-10 2.944509565e-10 2.498300192e-10 3.225060727e-10 2.672529263e-10 5.369055648e-10 8.358920097e-10 5.332630605e-10 4.205656744e-10 4.8339063e-10 9.18351624e-10 6.587021417e-10 6.606855024e-10 5.600334321e-10 6.112589744e-10 6.015292011e-10 7.151240873e-10 7.140392914e-10 7.255874363e-10 5.676652512e-10 4.130249862e-10 5.68562807e-10 4.252420106e-10 2.963114541e-10 3.980814872e-10 4.049492364e-10 4.141207208e-10 3.475931386e-10 4.359825581e-10 3.983192406e-10 2.397972379e-10 9.156278166e-11 1.67869197e-10 1.637792117e-10 1.726914274e-10 5.250718222e-18 1.147669187e-10 1.265663337e-10 4.236314684e-10 2.237334571e-10 2.673349044e-10 4.177292421e-10 4.205606365e-10 4.741709639e-10 5.227534497e-10 5.108829405e-10 4.348574263e-10 6.180399193e-10 5.738853646e-10 3.395470126e-10 4.694749595e-10 4.211131707e-10 4.479911789e-10 5.457082252e-10 4.207661525e-10 5.013367892e-10 4.293646589e-10 4.714027152e-10 5.285792747e-10 3.924000495e-10 4.096736331e-10 3.889817323e-10 2.245571486e-10 2.528880278e-10 3.58264727e-10 8.814036969e-11 5.606739327e-12 3.644768875e-11 9.281630847e-11 1.188176338e-10 1.270356902e-10 2.26919676e-10 3.752077359e-10 3.968281408e-10 3.566556279e-10 4.587198696e-10 5.258911488e-10 4.809358699e-10 5.352628041e-10 3.835455997e-10 3.461703301e-10 4.52829639e-10 5.558854515e-10 6.283743807e-10 5.936159544e-10 6.093124174e-10 6.72071091e-10 6.072620911e-10 9.493958698e-10 7.489869706e-10 5.778586274e-10 9.28059116e-10 4.946553607e-10 5.881458746e-10 5.147913789e-10 8.382511001e-10 4.020910042e-10 1.916353565e-10 2.5375666e-10 9.593865747e-11 1.858544935e-10 4.795725846e-10 3.692252895e-10 2.545366301e-10 3.200128369e-10 1.908589453e-10 3.535161338e-10 3.910397475e-10 3.43758573e-10 3.745809621e-10 4.322730452e-10 3.793062377e-10 3.950382553e-10 3.767353948e-10 3.241444463e-10 4.796992031e-10 5.645904428e-10 3.507120607e-10 5.569898459e-10 6.19309948e-10 2.885556765e-10 4.290289295e-10 2.140057308e-10 3.086793582e-10 2.912061339e-10 3.672657556e-10 3.160758699e-10 3.452373864e-10 3.726108946e-10 2.777874524e-10 3.216196776e-10 3.774407556e-10 2.896506235e-10 1.696124174e-10 2.502586542e-10 2.975958043e-10 2.100105659e-10 2.647378467e-10 3.262073355e-10 3.953324485e-10 2.319672273e-10 2.523050037e-10 3.281472777e-10 2.061071816e-10 2.152513934e-10 2.033392052e-10 3.739986671e-10 2.51116177e-10 4.294620308e-10 3.109508359e-10 3.952559106e-10 3.201664374e-10 4.774008247e-10 2.956859222e-10 2.663560142e-10 2.095028653e-10 1.993646317e-10 1.783828789e-10 2.617354832e-10 1.424514075e-10 2.192876632e-10 3.670358479e-10 2.34904984e-10 1.909320724e-10 2.042555804e-10 2.576841095e-10 1.589445271e-10 2.209138163e-10 2.184606821e-10 1.775774633e-10 2.676534739e-10 1.056885418e-10 1.603568219e-10 1.6642473e-10 9.097449408e-11 2.919483827e-10 1.896823263e-10 7.183380623e-11 2.38720421e-10 3.159995045e-10 4.507974693e-10 3.13940691e-10 1.17276306e-10 1.643763189e-10 1.518315213e-10 4.318067153e-10 2.534587838e-10 1.718018555e-10 1.44607362e-10 1.794227893e-10 4.542665528e-11 2.818574717e-10 1.804730282e-10 1.393002088e-10 1.218258601e-10 2.3584458e-10 7.969825248e-11 1.351034904e-10 2.483967337e-10 1.87793926e-10 1.175396296e-10 +1.613301027e-10 2.004875376e-10 2.931306045e-10 1.021992168e-10 2.448594807e-10 2.534042788e-10 1.42339463e-10 1.058811708e-10 9.471968569e-11 3.550317213e-10 1.891237546e-10 1.023265719e-10 1.043831168e-10 2.188349615e-10 1.854892916e-10 1.809343071e-10 2.368647042e-10 1.650914498e-10 1.320502178e-10 2.989386071e-10 1.141253345e-10 2.598763962e-10 1.684439943e-10 1.140847694e-10 3.45860908e-10 2.329498084e-10 2.210071456e-10 1.506250066e-10 1.534012758e-10 2.156642124e-10 1.858396488e-10 2.632640054e-10 3.098975186e-10 1.387283252e-10 3.717422539e-10 3.740046779e-10 1.996336261e-10 5.012990517e-10 3.599182845e-10 1.845887384e-10 2.490440151e-10 1.223528795e-10 2.333175364e-10 3.840663805e-10 2.121633058e-10 3.100669646e-10 3.717067546e-10 3.573363649e-10 5.045708986e-10 5.11465365e-10 3.992764802e-10 2.893672775e-10 3.427425345e-10 1.939949489e-10 2.214961137e-10 2.218235324e-10 4.28081163e-10 3.359388481e-10 2.224813433e-10 2.289945051e-10 2.193834441e-10 2.575100532e-10 2.875687402e-10 3.379327943e-10 3.248431781e-10 2.942789239e-10 2.465872318e-10 2.909859039e-10 3.084259957e-10 3.91051102e-10 4.788371802e-10 1.831985558e-10 2.765412048e-10 1.921366846e-10 1.520888205e-10 3.324198985e-10 1.898293975e-10 2.395585312e-10 2.129033433e-10 2.426761645e-10 4.762292116e-10 5.369065794e-10 4.130331458e-10 4.63768066e-10 3.377784897e-10 5.298007182e-10 3.261403581e-10 3.804926789e-10 4.107875804e-10 5.164029609e-10 3.246639488e-10 4.020073296e-10 3.111809806e-10 3.29727811e-10 4.24253088e-10 2.403597086e-10 3.130275089e-10 2.764574679e-10 1.711057687e-10 3.603894036e-10 6.533466374e-11 1.780155098e-10 2.791830913e-10 2.407623354e-10 3.602935463e-10 6.298089734e-10 4.92819585e-10 4.098728335e-10 6.03421183e-10 7.382269834e-10 4.768364288e-10 5.304204421e-10 4.78279466e-10 8.348512059e-10 8.42761163e-10 6.520272096e-10 6.18493563e-10 6.702547506e-10 4.543883329e-10 4.088169651e-10 4.703875754e-10 3.923171871e-10 3.480938904e-10 3.939816515e-10 3.306068474e-10 4.716133324e-10 4.132986973e-10 2.238912201e-10 1.712779001e-10 2.330400723e-10 1.277804244e-10 1.265986786e-10 1.069602827e-10 9.350319374e-11 9.87514333e-11 1.442408234e-10 2.315474409e-10 3.043548564e-10 4.613309367e-10 4.822274413e-10 4.997965401e-10 4.245707549e-10 5.020796476e-10 5.048282885e-10 3.983313695e-10 4.624841491e-10 6.078878834e-10 5.755399629e-10 5.401327995e-10 4.471156435e-10 5.407386937e-10 4.538026248e-10 5.358026528e-10 5.122485588e-10 5.159387377e-10 4.522760184e-10 4.850675664e-10 4.579686915e-10 5.395603193e-10 3.915371698e-10 4.989423624e-10 3.495370749e-10 2.968383188e-10 3.59089444e-10 1.645023377e-10 6.593461247e-11 1.008814723e-10 1.406731986e-10 1.11372955e-10 8.751335814e-13 1.871680798e-10 1.950499079e-10 3.838360337e-10 3.472045932e-10 3.35975352e-10 4.323957685e-10 3.591026185e-10 3.695354489e-10 5.021933201e-10 4.92233518e-10 5.572058349e-10 6.096452139e-10 6.125246827e-10 6.245810836e-10 7.194715662e-10 6.374869294e-10 7.381420312e-10 5.036544799e-10 6.44772117e-10 6.713415862e-10 4.95572423e-10 3.957111796e-10 6.089632637e-10 7.382318442e-10 8.543191099e-10 6.640348882e-10 3.288254729e-10 3.055380986e-10 1.972033423e-10 1.17344762e-10 1.618593586e-10 2.379905769e-10 1.946785124e-10 3.10912787e-10 2.83438348e-10 2.582271375e-10 3.122635411e-10 3.051191083e-10 4.273547748e-10 4.359792134e-10 2.785469668e-10 3.584717689e-10 3.331395915e-10 3.26366069e-10 5.018161531e-10 4.268209528e-10 3.169923793e-10 5.1847186e-10 3.514212561e-10 2.766359779e-10 4.945280085e-10 2.207794288e-10 2.498833003e-10 2.675705692e-10 3.484536379e-10 2.596050357e-10 2.200668655e-10 3.710584901e-10 4.342482535e-10 2.227642395e-10 2.664307674e-10 3.191960664e-10 2.666639261e-10 2.450223868e-10 4.303689818e-10 2.840520176e-10 2.038821868e-10 2.902747285e-10 3.129797228e-10 3.900261904e-10 2.60715496e-10 1.793342809e-10 2.215762915e-10 2.092759775e-10 1.901307487e-10 1.915087729e-10 2.500110929e-10 1.225922776e-10 5.007052662e-10 3.715770821e-10 3.864992001e-10 3.406133658e-10 2.015034392e-10 2.596293289e-10 3.28397695e-10 2.160490175e-10 3.704899403e-10 2.676299161e-10 1.416879435e-10 1.742230119e-10 2.822851216e-10 2.683786271e-10 3.289008234e-10 2.838092566e-10 2.855299039e-10 1.944589014e-10 1.357399271e-10 1.497025282e-10 1.837326249e-10 1.501627703e-10 1.674257194e-10 1.325474744e-10 2.943568443e-10 1.537019855e-10 2.574274885e-10 2.280157277e-10 1.144069325e-10 2.310866525e-10 2.0497356e-10 1.508402346e-10 2.718124785e-10 2.233670205e-10 2.296642391e-10 3.050005873e-10 1.966390433e-10 1.526344149e-10 1.61433036e-10 1.262245885e-10 1.634511244e-10 1.863786927e-10 2.512159168e-10 1.38468792e-10 2.690428754e-10 1.164933819e-10 1.840169448e-10 2.752278713e-10 2.572342538e-10 1.289992305e-10 1.298716161e-10 2.100854291e-10 +6.308279043e-11 1.320886418e-10 9.486993151e-11 3.316944275e-10 1.644674111e-10 1.805435994e-10 2.854913131e-10 2.807185419e-10 1.716856376e-10 7.800103984e-11 2.60796172e-10 1.168070511e-10 2.967215641e-10 1.547930322e-10 1.021116767e-10 2.869974907e-10 1.634227762e-10 2.644001906e-10 1.870684562e-10 1.852540736e-10 2.699489671e-10 2.408330876e-10 1.454429686e-10 1.490051284e-10 1.680893631e-10 1.397232167e-10 1.790073428e-10 3.059238341e-10 2.890655427e-10 2.18338329e-10 2.557744686e-10 2.543460801e-10 1.973611904e-10 2.629781694e-10 1.256460488e-10 3.809669626e-10 2.132809236e-10 2.618268799e-10 2.190692306e-10 2.055915272e-10 3.12756282e-10 4.473045123e-10 4.11860197e-10 3.757013731e-10 2.127382212e-10 3.740521064e-10 2.975132479e-10 3.441180749e-10 2.747121658e-10 2.609884075e-10 2.319792495e-10 3.886772548e-10 3.655156212e-10 4.184992961e-10 3.309891679e-10 1.811086635e-10 2.688879192e-10 3.389455714e-10 1.56027656e-10 2.121478917e-10 2.667576575e-10 2.828738806e-10 3.068004818e-10 3.674516576e-10 3.921084439e-10 2.300843015e-10 9.62006874e-11 1.813296831e-10 3.446646053e-10 3.361598405e-10 3.115263146e-10 3.736682054e-10 4.724847011e-10 2.414957105e-10 2.425889977e-10 2.132003684e-10 2.481243278e-10 2.913985094e-10 3.718742859e-10 3.905831319e-10 3.789723102e-10 4.207321784e-10 3.76458935e-10 4.570901673e-10 4.678402775e-10 4.168754342e-10 4.430475586e-10 4.841783344e-10 5.217635651e-10 3.700249195e-10 3.895214577e-10 4.313048847e-10 3.770701693e-10 5.390076927e-10 3.795734899e-10 3.930734704e-10 5.548386009e-10 2.29716651e-10 2.163437519e-10 2.753983548e-10 2.315026337e-10 2.215219964e-10 1.451901456e-10 5.840007907e-10 6.890299299e-10 6.269305972e-10 7.235160205e-10 4.734574268e-10 5.917193612e-10 9.574255298e-10 4.712301106e-10 6.171166611e-10 4.823084376e-10 4.614538898e-10 5.489433865e-10 6.183348346e-10 6.095672473e-10 5.119184227e-10 4.801985333e-10 4.037695435e-10 5.643923963e-10 5.50255417e-10 5.595335428e-10 4.097677092e-10 5.084145138e-10 3.703234201e-10 3.730927228e-10 1.249247627e-10 2.144079074e-10 1.449922632e-10 1.199623723e-10 1.418262869e-10 1.617887577e-12 7.564538909e-11 1.300496446e-10 3.190848611e-10 4.311704004e-10 4.414891436e-10 5.73324111e-10 4.198890533e-10 5.21436536e-10 5.043054835e-10 4.56063262e-10 5.12078797e-10 5.162169368e-10 4.805085367e-10 4.630966323e-10 4.187426703e-10 3.959422538e-10 5.240620704e-10 4.088865643e-10 4.816398618e-10 3.758288738e-10 4.322452862e-10 4.607156717e-10 4.173471963e-10 5.24024963e-10 4.775993583e-10 4.943464656e-10 4.715078836e-10 5.408662176e-10 3.97388865e-10 4.235402456e-10 3.253931459e-10 2.753355146e-10 1.562510186e-10 1.045979511e-10 1.419104216e-10 1.457458968e-10 1.466769778e-10 2.081957035e-10 1.612571262e-10 2.785795268e-10 3.087451115e-10 3.428185454e-10 4.03494432e-10 4.953768451e-10 4.919616193e-10 3.5129202e-10 3.597195729e-10 3.928068786e-10 3.984109717e-10 6.484968393e-10 7.157154805e-10 5.168905149e-10 7.185879137e-10 5.443242007e-10 7.324372525e-10 5.477515685e-10 8.599004007e-10 7.422043251e-10 5.977372945e-10 7.332044001e-10 6.634729207e-10 4.663057745e-10 5.200467327e-10 3.975413753e-10 3.186722109e-10 2.225067333e-10 1.983957994e-10 1.169091319e-10 2.154111473e-10 2.900243418e-10 4.665414075e-10 3.881567338e-10 3.561005083e-10 3.765682473e-10 2.733614894e-10 5.1474787e-10 3.551099982e-10 3.083566599e-10 4.388652592e-10 4.914059529e-10 6.355467663e-10 3.216379833e-10 3.196049765e-10 3.663768969e-10 4.668344828e-10 3.393638211e-10 2.616861148e-10 3.853464631e-10 2.237443113e-10 2.445434202e-10 2.30368906e-10 2.647336381e-10 3.42215281e-10 2.349819999e-10 1.737704092e-10 4.027430532e-10 2.975865316e-10 2.635944694e-10 4.42936682e-10 4.048898486e-10 2.848036336e-10 4.487600433e-10 4.312600964e-10 2.342585564e-10 2.15614979e-10 2.215256731e-10 1.918682206e-10 1.71837136e-10 2.282160126e-10 3.449197859e-10 2.368389167e-10 3.450578682e-10 2.06467762e-10 3.603553235e-10 4.007051692e-10 2.059475376e-10 3.65812806e-10 3.549812123e-10 1.575207735e-10 4.231167463e-10 2.606586068e-10 2.438156875e-10 1.610106788e-10 3.364227043e-10 4.464648312e-10 3.765109874e-10 3.11366344e-10 3.047614615e-10 3.016057235e-10 4.842371162e-10 3.024433549e-10 2.00275259e-10 1.290361438e-10 2.243317158e-10 1.881083009e-10 2.20155465e-10 1.759993588e-10 1.181224918e-10 1.685623905e-10 2.561788944e-10 9.428667811e-11 1.476119241e-10 1.548059688e-10 2.628970617e-10 2.683562564e-10 1.305511636e-10 1.878019646e-10 2.919493519e-10 1.554845969e-10 1.286775407e-10 2.513965478e-10 1.573510609e-10 1.414783451e-10 2.521329832e-10 2.195402817e-10 2.157132227e-10 1.038065026e-10 2.615344812e-10 3.025732529e-10 2.607564608e-10 7.549103404e-11 1.572901076e-10 1.599320939e-10 3.562591593e-10 2.771818616e-10 1.660544342e-10 1.659274624e-10 +3.362824568e-10 2.614140782e-10 3.030582178e-10 6.103456098e-11 1.307803574e-10 1.851519967e-10 2.861345006e-10 2.372708916e-10 2.150756182e-10 4.339343112e-10 3.574841628e-10 1.580507425e-10 1.817329376e-10 1.108405524e-10 6.520234599e-11 3.231015768e-10 1.885865092e-10 1.977636707e-10 1.461288113e-10 1.594039839e-10 1.822281989e-10 3.012282815e-10 2.591966129e-10 2.121427558e-10 1.181493896e-10 1.23856432e-10 1.128701037e-10 2.298715116e-10 1.304250439e-10 1.369738858e-10 2.061281799e-10 2.412848961e-10 2.487257353e-10 2.658995312e-10 1.885532182e-10 1.225761379e-10 3.22624182e-10 2.763388795e-10 1.506925328e-10 1.929054133e-10 3.328936805e-10 1.661975226e-10 2.556470454e-10 2.062224152e-10 3.745994298e-10 2.700978885e-10 2.454409738e-10 2.311051661e-10 4.158722016e-10 2.88897008e-10 3.170612223e-10 4.551313658e-10 2.492661985e-10 2.854262346e-10 1.99642592e-10 2.444116709e-10 3.113585865e-10 2.782972666e-10 2.511520898e-10 1.294302906e-10 3.758523234e-10 4.108970737e-10 3.277227881e-10 3.275936692e-10 2.993317111e-10 2.64917435e-10 2.146883332e-10 3.470672434e-10 3.134474346e-10 4.209117204e-10 4.157462443e-10 2.671267746e-10 4.465124179e-10 2.727303577e-10 3.278889815e-10 2.779007283e-10 2.645984317e-10 3.097073152e-10 2.887833769e-10 4.051823398e-10 2.095552427e-10 5.223590794e-10 4.913362984e-10 5.304700132e-10 3.431511737e-10 3.682201121e-10 3.354605263e-10 3.906445728e-10 3.067635164e-10 2.657591758e-10 3.547202979e-10 3.790747025e-10 4.632631717e-10 3.952810951e-10 5.018299812e-10 3.487868752e-10 2.823118952e-10 3.770663037e-10 2.084425677e-10 1.037863477e-10 2.123836276e-10 2.797769781e-10 2.700168735e-10 7.246162569e-10 4.567933256e-10 5.660066375e-10 7.546046259e-10 9.572053304e-10 6.475867676e-10 6.311651413e-10 6.381776261e-10 5.310521689e-10 7.021688926e-10 7.181090415e-10 6.356779415e-10 8.78504158e-10 5.83442829e-10 4.910392261e-10 4.268187182e-10 5.078885377e-10 5.563324528e-10 3.406909023e-10 4.800095563e-10 4.229818882e-10 4.414819944e-10 2.83548332e-10 1.743311395e-10 2.780716534e-10 3.666082576e-11 8.131646327e-11 3.915528618e-10 1.145973941e-20 1.438576338e-10 1.866458948e-10 2.646250773e-10 3.154173814e-10 5.099785039e-10 3.504068734e-10 4.817788801e-10 6.174847528e-10 5.221990701e-10 5.23260248e-10 3.876712661e-10 4.198056421e-10 5.154653389e-10 4.150580281e-10 5.233385138e-10 6.303497858e-10 6.192344836e-10 6.141151287e-10 6.265268482e-10 6.23170907e-10 6.029068999e-10 5.38076223e-10 4.53146739e-10 5.18510418e-10 4.703294171e-10 5.489037276e-10 5.143968716e-10 4.863796739e-10 5.320083743e-10 4.451849198e-10 5.965571678e-10 5.236998793e-10 4.420241121e-10 5.426203742e-10 2.059819061e-10 9.627383658e-11 1.76472853e-10 1.406759738e-10 2.426319221e-10 5.303810582e-12 2.220511856e-10 2.550341966e-10 3.956688935e-10 3.942040859e-10 5.574636203e-10 4.137554652e-10 5.141172272e-10 4.727111411e-10 5.361828248e-10 4.855945075e-10 4.651894617e-10 6.951392048e-10 6.019365915e-10 5.961199115e-10 6.64745272e-10 9.099126531e-10 4.167406477e-10 6.615043548e-10 7.185939236e-10 7.704697374e-10 4.226780954e-10 6.369622132e-10 6.503937544e-10 4.44023178e-10 4.269591095e-10 2.107180948e-10 2.198733116e-10 7.465466364e-11 1.685261076e-10 2.478785728e-10 3.724432319e-10 2.6476811e-10 4.190593314e-10 4.528364233e-10 2.655999463e-10 4.858966983e-10 3.381681192e-10 4.020709749e-10 4.375610692e-10 5.202739649e-10 5.02007172e-10 3.103079907e-10 4.315050739e-10 4.372173041e-10 3.554078848e-10 5.025477734e-10 4.490751784e-10 3.592128548e-10 3.586594185e-10 3.75444765e-10 2.344290321e-10 2.08368817e-10 3.194538075e-10 3.831680948e-10 3.715062522e-10 2.256043662e-10 3.023898502e-10 2.312633241e-10 1.445635106e-10 3.183064776e-10 2.196153488e-10 3.108613305e-10 1.561610545e-10 2.319048721e-10 1.750099041e-10 2.818665202e-10 1.881351171e-10 1.778090131e-10 2.782696532e-10 1.848603721e-10 2.601879245e-10 1.314485547e-10 2.899345345e-10 1.886309979e-10 2.977345763e-10 4.066538012e-10 2.222191825e-10 3.642147361e-10 1.454772128e-10 3.100602568e-10 2.481689296e-10 4.001264829e-10 3.677744212e-10 4.037548052e-10 4.804881843e-10 1.442671211e-10 3.220479551e-10 2.124406164e-10 2.449618823e-10 1.492466965e-10 1.934792913e-10 1.879743286e-10 9.539652804e-11 2.81144948e-10 3.253092205e-10 3.379729106e-10 1.645036756e-10 8.212692995e-11 2.632368985e-10 2.93436242e-10 2.058533361e-10 2.901162721e-10 3.059585411e-10 4.772893522e-11 2.081327568e-10 9.991764243e-11 1.918894856e-10 1.376057316e-10 2.064621879e-10 4.066581842e-10 2.046258293e-11 5.89630231e-11 1.641414241e-10 1.375312967e-10 1.618437647e-10 1.997230164e-10 1.437861094e-10 1.006608896e-10 1.20683933e-10 9.702395274e-11 1.486489946e-10 3.378725557e-10 1.409435022e-10 2.948243013e-10 2.414480821e-10 1.47042716e-10 1.661109032e-10 1.482092695e-10 +1.380862805e-10 5.087012551e-10 2.45543301e-10 1.351144382e-10 3.079686359e-10 8.503095841e-11 3.022486103e-10 1.330355218e-10 1.833840941e-10 3.195337499e-10 1.817315693e-10 2.40888289e-10 1.347307489e-10 7.685906984e-11 3.476128362e-10 9.568541439e-11 3.30289598e-10 1.392989856e-10 1.737484076e-10 2.240038753e-10 1.20474134e-10 5.126968705e-11 2.273596179e-10 7.726391075e-11 1.231270207e-10 1.495660074e-10 3.047559814e-10 1.227971063e-10 1.297010869e-10 1.218221159e-10 4.768761669e-10 1.300792912e-10 1.408682834e-10 3.409949828e-10 2.327013891e-10 2.978037511e-10 2.178991907e-10 1.275519404e-10 1.902466485e-10 1.864855473e-10 2.286015701e-10 2.994250451e-10 3.95985621e-10 4.065890519e-10 2.505065032e-10 3.034575974e-10 3.65749233e-10 2.587116124e-10 2.944221204e-10 1.586026607e-10 3.473879004e-10 1.318902695e-10 1.894553874e-10 2.32489445e-10 3.630830083e-10 9.623305533e-11 1.266875394e-10 2.309315803e-10 1.90623605e-10 1.230174921e-10 3.612105846e-10 3.630044939e-10 2.390031525e-10 2.363983369e-10 2.391098286e-10 2.55705252e-10 3.398815094e-10 4.591612842e-10 3.020636219e-10 2.88946984e-10 3.076315847e-10 1.732238164e-10 3.184477207e-10 2.946962497e-10 2.344726281e-10 1.667156798e-10 4.800265363e-10 3.366695135e-10 3.417093023e-10 3.006613999e-10 3.29033725e-10 3.974168473e-10 4.58966793e-10 3.096563841e-10 2.834115425e-10 4.369907595e-10 4.354288834e-10 4.158907672e-10 2.329101184e-10 3.217546296e-10 2.676834971e-10 4.005750982e-10 3.889838563e-10 4.144868886e-10 3.92683426e-10 3.099138967e-10 2.407192783e-10 1.894519125e-10 3.016968776e-10 1.305954419e-10 1.124870471e-10 2.646199903e-10 3.477288426e-10 4.251112038e-10 6.41003551e-10 8.836277866e-10 5.000667825e-10 5.508816097e-10 5.480881879e-10 4.704260125e-10 3.798781231e-10 6.164383476e-10 6.875754391e-10 6.602871371e-10 3.774250517e-10 8.176767649e-10 4.590211821e-10 4.752029743e-10 5.580907208e-10 3.162643209e-10 4.383753128e-10 3.528962999e-10 3.813986706e-10 4.386985406e-10 4.783768577e-10 4.163169674e-10 2.720313976e-10 1.209971308e-10 3.644255371e-43 7.205150233e-11 1.147995298e-10 1.569266697e-10 3.203862219e-10 3.338240292e-10 3.554802832e-10 4.572376715e-10 5.008255426e-10 4.915256942e-10 4.285861664e-10 5.672314247e-10 5.768944275e-10 5.498493443e-10 4.916561275e-10 6.175355397e-10 7.427470561e-10 6.441731903e-10 8.285564889e-10 5.852911015e-10 8.382253301e-10 6.517430621e-10 6.653389362e-10 8.217762197e-10 9.594885427e-10 5.631570631e-10 8.412233508e-10 6.088528882e-10 4.986650768e-10 5.405909492e-10 4.86887177e-10 6.187374037e-10 5.064388312e-10 4.490287375e-10 5.082030385e-10 4.210839699e-10 4.103550608e-10 3.686906243e-10 1.678000414e-10 1.773881573e-10 1.047225628e-10 5.527524521e-11 1.037276186e-10 1.402575064e-10 1.754274161e-10 1.744539651e-10 3.407035812e-10 2.31948621e-10 3.234830806e-10 5.287402797e-10 2.85690661e-10 3.945869578e-10 3.166966952e-10 3.835792428e-10 5.367037157e-10 6.866247276e-10 6.422374861e-10 6.24469325e-10 5.109440007e-10 6.179078239e-10 4.890898809e-10 7.937913115e-10 5.956576819e-10 7.157854579e-10 6.759370162e-10 4.356344043e-10 6.237634558e-10 5.252895998e-10 9.347345955e-11 2.245190701e-10 2.124951711e-10 2.17663459e-10 6.976061859e-11 2.351490328e-10 2.934600302e-10 3.87968087e-10 1.635261566e-10 3.537686749e-10 4.682601454e-10 2.382067828e-10 3.775097473e-10 3.504616052e-10 4.612307884e-10 4.40591598e-10 5.535006321e-10 4.031001692e-10 4.330589078e-10 5.204952574e-10 3.417892443e-10 4.516910932e-10 3.582841563e-10 2.448050014e-10 3.770127084e-10 1.978024521e-10 3.312946143e-10 1.790440799e-10 2.83708969e-10 2.791089045e-10 3.672803552e-10 3.430665164e-10 3.966040373e-10 2.165097357e-10 2.48159291e-10 2.686106652e-10 4.560050636e-10 2.537553187e-10 2.457032167e-10 3.879579363e-10 3.763796912e-10 3.166480487e-10 3.573967989e-10 1.62164158e-10 3.115342594e-10 1.486584648e-10 1.809564315e-10 3.440197004e-10 1.115535784e-10 1.777884053e-10 3.063691384e-10 2.746855985e-10 2.007822065e-10 2.633968389e-10 1.658741287e-10 1.607964175e-10 2.822366589e-10 2.322124057e-10 1.757709538e-10 2.466288848e-10 2.151305332e-10 1.846697891e-10 3.921423983e-10 3.257340992e-10 2.085354265e-10 1.690171263e-10 2.210309199e-10 2.147118956e-10 2.649624084e-10 1.41532809e-10 1.95772689e-10 1.490145562e-10 1.09466958e-10 2.132233437e-10 2.372403284e-10 1.577199289e-10 2.147869875e-10 1.708794234e-10 6.861392514e-11 1.19440104e-10 2.475627254e-10 2.854346886e-10 1.043048389e-10 1.959686107e-10 4.116499497e-10 9.940962769e-11 1.120817321e-10 2.679758305e-10 1.03669295e-10 1.439908322e-10 1.786055574e-10 1.224157879e-10 1.270883943e-10 1.237604017e-10 3.558027589e-10 6.565942193e-11 9.521752088e-11 3.038355147e-10 3.626267954e-11 1.25808772e-10 9.473572375e-11 2.219989795e-10 1.185302588e-10 2.282303267e-10 +1.981999321e-10 1.110818767e-10 2.814223233e-10 3.055781266e-10 1.675325752e-10 8.751807523e-11 2.04257162e-10 2.642975563e-10 1.119499972e-10 1.891194591e-10 1.422681008e-10 2.096694017e-10 2.065790218e-10 1.260629651e-10 2.487388546e-10 1.54076922e-10 9.684042016e-11 2.700192401e-10 3.197494992e-10 3.981610787e-10 1.035757808e-10 1.384706122e-10 1.909211483e-10 1.334762638e-10 1.644262908e-10 1.350887168e-10 3.563011907e-10 2.75479082e-10 2.400386906e-10 1.111290569e-10 9.914562569e-11 2.048513251e-10 1.459720237e-10 3.047780927e-10 1.719183901e-10 1.80296605e-10 2.039471822e-10 2.687591913e-10 2.540514957e-10 2.838966424e-10 1.876048844e-10 3.436114492e-10 3.71224718e-10 4.134173963e-10 1.880188791e-10 2.112345187e-10 3.949608933e-10 3.01591713e-10 2.861562447e-10 2.855998157e-10 2.511470377e-10 2.625119462e-10 2.225215628e-10 1.969966335e-10 1.875170426e-10 2.815776369e-10 2.587312693e-10 2.744682145e-10 3.218782599e-10 3.242664707e-10 1.711286991e-10 3.751691721e-10 2.834330754e-10 3.301434805e-10 1.965074868e-10 3.480715461e-10 2.079146587e-10 2.57355206e-10 3.26455107e-10 2.513488598e-10 3.203525552e-10 3.111623426e-10 2.500580005e-10 3.910769232e-10 3.994195055e-10 2.7189664e-10 3.650547123e-10 3.525051676e-10 2.680762187e-10 2.874358162e-10 4.879091747e-10 4.600538961e-10 4.185881318e-10 3.637331279e-10 3.279848497e-10 4.012005641e-10 4.158834345e-10 4.802557014e-10 3.98460586e-10 2.93155718e-10 3.49386212e-10 3.138742146e-10 3.002666542e-10 2.945742252e-10 4.250491957e-10 2.873364637e-10 4.12725384e-10 1.385137997e-10 2.578737597e-10 1.223381438e-10 1.924511528e-10 2.487187911e-10 2.576507818e-10 4.616427837e-10 4.989110783e-10 3.976269291e-10 6.887262123e-10 5.138370238e-10 5.844028643e-10 5.599792429e-10 3.775984645e-10 5.209757441e-10 4.175519087e-10 4.694574238e-10 5.841796609e-10 5.939079426e-10 5.310928923e-10 5.498746574e-10 5.622260959e-10 3.193433875e-10 6.218280534e-10 4.947682797e-10 3.197002112e-10 4.248312783e-10 3.922493398e-10 3.80657549e-10 2.295738344e-10 9.814702789e-11 8.081416975e-11 1.189138773e-10 1.301401627e-10 1.735847413e-10 1.677658439e-10 3.378518592e-10 3.961744097e-10 5.0084626e-10 4.457549639e-10 5.825360022e-10 5.738786942e-10 4.089393529e-10 4.177615303e-10 5.778455353e-10 6.694959423e-10 9.06853681e-10 7.374882081e-10 8.261633379e-10 8.156930785e-10 9.789019181e-10 7.640438942e-10 9.124140137e-10 7.219532677e-10 8.960948639e-10 6.884421015e-10 8.167709927e-10 6.439411005e-10 6.570748922e-10 6.527816244e-10 5.34339784e-10 6.029794138e-10 5.388522161e-10 4.940105054e-10 5.476506985e-10 5.228873858e-10 4.382355111e-10 4.763327904e-10 4.200387456e-10 3.253638928e-10 1.442412303e-10 1.807129652e-10 7.762034948e-11 2.231562119e-10 8.317560157e-18 2.136835791e-10 1.028525138e-10 2.5678976e-10 4.10657524e-10 3.752107471e-10 5.020646674e-10 3.566896669e-10 4.080666973e-10 6.598126883e-10 4.521643024e-10 4.446803075e-10 5.818402997e-10 7.070412863e-10 7.152511316e-10 5.205001294e-10 4.064083778e-10 5.859701203e-10 5.31234257e-10 4.926668264e-10 6.40560081e-10 6.334063705e-10 5.187967348e-10 5.245879921e-10 7.716305935e-10 3.261696606e-10 2.372208689e-10 2.332966894e-10 2.387731073e-10 2.054378423e-10 1.598396276e-10 2.627049264e-10 2.854768859e-10 3.064266532e-10 3.449573093e-10 4.585511577e-10 3.472504816e-10 4.722157531e-10 3.016993673e-10 4.39374177e-10 4.991743078e-10 4.18162642e-10 4.184954876e-10 4.015073948e-10 5.279345535e-10 4.554928972e-10 4.669896476e-10 3.879613017e-10 3.930297205e-10 4.247416562e-10 5.135171895e-10 4.40955815e-10 3.124248587e-10 2.055501704e-10 3.018877685e-10 1.608176751e-10 3.115570931e-10 5.40780322e-10 4.739099371e-10 2.731848191e-10 4.028952354e-10 3.062060161e-10 2.219059045e-10 3.4917809e-10 2.804707692e-10 2.092784358e-10 3.029966323e-10 3.34890023e-10 3.255679407e-10 2.114595558e-10 1.163141026e-10 2.24388939e-10 2.839717778e-10 1.973130293e-10 3.036551322e-10 3.609554117e-10 3.22741743e-10 1.289556265e-10 2.915263602e-10 2.298355355e-10 1.553850474e-10 2.291926352e-10 3.887038756e-10 4.73025284e-10 2.90134714e-10 1.391013479e-10 1.373201662e-10 3.183259776e-10 3.21175243e-10 3.144324068e-10 3.684671988e-10 1.993606568e-10 1.491442942e-10 2.58735041e-10 1.779479086e-10 2.855215819e-10 2.315655968e-10 1.630922082e-10 1.981225186e-10 1.50771405e-10 2.047814073e-10 1.266371293e-10 6.86187737e-11 1.734253155e-10 1.75094e-10 1.422569106e-10 2.844038786e-10 1.561753583e-10 1.925816912e-10 2.753931734e-10 2.890541343e-10 1.652066089e-10 1.840021939e-10 1.546288734e-10 1.533748082e-10 1.904642371e-11 2.963506602e-10 2.10320694e-10 2.393236012e-10 8.713663146e-11 1.043651491e-10 1.37542862e-10 2.871465712e-10 2.175900923e-10 2.046738828e-10 1.438131603e-10 1.850835862e-10 4.43879299e-10 2.322922681e-10 +1.915250188e-10 1.006139092e-10 4.185676733e-10 2.431925931e-10 1.874636676e-10 2.295932274e-10 1.570967413e-10 4.488979019e-11 4.1811304e-10 1.135699093e-10 1.103318571e-10 1.185907074e-10 2.519362918e-10 3.554856398e-10 1.616488079e-10 9.96308262e-11 5.761291306e-11 2.2977564e-10 1.264140457e-10 2.028966067e-10 2.106038783e-10 1.218110094e-10 3.421340596e-10 3.545150814e-10 1.163623439e-10 2.353955056e-10 3.947656074e-10 1.957133504e-10 4.979330202e-11 2.111466367e-10 9.135577557e-11 3.886015443e-10 3.595818104e-10 1.738519126e-10 1.67714723e-10 1.833682034e-10 3.483735121e-10 3.762106525e-10 4.801395555e-10 4.769758973e-10 1.606909861e-10 1.789597253e-10 3.074904555e-10 3.328789504e-10 3.255238594e-10 1.806712007e-10 4.198812036e-10 2.239644527e-10 2.729387836e-10 3.441141516e-10 3.374470653e-10 3.049000725e-10 3.085457794e-10 3.82594577e-10 2.040324233e-10 2.682303999e-10 1.649718083e-10 2.21687864e-10 2.443908067e-10 2.589403075e-10 1.818262705e-10 3.47992007e-10 1.613402038e-10 3.387170692e-10 3.295067631e-10 2.804388584e-10 2.55116865e-10 3.135659588e-10 3.70743012e-10 3.275341239e-10 3.125305866e-10 3.500549201e-10 4.668554352e-10 1.286801998e-10 2.440803884e-10 2.027277674e-10 3.285938528e-10 2.637052917e-10 3.255585071e-10 3.500478614e-10 4.109708354e-10 4.874972732e-10 6.365846939e-10 4.586341918e-10 3.114882096e-10 5.545378559e-10 3.700515634e-10 4.733298174e-10 5.611156518e-10 4.757290497e-10 3.885609375e-10 4.294945037e-10 2.488672101e-10 3.629688607e-10 2.786611299e-10 3.608632154e-10 2.681856949e-10 2.340311346e-10 2.261623205e-10 1.377765315e-10 3.529055895e-10 2.392404202e-10 2.397736898e-10 6.874987285e-10 4.735480888e-10 7.581990895e-10 5.854260845e-10 6.675832943e-10 7.073343169e-10 5.520009341e-10 4.110757172e-10 5.509620808e-10 8.063023921e-10 6.972602335e-10 7.104463782e-10 7.782991323e-10 5.801993542e-10 5.036399704e-10 5.016147565e-10 4.43679662e-10 6.136298185e-10 4.252046753e-10 4.278986359e-10 5.43442403e-10 3.854272245e-10 2.25098735e-10 1.114149533e-10 1.123450427e-10 1.623434404e-10 1.707583833e-10 8.363750929e-11 1.482776123e-10 5.591192734e-10 4.979244622e-10 4.584838588e-10 4.494514895e-10 4.797449602e-10 5.116613413e-10 4.911702014e-10 5.406416426e-10 6.722733773e-10 5.910704216e-10 5.641164061e-10 7.650263762e-10 7.703384394e-10 9.05958473e-10 9.238844019e-10 7.792856951e-10 8.345470477e-10 8.455753683e-10 9.162149336e-10 9.541612374e-10 9.990010347e-10 1.011614973e-09 9.324274982e-10 8.666088767e-10 7.702210167e-10 9.266073212e-10 6.299769803e-10 5.207610961e-10 5.602859954e-10 5.335204388e-10 4.838043789e-10 6.434169184e-10 5.046962664e-10 6.189881858e-10 4.546985336e-10 3.674902458e-10 7.634617625e-11 2.245342756e-10 5.335523644e-13 1.219556423e-10 1.646029957e-13 1.157297539e-10 2.589822495e-10 4.235258321e-10 4.72992922e-10 5.348655475e-10 5.03668735e-10 3.348517903e-10 3.885889874e-10 5.827868167e-10 5.135913188e-10 5.263408675e-10 7.099317865e-10 5.815196859e-10 7.603336785e-10 6.192825754e-10 7.291914429e-10 6.590013102e-10 3.957624227e-10 3.21274165e-10 6.165300698e-10 6.653937728e-10 5.961791529e-10 5.1442992e-10 7.697804574e-10 2.647420764e-10 2.396570435e-10 1.488919135e-10 1.666406376e-10 2.995420501e-10 3.836793542e-10 3.546196751e-10 4.077446794e-10 4.03273224e-10 3.411243801e-10 3.377264829e-10 3.943196328e-10 2.684771809e-10 3.311371446e-10 3.701338456e-10 4.05254498e-10 3.89520065e-10 3.929129422e-10 4.587105512e-10 5.006359908e-10 5.670049801e-10 3.310486301e-10 3.53687932e-10 1.7787196e-10 3.900585748e-10 3.436933519e-10 2.956734026e-10 3.715528299e-10 1.87328186e-10 3.528170793e-10 2.380117172e-10 2.522705823e-10 3.113708472e-10 3.716660415e-10 2.939155015e-10 2.365573767e-10 3.192425944e-10 1.726331836e-10 2.966692719e-10 2.780678716e-10 2.557325049e-10 3.29562471e-10 3.158187168e-10 2.550546844e-10 2.646229364e-10 2.014012306e-10 3.036013086e-10 4.231768498e-10 2.015238387e-10 1.775965002e-10 2.600512306e-10 3.693003854e-10 3.422465182e-10 4.04487426e-10 1.814972455e-10 2.194383659e-10 3.72936118e-10 3.223342747e-10 2.256874e-10 1.879180835e-10 4.114600399e-10 4.772098354e-10 3.858777198e-10 2.359703179e-10 3.902808079e-10 3.874862437e-10 2.638558353e-10 2.317379864e-10 1.215872013e-10 3.539864604e-10 2.165754526e-10 2.807521704e-10 1.181225216e-10 1.841656893e-10 3.422422094e-10 8.944549189e-11 1.65703055e-10 2.87823048e-10 8.782097239e-11 1.728209359e-10 2.345668026e-10 3.31951158e-10 2.925227238e-10 3.780046262e-10 9.761069318e-11 2.04076884e-10 2.215845144e-10 2.737657116e-10 1.08489599e-10 1.298797008e-10 1.300887447e-10 8.667199393e-11 2.781119674e-10 1.086803756e-10 1.488217318e-10 2.798611266e-10 9.566957708e-11 1.602089574e-10 2.356258458e-10 2.966173648e-10 2.743211934e-10 4.495915284e-11 9.170042202e-11 +1.300932289e-10 7.588064157e-11 1.318567908e-10 6.915481549e-11 5.008707421e-10 1.18971208e-10 1.893824353e-10 1.999628364e-10 1.507037433e-10 1.923207338e-10 1.37225698e-10 1.438137076e-10 4.492172649e-10 1.030784485e-10 2.173502603e-10 1.254987709e-10 2.664766567e-10 1.346564853e-10 1.36304797e-10 3.780934025e-10 1.757308361e-10 2.086813426e-10 1.808170918e-10 8.461866686e-11 3.19335766e-10 1.015748195e-10 2.638454386e-10 1.144289492e-10 1.630094711e-10 2.142516525e-10 8.272719509e-11 1.225977853e-10 1.145286249e-10 1.812532723e-10 2.433627427e-10 3.451402628e-10 2.806008426e-10 2.255466295e-10 3.558263018e-10 1.625923399e-10 3.751010777e-10 3.594530994e-10 2.553633903e-10 4.908457451e-10 1.430047952e-10 2.183115832e-10 3.628522198e-10 2.290934953e-10 2.137081433e-10 2.474008699e-10 3.585382731e-10 2.590956923e-10 3.935562993e-10 4.055920479e-10 4.031316279e-10 2.75898196e-10 1.471081896e-10 3.104592304e-10 2.107643011e-10 3.565999113e-10 1.738564602e-10 4.75785606e-10 3.286387429e-10 3.400108681e-10 2.524903217e-10 3.050152478e-10 1.686384775e-10 4.15640697e-10 3.902167131e-10 4.47355024e-10 3.001284743e-10 1.965726797e-10 3.220164857e-10 3.617896039e-10 2.830009266e-10 3.641678268e-10 3.646599009e-10 3.250171284e-10 4.026251781e-10 2.247825332e-10 3.957572392e-10 4.241614684e-10 3.980356061e-10 3.758266812e-10 5.646357894e-10 3.204079401e-10 3.352693636e-10 6.184777309e-10 4.800508686e-10 4.853075294e-10 3.088334129e-10 4.132015166e-10 4.413454331e-10 3.890559577e-10 3.600154942e-10 3.415840792e-10 2.285148216e-10 1.91562901e-10 2.237032803e-10 2.220346985e-10 3.077980413e-10 3.267101167e-10 3.869367687e-10 4.63898208e-10 6.103112635e-10 4.813640957e-10 6.884840106e-10 5.00262084e-10 5.168861709e-10 5.591395318e-10 6.119543258e-10 4.172638817e-10 8.473716918e-10 6.157729216e-10 6.62786944e-10 5.722282313e-10 3.730700493e-10 3.569501799e-10 4.350464329e-10 5.65109358e-10 4.934930317e-10 5.37551469e-10 4.019320653e-10 2.870187918e-10 3.085272652e-10 1.725144517e-10 8.416045154e-11 1.480687323e-10 8.525529898e-11 1.846066515e-10 2.006621773e-10 3.25910202e-10 3.229266108e-10 5.113741446e-10 4.830145715e-10 4.600049597e-10 5.093243831e-10 4.650758171e-10 4.124423967e-10 5.987881065e-10 6.618869736e-10 6.506175235e-10 1.028607465e-09 9.044747272e-10 8.300023471e-10 9.245381103e-10 9.212769238e-10 9.939291448e-10 1.21538905e-09 8.589108478e-10 8.491542577e-10 9.101565566e-10 9.647602384e-10 8.050714244e-10 9.469516101e-10 1.087552437e-09 7.238920995e-10 7.048598146e-10 9.113136598e-10 6.012670934e-10 6.756952764e-10 5.236306206e-10 5.956688483e-10 4.976241127e-10 5.40555249e-10 5.650947248e-10 3.599720385e-10 5.312456811e-10 2.893162814e-10 1.357141786e-10 1.427697641e-10 3.379568001e-13 1.022383785e-10 1.266537111e-10 1.332022577e-10 2.583553223e-10 3.653993195e-10 5.313545265e-10 4.318877029e-10 3.385891256e-10 4.844157286e-10 5.544969356e-10 4.204769944e-10 4.745966515e-10 5.001178765e-10 7.742468856e-10 6.720633344e-10 4.222850517e-10 3.600615759e-10 5.1262246e-10 7.062802322e-10 9.14655552e-10 9.260697904e-10 3.945894938e-10 7.125829486e-10 7.788527271e-10 4.622982605e-10 1.518795082e-10 3.322701498e-10 1.701496096e-10 1.922077835e-10 1.929856849e-10 3.025233042e-10 3.429954492e-10 2.66657527e-10 4.334777231e-10 3.925598654e-10 3.330666885e-10 2.799691045e-10 2.374915249e-10 4.213674252e-10 3.421796246e-10 3.668634077e-10 3.825248807e-10 4.323569252e-10 5.240753624e-10 3.599687692e-10 4.57156024e-10 4.476197678e-10 3.968826422e-10 2.947309626e-10 2.878123147e-10 2.156748694e-10 3.521996728e-10 2.845383348e-10 2.017367281e-10 2.301007577e-10 3.961189262e-10 2.697150278e-10 3.156167062e-10 3.399854995e-10 4.898729161e-10 2.767374847e-10 1.302758352e-10 3.111968867e-10 1.947980563e-10 1.684136733e-10 2.985320766e-10 2.917831924e-10 3.166670569e-10 2.597297293e-10 2.107958884e-10 1.976698706e-10 2.781774996e-10 2.641759228e-10 2.048289779e-10 3.820879956e-10 1.998582286e-10 2.565277088e-10 2.444865344e-10 2.857749163e-10 3.312486887e-10 4.183494456e-10 2.110102154e-10 1.056511104e-10 2.99570512e-10 1.989424872e-10 2.454277007e-10 3.854977817e-10 2.89236239e-10 1.56832427e-10 3.052296414e-10 3.035249587e-10 2.870408455e-10 1.395829645e-10 1.780158632e-10 1.609031558e-10 2.662514779e-10 1.82072438e-10 1.14462779e-10 2.310222203e-10 3.812012937e-10 2.682883359e-10 5.318029496e-10 2.353466784e-10 2.916925105e-10 1.116382966e-10 6.746059888e-11 1.340421611e-10 3.390004512e-10 1.27697483e-10 3.022139234e-10 4.60237297e-10 2.885933329e-10 3.395828785e-10 1.838308009e-10 1.060837015e-10 1.506673303e-10 2.529404634e-10 1.490280553e-10 2.361204881e-10 1.747956465e-10 2.094760479e-10 2.956378524e-10 9.884234554e-11 4.300242046e-10 9.441698378e-11 1.344860959e-10 2.371006634e-10 1.48593505e-10 +1.428676918e-10 2.063281224e-10 8.965451505e-11 2.311909803e-10 2.135616854e-10 1.638521249e-10 7.613929647e-11 9.78041824e-11 8.752993672e-11 1.247028152e-10 2.777574913e-10 2.494946768e-10 1.481453658e-10 1.564935953e-10 1.7139234e-10 1.200337571e-10 3.29090238e-10 2.394705217e-10 2.18192004e-10 1.010238017e-10 2.424394136e-10 2.272255307e-10 3.972103563e-10 1.473257731e-10 1.41236725e-10 1.433465111e-10 1.669570293e-10 1.629466175e-10 1.911616912e-10 1.356197871e-10 1.491988261e-10 1.216573433e-10 4.751838281e-10 1.458553673e-10 1.675454612e-10 3.18871304e-10 2.274124233e-10 2.611987855e-10 2.9509135e-10 3.77465673e-10 4.648726979e-10 3.505428058e-10 2.374643123e-10 3.224620045e-10 2.567232876e-10 3.992930903e-10 2.789686601e-10 2.680570251e-10 1.977167768e-10 2.277111062e-10 2.564749414e-10 5.402049531e-10 3.03239834e-10 3.890675485e-10 2.06626246e-10 2.71880979e-10 1.674935033e-10 4.316370365e-10 2.232509514e-10 4.174601323e-10 1.857847979e-10 2.313342281e-10 2.23417763e-10 4.167982222e-10 2.641341814e-10 2.639671455e-10 1.93380992e-10 3.539361671e-10 4.130184174e-10 3.847991612e-10 3.779606113e-10 2.624952451e-10 1.415315307e-10 4.8756885e-10 3.443166004e-10 3.548137914e-10 1.802371323e-10 2.111883201e-10 3.837982668e-10 4.386615732e-10 4.566256127e-10 3.928903049e-10 5.574682276e-10 5.057557444e-10 4.402988582e-10 3.629970036e-10 3.975069176e-10 4.167503747e-10 2.950344886e-10 2.912345358e-10 2.604678642e-10 5.157126503e-10 2.208071888e-10 3.555815703e-10 3.644443403e-10 3.06402334e-10 3.732352556e-10 3.86801735e-10 2.703006231e-10 3.17436222e-10 2.359426544e-10 2.177535814e-10 3.867382238e-10 4.629789003e-10 4.275937642e-10 7.013633092e-10 8.912444823e-10 6.73899948e-10 7.634266831e-10 5.141039092e-10 4.83522218e-10 7.877342506e-10 5.412021305e-10 5.712154312e-10 7.160971351e-10 4.759571998e-10 3.103722051e-10 4.939882969e-10 4.278208844e-10 2.947081164e-10 4.060006098e-10 3.673071964e-10 5.205918271e-10 3.890406943e-10 2.645338718e-10 6.807768707e-11 1.068691373e-10 9.852513736e-11 7.692254313e-11 1.378201724e-10 2.005191635e-10 3.048939279e-10 3.023641767e-10 4.880946593e-10 5.630804878e-10 5.716317442e-10 5.265277568e-10 5.240173537e-10 6.364682673e-10 8.594998831e-10 6.914263418e-10 8.100018161e-10 1.050661158e-09 8.625806084e-10 9.193060872e-10 8.570703624e-10 1.068314009e-09 9.740313536e-10 9.617860627e-10 9.309001634e-10 8.975705023e-10 1.055886152e-09 7.823939933e-10 7.835621276e-10 8.983967551e-10 9.992267595e-10 9.04853236e-10 9.629056637e-10 8.297394076e-10 7.674213789e-10 7.993532912e-10 7.303119681e-10 5.516628978e-10 4.929879137e-10 5.170076674e-10 5.160102925e-10 4.528417218e-10 5.172750878e-10 5.768767859e-10 3.289271207e-10 1.070761833e-10 1.741708732e-10 7.243268033e-11 1.223034295e-10 1.587770646e-10 3.197670938e-10 2.922774442e-10 4.263207827e-10 4.849277605e-10 4.817582855e-10 5.764423705e-10 3.730620482e-10 5.415449534e-10 4.085194638e-10 7.051351065e-10 7.814303667e-10 5.744894785e-10 5.016817319e-10 6.449808496e-10 5.307504205e-10 6.588677994e-10 8.199558184e-10 5.878519231e-10 7.637923532e-10 6.318862038e-10 4.542479949e-10 5.89084451e-10 2.875484928e-10 2.535048641e-10 2.439605378e-10 1.772442199e-10 1.400811474e-10 3.200931221e-10 2.756614845e-10 3.637749579e-10 3.920076133e-10 3.532875574e-10 4.325393375e-10 4.213245109e-10 4.631166586e-10 4.375120771e-10 3.09538208e-10 4.350066062e-10 6.034141167e-10 3.119763872e-10 3.394531764e-10 4.686530179e-10 4.903923438e-10 3.432500294e-10 5.686968958e-10 4.765791019e-10 2.523412018e-10 2.984802306e-10 3.217487556e-10 3.206464533e-10 1.748050106e-10 3.776808389e-10 2.661544839e-10 4.255128124e-10 3.144718045e-10 3.083684733e-10 3.366870689e-10 3.329965016e-10 2.310976615e-10 3.153471532e-10 3.084959996e-10 3.180997718e-10 2.365079832e-10 2.744211914e-10 1.832075051e-10 2.949301302e-10 2.546379671e-10 3.881256194e-10 3.044903931e-10 1.535230389e-10 3.051080762e-10 3.389941235e-10 2.150687093e-10 2.567430495e-10 2.984359231e-10 1.69987602e-10 2.021604301e-10 3.340727088e-10 3.304417268e-10 3.974596393e-10 1.636572058e-10 2.518105381e-10 2.695699522e-10 3.577893891e-10 2.544044166e-10 3.91296639e-10 3.413459171e-10 2.858415378e-10 3.134622042e-10 9.653883096e-11 1.45047835e-10 1.477026714e-10 1.34794353e-10 1.445800901e-10 2.95805939e-10 3.171474129e-11 2.547642217e-10 3.148645899e-10 1.102051661e-10 1.657391115e-10 1.593669961e-10 1.872643003e-10 2.251041048e-10 1.200724913e-10 1.346088519e-10 3.450907742e-10 2.054193563e-10 1.594387532e-10 1.703950696e-10 3.752132226e-10 1.541397989e-10 2.091434632e-10 1.195630818e-10 2.457309673e-10 2.121762592e-10 1.650058002e-10 1.146942482e-10 2.265367676e-10 4.007181688e-10 2.282470545e-10 3.61373966e-10 2.447950186e-10 2.675196387e-10 2.920385612e-10 3.996642632e-10 +1.372745325e-10 1.499451428e-10 3.228857049e-10 3.902648085e-10 4.936902609e-10 2.118823731e-10 1.037482814e-10 2.587261168e-10 1.825402395e-10 1.669054587e-10 4.124036923e-10 1.666960333e-10 1.033636365e-10 3.429992373e-10 1.353534966e-10 2.425607757e-10 1.28739306e-10 2.422173702e-10 1.279670463e-10 2.238410996e-10 2.511840408e-10 1.065730987e-10 2.830866317e-10 9.388297266e-11 2.731440378e-10 1.501645486e-10 1.951698352e-10 2.143120775e-10 1.340437813e-10 3.135660961e-10 1.709954953e-10 1.563223503e-10 2.037298471e-10 1.862859251e-10 2.342299569e-10 2.904840478e-10 2.611133113e-10 1.240996088e-10 3.820944901e-10 2.99387571e-10 2.093719125e-10 3.283636777e-10 3.298017863e-10 3.255674163e-10 2.361641573e-10 4.067059789e-10 4.058912375e-10 2.996312042e-10 4.519911965e-10 2.487615801e-10 2.919801016e-10 3.36703486e-10 3.691607666e-10 3.340527974e-10 3.272605235e-10 3.519470839e-10 3.497612435e-10 3.067904789e-10 3.919533395e-10 3.874838561e-10 2.79818221e-10 2.943891728e-10 4.158587635e-10 2.67335268e-10 3.041090069e-10 2.284465154e-10 3.082864018e-10 3.499995815e-10 1.398426748e-10 4.612998132e-10 3.541600506e-10 3.310769122e-10 2.500687679e-10 2.741470367e-10 2.325457667e-10 3.872523035e-10 2.939218695e-10 2.657943486e-10 3.776414523e-10 4.925438456e-10 5.089008897e-10 4.400030561e-10 5.223123769e-10 4.363847275e-10 3.517855795e-10 5.305765911e-10 3.903297755e-10 4.7067476e-10 3.850579082e-10 4.453714505e-10 4.244286363e-10 3.337563217e-10 4.646123934e-10 3.928017732e-10 3.524865097e-10 3.793550094e-10 3.562378026e-10 2.636923979e-10 1.851200933e-10 5.43043376e-11 2.24804184e-10 2.125477515e-10 4.459929716e-10 6.298581865e-10 5.913982391e-10 5.238892345e-10 5.816563137e-10 5.759191115e-10 5.644843316e-10 7.738905892e-10 6.312036025e-10 6.776247105e-10 6.043366851e-10 7.212722248e-10 6.496013822e-10 6.821871843e-10 5.091359432e-10 3.449900092e-10 4.615684539e-10 4.662989885e-10 3.698852254e-10 4.734853774e-10 3.399309185e-10 3.326918222e-10 1.637479625e-10 1.363549037e-10 9.574317151e-11 1.438220145e-10 1.276784609e-10 1.436876762e-10 2.733396987e-10 3.87737853e-10 3.456689663e-10 4.230983833e-10 6.243824807e-10 4.165920694e-10 5.39243679e-10 7.156906673e-10 6.753527488e-10 9.064818873e-10 9.234219128e-10 1.05422736e-09 8.793566266e-10 8.033511826e-10 9.387033016e-10 1.090270934e-09 9.387091678e-10 1.010498382e-09 1.030040346e-09 7.466429531e-10 1.020953814e-09 1.088773735e-09 1.099839366e-09 9.851777734e-10 7.906260012e-10 7.721325622e-10 8.306175548e-10 1.049533412e-09 9.258454228e-10 1.019932057e-09 9.730954515e-10 7.849953764e-10 5.71614306e-10 4.639328141e-10 5.658597643e-10 5.097060771e-10 6.210050281e-10 4.745693785e-10 4.242302753e-10 3.299244999e-10 1.124254435e-10 9.991758581e-11 1.217969705e-10 1.607920435e-10 1.166336627e-10 1.584304737e-10 2.258075554e-10 2.745447576e-10 3.865614128e-10 5.162976878e-10 3.548949275e-10 4.268054214e-10 5.784395275e-10 5.479022768e-10 5.035276476e-10 6.93219015e-10 5.621219269e-10 7.330609142e-10 5.773280432e-10 4.433642255e-10 6.4534226e-10 4.639467999e-10 6.064399018e-10 7.700223452e-10 7.358109042e-10 6.829434492e-10 6.827589616e-10 3.32618568e-10 2.742888309e-10 1.948414112e-10 2.356612151e-10 1.904278636e-10 2.597609306e-10 3.538164867e-10 3.797952986e-10 4.301908375e-10 3.77743446e-10 2.930817857e-10 4.86849034e-10 3.233608577e-10 3.696825969e-10 2.841656117e-10 5.152773779e-10 4.143819501e-10 5.402799223e-10 4.608989725e-10 4.861274855e-10 5.478476539e-10 4.972967668e-10 4.536692325e-10 2.893283653e-10 3.673555797e-10 4.304179879e-10 4.39295642e-10 1.992092752e-10 4.715261111e-10 2.414355118e-10 3.210872141e-10 1.035321281e-10 3.078964648e-10 5.427916934e-10 3.04840857e-10 1.907917283e-10 2.362322858e-10 3.969439878e-10 3.899747368e-10 3.934641337e-10 3.482694062e-10 2.789778334e-10 2.744363946e-10 2.535134628e-10 1.490112692e-10 1.372598367e-10 2.204322438e-10 3.428980173e-10 1.879874553e-10 2.410699673e-10 3.763122084e-10 3.806544195e-10 1.498759287e-10 3.201258607e-10 2.804654198e-10 3.24334996e-10 3.323875776e-10 4.17013642e-10 2.661747938e-10 3.886843074e-10 4.897946651e-10 3.676242842e-10 3.422860338e-10 4.515781703e-10 1.894283173e-10 3.12704161e-10 4.02290139e-10 2.2274121e-10 3.145181455e-10 1.175663955e-10 2.255760927e-10 8.903839842e-11 1.326615317e-10 2.460164883e-10 2.404800258e-10 2.746603508e-10 3.185981133e-10 2.252066988e-10 1.832552625e-10 1.235312821e-10 9.293477736e-11 1.572493235e-10 1.22773514e-10 1.634512268e-10 2.230576743e-10 1.554410798e-10 2.536023333e-10 1.717075632e-10 2.400340131e-10 1.4004511e-10 4.56729966e-11 1.110909332e-10 2.055767815e-10 1.099532879e-10 1.145136327e-10 1.089728091e-10 1.54430336e-10 2.181860992e-10 2.745317248e-10 6.293556487e-11 2.660860095e-10 1.533525473e-10 2.057087378e-10 +2.213999667e-10 1.035120888e-10 1.035250816e-10 1.715543837e-10 3.889053969e-10 1.063381789e-10 1.27185194e-10 2.851414273e-10 1.102905398e-10 3.36539091e-10 3.641050249e-10 5.964672978e-11 2.235542774e-10 3.727956695e-10 1.451040854e-10 4.767268027e-10 3.724538016e-10 1.264931379e-10 2.687534684e-10 1.964407612e-10 1.691535258e-10 1.209264246e-10 1.384817061e-10 2.505657496e-10 7.280793113e-11 2.475908426e-10 1.837440087e-10 1.091041561e-10 1.694625846e-10 3.031024279e-10 2.382656164e-10 2.125425227e-10 2.522671224e-10 1.693724747e-10 2.320716647e-10 2.019414483e-10 3.573139854e-10 2.188370465e-10 2.922291893e-10 3.989924326e-10 2.036912245e-10 4.822177607e-10 2.729824629e-10 1.986541597e-10 3.621439343e-10 2.69275455e-10 2.009539173e-10 3.599162293e-10 2.375421838e-10 2.244622099e-10 3.455631102e-10 2.253894996e-10 2.760773175e-10 3.021107033e-10 2.956862544e-10 2.286307176e-10 2.998525925e-10 2.383452987e-10 3.225664266e-10 2.638946563e-10 2.682934139e-10 3.077132069e-10 4.762187597e-10 1.985564118e-10 3.053637936e-10 3.502016847e-10 4.272306719e-10 2.180583719e-10 2.043495609e-10 3.717084913e-10 3.428734867e-10 3.846337603e-10 4.084265531e-10 1.590340723e-10 3.454721093e-10 2.956747991e-10 2.874397336e-10 2.208337542e-10 2.364347248e-10 3.597846275e-10 4.200239734e-10 4.173112249e-10 4.874958087e-10 5.027006485e-10 4.303148182e-10 4.148727832e-10 3.423426586e-10 4.345444076e-10 4.643006536e-10 4.690545025e-10 4.052970497e-10 5.295893685e-10 3.714832099e-10 3.377156411e-10 3.737611401e-10 4.083091538e-10 2.476636013e-10 2.688489809e-10 1.996704152e-10 1.712054132e-10 2.568066937e-10 2.075446645e-10 7.139605728e-10 7.12939283e-10 6.161809719e-10 5.922568667e-10 7.376763346e-10 5.014313709e-10 5.437489697e-10 5.239839853e-10 6.609406622e-10 5.892429112e-10 7.726631053e-10 5.968979777e-10 7.363177003e-10 5.769505744e-10 3.532855972e-10 4.817974943e-10 4.787430638e-10 4.862273783e-10 4.055236467e-10 3.418868647e-10 3.52944604e-10 2.850503396e-10 1.967714243e-10 1.021037235e-10 1.069150923e-10 3.856891512e-13 2.42434088e-10 1.591246303e-10 5.637568358e-10 4.135321238e-10 5.210627182e-10 5.789971796e-10 5.526755875e-10 4.200244531e-10 8.370277948e-10 6.451814397e-10 9.502950411e-10 1.193081192e-09 9.010404362e-10 1.038243923e-09 8.079089712e-10 9.867629983e-10 1.038924478e-09 8.417212089e-10 8.693882879e-10 8.779249188e-10 7.616511144e-10 8.497338165e-10 7.259980978e-10 7.577675502e-10 8.510403042e-10 7.856734362e-10 8.627978226e-10 8.820713766e-10 1.050879714e-09 9.023125146e-10 8.823214242e-10 1.052285852e-09 1.030407491e-09 8.17345349e-10 7.400764686e-10 5.561022748e-10 6.220854542e-10 5.870655134e-10 5.887843526e-10 5.545523318e-10 4.670900923e-10 3.715188385e-10 2.750364884e-10 2.657868116e-10 1.426269274e-10 1.123212999e-10 1.58021139e-10 1.751950706e-10 2.70457678e-10 4.082990299e-10 5.382188046e-10 4.163494247e-10 4.705698327e-10 4.856538263e-10 5.490104069e-10 4.077418932e-10 5.09071727e-10 8.558867976e-10 5.751159905e-10 5.669189978e-10 5.78252046e-10 7.842686435e-10 6.004425245e-10 6.556236227e-10 9.826974934e-10 5.799283393e-10 5.993956715e-10 7.518896111e-10 8.219270911e-10 5.825429546e-10 1.639983549e-10 2.296176734e-10 2.328516626e-10 1.041200196e-10 2.611520048e-10 2.023705914e-10 4.556982998e-10 4.064119876e-10 4.064495949e-10 3.896213669e-10 3.576794547e-10 4.335045055e-10 4.689739009e-10 3.556142822e-10 3.887346382e-10 3.959364725e-10 3.798702933e-10 4.95615023e-10 4.156973294e-10 6.545527671e-10 4.350844055e-10 3.618995769e-10 4.276103931e-10 4.409789351e-10 2.124049019e-10 2.994606641e-10 2.18373447e-10 3.046293241e-10 2.506776814e-10 3.089177958e-10 4.210135502e-10 2.959716964e-10 3.865224139e-10 3.163794197e-10 3.460737856e-10 3.375109169e-10 2.220219334e-10 2.373499566e-10 2.961748987e-10 4.038381986e-10 1.505995557e-10 3.604247445e-10 3.255261926e-10 4.621191352e-10 4.815792305e-10 1.548797274e-10 3.084831118e-10 3.7240202e-10 4.788393707e-10 2.059427931e-10 3.686545264e-10 3.820801446e-10 2.328380898e-10 3.557444742e-10 1.861390684e-10 2.018961865e-10 1.339556434e-10 2.363766277e-10 3.719884682e-10 2.956481735e-10 1.656017351e-10 2.033250962e-10 2.408740335e-10 2.831674986e-10 3.303528527e-10 1.56001801e-10 3.100575814e-10 1.714707273e-10 2.722337387e-10 2.029465506e-10 6.030005971e-11 2.766768694e-10 2.955764916e-10 1.581395714e-10 2.198659687e-10 3.220301873e-10 1.561164403e-10 1.539438838e-10 8.025291205e-11 1.34734996e-10 2.008418284e-10 3.632038685e-10 2.290161104e-10 1.344460404e-10 1.176978876e-10 2.79556309e-10 1.649266299e-10 2.889700632e-10 2.47831333e-10 3.025684027e-10 1.684245926e-10 3.067818565e-10 1.59176772e-10 1.406204611e-10 1.593916095e-10 1.941278515e-10 2.489375136e-10 1.065267359e-10 3.612615922e-10 8.377738047e-11 3.134654217e-10 9.807464875e-11 +1.340453143e-10 3.02737128e-10 1.524005154e-10 1.875495158e-10 2.225897473e-10 2.106714865e-10 9.80915645e-11 1.568144038e-10 2.39157816e-10 8.458790898e-11 4.174555709e-10 2.428992071e-10 6.095894965e-11 2.753671808e-10 9.605072295e-11 3.430732083e-10 9.806899655e-11 5.310615514e-11 1.438798092e-10 4.117429311e-10 2.273170704e-10 2.992107326e-10 1.309910089e-10 3.649286563e-10 2.348615821e-10 1.194107502e-10 2.739075183e-10 6.631541702e-11 1.296464733e-10 3.383686968e-10 1.541115667e-10 2.866963998e-10 1.332507406e-10 3.282266701e-10 3.447548097e-10 2.139536954e-10 1.776331273e-10 4.459916444e-10 3.179687055e-10 3.370883095e-10 3.546250493e-10 4.0895562e-10 3.527703848e-10 2.482989372e-10 3.078950436e-10 2.365985716e-10 3.872564156e-10 3.168065774e-10 2.918645272e-10 3.092897382e-10 1.65906467e-10 3.31428315e-10 1.864001014e-10 2.857553325e-10 3.174273537e-10 2.32101253e-10 2.286286736e-10 3.360443859e-10 1.614889596e-10 3.069460778e-10 4.313212277e-10 2.398292732e-10 4.523185832e-10 2.953249154e-10 4.148850702e-10 3.025995497e-10 2.849674651e-10 3.215607734e-10 3.360570797e-10 3.969318036e-10 2.577218727e-10 3.668760914e-10 3.491330455e-10 4.180242634e-10 2.794645649e-10 3.040091526e-10 2.760117378e-10 2.203704368e-10 3.465217542e-10 3.321395209e-10 4.533711776e-10 6.145179946e-10 4.606814211e-10 4.936437935e-10 4.472821114e-10 4.408110406e-10 4.05514865e-10 4.553710649e-10 3.914480618e-10 3.254430718e-10 3.465252848e-10 4.146460668e-10 4.155666485e-10 4.415328778e-10 3.884592994e-10 3.684355027e-10 3.312491212e-10 2.562373488e-10 2.157580105e-10 1.020965607e-10 2.856931463e-10 3.133908431e-10 4.855361664e-10 8.67234179e-10 4.952607297e-10 5.424632898e-10 5.3706727e-10 7.171438366e-10 4.032403233e-10 6.288643026e-10 4.664453519e-10 7.601508653e-10 6.146098148e-10 7.064611932e-10 5.622681325e-10 5.112369615e-10 4.643880938e-10 4.150746921e-10 5.354389163e-10 3.543162075e-10 3.432251691e-10 4.239012802e-10 2.952708185e-10 2.094216941e-10 1.336328486e-10 1.09962901e-20 1.014699804e-11 8.315548227e-19 2.295582973e-10 2.868332075e-10 4.83756716e-10 5.06696694e-10 5.97305661e-10 5.14245344e-10 4.774078447e-10 7.184473856e-10 7.508767636e-10 9.0838932e-10 9.112920588e-10 9.913079316e-10 9.800474327e-10 9.798772357e-10 9.858477078e-10 8.088875426e-10 8.411361925e-10 8.865876223e-10 9.443669721e-10 8.104604865e-10 8.079025769e-10 1.031046797e-09 8.239157171e-10 8.812426385e-10 8.509383988e-10 9.516071687e-10 7.51649956e-10 1.020415932e-09 8.790678844e-10 8.334337972e-10 8.303807695e-10 1.059397034e-09 8.171691919e-10 1.037732058e-09 1.057028163e-09 8.573611195e-10 4.516904524e-10 4.760987566e-10 5.912754193e-10 5.998791892e-10 5.815848876e-10 4.450394532e-10 3.116141278e-10 2.155190847e-10 2.842383424e-10 1.585551612e-10 1.62337292e-10 8.852996892e-11 2.993181081e-10 3.806757047e-10 4.591502985e-10 4.745040765e-10 4.313805432e-10 3.840164084e-10 4.99841244e-10 4.976035512e-10 3.661511954e-10 6.422322371e-10 6.128242892e-10 5.893722518e-10 5.896442135e-10 6.37108052e-10 4.448638814e-10 5.610152896e-10 5.042054315e-10 5.802355065e-10 3.906279799e-10 9.365672024e-10 4.665335232e-10 2.173796978e-10 1.903316878e-10 3.093571758e-10 1.641577778e-10 1.610353663e-10 1.842447588e-10 2.144876616e-10 2.810432916e-10 3.201739086e-10 4.112594244e-10 2.966385219e-10 4.52969321e-10 2.594351843e-10 4.073136153e-10 4.566444999e-10 4.153989827e-10 5.362954315e-10 4.107502774e-10 4.485269384e-10 6.146072897e-10 4.72842598e-10 3.504825464e-10 5.479542893e-10 2.799408397e-10 2.477651317e-10 4.061390795e-10 2.802657754e-10 2.141810495e-10 3.849729061e-10 2.695093915e-10 2.597736722e-10 2.714439567e-10 2.826547811e-10 2.882715316e-10 1.688088503e-10 3.537764429e-10 4.405573499e-10 4.10387995e-10 3.200918865e-10 1.938437616e-10 3.197049195e-10 2.388066341e-10 1.984825881e-10 2.187429636e-10 2.594856881e-10 3.98918033e-10 3.270678371e-10 2.607167453e-10 4.137019915e-10 3.229002287e-10 2.228731787e-10 2.600504004e-10 2.666090661e-10 2.87751451e-10 2.851162607e-10 2.551691773e-10 3.201256757e-10 3.349348794e-10 3.120152636e-10 3.505059901e-10 2.578998446e-10 5.223306024e-10 2.2304672e-10 2.952098251e-10 4.209963665e-10 3.747447001e-10 3.156960451e-10 8.389590277e-11 1.799476309e-10 2.230051899e-10 1.867834993e-10 3.126676714e-10 2.23242301e-10 1.579417912e-10 1.43079985e-10 3.808135867e-10 1.377285694e-10 7.700731464e-11 2.849174565e-10 3.424397135e-10 3.019446574e-10 1.445449594e-10 2.052541793e-10 1.289613629e-10 1.456940549e-10 1.346135744e-10 1.412891586e-10 3.308534507e-10 1.77305321e-10 3.363931068e-10 8.306637412e-11 9.665656386e-11 1.789970673e-10 1.001094429e-10 1.414060371e-10 2.402963747e-10 5.87776291e-11 3.615025116e-10 1.290536738e-10 9.24860698e-11 2.676143917e-10 1.541377884e-10 8.099220036e-11 +4.534224256e-11 2.302205447e-10 4.251974644e-10 1.802798634e-10 7.282510183e-11 3.052932799e-10 2.257316405e-10 1.711896705e-10 2.486009435e-10 9.275066074e-11 9.393988542e-11 2.286578959e-10 7.08736561e-11 1.644346787e-10 2.296635122e-10 2.993512036e-10 1.332915624e-10 1.082095068e-10 2.18522026e-10 1.21218836e-10 2.403609778e-10 1.726013533e-10 2.775453682e-10 3.63131106e-10 1.589902247e-10 2.246242131e-10 2.999175317e-10 2.849516478e-10 1.026072504e-10 1.393538312e-10 1.305859706e-10 2.286920303e-10 2.84626969e-10 1.370299515e-10 2.442142932e-10 2.284869496e-10 2.360458031e-10 1.167684207e-10 2.494309635e-10 1.086553545e-10 2.244190437e-10 3.422912785e-10 3.549847536e-10 2.972580479e-10 2.116901684e-10 3.0276387e-10 2.705109626e-10 2.311694991e-10 3.057757171e-10 2.311746395e-10 3.5948305e-10 3.004051189e-10 3.040107603e-10 4.040117787e-10 3.528420188e-10 3.248148643e-10 3.241222791e-10 1.831049097e-10 2.505488397e-10 1.785285814e-10 2.885077918e-10 3.155835006e-10 2.2629143e-10 2.791156362e-10 3.575721444e-10 2.522042643e-10 2.980983386e-10 2.976640232e-10 3.748359595e-10 3.260734227e-10 2.984947691e-10 2.913158281e-10 2.951577387e-10 1.508615127e-10 3.935937285e-10 2.481262479e-10 2.218424176e-10 3.159724858e-10 3.278627795e-10 4.343263066e-10 2.850718259e-10 6.087901713e-10 5.697974915e-10 3.996309556e-10 4.730080369e-10 6.283616529e-10 3.640091465e-10 3.827540072e-10 4.963825904e-10 4.519589073e-10 4.495469509e-10 3.860689433e-10 2.892780316e-10 2.695180598e-10 4.098831931e-10 3.72572135e-10 2.302846412e-10 1.611784658e-10 4.76631735e-10 2.989591461e-10 2.239659003e-10 2.786901869e-10 7.080303778e-10 7.447712924e-10 9.497772739e-10 7.948144861e-10 6.377773392e-10 6.622692299e-10 5.355909811e-10 4.552278703e-10 7.535312585e-10 6.313768741e-10 6.79416852e-10 6.980508423e-10 4.342691365e-10 5.379246888e-10 5.42513414e-10 4.42143415e-10 4.433984685e-10 5.039256115e-10 4.572811873e-10 4.217938768e-10 2.393851878e-10 1.629661678e-10 3.664708487e-11 1.094855124e-10 1.497783277e-10 1.41602525e-10 2.56339393e-10 4.05739949e-10 5.330694474e-10 5.422820635e-10 4.514568546e-10 5.1280986e-10 5.006749221e-10 7.371704066e-10 7.006674679e-10 1.160668597e-09 8.490852363e-10 9.714746228e-10 8.261780746e-10 1.061064509e-09 8.705259804e-10 8.335335981e-10 8.42239524e-10 9.691173247e-10 7.608614311e-10 8.158683285e-10 8.130754985e-10 8.646967269e-10 7.553457238e-10 9.800229074e-10 8.336198107e-10 8.288032292e-10 8.33193829e-10 8.856519409e-10 1.023548601e-09 1.069553267e-09 9.129576713e-10 1.022559972e-09 7.532903076e-10 8.50789343e-10 9.334529453e-10 8.251427562e-10 5.605632066e-10 4.988813827e-10 4.829413941e-10 5.6672874e-10 3.639283927e-10 5.65633832e-10 3.333834587e-10 3.625716745e-10 1.711883316e-10 7.110570915e-11 7.290478855e-11 1.592808861e-10 1.009890498e-10 3.004330069e-10 4.410069131e-10 4.322764675e-10 4.405822492e-10 4.118219289e-10 4.49968276e-10 4.453669086e-10 4.931202154e-10 6.345565709e-10 7.569174203e-10 5.953430579e-10 6.946518352e-10 6.019442556e-10 8.419790205e-10 6.388921106e-10 7.557873265e-10 7.389863514e-10 8.425815534e-10 6.439862665e-10 7.078191049e-10 2.878617988e-10 1.995132515e-10 2.460769655e-10 2.571516955e-10 1.383816941e-10 2.746732808e-10 2.170163204e-10 2.957208777e-10 4.058827199e-10 2.505178916e-10 3.681455774e-10 4.64577368e-10 4.388223756e-10 5.540809998e-10 4.642504761e-10 3.548501011e-10 5.058221468e-10 4.156815735e-10 3.725687316e-10 5.390930183e-10 3.578758726e-10 5.595336952e-10 2.389418534e-10 4.181694778e-10 2.70005834e-10 3.148630196e-10 2.099415525e-10 3.668243327e-10 4.486022869e-10 4.230840346e-10 2.272477348e-10 2.676378075e-10 2.691481724e-10 3.395765741e-10 2.808427848e-10 3.200312384e-10 2.093409412e-10 2.863869221e-10 2.289779449e-10 3.915054676e-10 3.956154958e-10 2.999691622e-10 2.249910967e-10 8.533830636e-11 1.517553457e-10 1.972229679e-10 3.38758592e-10 1.947338312e-10 2.009936973e-10 2.12664627e-10 2.10662007e-10 4.261848392e-10 4.836505389e-10 3.36893491e-10 4.413203799e-10 3.34322363e-10 3.433650907e-10 3.720381327e-10 3.420263021e-10 2.673707817e-10 3.178859365e-10 2.473513616e-10 4.58184006e-10 2.004649428e-10 2.528093582e-10 3.747780434e-10 2.261798052e-10 2.396713385e-10 2.164474814e-10 1.024206971e-10 1.067751552e-10 1.821746322e-10 9.745465831e-11 2.392852392e-10 2.347815177e-10 1.164757271e-10 3.084683163e-10 1.357196168e-10 1.435854629e-10 3.123213429e-10 4.042990754e-10 1.276120499e-10 1.839137024e-10 1.745471858e-10 1.448673402e-10 2.711196824e-10 1.654344955e-10 2.970405522e-10 2.358612923e-10 9.716530836e-11 1.562874751e-10 1.314854935e-10 3.384862531e-10 2.633048879e-10 6.020392831e-11 1.789705482e-10 2.305500288e-10 1.571075666e-10 7.04524342e-11 2.514514739e-10 2.399079498e-10 2.0530917e-10 3.369851564e-10 +7.150933291e-11 2.718793305e-10 2.189809996e-10 9.152213127e-11 2.396457599e-10 7.749962106e-11 1.750726517e-10 1.148559092e-10 1.959474348e-10 1.917800701e-10 1.057433276e-10 3.983031234e-10 1.390611065e-10 1.128922798e-10 1.411036708e-10 4.168519272e-10 1.991774924e-10 2.223895017e-10 8.126698948e-11 3.616298688e-10 1.0595371e-10 2.168157577e-10 2.187501936e-10 3.34017344e-10 2.971100918e-10 2.335310066e-10 1.785087169e-10 1.622277908e-10 3.159310484e-10 7.030926523e-11 2.822611244e-10 4.44070124e-10 3.077603639e-10 1.086395081e-10 1.463129324e-10 2.966079759e-10 2.556354835e-10 1.837311811e-10 3.111792985e-10 2.873258667e-10 3.997262602e-10 5.317374822e-10 3.675540479e-10 2.86000319e-10 5.542098547e-10 2.679900674e-10 2.768936923e-10 3.178430763e-10 2.597879772e-10 3.878622493e-10 2.437732749e-10 2.290960064e-10 5.051529909e-10 2.226343043e-10 3.794859428e-10 2.965819313e-10 2.357237567e-10 1.477512263e-10 2.552808247e-10 2.801663654e-10 4.585406147e-10 4.08784714e-10 3.837292069e-10 4.628030617e-10 3.307104779e-10 5.396436988e-10 3.715105327e-10 3.731093187e-10 3.711597098e-10 3.942057696e-10 4.784678435e-10 2.529632342e-10 4.386631088e-10 2.301262321e-10 4.370565398e-10 2.091875892e-10 3.066265243e-10 2.928197444e-10 2.556293159e-10 2.870586504e-10 5.920044759e-10 5.064997327e-10 5.278218474e-10 4.650105549e-10 3.408831965e-10 4.397409406e-10 6.024564234e-10 3.054470189e-10 4.59612371e-10 4.046774101e-10 4.556022733e-10 3.970213584e-10 4.543058214e-10 5.363651171e-10 3.125651062e-10 4.433296056e-10 4.05795156e-10 2.847594622e-10 1.517824669e-10 1.431803276e-10 3.273165854e-10 2.382036735e-10 6.591160289e-10 5.087024392e-10 6.533459706e-10 5.805837058e-10 7.719651124e-10 3.573327931e-10 6.679358677e-10 3.393550377e-10 6.646025318e-10 6.963408223e-10 8.124719078e-10 6.34265096e-10 4.634499001e-10 3.69884043e-10 3.601227164e-10 5.918635848e-10 3.703791442e-10 4.92677282e-10 4.751846016e-10 3.709800053e-10 2.248270214e-10 1.858202753e-10 1.021599953e-10 1.583124241e-10 1.521019838e-10 1.993047744e-10 3.675615505e-10 5.142247742e-10 3.849851745e-10 4.835852827e-10 5.987649392e-10 4.918759487e-10 5.279874014e-10 6.037616696e-10 8.49927103e-10 9.807201348e-10 9.706064575e-10 8.938065086e-10 8.636748213e-10 1.14986171e-09 9.385920513e-10 9.002163378e-10 7.834753991e-10 8.34527033e-10 7.733803168e-10 6.082064319e-10 8.195192582e-10 6.146105879e-10 8.101731457e-10 7.826505242e-10 6.959641405e-10 8.239975666e-10 8.526828729e-10 8.235750934e-10 9.089588268e-10 7.457209006e-10 7.424044247e-10 1.003895256e-09 7.73420611e-10 1.013958471e-09 1.065672733e-09 9.39694513e-10 7.804775211e-10 6.992965073e-10 7.560123828e-10 5.352103615e-10 5.046272394e-10 5.536444677e-10 4.50692333e-10 3.682687969e-10 4.169979661e-10 5.083406723e-11 1.825762133e-10 1.565163652e-10 1.819331331e-10 2.883948615e-10 4.458639458e-10 3.916792488e-10 3.367584604e-10 4.213974054e-10 4.224631759e-10 3.853761453e-10 4.279545305e-10 4.548037193e-10 7.695897684e-10 7.849537574e-10 6.613398703e-10 5.770654845e-10 5.604804109e-10 7.162505748e-10 6.623075422e-10 6.582274786e-10 4.613740264e-10 9.091389027e-10 3.452021079e-10 8.340417732e-10 4.116522287e-10 1.674281567e-10 2.374772374e-10 2.038752059e-10 1.823924249e-10 2.772521012e-10 2.619602077e-10 4.064754757e-10 4.029594767e-10 4.863901838e-10 4.291901974e-10 5.594021085e-10 4.273865987e-10 3.602805016e-10 3.984979975e-10 5.115336856e-10 3.656988516e-10 4.466274209e-10 3.799273334e-10 4.941630294e-10 4.512275343e-10 2.614947382e-10 3.563237235e-10 3.001808408e-10 3.025863879e-10 3.603609903e-10 3.052623879e-10 5.656973406e-10 3.518831261e-10 2.855250008e-10 4.212896376e-10 3.926670393e-10 3.657222163e-10 4.284763976e-10 2.790050586e-10 2.858517376e-10 2.650207377e-10 3.08753389e-10 2.352539396e-10 3.777532959e-10 1.184018972e-10 2.793587243e-10 2.636149297e-10 2.026666463e-10 2.745057535e-10 2.135083893e-10 2.29549512e-10 1.700899948e-10 3.715257291e-10 2.264332432e-10 4.891187674e-10 3.159244249e-10 4.934708705e-10 3.649572462e-10 2.682894398e-10 2.37541534e-10 3.759178896e-10 1.060037849e-10 2.655883258e-10 3.494827041e-10 2.781496675e-10 3.337836619e-10 2.047122961e-10 3.718659187e-10 2.459762881e-10 1.834930314e-10 2.202552389e-10 1.046663149e-10 1.688792632e-10 1.419497424e-10 2.461941577e-10 9.488625706e-11 1.487194845e-10 1.193726518e-10 1.750993931e-10 2.136363937e-10 3.403538515e-10 2.294669273e-10 2.449354196e-10 3.221163977e-10 2.538125292e-10 1.430175162e-10 2.801657149e-10 1.704194136e-10 5.633395574e-11 3.205361365e-10 2.661752757e-10 8.400024415e-11 2.118893928e-10 4.650400144e-11 1.663759968e-10 2.47481544e-10 1.786065313e-10 1.901739373e-10 1.255517167e-10 1.917807913e-10 1.378710004e-10 2.237607539e-10 2.182930842e-10 2.085789392e-10 2.314123111e-10 1.764392394e-10 +1.682407657e-10 3.068147861e-10 2.206610033e-10 2.003999102e-10 1.055644901e-10 7.486498476e-11 2.646634005e-10 1.049983341e-10 3.910250974e-10 3.482043148e-10 1.45344617e-10 2.6105099e-10 1.09791221e-10 2.222689681e-10 1.035464705e-10 3.265839633e-10 1.027814973e-10 2.634941789e-10 2.970952667e-10 4.698756739e-11 3.263936738e-10 1.781613127e-10 1.184725819e-10 1.567140786e-10 1.912584673e-10 1.608879828e-10 1.206991077e-10 2.650297044e-10 1.413835611e-10 8.96783313e-11 1.790456558e-10 1.686719251e-10 2.616819846e-10 1.343178032e-10 1.715001833e-10 2.341653174e-10 1.740988902e-10 1.786264027e-10 3.645797605e-10 2.109773315e-10 3.624168518e-10 4.859966776e-10 3.311177558e-10 1.726311263e-10 3.321252849e-10 3.404554411e-10 4.363160496e-10 3.260250181e-10 2.770878823e-10 2.589591401e-10 3.992783756e-10 2.573192819e-10 4.067476307e-10 3.979551595e-10 3.093131444e-10 4.85383296e-10 2.585278528e-10 2.408216525e-10 2.078347279e-10 2.392244715e-10 3.527591261e-10 2.728078316e-10 2.46282901e-10 3.722061214e-10 4.040015082e-10 2.794596059e-10 3.972328654e-10 5.533572566e-10 1.788942901e-10 2.437001858e-10 1.939257896e-10 2.238417492e-10 3.724998513e-10 2.910160175e-10 2.538615825e-10 3.501967235e-10 3.857240257e-10 3.45396704e-10 2.671012242e-10 4.187856705e-10 3.534403409e-10 5.36847278e-10 2.256733802e-10 5.174200502e-10 4.489176769e-10 4.363078988e-10 4.275748048e-10 3.318204061e-10 4.016545576e-10 5.184340214e-10 3.787371354e-10 5.282487356e-10 2.881865322e-10 2.742832003e-10 3.236963909e-10 3.813100668e-10 2.651805029e-10 1.768868185e-10 8.680985004e-11 3.087859255e-10 1.389882134e-10 4.432353498e-10 3.926500143e-10 7.118916925e-10 5.443449176e-10 5.798419009e-10 6.406635846e-10 6.838395968e-10 5.089073389e-10 5.986396609e-10 3.189294024e-10 5.808581863e-10 7.698139394e-10 7.226427203e-10 5.913126179e-10 5.772602088e-10 4.408306224e-10 4.274975628e-10 4.483785176e-10 4.53773628e-10 4.19150954e-10 2.000984361e-10 1.927186652e-10 4.592086866e-11 1.464267232e-10 1.917707897e-15 2.226408157e-10 1.825106349e-10 4.892535448e-10 3.894260079e-10 5.60266032e-10 4.676113498e-10 4.425271104e-10 6.580830465e-10 6.747954329e-10 8.893920391e-10 1.015151594e-09 9.461317882e-10 1.030367715e-09 8.726693297e-10 8.439899743e-10 8.80646228e-10 9.85787979e-10 8.332413079e-10 7.941211153e-10 5.925144816e-10 7.361222588e-10 6.132243341e-10 5.944059039e-10 5.917587844e-10 6.136302115e-10 7.221179834e-10 6.428813383e-10 5.92072007e-10 8.255008445e-10 8.256432547e-10 9.009866964e-10 8.410546587e-10 8.950932798e-10 9.333806684e-10 7.761582879e-10 1.018834915e-09 1.351315566e-09 1.114971321e-09 9.700986885e-10 7.216263978e-10 6.617396142e-10 4.886811578e-10 6.638033988e-10 5.515335008e-10 5.990880782e-10 4.159665843e-10 1.976265617e-10 1.357800464e-10 1.512407486e-10 1.944590188e-10 1.120746415e-10 1.926895443e-10 3.530978324e-10 3.754460295e-10 4.652525997e-10 3.426564368e-10 5.808606072e-10 4.358576585e-10 4.605852846e-10 5.401880092e-10 7.036691148e-10 6.553021389e-10 4.572621177e-10 8.419011762e-10 5.277253974e-10 6.432711393e-10 6.335660687e-10 7.216238245e-10 8.265091167e-10 7.258970007e-10 6.526094118e-10 4.950700032e-10 3.127152809e-10 2.702937543e-10 2.474474729e-10 1.151410948e-10 2.887097471e-10 1.652166269e-10 3.572596616e-10 4.928793889e-10 3.661955689e-10 4.072316699e-10 4.162770003e-10 3.292995384e-10 2.25465014e-10 4.170054044e-10 4.152347932e-10 5.083345405e-10 5.704751014e-10 5.09436846e-10 4.907066343e-10 3.821854321e-10 3.961741874e-10 2.479323107e-10 3.140660034e-10 2.951028513e-10 2.410160338e-10 2.886281312e-10 1.773721218e-10 3.158774975e-10 3.51865942e-10 4.241973429e-10 2.224985425e-10 3.198027422e-10 3.932449842e-10 1.31757569e-10 2.815214112e-10 2.733946832e-10 2.221398137e-10 2.888967654e-10 2.884412849e-10 2.803438263e-10 1.971479652e-10 1.718727697e-10 3.531877062e-10 2.390921355e-10 1.650181951e-10 3.779016572e-10 2.354592372e-10 3.19519805e-10 2.925199773e-10 5.381176708e-10 3.805360043e-10 2.446190751e-10 3.605821264e-10 3.691777681e-10 3.033372792e-10 1.997079194e-10 2.009291397e-10 2.933433174e-10 4.190964665e-10 4.387060001e-10 2.197735574e-10 1.34172548e-10 3.205990009e-10 1.897935444e-10 3.082024499e-10 3.915579347e-10 3.856639953e-10 1.651793256e-10 1.915125404e-10 1.563408931e-10 1.814745454e-10 1.741452855e-10 1.323310868e-10 1.163881659e-10 8.055322782e-11 2.072799282e-10 1.644366445e-10 2.551342609e-10 3.178397e-10 1.417106025e-10 1.954736243e-10 4.214801564e-10 2.468378367e-10 1.418944619e-10 1.403360848e-10 1.479370842e-10 1.364816826e-10 1.716957459e-10 2.119605322e-10 2.616222875e-10 6.102547375e-11 1.609101032e-10 3.536782039e-10 9.302563727e-11 2.27664787e-10 1.514084951e-10 1.694137649e-10 3.258207321e-10 1.32169884e-10 1.428376076e-10 3.538798711e-11 1.619844976e-10 +8.421958905e-11 9.830367782e-11 1.12264322e-10 1.178429829e-10 2.855280967e-10 1.324366097e-10 1.895410422e-10 2.931353439e-10 2.849354644e-10 3.401617484e-10 1.167747713e-10 1.853698867e-10 3.180650916e-10 1.911717299e-10 2.843734149e-10 8.005264785e-11 2.729076853e-10 1.367837493e-10 1.37196794e-10 2.165207905e-10 2.348901696e-10 1.151374625e-10 1.562026052e-10 2.280565142e-10 3.831486193e-10 1.601624878e-10 2.539359737e-10 3.765717249e-10 1.90865109e-10 2.356607102e-10 1.030409276e-10 1.84607021e-10 2.963943685e-10 8.525665667e-11 7.597505587e-11 2.034432441e-10 1.109711711e-10 2.740679217e-10 2.026532655e-10 2.071568054e-10 2.538348932e-10 3.865301678e-10 3.98260593e-10 4.024659576e-10 2.041586178e-10 2.595432511e-10 3.13132485e-10 2.665673855e-10 4.283436294e-10 2.954786299e-10 3.362959903e-10 3.028331028e-10 5.448572713e-10 2.470380367e-10 1.24691647e-10 2.326417139e-10 2.325410889e-10 2.110641852e-10 3.583537088e-10 1.836416719e-10 2.294026776e-10 3.628813371e-10 3.011173895e-10 3.249689911e-10 2.201472077e-10 2.243847232e-10 2.967061496e-10 2.364538623e-10 3.731810071e-10 2.651855785e-10 4.654196107e-10 2.053957668e-10 2.924791634e-10 2.795639488e-10 2.371068197e-10 2.758039722e-10 2.573448667e-10 3.996506908e-10 3.906385202e-10 4.644338578e-10 3.796442751e-10 4.738484643e-10 4.017013033e-10 5.032428255e-10 4.027515592e-10 4.090647285e-10 4.97580623e-10 6.423180355e-10 4.100300934e-10 3.198411422e-10 3.974268642e-10 3.394961174e-10 4.208368274e-10 3.070661353e-10 3.710636227e-10 4.40299692e-10 1.56668201e-10 1.565210113e-10 1.268234797e-10 2.5214063e-10 3.170453003e-10 5.194065631e-10 7.621939746e-10 8.059880932e-10 5.879509155e-10 5.454257695e-10 5.469123288e-10 6.988125821e-10 6.931270582e-10 8.535838213e-10 7.086345262e-10 5.657030998e-10 7.008778005e-10 3.894342098e-10 4.836358577e-10 5.362955447e-10 5.433438404e-10 6.443889848e-10 4.365266726e-10 5.055448386e-10 4.033495955e-10 2.690312351e-10 5.458036117e-15 1.533595849e-10 1.503290422e-10 1.806782246e-10 1.362739754e-10 3.990733679e-10 4.791336948e-10 6.400504261e-10 4.66701665e-10 4.126779963e-10 5.096514126e-10 8.036273764e-10 8.26702305e-10 9.539969262e-10 9.581835284e-10 9.745523958e-10 6.987734494e-10 8.035815621e-10 8.401405078e-10 8.102068188e-10 8.830617107e-10 6.91133952e-10 6.611659483e-10 5.993137064e-10 5.764779004e-10 5.528941837e-10 6.427595087e-10 5.892451321e-10 5.16581816e-10 5.589503417e-10 5.08505342e-10 6.605292338e-10 8.080928023e-10 6.122038151e-10 6.221102422e-10 8.28040548e-10 7.659955213e-10 8.990929597e-10 8.439214166e-10 8.478831443e-10 1.004410441e-09 1.093277289e-09 1.139988601e-09 7.466980227e-10 6.47694859e-10 4.838872812e-10 4.469569955e-10 5.617916676e-10 5.728146798e-10 4.492355995e-10 4.481001912e-10 3.096371935e-10 1.412830953e-10 1.995772524e-10 1.077447988e-10 2.854637055e-10 3.878921546e-10 5.458483705e-10 3.792398688e-10 4.91216654e-10 5.445687626e-10 4.474167654e-10 4.899486805e-10 6.588483253e-10 5.93607738e-10 6.899482973e-10 6.755868353e-10 4.991367849e-10 4.889402547e-10 5.992631802e-10 6.151695146e-10 6.416394062e-10 6.482054062e-10 5.771760819e-10 9.390450246e-10 5.070042535e-10 2.617127616e-10 3.006858899e-10 3.013490822e-10 2.692554728e-10 1.113305782e-10 2.316452512e-10 2.804034949e-10 3.981788629e-10 3.002094335e-10 3.540714162e-10 4.526673454e-10 3.301727324e-10 3.577142531e-10 4.315977986e-10 2.677261828e-10 3.778762904e-10 4.107823566e-10 3.164873066e-10 5.106663809e-10 4.55033462e-10 4.770217215e-10 4.234966895e-10 4.971564467e-10 3.291082106e-10 2.346464966e-10 3.043585946e-10 2.871007166e-10 2.409516385e-10 3.802645645e-10 2.444975718e-10 2.103320006e-10 3.836950781e-10 3.987068389e-10 3.698432759e-10 2.620079751e-10 3.148971147e-10 3.148539338e-10 1.84236916e-10 2.75245014e-10 2.938747927e-10 3.27020371e-10 2.970294846e-10 3.502744025e-10 2.764930779e-10 3.937982741e-10 2.556470433e-10 3.438061611e-10 3.157150504e-10 3.304311128e-10 2.490576741e-10 3.299643318e-10 3.855202807e-10 2.681700059e-10 3.700144917e-10 1.700141199e-10 2.382890104e-10 2.172800035e-10 3.072324264e-10 4.056848303e-10 5.621275561e-10 3.904750326e-10 4.606707097e-10 2.860902209e-10 3.340316462e-10 4.341850634e-10 1.652609982e-10 2.990884905e-10 1.514926876e-10 1.249960367e-10 2.718099107e-10 8.428139872e-11 3.881257063e-10 2.226525458e-10 1.488573574e-10 1.939086477e-10 1.543211714e-10 1.210784471e-10 3.290765761e-10 1.216345045e-10 1.794536292e-10 1.244668083e-10 2.051622022e-10 2.580575925e-10 1.564379652e-10 1.561568885e-10 1.884671093e-10 1.904624334e-10 1.514847248e-10 1.383880625e-10 4.232402801e-10 1.885871072e-10 2.057574003e-10 3.808810453e-10 1.365136175e-10 1.328374504e-10 7.557299724e-11 2.494502176e-10 1.842282256e-10 1.707806457e-10 8.111795101e-11 8.252463551e-11 3.11820088e-10 +2.966492199e-10 3.012446467e-10 2.90469891e-10 2.412970662e-10 3.302206078e-10 6.062114237e-11 7.215444371e-11 3.879596509e-10 1.607021725e-10 9.769422187e-11 3.782620122e-10 9.238903406e-11 1.446933258e-10 1.053063912e-10 1.589355169e-10 1.139626113e-10 1.350321955e-10 1.932246292e-10 1.431429647e-10 7.394403391e-11 1.810615038e-10 6.866881299e-11 2.332309072e-10 1.119867874e-10 2.222700243e-10 1.512258476e-10 2.409324447e-10 2.260368157e-10 3.455941613e-10 2.070651991e-10 1.388878736e-10 1.924000811e-10 1.469184302e-10 3.558111357e-10 1.176327869e-10 8.294951676e-11 1.601112038e-10 1.334350707e-10 1.773171641e-10 3.829548052e-10 1.813303459e-10 4.856775108e-10 2.275971907e-10 2.147974643e-10 2.147105959e-10 1.705885099e-10 3.325426674e-10 3.03961096e-10 2.288766346e-10 3.025315018e-10 2.240593019e-10 5.209203092e-10 2.008542121e-10 2.905861494e-10 3.677080168e-10 4.975173953e-10 2.0467399e-10 4.829651594e-10 3.564911489e-10 2.086218258e-10 1.442477611e-10 2.962460907e-10 1.410930814e-10 3.092777549e-10 4.020470002e-10 3.067611103e-10 4.029880585e-10 2.578191478e-10 3.724612599e-10 3.056133508e-10 3.770371582e-10 4.396701939e-10 3.303311295e-10 1.635523316e-10 4.086207206e-10 3.306816512e-10 1.8002172e-10 3.284226664e-10 2.7235411e-10 4.491080242e-10 3.941174648e-10 5.395011228e-10 6.12310538e-10 4.91271214e-10 4.659293201e-10 4.235222997e-10 3.537655663e-10 3.894630314e-10 2.97983306e-10 3.334761662e-10 4.079683236e-10 4.779360551e-10 4.936517953e-10 3.543159233e-10 3.518517451e-10 2.500177245e-10 2.50481535e-10 2.36234121e-10 1.433107242e-10 2.148539365e-10 2.716562004e-10 4.53259243e-10 6.050310776e-10 8.402545038e-10 7.376737472e-10 3.96606185e-10 6.568742478e-10 5.101882906e-10 5.059258268e-10 5.992856586e-10 7.677347089e-10 9.014540799e-10 7.364238277e-10 6.001333239e-10 5.21365053e-10 5.331142895e-10 5.476453951e-10 5.347378646e-10 3.622704796e-10 3.810599276e-10 3.345159304e-10 3.372115075e-10 1.000814821e-10 1.014661029e-10 9.213829607e-11 8.884815782e-11 2.795845116e-10 4.209959259e-10 7.032865542e-10 5.738968428e-10 5.821416597e-10 5.492151918e-10 7.284321801e-10 8.077321198e-10 9.874588569e-10 9.551682136e-10 1.031821572e-09 9.992697077e-10 8.945230953e-10 8.863756106e-10 9.738536155e-10 7.95670838e-10 7.127315221e-10 6.219091679e-10 5.828790054e-10 4.747670939e-10 3.10486517e-10 4.38681626e-10 3.59542887e-10 2.909326076e-10 2.433737723e-10 3.819077065e-10 3.913919278e-10 4.527259485e-10 5.571764047e-10 5.67375796e-10 5.785845888e-10 7.945343393e-10 7.081093415e-10 8.30964866e-10 8.866894039e-10 8.541445433e-10 1.156309313e-09 9.972194402e-10 9.328934659e-10 1.058420688e-09 9.644881776e-10 5.368829021e-10 5.103258716e-10 4.735744697e-10 6.294396444e-10 3.955816772e-10 5.18843006e-10 4.180134623e-10 8.579791633e-11 1.576497835e-10 1.924917052e-10 1.722887352e-10 2.456361615e-10 3.757286249e-10 2.781604913e-10 5.778830525e-10 4.093902153e-10 3.995510131e-10 5.058930391e-10 5.684607611e-10 5.718613372e-10 7.567144974e-10 5.279584752e-10 7.334027988e-10 6.814218756e-10 6.742282097e-10 6.796198118e-10 2.880576534e-10 7.087846796e-10 9.509815304e-10 5.027155865e-10 7.22903581e-10 2.545200654e-10 1.886662402e-10 2.077988386e-10 9.245099645e-11 2.78310045e-10 3.744427514e-10 2.555407464e-10 2.544339524e-10 3.770558242e-10 5.060199716e-10 3.220017447e-10 3.613772464e-10 5.054990095e-10 4.762234919e-10 5.647008541e-10 5.039881713e-10 4.899395022e-10 4.516989382e-10 4.624442303e-10 4.322793624e-10 5.549162554e-10 4.087042454e-10 3.264515983e-10 2.448560641e-10 4.092694309e-10 3.321603419e-10 3.097602602e-10 3.637284688e-10 3.384537702e-10 2.007062082e-10 3.850841515e-10 4.038978698e-10 3.057682345e-10 2.667397345e-10 3.015814774e-10 2.660944869e-10 1.676871806e-10 3.549740358e-10 3.456140881e-10 2.984926388e-10 2.383380537e-10 1.030451252e-10 3.167486703e-10 1.649852105e-10 3.137289156e-10 3.713127784e-10 1.571680544e-10 2.799158465e-10 3.353305417e-10 3.776933562e-10 3.446003784e-10 3.511094009e-10 4.405294319e-10 3.502262042e-10 3.615156127e-10 4.144390455e-10 3.711855587e-10 3.895988751e-10 3.584496249e-10 2.456153508e-10 2.673481215e-10 3.245044021e-10 1.884535186e-10 1.904714938e-10 2.161625849e-10 1.485196748e-10 2.709561591e-10 7.746661001e-11 2.745584787e-10 1.033924528e-10 2.225981694e-10 2.03785145e-10 1.525693017e-10 8.695539542e-11 1.624572951e-10 2.152343162e-10 1.067817455e-10 2.276628826e-10 2.376656898e-10 2.817636237e-10 2.16820645e-10 3.333004389e-10 3.124132645e-10 2.591811685e-10 3.714311476e-10 3.96288121e-10 1.911235288e-10 5.858788611e-11 8.087790576e-11 2.272336117e-10 1.511035972e-10 1.454858746e-10 3.325194703e-10 1.558458327e-10 2.268740598e-10 2.347820358e-10 1.676374276e-10 3.898260395e-10 1.243288763e-10 1.787114615e-10 8.566364042e-11 2.233123143e-10 +1.865433825e-10 1.564677429e-10 3.168944826e-10 1.675884237e-10 1.321566473e-10 1.021137347e-10 8.253637215e-11 3.681027654e-10 3.746309788e-10 1.028103804e-10 3.921203826e-10 1.946175447e-10 2.508244317e-10 9.232236721e-11 2.659536017e-10 2.066354231e-10 2.860286152e-10 1.201277233e-10 1.401701519e-10 1.860966138e-10 1.869954124e-10 3.436851337e-10 5.945393351e-11 3.479158457e-10 2.12569739e-10 3.034563212e-10 7.276089255e-11 2.265957548e-10 8.466656047e-11 1.96573333e-10 1.204810068e-10 2.560460019e-10 2.124055916e-10 3.806739647e-10 1.258722051e-10 2.019336114e-10 1.097105616e-10 3.508984912e-10 1.560840179e-10 2.216986422e-10 3.127164748e-10 3.154023861e-10 3.852472483e-10 3.80050355e-10 4.752394488e-10 5.078573284e-10 3.670185577e-10 2.74457625e-10 4.153884541e-10 1.596895258e-10 4.703018948e-10 2.771469314e-10 2.291596353e-10 1.786443757e-10 1.654899158e-10 3.218560655e-10 3.795783029e-10 1.911052096e-10 1.512194955e-10 2.812195095e-10 4.016498443e-10 1.548591506e-10 3.772578479e-10 2.202777312e-10 3.511138535e-10 3.728538972e-10 3.832888006e-10 1.981252355e-10 4.386084479e-10 4.514897584e-10 2.676794682e-10 4.059161002e-10 3.572814229e-10 2.705233303e-10 4.169019614e-10 2.688394557e-10 3.948033891e-10 2.897795543e-10 2.53103175e-10 2.283100223e-10 4.505788517e-10 3.09156136e-10 4.011311792e-10 4.730632611e-10 4.656910559e-10 6.046031778e-10 4.652974684e-10 3.322469718e-10 4.192930568e-10 4.631663328e-10 5.08534802e-10 4.407714302e-10 3.825137106e-10 4.267027596e-10 4.128737731e-10 2.702789391e-10 2.703635773e-10 1.263557731e-10 9.726831676e-11 2.840350263e-10 2.978347892e-10 7.131411408e-10 8.689575826e-10 5.157161569e-10 4.765134897e-10 5.270333392e-10 4.163597427e-10 4.979292128e-10 6.58430127e-10 7.262620184e-10 6.318679947e-10 6.306714537e-10 7.771731377e-10 5.887886282e-10 3.782492684e-10 3.625274132e-10 6.718119483e-10 4.973170043e-10 4.761549089e-10 4.111528036e-10 3.034857557e-10 2.024756039e-10 1.462299871e-10 1.03977853e-10 1.667187152e-10 1.827096785e-10 2.8591103e-10 3.764088823e-10 5.534904537e-10 5.058312296e-10 5.109672658e-10 5.985303741e-10 6.52649687e-10 9.523499576e-10 8.939466225e-10 9.00728893e-10 1.111491338e-09 7.782611337e-10 8.905759591e-10 8.02468668e-10 7.202469312e-10 5.362668563e-10 6.321675258e-10 3.250862611e-10 4.042283222e-10 3.157524952e-10 3.248359898e-10 1.782008814e-10 2.075138739e-10 2.475232666e-10 2.60211773e-10 2.477881764e-10 2.118324284e-10 3.730404824e-10 3.563734103e-10 3.946468393e-10 4.333124428e-10 5.758115785e-10 7.309689841e-10 7.693681514e-10 8.253627317e-10 9.376754612e-10 9.088747802e-10 9.396525087e-10 9.189122556e-10 9.505972661e-10 7.956777191e-10 7.116919923e-10 4.825303776e-10 4.711132105e-10 5.775761796e-10 4.439485633e-10 4.74478331e-10 3.236182173e-10 2.369141773e-10 2.004843372e-10 1.930631147e-10 1.556430545e-10 2.312140629e-10 3.629765736e-10 4.781955929e-10 5.333702101e-10 3.598538951e-10 5.959378261e-10 6.225640535e-10 5.657688814e-10 4.589152396e-10 6.506830518e-10 7.889171049e-10 6.123973895e-10 6.447332501e-10 7.93935206e-10 5.154945366e-10 6.4294341e-10 6.013374558e-10 8.409353811e-10 8.697925984e-10 6.778312762e-10 6.149046426e-10 2.297965855e-10 3.03473581e-10 1.222852963e-10 2.598122486e-10 2.459164903e-10 2.447961042e-10 3.961462433e-10 4.343683169e-10 3.443805789e-10 3.880622556e-10 4.246422602e-10 4.16144615e-10 4.463232833e-10 4.582848932e-10 5.193377369e-10 5.175136456e-10 4.821687585e-10 4.774333057e-10 3.55004955e-10 5.432655349e-10 3.51011492e-10 2.855953715e-10 5.052200323e-10 3.431548822e-10 3.612909148e-10 3.800186536e-10 1.839540349e-10 1.491411626e-10 3.122108052e-10 1.758454575e-10 1.996965542e-10 2.901838153e-10 3.409406736e-10 2.307620377e-10 3.160930542e-10 3.491429506e-10 2.901066772e-10 4.318148811e-10 4.833338003e-10 4.210763879e-10 2.38756812e-10 3.27325755e-10 2.695242528e-10 3.495234522e-10 2.189455348e-10 2.612030861e-10 2.05799547e-10 4.023425556e-10 5.019482942e-10 2.884316955e-10 1.681085726e-10 3.866158844e-10 3.212313403e-10 4.381099927e-10 3.678212007e-10 3.325678745e-10 4.035514811e-10 2.478631782e-10 2.189858167e-10 3.298525036e-10 3.36189414e-10 2.632307317e-10 2.138406101e-10 2.18573795e-10 2.264752227e-10 1.247618665e-10 1.763169416e-10 2.107045407e-10 2.954749395e-10 2.11029501e-10 1.277108086e-10 3.251551898e-10 3.274434111e-10 1.803365459e-10 1.663237281e-10 3.232773172e-10 2.074034027e-10 1.884508976e-10 3.83808362e-10 1.49708514e-10 2.475349649e-10 3.479098951e-10 5.237650909e-10 3.868076731e-10 7.935376737e-11 2.811825654e-10 1.926408287e-10 2.361663951e-10 3.053506993e-10 2.184984163e-10 1.45366827e-10 1.388061072e-10 1.264228598e-10 3.839872689e-10 4.383669575e-10 5.268809368e-10 6.224085081e-11 7.245312844e-11 8.88534578e-11 1.442946847e-10 1.657504637e-10 +2.463887481e-10 1.295999799e-10 1.916386888e-10 1.185747017e-10 1.8228273e-10 1.599455767e-10 2.753757888e-10 9.299784895e-11 1.454083394e-10 1.634167542e-10 1.195305651e-10 3.337099288e-10 1.381023983e-10 3.807027109e-10 2.123834728e-10 2.359593319e-10 2.156195111e-10 1.387621829e-10 3.843575736e-10 1.30347815e-10 2.821295871e-10 1.223289493e-10 3.853113852e-10 2.837719516e-10 1.232551794e-10 3.490426239e-10 1.318221095e-10 1.697164694e-10 2.204553096e-10 1.883051611e-10 1.942060933e-10 2.736059685e-10 1.853608006e-10 2.613304212e-10 1.029774208e-10 2.458993522e-10 1.528865083e-10 1.982929706e-10 1.409398536e-10 2.85483898e-10 3.457043252e-10 3.478269513e-10 3.588876706e-10 2.467545168e-10 3.004184606e-10 2.74702071e-10 3.150572979e-10 2.810164869e-10 3.616164898e-10 4.961320095e-10 2.922542444e-10 2.391195964e-10 2.337787482e-10 3.493922577e-10 1.77006055e-10 4.079905961e-10 1.46252568e-10 2.225146373e-10 3.348075977e-10 2.083288011e-10 2.1901417e-10 2.27558476e-10 2.923309665e-10 2.796227846e-10 2.31728219e-10 3.500189352e-10 3.511148453e-10 2.100408795e-10 4.470049445e-10 3.678249361e-10 2.301798175e-10 3.393831955e-10 1.790835109e-10 4.508147736e-10 2.582773436e-10 2.631288189e-10 2.815295043e-10 1.825759582e-10 2.048412147e-10 3.267447992e-10 6.161114132e-10 2.96173732e-10 4.557857538e-10 5.303645452e-10 4.673069162e-10 4.24886632e-10 5.055679208e-10 4.626408873e-10 4.495326471e-10 3.672038159e-10 2.977965599e-10 3.499515736e-10 3.594520094e-10 4.797360011e-10 2.506810528e-10 1.936703807e-10 1.65129598e-10 1.40574433e-10 1.776263501e-10 2.806964355e-10 2.736212796e-10 4.254613472e-10 7.340754708e-10 4.441835453e-10 9.831130111e-10 6.658342953e-10 7.955169207e-10 4.774720633e-10 5.507130511e-10 6.158686933e-10 6.738677044e-10 6.771293217e-10 7.677133815e-10 6.283030186e-10 3.027178084e-10 5.214690556e-10 5.066969296e-10 5.580464249e-10 5.596932576e-10 4.009210282e-10 2.889749919e-10 1.772348364e-10 1.776948753e-10 0 1.353546146e-10 1.466322738e-10 5.644900261e-10 5.869018228e-10 6.057149384e-10 5.584951818e-10 4.877892014e-10 8.746589614e-10 9.194137893e-10 9.832693508e-10 9.556392161e-10 8.562142147e-10 8.318472849e-10 9.6343799e-10 8.493048762e-10 7.833318511e-10 7.797728236e-10 5.433519041e-10 5.102559006e-10 2.770105003e-10 2.826942682e-10 1.939645184e-10 1.367556336e-10 1.538162493e-10 1.558549258e-10 6.447068769e-11 1.211558278e-10 2.146962466e-10 1.582891606e-10 1.71726425e-10 2.321418137e-10 2.720436857e-10 3.534745408e-10 4.680634152e-10 5.168424771e-10 6.04917425e-10 7.130609987e-10 8.658009779e-10 1.116063544e-09 9.868849263e-10 8.511223051e-10 9.121043639e-10 1.221219425e-09 9.664427588e-10 6.761362022e-10 4.40637813e-10 5.846732578e-10 4.495860055e-10 5.133217918e-10 4.655351067e-10 2.313055194e-10 6.31083531e-11 1.488204132e-10 2.317080273e-10 1.135447829e-10 1.898962332e-10 4.370465105e-10 4.676467513e-10 3.181591941e-10 3.782673508e-10 4.703961499e-10 5.090860388e-10 4.61046393e-10 6.764306157e-10 8.94084914e-10 6.801236191e-10 6.736558953e-10 6.499001035e-10 6.487724431e-10 6.801369136e-10 5.605703979e-10 6.855862706e-10 9.026654666e-10 6.564233376e-10 7.10524654e-10 2.198441812e-10 1.727103882e-10 2.735352543e-10 1.904605497e-10 2.341734286e-10 2.876160238e-10 3.930559159e-10 3.379049461e-10 2.751125893e-10 3.190195378e-10 2.570018169e-10 4.31655014e-10 5.415587531e-10 5.375865001e-10 4.901031833e-10 3.085027451e-10 4.843200546e-10 3.478554912e-10 4.894639125e-10 3.850024602e-10 4.077134151e-10 4.620147034e-10 3.535279554e-10 2.192298021e-10 3.051186418e-10 3.646739983e-10 3.322148043e-10 2.58469347e-10 3.452515406e-10 2.865920402e-10 2.389198368e-10 4.84479894e-10 2.423931159e-10 3.282651414e-10 3.604061485e-10 2.179980715e-10 3.603778569e-10 3.528225142e-10 3.554133959e-10 3.340996765e-10 1.855328191e-10 3.866912405e-10 2.687933014e-10 4.005561475e-10 2.902972955e-10 3.538387704e-10 2.833497711e-10 3.376926256e-10 1.387316356e-10 3.388915839e-10 3.969957141e-10 2.086148234e-10 3.137850336e-10 3.150220367e-10 2.415857555e-10 3.157635526e-10 1.448097135e-10 3.148262981e-10 1.629630959e-10 2.028115815e-10 2.596213963e-10 2.261242226e-10 2.081478318e-10 2.071570457e-10 2.488914156e-10 2.28188052e-10 2.346010644e-10 1.506469104e-10 1.53934005e-10 1.121923199e-10 1.533201665e-10 1.318151317e-10 1.391642263e-10 1.485436228e-10 1.168894537e-10 2.639242203e-10 4.111234687e-10 8.922601761e-11 1.793085966e-10 3.310166443e-10 2.618600748e-10 1.224996075e-10 1.41731017e-10 1.704366074e-10 1.410888007e-10 1.034366341e-10 1.165506936e-10 1.669376018e-10 2.794146819e-11 4.268533506e-10 1.381521405e-10 1.478748824e-10 2.533204745e-10 1.37881064e-10 1.0706619e-10 3.509379288e-10 9.219775442e-11 9.344461162e-11 1.680965946e-10 3.566305337e-10 2.620947592e-10 +3.678336892e-10 9.198329382e-11 8.027731517e-11 2.510442549e-10 1.383655406e-10 2.614661761e-10 2.270183008e-10 1.247127621e-10 1.986259887e-10 1.46150751e-10 1.396011518e-10 1.451946771e-10 1.638293116e-10 1.391489135e-10 7.887365354e-11 2.483402585e-10 1.478204876e-10 1.218617885e-10 4.224579571e-10 3.670222298e-10 1.454700118e-10 1.395973673e-10 1.967654966e-10 2.312337503e-10 1.991418463e-10 4.123581524e-10 2.59374235e-10 3.655033428e-10 1.048177982e-10 1.92127825e-10 1.080733293e-10 2.548310444e-10 2.725401205e-10 1.079780793e-10 1.35500876e-10 1.699226686e-10 2.280628358e-10 1.917122872e-10 2.012952418e-10 3.657074229e-10 5.48690665e-10 2.651001321e-10 3.803926582e-10 3.518932364e-10 3.872966864e-10 4.203822701e-10 1.908775829e-10 2.538611008e-10 4.802343601e-10 3.069175133e-10 3.876239109e-10 2.771266909e-10 3.726794945e-10 3.970364282e-10 3.316372544e-10 1.94016377e-10 2.177984304e-10 2.894363276e-10 4.323617767e-10 3.339977896e-10 1.910647515e-10 2.374540393e-10 4.344134425e-10 3.267147067e-10 3.026420438e-10 3.606555179e-10 2.680710952e-10 3.235053115e-10 3.310388938e-10 3.663035665e-10 3.590385243e-10 2.849282395e-10 2.94403687e-10 3.776922708e-10 2.994153534e-10 2.456743384e-10 2.849305039e-10 3.381874517e-10 3.978068875e-10 3.894824876e-10 5.334972498e-10 4.472313042e-10 5.416240647e-10 4.228100966e-10 3.585637036e-10 5.213719039e-10 6.639045675e-10 4.382075703e-10 5.860854123e-10 3.123567166e-10 3.698899089e-10 3.281752044e-10 3.782724749e-10 3.562697525e-10 3.345239354e-10 2.652484559e-10 3.860774879e-10 2.500341092e-10 2.38719302e-10 1.725350284e-10 3.274632881e-10 2.542036138e-10 4.414251981e-10 9.057830657e-10 5.641336565e-10 5.814573424e-10 5.714514598e-10 6.985550331e-10 5.979146501e-10 5.571333957e-10 4.917398179e-10 7.656570143e-10 6.289945227e-10 4.269858776e-10 3.482829225e-10 5.195664443e-10 3.564460433e-10 5.621293226e-10 4.118203805e-10 4.923742756e-10 2.888517332e-10 1.609654414e-10 8.077347702e-11 3.849079688e-27 2.057547719e-10 2.745791319e-10 4.808158494e-10 5.070646274e-10 4.353982602e-10 5.606198656e-10 6.472709812e-10 8.481496746e-10 1.023044585e-09 9.734111923e-10 1.037097036e-09 9.265777104e-10 8.038486665e-10 9.105880848e-10 7.610040243e-10 6.907196107e-10 5.92959921e-10 5.058098342e-10 1.892458775e-10 2.137332006e-10 1.853662178e-10 1.781260544e-10 1.090134782e-10 1.561567959e-10 1.561791808e-10 1.618664294e-10 8.529357461e-11 1.265389683e-10 1.316625327e-10 1.204947916e-10 1.282445424e-10 1.709232661e-10 1.063284004e-10 2.835883599e-10 3.973733228e-10 6.110589747e-10 7.052979734e-10 7.942753652e-10 8.700089616e-10 9.025333185e-10 7.62592925e-10 1.12512205e-09 1.037531826e-09 1.007935086e-09 8.689975481e-10 5.192407344e-10 5.825649331e-10 5.550565798e-10 5.403011052e-10 5.59817217e-10 2.658503541e-10 1.739703955e-10 8.776913686e-13 1.458463107e-10 1.626102883e-10 2.504628817e-10 4.278469037e-10 2.443920292e-10 4.698976429e-10 4.487585895e-10 4.926529415e-10 4.146747694e-10 4.46943363e-10 6.261866272e-10 8.460076455e-10 7.808627184e-10 8.527702e-10 5.483846289e-10 5.468849978e-10 7.871047234e-10 6.539853886e-10 7.662620156e-10 7.170045525e-10 8.36356947e-10 2.945624101e-10 2.292666488e-10 1.730441443e-10 2.045674564e-10 1.704642481e-10 1.681518729e-10 2.395866645e-10 4.023984552e-10 4.0281702e-10 4.176002385e-10 4.420980557e-10 3.430553495e-10 4.247334562e-10 3.1027956e-10 5.128242775e-10 5.558911682e-10 3.526687112e-10 5.72941633e-10 4.49218912e-10 5.710113854e-10 4.585725556e-10 4.61947928e-10 2.958200225e-10 3.06062732e-10 3.112998086e-10 3.898957367e-10 3.450261753e-10 2.398310124e-10 1.343765513e-10 2.888938427e-10 3.33035639e-10 3.978293193e-10 3.840303834e-10 3.013848229e-10 2.984955253e-10 2.019388148e-10 2.896661716e-10 3.195748182e-10 2.09003327e-10 2.893744696e-10 3.385033988e-10 1.994784801e-10 2.081701368e-10 3.534534069e-10 1.751009731e-10 3.03477383e-10 3.268987535e-10 3.149193957e-10 1.781407853e-10 3.124838667e-10 2.999617719e-10 4.099002947e-10 2.851336674e-10 1.878834922e-10 3.559524113e-10 2.967959085e-10 2.861517454e-10 2.299636925e-10 3.472050934e-10 3.924183348e-10 2.456336841e-10 2.42070406e-10 2.299649379e-10 1.100345819e-10 1.737840343e-10 1.180160006e-10 3.543461976e-10 3.070995782e-10 6.673583074e-11 3.96013431e-10 1.267141643e-10 3.416135285e-10 8.800675543e-11 2.649000794e-10 2.331796858e-10 1.181951803e-10 1.632024297e-10 3.30284443e-10 1.172320407e-10 1.800003578e-10 9.719311284e-11 2.264927074e-10 2.413110337e-10 3.879315356e-11 1.829267483e-10 2.396438753e-10 1.996085581e-10 6.194788713e-11 1.372013264e-10 4.33263809e-10 9.406684676e-11 1.245353179e-10 1.406650355e-10 2.751208286e-10 3.133874702e-10 1.944021026e-10 2.722005326e-10 1.702887369e-10 1.443456984e-10 1.120139824e-10 1.904639392e-10 2.092630222e-10 +1.232412227e-10 1.560769983e-10 1.35195688e-10 3.577286149e-11 1.706439158e-10 2.073169875e-10 8.456413545e-11 9.038626467e-11 1.549108549e-10 1.71332732e-10 3.479435272e-10 7.004007612e-11 2.045415911e-10 1.1225933e-10 1.718912384e-10 1.07302478e-10 2.347910649e-10 1.013019238e-10 1.49060576e-10 1.656981922e-10 4.31855528e-10 1.404404529e-10 1.892833247e-10 1.331560876e-10 1.565492971e-10 4.577339572e-10 3.36074412e-10 2.106411659e-10 1.223296506e-10 1.146397411e-10 2.614852763e-10 1.329534962e-10 3.465168158e-10 2.689800017e-10 2.174198969e-10 1.062732834e-10 1.692646206e-10 1.974501794e-10 2.861240954e-10 1.94275727e-10 2.017918406e-10 3.881513912e-10 2.188056817e-10 3.439502392e-10 2.90682247e-10 2.089155077e-10 3.277058909e-10 4.349128974e-10 2.756560132e-10 2.543990596e-10 3.423279023e-10 5.793953473e-10 4.153163758e-10 2.309255282e-10 2.477742328e-10 3.088033082e-10 1.711049262e-10 4.619729965e-10 2.322581137e-10 2.745359544e-10 1.802666035e-10 3.599573379e-10 3.7238797e-10 2.672420238e-10 4.476478761e-10 3.214783505e-10 2.861767329e-10 2.969841188e-10 2.717974803e-10 2.577720671e-10 3.200235294e-10 4.065481933e-10 2.344497902e-10 3.974732948e-10 2.835787359e-10 3.42557855e-10 2.973846078e-10 3.011235133e-10 3.076099982e-10 4.487749309e-10 4.421050905e-10 5.378231178e-10 4.251533639e-10 4.103620038e-10 2.853291504e-10 4.602143918e-10 4.059557454e-10 2.993341107e-10 4.093974394e-10 4.140652992e-10 2.945019534e-10 5.848910225e-10 4.584316897e-10 3.076637292e-10 3.300937295e-10 3.380880855e-10 1.712141718e-10 8.940897158e-11 2.212022215e-10 2.694164105e-10 4.387580525e-10 7.384211911e-10 5.128234609e-10 6.643588279e-10 6.460314207e-10 6.320945702e-10 6.707673999e-10 6.135479598e-10 4.440333638e-10 7.175555985e-10 9.298071863e-10 6.429020282e-10 5.887220149e-10 4.597961168e-10 5.272880566e-10 5.073875228e-10 4.165637785e-10 5.562704043e-10 5.948317463e-10 4.034734743e-10 2.330117655e-10 1.237259766e-11 1.500271911e-10 8.002409566e-11 1.160608581e-10 4.582880875e-10 4.949368903e-10 5.313408322e-10 5.736537365e-10 5.394230303e-10 6.73629374e-10 6.741969907e-10 9.306442301e-10 8.826213327e-10 9.497815741e-10 8.465494587e-10 8.321962966e-10 8.714549194e-10 7.194239992e-10 5.66581941e-10 4.24888859e-10 3.049250523e-10 1.958085432e-10 1.35511606e-10 7.87010882e-11 1.240014341e-10 1.352072859e-10 1.521876673e-10 2.827368085e-16 1.34208141e-10 8.12525022e-13 1.704822733e-10 1.100298505e-10 1.817753635e-10 1.617942705e-13 1.251497599e-10 2.876723323e-10 2.249702011e-10 2.079076669e-10 3.733337963e-10 5.451440222e-10 7.054283399e-10 7.482045475e-10 8.241492481e-10 1.008075062e-09 8.576452929e-10 1.141405425e-09 9.305865518e-10 8.00149929e-10 7.317808792e-10 5.138356607e-10 4.703055317e-10 6.200550211e-10 5.707112e-10 4.274388717e-10 1.358046518e-10 1.554804608e-11 2.473598834e-11 1.385923514e-10 1.950247373e-10 4.188598427e-10 5.384520786e-10 3.588376462e-10 4.900072786e-10 5.245085288e-10 3.139653417e-10 4.478594226e-10 5.312371322e-10 7.660196127e-10 6.413282912e-10 6.456939656e-10 6.871269867e-10 9.287986834e-10 6.552202185e-10 5.792023839e-10 6.860005598e-10 5.291922185e-10 6.56236488e-10 6.977847039e-10 3.429635334e-10 2.463484363e-10 1.106368772e-10 1.183919119e-10 3.450925201e-10 3.643029128e-10 2.896960484e-10 3.384923649e-10 4.470094786e-10 5.909252997e-10 4.844547615e-10 5.200158154e-10 4.076670363e-10 5.407139794e-10 3.683097516e-10 4.513063858e-10 4.123308038e-10 6.71801718e-10 4.205737476e-10 3.957746369e-10 2.345021859e-10 4.467562549e-10 4.031448723e-10 2.369866226e-10 2.486951805e-10 3.418272258e-10 3.025739579e-10 3.343542082e-10 3.136084952e-10 2.332702847e-10 4.495485143e-10 3.694263291e-10 3.495340732e-10 2.486966691e-10 4.302393335e-10 3.105532305e-10 2.03598344e-10 1.989676137e-10 2.055664346e-10 2.669198342e-10 3.766636956e-10 2.572647469e-10 2.639263672e-10 3.356777632e-10 2.744067722e-10 2.502567989e-10 2.450132322e-10 2.885268108e-10 2.325390125e-10 3.176743662e-10 3.87720134e-10 3.722855595e-10 2.754512624e-10 2.463270058e-10 4.510508183e-10 3.76832974e-10 5.032516785e-10 2.041797864e-10 2.252382754e-10 4.7800533e-10 3.098006296e-10 1.746406338e-10 2.286190036e-10 2.946941394e-10 2.545882152e-10 1.726149805e-10 2.090550445e-10 1.718482071e-10 1.865491223e-10 7.443468537e-11 3.647355874e-10 1.500138382e-10 3.14981004e-10 3.666545945e-10 3.095283477e-10 1.732203356e-10 2.951176406e-10 4.31447131e-10 4.038667022e-10 1.311705475e-10 4.123639099e-10 1.250323311e-10 1.930477317e-10 1.797814936e-10 1.582481765e-10 1.20160224e-10 1.36583102e-10 2.420088022e-10 2.352355445e-10 2.259335376e-10 1.058350712e-10 2.916297716e-10 1.939577144e-10 8.982578867e-11 3.721304506e-10 2.486479384e-10 4.724771775e-11 1.996492187e-10 2.404534703e-10 4.412356261e-10 1.536834887e-10 +3.860197478e-10 1.130673061e-10 1.512388312e-10 2.599104419e-10 1.934097194e-10 2.975014643e-10 1.032610213e-10 7.529271343e-11 1.34706949e-10 3.092422902e-10 1.963332255e-10 9.125930393e-11 1.49995276e-10 3.838384782e-10 1.548918644e-10 1.69336744e-10 6.991868915e-11 1.899443014e-10 3.39176466e-10 1.08790035e-10 1.213794576e-10 1.629674526e-10 2.078164103e-10 1.660540645e-10 1.406771761e-10 2.138438994e-10 9.518576724e-11 1.787087972e-10 1.934707447e-10 2.164594489e-10 1.389533593e-10 3.192349278e-10 2.61133347e-10 1.157397049e-10 1.395182897e-10 2.241908464e-10 6.644919325e-11 1.800663478e-10 1.134208213e-10 2.106889142e-10 3.011444602e-10 3.810095827e-10 2.903280257e-10 3.389815376e-10 2.588100098e-10 2.436815488e-10 3.051520155e-10 2.930325828e-10 5.02531258e-10 3.116579039e-10 2.916668146e-10 1.926841324e-10 2.993181816e-10 2.205735221e-10 3.723240178e-10 1.716814953e-10 1.666491442e-10 1.692130368e-10 3.681055115e-10 2.371115802e-10 3.382569683e-10 3.603288076e-10 2.044765279e-10 2.884532442e-10 3.113756783e-10 2.655269163e-10 3.442318787e-10 2.806776773e-10 5.233397623e-10 4.473881353e-10 4.163657185e-10 4.066342252e-10 4.030775217e-10 3.541443027e-10 3.040236264e-10 2.763174065e-10 4.403093518e-10 2.145075209e-10 3.545305587e-10 3.636735845e-10 3.790481531e-10 5.801630355e-10 4.49675074e-10 5.008811038e-10 5.322820143e-10 5.76093662e-10 3.53696967e-10 3.561091252e-10 4.673544596e-10 4.26720443e-10 5.359990242e-10 3.992294439e-10 4.282376878e-10 3.683744381e-10 4.053832548e-10 2.16827543e-10 1.979334444e-10 1.906884049e-10 3.417749783e-10 1.945429255e-10 3.008975047e-10 5.766420169e-10 5.469966317e-10 5.884191092e-10 6.198613422e-10 8.772460835e-10 6.141246093e-10 8.780726099e-10 6.220446749e-10 7.360489385e-10 6.10779369e-10 6.687590863e-10 5.692378381e-10 4.349795875e-10 6.364614816e-10 4.543214872e-10 5.079786822e-10 4.57569884e-10 4.113471723e-10 3.452246861e-10 1.407230036e-10 1.174705774e-10 5.695851066e-11 1.464945018e-10 1.416322576e-10 4.79202671e-10 5.452891521e-10 5.326054189e-10 4.543141712e-10 6.493553052e-10 8.601034489e-10 8.20243777e-10 7.96060426e-10 1.015896037e-09 8.327737263e-10 8.177516947e-10 8.899472988e-10 7.335510165e-10 5.935857324e-10 4.628983783e-10 2.654362335e-10 2.037836167e-10 8.831006437e-11 2.146089644e-10 1.90767885e-10 1.93300334e-12 1.204281304e-10 1.938242701e-10 3.734388873e-11 1.746183082e-10 1.738235685e-10 1.954037258e-10 1.211509432e-10 2.400659894e-10 1.11082694e-10 1.278570141e-10 1.392098393e-10 1.09820121e-10 2.002955416e-10 3.282153138e-10 5.014251701e-10 5.909485719e-10 6.565494108e-10 8.854948645e-10 9.464965296e-10 9.219623241e-10 9.364204775e-10 1.007414154e-09 8.797323707e-10 7.924077086e-10 6.138136894e-10 5.63386091e-10 5.807365892e-10 5.999343975e-10 4.182629353e-10 2.973746879e-10 7.843997903e-11 4.371175263e-14 1.354332087e-10 1.432707374e-10 2.574778526e-10 4.292305333e-10 4.867995457e-10 5.91342252e-10 4.292753904e-10 4.473675836e-10 5.551788595e-10 5.758398945e-10 9.04937608e-10 8.264834521e-10 6.221231122e-10 4.870207654e-10 6.087794586e-10 6.45345564e-10 4.814520676e-10 6.220793397e-10 7.41907735e-10 6.46032756e-10 4.526069886e-10 3.310025543e-10 3.121817968e-10 3.091152064e-10 2.663103388e-10 2.14167772e-10 3.656819116e-10 3.198210758e-10 2.130711228e-10 5.103383805e-10 3.461823014e-10 3.185614045e-10 3.088954532e-10 1.744851712e-10 4.465471742e-10 3.959027211e-10 5.833797331e-10 5.714410547e-10 3.859297626e-10 5.99409629e-10 5.707291846e-10 5.181102735e-10 2.465456245e-10 3.262334871e-10 3.719392778e-10 4.18037268e-10 2.96905006e-10 5.111428906e-10 3.929308069e-10 2.150276017e-10 2.354324921e-10 3.846095747e-10 2.751537703e-10 2.604405125e-10 3.142770004e-10 3.795984863e-10 2.83960257e-10 2.309032723e-10 4.409218293e-10 3.462229858e-10 3.285976007e-10 3.30656338e-10 4.454941973e-10 1.932273328e-10 2.775970933e-10 2.544129057e-10 3.456437514e-10 4.619516034e-10 2.268686797e-10 3.169883011e-10 2.744623396e-10 1.774187757e-10 4.159319559e-10 4.681057432e-10 4.14002325e-10 2.628924058e-10 1.93740448e-10 2.090751178e-10 4.863339162e-10 4.040123482e-10 2.234748846e-10 1.93410697e-10 3.988222449e-10 2.14667121e-10 2.492691329e-10 1.711462234e-10 2.718193313e-10 1.931606232e-10 3.022360599e-10 2.269906943e-10 1.657033694e-10 2.083111924e-10 2.587043314e-10 7.353715053e-11 1.305618805e-10 1.501157554e-10 3.526382296e-10 2.233978233e-10 1.992639929e-10 3.522403067e-10 1.49053731e-10 3.812787173e-10 1.66775315e-10 1.144650273e-10 1.681305935e-10 1.854010788e-10 1.955469055e-10 3.131754909e-10 1.796096598e-10 1.675111801e-10 1.379246511e-10 7.49898902e-11 1.379017365e-10 1.663288094e-10 2.074532035e-10 7.826695031e-11 2.302143788e-10 1.684108225e-10 9.402980693e-11 1.167887128e-10 1.615401758e-10 4.603928012e-10 +2.206193397e-10 1.505235566e-10 3.308167847e-10 3.396164053e-10 1.005391034e-10 4.118515119e-10 7.103024523e-11 1.922044834e-10 7.771372404e-11 2.7265229e-10 1.615670198e-10 4.19037676e-10 3.801547565e-10 9.829273068e-11 2.014844813e-10 1.902813466e-10 1.456414408e-10 1.800518763e-10 1.698348505e-10 9.708462117e-11 3.691913483e-10 4.86107999e-11 1.836811875e-10 1.213290729e-10 2.779581678e-10 1.086201035e-10 2.706029517e-10 1.323795061e-10 1.652403986e-10 2.095510511e-10 1.512056148e-10 3.768612281e-10 2.198161356e-10 2.908709147e-10 1.750385545e-10 1.081727571e-10 1.091648679e-10 1.615537985e-10 1.659699515e-10 3.124646072e-10 3.110577804e-10 2.814818261e-10 4.855155751e-10 2.284410637e-10 2.035196235e-10 3.934942944e-10 3.163492771e-10 3.340628819e-10 2.573158961e-10 1.82559978e-10 3.500421857e-10 2.56901705e-10 2.98029025e-10 3.054720318e-10 2.918026361e-10 3.921319216e-10 2.933432621e-10 3.07379888e-10 3.263320594e-10 2.857170621e-10 4.992132079e-10 1.982141461e-10 2.706606065e-10 3.177377666e-10 1.999184932e-10 2.727471078e-10 3.576097076e-10 3.481437556e-10 2.520126564e-10 1.797278928e-10 5.361889686e-10 3.048634829e-10 2.641242886e-10 2.655079359e-10 3.645180242e-10 3.621103317e-10 3.555664817e-10 4.197167276e-10 3.444446939e-10 3.910200824e-10 3.657242692e-10 3.478797999e-10 5.420035592e-10 4.07593566e-10 3.792696779e-10 3.86569465e-10 4.650431132e-10 3.784228683e-10 4.420024095e-10 2.972631732e-10 3.909304506e-10 3.872963222e-10 3.635434368e-10 3.68256612e-10 3.698026567e-10 3.428349833e-10 2.681190468e-10 7.573658841e-11 1.433822286e-10 2.21470961e-10 2.974475171e-10 6.683205013e-10 5.065814739e-10 4.143791796e-10 5.569368902e-10 6.604210742e-10 8.336709403e-10 6.546559033e-10 6.082356837e-10 7.163966887e-10 5.778366106e-10 6.913110176e-10 6.250894376e-10 4.521255879e-10 4.03948013e-10 5.805125329e-10 3.92781551e-10 4.409107857e-10 4.175339492e-10 3.349037577e-10 1.579787184e-10 1.355862413e-10 8.554156127e-11 1.479639469e-10 2.544050472e-10 3.875512553e-10 6.057978312e-10 5.639161611e-10 5.761068389e-10 6.817689596e-10 8.302164653e-10 9.553725903e-10 8.558361367e-10 9.425258028e-10 7.567251359e-10 9.51365609e-10 7.608458425e-10 5.565960042e-10 4.98568158e-10 2.522725849e-10 5.960071935e-11 1.477824738e-10 0 7.268884445e-11 1.663283365e-10 1.024189148e-10 2.143711478e-10 6.968925715e-11 1.328369842e-10 6.191569125e-15 1.153477062e-10 1.202436223e-10 5.052011743e-11 6.398535201e-15 2.566972843e-10 1.160012462e-10 1.049134414e-10 3.880299491e-11 9.280456304e-15 1.640181342e-10 2.219949283e-10 4.46797031e-10 6.530349212e-10 8.628505167e-10 9.868452102e-10 7.93122425e-10 8.377333832e-10 9.225131305e-10 8.856503809e-10 9.062112619e-10 6.701935048e-10 4.683252228e-10 4.376490471e-10 6.472571794e-10 4.616956115e-10 3.578132795e-10 1.45058527e-21 2.021249998e-10 1.110934329e-10 1.372137001e-10 2.875489117e-10 4.380549704e-10 4.232601663e-10 3.242740474e-10 5.325954772e-10 4.861054685e-10 5.542260362e-10 5.602005643e-10 6.750277199e-10 7.114750823e-10 7.698828495e-10 6.70088674e-10 7.229734223e-10 5.61097151e-10 5.809523184e-10 5.76155791e-10 8.042057611e-10 8.234394157e-10 7.571842006e-10 2.581754068e-10 2.943791215e-10 2.876427977e-10 2.141205847e-10 2.505181183e-10 3.355306843e-10 3.508262524e-10 3.849363002e-10 4.75325192e-10 4.394057155e-10 3.105763137e-10 3.591515425e-10 2.413438759e-10 3.904278716e-10 5.409140452e-10 3.605657097e-10 3.921687332e-10 4.718813076e-10 3.448597329e-10 4.113448709e-10 5.402397336e-10 3.814899164e-10 3.180210911e-10 2.534492476e-10 2.778630943e-10 2.514181123e-10 2.738189071e-10 3.095945996e-10 3.628369857e-10 2.035092e-10 5.025755161e-10 3.90268478e-10 2.204214642e-10 2.554691458e-10 2.328368354e-10 4.731567427e-10 2.801991685e-10 2.564135945e-10 3.174216355e-10 1.815203477e-10 2.845686664e-10 2.04099668e-10 3.931041938e-10 2.503408952e-10 2.63597134e-10 2.406362484e-10 2.360694258e-10 2.313644438e-10 2.876744536e-10 3.948913181e-10 2.57587981e-10 1.751250057e-10 1.935600021e-10 3.159708371e-10 2.796901522e-10 3.68077738e-10 2.470084539e-10 2.99030451e-10 3.253184541e-10 3.287008659e-10 2.163385849e-10 3.488110516e-10 2.854296346e-10 3.265759204e-10 1.378636187e-10 5.538914222e-11 2.433417382e-10 2.654646891e-10 9.28838426e-11 1.489634483e-10 1.027219496e-10 1.366383374e-10 2.565728275e-10 2.790682916e-10 3.501721473e-10 2.768246166e-10 1.998974798e-10 3.447447929e-10 2.332494522e-10 3.446087644e-10 2.735808426e-10 1.32990498e-10 1.403948663e-10 1.170572566e-10 1.309089988e-10 3.454858451e-10 2.015917233e-10 2.959730957e-10 1.311975889e-10 3.227771829e-10 2.470398375e-10 4.303541752e-11 1.340481107e-10 3.772558734e-10 7.428848051e-11 1.928955377e-10 2.631537419e-10 3.289482909e-10 4.271321174e-10 6.121814512e-11 1.818609367e-10 +1.13866189e-10 3.344112935e-10 2.681546272e-10 1.691630468e-10 8.276469209e-11 2.231772677e-10 3.240413161e-10 2.477623113e-10 1.032042208e-10 3.563999521e-10 7.227815697e-11 5.731136592e-11 1.89187644e-10 3.395094079e-10 1.876694652e-10 2.840063224e-10 2.420930001e-10 1.624791486e-10 8.375406543e-11 1.40796754e-10 1.571495735e-10 1.58265825e-10 1.204101491e-10 1.525597097e-10 3.487069126e-10 2.017433036e-10 3.365399205e-10 1.655966752e-10 2.334714916e-10 2.140344343e-10 3.053008921e-10 3.084423736e-10 3.718693867e-10 1.387666684e-10 2.73142539e-10 1.713448956e-10 8.877553163e-11 1.59014743e-10 3.200255522e-10 1.52110357e-10 2.209916969e-10 3.889263004e-10 2.72717498e-10 2.724873984e-10 3.602350187e-10 2.558159055e-10 1.708494103e-10 2.680906118e-10 2.327316931e-10 2.918682662e-10 2.571030087e-10 1.690181085e-10 1.719527893e-10 2.589827296e-10 2.810707421e-10 2.333335409e-10 3.801160444e-10 1.298118965e-10 2.33124277e-10 3.09386119e-10 4.539851423e-10 2.76195071e-10 3.561585852e-10 3.036183216e-10 2.98399359e-10 3.123257016e-10 3.277350186e-10 3.570028815e-10 2.78356485e-10 3.048350001e-10 3.387439047e-10 3.725289876e-10 3.202712645e-10 3.090099282e-10 2.248330793e-10 2.151580391e-10 3.163177034e-10 3.031685488e-10 4.134822753e-10 3.988509571e-10 4.492830682e-10 4.73982536e-10 4.879913729e-10 4.05487651e-10 4.092582937e-10 4.446823536e-10 3.922638123e-10 4.83901672e-10 3.135492294e-10 3.132806561e-10 2.555846839e-10 3.895859754e-10 3.202104262e-10 3.557902112e-10 3.731375714e-10 2.292412787e-10 3.304027137e-10 2.177463565e-10 2.330031711e-10 3.423926019e-10 7.655169914e-10 8.622927453e-10 6.952529905e-10 5.479316772e-10 7.818314025e-10 6.87146341e-10 8.32377958e-10 5.997077044e-10 6.317769257e-10 7.448782336e-10 5.552079545e-10 7.845745231e-10 5.088773914e-10 5.643706832e-10 4.634865225e-10 5.402356131e-10 5.303018333e-10 5.068318804e-10 4.484121141e-10 2.318342351e-10 1.644945645e-10 1.15011654e-10 1.551625348e-10 8.661497675e-12 3.143846883e-10 5.501254607e-10 4.9950735e-10 4.855601184e-10 3.732563806e-10 6.63478201e-10 1.056701691e-09 1.031295715e-09 9.856290265e-10 9.079932477e-10 8.007556942e-10 9.16943326e-10 6.356879779e-10 4.869685676e-10 2.79967222e-10 2.072384652e-10 1.782366627e-10 1.086871204e-10 1.247449544e-10 1.479238499e-10 1.056300156e-10 1.572816354e-10 1.321979124e-10 1.073955085e-10 1.019150766e-10 0 2.111160152e-10 0 1.083287962e-10 1.54677642e-10 1.779265804e-10 6.689002084e-11 5.961915456e-11 1.32758102e-10 7.255241904e-11 1.380679631e-10 1.160968273e-10 2.602750057e-10 5.840715133e-10 6.513901051e-10 9.186115592e-10 8.810895807e-10 9.159381948e-10 1.00468788e-09 1.011363965e-09 9.078938477e-10 6.165667649e-10 6.267710764e-10 4.421602245e-10 5.373689259e-10 5.003806201e-10 5.605273899e-10 1.569718357e-10 2.028674923e-15 4.013193593e-14 7.532583387e-14 2.791911709e-10 4.13022699e-10 4.241201777e-10 4.303518127e-10 5.764057086e-10 4.355420192e-10 5.097251764e-10 5.17245049e-10 7.10544329e-10 6.518999108e-10 5.037828896e-10 6.050194327e-10 6.010353629e-10 4.49237884e-10 5.470722946e-10 7.996600104e-10 5.395938951e-10 6.710137858e-10 7.346325708e-10 5.892753316e-10 2.640058993e-10 2.523232374e-10 1.887135957e-10 1.61044055e-10 2.391069046e-10 3.4531015e-10 4.620188804e-10 2.209150015e-10 3.50260092e-10 2.836197058e-10 4.264728683e-10 5.415030745e-10 5.965372321e-10 4.824372601e-10 4.86872677e-10 5.643070947e-10 6.276386654e-10 5.583913786e-10 5.436238274e-10 3.211463989e-10 5.570434417e-10 4.884966852e-10 3.255309839e-10 1.666351947e-10 3.018363984e-10 3.659221256e-10 3.867244401e-10 2.41142036e-10 3.52359849e-10 2.37968853e-10 3.540353684e-10 3.329405459e-10 3.604257884e-10 3.579811419e-10 3.245203572e-10 4.170917872e-10 3.096852234e-10 2.837649485e-10 2.320833345e-10 1.42472337e-10 2.06559476e-10 3.519959677e-10 2.650101779e-10 3.671154276e-10 1.293076077e-10 2.783745339e-10 2.135302459e-10 1.619159036e-10 3.23338697e-10 3.511216302e-10 2.855762365e-10 2.393213922e-10 2.144905513e-10 3.576325223e-10 4.085854252e-10 1.827411598e-10 2.772034225e-10 2.251907314e-10 2.455964068e-10 3.785852404e-10 2.276237773e-10 1.732696187e-10 3.108168385e-10 2.027046901e-10 1.321869839e-10 2.527652172e-10 6.493170352e-10 1.83721893e-10 2.480349377e-10 1.608351878e-10 1.457112235e-10 1.261445406e-10 3.003755353e-10 2.682119242e-10 1.157447463e-10 8.050084979e-11 1.542474012e-10 2.834943862e-10 3.193543501e-10 2.050345931e-10 1.721193202e-10 1.539597092e-10 1.222322868e-10 3.921936918e-10 4.074501639e-10 4.497629665e-10 6.342093469e-11 2.184268303e-10 1.444962645e-10 1.477873745e-10 2.789975025e-10 3.404715293e-10 2.381347257e-10 1.385518648e-10 2.366951347e-10 2.163824654e-10 1.192036218e-10 1.604282962e-10 3.516072514e-10 7.133351712e-11 +1.707300437e-10 2.077891196e-10 1.999513508e-10 3.198407715e-11 1.264837998e-10 1.906041792e-10 1.481273867e-10 1.17842421e-10 1.255946091e-10 2.559024379e-10 9.948011051e-11 1.597508135e-10 2.941064041e-10 3.607889149e-10 1.690061413e-10 1.777687351e-10 1.190272164e-10 1.283815916e-10 2.509112556e-10 7.386887055e-11 1.957883916e-10 1.81844009e-10 1.363832429e-10 2.833616579e-10 2.631062707e-10 1.328105442e-10 8.484295886e-11 4.366220605e-10 1.915693253e-10 1.423087438e-10 1.340869975e-10 2.681316543e-10 2.19632583e-10 1.179501319e-10 1.955397988e-10 2.153215438e-10 1.372387547e-10 2.294240816e-10 2.277205707e-10 1.762472554e-10 3.257656639e-10 4.210772583e-10 2.475189756e-10 3.844329506e-10 4.583856874e-10 3.403733061e-10 3.135774884e-10 3.322025201e-10 4.496434865e-10 3.521175396e-10 2.980760673e-10 2.438779391e-10 1.231493444e-10 2.199871359e-10 2.363629378e-10 2.257893575e-10 2.847898416e-10 2.593996751e-10 2.357209424e-10 2.167907693e-10 2.909905505e-10 2.757963359e-10 3.337902537e-10 1.850440466e-10 2.771834485e-10 2.983330604e-10 2.662361515e-10 3.997560436e-10 2.266768253e-10 3.202571404e-10 3.469478213e-10 4.12184289e-10 4.431746118e-10 2.331410078e-10 2.553168779e-10 3.875853051e-10 4.168015983e-10 2.532244883e-10 3.170125945e-10 4.742801272e-10 3.680132571e-10 5.246271011e-10 5.740456175e-10 4.617246913e-10 5.790137083e-10 3.341157935e-10 3.814857124e-10 3.929283253e-10 4.930137925e-10 3.991605549e-10 4.853297439e-10 3.538172137e-10 4.084178646e-10 3.477021612e-10 3.257689883e-10 3.952771664e-10 1.889685102e-10 1.823365513e-10 2.318039455e-10 2.445590577e-10 4.435942481e-10 7.715076969e-10 5.950340654e-10 9.870388181e-10 7.67109124e-10 5.596156218e-10 8.729644169e-10 4.824112253e-10 6.24525678e-10 5.642062689e-10 8.860079294e-10 7.741581151e-10 6.235918221e-10 4.940521504e-10 5.089484793e-10 5.831704206e-10 4.587183996e-10 4.825340211e-10 4.871297703e-10 1.454142545e-10 1.587092048e-10 4.892880721e-11 9.690304899e-11 2.262697083e-10 3.767188312e-10 4.809735597e-10 5.839849841e-10 5.664407769e-10 6.091228473e-10 8.091040913e-10 9.601228389e-10 9.859224689e-10 1.06361027e-09 9.755270725e-10 8.575400457e-10 7.970414002e-10 6.530073257e-10 4.452330459e-10 1.34826675e-10 1.320338307e-10 1.606915088e-10 1.448251694e-10 9.000494172e-11 2.818329405e-16 2.509190515e-10 1.602957267e-10 1.228282426e-10 2.039234049e-10 1.146625622e-10 7.564413934e-11 1.547992317e-10 1.341953705e-10 1.585523841e-10 5.956019976e-11 1.664160793e-10 1.551433053e-10 1.229193439e-10 1.262335546e-10 1.740997034e-10 2.364976643e-10 9.436160015e-11 1.347336369e-10 4.250723149e-10 4.944135178e-10 7.562109941e-10 8.360811431e-10 9.386555767e-10 9.325497627e-10 1.134380327e-09 1.038522859e-09 8.253544724e-10 6.365170294e-10 5.162068774e-10 4.685600095e-10 5.894467052e-10 4.868438378e-10 1.312565774e-10 2.336200618e-10 2.64429521e-10 1.226064902e-10 2.403003985e-10 3.903008204e-10 4.204573965e-10 4.115495122e-10 4.281861833e-10 4.699985466e-10 5.54731118e-10 5.012544671e-10 6.907453933e-10 8.228672315e-10 5.91252655e-10 6.755386044e-10 9.573124451e-10 5.746680528e-10 8.571260241e-10 7.539159988e-10 4.655805887e-10 9.521615472e-10 5.934371826e-10 2.174731898e-10 2.367953987e-10 2.71527063e-10 1.665873702e-10 2.011787836e-10 3.092799434e-10 3.678153734e-10 3.28002931e-10 3.10623565e-10 4.418293769e-10 5.323201056e-10 4.505812921e-10 3.643873558e-10 3.593314105e-10 4.121318149e-10 5.555922414e-10 5.100188392e-10 6.869987939e-10 4.025420715e-10 3.61808014e-10 3.206789539e-10 5.549337516e-10 3.867575615e-10 5.514715956e-10 2.78048132e-10 1.710102436e-10 1.623992296e-10 2.236841221e-10 3.397939556e-10 2.255483981e-10 3.448436002e-10 2.186685042e-10 2.174756508e-10 3.000624585e-10 2.276494887e-10 2.573476611e-10 3.029829642e-10 3.933382661e-10 2.293378509e-10 3.747172489e-10 3.186941241e-10 4.771808658e-10 1.901706203e-10 2.486351055e-10 3.086016845e-10 2.298755141e-10 2.795596368e-10 3.599171764e-10 4.024373227e-10 1.983163591e-10 2.319866087e-10 2.588141993e-10 2.575252723e-10 4.782789656e-10 2.807500416e-10 4.561656816e-10 2.170678664e-10 3.065517653e-10 2.943131566e-10 4.476973673e-10 4.971606842e-10 2.568269269e-10 2.961905859e-10 2.311014311e-10 2.098915311e-10 8.505245422e-11 1.691538036e-10 1.538936513e-10 2.033035235e-10 2.809963731e-10 3.834382937e-10 2.134752943e-10 2.134043619e-10 2.706261305e-10 2.052370517e-10 3.377540579e-10 3.90123924e-10 2.777629652e-10 5.605857311e-10 2.602024147e-10 1.67882338e-10 3.946295521e-10 1.169491316e-10 3.174881505e-10 7.267479698e-11 8.224467874e-11 1.823702381e-10 3.096682985e-10 1.176935341e-10 2.174999591e-10 6.033880564e-11 2.176115311e-10 3.347769107e-10 1.638121803e-10 1.625830999e-10 3.093399372e-10 1.946224578e-10 1.872194537e-10 6.378507951e-11 1.555538944e-10 1.597287672e-10 +1.870944304e-10 4.735057547e-11 1.17426292e-10 2.989148794e-10 1.902832604e-10 3.129170856e-10 2.877920194e-10 2.875770402e-10 1.810533987e-10 2.300729662e-10 4.287597179e-10 1.373677518e-10 3.731049157e-10 1.303032373e-10 8.958783038e-11 3.620421112e-10 1.150708092e-10 9.148723173e-11 2.662946322e-10 1.700908909e-10 8.316794044e-11 2.393277998e-10 2.305145192e-10 1.751537022e-10 9.601912682e-11 2.242752175e-10 3.510515424e-10 3.57498752e-10 2.724790968e-10 1.369440362e-10 3.120299613e-10 4.301344278e-10 2.85854781e-10 8.184627922e-11 2.439393392e-10 2.356245369e-10 8.125762415e-11 2.495145693e-10 2.087761156e-10 3.329874308e-10 1.417246464e-10 2.82161063e-10 3.420716501e-10 4.0841439e-10 3.476627978e-10 2.436420235e-10 1.70593397e-10 3.174535835e-10 1.653115568e-10 1.710452844e-10 2.227494913e-10 2.470422406e-10 3.553059864e-10 3.039922225e-10 3.762876763e-10 3.993910837e-10 2.793315458e-10 4.400812079e-10 2.126745636e-10 2.590050343e-10 2.613299067e-10 3.744195149e-10 2.750805468e-10 3.452625145e-10 2.770711261e-10 4.243394353e-10 3.739206064e-10 3.538568031e-10 1.578701523e-10 3.443063471e-10 2.965896843e-10 3.370755177e-10 3.898696716e-10 4.376229999e-10 3.035278205e-10 2.61846957e-10 2.429757475e-10 2.589622331e-10 4.725103395e-10 5.075220633e-10 3.84426578e-10 3.795001019e-10 6.611952588e-10 5.080297799e-10 5.373026036e-10 3.844654617e-10 3.631048643e-10 4.148625481e-10 5.147632698e-10 4.014635214e-10 4.631981013e-10 5.382540894e-10 4.60697278e-10 3.615893873e-10 3.91206871e-10 2.238098672e-10 6.303467823e-11 1.669047859e-10 2.621397678e-10 2.179606655e-10 5.349797277e-10 6.399733586e-10 7.571745328e-10 6.792327286e-10 5.904142345e-10 5.388488028e-10 8.026113284e-10 6.760312082e-10 4.205861918e-10 8.181261878e-10 8.959291126e-10 5.834840755e-10 5.396421468e-10 4.727973669e-10 5.593967615e-10 4.901975891e-10 4.355279823e-10 4.325834932e-10 2.611061347e-10 4.892742392e-13 1.2762884e-10 2.565051182e-10 1.852545457e-10 3.344780801e-10 4.993906894e-10 5.317756616e-10 4.87906296e-10 4.692696922e-10 5.285388212e-10 8.24751723e-10 1.184708653e-09 1.284786835e-09 1.047856786e-09 8.704701892e-10 8.227914226e-10 7.520085556e-10 3.671216552e-10 3.604680505e-10 8.571566402e-11 9.39320185e-13 2.580267357e-10 4.19627476e-13 1.669870275e-10 1.277507467e-10 1.47402143e-10 1.523986626e-10 1.302808537e-10 1.300550721e-10 6.479303919e-11 1.444147332e-10 1.397010704e-10 8.333798976e-11 1.614248458e-10 1.291222518e-10 5.860597912e-16 5.638204604e-11 1.545062726e-10 2.38663792e-10 1.354608753e-12 1.528747866e-10 0 1.643924149e-10 2.741858639e-10 4.230526073e-10 7.29836327e-10 8.399016178e-10 9.901258502e-10 9.247806129e-10 9.184204069e-10 9.524789971e-10 1.009415755e-09 6.133251646e-10 6.166587746e-10 5.037734427e-10 4.646341626e-10 4.427154005e-10 2.674524719e-10 1.933310048e-10 9.338822867e-11 9.833006257e-11 9.73785275e-11 3.232227315e-10 4.49195098e-10 4.056705759e-10 3.641349015e-10 4.03504114e-10 3.755783655e-10 5.231615561e-10 6.675475202e-10 6.502412978e-10 7.102286187e-10 6.845190018e-10 5.913543245e-10 7.816491812e-10 6.217854046e-10 4.799076558e-10 8.619744442e-10 5.240106407e-10 7.099884508e-10 3.549519879e-10 1.374467442e-10 2.871780185e-10 2.782238617e-10 1.969782985e-10 2.822384388e-10 3.047270104e-10 4.171593128e-10 2.420934595e-10 4.061775149e-10 3.248410511e-10 4.859941794e-10 5.071107207e-10 2.58578313e-10 3.813261323e-10 4.709559276e-10 4.238072624e-10 5.357434583e-10 4.911231712e-10 6.216520245e-10 4.77326638e-10 1.91246607e-10 4.328773536e-10 3.737391048e-10 3.177061131e-10 4.215539559e-10 2.380528802e-10 3.79394747e-10 4.12394546e-10 3.208171145e-10 4.57450557e-10 4.124683323e-10 2.731707557e-10 2.062468741e-10 2.197501752e-10 2.63747088e-10 3.909184934e-10 4.414152717e-10 3.763860905e-10 3.324053841e-10 3.164131491e-10 5.302782356e-10 1.801227751e-10 2.808188599e-10 2.328489537e-10 2.73666338e-10 3.337633371e-10 2.575515581e-10 4.161740258e-10 3.265230088e-10 3.577815613e-10 2.358138359e-10 2.285602429e-10 2.131691934e-10 2.844932871e-10 3.150745912e-10 3.816931739e-10 4.164754542e-10 3.737904588e-10 3.875287026e-10 3.72830115e-10 2.101121845e-10 2.243183101e-10 3.130235094e-10 3.519232222e-10 2.479775005e-10 1.130621397e-10 9.954664481e-11 2.611319714e-10 1.742247541e-10 7.663748247e-11 3.055407629e-10 1.532805663e-10 2.232352278e-10 1.810363703e-10 2.749493897e-10 1.325464655e-10 2.955791779e-10 1.638171027e-10 8.336136119e-11 2.109173772e-10 4.857445284e-11 1.329097465e-10 1.326275389e-10 1.811812536e-10 1.009578505e-10 3.845351931e-10 1.836350295e-10 3.043466584e-10 1.13104826e-10 2.631635574e-10 1.031018623e-10 1.589416107e-10 1.72904825e-10 3.182637798e-10 1.553310653e-10 1.744704491e-10 2.312771794e-10 1.851958333e-10 1.19055352e-10 1.571477512e-10 +1.315269307e-10 1.010304411e-10 1.636047877e-10 9.578852963e-11 2.733613459e-10 1.479468639e-10 2.227251674e-10 2.978980725e-10 1.362897096e-10 2.077533028e-10 1.082513776e-10 1.735498745e-10 1.678781981e-10 1.40082442e-10 1.31934393e-10 1.784466723e-10 3.203283347e-10 1.699273335e-10 1.1863039e-10 1.264401016e-10 1.091666333e-10 3.36307536e-10 1.848710808e-10 2.772591054e-10 1.362492445e-10 2.724984804e-10 3.598726916e-10 3.321464223e-10 1.466093346e-10 1.617163949e-10 1.527559818e-10 2.285042212e-10 1.76236515e-10 2.696481426e-10 1.669330974e-10 2.179833929e-10 1.01805265e-10 2.261949768e-10 1.822975396e-10 1.359545766e-10 3.6930876e-10 2.523638092e-10 3.117798677e-10 3.253085267e-10 1.819994035e-10 2.579674571e-10 4.075615162e-10 1.725402636e-10 3.651834269e-10 3.329668751e-10 3.712991073e-10 4.789952827e-10 2.388691651e-10 2.546643035e-10 2.499577003e-10 4.302520445e-10 4.208090985e-10 1.119490571e-10 3.236704502e-10 1.980441246e-10 1.740817149e-10 2.499651077e-10 3.569721062e-10 2.786857871e-10 2.533746594e-10 2.656324886e-10 3.9973831e-10 2.76550962e-10 4.837416781e-10 4.300708738e-10 2.510891104e-10 2.737135327e-10 4.325872112e-10 3.902873252e-10 3.438102004e-10 3.107969684e-10 4.281384337e-10 1.752463461e-10 3.845010634e-10 3.679399505e-10 3.958341153e-10 5.970997425e-10 4.373919353e-10 3.392740551e-10 5.277470421e-10 5.4575197e-10 4.040739677e-10 4.657414153e-10 4.394647751e-10 5.259798452e-10 4.041272326e-10 4.740246123e-10 2.507983927e-10 3.727305511e-10 3.354621902e-10 2.252472189e-10 2.135187166e-10 3.175271531e-10 3.060805494e-10 3.19300074e-10 7.467150823e-10 6.240607385e-10 8.165352413e-10 7.805801444e-10 6.37975808e-10 8.296232234e-10 6.922371011e-10 7.423379015e-10 5.907658423e-10 7.934885998e-10 7.748691682e-10 5.781711848e-10 6.432074759e-10 4.503276635e-10 4.106310414e-10 4.802358612e-10 4.471942641e-10 4.212928755e-10 3.286493849e-10 9.690520615e-11 1.393941559e-10 1.778479015e-10 1.982547183e-10 1.973188038e-10 4.351853363e-10 4.83254982e-10 6.008123387e-10 5.859157888e-10 7.641788532e-10 8.36275925e-10 1.012321663e-09 9.62485051e-10 9.238986308e-10 9.817312133e-10 7.874562592e-10 6.412100326e-10 3.724966296e-10 1.440692805e-10 4.577273837e-15 7.383456907e-12 9.022459257e-11 1.502821985e-10 1.85707678e-10 1.155950648e-10 1.596781279e-10 1.044022449e-10 1.641864082e-10 1.150327902e-10 1.899468953e-10 1.860978241e-10 1.335330703e-10 1.451517878e-10 1.270504896e-10 1.669569414e-10 1.185704509e-10 5.492986304e-11 8.180276896e-11 0 1.466887063e-10 2.139158922e-10 1.530511685e-10 9.391008276e-11 1.271334185e-10 3.931196031e-10 3.85655421e-10 7.934101305e-10 1.061314179e-09 1.044568754e-09 9.465778801e-10 1.073821146e-09 1.1225007e-09 9.161596531e-10 5.652037205e-10 5.58315956e-10 4.931059124e-10 5.017179286e-10 4.132462789e-10 1.337905942e-10 5.858360624e-27 1.528533612e-10 1.240629693e-10 2.585911436e-10 4.493207492e-10 3.586911856e-10 5.372759935e-10 4.984923613e-10 6.225109541e-10 4.713929777e-10 5.689110278e-10 6.97817391e-10 7.987939189e-10 4.677738818e-10 6.816786662e-10 5.839142813e-10 7.011632498e-10 5.468616742e-10 8.608522843e-10 7.856293073e-10 7.606753814e-10 5.801088358e-10 2.258135462e-10 2.354601845e-10 1.850750396e-10 2.572745458e-10 2.467602825e-10 3.355085693e-10 3.381679587e-10 3.520773e-10 3.315988544e-10 3.680280719e-10 3.528132702e-10 3.619298709e-10 5.025329611e-10 4.851078808e-10 5.801803486e-10 6.170298833e-10 3.143095875e-10 4.173502278e-10 4.193107932e-10 6.279291434e-10 5.470368142e-10 3.085652439e-10 3.10515841e-10 3.852453074e-10 2.352073051e-10 3.053077409e-10 4.211481708e-10 3.664707159e-10 3.173753864e-10 3.433759688e-10 4.015620198e-10 2.89358463e-10 4.030792147e-10 3.303971469e-10 2.737827223e-10 3.828968688e-10 2.267273377e-10 2.781771312e-10 2.642312549e-10 3.018686484e-10 1.841282965e-10 3.800804308e-10 2.262172863e-10 1.874592696e-10 1.333199398e-10 2.767452352e-10 1.686474115e-10 2.318429841e-10 3.136718316e-10 1.158628688e-10 3.382501126e-10 2.792507067e-10 2.616603686e-10 3.379340275e-10 2.335526917e-10 4.0609796e-10 1.791036284e-10 3.108313718e-10 2.857548594e-10 2.718539744e-10 1.315318557e-10 1.147297347e-10 3.049719758e-10 8.333330739e-11 3.005648454e-10 1.032261985e-10 1.545378244e-10 1.16349003e-10 1.489187979e-10 2.577651353e-10 2.657516664e-10 1.705729081e-10 1.461376367e-10 1.812872122e-10 2.227026353e-10 1.722457285e-10 1.481629082e-10 2.521408325e-10 2.258332462e-10 8.484400398e-11 1.269352196e-10 4.24831106e-11 3.523245929e-10 1.799126935e-10 1.475234242e-10 4.883103817e-11 3.70466281e-10 1.301321887e-10 2.717624617e-10 2.135979985e-10 9.66435625e-11 2.39244721e-10 2.420304674e-10 1.385439704e-10 1.120057809e-10 2.718062478e-10 2.002236874e-10 1.136492485e-10 9.235467924e-11 3.48550646e-10 +1.467557105e-10 2.361950893e-10 9.147702083e-11 3.212297673e-10 2.223485047e-10 4.114020894e-11 1.662600616e-10 2.147206163e-10 1.060819454e-10 2.859960621e-10 3.520111825e-10 1.497065467e-10 3.365609522e-10 5.735615501e-10 2.286145208e-10 4.265736578e-10 1.056308337e-10 9.971143886e-11 1.291677031e-10 1.495878954e-10 1.553134373e-10 4.542637198e-10 2.216810012e-10 2.791767865e-10 2.894420325e-10 1.430424366e-10 1.888532348e-10 1.399311924e-10 1.164616991e-10 3.576744177e-10 8.780628817e-11 3.064753512e-10 1.030350225e-10 3.376126241e-10 1.869367061e-10 1.44555888e-10 1.720827222e-10 2.953599355e-10 1.449384374e-10 1.648035844e-10 2.767531776e-10 2.961765164e-10 3.440043872e-10 3.695670909e-10 3.766357191e-10 1.670594878e-10 2.811700629e-10 4.429815781e-10 3.669037454e-10 3.093591124e-10 4.495059763e-10 2.1581052e-10 3.05286233e-10 2.222558238e-10 3.266686469e-10 3.572600259e-10 1.815770984e-10 2.864933776e-10 2.596365769e-10 3.313606292e-10 2.342554413e-10 2.981705695e-10 3.025840657e-10 2.311639563e-10 3.321295143e-10 3.958294704e-10 4.167246232e-10 3.296435747e-10 2.390096173e-10 4.184320554e-10 3.555713302e-10 3.996300459e-10 4.475308798e-10 3.00242615e-10 2.794329407e-10 2.79203126e-10 3.177545558e-10 4.086476075e-10 2.851500462e-10 4.43835256e-10 4.651244165e-10 4.756359835e-10 6.0338598e-10 5.951540476e-10 5.05831726e-10 3.672235601e-10 6.259065205e-10 5.082359359e-10 4.678473297e-10 3.269936667e-10 3.845785263e-10 2.700257033e-10 4.025468858e-10 3.029496375e-10 3.114671073e-10 2.780100761e-10 1.187984086e-10 1.022076647e-10 2.195786934e-10 3.005557248e-10 6.938503403e-10 5.750239922e-10 6.20062915e-10 8.906687675e-10 8.038385528e-10 6.662706011e-10 8.0374233e-10 5.40501676e-10 5.852185533e-10 5.669521106e-10 7.875685611e-10 6.187883649e-10 6.047624843e-10 5.774997868e-10 5.873959202e-10 5.945496495e-10 5.087637394e-10 4.124482776e-10 2.601629931e-10 1.165668797e-10 6.554329317e-11 1.5918313e-10 8.868686137e-11 3.782384983e-10 4.86407303e-10 5.261135318e-10 5.097190012e-10 6.421995398e-10 1.050735564e-09 1.149225978e-09 1.012669272e-09 1.0033522e-09 8.249311002e-10 8.689015799e-10 6.872429222e-10 2.570116801e-10 2.181255794e-10 1.814670423e-10 3.395364941e-10 1.890330743e-10 1.173363715e-10 2.051452088e-10 1.311487848e-10 1.806157475e-10 6.961568173e-11 1.134388369e-10 1.913230637e-10 1.464837009e-10 1.614758974e-10 1.404805797e-10 1.395555243e-10 3.098507775e-10 1.434968964e-10 1.016796099e-10 2.152745261e-10 8.885442072e-11 1.044719369e-10 1.351027567e-10 1.815004251e-10 1.863419607e-10 1.82336199e-10 1.989008046e-10 1.204669393e-10 2.39397467e-10 4.450937958e-10 7.879027888e-10 9.342507546e-10 9.946818439e-10 1.002956823e-09 1.018024336e-09 9.044580571e-10 7.802084264e-10 4.638878085e-10 5.777364508e-10 5.665693173e-10 4.36934163e-10 3.108180993e-10 1.120685679e-10 1.180004767e-10 1.556950317e-10 1.201445536e-10 3.55798293e-10 4.365064751e-10 4.578457928e-10 5.380843714e-10 3.794969841e-10 4.263478003e-10 5.583092515e-10 6.273989158e-10 6.421408372e-10 7.674393447e-10 6.724275112e-10 7.665336939e-10 7.156956832e-10 7.530074292e-10 1.084809667e-09 7.694203259e-10 6.469732943e-10 8.157894655e-10 4.276160971e-10 2.989123824e-10 2.533440896e-10 2.069235312e-10 2.826460524e-10 1.976302098e-10 4.112037616e-10 3.411373565e-10 5.493597594e-10 3.059814001e-10 3.876869943e-10 2.4107003e-10 3.144776784e-10 4.739974393e-10 5.149446763e-10 5.11753612e-10 3.809458564e-10 4.418004732e-10 5.905569099e-10 4.385836607e-10 4.573241169e-10 4.444694362e-10 4.711498961e-10 3.018856507e-10 3.124034571e-10 2.969528792e-10 3.304587824e-10 2.504626808e-10 2.036671162e-10 2.623452473e-10 3.743798095e-10 3.265375401e-10 3.8736043e-10 3.330728281e-10 2.966492273e-10 3.788396398e-10 2.080683488e-10 4.64773424e-10 4.151222016e-10 3.75212501e-10 1.977541816e-10 2.769650947e-10 2.135363109e-10 2.456087493e-10 3.509378172e-10 2.929056157e-10 1.754580732e-10 2.773249686e-10 3.734479058e-10 3.349002383e-10 4.66697686e-10 2.727919406e-10 1.908641927e-10 2.525746267e-10 3.99824533e-10 4.899578722e-10 3.849869556e-10 3.2271463e-10 2.159152087e-10 2.663346609e-10 2.752283402e-10 9.176410265e-11 4.497065405e-10 3.55300466e-10 1.749069163e-10 2.849010883e-10 3.046529319e-10 1.654337112e-10 1.011506978e-10 1.558946664e-10 1.387561108e-10 1.190072536e-10 2.709770314e-10 1.250613468e-10 3.17717137e-10 2.125775066e-10 1.795118601e-10 1.810252058e-10 2.145806119e-10 1.192057201e-10 2.833990505e-10 1.649930271e-10 1.806441769e-10 1.204102188e-10 8.68430841e-11 1.67812517e-10 2.288729059e-10 3.328444728e-10 1.246594864e-10 2.268067649e-10 3.983212598e-10 2.703276474e-10 1.827624589e-10 1.893620471e-10 2.507545429e-10 1.56614031e-10 1.008211326e-10 2.46721768e-10 1.614566436e-10 2.169432711e-10 1.988420991e-10 +1.1220938e-10 1.023154568e-10 3.217944978e-10 2.020647301e-10 8.636970943e-11 1.601683397e-10 1.318801547e-10 1.108627977e-10 2.059791765e-10 1.974667202e-10 1.50254278e-10 3.704534682e-10 4.714770276e-11 2.117685376e-10 9.410148353e-11 1.434460434e-10 2.418459843e-10 1.639227466e-10 2.312877089e-10 1.591531697e-10 1.495308586e-10 1.592106191e-10 2.014469814e-10 2.447604984e-10 5.476221157e-10 3.463335519e-10 1.564492582e-10 2.620635766e-10 2.442082006e-10 8.575086643e-11 2.246119194e-10 3.993221222e-10 3.53045412e-10 1.383152417e-10 1.123810985e-10 3.629137429e-10 2.288782312e-10 2.791525803e-10 3.770954782e-10 3.160836377e-10 2.25368079e-10 1.759163736e-10 3.10437569e-10 2.85105216e-10 5.894619231e-10 3.357687116e-10 2.016069223e-10 3.190318334e-10 3.254427635e-10 2.072855119e-10 3.215266301e-10 4.143782516e-10 2.923510587e-10 4.735228191e-10 2.831172292e-10 3.112326502e-10 3.338392173e-10 5.283410432e-10 1.418348309e-10 1.158303771e-10 2.44587866e-10 2.333778119e-10 2.439695923e-10 2.84111044e-10 3.066733231e-10 2.905102843e-10 2.87094174e-10 3.357334286e-10 3.670784202e-10 3.531215923e-10 3.873575065e-10 3.372918069e-10 2.901808512e-10 1.454523372e-10 4.685242686e-10 3.07779456e-10 1.781113619e-10 3.979463315e-10 4.184454905e-10 4.536063978e-10 4.341950612e-10 6.211257626e-10 6.28806417e-10 4.688494301e-10 5.653811594e-10 4.946749111e-10 4.653797505e-10 3.313187002e-10 5.561005276e-10 4.686233811e-10 3.363072286e-10 4.01122493e-10 2.544764984e-10 3.750750807e-10 4.018934983e-10 2.486454171e-10 2.446862237e-10 1.898934401e-10 2.252778553e-10 2.098783885e-10 5.519482246e-10 7.300017085e-10 9.295915206e-10 7.052659353e-10 3.740137799e-10 8.106689912e-10 7.795112203e-10 4.465205501e-10 7.543793371e-10 7.296183796e-10 7.508049614e-10 6.334540716e-10 5.455113416e-10 5.914392526e-10 4.440259147e-10 4.283674552e-10 4.922586811e-10 3.734588241e-10 2.630558427e-10 1.098650068e-10 3.399902728e-11 1.149601214e-10 0 3.84787478e-10 4.859022828e-10 5.566053663e-10 5.296711094e-10 6.893700075e-10 8.690367537e-10 1.141000066e-09 1.030357265e-09 9.110276351e-10 9.735424201e-10 8.845874478e-10 6.552864701e-10 4.186090898e-10 1.826892624e-35 0 4.746645342e-11 0 1.567366149e-10 2.571137456e-12 1.547234049e-10 1.490881153e-10 1.069725871e-10 8.875563853e-11 3.254810064e-27 1.59346963e-10 1.446144142e-10 9.627253565e-11 8.012714798e-11 2.717516452e-11 1.868846308e-10 1.201929302e-10 1.308316837e-10 9.862649646e-11 1.280179902e-10 9.632286602e-13 1.221449982e-10 1.711239795e-10 1.938299878e-10 1.758438258e-10 2.201598997e-10 1.42269955e-10 2.233040856e-10 5.177169516e-10 8.265112149e-10 1.034055543e-09 9.030586022e-10 9.427521827e-10 9.422737437e-10 9.158307224e-10 5.376995245e-10 6.168705352e-10 3.484854204e-10 4.76111949e-10 6.328438761e-10 2.884846073e-10 1.256366133e-10 2.072266641e-10 1.708033575e-10 2.478299932e-10 3.217697784e-10 3.620302154e-10 4.945295968e-10 5.449782899e-10 4.533699599e-10 4.77094377e-10 5.974599982e-10 6.822886935e-10 7.77512482e-10 6.498573604e-10 6.01388457e-10 6.591366215e-10 8.827919613e-10 7.827655669e-10 4.868926749e-10 6.061282805e-10 8.667152837e-10 4.891820717e-10 2.031746533e-10 3.386870077e-10 2.536320251e-10 2.066722729e-10 2.487395991e-10 4.281080704e-10 3.397017965e-10 3.690195808e-10 3.182570854e-10 3.531653158e-10 4.260024051e-10 2.826793416e-10 4.826479257e-10 3.720523882e-10 4.833344738e-10 4.455711713e-10 3.601717957e-10 4.802394473e-10 5.552510987e-10 4.266961614e-10 3.557990253e-10 4.699396768e-10 2.727320015e-10 2.884190985e-10 2.802251461e-10 2.423475387e-10 3.547180549e-10 1.884307191e-10 3.425761858e-10 3.390697606e-10 2.83548956e-10 2.606387075e-10 3.278957365e-10 3.23301944e-10 3.262397002e-10 4.482786995e-10 2.822404661e-10 1.745309316e-10 2.34817726e-10 2.1126874e-10 2.704735054e-10 3.670355421e-10 4.856906316e-10 3.805702434e-10 3.328582332e-10 1.920235905e-10 2.411129558e-10 4.000577119e-10 1.204039254e-10 2.855415909e-10 4.670821435e-10 1.912676861e-10 2.567355027e-10 3.430607392e-10 3.576441307e-10 3.917416743e-10 2.285919581e-10 4.959335956e-10 2.360240804e-10 1.401755547e-10 3.306303e-10 2.312334217e-10 1.492582955e-10 2.850763701e-10 1.339377109e-10 1.76898019e-10 1.404507333e-10 1.936008793e-10 3.07595169e-10 3.149957189e-10 1.908664625e-10 2.576840472e-10 2.23009169e-10 1.801261079e-10 1.990734985e-10 8.717440577e-11 2.784942676e-10 1.759586901e-10 3.077530938e-10 1.672042762e-10 4.314737904e-10 1.291066717e-10 2.445368633e-10 2.895581566e-10 3.621967807e-10 1.784630968e-10 1.983835156e-10 1.55675385e-10 2.378003726e-10 1.812074388e-10 1.589126431e-10 7.480112806e-11 6.685020919e-11 1.373621652e-10 4.615360924e-10 1.045094211e-10 1.098688459e-10 2.717167914e-10 2.05957725e-10 1.01136486e-10 +1.026047988e-10 9.231141739e-11 3.25329404e-10 2.288793431e-10 2.033888733e-10 1.171460203e-10 2.204006273e-10 1.082499194e-10 2.55524822e-10 1.822951942e-10 7.573703337e-11 1.793177848e-10 1.65300607e-10 1.958049396e-10 1.905424646e-10 1.426631851e-10 2.477908962e-10 9.798082628e-11 4.050093491e-10 1.037946561e-10 1.478071189e-10 7.011983973e-11 1.093234019e-10 2.299426594e-10 1.472506902e-10 2.616521357e-10 1.014214317e-10 1.404154624e-10 1.838748053e-10 4.219086244e-10 2.287496175e-10 1.382071965e-10 1.12952055e-10 8.222540307e-11 1.654817988e-10 2.274705274e-10 3.061447284e-10 1.37319772e-10 2.339484566e-10 1.55875471e-10 1.425038909e-10 3.541719361e-10 2.771677152e-10 2.950882971e-10 3.32134679e-10 1.745826193e-10 3.272404652e-10 3.768939666e-10 3.365334761e-10 2.670647791e-10 2.213107286e-10 5.117622426e-10 2.999939297e-10 2.490801224e-10 3.395204494e-10 3.96570863e-10 2.402464856e-10 2.178801572e-10 1.627347526e-10 2.44921338e-10 1.980049276e-10 3.366906281e-10 2.780229567e-10 3.846922504e-10 2.546409282e-10 3.785865981e-10 3.360675898e-10 3.076277506e-10 2.970295543e-10 5.463836927e-10 3.466777535e-10 2.304065928e-10 3.603598043e-10 2.567270659e-10 4.893223416e-10 3.367167829e-10 2.567060974e-10 3.094512381e-10 4.39741042e-10 4.369097406e-10 4.497761318e-10 4.725513629e-10 5.577602667e-10 6.088355509e-10 3.269340005e-10 4.659423204e-10 4.663891478e-10 5.300011515e-10 4.058594796e-10 3.926705897e-10 4.831620034e-10 4.195445148e-10 4.345896993e-10 4.727966123e-10 3.362513121e-10 2.672193869e-10 1.549229191e-10 1.731502243e-10 3.056980322e-10 2.706427888e-10 7.340976437e-10 8.165008682e-10 5.727828966e-10 4.512515146e-10 6.892369124e-10 7.922593943e-10 5.801732377e-10 6.340033339e-10 7.090154925e-10 8.4359736e-10 5.644714499e-10 5.082741157e-10 5.746794653e-10 4.421257054e-10 4.876530816e-10 5.198806774e-10 4.402002792e-10 3.881930764e-10 1.782938185e-10 2.18119545e-11 1.086162137e-10 4.409330789e-11 3.707391925e-10 5.252620112e-10 6.206790661e-10 6.080002723e-10 5.475634058e-10 8.668846342e-10 1.025884715e-09 1.038555602e-09 1.107219607e-09 9.128607534e-10 9.299055244e-10 6.727142144e-10 4.773284362e-10 5.736931797e-11 1.939003975e-10 1.069642973e-10 2.710970875e-10 1.19116528e-11 1.383349957e-10 1.426629309e-10 1.781296841e-10 1.573816509e-10 1.681994102e-10 1.064382583e-10 8.676411838e-11 1.341162833e-10 1.00329245e-10 1.7159752e-10 1.764280948e-10 1.06940644e-10 1.046566332e-10 1.21149542e-10 1.514520657e-11 1.504761188e-16 1.273495249e-11 1.461920185e-10 1.567955507e-10 2.528771345e-10 1.273062562e-10 1.33696463e-10 1.81083298e-10 1.096156665e-10 6.136675396e-11 3.752611594e-10 6.020650648e-10 7.248176527e-10 9.767311974e-10 8.947489143e-10 9.53046077e-10 9.310888624e-10 6.771652295e-10 5.6490234e-10 5.127807221e-10 5.753195547e-10 5.019628281e-10 2.566898727e-10 1.436928373e-10 1.940778562e-10 1.910057187e-10 2.287566936e-10 4.004174563e-10 4.688836002e-10 4.888519802e-10 5.978823828e-10 4.603208878e-10 5.165667174e-10 6.735314583e-10 7.112248099e-10 8.465237876e-10 7.547156876e-10 6.162922543e-10 5.560739983e-10 7.422022134e-10 7.779448287e-10 8.380362215e-10 7.15708717e-10 6.596188919e-10 7.839564513e-10 4.546118146e-10 2.726841207e-10 1.563640644e-10 1.185000811e-10 2.727468035e-10 3.184488229e-10 3.801311221e-10 3.018042671e-10 3.625000665e-10 2.9710521e-10 3.44398867e-10 4.691676143e-10 4.525819932e-10 5.122671836e-10 6.482256639e-10 4.702158499e-10 4.567946493e-10 5.480381827e-10 5.706381545e-10 4.384032999e-10 4.624736498e-10 2.374033225e-10 2.742121614e-10 2.020071387e-10 2.646105254e-10 2.644484188e-10 3.737326961e-10 2.753279383e-10 3.164468972e-10 4.036431693e-10 3.511727218e-10 3.533173865e-10 3.041552814e-10 2.915447597e-10 3.6551508e-10 2.458158717e-10 2.491817672e-10 3.423754905e-10 3.875311148e-10 2.470591178e-10 2.60423568e-10 5.247387825e-10 2.142620375e-10 1.743595979e-10 2.868733414e-10 2.538149321e-10 3.374257761e-10 2.533129856e-10 3.011662809e-10 2.072478303e-10 1.697791088e-10 1.817046261e-10 2.855695524e-10 2.43163227e-10 3.971857785e-10 3.436940021e-10 4.141031748e-10 1.885083868e-10 4.531554537e-10 3.560511341e-10 2.459941952e-10 3.12274115e-10 1.340633645e-10 1.219140055e-10 2.008994151e-10 4.269012713e-10 2.544898493e-10 3.251092979e-10 1.533171571e-10 1.272426561e-10 2.964490687e-10 1.589554792e-10 1.927152177e-10 1.454031157e-10 2.575758168e-10 3.293846793e-10 3.138355506e-10 2.10441079e-10 1.163416551e-10 1.59295899e-10 9.898688473e-11 3.543188959e-10 2.355389955e-10 2.667169395e-10 7.603979206e-11 2.469624968e-10 2.255214693e-10 1.794102177e-10 8.853003055e-11 3.318815374e-10 2.653143301e-10 2.526656549e-11 2.06995718e-10 2.338287244e-10 2.069835934e-10 2.031759098e-10 1.54126451e-10 1.595818367e-10 1.615353245e-10 2.813799467e-10 +2.733753821e-10 1.171814059e-10 1.586201328e-10 4.099951927e-10 2.437427926e-10 2.672309475e-10 3.080458995e-10 3.247759355e-10 1.038546654e-10 1.789515648e-10 9.737692128e-11 8.964704383e-11 3.169290575e-10 2.401681771e-10 1.840627051e-10 2.129454669e-10 8.339693782e-11 9.539426888e-11 2.806010772e-10 1.220602258e-10 1.615687786e-10 2.105928576e-10 2.816874558e-10 4.530423791e-10 1.902321621e-10 3.00278044e-10 2.479078893e-10 2.568112958e-10 2.735411402e-10 2.803702766e-10 9.390748923e-11 2.54924673e-10 1.472100892e-10 1.55832095e-10 1.766390668e-10 3.017394835e-10 1.628563195e-10 1.52647068e-10 1.489985753e-10 1.690870129e-10 1.706773424e-10 3.924881354e-10 4.471879033e-10 3.03100751e-10 2.768370935e-10 3.237874346e-10 2.114184324e-10 1.552691433e-10 2.1635961e-10 3.000775967e-10 1.761303297e-10 3.492758002e-10 2.845296179e-10 2.871148423e-10 2.550359425e-10 5.404031941e-10 4.505831653e-10 3.812713479e-10 4.370201669e-10 2.149939652e-10 3.286250608e-10 4.222071819e-10 4.695832214e-10 2.642864935e-10 3.456552045e-10 3.380371143e-10 3.323334587e-10 2.70632588e-10 3.758637887e-10 3.735502245e-10 2.769151244e-10 1.952736079e-10 3.62072068e-10 2.931162088e-10 2.823378072e-10 3.116347802e-10 2.588551855e-10 2.923121892e-10 3.131265728e-10 3.821059991e-10 3.431547222e-10 6.658452331e-10 5.89630522e-10 3.295145752e-10 3.930487274e-10 5.239478498e-10 5.53708376e-10 4.005641327e-10 5.058039818e-10 3.690337111e-10 5.14658085e-10 3.238977514e-10 3.186727184e-10 4.165835387e-10 3.144681163e-10 4.036017036e-10 2.110727463e-10 5.966803907e-11 1.488582505e-10 2.612947785e-10 5.294478751e-10 5.17941551e-10 6.989730629e-10 7.986755293e-10 5.526043073e-10 8.281972586e-10 5.953736051e-10 6.793410458e-10 7.084441824e-10 7.989274395e-10 7.537517739e-10 5.518274072e-10 5.094746743e-10 3.780682655e-10 5.526143538e-10 4.62029595e-10 2.879186093e-10 4.240974205e-10 1.016061448e-10 1.544301254e-10 1.296935039e-10 6.417710563e-11 2.903898319e-10 3.774747509e-10 5.934490696e-10 5.346267018e-10 5.336120528e-10 7.627168649e-10 1.114080873e-09 9.121175933e-10 1.020218902e-09 9.074107667e-10 7.11182228e-10 6.673026588e-10 3.549770918e-10 1.69105283e-10 1.433088833e-10 9.384078736e-11 1.952765302e-10 1.007757648e-10 1.278237905e-10 1.649630619e-10 1.133874895e-10 1.416582431e-10 8.987672887e-11 1.12878728e-10 1.694558964e-10 4.69206429e-13 8.693341604e-11 1.621898761e-10 1.443262301e-10 1.694635018e-10 1.238460437e-10 9.730435657e-11 2.383851184e-10 8.485247176e-11 1.260545363e-10 1.255803664e-10 1.064987798e-10 7.495526457e-11 1.576458993e-10 2.248981678e-10 1.146834941e-10 7.94326203e-11 2.070526724e-10 2.587846043e-10 7.279266614e-10 7.762529173e-10 7.717481681e-10 1.027512652e-09 9.868765103e-10 9.113439861e-10 7.697009902e-10 5.985365702e-10 5.334215021e-10 5.381905093e-10 5.495054144e-10 3.646987519e-10 1.335700299e-10 1.407748372e-10 1.849130922e-10 1.734134362e-10 3.295835634e-10 5.298668404e-10 4.076307704e-10 5.647732946e-10 5.267560431e-10 4.817204814e-10 4.617370131e-10 6.010018582e-10 7.758379049e-10 6.307976299e-10 7.114117519e-10 6.002818326e-10 6.055879058e-10 6.632872175e-10 5.785734864e-10 6.359537958e-10 9.413474387e-10 5.04093962e-10 2.83784383e-10 1.501231952e-10 1.891635083e-10 2.270926594e-10 3.179370541e-10 3.78363098e-10 3.776479502e-10 5.340907337e-10 3.811678656e-10 4.488634506e-10 4.330772957e-10 4.307148846e-10 4.701996588e-10 4.276885406e-10 4.712597951e-10 5.442152723e-10 3.955736192e-10 5.478082371e-10 5.541827794e-10 2.882854633e-10 3.97856181e-10 4.739790874e-10 3.878121178e-10 3.107268006e-10 3.553900095e-10 2.273041994e-10 3.840171164e-10 2.261551371e-10 3.521988968e-10 4.463767861e-10 3.183179747e-10 3.415546796e-10 1.524540817e-10 1.725041596e-10 3.065208225e-10 2.500510427e-10 2.924408437e-10 3.763316714e-10 3.356805034e-10 3.702339271e-10 3.255355684e-10 3.089810646e-10 3.431690808e-10 3.118455056e-10 2.589582805e-10 3.492607414e-10 2.234878831e-10 3.961276785e-10 3.824258452e-10 3.826921342e-10 3.217302078e-10 3.578128571e-10 2.8710926e-10 2.506306253e-10 2.579786036e-10 4.161228541e-10 3.110332372e-10 2.709130452e-10 2.946965582e-10 2.148482133e-10 2.716035688e-10 1.043525023e-10 1.856954956e-10 1.299082571e-10 1.706264328e-10 3.101915199e-10 3.738295231e-10 2.622807708e-10 2.509392725e-10 2.145266138e-10 2.68401129e-10 1.637531146e-10 2.119677325e-10 2.505131936e-10 2.005928622e-10 3.12867314e-10 1.108044449e-10 1.621570786e-10 8.817546738e-11 2.59414624e-10 4.333799879e-11 1.252485633e-10 2.211879988e-10 8.577585169e-11 4.965488513e-11 1.738861143e-10 1.758969528e-10 1.291674562e-10 4.476622804e-10 1.403045883e-10 1.792403811e-10 4.14734725e-10 1.104690058e-10 2.558649619e-10 8.08532724e-11 1.215342131e-10 2.202516234e-10 2.168078497e-10 9.056101543e-11 1.609009478e-10 +2.913994385e-10 8.389965708e-11 3.636634667e-10 4.158648862e-10 3.560578772e-10 4.021308498e-10 2.209099117e-10 1.531081571e-10 8.381439569e-11 1.758056781e-10 3.47711511e-10 2.27414717e-10 2.653021025e-10 1.085746372e-10 3.336848042e-10 1.942030701e-10 2.077323038e-10 1.09535355e-10 9.427650306e-11 1.331228158e-10 7.891094093e-11 2.58744886e-10 1.549125961e-10 3.067803942e-10 1.264191079e-10 2.324703538e-10 3.467195149e-10 3.0821526e-10 2.73904064e-10 1.589861106e-10 2.812801795e-10 1.342004243e-10 2.697341808e-10 1.459993148e-10 1.505743499e-10 5.139699414e-10 1.168375652e-10 1.789583288e-10 1.922184582e-10 2.382349813e-10 4.452418415e-10 2.147335029e-10 3.24284624e-10 4.449995711e-10 5.676138262e-10 3.950008067e-10 4.357173395e-10 3.081927507e-10 1.687354113e-10 4.001060826e-10 2.938925905e-10 2.237686628e-10 4.322297979e-10 1.901487862e-10 3.997698112e-10 3.347922817e-10 2.553919406e-10 2.234284232e-10 1.359476234e-10 4.539793642e-10 3.566077216e-10 2.080972573e-10 3.289955188e-10 2.125747178e-10 4.55551753e-10 3.324882906e-10 2.145133211e-10 2.094767668e-10 2.450004608e-10 4.271896477e-10 3.484297e-10 4.104016435e-10 3.631469233e-10 3.575801018e-10 3.602907459e-10 3.079442453e-10 3.797771574e-10 3.563587622e-10 3.623112214e-10 3.50903138e-10 3.1275171e-10 5.501333605e-10 4.58946387e-10 6.118334411e-10 5.431125308e-10 5.580368732e-10 3.677409521e-10 4.345249398e-10 4.877656505e-10 4.255193095e-10 3.621501758e-10 3.108954831e-10 3.648623484e-10 4.136887845e-10 3.701139659e-10 2.979628151e-10 2.128037254e-10 3.355800926e-10 2.880425986e-10 2.582584598e-10 4.161691336e-10 6.430163289e-10 7.693425391e-10 7.962506877e-10 6.136308213e-10 4.996805682e-10 5.260547256e-10 5.178959312e-10 5.489131943e-10 7.130786563e-10 5.912776166e-10 7.061902022e-10 5.397140402e-10 5.520699403e-10 5.125941455e-10 4.525812869e-10 5.268729936e-10 3.193562326e-10 2.207607943e-10 1.079133835e-10 9.939223875e-11 2.441988285e-10 3.995633113e-10 5.038528013e-10 6.474406676e-10 6.704630545e-10 6.722948884e-10 1.106507828e-09 1.098123119e-09 8.919614527e-10 9.81239356e-10 9.259508466e-10 8.588496516e-10 5.137648778e-10 3.355013382e-10 1.640764664e-10 1.033854112e-10 1.445606212e-10 1.528424858e-10 1.824714649e-10 8.527393743e-11 1.514809385e-10 1.5715473e-10 8.727555753e-11 1.723581688e-10 1.795205941e-10 1.491373125e-10 1.39565941e-10 1.039911075e-10 7.805991373e-11 1.457040656e-10 1.296179644e-10 1.53218863e-10 1.736604899e-10 1.206442731e-10 2.690299582e-10 1.373582179e-10 1.350035258e-10 3.257523022e-11 1.9436868e-10 0 1.169845549e-10 1.767531956e-10 1.122261473e-10 1.302955849e-10 6.239096241e-11 5.49153732e-10 6.032768411e-10 8.409361188e-10 8.954509042e-10 9.918099853e-10 1.102007359e-09 1.028022319e-09 5.983665673e-10 5.025721234e-10 5.257619744e-10 5.516777482e-10 3.900879382e-10 1.855110847e-10 2.201216886e-10 1.547381295e-10 2.28273881e-10 2.919590978e-10 5.196190428e-10 4.32708444e-10 5.108140542e-10 5.048547104e-10 5.31764315e-10 5.174917166e-10 7.0816895e-10 6.895325484e-10 4.654238856e-10 8.401621508e-10 5.527529714e-10 7.321391431e-10 8.23165167e-10 6.076933823e-10 7.476941584e-10 6.478378336e-10 6.109829153e-10 2.525970856e-10 1.411048883e-10 2.631589533e-10 1.768532443e-10 3.24582636e-10 3.514786032e-10 4.425119126e-10 4.476395997e-10 4.198072482e-10 4.632219088e-10 2.99237735e-10 2.618409103e-10 3.454205795e-10 5.121330494e-10 6.079931354e-10 4.650375368e-10 4.145506585e-10 5.737375618e-10 5.336125865e-10 2.660505185e-10 3.655087187e-10 2.950472901e-10 3.087860785e-10 2.655496709e-10 2.812123409e-10 4.802255487e-10 2.813179216e-10 2.365881678e-10 4.472758067e-10 4.715022987e-10 3.118044162e-10 3.16176696e-10 3.040080323e-10 2.352896443e-10 2.83927247e-10 3.681558452e-10 3.088121881e-10 3.130292624e-10 3.002717827e-10 2.364339742e-10 1.962026112e-10 1.930909132e-10 3.755257774e-10 1.218798862e-10 4.094359716e-10 2.667925508e-10 4.402188379e-10 1.707892497e-10 2.880723689e-10 2.826385796e-10 3.705780028e-10 3.324138831e-10 3.717834864e-10 2.676100101e-10 2.308527165e-10 3.366529935e-10 1.80440724e-10 2.506786236e-10 1.782432593e-10 4.240646671e-10 3.267857562e-10 1.727499228e-10 1.645352798e-10 3.247194321e-10 1.280185561e-10 2.228350572e-10 1.32918068e-10 2.19005288e-10 1.034373421e-10 2.312202818e-10 1.129610736e-10 1.150133307e-10 1.455885822e-10 1.877008985e-10 1.632774956e-10 1.655762585e-10 3.905092126e-10 1.19024782e-10 1.238109814e-10 2.550371317e-10 1.428053546e-10 9.820037204e-11 9.038514366e-11 1.599994068e-10 1.47932501e-10 2.697400409e-10 1.921992742e-10 8.258420329e-11 3.621192869e-10 2.497586427e-10 2.344131955e-10 2.024279731e-10 1.0677019e-10 1.35192185e-10 3.069066564e-10 2.146439322e-10 1.570494872e-10 3.945490988e-11 3.898209308e-10 1.324291986e-10 +3.04953628e-10 1.665666923e-10 1.724571421e-10 1.548023173e-10 3.772319441e-10 9.818133748e-11 1.708530054e-10 2.184169313e-10 2.629377413e-10 2.871360551e-10 2.81829976e-10 4.872185061e-11 2.548714554e-10 1.981912143e-10 3.031701942e-10 5.996349244e-11 2.823841162e-10 9.207307989e-11 1.578565341e-10 4.597430495e-10 1.172810917e-10 3.412848287e-10 2.926925393e-10 2.282701003e-10 2.389304721e-10 1.380478445e-10 2.493038776e-10 4.126375049e-10 2.461260896e-10 2.733851939e-10 1.679494859e-10 3.229928171e-10 2.086975353e-10 2.114396423e-10 1.48553732e-10 2.130063154e-10 3.032224321e-10 1.312554995e-10 9.349949661e-11 2.640893128e-10 2.611727523e-10 3.294566861e-10 3.229228935e-10 3.135991406e-10 2.137164602e-10 2.929132803e-10 3.573692675e-10 3.007250342e-10 1.876144386e-10 4.124333913e-10 4.745280211e-10 2.713885185e-10 4.007601819e-10 2.29687382e-10 3.241178712e-10 2.41137037e-10 3.830905997e-10 2.758202186e-10 2.312696635e-10 9.579165491e-11 3.395784379e-10 2.78209615e-10 4.037132698e-10 1.698344688e-10 3.26658015e-10 3.474069821e-10 3.767540331e-10 3.424898183e-10 3.681306435e-10 3.482501574e-10 2.632537902e-10 3.808498629e-10 3.118547004e-10 2.602763796e-10 3.657815777e-10 2.697398004e-10 1.439219989e-10 2.420055498e-10 4.014021773e-10 4.560010846e-10 4.631604637e-10 4.199503004e-10 4.234488155e-10 5.227878282e-10 6.110878571e-10 4.16885095e-10 5.024963595e-10 3.751426712e-10 3.87930158e-10 4.476577875e-10 4.749051064e-10 5.030661062e-10 4.500672769e-10 3.917990467e-10 3.215161981e-10 2.219972896e-10 1.811829317e-10 2.00214467e-10 3.433307195e-10 2.287002414e-10 3.486505377e-10 7.756215788e-10 7.996315972e-10 8.274470886e-10 7.754724934e-10 5.160589488e-10 5.230678605e-10 5.773013534e-10 6.798198849e-10 8.012357631e-10 5.323031911e-10 5.569598441e-10 4.413964647e-10 4.279380255e-10 4.474270169e-10 3.387986647e-10 4.640107817e-10 2.708198868e-10 1.532215202e-10 9.873071448e-11 9.848455681e-11 2.216138333e-10 5.22294861e-10 4.921174383e-10 5.636784755e-10 5.012652524e-10 6.855031713e-10 8.237819692e-10 9.018149126e-10 1.043477868e-09 9.440530566e-10 9.458001512e-10 5.657976811e-10 3.930392513e-10 2.070785706e-10 8.294241485e-11 1.332976241e-10 1.225659295e-10 1.19104914e-10 1.419324509e-10 2.016314265e-10 1.271626912e-10 1.383744407e-10 1.195304163e-12 1.269125072e-10 1.259274223e-10 1.069536643e-10 1.24748199e-10 1.64875966e-10 9.522191729e-11 8.923328118e-11 8.984202353e-11 1.970892856e-10 1.213382168e-10 1.666585132e-10 1.243814398e-10 1.23501462e-10 1.882558168e-10 1.434465214e-10 1.612938828e-10 1.189094575e-10 1.412282401e-10 1.767516007e-10 0 1.019053835e-10 9.732142405e-11 4.065170552e-10 7.657198928e-10 8.199144147e-10 8.171770036e-10 1.098336181e-09 1.022016732e-09 8.905318147e-10 6.515700605e-10 5.58566281e-10 5.706824748e-10 5.450899286e-10 3.441092106e-10 2.634627719e-10 1.724330952e-10 1.439338901e-11 1.212893651e-10 3.253580301e-10 4.389276088e-10 4.403621923e-10 4.497198815e-10 4.369123243e-10 5.212733321e-10 5.441961627e-10 7.994621079e-10 6.483174313e-10 6.863955852e-10 6.50794421e-10 7.491319238e-10 7.762325851e-10 8.492792286e-10 5.941494326e-10 6.349009246e-10 6.474110351e-10 7.844593057e-10 5.925829825e-10 1.151431231e-10 2.38759066e-10 1.743211464e-10 2.982461911e-10 3.035601761e-10 3.577389349e-10 3.724895946e-10 4.46006112e-10 3.849656083e-10 4.750368358e-10 3.596643112e-10 4.417154072e-10 2.499627388e-10 3.336264229e-10 4.910712612e-10 3.566707735e-10 4.730005316e-10 6.348152652e-10 5.358325206e-10 4.522819556e-10 5.910294428e-10 3.112124616e-10 2.900666445e-10 3.563325745e-10 2.885317225e-10 4.709976417e-10 2.157932661e-10 4.414093543e-10 2.765323717e-10 1.993307241e-10 2.192531897e-10 2.993978301e-10 2.175022916e-10 2.33885023e-10 2.729420617e-10 3.271606135e-10 1.656617068e-10 1.202766869e-10 2.927552106e-10 3.53971739e-10 4.200614194e-10 3.617704636e-10 1.865223114e-10 2.568087909e-10 2.727665561e-10 2.005909356e-10 3.449155559e-10 2.718926076e-10 3.736078884e-10 4.454147177e-10 2.761441579e-10 3.625102676e-10 1.944124806e-10 2.492104319e-10 3.428221383e-10 5.434734735e-10 3.04901731e-10 4.744975667e-10 2.815378619e-10 2.277145446e-10 2.553110411e-10 1.811655915e-10 2.39770754e-10 1.022124789e-10 3.693652149e-10 2.298673429e-10 9.155263949e-11 2.2360525e-10 9.501484907e-11 3.325139448e-10 1.280501164e-10 1.397617984e-10 1.30011773e-10 2.61853455e-10 1.018906534e-10 2.14204527e-10 1.58467303e-10 1.744851641e-10 7.550893256e-11 1.014715538e-10 3.63769372e-10 9.979168976e-11 2.745469343e-10 3.408088318e-10 1.692502007e-10 1.90337052e-10 1.24628094e-10 2.174393403e-10 3.347648319e-10 1.70170783e-10 1.000113307e-10 2.836165664e-10 2.522675785e-10 5.925902245e-11 1.092244097e-10 2.304071251e-10 1.81730305e-10 8.371450899e-11 1.378937196e-10 +1.679318416e-10 1.788991792e-10 7.391846632e-11 3.592527568e-10 9.218111429e-11 1.281753204e-10 1.990491363e-10 1.410160371e-10 1.520980962e-10 2.253690977e-10 3.330332128e-10 4.173636848e-10 1.680692062e-10 1.467530781e-10 1.306709845e-10 3.281973511e-10 4.443550259e-10 9.599938755e-11 9.933508204e-11 2.02132849e-10 8.200534183e-11 1.865899594e-10 1.576674232e-10 1.846902192e-10 4.213831882e-10 1.744686709e-10 1.635573292e-10 1.385807409e-10 1.711572582e-10 1.010074838e-10 3.307175045e-10 1.283372512e-10 1.031066392e-10 3.095219344e-10 2.732105487e-10 2.506180577e-10 3.411284844e-10 4.16208741e-10 2.625419383e-10 1.570704799e-10 2.244450603e-10 3.08534416e-10 3.348953876e-10 4.748210192e-10 3.289735325e-10 3.873806354e-10 3.246405423e-10 2.781077556e-10 5.70281684e-10 2.141437215e-10 3.251041603e-10 1.610590418e-10 4.168207114e-10 2.189096144e-10 3.320346648e-10 2.962615198e-10 2.463024801e-10 2.572309857e-10 2.944844164e-10 1.822946329e-10 3.273714862e-10 2.370242925e-10 2.890013906e-10 1.898520098e-10 1.91283821e-10 4.7894387e-10 2.093491914e-10 2.401799628e-10 3.699002155e-10 3.766014094e-10 1.854369509e-10 4.235224348e-10 3.767907294e-10 3.564238046e-10 3.898088908e-10 3.55480832e-10 4.816813524e-10 4.072513036e-10 3.70173931e-10 3.693087668e-10 3.748904255e-10 6.129743851e-10 4.305542143e-10 4.547953367e-10 5.871996119e-10 3.764934786e-10 4.609403643e-10 4.807220033e-10 4.057169674e-10 3.35156773e-10 3.822265963e-10 4.13285742e-10 3.502296658e-10 4.629632104e-10 4.192184799e-10 2.807537629e-10 2.152911541e-10 2.574460561e-10 2.749666592e-10 3.492212542e-10 8.141739813e-10 4.317050343e-10 7.757300103e-10 4.405486945e-10 7.717918211e-10 7.814402419e-10 4.879523145e-10 7.285851018e-10 8.110999367e-10 6.615536716e-10 7.548727749e-10 3.737598216e-10 4.041038085e-10 6.787396878e-10 4.919010402e-10 4.900308211e-10 4.139394137e-10 1.702665376e-10 1.151598375e-10 1.75216681e-10 2.160827508e-10 9.994904202e-11 5.865637826e-10 5.790287613e-10 6.941226515e-10 4.898667904e-10 7.770139274e-10 1.047381806e-09 8.609151079e-10 1.00253502e-09 1.050803178e-09 8.842094181e-10 4.912274824e-10 3.620461692e-10 1.327933749e-10 1.314330479e-10 1.0219963e-10 1.599983514e-10 1.118912938e-16 0 1.577398914e-10 1.411480484e-10 2.734333194e-12 7.147037972e-13 1.69553011e-10 9.078771782e-11 1.824654257e-10 1.021705276e-10 2.313742403e-10 1.690728251e-10 1.715815659e-10 1.172964385e-10 9.739318845e-11 4.59755225e-13 1.167923779e-10 8.779529864e-11 2.054598695e-10 0 1.170591205e-10 1.19896013e-10 1.805082982e-10 1.469861804e-10 9.25390317e-11 2.003866203e-10 1.249488416e-10 1.669521434e-10 2.497736993e-10 4.894644781e-10 8.009152248e-10 8.571939577e-10 9.432800782e-10 1.13682255e-09 9.788710802e-10 8.732928864e-10 6.393255349e-10 4.674846594e-10 4.797638744e-10 5.666480989e-10 7.650628329e-11 1.473955829e-18 1.950993185e-10 1.143980662e-10 2.028876847e-10 4.417235089e-10 5.057760613e-10 5.935444208e-10 3.817555493e-10 4.529369705e-10 5.095491986e-10 5.808990122e-10 6.44694695e-10 6.332219066e-10 7.6052839e-10 6.192517707e-10 5.481249202e-10 5.021512789e-10 8.296372051e-10 7.482076132e-10 5.814141309e-10 6.935450371e-10 5.987627688e-10 1.909350654e-10 2.119857899e-10 2.733209519e-10 3.213214698e-10 3.187250489e-10 4.736839277e-10 3.225162479e-10 3.378069912e-10 4.130756791e-10 4.939520546e-10 3.434105187e-10 3.945632936e-10 4.415175994e-10 5.074465959e-10 5.135874487e-10 3.911590905e-10 3.746849216e-10 4.722277205e-10 3.906256797e-10 4.274506498e-10 3.448164475e-10 4.586201501e-10 3.772784419e-10 1.908313482e-10 2.967328559e-10 2.286028312e-10 2.851707488e-10 3.905841754e-10 3.647341473e-10 4.181305922e-10 2.699452313e-10 3.7927901e-10 3.39417217e-10 3.055760515e-10 3.21280756e-10 3.286159991e-10 3.808059374e-10 3.916915154e-10 3.140816203e-10 2.295336605e-10 3.104574247e-10 3.541556138e-10 3.210145225e-10 3.137217075e-10 2.165492458e-10 3.141390186e-10 2.064150075e-10 3.753614913e-10 3.800929145e-10 2.567093645e-10 4.260910618e-10 3.804179434e-10 2.361107668e-10 5.063285672e-10 3.924312436e-10 2.960757084e-10 2.739396101e-10 4.606083012e-10 2.24974991e-10 1.637403266e-10 1.860145601e-10 7.735290952e-11 1.631555302e-10 1.782377003e-10 1.20467123e-10 1.165636049e-10 1.750939959e-10 2.429031951e-10 1.806226806e-10 1.166050824e-10 1.275378575e-10 2.839061506e-10 3.285999579e-10 2.235479328e-10 2.461739764e-10 1.671157784e-10 1.172307197e-10 2.905273332e-10 1.978609443e-10 2.373136594e-10 1.413748825e-10 1.532389776e-10 9.303839147e-11 2.38863587e-10 3.26906602e-10 1.512894062e-10 1.180985051e-10 3.003548419e-10 9.817093684e-11 1.84570204e-10 2.307140452e-10 3.061892061e-10 4.846254749e-10 2.347667041e-10 3.395495831e-10 1.65560584e-10 4.786219219e-10 2.417075444e-10 2.226889189e-10 +1.123997304e-10 1.44112651e-10 7.597305526e-11 3.081295766e-10 1.343751126e-10 1.461381646e-10 1.364713167e-10 8.622384753e-11 4.95075095e-11 1.637399326e-10 1.868297367e-10 1.304907428e-10 1.086204712e-10 1.638831351e-10 2.274297139e-10 3.927232931e-10 2.764584135e-10 3.285049093e-10 1.41671087e-10 1.875308779e-10 1.991604256e-10 6.350045244e-11 3.735651759e-10 1.058233391e-10 1.955875551e-10 2.204270033e-10 1.756728291e-10 1.855504776e-10 1.568842967e-10 2.1742665e-10 1.920735964e-10 1.586891292e-10 1.36295533e-10 2.710914936e-10 1.30722401e-10 1.431831453e-10 8.219947111e-11 1.410349239e-10 1.507256311e-10 2.743202017e-10 1.69736996e-10 3.711940516e-10 4.198641401e-10 3.165296054e-10 4.061552883e-10 2.545783124e-10 2.560499964e-10 4.033966373e-10 1.166743791e-10 3.177922371e-10 5.473704924e-10 4.061265844e-10 3.384518155e-10 3.283150201e-10 3.305370942e-10 2.95245961e-10 4.403269637e-10 2.979649433e-10 3.363639796e-10 3.075403607e-10 3.49856466e-10 1.784013944e-10 2.010610868e-10 2.554711723e-10 2.715863834e-10 3.909485074e-10 3.384088239e-10 3.183670457e-10 4.543072263e-10 2.99440204e-10 2.516145375e-10 3.909289883e-10 3.662345922e-10 3.052633441e-10 4.10468048e-10 2.229717082e-10 2.505987376e-10 5.003644161e-10 4.581478467e-10 4.163401773e-10 5.236762118e-10 6.959379754e-10 5.628608061e-10 5.660830187e-10 3.511259157e-10 4.019683758e-10 3.349999583e-10 4.020317924e-10 2.873205859e-10 4.707522491e-10 3.718336391e-10 3.685788008e-10 3.701791846e-10 3.12597397e-10 2.227551211e-10 2.663286101e-10 1.016244708e-10 3.407900607e-10 3.212235634e-10 5.384639792e-10 5.618788339e-10 5.900140769e-10 4.962184921e-10 7.340905599e-10 7.082727406e-10 6.722867858e-10 6.449611193e-10 6.861147601e-10 8.002402958e-10 8.071371266e-10 5.402013844e-10 5.77409431e-10 5.672037769e-10 4.629333247e-10 6.25282778e-10 5.651316535e-10 4.004192291e-10 2.427376495e-10 1.221261726e-10 1.694547395e-10 9.762681428e-12 2.167991964e-10 3.736808031e-10 4.979464567e-10 5.493935239e-10 5.959645809e-10 9.896392008e-10 9.720310777e-10 1.099669707e-09 9.288145787e-10 9.775129264e-10 7.576839553e-10 4.49580475e-10 2.606338618e-10 1.353171366e-10 1.359913321e-10 1.745452502e-10 1.350848371e-10 1.852394648e-10 9.819417972e-11 1.692016769e-10 1.255981847e-10 1.912500107e-10 1.356485479e-10 8.34332739e-11 7.341683387e-11 1.398902394e-10 1.447933322e-10 1.994030728e-10 1.819413116e-10 9.8950253e-11 1.102103498e-10 1.335176365e-10 7.723667771e-11 6.476904626e-11 1.644890156e-10 1.191734116e-10 1.192683398e-10 1.680100264e-10 1.136756721e-10 8.831918912e-11 1.54094564e-10 2.127381954e-10 1.158581867e-10 1.774631928e-10 6.053446144e-11 1.901745088e-10 5.587327419e-10 8.352197716e-10 8.963371015e-10 9.941215191e-10 9.61748846e-10 9.682696154e-10 9.536515145e-10 5.833581091e-10 5.562535597e-10 4.949294051e-10 5.341345176e-10 2.359312025e-10 4.690798629e-11 1.366095957e-10 1.205535713e-10 1.938394959e-10 3.352078003e-10 4.605209198e-10 5.670469621e-10 5.274055734e-10 4.635819446e-10 5.966153805e-10 5.664846109e-10 8.003223045e-10 6.136616642e-10 5.447332207e-10 5.746124111e-10 5.263225537e-10 5.059690543e-10 8.10801651e-10 6.393086121e-10 3.975455612e-10 7.302834219e-10 2.793688444e-10 3.085563586e-10 9.03100386e-11 1.248926244e-10 1.695951923e-10 2.962869973e-10 4.870096802e-10 4.275427651e-10 3.055796787e-10 4.763918703e-10 3.982071917e-10 4.302602996e-10 5.54081675e-10 5.008483672e-10 5.213568342e-10 4.409801752e-10 5.303123534e-10 5.960964791e-10 4.161041003e-10 5.082983988e-10 3.701097582e-10 3.453758795e-10 3.672734387e-10 1.506862611e-10 2.966301062e-10 4.397886031e-10 2.583462438e-10 3.330032398e-10 5.25201477e-10 2.784310713e-10 3.678926303e-10 3.632938755e-10 2.704711525e-10 2.569730911e-10 2.663434556e-10 2.048353437e-10 2.468991294e-10 2.704939772e-10 4.540148573e-10 1.750545672e-10 1.878168027e-10 4.015705037e-10 2.2745838e-10 3.473560193e-10 2.24446834e-10 3.093176135e-10 3.308397921e-10 3.966942016e-10 2.238787345e-10 4.147935492e-10 2.790739898e-10 3.73336046e-10 2.826813723e-10 2.949539029e-10 1.40537927e-10 2.445360025e-10 3.956941411e-10 2.573775162e-10 2.266530347e-10 3.435974674e-10 2.614351532e-10 1.599181238e-10 2.478788947e-10 1.084588882e-10 1.810669071e-10 3.531886811e-10 2.050616274e-10 1.921845178e-10 2.253320804e-10 1.613816945e-10 1.641851946e-10 1.071997758e-10 3.593105764e-10 3.042026677e-10 8.513003272e-11 6.857292742e-11 2.269370337e-10 2.115234857e-10 1.422383666e-10 1.37074821e-10 2.372800392e-10 1.152065076e-10 2.372659462e-10 2.836645544e-10 1.915535355e-10 3.340214145e-10 2.56734682e-10 3.8884098e-10 2.193846385e-10 3.249065501e-10 1.616947941e-10 2.122750292e-10 6.31328201e-11 3.577843935e-10 2.821251581e-10 9.723054962e-11 4.370598175e-10 2.726110242e-10 1.288466769e-10 3.700106503e-10 +2.098154213e-10 8.901583269e-11 2.356197394e-10 2.566412252e-10 2.269391558e-10 1.438444638e-10 2.42082872e-10 1.908535798e-10 2.028654162e-10 5.47737765e-11 3.330860192e-10 7.991591699e-11 1.5168706e-10 3.356623724e-10 2.330365474e-10 2.188594034e-10 3.499404645e-10 3.821156597e-10 2.47885829e-10 2.570376771e-10 3.038110268e-10 2.998350829e-10 7.34987687e-11 9.929711553e-11 3.342113536e-10 1.777845293e-10 1.624169331e-10 1.804755791e-10 1.902797376e-10 2.823940863e-10 1.767997189e-10 1.988029156e-10 2.634440483e-10 2.022459016e-10 1.598914883e-10 1.802322321e-10 1.298604108e-10 1.870006962e-10 1.09963119e-10 1.473316515e-10 1.949188849e-10 2.506336465e-10 3.624485934e-10 3.692777731e-10 1.78724381e-10 3.329264223e-10 2.724832766e-10 2.937308293e-10 4.09832502e-10 2.616456322e-10 5.214253729e-10 2.303068637e-10 3.553544523e-10 2.601785543e-10 2.978130464e-10 1.855632025e-10 1.31915602e-10 3.765030941e-10 2.672610317e-10 2.762254109e-10 3.209485003e-10 3.33409842e-10 4.408829219e-10 3.861300257e-10 2.079560579e-10 3.969116899e-10 1.868284087e-10 3.216182664e-10 3.011943282e-10 4.639484649e-10 3.123630901e-10 4.458980268e-10 3.40796831e-10 3.020833293e-10 4.910356881e-10 3.750676234e-10 2.56372695e-10 4.324825608e-10 2.420538387e-10 3.512185996e-10 5.099186754e-10 4.644883709e-10 4.403501913e-10 4.076272312e-10 5.427259519e-10 4.670475116e-10 4.520838837e-10 5.111666562e-10 4.394501974e-10 4.808943058e-10 4.611529925e-10 4.258337354e-10 4.970906539e-10 3.742688963e-10 2.407426478e-10 2.337487784e-10 1.986602962e-10 2.528972205e-10 2.85291986e-10 4.462139125e-10 6.260150241e-10 6.537135644e-10 8.670625337e-10 6.89018699e-10 7.642082588e-10 6.143951782e-10 5.696337995e-10 3.743574659e-10 6.95070788e-10 7.815813075e-10 5.26016038e-10 3.902187293e-10 5.924718257e-10 5.673451782e-10 5.556057428e-10 4.210991882e-10 3.81692312e-10 2.662289278e-10 1.032499195e-10 1.10125314e-10 2.314713281e-10 3.384456746e-10 6.471036032e-10 5.912560962e-10 5.552193061e-10 6.176924984e-10 7.841983678e-10 1.014137097e-09 9.492399604e-10 1.001859183e-09 8.596232526e-10 8.26200644e-10 4.128468966e-10 1.644702975e-10 1.789298877e-10 2.083400213e-10 8.115141753e-11 1.803382177e-10 2.109840737e-10 1.137044734e-10 1.859489082e-10 2.400306308e-10 9.551761229e-11 1.530633486e-10 1.156074758e-10 5.456171598e-11 0 1.421696265e-10 2.324677593e-10 1.349730569e-10 1.421168875e-10 1.038773607e-10 1.536825131e-10 1.335838899e-10 2.231579223e-10 1.673181813e-10 1.30637926e-10 1.600602508e-10 1.465169328e-10 1.303281839e-10 1.852990403e-10 1.323041438e-10 1.540215011e-10 2.736307206e-10 1.479919848e-10 2.071488397e-10 1.887031124e-10 3.574172041e-10 6.747052374e-10 8.425060963e-10 9.938820804e-10 9.759379582e-10 1.168507213e-09 9.959745035e-10 5.843294897e-10 5.662706831e-10 5.426415891e-10 5.247360811e-10 3.091080973e-10 1.485209161e-10 2.195509745e-10 6.939969103e-11 2.475954356e-10 4.207712603e-10 3.921326058e-10 5.277764919e-10 5.984028406e-10 6.903693923e-10 4.511355457e-10 5.114856045e-10 8.042184931e-10 5.822746204e-10 7.519711772e-10 5.726585308e-10 6.650745251e-10 7.949038353e-10 8.64294889e-10 5.589935383e-10 6.107248354e-10 5.197066783e-10 5.663365353e-10 4.188972868e-10 1.971663169e-10 8.314101992e-11 2.364710192e-10 3.63473028e-10 3.770833856e-10 3.948782807e-10 3.3499437e-10 5.22641117e-10 4.210613328e-10 3.696011747e-10 4.651439261e-10 4.826729668e-10 3.58955619e-10 5.250612619e-10 5.295394097e-10 4.391674238e-10 4.930803379e-10 4.284106866e-10 3.6870404e-10 2.913344553e-10 2.291122954e-10 3.154620193e-10 4.610524247e-10 1.294069871e-10 2.910563889e-10 2.698113014e-10 2.212284885e-10 3.357246915e-10 2.722624829e-10 3.637844889e-10 3.203884666e-10 1.813520725e-10 3.576935504e-10 2.548553039e-10 3.079547448e-10 2.600116786e-10 2.93627643e-10 3.401060722e-10 2.20809914e-10 2.367312446e-10 3.525773776e-10 2.543324728e-10 4.289140358e-10 4.015343075e-10 3.203757873e-10 3.216005569e-10 2.628458455e-10 1.908400032e-10 2.378228486e-10 3.013082147e-10 2.956599813e-10 1.8113578e-10 4.041690233e-10 3.756628899e-10 4.433024856e-10 4.079458055e-10 1.743677224e-10 3.838115595e-10 2.297092254e-10 7.833334764e-11 1.256251e-10 2.943840495e-10 1.986547615e-10 2.121024562e-10 1.680550186e-10 2.382279847e-10 2.158204258e-10 1.377565073e-10 2.792208781e-10 2.918881742e-10 2.499090278e-10 1.659525252e-10 3.721053569e-10 7.421446455e-11 2.416045402e-10 1.645740219e-10 8.694629269e-11 2.623434147e-10 1.701745446e-10 1.670716986e-10 1.199278593e-10 4.157326044e-10 1.746811376e-10 8.92202675e-11 1.392242125e-10 1.421045266e-10 2.765793181e-10 3.653797462e-10 1.524484495e-10 1.199529079e-10 8.610704894e-11 1.57227263e-10 2.940586276e-10 1.648365776e-10 3.167750392e-10 1.598541302e-10 2.815812628e-10 4.163094621e-10 +2.237946652e-10 2.575624665e-10 2.240435338e-10 8.184614216e-11 1.871204409e-10 1.17765366e-10 1.388210178e-10 3.151926819e-11 1.756251261e-10 1.961343544e-10 3.851551593e-10 8.505195874e-11 1.416133849e-10 1.767558871e-10 1.371468737e-10 1.626481699e-10 1.427804103e-10 4.523488344e-10 2.105823964e-10 1.981033011e-10 2.21173518e-10 2.18944504e-10 6.494439245e-11 9.620654075e-11 1.084978371e-10 3.933682098e-10 1.804845006e-10 1.515092756e-10 1.25346842e-10 1.851189017e-10 2.157849638e-10 1.474997974e-10 2.581525041e-10 1.310953089e-10 1.766377711e-10 1.836570346e-10 3.508525558e-10 6.236926739e-11 1.656464246e-10 3.324532756e-10 2.2337744e-10 3.060464117e-10 4.604355007e-10 3.052068228e-10 4.133865869e-10 3.644233381e-10 3.260574406e-10 1.512360001e-10 1.419756642e-10 2.108060904e-10 2.906004457e-10 2.870464905e-10 3.899529579e-10 4.053861523e-10 3.047341487e-10 5.62488759e-10 3.235635055e-10 3.320701735e-10 2.813704101e-10 3.23288506e-10 2.850796214e-10 3.696589548e-10 3.003728865e-10 3.338849326e-10 3.634440326e-10 2.424805886e-10 3.702981274e-10 2.398851385e-10 3.172806398e-10 2.379469891e-10 2.77207566e-10 2.484122081e-10 3.538901147e-10 3.493068781e-10 2.13663561e-10 5.050002715e-10 4.411053369e-10 2.990552009e-10 3.511264263e-10 3.782305004e-10 4.198218986e-10 5.8671206e-10 5.47938365e-10 3.939879731e-10 4.81082696e-10 5.309609618e-10 4.795835361e-10 6.477757293e-10 4.233496304e-10 4.140943213e-10 4.814673814e-10 3.413102813e-10 3.693971854e-10 3.193959745e-10 3.592714989e-10 2.661602167e-10 7.805156374e-11 2.983447926e-10 2.034641618e-10 2.028874817e-10 6.10694776e-10 5.575297272e-10 7.026654622e-10 4.927421612e-10 6.466851443e-10 6.245294187e-10 7.08165272e-10 5.882931557e-10 7.807747992e-10 7.071654171e-10 5.14469756e-10 5.08586974e-10 4.843832366e-10 6.477274518e-10 4.449635963e-10 3.063244355e-10 3.558250045e-10 1.638723156e-10 1.269512076e-10 1.014388585e-10 6.486493904e-13 3.788643994e-10 6.462500983e-10 6.587181239e-10 6.027533479e-10 6.458148332e-10 8.263976578e-10 1.172275251e-09 9.721755681e-10 9.716503677e-10 8.192359168e-10 6.640445352e-10 3.072263608e-10 9.950905123e-11 1.724874658e-10 4.291278886e-13 1.810735756e-10 1.954214864e-10 2.027008009e-10 4.277619075e-14 1.653908724e-10 2.489788592e-10 1.209435339e-10 1.33091988e-10 1.870980057e-10 7.320072786e-11 1.742861813e-10 1.221817794e-10 1.212646945e-10 1.452381711e-10 1.598262905e-10 1.976093792e-10 1.114819649e-19 9.122881615e-11 2.150093192e-10 9.431761954e-11 1.578889155e-10 1.167296773e-10 6.352800755e-11 7.519986773e-11 1.182498097e-10 9.382041943e-11 3.109094929e-10 1.461675479e-10 1.443128895e-10 1.564270885e-10 1.511905972e-10 3.843928499e-10 6.239339291e-10 9.412081341e-10 9.809436604e-10 1.025887319e-09 9.32895765e-10 8.737004215e-10 5.753747165e-10 5.314359912e-10 5.378764186e-10 4.338221493e-10 2.643552095e-10 1.281981995e-10 1.485296985e-10 1.875079658e-10 1.48679309e-10 2.570766521e-10 5.363776791e-10 4.205036377e-10 5.522310052e-10 5.633094315e-10 6.719393018e-10 5.978919513e-10 7.979126877e-10 6.748342141e-10 4.747785056e-10 6.543635226e-10 8.25472121e-10 5.835534332e-10 6.611048522e-10 6.157622519e-10 7.847611938e-10 6.400608423e-10 8.341066162e-10 2.410074541e-10 2.919128595e-10 2.60326626e-10 2.014450708e-10 2.1994667e-10 2.153851288e-10 2.827598877e-10 2.933320292e-10 3.210657782e-10 3.83523845e-10 5.097124606e-10 3.972857307e-10 3.517431242e-10 4.197878077e-10 4.855590787e-10 3.881661213e-10 4.101327663e-10 4.442072605e-10 4.7735048e-10 3.309747754e-10 3.413289524e-10 2.391483031e-10 4.456812507e-10 2.656329433e-10 3.479541733e-10 3.503345703e-10 2.571114732e-10 3.102991036e-10 4.467068374e-10 2.163683854e-10 3.058330227e-10 3.485359362e-10 4.032241248e-10 4.790100127e-10 3.037024657e-10 3.018839906e-10 2.898384828e-10 3.780239091e-10 3.113418667e-10 3.136804129e-10 3.048669596e-10 3.126757621e-10 2.95469842e-10 2.446227206e-10 2.780145934e-10 3.22258911e-10 3.246454306e-10 4.741604769e-10 4.032629315e-10 1.944494822e-10 4.783133777e-10 2.066055303e-10 3.716465924e-10 3.249272395e-10 3.018664248e-10 1.575689738e-10 3.233549185e-10 2.815725381e-10 2.34462785e-10 3.212045176e-10 1.984208468e-10 4.208305108e-10 3.537149643e-10 1.575369003e-10 4.227580404e-10 2.060105454e-10 1.202647978e-10 2.549427495e-10 2.064809085e-10 3.148230264e-10 1.5649793e-10 1.66587421e-10 3.069664049e-10 2.774249122e-10 1.79471958e-10 1.182618086e-10 1.572769449e-10 2.05582036e-10 6.103855376e-10 1.000997205e-10 1.639245511e-10 2.06553935e-10 8.854534303e-11 2.318455866e-10 9.632870372e-11 1.952940491e-10 1.104079494e-10 1.636823777e-10 1.536801402e-10 4.261610754e-10 2.335008053e-10 2.441632973e-10 1.628646559e-10 1.858130845e-10 9.662107821e-11 1.347260334e-10 1.976089066e-10 2.232537191e-10 2.496914509e-10 +1.213838452e-10 1.981145578e-10 1.68158809e-10 2.675424965e-10 1.91734777e-10 1.772473823e-10 7.947344422e-11 1.56809512e-10 3.855116159e-10 3.367278509e-10 2.518364873e-10 1.227447611e-10 2.237404409e-10 3.106891282e-10 9.580441789e-11 9.539717837e-11 3.131816519e-10 1.07362626e-10 3.468964047e-10 1.141797489e-10 1.517456863e-10 2.280891014e-10 1.447480277e-10 2.696546216e-10 1.637814042e-10 2.436046959e-10 3.037265011e-10 1.671820842e-10 2.166764967e-10 3.17028907e-10 2.061049095e-10 1.5427727e-10 2.564513831e-10 1.484591161e-10 2.086062993e-10 1.661066837e-10 1.333392584e-10 1.853598976e-10 2.331640348e-10 2.524226896e-10 1.555176492e-10 2.317901484e-10 2.471003575e-10 3.441946974e-10 4.477114507e-10 3.340883691e-10 2.299178466e-10 2.732734657e-10 2.276009932e-10 2.633547003e-10 3.309894776e-10 4.113128149e-10 2.600511341e-10 2.509639954e-10 2.982510384e-10 2.128432565e-10 2.608112079e-10 3.133208353e-10 3.823112144e-10 4.332654234e-10 2.165648551e-10 4.655457798e-10 2.545678241e-10 2.55685602e-10 1.665786517e-10 2.370092762e-10 3.272937304e-10 3.136746122e-10 3.996858613e-10 2.40380584e-10 4.492615103e-10 2.815148772e-10 3.929562407e-10 3.12965614e-10 3.548778602e-10 1.360215747e-10 2.610469593e-10 4.4589002e-10 3.146990317e-10 5.567750376e-10 5.147715039e-10 4.740066001e-10 2.97377135e-10 5.323082412e-10 4.043954088e-10 4.227971642e-10 4.372438875e-10 3.805624357e-10 3.132442155e-10 3.826962633e-10 3.186695791e-10 4.060174539e-10 4.001398934e-10 3.000060784e-10 2.751091922e-10 3.029513992e-10 1.078239605e-10 2.506584463e-10 1.502671119e-10 3.532906399e-10 6.63348377e-10 4.980357094e-10 8.025565493e-10 4.036886071e-10 6.719265099e-10 5.787219656e-10 6.701686464e-10 6.426015594e-10 9.836291137e-10 7.213694064e-10 6.680126359e-10 5.286494294e-10 5.120690258e-10 4.651679592e-10 3.881459643e-10 5.544668295e-10 3.2164716e-10 9.717242653e-11 1.999255944e-10 2.107201689e-10 9.91713157e-11 4.108856371e-10 4.289915023e-10 7.059567946e-10 5.443799193e-10 7.63985283e-10 1.019699432e-09 9.83433143e-10 9.772259142e-10 1.03539195e-09 8.311472679e-10 6.081788309e-10 2.983639375e-10 9.990935401e-11 1.712864363e-10 1.084326147e-10 1.005529092e-10 1.649100194e-10 2.449478797e-10 1.734049909e-10 1.299810945e-10 0 1.203073283e-10 1.478278224e-10 1.138814822e-10 1.383900482e-10 1.389877537e-10 0 1.357617967e-10 9.14209557e-11 1.253616558e-10 1.0630036e-10 1.653938142e-10 3.46612613e-10 1.149252514e-10 2.392048487e-10 1.87743636e-10 1.320262523e-10 9.376684832e-11 1.818952991e-10 2.492261302e-11 8.762102648e-11 1.964393346e-10 1.807438797e-10 9.364129186e-11 1.421270162e-10 8.350039093e-11 2.133995295e-10 6.090200901e-10 7.932888175e-10 1.075934313e-09 9.296663864e-10 1.064580194e-09 1.005132363e-09 7.796543182e-10 5.111256713e-10 5.734293681e-10 6.057397166e-10 4.852674472e-10 1.96184094e-10 2.072044809e-10 8.948117833e-11 1.852262202e-10 3.548614849e-10 4.035577245e-10 4.65866984e-10 4.837699103e-10 5.09808032e-10 4.393632014e-10 5.734919532e-10 7.869446846e-10 7.928931909e-10 5.35786684e-10 5.810689876e-10 6.811883137e-10 7.722750391e-10 6.995037568e-10 5.651116311e-10 6.187051643e-10 7.51498699e-10 5.728606319e-10 1.148177446e-10 2.164074301e-10 1.708921575e-10 2.572270992e-10 2.705319442e-10 3.866956081e-10 4.477627055e-10 3.608814874e-10 3.225195449e-10 4.772193024e-10 5.556016361e-10 5.262639152e-10 3.78857031e-10 4.951266347e-10 5.51112091e-10 4.42009653e-10 3.493804696e-10 4.315574003e-10 2.332086404e-10 3.931147662e-10 3.373832854e-10 3.236952019e-10 4.308784927e-10 3.30080389e-10 1.527684873e-10 2.637764144e-10 2.198464402e-10 2.240055278e-10 3.230690637e-10 2.660146622e-10 3.398364358e-10 3.670361438e-10 2.608733365e-10 3.156435122e-10 2.489062829e-10 3.476897433e-10 2.649368652e-10 1.366055461e-10 1.858065877e-10 2.268031877e-10 2.894311063e-10 2.495133504e-10 2.601848028e-10 2.268129502e-10 3.272489002e-10 3.826109513e-10 2.985422276e-10 3.228668424e-10 2.07997442e-10 2.586801674e-10 2.751571348e-10 2.212496455e-10 4.520062375e-10 4.450177731e-10 2.82224905e-10 2.18815269e-10 2.504844782e-10 1.135710612e-10 2.770598442e-10 2.646734893e-10 2.412294132e-10 2.893796531e-10 2.298748643e-10 1.496909038e-10 2.901100305e-10 1.253255623e-10 2.902043448e-10 1.066904482e-10 1.35068821e-10 2.489491059e-10 2.033606964e-10 2.091378861e-10 2.496036513e-10 2.751913335e-10 1.254372788e-10 3.885604925e-10 2.283531432e-10 1.948936978e-10 2.959833504e-10 4.138732347e-10 2.502156389e-10 2.298172118e-10 3.059717065e-10 1.278239867e-10 2.664388846e-10 9.034875155e-11 3.030370368e-10 1.838735168e-10 1.067207006e-10 2.554997716e-10 6.580067826e-11 1.602180835e-10 1.987526817e-10 5.002265359e-10 1.367474681e-10 1.789275057e-10 1.130285281e-10 1.446307474e-10 1.951579955e-10 +1.032680906e-10 2.752514774e-10 3.776805438e-10 1.93023112e-10 2.05394967e-10 1.312123186e-10 1.391901367e-10 1.07010689e-10 1.071763848e-10 7.309537167e-11 1.388693368e-10 3.396676468e-10 2.32636073e-10 4.277617013e-10 1.460240815e-10 1.481348079e-10 3.833710528e-10 1.416894056e-10 3.423071758e-10 1.740135478e-10 1.340060424e-10 1.491382513e-10 1.597847188e-10 1.446215811e-10 2.275924082e-10 3.209778255e-10 1.22630839e-10 1.905141503e-10 1.713958482e-10 2.828295507e-10 2.679351635e-10 2.683666395e-10 2.220294433e-10 1.997104576e-10 1.719023181e-10 1.265046591e-10 2.942799293e-10 1.778933289e-10 1.823996121e-10 2.477603913e-10 3.017577751e-10 2.710477693e-10 1.273644524e-10 4.298465672e-10 5.533538213e-10 3.805006773e-10 2.099698789e-10 2.512146286e-10 4.422690019e-10 3.992615108e-10 3.77594886e-10 4.350290923e-10 3.703733426e-10 3.050452098e-10 2.632634394e-10 3.960081964e-10 2.509013572e-10 4.623466385e-10 3.386864969e-10 2.596749385e-10 1.316181874e-10 3.209162271e-10 3.979296284e-10 3.224841389e-10 2.315127156e-10 5.014434313e-10 2.823836511e-10 2.990645019e-10 2.790042114e-10 3.124299677e-10 3.73425257e-10 2.929050139e-10 3.236056247e-10 2.859249813e-10 3.88153426e-10 1.874528791e-10 2.540936187e-10 2.851659602e-10 2.368849401e-10 3.591392235e-10 5.070304322e-10 5.074218324e-10 4.507689877e-10 3.362445108e-10 3.505210212e-10 2.98673269e-10 4.60882839e-10 4.313449782e-10 4.264118193e-10 4.859291452e-10 3.670711141e-10 3.522912469e-10 4.775686953e-10 3.058235771e-10 3.08876949e-10 2.900688899e-10 1.041117717e-10 1.846963726e-10 2.408513066e-10 2.828779498e-10 6.651652648e-10 7.451785831e-10 4.590869574e-10 6.562975242e-10 6.889436203e-10 5.542425071e-10 6.386071044e-10 6.355861277e-10 7.304486919e-10 6.743073042e-10 5.80760994e-10 4.6750621e-10 4.918928097e-10 5.393192082e-10 5.509502887e-10 4.163987378e-10 2.684898183e-10 1.287137877e-10 8.434970213e-11 0 1.06982869e-10 5.131486545e-10 6.444336025e-10 5.486633556e-10 6.417163891e-10 7.483687147e-10 1.032959933e-09 1.034132497e-09 1.009624814e-09 8.431332152e-10 8.960037455e-10 5.215333123e-10 1.454164527e-10 8.752924352e-11 1.176280996e-10 1.925946098e-10 3.824330941e-11 1.191998741e-11 1.410378359e-10 1.650368453e-10 1.692229385e-10 2.125629315e-10 1.392365761e-10 1.157128129e-10 1.344353881e-10 1.377608018e-10 1.154473812e-13 1.447887912e-10 1.230366733e-10 1.587764459e-10 1.586661785e-10 0 1.499454737e-10 1.673060098e-10 1.612180978e-10 1.305899999e-10 1.212956801e-10 1.725406323e-10 6.79056553e-11 2.716298803e-11 8.895904766e-11 1.410829091e-10 0 1.699517416e-10 1.643233616e-10 1.236625056e-10 1.856412275e-10 8.825182342e-11 3.617564487e-10 7.502307774e-10 9.570250783e-10 9.930791643e-10 1.191280283e-09 1.337378797e-09 9.156332331e-10 6.205828461e-10 6.915551737e-10 5.435789381e-10 4.62957881e-10 1.303952657e-10 2.658139844e-10 1.595837302e-10 1.457878252e-10 2.165840096e-10 3.852301023e-10 5.32026624e-10 5.815227696e-10 5.12618888e-10 3.740924678e-10 5.277487044e-10 7.880121112e-10 6.850751006e-10 6.072649002e-10 7.358498894e-10 8.074708491e-10 4.875402387e-10 6.727606574e-10 6.012696095e-10 6.40013043e-10 7.76001571e-10 7.661445887e-10 1.81303501e-10 1.325462649e-10 1.219636382e-10 2.180770078e-10 1.426784506e-10 3.378362715e-10 2.789057567e-10 3.91040263e-10 4.280636361e-10 5.232559145e-10 3.908080253e-10 4.217594635e-10 5.74888778e-10 4.761862915e-10 4.674746067e-10 3.449924371e-10 5.583697878e-10 5.997973117e-10 7.201760539e-10 4.438461326e-10 5.713469151e-10 3.523925562e-10 3.158365704e-10 1.859411676e-10 3.294121255e-10 3.173047046e-10 3.074027991e-10 4.10261807e-10 3.36401043e-10 4.773278544e-10 2.947727536e-10 2.467568432e-10 4.135351835e-10 5.379661459e-10 1.554408274e-10 4.568763203e-10 1.907756856e-10 2.105954104e-10 3.150881705e-10 1.9026729e-10 2.751708037e-10 3.257027384e-10 2.734580213e-10 3.540445531e-10 5.632824166e-10 3.337425983e-10 3.262324975e-10 2.506338209e-10 3.428465331e-10 2.250407595e-10 3.176116845e-10 4.65511736e-10 4.367810469e-10 3.203270871e-10 3.152867903e-10 3.414520923e-10 1.854319723e-10 3.184426718e-10 3.852249864e-10 1.068827845e-10 1.219084012e-10 9.936720469e-11 2.578874725e-10 2.776682126e-10 1.689984132e-10 2.73023939e-10 1.570211483e-10 2.681823851e-10 1.269301309e-10 1.403261613e-10 1.456429792e-10 2.153538752e-10 2.113670153e-10 1.7901597e-10 1.151457352e-10 1.883686977e-10 2.197626682e-10 1.754966306e-10 3.63229282e-10 2.166714989e-10 9.868898031e-11 7.775878041e-11 1.903263951e-10 1.995381168e-10 3.168021958e-10 1.435557191e-10 1.945454021e-10 4.129113613e-10 1.709607222e-10 9.258546032e-11 1.516172356e-10 3.332581942e-10 1.047263431e-10 1.274698379e-10 9.595295875e-11 1.476419822e-10 1.933725516e-10 2.892339037e-10 1.290810268e-10 +2.216318269e-10 2.466065386e-10 1.547780242e-10 2.125906755e-10 1.072757628e-10 1.247668181e-10 2.395963393e-10 2.989484778e-10 9.837786554e-11 1.501098954e-10 2.351140866e-10 1.642375798e-10 2.03656282e-10 2.639290216e-10 3.473993261e-10 1.975054e-10 1.282916538e-10 2.547608092e-10 1.918083993e-10 3.581365929e-10 2.99356948e-10 2.509039194e-10 2.028856374e-10 7.910886911e-11 3.07878867e-10 1.341283095e-10 3.757693207e-10 1.622419537e-10 1.784996272e-10 1.782467468e-10 1.227764077e-10 2.360530534e-10 4.010398441e-10 4.34180124e-10 2.874363969e-10 1.962101768e-10 2.449109917e-10 1.164818446e-10 1.500867734e-10 2.620341596e-10 1.89191969e-10 1.515580066e-10 3.130124222e-10 2.307296438e-10 2.878699096e-10 4.619635139e-10 4.381522026e-10 2.928780192e-10 2.831739536e-10 2.782736765e-10 2.896460614e-10 2.432886983e-10 3.156938457e-10 4.138988415e-10 2.677258441e-10 2.91939122e-10 2.271559982e-10 2.969330829e-10 4.135295947e-10 2.887272463e-10 2.690020171e-10 2.195989715e-10 4.437028458e-10 2.987066602e-10 2.828651471e-10 3.192747812e-10 2.618618541e-10 3.652619977e-10 2.957211144e-10 3.351994763e-10 3.709506019e-10 3.567846269e-10 3.411763061e-10 3.464428168e-10 3.313700887e-10 3.488049229e-10 3.198609076e-10 2.539859729e-10 2.494995752e-10 4.356351072e-10 4.033704154e-10 5.950749723e-10 4.635656938e-10 5.737620333e-10 6.097686743e-10 4.536656583e-10 4.712793927e-10 5.586292496e-10 5.956808064e-10 4.021796558e-10 3.827360377e-10 4.010617691e-10 5.476623357e-10 3.026957419e-10 3.578110747e-10 1.452825121e-10 1.310845592e-10 2.905033966e-10 3.083321984e-10 5.255431749e-10 5.874543579e-10 9.738421539e-10 6.406651933e-10 7.522046348e-10 7.133507839e-10 8.624624967e-10 6.978691086e-10 7.185365523e-10 8.02681993e-10 6.275871874e-10 6.725735555e-10 5.325567586e-10 5.256480286e-10 4.455403338e-10 5.800135113e-10 4.58625835e-10 3.570947692e-10 1.653210739e-10 1.490068161e-10 1.051800601e-10 2.333282223e-10 4.527852666e-10 6.191052995e-10 4.859602592e-10 5.616008679e-10 7.572263892e-10 9.828596063e-10 9.589206614e-10 8.453805957e-10 1.119748087e-09 7.490483042e-10 4.978834714e-10 1.371118183e-10 1.639719543e-10 1.446551791e-18 2.269390107e-10 7.262566881e-11 1.271685246e-10 1.626258713e-10 1.751022475e-10 1.769346081e-10 1.501267359e-10 1.562748735e-10 1.066888639e-10 9.412692872e-11 1.459640274e-10 1.546532139e-10 1.732838516e-10 2.886194853e-11 1.641116865e-10 1.101605956e-10 2.023375485e-10 1.572373569e-10 8.217217261e-11 8.701082577e-11 9.641520594e-11 1.54492722e-10 1.978921954e-10 1.076185018e-10 1.263937052e-10 6.247252229e-11 1.371739125e-10 1.635041341e-10 2.004550608e-10 8.010167478e-11 2.187397326e-10 3.698900629e-12 8.627828062e-11 2.766511425e-10 8.617921453e-10 8.025669837e-10 9.441076537e-10 1.018954893e-09 1.041083908e-09 8.351834803e-10 6.679675895e-10 6.138861477e-10 6.157856255e-10 4.134413096e-10 1.664583757e-10 1.198970563e-10 1.298816337e-10 7.688044693e-11 2.43664362e-10 5.349094331e-10 5.562930937e-10 5.271774854e-10 5.206957752e-10 5.489126814e-10 6.125744879e-10 5.167680186e-10 7.50577705e-10 6.361837855e-10 9.141168491e-10 7.337970367e-10 8.118792774e-10 6.638438551e-10 9.461195838e-10 8.172657405e-10 5.234380908e-10 6.38170223e-10 2.161352627e-10 2.118915598e-10 1.017316485e-10 3.17789675e-10 2.910950639e-10 3.481942122e-10 2.897642454e-10 4.21403077e-10 3.16669045e-10 4.085817477e-10 3.725984532e-10 3.914735273e-10 3.645885418e-10 5.994644069e-10 4.280103924e-10 4.315119499e-10 5.406952397e-10 6.382935119e-10 5.393874227e-10 4.105484947e-10 4.526134166e-10 1.649860411e-10 1.771384654e-10 4.281989202e-10 3.989150436e-10 2.701981492e-10 3.838160308e-10 5.164018661e-10 2.652972913e-10 2.075381866e-10 3.185468859e-10 2.263723375e-10 2.188376889e-10 1.991924064e-10 2.638114575e-10 3.283065414e-10 3.182639396e-10 2.647460671e-10 2.334440506e-10 2.489721535e-10 1.83103048e-10 3.037108657e-10 5.71355281e-10 1.911022687e-10 1.970880601e-10 1.679844581e-10 3.117988966e-10 3.922698578e-10 2.059075778e-10 4.937443601e-10 4.172150776e-10 2.919937449e-10 3.43134648e-10 2.839291196e-10 3.622388591e-10 3.417922144e-10 3.45191613e-10 1.808274793e-10 1.781336674e-10 2.79398448e-10 3.074448135e-10 1.573704997e-10 1.697191646e-10 1.094998658e-10 3.323990655e-10 1.098034356e-10 3.152891491e-10 1.156549945e-10 1.418478224e-10 8.833624389e-11 1.565904131e-10 1.950081215e-10 3.233741623e-10 2.503002448e-10 1.72449754e-10 2.603486407e-10 2.448468997e-10 2.337166161e-10 1.078688805e-10 1.106967181e-10 2.214097592e-10 3.474607103e-10 1.326392433e-10 2.400763204e-10 2.788661006e-10 3.702864769e-10 3.534645645e-10 1.064284994e-10 1.625942935e-10 2.995177652e-10 3.121061818e-10 2.428808205e-10 1.999623571e-10 4.434390037e-10 1.14630669e-10 1.296705341e-10 7.450502165e-11 2.216984818e-10 9.227852541e-11 +2.977135669e-11 2.252468795e-10 3.183260358e-10 1.801723301e-10 1.100268071e-10 2.856455754e-10 4.203269494e-10 1.875299642e-10 4.484451349e-10 3.887231926e-10 1.253684028e-10 4.722308704e-11 1.181636568e-10 9.666174081e-11 1.682411752e-10 3.186548752e-10 1.211178312e-10 1.065468256e-10 2.674227769e-10 2.193960238e-10 3.437762475e-10 3.530013129e-10 3.184226087e-10 9.379199435e-11 3.281200667e-10 9.532247934e-11 3.053138708e-10 3.712161084e-10 4.492395284e-11 2.271732824e-10 1.689442274e-10 2.239073117e-10 1.097220288e-10 1.66491183e-10 1.111257037e-10 2.738725948e-10 1.534706048e-10 2.175047807e-10 1.838291493e-10 3.593787248e-10 1.473700942e-10 3.582749148e-10 3.066817665e-10 1.800791457e-10 3.759379551e-10 1.743990033e-10 2.072629737e-10 4.22163512e-10 4.097805171e-10 2.001955356e-10 2.901759436e-10 2.223700313e-10 2.235922729e-10 3.467408024e-10 3.120015212e-10 3.201647835e-10 2.511908409e-10 3.259313964e-10 1.871441019e-10 2.768880905e-10 3.118039495e-10 1.745009241e-10 3.991807389e-10 2.803936902e-10 3.462452221e-10 2.730044409e-10 2.213937013e-10 4.397228305e-10 4.885504535e-10 2.860502297e-10 3.484931648e-10 3.951558699e-10 2.876943516e-10 3.844445236e-10 3.279904651e-10 3.426907221e-10 3.437240465e-10 2.316552907e-10 3.700225579e-10 2.903155186e-10 5.561427664e-10 5.407529219e-10 5.287810837e-10 4.700996618e-10 3.753577779e-10 5.0216273e-10 5.154151714e-10 4.664584046e-10 5.334598783e-10 4.323146805e-10 2.953394819e-10 5.617356016e-10 3.228479102e-10 4.082258874e-10 2.81713587e-10 1.732032901e-10 2.794222846e-10 2.949806014e-10 1.784948138e-10 4.564424593e-10 4.913332062e-10 7.22198761e-10 4.935076969e-10 6.680811046e-10 4.039890322e-10 5.748097874e-10 7.040504383e-10 6.112753149e-10 7.02455973e-10 6.453067089e-10 4.274515696e-10 5.562674715e-10 5.91877857e-10 5.553169902e-10 5.36799678e-10 6.349780008e-10 2.160148482e-10 1.198508814e-10 2.060137786e-10 2.805299069e-11 2.511557107e-10 5.028784107e-10 6.20412438e-10 5.932950667e-10 5.476019072e-10 9.903173321e-10 1.089510653e-09 9.237856654e-10 9.717068016e-10 1.01188752e-09 5.408988165e-10 2.659897874e-10 1.301111504e-10 9.009247759e-11 1.199270804e-10 1.802373986e-10 1.856322736e-10 1.140202187e-10 7.840386807e-12 1.786498299e-10 1.050947808e-10 2.106022697e-10 1.533888574e-10 1.512331464e-10 8.758611385e-12 1.535641241e-15 1.0964905e-10 1.186095276e-10 1.998408694e-10 1.57651756e-10 1.866510176e-10 8.642742739e-11 2.4967044e-10 1.864927542e-10 1.653968112e-10 1.703563648e-10 1.620918545e-10 1.485135433e-10 8.77302913e-11 9.189985545e-13 1.476278958e-10 1.341729809e-10 9.727964367e-11 1.283636098e-10 1.26815745e-10 1.617314606e-10 0 1.546216964e-10 2.381357348e-10 6.227651356e-10 9.382206313e-10 9.172733719e-10 1.058199614e-09 9.249240448e-10 9.972598456e-10 5.690067587e-10 6.558280788e-10 6.29629204e-10 5.218025032e-10 2.640740614e-10 2.006111303e-10 1.031482882e-10 1.360277446e-10 3.547567422e-10 3.445120856e-10 5.384081615e-10 5.199393059e-10 4.548785373e-10 5.298424373e-10 6.426378502e-10 5.741261859e-10 5.942346507e-10 5.265645558e-10 7.645615103e-10 6.411123727e-10 5.94455758e-10 5.876413175e-10 8.376890586e-10 7.10677171e-10 5.631045824e-10 1.964427367e-10 3.092891319e-10 2.151361451e-10 9.855298068e-11 2.285622916e-10 3.743537379e-10 3.38332548e-10 3.4145398e-10 3.76995529e-10 4.403309635e-10 3.437529067e-10 3.568223618e-10 4.770810894e-10 4.240273289e-10 3.645621695e-10 2.399204265e-10 3.597204783e-10 3.515619319e-10 4.271472938e-10 5.519917438e-10 3.624478871e-10 3.897353506e-10 2.873446491e-10 3.110173799e-10 3.185539425e-10 4.053711511e-10 2.038259771e-10 2.449648633e-10 1.978183266e-10 2.67455324e-10 3.284940816e-10 3.145916253e-10 1.697138096e-10 3.501586498e-10 2.477411614e-10 4.515036983e-10 2.965055377e-10 2.808510401e-10 2.261384654e-10 4.777652027e-10 2.215021886e-10 1.227829186e-10 2.514385287e-10 3.364201235e-10 2.900384634e-10 4.183177875e-10 4.052071187e-10 2.776326613e-10 5.249287795e-10 2.969309647e-10 3.603848273e-10 3.385622384e-10 4.277101157e-10 4.035755939e-10 4.021707051e-10 2.15795117e-10 2.734192401e-10 3.538146482e-10 3.189573716e-10 2.289550018e-10 1.777101368e-10 2.758117268e-10 8.579467524e-11 2.027140788e-10 1.927325517e-10 1.893205317e-10 2.817190074e-10 2.148878806e-10 3.834099029e-10 1.693466402e-10 3.46201015e-10 1.717034516e-10 8.556988266e-11 3.051492291e-10 2.950660606e-10 1.292055086e-10 2.264556616e-10 3.317481335e-10 1.617042614e-10 2.183948552e-10 6.411168446e-11 1.298930602e-10 1.269894032e-10 2.608067946e-10 1.424642644e-10 8.748456329e-11 1.029213062e-10 1.241532395e-10 2.452407021e-10 1.106182099e-10 1.550008347e-10 2.309735168e-10 1.398745278e-10 2.341312667e-10 1.501426676e-10 2.164576845e-10 1.431126677e-10 6.588255809e-11 2.492479888e-10 2.320833622e-10 +1.169035601e-10 1.56530743e-10 2.067307598e-10 7.53982222e-11 2.107048974e-10 9.532225857e-11 2.172960068e-10 2.131687118e-10 2.56739736e-10 1.884803065e-10 9.696505228e-11 3.174265077e-10 1.826185527e-10 2.351739816e-10 6.930572064e-11 3.466785579e-10 1.366945646e-10 1.369266418e-10 2.592513264e-10 1.351405216e-10 2.817195511e-10 1.376307801e-10 2.260942659e-10 3.009658853e-10 1.288790768e-10 2.862158716e-10 1.846323662e-10 2.060783728e-10 1.496058236e-10 4.424936774e-10 2.004438158e-10 1.762926137e-10 2.858928938e-10 1.554876533e-10 1.778847891e-10 2.930681855e-10 1.617563687e-10 2.483410359e-10 2.873636201e-10 3.225844372e-10 2.297707045e-10 2.146677284e-10 3.502665542e-10 1.79692265e-10 3.300184003e-10 2.861480414e-10 1.930186673e-10 4.322356465e-10 3.769881866e-10 2.405994971e-10 2.398257928e-10 3.317908687e-10 3.741447725e-10 4.062517877e-10 2.007507655e-10 3.751358515e-10 1.646108904e-10 2.251180324e-10 1.537319549e-10 3.402417268e-10 3.013259006e-10 2.278936942e-10 3.915256509e-10 3.792573739e-10 4.281516477e-10 3.946757297e-10 4.842370627e-10 2.47038431e-10 2.155648239e-10 3.471401186e-10 2.591627028e-10 1.915078555e-10 3.535293886e-10 3.007332166e-10 2.327512223e-10 3.606332812e-10 2.536711937e-10 2.131978616e-10 2.94549253e-10 4.02630179e-10 4.457967935e-10 5.435627831e-10 5.364962449e-10 4.162963756e-10 4.111682678e-10 7.104398475e-10 5.848010382e-10 3.442376819e-10 4.570338799e-10 4.033253472e-10 4.687880288e-10 4.512562284e-10 3.798735757e-10 1.970708289e-10 4.64778107e-10 3.304046253e-10 1.578510196e-10 2.735385842e-10 2.373097234e-10 6.445475633e-10 6.214193479e-10 6.839823478e-10 8.242691902e-10 4.627892897e-10 6.519124098e-10 5.554250709e-10 7.645361759e-10 7.803975621e-10 6.948891328e-10 7.948414515e-10 5.234487365e-10 5.609927716e-10 5.238580169e-10 4.177074786e-10 5.125245566e-10 4.107723228e-10 2.259534514e-10 2.186852544e-10 3.486808189e-11 1.555118149e-10 3.834839305e-10 4.97452439e-10 6.39152592e-10 5.042844257e-10 5.408387157e-10 1.027734473e-09 1.071903583e-09 1.003047695e-09 9.507777834e-10 8.086834862e-10 5.631406917e-10 2.657749197e-10 1.178123364e-11 1.562923352e-10 1.225070565e-10 1.524534669e-10 1.327334037e-10 1.186816533e-10 1.882358586e-10 1.27564373e-10 1.39233045e-10 1.123963135e-10 4.68750639e-11 8.985081161e-11 1.500957292e-10 1.396137101e-10 1.106746729e-10 1.453209106e-10 1.803377109e-16 1.050423219e-10 1.814643374e-10 1.096228018e-10 1.56721701e-10 2.220611231e-10 9.945217492e-11 1.400130363e-10 1.24238862e-10 2.118191015e-10 1.59678125e-10 1.306874499e-10 2.045330246e-10 1.739994571e-10 1.314042419e-10 1.935308187e-10 2.133458822e-10 2.506082962e-20 6.330582292e-11 1.265109842e-10 1.90954971e-10 7.249374502e-10 9.481671234e-10 9.973036414e-10 8.649242124e-10 1.037954363e-09 9.116870805e-10 7.123146278e-10 5.589045853e-10 5.546817524e-10 5.096050834e-10 3.00098902e-10 1.430603099e-10 6.570579732e-11 1.750930945e-10 1.907817902e-10 5.319974573e-10 3.730388825e-10 4.576356218e-10 4.649538581e-10 5.23805341e-10 5.733779427e-10 8.481479433e-10 6.755646422e-10 5.846884971e-10 4.349602817e-10 9.582869017e-10 8.035146922e-10 6.47470173e-10 6.532683723e-10 5.928042498e-10 5.326789981e-10 4.197467874e-10 2.523816086e-10 2.704133893e-10 1.507299572e-10 3.406036571e-10 2.343588525e-10 3.357887311e-10 3.827071692e-10 4.694358638e-10 3.671342921e-10 3.651591603e-10 5.286341904e-10 5.206014453e-10 3.728076439e-10 3.051680869e-10 4.101492438e-10 4.163791073e-10 4.184224652e-10 6.364682552e-10 4.95698285e-10 3.388431277e-10 4.338831264e-10 4.104579171e-10 2.081667259e-10 3.436153586e-10 2.963487016e-10 1.305803717e-10 3.855956463e-10 3.361578287e-10 3.141941664e-10 2.099981561e-10 3.672215922e-10 3.529956091e-10 3.535449766e-10 1.563427854e-10 2.082903873e-10 4.276719263e-10 3.314633991e-10 3.198517015e-10 2.336749795e-10 3.922815774e-10 2.816047601e-10 2.381422768e-10 4.508654711e-10 3.689192023e-10 1.409496188e-10 3.542953997e-10 4.918831305e-10 3.677414651e-10 3.54875378e-10 4.206038342e-10 3.922801235e-10 3.540768718e-10 2.166001347e-10 2.96061405e-10 2.225159495e-10 2.086943325e-10 4.031526976e-10 2.331843041e-10 2.330451407e-10 2.744633324e-10 1.952864073e-10 2.825348812e-10 4.301580597e-10 2.511495024e-10 1.657993311e-10 3.97457869e-10 1.332681829e-10 1.690520387e-10 2.444558595e-10 2.048147461e-10 1.004733091e-10 1.84639106e-10 1.389709595e-10 2.886180537e-10 2.538788232e-10 9.793633404e-11 2.286571282e-10 4.827315224e-10 1.667832361e-10 2.589278002e-10 3.544996242e-10 3.786178839e-10 2.422110641e-10 8.729704898e-11 1.188072601e-10 1.391238051e-10 2.35464314e-10 2.293941624e-10 1.51812498e-10 1.356286069e-10 5.897225862e-11 2.619482072e-10 1.383795509e-10 1.021849368e-10 1.426745938e-10 1.513718183e-10 3.373838712e-10 1.320287308e-10 3.015973334e-10 +2.911126872e-10 2.301953514e-10 7.751239548e-11 3.093114687e-10 2.085874397e-10 1.214818868e-10 2.964914237e-10 2.84234673e-10 2.940860587e-10 2.474376852e-10 9.593441406e-11 1.77601293e-10 1.977244122e-10 1.657700174e-10 1.828050705e-10 9.355228966e-11 1.192579102e-10 3.980082789e-10 4.627413549e-11 6.76211917e-11 2.41685762e-10 2.241254608e-10 7.788490747e-11 2.318694325e-10 9.859216021e-11 3.126689066e-10 2.067638849e-10 3.220440033e-10 2.469750375e-10 2.12935267e-10 2.820763366e-10 1.641553202e-10 1.546711209e-10 8.875940084e-11 5.148531488e-11 3.529899461e-10 2.791195061e-10 9.887448814e-11 2.249141888e-10 3.941425627e-10 2.518785526e-10 2.190308829e-10 3.83595605e-10 2.558067979e-10 2.982608548e-10 2.097981385e-10 4.914518559e-10 3.613095458e-10 3.051237478e-10 5.273491995e-10 3.243156912e-10 2.320986095e-10 2.89519169e-10 3.727535394e-10 2.48756929e-10 3.92368543e-10 2.60662357e-10 2.639737958e-10 2.625480012e-10 3.28291881e-10 3.507341259e-10 3.511248938e-10 3.398837782e-10 3.827696595e-10 3.331766937e-10 3.766331358e-10 3.59730411e-10 2.960816586e-10 5.484726157e-10 4.172701876e-10 4.073156557e-10 4.611582612e-10 2.336291266e-10 3.752331501e-10 5.194320827e-10 3.068381056e-10 2.332073087e-10 2.499995992e-10 2.766847615e-10 4.263669544e-10 5.073331819e-10 2.720354339e-10 4.289180322e-10 4.702378845e-10 5.197613664e-10 4.308128113e-10 4.146062267e-10 5.905391537e-10 4.81239788e-10 4.52286991e-10 3.623348794e-10 3.661282005e-10 4.341807976e-10 3.671177027e-10 2.435110479e-10 2.047435645e-10 3.113685796e-10 2.798555648e-10 2.643343664e-10 5.899727903e-10 6.84917739e-10 9.548848364e-10 7.255591892e-10 7.227241249e-10 6.207759052e-10 8.363763578e-10 6.631360898e-10 5.729979306e-10 6.908005777e-10 7.192285974e-10 5.114579888e-10 4.352421457e-10 5.36266023e-10 4.455444154e-10 4.37211964e-10 4.663280996e-10 1.531567046e-10 1.460575471e-10 0 1.053181767e-10 3.164787109e-10 6.090692221e-10 5.060575359e-10 5.527986243e-10 6.80266099e-10 9.662593262e-10 1.144417129e-09 1.015673983e-09 8.453152906e-10 8.680402508e-10 5.251890559e-10 1.410105958e-10 2.192699832e-10 1.880066279e-10 1.595272501e-10 1.728587686e-10 5.219297224e-11 9.754116466e-11 1.491165272e-10 1.130792736e-10 1.082631972e-10 7.403667695e-11 1.264231299e-10 1.821425563e-10 2.043919144e-10 1.140153693e-10 1.400796341e-10 8.471875137e-11 1.008095048e-10 2.130706199e-10 1.709565042e-10 1.136852997e-10 1.214896736e-10 1.432241612e-10 1.381477998e-10 1.808741308e-10 1.164856722e-10 1.620634082e-10 1.566013355e-10 1.943142808e-10 1.975178727e-10 1.097028653e-10 8.447293441e-11 1.877319086e-11 1.417913682e-10 1.445546107e-10 1.481146712e-10 1.084237264e-10 1.730647804e-10 6.146791939e-10 9.712719848e-10 9.341801485e-10 8.913846776e-10 9.966816038e-10 9.6329216e-10 5.879520487e-10 4.692939112e-10 5.875820489e-10 5.438809251e-10 3.38341046e-10 1.810138511e-10 2.5519922e-10 9.751424284e-11 2.414178815e-10 3.892182884e-10 6.357152372e-10 4.826826516e-10 4.097173235e-10 5.0921885e-10 4.79733836e-10 7.638903956e-10 6.717344008e-10 6.749262509e-10 6.716873958e-10 6.667370203e-10 6.511482722e-10 6.059464696e-10 6.82466612e-10 6.578101435e-10 5.576508151e-10 5.294737123e-10 2.47451148e-10 1.896291983e-10 2.359549266e-10 2.140516505e-10 3.450910334e-10 3.513042987e-10 2.89146356e-10 5.132617818e-10 2.732105031e-10 3.373986379e-10 5.126589994e-10 4.8990698e-10 5.119301531e-10 5.396636449e-10 3.369717136e-10 4.302845164e-10 5.608558097e-10 4.474300991e-10 4.939681518e-10 3.68331325e-10 3.775211401e-10 3.131074869e-10 2.773966991e-10 2.707913116e-10 2.277445363e-10 3.22090647e-10 3.036177027e-10 4.196124468e-10 3.428707972e-10 2.647769729e-10 2.247866145e-10 3.872623976e-10 3.86410563e-10 2.165104656e-10 3.490070827e-10 3.091821056e-10 3.817364992e-10 2.578339002e-10 4.649924833e-10 2.234120387e-10 4.25116196e-10 3.837345673e-10 2.655167668e-10 3.413303482e-10 3.292469985e-10 2.448886526e-10 4.718273873e-10 3.882369824e-10 2.573374881e-10 3.345534077e-10 3.768304403e-10 2.760312807e-10 2.939155457e-10 2.585324573e-10 3.587835486e-10 5.130607165e-10 2.309847704e-10 1.534293667e-10 2.999457225e-10 7.486278354e-11 1.68341834e-10 2.058107202e-10 1.704443091e-10 2.188594747e-10 1.280421655e-10 1.801303192e-10 1.833413136e-10 1.789948382e-10 2.00201246e-10 3.02118045e-10 2.237933483e-10 3.188770374e-10 3.058951624e-10 5.406800327e-11 5.296198245e-11 1.679669795e-10 2.188996495e-10 3.233839551e-10 3.056630192e-10 2.167691127e-10 1.507981863e-10 3.237841641e-10 1.75457554e-10 2.932897509e-10 1.483592195e-10 1.27596051e-10 1.328054788e-10 4.476767832e-10 4.315782248e-10 3.496920963e-10 1.261601103e-10 2.57675094e-10 1.897188432e-10 2.247785786e-10 1.091137968e-10 1.995485502e-10 3.28519232e-10 1.9105126e-10 1.250958209e-10 +1.750288861e-10 2.267380139e-10 1.209809421e-10 1.426057226e-10 2.274327905e-10 2.265867095e-10 2.454018118e-10 1.262589399e-10 3.633785104e-11 1.030412764e-10 1.110903464e-10 4.377155528e-10 2.452787929e-10 1.25252549e-10 1.255186217e-10 2.443180083e-10 1.211227262e-10 1.323831362e-10 1.006259313e-10 2.901499592e-10 2.433928819e-10 3.395851459e-10 2.070112453e-10 1.409386007e-10 1.395783327e-10 1.438873103e-10 1.175314473e-10 3.48085285e-10 1.7973191e-10 2.068102684e-10 1.453012057e-10 2.690623757e-10 7.708534166e-11 3.418680771e-10 1.916860363e-10 2.001453027e-10 3.140983651e-10 1.922157911e-10 1.658548698e-10 4.048922318e-10 2.512599723e-10 1.691457148e-10 3.504933534e-10 2.733670192e-10 3.216447033e-10 2.681593357e-10 2.616335835e-10 2.88315575e-10 3.610007644e-10 3.753000255e-10 2.013117315e-10 4.567522338e-10 2.458852737e-10 2.336220468e-10 3.840320804e-10 2.946155763e-10 2.621322394e-10 2.578986123e-10 3.552965424e-10 1.706780918e-10 2.137048212e-10 2.983063336e-10 1.737012547e-10 4.139787303e-10 2.395252265e-10 3.405208186e-10 2.522508571e-10 1.59390315e-10 1.978192578e-10 2.259626328e-10 4.21685387e-10 2.048443567e-10 3.041524248e-10 3.653064349e-10 2.219129023e-10 3.480553843e-10 2.580653075e-10 2.023281644e-10 4.991740838e-10 4.134965915e-10 4.255868392e-10 5.379651172e-10 5.245237655e-10 5.947867127e-10 5.22734402e-10 4.708280545e-10 5.067474259e-10 4.312167564e-10 4.343839761e-10 5.723472778e-10 2.50465856e-10 3.525927253e-10 3.549696954e-10 3.211474032e-10 1.584575672e-10 2.2113426e-10 1.487023009e-10 2.20356909e-10 2.78473205e-10 4.44523247e-10 8.662701069e-10 4.560368009e-10 8.653498516e-10 6.782149004e-10 6.199268589e-10 7.188283565e-10 5.58463294e-10 7.914132278e-10 7.86177388e-10 7.656875583e-10 5.357363859e-10 4.671349295e-10 5.585993474e-10 4.664370332e-10 4.055768934e-10 3.61202792e-10 3.803697702e-10 1.778693495e-10 1.093257791e-10 1.640034593e-12 3.795519128e-10 5.759373347e-10 4.736670148e-10 6.160051454e-10 7.35428695e-10 1.004842872e-09 1.027615166e-09 1.012427574e-09 8.410735643e-10 7.827950255e-10 3.703279471e-10 1.217204447e-10 1.082689474e-10 1.517447597e-10 1.178582995e-10 1.530429767e-10 1.710147241e-10 1.907625769e-10 1.581696449e-10 1.113462933e-10 1.377377491e-10 1.953621156e-10 2.299684567e-10 0 1.904363589e-10 1.546776756e-10 1.056786999e-10 1.215800428e-10 1.646963393e-10 1.502603604e-10 1.218285478e-10 1.595180312e-10 1.665922518e-10 1.176259715e-10 1.533970435e-10 1.485362028e-10 4.126922923e-11 1.154125421e-10 4.510089741e-11 2.562708627e-10 1.480277836e-10 1.455719792e-10 1.559938467e-10 1.692244535e-10 1.72364908e-10 1.356107206e-10 1.618864551e-10 9.87350871e-11 1.331017912e-10 6.090589023e-10 8.265205637e-10 9.863163009e-10 1.116159439e-09 1.082483378e-09 1.000180816e-09 5.724500384e-10 4.688462323e-10 6.184151782e-10 5.111145217e-10 2.089383244e-10 1.841479778e-10 4.211219243e-12 1.413538479e-10 1.157754194e-10 3.555648732e-10 4.796742292e-10 4.60517839e-10 5.548095834e-10 4.008846397e-10 5.312212216e-10 6.914386781e-10 7.204523837e-10 7.349963694e-10 4.184584388e-10 5.7296675e-10 6.783573831e-10 5.789188479e-10 7.098522599e-10 6.763463116e-10 7.302523307e-10 5.452121411e-10 2.668736847e-10 2.102203919e-10 2.478184428e-10 2.887971735e-10 5.218246787e-10 3.184773069e-10 3.759872249e-10 3.896524073e-10 4.21462447e-10 3.548262234e-10 3.872241996e-10 4.004655037e-10 6.988418325e-10 4.744838634e-10 4.470568249e-10 3.639235832e-10 4.219516803e-10 4.436304981e-10 3.666527502e-10 4.130490369e-10 4.148646064e-10 3.653173615e-10 2.318674438e-10 2.956765371e-10 2.992757725e-10 3.688492506e-10 3.584853088e-10 1.904576575e-10 3.957407337e-10 3.220842925e-10 3.373399768e-10 2.034630998e-10 3.354908014e-10 3.967424004e-10 3.106815344e-10 3.872334881e-10 2.88153871e-10 2.437937557e-10 2.599632852e-10 3.783427965e-10 2.409529546e-10 2.310208845e-10 2.822987793e-10 3.802276531e-10 4.390711768e-10 2.436844696e-10 3.734324982e-10 3.737780225e-10 6.757497966e-10 2.110828007e-10 2.886728989e-10 1.983280321e-10 2.623989358e-10 3.022641164e-10 1.739064376e-10 3.287214878e-10 2.390929244e-10 1.901604715e-10 1.529208571e-10 2.97572205e-10 1.58395402e-10 2.490850957e-10 1.147619972e-10 2.766188546e-10 3.291833073e-10 8.940033745e-11 1.521440013e-10 1.626905299e-10 2.362990628e-10 1.612939246e-10 1.106567841e-10 2.763236408e-10 1.503918584e-10 1.16082314e-10 2.707642776e-10 2.720827558e-10 2.741269739e-10 3.547923591e-10 8.340663787e-11 4.107621962e-10 3.983972411e-10 1.262713752e-10 1.954117823e-10 3.823013576e-10 1.129054636e-10 2.118470135e-10 1.908611662e-10 1.334792316e-10 1.324098983e-10 3.206394684e-10 3.788888224e-10 1.923572023e-10 3.706230964e-10 1.158894986e-10 2.277490233e-10 1.289200967e-10 1.276137892e-10 2.012568733e-10 2.70323689e-11 +3.942806419e-10 3.672248268e-10 1.846687084e-10 8.825544135e-11 2.88118111e-10 1.197495843e-10 2.634799406e-10 2.070232086e-10 1.679061028e-10 2.266072922e-10 2.579366061e-10 3.072225415e-10 1.349779867e-10 2.963116588e-10 1.907374955e-10 1.351882085e-10 1.367195716e-10 2.491957208e-11 1.164914243e-10 2.192980541e-10 1.33733536e-10 1.401682085e-10 7.682267884e-11 3.87932386e-10 1.272452303e-10 6.652030324e-11 1.743098533e-10 3.771844016e-10 2.049500938e-10 2.869788904e-10 1.874583832e-10 1.499089416e-10 2.557445523e-10 1.891890169e-10 1.803363826e-10 1.664268562e-10 3.537203912e-10 2.127270326e-10 2.082372406e-10 2.512575249e-10 1.617678747e-10 4.241747471e-10 2.208234259e-10 3.205049206e-10 2.318900202e-10 3.404184818e-10 3.332007652e-10 2.688057165e-10 2.604517489e-10 2.446098865e-10 2.008606575e-10 2.32555673e-10 4.49178367e-10 4.759002557e-10 3.259431527e-10 2.836839523e-10 4.528425689e-10 3.578059481e-10 3.498888181e-10 2.621982609e-10 1.951715652e-10 3.39906046e-10 3.692513481e-10 3.514158341e-10 3.220484678e-10 2.743924924e-10 2.780911167e-10 4.227305001e-10 2.512534025e-10 2.689179081e-10 3.685984775e-10 2.97086906e-10 3.467790819e-10 3.364810536e-10 3.308003611e-10 3.526632338e-10 3.990054711e-10 2.594478663e-10 4.420843358e-10 4.355523525e-10 5.652801356e-10 6.519702279e-10 5.17250004e-10 4.668715149e-10 4.099955345e-10 5.850641223e-10 3.104056517e-10 4.66851069e-10 4.908679191e-10 4.72886802e-10 4.024096613e-10 2.968371342e-10 3.135295742e-10 3.730485374e-10 3.264216688e-10 2.455897824e-10 2.303958798e-10 2.652624306e-10 2.221968771e-10 6.576555376e-10 7.373624687e-10 6.121128974e-10 5.903092718e-10 7.414512194e-10 4.899683725e-10 5.985281557e-10 5.693866185e-10 6.805431831e-10 7.574665683e-10 5.88856357e-10 7.224942095e-10 3.807165824e-10 3.819809885e-10 4.651316782e-10 2.939008961e-10 4.143941766e-10 1.409319687e-10 1.403760441e-10 1.299445038e-10 1.409050446e-10 4.232117563e-10 5.477411069e-10 5.366889938e-10 5.043774473e-10 7.464378005e-10 9.557320355e-10 9.887474981e-10 1.061836654e-09 8.979495561e-10 5.71986863e-10 3.935568802e-10 6.405983411e-11 1.342920653e-10 1.731429338e-10 1.421634177e-10 2.196241886e-10 1.575418274e-10 2.623213412e-11 1.145458755e-10 1.004238585e-10 1.872024956e-10 1.564444043e-10 1.867658181e-10 1.356169343e-10 1.12846429e-23 1.1158765e-10 1.644044702e-10 1.333200725e-10 8.365610798e-11 1.132156869e-10 0 1.729576631e-10 0 7.140132388e-11 1.090190744e-10 1.971147905e-10 1.551961395e-10 1.64360894e-10 7.343597493e-11 1.174150011e-10 1.397308997e-10 1.648818409e-10 9.44131066e-11 1.413514478e-10 1.683376391e-10 2.01810106e-11 2.202348218e-10 1.788053278e-10 1.434303911e-11 3.896884057e-10 7.382473058e-10 1.017144565e-09 9.689169666e-10 1.012902124e-09 1.154952653e-09 7.717128477e-10 5.229370925e-10 5.719954448e-10 5.387821976e-10 3.158596378e-10 2.08960948e-16 1.671378539e-10 1.132065476e-10 3.02139212e-10 3.848723366e-10 4.288256254e-10 4.818955168e-10 6.797001933e-10 4.050696974e-10 5.518557115e-10 6.372408224e-10 8.375304348e-10 6.151501689e-10 5.18706857e-10 7.125412467e-10 6.676889942e-10 7.957190425e-10 4.321699805e-10 6.919047689e-10 6.117033722e-10 5.418870834e-10 2.26309835e-10 2.90675746e-10 2.615501205e-10 2.051302783e-10 3.821424152e-10 3.986059254e-10 4.948383519e-10 4.630750077e-10 4.08249872e-10 4.559861879e-10 3.018764982e-10 3.496401773e-10 4.431258772e-10 3.062420805e-10 6.302606025e-10 6.128470396e-10 4.470096523e-10 6.366606416e-10 5.494412065e-10 3.609138522e-10 3.081494198e-10 3.494320244e-10 2.289142547e-10 4.935318748e-10 3.313250678e-10 5.145527304e-10 2.47584747e-10 2.809019582e-10 2.915348554e-10 3.592267053e-10 3.492300804e-10 4.341679998e-10 3.349226036e-10 3.431886912e-10 3.197551118e-10 2.762807231e-10 2.97143614e-10 3.453947911e-10 4.572273501e-10 2.873430161e-10 3.291230714e-10 2.20868674e-10 2.346760303e-10 1.710971791e-10 3.048304696e-10 3.203688383e-10 1.779965356e-10 3.971700154e-10 3.571971585e-10 3.955205304e-10 2.858313931e-10 2.986226394e-10 4.647255278e-10 3.90133565e-10 4.340784417e-10 3.546026197e-10 1.47419185e-10 1.57703692e-10 2.629508679e-10 2.120595945e-10 1.967479253e-10 1.419339561e-10 3.195585855e-10 1.413848872e-10 1.352340259e-10 3.000444958e-10 2.23012404e-10 3.271316557e-10 1.540145251e-10 3.311758693e-10 8.076165564e-11 2.644197747e-10 1.490843432e-10 1.516713671e-10 8.464202869e-11 4.07966864e-10 1.964213417e-10 1.216815598e-10 3.049225808e-10 1.726657609e-10 1.897162647e-10 1.593955105e-10 2.647805773e-10 1.140323615e-10 1.529076204e-10 1.084170774e-10 2.38571382e-10 8.209148807e-11 2.372722089e-10 4.890557498e-10 2.24673688e-10 1.150519796e-10 4.386822106e-10 3.828386807e-10 2.473927037e-10 1.657421074e-10 2.523264542e-10 6.372137468e-11 1.434660374e-10 +1.559177812e-10 1.369952564e-10 1.129723354e-10 8.448990046e-11 9.023591552e-11 3.789115229e-10 8.439974279e-11 1.697854874e-10 2.601332574e-10 1.333393584e-10 3.613763765e-10 2.009019312e-10 2.512345121e-10 1.09884681e-10 1.31828622e-10 1.191595703e-10 1.217281074e-10 1.634670238e-10 6.787969147e-11 1.387616202e-10 1.585573708e-10 1.254102799e-10 3.902218834e-10 2.68503621e-10 3.227387553e-10 2.772426989e-10 1.333598302e-10 2.871316103e-10 1.968370888e-10 3.007577957e-10 1.464018287e-10 1.258704192e-10 1.170198314e-10 3.642799019e-10 1.816253502e-10 2.244551671e-10 2.098783374e-10 1.936254558e-10 2.073212957e-10 2.785124843e-10 1.960395331e-10 9.893503563e-11 2.633904306e-10 2.705920996e-10 2.198614439e-10 1.505205623e-10 2.337391482e-10 2.651571562e-10 2.06716473e-10 3.908360995e-10 3.759365471e-10 3.05137237e-10 4.697687553e-10 3.017042015e-10 4.868704299e-10 2.672680696e-10 2.554164324e-10 3.461646822e-10 1.614837296e-10 2.212168234e-10 3.964775868e-10 3.47881464e-10 1.875517717e-10 2.755568514e-10 2.583273983e-10 4.29217622e-10 2.77720428e-10 3.80967634e-10 3.397493093e-10 2.990836878e-10 3.78695855e-10 3.034224578e-10 4.376676541e-10 2.876983345e-10 1.269015594e-10 3.353520708e-10 2.489670857e-10 2.774019636e-10 3.645365847e-10 2.954296032e-10 4.036182935e-10 2.81097235e-10 5.601899095e-10 5.54862079e-10 4.355577724e-10 4.803107809e-10 4.301136469e-10 4.524000429e-10 4.0837019e-10 5.394826239e-10 4.312945415e-10 5.222410419e-10 3.61992369e-10 4.246484943e-10 2.854631103e-10 2.594477707e-10 1.556862099e-10 1.896757391e-10 2.417313748e-10 4.435828876e-10 6.386537776e-10 5.225117388e-10 7.431289676e-10 9.385457556e-10 6.442098878e-10 5.671954096e-10 6.048359045e-10 7.859959784e-10 6.99491392e-10 5.641382461e-10 5.468825063e-10 3.972372318e-10 5.05192489e-10 4.382913009e-10 4.352091675e-10 3.627884181e-10 2.283063835e-10 1.830046384e-10 1.236978966e-10 1.309185392e-10 2.523601368e-10 5.227839565e-10 5.806794798e-10 5.634260479e-10 5.404021243e-10 9.605911256e-10 1.03455299e-09 1.080348823e-09 9.330338286e-10 6.927418687e-10 3.621677809e-10 0 1.717734542e-10 2.130911849e-10 2.015140661e-10 1.312854098e-10 1.889567258e-10 1.64509804e-10 1.575860613e-10 1.760838741e-10 5.530987868e-11 9.948848089e-11 9.827025336e-11 1.108092855e-10 1.242214327e-10 1.177140843e-10 1.693024721e-10 1.249527398e-10 9.44155734e-11 1.82907759e-10 2.116007289e-10 1.98790834e-10 1.190411823e-10 1.153427755e-10 1.522281785e-10 9.052524755e-11 1.166813715e-10 6.966249948e-11 0 1.885890788e-10 8.363401246e-11 1.212766762e-10 1.996087486e-10 1.521689364e-10 7.991185102e-11 1.673489159e-10 4.914884158e-11 8.450961113e-11 2.561456471e-11 3.169095104e-10 7.161381372e-10 8.330697437e-10 1.002570321e-09 1.096416309e-09 9.914742659e-10 8.103228253e-10 4.731837905e-10 6.082186296e-10 5.468227222e-10 4.054132463e-10 1.123574862e-10 2.290588462e-13 1.823697983e-11 1.431573775e-10 3.837655289e-10 3.9549349e-10 4.802324252e-10 5.863725031e-10 4.829067043e-10 3.555032799e-10 5.776274488e-10 8.184836958e-10 7.701680187e-10 6.399509733e-10 7.52191494e-10 6.42463834e-10 8.036805541e-10 9.234784594e-10 6.212524902e-10 6.450336368e-10 3.29608379e-10 3.258096905e-10 2.797402613e-10 1.805515751e-10 2.774713562e-10 2.862288642e-10 3.593992848e-10 3.900873843e-10 4.680487333e-10 4.476879048e-10 5.414819064e-10 3.52437164e-10 5.141081549e-10 6.141301814e-10 5.723827342e-10 5.470704628e-10 5.16546545e-10 5.381107218e-10 4.336536181e-10 3.881562065e-10 3.317033833e-10 5.386278013e-10 2.988367391e-10 3.991089859e-10 3.468367167e-10 4.311538523e-10 3.626617787e-10 3.358441985e-10 3.777408527e-10 2.239473909e-10 5.074249948e-10 4.189433821e-10 2.873194604e-10 3.885748315e-10 3.624128679e-10 2.586743485e-10 2.961414275e-10 1.955132406e-10 2.583745904e-10 2.989438904e-10 1.842623265e-10 3.285120961e-10 4.098929462e-10 2.438539114e-10 4.687948505e-10 1.726070645e-10 3.973077583e-10 3.439339653e-10 2.185484085e-10 2.172337293e-10 4.131647875e-10 2.340763374e-10 3.731610974e-10 2.459879555e-10 5.83755416e-10 3.308072372e-10 1.851729762e-10 2.565456862e-10 3.931128685e-10 1.996555725e-10 1.693433286e-10 9.881547218e-11 9.998816143e-11 1.858808751e-10 1.108558766e-10 1.545543831e-10 1.252830885e-10 9.346312103e-11 2.463197713e-10 8.368784683e-11 1.90829786e-10 1.817802928e-10 2.507409679e-10 2.860977841e-10 2.70433862e-10 3.605039082e-10 2.704393729e-10 1.262322206e-10 1.068439056e-10 1.018331234e-10 3.122159805e-10 4.528146051e-10 1.201366427e-10 2.86827149e-10 2.780620085e-10 1.730664926e-10 2.510203222e-10 1.71987233e-10 3.624826322e-10 2.303441584e-10 4.273968047e-10 2.600728919e-10 1.457028354e-10 1.355489704e-10 1.400539069e-10 1.385357626e-10 3.843960856e-10 2.465449592e-10 1.032899911e-10 3.110959819e-10 +1.518087017e-10 1.456701052e-10 1.958746474e-10 8.078058687e-11 3.175263733e-10 3.171560489e-10 1.125832482e-10 1.045281899e-10 3.307314021e-10 1.533237029e-10 3.105369781e-10 2.438420365e-10 8.015714648e-11 3.054618348e-10 2.21776937e-10 2.261794163e-10 1.320663374e-10 1.291956812e-10 3.640726831e-10 2.149316606e-10 1.839406071e-10 1.642024072e-10 1.354498178e-10 2.193022574e-10 3.721129728e-10 2.163640815e-10 1.23259446e-10 2.278366067e-10 1.216471659e-10 1.214895049e-10 1.635122287e-10 1.963801713e-10 2.612895333e-10 3.120580625e-10 3.221058364e-10 2.276955366e-10 2.322787993e-10 3.287194208e-10 2.148715931e-10 1.475317346e-10 2.279092135e-10 1.771027538e-10 2.378246396e-10 2.542825928e-10 3.828758477e-10 2.984807596e-10 4.232416783e-10 2.445654624e-10 3.285750381e-10 1.68423313e-10 2.845982142e-10 2.583879584e-10 9.570136973e-11 2.941310563e-10 2.081061019e-10 4.37557412e-10 2.764469645e-10 2.731375369e-10 3.967437411e-10 2.290449289e-10 2.605351693e-10 2.556753201e-10 3.142611401e-10 3.693397952e-10 1.986913616e-10 2.382364705e-10 4.017843264e-10 2.543716241e-10 2.389018188e-10 4.044715567e-10 3.351874863e-10 4.111432199e-10 2.296920461e-10 2.845577347e-10 3.056810194e-10 2.404700253e-10 3.705225836e-10 3.016824396e-10 4.511309095e-10 3.103205942e-10 4.217668039e-10 5.942967589e-10 5.217938419e-10 4.422306741e-10 4.875281926e-10 4.727596466e-10 4.479491803e-10 4.387339481e-10 5.070782892e-10 3.907477796e-10 4.095693955e-10 3.880087406e-10 4.25401034e-10 4.456435271e-10 3.398081254e-10 2.087444188e-10 4.009300075e-10 2.95636023e-10 2.671726578e-10 3.993467067e-10 4.990834537e-10 6.936215613e-10 6.632520523e-10 7.989563283e-10 6.112673575e-10 7.668721065e-10 6.08333596e-10 6.817388491e-10 8.477781571e-10 5.861363111e-10 5.158361679e-10 3.967587285e-10 5.220296797e-10 4.65911167e-10 5.588292026e-10 4.242852802e-10 1.835228626e-10 2.69389935e-10 1.493452335e-10 8.703682795e-11 4.128068255e-10 5.068048456e-10 5.338359898e-10 5.909697919e-10 7.698095787e-10 1.018296743e-09 1.121691902e-09 9.947436879e-10 1.033031674e-09 7.386184796e-10 1.673269467e-10 2.25213244e-10 2.356246886e-10 1.770402792e-10 1.628635174e-10 1.114984533e-10 1.784589758e-10 1.69834268e-10 1.36928359e-10 1.806121733e-10 1.12948846e-10 1.723922461e-10 1.267464923e-10 1.311756645e-10 1.606539392e-10 1.600483595e-10 1.520780203e-10 1.246126801e-10 1.15293682e-10 0 1.150344856e-10 2.663298769e-12 1.55166232e-10 1.879338791e-10 1.546938532e-10 1.920393238e-10 1.72301602e-10 1.178195605e-10 1.374925277e-10 1.303956675e-26 1.286278427e-10 1.128322818e-10 2.062303893e-10 2.073199045e-10 8.448092265e-11 1.348757602e-10 1.224216883e-10 1.505203492e-10 8.357016952e-11 2.781930501e-10 7.655801659e-10 8.593769116e-10 8.041340568e-10 1.065378107e-09 1.111793994e-09 7.5432721e-10 4.849982228e-10 5.106053544e-10 4.757421647e-10 2.252675854e-10 9.015377817e-11 2.699827824e-14 1.790199478e-10 2.42530228e-10 4.621485819e-10 4.019766841e-10 5.098114655e-10 4.454520499e-10 5.149200316e-10 6.273300698e-10 6.497342699e-10 7.593647397e-10 9.000077013e-10 4.900060687e-10 7.039133861e-10 8.253122553e-10 6.82378128e-10 9.078966766e-10 6.442850318e-10 9.871013419e-10 4.747939745e-10 2.006809537e-10 2.625478214e-10 1.650174522e-10 1.421945753e-10 4.544142518e-10 3.548167289e-10 4.282977304e-10 4.795179574e-10 4.443239423e-10 4.259898624e-10 2.976923651e-10 3.805143459e-10 3.126547341e-10 6.404783297e-10 4.590326296e-10 6.054444044e-10 5.838064496e-10 6.445040426e-10 5.286642569e-10 4.054826899e-10 3.867950794e-10 2.449008448e-10 4.188212487e-10 4.929097236e-10 3.295009018e-10 4.295862474e-10 2.639775978e-10 3.966002784e-10 2.238017927e-10 3.460400218e-10 3.09612436e-10 3.238322165e-10 2.987826403e-10 2.261519822e-10 1.982875003e-10 2.848711323e-10 2.941245935e-10 3.336860489e-10 2.439711254e-10 3.632566964e-10 1.896941908e-10 3.719145558e-10 3.787646704e-10 4.48365694e-10 4.933765769e-10 2.746175666e-10 2.492496015e-10 3.262590947e-10 3.969862888e-10 3.939787757e-10 2.829669866e-10 2.638403953e-10 3.565190093e-10 2.906124317e-10 3.527225967e-10 3.240956711e-10 3.222813069e-10 3.940070161e-10 1.647776617e-10 1.277071164e-10 1.319081747e-10 4.471251647e-10 2.241828605e-10 3.298536373e-10 1.266337243e-10 4.182827489e-10 2.422277952e-10 1.545213832e-10 1.352117504e-10 1.240784422e-10 3.579609326e-10 2.353016934e-10 2.687278867e-10 2.536027412e-10 2.372084418e-10 1.713508876e-10 1.988935319e-10 1.304315101e-10 4.555416343e-10 2.936366392e-10 1.490187162e-10 3.754837102e-10 5.98161725e-11 2.455316585e-10 2.900076264e-10 1.760803008e-10 3.389603545e-10 8.307657077e-11 1.918062251e-10 9.833516891e-11 1.539945974e-10 1.242421584e-10 1.906710298e-10 1.002314535e-10 1.538366104e-10 2.520749194e-10 7.954913714e-11 1.618837709e-10 2.28911038e-10 +1.129519907e-10 2.347487345e-10 7.670499214e-11 1.489771192e-10 3.3195538e-10 2.82516561e-11 1.016742047e-10 2.43969943e-10 2.35567282e-10 4.037399302e-10 1.840121795e-10 8.155025498e-11 1.009829916e-10 1.130951685e-10 1.137335154e-10 8.259600339e-11 3.847231977e-10 1.30673336e-10 1.016221241e-10 1.168515378e-10 8.51738907e-11 1.952338795e-10 3.619415899e-10 2.922201458e-10 6.991920333e-11 2.10923827e-10 3.187550117e-10 2.053873444e-10 1.72642129e-10 2.299958503e-10 1.361430428e-10 2.396527375e-10 2.171496076e-10 4.024732331e-10 1.447746422e-10 1.727407605e-10 9.217729373e-11 2.16111461e-10 1.320574372e-10 9.10984703e-11 1.501212646e-10 1.709519857e-10 1.747544081e-10 6.433950594e-10 2.461868608e-10 4.499315931e-10 5.394386267e-10 2.357865463e-10 3.709527005e-10 3.794813877e-10 3.870695663e-10 4.293737755e-10 2.950597201e-10 2.970443544e-10 3.576690658e-10 2.321442193e-10 3.840494784e-10 2.017971605e-10 3.494395243e-10 3.571491227e-10 4.184873705e-10 3.610405322e-10 3.830825474e-10 3.469076843e-10 3.946702565e-10 2.376579341e-10 4.567600005e-10 2.775418366e-10 3.145126922e-10 1.683736613e-10 3.840319186e-10 2.714070944e-10 2.720003842e-10 2.04414638e-10 3.788900298e-10 2.69444686e-10 3.872418799e-10 4.815379271e-10 4.639694231e-10 4.928313141e-10 3.899651423e-10 5.177593299e-10 4.414876816e-10 5.244818982e-10 6.203974045e-10 3.929937989e-10 5.178383823e-10 4.44578816e-10 4.305624197e-10 4.066874508e-10 3.032719896e-10 4.231950067e-10 3.789274085e-10 3.751417503e-10 2.058626537e-10 1.877810627e-10 2.479955023e-10 2.468669716e-10 4.755844008e-10 7.150845932e-10 7.729061152e-10 6.670777989e-10 7.033497192e-10 7.152713423e-10 8.076092223e-10 6.133909873e-10 6.323854161e-10 8.340810414e-10 7.490556062e-10 6.301077691e-10 7.155241043e-10 4.97316202e-10 5.391857013e-10 4.210404301e-10 4.755306862e-10 3.992984198e-10 1.458559589e-10 7.714117242e-12 1.397741696e-10 1.912775461e-10 4.145982861e-10 5.721367448e-10 5.07151984e-10 5.309737585e-10 7.490232113e-10 1.119297176e-09 9.786715193e-10 1.084549348e-09 8.385021315e-10 6.507807106e-10 3.170749756e-10 2.157749347e-10 1.704247568e-10 6.540394214e-11 1.449771896e-10 1.501246458e-10 9.35518539e-11 1.254224043e-10 2.157548893e-10 1.70691969e-10 1.182574494e-10 1.21646468e-10 2.088822975e-10 1.29189455e-10 7.496002777e-11 1.478849338e-10 1.822174809e-10 1.576691569e-10 1.256116746e-10 1.286308584e-10 7.298527523e-11 1.07916168e-10 1.563232561e-10 8.896240118e-11 1.260178828e-10 8.40355075e-13 9.19268449e-11 2.165631625e-10 1.072480438e-10 1.481016469e-10 1.415204444e-10 1.357405135e-10 1.270840852e-10 1.094294411e-10 2.489477261e-10 1.054853117e-10 1.821471242e-10 5.014475756e-11 1.488649376e-10 1.631641112e-10 7.582673859e-10 1.064924218e-09 9.165808908e-10 1.004242128e-09 9.707876314e-10 9.286249049e-10 6.111668408e-10 5.477734849e-10 6.704498283e-10 4.419733651e-10 1.894624738e-10 2.149182733e-10 8.712405416e-11 2.036378213e-10 3.857106987e-10 5.435045957e-10 5.248325754e-10 4.75667317e-10 6.273783693e-10 4.769499332e-10 5.578936285e-10 9.011442901e-10 5.465002358e-10 6.732294222e-10 4.843949995e-10 7.343736498e-10 6.873213163e-10 5.864324233e-10 7.69306941e-10 6.057699938e-10 5.065082381e-10 5.091255043e-10 3.160096126e-10 1.975956959e-10 1.177633121e-10 3.339651326e-10 4.614138786e-10 3.167333356e-10 4.413653841e-10 4.576531159e-10 3.379263034e-10 3.489730002e-10 4.95016952e-10 4.245771532e-10 3.927362728e-10 5.212791288e-10 4.282904872e-10 3.884193704e-10 4.33144873e-10 5.041634502e-10 4.652809461e-10 3.858226321e-10 4.889436919e-10 3.995207642e-10 4.49077643e-10 3.824186113e-10 1.904651326e-10 3.164333991e-10 3.401207554e-10 3.697752827e-10 2.218844244e-10 2.229857975e-10 3.300641459e-10 3.67135427e-10 2.978816337e-10 3.518138929e-10 2.326542819e-10 3.790047396e-10 3.067051504e-10 3.914401963e-10 2.65639135e-10 3.277229913e-10 2.089237415e-10 3.501777991e-10 2.672090075e-10 3.998322851e-10 2.159968205e-10 2.385593742e-10 3.446948348e-10 2.636936658e-10 1.733724039e-10 4.055454032e-10 2.494351152e-10 3.794838143e-10 2.911634235e-10 2.019323928e-10 2.77620311e-10 2.424797283e-10 2.922959639e-10 2.302948912e-10 1.532491875e-10 2.55398057e-10 2.186658576e-10 1.892382393e-10 2.816439622e-10 1.018014893e-10 2.164523324e-10 1.730465455e-10 2.843836152e-10 4.06488144e-10 1.63551296e-10 2.415075005e-10 1.870534821e-10 3.439613059e-10 1.594265348e-10 3.893808232e-10 1.947433191e-10 8.354001844e-11 2.432755499e-10 1.514309062e-10 2.707045917e-10 3.255566649e-10 3.107341166e-10 1.289876484e-10 3.483222227e-10 2.26541809e-10 7.376247397e-11 1.435452289e-10 2.723326772e-10 7.294565684e-11 3.609945617e-10 1.410994597e-10 2.476217705e-10 1.009654779e-10 4.672407409e-10 9.153222719e-11 1.066956041e-10 1.230532306e-10 1.090650989e-10 1.785245335e-10 +1.067055842e-10 3.108813118e-10 1.729064749e-10 1.219768891e-10 2.212494398e-11 2.131110926e-10 1.241462971e-10 1.303313407e-10 2.084692762e-10 1.653665681e-10 2.677728182e-10 1.19871052e-10 1.88557221e-10 1.4523163e-10 1.866987398e-10 1.156127408e-10 1.413563596e-10 2.89964523e-10 1.551858121e-10 2.596191511e-10 1.772110757e-10 2.677590483e-10 1.014574891e-10 6.815712347e-11 2.201230219e-10 2.746487702e-10 1.45771777e-10 1.432816806e-10 3.278768145e-10 1.821252465e-10 1.559563342e-10 3.151401076e-10 1.460902072e-10 1.599749659e-10 2.182997397e-10 1.092468448e-10 2.169200035e-10 1.544117818e-10 1.759078703e-10 1.532418726e-10 2.590547103e-10 1.000908214e-10 3.676994198e-10 2.540203368e-10 1.578256871e-10 3.112430988e-10 2.466794819e-10 4.961195713e-10 2.895291436e-10 5.182055209e-10 5.359937538e-10 3.676912102e-10 4.780431027e-10 3.912801167e-10 3.569791797e-10 1.721698038e-10 1.895467248e-10 2.805857565e-10 2.106850338e-10 3.285648355e-10 1.299929558e-10 3.023310662e-10 4.591980742e-10 3.371292876e-10 5.088550244e-10 2.687814166e-10 2.770084788e-10 2.16449702e-10 4.052127721e-10 2.720574708e-10 3.711438422e-10 4.448912366e-10 2.771004413e-10 4.398356936e-10 4.147917962e-10 5.063328471e-10 3.313984275e-10 2.53572682e-10 4.176336362e-10 3.524987567e-10 3.880414975e-10 5.027954311e-10 4.842504e-10 4.515796876e-10 4.592802777e-10 5.949377835e-10 5.602941208e-10 5.322231934e-10 3.746005173e-10 2.99934044e-10 4.551357549e-10 4.94088483e-10 4.039694047e-10 3.317549873e-10 2.981617645e-10 1.954633944e-10 1.357102225e-10 1.879282837e-10 2.84054176e-10 7.473324173e-10 7.264673756e-10 7.855194861e-10 4.607969981e-10 5.122607286e-10 7.322122367e-10 3.945649555e-10 6.121834936e-10 5.616152816e-10 6.843468596e-10 6.878935828e-10 4.242110578e-10 3.958034465e-10 4.772728625e-10 3.98293175e-10 4.185099573e-10 3.415698364e-10 1.976279715e-10 9.667216972e-11 1.491668532e-10 1.424224563e-10 3.24721141e-10 5.316962756e-10 5.829298919e-10 6.134936102e-10 8.232064719e-10 1.042664373e-09 1.022468282e-09 8.654874631e-10 9.389438914e-10 6.744056873e-10 2.559141046e-10 1.431859702e-10 1.871060788e-10 1.638115521e-10 1.504700031e-10 1.752930478e-10 1.379999184e-10 6.452945933e-11 1.012487329e-10 4.707689461e-11 1.412765608e-10 1.045102089e-10 9.949727573e-11 1.852338803e-10 1.285618705e-10 1.241765445e-10 1.399511943e-10 1.61063829e-10 7.530031869e-12 1.357919764e-10 2.399824555e-10 1.504097449e-10 2.026122102e-10 1.099097566e-12 1.671240742e-10 1.597722193e-10 1.953643132e-10 1.944619395e-10 1.403077816e-10 1.318243704e-10 1.244015355e-10 1.586598481e-10 1.332446519e-10 9.434957501e-11 1.025910225e-10 1.257106714e-10 7.46336861e-11 1.510745813e-10 1.053501463e-10 1.512152518e-10 5.923708604e-10 8.454915625e-10 8.998593378e-10 1.108290335e-09 9.764540308e-10 8.575567428e-10 5.541808295e-10 6.66468791e-10 5.784496069e-10 3.95073932e-10 1.188196662e-10 1.151855926e-12 1.467826818e-10 1.709515091e-10 3.564177768e-10 6.095099469e-10 4.680828186e-10 5.447391838e-10 3.711703504e-10 4.971831074e-10 6.984898802e-10 7.240906617e-10 8.333129611e-10 6.162628031e-10 6.283193539e-10 6.983773869e-10 6.451804153e-10 5.704448035e-10 9.214565159e-10 7.396338842e-10 6.299377572e-10 2.684738743e-10 2.40339961e-10 1.927149947e-10 1.280877143e-10 1.12729775e-10 3.111859173e-10 4.871764036e-10 5.067938983e-10 3.971148117e-10 4.697348763e-10 5.614402966e-10 6.245103921e-10 4.63602968e-10 4.091188663e-10 4.809095124e-10 4.826890701e-10 5.133675493e-10 6.257232023e-10 6.023595248e-10 3.800265759e-10 4.940611121e-10 4.89776396e-10 3.011778008e-10 2.495263131e-10 3.259306516e-10 3.80196162e-10 2.523384613e-10 4.45065725e-10 4.554829606e-10 3.458662033e-10 3.884573412e-10 3.071389569e-10 3.271478013e-10 3.25170239e-10 2.312408939e-10 3.247982818e-10 2.304038668e-10 2.083381309e-10 2.748669127e-10 2.243672742e-10 2.255580977e-10 3.479436674e-10 3.817679842e-10 2.850206413e-10 3.0953753e-10 4.743220028e-10 3.794248288e-10 3.125632101e-10 1.464181529e-10 4.302069954e-10 3.582528907e-10 3.461886139e-10 3.738327875e-10 2.563882142e-10 2.253977953e-10 1.960671972e-10 3.99022559e-10 3.870669497e-10 1.752035603e-10 2.771087047e-10 2.524171417e-10 1.489920737e-10 2.373944384e-10 1.692484327e-10 1.838794846e-10 1.978565315e-10 2.362446301e-10 3.19899165e-10 3.248941956e-10 2.613101899e-10 3.231751639e-10 3.61924204e-10 3.611412957e-10 5.247347118e-11 2.12079948e-10 2.302770592e-10 2.239610072e-10 2.160754766e-10 1.594982301e-10 9.606995399e-11 2.817196161e-10 1.838716222e-10 1.470784112e-10 2.730881844e-10 1.897305716e-10 2.561180736e-10 8.910424337e-11 1.907584482e-10 1.158291336e-10 2.124090344e-10 7.523608405e-11 2.584645174e-10 9.618332952e-11 4.605858703e-10 1.572624858e-10 3.328243742e-11 3.288730631e-10 2.157206975e-10 8.006533778e-11 +6.346054638e-11 1.429208201e-10 3.065118474e-10 1.209202293e-10 1.211117643e-10 1.881446977e-10 3.358828828e-10 3.263814311e-10 9.002389771e-11 1.888383246e-10 4.09171714e-10 2.212178236e-10 2.768077506e-10 2.384232418e-10 1.533967997e-10 2.384046653e-10 1.755536026e-10 4.232700155e-10 9.441819811e-11 2.161058354e-10 2.538355522e-10 3.157411167e-10 2.537973162e-10 2.689545209e-10 2.804870465e-10 4.185242517e-10 1.716886691e-10 3.019709475e-10 1.12201689e-10 3.295773787e-10 1.352928348e-10 1.557116703e-10 3.105332865e-10 2.125136186e-10 1.3722224e-10 3.762041354e-10 3.081206462e-10 6.837068304e-11 2.080375228e-10 1.34089426e-10 3.383835053e-10 2.594514189e-10 5.038008386e-10 2.980632439e-10 3.175259029e-10 2.774123672e-10 4.703970034e-10 2.677648874e-10 2.895512821e-10 2.522765097e-10 3.736632807e-10 3.925251807e-10 2.244333224e-10 2.401744833e-10 2.334391701e-10 2.656784875e-10 3.612061617e-10 1.238315663e-10 1.81096973e-10 1.89340944e-10 4.164648291e-10 2.648319696e-10 1.99162126e-10 3.177247965e-10 2.279110588e-10 2.048349451e-10 3.137653378e-10 3.435419261e-10 3.851520347e-10 4.666095428e-10 4.239737347e-10 3.243036654e-10 4.363898328e-10 2.378524646e-10 3.857849742e-10 5.311900436e-10 3.838827357e-10 3.183115707e-10 5.674294891e-10 4.827488382e-10 7.119433467e-10 4.813515994e-10 3.606799539e-10 4.807366188e-10 5.820650259e-10 4.080107864e-10 5.261382231e-10 3.867939211e-10 3.62167939e-10 3.026981196e-10 3.120347289e-10 3.145575775e-10 3.522655742e-10 3.129588541e-10 2.541627641e-10 1.171820904e-10 1.952530088e-10 2.217057151e-10 2.706243565e-10 8.001006036e-10 8.334565803e-10 5.801459105e-10 6.371509622e-10 8.423763346e-10 6.116058595e-10 4.699792012e-10 5.837264323e-10 7.594294512e-10 6.797953297e-10 6.539046577e-10 5.666112776e-10 5.615974729e-10 6.172418006e-10 4.62439733e-10 4.795460037e-10 4.126111112e-10 1.946875846e-10 1.017859699e-10 1.990608235e-10 2.586121661e-10 4.874152151e-10 5.008345054e-10 5.940934291e-10 5.053452212e-10 8.263297257e-10 1.013453895e-09 9.630948087e-10 9.355465373e-10 8.813517257e-10 5.986122204e-10 7.344272423e-11 2.063605327e-10 1.288580942e-10 2.969794731e-12 2.017887955e-10 1.108934246e-10 3.750485198e-19 1.290484106e-10 7.941304193e-11 9.452558598e-11 1.967076565e-10 1.192938059e-10 1.832601461e-10 1.176418822e-10 1.391637608e-10 9.770363383e-11 8.236158286e-11 1.085223729e-10 2.041218833e-10 1.731819423e-10 9.550272949e-11 1.375944701e-10 1.222214161e-13 1.417454577e-10 1.32010472e-10 1.272131826e-10 1.159458058e-10 1.576335094e-10 7.999601505e-11 9.16457331e-11 1.54740219e-10 1.153801288e-10 1.606825318e-10 1.005446052e-10 1.62379159e-10 1.962520484e-10 1.980297519e-10 8.253062293e-11 1.575922405e-10 1.837316204e-10 6.216838711e-10 9.628232489e-10 8.476922142e-10 9.150693787e-10 1.044424569e-09 7.601689883e-10 5.463084941e-10 5.73374794e-10 5.776078989e-10 3.326395285e-10 1.195072788e-10 2.020892262e-10 1.429372848e-10 2.236240361e-10 4.182157793e-10 4.2343199e-10 5.59758016e-10 4.595637406e-10 5.541239476e-10 5.342805267e-10 6.807295013e-10 8.268019901e-10 8.638650424e-10 8.364220582e-10 7.725579945e-10 5.64745447e-10 8.753384634e-10 5.458250276e-10 6.065877497e-10 1.049447776e-09 4.008774125e-10 2.801577508e-10 3.288522195e-10 2.190587411e-10 2.476543696e-10 3.068969545e-10 3.474567769e-10 4.277751868e-10 4.608334057e-10 4.829240443e-10 4.373262591e-10 2.644884176e-10 4.62793805e-10 4.050842245e-10 4.758205382e-10 3.755599301e-10 3.624439608e-10 4.42440473e-10 4.466186096e-10 4.914034014e-10 3.280955261e-10 3.107956274e-10 3.171151926e-10 1.753596201e-10 3.655440481e-10 2.128027852e-10 2.407577032e-10 2.718630029e-10 3.912551259e-10 4.68967685e-10 3.369421575e-10 2.624254054e-10 2.980897453e-10 2.59128023e-10 3.934336339e-10 3.154848529e-10 3.005917613e-10 3.329719465e-10 3.236763993e-10 4.858804262e-10 2.342608541e-10 3.395584921e-10 1.988109655e-10 2.766399161e-10 2.18451904e-10 2.831818955e-10 3.433904349e-10 2.933144715e-10 4.342762504e-10 3.176766824e-10 3.344196688e-10 2.027647773e-10 3.068559497e-10 3.746283857e-10 5.764989903e-10 2.06197063e-10 2.883486563e-10 2.136940055e-10 3.141714829e-10 1.949274024e-10 9.98413539e-11 2.378127683e-10 3.043640126e-10 4.567509797e-10 1.413884572e-10 2.661597234e-10 2.957805442e-10 9.304444295e-11 2.944343555e-10 9.936220503e-11 1.363895515e-10 1.553065358e-10 3.948758971e-10 2.203570119e-10 1.756897084e-10 1.553981498e-10 1.585157943e-10 1.617417443e-10 7.735273656e-11 2.543701079e-10 7.755254445e-11 1.797527075e-10 1.895703628e-10 3.43108245e-10 3.468861492e-10 1.867759942e-10 1.663506242e-10 1.865863985e-10 3.447023416e-10 1.406905987e-10 2.16115797e-10 1.790915495e-10 2.759262823e-10 2.362630252e-10 4.338529172e-10 1.237943127e-10 7.13533855e-11 1.71732001e-10 1.392988183e-10 1.217537777e-10 +1.901462596e-10 4.099175285e-11 5.362959741e-11 9.428517469e-11 2.569187687e-10 2.717888734e-10 1.327591738e-10 2.660583973e-11 2.143002458e-10 2.304455422e-10 1.047584166e-10 1.166058865e-10 2.599306781e-10 3.072895694e-10 1.568459852e-10 1.207327978e-10 1.562865405e-10 1.756351309e-10 1.783100058e-10 2.167312757e-10 8.761888382e-11 1.294805888e-10 1.887833285e-10 1.816946907e-10 8.84554293e-11 3.556633248e-10 3.614385259e-10 1.266042521e-10 3.234325395e-10 1.797881704e-10 1.362844417e-10 1.303400257e-10 1.620907493e-10 1.533493733e-10 1.711030555e-10 2.515465376e-10 2.084937581e-10 1.593530181e-10 9.662897923e-11 2.081359411e-10 1.830136094e-10 2.214027242e-10 2.770898465e-10 1.74619654e-10 3.107178392e-10 2.819196987e-10 2.001557905e-10 3.561948796e-10 3.740790055e-10 3.063681044e-10 3.252690589e-10 2.476036851e-10 4.584176888e-10 3.117589845e-10 3.866072548e-10 2.872668305e-10 3.883311e-10 3.517508204e-10 1.976645893e-10 3.920801251e-10 2.867844379e-10 4.128527022e-10 3.833118273e-10 4.505726158e-10 2.963499799e-10 3.361068808e-10 2.46909975e-10 3.481417725e-10 2.963017525e-10 2.644084183e-10 3.619456197e-10 3.883560693e-10 3.757520511e-10 3.865613467e-10 3.252348199e-10 2.347289053e-10 2.808485108e-10 3.492813931e-10 5.17785049e-10 6.394774605e-10 3.718673562e-10 3.63564331e-10 5.317721354e-10 4.372526406e-10 4.804909253e-10 4.429066857e-10 4.771990466e-10 4.97888309e-10 3.807822087e-10 2.959053352e-10 4.073917406e-10 3.895853271e-10 4.284012017e-10 3.118076749e-10 2.811724623e-10 1.624985496e-10 1.876144301e-10 1.595608387e-10 4.241429464e-10 6.343623198e-10 6.815015483e-10 5.37208787e-10 9.49421893e-10 6.685782603e-10 7.772705062e-10 6.748443207e-10 9.850020347e-10 7.790837775e-10 7.889130756e-10 6.057566043e-10 3.909593628e-10 5.381756819e-10 4.476845574e-10 4.372012284e-10 5.492570403e-10 4.304379938e-10 1.39685695e-10 2.221229843e-10 2.746138517e-10 1.807010924e-10 3.538528201e-10 6.342866051e-10 4.399269243e-10 5.812835199e-10 9.544162461e-10 1.165540784e-09 8.547908311e-10 1.07665409e-09 8.858240142e-10 4.78428735e-10 1.62120214e-10 1.142658425e-10 1.32413984e-10 2.253460643e-10 1.405210091e-10 2.046816832e-10 1.484871529e-10 1.097050103e-10 1.892011715e-10 1.391613832e-10 1.129286092e-13 1.587136166e-10 1.101586183e-10 7.565722825e-11 1.494012402e-10 1.302069657e-10 1.118834436e-10 1.043159e-10 2.03001935e-10 3.853155243e-11 7.099586971e-11 1.463538012e-10 1.261750973e-10 1.872324915e-10 9.075792758e-11 1.414495189e-10 1.281819053e-10 2.24663363e-10 2.079205761e-10 1.260520408e-10 1.032595258e-10 1.049439697e-10 1.841899593e-10 1.613370853e-10 1.371235015e-10 6.325664556e-11 8.950548113e-11 1.422014615e-10 2.360390479e-10 1.108450153e-10 5.686580501e-10 9.136589251e-10 1.127554071e-09 1.142068254e-09 9.293357767e-10 7.864241875e-10 4.795496307e-10 5.336732617e-10 5.737930193e-10 4.940919912e-10 1.397745236e-10 1.415743946e-10 1.096307023e-10 1.859761449e-10 3.943169453e-10 3.93278708e-10 3.263303362e-10 5.207865615e-10 5.005016769e-10 4.841627085e-10 5.627297038e-10 7.189622671e-10 7.902899561e-10 5.477472474e-10 7.014833587e-10 4.85425658e-10 6.985014662e-10 7.286312079e-10 7.800182747e-10 5.529173181e-10 7.806997007e-10 2.982876987e-10 2.900615636e-10 1.578987019e-10 1.572956709e-10 2.676274297e-10 3.609130415e-10 3.484150246e-10 3.252384709e-10 5.968360498e-10 3.117627033e-10 2.493564817e-10 4.615983228e-10 4.071996388e-10 4.689576631e-10 6.676118146e-10 4.359958219e-10 6.65248119e-10 4.921971605e-10 3.313448809e-10 4.059935216e-10 4.161619414e-10 2.37973505e-10 2.341681534e-10 3.251010122e-10 2.412606266e-10 2.377087051e-10 2.581495253e-10 2.528556467e-10 4.481518602e-10 4.375464333e-10 4.89756838e-10 3.568704815e-10 2.663066876e-10 3.690912188e-10 3.527469206e-10 3.870924923e-10 2.048301475e-10 3.579677211e-10 2.749652101e-10 2.849759148e-10 4.578837039e-10 2.491520115e-10 4.323656094e-10 3.184828936e-10 5.114805909e-10 3.032845475e-10 3.174570804e-10 2.322088212e-10 2.701715262e-10 2.727302087e-10 3.166580757e-10 3.738784902e-10 3.878391093e-10 3.238603637e-10 2.740536554e-10 2.414081236e-10 2.641441747e-10 2.854528812e-10 1.636505213e-10 3.214948776e-10 3.494143022e-10 1.246272771e-10 1.386713197e-10 3.047540008e-10 1.612726461e-10 3.182171309e-10 2.236407586e-10 3.174707889e-10 1.567823939e-10 1.859465025e-10 3.543320011e-10 1.552180453e-10 1.120814844e-10 1.262237166e-10 7.387390104e-11 2.116135169e-10 2.262930711e-10 1.380429946e-10 1.172742614e-10 3.070584599e-10 2.476397379e-10 1.359504279e-10 1.628102763e-10 2.03350964e-10 2.088971321e-10 1.998818297e-10 1.296691585e-10 1.648811721e-10 1.457980093e-10 2.124444664e-10 2.192022045e-10 3.172267788e-10 1.340784419e-10 2.500516378e-10 1.014071456e-10 1.670551755e-10 8.232847598e-11 1.600130622e-10 1.477508089e-10 +1.579509451e-10 1.504732983e-10 1.151063712e-10 3.014696128e-10 2.005870318e-11 1.51317774e-10 2.444929814e-10 1.420195075e-10 1.100877574e-10 1.702422991e-10 1.538229422e-10 1.013895143e-10 1.756559724e-10 1.863160498e-10 1.835866079e-10 1.698754043e-10 1.239166658e-10 9.655967043e-11 2.748516945e-10 1.645277426e-10 1.018080866e-10 1.19850251e-10 1.03398719e-10 2.236595436e-10 9.901610574e-11 2.890958032e-10 2.072873629e-10 3.789759991e-10 1.835433372e-10 3.795380317e-10 2.523570377e-10 1.758850402e-10 4.290014604e-10 2.95701202e-10 2.934790523e-10 1.574974484e-10 3.017859681e-10 2.262707502e-10 1.293651501e-10 2.525317006e-10 1.179730768e-10 3.146365713e-10 2.180613313e-10 2.225247377e-10 4.586789662e-10 2.765852131e-10 2.743892485e-10 4.093864743e-10 2.688201811e-10 3.211651557e-10 2.621977634e-10 3.235457115e-10 3.254703169e-10 2.420087544e-10 4.699669475e-10 4.425956668e-10 1.813339376e-10 4.030999593e-10 3.707248684e-10 3.723754238e-10 3.754573381e-10 2.928954424e-10 3.992900223e-10 2.835251052e-10 3.562199649e-10 3.706894423e-10 3.714035735e-10 2.566329316e-10 2.49520355e-10 2.917891843e-10 2.940444308e-10 2.2610912e-10 3.405865967e-10 3.355509114e-10 3.406963467e-10 2.370155748e-10 3.90818143e-10 3.207627382e-10 3.743461977e-10 4.624514152e-10 2.952390836e-10 4.394754907e-10 4.637030263e-10 4.831850981e-10 4.163007137e-10 4.692835585e-10 3.479776425e-10 3.659631028e-10 4.435557693e-10 3.529113157e-10 4.206259757e-10 3.399734077e-10 2.942204754e-10 4.107607232e-10 2.125675321e-10 1.980423022e-10 6.610952615e-11 3.537283826e-10 1.982564127e-10 6.257319309e-10 5.226259357e-10 7.986860573e-10 6.216091241e-10 8.742218869e-10 5.20276737e-10 5.823922555e-10 6.155000854e-10 6.079653171e-10 7.575969676e-10 5.853562461e-10 5.961606957e-10 4.624446305e-10 3.435941958e-10 5.019918517e-10 5.008168908e-10 3.578789315e-10 1.178079252e-10 1.10587754e-10 1.421866899e-10 7.155734102e-11 4.302725846e-10 5.459100643e-10 5.981844195e-10 4.873483113e-10 8.970746451e-10 1.178970066e-09 9.057679199e-10 1.012489167e-09 9.849221676e-10 4.876843111e-10 1.046360062e-10 1.037839702e-10 1.128704379e-10 1.945646091e-10 1.891255571e-10 1.813697484e-10 2.471769148e-10 1.872531029e-10 0 1.083656217e-10 2.119177645e-10 9.408155637e-11 1.673416411e-10 1.831824663e-10 1.713141811e-10 1.188315253e-10 1.012441342e-10 1.187719728e-10 1.532430727e-10 1.451795626e-10 1.439440694e-10 8.813713349e-11 2.02957787e-10 1.587253171e-10 1.348426956e-10 1.47154576e-10 3.449290457e-11 9.534031393e-11 1.347016707e-10 1.259782823e-10 9.104495176e-11 2.205420634e-10 1.23842966e-10 1.616333215e-10 1.077418978e-10 9.281533799e-11 2.110910503e-10 1.74019253e-10 1.222900418e-10 1.930722368e-10 5.670398157e-10 9.329753598e-10 1.100727221e-09 8.823665706e-10 1.105082842e-09 9.922808284e-10 4.878765441e-10 4.684673856e-10 5.675017426e-10 3.610826664e-10 1.783227769e-10 1.379018942e-15 1.556369435e-10 1.462305714e-10 3.365392634e-10 4.705739734e-10 4.003508018e-10 4.766826831e-10 4.158008735e-10 5.149297482e-10 4.915335849e-10 9.428560201e-10 5.751892357e-10 7.117540486e-10 7.160534687e-10 8.824428525e-10 5.687814044e-10 6.317441572e-10 7.800127729e-10 1.033716397e-09 7.139944372e-10 4.116309839e-10 1.966792214e-10 2.783886266e-10 1.69899081e-10 2.364826505e-10 3.862108477e-10 4.820198772e-10 3.713681112e-10 3.759868189e-10 3.60669274e-10 3.523837177e-10 4.133597023e-10 4.75749394e-10 6.25816449e-10 4.11584936e-10 3.484679739e-10 4.712124263e-10 5.284255088e-10 4.240506434e-10 4.73646306e-10 3.375144285e-10 2.702560516e-10 4.934704643e-10 3.268102899e-10 2.200581602e-10 2.687505697e-10 2.964366496e-10 4.029941798e-10 4.968046292e-10 2.595085534e-10 3.513424197e-10 3.756346224e-10 2.091402698e-10 4.192317899e-10 3.695289269e-10 3.454575523e-10 3.806820543e-10 2.506902991e-10 2.947735737e-10 1.707399049e-10 5.225289274e-10 3.28347665e-10 5.133560771e-10 3.706712288e-10 2.54191923e-10 3.019589858e-10 2.116064998e-10 4.252659994e-10 3.60455431e-10 3.549193098e-10 2.868989635e-10 3.609704963e-10 3.21533977e-10 2.752972114e-10 1.000060186e-10 3.043410076e-10 2.246343471e-10 2.871758163e-10 3.665799314e-10 2.467682129e-10 1.163030827e-10 2.262872852e-10 1.195044387e-10 1.689610786e-10 1.825053864e-10 5.378635938e-10 1.868503631e-10 3.148069813e-10 4.34234762e-10 1.837466642e-10 1.372601665e-10 2.296926652e-10 1.578432012e-10 2.04790355e-10 2.025420826e-10 1.908242762e-10 3.612433787e-10 1.124464921e-10 2.386524775e-10 2.118744296e-10 2.550907846e-10 1.159090159e-10 1.777709996e-10 8.07088163e-11 1.021781484e-10 3.588033477e-10 3.096153928e-10 2.201907599e-10 2.095144499e-10 6.981098725e-11 3.427751542e-10 2.656151391e-10 2.076188039e-10 3.930039661e-10 2.264132382e-10 3.099680688e-10 3.08458606e-10 2.712326512e-10 2.355229446e-10 +8.017859468e-11 1.055308876e-10 1.819180297e-10 8.564520759e-11 3.169594744e-10 4.422230844e-10 2.402309842e-10 2.962371592e-10 3.100757298e-10 3.338439109e-10 2.06956085e-10 3.268294988e-10 1.262418414e-10 2.181296801e-10 3.659890835e-10 2.607586125e-10 3.539964982e-10 1.879728444e-10 1.091283675e-10 1.151377014e-10 3.280074929e-10 1.103418492e-10 1.450565437e-10 1.518889693e-10 1.121673852e-10 9.531690752e-11 2.965028965e-10 1.744900277e-10 2.123948e-10 1.986168197e-10 2.965850907e-10 3.001321617e-10 2.038764082e-10 1.27719352e-10 2.625335713e-10 2.25895835e-10 3.470793529e-10 2.228866421e-10 2.64425438e-10 1.324980168e-10 3.080612119e-10 2.887233248e-10 1.673489704e-10 3.193647656e-10 2.306088213e-10 2.479571725e-10 3.861461935e-10 3.424522828e-10 3.375586263e-10 4.145601084e-10 2.373541572e-10 3.550388045e-10 3.979223989e-10 1.875974796e-10 3.298786158e-10 2.97150372e-10 2.549437599e-10 2.835019974e-10 3.280059894e-10 1.561949466e-10 1.822006444e-10 3.113189663e-10 3.853859328e-10 3.019929345e-10 3.356684859e-10 3.419103155e-10 3.899637981e-10 3.548920242e-10 2.661136604e-10 3.923904073e-10 3.473101496e-10 4.679345421e-10 3.99543158e-10 4.257830943e-10 3.200582676e-10 2.984383623e-10 3.64053605e-10 4.363425795e-10 2.824015456e-10 3.38286666e-10 4.345714852e-10 5.537953693e-10 3.515402701e-10 5.037748997e-10 4.337690439e-10 4.901544292e-10 6.20121287e-10 5.296144313e-10 4.331566477e-10 3.729890457e-10 3.200555655e-10 2.944841769e-10 3.790279608e-10 3.745612896e-10 2.997148178e-10 3.041316922e-10 3.350898347e-10 3.323538681e-10 6.202172193e-10 6.634589929e-10 5.719853033e-10 8.948281656e-10 6.547382956e-10 5.722887416e-10 6.278174009e-10 8.688718148e-10 8.077786576e-10 7.860585337e-10 7.793781074e-10 4.309039645e-10 4.148676707e-10 3.860228532e-10 6.249892603e-10 5.457502709e-10 4.432427964e-10 3.167293864e-10 1.22757526e-10 1.306627995e-10 1.684079172e-10 2.065407508e-10 4.641611751e-10 6.279916847e-10 5.725013018e-10 6.531133315e-10 8.078059469e-10 9.978795297e-10 9.960734916e-10 9.615132939e-10 9.186885782e-10 4.640289034e-10 2.005509774e-10 1.334339223e-10 1.387023528e-10 2.585529441e-10 2.129501847e-10 2.347277173e-10 1.824797732e-10 1.734025569e-10 1.634041183e-10 1.146774405e-10 1.621679443e-10 1.230616015e-10 1.730055906e-10 1.496149819e-10 1.945153048e-10 1.385931582e-10 1.90602041e-10 1.575088705e-10 1.113711765e-10 1.777264725e-10 1.668940047e-10 1.372834501e-10 1.238635053e-10 1.380071241e-10 1.761714421e-10 1.301322335e-10 1.152669656e-10 1.107175771e-10 1.691216798e-10 1.895106868e-10 7.451265201e-11 1.712890745e-10 1.580855586e-10 1.774175616e-10 1.601631852e-10 1.824008162e-10 5.954517473e-15 9.552654095e-11 1.039258573e-10 1.534989807e-10 5.199185527e-10 8.545826942e-10 8.668836727e-10 1.069648464e-09 9.8632797e-10 9.276465812e-10 5.070164583e-10 5.503837138e-10 5.957969992e-10 4.387462115e-10 1.298244244e-11 1.728384826e-10 6.365819726e-11 1.497612688e-10 3.226404514e-10 5.275255112e-10 4.619993424e-10 5.219612027e-10 5.103841184e-10 4.026995754e-10 6.59465885e-10 7.768635072e-10 7.180963385e-10 8.18256191e-10 5.341222544e-10 7.357016756e-10 4.566105684e-10 8.170060588e-10 5.923500223e-10 7.505909962e-10 4.351291928e-10 4.614304914e-10 2.921476471e-10 3.125282859e-10 2.004254943e-10 2.844863983e-10 2.814973226e-10 4.491721052e-10 3.667522614e-10 6.128803058e-10 3.39780411e-10 4.283744559e-10 4.900942385e-10 5.205093687e-10 3.974696659e-10 4.525641095e-10 3.818257526e-10 4.775358883e-10 4.81757482e-10 4.718544992e-10 3.415142987e-10 2.964078796e-10 3.357943473e-10 2.42283111e-10 3.87484596e-10 3.518335629e-10 2.129405985e-10 2.333679061e-10 3.502641041e-10 4.136546083e-10 3.561145446e-10 3.996556007e-10 2.594506113e-10 3.054575193e-10 3.251035453e-10 2.778024633e-10 3.279226566e-10 2.28097366e-10 3.911100476e-10 3.840274987e-10 3.298637873e-10 2.392054414e-10 2.984127165e-10 3.062216633e-10 3.181879054e-10 1.626174691e-10 2.452271534e-10 2.741466489e-10 3.486301e-10 3.029170487e-10 4.29421617e-10 1.541575027e-10 3.347624553e-10 2.427771285e-10 4.523555075e-10 2.446884097e-10 3.535229446e-10 2.154073288e-10 2.182286887e-10 1.836192345e-10 3.120965604e-10 2.046955947e-10 2.115657395e-10 4.726002924e-10 1.456025411e-10 1.779050763e-10 4.1931742e-10 2.321719572e-10 2.921945892e-10 1.063228524e-10 1.679722885e-10 4.701894956e-10 1.536399011e-10 2.666504573e-10 1.03392523e-10 1.441385889e-10 1.291323807e-10 2.757552212e-10 2.921531829e-10 3.151318573e-10 1.200241134e-10 1.524502573e-10 1.607347026e-10 1.005374482e-10 2.471898067e-10 1.152563112e-10 6.355473658e-11 1.994122845e-10 2.991552076e-10 2.679591535e-10 1.598268185e-10 2.598082674e-10 2.299143035e-10 6.896082014e-11 7.901207959e-11 1.119052838e-10 2.280627876e-10 8.245802933e-11 1.465845843e-10 2.70459885e-10 +1.884051867e-10 2.911224969e-10 3.383655373e-10 8.917793337e-11 3.110274527e-10 1.277762059e-10 3.242818343e-10 9.761866164e-11 2.086984588e-10 3.633790607e-10 2.319124059e-10 1.508742547e-10 4.267806269e-10 2.350462216e-10 3.465151331e-10 2.183692547e-10 1.494093511e-10 1.709928693e-10 9.745635171e-11 1.918578935e-10 2.093815778e-10 2.00155993e-10 2.936939769e-10 3.039182564e-10 1.708309318e-10 1.159759867e-10 1.456181045e-10 1.555542156e-10 2.242211914e-10 2.649367272e-10 1.696603821e-10 2.33713759e-10 1.710223542e-10 1.828915333e-10 1.455226949e-10 1.615516607e-10 1.205222242e-10 1.335018429e-10 9.687471302e-11 1.322782731e-10 2.33502051e-10 2.507252563e-10 2.259416172e-10 2.720242104e-10 2.259326154e-10 4.602366327e-10 4.190548238e-10 2.077864034e-10 2.87961668e-10 5.204545395e-10 4.921071458e-10 1.900268647e-10 2.741922344e-10 4.444590382e-10 3.873941072e-10 3.488498953e-10 2.382067409e-10 2.665538302e-10 8.373818979e-11 2.334062499e-10 3.844610194e-10 2.112481829e-10 3.495704471e-10 4.127957432e-10 2.541885715e-10 4.38754709e-10 3.538399284e-10 2.507183881e-10 2.620857528e-10 4.268669908e-10 3.06153701e-10 4.526091208e-10 3.944427737e-10 2.914511284e-10 3.508565045e-10 3.559194535e-10 3.04853448e-10 3.979609586e-10 5.077973303e-10 4.099104211e-10 4.003311356e-10 4.968663569e-10 4.492261358e-10 5.209953369e-10 4.402799002e-10 5.394394668e-10 5.100568128e-10 5.108966533e-10 4.554116441e-10 5.183867158e-10 4.272366872e-10 3.837280122e-10 4.56801484e-10 3.22724906e-10 3.854926632e-10 2.69484773e-10 1.683487962e-10 2.681086851e-10 2.049093087e-10 5.787082783e-10 8.45796137e-10 6.475889366e-10 7.663745038e-10 7.755097446e-10 6.210387662e-10 6.937177237e-10 7.058554527e-10 7.326307771e-10 7.914896588e-10 5.846542996e-10 4.860545694e-10 5.375849313e-10 5.590994216e-10 5.284280516e-10 6.005362476e-10 3.191279268e-10 1.364686604e-10 1.767759032e-10 2.196965392e-10 2.278887366e-10 5.696694893e-10 5.15447994e-10 6.286803654e-10 5.888696335e-10 8.576764693e-10 9.840008001e-10 1.049562308e-09 9.015004764e-10 8.889710035e-10 4.390616409e-10 1.883496187e-10 1.133026644e-10 2.651165841e-10 1.931405761e-10 2.952510247e-19 1.522060197e-10 8.026787543e-14 1.533730103e-10 1.316496176e-10 1.462211064e-10 1.783539715e-10 1.474843049e-10 1.771404812e-10 2.232072211e-10 1.713674799e-10 1.157242348e-10 1.080612516e-10 8.400170602e-11 1.51287478e-09 3.659514693e-08 3.735457092e-08 1.017544748e-10 1.190959321e-12 1.900893259e-10 8.974129491e-11 9.104698105e-11 9.197330774e-11 1.013443532e-10 1.257768032e-10 3.191910471e-11 1.017575063e-10 9.047835612e-11 2.09822023e-10 8.684212621e-13 9.383012281e-11 1.31092092e-10 1.42878974e-10 3.697870087e-13 1.709889836e-10 1.429204812e-10 4.931128504e-10 8.118874604e-10 9.406546926e-10 9.021436911e-10 1.088192804e-09 8.754180016e-10 5.829282994e-10 6.193365937e-10 4.934213272e-10 5.322508118e-10 8.047462022e-11 1.563676952e-10 2.431142402e-10 1.958016567e-10 3.031353774e-10 5.228285588e-10 4.774873607e-10 5.298992135e-10 6.089377635e-10 5.698212085e-10 5.769119435e-10 8.868267571e-10 7.211659986e-10 7.386976956e-10 6.015406135e-10 6.855106312e-10 9.505191567e-10 5.89285037e-10 6.115246164e-10 7.755453852e-10 3.578899842e-10 2.897201909e-10 2.756470691e-10 1.847900912e-10 1.574368948e-10 3.057884843e-10 4.158564748e-10 3.607857747e-10 4.181052906e-10 3.675237193e-10 4.091606841e-10 4.763250205e-10 3.370291471e-10 5.721123451e-10 5.516043219e-10 3.711737539e-10 5.080128159e-10 4.708660738e-10 3.815141187e-10 4.020234202e-10 3.349625854e-10 3.634386824e-10 4.032552607e-10 1.755782462e-10 3.622444996e-10 2.780560651e-10 3.368646579e-10 4.005447654e-10 4.110772034e-10 2.62170338e-10 3.478079998e-10 2.733796821e-10 3.02072221e-10 4.326172595e-10 2.93646423e-10 3.036051229e-10 3.393647518e-10 2.417588049e-10 3.440630256e-10 2.02610385e-10 2.722080173e-10 2.56954135e-10 2.733649111e-10 5.417385099e-10 3.163266195e-10 3.009098909e-10 3.821376606e-10 3.205688374e-10 3.15641637e-10 3.745128393e-10 2.885939165e-10 2.826238623e-10 1.973199813e-10 3.821132622e-10 2.590240113e-10 2.988288967e-10 2.982285799e-10 2.292302487e-10 2.023767045e-10 2.595408494e-10 1.03868743e-10 2.544000861e-10 2.169427965e-10 1.449106102e-10 1.068760689e-10 1.11703661e-10 1.114308435e-10 2.19042902e-10 3.04799396e-10 2.370595763e-10 2.507851849e-10 2.541478398e-10 2.63946662e-10 4.415497255e-10 2.866209005e-10 1.051434431e-10 8.738881768e-11 1.86844096e-10 2.262965797e-10 1.611476217e-10 1.11292237e-10 2.209041566e-10 1.264208203e-10 2.75493716e-10 1.926809517e-10 1.506055494e-10 8.241253627e-11 2.644517824e-11 2.080245461e-10 1.465065036e-10 3.278314568e-10 2.029881994e-10 1.870875885e-10 1.368866251e-10 1.009518818e-10 2.326918333e-10 1.138371419e-10 1.31630196e-10 4.234828101e-10 1.718203954e-10 +7.299702075e-08 5.023824748e-08 1.826301818e-10 1.967530079e-10 2.006884609e-10 5.580832756e-11 9.023532414e-11 1.344498926e-10 1.955075448e-10 1.161171478e-10 1.421693724e-10 2.75574974e-10 1.465397547e-10 2.365609829e-10 2.186287756e-10 1.587879202e-10 3.361346865e-10 9.518679654e-11 1.338885296e-10 1.232078914e-10 3.388727586e-10 2.55116631e-10 1.846863959e-10 5.911055711e-11 2.01341004e-10 1.422084567e-10 1.286393549e-10 1.999375812e-10 2.398393175e-10 2.439695985e-10 2.565211255e-10 2.154868861e-10 1.376228585e-10 4.089190221e-10 1.992864081e-10 2.712192514e-10 2.390163653e-10 2.624797217e-10 1.133433775e-10 2.165337019e-10 2.519733404e-10 2.034503369e-10 4.153928022e-10 3.328509321e-10 2.415362934e-10 2.598545595e-10 3.248260765e-10 2.434249486e-10 1.884306494e-10 3.452361213e-10 2.957747037e-10 6.097140944e-10 3.033012569e-10 1.646063211e-10 3.740015242e-10 2.837753948e-10 3.223562575e-10 2.565188571e-10 2.264502196e-10 4.549100568e-10 3.263331482e-10 2.068215992e-10 4.407515992e-10 3.788839779e-10 4.451892883e-10 2.46787135e-10 3.191265952e-10 2.891142094e-10 2.737631171e-10 2.398987507e-10 3.276447015e-10 4.97391633e-10 4.049733766e-10 4.761964943e-10 3.960259772e-10 2.929904653e-10 3.845351495e-10 1.813443275e-10 4.004636425e-10 3.621357592e-10 5.223126676e-10 4.619216024e-10 4.266401123e-10 4.068029096e-10 3.203220511e-10 5.494744929e-10 4.726000786e-10 3.85866535e-10 3.489881105e-10 3.379413632e-10 4.716119311e-10 5.002484275e-10 4.356954925e-10 3.50955605e-10 3.120879092e-10 2.041867289e-10 1.689863318e-10 4.034106991e-10 2.075168167e-10 5.063372037e-10 6.243682015e-10 9.169944247e-10 7.783565399e-10 7.636946734e-10 4.757979832e-10 5.987028889e-10 7.219337471e-10 6.771432024e-10 7.805543171e-10 7.750918227e-10 4.686829875e-10 5.068597792e-10 4.503297999e-10 4.329994189e-10 5.276079866e-10 3.298108692e-10 2.72283147e-10 3.580675512e-12 1.638708224e-10 1.352659901e-10 5.192650354e-10 6.318990355e-10 5.995510637e-10 4.291393078e-10 9.491697176e-10 1.031426379e-09 9.632512875e-10 8.988429392e-10 7.840240753e-10 4.46073202e-10 1.045284717e-10 1.752661766e-10 7.330810277e-11 1.23759463e-10 8.27146485e-11 1.76039622e-10 1.016603642e-10 1.654753753e-10 9.656384776e-11 1.454151704e-10 1.602008665e-10 1.429801287e-10 1.301404272e-10 1.544363862e-10 3.45073498e-14 1.571000862e-10 1.204378456e-10 1.311280344e-10 2.896350541e-09 9.701012664e-08 9.884258225e-08 2.659622582e-09 1.845606632e-10 1.067432974e-10 1.80172328e-10 0 1.560950108e-10 1.255728575e-10 1.250660493e-10 8.35876938e-11 1.126404216e-10 1.077422411e-10 1.24064445e-10 1.814638995e-10 1.860768129e-10 1.593075257e-10 1.360246778e-10 1.553600655e-12 4.256407333e-14 1.115132563e-10 4.276110648e-10 7.257287288e-10 1.030548356e-09 9.779533788e-10 1.011502159e-09 8.55184157e-10 6.790146114e-10 5.489504461e-10 5.76885561e-10 4.753714064e-10 2.752387899e-10 1.137934337e-10 2.012612513e-10 1.165353235e-10 3.01830515e-10 4.314183933e-10 4.85190816e-10 3.942413013e-10 5.382184754e-10 5.488196061e-10 5.254987209e-10 6.650702801e-10 8.54748483e-10 5.249008169e-10 6.252860688e-10 6.884256433e-10 7.939427044e-10 6.517102602e-10 5.221547302e-10 7.224552392e-10 8.566202763e-10 2.82890169e-10 3.299321103e-10 1.986381719e-10 2.564620208e-10 3.034794039e-10 3.458154032e-10 4.210656156e-10 3.007439317e-10 3.774768523e-10 3.184607035e-10 3.524782096e-10 3.539850666e-10 5.160413182e-10 6.407069683e-10 5.633829697e-10 4.206627977e-10 6.619010773e-10 4.660740216e-10 5.204810361e-10 3.829594836e-10 3.49146244e-10 2.765060468e-10 2.9635832e-10 2.825742426e-10 3.593655439e-10 2.413966081e-10 2.893820418e-10 2.570038375e-10 3.095028917e-10 3.811212053e-10 2.843423348e-10 4.374576857e-10 4.880072794e-10 2.405462357e-10 2.896855008e-10 3.395398627e-10 2.508726016e-10 2.322471297e-10 3.336290342e-10 1.793374454e-10 2.691481019e-10 3.697807011e-10 3.722697402e-10 2.119445819e-10 3.450078956e-10 3.51717095e-10 2.983334639e-10 2.141100487e-10 3.243580913e-10 4.066164178e-10 4.201436848e-10 3.354026588e-10 3.096197132e-10 2.932055811e-10 2.080630562e-10 1.81830446e-10 2.296152812e-10 4.039651589e-10 2.304297849e-10 1.796169804e-10 1.28782449e-10 1.328817867e-10 1.305449566e-10 1.649448341e-10 1.120356276e-10 2.204907407e-10 3.476434606e-10 4.37935292e-10 1.609285528e-10 1.667203147e-10 1.529490398e-10 1.652019429e-10 1.757253304e-10 1.688013631e-10 2.285002867e-10 1.87510289e-10 1.751688984e-10 2.528148601e-10 1.246766936e-10 1.589601709e-10 9.047171698e-11 1.877217527e-10 1.918517433e-10 2.129294967e-10 2.227431026e-10 1.710182472e-10 9.618129175e-11 7.562514661e-11 2.416042653e-10 2.125332821e-10 3.54350102e-10 2.695965158e-10 1.619820025e-10 3.136626239e-10 1.698758161e-10 1.385686129e-10 1.01009503e-10 4.994514566e-08 7.276504861e-08 +6.317420989e-08 5.226475859e-08 2.239119991e-10 8.447963685e-11 1.733883276e-10 1.350417479e-10 3.984653326e-10 2.454260339e-10 3.134600564e-10 2.335230771e-10 1.137053092e-10 2.14226096e-10 1.34225421e-10 1.767836204e-10 2.983588589e-10 2.359025771e-10 3.581921909e-11 2.164063453e-10 2.98724146e-10 4.613269145e-10 8.843364094e-11 1.616594305e-10 3.538641662e-10 2.708228645e-10 8.439856901e-11 1.342018879e-10 2.825319697e-10 1.539532073e-10 8.771603016e-11 1.980961797e-10 2.737538055e-10 2.906625361e-10 2.81619242e-10 2.559014484e-10 3.178821043e-10 2.82917131e-10 1.800453935e-10 2.45645422e-10 1.521232879e-10 2.547299114e-10 2.532842193e-10 1.541580041e-10 2.128767963e-10 2.116948114e-10 2.294399674e-10 3.765015302e-10 3.309088763e-10 3.709475909e-10 3.764702415e-10 2.7315635e-10 2.866859795e-10 2.618394446e-10 2.762607269e-10 3.268678381e-10 3.421547129e-10 1.96651686e-10 2.997127926e-10 1.260165261e-10 2.725273704e-10 2.890172514e-10 2.877765376e-10 1.258945506e-10 2.041951679e-10 4.129644151e-10 2.778592658e-10 3.346083249e-10 3.760102398e-10 2.975779088e-10 2.968280471e-10 3.50996299e-10 3.129915355e-10 2.890294308e-10 3.965951163e-10 3.312993835e-10 2.258676584e-10 3.577803992e-10 2.784023764e-10 2.864065497e-10 3.938481337e-10 3.964313469e-10 4.72731666e-10 5.031863922e-10 5.106995216e-10 5.007790836e-10 4.117978328e-10 5.080893392e-10 4.023524065e-10 4.544104863e-10 3.706701204e-10 3.911232724e-10 3.995658015e-10 4.637958643e-10 4.858115589e-10 2.796700245e-10 3.805799051e-10 1.274917987e-10 2.639812416e-10 2.013462043e-10 2.925233574e-10 7.371569234e-10 6.564366958e-10 8.523337078e-10 8.195835973e-10 7.314458593e-10 6.814153639e-10 8.111833531e-10 5.935701716e-10 6.265478029e-10 7.652258843e-10 5.492158505e-10 4.614126625e-10 5.629663205e-10 3.97602575e-10 5.219167372e-10 4.026502686e-10 3.743891811e-10 1.5251242e-10 5.532212722e-11 1.175694659e-11 1.128749101e-10 5.84982926e-10 5.268626398e-10 5.631615212e-10 5.182606957e-10 8.574542491e-10 1.030206554e-09 1.142788856e-09 1.115590439e-09 9.306535474e-10 5.476437156e-10 1.492207869e-10 1.000440077e-10 1.422228617e-10 0 8.992449894e-15 1.009891642e-10 1.493158498e-10 6.033403497e-16 9.61238161e-11 1.552708161e-10 1.244254926e-10 1.46509167e-10 8.237347731e-11 2.002225286e-10 5.042026893e-11 1.595193107e-10 8.971602298e-13 1.758314779e-10 3.733195466e-09 1.132770573e-07 1.129196486e-07 3.286890151e-09 1.459158656e-10 1.340892539e-10 1.831589521e-10 1.609569595e-10 9.874197526e-11 1.14441741e-10 1.309878089e-10 8.59479794e-11 1.692903615e-10 8.626856153e-11 2.061980597e-10 1.359520418e-10 2.084340135e-10 1.014973146e-10 1.446636574e-10 2.62980064e-14 1.600138595e-10 2.150662032e-10 4.74341754e-10 7.336123365e-10 8.32599664e-10 9.060113792e-10 1.188902315e-09 8.916640097e-10 6.180275409e-10 6.025164908e-10 5.1511474e-10 4.069185981e-10 1.582749781e-10 1.592236833e-10 2.175865946e-10 7.360073925e-11 2.989543192e-10 5.185360264e-10 3.538420026e-10 5.275111323e-10 4.993492807e-10 5.531204146e-10 4.90555246e-10 5.775350492e-10 5.332381238e-10 7.800423444e-10 6.483140568e-10 5.947760644e-10 5.081150542e-10 5.280134726e-10 8.554746742e-10 5.449055812e-10 5.148779886e-10 2.796817525e-10 2.477204946e-10 9.91502106e-11 1.75270905e-10 3.597064859e-10 3.714475489e-10 4.235337576e-10 4.78713771e-10 3.892184563e-10 3.491246629e-10 3.262898577e-10 4.081929989e-10 4.276542105e-10 3.202410453e-10 4.276677242e-10 5.245089963e-10 4.99330443e-10 5.309147972e-10 6.524070242e-10 6.295276145e-10 5.298533506e-10 3.555227128e-10 3.140778233e-10 4.707644207e-10 3.084526426e-10 2.426201311e-10 4.42542412e-10 2.958286654e-10 2.986133873e-10 4.587050559e-10 4.542911449e-10 2.720914605e-10 2.38869998e-10 4.332432554e-10 3.765588174e-10 3.237469378e-10 3.103514896e-10 2.229105223e-10 9.007131945e-11 2.51163821e-10 2.03065327e-10 2.20543186e-10 2.539179514e-10 3.284091844e-10 3.241310357e-10 3.401475032e-10 2.256558131e-10 3.125240861e-10 2.800879283e-10 1.80337803e-10 4.675056178e-10 2.238416297e-10 3.256197036e-10 2.989364353e-10 2.897099565e-10 2.176062997e-10 4.567321844e-10 4.620065775e-10 1.263606638e-10 1.16633099e-10 3.503546334e-10 1.214947082e-10 2.240227889e-10 1.016770628e-10 2.438752121e-10 2.288588179e-10 2.034001466e-10 1.322146829e-10 2.563602322e-10 3.013600042e-10 7.432459009e-11 3.264527126e-10 4.062774442e-10 1.960961703e-10 3.014080536e-10 1.336190118e-10 2.782919158e-10 4.029144075e-10 2.127372958e-10 1.311329556e-10 2.567201845e-10 1.780985807e-10 1.776434384e-10 3.352141451e-10 1.978795655e-10 2.185018484e-10 6.631556639e-11 2.223383093e-10 3.930394674e-10 1.838996192e-10 1.027644397e-10 3.696056302e-10 2.037533004e-10 4.369655685e-10 1.67750736e-10 3.55541979e-10 1.957984354e-10 5.225323065e-08 6.30676534e-08 +6.277447775e-08 5.15430835e-08 1.020168526e-10 1.263698217e-10 2.648497758e-10 2.658553266e-10 1.257267729e-10 2.1179915e-10 2.889706107e-10 1.542290079e-10 3.016787159e-10 5.735732396e-11 2.485247479e-10 1.998686512e-10 1.011638491e-10 2.087435135e-10 2.068586194e-10 1.475067898e-10 1.47269144e-10 2.619789662e-10 2.523347849e-10 1.135064877e-10 1.98354254e-10 1.956111641e-10 3.07251877e-10 1.043952459e-10 1.969267196e-10 2.305926927e-10 1.55767606e-10 3.597444282e-10 2.028721458e-10 2.748250134e-10 1.986716087e-10 2.953278202e-10 1.94919724e-10 3.481515491e-10 3.530119111e-10 1.682906519e-10 3.81962156e-10 2.9571313e-10 4.158370561e-10 2.10876076e-10 2.311149982e-10 3.321524151e-10 4.351486453e-10 3.479722738e-10 4.622664882e-10 3.42315579e-10 4.793751904e-10 2.509100212e-10 1.557293529e-10 3.566555176e-10 3.829977128e-10 4.625090112e-10 4.478356754e-10 3.277481772e-10 2.396771269e-10 2.914089757e-10 4.436386916e-10 2.377714829e-10 2.965087749e-10 3.168157512e-10 3.858858454e-10 3.044240575e-10 3.771965664e-10 4.138336362e-10 4.101852405e-10 3.530443307e-10 3.235049341e-10 2.118866128e-10 3.311308694e-10 5.213290078e-10 3.128067774e-10 4.02124208e-10 3.98443472e-10 2.464848224e-10 2.786727114e-10 3.345074266e-10 3.211087195e-10 5.331735228e-10 4.176363606e-10 6.266183839e-10 5.719565567e-10 3.740624014e-10 4.70337134e-10 5.795480329e-10 4.913555041e-10 2.255304339e-10 3.614927365e-10 3.156621681e-10 3.110079309e-10 3.177126449e-10 3.723141059e-10 2.973900152e-10 2.593270521e-10 2.882467e-10 3.30479737e-10 3.230146049e-10 3.476239338e-10 8.121248995e-10 8.930748202e-10 7.532450486e-10 8.332684215e-10 7.633879116e-10 7.209886305e-10 6.260204915e-10 5.446985106e-10 7.935303592e-10 7.523147117e-10 5.844429802e-10 5.925056118e-10 5.190322766e-10 4.601156027e-10 3.847376861e-10 6.061968696e-10 3.717245793e-10 6.158798877e-11 1.803172164e-10 1.192571925e-10 1.272317284e-10 5.165212807e-10 5.774378878e-10 6.510274644e-10 5.47984747e-10 9.904943502e-10 1.185047843e-09 8.611874736e-10 1.14600317e-09 6.93748571e-10 3.89733824e-10 1.239518957e-10 1.1377079e-10 2.209973797e-10 1.746326916e-10 1.422838988e-10 1.482606463e-10 1.60778183e-10 1.611301104e-10 2.033493484e-10 1.188844754e-10 1.632452448e-10 1.785131143e-10 2.118589706e-10 1.364776563e-10 1.291067871e-10 0 9.439169225e-11 1.620150023e-10 3.491780622e-09 1.134601948e-07 1.138979411e-07 3.40917388e-09 1.481302265e-20 9.144839175e-11 1.552679506e-10 7.193188727e-11 3.025831585e-15 1.384506239e-10 3.402890309e-13 1.213496809e-10 3.362968064e-12 1.40004633e-10 2.300254317e-10 1.273676585e-10 9.972169108e-11 2.127086213e-10 1.639921503e-10 7.523989216e-11 1.104358092e-10 1.40278778e-10 4.317100728e-10 7.11812384e-10 8.724602642e-10 1.121919184e-09 1.069186358e-09 9.611447255e-10 6.683230674e-10 5.311374069e-10 6.748624565e-10 5.181227699e-10 3.351328495e-13 1.706613282e-10 6.477958485e-11 1.37085122e-10 2.813047603e-10 3.603666068e-10 3.777500154e-10 5.081921714e-10 5.133411512e-10 5.212445569e-10 6.395095302e-10 7.498249358e-10 6.744847345e-10 6.470728918e-10 4.881740372e-10 7.647287826e-10 6.095755384e-10 6.632165936e-10 5.641859966e-10 5.821735241e-10 7.444505754e-10 2.538608068e-10 2.355505906e-10 1.99124382e-10 1.067783772e-10 2.594842999e-10 4.578729372e-10 3.01395825e-10 3.839452311e-10 3.275382878e-10 3.08571085e-10 5.255814725e-10 3.882483749e-10 4.51419356e-10 5.439169406e-10 3.084406116e-10 5.166349313e-10 4.860000095e-10 3.48506485e-10 3.943388628e-10 3.809223286e-10 3.768835425e-10 2.858120518e-10 2.697658603e-10 3.466946432e-10 3.161201186e-10 3.169651143e-10 3.324850171e-10 2.496795273e-10 3.347421706e-10 2.685866841e-10 3.422356586e-10 3.877385468e-10 1.771914001e-10 3.669821012e-10 3.966669585e-10 3.549005432e-10 2.375571099e-10 3.239040174e-10 3.56998856e-10 2.573991906e-10 2.709109443e-10 1.980518362e-10 1.91997696e-10 2.875281854e-10 2.722008612e-10 3.343858208e-10 4.273883333e-10 4.384944492e-10 2.959629405e-10 3.887155775e-10 2.824137678e-10 2.532859761e-10 2.210772577e-10 3.080577646e-10 2.562980311e-10 2.157698306e-10 1.667773785e-10 3.123703464e-10 2.591004034e-10 2.757571696e-10 2.282375517e-10 1.470465863e-10 2.484356105e-10 1.711399361e-10 1.456956989e-10 4.695111731e-10 1.578556602e-10 2.063074025e-10 3.563983114e-10 1.891507018e-10 1.438113237e-10 1.304072077e-10 1.615703908e-10 9.992137791e-11 2.401384387e-10 1.077770659e-10 3.462967024e-10 3.627931901e-10 1.922866448e-10 3.303452115e-10 1.821009906e-10 2.027259612e-10 2.917461481e-10 2.472463369e-10 2.29572521e-10 1.370121271e-10 3.37114177e-10 3.063700329e-10 1.543156205e-10 2.812521859e-10 1.449037501e-10 1.256216329e-10 2.863315028e-10 3.683619193e-10 1.104681975e-10 2.478833452e-10 2.725782076e-10 5.167324412e-08 6.251832936e-08 +6.325122856e-08 5.21051442e-08 1.842486662e-10 2.833565284e-10 1.657882709e-10 1.838254906e-10 1.475811296e-10 2.850979733e-10 2.030448604e-10 3.592413541e-10 9.242393688e-11 1.250907598e-10 2.784696959e-10 1.146527812e-10 2.625058911e-10 1.78773814e-10 1.122978282e-10 2.621487755e-10 2.581654815e-10 1.299756021e-10 4.39671674e-10 1.896713298e-10 2.526583751e-10 2.641607999e-10 1.462054934e-10 1.322503064e-10 1.860089065e-10 1.524360845e-10 2.755368308e-10 2.152002342e-10 1.713721786e-10 1.197159178e-10 9.984172591e-11 1.261605724e-10 1.638803253e-10 2.7641347e-10 2.078251512e-10 2.269519157e-10 9.436737427e-11 2.092464809e-10 4.595505864e-10 1.868826872e-10 1.968494035e-10 3.148137584e-10 6.450316788e-10 3.510236774e-10 3.932635159e-10 4.045460002e-10 1.650774124e-10 2.531853181e-10 2.829188935e-10 3.683765915e-10 2.380726393e-10 3.243543578e-10 3.782271656e-10 2.740444446e-10 2.34647343e-10 3.379830139e-10 5.032385441e-10 3.865287247e-10 2.041744365e-10 4.454651796e-10 1.250854954e-10 2.343516176e-10 2.789503954e-10 4.320453017e-10 4.485402592e-10 2.768825811e-10 2.816110487e-10 3.993819801e-10 3.442647082e-10 3.576131859e-10 3.393843343e-10 1.581637321e-10 3.235093457e-10 3.502697111e-10 3.874411505e-10 2.715936393e-10 4.057197816e-10 3.319862463e-10 5.849114337e-10 6.161569304e-10 4.931839981e-10 4.418504195e-10 4.706626973e-10 5.544723086e-10 4.678983386e-10 5.091225716e-10 4.32333483e-10 4.564396737e-10 4.289723524e-10 3.537152051e-10 3.89427179e-10 3.391928186e-10 2.159170601e-10 2.346674617e-10 2.724081209e-10 1.820717261e-10 3.188527242e-10 8.023050912e-10 7.271279435e-10 8.767395406e-10 6.392296232e-10 7.322898281e-10 6.38072583e-10 9.212843587e-10 6.794027188e-10 7.953299897e-10 7.057833602e-10 5.754203942e-10 5.362095408e-10 4.687812539e-10 4.942456132e-10 3.780945246e-10 6.094114784e-10 3.479315787e-10 1.592359284e-10 2.641410418e-10 8.585314098e-11 2.438209701e-10 5.05549583e-10 5.610737076e-10 5.10143232e-10 5.178198272e-10 9.378690525e-10 1.206147036e-09 9.835080234e-10 9.673060682e-10 7.082322319e-10 4.335495943e-10 2.148517853e-10 1.489984571e-19 1.867659716e-10 1.477757794e-10 1.594740425e-10 2.086499533e-10 1.8154931e-10 1.05621873e-10 1.560184716e-10 1.708800679e-10 1.66171137e-10 1.548983584e-10 1.845757788e-10 7.186394718e-11 1.432906749e-10 1.16099433e-10 1.322230567e-10 4.002389307e-12 2.771803586e-09 1.134715058e-07 1.131709708e-07 2.221442634e-09 1.842082657e-10 8.987251077e-11 1.206147133e-10 1.438776578e-10 1.773026151e-10 1.30323447e-10 2.123918532e-10 1.806399219e-10 1.438599653e-10 2.004919439e-10 1.351643392e-10 1.288182962e-10 1.185856044e-10 1.63527348e-10 9.45844638e-11 1.154912803e-10 1.322930575e-10 1.314249269e-10 4.755628971e-10 8.436452084e-10 8.208916001e-10 8.412889978e-10 1.078829571e-09 8.764405405e-10 5.682397665e-10 5.900425153e-10 5.930207742e-10 5.73788584e-10 2.964248937e-10 1.681092977e-10 1.174302866e-10 7.982829079e-11 3.484453249e-10 4.69753048e-10 4.432897055e-10 4.055365366e-10 5.665109797e-10 5.754376769e-10 6.32034933e-10 8.891121646e-10 5.562037214e-10 5.841573439e-10 7.257243921e-10 9.1063912e-10 5.330231071e-10 9.729480812e-10 6.315519369e-10 4.896314222e-10 6.51971821e-10 3.447640661e-10 2.104519724e-10 2.324052804e-10 1.804283718e-10 2.388059785e-10 4.001389157e-10 3.018119403e-10 4.100599274e-10 4.340494555e-10 4.389551303e-10 4.178627962e-10 3.574350248e-10 5.509324137e-10 5.588073373e-10 2.752988563e-10 4.807448471e-10 5.104488472e-10 5.197942244e-10 4.419311559e-10 2.651315573e-10 3.216198965e-10 4.031817005e-10 3.205034497e-10 3.677657172e-10 3.692532894e-10 2.380580504e-10 3.963779481e-10 3.079094382e-10 3.538941115e-10 3.662070319e-10 2.874295011e-10 3.620975872e-10 2.917120637e-10 3.331011429e-10 2.331323833e-10 2.830151447e-10 2.304234899e-10 2.60847543e-10 3.384393675e-10 1.629728416e-10 2.889820328e-10 2.979721827e-10 2.67996229e-10 3.312374581e-10 2.670490514e-10 3.967980461e-10 3.654658584e-10 2.326226566e-10 2.04239602e-10 3.023892765e-10 2.863440015e-10 3.267308039e-10 3.671291938e-10 4.593667532e-10 2.177516226e-10 2.178281054e-10 4.116713919e-10 3.239798784e-10 2.340036758e-10 2.430872286e-10 1.990826001e-10 3.078296269e-10 2.155311551e-10 7.824755052e-11 2.233985559e-10 3.429365639e-10 2.759950125e-10 2.062857954e-10 2.932880449e-10 1.327670737e-10 1.886121871e-10 4.147433414e-10 1.623651104e-10 1.471227796e-10 1.769099696e-10 1.655067135e-10 1.696295642e-10 1.790773685e-10 6.275422133e-11 9.113565573e-11 3.965989684e-10 6.903647044e-11 6.502170555e-11 3.942520612e-11 3.405954086e-10 1.5592143e-10 1.607736029e-10 1.409932977e-10 2.503454102e-10 4.497008217e-10 3.146896641e-10 1.404472728e-10 8.343053917e-11 8.680527504e-11 4.0449508e-11 1.18134214e-10 3.009310558e-10 5.204389493e-08 6.314691374e-08 +7.265953584e-08 5.002450661e-08 1.443006473e-10 1.197240515e-10 2.196738852e-10 2.529808822e-10 7.965655732e-11 3.054780134e-10 1.338927144e-10 2.855565652e-10 2.097697509e-10 2.029822786e-10 1.761192897e-10 2.283687843e-10 3.263475858e-10 4.330896105e-10 2.46524466e-10 2.003478463e-10 2.286177145e-10 4.080274302e-10 2.055073697e-10 3.830088448e-10 1.844799513e-10 2.501657552e-10 2.308333711e-10 2.020596667e-10 1.381636588e-10 1.494334458e-10 3.027198584e-10 1.332003884e-10 1.588889468e-10 1.906622947e-10 2.599940621e-10 2.894463907e-10 1.312317093e-10 1.935976788e-10 1.833137996e-10 2.325489065e-10 1.560939092e-10 4.406192941e-10 2.928896823e-10 2.666375766e-10 3.221233197e-10 1.578861225e-10 1.619073155e-10 3.50691975e-10 3.459758513e-10 4.038740758e-10 3.749853184e-10 5.103752458e-10 2.302503775e-10 3.291321341e-10 2.750067289e-10 3.519122607e-10 3.415640395e-10 3.063610663e-10 2.373071138e-10 9.659592112e-11 2.307767819e-10 2.196926974e-10 2.608482268e-10 4.221688544e-10 2.781074485e-10 5.156223766e-10 3.907147285e-10 3.241422557e-10 4.157842605e-10 4.017761266e-10 2.790323266e-10 4.269530151e-10 3.389836236e-10 2.313148329e-10 3.209010449e-10 2.169080479e-10 2.184737521e-10 2.886920652e-10 2.363191796e-10 4.177448639e-10 3.567201765e-10 4.937573228e-10 4.784589549e-10 5.532812025e-10 4.08644363e-10 5.762562864e-10 5.201772853e-10 5.226233886e-10 4.464822312e-10 3.494402249e-10 4.320367417e-10 3.39075697e-10 3.570198136e-10 3.50406783e-10 3.573246943e-10 3.549858181e-10 2.770830474e-10 3.36560754e-10 2.344404409e-10 1.849523403e-10 4.56747816e-10 7.487805316e-10 6.067788244e-10 7.751127983e-10 5.924162272e-10 5.229628175e-10 5.655148556e-10 3.938881902e-10 6.17267518e-10 7.93262935e-10 7.764974223e-10 6.211034919e-10 3.045494327e-10 5.027718739e-10 4.406379369e-10 3.962119274e-10 4.694086e-10 4.716482317e-10 1.272596363e-10 1.238131526e-10 9.136195198e-11 2.886094141e-10 5.154489141e-10 5.428666366e-10 6.234035845e-10 5.395626392e-10 9.496814169e-10 9.738430161e-10 1.078515461e-09 9.607851748e-10 8.2028583e-10 4.930483798e-10 2.004938345e-10 1.332138055e-10 1.805374587e-10 0 4.962745812e-11 1.580304121e-10 2.022986086e-10 1.147770115e-10 1.323443981e-10 1.370728042e-10 1.487619696e-10 1.016244181e-10 1.320217073e-10 1.33443592e-10 8.376994119e-11 1.781691068e-10 2.23593622e-10 1.348712464e-10 4.515207537e-09 9.553231333e-08 9.703774978e-08 3.9200564e-09 1.539761039e-10 8.028111844e-11 1.703634016e-10 8.698652543e-11 1.56620454e-10 1.265494096e-10 2.0741961e-10 1.72812471e-10 1.771757453e-10 1.92200821e-10 1.337021639e-10 8.527371586e-11 1.522441111e-10 1.700912002e-10 9.822766747e-11 1.29075197e-10 8.308100508e-11 1.639479476e-10 5.330024523e-10 8.159611664e-10 1.032342491e-09 9.831686688e-10 1.166329575e-09 7.68598141e-10 4.348153284e-10 4.737556263e-10 5.667542016e-10 3.461926682e-10 1.377759449e-10 1.829415625e-10 1.470119549e-10 9.945297651e-11 2.965448374e-10 5.27660066e-10 3.94541489e-10 6.326118516e-10 4.261659706e-10 6.045502327e-10 5.197900189e-10 6.231189254e-10 9.136663451e-10 6.328210649e-10 6.313635735e-10 5.844640731e-10 5.29047191e-10 6.446456723e-10 6.411292878e-10 8.51866917e-10 7.921418639e-10 2.69942922e-10 3.404958738e-10 1.574384005e-10 3.390177221e-10 2.906868254e-10 3.94634029e-10 2.950855458e-10 4.012314078e-10 4.197412489e-10 5.180143487e-10 3.648374819e-10 4.298274683e-10 5.417881086e-10 5.998055403e-10 4.724268239e-10 3.703888117e-10 4.175467241e-10 5.414440437e-10 3.833892438e-10 3.842184287e-10 3.762927088e-10 2.11628191e-10 2.639493618e-10 4.065303516e-10 2.837663699e-10 2.613572819e-10 4.009809088e-10 4.292392197e-10 2.378274864e-10 2.226419092e-10 1.452752231e-10 4.669603228e-10 4.316300892e-10 2.516533939e-10 3.622985481e-10 2.156091943e-10 2.708801198e-10 2.901926378e-10 3.203630872e-10 3.604929929e-10 3.12029175e-10 3.035279333e-10 3.289189632e-10 3.195743711e-10 3.911679657e-10 2.740417275e-10 2.41317721e-10 2.975152874e-10 4.354788001e-10 4.270459423e-10 4.088671659e-10 4.203472415e-10 4.435402075e-10 2.376767091e-10 4.34659347e-10 3.463598703e-10 1.658867333e-10 1.779279749e-10 2.494202004e-10 9.899743979e-11 8.453029764e-11 1.99359635e-10 3.284680883e-10 1.988724556e-10 1.406434163e-10 1.199437386e-10 2.051593714e-10 1.174415833e-10 1.352117091e-10 2.75348144e-10 1.810043608e-10 1.457255558e-10 1.604635255e-10 4.087464883e-10 1.984082616e-10 3.222137042e-10 6.301773302e-11 2.490376565e-10 1.492213626e-10 2.750000286e-10 1.435274863e-10 2.167833508e-10 3.666766213e-10 1.615875794e-10 7.625059827e-11 1.992007306e-10 1.490023906e-10 2.80049176e-10 4.180979263e-10 2.427780306e-10 1.069175474e-10 2.605009649e-10 1.019672353e-10 1.183643597e-10 1.796725843e-10 1.148177196e-10 8.982239194e-11 5.011336436e-08 7.283444528e-08 +1.583064525e-10 5.018994721e-10 3.152798938e-10 1.387393861e-10 2.298040866e-10 1.323595114e-10 1.104098547e-10 1.345160928e-10 2.038092742e-10 5.027883262e-11 1.228214552e-10 1.213019451e-10 1.467292132e-10 1.565793406e-10 3.996648877e-10 2.846133689e-10 5.865994882e-11 3.625806961e-10 8.494295012e-11 1.433619232e-10 2.917609576e-10 2.827105505e-10 2.286316356e-10 8.168891146e-11 1.801898588e-10 1.454594329e-10 1.586211293e-10 1.487173206e-10 2.543307078e-10 1.995757228e-10 8.983042436e-11 1.428883117e-10 2.848764254e-10 4.049805151e-10 2.249931091e-10 4.474981878e-10 2.567994311e-10 1.097285681e-10 2.123602003e-10 2.284128042e-10 3.550087164e-10 2.343396529e-10 2.765443766e-10 2.584846969e-10 1.496562744e-10 3.590984759e-10 1.978678121e-10 2.603335849e-10 3.595330371e-10 2.034349004e-10 3.463241774e-10 4.392929151e-10 3.589890315e-10 3.956966335e-10 5.016766104e-10 3.252634156e-10 3.625850461e-10 1.664612239e-10 2.151970209e-10 2.035923235e-10 2.346254315e-10 2.871088451e-10 1.708872968e-10 3.001565376e-10 4.125923265e-10 2.476601315e-10 2.851544096e-10 1.948002939e-10 1.792376438e-10 4.223864806e-10 3.952661387e-10 3.747720757e-10 3.405398192e-10 2.56651328e-10 2.577427182e-10 4.416807631e-10 2.478627144e-10 2.731236782e-10 3.264642467e-10 5.088102945e-10 5.250287649e-10 5.623157911e-10 4.065699391e-10 3.503061989e-10 4.479374753e-10 5.097284071e-10 3.124707998e-10 4.837638712e-10 5.041534189e-10 3.084625333e-10 3.687465348e-10 4.550439281e-10 2.866685982e-10 3.500747934e-10 3.101388051e-10 2.183087589e-10 2.997354354e-10 2.585431436e-10 2.605519918e-10 6.743048283e-10 7.272009476e-10 5.902437224e-10 6.861426666e-10 8.284301732e-10 7.887081891e-10 7.745485103e-10 3.963169773e-10 5.725460497e-10 8.282567496e-10 5.572592827e-10 3.906063919e-10 6.244259479e-10 4.587960773e-10 5.456940859e-10 4.987674646e-10 4.20945873e-10 1.86586052e-10 1.330106159e-10 1.02172673e-10 9.623089252e-11 5.172098346e-10 6.289872884e-10 5.937119292e-10 5.973782184e-10 1.052185598e-09 1.145667785e-09 9.531120976e-10 8.920160969e-10 9.865849857e-10 4.638001944e-10 1.531749565e-10 1.820348635e-10 1.914417962e-10 1.140701032e-10 1.754583319e-10 1.32606353e-10 1.979145169e-10 6.859718918e-11 1.731666661e-10 1.211186221e-10 1.093147124e-10 2.311454953e-10 2.07337876e-10 2.234034927e-10 4.688144208e-11 1.88300002e-10 1.201187145e-10 1.310544617e-10 8.421020145e-10 3.786757361e-08 3.703667896e-08 4.02191378e-10 1.411187928e-10 1.27932851e-10 1.590478471e-10 1.541672121e-10 2.094115086e-10 1.317929762e-10 1.966439754e-10 1.714329995e-10 1.69217085e-10 1.4913001e-10 1.46662156e-10 0 1.23961719e-10 1.854340245e-10 2.012410555e-10 1.1666593e-10 2.071245942e-10 1.471668894e-11 4.345777741e-10 9.066289631e-10 9.501670437e-10 9.185693365e-10 1.117794482e-09 1.051009744e-09 5.9282068e-10 6.205777847e-10 4.949768706e-10 4.551915815e-10 2.370553411e-10 1.358255634e-10 2.255833611e-10 2.190605422e-10 4.535161937e-10 4.971408993e-10 5.189586675e-10 4.932173998e-10 4.619074752e-10 3.896730314e-10 5.234236117e-10 7.898782286e-10 6.27906072e-10 4.82762005e-10 6.099458829e-10 5.584362432e-10 5.804323884e-10 8.351975563e-10 6.777242481e-10 6.973060496e-10 5.254228199e-10 3.160534745e-10 3.881511064e-10 1.9496663e-10 2.902004029e-10 3.616952749e-10 4.537982521e-10 4.771871496e-10 4.512630602e-10 4.242843992e-10 3.168032576e-10 4.737918057e-10 3.780740087e-10 2.579018839e-10 5.597864495e-10 4.324704751e-10 4.209640748e-10 5.376101377e-10 4.742177128e-10 5.082196369e-10 3.801432844e-10 3.437335668e-10 4.313121308e-10 3.380525587e-10 4.23271694e-10 3.564043342e-10 3.394726606e-10 2.847533225e-10 3.416141351e-10 4.737735087e-10 3.537561019e-10 3.997228516e-10 2.786822479e-10 3.040667618e-10 2.577769723e-10 2.70967847e-10 3.715220738e-10 1.643533021e-10 3.031148878e-10 4.119276803e-10 2.743599685e-10 1.223503421e-10 3.355934197e-10 3.501732565e-10 2.998530117e-10 2.33963483e-10 2.094679346e-10 2.495492267e-10 5.469236313e-10 3.888976646e-10 2.195615276e-10 2.863390271e-10 2.028486787e-10 3.50298074e-10 3.270850701e-10 2.722358538e-10 3.068106775e-10 1.797829607e-10 2.92770181e-10 3.800339861e-10 1.027688547e-10 3.661637362e-10 2.60246005e-10 3.630576332e-10 2.195135964e-10 7.513255204e-11 8.887317085e-11 2.826674827e-10 2.350608917e-10 2.260592625e-10 1.687620417e-10 2.071733649e-10 3.016602101e-10 1.567659536e-10 1.535171147e-10 1.589031794e-10 8.386551791e-11 7.380976494e-11 1.657546291e-10 7.717608583e-11 8.683785975e-11 9.198367277e-11 2.115255709e-10 1.429108417e-10 1.809804714e-10 4.247340941e-10 1.928847178e-10 1.824868474e-10 1.795414414e-10 2.325213504e-10 2.628416932e-10 1.734614747e-10 2.703353258e-10 1.139899412e-10 1.4827858e-10 2.273607541e-10 2.381708213e-10 3.698005091e-10 2.216534312e-10 7.149624534e-11 +1.109206585e-10 6.726377191e-11 2.640097598e-10 1.546928057e-10 1.772489394e-10 1.279145979e-10 2.921084981e-10 3.033589612e-10 8.822408104e-11 1.93571776e-10 1.337068044e-10 2.478948599e-10 1.384929433e-10 6.91509654e-11 2.022014356e-10 1.074459487e-10 1.787448887e-10 8.296278042e-11 1.897989878e-10 1.469706433e-10 1.8243339e-10 2.173451548e-10 1.579842643e-10 9.542403312e-11 2.061992415e-10 2.148887058e-10 2.303616598e-10 2.385878362e-10 3.79323861e-10 3.263090177e-10 1.814814955e-10 1.909681141e-10 2.120673857e-10 4.565377957e-10 1.796820748e-10 2.65084257e-10 2.059179998e-10 1.746824927e-10 7.602343543e-11 2.406156759e-10 1.98897736e-10 2.773891157e-10 3.367178556e-10 2.302007151e-10 3.549513758e-10 3.845258654e-10 4.770557929e-10 3.536785189e-10 2.957959049e-10 5.648236577e-10 2.533110844e-10 2.671523931e-10 1.720269495e-10 3.145514865e-10 3.611588636e-10 4.044423378e-10 2.599380691e-10 4.347770617e-10 2.851757819e-10 3.952103273e-10 2.807897507e-10 3.248670632e-10 3.797719473e-10 2.435310728e-10 2.729271405e-10 4.033981489e-10 1.906244027e-10 3.317003609e-10 2.95229513e-10 2.456954055e-10 3.172618592e-10 2.878006596e-10 2.806969579e-10 1.625923034e-10 1.673838979e-10 3.427181228e-10 2.332329449e-10 5.103190059e-10 2.524956691e-10 2.546161513e-10 3.097804331e-10 6.60970457e-10 5.20592892e-10 4.830246495e-10 4.714307465e-10 4.064337786e-10 5.747544424e-10 5.381124435e-10 3.643787645e-10 5.208953862e-10 4.432742002e-10 3.328074788e-10 3.793985468e-10 2.763362251e-10 2.56041248e-10 1.311290305e-10 1.712428229e-10 3.339249146e-10 2.881621993e-10 5.733512238e-10 6.683458522e-10 8.930085153e-10 1.001952266e-09 8.037415912e-10 7.649236255e-10 6.764113429e-10 6.532271073e-10 5.967999543e-10 8.291945945e-10 5.582771216e-10 5.046534177e-10 5.028805295e-10 5.324035603e-10 5.389562802e-10 3.003519992e-10 3.332503851e-10 2.132444e-10 2.798290786e-10 1.77458225e-10 1.528225484e-10 3.774578528e-10 5.640499268e-10 5.489045301e-10 5.110578914e-10 8.835824261e-10 1.131978518e-09 9.337796592e-10 9.790950719e-10 7.7577127e-10 5.475649762e-10 2.348830677e-10 6.530336961e-11 6.979718776e-11 1.155876525e-10 5.429171333e-16 5.667936992e-11 7.262062883e-11 1.427231069e-10 9.222192839e-11 5.81851952e-26 2.261840703e-10 2.01192798e-10 1.630662328e-10 1.340359997e-10 1.136011188e-10 2.443166392e-10 1.879730186e-10 1.356837817e-10 0 6.820685547e-11 1.365174655e-10 2.164190135e-10 1.076021668e-10 1.784912386e-11 1.535174859e-10 8.34184046e-11 2.00184278e-10 2.44374809e-10 1.021456093e-10 1.810119684e-10 1.566445482e-10 1.906089036e-10 1.022417393e-10 1.197007031e-10 0 1.603720628e-10 1.432223076e-10 1.62772941e-10 1.470553454e-10 1.117809454e-10 5.514542341e-10 8.938128803e-10 1.004001528e-09 9.839621562e-10 9.49337288e-10 1.020543685e-09 5.945304421e-10 4.97517304e-10 6.956132127e-10 4.289828606e-10 9.695617608e-11 1.6775022e-10 0 2.788711492e-10 1.814225899e-10 4.494458524e-10 6.306842122e-10 3.794593179e-10 5.084628246e-10 6.754889235e-10 6.086438839e-10 6.39121026e-10 8.656377874e-10 7.964986179e-10 8.129663405e-10 5.774582574e-10 8.953852457e-10 7.516489024e-10 7.3076706e-10 5.786269332e-10 7.560536217e-10 5.553981482e-10 3.222084664e-10 2.461172634e-10 2.106294301e-10 3.480072453e-10 3.620596229e-10 4.450298917e-10 2.823156922e-10 3.894894779e-10 4.175962176e-10 4.019545263e-10 4.748106707e-10 4.188817151e-10 3.980664444e-10 4.320364818e-10 4.870946558e-10 5.482016829e-10 3.57557428e-10 3.368247433e-10 4.526833573e-10 4.481687365e-10 2.454647273e-10 2.672577538e-10 2.976488177e-10 3.217497075e-10 2.842570127e-10 2.797323717e-10 4.02413135e-10 3.760752294e-10 3.157285378e-10 2.971525619e-10 3.448278785e-10 3.435689713e-10 3.697119012e-10 3.437491079e-10 4.0682105e-10 4.618361152e-10 3.557382666e-10 3.819432877e-10 2.261811127e-10 2.516005632e-10 2.773209222e-10 3.088334084e-10 1.620378107e-10 3.054907686e-10 4.196978565e-10 3.07420032e-10 2.783624366e-10 2.844473878e-10 3.275626523e-10 2.558520324e-10 3.240994073e-10 3.778763022e-10 3.175377976e-10 2.504192228e-10 3.226628787e-10 1.711095642e-10 2.184731635e-10 2.802513225e-10 3.090671803e-10 3.224646379e-10 7.602197658e-11 2.842763197e-10 1.453681668e-10 2.243419006e-10 3.332106707e-10 4.112205599e-10 3.499097821e-10 2.552616097e-10 1.168032248e-10 2.435952389e-10 1.676170902e-10 2.586096778e-10 2.453976117e-10 4.06582495e-10 3.349486032e-10 1.276835391e-10 2.849099351e-10 1.15961633e-10 2.453927992e-10 2.171614905e-10 1.660751587e-10 2.358880064e-10 2.966467517e-10 4.305355476e-10 1.389672722e-10 3.646372268e-10 3.477086069e-10 2.575982431e-10 3.310852122e-10 1.963206763e-10 2.520935608e-10 3.509704584e-10 3.541343509e-10 3.597401788e-10 2.149459288e-10 1.958086159e-10 2.914101601e-10 2.581182247e-11 +1.323766838e-10 4.834450682e-10 1.828958873e-10 3.183220385e-10 3.014760931e-10 1.737280737e-10 1.338431195e-10 9.858349812e-11 2.190835429e-10 2.727422884e-10 1.749725628e-10 2.852470913e-10 1.240337716e-10 1.551127433e-10 1.524534431e-10 1.765845758e-10 2.137982969e-10 2.24136858e-10 3.212303873e-10 2.885824448e-10 3.066564396e-10 2.045874327e-10 2.497852133e-10 2.251900149e-10 3.486151981e-10 2.346468087e-10 1.884488752e-10 2.815298613e-10 1.702167831e-10 2.11069917e-10 2.465369422e-10 2.179586076e-10 2.547832091e-10 1.809512527e-10 2.584446988e-10 1.396605033e-10 1.272150469e-10 3.644880766e-10 1.439914221e-10 1.813080819e-10 2.59861442e-10 1.179634054e-10 3.157804596e-10 2.681384986e-10 2.130594028e-10 4.726782354e-10 4.218103409e-10 2.691633825e-10 4.133177828e-10 3.501802624e-10 2.964047419e-10 4.278065943e-10 2.018788783e-10 4.005711449e-10 4.234801825e-10 3.110006346e-10 3.031367179e-10 2.451505174e-10 3.250358379e-10 2.762985282e-10 2.997140287e-10 3.023659319e-10 4.312324128e-10 2.765615129e-10 3.249693599e-10 3.801060802e-10 2.797201582e-10 2.986406558e-10 2.725811775e-10 3.501875277e-10 4.429637219e-10 3.089078538e-10 2.398430261e-10 4.090468686e-10 3.626755455e-10 2.306951382e-10 2.654793356e-10 4.103521257e-10 4.653461231e-10 4.82611263e-10 3.670493801e-10 4.626377799e-10 4.080357782e-10 3.759285186e-10 5.606908665e-10 4.631551632e-10 5.617366943e-10 5.181980868e-10 4.879308696e-10 4.559780174e-10 5.003239597e-10 2.874578887e-10 5.231780104e-10 2.73684086e-10 2.17744875e-10 2.270728144e-10 1.911548829e-10 1.9235139e-10 2.669357518e-10 4.810713903e-10 8.317205576e-10 6.22092231e-10 6.206032831e-10 9.709639078e-10 7.652729555e-10 7.363691771e-10 7.626461252e-10 6.553615676e-10 8.460877834e-10 4.949001203e-10 6.443151528e-10 4.035723043e-10 5.350429582e-10 5.95364508e-10 4.228597331e-10 2.863075832e-10 1.722553479e-10 8.752346971e-11 1.487241475e-10 2.011224562e-10 4.455867539e-10 5.490293495e-10 5.850514653e-10 4.276424588e-10 1.01798477e-09 1.075385198e-09 9.932124578e-10 7.862453464e-10 7.891985224e-10 6.262000409e-10 1.333766014e-10 1.21964536e-10 0 1.415649051e-10 1.120475527e-10 1.002806706e-10 1.371536572e-10 2.335850547e-10 1.435929083e-10 5.477639931e-12 1.371051285e-10 8.933449949e-11 1.489437322e-10 2.056234807e-10 1.680217324e-10 1.629888866e-10 1.899143479e-10 1.373658632e-10 9.986208979e-11 1.574086177e-10 1.199283875e-10 3.637236712e-12 1.638269589e-10 0 1.882987088e-10 1.504158843e-10 1.448556143e-10 9.598053083e-11 9.92705776e-11 1.361561285e-10 1.836806342e-10 1.925248955e-10 1.630854685e-10 1.769226802e-10 1.185107157e-10 1.064989103e-10 1.698581616e-10 0 1.764907755e-10 1.476057404e-10 5.830447037e-10 9.140292294e-10 8.5901525e-10 1.128468884e-09 1.100701378e-09 8.195377878e-10 6.202900234e-10 5.414668767e-10 6.745138592e-10 3.6610506e-10 1.653344153e-10 5.342717408e-11 2.608585626e-10 1.365567524e-10 3.715747283e-10 6.006346383e-10 4.786023001e-10 4.28309803e-10 4.102647308e-10 5.488356583e-10 6.165223853e-10 7.4789467e-10 6.850028872e-10 6.34072904e-10 7.042590879e-10 6.192558102e-10 6.3178212e-10 7.546879139e-10 9.5807037e-10 8.239212939e-10 7.180430715e-10 1.972514145e-10 2.716414656e-10 9.243083348e-11 1.731673476e-10 2.305164789e-10 4.364908528e-10 2.796529775e-10 2.687557343e-10 4.242446061e-10 2.699663712e-10 6.326795023e-10 3.563837906e-10 5.237428431e-10 4.44787019e-10 3.32335897e-10 4.845872161e-10 6.560021703e-10 6.047938476e-10 5.121609686e-10 3.883718266e-10 4.398669103e-10 3.231143516e-10 2.176321649e-10 2.845803967e-10 2.703405388e-10 4.437580515e-10 3.539290398e-10 4.374118057e-10 2.305701182e-10 3.114200236e-10 3.487647238e-10 2.178585188e-10 2.350702784e-10 3.826381521e-10 2.301168169e-10 3.568477379e-10 2.581904587e-10 2.07670569e-10 2.158112295e-10 1.938394623e-10 4.348248309e-10 2.920800249e-10 2.578745041e-10 1.999577882e-10 5.171569406e-10 3.444916976e-10 4.673486489e-10 4.703953705e-10 4.267449352e-10 3.486126966e-10 3.091957669e-10 3.438170343e-10 2.167694337e-10 2.996040901e-10 2.957135419e-10 4.277124833e-10 1.468660502e-10 2.283223747e-10 1.021045962e-10 1.495487614e-10 1.869063817e-10 1.212409526e-10 1.966625119e-10 2.240723635e-10 2.057513506e-10 2.115890497e-10 2.104536975e-10 3.301917198e-10 1.452930897e-10 2.457690963e-10 1.316192046e-10 4.53572349e-10 1.352953477e-10 1.46309648e-10 1.162155321e-10 7.499215018e-11 1.919339912e-10 3.702273004e-10 1.838516192e-10 1.69598418e-10 4.526112373e-10 2.956406797e-10 2.236389185e-10 3.178120543e-10 2.222622721e-10 3.002819551e-10 1.384947301e-10 1.282124678e-10 3.038922924e-10 1.349008538e-10 1.834367185e-10 1.989067731e-10 2.791400181e-10 1.652595858e-10 5.558088072e-11 4.278968607e-10 2.903756137e-10 2.896999353e-10 3.84150818e-10 +3.952437078e-10 5.968914301e-11 2.873175869e-10 1.863165916e-10 1.888123446e-10 2.105123992e-10 2.918616686e-10 2.216807894e-10 1.366714889e-10 4.339994361e-10 1.732623398e-10 2.233794383e-10 2.954011283e-11 1.880839673e-10 1.854598122e-10 3.357631474e-10 1.321559049e-10 1.966019012e-10 1.33972406e-10 4.664289631e-11 3.916193825e-10 1.299341507e-10 2.388677597e-10 1.306135884e-10 1.029857294e-10 1.317439902e-10 2.086437848e-10 1.192965324e-10 2.70364339e-10 2.691018539e-10 2.172049803e-10 2.644455252e-10 1.761718119e-10 1.955141339e-10 2.158613161e-10 3.318904175e-10 4.016378791e-10 1.2355317e-10 1.627925732e-10 3.472702101e-10 2.26114826e-10 3.118794418e-10 2.132911566e-10 1.432187496e-10 4.427378541e-10 3.193330847e-10 4.239676943e-10 2.308355791e-10 3.672203722e-10 3.095515097e-10 3.843414419e-10 2.201510686e-10 3.43330524e-10 2.119096243e-10 3.35003818e-10 3.651991958e-10 2.811586264e-10 1.726021141e-10 3.155024536e-10 3.306708171e-10 4.567101301e-10 2.332622155e-10 4.722945033e-10 3.490938815e-10 3.690583761e-10 2.347879869e-10 2.343897072e-10 2.77603017e-10 4.140580016e-10 2.866135456e-10 3.067812715e-10 4.209585336e-10 3.586994101e-10 2.064678572e-10 2.932735381e-10 3.765490154e-10 4.259660594e-10 2.417478906e-10 3.290873864e-10 4.967984441e-10 5.918166863e-10 5.029089573e-10 4.60997502e-10 5.472625573e-10 4.862154485e-10 5.940494415e-10 3.294803285e-10 3.650276249e-10 5.35238215e-10 3.959690229e-10 4.28133335e-10 5.968781618e-10 4.395689096e-10 3.507917234e-10 3.602113732e-10 1.7853556e-10 2.041959292e-10 2.441572076e-10 2.458132703e-10 5.766982069e-10 7.287549222e-10 7.201277406e-10 7.053212499e-10 5.643960807e-10 7.1346217e-10 8.080892461e-10 4.624016182e-10 6.647724236e-10 8.070206878e-10 6.818169791e-10 5.355889614e-10 5.31911301e-10 4.639862044e-10 4.469099874e-10 5.27009012e-10 3.047694341e-10 1.555092253e-10 1.449941741e-10 3.400996158e-15 1.700621478e-10 4.192432341e-10 5.237083046e-10 6.029388088e-10 5.407610133e-10 1.003194983e-09 1.086078821e-09 1.170355724e-09 8.876504147e-10 9.268930667e-10 5.759313251e-10 1.814181561e-10 2.455183704e-10 1.649899604e-18 1.356380373e-10 1.458520594e-10 8.490438983e-11 9.571451289e-11 9.384193318e-11 1.318521835e-10 1.083375624e-10 1.224715234e-10 1.45219572e-10 1.605031586e-10 1.525711409e-10 0 1.236397769e-10 7.094631779e-11 9.776605185e-11 1.232850176e-10 1.193963094e-10 9.93974653e-11 1.550433674e-10 2.843248498e-16 1.351653485e-10 1.828845479e-10 1.703396122e-10 8.470435627e-11 1.211786578e-10 1.645700353e-10 1.823326024e-10 0 1.225488038e-10 1.401737974e-10 9.728742838e-11 1.837836429e-10 1.790302e-10 1.284669074e-10 2.160386973e-10 2.410087669e-11 1.593836446e-10 4.939463987e-10 7.259441468e-10 8.844941841e-10 9.191643671e-10 1.041311837e-09 9.691069953e-10 4.967429316e-10 5.523628784e-10 4.80356312e-10 4.466193373e-10 1.17922512e-10 2.323053563e-10 9.46284317e-11 8.242969033e-11 3.773673096e-10 5.385913441e-10 3.994503107e-10 5.279748445e-10 4.675163114e-10 5.02284432e-10 5.909636164e-10 8.018346311e-10 8.543290311e-10 5.987144559e-10 4.635904427e-10 7.072907766e-10 4.635232259e-10 5.87007668e-10 6.778269942e-10 5.734958021e-10 5.497968477e-10 3.681846398e-10 2.426819832e-10 2.104945069e-10 3.252435314e-10 3.423831859e-10 2.74441117e-10 4.085700121e-10 4.583028675e-10 3.74029036e-10 3.874968773e-10 5.64808494e-10 4.588090659e-10 4.135174818e-10 5.762687299e-10 5.841050284e-10 4.964843493e-10 4.081843288e-10 5.726455946e-10 4.897472102e-10 3.592411323e-10 3.884265597e-10 3.647365613e-10 2.746915074e-10 3.186464095e-10 3.080381743e-10 1.686000657e-10 4.380296772e-10 2.816506395e-10 3.274172178e-10 3.206517347e-10 3.232618471e-10 5.194531231e-10 4.374951925e-10 3.52822905e-10 3.837553056e-10 3.522811442e-10 3.020349843e-10 2.785547158e-10 4.506884288e-10 3.109835134e-10 3.858098795e-10 3.334906562e-10 2.375009702e-10 2.655974746e-10 2.481396193e-10 4.114586906e-10 3.109583267e-10 2.617692062e-10 2.071341707e-10 4.232698071e-10 4.396586537e-10 3.409744364e-10 4.041791833e-10 3.499723714e-10 1.916689404e-10 5.23384243e-10 2.486144483e-10 1.579142396e-10 3.484763454e-10 1.299945218e-10 2.477320641e-10 2.843927907e-10 1.214503484e-10 4.099407285e-10 2.02236342e-10 9.320661017e-11 2.240881776e-10 1.665194596e-10 1.340657007e-10 1.224343639e-10 1.927244184e-10 2.802985841e-10 2.061543342e-10 8.720863178e-11 2.318688306e-10 1.790947209e-10 1.507371893e-10 4.169527788e-10 7.118798508e-11 1.299260305e-10 2.876591904e-10 4.249836326e-10 8.391113906e-11 1.275612418e-10 1.764603903e-10 2.233266164e-10 1.551247286e-10 9.136950031e-11 4.061724025e-10 1.444197802e-10 2.090386611e-10 3.499589662e-10 2.972104549e-10 1.052726262e-10 1.624916553e-10 4.05808587e-11 2.739579603e-10 3.344182314e-10 4.089150074e-10 +3.267021027e-10 5.437921455e-11 1.882526903e-10 3.172239891e-10 3.546034773e-10 4.614182779e-11 1.13044872e-10 1.566905544e-10 1.792520133e-10 2.371675454e-10 1.744794121e-10 3.763481771e-10 2.529291115e-10 1.07161746e-10 2.093723848e-10 2.696709005e-10 2.674166934e-10 1.594866827e-10 1.534486732e-10 2.177784461e-10 3.41620418e-10 2.41910544e-10 7.590074944e-11 1.018532875e-10 3.849524022e-10 3.159022294e-10 1.563498829e-10 1.531162492e-10 1.942167243e-10 2.50070467e-10 1.019157191e-10 1.668946144e-10 2.167626324e-10 4.155988186e-10 2.423886814e-10 1.756115507e-10 2.688544265e-10 1.850274484e-10 1.870634679e-10 2.640222575e-10 2.269844054e-10 1.160519091e-10 3.915535707e-10 3.447472239e-10 3.045779672e-10 1.939919045e-10 2.274069417e-10 2.621549701e-10 2.635419411e-10 2.08276638e-10 3.98622672e-10 2.779051215e-10 4.089354091e-10 3.086419877e-10 2.260499442e-10 3.11375537e-10 2.818872057e-10 1.810300119e-10 1.686940429e-10 1.405983056e-10 2.330801187e-10 2.717384208e-10 3.419321922e-10 2.928592672e-10 5.150788218e-10 3.756355421e-10 2.054368674e-10 3.305323005e-10 2.296801076e-10 3.902005288e-10 4.484188717e-10 1.892258388e-10 2.897810005e-10 4.253775315e-10 2.59021433e-10 1.542954141e-10 3.405644657e-10 3.5300785e-10 3.811473771e-10 4.435266253e-10 4.651066501e-10 5.733028711e-10 5.37149679e-10 3.106462278e-10 3.85013264e-10 3.714700677e-10 5.137306889e-10 3.803765734e-10 5.140395801e-10 5.167311651e-10 3.976138447e-10 3.112847089e-10 3.067487503e-10 3.212822036e-10 1.87563652e-10 1.090463073e-10 1.769533079e-10 3.26676398e-10 1.420418417e-10 4.921673993e-10 5.194503702e-10 6.260791382e-10 8.51612605e-10 8.048530287e-10 5.965930175e-10 4.625000562e-10 6.006309497e-10 8.362082243e-10 8.150182918e-10 6.895189957e-10 5.735236248e-10 5.090911487e-10 4.188780625e-10 5.106497385e-10 5.184970977e-10 2.924727941e-10 1.846257617e-10 1.472971671e-10 2.762347658e-10 1.712886906e-10 5.343674333e-10 4.881105936e-10 6.284249933e-10 4.651309947e-10 1.020511261e-09 1.091626712e-09 1.048392131e-09 9.693054721e-10 8.736728316e-10 6.502350033e-10 1.132175047e-10 1.60793306e-10 1.105509475e-10 1.720612801e-10 2.885027175e-16 2.045790221e-10 1.104146737e-10 1.68881484e-10 1.720469314e-10 9.117415904e-11 9.895776031e-11 1.947624822e-10 1.485608807e-10 3.656934602e-13 1.446119292e-10 8.467458246e-11 1.487828502e-10 1.583600349e-10 6.330676492e-11 9.560127361e-12 2.083432705e-10 7.573391841e-11 1.665590033e-10 1.844188882e-10 4.352935388e-11 5.109223169e-18 7.721762422e-11 1.571159176e-10 5.622066643e-11 1.283314937e-10 1.167035024e-10 1.854316596e-10 1.679587441e-10 1.59826441e-10 4.496823308e-15 1.457191383e-10 4.957210916e-12 5.614453218e-12 1.623910875e-10 1.921291298e-10 5.922998696e-10 9.053391568e-10 1.122501459e-09 9.389348948e-10 1.054574394e-09 9.532797921e-10 5.705482726e-10 6.205636301e-10 5.989371369e-10 4.613079987e-10 1.685626372e-10 4.651223605e-11 8.02430848e-11 2.5485131e-10 3.200665387e-10 5.846060857e-10 5.364210211e-10 5.486556914e-10 6.127399981e-10 5.496847152e-10 7.06851668e-10 6.02307677e-10 7.935964524e-10 4.732805558e-10 7.410789546e-10 7.654151214e-10 9.618643783e-10 8.083137032e-10 6.821006373e-10 6.729420332e-10 7.82064644e-10 2.351395079e-10 1.845197473e-10 2.722122003e-10 1.304984469e-10 3.157951106e-10 2.83769782e-10 3.239878135e-10 3.19489506e-10 4.67347882e-10 3.32197316e-10 3.948628296e-10 5.093773911e-10 4.255346021e-10 5.27127386e-10 4.74197411e-10 4.783307559e-10 3.688546134e-10 3.631889393e-10 5.303352876e-10 3.674339087e-10 4.303033787e-10 2.581391791e-10 3.621685243e-10 3.947955728e-10 4.260504655e-10 2.998418798e-10 2.52996039e-10 3.418767666e-10 3.581085236e-10 2.234279943e-10 3.504284566e-10 2.704368078e-10 2.579981002e-10 3.885582486e-10 1.79441761e-10 3.374036083e-10 1.823727647e-10 2.321896042e-10 2.708034618e-10 4.252306328e-10 2.161499828e-10 3.007311074e-10 3.998106002e-10 2.899693522e-10 2.08657332e-10 3.537441195e-10 2.579205569e-10 3.343798711e-10 4.166958348e-10 2.691418364e-10 2.795464342e-10 3.734135529e-10 3.793368092e-10 3.750316037e-10 2.599359793e-10 2.051480239e-10 2.540935025e-10 2.281587694e-10 1.428135067e-10 3.570092193e-10 2.505564088e-10 2.805627684e-10 1.937844661e-10 2.109837808e-10 1.54849283e-10 1.609399602e-10 1.364327916e-10 3.433896649e-10 2.257896169e-10 2.794087815e-10 1.377757711e-10 5.352371224e-10 3.274522523e-10 1.646168152e-10 2.933743916e-10 2.841927764e-10 2.21471023e-11 2.335828493e-10 2.510810265e-10 2.998039694e-10 1.487622789e-10 4.292402915e-10 1.625131762e-10 8.319522793e-11 2.020765783e-10 3.451145781e-10 3.087692914e-10 1.993268331e-10 5.736419929e-10 2.798655809e-10 1.164953615e-10 1.185442897e-10 3.14026742e-10 2.384690154e-10 1.799805039e-10 7.647510457e-11 2.107126478e-10 1.934038846e-10 1.328568327e-11 +3.455583566e-10 1.650503071e-10 1.121391613e-10 2.469909944e-10 1.121342694e-10 3.391577824e-10 1.970272182e-10 5.745207895e-10 1.664418664e-10 3.169029894e-10 4.180497884e-10 7.752225586e-11 3.018985089e-10 1.110340756e-10 1.164496747e-10 2.170469014e-10 2.385883931e-10 6.605328989e-11 3.2219228e-10 1.69374161e-10 4.516922173e-11 2.436410231e-10 2.338734077e-10 1.374027359e-10 1.630668225e-10 3.252244235e-10 1.70645356e-10 2.145864885e-10 9.603498678e-11 1.750690321e-10 2.676104502e-10 9.176702993e-11 1.12736327e-10 2.937768298e-10 2.664005465e-10 9.868777416e-11 9.392709337e-11 1.615870041e-10 3.558734761e-10 1.625043888e-10 3.504283887e-10 1.320322399e-10 3.576579107e-10 2.428673978e-10 2.923822659e-10 4.07005489e-10 3.026914812e-10 2.47376345e-10 2.748072672e-10 2.415207353e-10 2.308046277e-10 2.003394537e-10 3.10588582e-10 3.283406002e-10 4.531872471e-10 2.864466594e-10 2.476123042e-10 4.948777146e-10 2.57357444e-10 4.727972391e-10 1.513288942e-10 2.814817675e-10 2.86325916e-10 2.909561346e-10 2.695098388e-10 3.081298275e-10 2.96881548e-10 2.015372243e-10 2.314786437e-10 2.6571276e-10 4.366198087e-10 3.275978302e-10 2.11823458e-10 2.137144487e-10 3.186306051e-10 1.788524847e-10 3.123587181e-10 2.092746855e-10 4.120627635e-10 5.339524768e-10 5.291220793e-10 4.800336048e-10 5.755153546e-10 5.693790527e-10 4.841752935e-10 5.146115409e-10 4.88387258e-10 5.096507398e-10 4.042967372e-10 5.3974419e-10 3.860205827e-10 3.841402664e-10 4.614979382e-10 4.865890775e-10 2.905038367e-10 2.218133387e-10 1.34851781e-10 2.782460201e-10 3.316533917e-10 6.342374315e-10 8.978824932e-10 8.871791228e-10 5.792771637e-10 8.619753055e-10 6.48182889e-10 6.343101556e-10 6.782272258e-10 8.372416073e-10 9.475553397e-10 6.306480616e-10 3.88003603e-10 5.502728806e-10 5.012954626e-10 3.529580259e-10 5.389162598e-10 4.261670511e-10 1.720148174e-10 1.382747715e-10 1.229104922e-10 2.012498915e-10 4.145863537e-10 5.761538572e-10 5.214858441e-10 4.934873759e-10 7.81622354e-10 9.897951352e-10 1.083434699e-09 9.794364774e-10 9.111708251e-10 7.248317826e-10 2.213797959e-10 2.014301895e-10 2.062049434e-10 2.081939481e-10 1.081473016e-10 1.32741122e-10 1.254684611e-10 1.406299803e-10 1.113482908e-10 9.236886757e-11 1.181711238e-10 1.103561266e-10 1.317325469e-10 8.182816643e-11 2.201434339e-10 1.674838761e-10 2.049208447e-10 1.228447939e-14 2.023985607e-10 1.051488969e-10 1.564122772e-10 1.654695581e-12 1.154167745e-10 1.463496486e-10 1.970505591e-10 1.686129684e-10 1.006262153e-10 1.924322338e-10 1.565971425e-10 1.142870698e-10 1.614233398e-10 1.109234356e-10 1.515133495e-10 2.230260711e-11 1.396278361e-10 6.939181139e-11 5.814853634e-11 1.339805675e-10 1.194528225e-10 3.093092733e-10 5.922099207e-10 7.990921676e-10 9.707946245e-10 9.338022324e-10 9.915060002e-10 9.303467976e-10 5.32258065e-10 5.261336522e-10 6.474159453e-10 4.083939893e-10 2.192526458e-10 1.77739703e-10 3.588285529e-11 2.078893347e-10 4.709433949e-10 5.61328282e-10 4.645406212e-10 5.259898565e-10 4.52331816e-10 5.715491085e-10 5.241686303e-10 6.442304337e-10 6.885541953e-10 5.167633052e-10 4.665407415e-10 6.861169062e-10 5.786672743e-10 6.425259925e-10 9.578736161e-10 7.411676451e-10 6.790113029e-10 2.882412044e-10 2.648411598e-10 1.819157013e-10 1.257237685e-10 3.458979184e-10 3.567911742e-10 3.699205322e-10 5.168083481e-10 5.360942891e-10 6.645205051e-10 2.883258262e-10 5.002579581e-10 4.279121745e-10 4.101696005e-10 6.00417877e-10 5.637957783e-10 5.001665913e-10 4.158182627e-10 4.964026801e-10 3.317668059e-10 5.724046967e-10 3.492452452e-10 4.184356925e-10 4.022559957e-10 3.327385439e-10 2.741536659e-10 3.463427937e-10 3.539322361e-10 4.447504315e-10 3.687784426e-10 2.042066088e-10 3.531447557e-10 4.124969993e-10 2.542017254e-10 2.67371968e-10 1.509422307e-10 2.40077111e-10 2.558727494e-10 2.993551466e-10 3.010791384e-10 4.056102766e-10 2.491732518e-10 1.667425792e-10 3.054417748e-10 3.720731994e-10 5.095287821e-10 2.96036465e-10 3.595212603e-10 2.512776948e-10 1.968760566e-10 2.704711302e-10 2.664740677e-10 3.07333451e-10 2.19632172e-10 3.37795699e-10 2.754018646e-10 3.031174144e-10 2.287547958e-10 1.898329807e-10 1.606915443e-10 2.490183614e-10 9.973639501e-11 2.466482096e-10 1.914020045e-10 8.862315084e-11 1.511713655e-10 1.807626935e-10 1.754708046e-10 2.358333607e-10 3.287870131e-10 3.262420393e-10 1.340063697e-10 3.06603779e-10 2.223594806e-10 1.591878738e-10 2.414869214e-10 1.330357476e-10 4.991899161e-10 1.955164016e-10 3.369540157e-10 4.189081244e-11 1.975166122e-10 2.394516575e-10 8.071428584e-11 1.042216229e-10 2.245998075e-10 1.383665718e-10 2.266572372e-10 1.474196167e-10 3.033343289e-10 2.637861472e-10 1.91501546e-10 1.260470691e-10 9.574857948e-11 2.22958856e-10 3.263724558e-10 1.089388028e-10 2.026266974e-10 4.068592063e-11 +3.80495116e-10 3.007937754e-10 1.152052481e-10 2.766342171e-10 2.843066449e-10 1.012294992e-10 1.10647694e-10 3.787546532e-10 2.047262605e-10 2.907493388e-10 6.097595947e-11 1.466481102e-10 1.044307134e-10 1.293028697e-10 4.53204079e-10 9.184420274e-11 3.475276259e-10 4.011203784e-10 2.548151183e-10 2.093864771e-10 9.234859676e-11 4.215263467e-10 3.416053058e-10 5.706601717e-11 2.472523024e-10 1.835637511e-10 3.063626424e-10 1.416546021e-10 2.506480313e-10 2.149368468e-10 2.989778369e-10 2.631131043e-10 2.526447515e-10 3.061323391e-10 1.982362085e-10 1.745793278e-10 2.271669851e-10 1.54287715e-10 2.387204078e-10 3.803181322e-10 2.301376762e-10 4.069415976e-10 2.782668562e-10 3.020921302e-10 3.664789583e-10 4.025199307e-10 2.868560999e-10 4.181758581e-10 2.17794127e-10 4.004356541e-10 3.418990052e-10 3.956381687e-10 2.193118032e-10 4.057333104e-10 3.082013163e-10 3.773259068e-10 2.08648247e-10 2.58271606e-10 2.687340658e-10 1.938396165e-10 2.557694126e-10 2.822427756e-10 2.560395518e-10 4.423216635e-10 2.903542894e-10 3.165671505e-10 3.485990053e-10 2.535761005e-10 2.359048615e-10 2.972839345e-10 3.455140223e-10 3.62731174e-10 2.405313836e-10 3.056511254e-10 2.781119304e-10 3.804393299e-10 2.161339447e-10 3.195945833e-10 4.650353672e-10 4.01097382e-10 3.476329702e-10 7.554437617e-10 5.085005672e-10 4.617218208e-10 4.309525118e-10 3.946240622e-10 4.030169125e-10 3.108593691e-10 4.519763213e-10 4.767179287e-10 5.610193131e-10 4.211372909e-10 3.403071623e-10 3.370204583e-10 1.961476519e-10 1.556946476e-10 3.343178129e-10 2.632304611e-10 4.685640485e-10 6.154038412e-10 4.747333111e-10 9.541144519e-10 9.77063176e-10 4.88006727e-10 7.324471298e-10 5.409856729e-10 5.601039098e-10 8.542988476e-10 7.376571178e-10 6.936703061e-10 6.107726985e-10 3.530996644e-10 5.709255421e-10 5.454019167e-10 4.842218728e-10 3.944790854e-10 2.91640335e-10 7.448856645e-11 1.97442436e-33 3.513989346e-13 4.471430568e-10 5.417421349e-10 7.041759859e-10 4.76839611e-10 5.743477518e-10 1.037302693e-09 9.465662063e-10 8.522638913e-10 7.691733889e-10 7.294053353e-10 3.160975672e-10 2.445680601e-10 1.671537171e-10 8.729691375e-15 1.918792099e-10 1.773692615e-10 1.618604898e-10 1.104320729e-10 2.382221424e-17 1.817063399e-10 1.56763502e-10 2.382215583e-10 1.693706863e-10 1.866770755e-10 1.717607791e-10 2.245248464e-10 9.231611525e-11 1.746876573e-10 1.266320732e-10 1.084012715e-10 1.949673762e-11 1.898718482e-10 1.21055949e-10 1.170180764e-10 2.019672201e-10 1.068284506e-10 1.439631081e-11 1.66071861e-10 1.381068118e-10 1.500872222e-10 9.824938612e-11 1.144662931e-10 1.67065378e-10 0 1.13456863e-10 1.635499085e-10 1.528960596e-10 1.163558673e-10 1.319775601e-10 3.417900394e-10 6.340154478e-10 9.271195006e-10 9.428212131e-10 9.806225757e-10 1.02776556e-09 7.666618305e-10 6.320277535e-10 5.91486255e-10 6.017168275e-10 3.430304982e-10 1.191903273e-10 2.251747781e-10 1.251113063e-10 1.799789286e-10 4.280227366e-10 3.145319448e-10 4.725836919e-10 5.69839798e-10 3.183749962e-10 4.311987184e-10 6.348363719e-10 6.266962805e-10 9.526057078e-10 7.372841283e-10 5.089580904e-10 6.606862117e-10 6.080809061e-10 8.559004205e-10 8.45022963e-10 5.983012718e-10 4.060606896e-10 2.928209891e-10 3.558897015e-10 2.235664587e-10 1.421226784e-10 3.216090875e-10 4.185768642e-10 4.491235752e-10 4.084678088e-10 2.501424512e-10 5.683589015e-10 5.000434562e-10 4.767341579e-10 4.062241919e-10 4.570620042e-10 4.934886122e-10 4.232970273e-10 3.923749233e-10 4.587361646e-10 5.536388429e-10 5.427369999e-10 3.412021328e-10 2.117281899e-10 3.030103422e-10 1.91227151e-10 3.782650398e-10 2.262689432e-10 4.114770284e-10 3.657592859e-10 4.831523282e-10 3.431936316e-10 3.375268264e-10 3.223177446e-10 4.981261305e-10 2.675089547e-10 2.434076795e-10 3.500477224e-10 1.828590262e-10 2.938963993e-10 2.905122853e-10 4.172887562e-10 3.406564119e-10 3.869617711e-10 2.459689239e-10 2.190846255e-10 2.411823238e-10 2.636681465e-10 3.006203293e-10 4.460260201e-10 3.137163902e-10 2.586595378e-10 4.439339236e-10 2.363294333e-10 2.393991908e-10 4.387259785e-10 4.558846687e-10 1.863067072e-10 2.486642621e-10 2.431202649e-10 1.354333562e-10 2.114130703e-10 6.663333407e-11 1.680442661e-10 3.079570773e-10 1.358697471e-10 2.974885464e-10 2.420048776e-10 3.614197254e-10 1.792154679e-10 2.07058641e-10 3.128758368e-10 1.086724756e-10 1.601195226e-10 2.283693488e-10 2.727226581e-10 1.48537262e-10 2.697929476e-10 3.705888646e-10 2.32937777e-10 1.431855053e-10 3.8505078e-11 1.804555095e-10 2.182327367e-10 2.077060155e-10 3.190196926e-10 3.129418624e-10 2.378259516e-10 1.703569031e-10 3.797393806e-10 3.5109667e-10 3.12433613e-10 2.027114887e-10 2.617314385e-10 7.876885902e-11 1.78044202e-10 6.108314282e-11 5.474018524e-11 2.503203468e-11 3.168466421e-10 1.125077882e-10 +1.954645445e-10 1.642583023e-10 3.164491559e-10 3.270341046e-10 1.099795937e-10 1.852657364e-10 2.350344883e-10 6.786423714e-11 3.552537635e-10 3.606667915e-10 1.164599954e-10 1.788512114e-10 3.111898331e-10 2.265263522e-10 4.169500102e-10 4.122993845e-10 1.378238362e-10 1.138872148e-10 2.583020347e-10 1.594252566e-10 9.423046091e-11 4.087107119e-10 4.628879449e-11 1.764769373e-10 3.144960458e-10 1.417724497e-10 2.355312834e-10 2.076646383e-10 1.178510636e-10 1.264171691e-10 8.398230087e-11 3.300614284e-10 2.673371818e-10 1.399479832e-10 1.915771987e-10 1.298459591e-10 1.554389172e-10 2.264661726e-10 1.098539166e-10 1.158998578e-10 1.529526353e-10 1.823124818e-10 1.082358985e-10 4.752993951e-10 5.367826131e-10 2.125432665e-10 2.040842186e-10 2.485935285e-10 3.562768035e-10 2.569723474e-10 3.016214386e-10 1.797835603e-10 2.834549159e-10 4.349831332e-10 2.971413116e-10 2.427700452e-10 1.760449887e-10 2.923237236e-10 1.891999545e-10 5.147919738e-10 2.834485713e-10 2.082989693e-10 2.964218635e-10 3.820928456e-10 3.077253101e-10 3.586819424e-10 4.599907594e-10 3.250261709e-10 2.442604538e-10 3.153249244e-10 2.927180379e-10 4.41847077e-10 4.015272374e-10 2.072580881e-10 2.944556884e-10 4.816945318e-10 4.012546764e-10 1.161538193e-10 3.331404847e-10 5.303473229e-10 3.068313593e-10 5.423158034e-10 3.614165598e-10 5.243224352e-10 5.137975907e-10 6.677664116e-10 5.298957283e-10 5.342250829e-10 4.773373806e-10 4.445776748e-10 4.260509078e-10 4.297185144e-10 5.644918587e-10 2.584984047e-10 3.138254894e-10 2.32931941e-10 2.651436229e-10 3.085328289e-10 6.865804985e-10 6.506173171e-10 7.29009521e-10 7.594257234e-10 8.241302182e-10 6.908868968e-10 6.750193523e-10 5.301021233e-10 6.439313937e-10 7.099588472e-10 8.292419801e-10 6.680389867e-10 5.034094639e-10 5.528848044e-10 4.424627553e-10 5.602025561e-10 5.336015107e-10 3.838414646e-10 2.511034431e-10 1.426211263e-10 2.165578879e-10 1.993836747e-10 3.162726123e-10 5.511471766e-10 6.302172032e-10 5.365497567e-10 8.06231335e-10 1.018588967e-09 1.203207189e-09 8.288302436e-10 9.108777381e-10 6.812539665e-10 2.539463e-10 6.913629631e-11 1.263666708e-10 1.326386042e-10 1.639980819e-10 1.624397506e-10 1.650327596e-10 1.597596145e-10 1.26779521e-10 1.230524555e-10 1.697397505e-10 1.452847878e-10 1.044351462e-10 1.138860449e-10 1.516101284e-10 3.979347012e-15 1.053648427e-10 1.300416677e-10 2.234478763e-10 2.642463325e-15 1.619451392e-10 1.588864398e-10 2.253463674e-10 3.606695921e-19 2.748782919e-10 8.093368782e-11 6.55088599e-17 1.627373653e-10 1.381048648e-10 1.6561259e-10 1.320462311e-10 1.076795615e-10 1.454390319e-10 0 1.248413014e-10 1.427651251e-12 1.281700908e-10 1.81919149e-10 1.264364428e-10 2.104638313e-10 7.022598402e-10 1.008832622e-09 1.058564767e-09 9.874215642e-10 9.621249851e-10 7.354518578e-10 4.660462755e-10 4.928741496e-10 4.828921251e-10 4.343016132e-10 1.729203868e-10 6.200970007e-11 1.435616065e-10 1.800089923e-10 3.468917524e-10 5.413782375e-10 5.470343411e-10 5.425406858e-10 4.376547869e-10 5.395385264e-10 6.767576952e-10 8.845249352e-10 7.502439127e-10 7.035475296e-10 6.171897894e-10 8.725012233e-10 6.375982438e-10 5.183222504e-10 6.864766584e-10 7.095483564e-10 9.376581824e-10 3.176803663e-10 3.015285957e-10 3.408844885e-10 1.263823147e-10 2.838708228e-10 2.816198916e-10 4.18034905e-10 3.363898497e-10 3.71366706e-10 4.160618076e-10 3.691711422e-10 4.060362097e-10 5.886752901e-10 3.411306138e-10 4.216946073e-10 3.387440421e-10 4.350530452e-10 4.828450029e-10 3.589641187e-10 5.110474482e-10 4.248886484e-10 2.537101392e-10 5.050907535e-10 3.261175049e-10 2.044840721e-10 4.619536522e-10 1.722874523e-10 1.579671905e-10 1.488240413e-10 3.05941371e-10 3.201660682e-10 2.727182293e-10 3.602278079e-10 3.184883297e-10 2.274690725e-10 2.528202693e-10 3.84354901e-10 1.340410492e-10 1.935773671e-10 3.172373422e-10 3.411433221e-10 2.589552118e-10 2.493589527e-10 2.840604258e-10 3.310464333e-10 3.819182168e-10 5.35590133e-10 3.746838087e-10 2.563357248e-10 3.787851815e-10 5.759912642e-10 2.766955553e-10 2.521475906e-10 2.522928529e-10 2.624908803e-10 2.730885658e-10 3.588740223e-10 1.835903485e-10 1.937004124e-10 2.43705415e-10 1.362302533e-10 1.14215333e-10 2.852584169e-10 2.407130636e-10 1.494406104e-10 1.81625204e-10 1.898200833e-10 2.391497995e-10 1.806633919e-10 1.545136771e-10 1.014704802e-10 2.537540858e-10 1.562423507e-10 6.664138309e-11 2.276021793e-10 6.45849055e-11 1.862285514e-10 1.213233005e-10 2.775586917e-10 6.246278186e-11 1.55724493e-10 2.38618667e-10 1.799006361e-10 1.240504776e-10 1.218432189e-10 2.435809613e-10 9.473419013e-11 1.42806193e-10 2.321332259e-10 1.454181341e-10 2.844982028e-10 1.93222877e-10 2.025304148e-10 1.524208036e-10 2.298884007e-10 2.576974285e-10 2.611455081e-10 1.498410521e-10 1.034870009e-10 +1.480310489e-10 2.021334952e-10 4.745078036e-10 1.83514845e-10 4.411912241e-10 1.581358118e-10 1.34683049e-10 1.952760527e-10 2.653920633e-10 1.164279637e-10 2.938178212e-10 2.10364112e-10 1.781975221e-10 1.962881286e-10 9.528954128e-11 8.095534739e-11 1.179637794e-10 1.174385844e-10 1.165453505e-10 8.134050475e-11 1.874786331e-10 2.644539602e-10 2.38498888e-10 1.233045191e-10 3.650797742e-10 5.476573816e-11 2.871634362e-10 1.118674889e-10 1.593737975e-10 2.693450242e-10 1.31565695e-10 8.633323723e-11 2.973417514e-10 3.033211356e-10 1.619706091e-10 1.688807591e-10 3.760783997e-10 1.686598979e-10 9.504265824e-11 2.076332387e-10 1.70862635e-10 2.644233005e-10 3.011225119e-10 2.339053853e-10 3.863049749e-10 4.235392866e-10 1.871035461e-10 3.342694948e-10 2.543980376e-10 2.896654441e-10 2.182202586e-10 3.244318659e-10 3.862688515e-10 3.258498569e-10 3.88142684e-10 2.880812769e-10 2.473040704e-10 2.811284897e-10 3.376117793e-10 3.23279615e-10 1.568722198e-10 1.597758434e-10 2.156849908e-10 3.444778856e-10 2.849347812e-10 3.432605643e-10 2.672539577e-10 3.129997761e-10 3.539608175e-10 4.89340272e-10 3.579301931e-10 5.356766669e-10 3.88027356e-10 4.209271677e-10 3.06448343e-10 3.670999422e-10 4.842786192e-10 3.582943957e-10 3.196113635e-10 5.858107292e-10 5.940459131e-10 4.559204955e-10 5.062005472e-10 4.662219947e-10 5.670893186e-10 3.595291431e-10 4.460832565e-10 5.383969836e-10 4.719456531e-10 4.482736775e-10 4.158697311e-10 4.164583811e-10 3.988107464e-10 3.387784708e-10 2.606726065e-10 1.229555142e-10 1.120588616e-10 1.949411288e-10 2.01420789e-10 5.832554631e-10 5.163195808e-10 6.136419583e-10 6.934098363e-10 8.783360998e-10 8.317463173e-10 6.082680365e-10 4.384213259e-10 8.015200251e-10 7.011752834e-10 6.966911825e-10 6.533848753e-10 4.495588532e-10 5.179793919e-10 4.864760727e-10 4.140212584e-10 4.267940902e-10 1.812542625e-10 2.027614167e-10 1.919772508e-10 1.256838e-10 4.472144584e-10 5.935065157e-10 6.38502359e-10 6.243872155e-10 7.342718699e-10 9.541675295e-10 1.016151114e-09 9.040648898e-10 8.599917234e-10 6.204077284e-10 3.246161689e-10 1.914316452e-10 1.361311025e-10 7.981623053e-11 8.749463663e-11 9.533697594e-11 1.100302527e-10 1.523647124e-10 1.619739442e-10 1.359920431e-10 1.145243397e-10 1.210019659e-10 1.970363472e-10 1.258474674e-10 9.948374378e-13 1.305096854e-10 1.288296496e-10 2.042278443e-10 1.177336776e-10 1.753636551e-15 1.136464925e-10 2.382034454e-10 1.638432067e-10 1.22835348e-10 2.092811778e-10 1.140356199e-10 1.574896819e-10 1.611622858e-10 1.435058337e-10 1.121581675e-28 1.751105083e-10 1.74817733e-10 1.663592159e-10 1.37215219e-10 1.300778848e-10 1.05075932e-10 2.986782991e-14 1.683756268e-10 1.777579827e-10 3.640022534e-10 8.564993168e-10 8.039985841e-10 9.066894493e-10 9.152989345e-10 1.053963047e-09 5.671384396e-10 4.793285646e-10 5.239334728e-10 5.454516876e-10 3.370562769e-10 1.624469409e-10 8.183556909e-11 2.732810089e-10 2.586885645e-10 4.79277301e-10 5.440321965e-10 4.579189238e-10 5.352651314e-10 6.413954575e-10 5.835835663e-10 5.717929908e-10 8.72184269e-10 7.19512885e-10 6.20590002e-10 6.922660229e-10 5.232837508e-10 7.235797133e-10 7.545607724e-10 8.144354393e-10 5.896000447e-10 5.699394147e-10 1.943928931e-10 3.002524846e-10 2.31841021e-10 1.948409748e-10 2.00551805e-10 2.728520019e-10 3.025352647e-10 3.283314239e-10 3.213801656e-10 5.87855856e-10 4.343286709e-10 4.583639774e-10 5.447102074e-10 4.741754659e-10 4.629829911e-10 3.462030606e-10 4.655694922e-10 5.386733831e-10 4.373158726e-10 3.283562402e-10 3.45821055e-10 3.161913091e-10 4.367838578e-10 2.261053708e-10 2.53210463e-10 4.092083557e-10 4.027461299e-10 3.636119736e-10 3.243212118e-10 2.538653035e-10 3.200309027e-10 2.847487063e-10 2.399656372e-10 3.08158505e-10 3.360045356e-10 2.558736755e-10 2.696938519e-10 1.666731686e-10 4.020478587e-10 8.4084433e-11 3.067317616e-10 3.657782575e-10 2.111477924e-10 2.958339514e-10 2.301687847e-10 3.766686833e-10 3.193227173e-10 2.894813163e-10 4.686523001e-10 2.044534301e-10 2.550407492e-10 5.953612258e-10 2.402858082e-10 2.621054989e-10 3.269467478e-10 4.877784641e-10 1.800740304e-10 2.416083276e-10 2.644276506e-10 2.969569503e-10 1.794911225e-10 1.703586639e-10 1.316043533e-10 1.599721946e-10 2.426282081e-10 2.281388183e-10 1.175608553e-10 2.646084887e-10 1.650155678e-10 1.462442718e-10 1.895786029e-10 1.7292564e-10 1.15591734e-10 7.82359578e-11 3.118347889e-10 2.850335682e-10 1.034599082e-10 3.945450719e-10 1.325110579e-10 6.135240935e-11 1.778868198e-10 3.912658999e-10 3.42641616e-10 3.56404531e-10 2.481985362e-10 1.748046457e-10 1.532242766e-10 1.561066024e-10 1.830369734e-10 2.629586775e-10 1.657946429e-10 2.500974419e-10 1.271148844e-10 1.935793455e-10 1.197665438e-10 3.2763168e-10 2.496569598e-10 1.374604137e-10 2.778088363e-10 +1.187032673e-10 1.133844613e-10 3.053306776e-10 1.384826585e-10 1.777546819e-10 8.937581402e-11 1.547046589e-10 9.776111811e-11 1.803615215e-10 2.311024457e-10 1.609697038e-10 3.52897718e-10 2.556207737e-10 2.043861579e-10 1.220770308e-10 8.157279059e-11 2.08496138e-10 3.750298447e-10 4.658668328e-10 2.713139596e-10 2.342041251e-10 3.29011736e-10 3.169491671e-10 2.526513724e-10 8.927292783e-11 2.14915296e-10 1.071796984e-10 2.753220273e-10 1.591894242e-10 1.433005999e-10 1.088479732e-10 1.084723929e-10 1.762408808e-10 1.569646668e-10 1.124017845e-10 2.133945086e-10 1.810686055e-10 3.262001483e-10 1.263099144e-10 2.00312384e-10 2.586156583e-10 1.625415452e-10 2.290942985e-10 3.529680826e-10 4.544606756e-10 3.193432626e-10 2.343613926e-10 2.643267984e-10 2.746327757e-10 2.790237074e-10 3.707312091e-10 2.482786185e-10 3.874837214e-10 3.302796694e-10 3.401043479e-10 3.521245713e-10 4.02584763e-10 2.717244778e-10 3.716809917e-10 3.4194595e-10 3.708961455e-10 3.923862242e-10 2.298503096e-10 1.697995646e-10 3.492664352e-10 3.795514799e-10 3.543011036e-10 3.591473587e-10 2.574276523e-10 3.811670378e-10 3.77918314e-10 3.908397021e-10 2.729700723e-10 3.751383363e-10 4.413931742e-10 3.682882339e-10 3.137183693e-10 2.993284039e-10 3.585628517e-10 3.526141906e-10 5.481786058e-10 5.435738705e-10 5.738849175e-10 4.496055632e-10 4.142667019e-10 7.119576462e-10 5.421323953e-10 4.397324652e-10 4.414907114e-10 4.063004624e-10 3.253563378e-10 5.239666885e-10 2.667708655e-10 1.762548794e-10 3.541173484e-10 2.35908665e-10 3.285184351e-10 3.242849158e-10 2.595114413e-10 5.492042068e-10 5.373071606e-10 6.969345598e-10 7.246728478e-10 8.317025515e-10 9.108884377e-10 5.827585152e-10 6.685115886e-10 6.629586624e-10 8.428628337e-10 5.830404045e-10 6.060070994e-10 6.184115865e-10 3.92036888e-10 5.499052003e-10 5.90104424e-10 5.059019073e-10 2.242557592e-10 1.3009265e-10 1.666324728e-10 2.501813095e-10 4.213236027e-10 5.459268768e-10 6.007308924e-10 5.708524617e-10 5.478114713e-10 1.002830394e-09 1.107608407e-09 1.034204303e-09 9.561833624e-10 7.707443589e-10 4.270653265e-10 2.293803796e-10 2.168173387e-10 1.39734697e-10 1.864819551e-10 1.509586661e-10 1.341855704e-10 1.705389402e-10 1.621498072e-10 1.419915867e-10 1.202156782e-10 1.225735584e-10 1.519367331e-10 1.60852346e-10 6.818760158e-19 1.860340847e-10 1.663030636e-10 1.298045893e-10 1.481521273e-10 1.63402188e-10 2.10604739e-10 1.452078468e-10 1.028910403e-10 1.623111029e-10 1.138374484e-10 1.640938252e-10 2.124856066e-10 1.188358564e-10 1.964036307e-10 9.574032062e-11 3.892639381e-11 1.462341239e-10 1.032014022e-10 1.228562501e-10 1.79888165e-10 1.163433415e-10 1.881485595e-10 1.22939198e-10 1.886282597e-10 4.246555357e-10 6.793467263e-10 9.928656501e-10 8.704881659e-10 1.103646276e-09 8.828948575e-10 7.212484129e-10 5.836960923e-10 4.812799466e-10 5.066134114e-10 3.84644e-10 1.40078329e-10 1.421238817e-10 1.34899155e-10 1.947786683e-10 5.246636506e-10 4.305712319e-10 5.072229225e-10 5.12353398e-10 5.319150195e-10 5.7453686e-10 6.459224399e-10 8.094586479e-10 6.651443514e-10 5.837721072e-10 6.830258629e-10 7.160420765e-10 1.013071607e-09 7.04868973e-10 5.955642002e-10 4.467888375e-10 8.4297347e-10 2.041063557e-10 3.190846069e-10 1.91672249e-10 1.911540765e-10 2.891365688e-10 2.603652487e-10 4.375132623e-10 3.413278224e-10 4.327025386e-10 3.79187638e-10 3.728344915e-10 4.050057332e-10 3.195216139e-10 4.982129191e-10 2.597175793e-10 3.65077723e-10 5.825425681e-10 5.312022419e-10 4.928303922e-10 3.842707458e-10 3.906230438e-10 3.634246244e-10 4.504319575e-10 3.64637082e-10 2.307259459e-10 2.43043352e-10 1.762742251e-10 3.672902876e-10 4.332870302e-10 3.49086855e-10 3.787237362e-10 3.300975934e-10 3.438027377e-10 3.760955245e-10 2.987731486e-10 2.870325775e-10 2.565788886e-10 1.709248649e-10 4.174865123e-10 2.091234491e-10 4.809586869e-10 2.977754905e-10 1.653109687e-10 4.103594038e-10 2.893102461e-10 2.736994765e-10 2.754502204e-10 2.322826752e-10 3.047399121e-10 3.661323777e-10 2.308519425e-10 4.172371528e-10 2.813566249e-10 4.504603874e-10 2.646566656e-10 2.095671526e-10 3.48353156e-10 2.078497554e-10 1.967445129e-10 1.346752188e-10 3.089432792e-10 1.176820939e-10 1.614427734e-10 2.383803255e-10 1.646632414e-10 1.678998768e-10 1.267579099e-10 3.881071537e-10 1.682093143e-10 2.005502992e-10 1.406646567e-10 1.015203254e-10 3.59922834e-10 1.261998983e-10 1.523924844e-10 1.878912076e-10 1.623062552e-10 3.124765772e-10 1.211351132e-10 1.071189533e-10 2.691584275e-10 1.00861384e-10 1.908792527e-10 1.981225743e-10 9.91192598e-11 3.675628774e-10 2.61108367e-10 1.65473317e-10 8.736875788e-11 1.231030849e-10 1.238491265e-10 3.044300214e-10 8.911058428e-11 2.455414407e-10 2.966697942e-10 1.12795812e-10 5.404955867e-11 2.814566812e-10 1.486445211e-10 +1.638833335e-10 3.491900663e-10 1.393749057e-10 3.218633742e-10 2.179292003e-10 8.088254858e-11 4.898995772e-10 2.733901301e-10 1.782139348e-10 1.292993534e-10 2.451021443e-10 3.339267896e-10 8.666209263e-11 1.132268648e-10 9.610661799e-11 4.246056078e-10 1.241280646e-10 1.408740307e-10 1.107224134e-10 4.068559285e-10 4.473873851e-10 3.030607223e-10 1.769247307e-10 3.962427995e-10 1.27744514e-10 1.210469759e-10 1.468282559e-10 3.204046471e-10 2.102407157e-10 1.658671412e-10 1.520821572e-10 2.127508292e-10 1.730361504e-10 2.065096703e-10 1.150523845e-10 1.548611612e-10 2.563029504e-10 9.34001498e-11 6.507987724e-11 3.29682913e-10 2.698901862e-10 1.974479108e-10 5.506624906e-10 3.39108027e-10 4.8147736e-10 2.89137852e-10 3.830559614e-10 3.089256698e-10 2.936865297e-10 2.213877959e-10 2.908497277e-10 3.624552301e-10 3.148573603e-10 1.469519961e-10 3.822971507e-10 3.356522846e-10 2.217865608e-10 3.659970784e-10 2.913079862e-10 5.491177996e-10 8.341862996e-11 1.397160818e-10 2.279624076e-10 3.738755449e-10 2.988591338e-10 4.472884008e-10 3.857784519e-10 2.133330848e-10 3.225660321e-10 3.18940231e-10 3.63564261e-10 2.919223764e-10 2.257707644e-10 2.748681214e-10 3.95083394e-10 1.568560785e-10 3.086013017e-10 2.540973173e-10 4.77394599e-10 3.191879511e-10 5.924352748e-10 5.182432535e-10 5.566161691e-10 3.743478639e-10 5.683367759e-10 4.460221197e-10 3.707613207e-10 4.035565338e-10 3.148693066e-10 2.44638597e-10 2.59834585e-10 3.864943794e-10 4.184325139e-10 3.174816319e-10 3.708824536e-10 2.154716531e-10 2.467836428e-10 3.458668991e-10 2.420322083e-10 5.958618642e-10 5.495228178e-10 8.000907038e-10 6.875107991e-10 6.66322359e-10 7.105043832e-10 5.52892514e-10 5.973092487e-10 6.117000061e-10 7.537293904e-10 6.158524306e-10 6.090597679e-10 5.066567407e-10 5.461432676e-10 4.699453643e-10 5.578548456e-10 2.986424188e-10 3.110776961e-10 9.361405593e-11 1.200409995e-13 1.440910211e-10 2.148233236e-10 5.115883617e-10 5.022947175e-10 5.805122654e-10 5.679627777e-10 9.804980793e-10 1.080203578e-09 1.049274212e-09 9.548075986e-10 8.599377675e-10 5.715804657e-10 2.027812638e-13 1.576282674e-10 1.151593431e-10 1.172009406e-10 1.212238832e-10 1.155547599e-10 1.348584085e-10 1.755456153e-10 1.24360506e-10 8.721726372e-11 9.712941917e-11 1.476267334e-10 1.320683547e-10 6.580480452e-19 1.560869202e-10 1.075610684e-10 1.467650831e-10 1.660147713e-10 1.557141626e-10 2.137326824e-10 9.671474864e-11 1.093159138e-10 1.263108175e-10 1.306707205e-10 1.61948064e-10 1.187970949e-10 5.22872517e-11 7.32703968e-11 9.567393448e-11 1.650145256e-10 9.849243931e-11 1.569523013e-10 1.928740498e-10 1.098079208e-10 7.518659771e-11 1.26465085e-10 1.720726278e-10 1.351930737e-10 5.559956705e-10 6.857794852e-10 1.047174146e-09 9.744468186e-10 9.835226836e-10 9.471051695e-10 6.471832166e-10 5.797256069e-10 5.99352e-10 6.048740227e-10 3.2804533e-10 9.683994123e-11 1.355262737e-10 2.175388394e-10 1.864017813e-10 2.634872998e-10 4.8303915e-10 5.883935981e-10 5.602878424e-10 6.233636705e-10 5.571300814e-10 5.377650768e-10 6.811055811e-10 8.727631452e-10 6.209510893e-10 6.558746798e-10 5.28442077e-10 5.306524379e-10 4.741104025e-10 8.797648045e-10 4.24446968e-10 5.911786411e-10 2.714883436e-10 2.824406915e-10 1.591677951e-10 2.98005421e-10 3.894681158e-10 4.479258743e-10 3.970830927e-10 4.568381284e-10 3.737496606e-10 3.565363277e-10 3.164408978e-10 4.966746324e-10 3.783129269e-10 4.425057294e-10 5.251416512e-10 5.056941504e-10 6.539433393e-10 4.588142804e-10 4.796168066e-10 3.709382612e-10 4.755066609e-10 4.474922052e-10 1.579943199e-10 4.332555995e-10 2.613575365e-10 3.207273353e-10 2.232584692e-10 3.757643491e-10 5.537808465e-10 3.034194831e-10 4.256196015e-10 3.453053799e-10 2.919284203e-10 3.012799537e-10 5.178855397e-10 3.100370135e-10 3.70006675e-10 2.132671715e-10 2.713287665e-10 2.318878676e-10 3.364931999e-10 2.774352292e-10 2.76841941e-10 3.767528549e-10 2.563316543e-10 3.391133832e-10 4.241107163e-10 2.293873406e-10 2.043748249e-10 4.753750085e-10 2.836120123e-10 3.67327799e-10 3.032759525e-10 3.799726323e-10 3.276877833e-10 3.386705856e-10 2.231720278e-10 1.14234946e-10 2.164778515e-10 1.711176872e-10 1.138926135e-10 1.944488485e-10 2.826565142e-10 2.056557983e-10 1.557704119e-10 2.220698389e-10 2.551861297e-10 1.760891806e-10 2.546928242e-10 2.82244224e-10 1.989338869e-10 2.057720654e-10 1.657429939e-10 1.420624613e-10 1.322890849e-10 1.024628591e-10 1.567153709e-10 2.612206047e-10 2.121340164e-10 1.823675603e-10 4.324658799e-11 2.18460068e-10 3.663905077e-10 4.221494058e-10 4.158661646e-10 3.399720699e-10 1.538222602e-10 1.374862224e-10 3.074390487e-10 3.273025299e-10 2.626636727e-10 1.665825943e-10 1.527488315e-10 1.592780825e-10 1.574679246e-10 1.503518259e-10 2.378358315e-10 2.256242005e-10 2.492082883e-10 +2.532437259e-10 1.24514664e-10 3.238813539e-10 2.585927571e-10 2.265391911e-10 3.858573232e-10 1.484440015e-10 7.896911741e-11 2.130973632e-10 1.364672096e-10 4.1118921e-10 1.121315991e-10 2.045942717e-10 3.281839647e-10 2.73314227e-10 4.365160159e-10 1.371523134e-10 2.821409806e-10 1.193380067e-10 3.438673973e-10 3.452347116e-10 1.082792146e-10 3.128905418e-10 2.224690537e-10 2.307053133e-10 1.437834977e-10 4.178644703e-10 3.04247594e-10 1.11351e-10 2.602828477e-10 3.078939683e-10 1.16936412e-10 1.41299035e-10 2.618306514e-10 1.872045727e-10 1.952082246e-10 2.497311487e-10 1.168588563e-10 3.127098007e-10 3.691246817e-10 2.429222619e-10 3.524660369e-10 3.965323553e-10 5.231436912e-10 2.830936774e-10 2.454188214e-10 4.039507124e-10 2.628444106e-10 2.378533021e-10 3.106464928e-10 3.624967062e-10 2.615271595e-10 2.755216617e-10 4.479319518e-10 2.373666826e-10 2.336925781e-10 4.794351654e-10 2.063991252e-10 3.354110166e-10 2.615766223e-10 3.270964182e-10 1.467905675e-10 3.554345222e-10 2.209041692e-10 2.541817311e-10 3.173456226e-10 2.672905118e-10 5.019988648e-10 2.980609929e-10 4.040853823e-10 2.841751749e-10 3.153677497e-10 3.169365578e-10 4.285825443e-10 2.964717605e-10 2.693596784e-10 3.231048661e-10 3.31299535e-10 3.421608052e-10 6.91994832e-10 4.055497594e-10 7.294472269e-10 5.67918985e-10 4.509571915e-10 5.76270497e-10 3.705547509e-10 5.458918116e-10 4.759405209e-10 4.241618094e-10 4.098258686e-10 4.324129861e-10 2.928162896e-10 3.005603499e-10 3.283436391e-10 2.862559463e-10 2.704019327e-10 1.751786867e-10 2.482195429e-10 3.46789466e-10 3.215353244e-10 6.684100077e-10 5.285501255e-10 6.799154155e-10 7.195832985e-10 7.052657855e-10 6.780883639e-10 6.761339381e-10 6.801408375e-10 7.614291946e-10 5.98609691e-10 4.715691247e-10 4.858929169e-10 5.903082892e-10 5.013362637e-10 3.462932001e-10 4.929814902e-10 2.323927839e-10 1.347355707e-10 1.184772669e-10 4.422460642e-11 3.162197597e-10 3.871995177e-10 5.277209239e-10 5.567080716e-10 6.067579122e-10 9.754422735e-10 1.113540939e-09 9.210189612e-10 9.539190656e-10 9.640253239e-10 4.785706051e-10 1.532715145e-10 9.41738223e-11 1.615795103e-10 1.737725242e-10 0 1.599301515e-10 1.015957559e-11 1.489136994e-10 1.507113461e-10 6.566139439e-27 0 1.707725338e-10 1.438786516e-10 1.463651978e-10 1.82135231e-10 1.449206288e-10 4.169035425e-11 3.594736899e-11 9.699433299e-11 0 1.17755614e-10 1.468657774e-10 7.782877311e-11 3.554597273e-16 1.158804606e-10 1.554988789e-10 1.218061057e-10 7.513847665e-12 1.845439681e-10 1.536764564e-10 9.983298547e-11 7.845582789e-11 1.656966525e-10 1.529174451e-10 8.243737716e-11 1.024695488e-10 1.248536372e-10 1.675073464e-10 4.98953996e-10 1.003167784e-09 9.431261551e-10 1.037081163e-09 1.104641663e-09 8.627928897e-10 5.696802544e-10 6.399637238e-10 6.539871717e-10 5.783368759e-10 1.831486748e-10 1.737873625e-10 1.570162149e-10 1.975716264e-10 2.571606162e-10 5.042217119e-10 4.153385182e-10 4.326444451e-10 4.324893132e-10 5.306317104e-10 5.049236905e-10 5.992223513e-10 7.850158542e-10 6.91384063e-10 6.61832415e-10 6.280001112e-10 7.219391557e-10 6.936893025e-10 7.147159845e-10 8.14072279e-10 7.933340045e-10 5.922629685e-10 2.396618782e-10 2.005069714e-10 1.980217182e-10 1.205010999e-10 3.369104789e-10 3.656416102e-10 4.376800092e-10 3.722200911e-10 4.2900581e-10 3.489660474e-10 5.213372152e-10 4.250048967e-10 5.084498603e-10 4.48293877e-10 4.248763988e-10 5.179477877e-10 6.681831378e-10 5.97488358e-10 3.870216393e-10 3.762040673e-10 5.694470155e-10 4.204390109e-10 2.266280854e-10 4.063965557e-10 1.990529089e-10 3.143807139e-10 2.139307982e-10 2.776545294e-10 2.610819979e-10 2.66377359e-10 3.164857971e-10 3.060408761e-10 2.916734267e-10 2.579904876e-10 3.365872786e-10 3.614901934e-10 3.186198604e-10 2.459462274e-10 3.355663826e-10 3.794953026e-10 2.236089281e-10 1.739663026e-10 2.872908564e-10 2.094681617e-10 3.821491727e-10 4.582534911e-10 4.937260612e-10 3.283101085e-10 2.575327862e-10 2.671267705e-10 2.774803414e-10 2.32810053e-10 4.535713239e-10 2.984745974e-10 3.45770392e-10 2.819525765e-10 3.263946752e-10 2.945369721e-10 2.069417844e-10 3.255613705e-10 2.461159787e-10 1.365771294e-10 4.934523765e-10 2.157569337e-10 1.707408842e-10 1.414728551e-10 3.601609065e-10 1.538332232e-10 5.668777749e-10 1.51364017e-10 2.072998496e-10 2.608604239e-10 8.876345742e-11 1.1726072e-10 3.770669077e-10 3.740921299e-10 1.13332778e-10 1.032298021e-10 1.664322821e-10 3.34372126e-10 1.38165993e-10 1.330549409e-10 3.210243457e-10 1.677858546e-10 1.43459045e-10 1.300011218e-10 1.966701011e-10 1.530571347e-10 1.500015365e-10 1.595618336e-10 1.541298198e-10 8.51910606e-11 1.89856408e-10 1.05019059e-10 6.762562952e-11 1.217035077e-10 9.132101979e-11 2.318534747e-10 2.485312062e-10 +3.352565497e-10 4.501964395e-10 1.0814654e-10 1.981645872e-10 2.212867431e-10 2.534689891e-10 2.116998774e-10 1.76774635e-10 1.586645173e-10 3.418547886e-10 2.58823249e-10 2.866677532e-10 1.291682727e-10 7.471675087e-11 1.33111995e-10 1.169769399e-10 2.480206367e-10 2.133031251e-10 2.001538339e-10 9.691321745e-11 1.673979322e-10 3.449378012e-10 2.320211663e-10 1.120328642e-10 1.395632023e-10 1.603494675e-10 1.402744825e-10 1.373079521e-10 1.75503348e-10 8.493419883e-11 2.63769219e-10 1.823051048e-10 1.633720168e-10 2.324140265e-10 1.525519341e-10 2.027918715e-10 1.814021425e-10 1.47419234e-10 9.425791525e-11 1.951185382e-10 1.588338229e-10 1.752980909e-10 1.494924877e-10 2.344813367e-10 1.927008739e-10 2.741934498e-10 2.6891597e-10 3.399373663e-10 2.820277678e-10 5.248714041e-10 2.043009592e-10 2.926732703e-10 2.449473203e-10 2.836652079e-10 2.348887817e-10 2.424623587e-10 3.128451326e-10 4.016233315e-10 3.304585092e-10 3.562421557e-10 2.403749575e-10 3.200312696e-10 2.961535395e-10 4.825410704e-10 3.207318472e-10 4.419374e-10 3.844006955e-10 2.089478276e-10 3.208213636e-10 2.431758944e-10 3.948968712e-10 3.038982227e-10 3.119622926e-10 3.739647567e-10 3.710494906e-10 2.858242128e-10 2.727526977e-10 2.793477003e-10 2.850435847e-10 3.875992249e-10 5.063395276e-10 4.60804355e-10 5.527087474e-10 6.36973498e-10 5.801676898e-10 3.70786772e-10 4.912080799e-10 6.545630211e-10 3.833818132e-10 3.197713822e-10 3.671612934e-10 4.769418539e-10 4.185901286e-10 3.670415949e-10 2.569327615e-10 1.258480944e-10 1.145431481e-10 3.261467386e-10 2.66432269e-10 5.143033854e-10 6.337020831e-10 5.889739298e-10 6.899283484e-10 5.861801165e-10 7.985402595e-10 6.114877845e-10 6.678312353e-10 6.417866532e-10 7.814832282e-10 7.245666813e-10 6.630334589e-10 5.41767997e-10 4.579711882e-10 5.434139705e-10 3.503650069e-10 2.346759315e-10 2.132007371e-10 1.362775994e-10 9.102769943e-11 2.995592105e-10 1.142765141e-10 4.366541074e-10 6.053371998e-10 5.946732787e-10 6.724964748e-10 9.705745455e-10 1.007629526e-09 1.135153944e-09 8.070771504e-10 9.150656432e-10 4.701918831e-10 1.914576249e-10 7.664478537e-11 1.732493628e-10 1.24209972e-10 1.42166984e-10 1.233745445e-10 1.78161783e-10 1.608197305e-10 4.362117722e-11 1.669446644e-10 8.642841488e-12 2.192227089e-10 9.565753247e-11 1.453315014e-10 1.258168891e-10 7.359555051e-11 9.141012174e-11 1.516640141e-10 1.805609923e-10 1.211960705e-10 1.615601087e-10 1.086178412e-10 1.472946013e-10 1.236110973e-10 1.823350137e-10 1.428545975e-10 1.723604614e-10 1.543415091e-10 1.444697664e-10 5.159919252e-13 1.619160814e-10 1.034381438e-10 1.252292029e-10 2.014557e-10 1.697474322e-10 1.612935893e-10 1.692861374e-10 1.266373276e-10 6.931467895e-10 9.605377121e-10 9.100394196e-10 8.314595713e-10 9.394950459e-10 1.045467591e-09 6.392131427e-10 5.233617439e-10 5.419469882e-10 5.282844522e-10 2.375956755e-10 2.04746309e-10 2.231020687e-10 4.523137195e-11 3.49037797e-10 4.316741317e-10 4.953429394e-10 4.266242456e-10 5.084236398e-10 3.514727817e-10 5.746874583e-10 6.907919354e-10 8.054461362e-10 5.857610659e-10 7.964165111e-10 5.617120579e-10 5.861506392e-10 5.330532386e-10 6.051191503e-10 6.864738338e-10 6.181233473e-10 5.530063169e-10 1.843647109e-10 3.812583928e-10 1.884543286e-10 1.579729719e-10 2.386201591e-10 4.272893911e-10 1.955143784e-10 3.050379655e-10 4.355315012e-10 4.32156651e-10 4.641461306e-10 3.455378843e-10 5.115785972e-10 4.813597867e-10 3.522620208e-10 5.668627633e-10 4.567608867e-10 4.325659515e-10 4.484992614e-10 5.630733038e-10 6.030393169e-10 4.021029742e-10 3.035148134e-10 4.196062146e-10 2.402363039e-10 3.442504584e-10 2.099631483e-10 2.073139013e-10 3.588599553e-10 3.55546233e-10 2.852992495e-10 2.526991944e-10 1.120074989e-10 4.164742618e-10 2.114297542e-10 2.613566814e-10 2.84264983e-10 1.933940936e-10 2.508285207e-10 3.317894385e-10 1.791778081e-10 3.642443837e-10 2.40190395e-10 4.979974281e-10 3.159871094e-10 3.581311914e-10 2.108771929e-10 3.586176516e-10 1.908867378e-10 2.75006825e-10 2.600224923e-10 3.675640147e-10 3.336367348e-10 2.191836362e-10 3.456512663e-10 2.308900277e-10 4.076471652e-10 1.61927605e-10 2.257886606e-10 3.644512941e-10 3.110207625e-10 2.738144309e-10 1.065227048e-10 2.735326944e-10 1.051726282e-10 1.198481602e-10 1.387400426e-10 1.207901418e-10 3.898364505e-10 1.041132141e-10 1.576962634e-10 2.895510834e-10 1.705565495e-10 9.636704698e-11 4.802213362e-11 4.294153491e-10 2.010678236e-10 1.004400847e-10 4.506190165e-10 1.579608388e-10 1.514589233e-10 1.444758021e-10 9.008227864e-11 3.481197393e-10 2.524044548e-10 1.606781034e-10 1.810480855e-10 2.310575157e-10 1.807324961e-10 1.555041789e-10 4.312504993e-10 3.575977442e-10 3.274734654e-10 2.121208966e-10 1.518241089e-10 1.977641991e-10 1.910379992e-10 2.905300354e-10 1.641180364e-10 +4.311578392e-11 3.619921911e-10 1.180518892e-10 1.16392902e-10 2.015398934e-10 1.671536389e-10 1.203872451e-10 1.812053614e-10 2.50956725e-10 3.870051634e-10 2.110898239e-10 4.795300184e-10 5.391360333e-11 1.455220187e-10 1.315291621e-10 1.391712172e-10 3.155140665e-10 2.216845942e-10 1.493364705e-10 4.036630164e-10 3.396816829e-10 2.471156874e-10 3.160640819e-10 4.182456435e-10 1.032233296e-10 1.195409657e-10 2.663601667e-10 3.439826864e-10 4.310710402e-10 1.444854306e-10 1.744050676e-10 2.773490411e-10 1.097897717e-10 3.269911227e-10 2.20283746e-10 2.657132578e-10 9.781424434e-11 6.741811274e-11 2.971023773e-10 2.165300812e-10 1.419147926e-10 2.269623244e-10 2.384721705e-10 3.863924794e-10 2.375704291e-10 4.471711021e-10 4.734167586e-10 2.588954668e-10 2.761659419e-10 2.465457776e-10 3.838563522e-10 3.720306348e-10 3.541754814e-10 2.803280155e-10 3.345953322e-10 2.59279922e-10 3.04188268e-10 2.192238878e-10 2.453010818e-10 3.284931416e-10 1.597681449e-10 3.257301824e-10 2.828340692e-10 2.890684714e-10 4.037596501e-10 2.212906318e-10 2.215970134e-10 2.783880241e-10 2.216625756e-10 2.494909515e-10 3.898010575e-10 2.407456271e-10 2.853716112e-10 2.844197385e-10 3.349111133e-10 3.392042521e-10 3.589947594e-10 3.190084513e-10 3.794835126e-10 4.820959136e-10 5.402530419e-10 4.940836362e-10 5.570268727e-10 3.119380156e-10 3.538229775e-10 3.63393767e-10 4.448020104e-10 5.197032944e-10 4.798489175e-10 5.523593861e-10 3.919596484e-10 2.427895525e-10 5.039089787e-10 3.017418064e-10 2.642147551e-10 2.273743587e-10 2.188486139e-10 3.05115095e-10 2.238336958e-10 5.540990833e-10 8.193899397e-10 7.72204751e-10 4.63618523e-10 1.020976026e-09 8.006708588e-10 3.817379762e-10 5.11827042e-10 5.828756465e-10 8.196381881e-10 7.240799192e-10 6.150980225e-10 6.128000952e-10 4.381533472e-10 4.561010421e-10 5.532919115e-10 3.658591802e-10 2.831405864e-10 1.487331313e-10 5.839949966e-11 1.904185791e-10 2.107732796e-10 5.029679001e-10 6.493201429e-10 5.130501641e-10 4.638561227e-10 8.433811956e-10 1.143017705e-09 1.065035984e-09 9.991534171e-10 8.221462422e-10 5.785021403e-10 2.918562681e-10 1.750137078e-10 1.879102846e-10 1.413810637e-10 2.18891119e-10 1.574620578e-10 1.29411471e-10 1.664102938e-10 1.973234519e-10 1.59059761e-10 7.399737789e-11 1.502366481e-10 9.559685719e-11 1.669811022e-10 1.202844853e-10 1.405639993e-10 1.839618407e-10 1.581101421e-10 1.14203665e-10 1.211930394e-10 2.008738498e-10 1.232827591e-10 1.093875112e-10 1.035655489e-10 1.492976716e-10 1.098939488e-10 2.612003604e-10 1.583347901e-10 1.215672557e-10 1.659263132e-10 1.164100376e-10 1.387346072e-10 8.773282571e-23 1.184157855e-10 1.262886666e-10 1.117547669e-10 1.153662016e-10 2.802244607e-10 7.352843291e-10 9.392036571e-10 7.879857233e-10 1.030602594e-09 1.145198602e-09 9.856538076e-10 6.266362191e-10 5.466292919e-10 3.401482684e-10 6.139110719e-10 2.995436775e-10 2.548123171e-10 1.255318229e-10 7.872073018e-11 2.719825198e-10 5.443013462e-10 5.107081614e-10 5.288027468e-10 5.617069313e-10 5.11801411e-10 5.793928164e-10 7.378499637e-10 8.888287236e-10 5.161545593e-10 5.168095603e-10 6.998266673e-10 7.251705957e-10 6.665947386e-10 9.191837821e-10 6.584224425e-10 5.917300169e-10 6.374050453e-10 2.485845074e-10 2.546116578e-10 3.46821071e-10 2.873309596e-10 2.814755824e-10 3.244155185e-10 2.387549642e-10 3.669963004e-10 4.232769621e-10 2.906770141e-10 5.462641583e-10 5.351925247e-10 5.282199123e-10 3.189112287e-10 4.840358602e-10 3.824492917e-10 6.813624982e-10 4.447355492e-10 4.516241959e-10 2.498720688e-10 3.283069775e-10 2.631624744e-10 1.811303712e-10 5.057325646e-10 2.771915785e-10 3.784646654e-10 3.352387375e-10 4.845105982e-10 3.686630879e-10 3.655480055e-10 4.222398723e-10 1.893283694e-10 3.122489346e-10 4.337002387e-10 4.408667365e-10 5.292073607e-10 4.331137299e-10 3.126699434e-10 1.274092606e-10 2.403998832e-10 3.051376611e-10 4.192572657e-10 1.794672056e-10 1.81251157e-10 2.015693988e-10 4.383435492e-10 5.094793027e-10 2.674037457e-10 5.486526126e-10 2.639700815e-10 4.794728636e-10 2.886302337e-10 5.578028611e-10 4.656684006e-10 1.778474773e-10 2.515257306e-10 1.200190869e-10 2.50797975e-10 1.499473727e-10 3.545662044e-10 1.581819059e-10 1.951232961e-10 1.857289971e-10 2.971560471e-10 2.994084117e-10 2.599903565e-10 2.1081615e-10 1.199379607e-10 1.739054371e-10 3.097555391e-10 2.357360865e-10 1.546283374e-10 3.689909702e-10 3.694387619e-10 1.717948661e-10 6.658299948e-11 1.588154497e-10 1.148573315e-10 2.142348171e-10 2.462736375e-10 2.311310891e-10 2.261893385e-10 4.049909174e-10 2.356952821e-10 2.447408282e-10 1.504160714e-10 2.891840385e-10 1.097743762e-10 3.011866814e-10 1.353467474e-10 2.118044949e-10 1.978644698e-10 2.150998277e-10 3.242653213e-10 1.833661685e-10 1.103696265e-10 1.795877593e-10 1.376340289e-10 2.299173555e-10 +2.519569309e-10 1.713682782e-10 2.31711692e-10 2.386808129e-10 8.031774945e-11 1.327993419e-10 6.413627335e-11 2.942649225e-10 2.125000466e-10 3.666147504e-10 1.467793117e-10 3.245203111e-10 1.627426731e-10 4.756327103e-10 1.348648034e-10 3.456779254e-10 1.048241219e-10 1.785070986e-10 3.269555802e-10 7.542007874e-11 2.336884676e-10 1.883919622e-10 2.549409873e-10 4.072585714e-10 1.086235393e-10 2.405626529e-10 1.513102152e-10 1.632329666e-10 1.489058989e-10 2.276124673e-10 1.283146705e-10 2.256561987e-10 3.043599695e-10 3.906911178e-10 1.980407725e-10 2.444418521e-10 1.730583232e-10 2.897366463e-10 1.907823743e-10 1.780999406e-10 2.841898645e-10 1.701997214e-10 3.847342692e-10 2.506845498e-10 2.91525055e-10 2.709116248e-10 4.251363623e-10 1.886522964e-10 2.879886667e-10 2.435485307e-10 2.490561333e-10 2.125522322e-10 3.613328402e-10 3.55775189e-10 4.08863851e-10 3.433437381e-10 2.813823759e-10 2.449614092e-10 2.244605631e-10 3.459026346e-10 3.894294374e-10 1.946510591e-10 4.173950178e-10 2.346096731e-10 4.14401084e-10 3.682496562e-10 2.561642746e-10 3.302557896e-10 2.404027587e-10 2.825168308e-10 4.135907977e-10 2.510323288e-10 3.323215944e-10 5.153476224e-10 4.272347534e-10 3.321552399e-10 2.667047796e-10 3.517428907e-10 2.154169749e-10 4.688864877e-10 5.198290064e-10 4.912530936e-10 5.14046979e-10 6.265109211e-10 4.373778389e-10 4.302183537e-10 7.100770967e-10 3.917905762e-10 2.64319606e-10 3.81374509e-10 3.247927785e-10 2.903471083e-10 3.748387499e-10 4.408699333e-10 4.458418092e-10 2.830661758e-10 1.70989713e-10 2.810308547e-10 4.192139963e-10 4.001937262e-10 7.312543738e-10 4.669441449e-10 9.370533025e-10 5.907711148e-10 6.718985308e-10 5.559187041e-10 8.479520539e-10 5.510770651e-10 7.959576999e-10 5.233374115e-10 3.798270479e-10 5.369584994e-10 4.927264922e-10 5.437728015e-10 4.141967312e-10 4.371606065e-10 1.920878827e-10 1.006870707e-10 1.408033263e-10 1.254940023e-10 9.183643703e-11 3.488540635e-10 5.203233515e-10 5.231534319e-10 5.26349235e-10 8.881619256e-10 1.103516223e-09 1.004485674e-09 8.447971802e-10 9.319667581e-10 7.89987644e-10 3.367098407e-10 1.781785849e-10 0 8.664767491e-13 1.819598724e-10 4.019182203e-16 1.011074005e-10 1.23902561e-10 1.399583005e-10 1.199025055e-10 1.510561315e-10 1.71291624e-10 1.331926011e-10 2.981934971e-12 5.335955376e-13 1.703623975e-10 1.685882066e-10 1.785915275e-10 1.405294149e-10 1.629450477e-10 1.344684775e-10 1.793506921e-10 1.306742893e-10 1.426279706e-10 1.746228831e-10 1.045491389e-10 1.043425589e-10 1.84227464e-10 0 8.905107583e-11 7.424933409e-11 1.212892113e-10 1.402383725e-10 1.255943991e-10 2.090366794e-10 1.734502069e-10 9.722355049e-11 3.54266201e-10 7.597249985e-10 8.572632588e-10 9.633252669e-10 8.85366296e-10 1.068840446e-09 8.129893181e-10 6.015900477e-10 5.59427168e-10 5.728858406e-10 5.178811405e-10 1.685181744e-10 9.111797941e-34 2.690190486e-10 8.216017504e-11 1.636376152e-10 4.529903476e-10 4.943653864e-10 4.418034217e-10 5.283494227e-10 4.858638547e-10 5.78258998e-10 6.154327406e-10 7.032837907e-10 6.807366657e-10 6.848004585e-10 6.147877499e-10 7.260279403e-10 5.583447452e-10 7.478877143e-10 6.076062651e-10 9.198740992e-10 4.012039555e-10 2.295584367e-10 2.396860173e-10 8.907521077e-11 2.140180902e-10 2.529686423e-10 2.642289819e-10 3.124634586e-10 4.390175987e-10 4.181990906e-10 3.629504312e-10 3.66121527e-10 3.340044074e-10 4.242399377e-10 3.339586974e-10 4.257482519e-10 4.747823263e-10 4.867385357e-10 5.216384349e-10 3.533177708e-10 5.325916017e-10 5.296533729e-10 3.216544789e-10 3.597364846e-10 2.96072638e-10 1.776417667e-10 3.213381274e-10 2.599771885e-10 5.101802388e-10 2.741548184e-10 3.748423012e-10 4.724989396e-10 3.129995468e-10 3.575553431e-10 3.422856312e-10 3.158851996e-10 2.954323728e-10 1.471924787e-10 3.148812454e-10 2.235308018e-10 4.679326804e-10 1.560679578e-10 4.125794694e-10 1.83572631e-10 2.192017051e-10 2.775357224e-10 2.396110009e-10 2.812215839e-10 4.125461695e-10 2.520241904e-10 2.866749664e-10 2.266031777e-10 3.210781686e-10 5.020330207e-10 3.505237747e-10 3.125149414e-10 3.921081837e-10 2.614193643e-10 4.691998107e-10 1.914504215e-10 1.874655803e-10 2.037912773e-10 1.2157281e-10 2.945782622e-10 2.698185425e-10 2.632824401e-10 1.266284388e-10 2.778688924e-10 4.338094897e-10 1.50123768e-10 3.780596392e-10 9.165104923e-11 2.055071203e-10 1.097541165e-10 1.14277457e-10 8.851928083e-11 6.45335114e-11 2.677137652e-10 2.064653711e-10 3.357709365e-10 2.502914434e-10 2.360135088e-10 7.997458462e-11 1.629289863e-10 3.463505263e-10 1.88266606e-10 2.356571285e-10 8.76463187e-11 1.40390127e-10 1.566723569e-10 2.968257379e-10 7.783755679e-11 1.1496273e-10 1.651143401e-10 2.066993711e-10 2.204035761e-10 3.896642117e-10 1.240348642e-10 1.933496451e-10 4.345046856e-10 +4.289780508e-10 1.381234378e-10 3.533142719e-10 3.469384831e-10 2.200204483e-10 3.222617824e-10 2.617283983e-10 3.428731192e-10 5.480314649e-11 9.768819528e-11 1.375008756e-10 2.727080064e-10 2.751654932e-10 3.764398318e-10 4.3960213e-10 1.442015777e-10 1.385104779e-10 1.736418889e-10 5.981704396e-11 2.370705431e-10 1.450930011e-10 1.437003919e-10 2.261699209e-10 1.676800141e-10 3.378568802e-10 1.155478536e-10 2.028523601e-10 3.745705524e-10 3.170718628e-10 8.032325624e-11 1.52315511e-10 1.833700043e-10 2.31079831e-10 2.872227492e-10 1.758351372e-10 1.675241175e-10 1.705135748e-10 2.722451472e-10 1.451697362e-10 3.80818659e-10 2.401360487e-10 1.463241449e-10 2.723924038e-10 3.849384788e-10 3.765198162e-10 4.414729654e-10 2.461111056e-10 2.640396385e-10 2.940499067e-10 2.001549438e-10 2.796554315e-10 2.58586214e-10 4.342082058e-10 2.961750548e-10 2.882406102e-10 3.086222771e-10 2.033583025e-10 2.287325528e-10 1.601065305e-10 2.492807191e-10 1.817502877e-10 3.156649749e-10 3.967580661e-10 3.616553245e-10 3.759542008e-10 3.621864152e-10 3.931602448e-10 2.450662904e-10 4.550561023e-10 3.153617539e-10 4.39603824e-10 3.988560152e-10 2.526720458e-10 2.750184324e-10 2.832744394e-10 2.679543139e-10 3.222250315e-10 3.967401679e-10 3.485865491e-10 3.431039502e-10 4.721480336e-10 4.340323791e-10 4.944589656e-10 4.074414865e-10 4.722907347e-10 5.776274853e-10 5.647323755e-10 4.502438082e-10 5.221980656e-10 4.774936728e-10 4.405955009e-10 3.10764997e-10 4.780053165e-10 2.694339682e-10 3.675257872e-10 1.851604458e-10 1.838998406e-10 2.214729457e-10 2.379966117e-10 4.549353995e-10 6.399112435e-10 6.390330562e-10 7.822395825e-10 6.50320794e-10 5.997374472e-10 3.366187696e-10 7.523607569e-10 6.010211105e-10 7.510438725e-10 8.158505779e-10 6.386817862e-10 5.042487716e-10 4.992727149e-10 4.95413756e-10 5.197906524e-10 4.327715451e-10 1.90470872e-10 9.481896106e-11 4.306393945e-14 1.363433869e-10 9.719157995e-11 4.106459897e-10 5.862878875e-10 5.744432448e-10 5.068001288e-10 8.818974239e-10 1.05050013e-09 1.07664901e-09 9.278603846e-10 9.47875684e-10 8.414720767e-10 4.931993076e-10 1.415633688e-10 1.096518203e-10 6.651007648e-11 1.616560678e-10 7.475487114e-11 1.270595335e-10 1.67028417e-10 1.362254169e-10 0 1.760823607e-12 2.47371478e-11 1.263289964e-10 1.287370581e-10 1.391327086e-10 3.52767827e-10 7.180191449e-11 1.490182046e-10 1.442386072e-10 1.336497343e-10 1.406773329e-10 1.659969956e-10 8.112323885e-11 1.772195274e-10 1.530216666e-10 9.542135219e-11 1.079021076e-10 1.344372852e-10 4.389333552e-28 2.280120104e-10 1.671421871e-10 1.217335507e-10 1.604602759e-10 1.526884938e-16 1.504353061e-10 1.412190926e-10 2.055571011e-10 4.562463378e-10 7.465303208e-10 1.162162447e-09 8.681120217e-10 9.382358367e-10 9.458472273e-10 8.542980523e-10 6.322726266e-10 5.99464756e-10 5.88425293e-10 3.766098042e-10 1.135588972e-10 1.295821944e-10 7.110352448e-11 1.39978053e-10 2.269637086e-10 4.046375444e-10 4.990663637e-10 4.146366189e-10 5.755526348e-10 4.579378371e-10 7.004973712e-10 7.12035527e-10 7.814823716e-10 5.385466491e-10 7.236602168e-10 5.924027307e-10 7.442864996e-10 6.883152563e-10 6.460866299e-10 6.536427756e-10 5.359034573e-10 3.43478899e-10 2.482755884e-10 3.51264763e-10 2.233014129e-10 2.821957544e-10 2.973099365e-10 3.139466932e-10 4.057317644e-10 3.603104583e-10 3.516826689e-10 3.409079784e-10 4.439010357e-10 4.525848333e-10 5.354938245e-10 6.23791088e-10 3.289342048e-10 3.726192865e-10 4.808503128e-10 6.692613077e-10 3.713644706e-10 4.039950251e-10 3.283040734e-10 3.27168117e-10 2.894281644e-10 3.376776395e-10 3.242492674e-10 4.104638854e-10 3.158040252e-10 1.613259291e-10 3.77763718e-10 3.924576323e-10 3.763658719e-10 4.48517595e-10 2.957743965e-10 3.488473077e-10 3.11667713e-10 5.518723474e-10 3.977524626e-10 3.067253719e-10 3.144015443e-10 3.196113689e-10 2.4907093e-10 3.227824101e-10 3.269312697e-10 3.392130646e-10 3.939162021e-10 3.812286458e-10 2.656132606e-10 3.015116826e-10 1.977442456e-10 1.672668013e-10 2.794300585e-10 2.499966997e-10 3.481616008e-10 1.299852651e-10 2.794509867e-10 2.517572773e-10 5.792007087e-10 1.369821138e-10 2.642013962e-10 2.636300761e-10 1.734104224e-10 2.923404613e-10 1.088793399e-10 1.640570368e-10 3.011121479e-10 3.109577897e-10 3.157107668e-10 2.774147901e-10 9.496641094e-11 3.256638779e-10 2.626939253e-10 1.988820791e-10 6.904585403e-11 2.347297199e-10 2.937986885e-10 1.011325692e-10 2.447168847e-10 3.217481672e-11 1.742375585e-10 3.536495274e-10 1.272006181e-10 1.617355466e-10 5.407986727e-10 2.228674527e-10 2.058893622e-10 6.420253368e-11 3.065305729e-10 8.479177543e-11 1.34039374e-10 1.532284869e-10 2.71312142e-10 1.971264778e-10 2.642160323e-10 1.013605204e-10 1.275003978e-10 1.439500021e-10 2.219125259e-10 8.190616351e-11 3.265171553e-10 +2.953371625e-10 2.561065012e-10 1.045570284e-10 2.80603322e-10 2.616189701e-10 3.724298029e-10 1.19298044e-10 1.200805793e-10 2.533297265e-10 1.383810317e-10 2.819140417e-10 8.177030774e-11 2.212461688e-10 1.423952731e-10 1.521549942e-10 1.180142338e-10 3.120178719e-10 3.730396104e-11 2.415631089e-10 2.764994186e-10 2.864395281e-10 2.475558862e-10 5.999328999e-11 1.650442022e-10 2.305496362e-10 1.432157087e-10 2.562338578e-10 1.600662648e-10 2.176511989e-10 2.873535777e-10 2.805906773e-10 1.853295674e-10 1.748052308e-10 3.170720377e-10 1.222921658e-10 8.525305593e-11 2.835642485e-10 9.860885191e-11 1.103053595e-10 1.281191501e-10 2.517709877e-10 3.650813037e-10 4.347515578e-10 2.660581992e-10 4.111518667e-10 2.600298514e-10 3.171916129e-10 2.414043132e-10 4.133627331e-10 3.21532833e-10 3.036370444e-10 3.402804066e-10 6.272503696e-10 2.917615996e-10 3.340784497e-10 2.74173486e-10 2.992719516e-10 3.134292054e-10 3.279463157e-10 3.237923464e-10 1.491601172e-10 3.589263299e-10 2.32540106e-10 3.574919021e-10 2.242686369e-10 1.698029942e-10 3.313880261e-10 3.479205619e-10 3.150407139e-10 4.676210394e-10 2.997197779e-10 4.660534554e-10 3.092942805e-10 2.691266383e-10 2.197026671e-10 1.479531614e-10 2.913918229e-10 3.914106732e-10 3.92617086e-10 4.051997991e-10 3.303948671e-10 4.800985213e-10 3.983308409e-10 5.464312812e-10 3.996489266e-10 4.63694343e-10 3.611779505e-10 4.127349714e-10 3.975407047e-10 5.873272681e-10 4.639499112e-10 3.561996905e-10 2.849310847e-10 4.515431838e-10 3.928541842e-10 2.877128498e-10 1.613627078e-10 2.143275491e-10 2.594254624e-10 2.444972846e-10 9.719928978e-10 8.316245053e-10 7.017255778e-10 8.261358174e-10 7.775711275e-10 7.809929485e-10 6.228025355e-10 4.313517707e-10 6.401551634e-10 6.903706662e-10 5.999322234e-10 4.839864259e-10 4.36573626e-10 4.380479181e-10 4.185504516e-10 4.681053234e-10 3.011024544e-10 2.137350854e-10 1.695603197e-10 2.020405665e-10 1.024646947e-10 2.888723011e-10 5.166679146e-10 4.440705134e-10 5.828677675e-10 7.617219087e-10 9.755780237e-10 9.369142879e-10 8.755586941e-10 8.760052436e-10 9.268054431e-10 5.126346425e-10 2.640827596e-10 7.020886048e-17 1.723628806e-10 1.115657923e-10 8.839147055e-12 1.397225213e-10 1.187924495e-13 8.22184035e-11 1.357961011e-10 1.938580645e-10 1.705594509e-10 1.932968081e-10 1.301560542e-10 6.658567421e-15 1.030126447e-10 9.004993064e-12 1.860720224e-10 1.67240104e-10 1.358185612e-10 8.185008272e-11 2.183102005e-10 0 1.44806601e-10 2.616587481e-10 1.656941975e-10 1.560684238e-10 1.206990039e-10 1.115947944e-10 1.868912274e-10 0 1.319042367e-10 1.498105633e-10 1.110184642e-10 2.537833658e-10 1.48059521e-10 3.655151494e-10 5.37577897e-10 6.754244614e-10 9.87218066e-10 8.902463308e-10 1.097123421e-09 1.024130092e-09 5.984249586e-10 6.168214723e-10 4.990214098e-10 5.811288167e-10 4.718460998e-10 1.698038988e-10 7.486341597e-11 1.22903243e-10 1.178384878e-10 3.426172759e-10 2.914309419e-10 5.159251323e-10 4.617669752e-10 3.331322844e-10 4.051213398e-10 6.733864901e-10 6.494272002e-10 6.062216619e-10 5.736822782e-10 5.313884908e-10 5.555463298e-10 7.822873141e-10 8.989004761e-10 5.897539431e-10 6.368573241e-10 5.818359817e-10 5.641133214e-10 1.708387171e-10 3.716317056e-10 2.499294946e-10 2.421984334e-10 1.65311076e-10 3.680308141e-10 4.197159628e-10 3.488596357e-10 4.696070076e-10 2.70280776e-10 4.325592706e-10 3.307149295e-10 3.79374093e-10 4.72478301e-10 4.894463009e-10 4.639110969e-10 6.053791224e-10 3.94503409e-10 4.397058614e-10 5.683004616e-10 4.66841666e-10 5.047122964e-10 2.716141703e-10 3.952321454e-10 2.719366347e-10 2.828436821e-10 3.575632499e-10 2.069811217e-10 2.676388991e-10 3.850924694e-10 2.799789266e-10 3.862692361e-10 3.431717604e-10 2.543768701e-10 2.631542695e-10 1.965586282e-10 2.878783155e-10 3.338524853e-10 1.437084063e-10 2.196870021e-10 3.371757736e-10 2.894866612e-10 3.812725669e-10 5.063396107e-10 4.153192744e-10 3.917594262e-10 2.795361881e-10 3.211094541e-10 3.178401778e-10 1.908693034e-10 3.017232456e-10 4.905025648e-10 2.870021496e-10 3.483057227e-10 3.171323119e-10 3.794036042e-10 3.61837315e-10 3.705762385e-10 2.022565283e-10 1.524518661e-10 1.313438338e-10 2.053302905e-10 1.825228181e-10 4.065460852e-10 4.785007671e-10 1.560244448e-10 2.267687111e-10 1.724623461e-10 3.443881073e-10 3.072728064e-10 1.975741209e-10 1.167101142e-10 3.400977191e-10 1.840024065e-10 2.324218171e-10 1.218779731e-10 5.818088003e-11 3.549675967e-10 2.304102775e-10 3.080325968e-10 1.470448381e-10 1.412574017e-10 1.615863401e-10 4.117285781e-10 1.656166687e-10 1.190933562e-10 3.11019402e-10 2.490379702e-10 3.551422159e-10 4.059529241e-10 1.810320726e-10 5.52251917e-11 1.004412098e-10 3.859717637e-10 1.580370676e-10 1.646155903e-10 1.92130931e-10 1.001500538e-10 7.462220959e-11 +2.414559513e-10 9.232946858e-11 1.229463884e-10 1.752333831e-10 1.418471836e-10 1.926802424e-10 3.774701684e-10 2.166293507e-10 2.36987385e-10 1.348683696e-10 2.902302398e-10 2.006000758e-10 1.548306445e-10 2.217016142e-10 1.387119249e-10 7.758665263e-11 2.607757085e-10 2.31737087e-10 1.480261656e-10 3.469154162e-10 4.504986597e-10 9.004615763e-11 3.930057148e-10 9.591027713e-11 2.243815146e-10 4.710530108e-10 2.054651916e-10 2.617042468e-10 9.857378132e-11 1.394908837e-10 1.609170983e-10 1.46901823e-10 4.650014022e-10 2.341559899e-10 1.033461841e-10 2.402835994e-10 1.897143039e-10 1.713093716e-10 2.647104033e-10 2.200600306e-10 2.103343766e-10 3.413153301e-10 3.283452184e-10 1.567316061e-10 2.861847903e-10 2.724193158e-10 3.601166542e-10 3.497425799e-10 1.625005952e-10 2.638020767e-10 3.027792133e-10 2.697097323e-10 2.063598972e-10 2.083091079e-10 1.72294228e-10 3.371708263e-10 3.483835157e-10 4.437008753e-10 3.222803252e-10 2.442542255e-10 2.697630053e-10 1.618092225e-10 3.685371955e-10 5.439015869e-10 3.172945792e-10 3.262299848e-10 2.803232309e-10 2.936145275e-10 2.806459053e-10 4.262125528e-10 4.326294073e-10 2.505790024e-10 3.334505144e-10 2.703219405e-10 4.540303351e-10 2.329738969e-10 2.177091365e-10 2.804693049e-10 4.015669144e-10 3.787890088e-10 3.83691502e-10 3.830760892e-10 5.076405846e-10 4.69907274e-10 5.034798917e-10 3.947209313e-10 3.149074427e-10 3.73309758e-10 2.518048968e-10 4.207242078e-10 3.680103821e-10 3.012479813e-10 4.239580742e-10 4.638100502e-10 2.903822181e-10 3.333277863e-10 2.454080318e-10 1.978073252e-10 2.290201484e-10 3.677492737e-10 5.658228149e-10 9.364314342e-10 9.64110094e-10 9.405860351e-10 6.829733875e-10 5.831834007e-10 5.370539476e-10 9.079900464e-10 7.265117919e-10 7.585234942e-10 5.40429923e-10 4.441431333e-10 5.360496389e-10 4.945514775e-10 5.250880497e-10 4.112585838e-10 4.014202837e-10 1.77134571e-10 2.079226686e-10 2.213446143e-10 2.642758421e-10 2.403999496e-10 5.504273704e-10 5.528661594e-10 6.108507357e-10 6.565656428e-10 8.730926004e-10 1.077737762e-09 9.828158245e-10 1.100833541e-09 1.005186839e-09 7.26387536e-10 4.088347999e-10 1.534036178e-10 1.170729728e-10 1.409541705e-10 1.452868316e-10 1.09805905e-10 1.596741777e-10 1.712674469e-10 7.123291733e-11 1.358337235e-10 1.30400264e-10 1.338967985e-10 1.262705341e-10 1.580926652e-10 1.480566062e-10 1.307636275e-10 2.675809936e-10 1.194826708e-10 1.134513064e-10 1.22076807e-10 1.88794637e-10 1.056432942e-10 8.309572601e-11 1.219701733e-10 9.20292111e-11 8.463204572e-11 2.343690704e-10 1.333080177e-10 8.678973539e-11 1.249391143e-10 1.251790229e-10 5.490082869e-18 1.906571748e-10 1.190826699e-10 1.881690737e-15 3.039834964e-10 7.398128371e-10 8.193847677e-10 9.533706322e-10 9.505892493e-10 1.154235098e-09 1.021995294e-09 5.825322728e-10 6.010244654e-10 5.551239106e-10 4.677492781e-10 3.571087739e-10 1.381461349e-10 1.762653079e-10 1.565990387e-10 2.325482313e-10 4.443407425e-10 3.585249731e-10 5.7325133e-10 5.46780912e-10 4.03986065e-10 3.985617231e-10 5.98299287e-10 6.218169953e-10 7.365938652e-10 6.262954068e-10 6.521010958e-10 5.887068413e-10 6.406602449e-10 7.284474358e-10 7.571666531e-10 5.312611488e-10 5.582837487e-10 5.673797334e-10 2.701266886e-10 2.325969171e-10 1.246030026e-10 2.413043155e-10 2.801600691e-10 3.795898202e-10 4.479350519e-10 3.414625067e-10 3.585868087e-10 4.767234391e-10 3.934162272e-10 3.070797355e-10 4.403260492e-10 4.589683074e-10 6.043810986e-10 4.759293602e-10 6.517423979e-10 4.406700066e-10 4.806862662e-10 4.291632282e-10 2.785823153e-10 2.244444252e-10 5.383681106e-10 3.501238224e-10 3.203351558e-10 4.488729744e-10 4.792290786e-10 2.94314368e-10 3.468022801e-10 3.07679171e-10 4.699479156e-10 3.12710581e-10 4.302760529e-10 2.180819134e-10 2.988920683e-10 3.328510173e-10 3.633909364e-10 2.285458311e-10 1.76673938e-10 3.183461861e-10 2.32917035e-10 2.342421384e-10 2.119527437e-10 4.781043628e-10 3.275307603e-10 2.067182701e-10 2.076905e-10 3.298801474e-10 3.141044797e-10 2.807800492e-10 1.946938678e-10 3.07995617e-10 2.914664659e-10 5.153945812e-10 1.91048729e-10 3.728700187e-10 3.319055796e-10 4.455082823e-10 2.111684148e-10 1.495450328e-10 1.445464652e-10 3.660749363e-10 1.43214803e-10 1.44985727e-10 2.227960789e-10 3.094448025e-10 1.054607802e-10 1.452965171e-10 3.12618683e-10 2.138074965e-10 8.994373916e-11 3.828918808e-10 1.296227238e-10 2.912505204e-10 2.261937581e-10 8.832801305e-11 2.819835716e-10 3.750975361e-10 1.507457311e-10 2.172876884e-10 2.22366404e-10 3.137408975e-10 1.571322182e-10 1.296157332e-10 2.807682592e-10 4.035391997e-10 1.91288699e-10 3.18130629e-10 4.66418695e-10 2.18244747e-10 2.898018696e-10 1.515537161e-10 1.353244293e-10 2.162441647e-10 1.025312979e-10 5.189711102e-11 1.833930836e-10 2.943377553e-10 1.335633137e-10 +1.07239474e-10 1.717871572e-10 1.742515196e-10 1.743848161e-10 9.2095049e-11 1.063092889e-10 1.513923952e-10 2.432815286e-10 9.103070134e-11 1.677569924e-10 1.214550177e-10 3.321623413e-11 3.350115941e-10 1.580927826e-10 2.275133231e-10 1.188470304e-10 4.411542439e-10 9.726928384e-11 2.128290681e-10 1.394712298e-10 1.431082671e-10 2.196447759e-10 7.959894926e-11 6.537917325e-11 1.448164023e-10 3.518046423e-10 2.168755036e-10 3.458045451e-10 2.420844704e-10 1.353648759e-10 2.014886465e-10 2.014707659e-10 8.493953653e-11 1.17934121e-10 1.055057042e-10 2.307975887e-10 1.173735481e-10 1.162063745e-10 1.441719086e-10 2.367640524e-10 2.246197247e-10 3.535626826e-10 2.900289579e-10 4.267085308e-10 4.028771812e-10 4.424139614e-10 2.851011007e-10 3.990169918e-10 1.978259463e-10 3.854276971e-10 3.736354705e-10 3.329276469e-10 3.141488409e-10 3.135553909e-10 2.67552517e-10 3.858572075e-10 1.926150325e-10 2.530405942e-10 1.357829796e-10 4.039138179e-10 2.6587111e-10 1.596254044e-10 3.580762633e-10 4.640896432e-10 3.540516904e-10 4.116339407e-10 2.726846273e-10 2.651973035e-10 3.557769775e-10 3.980963597e-10 3.29093192e-10 4.796009097e-10 3.773397319e-10 3.710887429e-10 3.510881569e-10 4.00146924e-10 1.916141808e-10 2.312506635e-10 3.952521268e-10 4.857559743e-10 6.793244581e-10 6.233098984e-10 3.584995082e-10 4.201979323e-10 4.237630342e-10 3.900797968e-10 5.205442224e-10 4.47397037e-10 4.829492665e-10 3.76785509e-10 3.46044792e-10 4.205692871e-10 3.691973678e-10 4.295808808e-10 4.443707159e-10 3.552188721e-10 1.79846386e-10 2.950456639e-10 2.215759854e-10 5.950990731e-10 5.121988138e-10 9.237380196e-10 7.669776654e-10 7.04462633e-10 6.623492117e-10 5.362192102e-10 6.327183733e-10 5.899150755e-10 7.631753988e-10 8.676971167e-10 5.673259378e-10 6.100214608e-10 4.032021397e-10 5.057204554e-10 5.470487041e-10 5.023663767e-10 3.444316987e-10 1.971553987e-10 2.27955727e-10 2.612203437e-10 1.209998077e-10 2.522699645e-10 5.887971273e-10 5.90276507e-10 5.034506972e-10 5.898253191e-10 9.750868728e-10 1.264048504e-09 1.056965382e-09 1.117417851e-09 8.146606718e-10 7.417820366e-10 3.439415748e-10 1.230652112e-10 1.515678311e-10 8.140059814e-11 9.824288653e-11 1.204852609e-10 6.46367614e-11 1.727803051e-10 2.214084547e-10 1.284313843e-10 1.516069092e-10 1.792247435e-10 1.73168046e-10 1.395245026e-10 2.101432587e-10 9.404661227e-11 1.264639366e-10 1.990035148e-10 1.013819413e-10 1.115635785e-10 1.536803451e-10 0 9.143882871e-11 1.137812937e-10 8.562647265e-11 6.65283237e-11 2.100973946e-10 1.925026104e-10 1.411297839e-10 1.147439758e-10 1.270895775e-10 7.278976109e-11 2.571845243e-11 1.820974943e-10 0 4.299755127e-10 7.829865132e-10 8.478934323e-10 9.38017542e-10 9.656157402e-10 1.119871251e-09 8.756144967e-10 5.851279478e-10 6.201189296e-10 5.487596654e-10 4.576161969e-10 2.21358613e-10 2.443632783e-10 1.555805764e-10 1.048520114e-10 2.620908864e-10 4.794012269e-10 4.283163498e-10 3.792766646e-10 5.263039953e-10 5.68760513e-10 4.954753302e-10 7.195992901e-10 7.7915123e-10 8.148474485e-10 7.777439392e-10 5.562655196e-10 7.704395144e-10 6.332189432e-10 5.806826661e-10 9.581212652e-10 6.109388308e-10 5.882823372e-10 4.2438405e-10 2.799347248e-10 2.012527965e-10 1.138252421e-10 3.44737054e-10 3.373881022e-10 3.842073999e-10 3.570133111e-10 5.026891225e-10 3.770773186e-10 3.15431619e-10 4.754655913e-10 4.836931544e-10 2.942337731e-10 5.573383361e-10 4.154445655e-10 6.667942769e-10 4.604910572e-10 3.957935019e-10 4.370918906e-10 3.960301224e-10 2.546033299e-10 2.53424921e-10 3.771364516e-10 3.518714764e-10 3.203999277e-10 3.521148557e-10 2.524443392e-10 1.833951349e-10 2.152233335e-10 3.844291906e-10 1.698747256e-10 1.821909228e-10 2.035936102e-10 2.312552934e-10 3.055329101e-10 3.728280127e-10 2.428055559e-10 3.881863726e-10 2.267116767e-10 3.182379129e-10 8.990217017e-11 3.115442293e-10 2.955384466e-10 4.348705852e-10 4.11018927e-10 2.570195595e-10 3.210850574e-10 3.613957987e-10 2.248833285e-10 4.667606451e-10 2.72937423e-10 2.582099485e-10 2.81355279e-10 2.849340716e-10 2.334354363e-10 2.476372536e-10 2.074620336e-10 3.77568533e-10 1.779551943e-10 1.805688926e-10 2.859071881e-10 2.158814399e-10 2.032388472e-10 2.430392495e-10 1.953280686e-10 2.013158368e-10 1.403320051e-10 2.031734787e-10 2.537821275e-10 4.26544724e-10 2.363880617e-10 1.457571656e-10 3.112220413e-10 7.342970312e-11 3.518153137e-10 1.404899013e-10 1.167073632e-10 3.505895834e-11 1.846396969e-10 1.959259229e-10 3.333898778e-10 1.788972676e-10 3.664713416e-10 2.659139309e-10 7.146683108e-11 1.094914431e-10 1.980193884e-10 1.420886095e-10 1.352577178e-10 2.130157044e-10 2.431264431e-10 1.893147062e-10 2.440336836e-10 1.714271552e-10 1.806426277e-10 1.871211191e-10 2.098655228e-10 2.819573091e-10 1.872959701e-10 +1.394536631e-10 1.229678932e-10 3.231596066e-10 2.626410004e-10 2.103697514e-10 1.549725254e-10 2.396894672e-10 3.331852105e-10 1.247210199e-10 4.447260835e-10 1.236504995e-10 1.712261531e-10 2.008860802e-10 2.919489247e-10 3.086924245e-10 3.835352225e-10 3.783957705e-10 1.72457222e-10 9.629484861e-11 1.06768596e-10 2.373497564e-10 1.043915141e-10 2.103882547e-10 3.379977183e-10 1.398657759e-10 1.191165516e-10 2.394658525e-10 1.371747145e-10 2.34978421e-10 2.238500268e-10 2.292441195e-10 2.839900879e-10 1.474588547e-10 1.716868421e-10 2.725034036e-10 9.529565413e-11 1.473924208e-10 1.707128423e-10 1.139907312e-10 1.89761957e-10 1.84987634e-10 2.373007567e-10 4.603294618e-10 2.294173524e-10 2.97008478e-10 4.012812426e-10 4.613424689e-10 3.305421002e-10 3.60891139e-10 3.371371273e-10 3.461188819e-10 5.145580195e-10 2.649759002e-10 2.196565492e-10 4.646188574e-10 3.131693108e-10 4.987697683e-10 2.227217421e-10 3.254248249e-10 2.196442875e-10 2.784664271e-10 3.713164399e-10 2.975453567e-10 3.92819931e-10 2.241222099e-10 1.671184959e-10 3.43015072e-10 3.100244107e-10 2.631782209e-10 2.472928533e-10 3.530748038e-10 2.461904914e-10 2.280482111e-10 2.605767868e-10 2.899096339e-10 2.704889973e-10 3.606345972e-10 1.734164116e-10 4.583573324e-10 4.163746004e-10 4.8635576e-10 5.942404904e-10 6.049262269e-10 4.253018944e-10 4.93630517e-10 4.812633329e-10 5.368972956e-10 4.324487876e-10 5.63105738e-10 2.772147588e-10 4.042202891e-10 4.264600291e-10 3.12487843e-10 3.307157454e-10 3.201586667e-10 2.354275056e-10 2.082854436e-10 3.380917358e-10 2.328986023e-10 2.042880168e-10 7.04397934e-10 6.565043829e-10 5.266378881e-10 5.776869778e-10 8.546130968e-10 7.838238076e-10 6.20645957e-10 5.269444837e-10 6.762381487e-10 6.262793435e-10 6.285298276e-10 3.749294091e-10 5.796531252e-10 4.982117957e-10 4.342510869e-10 4.58852034e-10 3.373106008e-10 3.097551519e-10 1.59556405e-10 1.055387675e-10 3.714198427e-11 1.286401053e-10 4.444657893e-10 5.889324167e-10 5.35659254e-10 5.814472901e-10 7.543051119e-10 1.053659235e-09 9.429337375e-10 1.008479819e-09 9.617642528e-10 9.031108236e-10 5.536655004e-10 1.866582763e-10 1.057750082e-10 1.492002149e-10 8.675731903e-11 1.348861534e-10 3.360647609e-16 8.748288702e-11 7.521000051e-11 1.074311726e-10 1.298829216e-10 1.824422015e-10 1.24361632e-10 1.45530457e-10 1.573077235e-10 1.642271409e-10 7.888785941e-11 1.285281552e-10 2.497590749e-10 1.127112715e-10 1.400560519e-10 6.848610882e-11 1.526750156e-10 1.46589424e-10 1.644615134e-10 1.738060664e-10 9.240471269e-11 8.540689748e-11 1.943510432e-10 1.682835189e-10 1.509103757e-10 1.547586348e-10 1.6980125e-15 1.158968331e-10 1.382926618e-10 4.440459118e-10 7.049777215e-10 8.841674247e-10 1.08019521e-09 8.981717537e-10 9.505556983e-10 8.835990156e-10 5.753398297e-10 6.6104397e-10 4.576538478e-10 4.533314119e-10 1.96241972e-10 1.249671776e-10 1.218156182e-10 1.673293474e-14 1.987720775e-10 4.196077994e-10 5.187164198e-10 3.470930652e-10 6.123198892e-10 6.427729789e-10 4.388087957e-10 6.285921143e-10 9.176135442e-10 5.483801571e-10 4.792869664e-10 5.050332397e-10 6.595412381e-10 5.89044735e-10 6.158346643e-10 7.910786245e-10 7.497999596e-10 6.13041151e-10 3.463324507e-10 3.153679763e-10 2.076282778e-10 1.129061249e-10 3.483279643e-10 3.287126374e-10 3.110660413e-10 3.053325313e-10 4.210378608e-10 2.898842054e-10 3.23119248e-10 4.853313213e-10 4.789269828e-10 3.965502505e-10 4.765244732e-10 3.568351868e-10 4.247261981e-10 5.750712865e-10 5.711576749e-10 6.520076879e-10 5.078632928e-10 5.056556233e-10 2.492144394e-10 4.352782041e-10 2.354708075e-10 3.382137982e-10 2.718997532e-10 3.97718573e-10 3.697785867e-10 3.967750553e-10 3.339973861e-10 1.843002465e-10 1.635066078e-10 4.235893646e-10 2.362129882e-10 3.286717395e-10 2.642020551e-10 2.724792647e-10 2.288387701e-10 3.719322439e-10 2.96018908e-10 2.445906861e-10 2.836173664e-10 1.521960131e-10 2.292714239e-10 3.852822665e-10 4.06435938e-10 3.469039104e-10 1.96454143e-10 2.07119555e-10 3.610427269e-10 5.303434789e-10 4.074277889e-10 4.119239681e-10 4.719760083e-10 3.07869152e-10 3.076276842e-10 5.674188057e-10 2.464688168e-10 2.986148197e-10 5.272180087e-10 1.945505957e-10 9.278071564e-11 1.673887483e-10 1.713545291e-10 1.05922848e-10 2.134383159e-10 2.097738991e-10 9.1206979e-11 1.747155517e-10 1.286833708e-10 1.579694276e-10 2.925304561e-10 1.016106284e-10 2.313803964e-10 1.800182132e-10 7.669254077e-11 4.131568324e-10 1.352194551e-10 1.240778622e-10 1.33446361e-10 1.412052339e-10 1.698863933e-10 4.376829167e-10 2.546556167e-10 1.01288195e-10 8.15058032e-11 2.08469856e-10 2.387357144e-10 2.543454624e-10 2.451220958e-10 5.860339372e-11 1.573675871e-10 1.108824116e-10 1.377923665e-10 1.363185103e-10 9.478817708e-11 1.464358283e-10 1.56190018e-10 3.605625611e-10 +1.441184029e-10 1.195876e-10 2.479905732e-10 3.423002489e-10 1.21210731e-10 1.80564287e-10 1.124012586e-10 1.206815421e-10 1.40579161e-10 1.928321335e-10 2.301134033e-10 2.14394146e-10 3.980535416e-10 1.121642464e-10 4.113178609e-10 2.792738134e-10 1.869705391e-10 1.003878337e-10 2.475399256e-10 1.842201041e-10 1.037735134e-10 3.929617424e-10 1.629742967e-10 2.703669513e-10 3.144417352e-10 1.334568988e-10 2.551467456e-10 1.611551666e-10 1.80714498e-10 2.434425203e-10 6.858076089e-11 4.49295198e-10 1.99891211e-10 2.413968241e-10 2.45245326e-10 8.966912864e-11 2.368598913e-10 1.014948717e-10 2.259143108e-10 1.760884061e-10 1.683966477e-10 2.065765577e-10 2.671195974e-10 2.957901422e-10 4.450092167e-10 2.555630197e-10 2.097957228e-10 2.251224195e-10 2.007149181e-10 3.29335299e-10 3.848740298e-10 3.032053406e-10 2.151904286e-10 2.673561653e-10 2.172231619e-10 3.428732355e-10 2.958371193e-10 2.920746675e-10 2.876902551e-10 3.367449857e-10 4.76098725e-10 2.766965009e-10 3.851297045e-10 2.787713524e-10 2.910705529e-10 3.526814079e-10 2.303372645e-10 3.011843145e-10 3.835345145e-10 4.684950615e-10 3.812340609e-10 3.499409139e-10 4.126848509e-10 3.131402536e-10 3.336937308e-10 4.192246286e-10 3.762149411e-10 3.460738286e-10 3.141463011e-10 2.056853393e-10 3.727142215e-10 5.815299909e-10 4.69366648e-10 3.699123162e-10 4.257665866e-10 5.592631681e-10 2.843742237e-10 5.290293891e-10 4.225762769e-10 4.479380034e-10 3.713408473e-10 4.554731516e-10 4.7565148e-10 3.562803274e-10 3.876660627e-10 1.402285772e-10 2.042611814e-10 1.848336239e-10 2.424951624e-10 5.814822285e-10 7.36577164e-10 6.553138217e-10 7.161423561e-10 4.604895939e-10 9.211947265e-10 5.755710083e-10 5.314432646e-10 3.208514997e-10 9.21649689e-10 6.596150243e-10 5.9020135e-10 7.018965917e-10 5.006765485e-10 6.169540289e-10 4.958614199e-10 4.979599564e-10 4.824544934e-10 3.021094442e-10 1.412448189e-10 7.445024699e-11 1.744111481e-10 2.241364761e-10 5.575336766e-10 5.366614295e-10 7.082142132e-10 5.138667255e-10 7.219604342e-10 1.02879682e-09 1.06876134e-09 9.897396128e-10 1.007360779e-09 8.32521631e-10 6.372037893e-10 1.65169308e-10 1.501388332e-10 1.682479537e-10 1.454699697e-10 2.653861327e-10 8.931572942e-14 1.380325496e-10 1.002756124e-10 4.068912002e-16 3.131418138e-13 1.145122118e-10 7.714435897e-11 2.114161265e-14 1.042847286e-10 1.413874373e-10 1.664019314e-10 2.533523929e-10 1.77208098e-10 1.481683875e-10 7.245555302e-11 1.688517865e-10 2.089355423e-10 1.509450161e-10 1.4854653e-10 1.247746381e-10 1.23555499e-10 3.556142675e-14 1.41750994e-10 1.687233664e-10 1.595184229e-10 1.642667169e-10 7.103210421e-18 9.611293711e-11 3.392729724e-10 6.752956646e-10 8.690341277e-10 9.773221177e-10 9.93788526e-10 1.063146916e-09 1.072136413e-09 7.373912781e-10 4.959251407e-10 6.442261494e-10 6.719018161e-10 4.332053529e-10 2.039964577e-10 1.509226461e-10 1.933995686e-10 1.437820221e-11 2.319236679e-10 3.909606675e-10 4.48014322e-10 4.963532981e-10 5.668805424e-10 4.384464551e-10 4.01078398e-10 6.397600201e-10 8.709213831e-10 6.53149095e-10 7.14152394e-10 6.176553458e-10 7.983225321e-10 5.427581908e-10 5.462018114e-10 7.611203519e-10 9.995173266e-10 5.564454671e-10 3.208880925e-10 1.453213102e-10 2.710608142e-10 1.682114825e-10 1.727703649e-10 3.284490223e-10 3.16882629e-10 3.644860993e-10 4.061105397e-10 3.469224869e-10 4.003116721e-10 4.397601658e-10 4.434507361e-10 3.772581416e-10 3.40035824e-10 4.060409497e-10 3.163274896e-10 5.94393247e-10 4.862790965e-10 5.066835939e-10 5.11154605e-10 3.959777409e-10 3.934973085e-10 2.863291761e-10 4.234018096e-10 4.27375219e-10 3.548945663e-10 1.469179174e-10 2.511047461e-10 4.720848728e-10 2.825170886e-10 3.110699711e-10 3.531105149e-10 3.099586687e-10 2.746420614e-10 2.931436232e-10 3.158629551e-10 2.166507419e-10 3.160629198e-10 2.426092016e-10 4.140036557e-10 1.900182603e-10 2.428340629e-10 2.389173432e-10 1.528215611e-10 3.58820393e-10 2.261525796e-10 3.894784106e-10 2.99586265e-10 3.468817978e-10 2.719222865e-10 2.079970971e-10 4.333079397e-10 2.232243623e-10 5.17100841e-10 2.200634874e-10 4.675676177e-10 2.52559585e-10 3.582008894e-10 2.374195732e-10 2.484086028e-10 2.509895728e-10 1.509485302e-10 2.354797194e-10 1.716640234e-10 2.521943669e-10 4.40756692e-10 4.138210958e-10 1.718663975e-10 2.074789797e-10 2.15095993e-10 2.700654052e-10 1.546389406e-10 1.681360306e-10 2.508658907e-10 1.359321598e-10 1.26279091e-10 2.30584084e-10 7.372378923e-11 2.211553106e-10 3.347094283e-10 3.817518242e-10 1.541998656e-10 3.013228113e-10 2.168501855e-10 3.189017906e-10 1.652518795e-10 2.220530657e-10 1.052662349e-10 1.946858409e-10 2.450930456e-10 1.499796183e-10 3.733519746e-10 1.754672323e-10 2.243447153e-10 1.739005872e-10 1.327273539e-10 3.217474708e-10 3.565598688e-10 2.095995614e-10 +4.862482047e-10 9.178164044e-11 9.185717776e-11 2.85647373e-10 1.146219728e-10 1.301447978e-10 2.893461383e-10 1.968204701e-10 1.522045781e-10 2.357035582e-10 1.347640981e-10 1.550753845e-10 2.164737221e-10 2.258139097e-10 5.689492114e-11 1.904777784e-10 2.944345765e-10 5.31614593e-11 2.076035279e-10 2.835008837e-10 2.570147641e-10 2.201457891e-10 2.450139184e-10 1.883233411e-10 1.183392688e-10 2.337246315e-10 1.327519129e-10 1.230558867e-10 7.388062781e-11 3.400950144e-10 1.590573345e-10 5.158418357e-10 4.836137474e-10 7.892252358e-11 2.6046228e-10 1.834557791e-10 1.803990505e-10 5.326902338e-11 3.037536812e-10 1.127248349e-10 4.53415707e-10 2.484331948e-10 2.37233456e-10 3.269524343e-10 2.272845198e-10 3.571752569e-10 4.380590306e-10 4.139777744e-10 3.778965964e-10 1.741213421e-10 2.392973727e-10 4.229264286e-10 3.401262879e-10 3.869957643e-10 2.575374292e-10 1.597837116e-10 4.401532608e-10 3.328670895e-10 1.684046302e-10 3.660503498e-10 2.637107927e-10 3.914965384e-10 3.347652479e-10 2.612340703e-10 3.988351609e-10 3.436137619e-10 3.362155807e-10 2.452426262e-10 3.482585671e-10 4.334266513e-10 3.580078474e-10 4.277000382e-10 2.121180961e-10 2.41455855e-10 3.228839729e-10 2.793499341e-10 4.085725738e-10 3.271602399e-10 3.339759632e-10 2.943735959e-10 3.340253901e-10 4.567355796e-10 5.832495764e-10 5.444831786e-10 4.476219095e-10 5.549170544e-10 3.755095489e-10 4.042207679e-10 5.095944184e-10 4.694515889e-10 3.701950343e-10 3.34177223e-10 4.903206048e-10 3.484930082e-10 3.372655853e-10 1.767200872e-10 3.046623576e-10 2.26623332e-10 2.878497171e-10 2.638936598e-10 7.043459634e-10 7.766468188e-10 8.744427328e-10 6.239673903e-10 5.667370086e-10 6.365448629e-10 6.25675004e-10 6.194372003e-10 8.418430951e-10 9.366159811e-10 6.397437415e-10 5.981760723e-10 4.041462461e-10 5.5076812e-10 6.139102456e-10 5.201178797e-10 5.376415033e-10 2.760038196e-10 1.6815224e-10 1.633533919e-10 5.71689995e-11 1.901416289e-10 5.176505038e-10 6.264933945e-10 6.475628237e-10 6.29415471e-10 6.023145202e-10 1.093526106e-09 1.08185142e-09 9.844157728e-10 9.033283584e-10 8.954596681e-10 7.089540566e-10 3.483001275e-10 8.527075041e-11 1.306086441e-15 4.783353204e-13 1.910812575e-10 1.322407598e-10 0 1.426173842e-10 1.169240546e-10 1.372376417e-10 0 1.307633293e-10 1.022767222e-10 8.901463644e-11 1.348785057e-10 2.112023774e-10 1.1465933e-10 1.287264639e-10 1.657704932e-10 1.373633026e-10 1.309205185e-10 1.262568436e-10 1.44571068e-10 1.085493334e-10 1.777311338e-10 1.203253888e-10 1.081705918e-10 1.299728284e-10 1.774468598e-10 1.519548774e-10 1.535446119e-10 1.89446736e-10 2.488604271e-10 3.768914795e-10 7.313565627e-10 7.883338481e-10 9.167753785e-10 9.585015086e-10 9.851674967e-10 9.642890566e-10 7.106905093e-10 6.797268813e-10 5.875977768e-10 5.728232202e-10 4.803934609e-10 1.434286906e-10 1.795043799e-10 1.40429014e-10 1.231511094e-10 2.952887557e-10 4.420384964e-10 3.506900663e-10 4.931721106e-10 5.480139985e-10 3.938328775e-10 4.78143998e-10 7.217582234e-10 8.208911212e-10 8.186178025e-10 4.920763508e-10 6.417418597e-10 7.471389876e-10 6.165054912e-10 7.261163781e-10 3.724960831e-10 8.920000914e-10 8.39122256e-10 3.080534815e-10 2.144581869e-10 2.875379505e-10 1.581668696e-10 2.347193375e-10 4.062342561e-10 3.92706242e-10 4.727641475e-10 3.42678859e-10 4.686402212e-10 4.840796419e-10 4.057634558e-10 4.473064447e-10 4.462061258e-10 5.141014076e-10 5.016791075e-10 4.635769983e-10 5.799709151e-10 5.851985497e-10 4.427612198e-10 3.934584902e-10 3.5291314e-10 2.345649813e-10 3.80007696e-10 3.581779833e-10 2.089631335e-10 3.278080503e-10 3.618638714e-10 2.783813336e-10 2.66270288e-10 3.650646309e-10 1.520675354e-10 3.073399982e-10 3.631134769e-10 2.071256034e-10 4.361071177e-10 3.331922401e-10 3.91164383e-10 2.933447362e-10 1.613394126e-10 2.313439647e-10 1.926944359e-10 2.89676533e-10 3.031495921e-10 1.576427077e-10 3.312034288e-10 3.551640575e-10 3.660798057e-10 3.578584664e-10 3.242465505e-10 3.150842761e-10 3.31330728e-10 1.792584587e-10 2.057235122e-10 1.848129309e-10 2.251549518e-10 3.471568421e-10 2.154478582e-10 2.377997175e-10 4.203525466e-10 2.443494268e-10 1.556863334e-10 3.523696456e-10 3.438107123e-10 1.860881841e-10 2.460842038e-10 1.326825081e-10 1.415128068e-10 2.866584266e-10 1.551848211e-10 9.181022077e-11 3.702007446e-10 2.113898948e-10 2.735459796e-10 2.03487949e-10 3.78910657e-10 2.503663444e-10 2.096849706e-10 3.829695572e-10 2.629032516e-10 2.454874403e-10 9.097671286e-11 1.868919465e-10 2.397252105e-10 4.008443364e-10 2.246097595e-10 1.740348413e-10 1.781761989e-10 1.858322879e-10 1.418327247e-10 2.392468309e-10 1.444959722e-10 2.867181348e-10 6.833034693e-11 1.301241777e-10 3.593741905e-10 1.071606476e-10 2.14822386e-10 1.374896441e-10 1.940804818e-10 +2.420712911e-10 1.714497947e-10 1.828620998e-10 1.314847948e-10 4.140786389e-10 2.59398888e-10 1.526582795e-10 2.984990372e-10 2.423994566e-10 1.332800587e-10 2.953134026e-10 2.163782745e-10 3.152461463e-10 9.582753653e-11 7.773581851e-11 2.640615349e-10 4.313381353e-10 1.868215371e-10 1.418269651e-10 1.876296183e-10 8.491473048e-11 2.185020584e-10 2.257047973e-10 1.924444833e-10 1.755263603e-10 4.495831828e-10 2.666290545e-10 4.531267488e-10 4.990919605e-10 1.237361275e-10 1.918852766e-10 3.03917708e-10 2.444719838e-10 2.159487963e-10 1.357815884e-10 1.290782488e-10 1.101065995e-10 4.319266284e-10 1.225129195e-10 2.848181402e-10 2.067145183e-10 2.795016543e-10 2.902097475e-10 2.626636888e-10 3.803214931e-10 2.309973275e-10 3.23488636e-10 3.264114026e-10 3.101265683e-10 2.460053414e-10 3.45837933e-10 2.967286843e-10 2.621620675e-10 3.788331063e-10 3.002796107e-10 3.520691693e-10 1.947570639e-10 1.816768601e-10 3.010640374e-10 3.768214715e-10 1.779765818e-10 2.554981944e-10 3.116506814e-10 4.1491232e-10 1.872656279e-10 2.78760574e-10 3.64649521e-10 2.283760162e-10 2.836751453e-10 2.188003993e-10 2.691917567e-10 3.82707371e-10 3.514520966e-10 3.739218455e-10 2.806220326e-10 3.743119813e-10 3.33070333e-10 3.739097905e-10 4.472695494e-10 4.174809578e-10 6.093121339e-10 4.126902328e-10 4.5349305e-10 3.653270618e-10 5.404097299e-10 4.750672101e-10 3.270551963e-10 3.599862524e-10 3.10498139e-10 4.240386067e-10 2.504966921e-10 5.275504716e-10 3.716661269e-10 4.915286617e-10 3.776430817e-10 2.698850327e-10 9.202171399e-11 3.083924254e-10 3.156451311e-10 3.735557198e-10 6.167392237e-10 6.632682203e-10 6.532582927e-10 6.684183272e-10 7.907898781e-10 7.407156243e-10 7.18419625e-10 5.960174191e-10 7.14166796e-10 8.204274742e-10 7.265052304e-10 5.202807156e-10 4.719708997e-10 5.589009828e-10 4.123302297e-10 4.937168963e-10 4.873182267e-10 4.407052914e-10 8.996489512e-11 1.071466743e-10 7.589595284e-11 1.849847618e-10 3.549008501e-10 4.050008736e-10 4.596672492e-10 5.791264254e-10 5.499771186e-10 1.017929761e-09 1.049999148e-09 9.959281338e-10 9.169329812e-10 8.553134277e-10 8.539479372e-10 4.648079067e-10 2.39079292e-10 1.545500966e-10 1.570879417e-10 1.413064034e-10 1.709434745e-10 0 1.518937225e-10 5.020919573e-11 2.219575825e-10 9.104823886e-11 1.099282728e-10 1.736790644e-10 1.648825337e-10 9.348089378e-11 1.68538581e-10 1.276607201e-10 1.619250006e-10 1.400689305e-10 2.662570984e-14 8.307417904e-11 1.426784863e-10 2.062111139e-10 1.268278226e-10 4.152349756e-12 1.615717828e-10 1.026814889e-10 2.258833287e-10 1.021497863e-10 7.237531559e-11 7.170310704e-11 1.622959737e-10 1.321455528e-10 4.226481201e-10 8.735435568e-10 9.044225012e-10 7.276574269e-10 9.297939372e-10 1.077945301e-09 1.051907162e-09 4.830285144e-10 6.575145568e-10 5.408521906e-10 5.659756156e-10 2.77889522e-10 1.597818931e-11 1.873938667e-10 1.576578307e-10 1.605278303e-10 3.913870481e-10 4.203354942e-10 3.847044291e-10 5.610663391e-10 5.587536876e-10 5.282183858e-10 5.469806091e-10 7.159330604e-10 8.539436092e-10 8.038264951e-10 7.963207257e-10 7.247499072e-10 8.390201391e-10 6.4529357e-10 5.565502186e-10 6.233570433e-10 7.310333529e-10 4.037695549e-10 2.545214991e-10 2.281656784e-10 2.261098163e-10 1.374299089e-10 2.098584294e-10 3.669398962e-10 4.366838535e-10 4.063222849e-10 3.263718766e-10 4.761254944e-10 3.338370504e-10 5.950049517e-10 3.807978042e-10 2.972662597e-10 5.663145024e-10 4.706852549e-10 5.959965072e-10 4.093535303e-10 3.651616863e-10 4.42945226e-10 3.108565423e-10 3.137378468e-10 2.419380455e-10 2.735702794e-10 3.281694757e-10 2.75369409e-10 3.164633633e-10 2.677602921e-10 4.034535787e-10 3.985890899e-10 2.250109963e-10 2.235146673e-10 2.320345822e-10 3.099673755e-10 2.279557739e-10 3.270362664e-10 3.323490812e-10 1.746914001e-10 3.330102241e-10 2.013217034e-10 3.731065026e-10 4.6218379e-10 2.173674774e-10 3.212023277e-10 2.737671184e-10 3.548211124e-10 4.066403184e-10 2.369638455e-10 3.751747456e-10 3.436300489e-10 2.930689972e-10 2.02187776e-10 5.128122366e-10 3.275264087e-10 1.872017825e-10 3.946017031e-10 1.68751338e-10 3.781591197e-10 2.376248081e-10 1.405519726e-10 2.20934061e-10 2.723477092e-10 2.277544589e-10 1.971134816e-10 1.207388375e-10 2.113041857e-10 2.247630305e-10 9.748166909e-11 1.454015152e-10 3.153802996e-10 1.303178066e-10 1.849231501e-10 3.973673949e-10 1.370449747e-10 1.440091338e-10 1.604893605e-10 3.067280365e-10 1.637592093e-10 1.476919373e-10 3.147247781e-10 2.052636401e-10 2.713207611e-10 3.531363067e-10 2.542462453e-10 6.910144045e-11 3.282737715e-10 1.33342711e-10 1.999002434e-10 1.549751479e-10 2.880805294e-10 2.223985656e-10 5.664658308e-10 2.869107743e-10 1.347492005e-10 2.079423712e-10 1.133361062e-10 7.368323425e-11 1.819398857e-10 2.475721418e-10 1.538553047e-10 +1.471572281e-10 3.697397068e-10 1.770446937e-10 1.079617329e-10 1.974024194e-10 1.948513916e-10 2.211664569e-10 1.570043172e-10 1.249765308e-10 1.001480583e-10 1.613169462e-10 4.531310018e-10 1.324727366e-10 4.770119417e-10 2.069709585e-10 3.116355259e-10 3.270539191e-10 3.295703561e-10 2.256221848e-10 2.162581629e-10 1.179065446e-10 1.051574594e-10 1.792866572e-10 2.4300196e-10 1.372188031e-10 2.481139473e-10 1.761523414e-10 7.162932244e-11 3.214094315e-10 2.527411197e-10 2.577785466e-10 7.87751483e-11 3.449509628e-10 2.580453104e-10 2.50614331e-10 2.119562888e-10 2.478418486e-10 1.77012538e-10 1.599325105e-10 1.289269553e-10 2.437726234e-10 3.183322838e-10 1.882855297e-10 3.959859437e-10 1.797194765e-10 2.434967933e-10 4.447010151e-10 3.487457402e-10 2.349611815e-10 3.205049898e-10 2.689210909e-10 3.60045646e-10 2.492057591e-10 1.99331812e-10 2.754143838e-10 2.213585538e-10 2.125642248e-10 3.741260594e-10 3.958586563e-10 3.361282419e-10 1.596514846e-10 2.293523306e-10 4.925804522e-10 3.191116646e-10 3.35332632e-10 4.096412459e-10 2.517155594e-10 2.142242504e-10 1.764653053e-10 2.924965122e-10 1.840208376e-10 4.584485305e-10 3.635637223e-10 3.897671918e-10 2.410189848e-10 3.837443138e-10 2.204651977e-10 3.772222948e-10 3.130136477e-10 2.778718463e-10 4.368493052e-10 4.631906278e-10 4.869231137e-10 5.257729833e-10 4.446921447e-10 4.245192719e-10 3.399569963e-10 3.547585725e-10 4.867443107e-10 4.864454227e-10 4.2997399e-10 3.454799166e-10 4.266755621e-10 3.827683895e-10 2.555380019e-10 1.894205656e-10 1.24896437e-10 3.670113577e-10 2.644874252e-10 2.642526741e-10 5.441206957e-10 8.005939266e-10 6.97559241e-10 7.904295963e-10 5.922264049e-10 8.223131983e-10 6.787399576e-10 5.073418031e-10 5.813378963e-10 7.569751466e-10 6.383844489e-10 5.11445049e-10 4.939562904e-10 4.680309516e-10 3.515004213e-10 4.467285856e-10 4.946933365e-10 3.589577405e-10 1.571360472e-10 1.279238742e-10 1.274292275e-10 2.42745964e-10 2.338731176e-10 4.95605876e-10 6.289254683e-10 5.723138034e-10 5.647773511e-10 8.315384355e-10 1.088012472e-09 9.424525185e-10 9.541505047e-10 8.479196051e-10 9.258054149e-10 5.958479954e-10 2.910178913e-10 1.246393674e-10 8.594731371e-11 8.129086459e-11 1.512200835e-10 1.537753973e-10 1.485687661e-10 9.606071481e-11 1.146467584e-10 1.395730657e-10 9.933322426e-11 1.280688447e-10 1.02384896e-10 1.341041416e-10 1.573208239e-10 1.959361062e-10 1.030100799e-10 1.999214358e-10 1.732984401e-13 1.117055107e-10 9.437886798e-11 4.444163817e-23 1.210650825e-10 1.40779615e-10 1.429659463e-10 1.696130764e-10 1.048898563e-10 2.047800847e-10 1.952624373e-10 1.210637044e-10 1.133142723e-10 2.878218012e-10 6.726365745e-10 7.059056013e-10 9.837931453e-10 1.11083195e-09 1.004020862e-09 1.232852671e-09 7.576849333e-10 5.727168452e-10 4.971808931e-10 5.609915841e-10 6.031959139e-10 2.589692722e-10 8.409214798e-11 1.153160561e-10 2.62122599e-10 2.19106986e-10 3.956484213e-10 4.630551615e-10 5.568424919e-10 4.950667843e-10 4.405762902e-10 5.017582595e-10 5.725080268e-10 6.558874116e-10 8.877554024e-10 7.097822886e-10 5.969675585e-10 8.835885865e-10 5.123172067e-10 7.390564755e-10 8.140365064e-10 7.82045281e-10 8.625776933e-10 4.215601818e-10 4.160045156e-10 2.490260749e-10 1.78759917e-10 1.939420475e-10 2.651990154e-10 2.483848822e-10 3.911009211e-10 4.260770158e-10 3.673392605e-10 5.972210663e-10 3.291539822e-10 4.586547047e-10 4.426062977e-10 4.244699813e-10 4.966089052e-10 4.003053029e-10 4.482563781e-10 4.975582431e-10 4.920206481e-10 4.036071852e-10 3.539870591e-10 4.584081618e-10 3.04323351e-10 2.979730776e-10 2.159598087e-10 3.689050351e-10 2.780983537e-10 3.804054981e-10 3.983410374e-10 4.523490168e-10 4.809784716e-10 1.848721493e-10 4.563583869e-10 3.38853965e-10 4.250965776e-10 1.755642223e-10 2.835875377e-10 2.544857909e-10 3.497655643e-10 3.938929982e-10 2.301797601e-10 2.691165072e-10 2.942634791e-10 1.908879304e-10 2.850784379e-10 3.429142375e-10 2.32209282e-10 5.726532155e-10 3.966193353e-10 4.281747495e-10 2.420149906e-10 3.182018091e-10 1.744054585e-10 3.416986526e-10 2.089947426e-10 5.464885855e-10 4.439384644e-10 3.296602791e-10 2.47468555e-10 2.427162962e-10 2.222835946e-10 1.566665611e-10 2.272000249e-10 1.558204365e-10 1.738277174e-10 2.81773432e-10 2.777052486e-10 3.806691433e-10 1.585989274e-10 1.270077127e-10 2.46593689e-10 3.431373525e-10 8.32917297e-11 8.958949857e-11 2.607893945e-10 1.692240853e-10 3.405134057e-10 4.306343194e-10 5.525123121e-11 2.54747428e-10 1.377110564e-10 2.844418531e-10 3.588542219e-10 2.149497115e-10 3.558396344e-10 2.764653773e-10 1.776690284e-10 1.038345352e-10 2.50459862e-10 2.558523899e-10 1.53688251e-10 1.218222872e-10 1.163885959e-10 3.589368388e-11 2.402500035e-10 5.975878619e-11 3.599657121e-10 3.053327839e-10 9.424177745e-11 9.754284901e-11 +2.004016956e-10 1.557512823e-10 2.23768666e-10 3.039486219e-10 1.659217212e-10 1.247488461e-10 3.179532396e-10 3.488429987e-10 2.660949376e-10 8.019299866e-11 1.336490165e-10 7.991241244e-11 3.284032872e-10 2.845336488e-10 1.481163115e-10 1.017943364e-10 1.633940058e-10 1.374597744e-10 2.542037812e-10 1.964405911e-10 1.718290143e-10 2.16958629e-10 1.356125501e-10 1.356288638e-10 8.648917491e-11 1.265245954e-10 2.111478665e-10 3.282521942e-10 1.702704483e-10 1.291842003e-10 4.56639147e-10 1.479655444e-10 3.857577825e-10 1.13047719e-10 1.839319414e-10 1.212372362e-10 3.188246739e-10 1.192568843e-10 3.000723439e-10 2.969009342e-10 3.728239152e-10 3.804285588e-10 2.597949675e-10 2.014223432e-10 1.908656121e-10 1.710964015e-10 3.213736354e-10 4.483366636e-10 4.146070778e-10 4.607953296e-10 2.360409176e-10 2.484049925e-10 4.165052893e-10 2.35330507e-10 3.33014773e-10 3.049741014e-10 4.203962872e-10 3.242127596e-10 2.620444522e-10 1.743600705e-10 3.62400706e-10 2.085224455e-10 3.64885855e-10 2.621234087e-10 2.541991261e-10 3.576153319e-10 2.105869735e-10 2.638151041e-10 3.116768737e-10 3.623906858e-10 3.047959729e-10 1.481730929e-10 3.381261329e-10 3.477076398e-10 4.379609637e-10 1.817565121e-10 2.552533102e-10 4.446203637e-10 2.319847326e-10 3.938100759e-10 5.302683894e-10 5.545832435e-10 6.007032755e-10 3.582248698e-10 3.067323133e-10 5.441251848e-10 4.605870807e-10 4.768542412e-10 4.312971147e-10 3.069757131e-10 4.105788458e-10 2.549307312e-10 3.592800235e-10 4.82649604e-10 2.759993567e-10 3.151713095e-10 1.775314003e-10 1.89678189e-10 1.911072794e-10 2.403184511e-10 4.596414928e-10 7.157952186e-10 6.158539287e-10 4.553687379e-10 6.644016807e-10 5.673583516e-10 4.568048687e-10 6.29228886e-10 9.306853895e-10 6.576618602e-10 7.241102297e-10 7.666757972e-10 4.379121793e-10 5.551984992e-10 6.198249131e-10 4.591768831e-10 4.770678864e-10 4.233680265e-10 2.215748076e-10 1.664830657e-10 2.512477068e-11 1.039432833e-11 2.071042188e-10 5.488635562e-10 4.87276859e-10 5.595619423e-10 5.74039364e-10 7.437271455e-10 1.094416323e-09 1.093089604e-09 1.077631086e-09 9.205896094e-10 8.749081666e-10 7.378366816e-10 5.693446463e-10 2.719060709e-10 6.176655978e-11 6.32004785e-11 9.558954677e-11 3.368162468e-11 1.027736673e-10 1.414350524e-10 6.066847035e-11 1.911414471e-10 1.246140782e-10 7.821392852e-11 1.451253831e-10 1.515338634e-10 9.226847034e-11 1.194754389e-10 1.178792958e-10 1.352783673e-10 1.049211247e-10 8.905583043e-11 1.096427559e-10 9.531789887e-11 1.590462506e-10 1.331573256e-10 1.265343989e-10 3.659553936e-13 1.774593779e-10 2.183333357e-10 1.309051436e-10 1.417978079e-12 1.785388957e-10 5.303137218e-10 7.155500653e-10 9.020301436e-10 9.489245032e-10 8.877832227e-10 1.033699065e-09 9.946974636e-10 8.1077779e-10 5.83836975e-10 5.955563505e-10 6.31670179e-10 4.681890054e-10 1.432476923e-10 1.27970386e-10 1.873400213e-22 1.163195564e-26 2.664243317e-10 4.122449848e-10 4.039968721e-10 4.806795664e-10 4.751487535e-10 4.761911258e-10 4.374851996e-10 5.418898181e-10 8.491728551e-10 6.918467393e-10 6.404706488e-10 8.592337825e-10 6.739515739e-10 5.750979084e-10 5.262748638e-10 7.970020799e-10 7.044090339e-10 5.481429647e-10 5.875070501e-10 2.299895349e-10 1.971352145e-10 1.533267013e-10 1.628301963e-10 2.763706753e-10 2.311245824e-10 4.406660385e-10 3.635199526e-10 4.117213621e-10 3.988954083e-10 5.523317013e-10 3.67882058e-10 4.570502358e-10 4.439669384e-10 4.440486865e-10 3.008881638e-10 3.252582764e-10 4.249680852e-10 4.646719544e-10 3.310841662e-10 4.285819045e-10 3.274061161e-10 2.312370102e-10 3.420620978e-10 1.370891146e-10 2.034891777e-10 3.438247752e-10 4.347547398e-10 3.135373976e-10 3.496741511e-10 3.523669205e-10 3.115779528e-10 2.402179033e-10 4.268401286e-10 3.0134421e-10 4.000690092e-10 5.389918741e-10 3.379867357e-10 2.907424897e-10 3.213313962e-10 2.67084717e-10 2.315249749e-10 1.546785253e-10 3.360738853e-10 2.470830557e-10 3.879988279e-10 1.411558336e-10 3.67210933e-10 2.412902528e-10 2.662900601e-10 4.455305136e-10 4.756055721e-10 1.615728264e-10 3.347610443e-10 2.850353993e-10 4.260880564e-10 5.659545944e-10 1.557196512e-10 3.163385244e-10 1.499570018e-10 1.471954811e-10 2.956402647e-10 2.252361962e-10 1.265373705e-10 3.402318189e-10 1.191886658e-10 2.460974999e-10 1.401868065e-10 1.057892288e-10 1.69454973e-10 2.924541481e-10 1.908090279e-10 3.185747319e-10 2.537719017e-10 1.275766787e-10 2.880994374e-10 7.996858527e-11 8.178907138e-11 8.329631544e-11 1.102005466e-10 3.542201629e-10 1.141569793e-10 2.269534068e-10 1.738423156e-10 1.065307469e-10 5.625083771e-11 1.877062184e-10 2.557986353e-10 1.301915624e-10 1.961086261e-10 1.032771722e-10 5.25809519e-11 5.286483192e-10 7.04542353e-11 1.366664029e-10 2.953018007e-10 4.952117841e-10 1.765013805e-10 3.353342101e-10 2.975000617e-10 +1.897468233e-10 6.843695913e-11 1.09996338e-10 8.630386893e-11 3.05152415e-10 1.399503275e-10 2.730567231e-10 1.763224933e-10 1.738249106e-10 3.410589262e-10 2.824552527e-10 1.502574708e-10 2.036207489e-10 3.540958322e-10 9.466693501e-11 4.142650784e-10 2.179170583e-10 2.88927439e-10 3.991318241e-10 1.348206928e-10 7.414926826e-11 3.871638058e-10 1.553154282e-10 1.614109036e-10 4.129499075e-10 1.731600061e-10 1.726575062e-10 1.226865114e-10 1.175410428e-10 2.797293431e-10 2.568776719e-10 1.492047946e-10 2.44954876e-10 2.919886289e-10 9.811074555e-11 3.544824048e-10 2.505053488e-10 2.62392394e-10 3.154317055e-10 1.518865417e-10 2.132965004e-10 5.308494909e-10 2.378505957e-10 4.39126504e-10 3.088939214e-10 1.563614404e-10 4.249148337e-10 1.224632162e-10 2.403462944e-10 3.755866417e-10 3.757051847e-10 2.838428433e-10 1.977084447e-10 2.338727854e-10 1.761755243e-10 4.35530402e-10 5.539060507e-10 2.0174515e-10 1.967927749e-10 1.905737513e-10 2.14582857e-10 3.39883645e-10 2.984427034e-10 3.699243949e-10 2.941662063e-10 3.62144975e-10 3.97884798e-10 2.805614141e-10 1.696817398e-10 3.494127398e-10 6.091254727e-10 2.618754772e-10 2.354534201e-10 4.052845089e-10 4.990612044e-10 2.284952423e-10 2.762847702e-10 2.783478153e-10 4.740457087e-10 4.34622498e-10 4.120604099e-10 5.136564831e-10 5.5030806e-10 3.464174154e-10 4.124717272e-10 5.275764197e-10 5.137138771e-10 4.583705932e-10 4.644492305e-10 3.563801584e-10 4.22298034e-10 3.348924809e-10 3.44630661e-10 3.102966103e-10 3.248135801e-10 3.114864886e-10 1.344915961e-10 1.554626929e-10 2.764900432e-10 2.119186174e-10 3.86343383e-10 4.768471392e-10 7.002979779e-10 5.216891785e-10 4.983296264e-10 6.426604935e-10 6.590772616e-10 5.869236773e-10 5.051752514e-10 8.561630839e-10 7.967584707e-10 3.844081559e-10 4.767755426e-10 4.650995257e-10 4.798570201e-10 4.686959616e-10 4.386648211e-10 3.308750257e-10 1.502442828e-10 0 2.291623385e-10 1.21199239e-10 1.104988377e-10 4.824514328e-10 2.950863339e-10 5.701841795e-10 5.420701746e-10 5.823798716e-10 8.860949535e-10 8.006447987e-10 1.121141196e-09 9.571068924e-10 9.659010656e-10 8.24363431e-10 5.098124543e-10 3.259053347e-10 1.750450438e-10 1.005333817e-10 1.031483432e-10 1.312614187e-10 1.10695925e-10 1.182364452e-10 1.084629446e-10 1.241151405e-10 9.863031488e-11 0 1.361933287e-10 1.899566044e-10 1.1126366e-10 9.983685602e-11 7.427575983e-11 1.324006644e-10 1.662667373e-10 8.328698125e-11 1.975931859e-10 1.261673922e-10 1.00241816e-10 1.667533495e-10 9.303876075e-11 4.782782065e-11 5.794732205e-31 1.648802813e-10 1.180733502e-10 9.595056667e-11 3.358243203e-10 6.161162406e-10 8.639490043e-10 6.573662751e-10 1.092712491e-09 9.395246831e-10 9.722577148e-10 9.810158092e-10 6.244907892e-10 5.518215504e-10 6.268375446e-10 6.627204254e-10 5.492316793e-10 2.059038559e-10 1.697607301e-10 1.857229012e-10 1.479206273e-10 1.641322435e-10 4.436392331e-10 5.279008492e-10 3.199359939e-10 3.40892218e-10 5.28851722e-10 4.38012881e-10 6.832334349e-10 8.10984409e-10 7.532759391e-10 3.687160603e-10 5.890869591e-10 6.723364924e-10 8.958412341e-10 7.20134234e-10 6.176031286e-10 7.820680865e-10 6.528551676e-10 4.843681609e-10 3.466145854e-10 2.900983619e-10 1.623480693e-10 1.555487317e-10 2.802185244e-10 3.217411595e-10 4.090220958e-10 5.708552604e-10 3.51381675e-10 3.657079332e-10 3.725756442e-10 4.360065453e-10 4.120332522e-10 3.641521243e-10 3.542586586e-10 5.409682395e-10 3.978939024e-10 4.369207525e-10 5.164062859e-10 2.974949668e-10 2.168111981e-10 1.734611792e-10 1.577802639e-10 2.246230002e-10 2.028088112e-10 3.243960357e-10 3.385310706e-10 4.727609799e-10 2.059574129e-10 4.337463714e-10 2.447153823e-10 3.908925627e-10 2.390021315e-10 2.375950323e-10 2.575119151e-10 4.889546056e-10 3.233012096e-10 2.869429671e-10 2.330496645e-10 2.802875577e-10 1.67874057e-10 1.987030672e-10 3.416267318e-10 3.784829533e-10 1.574285467e-10 2.413761202e-10 2.023616135e-10 3.005003632e-10 3.521377969e-10 3.301844108e-10 2.496167772e-10 3.381644065e-10 2.55770746e-10 2.825149747e-10 2.323027766e-10 2.802666208e-10 3.16027526e-10 4.816851211e-10 2.263064057e-10 2.01061734e-10 1.862604971e-10 2.215048285e-10 3.57888131e-10 1.741727222e-10 2.632755108e-10 3.375639892e-10 3.753868874e-10 2.506542235e-10 9.777588866e-11 2.873013994e-10 2.333650145e-10 1.262006068e-10 3.390400616e-10 3.73076825e-10 5.534478061e-11 3.053542536e-10 2.251463559e-10 2.562902822e-10 3.041387102e-10 1.990556556e-10 1.646279729e-10 9.873740288e-11 1.685268487e-10 9.127872488e-11 1.476534414e-10 9.854063243e-11 5.783444033e-11 1.733038558e-10 1.073625015e-10 1.23302113e-10 2.175011415e-10 7.291732269e-11 3.460713321e-10 3.187279018e-10 1.99185914e-10 1.494693938e-10 1.287417916e-10 1.202949096e-10 1.115320546e-10 1.662806516e-10 +3.619740282e-11 6.607692497e-11 1.311199879e-10 3.217873571e-10 9.214723634e-11 1.409539406e-10 3.393383248e-10 2.940608555e-10 9.854967652e-11 3.761209819e-10 1.110036118e-10 2.413002893e-10 4.188084529e-10 1.371332013e-10 1.68240904e-10 1.614853268e-10 1.573250189e-10 8.670388648e-11 1.85542228e-10 2.655015113e-10 1.419310046e-10 2.576587374e-10 1.404575367e-10 3.283345275e-10 2.4702309e-10 9.341062712e-11 2.574134175e-10 1.213311122e-10 1.388700182e-10 3.602089478e-10 1.392085171e-10 1.204374302e-10 1.401650252e-10 2.794955286e-10 9.578209577e-11 1.061140675e-10 2.212751651e-10 1.185672998e-10 1.180079811e-10 1.73447827e-10 1.733514613e-10 2.973358891e-10 3.630426777e-10 2.986384428e-10 4.417338766e-10 5.093920482e-10 2.87029832e-10 2.083635896e-10 3.684723103e-10 3.841853267e-10 2.220484289e-10 2.437422192e-10 2.120589162e-10 2.176434604e-10 3.274102674e-10 2.304565782e-10 2.417367784e-10 2.496299898e-10 1.985656476e-10 1.720971504e-10 4.078092987e-10 2.702625847e-10 3.200871851e-10 2.324466823e-10 1.794826598e-10 2.450183755e-10 3.051203933e-10 2.467323548e-10 2.023150953e-10 3.909298236e-10 3.31396173e-10 2.256119582e-10 2.644533263e-10 3.559821428e-10 2.732623543e-10 3.196486629e-10 3.781910922e-10 2.516254166e-10 3.983909761e-10 4.708331959e-10 5.405745267e-10 3.794705521e-10 3.076077344e-10 5.171759797e-10 3.845975286e-10 5.916393025e-10 4.149874138e-10 4.986444959e-10 3.144357554e-10 3.654343755e-10 3.829899246e-10 4.195586648e-10 4.009975669e-10 4.224897097e-10 2.010512232e-10 1.876894375e-10 1.155869715e-10 1.408306718e-10 2.705774537e-10 2.921936704e-10 7.816475963e-10 7.97028858e-10 7.663512718e-10 6.935803566e-10 6.742819239e-10 5.930950558e-10 5.479613441e-10 6.982822933e-10 5.609231568e-10 7.931711023e-10 6.879294022e-10 5.755537801e-10 4.983956518e-10 3.334774239e-10 5.164580535e-10 4.874049098e-10 4.737585709e-10 3.461490307e-10 2.268164704e-10 4.579975114e-28 9.671161546e-11 1.541381932e-11 1.126942551e-10 4.437848175e-10 5.081328356e-10 5.97485279e-10 4.264069877e-10 5.517833867e-10 8.087538817e-10 9.8185974e-10 1.030958282e-09 9.458312452e-10 9.707097031e-10 7.548778466e-10 7.254836994e-10 5.202665269e-10 2.959963482e-10 1.283939422e-10 1.710470923e-10 1.445002333e-10 1.387517255e-10 1.584102e-10 1.749583984e-10 9.786577081e-11 1.585531082e-10 1.673696585e-10 1.132523354e-10 1.0808254e-10 7.484524474e-11 1.40466318e-10 1.137604658e-10 1.55428693e-10 1.091888756e-10 2.076662703e-10 6.642731509e-11 2.271632905e-10 1.725161926e-10 1.527181492e-10 1.206469078e-10 1.814283606e-10 1.272489911e-10 1.188649123e-10 1.167927863e-10 2.764749953e-10 4.367277213e-10 7.195743768e-10 7.558217782e-10 9.571256857e-10 8.293807713e-10 8.529500913e-10 1.08186888e-09 9.279691618e-10 5.715300276e-10 6.614819343e-10 5.474407505e-10 6.102722694e-10 3.70602421e-10 1.92044349e-10 7.248958329e-11 1.425904855e-10 2.113667049e-10 3.380620327e-10 4.427155704e-10 4.472669515e-10 3.087453855e-10 4.136231623e-10 5.208872061e-10 6.265501071e-10 4.373192586e-10 7.292294813e-10 6.566924243e-10 4.722408709e-10 4.625341704e-10 3.898271983e-10 5.75892074e-10 5.479292795e-10 7.555460446e-10 5.418929464e-10 6.64362113e-10 4.327097318e-10 2.030253577e-10 3.840783722e-10 3.017690565e-10 1.066971798e-10 4.094494178e-10 2.64709928e-10 3.700087052e-10 4.18009321e-10 3.818366076e-10 3.96307064e-10 3.593688391e-10 5.267105932e-10 4.776107509e-10 3.587897443e-10 5.014340406e-10 5.669932659e-10 3.512658706e-10 5.219020198e-10 6.729343683e-10 4.521707061e-10 4.133286675e-10 3.362309887e-10 2.698333134e-10 3.930543689e-10 1.555177273e-10 2.407868434e-10 3.187945999e-10 3.026235019e-10 4.051815612e-10 3.41762584e-10 3.557133431e-10 3.573247724e-10 1.866316726e-10 4.095973706e-10 2.353480705e-10 3.906111902e-10 3.02958028e-10 2.911525051e-10 2.956725418e-10 3.26862181e-10 3.928199039e-10 1.714795883e-10 2.3059513e-10 3.695972401e-10 3.990337405e-10 3.038667954e-10 1.629229317e-10 2.999472709e-10 2.679343308e-10 3.441314967e-10 3.17451463e-10 4.363914429e-10 3.819644335e-10 3.354253451e-10 2.232827529e-10 5.207101713e-10 2.35075914e-10 4.009312013e-10 3.241782046e-10 2.568030292e-10 2.294032968e-10 2.021663424e-10 2.740276386e-10 2.699755227e-10 1.783745335e-10 1.340985527e-10 1.800177837e-10 3.211157589e-10 1.611968048e-10 1.462047043e-10 1.171814435e-10 1.189423948e-10 1.58820826e-10 3.933002201e-10 2.095220369e-10 2.203999317e-10 1.525108617e-10 8.81422656e-11 1.323798855e-10 1.079140835e-10 1.397618065e-10 2.582722554e-10 1.928426032e-10 2.519104738e-10 3.819711477e-10 1.972899377e-10 1.243715441e-10 2.048854873e-10 2.380047822e-10 2.772243733e-10 1.105976673e-10 2.30968509e-10 1.164519328e-10 2.391301244e-10 5.297134872e-11 1.242475001e-10 3.824182836e-10 8.878255463e-11 2.826390663e-10 1.640430455e-10 +3.23731191e-10 1.683339984e-10 2.220789751e-10 2.245273463e-10 4.988315715e-11 1.627308993e-10 1.311135224e-10 1.549493482e-10 1.25343778e-10 1.483474124e-10 1.391249532e-10 2.616573344e-10 1.564327466e-10 1.673422401e-10 1.138443669e-10 1.498178149e-10 2.309285212e-10 9.689698377e-11 1.106213421e-10 2.551838235e-10 1.19176288e-10 3.985125548e-10 1.627695552e-10 2.212278554e-10 1.713902143e-10 2.010430656e-10 3.286014773e-10 1.926625285e-10 4.30274634e-10 1.513206489e-10 1.675854701e-10 2.318992234e-10 1.818202147e-10 3.629293284e-10 1.874168633e-10 1.225981936e-10 1.118956852e-10 1.215365233e-10 2.779329079e-10 1.788690087e-10 1.085465452e-10 3.7861351e-10 3.656594635e-10 6.336011933e-10 2.120102434e-10 1.907775796e-10 1.620515721e-10 3.020138508e-10 3.515541656e-10 2.63327039e-10 2.68146473e-10 3.554712382e-10 4.665686046e-10 2.218079467e-10 2.669051136e-10 4.14641179e-10 2.992845529e-10 1.653809481e-10 2.543132349e-10 4.305092679e-10 1.647241786e-10 3.369449918e-10 2.098489024e-10 3.52339372e-10 2.882379141e-10 3.601100516e-10 2.95954293e-10 2.248816993e-10 2.512584833e-10 4.155190551e-10 4.22028495e-10 2.442019856e-10 4.50827236e-10 1.866245158e-10 1.919330862e-10 3.973910283e-10 2.154650745e-10 3.093102836e-10 3.157763414e-10 2.054506511e-10 4.394880392e-10 3.96783929e-10 3.51297906e-10 3.601435456e-10 3.97703105e-10 4.583578901e-10 3.756867679e-10 4.583121096e-10 4.858703331e-10 2.672938677e-10 4.059026019e-10 4.412971825e-10 2.334737299e-10 3.917689053e-10 3.121088045e-10 3.427852551e-10 2.646068717e-10 1.347901662e-10 2.677952184e-10 3.144071555e-10 6.1757478e-10 5.083548717e-10 7.200953456e-10 7.897890388e-10 6.799696637e-10 5.23353288e-10 6.680181468e-10 4.591903951e-10 5.82365313e-10 5.666833505e-10 8.830036142e-10 6.49760162e-10 4.154347755e-10 4.405044334e-10 5.041686373e-10 4.290148857e-10 5.886454249e-10 4.278759037e-10 3.421270338e-10 1.992473041e-10 1.383495218e-10 5.280645225e-11 1.813507173e-10 2.4593212e-10 4.796514215e-10 4.496259163e-10 5.894220122e-10 6.247813321e-10 6.165773281e-10 8.348430212e-10 1.165696085e-09 1.066963307e-09 9.943844234e-10 8.94855651e-10 8.026258929e-10 4.881494063e-10 3.170149479e-10 9.513407505e-11 7.542781261e-29 1.478590988e-10 5.796035393e-18 1.567241425e-10 1.11368118e-10 1.249388838e-10 1.368040004e-10 9.575126362e-11 1.573357225e-10 1.839333891e-10 1.992891256e-10 1.62501586e-10 1.108682274e-10 2.111545722e-10 1.277951945e-10 1.479925515e-11 1.221080775e-10 9.776477653e-11 1.234484498e-13 1.617646688e-10 0 2.827077272e-11 1.77724926e-10 1.118432883e-10 9.120876314e-11 3.36737789e-10 4.13280585e-10 8.590982615e-10 9.809589658e-10 8.11897139e-10 8.799286668e-10 9.298975815e-10 9.759944389e-10 6.726182481e-10 5.910187737e-10 5.613507138e-10 5.267318562e-10 5.08948529e-10 2.645182635e-10 1.262138202e-10 3.185235128e-10 1.321206308e-10 1.157064129e-10 2.597000423e-10 4.141144259e-10 3.763552803e-10 5.483898662e-10 4.581422271e-10 5.60670874e-10 5.097409379e-10 6.449557668e-10 4.818412449e-10 6.783528121e-10 5.227951066e-10 6.477855406e-10 7.787355802e-10 7.900109236e-10 6.397635643e-10 7.302925281e-10 1.019964371e-09 5.4576609e-10 4.045012303e-10 2.504194085e-10 2.063137846e-10 1.584422433e-10 1.245056934e-10 2.373984479e-10 2.95249043e-10 3.969096269e-10 2.554298911e-10 4.831180571e-10 3.323610012e-10 3.338986469e-10 4.14846846e-10 3.847811127e-10 5.197111946e-10 4.452741483e-10 5.329500533e-10 4.237405012e-10 5.793439206e-10 3.721168454e-10 6.650774996e-10 4.124851922e-10 2.997018521e-10 3.68130571e-10 4.074909111e-10 2.549939603e-10 2.087589716e-10 3.42329675e-10 2.287675618e-10 2.576427522e-10 3.752296839e-10 2.754040625e-10 4.494422168e-10 1.488931171e-10 3.417798123e-10 2.229514416e-10 5.31583969e-10 2.731989168e-10 2.187286668e-10 2.443338099e-10 2.456748086e-10 2.814645446e-10 3.078995638e-10 2.501835285e-10 3.720965329e-10 3.413605158e-10 4.197858825e-10 1.999333973e-10 3.080607147e-10 6.942958899e-10 2.621301799e-10 3.748993088e-10 4.295257442e-10 3.364996065e-10 4.02041167e-10 2.668166577e-10 2.095762246e-10 3.339640506e-10 3.209907734e-10 2.882636917e-10 3.000163134e-10 2.812394977e-10 2.333793722e-10 1.389055115e-10 2.742175737e-10 1.406874298e-10 1.512677113e-10 2.223275263e-10 1.553751699e-10 2.382600845e-10 2.313507626e-10 1.192010864e-10 1.707302171e-10 3.289996973e-10 1.254691812e-10 1.39459455e-10 9.743123402e-11 1.272587382e-10 3.202715285e-10 1.730339244e-10 2.940606921e-10 3.232436467e-10 1.88631898e-10 3.580449698e-10 2.827739305e-10 1.371636581e-10 1.884551412e-10 2.499650504e-10 3.905127835e-10 2.834318943e-10 1.139594571e-10 1.507572944e-10 1.863927158e-10 1.554297608e-10 1.176835973e-10 2.488515233e-10 4.053700717e-10 4.098861133e-10 9.633173512e-11 9.554895285e-11 8.769542538e-11 +1.551073735e-10 9.065503205e-11 1.237063808e-10 3.15656016e-10 1.393306978e-10 1.123297553e-10 2.233880308e-10 1.382704607e-10 5.033337727e-11 1.85182805e-10 3.255155576e-10 1.586964215e-10 1.802129288e-10 5.547490455e-11 1.391400744e-10 3.665963007e-10 2.895526492e-10 1.319191044e-10 1.85803343e-10 1.256081739e-10 3.407254581e-10 4.512995077e-10 1.420782096e-10 2.82268068e-10 2.522011809e-10 1.905829906e-10 1.859344212e-10 2.235923878e-10 1.471935117e-10 2.79804632e-10 3.51201167e-10 3.031019648e-10 1.562881363e-10 3.8434203e-10 2.072198365e-10 2.479457763e-10 1.5014909e-10 1.82813496e-10 2.996721693e-10 2.987894154e-10 2.32295667e-10 3.145975472e-10 4.886428163e-10 2.752011403e-10 4.10398934e-10 3.592047578e-10 3.584293752e-10 1.620165121e-10 4.639831011e-10 2.239248511e-10 2.717338832e-10 3.488328609e-10 3.974153635e-10 1.727425167e-10 4.048006675e-10 2.57630837e-10 3.584556296e-10 1.732715494e-10 2.37885671e-10 3.539714467e-10 1.163932351e-10 3.695647718e-10 3.434764282e-10 2.116796243e-10 3.946908665e-10 2.724828384e-10 2.230524077e-10 2.098982213e-10 3.412679592e-10 3.004647002e-10 3.837769053e-10 4.123763705e-10 4.192264816e-10 3.349412409e-10 3.404165544e-10 2.956905626e-10 2.312285006e-10 2.020166359e-10 3.966843742e-10 5.118112686e-10 3.79610364e-10 3.798475966e-10 5.567195165e-10 4.892058649e-10 4.063896094e-10 3.359289045e-10 4.585319155e-10 4.171717213e-10 3.433237094e-10 4.70521002e-10 3.543688961e-10 4.02731105e-10 3.965172591e-10 2.165817081e-10 2.276183e-10 2.449166418e-10 2.17600416e-10 1.56414418e-10 2.156117998e-10 2.878640124e-10 4.117028195e-10 7.000317961e-10 6.085727362e-10 5.219261651e-10 6.313186739e-10 7.932408612e-10 4.666691866e-10 5.642526957e-10 6.783418897e-10 7.304825209e-10 6.693172869e-10 7.480455849e-10 6.127155423e-10 4.966940435e-10 4.347728768e-10 6.457815075e-10 4.094011706e-10 4.334618034e-10 2.823017455e-10 1.957517851e-10 1.102999853e-10 0 5.52092125e-11 3.011342643e-10 4.450007783e-10 4.962880652e-10 5.13346691e-10 4.562116627e-10 6.866009143e-10 9.227661901e-10 1.075686687e-09 9.18741299e-10 8.945892894e-10 9.212438204e-10 8.80563074e-10 5.786382954e-10 5.113554643e-10 1.790464649e-10 1.397783251e-18 7.461807544e-11 1.192920574e-10 1.660850598e-10 1.590526225e-10 4.178788602e-11 1.866934585e-10 1.778898182e-10 1.426468944e-10 7.873878416e-11 1.358834416e-10 1.159502994e-10 1.395098481e-10 2.088319061e-10 1.217743503e-10 2.061987403e-10 1.499611436e-10 1.503241085e-10 0 1.405592407e-10 1.339525859e-10 1.200170909e-10 1.872678645e-10 0 1.719782501e-10 3.609070779e-10 6.95803264e-10 7.742114398e-10 9.051658606e-10 7.325922358e-10 9.526081062e-10 9.478832697e-10 8.312637371e-10 6.986877298e-10 6.427311182e-10 4.27247488e-10 5.111480968e-10 5.091687157e-10 3.141699874e-10 1.07115857e-10 1.504509077e-10 1.326205247e-10 2.106423631e-10 3.423736515e-10 4.692270174e-10 4.787635451e-10 4.821244357e-10 5.025227849e-10 4.261072035e-10 5.893868258e-10 5.079786237e-10 7.161306197e-10 5.402755866e-10 4.73795245e-10 7.307618163e-10 5.041352933e-10 6.191552213e-10 8.173163254e-10 5.994587795e-10 6.54959472e-10 7.066625893e-10 7.807690009e-10 2.322256406e-10 2.340992895e-10 1.814173655e-10 8.508525286e-11 3.111414144e-10 4.639569009e-10 3.185533144e-10 2.797063663e-10 4.216957407e-10 4.851321418e-10 4.396812251e-10 4.388367679e-10 3.607559426e-10 4.634558755e-10 3.312337624e-10 5.652092469e-10 4.302302273e-10 4.660932934e-10 4.099934715e-10 3.17954193e-10 3.623322626e-10 4.382879987e-10 2.805307184e-10 3.074004838e-10 4.750623455e-10 3.196844981e-10 2.8511918e-10 1.928247149e-10 2.511537237e-10 4.012963862e-10 3.815379305e-10 3.495061197e-10 2.974664569e-10 3.898507976e-10 2.790208126e-10 3.636600305e-10 3.584522862e-10 3.815931925e-10 1.841789214e-10 2.082539871e-10 2.279322292e-10 2.109142716e-10 1.721361027e-10 3.378045892e-10 2.212979362e-10 2.781004366e-10 1.482119173e-10 3.018841193e-10 2.652214081e-10 3.844221935e-10 1.158524766e-10 2.646424867e-10 3.09125869e-10 3.310425741e-10 2.825879717e-10 3.635837401e-10 2.484710076e-10 2.899052913e-10 3.307439958e-10 3.198541542e-10 1.470749449e-10 2.091545904e-10 3.44404376e-10 2.095516347e-10 1.874883333e-10 8.835734254e-11 4.345450731e-10 3.968106822e-10 1.706841724e-10 1.736713564e-10 2.172689483e-10 2.414508935e-10 2.679610021e-10 1.896296423e-10 2.99774001e-10 1.706613959e-10 1.288600502e-10 1.388072319e-10 2.817611853e-10 2.608082243e-10 4.290033635e-10 2.370501247e-10 1.034485019e-10 3.478631375e-10 3.21432019e-10 8.29977574e-11 2.068083441e-10 1.295314774e-10 2.671163496e-10 1.730626381e-10 1.736188932e-10 3.976175986e-10 2.167647355e-10 1.72188989e-10 3.858298185e-10 1.608267244e-10 1.294567027e-10 1.668513435e-10 2.221894813e-10 2.870123796e-10 +3.464076105e-10 6.268596216e-11 2.343796728e-10 1.627430424e-10 1.393817192e-10 2.998504716e-10 2.425940218e-10 1.548051744e-10 2.704342603e-10 8.171328304e-11 1.725722868e-10 1.733221767e-10 3.526760547e-10 2.126250003e-10 2.536790299e-10 2.132529896e-10 2.075578596e-10 2.261598743e-10 3.579862649e-10 2.541988288e-10 2.458623202e-10 8.180139847e-11 3.290752675e-10 1.297960256e-10 1.799790358e-10 2.728980637e-10 3.879200256e-10 1.913244742e-10 1.063497318e-10 1.586782891e-10 2.456487855e-10 2.347438056e-10 9.274467244e-11 2.666060413e-10 2.340249883e-10 1.729637316e-10 1.060976188e-10 1.8739643e-10 3.061593444e-10 1.228351849e-10 2.078456243e-10 3.886892404e-10 2.295109354e-10 4.012309518e-10 2.028517771e-10 1.916399241e-10 2.515564593e-10 4.369243562e-10 1.775421224e-10 2.739772961e-10 2.106686656e-10 1.20043774e-10 2.194618836e-10 2.098647831e-10 2.566299185e-10 3.412233729e-10 2.441120431e-10 3.465182782e-10 3.967185451e-10 4.111769835e-10 1.467411213e-10 1.767374558e-10 3.83310914e-10 3.029234836e-10 3.09249486e-10 2.260274015e-10 2.981901823e-10 2.606619318e-10 3.325441299e-10 3.09359621e-10 2.853511311e-10 2.408305721e-10 3.099423726e-10 3.035610823e-10 3.62895654e-10 4.075218814e-10 3.458324807e-10 3.739407833e-10 2.108869333e-10 2.844182895e-10 3.026268417e-10 6.332819771e-10 4.470393773e-10 4.460805972e-10 4.364291885e-10 4.480681486e-10 5.820270819e-10 3.677307891e-10 5.64698876e-10 4.036239803e-10 5.574743179e-10 2.668325397e-10 4.364790408e-10 4.988171312e-10 3.645300542e-10 3.286061085e-10 2.916955219e-10 1.536597297e-10 2.853843356e-10 2.504181703e-10 2.722298335e-10 8.853595902e-10 6.525078777e-10 4.530648858e-10 6.436741625e-10 6.769057188e-10 4.393934612e-10 6.081616826e-10 7.802461623e-10 8.525498521e-10 8.327075297e-10 6.771422976e-10 4.47606685e-10 4.01816279e-10 4.292682071e-10 3.875550198e-10 5.082014319e-10 3.745792357e-10 4.052250811e-10 1.762155078e-10 1.371240183e-10 8.794252232e-11 1.482906695e-10 1.837847073e-10 5.454410967e-10 4.771409344e-10 6.553616941e-10 5.397760182e-10 5.349996066e-10 7.634022905e-10 9.324301931e-10 1.083494766e-09 9.287702009e-10 9.300708763e-10 9.917274731e-10 7.485748506e-10 6.818839852e-10 3.653251071e-10 1.738567789e-10 1.924189728e-10 1.642026161e-10 1.895920257e-10 1.346675807e-10 1.828719198e-10 1.32546654e-10 1.434800282e-10 9.290098503e-11 7.9003869e-13 1.626807141e-10 1.163808239e-10 1.217496124e-10 0 1.624665436e-10 1.734118606e-10 2.919707134e-11 1.239750739e-10 2.077485302e-10 2.188396467e-20 1.646043816e-10 1.327357888e-10 1.044800822e-10 2.672976081e-10 4.874887787e-10 7.133491224e-10 8.448121219e-10 9.596207538e-10 7.994860386e-10 1.097098625e-09 1.065417604e-09 1.071876005e-09 8.695107897e-10 5.715466752e-10 4.962153203e-10 5.250226179e-10 5.060604422e-10 4.460869823e-10 2.584331549e-10 1.400485473e-10 1.895085758e-10 2.476726852e-10 2.036998371e-10 3.862509382e-10 5.15355091e-10 4.934002579e-10 4.771007293e-10 4.610245669e-10 3.798313425e-10 5.778520242e-10 6.991278617e-10 4.998813584e-10 6.186666294e-10 6.811385646e-10 4.808526263e-10 6.971080534e-10 5.808578406e-10 8.009520096e-10 6.281138347e-10 3.020021703e-10 7.390145382e-10 3.787793826e-10 3.192877203e-10 2.445769697e-10 2.132491356e-10 2.029645896e-10 3.863914833e-10 3.240185456e-10 3.32905898e-10 4.671978327e-10 3.837938633e-10 3.804368962e-10 2.466080618e-10 4.888321527e-10 4.057472789e-10 3.934924475e-10 4.235032505e-10 4.568424566e-10 4.383470085e-10 4.817630048e-10 3.399533921e-10 5.584898121e-10 2.791463961e-10 3.045541864e-10 3.328595854e-10 1.564831418e-10 3.087148674e-10 2.398921681e-10 3.285557714e-10 2.836507712e-10 3.409454166e-10 3.74190018e-10 3.860436907e-10 3.142576139e-10 2.711887926e-10 4.223162194e-10 2.431408756e-10 3.382094131e-10 2.79107339e-10 4.29266702e-10 2.427549114e-10 3.565177051e-10 1.987334304e-10 3.489592212e-10 1.262217691e-10 4.189383269e-10 2.168118174e-10 2.288382465e-10 2.689559087e-10 2.376530488e-10 3.510667039e-10 4.221211768e-10 2.667047468e-10 1.868748221e-10 1.978358828e-10 2.449405045e-10 1.683981174e-10 2.471690085e-10 3.3667758e-10 2.677542372e-10 3.300448532e-10 1.92680337e-10 1.052665131e-10 1.920277842e-10 1.434678559e-10 3.556260696e-10 1.630486829e-10 2.800043647e-10 1.350611043e-10 2.953507962e-10 1.937109739e-10 1.736504198e-10 3.479544075e-10 1.793740978e-10 4.437915061e-10 2.236527156e-10 3.094932653e-10 7.900845495e-11 4.606088275e-10 2.954430807e-10 4.154251007e-10 2.019724832e-10 1.508685631e-10 1.352541498e-10 8.721793184e-11 1.368401934e-10 2.428458419e-10 1.435531242e-10 2.847226629e-10 4.279646375e-10 1.860345033e-10 1.796492669e-10 5.509984997e-11 3.059093019e-10 1.836513745e-10 1.491623943e-10 9.978148931e-11 2.174741072e-10 2.709244433e-10 4.090402988e-10 1.286770047e-10 1.082169127e-10 +8.105697833e-11 1.947397457e-10 2.928737009e-10 3.685733905e-10 1.855215827e-10 3.225837019e-10 3.956678054e-10 8.806162196e-11 1.085766735e-10 1.440360917e-10 7.392127535e-11 1.848752081e-10 2.071478203e-10 1.461501793e-10 1.594199478e-10 1.42598977e-10 1.411859842e-10 1.713776576e-10 1.784989867e-10 2.098331344e-10 1.170209819e-10 1.988730673e-10 1.644908513e-10 3.033684831e-10 2.22949127e-10 2.09633339e-10 3.779250382e-10 1.249033604e-10 4.360150346e-10 9.083226014e-11 2.751448249e-10 1.207556958e-10 1.623300084e-10 1.076316143e-10 2.093358618e-10 1.528464173e-10 1.765653521e-10 1.714812652e-10 3.386257698e-10 1.280485526e-10 3.632375205e-10 2.108470324e-10 1.23925344e-10 3.843857094e-10 3.268248531e-10 3.946305183e-10 4.493588249e-10 3.080886178e-10 3.298653285e-10 3.657546773e-10 3.19480707e-10 2.845602111e-10 3.95263015e-10 2.921532397e-10 3.783505653e-10 2.907052753e-10 3.941942149e-10 2.140255973e-10 1.456684101e-10 2.999053222e-10 2.87080813e-10 1.721016578e-10 2.398973917e-10 2.353171406e-10 3.257473418e-10 2.578210042e-10 3.350122818e-10 2.373115812e-10 3.41316962e-10 3.577802348e-10 4.344784495e-10 3.784977396e-10 3.260318851e-10 2.293757718e-10 2.878675025e-10 3.573552307e-10 2.458715462e-10 2.008929968e-10 3.608273153e-10 3.99307567e-10 4.187004354e-10 3.899345565e-10 4.4593107e-10 5.252443392e-10 3.286262116e-10 4.935872327e-10 5.611866739e-10 4.356008632e-10 4.324607527e-10 3.908559404e-10 4.156897008e-10 4.816889602e-10 5.470946629e-10 4.212071642e-10 3.20904129e-10 2.461067412e-10 2.557573871e-10 3.030869945e-10 1.591730401e-10 2.503868074e-10 3.941605939e-10 5.650136289e-10 8.369277146e-10 5.378894438e-10 7.626813871e-10 4.268916848e-10 8.216082749e-10 5.187659696e-10 6.504794681e-10 5.689423383e-10 6.283380712e-10 6.962321809e-10 5.477725647e-10 4.875699739e-10 4.80202654e-10 5.881136371e-10 4.254164206e-10 4.71826744e-10 3.469564826e-10 2.672527619e-10 9.279459526e-11 2.632713731e-15 2.106267945e-13 2.157793582e-10 3.887168052e-10 5.35160256e-10 5.248079554e-10 5.76498449e-10 6.285414534e-10 7.278497359e-10 1.019922305e-09 1.034000454e-09 8.328821675e-10 1.138798757e-09 1.007506179e-09 9.129409324e-10 6.339345727e-10 5.195263229e-10 2.903854482e-10 1.272801972e-10 4.224597209e-11 1.179227445e-13 1.613723721e-10 1.656975799e-10 2.460768902e-10 1.037256911e-10 2.07027808e-33 1.184030084e-10 1.261967958e-10 1.412755445e-10 1.492260298e-10 1.652039611e-10 1.493779534e-18 9.326180997e-11 1.279745463e-10 1.786029915e-10 1.286667422e-10 2.328642106e-10 6.691101372e-11 1.67817575e-10 2.479419569e-10 3.035504031e-10 5.157570737e-10 5.62194763e-10 8.985654033e-10 7.882063907e-10 8.749559552e-10 1.021101208e-09 9.373754756e-10 9.827935823e-10 5.65408314e-10 5.25462341e-10 4.942210737e-10 5.054034672e-10 4.691910706e-10 3.32106046e-10 4.938759866e-13 2.049917573e-10 1.814360035e-10 1.035393945e-10 3.628789168e-10 4.312463045e-10 4.254283231e-10 5.747503826e-10 5.624247769e-10 5.317739076e-10 4.365654349e-10 5.394996126e-10 5.033883545e-10 7.913436893e-10 8.782271883e-10 5.845849539e-10 4.411634089e-10 7.867144595e-10 5.234979891e-10 1.050475092e-09 6.51446142e-10 6.053599145e-10 6.777792958e-10 3.830911335e-10 1.855109894e-10 3.823947394e-10 2.248260724e-10 2.267675845e-10 4.276171569e-10 3.885353527e-10 3.985561327e-10 3.356956123e-10 2.838001274e-10 2.668496474e-10 5.506247164e-10 3.855835032e-10 2.846921899e-10 3.428324614e-10 4.961548057e-10 5.550868419e-10 4.69176208e-10 4.280064457e-10 4.851159493e-10 4.494520388e-10 4.685491957e-10 3.439754477e-10 2.513090208e-10 5.266883113e-10 2.962064332e-10 3.051943638e-10 3.47452622e-10 3.359039419e-10 2.816158901e-10 1.659477834e-10 4.389649267e-10 2.198126847e-10 3.475267742e-10 2.111643818e-10 3.758036073e-10 2.2136857e-10 3.154204861e-10 2.390533839e-10 4.277515657e-10 2.586377367e-10 2.280519425e-10 2.938665355e-10 3.220190709e-10 2.878751549e-10 1.998121191e-10 3.380416994e-10 3.193549804e-10 3.169843135e-10 2.500836175e-10 1.955906173e-10 3.815372707e-10 2.016262629e-10 2.980399311e-10 2.665116449e-10 3.520080386e-10 1.93204037e-10 3.340658951e-10 2.447949937e-10 3.032492782e-10 3.137123795e-10 3.352736326e-10 1.979559858e-10 1.58297911e-10 1.801488636e-10 2.046228223e-10 2.657968397e-10 1.324044721e-10 2.050812107e-10 6.241351291e-11 2.005235701e-10 3.480483194e-10 2.46322282e-10 2.443102644e-10 1.885924475e-10 3.771863132e-10 1.255314574e-10 2.15687944e-10 2.385656927e-10 1.862740733e-10 1.727028887e-10 2.435175722e-10 2.443120013e-10 9.647669578e-11 1.211768094e-10 3.65496375e-10 3.711511715e-10 2.122629674e-10 3.243027405e-10 2.528461797e-10 1.155157925e-10 8.11912506e-11 1.231991475e-10 2.845078304e-10 2.205561523e-10 3.900019736e-10 1.136484558e-10 1.76775376e-10 1.055338279e-10 3.959446064e-10 1.587335545e-10 +1.918837748e-10 4.22450586e-10 7.961409728e-11 6.366955547e-11 9.450261305e-11 2.215044425e-10 2.100287952e-10 1.518792267e-10 1.688737418e-10 1.031567707e-10 1.253213218e-10 1.671745126e-10 1.127281534e-10 1.236154711e-10 5.311847315e-10 4.888268719e-11 4.555082972e-11 2.486032055e-10 7.785993126e-11 2.737237208e-10 2.329938603e-10 3.626190759e-10 1.395478627e-10 9.265290918e-11 1.64912347e-10 3.339684367e-10 2.42280047e-10 1.515887689e-10 1.076179377e-10 1.5530491e-10 2.217197647e-10 1.752866652e-10 3.014392087e-10 2.897431493e-10 9.948220962e-11 1.605585563e-10 2.578324415e-10 1.024730865e-10 2.39735202e-10 1.421644065e-10 2.652822588e-10 2.162084471e-10 3.067722934e-10 2.724683618e-10 2.388721429e-10 2.274466286e-10 2.571832491e-10 2.939835815e-10 2.824860467e-10 2.828828563e-10 3.680517494e-10 4.751041918e-10 1.921322333e-10 4.224393156e-10 4.402431674e-10 4.166863497e-10 2.485149846e-10 1.686241588e-10 2.065265025e-10 2.496310493e-10 2.927077526e-10 2.447420868e-10 3.71430236e-10 2.718686165e-10 3.201829981e-10 2.789085818e-10 2.606403155e-10 2.952660246e-10 3.18253371e-10 4.24392794e-10 3.607412066e-10 3.011255746e-10 2.783181738e-10 3.769370788e-10 3.163253157e-10 3.908892959e-10 3.886017486e-10 3.085105023e-10 2.812207277e-10 4.300448182e-10 3.73833561e-10 4.726447885e-10 4.521437562e-10 5.281290191e-10 3.311023685e-10 4.796506943e-10 4.019702088e-10 4.483822439e-10 5.99239641e-10 4.161484328e-10 4.401000105e-10 3.449927221e-10 3.221296241e-10 3.505569063e-10 3.789933085e-10 2.097392536e-10 4.20915569e-10 2.222706028e-10 2.687544915e-10 2.491797949e-10 2.283775744e-10 4.764236792e-10 5.991237954e-10 7.412345789e-10 9.208465416e-10 7.343172626e-10 7.916635734e-10 7.604672796e-10 5.91195308e-10 7.566826988e-10 8.684410114e-10 8.67413995e-10 5.353336742e-10 5.532408186e-10 6.731890165e-10 4.583967785e-10 3.430037726e-10 4.749901989e-10 4.191606617e-10 2.08139788e-10 1.519452512e-10 2.044464908e-10 0 1.010403304e-10 2.817898647e-10 4.059223007e-10 4.034871679e-10 5.936229849e-10 5.764848392e-10 5.269914665e-10 8.273630308e-10 9.466089675e-10 1.125355738e-09 9.915567669e-10 7.879807214e-10 9.025936185e-10 7.089344983e-10 4.579211437e-10 4.22900717e-10 3.416661741e-10 2.336143152e-10 1.392501905e-10 1.798448503e-10 2.069653157e-10 4.479813498e-11 1.373999586e-10 9.734439378e-11 1.425209651e-10 1.219889235e-10 1.353262483e-10 1.89386527e-10 1.362780154e-10 1.213735646e-10 6.94150236e-11 2.145432994e-10 1.825101518e-10 1.469473253e-10 3.049701414e-12 1.511835606e-10 2.235572757e-10 3.359756097e-10 5.412125806e-10 6.424081552e-10 7.088499261e-10 7.844760227e-10 8.860140112e-10 8.303902233e-10 8.910172882e-10 1.117885802e-09 8.905462264e-10 6.415440265e-10 5.333863373e-10 5.872635842e-10 5.55540168e-10 3.926763523e-10 1.546083414e-10 9.332368653e-11 2.280003054e-10 1.067914748e-10 1.131616596e-10 3.253875687e-10 3.983191601e-10 5.234016469e-10 5.333670174e-10 4.274094805e-10 4.439788531e-10 6.173399665e-10 4.622269452e-10 4.448657878e-10 8.643727214e-10 7.840505789e-10 7.337858733e-10 6.258973939e-10 7.55608659e-10 5.613712623e-10 4.631086547e-10 5.803086429e-10 6.510980999e-10 4.981412943e-10 2.666934539e-10 1.96788535e-10 3.870122283e-10 1.883947181e-10 3.017372375e-10 3.280467317e-10 3.903344442e-10 2.913988128e-10 3.878494982e-10 5.475271975e-10 4.272944759e-10 5.107283702e-10 2.794035813e-10 4.32030862e-10 4.83588058e-10 3.314285295e-10 3.796269936e-10 4.339815592e-10 5.255874162e-10 4.962048884e-10 3.358584716e-10 2.149244547e-10 2.584624869e-10 2.889236281e-10 3.981958856e-10 4.68517433e-10 1.627123338e-10 2.310506728e-10 2.741956323e-10 3.226949437e-10 3.604815097e-10 3.493605408e-10 2.707553616e-10 3.062836491e-10 3.556753941e-10 1.628861808e-10 2.029783414e-10 3.22569827e-10 4.234460526e-10 3.269612655e-10 3.189918519e-10 3.426736149e-10 2.807992672e-10 2.829420082e-10 2.840723415e-10 2.455024289e-10 2.496138376e-10 2.003579888e-10 4.594191288e-10 4.139012346e-10 2.000912348e-10 2.42101404e-10 2.280142906e-10 2.536692858e-10 4.154587265e-10 3.174793307e-10 3.739526322e-10 4.02004116e-10 3.169848135e-10 2.853707823e-10 1.730308908e-10 3.245744652e-10 3.331115454e-10 1.4723177e-10 1.563531286e-10 1.468934739e-10 1.677874822e-10 2.13307959e-10 3.245853646e-10 1.73116038e-10 1.176607664e-10 9.715837341e-11 3.358242192e-10 2.47127854e-10 1.385284732e-10 2.408016004e-10 2.164625564e-10 4.155505098e-10 1.566441573e-10 6.595446017e-11 8.124593303e-11 1.358273066e-10 8.958331473e-11 1.319766497e-10 1.619579181e-10 1.282531999e-10 1.380833236e-10 1.425926786e-10 8.337075718e-11 1.17474108e-10 3.1274542e-10 2.852620066e-10 2.049011534e-10 7.541272149e-11 1.910731872e-10 2.102705191e-10 3.072120343e-10 3.412198352e-10 1.187744292e-10 1.753718569e-10 2.056352078e-10 +1.061441029e-10 1.254680882e-10 1.406105126e-10 1.396810618e-10 3.464013198e-10 1.809081008e-10 1.919807588e-10 1.183603723e-10 8.511990528e-11 4.402573764e-11 5.009487067e-11 2.022088117e-10 1.982326979e-10 8.859122504e-11 2.772018865e-10 2.237054031e-10 1.311237271e-10 3.412777929e-10 2.099941612e-10 5.843414087e-11 1.205298484e-10 3.633231861e-10 2.968787787e-10 4.016060887e-10 2.179399271e-10 3.44889407e-10 2.885533246e-10 1.819793198e-10 2.582781287e-10 2.267944438e-10 2.874992206e-10 1.244792534e-10 3.034583871e-10 2.074342541e-10 2.171375682e-10 1.175057155e-10 2.143021412e-10 1.740966913e-10 1.350971815e-10 9.59479135e-11 2.098365521e-10 1.936341423e-10 4.7001779e-10 2.450520518e-10 2.749769345e-10 3.459462093e-10 4.230533115e-10 2.753768421e-10 2.925123376e-10 3.391267633e-10 4.844725248e-10 5.047829431e-10 3.245720038e-10 2.014514714e-10 3.309882246e-10 3.127699658e-10 5.454295223e-10 4.004456165e-10 2.691313916e-10 3.404204156e-10 1.323755656e-10 2.820313695e-10 3.315530658e-10 3.242879915e-10 1.897389858e-10 2.555993503e-10 2.887497388e-10 1.819168124e-10 3.019235529e-10 3.015573941e-10 3.220925922e-10 3.552421646e-10 3.512636042e-10 3.533077516e-10 1.754057347e-10 3.886425528e-10 2.632333662e-10 3.282084369e-10 3.627984929e-10 4.047951778e-10 4.837401346e-10 4.926490864e-10 3.808283172e-10 2.794276823e-10 6.073315054e-10 4.137956595e-10 3.957296958e-10 4.358434814e-10 4.249181237e-10 2.722006004e-10 3.138731831e-10 2.496608355e-10 3.805582515e-10 4.610569324e-10 3.059488287e-10 1.673009076e-10 2.549308165e-10 1.234551882e-10 1.360016236e-10 2.782397908e-10 2.467309604e-10 9.798048433e-10 7.911786592e-10 5.376588585e-10 7.1219368e-10 5.244135797e-10 4.996467383e-10 6.605332767e-10 7.30793875e-10 5.862119669e-10 7.804938072e-10 5.245189447e-10 7.548842497e-10 3.585800919e-10 6.184145226e-10 4.944603113e-10 4.121791379e-10 3.586322458e-10 3.984056449e-10 2.765363689e-10 1.194904511e-10 1.170651208e-10 1.685300001e-10 1.277380049e-10 2.355436901e-10 5.411643257e-10 5.108202355e-10 4.188184753e-10 5.207988774e-10 5.344923397e-10 7.979900641e-10 9.481537729e-10 9.48739475e-10 1.148281129e-09 8.747061296e-10 8.290767011e-10 8.491854281e-10 6.604368678e-10 6.199304453e-10 3.858326861e-10 1.752765444e-10 9.377241197e-11 8.879732856e-11 8.361322308e-11 1.479998484e-10 1.047798034e-10 1.203459461e-10 1.96225533e-10 1.280336868e-10 1.370874544e-10 1.332261592e-10 1.915988723e-10 1.130277542e-10 4.227315239e-12 1.375902496e-10 0 1.248592793e-10 2.627554212e-10 1.583591095e-10 2.071847937e-10 4.754308543e-10 7.032619677e-10 8.118655382e-10 8.56177396e-10 8.333099327e-10 9.12394753e-10 9.884663313e-10 9.27997154e-10 9.973968218e-10 8.601470356e-10 5.70534441e-10 4.302809559e-10 5.257076531e-10 5.008530323e-10 3.842672528e-10 1.652143425e-10 1.1514899e-10 1.650582675e-10 2.247295105e-10 1.969059928e-10 2.18722842e-10 4.441990218e-10 5.481614167e-10 2.891117767e-10 4.597756254e-10 5.850333508e-10 4.276183585e-10 6.773413465e-10 6.505826657e-10 9.771822446e-10 6.757339119e-10 7.777111715e-10 6.513504255e-10 4.931969032e-10 4.40805879e-10 7.517282395e-10 8.244949496e-10 6.421226302e-10 4.394449141e-10 5.068550059e-10 3.118925639e-10 2.691900289e-10 3.097376465e-10 2.278459977e-10 2.79524441e-10 4.423755623e-10 4.338809792e-10 3.30344726e-10 5.0459921e-10 1.871317935e-10 3.948781728e-10 5.625915931e-10 5.923177721e-10 3.868027582e-10 4.83107608e-10 6.856009583e-10 4.686875146e-10 5.264767513e-10 5.841686148e-10 3.911368146e-10 4.158162127e-10 2.717200483e-10 4.178141845e-10 2.141185442e-10 3.860713502e-10 2.987502467e-10 2.556332091e-10 2.752166682e-10 2.292802569e-10 3.572843307e-10 2.596487633e-10 3.783771299e-10 3.585701385e-10 2.420223041e-10 2.548455526e-10 2.437255771e-10 4.04828625e-10 4.343808045e-10 4.582637549e-10 3.475889491e-10 2.480950404e-10 2.496332788e-10 2.335582785e-10 3.019438651e-10 4.185932568e-10 3.932777678e-10 2.345830055e-10 3.92464233e-10 2.811561263e-10 2.607664741e-10 2.670171003e-10 2.157758358e-10 3.153608692e-10 3.220422529e-10 3.008184298e-10 2.232155345e-10 3.505608489e-10 1.063227814e-10 1.865024915e-10 1.695083843e-10 2.236584844e-10 1.355519701e-10 1.852355401e-10 1.288972273e-10 1.764477618e-10 1.348679715e-10 1.996427301e-10 5.858547392e-11 2.118129136e-10 4.01203242e-10 1.742899335e-10 1.631566464e-10 1.653367487e-10 4.043254118e-10 3.296235508e-10 1.429804702e-10 3.026015106e-10 1.249565521e-10 2.763690793e-10 1.385561986e-10 1.263653178e-10 1.314435507e-10 2.142809128e-10 1.728249503e-10 5.029498544e-11 3.238840827e-10 2.469755572e-10 2.609818163e-10 1.901412811e-10 4.208907235e-11 2.597597045e-10 7.586255469e-11 2.701158815e-10 1.131078075e-10 1.844281806e-10 1.056299123e-10 9.12541111e-11 3.217006476e-10 3.408779095e-10 1.339967554e-10 +9.104421097e-11 2.224203353e-10 8.795290429e-11 1.989035257e-10 3.126733993e-10 2.034195105e-10 2.003348699e-10 2.676006349e-10 3.047479852e-10 1.160061544e-10 4.112886713e-10 3.792562917e-10 1.425914245e-10 1.343747841e-10 2.497073388e-10 2.248123136e-10 3.159822059e-10 1.810096753e-10 3.300748711e-10 1.374264272e-10 2.670798387e-10 3.334474425e-10 2.227916098e-10 9.367611314e-11 1.819067673e-10 1.681612417e-10 2.540250035e-10 2.272651911e-10 1.610644102e-10 2.330061982e-10 1.822557288e-10 1.741309922e-10 4.061755725e-10 1.698514362e-10 1.625214664e-10 1.483576574e-10 1.676183137e-10 2.457874941e-10 3.125917438e-10 3.860061693e-10 2.695795692e-10 2.74590184e-10 3.890797511e-10 2.897653593e-10 4.84841902e-10 4.156831979e-10 2.362091195e-10 2.687355256e-10 3.170963847e-10 2.149737249e-10 2.764279361e-10 5.603589802e-10 1.889565104e-10 3.199778281e-10 5.191206205e-10 4.254936446e-10 2.286348489e-10 1.14273864e-10 1.970180331e-10 2.572117149e-10 1.588642359e-10 3.182743449e-10 2.61768467e-10 3.691962432e-10 3.945840699e-10 2.108723229e-10 3.441680817e-10 3.836626254e-10 2.140256756e-10 4.164856657e-10 5.716197418e-10 2.362260786e-10 2.501337701e-10 3.143155923e-10 2.805108087e-10 3.244105417e-10 2.774770737e-10 2.62168502e-10 4.273076356e-10 3.097192654e-10 5.488246602e-10 3.791755624e-10 4.53534558e-10 3.832574908e-10 5.617669168e-10 3.513528292e-10 4.263164956e-10 3.988796765e-10 3.629756704e-10 3.421134364e-10 2.853868312e-10 3.901414824e-10 4.024251601e-10 3.811134183e-10 3.499521039e-10 3.18843745e-10 2.548213597e-10 1.099891075e-10 2.58225801e-10 3.306823633e-10 2.855158988e-10 5.206547258e-10 7.520259649e-10 7.973498177e-10 7.508689207e-10 6.86177783e-10 3.914436364e-10 6.132190617e-10 7.433170538e-10 7.498755311e-10 8.429421522e-10 7.534981033e-10 6.00523904e-10 6.018240899e-10 5.951032231e-10 3.476532832e-10 4.837337226e-10 5.855336446e-10 4.511891437e-10 3.006607059e-10 2.427256174e-10 2.215401001e-12 8.587387967e-11 1.631540144e-10 1.688284925e-10 3.639160842e-10 5.76924575e-10 4.966302101e-10 4.121679383e-10 5.55780231e-10 5.269281711e-10 8.789852477e-10 7.378525896e-10 1.044155464e-09 9.436461116e-10 8.615140423e-10 1.07872882e-09 9.339830891e-10 6.856269865e-10 6.266685939e-10 3.683123241e-10 1.366279397e-10 1.745841789e-10 7.779003703e-11 1.488179436e-10 2.372621104e-10 1.602107322e-10 1.992950511e-10 1.379400374e-10 8.226541432e-11 1.714489085e-10 2.241294132e-10 1.335871671e-10 7.061057887e-11 1.88669758e-10 1.297370614e-10 2.034895259e-10 1.704340134e-10 1.935542168e-10 3.308332724e-10 5.654283084e-10 7.122096839e-10 6.85485743e-10 9.294476793e-10 9.475324401e-10 8.278580535e-10 1.042738048e-09 1.043518122e-09 8.052997263e-10 8.392532931e-10 6.121295904e-10 5.995289766e-10 5.357483701e-10 5.548474741e-10 3.770936468e-10 2.567099423e-10 1.178522893e-10 1.395774964e-10 6.438075969e-11 2.280232147e-10 3.558603367e-10 4.419237238e-10 3.372772152e-10 4.680263646e-10 4.763998394e-10 4.136176873e-10 6.391679729e-10 5.69535473e-10 6.134720375e-10 6.895767724e-10 6.252745881e-10 8.494534925e-10 7.47168725e-10 6.870132302e-10 5.756833628e-10 6.133266279e-10 4.231795513e-10 6.944192775e-10 5.134528499e-10 6.977078878e-10 2.65729347e-10 1.333341431e-10 2.293024497e-10 1.997030484e-10 2.097510272e-10 4.362736636e-10 4.030290939e-10 3.85500742e-10 5.058952472e-10 3.126602525e-10 4.1078791e-10 4.502346021e-10 5.40973446e-10 4.698820486e-10 3.86572741e-10 5.12503813e-10 3.99646546e-10 3.754500722e-10 5.528049666e-10 4.458845071e-10 3.896661911e-10 2.048950704e-10 3.589316772e-10 3.848008428e-10 3.094842057e-10 3.36440369e-10 3.720724242e-10 3.619575423e-10 3.951851013e-10 3.494650545e-10 3.674208242e-10 4.141920081e-10 3.071136684e-10 2.30936239e-10 3.120782987e-10 3.093255364e-10 2.984430673e-10 4.470375634e-10 2.55631397e-10 2.103133417e-10 2.05559424e-10 3.587807043e-10 3.671949602e-10 1.887492053e-10 2.284595073e-10 3.667600601e-10 2.545493594e-10 3.641479683e-10 2.911517084e-10 2.321257149e-10 2.23879915e-10 2.374053524e-10 3.054294912e-10 2.483336665e-10 4.54821672e-10 5.330249221e-10 3.651129461e-10 2.803877287e-10 1.907950953e-10 4.342206527e-10 2.225678839e-10 2.362666795e-10 4.019884835e-10 3.548370554e-10 1.639276214e-10 1.036083151e-10 1.820297288e-10 1.115317428e-10 1.147578553e-10 3.053855311e-10 1.556526726e-10 3.262147346e-10 1.40853087e-10 2.130487017e-10 3.113691246e-10 1.988279358e-10 2.662402468e-10 2.337911475e-10 1.720007347e-10 1.310820239e-10 8.157538764e-11 1.005729871e-10 1.290805992e-10 5.28320082e-10 1.785390369e-10 1.298659923e-10 1.865232577e-10 1.659206242e-10 1.61566144e-10 1.262790966e-10 1.111508906e-10 1.510001465e-10 1.577186024e-10 2.566537099e-10 1.900058995e-10 2.133669286e-10 3.699427082e-10 1.145086362e-10 4.048588957e-10 2.146637228e-10 +2.523780938e-10 3.050863638e-10 1.685742573e-10 1.025244592e-10 2.210197789e-10 2.302185998e-10 8.152689659e-11 2.779571782e-10 2.543461927e-10 1.226422313e-10 3.149306557e-10 2.065632577e-10 1.737226155e-10 1.609403677e-10 1.489486382e-10 2.788536143e-10 4.933099223e-10 7.995478096e-11 1.817797332e-10 1.318489845e-10 1.70405532e-10 9.779516103e-11 1.503755314e-10 2.573885599e-10 1.886044231e-10 2.114231209e-10 1.492372837e-10 2.333084104e-10 8.892252008e-11 1.033828542e-10 2.667476432e-10 3.050993199e-10 1.196399296e-10 1.687433577e-10 4.332594844e-10 3.098563358e-10 1.578889821e-10 1.812346095e-10 1.743477389e-10 2.29274056e-10 3.651979987e-10 2.043193291e-10 3.121036934e-10 1.97402157e-10 3.299795808e-10 2.995007534e-10 2.821318606e-10 2.103366403e-10 2.381850724e-10 2.532798088e-10 3.484097999e-10 1.75977272e-10 3.827729225e-10 2.93733781e-10 2.308948753e-10 3.288203315e-10 3.27901022e-10 3.938199793e-10 3.627141405e-10 2.414735316e-10 3.936775792e-10 2.33298616e-10 2.778263571e-10 1.773044158e-10 3.045200827e-10 2.299804736e-10 3.058139761e-10 2.500163449e-10 4.78110961e-10 4.059051294e-10 2.575743175e-10 2.260653678e-10 3.258273553e-10 2.879116908e-10 2.279958431e-10 2.943645067e-10 2.95579062e-10 2.453075196e-10 4.567560756e-10 3.720149657e-10 4.001616067e-10 3.48903829e-10 4.362873928e-10 3.456838339e-10 3.975178265e-10 3.943894892e-10 4.447090631e-10 5.684956379e-10 3.112183316e-10 4.608238778e-10 3.887620987e-10 2.851419138e-10 2.83049181e-10 3.445905226e-10 4.327049203e-10 3.031285695e-10 1.86089183e-10 1.317571141e-10 1.916340141e-10 2.311870756e-10 5.24672706e-10 6.650249387e-10 5.739162765e-10 5.572021234e-10 6.869431269e-10 7.882136476e-10 6.327763993e-10 4.86543388e-10 6.176595998e-10 4.664822171e-10 8.103058065e-10 6.381692787e-10 5.68817597e-10 4.885291225e-10 4.112395688e-10 4.347380772e-10 4.834393545e-10 4.723334576e-10 4.440624863e-10 3.686674035e-10 1.822999729e-10 2.557595367e-10 8.166260408e-11 8.403168198e-11 9.454784057e-11 3.097189502e-10 4.217748679e-10 5.346350172e-10 5.171482123e-10 6.669623749e-10 4.298130214e-10 8.185057726e-10 8.396843119e-10 1.031757117e-09 9.3922639e-10 8.655181075e-10 9.948996868e-10 9.352661154e-10 9.074173825e-10 6.584580207e-10 5.160042395e-10 3.465893567e-10 2.407622657e-10 1.342066386e-10 8.568151033e-11 1.852251014e-10 1.525807532e-10 1.183817443e-10 1.628071886e-10 6.941472461e-14 2.087036061e-10 1.358761383e-10 1.655454774e-26 0 1.567422497e-10 2.305225499e-10 2.736677059e-10 2.052092138e-10 3.073068592e-10 3.701286801e-10 6.14285215e-10 7.622760565e-10 9.038473148e-10 6.084289981e-10 9.493211559e-10 9.624686119e-10 1.007296845e-09 9.274649784e-10 6.451983751e-10 6.933689387e-10 5.158138413e-10 6.922685378e-10 4.551870731e-10 5.728181865e-10 2.283598106e-10 1.625303496e-10 8.683700342e-11 1.344429196e-10 1.659259888e-10 2.760893183e-10 4.212205743e-10 4.484052487e-10 4.363254538e-10 4.685467721e-10 4.637318321e-10 3.730663388e-10 5.438532387e-10 7.316885544e-10 5.741386408e-10 7.945713091e-10 6.827773212e-10 4.785467165e-10 6.500697523e-10 4.463444021e-10 6.75353116e-10 7.265056757e-10 5.502392145e-10 5.970616639e-10 3.84622134e-10 2.833141484e-10 2.406369241e-10 3.180650258e-10 2.683444444e-10 2.457659343e-10 2.150778303e-10 4.268739294e-10 3.139749582e-10 4.12211023e-10 3.587741045e-10 3.641538635e-10 3.921973965e-10 4.663819062e-10 5.458025156e-10 4.507161537e-10 5.07224067e-10 3.658717714e-10 4.012492985e-10 3.955968904e-10 4.175665469e-10 4.897447632e-10 2.886015257e-10 4.110892015e-10 3.287791102e-10 3.015505042e-10 1.615625765e-10 2.923738208e-10 3.406662643e-10 4.624109576e-10 4.336057148e-10 2.477524092e-10 3.606192392e-10 1.745915358e-10 2.38508859e-10 3.970844396e-10 3.532128528e-10 3.081832672e-10 3.879252482e-10 4.408906415e-10 2.968940154e-10 2.653613579e-10 1.916316874e-10 5.145481418e-10 3.971104681e-10 2.108335328e-10 3.778109084e-10 3.397046297e-10 1.977388418e-10 1.578107318e-10 3.126042755e-10 2.302461217e-10 4.012860554e-10 4.026587347e-10 2.904217176e-10 3.617714429e-10 3.697530605e-10 1.602145442e-10 1.997380725e-10 3.954822735e-10 5.584829753e-10 1.370603228e-10 2.505676907e-10 2.462082361e-10 2.63748613e-10 2.398650856e-10 2.332658975e-10 3.098414958e-10 3.376451198e-10 9.299748971e-11 1.210392779e-10 1.621532036e-10 1.239387029e-10 1.794038284e-10 1.974343645e-10 3.599175105e-10 1.520290983e-10 1.26787668e-10 3.105641042e-10 4.57595282e-10 2.931839894e-10 2.044661202e-10 6.983490325e-11 2.171812047e-10 2.520880201e-10 1.52442957e-10 2.499732582e-10 1.609621896e-10 1.427199689e-10 1.905990192e-10 1.360678888e-10 9.400897601e-11 8.006234813e-11 1.215366948e-10 3.978595771e-10 3.202099047e-10 2.057752454e-10 1.174564857e-10 1.340006337e-10 1.779410414e-10 1.483091124e-10 1.98479849e-10 +2.072546994e-10 4.273298079e-10 1.195975574e-10 1.494026781e-10 3.01681628e-10 1.832765706e-10 1.271631025e-10 9.326441238e-11 7.592492101e-11 1.048215925e-10 1.231329782e-10 3.356747807e-10 1.180770403e-10 9.897016801e-11 1.366100897e-10 4.143642632e-10 2.525028037e-10 3.876553029e-10 3.781545465e-10 3.162062821e-10 2.004835899e-10 2.788533343e-10 1.949261745e-10 7.511640604e-11 1.690039327e-10 2.311819678e-10 3.464728375e-10 3.279279051e-10 1.213876705e-10 1.776793743e-10 1.326895258e-10 3.156859523e-10 3.172426594e-10 2.005150976e-10 1.599946538e-10 1.266352467e-10 2.294249138e-10 3.572053577e-10 4.180035241e-10 3.364228497e-10 4.41845999e-10 2.632520173e-10 4.516703263e-10 3.120045638e-10 3.217548877e-10 3.807577094e-10 3.086044575e-10 3.346835996e-10 2.5332371e-10 2.951047295e-10 2.510090938e-10 2.670309899e-10 2.271584871e-10 2.638503465e-10 2.852184181e-10 3.440960337e-10 3.755040568e-10 2.658743951e-10 2.430407943e-10 1.81399824e-10 1.708055837e-10 4.880073171e-10 3.044051773e-10 2.979908421e-10 3.947692798e-10 3.560622015e-10 3.483752346e-10 2.884964192e-10 2.739132649e-10 3.439394298e-10 2.124055678e-10 1.553483297e-10 4.936564523e-10 4.889515949e-10 2.372391246e-10 3.295719397e-10 2.189730899e-10 2.210374782e-10 2.515292408e-10 3.425266785e-10 3.421359798e-10 5.17880332e-10 6.04947053e-10 5.049717758e-10 4.710793466e-10 3.245201809e-10 4.057510286e-10 5.548750411e-10 3.286641405e-10 5.187151795e-10 3.849061532e-10 3.787489423e-10 3.464932394e-10 3.655533729e-10 3.671483433e-10 3.916560181e-10 3.528025534e-10 1.992791773e-10 1.535524587e-10 2.985438747e-10 2.471109669e-10 6.676000235e-10 5.21275331e-10 7.114524679e-10 5.575710669e-10 5.496217831e-10 8.958072748e-10 5.884802336e-10 5.492459537e-10 5.56370757e-10 7.468347135e-10 5.668477807e-10 6.567790853e-10 4.832262043e-10 5.224090847e-10 6.32691278e-10 4.070606074e-10 4.137696577e-10 4.030329907e-10 4.002852925e-10 3.14083546e-10 1.672296294e-10 9.93433132e-11 8.499373016e-11 8.030793588e-11 2.42785219e-10 4.323557237e-10 5.736125229e-10 5.595485372e-10 5.780873608e-10 4.814424881e-10 7.35663643e-10 9.098303908e-10 1.039837994e-09 8.746510941e-10 1.034862176e-09 9.059895247e-10 9.075262554e-10 8.17595665e-10 8.554076313e-10 6.378762186e-10 5.543129548e-10 4.75319297e-10 2.110268383e-10 2.320829577e-10 1.122365248e-10 1.626646438e-25 1.080183781e-10 1.127318054e-10 1.59420572e-10 0 1.344989896e-10 8.736722018e-11 5.769988552e-12 1.961655024e-10 4.117518741e-10 2.6812052e-10 4.595473732e-10 5.098888677e-10 7.603954408e-10 8.256945019e-10 9.241543063e-10 9.734985224e-10 8.807892207e-10 9.45169834e-10 9.639026902e-10 9.184854532e-10 7.889593637e-10 6.089042785e-10 5.674382104e-10 6.415162351e-10 4.729366262e-10 5.455968409e-10 5.138830633e-10 1.923777293e-10 1.811618589e-10 2.06275602e-10 3.798475302e-20 3.013289289e-10 2.325865498e-10 3.437050305e-10 3.62675146e-10 4.71569658e-10 4.046170824e-10 4.226739508e-10 6.050791336e-10 5.100562315e-10 6.404087127e-10 6.121739104e-10 7.093161401e-10 5.134265217e-10 7.606024953e-10 6.821991058e-10 7.197399329e-10 5.322445896e-10 6.64785336e-10 5.927529421e-10 9.906417953e-10 7.842310696e-10 1.80014975e-10 1.75668353e-10 1.430213864e-10 2.406395212e-10 2.405733363e-10 2.444986859e-10 3.168382882e-10 4.547096119e-10 4.197861443e-10 2.936003232e-10 5.753004345e-10 4.257400569e-10 4.88477825e-10 3.548082299e-10 3.054263163e-10 4.801393759e-10 4.223401817e-10 4.218076244e-10 3.431702101e-10 4.915009965e-10 4.179849405e-10 5.005460793e-10 2.398288724e-10 3.035397923e-10 3.782587865e-10 3.902179314e-10 2.156745756e-10 2.632370992e-10 4.160699092e-10 2.201237973e-10 3.951041059e-10 3.257693822e-10 3.253454614e-10 3.154147453e-10 3.561788879e-10 2.713214825e-10 3.364542222e-10 2.8149174e-10 3.070978969e-10 3.077354899e-10 2.576672241e-10 3.425775471e-10 2.252767064e-10 4.010654251e-10 2.155007403e-10 3.372248679e-10 4.158973308e-10 4.265190087e-10 4.557436965e-10 3.863040111e-10 1.008874269e-10 2.798434025e-10 3.031702557e-10 2.760641097e-10 4.829272272e-10 2.180413218e-10 2.10108177e-10 2.715944332e-10 4.218941124e-10 3.60991203e-10 2.465522779e-10 2.022765906e-10 3.376166891e-10 1.486283447e-10 2.330782302e-10 2.031163614e-10 2.06524422e-10 1.949292791e-10 2.358127574e-10 1.94246908e-10 1.892277545e-10 1.772452288e-10 1.416868972e-10 8.976848772e-11 2.227694401e-10 1.528715108e-10 2.009043511e-10 3.286273048e-10 1.816947416e-10 1.841673271e-10 2.646440262e-10 1.894136504e-10 1.552158078e-10 1.46255712e-10 2.354375908e-10 3.00715323e-10 1.232205535e-10 2.274695419e-10 2.208318567e-10 8.695937783e-11 1.651471552e-10 1.982743603e-10 2.047345283e-10 7.552141304e-11 4.238320485e-10 8.745471821e-11 1.534843736e-10 5.863026236e-11 9.247399008e-11 2.071192218e-10 3.347594034e-10 +2.270247678e-10 9.313171534e-11 1.337398388e-10 9.620243699e-11 9.073328299e-11 2.885073345e-10 2.245112476e-10 2.242457271e-10 2.451598893e-10 3.565810036e-10 1.210260713e-10 1.624001537e-10 8.172109167e-11 7.198894842e-11 2.617878979e-10 2.312379765e-10 1.861398581e-10 2.558110143e-10 1.282202112e-10 3.098208939e-10 1.101424498e-10 1.856177335e-10 1.588331895e-10 1.243624505e-10 3.245941939e-10 1.244156339e-10 2.743223682e-10 2.11422356e-10 1.594059474e-10 1.012486717e-10 2.030313361e-10 3.98540757e-10 3.489693571e-10 2.220335828e-10 1.15872146e-10 1.481771114e-10 3.41857182e-10 2.38644955e-10 2.134702381e-10 5.03138883e-10 3.682142869e-10 2.711554846e-10 4.030777691e-10 4.309514401e-10 4.05287937e-10 1.652753613e-10 4.894726074e-10 2.375051735e-10 1.828791981e-10 1.90668521e-10 3.088055476e-10 2.77556779e-10 1.242813852e-10 1.822759919e-10 3.269721758e-10 3.188848335e-10 1.659531293e-10 2.032052892e-10 2.547730102e-10 2.528773087e-10 2.424115481e-10 2.488633481e-10 2.258869943e-10 1.437263557e-10 4.051209157e-10 2.41618892e-10 2.449261232e-10 2.275970579e-10 2.157636439e-10 2.628419308e-10 4.291523878e-10 2.582800488e-10 4.792058738e-10 3.631676707e-10 3.00465888e-10 2.864471956e-10 2.369074139e-10 1.987050107e-10 4.2725516e-10 3.662457638e-10 5.159464951e-10 5.171499137e-10 4.091005635e-10 4.618116317e-10 4.717857668e-10 5.313707303e-10 5.302467759e-10 5.566434804e-10 4.164239407e-10 3.678772524e-10 3.889671705e-10 4.206454139e-10 2.923532094e-10 1.974918089e-10 3.808039044e-10 3.00173813e-10 4.795421488e-10 2.171953966e-10 1.343732062e-10 2.737110368e-10 2.602442033e-10 3.779114026e-10 8.020110724e-10 6.693752415e-10 7.319820892e-10 4.816909149e-10 4.5875235e-10 6.043915633e-10 6.456331323e-10 5.482544933e-10 7.045836082e-10 8.053109808e-10 6.021852683e-10 5.54126288e-10 5.516554943e-10 4.749403618e-10 4.686687891e-10 4.7966256e-10 5.231314658e-10 5.398796188e-10 1.87900927e-10 1.537360863e-10 1.232973101e-10 1.709228968e-10 1.411092291e-10 9.86436812e-19 2.830270729e-10 4.965215475e-10 5.590453737e-10 5.542706012e-10 5.637054161e-10 5.980763591e-10 9.195645485e-10 1.092902279e-09 8.807700457e-10 8.430452929e-10 8.587655067e-10 7.302166924e-10 8.336425305e-10 7.436795118e-10 8.272688598e-10 7.058469155e-10 6.395276084e-10 6.484299297e-10 3.87046488e-10 3.316774374e-10 2.384679949e-10 2.050804894e-10 1.679301971e-12 1.051387521e-10 1.792724168e-10 5.949107693e-11 2.375890145e-10 2.626507525e-10 3.491424673e-10 4.057969187e-10 5.309519437e-10 5.924937136e-10 5.822840065e-10 7.725413006e-10 6.595026665e-10 8.819105526e-10 9.590518993e-10 9.815831677e-10 9.822230072e-10 9.168153563e-10 1.045975196e-09 7.877400647e-10 6.426630135e-10 5.404550646e-10 5.558247341e-10 4.735452636e-10 3.728705941e-10 1.024272002e-10 1.854816108e-10 1.106518976e-10 5.677400156e-11 1.774623118e-14 8.666953574e-11 3.998473222e-10 4.810245956e-10 5.166884106e-10 4.149852371e-10 5.902340729e-10 6.664435174e-10 4.786765059e-10 6.222862046e-10 8.93806975e-10 7.599248928e-10 6.26683477e-10 5.704167658e-10 6.422698769e-10 4.587553968e-10 5.68493325e-10 3.301253653e-10 9.243900501e-10 4.807487581e-10 4.36253852e-10 4.669559098e-10 1.692541357e-10 2.680576587e-10 3.135067187e-10 1.573488629e-10 1.917106513e-10 2.462210124e-10 3.500574786e-10 6.120756545e-10 4.40438817e-10 2.728264259e-10 4.005876027e-10 5.084131234e-10 4.350098498e-10 4.447912103e-10 5.193133496e-10 4.632658449e-10 5.238115327e-10 5.234410585e-10 4.414857132e-10 5.622875233e-10 4.255901388e-10 2.920051325e-10 2.215909668e-10 2.601497128e-10 2.016329491e-10 3.101539851e-10 2.44501685e-10 2.516918621e-10 2.978216999e-10 4.33151638e-10 2.12932201e-10 3.260501253e-10 3.689506382e-10 3.170082923e-10 2.507934145e-10 3.338790435e-10 3.540978997e-10 2.182495528e-10 3.677152499e-10 3.970543223e-10 2.587290597e-10 1.939659771e-10 2.603572979e-10 2.628582374e-10 2.744857743e-10 1.9710405e-10 1.208198584e-10 2.500122754e-10 4.381683457e-10 2.411243385e-10 3.669148088e-10 2.542027192e-10 2.618777338e-10 5.93026281e-10 2.27461658e-10 4.015848999e-10 3.253567088e-10 2.235641935e-10 3.049312917e-10 1.959680451e-10 1.960019371e-10 2.041532348e-10 3.217872265e-10 2.385406801e-10 2.649554752e-10 3.636245941e-10 2.629731313e-10 2.708692837e-10 1.273927451e-10 1.944788972e-10 1.415942302e-10 3.194870723e-10 4.123594544e-10 3.150904446e-10 2.668729686e-10 2.479928056e-10 1.182439316e-10 4.974772171e-10 1.752331792e-10 2.471713674e-10 4.83457311e-11 2.168869953e-10 4.954621592e-10 4.236360414e-10 2.007115535e-10 1.966258373e-10 2.70415266e-10 1.023501656e-10 9.82285273e-11 1.680953255e-10 9.431847081e-11 1.47558383e-10 2.955225874e-10 1.920419829e-10 3.491954087e-10 1.627379184e-10 2.47651786e-10 8.981294589e-11 2.007444315e-10 1.31075527e-10 1.961346159e-10 +4.182583381e-10 1.603169105e-10 4.073744922e-10 7.237917348e-11 1.215090862e-10 2.646068914e-10 2.974680364e-10 1.659210036e-10 8.606575432e-11 8.590132653e-11 3.110857521e-10 2.723418584e-10 5.534281036e-11 1.134392296e-10 9.904165387e-11 1.746571132e-10 1.036562069e-10 8.955854292e-11 1.889106174e-10 2.484380538e-10 3.581802989e-10 8.36151241e-11 1.452359029e-10 1.468097012e-10 1.412423971e-10 2.350300273e-10 2.286706552e-10 1.414707572e-10 1.480159147e-10 1.184314318e-10 1.506314372e-10 1.39387474e-10 1.346482449e-10 9.430635962e-11 2.445301282e-10 1.178738525e-10 2.13698829e-10 3.23535916e-10 1.737024308e-10 3.593318127e-10 2.24969521e-10 4.368967226e-10 4.245935136e-10 2.532829386e-10 1.67752297e-10 3.443495307e-10 2.551883335e-10 3.928708053e-10 4.082108965e-10 2.065666883e-10 3.443315682e-10 3.377551728e-10 2.827749596e-10 2.085560681e-10 2.356839932e-10 4.184014246e-10 3.194836454e-10 3.553594917e-10 2.385082546e-10 3.173818833e-10 2.846922057e-10 2.680576137e-10 2.527990234e-10 3.99401598e-10 2.313766036e-10 2.342615949e-10 3.099190441e-10 2.358267129e-10 2.684736839e-10 2.802835921e-10 5.319498048e-10 4.239669399e-10 2.715820071e-10 3.60499446e-10 4.987066558e-10 3.264331627e-10 1.393468396e-10 2.145577514e-10 4.903090268e-10 4.474328221e-10 3.018030976e-10 5.038004043e-10 5.504488151e-10 4.908810664e-10 6.13124316e-10 3.626911818e-10 4.585598775e-10 4.262413837e-10 3.502067303e-10 4.414140148e-10 3.153612993e-10 3.823516101e-10 3.462414308e-10 5.502161086e-10 4.676187406e-10 4.37512455e-10 4.013739328e-10 1.890647795e-10 3.024162207e-10 3.185621675e-10 1.724501772e-10 3.867000032e-10 5.774620448e-10 5.941677077e-10 3.942977469e-10 4.741214778e-10 8.071904535e-10 6.006256962e-10 3.579789044e-10 4.195372662e-10 7.131373393e-10 6.807945699e-10 6.812132875e-10 5.392147824e-10 5.073261331e-10 4.947405197e-10 5.382786124e-10 3.998024176e-10 4.283983333e-10 4.539227288e-10 3.684322623e-10 2.656940182e-10 3.476744465e-17 1.127560115e-10 1.434459056e-10 9.979195733e-11 2.896727538e-10 4.02096628e-10 5.444911184e-10 5.887016956e-10 5.444036107e-10 5.863090666e-10 9.400907627e-10 6.934168687e-10 8.518276868e-10 9.156621664e-10 1.025427222e-09 1.059690004e-09 7.701338314e-10 8.428143279e-10 7.588877825e-10 7.01150584e-10 6.617479269e-10 6.333810272e-10 6.106927036e-10 5.01475908e-10 4.67798475e-10 3.808832338e-10 3.108176328e-10 4.440682681e-10 3.196040964e-10 4.040931846e-10 4.079947673e-10 4.253737481e-10 4.756298496e-10 5.713932688e-10 6.004293399e-10 6.333558273e-10 8.33354516e-10 8.86123414e-10 9.182978962e-10 8.649315368e-10 1.028735265e-09 9.422469681e-10 1.085305352e-09 9.187394695e-10 8.087325314e-10 6.22735084e-10 4.849732971e-10 5.638519637e-10 4.948690604e-10 5.032898903e-10 3.713820004e-10 2.793325922e-10 9.783104572e-11 1.104276251e-10 1.364016428e-10 9.493037314e-11 1.90443216e-10 2.920549955e-10 3.881290772e-10 5.454836147e-10 4.080040247e-10 5.23655901e-10 5.141661568e-10 5.595338357e-10 5.801446988e-10 5.538669668e-10 6.174211402e-10 6.137456429e-10 4.218776889e-10 7.313830765e-10 7.800936674e-10 5.182017566e-10 7.014571298e-10 6.753043559e-10 8.352485764e-10 4.101370821e-10 4.198268162e-10 2.459565716e-10 3.017916284e-10 3.047765808e-10 1.107113429e-10 1.550039161e-10 2.716798684e-10 3.473130999e-10 4.376370341e-10 3.51240384e-10 3.898093767e-10 4.183478549e-10 4.873459247e-10 3.06304506e-10 4.131685347e-10 4.915931773e-10 3.117655013e-10 4.844669688e-10 4.940471094e-10 4.8588523e-10 5.23580489e-10 4.842009025e-10 3.961261701e-10 3.851651301e-10 3.245341372e-10 3.486631536e-10 2.610972514e-10 2.741443613e-10 2.603709556e-10 3.825832107e-10 2.010766676e-10 4.394857559e-10 4.347068972e-10 3.28681485e-10 2.752367286e-10 2.334409376e-10 2.972082912e-10 2.962662908e-10 2.499683089e-10 3.045425413e-10 2.922835068e-10 3.230809164e-10 4.050827062e-10 3.917594592e-10 1.478764614e-10 2.915817096e-10 2.73826855e-10 1.861797645e-10 3.881603318e-10 4.400058314e-10 3.514935296e-10 2.201478091e-10 2.213390019e-10 2.421909663e-10 4.096606829e-10 2.887013847e-10 2.607295912e-10 3.214919802e-10 2.262358318e-10 3.206701899e-10 1.66474404e-10 4.010656312e-10 4.047242017e-10 3.328284195e-10 1.686409051e-10 1.888749072e-10 1.421245999e-10 3.062368087e-10 2.664983852e-10 3.498948388e-10 2.338576949e-10 1.591929863e-10 9.792089031e-11 1.381640205e-10 1.056287488e-10 2.007234403e-10 1.757339804e-10 2.55421487e-10 1.971026916e-10 3.493102707e-10 2.272369632e-10 1.960193914e-10 1.592641356e-10 2.248635019e-10 2.077371036e-10 2.802508056e-10 1.917684416e-10 2.213977611e-10 1.922207095e-10 2.366150868e-10 1.655701589e-10 9.48534775e-11 1.437580972e-10 2.619389063e-10 3.366134871e-10 1.655750873e-10 1.083130434e-10 1.028956891e-10 2.044368978e-10 4.357414458e-11 1.701468922e-10 8.454886954e-11 +1.694285293e-10 9.144836631e-11 7.970870887e-11 4.780242777e-11 4.456331081e-10 6.172517005e-11 3.042692879e-10 1.02718813e-10 2.442373272e-10 3.563241526e-10 2.808706188e-10 1.347229136e-10 1.222884121e-10 1.370792307e-10 1.715326688e-10 2.27865505e-10 2.692051262e-10 2.006130227e-10 1.212162036e-10 4.00602261e-10 1.157954742e-10 2.350464144e-10 3.493194143e-10 3.294219179e-10 2.409575527e-10 2.719188281e-10 3.006706246e-10 2.330825752e-10 1.169905132e-10 7.910005191e-11 1.228705316e-10 1.802903227e-10 3.659510099e-10 2.762095878e-10 3.538424497e-10 1.844889112e-10 1.299307624e-10 2.815899161e-10 3.260797837e-10 2.208008103e-10 2.196156869e-10 1.600726838e-10 4.665307205e-10 2.426292152e-10 1.71685013e-10 4.831200883e-10 3.443907356e-10 3.390276994e-10 3.512902603e-10 2.843635834e-10 1.739196821e-10 5.422769438e-10 2.683531082e-10 1.859702221e-10 2.583324929e-10 3.680307233e-10 3.11931383e-10 3.27019696e-10 3.536436369e-10 2.920845178e-10 2.887872439e-10 2.964923985e-10 3.25554821e-10 2.080958663e-10 2.629789146e-10 2.653591013e-10 1.574410564e-10 3.146376522e-10 3.004558313e-10 3.837249758e-10 2.648307175e-10 2.984970016e-10 2.842519248e-10 1.944459331e-10 1.940782519e-10 2.436266457e-10 3.867967988e-10 2.831471241e-10 2.665365273e-10 2.898721946e-10 3.881570386e-10 4.23838043e-10 4.489783872e-10 6.352865928e-10 2.709668959e-10 4.398336674e-10 4.423338197e-10 4.121621617e-10 5.277564575e-10 3.674515737e-10 3.860059994e-10 4.099492959e-10 2.942992202e-10 3.247626063e-10 3.386805503e-10 2.903579909e-10 2.533277899e-10 1.80307451e-10 2.113608188e-10 1.860079787e-10 3.053504512e-10 4.328921973e-10 6.442918713e-10 8.012025972e-10 6.53762492e-10 6.789931949e-10 8.579380829e-10 6.434421378e-10 5.086303373e-10 5.64014008e-10 7.31027742e-10 8.208266443e-10 7.361295705e-10 6.057242441e-10 4.095871883e-10 2.846854161e-10 2.221976044e-10 5.240758317e-10 4.264173793e-10 4.380192283e-10 4.708247195e-10 3.489385593e-10 1.900413778e-10 1.692241418e-10 1.357074565e-10 1.42447233e-10 1.449467446e-10 4.36075448e-10 5.226161634e-10 5.40757804e-10 5.975495004e-10 6.441680697e-10 4.263480472e-10 9.611418013e-10 8.596267376e-10 9.471749541e-10 9.315323841e-10 9.736854525e-10 8.021999468e-10 1.104723506e-09 9.305381068e-10 8.520868615e-10 7.338961819e-10 8.772777227e-10 6.250617516e-10 5.598935978e-10 4.886460039e-10 5.574102476e-10 5.065885337e-10 5.163205315e-10 4.78854999e-10 5.40040902e-10 5.766326348e-10 5.212222159e-10 6.018186844e-10 8.066537833e-10 6.530197514e-10 6.749485769e-10 8.993658606e-10 8.570069336e-10 7.273130674e-10 8.287047636e-10 1.088549123e-09 8.465357252e-10 1.00719117e-09 9.790299468e-10 6.094843734e-10 5.672807648e-10 6.862873879e-10 6.154642989e-10 5.021267145e-10 5.067838025e-10 4.600020372e-10 1.452729032e-10 1.905584669e-10 1.999663874e-10 9.136937059e-11 1.939576855e-10 3.758718146e-11 4.670542443e-10 4.048624377e-10 4.445808318e-10 4.739344847e-10 4.715718297e-10 4.690454946e-10 4.900971913e-10 5.54905709e-10 6.20502763e-10 6.025783447e-10 6.136484955e-10 7.499068042e-10 6.014885598e-10 5.671870524e-10 7.209587245e-10 5.232858972e-10 8.15462655e-10 8.6787156e-10 7.141372807e-10 4.291079849e-10 2.859311236e-10 1.990485773e-10 3.162520375e-10 1.846454774e-10 4.928934474e-10 3.754006043e-10 3.816618233e-10 3.175606576e-10 4.083833488e-10 3.831988507e-10 3.795219771e-10 4.459465739e-10 3.876088533e-10 3.70535474e-10 3.230924845e-10 4.731914882e-10 5.465492813e-10 4.051883268e-10 4.504474843e-10 5.071298648e-10 3.610962865e-10 3.503929028e-10 4.6626062e-10 4.27497076e-10 1.574121323e-10 3.183353147e-10 2.809981322e-10 2.917234116e-10 3.995717086e-10 3.710776979e-10 3.251920765e-10 2.480657254e-10 3.477065375e-10 1.349816657e-10 2.584907207e-10 3.741097683e-10 4.738005026e-10 3.098046779e-10 4.439445852e-10 3.019029698e-10 2.993128672e-10 2.889538033e-10 2.735394265e-10 2.126276312e-10 2.000483017e-10 2.522719764e-10 3.154931065e-10 3.887863628e-10 3.092587488e-10 5.719354229e-10 3.020698506e-10 3.2723009e-10 3.422651827e-10 1.544067015e-10 3.260288334e-10 4.121496977e-10 2.206048717e-10 3.795142578e-10 3.659054857e-10 2.267753311e-10 2.591803622e-10 3.714272015e-10 2.231174487e-10 2.033767961e-10 3.512529873e-10 1.224262359e-10 1.244041093e-10 1.710944505e-10 7.137186107e-11 1.746479495e-10 1.561201251e-10 1.746495017e-10 9.504655155e-11 1.959135262e-10 1.545476971e-10 2.269671194e-10 3.981006808e-10 1.703312643e-10 2.538200203e-10 4.226660431e-10 1.25043365e-10 3.541608135e-10 8.84663241e-11 8.908240994e-11 2.627932898e-10 2.285164689e-10 3.230255964e-10 2.576666005e-10 2.387188758e-10 1.089796055e-10 2.310131966e-10 8.814279234e-11 1.268839623e-10 2.098914837e-10 1.120655258e-10 1.497774597e-10 3.62748267e-10 1.464504313e-10 2.233157614e-10 1.824583693e-10 1.226646826e-10 +1.412418385e-10 1.261964431e-10 1.425906027e-10 4.016611893e-10 2.491201256e-10 1.68908794e-10 2.003671721e-10 3.486548626e-10 2.237379795e-10 9.986839359e-11 2.605664747e-10 3.292744574e-10 8.185616144e-11 2.105334678e-10 2.86014607e-10 2.856673375e-10 2.093434866e-10 3.308149471e-10 1.502888606e-10 3.487604861e-10 9.12757459e-11 3.49223078e-10 2.185966443e-10 8.662445675e-11 1.986853932e-10 1.894874288e-10 1.304310072e-10 1.372244443e-10 2.069261482e-10 1.960999272e-10 2.106096087e-10 1.65177664e-10 2.096133599e-10 3.100514202e-10 1.998243981e-10 1.737448652e-10 1.929559172e-10 2.732622229e-10 1.971726518e-10 3.156240113e-10 4.508239939e-10 3.620597853e-10 4.578300059e-10 4.584378444e-10 4.781118916e-10 2.228579164e-10 3.051586627e-10 1.962583037e-10 3.527608892e-10 3.102548187e-10 2.659944788e-10 4.365873824e-10 2.553963442e-10 3.647292426e-10 3.368136185e-10 2.157523179e-10 1.750945412e-10 1.471613344e-10 2.498977036e-10 2.62600696e-10 3.477976737e-10 3.169599952e-10 2.867732686e-10 3.646059808e-10 4.938440822e-10 2.875623295e-10 2.411668595e-10 3.25074637e-10 3.887385906e-10 2.930271845e-10 1.785227477e-10 3.736236253e-10 2.797178773e-10 2.25359512e-10 3.99148068e-10 4.845332153e-10 2.485321478e-10 3.388178825e-10 1.845626466e-10 3.383236295e-10 3.814610839e-10 3.774997359e-10 5.000216834e-10 4.015398103e-10 3.582496052e-10 4.884527716e-10 4.61391063e-10 4.081969005e-10 4.104875823e-10 3.617928292e-10 4.650996609e-10 3.332462905e-10 3.303947881e-10 3.311642797e-10 4.483734508e-10 3.812516943e-10 2.955734488e-10 2.647232304e-10 7.359822302e-11 2.16336938e-10 2.893874924e-10 3.770873606e-10 5.064155976e-10 5.378638744e-10 5.761760925e-10 5.590124988e-10 8.34618947e-10 6.525090234e-10 5.638340301e-10 5.393958923e-10 4.703569164e-10 8.070465638e-10 6.420943611e-10 6.266004398e-10 6.00219614e-10 4.974603415e-10 4.129803364e-10 5.183604885e-10 3.266012477e-10 4.098348556e-10 3.957986567e-10 3.891249463e-10 2.207583305e-10 2.591048439e-10 2.177117519e-10 2.267845702e-10 1.851924918e-10 2.241309425e-10 5.558401244e-10 5.738374473e-10 5.507339365e-10 5.946411006e-10 4.832920473e-10 7.003359431e-10 7.870178844e-10 9.051526889e-10 1.024178067e-09 8.326126883e-10 7.350340485e-10 7.766922184e-10 9.683753489e-10 8.823795056e-10 7.700638885e-10 9.142391934e-10 8.482410023e-10 6.774979836e-10 7.569455051e-10 7.004655305e-10 6.30801677e-10 7.967072119e-10 5.740930761e-10 6.381015101e-10 7.060573015e-10 6.771481636e-10 7.713719387e-10 6.746951764e-10 8.865481053e-10 8.252480132e-10 8.276801098e-10 8.899643952e-10 9.394769811e-10 1.059645164e-09 1.085129337e-09 8.657941248e-10 9.471669213e-10 7.379255287e-10 6.921445625e-10 5.745112755e-10 5.271286813e-10 4.981718992e-10 4.515300706e-10 5.418211232e-10 3.482759236e-10 1.170236761e-10 2.263817969e-10 7.788197273e-11 2.307054096e-10 1.284505805e-10 3.394237722e-10 5.854264884e-10 3.263687315e-10 4.591768071e-10 4.39215739e-10 6.331706052e-10 5.261102062e-10 4.082939925e-10 7.954268191e-10 6.551937915e-10 7.606660501e-10 5.390516392e-10 5.007138891e-10 4.879568724e-10 8.827998926e-10 7.723431478e-10 7.343082794e-10 5.65654602e-10 7.872850174e-10 7.891828653e-10 2.8086854e-10 3.256023501e-10 2.245722167e-10 1.795240195e-10 2.084221343e-10 2.628138548e-10 3.31273978e-10 2.753918647e-10 3.139013622e-10 5.427854586e-10 4.921622392e-10 3.402173098e-10 4.94516138e-10 4.502734461e-10 4.699787361e-10 4.008258984e-10 4.868051436e-10 4.750093886e-10 4.360532444e-10 3.988754844e-10 4.788199249e-10 3.457102571e-10 3.252286515e-10 3.415712008e-10 2.960137511e-10 3.231115467e-10 3.264401654e-10 2.647890894e-10 2.852281673e-10 2.371031132e-10 2.103708809e-10 3.908946168e-10 2.750536222e-10 2.199626952e-10 3.791743648e-10 2.172170488e-10 2.465363521e-10 2.767686225e-10 2.908439422e-10 3.973088106e-10 2.827049961e-10 3.452251223e-10 4.075938994e-10 2.418540242e-10 2.232163387e-10 4.075085197e-10 4.103765541e-10 2.380099229e-10 3.180340123e-10 2.73887646e-10 1.704303233e-10 3.759980633e-10 2.955164314e-10 3.356022249e-10 1.841842554e-10 2.913062389e-10 1.80229891e-10 3.073997921e-10 1.491207957e-10 2.507806285e-10 1.734619686e-10 1.934162344e-10 3.406438662e-10 3.657484591e-10 1.091722504e-10 1.943509773e-10 1.741883316e-10 2.548742456e-10 1.709853834e-10 9.690553579e-11 1.035065161e-10 1.869378078e-10 1.690039072e-10 3.033446069e-10 2.696935257e-10 2.771812071e-10 1.10016436e-10 1.825789076e-10 3.060784619e-10 3.479871228e-10 3.626433873e-10 3.066095251e-10 1.46700967e-10 2.194741536e-10 1.188497712e-10 2.591329261e-10 3.416563647e-10 1.920947367e-10 2.109642936e-10 1.080674362e-10 2.571585338e-10 1.719906357e-10 1.09695258e-10 1.113829265e-10 1.957299444e-10 2.034716374e-10 2.247741278e-10 1.880457035e-10 9.752400623e-11 2.292923131e-10 1.80029854e-10 1.435774619e-10 +1.547088108e-10 2.235156682e-10 2.814455872e-10 1.462282318e-10 1.522306022e-10 5.77528848e-11 2.843363767e-10 8.012179624e-11 1.559099858e-10 4.224061896e-10 1.915427599e-10 1.337054749e-10 4.18084662e-10 3.245010972e-10 1.486834344e-10 1.072890013e-10 1.416838174e-10 3.345563774e-10 1.384915382e-10 1.121511577e-10 1.956444374e-10 2.513976021e-10 1.966647053e-10 1.801107657e-10 8.061280663e-11 1.925009165e-10 8.533662079e-11 1.275640682e-10 6.523576574e-11 1.607793209e-10 7.251590053e-11 3.0081336e-10 2.189446602e-10 8.37411133e-11 1.452691481e-10 3.319674437e-10 3.086366083e-10 3.407455905e-10 1.952219404e-10 1.986087575e-10 1.722645114e-10 2.764343756e-10 3.925225233e-10 3.080618763e-10 4.121179588e-10 3.99446778e-10 3.124252353e-10 3.541378251e-10 1.788375536e-10 4.420252527e-10 2.314199006e-10 2.499113991e-10 1.978916259e-10 3.1082661e-10 2.963359025e-10 3.417844948e-10 2.363970471e-10 1.748362804e-10 2.947996313e-10 2.222032795e-10 2.918531081e-10 3.280920763e-10 3.381435914e-10 3.533125227e-10 2.27776525e-10 1.661106534e-10 4.44430889e-10 2.930207936e-10 2.661915084e-10 3.560210165e-10 1.549246286e-10 3.710588117e-10 2.502372504e-10 3.448642144e-10 2.712217471e-10 3.094616965e-10 2.796030552e-10 5.7466587e-10 2.936692523e-10 3.708561561e-10 6.029714038e-10 4.376111558e-10 3.697517831e-10 4.507806948e-10 2.759329623e-10 3.162043054e-10 4.609941909e-10 4.425171677e-10 3.696612563e-10 3.706231751e-10 4.171367122e-10 4.663540808e-10 2.337093052e-10 3.77509948e-10 3.105139301e-10 2.388740176e-10 3.148084364e-10 1.989919814e-10 2.422201249e-10 2.421660792e-10 3.111182236e-10 3.405751592e-10 6.016583702e-10 6.598286593e-10 6.583041624e-10 3.973826259e-10 7.121360686e-10 5.84475392e-10 6.526260801e-10 5.528962755e-10 4.53150022e-10 8.730935322e-10 8.9376953e-10 7.066629876e-10 5.929019016e-10 4.617926394e-10 3.305262001e-10 3.93060837e-10 4.948761478e-10 5.042156869e-10 4.784424443e-10 3.462032849e-10 2.811828195e-10 1.022757689e-10 1.663444188e-10 1.462082011e-10 1.469876492e-10 2.4956646e-10 2.784188828e-10 4.736238354e-10 5.00279828e-10 5.384123954e-10 5.820804786e-10 5.26090566e-10 6.913570139e-10 8.25402194e-10 8.496842069e-10 8.004314289e-10 9.644582747e-10 8.894325739e-10 1.012921964e-09 9.509619319e-10 8.411577997e-10 8.36022596e-10 8.056251511e-10 7.298104056e-10 8.415801563e-10 8.019707034e-10 7.434658247e-10 6.906606152e-10 7.758182628e-10 7.93197312e-10 7.635322133e-10 7.74375774e-10 9.170868397e-10 8.551346805e-10 7.152809121e-10 9.674970065e-10 9.611700644e-10 9.688378704e-10 8.340438424e-10 9.363437383e-10 9.500484903e-10 9.467021314e-10 8.854078542e-10 5.937443361e-10 6.080708638e-10 3.95900099e-10 5.7151582e-10 5.875264539e-10 5.063402065e-10 2.86818498e-10 8.182915174e-11 2.031568472e-10 1.289906155e-10 7.237381926e-11 1.156589644e-10 2.606263902e-10 3.264377234e-10 3.476341016e-10 5.319676036e-10 4.596948179e-10 4.769980414e-10 6.284932494e-10 5.887419229e-10 6.060808589e-10 6.441333381e-10 6.660437837e-10 7.335091404e-10 6.768434907e-10 6.494326413e-10 5.363031415e-10 7.041864017e-10 8.653855674e-10 4.744556094e-10 5.85487155e-10 7.659108519e-10 9.1687476e-10 3.753343817e-10 2.212192607e-10 2.076768951e-10 2.277342156e-10 2.216617647e-10 2.205289077e-10 3.399329685e-10 3.603136286e-10 3.998675636e-10 4.397317787e-10 3.860919996e-10 3.732962952e-10 3.796559483e-10 3.608169917e-10 3.495420188e-10 3.252756015e-10 6.326083934e-10 4.66302977e-10 4.964750171e-10 4.373598506e-10 3.910537255e-10 4.117557838e-10 4.322578259e-10 3.575812054e-10 2.672744149e-10 2.837192572e-10 3.711828474e-10 2.701115884e-10 2.976488306e-10 5.052466218e-10 2.656256349e-10 2.910109019e-10 2.627674684e-10 3.825072354e-10 4.036090226e-10 3.660573781e-10 3.269628021e-10 3.516714067e-10 3.674319252e-10 2.15960742e-10 4.122253691e-10 2.131458485e-10 2.790042848e-10 1.848137254e-10 2.386924502e-10 3.529447354e-10 4.233620031e-10 2.249097553e-10 3.488174147e-10 4.163895391e-10 2.572796237e-10 3.752427921e-10 2.989017639e-10 2.58458998e-10 2.291962744e-10 1.968041931e-10 3.103539868e-10 3.209308881e-10 3.602946798e-10 3.440901469e-10 2.872251979e-10 1.890498482e-10 1.61570889e-10 2.645799823e-10 1.669366907e-10 2.508341742e-10 1.692364522e-10 2.258535962e-10 1.998352792e-10 5.931122409e-11 3.263063541e-10 1.758129061e-10 1.56518661e-10 9.485766632e-11 1.030194421e-10 1.505076443e-10 2.682906958e-10 1.444777608e-10 1.977977488e-10 2.229564128e-10 2.883038138e-10 1.305496809e-10 1.299470505e-10 4.679551931e-10 2.134083955e-10 8.498419448e-11 1.022201664e-10 1.467892572e-10 1.228689475e-10 1.833877169e-10 1.762853528e-10 1.211015778e-10 1.331700512e-10 2.786141235e-10 1.755075507e-10 1.066559094e-10 1.592153311e-10 2.359478283e-10 1.247634378e-10 2.035291957e-10 1.227840193e-10 1.714924752e-10 +2.080773941e-10 1.448780181e-10 8.130130791e-11 1.475373395e-10 3.230768313e-10 1.200312823e-10 4.169673126e-10 1.177375986e-10 1.064348272e-10 1.558311915e-10 1.988264876e-10 2.356988606e-10 4.000345261e-11 2.772013225e-10 1.893297659e-10 1.586593529e-10 3.068144583e-10 2.821458112e-10 4.065715031e-10 2.848112712e-10 2.250567454e-10 1.010463754e-10 1.937721478e-10 1.369348846e-10 3.118459371e-10 2.715487141e-10 2.190517848e-10 1.571887784e-10 4.283930168e-10 1.313949631e-10 4.044946049e-10 1.619656843e-10 1.999508778e-10 1.886215937e-10 1.086276078e-10 1.660723107e-10 2.075049982e-10 2.03549667e-10 1.913915522e-10 1.932891195e-10 3.094645645e-10 2.779610729e-10 3.376652949e-10 2.945656247e-10 4.747393577e-10 2.360338814e-10 3.90126088e-10 1.343921119e-10 3.178737327e-10 5.812902221e-10 2.859409481e-10 3.596700696e-10 3.568429699e-10 1.822461553e-10 2.835027154e-10 3.791680132e-10 2.1409987e-10 4.078484585e-10 3.225773514e-10 3.295528828e-10 2.420310782e-10 3.326300935e-10 3.10352983e-10 3.876906296e-10 2.242890297e-10 2.214002636e-10 3.335399523e-10 1.784658925e-10 2.522443249e-10 2.275968295e-10 1.683709697e-10 4.354088051e-10 3.581638079e-10 3.458522863e-10 3.055778261e-10 4.53145323e-10 2.138914265e-10 1.963852758e-10 3.782013885e-10 5.693053129e-10 4.334720286e-10 5.509436418e-10 5.488770167e-10 5.392508347e-10 5.426731106e-10 3.218695051e-10 5.483267341e-10 3.299489745e-10 4.617989496e-10 3.782956029e-10 4.161403558e-10 3.196605431e-10 2.816867658e-10 4.404696502e-10 3.174941465e-10 4.348835388e-10 3.115658819e-10 3.133611586e-10 1.379678014e-10 1.588512101e-10 2.14315181e-10 3.251079968e-10 5.15807031e-10 5.987072164e-10 5.290363643e-10 6.692317429e-10 5.94557648e-10 5.445297553e-10 3.271374513e-10 6.126305486e-10 6.133104058e-10 6.657734543e-10 9.508059817e-10 7.79923133e-10 4.850701898e-10 4.87746981e-10 3.937445633e-10 3.879078505e-10 5.930066462e-10 5.200928507e-10 5.321504851e-10 3.458921681e-10 3.219840974e-10 1.6649796e-10 1.37894536e-10 1.309017136e-10 9.577547122e-11 1.015201949e-10 4.443510091e-10 3.970738381e-10 5.153645609e-10 5.727576983e-10 4.852217811e-10 4.827915673e-10 4.653797391e-10 7.001802502e-10 7.46752196e-10 1.039675751e-09 1.013986426e-09 1.04158827e-09 9.757083207e-10 9.584170915e-10 8.287261024e-10 8.237589789e-10 7.836967625e-10 8.772568191e-10 9.470329131e-10 9.319918099e-10 8.056003248e-10 7.95515076e-10 6.676001018e-10 7.226645825e-10 7.726259701e-10 7.944789249e-10 9.132187477e-10 1.023983837e-09 8.297006627e-10 8.418715144e-10 1.111918913e-09 1.065820779e-09 1.061117327e-09 1.010689153e-09 9.602540778e-10 9.027496745e-10 6.109301197e-10 5.830050645e-10 4.802775233e-10 5.224476688e-10 4.670681771e-10 4.288133569e-10 4.634204243e-10 1.172350185e-10 1.614942276e-10 7.845878155e-21 7.387940758e-11 0 2.587402607e-10 2.814686423e-10 4.433791573e-10 4.177686809e-10 5.618767333e-10 3.879260966e-10 5.551262928e-10 5.141962619e-10 5.279622339e-10 5.236163258e-10 7.046475021e-10 5.923757464e-10 6.071795603e-10 4.473589799e-10 5.363044238e-10 6.649422738e-10 7.967434188e-10 5.315573868e-10 7.220874511e-10 6.486997098e-10 6.674848952e-10 4.325054644e-10 2.181105123e-10 2.144087119e-10 2.491947549e-10 8.384079663e-11 2.175062334e-10 2.412801308e-10 3.829296812e-10 3.739514895e-10 3.931335819e-10 3.942246907e-10 3.146249758e-10 3.03145598e-10 4.595470614e-10 4.793848719e-10 3.989008731e-10 4.219704402e-10 6.20365089e-10 3.699184067e-10 4.766307998e-10 3.913795279e-10 4.349800776e-10 5.548533501e-10 2.33853374e-10 2.812805748e-10 3.471496613e-10 2.745898855e-10 1.272246046e-10 3.70709043e-10 3.151301972e-10 2.543867712e-10 1.958350063e-10 2.243508308e-10 3.048277885e-10 2.090490399e-10 2.815247599e-10 4.366467106e-10 1.978548222e-10 3.986321562e-10 3.088422408e-10 2.824037105e-10 3.227225507e-10 2.764104609e-10 1.582489269e-10 2.28246336e-10 2.855317092e-10 2.634424337e-10 2.957645328e-10 2.159827352e-10 2.281395551e-10 4.534176175e-10 4.026730978e-10 3.466187917e-10 4.750610914e-10 1.904681831e-10 4.546695831e-10 3.777384457e-10 2.141635983e-10 3.157578785e-10 2.721881637e-10 1.827582688e-10 2.996182968e-10 3.640874798e-10 2.648955823e-10 2.674892959e-10 3.47243486e-10 1.551158134e-10 2.766289285e-10 4.198396471e-10 2.374806961e-10 8.783166397e-11 2.453431429e-10 2.547529514e-10 1.763877487e-10 1.345080031e-10 2.391073625e-10 3.880410079e-10 5.521848262e-10 3.964613829e-10 1.126304755e-10 8.153384567e-11 1.358854324e-10 1.600005372e-10 2.723569266e-10 2.181520755e-10 1.821138796e-10 1.264149526e-10 1.047231079e-10 1.694320963e-10 9.896048509e-11 8.523200793e-11 1.009139301e-10 1.602004432e-10 2.073101813e-10 5.123673513e-11 3.003961734e-10 4.216176793e-10 2.508807891e-10 1.36295738e-10 2.731208622e-10 9.521491293e-11 9.583533257e-11 6.060393066e-11 +9.084859959e-11 1.581944021e-10 1.830328443e-10 1.692751305e-10 6.87620447e-11 2.399926174e-10 3.192743557e-10 1.026780429e-10 2.322096361e-10 2.212587129e-10 2.988378633e-10 1.4883655e-10 5.372525762e-11 2.974596114e-10 9.14531596e-11 1.549168518e-10 2.915847011e-11 1.861832153e-10 9.796847401e-11 1.535393608e-10 4.053271685e-10 1.081726944e-10 1.936188531e-10 2.362976009e-10 3.258727259e-10 1.76325875e-10 2.784398494e-10 7.701211127e-11 2.007130786e-10 1.097911706e-10 1.358546917e-10 2.148785301e-10 2.568251897e-10 2.029873204e-10 3.107694674e-10 1.476978905e-10 4.390331618e-10 1.958291847e-10 4.430662509e-10 2.793539103e-10 4.427404039e-10 6.796353047e-11 2.079186045e-10 3.67921893e-10 1.271261552e-10 2.494469627e-10 2.122116749e-10 4.467928001e-10 3.407218135e-10 4.524632453e-10 3.125990454e-10 4.915367527e-10 3.446939798e-10 2.995465978e-10 1.875308482e-10 1.476860493e-10 2.2159997e-10 2.708614667e-10 2.982222061e-10 2.649209916e-10 2.396903309e-10 3.605698268e-10 3.06832249e-10 2.206097776e-10 1.940350403e-10 3.05345708e-10 3.623537975e-10 2.288960543e-10 2.505901122e-10 3.770999573e-10 3.822256812e-10 3.954017927e-10 3.485246474e-10 2.296518623e-10 1.481795838e-10 3.280521683e-10 3.120321678e-10 3.794979014e-10 2.526551811e-10 6.357163797e-10 3.463863478e-10 4.90566215e-10 4.928037297e-10 4.776679621e-10 5.435984273e-10 4.205203156e-10 5.286168203e-10 3.259254254e-10 4.05163142e-10 3.949260311e-10 4.304357151e-10 3.144248923e-10 4.531502696e-10 4.701667649e-10 3.713895826e-10 4.556501872e-10 2.261622628e-10 1.844780899e-10 2.702060781e-10 2.816855409e-10 3.38388157e-10 2.123439887e-10 4.310360646e-10 7.697737512e-10 8.717955337e-10 6.065385002e-10 6.797653066e-10 6.964386223e-10 7.974570124e-10 7.90505107e-10 6.0895173e-10 5.856170702e-10 5.000120884e-10 8.79470345e-10 7.004703963e-10 6.11764513e-10 5.469145713e-10 4.508445837e-10 5.399388549e-10 3.147949261e-10 4.042869707e-10 4.469372126e-10 3.389382308e-10 1.642974253e-10 1.353824656e-13 1.083865198e-10 1.021959036e-10 4.524051455e-11 2.211833844e-15 3.198434077e-10 5.342870942e-10 6.022537419e-10 4.344080302e-10 5.57975357e-10 5.008073319e-10 7.229841562e-10 6.164663662e-10 7.044412768e-10 9.051245731e-10 9.483119067e-10 8.884305339e-10 1.034231608e-09 8.628348863e-10 9.340943599e-10 7.066734396e-10 8.326582493e-10 8.633523004e-10 9.090189698e-10 7.215707039e-10 8.779009321e-10 8.279617484e-10 9.832254292e-10 8.100849492e-10 9.406991962e-10 7.397193936e-10 1.047765228e-09 7.999464444e-10 8.966716976e-10 1.016655288e-09 1.085232009e-09 9.746999094e-10 9.018018614e-10 1.091977369e-09 7.842125625e-10 6.067429959e-10 5.160454959e-10 5.647185821e-10 5.115997995e-10 4.588216205e-10 4.741655513e-10 3.07992157e-10 3.033835908e-10 6.248883629e-11 1.081608004e-10 8.635245736e-11 9.662556922e-11 1.452808585e-10 3.306366323e-10 2.692137354e-10 3.195176309e-10 4.625293877e-10 3.763089258e-10 4.454373483e-10 6.121481406e-10 5.495360385e-10 5.143932934e-10 7.749572898e-10 6.769940536e-10 5.440087225e-10 7.709281308e-10 4.683843764e-10 6.388226385e-10 9.143335497e-10 5.284104111e-10 7.15831554e-10 6.418605453e-10 6.160485253e-10 4.373323364e-10 2.822699196e-10 3.538494259e-10 2.934148261e-10 2.903070723e-10 2.522802222e-10 2.537749012e-10 5.072689779e-10 3.314150011e-10 3.652883077e-10 3.971209709e-10 3.73228084e-10 3.10118253e-10 2.885121011e-10 3.154030165e-10 4.524491344e-10 3.478446631e-10 2.886424855e-10 5.794290069e-10 4.708922741e-10 4.334810033e-10 4.891509381e-10 3.823911446e-10 4.558998573e-10 4.313862362e-10 3.690721968e-10 1.659290541e-10 3.297355435e-10 2.983924966e-10 3.247832715e-10 2.428185455e-10 3.557411358e-10 3.356496025e-10 4.641525695e-10 3.957351478e-10 3.41863746e-10 3.722652434e-10 3.106787266e-10 4.255206841e-10 3.164692196e-10 1.231179997e-10 2.549994857e-10 4.147691214e-10 2.698026772e-10 3.710682132e-10 1.978381982e-10 3.238893906e-10 2.745403845e-10 3.223704522e-10 4.642600143e-10 3.729867371e-10 1.46754668e-10 2.915495893e-10 1.800261727e-10 2.01161519e-10 4.529077971e-10 4.074448228e-10 1.940802286e-10 2.92217896e-10 2.555988918e-10 3.088973353e-10 2.357017862e-10 2.934298606e-10 3.249099362e-10 4.097443127e-10 1.883637471e-10 1.146193847e-10 1.976912216e-10 2.126169599e-10 4.744061711e-10 1.266797021e-10 2.040772453e-10 2.58817483e-10 4.400578358e-10 1.702925223e-10 1.716300542e-10 9.63816685e-11 3.667640829e-10 1.2061834e-10 2.612100953e-10 2.786035178e-10 1.954625779e-10 2.783412575e-10 3.655033909e-10 1.018176708e-10 1.372943944e-10 1.569804208e-10 1.499423845e-10 2.473910415e-10 2.752437819e-10 3.937752792e-10 1.908982173e-10 1.363715493e-10 7.134173462e-11 3.015616584e-10 5.163101408e-10 2.313784022e-10 2.524481215e-10 2.230911675e-10 4.576559891e-11 1.501373104e-10 3.98060911e-10 2.777828193e-10 +1.497109106e-10 1.995889912e-10 7.459742249e-11 9.016043952e-11 3.178910787e-10 2.119705483e-10 1.535998202e-10 1.987007337e-10 1.987577354e-10 2.814154639e-10 1.994825915e-10 6.318806518e-11 1.313563742e-10 1.849538715e-10 3.806361167e-10 1.07701548e-10 2.338750177e-10 4.716084061e-10 1.413042991e-10 2.468660868e-10 2.040566958e-10 1.881975404e-10 2.754518714e-10 1.607157057e-10 1.011391204e-10 1.38964265e-10 1.368173671e-10 1.405647429e-10 8.8710277e-11 7.716267721e-11 9.55532657e-11 1.620539308e-10 3.434968079e-10 4.743501282e-10 2.318513226e-10 1.215756116e-10 1.540892668e-10 2.388723114e-10 2.75048152e-10 4.402245977e-10 2.95034958e-10 3.255015659e-10 3.184316173e-10 2.645098403e-10 2.689328765e-10 3.301960391e-10 2.405062768e-10 2.524765011e-10 3.355780638e-10 3.170669886e-10 2.191699756e-10 2.663908584e-10 3.216929464e-10 2.716097151e-10 2.988609426e-10 3.267299221e-10 4.009569555e-10 2.251788767e-10 2.637520584e-10 2.405306226e-10 3.168530192e-10 3.249070027e-10 2.005584524e-10 1.820503706e-10 1.970169225e-10 4.119444055e-10 2.210516189e-10 3.612150183e-10 3.035131478e-10 2.706176671e-10 1.872576322e-10 3.186077668e-10 2.788743443e-10 4.092478208e-10 2.605430006e-10 3.597068128e-10 2.940636993e-10 3.424748817e-10 2.985369104e-10 3.994314843e-10 2.607025265e-10 3.934282812e-10 4.613636224e-10 5.512256548e-10 5.131406801e-10 5.142073928e-10 4.594111784e-10 5.492719153e-10 4.138908029e-10 4.651783071e-10 3.234971901e-10 3.446709875e-10 3.002823558e-10 3.776550277e-10 3.995881163e-10 3.440767732e-10 2.264380527e-10 3.208652962e-10 7.658670234e-11 3.360304729e-10 2.738512605e-10 3.910069727e-10 5.458180013e-10 5.746309875e-10 6.439567084e-10 8.260641878e-10 6.553272166e-10 4.792845709e-10 9.266828382e-10 6.507449351e-10 5.7560804e-10 6.399119389e-10 5.572357157e-10 6.358702028e-10 5.712552458e-10 5.284149113e-10 5.385373814e-10 3.687482511e-10 3.754481248e-10 4.503519391e-10 3.474289876e-10 4.20857467e-10 3.13919359e-10 1.921391707e-10 1.51015464e-10 7.008205451e-11 8.076761049e-11 1.078458354e-14 1.343015635e-10 2.423906945e-10 3.195395735e-10 4.925262735e-10 5.475142612e-10 4.88517937e-10 5.253769576e-10 6.027479446e-10 4.917842467e-10 7.283440883e-10 7.896467849e-10 1.037131407e-09 1.00260193e-09 1.024365446e-09 9.678980992e-10 1.027104483e-09 1.028386992e-09 1.05746894e-09 8.764678416e-10 7.128671845e-10 1.021584656e-09 8.889537996e-10 8.641224959e-10 7.785139269e-10 7.996697504e-10 8.707051414e-10 8.383853192e-10 7.040966608e-10 9.43964572e-10 9.108504841e-10 9.229546618e-10 9.808115646e-10 9.605049689e-10 8.637189099e-10 6.606112458e-10 5.5280991e-10 6.370037958e-10 5.220264996e-10 4.959429093e-10 5.083424242e-10 4.75394707e-10 4.452309613e-10 3.110176472e-10 2.568196905e-14 7.983645784e-11 2.721884951e-10 8.327953197e-11 2.166363899e-10 1.890266483e-10 3.766755064e-10 3.836555699e-10 4.928508412e-10 4.318325074e-10 5.548156056e-10 5.804662403e-10 4.493326386e-10 4.836955676e-10 5.113390647e-10 6.59072951e-10 9.512977431e-10 4.690055858e-10 5.374717902e-10 6.154519278e-10 5.938930154e-10 6.871305307e-10 8.383319886e-10 8.058705503e-10 7.119382442e-10 7.080976389e-10 5.905748671e-10 2.980637019e-10 1.93550101e-10 1.889943609e-10 1.446681714e-10 2.400104271e-10 2.949080445e-10 3.315012237e-10 2.772873377e-10 3.646269928e-10 1.841535351e-10 4.35838371e-10 3.878502638e-10 3.77079565e-10 5.419671839e-10 3.565912266e-10 3.688331339e-10 5.407470381e-10 5.097745052e-10 5.64569251e-10 4.480709282e-10 5.044209725e-10 4.910634694e-10 3.074019847e-10 3.191784128e-10 1.830176754e-10 1.759587981e-10 3.23336071e-10 2.745622362e-10 2.881889274e-10 1.726885104e-10 3.122974601e-10 4.890372074e-10 2.386202824e-10 4.512648897e-10 1.992653854e-10 2.853305655e-10 2.005077617e-10 2.841898945e-10 3.850164712e-10 2.131125951e-10 3.815003289e-10 2.815077042e-10 3.218358726e-10 3.006629986e-10 3.982492023e-10 2.257362568e-10 2.297599557e-10 2.202702707e-10 2.672616932e-10 4.094955557e-10 3.098323007e-10 3.30256994e-10 2.540759523e-10 3.68040185e-10 1.994110399e-10 1.860455122e-10 3.882040188e-10 3.11788855e-10 3.615844675e-10 1.112673674e-10 3.848915032e-10 2.678079486e-10 1.954538393e-10 3.814799629e-10 3.97145333e-10 3.208472699e-10 1.957901719e-10 1.299973065e-10 1.704637084e-10 2.795333277e-10 2.385490387e-10 2.163036079e-10 2.147637525e-10 2.524971792e-10 1.703453015e-10 3.357345055e-10 2.261125257e-10 1.959780519e-10 1.894702321e-10 1.949161211e-10 1.571100665e-10 1.419806972e-10 6.872212607e-11 2.492618181e-10 3.48553994e-10 2.565233408e-10 1.376981755e-10 3.421455558e-10 1.804874221e-10 2.928954924e-10 2.750544803e-10 4.691996799e-10 7.720180329e-11 1.809062735e-10 1.566384061e-10 7.316727614e-11 1.931172394e-10 1.316490766e-10 1.836501612e-10 1.374223086e-10 1.577163727e-10 2.967831027e-10 +3.490409714e-10 1.026381436e-10 1.737715819e-10 3.09725755e-10 2.010963331e-10 2.500041975e-10 1.015689917e-10 1.995749055e-10 1.693193926e-10 1.854788215e-10 1.162372289e-10 9.630959962e-11 1.10658068e-10 1.400927724e-10 2.39138037e-10 1.805610904e-10 1.5199122e-10 1.137071357e-10 3.179618729e-10 1.749261051e-10 2.495007359e-10 3.266768423e-10 1.465710213e-10 1.615043292e-10 1.076007243e-10 1.862799927e-10 2.193578745e-10 3.310117571e-10 9.775440057e-11 2.01140209e-10 1.12819525e-10 1.665376091e-10 2.2240674e-10 2.410953472e-10 1.251622871e-10 3.515816187e-10 3.264554558e-10 3.774731723e-10 2.079068905e-10 2.784775433e-10 1.665180363e-10 2.082584147e-10 4.082674593e-10 2.559538861e-10 4.904133741e-10 2.736976204e-10 4.176703731e-10 4.221664245e-10 2.220007674e-10 4.438660938e-10 3.152628772e-10 3.739783633e-10 1.492960011e-10 3.229612288e-10 2.356578633e-10 2.683574891e-10 3.430923434e-10 2.780400698e-10 2.037278159e-10 2.75639449e-10 1.52949586e-10 3.497940542e-10 3.890738152e-10 2.74020541e-10 3.426266973e-10 5.334241293e-10 1.942559688e-10 3.629571503e-10 1.580431554e-10 4.077226419e-10 3.105625838e-10 3.821109505e-10 2.857917336e-10 3.496122895e-10 2.818906599e-10 2.501121757e-10 3.505910004e-10 2.803660724e-10 2.855229311e-10 4.292183396e-10 2.847650299e-10 2.437699982e-10 5.819929476e-10 5.048206541e-10 4.483900646e-10 5.004927014e-10 5.238997859e-10 5.565606193e-10 3.533926555e-10 4.06053741e-10 4.030250045e-10 3.007310008e-10 4.217200438e-10 4.325024127e-10 3.308733998e-10 3.097198557e-10 4.193112183e-10 2.818854578e-10 1.749488465e-10 2.233844597e-10 2.445861998e-10 1.719567551e-10 3.843683077e-10 5.848714003e-10 6.446474199e-10 7.2700464e-10 6.243234671e-10 5.176544714e-10 7.860461698e-10 6.548690691e-10 6.611421775e-10 6.978749762e-10 6.955334515e-10 9.228720559e-10 6.573952044e-10 5.27620122e-10 4.708130336e-10 5.096955614e-10 4.918151525e-10 4.372278793e-10 3.164446651e-10 4.323962791e-10 3.494120378e-10 3.268775668e-10 2.056472376e-10 1.886817678e-10 1.065634079e-10 1.381443661e-10 2.468351082e-10 3.652237982e-10 4.261255899e-10 4.38626541e-10 5.07375567e-10 5.238024668e-10 5.194607888e-10 4.842022673e-10 5.214858202e-10 5.898921844e-10 9.001142042e-10 6.676827868e-10 9.60959428e-10 9.03492827e-10 8.977083839e-10 9.048262543e-10 9.382020071e-10 8.438683774e-10 9.806124456e-10 1.038738056e-09 8.179877901e-10 9.394088605e-10 9.376221552e-10 7.876935368e-10 1.018058944e-09 8.206917643e-10 9.21868045e-10 9.66112098e-10 1.203600809e-09 8.443114024e-10 9.14762878e-10 8.654863171e-10 8.76372304e-10 8.428815584e-10 6.057336529e-10 5.752981553e-10 4.835843723e-10 7.084269531e-10 4.970163133e-10 5.092605558e-10 4.455590339e-10 3.666229801e-10 1.916275784e-10 1.016714665e-10 1.094439448e-10 1.881971296e-10 2.474570506e-10 1.866396427e-10 2.364635135e-10 3.839587987e-10 3.652114757e-10 4.515254747e-10 4.34979846e-10 3.640287877e-10 4.64996559e-10 6.397839882e-10 5.431340532e-10 6.37377395e-10 6.068742972e-10 5.064971035e-10 6.682823165e-10 5.085095238e-10 4.043515424e-10 5.819419882e-10 5.350011222e-10 4.111910084e-10 7.062778184e-10 6.122769934e-10 6.647471282e-10 3.722332233e-10 2.886035364e-10 2.49526558e-10 1.586851932e-10 2.274431238e-10 2.762084334e-10 2.191292472e-10 3.414969842e-10 3.883405425e-10 3.312988256e-10 4.040194062e-10 4.232439162e-10 3.221355523e-10 4.024057157e-10 4.897293545e-10 4.649795117e-10 5.394955827e-10 4.744956409e-10 3.877529998e-10 3.610408195e-10 3.998331611e-10 5.234646929e-10 5.260606265e-10 3.431154509e-10 2.302440582e-10 2.901028253e-10 2.736517804e-10 2.699112218e-10 2.513823145e-10 3.920055962e-10 2.595168658e-10 2.618556274e-10 3.660787635e-10 4.208109942e-10 1.928802973e-10 3.02202154e-10 2.63701161e-10 3.923466681e-10 4.235803021e-10 2.300235315e-10 2.408097236e-10 3.21436225e-10 2.67675338e-10 2.114980707e-10 1.725965462e-10 2.92267376e-10 4.505786881e-10 3.09566002e-10 3.178182101e-10 2.171469359e-10 2.25683422e-10 2.238212533e-10 3.217294682e-10 3.941739842e-10 3.003733847e-10 3.069151841e-10 2.996814249e-10 2.411643496e-10 2.607537803e-10 3.563296947e-10 3.248792821e-10 4.628495314e-10 3.800558114e-10 5.043081808e-10 3.504629558e-10 1.734648514e-10 1.284930302e-10 1.570331098e-10 2.109540834e-10 2.115481304e-10 1.828292591e-10 1.506931869e-10 3.014105916e-10 2.284843759e-10 6.814994119e-11 9.122867782e-11 1.738421598e-10 1.221190596e-10 2.392980585e-10 1.775095659e-10 9.556959764e-11 1.422608694e-10 2.117279053e-10 1.775237938e-10 1.566182927e-10 1.363244148e-10 1.966501901e-10 1.497298813e-10 3.391092404e-10 1.52273141e-10 3.191829451e-10 1.52832351e-10 8.368837167e-11 1.147281633e-10 9.514064642e-11 1.06938677e-10 2.16340908e-10 9.503116014e-11 4.746831924e-10 2.116301412e-10 2.006846689e-10 2.674168327e-10 1.708290788e-10 +2.201081409e-10 2.730604353e-10 1.727514714e-10 3.220490551e-10 1.929517578e-10 9.232240477e-11 3.105193284e-10 2.043578553e-10 1.814858385e-10 1.266415958e-10 1.350759702e-10 1.007860279e-10 1.586945786e-10 6.413857306e-11 3.321858336e-10 2.317873479e-10 2.525452895e-10 2.82980262e-10 3.523592386e-10 2.698907872e-10 1.507385476e-10 1.561753512e-10 2.362951224e-10 5.422314056e-11 2.646915079e-10 2.572943728e-10 1.533641185e-10 8.328291854e-11 2.544244013e-10 3.733220226e-10 9.733913437e-11 3.110592496e-10 1.549109632e-10 1.358675833e-10 2.314378905e-10 2.968456697e-10 2.084776604e-10 2.885241636e-10 3.738941748e-10 2.598427294e-10 2.695677462e-10 2.152469575e-10 4.496881156e-10 3.156528957e-10 2.172197561e-10 4.497071146e-10 2.586383646e-10 3.091595251e-10 3.239359157e-10 2.703394698e-10 2.161175931e-10 2.60117568e-10 2.783119818e-10 2.609168425e-10 1.867185186e-10 3.393530185e-10 1.504690547e-10 1.320655745e-10 3.635924315e-10 2.092878042e-10 2.127736817e-10 3.689093084e-10 4.758426293e-10 2.859223158e-10 3.392590049e-10 4.309510647e-10 4.256405274e-10 1.480155689e-10 3.716913554e-10 2.997466116e-10 3.061267687e-10 2.276365551e-10 2.052487148e-10 3.763837909e-10 1.429645563e-10 3.645443417e-10 3.058301748e-10 1.63532332e-10 3.314398839e-10 4.394172002e-10 4.222038124e-10 5.221038978e-10 4.065072769e-10 5.48566016e-10 2.953389914e-10 4.353020858e-10 4.667688343e-10 4.025795406e-10 3.818513419e-10 4.262331507e-10 4.653846245e-10 4.462020019e-10 4.16340422e-10 3.48278874e-10 5.338587822e-10 3.206564456e-10 3.231182102e-10 3.33264203e-10 1.342354221e-10 1.432439558e-10 2.629296116e-10 2.9294188e-10 1.947824804e-10 6.120756057e-10 6.619456417e-10 5.786207435e-10 7.06535734e-10 6.373767114e-10 4.927510937e-10 7.237749335e-10 6.586967533e-10 6.78007243e-10 6.280944499e-10 6.703235811e-10 6.027544969e-10 5.5371454e-10 4.010159488e-10 5.775028348e-10 5.397482489e-10 4.538513159e-10 5.807418646e-10 4.398361507e-10 3.374182729e-10 4.428754965e-10 2.227084742e-10 2.573087308e-10 1.550473372e-10 1.545272519e-10 0 1.175613949e-11 2.747436476e-10 4.572959294e-10 3.285440979e-10 4.328217834e-10 5.572702494e-10 6.6590185e-10 5.548633207e-10 4.344015164e-10 6.143828888e-10 6.701601454e-10 9.874683145e-10 7.940712552e-10 7.332944857e-10 8.199068811e-10 1.015670721e-09 9.133401363e-10 9.367558714e-10 8.703818253e-10 9.10717957e-10 8.596870931e-10 9.526435448e-10 9.435186013e-10 1.037982611e-09 8.983581382e-10 9.826424122e-10 8.098928984e-10 1.147987208e-09 8.817730736e-10 8.845821839e-10 8.106320126e-10 1.007188145e-09 6.866121568e-10 5.216007002e-10 5.13435161e-10 6.19850523e-10 5.723487228e-10 5.421074761e-10 4.782707837e-10 3.8625929e-10 2.17417361e-10 1.212552184e-10 2.105157496e-10 1.807384217e-10 7.917872544e-11 1.656190077e-10 2.106972136e-10 3.194309201e-10 4.821811889e-10 4.824055217e-10 3.427584066e-10 5.005321537e-10 5.55750553e-10 3.557493417e-10 6.48039596e-10 5.655964845e-10 7.701934596e-10 8.595916401e-10 6.573609255e-10 7.217610597e-10 6.734041393e-10 5.092415436e-10 5.431373639e-10 6.047171731e-10 4.306860967e-10 7.542720779e-10 7.519969582e-10 6.813683579e-10 2.561087188e-10 2.172444727e-10 2.318934596e-10 1.250799686e-10 2.282152809e-10 1.999626772e-10 2.618508836e-10 3.84857481e-10 3.461807036e-10 3.47349748e-10 5.257402212e-10 4.788321961e-10 3.526570377e-10 2.708665915e-10 2.92512793e-10 5.248303782e-10 4.656733114e-10 4.17004178e-10 3.682509295e-10 3.399811354e-10 3.678091528e-10 4.792402292e-10 3.707108132e-10 3.834519441e-10 2.689232891e-10 2.712337512e-10 4.082154868e-10 4.790093604e-10 4.107015135e-10 4.039939457e-10 2.522951167e-10 3.371571537e-10 4.396322446e-10 2.508975319e-10 2.317386885e-10 3.934508008e-10 2.529968991e-10 3.356881474e-10 3.021442721e-10 3.30856044e-10 3.643338014e-10 2.442082468e-10 3.695565432e-10 2.246405322e-10 2.768831916e-10 1.354645153e-10 9.394330439e-11 2.370020089e-10 2.00521509e-10 3.708210424e-10 3.291635433e-10 2.776050869e-10 3.98890304e-10 2.75284516e-10 1.966558645e-10 2.67787373e-10 2.924263578e-10 1.699102275e-10 1.272720064e-10 3.890357478e-10 2.715036085e-10 2.581046779e-10 2.99701195e-10 2.12403466e-10 3.627757122e-10 1.424349996e-10 1.617254725e-10 2.890790069e-10 1.01313872e-10 2.625295516e-10 2.765593541e-10 2.607019568e-11 9.366269087e-11 1.455071547e-10 1.704935241e-10 2.950131975e-10 2.534850864e-10 2.059731621e-10 2.688769291e-10 3.888999133e-10 1.451141331e-10 2.208022144e-10 2.190124378e-10 3.461520712e-10 9.849614735e-11 1.809408846e-10 2.061208742e-10 9.722104263e-11 2.076422373e-10 2.528672602e-10 9.237085388e-11 1.20081693e-10 4.053328725e-10 3.443012061e-10 1.618917373e-10 1.422822138e-10 1.553306125e-10 1.884701411e-10 1.218138667e-10 8.781132675e-11 1.160011522e-10 1.667121614e-10 2.045552052e-10 +1.945266056e-10 2.485311203e-10 2.894049538e-10 1.126764862e-10 1.274081132e-10 8.247548694e-11 2.366164721e-10 1.384917389e-10 2.270752319e-10 1.215546636e-10 9.425880004e-11 1.950218364e-10 2.554271334e-10 2.329106437e-10 1.70663646e-10 2.0975874e-10 1.811397264e-10 2.521814887e-10 1.661896811e-10 7.192303843e-11 1.983427268e-10 2.292652516e-10 2.424974404e-10 3.287584152e-10 1.818421217e-10 1.878504492e-10 1.83519427e-10 2.100739421e-10 2.980123863e-10 1.383154283e-10 1.918763931e-10 1.237982485e-10 3.131268454e-10 2.77598946e-10 1.491808893e-10 3.809231138e-10 1.605618051e-10 1.618174868e-10 2.461573449e-10 2.054071971e-10 2.824122971e-10 1.974224612e-10 2.635414541e-10 2.4425017e-10 3.077659482e-10 2.249829213e-10 2.516378857e-10 2.227803771e-10 2.349791378e-10 3.289173065e-10 3.548845354e-10 1.95854345e-10 3.687114882e-10 3.219972261e-10 3.33308585e-10 2.136501057e-10 3.08759944e-10 3.167395291e-10 4.724632727e-10 3.189574737e-10 2.498596196e-10 3.705490644e-10 2.787796596e-10 3.75436444e-10 2.81545718e-10 3.14292886e-10 1.77509079e-10 3.136600378e-10 2.23142335e-10 2.906489783e-10 2.571578589e-10 3.385063682e-10 2.870003853e-10 1.957677608e-10 2.281243972e-10 3.013901672e-10 2.663695608e-10 3.077460642e-10 4.063299726e-10 3.331315078e-10 5.283552508e-10 4.765939395e-10 5.202904263e-10 4.788777968e-10 4.473254648e-10 3.349452302e-10 4.467569097e-10 4.774560649e-10 3.9756019e-10 4.002608585e-10 3.542899874e-10 3.931604489e-10 3.564198102e-10 4.371190491e-10 3.352903795e-10 2.91075858e-10 3.68126574e-10 2.236499659e-10 2.44437368e-10 1.724846905e-10 2.799070107e-10 2.956657122e-10 3.424493578e-10 4.588892668e-10 8.247969369e-10 7.230748935e-10 7.736051103e-10 4.541777518e-10 6.73813818e-10 3.226766291e-10 5.319196902e-10 6.129528354e-10 6.522884542e-10 6.065927828e-10 7.181203747e-10 5.427902454e-10 5.130174966e-10 4.59218291e-10 4.804768581e-10 2.707086545e-10 4.746491164e-10 4.391222816e-10 4.234464338e-10 4.219094646e-10 2.303458934e-10 1.744220044e-10 1.407834818e-10 1.353860343e-10 1.144132864e-10 7.650335584e-11 1.683128178e-10 2.380711538e-10 3.740467747e-10 4.039055085e-10 3.939258493e-10 4.580947627e-10 4.691447596e-10 4.883297362e-10 6.356736183e-10 5.258169908e-10 7.493417585e-10 6.472242034e-10 7.697661857e-10 7.799613802e-10 7.345685079e-10 1.089619305e-09 8.845830224e-10 9.447609099e-10 8.398663447e-10 9.041793995e-10 9.363594318e-10 8.893803469e-10 8.479413769e-10 8.866062031e-10 9.838494974e-10 9.810482463e-10 9.626301734e-10 8.800979058e-10 6.892619443e-10 6.766333218e-10 7.730418798e-10 5.821769424e-10 5.200472992e-10 5.066477311e-10 5.723281885e-10 5.482103653e-10 4.684347592e-10 2.401304958e-10 2.813895533e-10 1.056787878e-10 1.402451679e-10 1.226004773e-10 1.124012621e-10 1.618624054e-10 1.089877501e-10 2.655178203e-10 3.522858133e-10 4.366274302e-10 6.01681723e-10 4.574608246e-10 3.579633345e-10 5.833264717e-10 4.701688532e-10 5.052369965e-10 6.051252062e-10 6.595094769e-10 8.440776447e-10 4.661785784e-10 5.651487053e-10 6.492902483e-10 4.838945051e-10 6.986237695e-10 7.463004757e-10 3.93738862e-10 6.82669884e-10 6.633297571e-10 6.802695728e-10 2.17661292e-10 2.345025724e-10 3.058116794e-10 8.065812492e-11 1.266079889e-10 1.509103117e-10 2.146288413e-10 3.143510187e-10 4.423364935e-10 4.188709359e-10 2.712665007e-10 4.31613393e-10 4.201362503e-10 5.870311369e-10 3.336635641e-10 4.792337178e-10 2.603218078e-10 3.947410423e-10 5.38625783e-10 5.99113605e-10 4.897443009e-10 4.256493721e-10 3.282869561e-10 3.802968114e-10 2.550660559e-10 3.364314676e-10 2.656181304e-10 1.914024857e-10 2.8992307e-10 2.367652363e-10 3.52630735e-10 2.793503402e-10 3.912313081e-10 3.091625568e-10 3.646537487e-10 1.999002992e-10 2.794029612e-10 3.300592617e-10 2.146577027e-10 3.319583606e-10 3.181470328e-10 3.63742876e-10 2.534580362e-10 3.237784723e-10 3.335771922e-10 3.401782364e-10 1.806220422e-10 2.760818508e-10 2.274321179e-10 2.506945537e-10 2.597993154e-10 2.901809246e-10 3.529980686e-10 3.926699433e-10 2.363138107e-10 3.570009227e-10 3.905478802e-10 2.802415567e-10 2.057596688e-10 2.668839153e-10 1.430775037e-10 3.979964348e-10 2.503025554e-10 2.564846194e-10 4.065156362e-10 2.385139404e-10 1.622163628e-10 1.880227941e-10 3.274289157e-10 1.778219293e-10 1.971831485e-10 1.115843819e-10 3.657012468e-10 3.222915273e-10 1.143005369e-10 9.622966594e-11 3.001095712e-10 3.286674794e-10 3.776533679e-10 1.866238613e-10 1.862018801e-10 2.366700969e-10 1.421238463e-10 1.377701894e-10 6.631561934e-11 1.42192384e-10 1.657031542e-10 9.002569195e-11 1.728126083e-10 1.585279297e-10 1.149419622e-10 1.589032399e-10 2.866349123e-10 2.94232089e-10 1.374826066e-10 1.967853481e-10 2.605300698e-10 7.569014322e-11 3.559673849e-10 2.055729423e-10 9.402452796e-11 7.267604401e-11 1.328242492e-10 +6.896238685e-11 1.58570703e-10 2.919018694e-10 3.69360106e-10 1.659224876e-10 6.052768676e-11 1.702363285e-10 1.457096726e-10 8.831684591e-11 1.509804193e-10 2.72739845e-10 2.863616055e-10 2.280804423e-10 3.032861438e-10 2.085514333e-10 1.816747817e-10 1.306084288e-10 1.979692776e-10 2.696807293e-10 1.350596403e-10 1.613522805e-10 1.862806125e-10 8.355294499e-11 2.30012144e-10 2.043663156e-10 1.426848585e-10 2.999420006e-10 1.870657552e-10 2.877716529e-10 3.730399241e-10 3.084797608e-10 2.354490878e-10 1.885011286e-10 4.10381653e-10 1.186121606e-10 2.898071143e-10 2.69686217e-10 2.0373148e-10 1.553482835e-10 3.340507647e-10 2.571561373e-10 2.737689322e-10 4.312897122e-10 3.445231731e-10 2.993628319e-10 2.133792992e-10 2.166279001e-10 2.769200666e-10 2.940800767e-10 3.102147217e-10 1.806379381e-10 2.428851993e-10 2.119543775e-10 1.457581195e-10 2.564185542e-10 2.618724831e-10 1.972548868e-10 2.43092194e-10 3.669116752e-10 3.165435437e-10 3.102960568e-10 1.367559133e-10 3.815102948e-10 2.869865487e-10 2.320275485e-10 3.430198385e-10 2.173684687e-10 2.616129579e-10 3.772011398e-10 4.228428361e-10 1.959811562e-10 2.336818333e-10 2.088196759e-10 2.679899127e-10 2.943814798e-10 3.949855059e-10 3.788809762e-10 4.424491925e-10 2.249776486e-10 4.422395434e-10 3.968718492e-10 4.670256119e-10 5.776453508e-10 4.772804999e-10 3.859839174e-10 5.210016954e-10 3.73045825e-10 4.404152275e-10 3.999909657e-10 3.364527665e-10 3.040502228e-10 3.307085702e-10 4.231270808e-10 4.407650259e-10 2.843597334e-10 2.778508493e-10 3.858362983e-10 2.399899436e-10 2.53385437e-10 2.720663265e-10 2.862864973e-10 2.708064295e-10 1.646937849e-10 8.543535227e-10 6.642695837e-10 6.553501683e-10 4.66112494e-10 9.466993003e-10 4.578610986e-10 6.554922184e-10 3.993809866e-10 6.473748851e-10 6.061789474e-10 6.140846827e-10 7.769730709e-10 5.357573496e-10 5.753367881e-10 4.948739973e-10 5.123629387e-10 3.919251447e-10 4.363355541e-10 4.737781989e-10 5.640879849e-10 3.422069248e-10 4.076649591e-10 2.593462314e-10 1.097265398e-10 1.053895902e-10 1.054417209e-10 6.165796342e-11 1.103232878e-10 1.242422764e-10 3.098842467e-10 5.705570937e-10 4.734719018e-10 4.615900652e-10 5.341841239e-10 5.020300788e-10 4.7436753e-10 4.339817792e-10 5.108222459e-10 7.768686768e-10 1.010335594e-09 8.878014443e-10 7.111119179e-10 9.884315575e-10 9.630780566e-10 7.982691961e-10 9.689328966e-10 8.640232105e-10 7.302061431e-10 8.431386803e-10 8.647071611e-10 9.023922567e-10 8.364271885e-10 9.185694545e-10 6.518189131e-10 9.599319637e-10 5.727687955e-10 6.107795334e-10 4.817587035e-10 3.768257188e-10 5.43818752e-10 4.447641318e-10 5.334080267e-10 5.166350152e-10 3.118811302e-10 1.040412757e-10 3.435160572e-10 1.666592846e-17 6.608901768e-11 8.481141311e-11 6.53557761e-11 2.22849192e-10 2.730452076e-10 3.458024374e-10 2.567522878e-10 4.601109109e-10 4.739889685e-10 5.24118049e-10 3.112933306e-10 4.480114192e-10 5.735405956e-10 4.612278952e-10 6.205128469e-10 7.126088249e-10 6.731382389e-10 6.026611631e-10 5.93536856e-10 4.970244616e-10 4.300385726e-10 7.459119606e-10 7.631233559e-10 6.266649106e-10 4.725659884e-10 9.241632847e-10 7.361279388e-10 3.271687986e-10 1.336526329e-10 1.548123447e-10 3.009455547e-10 2.450325775e-10 1.897795634e-10 3.568924118e-10 3.261063482e-10 3.821756136e-10 4.095812132e-10 3.465097496e-10 4.572950277e-10 4.240562584e-10 3.680415769e-10 3.664111992e-10 3.828804399e-10 3.576954635e-10 4.996633378e-10 3.405419508e-10 4.345091397e-10 4.098648425e-10 4.673540731e-10 4.505027987e-10 3.9372113e-10 1.983357074e-10 2.70898988e-10 2.281651967e-10 3.538631785e-10 1.722537628e-10 3.444275108e-10 2.748761942e-10 3.500356125e-10 1.889778157e-10 3.858731435e-10 2.400716822e-10 2.502940518e-10 3.946136252e-10 3.02593808e-10 3.519243616e-10 2.243977261e-10 2.234628715e-10 3.120982531e-10 3.336906737e-10 4.873651447e-10 1.767086489e-10 3.008119661e-10 3.060550782e-10 2.73962143e-10 2.710409316e-10 4.51332029e-10 3.401966613e-10 2.546481468e-10 2.507317887e-10 4.707512024e-10 2.208759515e-10 2.273379639e-10 5.286213561e-10 3.90388599e-10 2.651302746e-10 1.428889273e-10 2.049434075e-10 3.107602917e-10 1.434051273e-10 5.4699371e-10 3.529438199e-10 2.235228055e-10 4.557122698e-10 1.490037092e-10 2.14913558e-10 3.184997701e-10 1.920472325e-10 3.63998821e-10 1.947286587e-10 1.974365326e-10 8.503737004e-11 1.268217869e-10 9.931346347e-11 1.511692726e-10 2.0373164e-10 2.266716736e-10 8.088289757e-11 1.108782494e-10 2.251290212e-10 2.155971967e-10 2.627720999e-10 1.587676432e-10 1.093520101e-10 2.561984788e-10 4.009208652e-10 1.438607016e-10 2.420896261e-10 1.182415009e-10 1.670716374e-10 1.055729056e-10 7.495049887e-11 1.652677526e-10 1.122932407e-10 1.609018286e-10 1.694547143e-10 1.485616877e-10 2.703635154e-10 2.963550209e-10 9.661085658e-11 +1.433324655e-10 1.996091541e-10 1.774611886e-10 2.318147003e-10 1.656682814e-10 4.069175069e-10 1.21875456e-10 3.486892942e-10 1.862353339e-10 1.667224002e-10 1.123067592e-10 1.6455089e-10 7.183583729e-11 2.843505282e-10 3.736876456e-10 3.506035363e-10 3.741749699e-10 1.168811308e-10 1.266077337e-10 1.333344422e-10 2.74787477e-10 2.524224973e-10 9.390074772e-11 1.193211862e-10 3.217323186e-10 5.634801099e-11 1.105467586e-10 5.032069941e-10 8.071905296e-11 1.345251012e-10 1.527913942e-10 1.282925296e-10 8.448097599e-11 3.435777181e-10 2.459430412e-10 4.077187781e-10 2.296894877e-10 4.304267119e-10 2.813674576e-10 3.144645069e-10 3.989916179e-10 2.870079335e-10 3.572540165e-10 2.068987431e-10 2.152972797e-10 2.709414171e-10 2.833081275e-10 3.266904787e-10 3.385923618e-10 2.925275535e-10 3.25312896e-10 2.449129784e-10 2.552714036e-10 1.498833007e-10 2.435764615e-10 1.986054407e-10 3.187157037e-10 2.9505199e-10 2.967136496e-10 1.364498607e-10 2.559774771e-10 2.911804526e-10 2.145470029e-10 3.136445657e-10 3.855835801e-10 1.28396549e-10 2.379934787e-10 2.82189193e-10 3.811276756e-10 3.596752225e-10 4.225415366e-10 1.743888885e-10 2.296506679e-10 3.389621141e-10 1.484618624e-10 3.714680834e-10 3.093951167e-10 3.180506787e-10 3.293271189e-10 2.498627941e-10 3.837460103e-10 4.234671692e-10 4.341782989e-10 4.330919956e-10 5.168235064e-10 4.18711647e-10 2.960271145e-10 4.99437527e-10 4.584518784e-10 3.360703065e-10 4.104051649e-10 2.623826638e-10 3.873151101e-10 2.788067074e-10 2.366008665e-10 3.481291307e-10 3.348159946e-10 2.620783362e-10 2.539863561e-10 1.720015931e-10 1.196191915e-10 2.933419779e-10 1.552340314e-10 5.641839378e-10 4.671498777e-10 6.809428736e-10 6.807217653e-10 6.597482873e-10 7.680454325e-10 6.300036657e-10 8.169677253e-10 7.219272711e-10 6.393155822e-10 5.794501482e-10 7.179785519e-10 7.656852753e-10 4.87553822e-10 4.521509034e-10 5.782443494e-10 4.571480354e-10 5.009322751e-10 3.279356673e-10 3.437084932e-10 3.661215275e-10 4.067675235e-10 3.092180211e-10 1.736593269e-10 1.854872224e-10 1.585869383e-10 1.097745608e-10 3.906512082e-14 1.040817027e-10 3.598158233e-10 3.930589146e-10 3.802097787e-10 5.846641529e-10 4.812613639e-10 4.597224135e-10 4.770183257e-10 5.923860701e-10 5.176997258e-10 3.823363195e-10 6.208469889e-10 7.637604683e-10 6.612342406e-10 8.492914909e-10 8.325510171e-10 7.50837916e-10 9.080363591e-10 7.755016247e-10 8.760095965e-10 9.108923704e-10 9.024648431e-10 6.793324703e-10 7.985955409e-10 8.749776375e-10 6.804045626e-10 6.168782035e-10 5.19542238e-10 4.569862933e-10 6.383774602e-10 5.633613859e-10 4.663954792e-10 5.895071847e-10 4.3047119e-10 4.250192699e-10 4.491090414e-10 2.916489813e-10 1.496716529e-10 1.73739249e-10 1.229663266e-10 7.119472065e-11 6.89695868e-11 1.454868268e-10 3.212428351e-10 3.315722061e-10 2.671630582e-10 5.340710678e-10 4.56658519e-10 3.945138179e-10 5.647635231e-10 5.022254291e-10 5.987970505e-10 4.816777798e-10 8.958188618e-10 8.080177813e-10 6.32767929e-10 3.572264006e-10 7.404198668e-10 7.052176916e-10 5.437346989e-10 5.353098571e-10 4.464845774e-10 4.384760169e-10 9.162056922e-10 7.435080176e-10 5.279393901e-10 3.528969062e-10 1.665274899e-10 2.660849719e-10 7.771424497e-11 2.026605643e-10 3.356528751e-10 4.058268359e-10 4.50046914e-10 1.869359565e-10 4.055806091e-10 3.598913544e-10 3.475061851e-10 4.151612774e-10 3.703013877e-10 3.520097161e-10 4.666570912e-10 3.795321168e-10 4.981593963e-10 3.744377569e-10 4.105134485e-10 4.787640878e-10 4.512104862e-10 2.413586128e-10 3.356169961e-10 3.021195821e-10 3.137113093e-10 2.74334391e-10 2.94092942e-10 4.213142617e-10 2.491849883e-10 3.350945396e-10 4.034019445e-10 1.781369854e-10 4.354553054e-10 3.548171171e-10 3.373842884e-10 1.885416542e-10 3.026599526e-10 2.391535092e-10 2.913954177e-10 4.021531515e-10 2.908335545e-10 3.0219958e-10 3.734451919e-10 1.194567893e-10 1.778279917e-10 2.804468182e-10 3.59763193e-10 1.206220232e-10 2.150208415e-10 2.376016202e-10 1.640606752e-10 2.680398587e-10 1.642280761e-10 3.006559234e-10 2.551357326e-10 3.576676542e-10 3.435269295e-10 2.817357382e-10 2.506275916e-10 1.62171327e-10 3.006596904e-10 2.493693193e-10 2.628229931e-10 3.744366533e-10 2.712661334e-10 3.83727939e-10 1.224464859e-10 3.525240567e-10 1.857929061e-10 1.291102279e-10 1.985438641e-10 3.824054024e-10 2.297781256e-10 1.636189599e-10 1.325606302e-10 1.427358131e-10 2.128758203e-10 1.350629019e-10 2.33578135e-10 2.245173266e-10 9.803401291e-11 2.87487023e-10 1.537332956e-10 1.388446994e-10 2.138782628e-10 2.446857369e-10 3.278275753e-10 2.352280605e-10 2.039702316e-10 1.783503845e-10 3.292545297e-10 3.540870252e-10 2.732766799e-10 1.360676906e-10 1.535478035e-10 8.001425622e-11 2.410632376e-10 1.372755929e-10 1.167948623e-10 3.370118898e-10 4.677512552e-12 2.745318963e-10 +8.312073397e-11 1.443434124e-10 1.185275599e-10 2.613829082e-10 1.614765478e-10 1.668202157e-10 1.498981221e-10 3.669400847e-10 1.474686952e-10 1.031210795e-10 1.103296469e-10 1.34341906e-10 2.687808655e-10 1.977168971e-10 1.543354682e-10 8.845791574e-11 2.079578474e-10 1.054592933e-10 1.732411898e-10 1.987693292e-10 2.428092375e-10 1.644688841e-10 5.219077635e-11 2.095985e-10 2.381680928e-10 1.867105329e-10 9.012788437e-11 1.168401902e-10 1.809797132e-10 1.402614349e-10 3.994111368e-10 8.800875436e-11 3.286651062e-10 1.943204938e-10 2.2761555e-10 2.066102978e-10 4.303607949e-10 2.312149677e-10 2.955818744e-10 1.985994759e-10 2.473776523e-10 2.544164915e-10 2.740243821e-10 1.641258505e-10 2.751747575e-10 1.740150363e-10 2.258744171e-10 2.591957154e-10 2.586567232e-10 3.867031187e-10 5.020305233e-10 1.621152048e-10 3.628639145e-10 2.848218721e-10 3.084729632e-10 1.813028894e-10 1.998468774e-10 1.981113339e-10 2.944856405e-10 1.798233695e-10 3.381851291e-10 2.739162573e-10 3.483859974e-10 1.888031514e-10 2.533481756e-10 2.598061031e-10 2.077100135e-10 2.551090931e-10 3.317859168e-10 2.641043048e-10 1.923195288e-10 2.96271208e-10 3.587910901e-10 2.678803479e-10 2.614429706e-10 3.96640112e-10 3.432956831e-10 1.787308408e-10 3.380173384e-10 4.104938143e-10 4.39696152e-10 4.611851892e-10 6.977447522e-10 4.075873977e-10 2.967791841e-10 6.343889953e-10 5.407852723e-10 4.910430471e-10 4.553161403e-10 4.832658696e-10 2.794100542e-10 3.935120232e-10 4.132932869e-10 2.851745637e-10 3.468092204e-10 4.462270724e-10 3.021289179e-10 2.36764023e-10 2.040384429e-10 2.236591344e-10 1.508439452e-10 2.656787616e-10 2.216951964e-10 2.992341218e-10 5.943703981e-10 5.284727939e-10 6.032724196e-10 1.009813465e-09 8.541385264e-10 5.226607077e-10 7.307313065e-10 6.036383639e-10 5.057158729e-10 5.838388609e-10 6.502132573e-10 5.101280971e-10 6.894807599e-10 3.744767955e-10 5.571574789e-10 5.216456801e-10 4.301598564e-10 3.302404402e-10 5.659216963e-10 3.864915117e-10 3.689036007e-10 3.448192243e-10 1.556673031e-10 1.245492525e-10 1.845644333e-10 2.676609692e-17 1.122629082e-10 0 2.543092557e-10 3.639242335e-10 2.67527275e-10 4.147176399e-10 5.498984032e-10 4.97988378e-10 5.690040815e-10 5.76269993e-10 5.582208702e-10 4.331553073e-10 4.524057208e-10 4.916191559e-10 5.185377099e-10 6.753045561e-10 6.970399647e-10 7.877932164e-10 6.432694221e-10 5.41695499e-10 6.660166772e-10 6.638171675e-10 6.697466088e-10 5.757743951e-10 5.41520928e-10 6.7540709e-10 4.120044345e-10 4.694208678e-10 3.864685115e-10 4.295783363e-10 4.418517717e-10 4.108852567e-10 4.75796753e-10 3.110357398e-10 3.139261699e-10 3.55372832e-10 2.093425841e-10 5.464388861e-14 6.456925202e-15 1.479100024e-10 7.784834995e-11 1.18998912e-10 1.315841013e-10 2.89073283e-10 3.88532669e-10 2.602129244e-10 3.88934511e-10 4.166721045e-10 3.715378024e-10 4.287126064e-10 4.876676526e-10 5.551252452e-10 4.903487164e-10 6.52708411e-10 6.92165616e-10 8.079542913e-10 3.489345973e-10 6.932462349e-10 6.410885889e-10 6.664252551e-10 3.471685307e-10 7.006435758e-10 3.012903571e-10 3.78760539e-10 6.52613208e-10 4.876072102e-10 4.03090034e-10 1.915209806e-10 2.412376245e-10 2.288158456e-10 2.292126986e-10 1.86311695e-10 3.932747863e-10 3.354721482e-10 3.887623413e-10 3.827851827e-10 3.416982801e-10 3.675973908e-10 3.044776773e-10 4.634666174e-10 4.988907272e-10 5.082570534e-10 4.15952411e-10 3.606636513e-10 4.613946858e-10 3.48203919e-10 3.933644221e-10 2.864041841e-10 3.716632524e-10 2.686197769e-10 3.281100437e-10 3.332765028e-10 2.19537333e-10 2.336549096e-10 1.994135763e-10 3.688613312e-10 3.784120577e-10 3.076011596e-10 3.012715941e-10 3.242374678e-10 3.318444318e-10 2.50371103e-10 3.131955453e-10 2.59472326e-10 1.77165154e-10 1.777166964e-10 4.031388855e-10 2.853701566e-10 3.4745599e-10 4.630672786e-10 1.051644526e-10 2.86319654e-10 2.022179784e-10 2.383578177e-10 1.999356762e-10 3.21960126e-10 2.755288877e-10 3.43982182e-10 2.630384683e-10 3.306048509e-10 2.598150401e-10 3.24944488e-10 2.231107614e-10 2.74876692e-10 3.15010384e-10 4.509418459e-10 2.478182531e-10 1.646823758e-10 2.88683671e-10 2.865796986e-10 2.136372647e-10 4.271234807e-10 2.893219762e-10 3.490749433e-10 1.089329123e-10 2.710891656e-10 2.883879087e-10 3.563686071e-10 2.362310979e-10 2.521831114e-10 1.226872828e-10 9.24852403e-11 2.960814575e-10 1.061208509e-10 1.819173071e-10 1.347755052e-10 1.460423366e-10 4.659975186e-10 1.739865315e-10 2.553861145e-10 1.789611689e-10 5.778454712e-11 2.153764587e-10 1.338318852e-10 2.303967554e-10 9.991426336e-11 1.22551513e-10 1.580512131e-10 2.226777787e-10 3.441824141e-10 8.588817165e-11 1.498711406e-10 7.016656497e-11 3.916362656e-10 2.819433532e-10 1.414058019e-10 3.455205132e-10 1.633963753e-10 1.879230076e-10 5.583140979e-11 +1.351465288e-10 1.213561557e-10 3.08415238e-10 2.360077791e-10 1.553710486e-10 3.127411649e-10 2.407247399e-10 1.441921121e-10 2.792909164e-10 3.348013997e-10 1.956512868e-10 1.463678953e-10 1.460887304e-10 2.346325236e-10 2.36553609e-10 1.822804119e-10 1.341344184e-10 3.486376993e-10 2.603704144e-10 1.769596909e-10 2.744576224e-10 2.28327687e-10 1.887820997e-10 3.867264437e-10 1.221781279e-10 2.981238864e-10 1.380240751e-10 7.335651448e-11 1.969500248e-10 1.836344051e-10 2.795156128e-10 1.192538936e-10 1.48556257e-10 2.701582292e-10 1.077796195e-10 3.788248029e-10 2.896528177e-10 2.54464567e-10 1.854365146e-10 3.511454242e-10 2.7066983e-10 8.484947479e-11 2.514329413e-10 4.935630918e-10 1.907801629e-10 3.155248576e-10 4.608793858e-10 4.416892199e-10 2.808723946e-10 5.10952217e-10 3.756275643e-10 3.312972843e-10 1.824692104e-10 3.335051948e-10 2.761171504e-10 2.346852764e-10 2.552268627e-10 2.021943975e-10 6.600971514e-11 2.598312864e-10 4.011508893e-10 3.192942e-10 2.552854146e-10 4.532646921e-10 3.376551835e-10 1.58752366e-10 2.486412593e-10 1.76995299e-10 1.677611861e-10 3.144447422e-10 3.118280555e-10 2.331846891e-10 4.578924111e-10 3.333657204e-10 3.628456304e-10 1.313962733e-10 3.287027387e-10 2.187754739e-10 3.872148176e-10 2.668637945e-10 4.92162902e-10 3.665585319e-10 3.874387506e-10 3.715400669e-10 4.527706393e-10 4.194314863e-10 5.030274935e-10 4.679069973e-10 3.514287017e-10 3.776113273e-10 4.349923628e-10 4.186688479e-10 3.272703711e-10 4.410173518e-10 3.296066183e-10 3.674264785e-10 3.781221516e-10 2.730979644e-10 2.435508012e-10 3.068120265e-10 1.520181692e-10 1.731644169e-10 2.532660632e-10 2.665278165e-10 5.090204676e-10 7.345598992e-10 6.539189853e-10 9.139459284e-10 7.072936753e-10 7.502001868e-10 6.45293339e-10 4.731608802e-10 7.19448241e-10 5.695571661e-10 7.399357411e-10 7.538488223e-10 5.643745249e-10 6.801363035e-10 4.921073242e-10 5.184580706e-10 3.825827551e-10 5.069106093e-10 3.763398008e-10 3.775792419e-10 3.628363718e-10 3.689615807e-10 3.507560987e-10 1.875244199e-10 1.28931271e-10 1.234733447e-10 1.325253004e-10 3.267644695e-11 2.297669138e-10 1.063093533e-10 3.909920832e-10 4.428959726e-10 3.485940653e-10 5.19107464e-10 4.032773966e-10 5.72811934e-10 5.307608864e-10 4.903489625e-10 4.761541711e-10 5.118607073e-10 4.280006992e-10 5.436054954e-10 4.5968272e-10 6.16915894e-10 6.02570257e-10 5.428660718e-10 6.98859893e-10 6.397766116e-10 4.991598475e-10 6.136363397e-10 6.548425773e-10 5.166208404e-10 4.275815623e-10 4.104652713e-10 4.529855132e-10 4.981004012e-10 5.091987649e-10 4.194030553e-10 4.910343949e-10 3.41235822e-10 3.131025526e-10 2.142265896e-10 9.844883984e-11 1.742575449e-10 8.870815748e-11 1.175983177e-10 1.036598054e-12 1.877554979e-11 2.154711617e-10 1.923639173e-10 4.636975545e-10 3.701643156e-10 6.440659648e-10 4.771831254e-10 3.968404566e-10 4.554992749e-10 4.071093585e-10 4.496874752e-10 6.177536567e-10 6.346435995e-10 7.211261761e-10 6.675079458e-10 5.265963665e-10 4.372022391e-10 5.869130538e-10 7.111047724e-10 6.617737722e-10 4.764688669e-10 5.521783272e-10 7.555007988e-10 8.578837018e-10 6.391555129e-10 2.943558026e-10 2.576371801e-10 2.311714589e-10 1.733405216e-10 1.309278441e-10 3.379393494e-10 3.064252242e-10 2.672437417e-10 3.977738422e-10 2.931202145e-10 2.318960916e-10 2.592565506e-10 3.463656252e-10 4.098274882e-10 3.325587711e-10 4.441521705e-10 5.621372623e-10 5.809630917e-10 3.5717498e-10 3.963884772e-10 4.370658653e-10 4.439016083e-10 4.700197585e-10 4.103253644e-10 4.389829477e-10 4.380063675e-10 2.667650539e-10 2.677556846e-10 1.837604586e-10 2.544716871e-10 3.081268268e-10 2.787785948e-10 3.48490598e-10 4.060338426e-10 4.392311183e-10 2.291927365e-10 3.460039153e-10 2.416838434e-10 1.966223118e-10 2.337504105e-10 3.186467804e-10 2.199195643e-10 2.683985627e-10 2.740312567e-10 2.382918432e-10 1.234276607e-10 2.050372496e-10 2.318484137e-10 3.88585934e-10 2.490182672e-10 1.449101354e-10 3.38995954e-10 3.047511675e-10 1.534120845e-10 3.074315233e-10 3.184667105e-10 1.585307465e-10 2.868750605e-10 2.433589102e-10 3.561496536e-10 4.462463134e-10 3.391693551e-10 2.905739909e-10 2.789312892e-10 2.040882658e-10 3.73111631e-10 2.679456531e-10 3.68899754e-10 1.221139494e-10 2.106196769e-10 1.706897917e-10 1.543431179e-10 1.95184352e-10 8.820232013e-11 1.461073158e-10 4.020456823e-10 3.696481433e-10 1.877687484e-10 2.97519004e-10 1.690471272e-10 1.205403019e-10 1.398638624e-10 2.016208307e-10 1.208281859e-10 1.631506559e-10 3.258709248e-10 1.828105765e-10 3.085168125e-10 3.489889806e-10 1.123704614e-10 1.49028784e-10 1.352352746e-10 2.335637282e-10 9.737939697e-11 2.058420218e-10 3.709186753e-10 1.651189237e-10 2.060035919e-11 1.04443697e-10 1.277769384e-10 1.215180348e-10 1.751913953e-10 2.679161811e-10 1.541919918e-10 +2.527962011e-10 2.354563097e-10 1.739672441e-10 1.857659564e-10 1.73006606e-10 2.414560728e-10 2.258321319e-10 3.213155364e-10 2.363458124e-10 1.046709878e-10 7.415345022e-11 8.678318724e-11 3.194178622e-10 4.134756605e-10 8.422974678e-11 2.115075867e-10 3.100025227e-10 2.771827207e-10 1.820194093e-10 1.010160171e-10 1.616325999e-10 2.870558883e-10 1.313964045e-10 1.496921936e-10 1.542818199e-10 1.338700702e-10 1.096775033e-10 8.835540083e-11 2.948430177e-10 2.148601409e-10 3.317992354e-10 3.388440858e-10 2.296789961e-10 1.319638895e-10 1.50653105e-10 3.272949077e-10 2.635378011e-10 3.945422594e-10 3.112158897e-10 2.0474135e-10 3.060310759e-10 2.760467134e-10 3.505311128e-10 3.378054643e-10 2.28878571e-10 2.849547318e-10 1.693059529e-10 2.456850067e-10 2.017148481e-10 1.782445875e-10 3.761127018e-10 3.065538603e-10 2.605360531e-10 2.16352092e-10 2.014114924e-10 2.597128518e-10 1.825880425e-10 3.640081998e-10 2.315365194e-10 3.69408754e-10 2.362071935e-10 2.311602975e-10 2.226416964e-10 3.131993753e-10 3.896086047e-10 2.871377734e-10 2.694731708e-10 3.417964197e-10 3.601694524e-10 4.968772701e-10 3.070030685e-10 3.320310889e-10 4.234251846e-10 2.970808101e-10 1.627254919e-10 2.431025135e-10 2.74811178e-10 2.571372017e-10 4.272865815e-10 3.366754244e-10 3.266658112e-10 4.647574399e-10 4.102489427e-10 5.089332408e-10 2.998973016e-10 3.076297014e-10 2.741515233e-10 6.141208992e-10 2.524014191e-10 3.082067493e-10 3.368944547e-10 2.441779732e-10 4.125167033e-10 4.136766946e-10 3.251045963e-10 2.643006693e-10 2.621007378e-10 2.469597262e-10 2.932210224e-10 3.530890138e-10 1.459083739e-10 2.627617294e-10 2.55972611e-10 1.761821183e-10 4.600609453e-10 5.598435256e-10 4.449570172e-10 5.607358965e-10 5.776902016e-10 6.594161141e-10 7.867563847e-10 4.968808498e-10 6.918143548e-10 4.807950101e-10 4.392535055e-10 6.433454956e-10 5.2075439e-10 5.529457097e-10 5.185584681e-10 5.634464417e-10 4.89348082e-10 4.805320073e-10 4.756454882e-10 3.556040155e-10 4.001726202e-10 3.816179122e-10 4.123823656e-10 2.692168676e-10 2.736890965e-10 1.5595733e-10 3.39085935e-18 1.277201162e-10 1.751995249e-10 1.065855939e-10 2.888583638e-10 1.575041711e-10 3.592101272e-10 5.020585839e-10 5.356324697e-10 4.960203437e-10 3.987746526e-10 4.372408133e-10 5.366482565e-10 4.078790195e-10 5.708296048e-10 5.862387703e-10 4.90774299e-10 5.554495285e-10 5.218123189e-10 5.098164965e-10 4.782488619e-10 5.383046673e-10 4.101170557e-10 4.577356249e-10 4.478307984e-10 4.823124475e-10 4.435209776e-10 5.592873412e-10 5.965773129e-10 4.707374891e-10 4.447491124e-10 4.91528356e-10 4.553864823e-10 3.952843489e-10 3.978749304e-10 2.342858911e-10 1.82946901e-10 6.486711332e-11 1.435502167e-10 1.108611443e-10 9.032578909e-11 2.340485207e-10 2.737274567e-10 3.670012859e-10 4.051407557e-10 3.591465908e-10 3.028769825e-10 3.735548351e-10 5.128796533e-10 4.307862612e-10 3.709018814e-10 3.983006067e-10 6.448918078e-10 5.159260772e-10 5.999331987e-10 5.058867005e-10 7.393250561e-10 6.307622069e-10 4.437050879e-10 6.584162995e-10 6.823800585e-10 7.092498768e-10 5.676636111e-10 7.789621309e-10 9.620805029e-10 6.650274278e-10 2.963827678e-10 2.747004986e-10 1.810917822e-10 1.765045915e-10 1.549927515e-10 4.41840188e-10 3.013994953e-10 2.561005514e-10 4.798582242e-10 4.089935594e-10 3.875024425e-10 5.388725051e-10 3.213613492e-10 3.742874458e-10 3.721008228e-10 3.134873369e-10 4.692490341e-10 5.024659012e-10 3.318980079e-10 3.601775872e-10 5.514755387e-10 4.836415598e-10 4.270176678e-10 4.793537078e-10 3.648616262e-10 3.121233846e-10 4.121168473e-10 1.840736103e-10 1.88879758e-10 2.648769481e-10 4.083105114e-10 2.882465601e-10 2.692631267e-10 4.133645902e-10 4.05075872e-10 3.753176264e-10 2.052576445e-10 2.292037874e-10 1.769856978e-10 2.089816484e-10 3.04366148e-10 2.271812909e-10 3.644698801e-10 2.188979477e-10 3.129745777e-10 3.53695822e-10 3.16264947e-10 3.270023999e-10 1.589543864e-10 3.74330801e-10 3.09033676e-10 2.947667756e-10 1.389671295e-10 5.000052878e-10 2.908831443e-10 2.397600714e-10 3.24350839e-10 1.947490096e-10 3.010970938e-10 3.649408061e-10 2.113827268e-10 1.473217347e-10 2.04173681e-10 2.512573723e-10 1.892245284e-10 4.266559903e-10 2.813386448e-10 3.161365122e-10 2.126322641e-10 2.8428872e-10 2.764987269e-10 1.394618129e-10 1.503123039e-10 1.15463953e-10 2.191192008e-10 2.325265922e-10 1.78602662e-10 9.95291649e-11 1.758232083e-10 1.321975945e-10 1.490723287e-10 1.047634287e-10 2.555917076e-10 1.388970769e-10 6.939962326e-11 3.097058496e-10 1.483554362e-10 1.248501275e-10 8.88424004e-11 2.691535148e-10 2.109894508e-10 1.504814117e-10 2.17085143e-10 4.603742569e-11 2.15085112e-10 1.877099716e-10 2.529633619e-10 4.14124149e-10 3.130753121e-10 2.008248144e-10 1.811738345e-10 2.55673795e-10 1.852431935e-10 1.38382873e-10 +3.63868672e-10 1.33051533e-10 1.10415966e-10 7.810872686e-11 2.660619893e-10 1.814441088e-10 3.850865754e-10 2.664821299e-10 1.424758447e-10 4.374460719e-10 1.730768015e-10 2.306654409e-10 8.397828802e-11 7.144925093e-11 1.34352805e-10 1.45527101e-10 6.762371674e-11 1.924012561e-10 4.179878096e-10 1.244683604e-10 2.194670912e-10 1.762001842e-10 2.459914308e-10 3.818453734e-10 2.671873371e-10 2.263848367e-10 1.10952212e-10 1.693106478e-10 1.465806198e-10 2.912994521e-10 3.340146685e-10 2.269156708e-10 3.637980633e-10 1.872096272e-10 1.899175578e-10 3.438550439e-10 2.804943092e-10 3.963290252e-10 4.341823545e-10 5.125602836e-10 5.75829559e-10 4.650572886e-10 4.483769289e-10 2.756265756e-10 4.506625551e-10 2.89992088e-10 2.459965272e-10 2.876047329e-10 2.480745206e-10 2.485765743e-10 2.372200715e-10 2.608753827e-10 1.872402268e-10 1.553162587e-10 2.193124357e-10 3.827094644e-10 1.005395965e-10 2.531116955e-10 3.862232844e-10 2.10727217e-10 1.804240551e-10 3.836802877e-10 2.694621169e-10 2.779777425e-10 2.217382729e-10 2.294711759e-10 3.073005197e-10 1.848069539e-10 2.456906404e-10 1.935575575e-10 1.619537749e-10 3.009837397e-10 4.13890812e-10 2.945357331e-10 2.771488692e-10 3.266926827e-10 3.020322899e-10 3.481134167e-10 4.623393398e-10 3.267171429e-10 3.321569913e-10 4.847770852e-10 4.212357757e-10 3.091054398e-10 5.89769387e-10 4.350400643e-10 4.391834392e-10 5.483991477e-10 3.441385872e-10 4.320593779e-10 3.996801387e-10 3.47609725e-10 2.402394308e-10 3.15761327e-10 2.384793766e-10 2.185995838e-10 2.708283112e-10 2.323936534e-10 2.286931638e-10 1.476032459e-10 1.590041979e-10 2.045186743e-10 2.730073332e-10 2.214869628e-10 5.053260802e-10 4.869539693e-10 5.208512351e-10 5.84533701e-10 4.931867829e-10 6.751375205e-10 6.55889463e-10 6.183860037e-10 9.527514618e-10 5.480496944e-10 6.089948956e-10 4.778259544e-10 7.690651188e-10 6.520493746e-10 6.011198322e-10 6.375407575e-10 3.970640832e-10 4.129161787e-10 2.888532629e-10 4.252635216e-10 3.243449659e-10 4.307610456e-10 2.850896506e-10 3.167841476e-10 2.34365159e-10 1.889099917e-10 0 1.688856871e-10 1.247671779e-10 8.999879217e-19 7.466115303e-11 1.966112547e-10 3.062903969e-10 4.197787208e-10 3.731707818e-10 4.606784931e-10 5.025152296e-10 5.208910828e-10 4.593086581e-10 5.332063263e-10 4.526368525e-10 5.158013017e-10 5.450636925e-10 6.401072304e-10 4.818532952e-10 4.518554936e-10 5.558625802e-10 4.707910634e-10 6.004947618e-10 5.124196874e-10 4.628504866e-10 4.791057663e-10 5.071930022e-10 5.315969463e-10 5.44766145e-10 4.622761573e-10 5.141355521e-10 5.018167696e-10 4.696893928e-10 3.081617346e-10 8.150325524e-11 8.561627089e-11 1.534981212e-10 1.430363685e-10 1.785198016e-15 1.36996064e-10 6.790939044e-11 2.957605367e-10 3.114662918e-10 3.806287574e-10 4.329762605e-10 3.502707459e-10 4.895952242e-10 4.329361693e-10 4.027106877e-10 3.952163049e-10 4.256376655e-10 3.76026054e-10 4.672310468e-10 6.74007511e-10 7.467186382e-10 6.186853761e-10 3.997389256e-10 5.379266253e-10 6.734326625e-10 3.982659252e-10 8.656609333e-10 3.508643416e-10 4.145024285e-10 6.668031442e-10 7.230492353e-10 5.486833073e-10 1.680171746e-10 2.148368081e-10 1.854935248e-10 1.725858397e-10 2.170930036e-10 1.930550981e-10 3.30562357e-10 4.04388884e-10 3.019145375e-10 2.540934285e-10 3.181274484e-10 4.347332749e-10 3.993620156e-10 3.497826995e-10 3.927115849e-10 5.135465275e-10 4.177345961e-10 4.237973641e-10 2.502811369e-10 4.046937424e-10 5.058728921e-10 5.33389851e-10 3.538612261e-10 3.482041762e-10 3.716447856e-10 2.731233911e-10 1.446147083e-10 2.66588176e-10 3.615529628e-10 3.481930493e-10 2.785086767e-10 2.831166298e-10 2.989538111e-10 2.385745681e-10 1.885399497e-10 3.017048952e-10 3.36051616e-10 2.468609169e-10 3.539536749e-10 2.761807691e-10 2.59824124e-10 2.795783231e-10 4.161581507e-10 2.90469292e-10 3.744966042e-10 3.105735189e-10 3.21198189e-10 1.471009118e-10 2.816327134e-10 3.275281156e-10 2.116017033e-10 4.302411073e-10 2.467516273e-10 3.043454052e-10 2.87884182e-10 3.124351343e-10 4.128551107e-10 2.217763463e-10 2.219742184e-10 2.791632443e-10 4.054973688e-10 2.131857928e-10 2.713737284e-10 3.467485283e-10 1.889438382e-10 3.76297492e-10 3.223417798e-10 2.899208568e-10 2.468391705e-10 1.809720541e-10 1.501967222e-10 1.092277947e-10 1.300483272e-10 1.489651117e-10 1.284341456e-10 2.564459115e-10 2.23136227e-10 1.622664419e-10 3.399870575e-10 1.106882117e-10 1.369479111e-10 2.975490435e-10 1.820030188e-10 2.582633661e-10 3.106914476e-10 2.180231691e-10 7.281625868e-11 9.725940772e-11 3.521106597e-10 3.384286687e-10 1.84874413e-10 3.288906059e-10 1.882757537e-10 2.150392605e-10 2.674338052e-10 2.286231905e-10 2.789249865e-10 1.631284739e-10 1.816933356e-10 1.08849958e-10 1.643060025e-10 1.978998986e-10 1.323998382e-10 9.767119103e-11 +9.055283314e-11 2.061693632e-10 1.533878798e-10 1.58946536e-10 1.0945711e-10 1.724762766e-10 3.263380839e-10 2.175161789e-10 3.645992667e-10 9.381032627e-11 1.454576646e-10 1.343596051e-10 1.311783666e-10 8.002863376e-11 1.309711644e-10 1.625130491e-10 1.61386887e-10 2.958403572e-10 9.717140286e-11 2.534740856e-10 1.66534884e-10 2.388097016e-10 2.972954137e-10 2.792365927e-10 2.40411066e-10 1.863242983e-10 8.980760366e-11 1.063480477e-10 1.090912632e-10 1.651138229e-10 7.456138885e-11 1.866739769e-10 1.742907333e-10 2.929206666e-10 1.904704046e-10 2.352516542e-10 2.218859109e-10 3.885026083e-10 3.131382782e-10 3.407009821e-10 3.570248094e-10 2.907244296e-10 3.298092066e-10 2.200470945e-10 4.019551358e-10 3.909216025e-10 2.268202635e-10 3.499833773e-10 1.783538302e-10 1.654019242e-10 2.70547326e-10 2.948383993e-10 2.632447915e-10 2.02806592e-10 2.235023319e-10 3.283350792e-10 2.757843834e-10 1.875015413e-10 1.819461619e-10 3.971149884e-10 3.700665552e-10 2.442481733e-10 1.540770988e-10 4.304613881e-10 1.516368847e-10 2.736169426e-10 2.454877339e-10 2.927108618e-10 2.779815646e-10 3.120145246e-10 3.08721234e-10 2.949217856e-10 3.909207924e-10 2.229520316e-10 2.594422956e-10 2.56986838e-10 2.590381533e-10 2.556360202e-10 4.449563359e-10 2.447536091e-10 1.631811156e-10 5.286463206e-10 4.357528035e-10 4.32393834e-10 2.961633627e-10 4.510445466e-10 3.447353078e-10 4.866788978e-10 4.466399092e-10 5.573700683e-10 3.181938402e-10 3.353342109e-10 3.455235916e-10 4.111785249e-10 4.046563594e-10 3.260512275e-10 3.719697545e-10 3.08312197e-10 2.165066052e-10 2.665038106e-10 2.94671506e-10 1.643426529e-10 2.411971005e-10 3.044600127e-10 5.797471043e-10 3.905236745e-10 5.419527597e-10 5.44465183e-10 4.336969188e-10 4.40087365e-10 5.111617542e-10 7.314137477e-10 5.764311411e-10 6.645780972e-10 5.733763087e-10 7.869094765e-10 6.213034707e-10 6.698771711e-10 5.242735248e-10 3.918876993e-10 3.847776675e-10 4.50421819e-10 4.474150347e-10 3.671953421e-10 3.722075194e-10 4.476655052e-10 4.79951758e-10 4.178064744e-10 3.161910095e-10 1.697231354e-10 1.21920475e-10 2.13701477e-10 0 1.346890672e-10 2.010601511e-10 2.082238726e-10 1.029536048e-10 1.98199051e-10 3.025500028e-10 2.585431053e-10 3.751059703e-10 4.963060313e-10 5.935737655e-10 5.173464924e-10 4.573842837e-10 3.867234478e-10 4.388221185e-10 4.887110055e-10 4.409910487e-10 4.901418068e-10 5.46873221e-10 4.226680096e-10 4.305367999e-10 3.442483083e-10 3.769813218e-10 5.405805318e-10 4.520248967e-10 4.742422591e-10 5.27775681e-10 4.711750947e-10 3.32223578e-10 2.726161624e-10 1.982930373e-10 3.067319801e-10 1.339829094e-10 9.052381587e-11 1.032895565e-10 1.731037989e-10 9.633944332e-11 1.273493318e-10 1.896302565e-10 2.851781598e-10 3.810929291e-10 2.580526587e-10 4.133410425e-10 5.005229856e-10 4.240374957e-10 4.750432305e-10 4.458991567e-10 4.55167514e-10 6.846921038e-10 6.67507813e-10 8.088577699e-10 7.445927869e-10 6.128394987e-10 5.689969737e-10 7.87085284e-10 5.689530353e-10 5.286291611e-10 6.277700183e-10 7.305566194e-10 7.635452969e-10 6.793009083e-10 4.356953617e-10 6.975250018e-10 4.211682263e-10 2.127779063e-10 2.078799393e-10 2.089271094e-10 1.910685183e-10 3.026177679e-10 2.749648008e-10 3.330983029e-10 3.3171748e-10 3.510313878e-10 3.126174082e-10 4.741807931e-10 4.032194625e-10 2.757087962e-10 2.949923417e-10 5.18263311e-10 5.288444482e-10 3.640844228e-10 3.567164397e-10 5.057817532e-10 4.6819093e-10 4.841395327e-10 3.854131771e-10 2.693295509e-10 4.827512219e-10 2.961055872e-10 4.494901193e-10 2.350541007e-10 3.603783085e-10 1.825660735e-10 2.980713321e-10 2.8613977e-10 2.85538953e-10 3.969055956e-10 2.418913771e-10 2.644519292e-10 3.56070874e-10 1.703055685e-10 3.188001159e-10 2.102544861e-10 2.655459382e-10 2.212388595e-10 3.437425864e-10 3.45139223e-10 3.142204834e-10 4.160101752e-10 2.853328726e-10 2.649004976e-10 3.760883545e-10 2.325906932e-10 2.121149619e-10 2.138993029e-10 2.949925998e-10 2.453958979e-10 3.942178969e-10 4.186239249e-10 2.133201736e-10 3.848462158e-10 4.611727518e-10 2.371466899e-10 2.465008095e-10 1.774997063e-10 2.264162661e-10 2.299485447e-10 2.377212008e-10 2.535472941e-10 4.101828376e-10 3.814915329e-10 2.345612331e-10 3.534449483e-10 1.184724248e-10 1.179682263e-10 1.422153423e-10 4.826268778e-10 1.683436473e-10 2.559855727e-10 1.336074429e-10 1.106920759e-10 9.434278665e-11 1.078068306e-10 2.070276495e-10 9.412321887e-11 8.663066759e-11 1.69252735e-10 2.683904702e-10 1.428861143e-10 8.091469933e-11 1.554093553e-10 1.043780718e-10 2.271962705e-10 1.57342213e-10 1.349990754e-10 9.281730097e-11 1.378774585e-10 1.375470726e-10 2.416733984e-10 1.151105098e-10 1.786451716e-10 2.074383092e-10 1.942566347e-10 2.391648924e-10 1.420243525e-10 4.48006176e-10 2.308111333e-10 1.582632281e-10 +2.964944741e-11 1.448887611e-10 7.637648871e-11 1.559943899e-10 1.7956449e-10 4.43083675e-10 3.285446183e-10 1.527826112e-10 2.474712414e-10 1.944776274e-10 2.582584779e-10 1.771939288e-10 2.104160094e-10 1.97950054e-10 2.852871002e-10 2.80848133e-10 1.671854207e-10 1.180726418e-10 1.045960046e-10 1.367964446e-10 9.395835909e-11 1.139846633e-10 1.279163627e-10 1.267525675e-10 3.263968984e-11 4.674715849e-10 4.772399885e-10 1.897225528e-10 6.931227657e-11 1.802048504e-10 2.425952598e-10 1.620470971e-10 1.355293489e-10 1.075179044e-10 2.924781901e-10 1.488865595e-10 1.810908248e-10 4.105823171e-10 4.134271867e-10 3.930054594e-10 3.325922129e-10 3.814363837e-10 1.520795578e-10 3.623670465e-10 3.026873524e-10 2.251335399e-10 2.160741405e-10 3.544561189e-10 3.61389262e-10 2.419343314e-10 1.654422523e-10 3.619791996e-10 1.91142602e-10 2.620688294e-10 3.141648441e-10 1.609352278e-10 2.647086818e-10 3.970430156e-10 1.988277338e-10 2.086564317e-10 2.706555489e-10 3.537957445e-10 2.359385364e-10 1.684158654e-10 4.291109479e-10 1.348961204e-10 3.688313267e-10 2.849592333e-10 5.517831829e-10 2.951149194e-10 1.437917653e-10 4.222111865e-10 3.164036585e-10 2.117154563e-10 2.084901258e-10 4.33726462e-10 3.175685568e-10 2.648113436e-10 1.822681778e-10 4.273039213e-10 3.663822366e-10 3.344270406e-10 4.110370424e-10 3.420521195e-10 2.872912432e-10 2.678054393e-10 4.463174358e-10 3.290779084e-10 4.098724949e-10 2.625551156e-10 5.379746319e-10 4.210677385e-10 3.839176402e-10 3.773424384e-10 4.275012273e-10 4.480362684e-10 3.231721987e-10 2.470626636e-10 2.042305611e-10 2.333512862e-10 1.319585191e-10 2.170926501e-10 2.495891282e-10 2.644945386e-10 6.266975633e-10 6.068533949e-10 7.251590703e-10 4.834552558e-10 7.904704257e-10 6.866623346e-10 6.661431282e-10 5.895986156e-10 7.386890551e-10 5.299200584e-10 5.814688237e-10 8.647436048e-10 5.911120271e-10 7.610373787e-10 5.268041497e-10 3.578653529e-10 3.266834432e-10 6.431202629e-10 2.992097309e-10 4.465659943e-10 4.761710986e-10 3.189356493e-10 3.898529173e-10 3.575052007e-10 4.294397686e-10 2.755591918e-10 2.161871212e-10 2.53244992e-10 1.38475676e-10 1.848898206e-10 1.162164215e-10 2.938711647e-10 1.431297597e-10 2.91452265e-10 4.05238104e-10 3.272007453e-10 3.214721658e-10 2.538091406e-10 4.382767043e-10 3.875446546e-10 4.25286359e-10 4.754441037e-10 4.065660585e-10 3.932088556e-10 4.60763142e-10 6.627069763e-10 5.676504896e-10 5.156095502e-10 4.590637549e-10 3.956902249e-10 3.727631296e-10 4.042892932e-10 5.104868942e-10 4.307108275e-10 4.042165325e-10 3.742058669e-10 3.000231141e-10 3.290414358e-10 2.670579874e-10 2.529992903e-10 2.515067865e-10 2.900458882e-10 5.162852448e-11 1.904482305e-10 1.139213886e-10 1.762985797e-10 2.291973645e-10 4.052903851e-10 4.301789049e-10 4.344077822e-10 3.948230692e-10 3.081991901e-10 3.735496914e-10 3.964633836e-10 5.422511396e-10 6.191994242e-10 3.731656508e-10 6.662224182e-10 5.649168372e-10 5.139726775e-10 7.296547577e-10 5.983351898e-10 5.306649382e-10 6.2477705e-10 5.491640313e-10 7.421580676e-10 5.415529386e-10 4.332248907e-10 6.104439407e-10 6.613032938e-10 8.38933836e-10 2.658508213e-10 2.138312264e-10 2.388418681e-10 2.78837813e-10 1.690546706e-10 2.97655215e-10 2.950847014e-10 3.575475556e-10 3.069925651e-10 3.583300686e-10 3.221975274e-10 2.770200792e-10 4.272536565e-10 3.162453471e-10 3.418979665e-10 3.961640411e-10 3.072070668e-10 4.789930136e-10 4.465966439e-10 4.087212099e-10 3.261273853e-10 5.587302919e-10 3.898044601e-10 3.259379195e-10 4.398277889e-10 2.901783679e-10 2.615889114e-10 2.839047774e-10 3.144511105e-10 2.142727329e-10 1.584679667e-10 1.45167536e-10 2.784193376e-10 2.402862805e-10 2.061524783e-10 3.215281739e-10 3.016881182e-10 3.017429063e-10 1.676528473e-10 3.048063562e-10 3.430662559e-10 2.257568499e-10 4.326307911e-10 3.096853479e-10 2.91010725e-10 2.011081666e-10 1.754182465e-10 1.706018374e-10 1.27331064e-10 2.156600834e-10 2.026348591e-10 3.028879769e-10 3.987071979e-10 2.112281793e-10 3.286511796e-10 5.122661627e-10 2.453587278e-10 2.166294229e-10 1.629596516e-10 1.397702218e-10 1.971906887e-10 1.779303789e-10 1.344543476e-10 2.960929438e-10 4.421371357e-10 3.972833688e-10 1.791230175e-10 2.220324829e-10 2.071822093e-10 3.083236699e-10 2.864016474e-10 2.086947141e-10 1.880354236e-10 4.058379149e-10 3.029163383e-10 7.228251252e-11 1.026655844e-10 1.007603294e-10 5.873175872e-11 5.821882564e-11 1.22078012e-10 4.104832971e-10 2.551658823e-10 2.962259206e-10 1.824510083e-10 1.20212759e-10 1.686291872e-10 5.23797543e-11 1.139216104e-10 8.359640852e-11 2.178714887e-10 1.444334417e-10 7.14733441e-11 1.391160924e-10 2.197574507e-10 2.121895144e-10 1.903543694e-10 5.410247952e-11 1.658096435e-10 2.490748314e-10 1.164815956e-10 3.759812124e-10 1.177128446e-10 1.928041179e-10 2.663223931e-10 +4.746618254e-10 7.133843816e-11 2.505363246e-10 2.60109628e-10 2.191643654e-10 1.144221151e-10 2.620963452e-10 4.089996195e-10 1.931114498e-10 2.117268121e-10 2.528310115e-10 1.666477116e-10 1.78070641e-10 4.080336556e-10 5.974672787e-11 2.24160605e-10 4.487367335e-11 2.761543491e-10 1.473812475e-10 2.573311537e-10 6.572951069e-11 2.971407819e-10 1.608383074e-10 2.126862791e-10 1.49157613e-10 1.47512828e-10 2.363910305e-10 1.076771965e-10 1.621347882e-10 1.85809891e-10 2.275846943e-10 1.746371642e-10 1.013588008e-10 3.350560109e-10 2.345749093e-10 4.786592692e-10 2.421311063e-10 2.680324091e-10 3.705997007e-10 1.982151037e-10 4.116259747e-10 2.361415155e-10 2.719710443e-10 2.071487864e-10 9.524933186e-11 2.979006023e-10 2.004980357e-10 1.230012066e-10 2.984084373e-10 1.317779391e-10 2.661241454e-10 1.564270458e-10 1.527365615e-10 3.053480042e-10 2.837590656e-10 2.000222903e-10 1.560378447e-10 1.883890448e-10 3.25076916e-10 3.075362408e-10 2.510890918e-10 3.266411385e-10 1.532182759e-10 2.629629182e-10 2.148968416e-10 2.367853966e-10 2.608790923e-10 3.056083416e-10 3.274749698e-10 2.976926219e-10 3.629008895e-10 5.596921589e-10 1.843607584e-10 1.906128868e-10 2.53551947e-10 2.461967683e-10 3.903307521e-10 1.542075388e-10 2.207568415e-10 3.676421685e-10 3.298109658e-10 4.19157445e-10 1.956615101e-10 3.278391536e-10 3.533560145e-10 3.532939923e-10 4.464327034e-10 4.768697912e-10 2.954883466e-10 4.277303146e-10 4.443202384e-10 3.910733461e-10 1.914269621e-10 3.608930186e-10 4.116760102e-10 2.787799964e-10 2.35291877e-10 2.643254044e-10 3.430216495e-10 2.1433473e-10 1.659632732e-10 1.114121604e-10 2.104195954e-10 2.209922467e-10 5.65519934e-10 5.532903479e-10 5.431005955e-10 5.960463481e-10 4.798509489e-10 4.909291854e-10 7.378999191e-10 4.948996521e-10 4.428593993e-10 5.416788423e-10 5.763416723e-10 5.722047689e-10 5.313935951e-10 6.919470574e-10 5.378665044e-10 5.004563205e-10 4.329045282e-10 3.899661623e-10 5.006245379e-10 4.129733729e-10 4.931328693e-10 2.731761937e-10 3.27452038e-10 3.965167425e-10 4.0028949e-10 3.539257295e-10 3.203276685e-10 1.751071763e-10 1.253599746e-10 8.533432791e-11 8.639927641e-11 1.046919289e-10 1.066428736e-10 1.426711231e-10 1.129819967e-15 5.060145081e-10 2.764840859e-10 4.297078257e-10 3.34624986e-10 3.717772629e-10 3.591987593e-10 5.29237132e-10 5.47892952e-10 5.312858536e-10 4.99794901e-10 4.156862498e-10 5.305590341e-10 4.429694577e-10 4.331692661e-10 3.585910742e-10 3.875247286e-10 4.038606258e-10 5.195927657e-10 3.871109876e-10 3.373660256e-10 3.48403848e-10 2.373219431e-10 4.453839585e-19 1.854442537e-10 1.078498699e-10 1.700151773e-10 2.339158645e-12 0 8.265582229e-11 1.708622563e-10 2.566653912e-10 2.713610835e-10 3.920456737e-10 3.534717779e-10 3.493411827e-10 4.972272575e-10 4.172987123e-10 3.683898764e-10 3.991636944e-10 4.91758672e-10 4.992834964e-10 5.383954359e-10 6.557356978e-10 4.790359279e-10 5.876987948e-10 6.323802516e-10 8.677335501e-10 6.80518939e-10 6.051787644e-10 4.78183583e-10 5.221706722e-10 8.111090894e-10 8.09684396e-10 3.524474426e-10 8.220910208e-10 5.830138131e-10 3.894655967e-10 1.803613929e-10 1.909071471e-10 1.359728293e-10 1.684505156e-10 3.608581762e-10 3.198923843e-10 2.801357013e-10 3.196115895e-10 3.731350296e-10 3.188637631e-10 2.033248427e-10 3.873665189e-10 3.863178509e-10 3.555123581e-10 3.787256374e-10 3.744811309e-10 5.301763652e-10 4.023265927e-10 5.159470437e-10 3.908683881e-10 5.136557961e-10 3.817805366e-10 3.865875961e-10 4.509412275e-10 3.602789831e-10 5.218564111e-10 2.28131644e-10 2.384124103e-10 3.410621588e-10 2.459441401e-10 1.97532554e-10 2.139354826e-10 3.844902541e-10 2.94414571e-10 3.525188797e-10 4.272729757e-10 3.218291924e-10 4.241662935e-10 3.493945899e-10 2.697759313e-10 2.982169634e-10 2.31971794e-10 2.489082211e-10 2.509321155e-10 2.639307283e-10 3.765080714e-10 5.617510872e-10 1.960544627e-10 1.85357529e-10 3.833653344e-10 2.679709624e-10 2.275090581e-10 1.266290609e-10 2.543368642e-10 4.210458687e-10 3.42580635e-10 2.502448293e-10 3.088585206e-10 2.623314359e-10 3.229354561e-10 2.986100306e-10 3.529204812e-10 2.288296189e-10 4.00871448e-10 4.558345471e-10 1.016404415e-10 2.724762025e-10 2.276194586e-10 2.116825628e-10 2.226365703e-10 2.358281503e-10 2.587491538e-10 2.089311702e-10 1.571509051e-10 3.041541421e-10 1.506206747e-10 4.780934009e-10 1.038357193e-10 3.176552852e-10 3.312448499e-10 1.969178684e-10 1.067804158e-10 1.820461463e-10 1.362889975e-10 1.838551046e-10 4.673172265e-10 8.563413989e-11 1.269970783e-10 2.512724972e-10 1.798639559e-10 1.64391165e-10 2.082789827e-10 3.711326602e-10 1.99025607e-10 2.1265821e-10 1.239695924e-10 1.149467412e-10 2.904112385e-10 1.750336303e-10 1.429743174e-10 1.191154779e-10 1.719403875e-10 9.314770053e-11 6.105913666e-11 +2.772306801e-10 7.013412171e-11 1.125968548e-10 1.540261643e-10 2.19362642e-10 3.51370666e-10 8.193576838e-11 3.909242748e-10 1.449651891e-10 2.584203397e-10 3.218179041e-10 3.300557308e-10 1.730725966e-10 4.820037157e-10 2.447670052e-10 1.903500438e-10 1.848792129e-10 1.855085816e-10 3.826692245e-10 1.837822936e-10 1.173093234e-10 2.152482984e-10 8.977041716e-11 8.446276381e-11 1.227529699e-10 1.688391229e-10 1.089013139e-10 2.156247649e-10 1.987256433e-10 1.334143777e-10 2.737096105e-10 2.202775006e-10 3.041775089e-10 1.830339312e-10 1.412869856e-10 1.949378305e-10 5.364084339e-10 1.7119608e-10 3.438972262e-10 2.073703425e-10 4.060313561e-10 1.33724546e-10 1.957668441e-10 2.62365057e-10 3.898701892e-10 3.318360424e-10 2.668216609e-10 3.559396466e-10 2.166274396e-10 3.551076566e-10 4.073165266e-10 2.537077872e-10 2.477960169e-10 2.488253754e-10 3.169948544e-10 1.881857308e-10 2.650273533e-10 2.599177749e-10 2.017292354e-10 3.011673577e-10 1.490438909e-10 3.632546729e-10 3.338807891e-10 2.528444695e-10 2.590425882e-10 1.808774392e-10 2.640135376e-10 1.698551296e-10 4.451781295e-10 2.931489582e-10 2.000219329e-10 1.366805211e-10 3.310880003e-10 2.843706228e-10 3.009243937e-10 2.670675991e-10 2.110636079e-10 3.17412823e-10 3.414680276e-10 4.34933366e-10 3.647795056e-10 5.075916961e-10 5.578513579e-10 5.910660865e-10 4.257233415e-10 4.304514573e-10 4.835958906e-10 4.265378655e-10 3.48091221e-10 4.988958704e-10 4.326166344e-10 3.18700831e-10 3.475457585e-10 4.332510253e-10 3.369407698e-10 4.248349992e-10 2.925979249e-10 2.676825733e-10 2.69681758e-10 2.156760667e-10 1.589702929e-10 2.715970517e-10 2.048499261e-10 1.665536399e-10 2.568270201e-10 4.549021277e-10 5.075415144e-10 5.37236467e-10 5.283270555e-10 5.921381264e-10 3.794073301e-10 6.413693047e-10 5.122674531e-10 8.01453357e-10 5.483657685e-10 4.807750864e-10 5.441504217e-10 7.725567262e-10 7.343534815e-10 5.500659551e-10 5.199508144e-10 3.327339159e-10 3.584973366e-10 4.229254035e-10 5.4783103e-10 3.289693648e-10 3.43320539e-10 3.355775196e-10 3.375219471e-10 4.512532011e-10 2.400027164e-10 2.175767082e-10 1.898617956e-10 1.226770187e-10 1.133466166e-10 1.513091747e-10 6.700842095e-11 7.728349169e-11 7.412750364e-11 1.738931351e-10 4.587656608e-10 2.928585765e-10 1.976745161e-10 4.616656386e-10 3.11354306e-10 3.673026941e-10 3.791529873e-10 3.660630494e-10 3.651619088e-10 4.58086245e-10 3.610092661e-10 4.391798747e-10 5.131949925e-10 3.039325572e-10 2.535029187e-10 3.21393587e-10 3.764245878e-10 3.100699023e-10 2.442991783e-10 1.489786947e-10 1.601618409e-10 7.64246437e-11 3.601429166e-10 1.422434267e-10 2.241752709e-13 1.088690684e-10 9.986827666e-12 2.358683234e-10 1.595824932e-10 3.732224708e-10 3.615423986e-10 4.131376254e-10 4.496533106e-10 3.204970892e-10 5.50841941e-10 3.740398028e-10 3.738031708e-10 4.998206987e-10 4.642327381e-10 3.856571765e-10 5.604381841e-10 8.236241092e-10 6.507618182e-10 7.685075378e-10 4.347337726e-10 4.392479492e-10 6.439266185e-10 4.478300502e-10 6.628093213e-10 7.434089635e-10 5.411527353e-10 4.8526017e-10 6.748995228e-10 7.589427913e-10 4.707907442e-10 2.004414634e-10 2.138156316e-10 3.037270467e-10 1.021395903e-10 1.323790561e-10 2.918611343e-10 2.420398769e-10 1.888054286e-10 3.407720466e-10 4.404552202e-10 2.614879845e-10 3.471406718e-10 3.194144366e-10 4.369940782e-10 3.963908489e-10 5.258767149e-10 5.483959057e-10 3.643938934e-10 2.899237932e-10 3.419873664e-10 3.904399386e-10 5.038880063e-10 4.172286155e-10 2.808833094e-10 3.057327626e-10 4.087089514e-10 2.818999929e-10 2.220145153e-10 2.42221891e-10 1.958122792e-10 2.557906376e-10 2.579473181e-10 2.19873166e-10 3.712850039e-10 2.229497131e-10 2.704847524e-10 2.948958195e-10 2.454855669e-10 2.995917671e-10 3.448744093e-10 2.279942918e-10 1.701531719e-10 2.383760247e-10 2.45521795e-10 2.10362829e-10 1.819073896e-10 2.165200262e-10 2.056528964e-10 1.995380551e-10 2.322670036e-10 2.20325467e-10 3.779418133e-10 3.187471251e-10 3.765081963e-10 3.995535546e-10 3.136242654e-10 1.577376426e-10 1.932045385e-10 2.976865054e-10 2.184191002e-10 2.582853359e-10 1.222156322e-10 2.781240725e-10 4.713777095e-10 2.130000476e-10 3.196406576e-10 1.630202101e-10 1.811917089e-10 1.853891923e-10 1.671202625e-10 3.707285394e-10 4.585573564e-10 4.910013124e-10 2.413997295e-10 2.511016702e-10 2.475337515e-10 2.137568639e-10 1.213217775e-10 2.991862825e-10 2.053946573e-10 3.568955327e-10 8.604209512e-11 7.978026391e-11 3.493347656e-10 2.271045019e-10 1.3351353e-10 2.199327736e-10 1.266701671e-10 2.865293338e-10 1.100229905e-10 1.060881385e-10 1.718657172e-10 1.539823744e-10 1.107894384e-10 2.901399078e-10 1.901731486e-10 2.769142895e-10 2.185257301e-10 2.279719921e-10 1.441445013e-10 1.045941856e-10 1.685627947e-10 2.357158424e-10 2.296584161e-10 1.467289649e-10 +3.042217047e-10 2.395658214e-10 1.058413658e-10 1.400803106e-10 1.054945032e-10 1.055522583e-10 1.631754598e-10 1.181497675e-10 1.939210864e-10 2.269409162e-10 6.801388383e-11 1.551649223e-10 8.818818169e-11 1.506186913e-10 2.0639358e-10 2.314723396e-10 1.084330317e-10 5.690366352e-11 1.311925375e-10 2.16739279e-10 2.404199246e-10 1.93872421e-10 3.237288809e-10 1.922042135e-10 2.409834483e-10 2.326439677e-10 4.389671723e-10 9.633924208e-11 1.990323126e-10 1.056802056e-10 1.91422419e-10 1.847387222e-10 2.566558145e-10 1.269127417e-10 2.349881952e-10 3.637485709e-10 2.706245528e-10 3.116507709e-10 2.587942022e-10 2.127201322e-10 4.75501277e-10 1.552411973e-10 1.930036151e-10 3.27177374e-10 1.885449994e-10 4.304476627e-10 2.19785401e-10 3.048685751e-10 2.121681274e-10 1.913810419e-10 2.798586275e-10 3.705318241e-10 1.681623004e-10 2.775628408e-10 1.7532165e-10 2.447968413e-10 1.952171516e-10 2.752553828e-10 2.282378013e-10 1.724950278e-10 1.890896346e-10 3.784811477e-10 2.714603327e-10 3.884617472e-10 2.343633628e-10 3.404180974e-10 2.65294609e-10 2.684043381e-10 3.907004381e-10 3.49310315e-10 1.425596915e-10 5.181905653e-10 2.244663204e-10 3.50198543e-10 2.624348808e-10 4.142407596e-10 3.256789789e-10 2.31850297e-10 4.72121376e-10 4.124474774e-10 4.903664062e-10 6.2650253e-10 4.605699685e-10 5.423789563e-10 4.439449016e-10 5.224678298e-10 4.554498275e-10 4.798673907e-10 3.038230542e-10 4.867073122e-10 2.818864624e-10 3.775737952e-10 3.886650147e-10 5.021007202e-10 3.368180025e-10 2.074926646e-10 2.864977898e-10 1.778343078e-10 2.472524358e-10 1.663798792e-10 1.522353131e-10 2.33870536e-10 2.342180989e-10 1.87008291e-10 1.979751139e-10 2.281422787e-10 6.395269892e-10 6.002149972e-10 6.02444911e-10 6.191442825e-10 7.836775393e-10 4.719584389e-10 5.90555153e-10 7.802103314e-10 5.720108602e-10 4.316234615e-10 6.500303272e-10 5.275403506e-10 6.124791981e-10 5.855902353e-10 6.099738536e-10 4.438504137e-10 3.445590282e-10 4.11780761e-10 3.753108808e-10 4.252219178e-10 3.314266912e-10 3.470860584e-10 2.729381471e-10 3.529642655e-10 4.003138468e-10 3.32075476e-10 1.920869416e-10 2.123086818e-10 2.854597684e-10 6.224581205e-11 1.338190342e-10 6.212980347e-11 8.889545976e-11 1.302876328e-10 1.115804638e-10 1.057384624e-10 1.778526229e-10 3.523248464e-12 2.831171409e-10 2.11200338e-10 4.002344925e-10 3.272553334e-10 3.309158425e-10 4.644929887e-10 3.92869675e-10 3.141921982e-10 1.247098079e-10 2.639647081e-10 3.840514886e-10 2.997102342e-10 3.175644968e-10 1.958773327e-10 2.077742737e-10 8.716597637e-11 8.252628095e-11 9.174494692e-11 1.579439342e-10 1.19983271e-10 8.105405615e-11 1.558658929e-10 2.677239621e-13 1.972467811e-10 3.864058879e-10 3.009001793e-10 3.024967298e-10 3.456634648e-10 3.131970109e-10 3.52247233e-10 3.117854729e-10 4.47306865e-10 4.377341064e-10 4.273627832e-10 5.175519896e-10 3.922883582e-10 5.512804368e-10 6.288464097e-10 5.282688075e-10 5.182731808e-10 6.239102656e-10 4.987321262e-10 4.317475788e-10 5.20846782e-10 5.700133938e-10 4.439255774e-10 6.915884145e-10 4.193067609e-10 5.932568802e-10 4.686829045e-10 1.847389949e-10 1.958869008e-10 2.17077852e-10 1.26383062e-10 2.145589878e-10 2.779271756e-10 2.261790137e-10 2.602931006e-10 2.025902018e-10 3.991226519e-10 3.475214564e-10 3.363530619e-10 3.597446504e-10 3.992154318e-10 4.783824895e-10 4.335946503e-10 4.645835634e-10 3.532580185e-10 2.112914616e-10 3.449786558e-10 3.798145325e-10 5.077009965e-10 2.928052023e-10 5.356332468e-10 4.744295854e-10 3.984925565e-10 2.573736648e-10 2.098436152e-10 8.607932828e-11 3.033315778e-10 2.010314773e-10 2.037114144e-10 3.042703767e-10 3.256294756e-10 3.555290524e-10 3.147094985e-10 3.462130273e-10 3.372974885e-10 2.388540059e-10 3.06886597e-10 3.412557176e-10 3.307071388e-10 2.533494705e-10 2.767050099e-10 2.437039093e-10 2.639665276e-10 3.469689054e-10 2.301783712e-10 5.055771447e-10 3.329595091e-10 2.009935163e-10 1.82435886e-10 3.362612048e-10 3.995868694e-10 4.436296115e-10 2.818103147e-10 1.325215379e-10 4.453706623e-10 1.923462343e-10 3.128499062e-10 3.332086952e-10 4.716307468e-10 2.682151594e-10 3.19114627e-10 3.090890328e-10 3.669651288e-10 3.256222111e-10 4.055866556e-10 1.82307542e-10 4.838255541e-10 4.66409311e-10 2.84720717e-10 3.228948762e-10 1.253458676e-10 3.345657488e-10 3.3528453e-10 3.12044097e-10 2.457132686e-10 1.057571723e-10 1.372724955e-10 1.080844995e-10 2.488913462e-10 1.560741709e-10 8.438424603e-11 1.808401355e-10 9.258203602e-11 1.025190816e-10 1.249260663e-10 3.915689512e-10 4.253075708e-10 1.359524818e-10 3.198753904e-10 3.108923459e-10 1.53268301e-10 1.242822325e-10 1.332655617e-10 1.551532064e-10 1.090568773e-10 1.822013164e-10 1.113665364e-10 1.336571863e-10 1.303784266e-10 1.939696903e-10 2.550948102e-10 2.31528037e-10 3.504059418e-10 +1.503799401e-10 1.492134075e-10 1.962011817e-10 2.341872885e-10 3.71066885e-10 1.134702965e-10 5.551632816e-11 2.202436856e-10 2.120185403e-10 2.823958419e-10 1.826037667e-10 1.224944615e-10 1.195220877e-10 2.124360521e-10 1.599238109e-10 2.735367691e-10 2.03491178e-10 1.148032089e-10 1.079630188e-10 1.363174083e-10 3.050445134e-10 1.187777206e-10 3.117654538e-10 1.808882874e-10 2.044141602e-10 2.22116871e-10 2.96787619e-10 4.948312752e-10 1.762584434e-10 1.975147427e-10 2.900396424e-10 2.634960757e-10 2.080851905e-10 8.300507385e-11 1.849569301e-10 2.750703624e-10 1.857737725e-10 5.200451673e-10 2.411716087e-10 2.372951886e-10 1.632932505e-10 2.177976737e-10 2.885613345e-10 2.286848449e-10 3.143378766e-10 2.093423231e-10 2.693826352e-10 2.087072183e-10 4.011237819e-10 1.351895892e-10 2.529649016e-10 2.776696311e-10 3.317547509e-10 2.829024193e-10 3.111540116e-10 1.654881527e-10 1.67531257e-10 3.249809225e-10 4.012338984e-10 2.682352878e-10 3.668562012e-10 1.819518966e-10 3.178099408e-10 1.775575076e-10 2.553595042e-10 3.244264725e-10 2.746981649e-10 3.532744017e-10 2.003479748e-10 2.864981175e-10 3.18275624e-10 3.244236946e-10 3.1726896e-10 2.173213567e-10 3.167745336e-10 2.304529844e-10 1.580491308e-10 2.228379952e-10 4.030918291e-10 2.726539726e-10 4.400398446e-10 2.833404438e-10 3.364267712e-10 5.518462236e-10 2.910335422e-10 5.424323246e-10 4.376171441e-10 4.944590258e-10 2.90768703e-10 3.972738483e-10 4.223887235e-10 3.197048666e-10 3.654008094e-10 3.199938662e-10 3.644500327e-10 5.341567222e-10 2.924123746e-10 2.894776867e-10 2.296870562e-10 1.767161265e-10 8.330902983e-11 1.965980595e-10 2.515128806e-10 2.272671495e-10 2.408445776e-10 2.227692786e-10 4.791663335e-10 3.72154375e-10 5.888165353e-10 5.732156684e-10 6.204897414e-10 7.504379277e-10 5.576584234e-10 8.434784839e-10 5.204117196e-10 5.179801038e-10 5.345097639e-10 6.047559737e-10 5.278777265e-10 4.620508816e-10 5.696736581e-10 5.084225454e-10 3.831225837e-10 4.107770559e-10 6.26782091e-10 4.404331201e-10 4.590933763e-10 3.683675997e-10 2.991446115e-10 5.139656343e-10 2.968892113e-10 3.904698965e-10 3.617085079e-10 1.809970208e-10 1.190765489e-10 9.019979845e-11 6.323991862e-11 1.520558884e-10 2.454843225e-10 9.191433058e-11 1.453930422e-10 1.080439493e-10 2.361946269e-10 1.150329681e-10 1.694921423e-10 3.252706642e-10 1.335129513e-10 1.800706198e-10 3.040964709e-10 2.023679448e-10 2.477034678e-10 1.86888645e-10 4.028277221e-10 1.990463046e-10 1.857603172e-10 0 8.620638164e-11 5.336320499e-11 1.775041563e-12 9.374130112e-11 1.194268098e-10 0 1.835242719e-10 9.84396789e-11 1.186914769e-10 1.454449044e-10 2.705607996e-10 3.248286299e-10 2.420617055e-10 4.331177401e-10 4.586541042e-10 5.114951886e-10 2.211939834e-10 4.206925328e-10 3.994162795e-10 4.519598215e-10 4.010717858e-10 5.051475319e-10 5.693296405e-10 5.551641675e-10 7.821383266e-10 6.870166744e-10 5.485332633e-10 6.993566616e-10 3.240965454e-10 6.021259552e-10 6.671254803e-10 5.142523049e-10 5.92955404e-10 5.214089248e-10 6.208974853e-10 5.369579712e-10 7.359934554e-10 5.366610226e-10 1.870473063e-10 1.973106096e-10 1.862928631e-10 1.283109901e-10 1.800302561e-10 1.667252055e-10 1.728112999e-10 3.175582766e-10 3.069806073e-10 3.721010102e-10 3.867664716e-10 5.518408772e-10 2.433496651e-10 3.349414678e-10 3.775355938e-10 4.715732598e-10 3.127424575e-10 4.401195465e-10 2.257733535e-10 5.668708008e-10 5.467314733e-10 4.462791628e-10 3.532264727e-10 6.518201859e-10 4.059890778e-10 3.287759368e-10 3.651288036e-10 3.671121846e-10 2.794151012e-10 3.054717131e-10 3.404184884e-10 3.371409947e-10 3.316148215e-10 4.389139881e-10 2.286341538e-10 2.99118393e-10 4.213690902e-10 2.583376077e-10 1.690129772e-10 2.224304314e-10 3.325032838e-10 1.968503278e-10 5.04320673e-10 4.030013597e-10 2.140689329e-10 3.383169876e-10 2.781951855e-10 3.154019583e-10 3.3786909e-10 2.156876009e-10 3.314398356e-10 1.804645789e-10 3.166323562e-10 2.325449787e-10 2.72683887e-10 1.889880002e-10 1.880039836e-10 3.28287248e-10 3.74010128e-10 2.881115892e-10 3.998751135e-10 1.73490124e-10 1.872621556e-10 2.262495351e-10 1.390733314e-10 3.61478359e-10 2.813322026e-10 3.17055914e-10 4.078105584e-10 3.319880909e-10 2.479095381e-10 3.215351506e-10 2.062484044e-10 2.038755632e-10 1.611334318e-10 2.617202425e-10 1.744799523e-10 2.739408831e-10 1.706331784e-10 8.702542073e-11 1.515345513e-10 1.353443287e-10 2.184703025e-10 9.934177974e-11 1.299379576e-10 3.955689684e-10 1.686773191e-10 3.148346147e-10 1.084483065e-10 1.746698814e-10 1.853905573e-10 3.303041146e-10 1.448636995e-10 2.428100305e-10 1.626363402e-10 1.776863121e-10 1.354855266e-10 9.653336e-11 1.60694602e-10 9.775006837e-11 6.534982821e-11 1.572045234e-10 2.320065891e-10 1.816323097e-10 8.000792301e-11 2.142165749e-10 +1.00148633e-10 5.083497418e-11 2.588221647e-10 1.358440437e-10 4.582134373e-10 2.651590171e-10 2.915101079e-10 1.289810947e-10 2.10167928e-10 2.499335499e-10 2.969113556e-10 1.80348998e-10 7.218450109e-11 8.267048267e-11 3.319730844e-10 1.465594279e-10 9.940917479e-11 1.288514955e-10 2.027497781e-10 6.399969049e-11 2.687441078e-10 1.620292616e-10 1.952895074e-10 4.852338945e-10 2.425987274e-10 1.874606143e-10 6.28004285e-11 1.708050962e-10 1.897058564e-10 2.177940873e-10 2.490835363e-10 2.267459865e-10 3.089743431e-10 4.452600639e-10 2.945596301e-10 3.387361882e-10 3.645080969e-10 2.291134073e-10 3.54717316e-10 2.508366605e-10 2.177071488e-10 2.525015559e-10 4.304350272e-10 1.538549836e-10 4.347769852e-10 2.571285274e-10 3.617980176e-10 5.597976836e-10 1.622981498e-10 3.279833767e-10 3.007568261e-10 1.923553157e-10 1.331938844e-10 3.079562744e-10 3.335683621e-10 1.807948066e-10 2.808292207e-10 2.540757903e-10 2.239568157e-10 3.303039449e-10 3.034981979e-10 2.833193722e-10 1.882258524e-10 3.008897655e-10 3.157613041e-10 2.333848184e-10 1.867499204e-10 2.369016643e-10 4.476525871e-10 4.676540783e-10 2.777516783e-10 3.026123912e-10 3.194701604e-10 1.986137989e-10 4.188094351e-10 2.559678512e-10 2.628210528e-10 1.164546221e-10 3.21932949e-10 3.639658052e-10 3.746066701e-10 4.453045497e-10 3.708410436e-10 4.151077306e-10 5.702655164e-10 4.283198352e-10 2.837162185e-10 4.154252794e-10 3.781584892e-10 4.501732731e-10 3.016203844e-10 3.081647176e-10 2.882932872e-10 2.678308231e-10 3.515781197e-10 3.978813485e-10 3.688441226e-10 3.276001861e-10 2.266742675e-10 2.63051361e-10 1.652224696e-10 1.406085877e-10 1.38331609e-10 2.240694425e-10 1.571332359e-10 2.428698975e-10 2.024871174e-10 4.875777511e-10 4.452140424e-10 6.484284936e-10 5.369421199e-10 5.87700251e-10 3.791062915e-10 5.659747651e-10 5.363589269e-10 2.729051655e-10 6.255770824e-10 4.888334967e-10 5.67707894e-10 6.093230069e-10 5.161037155e-10 5.379837081e-10 5.099899916e-10 5.421183608e-10 5.136145694e-10 1.59503982e-10 4.314304763e-10 4.517462713e-10 3.516364276e-10 3.729362638e-10 5.774972277e-10 4.267345666e-10 3.273539287e-10 2.80982262e-10 2.046973911e-10 2.11374624e-10 1.186759452e-10 0 8.310838625e-28 1.338042105e-15 1.668207837e-10 1.809531574e-10 4.22455398e-11 1.520321544e-10 0 1.580722471e-10 1.012143709e-10 7.482277542e-16 1.444362421e-10 1.575744443e-10 1.462667706e-10 9.858586116e-11 1.574360561e-10 4.344711318e-13 1.354885957e-10 1.85045055e-10 6.159899476e-12 8.41256522e-11 1.057870337e-10 1.913164512e-10 1.045068697e-10 1.351525939e-10 1.8390145e-10 1.379575471e-10 2.187065698e-10 2.419171849e-10 2.865380695e-10 2.815630032e-10 3.983054956e-10 3.906869997e-10 3.011315152e-10 2.664768176e-10 5.106777543e-10 4.350361705e-10 5.068574579e-10 4.906234478e-10 4.762240183e-10 5.643226171e-10 5.1437997e-10 5.246256234e-10 6.178140806e-10 5.871701682e-10 4.92413311e-10 7.216526714e-10 5.23788973e-10 5.712480639e-10 4.093149584e-10 5.25340189e-10 4.003019836e-10 5.976457912e-10 4.68470235e-10 4.400797678e-10 4.924687468e-10 6.008341098e-10 2.043554888e-10 1.640893066e-10 3.251407211e-10 2.918637301e-10 8.649724392e-11 2.799340881e-10 1.994622562e-10 2.783321176e-10 3.368058304e-10 2.867562405e-10 3.551356962e-10 3.429180059e-10 2.825794526e-10 1.980285138e-10 4.455186747e-10 4.019261729e-10 4.630605511e-10 4.337037152e-10 3.051721743e-10 4.180888671e-10 3.857057977e-10 4.544646635e-10 5.65350468e-10 2.73553656e-10 5.389233132e-10 2.948170443e-10 3.761449034e-10 3.908341455e-10 4.615563345e-10 3.86234616e-10 2.181087991e-10 2.419050701e-10 1.424106385e-10 2.841362437e-10 3.331838058e-10 2.102024631e-10 1.489247076e-10 4.031135887e-10 2.963240403e-10 2.520083584e-10 3.185886862e-10 2.141542776e-10 2.592957046e-10 2.190639077e-10 2.651999011e-10 2.182867155e-10 2.315259663e-10 3.662643112e-10 1.717282501e-10 1.900607574e-10 1.860604659e-10 1.891853296e-10 3.743340343e-10 2.644614429e-10 1.847208644e-10 2.352977078e-10 1.913087512e-10 1.152467342e-10 3.415571542e-10 1.326082469e-10 2.027114341e-10 4.051205288e-10 3.045615558e-10 2.745299239e-10 1.587850259e-10 3.963683895e-10 3.110198201e-10 3.39528756e-10 4.237930198e-10 1.696626069e-10 3.486027114e-10 4.442704783e-10 2.23195661e-10 7.67817097e-11 1.74122407e-10 2.707060862e-10 2.281163158e-10 1.585724073e-10 2.122906233e-10 2.988844975e-10 3.48639004e-10 6.0982905e-11 2.180741326e-10 2.562302171e-10 4.962466051e-11 1.398651185e-10 9.71804718e-11 1.782340426e-10 1.353801133e-10 1.334594196e-10 4.341229322e-10 1.537134286e-10 1.368794442e-10 3.083516798e-10 1.541561278e-10 4.138229208e-10 1.759953461e-10 1.496992283e-10 1.362247598e-10 4.589099303e-11 3.563467723e-10 2.658448493e-10 4.927103092e-10 1.024128332e-10 1.307524617e-10 1.662052759e-10 +8.815589529e-11 1.344197223e-10 2.267939047e-10 1.489150476e-10 1.018741469e-10 1.84589815e-10 1.541984301e-10 7.970221187e-11 1.162192825e-10 2.354778269e-10 2.294357541e-10 9.512959486e-11 2.859575917e-10 4.016424429e-10 2.118889514e-10 3.228842759e-10 2.75654213e-10 1.366606071e-10 1.339700054e-10 2.027462944e-10 1.700896376e-10 1.42855841e-10 1.198445634e-10 1.605671485e-10 3.920287271e-10 2.205774622e-10 1.701546618e-10 1.598940851e-10 3.439311596e-10 3.734717465e-10 2.802377275e-10 2.164704485e-10 1.492604206e-10 4.319219116e-10 3.311829566e-10 1.219621985e-10 2.045369816e-10 3.197326526e-10 2.41992238e-10 1.536848742e-10 2.68534244e-10 2.018832091e-10 3.523592864e-10 1.35486889e-10 3.02011715e-10 3.067561235e-10 2.694699651e-10 2.821220404e-10 1.455949651e-10 3.518287236e-10 1.981035974e-10 2.426331815e-10 2.487560426e-10 3.601805472e-10 2.444933542e-10 8.267718806e-11 3.548218573e-10 2.10788514e-10 2.833344361e-10 2.281374495e-10 2.622401162e-10 4.784767152e-10 2.832672424e-10 2.725549999e-10 3.739872216e-10 2.682124519e-10 2.243327439e-10 2.875937327e-10 4.332555566e-10 2.201675133e-10 2.737181608e-10 1.933680468e-10 2.249537658e-10 2.127697782e-10 1.47860682e-10 1.240066942e-10 2.530854829e-10 1.902981598e-10 1.951796055e-10 3.519754752e-10 2.743957137e-10 3.076878993e-10 5.75989804e-10 5.992637661e-10 7.210499619e-10 3.619696141e-10 2.493245131e-10 5.068534436e-10 4.568004665e-10 4.181817965e-10 5.211667988e-10 3.279812595e-10 3.087329634e-10 3.226074441e-10 3.703910808e-10 2.801198899e-10 3.314907602e-10 2.758726443e-10 3.270884742e-10 2.506720019e-10 1.384794547e-10 1.500675705e-10 1.734113739e-10 1.772946863e-10 2.670340101e-10 2.579296996e-10 4.876874367e-10 5.361893771e-10 6.23411095e-10 3.89015696e-10 7.173356067e-10 5.333749356e-10 7.530758518e-10 7.261317729e-10 4.949957453e-10 5.657866492e-10 5.444320754e-10 6.94035032e-10 5.552487582e-10 6.950943186e-10 8.090267645e-10 4.941158731e-10 5.935593118e-10 3.995230159e-10 3.787259026e-10 4.413778528e-10 5.168002458e-10 4.618398741e-10 3.730547886e-10 3.871503078e-10 2.878953876e-10 3.203637938e-10 4.233417759e-10 3.657169791e-10 2.989361176e-10 1.425639685e-10 1.13193039e-10 1.024880481e-10 0 2.28820347e-10 1.461510313e-10 9.087251021e-11 1.358491929e-10 1.298496711e-15 2.009883204e-10 1.062650103e-10 1.442558039e-10 1.585648067e-10 1.084130079e-10 8.196589646e-11 1.347913205e-10 6.413444322e-11 1.506850288e-10 2.520573567e-12 1.733158292e-10 1.132590363e-29 1.883531681e-10 2.079225886e-10 1.65287835e-10 1.373686797e-10 9.258175737e-11 8.6913697e-11 9.078341636e-11 1.917333883e-10 2.21336501e-10 3.218002173e-10 2.669151537e-10 2.804321126e-10 2.336696483e-10 4.531208682e-10 5.800768839e-10 5.643315327e-10 4.44098836e-10 3.645883418e-10 4.218991637e-10 4.091213237e-10 4.210772634e-10 3.847303862e-10 6.308211255e-10 5.432925132e-10 7.753731122e-10 5.891333576e-10 6.214207557e-10 5.878937838e-10 5.306763316e-10 5.279659573e-10 5.659672916e-10 5.709726909e-10 7.966394468e-10 5.628249005e-10 5.776853844e-10 7.57686095e-10 6.93877334e-10 5.7760662e-10 3.244090766e-10 2.186184904e-10 1.861616113e-10 1.219765042e-10 3.102226093e-10 3.808863428e-10 4.171206741e-10 3.36474047e-10 2.453772143e-10 4.09680385e-10 3.330701604e-10 4.021051594e-10 3.510774259e-10 4.738172126e-10 5.232426472e-10 2.368786643e-10 2.740766629e-10 1.968344638e-10 5.339614778e-10 3.411307256e-10 3.270034367e-10 3.534898434e-10 5.138947254e-10 3.737398025e-10 2.634831169e-10 3.109081646e-10 1.943824257e-10 1.67197456e-10 2.767390159e-10 2.375906887e-10 2.17194808e-10 3.284992872e-10 3.234914943e-10 4.130856704e-10 2.621151741e-10 3.012647491e-10 2.988967284e-10 3.109910244e-10 2.602091746e-10 2.190799914e-10 2.947966542e-10 3.365164043e-10 2.676451533e-10 2.79727504e-10 3.376555867e-10 2.573784503e-10 3.900244981e-10 2.574874322e-10 2.519720395e-10 3.179328421e-10 2.007489007e-10 5.237141871e-10 2.617698176e-10 1.967679609e-10 2.188877e-10 3.57261391e-10 2.615554831e-10 3.779757807e-10 2.489975631e-10 2.224604257e-10 3.520993012e-10 2.296448999e-10 3.485346328e-10 2.117925296e-10 2.193343083e-10 3.887933237e-10 1.856182858e-10 2.543673433e-10 2.350202823e-10 2.777863595e-10 1.317586386e-10 3.663397851e-10 3.177177375e-10 2.849061561e-10 3.226176875e-10 1.098447494e-10 1.468741229e-10 1.985883255e-10 1.348268493e-10 1.846050276e-10 1.105446835e-10 3.405758797e-10 3.276528307e-10 1.427095611e-10 2.127349966e-10 1.163994789e-10 1.56546527e-10 2.199973916e-10 1.061419409e-10 1.839671526e-10 1.317332526e-10 2.659943087e-10 2.006466762e-10 8.962511803e-11 1.443933492e-10 2.734395945e-10 1.313841731e-10 3.293165906e-10 1.417208507e-10 1.067460541e-10 1.527200699e-10 2.516506448e-10 2.949567668e-10 1.598392837e-10 2.837435432e-10 2.442780913e-10 +1.154461363e-10 1.541759636e-10 1.995730867e-10 1.047366533e-10 2.19087773e-10 1.548827065e-10 2.551262182e-10 2.035330857e-10 6.018051039e-11 1.432858921e-10 2.67306835e-10 1.116056861e-10 1.585605402e-10 2.842124665e-10 1.501234027e-10 2.409694537e-10 1.70567599e-10 2.747638908e-10 1.205364258e-10 1.910715698e-10 1.582998582e-10 1.693906228e-10 1.318221392e-10 1.192506191e-10 1.020223653e-10 2.306569694e-10 1.092118158e-10 1.223692775e-10 9.739017819e-11 3.109734642e-10 2.071139897e-10 4.081553989e-10 2.874557917e-10 3.958982943e-10 3.57529224e-10 4.572134746e-10 3.431924214e-10 1.661115372e-10 2.357918566e-10 2.803812923e-10 3.311520449e-10 3.280656319e-10 2.879405427e-10 2.442440158e-10 3.107677227e-10 2.355481915e-10 3.004925693e-10 2.007250933e-10 3.062571133e-10 1.884314783e-10 3.914930798e-10 3.386673164e-10 3.222491656e-10 2.551461433e-10 1.713829656e-10 1.637745227e-10 2.210463032e-10 2.290628979e-10 2.859944878e-10 3.259030278e-10 4.979733665e-10 3.799718876e-10 2.072302865e-10 2.97348437e-10 3.10182471e-10 1.853896442e-10 3.640450992e-10 1.530406401e-10 2.893338859e-10 4.705768495e-10 2.658175223e-10 2.789045189e-10 4.644258806e-10 2.329731027e-10 4.107073367e-10 1.858612832e-10 2.263699835e-10 2.168818024e-10 2.330314442e-10 2.526715369e-10 3.736657498e-10 2.326709582e-10 3.096677886e-10 3.39161705e-10 4.167684927e-10 3.709353238e-10 4.059796678e-10 3.672759009e-10 5.18353466e-10 3.880143553e-10 5.113741536e-10 3.974413431e-10 3.14122837e-10 3.66863099e-10 2.2830782e-10 2.891796284e-10 3.757699925e-10 2.383473985e-10 3.234322009e-10 2.838998593e-10 2.087856217e-10 1.474457552e-10 5.750631799e-11 2.232379708e-10 1.734776281e-10 1.62884011e-10 4.012500116e-10 4.820558579e-10 5.556109014e-10 5.847512074e-10 3.626190774e-10 4.345261258e-10 4.305578474e-10 7.081945072e-10 6.920646938e-10 4.996595249e-10 4.032315135e-10 6.62611146e-10 4.522452879e-10 8.568343365e-10 6.389677126e-10 7.386216507e-10 4.220471465e-10 4.610527454e-10 5.684218961e-10 4.383396425e-10 3.978392688e-10 4.477340672e-10 5.18733104e-10 4.365205314e-10 5.126207116e-10 4.248068678e-10 3.511466108e-10 3.858048556e-10 3.953263121e-10 2.93184495e-10 2.530060157e-10 2.95290089e-10 2.296688551e-10 2.956748389e-10 1.371383753e-10 5.544144937e-11 2.07972357e-10 3.711803806e-11 1.134997622e-12 1.249134956e-10 3.126391201e-28 1.011136065e-10 1.451319007e-10 1.274648459e-10 1.001647126e-10 1.473560352e-10 2.215282417e-10 2.246345131e-10 1.366798619e-25 1.583773022e-10 4.541103275e-11 3.928170026e-17 1.095404596e-10 1.31885852e-10 1.685185146e-10 2.304984441e-10 1.76686619e-10 3.08921765e-10 3.423526009e-10 2.917930962e-10 3.179262088e-10 3.542811432e-10 3.491148234e-10 3.537218839e-10 2.833778419e-10 4.025124826e-10 3.310168709e-10 4.174767515e-10 5.082458971e-10 4.807101856e-10 4.099283196e-10 5.436124393e-10 6.43045175e-10 4.199166416e-10 5.323875364e-10 4.126961158e-10 4.452568332e-10 5.872342782e-10 5.80374304e-10 6.206355239e-10 6.223471084e-10 5.224687924e-10 5.140617585e-10 6.971705583e-10 8.922521429e-10 3.893319054e-10 6.25495077e-10 2.781183262e-10 2.356168657e-10 2.575240145e-10 1.946321508e-10 1.083181823e-10 2.420880414e-10 2.071655511e-10 2.873131414e-10 3.439239942e-10 3.037855859e-10 3.330114074e-10 3.978798e-10 3.670567445e-10 4.860215863e-10 3.683142467e-10 3.242132876e-10 4.182091762e-10 4.009597755e-10 3.825763505e-10 4.829220801e-10 3.967191712e-10 3.631458179e-10 3.223671488e-10 5.783826898e-10 3.390168122e-10 4.103407635e-10 3.38609547e-10 3.048688565e-10 3.235651571e-10 1.557006344e-10 3.446536556e-10 3.513483935e-10 3.561118284e-10 2.143112661e-10 2.775767071e-10 3.161494885e-10 2.575862134e-10 3.09034295e-10 2.845287846e-10 3.171779781e-10 2.813756835e-10 1.827012084e-10 2.274659887e-10 2.456084078e-10 1.973017708e-10 3.367871542e-10 2.65596094e-10 4.143610146e-10 1.747678708e-10 2.535933133e-10 2.021469675e-10 2.653701849e-10 1.948721454e-10 1.390351195e-10 2.433218408e-10 2.095481417e-10 3.634240511e-10 4.852811615e-10 3.246397367e-10 3.612270931e-10 2.636427215e-10 2.027687495e-10 2.454774506e-10 2.864997095e-10 2.366689242e-10 3.635535556e-10 1.65906673e-10 1.805348687e-10 5.634393841e-10 2.220021037e-10 3.214242469e-10 3.955639323e-10 2.239728976e-10 3.184320285e-10 1.931157776e-10 1.6584337e-10 3.606174395e-10 1.711741937e-10 2.55771459e-10 2.022876837e-10 2.744638816e-10 2.47228096e-10 8.968394989e-11 2.784532179e-10 4.067990098e-10 9.107681458e-11 1.340110002e-10 2.308064845e-10 3.140682693e-10 8.63787708e-11 1.637175821e-10 8.193622118e-11 2.694063167e-11 1.206703648e-10 1.551416663e-10 3.880231455e-10 1.539342602e-10 2.234277175e-10 3.403810861e-10 3.487636787e-10 2.184176032e-10 4.109078029e-10 1.738726323e-10 1.292940461e-10 1.820735229e-10 2.231290935e-10 1.974749559e-10 +2.707382555e-10 1.824667885e-10 2.17714293e-10 3.09580236e-10 1.281020407e-10 1.646997524e-10 1.437877349e-10 1.584748128e-10 1.661058666e-10 9.660333909e-11 7.375485449e-11 2.561285222e-10 1.056257932e-10 1.693534785e-10 5.910595453e-11 8.198365308e-11 2.192921059e-10 2.072425611e-10 7.546837597e-11 1.241963274e-10 8.775934089e-11 1.695115608e-10 2.878924222e-10 1.230455923e-10 1.288945297e-10 1.607660295e-10 2.13067719e-10 1.310624567e-10 1.918723278e-10 3.056523829e-10 1.561500001e-10 1.876944507e-10 1.992558799e-10 1.682872127e-10 2.451153326e-10 2.737787954e-10 5.210493268e-10 2.086975147e-10 1.978007014e-10 3.143688607e-10 4.351502969e-10 1.919984826e-10 3.098366523e-10 2.966131409e-10 3.78394403e-10 3.429055118e-10 1.783091186e-10 3.987283904e-10 1.639614538e-10 3.111315671e-10 3.449815143e-10 3.038060505e-10 2.599831809e-10 2.620758773e-10 1.767310861e-10 3.954325971e-10 2.422098599e-10 4.015101557e-10 1.975556992e-10 2.284245007e-10 1.650699403e-10 2.875912176e-10 2.500193085e-10 2.61156798e-10 1.934977602e-10 2.602642495e-10 1.687283679e-10 2.473016474e-10 3.000627521e-10 1.758465161e-10 4.10154295e-10 2.933157164e-10 2.755508137e-10 3.835357353e-10 4.398720247e-10 1.394800601e-10 2.137408526e-10 1.815153214e-10 2.958060464e-10 3.273329893e-10 3.979703736e-10 3.574959861e-10 2.528373223e-10 4.655662854e-10 4.543651377e-10 3.690368445e-10 3.678595333e-10 4.802684014e-10 4.209573848e-10 4.761913478e-10 3.592926922e-10 2.563429572e-10 2.362164867e-10 3.482815834e-10 5.773888961e-10 3.333879729e-10 4.065380655e-10 3.167541238e-10 3.361641634e-10 2.622514336e-10 2.106781208e-10 2.199721063e-10 1.962145077e-10 1.895831293e-10 2.865868692e-10 2.012993507e-10 2.147235741e-10 5.233644088e-10 4.699269795e-10 5.073846378e-10 4.927002358e-10 6.642812316e-10 5.995030717e-10 6.470578452e-10 4.404582471e-10 3.642899807e-10 4.614263926e-10 3.987334653e-10 4.459632772e-10 6.299145391e-10 6.856643238e-10 4.799261103e-10 6.251587641e-10 5.304369684e-10 3.737540752e-10 5.035194738e-10 3.731641571e-10 3.794611917e-10 5.40550707e-10 6.101679355e-10 4.359288117e-10 5.644162658e-10 5.229188961e-10 3.746902079e-10 3.757976841e-10 3.500376916e-10 4.10507114e-10 3.670370706e-10 1.835351858e-10 2.046992369e-10 1.720145472e-10 1.687515597e-11 0 1.022137667e-15 1.268023795e-10 1.521871264e-10 1.721267922e-19 1.264808186e-10 0 2.7526159e-11 1.063101563e-10 1.548680162e-10 3.827567396e-25 4.923635265e-11 1.050253134e-10 4.130791038e-12 1.823986541e-10 1.234868294e-10 1.249834306e-10 1.216674189e-10 2.245069684e-10 1.690604651e-10 2.962774454e-10 3.420622205e-10 2.694587025e-10 2.786608196e-10 3.410410123e-10 3.585374433e-10 4.465950364e-10 4.193494189e-10 2.742686395e-10 4.043405786e-10 4.966383241e-10 3.504225415e-10 3.675955964e-10 5.706639061e-10 4.119014605e-10 5.389836209e-10 5.599841197e-10 8.595401641e-10 7.951870424e-10 4.849639072e-10 7.633973653e-10 4.817103778e-10 4.245683741e-10 3.4316362e-10 5.013200036e-10 9.736378101e-10 5.463363506e-10 3.110383891e-10 6.501060807e-10 6.755116395e-10 5.234142654e-10 1.376608832e-10 2.006339756e-10 9.58701106e-11 2.562607515e-10 1.146509798e-10 1.955012189e-10 1.307435087e-10 3.023941645e-10 3.331861675e-10 2.976773666e-10 3.671677051e-10 3.193114069e-10 2.40876464e-10 5.30902575e-10 2.924881071e-10 3.580583009e-10 4.340480666e-10 4.991090053e-10 4.062189957e-10 5.333265921e-10 4.24126147e-10 4.556599178e-10 2.793283427e-10 3.907657539e-10 3.82316047e-10 3.653612738e-10 3.428547253e-10 3.314297188e-10 2.743805099e-10 2.673882517e-10 2.2875348e-10 1.552421817e-10 1.600803529e-10 3.492355733e-10 2.951312404e-10 2.891163183e-10 3.366373217e-10 2.846839279e-10 1.805962652e-10 3.829010841e-10 3.225322424e-10 2.449419992e-10 2.170332089e-10 4.210388375e-10 3.095015549e-10 3.672349811e-10 4.084368149e-10 1.989893582e-10 2.926047156e-10 1.568941609e-10 4.640504598e-10 3.028883367e-10 2.803427182e-10 3.545573468e-10 3.743936913e-10 2.228303388e-10 2.161757019e-10 2.073565776e-10 2.717039994e-10 2.16808141e-10 1.447012417e-10 2.886057512e-10 2.916395607e-10 2.938886857e-10 2.156180445e-10 1.243227626e-10 3.039422795e-10 1.064581802e-10 1.985716791e-10 4.033654067e-10 1.602102881e-10 1.190492201e-10 2.259743692e-10 2.804652182e-10 2.852430541e-10 1.210520421e-10 2.240648209e-10 2.573723594e-10 3.604483009e-10 2.808574734e-10 2.371890079e-10 1.598014713e-10 2.550452828e-10 1.607528159e-10 1.786597113e-10 2.18979996e-10 1.186924099e-10 1.57257868e-10 1.044344126e-10 2.516533047e-10 1.386009867e-10 2.381164459e-10 2.677130849e-10 1.284384292e-10 2.539108849e-10 7.152080133e-11 2.321452155e-10 1.778561962e-10 3.004392802e-10 1.338762043e-10 3.602851195e-10 1.288814403e-10 1.828113937e-10 1.464138302e-10 1.365794381e-10 2.657074894e-10 1.151155968e-10 +2.283672536e-10 1.518165182e-10 1.151787844e-10 9.130279048e-11 1.467316091e-10 1.487346592e-10 1.866051717e-10 1.598470545e-10 1.801372593e-10 5.873029595e-11 1.557160894e-10 2.596972112e-10 1.139029215e-10 3.410326258e-10 1.205258456e-10 4.301914911e-10 1.22420472e-10 1.685350743e-10 3.21150378e-10 4.069134589e-10 1.103090408e-10 1.293849276e-10 1.032254271e-10 3.520299805e-10 6.737447617e-11 2.132229222e-10 2.601711747e-10 2.567825942e-10 9.628737022e-11 1.654092602e-10 1.20570592e-10 2.79801158e-10 2.067272622e-10 4.149693327e-10 4.291355144e-10 2.120511688e-10 2.154258602e-10 1.604210834e-10 2.916603122e-10 3.825310092e-10 2.319415745e-10 3.559095893e-10 2.784861757e-10 1.612462043e-10 2.869262918e-10 3.002109036e-10 2.720833064e-10 3.132897243e-10 2.585644336e-10 2.431944953e-10 2.734972057e-10 3.807094699e-10 1.946279033e-10 2.284286268e-10 3.111293655e-10 1.825158362e-10 3.302821912e-10 2.00439249e-10 2.393195571e-10 2.674842802e-10 1.72854081e-10 1.658212521e-10 2.893375235e-10 4.698674098e-10 2.561131296e-10 1.949098334e-10 2.1404272e-10 2.589682669e-10 2.626519976e-10 2.738798901e-10 3.362170181e-10 1.893957712e-10 1.984725045e-10 1.829454254e-10 1.531658816e-10 1.577258206e-10 3.92440555e-10 3.01124451e-10 1.895129942e-10 3.869291734e-10 5.560183977e-10 3.464075649e-10 2.028529504e-10 4.47797224e-10 4.034606505e-10 4.033272799e-10 3.045799808e-10 3.75816101e-10 4.269321125e-10 4.850340362e-10 4.674888223e-10 3.00233938e-10 5.039883075e-10 2.881516576e-10 2.608744466e-10 3.630532324e-10 2.879844617e-10 3.386189302e-10 4.62793586e-10 3.191737731e-10 3.093005498e-10 1.62503127e-10 1.299670301e-10 8.515250103e-11 2.605538e-10 2.295674134e-10 1.595693972e-10 6.836082435e-10 4.128136841e-10 6.788745843e-10 6.928302045e-10 6.480789183e-10 5.107198477e-10 4.519389104e-10 4.919760898e-10 3.539279601e-10 5.215541687e-10 4.088356658e-10 3.997152867e-10 5.975411331e-10 5.437156465e-10 5.749992893e-10 4.891044185e-10 6.522243463e-10 5.172124204e-10 4.036469682e-10 4.801023717e-10 4.881405892e-10 2.488605118e-10 4.045556309e-10 4.579525819e-10 2.993790038e-10 4.157149815e-10 4.161701093e-10 3.472321408e-10 5.172299951e-10 3.494819052e-10 3.286411309e-10 2.558628842e-10 2.414771795e-10 1.937055523e-10 6.903110828e-11 2.58438641e-10 1.020781802e-10 9.66249911e-11 9.115310129e-11 1.294906514e-10 3.383515176e-19 1.137606078e-10 6.634699774e-11 1.274802719e-10 8.407925174e-11 9.124609348e-11 1.083611794e-14 1.620411495e-10 1.963839624e-10 2.693323775e-28 1.926954014e-10 1.831871747e-10 2.040545837e-10 2.602517115e-10 3.150271086e-10 2.34818507e-10 3.353852967e-10 4.408578074e-10 3.420137066e-10 4.482185187e-10 5.328757387e-10 3.745156928e-10 3.498810864e-10 3.257046647e-10 4.963504825e-10 3.771446144e-10 4.378441818e-10 3.050870987e-10 4.80335192e-10 7.4270327e-10 6.876707633e-10 5.58563651e-10 5.586576237e-10 6.422684337e-10 3.445032898e-10 3.9141781e-10 3.597797911e-10 5.709599624e-10 3.45465229e-10 5.752220007e-10 6.36660807e-10 4.899783688e-10 6.358769031e-10 5.83501088e-10 7.924890741e-10 4.005601526e-10 2.258835542e-10 2.797160059e-10 8.997574072e-11 1.507613431e-10 2.440554017e-10 2.0082921e-10 2.923264373e-10 2.92791708e-10 1.844693763e-10 2.552639974e-10 3.649207804e-10 3.182608643e-10 4.378843535e-10 3.097891944e-10 2.323728549e-10 4.936445715e-10 2.437194568e-10 4.513738843e-10 4.533338001e-10 4.858423009e-10 5.021221592e-10 3.069346789e-10 4.89512316e-10 4.899522238e-10 4.160153009e-10 2.311111605e-10 3.634493518e-10 2.874782235e-10 2.800796393e-10 3.767547239e-10 1.312683068e-10 2.617542266e-10 2.730429281e-10 2.554600028e-10 2.669009105e-10 2.681581089e-10 3.186595211e-10 2.699949824e-10 2.851461989e-10 2.706589201e-10 1.311923811e-10 2.878061668e-10 3.125722552e-10 2.499064524e-10 2.80046935e-10 2.010019193e-10 3.524157873e-10 2.931324117e-10 2.67443058e-10 2.116850362e-10 2.261618504e-10 2.677766077e-10 1.810386744e-10 4.668272465e-10 2.732440726e-10 2.152229372e-10 1.927518101e-10 1.473963709e-10 2.608860334e-10 1.727624619e-10 3.994063097e-10 3.519004648e-10 2.240262679e-10 1.263897964e-10 1.499323367e-10 2.027858604e-10 2.570787027e-10 1.247344147e-10 3.413572011e-10 2.690559737e-10 3.317889697e-10 2.134152295e-10 3.058957238e-10 2.54423329e-10 2.433814295e-10 3.091945093e-10 3.505893061e-10 2.513376908e-10 3.576448775e-10 3.006221149e-10 3.669518029e-10 1.420636154e-10 1.659034146e-10 1.738891264e-10 3.11035987e-10 1.64742735e-10 8.018716808e-11 2.990351515e-10 2.017688104e-10 7.349455817e-11 1.64533969e-10 1.61857926e-10 1.265307812e-10 1.639286112e-10 2.732022471e-10 9.051350345e-11 7.928226519e-11 2.219726734e-10 1.570063183e-10 9.327915757e-11 1.539327771e-10 1.92856133e-10 1.377308093e-10 1.628709991e-10 3.222135424e-10 2.517698717e-10 1.102280058e-10 +7.63282727e-11 1.555695673e-10 1.805364825e-10 1.537245621e-10 1.201711918e-10 2.451422839e-10 2.005189381e-10 9.659469406e-11 1.256253162e-10 1.034813204e-10 1.659996477e-10 2.896695408e-10 2.097014086e-10 3.142842536e-10 3.524967635e-10 1.718461138e-10 8.004930592e-11 1.537055446e-10 2.033307655e-10 3.318797311e-10 1.544048935e-10 7.620545149e-11 1.656224901e-10 1.351361546e-10 2.100456211e-10 2.241103607e-10 1.668727673e-10 1.561520084e-10 1.865406418e-10 2.515261614e-10 2.34813757e-10 2.78287187e-10 2.589379502e-10 2.915420778e-10 3.716564165e-10 3.094762767e-10 3.036911986e-10 2.128111636e-10 2.63960345e-10 2.626577899e-10 3.036934787e-10 1.792702275e-10 4.395725258e-10 2.722749198e-10 1.605968035e-10 3.75740597e-10 3.901928154e-10 2.047311314e-10 1.580499553e-10 2.265205942e-10 2.370211074e-10 4.060121828e-10 1.921654007e-10 1.468032529e-10 2.839107306e-10 2.505997038e-10 1.782061104e-10 1.625444248e-10 3.334323787e-10 2.392215366e-10 2.478910137e-10 2.008565832e-10 1.467032733e-10 2.571835222e-10 1.73253061e-10 3.472674522e-10 2.326378229e-10 2.763447439e-10 2.935755079e-10 3.890403846e-10 2.90301721e-10 2.384641189e-10 2.545198278e-10 7.987451555e-11 2.637500556e-10 2.143818229e-10 2.485721476e-10 2.258798175e-10 3.193670401e-10 3.948880798e-10 3.360331816e-10 3.371177981e-10 3.267297702e-10 2.822697271e-10 4.464964534e-10 3.535184481e-10 2.928094953e-10 3.976725503e-10 5.172262591e-10 3.818861075e-10 4.039679758e-10 4.513486679e-10 2.774820991e-10 3.119728817e-10 2.933408367e-10 2.224533768e-10 2.483518799e-10 3.068723984e-10 3.50130073e-10 1.879333678e-10 2.88866734e-10 2.397769172e-10 1.337450358e-10 1.388135182e-10 2.02129577e-10 1.104985375e-10 3.158422735e-10 5.789884463e-10 7.089465323e-10 3.406889823e-10 6.382733019e-10 7.348590005e-10 4.259657655e-10 3.339830904e-10 8.179214712e-10 6.443833211e-10 3.230369475e-10 6.607897229e-10 5.175957096e-10 3.758899273e-10 5.326492976e-10 6.798371413e-10 7.231089045e-10 4.869123254e-10 7.535738412e-10 5.196643566e-10 3.597913946e-10 4.964536595e-10 4.769570977e-10 3.448734698e-10 4.175629497e-10 2.916799107e-10 4.112469161e-10 3.360781145e-10 5.582187851e-10 3.291444835e-10 2.781757243e-10 4.98862755e-10 4.085958812e-10 3.16644896e-10 3.097901676e-10 2.596085123e-10 2.010207925e-10 2.760644079e-10 1.046239641e-10 2.889548578e-10 1.924161469e-10 1.384095382e-10 2.622242881e-10 1.324868867e-10 1.313317432e-10 2.329936815e-10 1.502203814e-10 1.599664366e-10 1.92784529e-10 2.746103669e-10 1.791867589e-10 2.453061522e-10 3.059621779e-10 3.104294738e-10 1.912693723e-10 3.991935941e-10 3.12514047e-10 4.017276607e-10 4.474895206e-10 3.652485339e-10 5.619687604e-10 3.913908397e-10 3.379418962e-10 4.311700912e-10 4.20319565e-10 4.786932053e-10 4.944501309e-10 4.322317979e-10 6.121982589e-10 5.673617348e-10 5.000971192e-10 6.00848248e-10 5.789641368e-10 6.211846874e-10 5.728733207e-10 5.075277565e-10 2.810666403e-10 5.289042866e-10 5.507893475e-10 5.53573609e-10 6.535674895e-10 4.100898697e-10 4.584614866e-10 8.832395621e-10 2.714392875e-10 7.52094502e-10 3.511168072e-10 2.23202446e-10 2.063414681e-10 1.924464101e-10 1.151707939e-10 1.704440326e-10 2.170823914e-10 2.071872203e-10 2.589297961e-10 2.806053603e-10 3.184658669e-10 2.434738091e-10 4.123811177e-10 2.474995278e-10 3.132282713e-10 4.037459232e-10 3.546315256e-10 4.098797712e-10 4.946841394e-10 3.37343027e-10 4.418602366e-10 4.287572213e-10 3.691489644e-10 3.898901484e-10 4.626371626e-10 4.731303898e-10 2.739546591e-10 3.983617153e-10 2.384899745e-10 2.939711944e-10 3.278819375e-10 2.960952446e-10 2.379896814e-10 1.601536014e-10 1.682031924e-10 3.349321975e-10 1.516625469e-10 2.180894159e-10 2.638925609e-10 2.264594125e-10 2.8251259e-10 1.617234269e-10 2.508970508e-10 2.340240942e-10 2.364605433e-10 2.78063344e-10 2.500912572e-10 3.139037142e-10 2.507997942e-10 1.814812876e-10 4.597578256e-10 2.97527075e-10 2.963304358e-10 2.46614294e-10 2.474429913e-10 1.527219622e-10 3.369712348e-10 1.690099488e-10 2.707548834e-10 3.478724453e-10 3.198842497e-10 2.888371528e-10 1.605342677e-10 2.584747672e-10 3.29875872e-10 2.582262954e-10 2.326649735e-10 5.120379274e-10 2.081259505e-10 3.144064268e-10 2.136328496e-10 2.192394102e-10 2.926798082e-10 1.36679509e-10 3.010419233e-10 2.87081721e-10 3.38377113e-10 2.181847663e-10 3.357015429e-10 2.189730749e-10 1.173091961e-10 2.661207162e-10 2.052359495e-10 2.219352337e-10 1.656936369e-10 2.021305011e-10 9.83538626e-11 1.966870059e-10 1.389705778e-10 1.367976072e-10 2.794550947e-10 1.607951005e-10 1.520941724e-10 1.107347001e-10 1.797908292e-10 1.954961476e-10 1.585002011e-10 1.571927179e-10 5.387382038e-11 1.654222261e-10 1.551354213e-10 1.174534889e-10 2.585877958e-10 1.221151819e-10 1.593035193e-10 1.720831319e-10 2.772320833e-10 2.370388037e-10 +2.586531286e-10 1.028323825e-10 1.879487321e-10 1.431102165e-10 2.855950286e-10 2.105990643e-10 1.609839531e-10 1.054135379e-10 8.450537693e-11 1.388051866e-10 2.037651019e-10 2.967329184e-10 2.542690788e-10 2.771599475e-10 3.772625206e-10 4.142745245e-11 2.031870577e-10 1.575253503e-10 3.424601973e-10 2.997391696e-10 1.345325471e-10 1.682147059e-10 1.066728332e-10 3.685360393e-10 5.809250959e-11 1.026376335e-10 1.676851017e-10 1.222608454e-10 9.402763135e-11 3.725843408e-10 2.751168771e-10 1.7324305e-10 3.361211841e-10 1.295706174e-10 5.359120903e-10 2.411104585e-10 1.597491106e-10 2.394488526e-10 1.888956055e-10 1.723563328e-10 2.454299971e-10 4.080229288e-10 4.204640054e-10 1.645858128e-10 3.165029179e-10 2.431211709e-10 2.139047079e-10 1.803271519e-10 2.838366341e-10 3.312311108e-10 2.892499774e-10 3.441851585e-10 3.134086565e-10 3.884649054e-10 1.872950379e-10 3.492176214e-10 1.837312056e-10 2.404832815e-10 3.380027434e-10 3.483683565e-10 4.171724021e-10 3.594433943e-10 2.706430411e-10 1.930698059e-10 2.094645981e-10 2.507905872e-10 1.685204182e-10 2.921232883e-10 1.837405745e-10 2.974073038e-10 3.246967757e-10 1.854104474e-10 3.077410332e-10 3.417015003e-10 3.455253295e-10 3.57554613e-10 2.880666752e-10 3.611994505e-10 3.290201782e-10 4.359060911e-10 3.818201218e-10 3.579486625e-10 6.134517853e-10 3.423112432e-10 3.003064069e-10 4.014242132e-10 3.79991456e-10 4.300975416e-10 2.825852243e-10 3.671752029e-10 3.795597477e-10 2.066279056e-10 4.315027275e-10 2.12326009e-10 3.971746946e-10 2.403431058e-10 3.377973901e-10 3.516578013e-10 3.442353413e-10 1.73695626e-10 3.700854223e-10 2.95865464e-10 1.117708983e-10 1.124065852e-10 2.783624032e-10 2.458954426e-10 2.332979777e-10 4.062677818e-10 5.3516364e-10 4.498381242e-10 4.956867012e-10 5.614827679e-10 4.303745191e-10 6.308661617e-10 5.499735742e-10 7.947792105e-10 4.553838957e-10 4.098246308e-10 6.281272341e-10 3.909379776e-10 4.707205655e-10 4.569161152e-10 5.658287114e-10 4.901956879e-10 5.056251376e-10 4.928775228e-10 4.417545991e-10 4.417732201e-10 4.324516401e-10 5.037570682e-10 3.996643722e-10 4.636973839e-10 4.445498603e-10 4.567365465e-10 2.965635878e-10 3.60590464e-10 4.989637003e-10 4.331320862e-10 4.794091562e-10 3.311537905e-10 3.958691779e-10 2.723864739e-10 3.461760148e-10 2.65087942e-10 1.888115325e-10 2.50869521e-10 2.400193698e-10 2.215257593e-10 1.494096911e-10 2.473441713e-10 1.851301396e-10 2.171604986e-10 2.639501358e-10 2.998066883e-10 3.085706498e-10 3.406782012e-10 2.667107219e-10 2.583050535e-10 3.00189735e-10 3.907859389e-10 4.144312125e-10 3.551958114e-10 3.563417303e-10 5.587397005e-10 4.484459135e-10 2.961287315e-10 5.35205648e-10 2.579185637e-10 2.682257996e-10 5.28331024e-10 3.647414019e-10 3.726195164e-10 3.944686875e-10 2.244074682e-10 4.656932724e-10 5.288388097e-10 5.745702077e-10 6.523501634e-10 6.157832564e-10 5.166895887e-10 6.189931104e-10 4.742722156e-10 4.880430253e-10 5.870607932e-10 5.86758181e-10 5.960165113e-10 5.413759515e-10 7.366090203e-10 5.555629506e-10 6.411383984e-10 3.990928193e-10 4.573129421e-10 2.187255092e-10 3.230790164e-10 2.410663286e-10 1.139011354e-10 1.346637538e-10 1.918989645e-10 2.9235478e-10 1.770230399e-10 2.409648301e-10 3.343998968e-10 3.148804982e-10 2.540937393e-10 3.542463762e-10 4.006493361e-10 3.164948558e-10 3.801180673e-10 3.826626714e-10 3.597536494e-10 3.129133662e-10 3.234507253e-10 4.317769266e-10 4.988221433e-10 4.586158111e-10 3.505108267e-10 3.6727929e-10 3.871979621e-10 2.550065986e-10 5.606057631e-10 4.137140134e-10 3.492699249e-10 3.084401162e-10 2.697759499e-10 2.200410366e-10 3.660775094e-10 2.275781776e-10 3.744944713e-10 3.01421254e-10 2.933832837e-10 3.880510588e-10 2.753364014e-10 3.305528734e-10 2.066152389e-10 2.748607825e-10 2.296752939e-10 3.821183396e-10 1.675591062e-10 2.600380074e-10 2.63380111e-10 3.352585576e-10 1.356473919e-10 6.740053175e-11 2.649357528e-10 3.479194445e-10 2.347165498e-10 3.906388743e-10 3.131933324e-10 2.033584847e-10 1.671187662e-10 2.741313783e-10 2.442096928e-10 2.569232188e-10 1.85656874e-10 2.077106943e-10 1.700954521e-10 1.274913022e-10 3.03999284e-10 2.052123165e-10 1.624538743e-10 3.268544746e-10 1.61651986e-10 2.83184506e-10 2.497341378e-10 2.704979849e-10 2.201359042e-10 2.438260588e-10 3.735079745e-10 2.401461353e-10 2.028818599e-10 2.343636126e-10 2.066930365e-10 1.615680857e-10 2.554998158e-10 1.969571811e-10 1.286970441e-10 1.197833767e-10 1.370542078e-10 2.235698792e-10 2.100542746e-10 1.594409704e-10 1.25267466e-10 1.411668572e-10 2.648344306e-10 2.697191972e-10 9.773581995e-11 1.538694243e-10 1.673459684e-10 1.763541148e-10 9.688352431e-11 9.751992161e-11 3.752514033e-10 1.777902654e-10 1.089527937e-10 1.625983459e-10 1.928685532e-10 1.428630802e-10 2.533733518e-10 2.503083083e-10 2.611804174e-10 +1.247200203e-10 1.656011021e-10 1.422945683e-10 1.507685307e-10 3.733517333e-10 9.544073633e-11 2.131044597e-10 2.911051908e-10 9.868384246e-11 2.389056917e-10 1.121868159e-10 2.140253258e-10 9.237398732e-11 1.917399477e-10 1.346154758e-10 1.715093537e-10 4.081242997e-11 1.184310734e-10 1.620883692e-10 2.368979361e-10 1.879331187e-10 1.958734403e-10 1.867423885e-10 3.684292511e-10 1.585873686e-10 1.164614674e-10 2.374315969e-10 3.314338408e-10 1.627557627e-10 4.24830273e-10 3.189938937e-10 1.562962762e-10 2.616310408e-10 1.968155877e-10 2.67878413e-10 3.548196383e-10 2.479472141e-10 4.339615816e-10 4.439401569e-10 3.516926645e-10 3.496877744e-10 2.125717898e-10 4.501162822e-10 2.452475933e-10 4.266104947e-10 1.935025781e-10 3.685944474e-10 2.058156812e-10 1.42343116e-10 1.542572171e-10 2.579362512e-10 3.401734581e-10 1.834195432e-10 1.558179157e-10 2.861242673e-10 2.589496182e-10 2.750671246e-10 2.419940344e-10 3.182436186e-10 3.955056075e-10 1.8688225e-10 2.935254773e-10 3.078447665e-10 2.236652755e-10 1.764922386e-10 2.358261413e-10 2.595814203e-10 2.575984891e-10 2.719136804e-10 1.41937444e-10 1.972293134e-10 4.105419862e-10 2.048193012e-10 2.295015678e-10 3.656710719e-10 3.307521619e-10 2.255919702e-10 1.731394157e-10 4.217871812e-10 2.714645571e-10 2.238378851e-10 1.737150644e-10 4.389690069e-10 3.761663597e-10 3.732425954e-10 4.009726105e-10 3.961290659e-10 2.689259109e-10 4.749492042e-10 4.125215532e-10 3.444786517e-10 3.34141097e-10 3.326868141e-10 3.249508801e-10 3.328432978e-10 3.420840681e-10 3.064990039e-10 1.925013723e-10 3.569812429e-10 2.438608708e-10 2.957231966e-10 2.75886826e-10 1.607701347e-10 8.310632258e-11 1.806341721e-10 9.855100599e-11 2.08472052e-10 2.375052439e-10 7.326386014e-10 4.853328713e-10 6.115941566e-10 6.836070316e-10 5.465056994e-10 5.839685725e-10 5.175734468e-10 4.592728892e-10 6.142338137e-10 6.300773599e-10 5.664882563e-10 6.037820617e-10 3.60942213e-10 5.124175721e-10 6.93420662e-10 4.594254233e-10 5.155666876e-10 4.845160169e-10 4.918598842e-10 2.808842038e-10 3.313402417e-10 4.973278877e-10 3.917265747e-10 4.291417696e-10 2.440747033e-10 4.711915205e-10 4.030491082e-10 3.494590126e-10 4.256121334e-10 3.415925233e-10 3.295481918e-10 3.658846771e-10 2.975914301e-10 3.932517082e-10 2.383148377e-10 3.12675036e-10 2.943028565e-10 2.652224579e-10 1.713090098e-10 2.547797432e-10 2.158774955e-10 3.119131587e-10 2.159485925e-10 2.148280639e-10 2.786837713e-10 2.810594799e-10 2.816937798e-10 2.715867565e-10 3.42226806e-10 1.754202944e-10 2.715742406e-10 3.641677821e-10 3.996579123e-10 3.948393625e-10 4.959486154e-10 3.800780845e-10 4.869949291e-10 3.721220706e-10 3.548362759e-10 5.26803204e-10 3.559757227e-10 3.655333158e-10 4.774655717e-10 5.612747405e-10 3.190946143e-10 4.419979985e-10 5.868926034e-10 5.785905713e-10 5.868434793e-10 6.221242409e-10 5.649151536e-10 3.627818593e-10 4.114083123e-10 3.738295145e-10 4.821175916e-10 6.178809491e-10 5.666817766e-10 7.444543777e-10 4.782852472e-10 7.331826818e-10 6.557579643e-10 8.215556891e-10 5.500544137e-10 5.389736597e-10 1.33606853e-10 2.363229172e-10 2.436260642e-10 1.287510744e-10 8.911506615e-11 1.315703988e-10 3.867553149e-10 2.659078668e-10 4.343795361e-10 3.548395776e-10 5.165482327e-10 3.340755996e-10 2.862545838e-10 2.869340207e-10 2.073516364e-10 4.137312019e-10 3.108053951e-10 3.125242669e-10 4.584985499e-10 3.692778555e-10 3.856906479e-10 4.915891554e-10 6.606542355e-10 3.526665609e-10 3.531371002e-10 5.326524875e-10 4.624212449e-10 2.877163367e-10 1.092502904e-10 1.544411456e-10 1.602648572e-10 3.186451802e-10 1.917859701e-10 2.500331406e-10 2.591083473e-10 2.933944577e-10 3.376119358e-10 2.016497998e-10 3.995407781e-10 2.444262096e-10 2.734281859e-10 1.342177429e-10 3.041598617e-10 2.30488048e-10 2.660444801e-10 2.607016202e-10 2.984130701e-10 2.819772488e-10 1.668401493e-10 2.942002347e-10 4.294823988e-10 2.523243763e-10 1.58013736e-10 1.695786296e-10 2.681047333e-10 2.285910931e-10 3.247192552e-10 4.548180219e-10 2.732979835e-10 2.701859785e-10 1.533116011e-10 2.726261538e-10 2.040742767e-10 2.630049499e-10 1.129950887e-10 3.468046517e-10 1.309918772e-10 2.926511429e-10 1.634859749e-10 3.584574079e-10 3.655130514e-10 2.779233094e-10 1.910821907e-10 2.461603026e-10 2.227426658e-10 2.991141478e-10 2.502697244e-10 4.700637728e-10 3.501226185e-10 2.160652275e-10 3.700996133e-10 2.169406649e-10 3.01815308e-10 2.043136906e-10 1.791811268e-10 3.764328231e-10 1.390268009e-10 3.565089485e-10 1.083650902e-10 8.862451969e-11 1.379528424e-10 2.341588786e-10 1.632824044e-10 1.839277454e-10 1.177437623e-10 1.60577428e-10 3.381777938e-10 1.272129512e-10 1.614135639e-10 9.179578079e-11 8.331774169e-11 9.693174227e-11 3.004561056e-10 1.764762945e-10 1.126240327e-10 2.824187705e-10 1.171388711e-10 3.905878756e-10 +1.250160388e-10 1.423498925e-10 2.468332212e-10 1.83803744e-10 4.804386546e-10 1.27915348e-10 1.332035421e-10 8.130259819e-11 2.724138611e-10 1.274896305e-10 9.51081455e-11 2.463231118e-10 4.174235586e-11 9.928919547e-11 7.733636038e-11 1.234812699e-10 1.724015006e-10 1.441143781e-10 8.955584714e-11 2.103866111e-10 3.23548886e-10 1.509430431e-10 1.291554061e-10 3.678760996e-10 1.63925239e-10 3.10798098e-10 1.64608582e-10 1.712171908e-10 5.029169684e-10 2.471647234e-10 2.340998561e-10 2.704911716e-10 1.853444552e-10 2.766908996e-10 3.920578023e-10 3.043785762e-10 1.378697531e-10 1.92197522e-10 3.839443047e-10 1.612902748e-10 2.991839128e-10 1.721059625e-10 3.018750044e-10 1.024222151e-10 3.281767457e-10 4.008069098e-10 3.436649173e-10 1.584399829e-10 1.587612394e-10 2.352034643e-10 2.451485681e-10 2.682984984e-10 2.420143996e-10 1.985285329e-10 3.286250878e-10 1.885979069e-10 3.899866795e-10 2.864298351e-10 2.375739462e-10 2.832481026e-10 3.012297964e-10 2.536519802e-10 2.610817973e-10 1.167653384e-10 3.296287034e-10 2.151861291e-10 3.251091446e-10 2.737215769e-10 2.585493905e-10 2.238083072e-10 2.900301469e-10 3.633269385e-10 2.964884697e-10 2.678188617e-10 2.23742026e-10 3.118774153e-10 4.004664313e-10 3.466135474e-10 2.39454797e-10 1.847750507e-10 3.915884098e-10 3.984486372e-10 3.786725471e-10 4.951309418e-10 5.26309221e-10 3.510488366e-10 4.157206484e-10 4.531442821e-10 3.607476834e-10 4.18760801e-10 2.236898342e-10 4.33649084e-10 3.12454237e-10 2.339020173e-10 3.426087521e-10 3.767323711e-10 3.574494517e-10 2.578751798e-10 3.071069603e-10 3.29125871e-10 3.376479036e-10 2.800638978e-10 2.012578802e-10 1.094640483e-10 1.712894517e-10 1.521635933e-10 3.090290396e-10 2.767560194e-10 1.393496528e-10 6.622073107e-10 9.055002059e-10 5.279294119e-10 4.493355642e-10 6.833102598e-10 5.010468502e-10 5.168006574e-10 6.344338143e-10 5.447958144e-10 3.052729891e-10 4.650272105e-10 5.962065803e-10 4.06958101e-10 7.412332202e-10 5.30812328e-10 6.543851583e-10 8.271806273e-10 5.577658258e-10 5.807784464e-10 4.923946189e-10 3.93723848e-10 3.758471272e-10 5.609440692e-10 3.707651792e-10 4.1203583e-10 3.262892946e-10 3.69587571e-10 3.256480798e-10 3.922108971e-10 3.403971719e-10 2.893342275e-10 4.324424253e-10 2.210830919e-10 3.395587354e-10 3.888218389e-10 3.727948168e-10 4.57443383e-10 3.347122122e-10 3.527755151e-10 2.667765707e-10 4.12370272e-10 2.357543783e-10 3.150380083e-10 2.788092554e-10 3.590508702e-10 2.993661336e-10 3.300836758e-10 2.593536034e-10 4.333898703e-10 3.428454633e-10 4.377445818e-10 3.113088316e-10 5.16859059e-10 3.483621273e-10 5.383399479e-10 5.326632997e-10 4.48667062e-10 3.228654373e-10 4.813953349e-10 4.580325311e-10 3.94745256e-10 3.332556476e-10 3.12649935e-10 5.287078163e-10 5.332394668e-10 4.925974164e-10 6.926766568e-10 4.55244382e-10 4.175876802e-10 6.02562995e-10 4.240304613e-10 6.457898503e-10 4.621479972e-10 4.79813569e-10 5.757399395e-10 5.938116892e-10 5.977536821e-10 6.326090763e-10 5.032079804e-10 4.60382447e-10 3.853429051e-10 7.097982984e-10 3.946423068e-10 1.633089807e-10 1.405025123e-10 1.468266089e-10 5.37993485e-11 1.70627971e-10 1.906473749e-10 1.639012193e-10 2.980522531e-10 1.88717409e-10 2.343755116e-10 3.70562649e-10 3.110130669e-10 3.356202096e-10 2.065155666e-10 2.930793848e-10 4.320217735e-10 4.42922733e-10 3.732066295e-10 3.530059919e-10 3.019562414e-10 3.141006113e-10 3.624273739e-10 4.264481868e-10 5.259156156e-10 2.959071392e-10 3.416880173e-10 2.945393167e-10 3.226767199e-10 2.383384523e-10 2.768852002e-10 3.154870067e-10 1.047290465e-10 2.113003562e-10 2.778070446e-10 2.719850539e-10 2.187350674e-10 1.294438013e-10 2.310091259e-10 2.22090745e-10 3.166257086e-10 2.246655405e-10 1.414938584e-10 3.276137239e-10 4.039984658e-10 1.911364101e-10 1.981020263e-10 3.429621249e-10 2.134864433e-10 3.073872875e-10 4.977396872e-10 2.282107758e-10 1.607268559e-10 1.360135098e-10 2.490440271e-10 4.102558752e-10 1.648703202e-10 1.806210532e-10 4.129951559e-10 1.235585762e-10 3.18204071e-10 1.835239675e-10 2.532649879e-10 2.069960954e-10 2.720523882e-10 3.107899901e-10 1.447692542e-10 2.275570684e-10 1.808486035e-10 2.645431949e-10 3.555230883e-10 5.258529745e-11 3.369778633e-10 2.179448269e-10 4.178539539e-10 3.978902291e-10 2.124382336e-10 2.200014445e-10 2.238089044e-10 4.430882352e-10 2.561143999e-10 2.077864076e-10 1.906124978e-10 3.260590955e-10 8.570086608e-11 1.268613647e-10 2.133058051e-10 2.45719049e-10 6.243082769e-11 1.354113094e-10 1.2946642e-10 2.434248273e-10 4.995955436e-11 1.395337364e-10 3.410591771e-10 1.533659689e-10 1.154556862e-10 1.038569883e-10 1.090441708e-10 2.956619858e-10 9.075152981e-11 1.456681942e-10 1.167089156e-10 1.410673519e-10 1.268774276e-10 2.227286253e-10 8.802298645e-11 3.163937353e-10 1.178105386e-10 +1.143444646e-10 1.749539902e-10 3.72985299e-10 1.314536777e-10 1.088904941e-10 1.843706622e-10 1.926771297e-10 1.371613281e-10 1.314561975e-10 1.036267983e-10 4.031706942e-10 1.360585781e-10 1.743264326e-10 1.373542298e-10 8.437487313e-11 8.629454085e-11 6.460737638e-11 3.034742209e-10 3.019167632e-10 1.762729985e-10 2.87375537e-10 1.321485538e-10 3.147303631e-10 2.483766949e-10 3.050806747e-10 1.691466364e-10 4.447581651e-10 2.343473596e-10 3.103551721e-10 2.881525567e-10 3.143994582e-10 2.909740829e-10 1.870698273e-10 3.778032188e-10 2.047817123e-10 1.106771508e-10 3.108937717e-10 1.447155718e-10 2.053804795e-10 2.118839859e-10 3.616183859e-10 3.077117173e-10 3.150299454e-10 2.818117023e-10 3.380704894e-10 3.302636342e-10 4.885493827e-10 3.503500493e-10 3.231109698e-10 2.575978704e-10 1.735065712e-10 1.260127081e-10 2.254228473e-10 1.603792092e-10 2.673756599e-10 2.817080289e-10 1.661263456e-10 3.502436942e-10 2.906529067e-10 1.350367705e-10 2.004765608e-10 2.637334281e-10 3.710513569e-10 1.950931753e-10 3.556095841e-10 4.055579901e-10 2.118588396e-10 4.683313402e-10 2.960962216e-10 2.752336133e-10 3.559586537e-10 3.187289622e-10 2.351452939e-10 2.569943869e-10 3.987809926e-10 3.113939468e-10 2.55860858e-10 2.822034998e-10 1.312903978e-10 1.235318684e-10 2.27431385e-10 2.796166383e-10 4.508958885e-10 4.935547499e-10 4.379574905e-10 4.466339015e-10 4.982241476e-10 5.528690947e-10 3.439649063e-10 3.060292254e-10 4.515896179e-10 3.240189727e-10 5.311200553e-10 2.841596867e-10 3.213297846e-10 3.22507609e-10 2.805909409e-10 2.649667953e-10 4.206730738e-10 3.430935447e-10 3.051569545e-10 1.278690555e-10 2.851569005e-10 1.805130657e-10 6.835447388e-11 1.478846786e-10 1.994295604e-10 2.473236548e-10 1.55552325e-10 5.760661766e-10 6.34895028e-10 5.987286984e-10 4.091233945e-10 4.241351749e-10 6.490157232e-10 5.525904145e-10 5.431482003e-10 6.497094328e-10 3.883193334e-10 5.768234329e-10 4.855411074e-10 3.813543586e-10 5.725011043e-10 4.969414162e-10 6.199384207e-10 6.503695644e-10 5.111856212e-10 5.715012379e-10 5.485164159e-10 5.489794486e-10 4.424683798e-10 4.904508882e-10 3.979603401e-10 2.828728671e-10 4.209718057e-10 3.590228716e-10 4.111011499e-10 3.908158334e-10 3.805935624e-10 3.165268e-10 3.270599169e-10 4.037789814e-10 2.51772793e-10 3.364119305e-10 3.899764076e-10 3.249734833e-10 4.108596763e-10 3.255923403e-10 3.9840405e-10 3.753250179e-10 3.317406902e-10 4.133300353e-10 2.88305092e-10 3.744905907e-10 4.527506317e-10 4.096790848e-10 2.964179714e-10 2.364097914e-10 4.852433945e-10 4.662353571e-10 3.459623837e-10 5.088848782e-10 3.786584759e-10 3.603683838e-10 4.565753013e-10 3.57774659e-10 4.32444153e-10 3.73144411e-10 3.410370045e-10 6.672364098e-10 4.160183289e-10 4.069960179e-10 4.620127399e-10 6.473358665e-10 6.777217554e-10 6.985519885e-10 6.856382562e-10 6.635998528e-10 5.296700551e-10 5.373204963e-10 5.406501343e-10 5.424164751e-10 4.365330255e-10 5.680650482e-10 5.268625472e-10 5.412783088e-10 5.381461933e-10 5.023481663e-10 7.118055462e-10 8.825449928e-10 4.489610879e-10 2.499546528e-10 2.669774311e-10 3.09282537e-10 2.792040294e-10 1.692505803e-10 1.01818941e-10 3.231807569e-10 3.284658323e-10 2.051568134e-10 3.519513229e-10 2.387473482e-10 3.304943201e-10 2.7320347e-10 2.721817813e-10 3.236266662e-10 4.44587312e-10 3.69894147e-10 3.943973719e-10 3.602145561e-10 4.256751762e-10 3.693609612e-10 4.034284966e-10 4.521017172e-10 3.968379097e-10 2.950170471e-10 4.052472769e-10 2.879010163e-10 1.239502198e-10 3.090114766e-10 3.863572298e-10 4.421522965e-10 3.690319477e-10 1.997799541e-10 3.27724974e-10 2.026042852e-10 3.649870268e-10 2.843838338e-10 3.035280541e-10 1.730272777e-10 2.910041797e-10 2.17010296e-10 2.440376547e-10 3.55869102e-10 3.625853919e-10 3.962663506e-10 2.526145008e-10 2.35863264e-10 2.939510052e-10 1.718405493e-10 1.534031143e-10 3.021283607e-10 3.034183394e-10 1.214766221e-10 2.086477249e-10 3.09103598e-10 2.236586217e-10 4.182244911e-10 1.350407412e-10 2.597728637e-10 2.344899961e-10 1.804218702e-10 1.908340968e-10 3.920475451e-10 1.150636028e-10 2.962551672e-10 2.616661764e-10 4.595860744e-10 1.293898168e-10 3.744694851e-10 2.796690639e-10 3.432827867e-10 3.546821352e-10 3.972206425e-10 9.811468935e-11 3.502391458e-10 3.051677777e-10 3.37550943e-10 2.66212693e-10 1.678478215e-10 3.651852903e-10 2.81518639e-10 1.928408599e-10 1.141370855e-10 1.63326039e-10 1.259224938e-10 1.682065874e-10 2.396014943e-10 1.582790377e-10 1.03454855e-10 1.97922312e-10 3.504445003e-10 9.646406038e-11 2.521244336e-10 1.769345606e-10 1.892994901e-10 1.567002022e-10 1.063906214e-10 3.072212706e-10 1.739159293e-10 1.345728572e-10 1.507511231e-10 2.258472445e-10 1.904720313e-10 2.830120745e-10 1.000240796e-10 1.254049994e-10 3.349797161e-10 2.127425158e-10 1.922147048e-10 +1.500793416e-10 2.053776753e-10 2.085809845e-10 2.297867898e-10 1.420649643e-10 1.421847979e-10 1.186106311e-10 2.83057342e-10 7.035626014e-11 2.13843204e-10 1.615753097e-10 2.549888006e-10 9.82164838e-11 1.396104049e-10 1.890972663e-10 1.420268187e-10 1.733891554e-10 1.875304542e-10 2.300957879e-10 1.82825899e-10 1.496585585e-10 1.944519676e-10 1.380716395e-10 2.996796641e-10 4.612981895e-10 2.585787791e-10 2.519441089e-10 1.682690443e-10 2.671442914e-10 1.566441303e-10 2.064291581e-10 3.168277752e-10 2.451918716e-10 3.404654338e-10 2.411366165e-10 3.731752408e-10 2.411926412e-10 3.164996085e-10 4.404889673e-10 1.493861433e-10 3.449212057e-10 2.00323424e-10 2.367690184e-10 2.399828601e-10 2.498474948e-10 3.153067106e-10 1.80038279e-10 4.432834118e-10 2.38500615e-10 1.665121979e-10 1.322369638e-10 2.030074593e-10 7.496279117e-11 3.146714188e-10 3.710140868e-10 2.774023645e-10 2.287671287e-10 2.297297798e-10 3.252223772e-10 3.331728122e-10 3.397119933e-10 1.966349629e-10 3.444061636e-10 3.222757744e-10 1.247863349e-10 2.639244917e-10 2.879997169e-10 3.540497013e-10 4.360521814e-10 2.746037714e-10 2.712651843e-10 2.808694722e-10 3.263459237e-10 3.100821589e-10 3.785223015e-10 2.131383615e-10 2.034674903e-10 1.955033906e-10 1.603645743e-10 2.513515054e-10 4.368754443e-10 3.39168309e-10 4.487099039e-10 3.165258384e-10 5.394218918e-10 3.409374259e-10 4.120853588e-10 3.235952104e-10 5.489192893e-10 3.76697522e-10 4.05751776e-10 3.671015633e-10 2.388830503e-10 3.330601893e-10 2.748465952e-10 3.181611459e-10 3.804038229e-10 3.165205934e-10 4.114481956e-10 3.934774161e-10 2.802025025e-10 2.110796482e-10 2.066589855e-10 1.55497241e-10 1.675242554e-10 1.145557161e-10 2.208863913e-10 2.497901001e-10 1.713829818e-10 7.547616111e-10 5.000927386e-10 4.919652684e-10 5.114120662e-10 4.945398325e-10 6.251654012e-10 3.894714766e-10 3.498252981e-10 7.961101844e-10 5.787007821e-10 4.298061831e-10 4.526140063e-10 5.528776941e-10 3.148036082e-10 8.611407853e-10 4.789242526e-10 5.903416682e-10 5.823554377e-10 5.495607722e-10 3.29198377e-10 4.698989636e-10 3.518973631e-10 4.011839676e-10 3.067695637e-10 3.075922113e-10 4.035558797e-10 3.883784602e-10 3.394586258e-10 4.027614551e-10 3.940521214e-10 3.474142069e-10 4.233127112e-10 3.677236616e-10 2.724522783e-10 4.049834217e-10 2.442028462e-10 5.110148859e-10 2.372169508e-10 4.285245771e-10 4.641482195e-10 4.159609353e-10 3.736210247e-10 4.692026029e-10 4.546008981e-10 4.140112762e-10 3.190429034e-10 3.724986703e-10 2.674804518e-10 3.856045852e-10 4.936429596e-10 2.310847657e-10 5.09332746e-10 3.783232614e-10 3.033856118e-10 3.923197876e-10 3.71073846e-10 5.247926794e-10 5.161147626e-10 3.708616726e-10 3.988775243e-10 6.745835607e-10 5.146963934e-10 6.247269322e-10 6.126825362e-10 5.416942639e-10 6.692788614e-10 6.748143013e-10 5.427521491e-10 4.880288402e-10 4.559961463e-10 4.745022835e-10 4.167929868e-10 6.899454401e-10 4.418105642e-10 2.867666218e-10 7.484561456e-10 5.534998738e-10 4.428453522e-10 6.210400065e-10 5.844665838e-10 4.212524505e-10 3.239803168e-10 2.149832179e-10 1.787365069e-10 2.275832868e-10 6.524879278e-11 3.339748125e-11 2.246449928e-10 1.689601673e-10 2.351150465e-10 2.503223289e-10 3.459543293e-10 3.53689262e-10 2.630308882e-10 3.303322834e-10 4.402682228e-10 2.936118808e-10 4.015907699e-10 2.576035319e-10 3.380427317e-10 4.480467781e-10 3.473451406e-10 5.038843522e-10 2.611673478e-10 2.901102756e-10 3.888753082e-10 5.617202895e-10 2.124753403e-10 4.117396645e-10 3.726736083e-10 2.769658903e-10 2.524808049e-10 2.69403744e-10 2.627063518e-10 2.897184844e-10 1.800459809e-10 2.711521485e-10 2.044089756e-10 3.448955973e-10 2.159507646e-10 3.49275049e-10 2.689272241e-10 2.71054311e-10 2.684230646e-10 3.923672305e-10 2.091151463e-10 3.346837977e-10 2.339057806e-10 1.945278173e-10 1.899754798e-10 1.45498903e-10 2.46152625e-10 3.027339122e-10 2.173272206e-10 1.458703687e-10 4.514719836e-10 3.881022842e-10 2.325485816e-10 3.891482539e-10 1.762545884e-10 2.62641034e-10 1.132522653e-10 3.881709723e-10 1.93793866e-10 2.052749533e-10 3.582645141e-10 2.625731629e-10 1.217183967e-10 1.783728216e-10 2.474818421e-10 1.414479333e-10 3.431454489e-10 1.64410345e-10 3.001335251e-10 4.829924609e-10 2.499839387e-10 4.168563236e-10 2.046890198e-10 2.453818203e-10 3.478311855e-10 3.677682203e-10 2.050922252e-10 4.679007971e-10 2.779216397e-10 2.246641178e-10 8.98732947e-11 1.486230413e-10 1.545791025e-10 2.072462204e-10 1.212085714e-10 6.047823282e-11 1.47271191e-10 1.144391983e-10 1.738198862e-10 1.517481039e-10 1.858262907e-10 2.651760829e-10 1.092629274e-10 1.784730954e-10 6.970023742e-11 3.270604446e-10 8.357279092e-11 2.359290355e-10 4.591439054e-11 2.033022204e-10 1.886570245e-10 2.204168537e-10 2.198800835e-10 1.500570507e-10 1.644208199e-10 1.152952737e-10 +1.085422932e-10 1.239411644e-10 1.142526541e-10 4.424734004e-11 1.983749442e-10 2.043424018e-10 1.858926841e-10 2.625856032e-10 1.332711289e-10 1.785868308e-10 2.362822642e-10 1.173555583e-10 2.348022855e-10 1.106410869e-10 7.377776e-11 1.440059857e-10 1.647708976e-10 9.746144236e-11 6.704067712e-11 1.904717061e-10 8.091084551e-11 1.881185556e-10 1.196200088e-10 2.965702476e-10 1.525413218e-10 1.629293438e-10 4.810930358e-10 3.449484355e-10 2.48323761e-10 1.36557314e-10 1.679587897e-10 3.103785457e-10 2.276815712e-10 3.203016217e-10 2.149187141e-10 3.435750872e-10 1.661938895e-10 1.909478493e-10 2.162065933e-10 2.920635787e-10 3.206278678e-10 4.233384909e-10 1.850482663e-10 3.796475068e-10 3.410902038e-10 2.500116582e-10 1.031214161e-10 3.089333567e-10 2.391411403e-10 1.591006664e-10 3.521055329e-10 1.110678614e-10 2.228794248e-10 2.246850964e-10 2.490455393e-10 2.249133974e-10 1.567067076e-10 1.780522502e-10 1.851577845e-10 3.048016835e-10 1.673495575e-10 1.480245174e-10 2.735072068e-10 2.037850092e-10 2.771231528e-10 1.879565413e-10 1.770254769e-10 3.772211106e-10 3.172929726e-10 2.45498699e-10 2.226978939e-10 2.12232088e-10 1.904211388e-10 1.638402952e-10 1.57482095e-10 3.14496874e-10 2.498058935e-10 2.931023774e-10 3.565665122e-10 1.576541466e-10 3.359938892e-10 3.986016534e-10 3.470802534e-10 5.282004017e-10 3.81319472e-10 4.679711618e-10 3.693423459e-10 3.340898114e-10 4.618388193e-10 3.624397938e-10 4.526390086e-10 4.245631177e-10 3.52334974e-10 3.200577175e-10 4.577730543e-10 2.373111553e-10 3.591216308e-10 2.702863002e-10 2.458968883e-10 2.691086357e-10 2.513878181e-10 2.27347079e-10 2.719992278e-10 2.076591434e-10 1.377796447e-10 1.850440351e-10 1.275212816e-10 1.816801185e-10 1.879689032e-10 7.17432274e-10 4.309902828e-10 3.811418948e-10 4.404768838e-10 2.29823394e-10 6.171637548e-10 4.353357036e-10 3.852844241e-10 7.000868232e-10 4.634786325e-10 4.800676584e-10 6.241807509e-10 4.454893541e-10 4.265598262e-10 5.011555524e-10 6.041051257e-10 5.45419118e-10 5.260832509e-10 6.474374202e-10 5.412504943e-10 5.292279737e-10 5.488347187e-10 3.119445776e-10 4.070544343e-10 4.53099918e-10 5.791495041e-10 3.449278768e-10 4.306439275e-10 3.844929514e-10 4.857338794e-10 2.92575583e-10 3.385965922e-10 3.808810854e-10 3.448465509e-10 5.281973772e-10 2.573468135e-10 3.295781751e-10 4.87954861e-10 2.911544075e-10 3.658348743e-10 4.02775514e-10 5.834352766e-10 3.481624666e-10 4.226329563e-10 3.798331577e-10 3.89067191e-10 3.85442642e-10 4.297180151e-10 2.764185634e-10 2.886628189e-10 4.403436702e-10 4.323360792e-10 3.975742732e-10 3.492284996e-10 4.191480779e-10 3.366268496e-10 6.283224866e-10 3.4014046e-10 5.054261596e-10 3.678984009e-10 4.819631144e-10 4.141035903e-10 5.400505828e-10 5.888903921e-10 6.475400317e-10 7.475367064e-10 6.841821534e-10 5.918530806e-10 3.719031148e-10 5.175808429e-10 4.406408035e-10 5.521313971e-10 5.552978977e-10 6.884727903e-10 2.101504148e-10 5.662098635e-10 7.558049095e-10 4.48196399e-10 4.774940667e-10 5.221475152e-10 4.040538141e-10 1.472634709e-10 1.660312383e-10 2.359884007e-10 1.650109714e-10 1.384914914e-10 1.140899605e-10 1.842777878e-10 1.78956881e-10 2.07777559e-10 2.956949536e-10 3.251988284e-10 2.906931798e-10 2.35841581e-10 2.48874955e-10 2.766350759e-10 3.520446698e-10 3.028142142e-10 3.140456378e-10 2.851100854e-10 2.980918679e-10 4.351411117e-10 4.065214457e-10 3.522343317e-10 2.722320287e-10 3.968576097e-10 3.364579417e-10 3.454356666e-10 2.572442835e-10 3.517194481e-10 3.544635928e-10 5.260706678e-10 1.962967454e-10 1.417149184e-10 1.496842571e-10 2.901057776e-10 2.421613263e-10 2.708090365e-10 2.503323375e-10 4.425399934e-10 2.009508366e-10 1.211117527e-10 3.869621949e-10 2.2591764e-10 1.678397914e-10 1.314529255e-10 1.63970638e-10 3.130833011e-10 2.495748874e-10 1.942385471e-10 3.349254825e-10 2.770986903e-10 3.136354294e-10 1.836261398e-10 1.966919298e-10 1.691415348e-10 2.794711592e-10 3.137031761e-10 2.499686288e-10 2.93650368e-10 2.227646783e-10 2.130650722e-10 2.65191172e-10 2.840098189e-10 3.167388568e-10 2.814233613e-10 2.79999985e-10 2.821164699e-10 3.368585212e-10 4.262795548e-10 3.360233279e-10 2.980703621e-10 2.920812033e-10 2.202663384e-10 2.445506131e-10 1.799313695e-10 2.202310585e-10 1.829726931e-10 5.22746223e-10 2.454728126e-10 1.903977657e-10 1.404565329e-10 2.242762884e-10 1.819866645e-10 2.145833717e-10 3.388863294e-10 3.932716358e-10 2.007734386e-10 1.078029484e-10 9.884014606e-11 2.198291598e-10 1.377548988e-10 4.829278555e-11 1.790953105e-10 2.49889949e-10 3.015943442e-10 6.437252124e-11 2.710686591e-10 6.371761024e-11 1.927139143e-10 9.981703997e-11 1.882637069e-10 3.299344364e-11 7.847585789e-11 1.370907585e-10 1.699292602e-10 2.502856975e-10 3.81848167e-10 3.778773896e-10 3.21264409e-10 1.873822295e-10 +1.327033071e-10 1.70922908e-10 2.108836417e-10 2.407437725e-10 1.72974103e-11 1.930427606e-10 9.18512765e-11 4.198392239e-11 1.710060669e-10 3.329478109e-10 1.420579104e-10 1.879449876e-10 1.188344819e-10 2.519322614e-10 2.102773824e-10 1.65828212e-10 3.911223307e-10 1.703971534e-10 1.302738425e-10 2.089982429e-10 3.347140014e-10 5.854272708e-11 2.624909436e-10 1.212926144e-10 1.307502692e-10 2.880150065e-10 1.126521572e-10 1.83373035e-10 2.634021098e-10 4.42876072e-10 2.267497933e-10 2.514704111e-10 3.777187374e-10 1.621321136e-10 2.522939199e-10 2.682936398e-10 1.79438175e-10 2.485233973e-10 2.905893166e-10 1.811653336e-10 3.128002758e-10 1.341416437e-10 2.94057822e-10 1.848118087e-10 2.798658154e-10 4.517387868e-10 1.840528529e-10 2.331132697e-10 2.799021435e-10 2.709664518e-10 1.945146219e-10 7.026414829e-11 2.041587689e-10 2.38587594e-10 2.260933632e-10 1.850522759e-10 1.925287518e-10 2.18326693e-10 3.252247438e-10 2.881799448e-10 2.554988443e-10 2.516682037e-10 3.149020858e-10 2.03700364e-10 1.562964505e-10 2.476432876e-10 1.552894744e-10 3.791086708e-10 4.031753115e-10 3.057260995e-10 2.926507446e-10 3.361500863e-10 3.937632693e-10 1.952607904e-10 1.830747977e-10 2.429965735e-10 2.324705434e-10 1.67091519e-10 1.749810223e-10 2.080395398e-10 2.777482874e-10 4.242686638e-10 3.936759553e-10 3.839265e-10 3.357284007e-10 3.51385393e-10 2.584148359e-10 4.74535066e-10 4.867293626e-10 2.858632824e-10 4.667036116e-10 2.047705693e-10 3.432397821e-10 3.114493934e-10 1.793814272e-10 4.132022458e-10 2.534160118e-10 2.367567743e-10 2.142874741e-10 3.025134384e-10 2.376958089e-10 3.646861876e-10 3.14089366e-10 2.883987902e-10 2.218326577e-10 1.575475918e-10 2.009703477e-10 1.459812869e-10 2.586790093e-10 6.186165694e-10 4.192239577e-10 6.075451136e-10 4.951208749e-10 7.087284103e-10 3.59532546e-10 4.026368697e-10 4.522609325e-10 5.758750533e-10 4.303026749e-10 5.208360649e-10 5.842822234e-10 5.453133362e-10 5.539132999e-10 3.780032241e-10 7.692482086e-10 5.720620522e-10 4.637240039e-10 7.542989204e-10 7.60132903e-10 7.450012708e-10 3.126107692e-10 6.120978122e-10 3.177226954e-10 4.049709421e-10 4.872021996e-10 3.141251648e-10 3.971900611e-10 4.068459707e-10 3.232306462e-10 3.218318324e-10 3.446633189e-10 3.82517923e-10 3.526741019e-10 3.875528949e-10 3.527344397e-10 4.373395839e-10 4.296540072e-10 5.08550135e-10 3.904421603e-10 2.561027687e-10 3.542406022e-10 3.434195422e-10 2.981116529e-10 4.534742175e-10 4.877870978e-10 4.295631488e-10 3.782121968e-10 4.108212605e-10 4.21880627e-10 3.085665324e-10 2.905804737e-10 5.320474533e-10 4.994472996e-10 3.38420076e-10 3.473526606e-10 3.712840644e-10 4.245594357e-10 4.89025348e-10 5.80556533e-10 4.746129318e-10 5.840944196e-10 4.479364142e-10 4.181857213e-10 5.445010289e-10 4.987364084e-10 3.844576875e-10 3.975639253e-10 5.274407209e-10 3.322943013e-10 4.810681013e-10 5.687057697e-10 4.443473774e-10 5.356318097e-10 5.944044563e-10 6.423060491e-10 5.541702162e-10 5.39144472e-10 5.817259487e-10 3.677443324e-10 1.388741185e-10 1.835778855e-10 3.009188802e-10 1.848648758e-10 1.730602757e-10 1.269028398e-10 1.271115824e-10 1.821983588e-10 2.639370464e-10 1.602683011e-10 2.938405179e-10 3.361564646e-10 2.303431043e-10 3.12811084e-10 4.381912883e-10 3.266705856e-10 3.262469589e-10 3.495313591e-10 2.626624146e-10 3.222770592e-10 4.041199581e-10 5.039558583e-10 2.452727994e-10 2.697029524e-10 4.658117401e-10 4.490083701e-10 5.133629131e-10 4.136003943e-10 3.146397024e-10 4.299297868e-10 4.352878419e-10 2.405393703e-10 3.455936321e-10 3.014917665e-10 1.899550664e-10 3.434287536e-10 1.921566587e-10 1.521487375e-10 4.51065496e-10 2.419946327e-10 2.228754325e-10 2.493477399e-10 1.262846382e-10 3.664493726e-10 9.080931005e-11 2.042378515e-10 2.796344261e-10 4.141164701e-10 3.037824594e-10 2.607953313e-10 2.188593581e-10 2.032473601e-10 1.740789373e-10 2.123348998e-10 2.362327924e-10 1.267296413e-10 1.923400788e-10 2.32297444e-10 2.289066346e-10 2.630481895e-10 1.343103809e-10 2.130803722e-10 1.353350181e-10 1.658863891e-10 3.640805149e-10 2.702664263e-10 1.260341141e-10 3.90212294e-10 2.212143904e-10 1.875947464e-10 1.46049779e-10 1.557369108e-10 1.650585214e-10 2.255133056e-10 1.809396239e-10 2.645428268e-10 2.937771576e-10 1.796853581e-10 3.230617751e-10 1.723143575e-10 3.655202345e-10 4.51970391e-10 3.154483871e-10 2.388924907e-10 4.042586158e-10 3.446684619e-10 1.14519015e-10 1.081212828e-10 3.851319674e-10 1.874414564e-10 3.408173412e-10 9.533403359e-11 2.019357434e-10 1.214560116e-10 1.72878044e-10 2.659828789e-10 2.126344728e-10 1.42832743e-10 1.999409541e-10 3.518527502e-10 1.002560326e-10 3.779734726e-10 1.743254438e-10 4.140105169e-10 1.023493739e-10 5.192932116e-11 1.082421135e-10 1.645598498e-10 2.276799221e-10 1.316215876e-10 3.976663145e-10 +7.182233113e-11 1.391840788e-10 1.523954929e-10 1.324076151e-10 1.333987902e-10 1.759259981e-10 2.275861314e-10 2.065806759e-10 2.773821388e-10 1.416198522e-10 1.995709757e-10 1.017142974e-10 1.45377003e-10 1.132634144e-10 1.843849416e-10 1.683593684e-10 1.540120006e-10 1.835266912e-10 1.591796396e-10 2.475357703e-10 2.392015365e-10 1.169293861e-10 2.149403469e-10 2.434010474e-10 2.512425013e-10 1.65896876e-10 2.771631056e-10 4.155149596e-10 3.965062802e-10 2.763201451e-10 2.159606185e-10 2.03211029e-10 1.822094724e-10 2.805990689e-10 1.878633315e-10 2.881157153e-10 3.045554441e-10 1.626508518e-10 1.840439531e-10 3.415220671e-10 2.723930032e-10 1.213560315e-10 3.150889641e-10 2.011782499e-10 2.25423522e-10 1.452167636e-10 3.334305346e-10 1.511278953e-10 1.973168557e-10 2.577729247e-10 2.420214401e-10 2.660649265e-10 2.003268012e-10 2.936086732e-10 3.028748677e-10 6.164956635e-11 2.855201971e-10 2.927759852e-10 3.229678981e-10 1.247588007e-10 2.38815149e-10 2.41777056e-10 2.456568117e-10 2.382400507e-10 1.891116548e-10 1.601541067e-10 3.532600383e-10 3.40034568e-10 3.422786797e-10 4.089469599e-10 3.4126515e-10 2.136694957e-10 1.625526066e-10 2.175077543e-10 2.832677593e-10 1.710182772e-10 2.496178037e-10 2.816691621e-10 1.54828946e-10 1.900274043e-10 3.920861053e-10 2.241359226e-10 5.325031123e-10 4.250792007e-10 5.017214214e-10 4.773090303e-10 3.311599955e-10 2.71340521e-10 4.966524795e-10 3.708610135e-10 3.790937132e-10 2.094281914e-10 3.064239567e-10 3.06425712e-10 4.328747656e-10 2.172940145e-10 3.355270253e-10 3.143961295e-10 3.662536861e-10 2.876297078e-10 1.471066413e-10 1.80214847e-10 3.079018058e-10 1.810952399e-10 1.736118435e-10 9.215049042e-11 1.187827178e-10 2.736113812e-10 1.699869588e-10 3.234561723e-10 2.614561205e-10 5.723308932e-10 6.267377322e-10 4.962541843e-10 5.724373375e-10 4.113393859e-10 3.956928821e-10 4.462082583e-10 4.352053969e-10 4.60311906e-10 3.031094386e-10 5.804907422e-10 4.610972882e-10 5.188723743e-10 3.182787998e-10 4.616661815e-10 6.436209607e-10 4.358084714e-10 5.396260848e-10 4.945145101e-10 5.203959712e-10 4.908368961e-10 3.734941036e-10 4.296312308e-10 3.27242951e-10 3.512454887e-10 3.657352697e-10 3.679687926e-10 4.48374945e-10 3.453740727e-10 2.891611982e-10 2.431644197e-10 3.720868195e-10 4.123038475e-10 2.777257879e-10 4.033767907e-10 3.348274424e-10 3.357334849e-10 4.265972477e-10 4.837079361e-10 3.650170054e-10 2.89112547e-10 4.235902691e-10 2.515113082e-10 4.013891072e-10 4.007415316e-10 3.220161712e-10 3.963344324e-10 5.118429026e-10 4.232211006e-10 3.552806576e-10 4.269956329e-10 2.562982523e-10 3.491848622e-10 3.762481593e-10 3.911719309e-10 4.90087007e-10 5.737138819e-10 6.324802575e-10 5.637323616e-10 5.144309195e-10 5.148156949e-10 6.776406329e-10 7.866327724e-10 5.154214684e-10 4.710760328e-10 5.899679302e-10 6.806224517e-10 4.350793625e-10 5.626144769e-10 5.304176123e-10 5.40614726e-10 6.886464104e-10 3.923307749e-10 5.283713655e-10 6.258831687e-10 9.161135154e-10 4.97127291e-10 4.451658191e-10 3.108972148e-10 2.346725869e-10 1.892831462e-10 1.754438614e-10 1.167815557e-10 2.127522541e-10 2.53748655e-10 2.984173076e-10 3.263744032e-10 2.467907814e-10 3.864069849e-10 2.593117517e-10 2.992611624e-10 3.706849082e-10 2.914494158e-10 1.734035399e-10 3.466387734e-10 2.366394163e-10 3.710076559e-10 4.800312653e-10 3.992125005e-10 3.802245432e-10 1.921845008e-10 3.360099225e-10 3.236776345e-10 2.909509273e-10 4.067648652e-10 3.83085206e-10 3.272705677e-10 4.077739688e-10 1.839325801e-10 2.721803701e-10 2.376228437e-10 2.050972901e-10 2.328305613e-10 1.486170878e-10 4.335398111e-10 2.685745747e-10 3.547759415e-10 2.810051288e-10 2.852949019e-10 2.491765315e-10 3.387526043e-10 3.138892665e-10 1.606778811e-10 2.060374707e-10 3.221724801e-10 1.885899282e-10 2.394115977e-10 9.767739058e-11 2.961330757e-10 1.869659469e-10 3.140326091e-10 2.099421553e-10 2.324758214e-10 2.193118549e-10 2.790544455e-10 2.60114724e-10 1.835320227e-10 1.863959695e-10 3.002796922e-10 1.289353872e-10 1.873084347e-10 1.769773456e-10 1.723841078e-10 3.175261753e-10 4.256708794e-10 2.796382477e-10 2.714322197e-10 2.12727571e-10 5.496526553e-10 3.977543059e-10 2.477466366e-10 3.279729718e-10 1.537316019e-10 1.700879882e-10 1.394530231e-10 2.891651163e-10 2.467718798e-10 2.173730394e-10 2.596501119e-10 1.844635298e-10 3.125359789e-10 4.14511013e-10 2.526985106e-10 2.121397028e-10 3.14246321e-10 3.754409659e-10 3.296967062e-10 1.650350406e-10 3.879856999e-10 1.325982042e-10 2.849966326e-10 1.396629275e-10 1.985294512e-10 1.524251107e-10 1.268787329e-10 2.930351071e-10 3.256412244e-10 1.388736668e-10 3.357265795e-10 1.098032801e-10 2.185268403e-10 1.851059739e-10 1.425059113e-10 1.285761106e-10 3.938236101e-10 1.225948805e-10 2.024806117e-10 1.57874107e-10 8.321576141e-11 +1.297762412e-10 1.332995585e-10 1.412900988e-10 3.472648578e-10 6.020738215e-11 9.509464832e-11 7.486503318e-11 1.266947475e-10 1.134651085e-10 1.986750417e-10 8.024141176e-11 3.224497487e-10 2.097061843e-10 1.677646125e-10 2.160987396e-10 2.043481384e-10 1.194811789e-10 1.068749746e-10 3.577358272e-10 3.290020616e-10 1.778668264e-10 2.61948988e-10 3.893237633e-10 1.776419937e-10 2.029872813e-10 2.026649522e-10 4.299331983e-10 3.807038317e-10 3.037073981e-10 2.180204282e-10 1.939650322e-10 2.903201106e-10 2.086545435e-10 4.601944544e-10 2.435167848e-10 2.236945228e-10 3.67240889e-10 3.364323996e-10 2.284208964e-10 2.195915522e-10 2.832297478e-10 4.908395066e-10 2.736143024e-10 2.10341422e-10 2.216583892e-10 2.424146734e-10 1.634558028e-10 3.498263997e-10 1.993230924e-10 4.130072027e-10 2.534915841e-10 1.294059121e-10 1.999677538e-10 1.933261056e-10 1.982947095e-10 3.563132322e-10 2.381271417e-10 2.373338295e-10 2.674133202e-10 2.845741994e-10 2.513620577e-10 3.824479091e-10 1.882581336e-10 2.402473777e-10 1.890920251e-10 2.207372031e-10 3.208632272e-10 2.810999554e-10 1.682727554e-10 2.255567505e-10 2.182495723e-10 3.354859926e-10 4.630734596e-10 2.43352081e-10 9.232889466e-11 4.628057611e-10 2.48240264e-10 3.769023504e-10 2.036315261e-10 3.548577666e-10 2.846012805e-10 2.248085883e-10 3.883762867e-10 4.733363545e-10 3.209015263e-10 4.800756238e-10 4.592668092e-10 3.690825816e-10 3.636658695e-10 3.698883689e-10 3.756085789e-10 2.854152508e-10 3.989335924e-10 1.858095632e-10 1.94239067e-10 3.12402861e-10 1.952636088e-10 4.040867626e-10 3.788929861e-10 3.015814807e-10 2.961665821e-10 2.949958346e-10 2.120414093e-10 2.203091354e-10 1.588932448e-10 5.52109655e-11 1.358618458e-10 2.002372833e-10 1.513947728e-10 2.141069856e-10 2.345669058e-10 8.029814564e-10 3.446218821e-10 4.038739899e-10 5.329800354e-10 6.041827898e-10 5.549035703e-10 7.164527808e-10 5.277240851e-10 3.603997875e-10 8.025241886e-10 5.52416919e-10 5.406011181e-10 5.158545153e-10 4.618175477e-10 5.725511744e-10 4.992689234e-10 6.043758234e-10 5.698316553e-10 6.204757139e-10 5.347131327e-10 6.143677624e-10 5.91951557e-10 4.708557495e-10 4.331214588e-10 3.842868392e-10 3.113182588e-10 3.709666626e-10 4.821154202e-10 3.883545744e-10 3.540681387e-10 4.708131128e-10 4.116119693e-10 3.413624402e-10 2.701203463e-10 4.698277624e-10 4.252748258e-10 4.173568101e-10 3.256609298e-10 4.790521143e-10 3.611274213e-10 4.389912257e-10 4.53197659e-10 3.699246501e-10 3.481533137e-10 3.573141145e-10 4.00540742e-10 4.382224757e-10 3.243227868e-10 4.866765224e-10 4.039212554e-10 3.482278588e-10 4.689269983e-10 4.977877245e-10 3.844690758e-10 6.084569889e-10 4.950762265e-10 6.38604506e-10 7.151619149e-10 4.617312971e-10 4.526803466e-10 3.957480368e-10 4.554067271e-10 4.682673637e-10 4.689065348e-10 5.554282985e-10 3.157039585e-10 6.15215936e-10 4.890122122e-10 4.879579829e-10 5.602771084e-10 5.781487842e-10 4.540859985e-10 3.27793953e-10 3.965507707e-10 3.326503737e-10 5.658944595e-10 5.659985087e-10 2.6566325e-10 2.499362313e-10 1.825818544e-10 1.96541868e-10 3.616810167e-10 2.754832852e-10 1.213051303e-10 2.851426284e-10 2.52531558e-10 3.320362918e-10 3.432385282e-10 3.222199382e-10 3.176777262e-10 2.969663481e-10 2.290147281e-10 4.480588165e-10 2.085668039e-10 2.452227797e-10 3.043164777e-10 2.457673375e-10 1.965822602e-10 4.023182108e-10 5.315775831e-10 4.219047153e-10 3.607008208e-10 4.347058346e-10 4.294081009e-10 2.747268882e-10 3.705515889e-10 6.38962139e-10 3.081833573e-10 3.56164137e-10 4.800442727e-10 3.226845936e-10 1.704896477e-10 2.539642184e-10 2.435639617e-10 2.128350209e-10 2.605592044e-10 2.643211796e-10 1.970271071e-10 2.564323422e-10 4.966869494e-10 4.069220704e-10 4.107887614e-10 2.352528434e-10 2.348196154e-10 1.938185642e-10 1.795255765e-10 1.94746329e-10 1.591347816e-10 2.662765989e-10 2.503451279e-10 2.258130282e-10 2.681237629e-10 1.254055114e-10 2.32553031e-10 3.132101366e-10 3.824610747e-10 2.349945045e-10 1.800442952e-10 2.300777097e-10 2.904512895e-10 3.909112263e-10 1.815657273e-10 2.214437094e-10 2.329629663e-10 2.464055053e-10 4.070097746e-10 2.260956853e-10 3.091539116e-10 1.969095787e-10 1.538173381e-10 1.914667237e-10 2.504046212e-10 2.725689197e-10 3.180437527e-10 3.697285083e-10 2.228385075e-10 1.598530428e-10 2.577898741e-10 1.939975776e-10 2.210424467e-10 2.11828085e-10 1.879412504e-10 1.186739089e-10 2.635582949e-10 1.374570499e-10 1.561189107e-10 1.143238484e-10 1.953019106e-10 1.74624242e-10 1.578174724e-10 3.856535129e-10 3.247144958e-10 2.350932537e-10 3.479538855e-10 1.768044266e-10 2.697721258e-10 9.128662856e-11 5.379235644e-11 2.075567306e-10 8.875909508e-11 1.287815521e-10 4.926990852e-11 2.000242106e-10 6.852506582e-11 5.195833655e-11 1.630439909e-10 3.444281398e-10 3.410660785e-10 1.971061103e-10 +3.323361867e-10 2.207261657e-10 6.205358184e-11 1.426593996e-10 9.971870146e-11 6.631213161e-11 3.454895242e-10 1.144877166e-10 1.256469722e-10 1.778616349e-10 1.400000569e-10 2.9012865e-10 1.961545557e-10 1.629631335e-10 1.966633319e-10 2.018854946e-10 2.293396268e-10 3.270444875e-10 1.923937747e-10 1.465659004e-10 1.197528351e-10 2.435611057e-10 2.144745159e-10 1.352703387e-10 4.013804537e-10 2.460782329e-10 3.179907375e-10 1.381318552e-10 1.758269219e-10 3.813875999e-10 2.052799578e-10 2.987561314e-10 1.606434064e-10 2.577674836e-10 3.048431704e-10 2.292364452e-10 2.443950129e-10 1.431493815e-10 1.682342672e-10 2.39122985e-10 2.443436896e-10 3.950957184e-10 2.819007968e-10 2.136943453e-10 3.058185422e-10 3.581679147e-10 1.991158633e-10 2.135613934e-10 3.590815965e-10 3.268902012e-10 2.27551843e-10 3.60126167e-10 9.015723641e-11 1.541992665e-10 2.562361196e-10 2.021002356e-10 2.545680718e-10 2.874680372e-10 2.821518414e-10 2.097709155e-10 1.320248078e-10 2.282754391e-10 2.294070851e-10 2.207179046e-10 3.007135977e-10 1.62424844e-10 2.514226023e-10 4.282005996e-10 3.58997671e-10 2.467132794e-10 2.951907123e-10 4.977022475e-10 1.66803231e-10 3.402362318e-10 1.680878045e-10 3.010780467e-10 3.000019416e-10 2.888969278e-10 1.975060888e-10 3.331100698e-10 2.391010603e-10 5.308261896e-10 3.214304416e-10 4.293161754e-10 3.876889279e-10 2.589255757e-10 4.949188041e-10 2.706985218e-10 3.364935712e-10 2.402842382e-10 3.163094848e-10 2.886142004e-10 3.122587127e-10 2.582929154e-10 2.570231429e-10 3.395386297e-10 3.131826163e-10 2.434634191e-10 2.927041675e-10 1.572797999e-10 2.932545602e-10 3.860585587e-10 1.392032834e-10 2.745344721e-10 1.090546104e-10 1.702724691e-10 1.316473113e-10 1.639897405e-10 2.807175144e-10 1.895100309e-10 1.396424374e-10 3.10231024e-10 5.648645296e-10 4.161989818e-10 5.104683737e-10 5.732118822e-10 3.444876667e-10 4.973260047e-10 4.754451563e-10 6.255974124e-10 4.770856719e-10 7.051031836e-10 5.763815981e-10 5.189326412e-10 7.243300544e-10 4.475946812e-10 5.145213609e-10 5.021384375e-10 5.474911467e-10 4.424626155e-10 6.548992057e-10 6.182776884e-10 5.65926872e-10 6.507613597e-10 4.557971743e-10 3.298508168e-10 4.448952056e-10 3.42023877e-10 3.602034842e-10 4.352585193e-10 3.311003112e-10 2.350351687e-10 3.8696907e-10 3.032571415e-10 3.777469295e-10 3.691275893e-10 3.375543111e-10 4.071217261e-10 3.641266709e-10 4.553681356e-10 1.69904281e-10 3.674149225e-10 3.809470726e-10 4.972381357e-10 3.674044187e-10 2.353404561e-10 3.914911269e-10 4.142388826e-10 4.100300475e-10 3.503596834e-10 4.262117372e-10 3.28154504e-10 5.145150054e-10 4.391244854e-10 3.943850079e-10 5.5709672e-10 5.758286136e-10 5.323269427e-10 6.952913942e-10 6.658431939e-10 4.744530982e-10 4.957676908e-10 6.413226665e-10 4.286010731e-10 5.87039149e-10 5.118116968e-10 6.815505762e-10 5.355979659e-10 5.889890474e-10 4.61577787e-10 3.801421775e-10 5.024049173e-10 3.846374962e-10 3.506887417e-10 6.826393874e-10 4.800762743e-10 5.019932743e-10 2.542158574e-10 5.413988389e-10 1.634968382e-10 1.18681482e-10 1.785879877e-10 8.389910431e-11 1.051676516e-10 1.793928333e-10 2.013194064e-10 2.197578301e-10 1.75285072e-10 2.793751169e-10 3.407908593e-10 3.932702975e-10 2.515599306e-10 3.674985935e-10 1.750782682e-10 2.462488306e-10 3.482368885e-10 2.658036869e-10 3.20949423e-10 2.137364356e-10 3.132299302e-10 4.629383909e-10 3.952858919e-10 3.753850161e-10 4.383241221e-10 4.133724713e-10 5.159504339e-10 4.88882581e-10 1.847845886e-10 2.615634251e-10 4.214755661e-10 2.318990536e-10 2.055661284e-10 3.149143689e-10 2.660129903e-10 2.833466115e-10 3.473068544e-10 1.315150826e-10 3.734515269e-10 1.965864669e-10 1.336776863e-10 2.568185223e-10 2.978097474e-10 2.915823702e-10 2.010770606e-10 1.886677522e-10 2.306651842e-10 1.571805518e-10 2.514500948e-10 1.333027286e-10 2.85632965e-10 2.384291056e-10 3.028973135e-10 2.36987806e-10 2.721705616e-10 2.409556001e-10 3.137577226e-10 2.599403278e-10 2.365468073e-10 4.165541734e-10 1.297506087e-10 3.494538911e-10 2.934539206e-10 1.291144623e-10 1.343351579e-10 3.904520668e-10 2.230603293e-10 1.821433307e-10 2.463930194e-10 2.932547673e-10 2.337364259e-10 1.925096863e-10 3.040368662e-10 9.447397317e-11 2.753248608e-10 3.763619464e-10 2.411249081e-10 2.45226174e-10 1.468480957e-10 2.367902159e-10 1.999154192e-10 1.92674191e-10 3.756449264e-10 1.211732022e-10 3.94532168e-10 4.001506446e-10 1.768810992e-10 2.388047841e-10 2.505453368e-10 1.378276951e-10 1.150446508e-10 1.186865158e-10 9.872509755e-11 3.417672461e-10 1.261425755e-10 1.330017236e-10 2.117105303e-10 1.487058022e-10 4.19678047e-10 9.327432643e-11 1.729415781e-10 1.810802278e-10 1.481434204e-10 5.593435826e-11 1.329406374e-11 4.462471723e-11 1.224426595e-10 5.955189541e-11 1.522001719e-10 1.695696795e-10 2.610829498e-10 +1.474217622e-10 3.206953218e-10 1.215374746e-10 1.202452752e-10 2.489705753e-10 1.431220871e-10 1.624529458e-10 1.681923126e-10 8.332347866e-11 1.99059631e-10 1.552678555e-10 8.887269113e-11 1.366444398e-10 1.799021708e-10 1.094412705e-10 1.213411721e-10 1.56555719e-10 1.512596773e-10 1.985666043e-10 2.532889156e-10 2.944031387e-10 3.830065609e-10 4.058283163e-10 2.592041437e-10 2.928053062e-10 3.709815455e-10 2.798140061e-10 2.189613231e-10 2.267608938e-10 3.064018098e-10 1.738676715e-10 4.54697986e-10 1.752497173e-10 2.253622352e-10 1.185007514e-10 2.94811487e-10 1.489668633e-10 2.006611513e-10 3.603195949e-10 2.487371873e-10 4.094009294e-10 2.414311131e-10 9.262390168e-11 1.595582389e-10 4.021895328e-10 4.988185462e-10 2.668428843e-10 2.447848971e-10 1.348678719e-10 3.005152713e-10 2.350734372e-10 9.535540298e-11 1.374842581e-10 1.866257611e-10 3.05158839e-10 3.041426321e-10 1.638333491e-10 3.274104311e-10 3.734552337e-10 2.064248006e-10 2.125392889e-10 3.047623176e-10 1.411345581e-10 3.361906662e-10 3.309600677e-10 1.727775034e-10 2.218868409e-10 2.11821674e-10 4.214237759e-10 2.038475537e-10 2.423470836e-10 2.146205014e-10 2.556005552e-10 2.862591416e-10 1.289282936e-10 3.422893132e-10 2.993474957e-10 2.218054944e-10 3.480929362e-10 2.485899125e-10 2.633344976e-10 1.46284058e-10 2.653061721e-10 3.113865483e-10 5.321089029e-10 3.331822441e-10 4.397220872e-10 3.856085201e-10 2.759982979e-10 2.895497474e-10 2.90238854e-10 2.806282655e-10 4.249698721e-10 2.445792576e-10 3.078480144e-10 3.537238199e-10 1.790932771e-10 2.549182509e-10 3.501756959e-10 4.163872173e-10 3.664230222e-10 3.098064577e-10 1.618764432e-10 2.421536927e-10 2.840076102e-10 1.65381588e-10 1.589660788e-10 6.889494936e-11 1.752136073e-10 1.726431965e-10 2.004229424e-10 3.287041721e-10 6.439411162e-10 4.197145931e-10 3.956252949e-10 5.083714658e-10 4.683846181e-10 4.740127036e-10 7.911039488e-10 4.022403437e-10 5.441782284e-10 3.918726092e-10 7.694031157e-10 5.830871169e-10 4.516755715e-10 5.195858328e-10 4.409610867e-10 3.966906124e-10 5.365433795e-10 4.519587588e-10 4.379741222e-10 4.84906135e-10 5.848007623e-10 5.128777467e-10 4.181678968e-10 6.133936089e-10 4.321708422e-10 5.779979722e-10 3.092138094e-10 4.980500956e-10 3.639022675e-10 3.557534122e-10 2.885639864e-10 4.141791975e-10 3.181041854e-10 3.026586247e-10 4.308968987e-10 5.30132989e-10 4.724117352e-10 5.904975987e-10 4.159957711e-10 3.46926072e-10 4.626262309e-10 2.741414948e-10 4.890207955e-10 2.75386293e-10 4.495539734e-10 3.228000449e-10 4.782091155e-10 3.212400327e-10 4.518793296e-10 3.96945918e-10 4.527422841e-10 5.150125727e-10 4.46461938e-10 5.59113491e-10 4.310764826e-10 5.9451099e-10 6.243377845e-10 5.334690989e-10 5.314323025e-10 4.604370957e-10 3.868312256e-10 3.916377657e-10 6.811838752e-10 5.880616201e-10 5.641615944e-10 3.786790984e-10 4.597922016e-10 8.174567133e-10 5.53357542e-10 5.596992417e-10 5.07350165e-10 5.942209692e-10 4.305696041e-10 5.035655994e-10 3.930440489e-10 6.345628823e-10 2.398980638e-10 1.207673543e-10 1.703895551e-10 1.602002056e-10 8.345039002e-11 1.874697183e-10 1.574490165e-10 3.019577219e-10 2.227897942e-10 2.872857508e-10 2.578862514e-10 3.727344873e-10 2.878078677e-10 2.96897612e-10 3.119752328e-10 4.713262459e-10 3.312879667e-10 3.767908298e-10 1.781204868e-10 2.420077616e-10 3.167940407e-10 3.100067553e-10 3.366852773e-10 2.514910272e-10 2.776382806e-10 2.225321397e-10 3.482339937e-10 2.077663947e-10 3.47138868e-10 2.963520697e-10 2.33275438e-10 2.51962612e-10 1.593865197e-10 2.18492632e-10 2.67329542e-10 3.20921431e-10 1.417836817e-10 2.883016856e-10 1.651723284e-10 2.583710754e-10 3.577765155e-10 2.002218794e-10 2.106262376e-10 2.090569619e-10 3.483662313e-10 4.073639382e-10 2.240631592e-10 1.683864707e-10 2.247906909e-10 2.509085406e-10 3.005790023e-10 3.020145695e-10 4.234128633e-10 3.271560842e-10 3.669307218e-10 1.899837826e-10 1.461905312e-10 4.487604214e-10 1.593156158e-10 1.750567847e-10 2.20350627e-10 1.347942256e-10 2.845762689e-10 2.922514327e-10 2.129700827e-10 2.885364849e-10 1.475205572e-10 2.122347126e-10 2.780180049e-10 1.600015888e-10 2.319431638e-10 1.707200159e-10 2.357818829e-10 2.362036558e-10 1.559862333e-10 3.019854879e-10 4.09258207e-10 9.567206265e-11 2.322031443e-10 2.750040577e-10 2.822537518e-10 2.659369324e-10 2.110342993e-10 1.046225769e-10 3.132452544e-10 1.320652931e-10 1.531053637e-10 1.398374534e-10 1.427298647e-10 1.324253494e-10 3.740727849e-10 1.128032792e-10 2.937836079e-10 3.730762824e-10 1.716733185e-10 6.254583504e-11 2.385124722e-10 2.425843928e-10 3.31329495e-10 3.2507853e-10 7.480818996e-11 1.842874129e-10 1.835213092e-10 1.438711185e-10 3.932174544e-10 1.693479783e-10 1.717105082e-10 3.834844358e-11 7.05609966e-11 2.087229197e-10 2.270769416e-10 1.40317941e-10 +8.339742005e-11 1.829734028e-10 1.404856519e-10 2.543075018e-10 9.108137458e-11 7.752463044e-11 1.55229107e-10 1.686711049e-10 1.712193917e-10 1.235809586e-10 8.123349625e-11 9.999310116e-11 2.044661886e-10 3.372608157e-10 1.658508407e-10 1.445379592e-10 2.267225104e-10 1.139606713e-10 2.650455301e-10 9.324149942e-11 2.737026606e-10 3.188601405e-10 3.152164162e-10 2.620295582e-10 1.366145375e-10 3.028812827e-10 3.50782466e-10 1.404346167e-10 2.727715702e-10 2.810251871e-10 2.36830279e-10 2.264532062e-10 2.690033541e-10 1.850085474e-10 4.360463286e-10 3.837379366e-10 3.027825199e-10 4.094810865e-10 2.387054261e-10 1.664866248e-10 2.362524414e-10 1.992908832e-10 3.578051028e-10 2.201593608e-10 1.431825559e-10 2.956377391e-10 2.563463875e-10 2.529459078e-10 2.272754561e-10 2.915092464e-10 1.621723074e-10 2.520569771e-10 1.528224206e-10 1.213944e-10 1.172070581e-10 3.609304596e-10 1.643143978e-10 2.363458544e-10 1.992807129e-10 2.625286103e-10 1.210245983e-10 3.656910635e-10 2.973854776e-10 1.687211858e-10 1.048164745e-10 3.666065418e-10 1.79826948e-10 3.143852124e-10 2.969284404e-10 2.372075099e-10 3.704633017e-10 2.68118596e-10 3.044573324e-10 3.363473292e-10 1.511828561e-10 2.222909871e-10 1.315437537e-10 2.622266991e-10 2.970008915e-10 3.813292354e-10 3.507640371e-10 3.224801841e-10 3.925612896e-10 3.929636949e-10 4.607169299e-10 4.413502934e-10 1.697576733e-10 1.778739953e-10 4.594257543e-10 2.925400982e-10 3.180544235e-10 4.409009393e-10 4.316287668e-10 2.494436689e-10 3.01684704e-10 3.517437441e-10 2.342876481e-10 3.837667844e-10 3.044015637e-10 2.931169475e-10 3.841229876e-10 2.256341166e-10 3.925086552e-10 2.379719281e-10 2.235793085e-10 1.750672689e-10 6.597886924e-11 2.73425745e-10 1.320795175e-10 2.20157236e-10 1.296622615e-10 1.925939767e-10 3.898861652e-10 6.302364261e-10 4.414838985e-10 6.970990045e-10 3.315217726e-10 4.645991579e-10 6.14243262e-10 4.875902654e-10 4.717856345e-10 4.410559695e-10 3.928230292e-10 4.384526518e-10 4.496908784e-10 4.77528035e-10 6.84679685e-10 4.866318358e-10 3.052970345e-10 4.230521141e-10 4.405613126e-10 5.682832712e-10 6.237008657e-10 5.657937993e-10 6.028715119e-10 5.57786493e-10 4.84427977e-10 4.728167252e-10 5.135916513e-10 6.345730776e-10 4.104013877e-10 4.944577114e-10 4.664971128e-10 3.458873681e-10 2.553525272e-10 4.165014454e-10 3.746595781e-10 4.875226979e-10 4.915947645e-10 3.99913395e-10 4.60543838e-10 3.695939903e-10 4.036340241e-10 4.002818794e-10 4.025033716e-10 3.573878473e-10 4.246278153e-10 4.668825834e-10 3.414719344e-10 4.345243303e-10 3.716808166e-10 3.654504286e-10 5.353505615e-10 4.696504032e-10 6.132525218e-10 6.300564664e-10 5.929834373e-10 5.892318414e-10 4.273167662e-10 4.596355745e-10 6.222076413e-10 5.81358846e-10 3.937970149e-10 5.67932792e-10 6.50281202e-10 5.844240361e-10 3.244924806e-10 2.98215107e-10 5.378818741e-10 4.404425472e-10 4.837400165e-10 3.86844571e-10 4.599797325e-10 5.726063955e-10 5.575085282e-10 4.595672136e-10 4.936960449e-10 2.022453676e-10 2.45668309e-10 9.379660012e-11 1.976531729e-10 1.368231263e-10 1.840413259e-10 9.756455911e-11 5.94613465e-11 3.292703274e-10 2.699997788e-10 2.849263035e-10 2.891648675e-10 2.905818376e-10 3.128605183e-10 3.195421776e-10 4.033334113e-10 2.502743857e-10 1.957238327e-10 3.783094847e-10 2.708851516e-10 3.62336809e-10 3.387506473e-10 3.307117856e-10 3.930353309e-10 3.761619862e-10 2.929865979e-10 2.648251084e-10 2.877643021e-10 5.101242889e-10 3.313297379e-10 3.753804107e-10 3.599399073e-10 2.667120293e-10 2.087067347e-10 2.830028345e-10 1.193517371e-10 3.479588908e-10 2.126530267e-10 1.172859539e-10 2.389627231e-10 2.503139082e-10 2.753346536e-10 1.358855935e-10 3.372639263e-10 2.625160211e-10 1.77391366e-10 2.967431783e-10 2.04368709e-10 2.012953488e-10 2.383654024e-10 2.541061379e-10 3.233824376e-10 1.898412199e-10 2.295151841e-10 1.98159822e-10 8.359825658e-11 2.645086988e-10 1.029542204e-10 3.463288449e-10 1.692171423e-10 2.246076758e-10 1.394319848e-10 2.194052182e-10 2.77414778e-10 1.241298351e-10 3.200549355e-10 1.709443784e-10 3.77025065e-10 2.250739122e-10 3.630909604e-10 2.607879358e-10 2.617901954e-10 3.55307652e-10 2.228322138e-10 3.908358766e-10 3.657661101e-10 4.234325539e-10 1.411419873e-10 2.998562928e-10 1.415980539e-10 2.327336673e-10 1.279170872e-10 2.18276363e-10 3.515364045e-10 2.370310758e-10 2.488096699e-10 3.240114698e-10 1.900585315e-10 2.242197993e-10 1.977298206e-10 2.474093229e-10 3.764073603e-10 1.270249105e-10 1.932545118e-10 2.231770362e-10 2.843258675e-10 1.855624466e-10 7.135426823e-11 8.587196931e-11 3.407150552e-10 8.954728024e-11 9.012317739e-11 3.410564921e-10 1.37342433e-10 1.403569071e-10 1.667815428e-10 4.148617671e-11 8.19736806e-11 6.606192171e-11 4.134413847e-11 1.666067825e-10 2.158279569e-10 1.577280005e-10 +6.488065569e-11 2.059121347e-10 8.841412358e-11 2.982732061e-10 1.539091297e-10 1.196418082e-10 1.678785494e-10 3.358504731e-10 1.457944629e-10 1.504384167e-10 1.421110329e-10 1.272845736e-10 1.610866307e-10 2.285727067e-10 8.124006843e-11 1.922277319e-10 1.713007309e-10 1.542806051e-10 2.277872512e-10 1.764628372e-10 3.32206087e-10 4.246454136e-10 1.735572008e-10 1.590503242e-10 2.342779937e-10 2.210252845e-10 3.339470724e-10 1.586225832e-10 4.017517243e-10 2.749236058e-10 2.51799529e-10 1.45496299e-10 2.026483894e-10 3.946373441e-10 2.570083944e-10 1.543714748e-10 1.645869753e-10 2.632427425e-10 3.205533358e-10 1.523754246e-10 3.03742839e-10 3.654084263e-10 2.106547545e-10 2.688347478e-10 2.1184879e-10 3.515361553e-10 2.149952143e-10 1.442096636e-10 4.476142811e-10 2.371732307e-10 2.749923598e-10 1.209712548e-10 1.379808987e-10 1.586088956e-10 1.799000658e-10 1.931133009e-10 2.446285239e-10 3.837127621e-10 2.355543154e-10 3.891116701e-10 1.351024765e-10 3.602946676e-10 2.766078945e-10 1.894094771e-10 2.555401312e-10 3.577435188e-10 2.088801775e-10 2.167608143e-10 3.110135654e-10 3.668481358e-10 3.672550505e-10 3.215467969e-10 2.191434718e-10 3.211013545e-10 1.857091208e-10 2.094385701e-10 3.780080733e-10 2.929146635e-10 3.040033408e-10 1.828188703e-10 4.436270657e-10 3.136107422e-10 4.8963669e-10 2.158746583e-10 3.955496635e-10 4.062933711e-10 1.994537253e-10 3.682578936e-10 4.700396581e-10 4.309082776e-10 3.2435614e-10 5.222841295e-10 1.891700867e-10 2.705910795e-10 2.944730466e-10 2.85745068e-10 3.851849565e-10 3.875649832e-10 3.376167354e-10 2.005802633e-10 2.844179082e-10 2.963922878e-10 2.644872658e-10 1.623352606e-10 1.877459656e-10 1.810403442e-10 1.822811597e-10 1.367511626e-10 3.120820666e-10 2.275930656e-10 1.891288589e-10 2.744995151e-10 1.535470124e-10 8.977256892e-10 5.642533315e-10 6.97435479e-10 5.068815297e-10 4.476064301e-10 3.410071638e-10 8.66532283e-10 5.082683346e-10 6.261640849e-10 5.887803568e-10 5.909723664e-10 5.926722832e-10 4.485622024e-10 4.543000386e-10 4.180513618e-10 4.611189884e-10 5.510472994e-10 5.598534806e-10 4.171927084e-10 5.690420172e-10 5.930770373e-10 4.798089625e-10 6.413089179e-10 6.251640123e-10 5.507266082e-10 6.229689824e-10 5.730954111e-10 4.031729681e-10 5.461078035e-10 3.301387891e-10 4.468705484e-10 3.647940186e-10 4.885229441e-10 3.505857722e-10 3.530225656e-10 4.559151876e-10 3.979679052e-10 4.364683275e-10 4.676914291e-10 4.119731044e-10 2.766978546e-10 4.307834665e-10 4.108851148e-10 5.00855248e-10 4.903276667e-10 3.904126362e-10 6.671308673e-10 4.974325237e-10 4.451505844e-10 4.628025158e-10 5.862832989e-10 4.35075015e-10 5.445492325e-10 2.864588227e-10 5.377710426e-10 6.585381988e-10 3.852529526e-10 4.84730007e-10 3.889190669e-10 3.288183961e-10 4.447465289e-10 3.817962243e-10 4.321396443e-10 6.238001765e-10 4.164101486e-10 5.193033346e-10 5.719216924e-10 7.049452723e-10 6.38992998e-10 5.218928276e-10 4.539990188e-10 8.373225122e-10 6.332265169e-10 1.872809684e-10 2.429702782e-10 2.604757822e-10 1.29904654e-10 1.051500424e-10 1.434154141e-10 1.785765037e-10 1.812752459e-10 3.034607049e-10 3.246890046e-10 2.514417009e-10 1.300188309e-10 2.074784165e-10 2.91940079e-10 3.177227905e-10 2.899215888e-10 3.150444708e-10 2.866415063e-10 3.804383974e-10 2.857871832e-10 3.16728169e-10 3.213068577e-10 3.899019206e-10 4.533455517e-10 4.04125031e-10 4.219307729e-10 3.381120134e-10 3.756451238e-10 3.026970212e-10 4.184319036e-10 2.503307204e-10 3.350154005e-10 2.655368363e-10 2.499455453e-10 1.987488971e-10 4.172910594e-10 1.392256922e-10 1.393875536e-10 1.559859046e-10 2.471976067e-10 2.387361182e-10 3.639051004e-10 3.19389474e-10 3.6826504e-10 2.270005743e-10 3.570560889e-10 3.302733237e-10 2.704150962e-10 2.67610023e-10 3.633994429e-10 3.196941734e-10 1.337876247e-10 3.080259496e-10 2.488985466e-10 3.806731483e-10 3.059931095e-10 2.562789858e-10 2.564302766e-10 1.399059111e-10 2.803901202e-10 2.366693755e-10 2.314619536e-10 2.145874859e-10 2.249662539e-10 1.590187996e-10 1.950029329e-10 2.614310301e-10 2.691083512e-10 1.615589064e-10 2.469410944e-10 1.353080973e-10 1.08560468e-10 3.578563764e-10 1.27847135e-10 1.484489686e-10 3.690373756e-10 4.314042318e-10 4.484746486e-10 5.34909993e-10 2.519590377e-10 2.056198061e-10 3.286359687e-10 3.692854399e-10 3.141863526e-10 1.191613996e-10 2.113618374e-10 1.727297339e-10 3.834368129e-10 5.581855537e-11 2.425256572e-10 2.266581455e-10 2.281691661e-10 2.166865299e-10 1.528009518e-10 7.913778062e-11 2.385576579e-10 2.651319022e-10 3.380011451e-10 2.880474747e-10 3.396645075e-10 1.785817635e-10 1.547113342e-10 2.840477168e-10 1.086734211e-10 1.222645293e-10 3.306751493e-10 3.806074195e-10 1.257498689e-10 3.670176618e-10 6.80251759e-11 1.825656368e-10 2.955373986e-10 2.576495409e-10 2.332459516e-10 +2.831383152e-10 1.3891656e-10 1.928655172e-10 2.377385953e-10 3.969493155e-10 2.614320866e-10 2.130964944e-10 8.487246097e-11 1.727535352e-10 1.141313073e-10 9.520222148e-11 1.400957105e-10 1.324754533e-10 1.290352351e-10 7.584807093e-11 1.459893508e-10 4.172909818e-10 1.604515709e-10 1.37517659e-10 4.798144793e-10 3.17805044e-10 3.795442202e-10 1.549615751e-10 3.273144037e-10 2.37639376e-10 1.060179616e-10 1.254663879e-10 5.480053389e-11 1.569088672e-10 4.704118544e-10 1.536657504e-10 1.320158612e-10 2.356987613e-10 1.422684639e-10 3.78477423e-10 1.906463692e-10 4.515696622e-10 2.491103414e-10 2.180163856e-10 1.485568868e-10 1.780844723e-10 2.996054365e-10 1.243322684e-10 4.024146911e-10 9.858406595e-11 3.999585888e-10 2.415874012e-10 3.068413837e-10 1.573946373e-10 1.267153624e-10 2.333199062e-10 1.419093052e-10 1.05876808e-10 3.184320988e-10 1.799214789e-10 1.824643026e-10 3.172479455e-10 2.478765128e-10 4.175619728e-10 3.432592437e-10 1.578871759e-10 1.771057739e-10 2.267571322e-10 1.539287562e-10 3.569797511e-10 7.574481116e-11 2.232341609e-10 2.983641419e-10 3.384222718e-10 3.206322503e-10 2.490111205e-10 2.344265072e-10 2.458721069e-10 2.155712844e-10 1.632398778e-10 1.503563123e-10 2.416681613e-10 1.377753136e-10 1.473685755e-10 2.365711262e-10 2.942763796e-10 2.900737753e-10 4.686372012e-10 4.320171951e-10 5.67919324e-10 2.480163111e-10 3.196125549e-10 3.646685344e-10 3.115643202e-10 3.419066033e-10 4.005466068e-10 3.416524422e-10 5.209815441e-10 2.930499976e-10 2.616538612e-10 3.144441783e-10 3.025192289e-10 2.667339907e-10 1.720593725e-10 3.01102499e-10 3.795283527e-10 1.715782319e-10 2.342362992e-10 2.909451102e-10 2.613591429e-10 2.452946327e-10 1.7119632e-10 1.313371482e-10 8.766316287e-11 1.501211848e-10 1.708333511e-10 2.858869696e-10 2.840036314e-10 2.082157875e-10 3.553834495e-10 6.288333315e-10 6.656243863e-10 5.767152603e-10 6.152306051e-10 6.57320646e-10 5.778633939e-10 4.221999877e-10 5.817769294e-10 4.550853324e-10 5.406786743e-10 5.564890367e-10 4.267277105e-10 4.358726818e-10 3.512739507e-10 3.614551534e-10 3.044442766e-10 4.565260196e-10 3.853700272e-10 5.197119505e-10 6.776800712e-10 4.251658684e-10 6.869407653e-10 3.734071148e-10 7.18033608e-10 4.349337319e-10 3.725385774e-10 4.789298342e-10 4.836313611e-10 6.048820995e-10 4.022163915e-10 4.01438668e-10 4.777873178e-10 4.171621311e-10 4.266978356e-10 4.008755641e-10 4.822285271e-10 3.954387462e-10 4.360597619e-10 3.303058087e-10 4.1037619e-10 4.717613105e-10 6.612762027e-10 4.399981695e-10 5.548104565e-10 4.768101024e-10 5.258553864e-10 5.581287944e-10 3.793990662e-10 4.388481553e-10 6.083287004e-10 4.566220731e-10 4.856548136e-10 6.363713699e-10 2.905945237e-10 3.134553098e-10 5.938831397e-10 6.384592166e-10 3.438861264e-10 4.7644481e-10 6.035621134e-10 6.536729335e-10 6.71128868e-10 7.524160914e-10 5.789194574e-10 3.542108949e-10 6.854160992e-10 6.870731981e-10 3.14514506e-10 4.618100179e-10 4.597013598e-10 7.623309948e-10 1.382820662e-10 2.356920989e-10 2.602407909e-10 1.400236604e-10 1.463349833e-10 9.023521093e-11 3.515512523e-11 1.737565647e-10 1.681276727e-10 2.741866595e-10 2.29443379e-10 2.998617197e-10 3.725014278e-10 2.832178832e-10 2.135994914e-10 2.40489587e-10 3.534581638e-10 2.709744624e-10 3.434786265e-10 3.143316793e-10 3.19978037e-10 2.633299533e-10 3.624550122e-10 3.471616688e-10 2.710727642e-10 3.413956436e-10 4.930289697e-10 3.542106049e-10 3.662036506e-10 3.678095835e-10 3.277870962e-10 2.949611151e-10 2.706530618e-10 3.991389121e-10 1.511214907e-10 3.792350787e-10 1.97019816e-10 2.198200117e-10 2.726740647e-10 1.672498048e-10 2.02052493e-10 1.833978523e-10 1.860961295e-10 2.760062918e-10 1.924443048e-10 2.998902277e-10 2.295121397e-10 3.385626801e-10 1.762879737e-10 2.340498153e-10 1.437932012e-10 2.620623236e-10 2.03344991e-10 1.989675217e-10 2.3311725e-10 2.734415054e-10 2.924773931e-10 2.013716542e-10 2.15983283e-10 2.573328356e-10 3.891394482e-10 2.515453566e-10 3.689744745e-10 2.586927059e-10 2.982762371e-10 2.860281453e-10 3.212633938e-10 3.058202637e-10 3.725857613e-10 1.925010367e-10 6.678131861e-11 1.512891714e-10 2.968991522e-10 2.51969897e-10 2.789149397e-10 4.185342915e-10 1.341616651e-10 2.73089335e-10 2.301952576e-10 3.107619144e-10 2.314487002e-10 2.320623926e-10 1.731451832e-10 2.122641501e-10 2.509910752e-10 1.454880606e-10 2.091463684e-10 3.062335488e-10 2.117681768e-10 2.817711793e-10 3.883568474e-10 5.114043218e-10 2.428476554e-10 1.517137681e-10 8.281087912e-11 2.531663748e-10 1.245069921e-10 1.379833682e-10 1.894940548e-10 2.130288968e-10 1.363105583e-10 1.652340971e-10 1.240336274e-10 1.369072267e-10 1.822230241e-10 1.624737639e-10 1.789658883e-10 1.78875553e-10 1.310914052e-10 9.634367598e-11 1.268536028e-10 1.653275705e-10 4.020269517e-10 1.370914181e-10 +1.264572887e-10 1.224236012e-10 1.444438403e-10 1.830070797e-10 1.823513103e-10 1.614999971e-10 1.712816972e-10 1.852442809e-10 1.030113807e-10 1.309584429e-10 1.123078111e-10 1.213855791e-10 1.228341591e-10 1.760544334e-10 2.241197444e-10 1.555053075e-10 2.08903978e-10 4.003444189e-10 1.680034669e-10 4.534606148e-10 2.279764627e-10 2.616701741e-10 2.157414285e-10 3.561212353e-10 1.496796625e-10 2.673100104e-10 3.667147692e-10 2.069926509e-10 2.103384227e-10 2.103148033e-10 1.219206598e-10 1.517805408e-10 1.87236922e-10 3.063841583e-10 1.632207131e-10 2.615135826e-10 2.034875883e-10 4.322901829e-10 2.30883452e-10 2.71331604e-10 3.122677959e-10 2.708784209e-10 1.856880914e-10 1.846338529e-10 1.75727743e-10 4.496669903e-10 3.126796414e-10 3.223237401e-10 3.389413201e-10 1.546156827e-10 2.344443836e-10 2.657168058e-10 3.310460185e-10 1.713848985e-10 3.876673946e-10 1.479145867e-10 3.187149274e-10 1.88851418e-10 2.788277548e-10 3.905376366e-10 2.50538647e-10 1.484195675e-10 1.364143946e-10 3.849805437e-10 2.448333491e-10 3.017655909e-10 2.950519325e-10 2.138635941e-10 2.161493314e-10 2.472464009e-10 7.680530588e-11 3.603837558e-10 2.538995008e-10 2.664361306e-10 1.851565369e-10 9.685984076e-11 2.034122284e-10 3.600056713e-10 2.163609237e-10 3.131621087e-10 3.409309358e-10 3.073144666e-10 5.050294962e-10 5.017031193e-10 2.685664037e-10 4.62938871e-10 3.83800671e-10 2.40833232e-10 3.680660518e-10 4.31487241e-10 4.035777351e-10 2.100695437e-10 3.306762389e-10 3.42083496e-10 3.619239952e-10 3.016868807e-10 3.370764089e-10 3.975021422e-10 2.855983384e-10 2.997113438e-10 1.879844415e-10 2.509893289e-10 3.086989108e-10 2.340504707e-10 1.897128689e-10 1.681031378e-10 2.46285504e-10 1.252404843e-10 1.512087698e-10 9.994848697e-11 1.725355932e-10 2.460880487e-10 1.930043396e-10 2.095763841e-10 4.401137796e-10 2.755417934e-10 4.598624271e-10 8.400340217e-10 4.098612245e-10 4.248343599e-10 3.972154884e-10 7.119753235e-10 5.381072465e-10 2.947233259e-10 6.563815406e-10 6.111442873e-10 4.960052583e-10 6.364391313e-10 5.250880096e-10 3.250881501e-10 5.032639795e-10 4.775995971e-10 4.887312622e-10 2.894781808e-10 5.342703093e-10 4.627851314e-10 7.269316837e-10 5.232258616e-10 7.616048373e-10 4.795840794e-10 5.822221847e-10 3.907705521e-10 3.790430474e-10 5.749778267e-10 5.571409603e-10 5.207910285e-10 5.604913462e-10 3.411168903e-10 5.269140366e-10 4.342181646e-10 6.040083937e-10 3.49940018e-10 5.022426045e-10 4.519130507e-10 3.691499388e-10 3.693143892e-10 6.793644185e-10 5.641581498e-10 4.590116436e-10 5.870063029e-10 7.522420899e-10 5.600259029e-10 4.594214696e-10 5.884376516e-10 4.836931849e-10 4.428795497e-10 3.10937965e-10 5.314599339e-10 4.89993215e-10 3.124690857e-10 4.091416016e-10 4.003154225e-10 2.58685273e-10 5.380389607e-10 2.781109784e-10 4.522013842e-10 4.633998145e-10 6.620562589e-10 4.88191512e-10 5.949286078e-10 6.014820453e-10 4.592750253e-10 6.354372721e-10 4.816144615e-10 3.84034194e-10 4.645084114e-10 1.851611587e-10 2.82311215e-10 2.900840746e-10 1.508896781e-10 1.226249733e-10 5.513589812e-11 1.04259225e-10 1.952626129e-10 2.514788309e-10 2.557202031e-10 2.042898504e-10 3.379720546e-10 2.734049738e-10 4.598538084e-10 2.819143804e-10 2.492146885e-10 3.212948735e-10 2.962501401e-10 3.760045657e-10 3.749070244e-10 2.178593883e-10 3.210991017e-10 3.3515606e-10 3.484204492e-10 2.908443395e-10 2.961031927e-10 2.371508841e-10 5.52478044e-10 2.770866899e-10 2.403522296e-10 3.555328053e-10 3.258153791e-10 2.333808493e-10 2.977968e-10 1.203449016e-10 3.085353005e-10 1.392393812e-10 1.962919697e-10 3.84231405e-10 1.678680763e-10 2.232204163e-10 1.804684981e-10 2.89727674e-10 3.167962066e-10 3.182724603e-10 2.785144337e-10 4.385107275e-10 1.549440336e-10 3.284697544e-10 2.09155156e-10 2.02371048e-10 2.368549866e-10 1.740496285e-10 3.223298271e-10 3.249638045e-10 2.516279972e-10 1.250050997e-10 2.714425562e-10 3.803088782e-10 3.626030761e-10 1.28130744e-10 3.949056003e-10 2.891341028e-10 2.24826322e-10 2.828451608e-10 2.189798534e-10 1.867633188e-10 6.390584797e-11 9.828949616e-11 1.085659686e-10 2.490878856e-10 9.014738447e-11 4.585998327e-10 3.037309404e-10 1.749430543e-10 3.059263043e-10 2.753649642e-10 2.096814024e-10 2.534289979e-10 2.960083617e-10 2.73450457e-10 2.384368506e-10 3.020370104e-10 3.08777104e-10 2.357414402e-10 1.987344623e-10 4.604210967e-10 2.520533794e-10 3.305234264e-10 4.800313297e-10 5.983696734e-11 1.968869934e-10 2.426277813e-10 2.84664955e-10 2.200518242e-10 2.385956933e-10 4.094037478e-10 1.643766977e-10 2.67054438e-10 2.181821868e-10 7.700923337e-11 2.013197144e-10 4.053309834e-10 1.888735549e-10 2.287868604e-10 1.939035886e-10 2.504758738e-10 1.522877198e-10 1.506856721e-10 3.362176019e-10 1.554955683e-10 1.856974866e-10 3.557654796e-10 2.584312634e-10 +1.553931707e-10 1.33460433e-10 1.89989653e-10 3.048111888e-10 9.096748592e-11 2.995771131e-10 7.593193332e-11 3.097410824e-10 7.788217613e-11 9.680965146e-11 2.82336712e-10 2.082761924e-10 2.776493565e-10 2.03088966e-10 3.666366982e-10 3.180142787e-10 3.303657938e-10 2.318366742e-10 6.922836871e-11 1.78287793e-10 3.435715444e-10 2.38399537e-10 2.73886109e-10 1.8552938e-10 2.569025616e-10 1.965387732e-10 1.97973487e-10 2.729541386e-10 2.374948238e-10 2.850594496e-10 1.423013992e-10 1.975323373e-10 3.250649415e-10 1.684664173e-10 1.160423215e-10 2.373572234e-10 1.788692138e-10 3.931048984e-10 2.639841978e-10 2.474641116e-10 2.946224704e-10 1.726939541e-10 2.588609152e-10 2.138948159e-10 4.063583857e-10 2.017472806e-10 3.41472785e-10 2.17786345e-10 2.965954301e-10 4.0419611e-10 2.702254553e-10 3.009418384e-10 6.208136992e-11 9.721426463e-11 3.689333094e-10 2.586159713e-10 3.099532581e-10 3.344768676e-10 2.614750076e-10 2.435558271e-10 3.471992503e-10 1.964529038e-10 1.584399886e-10 2.348731874e-10 2.946891078e-10 2.302773208e-10 2.604937731e-10 3.290722122e-10 9.937224198e-11 1.388560682e-10 2.070456124e-10 2.322029862e-10 3.656104382e-10 2.106710635e-10 1.581702638e-10 2.371537237e-10 2.569702033e-10 1.752411083e-10 2.914597771e-10 1.773837859e-10 2.033332497e-10 2.880312946e-10 3.886946857e-10 4.225155434e-10 4.557880869e-10 4.628411028e-10 3.069960701e-10 3.563161631e-10 2.449999555e-10 2.39653367e-10 4.102139461e-10 2.547834007e-10 2.62510003e-10 3.999161724e-10 2.729824349e-10 2.219233693e-10 3.299586896e-10 3.822193179e-10 3.486510519e-10 4.522033168e-10 4.288349006e-10 3.113601499e-10 3.010812651e-10 3.98355751e-10 2.217935446e-10 2.672980458e-10 1.63185072e-10 1.076477783e-10 1.404884523e-10 1.394143787e-10 1.794775508e-10 1.519586491e-10 2.26758348e-10 1.705251799e-10 1.738229655e-10 2.386358785e-10 3.351653043e-10 6.647334947e-10 5.478057435e-10 5.75960477e-10 4.132764111e-10 3.822440831e-10 5.403341789e-10 4.497524483e-10 6.49891364e-10 3.745400368e-10 5.557044101e-10 4.424173727e-10 4.431748899e-10 5.157989069e-10 4.153553274e-10 5.268183069e-10 6.082863865e-10 4.592071451e-10 4.081275781e-10 3.908960934e-10 4.962568034e-10 5.991373157e-10 7.221624391e-10 4.87429868e-10 6.860432141e-10 8.684311099e-10 6.202428473e-10 5.282384754e-10 4.686676096e-10 4.661077272e-10 4.386022756e-10 4.651249729e-10 4.670833029e-10 5.222422838e-10 5.149724118e-10 4.287346901e-10 4.215671719e-10 5.638342295e-10 4.646877028e-10 5.673418549e-10 3.974183662e-10 5.57593425e-10 5.628356379e-10 6.54704442e-10 6.728814484e-10 5.513687564e-10 4.167019913e-10 7.059761324e-10 1.35212275e-10 4.953279644e-10 5.482601454e-10 5.740123249e-10 5.083719738e-10 5.362354887e-10 4.235453966e-10 4.148009425e-10 4.127684696e-10 3.593398903e-10 7.740535746e-10 3.393639843e-10 3.596098111e-10 4.300832969e-10 5.632947491e-10 3.540865925e-10 3.443503279e-10 5.073860204e-10 4.774462467e-10 4.710028024e-10 4.130419044e-10 2.510423243e-10 1.908663053e-10 2.12518956e-10 2.025708563e-10 1.521360563e-10 7.717385369e-11 3.118297981e-10 9.954846679e-11 2.36296195e-10 1.999186286e-10 1.860554754e-10 2.650078177e-10 2.93538737e-10 2.303744342e-10 4.128124316e-10 2.139218221e-10 1.702835962e-10 1.938796754e-10 4.321472739e-10 4.806058154e-10 3.793567421e-10 2.555414003e-10 3.785517318e-10 4.284494569e-10 3.282272869e-10 4.639438914e-10 4.413332956e-10 2.723917535e-10 2.452050547e-10 4.629331133e-10 2.879347342e-10 3.058527748e-10 3.770731414e-10 3.677795265e-10 1.47552704e-10 1.946408145e-10 1.224443769e-10 2.377996129e-10 2.821213438e-10 1.981602629e-10 1.129412489e-10 1.323128055e-10 1.347707597e-10 2.778749778e-10 2.55780856e-10 2.445141999e-10 2.888501734e-10 3.156291259e-10 3.49169809e-10 1.796830935e-10 8.800152099e-11 2.186030232e-10 2.053461874e-10 3.277986434e-10 2.810222686e-10 2.342225483e-10 1.670658461e-10 2.599625154e-10 3.429207982e-10 1.836871597e-10 2.363205937e-10 1.53860369e-10 3.012353566e-10 3.602456615e-10 3.674691866e-10 3.364771448e-10 3.464376011e-10 2.704622841e-10 1.63610294e-10 2.137484265e-10 2.876543311e-10 2.478615004e-10 2.071006647e-10 2.212085797e-10 2.451593811e-10 9.468960532e-11 2.383161777e-10 1.020852504e-10 9.348131444e-11 2.078835154e-10 2.051204369e-10 1.344772424e-10 2.749556084e-10 2.867171886e-10 3.519841629e-10 1.563932101e-10 2.813434692e-10 1.725283052e-10 3.573687005e-10 1.810991211e-10 3.985914604e-10 2.337031279e-10 2.005708685e-10 2.213862678e-10 2.917764631e-10 3.592754212e-10 2.20412147e-10 3.005343178e-10 3.15595037e-10 2.727513384e-10 2.902117519e-10 1.29630679e-10 1.377497418e-10 8.640059372e-11 1.644802229e-10 1.029046455e-10 1.373134545e-10 1.242346852e-10 1.83439937e-10 2.154412471e-10 1.846179926e-10 4.035722497e-10 1.071250475e-10 2.187238917e-10 1.091882838e-10 +1.864405502e-10 3.112965243e-10 2.132701028e-10 7.737566316e-11 3.691335769e-10 1.191719993e-10 2.347452136e-10 2.032645531e-10 4.099490842e-10 1.326085326e-10 2.400860297e-10 3.012577975e-10 1.785957982e-10 2.311320896e-10 2.774296404e-10 2.190729765e-10 2.703967452e-10 2.369236912e-10 1.464326587e-10 1.515990361e-10 2.36916318e-10 2.3299173e-10 1.636618996e-10 1.976955752e-10 1.184376335e-10 2.26075607e-10 2.448022925e-10 2.99066612e-10 3.063217493e-10 3.118810361e-10 2.602800785e-10 4.739913369e-10 1.828358774e-10 4.313894733e-10 1.717770825e-10 1.21228076e-10 1.859750885e-10 1.818760649e-10 3.418336274e-10 2.907020087e-10 2.580125549e-10 3.188460588e-10 2.081850495e-10 4.0437982e-10 7.906194655e-11 2.123458277e-10 1.496879014e-10 3.592373939e-10 1.040372606e-10 2.623079168e-10 1.428442576e-10 3.014270779e-10 2.154983393e-10 1.682803177e-10 2.913142098e-10 2.565058399e-10 1.692325876e-10 3.448521422e-10 1.478292896e-10 2.121201055e-10 2.907717801e-10 2.916820208e-10 3.479932972e-10 4.335817004e-10 2.661152456e-10 3.468307302e-10 2.910465897e-10 3.052603434e-10 3.46068428e-10 2.212987733e-10 1.769652957e-10 3.156741709e-10 1.598538488e-10 2.720655548e-10 2.596264353e-10 1.803875181e-10 1.272216204e-10 2.069313165e-10 2.088539434e-10 2.60287493e-10 3.3574936e-10 2.326273527e-10 2.742368479e-10 3.686563502e-10 4.360493594e-10 3.2636874e-10 3.216272032e-10 3.3439437e-10 3.044952922e-10 4.107859639e-10 2.698829219e-10 3.305207672e-10 3.776850991e-10 4.395770159e-10 3.546168301e-10 2.675483279e-10 2.344962522e-10 2.400168566e-10 2.031208214e-10 2.734332284e-10 2.981168466e-10 2.838761644e-10 3.785460218e-10 3.728593317e-10 2.750251135e-10 2.127397694e-10 1.48255694e-10 1.428337907e-10 1.753956433e-10 1.231323935e-10 1.316740565e-10 1.304371513e-10 2.042829495e-10 2.440713916e-10 1.719278422e-10 1.258410986e-10 7.527363138e-10 4.462883366e-10 5.573099902e-10 4.957609564e-10 5.207822026e-10 5.512348957e-10 7.4289117e-10 5.927217506e-10 3.704335035e-10 6.244961823e-10 3.865717317e-10 4.811159926e-10 4.986770256e-10 5.848692865e-10 3.772037426e-10 3.449175557e-10 5.210736992e-10 3.443552394e-10 5.41838917e-10 4.087774525e-10 4.336131759e-10 5.924960378e-10 3.713023431e-10 5.881670098e-10 5.426952575e-10 5.211867747e-10 3.118386067e-10 4.8368867e-10 5.652542815e-10 4.06152186e-10 3.105445544e-10 7.506657697e-10 4.821148054e-10 5.954013637e-10 5.979790675e-10 4.647527787e-10 5.060541088e-10 4.663130692e-10 4.994712217e-10 6.631088818e-10 5.506073551e-10 5.232549672e-10 4.151446039e-10 5.400879035e-10 6.934542713e-10 7.480690988e-10 4.375991962e-10 5.143048788e-10 3.395451711e-10 2.819241684e-10 4.557717407e-10 4.348017158e-10 4.998875427e-10 4.413709313e-10 4.641869201e-10 2.944303605e-10 3.718883246e-10 6.65350898e-10 4.972338135e-10 5.89974955e-10 4.632556264e-10 8.447385488e-10 8.387252041e-10 4.924929143e-10 3.385275652e-10 4.405100642e-10 4.446919997e-10 2.936922667e-10 5.308727091e-10 1.8974264e-10 1.838139313e-10 2.77199466e-10 2.01066347e-10 3.69754429e-11 5.067023095e-11 2.038830215e-10 1.905213272e-10 2.434788514e-10 2.247446026e-10 3.335482383e-10 3.02525133e-10 2.142646732e-10 3.091350842e-10 2.835218535e-10 3.797320994e-10 2.714625867e-10 3.873009933e-10 2.61538923e-10 3.057052515e-10 3.347102716e-10 4.131033963e-10 4.185014172e-10 2.480312949e-10 2.633593973e-10 3.497467256e-10 3.342640394e-10 3.899836247e-10 3.018800948e-10 3.633574339e-10 3.815004835e-10 2.991246722e-10 2.801302344e-10 4.347714696e-10 2.913643327e-10 1.91799254e-10 1.913450843e-10 2.77295909e-10 3.345735371e-10 2.404271645e-10 2.364764556e-10 2.76677981e-10 2.348362521e-10 2.1540111e-10 1.631003706e-10 4.303459967e-10 2.607039205e-10 3.237048166e-10 3.380210726e-10 1.985932648e-10 2.119699708e-10 1.665068175e-10 2.152882018e-10 1.349647824e-10 2.669272178e-10 4.180118199e-10 4.106493035e-10 2.697172478e-10 1.546727561e-10 1.523498459e-10 3.325694176e-10 4.17726911e-10 2.49014016e-10 2.855761745e-10 1.165425844e-10 1.717545143e-10 4.206701325e-10 2.111823824e-10 3.083246493e-10 1.351357635e-10 3.438321577e-10 1.583470214e-10 3.71329003e-10 1.629152991e-10 4.13199967e-10 2.218311839e-10 4.013414258e-10 1.936613272e-10 2.393655352e-10 3.82001664e-10 3.321835151e-10 2.292102774e-10 3.192495949e-10 4.286767376e-10 3.487289896e-10 3.514554575e-10 2.194841329e-10 2.417261335e-10 3.164671189e-10 2.063460562e-10 2.235978701e-10 4.747515033e-10 1.975057693e-10 4.214237655e-10 4.334828244e-10 2.326473268e-10 1.90976524e-10 1.623655027e-10 1.733707797e-10 1.249606882e-10 1.068364035e-10 1.904328812e-10 2.185760495e-10 3.168102337e-10 3.860228475e-10 2.876048398e-10 2.608760322e-10 2.809226413e-10 1.626260405e-10 2.646927714e-10 1.080728532e-10 1.249755717e-10 2.86597392e-10 2.029266676e-10 3.534816959e-10 +1.033523597e-10 1.691153723e-10 2.525666657e-10 2.077820701e-10 3.384851547e-10 1.76996383e-10 1.509546216e-10 9.044086773e-11 3.089784378e-10 1.846748061e-10 2.770802578e-10 3.201081071e-10 3.095395724e-10 2.625285238e-10 2.161577721e-10 1.197356472e-10 1.679291681e-10 1.39915384e-10 1.426860964e-10 3.536327431e-10 2.30233076e-10 2.064738472e-10 3.739414997e-10 3.648459999e-10 1.037566457e-10 2.78068446e-10 1.997450519e-10 2.513389145e-10 2.496172043e-10 3.746155766e-10 2.814456205e-10 2.874170288e-10 2.519287517e-10 2.255963437e-10 2.168585886e-10 2.63263687e-10 3.10311675e-10 1.551204279e-10 2.532555231e-10 4.330537549e-10 2.982041496e-10 3.308932383e-10 2.621456414e-10 2.884951101e-10 2.213163492e-10 1.10186549e-10 1.329091587e-10 9.147982892e-11 1.661782243e-10 2.19349309e-10 1.390805711e-10 2.163869553e-10 2.279440239e-10 4.276669145e-10 1.3678687e-10 1.555495921e-10 9.618751256e-11 2.714683012e-10 1.938488771e-10 1.726159692e-10 3.129636681e-10 2.138036311e-10 2.069426049e-10 2.228179321e-10 2.545183368e-10 2.907388864e-10 3.972658352e-10 2.441080883e-10 2.515236259e-10 4.536448386e-10 1.784661259e-10 2.91812547e-10 1.389450534e-10 2.069324956e-10 2.304287913e-10 2.653103279e-10 2.066114305e-10 1.39563374e-10 2.780852506e-10 2.469328976e-10 3.474612639e-10 1.546697529e-10 3.011090508e-10 2.933701262e-10 2.49090547e-10 3.521534455e-10 3.447094889e-10 4.526759409e-10 3.94826935e-10 3.713929438e-10 4.498673555e-10 4.4018606e-10 4.754879202e-10 4.064954549e-10 3.298990316e-10 2.353085539e-10 3.730732403e-10 3.469535065e-10 4.255099864e-10 2.371229341e-10 2.709347889e-10 2.167311465e-10 3.387408075e-10 3.404188143e-10 2.256375854e-10 2.873229563e-10 8.161490833e-11 1.998246024e-10 1.710673578e-10 9.626411727e-11 4.532214644e-11 2.048568086e-10 1.695573608e-10 2.372824216e-10 1.579286568e-10 3.11442347e-10 2.216652793e-10 4.909702719e-10 3.947867289e-10 5.225326939e-10 4.456137012e-10 6.676531433e-10 4.671001856e-10 4.519537937e-10 7.326017741e-10 3.973342594e-10 4.968286202e-10 7.163235101e-10 3.911963796e-10 3.626741817e-10 4.529744401e-10 3.612160756e-10 4.285867462e-10 6.964458314e-10 3.092039284e-10 4.098743766e-10 4.238232414e-10 5.175544241e-10 4.493297945e-10 5.77876854e-10 6.230261701e-10 4.261251266e-10 4.326673615e-10 6.017373922e-10 5.817294919e-10 5.92301353e-10 5.657091881e-10 4.910987112e-10 6.731150257e-10 4.377849209e-10 4.158358796e-10 6.172868043e-10 4.358572702e-10 4.927375867e-10 4.450683747e-10 5.74592818e-10 5.506764176e-10 4.619034597e-10 4.237890611e-10 4.083715077e-10 5.579295855e-10 3.361108472e-10 4.292255107e-10 3.800216982e-10 3.15900816e-10 3.615976778e-10 7.740599525e-10 5.856670325e-10 3.77822553e-10 4.727700611e-10 4.616720784e-10 3.59041666e-10 4.79987664e-10 6.550113412e-10 5.49506256e-10 5.881639853e-10 4.534753932e-10 5.838884271e-10 4.791693479e-10 5.241164285e-10 4.511200807e-10 4.649563867e-10 2.636742401e-10 8.586950428e-10 1.680461647e-10 1.833399026e-10 2.610283968e-10 2.716939676e-10 1.338127542e-10 1.083105144e-10 2.275059427e-10 2.666791958e-10 2.785128824e-10 2.774855913e-10 1.726262182e-10 3.529163714e-10 2.684778144e-10 2.633610716e-10 1.726204397e-10 2.832821007e-10 2.59538716e-10 2.699727284e-10 2.677742543e-10 2.655943352e-10 3.637283602e-10 3.211386135e-10 3.088391759e-10 3.884541362e-10 3.66999252e-10 3.287252979e-10 2.601629774e-10 3.19856071e-10 2.540625238e-10 2.563750951e-10 3.09216754e-10 2.912146176e-10 2.55357196e-10 3.784728197e-10 3.343793905e-10 2.218364391e-10 1.188361241e-10 1.871842063e-10 1.668856338e-10 1.482168739e-10 2.079437329e-10 1.089995499e-10 1.964040878e-10 1.468324812e-10 1.27518955e-10 3.409568344e-10 2.346649607e-10 3.817142463e-10 3.513766661e-10 3.437565624e-10 3.571271151e-10 2.791046516e-10 1.72790712e-10 2.500214114e-10 2.156529947e-10 1.487014432e-10 1.776612818e-10 1.934862647e-10 2.476909066e-10 7.16084093e-11 1.338588777e-10 2.05235126e-10 3.536389118e-10 2.170346705e-10 1.770827004e-10 2.287495983e-10 1.120675699e-10 1.892582087e-10 2.402348114e-10 1.796101383e-10 2.826133613e-10 3.829666453e-10 1.70846284e-10 2.511632376e-10 1.560148191e-10 1.226063994e-10 1.459192543e-10 1.783346583e-10 2.403455727e-10 3.191471771e-10 2.496998848e-10 4.133264992e-10 2.211790516e-10 2.321329418e-10 2.457581815e-10 2.676616268e-10 2.768892247e-10 2.474530329e-10 1.174881046e-10 1.682509902e-10 2.588438501e-10 1.19411741e-10 4.796692523e-10 2.919858318e-10 2.919874932e-10 3.436973763e-10 1.306224075e-10 4.169956373e-10 4.277478817e-10 2.792916622e-10 3.188548868e-10 1.896557438e-10 2.414812804e-10 1.237676402e-10 1.218679713e-10 8.486213873e-11 2.665927768e-10 4.275405401e-10 2.538609502e-10 2.489668837e-10 1.665853571e-10 1.547445839e-10 1.817052949e-10 2.002899937e-10 3.665486605e-10 4.485229371e-11 +2.483605843e-10 2.819129201e-10 2.389734308e-10 3.272951217e-10 1.793223101e-10 3.213731141e-10 2.044617903e-10 3.441320608e-10 2.165000378e-10 2.751973694e-10 2.329593853e-10 1.369358041e-10 3.071635976e-10 3.617817279e-10 2.889838976e-10 1.483760888e-10 3.126452066e-10 3.297308462e-10 3.516664028e-10 2.429294912e-10 1.364908665e-10 2.099238186e-10 2.805091997e-10 3.938183214e-10 2.946430595e-10 2.67911369e-10 2.114726118e-10 1.250030678e-10 2.268998294e-10 2.161578342e-10 2.06250226e-10 3.578978593e-10 8.987383242e-11 1.818996732e-10 4.426418977e-10 2.953286755e-10 1.058307686e-10 1.535120147e-10 3.84525677e-10 2.163566887e-10 3.1038979e-10 2.249902497e-10 1.820905719e-10 1.426518542e-10 1.018291045e-10 7.842359549e-11 1.493228118e-10 1.917791152e-10 2.049149674e-10 1.137298029e-10 2.813635127e-10 2.367530167e-10 2.338783181e-10 1.436173588e-10 1.597250419e-10 8.682916669e-11 2.091952075e-10 1.366200843e-10 2.632071444e-10 4.57995055e-10 3.054243358e-10 2.393527009e-10 2.065091718e-10 2.070071667e-10 1.225202497e-10 1.092735287e-10 3.350581358e-10 2.640833226e-10 4.611122064e-10 1.527839014e-10 2.401457932e-10 2.953680666e-10 4.062103368e-10 2.295736778e-10 1.319236829e-10 1.881520295e-10 1.867916563e-10 1.864856098e-10 3.063544921e-10 2.1013892e-10 2.420386792e-10 2.448023001e-10 4.931670242e-10 3.365558429e-10 4.305600744e-10 5.455340785e-10 3.68648093e-10 3.379087611e-10 3.288836488e-10 4.756512779e-10 4.195355559e-10 4.438647342e-10 2.671640226e-10 3.221329228e-10 3.92855385e-10 2.678477485e-10 3.38425355e-10 2.772621629e-10 3.789749618e-10 2.23895083e-10 2.868669759e-10 2.399603936e-10 3.729183521e-10 2.378482887e-10 2.114930313e-10 3.183138342e-10 2.899634704e-10 1.776134986e-10 2.014411363e-10 2.370156587e-10 2.29530008e-10 2.544356159e-10 2.499043811e-10 1.230256882e-10 1.720734483e-10 1.299716543e-10 4.145906777e-10 1.216208358e-10 3.90125703e-10 3.424251769e-10 4.046215852e-10 3.494511528e-10 5.551053537e-10 6.183019801e-10 4.194421588e-10 4.014151776e-10 2.979008743e-10 3.62091206e-10 5.043966749e-10 5.713242284e-10 3.765788002e-10 4.957862709e-10 2.064597326e-10 4.198465322e-10 4.379647346e-10 5.267073141e-10 4.273291799e-10 5.592705858e-10 3.120791238e-10 5.430174405e-10 7.407203396e-10 6.478335311e-10 5.849792787e-10 4.403082422e-10 6.09591896e-10 2.871090441e-10 3.6699265e-10 3.743346394e-10 3.671630919e-10 3.279182427e-10 5.457486167e-10 2.525380307e-10 6.172247378e-10 6.082019576e-10 5.862178054e-10 6.296014951e-10 4.22014373e-10 4.135270706e-10 4.034431109e-10 3.927623647e-10 2.847301529e-10 3.740810628e-10 3.292329456e-10 5.234541818e-10 4.70050528e-10 3.456946939e-10 5.455039961e-10 3.843003287e-10 4.866677369e-10 3.692606534e-10 4.820752728e-10 4.395227131e-10 5.106679485e-10 3.384686533e-10 5.210762803e-10 3.873456153e-10 4.659874835e-10 3.629150197e-10 5.710630946e-10 4.589966262e-10 4.820996222e-10 2.327482884e-10 1.904623578e-10 1.66410511e-10 3.530800178e-10 2.091056442e-10 1.088856279e-10 1.189691431e-10 8.425964768e-11 1.029249196e-10 1.605910749e-10 2.421702718e-10 1.761897151e-10 3.434667017e-10 2.163908192e-10 2.331280803e-10 2.56067534e-10 1.968585734e-10 3.473300283e-10 2.301088808e-10 3.39349985e-10 3.472033557e-10 2.275374684e-10 3.689441859e-10 2.666732781e-10 2.700725323e-10 3.80156785e-10 1.50244432e-10 4.072748128e-10 3.21923376e-10 4.556282336e-10 3.517417091e-10 3.078060607e-10 4.244882627e-10 3.465321677e-10 3.490844046e-10 2.763698841e-10 3.161416112e-10 3.166953613e-10 1.672051417e-10 1.365841938e-10 2.49745523e-10 2.25021516e-10 1.633082783e-10 3.309278009e-10 2.776285068e-10 1.680834111e-10 3.786956612e-10 2.889690744e-10 1.372208092e-10 2.805721777e-10 2.379796206e-10 3.510973416e-10 2.405444467e-10 2.015720446e-10 2.953851343e-10 2.601303287e-10 1.864984377e-10 2.158750603e-10 1.737532939e-10 3.648692455e-10 2.449520267e-10 1.519516292e-10 2.021638165e-10 2.226257546e-10 1.468193378e-10 2.998471058e-10 1.835998167e-10 4.89495911e-11 1.517322185e-10 2.945506017e-10 2.478510593e-10 1.540927348e-10 1.485806853e-10 1.424691689e-10 1.651852382e-10 1.436101656e-10 1.598396952e-10 2.041446177e-10 1.429875665e-10 1.517233794e-10 2.29226682e-10 1.716317719e-10 3.177758119e-10 1.509165012e-10 2.51320348e-10 1.92571332e-10 1.276099375e-10 5.446255974e-11 1.179491481e-10 2.403011781e-10 1.44999659e-10 1.338735564e-10 1.416904312e-10 3.380082789e-10 2.19221592e-10 1.940356878e-10 2.285058311e-10 1.380746913e-10 1.122348053e-10 2.36220854e-10 1.822869468e-10 1.448866126e-10 1.510791881e-10 2.289828083e-10 1.954972652e-10 1.606182253e-10 2.361437817e-10 1.574495466e-10 1.398948165e-10 1.69263845e-10 2.469447961e-10 4.923754414e-10 3.089546831e-10 2.150615417e-10 1.523259416e-10 2.746394368e-10 2.555475703e-10 2.750809094e-10 3.455707315e-10 +2.097835198e-10 1.194984062e-10 1.83871732e-10 1.211532784e-10 1.351279608e-10 3.515182445e-10 1.149465473e-10 2.32996682e-10 2.211852417e-10 2.041038932e-10 4.094310925e-10 1.309814399e-10 1.649559759e-10 2.272853368e-10 2.434492452e-10 2.421350107e-10 3.223398226e-10 1.814255479e-10 5.613866744e-10 1.197414171e-10 2.911649452e-10 2.409890691e-10 1.881747385e-10 1.260355898e-10 4.547406477e-10 1.898492044e-10 3.935014264e-10 7.795438129e-11 2.294839313e-10 1.571989197e-10 3.892205937e-10 1.240599162e-10 2.976368923e-10 2.024543103e-10 1.18748892e-10 2.639526117e-10 2.734079691e-10 1.18090863e-10 1.586631617e-10 2.022345998e-10 1.378936469e-10 1.596574799e-10 1.513218508e-10 2.362998207e-10 3.289892373e-10 2.79159068e-10 1.475206146e-10 2.331471436e-10 3.715744014e-10 1.708093065e-10 3.835448936e-10 8.382288521e-11 3.408404032e-10 2.469779019e-10 2.130482126e-10 1.751925623e-10 1.8090497e-10 1.898102937e-10 1.849768011e-10 3.120213314e-10 2.758621247e-10 3.143591928e-10 4.599350549e-10 4.225693624e-10 1.989112096e-10 2.691223355e-10 2.393324432e-10 2.501789763e-10 1.792123005e-10 3.844412619e-10 1.611644271e-10 1.874150476e-10 2.056200021e-10 2.589970668e-10 1.233905664e-10 1.03680773e-10 3.123252821e-10 3.800172214e-10 1.670868579e-10 3.38002321e-10 2.618213129e-10 1.510485793e-10 3.00346698e-10 1.96407113e-10 3.382652509e-10 3.10854715e-10 2.867415594e-10 4.214727504e-10 4.205018254e-10 2.799156124e-10 2.968570688e-10 2.453363762e-10 2.936708011e-10 3.451655656e-10 2.625733654e-10 2.237442284e-10 2.419030478e-10 2.379286602e-10 3.287489966e-10 2.169427291e-10 2.185623742e-10 2.061536065e-10 2.824677828e-10 1.663736335e-10 2.212979215e-10 1.468030999e-10 1.798720072e-10 2.865473842e-10 2.107336079e-10 8.244428041e-11 1.348620679e-10 2.079589986e-10 1.47982153e-10 1.428802309e-10 1.559547443e-10 1.256150997e-10 1.471954116e-10 4.319389131e-10 1.877741495e-10 7.62475417e-10 3.988167882e-10 5.855534648e-10 3.932715388e-10 5.878369383e-10 4.900887092e-10 3.826506038e-10 2.445085132e-10 4.448079063e-10 5.698135059e-10 3.980649365e-10 2.566759905e-10 4.083759682e-10 3.30356023e-10 5.510302741e-10 3.154635033e-10 3.743472986e-10 3.467159527e-10 3.717061743e-10 3.401120165e-10 4.915397701e-10 3.649883953e-10 4.715708027e-10 4.007510496e-10 3.27171332e-10 5.209345984e-10 3.732422332e-10 5.522656173e-10 6.062847931e-10 4.70800301e-10 5.203714563e-10 4.46420106e-10 5.261333855e-10 4.400282048e-10 3.609810852e-10 5.528743447e-10 3.577941289e-10 5.608721533e-10 5.401390426e-10 4.65590539e-10 3.599084899e-10 4.790709445e-10 3.295953572e-10 4.218265427e-10 4.31657253e-10 3.890388968e-10 4.308571714e-10 4.346792891e-10 5.377843584e-10 5.450928446e-10 4.930021593e-10 4.353467151e-10 3.872569534e-10 6.415575862e-10 5.363800695e-10 6.19075274e-10 3.446572438e-10 4.368550709e-10 5.136616952e-10 4.495668996e-10 4.976322134e-10 7.026787614e-10 1.604100485e-10 1.76233393e-10 1.986563538e-10 1.117151434e-10 1.159337e-10 1.797653143e-10 8.049368116e-11 1.120941569e-10 1.781673762e-10 1.088776745e-10 1.76413357e-10 1.412471221e-10 1.38414106e-10 2.518742542e-10 2.301700781e-10 2.653504818e-10 1.993751854e-10 2.326652026e-10 3.317378626e-10 1.560897268e-10 2.213670838e-10 2.644736169e-10 2.099608101e-10 3.157209335e-10 3.029197431e-10 2.513129816e-10 5.316890508e-10 3.559720006e-10 3.31422045e-10 3.134866885e-10 3.431350435e-10 3.716533368e-10 1.803181371e-10 2.984755791e-10 3.737662353e-10 1.441454542e-10 3.287597775e-10 3.342201927e-10 2.741562921e-10 3.363272183e-10 1.963338394e-10 1.653828322e-10 2.663619279e-10 2.181705913e-10 2.616171191e-10 1.916306154e-10 1.076453595e-10 2.61951097e-10 2.308891442e-10 2.464850589e-10 2.060407021e-10 2.924051731e-10 3.128763632e-10 2.380432745e-10 2.718553136e-10 3.506973587e-10 1.842252421e-10 1.857299626e-10 3.366070354e-10 1.176897188e-10 9.822624243e-11 1.836594759e-10 2.426245612e-10 2.947656015e-10 3.009217359e-10 2.281747045e-10 1.261838365e-10 2.143037149e-10 1.606876257e-10 2.025437326e-10 8.054379823e-11 2.456884944e-10 1.41409618e-10 1.668850051e-10 1.354929729e-10 3.793674934e-10 1.534668346e-10 4.209952714e-10 1.43539534e-10 2.036137836e-10 1.037953847e-10 2.530553997e-10 7.689613833e-11 4.231133523e-10 2.121806178e-10 2.269750594e-10 2.2503705e-10 2.169771422e-10 2.830637684e-10 2.250436047e-10 1.654419772e-10 2.615504477e-10 1.238677615e-10 1.576639328e-10 2.474726207e-10 2.083819916e-10 9.295732617e-11 4.003619038e-10 2.187282421e-10 3.72697724e-10 1.814937485e-10 2.086143723e-10 2.042298168e-10 2.702843578e-10 4.266814711e-10 2.393890127e-10 1.775444576e-10 1.297758172e-10 2.803255251e-10 3.782744384e-10 2.415764699e-10 1.097652283e-10 3.233092716e-10 1.31243048e-10 1.94198941e-10 3.285367884e-10 2.14891793e-10 1.617358992e-10 4.31366164e-10 +2.561809706e-10 3.552750197e-10 4.176400601e-10 3.87018533e-10 3.889778587e-10 5.582639709e-11 1.073424524e-10 1.949511405e-10 2.359840276e-10 2.98438694e-10 3.363414942e-10 2.499697688e-10 3.244780682e-10 2.723630394e-10 2.721370815e-10 1.339645772e-10 1.840012483e-10 2.383562915e-10 3.04454034e-10 3.481192556e-10 1.634878852e-10 1.931365926e-10 2.614535122e-10 5.007347148e-10 2.653949271e-10 4.881114975e-10 3.321873347e-10 4.118802807e-10 2.674764039e-10 1.218429626e-10 3.836962869e-10 2.433581988e-10 4.588245508e-10 2.047199061e-10 9.711735619e-11 1.900598245e-10 8.300378427e-11 1.933876947e-10 2.108192242e-10 2.890564378e-10 2.693302208e-10 3.527833262e-10 2.279511259e-10 2.917023067e-10 1.546811585e-10 6.544121052e-11 1.75715144e-10 1.494586321e-10 2.390346323e-10 1.457107552e-10 2.092282342e-10 1.326193951e-10 1.193736049e-10 2.449081937e-10 1.577869547e-10 2.813049808e-10 2.947946846e-10 3.167134408e-10 2.730035122e-10 2.744159239e-10 2.212682187e-10 2.686088791e-10 3.292503078e-10 2.292403973e-10 1.174822173e-10 2.743371366e-10 2.811452322e-10 1.211096369e-10 2.761896053e-10 2.879250864e-10 2.121300822e-10 1.583069023e-10 1.568432252e-10 1.465995646e-10 3.941694751e-10 2.322472019e-10 1.815220135e-10 9.583791604e-11 3.247548753e-10 1.825778372e-10 1.673759562e-10 2.86230644e-10 2.17309325e-10 3.327207267e-10 3.522629619e-10 3.101330742e-10 2.847641403e-10 4.329297834e-10 4.541747254e-10 2.531908283e-10 2.560750121e-10 4.086455407e-10 3.228866808e-10 3.547816255e-10 2.340891112e-10 2.437956376e-10 3.36962692e-10 2.618073328e-10 2.304650074e-10 2.880813103e-10 2.923974084e-10 3.489881732e-10 3.066204641e-10 2.465035621e-10 2.86795149e-10 3.711574723e-10 2.365559431e-10 1.763622619e-10 2.3754895e-10 3.250812558e-10 1.404083779e-10 1.110329895e-10 1.815451454e-10 1.045932277e-10 2.348770148e-10 2.263341458e-10 1.654353048e-10 1.217876796e-10 2.655747476e-10 3.029770022e-10 3.949965775e-10 2.774477336e-10 3.91498412e-10 2.737995475e-10 6.540805264e-10 5.093419459e-10 4.553855526e-10 3.181636103e-10 2.61096732e-10 6.718625555e-10 4.057012284e-10 3.944989586e-10 2.844741444e-10 4.529279227e-10 5.331002311e-10 3.196561899e-10 5.770444013e-10 4.584575979e-10 4.605871614e-10 2.961546943e-10 3.947899528e-10 3.498021035e-10 4.531536662e-10 3.426695476e-10 4.254110791e-10 2.829573812e-10 4.103718293e-10 4.04186939e-10 3.378659101e-10 6.876333076e-10 6.538614431e-10 5.25479877e-10 4.239840833e-10 3.777752606e-10 3.207209516e-10 5.997988405e-10 4.815779786e-10 3.244841454e-10 3.867288285e-10 3.393174094e-10 3.697425746e-10 4.888591451e-10 4.285966644e-10 5.748381637e-10 4.45478939e-10 4.429702522e-10 4.697472487e-10 4.921224812e-10 6.204485016e-10 5.294621533e-10 7.055430004e-10 5.383530265e-10 4.401663317e-10 5.910244821e-10 5.460126505e-10 5.678623796e-10 4.050962499e-10 3.774410209e-10 3.444226365e-10 4.806231294e-10 2.433797274e-10 5.274867662e-10 2.481974242e-10 2.069617328e-10 1.679164896e-10 1.596353337e-10 1.102311895e-10 1.963523519e-10 1.606973925e-10 2.066531241e-10 2.286262122e-10 2.30731416e-10 2.509842791e-10 2.703741684e-10 1.709483361e-10 2.565684403e-10 2.695131675e-10 2.719607312e-10 2.916530008e-10 2.60462385e-10 3.718926901e-10 3.701728805e-10 3.003564052e-10 2.742317681e-10 3.15007332e-10 3.297791577e-10 2.81640813e-10 2.47953506e-10 3.819435944e-10 2.714470503e-10 3.210276227e-10 2.644991355e-10 3.409615837e-10 3.191986455e-10 3.493762762e-10 2.465674557e-10 2.108550117e-10 3.111358982e-10 2.955304182e-10 2.107731931e-10 1.82216594e-10 2.142178889e-10 2.341634685e-10 1.753885936e-10 1.251540682e-10 3.88069514e-10 3.732151625e-10 1.442991576e-10 1.561506538e-10 2.886876572e-10 1.541171553e-10 1.415656715e-10 3.386961521e-10 1.674212778e-10 1.664661977e-10 3.51643063e-10 1.024478345e-10 2.676918131e-10 1.664493576e-10 2.936413046e-10 1.618588325e-10 2.035570637e-10 3.722414971e-10 4.124660969e-10 2.803784947e-10 1.764492832e-10 2.55427475e-10 3.271262649e-10 4.253404409e-11 3.352197647e-10 2.731554095e-10 3.52059189e-10 1.777321521e-10 2.507265845e-10 1.71455567e-10 1.60996337e-10 2.843358081e-10 2.400681409e-10 1.569000557e-10 1.566531521e-10 1.085576515e-10 1.14336418e-10 1.757993898e-10 1.84960118e-10 3.02401482e-10 1.881334632e-10 1.65485705e-10 2.08199687e-10 3.329002245e-10 3.065152879e-10 1.659281297e-10 1.743656153e-10 2.334892559e-10 1.535531545e-10 1.893672335e-10 9.381430343e-11 2.829823091e-10 2.667406685e-10 4.103773892e-10 2.450762012e-10 1.832934975e-10 1.457022296e-10 1.859448401e-10 3.041085556e-10 2.410350414e-10 2.993642017e-10 3.519246077e-10 1.769463131e-10 1.74000959e-10 3.91323236e-10 2.230784422e-10 1.225903625e-10 3.053752534e-10 1.976865289e-10 1.459293171e-10 8.269290673e-11 2.233867177e-10 3.499098224e-10 2.055205165e-10 9.826027914e-11 +1.182326725e-10 4.128195902e-10 3.94975434e-10 3.380583009e-10 1.650488642e-10 3.203196579e-10 4.563277246e-10 1.623589969e-10 1.993043681e-10 2.246245303e-10 2.530042042e-10 2.335086523e-10 2.51925429e-10 1.932427862e-10 2.150632913e-10 1.53024591e-10 1.065774547e-10 2.404154817e-10 9.02149775e-11 4.428155537e-10 9.311323006e-11 3.714210157e-10 1.936266318e-10 1.042493943e-10 1.905584403e-10 2.280971031e-10 1.529422811e-10 2.778589572e-10 1.111845942e-10 1.923629277e-10 1.476292157e-10 1.951742552e-10 1.83973438e-10 3.615360475e-10 2.481545808e-10 2.299877712e-10 3.263898923e-10 1.580311726e-10 1.728096948e-10 2.764232706e-10 2.07916199e-10 3.687601e-10 1.243924984e-10 2.492597362e-10 3.928994017e-10 3.518023821e-10 2.12223814e-10 2.83412096e-10 3.55626921e-10 1.524348357e-10 3.609445795e-10 3.306332479e-10 2.333383941e-10 1.812320095e-10 2.994961273e-10 2.410348137e-10 2.636951355e-10 2.300857743e-10 3.139208522e-10 1.960942172e-10 1.835038719e-10 2.870770632e-10 2.063390029e-10 1.460924776e-10 2.513795714e-10 3.12673638e-10 2.416238983e-10 2.384222493e-10 3.327663413e-10 2.073354195e-10 1.514939583e-10 2.711581676e-10 2.594180659e-10 2.607427055e-10 3.700587318e-10 1.827688889e-10 1.182396245e-10 3.347253577e-10 1.585010651e-10 1.921809755e-10 9.745211282e-11 4.160976232e-10 2.133929472e-10 2.923314458e-10 3.371171121e-10 4.5410906e-10 3.889765346e-10 2.316556966e-10 3.395654994e-10 2.192159212e-10 4.862601693e-10 2.788120224e-10 3.462657265e-10 2.71664623e-10 2.808035877e-10 2.182224563e-10 1.645494821e-10 3.299107902e-10 4.18435924e-10 3.845525678e-10 2.256731771e-10 3.446940144e-10 2.742304622e-10 2.718922387e-10 3.257128194e-10 3.161249536e-10 3.382846677e-10 2.934506029e-10 1.830071249e-10 2.234385016e-10 1.359832558e-10 6.042216814e-11 4.451294134e-11 1.033282245e-10 1.062212742e-10 2.770671613e-10 2.010743296e-10 2.882763372e-10 1.998894327e-10 1.828249114e-10 4.164483881e-10 4.900321881e-10 5.974074208e-10 4.577884836e-10 3.827482636e-10 4.708000496e-10 2.634376647e-10 3.542622857e-10 7.148828313e-10 6.127002804e-10 3.20203925e-10 3.722600042e-10 5.038991112e-10 6.251869787e-10 3.025831849e-10 6.16871723e-10 4.464277727e-10 3.053671395e-10 4.409902408e-10 4.174208607e-10 6.143559776e-10 5.938478906e-10 4.261617851e-10 2.419928833e-10 3.278426662e-10 3.33674032e-10 4.338837423e-10 3.893019948e-10 8.645255838e-10 2.000218769e-10 4.389175287e-10 4.847586902e-10 4.376743504e-10 3.634185991e-10 5.397940693e-10 5.773996727e-10 4.712331402e-10 5.368639583e-10 4.722531588e-10 4.999900094e-10 4.414156871e-10 5.361172495e-10 5.547877777e-10 2.926194278e-10 7.955452607e-10 4.381574237e-10 2.854573379e-10 4.876956299e-10 4.682545784e-10 4.146265715e-10 4.585837017e-10 4.299189129e-10 6.674393273e-10 4.777278446e-10 3.617663237e-10 3.625152395e-10 4.836965404e-10 5.024310051e-10 4.04758364e-10 4.402849417e-10 5.095499639e-10 1.151931571e-10 2.207717988e-10 1.691949985e-10 7.569835132e-11 1.668840976e-10 1.759165995e-10 2.637546378e-10 1.802176156e-10 1.319860626e-10 3.039144655e-10 1.300114137e-10 2.565998195e-10 1.446601055e-10 1.989872573e-10 2.425096617e-10 2.491057984e-10 3.199793597e-10 2.385759914e-10 3.62857172e-10 2.839062955e-10 3.029051056e-10 2.551204065e-10 2.933675626e-10 3.824258395e-10 2.74129971e-10 1.933956047e-10 2.917067751e-10 3.78839886e-10 2.79606404e-10 2.823002104e-10 2.494519919e-10 3.923044871e-10 2.527101409e-10 2.898132672e-10 2.18506052e-10 2.080889661e-10 3.013011173e-10 2.453153259e-10 2.213961108e-10 3.106145082e-10 1.365332598e-10 2.292674472e-10 1.288900403e-10 2.686193099e-10 1.258399781e-10 1.570948216e-10 9.77601559e-11 2.877288231e-10 3.496305061e-10 2.788175489e-10 3.186762079e-10 2.552267351e-10 1.050333718e-10 1.932502569e-10 8.970769205e-11 1.806826283e-10 2.478447356e-10 2.621975987e-10 1.134150773e-10 2.635294345e-10 1.769571379e-10 2.988665292e-10 1.661550623e-10 2.835385038e-10 2.263039641e-10 2.289521128e-10 2.411623686e-10 5.182866659e-10 2.218133798e-10 3.012065307e-10 2.635724911e-10 1.19922787e-10 3.184550431e-10 1.154571126e-10 8.636114093e-11 1.542733624e-10 1.740973806e-10 2.082161368e-10 1.772753953e-10 3.11763716e-10 1.303934706e-10 2.021049219e-10 1.684306337e-10 1.565136867e-10 1.55460086e-10 3.080299717e-10 2.348605817e-10 3.840238925e-10 1.272484148e-10 1.532780931e-10 3.564006124e-10 1.274613289e-10 1.268557953e-10 1.79724801e-10 1.247611035e-10 9.597887654e-11 1.682246703e-10 2.233716536e-10 2.919060652e-10 1.013782768e-10 4.513331029e-10 4.247178588e-10 2.991122455e-10 1.005119187e-10 9.780373317e-11 1.109819052e-10 2.769816044e-10 8.136292142e-11 3.064221071e-10 2.179662413e-10 1.385239428e-10 3.173138661e-10 2.624085335e-10 1.711259804e-10 2.3741439e-10 4.274225419e-10 4.238534351e-10 1.726213746e-10 3.036075573e-10 +1.821254413e-10 3.093222922e-10 1.307889961e-10 2.212926603e-10 1.441028813e-10 3.883149932e-10 1.885540983e-10 3.11054359e-10 2.486180122e-10 2.208416268e-10 4.168970879e-10 9.03391177e-11 1.592035385e-10 1.881718306e-10 2.006303567e-10 1.412158078e-10 8.250462141e-11 2.441929125e-10 1.337802533e-10 1.217667576e-10 2.030499535e-10 2.824246972e-10 1.753104454e-10 4.252792945e-10 6.388046582e-11 1.004891892e-10 2.147527584e-10 1.481316352e-10 1.532438326e-10 3.472864938e-10 1.600477209e-10 1.778475505e-10 8.017907416e-11 2.207614747e-10 1.465114429e-10 4.270136144e-10 2.86134816e-10 2.525744168e-10 1.866725892e-10 1.949860995e-10 2.038829672e-10 1.67925697e-10 3.358063036e-10 1.583195192e-10 1.980688672e-10 1.498796963e-10 3.169521303e-10 1.058666477e-10 2.189508056e-10 1.405150752e-10 2.468920559e-10 2.332702028e-10 3.374321479e-10 3.553196408e-10 1.64897235e-10 9.970705509e-11 3.034285586e-10 1.707741731e-10 1.341419606e-10 1.636725341e-10 2.645262486e-10 1.505053807e-10 2.186122112e-10 2.107677938e-10 1.717587872e-10 2.275045493e-10 2.911870305e-10 2.391168785e-10 3.216674583e-10 3.537212378e-10 3.244605532e-10 1.079837494e-10 2.531358063e-10 2.030576716e-10 2.836973347e-10 2.102965457e-10 2.212578002e-10 1.805432685e-10 2.615848315e-10 1.707205076e-10 1.729591272e-10 1.899307214e-10 4.29590032e-10 3.306644886e-10 2.325868402e-10 4.708547054e-10 4.152000377e-10 4.148856954e-10 3.057950469e-10 1.899098437e-10 4.37387102e-10 1.72678919e-10 2.728505398e-10 3.445227269e-10 2.33771169e-10 2.161853287e-10 2.432108802e-10 3.524779873e-10 3.351300102e-10 3.326662766e-10 2.216138578e-10 2.914671869e-10 2.768951861e-10 2.064528323e-10 1.961513332e-10 2.365381008e-10 2.453936435e-10 2.275817572e-10 3.700869679e-10 1.85474607e-10 1.499263142e-10 1.203007995e-10 1.310212119e-10 1.76810406e-10 1.201122602e-10 1.561661425e-10 9.295979278e-11 2.082219379e-10 1.603993103e-10 1.329736114e-10 3.350650672e-10 5.314623973e-10 3.48011766e-10 4.565683325e-10 3.930299497e-10 5.594509729e-10 8.059144918e-10 3.569706545e-10 3.773349111e-10 4.86077713e-10 7.571022765e-10 3.502841406e-10 3.916818171e-10 4.30001753e-10 4.008928791e-10 2.674473399e-10 4.21148256e-10 4.308946083e-10 3.071605058e-10 2.684520554e-10 6.088402215e-10 2.58660208e-10 2.798159651e-10 3.629180034e-10 3.467547102e-10 3.662544732e-10 3.135909332e-10 4.272254773e-10 4.137719418e-10 4.661907842e-10 3.947477377e-10 4.873743281e-10 3.985786446e-10 5.739832518e-10 2.86329398e-10 5.324658736e-10 3.10953541e-10 3.268508471e-10 2.975504329e-10 3.760718651e-10 3.698564733e-10 5.183847024e-10 5.042497488e-10 3.375995589e-10 5.206295224e-10 4.063599694e-10 3.680327092e-10 4.649771146e-10 2.97717132e-10 4.40749725e-10 6.709613108e-10 7.064036698e-10 2.936318451e-10 5.218772688e-10 3.202424345e-10 7.479644467e-10 3.15034065e-10 6.202477051e-10 4.057644136e-10 1.573230075e-10 1.530150602e-10 1.101040622e-10 1.71882956e-10 1.22258794e-10 1.364455517e-10 1.096290701e-10 2.987291148e-10 1.405946396e-10 9.97332363e-11 1.353564169e-10 5.595652547e-11 1.758677359e-10 3.365901132e-10 2.32682866e-10 2.324184684e-10 3.091591004e-10 2.561256036e-10 2.56243206e-10 1.825101722e-10 2.787924957e-10 3.19455803e-10 2.99708884e-10 2.103907104e-10 3.341081662e-10 3.246868022e-10 1.515414551e-10 3.884819136e-10 2.820271894e-10 2.540504287e-10 4.23919733e-10 4.162536556e-10 3.099604526e-10 3.349631891e-10 3.765577032e-10 3.950897136e-10 3.575571752e-10 1.18799812e-10 1.566714912e-10 2.650203873e-10 1.95707185e-10 1.906349162e-10 2.056188499e-10 2.981220729e-10 2.483319503e-10 2.449128629e-10 1.904321536e-10 2.757767498e-10 1.295856293e-10 2.380836002e-10 1.725802241e-10 1.964348276e-10 2.051007619e-10 2.876358947e-10 3.642741746e-10 1.710632258e-10 1.254369603e-10 2.867484578e-10 1.568431125e-10 1.465225595e-10 2.48997281e-10 3.596785035e-10 2.661897786e-10 2.217788552e-10 1.604440707e-10 2.606434506e-10 1.380559553e-10 2.296147752e-10 1.792134437e-10 2.146406009e-10 1.2923827e-10 1.937342228e-10 1.056587695e-10 1.658249318e-10 4.501471699e-10 1.412243695e-10 1.75799117e-10 1.670948332e-10 1.869690032e-10 1.624926079e-10 2.172560063e-10 2.811024424e-10 1.629594928e-10 1.5553042e-10 2.284525037e-10 1.756207922e-10 1.390292825e-10 4.700975595e-10 1.614478822e-10 2.801491611e-10 1.428051132e-10 5.005911127e-10 1.341894655e-10 2.186591385e-10 1.075583428e-10 2.251058588e-10 1.579213473e-10 1.524940149e-10 3.497328632e-10 2.68627753e-10 2.587577385e-10 3.665914594e-10 2.199280511e-10 2.182690832e-10 1.229720655e-10 3.057224145e-10 3.412892047e-10 2.246740873e-10 1.327073809e-10 3.658906308e-10 3.16674085e-10 2.607779578e-10 9.67279804e-11 3.57185923e-10 1.709096276e-10 2.64392703e-10 1.20066281e-10 3.227990244e-10 2.82895366e-10 2.355763151e-10 1.152745066e-10 +1.383236883e-10 3.371981513e-10 2.625876894e-10 3.364354465e-10 3.635144945e-10 9.617657718e-11 1.784926126e-10 1.258557663e-10 2.067248345e-10 2.683554865e-10 1.300492208e-10 2.647665586e-10 1.778295885e-10 1.798870377e-10 2.231432755e-10 1.049162153e-10 1.91227051e-10 1.026960411e-10 7.552073735e-11 1.715450383e-10 1.700429004e-10 1.465750625e-10 1.368982258e-10 1.652539715e-10 3.896279052e-10 1.296204569e-10 1.099048869e-10 2.573751702e-10 2.93775877e-10 3.389236978e-10 2.337573959e-10 2.211502243e-10 2.598184e-10 2.102296725e-10 5.149898634e-11 2.882931632e-10 2.781968151e-10 2.987556615e-10 1.7918863e-10 2.840818546e-10 3.081502143e-10 1.801678793e-10 1.131039311e-10 2.044478765e-10 1.539557737e-10 1.411817836e-10 3.62400918e-10 1.806393362e-10 2.081200311e-10 1.591476666e-10 1.169047481e-10 2.371012315e-10 2.728086348e-10 2.124126279e-10 3.397916529e-10 2.114490125e-10 2.567867877e-10 2.347539985e-10 1.046083859e-10 2.43413697e-10 1.823973989e-10 1.870772462e-10 4.155727851e-10 9.309681096e-11 1.255882108e-10 7.904773763e-11 2.546202437e-10 2.740676117e-10 2.390740181e-10 2.03562999e-10 1.839778479e-10 2.786498189e-10 1.430066286e-10 1.840701777e-10 3.343454111e-11 7.585931757e-11 1.907421287e-10 1.840717117e-10 2.464402292e-10 1.022305912e-10 3.074121835e-10 2.209141172e-10 3.274377523e-10 3.498163608e-10 6.291955891e-11 2.931289057e-10 2.98547309e-10 2.509726573e-10 2.384472162e-10 3.134607184e-10 3.262323096e-10 2.973594218e-10 4.000138583e-10 2.813819142e-10 2.182122629e-10 4.147346418e-10 2.501681139e-10 3.920946613e-10 2.449698205e-10 3.549770516e-10 1.633947218e-10 2.733521091e-10 2.334551649e-10 2.129660965e-10 2.473676731e-10 2.135498119e-10 2.882241775e-10 3.357210038e-10 2.163584665e-10 1.42888837e-10 1.641924841e-10 2.589016511e-10 1.070548122e-10 1.741791377e-10 2.395414388e-10 1.104636025e-10 1.84833746e-10 1.621648361e-10 9.151343136e-11 2.084384296e-10 2.114039818e-10 1.128048033e-10 3.828726587e-10 3.623485123e-10 4.026960154e-10 4.84902824e-10 3.35581256e-10 6.56122541e-10 7.390592357e-10 5.327467212e-10 5.620820333e-10 3.25033883e-10 2.730042055e-10 5.183510855e-10 5.095560284e-10 3.523450902e-10 6.363097052e-10 4.302092466e-10 3.094831087e-10 6.041240959e-10 5.116793175e-10 4.336689678e-10 4.306833778e-10 4.042615358e-10 3.453108442e-10 4.046491764e-10 3.201078522e-10 4.32714724e-10 3.718313016e-10 4.15813001e-10 3.588281154e-10 4.083092382e-10 3.049852745e-10 2.806948956e-10 5.893121025e-10 3.76060205e-10 4.528080456e-10 3.376744759e-10 3.452989793e-10 5.007565824e-10 5.924525729e-10 6.717239923e-10 4.292969209e-10 2.260007648e-10 4.565011934e-10 6.555787396e-10 5.003047851e-10 6.902316465e-10 2.37916446e-10 4.277197145e-10 7.40408381e-10 3.304482834e-10 5.024640513e-10 3.674201329e-10 4.213129785e-10 3.157645588e-10 4.776635309e-10 2.928410003e-10 2.271115738e-10 1.876066767e-10 2.663741046e-10 1.679635158e-10 1.807347697e-10 1.538941193e-10 2.634782078e-10 8.462584789e-11 1.40124212e-10 1.309886311e-10 2.801203203e-10 9.40893463e-11 1.972113336e-10 2.353993838e-10 2.592870009e-10 1.23638987e-10 3.373882814e-10 2.78126362e-10 3.441795429e-10 2.815730139e-10 1.726903816e-10 3.421582219e-10 2.766111563e-10 3.096399951e-10 3.64192776e-10 4.205502877e-10 2.38728148e-10 4.761762859e-10 2.747686488e-10 4.009092839e-10 3.211423731e-10 3.280732654e-10 2.272333935e-10 3.1120949e-10 3.086853774e-10 3.877713172e-10 3.06558558e-10 4.637736719e-10 1.796927456e-10 2.717527744e-10 1.691890216e-10 3.766474835e-10 2.563583349e-10 2.130319462e-10 1.484434324e-10 3.671459238e-10 9.149093638e-11 2.15809434e-10 3.157710604e-10 2.05229536e-10 2.438735066e-10 2.052988815e-10 2.873771204e-10 3.315280136e-10 2.520802661e-10 2.177772498e-10 2.6885627e-10 1.829592002e-10 3.418262851e-10 2.474259663e-10 2.847410011e-10 2.17483189e-10 2.426674595e-10 3.241644531e-10 1.99799215e-10 2.932315195e-10 2.70983554e-10 3.342230197e-10 1.63350806e-10 1.809939727e-10 1.389670517e-10 2.628739374e-10 1.855064604e-10 2.087164418e-10 1.306346313e-10 1.570674752e-10 2.401116689e-10 1.31531849e-10 3.767365534e-10 2.099568051e-10 1.052234385e-10 1.067096763e-10 4.294025339e-10 1.928754796e-10 1.61916055e-10 1.49777435e-10 2.264598314e-10 1.733077843e-10 1.269454721e-10 2.013698373e-10 1.801010235e-10 3.202208746e-10 3.369201598e-10 2.664068977e-10 1.562383688e-10 1.287093748e-10 3.421968733e-10 1.286415654e-10 1.752097453e-10 2.707574118e-10 5.752851656e-10 1.483189908e-10 1.94291424e-10 1.840885545e-10 2.370812735e-10 2.641473461e-10 2.497162996e-10 9.118089958e-11 1.090963553e-10 3.775106106e-10 3.606190429e-10 2.375261099e-10 2.393843802e-10 2.793129287e-10 2.483079738e-10 1.131384525e-10 2.337437546e-10 4.291375254e-10 3.155958155e-10 6.194244629e-11 1.38506589e-10 2.97451007e-10 +2.791169894e-10 2.579253474e-10 1.526911889e-10 3.05160529e-10 1.52631075e-10 1.20936947e-10 2.249592223e-10 4.538742795e-10 2.904416614e-10 3.729157106e-10 1.312990402e-10 2.060407857e-10 1.456587885e-10 3.773629407e-10 2.729452759e-10 1.418267449e-10 1.315677915e-10 1.453101183e-10 2.787793689e-10 2.220119403e-10 5.069364744e-10 2.382471035e-10 1.806064049e-10 2.092436838e-10 1.312659607e-10 1.908727435e-10 1.641279601e-10 1.525471716e-10 1.39527719e-10 3.062801035e-10 1.778089498e-10 1.679611488e-10 2.566809603e-10 2.690709682e-10 2.001390756e-10 5.415219112e-11 2.287944984e-10 1.782376274e-10 1.651632537e-10 1.211396866e-10 3.665826146e-10 1.675824165e-10 3.032361267e-10 1.695205739e-10 2.16352768e-10 1.477845459e-10 1.822525649e-10 3.052420137e-10 1.996302377e-10 1.52171254e-10 1.240452482e-10 1.685637199e-10 2.494528441e-10 1.406608759e-10 2.47529527e-10 1.885754923e-10 2.062338221e-10 2.134361566e-10 1.897037512e-10 1.690256845e-10 2.102695826e-10 1.225033412e-10 3.483654626e-10 1.947360864e-10 1.130520047e-10 2.491948786e-10 2.364925734e-10 2.795628941e-10 2.2480485e-10 2.596892345e-10 3.541061852e-10 1.498398769e-10 1.906848271e-10 4.473054939e-10 1.259788458e-10 2.628456056e-10 1.895964875e-10 1.557395432e-10 2.359047017e-10 2.094327145e-10 2.159199183e-10 2.676909242e-10 3.461998364e-10 3.280904421e-10 2.024638999e-10 3.686204317e-10 2.45991009e-10 3.821112229e-10 2.735723371e-10 4.599984984e-10 2.420336942e-10 3.004114883e-10 4.947796723e-10 3.053285037e-10 2.079610291e-10 2.724817888e-10 3.565435202e-10 3.330572325e-10 3.583137292e-10 2.480059268e-10 2.415839002e-10 3.524732422e-10 2.182542996e-10 1.893249322e-10 2.951435472e-10 2.875357132e-10 3.234536186e-10 2.502228812e-10 2.082679823e-10 1.21967769e-10 1.204723251e-10 1.208156655e-10 1.321314423e-10 3.387647938e-11 8.672785638e-11 1.881644545e-10 2.409155678e-10 1.999761232e-10 1.892148978e-10 1.529764135e-10 1.942011544e-10 4.689301007e-10 2.499390862e-10 2.138106646e-10 6.250024815e-10 4.666533169e-10 4.282730012e-10 6.668507589e-10 4.345278573e-10 4.063683021e-10 3.162091152e-10 4.545797084e-10 3.800791324e-10 4.540437351e-10 2.489517121e-10 4.840329448e-10 4.192224592e-10 6.339582691e-10 4.59182913e-10 3.649105608e-10 4.709517957e-10 2.51774535e-10 3.963188986e-10 5.691538655e-10 3.708463897e-10 3.596773653e-10 4.643112409e-10 2.570935172e-10 6.891831052e-10 4.702030928e-10 5.288474645e-10 4.020454451e-10 4.112098739e-10 3.01128765e-10 8.212250994e-10 3.615673935e-10 3.111316635e-10 6.831834947e-10 3.970431587e-10 4.51583948e-10 2.970134218e-10 4.614932231e-10 4.952160764e-10 2.770172715e-10 5.044312564e-10 5.052255244e-10 5.001536564e-10 4.362861706e-10 7.656926915e-10 2.336158246e-10 4.729589008e-10 4.051182094e-10 7.676098114e-10 3.776944222e-10 4.96260718e-10 4.167701707e-10 1.83908457e-10 4.130363148e-10 1.382914393e-10 1.683943822e-10 1.70731652e-10 1.045957453e-10 1.883311193e-10 2.383749315e-10 1.070860761e-10 1.335336061e-10 2.684323391e-10 1.511514238e-10 1.195995725e-10 2.514225159e-10 1.94935778e-10 3.283393849e-10 1.575511866e-10 3.062781827e-10 3.160204112e-10 2.082968699e-10 3.248439807e-10 3.018546645e-10 1.636893281e-10 2.350342711e-10 2.361786158e-10 3.103358694e-10 2.881921694e-10 2.725617702e-10 2.473274836e-10 2.718569148e-10 4.808381043e-10 3.620594052e-10 4.506137155e-10 2.112722335e-10 3.224487814e-10 3.986821931e-10 4.756992788e-10 3.256940292e-10 4.206428997e-10 2.983552836e-10 3.688323816e-10 2.494834437e-10 2.895768008e-10 1.193598159e-10 2.903294927e-10 3.081667005e-10 1.842001026e-10 2.23123888e-10 1.53418174e-10 1.505953177e-10 3.348131031e-10 1.315629911e-10 1.560206839e-10 3.465240238e-10 1.625640027e-10 1.778648398e-10 2.141433171e-10 2.00602692e-10 2.701996082e-10 1.736149144e-10 4.206496826e-10 2.786826666e-10 1.409989613e-10 3.120045391e-10 1.29958606e-10 1.509825405e-10 1.790508428e-10 2.652907594e-10 2.030940836e-10 9.698716834e-11 3.323505893e-10 1.929917461e-10 2.628370471e-10 1.216778796e-10 2.520276591e-10 2.40790074e-10 1.177554684e-10 2.56620916e-10 7.17962848e-11 1.687789355e-10 1.268770119e-10 1.757210691e-10 2.531563429e-10 4.503433327e-10 1.543851915e-10 1.31639428e-10 1.834119698e-10 2.256570123e-10 1.847092937e-10 2.83411276e-10 2.777385822e-10 1.409941474e-10 1.362034644e-10 2.505779207e-10 2.195931144e-10 3.307213156e-10 3.972105712e-10 1.77408556e-10 4.148856404e-10 1.441616292e-10 2.433513549e-10 1.56777315e-10 2.005936441e-10 4.900265842e-10 3.35679383e-10 2.053687841e-10 2.51012948e-10 1.176674142e-10 2.097025776e-10 2.01784233e-10 1.151940422e-10 1.527734363e-10 2.106749949e-10 1.995261922e-10 1.219461421e-10 2.324865873e-10 1.847955484e-10 2.426615968e-10 2.760067689e-10 3.413015684e-10 1.989626065e-10 1.088088546e-10 3.142272355e-10 3.691175491e-10 +1.431039891e-10 4.094395645e-10 3.357780916e-10 1.853496126e-10 2.319674815e-10 1.425655908e-10 1.548092654e-10 2.044498224e-10 2.543752934e-10 1.394356104e-10 2.987805121e-10 1.726057086e-10 3.011166418e-10 3.324792345e-10 3.631066342e-10 3.404790277e-10 2.67900666e-10 1.892053108e-10 1.724183992e-10 1.838814391e-10 2.394760075e-10 3.294697906e-10 2.288173735e-10 2.933204224e-10 1.063251368e-10 1.202698496e-10 2.169563021e-10 2.888688554e-10 1.709628097e-10 1.468319196e-10 8.7373401e-11 3.575887296e-10 1.644435125e-10 1.514995051e-10 1.134809274e-10 1.647417056e-10 2.166663279e-10 1.156987902e-10 1.7802283e-10 1.011061978e-10 2.467512712e-10 2.938742297e-10 1.555339007e-10 1.61419911e-10 2.165054846e-10 2.857516367e-10 2.347875853e-10 1.518455063e-10 2.360742154e-10 1.743266629e-10 1.428398637e-10 2.533683097e-10 1.897657886e-10 1.735569537e-10 2.528536663e-10 1.590159809e-10 1.09671886e-10 1.750389969e-10 2.404405507e-10 2.023485461e-10 2.444340265e-10 2.577330367e-10 2.037131365e-10 1.86674915e-10 1.437620398e-10 2.756984227e-10 2.40947128e-10 2.354755525e-10 2.203837071e-10 3.726046057e-10 2.246978634e-10 1.132050603e-10 2.254605045e-10 1.196958047e-10 2.245696044e-10 1.575792663e-10 2.468838519e-10 1.895093868e-10 2.859701528e-10 2.326509672e-10 3.094945955e-10 2.987293611e-10 2.585853407e-10 2.851369825e-10 1.510260383e-10 2.794846544e-10 1.90364584e-10 2.025755419e-10 2.729673382e-10 3.448367366e-10 4.810923646e-10 2.332337885e-10 1.993992631e-10 4.249061866e-10 3.850748169e-10 4.742379773e-10 3.748921771e-10 3.937979208e-10 2.388689193e-10 1.91479017e-10 3.05158445e-10 3.050380975e-10 3.39762523e-10 2.340303729e-10 2.601941039e-10 1.555257723e-10 3.912142576e-10 2.779684859e-10 2.711494711e-10 1.78497438e-10 1.301378323e-10 1.743634792e-10 3.760936285e-11 2.485390358e-10 1.410982985e-10 2.193471828e-10 1.169934225e-10 2.399773409e-10 1.458892006e-10 2.273274807e-10 1.575399232e-10 1.977606717e-10 1.765112758e-10 2.420656093e-10 1.898945157e-10 4.881060897e-10 2.004575121e-10 3.293190842e-10 4.858713599e-10 7.153401221e-10 7.193163466e-10 6.251932287e-10 3.366912714e-10 4.802122441e-10 4.388413007e-10 2.334009055e-10 4.305158528e-10 2.365047139e-10 4.808773216e-10 3.472839914e-10 3.698240463e-10 3.040023888e-10 4.716228051e-10 2.814229052e-10 3.883505228e-10 4.968329083e-10 4.035539683e-10 3.41825953e-10 3.272924485e-10 4.392960208e-10 4.520238721e-10 1.442049016e-10 3.442493059e-10 4.582978945e-10 4.720764313e-10 3.99766963e-10 6.257448687e-10 2.741232669e-10 3.94233444e-10 3.366875116e-10 3.012583174e-10 4.482895468e-10 1.051507845e-10 3.545814083e-10 4.917617483e-10 6.741002041e-10 4.762243227e-10 4.585494156e-10 4.171825883e-10 4.709582512e-10 3.798466516e-10 3.87051418e-10 3.494442213e-10 2.661627645e-10 3.562767074e-10 1.483614024e-10 2.147480766e-10 1.644977841e-10 2.682302355e-10 1.303503234e-10 1.79671793e-10 7.600929986e-11 1.702029908e-10 9.995248194e-11 1.21357436e-10 1.033740692e-10 1.062753511e-10 1.88816393e-10 1.487232459e-10 1.211125905e-10 2.088861579e-10 2.216783651e-10 2.397619212e-10 3.536672521e-10 1.632241449e-10 2.776309543e-10 2.291675837e-10 2.434892627e-10 3.022731549e-10 2.680915127e-10 2.978184231e-10 1.714972822e-10 2.508724667e-10 1.921558949e-10 3.823834924e-10 3.476522993e-10 2.475666899e-10 3.693261931e-10 3.888685702e-10 2.885002882e-10 4.734063752e-10 2.856020509e-10 3.506680972e-10 3.796859522e-10 3.376099397e-10 2.953708658e-10 3.149237223e-10 3.775870319e-10 2.002788746e-10 1.514067286e-10 3.708449152e-10 1.801771715e-10 3.494139726e-10 2.822016613e-10 1.741684891e-10 2.457808231e-10 1.709159432e-10 1.953762284e-10 2.543038293e-10 2.852580978e-10 3.274493991e-10 1.696220996e-10 2.232364661e-10 1.435975048e-10 1.61366037e-10 3.46702117e-10 1.642269448e-10 2.254631462e-10 2.93851463e-10 3.112398108e-10 1.481393955e-10 1.968257131e-10 1.430120756e-10 1.861584562e-10 1.771115941e-10 3.146254013e-10 1.414816164e-10 1.226251091e-10 1.658821871e-10 1.412509201e-10 4.178037043e-10 1.599744447e-10 1.730213394e-10 3.23110517e-10 2.024654671e-10 1.765636634e-10 9.240464517e-11 3.30743942e-10 1.482182422e-10 1.867677648e-10 2.066974027e-10 1.423895566e-10 2.524516897e-10 8.703653916e-11 3.342955758e-10 3.125578303e-10 1.71018512e-10 2.264038947e-10 1.806955461e-10 2.278080583e-10 1.695803703e-10 1.482213468e-10 2.749930177e-10 3.87954443e-10 2.328730893e-10 2.475463516e-10 1.366707752e-10 4.310300047e-10 2.272038801e-10 3.157083697e-10 1.623671249e-10 2.545031024e-10 1.889049326e-10 2.275502886e-10 1.347046898e-10 1.850088021e-10 3.937507521e-10 9.094387226e-11 2.30040662e-10 2.72274515e-10 3.580116559e-10 1.689098844e-10 1.725536547e-10 4.413200643e-10 1.137092698e-10 1.253767693e-10 1.391835774e-10 1.395020485e-10 1.427026051e-10 4.02752821e-10 +1.726543981e-10 4.814168834e-10 2.61338091e-10 2.289033535e-10 2.441191225e-10 8.787595122e-11 1.36172404e-10 1.950421902e-10 2.716255312e-10 3.347692392e-10 2.057291584e-10 2.578879658e-10 1.225746326e-10 3.749729351e-10 2.08103514e-10 1.478921798e-10 1.575402913e-10 3.396175585e-10 2.260371406e-10 2.096440308e-10 2.479829389e-10 1.026459679e-10 3.087903069e-10 1.330545313e-10 5.438819683e-11 1.648485053e-10 2.453063795e-10 1.879196389e-10 1.838414679e-10 8.169674362e-11 2.42882757e-10 3.494388041e-10 2.674972453e-10 2.627402733e-10 2.822366957e-10 2.24212283e-10 2.924048412e-10 2.834781253e-10 2.006240904e-10 1.308953951e-10 1.924747639e-10 1.103270201e-10 2.231266276e-10 3.766602475e-10 1.34574228e-10 1.336588944e-10 1.436697239e-10 1.6780278e-10 1.452958072e-10 9.239543329e-11 2.523733217e-10 2.575091215e-10 1.629120587e-10 1.817860952e-10 1.78932077e-10 1.379841853e-10 2.859561202e-10 1.573639241e-10 3.115736193e-10 3.327084506e-10 2.809288792e-10 1.076197148e-10 1.562570356e-10 1.133333262e-10 1.874075682e-10 3.174086488e-10 2.179570327e-10 1.670386113e-10 1.61821027e-10 2.51395414e-10 1.931033441e-10 2.873320151e-10 2.037950673e-10 1.463569297e-10 1.626081954e-10 1.050880341e-10 1.69063995e-10 2.220147493e-10 2.423982843e-10 2.853878046e-10 3.109539163e-10 2.704271855e-10 2.892184341e-10 3.27787073e-10 2.855734819e-10 3.295978873e-10 3.781126148e-10 2.855331108e-10 2.681469392e-10 2.029836522e-10 2.411263979e-10 3.265665951e-10 4.83357977e-10 3.364955171e-10 4.270477597e-10 2.195181491e-10 2.208612529e-10 2.306380758e-10 3.192565845e-10 2.975564041e-10 2.843500765e-10 3.879870134e-10 2.313336763e-10 3.188606064e-10 2.132235463e-10 2.555192878e-10 2.845563904e-10 1.556667291e-10 9.114000038e-11 3.051264101e-10 1.602885865e-10 2.536967415e-10 1.931728898e-10 1.814166449e-10 1.248673526e-10 1.84390818e-10 1.04806833e-10 1.149610374e-10 1.030449346e-10 2.063072466e-10 1.788626406e-10 1.74909525e-10 1.671874065e-10 1.920885267e-10 1.818318303e-10 4.912304703e-10 3.080957964e-10 4.140420682e-10 4.215300833e-10 3.841046397e-10 3.218921525e-10 7.394800432e-10 5.415170556e-10 4.770474369e-10 3.788497242e-10 2.913818196e-10 4.023736196e-10 2.94007645e-10 2.812237392e-10 2.466914307e-10 3.325075301e-10 6.084146168e-10 4.006119204e-10 3.204690789e-10 3.650463624e-10 4.54431582e-10 2.189180519e-10 4.842181943e-10 6.004260291e-10 2.606325731e-10 3.874183066e-10 3.906063414e-10 2.106404321e-10 5.706582276e-10 4.260027697e-10 5.49493271e-10 4.479332497e-10 3.932732358e-10 4.221418186e-10 5.610333623e-10 3.022236095e-10 6.695793706e-10 3.402386102e-10 3.034571386e-10 5.077973895e-10 7.288328031e-10 3.860605584e-10 5.010023695e-10 3.670139524e-10 5.69349601e-10 3.869918044e-10 4.857704861e-10 3.584331145e-10 6.185551935e-10 4.847338997e-10 1.870866098e-10 1.013521638e-10 1.398284046e-10 1.354211772e-10 1.626047533e-10 1.120373198e-10 5.760891395e-11 1.134831708e-10 1.036558544e-10 1.443617143e-10 1.614254558e-10 1.834148951e-10 1.303222768e-10 2.291378659e-10 2.285847525e-10 2.219903566e-10 2.977693976e-10 2.009578295e-10 2.079418672e-10 2.931637265e-10 3.143426015e-10 2.005067072e-10 2.566073124e-10 3.373336498e-10 2.983015904e-10 3.647223659e-10 3.212130068e-10 2.715518675e-10 3.575679508e-10 2.684657124e-10 2.419473605e-10 2.957437969e-10 2.384404031e-10 3.342523453e-10 3.472062343e-10 3.833793565e-10 2.947832969e-10 2.030488797e-10 4.915984642e-10 2.874901825e-10 2.630090411e-10 4.156412043e-10 3.074054085e-10 1.763853856e-10 1.630316908e-10 1.523334741e-10 2.796177732e-10 1.120695432e-10 2.433304863e-10 1.69780513e-10 1.894530999e-10 1.303318177e-10 3.149550334e-10 1.430801915e-10 2.997909891e-10 2.515319442e-10 1.149055146e-10 1.578927683e-10 1.163386844e-10 2.508165657e-10 3.497280252e-10 3.675881866e-10 1.647932439e-10 3.201116455e-10 1.990407411e-10 1.215340321e-10 2.335071334e-10 2.507338205e-10 2.368813124e-10 1.648645612e-10 2.382810705e-10 3.193409927e-10 2.86017002e-10 1.46828284e-10 1.451544848e-10 1.613467618e-10 4.993608972e-11 3.555854012e-10 3.125572427e-10 3.669251675e-10 2.644463622e-10 1.52633909e-10 3.560580644e-11 2.099000316e-10 2.617888763e-10 1.571687312e-10 3.898327583e-10 3.275489901e-10 8.358133974e-11 2.075244623e-10 1.958053738e-10 1.627854507e-10 9.958021579e-11 1.543478909e-10 2.660920024e-10 3.746898363e-10 1.251704519e-10 4.303183581e-10 1.691101955e-10 1.923900654e-10 5.609570385e-11 3.876194554e-10 2.211209737e-10 2.124675081e-10 3.305118441e-10 2.827042978e-10 1.778300687e-10 1.508157245e-10 3.594214884e-10 2.054248594e-10 2.150166365e-10 6.013649094e-11 2.570331297e-10 1.155670124e-10 3.09571332e-10 3.057469012e-10 1.264995849e-10 1.452757669e-10 3.6819793e-10 3.172463381e-10 4.13515404e-10 3.826817133e-10 2.877056384e-10 3.582968669e-10 1.900112723e-10 +2.709303923e-10 1.910799605e-10 1.675208455e-10 2.192967618e-10 3.038163027e-10 1.772534977e-10 1.48897629e-10 1.819131657e-10 2.605691224e-10 8.340861379e-11 7.072442804e-11 2.176956922e-10 1.191603328e-10 4.106768159e-10 1.554678786e-10 1.510598482e-10 2.344282694e-10 1.174188633e-10 1.199732074e-10 2.147496537e-10 2.923092373e-10 2.650903137e-10 1.614684208e-10 1.810212599e-10 2.292908333e-10 1.806720547e-10 2.017197789e-10 6.318672817e-11 2.054889205e-10 1.18445891e-10 4.288926128e-10 2.240012396e-10 4.431959201e-10 1.687703135e-10 2.007786965e-10 1.833601862e-10 1.612739585e-10 2.324397255e-10 2.002489791e-10 2.387279545e-10 1.530071669e-10 1.647555297e-10 1.017052321e-10 1.648348321e-10 2.906992086e-10 1.700857183e-10 1.347912944e-10 1.736663539e-10 1.094545367e-10 7.018043374e-11 2.660083012e-10 2.927034094e-10 1.90505056e-10 2.815284592e-10 1.330665308e-10 2.532460592e-10 9.021628331e-11 2.304223599e-10 1.166472769e-10 2.45086037e-10 2.853533355e-10 3.115878249e-10 1.375034353e-10 2.682343217e-10 1.834979931e-10 3.253748195e-10 3.261319122e-10 2.338795561e-10 2.995483885e-10 2.935675597e-10 2.949600829e-10 1.253439319e-10 3.800842393e-10 1.749584809e-10 1.746005494e-10 1.496211193e-10 2.560998218e-10 2.776639253e-10 2.657114069e-10 1.535217954e-10 3.158574505e-10 1.087058178e-10 2.408781959e-10 3.254011812e-10 2.741985117e-10 3.033558028e-10 2.562335887e-10 4.00493305e-10 3.412775742e-10 3.170544414e-10 1.870081201e-10 2.301909964e-10 3.192186599e-10 3.657268145e-10 1.823357678e-10 2.626856664e-10 2.345927558e-10 2.894231806e-10 1.807171284e-10 1.579496043e-10 2.488500036e-10 3.312348785e-10 3.407914457e-10 2.659238966e-10 3.38737374e-10 1.924714141e-10 3.075043498e-10 3.217553301e-10 2.59271497e-10 2.078433054e-10 2.970432646e-10 2.348564404e-10 2.089712779e-10 1.966295853e-10 2.371583731e-10 1.065931022e-10 1.241662699e-10 1.095066132e-10 1.530182083e-10 1.015193486e-10 1.089083447e-10 1.716735846e-10 1.207942888e-10 1.22622601e-10 1.55375953e-10 2.339687232e-10 2.481492392e-10 1.813303683e-10 6.414079339e-10 4.903578799e-10 4.585681974e-10 4.142026824e-10 3.774501765e-10 2.994585948e-10 4.455174018e-10 3.071783814e-10 5.349161284e-10 4.264288596e-10 3.314859885e-10 5.445083574e-10 5.408583917e-10 5.382403016e-10 2.761820666e-10 6.904382232e-10 4.26909453e-10 6.257855025e-10 3.630661878e-10 3.453522032e-10 6.014136935e-10 3.327847571e-10 3.13217566e-10 2.903589557e-10 3.570929719e-10 3.199027291e-10 5.666215471e-10 3.890906313e-10 3.835317594e-10 3.775496305e-10 3.14963716e-10 4.264775868e-10 3.748661165e-10 3.94482872e-10 2.970807074e-10 4.111121145e-10 3.594276241e-10 2.851101395e-10 6.557014711e-10 4.158673305e-10 2.048371171e-10 2.455302432e-10 4.55933412e-10 3.717295103e-10 2.027366204e-10 1.101559019e-10 1.121124034e-10 3.061375132e-10 1.009676825e-10 1.648869239e-10 1.573390941e-10 1.569978116e-10 1.04315881e-10 1.270351498e-10 2.487478846e-11 2.138096433e-10 1.327166099e-10 1.294359391e-10 2.556847003e-10 1.470869547e-10 2.624429181e-10 3.0092065e-10 2.017163008e-10 1.695268024e-10 2.285454255e-10 4.022201887e-10 2.806088884e-10 2.783705489e-10 2.360291948e-10 2.682403073e-10 4.012978283e-10 2.750610767e-10 2.23206204e-10 3.379333005e-10 3.009441949e-10 2.851972105e-10 2.14107204e-10 2.686378287e-10 2.073207744e-10 2.999535632e-10 1.512981996e-10 1.991754191e-10 1.83536032e-10 2.971805018e-10 2.79355897e-10 2.401403874e-10 2.929877677e-10 2.398250286e-10 2.622115587e-10 1.894951925e-10 1.20015524e-10 2.529943381e-10 1.687038407e-10 2.209311127e-10 1.006562238e-10 2.233216503e-10 2.277086637e-10 2.909655123e-10 1.982526803e-10 3.018951952e-10 1.087883585e-10 7.164551654e-11 1.255519764e-10 2.335176592e-10 1.980339293e-10 2.523200873e-10 1.95072324e-10 2.217117146e-10 2.190859703e-10 2.201650118e-10 2.230101441e-10 2.109339495e-10 2.407431079e-10 3.326499475e-10 1.649825643e-10 1.638697322e-10 2.289567404e-10 2.056702752e-10 2.560526578e-10 3.403449289e-10 2.656250324e-10 1.236356144e-10 3.298262628e-10 5.616315676e-11 2.402284815e-10 1.791219527e-10 1.357260738e-10 2.176521468e-10 1.834444552e-10 1.350908183e-10 2.2623918e-10 1.458028603e-10 1.945087761e-10 3.090750332e-10 2.214833788e-10 2.973742587e-10 2.216686983e-10 5.117614563e-10 1.106751276e-10 1.266653849e-10 2.267409869e-10 1.66010144e-10 1.373402958e-10 2.098990878e-10 2.284669096e-10 1.809801051e-10 3.653730352e-10 2.691075475e-10 1.551768898e-10 1.38392361e-10 3.410703594e-10 9.183647022e-11 2.636978284e-10 2.819543078e-10 1.397069592e-10 1.658695179e-10 2.44703466e-10 1.80166872e-10 2.879057701e-10 2.927628396e-10 3.316792588e-10 2.587538228e-10 1.967965007e-10 1.98622306e-10 1.431022622e-10 3.438637426e-10 3.390773332e-10 2.467897468e-10 2.659702538e-10 2.531555864e-10 2.659543467e-10 2.381429487e-10 +2.131674029e-10 1.284140562e-10 1.672347659e-10 1.737451143e-10 1.126935017e-10 1.603932316e-10 3.325607414e-10 1.368350495e-10 3.013871002e-11 2.177912141e-10 1.881797176e-10 1.929029753e-10 1.985060051e-10 2.135712941e-10 1.268305432e-10 2.226651098e-10 3.004037703e-10 2.332134156e-10 5.379405473e-11 1.286656431e-10 1.958609264e-10 3.598141163e-10 2.272124297e-10 8.997855988e-11 1.246538825e-10 2.93312892e-10 1.329328934e-10 9.061580794e-11 3.397926568e-10 2.324970842e-10 1.149253975e-10 2.719985403e-10 3.236755044e-10 1.401356866e-10 1.274073378e-10 1.22900363e-10 1.396476351e-10 1.650727235e-10 2.552696319e-10 9.550210318e-11 3.083523822e-10 2.302578937e-10 5.895768972e-11 5.716640343e-11 1.634219774e-10 2.918256187e-10 2.77976341e-10 1.37675562e-10 1.614341662e-10 7.707033426e-11 1.653725297e-10 1.670535233e-10 2.638872099e-10 3.044793901e-10 3.4315805e-10 3.045017854e-10 1.459861308e-10 2.72894498e-10 1.737943945e-10 2.070107694e-10 2.50745834e-10 1.993924627e-10 7.807502335e-11 2.362362566e-10 1.528143416e-10 1.326946909e-10 2.253819375e-10 2.033458856e-10 2.508277312e-10 2.625984787e-10 9.443150372e-11 2.175949643e-10 1.682787048e-10 1.265097264e-10 3.782100845e-10 2.399001855e-10 1.669856933e-10 2.067917264e-10 1.894994654e-10 1.157335758e-10 3.455401099e-10 2.671331812e-10 2.190717281e-10 1.578153803e-10 2.809613699e-10 2.632306573e-10 3.601320333e-10 4.223105235e-10 2.88363743e-10 4.375729349e-10 3.66830808e-10 2.150054212e-10 2.93805406e-10 3.028382893e-10 2.362877895e-10 2.384683288e-10 3.257952611e-10 3.946650109e-10 2.933322945e-10 2.43553193e-10 1.220198469e-10 1.103860546e-10 1.944807664e-10 1.480489421e-10 2.867911548e-10 3.509283797e-10 2.217486066e-10 2.07143546e-10 2.283715776e-10 2.3025186e-10 1.62685125e-10 2.064712937e-10 2.853856169e-10 3.039244386e-10 1.583889817e-10 2.346989942e-10 9.224807903e-11 1.179196835e-10 1.008504499e-10 1.19661799e-10 2.536450854e-10 1.422442728e-10 1.346822883e-10 2.193248324e-10 1.02842631e-10 1.33374455e-10 1.637506594e-10 1.614146025e-10 4.631504902e-10 2.89455686e-10 1.823967896e-10 2.983218828e-10 3.755444856e-10 4.306407385e-10 5.995630661e-10 5.573460776e-10 4.554530799e-10 2.617378517e-10 1.877306678e-10 3.43136086e-10 2.252980093e-10 4.653254948e-10 3.72620656e-10 6.486375852e-10 3.480384243e-10 4.431800634e-10 3.077470508e-10 3.194074021e-10 4.059737709e-10 3.007564704e-10 4.52127461e-10 3.48357683e-10 3.36258517e-10 3.413586886e-10 3.186203972e-10 4.170249483e-10 6.617114961e-10 3.025866105e-10 5.939249415e-10 4.155667751e-10 4.342461186e-10 5.498828917e-10 4.068703609e-10 6.04481672e-10 2.551021066e-10 4.186478225e-10 7.899809845e-10 4.390074127e-10 3.048566197e-10 3.614439309e-10 6.48233616e-10 4.145409934e-10 2.45977588e-10 2.425884096e-10 1.976244745e-10 1.702890405e-10 1.469742177e-10 1.580518859e-10 1.521600033e-10 1.339916486e-10 1.118971679e-10 7.701620577e-11 7.851443883e-11 1.213707169e-10 1.659423304e-10 1.384582394e-10 1.9387707e-10 1.589287705e-10 1.95104052e-10 1.538603538e-10 2.296159711e-10 1.072882921e-10 1.932611941e-10 2.595815313e-10 2.837998088e-10 2.635859833e-10 2.627226661e-10 4.17609333e-10 2.082171123e-10 1.40944458e-10 3.439727459e-10 2.498343898e-10 4.004763296e-10 3.194782405e-10 2.569455728e-10 1.885959059e-10 3.222782732e-10 4.282957026e-10 3.095083577e-10 3.767818151e-10 2.396576625e-10 2.361916869e-10 3.144322557e-10 3.269721642e-10 3.852995119e-10 3.188956973e-10 2.212057872e-10 2.223469436e-10 2.457653102e-10 1.809430004e-10 2.373191164e-10 1.403463495e-10 2.992534982e-10 1.999114565e-10 1.64234362e-10 1.71049491e-10 2.405369034e-10 3.354833477e-10 2.144487898e-10 1.422272379e-10 1.777456667e-10 2.042222121e-10 1.991984926e-10 1.992102257e-10 3.827549033e-10 2.314692836e-10 4.544824185e-10 1.041630601e-10 2.389905388e-10 2.182876383e-10 2.131240254e-10 3.071775219e-10 3.368046926e-10 1.646027388e-10 1.324711637e-10 2.559329618e-10 2.050093676e-10 7.03235449e-11 1.808824255e-10 2.424936602e-10 2.378452483e-10 2.477637183e-10 3.069704612e-10 2.292856381e-10 1.412125165e-10 2.309603782e-10 2.399417186e-10 8.770591908e-11 2.304176378e-10 2.899965225e-10 1.084283226e-10 1.910117435e-10 3.731314999e-10 1.158470149e-10 1.738340805e-10 1.867621793e-10 1.048138381e-10 1.235158307e-10 1.91153451e-10 1.883730201e-10 2.171365254e-10 3.326631964e-10 2.715642877e-10 9.895638874e-11 2.377874762e-10 1.037223252e-10 1.711685465e-10 3.236092913e-10 1.554650092e-10 3.116162977e-10 3.880044943e-10 2.651306176e-10 1.844980887e-10 7.195741603e-11 4.505279749e-10 1.16478037e-10 2.144910521e-10 1.668175764e-10 3.279363896e-10 3.472827535e-10 3.696854469e-10 1.865155625e-10 2.336644669e-10 9.356738376e-11 9.253094896e-11 4.448347553e-10 2.137420376e-10 1.680943596e-10 1.451281925e-10 2.540744429e-10 +2.815686974e-10 3.606404455e-10 2.258471302e-10 2.04601233e-10 2.460763203e-10 2.254780677e-10 1.407700941e-10 1.813318717e-10 1.848422342e-10 8.834017786e-11 3.02372242e-10 1.456795926e-10 1.537304416e-10 2.315987756e-10 3.104050056e-10 1.959309853e-10 4.268176813e-10 2.582129105e-10 1.371827253e-10 3.643467549e-10 1.545750973e-10 3.506163468e-10 8.910601128e-11 9.051892271e-11 2.936529118e-10 9.607374375e-11 1.553285223e-10 1.977259694e-10 1.666851694e-10 1.864001181e-10 1.166920294e-10 3.605098178e-10 2.130889438e-10 3.014078121e-10 3.119527959e-10 1.291384892e-10 1.597333536e-10 1.409776876e-10 1.458448046e-10 1.84534966e-10 2.401313778e-10 9.964689268e-11 8.734287446e-11 1.211585527e-10 2.434746749e-10 1.567880349e-10 1.818459914e-10 1.598511826e-10 1.369750969e-10 1.737793088e-10 2.727141188e-10 1.357815659e-10 2.209696896e-10 1.394996924e-10 1.147090499e-10 2.582859452e-10 2.176564073e-10 2.14614469e-10 1.250436443e-10 1.586893527e-10 1.847860496e-10 2.432472401e-10 1.272525549e-10 2.660249029e-10 2.070016659e-10 2.31508962e-10 1.915286906e-10 1.25891497e-10 2.007617335e-10 1.943573913e-10 1.096118634e-10 2.568773645e-10 1.781979786e-10 1.669412509e-10 1.226598911e-10 2.892606724e-10 1.90983428e-10 1.390526764e-10 1.982647191e-10 1.483958803e-10 3.393775727e-10 4.690567069e-10 2.316036974e-10 2.739245805e-10 2.332993861e-10 1.930017219e-10 3.627900058e-10 3.569431752e-10 2.206146664e-10 2.777457652e-10 2.29010669e-10 3.127641891e-10 2.656559229e-10 2.447742663e-10 2.768087211e-10 4.215348873e-10 3.474017863e-10 2.771247025e-10 1.949484416e-10 3.119863192e-10 2.461560191e-10 2.207897006e-10 2.479498883e-10 2.493740699e-10 2.211785347e-10 1.9147666e-10 2.212083752e-10 1.340266513e-10 3.210231647e-10 2.86670915e-10 2.298894591e-10 2.476124746e-10 1.811614949e-10 2.395654893e-10 2.608424285e-10 2.172752652e-10 1.645344957e-10 1.423360101e-10 1.324949138e-10 4.399590611e-11 2.029550778e-10 1.206613892e-10 1.344719859e-10 1.731930184e-10 1.694253425e-10 1.675325802e-10 1.510356496e-10 1.130748636e-10 3.573939305e-10 2.564561243e-10 5.647164818e-10 1.995013916e-10 2.477158318e-10 2.077536962e-10 5.471594841e-10 4.471930127e-10 3.691085424e-10 2.594917568e-10 3.581932844e-10 3.401757991e-10 2.971151312e-10 5.174006101e-10 3.539835088e-10 5.248444142e-10 4.521664605e-10 6.952259618e-10 4.231748354e-10 4.481563048e-10 2.621555531e-10 3.597313026e-10 5.264854052e-10 2.256588174e-10 2.451074574e-10 6.073445096e-10 3.362479572e-10 2.663616387e-10 4.171564167e-10 2.989630357e-10 3.327788668e-10 5.307325932e-10 3.48652938e-10 2.685665421e-10 2.769362613e-10 3.779205509e-10 5.825885167e-10 4.857141812e-10 5.345081989e-10 2.842458318e-10 1.629811204e-10 2.680320487e-10 8.741398493e-11 5.651197422e-10 2.172376651e-10 1.94635745e-10 2.002479161e-10 1.669082561e-10 1.108059902e-10 9.645039217e-11 1.526522879e-10 5.374599992e-11 5.253699523e-11 1.212275102e-10 1.277473831e-10 2.070521285e-10 1.0757689e-10 1.402478536e-10 1.75291882e-10 1.720672454e-10 1.907394932e-10 2.839680346e-10 3.920007852e-10 2.745151499e-10 1.781189615e-10 3.185633232e-10 3.865171636e-10 3.26654248e-10 3.846288154e-10 2.193076674e-10 2.312629839e-10 3.102407961e-10 9.990305577e-11 3.266858266e-10 2.693376897e-10 3.779457499e-10 2.801961128e-10 4.595076812e-10 2.986604863e-10 1.799333805e-10 3.489431415e-10 1.911752354e-10 1.902266245e-10 2.034988425e-10 2.767697615e-10 3.074625216e-10 1.98546459e-10 2.771636449e-10 2.657350302e-10 1.967908392e-10 1.512054422e-10 2.102411352e-10 3.590445308e-10 1.856334393e-10 1.754832499e-10 1.745535916e-10 1.091340379e-10 1.838922569e-10 3.372290799e-10 9.301186082e-11 2.692089978e-10 3.520702096e-10 3.331815418e-10 3.067268545e-10 1.748818957e-10 2.647572488e-10 2.196241433e-10 2.311038597e-10 1.755308839e-10 1.222341789e-10 9.791842827e-11 1.432784848e-10 1.799510626e-10 1.458118953e-10 2.120062842e-10 1.959958627e-10 2.149082014e-10 2.421883804e-10 1.223264481e-10 1.102829809e-10 1.381101242e-10 2.536868999e-10 2.428533198e-10 1.914855791e-10 2.528347564e-10 2.130801018e-10 2.273094277e-10 3.147203739e-10 2.889010687e-10 2.242905096e-10 1.466266944e-10 2.417534694e-10 1.938245695e-10 1.781533483e-10 1.535453507e-10 1.822167235e-10 2.923342934e-10 2.036849959e-10 1.622999518e-10 1.964105469e-10 1.473436588e-10 3.933934181e-10 7.192388089e-11 1.60941171e-10 3.042750517e-10 2.839692433e-10 2.51816536e-10 1.495996043e-10 2.071515271e-10 1.226947644e-10 9.430831738e-11 2.38679038e-10 2.8596924e-10 2.807759519e-10 3.384005394e-10 1.358785416e-10 1.737421126e-10 3.991418332e-10 3.126670919e-10 2.934614478e-10 2.86159093e-10 2.145349883e-10 1.403962146e-10 4.428834044e-10 9.609916229e-11 2.091605762e-10 2.997811702e-10 2.368584956e-10 2.065190599e-10 2.490266086e-10 2.211343646e-10 1.783266292e-10 +2.681617361e-10 3.066803761e-10 2.420194943e-10 4.032750685e-10 1.577098191e-10 1.050280897e-10 1.290843643e-10 3.261198127e-10 1.936710476e-10 1.269999487e-10 1.846721075e-10 3.515454299e-10 1.770844485e-10 1.145135923e-10 2.564182909e-10 1.21539209e-10 1.902853966e-10 1.362987068e-10 1.057338826e-10 1.958982196e-10 9.67902777e-11 9.374127566e-11 2.148223354e-10 1.795077262e-10 1.82413782e-10 3.382088646e-10 1.15952142e-10 2.372118302e-10 1.343003643e-10 1.867275598e-10 1.121668587e-10 6.018991117e-11 1.662976143e-10 9.246361457e-11 1.001549242e-10 2.116334762e-10 2.033829004e-10 2.869455782e-10 1.385220792e-10 2.027631965e-10 1.322114237e-10 1.108317339e-10 2.38785243e-10 1.378852194e-10 2.677078757e-10 9.153120056e-11 1.610781472e-10 8.222347193e-11 1.32069041e-10 1.754621184e-10 2.731692671e-10 8.781001026e-11 2.148673387e-10 3.044883825e-10 2.331602503e-10 2.403608989e-10 1.607745192e-10 1.927661753e-10 1.824182302e-10 1.423873444e-10 1.950334295e-10 2.305049862e-10 2.265955208e-10 3.790402847e-10 6.888879259e-11 2.691447223e-10 2.60170401e-10 2.135253341e-10 9.002948096e-11 1.366793217e-10 1.675416178e-10 2.333357779e-10 3.083595371e-10 3.478751946e-10 2.837860327e-10 6.411389089e-11 3.015260492e-10 2.116653724e-10 1.583621657e-10 2.080500259e-10 2.946534025e-10 3.389610974e-10 1.61031155e-10 1.757791652e-10 3.05626462e-10 3.426989472e-10 4.372275691e-10 3.463354824e-10 3.321404999e-10 4.362116108e-10 2.38508961e-10 3.10845014e-10 3.474977099e-10 2.505956668e-10 3.180900642e-10 4.170686697e-10 1.375808378e-10 2.885812424e-10 2.246262655e-10 3.376328486e-10 2.636700225e-10 1.984640877e-10 1.95100621e-10 2.175919332e-10 2.393310501e-10 3.487583924e-10 2.963392232e-10 1.75934912e-10 1.82042496e-10 1.065412371e-10 1.652679885e-10 2.934689087e-10 2.214221978e-10 2.363906214e-10 3.974190238e-10 1.557576122e-10 1.334155158e-10 1.326367754e-10 1.07392478e-10 1.545181053e-10 1.148762556e-10 2.238323795e-10 2.697875783e-10 8.007237307e-11 1.01537134e-10 9.501054884e-11 2.223605879e-10 1.779083962e-10 2.887278792e-10 1.619260219e-10 6.688648173e-10 2.890982046e-10 3.817672835e-10 2.834711422e-10 3.778562284e-10 1.664220292e-10 5.120356514e-10 3.274774151e-10 3.37720458e-10 3.096494409e-10 5.140524838e-10 2.917214313e-10 6.700776764e-10 4.847955059e-10 3.946280499e-10 2.917732509e-10 6.868744144e-10 4.721674429e-10 4.417826259e-10 4.468334407e-10 5.839068087e-10 5.104801615e-10 5.623375184e-10 2.616961906e-10 3.25524173e-10 2.935912705e-10 4.35642812e-10 4.972310231e-10 6.045362196e-10 3.441413795e-10 3.000211991e-10 6.326367709e-10 4.801254775e-10 3.329075327e-10 4.708072359e-10 4.786886057e-10 3.526513298e-10 2.182808467e-10 1.758357835e-10 1.861044267e-10 3.507327181e-10 2.175642371e-10 1.572609445e-10 2.61525086e-10 1.998692085e-10 2.170635114e-10 1.360344231e-10 7.402785501e-11 1.033016181e-10 1.271865166e-10 3.193045688e-11 1.546051689e-10 3.538204278e-10 1.063088176e-10 2.612520177e-10 1.257556969e-10 1.784200338e-10 2.20656739e-10 1.588450891e-10 1.644088618e-10 2.972035755e-10 2.475902584e-10 3.369660674e-10 2.171769074e-10 2.438734967e-10 2.381326143e-10 2.619205479e-10 3.931581696e-10 2.522973642e-10 2.418377512e-10 1.661699334e-10 2.907898758e-10 1.915094216e-10 2.98512702e-10 3.435729215e-10 2.388490523e-10 2.967980174e-10 3.151417783e-10 3.190395286e-10 3.955563887e-10 2.443720372e-10 3.149735009e-10 4.623206233e-10 2.820268722e-10 4.129788461e-10 2.002673023e-10 2.766187121e-10 3.849990481e-10 3.77170626e-10 1.143897529e-10 2.621184497e-10 2.42209233e-10 1.663700871e-10 2.263189004e-10 1.884709404e-10 3.630458884e-10 1.137008101e-10 2.307907741e-10 1.144830281e-10 2.443962253e-10 3.547384639e-10 1.839787471e-10 2.902016371e-10 1.98929651e-10 3.34250796e-10 3.041508906e-10 2.151830775e-10 1.489774433e-10 1.895064418e-10 1.332516702e-10 2.7747401e-10 2.142433148e-10 1.091220612e-10 1.488867483e-10 2.511019628e-10 1.747579297e-10 1.901132448e-10 1.963363019e-10 1.040858153e-10 1.112545653e-10 2.017294516e-10 1.17840877e-10 2.682185067e-10 1.493662982e-10 1.221852301e-10 5.987562681e-11 1.113524627e-10 5.987377493e-11 2.781249888e-10 2.252216304e-10 2.021106797e-10 1.4951438e-10 1.242762231e-10 3.600059562e-10 2.996495565e-10 2.310081377e-10 2.779196014e-10 2.693734633e-10 1.16940295e-10 1.285929367e-10 1.76683994e-10 1.912304411e-10 2.911679185e-10 1.756542925e-10 2.237295474e-10 1.739833872e-10 1.218650153e-10 2.486950382e-10 3.471170057e-10 2.054818837e-10 1.00339474e-10 2.224372738e-10 1.221259379e-10 2.505413683e-10 1.915105536e-10 1.441241519e-10 7.290442846e-11 2.776501912e-10 1.426084647e-10 1.316037676e-10 4.098231751e-10 1.428636808e-10 3.530662961e-10 2.251735804e-10 1.71212049e-10 1.215369145e-10 2.201445339e-10 1.89628901e-10 1.626138821e-10 2.614221473e-10 +3.297586302e-10 7.937504381e-11 1.877856232e-10 2.743812174e-10 1.248724223e-10 1.591870589e-10 2.483198799e-10 2.043254495e-10 1.022063654e-10 3.275539941e-10 2.584783705e-10 1.456389158e-10 6.825807738e-11 2.004563447e-10 1.975154428e-10 2.279765491e-10 1.49889105e-10 2.322563967e-10 1.788863655e-10 1.300753704e-10 1.335786045e-10 2.859260272e-10 2.442088019e-10 1.837047267e-10 9.214078068e-11 2.950276896e-10 9.430266284e-11 1.357550978e-10 2.30979507e-10 3.575370489e-10 2.309762e-10 1.551389126e-10 2.398250235e-10 3.296411113e-10 7.377651944e-11 3.18871437e-10 2.21586924e-10 2.665108826e-10 1.109153401e-10 1.14101738e-10 2.514917192e-10 9.068817798e-11 1.418382631e-10 1.558549889e-10 1.975692511e-10 1.608692928e-10 7.501342966e-11 3.326745568e-10 8.516201397e-11 2.906034945e-10 2.640131187e-10 2.418979465e-10 2.278352257e-10 2.433262065e-10 1.795730742e-10 2.781147117e-10 1.620164124e-10 1.811797942e-10 2.189523133e-10 1.496197817e-10 3.524833725e-10 6.758299822e-11 2.16982348e-10 2.574341736e-10 2.502884902e-10 1.92978831e-10 1.358275913e-10 2.069187747e-10 2.824695637e-10 2.098430076e-10 2.830980106e-10 2.756085776e-10 1.440424077e-10 2.538557461e-10 6.37763596e-11 2.851309075e-10 1.872273522e-10 2.810815733e-10 1.517657447e-10 1.99451403e-10 2.094995119e-10 2.875526794e-10 3.019941123e-10 2.205051491e-10 2.573357936e-10 4.381729836e-10 2.784605888e-10 2.507321101e-10 2.54849553e-10 3.4195484e-10 1.710946862e-10 3.41093808e-10 2.492559489e-10 3.622449387e-10 3.112674419e-10 2.789818903e-10 1.801273532e-10 3.601700915e-10 2.104638323e-10 3.12115768e-10 2.914724644e-10 2.257448149e-10 2.790160841e-10 1.747283637e-10 2.770540041e-10 3.098938259e-10 2.738736968e-10 2.495503031e-10 3.63706344e-10 1.645888618e-10 1.894004464e-10 2.207615273e-10 2.745294504e-10 1.863799208e-10 1.587310543e-10 2.046382152e-10 2.707246723e-10 2.113425055e-10 9.543713389e-11 1.410373033e-10 2.33001367e-10 1.282101865e-10 7.853670589e-11 8.506509519e-11 1.643680553e-10 8.2012302e-11 1.25315275e-10 1.540061963e-10 2.607922202e-10 1.179936562e-10 2.235935807e-10 2.842533066e-10 1.661333888e-10 1.386969321e-10 1.603040915e-10 4.689550945e-10 3.373977592e-10 1.806560705e-10 2.910045374e-10 3.860512499e-10 4.537218973e-10 3.968312592e-10 2.331905783e-10 3.931039583e-10 2.537456473e-10 2.317346614e-10 3.824221957e-10 5.307783901e-10 3.256737402e-10 2.561272709e-10 1.644276425e-10 2.667865711e-10 5.750839132e-10 4.9130212e-10 4.712199375e-10 2.391184244e-10 4.128549313e-10 3.840416358e-10 3.441759757e-10 3.958433279e-10 5.704404196e-10 8.386759152e-10 4.383202028e-10 3.739152888e-10 4.418003342e-10 1.420010455e-10 4.270332554e-10 5.403343721e-10 2.992922351e-10 1.039963278e-10 1.76853483e-10 3.097284024e-10 2.500621321e-10 1.524974426e-10 1.323458662e-10 8.263772446e-11 5.945927345e-11 6.631537037e-11 8.608371437e-11 8.498583787e-11 1.438334652e-10 1.146228111e-10 1.39566701e-10 2.889352469e-10 1.451880007e-10 1.736079401e-10 2.141629893e-10 2.186691764e-10 1.120026312e-10 1.439441774e-10 3.378903649e-10 1.432554947e-10 3.848826118e-10 1.969122853e-10 6.431336551e-11 3.696983362e-10 2.667055148e-10 1.647851982e-10 2.955635273e-10 3.313300125e-10 2.207772717e-10 2.59243372e-10 1.609627965e-10 2.930919434e-10 2.850477602e-10 2.106461575e-10 3.328242011e-10 3.215866162e-10 3.104427909e-10 3.812501807e-10 3.166309113e-10 4.409432583e-10 2.929189643e-10 2.655375245e-10 3.409535237e-10 1.810824416e-10 2.660061821e-10 4.688893933e-10 1.714995793e-10 2.3439166e-10 3.033613489e-10 1.345189226e-10 4.029129315e-10 1.037953939e-10 2.985882501e-10 1.294272343e-10 1.432861303e-10 2.691749045e-10 1.949597603e-10 2.65312462e-10 3.938625074e-10 3.645221551e-10 1.42657407e-10 2.314706292e-10 1.697198318e-10 3.396994855e-10 9.997331859e-11 2.457300532e-10 2.127921195e-10 1.774443652e-10 1.086290028e-10 1.320448117e-10 1.50110532e-10 1.02304534e-10 2.668228603e-11 2.43065317e-10 2.37723792e-10 2.055058349e-10 8.24370038e-11 2.561223152e-10 2.525567718e-10 1.382682388e-10 2.864231796e-10 1.65803656e-10 9.370522888e-11 1.759914922e-10 2.088504646e-10 1.852779573e-10 1.573061608e-10 2.152197758e-10 3.1205247e-10 1.315209576e-10 1.663214583e-10 1.302448713e-10 2.770781601e-10 1.282984102e-10 1.329654243e-10 2.815654634e-10 3.049121891e-10 9.999811745e-11 3.222900958e-10 2.40618352e-10 1.763006962e-10 7.813207865e-11 2.120791761e-10 2.053522928e-10 3.417916598e-10 2.03972171e-10 1.293887484e-10 1.589023734e-10 1.375156835e-10 3.630519309e-10 1.471059607e-10 1.827076678e-10 1.625087147e-10 1.541015772e-10 1.948909677e-10 2.576632989e-10 1.288774685e-10 4.434983326e-10 2.356976925e-10 1.462380657e-10 3.826122019e-10 2.443055052e-10 3.014990753e-10 1.163448952e-10 1.158377132e-10 2.138346349e-10 4.319041766e-10 2.342187479e-10 +2.155349228e-10 1.538766216e-10 1.879823462e-10 1.731185517e-10 9.983990201e-11 1.195086275e-10 2.725326943e-10 1.303888945e-10 4.333562978e-10 1.525225089e-10 1.847077959e-10 4.208365522e-10 2.459990656e-10 1.562036399e-10 2.697874796e-10 1.740549528e-10 1.498361858e-10 3.691798671e-10 2.129169416e-10 1.440761996e-10 2.353365685e-10 3.115789039e-10 1.973711096e-10 1.078657106e-10 1.669973408e-10 2.075620868e-10 4.673856779e-10 2.837132969e-10 1.400811522e-10 2.686523907e-10 2.487224636e-10 1.464040451e-10 1.935241871e-10 2.834858941e-10 2.183752198e-10 8.399526689e-11 1.642619123e-10 1.343490106e-10 2.262929012e-10 1.028144274e-10 1.103705683e-10 2.275979442e-10 2.360569373e-10 2.059465638e-10 2.246409027e-10 9.145881036e-11 2.842979373e-10 1.802613945e-10 1.86790158e-10 2.554739682e-10 2.360236609e-10 2.619576775e-10 7.189400643e-11 3.701402433e-10 2.790838998e-10 2.627623599e-10 1.034583509e-10 1.112520999e-10 9.910328526e-11 1.388362837e-10 2.234488353e-10 1.841972118e-10 2.765442691e-10 9.311552037e-11 1.866381937e-10 2.320065809e-10 2.058173545e-10 2.272206497e-10 1.371780037e-10 1.690659615e-10 2.443863369e-10 8.229633004e-11 3.099920949e-10 1.738387381e-10 2.934342868e-10 1.893456424e-10 1.944065652e-10 1.995961658e-10 1.003394593e-10 2.464053986e-10 2.682492588e-10 1.126210575e-10 2.642010345e-10 2.428619374e-10 1.656903337e-10 2.673653177e-10 3.658774625e-10 3.506232258e-10 4.588785374e-10 2.140231977e-10 2.694469392e-10 2.987255483e-10 2.826714156e-10 2.557178746e-10 3.209148075e-10 3.290358171e-10 2.985336335e-10 3.114122801e-10 1.836234198e-10 1.965419294e-10 2.77840347e-10 3.150297665e-10 2.302357003e-10 4.081955865e-10 2.471906808e-10 2.057482364e-10 2.823512941e-10 2.044534824e-10 2.944884017e-10 2.014450369e-10 2.401494042e-10 2.531518873e-10 2.305536636e-10 1.850972597e-10 2.12413316e-10 3.181024332e-10 2.261894236e-10 1.571902788e-10 1.565618298e-10 1.918880184e-10 1.05699182e-10 1.818697975e-10 1.378950223e-10 6.38278281e-11 2.302504345e-10 1.090730867e-10 1.428586615e-10 2.558582561e-10 1.825757305e-10 1.720505176e-10 1.986491057e-10 1.205757699e-10 7.463822594e-11 1.407120673e-10 1.245355005e-10 8.53302129e-11 6.340308217e-10 3.726578021e-10 1.589145675e-10 1.645212361e-10 1.607122204e-10 4.431810285e-10 2.856876931e-10 1.620890712e-10 2.219690464e-10 3.803658369e-10 4.800283439e-10 5.398085243e-10 3.496441105e-10 2.087611532e-10 4.590308033e-10 5.474349733e-10 8.710058421e-10 5.805479477e-10 3.389195641e-10 6.49203763e-10 2.200377653e-10 1.29904679e-10 4.680688507e-10 2.175054867e-10 1.868089682e-10 2.654462891e-10 1.323948705e-10 4.354340685e-10 4.593602463e-10 1.949419141e-10 1.468885765e-10 1.51362938e-10 1.322300362e-10 9.132240169e-11 1.527601685e-10 1.828424795e-10 1.53898013e-10 9.487284807e-11 1.231832052e-10 1.11244099e-10 1.109990306e-10 1.449799729e-10 1.097648348e-10 1.982564419e-10 1.58487552e-10 1.573813688e-10 3.4407932e-10 3.677955652e-10 2.369710622e-10 2.341334218e-10 1.984548737e-10 2.754666072e-10 2.353801972e-10 1.917917262e-10 2.123019521e-10 2.808998541e-10 1.986781699e-10 2.77632565e-10 2.926474627e-10 3.23122257e-10 2.992042881e-10 3.836951471e-10 2.554834447e-10 2.37625756e-10 3.37646392e-10 3.986431353e-10 2.483081237e-10 3.785668874e-10 2.704892496e-10 3.264329005e-10 2.468458202e-10 2.9900318e-10 4.436246268e-10 4.001107099e-10 3.411566531e-10 2.514392939e-10 2.908841045e-10 2.606482938e-10 2.48957108e-10 3.892807292e-10 3.65749356e-10 2.446147446e-10 2.205325591e-10 1.258367315e-10 1.606113739e-10 1.854741146e-10 1.954107128e-10 8.046596324e-11 2.75622185e-10 3.074229093e-10 1.947667471e-10 2.373981716e-10 1.140121508e-10 7.399019959e-11 2.672854537e-10 1.812366986e-10 2.102045831e-10 1.649603197e-10 3.0240993e-10 3.577102007e-10 2.519987083e-10 1.698473737e-10 1.957788474e-10 1.688137578e-10 1.762668993e-10 1.57120259e-10 1.758305541e-10 1.261028586e-10 1.378857643e-10 1.653194258e-10 1.645190349e-10 1.44522961e-10 1.851755904e-10 1.345013957e-10 1.49428741e-10 1.307951071e-10 2.061828117e-10 3.178125947e-10 2.78748361e-10 3.88327052e-10 1.051867014e-10 7.908004583e-11 8.322250528e-11 1.293515961e-10 1.476359334e-10 1.351069988e-10 1.341037342e-10 3.333815146e-10 1.405893402e-10 2.881737755e-10 1.128392336e-10 2.944713849e-10 1.897768733e-10 1.752042623e-10 1.080443135e-10 3.507168392e-10 9.552931411e-11 2.596150567e-10 2.907244529e-10 2.07391945e-10 3.544235128e-10 1.558291995e-10 1.360056257e-10 2.028682631e-10 2.699985483e-10 2.753419018e-10 9.45671776e-11 2.219806771e-10 8.869937824e-11 1.118508672e-10 1.984646335e-10 1.383357357e-10 3.349734976e-10 1.091231785e-10 1.158737705e-10 1.098760085e-10 2.734718035e-10 3.600104665e-10 8.804793091e-11 1.271900429e-10 2.611033534e-10 1.780879854e-10 3.77734739e-10 1.646498883e-10 +2.717082729e-10 4.726644039e-10 2.741566167e-10 1.550315296e-10 2.123002178e-10 2.961076796e-10 3.087447181e-10 8.2966861e-11 2.172776376e-10 2.102215052e-10 1.491587382e-10 2.25544872e-10 3.256270309e-10 1.734641797e-10 3.533950857e-10 2.136457409e-10 1.083736275e-10 2.530239406e-10 1.288404461e-10 9.982293653e-11 3.565706186e-10 1.744137613e-10 2.210192443e-10 1.792957473e-10 1.504428105e-10 1.901564272e-10 2.307090455e-10 2.646804425e-10 6.80542003e-11 1.313896247e-10 2.807795984e-10 3.637991075e-10 1.625667407e-10 9.274960314e-11 2.85086068e-10 7.133208864e-11 8.670810709e-11 1.248619359e-10 2.119077437e-10 4.24627731e-10 2.622262007e-10 1.143092643e-10 1.198966639e-10 1.755814093e-10 3.192250546e-10 2.857978859e-10 2.7368355e-10 2.333999037e-10 1.106247351e-10 2.384497206e-10 2.525556104e-10 2.345974443e-10 2.030421877e-10 2.262921796e-10 1.122174125e-10 1.508030344e-10 7.246974582e-11 3.520186504e-10 1.243865042e-10 2.003381023e-10 1.622694156e-10 1.761921521e-10 1.362603516e-10 1.664601723e-10 1.536891026e-10 3.211968277e-10 1.605950365e-10 2.26435246e-10 1.583352437e-10 2.452221394e-10 2.05838691e-10 1.476437211e-10 1.250622041e-10 1.78899046e-10 1.170825455e-10 1.78550538e-10 1.681651661e-10 1.352511237e-10 1.434623146e-10 2.670934412e-10 1.39883482e-10 1.388640381e-10 3.349176321e-10 2.84306303e-10 2.135581667e-10 2.945207507e-10 1.542969649e-10 3.700280391e-10 4.044784112e-10 2.190371027e-10 3.55932517e-10 2.659139535e-10 3.270949507e-10 2.723208501e-10 2.171525365e-10 1.894771069e-10 1.593540816e-10 3.05080858e-10 2.106862636e-10 1.717231957e-10 3.442271444e-10 2.947534113e-10 3.857343206e-10 2.427245906e-10 3.042767413e-10 3.001327839e-10 1.301397756e-10 1.512882882e-10 3.209801122e-10 2.71640958e-10 2.410634127e-10 1.597995131e-10 2.655211421e-10 2.460098442e-10 2.638126295e-10 2.272924941e-10 3.700113436e-10 1.492869212e-10 1.987615748e-10 2.243764906e-10 1.122544529e-10 1.739217803e-10 8.601213839e-11 1.246596772e-10 4.754474893e-11 1.100414234e-10 5.347618012e-11 1.277682986e-10 8.933831884e-11 1.886428677e-10 1.68535517e-10 1.89484151e-10 1.30009514e-10 1.500089619e-10 6.135081701e-10 1.312390323e-10 8.436062859e-11 1.863591798e-10 1.239129356e-10 2.925415342e-10 2.263605856e-10 4.913089243e-10 3.161162752e-10 2.69688131e-10 5.10758551e-10 1.695304929e-10 5.958318363e-10 3.254353159e-10 2.609932633e-10 4.913253237e-10 3.849195047e-10 4.253276566e-10 4.534252636e-10 5.425113173e-10 4.854828454e-10 1.354150968e-10 1.504571522e-10 3.083004935e-10 3.31580059e-10 1.565999085e-10 9.497959145e-11 9.526765477e-11 1.929133678e-10 9.501866246e-11 1.50703409e-10 1.865459018e-10 1.076258652e-10 1.260816972e-10 1.802288651e-10 1.216821302e-10 9.609157227e-11 1.343174646e-10 1.725739109e-10 8.867879282e-11 6.010204707e-11 1.267895376e-10 8.455985159e-11 1.044988339e-10 1.743598058e-10 9.928604899e-11 1.966816268e-10 2.855165897e-10 2.209383614e-10 1.979709335e-10 2.661230891e-10 2.826826084e-10 2.931872624e-10 2.813712993e-10 2.023335454e-10 1.999212218e-10 3.058107395e-10 1.943362266e-10 2.12570632e-10 3.899583757e-10 2.64649339e-10 2.61926758e-10 2.511844111e-10 2.090719768e-10 2.167839812e-10 2.520049346e-10 3.021919794e-10 4.274142898e-10 3.239937651e-10 2.830049431e-10 3.158317054e-10 2.505205969e-10 1.140795582e-10 3.706395232e-10 2.817122203e-10 1.999872292e-10 1.443611706e-10 4.012843347e-10 1.559166054e-10 2.488173513e-10 2.471404098e-10 1.910315534e-10 2.364608226e-10 2.62268126e-10 3.941265686e-10 1.572998647e-10 2.214540749e-10 2.181232809e-10 3.30328855e-10 1.131503296e-10 1.945686493e-10 4.232010911e-10 1.157407683e-10 1.999071031e-10 2.83516092e-10 2.075080482e-10 1.596264464e-10 2.840490242e-10 2.663057935e-10 8.86645146e-11 1.295880394e-10 1.858808686e-10 2.783778118e-10 2.164069726e-10 2.782600669e-10 2.059711023e-10 2.239154182e-10 1.429909905e-10 2.243595863e-10 9.896921215e-11 2.353771212e-10 1.839493576e-10 1.78746257e-10 1.770925961e-10 2.484589682e-10 1.390171721e-10 1.664410985e-10 9.018343959e-11 1.789664916e-10 3.454689956e-10 4.115504164e-11 2.998146982e-10 1.744309774e-10 2.241609183e-10 1.037593931e-10 1.281305857e-10 1.715366698e-10 2.861982877e-10 1.07213617e-10 5.660119742e-11 1.526090139e-10 2.23619314e-10 1.386170535e-10 3.717999582e-10 1.269142218e-10 1.644472443e-10 1.35312146e-10 1.593433702e-10 1.235374261e-10 1.580160495e-10 1.951635567e-10 1.798055389e-10 2.932155601e-10 1.58410126e-10 8.619181088e-11 1.064231924e-10 2.420623926e-10 1.815241205e-10 1.647172761e-10 8.122878934e-11 8.233056375e-11 1.14921827e-10 1.272769632e-10 2.549085751e-10 1.969688258e-10 1.902617235e-10 3.415120756e-10 3.669695196e-10 6.586572569e-11 1.232039946e-10 2.290949357e-10 1.809831888e-10 1.000995688e-10 1.330911949e-10 2.302318977e-10 3.138766243e-10 +1.632620801e-10 1.324161373e-10 2.979193168e-10 2.147173926e-10 3.430540351e-10 1.133863181e-10 2.354310949e-10 1.639029793e-10 1.29682719e-10 2.412191239e-10 1.801961404e-10 1.333881521e-10 1.159226189e-10 1.241076254e-10 1.992231254e-10 5.965632338e-11 4.032228955e-10 2.923399004e-10 1.909194889e-10 3.391921558e-10 2.890311232e-10 1.817179619e-10 2.703046519e-10 1.520935437e-10 2.35669474e-10 2.090681704e-10 2.458807933e-10 1.527348749e-10 3.618361881e-10 2.568842832e-10 1.226593114e-10 4.000078139e-11 1.635633271e-10 1.40300121e-10 6.9673326e-11 8.863328162e-11 1.135930964e-10 1.410181688e-10 7.231335798e-11 1.13914965e-10 2.078660249e-10 1.399876965e-10 2.543035056e-10 1.804274279e-10 2.043797243e-10 1.036016034e-10 1.304755868e-10 1.328074034e-10 1.755623455e-10 1.411391994e-10 1.835230893e-10 2.202323139e-10 2.047500068e-10 1.858221302e-10 3.045140961e-10 1.116813417e-10 1.128663497e-10 4.691919663e-10 3.801097187e-10 2.100904464e-10 1.932629906e-10 2.165357059e-10 1.319620866e-10 1.073085288e-10 2.806361005e-10 1.968332201e-10 2.314379226e-10 2.880805069e-10 1.733501501e-10 2.645621294e-10 8.423765733e-11 1.783146008e-10 2.589931939e-10 1.71451727e-10 2.444924968e-10 3.050281609e-10 3.12025696e-10 1.669460711e-10 9.007327241e-11 1.840494937e-10 1.570576505e-10 2.633434966e-10 1.432851735e-10 1.439091089e-10 2.832220117e-10 2.908900474e-10 2.503607236e-10 4.382022643e-10 3.069361354e-10 2.178361255e-10 2.438518441e-10 2.876029e-10 2.211015676e-10 2.961796734e-10 3.358529106e-10 1.151391899e-10 4.620494584e-10 2.265227913e-10 3.199119398e-10 2.46669523e-10 1.602899084e-10 1.953035357e-10 2.163948739e-10 2.669514462e-10 3.35375898e-10 2.590796915e-10 2.905702742e-10 2.204889201e-10 1.834940027e-10 2.659424792e-10 3.455226863e-10 1.983762898e-10 2.478745744e-10 2.03901446e-10 2.752474423e-10 1.850766258e-10 3.51032983e-10 2.096477196e-10 1.180969252e-10 2.077777872e-10 1.296419262e-10 1.522975137e-10 2.917262188e-10 2.170241829e-10 1.3525383e-10 1.39056575e-10 1.503689293e-10 7.762342927e-11 2.217956373e-10 1.420215744e-10 9.871788606e-11 1.574941484e-10 5.743526266e-11 1.546858754e-10 1.802360119e-10 4.160558604e-11 1.099926943e-10 1.117907998e-10 1.545703048e-10 2.566407048e-10 9.699439544e-11 2.274025421e-10 5.374019177e-10 3.254609094e-10 7.209924008e-11 2.565592456e-10 1.164452728e-10 3.541488048e-10 1.407501686e-10 5.789407051e-10 3.932412355e-10 1.402801788e-10 2.290861623e-10 2.09332286e-10 2.582838477e-10 2.996427143e-10 3.38596397e-10 1.409967889e-10 1.413446315e-10 9.039112716e-11 1.237344331e-10 1.135686848e-10 8.28581152e-11 1.079665997e-10 1.192774847e-10 1.009399856e-10 1.989860492e-10 1.579677115e-10 1.504071968e-10 1.973187467e-10 8.115472836e-11 1.495010647e-10 8.602892815e-11 1.106146393e-10 1.103162096e-10 1.17008533e-10 9.663420673e-11 1.030734987e-10 6.757915066e-11 1.854525287e-10 1.309818452e-10 1.29381401e-10 1.940954571e-10 1.106868367e-10 1.964733584e-10 2.152479836e-10 2.103141876e-10 2.907053936e-10 2.970811421e-10 1.422415614e-10 2.92230991e-10 2.48739926e-10 2.464006824e-10 2.436357368e-10 1.952136383e-10 3.009461263e-10 3.811056952e-10 1.25882818e-10 2.849504137e-10 3.389317454e-10 2.831682081e-10 2.584354798e-10 2.775943561e-10 2.531946802e-10 2.242671047e-10 2.916413232e-10 2.593996285e-10 3.057974829e-10 3.104335842e-10 4.048011163e-10 3.556559249e-10 2.479319257e-10 2.878997312e-10 3.160719357e-10 2.271863501e-10 2.825837217e-10 2.075956233e-10 2.539769257e-10 2.075148264e-10 1.606684397e-10 2.979283301e-10 1.247678926e-10 2.047211841e-10 2.515724728e-10 2.791074205e-10 2.018659551e-10 1.361495255e-10 1.161447557e-10 1.291950449e-10 1.358131228e-10 1.965464236e-10 1.747273646e-10 1.216001146e-10 2.386394629e-10 1.970968803e-10 1.011930816e-10 2.299015993e-10 1.816091102e-10 2.716550598e-10 2.582543579e-10 3.047136169e-10 5.113084214e-11 4.836701075e-10 8.684058435e-11 2.881011315e-10 1.655537516e-10 1.61671122e-10 3.571488865e-10 5.922684666e-11 1.563638064e-10 1.69908818e-10 2.621166624e-10 2.078339762e-10 1.186813734e-10 1.204327402e-10 1.365374502e-10 1.47951769e-10 2.927308432e-10 2.045149146e-10 2.333389808e-10 1.690502548e-10 1.277210062e-10 1.825898844e-10 1.774920552e-10 1.62883587e-10 1.265982952e-10 1.473100261e-10 1.542689137e-10 1.633547611e-10 1.495877347e-10 2.461300532e-10 1.311855741e-10 1.542821925e-10 1.497199284e-10 2.767371107e-10 1.376071993e-10 2.9600192e-10 1.956198971e-10 3.022059031e-10 1.646091607e-10 2.441738818e-10 1.660995796e-10 3.021873297e-10 1.224011533e-10 1.79678072e-10 2.723857324e-10 1.49814816e-10 1.967541781e-10 8.179650563e-11 1.887166252e-10 2.680681447e-10 1.768399973e-10 2.269090056e-10 1.501712237e-10 1.949717682e-10 2.036997209e-10 1.330527063e-10 1.926843451e-10 1.734194562e-10 1.059782607e-10 +1.098380111e-10 8.980411431e-11 2.554524244e-10 5.946683009e-11 3.193805107e-10 1.554473677e-10 2.568278365e-10 2.328525022e-10 3.57264678e-10 3.238320602e-10 1.957198753e-10 7.84620089e-11 1.224731874e-10 1.479498576e-10 3.080475791e-10 1.414839485e-10 2.547715249e-10 1.611138035e-10 2.079450924e-10 9.2889143e-11 2.996634973e-10 1.497305635e-10 1.433173788e-10 1.540095749e-10 1.099977461e-10 1.461086081e-10 1.519048348e-10 1.131772678e-10 2.52140927e-10 1.113801305e-10 4.919813327e-10 1.537653142e-10 2.534084873e-10 3.400206052e-10 2.326450144e-10 2.323332975e-10 1.422359103e-10 2.082479906e-10 6.209986406e-11 1.016985719e-10 1.499821273e-10 2.000941551e-10 2.287899813e-10 2.108909803e-10 3.020578947e-10 3.526374469e-10 1.489259532e-10 3.622798102e-10 2.211890197e-10 2.629880059e-10 2.580719178e-10 2.523643787e-10 1.915438996e-10 2.523475878e-10 1.900845769e-10 2.585147441e-10 3.589385852e-10 1.577800426e-10 9.899511198e-11 3.640180838e-10 2.567241772e-10 1.754459513e-10 1.465306883e-10 2.362109939e-10 1.356810782e-10 3.062093692e-10 1.123384936e-10 2.949998577e-10 3.368611306e-10 1.967604934e-10 1.685765765e-10 1.385688676e-10 9.728142571e-11 2.600416343e-10 2.34000803e-10 2.995859818e-10 1.13132717e-10 1.397903332e-10 1.721036496e-10 1.889327109e-10 2.515980929e-10 1.582931869e-10 3.305235945e-10 2.190126275e-10 2.372294523e-10 3.488156047e-10 1.343010692e-10 3.714187146e-10 2.47670656e-10 3.215295364e-10 2.551692499e-10 2.659510609e-10 3.547643169e-10 3.919547213e-10 2.76980617e-10 1.879876361e-10 3.002589928e-10 2.772934852e-10 1.505727775e-10 3.679786018e-10 3.841300747e-10 3.695968771e-10 2.66188784e-10 2.83151449e-10 4.084345253e-10 2.680137612e-10 1.821242698e-10 3.020324175e-10 2.524745379e-10 2.185313049e-11 2.171471589e-10 1.690527342e-10 2.216955882e-10 2.615723979e-10 2.142690258e-10 3.273343427e-10 1.445879355e-10 1.98990882e-10 2.28299919e-10 1.767308167e-10 1.516215883e-10 1.649790264e-10 1.888444536e-10 1.250500016e-10 1.00782031e-10 6.390366233e-11 5.405439744e-11 1.290635483e-10 1.470079515e-10 1.144418452e-10 1.053125318e-10 4.231752848e-11 8.911422259e-11 1.074398485e-10 2.126333955e-10 1.311823583e-10 1.389670917e-10 1.596146301e-10 1.532837532e-10 1.518799525e-10 2.194535007e-10 1.396580523e-10 1.512130698e-10 1.618829962e-10 1.217542263e-10 1.904872303e-10 1.800744934e-10 1.440318841e-10 5.435539667e-10 1.357812399e-10 1.377114328e-10 1.551962696e-10 1.020091159e-10 4.04142281e-10 1.827652874e-10 2.909055702e-10 1.700407448e-10 1.882393116e-10 1.876179026e-10 1.875036759e-10 1.193392704e-10 1.297025322e-10 1.010866186e-10 2.336792067e-10 3.459895744e-10 1.14855855e-10 1.266180297e-10 3.669417999e-11 6.456562437e-11 1.814601258e-10 8.480641365e-11 1.476640452e-10 1.291877999e-10 1.177092915e-10 1.319765566e-10 1.146279931e-10 1.232294568e-10 2.417475824e-10 1.500016497e-10 1.982664932e-10 1.363025399e-10 1.590400487e-10 2.091937227e-10 1.716230438e-10 1.097661831e-10 1.188032717e-10 1.777554922e-10 1.94453663e-10 2.500870662e-10 1.546224951e-10 1.490987178e-10 1.576378603e-10 1.767798879e-10 2.311332503e-10 2.297368815e-10 2.713589649e-10 2.436099725e-10 2.073251491e-10 2.907998671e-10 2.748845392e-10 2.229968667e-10 1.43433474e-10 2.981035249e-10 1.620913477e-10 2.972400793e-10 3.065673541e-10 3.379972544e-10 4.239878297e-10 3.158195738e-10 3.020300068e-10 3.345194734e-10 2.115331405e-10 2.63390121e-10 2.490805963e-10 3.665756156e-10 2.549057772e-10 1.123469377e-10 3.099036174e-10 2.193850776e-10 1.917822583e-10 2.524408531e-10 2.83182267e-10 2.642955659e-10 6.642157578e-11 3.231120575e-10 2.082163107e-10 1.516175485e-10 1.697886361e-10 4.158242136e-10 3.32831852e-10 4.666782321e-11 1.947795366e-10 1.47407092e-10 2.729218157e-10 3.775091858e-10 1.883020404e-10 2.938427701e-10 2.095109183e-10 1.298593905e-10 1.142447081e-10 7.671688145e-11 1.858349619e-10 2.163183951e-10 1.671926472e-10 2.081021283e-10 1.16462572e-10 5.215858569e-11 1.988636347e-10 1.519192131e-10 1.097586828e-10 1.516658451e-10 3.355603052e-10 1.141374972e-10 2.01549929e-10 2.073270134e-10 1.473819087e-10 1.517824232e-10 2.751358753e-10 8.837943534e-11 1.242706864e-10 1.03745536e-10 1.815241497e-10 1.726187776e-10 2.92384742e-10 1.859188356e-10 2.525339004e-10 8.584372674e-11 7.667469232e-11 1.717484055e-10 2.153367742e-10 9.238439478e-11 1.125056113e-10 1.604433865e-10 1.660092704e-10 1.049129219e-10 1.695659919e-10 2.390334881e-10 1.956590842e-10 3.495973831e-10 2.877387107e-10 2.14397971e-10 1.37527343e-10 1.113999316e-10 2.18849375e-10 1.30329769e-10 8.46810783e-11 2.463923008e-10 2.036445217e-10 1.619910731e-10 1.092004671e-10 2.102079513e-10 1.581481961e-10 5.921752076e-11 6.116222767e-11 1.601427206e-10 9.460234368e-11 8.61645757e-11 7.425525507e-11 1.290404939e-10 2.381352018e-10 +1.297745379e-10 1.50464506e-10 2.009227192e-10 2.212047602e-10 1.594918591e-10 3.018309476e-10 9.041002672e-11 2.141747765e-10 3.330334668e-10 1.400414273e-10 6.729812234e-11 1.630978033e-10 2.407501608e-10 1.318293919e-10 1.339330739e-10 1.186087234e-10 2.498828002e-10 1.538416889e-10 1.684240234e-10 8.608875228e-11 1.81369252e-10 3.259054229e-10 3.965806464e-10 1.225692462e-10 2.50997294e-10 1.170621748e-10 2.340678034e-10 1.817257125e-10 1.300534191e-10 6.039247504e-11 1.647150631e-10 1.335333627e-10 9.860339678e-11 2.955709983e-10 6.993894729e-11 7.772394853e-11 1.791199724e-10 2.181190101e-10 2.631159513e-10 1.90662509e-10 7.279227335e-11 2.712166301e-10 2.977985594e-10 1.023120653e-10 1.436924067e-10 2.305894397e-10 2.076593526e-10 1.648629303e-10 1.494674362e-10 1.612018263e-10 2.454180298e-10 1.602813934e-10 2.170416879e-10 2.360686205e-10 2.704382801e-10 1.426770591e-10 1.479184937e-10 2.658420629e-10 1.382376993e-10 1.868360477e-10 1.282457453e-10 1.460590249e-10 2.853552277e-10 2.456090501e-10 2.031031534e-10 1.990868994e-10 1.668614982e-10 1.756523504e-10 3.890548151e-10 1.171050756e-10 1.704299401e-10 3.138437005e-10 1.701413661e-10 1.857468096e-10 1.454331746e-10 2.347630747e-10 3.003985676e-10 1.488126874e-10 1.687384966e-10 6.994416562e-11 2.509168237e-10 2.115124148e-10 1.714550383e-10 3.407352371e-10 4.191345415e-10 2.246774104e-10 2.880228493e-10 1.948543466e-10 3.774947996e-10 1.595417887e-10 3.585527895e-10 3.221440048e-10 3.918677861e-10 2.573502788e-10 1.912858284e-10 1.139965936e-10 1.735081814e-10 2.264183867e-10 1.948932579e-10 2.694164581e-10 1.736436354e-10 4.167299459e-10 2.913028207e-10 2.30430432e-10 1.902319728e-10 3.828839703e-10 2.500256141e-10 2.453099588e-10 1.962977771e-10 1.327287188e-10 2.359417679e-10 2.24251019e-10 3.208964474e-10 3.01768139e-10 1.301498919e-10 2.848443438e-10 2.048735955e-10 2.447038468e-10 2.736492953e-10 2.005826377e-10 1.406310671e-10 1.184118826e-10 6.534177569e-11 2.217811797e-10 1.380866903e-10 1.530552676e-10 1.59313999e-10 9.732243657e-11 2.115787377e-10 1.27820248e-10 5.732949711e-11 1.126165985e-10 3.229209444e-11 1.096441396e-10 1.885907606e-10 5.473381109e-11 7.704097252e-11 1.723860816e-10 7.546246089e-11 1.458171856e-10 1.447541092e-10 6.048153554e-11 9.290512408e-11 1.611248411e-10 1.133176926e-10 9.853973058e-11 1.638465297e-10 9.99795556e-11 1.016640007e-10 1.177890584e-10 1.856556436e-10 1.590495357e-10 1.277329106e-10 1.907107462e-10 2.275193003e-10 1.732455095e-10 8.154381892e-11 1.128250707e-10 1.807936603e-10 1.289765188e-10 1.276025361e-10 1.195411571e-10 1.986763452e-10 1.20573424e-10 9.780660011e-11 1.0557483e-10 1.142188641e-10 2.167220697e-10 5.998444194e-11 1.131893063e-10 1.386646957e-10 1.330075521e-10 1.00143534e-10 5.062402449e-11 1.548561301e-10 1.295823856e-10 1.827836664e-10 1.134765748e-10 1.48967001e-10 1.287518482e-10 9.813174668e-11 3.074016229e-10 2.363006562e-10 2.618013855e-10 1.819251305e-10 1.054851128e-10 2.870717436e-10 3.228855501e-10 2.499675186e-10 2.194970221e-10 2.535448928e-10 4.170716738e-10 2.757509659e-10 1.169656087e-10 1.973636461e-10 2.769334551e-10 2.079058383e-10 1.149084141e-10 2.185480337e-10 1.525165007e-10 9.205365774e-11 3.434700256e-10 1.786354485e-10 2.263592845e-10 3.066976278e-10 2.837101034e-10 2.980496541e-10 2.369171511e-10 3.950639697e-10 2.891694463e-10 5.479430737e-10 3.424079896e-10 5.095877756e-10 2.335399876e-10 1.90598022e-10 2.937843214e-10 1.891130937e-10 3.607894918e-10 2.37609922e-10 2.547600262e-10 2.148413288e-10 1.237008613e-10 1.853443167e-10 1.930774601e-10 2.350211246e-10 1.991723194e-10 7.026657706e-11 3.225344424e-10 1.540367615e-10 2.010291291e-10 1.273125094e-10 1.713729428e-10 3.309055867e-10 3.259558806e-10 1.835276435e-10 1.785247336e-10 2.362717173e-10 2.440740734e-10 8.945335176e-11 1.837621087e-10 1.284069276e-10 1.19297518e-10 2.262707516e-10 2.463143498e-10 2.609946507e-10 1.898603871e-10 3.428064492e-10 9.915974561e-11 1.139223894e-10 1.745645163e-10 1.723372827e-10 1.471022179e-10 1.678605274e-10 1.271692995e-10 1.645056481e-10 1.63318528e-10 9.613510185e-11 1.520513154e-10 6.539592737e-11 2.628238896e-10 1.727541748e-10 7.406677361e-11 1.941141949e-10 8.293205488e-11 1.490511465e-10 2.408605075e-10 8.047473741e-11 2.636326189e-10 2.867946614e-10 1.435040706e-10 3.287011749e-10 1.847417398e-10 6.811983123e-11 1.589008667e-10 7.548055961e-11 1.396238422e-10 2.119382087e-10 2.040570759e-10 2.5212432e-10 2.205517222e-10 1.338978964e-10 2.924842662e-10 3.529905382e-10 3.438610308e-10 2.297115546e-10 3.195489313e-10 1.251884056e-10 6.555186362e-11 2.314902641e-10 3.238358924e-10 1.125573083e-10 1.609362267e-10 1.932248334e-10 2.963754564e-10 2.620896417e-10 3.831506934e-11 1.587151731e-10 9.181306333e-11 1.286454353e-10 9.719391037e-11 +2.328247659e-10 1.629795796e-10 1.320914266e-10 1.552456915e-10 1.521358307e-10 1.937728392e-10 8.007991594e-11 2.445796562e-10 8.710227847e-11 2.826979943e-10 4.078758834e-10 1.773003128e-10 1.451002894e-10 1.641419888e-10 1.959429229e-10 1.644740866e-10 4.631330092e-10 1.162256997e-10 1.230375852e-10 1.597232932e-10 6.499997991e-11 2.074339167e-10 1.986913508e-10 2.530277708e-10 2.399350912e-10 1.375196134e-10 1.214452723e-10 1.52624442e-10 1.084151505e-10 7.030755028e-11 1.011266455e-10 1.302615632e-10 1.362268951e-10 2.719563667e-10 3.212772889e-10 1.011453888e-10 1.003600486e-10 8.126661509e-11 1.150534752e-10 1.111249394e-10 7.758897508e-11 1.682962439e-10 2.807006795e-10 1.223133777e-10 3.06834305e-10 2.126267323e-10 1.852498873e-10 3.043575784e-10 1.460013671e-10 1.360001085e-10 2.42587986e-10 2.416346089e-10 3.05005485e-10 2.51582941e-10 1.271466989e-10 1.538768745e-10 2.100774786e-10 2.259583851e-10 1.893656228e-10 1.342025411e-10 1.626430166e-10 2.523326771e-10 1.75259591e-10 3.139081433e-10 1.898959121e-10 2.19594402e-10 2.598648583e-10 1.901577316e-10 1.453024645e-10 2.920171559e-10 7.715651667e-11 1.368113843e-10 2.150249696e-10 1.407385343e-10 2.161518375e-10 1.016413026e-10 1.097942771e-10 1.557027629e-10 1.338441932e-10 2.307756821e-10 1.933754573e-10 2.592531082e-10 2.121199183e-10 1.064803398e-10 2.436127541e-10 2.859525111e-10 4.567266638e-10 8.24056046e-11 3.966841483e-10 2.843727859e-10 2.448433381e-10 4.171185821e-10 2.072559786e-10 3.99510641e-10 1.708859486e-10 1.598917669e-10 2.756481885e-10 2.659181424e-10 2.024271131e-10 2.197509044e-10 2.020520494e-10 2.051222197e-10 2.575181662e-10 1.708405787e-10 1.89827494e-10 2.255314804e-10 3.655719407e-10 1.755103421e-10 2.015142008e-10 2.484883328e-10 1.923385511e-10 2.419058629e-10 3.307147056e-10 1.993121004e-10 2.139204501e-10 2.001712743e-10 2.039118186e-10 2.24559394e-10 3.716747035e-10 2.068498413e-10 1.880280734e-10 2.690771962e-10 1.462115172e-10 2.033747192e-10 2.151627659e-10 1.261034353e-10 1.932351394e-10 1.172577168e-10 1.809639171e-10 1.582844206e-10 1.142117463e-10 8.019402399e-11 1.394693777e-10 1.261558468e-10 8.894570101e-11 3.177990267e-10 9.084803728e-11 1.243309726e-10 1.744295511e-10 3.561679753e-10 1.235390842e-10 8.748696508e-11 2.157296966e-10 6.958103951e-11 1.290406624e-10 2.459048642e-10 2.389004506e-10 1.301055539e-10 1.652616545e-10 1.363669948e-10 1.30874846e-10 1.01904961e-10 2.288862432e-10 2.208249546e-10 2.332067061e-10 2.426809391e-10 1.337350354e-10 1.465531039e-10 3.062177746e-10 2.022545593e-10 2.452780833e-10 1.717849052e-10 1.373466929e-10 1.487592453e-10 9.858298233e-11 1.76857574e-10 1.537501463e-10 1.120708552e-10 5.674436415e-11 1.055346233e-10 6.019730596e-11 1.18534143e-10 1.133928532e-10 1.66818527e-10 1.257206295e-10 8.736244167e-11 2.464273564e-10 1.931200727e-10 1.643801245e-10 2.185973566e-10 1.646104394e-10 3.069127343e-10 2.091931243e-10 8.126911801e-11 2.417754805e-10 2.861463598e-10 1.102501878e-10 1.922275892e-10 3.533632274e-10 1.383316605e-10 2.652389544e-10 1.513002288e-10 1.799021504e-10 1.739697633e-10 3.128008135e-10 1.784148694e-10 3.419131062e-10 2.041152963e-10 3.133992321e-10 2.71468731e-10 2.652237156e-10 2.383239235e-10 1.712463839e-10 4.458938438e-10 4.34645121e-10 3.14887683e-10 2.076957282e-10 2.890948889e-10 2.44554895e-10 2.9790256e-10 3.42219895e-10 3.918317853e-10 3.252941357e-10 2.314041665e-10 3.133413358e-10 3.422593958e-10 2.949230069e-10 2.38338346e-10 3.144556725e-10 2.034227106e-10 1.982655938e-10 1.482149117e-10 2.749074383e-10 2.360193105e-10 1.116113332e-10 1.231068211e-10 2.164592766e-10 1.922872235e-10 1.611412281e-10 1.988460875e-10 2.750131331e-10 1.097012369e-10 1.2071699e-10 2.950321674e-10 1.377598572e-10 2.426310274e-10 9.241553597e-11 1.973389743e-10 2.194278695e-10 9.398653079e-11 3.994298754e-10 2.231500772e-10 1.816825507e-10 1.509804171e-10 2.543992985e-10 1.291425705e-10 2.41169338e-10 1.516353901e-10 2.579503859e-10 1.117744879e-10 2.980936796e-10 1.350332161e-10 1.639836763e-10 3.142975337e-10 1.693862369e-10 9.347328901e-11 1.576182949e-10 1.160378946e-10 1.683610718e-10 2.486788812e-10 3.318603893e-11 1.54154563e-10 2.109156813e-10 1.298055445e-10 1.077817867e-10 2.110911792e-10 9.16188827e-11 3.249226335e-10 7.432443918e-11 8.987151843e-11 1.642151332e-10 2.270254535e-10 1.452874997e-10 2.255023076e-10 1.027433301e-10 7.681340008e-11 1.433247753e-10 4.508969011e-10 1.605857658e-10 6.345212191e-11 2.905201519e-10 1.617157186e-10 2.111527042e-10 2.459902089e-10 3.504733612e-10 1.080685824e-10 1.000163589e-10 5.919788559e-11 1.769640479e-10 1.741393493e-10 1.948423609e-10 1.075037901e-10 8.28387282e-11 1.597048625e-10 1.754741981e-10 1.332452456e-10 2.515177456e-10 2.632236987e-10 2.171185649e-10 1.440806986e-10 +1.776721939e-10 1.066035239e-10 7.211711204e-11 1.672159535e-10 2.362871091e-10 1.070526115e-10 1.091387553e-10 1.190373024e-10 1.129944074e-10 6.59708539e-11 3.212485847e-10 1.415848302e-10 1.389405063e-10 1.888487251e-10 1.877224107e-10 2.051457276e-10 2.342852761e-10 9.734212064e-11 1.713452714e-10 8.086317254e-11 1.212350592e-10 1.760324199e-10 2.808292885e-10 9.132901229e-11 2.29635529e-10 1.318625198e-10 9.06673954e-11 1.237911179e-10 1.54505216e-10 1.640388882e-10 1.162708731e-10 1.317964623e-10 1.163991512e-10 2.092824367e-10 1.181826146e-10 2.457850198e-10 2.667914619e-10 1.511201787e-10 1.304934776e-10 4.8398574e-11 1.037056949e-10 2.388283117e-10 2.893954459e-11 1.582228241e-10 1.247652807e-10 1.347182569e-10 1.105181679e-10 2.649734563e-10 2.327949481e-10 1.140760625e-10 2.060876589e-10 2.698092579e-10 1.270389661e-10 3.123295936e-10 1.434531932e-10 1.098634505e-10 1.834596005e-10 1.00672081e-10 2.357281462e-10 8.726629798e-11 4.786546565e-11 1.661786558e-10 3.178223348e-10 2.178083791e-10 1.768495379e-10 1.312058884e-10 1.837017712e-10 2.658687064e-11 1.960099094e-10 1.319586658e-10 1.44941946e-10 2.380560327e-10 2.321009717e-10 2.233713019e-10 4.056520439e-10 1.680841031e-10 1.720448261e-10 2.093212004e-10 1.452780905e-10 1.286063066e-10 1.050470664e-10 2.673857607e-10 2.726103567e-10 2.263029213e-10 2.47114891e-10 1.596895834e-10 2.304441064e-10 2.501798561e-10 3.218056855e-10 2.704253189e-10 3.511432432e-10 3.04580483e-10 2.013587002e-10 1.742199318e-10 3.405025263e-10 4.43296541e-10 3.714544706e-10 2.948508098e-10 2.970524414e-10 4.311718952e-10 3.287355704e-10 2.86919697e-10 2.723676507e-10 2.025732356e-10 2.520796835e-10 1.637050932e-10 1.783200475e-10 2.321525799e-10 1.696533915e-10 2.872496242e-10 2.78717173e-10 1.925341946e-10 1.93270694e-10 2.511942719e-10 1.797228028e-10 3.327673397e-11 3.302498896e-10 2.751008913e-10 3.207738609e-10 1.892970599e-10 2.583498247e-10 2.547009712e-10 1.326148886e-10 3.592895953e-10 2.351829047e-10 1.109898185e-10 1.49626693e-10 5.317139944e-11 1.819631631e-10 1.081307408e-10 1.445730649e-10 6.47896644e-11 1.018082028e-10 1.464972764e-10 1.221118158e-10 1.48006678e-10 2.117046621e-10 2.344397634e-11 2.248887398e-10 1.644211345e-10 1.366776246e-10 2.194698033e-10 1.419739841e-10 1.451007973e-10 8.784679694e-11 1.235412163e-10 1.876887754e-10 2.088725827e-10 1.216217627e-10 1.46867293e-10 1.692871754e-10 1.451018817e-10 4.283712169e-11 1.490100235e-10 1.522603618e-10 1.461724781e-10 9.113399194e-11 1.475800967e-10 2.553395586e-10 1.129447435e-10 8.780392117e-11 1.31897505e-10 6.277364482e-11 1.414204316e-10 9.920440436e-11 5.095554121e-11 9.708669341e-11 7.740494462e-11 9.583407414e-11 9.255381329e-11 1.784788583e-10 7.917669462e-11 1.119382089e-10 1.119128339e-10 1.486577965e-10 1.242373826e-10 1.367280122e-10 1.992541277e-10 1.588520671e-10 2.724115845e-10 3.341323467e-10 1.981832134e-10 1.610008794e-10 1.164730783e-10 1.997047703e-10 2.847059146e-10 3.106882401e-10 1.148672453e-10 1.823287116e-10 1.79841904e-10 2.755888875e-10 1.153435731e-10 3.412638402e-10 2.143837259e-10 2.25690552e-10 4.357850968e-10 2.239659121e-10 2.895103375e-10 2.899778191e-10 2.254484195e-10 1.585070165e-10 3.082923038e-10 1.354661916e-10 1.59392668e-10 3.600196454e-10 2.660573422e-10 1.657034595e-10 1.291314696e-10 2.824266258e-10 2.967156262e-10 1.54972607e-10 2.860118438e-10 1.317392749e-10 2.455171845e-10 4.097581864e-10 4.162743852e-10 1.714293671e-10 1.421177081e-10 1.680933714e-10 9.137789676e-11 1.53186959e-10 2.496199494e-10 1.550631749e-10 2.595688145e-10 1.707678568e-10 1.495924396e-10 3.379291092e-10 2.945392286e-10 3.570744173e-10 5.364701148e-11 1.932360783e-10 1.604734697e-10 1.00489581e-10 8.644649213e-11 2.245030465e-10 1.044088755e-10 1.301434912e-10 2.445198147e-10 1.957590771e-10 1.245580807e-10 1.881544375e-10 2.624636184e-10 1.106992292e-10 2.636494772e-10 1.027888932e-10 2.495231174e-10 2.243931949e-10 9.260329605e-11 1.909954861e-10 2.440864504e-10 1.04511875e-10 9.421865076e-11 1.975999707e-10 3.361358136e-10 1.786793542e-10 1.818822929e-10 2.276805528e-10 5.226391401e-11 7.19860879e-11 1.41455755e-10 1.916565845e-10 1.456129227e-10 1.679826462e-10 2.34354164e-10 2.660651226e-10 7.899010868e-11 2.622753831e-10 2.046969409e-10 1.431843093e-10 3.507035018e-10 3.271637955e-10 1.254241957e-10 1.84418389e-10 2.231867737e-10 1.140341541e-10 8.942608336e-11 2.833753094e-10 1.304579618e-10 1.501687489e-10 2.253016831e-10 2.40096045e-10 2.461107181e-10 3.607835196e-11 2.804801953e-10 1.284758173e-10 2.591697007e-10 8.43178238e-11 7.525431602e-11 2.584777593e-10 1.702713084e-10 2.681799525e-10 9.817355942e-11 9.363271107e-11 1.579999219e-10 7.598457491e-11 2.359997729e-10 1.329794251e-10 1.399914714e-10 1.402236811e-10 2.228237581e-10 +1.189118649e-10 1.662103855e-10 2.120248002e-10 2.244788707e-10 1.700528262e-10 8.404246232e-11 2.228030066e-10 1.363172979e-10 5.250861333e-11 1.134611254e-10 2.134561339e-10 3.674703317e-10 4.444450851e-11 2.089200803e-10 3.375278241e-10 6.924596285e-11 2.718802847e-10 2.255191256e-10 2.029335846e-10 5.604236248e-11 8.435308426e-11 1.539430061e-10 1.664396129e-10 8.552626376e-11 9.715839868e-11 2.391803562e-10 8.420490538e-11 5.627540235e-11 2.151973525e-10 2.390890705e-10 1.554802685e-10 1.833314757e-10 1.930861384e-10 1.496878687e-10 8.736370384e-11 2.041434207e-10 1.570800645e-10 1.390360941e-10 7.573305856e-11 1.076055575e-10 6.396876154e-11 3.382759058e-10 1.181307135e-10 1.136709115e-10 1.860522174e-10 1.292971213e-10 2.593845224e-10 2.112003927e-10 1.364330257e-10 9.229268228e-11 1.872502142e-10 2.961899567e-10 1.938223665e-10 2.222574855e-10 1.170012342e-10 2.113400159e-10 1.08746524e-10 1.904487154e-10 1.459163487e-10 2.521226902e-10 1.854934969e-10 2.585197989e-10 2.679376017e-10 9.671579562e-11 3.51521095e-10 3.80456149e-10 3.040657063e-10 3.231341277e-10 1.776332184e-10 2.372612834e-10 2.50494314e-10 2.515958339e-10 2.142032529e-10 5.955984181e-11 2.166239176e-10 1.076571056e-10 1.889274125e-10 1.936300376e-10 1.110138309e-10 1.110872322e-10 2.3102278e-10 1.223560327e-10 8.309797589e-11 2.519070458e-10 1.505628103e-10 2.293756681e-10 3.116944314e-10 3.403971793e-10 3.027800945e-10 1.450275479e-10 2.503728182e-10 2.456576055e-10 2.819006094e-10 2.536518343e-10 2.17998481e-10 2.936335495e-10 1.660236727e-10 2.618253225e-10 3.468986894e-10 3.002701104e-10 2.609513416e-10 4.175854992e-10 3.640967012e-10 4.44281495e-10 2.486388623e-10 2.435862002e-10 2.154172869e-10 2.829985368e-10 2.071272145e-10 2.420822188e-10 2.520712307e-10 2.385066137e-10 2.355824326e-10 8.296257573e-11 2.019125827e-10 2.101789335e-10 1.203781689e-10 1.154962027e-10 3.544679432e-10 2.485692713e-10 1.88777961e-10 2.22312604e-10 1.965306992e-10 2.448947174e-10 1.748558525e-10 2.152501006e-10 1.185307784e-10 1.270055256e-10 1.573659985e-10 1.583146241e-10 6.765031807e-11 2.448850891e-10 1.301415928e-10 4.193993942e-11 8.05751027e-11 1.166330831e-10 4.018518463e-11 1.452296617e-10 1.246155533e-10 1.668102643e-10 1.468991687e-10 6.399681477e-11 2.620129907e-10 1.388493642e-10 3.407618181e-11 3.049117607e-10 1.340950092e-10 8.213516354e-11 1.033871113e-10 8.207318687e-11 5.034982925e-11 1.144681896e-10 1.024895982e-10 1.480243737e-11 6.572462302e-11 1.703514081e-10 5.019929579e-11 1.089149529e-10 3.788107104e-11 1.941129264e-10 8.237140477e-11 5.756957776e-11 8.000364329e-11 1.249667191e-10 1.266071861e-10 1.147973254e-10 1.572562402e-10 1.280642576e-10 1.648958154e-10 2.08048004e-10 1.431229228e-10 1.450918093e-10 1.262547254e-10 1.219445914e-10 1.1216463e-10 2.299002119e-10 1.457745103e-10 1.99896399e-10 1.955897072e-10 2.130995918e-10 2.532430136e-10 2.625675128e-10 1.700808296e-10 1.494355912e-10 1.965765331e-10 2.185776588e-10 2.783773011e-10 3.152211621e-10 1.61431086e-10 2.311222729e-10 2.563503649e-10 4.362341711e-10 2.188830108e-10 1.838203517e-10 3.042484447e-10 2.012406824e-10 2.72732228e-10 3.944366644e-10 2.987023348e-10 1.349726524e-10 2.316774987e-10 2.375160804e-10 3.337259172e-10 2.060075792e-10 1.822332937e-10 1.321045639e-10 3.077166131e-10 2.01415249e-10 3.364914411e-10 2.567864759e-10 3.784745718e-10 9.433209792e-11 2.816248039e-10 3.457275062e-10 1.448829308e-10 2.240291317e-10 1.852117296e-10 9.421009253e-11 1.43816488e-10 2.212874169e-10 1.754670809e-10 2.086484852e-10 1.762156688e-10 3.275805395e-10 1.989938327e-10 1.485544224e-10 1.95053667e-10 1.128312214e-10 1.031042562e-10 3.294784517e-10 1.081132088e-10 2.056670172e-10 1.772379985e-10 1.318481798e-10 1.082261307e-10 1.43194856e-10 2.434203381e-10 2.509641114e-10 3.161511481e-10 1.627113836e-10 3.505479564e-10 1.133894276e-10 2.185146007e-10 2.120289436e-10 1.929276582e-10 1.957347272e-10 1.579123908e-10 2.200912088e-10 1.829603853e-10 2.284522357e-10 1.360112362e-10 1.990242829e-10 1.527381689e-10 1.227999915e-10 2.672743966e-10 1.670794767e-10 1.107050737e-10 2.616518613e-10 5.571307991e-11 2.001947768e-10 2.859533394e-10 9.533673625e-11 2.040969284e-10 2.982553705e-10 3.150207552e-11 2.012173891e-10 2.834671506e-10 9.888998796e-11 1.926756599e-10 8.846883672e-11 2.205282652e-10 2.102527272e-10 2.961793789e-10 2.530971613e-10 1.045302245e-10 1.120974196e-10 1.837098902e-10 7.112701244e-11 2.853498544e-10 1.776786624e-10 1.814235305e-10 3.182420245e-10 3.654025058e-10 1.549969012e-10 1.00064627e-10 1.127428609e-10 1.069509277e-10 1.693091986e-10 1.95569415e-10 1.020756726e-10 3.07049045e-10 2.69008437e-10 1.858135679e-10 1.169268487e-10 1.097987931e-10 1.007857095e-10 1.868254834e-10 1.109654644e-10 4.995624485e-11 2.915460415e-10 +2.069074372e-10 3.317447985e-10 1.661270589e-10 1.233239736e-10 1.541089887e-10 1.898367802e-10 2.810309526e-10 3.210005539e-10 7.503514163e-11 2.036361003e-10 7.979100149e-11 1.786728359e-10 1.010985533e-10 3.833795761e-10 1.360645561e-10 9.370092023e-11 3.162234377e-10 8.201160454e-11 2.625902157e-10 1.210998049e-10 2.127006535e-10 1.03961156e-10 1.276542173e-10 1.989837205e-10 5.286083301e-11 1.009696957e-10 7.947402758e-11 1.527693181e-10 7.107060891e-11 3.191577357e-10 2.367366802e-10 2.034089704e-10 1.500125777e-10 1.805006733e-10 1.487727669e-10 1.289931752e-10 2.575490268e-10 1.239350708e-10 1.039280303e-10 1.812182409e-10 3.082648868e-10 1.702123292e-10 2.656991814e-10 5.98235838e-11 1.589475202e-10 1.150100912e-10 1.539614258e-10 9.768336904e-11 2.446244701e-10 1.892216332e-10 2.590616509e-10 1.550775521e-10 1.658753397e-10 2.86612373e-10 1.826690392e-10 4.705526685e-11 9.997637599e-11 1.406403332e-10 1.586659977e-10 1.205640915e-10 1.333327963e-10 2.348374496e-10 2.547235023e-10 2.018830225e-10 4.03104719e-10 2.150501602e-10 1.790181308e-10 2.871195617e-10 2.5066353e-11 2.092036508e-10 9.523306299e-11 1.072610688e-10 1.775043744e-10 2.043026724e-10 1.405684195e-10 1.184716136e-10 1.442658579e-10 2.350501649e-10 1.542426496e-10 1.189141964e-10 1.878236495e-10 2.467800479e-10 3.958595465e-10 1.378564786e-10 2.607370248e-10 2.004353565e-10 2.151417194e-10 2.082108165e-10 6.865077265e-11 2.77955366e-10 2.724834645e-10 1.778869779e-10 2.527968159e-10 2.828630886e-10 1.514418738e-10 2.187204099e-10 1.551345618e-10 3.115364521e-10 3.829089405e-10 3.129915859e-10 2.187689011e-10 2.91504727e-10 2.035194905e-10 3.030623008e-10 1.744357539e-10 1.38626828e-10 1.492074809e-10 3.344687835e-10 2.513050915e-10 3.145396343e-10 1.464111801e-10 2.234108715e-10 2.836509216e-10 2.092552501e-10 2.132840008e-10 1.739207445e-10 2.428899492e-10 1.631228128e-10 1.72016946e-10 3.600915238e-10 1.236875028e-10 3.144193235e-10 1.959944917e-10 1.02303186e-10 1.905561593e-10 2.168143252e-10 1.920466627e-10 1.150156648e-10 1.244764484e-10 2.99206988e-10 2.366075639e-10 2.203413175e-10 1.185223754e-10 1.476090803e-10 9.275493156e-11 4.724440675e-11 1.255830869e-10 2.02819241e-10 1.655986601e-11 1.081142e-10 5.126071246e-11 7.126274927e-11 2.233157217e-10 5.592196795e-11 7.182927715e-11 6.706210257e-11 8.399971595e-11 3.084253355e-11 7.069384458e-11 1.420207493e-10 2.333706263e-10 8.555553864e-11 1.230683754e-10 4.838294265e-11 8.908337911e-11 1.381248156e-10 3.426570315e-11 4.437323707e-11 9.245351674e-11 8.423976518e-11 3.158075774e-10 1.816172044e-10 6.429404798e-11 1.32945459e-10 1.53920218e-10 1.808041252e-10 1.230266305e-10 1.314609756e-10 8.010513184e-11 8.239282454e-11 1.706972496e-10 1.258588209e-10 2.466978588e-10 2.119779803e-10 8.218000342e-11 1.781121825e-10 1.536665923e-10 3.367931854e-10 2.220481303e-10 3.224206201e-10 1.870527419e-10 2.014734397e-10 1.51527597e-10 2.430092274e-10 3.090033875e-10 2.136626054e-10 2.109806919e-10 1.981467657e-10 1.835281026e-10 3.965661199e-10 2.542470003e-10 2.607784169e-10 1.576957359e-10 2.340402456e-10 1.028420776e-10 2.172437557e-10 2.811789659e-10 2.618334912e-10 1.447718231e-10 1.752074258e-10 2.704260743e-10 3.063164224e-10 3.418797793e-10 2.49308339e-10 1.330101604e-10 2.010139083e-10 1.473899667e-10 2.984330087e-10 3.905632095e-10 2.100260137e-10 2.953290485e-10 2.408275029e-10 3.427487373e-10 1.60284232e-10 2.069994738e-10 2.416706531e-10 1.063894826e-10 1.768075482e-10 2.454565503e-10 2.634111392e-10 1.423632246e-10 1.796445459e-10 1.774949257e-10 9.593930901e-11 1.251622148e-10 1.750231389e-10 1.533973062e-10 1.838169162e-10 9.066126236e-11 1.657410804e-10 1.409736968e-10 2.025430349e-10 3.404449362e-10 1.095346132e-10 1.632602698e-10 2.684036753e-10 2.951423579e-10 1.744500097e-10 2.064036193e-10 2.047699662e-10 1.440109183e-10 1.248635159e-10 2.331757251e-10 9.141653757e-11 9.885584321e-11 1.781541972e-10 1.328436968e-10 1.774922213e-10 2.565956512e-10 3.504857621e-10 6.091122188e-11 9.213952869e-11 1.814901525e-10 3.009757128e-10 1.696826764e-10 2.3347868e-10 8.485074331e-11 1.911053527e-10 2.177404913e-10 1.579422304e-10 2.970250733e-10 1.77423975e-10 2.631807483e-10 3.295318908e-10 1.614140559e-10 2.295916639e-10 2.378293254e-10 1.118154396e-10 1.139968395e-10 7.479593704e-11 2.647082669e-10 2.052296376e-10 2.520358738e-10 6.014910225e-11 1.743431881e-10 1.797007613e-10 2.642890851e-10 1.94317735e-10 1.581891792e-10 1.626508023e-10 8.844527463e-11 1.555761528e-10 1.691670142e-10 1.776024957e-10 2.036198206e-10 1.024100751e-10 1.315920421e-10 3.481276812e-10 1.370299713e-10 1.201929526e-10 9.586445527e-11 8.287939518e-11 3.004635113e-10 2.872632108e-10 2.226482512e-10 2.765981867e-10 2.441837255e-10 8.01897685e-11 2.301813735e-10 1.730556522e-10 +1.326596397e-10 1.851747146e-10 2.260130196e-10 2.549508848e-10 1.871338074e-10 1.637239598e-10 1.183353428e-10 3.321321386e-10 1.65581276e-10 3.883171119e-10 1.74350666e-10 1.213576111e-10 1.482284316e-10 1.288494716e-10 2.747031569e-10 2.976102211e-10 1.162496502e-10 1.035127032e-10 2.850601323e-10 2.218112666e-10 1.738727767e-10 1.911251572e-10 1.024489175e-10 9.586403715e-11 8.903457862e-11 1.372162899e-10 5.745959393e-11 1.892899564e-10 8.705694849e-11 2.317408254e-10 1.468583507e-10 1.804581189e-10 1.661594617e-10 9.98568586e-11 2.583526134e-10 2.693234769e-10 2.945024314e-10 2.148400357e-10 1.011590777e-10 2.213665687e-10 1.564626134e-10 1.142704237e-10 1.658187479e-10 1.513987515e-10 1.549232898e-10 2.573096955e-10 1.156069743e-10 1.679589981e-10 2.127135351e-10 5.038388794e-11 9.479619512e-11 1.242963578e-10 1.690875527e-10 2.558243147e-10 1.527073024e-10 1.000436649e-10 1.280221939e-10 2.249592059e-10 1.128682409e-10 7.098658938e-11 1.558674881e-10 1.652845149e-10 1.997847641e-10 1.3432191e-10 1.600252423e-10 1.118991431e-10 6.851515348e-11 1.82007988e-10 5.668858763e-11 1.950391606e-10 1.751137022e-10 1.524637416e-10 2.232149437e-10 2.260333327e-10 2.230195663e-10 1.339734251e-10 1.164776882e-10 1.950524269e-10 2.685761666e-10 2.050718867e-10 2.069219306e-10 1.105524394e-10 2.423989752e-10 2.226104992e-10 1.953704525e-10 1.939295384e-10 1.364531769e-10 1.988255034e-10 2.243572353e-10 1.879526344e-10 2.936507878e-10 3.376635672e-10 1.981118059e-10 2.88895546e-10 2.470640141e-10 2.37977102e-10 1.679173062e-10 1.655289435e-10 2.978987082e-10 2.199725636e-10 1.123754331e-10 1.50051227e-10 2.825302218e-10 1.557644807e-10 2.370887854e-10 2.114677637e-10 1.481379965e-10 2.095861189e-10 1.338509308e-10 2.28233757e-10 1.972367473e-10 2.816646282e-10 2.316110507e-10 1.497884537e-10 2.291775259e-10 2.227353744e-10 1.785535948e-10 1.353245482e-10 2.879760767e-10 1.163979969e-10 2.073120647e-10 1.724674072e-10 1.811429475e-10 1.48094552e-10 1.975248456e-10 2.453326085e-10 2.347607289e-10 1.449572496e-10 1.006088079e-10 1.941378947e-10 8.469225674e-11 2.794620091e-10 1.264004999e-10 2.381898099e-10 1.650537778e-10 2.220628711e-10 1.737650881e-10 1.000304158e-10 9.76066402e-11 3.222501475e-11 9.770020048e-11 1.384014957e-10 2.010299677e-10 1.308014467e-10 1.162078422e-10 7.589254902e-11 2.206344691e-11 1.246626479e-10 1.239996166e-10 1.297229732e-10 8.20952448e-11 1.622030566e-10 2.384014803e-10 5.526003967e-11 1.114256002e-10 8.071238407e-11 1.077298042e-10 7.771187927e-11 8.561768144e-11 5.593760437e-11 1.39809319e-10 1.012856904e-10 1.100674101e-10 3.803942037e-11 1.153205767e-10 1.416890249e-10 2.243132202e-10 1.219162796e-10 3.49930448e-10 9.734112302e-11 1.549551431e-10 8.200946958e-11 2.158649141e-10 2.608558861e-10 1.029414592e-10 1.526218004e-10 2.428547137e-10 2.867416954e-10 1.394177348e-10 1.492221216e-10 2.225908035e-10 1.92590991e-10 1.391991259e-10 1.031166676e-10 1.991130782e-10 2.976589988e-10 1.803228226e-10 1.660472045e-10 2.215980458e-10 1.346011178e-10 2.402811108e-10 2.800099456e-10 4.052316009e-10 2.584925033e-10 3.380796575e-10 2.126943321e-10 1.925479027e-10 1.177997484e-10 1.829074652e-10 1.584215727e-10 3.358941538e-10 2.291623854e-10 2.213785192e-10 3.593203878e-10 3.601279651e-10 2.408518447e-10 2.88604514e-10 3.386831001e-10 3.033287257e-10 2.012310742e-10 1.266193224e-10 2.216374508e-10 1.434360911e-10 2.532519021e-10 2.89380242e-10 1.610067463e-10 2.738148219e-10 1.216876584e-10 4.353611686e-11 2.938331895e-10 6.814063123e-11 1.51188672e-10 1.360360483e-10 2.004756668e-10 1.828230667e-10 1.502820764e-10 1.197140746e-10 6.868685421e-11 3.766277099e-10 1.051821274e-10 2.447741301e-10 2.037291204e-10 2.559044912e-10 2.1891879e-10 2.745187081e-10 2.078853024e-10 2.697797788e-10 3.507714291e-10 1.500556955e-10 2.00157724e-10 1.325413947e-10 1.781709727e-10 1.212222036e-10 1.889246971e-10 4.249436908e-11 8.052310543e-11 1.839213452e-10 9.019968697e-11 5.508016721e-11 2.223041226e-10 1.140220888e-10 3.483229733e-10 5.402478414e-11 1.337333759e-10 1.213827274e-10 2.121378442e-10 1.610616725e-10 9.015119901e-11 7.58033293e-11 1.442181879e-10 2.09567588e-10 1.031224204e-10 1.194953772e-10 1.677401731e-10 2.467237941e-10 2.492809754e-10 9.714044722e-11 1.605214688e-10 2.605081189e-10 6.657933909e-11 3.175717505e-10 2.945716495e-10 1.365960028e-10 1.664708169e-10 2.854029723e-10 3.501955388e-10 2.974712603e-10 1.131530367e-10 7.819989731e-11 1.612034691e-10 1.171196717e-10 1.265044862e-10 3.356372206e-10 1.50174496e-10 1.539328379e-10 1.370414256e-10 1.079905103e-10 2.331879373e-10 1.619113349e-10 2.368790436e-10 1.426339365e-10 2.365809564e-10 1.45238585e-10 2.065389584e-10 1.433648861e-10 2.106752579e-10 1.402123284e-10 1.487975755e-10 1.112471579e-10 2.549499427e-10 +1.585779799e-10 2.627354652e-10 1.154669357e-10 2.604635861e-10 2.252976989e-10 4.026992464e-10 3.715773519e-10 1.299602886e-10 1.39532547e-10 1.271942091e-10 2.123230798e-10 1.193483326e-10 5.41174352e-11 2.851434317e-10 2.964376677e-10 2.27951868e-10 1.987697294e-10 2.561478856e-10 2.389250421e-10 1.273687374e-10 3.586963373e-10 5.005465826e-11 8.812658583e-11 9.500415785e-11 1.208120664e-10 2.59128794e-10 1.120167175e-10 7.023402308e-11 1.14073901e-10 2.896633245e-10 1.611544954e-10 2.090294236e-10 1.234652217e-10 9.849224975e-11 1.244554934e-10 6.910026399e-11 1.477611539e-10 8.424979619e-11 1.300412801e-10 3.812785188e-10 2.305763591e-10 2.234256609e-10 1.157226091e-10 1.090250848e-10 1.414486048e-10 2.071668264e-10 2.807633932e-10 2.500955998e-10 2.83075813e-10 9.377769131e-11 1.537587352e-10 1.735387086e-10 2.145726391e-10 1.410775031e-10 1.585972371e-10 8.612285307e-11 1.903652906e-10 3.068154236e-10 4.128787941e-10 1.491732409e-10 1.27051298e-10 2.382555536e-10 1.57286343e-10 1.387134952e-10 1.384068926e-10 9.623260465e-11 1.756615533e-10 1.649052872e-10 1.644423706e-10 2.017932929e-10 9.591670463e-11 1.461821912e-10 1.060573852e-10 2.374575359e-10 1.391307868e-10 2.927573553e-10 1.775376046e-10 7.104643068e-11 1.655808942e-10 1.576042612e-10 5.887020797e-11 1.99876127e-10 3.763516672e-10 7.426932231e-11 2.008452275e-10 1.837780482e-10 1.463689205e-10 2.586208162e-10 3.155405527e-10 3.388170922e-10 2.754596327e-10 2.529885444e-10 1.692978191e-10 2.980786567e-10 3.301651883e-10 1.995160325e-10 3.465655511e-10 3.503951767e-10 3.108303782e-10 1.037850878e-10 3.521293832e-10 2.325555372e-10 1.90951774e-10 2.642148733e-10 2.78591554e-10 2.180991656e-10 2.957730781e-10 6.730621815e-11 2.124197102e-10 1.53291434e-10 2.202195259e-10 2.190769497e-10 1.186123274e-10 2.749716205e-10 2.937359042e-10 2.241767887e-10 1.412687252e-10 2.67778563e-10 3.40420742e-10 2.139139596e-10 1.629773486e-10 1.935378627e-10 2.059338939e-10 1.491366559e-10 1.673049402e-10 1.865906346e-10 2.644663237e-10 1.835572794e-10 2.601597947e-10 2.181803241e-10 1.543570763e-10 2.854964139e-10 2.457092075e-10 1.033848802e-10 9.845568411e-11 7.624877398e-11 2.287251318e-10 1.930516899e-10 1.265530438e-10 1.702849463e-10 1.213617528e-10 1.729514972e-10 4.796718194e-11 1.953779652e-10 1.101099919e-10 1.28610185e-10 2.40076021e-10 1.578284743e-10 1.293447748e-10 1.236782743e-10 1.248358813e-10 8.241934112e-11 1.03435733e-10 9.369670401e-11 6.848608039e-11 6.023275955e-11 1.300563019e-10 1.04183837e-10 1.129828607e-10 1.701903032e-10 1.765420246e-10 1.925211708e-10 1.319278749e-10 9.703870079e-11 1.462551333e-10 9.902136215e-11 1.683142034e-10 1.982400315e-10 1.331727919e-10 1.146799269e-10 2.555795478e-10 2.925165469e-10 1.838920532e-10 1.657900712e-10 2.566705589e-10 2.45547809e-10 8.752929049e-11 3.826209826e-10 3.089423296e-10 1.365511932e-10 2.237575169e-10 2.96252502e-10 2.487663205e-10 1.62242658e-10 1.958382599e-10 2.528986638e-10 1.132868818e-10 2.11149592e-10 2.009183729e-10 1.622902985e-10 1.089642433e-10 1.918021327e-10 2.052485543e-10 3.379206697e-10 1.970629885e-10 1.847475149e-10 2.615587118e-10 2.459505292e-10 2.194649144e-10 2.637579773e-10 2.530165522e-10 2.827698407e-10 1.940303089e-10 2.063023647e-10 1.722477738e-10 2.350033745e-10 4.128401134e-10 3.277107158e-10 2.630681026e-10 1.649989691e-10 2.184740261e-10 1.808625893e-10 1.725133902e-10 2.354980426e-10 1.515135063e-10 2.622995466e-10 2.376871503e-10 1.292197468e-10 3.328778142e-10 1.088011321e-10 6.225468927e-11 1.267598619e-10 1.600137291e-10 1.257786813e-10 9.799610368e-11 1.003186964e-10 1.595877874e-10 1.078997754e-10 1.258753664e-10 1.911283072e-10 2.061934362e-10 2.759032872e-10 2.356531584e-10 1.472120115e-10 2.746994284e-10 2.684911137e-10 2.490561909e-10 1.004420415e-10 2.191654581e-10 3.193818494e-10 2.284699695e-10 3.359863707e-10 1.650497531e-10 1.235750885e-10 1.56012696e-10 1.066703223e-10 2.754933446e-10 9.559326275e-11 2.291229619e-10 3.799004644e-10 1.96435025e-10 2.979415339e-10 3.768356814e-10 8.625462324e-11 2.001446031e-10 1.995865194e-10 1.517684686e-10 9.792208878e-11 8.596482463e-11 7.56313912e-11 7.955221368e-11 6.079831925e-11 9.430779216e-11 1.061938122e-10 1.167477286e-10 7.630813553e-11 2.400271478e-10 8.669099986e-11 1.357561932e-10 3.416793346e-10 3.199781323e-10 1.646311831e-10 2.004165817e-10 1.813276716e-10 1.345409582e-10 1.419962991e-10 1.980627263e-10 1.193521929e-10 8.336229853e-11 9.287249386e-11 7.95667508e-11 2.470545704e-10 3.213180108e-10 2.184706231e-10 1.416744787e-10 7.876391806e-11 2.178428647e-10 7.222400997e-11 2.247717812e-10 8.29693816e-11 1.822416614e-10 1.211115165e-10 1.946447547e-10 2.041587874e-10 2.8730895e-10 1.548669747e-10 7.995020302e-11 1.142576043e-10 2.218514581e-10 1.694317685e-10 +1.040043953e-10 1.041213134e-10 1.052531799e-10 1.586266223e-10 1.625129956e-10 1.156643747e-10 9.204571868e-11 6.875527051e-11 1.341284634e-10 1.523847162e-10 1.63044468e-10 1.186172866e-10 1.168340033e-10 1.825277832e-10 2.748581268e-10 1.990425731e-10 1.461675878e-10 1.470246095e-10 1.114047533e-10 5.187566975e-11 1.633581172e-10 2.571184103e-10 1.812562237e-10 1.474071877e-10 1.166183204e-10 6.291911587e-11 6.343892097e-11 1.656160022e-10 9.734526236e-11 6.375709588e-11 1.530862416e-10 3.064052811e-10 3.21803848e-10 1.284704397e-10 1.470953387e-10 1.348419047e-10 1.802164613e-10 2.848190068e-10 3.412643915e-10 1.505953167e-10 3.265483032e-11 1.022136394e-10 2.648262461e-10 1.972723151e-10 6.975323147e-11 3.248327078e-10 1.445143337e-10 3.289962713e-10 2.289597633e-10 1.310251135e-10 2.515390065e-10 1.527682266e-10 2.6862243e-10 1.175405531e-10 4.339707131e-10 2.804836605e-10 1.687355672e-10 5.679944846e-11 1.555967629e-10 8.780558889e-11 7.64789877e-11 4.322234125e-10 1.199786182e-10 9.72794456e-11 1.996432569e-10 2.277492276e-10 9.006257575e-11 2.533577932e-10 1.951361694e-10 9.250469772e-11 1.445626798e-10 1.296041264e-10 1.457990266e-10 1.124997144e-10 2.912431957e-10 1.661513768e-10 3.656898146e-11 1.62389517e-10 1.179653636e-10 2.761531658e-10 6.17950472e-11 1.570247904e-10 2.752406271e-10 9.658166588e-11 2.60677508e-10 2.667790102e-10 1.279229421e-10 3.458556499e-10 1.891879893e-10 2.875634374e-10 7.693434589e-11 2.982731493e-10 3.955039651e-10 3.546384613e-10 2.693134493e-10 2.270735459e-10 2.438001953e-10 4.360266937e-10 2.983571037e-10 2.542238954e-10 2.787242008e-10 2.853346195e-10 1.70608663e-10 1.916974467e-10 3.303682059e-10 1.878760271e-10 2.192815203e-10 2.756018642e-10 2.667706194e-10 2.268607759e-10 2.345362489e-10 1.631386037e-10 1.319327558e-10 2.421544168e-10 2.392863144e-10 3.180699753e-10 2.217213117e-10 1.765434851e-10 1.363035736e-10 1.873801915e-10 2.343796791e-10 1.680507806e-10 1.730444231e-10 1.597909895e-10 1.886475638e-10 2.076566005e-10 1.848700662e-10 2.56238173e-10 1.155866323e-10 1.604526053e-10 2.534674245e-10 1.704054341e-10 1.945227792e-10 1.953764676e-10 2.30637633e-10 1.415605645e-10 1.952667638e-10 1.36143413e-10 1.597138741e-10 1.857267728e-10 1.824477784e-10 2.455704508e-10 9.355094136e-11 7.768012144e-11 1.485732773e-10 1.598467889e-10 7.503965696e-11 1.554781524e-10 1.481209951e-10 8.177226333e-11 1.09950451e-10 1.634434361e-10 2.486652485e-10 7.238304139e-11 1.284018605e-10 1.043370475e-10 2.203265506e-10 2.030106993e-10 1.656444245e-10 8.550752522e-11 1.465980002e-10 9.505725504e-11 2.251717752e-10 2.065582238e-10 1.152734828e-10 5.411500235e-11 2.788321145e-10 6.80630851e-11 1.869805151e-10 1.830324908e-10 1.994595392e-10 1.531972657e-10 1.715159311e-10 1.435314552e-10 2.534414228e-10 1.22900318e-10 1.101242272e-10 3.247413606e-10 2.495987869e-10 2.139916038e-10 2.02350476e-10 2.273593729e-10 2.258698989e-10 2.640295035e-10 2.226000862e-10 2.819695635e-10 3.661857197e-10 1.994721454e-10 3.022564495e-10 1.408766567e-10 2.682345777e-10 2.73677846e-10 2.252382532e-10 1.920676278e-10 1.717664823e-10 3.688990335e-10 3.191631674e-10 1.1154445e-10 2.820750956e-10 2.955235728e-10 2.68294406e-10 1.570916982e-10 2.576549457e-10 2.210946578e-10 3.954456962e-10 2.346069958e-10 2.984147547e-10 2.257999659e-10 2.952726279e-10 3.268076749e-10 3.474041276e-10 1.321882397e-10 1.664572048e-10 2.872029623e-10 2.401187196e-10 1.725980906e-10 2.327408375e-10 2.761243712e-10 2.415597898e-10 1.311220785e-10 2.507822313e-10 9.139735641e-11 2.532781652e-10 1.529384977e-10 1.770562692e-10 2.907141446e-10 1.320201842e-10 1.77400124e-11 1.317273568e-10 9.6264312e-11 9.202681115e-11 1.078449278e-10 2.112064272e-10 1.683079027e-10 2.551021865e-10 1.758121269e-10 2.308986086e-10 1.290942957e-10 2.462784696e-10 1.352689793e-10 5.803404332e-11 1.16671327e-10 1.386177155e-10 1.184169815e-10 1.11164254e-10 1.762111581e-10 1.12971517e-10 1.87815648e-10 3.56918895e-10 5.370797915e-11 1.847188756e-10 1.08781088e-10 2.749908393e-10 2.310772848e-10 1.163089924e-10 9.968401312e-11 1.688262572e-10 2.507888708e-10 1.63494936e-10 8.917334127e-11 1.462969547e-10 1.651000309e-10 1.828752371e-10 1.41738636e-10 2.530225048e-10 1.10794256e-10 1.951134211e-10 3.928563712e-10 3.679406928e-10 1.706233364e-10 1.311362358e-10 1.734779209e-10 9.855809323e-11 3.501238391e-10 6.033583217e-11 2.14090768e-10 1.838224211e-10 1.149592919e-10 1.444617225e-10 4.887655228e-11 1.268955153e-10 6.993883478e-11 1.783937278e-10 2.111959227e-10 3.670682177e-10 1.329035039e-10 1.092542474e-10 3.773940118e-10 9.137623606e-11 2.98275891e-10 2.129058938e-10 1.951775806e-10 3.184635168e-10 1.397414147e-10 7.924314502e-11 1.179642985e-10 1.225105059e-10 2.171577665e-10 1.322694627e-10 1.349170128e-10 +1.040058457e-10 7.538909088e-11 1.930323877e-10 1.449891601e-10 2.305127917e-10 3.294829593e-10 8.271797303e-11 1.102149287e-10 2.874099567e-10 8.44789351e-11 3.66862715e-10 1.580743128e-10 2.11919457e-10 1.678628069e-10 3.645505882e-10 2.062706264e-10 3.118379859e-10 1.08973023e-10 4.376354306e-11 8.995615932e-11 1.279720422e-10 1.279243283e-10 1.517182046e-10 3.149278012e-10 1.169861992e-10 3.155627554e-11 1.854420639e-10 1.163842514e-10 1.778796255e-10 3.087606194e-10 2.422922617e-10 9.388565901e-11 1.747606409e-10 1.352376163e-10 3.079646495e-10 1.317097185e-10 1.636281771e-10 7.356120305e-11 1.538776849e-10 1.473887975e-10 2.747734057e-10 1.115377852e-10 1.996941996e-10 1.479141096e-10 1.556358881e-10 1.1605262e-10 3.049944327e-10 2.836973363e-10 1.089667569e-10 1.327903764e-10 1.357461753e-10 1.032324479e-10 1.592952926e-10 9.634865572e-11 1.164618465e-10 1.121041307e-10 2.403286259e-10 1.171599277e-10 2.404512184e-10 1.268308528e-10 8.576038027e-11 2.92720854e-10 1.930008402e-10 1.600607275e-10 9.506152953e-11 1.105234402e-10 9.456414921e-11 1.708407426e-10 1.268071377e-10 1.449220674e-10 1.518334806e-10 1.833515254e-10 2.140884342e-10 2.23632404e-10 9.771500198e-11 1.846477521e-10 1.485216377e-10 5.948663988e-11 1.50281094e-10 2.42161619e-10 1.569749992e-10 6.601636289e-11 1.881788076e-10 3.290389247e-10 7.317481611e-11 2.545857707e-10 3.150222445e-10 1.715376419e-10 2.19389506e-10 2.298889845e-10 3.558889854e-10 3.304454809e-10 2.184321764e-10 3.46485164e-10 2.582677335e-10 1.905063187e-10 2.491655023e-10 1.71598116e-10 2.764085376e-10 3.073564733e-10 2.146443036e-10 3.267693514e-10 6.378877143e-11 1.363803645e-10 1.748728623e-10 2.132067405e-10 2.380723361e-10 2.108318911e-10 2.675924831e-10 2.526240341e-10 1.921660457e-10 3.792762918e-10 3.084915268e-10 2.54729584e-10 2.271557879e-10 1.949298941e-10 1.895782186e-10 3.381381809e-10 1.423009575e-10 2.519356048e-10 2.68410661e-10 3.377448867e-10 2.024275608e-10 2.206362151e-11 3.204749043e-10 2.179018977e-10 1.733362922e-10 1.29766504e-10 7.858159336e-11 1.039400068e-10 1.753952679e-10 1.761593043e-10 3.94735028e-10 1.697043252e-10 1.671701241e-10 1.257767503e-10 1.518324085e-10 1.292144384e-10 1.523835107e-10 1.447120064e-10 1.185268521e-10 1.105926453e-10 1.302668525e-10 1.060173913e-10 9.453735547e-11 1.772453046e-10 1.733924676e-10 2.417025939e-10 1.386082774e-10 9.325221633e-11 3.051335211e-10 2.524714644e-10 1.202113565e-10 2.779324589e-10 1.44907608e-10 1.920731307e-10 1.183254774e-10 2.36279777e-10 1.593630141e-10 1.315111897e-10 1.355732353e-10 2.023645267e-10 3.476063328e-10 1.326719669e-10 2.9304923e-10 1.084869284e-10 2.126520073e-10 1.743915163e-10 2.246383912e-10 1.823888719e-10 1.362027763e-10 1.842218494e-10 1.272818496e-10 3.143101845e-10 1.536474878e-10 3.912366979e-10 1.651805454e-10 2.80815523e-10 7.101803111e-11 1.716024767e-10 2.743684327e-10 1.213588676e-10 2.007808432e-10 1.873857856e-10 3.195121762e-10 2.569509418e-10 2.855033788e-10 1.010386862e-10 1.997380228e-10 1.914358141e-10 1.935468352e-10 1.078922311e-10 1.460996637e-10 2.157425018e-10 1.684073763e-10 2.059283777e-10 1.749834069e-10 1.85181793e-10 3.774590744e-10 1.615725485e-10 1.959486404e-10 2.474869479e-10 2.687921865e-10 3.412151664e-10 2.096660074e-10 2.155832105e-10 1.986552098e-10 2.14748513e-10 1.855152821e-10 2.352973907e-10 3.015837164e-10 3.461621049e-10 2.151785046e-10 2.539807594e-10 1.562969823e-10 1.309675023e-10 2.573093158e-10 1.341316021e-10 1.562512881e-10 1.550299389e-10 1.499578106e-10 1.022508192e-10 2.201848214e-10 2.083877397e-10 1.499585265e-10 2.03670689e-10 7.151872694e-11 1.701732867e-10 2.294484376e-10 2.71719003e-10 1.411627888e-10 2.921349393e-10 9.677771281e-11 6.596996717e-11 2.172997544e-10 1.277661427e-10 1.53263186e-10 3.768649386e-10 1.376615722e-10 9.437816314e-11 2.044706896e-10 2.069179894e-10 2.54194667e-10 2.047825994e-10 1.857361924e-10 2.643324024e-10 1.65721772e-10 1.813743208e-10 1.473620134e-10 2.315852832e-10 2.335893462e-10 2.09535265e-10 1.886656773e-10 3.233796907e-10 9.17201892e-11 1.622147714e-10 2.212634107e-10 8.423751698e-11 2.292150543e-10 3.527764798e-10 2.744484119e-10 2.708607024e-10 2.603505651e-10 8.280528605e-11 1.544236504e-10 1.622784307e-10 2.640273927e-10 2.571037786e-10 1.569665151e-10 1.499564816e-10 9.959968775e-11 1.131770474e-10 2.101022413e-10 1.266448739e-10 1.513216808e-10 1.031197235e-10 2.739405285e-10 1.492550038e-10 1.017392679e-10 3.475614728e-10 8.793389661e-11 7.555781261e-11 7.992124418e-11 1.67466913e-10 1.682158267e-10 1.909883404e-10 1.239048088e-10 1.087220852e-10 1.070826774e-10 8.710287798e-11 3.667877251e-11 1.218461659e-10 1.210487705e-10 1.665976732e-10 6.034031704e-11 9.77859666e-11 8.061631951e-11 1.681602128e-10 1.237609662e-10 9.354932035e-11 +1.846369036e-10 1.449737815e-10 2.712365178e-10 1.32829891e-10 2.011167495e-10 9.422112657e-11 2.650656657e-10 1.027367648e-10 1.744199277e-10 1.044346663e-10 2.729919788e-10 1.38320804e-10 6.755828079e-11 2.657515668e-10 1.579812224e-10 1.021019549e-10 2.245253455e-10 8.579893609e-11 1.393349716e-10 5.570135891e-11 1.430471995e-10 2.418104317e-10 1.004162047e-10 9.948693679e-11 1.008988056e-10 1.46467249e-10 6.002084791e-11 5.616393446e-11 1.278023526e-10 5.249057656e-11 1.303776822e-10 1.458828309e-10 6.536163553e-11 1.004142323e-10 1.027065438e-10 2.512171051e-10 2.972029245e-10 2.93612525e-10 2.692646523e-10 1.660400211e-10 1.414805769e-10 9.892068337e-11 3.043365138e-10 1.73839207e-10 7.44314343e-11 2.668472287e-10 2.211531894e-10 1.607878458e-10 3.139726704e-10 2.130436809e-10 9.4151096e-11 1.217902312e-10 2.286332309e-10 1.66188618e-10 4.269788002e-10 1.893916076e-10 1.845195808e-10 1.43384855e-10 6.647432389e-11 9.500888952e-11 7.970527201e-11 4.015220876e-11 2.134424475e-10 1.770328471e-10 1.28682994e-10 5.281981515e-11 1.192341363e-10 2.688509794e-10 1.797863743e-10 1.075541871e-10 1.014416912e-10 2.067937238e-10 1.614188948e-10 1.876809341e-10 1.287912319e-10 1.504405459e-10 2.200050652e-10 2.972440156e-10 2.046594502e-10 1.34112218e-10 7.811761851e-11 2.402610317e-11 9.45496934e-11 1.733534034e-10 3.044831646e-10 1.997925446e-10 1.485730348e-10 1.807912634e-10 1.273681459e-10 2.62328138e-10 1.804538915e-10 2.56797533e-10 2.169894806e-10 2.681396627e-10 3.074837102e-10 2.300099092e-10 2.228345855e-10 3.281263073e-10 2.423501438e-10 2.656750801e-10 2.363499386e-10 1.905682446e-10 2.63646647e-10 1.371992962e-10 2.579042364e-10 1.695730282e-10 2.543120826e-10 2.310882064e-10 4.630271366e-11 1.932168676e-10 1.702699239e-10 1.584153445e-10 1.480307419e-10 1.693102762e-10 1.814017738e-10 1.209265096e-10 3.770021777e-10 1.636384879e-10 3.232956392e-10 1.363117219e-10 2.008273835e-10 2.753092326e-10 2.062639023e-10 2.487341672e-10 1.579091257e-10 4.86001391e-11 3.269290717e-10 2.210279429e-10 2.75754803e-10 1.74588297e-10 1.969747333e-10 1.612961762e-10 1.508270565e-10 2.631339649e-10 2.126831612e-10 2.472103718e-10 1.765915062e-10 1.303914353e-10 1.209430605e-10 1.909312731e-10 2.316337692e-10 1.479690759e-10 1.946632917e-10 2.597189224e-10 3.47006667e-10 1.807651913e-10 1.299656765e-10 2.200198221e-10 1.522415845e-10 4.894739293e-10 2.655892101e-10 9.471886646e-11 2.085177744e-10 7.19882966e-11 1.512336429e-10 8.188657575e-11 9.045884906e-11 1.177045338e-10 1.515047362e-10 2.014750533e-10 9.792798315e-11 9.848992773e-11 2.238551432e-10 2.901355408e-10 1.139312495e-10 1.873547891e-10 1.61723529e-10 1.724254419e-10 2.027995409e-10 2.035365665e-10 1.907840297e-10 1.177659493e-10 2.291428756e-10 9.280900689e-11 1.693032024e-10 2.035684354e-10 1.884299927e-10 8.728182295e-11 2.365738828e-10 2.193045432e-10 2.301094685e-10 3.883327043e-10 2.566846877e-10 1.873386256e-10 1.816226351e-10 2.124623507e-10 1.972215895e-10 2.044497237e-10 3.015161949e-10 2.043985439e-10 1.10235664e-10 2.161569719e-10 1.175901187e-10 2.494984438e-10 3.034755902e-10 1.860010362e-10 3.339499253e-10 1.8773386e-10 1.775280932e-10 1.580249404e-10 2.10195125e-10 4.556221479e-10 2.811308236e-10 2.24532408e-10 3.553237669e-10 2.278281118e-10 3.934396302e-10 2.664990828e-10 2.228463681e-10 1.093230968e-10 1.559896756e-10 9.672087482e-11 2.833393913e-10 1.389697664e-10 1.258356181e-10 2.009301951e-10 1.099063198e-10 4.607099642e-11 1.117392965e-10 8.766090826e-11 2.36199387e-10 1.902826438e-10 1.596245127e-10 1.689393707e-10 1.182754082e-10 1.903916212e-10 2.65516287e-10 1.71624811e-10 2.455872831e-10 1.814132177e-10 1.623342253e-10 9.886507916e-11 2.186272622e-10 1.384428045e-10 1.633339712e-10 1.651239063e-10 9.320302696e-11 3.070609271e-10 1.142805205e-10 1.585786628e-10 1.545596108e-10 1.044891663e-10 2.242433282e-10 1.888233739e-10 1.659226466e-10 2.220103821e-10 1.076623745e-10 1.756051779e-10 2.01888983e-10 1.037619546e-10 8.740068517e-11 2.488227653e-10 3.157256321e-10 1.927322864e-10 1.437592788e-10 1.491822841e-10 2.257940643e-10 9.723963965e-11 8.324590122e-11 7.283704064e-11 9.184365107e-11 7.62739952e-11 7.0654694e-11 8.698998169e-11 1.506101875e-10 1.020488768e-10 8.644908464e-11 7.253711628e-11 1.004487482e-10 3.027864001e-10 1.827907073e-10 1.960973165e-10 1.187385898e-10 1.911239044e-10 9.461071751e-11 2.530388589e-11 1.703544398e-10 7.533299901e-11 3.047060416e-10 6.990929314e-11 2.480466234e-10 1.295903842e-10 1.583914425e-10 3.176138902e-10 9.599862038e-11 1.382277848e-10 2.771595849e-10 3.873972986e-10 2.461160917e-10 6.799657445e-11 8.535085682e-11 1.158950758e-10 2.841058867e-10 1.30114424e-10 1.817047151e-10 8.759619431e-11 1.00841714e-10 2.023533434e-10 1.784048759e-10 1.168215411e-10 +1.365447134e-10 1.235193937e-10 1.199133998e-10 1.509537154e-10 2.161875725e-10 6.014291907e-11 8.576774536e-11 6.334147572e-11 6.951044964e-11 8.25772515e-11 1.46700612e-10 3.376508008e-10 1.292683621e-10 1.615392854e-10 6.213979753e-11 1.295871244e-10 1.069612691e-10 3.278725046e-10 3.572637513e-10 8.6270068e-11 1.225026528e-10 1.693054374e-10 1.787707331e-10 3.487414858e-10 5.741894953e-11 1.173644838e-10 7.587602843e-11 2.099720114e-10 1.113344071e-10 3.075585799e-10 3.214794031e-11 1.663119614e-10 2.735401601e-10 1.255394434e-10 1.599456808e-10 1.819873417e-10 6.189774092e-11 1.851008189e-10 1.336341361e-10 1.88217632e-10 1.237366201e-10 2.532498907e-10 2.671509106e-10 2.615659185e-10 1.464237541e-10 9.635864158e-11 1.150452477e-10 1.027786324e-10 2.428941872e-10 1.361897792e-10 2.392242679e-10 9.694328777e-11 1.297787743e-10 2.726647641e-10 1.080328762e-10 2.274456583e-10 6.530837858e-11 1.964662832e-10 2.07459557e-10 1.353904246e-10 1.598419632e-10 1.124826069e-10 2.553740515e-10 1.551969174e-10 1.340157676e-10 2.169133321e-10 1.373534669e-10 1.234841207e-10 1.915904785e-10 2.0913342e-11 8.612429798e-11 1.386981253e-10 8.745405458e-11 1.985071556e-10 3.099088638e-10 1.814210658e-10 2.441774676e-10 1.542866136e-10 2.473152832e-10 1.160352684e-10 1.457158106e-10 1.981731413e-10 1.42422319e-10 2.724865366e-10 1.302378511e-10 3.208110657e-10 3.09117612e-10 8.778688935e-11 1.553521358e-10 1.832484941e-10 1.613407946e-10 1.752995942e-10 2.501386156e-10 2.07674812e-10 1.795483444e-10 1.561328095e-10 3.040783176e-10 3.52475946e-10 2.264737931e-10 2.257991241e-10 1.352320009e-10 2.998019827e-10 1.724887511e-10 2.417735876e-10 2.833385665e-10 3.184310676e-10 1.886678815e-10 9.045781613e-11 2.869382769e-10 1.799706104e-10 3.684226064e-10 1.638236092e-10 2.441146633e-10 1.915467066e-10 1.663166548e-10 1.525815525e-10 2.548912182e-10 2.209995811e-10 1.947281077e-10 2.862403247e-10 1.843811847e-10 1.9404632e-10 2.644311336e-10 3.217104607e-10 2.55696002e-10 1.784472899e-10 1.812466832e-10 1.193999257e-10 1.916731122e-10 1.488342862e-10 1.673189172e-10 1.990057541e-10 1.886765519e-10 2.358798129e-10 2.315265974e-10 1.743897104e-10 1.297814818e-10 1.429480284e-10 2.444042968e-10 2.087433281e-10 1.804348775e-10 1.107193682e-10 1.689971069e-10 1.28502307e-10 2.715098623e-10 2.431007507e-10 2.501967287e-10 1.237690834e-10 1.230584566e-10 1.633735683e-10 3.104142409e-10 1.57092839e-10 1.702063551e-10 1.095228063e-10 1.636889984e-10 1.481212064e-10 1.336914419e-10 2.402793607e-10 1.235050989e-10 2.41927338e-10 1.729957506e-10 2.74276961e-10 2.746163752e-10 2.78729248e-10 2.012378752e-10 2.037448318e-10 1.559496873e-10 3.250421823e-10 1.304475464e-10 2.123363527e-10 1.90846408e-10 2.167280754e-10 3.462005431e-10 2.060425587e-10 1.02293118e-10 1.203420798e-10 1.320679247e-10 2.280324375e-10 1.489441719e-10 2.684669408e-10 2.656562535e-10 1.122771741e-10 1.189776488e-10 1.991533002e-10 1.767488233e-10 2.430466288e-10 1.584263669e-10 1.456649638e-10 1.02405574e-10 2.77236332e-10 2.22940093e-10 1.103289052e-10 1.728646297e-10 2.825879182e-10 1.52222182e-10 2.236417615e-10 2.233662778e-10 2.47122215e-10 2.090956566e-10 1.901135275e-10 2.763993962e-10 2.478116492e-10 2.116268745e-10 2.900312117e-10 3.047054664e-10 1.812893818e-10 2.695124046e-10 1.177894575e-10 9.259118466e-11 1.402275913e-10 1.671051914e-10 1.435344493e-10 1.344176668e-10 2.367013121e-10 2.721087255e-10 2.697032425e-10 2.77931073e-10 1.564968323e-10 1.376326771e-10 1.991982465e-10 7.445975685e-11 1.152152464e-10 2.44678395e-10 2.143709489e-10 1.855120195e-10 1.209773509e-10 1.282836303e-10 7.030666081e-11 2.102774855e-10 2.621921995e-10 2.777347842e-10 1.257849385e-10 1.387763262e-10 7.459491692e-11 8.935623649e-11 1.967846747e-10 1.35320587e-10 1.110451807e-10 2.184842148e-10 3.036685886e-10 1.120330947e-10 2.39204889e-10 2.972256658e-10 2.294838834e-10 9.630412668e-11 1.922327821e-10 1.203954663e-10 1.925089123e-10 3.537633617e-10 1.678071439e-10 9.916903931e-11 2.625708089e-10 1.413110568e-10 1.283605108e-11 2.0473591e-10 1.686785881e-10 4.349696875e-10 1.21250417e-10 1.929374957e-10 2.484608286e-10 5.869825585e-11 9.910644965e-11 1.325314642e-10 2.760494193e-10 2.189333081e-10 1.560130092e-10 2.083050564e-10 1.618010723e-10 1.24887377e-10 1.181314892e-10 1.645817687e-10 4.637113407e-11 1.027850939e-10 9.425574311e-11 1.315792467e-10 1.412389845e-10 5.001343849e-11 1.228633316e-10 9.562950681e-11 9.122625544e-11 1.589846642e-10 9.073020002e-11 1.773464419e-10 1.201733406e-10 2.079613842e-10 1.002794614e-10 1.033584243e-10 7.644590354e-11 9.284486835e-11 1.513821636e-10 1.388215909e-10 5.068818437e-11 6.681418401e-11 2.815428761e-10 6.543727644e-11 1.592812825e-10 5.198332438e-11 1.0649934e-10 3.41961404e-10 2.427541535e-10 +7.140677198e-11 2.490493486e-10 2.001094004e-10 6.343762477e-11 1.541838679e-10 1.883017315e-10 5.786962164e-11 6.490987144e-11 7.40793291e-11 4.935592145e-10 3.952553245e-10 3.883834911e-10 2.14361238e-10 1.206437629e-10 1.384558382e-10 1.576997782e-10 1.504221619e-10 1.775636551e-10 1.730219944e-10 1.327112402e-10 2.276559758e-10 1.618264562e-10 2.234667574e-10 6.081962327e-11 1.592442437e-10 4.113875011e-11 1.895432825e-10 1.001560646e-10 5.53738518e-11 8.922395647e-11 1.44394269e-10 1.416589942e-10 1.226817669e-10 1.307830333e-10 2.023217722e-10 4.923367957e-11 2.152958022e-10 1.003457556e-10 1.352839821e-10 2.105774124e-10 1.310445338e-10 2.890811006e-10 2.470340246e-10 1.060526225e-10 2.062586023e-10 1.439102929e-10 1.18568627e-10 8.843151863e-11 1.897632173e-10 2.004641699e-10 1.589789746e-10 1.157653363e-10 2.056077585e-10 1.84043696e-10 1.065904526e-10 1.074314274e-10 1.446834392e-10 1.847705524e-10 9.954582813e-11 9.936833321e-11 1.555087597e-10 5.807868952e-11 1.994375619e-10 2.023669359e-10 2.346734209e-10 2.333658979e-10 3.628783136e-11 5.040259509e-11 1.325531508e-10 7.652222527e-11 1.443856817e-10 9.281331525e-11 2.308794467e-10 1.485166796e-10 4.010298326e-11 1.549870138e-10 1.683033073e-10 2.346090749e-10 1.062476917e-10 1.408693065e-10 2.140911671e-10 9.653510608e-11 2.575674189e-10 2.254608015e-10 1.914185531e-10 1.131247696e-10 2.590414995e-10 2.626827929e-10 1.307145365e-10 2.212111577e-10 2.356650459e-10 2.143438265e-10 2.244111455e-10 2.484716801e-10 3.428678305e-10 2.004447193e-10 4.006128669e-10 2.172473855e-10 2.975145653e-10 2.649399607e-10 8.317018599e-11 2.404172542e-10 8.640945106e-11 2.147070929e-10 2.139146999e-10 3.219097939e-10 2.518446325e-10 1.843811499e-10 2.368291935e-10 2.411060664e-10 3.478715158e-10 1.458354157e-10 1.629036521e-10 2.71392821e-10 1.776374096e-10 2.340144281e-10 1.004235845e-10 1.635571464e-10 1.22616371e-10 2.255592786e-10 2.465561471e-10 1.380210752e-10 1.530580101e-10 1.683513571e-10 1.929128061e-10 1.622003567e-10 1.977772695e-10 1.627675943e-10 1.104398479e-10 2.11174387e-10 3.207015103e-10 1.76671462e-10 1.311971559e-10 1.958672461e-10 1.853373331e-10 1.161697726e-10 7.899568762e-11 1.74178475e-10 1.61161959e-10 1.685880563e-10 1.584122686e-10 1.435573806e-10 2.765836399e-10 1.114032125e-10 7.676170874e-11 1.464317445e-10 1.96192989e-10 2.009332314e-10 1.562594732e-10 1.282696237e-10 1.597707766e-10 2.500505538e-10 1.584679047e-10 9.479615759e-11 1.22368934e-10 1.983059036e-10 2.967844349e-10 1.475300723e-10 1.578520931e-10 1.68211938e-10 1.687879891e-10 1.683235303e-10 1.640729507e-10 1.246204857e-10 1.149595735e-10 1.925988653e-10 2.180804577e-10 1.465753613e-10 3.213219516e-10 2.178882524e-10 1.555834124e-10 2.583608149e-10 1.199705095e-10 1.16063664e-10 2.405845961e-10 2.442331208e-10 2.405402398e-10 2.156578275e-10 1.180726864e-10 1.712895863e-10 1.934757701e-10 1.586337002e-10 1.632717962e-10 2.06191809e-10 1.330890971e-10 2.612612715e-10 1.831517598e-10 2.321666759e-10 2.563623258e-10 2.486762085e-10 2.68298142e-10 1.533181296e-10 8.861841036e-11 2.958577998e-10 2.233079515e-10 3.08538964e-10 2.928412871e-10 1.011363441e-10 2.028006776e-10 3.820340699e-10 6.8610429e-11 2.09103479e-10 2.095071615e-10 1.782637456e-10 1.745968721e-10 2.380745268e-10 2.836953197e-10 1.801022918e-10 2.281256295e-10 1.845014688e-10 2.32095457e-10 7.687274309e-13 1.55606403e-10 1.810090818e-10 2.68725258e-10 4.879920799e-11 3.037012927e-10 8.379842003e-11 1.545179205e-10 1.643806196e-10 1.970945395e-10 3.065552564e-10 1.743939377e-10 6.396068184e-11 1.176958151e-10 1.195536797e-10 2.245325304e-10 6.283332072e-11 2.482897948e-10 3.082050148e-10 1.071817332e-10 1.870350278e-10 1.180460872e-10 2.252621545e-10 4.467799958e-11 1.64676449e-10 2.481799738e-10 1.618532495e-10 2.262714508e-10 1.737122406e-10 1.068688342e-10 2.416523754e-10 2.078461487e-10 1.124840445e-10 1.166936403e-10 9.126835693e-11 8.448754005e-11 1.003250838e-10 9.083622999e-11 2.310742446e-10 1.170539487e-10 1.563064715e-10 2.100206242e-10 9.801839036e-11 1.922184869e-10 7.096767678e-11 1.365559038e-10 1.703279444e-10 8.358077862e-11 1.237858875e-10 1.319492424e-10 1.043805704e-10 8.520411168e-11 2.485258507e-10 6.008342106e-11 6.173152621e-11 2.11847835e-10 1.722213914e-10 1.206343995e-10 2.775915644e-10 7.883333781e-11 1.75988714e-10 1.762417642e-10 8.684070149e-11 3.549763198e-10 1.410657513e-10 1.719440483e-10 2.223055251e-10 1.215597687e-10 1.189624672e-10 1.392889025e-10 9.317674233e-11 1.864054691e-10 8.081479268e-11 3.033977039e-10 7.031802186e-11 9.46160258e-11 2.006769001e-10 1.038254133e-10 1.349977312e-10 8.459115165e-11 1.0245681e-10 2.651609166e-10 1.067658e-10 2.28840662e-10 2.217999002e-10 8.699300225e-11 1.005972329e-10 1.314713432e-10 6.362617187e-11 +2.761448305e-10 1.982536178e-10 8.610973855e-11 2.214913891e-10 9.806594741e-11 6.265454873e-11 1.768377249e-10 1.23746447e-10 2.279215861e-10 1.760400887e-10 5.86372213e-11 1.687445886e-10 1.442868245e-10 2.27528297e-10 6.457037871e-11 4.911225789e-11 1.290656848e-10 1.171774211e-10 1.394858696e-10 4.071793036e-11 1.010676526e-10 6.515568538e-11 1.53267443e-10 1.697139521e-10 1.573211034e-10 1.323266341e-10 2.060814008e-10 3.835604551e-11 1.220473654e-10 1.595337091e-10 1.047091418e-10 2.272257615e-10 6.016038376e-11 8.133366684e-11 1.140266118e-10 8.881173827e-11 9.562842319e-11 2.120228502e-10 8.001640313e-11 7.985413221e-11 2.533651078e-11 1.443865e-10 1.362382777e-10 2.358409348e-10 1.486422546e-10 3.444059405e-11 1.533735622e-10 1.161296951e-10 1.224277077e-10 2.105137503e-10 1.186106642e-10 8.968044988e-11 1.340678801e-10 1.435097871e-10 3.088775322e-11 7.137868361e-11 1.677015273e-10 2.01676587e-10 2.963060643e-10 2.656392512e-10 1.327437913e-10 9.402036687e-11 6.345995226e-11 7.4104487e-11 1.602069235e-10 2.326109524e-10 2.209605601e-10 1.433779157e-10 1.383058347e-10 1.425767864e-10 1.020948766e-10 1.588438628e-10 1.293983519e-10 2.163479496e-10 6.034728734e-11 8.820545241e-11 2.37094601e-10 1.246039028e-10 1.990708236e-10 1.109389134e-10 6.260686765e-12 2.803658162e-10 9.246283244e-11 7.889527484e-11 9.431909787e-11 2.297070232e-10 3.257423539e-10 3.477179489e-10 1.777495212e-10 1.95486787e-10 2.577400709e-10 1.128738557e-10 9.002657767e-11 2.097633121e-10 3.138362403e-10 1.954925377e-10 3.083287008e-10 2.014683081e-10 1.866489799e-10 3.731322942e-10 2.834285992e-10 2.440366798e-10 4.696880917e-10 3.246573689e-10 2.071840779e-10 9.867517953e-11 1.372847372e-10 2.245422393e-10 2.080294395e-10 1.71948102e-10 2.146706978e-10 2.379992338e-10 1.253443693e-10 1.575573999e-10 3.086754833e-10 1.718606122e-10 1.210570862e-10 2.22512661e-10 1.929788571e-10 2.015945185e-10 1.038461836e-10 1.558752772e-10 2.778461428e-10 1.40440994e-10 1.213004951e-10 5.636049143e-11 1.711025597e-10 3.014826612e-10 3.78630807e-10 1.225282538e-10 9.493918494e-11 3.064535411e-10 1.220316028e-10 2.846069903e-10 1.572332801e-10 2.015203968e-10 1.499121365e-10 8.694364222e-11 1.225186943e-10 1.504435232e-10 2.852951161e-10 1.287641025e-10 2.113434951e-10 9.181754576e-11 1.46608481e-10 1.422554415e-10 1.196496535e-10 1.460938109e-10 1.491987967e-10 2.055295559e-10 1.572003068e-10 9.90132732e-11 2.803675097e-10 1.33898932e-10 1.174538113e-10 1.934573685e-10 1.853629969e-10 1.937791341e-10 1.654115233e-10 1.552263024e-10 1.303929319e-10 2.375698025e-10 1.310322036e-10 1.334163712e-10 1.09305683e-10 1.210610494e-10 1.904211328e-10 1.864003597e-10 1.679303181e-10 2.265877895e-10 3.722475404e-10 1.738004523e-10 1.594436056e-10 2.625972624e-10 1.779726895e-10 1.344191314e-10 2.450957673e-10 2.459325171e-10 2.381707909e-10 2.871045517e-10 1.724297201e-10 1.732727537e-10 2.317707308e-10 2.221270932e-10 1.405194109e-10 2.55763048e-10 2.12139877e-10 1.493610901e-10 1.934520511e-10 2.382358172e-10 1.743795171e-10 2.04628365e-10 2.815637964e-10 2.945435641e-10 1.899524389e-10 2.352333392e-10 3.036670671e-10 2.180045954e-10 1.777812798e-10 2.602428015e-10 2.173194943e-10 3.344513984e-10 2.861285013e-10 1.515833424e-10 3.029878409e-10 2.197053954e-10 2.883230123e-10 2.191842803e-10 2.509821844e-10 2.276010427e-10 2.497571758e-10 1.474382794e-10 1.907272995e-10 1.9465065e-10 2.132661454e-10 1.488118545e-10 1.836832522e-10 1.083091408e-10 4.036842462e-11 1.75629852e-10 4.399649644e-11 2.865104168e-10 1.254296545e-10 6.090456839e-11 1.503682209e-10 3.06519954e-10 1.041140358e-10 1.751478929e-10 1.417710606e-10 1.273338824e-10 8.68885313e-11 7.133459781e-11 1.991435821e-10 1.362897887e-10 1.331048554e-10 1.247762149e-10 5.682808426e-11 1.432405333e-10 2.126786716e-10 7.844358447e-11 1.705427234e-10 2.035432246e-10 7.500437744e-11 9.596700057e-11 1.66289332e-10 1.220828866e-10 1.409296254e-10 8.421709405e-11 1.766734767e-10 7.393417691e-11 1.142007542e-10 1.534254041e-10 1.123683859e-10 1.464557131e-10 9.059235117e-11 9.723185856e-11 9.750244067e-11 1.388957788e-10 1.9907464e-10 1.934856241e-10 3.339986946e-10 1.347497325e-10 1.159540734e-10 6.073481898e-11 2.2738382e-10 2.927556171e-10 9.384148367e-11 3.580673259e-10 3.00054362e-10 1.088171928e-10 8.150485134e-11 7.862986454e-11 9.064961156e-11 1.500278368e-10 8.841356786e-11 2.097832812e-10 5.776533625e-11 1.748822141e-10 2.826874291e-10 4.541595654e-11 9.412515323e-11 9.851208773e-11 6.870843253e-11 1.005317374e-10 5.535740149e-11 2.181106388e-10 8.758218342e-11 1.131879192e-10 1.562105104e-10 1.525230389e-10 1.683529631e-10 1.44583651e-10 1.090860594e-10 1.622947634e-10 1.508412643e-10 3.233553787e-10 1.224720592e-10 2.81920374e-11 5.454374513e-11 1.833256892e-10 +9.689247127e-11 1.206972063e-10 2.591281536e-10 1.527690841e-10 1.378237711e-10 1.152143425e-10 5.094757662e-11 3.447662822e-11 3.084907706e-10 3.299616761e-11 6.478920494e-11 1.164063575e-10 3.651573555e-11 1.84757338e-10 1.3327637e-10 1.782438896e-10 3.790858806e-11 1.96230506e-10 1.471684059e-10 2.675186348e-10 1.222639681e-10 1.731229414e-10 9.942239638e-11 9.68191344e-11 2.352790787e-10 1.175054247e-10 2.068196692e-10 1.91401723e-11 1.504362886e-10 1.132153359e-11 2.451484058e-11 2.166771774e-10 1.357597008e-10 1.288178271e-10 1.478824444e-10 2.251288039e-10 1.872110391e-10 9.390251252e-11 2.268820265e-10 1.898908459e-10 9.439263999e-11 7.156186635e-11 9.572940956e-11 7.191703724e-11 1.984304284e-10 9.266596113e-11 1.270417611e-10 1.83080621e-10 1.048840093e-10 1.143420087e-10 2.514938927e-10 8.55944564e-11 1.335491967e-10 1.67016992e-10 2.376336865e-10 1.663540013e-10 1.020739725e-10 1.798947526e-10 2.956781103e-10 1.775638706e-10 9.164245614e-11 1.583018148e-10 5.749280391e-11 1.20649837e-10 2.159796752e-10 7.442071943e-11 7.997831235e-11 6.651858775e-11 1.647499359e-10 2.020811848e-10 1.514192217e-10 1.683763023e-10 1.803438211e-10 2.086560146e-10 2.47137708e-10 8.6369405e-11 1.107158675e-10 5.689239262e-11 6.773123061e-11 1.357934772e-10 2.299747694e-10 7.25322193e-11 1.548633094e-11 6.985933258e-11 7.749583747e-11 2.417435791e-10 1.992721316e-10 2.919288436e-10 2.123723217e-10 1.249477957e-10 1.775003072e-10 2.532517667e-10 2.226330087e-10 2.489232841e-10 1.404613986e-10 3.425540141e-10 2.496746297e-10 3.027752121e-10 1.545150678e-10 2.975692829e-10 1.029843908e-10 9.406487422e-11 2.843216511e-10 1.671787543e-10 1.189191733e-10 1.56133809e-10 1.710362816e-10 2.216413148e-10 2.468550341e-10 1.195467869e-10 2.891029188e-10 8.627051993e-11 1.905973113e-10 2.165100968e-10 3.838616483e-10 2.90974467e-10 1.421021225e-10 5.392506614e-11 1.943782502e-10 1.97842141e-10 2.624320068e-10 3.81960274e-10 1.811410681e-10 2.04407028e-10 1.12902121e-10 3.402251547e-10 1.021227053e-10 3.332726598e-10 1.864255166e-10 1.540461114e-10 1.454991446e-10 2.167393111e-10 1.503598091e-10 1.492155044e-10 1.485246304e-10 2.724279112e-10 1.675419117e-10 1.94691257e-10 1.923375214e-10 1.048911864e-10 1.314488591e-10 1.405555468e-10 1.499151475e-10 2.624264194e-10 2.839539717e-10 1.869392811e-10 9.093760568e-11 2.198495416e-10 7.802527671e-11 2.376580704e-10 2.063415345e-10 9.870919447e-11 8.434395519e-11 1.312530094e-10 1.901684819e-10 2.245151895e-10 1.173308187e-10 2.23482228e-10 2.041230174e-10 1.846636609e-10 2.616216027e-10 9.997198024e-11 1.093827912e-10 1.960020608e-10 2.259763126e-10 9.342095252e-11 2.3340646e-10 2.03235187e-10 1.25113247e-10 4.057112725e-10 1.36418642e-10 1.781679632e-10 2.775806592e-10 2.197394687e-10 2.327213778e-10 1.275256506e-10 1.5595353e-10 2.888826616e-10 1.137523498e-10 1.84606465e-10 8.400723815e-11 1.155384782e-10 1.334984762e-10 1.409552364e-10 1.7408456e-10 1.50166191e-10 1.393154222e-10 2.038027653e-10 3.435417169e-10 1.347645549e-10 1.503816819e-10 3.475616933e-10 1.455080048e-10 1.945168406e-10 2.453620838e-10 2.043558966e-10 1.667459305e-10 2.558298081e-10 2.247875485e-10 3.581031251e-10 1.992349156e-10 3.50995438e-10 1.787301054e-10 3.114620575e-10 1.403382085e-10 1.940422163e-10 3.546011771e-10 1.657267242e-10 8.286304694e-11 1.3700695e-10 2.217084225e-10 7.445694826e-11 2.064588133e-10 1.537522726e-10 2.330866132e-10 2.063931712e-10 1.228850368e-10 1.815709251e-10 2.424937909e-10 7.915775794e-11 1.708359253e-10 7.543075419e-11 9.302552425e-11 1.861970459e-10 1.713870289e-10 1.34921579e-10 9.929822928e-11 1.00433392e-10 2.731787357e-10 1.716137478e-10 1.389439187e-10 2.410553754e-10 1.185969985e-10 2.562344055e-10 6.211026772e-11 9.492559014e-11 1.912871573e-10 1.944842444e-10 2.487679682e-10 3.281419182e-10 7.956660741e-11 1.705931709e-10 1.293805586e-10 1.411584664e-10 1.207429529e-10 2.835080706e-10 2.412773011e-10 2.051682341e-10 1.47199082e-10 1.432857608e-10 2.696731606e-10 1.550055599e-10 2.172756086e-10 2.332712381e-10 2.00926099e-10 7.57309735e-11 1.351785046e-10 8.508824617e-11 1.975642714e-10 1.831115128e-10 2.022462674e-10 1.187535347e-10 1.037989081e-10 1.056389534e-10 9.049456204e-11 1.278907475e-10 1.546390214e-10 2.291313824e-10 9.27069032e-11 1.233936518e-10 5.167290041e-11 6.016181314e-11 2.170479246e-10 1.880856672e-10 4.03776553e-11 6.666987499e-11 9.377479143e-11 8.916658016e-11 1.340602465e-10 7.615125761e-11 8.963127812e-11 8.14965103e-11 4.849861365e-11 8.261323538e-11 1.732451176e-10 3.60063543e-10 1.402460667e-10 2.307846991e-10 1.313030578e-10 2.627918894e-10 5.810313849e-11 1.139799497e-10 1.115239066e-10 5.639639092e-12 1.028605789e-10 2.040354602e-10 1.199743573e-10 2.51372302e-10 1.921730719e-10 5.161616239e-11 +2.388299542e-10 1.253170101e-10 5.404454846e-11 1.209080161e-10 2.43444288e-10 1.1984104e-10 1.687889219e-10 2.757308867e-10 1.595598982e-10 2.663682496e-11 1.34278629e-10 2.673205867e-10 2.902397488e-11 2.44542295e-11 1.159909969e-10 1.148101664e-10 2.179672078e-10 1.787196007e-10 4.80042587e-11 5.585594314e-11 4.205113277e-10 6.662897272e-11 1.06208088e-10 1.220896993e-10 7.50792003e-11 1.176153799e-10 2.292940106e-10 1.081116544e-10 4.700575628e-11 5.082379237e-10 1.452992572e-10 5.564348485e-11 1.413279019e-10 2.80459453e-10 9.620519211e-11 1.308342113e-10 1.894959226e-10 1.494199814e-10 1.500366362e-10 2.363018584e-10 1.081734428e-10 1.085188667e-10 7.528450207e-11 8.665884386e-11 1.759537959e-10 6.853161649e-11 9.646354185e-11 2.640748224e-10 4.235032859e-11 1.3975446e-10 9.452796035e-11 3.797090672e-11 2.703520048e-10 1.767275548e-10 3.516269274e-10 2.254174574e-10 2.927727376e-10 2.563546507e-10 2.000372871e-10 2.049062395e-10 1.238319501e-10 1.195960208e-10 1.078029057e-10 2.378852289e-10 1.132691033e-10 9.724990604e-11 9.765197623e-11 2.363347947e-10 1.570027202e-10 2.584139987e-10 7.541926574e-11 1.483036316e-10 1.55966919e-10 1.993059679e-10 4.778121661e-11 1.242617544e-10 1.149697522e-10 1.554771937e-10 1.695166512e-10 1.465302823e-10 4.114384966e-11 1.800286967e-10 1.485878704e-10 1.775593979e-10 2.297296024e-10 2.985511931e-10 1.093774298e-10 2.081366805e-10 2.022605834e-10 3.972819734e-10 1.590368682e-10 1.352132665e-10 3.919497211e-10 1.860220802e-10 2.455485392e-10 1.425770689e-10 1.955578585e-10 1.635327649e-10 1.149292978e-10 1.648047397e-10 2.251098616e-10 2.282026446e-10 1.062060708e-10 2.357743814e-10 2.212438708e-10 2.513082847e-10 2.08268348e-10 1.91028656e-10 1.49509792e-10 1.156238922e-10 1.809233085e-10 2.932093871e-10 1.110184308e-10 2.156438321e-10 1.886562905e-10 2.734634431e-10 2.060375902e-10 3.015696988e-10 3.309282239e-10 1.62548807e-10 1.621164724e-10 1.631275727e-10 1.333395048e-10 1.699644404e-10 1.230904024e-10 1.11831221e-10 2.273354818e-10 3.119029897e-10 2.865055547e-10 2.132704431e-10 1.363660543e-10 1.46007756e-10 1.652984564e-10 1.913583477e-10 2.074693706e-10 1.236838329e-10 2.570239472e-10 9.009111436e-11 4.251766205e-11 2.245852232e-10 1.727392161e-10 1.236766942e-10 1.301532523e-10 2.586748042e-10 1.309013887e-10 1.177352022e-10 9.731783587e-11 2.016893848e-10 1.631263594e-10 6.888062152e-11 1.930330877e-10 1.89090951e-10 1.505675224e-10 2.364334052e-10 1.403681926e-10 2.0128468e-10 2.644901202e-10 1.581472929e-10 8.023872371e-11 2.318538424e-10 1.766026582e-10 2.791132229e-10 2.484931502e-10 1.083458995e-10 8.131782502e-11 1.615987235e-10 3.063103969e-10 1.62621005e-10 2.102991919e-10 1.343179365e-10 1.591629256e-10 8.552050985e-11 1.542835012e-10 1.691418613e-10 2.275812968e-10 1.647541634e-10 1.285463174e-10 2.176321872e-10 2.436045972e-10 2.212954467e-10 1.771440392e-10 1.423014526e-10 1.687446945e-10 7.850505145e-11 2.512360405e-10 1.601032988e-10 2.058874894e-10 1.341991928e-10 2.144435321e-10 1.072497831e-10 1.767389209e-10 1.826411293e-10 3.525816196e-10 1.065765227e-10 1.884082837e-10 3.245689324e-10 2.118346412e-10 2.736481034e-10 1.512540277e-10 2.905662975e-10 2.121232665e-10 1.478447363e-10 3.032965928e-10 2.693401e-10 2.100805519e-10 2.261660679e-10 2.499151698e-10 2.672633843e-10 1.648232692e-10 2.064446696e-10 2.25150477e-10 1.934458411e-10 2.004093466e-10 1.143705992e-10 1.547545682e-10 5.07562615e-11 1.048898987e-10 3.753979302e-11 7.324771812e-11 1.352529649e-10 2.46688555e-10 1.585051685e-10 1.996929386e-10 1.02089823e-10 1.408889103e-10 1.472333809e-10 1.331873812e-10 1.071189956e-10 9.807143966e-12 1.95557812e-10 1.970205459e-10 3.71476087e-10 1.382933012e-10 1.127946325e-10 1.204557943e-10 1.651100785e-10 1.208378563e-10 1.657039117e-10 2.305637691e-10 1.744095183e-10 2.287563206e-10 2.420084032e-10 1.987442043e-10 1.379842435e-10 9.123418e-11 9.789804369e-11 9.054520552e-11 2.269723655e-10 1.06519089e-10 1.91589596e-10 1.509119916e-10 1.447806408e-10 6.280338705e-11 5.827092775e-11 4.148286207e-10 2.370223433e-10 7.140285597e-11 1.544876479e-10 1.464342041e-10 1.572161975e-10 1.475413473e-10 1.907194686e-10 1.009029347e-10 1.444310952e-10 1.852139188e-10 2.793507722e-11 1.850402478e-10 1.5323816e-10 1.481636049e-10 2.446588918e-10 2.24239795e-10 1.332020926e-10 1.780147312e-10 3.176961178e-11 1.420726001e-10 1.31741088e-10 9.42169078e-11 1.617506555e-10 1.052131119e-10 3.255029169e-10 8.192412057e-11 1.368758932e-10 2.347819953e-10 1.383714675e-10 3.331013161e-11 5.554207462e-11 1.931085113e-10 2.709314331e-10 5.689047926e-11 1.518767019e-10 6.251165385e-11 1.798997559e-10 1.687186104e-10 2.329522127e-10 1.007097296e-10 6.436620134e-11 7.835294991e-11 1.199918277e-10 1.402960918e-10 2.661355185e-10 +1.777483405e-10 7.599619671e-11 4.678227564e-10 1.209145137e-10 1.698352578e-10 3.26533154e-11 3.454392299e-10 1.999066147e-10 3.927908107e-11 1.555493138e-10 1.84070925e-10 6.572092884e-11 2.415471594e-11 7.867842684e-11 8.714298194e-11 9.16471987e-11 1.548864033e-10 1.01921796e-10 2.481546896e-10 3.18568843e-11 8.928535434e-11 4.584053179e-11 7.700429765e-11 1.77371398e-10 2.148383505e-10 4.624344087e-11 1.28087954e-10 3.509149666e-10 8.980987355e-11 1.073578334e-10 3.526917586e-10 5.118398912e-11 1.48801138e-10 1.37927509e-10 3.318376686e-10 1.498692428e-10 2.303940162e-10 2.343597043e-10 1.764115324e-10 1.711898251e-10 5.325401476e-11 2.089151261e-10 1.813735887e-10 1.778839737e-10 2.10377044e-10 1.322339329e-10 1.349832654e-10 2.019710557e-10 2.506012081e-10 2.825408578e-10 9.93814204e-11 1.308296475e-10 1.374502932e-10 4.647039704e-11 1.281570905e-10 1.845732615e-10 7.009553229e-11 1.178385727e-10 1.141182566e-10 1.237468033e-10 1.900334884e-10 3.468277608e-10 1.111038323e-10 2.117227961e-10 7.727544019e-11 8.66422739e-11 1.043964726e-10 1.955211061e-10 1.972390153e-10 1.693709714e-10 1.453212972e-10 1.194722146e-10 1.515111084e-10 1.901935849e-10 1.288830847e-10 8.651655347e-11 1.526574133e-10 1.201531356e-10 1.513877489e-10 1.727113288e-10 8.188922668e-11 9.870489545e-11 1.944261155e-10 3.927163268e-11 1.82490963e-10 1.239067674e-10 8.281553936e-11 1.999769491e-10 1.919482396e-10 1.543614764e-10 2.437732552e-10 1.873657068e-10 2.151488117e-10 2.22041737e-10 3.640466234e-10 3.840755337e-10 2.286849198e-10 1.064590003e-10 7.80006781e-11 5.608107718e-11 1.880618143e-10 2.352279469e-10 2.928691269e-10 3.01911757e-10 2.65221775e-10 3.022203162e-10 1.858988545e-10 3.142158331e-10 1.579785939e-10 1.831908204e-10 1.525644116e-10 2.452985037e-11 3.241466052e-10 1.983651996e-10 2.722956091e-10 2.498836736e-10 1.074630389e-10 2.723629332e-10 3.596682604e-10 2.313200074e-10 1.992134282e-10 1.357626352e-10 2.310516412e-10 1.878278781e-10 2.398703749e-10 1.332692496e-10 2.218148447e-10 1.976059255e-10 1.083299451e-10 1.189200403e-10 2.748733943e-10 2.35237852e-10 2.00597164e-10 1.530481469e-10 1.72053594e-10 1.50454811e-10 1.022056445e-10 1.770547159e-10 6.372478911e-11 1.643731986e-10 1.438292995e-10 1.406801699e-10 1.113325119e-10 5.408193571e-11 1.0500817e-10 1.310758199e-10 2.034184756e-10 1.161595054e-10 2.358538253e-10 1.990418662e-10 1.718921821e-10 9.430240996e-11 1.474766571e-10 1.852337456e-10 3.37327912e-10 1.330552796e-10 2.817256534e-10 1.337313807e-10 1.15746292e-10 2.181314723e-10 1.448973096e-10 2.290183755e-10 2.150606469e-10 1.87768529e-10 2.122842296e-10 2.009665027e-10 2.264023892e-10 1.590569923e-10 2.236411928e-10 2.73379806e-10 9.077917481e-11 1.767820875e-10 3.39928267e-10 1.723998373e-10 1.825762199e-10 2.598266952e-10 9.374145616e-11 1.675767133e-10 3.011541634e-10 2.398670317e-10 2.685346576e-10 2.603202177e-10 2.052640249e-10 1.684951656e-10 1.484193648e-10 1.373338162e-10 1.145014493e-10 1.407281728e-10 1.378088369e-10 6.458945767e-11 7.347611866e-11 5.265036966e-11 2.697949583e-10 3.135264013e-10 3.183873429e-10 1.021303715e-10 2.025445418e-10 1.830612315e-10 3.853192289e-10 2.653682731e-10 2.191868202e-10 1.959086569e-10 1.485469156e-10 1.791008618e-10 1.754042475e-10 1.892752187e-10 3.18841209e-10 1.535498526e-10 1.309022503e-10 2.803643873e-10 2.085184276e-10 4.192784869e-11 9.834219403e-11 1.137285841e-10 2.653283852e-10 1.544501069e-10 6.083036003e-11 8.517138182e-11 1.976097057e-10 2.049383678e-10 2.014508486e-10 1.718437771e-10 1.225710021e-10 2.234795307e-10 3.181691583e-11 1.465770882e-10 2.099978271e-10 1.605306359e-10 1.700990799e-10 3.147438537e-10 5.093911734e-11 2.831602935e-10 1.45533267e-10 1.617452235e-10 7.50824101e-11 1.882427797e-10 7.757867904e-11 8.198083326e-11 8.960391046e-11 5.600499397e-11 1.714500234e-10 2.130152658e-10 2.473560704e-10 7.635115613e-11 1.475138224e-10 1.845674025e-10 2.153322955e-10 6.517220265e-11 1.472272218e-10 3.17247284e-10 2.073875855e-10 9.786793833e-11 4.916671137e-11 5.327761768e-11 1.361781097e-10 2.310266557e-10 2.478102537e-10 1.291852064e-10 1.96859203e-10 1.655289874e-10 2.066733257e-10 1.473432552e-10 1.170486251e-10 1.844781114e-10 3.158304106e-10 1.624531237e-10 6.784934412e-11 4.863160244e-11 8.569831808e-11 1.856276739e-10 1.532177561e-10 1.760839322e-10 2.449158013e-10 7.075903777e-11 1.024438741e-10 8.086837437e-11 1.598114672e-10 6.320929215e-11 6.528874952e-11 8.835427897e-11 1.319918638e-10 1.687518749e-10 1.607226494e-10 1.350523949e-10 6.183491254e-11 2.877376626e-11 1.878447381e-10 1.909193113e-10 1.228296368e-10 1.369428508e-10 1.217550831e-10 2.57564927e-11 2.604688242e-10 5.947094855e-11 9.121678424e-11 1.096851754e-10 1.577622982e-10 5.426393381e-11 5.931699545e-11 5.906931927e-11 +6.802318874e-11 8.080825415e-11 1.642381048e-10 2.555347439e-10 5.556051229e-11 6.318576418e-11 9.380871484e-11 1.301955848e-10 1.139657992e-10 2.391914295e-10 9.612500651e-11 6.604230333e-11 8.24040636e-11 5.849802186e-11 4.228896359e-11 1.440019671e-10 2.900666548e-10 2.000729176e-10 1.167728549e-10 6.598152159e-11 1.905089933e-10 2.89952202e-10 2.748370103e-10 3.885879674e-11 1.382173594e-11 3.24074789e-10 1.582522522e-10 1.83058997e-10 1.438556301e-10 1.858459931e-10 2.12077232e-10 6.430707763e-11 1.053640143e-10 1.67832904e-10 1.350998458e-10 1.980920716e-10 1.031403332e-10 2.233291055e-10 1.491301536e-10 1.100109043e-10 1.291833439e-10 8.79632664e-11 7.377790057e-11 2.189128312e-10 1.278616834e-10 9.512053883e-11 1.501407502e-10 1.352315958e-10 4.247875316e-11 1.157512608e-10 1.784191592e-10 3.164396163e-10 1.496211808e-10 1.073447817e-10 3.473000826e-11 1.001218103e-10 1.961974571e-10 1.947295991e-10 1.952538573e-10 2.311615818e-10 1.294589079e-10 6.590548312e-11 2.612059119e-10 2.159091093e-11 1.186352101e-10 5.75387741e-11 1.215920427e-10 6.844636011e-11 2.018675625e-10 1.256763908e-10 4.397692308e-11 3.015827565e-10 7.019054232e-11 2.982063612e-10 5.759858789e-11 8.98480375e-11 1.67396903e-10 1.530776151e-10 8.274498483e-11 1.381687778e-10 9.68795466e-11 4.36609041e-11 2.202549198e-10 1.385947275e-10 1.937726237e-10 2.295320224e-10 2.778187327e-10 2.782210043e-10 3.396561118e-10 1.237574824e-10 1.824021769e-10 1.54661516e-10 1.595232552e-10 1.026221438e-10 1.971309844e-10 2.589487973e-10 3.173914813e-10 2.541453185e-10 1.953330168e-10 7.865098587e-11 1.823491045e-10 1.861089323e-10 2.599190417e-10 1.36953096e-10 2.774989179e-10 1.357231541e-10 1.793661152e-10 1.972529402e-10 2.056583887e-10 1.818812634e-10 2.844185723e-10 1.616977051e-10 4.079304438e-10 2.532329367e-10 2.059890038e-10 2.026635518e-10 2.069086311e-10 1.054085462e-10 1.861335892e-11 1.136542845e-10 8.413349836e-11 1.75759436e-10 1.113892845e-10 4.626980151e-11 1.728332235e-10 1.322791439e-10 1.54696926e-10 1.224867874e-10 1.133971473e-10 3.909258628e-10 1.357322379e-10 3.501675232e-10 1.681641203e-10 1.310992344e-10 1.560773038e-10 1.812874846e-10 1.543224493e-10 2.43245453e-10 1.154512413e-10 1.635642834e-10 2.213170934e-10 1.909154124e-10 1.734688508e-10 1.725570499e-10 1.00343813e-10 2.375994784e-10 1.843797973e-10 2.533066073e-10 2.687689389e-10 2.085116797e-10 2.298289347e-10 1.392699123e-10 1.676044547e-10 1.670483951e-10 8.467583794e-11 1.186483129e-10 1.845512689e-10 2.182187572e-10 7.505421768e-11 2.890927358e-10 2.367656444e-10 1.481387679e-10 2.138180258e-10 2.46312316e-10 4.87560152e-11 2.109350129e-10 2.536253531e-10 1.698452989e-10 1.151589363e-10 3.842800434e-11 3.010227371e-10 2.208907824e-10 2.220936182e-10 1.353066519e-10 1.476194031e-10 2.097760711e-10 1.732256944e-10 2.066947528e-10 1.776246528e-10 1.141625115e-10 2.001046479e-10 1.766079651e-10 2.054453641e-10 2.25129927e-10 1.836804737e-10 1.248667037e-10 2.704353209e-10 2.155702633e-10 9.497906691e-11 2.108345976e-10 2.85920705e-10 1.043219079e-10 2.425174767e-10 1.950753466e-10 1.897699351e-10 1.879014273e-10 2.076536757e-10 2.833108832e-10 1.851591302e-10 2.799046394e-10 3.401632841e-10 1.057187476e-10 2.271117764e-10 3.655345124e-10 2.627721669e-10 2.761736671e-10 1.341218095e-10 2.46689184e-10 1.542202787e-10 3.186444895e-10 2.723993431e-10 1.816939442e-10 1.773803971e-10 1.405341269e-10 1.224310578e-10 1.043873518e-10 2.171838385e-10 1.962867876e-10 1.138442096e-10 1.048553544e-10 5.797054279e-11 2.120675247e-10 6.838218926e-11 2.134396629e-11 1.827652276e-10 2.72268772e-10 9.690140626e-11 7.772070977e-11 4.794929965e-11 2.306188966e-11 1.550580994e-10 4.959604361e-11 1.658096701e-10 1.780922637e-10 1.33512972e-10 6.900963503e-11 1.495006621e-10 2.617181158e-10 1.804826733e-10 1.703460279e-10 9.609437857e-11 1.213773798e-10 3.311239492e-10 1.052773267e-10 1.359847067e-10 5.211343786e-11 5.867085933e-11 1.436338384e-10 2.560215423e-10 9.462034109e-11 1.313760774e-10 1.201670457e-10 2.412141229e-10 1.242619727e-10 1.36578584e-11 1.013259602e-10 1.881165297e-10 1.454027031e-10 2.593778826e-10 1.21040204e-10 2.756105242e-10 1.170376438e-10 7.695813509e-11 2.162092081e-10 4.006684026e-11 3.144101037e-10 3.669448353e-11 1.120757443e-10 1.50377529e-10 1.860737132e-10 1.252019904e-10 1.758773942e-10 1.174780887e-10 1.75902226e-10 1.433658399e-10 2.348235843e-10 7.714996442e-11 1.10635469e-10 1.039550665e-10 4.682886201e-11 1.264386775e-10 3.138014281e-10 3.105454403e-11 1.360470661e-10 1.918099944e-10 1.228911186e-10 6.827412039e-11 2.222403714e-10 1.418421546e-10 3.046978132e-10 1.164294181e-10 1.810521784e-10 1.70586205e-10 4.439242903e-11 8.193812501e-11 1.641948371e-10 3.610925482e-11 9.344337982e-11 9.924924226e-11 1.543203206e-10 +1.756830924e-10 1.354992922e-10 3.976902523e-10 1.395290736e-10 4.521619356e-11 2.587384653e-10 2.368229586e-10 3.761197812e-11 5.02202096e-11 1.124115501e-10 6.082320706e-11 1.379029526e-10 7.305196833e-11 1.11712513e-10 6.582896065e-12 1.565337909e-10 2.279973129e-11 3.742882287e-11 1.304064505e-10 8.676617587e-11 4.432791942e-11 2.62566661e-10 2.107081402e-10 6.332849308e-11 1.568294152e-10 2.815947819e-10 2.660062266e-10 8.864352107e-11 9.581292503e-11 2.470562965e-11 7.623371384e-11 1.871865186e-10 6.218783545e-11 3.107896552e-10 1.262614143e-10 3.433491984e-11 2.760544169e-10 7.524689822e-11 1.236164092e-10 7.941529311e-11 2.410560516e-10 1.62529056e-10 6.899618672e-11 1.202803999e-10 1.497339772e-10 1.134368975e-10 7.914269881e-11 1.886443229e-10 3.544112056e-10 1.988056138e-10 8.430961388e-11 1.095888097e-10 9.24771164e-11 2.010195324e-10 1.595880896e-10 2.775310055e-10 1.759132267e-10 3.211756085e-10 1.173110626e-10 1.216073044e-10 1.539382916e-10 1.262098081e-10 2.57687187e-10 1.961323869e-10 8.646370331e-11 9.316842589e-11 1.06003061e-10 2.209631451e-10 2.043885265e-10 2.840494718e-10 7.594040779e-11 8.994846708e-11 2.74056235e-11 8.255264282e-11 5.395008331e-11 6.261146493e-11 1.979122048e-10 1.270945696e-10 1.035726162e-10 2.597653546e-10 2.09179577e-10 4.802307224e-11 1.018519626e-10 9.7070152e-11 4.329682564e-11 1.288377119e-10 1.802057244e-10 8.151125083e-11 1.306230221e-10 1.36360802e-10 2.130423785e-10 3.064185812e-10 1.627887478e-10 2.857062522e-10 2.82384409e-10 2.970226787e-10 1.329426268e-10 1.946305797e-10 1.721109895e-10 1.395284684e-10 1.446171203e-10 2.434725524e-10 2.906222667e-10 1.840846754e-10 2.610714815e-10 2.405273419e-10 1.355657123e-10 2.306013795e-10 2.462720233e-10 2.031221971e-10 3.77526648e-10 1.636654592e-10 2.199437118e-10 1.577733116e-10 2.62904683e-10 1.878787272e-10 1.336696461e-10 1.125712155e-10 1.433780441e-10 9.558703007e-11 2.340108428e-10 2.72915258e-10 2.217047761e-10 1.618657274e-10 1.098731674e-10 3.636843397e-10 5.532046284e-11 9.942846676e-11 2.71358461e-10 1.255024428e-10 1.904444937e-10 1.398784855e-10 7.557351341e-11 2.912826275e-10 1.534006914e-10 1.238800008e-10 2.138859864e-10 1.810933926e-10 1.939222113e-10 1.109876229e-10 1.022971226e-10 9.357310574e-11 8.085470561e-11 9.963329815e-11 1.24216917e-10 9.48501552e-11 3.128067407e-10 1.155994968e-10 1.84869649e-10 8.469101804e-11 1.084221231e-10 1.54400858e-10 3.819689776e-10 1.806491187e-10 1.639656592e-10 1.939360295e-10 1.274562748e-10 1.010596057e-10 1.181553658e-10 3.009173141e-10 2.885675151e-10 2.044643648e-10 1.267746072e-10 1.873010245e-10 1.084030533e-10 1.390457352e-10 2.621148027e-10 2.197244416e-10 1.649001483e-10 6.294759964e-11 1.548489319e-10 2.475252424e-10 2.215328667e-10 3.147929676e-10 1.362596013e-10 1.427955528e-10 1.362441765e-10 1.246758673e-10 2.395167465e-10 2.002936766e-10 2.374290482e-10 1.317159134e-10 1.446318287e-10 2.566757162e-10 2.652487946e-10 1.968585756e-10 2.786052257e-10 1.503897346e-10 1.176816493e-10 1.697851107e-10 9.194741723e-11 6.633029817e-11 8.751061022e-11 9.909458009e-11 2.34293683e-10 1.416530683e-10 2.188859081e-10 1.689203635e-10 1.875295264e-10 2.097187076e-10 2.278565324e-10 2.140265815e-10 2.778153984e-10 1.76760517e-10 3.316221013e-10 2.714822424e-10 2.245118791e-10 2.542707484e-10 2.913127909e-10 5.348225776e-13 1.503102234e-10 1.243237117e-10 2.076925665e-10 2.419722675e-10 2.8104296e-11 1.280577009e-10 1.710260851e-10 2.28736742e-10 3.367307148e-11 3.111842793e-11 1.265942632e-10 1.146202184e-10 1.737649911e-10 3.333464075e-11 9.164005324e-11 2.439611007e-10 1.198613821e-10 3.434567184e-11 1.399653077e-10 1.049387262e-10 1.025917424e-10 4.038448933e-11 9.893079706e-11 4.061311217e-10 1.538529056e-10 1.141423828e-10 1.141298988e-10 2.159216865e-10 2.567632573e-10 2.353738048e-10 2.947693669e-10 1.631742738e-10 6.53855582e-11 1.429231906e-10 5.035736146e-11 1.266571698e-10 1.382599123e-10 1.641639476e-10 5.037226916e-11 1.599613779e-10 8.985314269e-11 6.830545907e-11 1.324636228e-10 1.229724847e-10 1.108108114e-10 1.889116149e-10 1.552379144e-10 8.006121674e-11 1.031817938e-10 1.84190516e-10 1.063793029e-10 1.445568552e-10 2.075958945e-11 9.174796125e-11 2.668049961e-10 9.586243983e-11 1.434486385e-10 6.053496314e-11 1.46606856e-10 1.342479314e-10 4.657693234e-11 2.018520627e-10 1.293224696e-10 1.454228085e-11 1.263972179e-10 1.542931502e-10 1.091708654e-10 4.890640084e-11 3.234410308e-11 6.438920396e-11 1.418775918e-10 1.069130564e-10 1.633908229e-10 6.668781099e-11 3.725494349e-11 1.054628067e-10 5.368751396e-11 3.657726453e-10 6.17315745e-11 1.595872425e-10 2.948557142e-10 5.843521397e-11 5.283469142e-11 7.253355938e-11 1.137340983e-10 4.175052594e-11 2.288051832e-10 3.904095252e-11 5.351618985e-11 9.14290071e-11 +1.550999872e-10 1.099521664e-10 6.749392228e-11 1.73869818e-10 7.014415296e-11 1.822833417e-10 1.5263828e-10 2.257261236e-10 9.020877186e-11 5.603332396e-11 1.295167623e-10 6.57147043e-11 8.792181358e-11 9.25650583e-11 1.124589131e-11 8.038805873e-11 2.215674974e-10 9.738482337e-11 2.494257314e-10 6.260419948e-11 8.715747481e-11 2.021965565e-10 1.232216211e-10 6.559942901e-11 9.845462444e-11 4.897916157e-11 1.456760167e-10 1.871763061e-10 1.25061676e-10 1.563969809e-10 1.728764789e-10 1.76452153e-10 3.274720083e-10 2.03833651e-10 7.256191377e-11 7.861043709e-11 2.591898798e-10 1.130711867e-10 3.424987678e-10 1.707530695e-10 9.46018977e-11 7.656756632e-11 1.123377324e-10 2.723290137e-10 7.604265506e-11 1.287814009e-10 1.897534124e-10 1.539614334e-10 4.050981328e-10 9.428192502e-11 1.018981961e-10 1.06818905e-10 3.161560153e-10 1.913402546e-10 2.413248292e-10 1.786098007e-10 4.471495828e-11 1.067676212e-10 1.680809328e-10 1.674369616e-10 1.7119549e-10 1.450259291e-10 2.829265348e-10 9.632617497e-11 1.545441286e-10 8.534257519e-11 1.99825592e-10 3.036264743e-11 4.530017126e-11 9.921059944e-11 1.210020871e-10 6.734150557e-11 2.098886985e-10 1.050296197e-10 1.032179582e-10 1.036523714e-10 1.4278898e-10 1.273973203e-10 1.712074704e-10 1.711240827e-10 3.058125965e-10 1.864585706e-10 1.398027398e-10 1.568276566e-10 1.7736626e-11 7.853371783e-11 1.086471802e-10 9.519034449e-11 2.273535908e-10 1.036449041e-10 1.264181247e-10 4.151698573e-10 1.607077926e-10 1.648238242e-10 9.796446377e-11 2.486451928e-10 1.751793108e-10 3.451828068e-10 3.148701386e-10 1.788007632e-10 1.613881648e-10 1.592883252e-10 2.34117171e-10 2.130106428e-10 2.707651963e-10 1.582273979e-10 1.774533469e-10 1.700658632e-10 1.427078391e-10 1.504687684e-10 5.728883615e-11 8.464450238e-11 1.838699452e-10 1.434597352e-10 1.551302648e-10 1.60720136e-10 2.635321807e-10 2.436830958e-10 1.942761018e-10 1.778328948e-10 1.225544322e-10 2.115094141e-10 1.608518527e-10 4.927423125e-11 1.072663361e-10 1.337329979e-10 8.278189863e-11 2.452987522e-10 2.22997534e-10 1.610210432e-10 1.709873793e-10 6.593214824e-11 1.269619264e-10 1.225404023e-10 1.847253527e-10 1.68438067e-10 1.948541923e-10 1.122743553e-10 1.745390407e-10 1.874859704e-10 2.256235847e-10 1.042791674e-10 1.889300675e-10 9.745830962e-11 1.594113638e-10 8.288025777e-11 1.484783702e-10 2.185471836e-10 2.307811571e-10 1.338611011e-10 1.229454558e-10 5.366842009e-11 1.975422677e-10 1.890359931e-10 1.225803509e-10 1.829129521e-10 5.120113338e-11 1.97738988e-10 1.78074895e-10 1.4651714e-10 2.114122187e-10 1.433813249e-10 2.023682e-10 2.973217967e-10 1.271891768e-10 1.429364855e-10 1.616855356e-10 1.814618201e-10 2.109969853e-10 1.735698486e-10 1.740476554e-10 3.385890785e-10 1.450591076e-10 1.13595889e-10 1.277826735e-10 1.392557395e-10 3.3358891e-10 1.130605458e-10 1.361435824e-10 1.028544014e-10 2.311786148e-10 1.455992273e-10 1.952591749e-10 1.38095638e-10 1.298367201e-10 1.900676996e-10 2.140799734e-10 3.360606815e-10 1.846145558e-10 1.677472073e-10 1.848317655e-10 1.061091285e-10 1.303675783e-10 3.08996552e-10 2.09695229e-10 2.616305509e-10 1.615655716e-10 1.583713183e-10 1.818033649e-10 1.592012266e-10 2.122082382e-10 3.164817972e-10 1.754805952e-10 2.369163089e-10 2.398139781e-10 1.53573383e-10 1.98165407e-10 2.419342949e-10 2.59069118e-10 8.545521432e-11 3.456199939e-10 2.436919939e-10 3.642425103e-10 1.370882497e-10 2.891643359e-10 7.601728608e-11 2.549684963e-10 7.761078808e-11 1.96486387e-10 8.207293224e-11 1.608917022e-10 1.489127463e-10 1.984550286e-10 1.333560054e-10 4.149870996e-11 1.438749579e-10 1.446130628e-10 3.986416205e-11 2.399442343e-10 1.40098171e-10 1.522437393e-10 5.829879453e-11 9.036602729e-11 3.735397905e-10 4.721573514e-11 1.481030703e-10 7.850711506e-11 8.449607674e-11 2.022920049e-10 1.275505685e-10 2.475328833e-10 4.211711928e-11 1.341418561e-10 2.860275432e-10 2.01463754e-10 2.097206609e-10 6.673482397e-11 1.793130574e-10 7.158185918e-11 1.159862245e-10 1.290653523e-10 8.920249535e-11 4.46681893e-11 1.032410132e-10 1.018277272e-10 1.297096034e-10 2.764332281e-10 2.712516732e-10 2.705472566e-10 1.198570575e-10 9.552842723e-11 2.061000048e-10 7.99003467e-11 2.427510931e-10 1.289319495e-10 8.619082669e-11 1.336858796e-10 8.975199734e-11 1.829625743e-10 9.155020145e-11 8.994615689e-11 1.806208016e-10 1.580124636e-10 1.777998995e-10 9.843488602e-11 2.265077078e-10 8.065828119e-11 7.538978463e-11 1.652744909e-10 1.929496564e-10 3.115516286e-11 1.250798897e-10 2.125580937e-10 1.814503002e-10 1.269389007e-10 1.235987995e-10 4.365918738e-11 2.220834332e-10 1.886277144e-11 4.673336197e-11 8.258829163e-11 2.234722371e-10 1.295578887e-10 1.262847009e-10 1.358662672e-10 4.502410209e-10 1.207102935e-10 2.550542412e-10 1.389627902e-10 1.929981289e-11 +2.317808077e-10 3.48623521e-11 1.170507409e-10 2.211836228e-10 3.217476913e-10 3.899486689e-10 8.866026249e-11 2.405081424e-10 1.397642024e-10 6.143466245e-11 9.787905365e-11 1.566993883e-10 5.071556084e-11 1.044077464e-10 6.547759624e-11 1.507513308e-10 1.998230572e-11 1.15091946e-10 6.125317591e-11 2.160980535e-10 8.447710221e-11 1.768256034e-10 7.76926206e-11 1.665405359e-10 1.28251331e-10 1.057653777e-10 9.666979122e-11 2.277931898e-11 2.780231727e-10 8.000135481e-11 1.370417719e-10 9.453007973e-11 9.325957211e-11 1.928167026e-10 1.855323466e-10 1.604409456e-10 6.619966547e-11 3.091131249e-10 1.539076222e-10 1.470736502e-10 7.140058731e-11 1.692890561e-10 9.088494117e-11 6.538712814e-11 2.579877182e-10 1.987824383e-10 1.977182272e-10 6.640433538e-11 8.430349221e-11 1.352902347e-10 1.426296304e-10 5.487123192e-11 1.521588578e-10 1.956967582e-10 3.070472239e-10 1.057268983e-10 1.378036164e-10 1.266163359e-10 7.189072384e-11 1.20881711e-10 1.813344041e-10 1.19018592e-10 1.915008229e-10 1.858844554e-10 2.384211041e-10 2.678745205e-10 2.613953611e-10 6.083919877e-11 1.943196605e-10 1.432365617e-10 8.764445053e-11 1.957477715e-10 1.498061253e-10 1.472378828e-10 5.646146014e-11 8.323219865e-11 1.569476241e-10 7.762899378e-11 1.854900603e-10 1.965022774e-10 1.925453717e-10 1.39822789e-10 8.984653282e-11 1.050338383e-10 3.684769655e-11 1.156135855e-10 9.126655432e-11 2.246585055e-10 3.721370055e-10 3.130256063e-11 1.992707783e-10 1.035706556e-10 2.845387378e-11 1.673140934e-10 7.76728495e-11 1.960132253e-10 1.81514901e-10 2.194766704e-10 2.776104795e-10 8.861671046e-11 1.456341019e-10 1.499689096e-10 2.077320534e-10 2.886231602e-11 1.804678981e-10 1.34880868e-10 2.476288068e-10 1.947804602e-10 1.580709924e-10 1.519950124e-10 1.900456891e-10 1.363149585e-10 1.936327883e-10 1.102411873e-10 2.254243338e-10 1.495461575e-10 5.024734526e-11 7.134482786e-11 2.07727925e-10 1.239313726e-10 9.595634779e-11 1.173390786e-10 3.35048338e-10 7.017387394e-11 2.153771338e-10 1.510477828e-10 1.756808985e-10 1.722052844e-10 1.45490396e-10 1.32218796e-10 2.283692146e-10 1.879351029e-10 1.749302985e-10 7.950547596e-11 8.841275116e-11 2.036585644e-10 1.502413149e-10 1.08551038e-10 1.588920913e-10 1.703518687e-10 8.417556016e-11 1.364148543e-10 1.268252524e-10 1.771938378e-10 1.178814581e-10 1.446364419e-10 2.532573735e-10 1.624322793e-10 1.594853915e-10 1.174770088e-10 1.199970461e-10 7.946554366e-11 1.121026572e-10 3.24975222e-10 6.277572835e-11 5.738514929e-11 2.073084354e-10 1.523946123e-10 1.17780996e-10 5.597083557e-11 7.851149672e-11 1.466273939e-10 1.151993679e-10 9.51628372e-11 2.051540728e-10 1.520864936e-10 1.864363718e-10 8.470623296e-11 2.466237868e-10 1.110901019e-10 1.551126186e-10 2.273422684e-10 2.357795917e-10 1.729170554e-10 2.704287085e-10 1.393132306e-10 1.288419485e-10 1.445529262e-10 2.780506363e-10 1.471290717e-10 7.969120141e-11 2.129025436e-10 1.764941389e-10 1.046932958e-10 2.343980012e-10 9.655059397e-11 7.491836902e-11 3.494640904e-10 1.541419794e-10 1.552071988e-10 2.565809042e-10 2.205460733e-10 8.521970285e-11 2.648952284e-10 1.342979334e-10 1.792141272e-10 1.19454629e-10 2.501253711e-10 2.183713548e-10 1.856318313e-10 2.874132061e-10 3.239796338e-10 1.975685557e-10 2.38803737e-10 1.354415618e-10 1.081100791e-10 2.27233208e-10 1.358159774e-10 2.394964851e-10 2.41972868e-10 1.596561521e-10 7.367823389e-11 8.288950446e-11 1.827454441e-10 1.690622595e-10 6.603492874e-11 5.669584213e-11 3.994192925e-11 8.647569111e-11 1.518248262e-10 1.340097172e-10 5.407178453e-11 1.406627976e-11 6.134465951e-11 2.300945369e-10 1.437452121e-10 7.987156694e-11 1.339196728e-10 1.212528742e-10 5.383779397e-11 8.91484298e-11 1.469881693e-10 7.293859557e-11 7.953012094e-11 2.043873956e-10 3.459888225e-10 1.871614591e-10 1.677311092e-10 4.695392956e-11 2.837428805e-11 6.747799402e-11 9.468218182e-11 1.574155851e-10 1.878787375e-10 1.206559529e-10 1.399778341e-10 1.089319618e-10 7.954188032e-11 1.175399327e-10 1.265959952e-10 3.932937646e-10 1.767776503e-10 1.597989946e-10 1.849550096e-10 1.091624972e-10 2.131647175e-10 1.491506887e-10 1.642487592e-10 1.092458679e-10 7.481008938e-11 4.389931787e-11 3.167027497e-10 1.933772089e-10 6.213265869e-11 1.505676716e-10 9.349254443e-11 6.318623782e-11 3.62547815e-10 2.211393823e-10 3.029231913e-11 1.228931925e-10 1.737886448e-10 1.544243463e-10 3.805487982e-11 8.033635492e-11 1.491382051e-10 9.77209809e-11 5.105587068e-11 5.356425988e-11 4.753739993e-11 2.67900471e-10 1.316672322e-10 4.108446952e-11 2.883811729e-10 2.458739299e-10 9.273245569e-11 2.131927577e-10 3.975875742e-11 9.912448873e-11 1.285409507e-10 9.807637868e-11 1.302847059e-10 2.622135134e-10 7.437052015e-11 1.683913356e-10 9.258802942e-11 1.578846705e-10 1.990358402e-10 1.109718394e-10 3.059825696e-10 +2.393650964e-11 7.517064737e-11 1.361684679e-11 1.135360496e-10 6.383213649e-11 3.290455106e-10 1.479797074e-10 2.377119197e-11 1.819519818e-10 2.223333829e-10 1.54421406e-10 3.269106821e-11 7.094949941e-11 1.32500637e-10 1.219218183e-10 7.330791136e-11 2.975754411e-10 2.246065594e-10 1.123884656e-10 3.612770595e-11 1.418990963e-10 1.13122416e-10 9.218298723e-11 1.220515629e-10 8.926421544e-11 9.966533495e-11 1.081728657e-10 1.518985139e-10 9.810441535e-11 5.529990003e-11 5.997547034e-11 1.856863111e-10 1.110229289e-10 1.523555861e-10 1.035777587e-10 1.985286326e-10 7.908232267e-11 1.293327727e-10 8.492188681e-11 4.416239254e-11 2.198338913e-10 1.522852462e-10 7.226714209e-11 1.68301586e-10 1.021608966e-10 7.519028013e-11 2.314684518e-10 2.875143014e-10 1.108624775e-10 5.783533767e-11 1.1579296e-10 1.305024657e-10 1.069237309e-10 1.512590864e-10 1.057125844e-10 2.072421523e-10 6.722858766e-11 1.422271539e-10 1.267114079e-10 1.224968939e-10 2.391255029e-10 1.536022358e-10 1.375173465e-10 1.686472182e-10 4.52369431e-11 1.223952469e-10 1.636688091e-10 9.898098056e-11 1.543008365e-10 7.599143931e-11 1.268492331e-10 1.308974368e-10 1.188786187e-10 1.181713444e-10 1.507232623e-10 5.184525844e-11 5.604890883e-11 7.512598909e-11 1.227245452e-10 2.107651951e-10 9.69055576e-11 1.027338768e-10 8.414542304e-11 1.590964965e-10 4.974559307e-11 1.502823391e-10 2.804682441e-10 7.586898498e-11 1.076485658e-10 1.213278718e-10 2.073952898e-10 5.54729635e-11 2.09649724e-10 1.570644501e-10 2.280105066e-10 2.240790169e-10 2.156769784e-10 1.349860581e-10 1.375869978e-10 8.248738736e-11 1.396914809e-10 2.434704538e-10 1.996863199e-10 2.518570373e-10 1.632869926e-10 2.891783029e-10 1.812123737e-10 1.993454825e-10 3.498769007e-10 3.583308702e-10 1.81744291e-10 6.811382978e-11 3.157233354e-10 2.069972851e-10 6.152176387e-11 1.685049614e-10 6.686164366e-11 2.583157254e-10 2.013084128e-10 2.107952235e-10 3.261047693e-10 1.466388267e-10 2.238284498e-10 1.254063131e-10 2.45146491e-10 1.274919307e-10 1.267899512e-10 1.446137308e-10 1.689933415e-10 1.903164276e-10 1.284156984e-10 8.906069405e-11 1.677954898e-10 2.640493731e-10 1.877030935e-10 1.434914584e-10 1.849366451e-10 1.659458624e-10 2.589145885e-10 8.556940226e-11 1.713170961e-10 1.740547714e-10 1.082944453e-10 1.345509648e-10 1.218687862e-10 1.08918616e-10 2.474842469e-10 1.152481737e-10 1.35615657e-10 1.010733874e-10 1.332724874e-10 2.691899182e-10 2.134155903e-10 3.476750062e-10 8.228825181e-11 2.71961263e-10 1.49761755e-10 1.940871698e-10 1.62774669e-10 7.580272306e-11 1.603316768e-10 2.693385338e-10 2.747319122e-10 2.757871298e-10 1.820265516e-10 1.22859682e-10 2.509272284e-10 1.637239532e-10 1.724544744e-10 2.949085351e-10 2.296621409e-10 1.729906922e-10 8.789186533e-11 2.124615977e-10 1.429241787e-10 2.982233704e-10 1.093614937e-10 1.335722015e-10 2.858322337e-10 2.204560931e-10 3.524783048e-10 1.603778647e-10 1.64793042e-10 2.075996964e-10 3.140038911e-10 1.095405463e-10 1.234878543e-10 2.173052209e-10 3.460255586e-10 1.317236503e-10 2.355318492e-10 9.070064335e-11 2.481521171e-10 2.728453469e-10 2.318789663e-10 2.577445214e-10 3.584693307e-10 1.873426107e-10 1.418394843e-10 2.615267617e-10 1.002318364e-10 1.703261189e-10 2.228844336e-10 1.478572571e-10 2.194994596e-10 1.355231731e-10 1.899817587e-10 2.234983007e-10 1.294840437e-10 1.946952984e-10 1.315255515e-10 8.494772426e-11 2.849032836e-10 1.227381862e-10 1.35373702e-10 6.907708238e-11 3.32251929e-11 9.350089809e-11 9.711779064e-11 1.454191684e-10 1.446948235e-10 6.390917185e-11 9.174762131e-11 8.01308537e-11 1.229867728e-10 7.642917215e-11 3.100656755e-11 9.213269819e-11 1.204857364e-10 8.894333918e-11 1.633801846e-10 3.496592003e-11 2.308688168e-10 1.386109418e-10 2.134137978e-10 7.534345485e-11 3.196447365e-11 4.350086687e-10 2.643054618e-10 1.009588561e-10 2.425421085e-10 1.034502488e-10 6.311363503e-11 1.680253603e-10 2.161809276e-10 1.762773477e-10 2.062792689e-10 3.277100831e-10 1.800938988e-10 9.07144871e-11 1.034306616e-10 1.805792454e-10 2.614905594e-10 1.190260196e-10 6.373236578e-11 8.30709224e-11 1.149197304e-10 1.877383324e-10 1.166770384e-10 6.509436429e-11 1.228360527e-10 4.511628919e-11 2.332811971e-10 2.768645984e-10 1.945180042e-10 1.187944325e-10 1.752275348e-10 3.093105368e-10 2.650802993e-10 1.428895245e-10 1.573002338e-10 1.274813474e-10 2.762232223e-10 1.539112605e-10 1.319102969e-10 9.940732887e-11 1.407265264e-10 7.0282216e-11 6.422879714e-11 6.839485002e-11 1.244358205e-10 8.948187528e-11 1.288157989e-10 2.277312533e-10 3.485287763e-11 6.284288465e-11 1.131061797e-10 1.449856024e-10 1.085947665e-10 8.086992327e-11 3.855777882e-10 5.490308198e-11 3.715330022e-11 1.904639646e-10 2.382015132e-10 1.80505024e-10 5.116964174e-11 1.93638154e-10 1.61472016e-10 1.338642996e-10 +1.007466217e-10 7.322222159e-11 2.312393519e-10 1.908273161e-10 1.988650317e-10 1.119131617e-10 3.831377173e-11 3.16029205e-11 2.358217219e-10 1.095780557e-10 1.616154958e-11 1.382119503e-10 1.472358216e-10 2.14283221e-10 8.210681903e-11 1.21658448e-10 2.533134849e-10 8.945373466e-11 1.740367878e-10 2.036036788e-10 1.218279171e-10 6.177795466e-11 1.233552088e-10 7.532867924e-11 4.828400279e-11 1.642271828e-11 1.101792029e-10 2.245688474e-10 4.07336191e-11 4.988532757e-11 2.242126441e-10 6.940217798e-11 7.988017865e-11 4.656380616e-11 1.367785842e-10 1.421055981e-10 1.73556037e-10 1.185637679e-10 1.609350568e-10 1.423318496e-10 1.822689255e-11 4.915330909e-11 2.017622604e-10 9.370633934e-11 1.266211448e-10 1.0990393e-10 1.04811958e-10 6.20956967e-11 8.378454394e-11 1.359202152e-10 5.574862209e-11 7.357459812e-11 1.202281082e-10 1.544004728e-10 1.514783272e-10 9.826034116e-11 5.617226581e-11 7.916079942e-11 2.337321257e-10 2.24710754e-10 1.465805861e-10 1.769540565e-10 1.484584323e-10 1.804451716e-10 1.708422678e-10 8.488759158e-11 1.791398182e-10 1.652093134e-10 1.728623227e-10 8.927851031e-11 2.303675846e-10 1.840181798e-10 1.451106166e-11 1.386684605e-10 2.85398289e-10 2.001469373e-10 1.401960616e-10 5.034244184e-11 1.008276774e-10 2.324356504e-10 7.27479346e-11 1.350705544e-10 1.259500437e-10 5.371208698e-11 3.686832221e-11 3.403354462e-10 1.083232158e-10 2.075801234e-10 1.26137189e-10 1.264132681e-10 9.78039547e-11 2.138972183e-10 1.588375866e-10 1.920824735e-10 2.32492939e-10 4.285049831e-11 3.730386817e-10 3.388854055e-10 1.117099983e-10 1.345293011e-10 2.151510541e-10 3.458836305e-10 2.761585668e-10 2.110106725e-10 1.282405724e-10 1.495241095e-10 9.123722138e-11 2.45235144e-10 1.556351296e-10 9.587626437e-11 2.071686595e-10 1.211137156e-10 2.188255611e-10 1.54507796e-10 1.603982448e-10 3.689271186e-10 4.827248714e-11 1.956503261e-10 2.096215519e-10 3.177317316e-10 1.916488911e-10 1.51163045e-10 1.41710706e-10 1.954504624e-10 7.134962357e-11 1.891851247e-10 3.096318364e-10 2.109297108e-10 2.244167135e-10 3.609498436e-10 1.016151729e-10 1.850788763e-10 2.418659443e-10 9.198278104e-11 1.860981797e-10 1.101716242e-10 1.457315596e-10 1.317881178e-10 1.563928432e-10 1.204996181e-10 3.079134677e-10 1.306478548e-10 1.358696377e-10 1.28471345e-10 7.635692074e-11 2.467029918e-10 1.156020566e-10 1.250806756e-10 2.529565341e-10 2.438206624e-10 8.004518407e-11 5.437243725e-11 2.434231114e-10 1.166109093e-10 1.155921387e-10 8.768093381e-11 1.855975326e-10 4.476830855e-11 2.328995922e-10 1.760714499e-10 1.021513346e-10 9.134166917e-11 2.197596659e-10 1.677105056e-10 2.567159891e-10 1.366478662e-10 2.262901586e-10 1.53130151e-10 1.51081313e-10 1.412700014e-10 1.25831762e-10 1.570606806e-10 1.238748235e-10 1.253230248e-10 3.634234848e-11 1.866035651e-10 1.657543577e-10 4.007592093e-10 1.80299904e-10 4.468927843e-10 3.341898279e-10 1.185841155e-10 1.689119811e-10 1.813495894e-10 1.221276794e-10 1.893149819e-10 2.54272091e-10 8.97013678e-11 2.363392989e-10 2.112746029e-10 1.331503435e-10 2.190948915e-10 1.431535962e-10 6.629985702e-11 1.851193525e-10 2.740063695e-10 2.441815517e-10 7.65705659e-11 2.537432636e-10 2.308181795e-10 2.369192482e-10 1.769308428e-10 1.393863452e-10 1.843476063e-10 8.973189457e-11 1.394874108e-10 2.473579974e-10 1.156253495e-10 1.442252848e-10 2.08903088e-10 1.626474e-10 1.361632118e-10 1.362458143e-10 9.731413603e-11 1.202393852e-10 1.637865171e-10 2.136250656e-10 3.061465399e-11 1.547247379e-10 8.289866355e-11 5.834984478e-11 1.085450432e-10 9.885027078e-11 1.41545391e-10 3.676795198e-11 2.069421559e-10 1.157107353e-10 1.714663082e-10 6.01269179e-11 7.595730107e-11 4.436435492e-11 1.400940083e-10 4.56874922e-11 1.284933015e-10 1.185892711e-10 1.403874491e-10 8.462557638e-11 8.291293831e-11 1.078339493e-10 1.550539238e-10 1.809908023e-11 1.080650252e-10 3.921420462e-11 6.187049555e-11 2.317888275e-10 1.067325889e-10 5.83017673e-11 1.201477491e-10 1.973892909e-10 5.54371326e-12 5.808104109e-11 1.371449486e-10 1.366171e-10 9.14563247e-11 1.347203666e-10 6.625401238e-11 2.50111171e-10 1.996510178e-11 1.021822639e-10 2.180330704e-10 9.491101633e-11 2.536102837e-10 1.844861512e-10 4.306725458e-11 4.961292615e-11 2.224591103e-10 6.151583628e-11 1.536791186e-10 1.074406305e-10 1.092188428e-10 3.222962974e-10 8.488484225e-11 1.932516163e-10 1.168452698e-10 1.181863989e-10 1.394755595e-10 1.029741129e-10 3.363170172e-11 1.63171221e-10 1.027626588e-10 1.193746423e-10 7.587766051e-11 2.140253351e-10 1.368764103e-10 1.297581692e-10 9.351719436e-11 8.573221346e-11 1.144643656e-10 8.611259875e-11 2.272212015e-10 2.347031158e-10 2.836080513e-10 1.173865865e-10 1.82613329e-10 2.242434464e-10 1.174443982e-11 1.48200753e-10 8.522223304e-11 2.370648851e-10 3.240690749e-10 +8.006199018e-11 1.611699997e-11 5.261849213e-11 2.291998245e-10 1.591456421e-10 1.699944823e-10 7.256837388e-12 8.879398687e-11 1.635936634e-10 1.831045315e-10 1.913358275e-10 1.214405478e-10 8.28909003e-11 1.057104113e-10 1.130390535e-10 4.592873061e-11 2.874009464e-10 5.034502043e-11 1.57052834e-10 3.631754309e-11 2.657645292e-10 1.025876743e-10 7.125946535e-11 4.434928588e-11 2.122184658e-10 1.369276748e-10 1.888147054e-10 2.82903342e-10 9.371795572e-11 1.190097084e-10 2.665617079e-10 7.172512752e-11 9.159186262e-11 1.175954731e-10 8.873510635e-11 2.159873408e-10 1.488868328e-10 2.608446995e-10 1.305197494e-10 2.060809889e-11 1.428925902e-11 7.996937857e-11 8.911956697e-11 1.578474377e-10 2.063164054e-11 2.4529168e-11 7.978921514e-11 1.288319747e-10 7.529664194e-11 2.046582301e-10 4.725270675e-11 2.497873482e-10 2.237215423e-10 1.746987262e-10 1.315886638e-10 2.409730197e-10 1.885999052e-10 1.430804353e-10 7.642360482e-11 8.832924534e-11 1.078770755e-10 1.581255351e-10 6.950335058e-11 2.248227405e-10 2.260385998e-10 5.374793269e-11 9.885785962e-11 1.594604653e-11 1.906078534e-10 1.248748363e-10 7.861840654e-11 2.148189594e-10 7.943686995e-11 5.342988554e-11 8.346893925e-11 1.47642338e-11 2.562407902e-10 4.006735132e-11 1.113149284e-10 1.894518006e-10 1.714734958e-10 1.147004223e-10 8.415114016e-11 1.049120013e-10 4.077175396e-14 9.814827336e-11 1.481407185e-10 1.161721985e-10 2.626678425e-10 8.737115608e-11 2.48920124e-10 8.742512681e-11 1.214949229e-10 2.009541265e-10 2.412254073e-10 9.428526861e-11 2.799040595e-10 2.058939974e-10 2.271155289e-10 2.144842018e-10 1.149764152e-10 8.315534588e-11 6.132858269e-11 3.14963593e-10 2.418012415e-10 9.011794211e-11 1.55160639e-10 1.819660973e-10 2.848494803e-10 3.49426806e-10 1.387812765e-10 1.661442122e-10 4.207659496e-11 1.254255012e-10 1.765088027e-10 2.262375886e-10 1.644208373e-10 3.477212185e-10 1.222819819e-10 1.683052044e-10 2.43170994e-10 1.936244103e-10 1.41709997e-10 2.088698578e-10 1.179678623e-10 5.656694586e-11 1.625231807e-10 3.098341917e-10 9.329097201e-11 1.745930556e-10 1.12562224e-10 1.277860613e-10 1.655232249e-10 9.596325942e-11 3.623155048e-10 1.208407706e-10 1.310857296e-10 2.138799e-10 3.491642418e-10 1.946374859e-10 1.355080159e-10 2.830303777e-10 1.273993052e-10 2.066063845e-10 7.526505871e-11 7.817344586e-11 1.681617683e-10 1.114810815e-10 1.516123366e-10 1.518065032e-10 1.281394502e-11 2.099148515e-10 6.507540003e-11 1.937163821e-10 2.241530997e-10 1.054337678e-10 1.842698798e-10 2.085198731e-10 4.352729402e-11 5.492909895e-11 1.036024034e-10 1.813003342e-10 1.577550763e-10 9.299758164e-11 1.804792608e-10 2.173707902e-10 2.033566711e-10 2.239254256e-10 2.252061218e-10 1.483348441e-10 1.197244419e-10 2.162975215e-10 2.714553101e-10 1.837732555e-10 1.957389734e-10 2.012276727e-10 1.159031976e-10 1.104937235e-10 1.669748e-10 2.084479131e-10 8.367272087e-11 2.150099369e-10 2.308033034e-10 1.469015711e-10 2.142998771e-10 3.287648023e-10 9.439381025e-11 1.151802813e-10 2.045098934e-10 1.508886941e-10 1.861970331e-10 1.861251175e-10 1.156028915e-10 3.44725146e-10 1.501816018e-10 2.309252644e-10 1.726068786e-10 1.324061074e-10 1.41501038e-10 1.513819503e-10 1.213172461e-10 5.915529182e-12 1.844770159e-10 8.66625006e-11 1.229889937e-10 5.097272327e-11 1.425877912e-10 1.253887568e-10 9.037510559e-11 7.105647166e-11 1.423438301e-10 1.922249125e-10 1.667273632e-10 1.019339158e-10 3.885762277e-11 1.268843474e-10 8.066826179e-11 1.025103932e-10 1.605049534e-10 1.946582149e-10 6.894579757e-11 1.372752535e-10 3.469912518e-11 1.871769041e-10 8.100203575e-11 4.820506693e-11 9.185796834e-11 2.425660007e-10 7.866830668e-11 3.889517316e-11 5.292063969e-11 1.165261015e-10 2.139522885e-11 1.12460889e-10 1.284477152e-10 2.114608904e-10 6.229537754e-11 1.527726788e-10 1.190894784e-10 1.531116444e-10 1.09122223e-10 1.124018312e-10 1.408625191e-10 3.958590941e-11 2.171075279e-10 1.131873392e-10 2.134069093e-10 1.02298528e-10 2.069838274e-10 1.200893013e-10 1.04675181e-10 2.748456764e-10 1.333195335e-10 9.956696188e-11 1.308809503e-10 1.156604419e-10 1.334853106e-10 8.43163321e-11 2.076960349e-10 8.875669518e-11 1.98210686e-10 6.938816143e-11 1.854919499e-10 1.953515027e-10 1.972896474e-10 1.161847982e-10 2.530525134e-10 5.280215014e-11 1.388209364e-10 1.27316362e-10 1.171913764e-10 2.550176928e-10 2.362310715e-10 2.017182402e-10 4.415239606e-11 2.157548203e-10 1.594543753e-10 3.392474739e-10 2.114244532e-10 2.80880515e-11 6.595698036e-11 2.128167346e-10 1.451841859e-10 7.396094862e-11 7.128539967e-11 2.032186592e-10 1.370611121e-10 1.827632342e-10 2.221956434e-10 8.447312926e-11 1.966259791e-11 1.861645335e-10 1.129949452e-10 6.224457494e-11 2.338668581e-10 9.333828792e-11 7.271917281e-11 1.052310443e-10 6.420584381e-11 2.393725452e-10 +1.292329997e-10 1.545638481e-10 1.049191887e-10 4.699714805e-11 1.252237007e-10 1.390465522e-11 1.652971038e-10 2.783872243e-11 1.62231563e-10 6.066350428e-11 2.087833338e-10 2.539151975e-10 1.080807151e-10 1.122631125e-10 1.197444445e-10 1.932222544e-10 9.624756482e-11 1.118659926e-10 4.460902581e-11 1.25330708e-10 9.266802869e-11 3.071748334e-11 1.169763279e-10 1.576497655e-10 6.056456198e-11 4.052088609e-11 9.583076764e-11 1.186320183e-10 1.259242551e-10 7.104666784e-11 1.375121156e-10 1.862730222e-10 2.443506511e-11 4.029404205e-11 1.216917716e-10 3.460835816e-11 1.57064325e-10 1.964211519e-10 3.718598728e-10 2.793666376e-11 1.370063161e-10 2.157940946e-10 1.131735518e-10 1.07741794e-10 5.734534004e-11 7.415871822e-11 3.289148769e-10 1.577070422e-10 9.528800833e-11 2.262730262e-10 2.5640685e-10 1.348977326e-10 7.089100301e-11 1.637395225e-10 2.302612309e-10 1.201209821e-10 2.086097449e-10 6.51737878e-11 5.311448767e-11 8.878249094e-11 1.329268047e-10 2.905641217e-11 8.20836339e-11 1.034279589e-10 1.487442274e-10 6.75039477e-11 1.119830231e-10 6.696709729e-11 8.123697482e-11 1.154663875e-10 1.279651015e-10 2.12568733e-10 3.468268917e-11 1.049004566e-10 1.540960071e-10 1.658981761e-10 4.777414965e-11 3.339861277e-11 4.125897164e-11 1.670330261e-10 1.055096062e-10 9.517105391e-11 7.857494217e-11 9.844599148e-11 1.471306668e-10 9.561388471e-11 9.47571961e-11 6.198427018e-11 1.780999596e-10 2.488894929e-10 2.082754963e-10 1.580896827e-10 1.017722243e-10 3.345672589e-10 1.408696586e-10 4.814498677e-11 3.822150809e-10 9.240052582e-11 1.921682234e-10 1.062961135e-10 8.639572712e-11 2.023510888e-10 1.373623083e-10 9.840667569e-11 1.812810199e-10 1.067161505e-10 3.208980145e-10 1.731470348e-10 1.353210455e-10 1.491180863e-10 1.589808113e-10 1.921135002e-10 1.600278143e-10 7.357955175e-11 1.164371564e-10 9.539846996e-11 1.293422973e-10 2.09177777e-10 1.654524731e-10 1.752017689e-10 1.620006928e-10 1.452542765e-10 1.086093373e-10 1.466150602e-10 1.6037245e-10 1.298498526e-10 2.113086132e-10 2.096100412e-10 2.649684293e-10 1.126338771e-10 8.010912426e-11 1.094327708e-10 4.135941712e-11 1.599073845e-10 9.083428163e-11 1.561498643e-10 1.338433018e-10 2.759594307e-10 1.233015933e-10 1.63314496e-10 2.597520659e-14 1.527467106e-10 1.648378923e-10 8.498346297e-11 6.641572292e-11 7.629222655e-11 1.445419542e-10 2.324137423e-10 1.812819211e-10 1.820556565e-10 1.697061961e-10 2.81259459e-10 1.399018396e-10 2.331205805e-10 2.499099447e-10 5.01111037e-11 1.628542609e-10 2.54270513e-10 9.710554649e-11 1.768970679e-10 1.283460623e-10 2.352166658e-10 7.263667902e-11 1.258688686e-10 2.172046114e-10 1.754704081e-10 1.207717647e-10 2.108649822e-10 7.725621743e-11 1.251773352e-10 1.115998514e-10 7.829808053e-11 2.018992499e-10 2.621081305e-10 8.679156328e-11 1.268540776e-10 2.063093305e-10 1.617686548e-10 3.07959745e-10 1.726103373e-10 1.746819928e-10 2.12526213e-10 3.331698148e-10 2.53750861e-10 2.346666928e-10 1.425469079e-10 3.255170386e-10 1.028533368e-10 1.738270693e-10 1.439326711e-10 2.174564368e-10 2.343766514e-10 1.922841916e-10 1.846767151e-10 1.233650239e-10 2.269637222e-10 1.611133301e-10 1.643414192e-10 1.463704046e-10 5.889523155e-11 1.428608406e-10 1.511032688e-10 8.432134094e-11 2.3048e-10 7.468848832e-11 1.289145091e-10 1.047284557e-10 2.276119339e-10 2.440919945e-10 2.480156066e-10 1.29329485e-10 6.73383873e-11 2.663725846e-10 1.048177687e-10 2.036094132e-10 1.270461426e-10 1.193695343e-10 2.285546162e-11 1.378808469e-10 3.438001795e-11 1.004941752e-10 3.634975981e-11 1.155243096e-10 1.393917719e-10 1.377013224e-10 9.402297631e-11 6.52733773e-11 9.666810176e-11 1.645141781e-10 2.67375227e-10 1.075083036e-10 1.320407495e-10 3.06355983e-11 1.166594881e-10 3.962404543e-11 3.434800532e-11 9.786876615e-11 1.117874471e-10 1.490135866e-10 1.648897535e-10 7.870299081e-11 1.420963167e-10 2.428657637e-10 8.373387296e-11 7.262096293e-11 1.088031584e-10 8.583532866e-11 5.110470771e-11 5.753800736e-11 2.478955544e-10 1.142909452e-10 1.563799051e-10 2.829860629e-10 8.997468006e-11 7.625100817e-11 3.816229568e-11 2.125495106e-10 1.989430401e-10 1.250631708e-10 7.323848829e-11 7.189958444e-11 3.61459377e-11 1.831731776e-10 1.621483424e-10 6.260864465e-11 2.153427854e-10 3.280676779e-10 1.589199292e-10 5.430131344e-11 4.388455362e-11 1.095521965e-10 1.164264802e-10 4.169588049e-11 2.528892233e-10 1.301183001e-10 1.336055654e-10 1.204526347e-10 8.603804109e-11 1.16570394e-10 9.342016114e-11 1.016756327e-10 2.004013503e-10 1.155914227e-10 1.170977739e-10 5.979718542e-11 9.940530248e-11 5.498241401e-11 2.279326782e-10 6.959435955e-11 1.607927106e-10 1.137913788e-10 6.274040821e-11 1.945399224e-10 1.109560577e-10 1.45569816e-10 1.250020895e-10 9.48640474e-11 6.239135957e-11 1.662723707e-10 1.731994201e-10 +7.214779647e-11 7.056769527e-11 2.064408243e-10 1.733966705e-10 1.016438403e-10 4.724003998e-11 1.421254524e-10 1.250277429e-10 1.028213703e-10 8.174872706e-11 1.359735494e-10 1.09130675e-10 1.509959333e-10 2.717716553e-10 2.271515173e-10 3.046294337e-11 1.176508218e-10 1.498487877e-10 1.850602704e-10 7.77953045e-11 2.192385225e-10 2.522234248e-10 9.305652161e-11 1.084076748e-10 7.713602634e-11 7.658939877e-11 3.961476279e-11 9.141347565e-11 3.576759875e-11 2.015282849e-10 1.401384199e-10 3.214363324e-10 4.260411423e-11 4.962784146e-11 5.811738344e-11 1.481542512e-10 3.89319978e-11 2.388703296e-10 1.398613983e-10 5.66488962e-11 4.225951691e-11 2.871743351e-11 8.937297845e-11 3.459730677e-11 8.261491763e-11 6.949834964e-11 3.630936708e-11 1.020115594e-10 4.062428192e-11 2.155766091e-10 1.711503456e-11 2.398496534e-10 2.086652874e-10 1.356276896e-10 4.516423634e-11 3.42818031e-11 1.688698057e-10 2.120497707e-10 8.832437132e-11 6.611309081e-11 1.044344632e-10 1.062164261e-10 7.858559598e-11 1.092020659e-10 6.538759986e-11 1.908997874e-10 8.2146982e-11 9.41298374e-11 1.708022959e-10 4.940907275e-11 2.078202818e-10 1.887486393e-10 1.053064316e-10 8.521957156e-11 1.23816468e-10 1.817182806e-11 1.520954339e-10 1.205373768e-10 1.542588005e-10 3.656320057e-11 1.600612743e-10 6.012609658e-11 1.21801615e-10 1.599602553e-10 1.713574506e-10 1.025963807e-10 1.408743801e-10 1.361872079e-10 3.135294785e-11 8.740794676e-11 4.625667274e-11 1.984050511e-10 1.014437203e-10 1.119532063e-10 4.87847303e-11 2.544678998e-10 1.787207615e-10 6.591632164e-11 7.194967025e-11 5.206610515e-11 1.413772796e-10 2.237514525e-10 1.923265892e-10 5.608481327e-11 1.601855476e-10 1.828710392e-10 2.622497105e-10 1.079517692e-10 1.364933593e-10 1.242871028e-10 1.901356817e-10 8.279203678e-11 1.175507558e-10 1.459444416e-10 1.274140901e-10 1.793512972e-10 8.848512746e-11 1.511759308e-10 7.846276135e-11 1.496900877e-10 2.842039286e-10 1.229623267e-10 1.246463256e-10 1.31974798e-10 1.439607715e-10 2.416703632e-10 2.116742402e-10 5.763932514e-11 2.588675691e-10 1.260712119e-10 1.238489388e-10 1.969356825e-10 1.294604642e-10 2.355293994e-10 1.129895565e-10 2.787159812e-10 2.759606105e-11 1.224978013e-10 2.654546165e-10 8.64757361e-11 1.517385307e-10 3.71102591e-11 3.123580233e-10 2.156779226e-10 1.705895411e-10 2.491699725e-10 1.421793246e-10 2.442910891e-10 1.050031864e-10 2.401359128e-10 2.023961222e-10 5.808561677e-11 5.36809807e-11 5.604013061e-11 1.838195097e-10 9.021685488e-11 2.196509197e-10 1.172125057e-10 1.052453864e-10 2.613085334e-10 1.012240827e-10 2.108483642e-10 2.17867931e-10 2.274829739e-10 2.033211225e-10 9.87983382e-11 2.05424799e-10 2.461417109e-10 1.617497253e-10 1.822347205e-10 1.805456936e-10 1.757309748e-10 1.573111837e-10 1.598433805e-10 1.181670455e-10 1.075875813e-10 9.231952428e-11 5.822028731e-11 1.232956399e-10 1.729983425e-10 7.619041074e-11 1.245242823e-10 7.801981571e-11 1.812252518e-10 1.521029792e-10 1.26759701e-10 1.801134081e-10 1.888895979e-10 1.346342881e-10 1.183670046e-10 3.853856382e-10 1.047774568e-10 1.256810431e-10 1.130677193e-10 1.326592942e-10 1.675609017e-10 2.559748283e-10 3.020690386e-10 2.620774602e-10 1.022675452e-10 1.034422383e-10 1.600028729e-10 9.570395286e-11 2.549778662e-10 1.567004409e-10 1.419953391e-10 2.924253809e-10 6.57665075e-11 1.754885958e-10 7.289050544e-11 1.525793391e-10 3.095520923e-10 3.000878206e-11 4.69156073e-11 1.662886614e-10 1.498185524e-10 9.615219779e-11 4.370521362e-11 1.03115722e-10 1.888546752e-10 1.442894282e-10 1.639776612e-10 9.913840529e-11 7.521966352e-11 1.100562037e-10 1.242424893e-10 1.658156696e-10 6.846269724e-11 2.117754354e-10 7.859049107e-11 1.982756287e-10 1.402546366e-10 8.750393557e-11 9.602320915e-11 8.439635775e-11 1.904975838e-10 3.866656911e-11 1.509940437e-10 1.03579956e-10 6.482709754e-11 1.186702002e-10 5.068601538e-11 7.348785917e-11 8.269349955e-11 1.343077518e-10 2.463745617e-10 1.827314563e-10 9.389499194e-11 5.234485727e-11 6.678225764e-11 2.422887639e-10 1.053519586e-10 1.300045562e-10 3.31079589e-11 3.980151918e-13 3.909779443e-11 1.792179975e-10 2.601794732e-10 9.439864768e-11 1.562954738e-10 1.372866718e-10 8.710316015e-11 7.48124387e-11 1.052880977e-10 5.840612773e-11 1.260799001e-10 1.544207584e-10 1.845883769e-10 2.274889956e-10 6.590505618e-11 1.448851716e-10 4.535102221e-11 4.454906029e-11 1.369961082e-10 1.200265416e-10 9.498244265e-11 1.157915453e-10 6.603772864e-11 2.368060097e-10 3.061650256e-10 3.54153679e-11 1.283317181e-10 6.177309004e-11 1.701071226e-10 3.252436476e-11 1.349418144e-10 5.626882895e-11 3.996695359e-12 1.825597687e-10 9.557405085e-11 1.122644171e-10 3.402158378e-11 2.576279532e-10 5.077274392e-11 5.512687663e-11 1.170938898e-10 1.134247651e-10 6.212532147e-11 2.588548981e-11 1.852355398e-10 +3.417309821e-11 8.084742217e-11 5.102619784e-11 4.843415191e-11 2.486246682e-10 1.326198577e-10 4.299914295e-11 1.800464684e-11 6.769418264e-11 2.856155644e-10 2.438719445e-10 9.841101036e-11 1.111347717e-10 8.915845988e-11 9.553157676e-11 2.377814299e-10 5.873183449e-11 5.12421429e-11 3.395206981e-10 7.150345224e-11 3.065602848e-10 8.88720718e-11 6.160788274e-11 3.981025215e-11 6.04926788e-11 7.275287806e-11 2.456156417e-10 7.729527614e-11 6.037272122e-11 2.474235429e-10 6.722424921e-11 2.626182299e-11 1.578910889e-10 2.195331946e-10 7.402541001e-11 8.024934846e-11 5.928172615e-11 7.908443768e-11 2.008879993e-10 1.456212915e-10 2.412388521e-10 1.307057047e-10 6.031858585e-11 9.342955968e-11 2.711101531e-11 1.106438033e-10 1.599074294e-10 2.466422169e-10 9.013758298e-11 1.418885995e-10 1.10554661e-10 7.307050946e-11 1.159190312e-10 7.29824786e-11 3.825985258e-11 1.837569846e-10 1.064813194e-10 4.298745325e-11 1.122490458e-10 1.854388865e-10 5.350150788e-11 5.658040197e-11 2.43932988e-10 8.814855483e-11 8.023720018e-11 2.030568289e-11 1.36659341e-10 2.175431142e-10 1.054149386e-10 8.364186909e-11 2.582289598e-10 2.148137388e-10 1.675758515e-10 8.103898221e-11 6.313787112e-11 1.899520845e-10 1.200297131e-10 1.067159741e-11 1.766216672e-10 1.651687604e-10 8.039613492e-11 5.575670759e-11 8.408777872e-11 1.325310083e-10 5.551648547e-11 1.28281656e-10 9.390108413e-11 2.860851348e-15 1.007607212e-10 1.521668895e-10 1.48986342e-10 1.618965082e-10 1.343904339e-10 2.169412333e-10 1.963504697e-10 2.695390727e-10 1.813750979e-10 7.980132266e-11 1.496046798e-10 1.889130374e-10 9.797465052e-11 1.724585698e-10 1.873147393e-10 1.120483061e-10 6.873071567e-11 1.382920949e-10 9.707750897e-11 2.088497779e-10 1.645612113e-10 2.793418703e-11 2.545514485e-10 2.987645251e-10 2.198244057e-10 9.720110266e-11 1.292395832e-10 1.868615829e-10 8.033468057e-11 1.178390672e-10 2.089410602e-10 9.287804106e-11 2.568837354e-10 7.722253514e-11 2.477049602e-10 6.841711448e-11 1.571957099e-10 1.995400205e-10 2.040632789e-10 1.795888136e-10 4.213871212e-11 1.183738959e-10 1.021071822e-10 1.569525761e-10 7.521798447e-11 2.002052366e-10 1.671644179e-10 7.823083882e-11 2.555297457e-10 3.200096555e-10 3.129608626e-10 1.119556769e-10 3.656916817e-11 2.104055752e-10 1.894765942e-10 1.624492419e-10 1.816991019e-10 4.780252433e-11 1.315900467e-10 2.451481333e-10 1.676965045e-10 9.309470695e-11 1.111241349e-10 1.41075265e-10 1.55034303e-10 2.265244803e-10 1.479548467e-10 1.544106033e-10 2.654524191e-10 9.061688744e-11 1.003796895e-10 1.899402171e-10 2.245677194e-10 1.239070498e-10 1.287098028e-10 1.3799043e-10 2.856126131e-10 1.486210973e-10 8.124812216e-11 2.414137242e-10 1.050422175e-10 1.96677928e-10 8.158712172e-11 2.051254937e-10 2.736354221e-10 1.42702251e-10 7.975627297e-11 5.535430407e-11 1.505562174e-10 1.19115993e-10 1.681041594e-10 2.181294649e-10 1.196009623e-10 2.744419069e-10 1.940490223e-10 1.047075771e-10 1.532019105e-10 9.88239859e-11 2.097959429e-10 1.525017769e-10 8.230471144e-11 1.83216319e-10 2.297623675e-10 2.01903643e-10 2.147928957e-10 1.24317033e-10 9.487169535e-11 1.748446943e-10 4.685320419e-11 1.24851831e-10 1.746044191e-10 1.823412441e-10 1.380794296e-10 1.267295246e-10 9.02386339e-11 1.406384436e-10 1.821701868e-10 2.137344276e-10 3.682114248e-11 1.370360831e-10 1.060168607e-10 2.524677487e-11 1.470135127e-10 2.171948081e-10 6.343206527e-11 2.171759675e-10 5.521673721e-11 2.068134392e-10 1.450080761e-10 1.139865581e-10 1.169721604e-10 8.21927101e-11 9.282936542e-11 1.129975703e-10 1.275989323e-10 3.470386441e-11 1.399438553e-10 3.161234075e-11 1.121200097e-10 6.87924633e-11 1.932820543e-10 1.444671913e-11 8.106482863e-11 1.827311239e-10 9.318897755e-12 1.206411784e-10 2.068726611e-10 1.610102184e-10 1.41799082e-10 9.544499305e-11 7.277317824e-11 1.16673781e-10 4.607974145e-11 8.496983073e-11 4.525519021e-11 4.38831747e-11 1.504534022e-10 2.497954983e-10 1.236458572e-10 1.014540659e-10 1.260737582e-10 1.363596505e-10 1.583194342e-10 3.914746389e-11 5.876057536e-11 1.569604171e-10 4.130125998e-10 1.5237303e-10 1.866698175e-11 9.038111841e-11 6.566699051e-11 9.800810869e-11 8.216910563e-11 1.765305419e-10 1.004150515e-10 2.112473284e-10 5.233674363e-11 1.248436592e-10 8.557394706e-11 1.814029601e-10 8.622086908e-11 2.707156213e-10 8.944323268e-11 8.285163651e-11 1.029907512e-10 3.497328978e-11 5.707446386e-11 8.498078822e-11 9.478464901e-11 9.862791426e-11 1.916076196e-10 1.635261264e-10 1.581243487e-10 2.612798912e-11 2.832474917e-10 3.898361626e-10 7.790969047e-11 5.714965041e-11 9.097539341e-11 1.657282039e-10 4.549375281e-11 1.530553718e-10 1.473532944e-10 1.639505039e-10 1.689013666e-10 1.178689254e-10 1.240364383e-10 1.143068176e-10 8.569431122e-11 2.212085545e-11 6.009253544e-11 1.12488666e-10 +2.679086125e-11 3.810386028e-11 1.386329604e-10 1.16367601e-10 9.78697747e-11 8.845931354e-11 7.447077538e-11 6.887816295e-11 4.732958831e-11 1.995338046e-10 1.611921071e-10 1.331159493e-10 1.884867529e-10 1.522582301e-10 1.361092825e-10 9.178325549e-12 1.849313149e-10 8.390043502e-11 6.755694712e-11 8.863138869e-11 7.175926684e-11 3.312688896e-11 4.048472742e-11 3.304681731e-10 1.023175747e-10 1.001601379e-10 5.1474007e-11 1.194974972e-10 1.763424393e-10 7.936061232e-11 2.083235439e-10 4.419897965e-11 1.649467728e-10 1.576734652e-10 6.955099582e-11 1.322301444e-10 5.852988357e-11 9.451833841e-11 1.162610416e-10 1.307057141e-10 8.188397007e-11 2.960239206e-11 5.216437834e-11 1.928675787e-10 4.996123017e-11 9.294278885e-11 2.096179353e-10 1.2864787e-10 9.875924391e-12 2.358916094e-10 1.869005244e-10 4.068102771e-11 5.750142062e-11 9.800502357e-11 1.557029292e-10 1.257517144e-10 5.877346017e-11 2.101995992e-10 6.433291638e-11 1.307027116e-10 8.383804927e-11 2.327929964e-10 1.654538399e-10 1.047475908e-10 2.99908615e-10 1.343802498e-10 1.395066238e-10 2.566110861e-11 8.810749878e-11 2.126698648e-11 1.039313118e-10 1.077376755e-10 1.130423234e-10 1.148832613e-10 2.060852775e-11 7.028961791e-11 1.182534149e-12 7.685407328e-11 2.81586417e-10 1.074572269e-10 1.166679204e-10 1.371470579e-10 1.967253737e-10 1.13198384e-10 1.18646209e-10 2.555158571e-11 5.28148553e-11 4.012177669e-11 4.661549516e-11 1.578506975e-10 1.498427382e-10 2.74716547e-10 1.919852284e-10 1.05706653e-10 2.65598008e-11 7.349213498e-11 9.552623662e-11 7.825779339e-11 1.130282529e-10 2.024480981e-10 1.339547055e-10 1.245668231e-10 1.271861886e-10 1.118512325e-10 2.100599508e-10 1.817839782e-10 3.296794231e-11 4.677682085e-11 2.570827535e-10 1.849355384e-10 2.679048999e-10 9.220045171e-11 1.473345472e-10 1.492732385e-10 2.18697915e-10 2.269068421e-10 1.124046098e-10 1.282365172e-10 1.386511773e-10 1.181434077e-10 2.26670204e-10 9.132137037e-11 3.912227747e-10 9.300658633e-11 1.78764991e-10 2.157084329e-10 1.576454557e-10 1.430745411e-10 1.594414826e-10 1.448921513e-10 1.024797044e-10 2.415372643e-10 1.319630584e-10 1.585618595e-10 9.205297261e-11 2.83300828e-10 1.757060244e-10 6.379315438e-11 1.505469781e-10 2.279497874e-11 1.588999893e-10 1.836704903e-10 2.374542346e-10 1.394073494e-10 1.235513936e-10 3.662580529e-11 1.556935297e-10 1.32904505e-10 9.948519156e-11 1.651606199e-10 9.017752266e-13 8.607714103e-11 6.572781352e-11 1.905785265e-10 2.212116406e-10 1.166758366e-10 1.342792328e-10 1.633512867e-16 1.983069096e-10 1.200349435e-10 1.600370865e-10 1.781622558e-10 1.488119817e-10 2.821101246e-10 3.942545045e-23 2.725198497e-10 2.106001726e-10 1.628310067e-10 1.354262092e-10 1.76853306e-10 1.56801695e-10 2.556289307e-10 1.122910482e-10 2.659376555e-10 9.569306854e-11 7.421239066e-11 2.393268838e-10 3.513361169e-11 5.045666879e-11 6.958374183e-11 4.054668302e-10 1.553794463e-10 2.472552436e-11 6.104162444e-11 3.784631965e-10 2.204011909e-10 6.981714019e-11 1.038423961e-10 1.295622345e-10 3.020490302e-10 1.844215379e-10 3.645259393e-10 1.416846551e-10 1.643371091e-10 1.886977903e-10 2.028349792e-10 1.349807395e-10 1.224463829e-10 8.619194469e-11 1.35639823e-10 1.542792391e-10 1.412362135e-10 7.530064714e-11 3.35421816e-10 7.259563216e-11 2.189548943e-10 1.57236538e-10 1.76622567e-10 1.016325448e-10 1.243462666e-10 1.376974836e-10 1.499468561e-10 1.833178224e-10 5.079891662e-11 1.435430779e-10 2.699734096e-11 6.067736896e-11 4.840781044e-11 5.794142786e-11 5.296028669e-11 5.33791437e-11 2.131558691e-10 2.557551158e-10 9.851001215e-11 1.359316433e-10 4.704463328e-11 6.29831089e-12 2.886442017e-11 1.450325617e-10 1.847565859e-10 7.73123601e-11 4.585141882e-11 2.093728582e-10 1.541756002e-10 1.761412908e-10 5.889675103e-11 1.346634905e-10 6.92171356e-11 6.794835995e-11 1.14802072e-10 9.713106237e-11 7.749765875e-11 1.784071675e-10 1.6027161e-10 9.843115373e-11 2.594638086e-10 1.756272139e-11 2.466620487e-10 1.194684771e-10 7.412264992e-11 1.338353329e-10 2.851142155e-10 1.209790877e-10 7.144788796e-11 1.46080971e-10 6.355351894e-11 6.857109496e-11 1.528440585e-10 1.106005489e-10 7.568415558e-11 1.2173777e-10 2.23364153e-10 4.734976569e-11 1.905252209e-10 6.96057977e-11 1.798965176e-10 1.175287972e-10 4.552595868e-11 1.083462054e-10 4.325031332e-11 7.910136761e-11 1.751191368e-10 1.355052791e-10 8.280385894e-11 4.989031933e-11 1.407141949e-10 7.56587786e-11 9.878002351e-12 9.120748597e-11 1.381595697e-10 5.508192003e-11 2.578788469e-10 1.452080398e-10 6.452078158e-11 1.054869627e-10 1.959709882e-10 2.047398568e-10 2.170329647e-10 1.246546414e-10 1.086342411e-10 7.383996479e-11 1.310032772e-10 1.418735695e-10 2.722644595e-11 6.672797142e-11 4.685345715e-11 6.159062827e-12 1.607945385e-10 6.388437569e-11 9.673417805e-11 +1.054831006e-10 1.723671101e-10 1.081170498e-10 1.585713739e-11 7.572513987e-11 5.18757834e-11 5.721443361e-11 7.78505247e-11 3.713657936e-11 4.166143956e-11 1.520132509e-10 6.295108507e-11 2.456674649e-11 4.341212516e-11 1.829707728e-10 5.151055456e-11 1.037281983e-10 2.074754196e-11 2.94096612e-10 6.584157865e-11 1.943291947e-10 4.013200679e-11 8.865882527e-11 1.282176099e-10 1.50397348e-10 9.433668625e-11 9.810409166e-11 1.269324142e-10 1.434364043e-11 8.999632847e-11 3.641540194e-11 7.188781805e-11 6.232366669e-11 1.584134288e-10 2.605915338e-10 1.949173102e-10 9.725155175e-11 8.516874774e-11 1.557571456e-10 1.627865775e-10 1.418642072e-10 6.085032835e-11 1.031017908e-10 9.473775515e-11 9.702920883e-11 4.447380395e-11 1.876796596e-10 1.118215654e-10 4.054201701e-10 4.459173308e-11 1.048246084e-10 5.40958396e-11 5.489204356e-11 1.069026477e-10 6.967842388e-11 2.393512172e-10 5.349910321e-11 2.84016171e-10 4.205783275e-11 8.237873269e-11 3.413468861e-11 1.102611465e-10 8.712470101e-21 1.318019475e-10 5.046236769e-11 8.897785842e-11 5.386961554e-11 1.353511929e-10 2.632458675e-11 5.048939695e-11 1.660915551e-10 6.168300878e-11 1.287754011e-11 2.779099408e-11 2.316792429e-10 1.407453303e-10 9.968193875e-11 3.023520109e-11 1.468748359e-10 1.64444711e-10 6.222852699e-11 3.790440304e-11 1.311338501e-10 7.74268104e-11 1.191777043e-10 1.178139849e-10 1.2806683e-10 8.865623438e-11 1.166862719e-10 8.645495387e-11 5.24767691e-11 1.384371814e-10 5.565619842e-11 9.207467275e-11 1.165728288e-10 2.207550224e-10 1.268263903e-10 6.440386991e-11 7.3107372e-11 3.084738565e-10 9.643940904e-11 9.421785502e-11 2.160560331e-10 4.005320932e-10 2.125292981e-10 1.699407293e-10 1.034069654e-10 6.980440431e-11 9.316207762e-11 2.427709453e-10 1.468659449e-10 7.47677308e-11 2.29180947e-10 1.108824853e-10 1.541972387e-10 1.891930306e-10 1.737866195e-10 5.256130862e-11 2.146276111e-10 2.611658317e-10 3.64062723e-13 1.026308773e-10 1.004039894e-10 1.013469358e-10 1.702859302e-10 1.156774069e-10 3.280547019e-10 2.074961658e-10 1.884289921e-10 6.944134468e-11 1.421849487e-10 1.219441579e-10 1.589343074e-10 2.031709142e-10 9.778937397e-11 7.476111517e-11 1.960358993e-10 7.280535052e-11 3.550526806e-10 1.07394583e-10 1.024080746e-10 1.971898357e-16 1.099939216e-10 1.718987744e-10 1.232203905e-10 1.648473296e-10 2.095915567e-10 7.288691017e-11 1.852730879e-10 1.0103825e-10 8.16871583e-11 1.162159034e-10 6.851806801e-11 1.335558162e-10 7.600723806e-11 7.862602572e-11 7.639630153e-11 8.103702819e-11 2.40399506e-10 2.616000772e-10 1.035244325e-10 1.16558638e-10 2.35957527e-10 2.03330129e-10 6.551230651e-11 1.050542709e-10 9.970810769e-11 1.56979078e-10 1.872510908e-10 2.605563353e-10 7.926595033e-11 0 1.526368547e-10 1.638506306e-10 2.519610471e-10 1.531533006e-10 1.59272631e-10 1.64425178e-10 1.534533906e-10 1.455390778e-10 8.719136154e-11 3.117706026e-10 2.037950356e-10 2.965017837e-10 1.611005133e-10 2.468815786e-10 4.05898416e-10 1.417766827e-10 1.582136764e-10 5.284482591e-11 1.06394958e-10 2.18649489e-10 1.735906897e-10 1.133679489e-10 1.440555325e-10 1.435800966e-10 1.162194468e-10 6.215252772e-11 1.349121868e-10 5.480303032e-11 8.07628342e-11 1.219870661e-10 3.761911875e-11 8.470991219e-11 2.471934713e-10 5.661361469e-11 2.187027571e-10 1.332185027e-10 7.458749e-11 1.270700098e-10 1.520636433e-11 8.945893012e-11 7.39140091e-11 6.076554014e-11 8.368463634e-11 1.505410324e-10 1.858741705e-10 4.394285928e-11 2.219900549e-10 8.450899092e-11 5.25409288e-11 5.771775304e-11 8.554234427e-14 1.22827853e-11 8.035773569e-11 1.591277616e-10 6.359496021e-12 8.752772875e-12 1.683693468e-10 5.050398196e-11 5.648642498e-11 1.02326252e-10 6.014434314e-11 9.952406221e-11 1.078389128e-10 3.473498471e-11 6.325370914e-11 1.22793359e-10 1.265212686e-10 4.629303176e-11 1.024767e-10 2.008358385e-11 1.016553602e-10 1.816689108e-10 9.337214579e-11 6.255625661e-11 1.156718505e-10 2.531282873e-10 5.01113216e-11 2.544083125e-10 1.768796579e-10 4.392633827e-11 1.257762377e-10 5.949231365e-11 1.210914629e-10 1.893340168e-10 1.132345111e-10 7.426231793e-11 7.158577347e-11 7.144559171e-11 7.213129427e-11 1.049167545e-10 7.6332544e-11 1.925337203e-10 6.999989304e-11 6.381781855e-11 1.986601299e-11 3.608816019e-11 7.178585134e-11 9.306991724e-11 1.119662485e-10 7.16338145e-11 1.681030499e-10 2.407395966e-10 2.843654321e-11 1.192040989e-11 1.518773542e-10 6.32795269e-11 1.698752212e-10 1.725346622e-11 4.634469912e-11 7.319775676e-11 1.054449662e-10 1.309370741e-10 8.982725343e-11 2.846968229e-10 1.393424291e-10 1.880484923e-10 1.71778909e-10 6.504837421e-11 5.397155555e-11 3.345640304e-11 2.948709728e-11 1.431301912e-10 7.52529863e-11 7.318983201e-11 1.735621503e-10 7.327619457e-11 1.879963751e-11 2.605404054e-11 +6.261687318e-11 1.226275747e-10 3.029787681e-11 1.071697871e-10 4.735267416e-12 1.551358762e-10 6.458539584e-11 6.931000422e-11 1.301072114e-10 1.873077207e-11 4.903950807e-11 2.44964387e-11 6.315105304e-11 3.182995137e-11 8.718828321e-11 1.163806306e-10 9.908126794e-11 7.66704085e-11 1.215483104e-10 1.066970596e-10 1.207355448e-10 1.866840249e-11 6.639706001e-11 1.295611381e-10 3.744235746e-10 6.094316383e-11 4.506940556e-11 4.514511067e-11 1.663172176e-10 1.070747142e-10 3.000994193e-10 1.412379594e-11 5.262436202e-11 9.772183295e-11 1.413877212e-10 6.238045412e-11 5.151261299e-11 8.418081691e-11 4.287559804e-11 8.20401131e-11 2.894859805e-11 1.397296533e-11 1.92058639e-10 1.0068421e-10 6.859320354e-11 9.182597972e-11 1.534739607e-10 2.45174461e-11 9.674710493e-11 5.056935135e-11 2.872777421e-10 3.420914541e-11 8.201942177e-11 2.155250014e-10 1.541450445e-10 2.34725701e-10 5.826452893e-11 2.163868257e-10 1.71251723e-10 1.164048784e-11 5.509809979e-11 5.072069118e-11 3.123802495e-10 6.449045981e-11 5.404423635e-11 1.595643599e-10 2.765165256e-11 8.443424973e-11 1.017043555e-10 2.413614549e-11 1.33477745e-10 1.694574113e-10 4.565602577e-11 8.343505391e-11 1.676604185e-10 4.252846796e-11 5.399809195e-11 3.593489068e-11 1.570830927e-10 4.227342029e-11 2.468403115e-11 6.621367422e-11 4.095382445e-11 7.924841442e-11 4.946139244e-11 3.318239875e-10 6.741179903e-11 1.491675623e-10 6.923470549e-11 4.370495807e-11 1.095583457e-12 8.970811278e-11 1.707960063e-10 7.845720468e-11 1.305826282e-10 1.238162728e-10 1.01435626e-11 1.52662993e-10 1.119815689e-10 1.845117962e-10 2.954886813e-11 7.626079086e-11 6.114665729e-11 1.292603711e-10 7.859001054e-11 6.296474044e-11 1.774781303e-10 1.561305602e-10 1.345885684e-10 1.649826584e-10 1.990648431e-10 1.094939956e-10 1.888263038e-10 1.183190159e-10 1.33561202e-10 2.84231688e-10 2.300973683e-10 2.073685824e-10 1.093489976e-10 1.057577802e-10 1.559768221e-10 2.152924907e-10 1.557655323e-10 1.118294754e-10 1.659041457e-10 1.694708252e-10 1.227548817e-10 2.020812142e-10 1.795264014e-10 1.406580176e-11 2.8431094e-10 1.452438161e-10 2.684760743e-10 1.545738035e-10 8.960618472e-11 1.314512775e-10 8.805371917e-11 2.440181306e-10 1.567923202e-10 1.307079777e-10 3.44940042e-10 1.507437209e-10 1.977557072e-10 1.428438372e-10 1.497938752e-10 2.688896047e-10 1.486001353e-10 3.635818451e-10 8.514844034e-11 2.14519553e-10 1.64350657e-10 2.230207258e-10 2.24338862e-10 1.558248989e-10 1.840002988e-10 2.570726832e-10 2.186580368e-10 2.010449601e-10 1.667092202e-10 1.857033216e-10 1.40560065e-10 2.764661443e-10 1.480529481e-10 1.387908158e-10 2.796233903e-10 6.528762685e-11 6.256523623e-11 7.86120171e-11 2.684329631e-10 1.887462111e-10 1.163609295e-10 9.060803678e-11 2.25140901e-10 5.241684221e-11 1.569031824e-10 6.71019206e-11 2.357424147e-10 7.254657134e-11 9.652420756e-11 1.614804655e-10 2.395397774e-10 9.254572779e-11 2.607183222e-10 3.145042714e-10 1.790312877e-10 9.187981418e-11 1.698444989e-10 1.31798998e-10 2.849637559e-10 2.886116714e-11 5.177255231e-11 1.327288163e-10 1.051778998e-10 1.06495073e-10 2.74739375e-11 9.91637071e-11 1.146238179e-10 1.876758398e-10 3.662003317e-11 8.296524467e-11 5.474507673e-11 9.284302023e-11 2.30461541e-10 7.623741853e-11 1.772617017e-10 8.999399417e-11 3.157982726e-11 4.555430808e-11 5.924436961e-12 3.437328378e-11 9.628412312e-11 1.331854035e-10 5.855553385e-11 1.108500954e-10 2.99734406e-10 9.456075968e-11 7.593769041e-11 1.321493073e-10 6.231811424e-11 1.248330699e-10 7.024911154e-11 1.148447954e-10 1.649361486e-10 2.109920599e-11 4.907737557e-11 7.294590651e-12 8.144602104e-11 4.691712909e-11 2.375845403e-10 5.943665846e-11 6.563040384e-11 1.014155858e-10 1.073109295e-10 5.806093124e-11 1.327829928e-10 4.102336396e-11 1.082378487e-16 9.681167621e-11 8.68254554e-11 2.446333337e-10 2.212704735e-10 1.547777349e-10 6.120546605e-11 5.017973707e-11 7.88825551e-11 2.964137994e-10 9.375720233e-11 1.038773126e-10 7.906222297e-11 1.087483679e-10 8.399938104e-11 9.164100068e-11 1.550824353e-10 1.528013879e-10 1.225790773e-11 1.77234485e-10 7.257330295e-11 9.159333665e-11 7.352088898e-11 4.538494835e-11 8.338676147e-11 1.011527137e-10 8.010358444e-11 3.020338646e-10 6.514459159e-11 8.148382905e-11 4.877137567e-11 4.842049877e-11 2.036113928e-10 5.429943189e-11 5.20646111e-11 1.420356881e-10 1.873147944e-11 8.887882408e-11 6.731869564e-11 3.926022074e-11 8.612664915e-11 1.818462504e-10 4.584647662e-11 7.791040072e-11 5.292097993e-11 1.488371224e-10 1.157534219e-10 3.741238907e-11 9.80652995e-11 7.130796056e-11 2.281235811e-11 2.72914804e-10 1.033429864e-10 2.8207808e-10 7.912043053e-11 1.420168379e-10 1.506895291e-10 9.328100621e-11 1.175514175e-10 9.325248274e-11 3.524206774e-11 9.462649098e-11 1.061038808e-10 1.143037811e-10 +1.52006012e-10 1.414170433e-10 1.20489514e-10 2.117535991e-10 2.080682967e-11 3.281728859e-11 8.06253217e-11 2.041030073e-10 7.691201523e-11 1.416541611e-10 1.437745672e-10 2.991368136e-10 6.509466307e-11 7.195263181e-11 1.31701008e-10 4.154961885e-11 1.213114359e-10 4.130369973e-11 8.716204992e-11 9.024214212e-11 1.225131611e-10 6.627786218e-11 2.679552505e-11 2.263683222e-10 3.266997226e-11 2.506894288e-10 6.194871344e-11 9.567407078e-11 1.871658431e-10 5.206649626e-11 4.313238065e-11 4.563558038e-11 1.074519594e-11 7.800673993e-11 6.380866294e-11 2.554841676e-11 8.612183578e-11 2.441042628e-10 6.497484877e-11 1.631564201e-10 7.303373583e-11 4.910599261e-11 1.40778165e-10 1.021053532e-10 7.543805703e-11 2.14494205e-10 7.914852216e-11 1.495446825e-10 2.98682773e-11 1.159713091e-10 2.481046635e-10 8.96664901e-11 1.351988268e-11 7.821775181e-11 1.111705308e-10 8.086822424e-13 3.139498009e-10 1.046532222e-10 1.076711225e-10 3.106137727e-11 3.382515118e-10 1.312431786e-10 1.04008521e-10 1.729528589e-10 5.380245595e-11 5.860561435e-11 4.718136847e-11 1.085210945e-10 5.313519399e-11 1.31002591e-10 3.178747023e-11 8.675040319e-11 5.527660562e-11 7.888754091e-11 8.510702277e-12 1.841108072e-10 1.370448567e-11 6.251452787e-30 8.96087223e-11 1.379909644e-10 1.350798583e-10 9.063524857e-11 6.808582048e-11 5.892217543e-11 1.144203142e-10 1.430649201e-10 1.703028403e-11 6.399074553e-11 3.008429908e-10 1.247710642e-10 8.988255815e-11 6.990581712e-11 2.622034085e-11 2.029921347e-10 1.932012244e-10 3.663017551e-11 1.422611562e-10 6.595132168e-11 1.521167137e-10 7.735554017e-11 9.600635727e-11 1.63437887e-10 1.104409272e-10 1.195731917e-10 5.415536794e-11 9.941245823e-11 2.224210132e-10 2.312228169e-10 1.46659147e-10 8.049589362e-11 2.483347422e-10 7.365641793e-11 1.930262714e-10 1.787046717e-10 1.202023813e-10 1.6980859e-10 2.131786489e-10 2.455307469e-10 6.150578887e-11 2.032351224e-10 6.779782261e-11 8.884580438e-11 1.191546217e-10 1.146886443e-10 1.953602852e-10 1.77174412e-10 1.043914748e-10 1.361285798e-10 1.063206073e-10 3.627093155e-10 7.528771419e-11 6.064289775e-11 1.690690416e-10 7.901810562e-11 7.427299949e-11 1.298922712e-10 1.101829546e-10 1.191031138e-10 1.512183763e-10 1.785348171e-10 3.238647851e-11 5.872323624e-11 1.411133028e-10 1.985395762e-10 1.581103954e-10 6.4092826e-11 1.852971244e-10 2.052671872e-10 7.666850371e-11 1.96016651e-10 1.702419807e-10 2.419451095e-10 1.565850511e-10 8.204117956e-11 1.885101098e-10 3.134926444e-11 1.564517047e-10 1.829133811e-10 1.328205699e-19 9.000878595e-11 1.095671228e-10 2.698930638e-10 3.099624194e-10 1.484928318e-10 1.628575668e-10 1.943632362e-10 5.446102607e-11 1.056082554e-10 8.670772795e-11 1.224692285e-10 2.247115157e-10 2.01541581e-10 1.173279188e-10 2.21118292e-10 1.959433276e-10 1.367725863e-10 1.607711282e-10 9.025160482e-11 2.917714271e-10 1.927932679e-10 1.973590848e-10 1.778649035e-10 2.949089329e-10 1.531493417e-10 2.215893363e-10 9.399761246e-11 7.55755921e-11 1.916274911e-10 1.494296746e-10 3.611708325e-10 8.283500221e-11 1.2348133e-10 1.212515968e-10 3.692270666e-10 1.46368044e-10 1.435685363e-10 8.089009039e-11 1.27661008e-10 5.60190867e-11 6.599914857e-11 6.854498832e-11 1.699268699e-10 2.222334397e-10 1.316440217e-10 1.434436806e-10 1.264838823e-10 1.357164864e-10 1.162550234e-10 5.610062804e-11 1.122034068e-10 7.899876201e-11 2.982443088e-11 6.517096863e-11 8.75747187e-11 3.289488453e-11 1.828581213e-10 9.15369309e-11 4.766046859e-11 4.420962892e-13 2.259990315e-11 6.774023638e-11 4.540171927e-11 1.072651885e-10 5.524075245e-11 5.746518776e-11 1.59649101e-10 6.687607554e-12 6.479309889e-11 5.483667629e-11 1.815554309e-10 7.208759536e-11 1.100846598e-11 4.221944238e-11 4.518650258e-11 9.522469992e-11 2.245308987e-10 4.725400447e-11 4.134216574e-11 2.146701875e-10 1.664427648e-10 9.307816231e-11 2.997010791e-10 1.212812641e-11 1.854623379e-10 6.437646672e-11 1.071486222e-10 6.798422644e-11 9.225515513e-11 1.35579387e-10 8.598382222e-11 5.393700507e-11 7.379555861e-11 1.438794343e-10 8.48112003e-11 4.409930232e-11 1.291091798e-10 6.89268254e-11 2.471811657e-11 3.971658962e-11 7.608742238e-11 3.606812848e-10 8.588169688e-11 3.088024349e-11 6.240518265e-11 1.024263056e-10 8.217624221e-11 6.959504098e-11 1.685143542e-10 1.304279925e-10 4.52574407e-11 2.275617466e-10 3.634067142e-11 2.585052003e-11 2.651156461e-10 1.959015116e-11 2.964050554e-11 1.574910357e-10 9.652573564e-11 1.489586906e-10 3.6680585e-11 2.143842349e-11 9.298783194e-11 1.66569824e-10 1.128744636e-10 8.871479375e-11 1.286515036e-10 3.924653084e-11 1.136838909e-10 8.277480424e-11 1.278493226e-11 1.849325377e-10 2.23205774e-10 1.430520173e-10 8.254700526e-11 4.31601353e-11 2.881398931e-11 2.410454021e-10 2.274506715e-10 1.30558042e-10 1.409382606e-10 +5.012618393e-11 1.014057584e-10 1.783146505e-10 5.896438957e-11 1.001650861e-10 2.819744068e-11 1.879302681e-10 5.827668302e-11 1.509847447e-10 6.499006645e-11 5.336584708e-11 9.361860251e-11 2.329132537e-10 6.669193352e-11 4.495498744e-11 1.84701868e-10 2.319816531e-11 9.032366372e-11 8.219791204e-11 5.334516017e-11 4.23426028e-11 5.897310145e-11 1.000618453e-10 8.201641837e-11 2.512274878e-11 1.974141096e-10 3.707373771e-11 1.492476526e-10 7.926449852e-11 8.530416047e-11 1.935372114e-10 7.810231224e-11 8.14614496e-11 1.687922272e-10 5.646142088e-11 3.817816565e-11 2.00138189e-10 3.702672868e-11 1.089648927e-10 7.715849825e-11 2.535089154e-10 2.26949967e-10 4.663240728e-11 1.709250554e-10 1.132210617e-10 2.545222137e-10 2.139610422e-10 8.295307939e-11 5.980806026e-11 4.190638053e-11 3.5138478e-11 2.309415919e-11 5.030471266e-11 1.284586114e-11 2.176769556e-11 9.567001046e-11 1.102014683e-10 6.137323026e-11 3.323048418e-10 1.592094275e-11 1.062083879e-10 7.186962214e-11 1.088335835e-10 5.895059693e-11 5.112392845e-11 1.433451543e-10 6.304039556e-11 5.359378882e-11 1.508464585e-10 1.161917002e-10 8.571862154e-12 1.078325972e-10 8.066495004e-11 1.120960364e-10 3.834806329e-11 1.264645138e-10 3.96955638e-11 5.705068584e-11 3.57263671e-11 1.210653699e-10 1.226215166e-10 1.991734338e-10 5.731213899e-11 1.494671569e-11 4.684148637e-11 1.825590082e-10 1.12350914e-10 9.577015768e-11 6.3065638e-11 9.766328992e-11 1.454438295e-11 8.854169881e-12 1.607130614e-10 1.369675279e-10 1.205809662e-10 4.878742581e-11 9.826531324e-11 1.311911162e-10 9.860164937e-11 1.367105412e-10 1.786198425e-10 4.599369285e-11 1.22941742e-10 9.094036832e-11 2.764138413e-10 1.506204292e-10 1.323910979e-10 3.501490456e-11 4.001436228e-11 1.500425794e-10 6.461697962e-11 1.01595998e-10 9.051115438e-11 1.166855077e-10 1.464923938e-10 1.587627949e-10 2.450399768e-10 1.142880612e-10 1.451937703e-10 1.686063956e-10 3.177452966e-11 9.862248775e-11 2.335146133e-11 1.161286723e-10 2.075847885e-10 1.779343607e-10 1.88188323e-10 4.489215406e-11 2.29262875e-10 2.907315181e-11 1.706265451e-10 4.88786962e-11 9.760895647e-11 2.245589778e-10 1.399431249e-10 1.182146443e-10 2.061579349e-10 1.183237993e-10 1.332779488e-10 3.122842875e-11 5.979414798e-11 2.240105122e-10 2.22317183e-11 1.259493318e-10 1.335046259e-10 1.37151872e-10 1.223560509e-10 2.0496259e-10 4.161128945e-11 1.067036701e-10 7.431294938e-11 2.206873071e-10 1.599278784e-10 1.657008247e-10 2.219566897e-10 9.080578697e-11 1.11537152e-10 2.480479544e-10 4.200537837e-11 1.106155086e-10 1.028188799e-10 9.747940776e-11 5.372814847e-12 1.758856164e-10 5.016820313e-11 5.798312369e-11 1.388480273e-10 1.553188547e-10 1.183925785e-10 1.154888049e-10 2.129630377e-10 1.406530836e-10 1.783200664e-10 3.11285309e-10 5.101973093e-11 1.177010241e-10 1.772601931e-10 1.398678225e-10 1.483435329e-10 8.125450407e-11 1.553924163e-10 3.929252405e-11 1.623173894e-10 2.583696246e-11 1.382707361e-10 3.049291897e-11 9.323963363e-11 1.235494101e-10 1.311228068e-10 2.234389832e-10 1.722517976e-10 1.329497051e-10 3.422461102e-11 1.21571224e-10 1.049932589e-10 3.426982867e-11 7.611532336e-11 1.129985955e-10 1.24075666e-10 4.682190953e-11 1.014427484e-10 9.531297965e-11 8.15421191e-11 1.140099161e-11 1.729612382e-10 1.347560074e-10 1.329730382e-10 5.59136418e-11 2.449273059e-14 4.897998751e-11 1.57371922e-10 2.093602639e-11 1.733471676e-10 1.008821766e-10 9.979167143e-11 4.896219787e-11 3.484058289e-11 1.106934607e-10 1.94862861e-10 5.06401628e-11 4.884016402e-11 2.297354248e-10 2.253617173e-10 3.165240235e-11 7.626488486e-11 8.896929379e-11 4.694008087e-11 5.577968017e-16 1.198254039e-10 2.71743824e-11 7.223577157e-11 8.35705819e-11 4.46032443e-11 7.019735919e-11 2.15332156e-10 6.507761473e-11 5.056428069e-12 1.824759652e-11 1.065414889e-10 5.895024398e-11 2.415992225e-25 2.605232868e-11 1.093783897e-10 8.364597144e-11 9.134560553e-11 4.98259529e-11 3.716575515e-11 7.087083508e-11 1.203067218e-10 8.152356971e-11 1.647591141e-10 1.975929066e-10 3.207607916e-10 1.83439055e-10 2.06519781e-10 6.719079826e-11 9.9104835e-11 1.129048174e-10 2.641869733e-10 1.438852372e-11 1.216361194e-10 7.574222188e-11 3.430617805e-11 9.57914443e-11 1.598337048e-10 3.034425263e-11 1.405837514e-10 5.066223464e-11 6.935637252e-11 1.132332707e-10 2.700977274e-11 1.796153614e-10 2.353210272e-10 8.335854836e-11 1.600849992e-10 6.721490732e-12 1.5104236e-10 5.47056679e-11 1.006810635e-10 3.016743247e-11 1.342257161e-10 3.661837476e-12 4.921313433e-11 6.841950541e-11 1.551494412e-11 8.393861945e-12 1.201454675e-10 5.178224034e-11 7.810659905e-11 6.098022717e-11 1.208528275e-10 5.806681315e-11 4.637076699e-11 3.268813624e-11 1.105407131e-10 6.545845427e-11 2.914969734e-11 6.443693137e-11 2.07166453e-11 4.835043418e-12 +6.696662876e-11 1.676439872e-11 1.38661782e-10 9.940070804e-11 8.84712758e-12 3.055903095e-11 4.818834273e-11 7.23489015e-11 1.592362602e-10 1.236272207e-10 9.171690154e-11 1.149241087e-10 2.365424746e-11 6.655603338e-11 1.207686422e-10 4.259153282e-11 4.641007869e-11 6.214992653e-11 2.397355073e-11 1.394720749e-10 1.760398686e-10 3.465531695e-11 5.455601161e-11 2.851396312e-11 1.050164818e-10 6.87974089e-11 1.88263396e-11 1.727821545e-10 8.67547275e-11 1.183740577e-10 5.888617478e-11 3.772938029e-11 8.620804552e-11 3.59112549e-11 1.510781363e-10 1.777492332e-10 2.051261257e-10 2.598730977e-10 8.146907982e-11 1.117644555e-10 1.892637191e-10 1.111594096e-11 7.404733103e-11 6.860789265e-11 1.638379862e-10 1.096378836e-10 7.844803663e-11 7.771177992e-11 6.014589731e-11 1.535400421e-11 1.414636035e-10 3.493232413e-11 6.892671712e-11 1.424727663e-10 1.472861953e-10 5.807112218e-11 2.38808996e-10 1.976298223e-11 1.077879557e-10 2.343902263e-10 4.547432031e-11 6.152905847e-11 6.376837833e-11 3.701941764e-11 9.271891558e-11 1.015758138e-10 1.3983455e-10 3.598374423e-14 2.780987004e-10 1.563016556e-10 3.073619646e-11 4.383071975e-11 1.34651013e-10 2.694665132e-11 2.734955738e-10 8.25260117e-11 2.492177154e-11 4.658591825e-11 5.542022707e-11 4.805792947e-11 1.172411785e-10 1.619629448e-11 1.03908408e-11 9.403839725e-11 9.013691286e-11 4.631878764e-11 3.943974172e-11 1.47634312e-10 4.45040719e-11 9.027708187e-11 8.182686237e-11 9.683002548e-11 2.086053582e-23 1.370966659e-10 6.432845046e-12 7.441440154e-11 4.283094307e-11 1.040998192e-10 2.145126466e-10 6.03573815e-11 7.996439458e-11 3.71265899e-11 6.596370408e-11 1.561532772e-10 1.810960898e-11 6.927777614e-11 6.749363689e-11 7.078528794e-11 2.195763539e-11 4.73908778e-11 1.959961114e-10 1.646725599e-11 1.576167226e-10 8.52569363e-11 1.771563074e-10 5.346265886e-11 1.883650022e-10 5.504352001e-11 1.442773972e-10 6.39684053e-11 1.234290635e-10 1.892440491e-10 1.523640154e-10 9.78781671e-11 7.987336076e-11 8.44546146e-11 2.361772535e-10 1.050513254e-10 1.480650992e-10 1.062599216e-10 2.599921052e-11 1.502421213e-10 8.121349117e-11 5.03693583e-11 7.866286809e-11 1.608592925e-10 1.118217246e-10 2.803913179e-11 6.263594361e-11 1.190352468e-10 9.344137829e-11 2.615429237e-10 1.187120497e-10 1.940515981e-10 7.442326726e-11 1.844176127e-11 1.765391122e-10 6.324760954e-11 6.671692739e-11 4.868844048e-11 2.664617409e-10 1.964894651e-10 1.533329935e-10 1.116816528e-10 1.603146745e-10 2.940999626e-10 2.483735587e-10 1.687419202e-10 1.424566845e-10 6.34981856e-11 1.137785643e-10 1.519052246e-10 1.742017721e-10 1.46633435e-10 9.409129648e-11 5.034575167e-11 5.426681717e-11 8.648633091e-11 9.218848347e-11 1.638378012e-10 8.405140517e-11 2.29918062e-10 4.467518631e-11 1.961084751e-10 1.220677088e-10 4.67564806e-11 9.643448688e-11 1.898354784e-10 9.335005564e-11 2.619758955e-10 1.845717598e-10 1.366665965e-10 2.1060121e-11 4.232115743e-11 1.469677066e-10 1.082019667e-10 1.499925288e-10 1.332661407e-10 1.090761699e-10 5.724746711e-11 9.326240888e-11 2.543950471e-11 1.320764692e-10 5.725361303e-11 7.554157026e-11 1.691968679e-10 9.552431752e-11 1.02420836e-10 5.674976048e-11 3.247096127e-13 7.25198245e-11 8.368385342e-11 6.572877402e-11 4.481720311e-11 3.19411252e-11 6.096471511e-11 1.287925593e-11 7.459648569e-11 1.887514469e-10 7.335548757e-11 3.302202506e-11 4.83411059e-11 8.436810806e-11 3.240561441e-11 7.666760263e-11 1.107823079e-10 1.858640182e-10 1.457272004e-10 1.190481913e-10 8.469181984e-11 1.197277166e-10 3.728393053e-11 1.140871894e-10 5.283192879e-11 1.477148891e-10 1.130136963e-10 3.500490347e-11 8.939585525e-11 2.457484967e-11 1.71911285e-10 1.554713521e-10 1.067209224e-10 4.62934281e-11 1.084576712e-10 1.932883158e-11 2.193038891e-11 1.180473695e-10 5.51588761e-15 3.340673232e-11 0 3.198025416e-10 1.230977657e-11 1.714050022e-10 2.159458341e-10 7.751508535e-11 3.249050031e-11 1.040672189e-11 0 1.237394809e-10 1.593972144e-10 1.312290756e-10 5.458694252e-11 6.133808516e-11 2.453702489e-10 1.02970186e-10 1.763020109e-10 2.204599057e-10 9.234427204e-11 2.238727322e-10 3.876404195e-11 2.538276162e-10 9.752402389e-11 1.340493562e-10 5.466711969e-11 1.038662962e-10 1.194523897e-10 8.87650266e-11 2.147700515e-10 4.812950816e-11 2.046458695e-11 1.254413423e-10 8.806545745e-11 2.323082753e-11 5.415982261e-11 4.962811719e-11 4.58499531e-11 4.579011915e-11 3.510410559e-11 6.522970076e-11 4.973025668e-11 2.095089702e-10 4.142765574e-11 1.14347801e-10 1.133995316e-10 2.251496514e-10 7.051560064e-11 1.777541459e-11 1.450269927e-10 1.069658598e-10 5.292240626e-11 9.697415443e-11 1.320218759e-10 3.253688776e-11 7.191182481e-11 8.998571129e-11 5.433872482e-11 2.735846081e-11 2.894389171e-11 1.80169373e-10 7.980704236e-11 +5.559061078e-11 5.596520914e-11 2.074248452e-10 1.407999085e-11 8.926395919e-11 1.769090871e-11 1.332570755e-10 2.633791173e-10 1.349799418e-10 2.117135737e-10 1.298399697e-10 3.748903023e-11 3.827172828e-11 8.790616858e-12 1.849283581e-10 3.915311663e-11 1.262106229e-10 6.320267251e-11 1.807779913e-11 9.600491758e-11 1.275930304e-10 6.808471132e-11 7.164421299e-11 5.353921732e-11 7.928110645e-11 3.962620901e-11 2.19049618e-10 1.566126896e-10 1.841422057e-10 3.205664721e-11 5.602271515e-11 1.289070549e-10 9.890280588e-11 8.150662986e-11 1.226570042e-10 3.658233792e-11 6.232131546e-11 1.403742441e-10 3.155255424e-11 1.330768048e-10 1.321083352e-10 1.182793124e-10 1.207800533e-10 2.173446601e-10 5.011096032e-11 9.919399161e-11 1.613992324e-10 1.232507204e-10 6.445625135e-11 2.488502175e-10 2.462994821e-11 3.869666435e-11 5.212120009e-11 3.818163002e-11 2.305065749e-10 1.105821069e-10 5.758004727e-11 1.088325302e-10 1.223825757e-10 9.967608241e-11 1.069147232e-11 1.450956918e-10 1.747289899e-11 4.639251396e-11 6.017359108e-11 5.62182758e-11 1.971184945e-11 8.870312301e-11 6.698570431e-11 1.375025211e-10 1.133178677e-10 8.860650933e-11 1.101782147e-10 1.179742125e-10 1.152476977e-10 1.723652237e-11 6.552259204e-11 5.845236735e-11 2.159784984e-11 6.902658814e-11 1.663272631e-10 4.568524634e-11 4.070027735e-11 1.191957872e-10 1.10084339e-10 8.712278825e-11 4.853698491e-11 3.97249206e-13 4.564930836e-11 8.544188826e-12 7.110107811e-11 4.372675693e-11 2.463933012e-10 7.158458897e-11 8.082749572e-11 1.441644112e-10 1.114116395e-10 7.110476961e-11 7.840815396e-11 3.900380846e-11 1.930219136e-10 1.542100644e-10 7.347010615e-11 5.841362315e-11 6.764064866e-11 6.087842255e-11 1.471322735e-10 2.797336619e-10 1.539226769e-10 6.213450475e-11 1.512078306e-11 1.444874245e-10 4.67048457e-11 4.864849831e-11 2.680877746e-10 8.835108613e-11 2.375446266e-10 3.330596462e-11 1.968140087e-10 7.596614308e-11 1.606395081e-10 1.106712929e-10 1.750381077e-10 7.940457155e-11 7.828031007e-11 1.244756507e-10 1.233540799e-10 2.552138334e-10 1.956947268e-10 4.72988784e-11 1.230959754e-10 1.13727464e-10 5.668823106e-11 1.744833164e-10 3.294562315e-10 1.83327015e-10 6.816971509e-11 1.339852993e-10 1.143675278e-10 1.017510819e-10 3.344238242e-10 1.398284485e-10 5.32611567e-11 1.283753733e-10 1.729857738e-10 8.897294385e-11 1.058796504e-10 5.950138274e-11 8.100867585e-11 2.383832615e-10 3.20814899e-10 1.883431558e-10 1.099287771e-10 2.29625469e-10 7.678665705e-11 1.245109521e-10 3.083801621e-10 3.143152297e-10 2.60546702e-10 2.161941025e-10 1.915337025e-10 1.075778831e-10 4.267204788e-11 2.127372341e-10 2.874368194e-10 8.899731948e-11 1.761342368e-10 1.187495728e-10 1.380620541e-10 1.91211022e-10 7.092945175e-11 8.553812133e-11 8.900072639e-11 7.680923555e-12 3.771202433e-11 1.83188005e-10 3.106550299e-10 2.155438641e-10 2.60511132e-10 1.237520002e-10 1.972343622e-10 1.302323245e-10 8.028548326e-11 1.757199617e-10 9.41604159e-12 9.30581265e-11 5.951775895e-11 1.070081083e-10 1.694006053e-10 3.242249074e-11 1.035710406e-10 4.226997083e-11 9.367247298e-11 1.532166075e-10 7.127786267e-11 3.148282998e-11 1.990484176e-10 1.135497843e-11 1.095518758e-10 2.036580616e-11 1.740586723e-10 2.81273324e-11 1.319223965e-13 2.536431135e-11 2.440845837e-10 4.511095846e-11 0 3.936422979e-12 1.922418667e-11 1.271179681e-10 4.546157966e-11 5.14094445e-11 5.476176169e-11 3.215150843e-10 0 2.946821389e-11 2.11472669e-11 7.382755571e-11 1.165423065e-10 1.269178545e-10 3.233041184e-11 8.460561026e-11 5.311734618e-11 7.405692472e-11 1.4194398e-10 2.534567744e-16 4.888866577e-11 4.238175756e-11 9.524858821e-11 2.098199786e-10 6.740927782e-11 5.327713328e-11 5.453259396e-11 8.038069348e-11 5.409677546e-11 1.120770134e-10 7.055892931e-11 6.081240124e-11 1.573465277e-10 2.275150837e-10 1.955982421e-10 2.20001168e-11 3.319004245e-11 2.253466557e-10 3.636188242e-11 1.018434858e-11 9.768555193e-11 2.141864338e-10 9.476216583e-11 4.071628302e-11 2.314639603e-10 1.684687574e-10 1.955835982e-10 8.390733321e-11 5.898299766e-11 2.202852523e-10 1.333160651e-10 6.589206206e-11 2.984374007e-10 1.212350188e-10 6.668249812e-11 1.10893256e-10 7.988317728e-11 7.242539131e-11 5.913196126e-11 2.375755778e-11 1.691179032e-10 3.172161922e-11 4.712574361e-11 2.354401165e-10 1.405897336e-10 8.948738122e-11 9.63271716e-11 1.057797935e-10 2.570542161e-10 1.110504845e-10 2.091597185e-10 1.050460107e-10 1.326729461e-10 6.281123924e-11 2.76752827e-11 2.382451844e-10 1.755002266e-10 6.879722061e-11 4.448278252e-11 8.946996744e-11 2.69498325e-11 1.036565927e-11 8.006082155e-11 5.847881574e-11 1.772099852e-10 1.459234963e-10 3.974984444e-11 3.103017609e-12 1.45469067e-10 6.897382462e-11 2.79460776e-11 1.752191659e-11 4.644242171e-11 1.802862113e-10 +2.623575861e-11 5.586570439e-11 4.001448782e-11 3.836029997e-11 1.497510124e-10 5.667972057e-11 1.054277416e-10 1.053310563e-10 5.55990438e-11 2.391346191e-10 1.102832603e-10 2.261015354e-11 3.906850252e-11 9.783764563e-12 1.130769884e-10 4.841633725e-11 1.468962047e-10 1.703021169e-11 3.387318888e-11 1.330210048e-10 3.851167862e-11 1.051002586e-10 8.25644782e-12 4.919833929e-11 1.207361e-11 1.458270009e-11 3.311510431e-11 8.355347295e-11 4.072883119e-11 1.284928248e-10 9.703381446e-11 7.364542325e-11 1.377003476e-10 1.89996962e-11 7.045429979e-11 2.272312265e-11 9.336690901e-11 7.988684287e-11 1.410724176e-10 2.800564323e-11 5.162275924e-11 1.667238388e-10 5.910596181e-11 9.29159752e-11 3.738581756e-11 2.150021071e-10 1.648568926e-11 9.108608731e-11 8.264609667e-11 9.039072173e-12 3.921730599e-13 1.918945241e-11 6.112047107e-11 2.461852062e-11 3.82465019e-11 1.780124207e-10 6.398319912e-11 7.140719363e-11 3.693883014e-11 8.213660051e-11 2.854213213e-11 2.889177466e-11 1.531875803e-10 2.017269138e-10 4.54244067e-11 3.981531224e-11 2.202416638e-11 1.060707583e-10 1.289556834e-10 5.656511832e-11 2.071115772e-10 9.271664261e-11 8.775088224e-11 6.575487715e-11 1.071202406e-10 7.946931746e-11 2.354287867e-11 1.111842854e-10 1.007687336e-10 4.819082012e-11 1.841360966e-10 1.273472615e-10 3.844108134e-11 2.305993467e-10 9.177832999e-11 3.77703143e-11 0 1.196134182e-16 4.089196956e-11 1.651283763e-10 4.800862087e-11 6.281899326e-11 0 5.499334378e-11 7.409205086e-11 8.330501896e-11 8.930866945e-11 7.273980231e-12 5.541151375e-11 5.262872377e-11 1.646363996e-10 1.474622297e-10 8.658035216e-11 1.452969971e-10 1.044778947e-10 1.040759537e-10 5.533930669e-11 3.374256876e-11 1.413390231e-10 1.869462908e-10 1.199105103e-10 1.675241725e-10 1.759937218e-10 1.195346559e-10 9.79408069e-11 1.148250696e-10 9.941338034e-11 5.691003126e-11 3.372139968e-11 1.073205498e-10 1.614298802e-11 3.107307109e-11 1.805270257e-10 1.357272473e-10 3.520157814e-10 8.542775009e-11 7.114341682e-11 1.161931855e-10 1.40679876e-10 1.221763784e-10 7.394484274e-11 7.481743528e-11 1.383631527e-10 1.909556282e-10 1.004321034e-10 5.949504996e-11 1.123607331e-10 1.436342222e-10 1.171113332e-10 1.940308917e-10 7.138341825e-11 4.858183704e-11 1.106073163e-10 1.128257508e-10 1.496336446e-10 1.704641588e-10 0 4.916391031e-19 1.130830708e-10 1.402634394e-10 2.158694289e-10 1.604911083e-10 8.214273844e-11 6.977799779e-11 6.433734038e-11 5.444950985e-11 2.322651208e-10 1.608923845e-10 2.253143514e-10 1.254481503e-10 1.495724696e-10 1.287752873e-10 1.146178617e-10 2.025230454e-11 4.310109069e-16 3.766733669e-11 3.090036165e-10 3.822479649e-11 9.10879593e-12 9.239453778e-11 4.215064706e-11 2.134168884e-10 3.16332513e-11 4.185553439e-11 1.011943543e-10 1.181446597e-10 3.906476665e-11 7.651317422e-11 1.486885388e-10 9.112372571e-11 1.979107808e-11 3.741682031e-10 6.665489714e-11 8.767849409e-11 5.37643492e-12 1.633720849e-10 2.384839435e-11 1.233313284e-10 3.066952327e-19 1.947356225e-10 5.543745927e-11 1.548984707e-10 1.179905479e-10 3.992774904e-11 8.534116387e-11 2.241190318e-11 3.728932586e-11 1.913654013e-11 3.923903138e-10 2.600981835e-10 1.242137121e-10 5.910976944e-16 1.081184474e-10 7.704980501e-20 7.54263688e-11 5.698742415e-11 1.514152336e-10 9.790970207e-11 1.577252239e-10 6.595963034e-11 9.71386683e-11 1.580900305e-10 8.035348097e-11 9.836229905e-11 1.169817375e-10 1.961268139e-11 4.502304622e-11 1.416208376e-10 2.169519597e-11 3.032650637e-10 1.236204736e-10 1.019936964e-10 1.823548077e-10 2.336113509e-11 1.538365993e-10 3.005884284e-16 9.855115709e-11 1.526384025e-10 3.498842008e-11 5.553647584e-11 3.592093665e-11 7.612156947e-11 1.007072923e-10 9.826168702e-11 2.102961814e-10 1.382622607e-10 1.426190042e-11 9.926681775e-11 6.791169944e-11 9.570997756e-11 2.053999783e-10 2.86913016e-11 7.609919604e-11 7.004533799e-11 8.13446659e-11 6.001448132e-11 1.085453376e-11 2.397771908e-26 1.826230265e-11 7.891339144e-11 4.90557563e-11 7.266159566e-11 2.869449735e-11 9.406699294e-11 5.060024042e-11 2.619908423e-11 2.539412973e-11 1.908188944e-11 1.245946373e-10 1.084237928e-10 7.995763871e-11 6.849796852e-11 8.503886571e-11 3.638078824e-11 1.16703345e-11 7.134493321e-11 1.700739326e-10 1.293491535e-10 2.169029688e-10 3.09554068e-11 3.161489095e-10 2.626537879e-11 6.478934067e-11 6.9960798e-11 6.617336738e-11 9.218857397e-11 1.580792327e-10 2.019459573e-10 8.130249051e-11 3.814917287e-11 3.195684734e-11 3.074858638e-12 6.361699883e-11 3.232832533e-11 2.494506971e-11 1.250032178e-10 1.521621397e-11 2.366980238e-11 7.338137782e-11 1.715770487e-10 2.080529806e-10 1.157687951e-10 2.292826546e-11 1.01789363e-10 7.244756286e-11 1.064298977e-10 1.016399239e-11 9.249736982e-11 8.54565668e-11 2.944883992e-11 +2.872316125e-10 6.581505847e-11 1.613911997e-10 6.985984184e-11 6.750299341e-11 1.861968526e-10 0 5.653762854e-11 5.76234379e-11 3.998231918e-11 3.081193242e-11 1.526106635e-12 2.043824237e-10 9.335954129e-11 1.46120519e-10 1.112254448e-10 5.606032547e-11 7.247331233e-11 3.004930127e-11 8.171903515e-11 7.59425051e-11 2.25777318e-10 8.441281785e-11 3.887048545e-11 2.937914008e-11 6.450243629e-11 2.82397075e-11 1.750637145e-10 1.39299773e-10 2.481545396e-11 2.241728094e-10 1.913170312e-10 1.090376688e-10 9.207496927e-11 1.700640343e-11 2.418731998e-10 7.366204567e-12 1.142733105e-10 4.931668925e-11 1.582808264e-11 1.288609858e-10 1.79178851e-11 9.899189569e-11 1.631047567e-10 5.747678075e-11 1.245265426e-10 1.252830178e-11 9.602822006e-11 6.021533145e-12 2.40540992e-11 2.290466191e-11 1.077893847e-10 3.009298201e-11 1.421193656e-10 9.788731424e-11 2.276702742e-11 1.10869412e-10 3.398571528e-11 3.55127787e-11 1.857597502e-10 1.947984656e-11 3.463658746e-11 7.989990499e-12 7.722766438e-11 9.086051793e-11 1.486787838e-10 2.036816488e-10 6.566054058e-19 6.323627311e-12 4.076397635e-11 9.836445885e-11 1.037456908e-10 1.431171638e-10 1.088154347e-11 3.796604418e-14 3.623158178e-11 1.905196618e-10 1.41997958e-11 7.977882294e-11 4.713215326e-11 1.933705382e-10 1.40731034e-11 3.598158163e-11 1.367009647e-18 1.654732092e-10 7.563761502e-11 6.570595939e-11 0 0 4.443840881e-11 5.655594535e-11 1.53075369e-11 9.314027563e-11 5.219873814e-11 2.234618735e-21 3.276987475e-11 9.730525824e-11 5.764932331e-11 5.985523779e-11 0 9.295981142e-11 7.136903102e-11 1.943302113e-11 8.541906585e-11 6.925817081e-11 1.304122479e-11 1.552375464e-10 1.605861672e-10 2.795195281e-13 6.374736367e-11 7.135277579e-11 7.082002324e-11 1.827459091e-10 3.685258249e-11 3.168370726e-11 1.618120702e-10 1.013984936e-10 1.57165783e-10 2.637763431e-10 1.30298992e-10 3.550696936e-11 7.189603089e-11 1.225746771e-10 1.88766273e-10 5.799432803e-11 9.142034425e-11 3.748775421e-11 4.793109257e-11 5.69963981e-13 8.562087836e-11 8.823717369e-11 4.912547321e-11 2.45820858e-10 1.054886316e-10 1.462689417e-10 2.152947214e-10 1.197039792e-10 1.136356828e-10 1.130713733e-10 1.939061788e-10 1.586459551e-10 1.926207205e-10 1.77605135e-10 6.317732648e-11 2.069914081e-10 3.219436007e-10 9.709545458e-11 1.972871462e-10 3.340747254e-11 1.869055801e-10 5.576458959e-11 1.470023726e-10 1.807047599e-10 6.973181592e-11 5.311323134e-11 8.830793876e-11 1.565109724e-10 5.831931794e-11 2.628773445e-11 1.412172795e-11 2.906518182e-10 5.757813585e-11 3.08336317e-11 6.45391265e-11 1.401462818e-10 2.035440065e-10 4.137745469e-11 1.941434685e-10 1.162132787e-10 1.998663803e-10 2.297817649e-11 3.472378543e-11 2.182420253e-10 4.970304756e-11 7.963135749e-11 1.473062545e-10 9.522899426e-11 6.749214599e-11 4.838564011e-11 3.324780059e-11 1.843469321e-10 1.69251174e-10 7.106092969e-11 3.296720674e-11 1.35585219e-10 1.029164161e-10 4.451512717e-11 1.126241151e-10 6.598278967e-11 1.932213007e-10 4.184306561e-11 1.215966068e-10 1.369758812e-10 6.649209424e-11 5.909798048e-11 1.065190204e-10 3.076780263e-11 7.831767412e-11 4.39383474e-11 1.070333306e-10 4.534358355e-11 6.512556772e-11 4.896913517e-11 4.85055187e-12 4.979080172e-11 4.418272459e-11 1.035194553e-11 3.633736151e-11 2.445087101e-10 1.058705639e-10 6.149206979e-11 1.228022387e-15 1.580924625e-11 9.060536728e-11 2.609397785e-11 3.486909193e-11 1.199922826e-11 1.440482151e-10 8.466321477e-11 3.818090891e-11 5.964853701e-11 3.265218066e-11 9.011630716e-11 9.795326233e-11 4.915047618e-12 5.468838484e-11 4.399854597e-11 2.538137424e-10 1.133497672e-10 5.693073344e-11 1.852832851e-10 6.40387571e-11 2.260387432e-10 7.153165484e-11 3.396990475e-10 1.133069304e-10 1.29777052e-11 1.361895927e-10 7.384997356e-11 7.706422845e-11 1.279359754e-10 5.607151426e-11 6.317748828e-11 1.098604098e-10 8.970302844e-12 7.706920183e-11 1.383126303e-10 6.205371958e-11 8.074208714e-12 3.749857938e-11 5.810305476e-11 3.129167994e-10 3.167309247e-11 2.669205121e-11 5.265954997e-11 1.749245097e-10 1.970274545e-10 5.39737824e-11 8.38294346e-11 1.470674006e-10 7.953007667e-11 3.050442914e-11 2.198566906e-11 2.57034655e-11 2.905309e-11 9.322974577e-11 1.127286713e-10 1.646935959e-10 6.729422667e-11 1.463561523e-10 6.292392071e-11 1.113458878e-10 2.013171842e-10 6.358343323e-11 1.093488484e-10 3.746689548e-11 6.747491776e-11 7.870952142e-11 4.605759075e-11 1.356340148e-10 8.510570894e-11 5.110080292e-11 5.637339388e-11 1.840828921e-10 3.485477628e-11 5.663591055e-13 1.032210297e-10 2.678341825e-11 2.332122976e-11 8.304312973e-11 1.063251187e-10 5.318515222e-11 4.417235477e-11 5.104849536e-11 4.058797304e-11 1.403559638e-10 7.241033704e-18 5.403156177e-11 5.741201348e-11 6.789113979e-11 +9.706381087e-11 1.543337286e-10 1.654914239e-10 2.014151724e-12 1.082138393e-10 6.818849328e-11 1.800178777e-11 2.136230651e-11 1.366481445e-10 1.291620576e-10 4.603281129e-11 4.097568782e-11 1.26182471e-10 3.723353602e-11 5.613397353e-11 7.11695158e-11 4.875221076e-11 2.019728828e-10 5.81282928e-11 6.924804065e-11 2.30567294e-11 9.151284587e-11 1.015749495e-10 4.066251664e-12 1.386335585e-10 4.402231968e-11 1.844193218e-11 3.395041192e-11 1.608692639e-11 7.696415336e-11 5.919153935e-12 1.413760728e-10 8.016658982e-11 8.263069793e-11 2.084583777e-11 8.046214954e-11 3.130565534e-11 1.173401725e-10 1.813959663e-10 6.029593958e-11 9.196340245e-11 8.124327306e-11 3.584817098e-11 1.868969027e-10 2.524610285e-10 6.838174417e-20 5.119461767e-11 5.977588737e-11 4.55355985e-11 2.205761742e-10 2.852271445e-11 3.924779221e-11 2.792026576e-23 4.3808268e-11 4.331818403e-11 7.920305038e-11 6.475425585e-11 9.119459957e-11 6.462344928e-11 1.664094511e-10 2.064974958e-13 4.809705134e-11 1.412203124e-10 5.717381145e-11 7.23669445e-11 1.177710055e-10 8.802925235e-11 7.985398684e-11 3.186513414e-11 1.058402618e-10 2.307389974e-11 6.566754017e-11 6.161935619e-11 1.007788102e-10 2.560566679e-11 2.792930267e-11 3.162199405e-11 6.095631355e-12 2.224150845e-10 2.458790711e-11 1.308735663e-11 5.466778784e-11 3.392727343e-11 8.659038627e-11 0 2.365855126e-11 5.655350604e-11 2.720442971e-11 5.013801032e-15 6.715086428e-11 4.080307619e-11 5.410123496e-11 3.682358982e-11 1.991221651e-18 3.242098097e-11 3.468113759e-11 1.320933665e-10 1.297293294e-10 9.306014208e-16 1.027331351e-10 1.459861376e-10 7.691426205e-11 8.104620853e-11 4.996737333e-11 7.182020552e-11 1.902835059e-10 2.578026667e-11 1.440986107e-11 1.154523312e-11 6.998206749e-11 2.010618952e-11 1.09517238e-10 6.578321761e-13 5.402960373e-11 9.423734134e-11 1.674121086e-10 8.967658433e-12 2.498393695e-10 7.525433894e-11 6.965898226e-11 8.496512672e-11 3.370431772e-11 1.158301575e-10 8.711829457e-11 1.220408847e-10 1.379552819e-10 4.836700912e-11 1.88459944e-11 1.597764413e-10 3.126232289e-12 3.969511021e-11 4.543364158e-11 1.61838494e-11 2.126405183e-10 9.457838143e-11 3.055552783e-11 1.5503054e-11 1.112598889e-10 1.111159004e-10 0 1.607397783e-10 2.687952045e-10 6.021849217e-11 5.027023533e-11 6.023921611e-11 9.335062329e-11 6.793395736e-11 1.068190496e-10 1.381754575e-10 1.827328286e-11 1.356077764e-10 1.273447519e-10 1.011375307e-10 1.144123672e-10 9.172963233e-11 1.024460046e-10 2.29757029e-10 3.996417605e-11 5.633020272e-11 7.433413576e-11 3.029093324e-10 4.806591242e-11 2.38964995e-11 8.833065451e-11 1.996541419e-11 3.667340216e-10 1.668894038e-11 2.422008883e-10 2.764325543e-11 9.843856938e-11 4.493479867e-11 1.37975858e-10 9.087161798e-11 1.795863077e-10 1.204508646e-10 1.429156219e-10 1.481674048e-11 6.893583019e-12 6.604801949e-11 1.223333187e-10 1.028942679e-10 2.409521473e-11 4.901920568e-11 1.117507041e-10 1.330663773e-10 1.383320839e-10 1.572215376e-18 7.430335966e-11 9.991818235e-11 7.306803313e-11 1.128863798e-10 9.197784664e-11 1.78029003e-10 3.691197435e-11 9.616035426e-11 7.562324516e-11 1.529708836e-10 1.405844022e-10 3.109027491e-19 4.329968878e-11 6.229653265e-12 1.575977596e-11 8.499450037e-11 3.432341567e-11 9.614355193e-11 0 3.388169785e-11 0 4.161879314e-11 7.628397147e-11 9.014297054e-11 2.550327901e-11 1.202804562e-10 2.536674809e-11 4.865905785e-11 1.460152888e-11 6.144887164e-11 1.252925826e-10 3.230525108e-11 1.172535647e-10 2.678020947e-11 1.312144388e-10 4.3488128e-11 1.985700492e-10 4.286812451e-12 7.788378061e-11 7.841965204e-11 9.718197625e-12 5.720955103e-11 3.519679962e-11 1.426536001e-11 2.379080931e-11 3.001003277e-11 1.231101149e-10 0 1.075455871e-12 7.342264799e-11 2.86644001e-10 8.095190278e-11 2.088492452e-10 5.262467221e-11 2.692947216e-11 1.157557042e-10 8.042434463e-12 1.550216083e-12 1.901408806e-10 8.071102648e-11 3.153650811e-11 5.882564948e-11 1.066874835e-11 1.007234125e-10 7.36896047e-11 1.821082039e-11 3.701213013e-11 2.038509534e-13 9.722107735e-11 7.11677636e-11 7.299697763e-11 1.101370341e-10 2.008340215e-10 9.116247465e-11 1.160683091e-10 1.188958645e-10 5.92175278e-11 1.03883878e-11 2.003660906e-10 1.64340366e-10 1.056193844e-10 4.403164269e-11 3.219885506e-11 1.519090447e-10 1.226386871e-10 1.030455093e-10 5.188801076e-11 2.625002839e-11 5.603202947e-12 6.542042867e-11 1.219942078e-10 2.642593701e-14 9.050301135e-11 1.358546398e-10 6.296913898e-11 1.31631146e-10 4.851523944e-11 1.534024e-11 8.220894608e-11 2.060789077e-11 4.064316661e-11 2.548217511e-11 1.121151788e-10 3.910376023e-11 7.23741581e-11 5.02486758e-12 2.895569125e-11 5.994174421e-11 2.242488088e-11 3.080918085e-11 8.893166665e-11 1.03576358e-10 1.140813127e-10 +3.327015839e-11 2.846651724e-10 5.781361825e-14 2.827468398e-11 7.086403122e-11 8.522793199e-11 4.714812237e-11 1.173497197e-31 1.395081281e-12 2.706151367e-11 6.612411883e-11 3.330758419e-11 3.444635333e-11 1.648590311e-10 1.197691949e-10 4.091349334e-11 1.160486318e-10 1.36968174e-10 1.178681848e-10 1.428033828e-10 1.534285143e-11 1.078526662e-10 5.714381654e-11 1.864412904e-21 8.004388433e-11 3.171318076e-11 7.462875554e-11 7.316111478e-11 1.749820991e-11 4.471394493e-11 9.830664597e-11 7.396451711e-11 6.941352229e-12 6.692512437e-11 5.422332291e-11 2.661828633e-10 1.393366889e-10 3.921890098e-11 1.731977034e-12 1.614336586e-10 6.08612961e-11 5.798059696e-12 3.301168313e-11 1.546148366e-10 2.164906975e-11 3.565788727e-11 9.715060587e-11 1.281655201e-16 1.548568481e-10 1.050926978e-10 1.57299388e-11 1.793874126e-10 3.312110245e-11 1.178427233e-10 9.957802306e-11 1.602667296e-10 3.431713011e-11 3.41429392e-11 2.863569175e-11 8.984418581e-11 2.351790124e-11 2.837463727e-11 3.323708966e-11 6.733161476e-11 7.384893818e-11 4.456691933e-11 1.603091546e-11 3.013822796e-11 8.975536337e-11 4.743879536e-16 1.780302716e-10 6.404720328e-11 1.017251883e-12 4.594239414e-11 2.903938359e-11 3.686106871e-11 5.567885154e-11 7.627425375e-11 3.003767043e-10 3.838428326e-11 3.985001273e-11 1.305020444e-11 5.370789405e-11 1.425910447e-10 4.87180868e-12 8.149647268e-18 7.379190726e-11 2.662207316e-11 4.658412885e-11 1.967996619e-11 1.855987234e-11 2.223036031e-10 3.070306754e-11 9.7855419e-11 6.31998317e-11 6.918929071e-11 4.688549405e-11 4.557168625e-11 2.278545743e-11 6.751491924e-11 1.703580186e-10 0 8.925354746e-11 2.984883877e-10 1.353092323e-10 8.782906804e-12 5.455653947e-11 1.867549355e-11 9.372902308e-12 2.637225331e-11 8.201896807e-11 8.618760097e-11 9.981966944e-11 3.778498783e-11 1.215894794e-15 1.032892609e-11 4.265930215e-11 1.253793229e-10 5.234848075e-11 5.154572658e-11 1.260992583e-10 3.991635457e-11 7.075511968e-11 2.143620082e-10 6.464717836e-11 5.327205029e-11 1.704749557e-10 9.563279609e-11 3.487983227e-13 6.172497376e-11 2.684349626e-10 1.041077345e-10 1.437831427e-10 2.690648548e-11 2.089150465e-10 2.516216833e-11 5.272710798e-11 5.830745685e-11 1.353561595e-10 1.33841614e-10 1.055682032e-10 1.300864213e-10 1.834601869e-10 1.599639238e-11 1.073301784e-10 4.309757266e-12 2.231797594e-10 5.999796899e-11 2.413038041e-11 6.740245307e-11 1.892205235e-11 9.752964424e-11 0 6.288949753e-11 4.783307116e-11 1.950361829e-11 1.484342334e-11 7.435161325e-15 8.074638365e-11 3.643160351e-12 6.756701776e-11 7.921580736e-11 9.543583117e-11 2.362939289e-11 6.161863205e-11 6.937105226e-11 4.300162323e-11 1.355746949e-11 3.2770787e-11 5.9973067e-11 3.677058535e-11 9.625345335e-11 1.380981159e-10 1.497705545e-10 7.755500732e-11 0 1.261369406e-10 8.147041249e-12 6.124368806e-11 2.312826832e-10 2.092546851e-10 1.139192072e-10 7.54604677e-11 9.19590603e-11 7.036579356e-11 9.874268421e-11 0 1.251070364e-10 6.726807367e-11 2.691041016e-11 1.654590317e-14 1.510447029e-16 0 1.337266451e-10 8.027493085e-11 5.956152928e-11 8.566671526e-11 3.246856372e-11 8.780519837e-12 5.043980863e-11 1.480441652e-10 4.136057211e-11 7.159613329e-12 9.812503102e-11 1.561389923e-11 5.69961931e-11 6.589778231e-11 2.356994576e-11 6.713507562e-11 8.378314793e-11 2.60880377e-11 4.394707391e-11 1.660673925e-11 4.968286687e-11 1.410413252e-10 7.339442388e-11 1.595105478e-11 1.063811326e-10 2.541509432e-10 2.260630509e-11 8.13888749e-11 1.35055775e-10 7.552263294e-11 3.801852704e-11 8.326351267e-11 2.303986259e-10 1.047697374e-10 3.433835251e-11 5.433046912e-11 1.303399842e-10 6.488956855e-11 9.665572748e-11 4.405688543e-11 8.269914087e-11 2.992785404e-11 0 4.062641197e-11 1.446836381e-10 8.366235791e-11 1.19951547e-11 1.349842729e-11 4.394270053e-11 2.21863708e-12 3.260793264e-11 0 3.747343274e-12 7.38267395e-11 2.402436175e-11 2.675235776e-11 5.673484414e-11 6.942002756e-11 9.796217353e-11 2.108028664e-11 1.614150051e-10 8.12870612e-11 1.76475284e-11 8.284078371e-11 7.013080342e-11 3.051488206e-11 5.787311685e-11 0 5.198101101e-11 1.37146052e-10 3.440733048e-11 1.345735267e-10 1.09296079e-11 1.190806496e-11 9.990055054e-12 6.392599625e-11 1.49765269e-10 1.33854809e-10 8.24623022e-11 9.873811947e-11 4.062777147e-11 2.754763281e-11 8.395718971e-11 1.656882374e-11 3.170251963e-11 2.112425937e-10 1.012559953e-10 1.052619157e-10 1.642258358e-10 6.620839783e-11 3.140802253e-11 3.813251949e-11 4.490132372e-12 1.482999177e-10 9.499326721e-11 2.960113003e-11 1.036450905e-10 1.183946781e-10 5.60906148e-11 2.280570115e-10 1.548487801e-10 3.90131522e-11 2.479705269e-11 4.805598047e-11 6.95841e-11 3.167257101e-11 2.878852242e-11 +1.94524897e-10 1.711147708e-10 2.812926551e-10 3.908550432e-11 7.073698612e-11 3.014535032e-11 6.098721118e-11 1.160372915e-22 2.216734705e-12 4.164781188e-11 1.400373381e-10 9.642295503e-11 9.835860263e-11 1.057502853e-13 1.045155413e-10 3.80024923e-11 1.583845354e-18 7.224409793e-11 2.581808203e-12 3.10597348e-11 8.373749951e-12 1.017109807e-10 6.566319107e-11 1.769418956e-10 1.954941908e-11 1.26720099e-11 4.62563553e-11 2.245816127e-10 5.111855954e-11 1.321537022e-10 4.495836544e-11 1.812443672e-10 1.599176747e-10 2.613057902e-11 5.699187674e-11 4.427261197e-11 7.318913934e-11 1.535526161e-10 1.039344968e-10 9.981905683e-12 1.5324162e-10 3.09935498e-13 7.845631595e-12 2.246626868e-11 1.165973385e-10 3.144650321e-11 6.460717912e-11 2.538568925e-11 7.816031927e-11 3.960706915e-11 2.989177649e-11 1.512499399e-10 1.192869639e-10 1.198748177e-10 2.408093866e-11 1.515710736e-10 7.806282097e-11 1.724971168e-10 1.324469177e-10 1.429822303e-11 6.68995232e-11 8.606166829e-11 7.696418025e-11 3.231047903e-11 7.375272574e-11 4.755346036e-11 6.681770693e-12 3.415627803e-11 2.838299159e-11 2.82247544e-10 8.241432928e-27 9.785147808e-14 3.605085187e-11 3.499258295e-11 7.537264893e-15 3.411586723e-11 6.601424361e-12 2.660962438e-10 4.736080337e-11 3.764212305e-11 4.303467106e-12 6.286765668e-11 3.296919357e-11 2.645848191e-11 3.106215113e-11 0 8.308002092e-11 6.012081747e-11 0 9.183094435e-11 4.353824276e-11 1.084077556e-10 4.417381178e-11 7.336914702e-11 3.447184063e-11 2.002918711e-12 1.306811198e-10 9.438519447e-11 4.029804687e-11 1.304691372e-11 5.880954578e-11 9.675809981e-11 1.584809523e-11 2.495643656e-10 1.05510753e-10 0 8.950515271e-11 1.222668549e-10 4.264310205e-11 5.621754015e-11 2.445742353e-11 4.300800902e-11 2.744187346e-10 6.543494642e-12 1.085884738e-11 7.128040365e-11 9.82103313e-11 8.137649324e-12 9.05429116e-11 2.201885849e-13 1.822954159e-11 4.366391341e-11 1.04618758e-11 1.822031693e-10 2.068952586e-11 1.391560541e-10 1.159729119e-10 1.505228562e-10 6.008135544e-13 1.080348442e-11 8.883830228e-11 5.908143992e-11 9.877010344e-11 4.043028743e-11 0 3.014469248e-11 2.268589633e-10 3.099698517e-15 5.962223406e-11 1.313590612e-10 2.528514887e-10 7.928101798e-11 1.04198339e-10 1.155862755e-10 2.380916099e-10 8.827387703e-11 4.969350502e-11 4.445499565e-11 2.227875274e-11 8.0984003e-11 1.320426171e-10 4.305528384e-11 4.183288223e-12 5.609146409e-11 1.069162395e-10 2.745363959e-11 3.992030091e-11 9.149014331e-11 1.001471476e-10 7.651809533e-11 1.302699176e-29 2.161965738e-11 2.283829825e-10 5.879880175e-11 9.705340247e-11 2.131921018e-11 7.11452403e-11 2.711046271e-11 1.109963856e-10 1.247917247e-10 4.481494055e-11 8.625290371e-14 1.10907358e-10 8.99965092e-11 1.027966474e-10 3.702896167e-11 3.433657587e-11 1.081973126e-11 1.152361222e-10 0 3.11037505e-11 3.35278316e-12 3.798715274e-11 1.671891398e-26 1.174925177e-11 0 1.474306974e-11 1.281648299e-11 3.538184521e-10 1.893276027e-16 3.913160429e-11 8.597515835e-12 2.498106712e-11 6.639784278e-11 1.192185748e-10 3.438769707e-11 2.474716854e-10 1.085934488e-10 6.904171213e-12 2.477711575e-11 3.920503623e-11 8.395338051e-11 2.80207461e-19 6.356252914e-11 2.843935929e-11 1.150263165e-10 9.324280654e-11 1.355539557e-27 0 4.563368952e-15 1.43063325e-11 1.070860207e-10 0 1.181231356e-10 2.299674123e-11 2.666239219e-11 4.768980806e-11 9.550640417e-11 1.278408801e-19 2.068805395e-12 4.119085177e-11 1.580460038e-11 1.019565804e-10 2.527747223e-11 3.88095588e-11 0 3.828991461e-11 1.741742282e-10 3.739691978e-11 2.33242577e-11 1.428561949e-11 2.978667156e-11 2.765945074e-11 5.993271083e-11 4.682321908e-26 6.256331107e-11 2.797411378e-11 1.397208176e-10 8.976346986e-11 1.565185344e-10 0 6.764144934e-11 1.052626983e-11 1.439109375e-10 1.081807346e-10 1.858157319e-11 1.088752791e-11 4.188405995e-11 1.099902038e-10 5.142482737e-11 2.589408328e-11 1.059187947e-12 5.384675777e-11 0 1.776317121e-10 2.160857287e-11 3.552901268e-11 3.793486827e-11 1.196778946e-10 6.916328296e-11 3.80223127e-29 8.106437173e-11 1.3481844e-11 1.901251223e-11 4.624242474e-16 1.477761142e-10 2.155174645e-12 0 3.092540501e-11 1.129250398e-10 8.424981915e-11 4.656509295e-11 1.271443588e-10 1.028229239e-10 6.970993617e-11 7.527491384e-11 9.166373183e-11 5.281294899e-11 1.00572659e-10 1.190331112e-10 2.937807928e-11 2.822410081e-11 7.388357555e-11 1.630333545e-11 2.853939742e-11 5.509377249e-11 1.042150832e-10 8.537576657e-11 3.814111407e-28 6.833528632e-11 5.776476343e-11 2.425385783e-11 1.029413457e-12 5.94528968e-11 1.062551057e-10 1.418346761e-10 8.518808351e-11 1.107708844e-10 4.739518491e-11 2.827988672e-11 +3.34005118e-10 2.886826433e-11 3.581809998e-11 3.246001006e-11 4.582164771e-11 7.571167048e-11 8.410378291e-11 2.883766881e-28 1.767269589e-10 1.68877958e-10 0 4.183173241e-11 0 4.561794811e-11 2.242238128e-11 7.994009467e-11 1.767766727e-10 4.77790972e-11 7.579372528e-15 5.425582377e-11 4.353359206e-11 9.09018057e-12 9.191282514e-14 1.921332269e-10 2.99955411e-19 6.542720415e-11 3.946812179e-26 4.429240099e-12 1.34850644e-10 3.377366712e-11 4.967089035e-11 1.52821113e-11 1.902147064e-10 1.940976054e-11 1.897475102e-11 0 1.510508947e-11 6.841959047e-11 1.306728115e-10 8.630748212e-11 3.209498425e-16 1.817523654e-11 1.943309091e-11 4.09499931e-11 5.348020369e-11 1.14956793e-10 1.406859789e-11 1.468019227e-11 6.34970318e-11 7.13860513e-11 6.468384926e-12 6.067454144e-11 9.971414407e-24 8.582895143e-11 2.724220022e-11 6.413572603e-13 3.636887625e-11 1.241169251e-10 3.952616685e-11 9.866352587e-12 5.403579021e-11 1.510674272e-11 2.65639364e-11 0 6.816047991e-22 1.557055173e-10 5.145364524e-11 1.223989909e-11 6.909897246e-11 8.433334321e-11 5.819487714e-11 4.354484822e-13 2.533658409e-11 1.897521534e-10 1.890119595e-11 8.073901251e-11 3.654826769e-23 1.045557732e-11 1.169853969e-10 8.446649139e-12 5.026707052e-11 6.953785466e-11 6.40081649e-11 2.082466446e-10 4.007935968e-11 7.874066698e-12 3.444079886e-15 3.539096589e-11 2.967919094e-10 3.873255204e-14 1.409697693e-10 1.724128456e-11 1.101806469e-10 2.39330467e-11 8.035466815e-11 2.852055932e-10 2.283982593e-11 4.859851527e-11 5.960803749e-11 2.309623799e-11 6.881243569e-12 8.641645983e-11 2.978235107e-14 2.306625527e-11 1.022132494e-10 5.922015582e-12 6.393594217e-11 3.070383996e-11 7.692802115e-11 0 7.929345294e-11 1.123079076e-11 0 2.158186851e-11 6.388945748e-11 9.553786142e-12 2.385370035e-10 4.303038126e-11 2.944751834e-11 1.197388514e-11 1.615168594e-19 3.422603417e-12 0 1.246169588e-10 7.019588736e-11 1.161347921e-10 3.999332219e-12 4.640677042e-11 2.632453075e-11 2.589310264e-13 7.897417526e-11 4.238822007e-11 7.060240239e-11 9.700049346e-11 1.625237184e-11 1.031360032e-10 1.08603634e-10 3.317055954e-11 3.566782241e-11 4.808882767e-11 1.448486539e-10 3.422888212e-11 1.201268591e-10 8.018311434e-21 2.473614742e-11 1.748653261e-10 1.074517433e-10 1.262449514e-10 1.392249417e-11 4.323730487e-11 0 3.466058098e-11 1.390483532e-10 1.695394481e-10 5.860252076e-11 2.904046662e-11 3.968113864e-11 1.479531714e-11 2.553910517e-11 9.12155962e-11 6.299625928e-11 8.778308922e-11 1.147972558e-11 4.214623e-11 3.463829075e-11 0 2.442501893e-11 1.521657393e-11 2.261149449e-11 1.711774345e-10 6.67808155e-12 1.658929632e-10 8.825805323e-11 5.876598249e-11 2.945704832e-20 1.024067402e-10 1.111522654e-13 1.107226541e-10 2.031672647e-11 3.044400435e-12 8.157120358e-11 8.722705023e-11 4.46742298e-11 1.105396165e-11 3.537163393e-11 5.594300562e-11 1.052736081e-10 1.030127433e-10 0 7.986711876e-11 6.643681833e-11 5.12768493e-11 6.52063336e-11 6.727745823e-11 0 9.227187181e-11 3.842860051e-12 8.282420808e-27 6.84764956e-11 3.62978621e-11 6.850119789e-11 3.679300099e-11 4.329616386e-11 3.623518507e-11 1.491443916e-10 2.033802692e-17 3.984885553e-11 0 5.709201259e-11 1.564158011e-18 3.503323478e-11 5.628757042e-11 9.422618284e-11 8.577191131e-11 3.61561092e-11 0 1.141580268e-11 4.22685569e-11 0 5.059625524e-16 4.007899945e-11 2.027370521e-11 8.355763919e-11 2.085573134e-10 3.880557248e-11 2.202168333e-11 1.763286234e-15 5.386899571e-11 2.70606191e-11 1.639972913e-11 4.877996635e-11 2.380135545e-17 4.892245208e-11 3.986937794e-11 8.33623233e-11 2.803868615e-11 3.451597349e-11 5.785687348e-11 1.070809196e-10 1.479822116e-11 1.003780939e-10 2.931998892e-11 4.311539668e-15 5.248838144e-11 7.364208367e-13 1.411467779e-10 1.549599425e-10 5.946183499e-11 7.624655766e-11 1.601709319e-11 4.434207083e-20 1.166410615e-10 5.13195074e-11 2.607465924e-11 2.534508735e-11 9.688412427e-11 5.888604873e-12 8.477112212e-12 1.092921163e-14 4.950161281e-11 1.076767244e-10 4.40622946e-14 2.343748623e-10 0 1.17340529e-10 5.000806573e-12 1.975139868e-11 5.544026299e-11 2.949771485e-11 4.738033066e-11 1.708984517e-10 1.190083536e-11 1.35879607e-10 2.643344158e-11 4.530796643e-11 1.089379792e-10 8.478006708e-11 1.310714528e-10 8.192800575e-11 3.424235662e-11 4.356459328e-11 7.740985275e-11 4.169177498e-14 1.017112696e-11 1.759199488e-10 8.908058497e-11 9.347936502e-11 1.910945887e-11 5.734697689e-11 9.4578315e-12 2.228213723e-24 5.79625303e-11 1.169283168e-10 3.033504889e-11 1.803959935e-11 9.080522289e-12 0 1.04661648e-11 6.925025074e-11 2.041921508e-11 +2.472646958e-11 1.86727261e-10 2.385518268e-27 1.626973314e-11 1.391721988e-11 7.291664504e-11 3.810394369e-11 1.042540236e-10 0 0 1.02085408e-10 2.850220203e-20 9.91900184e-21 3.591842857e-11 1.228771122e-10 1.280454421e-10 3.592126134e-11 1.422895873e-11 6.76627557e-11 9.3849425e-11 7.12515258e-11 0 1.746348479e-10 2.825382887e-16 7.986482367e-12 6.371621262e-11 9.44555266e-11 7.987803414e-12 1.993930496e-11 3.62119346e-11 9.042079047e-12 1.496376918e-10 4.5421731e-12 2.630538091e-11 1.163192886e-11 7.273849587e-21 1.042346369e-10 1.209974576e-10 3.905778568e-11 2.244825129e-11 1.13876998e-11 5.148217828e-12 1.02069287e-15 1.803508303e-11 7.86543579e-12 4.009289806e-11 2.146251693e-26 1.678126704e-10 9.739464242e-14 9.501368058e-11 4.560274768e-12 3.824707711e-11 7.234202407e-12 0 0 7.587944515e-11 2.342128468e-11 5.291920706e-11 4.663130841e-14 1.892998417e-11 4.172272819e-14 2.37994103e-11 1.423377275e-11 9.268669271e-12 4.749106456e-11 1.393840293e-11 2.101620609e-11 2.616802432e-13 1.09408411e-11 1.638317148e-11 6.300641879e-11 7.679279806e-12 2.964405039e-11 3.821622507e-13 0 3.1521963e-11 7.336171779e-11 2.765396992e-11 1.678250821e-10 2.679936059e-10 5.647591648e-12 4.075070512e-13 0 3.078145093e-11 1.892840442e-11 1.643675884e-12 2.272272474e-10 1.107389654e-10 1.376202361e-10 1.703993961e-11 1.167698215e-11 5.235273129e-35 7.989913935e-11 1.362351923e-11 3.184036812e-11 7.36242165e-11 7.122618518e-11 5.580501516e-11 3.533685298e-11 6.310546277e-13 3.131627214e-11 0 1.498185179e-11 3.023692329e-11 4.117305573e-11 4.625474353e-11 3.256738698e-11 4.492242274e-12 1.170077283e-10 3.313671203e-12 1.88633738e-11 1.695694933e-11 7.385830969e-11 3.022699136e-11 4.216224437e-11 1.294867472e-11 3.670893527e-11 3.484177607e-22 0 0 3.590122663e-11 6.51836671e-11 1.696770268e-11 1.9582278e-10 2.01513549e-11 7.574667578e-11 1.346439628e-11 3.990075867e-11 6.289900099e-11 1.280296564e-10 7.451714592e-11 9.385207327e-11 2.189439712e-10 1.690923445e-19 9.814267461e-11 2.271108952e-10 1.137506847e-10 4.636009497e-15 3.969420309e-11 1.850008671e-11 9.444375877e-11 5.256940164e-11 8.835921415e-11 1.257591457e-11 8.446360648e-12 3.153000258e-28 1.845197609e-10 8.389964013e-11 1.402358569e-11 1.292306461e-10 1.767532697e-11 9.174315795e-11 1.057160385e-10 1.047401463e-10 3.050035645e-12 8.269112319e-11 9.594563075e-11 6.026009532e-12 6.753938732e-11 6.961642978e-11 4.491280134e-11 1.032467145e-10 1.783786589e-11 9.673207088e-12 2.561760317e-11 2.389363385e-11 4.806408006e-11 3.41587234e-26 0 4.436145675e-11 2.732039896e-11 3.441122217e-11 9.281733009e-11 3.329189801e-11 3.300816045e-11 4.307309505e-16 1.128446594e-11 0 6.694991221e-12 4.516998963e-11 0 1.33018465e-10 7.730332232e-11 5.367230473e-11 1.463482879e-11 1.300681706e-32 8.395587734e-11 0 1.613202525e-11 2.454948324e-10 1.954341006e-11 3.823155919e-11 3.056421087e-11 2.93459931e-11 2.985579249e-11 1.982790651e-11 3.310026592e-11 1.225827486e-11 3.607695148e-11 4.6588108e-11 2.601568184e-10 7.925649684e-15 1.846986918e-11 4.293629171e-12 0 1.895472444e-10 4.862375715e-11 2.813293417e-16 8.764333223e-18 0 3.406190487e-12 6.441602823e-13 2.581092588e-11 9.731295135e-11 2.372637951e-10 6.313353237e-11 4.964673697e-11 3.66438727e-11 3.186975978e-11 8.98353578e-11 1.29462926e-10 8.12215917e-11 1.321885437e-10 7.68179407e-12 1.352503003e-10 5.560543081e-11 7.566065099e-11 4.624635069e-11 3.699449279e-12 6.29280899e-11 4.65661274e-14 1.102127242e-11 2.562066199e-11 1.864136611e-11 2.658050762e-22 1.489861327e-11 0 3.851391461e-11 8.266669321e-12 0 3.109636436e-11 9.08857139e-11 7.625563521e-11 1.331162344e-10 3.154302252e-11 3.565037037e-16 3.22330741e-11 1.290568893e-10 4.70552507e-11 3.511515183e-11 2.211833272e-11 1.006629016e-10 3.718152202e-11 1.111707934e-11 9.238753611e-16 4.406546865e-12 6.584181061e-11 1.779677784e-11 7.873182972e-11 3.129553678e-10 1.862861251e-10 4.532120347e-11 5.74066305e-19 1.786850901e-10 7.584091129e-12 4.824565309e-11 5.128112802e-11 6.589682751e-11 5.361679809e-11 2.066805795e-11 3.654237512e-11 2.110284835e-11 1.380901825e-11 0 6.769678606e-20 1.452398808e-15 0 3.216659795e-27 2.193935887e-11 6.761379864e-12 1.171296128e-11 8.147414979e-11 3.911713807e-12 5.719636594e-12 1.354688787e-11 0 1.181630014e-12 4.014330465e-11 5.269762646e-12 2.16441795e-11 4.756692816e-22 6.275286289e-11 8.56187779e-12 2.137019679e-14 5.824216743e-11 1.018072601e-10 1.958313992e-11 3.708478872e-11 2.837324073e-11 1.866705942e-10 +8.302967723e-11 3.70192013e-11 3.989780347e-11 3.250286111e-11 1.626661172e-13 9.706547387e-11 3.972376968e-11 9.317017292e-12 1.990441532e-11 2.286359152e-11 5.578434815e-11 1.145274375e-11 6.300642462e-11 2.024844868e-11 2.799260774e-12 2.339879303e-11 4.380036114e-31 3.597372654e-11 8.660496492e-11 1.126935197e-10 6.251442742e-11 9.008532774e-17 3.926527967e-11 2.589227365e-12 2.544856375e-11 1.443237856e-19 1.528948952e-11 1.933881027e-11 2.210495459e-11 1.38976811e-11 4.349478531e-11 8.222808764e-11 2.25484435e-11 1.692412472e-13 3.913508588e-11 1.526212706e-10 1.063973623e-10 1.565455344e-10 1.350345193e-10 1.112536517e-10 4.508202243e-11 2.084719719e-16 1.73375631e-11 5.419696179e-11 5.860034836e-20 5.228141694e-11 1.775742987e-10 2.456860523e-11 1.004540324e-10 6.368305205e-11 3.811654846e-11 1.010980719e-10 4.849723079e-11 1.020485286e-11 7.305962697e-11 5.232213736e-11 4.635712697e-11 3.542777163e-14 2.663139889e-11 7.322668782e-11 6.622868144e-11 1.313384936e-10 6.690999712e-11 2.004222279e-10 1.008557125e-10 7.26551836e-11 0 8.220927938e-11 1.343116728e-11 6.440836607e-11 5.42035929e-11 1.249372544e-11 1.466478561e-10 2.508518517e-16 3.618266009e-11 4.941491544e-11 4.71140587e-11 4.300261589e-11 0 2.247490877e-17 7.18867775e-11 2.873636692e-13 5.016653531e-11 7.069551457e-12 1.787372032e-10 7.322028794e-11 0 5.183819936e-11 2.165886969e-11 1.252418035e-10 1.494120697e-10 1.117593012e-14 4.897151928e-11 5.941811186e-12 1.494657479e-10 1.134213309e-15 5.44593671e-11 7.60576342e-11 2.201611742e-11 0 0 6.097094124e-11 0 3.840371907e-11 7.348083431e-12 8.596784706e-11 6.092567977e-11 1.208323033e-11 1.323766089e-10 1.312917434e-13 1.204796865e-11 1.325811977e-10 6.682799716e-11 1.492419636e-10 0 0 0 7.415487641e-12 1.753747414e-15 7.641681902e-11 6.921382335e-11 0 3.039927961e-11 0 2.530260899e-11 1.07806776e-10 6.414312046e-11 6.958746384e-12 1.242318648e-11 5.346273124e-11 2.52902441e-12 0 1.125431731e-11 4.314640853e-13 3.321256499e-11 8.037039324e-11 1.885948168e-12 9.216488217e-11 3.076826288e-11 1.267273228e-10 5.259811572e-11 1.412501512e-10 9.358430022e-12 7.762805467e-11 7.297755534e-27 0 3.533606102e-11 2.217307512e-11 8.43192216e-11 3.580319066e-11 0 1.869329431e-16 5.046862689e-14 8.389511612e-11 3.509929279e-11 0 1.084352531e-11 7.071365113e-11 6.549773358e-11 7.017303495e-11 2.962184159e-11 9.762146131e-11 1.171822482e-25 6.296803366e-12 5.28345028e-12 0 0 1.009938678e-10 8.372233934e-11 2.275896515e-10 7.085602457e-11 2.69494137e-11 6.817317218e-11 2.789193124e-10 0 4.551446474e-11 3.923638842e-11 4.738275383e-14 1.56865682e-19 6.102518023e-11 0 2.080538614e-11 1.279553354e-16 1.931448624e-13 2.509628793e-11 1.765094443e-17 5.964322037e-16 1.531102192e-11 0 0 1.237033703e-11 1.147739015e-10 4.527618656e-11 1.540577263e-11 5.583362372e-25 2.035628994e-11 0 1.643984316e-12 6.049399864e-11 1.146221405e-11 1.859643215e-10 3.650714389e-11 3.075225825e-11 3.861070639e-11 2.126970944e-10 4.31537564e-17 7.848554181e-11 1.7349838e-11 3.350396053e-11 1.611177662e-19 2.374570194e-25 1.142335776e-11 2.34039963e-14 1.191650499e-12 3.907900336e-11 3.349635208e-19 1.433635953e-15 5.070825504e-11 1.263034045e-11 8.936714473e-11 9.733504539e-12 6.580399969e-12 2.247407116e-11 1.996077994e-10 6.385621181e-11 2.534927775e-11 5.493442622e-14 7.340781182e-12 7.602638488e-11 1.709651922e-11 6.702204049e-11 1.759704415e-14 1.389701723e-10 9.937874846e-15 4.470162103e-11 3.550383621e-11 3.625550656e-11 1.856244934e-11 1.173335053e-11 2.149172231e-11 6.798278608e-11 5.477683272e-11 5.713458024e-11 0 0 0 1.844097075e-11 9.43055167e-12 1.503612779e-16 9.194772213e-12 3.551810219e-11 6.249113991e-11 5.713544068e-11 0 1.652481733e-10 0 1.520905528e-11 7.891940599e-11 4.482253942e-11 3.027698821e-11 1.718014439e-10 5.375363435e-11 6.526694641e-11 4.60296814e-11 1.952695618e-10 7.100380631e-11 2.557707331e-10 6.961385295e-12 4.097033832e-11 2.536333751e-11 1.349860003e-10 0 9.20530627e-11 1.438788673e-12 7.404178392e-29 1.388511242e-11 0 4.047132848e-11 0 0 1.14730774e-11 3.525175188e-10 1.866268278e-11 3.431125993e-11 2.013623734e-10 4.018552316e-11 1.364276877e-10 1.470372639e-11 1.149750939e-10 3.152544642e-11 1.965608633e-23 0 9.077070354e-11 9.269702439e-11 1.02104583e-11 4.106642075e-11 1.040192943e-11 1.40926313e-10 4.021160354e-11 3.033785652e-11 +1.489580648e-20 6.059904683e-12 6.462118078e-11 9.35952301e-11 1.386025063e-11 0 1.004038001e-11 2.438680984e-11 2.765963435e-12 4.833048026e-12 1.646504913e-10 2.574503549e-11 5.1554249e-11 1.700731857e-11 3.172636297e-28 0 1.35858855e-11 1.26895107e-15 1.394128296e-10 8.193022104e-11 0 5.97330599e-11 5.593852804e-11 4.767938367e-11 9.539989504e-13 2.111074316e-11 4.325596769e-11 1.085926973e-11 0 1.988234268e-11 2.319417586e-11 1.236773257e-10 1.924767357e-11 2.557122941e-11 2.756970774e-11 1.263466368e-17 1.187460352e-11 1.897672102e-11 6.737908245e-11 2.475748605e-11 1.628994605e-11 0 9.721217433e-12 4.868026122e-11 1.058460933e-10 2.893853737e-11 3.769939358e-11 8.280939777e-11 7.633914447e-11 7.148294317e-11 1.76001388e-11 3.657530174e-11 2.713094518e-11 1.050041972e-10 2.539568404e-11 1.002969654e-10 0 3.63651214e-11 9.179453016e-11 1.750788312e-11 1.32744783e-11 4.129536714e-11 0 4.902044177e-11 7.892411069e-11 3.877800372e-11 1.068569868e-10 1.427076209e-10 1.217346357e-11 2.792450178e-11 4.761138517e-11 0 5.962125584e-11 1.154606883e-11 8.47265829e-11 1.246506316e-11 1.712337734e-14 3.561731953e-11 2.372849449e-11 4.492842423e-11 0 1.559145655e-11 6.001480526e-11 1.201846659e-11 5.132502941e-11 7.769865526e-11 2.544557407e-10 1.708969769e-11 0 2.137605029e-11 4.736581482e-11 9.687439351e-11 2.34536983e-11 7.145930475e-11 5.725392487e-12 0 2.571327347e-11 3.484477111e-11 0 3.337008169e-11 2.383478056e-11 0 1.424316585e-11 0 2.943194329e-11 2.09517379e-11 0 3.211373603e-11 0 4.08987902e-12 2.251775853e-10 1.749699622e-11 7.816809219e-11 3.546516582e-14 0 2.374585233e-11 1.266370175e-11 2.787462971e-19 1.95904612e-11 1.409373011e-11 6.869764877e-11 0 0 2.000080276e-15 2.421477237e-11 8.851878928e-11 0 5.416374082e-12 5.584707171e-11 0 4.210621941e-11 0 9.309708388e-12 2.844998395e-14 1.602076855e-11 1.565896023e-11 0 2.480546819e-28 6.220652451e-11 1.297522741e-14 2.721842514e-11 3.238044723e-11 1.117388307e-11 5.364571188e-13 2.424591271e-11 2.043862878e-11 3.917605518e-14 1.094037793e-11 8.202884517e-11 7.421734387e-14 6.336644166e-11 2.439004163e-11 2.00370155e-11 7.469177024e-11 4.965782758e-11 9.332207591e-11 0 1.781642072e-11 3.373932487e-11 2.860725735e-11 2.231582365e-11 1.672134802e-11 0 4.92439971e-19 6.188426803e-12 0 1.617728438e-11 0 3.335712875e-19 3.566072212e-11 2.502197712e-11 9.5702766e-20 2.539838714e-11 5.733879719e-11 0 4.560115746e-12 0 2.315242619e-11 8.444004104e-12 5.483026209e-11 0 0 5.735481338e-13 1.198887791e-11 3.066838354e-11 2.47264977e-12 0 0 2.600107158e-11 4.235437446e-11 7.804534113e-11 0 1.764294239e-10 8.210032765e-11 4.207767898e-11 2.310557634e-18 1.672757948e-15 3.649905412e-12 4.876831353e-12 4.19443769e-26 8.914381402e-11 6.454416657e-11 0 0 6.545048231e-11 5.247202973e-11 0 3.684603457e-11 1.529598141e-11 3.530768979e-22 5.466845453e-11 5.52252069e-11 1.465048967e-26 0 0 1.279906161e-11 5.803384075e-14 5.057175765e-12 2.482218822e-11 0 0 3.214816954e-11 0 3.83865821e-12 1.484572083e-10 7.049319459e-20 0 0 1.751045243e-11 2.706648662e-11 9.72644063e-12 0 5.19342477e-11 2.968362067e-11 7.970816651e-11 8.795091173e-11 3.954119773e-12 1.339145938e-15 7.76026464e-14 3.955677935e-11 4.062449938e-11 4.325077366e-11 9.834756857e-13 3.59126916e-11 8.498388249e-11 3.568353111e-11 0 1.193537764e-10 1.353735869e-11 1.040640838e-28 1.370071468e-16 0 1.818709098e-11 7.822434865e-12 3.272295302e-10 3.931165086e-11 1.950952627e-11 1.466864807e-11 9.715798889e-13 4.393820224e-11 0 2.703629851e-11 1.568343406e-11 3.919950392e-22 2.135053501e-11 4.556867503e-11 1.003151643e-12 5.309766769e-11 8.083658525e-17 7.670325588e-17 3.378834908e-11 1.840054196e-11 2.845650174e-11 6.613538013e-14 1.500847972e-11 3.352481873e-11 0 6.446997668e-15 8.074744618e-12 2.168473929e-10 1.587473163e-15 0 4.428356461e-11 4.38617035e-17 4.051702172e-11 0 2.181638484e-11 9.597263838e-12 2.228465471e-11 1.336331981e-11 5.906670963e-19 0 2.722834522e-11 9.430130798e-12 5.33910252e-11 6.221180655e-11 1.137086673e-11 7.890131137e-12 1.066230842e-10 6.309368687e-12 +8.16727216e-12 9.013387381e-12 6.85190977e-11 0 4.288090201e-12 7.958177074e-18 6.803216353e-11 2.200344249e-11 1.80123704e-11 6.105414303e-11 4.893689784e-11 1.201566666e-11 3.747844228e-11 1.045503663e-10 3.177065628e-11 0 2.457542605e-11 2.553461293e-11 9.025880906e-11 0 9.664426524e-12 1.406517184e-11 1.429919803e-10 2.253005784e-11 0 2.14608222e-12 3.042175232e-13 2.564286595e-11 0 0 0 0 1.216715658e-10 3.432030012e-11 0 6.342022834e-11 0 1.562877926e-11 3.684625913e-11 1.573642329e-11 4.64240044e-11 8.816497362e-11 1.258287318e-11 1.127625683e-14 3.179072888e-11 2.617990835e-11 4.909602464e-11 1.283562556e-11 0 6.807263748e-11 4.352094441e-11 8.303337844e-12 0 6.62325988e-18 0 4.101335438e-11 9.10986128e-12 0 2.110395522e-11 0 0 1.180909571e-14 0 5.424228474e-11 3.697504929e-11 0 6.372592177e-11 7.286728712e-12 2.242450546e-11 2.787160442e-16 6.874745443e-12 1.058765505e-10 2.159561379e-11 5.647272392e-11 0 4.455607639e-12 2.944463327e-11 0 1.463631688e-11 1.97393235e-10 0 2.749176439e-11 1.176899034e-10 1.473836151e-11 4.946471157e-39 4.243900149e-11 1.15445988e-11 3.666010828e-11 1.099339056e-15 2.047124419e-11 1.09904929e-11 2.775338809e-11 3.218862793e-11 4.200015476e-13 0 0 0 1.089146422e-25 8.543811952e-12 0 1.112100484e-11 0 1.317305423e-10 2.273915506e-11 5.903120802e-11 1.261798224e-18 5.329471416e-22 7.936267825e-12 1.81131015e-10 9.896383597e-12 1.226693751e-11 4.48811347e-20 1.379474227e-12 1.667173041e-10 3.511543361e-11 1.206144123e-11 8.098773856e-11 1.168582849e-10 0 0 1.264875419e-10 8.289001668e-15 2.593623633e-11 1.519297589e-10 2.482518113e-15 2.822015188e-11 0 0 9.317759434e-12 8.130694459e-29 1.195760236e-10 4.017347562e-11 3.685634888e-11 5.48243088e-11 0 6.554361113e-13 4.035245492e-12 4.694448528e-11 8.217863454e-12 0 1.206879896e-10 3.300505457e-11 0 9.393605436e-11 1.396675596e-10 0 5.724686669e-11 1.894344231e-12 0 3.42078086e-12 1.523963613e-11 0 3.132498745e-11 2.683742527e-11 3.046959516e-11 0 4.169428391e-11 8.439200475e-29 2.191615468e-11 4.83080782e-11 8.757103816e-11 1.49620972e-11 2.042659784e-11 8.630330128e-11 3.050396297e-11 4.38812978e-12 0 0 4.404528655e-11 8.223959613e-12 6.638185944e-14 0 9.629206001e-11 9.923444529e-27 5.667651689e-12 9.97953922e-11 3.610702093e-11 4.00263377e-11 0 1.202588912e-11 1.224142051e-15 0 3.944614242e-14 5.116329807e-11 0 2.266541104e-11 1.865509886e-11 1.272637981e-11 0 0 2.342333453e-11 1.309744516e-10 4.91584748e-11 1.217623363e-24 1.833555092e-11 2.359086787e-18 1.605376867e-11 0 2.166728925e-11 0 1.351436988e-11 0 2.627597087e-15 4.492143189e-11 1.782123211e-11 2.674997793e-10 3.163999042e-11 0 7.515609409e-11 1.317295918e-11 8.696117582e-11 0 1.632255108e-11 0 2.430830684e-11 2.716401783e-18 0 3.494825408e-11 1.593894447e-11 2.286705287e-11 1.458298184e-11 4.569110155e-17 0 5.593601119e-11 0 0 1.706023951e-11 2.439209627e-11 2.906429278e-11 9.826828263e-12 2.964645996e-11 4.603530955e-11 3.855740588e-11 1.887288506e-11 3.282639694e-24 3.407873714e-11 0 7.146126404e-12 0 1.965350378e-11 2.473986413e-25 4.513218132e-11 8.212389315e-12 7.186767775e-26 0 1.019688654e-11 6.243602909e-11 7.514227312e-16 1.152676269e-10 4.283447698e-11 0 0 0 2.526635599e-11 5.90149192e-11 4.880661685e-13 6.224221597e-11 0 2.43962897e-11 4.742936144e-11 8.340202146e-11 4.67035978e-16 5.243919608e-11 1.7402513e-11 6.61184839e-11 1.312002152e-11 2.674720533e-11 5.222510886e-11 4.623201505e-11 1.424533437e-10 2.425512579e-11 2.735900737e-11 8.519503154e-23 6.807629004e-11 0 5.450827039e-11 1.426749227e-11 0 0 2.327499776e-11 1.746045411e-11 6.469619002e-11 1.682369601e-10 5.580717357e-11 1.56038039e-10 4.250768168e-11 2.329512021e-12 3.178877105e-11 1.859002603e-11 0 6.522894431e-12 5.887748834e-19 3.385120722e-11 0 0 1.075820898e-13 0 4.514762448e-11 0 0 +2.272332163e-11 3.546906704e-18 1.305914561e-11 8.696812351e-17 4.500625999e-16 0 2.242396798e-11 1.725136802e-10 0 1.170143568e-10 1.067350095e-23 1.989831586e-11 1.473585806e-11 1.343889179e-10 2.772921519e-19 1.863570001e-11 0 5.297521529e-11 6.230478547e-11 7.709916506e-11 1.197543121e-11 0 0 0 0 6.953725703e-12 0 0 7.145733754e-14 1.093271853e-10 3.609759573e-11 2.468431379e-12 2.275904521e-11 1.303518991e-16 7.975399803e-15 0 9.895736265e-11 7.62064989e-11 7.72753963e-11 1.823146713e-12 3.627882873e-11 1.603014873e-11 9.104286588e-11 1.489407098e-11 0 5.224415553e-20 1.388380068e-12 1.56172569e-10 5.454494901e-11 6.115101141e-11 1.577268122e-11 0 1.162377879e-20 0 4.011977638e-11 8.27484088e-12 1.178299189e-11 1.859943775e-11 8.501724464e-12 1.663587814e-11 9.876270545e-12 1.844586651e-11 2.502458824e-10 0 2.068690399e-11 0 0 0 6.793529956e-18 8.575343448e-12 1.832052185e-11 1.337781297e-11 0 2.32432685e-11 1.310467511e-10 0 2.756555858e-11 8.93130786e-12 0 0 6.074409823e-11 8.572442597e-22 1.085740738e-12 2.030729422e-10 0 7.828835374e-11 1.270641484e-11 0 4.136192624e-13 5.535647635e-11 1.364432924e-12 1.676025981e-11 8.624654667e-27 0 0 0 0 0 3.376890098e-11 5.806544777e-24 1.407969873e-10 0 1.687703466e-11 0 2.641749876e-25 3.371876919e-11 0 2.744914298e-11 0 1.238548421e-11 0 6.098428803e-11 2.30227782e-11 4.864860191e-15 5.617708001e-12 0 1.87377818e-11 3.440471372e-12 0 2.0934854e-20 0 0 4.557112361e-16 0 3.592494068e-11 4.625226349e-11 1.785042863e-13 0 8.653147897e-11 5.835657019e-18 0 4.010347169e-11 0 0 2.087192742e-11 0 3.899234222e-11 5.311527186e-12 6.978625708e-11 2.530113525e-11 1.461580577e-10 3.839636437e-11 0 1.630601139e-15 8.771884844e-12 6.600796211e-11 0 2.011620366e-11 1.225242507e-11 1.19652388e-15 2.560138309e-13 0 1.154204397e-12 1.661646779e-11 0 2.824784715e-10 1.57471612e-10 0 0 0 5.714923022e-11 1.464515602e-10 0 6.184771306e-11 0 4.53645261e-11 0 1.133070473e-15 1.353871607e-11 0 1.417761447e-11 0 1.834977915e-11 1.12780819e-11 0 0 0 1.182360612e-11 7.762795125e-20 1.205258357e-10 7.9980272e-26 0 6.917119058e-17 0 2.055551627e-15 3.553517077e-21 2.622296161e-15 3.605430738e-11 0 0 0 9.785558731e-11 2.251045959e-11 0 0 0 0 4.231067604e-12 3.148666201e-11 4.132268421e-12 8.440152096e-20 8.569146891e-12 8.778880585e-12 1.385272411e-11 1.333351292e-10 4.894161967e-25 1.221625376e-10 1.046624706e-11 0 1.310554531e-11 3.035555941e-13 3.853602581e-27 0 1.766493919e-27 3.321805372e-12 9.067807318e-12 0 2.016521284e-18 0 9.825240058e-11 0 1.253056614e-11 1.166336943e-11 2.173553465e-27 0 5.988883152e-11 1.398397835e-10 4.061090177e-11 1.736825548e-11 1.104898545e-14 0 2.831912519e-11 0 9.625961398e-12 3.79245821e-11 3.53098426e-27 7.079362606e-11 0 0 3.361676368e-11 3.611578069e-15 0 5.259871409e-17 4.751772453e-22 1.109373648e-10 4.168972457e-12 1.370730241e-11 5.535677467e-15 1.22766591e-11 1.330344761e-11 0 1.375437414e-11 3.795797196e-11 0 8.936606287e-12 5.840069466e-12 1.791070819e-11 1.834146449e-11 9.980613601e-12 4.506276836e-11 0 0 0 0 1.353133342e-11 2.584959209e-10 0 0 8.066619281e-27 7.076414596e-11 4.322900161e-14 2.490373769e-10 5.205307262e-11 0 0 1.652012677e-11 0 1.12087242e-16 1.613386334e-11 1.214459347e-11 2.023813856e-11 3.940143665e-14 2.417553666e-12 7.281253343e-11 4.951365198e-11 1.359073345e-10 8.498994092e-12 0 0 4.466511503e-11 0 1.708084605e-11 3.874236844e-12 0 6.515870329e-14 7.895540656e-22 0 0 9.207761633e-11 0 +3.854143313e-11 1.026657383e-21 9.590040186e-11 5.436890206e-13 0 0 8.041393119e-11 0 1.156728519e-11 4.080787073e-13 7.209632601e-12 8.171669945e-12 0 1.186194434e-11 0 0 0 0 2.56356211e-11 1.003650928e-21 0 0 1.858357254e-11 0 5.034909855e-14 8.472066894e-11 0 1.492592093e-11 0 2.006554771e-11 1.649981048e-11 0 1.913959256e-11 0 0 3.387005092e-12 5.704758297e-17 0 0 0 3.387081462e-22 1.612691594e-22 0 4.55844431e-11 8.66059059e-11 1.635532249e-14 6.776615322e-11 8.49250912e-12 0 0 0 3.800905036e-11 0 0 1.196402897e-10 8.846363689e-15 2.143482751e-11 6.316215678e-12 0 6.342808856e-21 0 0 0 0 7.176768899e-12 0 1.360251211e-17 0 0 6.123577777e-11 2.073355886e-14 1.037369873e-13 1.124598805e-11 1.053053861e-14 1.37825923e-10 9.760141924e-12 1.058923782e-16 0 0 0 0 0 0 1.541277957e-23 5.512202366e-12 2.477484348e-11 0 5.052537321e-12 8.933247552e-11 2.117972334e-10 0 1.55019732e-10 4.040497465e-15 0 7.192940621e-11 0 0 0 0 5.417701655e-11 0 0 0 0 6.201234477e-11 0 8.544821432e-11 5.020583005e-11 0 4.927434072e-11 0 4.495621832e-11 3.905665401e-11 0 0 0 0 0 0 0 3.185107581e-12 0 1.009803637e-22 0 0 0 6.651065493e-11 0 4.932877634e-11 0 3.639828754e-11 0 1.381201342e-19 0 2.100003763e-11 7.197002219e-11 0 0 9.094947741e-12 0 0 0 0 1.458891699e-11 0 0 0 0 0 0 0 0 0 1.874045877e-11 0 0 0 3.653143614e-23 0 2.277664305e-17 0 0 0 0 4.831366603e-11 6.041245822e-11 0 0 0 0 0 4.591518198e-12 0 3.327837528e-17 0 0 0 0 0 0 3.589392133e-11 1.59251708e-11 8.426195708e-14 4.202472388e-11 0 0 0 9.48617902e-12 0 2.030177348e-11 1.064115272e-10 2.988722428e-19 2.802235245e-11 3.73076024e-11 7.213998307e-21 6.460137562e-13 0 0 0 0 4.424737302e-27 3.42278029e-11 1.382790742e-11 0 2.707759212e-11 0 7.774852329e-11 3.908566059e-12 8.246351403e-11 1.911029394e-11 5.925959101e-11 0 0 0 4.179168242e-12 9.961725581e-11 4.282908207e-11 3.361247416e-14 2.156951066e-11 0 3.110835376e-12 0 0 1.203258941e-15 2.163086408e-23 0 0 0 0 0 2.342788044e-14 0 4.733146098e-12 3.030847178e-18 0 2.892029347e-12 3.296802701e-11 6.853227803e-12 1.386051983e-13 0 6.176386499e-11 0 0 6.298175882e-12 3.48668491e-11 2.152342279e-14 4.92422175e-18 0 3.473491927e-11 0 1.39791514e-10 6.525015573e-14 1.675899802e-10 0 2.621302174e-11 4.531058077e-11 0 0 0 1.368009811e-17 4.399831008e-11 1.20898099e-18 6.845478776e-12 0 9.008422471e-12 1.080502466e-11 1.094294668e-10 1.366102611e-11 0 7.233870899e-27 4.457941667e-11 0 0 0 7.62655172e-12 1.160504387e-12 0 5.325047045e-11 0 1.985692292e-11 0 8.145303748e-12 7.359504202e-11 0 3.497885799e-11 0 0 0 2.118001682e-11 1.219121593e-10 0 0 4.48212315e-11 3.651590528e-21 6.898926758e-11 3.313222503e-13 3.155086414e-11 9.898950868e-12 0 0 +1.586978939e-11 1.319099627e-11 1.96547699e-11 0 1.736250259e-13 0 0 0 0 0 0 0 4.191338547e-11 0 8.763651858e-12 0 0 5.308245583e-11 0 2.622501613e-33 0 7.331623658e-11 0 1.683631579e-11 0 1.413867017e-11 3.464976682e-11 1.887003506e-11 0 0 0 3.142851108e-11 0 1.15220549e-19 3.431095415e-24 3.699740758e-11 0 0 0 0 8.003085878e-19 0 0 0 0 5.44481376e-11 1.227137609e-11 4.71992571e-19 1.344556206e-11 0 0 0 0 2.727825877e-11 6.341591893e-15 0 0 3.414777445e-11 8.157447888e-13 0 0 0 8.127969344e-28 0 0 0 1.201381989e-11 2.224508983e-14 0 0 1.811254881e-11 0 0 0 2.86233352e-11 4.243234681e-11 0 0 0 0 2.555977718e-14 0 3.381901564e-11 1.217989082e-11 0 0 0 0 0 0 0 6.257700724e-27 0 7.229932043e-11 0 3.20483595e-11 0 0 3.290721681e-11 0 0 5.602867648e-11 0 0 0 6.734905977e-11 0 0 5.906117316e-12 0 0 0 4.241251463e-26 2.847603158e-11 0 8.727405172e-20 0 0 0 0 1.774580597e-11 0 0 2.254105073e-11 0 2.033088131e-11 0 1.035882009e-11 0 0 0 0 3.861591415e-13 0 0 0 0 0 0 5.587858396e-12 0 3.536690334e-11 6.240006037e-14 0 0 0 1.897802023e-24 1.007665495e-11 0 3.886387306e-11 2.917768757e-21 8.305178859e-11 0 0 0 0 3.53632433e-25 0 1.453155407e-15 0 3.565260025e-11 0 2.97677064e-11 1.231086717e-16 1.23424149e-11 0 0 1.516655371e-19 8.23235104e-12 0 0 1.03520037e-41 2.085612058e-12 0 0 0 9.386284685e-12 0 0 4.6624693e-18 0 0 3.158327793e-14 1.68451955e-11 8.609770793e-11 1.100811418e-14 0 0 0 1.611128942e-26 0 1.561678094e-11 1.108033957e-11 0 0 0 0 0 0 2.712049046e-14 0 0 0 3.265212501e-19 4.121581341e-12 0 0 0 0 0 0 0 0 0 0 0 2.532721583e-14 0 0 0 3.473432651e-15 0 7.548912606e-11 0 0 0 0 0 0 0 2.032140667e-11 3.10785741e-11 2.49945868e-11 0 0 0 1.052237108e-11 0 0 0 3.651740097e-21 0 6.419349953e-12 0 0 5.008457864e-12 0 3.936186209e-11 0 0 0 0 0 0 7.93789828e-16 0 8.953613596e-12 0 2.074966985e-11 0 0 0 4.054128214e-11 0 0 0 1.460012203e-11 3.308446462e-16 0 2.102265695e-14 3.045817511e-11 0 0 0 4.863487271e-11 0 0 0 1.510245272e-11 0 4.278436831e-11 0 0 2.763536447e-11 0 1.343843331e-10 4.380489002e-11 0 0 0 0 0 0 0 0 0 0 0 0 1.021158245e-11 +# Events [PSD_4PI/PSD_4PI.dat] N: +0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 +0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 2 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 2 0 2 0 1 2 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 2 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 2 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 0 1 2 1 1 0 0 0 2 1 0 2 0 2 0 2 0 0 1 2 0 0 1 1 1 1 1 0 1 0 2 4 1 0 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 2 0 0 0 0 1 1 1 1 2 0 1 1 0 0 1 0 2 0 0 1 2 0 1 1 1 0 1 0 1 1 0 2 0 1 0 2 1 2 0 0 0 0 1 0 0 0 0 0 0 +2 0 0 1 0 0 2 0 1 2 0 0 1 1 0 1 0 0 2 0 2 2 2 1 0 0 0 0 1 2 1 1 1 0 0 2 0 2 1 0 2 2 1 4 0 0 0 1 0 1 3 0 0 1 2 1 0 0 2 0 0 3 1 1 0 0 3 0 0 2 0 0 1 1 3 1 0 2 0 0 1 0 2 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 2 1 1 0 1 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 4 0 0 0 1 0 1 1 0 1 2 2 0 1 1 1 0 1 0 0 1 0 0 2 1 1 0 0 2 2 0 0 1 1 0 1 1 0 0 1 1 2 1 1 1 1 0 0 0 0 0 0 0 0 1 3 0 0 0 2 2 2 0 0 1 2 0 2 1 1 0 1 1 0 0 0 2 0 1 1 2 0 4 0 0 0 1 1 0 0 0 0 1 3 3 0 0 1 1 0 1 1 0 3 0 1 0 1 0 2 0 0 0 2 1 1 2 0 2 1 1 0 0 2 1 1 0 2 0 0 0 2 0 0 0 2 2 1 1 1 0 1 2 1 1 2 1 0 3 1 0 1 1 2 0 1 1 0 1 1 1 1 3 2 0 1 0 2 0 1 1 0 1 2 +2 0 0 0 0 0 3 0 1 0 2 1 2 2 1 2 0 1 2 3 0 1 3 3 1 0 1 1 0 0 2 0 2 3 1 0 2 0 3 2 0 3 0 1 2 0 2 0 1 1 1 2 2 0 0 2 2 1 0 2 0 2 1 0 2 1 2 1 3 1 0 1 0 3 0 1 2 1 2 2 0 3 0 2 1 3 0 3 2 1 1 1 2 4 2 1 0 0 1 0 0 0 0 2 1 1 1 1 0 1 1 0 0 2 1 2 2 0 2 4 2 2 1 0 2 1 2 1 0 0 2 1 2 0 2 2 1 0 4 2 0 2 1 1 3 1 0 1 0 1 1 1 2 0 1 1 0 0 1 3 1 2 1 0 0 0 0 1 1 0 2 1 1 2 0 0 1 2 1 1 2 0 1 0 1 0 0 1 1 2 0 0 0 1 3 2 2 1 1 1 0 0 2 1 0 2 0 1 0 2 0 0 0 1 0 0 1 3 1 0 2 1 0 1 2 1 1 1 2 1 1 1 0 0 0 0 2 0 0 1 1 1 1 1 1 2 1 1 1 0 3 1 0 1 1 0 1 0 1 1 0 0 1 0 2 0 0 1 2 0 0 1 2 2 0 3 0 1 3 0 0 6 1 0 1 3 0 1 2 4 1 1 4 2 0 0 3 1 0 2 +2 4 0 1 1 3 1 1 0 1 0 4 1 1 0 0 3 2 3 1 1 1 0 1 0 3 2 1 2 3 0 2 2 1 2 1 2 1 1 2 2 5 0 0 1 0 2 1 3 0 1 1 2 0 4 3 0 2 0 2 2 3 2 3 0 1 2 0 0 4 1 3 2 2 0 2 2 0 2 1 0 0 3 3 2 4 1 2 1 0 2 1 2 4 3 2 1 0 1 1 2 1 1 2 2 2 2 2 2 0 2 0 3 1 0 2 0 2 0 0 2 2 1 2 0 2 1 3 2 0 1 0 0 0 0 4 1 1 1 1 1 1 4 2 2 4 4 3 0 1 0 1 1 0 0 0 0 2 0 2 0 0 1 3 1 0 2 1 0 2 4 3 0 2 3 1 1 2 1 0 0 2 1 1 0 0 0 1 2 2 4 0 1 0 1 2 1 1 1 0 1 2 0 2 3 0 4 2 2 0 1 0 3 1 3 1 0 0 0 2 2 0 2 2 2 1 2 1 5 1 5 1 3 3 0 3 3 1 2 2 1 3 1 1 3 3 2 0 0 3 2 0 0 2 3 1 0 2 3 2 1 0 1 2 3 2 2 2 2 1 0 2 0 0 2 1 0 0 3 1 4 2 1 4 1 3 1 3 0 2 2 0 2 4 0 2 0 1 2 2 +2 3 3 1 0 5 0 1 1 4 1 1 5 1 2 3 0 0 3 1 4 3 0 2 7 3 2 6 2 1 1 3 3 3 4 2 1 6 3 2 2 5 3 2 2 2 4 2 2 4 2 5 2 0 4 1 4 1 2 3 1 3 3 3 5 3 2 4 0 0 2 1 1 1 4 1 4 2 0 1 1 2 1 1 5 2 2 2 3 1 0 1 3 2 3 0 7 1 0 2 2 2 3 0 1 0 4 2 1 1 2 1 0 1 0 3 1 3 0 3 1 3 2 1 1 0 0 3 4 2 3 1 1 1 3 4 3 0 1 3 1 0 0 0 5 0 2 2 2 1 2 2 2 2 2 2 1 1 0 0 3 3 1 6 0 1 2 3 1 3 2 1 1 0 3 0 0 2 0 1 1 0 0 4 1 0 1 0 2 3 1 2 2 2 1 1 2 2 2 3 1 1 1 0 3 2 4 0 2 1 0 2 1 2 3 2 2 3 3 0 0 2 6 2 3 1 0 2 3 1 0 1 4 3 3 2 2 2 3 4 1 0 0 2 0 1 2 1 3 0 4 3 1 3 1 2 3 1 3 1 2 0 1 1 2 1 3 1 3 3 1 2 3 1 3 1 2 1 3 2 1 4 2 3 0 0 3 2 2 4 1 1 3 0 2 2 1 1 1 0 +5 0 0 5 3 2 3 2 7 3 2 0 1 2 0 3 3 2 2 3 3 5 0 0 3 1 3 5 1 2 1 2 4 2 2 1 5 5 4 5 0 5 4 4 2 2 3 3 1 4 3 4 1 1 3 4 0 2 6 3 0 5 1 0 2 3 3 1 3 2 3 4 1 7 1 2 1 3 0 2 4 3 6 2 3 1 2 4 1 3 2 3 2 2 4 1 4 2 0 1 0 0 2 3 3 1 2 3 1 0 1 5 0 2 4 0 2 3 3 2 0 2 0 2 1 4 0 1 0 0 0 1 1 4 1 1 3 3 1 2 0 1 1 1 5 1 2 0 1 1 1 1 1 0 1 3 0 1 0 4 0 5 5 0 1 4 2 1 2 1 2 3 2 1 4 1 1 1 2 3 2 4 1 1 1 0 1 3 4 1 1 2 1 2 1 3 4 2 4 3 1 2 3 1 3 1 1 0 1 5 2 3 3 1 0 2 4 0 3 6 1 3 0 2 3 2 2 3 3 2 2 3 3 2 1 0 3 3 2 1 3 1 2 4 4 1 6 3 2 4 0 0 4 1 3 2 2 1 3 3 2 5 4 1 3 2 0 1 4 2 4 1 1 3 2 2 1 2 2 2 3 2 6 6 2 2 4 4 1 1 4 2 1 2 0 7 0 0 2 2 +4 6 3 4 0 2 5 3 4 4 3 4 1 4 2 6 3 3 1 1 3 2 2 4 0 0 1 2 0 8 5 4 4 2 2 7 4 3 1 1 2 2 4 1 2 4 2 3 1 6 2 4 1 4 2 1 5 3 4 0 4 5 6 1 4 4 3 1 5 1 4 4 5 5 3 1 3 2 2 6 3 5 1 7 3 2 1 4 2 4 3 3 2 1 2 1 3 2 3 2 1 3 7 3 0 2 4 3 1 0 1 1 1 2 2 0 2 1 2 2 4 1 5 5 4 4 3 2 3 5 2 3 2 0 3 2 2 0 2 1 1 1 2 0 0 2 3 3 2 1 3 1 2 2 3 3 2 5 1 1 5 2 5 0 3 2 4 4 1 2 2 0 2 2 2 3 2 7 3 1 3 3 3 1 4 4 2 1 2 3 2 4 2 3 4 1 2 3 4 3 2 1 1 2 3 4 1 3 1 2 4 1 4 3 3 3 4 1 1 2 1 0 3 5 2 7 6 1 2 6 3 3 3 3 2 3 2 3 4 1 3 2 3 3 2 0 4 2 2 3 3 2 4 6 3 3 3 3 2 6 3 2 4 4 3 3 1 4 1 1 3 3 4 2 3 5 3 1 1 3 2 2 3 4 2 1 4 2 8 2 2 4 6 8 2 4 3 3 5 4 +3 6 3 7 3 9 4 2 2 6 6 3 1 7 6 5 1 6 3 5 4 4 6 5 5 6 6 2 2 2 5 7 1 3 3 1 2 1 3 2 7 3 4 3 5 1 6 2 2 4 2 3 1 3 5 3 3 5 2 5 6 4 4 2 2 3 5 5 6 0 3 0 2 3 4 3 3 2 0 4 6 0 3 3 2 2 2 3 3 2 4 2 4 2 3 2 6 2 5 2 3 3 4 1 2 4 3 2 3 5 5 3 4 2 4 7 0 4 2 4 6 0 3 2 2 2 5 2 4 2 2 4 5 6 3 3 3 0 2 1 5 5 4 2 3 5 3 7 5 2 3 2 3 2 4 3 4 3 4 2 9 8 3 3 3 6 3 1 4 2 1 2 0 3 6 2 4 3 2 2 4 5 3 0 2 2 3 3 1 2 4 1 0 2 0 3 4 3 4 1 2 3 4 1 0 2 3 3 6 3 3 4 3 4 1 5 4 3 4 5 3 3 5 1 3 3 7 4 1 2 2 6 9 4 4 3 3 3 5 0 1 5 1 4 2 4 6 0 5 1 2 2 2 1 6 6 4 4 0 6 1 5 1 2 0 2 0 1 3 3 2 1 2 4 6 4 3 1 3 3 5 4 0 5 3 8 5 4 4 4 9 6 5 4 4 5 4 5 2 4 +7 1 5 5 1 6 3 3 2 9 6 5 3 4 3 4 2 2 4 3 5 4 2 5 4 2 1 5 4 4 7 1 4 2 1 3 3 2 1 6 1 4 5 0 0 6 5 5 3 3 2 6 3 2 4 4 1 3 1 2 6 1 3 2 6 2 4 5 6 1 6 1 5 5 5 1 5 4 1 2 2 4 5 2 1 3 4 4 1 3 3 2 4 3 5 2 3 2 5 2 3 3 2 5 0 2 4 1 2 3 2 1 2 4 3 5 4 4 6 4 4 2 2 1 3 5 7 0 6 4 5 1 2 4 3 5 3 4 4 4 3 3 5 5 4 6 2 4 3 2 4 3 4 1 5 5 4 4 2 3 5 5 4 2 6 4 2 2 1 3 1 1 3 1 6 4 4 4 7 5 3 8 1 3 0 4 1 1 0 5 1 5 1 3 0 2 7 1 2 3 1 2 5 3 3 1 0 1 0 6 1 3 4 3 6 1 1 6 4 1 5 5 4 4 3 2 5 3 1 5 5 2 4 5 3 3 1 5 5 3 1 3 3 5 2 2 2 3 3 4 6 1 6 4 3 2 2 6 4 3 4 4 1 5 7 3 3 7 6 2 8 5 3 4 10 7 1 6 4 5 7 1 5 4 6 7 4 0 2 1 7 7 4 6 6 4 3 4 7 4 +6 4 4 5 3 2 4 4 4 3 6 4 7 5 5 5 3 5 4 5 5 9 3 2 5 4 6 6 3 3 0 3 4 1 6 4 9 10 6 3 5 8 1 3 4 2 2 4 3 0 2 4 2 5 6 2 4 3 7 4 4 1 4 6 3 2 2 5 1 3 3 2 3 5 4 1 1 5 4 2 3 3 3 2 4 6 7 3 7 2 1 6 5 7 1 0 3 3 3 2 4 5 1 1 5 6 1 2 2 1 3 1 5 4 2 1 6 9 5 3 7 2 3 6 3 8 2 5 9 10 4 1 6 5 4 3 5 11 4 10 7 9 3 4 2 5 1 5 7 5 5 3 8 4 6 4 3 5 4 6 4 6 3 6 4 5 3 3 4 2 3 4 9 8 2 3 2 2 5 6 2 7 6 5 0 5 4 4 3 5 2 4 7 3 2 2 1 1 2 1 3 1 7 5 3 1 1 4 3 2 1 0 5 2 2 3 5 3 1 5 3 3 4 3 4 3 4 3 4 2 2 5 3 1 3 0 6 2 3 3 6 1 4 3 2 6 1 4 3 7 7 4 2 3 4 3 5 1 3 4 7 6 3 3 8 5 10 1 6 5 6 3 3 3 3 4 4 4 4 7 7 4 4 1 9 1 5 1 3 4 6 6 6 8 2 5 5 1 3 9 +4 5 7 4 10 6 7 2 5 2 3 4 9 3 4 7 3 4 4 7 5 7 7 5 8 6 6 2 4 2 5 4 7 5 5 3 7 6 5 5 6 6 4 2 4 2 7 1 4 6 3 4 7 4 4 2 5 6 6 2 5 3 4 3 6 5 7 3 6 2 3 3 7 7 4 4 4 2 4 1 2 0 9 5 3 3 4 3 6 3 4 3 3 3 5 3 1 5 2 5 1 10 5 3 5 2 8 3 6 4 3 6 7 8 6 6 4 5 8 2 4 1 7 1 6 6 7 6 8 6 6 7 7 6 5 6 6 5 4 4 3 6 4 2 4 4 1 8 3 5 8 6 10 12 6 5 1 6 3 6 7 9 6 4 8 4 5 3 1 2 9 3 2 2 7 3 5 3 5 2 3 2 4 7 8 3 6 6 7 2 5 7 6 4 0 2 3 2 5 6 8 7 4 2 6 5 2 7 7 3 3 4 4 0 1 1 6 1 3 4 3 5 4 0 2 3 7 8 10 3 3 3 8 2 4 4 3 7 6 10 2 6 4 6 6 5 4 3 5 4 1 3 2 1 5 10 1 6 6 3 5 10 2 8 6 6 7 5 7 4 2 8 3 4 6 10 2 2 4 8 4 6 5 3 3 7 7 9 5 5 3 10 5 5 5 5 6 5 5 2 +5 3 4 2 11 6 6 7 7 6 4 6 3 9 7 10 5 4 4 7 2 7 2 3 4 9 6 4 3 3 9 6 9 4 6 7 2 7 5 3 7 6 4 6 4 4 6 4 4 4 3 3 3 3 8 6 4 8 3 3 3 4 7 4 2 1 2 6 7 6 2 8 4 7 3 5 5 2 1 6 5 4 4 5 3 3 6 2 3 1 2 5 2 3 2 5 5 5 6 2 5 2 2 5 4 1 5 2 3 6 4 8 8 4 4 7 10 8 7 5 3 4 4 4 5 2 2 8 6 9 6 5 8 7 3 6 4 5 13 8 10 4 3 6 8 8 4 9 8 4 6 5 4 12 4 4 8 4 7 6 4 8 8 11 6 11 12 7 8 7 7 5 5 7 7 4 5 5 6 3 7 9 6 6 7 5 5 7 9 4 0 3 4 4 3 7 2 3 2 4 2 2 3 3 6 4 8 3 6 3 3 5 2 9 8 2 2 4 3 4 7 3 4 3 8 5 7 2 4 9 8 4 4 6 3 4 2 2 9 10 4 1 2 3 3 4 4 6 4 5 7 4 4 6 4 4 6 4 4 2 8 4 6 2 5 3 7 7 4 5 5 4 3 4 7 3 7 7 6 3 6 7 6 7 8 4 2 3 7 8 3 4 7 8 6 3 11 7 1 9 +3 7 5 8 6 6 7 10 5 4 3 1 9 6 6 10 6 8 5 5 12 8 4 5 4 8 7 7 12 6 7 5 5 3 4 6 7 6 8 6 6 3 5 9 4 6 3 4 7 10 2 5 3 14 3 5 4 8 6 2 5 6 6 3 5 3 8 1 6 6 6 3 2 6 1 8 1 6 3 2 3 0 4 4 6 1 6 2 1 3 4 3 4 8 3 3 6 2 6 6 4 4 4 5 5 6 9 5 3 6 4 6 5 5 6 8 6 6 8 5 4 6 4 3 13 9 6 4 3 4 6 6 7 9 8 7 15 8 5 3 11 5 3 8 4 7 6 10 13 9 13 7 8 6 6 6 11 10 9 5 8 2 7 7 12 11 5 4 7 8 7 10 4 11 7 8 12 3 7 6 6 7 6 8 3 10 8 3 4 6 6 4 4 1 5 4 7 5 4 3 2 3 3 3 5 1 3 2 6 3 3 6 4 3 1 7 1 7 4 2 4 6 7 3 5 4 8 6 3 4 1 5 5 8 6 3 4 4 7 2 8 4 9 6 3 3 8 8 2 6 1 6 3 3 7 6 6 7 5 10 6 6 4 4 7 5 6 4 5 10 5 4 11 5 9 6 7 8 10 10 5 10 8 7 2 8 6 4 6 12 6 4 5 4 7 7 6 11 8 6 +10 4 7 8 6 2 7 10 12 5 9 7 8 6 9 8 9 7 2 5 2 3 4 11 10 9 4 8 5 2 10 6 4 3 10 11 6 4 4 8 5 7 5 6 10 5 6 10 9 2 4 7 5 3 4 4 7 1 5 6 7 13 3 6 7 2 3 4 3 7 5 7 4 3 5 5 3 3 5 5 4 6 8 2 3 3 4 7 9 3 5 9 5 4 4 5 4 4 5 5 4 4 9 2 2 10 13 7 2 0 2 8 6 5 4 2 11 8 10 6 8 11 9 8 9 11 6 8 7 8 6 5 10 3 10 14 11 13 6 12 10 10 8 10 6 10 5 8 7 12 8 9 7 9 9 9 5 3 8 7 8 7 11 8 9 7 12 6 7 8 7 6 8 7 9 8 7 7 4 7 8 4 5 7 9 8 5 3 5 5 7 10 7 4 12 8 2 6 9 6 5 6 4 3 1 4 4 4 7 4 7 5 3 5 5 5 2 7 7 3 3 6 1 3 3 5 4 3 9 6 4 4 5 2 2 9 7 1 8 3 7 2 10 5 5 4 6 7 5 3 6 8 6 7 5 7 7 10 5 7 3 8 8 13 5 9 5 5 6 9 5 5 2 5 2 8 7 6 6 7 10 7 7 6 6 6 8 5 9 6 4 7 5 8 6 10 6 7 3 5 +8 6 4 3 10 10 6 4 8 5 6 8 8 6 7 5 6 7 5 5 8 9 9 5 6 7 12 5 8 6 10 14 8 2 5 7 11 10 8 10 3 4 11 15 5 8 6 3 4 14 5 11 5 11 4 5 3 2 4 4 4 5 10 5 4 5 1 3 4 6 8 6 7 5 8 7 1 7 3 7 7 6 6 12 6 8 4 2 1 3 2 5 5 7 2 4 4 7 2 5 5 9 2 4 6 6 9 9 7 5 7 15 7 6 5 7 7 4 15 6 11 8 7 7 13 13 7 7 5 9 10 10 6 9 5 11 7 13 5 8 9 5 7 11 8 8 7 9 11 9 7 15 8 9 4 12 10 7 14 12 11 9 6 5 4 6 8 10 11 10 13 10 10 4 8 10 9 10 8 13 8 6 6 9 8 10 6 8 8 3 5 7 8 1 6 6 6 7 4 2 7 6 5 3 4 5 5 3 8 7 4 1 7 9 2 6 4 5 2 9 8 4 5 7 4 11 4 5 4 7 6 2 4 5 11 8 4 6 10 5 3 4 7 10 3 4 8 7 8 5 7 2 11 5 5 4 4 5 4 7 4 5 7 11 10 2 7 5 10 6 9 3 7 5 10 6 8 5 3 3 3 6 4 11 4 10 8 9 8 10 6 4 8 13 2 9 7 6 12 9 +3 8 11 10 6 11 8 12 10 8 7 8 5 8 5 11 5 11 9 8 9 7 5 6 13 12 10 13 8 8 14 10 13 6 11 11 10 4 8 8 8 11 8 10 5 10 9 10 8 11 7 4 6 5 8 8 6 4 9 5 4 9 7 5 5 5 6 3 8 6 8 8 11 10 3 5 6 5 6 1 1 5 6 6 2 2 5 5 6 7 2 6 5 4 5 8 5 4 5 9 8 6 7 7 6 8 10 8 10 11 8 12 9 4 7 12 11 8 8 8 7 11 10 6 10 9 13 9 8 9 11 3 12 10 9 7 6 8 5 6 4 7 7 5 9 7 2 9 11 7 17 9 7 6 11 9 7 7 8 7 8 8 6 7 10 10 4 7 11 5 4 6 9 8 6 7 12 8 9 21 5 15 11 6 12 13 7 7 8 7 6 2 6 10 4 6 6 4 4 2 7 8 8 7 4 1 4 7 4 5 5 4 9 3 4 3 4 3 4 7 7 8 6 7 4 6 4 10 3 5 10 9 9 6 6 4 5 10 4 6 5 2 5 11 7 4 5 3 6 10 5 7 4 6 2 8 5 8 8 7 10 7 10 4 8 5 11 6 10 5 8 5 9 4 10 8 10 9 11 7 9 6 14 4 9 7 4 8 8 7 11 7 11 6 9 7 5 10 6 9 +10 8 6 9 8 8 8 12 3 9 12 15 5 11 5 11 9 6 7 5 7 11 9 8 7 9 13 13 12 4 6 9 10 4 8 8 11 14 6 13 7 7 1 9 5 8 6 9 7 11 13 6 10 8 9 8 13 5 12 12 8 11 7 3 7 7 8 8 5 6 6 3 4 4 9 8 4 10 8 10 8 7 3 8 9 4 8 5 6 8 5 4 10 7 8 7 5 5 10 8 8 10 11 5 6 10 9 12 10 4 4 5 5 8 10 5 16 9 7 10 11 13 10 4 5 10 8 10 8 8 10 6 7 5 5 8 7 12 6 10 5 7 4 3 9 8 4 10 11 4 8 6 1 12 9 5 7 8 2 9 7 9 8 5 11 10 13 6 6 3 12 12 8 12 8 7 13 6 11 8 11 8 6 10 11 12 16 9 13 11 11 6 8 8 6 8 8 9 7 14 7 7 7 8 6 4 7 6 2 7 6 8 7 3 8 5 3 2 4 2 4 4 5 13 10 7 4 5 5 5 6 4 2 4 7 7 11 9 9 8 9 2 11 11 6 7 5 4 9 8 8 9 4 10 9 8 8 9 17 7 7 6 3 8 8 4 10 7 7 4 10 7 9 11 9 9 11 11 3 11 7 8 4 14 7 15 9 9 14 6 8 16 16 7 12 7 7 9 12 10 +9 10 9 10 6 7 12 5 4 5 4 5 12 11 9 8 12 8 12 12 8 6 11 6 14 5 6 11 9 8 6 9 6 6 9 7 7 12 6 13 13 11 10 6 11 3 8 7 10 3 10 10 5 5 6 9 10 7 8 8 10 5 7 9 5 8 10 5 12 7 10 6 7 6 6 8 10 6 6 4 7 8 5 6 10 0 6 9 4 7 8 4 10 4 8 9 4 12 10 7 5 12 8 6 11 6 5 9 11 3 14 8 11 18 13 10 6 12 9 16 9 7 13 6 6 17 8 8 7 7 9 3 4 11 6 5 11 7 11 6 5 7 4 9 8 7 4 10 10 7 6 8 6 9 2 5 3 3 8 4 9 5 5 7 7 14 9 11 4 10 10 11 9 5 4 11 9 9 5 8 12 6 6 12 8 5 12 11 11 10 13 7 6 13 7 9 8 12 9 6 8 10 8 9 2 3 6 3 4 6 6 5 7 2 5 9 1 6 5 6 7 2 5 6 3 5 4 9 9 10 4 5 3 2 5 8 8 8 7 8 4 12 3 9 8 8 7 9 5 8 11 7 10 8 10 4 13 6 10 13 13 6 13 10 7 11 8 6 6 11 10 5 14 8 4 9 9 10 7 8 6 13 8 13 9 7 9 9 4 10 10 7 9 9 5 4 8 5 11 12 +15 9 6 6 12 3 6 8 9 5 10 8 11 9 4 15 7 9 15 13 8 11 13 6 6 11 5 10 10 10 9 8 10 9 8 13 10 8 7 11 8 8 7 7 10 8 11 12 7 6 9 4 10 5 7 4 8 6 9 6 6 4 3 6 9 2 6 7 7 8 8 10 5 7 9 3 5 12 7 6 7 12 4 6 6 9 3 5 5 3 4 5 5 9 8 10 9 13 13 10 4 10 7 13 14 7 8 11 9 9 6 13 7 10 17 20 6 7 14 9 8 8 5 4 12 8 9 13 10 9 10 4 5 11 6 9 1 6 4 4 11 10 10 8 8 14 13 11 11 0 4 7 5 11 5 6 7 6 7 8 5 11 5 4 8 8 13 4 9 8 12 7 8 7 12 10 12 7 8 10 4 13 16 15 11 8 11 10 7 14 14 8 11 20 9 3 4 3 11 4 6 10 9 7 10 7 5 5 8 10 5 6 9 7 3 4 8 7 5 10 9 5 9 7 6 7 10 14 6 11 7 9 10 11 7 9 12 8 6 3 10 9 5 6 7 16 14 9 9 14 7 12 10 10 10 6 10 10 8 7 5 7 9 7 9 4 6 12 11 5 10 7 8 12 8 11 12 4 10 9 9 11 12 14 11 12 8 5 6 10 3 5 10 7 6 9 8 15 10 10 +10 10 5 4 12 9 12 7 15 14 12 10 10 3 11 12 8 7 8 10 10 8 17 6 9 10 11 13 11 9 5 9 9 5 11 12 11 12 15 14 9 9 9 11 16 16 9 7 6 12 15 6 9 13 8 8 6 18 7 6 7 10 9 7 4 7 13 9 10 2 15 5 11 9 6 8 6 7 8 9 7 4 1 4 10 5 3 5 4 6 6 7 8 4 3 7 10 8 2 8 16 14 11 15 11 14 18 9 11 10 10 15 7 12 10 9 14 8 9 12 11 11 6 7 9 5 9 8 12 10 10 5 8 12 6 10 7 10 9 7 2 9 5 9 9 2 3 11 5 11 7 7 6 8 9 8 9 9 6 8 8 9 10 2 6 8 7 8 6 14 13 6 5 10 5 4 9 11 13 11 10 8 7 16 11 11 11 17 13 7 10 11 12 18 10 14 8 8 12 12 9 11 10 11 3 7 5 9 7 6 3 7 8 5 5 7 2 5 7 3 6 2 4 7 7 11 10 9 3 6 8 4 8 8 4 6 15 5 5 12 8 6 19 14 6 8 12 13 7 10 6 8 8 6 10 8 3 10 13 6 14 10 9 9 9 4 14 8 11 8 8 10 14 11 9 10 18 5 10 8 15 11 15 7 7 7 13 5 14 11 11 11 9 16 6 13 7 8 11 9 +16 7 9 2 12 9 7 8 10 5 12 16 16 12 8 6 11 7 15 10 10 12 6 10 13 9 12 11 9 9 11 9 13 25 11 11 11 3 9 13 20 11 6 12 15 9 11 10 12 10 10 11 8 11 6 13 10 10 11 6 12 9 10 12 6 6 8 8 7 13 11 3 4 7 8 5 7 14 6 5 5 7 6 6 4 8 6 4 10 8 4 10 6 9 11 11 18 12 8 10 8 8 7 6 12 11 5 19 10 9 21 8 17 11 9 14 9 3 11 7 6 8 6 10 13 7 3 5 12 10 9 8 9 9 11 5 10 7 4 4 6 6 7 6 6 4 9 6 3 7 10 12 4 9 11 8 2 11 2 11 8 7 7 6 7 5 9 9 10 12 13 6 7 5 7 10 4 10 9 10 11 7 8 14 16 11 12 9 8 13 14 18 14 8 17 16 10 6 8 10 15 8 11 9 8 8 12 7 7 5 7 7 6 3 7 4 7 9 4 1 6 8 7 7 8 9 7 9 10 4 8 13 7 11 6 11 8 9 8 13 7 8 8 2 9 9 9 9 15 8 9 8 5 11 9 11 17 7 15 12 10 12 5 12 10 14 11 11 7 6 7 12 12 9 11 5 10 6 10 11 10 14 14 6 19 14 14 8 12 8 7 10 12 16 5 7 15 12 11 15 +13 11 7 9 9 8 4 18 19 12 15 6 10 19 10 9 5 12 10 15 12 8 13 6 13 12 9 16 7 10 13 7 13 8 13 12 11 9 12 16 13 8 7 9 14 10 7 7 6 6 10 12 14 12 6 7 2 5 10 15 9 17 6 11 8 12 4 5 8 11 7 9 6 10 12 11 12 16 6 10 8 9 5 6 7 6 5 9 5 9 7 10 8 8 11 11 5 9 11 10 11 14 6 13 15 14 14 13 19 11 12 6 11 8 11 5 10 8 10 8 10 8 8 5 8 8 7 10 4 7 7 11 6 11 8 7 9 5 7 13 7 8 12 12 9 6 12 11 10 8 10 11 4 6 11 9 7 5 11 11 10 11 7 8 7 5 5 10 8 9 9 5 3 8 7 11 10 8 7 6 9 8 7 12 7 9 10 9 6 13 8 17 12 9 10 11 10 7 6 14 4 9 16 12 12 10 8 8 14 3 11 13 6 6 8 5 5 7 7 2 8 12 5 4 3 16 12 11 9 9 4 8 6 9 11 10 8 5 4 8 8 10 10 10 9 9 8 8 11 10 5 13 12 7 10 7 11 16 13 9 16 18 11 14 5 9 10 13 9 9 6 14 13 5 12 14 8 11 16 10 10 15 6 16 13 9 10 11 10 14 7 8 9 7 9 14 7 11 13 10 +10 15 11 15 6 3 11 14 15 13 9 7 21 6 18 14 10 2 7 13 12 12 11 9 11 4 9 8 6 17 7 11 19 12 15 11 10 16 15 8 6 7 13 15 8 13 11 10 9 15 10 8 9 11 8 10 9 7 7 13 8 7 7 5 6 12 11 12 9 10 9 9 14 5 13 11 6 8 9 3 8 7 8 9 4 9 8 4 8 9 9 7 10 7 11 8 11 11 13 16 8 9 11 16 8 4 15 8 15 12 8 4 9 5 9 9 9 9 10 9 8 10 11 11 7 3 8 12 7 14 10 5 11 7 12 7 7 13 11 8 9 3 8 11 10 6 5 7 9 9 9 6 11 8 8 11 5 6 13 12 11 6 7 3 8 7 12 16 9 7 8 12 10 6 10 8 9 12 10 5 11 4 10 9 16 14 5 11 11 10 6 12 22 11 16 14 18 14 10 8 11 13 10 12 9 18 11 13 8 8 7 8 9 3 10 7 6 13 9 6 10 9 7 9 6 6 11 8 10 6 6 14 4 10 6 11 10 8 12 8 11 10 6 16 10 13 14 6 10 17 9 10 14 12 15 9 8 7 12 9 10 13 11 17 16 18 14 9 13 8 14 15 11 9 7 9 12 5 10 12 9 13 15 9 15 12 13 15 15 15 15 11 15 9 15 7 19 8 9 14 +7 12 9 20 10 12 12 16 12 16 11 10 9 10 16 12 8 13 12 12 10 17 13 16 7 13 10 17 13 6 6 12 10 10 9 7 15 12 6 12 10 5 8 13 10 14 14 15 8 10 16 10 10 18 18 7 8 11 8 5 8 7 8 7 9 11 8 10 11 6 12 15 8 5 16 8 12 4 12 9 11 5 3 7 6 9 10 7 9 7 10 12 15 13 10 19 9 10 6 6 13 6 13 13 11 13 11 11 8 7 10 7 13 10 11 9 10 14 11 11 5 7 10 11 12 8 18 12 13 7 7 8 8 6 17 7 6 5 8 9 14 12 5 8 8 12 8 5 14 8 8 5 7 11 4 9 9 10 10 8 7 8 13 11 9 12 16 7 7 7 8 16 7 10 13 5 7 4 9 11 14 9 6 7 10 11 13 10 13 11 6 12 13 13 15 11 11 15 5 12 9 14 8 13 8 12 8 8 12 14 5 9 4 7 9 6 7 7 6 11 12 8 16 9 12 8 9 9 5 8 10 9 10 8 6 12 10 13 9 10 11 11 15 14 10 13 7 11 8 15 14 12 17 8 10 12 15 8 14 9 12 11 9 15 7 19 10 16 10 9 12 10 14 20 10 16 11 17 13 10 9 14 10 19 10 16 6 16 9 11 14 4 14 12 13 13 12 7 8 9 +11 10 11 16 11 9 12 16 12 11 15 7 8 10 14 14 14 10 14 13 13 10 13 9 9 13 12 10 11 11 8 14 8 17 10 13 16 14 13 16 8 10 13 9 17 13 12 8 7 9 10 15 13 7 17 14 14 11 14 12 11 9 9 11 6 9 8 10 10 7 11 9 11 9 16 3 6 7 5 12 12 9 3 7 10 6 10 8 18 10 10 12 4 11 13 8 14 10 14 9 14 17 18 8 7 12 19 11 13 8 13 11 5 5 5 4 13 12 9 10 8 12 9 11 11 7 10 6 9 7 8 6 4 10 9 12 6 7 6 14 7 19 9 10 11 9 10 10 12 10 10 10 10 13 8 4 12 12 7 9 9 9 9 12 11 10 6 7 14 9 4 7 8 9 10 5 5 13 8 9 7 14 12 8 6 6 8 6 10 9 6 9 20 18 19 16 29 14 12 15 14 10 20 10 15 14 6 13 10 5 13 6 10 14 8 13 6 6 5 10 7 12 9 6 12 11 12 8 9 10 12 15 9 9 9 10 9 12 6 3 10 9 15 8 19 9 13 9 18 14 13 9 11 15 10 13 5 16 7 8 16 17 15 10 17 6 11 11 19 12 13 19 10 8 11 18 22 11 10 16 10 7 15 10 11 10 18 9 10 7 8 15 12 14 10 6 10 5 11 9 +11 9 9 9 11 11 12 9 10 8 4 8 10 11 10 10 13 10 13 15 11 10 11 19 18 16 10 14 12 11 6 14 21 12 13 13 13 12 21 13 14 12 12 12 12 14 14 15 15 18 12 13 12 11 10 12 17 12 16 14 5 8 11 9 14 13 7 6 17 14 7 12 11 15 6 11 6 13 9 12 11 12 8 12 7 3 9 11 9 7 13 9 10 9 7 13 16 10 8 13 14 10 13 6 11 9 15 7 11 10 13 8 13 12 9 14 15 10 17 9 16 12 16 11 8 6 11 10 5 11 12 8 8 14 12 12 13 13 9 9 7 13 7 15 8 11 10 10 8 8 13 10 11 8 12 15 10 16 10 11 12 13 18 7 9 18 13 10 7 9 6 9 13 10 12 15 13 9 12 12 9 12 8 10 14 7 9 7 7 10 8 9 16 13 10 10 11 10 15 17 16 14 18 12 20 9 15 13 17 6 12 6 12 10 9 7 7 5 9 7 13 5 11 17 6 15 10 12 7 8 13 6 6 6 11 6 13 11 9 8 12 10 8 13 9 14 13 13 6 9 16 15 14 12 19 14 13 13 12 15 12 13 17 6 16 11 11 14 8 11 18 6 19 13 16 23 9 16 13 17 16 12 8 13 8 8 7 10 5 11 14 9 10 12 15 17 4 13 13 2 +5 10 5 11 8 7 19 7 11 13 8 11 14 11 10 10 14 9 12 10 13 12 12 15 9 11 13 12 22 10 10 14 13 13 15 16 11 18 8 12 18 18 13 9 15 10 16 14 17 16 13 18 12 13 9 14 9 16 16 6 14 11 12 16 7 14 10 9 16 8 8 9 11 10 18 7 8 8 7 11 9 7 8 7 4 7 19 4 5 8 10 14 10 11 16 8 20 14 11 14 18 23 12 11 17 13 10 14 9 15 9 14 13 12 7 13 13 10 8 5 10 10 6 14 8 3 11 12 5 11 10 10 9 12 15 9 14 5 11 7 16 13 11 6 19 12 9 11 10 12 9 9 15 19 14 14 12 10 15 9 13 12 8 7 12 10 10 9 15 7 15 5 11 9 11 12 12 9 6 11 10 12 10 5 10 8 5 9 7 13 13 13 5 12 8 18 15 20 13 11 17 19 16 14 12 9 9 13 17 7 7 6 6 6 7 11 9 6 5 16 9 5 7 9 10 9 17 12 8 11 14 11 14 10 10 10 4 11 9 13 17 13 15 7 12 9 21 12 14 13 10 19 13 11 14 11 13 9 18 11 15 14 15 14 10 15 15 12 11 18 16 13 19 13 15 11 12 13 15 12 17 10 10 9 11 12 9 11 9 10 15 9 14 7 13 8 7 3 9 9 +17 16 10 11 8 15 14 13 7 15 13 10 7 19 23 9 4 7 10 8 15 10 14 8 13 17 17 20 12 15 12 16 5 7 21 13 14 15 16 15 13 13 14 19 16 10 14 15 12 16 13 13 7 23 12 8 12 12 15 11 14 14 13 11 13 6 14 12 12 8 8 12 10 8 9 8 13 10 3 4 5 5 9 8 10 15 10 13 13 11 11 10 12 20 15 14 19 17 20 20 13 20 18 15 18 11 7 12 15 11 12 12 10 13 7 16 8 16 14 10 12 12 7 7 9 14 9 17 13 17 14 13 13 20 19 13 15 18 16 20 13 19 10 13 11 15 11 7 10 17 12 13 14 13 10 18 11 8 10 9 16 9 18 10 12 11 16 14 14 11 12 10 11 11 15 10 12 11 9 12 6 12 14 14 4 11 13 14 12 13 8 9 13 15 13 9 13 12 15 13 19 14 13 21 12 19 11 11 12 15 11 14 9 8 16 8 7 12 9 5 10 9 10 13 8 7 7 8 16 13 14 14 8 13 13 12 10 17 10 14 15 6 17 23 15 11 16 12 17 15 19 14 17 11 14 17 14 17 12 12 12 9 15 15 15 11 16 9 19 15 8 13 13 12 11 7 9 10 11 12 14 8 9 11 11 8 12 13 10 16 6 7 8 9 14 16 6 11 13 10 +6 8 6 10 13 10 13 12 13 15 13 7 12 10 14 9 10 6 3 6 9 15 9 10 14 9 10 8 11 18 19 18 13 10 15 22 15 13 20 19 17 19 11 18 17 16 12 11 14 18 10 14 22 11 15 16 18 16 11 9 12 15 14 8 9 17 9 7 10 10 8 9 13 7 9 8 12 12 9 12 9 5 7 10 10 9 14 12 6 8 16 9 10 8 11 23 15 10 22 15 16 9 8 13 12 9 13 7 10 11 13 12 11 10 11 14 10 11 16 14 9 11 19 9 11 10 11 14 12 10 8 14 10 17 14 17 11 12 14 18 13 19 10 12 12 14 15 7 12 14 14 6 20 17 10 11 17 11 11 16 15 12 10 14 17 12 11 15 14 9 14 14 16 11 8 11 11 11 10 14 11 14 17 6 5 7 15 6 10 14 6 13 8 14 11 26 10 22 16 14 14 11 15 15 14 16 13 12 5 13 18 12 14 11 9 10 7 9 11 9 3 10 10 11 12 20 10 7 7 8 7 6 10 13 14 9 11 16 13 20 10 10 11 12 13 15 14 15 15 13 8 20 12 15 12 17 13 10 11 11 13 13 19 14 12 19 13 13 15 12 10 11 19 17 10 19 14 13 11 9 14 13 13 12 10 17 10 11 10 11 18 10 13 7 12 8 8 10 11 9 +8 12 16 17 12 11 14 10 6 12 11 11 17 11 9 12 16 19 9 10 7 12 13 7 4 15 10 12 16 16 26 12 9 17 12 18 21 21 19 13 11 17 16 12 14 15 20 19 9 15 13 20 17 18 13 12 9 16 11 17 17 15 14 23 17 11 12 16 11 17 12 16 9 11 14 8 13 11 9 5 6 6 3 10 6 12 13 15 15 13 17 16 11 18 14 22 16 10 18 18 26 13 6 12 16 10 11 15 14 6 9 12 9 12 8 14 9 12 10 10 18 11 11 13 11 17 20 12 15 18 11 13 13 18 13 19 11 14 10 11 15 12 14 11 10 21 8 18 9 13 18 13 12 11 17 7 13 13 16 8 10 17 9 15 9 24 11 12 9 9 15 13 16 12 10 12 16 6 13 12 9 14 20 12 11 10 9 12 12 9 11 13 10 9 16 12 11 13 14 17 19 17 18 13 17 10 17 21 10 16 12 5 14 10 7 11 11 6 9 6 7 9 18 7 20 10 9 14 13 15 11 13 15 12 13 10 9 10 18 11 15 3 13 12 15 19 18 13 17 12 16 13 13 14 21 16 11 16 13 12 14 19 22 15 18 18 24 19 23 15 10 15 16 20 7 11 8 12 13 12 13 7 13 11 7 13 13 5 16 4 6 14 12 14 10 9 13 6 22 10 +12 18 8 14 16 11 13 8 13 12 9 11 12 9 14 13 9 9 17 12 8 12 6 8 10 9 16 8 12 18 17 14 18 17 20 19 13 22 20 22 12 14 11 19 16 16 14 16 17 17 12 17 16 15 24 15 17 15 24 15 20 12 12 19 12 16 12 19 8 21 12 10 15 15 13 6 10 7 5 10 14 12 14 11 14 14 14 11 15 18 12 16 15 15 18 24 16 18 12 19 10 15 11 9 20 9 12 14 15 9 18 9 16 12 12 11 14 13 12 14 13 13 9 14 9 23 11 16 18 21 15 14 12 12 13 16 15 13 12 11 10 17 13 13 13 11 9 13 19 19 17 13 19 15 17 11 17 10 12 13 11 14 6 13 17 16 15 10 17 14 9 16 11 12 12 22 13 13 14 11 11 4 9 9 10 10 10 10 12 10 15 17 7 6 8 9 12 14 14 15 14 21 17 17 10 14 13 16 12 17 18 17 10 6 14 4 7 8 6 5 13 7 11 12 11 13 11 14 9 11 8 14 15 11 8 12 13 10 15 20 21 10 19 15 21 12 18 10 14 9 15 12 9 12 15 18 14 18 19 14 11 19 13 10 17 21 10 15 11 14 11 18 16 9 7 14 10 13 10 13 12 12 14 11 9 17 13 7 14 11 18 14 14 11 11 12 14 8 12 17 +7 11 13 14 9 14 17 12 10 16 11 14 14 7 12 7 14 9 12 11 13 11 16 11 7 17 18 9 14 5 9 13 8 16 22 15 15 12 14 10 18 11 17 14 17 19 6 16 17 14 23 11 15 22 21 13 18 9 13 15 12 10 17 13 14 12 17 10 17 23 14 24 13 9 14 11 13 13 6 9 13 9 12 11 7 9 13 18 20 12 11 10 15 13 27 22 17 19 11 20 5 15 9 15 17 19 11 15 22 14 14 15 13 17 9 10 11 9 19 10 14 11 9 10 8 13 16 12 6 13 15 18 12 21 13 15 19 11 14 14 19 16 21 16 11 17 12 11 13 12 14 14 8 16 9 19 18 12 12 13 15 10 17 19 12 20 12 17 17 14 17 16 17 12 20 11 8 17 13 11 13 16 13 16 11 10 13 13 7 9 12 9 10 12 15 10 9 12 20 25 7 16 22 16 17 12 16 16 13 7 15 21 15 11 13 13 9 13 9 10 8 7 12 10 13 15 16 9 17 14 13 15 15 10 10 5 14 12 12 8 18 17 15 10 9 12 19 10 12 16 18 24 15 16 16 19 15 11 12 18 14 15 23 17 19 14 22 10 9 13 15 11 14 8 18 5 11 14 15 11 6 19 17 8 11 12 10 10 9 9 7 13 12 13 14 14 10 14 13 11 +14 19 13 11 11 12 12 10 15 8 14 5 15 13 12 12 16 12 9 11 7 12 12 11 8 16 13 14 11 11 13 13 19 16 10 22 15 21 18 16 10 18 20 20 22 15 22 23 23 16 16 13 9 17 23 21 13 18 14 13 14 19 10 11 14 19 8 14 9 10 13 11 12 19 12 9 12 13 9 8 11 14 11 10 13 15 14 25 11 11 16 15 10 20 14 18 22 11 14 15 8 11 15 9 11 12 15 8 9 12 15 10 8 18 11 17 12 13 16 10 15 6 21 11 13 16 11 16 18 11 14 21 14 11 17 14 15 10 12 15 14 12 13 3 8 13 17 12 17 11 20 16 15 18 19 14 22 14 16 17 16 15 18 15 12 11 19 12 14 18 18 24 16 5 17 13 20 15 13 23 15 13 8 15 10 13 8 8 13 12 11 11 14 6 12 12 11 13 7 15 14 19 23 17 20 15 26 22 15 14 23 9 12 6 12 9 14 15 12 9 9 14 12 9 15 7 9 15 15 18 10 9 11 13 11 21 17 13 21 21 20 11 13 19 15 18 15 18 10 18 19 17 10 18 14 18 21 15 18 19 18 12 11 22 20 14 16 11 10 11 8 14 12 14 14 12 15 11 13 9 7 11 11 11 12 15 10 13 12 16 10 25 15 19 19 10 12 7 10 14 +10 11 25 16 16 13 15 19 12 14 20 10 12 12 12 16 11 15 12 12 22 11 15 10 12 15 6 14 16 17 13 10 7 18 11 14 13 12 16 12 22 20 12 19 21 17 21 9 19 17 18 20 13 26 16 21 21 15 10 19 16 18 11 13 11 12 16 16 13 11 10 10 15 10 12 14 11 6 8 5 8 10 11 13 8 14 12 18 12 9 22 19 21 15 17 17 18 15 15 10 20 5 18 18 14 15 11 9 13 17 8 17 14 8 11 13 19 14 13 10 17 10 17 17 20 17 16 11 17 8 11 15 20 10 11 10 14 15 12 9 11 15 14 10 15 12 22 12 15 12 8 6 18 12 12 12 17 14 3 14 13 15 11 17 14 17 14 12 22 16 11 14 15 17 16 20 16 11 18 12 16 13 14 18 14 20 11 9 14 10 16 19 14 16 24 15 16 7 11 15 10 11 19 12 18 18 11 17 19 11 19 10 20 18 14 11 11 8 11 10 12 16 6 14 10 11 7 8 10 13 11 16 18 12 14 10 5 15 20 28 11 15 24 13 19 15 13 15 21 12 16 13 18 7 21 15 24 14 22 24 18 18 18 16 14 7 12 15 9 13 16 9 12 9 16 14 9 6 13 6 8 15 6 13 10 14 16 10 19 10 16 16 13 15 12 13 12 7 14 18 +14 11 19 10 17 16 12 15 13 24 22 14 17 15 18 13 18 15 23 10 15 17 7 21 12 13 10 11 12 18 10 14 24 14 7 15 8 11 21 20 18 19 23 15 16 17 20 17 21 24 17 14 11 11 15 25 19 15 12 10 13 15 18 13 14 11 12 20 24 14 16 15 20 8 19 12 15 14 12 10 12 11 13 11 8 17 15 20 19 21 17 22 22 20 17 19 18 9 9 17 13 15 12 10 10 14 13 13 9 13 18 11 8 13 14 14 25 15 12 21 12 15 14 18 20 15 15 23 18 15 15 10 14 17 11 13 18 12 16 12 7 7 15 19 11 14 12 8 14 21 14 7 17 21 18 8 13 12 14 16 15 20 10 17 12 17 12 12 19 13 12 11 18 13 19 14 14 13 16 22 12 27 18 22 13 17 14 10 9 11 19 10 8 15 10 10 20 15 14 17 10 16 19 12 14 29 17 21 15 19 13 19 20 18 15 10 13 13 16 15 12 10 11 22 10 17 19 13 15 17 21 7 12 9 9 5 13 17 9 11 19 23 14 16 10 21 19 19 18 10 18 17 17 13 15 22 14 21 17 21 21 14 15 20 15 16 13 7 17 13 12 7 13 11 14 7 10 18 7 13 11 15 17 14 13 16 21 19 10 17 21 13 12 12 17 18 14 16 14 26 +5 17 10 22 20 17 20 10 13 14 9 9 18 11 17 18 16 13 22 13 11 18 15 12 20 14 10 12 16 8 10 17 11 10 9 16 12 9 13 14 25 19 15 16 25 17 12 16 12 14 23 8 18 15 26 15 14 25 13 16 9 19 23 18 19 13 16 12 12 20 14 19 13 19 11 9 8 11 8 18 10 9 14 14 10 19 12 17 25 18 13 16 18 16 15 17 14 15 14 9 16 15 12 9 13 19 11 11 22 11 17 13 20 17 9 6 17 11 25 12 21 16 21 14 10 23 15 19 16 28 12 19 14 18 18 18 10 10 20 17 22 12 14 15 24 17 18 13 11 20 14 14 15 13 21 20 8 13 15 24 12 17 10 20 15 17 12 13 13 18 9 20 12 15 17 19 12 9 16 12 16 11 18 17 16 12 16 14 15 14 11 14 11 15 19 15 16 13 14 14 18 20 19 16 25 19 26 18 13 21 19 16 18 12 8 17 14 9 9 14 12 14 16 15 14 9 17 13 12 14 17 14 16 12 15 15 17 13 17 15 15 12 14 23 20 26 20 20 16 13 22 17 14 23 26 18 16 19 19 25 17 12 16 7 16 14 19 13 17 9 13 17 12 17 12 10 16 19 14 15 12 11 20 18 13 21 25 19 16 13 16 17 16 15 11 18 15 18 11 12 +20 15 11 13 15 10 18 22 24 18 13 14 16 20 19 12 12 12 15 10 21 21 18 22 12 18 10 12 20 10 9 8 17 14 9 12 17 14 18 15 13 15 22 18 23 24 15 17 15 14 19 19 12 22 18 16 19 15 17 8 18 15 20 20 12 12 14 14 19 16 16 16 17 16 10 8 18 8 12 12 8 13 13 11 20 19 13 15 16 12 21 25 27 19 21 16 14 14 15 16 15 17 19 17 13 13 8 13 13 15 11 13 19 16 21 12 11 18 20 19 14 20 16 15 20 14 13 11 12 19 15 15 17 19 19 18 18 19 9 20 13 13 20 11 14 17 9 12 21 21 7 10 9 16 10 10 15 17 15 16 18 9 14 11 17 12 16 16 12 20 18 19 22 15 10 16 19 13 17 8 13 11 19 14 17 11 10 14 14 18 15 11 15 11 9 15 14 13 22 19 16 14 18 17 12 21 20 20 20 18 21 19 14 13 23 12 9 12 13 13 15 12 15 9 15 14 14 21 16 21 8 14 14 16 17 16 13 12 22 17 12 20 15 16 20 18 19 18 25 19 22 14 20 17 9 15 16 21 19 16 13 13 26 12 14 13 12 16 5 16 7 17 8 12 10 12 16 17 14 20 7 13 15 22 13 15 12 15 13 18 18 19 18 15 21 13 17 20 13 18 +18 8 21 24 22 15 19 15 21 20 20 20 20 12 23 13 21 18 19 18 12 14 19 17 18 13 13 11 11 13 18 19 12 10 16 14 18 18 12 18 13 15 15 26 16 23 22 21 20 14 28 13 20 26 28 9 15 27 17 21 16 21 16 22 16 10 11 12 16 17 17 14 18 13 12 8 12 13 13 11 19 17 15 13 13 16 10 14 18 15 19 18 23 27 21 19 13 20 14 15 13 11 14 16 15 17 9 18 9 13 14 24 16 18 21 16 17 17 17 19 16 15 15 11 19 16 20 11 16 19 19 12 18 13 17 12 14 19 18 13 16 9 11 14 12 17 10 13 10 8 15 14 14 11 18 3 12 11 13 14 9 11 9 14 10 16 27 15 16 11 14 17 13 19 18 14 24 20 16 15 19 22 15 29 13 14 18 15 13 9 12 18 15 8 13 15 12 21 11 13 11 13 14 11 30 20 23 18 11 19 22 14 18 15 17 12 12 15 11 11 9 7 15 19 8 14 17 22 18 16 8 27 11 11 11 10 24 19 19 8 23 15 19 26 21 28 28 17 14 21 17 16 17 13 16 11 23 13 23 18 13 8 11 17 14 11 12 11 13 11 11 8 13 11 15 15 19 21 14 25 14 13 18 14 17 22 21 21 17 16 14 22 18 20 21 15 21 17 25 21 +10 15 16 18 24 17 19 13 9 18 17 18 24 11 14 18 11 22 25 22 19 13 18 20 17 18 19 12 18 11 19 15 12 17 16 18 11 10 19 7 14 17 11 23 17 26 17 17 20 24 23 18 20 30 19 17 15 26 15 18 18 10 21 28 13 15 19 9 27 14 10 11 8 11 16 9 10 9 13 16 8 14 17 19 21 15 16 10 15 20 27 16 26 23 19 14 11 17 14 13 14 13 19 20 12 14 15 11 12 12 18 15 12 21 19 21 7 15 20 15 24 18 16 17 12 18 17 18 9 13 16 16 10 21 14 15 13 13 11 20 13 20 11 6 15 19 13 9 7 5 11 8 13 14 6 13 13 13 22 15 14 13 12 21 18 11 13 12 17 14 10 14 15 15 13 17 19 15 18 16 9 21 12 18 26 26 20 15 9 24 17 14 14 10 14 15 10 16 13 23 12 7 18 12 17 11 29 21 25 22 20 15 18 14 20 21 20 12 8 15 11 15 18 14 12 15 14 17 17 12 18 11 22 12 14 12 19 13 19 12 20 13 14 13 17 18 22 15 22 14 24 13 23 19 18 28 20 15 20 12 19 19 16 12 19 10 20 11 13 23 17 16 16 16 12 23 18 16 17 24 27 12 17 21 18 24 22 25 23 16 11 17 15 14 13 20 22 14 23 24 +16 16 17 16 23 18 11 30 23 19 19 19 21 22 22 22 18 21 15 20 20 15 17 12 11 21 16 19 14 18 18 21 17 11 19 15 22 19 19 17 15 18 16 14 11 17 9 14 21 18 14 18 19 18 23 18 22 15 9 18 12 18 12 20 18 17 11 14 17 17 26 20 20 23 11 13 13 11 8 14 15 12 12 9 19 12 18 19 23 22 28 24 18 33 15 16 13 14 17 10 15 14 12 14 17 10 20 13 17 23 14 14 19 12 17 15 17 16 21 22 15 10 14 22 18 22 14 20 14 13 16 16 23 10 16 8 16 13 10 9 13 10 9 10 9 13 10 9 8 14 11 9 10 11 14 13 7 8 8 16 7 12 19 15 15 11 14 18 15 14 18 17 18 11 15 15 15 15 17 16 19 19 20 17 17 23 18 17 17 19 14 22 11 18 22 19 19 11 23 9 10 16 13 26 19 26 27 27 19 18 21 16 16 15 21 13 13 13 11 12 14 9 6 15 11 18 13 13 16 16 18 14 14 13 18 17 13 17 15 10 18 16 18 19 19 20 18 15 22 20 25 26 20 16 19 13 20 13 18 22 19 15 19 11 12 18 16 16 21 12 20 16 17 20 14 10 16 25 24 23 22 9 17 21 24 19 25 18 11 14 21 18 26 19 13 20 13 11 18 22 +18 28 21 18 20 19 15 15 20 19 9 22 17 12 15 22 18 16 20 19 12 19 21 20 17 18 9 15 23 15 16 16 10 14 21 17 12 17 18 9 14 13 12 22 20 18 19 18 36 17 20 17 14 18 21 24 26 23 16 16 23 14 15 15 21 21 11 9 15 16 12 13 13 24 15 23 11 17 13 13 12 16 17 13 18 17 16 20 18 20 22 25 32 25 15 26 20 15 19 9 13 12 14 25 14 15 14 23 21 15 10 18 13 15 18 11 17 16 11 16 18 18 20 18 11 21 15 19 23 13 11 7 10 19 13 9 14 16 14 11 12 11 4 14 7 9 15 11 8 14 14 9 5 8 12 11 9 6 16 10 13 6 8 15 9 13 17 10 16 15 17 14 17 15 12 21 18 19 16 19 21 18 20 22 15 13 19 27 20 17 22 21 25 17 16 13 16 19 16 15 16 11 16 19 15 15 17 29 23 22 20 14 13 16 18 11 13 11 10 11 13 10 16 19 20 21 15 18 27 15 23 16 18 18 12 17 18 16 15 19 16 25 26 29 24 16 19 25 27 16 18 26 21 18 24 21 13 15 9 17 13 17 17 15 12 16 7 7 21 12 23 22 17 18 21 14 26 31 17 15 18 32 19 16 24 17 18 23 24 21 21 16 17 19 18 14 21 20 20 17 +18 20 10 9 20 23 19 20 33 22 28 17 30 26 25 27 17 19 21 17 18 22 17 28 27 21 21 23 13 22 17 17 20 14 14 14 9 20 19 19 14 6 18 13 19 21 27 21 27 19 20 20 19 20 28 21 16 21 21 20 19 19 21 16 18 19 14 13 18 18 19 9 18 13 18 11 14 10 12 10 16 12 13 16 19 12 16 22 20 24 21 21 26 13 10 19 16 15 21 23 17 9 13 12 12 10 20 17 10 17 24 15 24 17 16 11 20 16 17 11 13 17 17 7 18 15 12 9 17 9 11 10 10 12 12 11 11 9 14 13 11 12 11 15 11 6 14 9 4 6 6 6 4 10 11 9 6 6 16 5 7 7 13 4 17 6 16 11 11 10 8 8 19 17 16 21 8 24 16 19 22 14 21 14 13 12 14 24 15 11 17 15 18 21 11 14 13 18 16 15 19 10 17 19 14 15 21 21 28 22 23 20 18 15 20 22 13 9 13 14 22 12 12 14 12 19 13 17 12 24 16 13 11 19 21 19 26 24 18 23 20 19 20 21 24 22 23 20 20 23 16 24 22 16 12 21 16 18 17 17 19 15 12 11 18 14 16 15 15 19 10 14 14 18 20 15 13 17 14 21 20 18 18 14 24 17 19 17 15 25 16 20 15 16 23 18 25 24 26 30 +19 23 23 18 20 19 23 28 18 20 12 29 25 23 20 18 25 21 21 22 16 24 20 17 14 24 18 18 20 13 20 15 26 13 20 18 13 13 15 15 19 19 20 16 12 12 26 21 16 27 27 16 22 19 17 27 18 23 13 29 25 14 16 26 16 19 21 18 16 18 17 14 16 14 23 15 19 13 17 13 17 12 17 9 19 14 23 17 19 18 20 18 22 21 25 15 15 13 16 21 21 19 18 19 20 11 7 15 14 15 16 17 13 21 16 19 25 11 24 23 15 12 18 10 21 17 12 19 17 12 12 12 11 7 9 14 2 6 15 15 16 9 15 15 10 11 9 13 6 4 7 15 6 6 13 5 9 14 12 6 8 11 14 15 18 11 16 11 17 14 16 10 18 13 21 19 15 16 17 10 19 15 16 18 13 18 12 13 18 20 23 18 23 18 22 19 10 14 13 16 17 26 24 20 15 25 19 19 15 24 29 23 20 22 15 18 11 12 20 13 10 19 11 9 18 15 25 13 22 13 19 18 19 18 23 23 14 12 12 15 11 13 17 18 19 21 19 32 18 19 12 19 22 23 17 17 13 17 12 10 16 18 22 22 15 22 9 10 22 25 22 23 20 18 19 16 22 31 23 16 17 14 26 25 18 20 17 23 22 18 15 14 17 22 27 24 19 19 13 19 +21 20 24 18 29 13 20 29 26 23 23 19 20 23 19 24 20 25 22 25 19 30 16 17 23 23 22 19 22 19 21 22 26 13 19 24 10 14 19 14 15 15 16 14 12 14 15 14 30 25 22 18 23 19 20 27 20 19 23 25 25 24 8 27 17 28 14 15 22 31 16 15 15 27 13 19 19 17 13 16 22 11 19 20 18 17 17 25 26 18 25 21 16 17 15 15 17 15 17 15 17 15 13 29 16 21 18 19 28 26 14 11 20 15 14 16 20 14 16 12 22 15 18 21 12 18 13 14 13 18 12 9 11 7 7 13 9 8 11 7 10 12 15 13 17 4 13 12 14 9 11 7 13 15 20 14 11 11 11 4 10 11 4 5 11 8 15 6 17 14 9 13 12 10 11 16 17 16 25 21 19 26 22 25 18 26 16 16 16 17 13 17 23 14 26 18 14 10 17 20 15 21 13 12 15 14 17 28 30 17 25 29 17 15 27 15 20 12 16 17 13 20 13 15 15 17 19 10 16 21 19 20 18 17 18 19 22 17 14 22 22 24 22 27 15 23 24 24 27 16 23 17 25 23 22 23 17 16 11 22 17 14 14 15 18 19 21 23 18 21 19 16 16 15 13 20 31 23 13 30 22 19 23 14 20 26 23 24 24 18 17 15 21 28 16 25 20 26 13 25 +23 22 22 23 20 24 15 22 17 15 20 26 27 21 23 18 17 21 21 19 21 16 21 22 29 24 22 20 17 22 13 10 20 21 17 20 15 23 17 12 16 12 17 10 21 11 20 15 16 19 29 32 27 29 15 16 28 20 20 23 14 22 21 24 20 25 22 16 19 17 15 14 12 12 17 15 10 15 24 9 16 9 11 15 19 17 22 24 21 14 29 28 25 20 11 11 14 17 17 17 16 19 12 16 19 22 23 17 20 10 16 21 15 18 24 13 22 19 13 18 22 18 10 18 22 16 8 10 8 17 11 13 13 8 4 9 8 12 10 12 14 12 14 15 16 10 15 16 15 19 19 16 22 19 17 14 10 18 9 16 8 17 9 14 8 7 8 9 8 4 6 8 14 15 13 15 22 12 21 18 20 13 22 14 14 17 11 16 14 18 21 10 21 19 22 19 24 13 21 16 12 17 17 12 21 21 14 29 29 24 22 22 24 19 23 13 18 15 10 16 10 17 15 17 16 23 16 18 16 18 18 12 15 12 11 22 22 18 30 17 30 20 20 23 27 24 21 23 18 24 28 25 22 12 18 17 17 14 24 11 14 15 19 16 18 10 14 18 11 25 14 18 21 14 20 23 21 16 16 19 24 22 16 26 20 20 22 22 30 23 17 18 29 28 20 30 30 23 16 28 +14 28 19 19 23 24 16 23 20 17 35 12 22 19 20 19 20 24 15 17 23 25 26 26 24 22 21 25 23 16 18 16 18 17 26 10 18 17 14 17 13 16 17 16 22 21 13 16 23 13 27 23 28 30 30 25 24 21 21 29 22 18 20 24 17 19 16 16 22 21 11 14 15 15 14 21 12 10 10 10 7 14 20 17 25 23 20 29 31 32 22 19 27 24 19 17 14 12 19 16 16 17 15 22 28 20 23 20 28 17 20 27 16 23 25 17 25 19 20 19 17 19 13 16 13 11 14 13 10 7 6 6 14 10 12 4 17 14 16 12 17 16 30 17 23 18 19 21 9 22 20 15 18 15 14 26 13 16 15 13 18 9 16 17 21 5 4 7 11 10 12 8 13 14 12 24 20 12 12 26 22 16 20 19 19 19 20 26 32 21 19 16 19 27 19 19 15 18 20 25 14 16 11 18 12 25 18 19 31 24 23 24 25 25 18 18 15 25 15 11 16 14 10 10 20 17 16 22 24 22 14 19 17 24 9 22 19 23 13 22 23 18 27 28 23 16 20 27 23 18 23 34 18 18 13 16 14 18 17 9 7 21 12 23 22 17 20 22 19 18 27 21 35 14 19 25 20 17 29 20 26 16 23 27 27 19 24 18 23 30 15 19 22 25 19 22 21 14 17 28 +12 24 22 17 24 19 29 24 28 19 22 8 30 12 27 20 26 22 26 12 22 32 30 12 26 27 17 29 20 15 20 20 27 22 26 22 30 12 20 22 12 15 10 18 18 20 25 20 25 29 23 18 19 23 19 18 24 13 15 29 21 22 18 17 22 27 16 16 14 17 30 23 17 22 17 20 18 9 18 16 11 14 12 24 14 20 26 21 23 29 28 24 12 26 12 20 25 22 16 21 15 23 21 23 32 22 19 25 22 16 17 20 19 22 15 12 19 19 14 22 24 17 15 12 8 11 9 12 15 6 10 12 15 9 9 12 23 13 16 22 20 15 15 17 19 23 11 23 17 15 21 18 19 13 16 21 25 20 23 15 20 14 14 21 14 10 15 8 14 8 6 6 11 7 17 15 20 11 7 17 10 14 11 17 19 28 23 23 12 21 19 22 27 14 18 15 19 15 7 21 16 17 15 19 23 17 15 26 18 20 19 31 26 28 19 17 15 20 13 15 18 16 21 17 11 19 23 18 18 19 17 18 15 22 29 22 22 15 25 32 22 18 17 25 17 20 24 26 21 18 24 26 13 19 23 19 22 13 15 24 15 22 17 11 13 19 26 13 24 24 21 22 20 23 20 15 23 23 24 30 23 23 17 16 18 24 29 21 20 22 20 25 23 16 30 12 31 16 18 23 +23 22 30 23 19 22 24 28 24 24 24 17 25 14 17 19 17 22 23 29 16 17 35 20 23 25 18 24 27 20 14 30 16 19 21 15 20 13 21 14 25 18 16 16 15 12 16 20 22 21 15 18 36 23 13 16 24 20 35 22 25 22 25 23 23 16 18 26 20 20 16 25 20 18 21 13 12 16 14 12 17 14 22 19 20 20 22 31 27 24 31 29 16 14 20 18 17 14 14 22 19 20 25 21 21 16 22 18 21 27 25 18 24 20 11 29 21 17 22 14 13 15 16 6 7 11 13 15 7 19 20 17 17 18 21 25 20 13 17 18 19 16 16 17 20 28 13 17 20 22 19 20 14 13 22 28 31 20 12 27 21 25 22 14 15 15 14 16 13 14 9 13 6 7 7 14 11 18 6 15 15 11 16 11 18 19 22 23 16 17 16 16 28 20 22 21 28 10 15 23 28 11 18 22 20 19 12 15 16 21 25 26 40 28 26 21 19 22 11 13 25 8 11 18 15 18 18 18 19 17 19 25 18 16 20 17 20 27 17 22 30 29 26 33 27 24 26 23 27 23 28 17 15 17 14 18 27 23 19 15 26 16 18 25 26 20 28 20 23 23 17 18 21 19 19 13 16 26 23 18 31 18 15 21 31 20 21 19 16 26 28 34 17 13 22 19 18 18 28 22 +23 14 24 19 22 24 21 21 20 23 25 29 23 20 21 28 21 20 21 16 22 21 20 26 24 25 24 19 22 23 23 26 18 15 29 19 15 10 23 20 16 23 19 20 16 16 15 21 23 19 22 27 15 20 21 25 27 15 22 20 27 31 20 20 27 21 21 19 27 31 19 22 15 19 28 15 16 13 16 20 14 11 24 20 22 17 16 36 25 32 24 25 25 15 16 13 23 18 22 28 13 18 23 20 26 31 25 22 12 22 34 15 17 19 27 14 23 12 11 18 18 16 10 10 15 11 13 15 16 14 18 20 15 22 22 28 14 18 13 12 25 17 25 21 26 29 20 26 26 34 21 26 28 29 20 19 22 28 21 20 17 20 19 21 22 18 14 15 20 15 10 10 14 13 7 9 10 9 16 9 22 22 16 19 16 12 20 23 24 6 14 24 26 23 17 24 36 21 11 24 13 23 20 19 25 18 20 15 18 26 30 31 26 27 31 19 19 13 15 20 10 13 8 16 27 25 17 28 12 22 20 18 23 27 21 18 21 27 30 26 22 23 29 15 27 24 18 16 21 25 20 20 13 13 19 18 13 23 17 14 12 15 22 25 18 21 26 29 33 20 25 24 20 20 17 21 22 22 26 18 28 22 25 16 28 33 17 25 26 26 24 23 23 26 21 30 12 22 28 20 +22 20 12 27 22 28 31 18 25 23 15 27 16 22 24 24 17 16 18 18 22 28 28 24 26 19 23 23 15 26 28 30 19 26 20 24 21 19 20 20 17 18 21 26 25 22 14 18 17 13 16 26 19 23 19 22 26 31 24 30 24 12 26 23 24 18 26 13 28 12 18 21 23 21 27 16 14 14 10 10 17 17 16 22 23 33 30 33 36 23 22 17 22 17 17 21 19 13 10 14 22 20 21 16 37 17 22 21 23 25 15 13 18 21 14 20 18 12 11 14 10 11 11 11 8 8 13 13 17 24 20 13 16 18 18 18 20 28 31 33 24 29 13 24 24 24 25 27 21 23 29 24 30 30 23 25 26 30 19 25 29 24 24 19 23 14 20 23 15 13 15 17 18 18 5 15 6 7 10 12 15 9 13 13 19 23 20 21 28 28 13 24 22 19 18 26 16 20 25 16 16 12 14 11 15 21 12 22 16 22 25 25 29 29 11 22 22 18 18 15 11 14 18 12 15 14 17 15 27 19 14 17 25 28 18 21 27 29 16 16 38 17 30 31 23 18 21 22 16 21 26 22 27 16 16 24 16 17 15 20 21 25 24 25 23 21 21 18 28 20 19 27 21 23 21 36 24 24 24 22 26 20 27 18 13 23 16 21 14 24 19 22 11 16 22 16 26 30 27 18 +15 24 25 25 19 29 23 25 23 12 25 15 18 22 20 34 27 22 22 23 20 36 27 27 20 22 31 21 22 23 23 22 20 31 19 18 18 22 21 17 23 19 27 17 11 22 23 23 22 24 27 23 19 30 28 24 23 22 18 28 22 17 20 25 24 18 15 23 19 19 25 20 20 19 20 17 21 12 13 18 15 16 26 28 22 19 22 32 26 37 20 14 16 17 17 24 23 16 19 17 27 17 15 22 20 20 21 18 16 31 22 26 17 20 27 18 18 18 11 17 13 10 9 10 11 18 19 10 18 25 31 21 19 22 12 29 23 30 31 21 29 39 25 34 23 26 20 24 36 31 31 24 22 22 33 16 20 28 28 29 29 31 19 32 17 29 24 14 12 11 24 21 22 20 19 12 11 11 13 12 14 14 6 15 16 16 18 26 15 14 26 20 20 28 21 26 32 19 23 21 22 15 17 25 12 16 23 29 17 36 15 30 32 21 19 14 26 19 20 19 16 13 26 17 15 22 17 19 17 18 17 14 18 25 22 25 18 16 30 28 22 27 28 33 27 30 20 24 21 26 20 18 12 14 19 13 16 17 20 20 23 21 22 26 25 20 18 32 33 31 17 19 27 18 22 23 28 14 19 22 23 24 22 20 26 23 16 22 27 20 25 23 19 34 22 26 17 25 26 18 +16 28 24 23 24 18 27 20 37 33 25 26 22 14 29 25 31 28 20 19 35 25 23 34 20 27 31 21 20 25 23 24 19 25 20 18 18 27 25 20 19 12 20 8 8 11 15 18 17 22 36 24 21 32 16 32 26 22 30 28 32 23 35 22 16 29 17 23 12 15 14 26 24 21 23 13 15 12 13 13 23 14 25 23 26 24 35 31 28 30 23 19 23 18 13 15 19 18 24 19 21 20 22 18 23 20 19 20 27 22 21 20 18 15 21 17 13 14 15 11 11 12 15 5 12 15 17 20 19 22 21 19 20 31 30 31 37 37 23 23 29 23 24 29 12 26 28 22 16 26 26 25 15 21 30 21 22 27 31 20 28 32 33 25 30 29 28 23 22 15 18 18 17 18 25 12 13 10 8 8 10 12 17 11 7 20 23 24 22 22 24 23 22 23 20 22 25 24 23 24 18 15 16 16 15 11 22 24 15 29 32 20 18 27 24 25 24 19 18 19 19 20 15 13 29 24 29 11 16 16 20 18 19 14 20 25 24 32 23 20 33 17 30 18 21 33 25 17 31 31 25 30 20 17 13 20 21 15 16 18 19 17 20 25 25 30 29 20 30 23 28 20 27 32 22 25 17 23 23 25 28 18 20 25 22 24 17 24 20 21 24 28 27 23 27 27 24 29 19 17 +21 28 22 30 30 23 32 20 26 19 27 21 27 21 24 26 21 30 28 32 25 22 28 31 24 30 35 35 26 26 16 21 18 19 28 34 23 25 29 24 13 12 24 13 14 25 19 17 21 23 19 21 24 18 25 22 32 38 24 23 24 20 30 19 21 26 24 24 22 25 17 22 22 20 21 16 14 19 16 22 21 13 19 26 28 18 16 29 26 21 11 19 16 26 26 18 17 26 9 15 19 21 22 22 25 18 25 19 16 19 14 23 14 26 23 15 17 8 10 9 5 10 11 15 20 24 17 24 22 23 24 24 21 27 23 28 25 18 20 20 19 26 24 17 35 18 26 25 19 22 29 34 27 24 26 27 32 18 18 25 27 29 26 21 35 27 26 26 24 23 18 23 24 22 22 14 16 11 10 5 8 8 7 10 7 9 10 10 23 22 22 30 26 25 21 24 12 24 29 20 13 21 20 16 23 22 19 19 27 24 26 27 31 19 19 24 20 16 19 17 11 13 11 18 26 12 24 21 24 18 25 23 21 22 25 24 23 20 28 32 30 30 26 20 21 26 28 23 16 34 19 18 20 22 14 14 23 16 27 27 29 34 17 27 25 18 30 32 19 16 28 28 30 26 23 21 20 24 28 25 24 21 29 20 15 33 22 20 17 24 31 19 22 31 20 14 23 22 30 24 +19 23 28 21 27 19 22 25 19 28 27 23 26 21 16 20 26 25 25 16 26 27 26 15 27 25 30 25 22 27 21 29 25 19 20 22 21 22 28 27 23 20 25 13 19 21 25 17 19 29 19 22 22 36 28 36 27 24 28 21 18 16 28 28 19 20 28 21 26 20 25 19 17 12 19 18 22 17 17 12 14 19 15 27 25 29 32 33 25 24 30 24 15 23 24 15 20 21 16 12 19 28 17 20 24 16 16 17 19 20 25 22 24 24 11 13 15 12 6 13 9 13 21 23 14 10 25 14 18 27 30 23 27 27 32 20 22 20 28 25 21 21 28 26 24 31 24 22 18 33 15 21 13 30 25 24 20 26 22 18 25 21 25 25 36 28 24 19 30 26 28 29 27 20 19 22 22 14 15 15 7 11 8 13 15 19 27 18 20 23 26 24 24 21 24 22 23 30 18 29 19 18 16 17 27 17 27 21 19 17 30 29 31 32 28 26 24 23 17 11 12 17 12 11 16 19 21 21 18 22 16 16 20 24 12 28 33 25 25 28 22 20 24 25 33 23 23 33 12 17 22 17 15 18 23 14 16 24 27 15 24 19 32 27 30 25 23 26 29 20 22 28 31 28 20 32 37 22 25 26 15 32 16 19 24 27 14 27 20 19 25 25 22 23 27 24 31 34 19 25 +31 28 26 21 27 28 20 23 20 23 20 29 16 27 33 24 31 26 20 22 21 29 29 24 24 27 21 30 30 27 17 24 19 27 15 27 25 31 22 22 27 27 27 20 23 27 14 18 23 22 22 25 25 28 34 31 27 31 32 29 37 24 23 27 23 30 20 25 21 24 20 18 18 23 25 23 15 21 13 11 19 19 23 25 20 30 33 29 24 26 33 25 18 14 23 20 26 15 17 21 22 26 21 16 21 17 30 26 20 15 19 17 26 14 10 17 16 13 11 12 18 18 26 20 19 28 21 28 33 31 30 19 28 26 22 23 22 15 23 33 27 30 15 28 22 30 15 26 34 15 26 18 25 25 27 26 21 26 25 26 23 17 22 19 24 23 35 21 25 25 35 26 24 24 28 26 15 26 16 14 7 9 7 19 15 16 17 18 19 15 28 18 25 17 23 17 25 22 19 28 17 17 18 13 28 16 13 21 19 17 28 31 25 31 17 21 22 20 22 14 19 19 24 25 21 22 14 26 15 21 26 24 20 20 21 20 31 19 21 20 28 22 29 23 27 23 32 28 22 17 14 16 24 18 18 21 26 20 30 26 38 20 23 26 20 26 20 31 28 14 22 24 33 22 30 31 21 27 26 27 18 18 25 24 27 34 22 23 18 23 24 16 26 23 30 19 29 27 20 24 +20 26 31 27 33 31 27 24 22 20 31 22 24 27 26 19 25 32 29 24 15 20 33 26 24 27 27 29 22 28 26 30 23 23 23 26 28 31 26 26 27 26 24 22 28 17 25 31 14 12 17 11 15 30 30 18 21 21 32 39 28 25 23 35 28 27 31 29 19 15 19 14 19 21 23 18 23 21 9 17 20 30 25 29 23 34 23 25 30 34 19 14 16 20 24 19 17 29 24 32 33 26 41 20 15 19 25 28 24 28 16 16 18 21 16 8 8 6 12 19 10 18 19 18 32 23 27 27 26 29 24 21 34 21 23 27 35 28 34 22 19 22 25 17 21 30 21 20 21 19 26 24 26 28 19 28 21 20 23 29 36 27 27 26 25 27 32 23 28 25 36 27 30 35 26 29 21 27 22 17 16 4 6 10 10 17 17 17 18 24 23 21 21 21 20 24 28 23 30 29 20 21 20 26 23 15 21 18 25 17 33 29 35 36 23 26 29 23 19 19 17 23 11 22 24 23 23 19 16 28 15 23 21 13 25 22 26 24 26 24 16 25 15 23 27 25 28 16 21 14 22 19 26 16 22 23 27 16 27 35 27 20 20 37 33 24 27 21 30 25 33 32 30 20 20 31 28 31 29 27 24 20 15 23 30 19 15 24 26 28 24 20 30 20 27 23 23 25 25 35 +25 25 27 27 26 21 45 23 23 26 27 26 24 19 26 31 29 14 24 23 21 36 23 25 32 14 24 26 22 23 24 32 32 27 23 33 20 28 26 27 30 26 24 26 26 20 21 17 27 16 17 17 23 37 19 29 34 29 34 25 35 32 27 30 20 18 21 24 13 31 19 22 20 19 28 28 16 11 17 20 24 17 14 20 24 30 36 25 27 27 19 13 30 18 28 28 19 28 19 26 27 21 27 25 23 22 27 26 28 17 18 19 11 8 10 6 10 10 16 18 22 27 23 26 24 32 29 32 35 32 26 27 17 29 31 17 31 24 25 16 30 25 25 24 26 25 27 29 27 28 35 19 26 13 24 24 26 25 21 34 32 26 23 19 21 21 18 24 32 17 27 25 24 17 28 29 22 25 29 17 20 17 21 11 16 9 18 17 15 15 22 24 21 23 17 20 21 15 20 25 19 17 20 18 24 22 19 28 22 19 26 22 24 32 30 19 16 24 28 19 19 14 24 19 14 19 25 29 15 23 23 17 21 27 31 28 31 30 39 25 29 25 29 45 23 28 20 26 23 12 19 17 20 23 26 28 30 17 18 22 28 30 26 28 31 29 21 29 31 19 25 28 19 28 26 18 22 33 20 33 28 29 20 19 22 19 27 21 25 31 29 16 19 31 23 32 19 27 23 23 +19 25 27 22 25 22 25 28 25 21 19 31 25 25 16 21 25 30 23 26 22 33 26 20 24 26 21 20 24 30 33 32 27 25 25 31 33 28 31 38 25 18 22 28 27 20 16 18 20 25 22 18 23 29 21 27 25 23 32 19 30 28 21 21 21 28 34 22 24 28 24 23 22 18 26 24 20 18 19 21 15 18 17 23 27 30 30 27 28 21 21 18 22 18 19 20 22 15 26 26 24 32 23 31 15 20 17 33 25 19 18 12 16 17 10 11 14 22 19 22 15 19 18 28 22 30 24 35 32 31 16 20 17 25 27 25 16 29 25 18 20 35 32 20 27 28 33 37 21 21 17 31 17 25 12 26 26 20 19 33 24 20 23 33 17 22 22 27 30 26 23 23 27 41 23 31 26 22 25 21 13 18 14 18 11 16 11 6 22 18 29 23 23 22 25 34 24 26 25 20 22 28 20 18 19 19 19 19 21 15 18 32 24 31 25 20 35 17 14 20 22 16 25 19 14 19 18 23 20 20 19 24 19 28 11 27 27 29 27 28 20 38 25 33 30 29 22 31 29 18 21 21 15 17 15 24 17 23 27 22 26 16 25 20 23 33 24 26 19 32 27 17 20 34 24 22 27 24 20 20 18 19 19 29 30 25 29 31 31 26 17 26 24 22 33 34 28 24 21 22 +32 30 15 26 24 31 30 23 25 30 30 26 23 21 31 20 24 22 40 26 24 24 27 40 26 18 28 25 30 33 28 36 22 27 37 27 33 34 30 28 32 19 15 18 37 32 26 13 19 17 19 17 22 31 27 18 27 31 31 32 30 25 24 31 23 24 21 24 27 26 28 32 26 22 20 22 20 18 15 16 17 19 31 29 19 37 34 29 25 24 18 18 16 16 17 15 25 20 22 27 30 32 22 17 29 27 17 23 24 20 14 12 8 11 15 11 14 18 21 22 19 23 23 33 36 44 28 28 22 18 18 22 24 20 23 21 22 22 22 20 26 23 25 25 32 23 24 29 33 19 22 27 21 28 33 35 30 26 29 21 27 19 25 27 21 18 24 19 22 25 33 36 38 27 34 27 31 22 23 18 18 21 19 14 12 10 10 22 19 18 19 32 20 22 24 20 29 22 28 32 26 17 20 18 25 29 22 24 15 25 34 31 40 31 21 30 20 28 19 18 27 16 20 13 18 21 20 32 26 25 25 23 17 30 23 27 36 20 23 19 32 31 24 45 33 24 23 21 25 21 24 17 24 19 22 22 26 12 27 31 24 28 20 26 29 31 21 35 29 31 39 33 29 28 21 29 25 28 21 34 24 25 34 23 26 29 21 24 27 27 22 34 32 32 15 25 20 41 21 21 +30 35 29 30 24 31 19 30 15 28 23 22 21 27 27 35 26 29 28 26 25 21 30 20 17 39 30 26 22 24 24 21 26 29 26 26 27 30 34 25 32 26 33 24 20 20 22 23 16 24 21 30 23 22 15 26 37 33 34 24 36 23 34 27 22 20 34 33 22 19 20 25 22 23 13 11 26 19 11 17 21 25 25 33 36 24 30 34 33 22 23 18 22 21 19 19 20 22 30 28 24 28 34 19 21 20 22 27 30 17 18 15 14 11 10 18 12 17 30 24 27 22 21 29 36 39 24 33 29 32 34 27 20 23 29 28 31 21 23 29 28 22 29 17 30 27 22 22 19 23 27 18 26 37 34 33 21 25 26 27 20 25 31 21 34 23 26 28 16 25 25 33 19 20 25 32 29 26 30 25 24 15 21 18 20 13 11 11 20 21 14 23 27 22 19 26 20 25 22 29 30 20 20 30 24 25 18 24 27 20 14 36 37 44 29 27 30 26 26 25 22 22 17 16 25 15 22 16 29 25 28 27 33 21 27 20 38 34 33 34 24 32 21 41 22 28 22 19 21 21 26 22 21 27 21 22 29 32 31 35 20 22 31 30 33 22 31 32 28 25 22 30 24 17 35 24 27 33 34 26 35 32 23 16 25 20 26 33 21 20 25 26 33 28 23 21 26 22 23 36 +26 24 29 24 30 20 21 16 25 40 24 21 29 36 24 33 26 22 17 23 37 19 26 32 28 24 26 17 22 33 22 31 31 25 37 25 32 36 31 22 28 39 39 27 27 30 15 24 21 22 20 12 29 25 23 30 35 28 35 32 26 29 36 28 29 27 27 29 28 20 11 24 26 22 15 15 11 13 18 16 14 28 18 21 33 32 25 23 24 23 29 21 17 22 25 17 16 23 32 32 26 20 28 25 15 20 27 16 18 18 8 17 10 9 17 21 24 24 24 25 31 33 30 30 31 33 40 31 17 19 34 37 19 24 34 26 39 26 23 32 22 25 34 24 26 26 17 17 27 21 31 15 24 24 29 27 15 23 28 31 27 21 26 13 21 27 33 31 28 24 25 27 28 30 33 32 37 27 31 27 25 17 29 16 26 13 14 14 13 20 20 19 27 34 22 22 22 33 28 26 23 27 27 30 26 19 20 22 28 20 21 26 33 28 33 27 29 26 30 17 13 16 7 19 18 27 22 24 21 25 29 26 26 23 33 17 31 27 37 36 35 31 20 36 32 26 27 14 22 27 24 21 27 20 23 28 23 33 32 23 39 27 36 27 25 30 24 33 31 24 26 30 20 27 33 24 31 37 26 24 33 28 31 23 27 37 31 28 26 24 28 32 23 32 33 24 28 21 34 38 +20 30 23 23 26 27 25 28 31 38 21 35 25 31 29 32 29 28 34 27 35 18 37 27 31 28 27 26 33 28 31 30 34 27 25 24 18 29 29 23 32 29 24 24 24 28 34 35 25 21 35 14 26 26 25 22 26 18 33 26 23 42 30 25 41 28 32 30 21 25 30 18 20 30 21 15 18 18 15 14 20 25 27 26 30 38 31 23 29 19 32 17 20 20 28 22 29 33 12 27 28 20 30 31 23 25 19 30 21 15 17 14 11 12 22 25 15 21 25 21 30 48 42 37 26 30 33 23 31 26 25 21 20 26 31 24 32 41 29 24 34 24 28 28 21 20 29 27 17 29 19 25 23 24 35 17 23 20 23 34 15 28 28 20 18 29 36 29 21 23 29 33 21 30 25 37 27 38 21 27 31 19 24 14 25 18 20 14 8 18 20 27 23 28 19 24 24 33 21 23 22 36 32 22 23 19 20 14 15 21 19 32 30 38 29 34 33 34 23 26 17 15 26 14 21 23 19 33 26 18 21 30 21 24 18 37 38 35 28 30 29 27 30 26 29 22 23 22 22 22 24 27 22 18 37 33 25 39 24 28 27 34 22 22 26 28 34 26 32 21 29 25 32 31 35 28 29 24 28 20 26 21 27 23 28 17 28 32 22 31 34 31 17 32 27 26 31 32 25 23 +31 32 20 28 30 19 28 27 24 36 24 34 26 37 27 35 24 26 33 42 22 25 24 22 30 25 13 22 28 22 27 25 29 34 37 32 26 28 21 31 28 25 29 33 20 20 24 24 20 11 25 26 11 27 31 33 35 25 26 39 22 42 27 26 30 24 21 30 22 26 23 24 28 26 32 22 14 20 16 12 22 24 23 23 25 26 38 31 20 22 26 30 22 17 22 16 25 22 23 13 28 28 27 28 26 24 23 23 15 22 14 7 16 15 20 29 27 20 32 30 38 37 38 24 35 32 25 32 28 35 23 33 29 35 35 30 25 33 25 30 25 32 21 25 27 23 30 25 28 24 32 23 27 32 26 28 13 24 37 30 22 31 26 21 24 20 34 24 27 24 35 28 25 29 33 33 32 26 36 33 33 28 22 23 14 21 14 9 19 16 16 11 25 17 18 18 25 24 29 35 30 24 26 29 31 17 16 17 18 20 20 29 35 37 36 35 29 28 25 20 21 21 25 29 17 29 14 20 21 22 29 26 41 29 31 28 21 35 32 17 34 36 24 25 30 29 19 20 15 22 29 27 21 24 28 27 24 25 26 23 21 40 22 16 40 39 32 27 29 27 27 26 32 33 26 29 27 20 27 16 28 31 30 24 37 30 24 20 32 36 30 28 33 23 28 24 29 28 34 30 +25 22 27 21 43 25 39 27 26 34 35 37 25 22 22 30 31 32 30 30 24 34 27 29 31 20 46 40 20 26 30 26 28 23 28 27 33 24 27 36 30 23 33 29 20 30 22 23 23 13 18 24 27 22 20 19 31 37 26 35 22 23 31 29 33 37 26 25 12 25 26 29 23 19 25 19 10 15 14 23 17 24 28 41 26 38 29 19 29 14 21 24 29 26 21 25 31 28 21 33 26 32 28 31 27 21 18 15 18 15 13 13 13 20 28 18 20 26 34 35 32 35 22 27 37 28 26 23 37 22 27 23 28 35 32 28 34 26 19 29 28 21 29 16 41 24 22 28 25 18 21 23 21 37 28 25 29 25 35 31 35 24 25 30 25 21 23 26 26 26 25 27 31 35 23 25 34 35 27 35 26 39 27 22 23 28 23 18 18 8 9 17 14 23 22 20 29 23 25 30 27 41 30 15 22 26 29 23 21 26 26 22 28 29 38 32 35 26 24 25 19 23 15 24 23 17 30 23 33 17 26 22 23 23 33 23 30 35 26 25 32 31 35 24 29 22 26 23 19 21 22 24 26 26 28 21 24 26 34 20 25 30 32 30 34 28 37 30 32 22 23 32 29 29 30 36 36 27 29 36 28 37 27 26 29 25 28 31 32 21 35 35 27 33 25 39 24 35 31 25 +23 22 29 23 26 28 38 29 23 30 44 28 32 25 22 28 30 32 23 27 34 33 27 31 24 23 34 22 29 28 42 26 31 27 27 28 39 26 32 21 28 24 22 30 26 32 20 33 27 16 22 19 24 21 18 34 22 27 27 32 35 38 27 25 32 17 23 28 19 25 30 21 16 29 20 17 14 19 20 23 23 36 21 31 23 32 27 37 32 21 20 21 24 23 25 27 29 24 33 28 18 25 27 23 30 22 29 17 22 11 9 15 17 18 18 19 21 28 40 31 35 17 35 37 32 30 16 21 28 27 32 25 27 25 33 28 21 19 28 26 30 24 19 23 26 35 33 31 26 40 26 33 24 36 34 29 26 34 26 30 33 26 35 21 25 24 37 24 26 37 22 27 34 25 38 21 20 28 37 23 32 29 28 27 22 27 27 14 13 13 15 17 22 23 12 29 20 28 24 31 32 17 31 30 25 22 33 24 20 23 16 26 32 26 38 43 19 18 32 23 12 16 13 22 18 24 29 19 28 26 21 24 24 25 31 34 28 25 23 29 36 36 29 35 29 18 29 21 25 18 20 24 19 26 37 21 28 25 28 25 31 21 22 27 28 32 28 27 32 37 26 32 24 22 29 40 29 31 33 34 30 25 29 27 36 32 31 30 27 26 31 24 36 28 22 30 37 29 22 18 +26 21 32 25 15 18 21 19 30 24 28 35 25 28 34 35 26 35 32 29 35 36 26 28 35 38 29 29 23 33 21 30 30 33 30 42 27 23 28 29 31 32 41 27 36 30 33 34 25 19 24 29 34 34 21 27 28 23 33 32 30 24 33 28 34 29 31 30 36 20 19 23 20 17 33 15 23 18 18 15 14 18 26 20 29 46 33 21 20 21 21 28 17 27 22 28 23 32 33 37 28 22 21 17 19 15 21 13 14 8 15 18 18 25 28 28 37 48 34 32 33 30 36 20 16 22 21 28 27 26 26 28 35 28 29 28 23 28 26 40 33 25 34 26 33 27 37 31 28 39 47 40 26 31 35 33 26 31 36 30 25 28 38 23 29 27 38 23 24 27 20 30 24 18 32 27 30 31 25 34 30 36 25 33 24 24 24 19 9 4 13 16 18 24 21 18 24 29 27 26 24 30 31 26 30 19 17 29 21 30 23 26 29 26 32 28 40 38 21 28 14 16 17 21 21 13 28 26 25 19 19 29 28 33 26 38 31 43 33 38 28 33 38 32 27 22 27 27 37 25 26 23 31 28 28 25 38 27 26 30 31 36 26 33 27 33 31 21 21 36 29 21 34 37 47 34 26 40 31 30 34 35 33 28 32 25 33 35 29 22 19 31 21 27 25 23 31 28 29 16 +27 22 20 27 26 30 28 27 17 29 20 26 27 25 24 26 27 32 36 24 29 24 28 26 23 25 22 28 36 34 23 25 39 29 36 28 36 31 29 30 35 38 38 28 27 27 27 29 30 28 28 16 20 18 26 31 38 41 37 23 23 30 32 37 29 41 27 26 32 27 26 22 29 19 35 23 12 29 15 17 27 23 31 30 27 32 27 20 20 22 18 20 22 16 21 20 33 29 40 26 23 21 31 33 23 23 10 19 17 8 11 18 25 25 22 22 27 31 26 38 21 27 31 29 31 26 25 32 25 23 37 29 25 30 35 22 35 34 29 34 36 27 29 30 37 20 20 32 35 39 29 37 39 32 34 32 34 35 34 35 26 37 22 25 30 27 34 18 23 31 32 21 25 35 30 26 26 35 20 25 32 26 18 30 44 23 17 23 21 15 12 13 13 19 22 32 27 25 21 19 20 33 29 31 20 21 20 32 31 20 37 25 27 45 37 33 27 30 26 23 10 27 12 15 30 19 26 31 25 18 22 34 33 23 37 28 35 31 25 29 29 29 36 27 24 24 21 24 32 18 20 25 21 29 27 32 27 34 32 32 20 28 37 22 39 27 28 24 25 30 29 29 21 23 26 27 29 37 31 26 26 28 27 27 40 24 32 33 33 23 31 32 27 26 30 29 24 27 36 22 +27 24 20 19 27 27 22 20 22 27 28 16 18 25 30 36 25 33 27 37 28 29 23 28 40 20 19 22 31 31 43 27 31 28 31 29 41 32 26 27 31 31 27 40 29 29 30 31 23 21 32 26 15 17 26 29 27 26 28 36 34 27 25 32 31 25 29 31 34 30 28 35 18 25 17 27 25 20 11 31 26 34 27 36 36 29 35 22 25 26 22 23 29 23 30 25 24 23 30 21 30 17 19 25 22 21 19 10 11 9 16 23 26 20 27 32 36 25 39 34 36 25 24 30 32 34 40 19 32 31 25 31 31 32 22 28 35 22 31 35 31 34 31 25 44 45 37 23 28 23 34 29 25 36 33 23 37 41 40 38 36 24 32 36 26 19 34 37 33 25 34 24 25 30 34 29 39 32 26 29 27 25 35 30 25 24 24 24 21 16 13 12 15 18 24 22 26 30 33 35 24 35 27 32 25 36 23 24 23 23 34 35 36 33 37 31 30 40 32 16 25 24 19 21 23 30 24 20 26 16 33 30 26 19 25 25 21 32 37 26 30 24 34 23 23 18 27 28 24 31 27 24 15 38 40 31 28 23 34 27 33 30 27 16 38 26 28 23 26 28 21 28 42 31 34 33 21 43 22 28 31 23 30 31 24 28 34 28 23 25 28 26 24 26 30 24 23 24 32 31 +25 21 20 22 25 21 27 17 23 26 21 27 15 20 30 25 34 29 23 26 33 39 25 23 30 32 30 21 27 25 20 29 24 30 21 32 31 28 26 30 36 34 44 30 28 25 30 30 32 17 27 16 17 21 18 32 30 32 41 37 32 36 31 29 31 24 39 34 32 26 16 21 24 24 29 24 19 14 16 34 23 27 21 29 34 42 32 17 20 21 23 32 20 34 29 25 32 17 26 25 28 26 17 31 19 20 19 13 17 18 18 22 32 33 24 29 29 35 29 27 38 36 26 29 39 24 24 28 22 27 33 25 26 34 34 22 29 34 34 40 27 32 38 37 26 24 27 22 26 39 31 32 28 27 26 40 32 36 35 39 30 32 43 43 32 28 30 24 21 26 21 26 28 36 30 26 33 25 26 35 28 29 32 34 34 27 20 26 24 23 13 13 10 12 19 14 27 27 22 23 27 27 18 29 35 21 27 22 31 28 19 32 19 34 41 34 38 24 20 25 24 16 21 17 19 19 28 24 23 19 28 23 25 39 31 38 39 33 36 23 28 30 28 32 27 27 29 28 24 20 21 22 31 29 28 29 29 26 27 33 37 23 26 40 32 25 29 27 33 33 41 34 23 31 36 30 37 32 33 38 29 34 31 36 25 29 22 29 24 29 25 17 23 26 20 22 22 27 22 19 +26 20 34 19 23 25 13 27 32 25 23 24 23 23 26 25 23 35 34 31 26 26 35 29 37 31 27 29 36 35 34 36 30 34 30 34 31 27 28 27 27 33 31 30 25 27 28 45 35 25 32 24 28 20 21 26 27 35 42 33 28 37 38 42 37 30 30 25 36 24 24 22 34 25 29 22 26 20 19 15 27 13 31 25 36 39 26 27 20 22 24 26 18 26 25 32 27 30 20 34 33 36 14 30 22 31 9 14 12 20 21 18 18 33 31 29 31 40 32 36 35 32 35 31 26 23 29 21 31 32 28 34 41 34 32 34 30 40 42 24 39 27 32 28 38 22 22 29 27 23 28 32 20 20 24 24 21 33 38 30 36 44 39 36 33 28 34 24 24 23 24 27 19 23 18 33 22 45 29 26 33 28 27 31 30 36 24 25 24 27 23 12 17 12 23 23 28 31 34 31 29 25 26 19 20 34 16 29 26 25 23 25 22 33 39 39 27 27 34 27 17 18 21 21 11 34 28 23 26 21 19 28 31 32 35 25 37 29 30 36 26 32 36 18 17 28 26 31 30 25 49 21 41 34 34 27 32 36 36 33 30 28 35 28 22 34 23 33 29 33 35 28 34 31 24 36 44 26 20 34 23 21 28 27 25 21 17 46 20 22 26 20 23 24 13 27 25 18 20 25 +13 12 22 14 20 19 12 26 27 25 25 32 38 39 22 30 31 28 30 26 27 29 35 35 37 31 33 30 22 27 29 34 32 38 32 33 32 33 31 31 44 37 28 35 33 34 28 29 35 24 20 32 20 24 19 18 17 30 31 40 38 37 33 27 25 32 35 24 30 26 27 20 31 27 20 23 27 22 12 23 32 24 32 42 35 40 40 29 27 33 16 23 22 23 21 40 33 25 40 35 24 34 38 26 18 19 12 16 15 22 25 22 21 31 46 35 31 32 28 39 26 26 22 18 22 37 46 37 28 39 31 34 28 31 50 37 37 41 30 29 30 25 25 20 18 23 37 23 20 29 32 19 27 17 12 18 19 24 32 29 31 34 29 45 33 38 55 27 25 27 36 32 26 27 34 39 32 21 23 37 20 29 29 35 31 36 28 21 18 25 22 22 16 12 22 19 27 28 24 28 22 26 34 22 32 17 27 30 20 34 22 23 36 39 38 40 25 25 23 18 24 22 20 20 18 26 23 30 35 24 29 29 32 29 25 32 29 36 34 33 33 36 29 28 20 23 30 18 21 32 43 38 27 34 23 32 23 30 20 35 23 32 32 28 31 27 38 35 38 26 37 30 29 31 32 34 32 42 26 25 27 27 28 28 29 29 26 17 29 26 23 27 14 18 19 17 21 13 26 21 +20 15 19 18 17 16 17 16 20 14 26 27 27 20 25 22 32 21 24 25 28 29 25 22 30 33 27 35 24 35 29 28 35 29 32 35 33 28 28 37 37 41 32 36 27 23 28 27 20 27 18 27 35 27 22 30 22 33 39 43 41 31 30 27 40 34 29 26 27 31 18 24 29 25 27 17 19 23 25 12 25 18 33 25 42 29 42 23 18 20 18 26 13 27 20 20 30 26 24 24 27 41 18 26 26 19 7 16 10 14 31 23 34 34 34 32 43 28 26 30 48 17 28 33 35 30 31 28 30 34 28 38 43 42 25 33 37 36 20 34 27 24 18 21 22 23 22 26 17 20 28 28 23 25 21 18 28 22 16 34 25 25 33 41 39 37 36 43 36 39 25 29 20 32 18 37 23 24 23 30 30 33 40 27 32 36 35 23 34 24 24 14 11 17 21 18 24 25 24 27 24 32 33 24 37 22 22 23 21 21 21 22 32 27 51 28 40 29 31 31 13 21 25 24 21 24 23 19 20 32 27 38 25 31 35 42 51 28 42 37 29 32 32 25 20 29 13 21 25 36 32 29 31 30 24 33 37 27 34 26 39 29 35 21 26 22 42 22 23 33 31 34 25 43 19 31 36 42 26 28 33 26 25 22 28 32 22 23 26 15 27 16 15 18 23 16 27 17 14 17 +19 8 15 19 18 17 11 23 16 11 21 30 22 24 20 24 27 26 17 26 19 27 29 29 21 40 36 35 33 38 33 33 42 33 33 29 19 25 27 29 37 25 32 31 33 24 23 29 27 19 20 23 30 18 28 21 26 32 30 35 32 37 37 35 32 37 24 33 25 38 22 30 32 27 23 21 16 24 15 22 31 33 29 31 33 35 39 30 21 26 31 29 23 30 27 33 32 32 27 32 18 28 22 18 14 17 12 17 26 19 21 18 46 38 31 29 42 34 24 25 32 28 31 22 34 26 23 27 35 36 33 37 39 34 37 27 18 25 28 19 26 27 21 23 22 28 25 15 22 26 28 16 23 23 19 21 18 20 18 33 15 19 23 19 25 36 42 39 30 34 42 36 27 25 30 36 22 34 22 32 27 38 30 34 28 47 27 32 29 32 27 19 17 14 11 20 21 32 32 32 28 29 28 30 26 26 30 24 21 25 34 34 30 35 30 36 25 29 29 13 27 19 20 29 21 26 27 33 18 26 34 34 33 38 41 35 40 32 33 33 33 32 30 17 28 21 24 18 30 26 26 27 31 46 35 36 39 29 39 29 41 33 24 35 38 30 27 34 29 31 25 28 43 27 23 30 22 26 28 23 39 26 36 17 28 25 27 32 21 24 25 11 24 16 14 16 12 20 15 15 +17 20 21 13 14 10 23 17 17 13 20 15 13 27 20 28 30 28 22 28 25 23 25 30 30 30 27 29 26 29 34 29 30 47 37 31 37 34 28 33 33 28 29 44 36 34 24 29 35 35 33 33 34 26 36 22 24 38 27 32 36 25 31 32 28 40 34 26 22 20 25 28 21 26 30 22 23 21 22 19 25 38 41 37 47 36 35 35 28 25 23 26 17 30 31 35 26 32 21 31 26 26 26 17 19 12 14 21 23 23 28 32 42 42 31 34 30 25 28 25 26 43 21 31 38 21 43 42 35 24 47 34 32 34 28 28 26 19 27 20 22 25 18 21 29 26 30 18 24 19 30 26 19 28 19 15 24 17 24 26 26 33 30 31 23 25 26 40 32 42 32 37 18 42 24 19 31 21 25 32 36 29 24 35 37 44 25 42 24 23 15 30 16 21 15 15 18 25 26 28 28 26 25 30 24 29 26 28 26 21 14 35 28 20 30 34 30 24 29 21 30 18 24 17 24 25 23 28 37 24 30 30 28 33 33 35 36 32 40 35 29 28 40 22 34 27 23 24 28 27 32 30 33 31 37 36 37 36 37 29 34 35 27 40 34 31 37 39 31 42 35 39 31 36 27 28 35 33 21 30 36 27 33 21 21 22 25 13 17 11 23 23 9 15 16 15 26 17 20 18 +23 18 7 23 13 17 14 15 26 20 17 20 15 17 15 20 25 28 29 32 28 27 30 27 32 27 40 23 26 39 28 31 34 32 30 21 29 37 33 33 25 40 25 22 28 30 34 25 17 35 33 20 19 23 24 19 32 27 45 39 41 39 43 38 28 24 23 34 28 23 34 33 29 32 31 30 19 22 15 20 41 41 31 29 28 36 24 28 26 21 23 21 24 35 24 34 37 26 27 27 33 35 21 27 11 18 13 25 17 33 24 37 30 30 25 33 37 29 26 28 27 45 35 20 26 31 29 36 33 39 42 35 32 32 24 23 14 22 17 22 20 26 20 22 22 18 23 20 27 16 16 18 26 22 22 25 27 22 24 18 23 20 25 25 25 25 26 31 36 25 29 33 33 30 36 23 28 29 25 31 39 34 28 29 31 26 32 35 34 22 26 27 16 13 13 15 24 20 21 31 32 33 22 25 25 29 32 28 17 28 30 27 23 30 32 42 44 32 28 29 21 19 17 30 37 21 22 23 25 38 23 35 27 31 27 31 34 27 49 39 31 27 21 29 23 24 23 25 26 36 30 21 36 26 43 38 30 33 33 29 33 29 36 32 30 36 28 31 36 34 27 30 30 34 32 27 33 36 34 23 23 23 33 25 30 19 21 18 18 19 25 16 17 27 22 27 22 24 22 20 +20 11 25 19 14 14 21 12 13 20 15 17 17 17 22 13 20 17 20 27 33 21 32 26 32 26 32 25 33 39 38 31 39 33 30 32 41 23 38 29 35 39 29 36 34 27 29 32 31 30 41 26 29 28 19 22 17 30 29 33 26 23 28 33 34 54 43 26 28 23 25 25 28 30 31 27 14 16 16 21 23 33 29 40 24 27 39 23 19 24 20 29 25 36 24 18 35 31 31 37 30 25 25 21 17 10 19 36 33 19 33 35 31 41 33 35 32 34 23 32 23 32 19 28 29 28 24 31 41 32 44 22 27 30 25 24 28 18 25 30 23 30 21 30 21 20 28 16 21 26 21 24 24 26 27 25 23 26 35 27 31 21 23 26 20 21 25 25 26 29 32 36 42 39 34 24 26 31 26 38 21 30 21 34 23 35 29 39 34 33 29 23 27 18 15 17 18 22 20 28 31 20 27 41 33 25 22 23 22 28 19 18 21 27 43 34 38 45 26 26 25 24 23 22 21 45 27 38 31 31 32 31 31 41 44 33 40 31 32 27 34 38 28 32 25 27 25 20 27 35 20 34 33 32 27 32 43 37 30 37 24 39 30 29 20 28 37 32 35 32 31 32 27 38 33 41 27 34 25 35 32 25 29 20 23 14 21 22 22 20 15 11 19 21 14 22 15 20 24 31 +19 11 18 22 16 19 16 22 17 16 23 15 19 16 23 29 20 23 20 19 35 24 27 33 29 30 30 33 42 34 37 35 34 35 31 27 35 32 28 31 40 32 32 31 23 26 41 38 35 36 40 26 22 24 26 23 29 25 32 31 36 37 26 32 34 42 23 42 28 32 28 30 38 19 25 24 23 17 29 22 32 30 32 39 40 24 32 32 33 23 30 33 27 27 28 39 46 30 32 28 30 22 19 19 11 14 14 35 26 22 32 44 33 32 28 46 32 25 39 28 34 33 25 38 23 34 34 29 29 31 33 27 27 27 13 23 20 23 23 20 28 24 28 20 27 26 25 26 26 27 26 18 22 26 27 28 32 18 23 26 27 22 25 28 29 20 29 19 19 30 42 45 40 36 42 28 29 34 31 38 38 40 31 32 41 38 42 28 37 24 22 31 26 14 12 19 17 17 25 30 39 24 32 30 30 29 35 34 24 29 22 23 38 31 36 47 37 34 37 36 27 18 25 9 22 23 21 30 26 24 25 39 27 33 29 33 37 30 48 39 39 33 30 24 15 26 23 24 31 30 36 27 33 28 32 38 42 44 27 29 27 37 40 24 31 32 30 33 33 26 34 28 32 32 36 29 31 28 41 22 25 28 22 15 13 22 17 21 15 27 17 18 25 22 24 17 15 18 16 20 +22 16 7 10 14 16 20 19 17 23 21 15 21 16 15 17 16 17 19 17 34 26 32 29 28 40 32 31 44 36 50 37 48 31 34 38 19 37 32 33 46 32 27 35 37 27 29 31 39 31 38 43 28 33 28 24 28 27 33 36 41 32 39 28 34 36 34 34 26 33 27 21 28 28 28 25 23 26 20 18 34 33 35 37 38 42 29 26 24 34 24 23 26 35 36 33 24 30 41 28 33 27 14 17 19 12 24 18 26 25 38 29 28 39 29 42 21 28 25 43 24 24 41 25 32 35 45 34 43 25 32 21 33 19 28 23 30 20 21 24 31 21 20 22 24 23 33 19 23 22 18 25 21 26 20 19 20 23 24 28 24 28 27 24 20 28 28 19 20 22 23 32 34 41 40 37 29 32 25 34 33 24 26 44 46 44 37 36 33 40 36 35 36 25 17 12 22 16 22 30 21 36 28 29 37 37 25 36 32 24 32 20 22 21 38 34 36 25 38 34 26 22 21 21 27 26 20 27 24 23 28 38 26 34 28 27 30 34 37 30 36 40 37 31 20 30 29 25 32 34 39 30 35 35 33 34 32 28 22 40 26 30 38 29 29 38 37 32 28 34 37 42 28 28 31 34 26 18 27 26 26 19 14 15 21 18 16 10 16 19 14 16 22 18 24 11 17 21 11 9 +13 24 21 22 19 16 21 28 19 12 24 21 24 17 20 27 25 16 15 23 20 21 24 19 25 33 28 36 38 35 37 26 31 33 31 41 26 30 25 40 18 28 33 31 37 39 29 44 35 26 34 21 32 27 26 21 30 23 37 43 33 46 29 28 35 39 28 44 28 40 44 31 37 32 26 22 18 19 15 26 25 30 24 44 48 33 15 25 29 31 26 22 16 23 35 28 26 30 23 34 29 25 24 15 13 13 27 21 26 36 42 41 48 39 35 32 34 31 24 23 37 27 38 34 41 35 39 26 33 25 30 18 24 21 28 25 24 25 20 21 14 16 23 19 19 35 20 27 23 25 23 18 23 28 20 23 28 22 21 28 25 23 31 20 25 31 24 21 25 15 20 36 33 44 38 36 42 24 36 27 30 29 38 26 27 42 41 40 47 34 38 31 24 21 17 8 21 19 23 32 33 23 34 36 33 35 30 30 26 25 33 30 26 24 49 40 40 41 31 23 25 16 8 29 33 30 18 32 30 24 32 39 27 33 42 40 37 33 31 36 33 33 33 26 25 23 23 30 27 31 28 35 37 35 27 31 39 44 30 34 20 31 28 35 36 29 42 39 43 42 32 23 29 22 21 19 28 32 25 19 21 19 13 17 14 8 20 18 13 20 13 16 27 16 17 12 19 11 20 13 +24 19 20 22 19 15 13 19 17 15 14 18 17 22 26 27 15 28 13 16 26 16 27 30 30 27 25 23 35 36 31 43 24 38 42 39 29 47 35 35 29 39 35 47 37 35 37 36 28 42 37 24 17 30 23 21 30 27 38 34 37 40 28 44 30 33 43 19 38 26 25 27 26 31 26 25 20 21 26 14 32 30 31 45 44 33 31 35 31 34 31 26 17 26 33 26 29 37 37 21 26 24 20 15 9 15 36 26 29 40 33 35 31 40 27 40 23 32 25 19 29 25 38 34 41 37 42 23 30 26 24 30 28 22 30 26 28 23 23 36 22 22 36 29 12 25 20 23 27 19 20 20 21 25 11 19 17 30 20 20 27 25 21 18 38 36 30 28 32 23 20 29 26 37 32 34 38 30 21 43 43 29 35 42 34 38 30 29 45 52 38 26 30 37 25 15 14 19 29 22 32 26 26 28 31 37 25 29 31 22 28 28 30 29 27 25 44 40 38 29 27 23 20 15 22 30 31 26 23 23 28 28 24 41 35 27 30 40 44 35 36 28 21 25 32 29 12 35 37 32 37 41 33 31 38 41 42 46 29 34 36 28 38 36 31 39 29 28 38 34 30 33 31 26 31 33 28 27 23 18 18 25 20 18 19 16 16 23 18 12 21 19 17 18 19 24 20 16 19 19 +19 25 18 18 27 19 11 22 17 19 16 22 21 17 14 15 26 21 26 22 21 20 27 25 31 28 29 33 29 33 29 38 25 23 35 29 34 33 33 32 27 27 32 34 31 36 42 30 36 47 29 38 38 23 19 39 22 30 27 51 33 44 29 40 39 38 37 37 30 30 23 32 20 25 29 25 28 18 23 18 34 39 42 36 43 35 17 34 33 21 24 25 34 27 32 35 33 37 37 36 35 26 10 13 14 19 26 27 18 37 35 37 40 39 28 34 23 31 32 33 29 35 34 29 43 37 34 37 19 28 29 30 24 24 25 29 34 26 23 25 27 23 20 18 20 19 10 11 17 12 6 14 25 23 18 25 20 26 23 23 18 25 23 28 19 21 26 23 25 26 27 22 24 36 39 40 28 51 43 31 38 23 33 25 34 36 20 33 33 45 44 41 29 30 23 11 14 22 21 35 29 22 31 28 28 32 20 35 35 23 30 25 24 24 36 51 45 36 40 27 24 20 18 19 29 35 31 34 29 22 39 46 35 37 28 36 31 35 32 33 34 27 19 17 35 29 28 28 43 32 30 32 37 36 32 31 33 31 35 29 42 35 31 46 40 29 38 35 38 33 33 22 25 26 34 25 23 27 29 15 18 24 20 17 23 22 17 23 11 13 30 34 15 18 21 21 16 25 26 15 +21 20 22 23 20 23 16 19 27 17 19 19 26 21 19 23 19 17 18 19 23 16 16 27 23 27 33 29 21 32 35 39 29 30 34 34 38 27 26 30 40 18 34 38 36 52 33 45 36 38 34 31 29 40 38 42 21 25 38 32 35 37 31 31 26 45 21 23 37 31 30 30 24 28 37 26 30 22 20 23 36 27 41 42 35 31 31 30 25 30 32 29 35 37 38 27 24 37 26 21 22 18 18 13 16 21 26 34 31 46 34 40 34 24 33 30 23 25 35 45 38 40 36 43 46 40 30 32 36 22 24 33 23 34 25 22 23 15 27 22 15 20 17 14 13 17 8 10 11 11 6 10 13 11 11 12 17 17 16 21 17 30 32 23 27 26 29 32 23 19 29 25 28 22 33 39 43 33 32 34 34 33 32 24 35 27 21 30 39 33 43 40 27 22 21 12 13 18 26 21 29 28 36 41 23 25 34 40 28 17 26 19 29 28 22 44 45 36 32 32 19 27 19 26 25 29 26 22 26 42 33 31 31 38 34 37 39 31 24 38 27 31 33 22 17 29 21 26 34 31 39 31 36 32 32 31 41 40 37 33 31 29 31 38 35 31 27 35 29 40 35 28 28 33 27 29 36 29 17 16 18 16 19 29 23 15 25 18 21 24 22 22 15 25 15 18 16 21 16 22 +15 16 13 23 21 19 13 22 18 15 25 20 21 21 21 18 18 27 16 21 18 14 23 27 24 33 32 32 31 29 34 33 31 41 30 49 36 29 28 40 27 30 36 45 38 34 40 35 31 41 37 35 49 23 33 25 27 33 23 46 52 41 41 39 42 28 32 40 31 37 36 25 33 28 29 25 34 23 18 24 43 20 43 40 45 37 33 32 23 26 20 37 39 34 34 31 31 26 37 26 18 18 13 15 17 20 41 36 38 40 46 41 46 36 39 31 30 43 29 40 34 35 37 37 32 36 32 30 27 19 26 19 20 21 27 26 25 34 17 25 21 18 15 10 11 8 7 4 2 10 9 4 4 8 6 7 4 10 13 9 25 12 14 28 29 25 30 27 29 25 28 23 15 21 29 33 52 32 37 32 30 39 29 38 34 43 29 43 35 44 51 37 23 34 21 30 16 18 24 16 39 35 31 33 28 37 41 43 29 31 27 23 21 29 47 42 35 40 40 34 23 20 24 20 29 25 30 38 45 35 38 36 34 38 36 35 37 43 26 35 43 42 27 21 30 20 27 34 39 35 33 41 33 39 30 21 32 44 32 41 32 40 33 32 39 41 29 37 31 44 40 43 28 16 22 24 23 20 22 11 15 22 18 22 19 22 11 20 16 13 14 25 19 23 14 15 21 15 21 12 +21 21 18 16 22 19 26 14 28 21 16 15 28 14 17 9 18 17 23 15 16 17 19 25 34 32 34 31 38 21 36 28 32 31 37 39 36 25 40 38 37 28 29 35 44 35 38 31 35 36 43 30 28 32 30 30 26 36 32 40 33 36 39 34 33 41 53 43 33 35 43 29 39 29 24 19 20 20 13 24 42 30 49 44 42 28 31 22 21 31 33 33 42 36 34 26 37 26 30 23 26 22 22 18 15 31 37 31 40 42 30 22 27 41 32 34 27 28 29 30 27 35 42 37 27 27 19 22 19 30 31 22 23 26 18 18 18 18 17 23 10 8 4 3 8 7 2 2 3 4 1 4 4 5 3 3 2 8 8 12 11 19 13 23 20 22 31 27 27 29 30 26 27 22 34 29 40 44 45 44 30 31 39 35 33 27 36 33 39 37 31 39 44 24 34 23 13 14 19 24 31 28 36 35 25 36 29 26 20 24 36 30 27 22 31 42 33 32 28 36 25 31 22 20 24 21 30 21 27 27 35 38 32 37 29 39 38 43 38 44 31 22 23 21 35 30 25 41 46 41 38 35 37 50 38 30 31 37 26 34 22 34 32 31 28 38 27 40 25 33 40 31 36 32 30 23 22 20 21 23 22 25 18 35 18 19 14 24 17 26 27 20 17 27 22 16 29 21 16 21 +15 17 9 23 13 25 12 14 20 22 12 15 19 25 22 21 13 22 17 15 19 28 25 26 26 14 30 29 31 22 32 39 26 36 43 46 36 30 41 30 36 30 26 48 39 41 41 42 48 35 31 33 45 34 21 32 32 25 26 34 45 37 39 41 44 32 39 28 29 44 37 32 25 37 24 25 22 30 32 29 43 26 52 34 34 38 26 26 21 27 29 32 36 24 31 26 34 27 25 22 19 27 17 15 33 28 28 48 42 38 36 30 29 28 32 35 36 30 30 34 41 47 41 37 34 16 36 21 22 24 34 34 21 20 23 17 20 9 6 7 10 6 4 4 2 2 4 1 1 3 2 4 3 5 2 1 9 2 6 6 5 10 14 15 19 22 24 20 22 32 26 33 28 32 23 29 33 37 39 32 34 39 23 34 38 28 42 34 30 44 31 38 39 23 24 33 16 20 26 16 24 30 39 34 36 41 35 28 23 22 29 36 33 23 27 46 32 49 41 29 35 13 25 24 30 31 38 37 34 20 30 37 37 39 40 38 42 35 40 42 40 31 26 27 25 33 39 39 36 30 35 45 35 29 33 29 41 39 35 29 28 39 38 44 34 38 39 42 37 34 33 30 30 24 26 20 19 16 22 24 12 24 25 17 19 19 23 20 19 22 19 15 15 18 23 16 20 24 20 21 +20 27 20 19 21 28 12 24 21 22 27 18 28 14 14 28 30 17 13 23 15 14 23 17 26 22 24 34 35 32 26 33 26 30 41 41 34 36 34 41 35 39 26 44 29 39 38 35 34 39 28 42 31 48 32 27 25 31 33 24 37 29 34 36 37 36 34 36 40 50 38 33 31 27 26 34 32 26 24 23 30 33 30 44 33 26 24 26 29 39 25 30 24 45 45 30 38 27 23 24 18 16 13 18 24 35 33 31 39 35 37 30 33 24 34 47 36 35 18 31 35 47 40 28 30 28 23 27 21 37 29 29 26 24 33 14 13 7 12 8 6 4 4 7 4 2 5 5 2 5 4 0 4 4 2 1 5 7 2 2 8 8 12 14 17 21 18 22 13 32 24 20 24 28 26 24 28 35 32 33 30 30 26 32 31 31 35 37 30 37 39 46 45 30 28 32 25 15 14 21 25 27 30 29 33 34 31 36 27 26 26 33 23 31 34 31 44 47 30 26 25 22 24 22 23 20 37 22 33 31 42 32 33 44 37 39 38 34 28 41 31 29 23 35 29 33 27 25 42 31 27 40 33 36 46 35 38 36 27 31 36 37 43 28 31 43 34 33 34 35 27 30 17 33 20 15 24 13 16 19 16 18 19 24 27 26 19 19 21 25 19 30 20 21 19 18 28 13 16 21 +28 27 26 18 31 19 29 24 24 21 14 19 15 20 22 23 17 20 18 18 15 18 13 12 16 25 19 36 29 30 27 24 26 48 34 29 34 32 40 33 38 38 37 34 28 39 42 29 40 43 34 36 42 35 36 27 23 30 33 43 37 35 39 43 44 44 40 48 32 35 25 31 36 27 24 21 31 28 27 29 36 34 45 52 33 34 27 40 24 23 24 33 31 38 33 41 32 38 44 25 29 24 16 18 41 31 30 45 42 39 30 31 41 40 31 48 34 35 37 39 44 35 36 35 27 26 28 19 19 34 27 20 26 23 17 13 6 8 2 6 6 4 2 4 4 3 3 2 5 2 4 2 3 2 4 2 2 4 2 3 2 3 5 9 4 18 24 29 27 21 31 24 39 19 24 25 29 45 44 34 54 33 25 32 35 25 31 40 42 39 31 32 49 48 32 32 26 14 20 23 25 30 37 34 25 31 27 28 34 33 24 35 36 32 26 45 45 35 30 18 27 28 28 27 15 35 32 17 27 30 36 35 35 26 50 46 27 38 43 35 35 35 23 33 24 33 31 28 40 33 36 34 43 38 35 34 37 39 36 40 36 36 34 33 34 44 35 31 32 35 40 31 27 22 21 22 25 18 14 15 23 19 16 14 23 16 18 28 15 25 22 11 20 17 15 19 20 14 19 31 +29 21 19 16 16 18 16 16 16 29 20 23 18 10 20 15 23 16 25 30 21 16 14 23 12 26 25 22 36 30 28 28 39 35 35 35 36 36 43 43 33 36 44 31 30 24 24 26 32 33 46 35 42 39 32 31 29 29 31 36 34 40 39 38 25 43 44 42 46 45 37 32 29 33 31 36 29 28 26 29 27 30 42 54 50 32 31 38 32 33 19 37 44 34 31 34 29 30 33 33 22 16 20 31 33 39 34 36 50 30 29 39 35 30 30 35 25 37 39 44 52 39 23 26 18 32 23 24 33 29 27 22 16 16 19 7 2 3 9 1 3 1 2 4 4 0 2 2 1 1 4 3 3 3 7 1 3 3 7 4 4 4 3 4 5 16 15 23 25 31 32 25 28 26 26 29 19 21 44 39 33 49 39 39 33 40 25 35 32 33 33 43 38 37 34 31 29 17 15 21 26 24 32 43 33 31 35 35 32 35 24 27 28 35 30 40 41 40 34 29 31 27 23 20 28 26 33 36 40 25 34 41 37 44 31 36 38 27 33 35 35 32 21 30 28 36 35 32 33 31 36 41 33 34 48 34 40 36 26 47 31 40 39 40 39 34 42 42 31 34 31 38 29 21 16 15 30 20 18 16 14 26 21 18 31 21 13 28 13 24 22 16 20 27 17 21 24 19 28 24 +18 24 23 20 16 25 27 16 19 28 23 17 21 23 21 20 16 22 21 27 24 22 29 19 17 24 23 28 31 39 40 33 49 35 35 34 41 28 39 37 38 44 40 30 40 42 32 37 38 46 35 30 34 45 35 29 26 39 26 26 42 42 40 34 32 43 44 35 37 42 24 25 21 30 21 24 23 25 21 32 38 29 50 49 43 32 21 31 33 28 27 38 31 33 36 34 27 35 30 22 15 18 18 33 39 36 40 49 41 30 43 40 30 33 24 30 39 40 40 35 32 34 22 23 20 26 22 29 26 38 16 25 19 5 7 3 4 3 3 2 5 4 3 4 8 3 4 4 6 6 4 2 6 7 3 3 4 4 4 6 2 6 7 5 5 7 8 22 30 25 25 24 31 25 24 14 24 34 33 36 47 39 37 36 35 28 46 32 41 32 38 34 49 38 34 34 24 18 11 15 20 25 37 35 36 25 29 29 30 34 23 26 34 25 28 41 45 38 34 27 29 24 21 25 32 34 28 47 39 31 33 30 32 37 46 38 35 40 41 33 23 27 38 24 27 24 29 30 40 32 36 41 30 40 43 43 38 31 45 31 36 31 42 43 53 46 36 44 30 37 25 30 19 24 17 18 13 27 26 14 30 14 19 30 15 28 23 15 19 24 24 25 14 22 21 27 15 19 20 19 +22 15 22 29 24 28 27 23 13 25 17 13 26 15 22 13 23 25 19 25 16 26 24 17 22 20 15 25 23 30 34 36 34 36 40 33 34 39 47 42 27 26 34 27 36 28 30 40 37 38 38 45 33 34 28 25 29 27 17 27 35 40 45 38 39 36 42 33 32 36 38 25 33 29 36 30 21 35 27 33 29 31 36 49 34 35 22 30 27 25 26 33 34 43 34 24 35 35 34 23 20 15 17 28 32 41 44 53 33 37 38 34 42 28 44 38 34 30 46 39 31 24 23 27 27 26 23 25 25 22 22 30 11 5 5 4 0 4 0 7 3 9 3 5 10 13 13 15 25 14 21 9 16 13 12 9 8 4 4 3 5 1 7 3 4 3 11 18 17 14 30 18 23 25 26 19 23 18 24 49 42 51 47 40 27 36 23 32 42 35 35 41 59 41 48 28 29 28 13 23 18 39 38 35 36 45 28 42 42 38 27 32 23 38 35 34 62 32 47 36 35 35 29 33 32 35 21 29 31 43 43 41 27 31 36 32 38 34 37 44 51 36 25 28 25 20 24 33 38 42 44 42 38 43 37 39 34 34 41 28 32 36 28 35 36 33 33 40 29 25 23 35 22 22 20 15 28 25 21 11 17 16 20 23 34 23 22 23 16 22 19 32 13 21 19 29 30 23 19 16 +19 21 20 23 25 22 26 19 16 25 18 24 20 25 27 23 21 26 16 30 21 23 18 27 21 17 14 19 24 29 28 28 28 39 32 43 48 25 36 43 34 36 35 40 36 56 45 32 29 39 39 35 37 38 22 33 27 33 34 29 41 29 36 41 41 36 51 35 50 32 32 28 37 35 27 20 30 17 23 33 27 40 42 46 48 29 34 26 38 32 31 44 30 40 29 26 23 29 31 22 21 17 21 29 38 33 37 28 31 29 39 45 41 23 38 29 39 50 29 44 30 29 17 23 20 39 23 30 26 26 14 13 5 3 3 4 3 4 1 5 6 9 9 16 17 17 21 27 28 36 29 33 26 29 26 9 15 15 9 4 4 4 1 6 5 6 9 6 11 16 19 34 21 35 23 29 27 27 26 40 51 41 34 39 24 37 31 41 41 39 40 37 45 47 39 33 30 33 14 18 25 27 25 28 25 44 46 32 25 20 35 26 50 35 31 47 52 31 35 39 32 19 27 16 34 34 27 18 34 44 41 38 57 41 36 37 45 51 37 54 30 28 24 16 32 39 38 42 45 45 36 37 28 37 41 30 40 31 46 40 42 34 27 34 39 42 35 35 34 31 19 24 18 22 21 21 22 27 23 20 22 20 21 21 17 20 15 31 32 17 18 16 19 17 25 20 18 25 21 22 +20 16 14 24 27 24 23 22 16 26 20 14 21 19 19 12 25 15 26 25 22 18 18 24 12 14 16 19 23 30 33 41 30 30 28 43 30 31 38 37 44 39 32 35 46 37 40 33 29 45 47 43 44 35 25 32 22 28 26 25 41 51 49 36 40 36 37 35 33 39 27 22 28 30 34 29 24 20 32 32 36 34 52 42 35 32 17 26 28 29 36 45 33 36 42 33 25 27 24 21 12 18 29 24 26 40 34 39 34 27 32 33 36 38 32 32 45 38 27 32 24 39 27 27 28 19 21 29 24 25 14 7 6 3 0 3 3 2 9 6 8 15 22 29 24 45 31 42 37 49 36 42 43 40 40 25 32 15 15 10 2 3 3 3 3 4 4 3 8 8 25 25 33 29 29 30 31 29 32 20 36 43 49 31 36 30 27 31 23 21 45 44 33 38 44 36 34 23 19 10 23 27 29 31 37 34 36 27 39 29 26 24 24 29 40 33 56 41 37 33 38 24 17 26 33 31 24 36 37 31 37 29 42 46 25 34 32 47 54 45 31 26 37 36 29 27 33 48 38 42 48 48 40 36 39 54 41 41 38 36 40 45 38 41 41 27 40 37 26 28 16 23 24 15 26 16 17 22 19 26 15 16 17 19 17 21 26 20 25 15 20 26 17 21 20 19 32 29 25 28 +29 24 24 20 17 16 17 24 19 19 22 20 16 13 22 19 32 22 23 31 20 20 29 17 29 23 14 19 23 26 33 26 43 37 44 49 47 31 45 41 29 32 42 33 51 38 41 39 39 42 41 51 32 28 29 31 29 34 27 29 31 37 42 36 35 25 34 46 34 41 30 34 40 25 26 35 25 26 23 36 39 28 48 51 46 26 24 34 22 30 36 29 35 32 37 33 37 27 20 28 15 18 21 42 32 42 47 44 34 32 53 43 30 44 43 27 47 40 44 24 22 29 22 26 21 21 21 26 22 16 14 9 2 3 3 1 5 2 8 16 25 24 33 37 41 36 48 49 53 61 49 41 43 62 45 39 46 33 34 22 8 6 4 1 1 5 1 1 3 9 15 24 19 28 22 34 33 24 34 23 32 36 49 48 44 37 35 39 36 24 45 32 33 48 46 23 42 20 14 15 16 22 34 36 23 26 27 37 31 36 27 29 26 29 28 45 45 54 45 32 34 24 21 28 28 45 30 30 31 28 33 36 48 41 37 43 36 42 46 35 28 33 28 26 36 42 38 44 35 43 36 46 38 34 35 44 37 42 37 27 39 39 38 38 38 33 30 19 40 21 18 18 24 20 15 23 14 24 23 15 18 22 28 21 29 17 14 25 18 24 19 21 25 15 19 31 17 23 25 24 +22 22 21 17 21 22 20 19 23 23 23 18 16 14 24 23 21 16 12 23 22 19 22 28 25 21 20 16 24 26 32 34 36 31 37 40 30 37 34 27 31 35 35 33 30 42 43 36 45 36 35 38 33 39 45 27 33 27 38 25 36 36 50 49 34 45 49 42 46 34 24 27 35 32 35 26 20 24 25 37 33 56 39 31 41 31 32 32 31 24 36 41 25 33 34 46 38 26 24 19 22 12 40 31 40 49 43 39 31 44 40 33 45 36 23 36 54 52 40 26 28 31 20 20 26 25 17 34 24 9 6 7 4 5 2 1 2 7 14 25 38 37 60 40 48 49 66 63 40 56 47 49 62 41 59 56 44 56 38 30 23 10 10 6 2 2 1 3 5 5 6 20 26 23 26 26 24 29 21 14 25 32 44 34 45 40 34 47 39 31 47 28 32 43 43 37 39 31 12 11 33 21 25 28 24 44 43 29 36 31 31 28 44 30 33 47 61 52 41 32 23 24 24 22 32 35 36 33 32 46 32 40 41 38 42 40 48 44 53 37 20 24 32 26 38 33 34 48 41 41 27 36 44 39 29 28 37 32 34 32 36 35 32 43 36 43 39 28 31 27 27 27 26 17 16 13 15 21 17 21 19 15 25 24 20 25 26 19 23 14 21 21 24 30 21 14 24 23 21 19 +16 21 24 24 17 18 20 23 17 23 18 20 29 24 22 23 17 26 22 22 16 22 17 24 16 19 16 22 33 16 28 31 34 31 30 35 34 42 31 43 44 35 46 38 37 39 46 48 37 39 39 39 44 40 37 28 25 28 38 24 31 33 51 45 36 44 37 42 31 34 42 26 30 27 29 24 36 20 26 27 40 44 47 44 40 38 24 26 25 43 38 43 28 27 39 31 29 38 23 14 14 22 35 41 35 34 40 28 39 41 34 37 34 31 30 37 37 42 37 26 26 29 23 24 25 36 21 10 9 10 2 4 4 3 6 6 9 18 32 34 45 56 53 58 47 51 55 62 55 44 69 45 65 43 60 53 44 50 59 38 44 45 16 16 5 2 2 4 2 2 6 8 18 26 17 23 31 24 34 30 25 40 46 44 40 37 39 43 47 38 28 31 41 53 40 38 41 32 26 16 18 19 25 32 34 36 44 30 38 43 20 29 28 32 49 30 36 38 42 31 39 37 35 15 37 28 30 37 37 37 35 34 50 43 40 40 50 38 45 46 28 21 29 28 41 30 29 35 48 39 46 43 46 32 31 31 41 41 30 38 44 36 30 39 34 31 29 33 26 29 14 20 25 26 21 31 31 17 24 19 17 23 20 30 19 18 13 15 22 16 31 18 19 19 25 23 20 40 17 18 +20 21 19 24 27 17 20 25 21 18 37 25 18 18 25 23 26 25 23 18 19 19 22 21 17 20 26 25 31 29 24 25 41 41 35 59 40 29 39 42 38 35 47 41 34 27 44 54 35 48 27 43 53 31 45 29 24 34 39 27 36 41 37 44 52 40 27 38 38 38 33 36 38 24 27 27 35 22 24 33 37 40 39 34 35 33 35 35 39 35 41 44 37 40 35 28 42 21 27 21 15 18 24 34 36 40 37 32 36 52 31 35 35 32 32 42 50 40 46 20 29 28 31 30 29 23 24 6 6 5 5 4 4 5 5 13 20 32 46 41 54 53 50 47 51 62 39 50 51 65 48 61 52 53 45 47 53 45 60 53 51 43 26 23 5 5 3 4 5 4 5 9 17 22 28 26 28 22 20 27 24 35 47 45 39 45 30 42 38 37 35 38 39 41 52 38 32 31 29 18 11 20 30 38 33 37 47 39 49 33 25 31 39 27 30 23 44 45 42 36 30 33 29 19 24 30 35 32 31 25 29 42 35 27 46 47 32 38 38 38 31 25 27 30 40 31 37 33 37 39 47 39 53 58 32 36 54 46 37 30 35 35 39 46 32 34 21 34 28 26 22 17 19 18 18 20 18 19 17 23 20 20 23 29 26 25 20 16 19 15 26 23 25 11 19 24 34 21 24 24 +19 20 15 16 13 25 21 24 22 30 16 29 25 29 18 30 25 14 15 19 24 17 23 26 16 26 20 19 15 20 15 28 25 36 31 31 48 36 39 34 41 43 41 38 33 35 46 38 33 51 43 44 40 41 28 37 29 33 38 28 35 42 50 40 37 39 40 45 33 40 29 36 29 37 32 22 26 26 34 38 33 44 49 55 32 42 32 35 18 40 30 34 26 42 48 36 35 44 20 16 19 26 32 38 42 43 43 40 44 37 27 26 37 30 47 56 40 30 32 41 19 24 26 33 27 21 11 12 4 4 4 1 4 5 8 23 29 43 70 58 57 56 42 54 49 54 60 53 61 55 59 57 49 52 54 52 54 54 49 61 52 47 48 35 18 17 3 3 6 5 7 4 9 17 17 31 35 28 28 28 36 28 34 48 40 39 28 36 35 46 38 39 28 36 40 31 43 32 22 15 11 29 27 33 47 32 33 41 35 32 30 34 32 28 32 37 31 53 45 35 34 29 18 23 26 34 33 31 35 37 34 48 35 43 29 36 36 38 33 29 35 25 24 35 42 26 30 50 42 40 37 43 43 44 37 35 41 35 38 30 37 35 31 44 34 42 38 35 20 24 20 30 27 24 17 18 13 16 23 21 29 25 10 18 19 25 23 15 18 26 17 18 23 34 24 15 31 23 18 13 +14 14 24 22 20 17 26 20 13 33 23 23 18 17 33 12 13 27 26 21 24 17 17 20 20 22 19 21 20 19 20 26 30 32 33 27 50 34 33 31 55 36 41 34 40 33 47 45 31 45 39 38 30 41 44 26 33 29 25 32 44 50 47 36 41 51 36 55 38 32 40 29 33 25 31 23 36 29 35 33 41 44 51 39 31 37 32 38 22 28 34 43 48 37 48 38 25 18 24 15 16 39 38 36 41 37 35 34 32 49 34 35 30 39 39 64 37 35 30 17 29 23 27 30 32 30 13 6 1 2 3 6 6 9 19 32 42 60 43 67 59 67 49 63 74 58 68 62 68 63 71 72 61 63 62 59 47 49 41 59 53 55 57 44 46 19 8 5 3 5 3 3 8 12 28 15 20 36 28 28 21 29 32 47 49 39 31 36 47 40 48 43 56 38 35 42 21 41 21 20 15 26 28 36 28 37 35 28 41 37 30 30 41 34 28 55 45 48 47 27 35 22 31 24 20 35 42 47 38 37 41 32 44 35 41 41 47 39 34 37 36 32 40 29 36 37 38 40 45 35 40 39 33 44 38 31 33 39 35 37 35 43 24 37 30 32 35 37 29 23 22 23 23 24 18 17 26 23 22 21 26 22 14 24 18 16 19 26 25 24 28 20 20 22 8 19 17 24 21 17 +20 14 16 28 21 19 18 16 26 20 23 20 22 19 24 20 11 27 22 18 19 21 22 28 23 17 25 25 22 17 13 30 37 32 38 29 39 37 49 38 34 42 35 39 42 36 51 43 44 48 36 45 46 43 26 44 41 33 32 49 27 32 32 41 50 47 43 31 54 41 39 36 31 32 31 38 29 26 33 36 47 35 56 40 36 34 30 34 30 25 43 37 30 41 38 28 28 16 26 16 18 42 36 35 34 37 44 40 39 42 29 37 26 30 40 33 46 36 22 17 35 26 25 29 27 17 11 6 4 4 5 5 7 22 32 50 45 63 68 43 50 66 63 72 65 89 93 90 66 87 84 104 79 84 76 79 70 63 60 43 55 59 60 42 57 47 15 6 3 1 9 2 5 5 14 21 20 20 23 28 33 30 37 31 49 46 30 35 34 37 38 40 40 29 38 54 38 30 33 19 16 20 33 38 32 35 44 35 36 30 36 35 40 26 37 43 46 51 45 38 31 40 26 26 34 44 27 37 33 40 37 42 38 33 43 38 31 35 34 36 25 14 25 31 33 45 37 37 30 43 34 28 38 41 25 48 31 33 42 39 43 47 39 27 41 39 28 28 23 21 30 18 20 17 17 17 21 20 22 16 30 23 23 27 20 21 15 23 20 31 18 18 18 30 22 11 22 21 18 18 +18 10 14 19 15 25 19 12 20 21 22 30 25 21 19 30 23 28 22 24 25 25 29 17 24 24 23 24 23 21 23 23 25 19 25 30 40 44 44 33 38 48 41 35 32 45 30 39 42 38 41 42 40 35 39 30 44 23 33 29 33 47 38 48 47 39 41 44 31 42 33 42 32 33 28 25 33 30 21 32 33 46 47 51 31 38 30 35 30 40 31 45 23 29 29 47 29 21 30 17 26 37 39 42 43 55 40 30 37 50 32 32 32 48 54 53 40 25 29 34 35 25 19 26 21 13 4 2 4 4 4 4 21 41 48 55 50 46 54 41 57 52 64 65 79 113 104 86 103 120 99 111 85 122 81 89 89 79 51 62 43 57 56 63 58 52 34 9 6 7 4 3 4 4 12 28 40 30 27 19 20 35 29 38 44 35 55 41 33 49 19 30 41 46 43 43 37 32 32 18 15 20 28 37 39 34 36 34 46 29 33 41 30 30 32 37 47 48 35 31 31 22 31 21 31 31 37 36 32 31 40 54 44 38 36 44 44 41 47 43 33 34 30 32 41 32 39 44 41 48 34 42 40 43 28 32 32 37 41 43 32 48 44 34 34 34 31 16 23 21 23 26 24 26 19 21 19 26 31 14 19 19 27 22 28 26 23 22 12 23 12 23 20 10 19 18 19 18 16 14 +16 12 20 8 21 19 13 25 20 20 22 23 32 19 24 29 28 15 17 15 26 27 17 18 28 15 26 23 27 32 12 18 28 27 42 40 45 38 38 41 48 40 35 39 31 33 38 37 43 44 43 41 47 52 33 48 25 32 45 35 24 42 52 37 36 37 33 48 43 40 28 23 34 34 32 32 24 22 23 32 43 41 43 32 39 34 32 34 31 35 33 36 29 43 42 33 25 24 18 22 24 34 42 46 48 43 43 33 43 30 34 40 46 36 37 46 23 28 42 36 29 39 26 18 20 6 3 4 1 4 9 9 23 44 52 56 60 52 45 57 57 73 75 83 99 106 90 100 120 98 88 108 94 93 104 108 89 71 77 58 61 64 71 52 46 65 43 34 12 7 5 3 2 3 5 18 29 36 24 21 30 34 26 36 42 50 54 36 25 32 42 47 51 23 39 47 43 24 39 24 19 22 29 26 33 37 36 35 32 36 32 24 36 26 32 31 44 44 45 29 37 32 17 30 34 33 35 42 30 38 37 39 40 34 57 46 32 39 34 33 42 30 35 40 37 40 46 53 50 37 48 33 40 33 26 42 26 33 49 40 45 47 39 36 37 45 34 19 20 23 32 20 20 21 19 28 25 20 18 13 22 15 30 25 20 29 27 25 16 20 20 22 26 14 12 25 18 18 21 13 +17 17 21 11 24 19 19 17 10 22 21 21 21 22 18 26 22 22 23 24 20 26 22 21 19 26 30 22 25 29 25 20 29 19 27 31 32 32 37 42 52 43 36 24 41 45 49 40 40 34 40 41 49 31 46 53 40 39 32 26 31 35 35 38 45 41 42 39 37 38 40 44 28 40 37 42 22 22 30 37 48 35 56 50 30 29 44 45 28 39 39 36 33 36 32 31 41 24 23 17 23 32 38 43 50 35 41 41 57 30 33 40 39 46 42 31 32 32 26 24 20 26 29 19 13 3 3 3 2 4 6 15 37 63 61 57 58 53 61 75 69 98 100 100 100 100 99 111 112 95 86 104 82 101 102 111 110 98 87 78 88 65 61 64 62 70 47 44 31 7 5 7 3 2 5 16 17 22 28 34 34 25 31 31 47 45 41 37 44 40 37 39 30 37 41 46 41 32 30 23 19 17 28 29 29 31 41 43 38 41 38 33 36 30 29 40 42 58 34 40 45 15 22 27 45 23 38 34 28 42 41 41 35 40 38 44 51 26 38 38 41 26 26 24 31 36 45 36 31 47 37 40 35 43 35 36 44 32 43 38 37 35 35 39 29 29 29 18 21 26 11 23 35 23 25 16 20 28 19 15 29 31 25 21 22 26 17 20 23 19 21 22 19 25 20 21 14 22 27 20 +21 22 14 13 22 23 16 22 25 20 18 21 13 35 27 17 18 27 26 28 25 20 17 15 26 21 21 31 14 33 19 29 23 27 31 31 43 28 46 39 33 33 46 40 46 29 47 35 35 42 42 38 44 46 40 45 35 39 34 40 27 36 47 46 41 44 34 41 29 41 37 29 34 32 24 33 24 28 27 38 38 46 57 40 25 46 41 48 40 30 37 37 43 46 39 39 33 21 12 17 35 34 38 49 49 35 33 36 38 35 38 44 41 49 39 41 30 23 27 31 22 29 25 27 9 5 4 2 4 9 15 26 36 51 51 41 58 70 75 90 99 119 105 97 113 88 86 100 92 69 98 86 101 87 78 101 112 102 105 89 98 58 66 49 60 52 60 47 34 17 4 4 2 5 4 8 21 13 25 35 25 30 28 32 26 52 43 46 43 30 49 37 42 46 42 42 43 35 43 29 15 22 22 34 39 34 39 40 48 36 29 29 35 32 39 39 50 49 38 35 32 27 41 32 16 32 31 23 28 42 37 39 41 36 41 47 55 47 34 32 32 27 23 22 41 41 44 43 37 50 38 51 40 41 45 35 41 54 44 39 36 44 38 43 25 29 27 29 16 19 27 20 28 22 32 21 19 18 20 31 19 23 26 25 24 26 23 14 18 20 17 18 11 15 23 16 19 17 21 15 +24 19 17 22 17 26 21 21 12 19 24 13 16 16 25 32 27 20 26 21 32 26 22 28 20 26 19 18 28 24 24 18 17 25 28 43 46 30 33 40 40 48 36 52 39 46 39 40 44 36 47 34 41 52 50 45 37 30 26 31 36 37 42 31 35 54 49 43 36 36 37 32 27 24 35 25 28 23 32 31 33 52 47 45 31 37 29 33 37 42 37 45 35 36 41 37 28 30 17 18 45 31 36 54 43 48 42 38 33 34 38 45 54 45 56 56 30 28 27 31 31 25 22 13 6 2 2 2 4 14 35 36 61 63 55 47 69 69 103 118 94 97 95 97 101 69 74 88 76 76 54 71 70 73 69 83 94 99 93 100 114 85 64 63 56 62 53 61 37 38 11 2 3 2 7 7 15 31 32 27 26 30 27 25 30 45 33 35 42 43 48 32 47 33 42 37 53 34 34 24 14 17 25 27 42 42 40 44 34 40 33 25 31 25 30 32 40 61 40 37 44 28 27 27 30 39 39 36 42 28 47 42 41 44 47 43 36 56 47 37 23 26 31 29 36 50 47 50 44 47 47 35 41 34 41 37 35 48 32 44 37 37 46 51 35 28 27 21 21 29 31 26 31 24 29 23 19 19 28 26 33 20 23 26 16 27 25 23 16 20 18 18 17 19 19 16 15 18 15 16 +19 17 17 16 20 26 16 21 15 8 15 20 23 17 26 29 20 15 17 25 24 29 22 29 19 20 30 24 21 22 29 23 21 24 28 26 38 42 37 51 32 42 44 38 45 29 37 51 32 50 43 30 55 48 53 34 36 32 24 37 27 35 54 40 48 37 41 49 31 37 39 35 35 37 32 29 25 17 35 32 35 50 50 51 38 29 34 33 40 30 31 39 39 60 35 35 24 27 18 20 39 44 54 37 36 31 31 45 31 37 27 44 40 48 46 27 33 29 33 24 26 30 20 7 4 2 5 1 6 18 40 54 58 63 46 44 72 99 94 98 98 94 92 75 71 84 82 75 64 71 66 61 78 79 63 84 77 91 93 118 117 113 97 77 47 58 65 61 56 34 15 5 7 6 6 2 17 32 30 30 27 24 30 33 39 43 41 48 38 36 34 44 39 35 36 49 41 31 39 39 18 11 17 26 36 36 34 34 50 29 31 40 30 36 34 37 51 58 37 41 35 26 25 28 25 35 39 32 30 38 43 36 45 49 51 41 43 35 36 38 23 37 31 39 33 37 38 36 38 48 41 36 48 40 47 42 40 36 46 41 38 37 43 33 22 26 21 20 16 29 16 21 24 18 22 23 24 30 34 21 25 21 18 20 21 26 20 20 23 26 18 21 20 20 13 21 20 24 21 15 +11 12 23 23 16 17 16 20 21 13 24 21 16 18 12 17 21 29 21 15 26 29 24 21 27 27 21 28 15 21 18 19 24 19 31 29 28 29 37 30 42 43 41 46 38 53 34 43 36 42 50 36 49 38 37 40 40 31 26 20 49 28 48 38 46 34 41 30 36 48 46 29 42 28 33 34 22 25 34 39 34 43 45 45 42 35 26 39 43 32 52 35 35 29 39 33 30 23 15 26 37 28 47 46 43 59 44 44 40 33 55 38 52 40 38 40 32 25 30 35 28 25 10 6 5 2 3 4 11 33 46 63 61 43 59 76 88 128 109 100 92 98 78 75 70 79 75 66 63 65 59 70 71 68 79 72 78 97 83 102 73 105 113 86 76 41 44 54 40 59 26 11 5 2 4 7 6 17 21 29 28 26 32 22 35 32 36 49 51 50 43 39 50 42 48 38 59 24 45 24 16 21 16 26 41 33 37 39 36 40 51 32 26 36 33 25 42 53 41 33 43 28 23 18 25 33 32 26 28 44 40 39 49 44 44 40 46 29 42 21 29 23 36 42 38 27 46 33 55 57 51 50 43 45 37 51 40 50 41 49 42 34 25 35 41 26 23 21 32 21 25 25 25 28 26 27 22 30 23 19 21 21 30 19 24 15 16 14 17 23 15 12 15 26 13 15 18 27 26 22 +20 24 25 10 24 13 28 18 19 21 12 22 24 17 18 40 34 23 19 30 23 30 25 21 29 15 24 25 23 19 22 27 26 19 28 41 41 26 37 39 25 44 40 40 39 36 38 48 40 48 39 47 54 45 44 43 27 35 34 37 30 29 54 52 48 50 50 49 33 38 43 31 50 32 28 25 26 21 28 36 39 43 58 43 34 34 37 27 34 37 41 30 39 43 40 44 35 30 13 16 45 35 46 43 49 26 39 31 46 31 39 41 54 40 29 29 21 30 20 28 27 35 12 9 2 3 5 14 18 58 41 51 66 40 62 72 96 112 105 98 77 83 88 82 54 61 67 44 75 41 62 63 59 69 66 68 82 60 72 97 93 99 109 110 84 76 55 58 52 62 42 22 10 4 3 2 4 12 23 26 23 30 27 22 28 29 44 43 39 34 35 49 47 35 39 52 33 50 28 31 20 20 20 39 28 44 41 43 44 39 42 25 29 49 38 33 49 53 44 40 47 29 25 37 28 39 24 43 33 45 35 45 38 40 31 49 40 53 33 38 38 29 34 29 45 37 37 46 51 49 51 46 34 37 47 31 47 43 41 50 38 41 41 42 33 20 25 25 29 28 19 22 25 25 27 18 27 31 24 16 25 21 12 22 23 16 19 13 19 17 22 11 10 25 19 16 14 16 20 20 +29 18 27 14 14 17 23 13 24 11 22 23 19 27 19 23 20 26 25 15 14 31 15 24 20 21 21 27 19 20 26 21 15 16 27 27 41 32 41 49 44 45 32 33 40 47 57 45 40 45 58 41 42 41 38 50 45 40 33 32 30 28 34 59 43 48 45 45 29 46 25 23 42 34 41 35 25 27 29 45 28 48 45 40 37 46 31 26 40 38 38 43 35 33 38 28 25 22 16 22 28 31 39 52 46 35 44 29 44 36 33 31 59 47 37 32 38 29 31 38 23 19 8 4 4 1 2 8 40 38 56 42 47 69 64 97 116 110 81 73 79 69 69 79 69 44 62 42 47 42 31 59 55 40 66 64 67 84 67 75 71 91 111 124 95 72 64 53 68 52 58 34 11 5 5 6 3 9 22 29 32 30 34 28 25 27 44 43 35 47 41 43 35 45 40 38 48 50 43 31 29 19 30 22 45 51 38 33 49 33 32 37 32 30 39 38 46 40 55 31 32 26 30 23 24 23 40 33 29 42 37 31 44 46 39 51 45 53 38 28 27 27 30 50 45 35 46 43 53 34 42 43 30 33 38 41 36 47 37 39 37 39 40 40 38 18 26 25 28 30 27 24 14 25 16 29 20 26 25 29 33 19 20 16 17 23 19 20 13 16 18 13 23 17 15 20 21 19 12 31 +19 13 14 13 19 18 29 16 14 25 12 17 15 15 25 18 18 26 28 28 25 20 19 22 23 26 21 23 32 31 15 28 24 26 19 31 30 44 42 34 35 33 50 45 40 50 53 41 52 57 35 43 37 47 27 32 28 34 26 32 35 33 47 45 45 37 46 49 47 32 43 36 38 33 40 34 29 38 31 42 49 49 38 38 38 34 29 42 48 37 41 40 46 39 37 33 22 16 13 23 35 37 63 49 44 49 42 40 37 42 36 45 44 37 26 29 32 28 30 29 23 13 3 5 5 5 5 23 40 64 54 60 63 65 96 108 100 90 62 66 63 72 73 48 44 44 38 32 40 29 28 32 33 42 51 45 50 67 73 72 76 73 109 113 123 101 79 52 45 59 60 40 20 11 4 5 2 5 23 27 21 33 26 25 31 41 34 54 41 27 41 41 44 35 35 51 29 48 33 44 25 22 15 28 34 23 35 31 46 43 38 38 26 37 35 28 48 54 38 26 44 29 21 28 25 30 34 37 22 39 40 49 39 41 47 35 48 50 40 39 39 38 42 47 47 39 39 36 46 36 39 38 41 34 27 31 51 38 46 41 40 34 37 40 42 25 15 24 25 31 27 23 20 20 15 21 17 20 22 25 26 31 23 18 20 18 23 23 28 16 14 15 15 13 15 22 19 12 16 19 +25 18 17 20 19 16 21 15 24 16 18 16 11 18 18 13 19 23 23 17 24 19 29 14 21 20 25 29 18 21 25 27 23 27 34 17 33 40 38 39 36 41 36 36 46 39 46 51 44 44 61 46 49 50 32 38 28 37 37 31 25 42 41 51 46 36 49 35 43 41 42 33 35 30 39 29 28 31 29 36 33 52 47 38 33 36 30 33 30 34 48 40 47 36 37 30 28 16 15 29 34 34 47 51 38 40 50 32 39 52 41 61 59 42 39 32 39 28 23 28 19 21 7 3 1 6 13 35 73 59 59 66 71 64 103 101 108 83 84 77 86 61 53 46 36 24 17 23 15 7 10 14 15 27 39 37 37 65 73 61 66 82 98 95 97 107 90 57 51 52 56 39 30 10 4 5 8 3 10 24 22 34 32 16 24 33 37 48 34 47 45 44 50 27 46 37 37 58 36 34 26 12 19 34 28 31 46 45 39 43 42 39 52 36 37 29 45 53 48 38 38 31 34 37 30 29 29 23 40 53 36 46 44 48 41 43 39 40 36 24 39 24 40 36 44 42 42 36 35 39 38 35 43 44 36 51 49 49 46 59 47 34 41 29 28 28 16 23 31 28 28 20 21 20 28 18 21 25 28 28 21 23 17 12 12 12 15 16 22 24 27 18 19 18 18 14 21 16 18 20 +17 17 19 11 20 20 19 25 14 14 20 19 19 21 20 20 29 17 21 27 28 31 19 37 21 24 18 28 15 24 23 24 24 22 21 27 25 32 39 43 35 33 45 32 46 43 47 33 38 36 32 37 48 36 34 39 37 32 24 26 32 29 48 42 51 48 40 37 47 47 37 34 45 33 41 31 30 29 33 27 44 35 37 38 36 35 31 29 39 31 42 36 42 34 36 29 25 19 19 26 39 50 51 44 41 38 27 39 31 50 36 45 50 31 22 28 31 39 31 28 23 5 6 2 4 9 16 36 53 67 54 61 68 98 116 98 101 67 69 64 56 44 40 14 25 12 13 4 6 11 9 4 6 15 16 15 26 38 52 59 56 76 68 92 116 115 94 65 52 54 68 60 41 15 12 2 8 8 7 23 33 35 24 41 37 33 39 47 48 43 34 46 41 43 38 44 49 52 43 40 32 23 27 23 28 40 51 33 41 54 29 33 42 34 37 46 42 47 46 34 35 34 31 36 37 24 32 32 25 34 37 40 48 46 43 46 47 52 35 27 29 25 37 44 47 34 45 53 46 36 42 44 47 29 46 41 39 42 45 43 34 43 40 38 31 23 21 22 27 30 25 23 22 32 22 27 28 25 24 27 30 24 22 15 15 17 21 30 15 14 18 12 25 17 20 14 23 15 18 18 +20 24 12 23 24 27 29 15 20 18 25 24 25 20 17 20 15 19 25 24 25 24 25 27 25 19 26 28 30 37 12 17 25 21 21 27 34 28 33 31 44 47 43 48 44 41 39 37 37 42 49 35 49 50 31 39 32 31 34 33 37 33 35 47 36 40 48 45 46 46 30 43 36 39 40 33 31 27 17 44 37 47 48 43 39 32 28 32 31 39 44 39 30 55 28 22 20 22 19 32 23 45 50 39 42 44 44 36 43 36 37 48 47 31 23 31 30 32 28 24 10 5 8 0 4 5 30 51 62 59 53 81 81 121 95 81 71 84 68 56 45 40 26 15 17 7 5 4 3 3 6 8 3 4 6 9 24 25 23 40 62 73 83 92 82 100 122 97 74 48 59 63 53 36 3 4 5 7 4 19 29 36 21 21 26 38 30 63 48 42 36 49 27 37 32 40 49 58 42 32 34 26 20 24 38 33 39 35 39 28 40 35 47 30 29 32 31 49 45 43 39 41 35 30 38 35 31 37 40 37 43 45 49 40 36 51 58 51 31 19 24 28 47 32 52 36 47 33 48 46 33 42 49 42 47 24 44 32 45 44 33 36 45 37 33 21 21 28 21 25 25 26 22 16 15 19 23 25 25 19 24 14 21 23 16 12 27 8 22 21 23 15 29 25 14 12 21 22 12 21 +32 15 19 21 19 25 17 23 19 16 18 17 19 20 28 17 19 14 15 26 23 16 25 15 18 26 27 29 24 15 20 30 26 24 21 27 29 33 38 42 48 37 49 29 57 58 48 48 37 37 57 40 51 50 37 34 41 33 28 31 30 44 32 40 50 59 43 44 41 46 36 30 26 36 26 31 24 36 35 47 49 39 59 45 28 43 33 35 44 34 40 35 36 31 37 38 27 18 21 28 24 40 59 61 41 39 28 39 36 31 36 56 46 33 20 28 23 30 28 33 17 6 4 1 4 16 43 43 63 62 57 82 98 109 112 76 68 83 66 55 39 27 6 8 7 5 5 3 4 6 2 3 3 2 5 4 5 10 20 32 58 71 79 65 70 122 111 108 96 56 60 64 49 38 13 4 3 5 8 17 30 16 25 32 27 18 42 52 56 49 43 41 34 55 43 46 43 38 42 37 32 18 16 19 22 53 54 40 46 45 35 35 35 32 26 32 51 47 52 38 40 27 21 29 36 39 23 35 40 37 32 46 37 42 42 32 50 42 35 33 31 27 33 28 30 47 49 37 53 56 51 34 37 43 39 29 48 44 48 39 39 36 32 25 15 20 22 28 25 30 32 32 19 18 26 24 22 23 23 24 23 16 24 22 22 12 13 16 10 18 20 26 18 12 23 24 20 24 24 16 +19 27 12 9 16 18 12 15 22 17 24 16 25 17 17 16 25 26 17 22 32 19 24 24 27 22 33 24 24 21 27 30 32 21 21 28 25 43 39 36 34 47 35 39 49 44 44 54 40 37 51 62 46 46 35 46 39 35 39 32 31 34 51 55 54 50 40 50 46 42 37 38 31 35 37 26 40 25 29 29 40 49 49 36 28 32 42 27 33 46 40 42 48 23 41 34 25 17 25 29 31 39 42 41 58 45 40 44 33 52 47 46 44 31 23 32 32 30 41 22 13 2 6 2 3 19 52 46 57 55 79 71 111 93 78 72 68 70 55 33 21 15 6 4 2 7 2 3 1 6 2 5 3 3 2 4 3 4 5 18 43 56 67 73 77 65 130 110 90 63 63 63 54 47 19 6 2 2 7 9 24 32 22 22 31 20 32 44 39 37 44 39 43 36 33 40 42 53 42 43 41 22 12 27 29 36 39 46 41 45 49 35 28 22 40 32 55 35 49 27 38 27 23 23 32 34 20 38 47 34 44 43 40 49 52 28 37 30 33 30 32 38 42 43 37 43 38 48 44 41 43 37 39 44 41 45 39 49 49 62 38 41 40 24 29 14 18 18 27 28 30 29 19 27 26 40 26 28 24 40 23 19 22 18 16 24 21 16 14 19 17 16 12 17 18 12 16 21 21 18 +23 23 21 20 19 22 18 19 20 18 11 13 17 15 14 20 15 18 22 23 17 23 26 24 26 29 18 20 25 19 20 32 25 21 18 23 21 29 30 44 41 42 47 40 39 42 47 48 53 42 43 42 43 45 33 41 32 33 39 24 28 32 35 47 39 47 51 23 46 31 44 43 43 32 31 29 33 29 27 42 34 65 53 39 37 49 25 39 36 26 46 34 39 36 42 20 18 21 34 36 37 53 43 36 37 50 37 57 45 45 31 48 36 42 24 32 31 25 21 27 8 3 3 7 11 26 60 56 52 67 85 104 105 95 68 81 76 51 33 21 7 5 4 3 7 4 2 7 1 6 6 6 4 9 3 3 6 4 8 9 26 35 58 70 94 78 88 112 100 77 61 61 72 72 32 7 4 2 4 6 22 32 40 32 37 34 31 40 55 54 48 32 30 37 31 42 51 52 38 42 29 24 20 26 24 39 24 32 41 48 36 31 36 23 39 50 41 54 45 45 34 30 33 32 34 39 37 34 34 49 39 42 30 73 47 43 49 49 34 26 39 27 28 39 45 39 49 46 38 45 49 30 41 40 34 42 43 55 52 39 45 33 35 25 26 27 28 18 25 22 33 23 27 22 25 26 32 28 26 24 24 14 26 19 21 24 19 17 21 15 22 20 21 8 25 21 19 23 19 21 +22 16 10 23 16 17 17 14 17 19 14 19 22 16 18 19 14 20 17 21 27 9 27 17 30 23 30 24 23 18 23 24 29 21 19 21 21 29 32 31 45 41 63 47 48 38 36 59 38 34 39 46 52 45 50 39 49 33 34 34 42 26 37 39 50 53 57 36 41 43 46 31 33 38 42 34 23 35 28 41 45 39 55 28 32 32 45 27 32 36 44 40 33 40 29 24 21 18 23 19 21 52 50 41 44 43 40 37 54 47 54 57 44 36 32 33 32 33 27 14 5 4 2 7 10 35 52 60 50 67 104 124 90 83 61 81 56 44 32 10 2 8 0 3 3 3 6 4 3 1 2 4 5 3 7 4 2 1 1 4 3 26 47 73 74 68 77 93 112 78 59 54 52 66 41 18 1 4 1 5 18 30 23 21 33 28 34 34 51 52 48 28 48 40 44 33 37 38 47 38 41 27 14 23 28 34 31 45 30 37 35 30 28 43 34 37 54 40 49 36 49 37 31 29 29 27 39 31 34 57 52 39 36 46 47 29 54 50 32 28 37 29 35 54 33 38 35 43 58 53 37 34 33 48 40 42 42 50 45 48 36 30 25 24 24 38 24 23 24 14 20 24 31 27 27 28 28 20 34 23 22 22 27 18 16 24 19 14 21 12 12 22 23 22 20 11 35 22 14 33 +16 21 23 24 20 21 20 12 23 24 19 22 28 21 17 16 23 17 14 11 17 34 24 32 25 22 24 27 29 24 19 18 31 18 22 25 16 32 47 29 44 40 38 41 49 44 45 54 35 47 42 45 46 43 34 38 38 25 32 41 39 41 53 42 35 48 53 55 44 35 31 37 42 37 33 40 29 30 34 38 43 47 57 40 34 34 34 37 25 36 36 30 31 42 46 24 26 26 37 40 38 54 51 39 40 49 44 35 34 44 47 43 31 34 36 28 30 34 32 10 4 2 7 1 18 52 56 59 42 61 99 123 89 78 71 71 54 27 15 10 4 2 2 8 3 7 6 5 2 0 3 0 2 4 6 3 2 3 4 2 3 15 42 42 77 82 79 109 109 90 73 66 49 65 43 28 6 1 3 1 11 28 27 35 39 34 33 43 39 47 38 43 46 36 38 43 45 40 57 44 41 23 16 22 24 31 51 30 39 33 41 38 44 32 37 45 46 53 50 36 35 27 35 28 38 40 39 31 35 32 45 50 47 49 41 45 62 46 24 24 36 38 29 48 35 39 41 37 41 45 40 33 42 38 42 46 40 45 41 30 35 39 34 31 32 15 26 26 24 26 23 23 29 30 23 29 33 26 22 17 20 15 18 19 13 19 16 26 17 21 20 22 22 17 28 19 23 19 24 18 +22 25 23 14 20 15 23 17 14 22 16 18 26 18 26 23 18 16 26 14 29 18 20 34 15 29 21 21 20 27 28 27 18 25 27 23 20 46 39 32 51 53 39 58 43 48 50 45 42 50 46 50 33 52 37 36 49 40 25 31 20 44 40 32 41 37 47 52 49 45 28 34 37 35 40 47 42 32 35 36 42 45 61 42 43 26 30 31 49 46 44 39 40 35 33 39 30 15 33 40 50 58 52 50 43 38 54 34 54 33 65 50 35 36 33 44 33 36 33 7 4 1 3 7 20 47 65 77 63 77 115 118 85 89 68 66 40 20 6 4 3 3 1 1 3 6 2 9 3 3 4 4 4 1 6 4 2 3 4 4 1 4 22 36 65 66 78 84 114 108 92 66 66 65 57 26 5 8 10 5 12 27 26 34 31 33 39 34 59 51 50 44 42 43 45 33 41 53 47 37 32 29 23 20 31 34 28 37 35 49 46 34 32 42 34 39 56 44 47 38 34 36 33 36 31 33 35 43 25 48 36 42 56 37 50 53 48 52 28 44 39 28 40 44 52 38 45 43 36 49 45 38 47 37 47 34 41 55 39 55 38 24 36 24 20 18 27 24 21 25 33 27 24 29 35 23 24 23 15 14 18 16 16 15 23 19 18 17 27 14 20 19 18 17 20 18 14 18 22 17 +17 13 18 17 20 23 14 21 17 21 25 22 19 16 19 21 11 15 24 18 21 29 35 23 24 25 26 26 20 28 23 29 15 20 33 17 20 22 37 27 28 49 49 44 41 43 33 35 37 41 38 38 46 51 46 48 55 39 36 39 36 37 44 54 49 58 41 60 35 46 49 36 43 40 43 35 30 26 35 45 37 55 67 39 40 22 30 33 31 38 44 41 42 42 28 32 13 11 24 41 35 54 48 45 43 35 42 48 38 45 58 38 33 35 38 29 30 23 18 2 7 3 4 11 37 46 54 46 63 88 135 118 77 67 69 57 27 13 3 1 11 1 7 3 5 7 5 3 2 5 5 1 4 3 1 4 5 5 3 6 0 5 10 17 50 62 78 84 97 105 102 66 57 54 48 30 8 5 3 3 8 19 28 30 24 21 25 29 41 52 55 49 35 44 42 40 48 42 52 38 25 22 19 23 27 36 38 26 44 40 42 47 26 34 39 33 49 48 49 45 32 41 38 38 34 22 47 47 46 49 42 56 52 39 64 37 50 49 38 27 33 39 35 38 51 65 35 56 46 44 45 36 46 45 47 33 41 39 51 40 41 40 35 26 28 23 21 31 24 20 26 29 21 33 23 20 27 27 19 23 17 16 17 13 21 21 16 15 21 35 17 19 22 22 13 24 21 17 11 24 +22 17 13 21 15 19 14 20 14 15 21 25 20 15 17 20 21 16 20 19 14 20 20 17 23 28 19 31 29 29 27 23 28 30 22 24 17 27 25 27 37 44 53 38 53 52 59 27 40 54 47 49 42 41 34 42 50 38 35 24 26 42 47 50 48 61 36 49 38 45 37 40 35 46 40 32 32 33 26 45 29 58 48 37 41 47 30 46 44 53 49 34 30 45 32 34 20 24 30 31 33 44 61 43 53 44 33 31 42 44 48 43 46 28 31 36 25 27 19 2 5 5 6 11 39 55 65 46 72 106 105 88 86 85 57 47 14 6 1 1 3 2 3 6 4 5 7 3 8 6 5 4 5 5 5 1 2 0 5 8 4 4 5 17 29 62 86 92 90 126 123 83 60 68 63 47 14 4 1 4 7 9 28 23 37 37 32 32 39 51 47 33 35 50 49 46 44 46 42 35 50 39 22 27 29 44 37 44 42 42 45 28 37 39 41 54 31 46 47 50 55 33 29 32 29 32 32 42 46 42 51 53 50 55 45 59 46 50 40 37 26 33 32 35 37 47 37 45 60 41 50 46 33 48 35 39 39 45 55 41 35 29 29 20 21 19 24 18 22 29 21 22 24 32 22 20 20 32 21 19 19 11 22 26 17 15 25 15 28 19 21 29 12 28 21 18 16 12 20 24 +20 23 12 16 18 14 14 17 20 21 25 15 19 22 20 21 23 16 19 15 25 28 22 24 24 32 29 26 18 24 23 25 27 31 15 25 26 27 33 25 43 49 33 41 59 46 44 50 42 44 55 49 43 47 53 48 39 39 34 34 37 28 50 44 45 40 55 45 50 41 48 35 39 44 36 30 34 30 38 34 41 51 54 48 44 32 50 37 40 37 47 26 37 37 37 22 12 15 28 43 54 44 43 64 53 46 51 35 43 37 43 46 40 41 33 25 47 22 22 2 2 4 3 27 54 62 66 74 103 119 95 87 60 67 54 15 8 6 5 7 3 10 3 7 1 5 4 5 5 4 5 4 4 4 4 3 1 4 4 6 5 5 5 7 19 53 72 88 91 105 119 75 49 58 63 38 15 3 5 4 6 17 26 27 32 29 27 40 50 46 53 35 39 50 48 56 46 44 54 38 37 37 20 22 24 41 39 46 40 38 22 39 27 25 36 24 35 61 38 44 39 29 29 30 31 33 36 29 40 47 46 53 48 47 52 57 43 63 26 29 29 34 34 37 43 46 40 42 48 42 41 44 43 41 45 48 59 36 45 46 26 35 33 21 21 19 27 22 27 25 24 27 27 27 23 21 23 22 21 27 12 17 14 14 19 22 15 18 15 27 24 18 23 30 15 14 28 15 24 17 +16 18 24 22 15 22 26 22 25 21 18 20 19 25 18 16 27 15 21 17 21 20 20 28 36 35 21 29 28 23 27 28 33 25 20 18 25 23 27 36 34 34 43 47 55 42 42 47 44 35 38 45 53 53 52 51 46 38 32 28 38 40 44 44 36 41 49 42 63 38 36 30 31 28 33 43 33 23 29 45 50 44 61 51 36 32 41 28 51 54 46 42 38 35 32 22 19 13 34 33 47 45 50 44 34 46 46 35 43 61 53 45 33 35 29 29 17 33 12 2 1 1 0 26 49 57 60 69 85 137 88 86 72 64 46 15 1 0 2 0 8 1 5 10 2 3 2 5 3 3 4 4 7 2 4 3 2 1 3 3 7 3 4 2 14 33 65 77 72 88 99 112 59 58 48 56 33 13 5 7 4 10 31 26 33 29 24 25 32 46 48 42 39 49 41 42 40 46 41 45 30 34 27 15 24 43 59 33 32 44 61 36 38 31 31 39 32 48 48 45 38 44 27 26 31 37 34 41 31 44 46 47 42 47 51 58 46 47 38 30 28 33 57 48 51 36 38 44 31 35 45 38 41 46 42 46 42 45 47 39 48 35 34 23 31 28 24 27 31 28 32 27 18 28 35 23 29 22 16 19 22 19 24 25 16 19 14 15 20 22 19 14 18 24 14 20 15 20 26 17 +19 14 16 24 25 22 20 17 41 25 21 22 17 27 21 15 12 16 19 12 16 16 16 21 26 21 19 25 22 20 22 21 25 18 21 16 23 10 31 39 26 49 44 30 48 41 35 46 53 43 38 57 51 48 54 49 35 41 25 29 43 38 38 49 51 53 48 37 50 49 37 38 37 36 36 41 24 21 35 32 39 66 53 43 35 28 29 49 36 40 41 35 36 44 29 37 20 13 43 40 49 50 38 34 44 48 32 41 32 46 43 39 34 27 33 35 29 26 8 1 4 4 12 49 67 72 53 83 94 126 96 88 81 51 29 2 5 4 7 1 6 4 5 3 8 1 3 4 2 3 5 3 3 3 6 3 2 8 10 9 4 6 4 2 8 23 40 61 87 72 120 103 68 67 52 60 33 9 7 5 8 7 21 21 28 32 22 30 40 47 55 48 41 38 43 47 55 46 45 49 38 45 21 16 26 24 38 34 35 40 41 50 47 32 42 30 41 59 37 44 48 26 24 26 35 31 36 29 35 32 42 55 45 49 62 48 57 47 34 29 42 44 38 40 40 26 38 46 36 51 28 48 40 47 45 47 35 42 47 40 39 43 23 18 30 21 25 28 21 33 33 20 25 20 18 31 20 15 15 20 17 17 19 17 15 28 15 21 18 16 20 10 23 24 17 23 18 15 18 22 +21 20 27 15 22 13 23 11 15 19 16 22 24 14 25 17 17 21 23 24 15 21 27 42 27 26 19 29 29 27 22 32 23 12 33 25 24 23 31 37 32 46 34 51 38 36 42 40 29 42 39 48 47 52 42 53 53 39 29 37 25 36 38 47 58 52 32 46 43 45 37 31 40 41 36 36 36 23 28 34 42 61 51 41 35 40 39 33 54 31 44 33 38 44 31 30 21 20 33 40 54 48 50 52 38 34 34 42 45 57 60 40 33 25 29 31 21 28 5 4 4 2 10 38 67 55 61 87 138 85 76 75 62 43 12 5 4 2 6 7 4 4 2 2 1 2 5 1 1 4 4 7 3 5 8 2 3 2 1 2 4 4 4 3 5 13 43 61 74 78 105 102 93 64 66 74 58 19 3 5 4 4 22 45 27 31 30 32 45 43 44 40 43 47 43 47 42 44 58 41 33 31 19 30 35 39 41 47 39 44 43 47 44 24 39 42 35 45 51 41 41 31 33 24 35 33 43 25 41 39 34 45 44 52 35 48 51 47 47 42 41 43 37 44 45 48 47 39 58 37 35 41 35 42 35 46 40 50 34 46 43 30 24 28 35 27 23 24 22 29 20 20 23 29 19 20 22 28 16 12 13 13 18 20 14 19 15 19 23 10 25 15 20 17 17 15 24 17 22 19 +15 16 20 22 11 23 23 19 17 15 20 22 25 13 26 32 22 15 18 29 18 25 22 27 27 33 27 28 22 23 25 19 34 23 27 25 24 30 35 24 46 45 43 56 45 46 55 56 25 33 39 45 55 46 59 39 37 52 32 29 30 26 51 47 54 40 37 54 41 39 38 38 29 36 40 27 23 35 42 32 40 58 43 47 46 40 30 40 36 49 49 36 43 27 37 21 17 18 29 46 40 49 52 46 34 37 32 38 37 61 47 41 35 34 30 21 25 18 5 3 6 5 15 49 70 69 64 101 129 88 73 65 63 30 14 4 5 4 7 4 1 2 5 4 4 6 4 5 2 5 4 3 3 6 4 3 3 3 1 7 0 8 5 3 3 5 43 57 73 80 99 106 99 68 56 58 53 21 6 4 4 5 11 27 27 26 36 32 38 51 46 31 45 31 44 41 48 43 54 58 34 28 21 23 22 30 37 46 51 51 45 44 36 32 34 35 39 50 64 31 35 26 34 28 30 49 33 35 40 35 37 43 50 47 41 49 51 41 34 46 36 30 37 28 48 40 40 42 41 56 47 32 54 46 40 36 34 47 50 48 37 30 22 31 21 24 29 26 21 24 23 16 28 24 34 23 33 23 19 24 14 16 18 23 13 34 20 19 28 21 18 12 24 15 17 16 24 14 25 22 +16 23 17 15 21 22 23 17 15 25 28 20 19 25 23 16 23 15 19 15 26 17 18 29 32 26 21 25 34 27 19 26 18 33 28 28 25 30 19 35 42 47 50 46 42 47 42 39 38 34 63 30 51 70 42 40 55 46 31 34 36 44 50 39 47 56 56 38 42 53 46 47 33 34 32 27 24 32 37 42 35 43 50 49 37 34 41 31 35 39 44 40 46 47 30 29 18 21 42 35 36 56 48 47 39 45 45 29 40 46 38 34 33 27 37 21 36 18 6 4 2 4 30 59 68 53 58 92 105 103 82 72 45 25 5 5 4 4 2 4 7 4 4 4 6 3 4 3 7 3 2 7 6 3 5 2 3 7 5 7 4 7 4 0 4 2 25 65 65 73 101 130 101 65 67 64 61 22 4 4 1 4 17 26 33 26 29 35 35 57 45 44 42 44 40 44 47 38 60 54 41 23 22 18 28 32 32 44 40 44 48 34 45 28 24 32 37 48 58 38 43 47 31 31 39 40 52 22 39 38 50 43 41 40 50 54 48 39 23 32 37 35 37 42 45 36 53 56 37 51 46 48 48 30 38 43 49 46 48 34 31 29 19 31 17 30 25 20 33 26 19 28 16 27 20 29 25 18 18 13 13 17 15 13 20 25 20 21 19 21 19 18 27 25 16 19 24 16 22 17 +15 21 21 26 16 22 26 17 19 21 27 32 18 20 22 13 22 17 15 24 16 23 20 26 30 27 26 24 33 29 27 27 21 28 27 23 27 32 35 32 41 30 41 43 47 50 42 45 47 43 60 42 52 42 49 48 39 38 39 24 28 32 48 39 45 61 51 38 40 47 25 48 38 48 44 29 42 26 35 44 44 60 51 47 38 40 35 38 34 39 46 50 29 44 31 23 20 27 29 50 52 34 43 32 45 47 34 35 44 41 57 29 30 35 26 29 33 8 2 4 7 3 33 53 63 63 84 119 108 91 82 84 43 21 6 5 3 5 4 0 4 3 2 6 4 2 6 3 2 3 5 2 4 2 2 4 7 0 6 5 7 6 4 5 5 6 13 31 71 83 77 128 119 83 73 57 63 40 6 3 6 3 11 35 33 27 26 33 28 41 47 44 52 46 44 29 39 46 40 55 45 32 26 18 24 27 48 38 42 38 58 35 34 35 33 44 37 50 42 45 35 39 33 29 26 39 28 39 33 34 55 56 50 49 47 60 53 49 37 33 29 30 37 46 51 57 44 45 45 50 37 45 49 39 52 55 40 61 55 35 27 26 13 29 23 22 27 17 21 11 30 20 24 46 35 35 19 21 15 14 22 21 17 21 27 27 25 22 12 14 18 22 17 27 14 18 16 27 22 22 +24 21 12 18 16 24 20 18 16 19 23 12 25 17 26 28 26 20 19 19 20 17 24 24 15 27 29 31 23 28 22 33 26 32 18 21 23 25 28 41 40 33 45 50 41 38 40 43 32 45 60 58 43 53 42 43 49 49 29 41 27 33 37 46 56 44 50 55 49 46 40 35 34 37 41 27 28 30 36 47 46 56 48 46 39 32 34 27 37 38 33 39 38 42 32 20 16 28 36 39 45 39 50 47 50 45 46 34 59 59 49 41 30 35 48 32 21 10 5 7 1 9 33 56 62 50 95 114 119 71 70 57 25 10 2 4 8 3 5 5 5 4 6 3 6 4 6 2 6 5 2 3 5 3 2 4 3 3 7 3 2 5 8 2 6 5 8 36 69 77 80 91 130 97 55 58 60 35 9 4 3 3 5 28 27 34 26 36 38 40 54 44 42 27 35 46 55 52 43 48 37 41 21 23 27 26 53 47 32 42 41 39 33 36 44 34 50 48 44 51 47 34 30 16 27 49 35 34 47 35 38 50 47 51 41 38 47 35 36 42 24 28 40 46 41 39 39 46 36 55 36 45 41 44 44 51 42 44 38 40 47 34 26 30 17 26 24 25 27 27 33 20 21 29 23 30 19 22 22 17 19 19 16 21 25 29 18 28 18 28 28 19 13 24 15 25 27 12 21 20 +19 19 27 16 20 17 12 26 24 25 22 23 22 24 23 28 24 23 19 19 12 23 19 29 24 31 28 29 29 22 32 30 19 27 27 26 19 23 19 36 36 40 51 44 39 42 50 38 44 58 54 41 49 40 52 44 38 44 49 30 32 37 38 48 52 64 40 47 45 46 35 43 43 39 36 38 26 28 32 40 44 48 53 37 42 38 35 41 45 48 41 43 42 33 32 19 22 26 31 35 40 46 45 45 48 44 42 37 40 44 34 32 34 35 35 30 25 9 3 5 7 16 48 63 55 60 84 111 91 72 72 66 20 4 8 7 2 6 3 4 5 6 5 3 3 3 0 5 7 6 5 2 3 3 6 5 4 9 4 4 6 4 3 5 4 7 4 17 58 73 92 104 162 122 66 66 59 46 14 2 5 5 14 31 18 33 33 29 29 31 53 48 44 45 38 46 60 47 44 49 47 37 25 10 37 25 36 52 44 49 34 44 50 35 32 33 38 53 56 35 40 38 30 22 33 22 35 36 31 42 56 59 59 37 45 42 39 42 32 42 45 22 46 49 42 44 52 57 49 42 56 52 49 46 44 42 49 35 44 29 36 20 25 19 22 35 24 32 25 24 32 25 25 30 29 15 23 20 17 19 24 21 16 14 20 17 19 24 16 18 19 20 19 19 21 18 16 21 22 13 +18 24 24 14 25 21 17 12 20 24 14 15 14 14 17 23 25 25 18 17 20 15 19 22 16 32 31 25 32 31 29 24 29 24 30 34 25 21 26 25 37 42 45 40 49 35 51 35 45 45 49 51 39 41 52 51 43 41 51 37 24 33 51 56 60 49 44 37 42 35 40 33 34 38 48 34 30 25 33 43 43 59 54 34 28 43 38 38 46 45 31 42 41 32 35 24 11 23 31 33 56 36 42 32 39 38 35 41 57 52 38 38 36 32 28 23 20 7 3 6 2 11 49 68 62 82 95 119 97 77 71 43 14 4 5 3 7 6 6 1 5 6 3 5 5 3 5 4 5 6 4 5 3 4 7 3 7 3 3 3 3 1 7 4 4 1 2 18 41 75 79 95 133 98 72 64 51 46 10 1 4 6 11 24 30 24 28 36 37 39 55 38 33 43 50 43 49 46 50 39 30 38 30 19 16 26 29 50 30 32 41 49 41 32 38 40 44 39 53 40 28 39 35 37 30 42 38 39 38 55 42 44 41 51 47 55 54 44 40 46 38 41 30 36 39 50 50 61 58 42 48 63 30 46 45 45 37 45 43 41 38 27 24 27 24 34 19 21 18 25 31 25 31 30 27 27 15 26 23 18 20 17 25 18 18 16 18 19 19 20 23 19 21 21 21 23 21 21 23 14 +20 20 20 14 15 27 14 14 22 20 24 20 16 20 16 16 21 15 19 14 24 24 22 18 22 29 36 34 20 32 29 28 22 20 29 21 18 22 30 42 28 41 33 49 54 43 51 36 32 38 49 47 47 47 51 40 36 40 37 41 40 30 39 39 47 40 45 52 50 38 42 35 31 32 34 27 21 38 40 38 57 43 45 49 43 35 44 39 39 46 34 48 35 37 29 21 15 29 33 32 58 42 44 36 40 45 40 32 55 45 48 33 30 30 23 45 21 4 8 7 5 24 40 77 64 70 119 93 83 87 69 36 14 2 3 3 2 4 10 4 8 0 5 5 4 4 6 0 6 2 4 3 5 7 5 11 3 4 2 8 4 3 8 4 6 5 4 8 40 70 89 83 117 97 79 52 64 60 19 5 4 2 6 26 32 32 29 27 33 34 46 52 28 39 43 41 46 37 46 57 35 23 27 10 25 26 34 38 32 40 37 44 38 34 40 32 49 40 42 32 45 38 33 31 27 37 39 41 21 40 43 57 54 52 51 51 68 38 26 28 32 38 35 44 45 54 47 43 29 42 44 46 39 52 40 46 40 39 34 27 37 21 30 19 19 33 20 35 26 26 21 27 26 36 27 21 27 22 22 17 22 19 22 15 18 21 19 27 24 25 21 18 15 26 25 15 22 11 29 18 +19 23 23 22 24 16 28 21 19 12 18 13 20 19 23 21 17 26 22 16 23 17 15 16 29 31 28 20 23 28 36 33 20 26 23 22 25 25 25 45 30 43 36 48 49 49 53 42 43 28 50 58 42 54 46 47 44 42 29 38 34 26 48 48 45 50 33 54 47 54 43 26 53 31 28 25 24 36 32 30 45 50 49 33 30 33 36 42 45 43 42 33 38 47 28 27 20 23 39 38 52 37 31 43 33 37 50 45 60 48 37 32 31 27 36 27 20 3 2 0 5 29 70 53 64 65 106 118 90 71 71 30 4 3 3 5 2 4 5 3 7 4 2 2 3 5 2 4 5 4 3 0 3 4 5 2 3 6 3 1 3 4 0 4 5 3 8 5 21 63 71 76 119 160 85 61 61 65 22 1 9 5 2 14 26 37 39 34 24 42 58 39 43 35 32 41 39 41 44 47 49 35 25 20 30 18 33 40 37 44 42 36 33 47 34 32 36 46 66 51 35 37 25 26 33 39 33 41 51 47 40 43 48 49 45 30 46 46 28 31 30 39 37 30 57 68 58 43 51 41 53 35 43 44 34 47 54 41 40 44 28 31 15 20 33 17 16 26 29 22 25 35 29 32 28 15 31 20 20 25 22 14 19 12 22 16 17 24 24 14 20 19 23 22 23 21 20 18 25 19 +23 18 21 18 15 19 33 19 14 23 23 22 16 20 15 18 17 19 24 17 22 17 18 23 24 23 36 25 28 18 30 22 19 36 26 21 26 18 33 30 34 34 41 36 37 42 49 50 40 45 52 45 47 46 45 41 31 51 30 37 27 34 42 48 45 55 49 45 50 41 43 41 35 36 38 27 31 25 33 42 44 54 44 47 46 35 48 49 43 41 46 37 42 32 34 19 15 36 33 55 57 52 41 47 45 47 47 40 41 55 50 34 45 28 33 32 21 10 4 2 8 29 74 56 61 81 109 96 65 83 58 28 4 6 2 10 3 4 5 4 6 3 3 4 4 4 4 7 2 7 5 5 5 1 1 1 4 7 4 3 3 3 3 7 1 4 4 5 13 75 73 77 108 127 79 67 54 58 37 6 7 3 2 18 41 35 40 33 36 38 49 46 52 36 43 35 62 50 41 53 53 51 31 18 27 28 35 35 45 49 45 33 35 34 46 44 44 53 45 48 43 40 31 23 32 32 37 26 47 31 33 51 43 48 49 56 58 46 42 35 37 41 41 39 45 41 49 50 41 37 51 53 40 49 50 39 39 50 34 41 39 22 27 23 30 30 19 28 22 24 25 28 26 28 26 22 21 20 18 21 30 17 15 19 24 26 25 17 13 19 16 21 16 17 17 25 25 12 18 17 +15 22 27 24 25 19 19 25 26 24 24 11 23 19 17 17 25 17 16 22 14 21 20 21 19 25 25 30 17 28 16 23 20 20 18 21 26 30 36 32 24 41 32 45 50 32 39 41 46 42 51 55 33 44 49 35 46 41 37 35 45 24 35 41 41 53 46 57 48 37 43 47 35 41 30 24 36 24 38 31 44 49 54 47 31 38 32 46 42 48 39 48 39 39 34 20 18 40 28 42 55 40 41 54 37 46 50 41 59 52 38 34 38 32 27 33 14 8 5 3 10 44 57 52 61 95 125 87 85 83 44 10 5 2 3 6 7 5 1 8 4 5 6 6 2 1 3 4 8 3 5 2 8 7 4 6 6 4 2 3 6 5 2 6 3 6 0 3 14 45 73 75 100 123 101 73 63 57 45 7 4 6 4 20 21 35 38 28 34 42 44 39 34 43 39 37 39 49 56 52 32 41 28 18 29 46 48 31 37 38 47 37 39 29 32 25 32 52 39 55 30 29 23 30 37 37 43 48 35 40 40 42 49 49 45 45 33 38 28 39 35 26 43 57 50 54 44 49 44 51 42 48 44 65 38 41 50 33 44 33 33 34 25 32 19 26 23 27 37 26 23 23 27 23 30 16 13 20 17 23 12 24 20 26 16 15 17 17 23 21 19 21 24 20 20 16 24 13 27 16 +14 15 26 12 17 19 20 26 25 19 16 15 16 27 14 25 21 21 26 23 13 21 18 25 20 22 30 21 24 30 29 29 25 19 26 26 25 30 33 31 36 46 31 41 41 44 44 41 37 46 46 42 58 54 58 48 44 44 37 33 41 35 38 57 40 50 58 44 40 42 43 42 34 39 37 31 21 20 27 43 52 63 57 40 33 51 38 36 46 42 41 43 50 27 38 25 15 34 45 40 48 51 46 43 39 34 47 49 51 60 32 32 23 27 37 28 12 5 3 5 11 45 80 61 69 118 116 93 86 74 52 7 4 2 4 4 5 5 5 4 5 4 1 2 3 5 2 2 3 2 6 4 4 11 4 4 3 3 4 2 5 10 4 6 7 1 5 2 7 50 74 78 90 143 79 69 66 62 50 8 5 3 3 11 29 29 32 34 35 36 59 37 30 42 44 37 47 42 43 48 32 25 22 17 30 32 28 28 41 31 38 36 46 33 33 33 31 49 62 54 41 49 24 27 26 49 31 41 43 37 40 43 50 48 39 44 49 35 45 32 41 37 49 54 55 28 48 60 50 45 49 51 46 55 45 34 37 50 44 41 39 22 29 28 28 26 35 17 29 23 26 25 24 17 25 16 15 28 22 27 20 26 21 21 16 14 20 20 18 19 26 16 16 17 16 25 24 23 19 22 +17 17 14 22 19 21 18 23 17 26 8 27 21 20 19 19 22 28 14 19 24 20 12 17 20 25 33 22 25 26 24 20 22 21 20 24 28 25 26 34 47 41 31 47 52 48 55 57 44 41 56 53 56 46 49 54 46 36 45 39 31 46 40 51 49 50 50 53 46 36 56 51 41 35 45 28 25 21 23 58 56 57 52 33 41 32 36 55 45 43 50 37 39 49 28 21 18 47 37 54 57 56 44 52 48 51 50 38 51 49 35 26 35 32 30 29 16 5 0 3 11 46 46 57 53 105 133 108 67 76 37 5 6 8 3 7 2 4 6 5 2 3 5 5 8 2 6 1 1 3 3 3 6 4 2 6 2 6 4 8 5 5 2 4 3 4 7 4 7 37 95 81 92 135 110 63 50 64 54 9 4 5 4 10 19 45 31 29 32 34 52 44 49 41 37 37 46 40 55 49 47 36 22 28 18 34 40 36 54 43 33 50 37 37 37 29 35 59 46 36 36 30 30 32 33 33 49 35 40 39 49 49 60 50 53 47 48 54 33 44 33 41 33 41 52 51 52 52 47 52 36 46 32 45 42 49 38 36 35 30 28 25 25 20 26 19 34 19 22 22 29 31 28 37 10 16 24 22 20 21 24 23 20 17 20 18 17 14 26 19 22 23 21 25 26 19 16 18 24 16 +23 14 18 22 24 22 17 11 20 21 22 13 25 25 15 23 18 25 13 19 21 25 22 20 16 21 19 22 19 24 28 30 28 38 31 23 30 25 32 30 35 38 30 46 39 39 42 45 54 40 52 32 51 44 47 40 44 46 41 35 35 45 30 59 41 38 52 45 47 44 46 36 43 46 32 35 36 20 34 40 41 57 49 50 34 39 40 33 50 49 43 36 44 26 22 23 24 28 41 43 53 38 44 49 55 51 46 55 48 48 33 38 41 35 25 26 15 5 4 2 11 58 52 65 69 110 123 100 78 61 22 7 3 3 6 4 5 5 5 2 4 5 6 0 4 4 2 4 5 3 2 4 3 6 2 5 2 4 4 11 2 2 4 3 3 4 4 1 8 39 66 77 99 116 107 65 57 78 46 10 4 3 7 9 27 24 26 33 24 35 64 61 44 27 42 45 45 44 39 52 39 43 41 17 16 43 39 24 48 36 40 53 38 43 32 36 33 53 54 36 44 34 25 37 34 31 40 43 32 47 42 53 56 49 39 56 42 28 39 45 35 43 40 35 54 52 42 54 45 50 30 43 34 57 52 29 42 39 45 34 21 28 33 14 22 31 28 24 25 27 19 21 32 37 23 23 33 24 22 25 19 15 19 15 27 18 21 19 18 19 26 23 15 18 19 26 13 14 17 15 +17 21 21 14 19 19 22 24 18 22 26 15 22 20 19 24 22 12 15 25 21 17 18 26 19 24 22 24 20 27 27 28 25 31 21 24 19 24 19 26 31 51 45 46 57 48 48 48 39 43 42 47 47 53 45 48 52 40 40 40 29 34 38 52 38 51 41 44 45 37 44 31 47 39 36 33 36 31 34 44 49 67 43 42 32 36 32 38 47 39 41 46 45 32 28 26 22 30 39 69 52 46 45 47 45 49 40 56 60 38 47 30 20 30 28 25 9 5 5 3 20 60 61 61 66 104 112 83 81 54 20 1 6 3 3 6 10 1 5 2 6 4 6 8 1 3 7 3 5 4 0 5 0 4 2 5 4 7 2 4 6 3 3 5 4 3 7 6 2 23 55 85 82 107 135 64 67 66 47 18 2 5 4 17 32 30 28 28 27 36 57 56 46 40 43 41 44 35 51 56 38 40 30 15 23 35 41 38 49 47 54 37 39 38 33 43 38 46 55 43 34 29 33 28 27 32 40 31 38 30 45 45 40 58 40 45 62 37 29 42 42 37 40 43 47 30 48 44 59 48 54 39 39 42 40 40 36 28 43 53 28 38 27 28 21 26 27 29 23 41 28 25 28 22 20 20 20 17 21 24 14 20 13 25 17 25 25 20 14 17 27 33 21 29 16 17 24 30 19 18 +14 10 22 16 18 20 18 22 23 17 25 26 20 21 17 22 15 20 18 15 20 18 21 16 13 27 22 32 32 38 23 26 34 32 22 27 27 36 33 23 34 39 32 47 45 38 51 40 51 49 50 48 44 61 49 48 41 33 35 46 36 43 43 45 52 54 56 48 46 41 39 34 40 30 31 27 27 29 24 31 41 49 54 40 51 38 29 42 40 41 45 43 48 39 37 30 22 31 42 46 49 39 52 50 54 42 34 47 56 47 36 32 30 36 35 24 10 6 4 2 16 68 67 66 71 108 106 88 71 53 21 0 4 6 7 2 9 5 3 7 2 1 4 1 4 6 5 5 4 6 6 5 1 3 7 3 2 2 0 10 4 3 4 4 6 4 1 5 2 15 48 76 90 103 117 77 46 58 57 19 4 2 4 8 27 30 27 36 38 30 44 59 50 42 52 42 48 50 36 47 54 38 35 24 26 31 30 36 41 40 52 45 50 43 42 46 48 54 47 48 38 48 32 31 30 37 38 35 42 37 58 60 46 58 59 55 49 48 27 37 27 48 40 44 41 49 55 43 39 50 44 36 40 40 49 41 42 42 44 38 37 23 22 18 24 13 23 17 30 25 26 26 30 28 21 27 28 20 14 17 18 17 16 17 25 26 19 22 26 25 22 22 23 18 17 22 15 24 13 18 +17 12 12 15 25 22 15 23 16 27 20 11 19 22 19 27 20 19 22 25 20 23 14 23 20 24 22 29 24 22 22 22 27 23 19 23 32 24 25 31 42 48 41 41 50 42 38 44 50 38 48 56 35 34 46 51 46 43 44 30 30 33 45 46 48 45 52 47 39 57 43 42 30 32 31 26 38 43 37 43 55 62 57 45 36 39 27 37 52 47 47 41 40 34 39 28 22 36 45 49 49 53 40 54 39 51 35 43 71 42 23 33 31 27 34 20 8 6 4 3 22 59 71 60 63 119 109 76 85 58 11 4 7 6 8 5 6 3 3 8 6 9 1 4 4 6 6 3 2 0 4 5 5 5 5 8 5 2 5 1 2 4 6 6 1 4 4 4 4 12 53 75 73 129 129 80 59 62 52 16 3 2 6 7 28 25 30 31 26 46 49 65 55 48 46 52 44 48 41 63 43 33 44 24 20 27 38 43 52 41 42 31 40 33 50 38 34 56 53 54 45 35 25 36 28 35 38 35 49 52 50 36 53 62 41 47 50 44 40 35 27 29 49 61 36 62 50 43 47 52 59 47 44 51 38 44 38 37 48 43 26 25 25 27 27 23 23 32 30 32 27 32 28 27 23 20 21 14 24 25 26 19 26 15 25 18 23 21 24 16 24 20 17 21 15 26 11 17 18 13 +8 10 8 19 20 15 14 25 25 36 23 15 20 22 17 18 19 16 26 12 32 19 17 18 20 26 32 29 19 23 27 25 29 20 16 21 19 23 22 27 35 31 37 53 33 52 46 46 38 40 51 54 51 38 52 39 36 41 40 31 40 37 39 44 45 41 47 46 46 31 44 43 38 44 41 37 39 34 37 46 43 54 54 47 41 35 36 42 43 37 46 29 42 39 28 20 18 43 43 51 57 42 34 37 54 39 39 51 66 36 49 35 31 25 30 24 5 2 5 3 19 61 54 50 88 131 110 96 78 49 13 6 5 2 5 5 1 6 7 6 3 2 7 8 4 5 5 9 2 4 4 2 7 3 3 4 4 10 6 3 6 6 6 4 9 3 4 1 3 6 59 89 73 107 121 82 53 63 70 19 6 6 6 6 25 30 32 28 35 29 49 59 35 40 29 52 56 54 51 63 40 41 44 23 24 38 34 40 53 38 44 43 44 39 34 41 43 42 60 45 41 30 34 35 41 51 35 41 37 47 31 38 52 57 55 41 49 37 45 45 36 51 35 36 44 50 42 33 44 38 38 45 43 45 43 47 33 35 55 38 14 22 21 22 29 15 26 27 28 27 22 32 27 20 20 20 27 19 22 20 17 26 17 15 27 25 14 24 31 15 28 17 25 16 26 11 15 11 20 14 +15 21 17 15 10 12 19 16 19 16 22 19 27 16 21 24 23 13 18 18 22 22 16 19 32 17 21 22 31 25 16 25 21 23 28 22 27 22 21 29 45 36 44 47 41 45 38 49 52 44 50 35 42 50 49 41 49 36 28 43 32 39 53 51 45 46 44 53 37 39 50 33 39 28 35 34 28 24 40 36 46 66 57 36 36 38 40 43 40 45 56 37 46 39 25 19 21 27 35 51 50 51 35 37 48 44 42 44 56 55 28 32 36 24 27 25 9 3 6 3 28 71 74 79 90 123 103 85 70 53 8 4 4 6 5 5 6 1 3 1 3 2 3 5 2 2 4 3 2 9 7 6 7 5 5 6 5 7 2 4 3 4 4 2 5 3 4 3 6 5 40 74 76 97 135 70 64 79 62 22 4 2 5 9 29 38 34 33 31 40 47 51 59 36 33 36 41 40 57 66 44 29 34 24 21 23 34 42 45 38 42 46 45 45 31 36 55 51 54 64 45 44 34 25 29 35 33 34 40 50 42 57 48 42 50 43 44 35 33 32 44 39 42 42 58 36 67 49 35 37 53 42 48 56 39 62 45 41 44 35 32 28 22 24 22 31 20 24 23 32 33 29 29 22 18 28 24 25 25 17 21 25 20 24 15 17 16 10 24 17 22 16 27 21 17 8 9 16 14 12 +8 16 23 16 20 21 18 21 13 25 19 15 20 22 22 21 26 23 26 22 18 28 25 24 28 24 16 38 33 27 28 30 29 27 31 35 30 23 28 32 37 40 43 42 55 53 52 43 40 41 43 30 40 44 44 41 43 37 32 36 47 43 45 46 58 41 36 53 41 53 55 41 40 26 42 37 31 38 41 40 54 64 46 43 39 37 35 42 48 36 33 42 42 38 23 26 24 22 42 52 63 49 56 41 44 42 42 36 44 50 36 30 32 31 31 29 6 4 5 6 30 57 72 67 86 138 103 77 75 42 6 4 5 1 5 4 2 2 1 4 6 2 6 6 2 2 1 2 4 5 1 4 4 5 3 6 5 5 2 3 6 3 4 7 4 5 5 3 5 9 45 84 62 91 146 68 64 70 55 27 3 4 2 10 25 25 36 31 27 38 48 62 46 40 44 44 51 42 35 57 58 31 43 22 24 31 27 39 37 49 38 31 40 32 35 46 31 43 42 43 48 31 34 23 34 32 38 45 43 48 44 50 46 29 53 43 50 45 31 44 36 32 53 48 40 42 43 37 52 38 45 42 48 49 45 38 49 34 39 37 20 26 26 16 18 30 27 17 31 18 25 19 33 26 18 22 16 20 22 19 25 21 20 23 17 23 21 24 26 22 18 20 20 22 18 15 8 19 13 16 +16 14 9 12 17 11 19 14 19 16 12 22 16 18 25 22 20 22 23 19 16 14 16 24 17 24 27 22 19 25 17 29 19 23 22 23 25 19 23 30 36 40 46 48 48 42 48 45 47 47 39 35 54 36 52 39 53 38 43 38 43 42 42 59 45 49 42 48 46 45 51 48 39 36 46 25 26 31 47 44 46 58 56 35 42 30 35 42 52 43 33 46 36 39 24 19 25 22 42 60 53 41 45 45 53 48 49 58 52 40 20 29 29 34 37 21 7 5 6 8 27 67 47 61 87 125 77 86 78 39 5 3 3 7 6 8 3 2 4 3 1 4 3 1 5 5 4 2 8 3 1 5 3 6 2 6 3 8 6 5 1 3 7 2 4 1 3 5 10 5 39 74 96 105 118 101 57 70 72 34 5 5 5 7 22 23 23 32 25 30 49 53 42 41 41 42 43 48 45 44 62 38 36 17 16 34 33 38 48 41 42 29 44 26 34 39 44 53 51 55 35 45 26 29 30 39 34 47 42 43 39 54 59 47 38 57 43 50 36 45 26 51 38 48 47 53 62 55 43 45 52 44 49 41 45 43 48 39 34 31 32 20 24 16 33 24 21 27 30 25 25 29 24 20 24 28 12 19 23 14 18 10 20 29 16 23 19 21 14 21 17 24 24 18 13 16 13 10 19 12 +7 17 15 16 8 10 21 19 14 18 24 20 22 25 20 22 12 21 17 23 16 20 14 19 18 30 32 25 24 31 21 40 29 32 23 24 26 29 32 33 38 37 40 48 62 47 36 36 46 42 52 49 56 55 32 56 51 53 49 34 29 28 32 63 44 54 55 49 50 42 58 32 39 37 42 31 36 34 28 49 48 51 51 38 40 37 34 30 46 44 40 39 42 42 32 25 22 40 37 47 56 40 37 46 47 37 44 38 49 37 39 25 25 39 32 28 2 2 5 3 37 61 67 46 95 126 95 92 82 37 7 5 4 8 5 5 10 8 0 7 8 4 4 6 7 4 5 3 4 4 3 4 7 6 3 4 5 5 6 5 1 7 5 4 4 1 4 3 8 6 34 85 97 85 120 107 56 53 60 26 6 1 4 6 14 34 29 37 33 36 36 55 46 42 41 50 40 40 49 63 45 49 28 24 23 34 40 41 51 41 41 28 42 26 43 30 39 53 47 47 36 42 25 28 33 47 42 51 32 42 50 41 53 43 46 45 55 39 26 27 34 48 32 52 47 44 52 41 51 47 52 35 54 50 41 44 42 39 46 33 23 26 23 29 20 23 20 18 22 22 27 28 22 29 24 22 21 19 17 17 17 16 15 21 14 21 23 24 13 15 13 23 26 18 10 19 18 16 12 9 +17 14 18 15 18 14 22 25 25 17 19 16 13 15 27 22 28 18 18 26 20 20 24 24 18 21 29 17 31 26 16 25 26 14 29 23 26 32 24 26 47 37 35 50 44 36 45 43 42 42 46 47 51 57 43 58 48 29 36 46 30 31 41 45 64 47 46 54 39 41 37 34 39 42 43 34 30 34 28 45 54 48 48 41 41 42 38 42 35 46 39 34 41 30 30 24 20 39 39 50 37 50 54 43 55 47 43 57 61 33 27 22 31 38 31 13 5 5 5 5 31 68 57 64 78 113 100 83 78 43 11 2 2 7 8 6 7 6 6 2 4 3 4 4 6 5 4 6 2 8 4 4 6 5 5 4 3 2 5 5 1 4 4 6 2 3 2 1 6 5 34 77 74 110 121 107 46 56 68 35 2 5 2 4 21 34 31 29 44 36 40 51 43 48 34 44 42 37 51 44 49 45 40 25 17 25 43 40 48 54 39 40 49 43 35 39 39 52 46 38 42 32 32 27 40 43 32 35 35 43 42 51 40 50 48 41 62 39 32 32 38 39 39 46 48 43 42 47 47 53 50 43 42 52 41 54 60 40 35 26 25 25 19 23 21 24 16 21 30 30 29 30 24 32 17 18 27 19 24 20 18 26 21 18 21 23 16 15 20 23 16 23 22 15 14 12 16 19 8 16 +17 16 12 13 19 11 16 19 18 14 31 19 19 21 20 27 21 17 24 17 23 17 18 21 14 18 22 32 30 15 26 29 27 26 28 25 26 28 29 25 42 46 54 43 48 49 44 38 40 47 49 41 42 40 48 43 59 41 29 31 32 29 45 50 41 48 56 50 49 48 39 42 31 28 31 29 28 23 27 37 42 55 51 39 32 42 34 39 46 55 37 34 37 39 32 32 22 35 46 62 45 36 55 53 45 38 47 50 53 37 35 34 41 38 35 12 5 3 8 7 34 61 68 67 93 120 113 80 68 27 10 3 7 11 1 6 2 6 3 3 6 4 5 7 7 4 4 3 54 4024 4138 44 2 8 3 4 3 3 4 6 2 2 7 4 3 5 6 2 3 4 29 64 76 86 160 96 67 88 47 40 3 5 6 8 16 36 38 36 35 41 40 68 38 36 55 58 49 43 33 43 42 59 31 15 30 34 35 45 39 35 34 35 32 44 42 37 40 43 49 42 58 38 27 18 38 27 40 37 37 50 36 37 42 48 51 38 55 29 37 34 35 39 41 43 40 43 50 46 45 41 53 55 36 45 44 43 49 45 41 31 23 25 23 16 26 30 21 33 18 27 26 29 18 21 32 22 22 19 17 17 14 20 23 20 11 20 17 12 17 15 23 24 24 18 7 18 14 17 11 14 +157498 63482 14 20 10 11 15 16 19 24 26 31 23 27 26 17 19 18 22 19 15 14 23 17 22 19 29 33 29 26 35 26 22 34 27 31 24 22 23 33 31 40 37 43 50 48 42 47 43 43 44 57 40 38 46 39 43 44 40 35 40 35 40 58 46 36 45 51 41 52 45 45 49 47 42 37 39 29 33 43 51 51 51 28 36 38 44 34 40 38 47 49 48 39 35 26 21 38 36 46 55 46 55 31 29 44 41 50 63 44 31 38 21 23 27 23 6 1 6 5 43 79 71 49 110 135 90 80 66 30 4 8 1 2 3 4 2 6 8 6 6 6 4 4 1 5 2 4 195 16599 16774 245 8 3 7 0 3 2 4 3 3 2 3 3 6 6 4 2 3 6 37 64 96 101 134 82 83 65 79 35 12 4 3 6 23 27 40 36 31 42 39 61 44 47 28 47 44 43 38 65 64 37 48 27 21 26 40 36 41 30 42 50 34 48 40 44 38 57 47 56 37 35 32 25 35 33 36 40 39 34 44 44 49 53 43 40 44 45 30 48 28 41 43 40 46 45 43 45 48 38 52 43 54 41 53 31 47 34 34 41 27 27 26 12 25 16 28 31 31 33 22 18 24 30 20 31 20 20 28 26 19 19 21 24 20 22 24 21 14 24 24 24 20 17 11 7 12 20 63131 157159 +115903 70430 15 14 12 11 17 18 19 26 14 24 20 24 20 19 10 26 16 16 18 24 27 20 16 16 19 18 19 29 27 19 19 29 27 32 25 23 24 31 39 42 39 46 40 54 46 46 51 51 39 47 54 45 46 50 44 27 47 39 35 27 41 58 35 48 56 59 33 39 39 37 47 38 36 44 29 22 27 38 48 49 50 33 31 38 40 35 38 45 42 44 44 33 28 21 23 31 33 49 49 50 45 41 43 50 41 53 57 41 36 31 24 33 24 25 10 2 1 2 43 64 51 69 96 143 95 91 81 29 6 2 4 0 2 2 6 1 4 5 7 3 4 5 3 3 2 5 308 24247 24652 329 5 4 6 3 6 3 2 3 4 5 6 4 4 2 5 4 7 11 27 62 73 90 141 90 65 64 67 31 4 3 3 5 21 31 24 36 28 30 36 52 29 37 38 43 40 36 44 42 46 38 31 19 21 28 36 46 39 40 39 41 41 30 26 40 36 54 59 49 52 35 33 30 38 40 35 45 40 52 37 44 50 51 57 67 54 38 27 29 37 28 39 46 43 56 39 43 41 31 38 45 55 43 47 51 32 54 49 36 24 30 21 25 25 39 33 24 24 24 24 18 29 30 21 15 20 14 15 23 25 20 18 27 29 20 24 11 25 26 19 16 28 14 15 12 14 17 70145 115943 +116241 70042 11 6 13 11 27 24 28 17 12 13 20 19 20 17 24 22 21 21 19 18 18 27 21 25 24 28 22 33 32 28 27 25 32 44 15 23 14 19 29 32 47 39 43 53 50 38 47 55 43 55 40 43 42 39 48 39 39 34 38 43 50 56 52 44 54 50 58 32 34 53 48 34 48 37 31 30 33 41 40 67 50 43 29 48 26 24 34 42 44 31 33 31 36 25 23 30 24 41 48 41 39 50 51 44 36 51 55 38 33 22 38 29 32 23 4 7 5 3 34 69 71 61 101 135 78 86 62 23 3 6 8 3 3 6 4 7 7 4 4 5 8 7 3 0 2 3 296 26742 26856 335 1 3 2 1 1 3 3 2 3 2 7 5 2 6 4 3 4 4 21 73 78 93 123 100 68 58 73 37 1 4 5 8 22 26 25 29 49 27 45 48 46 44 28 47 47 42 52 41 52 36 37 21 19 23 37 37 45 43 29 44 44 33 40 35 40 50 44 44 48 40 26 20 26 39 42 44 44 41 41 52 40 49 46 49 52 45 27 36 38 42 43 41 50 53 59 43 55 44 52 37 39 39 42 46 40 35 40 37 31 20 21 30 29 21 35 27 26 19 28 33 17 25 20 15 11 24 26 10 17 21 29 20 18 22 21 29 21 24 18 10 16 24 19 13 13 22 70058 115829 +116629 70096 13 13 16 18 14 31 16 24 19 25 24 17 27 22 20 21 28 13 29 22 21 27 28 16 27 26 22 24 26 26 22 31 19 32 27 19 21 28 36 43 40 55 54 43 50 53 44 44 35 48 41 50 64 40 47 47 39 34 23 34 31 41 45 48 46 44 41 43 40 42 34 29 45 33 29 20 31 42 57 56 53 29 39 43 39 38 39 40 42 39 44 43 26 27 18 39 38 54 43 33 33 41 34 51 35 49 58 44 24 29 33 26 37 23 6 6 1 8 42 70 58 63 100 141 92 83 60 26 6 1 5 5 2 6 4 2 7 5 4 5 6 3 4 3 4 1 288 24515 24498 310 6 2 5 3 4 3 9 3 3 5 7 3 4 3 2 4 3 4 26 78 77 77 135 92 59 67 63 37 15 5 6 2 20 36 23 31 27 35 32 61 45 45 40 54 36 68 42 47 50 35 28 25 17 28 33 30 41 47 41 40 46 38 44 33 46 38 48 67 42 37 38 33 36 49 35 36 45 46 51 49 49 48 56 59 48 50 36 36 24 41 50 38 41 50 45 54 46 41 39 62 45 46 46 44 35 43 37 43 21 26 33 35 19 19 17 28 23 30 27 28 26 24 19 18 18 30 19 22 17 28 12 17 15 26 18 21 22 24 23 23 16 13 15 10 16 17 70025 115892 +156422 63030 13 17 16 25 15 15 24 22 20 19 24 21 20 20 18 17 24 18 28 27 24 19 24 17 21 26 23 27 30 21 24 21 24 26 27 16 22 30 33 41 39 33 43 38 47 58 51 53 34 52 47 44 46 40 54 32 42 32 38 30 47 43 51 48 41 45 49 41 45 42 37 35 41 29 30 23 42 47 37 58 55 44 30 34 39 36 44 42 46 37 43 31 37 25 17 28 46 51 54 58 42 38 49 36 43 44 49 42 31 27 27 27 30 32 5 3 2 3 40 60 64 50 105 121 105 78 70 35 7 5 4 0 2 6 5 2 5 4 3 4 2 4 2 7 7 5 206 16364 16588 204 5 2 4 3 4 2 5 6 6 5 7 3 6 5 5 4 1 4 37 67 81 99 141 91 70 52 69 30 4 4 2 1 21 32 29 35 28 45 30 55 47 46 33 55 54 46 43 59 52 36 44 20 20 25 45 27 30 46 50 33 31 46 38 37 37 46 58 43 38 34 25 35 34 28 42 24 51 34 51 41 48 62 45 51 47 41 33 44 38 46 54 49 45 48 47 45 44 45 52 50 46 48 42 38 42 26 35 40 25 16 24 30 24 24 25 27 29 27 25 30 35 28 25 15 16 11 26 15 11 23 22 11 23 14 28 25 19 21 25 22 15 23 11 12 16 17 63119 156965 +18 14 26 15 18 13 21 20 18 9 19 20 25 25 22 14 20 18 19 21 21 17 27 22 26 10 23 22 30 25 20 27 20 23 30 24 32 30 27 23 47 43 35 56 40 47 39 56 43 39 50 38 42 56 44 53 44 29 48 40 41 36 36 49 50 41 45 43 42 46 47 33 29 44 31 31 23 31 35 40 34 43 57 34 23 47 30 35 47 38 31 45 31 49 31 27 18 36 44 54 44 45 51 37 50 57 24 51 45 53 21 42 31 23 31 25 4 7 2 4 38 71 67 73 114 143 97 69 82 26 6 7 5 4 4 5 7 3 7 4 4 7 6 8 3 3 4 6 56 4218 4212 39 3 3 6 5 7 6 5 7 4 2 5 0 2 4 7 3 8 1 29 59 81 85 127 103 63 69 46 33 4 4 4 6 28 43 32 38 25 27 42 50 44 48 49 38 42 53 46 55 43 38 35 17 20 31 49 32 44 38 33 37 38 25 44 46 40 48 50 40 33 44 29 29 36 33 33 41 33 48 42 42 39 43 59 31 50 36 27 34 28 34 48 46 44 47 28 41 48 50 51 48 42 44 36 35 38 53 47 36 33 24 28 23 32 20 21 33 30 27 22 40 25 20 24 18 16 17 22 21 12 28 19 11 24 19 20 21 22 20 23 22 23 13 13 14 10 14 14 10 +15 14 17 16 16 11 22 18 19 25 20 14 23 15 23 20 28 18 20 17 25 18 22 22 16 27 24 30 30 26 31 36 34 31 23 24 24 22 17 23 46 28 41 34 49 45 60 45 37 49 33 47 37 48 41 47 49 48 37 37 33 43 35 40 38 60 44 38 50 45 44 48 39 28 32 33 25 29 32 40 43 56 62 38 36 36 40 43 43 40 39 36 47 34 20 19 18 28 44 51 48 33 55 41 41 53 43 44 49 37 37 27 38 36 24 21 7 9 4 5 37 72 61 55 95 114 98 78 77 31 5 2 3 5 1 2 2 2 6 1 8 5 5 2 2 8 6 4 0 2 6 6 1 3 4 2 6 8 2 5 3 5 3 5 0 5 3 5 8 2 39 79 76 100 116 114 68 52 77 31 4 3 0 11 16 29 41 28 28 38 44 45 55 44 47 40 44 39 48 47 58 44 47 26 20 29 36 43 38 50 41 50 39 44 31 38 40 56 52 36 49 32 23 29 30 40 38 48 46 47 50 50 59 55 57 46 50 34 40 32 33 42 46 43 37 44 45 47 40 40 54 45 44 40 63 54 47 46 33 34 28 34 18 25 25 24 25 32 28 29 20 31 31 28 16 27 22 18 25 17 24 26 24 19 17 19 25 17 14 25 29 21 19 18 18 18 18 13 15 10 +11 12 17 24 14 15 22 19 22 27 27 29 14 19 27 24 31 19 15 19 18 31 19 25 22 19 24 25 24 25 29 24 26 23 21 25 21 34 29 29 49 38 52 44 47 48 39 52 43 39 49 50 56 41 38 43 50 44 28 35 36 38 32 42 46 43 48 46 50 57 45 47 28 39 38 29 34 29 34 47 37 64 51 25 36 34 47 48 54 46 35 43 49 33 29 28 23 34 39 35 40 46 37 53 48 40 52 43 60 37 37 38 35 38 36 19 11 2 2 3 34 67 67 58 107 121 109 73 66 40 9 2 0 5 2 6 3 6 4 2 2 5 3 6 4 3 6 4 1 7 2 1 5 0 4 5 3 4 1 2 6 7 7 4 4 4 7 0 4 4 28 84 74 106 147 87 71 55 71 32 4 3 8 8 25 37 33 24 23 31 40 50 52 41 43 38 55 48 42 50 54 33 41 14 16 26 37 43 42 47 41 51 38 40 39 33 35 63 53 42 49 39 40 36 33 30 37 39 38 48 49 35 44 47 48 39 51 28 31 39 30 42 51 46 40 53 50 55 36 59 42 50 49 33 46 38 51 33 46 35 36 27 23 28 32 28 28 17 26 28 28 16 30 29 12 19 18 19 21 27 19 30 23 27 18 10 25 24 19 13 16 27 20 21 19 13 15 10 11 14 +20 14 16 12 13 28 24 25 19 22 24 18 18 19 24 26 15 21 23 17 22 17 20 18 20 19 16 24 28 22 25 20 24 32 18 27 20 25 32 26 42 31 36 36 55 43 59 41 47 47 55 43 50 53 50 50 54 46 36 29 34 32 49 57 42 55 40 60 59 40 43 37 36 37 35 30 21 32 28 42 44 62 47 50 37 40 32 31 54 39 49 52 36 39 39 22 31 42 45 44 58 55 52 46 48 44 44 51 49 48 40 32 31 22 33 22 6 3 3 5 19 55 56 65 102 135 109 66 73 38 6 5 1 5 5 4 1 4 2 3 1 4 3 3 0 1 4 3 4 3 4 6 1 4 6 4 2 5 6 3 0 3 3 4 5 7 4 5 3 5 35 73 76 83 133 98 45 60 41 35 2 8 4 3 28 29 30 35 38 39 27 54 55 32 40 51 40 48 46 57 48 41 35 25 21 33 30 37 51 45 51 48 41 37 41 45 37 48 62 41 33 38 35 27 31 38 27 35 36 33 55 45 42 52 46 57 43 38 36 38 25 33 56 42 57 58 45 46 42 44 47 59 54 40 46 36 59 43 32 40 21 22 23 22 25 26 23 20 31 22 23 27 35 22 18 25 28 18 28 18 24 23 21 14 26 28 23 26 21 19 14 27 19 17 14 23 15 19 20 14 +10 13 11 15 19 18 19 26 24 22 24 22 18 17 16 15 23 28 13 15 17 19 11 14 26 28 21 24 29 19 27 28 29 24 30 25 28 25 30 39 41 32 56 49 57 50 37 52 33 44 48 42 56 38 36 48 57 31 46 32 34 33 35 49 60 41 39 44 46 40 40 31 35 45 36 27 35 33 39 40 43 57 51 33 41 38 38 38 41 40 46 26 36 33 22 13 28 37 28 54 38 49 49 36 42 42 35 52 57 46 29 37 30 25 41 19 6 3 4 4 36 57 75 54 96 112 100 91 68 41 4 4 3 3 3 4 3 5 6 4 6 4 5 2 2 1 3 6 1 4 6 2 7 6 3 2 4 4 5 3 3 8 6 4 2 3 2 2 4 8 40 81 94 92 117 96 66 64 57 31 4 3 2 10 15 30 36 44 35 34 43 48 50 39 41 33 62 50 51 44 50 34 28 24 20 25 40 33 25 44 39 40 42 37 46 36 42 44 55 48 39 33 30 28 44 45 34 39 41 60 38 54 48 58 43 52 38 37 32 42 35 42 51 54 51 57 49 59 38 55 52 52 40 40 49 45 40 56 46 31 24 34 24 31 23 22 28 18 25 37 26 32 37 22 21 14 17 10 14 24 25 16 26 24 16 19 33 12 21 23 23 15 20 21 13 12 9 14 19 8 +16 18 10 14 12 14 27 16 21 20 27 11 30 19 20 19 31 13 22 11 16 31 17 18 29 21 26 32 31 28 34 25 22 29 33 26 26 32 20 31 46 34 36 43 54 51 53 48 46 49 41 41 42 39 49 53 57 44 49 41 30 32 36 47 47 52 50 49 43 42 53 41 34 27 45 29 39 28 46 36 45 60 56 52 39 34 36 44 50 44 38 51 35 41 33 19 14 35 37 40 46 56 35 54 38 41 43 52 69 46 27 41 28 20 35 25 8 4 3 5 24 56 58 52 68 114 120 71 78 56 9 8 6 7 2 3 2 4 5 1 5 4 2 3 6 5 6 2 5 4 7 3 2 6 6 8 3 4 3 3 6 2 5 3 6 2 6 5 2 9 50 65 76 101 113 95 51 58 71 17 6 7 1 11 24 36 27 43 31 32 39 50 55 29 26 61 43 37 54 51 45 33 43 12 14 25 40 41 42 40 50 46 32 37 43 39 36 54 60 51 40 44 34 36 31 42 39 50 41 53 40 42 46 56 45 45 50 44 47 24 31 45 36 43 46 54 50 49 50 39 30 50 35 47 40 45 39 31 32 54 34 26 20 25 28 26 23 29 25 27 39 29 20 29 20 15 20 19 29 25 20 18 15 26 18 24 19 28 22 12 14 16 26 20 11 17 22 12 14 11 +11 23 17 17 24 20 27 17 23 27 13 23 28 25 18 12 24 13 17 26 20 21 25 20 16 21 21 31 23 27 24 29 21 20 18 29 31 23 24 31 29 48 33 51 48 43 52 53 51 48 33 43 37 46 46 49 30 36 36 37 34 47 37 50 59 44 45 31 43 40 46 48 35 37 27 41 16 30 33 38 41 53 49 43 43 31 27 31 38 35 53 48 50 41 25 16 20 31 49 56 41 46 53 41 47 39 43 45 58 44 30 23 31 36 34 19 12 1 1 2 29 61 77 52 58 118 106 66 58 51 13 6 3 1 5 7 4 5 1 6 5 4 5 6 7 6 2 3 4 3 2 7 3 4 5 2 1 6 3 3 4 4 4 0 5 3 4 2 4 16 47 69 76 102 129 76 70 69 53 23 9 9 2 9 26 31 38 40 22 36 54 57 55 45 36 36 54 35 39 46 45 51 42 25 15 33 41 44 36 46 45 35 46 44 31 41 46 59 57 46 57 27 31 37 28 48 47 39 39 38 60 49 52 49 43 38 59 39 38 38 32 47 38 45 49 58 53 38 50 56 39 46 43 43 39 50 36 41 42 30 24 25 30 20 27 27 28 26 27 27 26 30 26 28 22 20 28 21 24 22 16 17 16 29 22 26 31 23 22 34 22 25 19 17 25 18 7 11 15 14 +14 12 17 12 23 21 25 14 26 27 23 24 20 19 29 20 13 18 16 17 20 26 19 22 28 26 24 24 22 25 12 20 30 20 28 24 26 36 26 24 34 44 36 44 52 43 42 47 52 46 48 42 48 60 33 34 34 57 43 35 47 34 35 45 48 55 34 51 47 48 28 45 37 33 32 36 30 12 29 51 41 52 35 57 39 43 50 34 50 48 37 41 50 32 34 27 17 39 35 35 55 45 46 41 51 45 42 49 45 33 28 32 35 36 34 28 9 3 4 6 14 58 63 56 78 135 122 79 64 59 15 1 3 4 5 3 2 2 4 3 5 3 4 5 4 3 3 7 9 3 4 4 6 1 3 4 1 5 5 4 4 7 9 0 4 2 2 7 2 9 57 74 93 94 106 79 65 69 47 32 5 4 5 9 20 34 33 35 23 42 44 53 40 46 41 51 50 38 50 45 43 47 32 24 16 25 34 42 40 42 45 44 31 33 43 32 31 49 66 52 45 39 29 36 29 21 41 34 25 29 47 45 49 55 41 40 56 44 34 30 36 45 41 42 44 50 30 44 50 43 49 48 46 38 58 49 51 45 33 42 21 27 24 25 23 23 29 33 30 31 20 25 28 23 16 23 20 18 26 24 21 20 25 21 24 19 15 17 28 19 18 19 18 23 23 17 19 15 11 13 +12 11 16 15 28 22 19 14 24 21 19 22 17 13 14 17 28 21 19 20 16 19 17 21 31 14 32 30 29 20 20 29 23 30 24 19 25 27 21 30 35 31 45 39 45 50 46 53 35 47 42 42 40 49 55 49 42 43 39 36 29 34 35 59 47 50 39 44 53 57 44 41 35 47 24 41 35 35 39 51 46 55 59 36 41 20 37 48 44 50 46 44 43 38 25 16 22 34 32 53 54 41 56 50 58 32 38 53 54 53 39 34 33 30 29 26 9 4 6 5 22 57 63 58 80 115 115 79 73 41 21 5 6 6 2 2 4 8 5 5 4 5 7 4 4 5 4 2 4 1 4 7 4 4 4 7 4 4 5 1 3 5 6 4 5 2 1 7 4 18 71 76 81 110 101 58 53 59 59 19 4 3 9 11 32 33 34 40 34 36 35 64 55 43 49 30 49 40 37 50 43 27 36 25 27 30 31 29 44 29 45 40 49 37 32 31 46 51 58 50 35 33 42 37 32 45 37 39 41 45 32 66 35 37 43 43 47 43 35 46 32 36 62 42 55 45 43 35 49 45 46 45 47 43 56 55 46 35 32 43 27 30 26 12 29 27 23 25 20 32 22 28 30 21 18 18 21 23 25 18 22 23 13 33 17 16 22 15 23 18 21 19 22 18 22 16 12 21 14 15 +16 22 29 24 25 25 25 14 20 26 29 13 20 24 17 18 19 22 16 17 26 20 24 23 14 21 22 24 24 16 21 17 17 30 26 26 24 33 24 24 41 34 38 44 50 48 44 37 42 47 51 48 50 59 47 52 49 49 41 33 48 44 38 38 57 44 38 40 35 49 54 44 41 39 44 36 27 29 43 35 55 56 56 41 44 41 43 36 41 48 37 48 39 30 29 22 14 41 44 50 66 51 54 39 44 45 44 46 46 42 34 34 35 34 35 31 9 5 6 6 16 57 66 61 63 108 110 90 84 64 25 7 6 3 8 5 3 3 4 2 2 3 2 5 2 5 7 3 3 5 9 5 3 4 2 7 6 3 9 7 4 7 4 3 5 4 5 5 7 26 60 90 75 118 107 71 63 59 49 16 4 3 3 7 44 29 26 37 33 34 58 64 33 38 45 46 47 36 46 44 45 32 33 13 28 19 37 48 36 33 34 45 33 29 36 38 29 51 52 50 44 38 38 35 34 30 43 32 37 44 53 55 45 51 47 47 48 39 28 50 41 38 27 44 50 36 44 36 44 41 45 51 44 48 51 34 34 36 48 28 35 32 30 24 35 24 30 27 21 16 18 33 26 34 19 19 24 18 26 22 11 23 18 20 20 21 17 23 20 21 21 24 26 15 22 26 18 23 16 12 +11 17 17 19 10 17 31 13 25 15 23 12 17 19 26 20 18 24 26 29 19 25 21 27 10 19 27 27 20 19 21 37 22 24 16 23 32 23 23 40 40 35 37 50 59 39 50 49 54 37 51 55 51 35 56 45 36 27 40 38 26 31 32 49 49 51 52 40 38 38 40 37 35 52 47 29 41 22 48 43 47 59 64 43 37 36 39 45 32 32 41 42 41 46 30 15 21 32 37 52 48 51 49 47 46 54 27 42 48 46 32 31 35 31 31 22 14 2 2 3 7 48 65 67 58 114 115 96 71 64 24 1 9 2 7 3 3 3 4 2 1 3 4 4 2 6 3 5 3 6 3 3 3 4 4 5 4 3 2 3 6 4 5 5 6 4 6 4 5 41 54 89 79 108 105 70 60 62 54 20 4 3 6 9 24 34 37 31 40 36 38 49 48 35 49 41 43 39 47 47 44 37 36 23 19 30 37 42 45 47 43 40 47 34 36 43 46 63 45 40 37 37 34 25 26 35 40 28 40 47 42 46 41 40 38 50 53 33 35 33 32 39 54 42 60 45 48 59 45 39 41 48 55 40 43 53 45 36 32 32 31 19 35 30 24 30 28 25 20 27 23 21 39 35 19 18 17 17 20 23 17 13 14 21 25 26 21 21 20 22 21 28 16 25 19 20 21 22 21 15 +26 19 20 20 17 22 14 22 17 19 20 14 16 25 33 23 19 20 22 22 23 20 22 21 19 19 36 31 16 21 30 25 17 20 35 20 25 20 27 25 30 32 43 40 36 42 51 50 46 33 55 52 52 47 36 52 54 41 38 34 33 29 45 47 32 49 49 47 55 56 33 40 43 43 42 30 31 26 35 53 43 48 62 37 40 34 35 38 36 38 52 36 38 32 27 34 14 28 41 45 58 48 43 38 49 45 36 34 48 44 36 23 33 29 32 25 13 3 2 2 13 44 57 61 64 97 125 74 81 71 35 6 5 4 3 0 4 2 5 5 1 0 3 7 2 9 3 3 3 4 0 3 5 1 2 3 5 3 5 4 3 2 3 6 4 3 6 6 5 35 93 83 102 133 94 73 71 66 47 8 4 4 9 15 41 34 29 24 39 31 46 52 45 43 28 39 41 51 51 44 39 40 36 13 22 26 35 41 39 39 37 44 43 46 32 33 34 66 56 47 38 34 31 32 41 33 30 30 25 37 42 46 43 39 45 52 69 60 39 32 39 37 46 57 39 43 47 48 51 46 49 46 59 42 41 48 41 49 43 36 27 28 28 30 35 26 26 27 33 21 15 40 21 19 20 20 18 19 15 16 24 24 19 17 23 16 21 21 27 20 18 23 19 26 18 19 23 18 17 19 +14 19 22 20 21 25 18 20 19 21 18 19 19 19 13 17 31 17 15 13 14 18 21 18 17 26 21 22 25 24 34 20 25 23 27 28 26 17 31 30 33 44 37 49 46 50 54 42 48 48 43 43 47 41 34 35 44 52 50 39 41 30 34 53 40 40 60 48 43 37 47 38 28 34 44 33 29 30 30 32 56 57 51 51 40 29 34 41 39 41 46 35 44 39 25 33 21 41 44 47 63 49 47 43 36 43 49 43 62 62 38 28 36 38 20 17 13 7 3 7 5 34 75 66 66 104 118 120 74 80 42 6 1 4 6 4 5 5 4 2 7 1 8 4 5 5 2 2 3 7 5 6 2 3 4 6 5 4 4 5 4 3 3 2 3 5 3 4 6 49 82 74 85 114 109 69 59 67 39 8 7 4 1 18 35 32 27 34 26 44 48 69 46 55 42 44 39 36 38 54 54 33 36 24 22 24 39 37 44 51 44 42 35 46 39 28 31 64 59 32 38 38 34 31 37 39 39 40 33 36 51 45 51 34 57 43 46 45 28 29 37 34 43 38 39 48 53 46 44 37 50 49 47 43 41 30 36 60 37 35 25 18 29 14 30 27 18 19 23 25 23 32 38 25 18 17 25 25 13 24 20 27 13 12 19 29 20 22 22 26 18 22 14 18 22 27 21 18 19 21 +17 26 21 19 19 15 19 26 35 22 15 24 13 21 24 10 19 21 23 19 18 25 16 30 18 25 35 38 36 25 25 30 22 29 20 30 31 24 19 29 38 39 32 51 30 41 44 38 45 42 47 44 54 43 39 46 45 45 33 30 34 38 36 47 53 50 40 47 47 45 40 38 38 43 39 33 19 38 36 43 37 67 50 39 27 24 30 37 48 47 39 33 51 38 28 26 25 40 36 36 54 47 38 43 31 25 43 39 65 53 43 36 18 34 38 31 18 5 3 6 7 42 79 62 48 92 144 113 92 67 56 12 6 5 2 9 4 5 7 6 7 6 5 1 4 2 2 4 3 3 3 8 2 3 4 5 4 9 3 3 4 3 6 1 6 3 5 4 13 52 74 58 93 126 100 60 64 43 36 13 10 3 8 17 36 33 38 32 38 37 53 55 40 40 40 46 46 54 45 49 49 40 31 19 29 40 35 34 32 32 36 49 44 37 24 36 24 51 36 49 36 43 21 26 41 34 35 34 45 45 35 48 61 50 48 51 58 31 39 33 37 44 42 35 42 42 43 53 49 37 50 41 36 42 54 39 56 40 44 33 40 26 19 20 35 28 21 27 25 36 17 16 22 27 28 20 17 29 18 21 23 14 17 10 12 28 21 19 16 24 16 22 16 20 18 21 15 13 17 25 +14 21 25 15 26 22 21 18 26 21 21 27 14 19 18 22 20 17 28 9 24 24 24 16 16 26 33 32 23 28 25 24 27 33 23 23 32 34 26 33 30 42 34 53 48 34 45 50 43 38 53 42 51 42 47 42 54 49 41 33 43 24 32 48 56 51 49 40 35 41 48 38 37 33 40 33 27 40 33 51 46 60 53 49 43 32 54 35 32 41 39 47 41 39 42 26 24 29 42 50 68 45 52 45 37 34 46 46 62 45 33 31 23 30 26 25 17 3 3 7 6 22 61 63 49 101 124 89 66 84 73 13 7 0 2 6 1 3 5 4 2 7 6 1 3 3 5 5 3 3 8 5 5 3 2 5 5 2 3 0 2 1 3 4 7 6 5 1 16 58 78 90 99 119 75 69 51 56 34 6 1 4 4 17 30 30 26 26 26 51 49 51 46 39 41 45 54 46 38 66 40 35 29 17 31 28 34 32 46 33 39 32 35 37 27 33 37 53 57 44 36 38 27 40 33 32 35 31 41 40 37 49 45 45 38 53 58 32 41 31 37 37 45 47 33 42 48 38 42 33 42 63 39 53 43 44 45 33 56 33 37 33 26 27 33 21 36 33 24 34 27 25 28 23 19 12 17 16 19 20 24 20 9 23 18 23 17 15 19 16 24 17 16 16 28 19 20 21 28 24 +18 13 32 24 24 24 24 19 8 17 17 22 23 30 25 13 23 13 23 26 14 29 20 19 21 22 37 24 17 22 23 21 28 28 31 27 24 29 20 34 33 32 42 43 54 49 38 40 32 39 49 42 39 53 49 39 43 42 34 39 24 39 37 51 43 46 53 39 50 38 47 42 29 39 32 32 26 41 46 41 46 42 45 34 47 41 36 34 33 47 39 42 43 30 36 21 26 24 40 49 62 43 47 46 36 40 42 46 43 59 44 33 34 29 40 19 18 5 2 3 4 28 61 71 49 88 131 118 82 83 75 35 4 3 1 4 3 5 5 3 0 1 4 4 4 5 6 5 6 5 3 2 4 1 4 5 2 3 4 1 7 4 3 3 2 4 7 10 22 64 92 78 106 103 79 60 77 62 22 5 2 1 7 15 21 28 23 32 28 53 46 47 43 49 51 51 41 36 56 42 41 32 33 19 22 29 34 56 40 45 38 46 37 39 42 32 33 51 64 48 43 28 31 26 34 31 40 42 26 33 44 57 54 44 53 53 61 36 40 42 44 33 53 47 57 50 34 42 46 29 41 37 38 49 27 45 54 45 36 44 36 25 35 23 20 40 31 36 31 31 33 25 23 24 20 29 21 21 15 17 18 20 16 22 20 21 14 21 23 19 19 15 21 23 19 28 29 26 19 23 +30 31 19 22 24 28 16 25 26 21 17 24 21 31 17 26 15 12 15 16 25 9 11 15 22 24 28 24 24 31 31 29 27 26 25 20 27 27 26 34 46 39 51 46 52 45 40 52 49 44 42 43 50 43 39 47 46 38 30 24 37 39 43 49 57 40 53 48 45 50 37 40 40 42 28 20 31 32 44 41 37 62 38 35 46 34 29 28 48 42 53 35 30 54 43 26 17 29 31 38 59 49 46 54 54 50 58 43 47 44 36 34 34 26 27 30 22 10 5 5 7 18 46 56 64 67 101 92 88 72 83 27 10 2 3 5 3 2 2 2 4 6 3 6 2 3 2 4 6 6 3 2 10 0 2 5 4 4 1 2 5 0 4 6 3 9 4 15 32 65 80 73 134 131 46 67 55 66 28 7 2 6 5 17 23 33 26 26 17 44 51 38 40 39 49 43 46 53 48 62 41 34 34 17 34 28 35 44 35 44 30 46 35 35 27 49 34 45 39 39 40 43 33 33 30 45 47 38 45 41 45 48 44 33 63 37 47 41 35 21 50 36 37 42 51 42 45 48 45 43 38 44 41 45 44 55 41 47 41 39 26 26 20 26 27 36 29 29 26 26 34 34 19 17 33 14 25 13 15 24 28 19 18 22 19 17 25 30 27 25 18 21 17 16 17 28 12 25 11 21 +23 14 26 22 28 21 27 19 20 22 30 26 23 24 19 19 20 27 19 14 28 24 22 20 22 30 20 22 19 19 36 24 29 22 16 29 21 23 24 28 42 33 43 55 41 53 42 45 42 37 50 44 43 45 35 61 42 52 44 30 47 35 44 54 51 47 38 44 50 33 46 42 40 25 39 27 33 33 39 51 51 53 54 37 46 25 27 35 43 39 35 39 52 38 25 28 28 29 51 43 47 50 49 41 50 48 33 52 39 49 42 32 33 37 41 31 25 11 7 4 3 23 50 67 64 72 103 132 92 96 87 61 15 4 3 4 6 3 3 8 2 4 5 3 3 4 3 2 4 2 2 3 7 3 4 4 3 4 9 4 4 4 3 3 6 5 2 9 43 71 71 90 125 114 60 71 56 50 16 4 7 4 11 25 28 38 32 20 24 41 44 50 45 32 43 43 52 53 44 52 43 31 24 17 19 30 54 45 42 46 45 45 39 33 42 39 37 47 44 38 38 40 21 33 34 27 48 42 37 35 36 49 49 52 35 49 49 37 36 29 42 30 48 39 46 43 46 33 37 48 37 41 47 44 48 53 39 57 43 42 32 28 22 18 23 19 38 16 30 30 27 29 20 21 26 18 15 20 33 14 17 16 25 20 20 24 18 26 25 18 18 24 18 13 22 16 19 25 16 13 +15 25 18 22 16 19 19 26 21 15 14 10 20 20 15 20 17 15 21 20 21 17 25 19 27 33 16 31 25 21 28 37 18 30 20 26 21 22 25 37 38 46 46 44 32 40 30 41 52 51 43 45 43 43 41 45 46 50 33 36 40 34 30 50 44 39 36 39 63 48 48 39 35 38 26 39 24 25 34 36 44 55 51 40 31 32 47 41 48 37 49 40 44 36 43 27 13 19 35 60 56 58 41 47 42 33 40 42 43 61 42 40 32 28 43 35 14 10 5 4 3 14 55 64 45 56 97 145 88 93 76 47 14 4 4 3 2 3 1 5 9 4 4 5 5 7 7 3 3 6 3 2 4 0 2 6 2 2 7 6 6 1 4 4 4 7 0 22 55 72 79 97 151 78 56 61 61 36 14 6 3 2 13 29 33 25 36 30 30 57 59 44 34 36 43 41 39 40 47 46 36 43 26 17 30 31 33 40 42 45 35 35 37 29 44 38 55 64 57 37 42 37 35 27 27 46 30 43 26 33 48 43 46 49 36 46 52 41 48 36 37 29 41 42 40 33 49 45 42 46 38 46 44 49 40 37 51 29 45 38 35 34 19 24 16 25 31 27 23 33 26 26 25 34 16 17 23 17 18 26 11 18 22 20 22 20 13 22 25 25 18 19 28 22 20 24 16 19 22 23 +19 14 30 11 17 19 29 23 18 14 15 19 30 26 25 16 16 21 19 14 31 18 20 20 37 29 24 20 33 26 33 27 34 23 31 26 29 26 27 42 34 50 61 39 29 43 39 46 33 44 42 72 29 35 43 47 39 43 29 32 36 38 42 61 42 38 44 50 49 28 45 34 38 28 33 34 34 22 37 30 52 61 59 41 33 27 47 31 52 29 43 43 38 40 38 28 23 28 31 44 45 48 46 45 54 30 41 46 40 45 43 23 44 31 29 28 22 14 5 4 3 7 44 71 67 62 83 120 96 93 75 65 30 10 5 3 3 2 1 2 3 5 3 5 4 7 5 4 3 5 4 2 4 3 4 5 6 4 5 4 7 3 6 2 3 3 5 33 53 68 76 99 107 80 64 63 50 35 6 2 2 3 10 16 34 24 36 35 28 43 59 45 34 54 42 43 49 47 55 41 36 44 27 14 31 26 39 45 41 37 41 39 30 38 32 32 30 54 51 61 55 39 23 31 20 47 41 27 43 46 32 55 43 49 46 49 48 43 45 37 36 35 33 34 36 44 54 44 50 56 37 55 43 45 41 37 30 55 32 36 25 25 19 26 32 18 23 34 22 19 19 27 33 21 23 32 25 19 23 20 18 12 29 20 13 18 20 13 25 21 20 11 19 21 24 14 17 16 24 26 +32 20 18 27 17 24 20 16 20 22 22 16 27 22 20 27 22 14 15 25 26 18 21 20 26 13 27 28 21 29 14 28 33 27 26 19 27 28 29 47 39 47 49 41 43 40 44 41 37 62 40 42 32 59 38 53 42 34 37 33 40 36 28 35 61 61 49 58 58 52 40 30 27 44 29 48 36 20 34 27 40 50 52 34 43 41 27 36 35 47 35 45 50 42 33 30 20 24 31 41 49 48 40 36 35 40 37 31 49 49 38 39 32 36 28 29 35 17 4 1 4 11 29 49 58 54 76 112 106 89 85 65 37 13 4 4 8 7 2 8 2 1 2 3 3 3 4 4 8 6 6 3 1 4 5 5 4 6 6 1 4 3 6 4 3 3 17 45 72 79 88 109 123 84 57 65 59 33 7 4 5 5 18 26 27 30 35 26 25 48 54 51 53 45 41 36 44 45 53 49 47 36 31 15 20 25 38 34 37 36 41 38 37 33 33 42 33 45 48 51 28 28 26 34 36 53 46 26 32 53 34 53 36 41 51 47 47 48 24 32 36 33 48 40 36 57 56 49 28 33 35 39 39 37 48 41 52 44 51 42 44 27 16 18 27 17 27 30 19 14 26 29 34 27 24 30 21 19 15 15 14 24 25 18 17 21 17 18 18 18 26 23 17 25 17 22 18 27 20 25 +26 17 17 14 22 21 16 25 20 14 13 18 22 25 23 21 26 15 22 18 28 21 23 13 22 37 21 18 28 24 25 27 30 27 15 24 19 17 31 29 34 39 58 38 40 48 41 55 43 45 40 54 49 41 41 53 42 45 29 37 38 41 46 49 47 49 64 48 54 41 53 41 36 39 39 39 32 27 22 38 56 61 58 39 32 54 33 39 37 46 34 34 44 49 33 25 18 25 48 37 48 65 49 39 30 33 49 36 50 62 45 34 27 31 36 34 31 20 3 2 5 6 35 56 74 69 65 122 127 95 75 82 60 17 2 2 1 7 5 0 5 3 2 0 3 3 4 2 10 3 2 6 3 5 3 5 4 5 4 5 4 3 5 4 8 8 17 58 72 76 100 114 110 72 72 61 60 25 6 4 6 6 16 28 24 32 32 25 35 45 53 46 32 46 46 48 40 36 46 30 28 42 26 17 22 41 41 47 48 43 47 51 43 38 39 41 42 51 60 36 38 33 33 28 37 35 39 33 48 34 52 38 45 46 49 46 45 47 37 34 35 39 46 48 36 49 42 41 56 40 45 45 41 44 43 42 57 49 49 32 39 22 33 32 23 23 23 23 26 34 21 37 28 24 19 20 17 15 17 17 15 13 27 24 20 24 25 15 29 17 15 17 19 19 11 29 9 19 11 20 +23 27 19 19 21 22 24 22 23 17 15 26 16 14 23 17 28 15 20 21 17 27 17 23 29 23 18 21 39 15 23 30 22 25 24 23 23 29 31 39 33 25 47 37 43 42 38 37 40 38 40 39 53 57 44 42 37 34 38 41 37 49 47 47 40 51 48 46 32 33 38 45 48 49 33 32 29 30 32 37 45 49 45 38 45 36 41 39 39 43 39 33 41 44 30 26 20 26 37 35 54 48 36 46 43 47 38 37 52 49 56 36 34 34 26 28 22 20 7 4 4 6 13 43 49 53 59 99 123 101 80 66 65 31 12 3 4 5 3 0 4 5 7 2 3 6 5 3 5 4 7 5 2 1 5 5 4 1 4 3 5 4 1 4 3 12 27 70 82 75 96 149 113 54 56 63 61 19 2 6 5 9 23 24 19 33 30 38 34 42 45 42 46 38 48 38 45 43 40 47 41 35 31 10 30 32 32 47 45 43 33 48 30 40 31 39 50 52 49 46 37 41 28 32 28 34 45 38 55 49 43 43 50 45 36 57 39 46 36 36 37 46 34 52 57 43 38 44 49 47 47 40 56 46 44 41 41 45 48 45 35 25 26 26 32 29 36 27 21 29 25 35 29 25 25 26 17 19 10 21 22 17 16 19 17 18 15 21 15 18 24 17 21 19 18 15 16 18 18 19 +14 25 19 21 19 22 21 16 22 20 13 29 15 19 22 20 20 19 25 21 19 17 20 25 21 31 22 21 27 27 36 23 27 30 20 21 28 34 26 32 34 38 40 45 45 52 52 52 44 39 34 48 57 47 43 39 56 53 33 39 38 30 48 54 49 38 40 40 41 36 30 48 32 39 37 37 27 28 34 30 45 50 41 42 31 34 24 35 43 51 46 31 46 38 32 26 24 26 31 28 36 58 40 50 46 40 34 32 42 55 48 32 35 34 21 28 26 23 8 6 2 7 12 43 68 62 49 70 125 93 83 64 80 47 10 9 4 5 7 4 4 3 2 6 2 2 3 9 5 3 3 6 2 5 5 1 3 4 3 4 3 8 7 5 2 9 52 50 64 105 113 128 91 63 55 59 44 13 3 3 6 10 26 29 32 33 31 33 39 51 58 49 48 43 34 46 41 37 54 43 43 36 25 22 24 34 44 33 43 39 37 40 35 35 44 37 41 48 53 45 44 42 30 34 34 30 36 36 40 36 50 42 43 32 37 39 60 53 42 39 32 41 40 42 53 46 51 50 42 44 35 40 42 50 40 43 43 44 42 40 33 36 23 29 19 31 31 32 25 25 25 20 22 22 32 32 20 15 13 15 19 13 26 38 18 21 24 20 17 22 15 14 14 17 19 13 19 21 19 12 +19 22 16 24 14 23 20 24 18 19 20 6 24 21 26 21 18 23 27 20 17 25 21 16 18 27 33 32 20 34 25 20 24 27 25 21 30 25 27 32 37 45 45 42 45 44 43 57 51 42 48 58 49 61 59 51 43 43 35 30 37 34 48 40 50 48 45 51 42 39 45 25 39 34 44 28 30 36 28 38 43 47 62 33 28 33 38 37 41 47 37 38 36 42 31 31 21 18 32 40 33 57 44 36 37 47 39 34 53 39 56 52 20 27 36 33 34 25 10 5 3 3 8 43 46 66 54 65 110 120 87 74 67 56 28 12 6 7 6 4 2 3 5 5 4 1 5 6 2 4 3 4 2 2 4 4 3 4 3 1 9 6 7 3 4 29 57 67 76 82 114 119 92 59 57 62 33 7 5 1 1 10 26 34 26 27 28 35 36 55 54 49 55 50 33 35 41 42 43 44 31 25 22 23 19 40 40 45 35 43 36 25 33 25 40 27 47 50 53 38 36 38 22 31 21 23 40 35 38 43 44 44 41 45 51 51 54 47 35 31 31 42 34 40 42 44 37 44 46 36 58 45 49 53 50 48 52 30 41 51 38 28 27 21 20 18 31 20 38 18 34 28 30 22 23 20 27 17 17 21 26 22 25 21 18 13 24 25 18 21 22 14 19 17 15 27 23 28 16 28 +29 16 30 16 20 14 27 19 15 25 19 18 28 18 16 21 22 17 15 19 21 16 19 19 23 25 23 27 14 15 32 17 21 23 17 25 12 26 32 40 34 41 32 42 53 37 44 40 54 46 46 46 46 40 40 50 48 42 45 23 33 40 45 54 54 53 60 42 40 60 63 36 20 41 42 29 33 33 50 38 37 43 48 47 38 42 43 35 35 44 41 34 36 40 43 27 23 16 43 34 33 48 41 37 41 55 49 28 37 50 57 28 29 33 32 37 29 20 7 0 3 4 5 30 40 69 66 55 98 98 106 94 81 67 35 16 3 3 3 3 3 4 2 2 6 0 6 4 4 3 6 4 6 5 6 2 5 5 3 1 1 5 4 3 13 36 66 49 70 100 118 112 68 59 62 68 26 8 4 4 1 10 27 33 26 24 30 34 33 67 48 44 42 45 37 42 39 39 54 51 44 33 23 26 35 33 38 43 37 41 41 37 39 41 35 40 37 46 61 43 44 24 24 26 35 34 37 34 30 36 41 54 41 35 40 59 41 39 29 37 26 30 37 43 51 39 56 63 38 58 35 40 41 41 51 42 51 39 39 35 30 39 29 28 21 23 32 21 21 29 29 25 31 34 23 30 31 30 26 20 13 14 26 21 18 19 16 21 22 18 20 10 20 17 24 24 20 18 20 26 +11 15 19 22 15 18 18 22 21 22 18 17 24 21 19 11 15 15 14 18 21 21 27 29 18 25 11 22 22 25 29 22 16 30 19 20 16 28 30 38 34 37 48 42 54 44 39 40 38 42 30 55 43 26 46 44 44 51 32 34 34 38 46 45 42 41 41 48 55 48 34 34 32 40 44 42 26 20 41 51 48 34 46 41 24 43 31 35 34 40 47 50 45 43 29 29 17 23 31 36 34 46 53 43 33 40 34 41 45 50 50 38 35 32 34 31 26 21 10 2 2 3 5 28 50 69 44 58 88 110 115 81 77 63 50 32 11 4 3 3 6 3 5 2 6 5 7 2 3 4 3 2 3 9 3 7 6 5 2 6 5 4 2 11 27 58 59 76 73 109 127 112 53 61 65 60 27 7 4 2 8 19 28 28 25 31 29 36 36 51 42 47 42 33 31 40 41 44 60 36 49 31 23 9 26 34 34 50 27 36 38 43 37 30 44 37 28 53 49 34 47 43 23 36 31 38 35 42 42 40 48 37 45 37 52 57 55 31 33 43 33 31 37 39 53 55 51 36 42 41 48 45 48 40 41 54 50 44 47 38 35 37 31 21 24 23 33 38 19 22 23 22 32 27 27 28 30 17 22 23 13 16 17 18 24 21 15 15 22 27 22 27 23 19 12 19 25 12 21 23 +24 15 21 20 18 16 17 17 17 22 22 25 22 22 23 20 17 14 19 20 21 18 21 22 29 27 26 25 19 25 24 19 29 22 23 26 16 23 41 40 27 42 37 43 46 45 42 45 47 40 45 37 53 39 63 35 42 34 41 37 26 39 41 52 55 43 54 37 41 51 45 35 43 40 35 30 27 23 25 40 53 51 45 42 35 27 30 37 44 21 51 45 43 34 32 32 29 16 37 40 59 45 42 47 43 38 48 29 45 46 45 35 30 33 29 31 37 32 18 5 2 3 5 11 42 59 61 71 59 106 111 92 81 67 65 35 16 3 1 6 2 4 5 4 2 2 4 5 5 3 2 8 3 3 5 2 2 3 0 3 6 3 3 12 31 79 85 73 84 112 117 65 67 60 47 56 12 6 4 3 5 17 24 22 35 33 33 34 45 47 43 38 52 53 45 45 33 41 55 33 33 32 19 22 25 26 48 39 39 32 34 37 29 36 29 35 41 68 41 51 43 32 28 32 28 36 41 36 38 46 37 50 35 49 33 48 40 41 42 39 36 48 31 37 45 48 39 46 51 37 49 47 49 33 43 47 44 35 38 35 38 31 26 19 18 31 24 31 30 24 19 31 22 22 23 24 17 35 29 20 23 13 18 24 21 28 21 15 21 17 26 33 21 22 19 27 27 15 14 18 +22 14 18 23 14 19 18 15 15 18 18 20 18 20 22 23 19 21 21 20 19 32 19 18 21 25 24 27 28 24 20 30 22 23 24 33 18 25 34 51 42 45 46 46 46 39 43 42 53 51 41 50 44 44 36 40 40 29 28 42 39 29 46 43 47 49 41 41 46 34 45 39 47 32 48 31 27 28 32 36 41 52 54 49 25 27 34 38 40 38 42 32 42 35 36 27 24 18 31 35 48 41 53 33 39 45 40 46 35 46 52 49 26 23 32 44 29 30 20 5 3 0 3 11 35 48 48 55 60 108 112 87 84 75 71 45 26 3 1 3 5 3 7 3 7 5 4 1 5 2 3 6 6 6 3 3 0 5 3 2 6 0 6 26 53 57 77 67 89 108 80 62 69 49 64 27 11 5 6 2 5 24 32 31 34 46 31 33 43 54 27 32 40 39 40 45 38 48 49 50 39 29 18 14 27 41 35 32 42 41 44 40 28 31 27 36 41 47 43 36 41 36 19 28 34 41 29 33 38 42 44 39 60 52 46 47 44 50 29 31 27 27 40 47 42 43 37 40 47 35 32 46 42 37 41 36 43 40 43 31 38 42 26 26 30 26 21 22 24 25 35 32 25 36 25 19 21 29 23 19 25 28 19 24 22 20 16 12 13 21 24 26 13 13 17 16 16 14 22 13 +32 11 20 18 14 21 16 20 11 21 24 19 22 16 18 17 22 20 25 24 19 21 24 22 20 18 25 17 24 22 28 26 24 35 17 27 24 41 44 43 42 42 48 42 46 37 39 53 35 39 42 37 55 54 51 49 39 33 36 48 39 27 53 49 43 46 54 39 34 37 42 37 37 27 32 33 27 37 29 41 29 48 48 38 39 30 46 39 38 40 54 44 44 39 41 23 18 20 34 39 38 48 30 43 37 45 48 35 41 46 56 45 32 28 32 31 35 29 20 8 3 3 3 6 26 51 63 56 52 88 125 114 92 88 77 60 43 15 4 9 3 7 11 5 5 6 3 1 2 2 4 0 5 3 3 5 4 3 6 4 3 9 26 51 64 71 68 84 111 122 90 54 52 51 54 26 6 5 8 8 6 21 34 35 27 31 25 38 45 39 40 46 38 51 42 42 47 36 54 28 46 35 19 21 27 36 31 40 46 48 30 37 27 28 27 33 38 52 49 51 40 26 39 34 29 41 37 40 43 45 39 50 41 43 40 54 47 43 34 40 36 27 34 41 58 45 46 39 43 53 43 36 32 51 29 35 49 42 47 42 24 33 33 27 22 25 16 28 25 35 22 29 31 20 30 21 23 21 23 20 20 20 9 21 22 13 17 22 28 25 23 15 21 15 22 19 13 30 14 27 +18 25 15 18 15 21 20 16 14 11 19 19 20 18 25 19 18 16 23 16 15 19 23 28 30 28 23 22 24 18 29 22 22 23 23 26 30 25 46 49 29 36 42 44 54 41 49 47 27 55 44 43 38 39 56 40 45 44 24 31 41 31 46 40 57 49 50 41 44 39 38 34 49 40 37 32 21 18 33 36 41 48 49 50 34 32 35 34 35 37 43 40 43 46 31 27 21 22 26 40 44 48 48 33 43 34 51 44 49 30 49 47 39 33 29 23 25 23 19 15 2 1 3 8 21 55 56 66 75 67 89 137 88 71 85 66 46 27 10 7 3 2 5 6 5 5 1 2 4 7 4 3 1 3 7 7 4 5 3 8 11 15 28 43 72 66 77 102 106 89 58 58 56 52 47 18 4 5 5 2 14 29 25 37 31 35 28 38 46 58 52 39 39 33 36 51 34 49 47 35 34 32 24 21 40 26 43 41 37 34 51 44 34 30 35 51 47 50 43 37 55 29 20 27 32 30 38 42 31 32 44 49 38 50 45 50 40 45 38 35 33 33 24 44 43 37 39 47 48 43 37 46 43 34 38 31 62 33 46 44 35 33 45 21 27 25 19 27 17 27 27 32 22 25 24 24 35 31 33 21 24 30 18 27 24 19 24 16 17 14 22 20 19 18 18 9 20 21 13 16 +21 11 17 20 18 18 15 27 25 19 32 28 24 16 30 18 18 21 17 22 27 27 28 21 20 31 26 21 26 21 23 26 26 20 16 28 36 26 35 49 39 37 55 38 46 38 40 38 46 40 33 53 35 38 42 38 35 33 37 45 38 35 44 46 48 39 56 42 36 46 34 40 26 34 36 33 27 31 30 35 43 52 47 43 25 31 25 46 44 47 48 40 34 44 43 23 30 21 26 44 38 44 49 48 44 34 44 36 39 48 68 59 38 34 46 33 24 27 30 20 5 6 0 2 10 40 43 54 57 58 94 97 96 101 61 69 68 33 21 12 4 5 5 7 3 3 3 6 2 4 9 3 3 4 6 5 4 2 4 3 12 35 45 56 84 80 79 100 122 86 65 63 58 62 29 11 2 3 2 4 18 26 28 28 23 36 33 39 39 54 51 47 37 48 37 44 43 47 54 33 25 36 19 21 29 28 35 38 47 38 45 28 28 25 30 37 38 51 41 35 37 28 27 21 32 30 29 25 30 51 36 44 41 51 52 40 54 39 40 27 38 31 46 32 47 42 42 52 46 29 41 40 38 41 49 45 41 44 41 28 40 29 36 29 22 26 19 22 25 18 22 22 25 26 27 32 26 31 20 22 16 17 14 19 20 21 13 18 21 18 17 23 17 13 12 23 20 26 22 18 +22 17 19 14 18 18 17 18 14 22 21 25 11 15 16 26 13 22 24 16 22 28 24 21 25 25 28 28 28 36 25 21 22 20 20 22 26 36 30 27 48 48 48 35 56 43 34 41 52 47 44 40 44 44 41 56 35 40 32 36 45 38 43 55 35 46 44 41 32 41 51 57 39 44 26 23 30 27 37 41 38 50 54 44 51 38 27 32 50 41 45 36 42 49 32 22 21 16 18 39 34 51 41 41 31 46 47 40 38 40 38 39 43 31 39 29 28 23 31 14 4 8 4 4 8 28 56 51 61 51 77 102 108 107 80 68 76 49 38 22 7 1 5 2 3 3 4 6 4 5 5 5 3 2 8 0 6 4 4 9 21 50 62 67 75 79 94 131 111 75 62 40 53 53 18 10 3 5 6 6 13 22 29 21 30 30 33 45 47 58 42 40 35 41 34 46 45 54 40 34 31 23 19 21 32 42 46 36 40 29 32 42 38 37 40 41 44 56 58 45 34 26 39 22 27 40 40 40 37 40 42 41 55 33 40 44 50 42 53 36 33 31 31 40 37 33 50 45 44 44 34 37 55 45 54 49 60 28 43 34 27 37 35 24 22 28 25 20 19 21 18 27 23 25 26 17 26 23 19 29 23 12 22 14 13 15 15 16 15 15 25 18 11 17 14 17 19 19 20 21 +17 19 14 23 33 10 19 18 12 22 13 16 20 25 23 18 25 20 25 22 24 28 23 17 24 16 18 29 26 24 31 25 21 26 16 18 20 35 43 60 32 45 43 46 40 33 45 49 43 34 46 54 43 39 49 37 26 25 28 35 30 36 44 54 58 43 42 49 42 43 57 33 45 39 26 51 23 26 38 35 41 49 34 33 38 29 27 40 40 36 34 38 39 36 42 22 33 13 24 34 40 42 49 59 38 44 34 36 45 51 47 59 36 33 33 23 30 33 31 21 11 2 2 4 6 19 51 53 54 57 57 116 98 84 81 68 86 79 50 42 17 11 7 2 4 6 4 7 3 1 2 7 5 3 6 3 7 6 6 15 44 44 60 75 77 81 122 113 98 70 62 72 59 53 17 8 4 4 3 17 27 37 26 30 40 22 42 38 45 44 28 59 37 49 38 43 38 43 44 35 46 32 18 17 17 39 33 48 50 36 41 38 30 40 31 29 28 45 51 45 49 20 30 30 35 42 37 39 29 30 45 43 52 45 52 51 53 56 31 30 23 36 31 30 33 45 38 39 34 28 44 38 44 28 38 32 42 45 43 46 43 40 25 37 27 20 22 23 22 28 24 23 23 25 29 22 26 30 29 25 16 15 15 28 23 20 20 20 20 16 14 19 22 22 19 15 23 23 17 19 +23 19 21 16 25 16 15 21 21 17 22 21 20 25 19 19 19 27 29 27 21 22 29 28 23 21 25 24 26 23 27 23 22 18 23 34 28 36 35 42 50 42 44 38 40 38 35 53 38 44 46 47 44 46 39 41 45 41 40 38 31 29 49 43 48 47 37 51 43 42 49 45 35 38 31 28 28 28 31 39 43 36 50 40 32 31 32 44 31 40 37 39 33 36 33 26 25 23 15 31 40 42 48 33 37 46 37 32 36 40 42 50 38 29 22 25 21 29 39 24 14 7 3 3 3 10 35 44 60 56 49 91 89 103 103 85 84 82 70 51 37 26 11 4 2 6 5 2 4 1 11 6 1 0 3 6 8 6 20 21 54 57 63 55 84 98 104 96 74 72 50 70 37 37 9 11 5 2 7 16 33 31 35 31 27 23 38 54 38 54 41 37 45 26 44 49 41 38 39 40 35 24 17 30 33 43 25 48 37 37 39 39 37 39 39 38 35 46 33 43 36 35 28 29 23 28 37 39 34 35 42 38 47 38 43 49 50 53 37 39 22 36 40 38 44 43 39 36 45 48 47 41 37 41 47 47 39 49 48 34 40 42 37 34 32 29 25 22 31 24 27 27 30 27 33 28 39 22 33 27 17 25 25 21 14 20 18 18 17 15 14 19 16 18 19 25 21 23 19 15 +22 25 17 22 15 13 24 13 17 23 17 16 19 13 20 24 19 23 24 17 26 23 38 14 27 26 12 28 19 21 25 23 22 23 23 26 30 39 43 50 34 58 34 41 32 39 45 40 39 46 47 43 36 34 50 40 44 29 20 25 37 35 51 52 58 50 42 47 41 37 42 40 38 39 25 34 29 25 35 36 44 50 47 47 35 33 37 37 39 55 28 45 46 37 35 33 32 18 28 32 42 34 51 41 26 43 41 41 45 40 50 42 41 32 37 33 27 30 25 20 16 5 2 2 5 10 22 56 57 65 53 70 88 120 115 89 73 75 65 72 53 38 22 11 9 4 1 4 4 4 0 6 4 2 4 14 11 17 34 61 76 71 87 79 87 103 105 95 61 65 65 61 55 36 11 5 7 1 5 14 24 21 31 26 28 40 37 35 46 46 38 42 33 43 38 40 46 51 34 30 30 24 27 28 25 33 44 36 42 46 37 44 25 37 34 40 39 38 36 44 32 25 29 27 37 27 35 29 20 41 37 51 45 55 46 37 51 52 30 35 26 42 33 37 36 47 52 39 46 28 35 39 53 39 41 34 40 44 43 35 28 38 32 40 27 24 25 29 17 22 27 25 21 21 28 24 21 29 33 30 24 21 12 18 24 14 14 27 18 21 15 20 18 17 20 18 13 19 22 19 +16 21 19 15 16 16 20 25 15 19 21 23 17 21 18 10 19 13 26 34 16 28 27 21 26 24 19 23 17 17 20 17 28 20 24 32 41 44 44 40 47 42 41 41 36 45 41 42 48 44 35 37 38 43 48 28 29 34 29 27 36 38 45 31 41 46 46 52 36 39 41 38 43 32 38 36 26 20 31 38 42 49 41 42 41 39 41 33 41 26 38 45 33 32 35 32 36 15 19 37 32 41 46 37 46 35 34 37 43 34 34 53 43 40 32 28 33 31 30 44 16 9 4 5 6 3 11 42 62 55 69 68 93 113 103 101 78 65 62 67 66 56 42 30 18 12 11 4 3 3 4 7 6 9 11 26 29 46 44 61 54 75 81 93 100 113 124 68 44 46 60 61 37 6 4 2 2 1 6 28 32 38 30 39 32 23 41 50 40 47 39 40 31 41 36 47 41 46 33 29 24 20 22 27 25 43 37 40 38 38 50 32 40 37 31 29 49 42 45 37 35 30 28 21 32 34 24 29 35 36 43 39 37 54 44 37 39 38 36 24 24 36 37 25 36 35 44 47 41 48 48 33 45 36 45 43 42 42 53 44 39 30 44 31 35 28 18 17 30 31 23 26 28 27 27 26 27 12 20 23 29 22 24 26 18 17 13 12 17 19 15 27 15 16 15 18 18 17 19 11 +22 12 21 17 19 29 21 16 16 18 34 17 21 13 14 10 14 18 18 22 24 18 23 27 25 20 18 28 26 19 21 29 22 21 28 21 31 43 44 42 48 47 49 34 39 35 45 58 44 49 36 49 37 48 33 47 41 40 28 31 34 35 43 40 35 38 53 40 38 37 55 32 35 41 46 25 20 27 32 31 33 45 53 47 37 29 31 38 33 36 51 43 34 52 39 37 42 26 15 32 30 48 54 41 35 41 57 38 34 32 43 47 44 33 33 36 26 25 29 30 24 10 2 4 4 5 9 22 51 64 67 59 84 77 107 112 116 88 68 73 60 59 67 39 38 26 23 12 9 23 14 17 20 20 22 32 50 50 67 75 80 68 80 87 112 107 90 62 44 57 59 49 22 9 2 4 4 6 10 15 23 33 35 30 35 38 42 43 36 46 30 43 35 43 37 50 51 37 29 32 25 17 17 15 30 34 38 41 45 53 49 30 36 23 29 35 40 54 53 38 47 29 29 25 30 24 28 32 36 50 44 46 41 44 44 44 39 43 43 37 42 29 40 35 31 42 49 31 44 44 42 50 48 53 47 52 38 47 40 33 50 36 33 40 26 33 23 24 21 27 20 20 20 22 26 27 22 30 24 25 21 15 21 17 10 21 20 15 25 30 26 20 21 19 18 17 21 18 13 17 +26 15 15 12 17 13 19 23 17 29 11 18 12 17 12 25 20 24 24 26 25 26 20 13 19 26 21 24 19 17 20 33 29 23 20 39 37 43 39 40 43 43 51 37 35 43 37 35 42 38 40 51 39 41 38 42 40 49 35 20 35 50 48 46 55 44 37 42 42 39 36 28 46 28 34 29 33 25 23 36 32 56 54 43 30 35 36 28 42 44 41 38 34 30 36 38 26 20 17 21 32 35 51 57 44 57 49 36 37 46 32 56 53 47 33 24 20 30 31 37 22 19 5 6 4 8 4 32 59 58 64 60 46 64 95 102 110 102 79 92 96 67 67 67 59 52 35 31 28 24 39 36 31 42 39 63 49 61 73 71 69 74 94 104 130 88 65 56 68 72 55 52 29 6 7 6 4 6 7 34 22 23 28 23 29 30 43 47 54 49 37 33 45 32 46 46 45 53 29 37 21 22 21 37 29 51 38 36 42 37 45 35 32 28 32 25 50 50 54 45 43 29 34 22 35 21 34 39 39 45 37 31 32 42 35 54 43 60 32 36 33 34 31 41 43 39 29 42 48 38 58 44 44 45 37 38 53 40 34 40 36 48 37 39 27 23 27 22 19 32 29 20 22 25 19 28 18 22 30 23 27 29 23 26 21 27 19 22 13 29 24 25 15 21 17 20 19 26 22 15 +23 17 10 27 25 29 21 26 21 20 18 16 24 21 15 23 22 20 30 32 23 28 23 17 27 24 19 24 25 24 25 32 25 28 32 33 29 52 39 31 48 41 38 54 40 42 37 26 43 48 43 30 51 48 55 37 29 34 37 26 32 40 39 61 41 48 39 42 33 31 32 37 29 34 37 31 36 38 16 37 42 41 52 53 34 30 40 36 36 33 41 40 35 41 41 33 23 22 14 25 44 36 44 40 39 33 39 31 36 35 51 43 39 52 33 26 28 34 13 24 22 22 9 5 3 4 5 7 42 61 55 72 54 68 78 107 121 83 73 71 84 69 79 79 65 57 54 43 44 58 37 38 50 57 70 57 70 70 66 74 75 117 104 94 102 76 60 57 65 47 43 38 12 5 6 1 2 5 21 40 24 31 32 39 26 30 48 51 38 31 35 27 48 45 35 38 48 41 36 52 26 20 22 15 29 30 40 49 55 29 37 38 28 29 30 34 49 40 50 38 24 25 35 29 35 31 34 27 41 49 46 43 50 44 49 33 52 38 29 44 31 28 25 46 29 44 37 46 44 40 45 40 38 36 40 37 35 48 43 35 46 47 35 39 32 28 26 21 24 18 29 32 18 29 16 27 26 25 23 29 23 22 30 20 26 20 12 23 19 16 14 22 20 22 9 17 18 21 23 17 +20 15 18 17 17 14 18 20 22 25 18 18 17 21 18 19 25 21 18 21 29 19 26 18 22 27 24 20 23 14 21 29 23 20 14 33 35 45 46 31 43 49 43 50 39 34 45 32 37 54 30 48 42 43 36 44 32 34 35 29 24 38 48 53 40 47 52 46 45 35 29 40 42 35 23 31 26 25 34 28 44 52 48 36 29 24 33 33 25 36 41 49 29 34 28 29 30 19 13 28 32 48 48 57 41 33 38 37 42 43 33 58 51 44 56 27 24 27 35 38 29 19 19 6 6 5 9 4 23 35 53 52 62 67 73 78 103 96 91 80 94 90 71 70 70 62 64 68 63 59 58 71 66 68 69 63 65 74 79 90 88 115 106 106 91 56 43 49 57 53 38 19 1 6 3 3 3 11 17 23 31 18 29 28 31 37 39 35 30 44 46 47 43 41 43 41 59 49 34 27 30 21 24 20 46 49 33 41 33 48 35 32 33 28 43 43 40 51 49 36 30 23 28 29 44 26 34 39 33 41 32 48 37 35 46 41 44 48 34 29 28 32 29 41 45 38 39 40 34 50 35 49 37 38 46 45 52 37 34 47 36 37 29 34 26 43 17 15 37 24 22 25 26 30 30 24 13 30 26 21 23 31 24 21 23 25 21 16 22 20 12 29 21 16 14 16 29 20 20 22 +15 15 17 25 28 21 15 25 14 15 14 19 13 21 18 14 36 23 26 25 26 22 26 23 19 14 24 26 20 20 27 19 21 29 25 30 35 41 42 31 43 40 39 41 39 41 36 36 51 39 42 28 49 39 36 32 38 34 22 38 30 30 41 41 46 33 35 33 37 29 34 31 35 26 40 30 30 19 34 34 46 31 58 52 41 27 39 25 28 32 37 33 36 44 31 37 35 22 16 19 29 38 56 41 43 49 41 37 24 36 39 43 51 52 33 35 17 28 35 31 32 22 17 7 1 3 4 3 15 29 51 73 56 56 61 68 104 112 113 112 102 93 75 73 72 66 78 83 65 68 48 58 66 73 76 77 81 73 82 110 128 128 90 93 60 56 52 52 50 43 35 4 6 2 2 0 7 14 28 30 27 27 27 25 37 45 46 42 30 36 29 44 43 44 48 44 45 42 36 24 20 17 18 25 48 39 30 34 37 32 34 32 26 34 35 41 44 34 44 41 28 43 35 21 22 32 28 28 28 39 41 36 43 41 34 48 48 44 42 44 30 37 25 37 38 38 42 43 51 49 36 29 44 38 39 51 49 36 36 44 41 49 37 38 38 36 16 22 27 19 33 23 25 31 22 29 20 22 20 24 26 24 21 15 21 19 16 13 25 21 22 13 21 17 16 20 24 25 9 21 +8 21 14 23 22 26 16 17 19 12 12 13 14 19 26 25 16 32 22 24 25 19 29 23 20 22 20 18 22 26 20 28 26 21 39 34 35 32 55 47 40 34 37 40 35 40 29 36 38 39 36 41 47 37 41 30 34 27 38 33 38 41 55 46 42 52 44 43 37 39 27 34 26 25 20 26 33 23 27 47 55 46 49 56 47 34 37 26 31 49 45 35 50 40 37 43 25 25 14 23 39 29 41 51 44 44 41 43 51 38 40 27 45 50 46 36 37 26 39 22 34 26 19 10 1 5 1 3 3 19 41 52 46 55 50 62 66 89 106 105 99 104 79 71 63 71 56 58 66 68 56 71 66 88 65 76 77 96 102 105 117 105 112 66 59 56 55 49 50 41 18 8 5 6 5 4 9 14 17 15 22 24 28 35 28 39 48 49 46 30 30 42 49 33 37 38 45 33 39 30 23 22 32 31 29 32 49 43 36 36 31 32 39 26 36 40 45 57 38 39 33 30 38 28 34 38 39 30 31 30 44 47 54 38 45 56 34 37 39 29 30 48 31 39 41 43 36 46 40 43 43 30 33 36 29 42 42 43 42 46 39 52 30 31 30 35 24 19 16 27 24 23 27 20 32 22 21 32 30 25 29 16 14 24 21 22 23 19 19 10 14 22 22 22 16 22 23 22 20 17 +16 17 19 15 19 20 17 16 19 26 15 19 17 22 20 18 38 16 30 17 35 25 20 21 22 23 15 18 20 16 18 31 23 25 28 38 34 43 27 53 34 42 48 42 35 37 35 43 50 39 37 44 43 45 39 47 28 36 39 37 28 43 33 38 37 60 38 33 48 30 32 34 38 35 34 28 32 31 28 38 30 41 55 41 32 39 32 38 31 45 38 29 40 38 38 40 22 27 15 20 25 36 36 51 47 45 50 39 40 48 28 29 42 35 35 36 32 26 25 27 26 28 27 10 7 3 2 2 4 9 25 46 50 57 64 50 50 74 81 101 113 103 94 98 88 85 78 58 83 84 67 72 73 80 76 73 95 97 120 124 91 76 82 51 62 56 60 47 50 34 12 1 3 9 2 9 8 22 24 35 28 34 39 32 32 35 49 52 33 52 42 34 35 45 39 36 45 42 36 24 19 18 20 23 29 24 39 24 36 36 39 32 31 38 29 37 42 50 62 44 39 32 24 20 28 38 25 36 33 39 32 44 41 58 30 41 38 48 43 27 32 38 41 36 48 41 45 54 30 41 36 47 35 37 37 35 41 41 56 43 32 41 33 39 37 37 20 24 21 20 25 24 20 19 23 23 17 23 33 28 20 15 33 24 26 30 20 13 17 17 19 19 22 14 16 16 17 12 19 22 +20 17 22 16 25 22 14 24 16 18 14 19 17 17 32 31 22 15 24 23 23 24 25 19 18 25 24 27 24 16 24 29 24 30 27 42 28 33 36 34 38 39 38 42 37 31 35 40 48 27 50 37 33 34 40 31 36 31 39 22 30 48 39 33 32 47 41 38 33 36 35 45 49 32 49 33 29 33 28 41 33 41 58 49 46 30 40 28 24 40 41 47 48 40 33 30 41 19 22 21 24 25 36 38 33 39 34 48 50 34 39 41 45 55 49 45 29 30 37 25 27 22 25 15 12 6 5 7 7 8 12 30 48 52 50 62 56 57 66 78 98 98 120 100 92 79 102 92 85 79 80 85 101 67 90 99 113 114 107 86 106 67 62 60 61 62 55 47 34 14 7 5 2 5 8 10 19 24 31 33 28 29 26 35 42 35 39 32 34 37 35 42 36 35 34 37 50 37 25 30 19 21 24 40 25 36 35 41 30 37 32 33 40 39 35 36 40 41 43 49 33 26 16 24 33 40 37 28 32 48 41 46 40 47 44 41 46 43 47 31 26 25 35 36 42 41 49 38 35 40 41 42 40 37 36 37 45 33 35 42 29 32 39 36 29 31 31 26 16 22 21 15 20 26 19 15 28 26 25 27 26 25 24 24 20 32 16 21 27 19 16 16 17 24 15 21 22 9 17 18 +17 13 21 16 23 12 21 12 17 20 25 20 26 13 29 32 19 25 17 15 21 19 30 17 26 24 14 15 20 31 18 20 27 22 30 35 32 23 56 46 41 32 47 46 45 32 52 37 48 37 34 51 37 36 27 40 36 24 38 28 41 46 70 39 51 41 55 31 49 37 41 27 35 38 23 26 29 25 29 28 47 41 49 48 24 38 31 26 37 46 34 42 39 42 40 38 29 19 22 19 27 34 25 49 49 41 44 42 29 38 31 34 34 45 40 33 30 28 25 29 36 30 22 30 12 6 5 3 0 4 12 31 36 47 57 70 53 52 57 66 80 84 91 110 104 106 76 90 98 86 110 98 103 101 115 100 115 98 101 105 78 57 68 51 63 56 57 48 32 5 3 4 2 1 3 13 19 33 35 29 26 26 22 47 42 53 46 46 47 39 44 31 43 39 34 51 41 31 27 37 21 19 28 28 41 34 39 60 53 36 24 17 43 34 30 40 42 41 49 55 35 24 35 27 37 22 31 42 36 48 37 33 45 44 45 44 60 45 37 35 42 26 27 34 41 32 47 37 51 39 45 36 51 37 43 26 42 52 47 41 45 42 38 26 30 20 33 20 15 12 19 24 14 32 26 32 25 23 27 18 22 25 26 20 21 24 30 22 25 16 17 24 19 15 15 22 15 17 14 19 +20 17 14 16 15 15 20 22 21 28 20 25 22 26 22 11 21 18 22 20 36 18 27 20 24 26 22 19 27 17 24 26 22 17 23 31 36 33 49 37 41 39 43 35 47 45 19 49 35 45 50 41 43 42 44 30 40 22 31 28 30 52 43 42 42 39 40 51 35 29 35 34 30 29 27 27 25 23 31 42 42 40 46 49 43 28 35 34 29 37 39 37 37 46 42 34 27 30 22 21 28 36 31 36 47 42 44 35 43 31 34 32 45 39 44 43 37 27 31 16 26 32 25 27 12 3 4 3 2 1 4 11 25 43 43 49 61 50 68 46 61 72 72 98 77 100 96 103 92 116 90 108 95 96 109 88 108 91 68 61 72 61 61 50 58 65 38 26 14 4 5 3 3 5 5 18 27 33 34 29 28 29 20 28 48 45 51 34 42 40 37 48 35 34 47 48 47 33 43 25 16 16 22 34 27 40 30 40 40 44 40 31 47 29 30 34 35 45 37 24 38 32 31 23 29 31 23 37 29 40 42 42 31 60 39 42 47 48 32 29 30 30 30 31 36 39 37 50 30 41 31 35 46 38 34 45 34 46 51 44 43 45 33 31 26 34 33 24 17 23 30 28 18 17 28 22 23 29 25 15 21 20 24 26 23 24 22 25 14 20 22 29 19 23 16 22 19 22 16 15 +18 14 18 34 18 15 17 13 21 20 22 22 22 19 32 20 29 24 22 10 19 25 23 21 15 19 18 23 23 31 20 22 26 35 23 38 41 29 39 37 42 36 38 47 39 26 33 36 33 39 34 36 36 33 39 34 25 20 27 37 30 40 42 40 40 39 35 40 31 40 36 27 34 35 35 29 25 24 30 33 27 36 51 47 30 31 20 35 31 34 40 29 35 43 45 22 35 23 20 20 24 32 29 38 47 40 36 42 29 34 29 42 31 39 50 34 37 37 35 23 22 29 30 21 24 16 6 3 2 5 4 6 18 36 44 53 56 54 43 40 48 53 96 76 79 83 92 87 118 89 83 106 98 82 94 79 71 72 62 55 57 43 53 53 65 44 26 14 13 1 3 3 3 8 14 23 21 33 29 34 19 24 35 36 38 52 31 43 38 30 40 36 44 49 43 47 49 35 20 23 14 21 20 36 33 35 41 43 43 42 34 21 27 37 51 33 52 34 41 29 41 31 25 27 34 33 33 45 36 26 37 40 20 33 50 40 38 33 42 40 34 24 29 32 32 43 42 41 38 42 38 49 37 32 38 36 36 42 41 37 49 47 27 44 41 30 30 31 33 21 22 18 32 14 15 24 22 27 17 21 19 21 23 29 35 27 20 28 22 12 26 23 21 12 10 18 18 19 9 11 +16 16 26 17 18 15 20 24 19 23 23 20 18 30 25 19 20 21 25 23 18 32 19 29 20 22 18 26 17 17 16 24 20 36 30 33 57 67 32 38 38 46 28 35 45 46 37 31 46 44 44 38 34 31 45 30 37 35 37 29 28 37 21 42 48 30 40 44 33 44 33 26 32 36 33 36 32 26 28 22 28 38 43 46 34 35 27 33 24 37 45 34 30 35 20 42 36 31 25 17 21 28 30 40 42 48 34 41 45 35 38 38 39 39 37 49 34 39 34 26 23 24 24 26 29 12 6 5 3 3 3 4 6 21 41 56 43 46 53 66 55 50 51 56 62 83 77 68 93 89 88 81 83 72 76 79 59 62 47 50 59 55 55 47 36 34 16 13 8 6 3 3 4 7 16 23 13 23 35 25 35 27 37 29 58 57 47 34 34 40 42 42 33 36 51 36 41 36 23 19 17 27 34 25 35 24 41 32 41 45 26 30 30 30 28 40 44 39 30 31 30 25 17 27 29 37 29 29 23 28 33 39 29 43 48 42 34 48 38 27 29 25 27 32 45 27 42 31 33 38 33 43 35 34 47 34 38 30 26 49 32 41 30 35 32 35 24 23 16 22 18 22 15 19 21 17 18 17 18 21 17 14 29 28 22 30 16 24 25 28 29 29 29 17 19 29 17 15 6 26 +21 23 23 24 17 22 15 21 19 29 22 13 31 23 16 16 15 13 25 21 20 17 17 25 19 28 16 18 26 24 23 19 42 32 31 26 38 46 48 44 35 49 38 38 29 31 36 40 38 32 58 32 40 48 43 36 36 37 31 30 37 45 38 49 45 39 47 41 41 32 34 35 28 37 35 25 31 20 19 34 28 40 46 44 34 47 42 31 35 31 32 37 34 25 31 44 36 25 24 20 19 29 31 39 40 45 39 40 33 29 35 33 37 36 50 40 47 25 42 24 23 24 34 29 22 18 16 5 8 2 3 0 6 9 18 35 44 63 68 62 61 50 46 63 66 72 67 65 69 56 55 78 57 56 58 65 49 65 45 40 53 50 60 42 28 17 9 3 1 5 1 4 4 12 26 21 30 28 23 28 23 34 38 47 49 59 29 37 25 40 36 24 28 34 26 47 39 29 32 18 15 32 33 32 31 40 43 36 37 36 30 30 42 27 45 40 41 40 45 39 28 18 21 26 28 43 34 37 26 29 39 29 48 42 38 37 50 37 43 35 34 36 28 50 32 34 34 54 39 40 35 46 35 28 37 39 57 42 36 38 41 36 41 36 28 39 25 28 24 17 16 15 21 21 23 20 20 24 20 19 16 16 26 25 24 16 21 20 26 25 16 31 17 20 22 25 17 19 13 19 +16 29 26 16 15 23 22 25 27 19 32 25 17 22 25 26 19 18 31 22 26 29 27 19 21 31 30 23 21 23 18 25 27 36 38 38 39 34 36 28 34 45 37 47 36 42 37 49 37 44 40 32 42 38 39 44 31 30 26 40 46 44 49 47 42 31 39 34 29 43 34 29 29 44 22 19 30 23 20 32 52 31 35 35 48 31 33 37 24 31 35 34 33 36 46 31 39 36 26 20 19 28 32 38 31 53 36 31 31 29 43 31 32 35 36 43 47 37 22 33 28 28 24 24 29 22 21 12 5 5 4 1 7 4 13 27 32 48 37 51 61 69 54 47 47 57 45 61 58 53 59 61 53 62 52 59 52 48 57 67 62 40 46 23 11 7 6 4 2 3 2 1 9 15 30 24 36 33 21 23 16 34 37 42 40 40 37 28 36 41 41 43 42 42 55 51 29 35 32 25 16 28 38 27 44 40 31 38 37 36 19 33 29 32 27 35 33 39 46 31 26 29 18 25 31 34 37 32 27 41 44 33 40 36 34 42 47 40 47 30 27 17 28 38 47 30 37 39 43 38 40 43 31 39 45 43 41 34 45 40 45 38 29 31 25 38 35 27 24 14 22 21 30 22 23 17 18 21 30 21 26 26 27 23 23 16 33 20 31 19 20 22 27 16 19 19 26 25 19 21 +28 15 23 22 28 24 32 29 20 20 15 15 27 26 20 22 24 27 25 22 15 20 21 18 25 25 24 26 27 21 32 29 35 27 36 36 30 40 44 30 57 43 45 35 33 37 46 39 31 36 38 40 42 37 34 34 27 28 34 27 27 43 48 42 49 39 44 38 26 36 33 28 32 33 36 33 26 27 36 43 32 52 46 43 32 23 23 37 27 24 31 31 45 46 26 32 28 23 33 25 18 27 30 38 32 34 36 37 53 48 35 27 46 36 38 39 39 30 40 30 41 33 34 18 26 25 27 18 10 3 1 2 6 2 9 11 20 40 46 47 44 58 55 45 59 54 54 51 53 55 51 55 44 58 50 53 50 64 57 50 44 46 35 22 11 8 3 2 3 3 2 15 17 18 26 22 18 27 27 25 28 23 47 28 44 41 52 41 36 47 44 49 36 48 56 38 30 35 30 19 22 27 30 34 45 33 32 41 34 53 38 31 27 37 23 39 61 33 30 33 39 26 35 21 28 28 34 37 36 33 47 37 39 37 32 40 48 38 46 33 37 36 26 28 25 35 39 36 31 44 48 42 48 42 43 40 37 36 30 40 36 40 37 39 33 36 41 29 17 23 14 29 27 25 21 19 23 25 19 23 17 20 20 13 24 23 31 16 21 16 29 25 21 23 30 23 14 22 25 14 +22 26 30 19 29 19 26 25 19 28 26 22 19 19 22 20 18 12 21 18 21 19 21 27 27 19 21 27 23 26 15 32 47 39 27 29 40 39 35 50 51 33 36 29 40 31 40 36 40 35 27 47 36 36 29 38 36 33 25 28 28 49 40 42 44 32 54 25 36 32 33 27 27 33 35 22 26 29 30 37 34 36 42 45 52 35 29 38 26 27 48 42 27 30 36 29 34 32 28 16 18 20 35 38 36 52 41 31 33 31 36 40 45 32 36 34 40 47 39 35 26 15 17 22 23 33 25 23 12 5 0 4 3 1 4 9 7 24 33 39 44 51 47 53 54 47 59 57 47 52 54 64 52 56 56 53 49 53 56 40 53 37 22 10 3 3 6 3 2 4 7 17 17 18 27 23 25 27 25 24 30 28 37 42 34 48 38 40 35 26 48 34 37 34 55 41 26 26 23 19 24 14 23 20 30 33 39 37 34 29 27 33 34 33 25 44 43 43 36 40 33 27 16 21 37 37 43 37 37 31 31 36 43 44 35 51 39 49 37 40 28 34 28 24 37 48 40 43 42 35 46 42 45 41 38 44 39 39 53 39 27 30 41 42 29 36 27 27 16 18 24 27 32 19 21 20 20 19 16 27 25 25 16 25 22 22 32 22 23 20 24 17 27 29 27 19 20 20 19 27 +23 21 30 22 15 19 29 22 33 19 14 22 16 19 21 21 24 21 16 21 21 28 29 21 25 15 17 21 28 22 23 41 26 45 35 51 46 37 43 39 54 40 31 27 32 35 36 44 39 35 41 38 46 42 30 36 24 26 24 23 38 40 39 49 36 46 43 53 34 38 37 29 46 36 28 23 21 19 28 29 29 37 59 38 32 30 29 35 26 47 24 33 33 45 31 38 29 26 23 22 19 24 26 45 38 47 35 39 31 38 36 36 32 42 36 51 44 49 37 25 29 25 31 22 23 30 26 26 17 10 4 7 0 5 9 5 5 6 17 19 29 35 53 60 45 37 53 49 42 61 53 54 49 50 44 54 55 40 36 34 31 11 12 4 4 3 4 4 3 5 7 9 24 16 22 25 26 37 30 31 32 52 51 62 30 53 38 39 50 44 35 44 38 43 47 44 37 37 20 14 19 28 28 43 27 29 39 38 23 31 33 33 34 27 31 37 49 42 30 33 30 45 30 29 28 27 29 30 35 37 40 42 36 49 40 45 39 37 50 37 39 19 28 39 26 39 26 36 46 38 47 33 40 52 44 40 27 38 37 33 40 37 45 39 35 43 34 30 38 28 23 28 26 18 16 20 17 18 15 21 25 16 26 21 20 26 22 25 17 23 18 19 20 22 25 20 20 24 28 23 +10 18 23 16 23 16 21 16 19 24 23 17 27 23 21 26 32 23 22 21 20 19 24 23 12 27 31 25 18 18 31 28 26 32 27 32 40 41 35 34 26 38 41 29 44 38 42 35 38 45 36 43 29 46 29 29 26 22 25 39 40 39 31 45 56 29 48 36 39 34 31 24 35 26 32 31 37 24 25 27 37 41 43 40 30 21 34 19 39 27 42 35 39 39 40 47 29 27 30 19 23 20 20 31 33 47 37 39 30 27 39 34 39 48 44 39 40 50 34 20 20 35 20 32 23 11 29 23 21 17 7 3 7 6 7 4 4 5 10 21 17 15 29 43 37 40 45 44 55 62 57 57 49 45 37 41 33 33 22 20 8 5 8 2 9 5 1 8 4 12 9 24 22 26 25 21 23 33 26 35 32 47 49 41 50 23 32 41 35 45 46 32 29 39 44 34 30 33 17 15 28 29 36 36 31 39 36 48 38 34 28 32 28 32 35 36 57 32 40 34 29 17 27 33 28 23 26 19 28 28 35 26 44 27 45 46 41 40 50 40 24 34 31 23 26 42 31 41 26 40 44 43 46 31 33 39 32 31 47 47 40 36 46 29 33 33 39 31 37 32 21 21 17 24 19 17 24 16 19 24 22 26 11 15 21 22 22 20 26 19 28 25 13 19 28 24 24 18 21 30 +24 12 21 15 17 19 26 20 28 17 23 17 27 22 13 26 23 26 17 33 16 19 28 24 25 22 17 15 22 19 22 29 28 26 26 37 32 45 39 39 46 39 30 37 29 34 52 32 38 32 47 32 34 41 34 33 30 35 30 15 29 49 27 36 43 35 41 41 34 29 45 35 29 27 34 25 17 25 21 37 33 47 25 42 36 27 42 34 28 34 39 48 26 42 29 35 27 25 28 22 14 17 24 34 38 43 52 38 41 39 50 40 29 42 36 36 35 50 41 43 23 26 33 32 36 18 24 26 26 18 21 5 3 3 4 3 3 3 1 11 9 27 22 31 29 48 35 45 41 41 57 55 35 42 27 33 22 17 17 9 9 1 5 4 3 3 0 4 5 11 17 28 28 28 30 21 25 27 24 30 28 46 35 46 44 38 45 38 34 38 37 43 34 50 43 35 25 26 21 17 28 33 28 30 41 32 22 29 38 35 29 26 27 28 24 35 40 40 38 27 28 37 19 24 34 30 38 33 40 29 34 43 32 44 53 40 50 33 46 26 31 27 45 31 28 34 25 34 44 30 37 49 46 30 44 26 42 39 31 32 42 37 42 28 39 29 36 28 28 34 28 23 25 19 22 16 22 21 21 20 24 21 17 27 29 20 16 23 27 13 22 17 28 27 31 20 13 25 19 16 +17 23 24 19 26 20 17 24 20 21 29 26 16 25 26 20 27 24 19 15 22 22 14 17 18 19 20 18 24 28 32 41 40 32 26 32 39 29 36 28 40 37 39 36 40 42 39 34 39 41 52 40 39 31 38 30 25 34 25 34 40 58 66 38 35 35 41 38 45 30 29 20 28 30 23 34 21 21 36 33 32 47 60 59 42 23 28 28 30 38 36 29 35 38 27 47 38 29 34 22 19 22 23 27 30 37 40 38 35 37 36 44 31 37 27 29 43 52 49 26 31 19 27 25 19 17 16 29 23 27 15 10 5 2 2 5 2 2 3 6 8 6 9 16 21 19 23 28 22 39 28 30 21 19 20 21 17 14 6 6 5 2 6 4 2 2 1 10 8 18 23 27 26 21 34 21 25 26 28 27 43 45 36 37 36 39 36 23 35 45 36 36 42 46 46 39 30 30 14 13 29 24 31 32 38 24 29 30 46 35 41 37 29 28 39 32 46 41 35 27 25 31 20 22 23 28 27 30 29 31 35 33 32 40 41 35 39 35 27 45 24 37 21 29 34 30 34 41 43 51 44 31 38 32 34 34 26 34 48 31 35 39 33 30 35 31 42 49 46 37 28 27 17 24 19 22 19 17 26 25 22 12 13 22 29 10 17 21 28 23 21 19 21 31 23 16 14 21 31 23 +22 22 20 23 23 21 24 22 26 26 21 24 16 20 30 13 15 15 24 20 18 22 25 25 22 23 13 18 22 34 35 30 28 26 37 33 41 40 42 35 37 34 39 28 36 31 33 36 35 42 41 41 34 34 37 28 29 34 23 21 38 34 40 50 47 35 47 42 40 34 28 27 23 41 26 34 24 23 31 34 30 31 40 45 38 32 33 29 23 36 31 43 33 36 28 35 36 24 23 30 18 8 25 22 38 40 48 51 34 37 39 28 39 42 49 31 36 28 38 46 38 25 30 21 26 26 25 18 15 20 28 17 7 5 7 1 2 3 1 7 3 7 6 2 12 12 12 16 13 15 14 13 6 11 13 12 7 4 5 3 5 1 3 3 1 6 3 10 19 28 18 19 28 24 17 25 23 24 38 25 36 36 30 38 31 29 29 32 38 28 38 34 42 35 24 29 35 21 16 29 18 31 27 40 31 35 37 37 31 41 24 30 17 33 34 37 50 48 53 39 28 30 10 25 28 36 33 30 31 36 34 28 38 37 48 42 36 37 23 38 32 37 41 35 41 27 34 38 43 34 35 38 35 35 38 42 42 41 38 37 33 44 40 41 32 38 35 31 46 40 36 38 15 16 14 30 33 16 29 20 20 18 19 22 24 22 22 17 18 15 22 26 14 20 20 28 15 20 19 23 +23 22 26 21 21 25 18 15 19 23 19 33 27 27 18 25 28 23 18 24 30 20 19 19 19 8 17 24 30 42 30 34 43 32 37 25 31 34 39 29 34 37 33 35 42 39 34 39 45 30 38 40 40 37 29 31 28 36 34 33 41 43 33 33 44 44 43 32 32 42 37 25 33 23 34 33 23 20 32 38 42 38 30 51 38 28 28 29 15 23 35 39 29 30 39 41 37 31 28 28 16 21 16 23 32 39 42 36 36 42 31 36 28 39 20 27 40 42 34 43 38 36 17 22 35 25 35 27 23 30 15 25 24 8 7 3 1 5 2 3 3 2 3 2 1 6 6 9 7 5 8 3 8 6 8 0 2 1 3 5 4 0 5 2 3 8 11 20 17 25 29 31 17 33 18 26 31 29 42 33 57 44 33 44 35 29 32 26 36 34 27 39 45 50 28 29 26 22 16 15 26 24 39 34 34 37 25 33 37 28 25 36 18 36 33 38 61 53 52 26 30 24 33 28 27 22 29 28 30 27 36 34 23 43 37 50 41 29 37 51 34 30 21 26 34 33 37 44 46 39 36 38 45 29 41 28 22 37 33 38 30 35 40 41 27 38 41 28 29 24 34 30 15 18 20 12 20 17 21 26 21 29 25 25 18 26 27 21 16 22 17 23 21 15 10 16 24 24 26 21 +26 12 23 23 20 17 25 21 24 25 22 20 13 18 21 19 27 17 27 11 25 25 21 25 20 12 17 26 41 37 30 37 33 37 35 38 29 45 31 49 28 40 35 27 37 39 41 51 31 43 36 24 38 41 31 21 20 19 27 32 35 41 34 42 40 40 38 40 30 37 35 35 33 33 41 27 24 14 27 30 31 42 43 40 50 37 25 33 30 35 30 32 41 22 36 35 30 29 32 22 13 15 20 25 24 23 31 40 36 37 35 42 28 35 31 34 35 23 38 46 49 29 25 24 23 12 31 21 19 23 24 27 24 20 12 10 4 0 1 1 5 6 2 4 0 5 2 1 4 8 6 3 4 1 3 4 2 3 6 7 1 6 3 3 7 11 10 20 25 18 23 17 32 28 26 26 23 33 43 33 45 35 35 34 38 34 28 30 26 39 41 43 43 43 33 33 30 18 8 26 16 27 31 29 28 27 30 30 39 34 48 35 27 26 35 45 44 42 37 27 39 26 35 29 27 26 24 34 31 21 32 42 33 46 38 36 29 33 45 41 30 25 17 16 38 27 29 33 22 36 39 32 43 32 38 35 37 48 36 28 38 41 41 29 38 32 38 27 31 22 24 28 31 20 18 20 23 20 16 24 29 16 19 23 27 21 20 24 25 20 28 22 23 20 20 23 22 18 18 20 +21 17 16 18 16 13 17 13 22 25 16 16 23 26 19 23 26 22 10 18 22 17 18 18 13 16 15 26 35 34 32 32 27 38 39 28 30 41 30 44 40 36 38 37 37 40 46 40 31 32 38 32 29 33 29 22 25 23 28 31 39 53 38 21 42 39 38 26 36 38 37 27 21 23 27 20 21 31 23 29 30 31 47 47 46 31 23 33 42 37 24 29 25 29 35 30 29 39 31 27 25 15 13 28 38 29 30 53 40 31 34 35 39 34 29 33 29 30 39 39 47 35 38 17 26 30 25 32 26 20 22 18 22 26 18 7 2 3 0 4 5 1 5 3 5 2 6 6 4 2 6 2 3 2 6 1 7 3 9 6 2 2 6 8 11 25 13 23 8 25 28 31 30 28 30 28 25 31 36 40 45 33 28 34 37 37 32 39 35 35 31 39 39 38 30 24 23 17 10 19 27 33 36 47 27 33 32 36 43 25 25 13 41 38 32 36 42 33 23 33 23 18 34 19 27 36 34 39 26 30 43 39 31 47 33 36 39 35 37 37 33 30 20 32 26 34 26 25 43 37 35 44 51 36 36 40 45 29 40 38 40 32 41 44 30 36 28 32 27 29 32 34 24 22 18 19 14 23 20 19 18 22 28 17 18 20 17 22 20 23 23 21 29 21 25 20 20 21 19 22 +10 17 16 12 27 22 23 19 15 26 21 18 19 19 16 24 21 21 22 29 14 25 17 13 22 24 19 23 29 29 22 30 36 46 35 31 46 45 42 32 37 36 32 32 42 39 40 31 41 38 34 28 40 40 34 29 31 28 28 36 37 43 34 32 40 38 38 38 39 36 29 31 27 25 35 24 20 23 22 24 36 25 38 50 42 36 28 30 29 29 35 29 30 35 30 28 31 46 41 35 21 18 10 19 27 27 36 42 40 35 33 32 35 36 24 36 19 37 34 48 38 42 31 35 34 28 29 29 25 34 25 22 24 23 27 18 15 12 5 6 5 4 5 3 3 4 1 3 6 2 1 3 4 3 1 3 2 1 3 4 6 12 6 18 13 18 23 27 24 23 16 26 23 30 23 25 38 36 47 36 43 39 31 39 31 33 36 33 40 34 48 35 34 27 34 36 17 16 23 24 28 30 30 40 44 25 39 39 29 32 37 33 31 27 29 36 38 36 41 38 23 25 16 27 29 30 28 38 32 31 35 24 43 33 31 38 44 37 34 29 41 32 31 21 30 27 32 25 28 36 35 44 38 40 38 32 43 28 36 33 35 23 33 37 42 25 51 32 37 23 27 37 30 25 19 19 25 21 25 24 18 11 22 21 16 15 17 23 33 20 25 21 22 21 13 20 20 11 23 26 +22 26 22 17 22 19 25 17 18 20 15 25 17 18 16 22 25 24 17 28 20 16 17 19 14 26 26 33 26 36 47 30 39 34 32 40 41 37 29 34 53 45 33 32 30 37 28 41 37 44 49 29 33 40 30 36 22 36 28 30 32 48 31 41 38 35 38 27 33 23 34 32 31 32 35 23 21 19 21 30 36 34 38 31 32 41 30 40 26 25 35 33 36 39 39 29 41 34 31 27 26 24 15 17 28 34 29 31 31 38 20 35 35 47 24 29 44 30 40 41 32 41 38 30 22 33 26 25 35 29 29 34 29 21 22 23 18 21 11 13 9 4 0 2 3 4 1 2 0 3 2 3 1 1 3 2 7 5 3 7 9 10 18 23 16 23 26 18 21 26 20 23 23 22 22 26 39 36 36 38 46 29 49 34 28 21 28 40 47 32 42 35 26 24 33 21 19 17 22 18 23 46 39 31 27 34 38 29 27 27 41 28 35 30 33 31 42 42 43 36 34 29 27 18 23 33 35 41 34 31 42 30 40 39 45 40 42 53 32 45 22 26 19 34 31 24 41 39 30 34 37 43 33 27 41 39 37 37 24 37 25 34 46 42 29 39 39 40 26 31 38 36 40 38 32 23 18 22 22 20 22 19 25 9 23 22 17 20 18 14 22 17 18 27 14 20 25 19 16 21 +24 13 21 18 24 20 20 21 23 18 27 30 19 23 19 23 17 24 17 21 16 21 10 19 22 21 25 27 29 25 34 30 39 36 27 34 25 35 27 28 42 39 25 36 34 36 42 34 35 36 38 37 38 34 28 24 24 27 26 40 26 36 46 40 42 40 38 39 35 26 23 22 30 27 23 26 14 21 22 26 35 23 32 51 38 31 32 25 24 32 51 29 36 32 41 26 40 36 33 32 31 20 9 12 21 29 30 41 30 50 41 41 39 37 28 41 45 32 27 40 31 45 50 40 30 24 32 37 15 33 30 20 22 28 25 25 29 20 12 12 8 5 10 5 3 4 4 1 2 3 2 3 4 2 4 6 1 8 11 8 14 15 14 22 27 24 32 26 28 21 16 32 29 29 16 33 54 55 32 35 39 24 19 29 32 33 38 40 35 38 39 49 31 28 32 23 16 20 15 19 25 27 34 35 30 36 36 25 33 23 41 31 42 45 38 44 52 39 37 28 24 17 32 20 22 32 27 20 41 35 31 35 38 35 31 43 29 38 34 40 39 32 36 16 29 19 34 47 48 40 30 32 44 35 39 44 28 30 42 31 35 32 36 47 31 29 40 43 37 31 35 22 34 32 34 21 23 18 27 13 23 23 14 17 24 19 26 21 22 20 21 22 24 24 23 16 18 16 27 13 +21 18 19 17 17 31 18 19 11 22 24 19 22 16 24 21 19 17 17 16 18 15 26 21 32 25 29 25 34 34 34 35 45 32 21 33 37 29 35 29 39 36 41 47 26 35 29 44 27 34 36 30 36 18 26 32 23 22 35 37 40 31 32 31 38 27 36 27 33 34 35 27 34 21 33 21 23 21 27 26 28 46 34 32 36 34 22 30 34 27 28 25 32 34 45 26 36 37 27 25 22 23 18 16 16 22 35 36 47 45 32 36 30 31 31 28 22 37 39 28 44 40 51 40 41 35 29 37 22 18 24 22 30 26 25 24 15 26 29 20 21 10 9 10 2 7 8 5 7 5 6 8 7 6 8 10 6 11 17 14 11 24 18 25 24 26 31 23 27 25 27 25 25 27 25 31 34 43 38 39 31 31 30 41 35 28 42 29 30 34 28 42 33 32 32 16 18 20 29 20 20 35 23 26 31 30 36 43 23 30 41 30 32 25 22 43 40 52 31 37 29 18 25 22 18 31 26 24 21 31 34 35 26 26 44 36 29 43 27 37 37 27 25 28 30 30 17 32 31 31 40 44 32 31 32 35 36 40 34 29 32 35 32 32 36 35 33 40 35 31 31 23 42 22 33 24 14 23 9 16 26 15 26 19 14 28 11 20 17 13 21 22 18 17 20 16 25 19 15 27 +20 17 21 15 29 18 14 22 24 21 21 25 19 17 21 17 27 20 13 8 19 24 25 24 22 36 29 31 33 37 35 27 42 28 23 32 41 39 33 38 36 42 39 36 33 27 24 37 49 44 36 39 36 24 27 23 20 31 36 52 38 32 46 41 33 36 30 36 25 34 29 28 30 20 33 29 19 12 24 29 25 27 37 48 28 17 26 25 20 24 28 21 37 26 42 38 33 34 37 19 40 27 17 16 17 28 34 25 37 40 41 35 26 38 45 32 39 28 33 23 31 33 32 32 34 41 34 28 26 27 27 22 19 30 20 16 28 23 30 26 18 14 14 15 10 12 14 7 12 14 5 7 13 17 9 17 11 20 20 19 27 30 26 31 29 21 27 16 19 23 24 20 25 18 37 34 40 45 45 39 40 28 36 31 30 35 38 36 33 33 28 39 33 34 25 15 17 15 22 18 31 26 31 24 40 35 29 31 38 24 22 25 34 38 43 31 42 50 32 29 24 22 29 29 30 27 30 43 31 27 27 36 35 40 36 34 34 41 48 37 32 30 26 22 33 29 36 26 33 31 39 30 36 33 31 29 33 28 32 26 36 32 31 36 32 37 23 32 34 41 32 37 33 26 46 27 27 19 22 21 18 30 20 24 21 18 16 17 17 16 12 21 24 19 22 24 18 18 17 21 +19 21 34 26 17 19 17 19 24 22 27 24 20 21 23 19 14 19 16 13 20 22 26 20 26 37 22 31 38 35 35 31 22 28 31 34 33 27 37 29 33 35 35 21 55 37 28 32 25 29 30 48 31 40 26 24 26 27 25 36 29 39 31 37 26 30 34 29 27 25 23 28 37 27 35 28 25 22 19 21 34 25 47 41 36 28 25 25 26 26 28 29 34 31 32 28 34 22 23 31 24 23 10 12 19 17 26 31 25 30 46 36 35 32 27 25 35 29 26 32 27 29 48 34 31 39 38 22 19 31 22 25 14 27 26 26 24 22 23 29 25 24 15 19 21 23 15 12 13 19 13 11 17 16 14 24 22 16 25 22 25 29 30 23 26 17 19 26 25 26 29 30 18 26 32 45 43 29 34 32 35 36 27 39 34 36 36 38 38 39 42 31 23 30 29 17 11 14 31 23 27 32 35 35 33 34 23 30 22 23 35 23 29 25 34 36 36 32 36 30 12 16 22 28 23 32 22 24 35 27 44 28 34 22 48 30 36 35 40 34 33 33 25 44 28 21 33 30 31 31 32 37 30 41 29 36 37 43 35 34 32 32 29 39 37 32 32 33 43 41 45 29 33 28 33 25 24 28 20 29 22 14 21 33 16 16 20 16 18 18 27 18 16 17 26 18 23 21 20 15 +18 16 24 20 21 26 19 18 19 20 18 20 12 14 18 18 24 19 19 16 25 21 33 31 33 20 33 40 34 32 40 37 37 34 42 43 19 40 33 34 26 36 30 26 30 39 34 31 31 48 36 24 33 26 26 26 32 33 37 31 39 38 30 30 37 40 31 27 36 24 23 38 26 33 36 21 27 19 15 22 34 28 42 40 49 40 29 30 29 27 17 31 34 25 32 41 32 34 36 33 39 16 15 14 17 22 31 28 24 43 41 36 39 33 23 31 33 27 31 31 36 35 34 32 29 40 41 31 27 20 30 27 28 20 26 18 31 30 22 19 25 20 19 19 15 29 18 27 18 24 19 24 15 23 19 24 22 22 22 21 20 28 23 28 28 25 18 19 33 30 16 17 39 40 42 44 37 38 22 25 37 30 32 32 42 32 37 35 34 27 36 24 33 22 13 14 11 19 22 36 31 26 40 28 37 25 36 28 27 22 32 20 20 34 49 39 36 29 30 33 26 25 26 15 25 31 31 32 20 27 34 35 32 34 39 37 36 39 28 29 30 33 25 31 23 23 26 36 21 32 41 46 32 32 43 38 45 35 33 36 31 24 16 26 27 25 41 37 27 40 33 33 22 30 37 21 32 34 35 18 20 16 23 13 16 17 18 14 17 13 19 18 22 17 14 26 23 23 19 26 +13 24 15 25 23 20 21 16 20 21 17 20 15 19 16 15 20 23 16 20 20 26 27 21 40 27 25 28 35 37 31 39 36 38 34 26 27 20 41 44 33 37 33 40 36 39 31 37 27 38 37 21 27 17 24 22 22 30 28 30 40 24 41 22 38 36 28 29 35 36 30 24 26 30 36 23 31 20 17 21 33 24 38 52 39 42 28 32 23 29 30 23 39 31 23 34 31 26 39 20 27 18 22 22 8 16 30 38 30 34 36 32 34 30 41 43 39 27 32 35 29 34 34 30 32 42 29 38 34 24 22 36 18 22 21 22 29 25 21 21 19 29 14 23 28 24 18 30 21 32 15 28 29 27 23 34 25 17 26 25 21 28 24 24 37 24 24 23 21 30 28 26 30 36 37 38 34 39 21 32 37 32 32 34 33 36 36 30 38 47 41 33 28 32 16 11 16 33 26 21 33 31 34 29 30 24 30 36 32 22 33 37 31 28 37 52 41 35 22 34 37 30 27 26 32 26 33 19 24 26 35 23 28 36 31 33 31 38 35 32 36 23 26 16 28 22 25 40 24 36 33 37 31 32 27 34 46 37 30 31 32 33 42 35 22 39 31 33 38 31 31 26 31 41 35 29 29 32 28 20 19 20 11 18 19 18 17 24 22 16 19 20 13 15 18 18 19 25 14 20 +17 19 14 16 20 21 20 23 14 20 20 18 11 19 17 21 20 22 24 23 39 37 28 34 35 32 29 45 33 28 41 29 40 44 37 40 32 28 36 26 29 37 32 34 36 40 33 36 34 33 19 24 28 26 28 24 30 37 30 28 32 34 38 31 37 28 40 35 33 22 31 27 33 21 33 24 19 18 16 25 33 36 22 26 49 29 34 24 25 35 34 24 25 36 27 27 31 27 34 36 22 31 24 14 13 16 21 32 22 31 37 41 34 21 33 30 25 35 32 31 31 37 30 37 31 33 37 40 26 36 21 27 26 16 30 25 19 24 23 24 23 21 21 21 16 23 15 20 24 21 25 26 25 30 13 16 21 17 25 22 36 25 20 26 26 26 25 21 19 36 33 27 39 49 44 33 34 37 27 21 36 36 25 25 40 34 28 40 38 31 28 27 21 17 13 7 23 15 26 34 33 43 29 45 27 22 39 27 28 24 22 31 19 28 46 52 45 43 38 28 25 27 30 24 15 22 25 28 22 26 37 29 24 32 40 38 38 38 31 28 40 35 34 18 39 20 22 30 19 37 31 27 40 37 39 43 37 39 38 35 27 31 26 34 29 42 34 38 36 43 43 30 36 37 27 32 34 31 33 21 20 23 24 17 26 19 15 23 16 20 23 26 13 15 26 26 23 22 12 20 +11 16 13 7 20 27 19 20 25 24 18 14 17 18 18 21 21 16 23 18 22 28 19 27 26 30 45 29 33 30 33 33 41 37 38 44 30 29 33 36 42 30 38 50 18 45 19 29 35 28 38 27 32 32 23 33 26 32 40 31 30 22 37 44 31 39 33 40 35 33 26 18 26 28 30 22 16 26 25 27 29 24 23 45 31 34 37 21 32 30 24 24 25 24 42 30 39 29 26 33 26 23 19 20 13 21 14 22 33 23 38 36 31 20 37 35 29 36 23 35 31 29 27 26 38 27 32 42 38 39 36 21 27 21 30 29 24 25 29 21 24 29 25 16 14 19 19 18 27 27 28 30 22 19 18 31 36 16 20 27 31 29 25 26 20 30 21 26 17 30 27 35 42 37 44 33 37 28 27 33 40 41 33 17 41 41 30 32 33 36 29 28 34 19 13 16 22 22 18 33 24 29 21 34 28 40 28 29 23 28 34 31 21 31 28 40 36 38 37 28 25 17 26 26 34 25 33 30 34 28 19 28 38 28 28 26 38 31 48 37 35 40 27 25 26 36 29 22 29 30 31 34 35 32 42 26 29 34 36 23 46 41 31 27 36 34 34 29 29 32 39 31 30 33 39 40 24 25 30 18 20 23 19 18 18 17 17 12 21 23 23 22 23 24 20 15 25 20 17 20 +18 18 20 15 15 13 17 9 18 23 12 19 18 21 16 27 22 23 25 36 25 24 32 28 23 26 36 38 26 31 39 35 39 35 30 34 29 29 35 29 32 28 32 26 29 43 29 38 38 30 34 26 24 21 28 21 19 31 33 37 40 29 47 31 23 30 32 29 26 33 30 33 37 24 16 25 12 15 18 34 33 21 29 42 39 33 22 27 28 22 29 20 35 38 29 28 36 26 33 23 27 21 26 30 22 14 16 15 20 30 41 41 34 30 40 28 29 33 23 37 27 31 24 32 31 27 30 50 38 48 28 34 19 24 31 27 27 21 27 22 16 27 24 22 21 33 22 27 27 23 19 25 17 22 27 22 23 20 29 20 20 29 24 20 26 25 28 30 24 35 43 33 33 34 31 22 27 32 32 28 40 27 34 33 34 41 37 28 29 26 26 27 25 11 9 13 16 18 25 42 27 25 30 35 39 29 23 36 26 26 31 15 24 39 36 48 36 27 35 35 22 24 25 19 21 27 20 34 27 27 31 30 37 24 39 39 39 26 40 39 24 30 26 23 26 26 26 23 31 26 32 37 32 37 36 29 33 28 38 39 28 35 16 25 35 34 29 40 28 41 34 41 36 31 29 24 24 32 29 33 14 20 24 12 19 16 15 16 25 17 23 16 22 20 13 23 16 20 25 20 +12 24 14 21 15 20 19 20 16 17 19 15 23 20 25 30 23 23 23 29 35 25 34 28 35 36 35 40 30 27 33 31 27 27 36 35 32 39 30 38 37 35 34 31 31 29 28 30 34 31 31 26 25 24 29 14 31 33 34 36 41 37 32 36 33 31 24 22 30 43 28 22 27 23 24 33 17 20 21 18 30 25 35 43 42 34 27 23 33 23 21 25 28 29 35 18 37 21 25 35 21 20 16 26 13 9 18 20 30 31 24 34 43 38 34 29 27 27 30 27 38 39 34 27 27 33 33 31 31 27 39 28 20 28 13 19 22 27 23 19 16 20 19 22 20 29 30 27 31 32 18 26 26 15 28 18 21 21 23 15 24 18 16 22 24 29 33 36 40 30 34 36 38 36 29 17 34 37 21 31 33 32 24 31 32 38 42 41 31 34 26 26 18 12 17 23 28 26 30 27 34 21 25 30 35 33 22 24 30 19 21 18 25 29 31 31 37 36 37 26 22 18 27 25 23 34 20 23 33 18 33 41 39 34 46 33 32 30 21 32 45 29 34 26 23 23 29 27 20 25 32 27 43 39 34 33 28 34 32 33 44 19 30 30 19 37 30 42 30 31 25 25 42 32 24 34 35 42 20 29 26 25 24 29 19 25 17 18 25 24 16 22 16 22 14 20 17 16 24 21 +13 24 14 15 16 17 22 24 14 19 14 23 18 18 21 32 24 26 28 23 27 30 34 39 31 37 38 31 37 26 30 39 30 38 29 30 34 27 33 27 34 33 40 30 34 31 36 29 29 36 23 24 25 21 26 35 30 38 35 31 39 36 28 32 37 32 30 28 29 22 22 24 33 29 17 30 31 28 14 20 24 22 29 47 35 44 34 32 28 29 30 26 25 29 25 28 21 39 32 21 19 22 31 27 22 10 17 15 21 29 23 45 32 35 29 32 30 35 34 20 33 36 28 36 27 24 32 30 43 42 37 39 36 30 28 18 27 23 29 27 22 36 32 22 22 18 25 21 19 22 26 23 23 20 20 20 22 23 18 21 24 23 24 31 27 39 31 30 44 34 33 24 33 36 35 26 30 47 33 32 25 31 25 29 40 24 39 33 31 21 32 16 21 16 9 16 22 18 28 25 31 36 22 25 34 30 30 21 21 22 31 26 28 27 40 31 36 40 27 36 31 28 19 25 24 26 28 40 26 33 35 31 23 38 34 40 30 34 31 29 30 32 26 19 26 35 21 27 22 28 28 22 28 28 37 33 24 29 48 35 38 35 30 28 40 31 43 32 31 32 29 36 25 30 27 31 20 33 38 26 24 31 25 34 35 25 21 18 12 12 15 14 17 15 13 13 19 14 17 21 +20 18 11 20 12 16 12 14 14 24 22 20 25 17 25 36 25 15 28 36 18 29 30 22 36 37 29 24 33 41 38 34 25 45 34 27 28 23 30 35 29 34 39 31 40 24 29 34 29 34 37 25 19 28 22 30 30 30 24 24 21 31 31 33 24 24 31 31 34 26 28 40 19 32 26 23 27 27 26 24 31 26 24 39 39 28 36 23 22 19 21 29 32 27 29 29 28 25 26 22 30 26 13 14 11 24 19 14 22 22 24 31 25 39 40 33 27 24 24 37 35 42 31 17 32 32 30 40 30 27 34 35 42 39 32 25 27 23 22 24 25 21 20 25 13 19 20 26 26 24 9 21 19 29 25 14 22 25 19 24 18 19 23 30 25 28 29 30 41 37 33 36 35 33 41 20 29 28 35 37 27 31 27 28 35 35 40 28 30 27 20 20 12 8 13 18 17 14 29 30 26 28 28 23 28 25 21 25 18 24 22 23 22 37 47 34 36 21 33 34 19 17 29 29 20 27 21 25 23 22 32 34 41 23 34 32 29 31 31 28 37 49 49 30 28 28 27 36 32 29 30 34 25 33 28 30 31 29 38 31 29 32 21 32 29 35 34 32 42 32 28 32 30 36 33 35 35 32 23 20 22 24 28 28 22 30 23 22 15 15 18 17 15 11 16 15 11 14 13 27 +20 11 23 14 22 19 17 30 16 23 18 13 15 35 20 23 26 24 26 22 33 24 33 34 34 34 31 29 25 20 38 26 35 32 26 32 30 29 36 33 38 32 23 34 44 42 33 29 40 26 31 25 22 25 29 21 26 25 34 37 35 42 34 32 37 27 37 35 38 21 28 21 27 18 18 25 16 24 22 20 25 19 22 28 51 52 43 29 19 32 24 19 35 17 22 23 25 30 30 29 42 27 31 24 23 16 21 9 12 22 29 27 39 41 29 30 42 30 36 27 29 30 30 20 20 26 30 34 35 27 29 32 32 34 26 37 26 32 29 27 19 27 23 27 18 27 25 20 30 13 27 26 20 15 22 16 24 22 28 23 25 21 29 30 29 45 33 30 36 26 29 25 23 28 30 25 32 28 42 30 22 30 25 24 28 38 38 23 23 17 30 16 7 16 15 26 16 22 22 24 33 28 40 27 33 37 18 23 13 21 27 21 26 24 39 35 38 24 30 33 17 20 19 19 12 29 30 24 26 26 33 22 32 34 26 29 37 28 26 30 39 41 34 25 21 34 25 25 25 19 27 27 32 35 35 29 27 27 26 39 38 30 27 33 31 24 25 24 45 34 28 26 35 32 19 32 29 29 37 22 28 18 31 19 24 30 26 33 18 24 31 12 22 17 18 15 23 28 27 15 +18 19 15 21 20 15 24 16 17 15 31 21 27 26 28 35 21 22 31 24 27 32 33 36 38 27 39 31 29 32 30 34 29 31 34 33 33 36 26 31 44 26 33 36 36 31 40 25 32 33 31 22 25 23 25 25 26 20 46 30 27 43 29 25 27 23 23 27 28 25 23 30 30 28 22 13 15 19 32 21 24 21 27 32 33 38 24 26 26 17 25 29 11 24 32 29 21 25 31 33 37 29 31 23 20 23 9 20 13 23 16 22 24 28 45 23 29 23 36 29 27 21 27 31 30 32 38 35 34 34 24 25 33 31 34 36 35 32 29 23 24 29 29 28 19 20 26 28 29 24 24 19 26 32 23 28 31 26 17 21 29 18 42 32 38 45 42 33 32 32 25 34 23 37 34 35 21 22 31 29 31 37 36 33 38 28 33 42 30 28 24 12 12 13 10 21 24 30 20 31 24 25 30 29 26 30 24 22 27 26 25 27 28 28 33 47 28 24 33 26 21 21 12 23 27 28 31 31 23 23 30 31 27 38 29 26 30 42 32 31 31 32 26 32 23 26 35 25 32 22 24 24 27 33 33 33 29 30 30 46 30 42 40 37 27 26 31 29 25 26 37 30 33 26 27 26 23 41 31 29 31 26 32 35 25 25 30 28 20 18 24 16 21 11 14 14 13 16 21 14 +17 27 22 19 22 16 29 23 29 22 33 21 28 22 32 28 29 34 30 26 29 41 33 33 24 29 32 21 36 28 23 21 28 33 24 35 39 29 32 28 22 36 21 42 23 35 34 29 30 26 28 26 15 27 24 23 30 39 26 35 28 31 45 34 27 40 25 38 30 26 29 28 29 31 29 19 21 22 20 22 19 25 22 25 29 38 25 30 19 25 30 21 20 21 24 24 33 28 27 19 21 28 24 18 17 23 23 10 20 16 18 28 21 37 38 33 39 27 28 31 39 27 27 23 38 36 29 29 27 32 32 25 38 30 19 38 43 29 33 40 33 34 29 30 27 26 25 24 43 25 22 29 27 24 29 21 32 27 27 35 28 28 29 38 28 35 24 25 22 30 35 19 29 27 24 28 37 31 26 30 24 40 25 27 23 29 28 39 24 16 10 14 9 17 25 28 24 28 27 27 29 30 19 26 35 26 22 31 26 35 35 25 25 38 37 32 26 25 33 20 16 19 17 22 20 18 27 26 35 33 34 27 25 33 30 40 36 34 29 36 40 25 41 30 17 27 24 28 25 22 18 26 37 30 33 39 31 36 24 26 37 40 28 35 23 31 24 30 32 35 31 37 22 32 24 28 34 31 28 28 27 23 32 27 29 30 30 29 33 27 22 28 33 20 29 21 19 28 16 19 +31 28 27 16 22 26 17 20 23 25 22 22 30 27 16 20 31 20 26 26 46 35 22 35 30 26 29 16 29 34 30 32 26 30 33 38 35 31 26 25 29 26 30 35 24 40 34 26 23 21 20 23 23 21 30 22 45 37 36 42 22 35 30 23 32 30 27 34 29 45 23 29 33 28 24 21 23 15 15 25 22 35 34 30 50 28 31 28 22 28 25 24 24 23 28 35 31 24 25 25 35 29 19 23 21 26 17 9 15 19 16 34 22 24 27 33 33 30 34 36 32 29 45 32 25 30 30 27 26 26 27 44 26 34 34 35 27 25 38 27 32 40 38 38 37 33 25 26 23 23 32 27 27 25 31 32 38 32 41 36 35 36 32 32 25 28 33 25 28 21 30 38 29 29 28 27 22 24 33 29 38 22 25 42 40 45 22 29 27 14 18 13 12 12 18 21 30 19 33 34 36 23 31 30 22 31 26 21 23 34 19 27 29 34 40 37 40 35 26 24 15 31 20 18 29 22 33 23 19 28 20 25 23 28 24 32 21 34 31 30 32 32 35 29 16 26 34 33 20 27 26 36 22 35 36 30 25 22 40 29 25 31 26 24 24 23 26 23 33 30 41 31 24 26 25 31 27 36 35 26 25 28 24 22 28 22 31 24 31 34 22 31 29 27 21 25 21 17 31 28 +33 15 24 19 21 20 20 29 19 26 26 27 21 28 17 26 24 18 30 29 34 38 30 39 32 25 29 33 30 35 25 30 31 39 32 32 30 52 37 30 31 30 26 31 24 43 27 28 24 22 26 21 22 19 20 19 30 37 31 33 27 34 27 31 35 27 27 24 34 30 18 29 23 24 23 20 14 30 18 24 33 30 32 39 30 36 31 27 30 24 24 19 20 24 26 24 34 20 22 25 20 23 27 23 21 20 29 19 13 8 15 20 33 32 25 39 28 33 33 34 23 30 31 22 42 40 32 36 30 22 33 34 32 18 30 35 32 39 38 20 32 31 32 33 29 36 41 28 39 30 35 26 34 33 27 33 46 24 32 34 48 38 27 23 36 29 30 28 23 26 24 31 20 28 16 33 32 22 26 33 28 27 22 32 26 33 34 31 26 23 12 9 10 19 31 13 20 20 29 36 24 30 28 28 37 27 24 23 21 20 23 28 24 38 30 44 30 27 37 22 18 18 21 20 18 23 21 21 26 22 22 33 19 35 35 22 34 29 34 27 31 24 27 38 23 27 22 23 24 30 34 34 21 26 28 20 32 23 29 39 29 42 42 29 42 28 24 36 32 33 34 34 37 27 28 33 23 25 40 38 31 33 29 24 40 36 17 19 33 24 33 28 18 24 25 31 32 20 28 30 +24 29 41 26 20 21 21 31 28 28 32 23 38 20 36 30 36 30 29 30 34 29 24 34 28 21 34 31 32 23 25 37 32 34 31 26 39 37 29 29 33 28 23 29 33 33 29 17 25 24 18 25 21 28 21 29 29 36 38 28 29 32 35 32 36 17 27 34 23 20 33 20 19 25 22 28 24 15 30 15 22 35 25 38 28 37 37 34 26 17 32 27 20 24 30 21 33 27 34 38 34 38 23 24 28 23 11 15 10 8 16 15 27 21 31 22 31 30 34 25 26 29 27 24 33 37 34 34 35 27 25 27 25 31 31 19 32 27 36 29 30 42 47 31 36 37 24 27 41 25 31 24 31 34 31 34 28 25 44 26 35 38 28 40 21 30 34 29 30 36 24 29 26 23 30 21 19 26 33 21 25 29 33 39 24 24 24 27 20 16 8 20 14 20 19 22 21 29 29 33 22 25 29 30 29 29 20 22 18 28 28 25 25 31 40 36 29 34 28 16 17 20 29 23 14 17 20 26 23 27 25 27 30 28 25 33 26 28 41 26 33 35 32 30 32 21 10 23 22 25 30 23 37 31 29 31 34 23 32 30 27 31 22 18 28 32 29 34 24 34 35 27 37 31 31 25 25 23 29 29 27 27 24 26 25 22 30 28 16 25 24 21 30 29 26 26 24 22 21 26 +24 30 13 18 38 28 31 21 37 22 12 29 31 20 32 29 36 30 28 32 33 29 32 31 28 30 28 31 43 20 30 34 30 35 32 21 37 28 38 37 22 35 32 29 27 28 23 24 23 25 19 17 23 19 23 33 24 35 28 26 29 34 33 43 36 29 32 27 24 25 21 26 20 18 22 27 11 21 16 19 26 32 23 29 37 32 36 29 27 23 19 21 23 24 30 28 19 25 24 32 34 21 28 31 31 20 15 11 12 14 16 14 19 25 29 23 31 36 44 34 28 25 22 27 28 33 31 33 30 24 19 25 31 28 28 31 22 35 27 35 36 31 30 27 29 37 18 38 32 37 38 31 30 27 34 37 29 23 26 26 37 30 34 22 27 26 27 23 36 19 26 20 14 35 29 32 34 34 37 33 32 36 30 31 32 30 28 37 21 5 11 19 17 19 21 26 23 22 28 24 32 33 26 22 32 21 34 23 19 28 23 30 39 33 37 32 37 22 25 21 30 14 15 23 24 22 17 22 26 21 28 26 25 26 31 35 23 21 31 39 37 29 40 33 28 25 23 19 25 18 33 22 35 42 27 34 26 33 32 32 28 34 29 30 43 44 29 26 33 25 31 41 26 22 37 34 28 32 31 34 34 34 26 29 29 35 35 34 24 25 26 30 26 25 20 36 29 31 26 26 +23 22 24 33 30 36 31 24 26 32 21 32 16 32 19 28 14 27 24 33 30 27 23 36 26 25 14 31 27 36 26 26 25 28 31 33 40 32 30 32 32 29 25 27 22 25 26 17 20 28 25 27 20 25 22 38 45 35 34 37 30 29 24 24 27 33 35 23 31 20 23 20 24 32 16 27 17 11 25 18 19 23 18 25 33 33 36 30 26 23 35 24 24 29 30 19 27 25 30 22 20 21 27 30 26 27 13 19 16 8 8 17 32 19 25 28 28 37 32 20 30 30 28 34 33 31 28 36 24 32 28 32 32 33 26 20 34 31 22 36 26 25 28 29 20 28 31 24 35 29 46 29 27 29 23 28 29 25 20 22 35 26 22 24 27 28 40 34 31 24 28 27 14 22 37 34 26 35 36 44 34 38 25 34 30 25 33 14 14 14 17 23 27 20 24 27 29 29 18 28 23 29 29 27 30 27 21 18 25 23 26 30 32 30 27 23 18 39 29 19 17 26 18 26 24 16 17 17 17 27 28 31 33 27 22 27 28 26 33 31 38 40 29 28 27 18 35 25 24 30 14 37 24 17 35 34 31 37 24 25 24 24 31 30 23 26 27 26 22 30 26 18 28 27 27 27 24 29 34 27 25 27 30 21 22 27 25 21 37 15 28 25 28 23 23 30 33 23 24 21 +27 26 22 31 23 22 30 23 18 30 30 23 28 31 31 29 27 32 26 26 23 29 32 27 29 36 28 30 29 23 19 24 25 31 29 37 25 28 28 41 26 27 29 25 27 24 26 25 19 18 27 17 29 23 27 22 27 33 34 18 35 24 35 27 32 18 31 34 33 17 24 28 28 23 19 17 18 14 14 17 29 19 33 31 30 44 40 37 25 19 15 23 21 15 22 32 24 23 25 29 24 26 25 26 27 24 16 11 13 16 14 12 19 23 24 20 34 21 33 36 31 22 30 34 25 24 25 17 26 27 33 34 26 24 26 32 29 26 21 28 31 29 32 28 33 29 24 20 19 24 28 20 37 42 25 31 32 21 24 27 24 22 22 22 30 20 38 25 28 21 24 18 28 22 25 25 30 25 34 45 37 38 17 24 29 22 14 18 12 13 18 16 22 33 15 27 26 23 32 23 33 27 24 26 24 20 27 17 17 16 22 26 22 38 35 35 24 32 36 15 14 18 21 31 26 22 18 37 18 28 31 25 38 20 19 32 25 31 31 38 32 43 30 42 29 21 20 23 14 19 19 24 24 19 27 25 21 21 24 28 26 32 22 26 23 39 29 26 16 31 22 27 28 19 23 28 38 27 23 28 27 33 26 27 38 34 28 41 31 26 28 33 32 31 34 26 24 28 24 23 +30 29 36 22 25 26 22 26 21 32 26 31 19 35 26 29 29 32 30 25 29 23 31 22 27 24 29 21 24 25 38 21 30 29 25 27 35 33 24 35 30 34 34 32 26 28 17 22 27 22 21 16 19 15 24 28 35 35 26 28 32 36 34 24 23 29 22 22 13 26 23 21 23 20 15 23 21 25 19 22 17 21 19 24 32 31 36 36 32 27 22 24 27 20 18 21 18 32 24 22 22 26 25 19 32 22 20 17 26 11 17 10 16 19 20 26 21 20 23 41 30 35 26 28 23 35 21 28 29 23 15 29 23 39 19 28 23 24 31 29 23 20 29 28 30 19 17 26 28 18 26 28 25 27 33 26 25 28 27 24 30 21 23 21 20 26 38 33 35 33 27 26 43 35 29 30 36 30 36 36 31 27 24 26 18 20 18 11 16 15 12 19 16 17 25 26 29 26 26 34 29 24 36 21 28 26 33 33 33 22 24 27 28 32 32 28 28 23 28 26 26 15 16 14 33 25 28 18 30 24 24 17 25 27 31 21 30 32 28 22 18 21 26 29 34 35 24 25 26 22 24 23 29 16 31 21 30 21 28 21 27 23 31 22 38 30 25 37 30 36 29 37 32 35 23 24 21 25 31 27 28 24 22 30 23 25 34 36 31 29 33 23 25 20 22 24 21 23 23 27 +29 23 33 32 34 20 22 25 24 21 35 32 31 31 36 20 28 30 30 34 29 20 23 29 34 31 17 35 27 26 27 22 40 25 26 29 24 31 29 24 31 29 36 33 28 18 31 17 20 9 30 23 24 25 24 28 22 41 30 24 30 24 30 34 26 29 28 18 25 15 30 21 29 21 24 19 20 10 13 16 14 31 22 26 26 22 31 28 34 20 26 25 18 23 19 23 25 20 33 25 27 27 31 19 25 26 27 21 24 18 14 14 14 7 20 28 25 16 31 26 38 19 37 22 36 37 44 25 20 36 28 18 21 28 26 27 21 29 25 20 29 32 24 24 32 21 24 29 16 27 33 32 34 27 24 27 31 20 29 25 25 22 36 30 25 19 23 28 25 26 28 24 23 28 27 33 29 27 36 32 30 20 30 29 27 19 13 14 14 10 22 20 19 25 22 23 31 21 25 22 21 23 22 27 23 20 24 20 22 28 32 16 27 39 28 29 18 21 21 23 17 18 22 18 16 20 21 22 22 27 14 27 33 20 22 28 17 30 22 33 31 17 29 30 40 28 22 19 26 19 25 27 22 30 28 33 34 30 21 23 31 31 32 30 36 31 24 32 38 26 25 20 32 34 24 23 19 20 34 34 27 27 24 28 29 24 28 20 31 25 21 31 29 31 26 23 26 32 22 22 +22 33 29 25 30 28 27 25 24 30 26 26 24 22 24 23 20 36 26 23 20 26 19 21 24 32 20 28 25 27 21 27 24 31 35 32 24 26 25 23 29 27 22 29 31 24 25 24 27 18 27 18 18 24 29 39 25 35 35 30 21 19 31 21 27 23 23 26 21 25 16 27 33 29 19 23 9 21 19 21 11 22 22 28 31 37 38 24 29 19 24 22 23 25 22 20 18 29 32 20 23 32 29 24 19 31 26 24 19 18 21 14 17 11 11 18 22 24 20 26 28 26 37 30 30 32 24 19 31 29 26 23 29 29 18 26 23 24 30 25 26 32 30 27 24 23 20 25 23 23 20 20 36 21 27 28 31 28 29 27 31 31 36 23 25 31 21 32 18 19 34 30 31 31 22 32 36 34 36 26 27 14 21 23 11 12 15 15 16 16 26 25 21 20 21 23 25 23 19 28 28 26 17 22 27 23 10 19 17 21 24 22 40 26 31 25 23 31 20 15 19 7 20 21 26 30 17 19 24 32 25 17 31 32 21 24 25 26 29 33 34 24 31 21 40 29 28 25 25 26 20 14 18 23 21 28 27 26 28 23 36 32 37 27 30 23 31 19 27 35 20 15 27 17 24 20 31 21 35 29 25 30 32 27 23 20 27 34 23 29 22 25 26 31 30 31 32 28 25 25 +26 19 26 28 26 29 23 25 34 33 23 28 20 26 28 28 25 28 21 28 31 32 32 22 20 28 23 25 19 31 28 33 15 19 23 20 32 24 23 24 27 26 26 15 21 21 20 26 27 16 19 15 23 24 28 28 26 22 26 20 36 30 29 24 26 33 33 26 28 25 25 17 20 27 20 23 21 12 22 13 20 22 26 26 25 37 31 30 18 26 22 15 27 27 17 16 23 25 34 30 25 26 19 26 16 25 23 23 20 21 23 8 13 8 17 16 15 25 24 31 25 30 33 33 29 36 31 22 28 33 31 23 27 26 33 22 30 24 27 20 23 25 17 20 21 15 19 30 35 32 19 35 26 26 19 32 16 19 14 22 24 30 34 20 31 27 25 42 23 25 27 29 23 26 28 30 25 27 31 34 21 16 23 19 16 17 12 15 20 23 12 13 29 29 25 27 25 30 19 32 29 30 24 30 14 15 25 23 21 28 38 30 26 37 28 23 17 18 23 15 18 14 17 24 17 21 21 16 27 22 24 18 30 26 29 21 31 33 21 31 34 33 31 28 39 23 22 22 31 20 24 17 28 28 22 22 24 32 17 27 25 21 31 23 20 32 38 18 31 25 27 24 19 32 31 26 25 29 28 25 24 27 27 30 30 31 23 26 28 27 28 21 22 26 35 23 31 29 19 31 +23 32 27 32 27 33 23 29 27 27 33 30 24 25 21 23 23 17 32 26 28 28 23 28 25 29 25 28 33 39 37 24 41 29 21 30 32 40 33 26 31 23 32 23 27 19 17 19 32 18 22 18 24 31 32 33 28 26 24 27 28 27 30 19 24 24 23 25 24 24 27 23 22 16 13 16 17 16 21 11 14 22 27 32 11 25 35 24 32 29 32 19 14 17 17 20 17 18 26 27 18 28 19 27 34 28 35 26 19 15 14 20 16 6 14 6 20 23 18 29 29 18 35 27 33 29 28 27 23 25 37 25 24 22 29 29 28 29 26 20 20 27 24 23 18 30 26 29 30 27 25 26 19 21 20 29 28 30 21 18 22 24 22 23 32 33 28 30 16 24 30 24 28 24 38 24 24 22 25 18 14 20 26 12 9 11 10 12 18 16 17 24 19 14 25 19 28 22 17 27 32 24 24 20 18 26 20 21 23 24 29 32 45 42 28 38 23 24 21 19 23 10 10 12 24 22 24 24 31 30 22 26 25 25 30 22 24 30 25 27 33 32 34 28 30 36 23 19 22 22 17 26 15 21 24 20 25 33 27 28 27 30 20 21 31 31 27 30 43 31 23 29 30 25 29 24 29 33 31 27 20 28 22 24 16 29 29 16 23 22 27 16 27 17 25 22 32 13 28 26 +35 21 33 24 17 20 31 26 22 24 22 20 25 28 31 19 30 25 21 31 26 28 24 25 20 22 28 23 26 33 26 31 26 25 34 18 25 27 25 23 30 21 23 27 27 16 27 23 24 11 18 24 21 21 29 38 27 31 32 25 27 28 35 30 23 28 31 24 26 31 29 22 29 24 24 23 13 15 16 11 19 19 31 21 27 27 36 35 22 26 18 19 28 26 23 17 29 21 28 17 25 22 22 21 33 23 21 23 15 14 13 12 25 10 12 9 17 19 29 22 30 21 26 26 29 29 31 36 24 25 24 23 25 20 18 16 27 22 29 30 22 21 20 26 24 29 27 19 36 27 25 25 31 27 22 23 17 43 25 29 23 27 32 30 24 26 42 30 28 24 30 21 32 25 32 26 25 25 22 20 23 17 19 19 9 8 19 15 15 17 16 29 18 24 22 22 18 29 19 27 26 35 21 14 26 27 32 28 27 13 28 28 29 48 31 26 23 31 19 12 13 21 18 23 18 20 25 16 16 21 12 20 33 29 18 28 33 32 21 33 24 39 23 32 26 17 24 27 12 18 20 24 14 26 26 26 16 22 26 29 31 23 26 19 27 37 20 22 35 21 22 26 31 30 27 28 22 20 19 23 29 34 22 17 25 22 28 28 34 27 21 28 27 19 35 23 28 25 25 18 +23 32 21 21 25 15 24 22 30 24 31 28 42 23 28 16 24 37 31 27 26 25 27 21 20 20 25 22 17 24 26 28 21 30 28 24 28 20 30 17 20 17 27 19 21 21 19 28 24 13 24 21 26 25 22 25 24 27 24 26 31 19 38 17 26 31 28 33 19 29 22 21 20 15 27 24 27 11 21 14 27 17 21 26 22 32 32 27 28 29 32 26 21 29 24 26 16 30 22 27 27 22 26 20 25 23 39 27 21 21 16 13 13 22 10 9 16 18 22 27 21 20 22 30 27 34 22 35 34 26 26 24 19 23 27 19 25 25 22 28 17 30 21 19 17 28 30 19 25 26 24 12 21 23 29 26 26 23 25 28 15 25 21 21 29 29 27 26 21 21 25 30 26 26 24 29 30 21 30 22 30 16 15 9 13 11 11 16 14 15 20 19 27 28 19 24 18 20 31 23 27 17 25 16 20 30 20 23 28 24 25 29 32 30 27 19 24 31 26 19 17 15 18 19 16 19 16 23 22 22 29 18 22 19 22 18 31 30 32 39 28 27 29 24 23 29 26 23 16 14 16 24 17 33 15 19 15 25 26 31 33 24 28 21 29 31 29 33 27 21 22 24 27 23 25 22 24 26 23 25 22 26 25 27 17 28 27 16 23 22 21 25 28 34 21 19 22 29 31 25 +29 19 14 23 28 22 19 24 26 31 25 22 19 19 36 23 27 21 36 27 21 25 26 28 22 22 30 21 22 19 27 33 21 37 22 21 22 22 33 20 28 15 17 23 21 22 18 23 26 22 19 30 25 40 19 25 29 20 35 38 30 25 20 21 24 24 24 18 16 27 25 26 24 24 20 11 16 15 16 21 22 19 27 24 20 34 28 27 27 20 21 24 20 23 17 15 23 22 25 26 20 26 19 22 24 24 29 24 15 24 25 20 16 15 21 12 10 14 13 16 18 19 28 15 16 30 29 25 39 31 33 23 25 21 24 27 28 22 31 21 29 22 23 22 24 23 14 33 29 26 26 21 18 25 26 26 17 20 29 32 18 30 27 24 22 25 25 30 40 26 29 30 28 19 20 22 25 22 19 20 16 10 14 7 14 16 19 16 20 19 23 24 24 22 18 27 22 23 12 22 40 25 18 21 24 23 15 17 17 18 25 33 34 33 25 25 30 26 21 19 14 15 14 21 15 21 11 22 24 30 26 23 23 23 22 28 24 17 30 34 12 20 27 37 19 27 26 27 24 22 16 15 23 25 23 18 20 17 29 26 19 31 36 27 20 22 30 21 25 23 34 25 26 26 36 22 35 27 26 28 27 28 28 22 33 23 22 33 25 29 30 22 29 29 29 24 33 35 28 33 +29 16 27 27 25 22 26 26 25 25 19 26 23 37 22 27 22 18 15 27 18 17 24 20 26 26 30 28 24 26 20 29 32 22 26 26 20 22 22 28 21 24 20 27 24 18 17 15 13 14 23 16 27 26 36 27 26 26 26 29 30 30 22 32 21 29 19 31 26 28 21 18 24 21 26 13 19 26 14 15 16 13 22 26 27 28 28 30 34 35 18 17 12 24 15 20 15 21 17 26 25 28 29 20 32 23 26 15 31 21 28 20 19 14 8 19 12 12 10 12 11 34 12 24 23 20 24 24 29 33 25 28 27 23 31 29 30 17 17 24 22 22 15 29 28 29 26 25 20 18 21 24 19 22 21 22 27 26 28 26 28 30 18 22 24 25 37 27 28 23 31 37 22 12 19 23 17 19 17 18 21 13 5 12 11 15 20 14 21 22 25 15 21 29 25 26 13 30 29 22 20 22 21 19 18 26 13 25 15 19 18 34 28 29 25 18 16 20 20 13 8 19 20 13 20 30 23 20 17 20 20 25 20 23 23 26 27 31 23 26 23 28 29 18 28 17 36 22 27 17 19 19 9 15 12 24 20 19 31 25 27 22 21 18 36 22 22 26 27 25 15 23 19 21 26 24 23 22 25 21 16 23 25 18 25 24 28 26 34 24 21 29 38 24 30 23 32 30 21 29 +22 18 25 37 15 23 33 21 16 25 26 26 25 28 25 27 24 41 13 22 19 24 20 19 25 23 23 18 26 29 27 30 25 19 31 15 31 25 18 17 20 14 15 20 23 17 28 16 16 13 22 25 28 28 30 31 23 25 31 33 30 27 19 23 18 19 18 20 35 24 20 25 19 20 16 20 18 19 20 22 14 16 25 20 15 27 38 34 27 29 26 18 18 21 15 22 15 15 25 19 15 13 17 18 26 21 17 20 22 20 12 22 13 21 15 15 10 8 6 11 16 14 16 23 16 21 21 26 20 27 26 20 24 28 25 28 26 23 20 24 30 27 25 22 21 35 22 21 32 27 22 34 20 26 25 29 25 16 21 29 22 20 26 28 22 22 36 29 24 35 28 20 39 19 26 21 29 9 16 10 9 8 8 9 17 14 18 14 20 19 15 11 12 38 23 30 21 21 19 20 24 17 38 19 18 15 15 24 17 22 20 31 30 36 20 23 28 20 20 19 15 15 15 18 18 20 16 31 16 19 19 14 26 27 16 25 26 21 21 27 26 29 25 26 16 37 24 26 24 22 15 20 15 22 15 20 16 19 20 22 20 26 27 25 29 26 22 21 30 34 33 26 20 20 31 23 36 25 29 26 22 17 17 22 27 24 30 26 29 24 25 21 23 32 19 20 22 35 23 25 +30 25 24 23 13 26 25 21 22 23 22 23 21 20 25 24 21 21 26 32 22 25 23 22 25 16 30 34 26 29 23 35 20 35 30 25 19 29 20 14 30 12 17 19 25 21 16 20 15 19 13 26 29 26 21 26 27 27 25 18 18 27 23 26 32 15 17 22 24 27 18 27 18 17 13 24 19 15 18 20 12 23 21 14 20 22 27 27 30 29 20 26 18 18 18 21 27 18 17 32 20 25 24 25 23 16 24 23 11 24 20 21 19 19 20 21 14 13 13 7 11 14 17 19 15 22 19 19 18 33 24 19 33 25 31 27 27 26 26 22 20 26 29 18 20 31 23 20 23 15 22 26 11 28 18 27 27 13 24 27 19 22 23 25 26 35 31 37 25 25 11 19 22 15 17 19 12 14 9 4 4 14 7 15 9 11 17 22 15 23 26 25 28 28 27 22 25 32 23 26 21 24 17 28 26 30 21 17 33 16 17 28 33 27 21 16 23 22 17 19 21 19 15 24 17 21 18 13 24 37 25 26 21 31 16 18 20 21 18 32 28 21 26 28 23 26 22 14 30 27 16 20 12 21 16 16 17 21 22 21 18 22 21 24 26 26 35 26 17 34 19 18 35 28 19 24 32 21 27 28 27 27 27 21 21 25 24 25 23 23 23 25 19 24 28 17 23 23 22 31 +21 24 31 17 22 17 27 31 28 27 15 24 18 20 27 21 17 20 18 22 22 20 23 26 31 21 24 29 17 20 26 25 26 19 17 18 18 23 26 24 17 24 23 17 24 19 12 20 19 21 16 19 21 15 29 23 20 28 29 16 24 29 28 24 19 25 23 19 12 23 25 19 13 25 19 14 17 19 13 25 26 26 25 25 19 25 26 37 32 26 21 22 29 21 24 21 8 18 10 19 26 16 22 20 24 28 24 14 15 15 19 29 23 24 17 13 16 8 11 11 13 11 10 12 17 15 20 14 27 14 29 21 25 26 21 17 21 25 23 19 38 26 28 26 31 25 25 24 18 26 25 32 28 22 20 23 26 34 20 30 20 31 32 36 24 25 28 32 21 34 16 26 21 21 15 17 14 7 15 8 7 18 21 14 20 16 15 12 17 14 14 18 22 23 20 22 21 21 29 20 18 20 14 17 22 15 21 21 21 27 15 28 38 27 29 23 22 31 22 11 15 17 20 13 19 25 21 22 19 30 21 21 16 23 20 34 23 20 32 30 24 41 14 20 23 23 26 23 25 14 25 16 30 21 17 15 18 12 10 21 26 18 24 35 29 27 33 20 25 22 19 28 35 23 32 24 25 28 22 27 25 23 14 26 23 24 17 23 26 25 16 30 32 28 27 25 25 27 22 28 +28 20 24 19 25 21 26 20 22 25 27 22 22 23 19 23 31 19 26 26 27 29 20 29 19 26 13 22 28 29 21 28 28 27 18 25 15 19 16 19 28 28 17 14 22 16 24 18 22 24 20 22 25 15 23 26 27 23 27 22 35 17 23 19 26 27 13 18 14 22 21 22 16 15 21 17 13 14 15 11 11 19 15 17 17 26 37 23 22 28 23 23 18 21 24 20 18 25 14 21 19 23 19 27 21 25 14 30 27 19 17 18 15 21 22 17 18 17 11 16 22 17 11 6 12 15 11 16 27 21 17 19 23 12 16 20 22 21 21 34 23 28 28 20 21 19 21 26 33 26 22 21 32 36 36 27 22 31 34 16 20 37 20 24 24 20 18 20 25 19 20 28 18 14 16 9 8 9 10 12 11 4 17 16 13 14 29 23 16 17 22 22 29 16 11 22 30 19 26 23 28 24 17 19 17 14 18 17 22 30 26 27 21 30 11 18 16 20 16 12 9 11 18 14 24 21 13 21 22 17 24 18 18 21 25 28 21 22 22 30 22 30 18 21 22 25 20 26 23 22 19 20 21 17 15 19 18 20 22 27 27 22 26 23 22 30 21 35 32 23 29 17 31 14 29 23 30 20 26 18 26 23 22 19 19 25 23 16 18 26 30 24 24 15 26 23 14 22 22 22 +24 17 15 21 24 21 30 21 22 21 16 23 28 20 26 15 18 20 30 22 28 26 18 19 26 29 31 29 16 18 24 18 26 26 25 20 23 20 22 19 20 23 20 18 21 11 14 14 17 14 26 20 17 34 32 32 18 21 16 29 32 18 28 23 23 17 25 19 17 19 17 21 22 17 21 17 17 20 13 17 18 10 22 19 18 32 30 23 28 26 33 12 19 19 25 19 13 16 16 12 21 24 22 27 21 17 24 27 25 27 31 18 19 18 30 28 9 20 17 20 13 19 10 7 11 11 14 14 14 23 17 18 14 16 19 15 14 27 29 17 12 32 29 18 26 26 29 37 22 26 23 26 29 17 20 22 21 19 22 11 19 21 22 21 11 28 23 14 18 21 17 20 21 11 16 10 10 7 14 11 12 17 28 17 20 14 23 20 22 22 19 30 18 20 18 19 28 28 16 16 17 21 10 21 15 19 18 22 25 27 21 25 23 19 20 29 27 15 22 10 17 18 13 14 15 27 14 19 25 24 25 15 18 18 26 25 23 26 21 19 20 32 17 21 30 21 18 25 40 16 19 23 18 19 24 25 12 20 19 15 20 27 20 37 25 22 22 27 25 18 15 38 23 20 16 20 23 21 13 22 32 28 19 18 16 17 18 16 23 20 15 16 28 25 18 23 23 18 23 23 +32 26 29 16 28 18 25 20 19 24 26 17 22 21 31 31 28 24 21 28 24 18 17 17 18 24 21 27 20 31 16 29 23 21 28 21 23 22 20 27 29 21 12 17 13 25 20 16 14 25 20 29 33 27 25 25 24 25 17 23 24 29 20 24 26 22 16 16 13 16 15 19 18 24 16 19 15 13 20 20 16 13 21 26 12 22 22 32 22 22 18 26 17 13 18 21 13 21 17 12 14 20 29 17 30 25 12 14 27 23 17 16 16 21 22 30 14 9 12 21 19 10 10 12 7 9 8 11 17 19 24 21 21 12 19 17 10 22 20 19 22 18 14 28 24 18 24 22 23 22 32 21 21 32 24 26 18 23 21 21 18 18 14 15 24 21 16 15 15 14 14 11 12 7 4 6 9 11 15 16 13 25 19 17 25 18 13 18 17 15 18 20 21 29 26 25 26 21 20 27 20 20 15 19 22 18 12 21 23 35 21 40 30 22 19 12 23 17 22 9 16 19 21 15 20 29 9 26 26 21 16 23 25 12 16 24 27 15 24 23 14 21 22 18 22 34 18 21 16 18 18 16 23 22 17 24 21 13 16 26 27 19 16 13 12 20 24 28 26 21 23 25 22 28 23 17 26 24 15 19 29 31 19 16 20 27 16 17 21 17 23 33 12 25 17 20 23 11 26 29 +19 26 23 31 23 23 26 26 21 17 22 19 19 27 31 12 21 21 25 22 28 34 24 27 20 25 19 15 29 29 13 20 18 26 24 15 20 14 17 20 13 14 25 13 23 12 15 16 22 21 31 22 27 26 27 19 18 25 27 24 20 32 21 18 22 26 23 24 22 17 17 16 20 21 18 15 20 12 13 16 18 16 16 17 15 25 21 20 30 22 31 32 19 8 19 7 22 14 23 17 12 9 14 23 21 17 27 12 17 22 23 27 19 17 24 19 25 19 14 17 9 16 13 7 15 9 9 5 12 11 9 15 15 21 25 15 23 13 16 18 10 19 26 15 15 14 17 30 20 16 22 16 22 26 22 21 21 22 23 15 19 21 9 16 21 13 13 25 18 10 7 7 9 8 13 15 9 10 9 17 20 16 17 20 34 26 17 21 17 18 22 27 25 23 23 21 22 14 26 16 13 15 21 26 15 17 17 17 29 29 32 17 13 20 21 21 17 20 24 14 15 9 18 24 21 17 13 13 13 18 24 15 20 12 25 19 20 22 24 22 25 15 29 16 21 23 22 17 14 18 25 23 15 18 21 21 15 24 16 17 18 25 13 22 25 24 19 22 20 26 21 20 25 21 16 24 22 25 19 20 25 24 25 32 24 21 17 24 20 34 20 23 33 22 22 25 14 20 20 20 +17 20 26 14 33 23 27 17 21 21 26 15 23 21 27 28 29 27 35 26 25 29 29 25 18 21 18 26 21 25 26 20 16 20 21 31 21 25 20 14 20 19 17 27 14 20 19 17 26 24 32 25 24 17 20 25 24 23 19 21 19 25 25 18 27 29 16 18 18 13 23 15 16 16 20 15 19 15 15 11 15 18 20 25 16 18 11 22 28 29 21 25 14 19 14 16 14 25 13 23 17 21 16 20 21 15 14 22 15 7 24 18 20 23 18 23 16 25 13 17 13 15 11 14 12 12 11 14 16 10 7 8 14 15 15 22 17 21 34 26 15 22 21 21 16 20 22 18 22 17 16 15 21 22 22 22 22 21 12 17 21 23 11 18 12 18 12 7 8 10 12 11 7 11 14 8 15 14 12 15 11 19 22 16 16 16 12 24 18 17 15 17 25 22 22 17 18 24 21 16 19 12 23 13 20 21 26 18 19 25 28 18 21 26 22 18 19 24 13 20 17 18 13 10 22 20 27 18 19 11 14 20 15 22 19 26 19 19 20 22 20 24 31 17 23 25 13 21 23 21 29 18 12 20 21 24 15 24 18 15 16 18 18 25 20 19 20 20 23 27 17 23 21 20 21 22 16 21 19 19 23 14 22 6 25 19 14 30 15 20 20 24 20 14 14 25 15 18 19 16 +19 24 23 28 21 27 21 30 26 22 19 18 25 17 23 17 23 23 21 17 20 25 23 18 28 25 27 18 26 14 20 25 18 27 20 11 24 18 16 22 15 20 17 15 25 24 21 14 21 21 28 12 32 34 23 26 22 23 21 31 30 20 24 25 25 23 18 16 23 19 18 22 12 19 13 16 15 19 20 12 10 14 21 15 20 20 20 23 20 21 28 29 27 17 15 14 19 16 15 21 13 22 17 24 17 19 29 27 24 17 19 21 32 23 10 14 18 20 19 14 20 20 9 14 13 17 15 12 11 6 8 12 7 9 13 11 11 18 11 22 12 8 16 23 17 14 17 15 25 12 18 19 18 15 17 15 13 14 21 13 12 15 19 17 10 8 10 13 10 10 8 10 13 9 12 11 12 7 18 18 12 18 22 18 18 18 19 20 21 18 21 20 31 13 15 18 22 11 14 16 12 15 13 15 23 18 21 20 31 29 27 32 29 20 11 16 13 18 16 17 14 14 23 14 21 19 13 29 16 13 16 22 17 19 23 22 21 24 19 24 26 17 32 31 22 21 30 23 16 15 20 28 17 18 14 18 17 28 16 16 22 19 17 22 17 16 22 14 20 18 12 28 17 14 19 22 21 33 22 25 20 19 19 29 29 22 23 11 26 33 21 20 22 25 19 20 19 21 24 23 +21 25 20 20 21 17 21 17 21 25 25 18 20 19 20 27 26 25 26 21 15 26 24 20 27 23 16 15 18 21 17 27 12 14 22 16 15 14 13 10 18 21 15 12 20 24 20 30 16 21 21 23 20 27 23 22 20 21 31 22 20 18 21 25 21 21 23 17 15 15 16 14 19 16 19 13 17 12 9 20 14 17 20 18 19 19 27 20 29 31 22 21 19 20 14 18 21 17 30 16 11 15 16 14 14 18 19 13 21 19 26 24 30 14 15 14 20 22 20 15 19 23 12 10 10 10 15 18 11 16 11 14 7 5 8 11 9 9 10 7 9 15 21 15 17 27 14 17 15 18 9 15 23 17 22 20 12 15 20 11 15 9 9 13 5 11 8 6 11 12 7 8 13 14 14 14 14 13 19 23 13 25 16 12 15 17 10 20 12 13 22 18 23 18 20 12 16 17 23 9 16 16 11 22 25 21 18 13 20 24 33 27 22 25 16 18 18 15 14 22 18 12 12 13 20 17 16 21 14 13 24 11 17 31 20 25 17 23 25 18 25 25 19 22 26 21 30 19 22 19 23 21 16 18 12 12 22 11 15 19 12 12 22 9 24 21 17 16 18 15 24 27 14 20 18 19 20 23 22 30 21 27 22 28 25 25 17 19 22 12 20 25 17 23 18 18 27 15 26 18 +20 19 15 36 22 24 13 15 24 24 27 25 20 22 26 22 25 18 11 23 19 28 18 21 29 24 18 19 20 24 22 10 16 21 19 11 19 17 11 8 18 16 14 22 22 16 18 14 23 15 25 21 14 22 22 14 23 19 14 15 14 24 23 22 13 26 16 9 22 13 22 18 12 15 20 13 10 8 12 10 14 22 14 27 15 20 23 18 23 32 23 20 20 14 32 17 17 22 18 19 16 25 11 13 23 20 17 18 18 23 17 17 20 26 20 12 22 26 12 16 23 14 15 11 24 11 14 8 20 11 10 9 13 15 13 10 5 6 19 7 13 16 14 10 7 11 13 16 18 19 9 17 7 16 14 12 15 11 11 12 10 9 9 9 13 7 11 7 10 8 18 10 20 19 14 11 12 16 14 22 22 15 20 13 17 25 22 14 13 18 21 18 10 13 21 25 18 16 21 19 15 16 15 13 22 32 13 17 27 26 20 17 22 20 28 19 14 9 8 16 13 13 19 14 17 12 18 25 15 8 19 14 19 19 28 16 18 18 21 19 18 24 19 24 20 22 25 24 15 34 11 22 30 30 14 21 18 15 15 16 8 19 11 18 21 16 18 19 24 25 23 21 20 24 20 16 20 20 20 14 25 14 16 22 21 16 19 12 18 22 18 15 25 20 17 28 22 26 13 25 +12 17 19 21 23 21 20 18 15 12 24 25 8 16 23 22 22 32 24 13 12 14 18 15 24 15 15 13 17 25 13 17 12 20 6 16 20 16 13 18 23 17 15 9 17 14 15 22 19 12 27 22 25 26 19 19 20 20 26 19 28 14 24 9 19 15 21 20 25 18 20 16 17 13 20 9 15 11 16 13 15 10 10 21 16 19 20 17 16 17 20 30 25 18 11 17 15 12 18 13 16 15 21 12 18 15 13 20 23 15 24 16 19 19 12 29 16 13 16 21 27 15 20 18 17 12 15 13 11 5 11 16 8 6 7 10 9 12 11 8 9 8 9 12 4 8 9 9 12 8 8 7 9 5 14 13 9 11 6 6 7 7 7 10 9 7 8 16 6 12 12 19 12 13 13 19 10 20 15 23 23 12 6 16 17 18 21 21 15 21 19 29 19 15 18 13 22 28 23 18 15 10 29 20 15 14 16 19 24 18 19 15 18 18 19 19 15 11 13 19 11 12 7 17 13 13 16 9 13 16 14 15 13 19 14 19 21 15 21 16 24 20 19 19 19 18 25 10 21 19 14 14 25 18 25 19 14 14 12 20 12 17 7 15 12 14 16 22 14 11 16 15 22 26 23 18 23 18 10 23 26 21 17 18 11 23 17 27 17 17 23 36 25 21 24 18 21 20 16 26 +27 35 29 19 18 20 21 24 23 22 22 18 16 26 21 23 17 15 15 23 16 14 22 13 15 22 18 32 12 12 19 16 24 14 15 14 13 21 12 13 21 17 15 15 19 13 19 12 15 19 20 25 18 21 17 11 20 17 20 25 19 24 17 16 26 16 19 13 6 17 10 15 14 15 12 16 6 15 14 8 18 12 19 13 19 24 20 17 14 24 29 27 16 23 25 10 12 15 25 14 15 14 15 19 14 14 13 22 21 29 15 17 14 11 13 19 18 16 14 21 17 20 18 13 19 17 18 14 11 13 17 10 14 12 8 9 10 10 6 15 5 6 13 5 8 5 8 6 13 12 10 4 9 14 8 6 5 10 8 8 7 10 12 13 12 13 12 12 11 14 16 8 17 16 11 20 9 18 16 24 14 19 18 21 11 21 17 11 16 21 17 12 25 14 12 18 13 25 9 11 17 24 19 19 14 16 24 26 29 24 19 15 20 14 10 17 8 15 12 17 14 15 11 15 21 16 14 12 18 18 17 11 11 20 13 16 17 24 18 23 14 21 28 21 20 23 25 11 21 23 17 17 22 17 15 22 16 24 11 12 19 14 15 25 15 19 19 13 18 11 21 15 23 17 19 21 22 18 15 25 12 21 20 24 18 18 18 25 21 13 21 26 26 21 17 20 24 16 16 22 +16 34 25 24 20 19 19 18 27 15 22 10 33 22 29 25 25 17 18 23 26 18 15 10 20 17 16 18 18 15 14 21 8 17 22 13 16 14 19 16 7 6 19 25 12 24 21 20 18 13 11 14 22 21 17 18 20 34 23 22 16 20 29 22 15 15 13 16 13 21 18 22 18 22 26 18 12 10 15 21 9 19 19 14 20 18 13 10 20 18 29 19 23 19 22 19 16 11 19 13 10 12 19 11 19 14 16 16 20 22 11 18 13 19 15 19 11 15 12 14 14 16 10 16 20 20 13 19 10 15 12 17 17 19 12 15 17 11 12 11 13 19 11 12 10 7 4 10 11 9 3 6 11 6 5 9 10 5 13 10 12 12 10 5 9 13 10 13 12 12 19 17 20 26 10 12 15 13 15 8 12 20 11 14 14 13 19 19 9 18 20 25 22 19 17 16 13 9 13 15 13 13 14 18 12 17 28 17 25 16 21 16 23 12 17 13 16 11 11 10 11 18 16 15 18 17 16 16 18 17 21 13 17 19 19 6 20 22 19 24 17 20 18 22 15 15 24 14 14 17 14 26 18 17 14 19 18 13 14 16 18 14 10 15 14 16 15 10 15 12 12 15 16 14 15 24 20 21 19 21 15 20 22 25 15 28 16 24 22 24 20 18 19 25 25 26 15 11 21 18 +15 16 23 27 23 18 20 13 19 15 14 16 19 19 24 25 16 19 21 15 17 11 17 16 15 23 11 15 30 18 18 16 15 9 7 11 16 17 14 14 12 16 11 17 18 21 23 16 26 21 18 19 20 18 21 17 20 17 25 19 18 22 16 14 14 13 18 18 7 15 16 17 14 17 10 12 10 11 13 8 7 7 18 10 20 13 17 20 24 26 19 23 27 23 24 21 16 24 15 7 18 14 8 19 18 16 20 15 18 16 17 14 20 18 29 15 13 21 23 22 14 12 23 9 16 11 13 17 18 19 16 20 15 8 9 7 17 13 14 9 7 14 11 13 8 8 9 10 12 12 7 6 13 15 10 9 12 9 21 17 13 15 9 11 15 15 15 20 12 10 19 15 14 13 20 17 17 27 10 16 18 17 30 15 22 24 14 20 14 13 11 14 19 18 11 12 14 21 11 11 19 19 12 15 17 25 28 19 35 18 22 24 15 19 12 17 13 11 11 10 13 13 15 13 13 15 15 21 13 14 21 20 20 17 16 16 22 13 22 19 17 22 24 18 26 14 17 14 22 21 15 25 9 23 25 24 15 7 10 15 12 14 14 19 13 15 21 12 18 19 12 16 21 23 17 15 15 21 16 16 21 15 29 16 26 17 22 16 17 12 18 14 21 22 20 11 11 18 17 15 +20 22 24 16 12 13 21 15 23 16 9 24 21 19 19 13 26 19 14 18 21 15 19 18 13 11 20 13 12 18 19 20 13 22 8 13 15 17 15 13 11 17 18 17 18 21 23 19 18 13 17 16 24 19 22 21 19 22 14 16 22 21 16 11 17 15 19 11 22 9 12 15 15 16 11 17 12 15 10 10 11 13 8 10 16 12 17 18 16 19 17 30 25 22 18 24 20 21 18 14 22 16 16 15 22 17 14 18 22 26 23 12 17 18 13 22 18 18 17 17 13 15 15 17 24 19 17 22 14 21 20 23 16 15 14 16 18 9 12 13 16 16 11 7 10 13 11 9 13 10 7 9 8 9 11 15 11 16 10 11 13 13 9 11 11 11 15 13 18 19 23 13 13 18 21 15 15 19 20 14 19 14 17 9 13 22 12 17 12 17 17 18 10 14 18 14 14 12 17 24 9 11 13 16 22 16 19 30 27 12 22 16 18 16 18 15 17 14 11 9 23 13 15 15 20 14 15 11 18 14 17 14 11 10 23 22 20 18 13 16 11 14 17 18 16 19 24 12 18 13 31 16 18 21 15 21 16 17 16 14 12 18 17 16 10 16 18 6 13 15 16 15 15 20 11 16 18 10 25 15 17 12 18 15 14 12 19 12 19 24 19 16 19 18 18 13 11 25 19 19 +17 17 21 19 17 21 20 15 13 12 24 17 14 15 15 15 16 15 16 17 15 18 18 15 21 11 15 20 14 10 10 20 17 14 14 7 12 19 20 13 20 10 16 11 19 11 22 18 18 9 19 12 17 14 16 19 22 19 18 17 19 17 12 10 12 12 15 16 10 10 13 20 12 17 7 19 11 4 11 8 6 11 13 19 10 14 16 9 13 15 21 22 20 23 15 16 15 10 15 17 10 18 8 9 13 11 14 12 14 20 15 15 18 17 13 10 16 17 14 18 14 21 19 3 15 18 16 14 13 11 16 20 23 16 11 13 11 10 17 19 17 10 8 14 10 11 13 18 14 11 17 14 18 19 11 15 14 15 10 15 17 16 16 14 11 14 18 14 11 14 13 19 9 20 13 23 11 24 11 12 26 10 21 14 12 14 21 11 18 19 11 13 10 12 10 15 14 11 20 10 17 15 24 22 10 23 20 16 26 21 17 21 22 25 15 10 17 11 18 11 10 11 17 16 12 10 16 13 22 16 8 20 11 15 19 13 15 16 14 18 17 16 22 17 14 22 22 21 23 18 13 14 17 17 16 25 21 19 17 24 13 21 23 11 14 10 20 9 12 12 12 8 15 21 13 12 21 17 21 21 19 20 19 20 16 14 17 15 15 10 15 18 16 14 18 23 13 17 21 13 +16 9 15 17 15 14 16 15 14 14 23 18 14 16 18 13 17 13 16 19 17 19 18 12 14 24 15 12 16 18 10 10 21 20 13 12 10 21 14 11 12 12 24 16 13 14 21 14 13 22 16 18 26 16 25 22 23 14 13 15 12 14 16 19 15 6 11 20 14 15 12 15 12 9 16 12 11 22 15 9 7 7 9 18 17 18 19 16 15 18 18 17 14 22 25 17 20 22 11 19 15 12 14 11 17 15 16 8 5 18 10 19 19 13 14 11 16 12 20 19 17 10 17 23 15 13 20 10 20 11 17 12 20 25 15 16 12 14 18 15 18 11 15 13 19 9 8 11 12 19 14 19 18 7 13 9 15 6 18 16 10 6 9 15 11 22 14 23 17 17 14 20 18 8 18 17 17 10 18 17 16 20 17 22 16 17 18 15 15 15 10 14 5 11 15 10 13 13 15 10 23 12 20 20 25 13 27 25 18 13 14 9 20 13 9 15 10 8 10 7 9 8 14 12 15 15 4 14 16 12 21 14 16 13 14 15 11 18 21 12 17 15 18 17 18 21 16 19 20 19 15 13 22 23 21 22 19 20 15 13 17 12 16 13 16 11 16 8 9 15 13 12 13 17 17 9 17 17 24 17 18 15 15 16 13 22 16 21 15 14 18 18 22 17 16 20 16 21 16 16 +21 16 21 20 20 15 20 14 18 13 17 19 20 13 10 11 12 34 18 16 14 23 15 20 7 12 13 14 12 17 16 11 17 11 12 10 12 16 21 15 19 25 19 22 17 25 17 24 22 13 11 14 23 22 15 19 16 21 19 15 15 17 17 16 17 20 13 10 18 8 13 13 15 18 14 12 7 10 10 14 9 14 9 13 15 19 17 15 11 19 13 14 17 20 17 14 20 13 12 16 14 12 12 21 13 12 7 13 14 16 13 13 21 13 18 13 17 17 14 18 12 15 16 22 18 20 7 13 11 9 13 14 18 11 17 14 13 7 12 14 14 12 10 21 14 13 22 15 11 14 24 12 20 11 14 14 13 11 10 11 12 14 19 13 16 17 23 10 13 22 15 14 24 14 14 11 12 14 11 11 20 17 13 14 17 17 17 20 15 12 15 5 11 13 9 10 11 12 10 14 14 13 24 24 28 22 20 15 11 17 18 19 10 15 15 14 8 13 9 11 8 8 10 21 10 18 11 13 15 17 12 13 17 16 12 14 17 16 18 23 17 16 17 21 16 13 14 20 19 13 20 19 15 11 25 15 20 16 19 22 13 15 8 18 12 18 16 11 14 12 12 8 11 13 12 20 11 22 15 10 10 15 14 11 21 14 15 14 21 15 15 14 18 18 15 16 15 15 15 12 +14 23 17 15 19 12 9 14 18 14 14 23 14 9 22 17 17 11 10 16 14 14 10 11 14 12 11 13 5 16 18 7 12 12 12 16 16 17 21 13 22 19 20 10 21 23 17 14 21 24 19 19 11 19 20 18 15 20 14 9 15 14 14 13 15 16 10 13 10 11 11 11 14 20 15 10 11 14 11 9 18 9 9 9 14 18 25 12 13 19 22 19 17 20 21 26 20 11 13 16 16 9 8 17 11 21 17 10 17 14 16 9 16 17 13 15 14 11 9 21 19 13 13 8 16 15 16 16 7 12 14 6 15 12 21 14 12 22 13 27 13 9 10 11 9 16 18 14 23 14 14 23 12 9 10 13 24 13 15 16 13 15 19 14 15 16 15 10 16 15 18 11 10 16 17 17 16 19 14 12 21 15 15 17 12 20 11 19 20 13 14 19 8 13 12 16 9 7 15 6 6 10 12 18 21 18 19 22 14 14 11 3 16 16 15 8 15 8 16 14 13 7 16 12 9 11 9 12 13 15 12 14 17 13 13 14 15 20 18 16 13 15 12 14 8 13 18 25 15 21 15 21 23 11 13 7 15 16 19 19 21 15 10 23 11 8 11 15 15 18 10 15 15 11 16 11 18 12 12 18 18 14 19 16 18 13 12 10 23 16 16 15 21 20 21 8 14 18 13 16 +22 14 16 15 12 14 15 17 16 17 14 12 14 10 16 10 15 13 22 9 17 13 13 13 13 13 12 7 14 8 12 17 12 16 12 14 12 18 13 19 11 16 21 14 26 13 19 18 20 24 22 14 16 17 10 22 22 15 18 20 23 13 13 15 12 19 17 14 9 14 9 19 9 14 11 14 15 7 15 8 7 17 9 10 10 7 16 26 16 23 20 19 15 17 21 19 23 16 14 13 15 12 15 11 17 11 11 14 18 15 10 11 16 12 21 13 11 15 14 17 19 21 17 11 13 8 17 16 17 9 10 14 12 12 21 13 19 9 15 16 19 12 11 16 10 11 24 12 18 21 15 15 18 12 12 15 11 14 13 15 9 13 12 10 10 13 15 18 15 16 19 12 19 21 17 13 15 14 16 16 14 17 16 15 9 10 13 12 15 9 9 8 10 14 15 12 15 11 11 18 12 24 14 19 19 23 19 15 20 17 19 6 10 13 15 15 16 13 6 15 5 12 11 6 12 14 14 16 12 13 8 12 14 10 17 16 12 6 13 7 24 21 12 15 16 19 20 16 19 17 21 18 11 20 17 17 19 11 18 21 17 13 13 12 13 16 11 13 12 11 8 10 13 12 17 11 16 13 16 14 13 15 10 8 8 12 13 15 15 15 20 13 14 14 15 18 13 10 16 10 +9 16 20 19 15 6 14 9 11 11 10 10 14 11 15 11 12 12 14 15 14 17 18 12 12 11 19 8 13 5 5 15 9 12 14 15 21 12 24 18 17 11 19 12 22 19 20 14 14 12 18 19 17 15 18 12 10 12 17 14 15 25 11 14 14 14 15 12 8 18 12 11 12 15 13 9 12 11 6 11 7 9 4 5 11 8 19 17 15 13 17 11 19 14 23 19 16 21 18 22 13 9 7 11 11 18 7 13 13 9 21 12 14 15 4 18 16 7 11 19 16 13 14 14 13 24 9 17 18 13 11 17 21 12 14 19 14 16 15 17 10 13 12 20 17 17 7 12 10 15 20 12 10 13 15 10 13 17 16 13 13 9 14 15 13 16 21 20 12 21 17 13 22 17 11 12 18 12 13 12 13 16 15 8 15 14 11 12 12 13 11 12 9 15 15 10 10 19 13 13 12 25 23 11 14 16 18 12 17 13 21 15 16 16 13 10 4 12 12 10 13 4 8 14 17 13 20 11 15 16 15 12 12 13 12 14 16 13 13 24 11 17 16 18 11 20 26 21 17 17 24 19 14 16 22 15 22 12 19 20 15 20 12 16 19 12 13 12 13 10 10 7 9 15 10 5 5 8 17 14 9 12 10 7 12 12 9 11 13 8 16 13 15 8 14 14 13 16 5 8 +15 10 11 9 15 5 12 12 16 7 12 9 8 15 12 11 12 14 11 7 15 18 12 10 11 10 22 12 13 14 19 10 20 15 15 17 17 12 21 16 12 15 17 17 18 13 11 19 18 10 13 12 17 20 12 15 15 14 18 16 14 19 12 11 12 15 10 14 15 17 10 12 14 15 10 13 10 13 13 6 5 7 13 10 14 12 11 15 17 14 17 21 19 16 21 16 16 17 14 17 16 15 13 19 14 9 15 15 9 7 11 14 9 12 15 11 12 15 10 15 16 10 14 15 13 10 18 17 14 16 11 16 15 24 17 11 11 9 13 20 10 11 14 22 6 12 12 17 12 10 20 14 23 17 11 19 16 14 15 14 9 16 19 13 11 15 18 12 14 11 9 15 11 21 16 12 13 15 14 16 13 11 19 8 13 11 15 6 7 5 14 13 12 7 11 13 14 12 13 22 17 21 18 21 16 13 15 19 20 10 20 10 13 9 15 9 6 6 13 9 9 12 11 16 13 11 17 12 7 21 15 15 13 16 14 15 12 7 9 16 13 20 13 8 16 18 15 12 12 17 29 21 14 9 26 18 20 18 24 17 20 11 16 18 13 7 13 13 21 15 20 11 13 6 10 10 11 8 15 11 7 8 12 8 11 18 18 14 14 10 21 8 11 16 9 9 12 8 13 23 +13 13 19 14 9 12 10 12 10 15 13 8 7 11 14 12 9 5 13 8 11 13 9 12 12 9 17 12 7 12 13 9 15 16 23 14 18 12 15 13 17 14 18 17 22 16 11 18 10 19 25 16 19 10 15 20 15 13 14 10 19 14 15 13 12 10 13 16 14 20 13 15 9 15 11 9 7 7 13 11 13 5 12 5 12 9 6 20 18 12 23 12 10 11 29 23 15 12 16 10 11 17 20 5 10 9 17 10 9 10 10 3 13 15 21 12 12 10 9 14 13 11 14 16 15 16 16 12 11 13 20 12 15 17 17 11 7 14 13 13 11 12 11 13 12 14 12 10 20 19 15 13 10 16 19 10 16 11 8 8 9 14 11 12 10 17 13 13 16 21 13 16 14 16 13 14 14 10 19 17 15 11 16 14 11 9 6 12 8 9 7 7 9 15 14 8 12 14 11 24 18 13 8 18 13 14 18 13 9 23 11 12 10 18 17 7 7 7 9 9 9 9 9 14 7 13 10 8 8 19 11 11 11 16 12 11 9 14 9 17 12 15 12 7 9 19 17 16 14 23 18 20 10 14 16 14 15 14 19 19 10 19 17 11 23 26 9 16 9 13 10 10 14 15 8 6 11 9 11 12 10 11 11 7 14 10 12 11 16 13 10 10 11 8 11 9 18 15 8 9 +12 9 11 14 4 7 11 16 12 13 11 13 16 12 10 10 6 10 13 10 11 9 11 11 8 16 18 12 15 9 14 14 17 18 23 16 10 13 20 12 12 15 11 26 14 15 18 10 12 21 23 21 12 11 14 19 8 13 14 11 14 11 15 11 15 11 11 9 14 17 8 17 10 13 7 9 8 7 5 10 6 5 12 10 13 11 20 16 11 6 9 12 11 10 19 22 20 21 15 11 11 18 17 12 12 4 17 9 16 12 15 7 13 9 8 13 10 11 8 10 9 13 9 7 20 8 16 12 10 15 12 12 12 11 11 11 11 12 12 13 9 14 14 12 17 12 15 15 12 14 15 14 18 12 6 8 17 15 11 12 18 14 16 11 12 14 18 10 18 11 12 10 11 8 19 9 14 13 11 10 13 17 16 11 9 7 13 11 6 11 9 8 11 14 11 11 15 20 12 15 20 20 23 22 16 18 11 11 17 14 16 8 14 11 10 8 10 16 7 12 3 10 9 5 13 16 10 4 8 9 8 8 17 10 12 13 12 17 19 13 15 16 17 12 14 10 15 17 15 15 17 20 25 12 11 13 11 19 14 12 20 7 18 19 7 20 10 16 14 15 10 13 16 10 10 19 7 13 14 14 9 12 9 11 15 17 4 12 16 14 21 11 13 4 12 13 11 11 8 10 +15 14 10 7 10 14 13 8 12 13 8 6 15 7 7 11 7 9 12 8 12 13 9 16 17 9 15 16 13 8 9 13 11 15 14 8 13 9 10 13 16 13 13 14 14 17 14 16 16 12 13 15 12 17 15 19 20 14 11 14 14 12 17 13 13 11 10 12 10 11 15 12 4 12 9 10 11 14 12 9 8 10 15 10 9 9 12 9 18 10 16 12 11 13 17 17 14 20 16 24 17 19 15 14 13 9 8 14 10 9 11 15 14 11 15 10 8 5 14 13 11 5 10 10 7 15 8 13 16 14 12 17 11 10 8 10 20 12 14 8 11 8 10 11 9 8 22 14 14 12 15 15 12 14 19 16 4 13 14 19 12 9 13 11 5 14 21 20 19 11 12 11 11 10 12 9 6 8 12 11 17 10 9 8 14 13 14 15 10 9 9 13 4 6 13 10 15 11 17 18 25 18 17 19 12 14 11 15 16 8 16 13 9 11 4 13 9 16 6 8 9 8 12 4 10 10 10 7 6 7 17 10 7 14 11 16 13 21 15 21 13 15 11 12 7 21 14 9 11 15 11 15 16 20 16 12 15 11 15 16 9 14 13 15 11 16 15 7 14 9 9 18 10 11 9 14 15 11 11 6 10 8 9 11 7 9 9 8 10 6 9 11 13 8 11 10 11 11 11 12 +20 10 11 11 9 10 15 8 10 11 10 11 12 7 4 10 11 11 5 8 9 11 8 6 10 13 17 10 8 13 20 21 20 16 14 11 13 7 16 17 14 11 15 13 16 17 19 14 17 13 14 12 17 8 20 9 9 13 13 8 12 15 11 12 15 11 8 9 11 8 9 26 13 8 8 10 9 9 10 7 17 12 6 8 3 11 6 9 18 13 11 17 10 13 6 16 15 15 15 20 20 17 19 15 10 9 10 11 12 9 5 7 11 11 9 11 10 13 14 9 10 13 12 9 8 13 12 10 16 9 8 6 11 9 13 11 11 10 14 12 10 13 21 11 9 8 16 24 18 16 16 5 15 12 7 17 6 15 11 14 16 16 19 16 14 12 13 10 13 12 14 11 8 8 14 12 17 12 16 11 15 10 13 14 8 11 8 19 14 11 11 12 9 16 15 19 10 13 15 14 18 16 11 14 23 13 13 17 25 8 11 12 19 9 12 10 10 8 6 10 13 6 16 6 10 5 8 11 9 10 12 13 9 17 12 12 6 8 13 17 10 10 9 16 16 17 12 13 11 15 22 13 7 17 12 16 19 12 16 12 21 16 14 17 13 10 15 16 13 15 20 19 13 11 12 16 6 14 13 19 4 12 6 13 8 11 5 8 7 8 9 12 10 13 10 15 14 13 10 10 +8 9 11 10 15 11 7 9 11 5 8 9 12 13 9 10 2 7 12 14 11 16 15 13 12 11 18 8 18 17 17 14 12 15 14 10 14 13 11 22 16 11 18 14 13 8 13 15 11 14 16 13 12 14 16 12 10 9 7 9 14 13 19 12 11 11 17 6 8 13 14 8 13 16 11 10 11 8 9 5 12 9 10 3 5 8 13 10 9 7 10 11 13 13 11 16 13 20 21 9 17 18 11 9 12 12 15 6 8 10 9 9 16 8 12 8 6 10 10 12 7 8 7 7 16 7 11 7 10 9 12 11 11 7 10 12 14 9 11 11 7 8 9 14 7 12 20 15 8 11 9 10 9 20 5 7 16 12 11 11 7 12 12 9 11 16 15 2 15 11 14 9 14 6 15 11 7 10 8 6 5 9 10 7 12 11 6 12 9 10 12 16 9 16 11 13 18 18 20 15 11 12 17 10 14 10 7 9 16 14 8 6 9 10 10 8 7 9 12 11 5 11 6 11 8 10 8 5 9 13 12 12 9 12 9 17 19 7 14 4 5 12 12 12 22 15 15 16 10 17 20 11 11 15 9 15 11 16 14 10 12 17 8 17 12 12 8 12 12 6 12 12 14 12 10 16 11 13 15 11 15 18 9 8 9 16 9 14 12 15 3 11 9 15 11 12 11 14 9 7 +4 13 3 8 6 10 11 5 9 17 14 10 14 16 14 16 12 16 12 14 16 10 14 19 13 12 8 18 11 11 12 13 5 10 12 18 15 14 16 16 11 7 19 16 9 12 7 16 16 8 16 16 10 15 15 8 10 12 11 10 18 18 12 10 5 11 17 8 7 7 14 9 8 7 14 5 10 11 8 7 5 9 8 11 11 11 9 13 12 9 17 11 19 18 16 17 18 10 12 11 16 22 19 17 17 15 13 16 14 12 12 12 12 7 7 8 5 12 3 9 16 6 7 11 15 7 11 8 13 14 14 9 10 8 7 11 13 8 17 6 15 11 13 11 11 13 16 10 18 14 10 10 9 17 9 14 10 11 5 10 12 12 12 12 11 11 13 10 12 9 13 8 5 11 6 9 6 10 12 6 13 11 12 10 14 6 12 11 14 8 10 12 10 14 16 20 19 15 11 14 11 14 16 6 10 12 14 13 8 14 13 13 12 8 10 7 10 11 9 7 7 5 10 9 7 10 4 9 13 8 10 7 11 10 19 7 11 6 15 11 8 8 13 11 13 7 13 15 15 14 11 8 10 14 10 15 16 14 12 9 13 11 17 18 13 16 21 14 11 15 8 9 14 12 11 9 11 11 15 10 18 11 6 7 14 7 9 15 8 7 13 8 2 7 10 15 7 14 10 10 +12 6 11 6 5 12 12 9 11 14 5 8 16 11 11 9 20 9 13 15 16 14 16 17 10 6 18 8 10 8 10 11 14 10 16 15 12 13 12 8 9 13 15 13 16 19 10 8 13 21 12 7 11 21 10 9 11 8 13 8 12 9 6 13 14 10 10 8 10 7 4 11 9 14 16 6 13 6 8 7 8 6 9 8 4 13 13 10 13 10 9 14 8 14 20 5 11 21 9 8 11 18 13 15 12 13 6 12 14 6 7 7 5 11 10 12 3 12 12 6 7 10 10 11 8 14 13 9 5 10 7 10 13 7 12 11 14 9 12 9 11 8 10 6 10 9 9 7 16 10 9 11 6 13 11 7 15 7 14 6 7 12 10 11 6 7 12 13 10 9 9 6 6 8 4 10 11 15 10 9 9 12 10 6 9 13 10 7 14 12 11 16 12 14 13 13 17 10 26 12 9 19 10 10 12 15 8 16 12 9 8 9 14 7 6 9 9 8 12 10 6 8 6 6 7 8 14 10 8 10 6 10 4 13 7 18 6 9 9 9 2 5 8 16 8 13 9 9 17 5 7 15 10 11 14 11 14 8 14 10 12 16 16 10 5 10 13 15 11 11 9 17 13 16 14 12 15 12 20 15 17 13 9 19 12 16 7 12 10 9 20 18 14 7 11 8 12 16 9 14 +10 7 10 16 20 8 5 7 13 11 12 7 9 9 14 10 12 14 18 8 15 6 12 9 13 16 17 9 7 15 11 12 9 15 14 9 17 12 19 9 11 9 9 16 13 9 9 16 15 14 9 15 11 21 13 12 10 14 11 8 4 9 9 6 10 7 12 3 11 7 7 10 11 6 5 5 4 10 6 10 20 5 7 12 1 11 8 5 11 7 4 7 17 8 18 5 16 11 13 17 10 6 9 14 18 9 12 14 10 15 8 13 8 9 14 14 17 12 11 10 10 6 11 7 8 6 10 9 9 7 6 7 11 8 12 10 10 12 9 10 10 13 10 12 5 6 8 7 5 10 2 12 6 14 15 8 11 10 8 8 8 12 7 7 14 9 8 6 14 9 5 6 10 11 8 14 6 5 5 13 5 9 13 11 8 5 8 11 16 10 16 14 11 15 15 17 13 11 11 13 10 10 16 14 10 6 8 11 5 11 15 7 4 7 4 9 9 7 6 12 7 7 6 14 8 7 12 13 6 14 7 7 2 7 14 13 4 8 10 11 12 15 5 10 5 7 10 11 10 14 13 7 13 12 11 13 8 15 13 17 13 12 17 16 18 15 10 12 6 12 10 10 12 11 10 14 15 15 13 12 8 11 14 16 10 11 19 16 12 14 8 11 13 12 11 14 9 11 7 11 +17 10 12 11 13 9 8 7 14 9 15 15 11 13 14 14 11 8 9 12 12 10 15 12 7 8 15 10 8 11 20 8 10 8 11 7 6 17 14 6 11 6 12 11 10 9 17 8 7 9 13 11 8 11 16 7 9 10 4 7 7 7 10 12 7 10 11 11 9 9 13 10 4 7 10 6 5 5 6 15 8 11 6 13 4 10 3 10 9 6 12 7 6 12 9 12 11 12 16 11 8 13 10 17 9 13 13 12 17 8 13 12 9 7 8 11 6 12 8 12 7 4 9 5 11 7 7 12 14 4 3 9 4 8 6 8 9 7 13 8 3 9 6 9 6 5 8 10 10 9 6 11 9 6 13 5 13 10 12 3 12 6 3 11 8 10 8 12 7 13 5 9 10 10 12 9 12 6 12 14 6 14 11 9 14 6 19 11 11 10 12 13 11 11 6 12 6 11 16 7 7 18 9 5 6 7 10 12 8 12 7 6 11 7 6 4 6 3 11 3 9 9 8 12 10 9 8 7 9 21 10 4 7 7 10 12 8 7 14 7 8 5 11 12 10 7 7 6 10 16 9 12 18 13 10 8 18 9 13 9 14 6 11 15 11 12 12 15 15 6 13 10 8 12 10 17 18 10 12 15 11 12 13 10 18 14 9 16 15 9 14 10 14 11 13 18 9 11 17 12 +7 16 14 16 13 9 15 12 13 12 12 12 10 9 13 13 14 11 11 8 10 9 15 8 11 7 5 8 10 12 6 15 6 12 10 12 9 16 19 11 4 8 14 11 8 8 7 10 9 15 3 12 9 11 11 5 10 8 8 5 16 6 9 7 8 14 6 10 12 8 10 8 13 14 9 4 12 8 9 3 17 6 10 9 12 7 2 10 2 11 6 9 9 6 13 11 6 10 4 8 13 9 10 8 12 13 11 13 10 13 8 12 12 14 9 12 7 4 10 10 12 4 5 7 11 9 7 7 6 4 10 10 13 8 11 6 4 11 9 3 7 5 7 6 7 16 10 8 9 10 7 10 7 3 18 5 8 9 8 7 6 12 10 11 12 6 8 10 10 6 8 12 7 8 11 10 3 11 11 10 6 12 4 12 10 6 11 9 13 9 14 8 16 9 14 15 12 11 15 7 6 14 9 13 10 13 11 5 12 4 9 8 6 6 3 6 8 6 7 9 7 11 11 11 7 8 18 11 10 7 11 10 5 7 5 12 6 10 9 8 7 11 10 6 8 9 22 8 6 11 7 8 10 5 5 9 12 13 11 6 13 13 7 10 11 10 8 14 16 4 10 9 8 14 12 17 14 10 20 12 13 9 7 13 11 10 12 6 17 11 13 8 14 7 9 17 11 12 7 15 +10 11 6 15 15 7 11 9 8 19 9 9 16 13 17 7 8 15 11 17 14 11 6 5 11 10 6 12 9 11 10 7 14 10 11 11 8 14 13 7 12 13 4 12 8 5 9 8 7 11 8 8 13 12 10 8 8 4 12 16 9 8 8 8 9 6 7 8 9 10 7 12 5 9 9 7 5 6 7 9 4 3 7 8 7 9 7 2 6 7 5 9 5 13 10 15 11 7 7 11 8 15 11 13 9 10 11 12 18 7 11 14 7 12 6 11 10 7 11 6 6 8 8 8 10 13 11 7 4 8 6 9 4 7 5 8 8 9 5 6 5 8 7 6 8 3 7 10 9 12 8 7 8 12 4 9 7 8 7 10 12 9 7 9 10 12 10 5 6 10 6 16 12 7 7 7 9 6 11 10 13 13 10 8 7 9 16 15 10 9 17 18 10 11 7 11 12 14 9 13 8 5 7 8 13 13 4 5 8 4 7 12 3 12 5 8 7 10 7 3 6 10 5 11 8 7 7 11 12 5 11 12 7 11 10 7 4 9 6 11 9 5 8 6 10 12 12 10 10 13 10 13 9 10 7 8 6 14 10 11 8 15 13 15 6 13 15 7 6 14 10 11 13 12 10 11 13 13 7 10 17 8 13 9 4 11 7 9 14 11 13 17 16 8 12 14 9 8 7 8 +5 9 11 12 10 8 12 8 6 8 10 15 15 9 16 8 11 12 7 11 16 10 8 7 10 9 7 11 6 12 12 6 8 18 16 10 8 11 11 12 7 9 6 10 7 9 11 11 9 12 9 8 8 8 7 10 12 2 8 11 5 10 7 9 13 10 7 7 7 2 3 8 15 9 2 9 4 5 10 10 6 4 7 8 2 6 7 6 10 5 8 11 12 13 6 9 7 9 6 7 10 8 8 5 13 14 7 8 17 13 10 8 8 12 11 10 5 8 11 9 10 5 11 9 7 12 9 7 6 13 8 7 7 7 6 9 9 7 11 3 10 8 16 9 7 5 12 5 9 13 4 7 4 12 14 7 9 1 10 6 9 8 5 9 2 9 11 6 4 13 5 10 2 8 9 6 10 5 6 6 14 9 7 10 15 8 4 8 5 12 12 10 9 9 17 14 11 8 6 12 11 7 11 13 6 5 6 6 6 7 8 7 4 5 8 6 3 5 9 6 7 7 7 9 6 9 4 5 5 9 7 7 15 12 7 6 10 8 9 6 6 9 12 3 8 14 4 8 8 9 10 12 10 8 9 5 11 9 11 10 14 15 13 10 8 13 11 12 10 12 8 14 15 13 8 11 12 3 10 3 7 11 16 12 13 17 10 9 9 12 9 9 18 12 8 10 8 7 4 13 +13 10 5 7 6 4 5 10 10 7 7 12 11 4 13 10 6 3 11 9 11 12 12 12 11 9 13 9 6 11 7 14 7 9 13 14 12 6 15 10 6 12 10 3 10 8 8 9 11 4 10 8 12 8 10 6 7 10 9 10 3 9 1 5 7 9 7 10 7 7 7 9 1 4 5 7 8 4 6 3 6 3 12 7 7 5 10 10 5 4 5 7 8 5 8 3 9 10 6 11 4 7 9 8 10 11 10 5 7 11 10 10 12 15 10 12 12 9 14 8 6 9 10 8 9 10 11 7 11 6 6 6 8 6 6 10 6 5 16 6 5 2 5 7 9 10 12 8 9 7 5 6 7 8 7 6 10 10 7 8 9 10 11 9 6 7 9 8 10 7 4 0 8 7 7 10 12 12 6 9 3 16 15 11 7 16 19 7 10 14 8 15 10 13 12 3 13 8 6 5 5 3 9 8 12 3 7 8 7 8 5 5 4 6 11 8 5 7 6 7 6 8 8 5 3 9 5 5 6 8 7 11 4 9 7 2 6 6 4 5 9 4 8 10 6 7 8 8 9 8 9 3 9 7 11 12 8 5 7 6 11 10 13 15 13 10 6 4 5 6 6 12 9 7 10 3 15 7 6 6 7 13 6 13 6 22 13 7 12 9 8 11 7 10 10 9 8 10 5 8 +11 14 9 9 3 8 10 9 9 6 9 11 8 9 6 11 7 12 8 11 13 6 8 11 13 11 8 5 4 9 17 6 7 12 10 15 6 7 7 8 7 7 7 7 8 8 13 8 10 5 8 11 7 5 9 6 7 7 6 4 6 6 5 10 8 8 8 6 9 8 5 4 8 8 8 7 7 5 14 6 4 4 6 3 9 2 4 12 6 6 3 5 9 2 12 6 2 9 12 9 4 7 9 7 5 15 12 12 12 16 10 5 8 7 10 16 10 12 9 10 16 16 12 12 8 11 6 13 5 8 6 10 6 7 6 6 6 13 12 6 10 8 3 8 8 7 4 7 5 7 7 11 11 3 9 7 8 7 5 12 7 9 9 8 5 5 7 8 12 8 6 7 10 9 10 7 6 7 8 10 11 7 10 15 10 17 11 11 10 6 9 11 8 4 5 9 8 11 3 9 7 7 9 5 11 8 8 3 4 5 7 6 3 8 2 2 6 6 3 7 4 7 5 8 9 4 8 11 13 8 2 10 9 8 6 7 2 5 9 8 8 8 10 6 7 9 7 9 6 8 7 8 3 11 4 6 5 10 4 10 6 6 11 15 10 15 8 5 12 8 6 13 5 12 15 6 7 8 8 8 8 17 8 12 14 11 10 9 10 11 9 8 10 6 10 10 12 6 10 9 +8 9 13 9 7 9 9 12 3 10 12 12 9 10 11 7 13 10 11 13 5 10 7 10 3 8 6 10 8 4 7 8 8 8 12 6 10 9 8 8 8 7 7 9 10 8 9 10 8 10 6 8 8 7 10 3 9 7 7 7 11 5 5 13 6 9 10 5 7 7 10 11 3 9 5 7 3 1 3 9 8 7 8 7 6 3 7 5 8 4 1 1 4 10 11 4 6 8 12 6 13 9 8 8 5 6 5 6 9 6 5 11 14 14 10 11 13 18 9 13 8 9 10 7 9 8 8 11 9 7 6 7 2 6 4 13 10 8 4 6 7 10 8 9 7 7 9 7 6 11 10 9 6 3 10 4 7 5 1 7 10 6 7 6 5 5 7 6 5 11 7 11 10 14 13 6 10 7 13 9 15 17 7 12 10 7 7 13 9 9 7 6 9 11 8 9 4 11 6 4 7 5 9 11 9 8 6 8 6 8 7 3 2 4 5 10 8 7 2 5 8 9 11 8 8 8 2 5 6 9 5 3 3 8 5 8 9 4 9 3 5 8 2 5 8 5 5 14 7 10 6 6 12 9 7 7 9 5 8 7 8 9 7 8 13 6 7 9 5 8 9 7 6 10 2 12 8 11 11 5 6 8 11 10 14 6 6 7 10 3 12 7 8 11 10 9 10 8 11 4 +6 9 11 10 9 6 7 3 7 11 6 7 5 10 8 9 4 10 6 12 12 13 8 16 2 7 9 6 8 7 3 14 11 9 3 7 4 7 7 6 7 13 6 6 6 15 7 6 6 5 5 3 4 7 6 7 6 4 3 4 11 5 8 8 11 7 5 8 11 3 3 7 6 5 6 5 6 4 8 9 5 8 7 4 5 6 10 3 4 4 3 3 3 5 5 4 8 7 9 8 7 10 9 5 8 9 8 6 8 9 4 5 10 8 8 5 17 9 7 7 7 8 6 7 10 9 11 9 13 7 8 8 9 17 9 8 7 8 9 4 5 6 3 12 8 7 6 5 6 4 8 11 12 10 10 7 3 11 6 5 10 8 4 6 5 8 9 10 5 11 16 12 9 6 6 10 9 15 13 10 7 5 12 2 3 5 6 10 13 8 6 8 3 6 11 2 6 8 10 4 8 6 7 4 7 5 5 4 3 6 6 3 4 3 11 6 4 7 5 7 5 8 11 1 10 7 3 1 5 3 9 6 5 5 4 5 4 5 7 6 2 6 6 7 12 6 4 9 5 7 6 7 13 11 9 8 6 11 10 4 5 10 6 8 9 8 11 8 10 5 9 9 13 10 10 4 9 10 5 2 7 5 7 6 9 9 9 4 12 10 11 7 12 7 4 7 4 11 7 10 +4 7 9 9 4 5 7 9 7 6 8 7 7 4 9 5 5 5 7 8 7 9 3 3 14 7 5 6 2 3 7 6 8 10 6 3 9 9 7 4 4 7 4 9 6 4 3 5 6 2 9 6 7 2 8 3 5 5 6 4 4 5 6 4 8 9 5 1 9 10 5 4 10 3 7 6 2 11 5 3 4 4 2 6 2 3 4 7 4 4 8 6 2 7 1 8 4 7 10 10 7 2 7 8 6 7 7 5 11 7 9 4 7 5 11 7 6 7 8 7 11 9 10 7 6 11 17 7 11 9 5 11 11 9 11 14 6 9 3 6 12 12 8 12 6 2 10 6 8 6 11 9 5 8 8 10 4 6 5 10 7 9 7 16 9 8 11 6 10 8 10 11 4 6 8 6 10 8 10 7 7 7 6 3 10 7 8 9 10 3 7 5 6 9 7 8 6 6 6 1 6 4 6 6 5 7 3 7 2 11 3 4 3 6 5 8 5 7 6 6 8 11 5 5 5 7 3 9 4 6 4 5 4 7 3 4 11 3 3 0 7 5 8 10 7 5 2 0 2 8 9 3 7 5 9 5 12 7 7 5 6 8 15 4 9 11 14 9 7 5 8 5 9 7 6 4 8 8 8 7 6 4 8 11 8 9 7 5 8 8 8 7 2 8 10 6 7 8 8 9 +6 7 7 4 11 6 11 12 10 6 8 8 10 2 4 8 5 10 8 6 9 7 7 4 5 9 7 14 4 8 7 14 8 9 4 5 5 7 5 7 7 6 8 7 3 9 9 8 5 10 6 3 5 8 6 6 4 3 8 9 2 2 1 4 6 5 7 11 3 6 5 2 9 4 8 7 11 7 5 5 6 3 2 7 9 5 3 1 8 5 4 6 6 4 4 8 3 4 3 5 4 8 6 6 5 5 7 10 10 6 3 9 7 4 8 8 9 3 11 4 7 7 7 7 9 12 6 7 7 4 7 11 6 10 7 6 11 7 2 9 16 7 7 9 11 9 5 6 5 9 8 8 9 4 6 12 13 13 13 7 7 6 9 7 12 7 8 5 8 7 10 7 10 2 6 7 9 7 6 9 8 4 4 6 3 7 6 10 6 2 7 4 8 6 6 3 6 6 7 6 4 5 3 5 10 8 0 5 3 4 10 2 6 5 0 4 3 8 9 6 2 5 3 10 8 1 8 6 7 4 6 5 5 5 7 7 3 7 5 2 7 6 3 6 4 5 3 4 6 3 6 4 2 3 5 5 7 9 8 7 6 11 4 2 6 8 4 4 7 7 8 11 6 5 10 8 9 7 5 13 6 7 9 7 5 10 6 6 10 6 8 3 6 4 7 3 5 5 7 7 +6 9 9 6 7 3 7 7 6 13 4 6 3 2 10 4 6 3 9 4 3 8 4 8 2 5 11 4 5 7 5 5 11 3 4 5 5 10 6 10 6 6 2 5 5 7 2 5 10 3 2 3 7 6 5 7 5 6 5 7 8 8 9 8 3 3 6 7 4 6 6 6 7 4 6 4 4 6 6 2 3 7 3 5 4 1 0 1 2 4 7 5 0 5 3 4 3 6 4 5 5 8 6 8 8 7 2 7 4 5 7 6 12 6 5 8 4 6 5 6 1 5 6 5 5 9 7 8 6 7 8 9 11 9 4 9 6 8 7 5 9 8 9 13 15 10 0 1 10 7 6 7 5 10 12 6 6 10 12 9 7 9 8 7 1 4 12 5 5 6 8 5 2 5 8 6 2 3 11 6 8 4 6 7 5 6 2 7 2 5 3 7 2 4 7 5 4 2 5 7 4 3 5 1 4 5 5 4 4 2 3 5 5 4 7 2 3 5 2 6 8 6 7 5 4 2 6 5 2 7 6 4 6 9 9 4 2 3 5 4 5 6 5 3 4 7 3 1 3 5 7 6 4 6 6 6 3 3 8 5 4 6 8 6 4 7 3 7 8 5 9 5 9 2 6 10 3 9 6 7 5 7 6 3 7 6 5 3 8 7 12 7 7 11 5 7 6 3 4 4 +5 2 6 6 4 6 0 8 4 5 5 7 5 9 3 10 11 5 5 6 7 9 3 2 3 5 2 6 8 2 5 12 6 3 8 6 2 5 6 4 5 4 5 5 4 7 2 6 2 1 4 4 4 4 7 3 5 3 7 5 4 2 2 5 5 5 6 1 1 7 8 7 6 3 3 7 3 4 6 2 4 2 4 2 5 5 3 0 0 4 6 1 7 4 2 3 6 1 3 0 3 6 4 7 4 2 10 3 4 4 2 5 5 3 3 10 7 7 6 2 4 6 4 6 2 6 3 6 4 8 4 7 5 10 8 7 7 11 6 8 10 5 7 3 8 7 5 8 6 7 11 1 13 5 6 6 10 8 7 5 13 7 3 8 10 5 4 12 12 9 3 6 7 2 5 7 8 1 4 8 5 10 11 6 8 8 5 8 4 1 5 3 4 3 3 4 3 8 4 5 4 6 3 3 5 5 2 1 7 6 3 1 3 2 4 5 4 7 4 6 8 7 5 5 2 6 6 4 4 6 4 3 4 5 5 5 3 6 7 5 4 4 7 4 4 4 11 5 3 6 4 2 6 4 2 9 10 5 8 6 6 2 4 4 3 5 7 6 7 4 5 3 9 7 5 7 5 4 9 9 5 4 5 5 4 5 2 4 4 4 8 6 5 8 7 4 2 9 7 8 +7 8 6 2 6 3 5 2 9 5 4 6 6 3 3 7 7 4 4 8 7 4 4 1 8 5 2 1 8 4 4 2 10 6 2 2 5 4 5 3 7 3 6 2 3 2 6 5 4 8 2 3 1 2 8 7 5 5 8 5 3 4 7 2 6 5 7 6 4 3 1 4 5 4 2 3 6 3 5 4 4 2 3 3 0 3 4 2 3 2 4 3 4 2 2 7 4 7 1 5 5 3 3 3 2 5 2 3 3 6 5 5 4 5 6 4 3 9 5 7 8 6 5 7 5 7 3 9 7 4 5 5 2 9 6 4 5 7 4 0 5 7 2 5 5 2 6 7 6 5 3 7 7 9 4 7 5 9 6 5 5 5 2 4 5 8 5 3 4 6 7 8 4 4 7 5 6 5 9 4 2 2 2 5 7 8 2 4 4 6 6 2 4 3 5 3 2 3 1 3 4 5 5 1 2 0 3 0 2 2 3 3 5 2 4 2 6 8 2 4 5 1 4 6 4 4 8 7 4 7 4 1 3 7 0 4 4 5 6 10 9 3 6 4 2 5 3 5 8 2 4 6 2 3 3 3 2 3 5 7 7 3 7 7 3 4 6 8 4 2 9 6 7 7 6 3 5 3 4 6 8 7 7 2 2 7 4 4 5 7 4 2 2 6 3 5 3 6 8 3 +4 4 3 5 6 5 7 1 3 2 4 5 6 3 6 4 5 8 3 7 5 7 11 1 8 7 5 5 5 3 3 9 3 5 3 2 6 8 1 5 2 3 6 9 8 3 3 2 4 5 3 5 4 8 6 4 4 5 1 5 1 3 3 7 4 6 1 4 8 1 9 4 2 2 2 4 4 5 4 6 5 1 5 4 5 2 5 1 2 2 3 8 4 7 3 2 5 3 1 8 4 0 5 2 3 4 4 1 1 2 5 3 4 4 1 4 1 4 3 7 7 2 2 2 7 4 7 4 2 5 3 5 3 3 6 2 3 5 8 7 4 6 6 3 3 4 6 5 2 3 1 5 0 4 3 4 3 1 6 5 3 4 5 3 3 6 2 2 7 4 3 4 2 9 1 0 5 3 2 10 6 3 7 4 5 7 0 5 2 1 2 3 0 3 4 2 6 3 2 6 3 2 2 5 5 8 3 2 2 3 1 3 3 2 6 2 6 2 4 3 2 4 4 3 5 4 6 7 3 7 1 1 6 8 2 0 6 1 5 3 4 3 4 2 0 3 5 4 2 8 7 3 3 2 4 5 2 8 5 4 0 2 6 4 8 2 1 1 5 5 5 5 5 2 9 9 3 5 6 9 9 7 12 4 4 4 7 3 5 8 6 4 3 4 4 2 3 5 7 7 +4 8 4 4 8 5 2 2 3 3 5 3 4 3 6 3 1 3 4 4 3 3 4 8 4 3 1 5 3 3 3 3 5 3 2 5 5 6 3 4 2 4 2 3 5 5 3 4 5 3 4 6 4 7 2 5 5 6 4 1 5 3 7 2 1 3 1 3 3 6 1 2 4 4 2 3 2 2 5 3 1 2 3 5 1 0 4 2 0 4 5 3 2 4 2 3 2 3 3 2 5 2 2 2 4 0 5 2 2 1 5 6 2 3 2 4 4 2 2 2 1 4 5 4 1 7 6 5 3 6 4 3 3 3 0 2 4 2 4 6 8 5 3 4 10 5 2 2 3 3 4 5 2 5 6 2 3 2 6 5 1 5 2 4 1 5 2 2 5 5 2 2 4 4 6 3 4 6 2 0 4 3 6 1 2 0 2 2 7 3 1 1 4 4 4 1 3 5 1 1 2 3 2 4 2 3 3 1 0 1 3 4 0 3 2 4 5 6 1 1 3 2 3 2 4 0 3 2 2 2 2 3 3 3 1 3 3 7 5 3 0 3 2 1 2 2 3 4 6 3 3 1 3 0 1 3 2 3 5 6 1 3 2 3 2 6 1 0 6 2 6 4 5 5 4 6 6 7 8 3 4 3 4 7 5 2 6 4 2 3 3 3 2 5 3 3 4 6 9 4 +7 5 5 2 7 4 5 1 5 3 0 4 0 3 3 3 3 5 1 3 2 2 3 2 2 3 1 2 4 4 4 3 3 1 4 0 4 2 7 4 1 3 4 3 4 6 3 1 5 2 1 4 1 3 3 1 3 3 3 2 3 3 3 0 1 10 4 3 2 5 2 2 1 5 4 3 1 4 2 2 3 4 3 4 5 1 2 5 6 2 4 1 2 3 4 3 5 3 2 1 2 3 1 3 4 4 3 1 2 0 6 1 0 2 5 2 2 1 2 2 1 2 0 3 7 6 2 3 2 3 3 4 6 5 2 2 6 2 1 3 5 3 6 1 5 5 6 4 2 4 0 2 2 4 3 4 4 3 6 9 6 3 4 4 4 0 1 2 3 9 7 8 5 5 1 1 3 1 4 2 6 2 3 4 3 2 8 1 0 3 4 3 3 2 0 6 3 1 5 3 3 1 2 1 2 1 5 0 4 2 3 4 3 3 2 0 1 7 0 1 2 3 2 3 2 5 3 1 5 5 4 3 3 3 3 3 3 4 5 2 6 6 3 2 2 4 3 2 2 1 1 6 2 4 5 8 2 2 2 5 2 2 3 0 3 2 3 6 3 2 4 6 4 5 4 4 3 3 4 4 5 8 1 2 2 5 3 1 3 3 1 4 4 4 3 3 0 2 3 5 +2 6 1 3 3 3 3 6 0 0 7 1 2 1 2 5 4 2 4 7 3 0 5 1 1 3 4 3 1 2 2 5 1 1 1 1 3 4 2 2 3 1 1 1 3 2 1 4 2 1 1 1 3 0 0 4 2 3 2 3 1 1 2 1 3 3 3 5 1 4 5 2 3 1 0 4 5 4 3 1 3 2 0 1 5 1 2 4 1 1 1 1 1 4 3 1 2 2 1 1 2 0 1 3 2 5 4 1 4 1 4 1 3 6 2 3 2 1 0 0 2 5 2 3 4 4 2 1 4 3 3 3 4 1 6 4 5 1 2 1 3 3 2 3 5 1 6 4 2 4 1 2 4 4 1 2 2 2 4 4 2 4 3 2 3 2 5 1 0 2 2 2 2 1 4 1 2 0 3 3 0 3 3 2 2 1 2 0 1 3 4 3 3 1 2 2 1 3 3 2 4 2 2 2 0 3 3 2 1 0 1 3 3 2 2 1 2 4 1 2 7 6 3 3 4 5 5 3 1 5 2 5 3 3 1 3 0 2 4 0 2 2 3 6 3 2 1 2 2 4 1 4 4 1 1 2 5 3 4 6 3 3 2 4 1 3 3 3 2 1 4 3 3 0 1 2 0 1 6 5 1 1 2 3 2 0 2 4 1 2 1 6 1 2 5 4 2 1 7 2 +7 1 2 2 1 2 5 5 2 3 4 2 3 3 1 2 1 1 3 4 3 3 3 2 1 1 3 4 2 3 2 1 4 1 2 3 3 5 1 1 2 2 2 1 1 4 3 5 6 3 6 5 3 1 3 4 3 1 2 3 2 3 1 6 2 3 0 5 2 1 3 2 2 2 1 4 3 1 0 3 1 1 3 1 5 3 0 3 4 3 2 3 2 2 3 1 2 5 1 0 0 4 0 2 3 2 1 2 5 2 2 3 2 4 0 0 0 3 1 2 2 0 3 0 2 2 1 2 2 5 1 0 1 1 2 4 1 2 2 2 3 4 2 3 1 0 2 1 3 6 0 1 3 5 1 0 1 1 5 3 1 3 1 1 3 0 0 4 3 4 3 2 1 4 0 2 2 2 1 2 0 1 1 2 2 2 1 2 0 0 1 3 4 2 1 2 0 1 2 1 4 4 2 3 2 2 2 3 4 1 1 4 2 2 2 3 3 3 3 4 2 1 2 2 2 5 1 1 3 3 1 1 3 2 1 2 3 1 4 1 5 2 5 0 0 0 3 1 1 2 3 2 2 0 4 0 3 1 1 2 2 2 1 2 3 3 3 1 2 2 3 0 2 1 1 2 0 2 0 0 4 4 4 2 3 3 2 3 2 4 1 0 7 4 2 4 1 2 3 3 +2 5 5 1 3 0 2 4 2 1 1 2 2 1 1 0 1 2 4 3 0 4 3 3 3 4 5 1 0 2 6 4 1 4 1 1 2 2 4 1 2 0 2 2 3 2 3 4 2 2 2 2 3 5 2 2 0 1 3 2 4 1 0 3 4 3 7 4 2 2 3 0 5 3 2 1 2 2 5 4 0 1 3 1 2 3 1 1 0 3 4 4 2 2 1 0 1 2 0 1 1 0 2 0 2 1 0 4 0 3 5 2 3 2 0 3 3 1 1 1 3 0 0 1 1 2 0 3 2 0 1 0 1 1 1 4 0 1 3 2 2 3 1 2 3 3 2 1 1 2 1 2 2 2 2 2 0 1 4 4 2 2 0 2 5 0 1 0 2 1 1 2 3 4 0 1 0 3 1 2 0 0 1 2 1 4 0 0 3 1 1 0 2 5 3 1 3 2 1 1 4 5 0 0 3 4 0 3 2 1 2 3 1 0 0 2 1 1 2 0 0 2 0 1 3 1 0 0 3 2 3 0 2 1 3 3 2 2 1 1 2 3 1 2 7 3 0 1 2 1 2 0 2 1 6 3 2 3 2 3 0 2 2 1 1 5 2 2 1 1 5 1 2 1 3 3 0 1 1 3 2 0 3 2 1 0 3 5 2 4 1 0 2 2 3 3 3 2 1 1 +3 2 3 0 2 1 2 2 1 2 2 1 4 4 3 0 2 1 2 0 1 1 3 1 0 2 2 2 0 0 0 0 4 3 0 2 0 2 2 5 1 1 1 2 1 1 3 1 0 6 3 4 0 2 0 2 2 0 1 0 0 1 0 3 1 0 2 1 2 1 1 1 3 2 0 1 1 0 2 3 0 2 1 2 1 1 3 2 1 2 1 1 2 2 0 0 0 2 1 0 1 0 2 2 3 1 1 2 1 1 4 2 2 2 3 1 2 3 0 0 3 1 2 3 1 2 0 0 1 1 2 1 1 4 0 1 2 2 2 0 4 1 0 2 1 0 1 1 0 1 3 0 2 3 1 0 4 1 1 1 1 2 1 1 1 1 0 0 1 1 1 0 3 1 2 1 1 2 0 2 2 0 1 5 0 1 1 2 0 0 1 1 2 1 1 1 1 0 1 0 1 0 1 3 2 2 1 0 1 2 3 0 1 0 1 1 0 2 2 2 3 1 0 3 0 0 1 1 3 3 1 3 2 3 1 2 0 2 0 6 1 2 1 1 0 2 4 2 1 2 0 0 0 2 3 1 1 0 1 1 4 1 2 4 1 4 3 1 2 5 1 3 1 3 0 1 1 0 0 1 1 1 3 3 3 1 2 3 3 0 2 1 2 0 0 3 0 1 0 0 +1 2 1 1 2 0 1 1 0 2 1 1 3 1 1 2 0 2 3 2 1 0 0 0 0 2 0 0 2 2 2 1 2 1 1 0 2 2 2 1 2 2 2 3 0 2 1 5 2 1 2 0 1 0 1 1 4 1 1 1 1 4 3 0 2 0 0 0 1 2 1 1 0 2 2 0 1 1 0 0 1 1 1 4 0 4 1 0 1 2 1 3 1 0 0 0 0 0 1 1 4 0 2 0 1 2 0 1 0 1 0 2 1 1 1 0 2 2 0 2 0 0 1 0 2 3 2 0 1 1 0 3 0 0 1 0 2 1 1 1 1 2 0 1 1 1 0 1 1 3 1 0 1 2 0 2 3 0 0 0 2 2 0 1 0 2 0 1 2 0 1 0 1 1 0 0 0 1 1 2 1 0 2 0 1 1 2 2 0 0 0 2 3 0 0 0 0 1 1 2 1 1 2 2 1 1 4 1 0 1 1 1 0 1 1 1 0 1 0 2 0 3 1 1 0 1 1 2 3 2 0 3 0 2 4 1 3 0 0 3 2 0 1 2 4 2 2 1 1 2 0 1 2 0 1 1 1 1 1 1 0 0 0 0 3 1 0 0 1 2 2 2 2 0 0 2 0 1 1 2 1 1 1 2 3 1 1 0 0 1 0 2 1 0 1 1 0 0 2 0 +1 1 1 1 0 0 2 0 1 1 2 1 0 1 0 0 0 0 2 1 0 0 1 0 1 1 0 1 0 2 2 0 1 0 0 1 1 0 0 0 1 1 0 2 2 1 1 1 0 0 0 2 0 0 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 1 1 1 1 1 2 1 1 0 0 0 0 0 0 1 1 2 0 1 1 2 0 2 1 0 1 0 0 0 0 3 0 0 0 0 2 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 3 0 2 0 4 0 1 0 1 1 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 2 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 3 0 0 0 2 0 1 2 1 1 2 1 1 0 0 0 0 1 2 1 0 1 0 2 1 2 2 2 0 0 0 1 1 2 2 1 0 2 0 0 1 2 0 0 0 0 0 1 0 2 1 0 1 2 2 1 0 2 0 0 2 3 1 1 0 1 0 4 1 2 0 1 3 0 0 0 1 1 1 1 0 1 1 1 2 0 1 1 0 0 0 1 2 0 1 0 1 0 2 2 0 1 0 0 0 1 3 0 0 2 1 1 1 2 3 0 0 +2 1 1 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 2 0 1 0 1 1 1 0 0 0 1 0 1 1 2 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 2 0 0 0 1 2 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 3 0 0 3 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 1 2 0 2 1 1 0 0 0 0 1 0 1 0 1 0 2 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 1 1 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 2 0 0 2 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 3 0 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 diff --git a/mcstasscript/tests/test_data_set/jupyter_demo.instr b/mcstasscript/tests/test_data_set/jupyter_demo.instr new file mode 100644 index 00000000..51849ce0 --- /dev/null +++ b/mcstasscript/tests/test_data_set/jupyter_demo.instr @@ -0,0 +1,92 @@ +/******************************************************************************** +* +* McStas, neutron ray-tracing package +* Copyright (C) 1997-2008, All rights reserved +* Risoe National Laboratory, Roskilde, Denmark +* Institut Laue Langevin, Grenoble, France +* +* This file was written by McStasScript, which is a +* python based McStas instrument generator written by +* Mads Bertelsen in 2019 while employed at the +* European Spallation Source Data Management and +* Software Center +* +* Instrument jupyter_demo +* +* %Identification +* Written by: Python McStas Instrument Generator +* Date: 08:19:46 on May 15, 2019 +* Origin: ESS DMSC +* %INSTRUMENT_SITE: Generated_instruments +* +* +* %Parameters +* +* %End +********************************************************************************/ + +DEFINE INSTRUMENT jupyter_demo ( +double wavelength = 3 // Wavelength emmited from source +) + +DECLARE +%{ +%} + +INITIALIZE +%{ +// Start of initialize for generated jupyter_demo +%} + +TRACE +COMPONENT Source = Source_simple( + yheight = 0.08, xwidth = 0.06, + dist = 2, focus_xw = 0.05, + focus_yh = 0.05, lambda0 = wavelength, + dlambda = 0.1) +AT (0,0,0) ABSOLUTE +ROTATED (0,0,0) ABSOLUTE + +COMPONENT Guide = Guide_gravity( + w1 = 0.05, h1 = 0.05, + w2 = 0.05, h2 = 0.05, + l = 8, m = 3.5, + G = -9.2) +AT (0,0,2) RELATIVE Source +ROTATED (0,0,0) RELATIVE Source + +COMPONENT sample = PowderN( + reflections = "Cu.laz", radius = 0.015, + yheight = 0.05) +AT (0,0,9) RELATIVE Guide +ROTATED (0,0,0) RELATIVE Guide + +COMPONENT PSD_4PI = PSD_monitor_4PI( + nx = 300, ny = 300, + filename = "PSD_4PI.dat", radius = 1, + restore_neutron = 1) +AT (0,0,0) RELATIVE sample +ROTATED (0,0,0) RELATIVE sample + +COMPONENT PSD = PSD_monitor( + nx = 200, ny = 200, + filename = "PSD.dat", xwidth = 0.1, + yheight = 0.1, restore_neutron = 1) +AT (0,0,1) RELATIVE sample +ROTATED (0,0,0) RELATIVE sample + +// Wavelength monitor for narrow range +COMPONENT L_mon = L_monitor( + nL = 150, filename = "L_mon.dat", + xwidth = 0.1, yheight = 0.1, + Lmin = wavelength - 0.3, Lmax = wavelength + 0.3, + restore_neutron = 1) +AT (0,0,0) RELATIVE PSD +ROTATED (0,0,0) RELATIVE PSD + +FINALLY +%{ +// Start of finally for generated jupyter_demo +%} + +END diff --git a/mcstasscript/tests/test_data_set/mccode.sim b/mcstasscript/tests/test_data_set/mccode.sim new file mode 100644 index 00000000..aac53eaf --- /dev/null +++ b/mcstasscript/tests/test_data_set/mccode.sim @@ -0,0 +1,90 @@ +McStas simulation description file for jupyter_demo. +Date: Wed May 15 08:19:52 2019 +Program: McStas 2.5 - Dec. 12, 2018 + +begin instrument: jupyter_demo + File: jupyter_demo3/mccode + Source: jupyter_demo.instr + Parameters: wavelength(double) + Trace_enabled: yes + Default_main: yes + Embedded_runtime: yes +end instrument + +begin simulation: jupyter_demo3 + Format: McCode with text headers + URL: http://www.mccode.org + Creator: McStas 2.5 - Dec. 12, 2018 + Instrument: jupyter_demo.instr + Ncount: 20000000 + Trace: no + Gravitation: no + Seed: 1557975068 + Directory: jupyter_demo3 + Nodes: 4 + Param: wavelength=1 +end simulation + +begin data + Date: Wed May 15 08:19:54 2019 (1557901194) + type: array_2d(300, 300) + Source: jupyter_demo (jupyter_demo.instr) + component: PSD_4PI + position: 0 0 11 + title: 4PI PSD monitor + Ncount: 20000000 + filename: PSD_4PI.dat + statistics: X0=-0.142189; dX=140.285; Y0=0.299127; dY=15.4061; + signal: Min=0; Max=1.99345e-05; Mean=5.17405e-09; + values: 0.000465664 4.478e-07 4.36906e+06 + xvar: Lo + yvar: La + xlabel: Longitude [deg] + ylabel: Lattitude [deg] + zvar: I + zlabel: Signal per bin + xylimits: -180 180 -90 90 + variables: I I_err N +end data + +begin data + Date: Wed May 15 08:19:54 2019 (1557901194) + type: array_2d(200, 200) + Source: jupyter_demo (jupyter_demo.instr) + component: PSD + position: 0 0 12 + title: PSD monitor + Ncount: 20000000 + filename: PSD.dat + statistics: X0=0.000283843; dX=1.8828; Y0=-0.00309525; dY=1.71996; + signal: Min=0; Max=5.86601e-08; Mean=9.69694e-09; + values: 0.000387878 4.37886e-07 2.23517e+06 + xvar: X + yvar: Y + xlabel: X position [cm] + ylabel: Y position [cm] + zvar: I + zlabel: Signal per bin + xylimits: -5 5 -5 5 + variables: I I_err N +end data + +begin data + Date: Wed May 15 08:19:54 2019 (1557901194) + type: array_1d(150) + Source: jupyter_demo (jupyter_demo.instr) + component: L_mon + position: 0 0 12 + title: Wavelength monitor + Ncount: 20000000 + filename: L_mon.dat + statistics: X0=1.00415; dX=0.0576164; + signal: Min=0; Max=8.72065e-06; Mean=2.58585e-06; + values: 0.000387878 4.37886e-07 2.23517e+06 + xvar: L + yvar: (I,I_err) + xlabel: Wavelength [AA] + ylabel: Intensity + xlimits: 0.7 1.3 + variables: L I I_err N +end data diff --git a/mcstasscript/tests/test_declare_variable.py b/mcstasscript/tests/test_declare_variable.py new file mode 100644 index 00000000..285823e0 --- /dev/null +++ b/mcstasscript/tests/test_declare_variable.py @@ -0,0 +1,185 @@ +import io +import builtins +import unittest +import unittest.mock + + +from mcstasscript.helper.mcstas_objects import declare_variable + + +class Test_declare_variable(unittest.TestCase): + """ + Tests the declare_variable class that holds a declared variable + that will be written to the McStas declare section. + + """ + + def test_declare_variable_init_basic_type(self): + """ + Initialization with a type + """ + + var = declare_variable("double", "test") + + self.assertEqual(var.name,"test") + self.assertEqual(var.type,"double") # space for easier writing + + def test_declare_variable_init_basic_type_value(self): + """ + Initialization with type and value + """ + + var = declare_variable("double", "test", value = 518) + + self.assertEqual(var.name,"test") + self.assertEqual(var.type,"double") # space for easier writing + self.assertEqual(var.value, 518) + + def test_declare_variable_init_basic_type_vector(self): + """ + Initialization with type and value + """ + + var = declare_variable("double", "test", + array=6, value = [1, 2.2, 3, 3.3, 4, 4.4]) + + self.assertEqual(var.name,"test") + self.assertEqual(var.type,"double") # space for easier writing + self.assertEqual(var.vector, 6) + self.assertEqual(var.value, [1, 2.2, 3, 3.3, 4, 4.4]) + + def test_declare_variable_init_basic_type_value_comment(self): + """ + Initialization with type, value and comment + """ + + var = declare_variable("double", "test", + value = 518, comment = "test comment /") + + self.assertEqual(var.name,"test") + self.assertEqual(var.type,"double") # space for easier writing + self.assertEqual(var.value, 518) + self.assertEqual(var.comment, " // test comment /") + + @unittest.mock.patch('__main__.__builtins__.open', + new_callable = unittest.mock.mock_open) + def test_declare_variable_write_basic(self, mock_f): + """ + Testing that write to file is correct. Here a line is in a + instrument declare section. The write file operation is + mocked and check using a patch. Here a simple declare is + used. + """ + + var = declare_variable("double", "test") + with mock_f('test.txt', 'w') as m_fo: + var.write_line(m_fo) + + mock_f.assert_called_with('test.txt', 'w') + handle = mock_f() + handle.write.assert_called_once_with("double test;") + + @unittest.mock.patch('__main__.__builtins__.open', + new_callable = unittest.mock.mock_open) + def test_declare_variable_write_complex_float(self, mock_f): + """ + Testing that write to file is correct. Here a line is in a + instrument declare section. The write file operation is + mocked and check using a patch. Here a declare with a value + is used. (float value) + """ + + var = declare_variable("double", + "test", + value = 5.4, + comment = "test comment") + + with mock_f('test.txt', 'w') as m_fo: + var.write_line(m_fo) + + expected_write = "double test = 5.4; // test comment" + + mock_f.assert_called_with('test.txt', 'w') + handle = mock_f() + handle.write.assert_called_once_with(expected_write) + + @unittest.mock.patch('__main__.__builtins__.open', + new_callable = unittest.mock.mock_open) + def test_declare_variable_write_complex_int(self, mock_f): + """ + Testing that write to file is correct. Here a line is in a + instrument declare section. The write file operation is + mocked and check using a patch. Here a declare with a value + is used. (integer value) + """ + + var = declare_variable("double", + "test", + value = 5, + comment = "test comment") + + with mock_f('test.txt', 'w') as m_fo: + var.write_line(m_fo) + + expected_write = "double test = 5; // test comment" + + mock_f.assert_called_with('test.txt', 'w') + handle = mock_f() + handle.write.assert_called_once_with(expected_write) + + @unittest.mock.patch('__main__.__builtins__.open', + new_callable = unittest.mock.mock_open) + def test_declare_variable_write_simple_array(self, mock_f): + """ + Testing that write to file is correct. Here a line is in a + instrument declare section. The write file operation is + mocked and check using a patch. Here an array is declared. + """ + + var = declare_variable("double", + "test", + array = 29, + comment = "test comment") + + with mock_f('test.txt', 'w') as m_fo: + var.write_line(m_fo) + + expected_write = "double test[29]; // test comment" + + mock_f.assert_called_with('test.txt', 'w') + handle = mock_f() + handle.write.assert_called_once_with(expected_write) + + @unittest.mock.patch('__main__.__builtins__.open', + new_callable = unittest.mock.mock_open) + def test_declare_variable_write_complex_array(self, mock_f): + """ + Testing that write to file is correct. Here a line is in a + instrument declare section. The write file operation is + mocked and check using a patch. Here an array is decalred and + populated with the selected values. + """ + + var = declare_variable("double", + "test", + array = 3, + value = [5, 4, 3.1], + comment = "test comment") + + with mock_f('test.txt', 'w') as m_fo: + var.write_line(m_fo) + + expected_writes = [unittest.mock.call("double test[3] = {"), + unittest.mock.call("5,"), + unittest.mock.call("4,"), + unittest.mock.call("3.1}; // test comment")] + + mock_f.assert_called_with('test.txt', 'w') + handle = mock_f() + handle.write.assert_has_calls(expected_writes, any_order=False) + + +if __name__ == '__main__': + unittest.main() + + \ No newline at end of file diff --git a/mcstasscript/tests/test_for_reading.comp b/mcstasscript/tests/test_for_reading.comp new file mode 100644 index 00000000..018abc75 --- /dev/null +++ b/mcstasscript/tests/test_for_reading.comp @@ -0,0 +1,186 @@ +/******************************************************************************* +* +* McStas, neutron ray-tracing package +* Copyright 1997-2002, All rights reserved +* Risoe National Laboratory, Roskilde, Denmark +* Institut Laue Langevin, Grenoble, France +* +* Component: Source_simple +* +* %I +* Written by: Kim Lefmann +* Date: October 30, 1997 +* Modified by: KL, October 4, 2001 +* Modified by: Emmanuel Farhi, October 30, 2001. Serious bug corrected. +* Origin: Risoe +* +* A circular neutron source with flat energy spectrum and arbitrary flux +* +* %D +* The routine is a circular neutron source, which aims at a square target +* centered at the beam (in order to improve MC-acceptance rate). The angular +* divergence is then given by the dimensions of the target. +* The neutron energy is uniformly distributed between lambda0-dlambda and +* lambda0+dlambda or between E0-dE and E0+dE. +* The flux unit is specified in n/cm2/s/st/energy unit (meV or Angs). +* +* This component replaces Source_flat, Source_flat_lambda, +* Source_flux and Source_flux_lambda. +* +* Example: Source_simple(radius=0.1, dist=2, focus_xw=.1, focus_yh=.1, E0=14, dE=2) +* +* %P +* radius: [m] Radius of circle in (x,y,0) plane where neutrons are generated. +* yheight: [m] Height of rectangle in (x,y,0) plane where neutrons are generated. +* xwidth: [m] Width of rectangle test comment +* target_index: [1] relative index of component to focus at, e.g. next is +1 this is used to compute 'dist' automatically. +* dist : [m] Distance to target along z axis. +* focus_xw: [m] Width of target +* focus_yh: [m] Height of target +* E0: [meV] Mean energy of neutrons. +* dE: [meV] Energy half spread of neutrons (flat or gaussian sigma). +* lambda0: [AA] Mean wavelength of neutrons. +* dlambda: Wavelength half spread of neutrons. +* flux: [1/(s*cm**2*st*energy unit)] flux per energy unit, Angs or meV if flux=0, the source emits 1 in 4*PI whole space. +* +* %E +*******************************************************************************/ + +DEFINE COMPONENT Source_simple +DEFINITION PARAMETERS () +SETTING PARAMETERS (radius=0.1, yheight=0, xwidth=0, +dist=0, focus_xw=.045, focus_yh=.12, +E0=0, dE=0, lambda0=0, dlambda=0, +int flux=1, gauss, int target_index=+1, string test_string) +OUTPUT PARAMETERS (pmul,square,srcArea) +/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */ +DECLARE +%{ +double pmul, srcArea; +int square; +double tx,ty,tz; +%} +INITIALIZE +%{ +square = 0; +/* Determine source area */ +if (radius && !yheight && !xwidth ) { + square = 0; + srcArea = PI*radius*radius; + } else if(yheight && xwidth) { + square = 1; + srcArea = xwidth * yheight; + } + + if (flux) { + pmul=flux*1e4*srcArea/mcget_ncount(); + if (dlambda) + pmul *= 2*dlambda; + else if (dE) + pmul *= 2*dE; + } else { + gauss = 0; + pmul=1.0/(mcget_ncount()*4*PI); + } + + if (target_index && !dist) + { + Coords ToTarget; + ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index),POS_A_CURRENT_COMP); + ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget); + coords_get(ToTarget, &tx, &ty, &tz); + dist=sqrt(tx*tx+ty*ty+tz*tz); + } else if (dist) { + tx = 0; + ty = 0; + tz = dist; + } + + + if (srcArea <= 0) { + printf("Source_simple: %s: Source area is <= 0 !\n ERROR - Exiting\n", + NAME_CURRENT_COMP); + exit(0); + } + if (dist <= 0 || focus_xw <= 0 || focus_yh <= 0) { + printf("Source_simple: %s: Target area unmeaningful! (negative dist / focus_xw / focus_yh)\n ERROR - Exiting\n", + NAME_CURRENT_COMP); + exit(0); + } + + if ((!lambda0 && !E0 && !dE && !dlambda)) { + printf("Source_simple: %s: You must specify either a wavelength or energy range!\n ERROR - Exiting\n", + NAME_CURRENT_COMP); + exit(0); + } + if ((!lambda0 && !dlambda && (E0 <= 0 || dE < 0 || E0-dE <= 0)) + || (!E0 && !dE && (lambda0 <= 0 || dlambda < 0 || lambda0-dlambda <= 0))) { + printf("Source_simple: %s: Unmeaningful definition of wavelength or energy range!\n ERROR - Exiting\n", + NAME_CURRENT_COMP); + exit(0); + } +%} +TRACE +%{ + double chi,E,lambda,v,r, xf, yf, rf, dx, dy, pdir; + + t=0; + z=0; + + if (square == 1) { + x = xwidth * (rand01() - 0.5); + y = yheight * (rand01() - 0.5); + } else { + chi=2*PI*rand01(); /* Choose point on source */ + r=sqrt(rand01())*radius; /* with uniform distribution. */ + x=r*cos(chi); + y=r*sin(chi); + } + randvec_target_rect_real(&xf, &yf, &rf, &pdir, + tx, ty, tz, focus_xw, focus_yh, ROT_A_CURRENT_COMP, x, y, z, 2); + + dx = xf-x; + dy = yf-y; + rf = sqrt(dx*dx+dy*dy+rf*rf); + + p = pdir*pmul; + + if(lambda0==0) { + if (!gauss) { + E=E0+dE*randpm1(); /* Choose from uniform distribution */ + } else { + E=E0+randnorm()*dE; + } + v=sqrt(E)*SE2V; + } else { + if (!gauss) { + lambda=lambda0+dlambda*randpm1(); + } else { + lambda=lambda0+randnorm()*dlambda; + } + v = K2V*(2*PI/lambda); + } + + vz=v*dist/rf; + vy=v*dy/rf; + vx=v*dx/rf; +%} + +MCDISPLAY +%{ + if (square == 1) { + + rectangle("xy",0,0,0,xwidth,yheight); + } else { + + circle("xy",0,0,0,radius); + } + if (dist) { + dashed_line(0,0,0, -focus_xw/2+tx,-focus_yh/2+ty,tz, 4); + dashed_line(0,0,0, focus_xw/2+tx,-focus_yh/2+ty,tz, 4); + dashed_line(0,0,0, focus_xw/2+tx, focus_yh/2+ty,tz, 4); + dashed_line(0,0,0, -focus_xw/2+tx, focus_yh/2+ty,tz, 4); + } +%} + +END diff --git a/mcstasscript/tests/test_parameter_variable.py b/mcstasscript/tests/test_parameter_variable.py new file mode 100644 index 00000000..bca7b167 --- /dev/null +++ b/mcstasscript/tests/test_parameter_variable.py @@ -0,0 +1,181 @@ +import io +import builtins +import unittest +import unittest.mock + + +from mcstasscript.helper.mcstas_objects import parameter_variable + + +class Test_parameter_variable(unittest.TestCase): + """ + Tests the parameter_variable class that holds an input parameter + for the instrument. + + """ + + def test_parameter_variable_init_basic(self): + """ + Smallest possible initialization + """ + + par = parameter_variable("test") + self.assertEqual(par.name,"test") + + def test_parameter_variable_init_basic_type(self): + """ + Initialization with a type + """ + + par = parameter_variable("double", "test") + + self.assertEqual(par.name,"test") + self.assertEqual(par.type,"double ") # space for easier writing + + def test_parameter_variable_init_basic_type_value(self): + """ + Initialization with type and value + """ + + par = parameter_variable("double", "test", value = 518) + + self.assertEqual(par.name,"test") + self.assertEqual(par.type,"double ") # space for easier writing + self.assertEqual(par.value, 518) + + def test_parameter_variable_init_basic_type_value_comment(self): + """ + Initialization with type, value and comment + """ + + par = parameter_variable("double", "test", + value = 518, comment = "test comment /") + + self.assertEqual(par.name,"test") + self.assertEqual(par.type,"double ") # space for easier writing + self.assertEqual(par.value, 518) + self.assertEqual(par.comment, "// test comment /") + + def test_parameter_variable_init_basic_value_comment(self): + """ + Initialization with value and comment + """ + + par = parameter_variable("test", + value = 518, comment = "test comment /") + + self.assertEqual(par.name,"test") + self.assertEqual(par.type,"") + self.assertEqual(par.value, 518) + self.assertEqual(par.comment, "// test comment /") + + @unittest.mock.patch('__main__.__builtins__.open', + new_callable = unittest.mock.mock_open) + def test_parameter_variable_write_basic(self, mock_f): + """ + Testing that write to file is correct. Here a line is in a + instrument parameter section. The write file operation is + mocked and check using a patch. Here a simple parameter is + used. + """ + + par = parameter_variable("double", "test") + with mock_f('test.txt', 'w') as m_fo: + par.write_parameter(m_fo, "") + + expected_writes = [unittest.mock.call("double test"), + unittest.mock.call(""), + unittest.mock.call(""), + unittest.mock.call("\n")] + + mock_f.assert_called_with('test.txt', 'w') + handle = mock_f() + handle.write.assert_has_calls(expected_writes, any_order=False) + + @unittest.mock.patch('__main__.__builtins__.open', + new_callable = unittest.mock.mock_open) + def test_parameter_variable_write_complex_float(self, mock_f): + """ + Testing that write to file is correct. Here a line is in a + instrument parameter section. The write file operation is + mocked and check using a patch. Here a parameter with a value + is used. (float value) + """ + + par = parameter_variable("double", + "test", + value = 5.4, + comment = "test comment") + + with mock_f('test.txt', 'w') as m_fo: + par.write_parameter(m_fo, ")") + + expected_writes = [unittest.mock.call("double test"), + unittest.mock.call(" = 5.4"), + unittest.mock.call(")"), + unittest.mock.call("// test comment"), + unittest.mock.call("\n")] + + mock_f.assert_called_with('test.txt', 'w') + handle = mock_f() + handle.write.assert_has_calls(expected_writes, any_order=False) + + @unittest.mock.patch('__main__.__builtins__.open', + new_callable = unittest.mock.mock_open) + def test_parameter_variable_write_complex_int(self, mock_f): + """ + Testing that write to file is correct. Here a line is in a + instrument parameter section. The write file operation is + mocked and check using a patch. Here a parameter with a value + is used. (integer value) + """ + + par = parameter_variable("double", + "test", + value = 5, + comment = "test comment") + + with mock_f('test.txt', 'w') as m_fo: + par.write_parameter(m_fo, ")") + + expected_writes = [unittest.mock.call("double test"), + unittest.mock.call(" = 5"), + unittest.mock.call(")"), + unittest.mock.call("// test comment"), + unittest.mock.call("\n")] + + mock_f.assert_called_with('test.txt', 'w') + handle = mock_f() + handle.write.assert_has_calls(expected_writes, any_order=False) + + @unittest.mock.patch('__main__.__builtins__.open', + new_callable = unittest.mock.mock_open) + def test_parameter_variable_write_complex_string(self, mock_f): + """ + Testing that write to file is correct. Here a line is in a + instrument parameter section. The write file operation is + mocked and check using a patch. Here a parameter with a value + is used. (string value) + """ + + par = parameter_variable("double", + "test", + value = "\"Al\"", + comment = "test comment") + + with mock_f('test.txt', 'w') as m_fo: + par.write_parameter(m_fo, ",") + + expected_writes = [unittest.mock.call("double test"), + unittest.mock.call(" = \"Al\""), + unittest.mock.call(","), + unittest.mock.call("// test comment"), + unittest.mock.call("\n")] + + mock_f.assert_called_with('test.txt', 'w') + handle = mock_f() + handle.write.assert_has_calls(expected_writes, any_order=False) + + +if __name__ == '__main__': + unittest.main() From e4d974f4e76b945f4ef6c192d338b6e2e0be4b45 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Tue, 21 May 2019 10:17:19 +0200 Subject: [PATCH 017/403] Added tests for interface classes and functions. --- mcstasscript/helper/mcstas_objects.py | 37 +- mcstasscript/interface/functions.py | 12 +- mcstasscript/interface/instr.py | 2 +- mcstasscript/tests/test_ComponentReader.py | 204 ++-- mcstasscript/tests/test_Instr.py | 1070 +++++++++++++++++ mcstasscript/tests/test_ManagedMcrun.py | 255 ++-- mcstasscript/tests/test_McStasData.py | 69 +- mcstasscript/tests/test_McStasMetaData.py | 42 +- mcstasscript/tests/test_McStasPlotOptions.py | 14 +- mcstasscript/tests/test_component.py | 588 ++++++--- mcstasscript/tests/test_declare_variable.py | 113 +- mcstasscript/tests/test_functions.py | 141 +++ mcstasscript/tests/test_parameter_variable.py | 111 +- 13 files changed, 2080 insertions(+), 578 deletions(-) create mode 100644 mcstasscript/tests/test_Instr.py create mode 100644 mcstasscript/tests/test_functions.py diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index 53db6645..b3b42246 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -374,7 +374,7 @@ def __init__(self, instance_name, component_name, **kwargs): self.ROTATED_relative = "RELATIVE " + kwargs["RELATIVE"] if "WHEN" in kwargs: - self.WHEN = "WHEN (" + kwargs["WHEN"] + ")\n" + self.WHEN = "WHEN (" + kwargs["WHEN"] + ")" else: self.WHEN = "" @@ -476,7 +476,7 @@ def set_parameters(self, dict_input): def set_WHEN(self, string): """Sets WHEN string, should be a c logical expression""" - self.WHEN = "WHEN (" + string + ")\n" + self.WHEN = "WHEN (" + string + ")" def set_GROUP(self, string): """Sets GROUP name""" @@ -551,7 +551,7 @@ def write_component(self, fo): # Optional WHEN section if not self.WHEN == "": - fo.write("%s" % self.WHEN) + fo.write("%s\n" % self.WHEN) # Write AT and ROTATED section fo.write("AT (%s,%s,%s)" % (str(self.AT_data[0]), @@ -614,7 +614,7 @@ class is used as a superclass for classes describing each + bcolors.ENDC) if not self.WHEN == "": - print("WHEN (" + self.WHEN + ")") + print(self.WHEN) print("AT", self.AT_data, self.AT_relative) print("ROTATED", self.ROTATED_data, self.ROTATED_relative) if not self.GROUP == "": @@ -628,7 +628,6 @@ class is used as a superclass for classes describing each def print_short(self, **kwargs): """Prints short description of component to list print""" if "longest_name" in kwargs: - print("test") number_of_spaces = 3+kwargs["longest_name"]-len(self.name) print(str(self.name) + " "*number_of_spaces, end='') print(str(self.component_name), @@ -671,7 +670,8 @@ def show_parameters(self): unit = " [" + self.parameter_units[parameter] + "]" comment = "" if parameter in self.parameter_comments: - comment = " // " + self.parameter_comments[parameter] + if not self.parameter_comments[parameter] == "": + comment = " // " + self.parameter_comments[parameter] parameter_name = bcolors.BOLD + parameter + bcolors.ENDC value = "" @@ -714,20 +714,21 @@ def show_parameters_simple(self): """ print("---- Help " + self.component_name + " -----") for parameter in self.parameter_names: + value = "" + if self.parameter_defaults[parameter] is not None: + value = " = " + str(self.parameter_defaults[parameter]) + if getattr(self, parameter) is not None: + value = " = " + str(getattr(self, parameter)) + unit = "" if parameter in self.parameter_units: unit = " [" + self.parameter_units[parameter] + "]" + comment = "" if parameter in self.parameter_comments: - comment = " // " + self.parameter_comments[parameter] - if self.parameter_defaults[parameter] is None: - print(parameter - + unit - + comment) - else: - print(parameter - + " = " - + str(self.parameter_defaults[parameter]) - + unit - + comment) - print("----------" + "-"*len(self.component_name) + "------") \ No newline at end of file + if self.parameter_comments[parameter] is not "": + comment = " // " + self.parameter_comments[parameter] + + print(parameter + value + unit + comment) + + print("----------" + "-"*len(self.component_name) + "------") diff --git a/mcstasscript/interface/functions.py b/mcstasscript/interface/functions.py index c7e757aa..365a4300 100644 --- a/mcstasscript/interface/functions.py +++ b/mcstasscript/interface/functions.py @@ -17,11 +17,14 @@ def name_search(name, data_list): data_list : List of McStasData instances List of datasets to search """ + + if type(data_list) is not list: + raise InputError( + "name_search function needs list of McStasData as input") if not type(data_list[0]) == McStasData: raise InputError( - "name_search function needs objects of type " - + "McStasData as input.") + "name_search function needs objects of type McStasData as input.") list_result = [] for check in data_list: @@ -54,10 +57,5 @@ def name_plot_options(name, data_list, **kwargs): McStasPlotOptions """ - if not isinstance(data_list[0], McStasData): - raise InputError( - "name_search function needs objects of type McStasData " - + "as input.") - object_to_modify = name_search(name, data_list) object_to_modify.set_plot_options(**kwargs) diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 690f7e19..76a9f2a0 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -364,7 +364,7 @@ def show_components(self, *args): """ if len(args) == 0: - print("Here are the availalbe component categories:") + print("Here are the available component categories:") self.component_reader.show_categories() print("Call show_components(category_name) to display") diff --git a/mcstasscript/tests/test_ComponentReader.py b/mcstasscript/tests/test_ComponentReader.py index b53f1b1f..c40a81b3 100644 --- a/mcstasscript/tests/test_ComponentReader.py +++ b/mcstasscript/tests/test_ComponentReader.py @@ -6,19 +6,21 @@ from mcstasscript.helper.component_reader import ComponentInfo from mcstasscript.helper.component_reader import ComponentReader + def setup_component_reader(): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) dummy_path = THIS_DIR + "/dummy_mcstas" - + current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder - - component_reader = ComponentReader(mcstas_path = dummy_path) - + + component_reader = ComponentReader(mcstas_path=dummy_path) + os.chdir(current_work_dir) # Reset work directory - + return component_reader + class TestComponentReader(unittest.TestCase): """ Testing the ComponenReader class. As this class reads information @@ -26,27 +28,26 @@ class TestComponentReader(unittest.TestCase): avoid the test results changeing with updates of McStas. """ - - @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_init_overwrite_message(self, mock_stdout): """ Test that ComponentReader reports overwritten components """ - + component_reader = setup_component_reader() - - message = ("Overwriting McStasScript info on component named " + + message = ("Overwriting McStasScript info on component named " + "test_for_reading.comp because the component is in " + "the work directory.\n") - + self.assertEqual(mock_stdout.getvalue(), message) - - @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_init_filenames(self, mock_stdout): """ Test that ComponentReader initializes component names correctly """ - + component_reader = setup_component_reader() n_components_found = len(component_reader.component_path) @@ -55,14 +56,14 @@ def test_ComponentReader_init_filenames(self, mock_stdout): self.assertIn("test_for_structure", component_reader.component_path) self.assertIn("test_for_structure2", component_reader.component_path) - @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_init_categories(self, mock_stdout): """ Test that ComponentReader initializes categories correctly """ - + component_reader = setup_component_reader() - + n_categories_found = len(component_reader.component_category) self.assertEqual(n_categories_found, 3) """ @@ -77,103 +78,103 @@ def test_ComponentReader_init_categories(self, mock_stdout): category = component_reader.component_category["test_for_structure2"] self.assertEqual(category, "sources") - @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_show_categories(self, mock_stdout): """ This method prints to console, check it prints the categories in the dummy installation correctly. - + """ component_reader = setup_component_reader() - + component_reader.show_categories() - + output = mock_stdout.getvalue() output = output.split("\n") - + self.assertEqual(len(output), 5) self.assertIn(" sources", output) self.assertIn(" Work directory", output) self.assertIn(" misc", output) - - @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_show_categories_ordered(self, mock_stdout): """ Check that the print to console is ordered as usual. This test may be implementation dependent as python dictionaries are not ordered. - + """ - + component_reader = setup_component_reader() - + component_reader.show_categories() - + output = mock_stdout.getvalue() output = output.split("\n") - + self.assertEqual(output[1], " sources") self.assertEqual(output[2], " Work directory") self.assertEqual(output[3], " misc") - - @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_show_components_short(self, mock_stdout): """ Here we attempt to show components in the misc category. In the dummy install, there are two components in this folder, but - one of these is overwritten by the version in the current + one of these is overwritten by the version in the current work directory. - + """ - + component_reader = setup_component_reader() - + component_reader.show_components_in_category("misc") - + output = mock_stdout.getvalue() output = output.split("\n") - + self.assertEqual(len(output), 3) self.assertIn(" test_for_structure", output) # Check overwritten component is not in the output self.assertNotIn(" test_for_reading", output) - + """ # This test not as important, but could be finished later @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) def test_ComponentReader_show_components_long(self, mock_stdout): - + component_reader = setup_component_reader() - + # Add elements directly to component_readers library # generate list # add list - + #component_reader.component_category[] - + component_reader.show_components_in_category("misc") - + output = mock_stdout.getvalue() output = output.split("\n") - + self.assertEqual(len(output), 3) self.assertIn(" test_for_structure", output) - """ - + """ + # test load_all_components - @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_load_all_components(self, mock_stdout): """ Load all components in the dummy install, but only one has any content. The method is currently not necessary, as components are now loaded individually when needed. - + """ component_reader = setup_component_reader() - + CompInfo_dict = component_reader.load_all_components() - + comp_name = "test_for_reading" name = CompInfo_dict[comp_name].name self.assertEqual(name, comp_name) @@ -198,7 +199,7 @@ def test_ComponentReader_load_all_components(self, mock_stdout): self.assertEqual(name, comp_name) # test_for_structure2 is an empty file, so no conentet to check - @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_read_name_error(self, mock_stdout): """ read_name should throw an error when searching for a component @@ -210,12 +211,12 @@ def test_ComponentReader_read_name_error(self, mock_stdout): with self.assertRaises(NameError): CompInfo = component_reader.read_name("no_such_comp") - @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_read_name_success(self, mock_stdout): """ Read component simply calls read_component_file, but here - the output is checked against what is in the dummy file. - + the output is checked against what is in the dummy file. + """ component_reader = setup_component_reader() @@ -231,63 +232,63 @@ def test_ComponentReader_read_name_success(self, mock_stdout): self.assertIn("dist", CompInfo.parameter_comments) self.assertIn("dist", CompInfo.parameter_units) self.assertEqual(CompInfo.parameter_units["dist"], "m") - - @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_find_components_names(self, mock_stdout): """ Test that ComponentReader initializes component names correctly """ - + component_reader = setup_component_reader() - + component_reader.component_path = {} component_reader.component_category = {} - + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) dummy_path = THIS_DIR + "/dummy_mcstas/misc" current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder - component_reader._find_components(dummy_path) - os.chdir(current_work_dir) # Return to original work directory - + component_reader._find_components(dummy_path) + os.chdir(current_work_dir) # Return to original work directory + n_components_found = len(component_reader.component_path) self.assertEqual(n_components_found, 2) self.assertIn("test_for_reading", component_reader.component_path) self.assertIn("test_for_structure", component_reader.component_path) - @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_find_components_categories(self, mock_stdout): """ Test that ComponentReader initializes component categories correctly """ - + component_reader = setup_component_reader() - + component_reader.component_path = {} component_reader.component_category = {} - + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) dummy_path = THIS_DIR + "/dummy_mcstas/misc" current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder - component_reader._find_components(dummy_path) - os.chdir(current_work_dir) # Return to original work directory - + component_reader._find_components(dummy_path) + os.chdir(current_work_dir) # Return to original work directory + n_categories_found = len(component_reader.component_category) self.assertEqual(n_categories_found, 2) - + category = component_reader.component_category["test_for_reading"] self.assertEqual(category, "misc") category = component_reader.component_category["test_for_structure"] self.assertEqual(category, "misc") - - @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_read_component_category(self, mock_stdout): """ Check that the correct category is returned. - + Can't run this test with overwritten component test_for_reading. - read_component will report tests as category, but this is + read_component will report tests as category, but this is overwritten by read_name in normal use. """ component_reader = setup_component_reader() @@ -298,10 +299,10 @@ def test_ComponentReader_read_component_category(self, mock_stdout): exp_cat = component_reader.component_category["test_for_structure"] self.assertEqual(CompInfo.category, exp_cat) - @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_read_component_standard(self, mock_stdout): """ - Test that a normal parameter is read correctly when reading a + Test that a normal parameter is read correctly when reading a component file. Has default, is double type, has comment, has unit """ @@ -317,19 +318,19 @@ def test_ComponentReader_read_component_standard(self, mock_stdout): self.assertEqual(CompInfo.parameter_defaults["xwidth"], 0.0) self.assertIn("xwidth", CompInfo.parameter_types) - self.assertEqual(CompInfo.parameter_types["xwidth"],"double") + self.assertEqual(CompInfo.parameter_types["xwidth"], "double") self.assertIn("xwidth", CompInfo.parameter_comments) comment = "Width of rectangle test comment" - self.assertEqual(CompInfo.parameter_comments["xwidth"],comment) + self.assertEqual(CompInfo.parameter_comments["xwidth"], comment) self.assertIn("xwidth", CompInfo.parameter_units) - self.assertEqual(CompInfo.parameter_units["xwidth"],"m") + self.assertEqual(CompInfo.parameter_units["xwidth"], "m") - @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_read_component_required(self, mock_stdout): """ - Test that a required parameter is read correctly when reading a + Test that a required parameter is read correctly when reading a component file. Has no default, is double type, has no comment, has no unit """ @@ -345,16 +346,16 @@ def test_ComponentReader_read_component_required(self, mock_stdout): self.assertIsNone(CompInfo.parameter_defaults["gauss"]) self.assertIn("gauss", CompInfo.parameter_types) - self.assertEqual(CompInfo.parameter_types["gauss"],"double") + self.assertEqual(CompInfo.parameter_types["gauss"], "double") self.assertNotIn("gauss", CompInfo.parameter_comments) self.assertNotIn("gauss", CompInfo.parameter_units) - @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_read_component_int(self, mock_stdout): """ - Test that a integer parameter is read correctly when reading a + Test that a integer parameter is read correctly when reading a component file. Has default, is int type (comments and unit checked already) """ @@ -370,7 +371,7 @@ def test_ComponentReader_read_component_int(self, mock_stdout): self.assertEqual(CompInfo.parameter_defaults["flux"], 1) self.assertIn("flux", CompInfo.parameter_types) - self.assertEqual(CompInfo.parameter_types["flux"],"int") + self.assertEqual(CompInfo.parameter_types["flux"], "int") self.assertIn("flux", CompInfo.parameter_comments) # Have already tested comments are read @@ -378,10 +379,10 @@ def test_ComponentReader_read_component_int(self, mock_stdout): self.assertIn("flux", CompInfo.parameter_units) # Have already tested units are read - @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_read_component_string(self, mock_stdout): """ - Test that a string parameter is read correctly when reading a + Test that a string parameter is read correctly when reading a component file. Has no default, is string type (comments and unit checked already) """ @@ -397,7 +398,7 @@ def test_ComponentReader_read_component_string(self, mock_stdout): self.assertIsNone(CompInfo.parameter_defaults["test_string"]) self.assertIn("test_string", CompInfo.parameter_types) - self.assertEqual(CompInfo.parameter_types["test_string"],"string") + self.assertEqual(CompInfo.parameter_types["test_string"], "string") self.assertNotIn("test_string", CompInfo.parameter_comments) # Have already tested comments are read @@ -405,51 +406,50 @@ def test_ComponentReader_read_component_string(self, mock_stdout): self.assertNotIn("test_string", CompInfo.parameter_units) # Have already tested units are read - @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_line_start_long(self, mock_stdout): """ Helper function that should return true when certain string is the start of another string. - + """ component_reader = setup_component_reader() test_string = "monkey wants banana" - return_val = component_reader.line_starts_with(test_string,"mo") + return_val = component_reader.line_starts_with(test_string, "mo") self.assertIsInstance(return_val, bool) self.assertTrue(return_val) - return_val = component_reader.line_starts_with(test_string,"on") + return_val = component_reader.line_starts_with(test_string, "on") self.assertIsInstance(return_val, bool) self.assertFalse(return_val) - @unittest.mock.patch("sys.stdout", new_callable = io.StringIO) + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_line_start_short(self, mock_stdout): """ Helper function that should return true when certain string is the start of another string. Here checked with short test_string - - + """ - + component_reader = setup_component_reader() - + test_string = "m" - return_val = component_reader.line_starts_with(test_string,"m") + return_val = component_reader.line_starts_with(test_string, "m") self.assertIsInstance(return_val, bool) self.assertTrue(return_val) - return_val = component_reader.line_starts_with(test_string,"mo") + return_val = component_reader.line_starts_with(test_string, "mo") self.assertIsInstance(return_val, bool) self.assertFalse(return_val) - return_val = component_reader.line_starts_with(test_string,"on") + return_val = component_reader.line_starts_with(test_string, "on") self.assertIsInstance(return_val, bool) self.assertFalse(return_val) - - + + if __name__ == '__main__': unittest.main() diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py new file mode 100644 index 00000000..35705cd5 --- /dev/null +++ b/mcstasscript/tests/test_Instr.py @@ -0,0 +1,1070 @@ +import os +import io +import builtins +import unittest +import unittest.mock +import datetime + +from mcstasscript.interface.instr import McStas_instr +from mcstasscript.helper.formatting import bcolors + + +def setup_instr_no_path(): + """ + Sets up a instrument without a valid mcstas_path + """ + return McStas_instr("test_instrument", mcstas_path="/") + + +def setup_instr_with_path(): + """ + Sets up a instrument with a valid mcstas_path, but it points to + the dummy installation in the test folder. + """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + dummy_path = THIS_DIR + "/dummy_mcstas" + + return McStas_instr("test_instrument", mcstas_path=dummy_path) + + +def setup_populated_instr(): + """ + Sets up a instrument with some features used and two components + """ + instr = setup_instr_no_path() + + instr.add_parameter("double", "theta") + instr.add_declare_var("double", "two_theta") + instr.append_initialize("two_theta = 2.0*theta;") + + comp1 = instr.add_component("first_component", "test_for_reading") + comp2 = instr.add_component("second_component", "test_for_reading") + comp3 = instr.add_component("third_component", "test_for_reading") + + return instr + + +class TestMcStas_instr(unittest.TestCase): + """ + Tests of the main class in McStasScript called McStas_instr. + """ + + def test_simple_initialize(self): + """ + Test basic initialization runs + """ + my_instrument = setup_instr_no_path() + + self.assertEqual(my_instrument.name, "test_instrument") + + def test_complex_initialize(self): + """ + Tests all keywords work in initialization + """ + my_instrument = McStas_instr("test_instrument", + author="Mads", + origin="DMSC", + mcrun_path="/path/to/mcrun", + mcstas_path="/path/to/mcstas") + + self.assertEqual(my_instrument.author, "Mads") + self.assertEqual(my_instrument.origin, "DMSC") + self.assertEqual(my_instrument.mcrun_path, "/path/to/mcrun") + self.assertEqual(my_instrument.mcstas_path, "/path/to/mcstas") + + def test_simple_add_parameter(self): + """ + This is just an interface to a function that is tested + elsewhere, so only a basic test is performed here. + """ + instr = setup_instr_no_path() + + instr.add_parameter("double", "theta", comment="test par") + + self.assertEqual(instr.parameter_list[0].name, "theta") + self.assertEqual(instr.parameter_list[0].comment, "// test par") + + def test_simple_add_declare_parameter(self): + """ + This is just an interface to a function that is tested + elsewhere, so only a basic test is performed here. + """ + instr = setup_instr_no_path() + + instr.add_declare_var("double", "two_theta", comment="test par") + + self.assertEqual(instr.declare_list[0].name, "two_theta") + self.assertEqual(instr.declare_list[0].comment, " // test par") + + def test_simple_append_initialize(self): + """ + The initialize section is held as a string. This method + appends that string. + """ + instr = setup_instr_no_path() + + self.assertEqual(instr.initialize_section, + "// Start of initialize for generated " + + "test_instrument\n") + + instr.append_initialize("First line of initialize") + instr.append_initialize("Second line of initialize") + instr.append_initialize("Third line of initialize") + + self.assertEqual(instr.initialize_section, + "// Start of initialize for generated " + + "test_instrument\n" + + "First line of initialize\n" + + "Second line of initialize\n" + + "Third line of initialize\n") + + def test_simple_append_initialize_no_new_line(self): + """ + The initialize section is held as a string. This method + appends that string. + """ + instr = setup_instr_no_path() + + self.assertEqual(instr.initialize_section, + "// Start of initialize for generated " + + "test_instrument\n") + + instr.append_initialize_no_new_line("A") + instr.append_initialize_no_new_line("B") + instr.append_initialize_no_new_line("CD") + + self.assertEqual(instr.initialize_section, + "// Start of initialize for generated " + + "test_instrument\n" + + "ABCD") + + def test_simple_append_finally(self): + """ + The initialize section is held as a string. This method + appends that string. + """ + instr = setup_instr_no_path() + + self.assertEqual(instr.finally_section, + "// Start of finally for generated " + + "test_instrument\n") + + instr.append_finally("First line of finally") + instr.append_finally("Second line of finally") + instr.append_finally("Third line of finally") + + self.assertEqual(instr.finally_section, + "// Start of finally for generated " + + "test_instrument\n" + + "First line of finally\n" + + "Second line of finally\n" + + "Third line of finally\n") + + def test_simple_append_finally_no_new_line(self): + """ + The initialize section is held as a string. This method + appends that string. + """ + instr = setup_instr_no_path() + + self.assertEqual(instr.finally_section, + "// Start of finally for generated " + + "test_instrument\n") + + instr.append_finally_no_new_line("A") + instr.append_finally_no_new_line("B") + instr.append_finally_no_new_line("CD") + + self.assertEqual(instr.finally_section, + "// Start of finally for generated " + + "test_instrument\n" + + "ABCD") + + def test_simple_append_trace(self): + """ + The initialize section is held as a string. This method + appends that string. + """ + instr = setup_instr_no_path() + + self.assertEqual(instr.trace_section, + "// Start of trace section for generated " + + "test_instrument\n") + + instr.append_trace("First line of trace") + instr.append_trace("Second line of trace") + instr.append_trace("Third line of trace") + + self.assertEqual(instr.trace_section, + "// Start of trace section for generated " + + "test_instrument\n" + + "First line of trace\n" + + "Second line of trace\n" + + "Third line of trace\n") + + def test_simple_append_trace_no_new_line(self): + """ + The initialize section is held as a string. This method + appends that string. + """ + instr = setup_instr_no_path() + + self.assertEqual(instr.trace_section, + "// Start of trace section for generated " + + "test_instrument\n") + + instr.append_trace_no_new_line("A") + instr.append_trace_no_new_line("B") + instr.append_trace_no_new_line("CD") + + self.assertEqual(instr.trace_section, + "// Start of trace section for generated " + + "test_instrument\n" + + "ABCD") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_show_components_simple(self, mock_stdout): + """ + Simple test of show components to show categories + """ + instr = setup_instr_with_path() + + instr.show_components() + + output = mock_stdout.getvalue() + output = output.split("\n") + + self.assertEqual(output[0], + "Overwriting McStasScript info on component " + + "named test_for_reading.comp because the " + + "component is in the work directory.") + self.assertEqual(output[1], + "Here are the available component categories:") + self.assertEqual(output[2], " sources") + self.assertEqual(output[3], " Work directory") + self.assertEqual(output[4], " misc") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_show_components_folder(self, mock_stdout): + """ + Simple test of show components to show categories + """ + instr = setup_instr_with_path() + + instr.show_components("Work directory") + + output = mock_stdout.getvalue() + output = output.split("\n") + + self.assertEqual(output[0], + "Overwriting McStasScript info on component " + + "named test_for_reading.comp because the " + + "component is in the work directory.") + self.assertEqual(output[1], + "Here are all components in the Work directory " + + "category.") + self.assertEqual(output[2], " test_for_reading") + self.assertEqual(output[3], "") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_component_help(self, mock_stdout): + """ + Simple test of component help + """ + instr = setup_instr_with_path() + + instr.component_help("test_for_reading") + # This call creates a dummy component and calls its + # show_parameter method which has been tested. Here we + # need to ensure the call is succesful, not test all + # output from the call. + + output = mock_stdout.getvalue() + output = output.split("\n") + + self.assertEqual(output[1], " ___ Help test_for_reading " + "_"*46) + + legend = ("|" + + bcolors.BOLD + "optional parameter" + bcolors.ENDC + + "|" + + bcolors.BOLD + bcolors.UNDERLINE + + "required parameter" + + bcolors.ENDC + bcolors.ENDC + + "|" + + bcolors.BOLD + bcolors.OKBLUE + + "default value" + + bcolors.ENDC + bcolors.ENDC + + "|" + + bcolors.BOLD + bcolors.OKGREEN + + "user specified value" + + bcolors.ENDC + bcolors.ENDC + + "|") + + self.assertEqual(output[2], legend) + + par_name = bcolors.BOLD + "radius" + bcolors.ENDC + value = (bcolors.BOLD + bcolors.OKBLUE + + "0.1" + bcolors.ENDC + bcolors.ENDC) + comment = ("// Radius of circle in (x,y,0) plane where " + + "neutrons are generated.") + self.assertEqual(output[3], + par_name + " = " + value + " [m] " + comment) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_create_component_instance_simple(self, mock_stdout): + """ + _create_component_instance will make a dynamic subclass of + component with the information from the component files read + from disk. The subclasses is saved in a dict for reuse in + case the same component type is requested again. + """ + + instr = setup_instr_with_path() + + comp = instr._create_component_instance("test_component", + "test_for_reading") + + self.assertEqual(comp.radius, None) + self.assertIn("radius", comp.parameter_names) + self.assertEqual(comp.parameter_defaults["radius"], 0.1) + self.assertEqual(comp.parameter_types["radius"], "double") + self.assertEqual(comp.parameter_units["radius"], "m") + + comment = ("Radius of circle in (x,y,0) plane where " + + "neutrons are generated.") + self.assertEqual(comp.parameter_comments["radius"], comment) + self.assertEqual(comp.category, "Work directory") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_create_component_instance_simple_error(self, mock_stdout): + """ + _create_component_instance will make a dynamic subclass of + component with the information from the component files read + from disk. The subclasses is saved in a dict for reuse in + case the same component type is requested again. + """ + + instr = setup_instr_with_path() + + with self.assertRaises(NameError): + comp = instr._create_component_instance("test_component") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_create_component_instance_complex(self, mock_stdout): + """ + _create_component_instance will make a dynamic subclass of + component with the information from the component files read + from disk. The subclasses is saved in a dict for reuse in + case the same component type is requested again. + """ + + instr = setup_instr_with_path() + + # Setting relative to home, should be passed to component + comp = instr._create_component_instance("test_component", + "test_for_reading", + RELATIVE="home") + + self.assertEqual(comp.radius, None) + self.assertIn("radius", comp.parameter_names) + self.assertEqual(comp.parameter_defaults["radius"], 0.1) + self.assertEqual(comp.parameter_types["radius"], "double") + self.assertEqual(comp.parameter_units["radius"], "m") + + comment = ("Radius of circle in (x,y,0) plane where " + + "neutrons are generated.") + self.assertEqual(comp.parameter_comments["radius"], comment) + self.assertEqual(comp.category, "Work directory") + + # The keyword arguments of the call should be passed to the + # new instance of the component. This is checked by reading + # the relative attributes which were set to home in the call + self.assertEqual(comp.AT_relative, "RELATIVE home") + self.assertEqual(comp.ROTATED_relative, "RELATIVE home") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_add_component_simple(self, mock_stdout): + """ + The add_component method adds a new component object to the + instrument and keeps track of its location within the + sequence of components. Normally a new component is added to + the end of the sequence, but the before and after keywords can + be used to select another location. + """ + + instr = setup_instr_with_path() + + comp = instr.add_component("test_component", "test_for_reading") + + self.assertEqual(len(instr.component_list), 1) + self.assertEqual(instr.component_list[0].name, "test_component") + + # Test the resulting object functions as intended + comp.set_GROUP("developers") + self.assertEqual(instr.component_list[0].GROUP, "developers") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_add_component_simple_keyword(self, mock_stdout): + """ + The add_component method adds a new component object to the + instrument and keeps track of its location within the + sequence of components. Normally a new component is added to + the end of the sequence, but the before and after keywords can + be used to select another location. Here keyword passing is + tested. + """ + + instr = setup_instr_with_path() + + comp = instr.add_component("test_component", + "test_for_reading", + WHEN="1<2") + + self.assertEqual(len(instr.component_list), 1) + self.assertEqual(instr.component_list[0].name, "test_component") + self.assertEqual(instr.component_list[0].component_name, + "test_for_reading") + + self.assertEqual(instr.component_list[0].WHEN, "WHEN (1<2)") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_add_component_simple_before(self, mock_stdout): + """ + The add_component method adds a new component object to the + instrument and keeps track of its location within the + sequence of components. Normally a new component is added to + the end of the sequence, but the before and after keywords can + be used to select another location. Here keyword passing is + tested. + """ + + instr = setup_populated_instr() + + comp = instr.add_component("test_component", + "test_for_reading", + before="first_component") + + self.assertEqual(len(instr.component_list), 4) + self.assertEqual(instr.component_list[0].name, "test_component") + self.assertEqual(instr.component_list[3].name, "third_component") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_add_component_simple_after(self, mock_stdout): + """ + The add_component method adds a new component object to the + instrument and keeps track of its location within the + sequence of components. Normally a new component is added to + the end of the sequence, but the before and after keywords can + be used to select another location. Here keyword passing is + tested. + """ + + instr = setup_populated_instr() + + comp = instr.add_component("test_component", + "test_for_reading", + after="first_component") + + self.assertEqual(len(instr.component_list), 4) + self.assertEqual(instr.component_list[1].name, "test_component") + self.assertEqual(instr.component_list[3].name, "third_component") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_add_component_simple_after_error(self, mock_stdout): + """ + The add_component method adds a new component object to the + instrument and keeps track of its location within the + sequence of components. Normally a new component is added to + the end of the sequence, but the before and after keywords can + be used to select another location. Here keyword passing is + tested. + """ + + instr = setup_populated_instr() + + with self.assertRaises(NameError): + comp = instr.add_component("test_component", + "test_for_reading", + after="non_exsistent_component") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_add_component_simple_before_error(self, mock_stdout): + """ + The add_component method adds a new component object to the + instrument and keeps track of its location within the + sequence of components. Normally a new component is added to + the end of the sequence, but the before and after keywords can + be used to select another location. Here keyword passing is + tested. + """ + + instr = setup_populated_instr() + + with self.assertRaises(NameError): + comp = instr.add_component("test_component", + "test_for_reading", + before="non_exsistent_component") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_add_component_simple_double_naming_error(self, mock_stdout): + """ + The add_component method adds a new component object to the + instrument and keeps track of its location within the + sequence of components. Normally a new component is added to + the end of the sequence, but the before and after keywords can + be used to select another location. Here keyword passing is + tested. + """ + + instr = setup_populated_instr() + + with self.assertRaises(NameError): + comp = instr.add_component("first_component", "test_for_reading") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_get_component_simple(self, mock_stdout): + """ + get_component retrieves a component with a given name for + easier manipulation. + """ + + instr = setup_populated_instr() + + comp = instr.get_component("second_component") + + self.assertEqual(comp.name, "second_component") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_get_component_simple_error(self, mock_stdout): + """ + get_component retrieves a component with a given name for + easier manipulation. + """ + + instr = setup_populated_instr() + + with self.assertRaises(NameError): + comp = instr.get_component("non_existing_component") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_get_last_component_simple(self, mock_stdout): + """ + get_component retrieves the last component for easier + manipulation. + """ + + instr = setup_populated_instr() + + comp = instr.get_last_component() + + self.assertEqual(comp.name, "third_component") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_set_component_parameter(self, mock_stdout): + """ + Set component parameter passes a dict from instrument level + to a contained component with the given name. It uses the + get_component method. + """ + + instr = setup_populated_instr() + + instr.set_component_parameter("second_component", + {"radius": 5.8, + "dist": "text"}) + + comp = instr.get_component("second_component") + + self.assertEqual(comp.radius, 5.8) + self.assertEqual(comp.dist, "text") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_set_component_parameter_error(self, mock_stdout): + """ + Set component parameter passes a dict from instrument level + to a contained component with the given name. It uses the + get_component method. + """ + + instr = setup_populated_instr() + + with self.assertRaises(NameError): + instr.set_component_parameter("second_component", + {"non_exsistant_par": 5.8, + "dist": "text"}) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_set_component_AT(self, mock_stdout): + """ + set_component_AT passes the argument to the similar method + in the component class. + """ + + instr = setup_populated_instr() + + instr.set_component_AT("second_component", + [1, 2, 3.2], RELATIVE="home") + + comp = instr.get_component("second_component") + + self.assertEqual(comp.AT_data, [1, 2, 3.2]) + self.assertEqual(comp.AT_relative, "RELATIVE home") + self.assertEqual(comp.ROTATED_relative, "ABSOLUTE") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_set_component_ROTATED(self, mock_stdout): + """ + set_component_ROTATED passes the argument to the similar + method in the component class. + """ + + instr = setup_populated_instr() + + instr.set_component_ROTATED("second_component", + [1, 2, 3.2], RELATIVE="home") + + comp = instr.get_component("second_component") + + self.assertEqual(comp.ROTATED_data, [1, 2, 3.2]) + self.assertEqual(comp.ROTATED_relative, "RELATIVE home") + self.assertEqual(comp.AT_relative, "ABSOLUTE") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_set_component_RELATIVE(self, mock_stdout): + """ + set_component_RELATIVE passes the argument to the similar + method in the component class. + """ + + instr = setup_populated_instr() + + instr.set_component_RELATIVE("second_component", "home") + + comp = instr.get_component("second_component") + + self.assertEqual(comp.ROTATED_data, [0, 0, 0]) + self.assertEqual(comp.ROTATED_relative, "RELATIVE home") + self.assertEqual(comp.AT_relative, "RELATIVE home") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_set_component_WHEN(self, mock_stdout): + """ + set_component_WHEN passes the argument to the similar method + in the component class. + """ + + instr = setup_populated_instr() + + instr.set_component_WHEN("second_component", "2>1") + + comp = instr.get_component("second_component") + + self.assertEqual(comp.WHEN, "WHEN (2>1)") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_append_component_EXTEND(self, mock_stdout): + """ + append_component_EXTEND passes the argument to the similar + method in the component class. + """ + + instr = setup_populated_instr() + + instr.append_component_EXTEND("second_component", "line1") + instr.append_component_EXTEND("second_component", "line2") + + comp = instr.get_component("second_component") + + output = comp.EXTEND.split("\n") + + self.assertEqual(output[0], "line1") + self.assertEqual(output[1], "line2") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_set_component_GROUP(self, mock_stdout): + """ + set_component_GROUP passes the argument to the similar method + in the component class. + """ + + instr = setup_populated_instr() + + instr.set_component_GROUP("second_component", "developers") + + comp = instr.get_component("second_component") + + self.assertEqual(comp.GROUP, "developers") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_set_component_JUMP(self, mock_stdout): + """ + set_component_JUMP passes the argument to the similar method + in the component class. + """ + + instr = setup_populated_instr() + + instr.set_component_JUMP("second_component", "myself 8") + + comp = instr.get_component("second_component") + + self.assertEqual(comp.JUMP, "myself 8") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_set_component_comment(self, mock_stdout): + """ + set_component_comment passes the argument to the similar + method in the component class. + """ + + instr = setup_populated_instr() + + instr.set_component_comment("second_component", "test comment") + + comp = instr.get_component("second_component") + + self.assertEqual(comp.comment, "test comment") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_print_component(self, mock_stdout): + """ + print_component calls the print_long method in the component + class. + """ + + instr = setup_populated_instr() + instr.set_component_parameter("second_component", + {"dist": 5}) + + instr.print_component("second_component") + + output = mock_stdout.getvalue().split("\n") + + self.assertEqual(output[0], + "COMPONENT second_component = test_for_reading") + + par_name = bcolors.BOLD + "dist" + bcolors.ENDC + value = (bcolors.BOLD + bcolors.OKGREEN + + "5" + bcolors.ENDC + bcolors.ENDC) + self.assertEqual(output[1], " " + par_name + " = " + value + " [m]") + + par_name = bcolors.BOLD + "gauss" + bcolors.ENDC + warning = (bcolors.FAIL + + " : Required parameter not yet specified" + + bcolors.ENDC) + self.assertEqual(output[2], " " + par_name + warning) + + par_name = bcolors.BOLD + "test_string" + bcolors.ENDC + warning = (bcolors.FAIL + + " : Required parameter not yet specified" + + bcolors.ENDC) + self.assertEqual(output[3], " " + par_name + warning) + + self.assertEqual(output[4], "AT [0, 0, 0] ABSOLUTE") + self.assertEqual(output[5], "ROTATED [0, 0, 0] ABSOLUTE") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_print_component_short(self, mock_stdout): + """ + print_component_short calls the print_short method in the + component class. + """ + + instr = setup_populated_instr() + instr.set_component_AT("second_component", + [-1, 2, 3.4], RELATIVE="home") + + instr.print_component_short("second_component") + + output = mock_stdout.getvalue().split("\n") + + expected = ("second_component = test_for_reading " + + "\tAT [-1, 2, 3.4] RELATIVE home " + + "ROTATED [0, 0, 0] ABSOLUTE") + + self.assertEqual(output[0], expected) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_print_components_simple(self, mock_stdout): + """ + print_components calls the print_short method in the component + class for each component and aligns the data for display + """ + + instr = setup_populated_instr() + + instr.print_components() + + output = mock_stdout.getvalue().split("\n") + + expected = ("first_component test_for_reading" + + " AT [0, 0, 0] ABSOLUTE" + + " ROTATED [0, 0, 0] ABSOLUTE") + self.assertEqual(output[0], expected) + + expected = ("second_component test_for_reading" + + " AT [0, 0, 0] ABSOLUTE" + + " ROTATED [0, 0, 0] ABSOLUTE") + self.assertEqual(output[1], expected) + + expected = ("third_component test_for_reading" + + " AT [0, 0, 0] ABSOLUTE" + + " ROTATED [0, 0, 0] ABSOLUTE") + self.assertEqual(output[2], expected) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_print_components_complex(self, mock_stdout): + """ + print_components calls the print_short method in the component + class for each component and aligns the data for display + """ + + instr = setup_populated_instr() + + instr.set_component_AT("first_component", + [-0.1, 12, "dist"], + RELATIVE="home") + instr.set_component_ROTATED("second_component", + [-4, 0.001, "theta"], + RELATIVE="etc") + comp = instr.get_last_component() + comp.component_name = "test_name" + + instr.print_components() + + output = mock_stdout.getvalue().split("\n") + + expected = ("first_component test_for_reading" + + " AT [-0.1, 12, 'dist'] RELATIVE home" + + " ROTATED [0, 0, 0] ABSOLUTE") + self.assertEqual(output[0], expected) + + expected = ("second_component test_for_reading" + + " AT [0, 0, 0] ABSOLUTE" + + " ROTATED [-4, 0.001, 'theta'] RELATIVE etc") + self.assertEqual(output[1], expected) + + expected = ("third_component test_name" + + " AT [0, 0, 0] ABSOLUTE" + + " ROTATED [0, 0, 0] ABSOLUTE") + self.assertEqual(output[2], expected) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + @unittest.mock.patch('__main__.__builtins__.open', + new_callable=unittest.mock.mock_open) + def test_write_c_files_simple(self, mock_f, mock_stdout): + """ + Write_c_files writes the strings for declare, initialize, + and trace to files that are then included in McStas files. + This is an obsolete method, but may be repurposed later + so that instrument parts can be created with the modern + syntax. + + The generated includes file in the test directory is written + by this test. It will fail if it does not have rights to + create the directory. + """ + + instr = setup_populated_instr() + instr.write_c_files() + + mock_f.assert_any_call("./generated_includes/" + + "test_instrument_declare.c", "w") + mock_f.assert_any_call("./generated_includes/" + + "test_instrument_declare.c", "a") + mock_f.assert_any_call("./generated_includes/" + + "test_instrument_initialize.c", "w") + mock_f.assert_any_call("./generated_includes/" + + "test_instrument_trace.c", "w") + mock_f.assert_any_call("./generated_includes/" + + "test_instrument_component_trace.c", "w") + + # This does not check that the right thing is written to the + # right file. Can be improved by splitting the method into + # several for easier testing. Acceptable since it is rarely + # used. + handle = mock_f() + call = unittest.mock.call + wrts = [ + call("// declare section for test_instrument \n"), + call("double two_theta;"), + call("\n"), + call("// Start of initialize for generated test_instrument\n" + + "two_theta = 2.0*theta;\n"), + call("// Start of trace section for generated test_instrument\n"), + call("COMPONENT first_component = test_for_reading("), + call(")\n"), + call("AT (0,0,0)"), + call(" ABSOLUTE\n"), + call("ROTATED (0,0,0)"), + call(" ABSOLUTE\n"), + call("\n"), + call("COMPONENT second_component = test_for_reading("), + call(")\n"), + call("AT (0,0,0)"), + call(" ABSOLUTE\n"), + call("ROTATED (0,0,0)"), + call(" ABSOLUTE\n"), + call("\n"), + call("COMPONENT third_component = test_for_reading("), + call(")\n"), + call("AT (0,0,0)"), + call(" ABSOLUTE\n"), + call("ROTATED (0,0,0)"), + call(" ABSOLUTE\n"), + call("\n")] + + handle.write.assert_has_calls(wrts, any_order=False) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + @unittest.mock.patch('__main__.__builtins__.open', + new_callable=unittest.mock.mock_open) + def test_write_full_instrument_simple(self, mock_f, mock_stdout): + """ + The write_full_instrument methods writes the information + contained in the instrument instance to a file with McStas + syntax. + + The test includes a time stamp in the written and expected + data that has an accuracy of 1 second. It is unlikey to fail + due to this, but it can happen. + """ + + instr = setup_populated_instr() + instr.write_full_instrument() + + t_format = "%H:%M:%S on %B %d, %Y" + + my_call = unittest.mock.call + wrts = [ + my_call("/" + 80*"*" + "\n"), + my_call("* \n"), + my_call("* McStas, neutron ray-tracing package\n"), + my_call("* Copyright (C) 1997-2008, All rights reserved\n"), + my_call("* Risoe National Laboratory, Roskilde, Denmark\n"), + my_call("* Institut Laue Langevin, Grenoble, France\n"), + my_call("* \n"), + my_call("* This file was written by McStasScript, which is a \n"), + my_call("* python based McStas instrument generator written by \n"), + my_call("* Mads Bertelsen in 2019 while employed at the \n"), + my_call("* European Spallation Source Data Management and \n"), + my_call("* Software Center\n"), + my_call("* \n"), + my_call("* Instrument test_instrument\n"), + my_call("* \n"), + my_call("* %Identification\n"), + my_call("* Written by: Python McStas Instrument Generator\n"), + my_call("* Date: %s\n" % datetime.datetime.now().strftime(t_format)), + my_call("* Origin: ESS DMSC\n"), + my_call("* %INSTRUMENT_SITE: Generated_instruments\n"), + my_call("* \n"), + my_call("* \n"), + my_call("* %Parameters\n"), + my_call("* \n"), + my_call("* %End \n"), + my_call("*"*80 + "/\n"), + my_call("\n"), + my_call("DEFINE INSTRUMENT test_instrument ("), + my_call("\n"), + my_call("double theta"), + my_call(" "), + my_call(""), + my_call("\n"), + my_call(")\n"), + my_call("\n"), + my_call("DECLARE \n%{\n"), + my_call("double two_theta;"), + my_call("\n"), + my_call("%}\n\n"), + my_call("INITIALIZE \n%{\n"), + my_call("// Start of initialize for generated test_instrument\n" + + "two_theta = 2.0*theta;\n"), + my_call("%}\n\n"), + my_call("TRACE \n"), + my_call("COMPONENT first_component = test_for_reading("), + my_call(")\n"), + my_call("AT (0,0,0)"), + my_call(" ABSOLUTE\n"), + my_call("ROTATED (0,0,0)"), + my_call(" ABSOLUTE\n"), + my_call("\n"), + my_call("COMPONENT second_component = test_for_reading("), + my_call(")\n"), + my_call("AT (0,0,0)"), + my_call(" ABSOLUTE\n"), + my_call("ROTATED (0,0,0)"), + my_call(" ABSOLUTE\n"), + my_call("\n"), + my_call("COMPONENT third_component = test_for_reading("), + my_call(")\n"), + my_call("AT (0,0,0)"), + my_call(" ABSOLUTE\n"), + my_call("ROTATED (0,0,0)"), + my_call(" ABSOLUTE\n"), + my_call("\n"), + my_call("FINALLY \n%{\n"), + my_call("// Start of finally for generated test_instrument\n"), + my_call("%}\n"), + my_call("\nEND\n")] + + mock_f.assert_called_with("test_instrument.instr", "w") + handle = mock_f() + handle.write.assert_has_calls(wrts, any_order=False) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + @unittest.mock.patch('__main__.__builtins__.open', + new_callable=unittest.mock.mock_open) + @unittest.mock.patch("os.system") + def test_run_full_instrument_basic(self, os_system, + mock_f, mock_stdout,): + """ + Check a simple run performs the correct system call. Here + the target directory is set to the test data set so that some + data is loaded even though the system call is not executed. + """ + + instr = setup_populated_instr() + instr.run_full_instrument("test_instrument.instr", + foldername="test_data_set", + mcrun_path="path") + + # a double space because of a missing option + expected_call = ("path/mcrun -c -n 1000000 --mpi=1 " + + "-d test_data_set test_instrument.instr") + + os_system.assert_called_once_with(expected_call) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + @unittest.mock.patch('__main__.__builtins__.open', + new_callable=unittest.mock.mock_open) + @unittest.mock.patch("os.system") + def test_run_full_instrument_complex(self, os_system, + mock_f, mock_stdout,): + """ + Check a complex run performs the correct system call. Here + the target directory is set to the test data set so that some + data is loaded even though the system call is not executed. + """ + + instr = setup_populated_instr() + instr.run_full_instrument("test_instrument.instr", + foldername="test_data_set", + mcrun_path="path", + mpi=7, + ncount=48.4, + custom_flags="-fo", + parameters={"A": 2, + "BC": "car", + "th": "\"toy\""}) + + # a double space because of a missing option + expected_call = ("path/mcrun -c -n 48 --mpi=7 " + + "-d test_data_set -fo test_instrument.instr " + + "A=2 BC=car th=\"toy\"") + + os_system.assert_called_once_with(expected_call) + + +if __name__ == '__main__': + unittest.main() diff --git a/mcstasscript/tests/test_ManagedMcrun.py b/mcstasscript/tests/test_ManagedMcrun.py index 82c57392..5088cdf7 100644 --- a/mcstasscript/tests/test_ManagedMcrun.py +++ b/mcstasscript/tests/test_ManagedMcrun.py @@ -7,23 +7,24 @@ from mcstasscript.data.data import McStasData from mcstasscript.helper.managed_mcrun import ManagedMcrun + class TestManagedMcrun(unittest.TestCase): """ Testing the ManagedMcrun class that sets up McStas runs, runs the simulation and loads the data. - + Here the simulation is not actually performed, this will be done in integration tests. The surrounding plumbing and data loading is tested. """ - + def test_ManagedMcrun_init_simple(self): """ Check shortest possible initialization works """ mcrun_obj = ManagedMcrun("test.instr", - foldername = "test_folder", - mcrun_path = "test_path") + foldername="test_folder", + mcrun_path="test_path") self.assertEqual(mcrun_obj.name_of_instrumentfile, "test.instr") self.assertEqual(mcrun_obj.data_folder_name, "test_folder") @@ -34,57 +35,57 @@ def test_ManagedMcrun_init_defaults(self): Check default values are set up correctly """ mcrun_obj = ManagedMcrun("test.instr", - foldername = "test_folder", - mcrun_path = "") - + foldername="test_folder", + mcrun_path="") + self.assertEqual(mcrun_obj.mpi, 1) self.assertEqual(mcrun_obj.ncount, 1000000) - + def test_ManagedMcrun_init_set_values(self): """ Check default values are set up correctly """ mcrun_obj = ManagedMcrun("test.instr", - foldername = "test_folder", - mcrun_path = "", - mpi = 4, - ncount = 128) + foldername="test_folder", + mcrun_path="", + mpi=4, + ncount=128) self.assertEqual(mcrun_obj.mpi, 4) self.assertEqual(mcrun_obj.ncount, 128) - + def test_ManagedMcrun_init_set_parameters(self): """ Check default values are set up correctly """ - - par_input = {"A_par" : 5.1, - "int_par" : 1, - "define_par" : "Bike", - "string_par" : "\"Car\""} - + + par_input = {"A_par": 5.1, + "int_par": 1, + "define_par": "Bike", + "string_par": "\"Car\""} + mcrun_obj = ManagedMcrun("test.instr", - foldername = "test_folder", - mcrun_path = "", - parameters = par_input) + foldername="test_folder", + mcrun_path="", + parameters=par_input) self.assertEqual(mcrun_obj.parameters["A_par"], 5.1) self.assertEqual(mcrun_obj.parameters["int_par"], 1) self.assertEqual(mcrun_obj.parameters["define_par"], "Bike") self.assertEqual(mcrun_obj.parameters["string_par"], "\"Car\"") - + def test_ManagedMcrun_init_set_custom_flags(self): """ Check default values are set up correctly """ - - custom_flag_input = "-p" - + + custom_flag_input = "-p" + mcrun_obj = ManagedMcrun("test.instr", - foldername = "test_folder", - mcrun_path = "", - custom_flags = custom_flag_input) - + foldername="test_folder", + mcrun_path="", + custom_flags=custom_flag_input) + self.assertEqual(mcrun_obj.custom_flags, custom_flag_input) def test_ManagedMcrun_init_no_folder_error(self): @@ -92,63 +93,63 @@ def test_ManagedMcrun_init_no_folder_error(self): An error should occur if no filename is given """ with self.assertRaises(NameError): - mcrun_obj = ManagedMcrun("test.instr", mcrun_path = "") + mcrun_obj = ManagedMcrun("test.instr", mcrun_path="") @unittest.mock.patch("os.system") def test_ManagedMcrun_run_simulation_basic(self, os_system): """ Check a basic system call is correct """ - + mcrun_obj = ManagedMcrun("test.instr", - foldername = "test_folder", - mcrun_path = "path") - + foldername="test_folder", + mcrun_path="path") + mcrun_obj.run_simulation() - + # a double space because of a missing option expected_call = ("path/mcrun -c -n 1000000 --mpi=1 " + "-d test_folder test.instr") - + os_system.assert_called_once_with(expected_call) - + @unittest.mock.patch("os.system") def test_ManagedMcrun_run_simulation_basic_path(self, os_system): """ Check a basic system call is correct, with different path format """ - + mcrun_obj = ManagedMcrun("test.instr", - foldername = "test_folder", - mcrun_path = "path/") - + foldername="test_folder", + mcrun_path="path/") + mcrun_obj.run_simulation() - + # a double space because of a missing option expected_call = ("path/mcrun -c -n 1000000 --mpi=1 " + "-d test_folder test.instr") - + os_system.assert_called_once_with(expected_call) - + @unittest.mock.patch("os.system") def test_ManagedMcrun_run_simulation_no_standard(self, os_system): """ Check a non standard system call is correct """ - + mcrun_obj = ManagedMcrun("test.instr", - foldername = "test_folder", - mcrun_path = "path", - mpi = 7, - ncount = 48.4, - custom_flags = "-fo") - + foldername="test_folder", + mcrun_path="path", + mpi=7, + ncount=48.4, + custom_flags="-fo") + mcrun_obj.run_simulation() - + # a double space because of a missing option expected_call = ("path/mcrun -c -n 48 --mpi=7 " + "-d test_folder -fo test.instr") - + os_system.assert_called_once_with(expected_call) @unittest.mock.patch("os.system") @@ -156,49 +157,48 @@ def test_ManagedMcrun_run_simulation_parameters(self, os_system): """ Check a run with parameters is correct """ - + mcrun_obj = ManagedMcrun("test.instr", - foldername = "test_folder", - mcrun_path = "path", - mpi = 7, - ncount = 48.4, - custom_flags = "-fo", - parameters = {"A" : 2, - "BC" : "car", - "th" : "\"toy\""}) - + foldername="test_folder", + mcrun_path="path", + mpi=7, + ncount=48.4, + custom_flags="-fo", + parameters={"A": 2, + "BC": "car", + "th": "\"toy\""}) + mcrun_obj.run_simulation() - + # a double space because of a missing option expected_call = ("path/mcrun -c -n 48 --mpi=7 " + "-d test_folder -fo test.instr " + "A=2 BC=car th=\"toy\"") - + os_system.assert_called_once_with(expected_call) def test_ManagedMcrun_load_data_PSD4PI(self): """ Use test_data_set to test load_data for PSD_4PI """ - + mcrun_obj = ManagedMcrun("test.instr", - foldername = "test_data_set", - mcrun_path = "path") - + foldername="test_data_set", + mcrun_path="path") + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - + current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder - + results = mcrun_obj.load_results() - - os.chdir(current_work_dir) # Reset work directory + os.chdir(current_work_dir) # Reset work directory self.assertEqual(len(results), 3) PSD_4PI = results[0] - + self.assertEqual(PSD_4PI.name, "PSD_4PI") self.assertEqual(PSD_4PI.metadata.dimension, [300, 300]) self.assertEqual(PSD_4PI.metadata.limits, [-180, 180, -90, 90]) @@ -208,29 +208,29 @@ def test_ManagedMcrun_load_data_PSD4PI(self): self.assertEqual(PSD_4PI.Ncount[1][4], 4) self.assertEqual(PSD_4PI.Intensity[1][4], 1.537334562E-10) self.assertEqual(PSD_4PI.Error[1][4], 1.139482296E-10) - + def test_ManagedMcrun_load_data_PSD(self): """ Use test_data_set to test load_data for PSD """ - + mcrun_obj = ManagedMcrun("test.instr", - foldername = "test_data_set", - mcrun_path = "path") - + foldername="test_data_set", + mcrun_path="path") + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - + current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder - + results = mcrun_obj.load_results() - + os.chdir(current_work_dir) # Reset work directory - + # Check other properties - + PSD = results[1] - + self.assertEqual(PSD.name, "PSD") self.assertEqual(PSD.metadata.dimension, [200, 200]) self.assertEqual(PSD.metadata.limits, [-5, 5, -5, 5]) @@ -240,29 +240,29 @@ def test_ManagedMcrun_load_data_PSD(self): self.assertEqual(PSD.Ncount[21][27], 9) self.assertEqual(PSD.Intensity[21][27], 2.623929371e-13) self.assertEqual(PSD.Error[21][27], 2.765467693e-13) - + def test_ManagedMcrun_load_data_L_mon(self): """ Use test_data_set to test load_data for L_mon """ - + mcrun_obj = ManagedMcrun("test.instr", - foldername = "test_data_set", - mcrun_path = "path") - + foldername="test_data_set", + mcrun_path="path") + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - + current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder - + results = mcrun_obj.load_results() - + os.chdir(current_work_dir) # Reset work directory - + # Check other properties - + L_mon = results[2] - + self.assertEqual(L_mon.name, "L_mon") self.assertEqual(L_mon.metadata.dimension, 150) self.assertEqual(L_mon.metadata.limits, [0.7, 1.3]) @@ -273,30 +273,30 @@ def test_ManagedMcrun_load_data_L_mon(self): self.assertEqual(L_mon.Ncount[53], 37111) self.assertEqual(L_mon.Intensity[53], 6.990299315e-06) self.assertEqual(L_mon.Error[53], 6.215308587e-08) - + def test_ManagedMcrun_load_data_L_mon_direct(self): """ Use test_data_set to test load_data for L_mon with direct path """ - + mcrun_obj = ManagedMcrun("test.instr", - foldername = "test_data_set", - mcrun_path = "path") - + foldername="test_data_set", + mcrun_path="path") + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - + current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder - + load_path = THIS_DIR + "/test_data_set" results = mcrun_obj.load_results(load_path) - + os.chdir(current_work_dir) # Reset work directory - + # Check other properties - + L_mon = results[2] - + self.assertEqual(L_mon.name, "L_mon") self.assertEqual(L_mon.metadata.dimension, 150) self.assertEqual(L_mon.metadata.limits, [0.7, 1.3]) @@ -307,50 +307,47 @@ def test_ManagedMcrun_load_data_L_mon_direct(self): self.assertEqual(L_mon.Ncount[53], 37111) self.assertEqual(L_mon.Intensity[53], 6.990299315e-06) self.assertEqual(L_mon.Error[53], 6.215308587e-08) - + def test_ManagedMcrun_load_data_L_mon_direct_error(self): """ Check an error occurs when directory has no mccode.sim """ - + mcrun_obj = ManagedMcrun("test.instr", - foldername = "test_data_set", - mcrun_path = "path") - + foldername="test_data_set", + mcrun_path="path") + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - + current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder - + load_path = THIS_DIR + "/non_exsistent_dataset" with self.assertRaises(NameError): results = mcrun_obj.load_results(load_path) - + os.chdir(current_work_dir) # Reset work directory - + def test_ManagedMcrun_load_data_L_mon_direct_error(self): """ Check an error occurs when pointed to empty directory """ - + mcrun_obj = ManagedMcrun("test.instr", - foldername = "test_data_set", - mcrun_path = "path") - + foldername="test_data_set", + mcrun_path="path") + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - + current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder - + load_path = THIS_DIR + "/dummy_mcstas" with self.assertRaises(NameError): results = mcrun_obj.load_results(load_path) - + os.chdir(current_work_dir) # Reset work directory - - - -if __name__ == '__main__': - unittest.main() +if __name__ == '__main__': + unittest.main() diff --git a/mcstasscript/tests/test_McStasData.py b/mcstasscript/tests/test_McStasData.py index 3bdd6fe7..f6add939 100644 --- a/mcstasscript/tests/test_McStasData.py +++ b/mcstasscript/tests/test_McStasData.py @@ -4,88 +4,92 @@ from mcstasscript.data.data import McStasData from mcstasscript.data.data import McStasMetaData + def set_dummy_MetaData_1d(): meta_data = McStasMetaData() meta_data.component_name = "component for 1d" meta_data.dimension = 50 - + return meta_data + def set_dummy_McStasData_1d(): meta_data = set_dummy_MetaData_1d() intensity = np.arange(20) - error = 0.5 * np.arange(20) + error = 0.5 * np.arange(20) ncount = 2 * np.arange(20) axis = np.arange(20)*5.0 - - return McStasData(meta_data, intensity, error, ncount, xaxis = axis) + + return McStasData(meta_data, intensity, error, ncount, xaxis=axis) + def set_dummy_MetaData_2d(): meta_data = McStasMetaData() meta_data.component_name = "test a component" meta_data.dimension = [50, 100] - + return meta_data + def set_dummy_McStasData_2d(): meta_data = set_dummy_MetaData_2d() - intensity = np.arange(20).reshape(4,5) - error = 0.5 * np.arange(20).reshape(4,5) - ncount = 2 * np.arange(20).reshape(4,5) - + intensity = np.arange(20).reshape(4, 5) + error = 0.5 * np.arange(20).reshape(4, 5) + ncount = 2 * np.arange(20).reshape(4, 5) + return McStasData(meta_data, intensity, error, ncount) - + class TestMcStasData(unittest.TestCase): """ Various test of McStasData class """ - + def test_McStasData_init_1d(self): """ Test that newly created McStasMetaData has correct type """ - + data = set_dummy_McStasData_1d() - + self.assertEqual(data.name, "component for 1d") self.assertEqual(data.metadata.component_name, "component for 1d") - + def test_McStasData_init_values(self): """ Test that newly created McStasMetaData has correct type """ - + data = set_dummy_McStasData_1d() - + self.assertEqual(data.Intensity[3], 3) self.assertEqual(data.Error[3], 1.5) self.assertEqual(data.Ncount[3], 6) self.assertEqual(data.xaxis[3], 15.0) - + def test_McStasData_init_2d_names(self): """ Test that newly created McStasMetaData has correct type """ - + data = set_dummy_McStasData_2d() - + self.assertEqual(data.name, "test a component") self.assertEqual(data.metadata.component_name, "test a component") - + def test_McStasData_init_2d_values(self): """ Test that newly created McStasMetaData has correct type """ - + data = set_dummy_McStasData_2d() - + self.assertEqual(data.Intensity[2][3], 13) self.assertEqual(data.Error[2][3], 6.5) self.assertEqual(data.Ncount[2][3], 26) - + def test_McStasData_set_info_title(self): """ Test that title can be set @@ -93,7 +97,7 @@ def test_McStasData_set_info_title(self): data = set_dummy_McStasData_2d() data.set_title("title_test") self.assertEqual(data.metadata.title, "title_test") - + def test_McStasData_set_xlabel(self): """ Test that xlabel can be set @@ -101,7 +105,7 @@ def test_McStasData_set_xlabel(self): data = set_dummy_McStasData_2d() data.set_xlabel("xlabel test") self.assertEqual(data.metadata.xlabel, "xlabel test") - + def test_McStasData_set_ylabel(self): """ Test that ylabel can be set @@ -109,21 +113,21 @@ def test_McStasData_set_ylabel(self): data = set_dummy_McStasData_2d() data.set_ylabel("ylabel test") self.assertEqual(data.metadata.ylabel, "ylabel test") - + def test_McStasData_set_log(self): """ Test that newly created McStasMetaData has correct type """ data = set_dummy_McStasData_2d() - data.set_plot_options(log = True) + data.set_plot_options(log=True) self.assertIsInstance(data.plot_options.log, bool) self.assertTrue(data.plot_options.log) - data.set_plot_options(log = 0) + data.set_plot_options(log=0) self.assertIsInstance(data.plot_options.log, bool) self.assertFalse(data.plot_options.log) - data.set_plot_options(log = 1) + data.set_plot_options(log=1) self.assertIsInstance(data.plot_options.log, bool) self.assertTrue(data.plot_options.log) @@ -132,7 +136,7 @@ def test_McStasData_set_orders_of_mag(self): Test that newly created McStasMetaData has correct type """ data = set_dummy_McStasData_2d() - data.set_plot_options(orders_of_mag = 5.2) + data.set_plot_options(orders_of_mag=5.2) self.assertEqual(data.plot_options.orders_of_mag, 5.2) def test_McStasData_set_colormap(self): @@ -140,8 +144,9 @@ def test_McStasData_set_colormap(self): Test that newly created McStasMetaData has correct type """ data = set_dummy_McStasData_2d() - data.set_plot_options(colormap = "hot") + data.set_plot_options(colormap="hot") self.assertIs(data.plot_options.colormap, "hot") + if __name__ == '__main__': - unittest.main() \ No newline at end of file + unittest.main() diff --git a/mcstasscript/tests/test_McStasMetaData.py b/mcstasscript/tests/test_McStasMetaData.py index ef63ff86..aa7be2c0 100644 --- a/mcstasscript/tests/test_McStasMetaData.py +++ b/mcstasscript/tests/test_McStasMetaData.py @@ -2,11 +2,12 @@ from mcstasscript.data.data import McStasMetaData + class TestMcStasMetaData(unittest.TestCase): """ Various test of McStasMetaData class """ - + def test_McStasMetaData_return_type(self): """ Test that newly created McStasMetaData has correct type @@ -20,23 +21,23 @@ def test_McStasMetaData_init(self): """ meta_data = McStasMetaData() self.assertEqual(len(meta_data.info), 0) - + def test_McStasMetaData_add_info_len(self): """ Test that info can be added to McStasMetaData """ meta_data = McStasMetaData() - meta_data.add_info("test",3) + meta_data.add_info("test", 3) self.assertEqual(len(meta_data.info), 1) - + def test_McStasMetaData_add_info(self): """ Test that info can be read from McStasMetaData """ meta_data = McStasMetaData() - meta_data.add_info("test",3) + meta_data.add_info("test", 3) self.assertEqual(meta_data.info["test"], 3) - + def test_McStasMetaData_add_info_title(self): """ Test that title can be set @@ -44,7 +45,7 @@ def test_McStasMetaData_add_info_title(self): meta_data = McStasMetaData() meta_data.set_title("title_test") self.assertEqual(meta_data.title, "title_test") - + def test_McStasMetaData_add_info_xlabel(self): """ Test that xlabel can be set @@ -52,7 +53,7 @@ def test_McStasMetaData_add_info_xlabel(self): meta_data = McStasMetaData() meta_data.set_xlabel("xlabel test") self.assertEqual(meta_data.xlabel, "xlabel test") - + def test_McStasMetaData_add_info_ylabel(self): """ Test that ylabel can be set @@ -60,7 +61,7 @@ def test_McStasMetaData_add_info_ylabel(self): meta_data = McStasMetaData() meta_data.set_ylabel("ylabel test") self.assertEqual(meta_data.ylabel, "ylabel test") - + def test_McStasMetaData_long_read_1d(self): """ Test that extact info can read appropriate info @@ -73,9 +74,9 @@ def test_McStasMetaData_long_read_1d(self): meta_data.add_info("xlabel", "test A xlabel") meta_data.add_info("ylabel", "test A ylabel") meta_data.add_info("title", "test A title") - + meta_data.extract_info() # Converts info to attributes - + self.assertIsInstance(meta_data.dimension, int) self.assertEqual(meta_data.dimension, 500) self.assertIs(meta_data.component_name, "test_A COMP") @@ -86,8 +87,7 @@ def test_McStasMetaData_long_read_1d(self): self.assertIs(meta_data.xlabel, "test A xlabel") self.assertIs(meta_data.ylabel, "test A ylabel") self.assertIs(meta_data.title, "test A title") - - + def test_McStasMetaData_long_read_2d(self): """ Test that extact info can read appropriate info @@ -100,9 +100,9 @@ def test_McStasMetaData_long_read_2d(self): meta_data.add_info("xlabel", "test A xlabel") meta_data.add_info("ylabel", "test A ylabel") meta_data.add_info("title", "test A title") - + meta_data.extract_info() # Converts info to attributes - + self.assertEqual(len(meta_data.dimension), 2) self.assertEqual(meta_data.dimension[0], 500) self.assertEqual(meta_data.dimension[1], 12) @@ -116,15 +116,7 @@ def test_McStasMetaData_long_read_2d(self): self.assertIs(meta_data.xlabel, "test A xlabel") self.assertIs(meta_data.ylabel, "test A ylabel") self.assertIs(meta_data.title, "test A title") - + + if __name__ == '__main__': unittest.main() - - - - - - - - - \ No newline at end of file diff --git a/mcstasscript/tests/test_McStasPlotOptions.py b/mcstasscript/tests/test_McStasPlotOptions.py index 6b4ad324..790ce998 100644 --- a/mcstasscript/tests/test_McStasPlotOptions.py +++ b/mcstasscript/tests/test_McStasPlotOptions.py @@ -2,6 +2,7 @@ from mcstasscript.data.data import McStasPlotOptions + class TestMcStasPlotOptions(unittest.TestCase): """ Various test of McStasPlotOptions class @@ -34,15 +35,15 @@ def test_McStasPlotOptions_set_log(self): Test that newly created McStasMetaData has correct type """ plot_options = McStasPlotOptions() - plot_options.set_options(log = True) + plot_options.set_options(log=True) self.assertIsInstance(plot_options.log, bool) self.assertTrue(plot_options.log) - plot_options.set_options(log = 0) + plot_options.set_options(log=0) self.assertIsInstance(plot_options.log, bool) self.assertFalse(plot_options.log) - plot_options.set_options(log = 1) + plot_options.set_options(log=1) self.assertIsInstance(plot_options.log, bool) self.assertTrue(plot_options.log) @@ -51,7 +52,7 @@ def test_McStasPlotOptions_set_orders_of_mag(self): Test that newly created McStasMetaData has correct type """ plot_options = McStasPlotOptions() - plot_options.set_options(orders_of_mag = 5.2) + plot_options.set_options(orders_of_mag=5.2) self.assertEqual(plot_options.orders_of_mag, 5.2) def test_McStasPlotOptions_set_colormap(self): @@ -59,8 +60,9 @@ def test_McStasPlotOptions_set_colormap(self): Test that newly created McStasMetaData has correct type """ plot_options = McStasPlotOptions() - plot_options.set_options(colormap = "hot") + plot_options.set_options(colormap="hot") self.assertIs(plot_options.colormap, "hot") + if __name__ == '__main__': - unittest.main() \ No newline at end of file + unittest.main() diff --git a/mcstasscript/tests/test_component.py b/mcstasscript/tests/test_component.py index f61c077f..a1aef691 100644 --- a/mcstasscript/tests/test_component.py +++ b/mcstasscript/tests/test_component.py @@ -1,207 +1,307 @@ +import io import builtins import unittest import unittest.mock from mcstasscript.helper.mcstas_objects import component +from mcstasscript.helper.formatting import bcolors + def setup_component_all_keywords(): - + """ + Sets up a component by using all initialize keywords + """ + return component("test_component", "Arm", - AT = [0.124, 183.9, 157], - AT_RELATIVE = "home", - ROTATED = [482, 1240.2, 0.185], - ROTATED_RELATIVE = "etc", - WHEN = "1==2", - EXTEND = "nscat = 8;", - GROUP = "developers", - JUMP = "myself 37", - comment = "test comment") - + AT=[0.124, 183.9, 157], + AT_RELATIVE="home", + ROTATED=[482, 1240.2, 0.185], + ROTATED_RELATIVE="etc", + WHEN="1==2", + EXTEND="nscat = 8;", + GROUP="developers", + JUMP="myself 37", + comment="test comment") + + def setup_component_relative(): - + """ + Sets up a component with the relative keyword used + """ return component("test_component", "Arm", - AT = [0.124, 183.9, 157], - ROTATED = [482, 1240.2, 0.185], - RELATIVE = "source", - WHEN = "1==2", - EXTEND = "nscat = 8;", - GROUP = "developers", - JUMP = "myself 37", - comment = "test comment") - + AT=[0.124, 183.9, 157], + ROTATED=[482, 1240.2, 0.185], + RELATIVE="source", + WHEN="1==2", + EXTEND="nscat = 8;", + GROUP="developers", + JUMP="myself 37", + comment="test comment") + + +def setup_component_with_parameters(): + """ + Sets up a component with parameters and all options used. + + """ + comp = setup_component_all_keywords() + + comp._unfreeze() + # Need to set up attribute parameters + comp.new_par1 = 1.5 + comp.new_par2 = 3 + comp.new_par3 = None + comp.this_par = "test_val" + comp.that_par = "\"txt_string\"" + # also need to categorize them as when created + comp.parameter_names = ["new_par1", "new_par2", "new_par3", + "this_par", "that_par"] + comp.parameter_defaults = {"new_par1": 5.1, + "new_par2": 9, + "new_par3": None, + "this_par": "conga", + "that_par": "\"txt\""} + comp.parameter_comments = {"new_par1": "This is important", + "new_par2": "This is less important", + "this_par": "!", + "that_par": ""} + comp.parameter_types = {"new_par1": "double", + "new_par2": "int", + "this_par": "", + "that_par": "string"} + comp.parameter_units = {"new_par1": "m", + "new_par2": "AA", + "this_par": "", + "that_par": "1"} + comp._freeze() + + return comp + class Testcomponent(unittest.TestCase): """ Components are the building blocks used to create an instrument in the McStas meta language. They describe spatially seperated parts - of the neutron scattering instrument. Here the class component is + of the neutron scattering instrument. Here the class component is tested. """ - + def test_component_basic_init(self): - + """ + Testing basic initialization + + """ + comp = component("test_component", "Arm") - + self.assertEqual(comp.name, "test_component") self.assertEqual(comp.component_name, "Arm") def test_component_basic_init_defaults(self): - + """ + Testing basic initialization sets the correct defaults + + """ + comp = component("test_component", "Arm") - + self.assertEqual(comp.name, "test_component") - self.assertEqual(comp.component_name, "Arm") - self.assertEqual(comp.AT_data, [0,0,0]) + self.assertEqual(comp.component_name, "Arm") + self.assertEqual(comp.AT_data, [0, 0, 0]) self.assertEqual(comp.AT_relative, "ABSOLUTE") - self.assertEqual(comp.ROTATED_data, [0,0,0]) + self.assertEqual(comp.ROTATED_data, [0, 0, 0]) self.assertEqual(comp.ROTATED_relative, "ABSOLUTE") self.assertEqual(comp.WHEN, "") self.assertEqual(comp.EXTEND, "") self.assertEqual(comp.GROUP, "") self.assertEqual(comp.JUMP, "") self.assertEqual(comp.comment, "") - + def test_component_init_complex_call(self): - + """ + Testing keywords set attributes correctly + + """ + comp = setup_component_all_keywords() - + self.assertEqual(comp.name, "test_component") - self.assertEqual(comp.component_name, "Arm") + self.assertEqual(comp.component_name, "Arm") self.assertEqual(comp.AT_data, [0.124, 183.9, 157]) self.assertEqual(comp.AT_relative, "RELATIVE home") self.assertEqual(comp.ROTATED_data, [482, 1240.2, 0.185]) self.assertEqual(comp.ROTATED_relative, "RELATIVE etc") - self.assertEqual(comp.WHEN, "WHEN (1==2)\n") + self.assertEqual(comp.WHEN, "WHEN (1==2)") self.assertEqual(comp.EXTEND, "nscat = 8;\n") self.assertEqual(comp.GROUP, "developers") self.assertEqual(comp.JUMP, "myself 37") self.assertEqual(comp.comment, "test comment") def test_component_init_complex_call_relative(self): - + """ + Tests the relative keyword overwrites AT_relative and + ROTATED_relative + + """ comp = setup_component_relative() self.assertEqual(comp.name, "test_component") - self.assertEqual(comp.component_name, "Arm") + self.assertEqual(comp.component_name, "Arm") self.assertEqual(comp.AT_data, [0.124, 183.9, 157]) self.assertEqual(comp.AT_relative, "RELATIVE source") self.assertEqual(comp.ROTATED_data, [482, 1240.2, 0.185]) self.assertEqual(comp.ROTATED_relative, "RELATIVE source") - self.assertEqual(comp.WHEN, "WHEN (1==2)\n") + self.assertEqual(comp.WHEN, "WHEN (1==2)") self.assertEqual(comp.EXTEND, "nscat = 8;\n") self.assertEqual(comp.GROUP, "developers") self.assertEqual(comp.JUMP, "myself 37") self.assertEqual(comp.comment, "test comment") def test_component_basic_init_set_AT(self): - + """ + Testing set_AT method + + """ + comp = component("test_component", "Arm") - - comp.set_AT([12.124, 214.0, 2], RELATIVE = "monochromator") - + + comp.set_AT([12.124, 214.0, 2], RELATIVE="monochromator") + self.assertEqual(comp.name, "test_component") self.assertEqual(comp.component_name, "Arm") self.assertEqual(comp.AT_data, [12.124, 214.0, 2]) self.assertEqual(comp.AT_relative, "RELATIVE monochromator") - + def test_component_basic_init_set_ROTATED(self): - + """ + Testing set_ROTATED method + + """ + comp = component("test_component", "Arm") - - comp.set_ROTATED([1204.8, 8490.1, 129], RELATIVE = "analyzer") - + + comp.set_ROTATED([1204.8, 8490.1, 129], RELATIVE="analyzer") + self.assertEqual(comp.name, "test_component") self.assertEqual(comp.component_name, "Arm") self.assertEqual(comp.ROTATED_data, [1204.8, 8490.1, 129]) self.assertEqual(comp.ROTATED_relative, "RELATIVE analyzer") - + def test_component_basic_init_set_RELATIVE(self): - + """ + Testing set_RELATIVE method + + """ + comp = component("test_component", "Arm") - + comp.set_RELATIVE("sample") - + self.assertEqual(comp.name, "test_component") self.assertEqual(comp.component_name, "Arm") self.assertEqual(comp.AT_relative, "RELATIVE sample") self.assertEqual(comp.ROTATED_relative, "RELATIVE sample") - + def test_component_basic_init_set_parameters(self): - + """ + Testing set_parameters method. Need to set some attribute + parameters manually to test this. + + """ + comp = component("test_component", "Arm") - + # Need to add some parameters to this bare component - # Parameters are usually added by McStas_Instr + # Parameters are usually added by McStas_Instr comp._unfreeze() comp.new_par1 = 1 comp.new_par2 = 3 comp.this_par = 1492.2 - - comp.set_parameters({"new_par1" : 37.0, - "new_par2" : 12.0, - "this_par" : 1}) - + + comp.set_parameters({"new_par1": 37.0, + "new_par2": 12.0, + "this_par": 1}) + self.assertEqual(comp.name, "test_component") self.assertEqual(comp.component_name, "Arm") - self.assertEqual(comp.new_par1,37.0) - self.assertEqual(comp.new_par2,12.0) - self.assertEqual(comp.this_par,1) - + self.assertEqual(comp.new_par1, 37.0) + self.assertEqual(comp.new_par2, 12.0) + self.assertEqual(comp.this_par, 1) + with self.assertRaises(NameError): - comp.set_parameters({"new_par3" : 37.0}) - + comp.set_parameters({"new_par3": 37.0}) + def test_component_basic_init_set_WHEN(self): - + """ + Testing WHEN method + + """ + comp = component("test_component", "Arm") - + comp.set_WHEN("1 != 2") - + self.assertEqual(comp.name, "test_component") self.assertEqual(comp.component_name, "Arm") - self.assertEqual(comp.WHEN, "WHEN (1 != 2)\n") - + self.assertEqual(comp.WHEN, "WHEN (1 != 2)") + def test_component_basic_init_set_GROUP(self): - + """ + Testing set_GROUP method + + """ + comp = component("test_component", "Arm") - + comp.set_GROUP("test group") - + self.assertEqual(comp.name, "test_component") self.assertEqual(comp.component_name, "Arm") self.assertEqual(comp.GROUP, "test group") - + def test_component_basic_init_set_JUMP(self): - + """ + Testing set_JUMP method + + """ + comp = component("test_component", "Arm") - + comp.set_JUMP("test jump") - + self.assertEqual(comp.name, "test_component") self.assertEqual(comp.component_name, "Arm") self.assertEqual(comp.JUMP, "test jump") - + def test_component_basic_init_set_EXTEND(self): - + """ + Testing set_EXTEND method + + """ + comp = component("test_component", "Arm") - + comp.append_EXTEND("test code") - + self.assertEqual(comp.name, "test_component") self.assertEqual(comp.component_name, "Arm") self.assertEqual(comp.EXTEND, "test code\n") - + comp.append_EXTEND("new code") - + self.assertEqual(comp.EXTEND, "test code\nnew code\n") - + def test_component_basic_init_set_comment(self): - + """ + Testing set_comment method + + """ comp = component("test_component", "Arm") - + comp.set_comment("test comment") - + self.assertEqual(comp.name, "test_component") self.assertEqual(comp.component_name, "Arm") self.assertEqual(comp.comment, "test comment") @@ -212,18 +312,17 @@ def test_component_basic_new_attribute_error(self): prevent the user accidentilly misspelling an attribute name, or at least be able to report an error when they do so. """ - + comp = component("test_component", "Arm") with self.assertRaises(AttributeError): comp.new_attribute = 1 - + # If unfreeze does not work, this would cause an error comp._unfreeze() comp.new_attribute = 1 - - + @unittest.mock.patch('__main__.__builtins__.open', - new_callable = unittest.mock.mock_open) + new_callable=unittest.mock.mock_open) def test_component_write_to_file_simple(self, mock_f): """ Testing that a component can be written to file with the @@ -233,8 +332,8 @@ def test_component_write_to_file_simple(self, mock_f): comp = component("test_component", "Arm") comp._unfreeze() - # need to set up attribute parameters - # also need to categorize them as when created + # Need to set up attribute parameters + # Also need to categorize them as when created comp.parameter_names = [] comp.parameter_defaults = {} comp.parameter_types = {} @@ -251,41 +350,30 @@ def test_component_write_to_file_simple(self, mock_f): my_call("ROTATED (0,0,0)"), my_call(" ABSOLUTE\n")] - mock_f.assert_called_with('test.txt', 'w') + mock_f.assert_called_with('test.txt', 'w') handle = mock_f() handle.write.assert_has_calls(expected_writes, any_order=False) @unittest.mock.patch('__main__.__builtins__.open', - new_callable = unittest.mock.mock_open) + new_callable=unittest.mock.mock_open) def test_component_write_to_file_complex(self, mock_f): """ Testing that a component can be written to file with the expected output. Here with complex input. + """ - - comp = setup_component_all_keywords() - - comp._unfreeze() - # need to set up attribute parameters - comp.new_par1 = 1.5 - comp.new_par2 = 3 - comp.this_par = "test_val" - comp.that_par = "\"txt_string\"" - # also need to categorize them as when created - comp.parameter_names = ["new_par1", "new_par2", "this_par", "that_par"] - comp.parameter_defaults = {"new_par1" : 5.1, - "new_par2" : 9, - "this_par" : "conga", - "that_par" : "\"txt\""} - comp.parameter_types = {"new_par1" : "double", - "new_par2" : "int", - "this_par" : "", - "that_par" : "string"} - comp._freeze() - + + comp = setup_component_with_parameters() + + # This setup has a required parameter. + # If this parameter is not set, an error should be returned, + # this will be tested in the next test. + + comp.new_par3 = "1.25" + with mock_f('test.txt', 'w') as m_fo: comp.write_component(m_fo) - + my_call = unittest.mock.call expected_writes = [my_call("COMPONENT test_component = Arm("), my_call("\n"), @@ -294,8 +382,11 @@ def test_component_write_to_file_complex(self, mock_f): my_call(" new_par2 = 3"), my_call(","), my_call("\n"), + my_call(" new_par3 = 1.25"), + my_call(","), my_call(" this_par = test_val"), my_call(","), + my_call("\n"), my_call(" that_par = \"txt_string\""), my_call(")\n"), my_call("WHEN (1==2)\n"), @@ -310,40 +401,249 @@ def test_component_write_to_file_complex(self, mock_f): my_call("JUMP myself 37\n"), my_call("\n")] - mock_f.assert_called_with('test.txt', 'w') + mock_f.assert_called_with('test.txt', 'w') handle = mock_f() - handle.write.assert_has_calls(expected_writes, any_order=False) - + handle.write.assert_has_calls(expected_writes, any_order=False) + @unittest.mock.patch('__main__.__builtins__.open', - new_callable = unittest.mock.mock_open) + new_callable=unittest.mock.mock_open) def test_component_write_component_required_parameter_error(self, mock_f): """ Test an error occurs if the component is asked to write to disk without a required parameter. """ - - comp = setup_component_all_keywords() - - comp._unfreeze() - # need to set up attribute parameters - comp.new_par1 = None - # also need to categorize them as when created - comp.parameter_names = ["new_par1"] - comp.parameter_defaults = {"new_par1" : None} - + + comp = setup_component_with_parameters() + + # new_par3 unset and has no default so an error will be raised + with self.assertRaises(NameError): with mock_f('test.txt', 'w') as m_fo: comp.write_component(m_fo) - - - # Print long (very similar to write component) - # Print short (easier) - # show_parameters (similar to write component, with formatting) - # show_parameters_simple (similar to write component, without formatting) - - - - + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_component_print_long(self, mock_stdout): + """ + Test print to console on the current state of the component. + Using a mocked stdout to catch the print statements. + """ + + comp = setup_component_with_parameters() + comp.append_EXTEND("second extend line;") + + comp.print_long() + + output = mock_stdout.getvalue() + output = output.split("\n") + + self.assertEqual(output[0], "// test comment") + self.assertEqual(output[1], "COMPONENT test_component = Arm") + + par_name = bcolors.BOLD + "new_par1" + bcolors.ENDC + value = (bcolors.BOLD + bcolors.OKGREEN + + "1.5" + bcolors.ENDC + bcolors.ENDC) + self.assertEqual(output[2], " " + par_name + " = " + value + " [m]") + + par_name = bcolors.BOLD + "new_par2" + bcolors.ENDC + value = (bcolors.BOLD + bcolors.OKGREEN + + "3" + bcolors.ENDC + bcolors.ENDC) + self.assertEqual(output[3], " " + par_name + " = " + value + " [AA]") + + par_name = bcolors.BOLD + "new_par3" + bcolors.ENDC + warning = (bcolors.FAIL + + " : Required parameter not yet specified" + + bcolors.ENDC) + self.assertEqual(output[4], " " + par_name + warning) + + par_name = bcolors.BOLD + "this_par" + bcolors.ENDC + value = (bcolors.BOLD + bcolors.OKGREEN + + "test_val" + bcolors.ENDC + bcolors.ENDC) + self.assertEqual(output[5], " " + par_name + " = " + value + " []") + + par_name = bcolors.BOLD + "that_par" + bcolors.ENDC + value = (bcolors.BOLD + bcolors.OKGREEN + + "\"txt_string\"" + bcolors.ENDC + bcolors.ENDC) + self.assertEqual(output[6], " " + par_name + " = " + value + " [1]") + + self.assertEqual(output[7], "WHEN (1==2)") + + self.assertEqual(output[8], "AT [0.124, 183.9, 157] RELATIVE home") + self.assertEqual(output[9], + "ROTATED [482, 1240.2, 0.185] RELATIVE etc") + self.assertEqual(output[10], "GROUP developers") + self.assertEqual(output[11], "EXTEND %{") + self.assertEqual(output[12], "nscat = 8;") + self.assertEqual(output[13], "second extend line;") + self.assertEqual(output[14], "%}") + self.assertEqual(output[15], "JUMP myself 37") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_component_print_short_standard(self, mock_stdout): + """ + Test print_short that prints name, type and location of the + component to the console. + """ + + comp = setup_component_with_parameters() + + comp.print_short() + + output = mock_stdout.getvalue() + output = output.split("\n") + + expected = ("test_component = Arm " + + "\tAT [0.124, 183.9, 157] RELATIVE home " + + "ROTATED [482, 1240.2, 0.185] RELATIVE etc") + + self.assertEqual(output[0], expected) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_component_print_short_longest_name(self, mock_stdout): + """ + Test print_short that prints name, type and location of the + component to the console. + """ + + comp = setup_component_with_parameters() + + comp.print_short(longest_name=15) + + output = mock_stdout.getvalue() + output = output.split("\n") + + expected = ("test_component Arm " + + "\tAT [0.124, 183.9, 157] RELATIVE home " + + "ROTATED [482, 1240.2, 0.185] RELATIVE etc") + + self.assertEqual(output[0], expected) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_component_show_parameters(self, mock_stdout): + """ + Test print_short that prints name, type and location of the + component to the console. + """ + + comp = setup_component_with_parameters() + + comp._unfreeze + + # This is now not set by the user, but has default + # This results in different formatting in show_parameters + comp.new_par2 = None + + comp._freeze + + comp.show_parameters() + + output = mock_stdout.getvalue() + output = output.split("\n") + + self.assertEqual(output[0], " ___ Help Arm " + "_"*59) + + legend = ("|" + + bcolors.BOLD + "optional parameter" + bcolors.ENDC + + "|" + + bcolors.BOLD + bcolors.UNDERLINE + + "required parameter" + + bcolors.ENDC + bcolors.ENDC + + "|" + + bcolors.BOLD + bcolors.OKBLUE + + "default value" + + bcolors.ENDC + bcolors.ENDC + + "|" + + bcolors.BOLD + bcolors.OKGREEN + + "user specified value" + + bcolors.ENDC + bcolors.ENDC + + "|") + + self.assertEqual(output[1], legend) + + par_name = bcolors.BOLD + "new_par1" + bcolors.ENDC + value = (bcolors.BOLD + bcolors.OKGREEN + + "1.5" + bcolors.ENDC + bcolors.ENDC) + comment = "// This is important" + self.assertEqual(output[2], + par_name + " = " + value + " [m] " + comment) + + par_name = bcolors.BOLD + "new_par2" + bcolors.ENDC + value = (bcolors.BOLD + bcolors.OKBLUE + + "9" + bcolors.ENDC + bcolors.ENDC) + comment = "// This is less important" + self.assertEqual(output[3], + par_name + " = " + value + " [AA] " + comment) + + par_name = (bcolors.UNDERLINE + bcolors.BOLD + + "new_par3" + + bcolors.ENDC + bcolors.ENDC) + self.assertEqual(output[4], par_name) + + par_name = bcolors.BOLD + "this_par" + bcolors.ENDC + value = (bcolors.BOLD + bcolors.OKGREEN + + "test_val" + bcolors.ENDC + bcolors.ENDC) + comment = "// !" + self.assertEqual(output[5], + par_name + " = " + value + " [] " + comment) + + par_name = bcolors.BOLD + "that_par" + bcolors.ENDC + value = (bcolors.BOLD + bcolors.OKGREEN + + "\"txt_string\"" + bcolors.ENDC + bcolors.ENDC) + comment = "" + self.assertEqual(output[6], + par_name + " = " + value + " [1]" + comment) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_component_show_parameters_simple(self, mock_stdout): + """ + Test print_short that prints name, type and location of the + component to the console. No formatting used in simple + version. + """ + + comp = setup_component_with_parameters() + + comp._unfreeze + + # This is now not set by the user, but has default + # This results in different formatting in show_parameters + comp.new_par2 = None + + comp._freeze + + comp.show_parameters_simple() + + output = mock_stdout.getvalue() + output = output.split("\n") + + self.assertEqual(output[0], "---- Help Arm -----") + + par_name = "new_par1" + value = "1.5" + comment = "// This is important" + self.assertEqual(output[1], + par_name + " = " + value + " [m] " + comment) + + par_name = "new_par2" + value = "9" + comment = "// This is less important" + self.assertEqual(output[2], + par_name + " = " + value + " [AA] " + comment) + + par_name = "new_par3" + self.assertEqual(output[3], par_name) + + par_name = "this_par" + value = "test_val" + comment = "// !" + self.assertEqual(output[4], + par_name + " = " + value + " [] " + comment) + + par_name = "that_par" + value = "\"txt_string\"" + comment = "" + self.assertEqual(output[5], + par_name + " = " + value + " [1]" + comment) + if __name__ == '__main__': - unittest.main() \ No newline at end of file + unittest.main() diff --git a/mcstasscript/tests/test_declare_variable.py b/mcstasscript/tests/test_declare_variable.py index 285823e0..3a5748ab 100644 --- a/mcstasscript/tests/test_declare_variable.py +++ b/mcstasscript/tests/test_declare_variable.py @@ -3,7 +3,6 @@ import unittest import unittest.mock - from mcstasscript.helper.mcstas_objects import declare_variable @@ -11,7 +10,7 @@ class Test_declare_variable(unittest.TestCase): """ Tests the declare_variable class that holds a declared variable that will be written to the McStas declare section. - + """ def test_declare_variable_init_basic_type(self): @@ -21,18 +20,18 @@ def test_declare_variable_init_basic_type(self): var = declare_variable("double", "test") - self.assertEqual(var.name,"test") - self.assertEqual(var.type,"double") # space for easier writing + self.assertEqual(var.name, "test") + self.assertEqual(var.type, "double") # space for easier writing def test_declare_variable_init_basic_type_value(self): """ Initialization with type and value """ - var = declare_variable("double", "test", value = 518) + var = declare_variable("double", "test", value=518) - self.assertEqual(var.name,"test") - self.assertEqual(var.type,"double") # space for easier writing + self.assertEqual(var.name, "test") + self.assertEqual(var.type, "double") # space for easier writing self.assertEqual(var.value, 518) def test_declare_variable_init_basic_type_vector(self): @@ -41,10 +40,10 @@ def test_declare_variable_init_basic_type_vector(self): """ var = declare_variable("double", "test", - array=6, value = [1, 2.2, 3, 3.3, 4, 4.4]) + array=6, value=[1, 2.2, 3, 3.3, 4, 4.4]) - self.assertEqual(var.name,"test") - self.assertEqual(var.type,"double") # space for easier writing + self.assertEqual(var.name, "test") + self.assertEqual(var.type, "double") # space for easier writing self.assertEqual(var.vector, 6) self.assertEqual(var.value, [1, 2.2, 3, 3.3, 4, 4.4]) @@ -52,17 +51,17 @@ def test_declare_variable_init_basic_type_value_comment(self): """ Initialization with type, value and comment """ - - var = declare_variable("double", "test", - value = 518, comment = "test comment /") - - self.assertEqual(var.name,"test") - self.assertEqual(var.type,"double") # space for easier writing + + var = declare_variable("double", "test", + value=518, comment="test comment /") + + self.assertEqual(var.name, "test") + self.assertEqual(var.type, "double") # Space for easier writing self.assertEqual(var.value, 518) self.assertEqual(var.comment, " // test comment /") @unittest.mock.patch('__main__.__builtins__.open', - new_callable = unittest.mock.mock_open) + new_callable=unittest.mock.mock_open) def test_declare_variable_write_basic(self, mock_f): """ Testing that write to file is correct. Here a line is in a @@ -75,12 +74,12 @@ def test_declare_variable_write_basic(self, mock_f): with mock_f('test.txt', 'w') as m_fo: var.write_line(m_fo) - mock_f.assert_called_with('test.txt', 'w') + mock_f.assert_called_with('test.txt', 'w') handle = mock_f() handle.write.assert_called_once_with("double test;") - + @unittest.mock.patch('__main__.__builtins__.open', - new_callable = unittest.mock.mock_open) + new_callable=unittest.mock.mock_open) def test_declare_variable_write_complex_float(self, mock_f): """ Testing that write to file is correct. Here a line is in a @@ -90,45 +89,45 @@ def test_declare_variable_write_complex_float(self, mock_f): """ var = declare_variable("double", - "test", - value = 5.4, - comment = "test comment") - + "test", + value=5.4, + comment="test comment") + with mock_f('test.txt', 'w') as m_fo: var.write_line(m_fo) - + expected_write = "double test = 5.4; // test comment" - - mock_f.assert_called_with('test.txt', 'w') + + mock_f.assert_called_with('test.txt', 'w') handle = mock_f() handle.write.assert_called_once_with(expected_write) - + @unittest.mock.patch('__main__.__builtins__.open', - new_callable = unittest.mock.mock_open) + new_callable=unittest.mock.mock_open) def test_declare_variable_write_complex_int(self, mock_f): """ Testing that write to file is correct. Here a line is in a instrument declare section. The write file operation is mocked and check using a patch. Here a declare with a value is used. (integer value) - """ + """ var = declare_variable("double", - "test", - value = 5, - comment = "test comment") - + "test", + value=5, + comment="test comment") + with mock_f('test.txt', 'w') as m_fo: var.write_line(m_fo) - + expected_write = "double test = 5; // test comment" - - mock_f.assert_called_with('test.txt', 'w') + + mock_f.assert_called_with('test.txt', 'w') handle = mock_f() handle.write.assert_called_once_with(expected_write) - + @unittest.mock.patch('__main__.__builtins__.open', - new_callable = unittest.mock.mock_open) + new_callable=unittest.mock.mock_open) def test_declare_variable_write_simple_array(self, mock_f): """ Testing that write to file is correct. Here a line is in a @@ -137,21 +136,21 @@ def test_declare_variable_write_simple_array(self, mock_f): """ var = declare_variable("double", - "test", - array = 29, - comment = "test comment") - + "test", + array=29, + comment="test comment") + with mock_f('test.txt', 'w') as m_fo: var.write_line(m_fo) - + expected_write = "double test[29]; // test comment" - - mock_f.assert_called_with('test.txt', 'w') + + mock_f.assert_called_with('test.txt', 'w') handle = mock_f() - handle.write.assert_called_once_with(expected_write) - + handle.write.assert_called_once_with(expected_write) + @unittest.mock.patch('__main__.__builtins__.open', - new_callable = unittest.mock.mock_open) + new_callable=unittest.mock.mock_open) def test_declare_variable_write_complex_array(self, mock_f): """ Testing that write to file is correct. Here a line is in a @@ -159,12 +158,12 @@ def test_declare_variable_write_complex_array(self, mock_f): mocked and check using a patch. Here an array is decalred and populated with the selected values. """ - + var = declare_variable("double", - "test", - array = 3, - value = [5, 4, 3.1], - comment = "test comment") + "test", + array=3, + value=[5, 4, 3.1], + comment="test comment") with mock_f('test.txt', 'w') as m_fo: var.write_line(m_fo) @@ -174,12 +173,10 @@ def test_declare_variable_write_complex_array(self, mock_f): unittest.mock.call("4,"), unittest.mock.call("3.1}; // test comment")] - mock_f.assert_called_with('test.txt', 'w') + mock_f.assert_called_with('test.txt', 'w') handle = mock_f() - handle.write.assert_has_calls(expected_writes, any_order=False) + handle.write.assert_has_calls(expected_writes, any_order=False) if __name__ == '__main__': unittest.main() - - \ No newline at end of file diff --git a/mcstasscript/tests/test_functions.py b/mcstasscript/tests/test_functions.py new file mode 100644 index 00000000..791ea62e --- /dev/null +++ b/mcstasscript/tests/test_functions.py @@ -0,0 +1,141 @@ +import unittest + +import numpy as np + +from mcstasscript.interface.functions import name_search +from mcstasscript.interface.functions import name_plot_options +from mcstasscript.data.data import McStasData +from mcstasscript.data.data import McStasMetaData +from mcstasscript.data.data import McStasPlotOptions + + +def set_dummy_MetaData_1d(name): + meta_data = McStasMetaData() + meta_data.component_name = name + meta_data.dimension = 50 + + return meta_data + + +def set_dummy_McStasData_1d(name): + meta_data = set_dummy_MetaData_1d(name) + + intensity = np.arange(20) + error = 0.5 * np.arange(20) + ncount = 2 * np.arange(20) + axis = np.arange(20)*5.0 + + return McStasData(meta_data, intensity, error, ncount, xaxis=axis) + + +def set_dummy_MetaData_2d(name): + meta_data = McStasMetaData() + meta_data.component_name = name + meta_data.dimension = [50, 100] + + return meta_data + + +def set_dummy_McStasData_2d(name): + meta_data = set_dummy_MetaData_2d(name) + + intensity = np.arange(20).reshape(4, 5) + error = 0.5 * np.arange(20).reshape(4, 5) + ncount = 2 * np.arange(20).reshape(4, 5) + + return McStasData(meta_data, intensity, error, ncount) + + +def setup_McStasData_array(): + + data_list = [] + + data_list.append(set_dummy_McStasData_1d("A_1d_thing")) + data_list.append(set_dummy_McStasData_2d("A_2d_thing")) + data_list.append(set_dummy_McStasData_1d("Another_1d_thing")) + data_list.append(set_dummy_McStasData_2d("Another_2d_thing")) + data_list.append(set_dummy_McStasData_2d("A_third_2d_thing")) + + hero_object = set_dummy_McStasData_2d("Hero") + hero_object.metadata.dimension = 123 + hero_object.plot_options.colormap = "very hot" + + data_list.append(hero_object) + + data_list.append(set_dummy_McStasData_2d("After_hero_2d")) + data_list.append(set_dummy_McStasData_2d("Last_object_2d")) + + return data_list + + +class Test_name_search(unittest.TestCase): + """ + Test the utility function called name_search which finds and + returns a McStasData set with a given name from a list of + McStasData objects. + + """ + + def test_name_search_read(self): + """ + Test simple case + """ + + data_list = setup_McStasData_array() + + hero_object = name_search("Hero", data_list) + + self.assertEqual(hero_object.metadata.dimension, 123) + + def test_name_search_read_error(self): + """ + Test simple case + """ + + data_list = setup_McStasData_array() + + with self.assertRaises(NameError): + hero_object = name_search("Hero8", data_list) + + def test_name_search_type_error_not_list(self): + """ + Test simple case + """ + + data_list = set_dummy_McStasData_2d("Last_object_2d") + + with self.assertRaises(NameError): + hero_object = name_search("Hero", data_list) + + def test_name_search_type_error_not_McStasData(self): + """ + Test simple case + """ + + data_list = [1, 2, 3] + + with self.assertRaises(NameError): + hero_object = name_search(1, data_list) + + +class Test_name_plot_options(unittest.TestCase): + """ + Test the utility function called name_plot_options which sends + keyword arguments to the set_plot_options method of the + McStasData object in a given list that has the given name. + + """ + + def test_name_plot_options_simple(self): + """ + Test simple case + """ + + data_list = setup_McStasData_array() + name_plot_options("Hero", data_list, colormap="very hot") + hero_object = name_search("Hero", data_list) + self.assertEqual(hero_object.plot_options.colormap, "very hot") + + +if __name__ == '__main__': + unittest.main() diff --git a/mcstasscript/tests/test_parameter_variable.py b/mcstasscript/tests/test_parameter_variable.py index bca7b167..d94936d4 100644 --- a/mcstasscript/tests/test_parameter_variable.py +++ b/mcstasscript/tests/test_parameter_variable.py @@ -3,7 +3,6 @@ import unittest import unittest.mock - from mcstasscript.helper.mcstas_objects import parameter_variable @@ -11,66 +10,66 @@ class Test_parameter_variable(unittest.TestCase): """ Tests the parameter_variable class that holds an input parameter for the instrument. - + """ - + def test_parameter_variable_init_basic(self): """ Smallest possible initialization """ - + par = parameter_variable("test") - self.assertEqual(par.name,"test") + self.assertEqual(par.name, "test") def test_parameter_variable_init_basic_type(self): """ Initialization with a type """ - + par = parameter_variable("double", "test") - - self.assertEqual(par.name,"test") - self.assertEqual(par.type,"double ") # space for easier writing - + + self.assertEqual(par.name, "test") + self.assertEqual(par.type, "double ") # space for easier writing + def test_parameter_variable_init_basic_type_value(self): """ Initialization with type and value """ - - par = parameter_variable("double", "test", value = 518) - - self.assertEqual(par.name,"test") - self.assertEqual(par.type,"double ") # space for easier writing + + par = parameter_variable("double", "test", value=518) + + self.assertEqual(par.name, "test") + self.assertEqual(par.type, "double ") # space for easier writing self.assertEqual(par.value, 518) - + def test_parameter_variable_init_basic_type_value_comment(self): """ Initialization with type, value and comment """ - - par = parameter_variable("double", "test", - value = 518, comment = "test comment /") - - self.assertEqual(par.name,"test") - self.assertEqual(par.type,"double ") # space for easier writing + + par = parameter_variable("double", "test", + value=518, comment="test comment /") + + self.assertEqual(par.name, "test") + self.assertEqual(par.type, "double ") # space for easier writing self.assertEqual(par.value, 518) self.assertEqual(par.comment, "// test comment /") - + def test_parameter_variable_init_basic_value_comment(self): """ Initialization with value and comment """ - - par = parameter_variable("test", - value = 518, comment = "test comment /") - - self.assertEqual(par.name,"test") - self.assertEqual(par.type,"") + + par = parameter_variable("test", + value=518, comment="test comment /") + + self.assertEqual(par.name, "test") + self.assertEqual(par.type, "") self.assertEqual(par.value, 518) self.assertEqual(par.comment, "// test comment /") @unittest.mock.patch('__main__.__builtins__.open', - new_callable = unittest.mock.mock_open) + new_callable=unittest.mock.mock_open) def test_parameter_variable_write_basic(self, mock_f): """ Testing that write to file is correct. Here a line is in a @@ -87,13 +86,13 @@ def test_parameter_variable_write_basic(self, mock_f): unittest.mock.call(""), unittest.mock.call(""), unittest.mock.call("\n")] - - mock_f.assert_called_with('test.txt', 'w') + + mock_f.assert_called_with('test.txt', 'w') handle = mock_f() handle.write.assert_has_calls(expected_writes, any_order=False) - + @unittest.mock.patch('__main__.__builtins__.open', - new_callable = unittest.mock.mock_open) + new_callable=unittest.mock.mock_open) def test_parameter_variable_write_complex_float(self, mock_f): """ Testing that write to file is correct. Here a line is in a @@ -104,9 +103,9 @@ def test_parameter_variable_write_complex_float(self, mock_f): par = parameter_variable("double", "test", - value = 5.4, - comment = "test comment") - + value=5.4, + comment="test comment") + with mock_f('test.txt', 'w') as m_fo: par.write_parameter(m_fo, ")") @@ -115,26 +114,26 @@ def test_parameter_variable_write_complex_float(self, mock_f): unittest.mock.call(")"), unittest.mock.call("// test comment"), unittest.mock.call("\n")] - - mock_f.assert_called_with('test.txt', 'w') + + mock_f.assert_called_with('test.txt', 'w') handle = mock_f() handle.write.assert_has_calls(expected_writes, any_order=False) - + @unittest.mock.patch('__main__.__builtins__.open', - new_callable = unittest.mock.mock_open) + new_callable=unittest.mock.mock_open) def test_parameter_variable_write_complex_int(self, mock_f): """ Testing that write to file is correct. Here a line is in a instrument parameter section. The write file operation is mocked and check using a patch. Here a parameter with a value is used. (integer value) - """ + """ par = parameter_variable("double", "test", - value = 5, - comment = "test comment") - + value=5, + comment="test comment") + with mock_f('test.txt', 'w') as m_fo: par.write_parameter(m_fo, ")") @@ -143,26 +142,26 @@ def test_parameter_variable_write_complex_int(self, mock_f): unittest.mock.call(")"), unittest.mock.call("// test comment"), unittest.mock.call("\n")] - - mock_f.assert_called_with('test.txt', 'w') + + mock_f.assert_called_with('test.txt', 'w') handle = mock_f() handle.write.assert_has_calls(expected_writes, any_order=False) - + @unittest.mock.patch('__main__.__builtins__.open', - new_callable = unittest.mock.mock_open) + new_callable=unittest.mock.mock_open) def test_parameter_variable_write_complex_string(self, mock_f): """ Testing that write to file is correct. Here a line is in a instrument parameter section. The write file operation is mocked and check using a patch. Here a parameter with a value is used. (string value) - """ + """ par = parameter_variable("double", "test", - value = "\"Al\"", - comment = "test comment") - + value="\"Al\"", + comment="test comment") + with mock_f('test.txt', 'w') as m_fo: par.write_parameter(m_fo, ",") @@ -171,10 +170,10 @@ def test_parameter_variable_write_complex_string(self, mock_f): unittest.mock.call(","), unittest.mock.call("// test comment"), unittest.mock.call("\n")] - - mock_f.assert_called_with('test.txt', 'w') + + mock_f.assert_called_with('test.txt', 'w') handle = mock_f() - handle.write.assert_has_calls(expected_writes, any_order=False) + handle.write.assert_has_calls(expected_writes, any_order=False) if __name__ == '__main__': From 125102c78d6c952ad0cff06f1fa3064830a6259e Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Tue, 21 May 2019 11:23:02 +0200 Subject: [PATCH 018/403] Added show_parameters method to isntrument including a test. Simplified parameter_variable and declare_variable classes. --- mcstasscript/helper/mcstas_objects.py | 30 ++++++++-------------- mcstasscript/interface/instr.py | 36 +++++++++++++++++++++++++++ mcstasscript/tests/test_Instr.py | 24 ++++++++++++++++++ 3 files changed, 70 insertions(+), 20 deletions(-) diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index b3b42246..750f165b 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -58,16 +58,13 @@ def __init__(self, *args, **kwargs): self.type = args[0] + " " self.name = str(args[1]) + self.value = "" if "value" in kwargs: - self.value_set = 1 self.value = kwargs["value"] - else: - self.value_set = 0 + self.comment = "" if "comment" in kwargs: self.comment = "// " + kwargs["comment"] - else: - self.comment = "" # could check for allowed types # they are int, double, string, are there more? @@ -75,7 +72,7 @@ def __init__(self, *args, **kwargs): def write_parameter(self, fo, stop_character): """Writes input parameter to file""" fo.write("%s%s" % (self.type, self.name)) - if self.value_set == 1: + if self.value is not "": if isinstance(self.value, int): fo.write(" = %d" % self.value) elif isinstance(self.value, float): @@ -113,9 +110,6 @@ class declare_variable: vector : int 0 if a single value is given, ortherwise contains the length - value_set : int - Internal variable displaying wether or not a value was given - Methods ------- write_line(fo) @@ -145,21 +139,17 @@ def __init__(self, *args, **kwargs): """ self.type = args[0] self.name = str(args[1]) + self.value = "" if "value" in kwargs: - self.value_set = 1 self.value = kwargs["value"] - else: - self.value_set = 0 + self.vector = 0 if "array" in kwargs: self.vector = kwargs["array"] - else: - self.vector = 0 + self.comment = "" if "comment" in kwargs: self.comment = " // " + kwargs["comment"] - else: - self.comment = "" def write_line(self, fo): """Writes line declaring variable to file fo @@ -169,19 +159,19 @@ def write_line(self, fo): fo : file object File the line will be written to """ - if self.value_set == 0 and self.vector == 0: + if self.value is "" and self.vector == 0: fo.write("%s %s;%s" % (self.type, self.name, self.comment)) - if self.value_set == 1 and self.vector == 0: + if self.value is not "" and self.vector == 0: if self.type == "int": fo.write("%s %s = %d;%s" % (self.type, self.name, self.value, self.comment)) else: fo.write("%s %s = %G;%s" % (self.type, self.name, self.value, self.comment)) - if self.value_set == 0 and self.vector != 0: + if self.value is "" and self.vector != 0: fo.write("%s %s[%d];%s" % (self.type, self.name, self.vector, self.comment)) - if self.value_set == 1 and self.vector != 0: + if self.value is not "" and self.vector != 0: fo.write("%s %s[%d] = {" % (self.type, self.name, self.vector)) for i in range(0, len(self.value) - 1): fo.write("%G," % self.value[i]) diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 76a9f2a0..c2a7b850 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -217,6 +217,42 @@ def add_parameter(self, *args, **kwargs): """ # parameter_variable class documented independently self.parameter_list.append(parameter_variable(*args, **kwargs)) + + def show_parameters(self): + """ + Method for displaying current instrument parameters + """ + + if len(self.parameter_list) == 0: + print("No instrument parameters available") + return + + # Find longest fields + types = [] + names = [] + values = [] + comments = [] + for parameter in self.parameter_list: + types.append(str(parameter.type)) + names.append(str(parameter.name)) + values.append(str(parameter.value)) + comments.append(str(parameter.comment)) + + longest_type = len(max(types, key=len)) + longest_name = len(max(names, key=len)) + longest_value = len(max(values, key=len)) + longest_comment = len(max(comments, key=len)) + + # Print to console + for parameter in self.parameter_list: + print(str(parameter.type).ljust(longest_type), end=' ') + print(str(parameter.name).ljust(longest_name), end=' ') + if parameter.value is "": + print(" ", end=' ') + else: + print(" = ", end=' ') + print(str(parameter.value).ljust(longest_value+1), end=' ') + print(str(parameter.comment).ljust(longest_comment)) def add_declare_var(self, *args, **kwargs): """ diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index 35705cd5..311abd31 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -85,6 +85,30 @@ def test_simple_add_parameter(self): self.assertEqual(instr.parameter_list[0].name, "theta") self.assertEqual(instr.parameter_list[0].comment, "// test par") + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_show_parameters(self, mock_stdout): + """ + Testing that parameters are displayed correctly + """ + instr = setup_instr_no_path() + + instr.add_parameter("double", "theta", comment="test par") + instr.add_parameter("single", "theta", comment="test par") + instr.add_parameter("float", "theta", value = 8, comment="test par") + instr.add_parameter("int", "slits", comment="test par") + instr.add_parameter("string", "ref", + value = "string", comment="new string") + + instr.show_parameters() + + output = mock_stdout.getvalue().split("\n") + + self.assertEqual(output[0],"double theta // test par ") + self.assertEqual(output[1],"single theta // test par ") + self.assertEqual(output[2],"float theta = 8 // test par ") + self.assertEqual(output[3],"int slits // test par ") + self.assertEqual(output[4],"string ref = string // new string") + def test_simple_add_declare_parameter(self): """ This is just an interface to a function that is tested From 8a796d9dbc7d72a0cfb200855257de69a9e41a99 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Tue, 21 May 2019 13:36:31 +0200 Subject: [PATCH 019/403] Added checks for filename and parameter names with appropriate errors if unsuitable names are used. Unit tests for functions checking whether varialbes are legal are included in test_formatting.py. --- mcstasscript/helper/formatting.py | 43 ++++++++++++++++- mcstasscript/interface/instr.py | 9 +++- mcstasscript/tests/test_Instr.py | 22 ++++----- mcstasscript/tests/test_formatting.py | 69 +++++++++++++++++++++++++++ 4 files changed, 130 insertions(+), 13 deletions(-) create mode 100644 mcstasscript/tests/test_formatting.py diff --git a/mcstasscript/helper/formatting.py b/mcstasscript/helper/formatting.py index 58ac53c8..aef8ff10 100644 --- a/mcstasscript/helper/formatting.py +++ b/mcstasscript/helper/formatting.py @@ -11,4 +11,45 @@ class bcolors: FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' - UNDERLINE = '\033[4m' \ No newline at end of file + UNDERLINE = '\033[4m' + +def is_legal_parameter(name): + """ + Function that returns true if the given name can be used as a + parameter in the c programming language. + """ + + if name is "": + return False + + if " " in name: + return False + + if "." in name: + return False + + if not name[0].isalpha(): + return False + + return True + +def is_legal_filename(name): + """ + Function that returns true if the given name can be used as a + filename + """ + + if name is "": + return False + + if " " in name: + return False + + if "/" in name: + return False + + if "\\" in name: + return False + + return True + \ No newline at end of file diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index c2a7b850..e240f8ed 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -9,6 +9,7 @@ from mcstasscript.data.data import McStasData from mcstasscript.helper.component_reader import ComponentReader from mcstasscript.helper.managed_mcrun import ManagedMcrun +from mcstasscript.helper.formatting import is_legal_filename class McStas_instr: """ @@ -154,6 +155,13 @@ def __init__(self, name, **kwargs): """ self.name = name + + if not is_legal_filename(self.name + ".instr"): + raise NameError("The instrument is called: \"" + + self.name + + "\" resulting in an instrument file named: \"" + + self.name + ".instr" + + "\" which is not a legal filename") if "author" in kwargs: self.author = kwargs["author"] @@ -308,7 +316,6 @@ def append_initialize_no_new_line(self, string): ---------- string : str code to be added to initialize section - """ self.initialize_section = self.initialize_section + string diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index 311abd31..45d693a0 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -94,20 +94,20 @@ def test_show_parameters(self, mock_stdout): instr.add_parameter("double", "theta", comment="test par") instr.add_parameter("single", "theta", comment="test par") - instr.add_parameter("float", "theta", value = 8, comment="test par") + instr.add_parameter("float", "theta", value=8, comment="test par") instr.add_parameter("int", "slits", comment="test par") - instr.add_parameter("string", "ref", - value = "string", comment="new string") - + instr.add_parameter("string", "ref", + value="string", comment="new string") + instr.show_parameters() - + output = mock_stdout.getvalue().split("\n") - - self.assertEqual(output[0],"double theta // test par ") - self.assertEqual(output[1],"single theta // test par ") - self.assertEqual(output[2],"float theta = 8 // test par ") - self.assertEqual(output[3],"int slits // test par ") - self.assertEqual(output[4],"string ref = string // new string") + + self.assertEqual(output[0], "double theta // test par ") + self.assertEqual(output[1], "single theta // test par ") + self.assertEqual(output[2], "float theta = 8 // test par ") + self.assertEqual(output[3], "int slits // test par ") + self.assertEqual(output[4], "string ref = string // new string") def test_simple_add_declare_parameter(self): """ diff --git a/mcstasscript/tests/test_formatting.py b/mcstasscript/tests/test_formatting.py new file mode 100644 index 00000000..ee6bfaf5 --- /dev/null +++ b/mcstasscript/tests/test_formatting.py @@ -0,0 +1,69 @@ +import unittest + +from mcstasscript.helper.formatting import is_legal_parameter +from mcstasscript.helper.formatting import is_legal_filename + + +class TestFormatting(unittest.TestCase): + """ + Tests the formatting functions + """ + def test_is_legal_parameter_simple(self): + """ + Check a legal parameter is legal + """ + test_name = "test_parameter_name1" + self.assertTrue(is_legal_parameter(test_name)) + + def test_is_legal_parameter_reject_space(self): + """ + A space should make the parameter name illegal + """ + test_name = "test_parameter name" + self.assertFalse(is_legal_parameter(test_name)) + + def test_is_legal_parameter_reject_first_number(self): + """ + The first character being a number is ilegal + """ + test_name = "2est_parameter_name" + self.assertFalse(is_legal_parameter(test_name)) + + def test_is_legal_parameter_reject_empty(self): + """ + An empty string should not be a legal name + """ + test_name = "" + self.assertFalse(is_legal_parameter(test_name)) + + def test_is_legal_filename_simple(self): + """ + Test with a legal filename + """ + test_name = "test_instrument1" + self.assertTrue(is_legal_filename(test_name)) + + def test_is_legal_filename_reject_forward_dash(self): + """ + A dash should make the filename illegal + """ + test_name = "test/instrument" + self.assertFalse(is_legal_filename(test_name)) + + def test_is_legal_filename_reject_backwards_dash(self): + """ + A backwards dash should make the filename illegal + """ + test_name = "test\\instrument" + self.assertFalse(is_legal_filename(test_name)) + + def test_is_legal_filename_rekect_space(self): + """ + A space should make the filename illegal + """ + test_name = "test instrument" + self.assertFalse(is_legal_filename(test_name)) + + +if __name__ == '__main__': + unittest.main() From c1816989585d15be9686244d99638f00e123ba40 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Tue, 21 May 2019 15:32:38 +0200 Subject: [PATCH 020/403] Updated examples with new syntax. Added a few more error messages in functions, and a few tests. --- examples/McStasScript_demo.ipynb | 180 +++++++++++++----------- examples/random_demonstration.py | 149 +++++++++++++------- mcstasscript/helper/mcstas_objects.py | 18 ++- mcstasscript/interface/functions.py | 11 +- mcstasscript/tests/test_ManagedMcrun.py | 2 +- mcstasscript/tests/test_functions.py | 34 ++++- 6 files changed, 254 insertions(+), 140 deletions(-) diff --git a/examples/McStasScript_demo.ipynb b/examples/McStasScript_demo.ipynb index 8a04b384..2150fb2b 100644 --- a/examples/McStasScript_demo.ipynb +++ b/examples/McStasScript_demo.ipynb @@ -15,26 +15,26 @@ "outputs": [], "source": [ "import sys\n", - "sys.path.append('/Users/madsbertelsen/PaNOSC/McStasScript') # Path to McStasScript pythoon file\n", + "sys.path.append('/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript') # Path to McStasScript pythoon file\n", "\n", "from mcstasscript.interface import instr, plotter, functions\n", "\n", "# Creating the instance of the class, insert path to mcrun and to mcstas root directory\n", - "instr = instr.McStas_instr(\"jupyter_demo\",\n", - " mcrun_path= \"/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin\",\n", + "Instr = instr.McStas_instr(\"jupyter_demo\",\n", + " mcrun_path = \"/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin\",\n", " mcstas_path = \"/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5\")" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Here are the availalbe component categories:\n", + "Here are the available component categories:\n", " sources\n", " optics\n", " samples\n", @@ -48,12 +48,12 @@ } ], "source": [ - "instr.show_components() # Shows available McStas component categories in current installation" + "Instr.show_components() # Shows available McStas component categories in current installation" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -69,12 +69,12 @@ } ], "source": [ - "instr.show_components(\"sources\") # Display all McStas source components " + "Instr.show_components(\"sources\") # Display all McStas source components " ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -84,43 +84,43 @@ " ___ Help Source_simple _________________________________________________\n", "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", "\u001b[1mradius\u001b[0m = \u001b[1m\u001b[94m0.1\u001b[0m\u001b[0m [m] // Radius of circle in (x,y,0) plane where neutrons are generated.\n", - "\u001b[1myheight\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Height of rectangle in (x,y,0) plane where neutrons are generated.\n", - "\u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Width of rectangle in (x,y,0) plane where neutrons are generated.\n", - "\u001b[1mdist\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Distance to target along z axis.\n", - "\u001b[1mfocus_xw\u001b[0m = \u001b[1m\u001b[94m.045\u001b[0m\u001b[0m [m] // Width of target\n", - "\u001b[1mfocus_yh\u001b[0m = \u001b[1m\u001b[94m.12\u001b[0m\u001b[0m [m] // Height of target\n", - "\u001b[1mE0\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [meV] // Mean energy of neutrons.\n", - "\u001b[1mdE\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [meV] // Energy half spread of neutrons (flat or gaussian sigma).\n", - "\u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [AA] // Mean wavelength of neutrons.\n", - "\u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [AA] // Wavelength half spread of neutrons.\n", - "\u001b[1mflux\u001b[0m = \u001b[1m\u001b[94m1\u001b[0m\u001b[0m [1/(s*cm**2*st*energy unit)] // flux per energy unit, Angs or meV if flux=0, the source emits 1 in 4*PI whole space.\n", - "\u001b[1mgauss\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [1] // Gaussian (1) or Flat (0) energy/wavelength distribution\n", - "\u001b[1mtarget_index\u001b[0m = \u001b[1m\u001b[94m+1\u001b[0m\u001b[0m [1] // relative index of component to focus at, e.g. next is +1 this is used to compute 'dist' automatically.\n", + "\u001b[1myheight\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Height of rectangle in (x,y,0) plane where neutrons are generated.\n", + "\u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Width of rectangle in (x,y,0) plane where neutrons are generated.\n", + "\u001b[1mdist\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Distance to target along z axis.\n", + "\u001b[1mfocus_xw\u001b[0m = \u001b[1m\u001b[94m0.045\u001b[0m\u001b[0m [m] // Width of target\n", + "\u001b[1mfocus_yh\u001b[0m = \u001b[1m\u001b[94m0.12\u001b[0m\u001b[0m [m] // Height of target\n", + "\u001b[1mE0\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [meV] // Mean energy of neutrons.\n", + "\u001b[1mdE\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [meV] // Energy half spread of neutrons (flat or gaussian sigma).\n", + "\u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [AA] // Mean wavelength of neutrons.\n", + "\u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [AA] // Wavelength half spread of neutrons.\n", + "\u001b[1mflux\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1/(s*cm**2*st*energy unit)] // flux per energy unit, Angs or meV if flux=0, the source emits 1 in 4*PI whole space.\n", + "\u001b[1mgauss\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [1] // Gaussian (1) or Flat (0) energy/wavelength distribution\n", + "\u001b[1mtarget_index\u001b[0m = \u001b[1m\u001b[94m1\u001b[0m\u001b[0m [1] // relative index of component to focus at, e.g. next is +1 this is used to compute 'dist' automatically.\n", "-------------------------------------------------------------------------\n" ] } ], "source": [ - "instr.component_help(\"Source_simple\") # Displays help on the Source_simple component" + "Instr.component_help(\"Source_simple\") # Displays help on the Source_simple component" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ - "source = instr.add_component(\"Source\",\"Source_simple\") # Adds an instance of Source_simple called Source to instrument" + "source = Instr.add_component(\"Source\",\"Source_simple\") # Adds an instance of Source_simple" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "# Lets add a parameter to the instrument to control the wavelength of the source\n", - "instr.add_parameter(\"double\",\"wavelength\",value=3,comment=\"Wavelength emmited from source\")\n", + "Instr.add_parameter(\"double\", \"wavelength\", value=3, comment=\"Wavelength emmited from source\")\n", "source.xwidth = 0.06; source.yheight = 0.08;\n", "source.dist = 2; source.focus_xw = 0.05; source.focus_yh = 0.05\n", "source.lambda0 = \"wavelength\"; source.dlambda = 0.1" @@ -128,7 +128,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -154,17 +154,17 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ - "guide = instr.add_component(\"Guide\", \"Guide_gravity\", AT=[0,0,2], RELATIVE=\"Source\")\n", + "guide = Instr.add_component(\"Guide\", \"Guide_gravity\", AT=[0,0,2], RELATIVE=\"Source\")\n", "guide.set_comment=\"Beam extraction and first guide piece\"" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -175,37 +175,37 @@ "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", "\u001b[4m\u001b[1mw1\u001b[0m\u001b[0m [m] // Width at the guide entry\n", "\u001b[4m\u001b[1mh1\u001b[0m\u001b[0m [m] // Height at the guide entry\n", - "\u001b[1mw2\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Width at the guide exit. If 0, use w1.\n", - "\u001b[1mh2\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Height at the guide exit. If 0, use h1.\n", + "\u001b[1mw2\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Width at the guide exit. If 0, use w1.\n", + "\u001b[1mh2\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Height at the guide exit. If 0, use h1.\n", "\u001b[4m\u001b[1ml\u001b[0m\u001b[0m [m] // length of guide\n", "\u001b[1mR0\u001b[0m = \u001b[1m\u001b[94m0.995\u001b[0m\u001b[0m [1] // Low-angle reflectivity\n", "\u001b[1mQc\u001b[0m = \u001b[1m\u001b[94m0.0218\u001b[0m\u001b[0m [AA-1] // Critical scattering vector\n", "\u001b[1malpha\u001b[0m = \u001b[1m\u001b[94m4.38\u001b[0m\u001b[0m [AA] // Slope of reflectivity\n", "\u001b[1mm\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // m-value of material. Zero means completely absorbing. m=0.65 glass/SiO2 Si Ni Ni58 supermirror Be Diamond m= 0.65 0.47 1 1.18 2-6 1.01 1.12 for glass/SiO2, m=1 for Ni, 1.2 for Ni58, m=2-6 for supermirror. m=0.47 for Si\n", "\u001b[1mW\u001b[0m = \u001b[1m\u001b[94m0.003\u001b[0m\u001b[0m [AA-1] // Width of supermirror cut-off\n", - "\u001b[1mnslit\u001b[0m = \u001b[1m\u001b[94m1\u001b[0m\u001b[0m [1] // Number of vertical channels in the guide (>= 1) (nslit-1 vertical dividing walls).\n", + "\u001b[1mnslit\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // Number of vertical channels in the guide (>= 1) (nslit-1 vertical dividing walls).\n", "\u001b[1md\u001b[0m = \u001b[1m\u001b[94m0.0005\u001b[0m\u001b[0m [m] // Thickness of subdividing walls\n", - "\u001b[1mmleft\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // m-value of material for left. vert. mirror\n", - "\u001b[1mmright\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // m-value of material for right. vert. mirror\n", - "\u001b[1mmtop\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // m-value of material for top. horz. mirror\n", - "\u001b[1mmbottom\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // m-value of material for bottom. horz. mirror\n", - "\u001b[1mnhslit\u001b[0m = \u001b[1m\u001b[94m1\u001b[0m\u001b[0m [1] // Number of horizontal channels in the guide (>= 1). (nhslit-1 horizontal dividing walls). this enables to have nslit*nhslit rectangular channels\n", - "\u001b[1mG\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m/s2] // Gravitation norm. 0 value disables G effects.\n", - "\u001b[1maleft\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // alpha-value of left vert. mirror\n", - "\u001b[1maright\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // alpha-value of right vert. mirror\n", - "\u001b[1matop\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // alpha-value of top horz. mirror\n", - "\u001b[1mabottom\u001b[0m = \u001b[1m\u001b[94m-1\u001b[0m\u001b[0m [1] // alpha-value of left horz. mirror\n", - "\u001b[1mwavy\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // Global guide waviness\n", - "\u001b[1mwavy_z\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // Partial waviness along propagation axis\n", - "\u001b[1mwavy_tb\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // Partial waviness in transverse direction for top/bottom mirrors\n", - "\u001b[1mwavy_lr\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // Partial waviness in transverse direction for left/right mirrors\n", - "\u001b[1mchamfers\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Global chamfers specifications (in/out/mirror sides).\n", - "\u001b[1mchamfers_z\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Input and output chamfers\n", - "\u001b[1mchamfers_lr\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Chamfers on left/right mirror sides\n", - "\u001b[1mchamfers_tb\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Chamfers on top/bottom mirror sides\n", - "\u001b[1mnelements\u001b[0m = \u001b[1m\u001b[94m1\u001b[0m\u001b[0m [1] // Number of sections in the guide (length l/nelements).\n", - "\u001b[1mnu\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [Hz] // Rotation frequency (round/s) for Fermi Chopper approximation\n", - "\u001b[1mphase\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // Phase shift for the Fermi Chopper approximation\n", + "\u001b[1mmleft\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // m-value of material for left. vert. mirror\n", + "\u001b[1mmright\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // m-value of material for right. vert. mirror\n", + "\u001b[1mmtop\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // m-value of material for top. horz. mirror\n", + "\u001b[1mmbottom\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // m-value of material for bottom. horz. mirror\n", + "\u001b[1mnhslit\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // Number of horizontal channels in the guide (>= 1). (nhslit-1 horizontal dividing walls). this enables to have nslit*nhslit rectangular channels\n", + "\u001b[1mG\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m/s2] // Gravitation norm. 0 value disables G effects.\n", + "\u001b[1maleft\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // alpha-value of left vert. mirror\n", + "\u001b[1maright\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // alpha-value of right vert. mirror\n", + "\u001b[1matop\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // alpha-value of top horz. mirror\n", + "\u001b[1mabottom\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // alpha-value of left horz. mirror\n", + "\u001b[1mwavy\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [deg] // Global guide waviness\n", + "\u001b[1mwavy_z\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [deg] // Partial waviness along propagation axis\n", + "\u001b[1mwavy_tb\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [deg] // Partial waviness in transverse direction for top/bottom mirrors\n", + "\u001b[1mwavy_lr\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [deg] // Partial waviness in transverse direction for left/right mirrors\n", + "\u001b[1mchamfers\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Global chamfers specifications (in/out/mirror sides).\n", + "\u001b[1mchamfers_z\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Input and output chamfers\n", + "\u001b[1mchamfers_lr\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Chamfers on left/right mirror sides\n", + "\u001b[1mchamfers_tb\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Chamfers on top/bottom mirror sides\n", + "\u001b[1mnelements\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // Number of sections in the guide (length l/nelements).\n", + "\u001b[1mnu\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [Hz] // Rotation frequency (round/s) for Fermi Chopper approximation\n", + "\u001b[1mphase\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [deg] // Phase shift for the Fermi Chopper approximation\n", "\u001b[1mreflect\u001b[0m = \u001b[1m\u001b[94m\"NULL\"\u001b[0m\u001b[0m [str] // Reflectivity file name. Format \n", "-------------------------------------------------------------------------\n" ] @@ -217,7 +217,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -226,7 +226,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -252,25 +252,25 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ - "sample = instr.add_component(\"sample\", \"PowderN\", AT=[0,0,9], RELATIVE=\"Guide\") # Add a sample" + "sample = Instr.add_component(\"sample\", \"PowderN\", AT=[0, 0, 9], RELATIVE=\"Guide\") # Add a sample" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ - "sample.radius = 0.015; sample.yheight = 0.05; sample.reflections = \"\\\"Cu.laz\\\"\" # A small copper cylinder" + "sample.radius = 0.015; sample.yheight = 0.05; sample.reflections = \"\\\"Cu.laz\\\"\" # Copper cylinder" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -291,21 +291,21 @@ } ], "source": [ - "instr.show_components(\"monitors\") # Monitors are needed to record information" + "Instr.show_components(\"monitors\") # Monitors are needed to record information" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ - "sphere = instr.add_component(\"PSD_4PI\", \"PSD_monitor_4PI\", RELATIVE=\"sample\") # Add 4PI sphere detector" + "sphere = Instr.add_component(\"PSD_4PI\", \"PSD_monitor_4PI\", RELATIVE=\"sample\") # Add 4PI detector" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -324,32 +324,35 @@ } ], "source": [ - "sphere.nx = 300; sphere.ny = 300; sphere.filename = \"\\\"PSD_4PI.dat\\\"\"; sphere.radius = 1; sphere.restore_neutron = 1;\n", - "sphere.print_long() # Verify that monitors have filenames that are strings when printed, double quotes needed" + "sphere.nx = 300; sphere.ny = 300\n", + "sphere.radius = 1; sphere.restore_neutron = 1\n", + "sphere.filename = \"\\\"PSD_4PI.dat\\\"\" # filenames need printed quotes, use \\\"\n", + "sphere.print_long() # Verify that monitors have filenames that are strings when printed" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ - "PSD = instr.add_component(\"PSD\", \"PSD_monitor\", AT=[0,0,1], RELATIVE=\"sample\") # Add position sensitive detector\n", - "PSD.xwidth = 0.1; PSD.yheight = 0.1; PSD.nx = 200; PSD.ny = 200; PSD.filename = \"\\\"PSD.dat\\\"\"; PSD.restore_neutron = 1" + "PSD = Instr.add_component(\"PSD\", \"PSD_monitor\", AT=[0,0,1], RELATIVE=\"sample\") # Add PSD monitor\n", + "PSD.xwidth = 0.1; PSD.yheight = 0.1; PSD.nx = 200; PSD.ny = 200\n", + "PSD.filename = \"\\\"PSD.dat\\\"\"; PSD.restore_neutron = 1" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ - "L_mon = instr.add_component(\"L_mon\", \"L_monitor\", RELATIVE=\"PSD\")" + "L_mon = Instr.add_component(\"L_mon\", \"L_monitor\", RELATIVE=\"PSD\")" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -361,7 +364,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -388,7 +391,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -405,7 +408,24 @@ } ], "source": [ - "instr.print_components() # Lets get an overview of the instrument so far" + "Instr.print_components() # Lets get an overview of the instrument so far" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "double wavelength = 3 // Wavelength emmited from source\n" + ] + } + ], + "source": [ + "Instr.show_parameters()" ] }, { @@ -418,12 +438,12 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "# If the folder already exsits, a new simulation is not performed but the old one is read\n", - "data = instr.run_full_instrument(foldername=\"jupyter_demo\",\n", + "data = Instr.run_full_instrument(foldername=\"jupyter_demo\",\n", " parameters={\"wavelength\" : 1.0},\n", " mpi=4,\n", " ncount=2E7)" @@ -439,7 +459,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -454,7 +474,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAG5CAYAAABIoz+EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvX+UVtd53/vZwMAwaGAMGs9ogDDGEBAFI1FkJFkukiNbkiMrdq4T24lzYyeuk67rpO296W3a+DZO4qbpj3vbdDkrjpM4ievEbqIVO45iy7EaSbEsWQUjyVAMAeMhoNFgxGhgBIwYMfv+8Txfnv2+zA9GjH4Y9netd73vOWef/euc95znu59fKedMRUVFRUVFRUVFRUXF5YJZL3cHKioqKioqKioqKioqXkpUElRRUVFRUVFRUVFRcVmhkqCKioqKioqKioqKissKlQRVVFRUVFRUVFRUVFxWqCSooqKioqKioqKiouKyQiVBFRUVFRUVFRUVFRWXFSoJqqj4HkJK6V+nlH7v5e5HRUVFRcVLj/oOqKiYOVQSVPGKQEppdUppJKX06WLf+1JKZ1NKz6aUTqSUHk8p3enHbk4pHZ6kvr6U0mk/90hK6Q9SSlf4sX+QUvrrlNIzKaWhlNI3UkpvLeod8/OeTSkdTin9aUrpuhd7Di4EOedfzzl/ACCl1JtSyimlOS93vyoqKipeSajvgIqKiqlQSVDFKwW/BWwbZ/8jOecrgA7g94E/TSktvsA63+bnbgKuAz7s+/8S+ArQBbwa+HngRHFev5/XDlwP7AG+mlL6gekN6ZWN+uKsqKi4xFHfAZOgvgMqLndUElTxsiOl9G5gCPgfE5XJOY8BnwTmAyunU3/O+UngS8D6lNKVwGuA3805n/HP13LOD41zXs45H845/xvg94B/P0H/tRr3/pTSIV9d/NmU0nUppW/6SuPHivKzUkofTikdTCl9N6X0qZTSoqa6fjKl9PcppadTSr9UnPuRQlv2t/495CuWN1xg3T+dUvp74G+mM48VFRUV34uo74D6DqioGA+VBFW8rEgpLQR+Ffi/pig3B/gA8Cywb5ptLAfeCjwGHAP2A59OKb09pdR1gdX8ObAppbRgkjJbgNXAu4D/AvwScCvwD4AfTSlt9XLv888tGKG7AvhYU103AWuAHwD+TUrp6nHa+0f+3ZFzviLn/MgF1r0VuBq4bZKxVFRUVFwSqO+A+g6oqBgPlQRVvNz4NeD3c86HJjh+fUppCBgA3gO8I+d8/ALr/ryf+xDwIPDrOeeMvRz6gP8XeCql9LcppdVT1NUPJMwsb8Kx5JxHcs5/DZwEPpNz/q6vQn4VuNbL/Tjw/+WcD+ScnwX+FfDuJtOEX8k5n845PwE8AWy8wDFfSN0fyTmfzDmfvsA6KyoqKr4XUd8B9R1QUTEhqj1oxcuGlNI12CrZtZMU+3rO+aYX2MTbc873Ne/MOR8GPuR9WA58AvgUcMMkdS0FMma2NxGOFL9Pj7N9hf/uAQ4Wxw5i/8VyRXKg+H2qOHcqXEjdExHOioqKiksJ9R1Q3wEVFROiaoIqXk7cDPQCf59SGgB+AfjfUko7XqoOuAbqt4D1UxR9B7Aj53xyBprtB1YU298HPE/jC/NCkF9g3eOdV1FRUXHZob4DKiouX1QSVPFy4hPAa4Fr/PNx4K94Ee2UU0qvSin9SkpplTuQXgn8FPD1ccqmlNLSlNIvY/5I/3qGuvEZ4J+nlF6TLGTrrwP/Pef8/DTrOQqM0RgoYqbqrqioqLjkUN8BFRUVQjWHq3jZkHM+han5AUgpPQuM5JyPvojNnsG0T/cBV2KBFu4Hfq4o0+N9ScBx4GHg5pzzeS/JF4hPYiYLfwu0Al9uav+CkHM+lVL6t8DXUkotwO0zVXdFRUXFJYr6DqioqAAgmY9gRUVFRUVFRUVFRUXF5YFqDldRUVFRUVFRUVFRcVmhkqCKioqKioqKioqKissKlQRVVFRUVFRUVFRUVFxWqCSooqKioqKioqKiouKyQo0ONw2klHJljRXCtf/wH/LYN77xcnfjRcVkY7wcxj8djMHTOefOi6nj9ttvz08//fSEx7/xjW98Oed8+8W0UfHSIKW2DB0vdzcqKipekXjqot4Xq1LKp6Yo8xTU98UUqCRoGpgFzJ/B+p7NmStSmsEaX3mYhSUx+F7EVNdnzze+MaP3wysRk41Rxy6H+3gyLAYGgZONWdpfEJ5++ijbtz864fGUWq682DYqXip0AD/zcneioqLiFYmPXNT74hRTP10+YiHgKyZBJUEvEIuw5AEXg8tBcByPAElonEl0Mf1U21Phcrg+M4HLfZ5m+l625O4VFRUVFRXjY6YX5S9XVOuuaaLFv0WA2qd5/rIZ7MtMYfFL3N7MC40zT4BWzFA938t/sKn6flF2XxeBtpep3ckwc9d5DBiZ5FNRUVFRcblDJGiyT8XU+F6W0V4WjDZtDwMrp3H+Yf9eNM4x7WsZ59hMYCKyMxUpaSZu815g++ONeSJ0TaPsqmn2QwRnsnFctF2TYzxNWM8M1f1iYyozxqMXUMeLQVgms4N+sf470PiwbG5n5kw+M6YJmuhTUVFRUVFRMROoJGgGcGCSYxuL36XWaDxTumH/biZaMD1SMBFeqAbmcNP2cy+wnqXTKFtqdsYjTyWB2Y/dyCuxedo8Rd0iOM3jKDUbExGV6Qj1JXlcVXz3++/pCOwXSrSnSwhfLIhoTuW4KVwsWRLBH++/c4N/vxDyWf7vxoh7pGxnZolXJUEVFRUVFZOjaoLGR0rp+1JKX0gpfTKl9ItTla8kaJpoB9ZPcnwy07LhSY7BxKvJa5jc3OvFvIhl3ZOZP12Ilme3f08k8G6cYH8zYWyjUQhdhM3dAWyetk9Qz1TzVGo2+icocwoTqpvJRnPdPTSSR12//YwvSDejWbCejGiX12WycjOFCyHkk2nSxiMNp3jhGkaYnOA/4t/lNW2boB/NaP7f6R4pifZk13H6yFRzuIqKioqKyTBTJCil1JFSujultCel9K2U0g1Nx1tTSv8zpfRESul/pZR+pTh2e0ppb0pp/4UQjin68cmU0ndTSrua9k+3je8H/irn/FPAuqkKVxI0TQwDuyY5fpbGSX1ikrKdTLzC3+KfdcDeYn8zyZpHkKfJCFgzSSl9Xia7CUpiJgFwPDJ0oT5SLTRqB1YR/Z5sroT1fv4YNvYWzhcNyz6UfR3jfAF+BVNrCBZjRBT/HgTm+vY84FrOJ7D9BKlTP9VeZ7G9kvGv23iC9Zpx9kEjeVM/bhivIHYfTHaNLoSITMf/ary2Xihp6GFiTVd5f+venjVB+2D30FT9mOx/MRHRvnhk7Cky0efyQ0rp5pTSV1NKH08p3fxy96eioqLi5cYMaoJ+E7g357wWE1u+1XT8OeBNOeeNwDXA7Sml61NKs4HfAu7ARNX3pJTOIx0ppVenlNqb9o33Kv9D4PamchO2kVLakFK6p+nzauAx4N0ppb8B7p9q8JUETQOzJzkm4XopIaBPhnmY8Fqu3JeC3Kh/djcdbxaDZNI1j1gN78JWukuNValNaadxpX6M6Zn0SOiWRqckFuNpu1YUZUdpFEz3Y/2eiAyqrPq3q9j/HBaEVnOw0etRH+YBJ71/GzGyMR6BOwrc4sfUz1nYP67F+yci2uO/n/Tt57B/HJxPNJ8o+qlr04ld0xWYQL+cibUY65r6W5Jh/XE1PzK9U/8fYXwcx+ZkIoxn6jjRvTHeEkvzk214nPPbGP/BM5WZZRt2v4yH48Rc6d7uJu6FFqbWVq4i+joLaJ2g3Hik9WK0WI24+MAIE62oNZUZd3XtFbqyl4FnsUvSbJ1bUVFRUTE+rkwpbS8+HywPppQWAv8I+H2AnPOZnPNQWSYbnvVNrc9n4PXA/pzzgZzzGeCzwA+N04etwF+klFq9zX8M/NfmQjnnv+V8cWjCNnLOO3POdzZ9vgu8H/jlnPObgB+caoIqCZoGzhJCZqlJWU+sjou0LCWERE1yKSgtGaf+ZrOvHkKLsM6PTxSWuxQgj2DSwkQSkARDCdAyL2vWkkxFjKTR0djLm2kVIZgfpFH700yUFnG+GVcXRmjWeT9Hsfno8XrPAncCZ4pznvB6ejBzpVaMuI5h12UQmxONax6wwOt/CCND6udqb2cdcJeXXUn8Q3UduopxH8fIVLuPf56PdQt2v6zBNAgbvex+YBuN12FRUe8AMOS/b/VxrfRx432TQH7Yj5cC+niRCLfQqLWaTFescY0yvgnjbs4nBCIpJUkrSe9iTJQfG+dciPE3P5hmERSgNEXTPQJwrOmc0vxtlPHNKksMernF3j/dC/pfTGbG+EL95MbHRfsE/SFNK2olJlpdewWv7H0153wH8C+BX6GioqLiMkfigjRBT+ecNxefTzRVsxITff4gpfRYSun3UkoLzmsrpdkppceB7wJfyTk/iom5h4pihxnH9Tvn/GfAvcBnU0o/DvwU8KMXOMwLaqMJ9wI/n1L6ONA3VQOVBE0TEoxKTcq+ccodwITE0lxNgtIiTEArNSQUxxZjguOIn7OaEPDai3J4/eNdxGEahepmCeVaLzOP0C41mzlJ+L3QENrlP2c/YTJWQhqqHhrDjV/rfVF/W7E53OnnyLSs39s5hRGgDkywl6lYDzZXp7zeYUyI3eTHRai2YHM7hGkMtE917MPm4wngC172Lm9fWisJyx3EHD3o4zpAXO9HgQ2+f72XHyJM+TZ726eKOVzr7Ugj2OdtH8CeWLf6vBws5nQY6CXM+w4DN/ncCsM0kpIRGrVNzeaDggT/8tweGjVc64vjY9h9OUyj/kIECBqXfBb7eEVUVtOItcT9WZqiDWD/sxYvIzT7lzVramRWOQu759qKfqpf7b5fGqF52P+olYlNEy8eF68JmmBFrcREq2uvyJW9nLNumWeYSaVbRUVFxfcoZsgcbg4mHv12zvlazFDkPO18zvlszvkabG319Sml9RgPO6/oeI3knP8D9gL7beCuQrM0FS64jaKtXTnnd+acfzbn/AtTNVBJ0DQhYbd8E5erwC0EMVlWHGvDlj1nYUaVW7xsT9O5xzGpYZgQvnYTAqC0KBIWnyOEymWYILkKE1pbCBO+ZkLyWPG77H+zyVAv40tT4+XR0c0kYldqd7SvHRPm+4t9Pd6frRhBgBDWTxGaLbU7gI3xr7Hx7Sjq6idMzvA6d2Gk5iav550Yuer0No5iQnMZnW/M2xGBuAMjQ6X/Tatvt2NzdKufN4oRq1IT86SP7RRGgDQna73/OzENzxB2DR7EhH0llp3rv5dhJO9BH9M87L4a8rnZRqPm5gChnVmMLamU2rMBggTfxMRhr0WCVHYljRqRo9g8L/I+tvlctBELB9IKlSRSGKTxv7DXy7Zg87rb21tGIxFT3aXpaAvn+5c9h11vXZMDGDkew/5LpwgSjJcd8bq04HEYm8t5vJghCqaMDjepecMFYqLVtVfkyl5K6YdTSr8D/DfgYxfYTkVFRcUlixkiQYeBw67ZAbibWDM+D24q9wCm4T+MWfQLy5ggplRK6Y3Y2uPngF++sK6d698FtfFCccmToJTSmpTS48XnRErpn6WUPpJSerLY/9YLqU/+K81v7TJE72pMuBr0/T2YkHWSEK5PEqv6FOeWOMb5mhiRr5Wc70dzHBPO9mPahW7vQxchYJbkbRFBgKSVaXbwl+9Lp5dXOQmGZd9EzMYLi3zKy64jhNkF3jfd0bMJzUgZSGA9NheaxwWYOeF6Pz5KkL1VGHFbgwnL+7zvg8Rc/wX2L2/zTxd2PVr8t4jgAj9vDfAl7HqVxHWg6Pd6QiPY7sdkoiYtz0N+/AlvX9o6CeF/g/3bj2PXqY24xiew++q4j/05H/dSTPjv9Xl8zufqOsKnSIS1GyNAIgTlGNd7/9b7+G/y49fSqPU45f064H1qxmH/6B4oA0C0+ZhFwkSu52H3w0Pe9iLvx01+3n1N9XcVY2pp+i7J2SwsQMRm/30UmyeNY6woB+ZBeav/HiJM6JoDZxz29l6cpK1TRocbxXjzr0xg3nAhmGh17ZW6svfnOeefyTm/K+f8wAW2U1FRUVExCXLOA8ChlJJe8z9Aoys6KaXOlFKH/56PvSb3YGuuq1NKr0kpzQXeja0V03T+tcDvYhr/9wOLU0ofvcAuXlAbF4NLngTlnPfmnK9xVd4/xOSfz/nh/6xjOecvTlXXLEwoPOCf0idDzuadhNZmBBP0+glH6y2YIHgQE0p7m9ooBc7nvLPdmNC30ffNw8jJAUzo18q4TL/AtAijmFDY6n0Q6WnDhM7Sr2W0qEPjwMssxgTIERqJmnxkSqfzyQTDsxgB6MQEyWGvTwEIdmMCZysm8MupXsSuw4+LsOwiCJW0JnMxYXqxz1kHNvdyel+GEZCHfHsUIwJLMRKzjiBUBwhtAERgBZGZ93gbi70vOn4Su66LfcyP+v7NBKl8FBPChwl/n9U+n+3ej14f1x0+X8d8nk/6eDqxJfVTGOlajvkkvRV7QokA6iMsI67XUex+2uV1HsSuucZ42NsozSlFcDRPG32OS5+yWf4pTSRHCM2e5uoGwndLZTZh98LDxf51GClah90LIuHSeMp07YD3px0ji6cwrVKvl38Iu2bthFarw+dkGUa4ZDKp/7bIrtCF3S8XmgNpephSE3Q85/zBnPNfXkQjE62uXRIrexUVFRWXOmYwOtzPAX+cUvomZqj06wAppS+mlHqAq4D7/fg2zCfonpzz88CHgC9jEeX+NOf8v8apvw34kZzzt920+ScZJ4tGSukzWEynNSmlwymln55GGy8YlzwJasIPAN/OOU+WxmRCZMxsS2YzfQQpeA4Tro5iAq2E6VVEHpt+P6eFCKUtsxqRH5mQSWOzAhN6D2IEQkRmA+F4P+ztbKTRzO0AQbgO+e9lmPB2mNCEdBMr4MII4aMjorPavyVQH8BIYbliXgqG7YQg2YYJxCsxIrCiqe4eIoDCMGGq1o4JybcQZk4rfU7WEOGi5I+yG5v7QW9vN2GGpmtwCLuGHZiAfIi4Lvd7X7d6vwe9X9d6+aM+hzdhxOEsZsrW5X1Z5G2JOC3x3w/5fI36vL7F+z/q+/X7qI/vMc73UZlLEIZW75fuP+UfGsKE9iVeTwtGpLb6tZD5ZL+PYwURWED3UhnQQ8EiFMij1Iqc8nEf8DqPFPM2VrQjsqYIburzUcLsU2aQvRj56fVxDhHEd5AIFCFo3ga9Pz3ehvp+EiOfMkFUhEWZRi7zc47SaHIqM0SNZXExtiOEVlEP0JlLmDqlT9CilNInUkpvu4hGJlpduyRW9l5MuIPwYymle17uvlRUVFy+mCkSlHN+3K0KXpdzfnvO+Rnf/9acc3/O+Zs552v9+Pqc868W534x5/z9OefX5pz/7QT1fy3nvLPYHs05/+445d6Tc74q59ySc16Wc1bEuinbuBhcbiTo3cBniu0PpZS+6aFcXzXeCSmlD8r+XnlmJJxKYJfp0EFMGH8CE5pWY0LgcUz4GiZIwgiwkBDORjEiI/OsBZiAutLrXUz4DL3D63kOE8iW+fnHvJxMilYSwvZWTOgr/X86/NOJ2deUOIsRreNE6GkJ3Sd8nLNoXMLtx1b2t3g/hglBUtqC7cCNvr8DCzbQiRGxLYT2BYKgjfp4DxIE7DmM9EgDt8vLrsNIxl6MnNzi/TiJCeKzMZLwKEG++r3uJT7nczEhVxoyCf7tPpfLMVKzE3it92U5toRxyOdqr8+hfFkgAim0Yv5MZ71vhzAfn3bMX0n3zxnsuu30dnd7P3t8vOrXep/3R/24iNper3fYz32I0Byuxu6xgwTxPurt9XmdrYRwL21IP43ayiOE9nAFRmDUJ/kGiTBIo3gTQY7bvY49xMNozOdGWlRdn93eVhmNUL5Dqn8U0+ZIy9nqc7Acu7+OE1pImSwexO7FMhiDNHLCWYy8z/N2ZC9wI0ayZi5h6sVrgsZbUfP9X0wp9Uy0unaprOy9yPinnJ9Ho6KiouIlxSxiIXuiT8XUSDlPao59ycBXHfuBf5BzPpJS6gKexqSOXwOu8gyzE6IlpbwQM4UZIJyp5VHWjglXazDhTN/joRMTCGcRvgk3YYKqfGIOYALfCkzC2Ap81cuv8PL3EULhPOB6TOi7BSMTj3gf+2gkbQOYEHyUIDIiBC0EOdrt5+8gTM8OYyRrBCMMyqUjLPaPyJ+E2tkYGenEhNNWjLSIkHT4mNdjS8PyZdrv/d7s/V3sZft9HNdghGEE06DchRGLxzBTsp1eRt7Y0j4MYNfokI+p09vb6XM9SpjwLcDI33W+b9Tblymc+voYRoIOYMRkNyaAK2hAu7c1C7jNy2mudvvxWzEyscXH1OHb3URACZmZ9WD+SjcQuYHmed17MZK9nPDJGsLI3iHifhUJUujpnQRZ/nHgj4sxQdzX6/37NkyiFRHo8bkdw7zl/5TQrMzyedb99RB2Ty338ZdJTFdixF6E5g6CLJb3fGtRZjN2nz3p8/wWjHCu8PZFKnX9Fvm562gMrNBMalSu/K2gD8s453P2jZzzZi4CmzevzNu3/9qEx1N6735MYfmXF2kSVzFNpJSWAX8E/Fvg/8w53zl5+Z4MP/OS9K2iouJ7DR+5qPfFxpSm9OFYNgPvpEsdl5Mm6A5gR875CEDO+YiH/RvDTDteP1UFY1g0r0WEkCQCpNw0EMSnmQCtJHK9aHV8HeGfIaFM4Z2PYAKxhPcHvQ/yB/ljwsRMiTcf9GP3ez0SXrVifwMmTHdjAuZmTKjs8j7dRZhsSShUmOrm5KtL/NzlNK6aKzDEeh/TEEFw1mGCvYII/BHhlzPidd2DEbVNfs4dhMAujc0p7+9SIvGsCFmZL6gf07g96O0MEZHBhnyMSwnzvFkY0TmFXVsR3aMYkRrAyIZ8UDRXCv28kbiejxBarM2YZk1mXxuw69pG+Nxs8XKfI3yipAlZignaGwmtXysRRU9+RCswn6AFGFmTOWEn4YcjsjeEkcdriZDpZwlTulU+bz0YqVjk5fb6/IksSEu0hjAz6/Q6PufjUvAFCD+dAUyrecT7uxa75qW55RK/Jpv9Wm0itKnXEtrKHuze3oHZWy3EfLbU14M+1nv8t/yB5HNUJiEu80hBIwGimB+ZvZaBIC4eL4lPUMULw38B/m/Ojx9TUVFR8ZIiAfPnTP6pmBqX0zS9h8IULqV0Vc75Kd98BxPnFj2HdiL0rhz4tTpemoVJwH6OEBS3Ek7xZXjdoWL7ACbwncAEKzlqa7VbwvRa4NMYQdqGCWUdmHC3ysvN8z4eonEF/1HM30JR2h71uo94vzW+YUJLpShuu7z9BZjwLv+jcuydmICuSHinMMF4FJtkCZtvxLRT13tfj/g8nMVMwg55vfJ92UT4QPV5HcoFM5cgh2d9TldiAvIOr3c9JshKQO8H3kSEjd7oczGMEZCHfMz7MMK40uuRz06/z+N9RI6aM4SvlaK6Lfe5mE1oy6SqVrS5UW9PxPQOQst1BNNmyMytxcfQRvgA3UTkvOnFSOspwnRtyNtf5/MxSETVO4Rdz27g60Q0OYX+lr+OIs89RoQV13i2E9Hx+gnzuEU+rzJZPOLbqm8Ddi1X+lh1f63wsQx5f4b9nO1EdLmN2HXXIkSL1z9GaHX6fP5lproP+0+0eX2txGKGQrBD+Bb1+3kKejGI3WNzvX6RI2kTTzITGGOK1KuLUkqfoGqCXlKklO4Evptz/kZK6eZJyn0Q8LDlzQkHKioqKmYGs2bB/Kmypl1wfu3LF5eFJiil1Aa8GfjzYvd/SCnt9IgXtwD/fKp6nsdWm+ULIw3NRmxVWjaYRzCtwQpMkNaK+n5MUJIf0DrCUb0LEy5nY4L0rf67ExOwlX/mOCbk3kgI7GsIArWOEFhFgOQzMhsTkmdh4ZjHMDIirZQExhVEJDs5jUsQ3EEkqJSzPZgQqqAJEkQHvI6DRE4dmXcpWWgf4SejUNcPef1P0Bh57iCRZ0baJhGTNV5eK/KP+fhHCOf5Rb5PCWkfJoJHfIEws1JY8zFCyyUTPhEpCA2FiNdhIhiB5mV3UXaE0Jw94m2twwjeVswvRr4qh4iEqSJQctgf9jpkyjjb+yCthyLpfdDr6vH2/9K/pU1ZQUTK68P8m/Z6W6MEAZEGqp0gNbof1/tnpY9lOZEjazZ2r4rkL/b+3u91fBW7n5Q76iaMqGzHrm8rtnDQQuRPGsTu/VaMAMl8cAFB4Hb7dw8R3W8XEaih1ds4SARZkCZTobflb7XLx9ZORIbUQ1P3Wh+NCxsXj6oJegXiDcBdKaU+LMHrm1JKn24ulHP+hLKzV6v8ioqKFwuzEsxvnfxTMTUuCxKUcz6Vc16Scz5e7PuJnPMGj3hxV6EVmhBjhCZgCyYEvgUTFB/DhM/FhH/IQUww3kBElOvGBKq7MI2PVtyPEALytYQTuKJpyX9G/hYPEqvlX8KERq2AryOEUAmyrX5sFhEe+CgRlvpaTPBWXhjlORogNC6K1NXr45BWQg7pnV6vwkL3eF0iEArs0O37l9IYeGAFJmRuxgTdFV7miPd7g/dnFBNiV2FkYsT7dhATrhVK+xCmJevHBNYOr7ff+7fa52DUxy3TqC8QpmMyXxvABPT1mGjTh/maHAJ+2NvVtVyHETLlATrq5TQvCt8tX5JBQiOje2m5l2/1sR31upZ6n454n/TpxIjUn3r7GzGiexumudjg41XIcJFW5eSRiZ1CYff4+A76uI8SUdeWEwEChrF75QvYvXSWuC8GsfBh+70NaSS3EMlIZfa3AiNjS7wPD2MLCQqXfsqvT5e3I1+qEb8Wu72f8pXS9RbpEflbgxGbFUU5CH8sefdvJ6LnjXh/9/pYh/xabPK5XkJEz7t4TBkdruJlQM75X3nEol4swM7f5Jzf+zJ3q6Ki4nLFLOxFPNmnYkpcFiRoJjGKCXXSPkiTIO2BzHLkJ7EK84t4lIhatsnLLPQyg9hqtvx3HiOSNe4mVrZ3Y+ZXCwl/FOUGkinXfi+3kDAl6yVMl5Sr5Rpv74z3fS8h6O0nVtI3YMLxCkw8O+x1HCRyqgwSZkaLfXwj2Ir/Xj93GNNsKAiCSJ7Mtc5gQq5iAg5aAAAgAElEQVTmd4H3W+QNTHOgsNfrMPK3ERPKpfESqWjDBNNHMQ0LXn+fj38tkZtHIadF9q7167MI02QMEBqFHkxAXktE5duG+RHh7T2CERLdD/Jj6vRzDhDaH5l4dXv/NxI5jaRZO4CpKpd7/6VhbPXzdmAk7AmCpB3w8tK0fJmIRHe/z/sCH/tqP38lkcz3uPfjnd5XXd/HfDwKCQ9GfFb5vm5MozTXj4mUrfaxKSiDtGpnCaLYRuSFArvO8h9bSUQzbCeSlSrZrvyO+gjNXT8R3GIMu5by0yuj+L3Dx6/Fg5X+reAL0vr2+Pwq0IQWFRSlZ2YwpU/QTITIrqh4kXApWNjPYfrjuBTGXVFx+aGSoGlgFiYgbiWEf4gcJhLUIByMJPhqoiVEn8EEuS7MVO0+jEC0Y4KWVtmFfUV9SpC53b/lpH/Q+6DIcHIwfxAjMj1EslQJyRIsb8SEupu8LEXdC71emXjt9TG1+O8ewm+jAyMFN2K+LSKDo5hp008Tzvw9BPGZTeTv6QIex4TXeRhBPEAER+jGNAX9mOB6iAj8IO3LOm9vpfd/mfelF7t+irgnn6xDwF9gxGedz90jGLnp8fpHMeFeAR8Gi3MVAECatvuIqHJ3Eclyj3sf92GEaZaP84wfm4sRheU0Bh046nN0kHDcX0Fo6kaJqHED2D252+tUkIgnfBybMHKi+2sUI8UyhRQBkpblJGE+JtxA+KEpnDXYvbPH+6hQ2rsJTeC3vb+P+LVRTqSFPtfdPoYx7D7ubapjNkaS5ZOnoAQymzvl5y3yMot9Lpd5/bf6R4E6wP4f3dg1F5Hq9Ho0353el12E5mqR17OORp+ii0NmCk1QNYd7mZFzfmCqyHDfexhPiG/e17zdPs6x+QSJaKeRUMwBXl1st/t2WV97cR5N52t/O5Hy+NVNZVb4vlc3bQuv9n065w1N2+2Yvr1sbwWN4yn7qONLm+pQ/8o+6NgmbBlN/W8uT3Fc56wt5k/H1xb9XFHUVW6XfWwep9qb0/RRu6/m/DmfUxwr+0jTb4rzy2PNBHNt8Xs88vlCCOllgkSE2Z3oUzEl6t01DYjI7MAEOa1eS/PxECY4yf9kkEhwuZyIgFaamJ30Y4f8/BZMAOwmzNgkrCp0chmKu8fbG8VW22cRvikPY8LqcSLP0DAm0Cppaav36xgm0CkCXivh6C0/n05COO/z7xYi8eZsIi+SkpRuwojSSiJE91Gfg3WEz8kaL3M/RiY2EMTuCd+nkNYdhBZuHyZ0L/N67yC0SZ2EieJRTAh+mBDcO4lQ5HidJ7Goe8qzBCakr/K6+ryuecXYhXYf+1LCsf4J7Nq2+Dyf9Lndhd0D6/zYo0REty2E9ktCvHIdXUtExhMRkKlYv9fRjwWckCZwhbcnsz8ld12HkbVFXrfM75SvSWHDRbBknqnEomd8zL0YcRvArmWnj7vdr4cIn/JUfQkzeZSWS8lZHyeI1QqMqCnYxSrvz26ft300igzXYUT0FkzrNdfHdCN2/x31edyG/Y8U6OAGglR90fuyy/t52K/NSm9XPkcQGkkF0ehmpiBNUEXFS41SHNA/ZA52P5akpEwl3I4RH2XW0lLZad+3uKjvSd/fnMpRgv18wrD0VNP5S7B/pM47DbyuqOM0kdZZy3iLfb+SNoA9yWT0u9+PQxCf+YQdgXDKz1GCiGVF2X1efr7vfz22rHLK65SOWu2cbmrzdFHvfBqzla32fUuBbxZ9UB1Lvcw+76/qPVb0X33VG0yxVct5WuLtlOeXaPN9msv5xX7N2xLvx2nsHtE1Hiy2dT2E096nkkCXx8rn4KuB79J4j84nllQhJCWVucSfozKHq2hASun7gI9hKXD+Luf8G5OVryRoGsgEoZGQKs3MYsw/aBcmyB3175OEgCShSX49Mp2TwLkOe1TJSf8dmMC4xbfvwQTAvZjGppPQQCzGBFppIyDIUaefL63Cet9WUtAHvS0lEh30vrQTzufq62ZM0L/Jz5UJlsyyRv3cYxgBOupjlq+Pwki3eXuKeHfAf7fQGDp6Nqa5eRyL5nYfRlak7TmIhYTu9zoGMaFZvhzSQCz3sezy8+UndJDIe1OGND9OaFHasEf1Mj9vhW+f8b7v8HbuI/yyZAo3SogLIhfyQ+kn8ifNJoIdfIkIVvGjXvfDxfwswUjMKZ/LIYzYtmHPxLcSOYG2+7lriYSrm3wuRF4VqGI58UpXQAbljer1cc/2MewmiMlRwlyzHSMe0g4t93EMEz5lIojqi0wNTxD+YSu9v6f8+IMYMVnn7S3x3xt8vr5I+Pts8HFswu6hoz5P/cQ9eRwjQ4rup8AJw4TW8yRG4g75sR1ETiFFm9vnc7MGI5cXD/kETYgaHa7iRUApMLZzvsAJQSTAhF/FO20WXssy2t6PPTFOF+eUJEfG1GUMzdf5eaq3JEkiB2WGuie9jlXFdtmnVQQR03gGgZuL7f1FnSpfEq+SbOjc/QQZ2EkjyRMZ1PZSL7+l6bgydKh91TfofdhSbAslQRTJxMvuB2Qx+62iXaEkXOV8lCjJ5DGCdA5iT/6lwANFHzQ+4XXEuGWorjq+SSPxEtSnw8Q1nwg6VpKfc2bD42DOJMe+B5GYERLkwV6UIeP58fIKpZQ6gN/DXn0Z+Kmc8yMppduB38REg9+binBM0Y9PAorCub7YP902vh/4q5zz76SUPjVVu5UETRObMDFlDBOAtQqs9ZV27L5ciAmDnyP8e4RO7BF/BCMTili2GxPQbvBynyIShN6PkYGzhID2kJdTFDaFDO6iMQTwGULrI82UVtKlPRGBkpbpUewVoJV+CbWDGFnYjf0b5Ch+lFjRV2CCA0T44zZvc4zw2TjqfR3EVtYVfUzaJOXv2Yv5mcgZfreP4wBBAhYTkciGiISfbT5X/ZjQ+wSNZEdC9Xq/DseJdbk1hE+PzOc2+3jOeP2D2PWXuZt8rNq8b9uLth6lMeeM5lQ5eoYwTdMGb2cEM9G7zudL5GmE0BJK+/QOIqz5MUJz9M8wArHH52wVdk/cSYRD7/AxKCy5othJy9mBxZbfjN2TWwjjjTsxX60Ob1M+cO/xur/s8ybboTEiYIbGcAQzk5NP2o1EyGmNe4PPpTRBu71/u7w+BbGY7d9rsWvXjt1jG4lojvoPlYFNHvE+byMWAfoI3ydFmtvo87aMxoAhEyVFnj6m1AQdzzl/cMaaq7iMUa6YNwuIWr2H88mGhFcJ5vuKMqXwf5pGzYaID9g/cFmxrX+5DL9fh721SnKwoSi/jyA7ggjQwqZ9Txa/lxLLFa8n3moA/9Pb0BjU/v8s6pNGRePp4nztxoaiTEkK1Ifbi+0W4GtFH0TuVhXbg0V9r/ffV2NPqJ1evjxHxK3Pt0WqthZ9FOHTdnl9N3gdN/v2A/67JL13+DlbivNex/mkVHOzGnurHi6Ol6RLc76P8VHei2X90CjGthdtNj9HLyECNPO4Jef89CTHfxO4N+f8zpTSXKAtpTQb+C0s8vJhYFtK6Qs5593liSmlVwOnc87Dxb5VOeeSlQP8IabB+VRRbsI2UkobgH/XVMdPYcY7v5RSehfw36YaeCVB08QI9uiQGY3yx8j8R9tHiEetElQq0tcaTNhaiwlku4hcMMN+vnK57CVMs7YR2oLV2CPtGJEcdSXh03I/9kiUSZu0EiMYYevGBLu5vn8zYd4lk6hRIsJWGSGry8cnoXyJl5XGaC4moG4nTOnmEQr4UR+HTP2krRKZaSHIyQE/Lgd4WTKPYqRG5n+jhOndGp/LTsIscRDTsEmbo1V/RcpTPiAlc+3w69KCaWP2E6aEbRgxVLhkmatt8Hal5VIgBWmPDmKERYK5fGye8DqW+HmL/XvMxyRzrBEiBPoAQXRbMOKxprhup4gIbQr7PeJjPOttKjHvvuJ6bMXu2zG/ju1EUICdhDnYCEZcD/m5Jwhfqlv8Wsr08RaMhJ3CyKau0Q4fc5sfU1jsEW9L5pIKqrCduC9W+rmbieASm7xvJ7HX/43+W/eq8iL1+nw86PVIE/kZjKwNed9ERBUEZcTruMWv40Gfl+Yn+cVBPkEVFS8lSgGx2WRN2yWZkHZA2200rtwvI0ygIGKYliv7S4vjp7FlolKohhCqX489FfQvn+/bt/r2Cd8nnTLQ3gvDO2g0f1uFPanx8Swt+iRyd7Vv9/m3yoMRLO/TnKvh+W8RxEVt9sU2C2kkf12EIbnaKM4/N8/NxErHNQaFbdkAc3rh+R3E3DzpZUrCsBPzf4Ige5p7EbtyHkSEwAjQYNNxmn6X90rZ79KscFlRTvWdLo41k7Fm8j3Hyyk7nMzrStJzuqn8JUx8EhciwV+ZUirXYj+Rc/7EtJpJaSHwj4D3AeSczwBnUko3APtzzge83GexgLC7m6rYCvyTlNJbc84jKaV/jK3bvrUslHP+25RSb9O5r5+ojZzzTmJ9tezvLwC/7PXdDfzBZOOrJGgaaMUEKOWKaSN8z5RQVGRAJnOKCqYgAoswAfc5TPCSKZv8OpYTjtjyO5B2o4UIO6xEm0owedQ/W/1b+0Rk2jHhWUlcz2KCo6Jx7cAEwlbsFdJK5KrZi62SKxiAHPcPEeTloG/fggmey4CfL/qwkBAol2CPZAV/UJ6bVkKw3+1tDBDkQiZuMp/aQxhULMdCQi/HNGSLCJM/+RztxQiTAgmIGGgVv8P7to1IUrrfj78J09opH88O7PWr9gcwgrHd29W1nut9VZJYafn6/Vo94XOiZKijGIGVJmIxpqV4C3bvSTxWUIken++tRMTAU35NFPShFOYVREKGICIVCokut13laBIhxa+V/I7afQ6UT0k+ZHuJ0Owi73u9jgOEj5ZCWEsDNoiRsXVe/iex67vdx3SSSFx6g5fp8L7o2u7xazAXu2/7fV7XAXd7X0XYRgnt2V5M29aO3Zcd2P/yLPYanu1zdMrPbffxrvJ9Is4zYw5XfYIqXgq0N20PM75vBoTAKlOm0ucEzLRpqR8/jT1lVUZLBFtoNI/T0pQE8bJ+CCJSkiTFVVX5rZwjPCwk7C1KTdCmYv8qmLOw+Hv1wquAZ3xzTm/j0K/ote+nnLC0A8OjRn4Anu/jHCG8xcvcfwKu7m2MZPRsC1zhGclGgGdaCiVcb0FifLztvdGH4SNEeJgSIgCD9lD7zqZiLq4m5glgPrzqDfBMn22+6lZ45gjnrk37G2B4MbR3FW0OFuP8ltf5NZ+nN8DzJwjzQ6Iv52kPSzPBVQSBUTzN0iSv1BI1Q1rDbzbtH89crjSPu4SJ0IWZwz09nnlbEzLw1ymlDPzOOCRpJfYK/IOU0kbgG8A/xS7uoaLcYc5fxSDn/GcppdcAn00p/RmmrXnzlD03XFAbTbgX+EhK6ceIlYwJUUnQNPAc9gxbhQlO0gDJ8X4Fpoe7gciDopX6ft+3EROy12PC38OYkN+OCV99mGC1yM85iQlh8uNYRzjGr8EEc71KOrHV7R/FnMpv8v71YnfRAKF9kqnQoB+7k8ZIWJ/DBO9TmLAoE7P13l8Jjk9irxwJmEOYEK9xj2Gvw1mEtkTjO+DlenwedH67j/kMIcy2+Vg2ev0bMRO5Qf8+5udJm6Dr8xxBSqSRO0kETmgjyM1B7+cR4McxsisyeZKIPncQI6IKrnDWt5/ASOBs4H/384axNdBR7P54xOvsJczjlMNGArncUE/5Ne4lzMT2YWT7CR9rP2GuOAT8d2x5Rf47hzDioEAIIoTyZZNPzDrv1xN+zU5iT59hjFQMYCLNjYTpmjRT8ts5QYRvP+PXt4MIVy0yuNP7qBDrivC3GstNJCItbcxRH/cG7D7VYsAB7B0wSpDAQ8DXsXtpqc9rG6GB1X15EPuvdGBP+Me9n4pWqEWC7QSRlMZSIfGVfHcxExtxTB8Zu2srKl5MlKQH/136oUAQlmE/Vur+9xFO96Xvx7FiPzRqOJq/N9CoESnbhPN8iK4GvuXnt3e5rCttxUJod3KxFntgfccPtXsbc1rsnNf4/u/g8rEf18qe+GEr5lotXAEMD3IuxbLIyhzMJni192OoOEcJ1q7x7S8BjEKnt/mUT8NO1+K006jQmNPVqDB5fhRe1WJE6toWEzjAyZzI3wl4TVeIjs93wTOjRs7AucZiuME1Q48csXaGnTi9qit4xDlI04YToDJIwmIbNztoDIRxmjAlXOX7RHqa/YFUj8j1aexeUnk9YctgF6UJIQQJu4wCI8xMBLg35Jz73WztKymlPTnnvy2Oz8FepT+Xc340pfSbwC9yPiMFe4GdvzPn/+BanN8GXptzfvYC+5YutI2irV1Ydo8LQiVB04AEzdKU6k7s8b0aE54VTnkzJnwpEtZmTBCUudsu7FUh864+7C98EyagLSK0OC1+/A6M3KwnIpwtwbQmm4koZPLvOUtE0lKy0d1YAs0+TOCdhb2mFK0MQtvwHCZ8DxEJYs9ifirrMGf0tRiBuYlw2pd5GIRm4cve/kPFnMm3aoRY4xvBHm/dmGAq34693r8xH780WJ3Y+0fhye8jXsESJeXsvgl7rGplfw0RcW47Rly0sr8UE/7l26Tw3a1ej8zRRjCBfQ2h7VmOBbHY7L9XYq9NmVGOEJqqw15uyMe/hch1o8h17dgr5qsYMZM5oRKfnvF+jxFR9FYTuX86fNwPYuRDATBkeidRRNpG3VePY/fKfi8rDZxcYjU3Y4SJ4FGvp5cgEdJEScZQMtkVGKkaIf5Tb/F5P4tFuJNZ3VuJhLWKiLiMiAK3zOtU8JE3YffndT5vGwltk6Le3UQE1JBJJT7GxYRf0m0YYR3ANE8rvHwbdo+91vuoKIMXhyk1QTUwQsUMoPnVXwqlMmuTAHqKiIAG4SRfmlPJLEmR0CT0qoz2i7S83n/32mZ7LwxLk4G7drQEgXnmBLS2cE7Lcy4IWW8M53kieVq3V91XDHEEs+zyU3gA+1PLou5xH/I1xfatREShXmCgq7HOtZgK+vqiDeWKwNvrK+q4GuhoiT4MAV8B3ujb2zHx7evF8WcJi7zWFtt3jR+7dmGsnqrfQwvjXHwuOkQ2ta/FVhMBbumy/tzt5E51S4m3/mqr/6lNcf4NC+GR00EETwPPL4arfPtZXAgoCYrIS7lfjZQESNvzm7YnqkOG5a9uOn6acdhcRRNyzv3+/d2U0uewP2dJgg4Dh3POUuPdjZGgLxKxjyC8Dc5DSumNmOj2OeCXgQ9dYPcOX2gbLxSVBE0D8quRoKeV4A7s7ymH7RaM/HRiAvNsP78PE5gWEMKxNDS7MJLzMI3mYUPE8xxvs5sIf6zXVI/3QRG9BryOuZjQeZbw75ChgsIH3+Pn/7nXt4TIsSKnc4VvfogwgZJgegf2mjxO5MlRjiIFgHij191BmA1tAf7E50GRw2ZhwuRqH8tu78cNmE/PXdhj8x2YQCshewcmkEpIn0Ws7PcTvlqtvv+Hvd6zxT75o/QSkemkQViAkYgxv3Yqv8ivg0wFZcq3ARPKO7D74iQmdEtwPoppj75NhF8u+3CECKJwvLgOrdg7d6337SThnyTN2VnfL4LZSviQKfFnv/dLYdshzDcVgly+SKuJNbkvEmaJtwG/79dRGrY2IqeP3skKw76PiDrXgRGLR7En4xaMwJ7FZIB7vL2z2L3zVcLAYxS7vvpfdfo1UFAN+f6IyPR4n97o12izt78f0ySp3xL1VhP+Uxt8nqVF2+J16T+qwB/NQWVfOGpghIoXG81hrsvV9XK7JD2nieWl1di/WQvBpXZHzveChG8Zi3vZq1pgpDdu9SuB04Wp2vBoECCAOxYaKbnKt7UCrjQzHRipWUuQlG6MhChbdp9/HijOeTfxAOzmfAKjssJQ0WYfYaOs/lyD9XMijGAP/tJa7bri/Cu9XpGqbu+D+tTndegloHH0Ftu/i72kFH9B/ekt+tBBzGWft6+18weIHB3qw7aivHJcXNUb/WoFHlsMT/lS0qtaoH1hwUGkQdNSk0zpSpJcBqX4Eo3EWz5nuvcgwpmLWOue1X19iWuCZiA6XEppATAr5zzsv98C/GpZJuc8kFI6lFJak3PeC/wA9hrcBqx2U7cnsX/Tj43TxrXYXfmDmP710ymlj+acP3wBXbygNi4GlQRNAxIqFVRgmNDUKDBCN5Fs8RgmJG3HyNASIsGlzMYWEQ7pA15OTvjypRjBhMU7MUHuGJHr525MqBNWeJ8kBOo1sgAT3PRsO0S8K+7y4zJPmkUQp3XeVzn3L8eE7QexRTKFTJYfymyMsAwRIYpl/ftlwiTwiNcjk6uzhCWC1oO2YORmAUZsbsWev+0+363eVxFRCIFbpmoiADIn1MKe/JKWY9e1w+dU4cNlwqUodiex91vpRzXsY1CwCpkkHvJ+SSiXTxY+PwswcUI+JrcRwSd6vcwsjHCuJDRMZ4kwz2eL/bOJIAKtPs7NXr/6tLOYu16CZA4TgS56iVfKQuxV00KEc99DowblPm9HpmPtXs8S7/e3seu7yMe2uqhrKUbCV2MLoYPY6/EOH7fCga/AfL02EH5qPcVYZvv+r2L33G3eryGCHIl47i7OuY8IbrLR+6X39S7sPuj0tn8II2Uypzvo587137qWM4MpQ2RXVMwAvkuEOVmCPWFLUjSfoPavo9HgU56herIrQtl8IghBYTYGodlZ7fu+hZlwKRDuLuwPJ0F+e4s9rKUR+Tom/vyub7+ZUMfr+FoaVwxHCHMC/Ng1hFamFRP43+XbD9CY8EsvU9Wn1UdpWFTvzcW+PhqJ0Ao/T+O4BntAq04IR1j1SSthEM6m6lefn9tRlBGpURtvI/IeAPws9vAeKOq4npg7zYnOV19EekawSyti9gCxmvlUMY6rFgYJ6gUeO2H7AJ5a6iZ7Iiy97mMl7eOTNOZTWoY99cvIfLoPS+0SNJpxln5mg1zSRGhmzOG6gM+llMD4wJ/knO8FSCl9EfiAa4p+Dvhjjwx3AHh/zvn5lNKHMNFuNvDJnPP/GqeNNuBHcs7f9np/Eg+yUCKl9Bns33RlSukwFtzg9y+wjReMlPOk5nUVBRanlG/GBD2thj+IPRu+TWhQThFC6iPYs1zxYI5hz5x7vI5R7D0gc6MjNJokP+71KgT1LEJgPIk9hx8nIsaJ9IwRfjgriZxBPZiwLy3IciKhpwjce31c+PEVWALRWwlScIDw4VEeIplTybStC9NizPM2RByPeDs/hAmZw/5bz+xDRZ+13Y09/hb4vOwkAgGoD4d9LuUrcwwTVK8liIjeLwotrTDVZRCAuzECJtNFCdoyK1vgc7ufCBU95H1R9Dy8/q1E7p0lRDQ7vb8HvO7ZPk9KFiuN4Brsnam2l/jY7sLuLYi8PiuJCINKpDoLuxeU2LcdMyOXH05Z7jnv+5D3fVVxvRZh980ar6uXiI4nczhpjkTUerw/uq4K232N13eEiCA3jzCt20TkrnqYIHhagBgggo1oIQJvR5EJF2CvVZnZ3QR8mvC/E2mTLKEcXDI/lMb3n2DJETp8+z1EwtylGInt9nP+AL5xAU6ok2Lz5kV5+/abJjye0hcvuo2KlwYp9WT4mZe7G5NAbxpphRSY4DCR9AHf/83iuFbxJbBuIEzdClOlOV3mwwJ2/FUL4896zl+l6MrwEbjan57SyEgwFxnp9W09OMv1gmswbcZHi31DhLglIqA6Po+9vO/17ZsJrRFExmkJmnpoP1CUB3uY/YQbX989z/r8Xj/2MYI8gD3oHiUIlNT9qvN27/Pnffvtfuxnfftx78c1hAZnpGlcA9hL5EixXRLGXm9D41qBvaD7fFtRXn7Ot+/1ffKxuoNGQgX2QJ1PKAv3Ydf+WpdIHnOP0QZ3nSM0anFW0ejnUwZWKMlQcyQ63aeDTd/nGnqF4iMX9SzfvCTl7bdNXiZ95uLfSZc6qiZoGkiEKZx8gN7l+96EPdd3YMKUfHbeievzsOfCCGEFK+FZWo192LNxHuFPuY4gXQp3PYAJnD2YECYTJplDn8CEyLkYUZHWRRHaVhBmWxJWW71Omb69ichbMxcTIhW2eJRYld9MrJIrCMEBL7eDiBImsnWrn9uHCfmyXtCrcozwGVG/8LFLEJVZXavPla7HWkyI3+X9WOrjfq2P+zgRGU0COIQfTA+mhZDP0HKvSxH3IIJZvA0jANv9eKfPp0iCFg2PEQToqJ+jZK6d3hdpi44B78ful60+vwoRrsSmmo8v+Lm6litpDDQhgjKbyFUkE0cFRugjLDlkTiar+6XY/aiIhU9iBE++bUNFO/jxIz6GN2HveWnN2rDXkjRzA97uk4Sp4iP+DRF04FGCOK/0+jsIc0Npz5TwtpNYbJjn5ZVAdgdhEroNs0Bp87IyR1znba/E7gMFx1jh10/mryJq8geTJnNmUENkV7zYUA6gcsUcQtuzzH/f4dunMYlfhszN+XlEgJQfx6OTPY+ZRQE832JR2MqV6zfTaKo1UGiOpHF5n2+X5ETl+zCSAEYavg58ltCarPV9OvcBH4a0T3sIEzq8vtuL8z9Po0ZFq1bv9u3Hib/qfLdL0ktTgc5kHSi5/TcwAiNy925sjVsERe2pjfVNY/9djJx0F/uHfB7uLcodLOpci83XvcV2iQcxDw2N5cPAjxTjbqWRgPb5GEpt1DPYbaNz2jG/o3MhM91UTQEhAJ7qIpYMRzGiM7+xfEPi2tM0aoJ0/5ZBE0pNkPzUXslEqOLlRiVB04Aip3Vjmp/XYv/xU/69EBPy9xPC227iWdFNRLBSbp//g8g6342Z9WwiEkZCo89CCybw78B8ck5iwu4Q4ZNyEiNne/2YzMM6vA4FHZDvxBEid9FtmHZmDZGQdAHhD9GBPV+fJGIXvsv7/WZMCFZuHIVHHvM6tnr7nd73x33/BsKn5IzP1VZMEF3nc6P8RT3eP5l6rSHCGGu+NhHERiHH24lobfi86Hr2ez1lIAoR1CHsXSP/oFFsYe+Mz6N8c4vwk80AACAASURBVEaw+0FarDEinHQL4Q8ziAnVD2L3y3rfVp6bUz43XybyNckkUOaNs31eN2DvozU+VxLgDxGC+wBmRtlORBeUVmW19/0sRnIVoEAaIuWp0r3z09i118LjEmItecjreAi7F8CuZzcR8U8ap+PYfdLtcyazyz7gg0TwjN2ELxFEdLatPpaSxJSmgcd8LnVPXUcQ9wEiV5PMAXf7WLf5nI753OwmCJhyE3Vj//VhwsS0DJV/8aghsiteCjRH5iqd0Fcx/qp8SX6afYgWw2ta4DurMFs3L1veylcTQvPzJ+ChheYDA6Hd6PXtB7AH7QO+/WHswdBsJvZZ374GexiX/jl9hDaHou67/bubIFEQD/zuovweGoMebMZsaVX+ZuxFJoJxe1Mf/sjrUx29/lualI8X/cbb6yDIoUwQ+nz7XxTHRJj6aPR1upl48KqOPmwOweZRfQcjZDuJ7Nkaw9qm8wVp6fRABTO3eOyEBWqAEDLk0j7SZcESnpJ6Sm+zQlPYkAx3MY25i2Tqtpq4d0WIynu3JE7zuaSfpTPgE1RhMknFBeIYtsCzEzMpknC4ERNc12OEQqvgMsFScAStgRzEBKh1mFbhIez5c8brud/Pf8K/d/l5e7yOVj+3jQhhrDDAyq8j8x75s4x6GYXRlhZiOxFuYykm9Mr3p49QRo8QoYPn+X6t8EtQ7PMyB4lnn1KuDfj8PY4Rq30+PyJM0p5AkEr5fpzFXql9Pl96bIrULccejTLhVrADmYtt97kdInIhKS9TO43vVSU/XeDXZb2Pb4XPlyLDjRHQOE543QoHLc0CRAQ69f1GQvPRjV2PUz5HOwm/nbVEGO5RIrnsOuzd1UIE+TlC+DFBOPRLQ3KL7+/F7o9Z3kYPdq+NEpEGRwkN5QChUZKG8rj3RUlW9fo6g5HhNxGkszSVfMTbk0miiKoswO/zOTuI3deH/FrgdX3V50jzuxRbeJDf1yL/FkFuISLAKbjEDYRWdQjT1m7xednn412EXeNdRGh0mYEq1PtRH8dCPPLtjEA+QRN9LDpcSultM9ZkxSUK5UlphrRATxKJOZXIcj7hnyGUpm8Qwqmv5Le32PFD+O9VQIv9wVdhD9ErCdOtEeA9ToCu90+377/XP28n/F96sYdPX1G+9M2BUC8PeFslUXjAP3f6eWv98wCN0eRWeBsfJ8hJd/HpwgjUA8W5ny3q7PNttTkHS3gm0iMTvgeKPsh0T8RC87PVP3/o4/+sf/YU5XTO+7zu24mQmrcWdX2eyDa93ev5ABG29nbsga65HfC50Dg/j2mK3u0frfxJA3W99+P9C20O9vv8X4OFGFeY8WXAVV32aW8xHyHdg+0Laczv9CT2JNc9uZgI0NEcGluJVvVbuMQjw8knaLJPxZS4bHyCUkp9hOXK8znnzSmlxVhqlV7s7/ujOednJqpjYUr5h7HnkMzUlnmlpfZH5mDthDB1lLgnzxB+Kyf9e7Wf24aZOini2iHs+aXV9FFMID1JmMmNEr4qO70d+Sed9HoU2KAU3hZ7vYpM94RPziYvs5sQZlsIX5EnMUFXEckWEOZRGqOCGwwQROBg8Vsr6PIZGvS2FxK+TAu87TOY8NxFaHaGCU3EAJEPRhHl1mHP5T1eT6efq9w8+LzIhwuv9yiRi+hawmQQwsxO7ZRRyGQWBxEUowMjlQp3LXKmR/hJgjxIYydtzVEiXDY+10PEvXKIeMQrSpnyR7Vg76lZRbkRTCMiE7sbiYAI87xfy7Fr1OXndPqYlRdLJpQ9PrZR7F032+dMC5aDRKjxtqJP0oIt8HG0E35jfd7GAPZ+vs/rvM/LSKslEttO/K/6sD+wIhO2Y6TkDi8jzc0gRoAU3lp+dpqfXoxYytROixxnizLXEGaNo0RupVHgyzPiE7Qgb9/ebK8SSGlHtfH+HsErzyeoJETziSUu6fUlQA7SmO9nK42r8k2kqN1zzLyqq0g8ij1wRFQU2abPt0V6tL2WcIIFE8yvKY73Yn/O1uL8eUQehJHiWxZWb8YeYKpTdalPt2Gamtt9+3EatTI6533+++P+vc2/3+b9+kMiFObNXo/SOcq5Vsf/EHuo6C+u9kqTuw7CJ6iP8OHBfw9gxEP9HKJRi1ZqkcDmYy+hjfo68AuEOV0HtuInyIFS9fVhK0qCEvYpYzUEOSsF7z3EXL2RRrM+RbbRS+x5D6JwLtCCtIlyHniS0ETq3tM9eawoU2qFyjxXr0RcpE9QV8rb3zN5mfSb1SdoKlxu5nC35JzL9Ge/CPyPnPNvpJR+0bf/5UQnjxFmwMppc5DQKPQRz7QVhM+CggV8hUh4Ka3QUUzoGiZyotzp5x3DhDY5sivEtQR9+Y0opO9sr1/agTZi9XuMMNvajQmTEkTXE6ZkryVW+ddhz/BuTOiT0Ljc+7aNiK4mrcYgkcdoDRG8QMlkZcY2RPiiHMKeu9IaiKlu8zF1+TjO+twdxwID7CJ8o056XwZ8Xlr9/GHvfwtBMKQVmEv4CA0RobGlQVGks+OYOLDc25lLhF9WHp4RQq3aR+RKGvE5kD8KxXzKfHGICL6wnghioIW853wOryPIaSuhVerz77le11tplAUUDKOL0Fwqgaq0MSNE4IlDRKjtVYSmrlyobCXIxY3e/52EFrALk1E6Me3dEiKp8EN+DsQrrpvIW7SNyJWk8OJnsftcwTikldlAhGrXXKzz+qWJ2ujt3ErclwcIM0uRyhOYKNhP+EEp2MQbMbPEv/GxywRxJfZfu+DMbFOiRoereLEg06BXN+1v9q1QjiCRpAdt3xxPrvn8t4CrzbwNPNJbl1VfRhTrpjGymh76EBoLCeZD2ANG5gDvxR5SWrEC+wNrCOuxiCWKIfIh4J/57x/xhd1Pe55FEYp32+8lu8wZ/9gHlhoBknC+FhP+VecQtvp2W3F8gJCz30uYmGmc/wWTIH6nqONm4D/69ptp1GB9HutDaU7XR5iq3VvUDTZHN9OY30imIiKgrTSa7X0WU/13+LyMJGjNcLfPz0ZsPvXYuYeYf4p29LAewh6QzxXnyDxRD2L1+V8Ux3VP4H3TCx+AhfDUCc4Rl9dc7YEYCrI9p9fvPV0A2U4IJalvOvdSxMwlS72scbmRoGb8EPG4+SNM+TshCcqYkLgE004cI/xiZhEmPsp1I1+TfURO5YcIX4l9XtceQsBdiT0bjmHP3N0YEfoM9qwSEeomSMwhTCB+iIhqtgkTJkeJ6F5jXl4ESCv+fV5eTv1zfSzKI7MPe+aVbSzB3hXy02j3sh2Eg/5cIsfNEJGHRT5R272N5V5OfWzx8T1I5IRp9XpvIgTYuYSPVFvRrvx3On3OuwnNhvyrpFW5FVvY6iVcew/53Gjxa4Ffhy6vQxoWPc8VGW2M0K4oip20e1qLWkr4sLR4n9u8LycwEqqoZfKDGvU5b/H+n8QE/Uf92Bux99ZdhJXCbEyjeAtB+mSmJy2Ngj48TEQ7lJmkCM5qItLhIcKi5XHC3HM55sO0hcijdNbn4QimTdxG+BzdRmgyIQhkH0G+ewm/MhHEPoKwKtT3SSy/1cpi3mQJsJ3QkO4jslToHpbZYQt27z1HyGLHfPtRn5M/IcLGS6u7xvu4hZmkLdUnqGKm0BCKq9iW03kpJD5JZJ1rTlQJ8PritpxvZKejOPyMhyS5wrd7aUwSKhMqaURkGlZqdrR6qOMjRBLRu/3cm1yQ35OsrAT1j3ldzwIfcuH+7RgBuNnL3Ao8Dsfe68Ly1zHS8wE/fr2X+Uvf/gkfg7Q5X8Fe1HqYf4DQ6ojYrAV+cRRuaYlx9NGY7rH0txnCyJzW6nsx4qO51QO31CRJWyLypvr+nZbFBi3Kngjm3dg8DaXow8dSIwG9jyA7fYT5HthK2HbgvT73m5OdM4948L2LxgjpylOg6ztAOF2CzeENxPXbDNy/EOa4SZxWZc/ZYZzw+28/lssTIrR7iTK3kO7xV6omqOKVgMuJBGXgr1NKGfidnPMngK6c81MAOeenUkrNS2SklD6I+WtzBbZgcg8mtK/HnqMd2N/sNoysXEuYTR0k8stovU2r/6sxAXUxtsIs64FRTMCX2VkfJkjKAbub0CaDCXUbgR/FBLrjmOA2DxM6zwJ/7f09gAl8ysdzhtC+6J2kEMiKAiYh+CRBrlYTzzf5bEBoN67zcj3AfwZ+idBijXk/REoUVW4vYcq1w+uTgLnXt096GWnZf5hIUKvEldsI7dRSwq9IGrP7MAF2jde72sssJCKttRBhxg8QhEVR71Z6X0R05HgvIiZzwzLq3SkiIMMKLzvic9rr8yMCJtO0Tr9Gg0TEul5Cm3fcx7vK90n7oTbuJ8htp7e3FLs3WgizLmmt+r3f8lmTf9uNRKLcbsI/6zbCv0tjltZrL0E2riGI4wAR0VCLB63Yvb6TMJU8gJG4Uz4H+JysoNGEcDlG5j7tfd5LEJV1Xt9qYhFAGrJeQlPXSgSEkJmjTFaHvG93Y2G792KawQMYWTpIYxaVi0MmbHwqKi4GzWS6jLylkMRgd/NhGs3dSvOj+djToi+OP0UI468CWlsikADYn/ztRdN7aDTZ6iV8gMA0IF8vyrfS6N5xjXfnoybIr/jkHg4OrXW/EuyhfjPhZwS2YvY4Idx/GnsAfdiF+V9IZnah1azNNDrzP4CRKpmKPe/9er9vf54IGy1swwJEyFETJ0Q7m8p91r/VtsjELx8x88L3+bYIUalJegqL3X8v4bTZhyWgBfiYP+EUAOKjmBZM8/ksjcEXbiUSxYLN4yHgQ/4cumeezcV6J1FPY9fqeuLFvIfGAIIDmJbs+eK4SCXYdSutfkUiz4VUb4lyAM8sBO6DOW+D57/mO+XLpvt0P3Yfl+T+EiZANTDCjOByIkFvyDn3O9H5Skppz5RnAE6WPgFwRUp5PxGVaxgTV7T6LJMvhaLe5dtfJcIGH8V8FZSzR1oALTAp+tdyTKj9TSw9rvIIjRA+JdsxoU752ESM+ojEmmOYEHwLJqxt8WMHMSGyk/BjGiFCAktzIzPpBT5WhV1eiT1ylhGarBHCR2qAIBcfIhZ8pNXZij2je70t+XN0YK9fLQIOEYRpsfdvC6EVkg+niKj8oRS6WHmZjvp8HMIEellZyOxQ/T5EJLBtJcweZfp2kEgKKi3YgF+3BYTZ3nbsnapkpTIv6/cy+4r52e19ljkYvm8U0w5BaLikKZFjfyfx3layV2kz+n17AXZ/HCMW4vZ6Px7FCDQEwV/ubQ0S2g/5NT1EkOsfIsh9K/E/2FdcrwH/PURoYxRmWr42MpkcIYjlOp8TkerXYvfKjmKexvz7JHYvarGUYt73EmaManuD90WaNs2Fgh/oP6gAIcewReAVxPWSX90SIiT+ucXLi0LVBFW8WJBwKGdz2TcprPCx4vjrCbOiVdgTzzUoc1oi3CPEyoYc64aKbwnWtxEPUwiVdemPcyvxJzqMvcikIbkX+GiGd5ogfvBP1powrnDX67EXygBGbMAeVtcTREMriL/gwvwejBxIErjPP5KpR7CXzFd8+yoa8+18GvjBUSOAmotOIiAAwBVOiBRtXH5Nz/p2M4ma02VETq5kV2EP9uuKPrVjpOQQ9oC6hvATAnuItwJ/5ts/QfgzQZjw+bX4/h/7Jn/3718Xt8OtmHbqHpew12MvcZGW+zBzuY6oA2iMYnczNv99xfFu4lrcTmiadG47sMzJz7d8/zP6sQrTRt5HaIIWYm+ER31bWqDmZKqXKKo53IzgsiFBnvWWnPN3U0qfw/5JR1JKV7kW6CosjfaEKPP3SAOgsMdHMWFTPhESXrf6vp1EkIAHsf/7w368NDmT/8p/xTQ7j2PPkfsxIWyNt7mDyGAv5/Ae7N2hyHT7sOeawj+v8n7IJG4nYQBxo9ehSGLt2HNXhOiAn/8gESZ7J/Y/lPCpxJZbsPfRjcRjSCv+EkzPYiTn20TumXZCYO7BnNulzdGqv3x6NhC+OaPe926MJMkHp8XrGSBMDTd7nxSHpjQRUzjwYex9LTMyiIAMg4TZnoR2fL9MHFuJyHby01HwiqVE3Bv5k/Vi71kFcxjz83qw91w/JmwrUe1y/30IE8h/yq/FFoKQzfK6lns/h72dYYKkKAiCEp5ux+4HmXoqNPRswpdGUQ7lw4b39Tnf/0fY+3LAx9hPuF2v8fOuI/JEKfJaK3YtZbaoJKtbiNxTi31MJ4k0GO3Yu3kP9p94o1+H5di9r//CKLHA20IEnRrA7kf51CkSYIvXtx/7H84u2m4jQsovx8zxFJHv4lF9gipeLJSaoKXE01/7yrxB+wlTpFEipbSjFL5GMAH8L7EcNg8QQQ2k3bkX+AhBOFqxF4r4/ge8vGxkj2OaiI+ZIH7F7z3NmZG5nBkpIohJCwLMvf0EZzr8mAjI1zFCJOFeGhNpqLoxbc45Z3xg+AQMeT1rafQZehp4qg9ae237vdicfGsU9rW4FuM0PNDUx6tik2EieALAsM9tmSPpO6Nwg8/1LswERaYPcuK9HfhPBGlsLfoprZv8ceSXpGuxEwsHdbNt/t2nXmd9VJ9ugiX/6UmO/UcjvUuuf5JjH1vKkre7L9WQk+Hu5+DKQhWha47XVZKeB4h8ExBmhCKU99Iojc7B7o12dzwblvfu630ACuwxSKi4TmNv8kuc/AhVEzQjuCxIUEppATAr5zzsv98C/CrmNvGTWAqznwT+YrJ6jmPCsxJE3oKRk3bs7ynhSItiIk0nsP/7Fsx3ohcTNDdhz7ibCJ8MaUXeiQnkH/A2bsGeJwpdrGhgKzGBdQnhT6OcOLO9zW3Y80naDYW6lnDe5XUu8I9yuOwhFpuW+xiVFHYxtrh3Hya87yNM9gb92AhGGKRx6PA5lFAqMyiZKSmvzhBhDidN1Saf96U+1jVe9iSxki+SJF8oacZOYmSzj/AxOkFo4/BzFNVtnY9RIgA0xp9pIczv9nm/ZCYobYjy2KiOh/23+nCU0BopoIXCdUsYF8lYRfglyadKUe2kTVpJED98TnoxYqMEt31eXpoORVJ7DLtX30gkA5ZWcBS7Pouw66qATAq7voAgTWB/okHsfnnE+9tBmGnK7O4oYSK3gEaf2QWES4Hu0w5vV+HC5Xe0hyCEP+z9+BR2vUeIVBorsXu8DVug3Ozn7fT+KziECPlZghB/gch5NUz878Hu0zHvr54LF4+qCSqRUpoF/Br2+N2ec/6jl7lLlwBEdKAxMhyEc4eW8hZyzg9IeJZQLOll8SMEIZIQLMKhVf9FxXY3ocmRyZmTqys+/DTP3nslb/91sxvbz2s50zaPv+N1ANz8Y/fywG6pkeDMRxeaBuPThPnbx4nQ1WAvwyMEGRiiURDvBu5YGA/ehwjfJTBp6VW9MQfPYw+D1haPkd/iIcKBYddgDF8NfA2ekvZiJ3xuA5YYFOANwHz4js/11Qvh+pYgC8NHYLgrbN+fwYSGbcRjYi0RDhNs/ktTxDudTN5sm3P/8QnObAiidtVbv8M6dvM/hn7w3LiPPb70HEc+tmcp/8/P/xL/+dQ/tx0dMLf7BGf2LOSKtxvjfPbzVzbmWNJ11XrOnTTmeZL2Sujwc0X2VmPaoHPWbCKJIvDl72/6tmwHymSpw5zvG1dxKSOl9H2Yl+DTwN/lnH9jsvKXBQnC/kGfSymBjflPcs73ppS2AX+aUvpp4O+xx/iEyNhroQUTAB/EhC1puI9iK9SKygZGEhScYAUhIG/GnmW3YAKcAgMswFbWl2MC1l7C6VvO4xJiO4ls97MIP5EDhL/FEUwI3un9u47wA3kj9hzaTazyixjJT0Jmbrv92AAROW0e9qqUT9IIkUNnMeEjokSrEu4HsGf8cq9LYYzX+vcC75tMoxTmeXmxT4SxjDonJ/jVXs9mTHDuJsJvH8VuBpljSXBd4h9pgU75tZTp2RihyZEZ1wLC36SDIGrdhImZQoqvJgJDKE+ONG4yMfz/2Tv3+KrKK+9/dzAXAwkxISYcSDlAIJASCBcLxBso9YLWUWvVKjq9WKejfdtqO2Pbcexl7Lx12lftzGhbi714q7ZWnGpRWxQqNkjlEg0TuQQ4NJAEITHkcEmCZL9/rLXO2iflZmEqQ3k+n3xO9jn78uxnP/t51u9Zv/VbW0gXXFiDxJfl6/eV+hyG4Ep3DUifqNJ23YcY+0ZZtHs0epp53Lbod416nkw9fhMu4W52iiXqNS9dL56jKY70/7i2TzES33a2tn8eAhSzkP69I9Iuu3BvzAS9ruUqGqf30Ig8XwP+eXiMUFLbohbvb5uQFQ7zTBmAXKr/x7X+Rl8bhvfL3fqX1Lpa22zRe0gifb4v2JmOL2AfeTlyT1AQBD9CzI63wjAcd4B9LkDYtv2AuTZRHOj7o1mPP+Maf4Mv+/aNhD5RDrtE6XDgigF9VbSsqc3Y3AvkO4UricRqmE35McSjksApWecjL2FCt+/shoezPdytAHnJzRAeh69YADsTgxhwwXaenn+1fDEmhJyeFCBZ1DxTVni0DL57Iy2zh8vAYyDmAuSlt2uYgst/Wp1IT1yaQM5p4g7JTli5BU5Rb8TbnQKSDEQNQFZDpgNonMqe01UlT49pQVT1zFXccrIApaRx7t4Ub4cZ+0YlWKmg6KSSdI2K6cCSN+X8Nkw8lxBwZvd9NbKyamDw8WwBRQr2eu7Ml+elbdlSOpyWV4Yz+LPCzWv5xnARQUgobTAn5P7em1JVmFH5PIseugAGwM46zXY7LYRXA1fWS+BiFiB1szgi2y7F61yKGETX6XYd0sfe1hihFLi0eDaQkbkQT8ixDmks2zZwdJyCn6PoCQqCwFIBbgnD8OL9/P454FN61R+GYXivfn8szhejgV+HYfiDIAgeOtR1/ypAUBiGG3C7NPp9G3Du4Z7HVsEnIGNWOR4XNA7pQeWIwb8JMaKyEUPWEi+CAA6LdTAp60zk1d2GxxbGEcN6FO6pMIPVjH6j5fXTOuTgktJPIj2qA5kblkWuVYwb7KuRaa4RmSeKEKOzGDEeO/AYC5Nn3qd17I8Apb14bAg4VfDnuLy01bVQ26hAr1Oq99iJGPMNuJBMVD3NaEo52pZGj+qHx9hswdXg0O/P1u2eyH2bMW/eHFNeM4bFJJzCaLLM6/WZmAenWevWjSczLcTdiSbfbdS0bcB8nB5/MR6DYkIW4N4vA0CdyDPt0DYxz4aBtEKkHxXgtDmr80gc+HUgfe91xPPUgRv8RjXvJV1y3GLHzE4wxTYDy+tJF8nowKl+tiBQhlP6+mlbnaHX24R7WYyqWIgrGpbpbwZyYvq3BBeSsufbpudsQPpku7aXCTpsQp59r9bLBEnievw52jYGpgoiz8QWLrv0eU3Qc76kdTx6XqCjEhP0E8TU2+8EoBPefUiY9WbgtSAIfoU09Z98H4ZhQ5/jTwX2hGGYjHxXHoZhI+nlT+pxoGuHYdgQBEEV8H/7nOMTSLddopPak8CLh9sQJ0q0RFWzTsZpQ+Wkq8UNAf4AeXHZPAnxQKi9ywDkpTGD9l7SaU0g+OoKPL5mbra7c0Fe9kgMSVZ1J3kFSZId4vIYXNjMptoxZE0TMNBTl8+Mcxay6Fnx/oyevYa1jCfrYvNWITzcAphcI4Bk+dzTBQjM0d+Xab0sQekE4EtvihwzOG/YmuGWfHg8XyhwIBLNzyEDs5WWTijIh+EqH96ESIenvBydpAHIsWMVxptn4+R0DFoMrNwq6m4g3pA9OJe3AwFAO3HAEY/7CiXIM0ggdDlQeWxSdLdxd7/GqlmnOW0wB4o+s4VqVsotMVwAzQx5WKNja+gmi3iutMNG4jAOBozZzs4ntVPkBA6EUHpiY4QWuApPcgsegGolB3lOBuwS6MCs4GcPOixa4lTwJVZrwPFI41qnW4Hz6o7DcnRjgj6H9Lb8vj8EQTAOAUAfQMyo54Mg+DUy7R2L88VK4J+CILgKePhQN/5XAYKOVslCjLhWxIhfgefvsWSfjbhi5SXIuGu5V4xC1YwnxDTjPg8x4gr1z+JPLN6oV+vwO0ShqhEZR7biMTTtup2DGHOz9DyWMqBE62Y5fWxl3zwPFj9ThRh/zchwslTPmYHMG+bJ2owrsvXHk1la+oAuZOGqGAFtu/Dh6xU874t5dTqQN7AVzydkcuJG6eqHeznsXkyK3DxEIIqdJvxgyVAtv5J5qEzxboS2W65eewwCjMxYtqSccTzJ5mrc+N6Kq+wV6H0NRPpLE2JQz9Lfz8fpdAnkec7W52UCFyZ+sE7bxEBgf712tl7/HN2nH9InOhBwUKDXLUD6VIe2gXm6TF3NaJQbENBgOYPMK5fEBStMs2cCYgfU6G+v4Iu4ZXofBqpi2nYWR7QPFzQwj0uZtsHQSJ2Temyb3u84pK914WIG1oY7cKaIgfZJek2TZl9H+gJlKU6lr9JrtiJ9IU/b/kltp2W4zZOLvPcWF4e22+8Qe++ocbT27TvYr4OCIIisgfOAirekShiGLwdBED/IOT4ANOriEEEQPI54WxYd4PuGPsefDfx9EASzwzDsCoLgU0gXnH0Y9TjQtRvCMKzHw9pTJQiCzbhA4EEb50Q5UDmJdKWsk/GRcQsuhgDQCCfNctvyHTwXA8hLE8cVzmboZxyncQ1DBgdb6S9BQJS9iBrrMuwaOWBTwxjaFuUz+nJbvYfRNW/QTZb8npPPotoLGDBHLPe188cz/fqFrO0dDUBL7XBGz36DomjeGDO6zdhOkE6Pux346Vh4VtXiZgXpAOaerTC8hJSk3ShkIFqpft+Pl8DKekic7sboOxoflPLeaARqUo95sxDGZnrgP+1qo6vt2aKNZb+fgiv2gJx3FjBvL7SqIt/3gFvw5zAFGbh0kCp6ZAttdw5J1XFV83j3rAGDY820vDSc51ZdLtt3bCROgqS6xLLpYW3D6WxStbkBX9zOsEmrmcpSGq6vlGr3xmirG0LWBQpaW/PleuZVAzFarG2NVxUq+gAAIABJREFU/mbFQJz1l2o8F4JtL1RAmeqYpnBoYN7ig6wP9QVA0eysx0HJ4HA8QYecL4IgGApcBHwTuHU/5xgLvBqG4W7d38zQxRyb88UXga/q+Z4Efryfe0qVEyDoXZQuZGW9P2L45pMuLzwK96AkcAOtHTea4nhMkIGfTGQJ1oDRPr3OPsTwakMM0wpkDlml3zXjwfIWS7INN8KX6TksDsi8KFafUj3G6HNJHOSYh8HibLpwj0clslZoAAy9l3X6ncX87MDnBovNMaBioKZNP4u0fs8g89QZeD6hDjyeaQTyhlncziY9n+WlMa9Kk35nhn8TDnDA8whtw6ni6/S84LLXAxETwQL1LQlqDJEdP0Pv63U91jwZDYixPwGXtI7rs0ngynNxPb8xQWxeaCB9yC7WezPVudNw9T+j1+UgfcQSvpbhOapMebAVF7/YofvvQvpXA2LfFOOSz+ZBMdC/AgfpRmMzcQqL3ynHJbJNBr1I77Mdj+vZptew/t6m58xFQPsIHLBbclmjIRbrvScQm2AbQov7OAJKjNpZpfewFaffmbx5obZnDk4/zUdGdkuCOwJnbYxE2DRGDy3X3/JwKvsRl5BDmfnbj0IG8CGki9ltRh7xgb5Pr2IY/iIIguHA40EQ/AJZffvgEV77YOUp4D+CIDgTePkwr3OiHLDswSlDtm2yNwCFYsxH41v2jHUdhQRi0M6JbJ9N+uqArfwYAKlGBl81xwbfuJGWfx/Ozt681DkmX/57CnRGqWANzcR4uvkyAMbVvMaqhtPo6RJQNH32QnrIou1VoewNrtlIW28RRRltLLl1ppzzM6EkTL1BQU5HIJOneYJuR4IYVXGOjZosZ7r+vqpEErAa2LOSo16aOMDpMji0mGxzOZxc4qp2C6Oy4wB7BCRpFVkch3c6YbhuFwArV8B0jSYtRWhkLboMNc6U6DJdEeYkZOD8Dz3HPyCDVEI2254cIue1fEgLsmFWN4NjzQC0NMe48JynaDpH3E2rVpzG1ElLadYgsFW1Y5hR8zz1t5u2qACjBioFUAHTY7WsrZb4IbmPbijPJqtaQdGd+el5peLAzcCDur0aWYL5mG7/hHRKRwek8yLQ/xsjbduXLXsy6aDnOAJAh18OZ764F/hHIqlr+5RVwDeDIChCBovZyJt8rM4XzwNfC4LgGtL1CfdbToCgd1EykbEdPL6hDRkz1+DrEVnIfGFxHsWIwXwxYmBZ4koTEOggHQjZ+pwF3HcgxvYKXKDAKFZG5TLtHvPMFCNDxRDcU2TFvBmdeo5hiBE3B6cBmTLaE4hhuQEHFRbngd7nOuQtsTw0uxCQV67fG0DbjSe+NApfcaQ+q3Bp8A5knNyn9RmIB/dHAZUZ2bsR43ivbpuhbeIJpkpmKmPmRehCDO6YXm8TTjccqnXcqu07RX9/RX+rAubp98MQIFGAO+ONTlaIJxq1ukXr+gryfE1hzoQ2TKTA5LkzEVvDYmYM1Jq3ZRPSrwyQP4vHXNmzMaAzClewi1K89uLS34W4R2UbLkbRhfe/VtxTtEnrZQByqh63Wz+jbWgKu+bp68SnKMvD06P79ODJe4v0HkyuehSuvPtZ5B0x4G0j/zY8f1Ae/rx/p21j+xfpPVUi76kByedwoGeCJNsQrxuIPWNU1yMuIe52238ZGATBA8AzYRg+82deJTjAlQ/0/Z9+GYb/pqty3wNGhmG4c3/7vYtrH7DoCuQnD/P8J0qqmE1jK+c23Rfisiogb+YiUNEBGcG2+As5eKzn9wHnUEc5sKb4E8cHwM14xulyRE0sIUvXLY8NZ8AN26nKEPL3xtlJymhica9kR32xdRbnxhaQlSOUrDYGUTRmS2r/RU9dkJ6kVMuS2pkMvltjW24dLgOr5hbiChh2/Wo23aVLYasR78nn9eAvzfL7seb6Cc5PH4UHvoKAk8EIJS5P6XDJvTJ4mXJKnkpeb1RAeUqmr5qC2ul7YKNeZPrpkDcJluz1/d+GlORNDvCzFXDSJBd2mKaftiZ+u+5n4ghxhAq3QDaLPrOFttZB3MR9ADwdu4wmyljbLg8rK97J0/Ov5pOz5fdEzXoqWENtR40cX9hGjGYWvXQB08+RG63fXcXOjjzGVcpy0KrHRNO7p049XNVIO1jbxvGcR9bmM/B4q7dJF0+wiSYJPkDuIR0ElSNeoGjsW5RreJzR4gKOmA4XBIHF4CwPgmDG/vYJw/DNIAjuQkRsdyJrvu9w7M4XqxByxmGVEyDoXZQexC9o9LZsxGgy49WoU8NwVbWVemw5Api24nEv9k6bp8MoZFP1WhNw2e0ROHVpF7LI1oULFMTxBJP99bt8BDz04LE1ID3Y5LgbkLG9mD+l1hUhRje40W4GvRmPFkRfp/cTQwCViSdk6HlM/csSf5rXIAOnFZrH4uzI73F8yLOFJFMmy8Q9HaYuZzLb/fU6WxDjtxWXaM7AwYZ5lSxRq0leL0MoX5ZvroL0AIvN+JqTCTeY/PcWPfYFXKXMBCm2abuU43miCvS7qAemGJeAXooA66hXyIQ5puJ9ZyoOIJtwVsSFeFLPSXjOIDORxuh9d+l9bsVBs91bDI97MWBfigMY64cg/WsSLjRgaoNnkE5HrCVdMMG8WRfjfTsD90Q1aF2G6m+rEQEN86SZIuIwfTbtkXYxOmo9TpMz8QSTSS/Q/V/CaY65Wm/rQ5uR/lKm+zfodezdOuJyaE/QjjAMbzzCq2wmPYf9UKQZDvT9nxT1yoxD1gG+ikRkHMm1T5SjXvqufNt0vwd5a8wbdDJwLW7tqyjCSRHDO4d0wFGA4CZw47VVv2/UfWchtCuAuoCiadtpO0M9BdXd7OzIo7ZLDOt4YYIOCqjOkMCVxthIitjO6ELJxtnSG+NnGVezXhFWv8v3ieHeJcDtFu4hK6Ob5TVT2E4RzzVfxOi736B5d4yd03SkW5DNpsoxDnrQOpun52rSvVcW32Q5esYgxBobOH8LfAiYlw/JBBAX79mbkZieaj2fKesZBcNA0FAgXgIFuv/POmF6vijOgYCpyyJtXYCApKjgA3oP9gY+qXX7ZuQ+noZhn1XqYfNwZsQW8jDXAzCVpTSmkCvcUDiXhtmVLNBw6UoaWEMFPV3ZeksrebF9Flee81MaqKSHbKbmLuXF1tnkafDTpdc8ztMrrvb6NULRBUrLs3aZFmmXS5E+ZHTKsdKcLI7c4yAgaZ41Az9DSFeDs0aF414Y4fDocIcqpwOXBEEwG3nL84MgeCQMwznRncIwfBD12wVB8K+4CfS/fr44AYLeZWnE4wYMEFhQeQzpRcsiv01FppZG5HUdgbznlyNB8uvwQHaLmdiCGGjZODVnHQKKxiE9YI2etxqndbXjcSlLcU8EuLLWCmRsMRWyGsRIrcGJnCNww7oIV4tr1+Or8CSbRn+LBsefiRuWI3G6bzPinUrqPpagdSpiOFfgOVssv4vlxNmGe5DApb2N9mRUuVxkVd68FwZOMvE8RZn6/Wta76UIqFuHJ8AeiAMgIt9bKGa0GEiwN3MzIgiRgSy+jdN2O1vvZ5XWvwMBa5bU1O55G57kswLPt2R0MBMwmIA/8354ItAn9BxjEKW0ZpyKb0lBzRNnsTpxXAHNZLj7IX3ExBZ6kb7ZD+mfnVrPClx5bgeuQNKKA1+Tdo/jyXALcG/fPq1vGw6AckmnlJq0ONpuVyE8qTNxMGI5hSxuKAfvI0NwoFWMjKabkZifUlxl1mw+o/Rt078zcGA8Sa85UO/LTYgjLH8ZT9BrwCilKGxBzL9rkNvd3/dpJQiCicAPER75RuCRIAjuDMPw9r77votrH9MlCIIyZB2kFHkVHgjD8Lvvba3eTTmJdJmxUZH/2xFL2Za89gCRuBZ7acxwvxRRFzNPQwHyclgSTYCCUOhnr+hC7lBoS8QYPVsM0zKaqGANT/ReBUAW3VTSQJ6O8LvJZQrLU0b1g603UBebSL2me84jSfPuWGrSmcdlLGmu4crY4yzefRYDCpKsrR3vgAwgAQOWbWfnXAnmH7BsOztfHeQc6eeBixbAZeoRmobnCwAx0i/D9/8JMG+rKLi9E5fvzgB+W+KiET/eCtNLRNENYOfYdG/G2Ey5xm91/5PyZYKIDihxXGXtGcSmb0QeaQJ5g1pxmfFHkHb5ot83F5Bq23NjC2hkJDdzPwC11HAWLzO78NcALGcKZTSlJMi/VHkXWfSkVsZmsggKYQrLU1WsYC0dIwpIRFyGoye9QaJdtnu68mlLxNw934oYQsb/tu9tpfNVZKA187cUcb2nPGNjcSvAEmqcjHNTrERn7Hc4roQSjoI6XBiGXwa+DKCeoC/2BUD626maY/N9iPk6HenJ/+vnixMg6F2WGAKAfoe8glfo/1m4klgFvsq9D6cePYf0nB3Ikz0NGQcsfwm40W5UqRG6vQMxDG1VvUB/z8QFAOr0WiaVHRXbfV1/szgi9D7a9FzNiPF4PrJ6b5Sq+YhhbVQ2kGHFJLFNkjvqKULrlIEMR5Z00+6rDAEeMWQIM2/OUm2vKAgzOeomPV8z7kExWhXaNhavY6kojMJn3rm9uDz4QGReadPnFAU82ZF7tW0TNbLh1HL6TEHGZgNAfUGSARrzyuRpPQ2ALEXmTQv4N0M+CtzM01Ci+1gCVvAcPOa5s7giM+QXI3Ooqa21R+7NzmFy4AP102JoJuD5f3Jx8GRJXJOROlvunqF43E8brnpYiDznVtyjaYqFrdo+/6X3OA2nMJoC4CY9dw7SLy1RbFLbztTsjNpngMnuoxv3kHUgIMawhnl9SvSYVjznVYfuN07b1RQVLWdTAS5PftTKEXqCgiD4GbI+P0hFBb4ahuGDQRDMB24Iw7A5CILPIM7KfsCPwjD8bz12v9/3KbnAR8IwXK/H/C3O5j+cehzONY618g7whTAMVwRBkAcsD4Lgt32VkI7Nsj/Dbzcuga2KWycpdenkfKF1mTKXxZxYJ78XeUkX6fb5uPqIrYR1BWJ8q3GbVSqxIVk6kjZQSZwEAzLEMB9EG80R0vZZvMw3dt/B7FwxzM+NLeAhrqN+m4g3xIvfZOfqQVw36YcAvMyZ0JrNtbHH+PmrfwvAlef8lMU1Z6WuuWn+GHZ+Z1DKw7OzY5DTr9D7u2yWG+aleo9x3U4gQM8m1W1Iu1muCfCVFPMinVSiVC5VoNuD2O9d2rY2YL+jo9HgTDHz7tHj/z7SziDXWvgmzBrr1/zeClg/UYQdAKph9FNvpEBPFj0saa5h1TfEpbVqTsjgEYkUYOmggKVMTbX/ZcxjI3GurBSpl29xG3kkuYV7AQFNz624nOGTEqlqPcR1TGUpa3YLpS6RG09dH1A3e+CewVcD6UPmtHmS9JihGXIfqbbu0HYD78pJkxcytL4UV4ewsof0vm9ACI4bMPQ/VKLzBfBLjQnaC9wchuHbus//+vkiCMOD0uv+x0sQBIWH3oveMAw7Dr3b/2zJD4LQcuDkIoa/qZM1I0ak0azWIAbX3+CG1wT9Phd5t1cihpd5QizJ6STEkGtExogxOFDoRoCTCQPESffUDESMTEucuQQBXo24YWnAJUf3M6pRM2LQGVAwA3Ybnsumn/4fpcMV4Hl4ojQ2S3lQoMeAix2YoISBlH0IcNyrx1TqPRkToR8C8oYgIHMFLmpgMSytOPA0w9hiWIwuN1CPW6btvA2hP5n6npW+YMbohabaNizStkkOHhNiRjlIH2hGvA+jtB5T8T5hqngrEKbFLpymZUqBpkhYj4tZWIxNU6RtDLhZfYuQBcZ+er440pf6R87fg3uZuvCEsnuRPhLDk4bavRfhYg/gnrt1em7T77FnYODBKKGNeA4fq4958tpxlULrf7v0txo8+ew+5NlbjJl5zYx+n4Enby3TNv8ZnqS4VOtbgPS5Vj23iXw04Yl8LTQgT+vwBKkEsMuPVLRgyoQgXDb/wL8HQ2lESDJH4gk6UY6wBEHwX8B/hmH42wPvEwvh7/6CtYqWvsAnut5pK+ZWhuh3amXaypLZsKfgK2/gblwzwscg5JbNOKg4A4hD1hgNjO/IoyjezOiMtXrqAZTwFkt3S4zz1NylxGhmpbo8ymhiJot4SBPH5LGTNooYqQlejRZnss5tDKKut5qqjHouZR4gHo1GyllSKyoEA6q3s3PRIDesxyCrmCYl/TfaLHHdXo288Eafq9N7fkRtppFvwUSlsSV0n2ptm3mqBvflEvg2bqfbSo7VYTPpeWrNfW51SOg+ltvoJ3gyWiuXIqBrkW7HgU+T8iaNO+c1EruHk5eb1J8TLHlgJv984z8B8C/NdzAjtpBqPekaRjOcBDMi6OsZPkSDygYtrz2d62p+SB5J8RABS5lKGX8kqZ3nLUpIkkdbr1AuR2esZcmKmeIhBBGsmKPCFSDtPAeP5LhU28mqYBPWArwrvw3pbvMtONUTZBkuqsJ8rIGerx3RfDGlIgiXfe/g+wTnHvmcdLyXYwEEdSF2zv4CoKz0C8PwfX+hKh2wFAZBeAoCIszAMmMLxNAyWtQ5+l0z7rG0eIJWPFGmzSMmpGDftSJTk8UsXIhTlPohY6N5e7IR49kM1Cl4jiITTChDQMYoPIB9BWLYleJxEkY524vn1dmKGJ2WP8YczkbZq8TV3QwkdSFG50wc4BnVywzWDgQE7tb7sZgeA3Hn44ZwDx53laP7GH3LqIjRhKlmwNtxlt8ohstfv67tbJ6WfThwQNvR8huZYT9Kz7kNT9xpRrcBMQuYN0C4g/RiUtgTcFlxA5DmXTEJ781aZzO8t5EuoW6ALw+3UxbjFLBleu+ztJ5GnbPYH3smXfizLUSWXUbh1Dtbc1umx1ryVBM2sJABm5Is9HofroBobduhfwW4YMMGPEbOKJDmbSrBPTs5yPMzwZAspA9uw5MMNyGeVot4MLpdqZ7vdYTVYvFfUS+QecpK8Oc4Xdtgg957l7aDyZKbqMeuowGCxgfhsmcP/Hsw7MSktr8SBEHnoXYBWsIwHH0UrhVHVOrGhWHY2ee3GwH11A2cLNrFx0ox69FAjwEhyxk0xH9P0Y6QyccAAQgoyMbF5Ex1LI6IHwC0ZovBq3ljhl2zmh6yqVBi8RoqyKKbqSwFIEkeeSTp0dnyGh7jST6cosOtZySzmZ/yXnSTzVI+QKWSuJ9o/BiXlf+M+e2zyVLp5+/nfpplTEkZ5g8+dbO8vPZ+xfUzoZ9RoAeeUNSkH/MQL40BkGkI6PlJ5Fx1+p3R1xZpuy3UbvL7fDH07ffntsJMUztDljfG4g4NA17mnVqNgLcletw04PuIfa9AqWjOFtq+PSR1ymG3rWbT/DFMny0iBj1kMZJG6lT8/zLm8WtmM5U/pI6poZb7kQSpU1lKnESqrbeqOlsbRbTpKFtEGwuZwSDlDmTRQ4I4MeVIrKSaVfNPS4sRy5rRSU9CvY+2lPCCfhpIjIpvrES6sHXbNxNInzWg8wYy6ltsUBvpFtqxVo4QBI0JwmUPHnyf4IwT88WhyrFAh3szDMOJB9shCIKVB/v9L1UsuabFc+QgRlEcj93pQoyo3+FKbkYvGoFTtSxAHNwQteDzM5DV5YR+V47HHplhZ+IFlvE+C6cyQbrBnKP1sQUmU/LKx9W6zEOzD6eAW+hsLjIPrsAFW+K6bzFOw7KknGvwGB0DB114AtR1enxUAtpoVdu0bWwIj+kxFoy/W69l2wZKSvG0FOYNMlnoeiQ2ySiMDQgwiSa4NEW+K7VuCT1nGS4iMAKXHI/jz69d62HeMaNltes1jKoN4gFaicdqjUNAmyVbLdG6bcNBgoGNHKT/WPuat680cr8JZI5cr+eYru2zGvFwlOJxNQW4YIDF0KD3YQDUFn33arvWaFvU4oIO5sE0D9NA/T9X29UU59px2loB8lysz5yBx2QV4DmCxkTO3x/3whot0P43sQmbDqfi8u+m7Nas57kEIU7swr0+pghoFHR7ZhdG6j0V8Rrm6XOrx2mgU3Cb8IjKXyYm6Hgs6/8S80gQBAOAXwKf7wuAADQHxwOyb+y9XWFMK9GpvgiXDgFJxTE28vubkBzrCbLqkJfS4tyzkZUEK6+gAAhYLSAmq7pTAumniaT1ROpoooxFG84H4NwR86nrraZCPUPLmEwV9TyBxAiV0USMlhRoShDnH1b9B7eMk9yIN3E/RWznXgWZt5T/X2I0c13hwwzSLKBz7nqScbe9xkWoa7U6hAWBqKcB3A7jnnqNVSuUb2DS2fa5CAElJmedg08MIIPqXETJxehvpcgk9HzkmFZguBr7F+j35jE7pSRd5W5mn+Pj+merpUlkEv6bEhms5uo1v0OK092WGJKm0pdNDwNmbE8ByJ7eLJY/fTozLn9eL5Egmx4e3CCg58IR81jOZG5RTt6TXMEaKlKAppYamhnMeOqZrW37Mmcynnq6FcTOT08BI+A2jlDi7LvVkbycZYju2Md0u450j9njSH+M0jJT1oy52S4HHiXd7bYHtzKOo3ggONrJUv9qy7EAgqYfepfD2ud/vASI4bUXMdIt18konHpmoMKEEyzWYx9iZFkCxgmIAWr7bMJXsfcir7eJFWxGjEQDXtbvTVHMhAAMbJgC2kDcW5GJCyOMQBZcLtNt8w6g587Vc39Qf48hc0E2MgeYd6gQMTKjcTKbte5GmVuPzJ9Rb0qVfmbqPfVDjNfLEEp1KXC9/m5JWM3jYyDNZKHN49OKe0gszshiOgp0u0TrG1XsizrLZ+KenTE4tdAodP3whK0deE4iA7G78NgYcG/RJMToXhq5NrptiVAn6T10aXvv03btr3VOIn2qB48fG4iLX9gzNFqd0TZ340lId+n/fZX0TAyhFacvrtLzWy4siyUztTYT8kjqtYzGaKBsL9LPB+o+pgJXrPvV4zTGXiQeaBQybdlztNg0k0nv0v00bJlduCCV9aNMfEHhBVxhbxwCsHqQd9e8jx24hPhupL9PQPriPDwRcD98ATkPj72LxugdtdKXm5lejoY63PFYPnyU9jlgCYIgEwFAj4Zh+NSRnOsvW8z4s+neEgBEEovSCYPVKN02VmJUVuqyyIVIB1+tu5rRbjoKpwAXqweoKwsSAVk5PYwuXJPywjy94SpGj6jnwhFCVatjIrMz5qeEDq7lMeaseJLbJn0dgLc4lSrqU4Cminqqxv2B+1RUqojtlP5mBxvPi6d+z6aHeVzGRB1lH7ztWv6x99+4p0OAUlZBkp5B+RSNEbpU2xVDWDXiNPfKlAK3d8MVyt1oBb6Oe4pexUURwBN6duFCCADzEnBZXP9HJpboABEH7tGVjlsyBcgkdfvRTBk47Zo5ek0DRR9EAMGTCPC5ARms50LWXKUePpsPQyV3EsDaB8Yz/caFlCAUvayMbhZffhY3qTDCImZwN7fSOEJQUzODqaWGGmoB8cr9mI9Riyj5xWgmRjNX8URKQS6PJAmGpyhzlzGPx7kqtR2jmcGVG2lpGC73USD1a3lMt5fheY+sdETaAW3napwiOBiX2AZkGWo8TodbB7wV+f04E0Y4UY5Kec9BUBiGXXDA2KBkGIZ7bZ/3uvTonxmN5hFYhwe770O83YsRw8qM20JcyjkT8YqYSIAFV29BDPMnkPH4Cb1OPmII79XfB+KUsyQCrKK0NxNXADckT8NjdGoRI28vLjFsiScNoFTg8SdJZBV8CwIaonlrSpHV8Tm4qMEGPFFlLq5i14oYp/WIt2MEHuMxERnLM5CFtV79M3pbDKcCWvyL0el6EYPUAJLd5zJcbtuos+bNs/YEMQfOxnPixLWuBrIK9DgDYqZytw43/nfp/tbOBpD66z2U6TG/wlXJQMDleUh/MI9Lu9ZjFZ7YcxgulDAGzyFkKoBou5pinCUXjeNS1tsQAGBUTJM6n4p7PjJxz9Ao3PMGnuPIAPU6ZH5vRvqLvQem9JcTaZMO/X2Itkccz/mUo/vs1Xru0v0tf5RRREu1rvm4umFx5D4NxJlC4CS9vsUy98PjjrrwWKQJev8TkHdrA7KgUa7tYwCxUNskiQNekwKPehWPqBxaIvtE2U+xjOJWgiDIJzK/hWHY3nefd1OCIAgQidg3wzC8+8+u6HtSzOizFXJbtjJe0R75Ls2gPNkTeFaTLl9cB/xn6Pl3ZgAd2a4hf0bIzlcH0XZOkgrWcCpb2dQxhiLauIJfAqImVk8V1/AYAPdxM89OmkWRArM4G/kgv01RtGaykFksEAEE4D5u4q3zSjhTNZSv5gm+wR1cz0PM5Qay6GEyy2mrGwKl3YyOraGMJrIu7+a5f79c6j0IUVIzGeaTgWez3VP0LEI1M8+PiUGYp+hJJI7oB7jUZQKYGZfPj+l2Ha6kZ4PPcAWY92wVb5Alph2DDEYzdP9Ferxxcz+KeJOeRSatR4C53TAnm8mFy1nymLqtNsMNzOVfmu+A56Hsxj+ymLMASY7689hHeFLXBG7mfm7lbmZpIqEzWUw2PanEtXkk2UNuKtaqg1N4gfOpo5okeVSwluVMpoI1xNnIcqUgDqItFcPVQCUtLw2naIYAlGRpHi1PDfeuGQcGkJ6PqhXvc9NwSuabiOPyzU7EKinEE/424ryOPcjsYfQ4u9hxIoxwFNThTpRjICbIShAECcSGeht5vAXIsPwW8KkwDJcf+Oi/TOkXBOEQZOrYgBvC5g0oBWU4C+UmKoXchXh21iEGnFHkzPtTgbNXByLGc5ROdCFiXJrEtAWGb0KM0ieQ5Ne7kBVv8xyZ4fcSTjMytS4rzyGr6+ZNMBGDDXpMCZ6zJUvrntDvNK91SiBhrx5nks/mqbJ6WyB/g17LvFYLcYnrMr23LhxEbNB2N5pYlEqXp+cwWWm7b4vvnYcAhL5CB5bA9Q4cNBqwAqdjmdfEknca/c9AUqbWz2hwbYixb/v3IuN5E+6ZWYAAG6PFTdB7P1O3M3B56HIcjBThMTDGjIhm/NiCgIRsZN7swWOStmgdh2gdzJN7ddqdAAAgAElEQVRkz6wK93AZxc7YHL241LV5Hg1YGFBbisTCrcaT9BrYspgty5XUjPeDs5GpK1PP04u8D+bFq0VAUj/kOZZq29Vq/e1d6tJrbdPvLemqeSAttsm8m0NwoZAebS97DyuQ9+J6rUcz8s4s0c9SPc9eBJgpve7IY4LeH4TLHj/w78H4E8IIBytBEPwd8A3E8rHJLQzDcMQRnvcMxFyux311XwnD8IAyFu+tMML+yqn6afFANiIWAuWS2BOk5U5GjFJwz8/H8N9NGx9EwWUZDLhiO7FcoUytrR3PgOrtxHPFG1HCW1zDYzym6rb76MfJ7KYCocOZR+gOvgFITMkCzmWiBuDEaGYwzancNjGa6SY7RfFKksdSpnI3t/IN/hkQClYW3ak4FRNdaEMkslsKh0t8k4KcAXO2s/P5Qa5y87ze+yLdrkYAkuWr/wiuAvSIfleOaPd/M7Idx1eSzJthdLhGZNU0ods5+rtd0+h1BX22x/Q5Zk7kGtsh6+JOigrlvlseG87gazbyQz6FlaWpmxDq2lU8wTImA/Bt/pH7uSlFbavS/FE9ZGkz1PEN/plselIUuTgJljGZmCLpIrZTS02q7R9uvp5hsY3s7JVZuW21Et6tzotJ9SNAJhFz89t+r0b2hwhoN1aq9eelkZ1MLAGOPdBzhDFBVUG4bN7B9wlGnYgJOlR5zz1BkfI8MC8MwxcAgiA4D1nz+DlwP0Te2veoZOMG00BkJsxCFr+G4DE8u5BFomrEsB2HGGfRoG4DIZl4Dp8OXPXN6HJLkBtfgOd6AY/nMOqQCbtbrqKteq7VyEJSMzJEmCz2FlxNayJOsdqi5+6n9XxJ62U0JjNK++MqdvWI0Vmkx4/AqXoWC2WCC8XIODcMMYqTeG4gU8azWJjXcWU1EygoxT0rBoQ69NOowpk4IKvHBSKs2HGXaHuYV8u8DlZGIkZ7pdavRNusLbKfJcgdhRv95qXJQQCI1ceM8S7E8LcYkjycYm/KeHGcomXy2yZkYDqVpUifs3P2QwCQ0QYtFma3trGBW/BYMvMKjdB2srgkA1l5ul2g7duI95VCxF4wOWzLZ2UePLQeE3Q/AxhxredWrYPqKJHQNl+PgMMe/fwbnHZpwiIWD9Yfef/MYxjH+98sbc/VCNgqwmOSipG+arLpdlx/vdf++LtokvMG+DbgixPoOU2x8IjLXyZZ6vFcvgi8PwzD7UfzpGEYvsLBxXuOwXKg6d1QzpDI9h6nZJ2SCW+bPqiWKJ3rdWRmNorWh4ApsDMxiLU5shxzbs2vWdx+Jtm5IlJQxHbu56ZUDEkeSWqpSRnRd3b/E/dk35IyuBdzJhWsTf3+BFdxLgu4pfM/ALgv/0ZqqeFL3AWIp2EKy/RT1kvvar+Nqwqf4OEGMf6HVa5m00NjGHy9ADNWdbsHC9h55yChISzQ+7oTUb0z/nk1MBnxxljJQSZmm5wXIEApmtNzDO7hWIRcz+hzn0YEGExs4fN92to8SGbGJnBQlNDvOoRaZm21vPZ0igrbaGuXZ3HpNY9TRBtfQuKpbmAu87g0JTpxE/eziBmpdntf01vMLpvPWb8XL9wvTv8QBbxNE6JNtZQPcC2P8SRXcB0PA/K8bub+FP2tlhrySKbokJ+MzeXp3kspypCZoaiyTRLZ1gkglQk+hJbA77MU9wQZneFSXClvMNCSIB3MR8uePtvHGRXuhCfoqJRjCQRNCcPw07YRhuFvgiD41zAMbw2C4Jh41JYuwehRxXjyyQZknNqGGFu2YGMxOaZsdRVOtarC5bNNwjgbeZXN0zAOBwymYrUDD5Lfp9c2aesNeJLLesRAi+Or4G2I8TYKl8E22lISj39IIkZ6PHLeWOTcBbjX6mxc9a0YMVxHIeNYHE+WanNJHh4sb3EkoyL/5+BSyv0ix5lHBr1etu5j5xoSObcFsxcjQA48Tuls/f+0yH1k4zFIlp/G/rr00yhv/fFYF5NnzsfjcYwulh/5fW/kPFMj7YueawqyvN8PAdAfx4GNUb6iwhWZiC2SgTz7LlwK2jw2VUiep1I9vk3PZzmqjHbXjMc6dUba29p/B9LHduOA0CTOJyD9rEufoYElE+2II7E5ngFE+kNGpL32aRvk6Pf5+n0lHi9ndE+TvDaZbqN7mpS2AZkexDuaiTzvkci7E9f7r9f/LdbIvDqmiGfAvwDxbi1GFiSuxXMlWdxWJe7RO+JyaGGEE+XgZT3Oh/krLwcy+PYgyxVGhzsd+D3kxWUziQAh3WQMvpoA8sKsBr6jcUB12aL6tTqAagE9u8nlusKHU8H2zSNiZNGd8jYMoi0VcwIwJ/tRfsQn0iSxS1LLI3Bn59c4K/8lGvLFTVpJA59rfIA7y78AwHASFNDB3/b+lGczLgagtrCG7RSlgus3NYxh8vW/p9s8GrGVPHfG5e6sm6P3dXHkPr9EelzKR0n3TtRp+3xfv5uGgCdb1VqE5xsC8aaVgqbckcGyDm/r7yA0PQsA+CTwU8+z1PNIvsQEPUKaAl3L/OG0bBf+YtbFnbTcNZzP3/YtAO596ks8e/mslJJbkjy+meL8wcnsThOliJcl6CGLO08XXsIt3ffQlj0oBZLqqaKJMm7hHtYzEoAK1vAyZ7JW3YNCk1uT8jgV0UZVRj2LmoWuNyy2kZ11gyiapvFZXUMkZmuNxqXdgMRKfUYr+Yi2++OIUQSR+CED8yfrX3RJN5on6CSOKyB0QhjhqJRjCQS1B0FwG9LNQfDC20EQ9ONQocJ/oWLGrMXE/A4xmCz+wSR9LbdKDh7zYEDDJIOXImOnzdZr8JX0OK7gtQqnXY3S4/KQ17xYt0sRo68LB12diFdlA+5lGYF7SHrxPG0diHHeSrohW4gYsq/jsSbg0tPtyDCTh4zHST22EFebi4pUGkgahauLmbRxttZlE0KFswB+8wIlcDDWicdmdOFKcW34fNVP651EPAW5Wq84YtDeode1eJNsHOSZlyQTAQBG5cvH5Z3RNjDaosUwmbx3rh5bhhjnJuRgHrEy4B+Bf9P2WYh45Bbo51YcZO7GAW9T5Phxes5WvZd1oOtw/szHIFZhrt53FfIsM/QcGXq/jTj9ED0feo6ROAAxLpAlvzVAYN44E8DIQfq09fniyP3vwhUIY9pm5k00MQtj4GQjAKUGee6mEGeeMBP2MAn2HMSmyEIU7l7HZeTjCCicpN+V6/67db9xCAC9GPfm2TMuw+Xlu/B4pio99qiG8Rz8ZCfU4Q5evgzUBkGwlIjifRiGn33vqvRelWjsw0mkr5gX9dm3yj1BAO9kplO4hpEuif0K8KquTe5ExBCmdTK5UAzlHrJoZnBKCAFgD7kpQzqLbmI0U0YTIEZygjizeBEQz8JFjS+mgu2+e96NfIsvpbwTvzr9PC4r/xnzVolb5uVxH+CrfJ07M25PeSOu4TFK2MqUSXLNeVzKmSxm7m7R9F7VOoUZG55n0ScukIt0w7l3/JoX//0i2bYJ0rw8qxAwo7unPDpRENOBCEVY21ksi5VXkYEqGiMUUXZLrc4sfFO2fzkW7oSeJgUHZ+BJW7OBj4RAIPVU4BQvTLC2anzqkuMuf41P8cOUxPX1PMwn+FEqHusT2x5jfXE5y7bJjb5c/AHO+vwf+O97BeA8kX01QJpEdhY9dFAgIBOR0X6B81N0xoe4nmZiqZit+cymmyymxxz4xmpayNZXdBFD6Lkz3yktXXiwppUE6R6wHHDgA9K/G0kX/DiZY5cOd6IcC+VYAkHXAF9FnMMg3f8axHa68s89aRAEZcBDyDDRCzwQhuF3gyD4GvApHG8clN8NMqPmIAZRPRJvYPEWlvtmEhJLkIm8w9sQg38kMm5NR1aUL0HmlCF4QL7FDu3S85bj+YEsRgY8T43FvWQi43Mb4mUoQIDBDsTInYQY4hm4h6kMz5Ni91WFq9UZ+DDKUhcev2T3bUZwN+4psuB4yxFjcSCW/LIQlw8fqPXswT0xE3Ej14CdlUzEyM/Uc2cgQ56BxyJcFe13+rsl5ATxfuQhNKm43v9WpGNk6jMyD4CJTphXYHdkuyxyPXDPiLVxfzyHj9HJrA2bI+ePIR6fLQgIWomAgE1IbJDFKVl8zCY9p9HhLPZoN+7BSOJKf2V47FUZ4hFpxr0y5kGzZ2tKfl16rVwcvJrnZwweT1SAgxD73kJT+0fOXYTHdJnUt9H8TOBiFvKeZODxT0YprMDpm92kK+BZwlvzhNkaYIP+FSN2RnFkn+fwOJ7T9NyXaf0tf5aJgthCQxdOgbsEEbiIUhojxKEjK4f2BJ2gwx28/ABx/kZjd/5KS3QF/B3SY4KMxA3we6AQBqtMdsteedlNhjGBvEQmEGBxG1GltIJuehL5JAsHsGrDFK4c8RANVKboUDcwl3qqyFKjdypLGUQbv1Yp5TySLGUqn278CQDN5YNhILx6nrg7PvfhB8TborB2JOuZ98xH+dWHzgPgkqbfsL2siEoa6FBXzbW7H+W3uR/k/t6bUtVMZMSpyhXK3ZK5M+FfYfSP3gBg7TXjefGmizxhJ8hgZoDm+8jE8WPd/rp+/gtoSJMMiosibdVKejzV9xFgZOeM48otAPchQOnj+iy2IyIJ/6W/vwBcCqM/+wZrPzEefhFImyyDwTeqGlzDeAbM2E6eRs22MYhKGlKg5yGuo4ZaylW04LvFN3IVT/BosQglXPubX7Ly3rEpz9C3tn2N1uKBJFQpo4wmBrGdNVSkKHULmMVs5rNAO00zMbLpTj3/ShrYTlEKoFbSwHPzL6foAlVyy8H5y9Zu4DTA1aQDIJCYoLwSSCp/cfAsaBkCqXxHS/lTStzxU8IA3jkmOFLHVgmC4H0IaXI7sDYMw28ddP9jRRjBShAEA8Iw3HkUzzcYGByG4YogCPKA5cg6zJXAzjAMv3PQE0TKKUEQGgX4OcRgWqXbFr9i4gKZyEr4OMR4KkSMqg3Ie7wDAUTdOE2pSfdpR1a947gAQxYCCsqQuWcxYvw3IgbdC7h6lXkbwA3xYsTozNRjevRaeVqXhP4/BE/g2YQYmevw5KbmcSnWulXjwMmktctJT25pBqXJczcjxvBmXBygEBnjMhH6kdHdLP5iQuR+svAUAuYZMq9SDFlUm4RIOVm8x0Ct6wSc9mXxMFW4B80oZyaDHVUCJHJMu9Zvh7YluLfDQEMRPreZcENX5Hf0/D/W30DU1iw1RRUu0rABec67kfk1A5cGt2vkk+6VMSCxSutsogLmEduHgBWT0LZ6DYvcp1E67XmOQgx/oxnm4Z47m/cNMBnN04CqUd6WaNsNwYGJeU/NNjDrNQ/3GmXiXsa9eJ8yEPscnvA1U59FMx4flYU89924Ip55VXO0jUcgU6epBc7Xc/UittFqPObJlB1t0aPjaAgjVAThsh8c+Pdg5olA14OVIAhqwzCsea/rAceKMIKtc0ZXzO1zamS7kJS08NixLn0KLpFp2yCTXsTQL7pgC91d2RTlivG9tr2C2YXzU2IEs3iRQWznUl3jNGllo0/dwFwaKaeMPwIioX0VT6QoXN1k00MWZzWKgXt9+QOczwucqpS5PeRyKm/RRlHK+N9KCUny+ORjjwJw5TU/5efNV8MCtRyHQtGMLbTNUjBYrX8mCDGtW/IemZfmDESVzTxB9yJ8lR8gQOUGxKtzKakcPbQi9Dij0CV0XxOVWKPtaBSvLwJfA8xss3giA2av6L7/GXkeFcB13XCD3NeV839KE++jmcGA5GiawcJUW9/GXaxhdEotro0izucFPqCCAvVU8cEHX2HXHIkiXZQ9M43atoYKvrHtXwG4o/grWoU11FLDZPX0rWU0g2lOJb9dxmQG0ZZ6NtsZxALOZVOzAKui0u10d2Wzs1WXFhOB9Dtr+2nAzcjqYB1u4KQ5d1YgM7MBH9NgNZnsY40Kd2TCCJMmB+Hi2oyD7jMgp/ewrqGMq2XAljAML+7z234dCfrbBcB3kely7qEAxyHq8COEiPFWGIbjIt+/q2sEQTALGBmG4Q+CIHgoDMPrD7b/MeMJCoKgBmGBDgDeFwTBBODvwjC86eBHHryEYdiC6oiEYZgMguBNfAnsXZVuZCyLBrRbsPckZAHHqFsWz7MKT4i5AfeUbCZ91d5oY9Hs9rsQo90Mf+vuFgNUj4sOVOKGdRfu8YkhBtorep6pkXqZlHE/xHA0WeZCPHGpeW1MRrsEAS2mktap1zLppXacMmQ0wFHI8BRHDFjzKE1B5gBb2TfWhXnE0H234TExu7UeJqNseV9Mna5b93tQj+/Vdr8en3fQfUzpzgBONh5gb0pldg4zvA0cmVJeBvKs+um1d+l2N+69MLGMKVoXixtbp9e6UNvoWW1vS4SL7mtqZysRINGO9AuLGULrlotLN3dpPXJwTpApGZpiYX9cFCEP6Vdm15h7tB8Ofvrjfdtob6Nw4QYD/eZ526X/W5xRFgKIirWu+3C5cVM1LImc34BMKwK0jCq4V+tiXsp6Pecw0kGrUUFjOHgrwVXhDGA2IjLlC/Va3cj7UqnXGYa8F6uR985kyXtxj5l5tI64nIgJOtKyMAiCG4FnSKfDtR/4kOO5mNEXXRE3dTgDQwqATlHvwzrERWrB+lfj2vwgMSumygJkzegUta+C7pQaXF5BkjgJnt4g3oTYiIfpISsFflqIcQv38LIa4nkkmcUC3veIGKw1H6mlJTtGo6KJj3z8GX7943NTQfE33Xs/0x6p41dzxBP0AudzE/cz7aU6fnSOKNBNZSmLOZPrrvkhAN1kcWlsHhXXy5LTXY99layMHgcocxAQcr5uL8hOT1zagQy8i3S7AAFAr3TDk9liQtpEVqqLy/EeWJktgzxIjNHzyKolpANLa+s6HGiZm9yWam/QY27HJ8kFCDVRw3yS5LG8fTLxwkTqvj/f8APCt0V04Fenn0c1ddzPzQDMe/KjvHpFdQqwVFFP4yeHMrhbRvYZ3Qupzx7PtY0ib/7H8lP5VfF5XPKb3zDlPHELjmQ9U1nK4+o9qqKejZGbm8ki6qniDXWZ5ZEUpThNrtvWMUQGXaMexkN4NvD2eRoZdFdH2uZZ0kN+AEGfi/T/CLCHvjv+ry9hENCTfShX0GF7wj6HiI/n7+e3d4AvRB0JQRD8Fpmy70OyV20GXguC4FdhGDZEDw6C4FRgTxiGych35WEYRtM0AvwEecMfiuzX70DXCIKgClTtw8snEFPpn4IguApUueMg5ZgBQcA9yPDzK4AwDF8PguCso3mBIAjiiB21FIkG/UwQBNcjw9cXwjB8ez/H3AjcCGLsTEeMr1zEsN+BQNc6XLq5ADGO+iGG1FY86LoIMWKn4rFBpoh2DjL/mBTvJXqNIsQgjCMG3VLEcDWPQAIx6ipw74CJA1TinphWpNcW6vEm6DANlJntsSyZyJxnksYFeszruNxxMU4ry8UN3Ew9nxmHDXpNM6zbEQOyGRmi2vXee3ADOAroirTu5tEyz1kvHsNi92sJbPNwueWBeG7pYty7AB63ZfE2turfgyvBtSLPcz0yQhhlawuu4mY0sqgSYCauuNYfscjiej+r8Zw8o3AP1HPaLs24/PNuHFAaJa8Bz01l4g7Nei4DoCYuYABuAgIEpuE0ShOisMSnRi2fgkub99P7z8Ctyg24cIEB4L14fzb6GHj/3aLPwiikll/Irm0gN1Ova4qGFUi/sxfXVjCM+T0EedZFyLN/BaeAFuhvqyP3shjh2W7Dc28t0fux0XsC8u6dj0is2wJBjp7TqHwJ5D2xPn9UyomYoCMp1+jnlyPfhXg3/SsstgJuBtHJyExj20qEttlvOukyzosQ74WBoiuAuTDgOyLA19OVRVZpJz1d2Sn60+iMtTzce10qJiiPJMuYnPp9PPVk0ZMSP6jqfJNE/tCUalr/3/RSXr2ZNWW6dHU5IqSggfLZdLPrIxlc8ve/ASD5vTzi3Rv573NG8okmoX3dUfYVprKU7/I5ACaygk21YzxD9hRouXV4yqgeN+k1Vj0yXnIFgQym20mfLF6IbH9a2+aGbBcpsBih5y2HUrasYVtbriYd+BQgg64pnl2gvxvwmgF8eCt8VJdsdsKAMdvZmRjkstxxqdP0moUArKecnrp8Zp8j7P77229idOUbVClN7CLmM5L1zED2X3nFWKZ01vH+fFFzWPPVCTBqR2p18LdXnMEHP/wK3//lxwAYSaN4jYrgkm3S/q8WV5NNN8MVGdtzXoQIIRgNco8Slpsoo611ENPPkToseWkmzArhFVOHC2TyNID6GQT0RKkPJyFdOZnQL4YgD9cEP0Bmnb5m7vEFhg5RBgVBsCyy/UAYhg9EdwiCYChwESLsfmvfExzEkTAQaLT8a0EQPI6IuTb0OcXZwN8HQTA7DMOuIAg+hTDQZ/e5zstqo0fLBw50jTAM63EZk+j9fBH4qp7vSZzAut9yLIEgwjBskpx0qXLU4o2DIBiAZPv+fBiGnUEQfA9h84b6+f8QFNm3Tg8ADwAUBkG4DDF4WvGV8GfxWJV65L29AvfkRsURopLLlQhkjSHG6TDE8PqQHteAGOQ5eC6WBQiAMpqPUX5G4Xl9wL0C9biKVSnuVTKgNAo32l9HjL4eZKw3Y7a//v6c1tnyF+1DjEAL+re4Cyv9cS/BXq3PCNyDY/Uyox0cSLbhYg6mItelx+XhKnj2LMx7sxqPrYkCoGE4CDOAYSIO5pEzOl4BYiIYFe9O0oMLsoksMWuxGLA2PFaoTK9rsuPWZgZg7TnkIODKZKrt3E16z5Nwiel9eNyT9aetkXOv1vaxftOkfxZ7ZlQxk87uxhPOTtE6bcPz4WxAjPyhWoehes1MPObGAGgV7g0pidQxR/83SmCmHmdy7VtxqXfrP73IczPAZ1LYJoxggNfaD6Svbwa+gNgUQ/SaBbg4RwkOzPvpuTbhOZQuQfr+a4g9k0DeT6N8WthtL07RHIUrEB5xORETdEQlDMPhh97rr6X0FUaISghPxf3N7cBY3z1BuoxzHM9GDDLhfTGUnDrAuZeLHPaVscdTOXj20Y9zMxZwCYLT53IDNzA3JYSwlRLqqWIybp91k52iWaz85FjiJFL0KYZDXuceVpaLt2rifW/y9s0nk32XALlrt/2S/y4eyfu/up7ZXxePxSU8w1KmMo/LADiLxWTVvEiyRvhuP99wPZPvrmWq0sDuf+pWii7dQtvbuszSBVwcgnpQ2IR4WwxE1elfNQ5sXkUG6ucj22PwifkexCt0NX6NRZHjDSRZWyeAvy9Ji7/a2ZHnqy/ATdffzf0v3UpSeXwjaWRtwXju3XAbABeOmMcUlqeAyee5h/lclHpWRbRx0ltwQ/5ctOHgF6RECmK0QBmpZ/HBR16Banh08ocZyXoABrGdjcRTQgh1VJNFT0ry/OHe6zgzY3HqHirZysRYXYouOf2chQKEErpD3/gfixQvxcH423s1yaw1XgIZ9Q3c93U0wPEEgHrJSCkdHrjs2X4YdLh7EZ2mvEPs19eRcB7pa3+b2U8qmzAMfxEEwXDg8SAIfoHY2R881LW0DDmca/QpzwNfC4LgGtJ70X7LsQSCmpQSFwZBkAV8FnHPHXEJgiATAUCPhmH4FEAYhlsjv/8QGdoPWpLAeMTQOxtZ0W5CIG0Cp2rZeHex/v460ltMsjoXGeuaESN5CfKkl+By0xfjBl4CD/i2RKXmBeqPMBcsnijqRYjKGVfp52qcKleAGLk9iChAFHyUIQZxqe5j0s4dev4GZCy31ft+uEFrVKF9iFFfQXrMSH9tu616zVG4xLZ5fHbo9zYXmNy1Bdmbgp151kw+O0fbykCHKYf1w/PHmLfOVMwsxqMfDtZMCW03Hntl4C8KgKIJbZfp32V6fpM2z9FzD9RjzCNlnooeXKzgcuBn2tYJxLO0D4/fMopeu7ajgQYz0qMAaBeubLZb260emTst6D8X98jsQEaYcgQUxPBkueYFMbqj9T0TODAQXox79Ewu3bw6Rksz1TcDRF2kA+gcfR45eg2jLFo8VTMuE26eTqs7yOKD1XsJrgJoAKgUeb6Zej+WN2gBHhcXlazfoNvT9TfzRr6AvK/PcBQZbCF/9eH8R1KCILgZGec7dPsU4KNhGN7/3tbsvSh9hRGsFJHKDQSQN9ZdsSAvTwGuajYBeXGiptQrAVkXi2xzA5X0tOZTVziRkWp4dnAKTbyPZXrQV/gmdUxMGeL1VHEbd5HXLYZ1c/6pNDOYnk+KUddNNmuo4Kxt4r1oHDeU8sbNTHxLTIK3bz6ZbrI45S25h2+X/x/ySDL/67N5VK33U17aw67TM/hE9o8AkdFuJsZbKSKs5NRZ3nq6bEzrpu3pISlaGR8B9gTOGqxGBsIoQMnR71dHvgMHLXHSk3yORbw9iyK/z8AltsFpJcDgf91Iy+XD/ZpzgGezGXbjalraY/Qsyuf++bdCF6xqFkW4ttggRk96I83rNoVl/APfBoSqNojtfGKWeMxeXvAB3sdbqRxODIQ/futUYp1CTXz/g+vhI3DtIwIuX51TzSC2c+2Tv2TXh4Sk/2L2LGZ3/ob6fAGpzcSopYa4NsidGbezjCmpGK8K1vIQ16WSq67tHQ1juqFAvXAmKGGRIR3aVgnckOjIVHEE3U7uQWZqe2C7OZ7V4UKCFIXxzy1BEFgMzvIgCGYcYt++joT95U3br8hAGIb/pl6c7yHxOocb93/Y14hcaxXp8iYHLccSCPo04jgegtgzvwElrR5B0Qf1IPBmGIZ3R74frG4+ELt11f6OjxYLH12Bq1+VIKpWZlxfiRhTCRyQzCKl9Ek1kv11OmJ8GY3NYll6kMWwiXg+oErc6E8i1LFdOC3HvCoWJB7DY0IW4OppRtvaqvWbhMxr6xADvRMxWsfptTtx8LVOv5uIe2ja8fw4Zpwb7S1T93kFj2tpxw15i+nJ02Nshb8CsQFH4DS8aPC+xXwk8Vggy8/UpPWPgh0Eg/YAACAASURBVL9zcPnvMv2/WP+M1taJG8TtCFD4Lzyg32hXRu8yTwS4KpgBnm0Ifaocmcv+Dgcb4LFfpo5n1zRvhqkAztP6rdT7KdFzmHejXe/dYmtW4DbMOKS/lSEejRwccOfi4MmARp62m1HemxDQbAqEG7SuRuszNTaLzYqCvEytVysOpi3xqnnvXkLiWw0oGriydogj75SJGWRp/eM4oKlH+rDFrmUgz8rkzCuRPnuhfuYig8oInO65Sa/fpuc1YLgbAbOmAmgetd3azjlIv9qBDFLW5tE85X92CXGljRPlzymfCsPwPtsIw/BtpV/8FYKgA5XN+jdUNpPqy+1ScFCArB58PHLIq7h8sVK4ehZJ+EDLmHwmV/6eZmI0UQbAqhWnQQJmX/5rQIQOsuimXmNCZjOfe7iFG7LF+xCjmQrWktBV/SbKuHbVL3l7nBi08c7N7CrLoP81skLw0C+vo5IGSrNFQ/mm7vu4K/tLzGJBSqGs9pwa6qni2/wDAEuZylKmsugp5b+NgQHV21NxTKseOA0u7ob/o4ZlNTCrG74TMTTrcIBjYGZopJ2q9Tvz9DyOCCVEV3gG4WDJjP0Zup3QP6X9tcwe7pQ5ECulCzbdNQZGSTxWT1c2WTndDC4U3kVLe4yphUtTnpvRrOVbfCkFcl7gPGayiP9eIBLYRbTxzqmkhBSay+WzLV8AS/yTCfI697DsdPHaVHW/Qf9netn1oQxqs0WDpIAOEvlDU2p/MVr4EM/Qo56KFzif7RSxXmO8migjRot4f4Cs6k4GFCTZmdC2ttgqKwXa9gn+NI4qFfZyMsKeWqTbfT1Bpp96fBQBQYfyBB2ynA5cEgTBbJSUEgTBI2EYzonutD9HAjKIlEV2G4qTf9JKEARnItPkPEQF+jP7228/5bCv8eeWYwYEaYbva/8HTn06cB1QHwSBOVK/Anw0CIJqxOxIcBgyPt3Ia1WGGE6TkAAmEyVoR0DHJDxg23KyWGLKl5DYPwMB23S/0xAjsgENQEIML1MU24sYkbNwla81ut2Oq2VZUlQzTGN6/TG4AlwpDiRMItoAl62qWwJQA18GejbjoKUVj3lpxxXeQAzMBjw2ZgJiWJqEch7Sk63OScT2s2D+gbgqnklst+GS25asdgVugJvP1ILbLTaoDPckEKmjtWsOnnzzWdwlGFUiA3mDO3Bjugf3PliyzJn4+L0S+AZCzzKwYfExSWQsN4GBDbham3FA43i+GgNeJbiAhHmg4ri62m5cuCKJzMk9iDeyVPerRYx4C+Y3tbtC5NmbjHeptqXFw5RrexgNs5f00WkI0q/W4Xl8TEyiGKf3WS4ju44RiI1G2ITnpTL1tlxEuOAyPGFxDOlTRhMsQ7xA5+BS4hvwOKcuPD7NwGsmHt+zBve+GtiuQN6Rzbpvrtbf1PxAgNY2jmI54Qk6kpIRBEEQquypBtYesaXwv7P0pcNFy1A8uk6j8KL24cTI/z9FDHljM2ngYdYFnaldlteezria1yjhLRoZyaWTHidrUjc7dZm+hTwuZR4t6vNuoJKZLKQIiStaQwVTOut43zpV8jr1D/xx3KkpUHTWq3+g9rwpnPUx8QzlsZO3KOHVMjHM2yiigjU0UMmn7/uJ3MLNKxlAkhcVFFXSwFf4JrUzxHCfXLicJQ/NZNUsjWO68Q3Wzh4v4gMg+Y9as51+9Ug3o2NrZB+QwWIBPrmCDBjmFYJ0rX8QWlc17hn6tP5my7GmxGfxPjeQrgQ3Dhn0forkD1qUD5uhZ3U2m24XAHFT7D7uf+BW/vnGf5Jnw2Tu5lYWI8lPr+chsujh/U8KlY2twJWk5K6nLa+DOvjtJ8/Qtk5yyrrNVI0TKfFF2TMpukKWBj/4jIDQtz90Mk9wVSomaCEzaaAyJcMdo5mlTOU6jXl/kVkkyfOYoIaZ9HTgk3NpCPHAJ+MxkTa09i1FBt53on74dnwmKQLewFFSkmNPIe69LWEYfhmNn1RP0Bf3A4D260hA1lhHKdVtCwL9r6FPCYJgIvBDJO5oI/BIEAR3hmF4e99991MO6xpHUt5zEBQEwX9wEPfWkSa5C8PwFfbvUjtoTqD9FTOcovLGIxCjqgGnO+UCj+KG+y7k1RyFvOMW1L4BMfJGImNfE2KQbUOMLFMzs2SllgfHqEM1iHEaQ4xnC5q3/C8mDbwVT45qY+9evR+TQ47pfpbscxcCggwENOKKaflaZ6M2WcxSEo+VMkW0ElwYwmhueUjjj4q0YRMuWmBtuzuy3aR1NQM2iXsODKjl4BLG2YhxWoQnNAUxYE1uPA/3atQi4KEeL33lpKKuwg2kq82h11yIy35XaBt8AQG2ZsAX6X1E783EGuy5/grPvWSiC0aFLMLBeC8O7ppx9ToDJybwMEvrtAkHOB14G+/S+ppy3Vb9rlrPm40r/DXjiUotEWobAk6Ntrhb73Wk1jkq/tCu+xkYKtbr9uBeoWZtow68X5+BvDsVes87kL6zAfFcPahttBfpX70IrXRDnzZZqvsN0/PFtf7X4mDYqJ8FuLCIKe8tQRLHt+mxtghxVIqpcpwof255Afh5EATfR+aVT+MRGn9FJQqA7NNGtPGkSWabXWi7rsYpceB5bYyatAA4A3paxRM0vXIhPTVZ5JFkK6dSznoaGUkeO1NxJxWs4UVmcS6S02U+F3Emi/8/e28fnlV15f1/TpDcMZAQSCLhhkCAQDAFDS8aRFAERIviT1ssnVYdn0r7dKqtddqOtrW2pYyjUzutHbUzDraOWkeqU3200FYRERCJvFpiJBAgNBhekmBIICTh5fz+WGuddYIgWrCiZV9Xrtznvs/LPvvss/f67u9a3xWBogRtnLYbFo08F4ALql6j78qd9N2soCgBqynhgjsEBH2hy+OwGapuEBomh3oKn9rKHdO+A2fCCxPGMofPMoPZkUrZlW1P0/WtA9w6QBJ63n339+HqkF5JWVhOUkvpvDLm7BKFs/YZmXLfJlpwe4L1k85yRuw+BKRk4W5xT2h7LdR90hAD3tzdvgn8PeJqZ209BJnkQZx47sHzCu3BWSDbHooMPL8DLofsm0SevCi9kpUV55OabGfwl/4UsQRPcxX3V32DZKHc57f4V+7lZn45TWzJQqrYQU+GsxqAX478HNcNepwi1gMCMF8YOZaLmgTwJBO1FFBN94f28cINYxnFShrI5ss1D0egdCAbaaYrdyJArIBqSimLQHEbCWpJRu5yI4tfYeVvz3cDZWsgb22BbtskuEz/FyATywFwBbgCJOeVgR5zh4uj+48PAJKYoONzh3u3EgTBPKSHD+AIREIYhvOCILgJGXM7Ab8Mw/CNI5wqHbg6DMONet6/x3t4/Hr/g3CiOUEQbEXEDR56j9f4i8uHnidIGwSEsSkG5uj21UjejVs+lIodoZwWBOFVeCC1raZbVr4KxFBbisQKmKrZEmQV3ZgZY1EsKWgZnnAyA3m3LTZlK2LAbtdrDMcNRRM12I8YqQN122Sjm/X7Zq2LsS3m4mQB8eYWVoMrzNn8ZwzEEsTtrLOeazkCzAx85evfGr2HTDzxa2dcUa+Tnm8jMmS9jDBnFsBuroMWUI/WbSli0O7S8+zCWQqLP7Lc5Afx2JwL8XgbiwvqgQCabnh8z6W4wXukEneBs88GduJiBpaEcxTEQn4l1nSatlEX5DlkI2P+QcT4NjBQg8QFZeF942wEHJmSncW2GHAwgGlubodi+xpruAFPEJur92HuanZtY83AhRfictl7kb61EZmDp+GJZA3kWJJcY+Ky9DxpCHhr0n1fR8CLuW5uR/qfJes1ie083dc0f5r0Huy+N+j35kpZrW1scuf2rFrxnFT5ep3tSP+8XNvvd3rdFjwp6jSk/2Uh7/0l+Dto9mIeMOdE5AnqH4QrfnD034PrqUKw9il1uCOUIAhSkDWHScji1/NIbokTJrLz3utyMuQJihfz49qFLBEZE7QWGYUVyl/V2fPZgAxS1+C09zLkBTAwkNfGyOQKKluKmJ4u0/caSiimIsotM4vbWcoYUXjTksXbXLxSDOu9Q1Po8soh/jxBErpWMpiLa5ZIgD5AG1R922Wbu2w4xNyhEyN2YxyLGcZa+lbtZFGhAqm617gl9186uAytZjjp6tg8Skfo+1vE637P7Byyb3qLhoXaLvORF9ts6nEIQ2OT41hth9/hTNBCJMePrUw1Ij3RnH/G03E1shRhdS6NnXMPAqbQ4/KAF/CiK6SDb9Ukr7VF9ErWsm2eaIIMnvInBlJFI90BmMT8KI+PVGEhzzE1EqXoTzUlrKFvjQDOZfkljH5oDXfcIDmAZjCbvq/shMFy+arcPhSWb2XW0G9wo3qZdq/Zx5P5UyMgVU8OZZz7DpU4Az1zWqZzVfrTUf+obUlKjqB1ul5dhRhN1k6/Q8Dlw7F2yAN+vx9/QG/pQbaUuQF3tLZyMoGg48sTVDzq9PDXK95dB2ZE8OapvHLHKB86CLISBMFLwOQwDPfrdmfg+TAML/pwa+alSxCE/xdPjLofMfqNfE1DDPjzkNXiyYgxtQGX77WEp414YtIksqpegifBtLgey7HzOmLAd0YMu1GI4dmKgJ8mPNZhLwIwNuBiAbZabcb3QdxtrgVf1W7Wa1vy00Zc0jkLQamNiDFpbnXm7mTGbwoew2N5ZFK0LpaodQueUwfEMDXxBmPcLEA+Ew/874azICZZbezCHNzob0SMV2MgmpEFNFtQslKHAKJbcSW6LXQscfe7OjrKPBfq96/Gfgcxus0lyxb5LgT+QdshBXn+TQhTswFnuDohc63mweZsXOiiMw7qXkdMl85Iu/fBJaZ34UxGOu6euA5PyGvqhnZ/Bq4M2Fk+p3ycXbQ2W6Xft+JAxdwpzWXPEgpn44DEpMjbcBbS8hrZIoEpvxlT1huxMaxfGOCqQfpCD9x1cSAyFZqLXycESH4eec727tl9mTx3BmJbmNCCxdwd0mczFme36vAEvmfj7nwvnwgQVBCEK97FSSD44qlkqR+V8uGDoMMdPUwdzpYThun/fZBR4Lubu5YNzibfWaLb3RD/bV0t6VpSz57t2Zw3YGF0pVp6cSMPRDFA9WRTxHqK1JF0IFXspGfE0txe8xMW5Z/LyDZfOkq0HaI+U/wr8h7aDQl44Rpx0bq4ZgnP5k+mUvn4Iio5nRZq6EuxvpFzmN7B+K8lyTSe4n4k9WA+NaxhONt+LoZk1xn17FmW45S/BeNbWajf2fvZivjfNuLMz2g6ikpAR7W3RkTg11bNWhEjwlaepiFs0W26bb89o9slCFOUFsIkAQxDNy2nkI00KjobyEaeOXQl2SnispaklinMiwDIlLa5NCcyIpYOoKBtM80JGXFnM4Pbq37CAcGjrM08k+EL3uTtCcIcNpMhIPW5JbwxdWB0jnZSydYI2gayuYtbI/e4VNpZy7BILW4x49hMQQdhhIKUalY+riIV9cjkYe5wjdqG1Tg4fwZ3AwF4ewcCgEwYwRz4P57JUs8clR7+asXh/igdy3nBmlPzxTHKh+4OFytJ3HYBSZqaPPruf/1iEr9lCNABmQsa8XFzFLJKfR4SEzIAYYyq8WD/5bhBZ3E3efqdGX+2ul6Gu8PVIdNWGjL2XojPUyZpbPFJ1fr/EO7yZMZmOx6rsQmZEm0MNgO6m17P8vD0xoPJ0/RaB2PHWb1NYtokudFrWh4hA0ODkAXFGjzXziokAbe5C76FK3nVaduuQjrFQTwXjBmnRdoOLYi70jCtS5O2n4GhVm33Oq3TAm2nKr1vAwVW7HMdHhc0AOkLxtz0oSNTtEXvc2vsPEu1DlchAMCkoo0ZqsTjbdJjx72uf91wz5Qq5PkbkzRUz5+nxxu70oirolmQv8U0GQu0Cl/UNHfGhD6HEpy5sRw95raer98ZY9VZn0EaQlWMwsFTJ237BXg+LAMfrcgz66H3YLbWLq3nGjzuqQkHTHVaz3Rtu056L6U4mK/A45Z7ahsaC7sUB14mJNGMx/sMQp7jGLwP9MAZTBP8WMGxNTvfcwk5gYkB/nZKEAQPHks6/L3s8/Eqhxt8tmK+FVmasBXzczXppMX4ZAppFA/mjwfnD8UHAWDPmhzIgmoKKFEmAGAFI6lQp9cLWEyCtihY/1GuI4NmelmM824oyy8lNSG+oAnayEg0syGQEbRvOJBPlG/k4q8Lc/TGzwZyxcrn2T7S5UjmMJ2FXBTlHprCXPpTHcly/zPf5SXGM12dTb7383vIvuktzvuax6UwH/rdKQhmy91DOgbiT0NcImyyvwsxyFtxku1yxHC3ifEaxKCfpNsWbxRXk7sHZ5KWICtgs7SpFyyn/DvndEie2qt4M9se7x/l4Nh2KEn5E+dEQbFrv/UWU1LmsUhZspeqPsmPC78aAdIHEl/hKzwQMWKXlb8oz2SoSInffttPYC2cpsIYw0vehDNEohxgReZIdtKTt6eeHsV0NZBDL2o7qJWNYSnVCMCsJdlBGCOLRrbtSpLTQ0HTmt405OXAaF2Ubw2kDaxdhyDucSY8AR5HFWV3NNW/fbH/JysLdKqcLOVkAkF3AauVEQKx8X7w4VXnneU0xOCajKzSF+DqVkMRY7YCl+Y9GzFCX8ZdgYoRVn0vzgDtQm7WZHvjwGQ7YqC2IoDLmKNxeEzMBj2vKXCdjYzTFlhuDJAlODW2wXLWWBA4dIzFILZ/hl57CO5yl4XH+hgLZAZ6AgExpkTWDWdQmhH2YzUyNyT0mLF4nFQ6npTclMrsfswVaheeGyhL23ISLnWcTkcxhP14MP5BxKDeiLM3ZyNgI87oGNhD76Wcd4IbYttxt7nDdWjy9X5qkGdoqmaHYsdkahsOQbMGx8p+XJhgBC4UMVTPlae/D9F7MBdKE124HDHYfxdrnzo8Vi0Dl6/eoeex57xD778b0qZrkec7SrdL8QSwtQhDZhLg5na5DOm3jbp/i96HvR+WoNfAr+UIysel000tbhPSlwzgWHyPJYc1Nsna4zeIPbJBz/0yLsFuwgn9kOebi/TFZr1fUzzchLynv0X6mQmX5NJx4fe4yrHzBJ0qRy5XBkHQ+i6/B8BJ41Xw1ymHxwVZOR0ZPUp9+0ATnCkxPlQjqxjWWsYMWTSAvTRDxGDtmtfAnjU5NLdkkJEuo14j3SmjlFv4KSBB9810jWIYbuGn1JPNKFYCIoH9rZX/HsUEtZPKsKY3KVyi1/z+Rgn30NiaT1Rt5MAgWIzkU7+67jmm586hP9WROtwMZtNGghs1qOfH/BN3cys19AXghq/dz0O1M3hVGZHUvCba8zLZ8luxvPvduo4tA4Z0jF7oFmvW25EB7j585eY+3LcaBKiUAJqChzyEBbKeulzbVkEPQ3RfvWZ58TkCkmJl24P9ZcB8AaiEhrzesAYmzhMlvheXXkb9mGye4O/kgD9DQ2E2P90lkQVP9ria02mJAMvbQ0+nmQxqdc35wHegOfN0utcJmLgj9zuMY1EUE3TxgiViwIyGJ3OlrQupIkF7FOP1U27hVu7mi/wXAD3ZQRGV0bPJoJnsHg3Uqx9NrxGb2bY05tplcT/LdPvCWPsYO9QLcR3EBTqkmCpcA57wAT5uwggnSB3ub76cNCAoDMNfBUHwe3xkvi0Mw+3vdsxfu7QjK95peHxKZ8RIX4cYfT2Rcc7cz4oQYzYXMdjMFcoYl3OQFekK5MaTCEDZrt/lIYbbCHyxaINecxDuxlaBG9YW82GGaBJ3jTLwkIIDjMZYfSxOydS2DCyZEEu1nsMMzFJc7MDG9X54AtY63O3JXOXscxFiWKbjwMTy7ryOr+uYOppJJVvsiuX2GYYL6JgL2Rj9n4rLS7fq9c21rgIxeg3kmPiC5bbZEWsX9Fr27Izx6oEzBwaA4vFABi4tT08zYoBn4KxeZ23fLshwbWpoY5GFQStb9JgUBKis03verfXtpO1Wg/QXky1v0/Z6Gplzx+Lsh8XkWLLVXFyRz4QmjKnqGbuWuRluQfpZJTI/WfLZGt3nIAKA6vAcTibpbbmlhuEgxxKaNuNu4XuRdeu3tG7dYm1kcuxbccamC+4Saq58+QgLNUzv5SLEXW+MnqcGj21bpc+oU+wavfUYSx47X+th78VYTqBu5ykm6C8p33oP+yw+9i4fpxI39k7D3YQG0SFPEFXAmR5cd47+t9l3CO56BPJiFQKN4o61pzoHCkL2VOdQUywAo5mulFIWxYKAuGVdy6OAyFUPpKpDsse5IydGMUNPcxUFmdX07SmuTHu/k0KXmkNRslSA4c+/KSuSIIZ+bg6n08JP674NwKLcc0mlnctUA+lXXM84FjOfiQA8NPNGmAQTxwh4WLxrnKxuKNjb8uAQASA2CNvAbtumZANurN+OGOnLYt/fE8I9GutyDZ7xHER1bwXu4mWreIW6bW1upV7POQ1fARoGn7nzv/nNzyW8+kdf+ybPcBVzEIGHRydcSwXFkYT2CkZJnM/90ra33fgDZjCbcSwCFAA9tY8/TxN/uJkL7mTv+Smcpi58b0wYSC29uPj+JVx9iYQlPlk4lVqSkbvbeBZSRmnkmngVT0cACOB0WsimPnLJaz+k/cD6XD3OQIL7n/8BF+gAWW3ur+B9czUd8wLtQ2aNeL6sj095b8lST5VjlQ+9VwRBkGdgR///v3fb58MspyGGexZiQKUAUxGDKR8HGRZm+hJijJ2HGE8WfzIIGbvL8MSmNbgKlclXj8DjFExWGmSO2oAYabb63wMHO28hY0YxzmTsx2Mz3tK6DkAC8P+OjgDBXN4svihu5HfCY4kO6nXMsE3TupgAwSFkTOui34HnpFml570Kl9Y+hBi5xoYcwtXIsmPHmwx4bzx+Y4f+gaS3qNZ2NiZkiLZpFzwnTi1iFdkwEs/XY0lYo4y6OEg0UHQQN3y74YJKcQbIkq1anijLxdSIM1NmbFv71egxA5C+ZOP/W3i7gzzfFpzl24CDk7UIoLP8VZYrZxoClMxd7iA+z5ThSqS5WsdBWs8GvP/YPa9F+q71TYsFsyS0WYg90QkBbXYdA33VOHPTgrvypSEANQNnf4wZbMZzWJlMdznyrixBQI3VYQkS/r0UmTftnOnIAu005N1tQGKJwPMhteLucXW4O1yl7mNCJim4298JKaeYoL+ohGH43x92HU7eYqvfBoIsStWEEXTpy2zF7Z3lBRit288gA7G5wxUiv1fLZur4Jtq3Z3Jt8X8xn0kUUE07iQ6sTAlrGMPSyD1uki5XGZOTTgvJ2DLCJObTt3xnlCeoe/k+9g5KifLQ3P7UT2A3XP28GOGrJ59JAdWsoYQD6pE1mEoayInYpxry2Uc65Y8Lyrvhjvt5aN6NvPj4ZXLACuCbbWAuXQuRVSBjeSx+x9wksnB51ALdfkrbxQa72cCswM+xARmYLVA0nqANZNDKAgoUcVyakO/smqPx1b7LEWNgObx46SRSrxFG5FGuo7YlybXpIkddTX+u5VG+sECSoz47YTJf5hfM+8ynAfgKD5DdVh+5Inav2cd/TLs+ekbUQkMih2dyxb1uIvMlgeqF8HahPJ9Syuhbt5NluXKjzXSlEJXgBh7hWnbSk1LNpvY0V5FBMw27ZGYf3KOShoIcb/t63J+b2HN4WP8/hwzy/YHN8Vl6H57Rbx8dZ2z4uLBAcGKSpZ4qMod/2OW9SFW/bznrD6IcwN25LkTGn2pkbOyDGIWWC8ZiE5J6TD5iUBYjxthqnC0xwLEBQYCmGlaBrD7vRgy1MmQseAsx/KvxeJ+zkUWRLojBZjFLtfgQsEH3t/ieLsjCkyWXTMXz5liCywzEGO+ixzQiRmWr7m/uT8Z+JZGxaT8CgCwE12TCd8fuu1jPbXXcq/fZistab0CM/AZcBtskwmu0Pp20/Ycjxm4S9zgwFmEvvmhnLof/o/sZaEnqNTP0eocvwpmqGLjMtMmi2zPqRkd5c3Cpa/B58yFcwnwvDhQsMK4FZzH66bEmxNGCAA9biLTna3WLAyyLM7P6LtH7XYWrwjXqfY/BFeGsn1vMUQHS3qYGuAsHlum45LvFGfVA+mcJzt610jGHVTEep2YskCVozdS6Vep5rK16IP1/CO7yZmIH+Xjy1q3Iu2OAskzbpBF5T0pxtrFE9+ut+xQi75MJIhTrPazROpnyoomK7OIEpuCzmKCj/Z0qp8p7KvH1TcsTZOxPNtLLLWZiH9AZMvQPZKBahivBgQwCBchLtAQY3SZ/iMTxIsaRpDaKDWomgywaqSebHOpZwSge5VpyqKeWJJUUMY5FjGMRqbTRRoJKiqikiL7P72TvoBTmM4n5TGLvoBTaEwkuYx6XMY9F086FP8MbkwfyxuSB1JKkjVTOYAcrMkv4Vua/MIfpzGYGdzCTBG2U8hpZNMIS+N7nvstDm0Qg4crPPcGVn3sicj3oemU9Xa+sdz/Zy/WvHBkshujfTchAcqW2U6P+PhqZrAoQEFSCTFAPIzi0DU+Kai6GMcVyRgHXJORvO3S9vV4mAZW4vPIOlY5TH+yRt75Cw2O9aV+YSfuaTG7lbialz+dHh+5gG0nmMJ3nmMqvJ3yaYEgrSxnDs02fhvXAehEp6PLyoaiteQyu5GkKmrZS0LQVzoC+/7KTicxnIvNJ0M6iG86FbnA/X6GSIpJNO3k793Sa6cpOlUmfxxQStDGKFYxiJW0kqKCYCoopoJr1tR2D+ocm/yT5gfJCab9JoQzAY3WHatw1c6r20Xogoyf074nMDvtwq8O2P54lJOAgnd7171Q5dvnQmSDg7CAIDnfqjJeAdzp9figlBTFylyBGbiOy0m6y0sZwW4zE88h4VoRMNYd0v6F6rhIEUBTr51xcJawKdwuqAabguYiycMMsBWeZihFDvJ8en6v7Wu4WcHclAzAHdX+TnM6no9Ft0sQWH2FsVyOeC2gAHii/FFmVN8PQFLgq9doNiMFr+VyM0crH8+fswg1fW/03WfEyXPzBEq+aivc51wAAIABJREFUgMNuBDAdRILvTT7c4qLScMO+GheA2I2LLVQhBnA1zsBYiYttmjqZtaudZzVHLo3IPGixQ6W4Gpy5cBkblIEH/ltbg8dCtSJ9aLfuF1dYi7uUmdthAgEVSW27+QiIN8BpcWAGqPrp/Zg7oLmXgfT9ZOx61jfMtc7W4DYgdoItfHbGn0cPHPjbszWAOgLp5wZc4izjbiSGawQeV1Wp99dZ730T8kzS9b5qcIapi9a/FAeXFkeUj9gxW5E518BwpZ5zlNZ7idZnOB5WvosTLIxwigk6VY67HO4KBx3dhMxVCFynUt2KLBj1s/j2GjxIHTQYUDj09kcTrLx2FGxP0DBEAuXL0ku5gMVqAK9gJCuZyfc65O25imdIaFKsDPYw+rk1rjaWFPbBmB4GwNrCInI0EH94+Zvs/U5KJLQwkhWsp4gySpnBbG7lLmarCsFnVW86nz+LLPQDsJZh9BpQzbbW/pFqGuMgO6+ehtnKkJUgg4G5CbYhwMYW359CJr6vE4kUMEvby9quAMhBwFCe5PRpuKa3M0P99LzTlPm5LyHHmALdN6G9NVXiXwCegcUzxkEafOY6IT9/s/TvIQd+NkWUCJ9jKgVUMy1FKpVNPRUUk08NLyeFebs98wdMOX+etksNiyafyxTmRo83p2k3pz0vn3897dOcMXkHF9epKEXuQBrJYnt+N4azhgayeSlzLGtiGXZLWM0l/JGnmMZSxlBANVm8zU5Fmhk086Pkd5mHsHC19GLLvCE+2V0OLAk82LJE270M6ZvbkcG6uRq6F/hx9EBG5mx9cPE8QSeDuXuqnGzlQ+8VYRh+ZOBqG2IYmVjAIGReaMKVvSxmohxnMszgM8ZkOx53ahLT6cj7XqH7X6fnNGU1S0aZixhdrYiRuh0xGHvrPuZaZ+pz5jJkcRF1uGKX5QNq1ev2xgUODEiZKEEdnlPlbMTYt/glkwxOIsagxRyZolgxAgQX6He1eIxSKjK2GZhqRIDMCBy0WK6aLK2PgY/VeqwpqnVGwEsuLp+NnmcvDoh2IYZtPzpKWr+Ki/uAiwDYc0/H3eNMFtmM9914vqAEPm+C52FqQfpGgbZLnX42MGqgyxb8DWibK1Y/vA+t0PYygBB30avBY3pMrroVZ2gM5HSLtaWxeAb07H7TkeeRiQMHcwvM0PoYa1aNC1Bk4X3Q8gWZ6+YOrZ+5OFriWVMI7IELgJh4gcnSWyJWkGduMVzjcNU3y1GUxJMAF+l+o7Se5obYjgM/Y3n24jFF1XrOLsiztWsb2B2FPKMGTlA5pQ73jhIEwThE5fw0oDgMwzHHOORUAd45vcdXxf9EB+h+WqbbinnIxLY9tt2IG6TfDOF3AZaDvOtX68lIb6Y9L5VzU8TdKUE7zWREMSK19KKU16K8MaWU8QjXRvE6DWTzxtSBFLRtRg+gLzvZe6E4q3S58xAFP9wcuc/1GlTLysQoLlggyVPfmDCQR7iOK3iWF2PB99tIcpfqTc9hOt/7+T0M/prk19n2eH+6XlnPz2aqHvXDkL2pgYZqBUFjEaW2aXrfMxDBAgODDyNg51Y8oeqVCICxfRrx7M5AQ6cz4F5c4cxc7BKKrP4DzzcAMBraZ2X6RDMeGm6X+v3mbokBSv1iE9k9GvgpInywZcEQvjLh37im9tcAnJdcSjo7+T4/BKATB5nKszzCdQDMrrqJA2fAHzMlVmrkt1ewjSRPTxO1uJmP3cmya0qYmzsRK/nUUE1/LntelOUYDo253clSqbY1DKeYisjFsZoCErQzUEUL2knwo113MLiHONtvWTqk432DrBpaFy5HVqkKYr83An0KOk620sqHbX/oZu4HUkKCDzRZ6t9K+Xj2jg+opCPGT088PmcVMnf0QYw/c+8aoL/n4e5jllx0AxKHU4HEIlTjstWpeCwCiIFmrmrNiDE4BGdi+uHAymJKrA49dX9TJTNVUxN0sBiS/Thz0kpHBqEJl7W2+BHLuWPsBYgBb6v8ScTIN5niBjwnTSfEmKzV+7AVfJPithxF6D0Zy2GMgwXop+HxG3XI/JyNMGYWXwIe52SMijFr1r4tuPQ2CAAyFiDuadxMR5cnE044W89Rofc1FBmvOyPgpUivvwNPVLtczxEHyCaMkIIAjniOJgNqWxCzpRp/5uayZzE5+7VOuxAQbZ4ExiqZOt5urZsBhzzkWZvsdSnex3fjeaHMK2s30ieNZbRnvV/rvglnDVu1LVoR8HaeHvs67rZp8WxdtD2NwTRVQIsxMun2RlyYoRvwcyT+5/cIkD2IvHdjkP7XrPsWIfNoq7btfjy+eJNeez/yfM111OphDNV5iCtsg7ZxAR0l1Y+rnAAmKAiCXyLNsDMMw6FH2edSxBzrhCQTvevdvj+R9Xi/1wjDcDGwOAiCK/HX52jXHIyIJPQjNr+FYTjhL72Pj2aJT+22Gm7fxWMmtGTEdl+BvBRX6vZ25OW3GKHHAun0JaIOt+eZHPaMzia7oDbKC1NBMZ04yM2H7gXgX1P+CYAi1gMijHAWa6NkmQDDWEuXnfImPTt5MvXkML1NXb8mQ945u6lcLhk7SxNljGl6jdUTRChhcFslsxLfJa9qN7MKvwGIOtw1/DqKS5rCPB4Y+49cpWm1Kz9XweJD49ijinPcA+u/cpYnga1CAIqJHJRA11n17Bmr+XW+jGjajsYnnCwELD2s23mIz/klul3QGX6GK85VI3khFIfxa4RVGh873+X4QD8DAVx5bQxOCoBY/49nkfpvtWxZJchr4oS5PPDIPzL4OgF76bSQSpu4wAGn3Q/Lvl3CzSsflHP2hdNWQMGEagAe4EZm1txJr3ydidMgh/oI0PR9bickYO7kiWyfLA7haxlGLb0iCexSyiiiklRNiDSPy0ilnVqltBa3XEB7a4IcBSwjx7zCygfPl8kYZIA3tSPwQXsZDs7rcJlswJnNs/R/FTKzx9+FU+pwH/cSBEFfpPfUA+uPNb+cAkHvoxxEXLBMMS1Dt9MQFuEKxFDKRWZqi1vogRjxthpvq9FJxGi7AldxqwF+hbBEKQgAMtlmU1RrQoyzXyGp0c3lyOJbVulxlsemn24f0voZqCnQ+7JYD2MAjNEwtsjcyUwq+GDsNwuCN7bKzmdxQQdxpsgSjjYjxqTlPzKgZzE8JhbRBXdtAmc7DOxlIYDD2BJjOgywWUJby1FjAG8BnlMH/a1N64C2pwEgy31kdTQGyJTiNsXqBc5+mB1bGfvNjO0kwuTXIka6sSZWb6uTJcX9fewcFQjrYe7qjUhbZui9b8BjlouQdje2sbP+ZmIV5n53EHe1PISwcM24W7s9Y8u7MwDv53nIc89DppwkztjYPdUifWoXAsry8US+87WeBvRM+a4CAYPtOFC3OJw2rX8t0rc7IQBoPuKmtlz3uxAXIslA3guLd2vD44wq9Xy99XqWcytd76FB69hN78EU+MZpWyzB3SJPSDl+RPUwMgk8cqQfgyDoBNwPXIx0xeVBEDyLNMU7vg/DsOKw488A9oVh2Bz7rjAMwyo6lnfU42jXDsOwIgiCYcC/HHaOL4RhaNkOP4dnWjlaeRJZT/8v/qY5NYsDAgE7cXW4fcgbY0ZjD3m5zDYcjhjh5mI0Xv/btk562QViFDfM7w3VAQ0kqR8g/G6W7jwrRfy6cqgnh3oSahRvIxkBJoBsGniAr3BX2w8AmNg2ny5Nh1AxOV74x7EMW75WBBEAesGy80sYvUCCamZMuI/Z/+cmnv3V5EiR7izWcpBOEfuUpJZPjvhtBLwWPnIp37vuu/xoxR1yzhkJuBB6jdmsdexP6pIm2u9Tn4JJsGdGjk8cP8OBoX33BwQ4mTscuEw20m5cj7vUjUaEJ0z07nd6LlOHK0SSp/5/un0Tolg3PsH6dWfBTSGMgi2rhjB0hKwPvFg7iaHXLecqzbB6Cz+lmgJeypQlsTXfHk4B1cweOcN/n1AgroLAzPvvFKPESok8n+4rFTSfCWyCS5pepDZTFOT6U00OLnm9k57M5I5IvaydBCNZwTwVtkim17J+3VmszRPQ1CulFkbB4BEC3NY/eJasxFmXbcTFOQyUgifyBdjWm45ung3AGXiyVCtHk47/aBVRhzs+JigIgjRgEdIjTwOeCsPw+0fYrxoZJQ4CBywB68m4aAYMBuaGYfifQRAccQ6Ml1Mg6H0Ui9WpQ1aDLRjbVugtYP3ziDFoK88bEMPJVCjKEHU4S/ZoWe9zkdXpUsQI7wc8iCwk/Q4xuEzmNw2ZxjrjEtQmzGCuOxl4YsqeONAyNsDiRkyxzXIeWX6XvXquHTioAFesszqba5uJOVjckbVZPKbE5tEueMA+iN2XhoMtO0e13vcura+xSgWx336OA54i/ZyKq+el4G511j6mMFcYu2YFYjjHLT67jyLcohqFGMHx/D7gLnpHK1vpGBdk4NCEIEx628QVbDteahG2ydgRY6S6IG3bhhjvpsgXd6O0eJnOeo/9cCbI3Oe64LmIchHAbRLjBvyN8axGAMZAZNrJxeNyDCgN0HObiIHdQwWyONoZj7W2xQVTgDsHj1my9s3SOlnslDGfSxGvFVO924S8Z+bqZ21iOaAuRGyTJJ7EuA+yEAvSX4ch760Jg4A881WIJb4OB7nxhfTjKsd2h8sJgmBFbPvBMAwf7HCKMFwUBEHBu5zjXKAqDMNNAEEQPIGYWQuP8n3FYcdfCPxDEARTwjBsDYLgi4jQ45T3UI+jXbsiDMO1yCT4jqKre7vDMDxWfOiBMAx/cYx9/kZKXBo4rg4HMuv07ri7xZ2Y+9ua2HYeqJpxpObT8Iwef3kbrEswcsBSflP7WW5IzqaMYnqyMzKCX+IiiqiM4oF6UUsxFRFAqaKQu175AXPPF5er8W2SLnDZPwp6uKhpCU9nTuXqHhIjtOh8ySf04wlfBeBG7ufJX01lSttc8hOSNXR43Zu8lHtRlNBzJnfQSHdenScgqd916/jR4/8csSypjzXRflMm2xZovprHoH1GzBXtm9oOBmiuRBJ1XoyzR7N0nz/odgkyyFbrdrX+ZizbOBj6peWUDzBdcnxFCZxpspKFgNIn0HoFnPdvL/HqgxfRc4QY++VA+d3niJsewrDdzqwoSWw1BRRTwY3cDwhr15MdWGLTbTe2kUp71G60QvcF+9h7vlgwSxNjGFUo+Z361sk1q3L7SJzWINlndmIG2TRQgADKtZxFBs0Rm7R21zD6jTD/SijfNAqyQtbfrSzO1SE8GTjrYz7dC3FWbBtiiEXccCYdI3cHAZ5M18tHG/yc4NIGTAjDcE8QBJ2BJUEQ/D4Mw2VH2PeiMAzrbePdFrTiB/21F80QM+y7QRBMJ1pGOXo5qUBQEARjgUGaMygX6BqG4eYPu15WWoCRiBFWgRhqn8SNP2NgyhDDzlzU0O9fRozpYkQ04ZN4zA3I4NUND97Px93qzK1qlF7bEp7W6m9tiGXSGTfMbMXaVtp3IEZfN9xotSHDZKaNHbAge7PHjH0xWWZwgGC5xwchzM5aZJyyWBAz5A/pPktxtbj9uKFtINEC6tNxlyVjMvLxsMdsvX/Lp1OIgDljDqwNOyNg01gAk6veom2wN3ZPNub20P82nMYZHWtLK30QI9n2iSdbjbNH4AAoJbZ/Fzzw3xg0a7MBdCz9tP4jtB0sX5G5BRbTURI6D+mXBUgb1yHeLmnI87hQ7yUPae+4+6EB4lpcZtv6swHjRlxYIRuZ4+NKcQaKrWj4b5T412K0jEUchDN6m3D3yi24UEEqbpcU4PF5BpqNcbR4tW6ITdFZ2yYrdm2Ttm9G4vTOxsHnfr32ITyebYe24wKtS8/YMzkh5djucPuRR/pcGIbP/YVX6U2UXx6Qbln6Lt93rGIYPhkEQX/giSAInkQmnouP89rHKjcg5PexynNBEHwFSYtl3Y0wDHcd/ZCPczEAZOpw4KpZ1iTD4MAOqFN5tDXIS3Epvn0pmpgSMezX4E8xK8HQCctZWTuK8cmXeKh2BqxLUDjhiQjkJGijmQwalCnoSnMkpw2STHPu+ROj7S6zDzH9xoeZ8/Xr5RpToHlyRsSgZNPAJ76/kQtukpigubkTGc5q7k7cFp0jO7eBKczlbvU1e3HVZTw2YhqJKdItFs67VCabPNnu1aOWLTMyZSIGWVV5Ch/0xiODiWHJrvrbbP2tFenNC+kYE1QSO8f1CID5g/9ePv8cB0VZdHSXG6/7Gsgy5qMABv/yT6wfcxavrrqI8770Ei/OFJGBiXfMZeqtz7JW3cKeYyp3MJOlmj3vkQVf4scTvtohJ9PV5c/x7FBLugR/Yhi31wjrtnromWTTEAGei3csYfXQMxle9yaLcgWMzmE6s4beHh2foJ1RrCBVhS9A2L8zdObM7pFky6Yihg7Q9Zztgdz7ON15fgDdEaPJ2jHepq0IY7kdSfQLyIxoqocgM5axoPDOfEEfbTB0ItzhwjAM8Tfbpr7wPR5+1AWtw/b7qy6aBUHwTeD7er6nOMa8cdKAoCAIvo+Lqf0KeRiPAed/mPWKl0OIqwyIsWmy0GaYm8iAuXDtwF3OLHfQy8i7W4i4Of0dvtJtK+YjEGNtEGJcpeA5gyzfD4jh2BkxEMHjJEx8oFT32Y0Y2rbinYqMHaZM1hnPz2JxKNvxeBQL3M/Wa7UiwMWkkxsRo3ZT7HhzNQJnOdpxCWRz1TMWIq6QZmNcOgJQ2rXOdp95uJtXEx4XmY3nnGnHAZixQq3I/BZfGzLA0g3PO2RsRzwGyFTXjEmJg6f9uBFcpPdmzyEeolmsx76u93sQyVN0CR4TZkH4+UhfyEQWuyp1u1Z/N3lrE7oYgBjk6/T/Lm0Pkzi3OLWDuOCRsV9p+LOx2LUNuAR4qj4Tc8FrRfqvxTCtRkCXMYx7cWYkDe8PlkPKXCOtj5nbnAG2vNj91+k+TXreFP1Lxd1ArV7gbqMm9NBHt3fjTGcKAoqMpSrT+zN3SFMyBOlz0/DcXb2Rd7hUz23Kc62cQCD07kzQ7jAMv3ScVwiO8F34Lt+/88sw/FedkH4BDAzDcM+R9nsf137XciQXjaOUv9f/8eSpIe9cT/gbKXFDz4zDdMSSF1ckTusMB/bFjMlMp/ZBjM9CPBO1OaoYxEyD8tqz6JWspY2EBOInW2gjNVJom8SL1JKMmIB2JB7kqibB8fMyJ3PF889z2+QfADDxxvncws84MFMusTbzTHqyI3Ip+MTKjWz/YTd+hLiyjWQl85jC/XXf4NlcMeZv5l7mt0zijnQ5ScaIZmYzg4ULFN3Vyz1l3yOL2wnaxeUizoBdA9mXintVw4ze72R5GuX+IxetNGRwuT7WVstxY14BTASKliGDxyx9BS4PhP1Rh59+m9axZaZZ/3psXhssTEj8Uokcv3LXyIghefGRy3jyuqt5hGsBWMko2khQq4kaZky4jwRtpLbJA5z55TvhX4lcq6opIINmqvLFgbsXteQ9tptF1wjguWD9awyvexMQBg8k3moO06PkqCWsoYLiKEaojQTDWMv9LTcCUJReSemAMlYrrdZrzGayqae8QhmxUUBWCH/Q4eLLOLiMPx/AJZAKEUsrnhT4T7xTHe6jDX6siDDCMUHQMT0HlG1ZiTTg/WEYHok+C4HngyAIgf/Uc5ysi2Z/AH4QBMHncA72qOWkAUEIMhyOxqiHYVgbBMEJ8zI5EeUQ0vpvIYbnCqTCT+E5T/IQ42stYmym4cYziIGZGztXq+4/Vs83DPgjAp2X6/kHIYacJYC0XDhmkPZAGs2kpytxpbWByLyxAVdjewsxMi04vBkHOhaon4EYqVbvTYhxbYaoKfFv12uahLaBB1NsM3BlrNjrOBv1Ga3jLgREJfV3EzKwdsvAYzjMBcpiUbpom+3Qe/wuzmTZSj54jiPrUGYAb8TBxG59PpbHDhygWX3qcLU6cNEDK8bu1OFCCMauHb48YkyEMT8mCpBA+o/lNjLWkdi1TEZ8DC6VboICjXSMy7F2aMZlnnfocdZvN+HuZ9Z/jCHsjPSTnsgigCVxtTYxV1Brx3xtw3Tk2WzEE+ju1vsZiotlmFT6ft1u0HP30fM34aIaBkYPIX3gkF7LYsrKEbBj8t+tsWPO1vvZhLNepuaYjrNP6QiYtXMZqDMFxE/q/TcjI7K52p2QcmwmqFsQBA9yfEzQVjytFEhT177L9+8oqtg2FGFcvo9EKxzPtU9ICcOw/4k610e/2GjXjBiGBoJM8kNYFA70QAI9FATZqoLR4mvwhGggE9Uk6PU5jZ1Z0B8aEzRnZbA+TYQLJqbMJ4M9UeA7wLU8Ekkkn8EOErRTnSmG9kA2sn1yN+6q+4HsfDPMfXwiKzLFSB792BqGn/lmFIi/jSSD2yq5/xURQWAY5Of+mdW5Z3LFc6Lt/Mepl3Bv+s08gOQDuoOZfIsfM3iCxp2sEqak4T5x62tY1lvWlQ2gXA7Mh4Yl6vZXhKwyVevvyxCGbAa+CjNJ9zHXwcf0fIZjhuJUPIirWxaqtqfneUKPA7Y8MsQTsYI8kyUqoz1DUeijCdqrM3noa58H4IZVv+YCXqa8Vu7vk8m5rGUYX1H3t5305I9cwuyEhtf9Ci5jXgRgJjGf7q/sY/v50tYZbc38+ZozuKBO+suPz/8q3yr/d6qG9uG6JknAWpt5Btk0MIfpgIhSJJyIJUEbSxnDqHSxxztxkBryo2v+fumn2EZ/b8flQGXgbGQh0g9N3QltZ9sfkD7eAwdBC3ln+XgAIJCYoPeQLLXe4neOVsIwPAiUBEGQBTwdBMHQMAzLD9vtfLXJzwBeCIJgHSfpopnWfdq77RMvJxMIag/DMFSkSRAEJ8yueLfyfoKuQtyoXofH0nwSGddMbvcgrjDaWfdNQ4xAY1L6IS5xhYhF8DLOHFjwdwFigP0RMdbG4vlltuBuVPvxxbo6POj8IAJ4WnE4bUIOBkqMdTHlrwwcmAzSezLRAMslk4qM/+focdV6DxZIboth23EBBWMARuBgq1K/N1c4c3/aH7uvTnrvpmC2XesVl6herJ9N+joLT6jaGqtTJ3xJYZO2RRuuOBYvffR85p4WL/nIs1mHG/dmbsQBlBnYVjfLgWTxNzti95im7WptnIcro8XzFQ3HY7BMoczsE3XVB/y5bsfbuw5hbfJxV8osbYck7u6WosfX4O5h9twtIWkXvddLkGeRjjNNFv9lgNUYOjt3it67MW7xRKq1OPgxFboMXKY9Scd8T6362dzu+uGMrMUGZegxZYgNUhM773nIu1eAAKotSF/fotdqQfrbcv0z4Q4Ti9iNy5+fkHLsmKATwQQtBwbp6txbSBj355BX8kjfdyhBEAxHhAcuAzYDjwVBMCsMw9sP3/d9XPuEFPVr/wdQLWWxhP4zDMPj1Nw7sUHAf53SfNi2GYdv4UsUEPkrZOiKug0w+nWH4DfbvRG2LVW8OaSN1LQ29izLoWjCKwBspJBSyiL3twKqeYaryFZQ1EaCZrpGzFBB22a6/NshDghRQP3j3bjsoRepukFA0p+vOYNU2qK8Qr2opcvLh7DUNFW5fUiyjQRtTJoqSQ5qyCeD5kiW+epdT3Jtj0cjF6L1eUVMHDGfHUhwf/nQc0gtaaL9gLbDLNydDUlauueZmDACyAA7H1SDwJPsWd6g8brPJN02JR9bMrgHMe7VHS676i0aZvX2PA1DELe7ArH7uuY1sGdINjQGpKYJyBh26wpW3n0+TyHqb2SFNJMRqcf9ftNVFA24OwKgP+UWZjCbL9c8DMC9+V/iCaZz+0MqOpEPP578VWYwG4BnElfx+Vf+l72jxGH9W1UCgCopoi1TjPBPPLaR+ddMiiTR11ASARyASopopiv5OgPXkE9lSxG16WpRpUm9Wac27zCkuxrreI8+h2U4CDW5V97UL3rrQX/S7dORGfRkMnNP3hKGYWMQBAsR6Fl+2G+1+n9nEARPI25qr/ARXzSDk6t3/CYIgv8EstRn8AvIRPuBlfca2GVl+MiRPLriJ1wWjGcIYlRdgSuTfR4xMluRMfAixMC6EDGqWnDVrVbEFa4GeZe3Iu/4JqSn1Ol35yHjgRl7G3Q7Q/9MSOqgXrsPsmCVgVgboxFDcy+eB6ZZ9zEjuBaPCTLAkI67q/XRz2b8tSPzYCfcBc+M2P0IW3Aebpyv0n0sdmIFbpibIWly00v0ervxFfh2XAnNXKl64EazrTdNQkAWOLjYj5Dlb+kxBrpykXnd8syAJ6tF28jyzRxu4P4YOCecDxyga3DpOwCU1blN7yuuKGhCBi1ap2qkf+zXY0zFztq+CWenLH6mGGeJhml7mvCBCUNYv0vXYwpwWXUD2kl8dLEQ6V8h/bJZr2PS2gauTD2tG85kDkL6dDnixfAyDv4MpFnS3F24KIYpCtZpvXdoO6HtYeIgrfp9MfK+mIqhsZZnI/3gdW1rY8Gq8YUFixN6FU9HYdcwQJOBvHv22XIJ/Vy3S7Xu5Qjgy9PvF4cLgQsJgiMtWr3PcgKYoCAI/gcxv3KCINiK+Ec/FATBPGCGrujdhKyvdAJ+GYbhG3rsEb8/rKQDV4dhuFGP+XvcAei91OO9XOMvLb9AusADun2tfncsVbl3Le93rjg5Stz9J54j6Cw6iiRootRm7XjNnWXyMrcvYyuMGUrDk4IB/ZKbaWjJgZKmKOajke5UUkSLansOYy2ptDFcfZl20JNCNkZKbaWJMlK/3U7fKok7ydu9mwNXQ+ECiaI8MAqqM/uQVyfbd+TewswFd/LCZFE8K2I9s5nBYNYzSzONzmMKMxfcyX9MuB6Af+5xO/dzY8RQfDI5l0a6R4wJQPtNmTKggMThVBEZ3Xsey/EBAgQkZWn7fFm/G4TkCZql26P0PNWxtivCY3wsFkhBUsN9vTuqn6Uhq5/3yNiyJy9HnsNYaN+eCffBykvPp9etmyNW4JMDnqaC4kgKvHnAfK7jkUgq/HdcRjsJns0Xt8FIhbL7AAAgAElEQVRSXqOAzdx2ww8A+AoP8K2qf+eqwv8B4F5u5j/Ov54pmtPpmcJxDGQjl9W9yB253wFg2DVr6cmOCAQtZhxVFEYqgSsYSRHreVpvOMk2pqfP4ZlDst11SD17qmMAcwkyYX1Tt01gAjq6ab7aRMeoU/CAgcO9uj4+LBC8Z3e4dy0ae79fAdDpSE+8+7B9ugApYRg26+fJwEze44LWybxoBicRCArD8J4gCC5GRuQi4I4wDF/4gC/7XgO7tAhHsREHKAYcLscTiFpG+UYcbFjuGXO7uhAxzjbgAGEDLg9tSnGdcEbF1N3W4sDD4l6MadmB5zYp0fP+DzKnGQtlgewmFz0AZzMs6Hw7Lpvdgrs+Z+kxFvRubk3mPmfy2FW4+1VWrH5JxFCtwFmhQ3p+i8WwWCQLdrdovToctJk7YJwMTsGZohYc9GzHA/nNeC7X/bfovb+Fs0GmoFeo92FAycCIjNMFgMuJWzEVNfvOXARNHjuuHmf3Ynmb0nFxiCQ+bxr7n6b1qNH76ITEjmXgMS+WSPdC3d/avBYBg6YgZ2IU6/AEtyCg3hL3GrtVjSfazUDm9Upt10M4UDHVOYs9S9O2MjEBc8mze+2NtPsAPIFqs9YlT+uchi/7WJxTHdI3s/R6v0HY2EJt37E4mDJ7pR8+NVZrvQfgQLAOVxusxAUhLsTzUpnQgvUbsOdp3OoJKsfJBIVh+HdH+X5K7PM8UKum4z5H/P6wfV45bHs/R1iwepd6HPMax1HOCcPw7Nj2giAIXj/q3u+9vM+54mQrB0AZD88QZ0BoLZx2PuSqHIsNhObClYe8bKaidnmTJPBUQ37LqiGkFjTRq0ctjXQHYP2hwQxLWUu6LiFl0EwzGdTosksq7RykUxQ4X0uSYazlz4VSx77lO1mbfybDN8sq/2lnQCFbqRoqI+kk5vPsXZO5okZc31bnn8kU5jGybYVIawM1ufksmnAuN++SXEXZPRr4L77IjZrZdMvMIeI0Y69uOfR6fDPbHlGGqwCZAMzofhthJOKqLI3ElNqQpYBxCMQHGZgL8MF8tDb9/9XtMqQOZuw/FsK+wOn/UTh7hP6/FFn52o6spw8J2fZ4f7bVaL2vDskuqGVkiii4LWQ8o3ctY1YPsTnnMJ1JvMjp+mwK2MweMrhWhbT6PrWTA5Ph6dvk9V12VwlfLn+Ye4fKsJNkW8Sm3domZGiXmkPMKvxGxOwVU0EZpdF+0/hfHudzfFYV6uYziYdqZ9A1S9jKjPRmhhWv5dWlotxHDj6BgLu+ZeH9shq4KBNeMkns3rjPBbjvhfXzj1dskAgjHHey1F7Af+siTwrwmzAMfwdgi2bIk3haF/lOAx4Pw/APus9HfdHs5AFBAAp6PmjgEy/HDLoKguBLSDoe+vaV9XJzJ3oVWTW3RJtmSDcihtNoBMbmIq9jGWKsrUIMrQw8n89B3L3NhAfAV+zLcDbEjOIuuDSyCR9YoHeW1vOPiFG4G4/zMJACHYUWDFykxc6bEfu/H3k4g7TRRmg7rMPnSDt3EheI6ISAhd36veVpMbajAQGUls/HGKVdyDhvEc0F2sbdcDatBQcrryNGqw11zXg+JItV2osrjdl+FtCeq+1nXuxbYv+74a5ulrcIHOwYUGrBE22m6D1b3JUF49u1LceQiQmkIca5sTxZuIQ22i5JnCEzVtBityy2qFnb2xT1LM7I1Pmq6egiuAkPAzCJbBMJsP6WF6uzxYzt12OqdP+eSN9Lw4UN9uNKbUv1HMP0c4u2dQGeILiTXs9kvZtx8GRAdAACPkx3aLL+1o709XS91yq91ga9r8VI/6jG2aNavB/1Q/pkJfB15P1uxyXe7bmN0zY6gbDHy18nJujjXA4GQTAwNuGal+bxlvcUoBufLzoG0nwY5WhGXg/kdnQW6H4+vN0EJeoGtgR5CS0AfQgyyKvx2b4uEy6H1IKmaLugRzUDqeL3qz7FeSNeYkbKbGpJRu5v85jCOBZHwfmjWEEzGZToRcoopYDqiCm4uduDpNIeucMVLtjKognnRszRJObTRmrEZoxjMSsYSUMihx/lSgxQNg38kUvY0EMiWGdyB5fPnB8l5Oz6zXpmpX+XpcWimrZzQk8WJi/1lZOv44liQQaZm/Df79PfCmJttQzxETYQk4awPcbuVOu+Zsib45EN8rMCjz0CmBFKclq7ZgH0um4z26r7i3k6C3Ehux2+fqsAkgQicX11uQwPzUMz+F6PmfwTPwYkNqqCYsapI/lahnFBzWvRNd6YNpB5TOGW7/y7HE9X/jz0DG6u0nj6PwPD4Ne5n+bzVf8LwKLCc5nB7EhmG6CNVKrV5bKZDA7SKXp++dRwRnIHa9SfcduC/mzL6++D6gFk5dBigtbgcQXleMzVCiBDkywZkxkt6fWIfY6Xjzb4sXKC1OH+RORU+o7f4uptZx9ln4/6otmHD4KCIGjmXQKdwjDMPNpvJ+LyR7rkYdd/EEnXQ+cgCPsGozu8VsvxhImXIE/qEsRYWo4YWYOQ8XMC+s7iyTCNoSjFlxTN28BcnEztaxLifmwuTBsQIFKAK5SZLLTFgBQgBmE1rsQGvjLfhhvFebjMcQouYmOxTiaMYHEqFjdhbklmcBsgsIDzvbgCWw3CSLTqZwuMb8EN57jSns0/zYjBbPmPOuECEwY08/T43rpPA57vyIU6O4ofxOsdd2sbjhjaFuxvz7AOEXR4kVLgtOhcrXgOIIt3adY2iKuGmUR3H+SZj9V2sHu3JLHGumzR/eN1TkP6zAC9ryycPWlB5ooxuMJbuu5jTKMxK61I/7GYn1Z8ykjV8/RG+kINLh7QiINTAyir9LcCvY65XLbioMTaca/WDz3Hfnyh1EDPFlzm3PL7GMDbhfSxXHwBwtw0DyL96yDOapXi4LpC22I+AtwMdOXqdV9G2M2X9ZgJeE4mi+8zlskWIz4VjI7En467/HVigj7O5VvAS0EQbELG937A/zkB531PAbrx+SIIku9VavYDKvEV77hEtokkaEbOt42r1TIUMTo1FoZ1iDFqhyt2as/yGKL1S8+ieUwGQ0cs59VVF5E+ooUktbSTSgXFnMEOljKGr/FzQJifOAjKoJlKBnOdpfXYAO35qVGumu0TunHB/a+JsQ5wPuydnMIDCQkiMjUygK/zUx7lOhrI5kbu52JdV72WR5h4x1xerBW3sD2NGcxOnxEpkqXmNcFjkFoi4K6gRzXrF5zlLMzvEOATD8a/B3EDuR7JcjIauG0//IOyankIU2RtmaZtazFCBqQMFK2jo9wlyOBvSkRbYduI/u5Gd7vWYXQbjx66loKUalauOp9eIzbTPlQM5MGs52buJck2QCSxi6iM3OPWMoyK/GK+/PWHAfjENzbyiWf/Pbp8xo17aCeV1YUCNoY/+ibLJpQwjsVsL+xGOwlWU0IN+ZEa3BiWkqA9Ar3NZFBMRcT8rWUYFRRTolx66oQ2tqwa4oMqeNAneJB1KxIjVY937+Zq/XA6HcA96LYtZ348GKBT5cSWDx0EhWGYARAEwUykmz+KTDif5wTmIDxKeV9BV50Rg+gKxPiy5KiDEIPKXNnKECN6GO7SFZd7tvgOU5kDAVGT8MSmG5D3vRjJX/IZvaapumUgs3s+MlYs0X0n4TE+JoyQp7+Zy1o+HQVq4iBmA54bZSkyvtvCVa3eywjE4DWGxoQMDuGu46OQoceYhM4IcCrEYzdMRMJYAFOey8Td/MwATcdZEZMSN3loM7DjyVfjinzGZiXwgH5023INxZOY9sDd1swercFBUh3QK2iImKQBdAQ6CTqyUeDKZOY+uVX/Rmn9mnDAZkxYXHEtDtBqEVEEEyDYjjAc1nGH4UlEu+DujVl4fqjO2m77cVVDk7E297xhuJiEubxtwWNoWhCwlKXt2Ij0nxRcjroFYVby9HwmaLADVwG0ReZNeLLUDJwdS9XzmDqcKb/V4TmlihGmJxUHTSkIm1OMx0EZgB6FAOrFWrcN+OJBGq6uOA+P5wLpmxYrdRABevPx2LzjLsdmgk6VdylhGL4YBMEg5NEEwLowDNuOcdh7KR94gO4HV440zceTSioY+r12vIzOYmhW68+jEQBkOgp5SBD7GsGFQz+1PMoH1E6CwSP+RKrmBRpMJb2oZQ8ZtJOIXLDqyeYqnuETdRsBSObW0r1uH3NzJVnqyAkrGP79N5n1Q1F/u63pJ3AJvFAoMUAXr1zCwsRFfOt5MdafnTyZBO000p0XmUSSWkopo5mMSBhhHpcxnSeoSApYKqWMZ37+WT75td/K7Xf+FHwVMsbLqL1+6VkS3GuG+B+A23DWBwSAXI8wPUOg6z317FmX40zOHxDAEo9nacRjhgwAWVtrvI+xVYDky5mtn7+JKMdt12sDXAODk5Ws/+1ZNNAb0mDbpgLKBpRqW+dQQTFXIMxQBs1k0RgBkkoGcyVPs/pnAnLKKOXLrzzMLx+X0IsvLHictyecTuHzOkMOExe6avozukYaozT/NZrpygyNw6knJ5LFBqIcRRaPVdZSyi3pP43U5DJ0pjQA2r5G8zUZ8I7nAYmD80Zw9zcD9+b+Zn38QzdzP5ByiJRI1vxU+cvLydQ7LgnDMO5e8IsgCMqAf/0Ar/m+gq46AZ/GM82nIbE28xHgYosVPfAV/wmIAVaFGFBbEQOtEDH2apC1ikI87sZidvIR4HA5MgZkImPlOYjRbJEIaYib3Q5kpdvAgMW/mPS0uRutwBmh7cjcFnddss/98BiYdXgun2rE8K3EFbSK8IUbi/Ew2W1LIpuh31vcxX48oaeJwJjBaVLL8bwzJrvdRds7Q+tXhLsRWn4YC3rPiv3tx5mBBjzmxHL7gAsXWLEg/LhU4SbcVSuh292QZ9UNF1IwYJWr7WeWmDEzxtQd1D97JnHFuMPJ/OEIi2IiDvG2N0ajGgHftTh4svibAlxowGKoRuFubrk4cLKkrCl6LZMKL9N7MDZvqN57K94fKrVeFodlIK9Rr70X6V+m6lat17HnZDFvvYFfIu+RSXoPQN6nduD/If2kQY95XZ/BXjq+A5YPyRhEi2kyJswkxg3MWf97Hl/QWIK4bVbga40X6b4TgP/mBJSQYyGqU+5wRyhBEEwIw3BBEASfOuyngUEQEIbhb4/zEh94gO6JL4eveMfV4vrgxmJnzam6z7fH4wzIaOQFte2SNliWiFbRyuedQ68pmymmIkrAOZ9JvFpxUeRXO5XnqCUZKZRdxjzmMYVErgTvV1AMuXAGIoywhwwW/bCI258XxbI3Jg/kE8s2cvHLSwB48oapXF3+HLdMloTxY1hKPdlMZw5PcxUAqynhAhYzr05U04blvsZsZrCtVtiJZxo/C2nw+8e1y/wRyIOG2SoTY5PKaHy7Dx7gWY6KFhAp6e0ZldORyRlPJLUNyGD71GFtOxYHSZ9FBhdboVwWSNtbzFA57h6h10wtaWL9qrNIHa8A4qZMuD2IWJiJzKeCYiopAogU+y7RwKXPMoc5TOfmleLuVjaylL2/SuELt4n89eq7zmT482/y5OSpAFxd/hzbSJJDvbjGARn5zTTTlc1aqY0KrI0Zmspz/JHJWCLbRFobc5jO+goVpWiEfmPWseXnSokdnovKYgHi4ZdZSJh9VHbREQSdTkdp+I8XA3Qi3OFOlZMLBB0MguDzCHkcIuE2J8KX+6glDMMD7yfoqgWZCS/E4ybSEKP6dTyBpRmCxjLsQsa+XUj8QickUSrI+NeIx+WYOpjFKezVa45DjL4EvqqfioskWBJSk1jeihh2+XqeMYjxejau6PU6bmSbIW4GKHqP9gCG4WxHmtZ5jJ7b3LBMjMAYoAG4e1M6Ll+9C1dCM5W43npv5sZXF/uc1Lq04sZ/F8TAzUJcl2yhyBTz7LqHcEnmBL7IfijWvjtwpmkHHUERek976Vh64rFN4C7gFnvVjjyDboixvwLpLxtjbXUe/nwsGa09A5sD1yHzwQa91mr9bOC3VutSg8yn22NtcVDbx9znzCXMGJtzcKluE5HYjwAKA9J7tY479F52IX3ImKay2PWMRTFZaXNlM2CDnssAkqnEmeug9RdjrizJq8mzGztYqftV63XMnTEVeU8s7NtA3CbdztbzrkUkvmoQgH621tHYP4tly0KSl9liRRKxT0r0nj+DPNd8OgaLHFcJ6ei7+c5yyh3uyOVCRLNl6hF+C4HjAkHvd644Ocrh7nBWeiDLbgW6vQMOVBExQqMyhe0w4/8Z3XWJbq9IyKBzsWxml7xFklpqyI9crKopYGLx3Cgm6I9MZic9WaEUh6nImdFcTAWFVVvZXihxVHnP7SZ7akPkbvA0V1Jw4U/p8qSsEFz9/HO8MXlgpIDWRioXsJju39/HF2aI8T43fyIzuYMxuQLM2klQShn5SZVpTuZT3nqOJB8F2J6ARhj/JZHFW/jbS2Wg+g+976dCuClw17UhyICQh0tkX4+7vIEMIuU4MxQHOyAC7lmx34cgA6ddo1Wlue/JibaZhsQrGVAAyAppbxVWoN/j69iyqYhUnZ3WU0QhVVFbzWYGY1gaAc6uNHPzKw/CnXKqLz/8MM/mTuZPdwmAua3pJ3ArDJ+sI+ROkTzvXrUP+spXGxnIlKbnmZcpMVr51LCDnhETtJDxtJOIgNi4lMWspoShxcsBGM4aHn3ki+4muA4xjqzPFSBs23hchvxeu/nM2P9XcInsQRxZGOHjUUQd7hQTdLzlZAJBn0O69b3IpPUKf4WVtvcTdGWy0VuQd7UzYoh1QQzETYjBbXl8GhCDyaScwQ3NYmR8fRqXFTYWxVarbbwsQVaZz0YMtStwqWdTebOFkkLEYN2rv9Vo/Uze2oLnt+s+A3ADz3LYtOIGdHrs/Em9bqteYxceH1KA54Xpp+3RiBimxpqYkbtXvx+ADFsNCFOQqufI1mPMwDQXw6S2sbnHPY8DvS0IyGnEDWZzoTqECzPY+cyIN/YjLopfqW2dghvGcXYIPe5opSH2eTfufmeg6Ww8UWcKnl8pBQe5BoZq9doGKrbiAhEgz9sSndbguXLsGbbggOoQDoLG4X3MEr4O1f82VbRoHcwntU5/24+r8xXgz3YT7tVhHh55un8Krv5nTA1IHzPXTpOPz9K6liOAJi6AaixNKc64Wr+z+Kd8bUd77zbp+S2hcDYChIYg82qltlEP/B1vQxiffGQRohPyztcgQPbvkMXdD8Qf6oT51v3tlDAMv68fZ4Zh2GF9WNmbE3GNDzRA94MtlkjSPlfhK+Q9gHPFDQ7EAB2PS2Sb+5HJOs9GXgY1UBvSetNWkGDPdlvKg14DqsmgOXJzkhgR90rcSCHX8ggvqtU7ipXQSrQ9/cL/pXvdPhYVngsgOWwm46tOZ8In/mEjb/xCNpPUsphxvPDDsRELMY7FWgMZwX6LMD5DK4TH/V7xd2EEbDskjElBspqVm8aw8EGNxh+LvOR2/zeJAEE0Mc/Sdhoda5t7cNYG3fcuXEK7Wv+e0O0sBAiN123FodmflRG+4Q+92TM0x7W0hurxOdDvU+tE4W48UB3QdXSztsU2igdURIlqp/EUV+96knlZEuf+25RPccFTr1E1TSiteVxG6fllNMyV55dKO1esfJ4r+j4f3UbV6j4U1m2Ntrtfto+quX0iEHsGO5mT+elou4j1WhcZIbNpoJmu3M1tAFyFyHhb3qenW66CPtCrWBPwzu8Pe/AYoT8gA7a1G7pdhxM8pwEHLFcQCBjax8eNATpVTmw5aUBQGIbViOToSVvacbESW0E2+WsTLshDDPaxuOFsAfsGGMBX1a9AjC2THbZFIGNjViHjwATEcByLTF+WD6URMabNsLacQJa7ZQhiMCcRA9DYGAM1LwPT9XuLN+ocO7cZhQY2NuHuP42x69l6RCqu8mbuXBYY34wwPq0IMFiMLGql4gpjDbgwgBnaDXhMjans/f/svXt4VdW19/9ZwVwMJESSSAgENhAMxkTDRcEAioA31B60WHwt0nNaau9WW3u0rT/bejitHvvWtqf2tb7U04NoveClKnjjJiCKcokNBoIRNgZCuAQDgZAEyXr/GGPssYKCtnB+UGU+T57stfZac80119pzju/8jvEdZyMgMh03RFv1ehYIb4CuRa/fFU/YaQDDGJ2Dy1v4opR5NkS1ZixBqLEDJpVt7nSFOMgxkGEeEOaydS3OAhqpbaCtBWdPjJmxvoz28y7keRrLY3FbIIa/AeJ2PB7GVAgrkPfMWLutyDuerfdTirObcdwLw/IcNeo1TfGuV6TtBqwrcYDcXfuqSOuxGCRzvTR572Q8F89QPPZru7bNGCJwFb0Y8p7PRX5TNdpuA/MpyPvViPzOhiExb4NxlVqT9zZg+BbuxrlJj0/DQbTFAs7Ve4+yh393+Xgm6EQ5fHkCTxdmZRYw5Bi05RiXqHUIPnoNwDODAZwMpyd7zskuCBCKuoFV4CscZbrP4lbmwqgbFrE47zxi6RuIN/dNCBpYMYnsHN1fTRGLOY9hGkNSTRHD0yr44kxRG2MXcDGc16JCCH+GD66Gk3SiWVVwOqf9upqi3RJTdEnmc0zjNmJs4MIVgs7uHvIdJjKL6ZoiqpJS7uYH/EfxDQD86/zfMnrMC6yuF5eshsaeEIeS64WdWP3k2Z4Xwu57Gj6Jj8bds1oix8zEmaFbEKPBBs/XkcHKmJ4XENBkyVUXSh0Ns3r6NWZGvt+j15oODZfk0Of2tWzsNpAeOzew5beC9QtvqKGKYiYifTmLiYzqtpj7FIlVUQw9SMT4FLY+LAP+IOnLBO1v97QMCp/c5NljSgEJ1SKDPQC0kUIZFYxVv789ZFBFMS9yMSDJbbeQzxRmALCcoZrjRgDqnsYMeozZwJY5ul6RhSjAWdLYCdqn1+C6YnH9b1q6H2zGlwfBgb+B/SYUKfFpKO0knXCHOwrluAFBQRD8Fx+ttvPlY9CcjywpCONQhRhRGxEjtwwxutbrvvTI55F4RvuLEONuMDKn9MdliU1wYCUeQwNwFbLwdj4yL6QiBmNnPIGkuQbFEIPXXJq24kbiXt0XVU1rA8bjrmcGfjrpdz1xRqINBybm5gdi/JmyWk9k7LRYGwswt6SkB3BXvWx8LjXQkIYnKc1DhjaTp7ag9io8eawdb/MLwMN4jhwLsD+Aiw1YnvTViFEeZYAsf425ttXicTq98LxJ4AuSNZHtXpFzbf/5iDF9Fh0lpi2vz8BI/6Yj7Ndu3FWsGFl6NkU0u/cWXDXQnpu5NEYTyWZF7qFSr9GIsBl2P+ZO2YCYR3m4CqC5Bsbo6PJlghQGvgwc5+LCwCZOYTE7JhFuCm6bcfl2U5Nbr+02V0dj9AzAmcJbvp6fhscDtSK/D5OvLkZA/lDE/dTU4sbgrp57EZc3m/NfRFz430J+j3P0Gebqs2pAQJNJsxvg9DXSIywnYoL+rhIEwUDgDKR/onFBmTgZ+hktH+AGoJXnAeumzbCmBjIUO5oPbVy/juGACISNaAFiOl2PlHwle17IoftVyyCdBANjge+LGcV1zEgwQ0VU052t3KnMwK3cyd6CJDq3yMv/cslILly9JJE3KP/JbbyYOZbyyeLa9kywhs+FEqsCMO2K2xj+UgWPX3QFlUNMwUEYiOWvipjCtBHf505u5Y93iaIcV4hAA7MEWZ17wwJeq7iAdTt1mWaT3uc4vLTgE04FIpk9FxnIJiCrKWU4s3On9qXVUYYAHVsRG4hMQq/r9iV0VIbbh7BMM3W7RuseCnt65Ugbvy7uaVNuEIBx1/rbGd3vRVYo7k+hjdEsSMRKjWcOd4/4TkIiO4MmzrjxXVZdJMIIGblNFL60ifqLZCTP6bqLkzLh/QJhWOLEGPTBGgpf3UT1iCK9hsyIc7gMEAGE5Qylh1oKcfrSQDZFulRU0V7GaUnreK3OdEJFJjvRL120n6OTuwHIAbiBsWV35ABbprRZejMdkwTDpwUAwdFJlnqiuH10PJTngNn6Nw+ZvPYc0xYdVJoRA+ws3IVpK772MBBPpBhVZIvj7lsDcEDxju6r1M/v4AadiQEs1XMK8NgJS4BpksfVSGdZhnsL5C/BV+kHICDO4icq8dgeM56f1/PjeqwteNm9r8eN/0a9j124UMCbel/JuDCEiQZUIuO1MTQW01Kl99pZ67PElHuRubgfDiw26X1YUL65571Lwougwz11i/RX1H2tOx5HA260WyyOOY1UI/boVuR5VuPS4l0R0GPuyenaPruOxc4u0GP2arv64AuLlli3K/L8jFXJxEHIMhxgbcTZOpNPNxYSPJ9PJ5yFbNH+S8MlxZu1XwroKB9trmuVOKthKSyM0WrR8+q1TcXI+9IVec9ycTe6GM5StSMgx1TpzGV+PQL6zE0SvU535H3oqp93aZ0mid2o9dcjz9EWH9L0uKFa71na3iL8XXgF+e0MxFlJW8TohgxEXfW4/voMLG7MlO4G44sXR0N/OVFMHe5QfxoTdAIAfagUIfg1C4kLsr/BwFePYbuOcclAwM9JeKA4wJn4CKOGYgmepNL8Uu1vKGLoj0Rm5R1APIB4QHbZZuatH0+PqzbQTDrdNdZkWbPk/pnKdMYzh0KEaajmNBZwARk08ZvWG7idOwBIbW1PTAAZ7KGmpBe9r91G72u3UZ3Zn8t+MY9Ttu/jlO37KA9HCqDKB/Jh+LMVcDr8gP9gOUOYxKNks4PubCU2Yg10hzOpJIcdZP9gM5wNfYrXUkyVTB458NqcCyAPTutWzWndqmWQGYkb3LPokOIxe+5mGSDLECD0tPZVHBkc1wJf0u+XaJ91RdiM4XgyUIt1uUa30xAwNVEf13BkUHoOGTgrgJnQZ+daAUIT4bUZF3DX0p/wFFfySr/hNJHBjOYpxIhzAQtYwVCWM4SllDOdqfxg1n9SQRmLGUUGTdz+6x9RunsNpbvXSJzJSRJD1UYq1Zn9+SACggdtXyOD32kCfi7bPpIuLqcAACAASURBVE+PTaGQGsYxl1lMpIjqhCpgKq2MZgEbiNGFJs5JWkZlcyk0pspfS4r3h/29jLsPLoz0lQ3cLcBJmfIeZ9iymr3j3SJ/0JEVPW7W/o+oWLLUw/2dKB9fjpu3IQzDJ6Lbmj127iEOPyalM+KGtRlXloohxtPnkN9nATKO90GmF5PxLQdmIIZUJRKTkYW4hFmszFI8oaUZ85WI4Vis17G8MLWIYVaKsx7oflvZ74MY5t3x1fUDyLzRDTd6W/S7frp/sx63DFnAsixZ+3GBAnPV6oYH3ZsojrlX1eFKabaKDs642DnmntdZvzNxBRPnsRiXfO339XqsKZYNxxfSzG3KBBLM3a0YZxR6avsW6DkGstB6LU7HVvctPsnU7UwJrifuuVSA52pC78kSwq5C5kQDNlbycFCwV+s1EJmix1q8bDQzo+UfMol1S6Bq/QbO7EWZIROiMCAH8oxiOPDcj+duirpPWns6ad8UI8/E3PKiqs52D8YyNdIxOa39JtD+S8GTrpqyn7mkWa6m7ogdUY4MCvaena3bxmCej7y30cUC64NanI2Ka79fiicrRus3+fVhdEymugyxtHsi83MMT5x6VMv/qBzMp7OEYfgX4C9BEJwbhuFrx7o9x08xBijqzLsJB0PZQCmckuzqW3HEKLdB1WQ/bSIoxY19oKGiJ10G7iCbHdTRA4DzWMyqdAmmmcs4hrGMGHHu4hYAhrCce7iJjFQZFa7jQciEHq11kCkJOofXVCTcrs6ofVdoXlUju/CVJTwz8aKES9dvfng93119P/FbTmf2w2OJE+NRrmHFziHM7DaZxwuvoIFsylnK8qShMEbyCm2jO33Gyyi78bcDoZe6waH3vBp3yWrUrlSmpmFkT5+8piKDVnegBzLQxLQPhyOxLGsREBXXcwZqfw/U7+oRJigWuWY9Eoek2ym37aZtViZdJu9g4/yBMAu6DNzBsMHLEi6I5/9omQDa0a38a+PdjM5fwH/zJbJb5funU69k2sTvM1V1txdzHpN4lJO0b1NLWqEUet8rYJantsHX4ZQnFSx3Be4AXoH8iVt4O7c/MeKcUfsuqwpOp4FsSqmkiYwEEzSXcYxmIam0sY4iKhhEalorxKRNiXgym3RLkAl0om7v0H55AZ8UG5HXuCmmr/lgmSy2xPWAd4BtdAQ+nx4mSCSyTzBBR1qOGxD0EWUACe2R46OYolkxHvuwFRnTapFlyJWIkfgXZEW/GjGQKxFj3mIg0nFD3VydOuMB4tVa//m4e5K5o52v1zExhgKtr5N+fkfbux13D+qHu72l4It9lsDSYjhMSngjvo5SjefaMZCRS8fYn3Z8Jd5icTrrXyoCIopwELIclzA2cYcqPEjemC5zY4sqzOXruRb/kooLGFiCzUY6shIGbCyBaLnex3I6BrevRySRayLPyFgVy/dkoMlcHGvoGA9yru6zWKN8vedsrd9AjJU2XJbazBRjs6J+PMsQSWZzH4vhiTtztZ32HDNwZsvyMXWK9JnF15jnS73+WRyNxZQZYKjHgasB8K64ImFnpK/bEBupQa9vLok7tY4B+LNrw5PDHtD6zf4fgMcTGYArxiW1DUCvRd4rS7hqYh8pCBNUoOcM1HMuQtjXoTgD1ob/rp5CfsdrcYBvbqr27EzYxMaAvVrvUxyFciJP0N9VgiD41zAM/wO4NgiCD2UeD8PwhmPQrOOoRKWDB9ARFG2GD2LuipSG/AAm6HYcp+5B8taUtUKNrDSnxHazZ20Oq9NymFAskeurKGMSj9KAqJpdwAIeZVJCLW5q63TaUlP5wXbJ8/N4roCUDakxAC6ctYT3Jp5K/m4xxE9aDgyD+iHqojVgF504ID884Ls191NT0ovWh1NZzCgAfsy/U9WtmHG6lnoHt3MHt9PUrHEor+ewZVNfzp0iy2EbJ/aFaan0+L0G5+f1FRCkAhEpc3fT9kJmIj9Pl4Gq2rYWBy1xnKYGATU5uIvbnxDG50+Rvs7C3S5ykElptG7fBwxshU3S122/zISusGd6TuJ5jRqziOeXXkWfckUHJfCFa/+bxZwnfc10LuM5FqWeD4gy3zCWkbddZrLq3NO4uvZZGRiBlBJZ2nv9WwJih3+hAlZB/cPmMwEZrU10HtieiMnakdmVZwouSggjTGEGP2aaCF4ABbzHLD6fEKkAGJs0l8cqvuT9EGsFVbijRe4jsQw+EGcn7T18HmSwVF+cD7rBlho6SmSfCspMHt/m7olytEoQBL2RNMQ7gHVhGN55uOOPm7ciCIImOsYE1YMuGx0nxfLTWLxHAR6bYG41WQhb3YoYrKsRY8xc0loQo6oacbcpRdzIqnFFNcu/MxRnCTZqfSZLvB0x5I2FMVerKsRAszYYE2LAJ6r8ZQpixu4Yc5CFGLf9kGnSjNyteP6WTvi4bW5/tpBopRUP5DfQ8Q6eANWMWwNT5+OgBxz8dcMX3LJw16g0vY86hLGyfE3rkVX8TpFrGIvRH3dfNKbCmDJLYmqAyhgAS7xpDFy0vMSHy2u4n+lQPgy0SvD8NWi9JgbxDp6Etg4HY+b6txPpb1MgtH6052KulPv1vlqQ55SKJ9DdjwB08ygwF0lT2TOj39TjTBCjE/KMC3CWbxduTtUiz3k38uzW4+C9Oy4B3gnxQFmF50sygQmT0O6OLDyb4qLFgJm74mr9bzmMyhBbpDOes8gAVjTB6kY8njsLeWcuxhcKumubyxFQM1LPK8fn3+e0jpU4E6Rrx0deQj6OCToRE/TRxcL6lx/TVhy3ZR8ddRZ3RrZj0LTfJ4eMZI9dsTIcV0mrAApTEz7IbXGRKD6t+K/M2SkKZGO7zWUe4xJS2HXks5Ry/oX/AmBe6jgBJyIiRnpuM/nUMWimPMZVk09nUO0a3iuQmKDea7bxwXVifAPckfkjMmiidojkrx3HXJ7iSoaxLME+1CAMxXKNjZnCDFJppUu61PHgmCmJWJZoSQTnG3BR0NP2gibwvE229+TlCMhpxFmzWcgAYX31AsISWfBpFz32Et2uB25rhRI1/muAb4fwuCSiZTSwMNUBqq3wTdZrPQ3Pl1zFuVct4LX1owE499oF1NKbLVVyH98d+BuuS3qQ3s1C9bydfgYZNPFMriDI2+b/b9gJ739PwEPv+duYPWYsjeq4XZRbzSkn7WOPAphVDIJUKC6p4l36A1BGBf15N5EM9ymuJIeGRE6iz/Es9/ItCtV6MkEMA24b1xeJRLn5iptxkRbZNlc4Y4IGAQOT4fGYbH/wKrLcaBZaNjLbHzdm7lEt5g53JCUIggLESSkPMTfvD8PwNx9x3E3Imxwi65P/EoZhSxAElyCKzp2A6R8HOD6mLQ8ga5DbwjAsiez/W69xGjA7DMM/BEEw4+Oue9y8HWEYZnz8Uce22Kr7SMRwM1etA3iulRbE+B+EGIpFCDApwgUDLE/O+Qg4mYgAIvv9m4vOXMS4fxHPZr8TD15viOxvQIzS7sgYMVDb2I4sSq3EDWljGFbieVYstqUJecNNctncvJIRQzoVMcKjrk6WXNXiT8zVyty7srR9psq2FzEiLZnnEsASn9jxVdomU+IyIFeLJ7i0RKYW4I72wVJEZrABGRJ3an/Z/GFqbJcjCcBNVtz6AP28EQFTy3RfVCbbXOIOVexZGkN0FjKOG5MySfvDXMEsgWg78v4c0D5A216jfZSOLDYaM2LnWSySvYMmJGBubZnIc1lyUNvMNdKSvBbhTJ8lHLX7tv4x0YFKnInbhfTrflya3NplMWoGyLOQBYNuyDtYqufU4yIW5r55NgJyjG3sFtnuBDwGfEXPH6PfddV+akOEDcYj70I1rtpobov2W9ipzyKm91SHLDLv0ufQjCdGLUJsmlLkXdvLUVKGg0/CBJ3IE/QRxQBhGIaJnLVBECQBXcIw3H3IEz8T5eA8QQ2Ig240aDzyOSfZlXbApSHN+BwO2aM30/CCKJgNGf8q8fYYGTTRVi+AqK1bKifTTK06c9zLN5nCg2SpNZ9NA8sYxqIRwtrk0EAR1cyePBaQQP/ZBWO5ePc8AGZ/ayyX/WQec34mCgN33PhzESVQG/C9glO5afd/clIr3JN7EwB38wNWMSgRrP8UE0ilLSEIUEwVi9tHsbpCldheRgYIGyANTkddtJYjCnGQoMS7zNrBnqmax+eXdARF9dpvJqFdBnxtN5yuuW0agbxUZ93ygCUBPKrb05CB1rDaZDyZ6tPIeVmIG+JcAU6vlVwAsVYuLZbUWG2kkkETV6YLV72YUXxx/hM8NEYykPQfI2yOAZqxI+bSTLrES2l5f8zJdFGU3J2txIiTv3sbizPl+TWRwaTdT9CQKaBnFIspopodygRWa66iKpV8GsdcNhBLCGV0yWtgT2OOq+ANRQwg67ebcR/qaGkhkgaoJ4d8p4EP/w7+sV3jQgIOJKzSv7t8AHw/DMOVQRBkACuCIHg5DMPEww+CoCdwA1AchuG+IAgeA64JguBB4F4kY9gm4M0gCJ6JnqvnnwrsC8OwKbKvMAzDGjqWPyEMzozIcZ0OdY0gCEqBXxxUx5eR9dUfB0EwCXjw4zrguAFBQRDMC8Nw7MftO5alATF6MpEppAkxhBYgv1lTtrJ8PsaQFOByye8gRlQr8AwSS2Qryhbzk4wYchfgK/ID8KSh6chiXDmuUGeeoeZS1qbXKsaZhCzE6LPkkYN1f1pkXzMy972Dq8qZS1O2Xs+ASDoOhAw0mCiCKdyZS5QxBv207o3I3FoATEHGeRNx2Kvt2oUYpzG9n054ok6LEUrTOiz5rDl4xLWNpnRn3hzGRKDn3wCaN9sX/oq0nhIEAJnsdbSYnWptsOSo6D3k01F5rg6Zr1uQudsAaT3uzlWr1zKw+FakPgMlFmuViyvDWRzNAdyNziTBLcFoFSIgcRbybJJx8YZ27S9jWpoin41R2onHVKUhz6sKmdMN/CRrG+03YEIM0DG5q/Wl9VOD7jfAba6Ub2ndnXGmaz3+fjYiym5btS4DVhnIu2PumAa2k3H3tVTkfTfQ3w8PfWhE3k8Dk0V4niaL+/onnMk9XM6ov7l8PBN0ohymBEHwMJKV5QCwAmHOfhWG4d3HtmXHQzGjcDMdQNBJwAcRpsgoz6iCmbltAbRAw9M9E37XK3aMgKHQpbiJHsUbiBFn3vrxfKHfjEQemFu5k+UMTSRTvYAFVFOUkExuJZXC1ZvoMUBYnLbUVM549l1mXyHT/2WvzoPPkWAa9t6VxLrUokSyyAyaqM7MIIMmvsm9ABS+uonpI6YySRFFNadRSwF/rBPJ7LH5c4klxUUaG6AUuozewZ4XFNCMA7JaoUKR1hLdZ4Z6BTArZM/lOagStAwUc+mY7TqGK+3VAw9louE48l006enrdExUe7N+NpW0ODAyhNeDRE6iPr9aK4yAUdyz4LSfV/NFJGnsM1zBUsr5Gn8A4GGuJWVMG3fzrwD0/uM23vvKqRSon0NTagZXr4iQzC8BU+GBXFGXayOF82a+Qc3kXnx9+58S7X78iisSuaBM+GIOwgwWUEsrKQnQs4jzSKU1IaLRkJ7Dnpacjn0xDhSvSh+0aH82RvZVICxmojN348lSTR0uCnb+sYFPtHzCZKk5QRBE2fH7wzC8P1FHGG4BtujnpiAI1iBrx1UdqxFllSAILJqjDjgHqAnDcD1AEASPIFPjweeeD3wjCILxyh59FZm6x3e4nzBcFARB7KBzD3mNMAwrkbXsDiUIgpuBn2h9s0Dp50OUYw6CgiBIQzo1JwiCUwDlgROL18dN6Yw8tSbcIHsFecLmimTqX+auVIX8lhsQVywzwM3OsQSXi/GYno24EEIr8tO2AO2ByE/7bDzmxFyEWvTYfohBWIAYfC3a5vzIfgNLJgVs1zDZ3zzcVa0TAgb66HXMwC/S7wxcGGjohCyotYPmi5ZrNup3pchQ9Zb2WbVe19yzzO3LXKXMgLZfnhnq23HVrv+FLJ7t0rpWaj+YYpqpj2Xqed20PQbUqulonO/HQUwUAPVCwI4JPpibm3lLD9O+qNR+su/7IIuIg3C3KzPuO+EAuhOeFLa7XuctPS9N25aEZ/kwN73teq4xFcac7NW+N3Zpqd7PQD3e8v1YPzQi84zFZrXgeXXseRmrZsDE4mRycUDWEqnfynZcKtzyEq3X9p6FPDvLKdWGKykeQACcAfUlyHxfi3vwvIOr1z6HxGWZCEiS3ks/5HdYir9Ty3FRIpMUz8PjyToh70FP/B3qhgs3GICyvF5HXE7EBB1pKQ7DcHcQBF9EiMBbEDD0GQdBJ0c+j6aDe9wHu+GU7vC+fm2uAHHdNvUaM+xLgEZI+aoQbG31mbAWNjKQc4sXECfGLf3uoAd1LOQCQPLCxIlxsS451ZHPlQdH0XUXAxzE7a3mil5cNlOYIPJh9oixXHarbC+68xzyqRPXLAQEjWIRDzIlYWj/fMSPGcvcBPvwW77LDfyGYfmSeyhOjBX3jxAXNYA9sGdmjrsBjgbWpnoA5y7kO+uHCcDvAukbWzW5OpSkqrfqMU8jA+qNuv0nBCR9W7dbIHvCZs8LhNZvIGgc7gsMMFwpobRUGcR/CRufHCgTuIKDlJt3s+7+M3nxekFm5SwlX+xcAJ6a9b/4zcTrqVPzasZXriOVtoSL2qCXdvH2Rf0T8TvDWypgOoz7oQTo9H51G5wuwHVvZhKdV7ez6orTyeL9RKLaDJqIESdFQXAR1XShiUpEvnxOs7Bz30oXwDpvvdjDXSaoUMLTOTLwxrTR1Yi5+3+RFeO1uGT2Blv67I68vCqywD465g36TJYdYRgO/fjDQAHIINz5BYAwDDcHQfBLRJZkH/BSGIYvBUEwkY4RAlH9puj5j2vC6keCIHgcYWsu/ITt7/lJrnFQeQH4aRAE1xLJJnWocsxBEPA1ZIjIxxVwQezke49Jiw5TliI/sXTEIOuMLEaY25St1JtkryVdBDemByAG2lA8sDxDz+mEABTLcm8B/ea69gqeODQfd4Ez0YN6nAnartcwcFGDxxAl67H5yNhpcTd1+Eq+yXRH40bMODfXKFsWaNb7s/sxdqEzAhwsnqg5st+SZlqMSQwXcDD0a6peJqqQpfv6IGPkWbo9Ewcvpj5mwf/rI+eDG+92DYs/see0UtsUjU9Cj4/mgxmKu7iZa5y9A63ar5Znx9yvxuj1jbkx4NKun3O1P+9HgJUZ+f21TU14/BA4M2PP2FhHE4QowAUL9iLP4SwcLPXDle8MZNmCb61uD0aejwkSGGOSjMcW2Tu0X/9bzFA//d6eo8UWGXsyFAEw2TgDZv3Shr/3WxG7bD8ySlusj71nRcj7Mxf5Labod8v1GjHcm8fYPWM027SOcgRIn40rGKYhixxVelw58p60I++YSdQfVdxyggk6kpIcBEEyaqKGYbg/CIIP5Z/7bJWT6CiMsJmOyVL3wQeZvmkD5DW6bcGeZojPAi6Htuf0nC6QMno3bY0ZpNJKEdVUU0Qd+eTrMtByhnAT97BNEUUxVaTQlgAoX6x9grcL+nNGjbhmvV3YnwrK6DJZRsCM1iYu2z6PD34klzzvpTfgJLhmzDcBeJKryLt3F63fSmGqMj87yOZMKhOr5TOYwuLm82hrEb+JSd0elcnJmIX3gQvh0uvFjez5+VfJAG/dthUZHEfr9n36f1qkjvpABgaNG6JE+81o90nIJG4B/2uh4YOezvRcjgcegoCgJXDp7dqmlVcJAzRcwBMDoSGeT5e8BsanzwYEYETzLW8hnxtX/oF/G3wzAI9PvIJBVDD81goAhg+t4IGJ1xJTe7Hmol7MZSzfXa2EQVdgMi5q0Hsb7xeczBnz3024I9ZSQAG15KjwxSoGkUETL7cK83db6r8nQBdAfnod8Z0x7kVyNvXoF2fLkr7sUfc5spB+XKgnNCJh7qNwt4UPld24Azz4bP3pcYGLFokJOjrqcEEQdEESTd94sPuwkhP/BPRFnsTjQRBMho8IqPuIXJ8AYRj+h7I4/wfoH4bhJ01/E3zEvsOO52EYrsZ1BT+2HHMQpEFYvwmC4DthGP7nsW7P4UoSYkCacTkDMcjaESPpXFxe90rE6NyEq4htxV3donlsOuFxEpbDpgxPeFqDG5Sm7mXgJQvPZWPiA4uRsSKq+NWODxEGrGzcTcKlvitxY9tW/PcjoGMXLhd9AS5ckI3PAbZoZsNQvtaVhRiLA3CuNR35Fb2rdRjrkKH3mY4rw7XiOZBqcTCEtrsYmVcsuWaFfp+NuxEO1vZ2whPGmnjAW/psLMZqrfaZufmZYQ/yDhjzkIIDIIsTisab7MWZiH9BDPR03ASxvEnv4BLgFt9kyXHTkGdXq20yxbYCPdfECppwYYUq5B0wIYT1elyJfjdAn5Ep4HWL9LGBdHOrs/g369s8/Z+q/RvHXc0sB1EWnkTXhBGs7cZ2LcFZlxRtSz2e9HQ/Anb2a33v4CIdFXrtrvi7BZ6baijy3D6HgOX12p8HkGdfr+0YiICbOr2PUhyw7dT95+N24FIcyNu7Vc0JJug4Kn9AHs9bwKIgCPqQSCn/WS7RHEEnI0DIsqvthKbucLpupiGTjsVgGBNRodsxPC4FoCykrTGD7FhdwlAuo4JKShPJMS9gYYcg7loKyKKR/po76IGCaxnEKt4ulLiUDJpojeQ66Vy7i/rCruTNlNH29sk/4o4VP+dlXVCupJS2b6UwjnmJNpzHYs5b/QazS8SlbirTqUvP5+k0CcB58MmvQpazD9npO9g4fiDPT5Aksl0m72DP3BzMLudPiHuaAZwbtU+m636QGJaBSAg5+CRtbgWvI/D8ad2eoPtG6vbvEPPNhAGek8/P36GJbfOQt/s2kSYH2d6zKYfHSkRpbeaYiWy4Psav2yU2qmFtTy4d/CTTtVGzuZwHuY78O2VGW8UgCqmhd42qqL0C351zf8K97uUfjiSfLZyxWp4V2+CUtH28N+bUhLBEGRVk0MRSJPlpAe+xjGFUp54GePJcE1tYV3Umo4tfoLJdmKEtdfnCyBmbNVxAdcIG7oUoSLUAG2yATIYN4JbAG8i7bdbHychMa4kjPl2l/SglS9VFoyeAh8IwfPIjDhkHbAjDcLse/yRibj6ImB5WetFRAyp6jVGI+fEU8BOcC/24sumTXuPvLcccBAVBMCYMw/nA5oMyfQNwiIdyTMp+XA3sAuSJWg6YTXiSy0uRgO2hyAp1d8RQGowYS39GjOJqxHg/gACXNMT42oTHWZj70wW4nk83xLCMxjEUIdOaJdO0+J9mPS8VX4Gvx4Pt8xGjtwGxFCwFhBmclgtno7ZlM/KLqIrUtxmPw6jV65oMssWRNOHGdZu2Z7X2TYHur0N+WfXI9Lxa7zEZAV7GdOzH5cEtsH0gYmRn4d4J5rZoBqyBGZPbjro/fUP74DF9NhbLslGv1QcfWt/BWbFm/PlHhRKMHUPrmog86xSckTLgYKIaFosTtYFbEc8Ii40ykYl+Wm8ertq2S7ezcUBsdZnLXLL2Vbru64kzgAbS8+n4Hr2j17Z4tMV4zFEN8l4bYKzCY7i6I8/Q4slyEcauDM8dZKCqCU+qai5+dowxZHa9dOQ9jeNqcmg947SeQm3XEjyeKhl5xwfrPZnbnsnCGxiO63flOPOVj4CvRm2/MYBZCCh+k6NUTqjDHVEJw/C3wG8juzYGQXDBsWrP8VE+4MNB4lGluJNF9toWzrsgRrlRpxOQqAEDRYXID1GN5B794sSI81pdOV3yhbmpoIwyKhIr1QsYTTYNie3+1JDBngQT9OX5D8ukYIPsNvhy2cPsLRGdzZcLR3Lh/CUJoDaV6bw+pKzDSvgMpjCKRQnDfBGjeLRkUuIay5uHcl/612lKEv+3x4ZfQ3beDmJJcQBWzBjhgfhARnoTe8bluBDCbchEZMpuj+jnikhflek+256IAKSv6/b5CIM0Wrfjer6tIubR0fknDZgWwloFA1nIhPA7HDitBr7dSkqa3PfklbO4dPCTdEmSZzG1+GfUkZ9wd1vGMLJpoHC7PPBCNrEo9xz36e4LLz8xMuFCV966lHhqX/YOUM3TAbAutYjS3WuozhTQ2kQGbaQkQM4GYuTQwAK90Xy20EYKq1Q2b2zxbBrJIjtJmKMu+U1kXNXE6vXyUrW9nikA0N65hcigOxBIUz+CFuC13dBXGckN5yAvpmUkTNdtm3EPjg/6xy4hSUdDHS4A/gisCcPwV4c47D1geBAE6UgnjkV+CW8CA9TVbTPCHV/7EdcYhDgyXobA1plBEEwLw/C2g4/9iPKJrnEk5ZiDIGRYmI9k9z64hMBxA4KSkTGuHzI2LUDASR3CCJkxNgtZ8X8Td29rQQy3+/XYLMQ4S8YZiAzEUK5DGBlTYQN3YbPYj3yctQGXSt6l+17BE4/m6XmW4b4zHpBvMUpbEYM0DTEQOyMG6QHEcLdAfhNjMDBiMUFm3JvxvBdx/TI2ZJX2m8lbxyLnWVsakLnAWKjuuLudJfhMwnMfdda2x/W8y7Uui0N6Sq99La7CZv1gDIIVE7b4CiKUYLLPJoqwKvLZwI39j7rImQtds9YxXu97AOLS1oAAmzY8znOXtsfcGW3dKkPblYYA7rMQEF6ibTe3zGpclMAAZ1ccLJq63n5t/wE8Z1U0ka4xmftx9zcTyDD3t3YEOFmiVrTuRv1vz79S67TEqlXI8yvXug3gJOHvcaP+DcbBoYHk9bjbaBLOUtXi8WLW1jZk/jxfr90NeaaDcfl3c8F8E0+ea0DGVOJM/c7i9vL0us/ps8jAc1mZqMZRKe2H/faEOtxhShAEXZGVxvN01ytIasfDiTl+RooxQZuQpRsDQvvkRbfJZMN+aEl2medGhK34J93OAsaFkCZOV1ue7MuWgX0ZWzybeXMk1qNhdA5l6RXs0PiMItZRSA01yj5VUUwODQzShAT1Y4TleXuyGNVn1LxLTWEvqtVpOp86zUkEbgAAIABJREFU6A3PFIqs8/jdL9F71zZeLhAkcOHqJZSWVHIb03hU/fg+xzMdjMQr058Sxkj3leT/ldXFZ9MwXRmVFxAAE5fNLWP6isk1U71+Lk+F51rhuVTvlzjC+tikMxC4E++7GJ43AzxhqjFBFyMgydzf8pCBz87PweOOovVl6TlZ0Of3a9lYNZCxxeIOtzjtPJ6/6yr63CJI7K6VP2Hm4ImJHD6DWEUP6ng/V96HOYynmCqm5X4fgKljpnPh/CXMHiMM2hnL36VhRDZn/EpdFX/Yn9Lda2hNTeKMmbKvZnIvVjEoEQOUQwNNZJCBeD3V0YMGchLucs2ks2L+CLoM1xig13PoM2YtxCNgL8o+GqPWGNkHcG5mZAXqDWAELozQgLzjtgDw6QFAR7GMAK4DKoMgsJ79URiGc4IgmANMDcNwmQoMrEQ6cRUisPBBEATfRqbXTsADYRi+/RHXSAeuDsPwXYAgCL6E/Ao6lCAI/owsD+QEQbAJETf44ye8xt9djjkICsPwJ/rxjjAMN0S/U/R33JQ9uGtRVG7jHWQsM0PZXIKmIr9PEyp4EVm8WYoY7GY8VuNxB2aox/D4ks7IW7QTMb7qEGOsJ76aXo/nevk/Wl8uPnYaiDLWwlTbbJjIx1XRLMbIcupYXJAJEmTgecui+W4O0FGFy1gqyzm0HndjM4M8GY/paNI6zLg0Q70+0l5b01mPzBfJuDueSXKn4M6qtpJvxnErPr5aDhtzybJYFEtGCh0D+7ciAOyjHGGtRFmcXOR5GNjdjYMkA6SdDjrPYl1ssXUj8m7FkPxD5lpuam2F+vcarq73JgI2UnF72lT+2vA8TcX6XR88hshYvM34M05GgIcBoyoEyBswAenHA7iDTQx5HtXIvN9P27ATB5yd9P4aEZCYhrCpG3FFxM348zMFOnMfbde6zSXT2toKXIUwViaxvR+3U+y+Y9pHy3B31rO1j6pxGXLzrzc3zS8gv+XOyPM1oRFbsDiicsId7kjLA8ja+Bd0+zpEHehDXgafnWLTfFQcoRAPGj9ZTJsEA5HcMR/LaAQcGEhaDrwfwNkKBgZCSfGbHKATQ8a/yg6yuZKnyWYHyzSGOYcGbuVOxiOGehupFFOVAEkx4rw8eSQXrlgCwN1DvsN1zEhIZMcze8FWOKfQY7YfKLiWL69WBbSSiziZZu6d/332jhDGoiE1hx3kJNTietRtFaEDjcf5ys/vZfVtZ7vr2W2Ia5uFkaciA66Bnjzg9VSXv7aJbzrO7JyMuMnZqkiL9p1NxHnAr3E2yRR5TAjBVPnMbq/B/doBJqsy3ESE9p4Ge9ozIA61xfKA2lpS6HHLBhFMAG656meAsGcAec/u4r4r/pm4gqI7f/FTfvPD67mp9R5AxCneG3NqIunsZcwjRpxFPzwHgPNefQO6w47CDLZMlhl5Bzlcvf1ZXs8V9NZEBssZwudwsvoZrqBGZbiv5GmyxrxPX0Wcv0/7HhurBkJMwz3qA3kO1m8t2s+vR/qqEXgtOrKfjDsqg1g3+/DZ/CQ+TUAoPArucGEYLuGj424Iw3B85PNPkMWlg4+ZgwjQHO4arx60vR9hhg4+7kNJrj/pNY6kHHMQFClPIIu10TILNNPZcVBOQYwgC6TPRcZTi8E4FzGgS5Gf31+QOEiLgTQ3HmN0cnHZYAuiX4YYvTtxVuctZH6ajLvEWWD8m8h8ZQHt+xHXrio9zlzsCpDYm1bcrc1iXS0wfb0eZ7ESFmtSixjJFuNhCl+WR8ZidQwAGftgQf+mHmeJS83Q7qd9ZKvqryHGu4GxKOuQi4C3flrHQBzANeGJM5fjQ1669mG1XiMLASKmMGcAxQQremqbf679+gof9iY2AJTEhxfso7mDRiLPugQXhEjB8+Z0QsBwJzoKAaxFGEbLWzRU79+EKCz3z1uItHgK8pwK9bMBAmMMwd3eTA1tDA5eLNa3BXeTTMKV3bYjYAQEKCfjghY1CNhOxWOn0nDguBV3YUzH3xcTgTBxCmP56vSYZjwHVj/kuefiSnEGmNtwNtBiqyw+rxGP7zbAV6v7l2u99Xh+IAOS6L3YosBLOEis1eOe1/tepnXtx22UIy4nJLKPtPQPw/Dzke2fRVY4TxTAlxcMFOmyVKm6GaUhMHKcfj0Ucb9qiWyX4HEuLbC68WzGls9OJEetoIwdZFOoMT8gYghnqsHaiQNcsHsJT2WKA8ijTGI8c0Byo/KDmv9kduFYLmsVEFQ4fxOsgbwtMsI+M/EivvzHh1n1FfGP20CMQVTAB/BvqbcDYphP4hF+jcTGfDP/Xjbkx3hmqLweV/NnYVxM8joPWZ20YNnlyKAWBSi2uqf3zXCEQbIBIIYwFTZgb8TjeEASocYCZzPK9HxjhqbhjAf4ip2dvzaQ5xKH0eNfYOFtl9BweU+4GRo0eCnWLU4BtQy7SgDjVKbThSb+VQUSZ+RfzygWJ0Qr3v5hf9ZRxLpUGdkHbV/DQ7mf5857fwrA+986md4122grVIO7K7AV8rruYlWuiB00kM37uSdTq0h5HaeRSlsiRiiFNopYx7x2eameSprAxvVFZMfqvG/rgTS1x/NCupQ1uFz5TO3rgUhs1iV6/OnJsCaS9JcO9jYywkfN3E8PEDoayVJPlOMABAVBMBA4A/F1j67WZXIIDZC/oe67ETe7NgQD/EsYho0qBbgG92B7PQzDr39kJZFyAI/DMWUyy8OyHjc8Tfa5GVmNNmGEKmTNIk//m7zw2Tjzm4cY3+1a9yuIAVeEK84VIUZwCa7gtZ6OilYWMJ+CSxibZPIBZCyJih+8q/ssRiIfjzsxV6VWxEivxFflC/hwcudaZA4w5icZnz+atH/W63WKtZ9MStxc+qJ9OUCPt5w82XrNznp/licmG3fxq4rUuxa4HQcfIHOKxe1013ZZfMpebUu5nv9nPDGuKYEZAIraAoPxuKcyOrJk0f8GYO09MaZtPS6H2At53uUIgDHQnKH1j6QjS2VgyGShjUwwNzG7v+6If+n5+PzaoNfvhxj952o/JSHP12LK4lpvnv63nE2DEdfDf0KAkQEM62+TsrY4MRNZyNXv8vCYs6gyYSdkEEjHFw4MQC3TvslEWJliPaczzt5YTNjziFCJvYdZuAS7CYVU630b+NyIcP8jEUBsIhPP4G6XxfqcnsIZyiMuJ5igIy37giAYqSucBEEwgg8HxHzGiiWJNNCzDIlcjQSQZyTLjxc9tAs+sE9HBjQDRRZkqYxJSmw3PbrV0Uw6KbRyKlsZygqWM0TD4UXkoJyl3IEAlP/LV3k007Fqf2rovXpbQsTgsvnzyC5sSHxPb70NUcRmBzm8/pWyRF6aVNpEjeyikUziUZrIYC7juLB2CfcUCAgqYh21FDA8U9im8cyhqLiaGbdPAUSMYd3gM8leLgxZQ/eeMgBaTNA1uCoPOCC6BgExNyPKbRPwydyOi1tfBh1jgNbq96MjfT0az36yHJnU7FlMA26TfEYL51wiQGjaJdACW9bHGNJvKQXU8nTVNYlr1JT3Z93OIlHDA+4b8s+MYjGddLXljGff5d7h32d2rvR9XW4+X/zjE9z+LZHiu2Pmz6mZ3IvCWnH83jsgic4vtfNe7qkMemkNb1/Un8tWzGPRkHMkaSvQgzqqKUoozhVRTR35nJO0LNHXGf2aWLdTgFePwRvYsrSvA+3GgD3P5XR0fVtLR2GJ4WiCQBP92EpHARBbJrX3/NMBfqy0k0Rb+9FRh/sslyAMj616aBAE/4S81p9DbAwrTcAjYRguPYK6LwLmq+/iXQBhGN6iIOi5MAxLDnf+waVTEIT9cWmKQtxIfweXZDbRgrmIkbxet1cjiygDkDFtFGJgm4Tvblxpqg4P0LfcKRbvYS5RTcjcZDEL9lNfi7AQTbhr23rE8N2FAysL+I4COXMxa0HGX3PbM8BSh6/EZ2n9y7RuY1hA7Li9keObccWxGALiXkaM1lrtn2K9fj6e9sBctAzcteMgqhFnDixPUrveX5yO+X2+jxjXaB9YHhxz6WvUerK0PWZQx/W7l/T/W5HnkIq4PK7EXbi7attN6toEI8wF0ADX9kh/Wd83I8ELVoYhc/BQ5Nn2w2OIivG4JmNQturxhZF7744b6aYeF0MM/11ap6nnnaXnGcDsHqlzDgJ2zL1wp543X9vZqtc1YHZA6xyG/A7y8BihTbgwRj/82WXisU3Gmhm4NwBjrJ/FkoELQyThMV/2br6GA+NZiB23Uve1aFvGaV1VuMulJaM15bwa7fMWPJfhK4hNlqn38TtY8UlzMhyqDE0KwuWHWZoK9h/5NT7NJQiCMuC/kZ9HgDzGL4Vh+NfDnvg/0pb8UDJAHIty8EsUNQ5NN9PKOfJdj0jA+fDI12XID3ihbt8sxyTiOdbmJDT6x47RuJSdoyjvtjRhaF/BM2SwJ2EkA4xjXgLEWJB9QoHsJXjve6fSe7sqlm0FKuC9yUIVzeA6zmNxIgYFxLCey9hE3MkwlrGMYSxXtDaXsVzJ01QjimVVFNNEhriTAQ1Te8q9GmQ+GVIm76atRVfbJ6eKpWIAZiICSh5HVjLRfovjxnwW4sKxQ7cX4i5y4InZbOIcp8eay10ZMjj9SbfnhnBbIN8bgzVN/zQB69hfzU6wPACnUc10piaEESbyBHFiiXirHHYwhBVcvVpd17rDQ7mf54vPPiHbp0ubP+gtm62pSTSk5pC/exsvZo7V28hiGMuYgQDKFFo5k0ru0/e/nKUMoiKRLPf3O7/J2G5zE3mF1i09k9PK/8q6+WfKRd4EekT6wYBkPR6Emwj12X/QDnOPA7FOmjg+y0+PaCw/aehZYdYbh/cSa+jU68R88THlmDNBYRj+BfhLEATnhWG4KPqdruIdSd0vRTZf52/QDj9U2Y8Ag8W4q5hJRzchBmYyLtecHzkvFRnT3tF9c5HVZ3PpsSSplsg0AzG+2vC8N2aQDdPzzLXMgspbcFWrNFwa2LJLVdBRXc5W400muwpPtlmOx7AYyLGEqJZHJ5q3xvrDRFxS8XioFlxG2BJMXoEAoctxrwHLbbRZ603We8zW6xbicUMWm2RxR+Buftvx+CeQBaPBut+Yl5XI3GWAzhiarrhLmOW5GaD3/xbuHtUVYRIG48H2cT12P+6eZa6KTVrHTlwNzfI2rUdEMyyvUC8EMPRBnqup2aVE+tFkxXdqP43EBQUMFNVFntNO/b4Bmas3a70bta01eHxYKx47ZCxRi95HuvbVUsS17i08gW66fj6A5/fJ1/O24gzfKtz1vgpXrHsHAfBL9X+6HmMiCdv13sqQd9lizbbqPRibZYDlXATMd0Psi7nIu2xMlbmyJun9DsAlspNwF0KTaq/X9hsAMlEGs0eOuJxggo6ohGFYAZwVBEGmbn9G5bGjq94nISOAGYk2MtqssA/YCVvUrWhQprt1WckCfqkLpo0BPAd73hRXpZJb3hRVr7S2RMxHSlobWTSyVZMmrKOI6Tun8h/dfpCosoKyhGEez+xFGym8XyJA7ZS6ffyeb3LnKz8F4P2JJ3NKxb5ErplU2simgQYFc+etfgO2QdWY4gSwuoZHaCWFyzScYPXSs7msfE4iDuWxGV/i0ilPsi9JRpm6BxpYN+NMsr+tTND0nrT9LjORC4c8ZAI0gDMNGbi+g4OYOLLq9A3dbkRA44TINjigXIswP7ZtA5up1H1bz7nROi1QxTjcBWEy9CjewDd/JX4E/99vf8lpN/yVW7gLgHu4kZu4JyEYAdBKCrdyJ4AwPGmA4s37Sv6ZMiq4/QphglJoTciNA0wvmUI+dWRkLuaAzrwZNLGBGKUKQFYwhGf4XEJhLocGauifAKBtjRnkd9uSUO4jL2TdyjMT7eNsRNrTwPgL+MqovcbmovK+ZZ3bh8xif41sR0ngT48rHEDYHtBqAP1E+bvLMWeCrARBsDIMw8Eft+8I6n8WeDQMw5nKBL0NrEMImNvCMFx8iPOuB64H6AJD+iKGeDUeL5KPqMS9hcfVpONB7s/rcck4c6RutVQiyGwnYpzGkDiZ8YghOABnaiy434QSshBjbAESH5KBu/nsRQy2TL2WGcDmNmZGnsWrGENhRrvlrYmSrcbM5OpfBTKNWi6ZNG1fTK93AGcMLLjdjPZ6ZLHHjPE0xCDN1jqrtB8rkHkmCXffM5UyA1wGBE3dbq225yVcYCAVWZPtjid0NdbCZMJNbnu7fmdACFyu3JTvLHeNuW3ZdqNew3Ld2LVatd7NuAx0ZwSIvaX1LMBd9IYiLlx12ifW18ZyZOBsW7Ve01glk37O1j42EGSKehbfbBLWJYihPwAHOg16vrnXWazNbjwvj73nKxHA0oInZrUcPpZrx3JfVSHvdzEC8LYiz/0AAta74ypvO/X+7PmjxyxGfh/oPT+JxNHNxwGogbd8BDwb03c+nkvoXP3fhIBPSyS7TO8Hvb/nEYBZjbxPlm/IWNt+es9LjgYTFAThssN8f9JRuMY/WgmCoDcSlbIDWBeG4Z2HOTYbCeAdiUDKJYjoTsOhzvmfKseWCTq4RNc7Tb7EjM59QCmcq8bka8gAY/lx8hCXLxNKGElHac08YDWUTHkzoQa2rv00xibNpRxx5FhKeeI7gCt5ihr6JwDJKBZzF7ckmJ2buIellDNEJYjWUUQTGYntvFd3cd+If04Eho9jHhk00XvWNm6a+AsAxjObZQxLxE3kI3mMHmUSACvuHyH3GNNGLdd7tHtbi7v+gYCVFyLbk0kotCX21SOD9STdrtZ9UWPeVlak4WIAmG1uzIe50tUjA6URaPYMSnD3AwVlEwY/AsDc5nHsmZ7DaTcIGEihlV/xPSrUl3A8czhj9btcUCKWyY/4dy7YvYTKTImvGjRzjQyUCopuHfJTRrE4IT1e3rqUzq+2896YU8luFYrrntSbyKGBDGVdXuRiRrOQFxE1P5PINtDTRAY7yCZVn/e6pWdCrFWEJ0Aw+j58slqCr/QakKxHlAyNwdyyho7AZ6dWpDdy3JUjY4KSygaFyfNfOewxbdldP3Pzxd9ajjkTFATBuQjpkBsEwfciX2XiNujhzjdvm4PLj5VlIgiCHyPDzEP63RagdxiGDUEQDAGeDoLgjI9aNQzD8H5kkZ6TgyC0ELw6xMgtR4zX1xCD7UoEmJj62H7EeF2JGGh9kBiGs/EYDjPebJXcYoG6IwtLnRFDuhExLpv1uM5647fiSlmWl6cZj3cwNTljWmrx+B9jMCpxhmiMtt0ksncixp61YbP+9UMAhqnQmRudCSl0xVfvTaDBmIY2xJCdr+favLtRv7djjBlrQuSdjEGxgPc8vW8z2LshBux6xKBtxBXDfosYvpfTUSVuJzJXmfthMp6fyFzXoqAjU9tmqmDRuCdz20vBGYX92o4G3W8xOCai8ApO2NuaVgwHaRZ30wlX+YvjzN0wnGHKjewDl0M/gMtDJ+GCEyV6Xh99VgZEuiHvbDSWqSsdXdPQ+zgbj9kx1i4qFGCqdfZOX6xt3IRLqEeZy/54ctp6XDApXY8fhisG1iPzdQvyTs9FAKQtOFTr9S3h65u4GmAz4pJqDOowPBGxxdmZ4EkfBBzFcPntRuT9XI+LRxxpORpEUBAEDyCv+bZDufwGQXAJ8BvklZhuwOJQ+49mO/6Oa5wGzA7D8A9BEMz4mGMfARYBFnDyReBRPKLlM1gOVoczztOMxW7QN1mVtgCSJSbIfuRlyIBj4KAWGfjtibZAjykbaCOV1+oEWPXIr6OIdfxbu8QAjU+aQ5wY92nCnLmMI5W2hLvcHMZz5/yfcveY7wBwyvZ9HMjtRF6tjJJ5u96gpqQXb+jI9uKIi7mYFxOyzxk0Uc1p3DPxJq7kKQBqKGQKD/JlHgAkLmUDMVbMUQeTF4DftcJCNbzr8cHAti8GFUmjR/kGtrze162NJbjkdU5k3wTceF+GB/ODuMGNxJmhNFwBDu3jtTjYGY48Ntu2a89CBrvRkD15Mw0ze1I0WEKcm9IziN0QZxmi5tZGKg8yhUd3CjKLd4uRXdLATdyjTRzGssxhXIPEDL0+uYzhqytYNETOH88cSqnklBp5Xx4q/Dx1Y/IpYxWLUy0rLIxjLqsUaJWzlKWUJ0Dwo1xDMVWJRLYr6oYyJH95Qh2wR/kGtqzs65T6aODyEOaqUIK6WybUnKyckgxb7L01l8/NkQMOZoKi5R+bFQrDJHfVPFH+7nLMQRBiF3ZB2hKNL97NJ3BfC8PwsJObapJfDowNlfYKw7AVFfoKw3BFEATvIhPt8kNWpCUfl5HehBjNhYixuRlZWU+LHGcuT5cjLHkyrlQ1QI9bgK/+tyJGUCmeP2cVrv6Vjqu2rdd2rEcMz3at21zEDNENwPOp2Aq5ibFsx2N8CnT/X7S+ZDw3ygE8jiQDGZMH4vnVjGWyWJpm/d+CK5GZS5bl7NmpddTiKmrR3DNoG4Yj7IAltbSYjSY87iZJ21oXOaZI7yVZ+3mjtt/cFw1MGIiJxoBE1fuMATI5bgMCjXiiWYvjatR2pGmb8xAwYXUbsDHA96L2ewPCROzCpcwtDqged3mzOJt8XErdXN6ytP/G4Ep9Bri2425/axFAmYUzPINxRT9LeDpYP/fTeu24tcj7aH1tIh19cBntOJ7w1gCMiRKsR5hTU32z2OABeCxOKq4EBx3f2V2IK1p00aBZ6xmHg/DlOEi5GAEvPREb5EU9b5a2136TLdpmc3Mdidg1lljXfnNrta0GFKNe6EdSjpI43J8Q5uQjAUMQBJ0QDY4LkcfwZhAEzyCY8UP7wzCsOuj8U4F9YRg2RfYVhmFYQ8fyoXYc6tphGFYFQVAK/OKgOr6MDIE/DoJgEpKl/HClWxiG/xbZnhYEwYRDHv2pLVHXn4ONPYPsGkV60mDYsAZniJCBywzu1/HAfRBQsJgObNCWOX1JGb8WWlI4rV8l+dQxl3GkJMlKfw2FpNPMI0qR5LOFBrJpVofXMiqYPWYsk9QQfyj381RSyqgCcdA45b19dFGBBYBSKlnOUG7f/XO5hV0QL4gRY0PCBe9BruMebhTVOKCOfN6lkAnjhTG5ePyLfGPpfzH2Woljmvfby2SwsrelDz4RA1tm9PWJz/qoEYHdF+u+F/R767s0JFbHhA4q6Kj2Vq+fLUZopNb5bd2ehoNQOz+m+28GFkJsSpzYlDj3Nn8LgD2/zJF6FZ+MHTyb65hBfjeJExrFYqYzlTt+In2342c5TGp9hHmpYko9xLUUlazjjj/K9/Vf6UoTGSwtFKW3U9lKHfmJXEAAqbQyl3FkR+KxqilKuOAVU0U+dTzdLp2bktbKDrI7sHRb6Ov3/UtcJhu9/9E40waSdrMv8L6BnojQB+AS2Wbm/mODng+V9gBaTggjHGk55iAoDMNXgFeCIPhTGIYHKxIfUdEVx1uA88MwbI7szwV2hmF4IAgCy2W5/uPqsySM5lI0CDEMhyLWw3DEGNqLG22lyOqzCR2YMZ2EGMnpyEpzLsKGGAvyCjIlvYQoRlgCzgZk7nkR0fepQpgJtI4GPc6uYYHsMWT87qRt2h35DK68ZtLEBijsepafZTAyBvXHWWkzRBu0nSl6ryb9vBOPb9mOq461al/l6/1k4+7XtlLfFXfRatP+LdX9JrNcoPWa650Z4mnaXmN6ump/VQH/jgAAY2+s3wxcmXFuSWwtZsjc1azsxcGHxeoYADQ2wdTrGvV/Z+TZz8VRd65XST/ctc/YQmNGxuAMVVecrbNnnqf3YsILaD0mxd2g2yahnoyAKmMXdyKAYC0O5uq1zf203Sl6fD+9hkmiZ2h7TOHtLa2jBVnsTNLjkpH3u5P2ZwEdgbK1L4ZLeJtCXDGucpit56YgwCUXZx2ztF0Wp2RAsQ0XKjH2p03bOlTbdD7y+9iEgxtLlmpttGduv/OoCMeRlE/ABOUEQRBdrLlf2WqvIwwXqcvvoco5QE0YhusBgiB4BBH3W3iI/VUHnX8+8I0gCMaHYdgSBMFXERJ8fPSgQ7TjUNeuCsOwEjcXEyUIgpuRxHmLNGnffx3m3hYEQXAN8JhuTwRNTvOZKh9l8NmquMVMXKqHbqUDAOpBx2ID8ELdjiNGu0HeoVAyXuOCKgLWUUpZv1W0kcoUxb/VFDGXsQl3qWe5glIqeVZzpC+lPBHLA1CgSYsskH780NlsIZ+rb5Tg/Sm/vp+JzGJHpizD5W3bJaCLVr7LrXIOc7iOB/k93wREKrqG/gm3rm/M+C8ogXl3SIJXKhDgYIlLwROYgXCLp+PucwuRN/EU3Z6ADBL1kb4yd4Sor0ocZ37i2rdFke+jIOhGOrJwceQXslzbWwYrvjyCLr/bwZ7/FDrqC7f/N4+tn8J1/UQpoZylVFGcAEkp6W3cxD2s+pm4v+Wwg8mpD3EtknNpCg9yK79g0lcEkFZRzNUvPUvvQSJXzi6oKiwmmwayVfHhMuZQQyEvKhqME6OJDMZpgpA68llKOaVJMqIubLyYPVkZNMQlxmtLvaaEtPu8BAGUcd3OQ/IrleG+9RkIEOqQ/+odHOTb/k8Z+DlRjmpJ+vhD/n8rzUEQ3B0EwZwgCObb3xHW+Tvkp/JyEAQVQRDcp/vPA/4aBMFbyGLw18Mw/Nhchycjv8WzkN/mKsSwX4IYUi2IwVWOuAiZG9Um3B1nGGK85eHyx8sRNuh8xFDrjIyJnZEV83ZcWGC7XvNyvW4eAhwsbggchHXGFb9m4QklGyNta8AFHYx9yUKMRotrakCM15UI25Wt9/sKYlDatQ1NptLRhc6YEPMyMGBgc0MzsoLfB2dCLCeLub+ZYpgpmW3F2QUzRJMj5xvAuVjbBR1Txt+JuMc1Ro41Bmg7MpTWIfP8Vm2zgToTZrDxer+2yZi/BkRyfCMy1xlzZCBhJZ6zxuY+y7/UTfdZXp0sBCwaMDNA0oLHoKXhP2SL2zJRDpOUtmfbjrxnlsZia6TNpiZo7I85LzE6AAAgAElEQVTZPtlar7GajXqvZhln4Yp9/XAXw3btxwKtN6Z9WqznnI+8l5aYdDmer7FV77Wb/m/V61bhrFd3vUZcr9GMMFLWH03I760TAuryEQBtbv72XnXCJbQr9B7bta6rcPfJWjyWz967FHxh+GgUY4IO9QfsCMNwaOTv/kNUdbjSk0hqTGSI6nmY/R3bGIaPIybKI0EQfBFha75w8HF/47UPV14AbtDxO/4xx34NeBh5ZK3IOv33giBoCoLgMyqSYGud3XDDcAAymlvXV+KoBvmRxHE3rApkMB2O/JDjuq8XkAarZ5wNjwdkT9gMFQGPrfwSc5vHUUkpM5jCg+3XUUwVC7mAB5mSkE6+mBepI5+pTOcW7uJRJlFLAcsYxoTWp2gjReJ4Uq9hFYO44NfPQ1eY8ZPrqSOfNxjGVTzFpMI/0UYKt9X+b6ZxG49wDam08pW6B/gmv6eAWpZSzuqVZycYjJlTJpIS2y185S8RZqVS7oeBCHxejeSomYaAna8jAOURhJN8CFdwexqnkuPab7u0nxbSMZ4ornXFdN9tiOvcNGQimKB9bXFJ5qqHHr9F26hAKDt9B4yCHrds4LH1U5jQ71EeXD+VKoq5h5uo5EyGpi9nT2MG05lKKyk8yiRmMIU7uZUMmmggmz/wNVJopXL7OSxmFA9yHUsp54GLruXW3J9yZe6feabwItpI5Tamkc8WiliXEKyYxCMMZTkptNJGCssZwgyuI8YGmkmnsr2UpTvL4fGALklNMDNgdL8X3S1wJsKcmXvhcJw5uwYxGD7AJ6STQMB9d8RiGIDMPiY/9QHuYHQSx8G6/9ErIdASHP7vM1iCIOgdBMEzQRA8EATBrR97/HEkjPAS4rt9MzI8fAnYHobhLce0YZHSJQjCkbgCWDXyWyxHjMy3ENBirkvNiJFlbmYGPowhsngHixWxUo+MgwacLKGnuc+9gxi6powVBUeWl8WC9g3ElEbauxdhcuKIQdoNGavT8bQE5lJ0KZ7vpxGfI/JwqW8zfNNwY7sOV98yY34jzmJY/GkzrlBm7eyEO/An4/EfaVpfJ8QbI4aDI2PYLHg9RdtSiIDV/0PHYu5wBpSKcLDShCuvpeGgx8BoG8K+9dJ+M7bN2JDOeowxHeDgrBpx0XMBU7/PK/H4L1P+M4PdEsjm4s/U4r8acTcyY1GGIXPqu8j7t1yPsYXJTjiTZu6ExuDYu7ATAQJ1kXqjKnwmXjEKj11ro6OsexIuZ23vUBSktCCWahvy7N9CgEaetmsrznBm4RLWJvltiolL6KhYmIwsLFyEv/elePyRMWj2Dh8splCt932u7l+gz+Ad7dssbWsaLgby4lEQLTgrCMIXD/N9DzEVFgDPhmH47KGOO1wagCAIrgYuDsNwqm5fhzA0iz5qfxiG3znENR5B2J/+YRhuP8QxHdpxqGsf6hr/yOX4EUYwwy+KNffhwgildAREwJWZHqQf0/+j9b/5aZss9JtSRcrw3bQ1qsFZH9CnfG1Cfrq1JZVR6YtoTNAmIn5g7M+pbCOHHSziPECSb2bTwArNlT6Bp0ilLZGMs4wKnmJCQlihmCoGbV/DlNz7E2xTExlk08AcJSjXzTmzQyLSS8c/SRXFbLxDlzHuQwxwywuURUcGxwCMreY1In30HGK1gKu9GXiMurKBC0y8EKljuLeJgVrnP+v2rxFWxJ7F15H+Hxlpj7nbqd0/+pYXWDj/Es4dswCAAt6jjdSE61ojWayYM4LHxn8OgD/wNW7nDu5VxiyVNkqpTIhOCEDK4Y7t4h53d+53GMdcailgARcA0tel/JUV6r+WQhtzGZtwRYwRp44eLNbnu2VOXyhrhbWp3tdr8eWRAgQQWb/k4fmV3jfe/f+x9/ZRWpXX3f/nAPMCMsM4w3SGGXi4QZBhfiiIGBCxYkITNcYYl63GJCZNbfokzUqbNH2atGmaNmY9zcuvpqtpkxqTpmqNGn9qUqukIUqqASzIS6ADCOJNgWHIMOPAzcu8AOf3x97fe597goBCEkLnWovFnHOfl+u6zjnXtb/Xd+/vPgxVOShs9O2RmIUioC/G89yUyE5a56Tcf5IIjkuTE94jSZIJmLtyIzYt3p2m6d8e57gzFd/5quVM3SNJkkXYnPSPSZLcm6bp7Sc6/myCxXVpmn4jSZI/yLjInVj64hdcjmDG1juIAO1t2LcrECPlM0n2zvZzhgHvJAy4lQSAasY+XbnYiAkZ7r+VYYa6XGFz2Dgs1S0pdVUSzIAMQR2/mVhBn0oApDbM8JWh2YqN2ZV+3jav02ps5f4QwW7IDauGyL2C11uAQoxBPQEmyrxfxK70EK7WlX7s8xgQksEqVkNyzq1EMtWBzHVavR3nEYtLtdgytfxjIMAa3t56wiVwD+HOJsZMAOcQoSQmFS+1TfFDYougFJhs8efQib07K4mkq/MJ8Kz7QjBc8hOt9WsLvOzwevcSbNAl2POV18DDfswSIhHoAAZwygjJa7yecmFTDia5/+l5VhJxa2DPTqBE7osTvK1dGKga47/PJ+JoFNMz1eswkKmLnqvYL4GT57wNE/x6csVsxL4F1a/S79mJvWs93u5eP3+AcNcrYPbcagIY6/41mHiH8gHNxlQbl2PfwwoMMJ+URn4N5SQxQfvSNP3Aad5iJxG6DYbn20+w/2dKkiRXYq/QY5ga24ePd9xruPdQ+bkVrYZng8TnZv7ein3Neotr7cWWsa/BWRPQjf7bEt8eA1RC/2I5ZkP5NfvZvrqF0S3mLvX7o/6eVcwpSmILqCiPzCTyXMoLLMPiTppopy6jNraWS8iRLxrdrbRxMev5J367eM+++nJeYgp3eMKce3kPL3ZPoz9v9br2ukfZwQTyh8z16qk/vcl8YAVYFmK+I7N8W1S//Efm+b8HM9udGGh6n+/7BAZasgwamWt+i5jAIYx7ARpNggI98yiyPcW63I8NhNe7++DNFWZAuIDD0ievgRpY/oD11fIaeNN1/8az3XZAeWU/v3Pd3/MAtwHmLncvt/NRvgzAQ9zC3/Oh4rO6nft4K0/yg/oFqJTTTx8VRUnsCfw3j/MObnZlg6/xe9zOfdzLewBKABXA7vVAZUUpM5bzdkG43chtsIeQD/eYLxqBjQOYjyLYCA7BAulCWRB0Dslka1X29MoR4I/SNF2dJEkV8EKSJD8YHAfKa4zvzJ54lseQnlUgSK7wu5MkeSs2MY4/wfG/8DIKWztrI3KgrMOmE+W3EZi5nFDsmogZfxuwb7qRiGsRaKkicvRsxQwsuWdVYWPENswIk3taIwEApEAmd7FqAnAIAHViw4eC5Vsx17U+InfPMW+bVtzxa9cScSQyxDu8bR1+rU4ifkjs0oAfo+D05wlpZMVUDCdiTPOZfT1+XIVfS6v+YhEEzLKiA+2+71GChdIqf5Ofr/QKKk/5vxv8XLVZuWE2EMCkkVCw25Zp50HiOcqYH/D2bPa6ChhDAChJdiufVDPB7Ch30ihvr56PwG+331+KdlVeh3bvQ+Ugmo2t8y7wOsmQVxslONFIACoxkHKtk5vdcMKFrEC4MJ6HgQGxmj1E3iS9R53++1HfL1dNMWmTMRtgCxFHJbfAC4h4JeUDkovmKN9+Hvt+JFgwlUj0Wu/tk5ue+rBAgKOLMBdPtVXqclO9beu9bopf2oG5y4n1XMnpl1OICRqTJMndnIQJOklZCUxNkmQS9mrcCtyGN/c4+0tKkiSXAF8H3op55d+fJMmdaZp+6jTufdaWJEm+iKU168fI1d9O07TnxGedbSVrCI7E/LMW+nYzJa5w1Jq71dW+Kb9YgYLHMUM/59tTcDYkVvb7e6ooz+2naZThWzE8MoLXcxH9lPNTN2jljpWzIA8q6GcZ84tJP8vpYz0XFZmjP+aLfJHIOfQWvs8H27/Gd5tuKLpmbWi7DGr6WDjbaJf/PDaX9wy7jy/3fNROWoSZVQIs1xABhWCAo4fwd+3FzLSXffsrGFh5LNN1sygVkrhrP/xldTAaEAlVIYIvN7qnZmN1qVBCj/ezwEAOk+Z+H9bXz2Fs0WeIR/g1mLhsE78+30Ql2mjlNh7gh73mX/EntZ+njr1FwPnZez/Hl2//vSJjNodVTGMzsxzB3cUfcgP/ynpf9rqFh/g8f8Kn+Sve6uF2re4crQSs7+IB7uEOtq+2zutqGcuBnire1GTI+cW3Xczo3F4OrBgbfZuNxVpKCCGQ6a+9hCrh8gEM2Ctyc7AwwlRsVsgKI5wjAOjUywljSNM03Y197aRpWkiSZCM2IJQAmdca3znouLM5hvSsAkF3JkkyBvgj4O8wO/4Pf7lVKi2HCcNcCT3BjLvrMcNyOMHotPtxEzAXqAWEdK/c2NqwN26/b0uUoBMDSZsxkPUU5prWnTlOiwBioToJ2WwxQYrt2U5IWkvMYar/vo0QFJAxPsz/SeGzh1ilV56ibQQTVMAMVOVOkerYIq9nj19LLFKTH7+eYL82+72VDPOYX+ug17eNkPfe5OdvxebgnF9LktoziZxJYqXOw+anmX5+H6UJVb/n/96MMQMdhBrbMcKMqCIA4HC/b5XX4VimTYewcT3LOg0n2J9LfPsy7PlfRDBdhwjwUuZ9qHxMSpgrdzyxclKpk/KcjH7FjNUSbpIKHZUbmkCWQHm/94/a8xZCGEJujoqNOQ+bo8oJwNTrfaCkpQK6P/J2NXkberA5rYA9Nx0rOWypJfZ4v0gZ8AniHd7h+8YTTNZ53r4Bfy6K59KzE4umBdbxXv8JGJCSy6X6c53fX7FvYsO2+LM6U5R1Srwfr1JOygQlSfJtzIQYmyTJTmxC+EaSJE8Cd6Rp2p4kyYcxPZLhwDfTNP0vP/e4+weVUcBvpmn6kp/zXmIt/FTqcSr3eE3F2/ahNE3zp3ut45QfAJ9M0/RIkiSfBz6JCe78CpURlEhiQ2Z7PYxYFPbhCIxVeMa3tdCuCacF+4iy4GEBplQl97GehHGT24siBBP4b35KA4+59FoXY+mjvCjTrPw9F/ASAP2UcwsPFZmE32cJd/HRItNwIZvZwQQe63wnAN+pfxszmn7CX/FpnsCEDj5Y8zXe03RvERR1fbGZL7/tE0V2ZuFti1n66DUB5hq9S8TeVGLBo+/17XdgA4bYi09hgKYGeMyXLkaUmQ0uB6Tp1RZvVPDfp5eFaALYW/TPwKTq0nuKfRL7oX5dizFBX/JjF9i+yz/yDMvbHLXeCdufbuE+R28feuPf8Dur/4XvzjbRgj/jTj7NZ4uuaTfe/iDLmF9kgj7vr/Yd+78FQFP1bpYxvyhH3kcF5fRzL7czizWAqfUdoKroUncH99BOE+NmG2Lc/cAkmJfyw0ddhOIAHMgr8Ad7BtlIwYlYPwmAPpX5TcBoRBmMLIOCUkn+GOv8rHRRlgk6h1gg8Jigkx6191Rd7hyAXEKs0Z6sHC++c+7gg9I0/Y4vej2YJMl3MLbmN87kPQaVxcBnkiS5jZPHkJ49IChNU60D7MPXoJIkOatAkAxbMRp7sG/1IBZkP54YTzsJA3AZxgTVEav0Cj6vwgy0nVhCC7FLUqi6xI+/lnB5kiJXJaWxKxMJMFFLBMRLZlmG8CW+bzWRvHWLHz8Nc/VRckgNL4obkbhAO2Yw1mCG8wJKYzR6MTasimBJpI4nVygxLGIdtvi+m/1eu3z/cGzBq4xIEl3nv9dgRuNmzPBVXh7JW4u96CJEKzZ7nY8RAEilinDhm0aAt0YCvCpOqI5QpavCrLrZBPMm9gqCccuu8itHjRKQHvU69hLgRy7sSiiadXmUcpoC/M/zv7f6fSv890cwMNrt7RCrN5sQwRBzlMMA+3xsFWIHpkin+J0m7zPF6ko0odKvK3U3xantIxhNsDmtDHvO/dhotgT7pjqIuCItxu4g1OCOYc9xGPbOyp2zCvvWHsG+m45M2wW+pmHLQXMIBqieiNna7u3vx76LnD+rOm/PFOy7GIPZhtd6G7Z4Pwqsn25JvQ4nKCdlgtI0feer7L8u8/eTGEk2+Jjj7h90zI8HbQ9gzNCp1uOk93gd5VvAvydJ8s/AF7xOZ6Skafrvmc0VnELqhrOzKOZHHLJWzt8ARzbG70eq4Zn9cL4b5jWUyjr3YtB2oW9vwj665xIz2scCs/rYvqyFifMNKb3EFDYfmkZulBnF5fTxn8fmFqnxSeT5EP/AUr9ojpd5iFvo8gj5u/goH+UuLu2zRe13V/wL6+niI/UWvvDrPMt/cBX/m68y45hh6olNL1Ogih8+4Ib3e/q4sGkzTa3GLi194Bp4BC591F7nvdSxvakF96YzU0qTL4TxLcNznh+TIxLN9no/ifl5Lza4fNV/7yFkrsEiHYpuXpQmSdU9vroRznckeivmeDqP8PfOw/K/ujqu+Ttw+cAzLL/bQNE/VH6ML8z/CH/mwU4V9PP+Q9/kllGm/jafZbzIhdzla857aKDA6GLy1HbGcQf38JIrCF7Jsy6K0F5MgDuWLvJMYoqD2PVcRB1dvNhuzNDE2zZRRYENKzyQbEEKK5KQRxWo/pJvP5fpSzAp7C0Yhsl6dRbyBKiH0ri3nww6+BwCQHCm3OEASJJkNPD/AX94vHyZr3bacfYdV2QgTdMvOIvzVSxe58Dxjjude2TuJTPylMpZA4JepXwMfHniLCjlmJGl1eZtmBF1JWa0VhHgoAd7R6dhRtXThOJUE7G6L+f4BkwOW8pdCiSfgPmPNPk91xP5WAaI/D6Kr9D+Tszonuv17c7UTTElAhAFIlfQHm9Lnojv6CQkkQUADhEGr4CQAJVilHqJ5JRNfs5E/7/Rz5Vr2Y+I1fl+zOCs9X0yRCGMVd1X07hcriZjIDJPiFMoXmiq99FEf27K+SfWTP25ys97zOsml0MJU+BtFSu40p/LUeDbhIy2YrLwfp7j1x5DyD4r/mUYAdjOI0QfJLet+BQxPCr9fp8cIaTRiQErgaXxhBKf2ihgnCOmEEmwz/fz9mPv5cHMOeXYXDTD69Xg+wWK6v0YuSDWA/+IJVCXK2ivt72eEOfo9/4r8/PlDllPLAOVYfbCFuwZtvmxx/yY+YQy4AAGXiu9fm2ZPmwjmM+Dfu9GbN79Lb++3CvHYO+IGNxO78+HsZUaqeo1cQpLTqdYTpcJ+p9Y0jR9OEmSfwM+DaxKkuQ+Ml2ZpunfnKFbvR88mc1xSpIkHwD8+Yx5tcN+wUXTvHwXmrEV8iwoOkwx2cIIoKoaXvGfZYwu9G3FseR8Wy5jczB3pb3A2grqrtnF9jZbyh/b+mPmjFrFSF+ln8MLfLbj01Q1hYjBMuYzzt3fXmQae6krxpzYbWr4VMXnAPgif8xexnKRB79/9tinmT9smSXnHGYJQh/fdgvbmRb1XFFB4aYqlq52X7MccAe88IAnT70Ti3fScuwszPVPjFcLNoDI8Fzq/z+1Hz5abcfKDUPHfJeSfErc6n2ZJ+oglzgINbh5vv1l4C+nx/GVwKfgwpt+wouzLzZfmRrve13ju7D8pqsj31ENPMPCImBZfu/V3Hj7g0XXwhe5kHaaeHibxY9fONlEES7pNMGBSfV57uKj3ICtuTzPXHYwgT00MJfnaaKde7mdBvYUVf8KjAYsHxAQ8WFidlYkVl/lWr0fc9FQnJliolTUH3v9/8J+IjmI3N9qsXdcMUGH+dmYoHOonBoTdNKSJEkZBoD+JU3TR1/DqedEDOnZDoLOKo0/Sf4OYNPGTMygWkm4dmVjY54mYmA0R9zr5yonyVHMgMthn3AFoXClT7qJSGxaTzAn9X7PApFHRcBAMUGKk2jAjLp1mFHY5XU6Sri4SW1sll/zAm9DK/bmKlakBpvelY/nPMxgLvP6TyCYqj4MFAmkSJFsotddsTNS3prq24p5EdtR4fVsIoCfXK7kftdPuEwNZP7XHHSMcP2r898kSiHhgQa/p5xas1+bOOJrvV+yTM8oYg4SGa8ErVV+3dXel3O97nuwd6gdexZSRsv5sXKNlFtjj/9eRsRO1RES0Yq/qvK+EGhdQghGCBT0ELEvWjIXaFvtddyaqavKs0SOHolPrPf71xGsDX7eoxiw30yA9wLGrDzn15ca3z7sW1AsVy8BvmRX9BDugMOI72A79mwn+vHPUJrUVi58q7Bndplfbw3Gkm3B3sGHvY93Et/3cOz51RI5ka726yiP1GAn6Ndb9B6foJyJmKBztQxgr448QE+CJ6MkSbKE0vUFlT9L0/S7fsyfYcvJ//Jq13F/+7vt+KazQ3oVsGpnp3tx6WBfYybXypE9kGsoBTk1BDvxBOb/rYH1w9ggsx6KqX52Q1euubjS/0LNHC5vWlZ0qWpiN29qWkIbrcXbNvBTAzFYjM8y5hfjUHqoYRqbizFFt3Mv7+AxPtVt7MadtZ/iHu5gL3VFRbpxk/PsbptEeYstbPfXVJtbllbUFF8inPUJ/7fb1cfObzB3NfVDCxZ7kyUUFgDXVONefdZXV2b6SoIScilc6v+rDpswcKn9Kgow1EqRrncf8Di8+L6LLSYJP38rRVW79yz7OlwH963+XQAubP0J/VSwfJkxQ+Nuf7kIYsDieW7hIXZMnlDc3sw0cvUGgiroZwI7eCaTMbeVNrYyhXbG0c44CozmxWMXcsewe/ycPh5++r2Me6Mxf621z5ornCaTvYTUuvppKaUqeR0EGNJkUMQ0AkDNxFLoYWzkzrp9budnzdxzjBE6jZIkSQJ8A9j4OhaKTim+82yPIT1rJLKPV5Ik+e80Tf/XL7seKqOSJB2JjXED2Ni2DzO8ujG3GDEaYwgjsUC4ik3BZloFf88h4kC6MaNwFDa/7CBA1R4iYWYrBl4mEKvkMvq1gq0xU65PzdgbVI4Zg51EnMxRIhnpKsxolaG7jQBk2XxAW71tFX6/ASJ5J5RKZx/CxjrF+Mgd6XnM0CwQrIXc97Z5O5W0W8HnWTU0KbFpneegt1Oy5Ou9vcqxovgZuY8VsLG2H2NwZMyqzoMTow4uij/KFoE91UliBLswpkLAtyXTlhoMoCipLFjfN3idG7w/6ryundj8ISauJ3NeFQY4BjBbRQBALEl2UVKuiQex/lUOHYloSIFN71yX75f5lI0Bg5jXJdqxixCLkAz2BEJmW4ylgEUbBrynEBLWUhqUTHu/H/cW7LtZibFMK4nYuvmYTdZDuHhmVfo0D0/Fvrs24vtSH4gBXI29jxIsUdzVZCx+TC6t7jZ52hLZrUmS3n+C3y89A/c4F4vLqP4N9lj+Kpsc+wxd/72YQPGbTvXaZ49ENpTGQ0ykNBpyPBZ/LMNyP4yojsPPxz4+reL3YIa3PvjHsY8w1K9DxlllCfDhvmJg/Npjs+i6v5mJtxvNMpYuZrG2CIoq6KNAVTE4/yUu4GVyNFkMN3lyfJS7+Pyx0tCsrhXNfGi+2XL/8OTHYCt89iOmX/3nd3+J8pszMt75xNrw7ky73pdpVw/GUCiPbC828P7At494mxsBqTR/EgM2j+Vte0TOBgwNvI3YSlI2/qqeYNlaMMdOgYF5fj3V6UZictf/twIPQvn9DvburC5NsKrYoXlm65XXFCiv7OfAYnM1vPamR/kpDdzoCg9/vu2LfHbyH/MQtwCwiB9SRaEISKsosJc65vBCMWZrEnmWdc+nrrYLgK7uOi6qXc8L2+Z7XRPowPJIAV0dY+GRipC+2kkpu7iY0iSzeWLgFkhlK6UgSKBevg1atjxbmaDTlMiePCflzpNIZL/rpBLZC7A3cj1hvv1pmqZPDoohLcZ3YtOl4juvw/hKxXd+7jj3uALY70IGYp7el6bp1wcd97rvcTrllw6CkiQpcHwfvwQYmabpWcNWDU+SVC5qrZjh1oeNkdt8/xJsTN2FPcUybKySmlwt9j0PxwyubNJMgQABK7EAiiuSW1mP31+qVgI+nYT6mIzjCX69CgwQ7CBcr6YS7knrB9XhGJGsdBsh1lDp17jK/+/068zGDMY52Cr8FCKgPEfkCmonQFiN/99BKMX9CDNiDxJgr45gwFoxBmERERu1DzN+u/1eYwilOLmtKahfrmVb/B6ziZxIYMOmjPpdlMYMiSVaQCh5ZssUr6NyB43HjPpOIj6qnIhlUtJTMRZVhOvVbEIqeQuRtLTC+1RxMBISKBAg6nnft5JwXZzr/ay4XslHHyPAqxbbJvpvBSIB6YD301Qs9uk8wrXxJUzmZYvXvdnPF5tzyO+51u/fi71r7X78FmzuX0/Inh8lhEU2+369t2JfVEfFTTVi79Z6QtVP05/c3/DrZ4UMJDYk99TzCDnzOQSIv8yv/ySR5P1HRJzcwTMAUKYnSfqtE/w+bwgEHbckSfIslvT6tEUWjnNtAayrXi0f0vHPO9tAkNiekdjolMVyUwnR+zJgD4xwKeIrKXUDuwpzCJS71dcweLiCMFqzTBF+7qw+6Kkobl87+9EiqGmjlV/nP3jQDe9beYjnmcte6gCKeW4Wub9UO008230lVTX2hb9h2POMpYv72n4XaoyOGtfUbvlovB6KT9r+qKO5+7EJQ9ED78ZWjhSfcz+W/0c5gDowwHGXG+HvaDD2YhbhMrfbZX4UR7SJUhatEgNaEj6oGdS3UCpHroFtjYdpXF4drmECSlk/YzChCp0PsABuvOlBHr/3Vt9OuXTyMvLHcgB0rW1m4ezFrDpkw8qBjjo+NPkulni2vhfbp/GmpiVFkYunVt/Eh2b/DS+TYxovArCZC5lEnoeO2fPr6hhr/d9mcuQzWleyYdscixsDRt+8lwN3jo1+yxGJE/H6LySYoB5sMp6R6Uup9BXLRowFUn6gXYMP4OxigU4TBE2ak/KXJwFB7z0xCBoqZwEI+lUq5yVJOoEwkjuJXGhtBIyeixnMqwjm4Sg2TskoHUWoVcnVZzJmyF6FjQVbCMW2SmIlvoVQuZIC13NEIH+z3+cxzGCvwsDZNIJNqCNkhSuJ3ERqWw1mdO7IXE+uTF1Eon1JexAAACAASURBVNPx/vswv+YYIk5GBm+XH6P8PYqfEBBQPEkvthbZQbh4nef1VkC/WC4F0MsYz0odNxCu2UqmqtgNSZbrGdT7frnNbfFrbCfWkwqZ/tuc+b+VcI+EiJMRk9JIJM8dwICaDHgxdwIemr/6vH4QjFjB+6OFSD7aT0imHyPECVSfHq/zTG+XEoDKva1AMHuH/DyxdAKoxwixA72fd/u+HBEfg19bsWV6j8uIvFlTCVZUaoDtGIhYgL1f53n7NJ/XYQCrkWANxQjWEnFHYtfkRlkgEsp2+jliX6WEV+H/LycYR/wYCS7MwUCpXNUXeb+uw4B6B+GWOQp47AwAlJYkSb95gt+vOMVkqUPlzJUkSbZir0yX71qRpun/Pvl5v2wQlJUGzpYqLNmD3IZG+j+NeL66XpWzzcIAjCuLQSqHGagywgV2OghGQ8c+bv/VLdlFV74JNiXFa8xoXUkDPwVgKxdQQX9REnsCO9jBhCIIAnOXkzrc93gba7mEwiFjda4b9W883PZeFra64pvX4T23fZ372j1X4toK6IVLbzIhhBf+9AoDa069jvuHl9n9xklhZG8cgKvLInh/DiYYUeWM2QxsYO6kmKOHZ/YD6+F8jzNS8KpW00ZjTMYkB5g9hLQpwJEBOL8MXsnb9t/mbA1cffxEH9xRYUbCb6bw8SSEFWb5MUsxqnwwM+ftuvEfHuTxz9/Kwj9ZDFg81gv3XlFUtCtv3M+NtY8VRSmaaOdCNnPA/Rw+3/4JLm1aRTn9LG93pmdpBSzsM4VAoC7XTtfjzTArY1+uTQLkrMLeEfV1zustgLeJ0iDLreq7jVDlvoXFJKl6b3dhM05W3CwrACKX0LMFCJ0mCJo4J+XPTgKCfm8IBJ2snDUsy69COYIZinswo/KNWIxPK2agjsIMrl3ECv8EDKBMwQxFSf8OYCptEhSoI0CIpKAnY6Bigl+3kshwr3gOJSidSbgOLcMMyzd7Xdv9vCqMrbncr58nXG+lUCYXORnbzX6cYmimEHEgcwlWRzlqyv06OW9rk7d3jF9TK/Kq6zDCwJbkstyYrsR42j2YoT4MAwkyaMXiPOLHDiPG2KyBnF0P0nApA/2Y1zNPMBaTKWUFOoDbfZ/YuIN+rdlEXJRcIMWO9WIGcyuh4jYMG88lvSxltuF+35w/i3VePzF/l3ndFKNc7/cWgO3C4pSmYQDuMUJRLk/Eke3wfQJYNUSeoqzIheS6IRKWriMSkx8kQImel5QEBQA3Z/oSQkik0dvWgOVm6sbeLykbivV7iVBknO/3mYMBlwnYd1LA3sNd3nffI5QIlYhYbpAzselRCwWTCWCzzdtQ6f/0XtZ6W8cTQGg2ZnPo/QMykQ2nV04hT9CQMMIvuKRpOuXkR52NJWvsZZkgxU7UZbYPE35fu4BaPLadYrSgaNU8pqAmheMbsQ/j7dhHOAP7QCZSZIu61jbbefOMTbiwaTO7jzWxYZOphZU37mdcbXtRznpZ93zur303v7X6ewDMmL2ScvrIu79UPxVUUaB8lF3vyUNvhTwUWquKbnsXtv6E+1b/bsg03zMJboYXPuYAJYdNMHnb3P3GSVbfv/Z2vaPMBtJJvt2B9aH6QbFSuwmgdHk1dFwRAFETmiSyx5YBDfCyb19bVpqb6BmMKfo7aydLiQkVoHmYTeB7gJsTeCSFOxwIiV2aRamv/NuwwcxV7wpU8Tt/8vfc122ubHfWfor225uKogZd1PFw23uLA/folr0c6KjjTZNN0PHCps200sbzzOXSJmv4rNvW8o0nf9/YPjDAmzPXO4D+r1fb4C7Xww7snVmS2c4yah2UxgzJteLA9OhLRmKzx67MNoSC8hZ+No312QKAhsrZUoaYoNdQKpMkbcG+1UewsWgCBixk2CqwfRj2fc8mVrIlTjCRYI36CbGBJmJVX7LO5UQOmXXY/CI3Lxmwy7CFoad931zCfW6HHy/juIFwdVNQfTlm6Ekeusyvq3iiJsy4/H2/Xrlff4ZfQzFM2RV5ARaVKmxerPf9ZQQgkTCDQOAyr+sUb9dzmAHb6Pfc4OdOwIY5MQfrvG/FxlQSDEMXZuiKpajFxmS5eXcQTIacRDQvyS0ty2AonkaJW+WWKABw1PupjBBIKFDMdV1kRRoJMQf1ebf/vRZ77hLc6PV7X4kBhHLsvVLS24cx8LXS7/cubA6/2a95lAA7dYRy3xhCda6fiDVS32Xlt7NxMlMx4QPlfFKOLDE/q7F3eTbhzTDFn1O916kLex9nY++5vpWrvK3PE++q4peOZtqj2KmHsTQeUtgb5vdUrNNBguGSOEg79r4oHQpEQl2xZQLJelZHsffmZr/+Fu+78bb/tFfdpiVJ+tUT/P6mIXe4X5nyy2eCsiULgqBUVhj/bWrm7ykUwY/iVuTqJsNeRW5xihnahA1edxKSx3cAjxjbArB72SR4Fsb9iW+3G/ipazT5r64VzUycv6koclA+rJ/d7U1FtbH+niq+MPkP+D/bTCKbjgRyfZCvCCGER6otBiivWCeM9Vnkf0sFTmzEv2LZS+RKVuNtVruWYuzQdO+XjQNwSZmpqxSDQQfggxnW7BHtd3e2j1bDXQPwUb/GCmB5Hq7N2fYPcDs9b9tVOVt5Up16CTew3/b9azBjZKHv/xawKhLX8hyUf3g/l9a+AMDybQsprylwUa3RTy+0z2Fi08tsf8AaeultP6aGHn7Y7h2Vr4Bnoe6PDWzcMuwh1nAJl7CmKHRxmFH0URHMUEcF9MDoefY8D3wpkxMIbNJ9kHh3er0vcpk2ZMHhGmAcHg8k1bcGzAUuC4K6CXW4ZswyO1uBz2kyQf9rTsrHT8IE/cEQE3SyMsQEvYYygBlFL2FTyDHMgJIalgzZpzEjTjE9T2Ir+TLgaoiM9jK2Ctj334UZVWIVJJ+s3CVSy5IctoxExY10YKBhMrHqr1w7ku6eQ7gJzcWMwhps2G30/ZcTanH1hDR4D2Z8L/BrKLh9NQH4DhEB+bVEzETWxUr75ZakvD7rCBai2ftH95Y63ATvy+2EYVyPrfxLDlxt3eP12oPNZbuIRK6Nft7zxHwnd7l9hFBEq98nmyC2lgjc7/U6C/hAJPwUWBKj10W4edcQ8UECJ22EKIae4WUEM9GCvX91hDRzP/b8a/05CExtJVzuJFSxikiSexnh7igGbR9h7yhOa4Kff9D7cRjhvjgXe08V36X3IcsiHSKYlm6CNekmZMvllidgstr7cy7BYNUTjI8WBVTva70eKzHAvBx7h+sIVrOOEIEQc7nFf1dy1YkYyOn2Z6bvttn7XQD5B95m6Q/VE8l+T6ecAhM0pA43VE6xZF1/sglWav3vbFT6xYRkdgOWeNIZkyP7Yfdh6PQlnMuwj1AfXx4bmP4aSyDagg0OmzDDPI+tCF4Pu+92WmUGMJVinAk9FYzO7aWv1w33GlOQe9HRxVye5/FNt9K/1X6/9AM/5iFuoS5n7nPlk/vp6q6jv7KC/qXVjL5mL/0d0L+2molv9Fige1so/9R++j/uoGgp4c8OBtq2E8IHu5fAwkVFlz5mARvLYKPTF7+t3zZCwZevrp1uQKuAiSQUNhIMGxbwP64s1OTYD1fnIvblMmyC2OjPorAaVswOcNABNgo32DnzvK83AMtXw+Wz3Q+9vOjmx8ehf3E1y+83dThuhQtv31wULRjd2MX2e1ssdw/wa1jM08ImWx5qbWrjP+ZfSf6QPbsloxbx4gMXs3zhfC5s2syLT18MLQ665C7R2Ac15Rx4xMFPBTZoCxw+4W15MNO3S7F4JrBJ5G0EU6QBuwh0wN7RN2S2pQyn9/gcL8coTYM0VF5XGWKCXkOpTZK0H2MLpB6lXCPd2Li+BgMZPZhRfi/BvrRi371cnARywIzEmUSyz0ZC0rgKM7i+TwArGblSm5OKVxORdkBCBDLWh2HD51yCtej1348RcYkCJD1Efp+DhFuR4n8K3ubhhJGqIPV2b7cStvZkfldOI+VgUWJX5YnZ7MdvwIzSyzCWQACwhVCsqyTyHz2NAR65l0EAl6l+re2EGEMZNrcs8XY0Eip1auMuIsZECV2nev0UVzOVcEVT4L4YNQG0PmzOuoiQopZQQpPXSQBZ8Ujq0zKvSxvh8qcYpm0Ey6EYleewd09MovpJcV+Kz1mfqc8ApV4eEpSY7W2R0MFwwh3zIgJAChSWE66gAlEz/fx1BIDV95D3/yUiovdfOZSqCMVZvRujsOluB+b6Lnau1p/PZILBOQ/7HjSHVnp7lgC/g4HCPDE/i+m5HlvEVfLbmX5cVihjDKHy5+PAaa+6TU2S9G9P8Ptbh5igX5lydjFBEGueMhLFDNVR6g6n2cVBEPvhkmqb3MACHTcRMSgSRLiGcGe6CvvgVa7B3Ma0InYz8ByMvsOZgrVj7WP0KtRdYzFEF042tuLFJy+GHFza6vE8bVfAKrj0dt/+0BWxepVVpbuHYK3uSeGeJNI3rfN6iK35NkYn6/hNOPPgrNn57rq2238f539nsea1GDujY4pySBlWbQLBLj31Y2/0Vt+hPlf5MTZivcE2pzcY+XE5ET+zFnPrkzGxez9Mqg7gdE9qSnguqT3u0ZeNeVtigHL0zXuZNmozL/yV3XvhpxeztP3qoqtb/liOvt4KqkbZDLG7bRLljfvpv7+6tK+fIFRmVhGTKtiklCOkwLUyl40ryzI/38EGbeWqAsIXQ+pwSzGULRAkQQRtjySW487GcppMUPOclN87CRP0F0NM0MnKEBP0GsohLHB/OOFCM4MwyOXippVcqYL1EgzScEoTfjYSeVYOEUpoYlKUNHIZpjRWhhl35UQi1O2YAd6LGWTKGbOJcHnLEUzMSoJ1UhyQAtLH+DWlE7THr6nr78OM9icwkCMXwKexMVnucAOYwVjv1/o+Me7V+HXHeL+tJ9gOxTAd9PsMz/RbNxaHpfoKhAzDwMob/dhqQm2tQIgY7CBAiRTIav0ZyT1Nxrf6R4BGwgNyE5OhPtn7WaBYz2APNrWprRJrELs2xp+hWMAewt1N80A9NpfM9f6bSshFKxarAnu+5xFJQ8sIQKUkuMOJ2C4IKXK5+gm44Psl3KAcVqMwEQPlaRJgVN8IMOcw20J5q8Q46neJL0CAoTYiRqmRUE9UTNYOAtAN+D3H+3XG+/k/It5RCY5UEkCyGXjA+3KO32sz9vyn+jUU01eGfVN1xCLAc5n+qff7ZpXnJhKLlqdbTjm5zVAZKqdcslO9YoCaM9vZ/3cRMwBABgCBTX7vAFdUtuDWHGaMy+j9EQGSwOKLpCoDNmiOhwN/50zBe/pga0Vx8Bs9rEChpsAED2x5sediAF540gz18nn76e+tNnEDMDCzwdzr+o8ZH9/1eLNNOJKw+FRiqxnf9e3lA5ArC0brauz45W5kT2owhbyi6MFG7zNnkna7a9xOYjB4aiPh6wCMa4hjASgzdzbF61xyBaxRtC3Ycl91xCHtuMJz46y27Y2HYVzO6qz+7cDq+Bbf/pzXT6zLnYk9H2ebdn9skp27yFi4A3eMJX9/H5d+2gDl0ruvgUVpqMdtaobKlAMd9qxGz7IYIRZRjIUqv34//RXVeD5WM4yWDKpjtlRirnBLM/tWEIn35JlZBEHqPxeeAAxx/ifx3o6i1M1zK0NlqJysDIGg11AGMGP9R5jhfRM2no7CwIHicTZhQ6WCvJuxMUAgppcwZLcQRuUYwqVGBpfkj+djxrQYHCWUnEgEdk/w33YQuXWU+6TB7ytZ6G6/BpiB9xZszBrjdVZshcCI3Lrw9k7A5pMezB3rJj/nPAK8LcEAxlpCJe2Q16/X2yM3th3Y4pgWCusxJkjlzUQ+FiWNFVhS7NNqr9M6zNAdwIbLN3s/yziuImSeZFjLFa7S27DL66p2awiW+li/11fS5PIA6SVMiyrCFjhGGOZlRILPAYJ92uHH9hOujOMJafA89o7N8PvKdbKeYDv0fijfk9zT6vwcLRZmwZTcw1RnMZwy9LswkFCPPR/FLTUQ4krKlyMwsQUDpRMwwHwVweQs8GeUDTHY5r+vwNzyJWkut0IBRTFh5Zgpstmvs8j3/4D4Htu835b7+bd4vbux91KS2buw90jMq1wO1Y9y6+z2uvcS77HU4cQ8nm5JOWmy1KEyVF5HGZwsdSSxJNJFsEFgBrmUtoDzc2aMapAYjRmv7l1FHvtwFxKxKwsJ4QCw5JgLM1VYRUg7g8WQTInjK+in/+vV/HDCW23HVuAAzPiAZRHd0HaZHS+Pvg1Q/u797F6dSYa6BUvkqtifmdjAIJernjJzTxNY0ArWdAcuGwdgRFmseI6YXtqNRzz2Z3SmHh3T4ZUl8E6Pp/m2pMY9buUIQHMwR3nN9H7PEcCRPOzN+fGrYfRsirIz1wPfdqD0YT91rPfjJ3z7nX6cSIK1GNul5KqbgMUw8XYLLtr+pUl0rWimq6c5+qGy38QswOK6Pp5w7fxHAfjPY3M5sCmxezqT0/9EdWT3hhA+yOKQCuLZzMPifgSOvLlFclKB0sW+liN0d+YgxQJlpd67Mr/XgqsPnpNFeS2GymmVcxoEJUnyGeB3ifWFP03T9En/7ZOYR8xR4CNpmn7/VK65CzPW5Nomwz8bq5MNmocAJjOJPDVyFRuFfbaLMDalBTPmlUSzHhu/lDRTwGoAAxGd2EIcBEMh1ymt3i/y4zb4daVgJvniXiKOSIIGYgjUrnJCPEAuXAow3+nXnuHbYphuIGSpN3gfzPU2dhHsRKXvX0PISO/C1nkU67QTG28lbT2RYHQEErd432UZBIEbgZg8Eehf78cLmMotbZq3X7FKOwiGqAtbpOrGGLXJhGjBMK+rZJ3XYeByKwEk9f+PsGlNzEOPX6efYNsUY/Ost3s24U52lADDm7Fnrms1EmqA6wh3ODFR5RjoENPWSoDXNsK1TazkTmy8PeT1E8Cf7P35FgJYihFVfqSLvN6FzD3+3fu4y/t2hveJZLafJlwntxFuhvUEC9rm19qCfVcS1Hg/lsJkAeEOeoP3Q6cff5m35ZBfW+Ia/YS8u7w8WjAg3e3X+Z7vX+B1eAYD3CHke3ol5aRM0FBM0FA5xZKVyM4KI8iQFOiZOui8XdhXm7fNV8S/uqF+ACjsgVW+XSDcwBozl1FMEBiI2k5o0c/C4mn8FkW/1DvMPf/FZcb86Hp1t+6i6yvNbHi/qckxz685Lm7X//VqGzwXxT7uweKUwAbi72Iqdrr2Mxth0vS4Zg9hkPeWWT21/aCfI1ZsOuaaNgJzQdNNLl8E3/YZ5/wG6/7r/SKLvd5ievZi4goCA71AZS7uuSETDwQGNqdX28BUiQGiL1VbX17ux7QAS2D0V9zV8PqxFu8kF705wLth+93uk7fJtgVo6j68y9gfF7UYfc9eDuTH8tTqm2xHTWr9cA/R17NS+E4SdT2CPc/FmTr1ESBZMVAqg93hNjrQKwpO1Lprh+TcIdzfVORcr/d6sDLcOVaGQNAZKec0CPJyV5qmX8ruSJKkFUt79v9gtuCSJEkuTNP06PEuoDIcM8auxYyhSwgXWOWqUayGVNUkRzyGcD0bIFZ7OzGjcgc2BggIPYMt5uwAPoIZYj3YJ95BuAHNwMb9qdiCl+JWJCncjRmxiveRnHINZrRLDlnKZVLEGu5tkkLcPmzhr51QKxvj7ZiBGbDVfj2pkMmYayXECvqxuXATpan59nl9WoB/9rbv9PPaMYN1stenB3gKM2CVK+gxQs9IrlpSiDvobXiL95MU3PYTeXEkC668RWKH2jEAV4nNHWP8umISxHop9kaudDoO7D3JAptjhMiGcvW0ZfrkKBZrc8zPVaxsg/fHfu8PxepI1S/v13mzt7nDryX3SMWSdWKgczMBygX0dI9KP7/K9+UpBcbTvI+3YYBAogzTvB8FWJTgFK93K5Ecdrg/s26vi943lS6vp9zdd/gzEOMneew27LkuIBaXdU+5RO7x5yIhifUYcNGC4yEi8aqEG3YSCxEtfo0bKBVA+C1sAWEHZ6acAhM0JJE9VE6xHBn0t3y2JhK8PNiMkYXxtVgsSjb/Ss6ADwANZtzLYJ1B/F2JfRB5SiWPN2HSz7JP12KGt4S8xOp0eB6hGkLaGej6YrMZ0Ups+oSfL3eBGURsj4z3R/Zy4PmxATDGe/2URuYtwI3TIzj/Cb9+3rcbMXcGeappYhaAudXvVdhvwASgY7bd4xIf/bdiA5OM/nnY5JV1E8u6PBQwcLXct8/3PlDsTC82kG3ytryz2higWwmWxdmtA4vc1fDj3jfqh+eBhTDuI8YEldPH9j9tKf7eVdNsA+RM2z6wYmwMlABPJNR9eBd9X6rgwLv9Hi2J1VXMjxSY1JcKFs5l2vpE5u8OSlm26dW27xWBy8NwuJpSJYC5WEWzqodZ6imbIwjOvjxBp1lShkDQcUqSJP8L4z33Ai+mafrXJzr+fwIIOl55O/BgmqZ9wMueDO8NxNBz3HKUSKQp1qePkFvWWClgIOajDjNoFYyuhJkSALiKSKY64PvejBl307AxS6BCimNSs1LyUSWEzGNGnAxWMVaNGBt9yI8XOzLT/+733+T2JBelOX6Pfdh8JdCgOJ7V3r7Z/vsO/7vNr68Ykry3WW50R4lknx1EHMgAsVAnRbUqbF6V21i/3/t5InFshZ+fw1bym/watd6eJm+D4lDWE+5pdYSL3Ut+z61+n2lEgL2MZPVdDjMPpEAmOWyBnGZCoa6WUDPLEy53YtUGsDl5G6E2J9NEgLjH6/cjzEC/3tv4tD+7KQS40jNZhwHEa/3vmQQQb/D7d3q9xPYc9XsJRA4ncgpJ9ELubdOwZ74Fm+t3+L1r/TgpDyo/Vq/37zZvx5X+HK4iWL889t1UEnF4fX4vMXXKfbWfiNXS8Tv8mpL4VlzQSu/XQwRjiz9HiUEsI8DXNN/3DLYAkPf7j/H7VxC5hBTTdCbKUEzQUPn5ll2UMkEjsRFFPl1ZlyOwNzxfuu8I8QH1YEZ+DeaP+hv+t/ZBDPIqDZSKFvRhA9hzvq0BT4F2N2NGs45fQBj9YAN2HpPidlW0A/eMNZcxgYwN2CD7I9/+LqVxS9cTsfZ4/ecQ7nDTAQZgrwOcr2GucNdXhxrePCKZG5ir2nPEamkHxl495sb9pGp7DLLLP4iBsg9m6pAFkxroerBJXfdcSri79fi+r/n2c9hzEAvzcdu3+zZHc5uwZ1HjIlnfSQyA6p47PeZnhQO98dC1tNn6+U4/5l+JCRkMiM0i3pFNBHhTGYuZqWB9ngWEYtiKIKbWEsmylZBwfwqbbSRXMxKbdbMxboMBzzkCgOCMMUFJknwTe/t/mqbpjBMcNxzjbHelaXq977sG+FtsSr3nZIDj9dTjddzjQuDf0jT9xyRJ7j3pfc9ldTh3h3sfZiutAv4oTdNXkiT5Cpb1+34/7hvAU2maPnKca3wA+ABAJVwqN5mtmOH2ku0vKqfJMJNb2hhCwVLraoqHkHGtxJvbMSNtE2Fsyn0sT8gIK8/QQczwkuJbATPMqr1ex7w+yikDZgR/n3B2EBMgV656zNBT3IqC7TWXrcSMWHzfMt+uJQCZJI8hFMWOEvEmh7xf1hB5leSvKEGIY5gxqgWodb7dhxmkEjuQtHQV4WoGNiyqTRO8rVkDfRk2T/yAEGUoJ+JQJFG9xe9T5fce5nXbQqynVmbq1kC4wssdT7EwMsyb/f91GKMkJTmxVzkikWoDITChnDqbiLxEYsoU3wL2DszD5pT5BPsmt7IOQg3tPEKm/SAhI97i7Tia6TexkTkCsNRk6jrNr73d913k/dVGCErILW4YwZpJkKCKyGW1Dvu+jmFM0GXejm5iEWIM8Z7M8uM8S0VRIGKN10uupz3Yc9Z3uRX7FpQMdSr2vjxEPPetfvxUf46K3ev1firDgGjhDCi35ZIk/YsT/P7+IXW4X5nyy1eHy7rDQfgWDS7N2BdwOLMNpbxsAz9b5PJVFjkGlrtxf361fZSaODZhsTgaoGdhg7LYCbm3KSh0DjZoaEbugPL799P/iBviY7EZXck3v4IBo+cI1bQ5hK+3Sg8RjL8Qs6UVO3MPJXFJVGKD0D9mzq8h2IwazA1NrmkqGqB1jXmZ37+DrfzIbbAnc5zOzd4DgqHSPe/w9lZm9nVkrqWVJF1jhddRAKUCAyzquw1+vm/XzTPXQzFFu5+cZHUQYFw6qH6qdy5Thx7fl435aaQ031Ej0dd53F0vwzaWkDbuHleSF6iZ8HVRkZ4rZHzpODvLaarDjZ2TcsNJ1OH+6eTqcEmS/Drm5HrvSUDQx7CvqjpN0+sdFL2ILXvsxMzDd6Zp2jbovF8DDqdpWsjsm5Km6dZBx/1MPU50jyRJLgL+76Bqvh8zNR7BuLL70jT9pxO1/1eeCUqSZAmlnsgqfwZ8Ffgs1hmfBf5frJOS4xx/XDSYpundwN0Ao5MklaE6AzOgWzCjagc2XgoAKSZoNfbpysVmE7YqP4AZ4m/Bxv08ZoTK1awTG5NWE5/wMczQb6M0lkN5f4ZhBmGnn1NHLCR1EGOUJKevJMBWvR/TTiw2SRluBjbcbCLc8XLYOKaA+HpCuEBKbArKV9yODF3leJFwaBeRz0bMTzZY/yksL9yz3ldyuSt4f1V6myQEoVgPuRg+6/VtJYZLuSbeghm0EgGQzHgtBhYv83oNYPPANL/WQWxuXeD1m+3PR0psx/weUpwTAJQM+EGvz2bfLhDqb4rZEjiZgi1enke4NYrtUdyQRi4B78nEe9Pn15ZctICZ8lE9QyT+lWCEYm4K3t87vV+eIVwKBaz0/PTOSCWuzPusyfuq1evVQXwv7QQAbiNUEsXUtBPTolzcFvk1BPYlTqC8R5UYSMth34aYrJl+7f3+TI5hQLYKGyh+A3svu4mYrrcTTBLEc5yAPcsO7Fm+269xJsoJfXKHylA55TJ41TvrSjRy0P4sMzSYg07W4wAAIABJREFUCdqV2Q82Oo6kqJL2CvBK3oL5z/d9OWzgzeKuBwmjtwcziN/r24sxUHK+b+8kAhmxv/s7quEzvn2j/5YFOM8R7Iju8TjGfIANRpWUsj/PEYb6HV4P1XEpBtzEVtyJ5ULKAp6vYCBiqW/nKQUcK/z62n6bny+QJDeNvG/fSrjn4fWZkjl+MZZj6IOZfd8ixB50z1sIxmse1teqdwfWB3sz5/RiIBDoWtUMM2D3h5wpWosNhKP92IWZe8rN7ypsMhMAHcwEVWL9r2uAPR/1fdFTTWB7NRxpJsB3NzbTTqUk71LJe6oyIvPbOSyMcIbc4dI0/Y8kSXInOiZJkvHAW4HPAR/z3W8AtqZpus2PeRB7U9oGnX4V8MEkSa5L07Q3SZLfxfQlrzuFerzqPdI0XU84xGTr+nHgL/x6jwDnNghK03TRyY+CJEm+Tnih7iQIDTAbuP1nThpUhhHywQrynky4QUmNqjfzdzX2rYvtacaMxzJsXFTOkhuwz/tJQoxgnR87FzP2mjHjbielwfzbMEOylVCaq8MWe24gDHsBDkk5P4SpummeGhxPpNiOTv+3k4jJOOj36iWC8LPuQApkV+yR1OZqMIg+1+/VQySNlfudlP07sYd0LbbS3oStyk8kFqLq/Brf9/speaeAXQEL0q/w/tRcJCZ5E8GGKQ6oxusmZVR90VdR6p5dg/lPziASzSqPTi+Rm2k5IV5RRwBExYk1YIb+Fuy5S/xB4GI7oYImYDCccKebSKRlEOAqeF8J1JRhIEF5h7YTcSyLiHxO6gtJiKvOTd6udwKPYu9aGwYsev3+eh8UEzcKA4nbMJCwnlDQe6M/D4FmhQZIVrvK+2Q4pfmzxmDPWoB7NpGDKE+Ij1xGAElJkit2SO5++O//RMTfVfqxYookiiA1RanxiYUSsyh743TLKSRLHSpD5XUWGYySyM7mCXqeYH7GY2+8QNFF2GiSdZ87TBEEnQ8UcsbOqFRiH1uW6eklmIAn/DZiWX4PGzgWZ64xjwA0jRgI+YxvCzyotBDMj9ij6zEQpIjgHsyAl129zushKyiHgatv+faNGCCRhfEZ/6c2dGAg6nHChW4WBohUt4VEDgG1o5cAJO/zNku84QkMGCrH0jxCSQ2sn/Z5e9U3vdhAeySznQ1cvINSV8JZRM4HHd9DgMMpmFGS9+23+/XE0uH3X5xpp3z7dc5SP0bP/xoMAOV8ezkOehTzA/ZeSf56NrZcpSWwHDESZ1XhxmMzDUSy1KwAyDlcTs0dbmySJFm66G5f2H+t5cvA/6F0WUPh7Co7MROspKRp+p0kSSYBDyZJ8h2MiPiNU7zvKd1jUFkMfCZJktsodcI9bvmVB0EnKkmSjEvTVJoo7yA8Tr8HPJAkyd9g9t1UTHD+hGUEkchSeUvy2Of6XYyxVrZ5uWaNwQwkuXDNJkBIGfb5KsN9HhtvxBLNJOJMf8sr3UnEdx7Dxsqc128lxiytwsb5BZhhKve2dUTsTpXX92EMKD3ndbnAf1cOm3psKGrEpkG5Q/UTzNJ6igKeTCBiPZ4lGLAt2FQqY7uHiKsRm1+LDXmKHZFL1nDsra/Bhr0GTGEMDFwoh5AAodwGBTLknjeTyNEkgDbVz9lOuGVNJZLHtmMgQ8zRUb+XYrLK/FjlQmrE5pDz/LrKKTPc6ySjX6zVjsxz0T16ific5zETRa5cNYSLmuKTlHtnmx/bTYChacQcrPFym/82xfu7FQPZF2DvkMQeJBZQ79eUy7fA+2zM3hATMxl79lpNEAiV1HolEVeF30eJVCXVvQ/7SN+MjXaSbO/x/qohxEekLjeAAdRLCOCj/qonGMY24luQPaApVl4o6v8+gt26KtNnEq24OnOvi4j34XRLyhATNFR+XmUwEyRjsct/k9G4CxsFB+UPqrrC/i/s8XM32vYrI4Gc5b9xobWfia7dRCkLsxYbLJXb5p+xgUVG9VK7ZInbVRZEVVIac9SCsTIdmX33+/5ZmXMWEx9/HludEcjZANzRB5sq4vgs67PQ7ym241t+7U9QGrOTLXlvg84ZSykg2eR1zDJa2RxLmzDzU/3S59ccQwzq78MGQoGUWVg/acDfQLjIqdRQyl7diU3YYBP6pkwdtvv9BWi0krUS+E3fJ1ZHuaM+SDE2C4CvYzE9NXKUH4CpZbDTgXRhD1RVw2G3JI7sIeJ/ICTbJd8ONkP9hHhPawf9PiSRDew9XffpJEkUp/NCkiQLsz8d5/BX86j6grM4XwUuSNP0wPGOO97tT/UemXttIBxIT1rOaRAEfCFJkllYp+VxB+00Tf8rSZKHMbvoCPD7J1OGUxmGGXUyDHdgxtB1mKvQRMLgExuxCDPKctj4IlW0AiFGMBczrPZgBpsU1Sb6PVYRLmd5IhZjPsYeSYpYRrGCzxWnpDxBcrGqwRgduV4r55CSjYr1kXucQMZ5GCszH0uwPZNYo5E7nhgnxVBMxYajYdjYLMNcrIcW9eQaJRe6Yd6OZd5fGoez84zy7ykBpo47SLgJig3YTOQBOoqN4VO9/v+KLU1IuU/uZFIyE9MlI1zJyZWTpt37Qi5x3ZQmOZVb4Va/xhgM/EhV8Hmv3w3YnKM5Uq5j1YS0toQNDvk1pXYnNcJKDIRuIhLfSl2tjvDG0JLOLu+T9YTgh3IVVfq5ykPVRICBbuw93UYwL2KRxmB2kBZnewn75CDBqHwbA/6bvJ6d2ALuE9h0pnd1C/aNrSbc6CoxsN7tv9cSYhtyYav0ei/xvp5AMLF4Wxb5+XrP9e5NJlwQ1VaBpjZ/Rr9BJHtdyemXU2CChiSyh8oZKllmSPEV+N8jCR4ZYJfLE5M5Vts5YA9UNbi0MTDC5Y2z7MTLFHETl1MaO6PLfMv/Xkipm1gLNnmIylesjc7P+/mVwKfcRvp4Urpm/C2MFZmXEQBYRwgK3AHcVxHH11Aa17QUY4cExBYSE5LquZZgf1Q6CPZpEyFkAMEcZd0LcoSbWSOlMt3qs33EhChwoolRjJf2y8VP11jqvwv8LcEGXNUpRyl7lfd9SnQrCv9Koi92YgBPLg9rsQFc19iBJZbdmBndNu4P98mqBtcxyDJDg9XdFKumfVI0zIJ1RaSqnENqcL+8cgVwQ5Ik12FvWXWSJPcDf88pelQlSXIlZq48BvwFkeXqZOV1eW29lnJOg6A0Td9zgt8+h/k3nnLRivNOQlHrIiLGQDEYcpk7iI1Ze3yfDGapqF3kx4zyba2aryDieqqwT13s0RbCqK7BjL4+/03uY4qXuYgw3DcQrmGTKV213+5tqfZ7PUmI7AicSAGvlWCo5mLjnPIFDceGqbXEIsVkzKCWwSoFt37C2NueOb6BABwFzEC/jAB0Myn9AiQVvQYDkT3ehkaCmTlKBP1LBAJi1T+HGbO9hEucDHqpwin/0FE/v4AZ1RI8GOX9IFU6zU0XEXml9nnfyP1NeXaqCZbjvMz1uzPXErsDAYwvIiS2xdgMx0aJTURc0n4CsCm5bD/ByqlPlfBzGMEwjvG+F3MnlzaxRJuB2wlQcgxzPZRCm+LjwJ7zlX5vvZdydZuJvY96l2/3Y9Zl2rUSe4brCCnvrJLaBu+/GozhvBz7XhTPU8AWXJu8D1Z7HZXUt9P7tszrJHCj71kud1UYy6q8UWrnmSonWY0ZksgeKmegHCZWzMFmlWzy1GZiuW49NtLXZrYPU4zNOB9jgwoDGDDqhvrqUoCz+8d2vBKR5imNjemlNOC+B3NF07bigxZntt9OqQTzzdhg+XFfPF7o2/JVbcFWE7cmcY95BFh4jlBeUx3l9gWxWiNWppFggFTPqyhdxboKG3xVh1mUxgh1EEpv+n0twcJcjw1Q2ZW/CuxxfQlzM+vBBmr5b2/1Oot9Uh9n3fhWDLqm+hPseY4n3Ar1bHS8wGklARBrCICne3UQRpFwyPm+/PTKgAHlVzJ1YAkWAgI2um+lNP5H76zA+cXYCJ9lOLMm7TnMAsEvTCI7TdNPAp8EcCbo42mavjtJkhHAVHd124VFtN02+PwkSS7BuMC3Yksh9ydJcmeapp8afOxxyspTucfplHMaBJ3pkhJsQzM2RjQQ49sUzDjchhlTkj3+BmbEbSDUq3oxg1QJKdcRCTEVfzMXG99aMEP2JWwa0ur4Qcwwr8QMXCUknUm41E3FxqOpfq1+Ij+KBA2OeZ27/NqXYfPBIsxY7yJ8BgVONFds9fO1Ii/mQdNlJxGrIde2TiKpplbkuzADtpFwr5Ork9TlxKy1+LFd/vcT2LwgJdM12JKDErpW+rPpINzU+gmXOM1rAjhtfuxsr3MFwb6MIty6xYRV+n2G+z9JkIvtUP8fwtgMuWNv8WPXEMzTV4l3oxmb2wSGDmHMSsHrVud9OxV71o2EQppc/yYTSXTrvW2KM1NuIIFPtUMgoZIAIkcJQYgq4n293J+X2j7Rf5OIRycBot/hfa2YpX1+/HbM1fNqjD26CrjX2yrXwQFC/EJArJtY85OL5TCMqXwXBqgO+TlzvI8UH7YMe3dGeb+ojlIGFOPTQrzLkoevozSfVg0WsnsmylBM0FD5+RVZoiOwEVEW/K9hbkVaaR+FWb3jM+dKVhtshN9F0fh8ZTX2ldT6/in2oRwZgBEa4a+w2wpwvOIsQM631wxAVVkovEColoEZ9Tni+A4snuh9me1HCBnmedjg2JM5ZxbGBsmYn+d/L838vpSI71H3CKDsoZT16SHcxvIYUyJ3g5bMOdlr9mCDnrpS/raK4TmMDW4CXmu9nmKG5Ds+gQBourbcz1Q/9Z0YNLFi+7zeOm4WpW6COUoBUg/GgC3O7Kvx/csxye8aIheGzjlCrOHvwFkgfx/OL4NX5FapchURE6Si358ftL8O69haSl3msuUcZ4HOnET2t7G3aGySJDsxUYFvJEnyJHBHmqbHZV7SND2SJMmHsfXm4cA30zT9r+McOgr4zTRNX/L7vZf4ck+lHqdyj9ddzmmJ7DNdxiZJ2kCoTdUS4GK4b0s5Krua30W4sg3HDKaJhEx2EwZ69hPSyoplkZuQjPA8IQesPDCzMSC2wLcnEMblABEYrtR4MuoKRMSZFnR6sbnnagwwPIENTRCMwkTCdUjy0wJJ7d52CUJABOP3ECyOXNYKRJ6cpwk1NrExAmtHCYBVwNaMFhCuUDKWZehDAFG51eWIXDHqx10YaNiRuW8OU/7LEQll1T9NBLjIezsPetu2YyIOEjOoJXI8CWR1UwoAH/Pzc77/OWyukvhEH1GmYKBzTuYao7DnqiSoZV6nTv9NBrXyUK3DTBsZ8urfg9jzFqBuI4CQwFAFFov1DsIls+B9K9n14dh7AgG2FZOlGB2xRprW3oHN1wMEsIZwi6siTCzlcBK710qwR11ErqCrva3rKM0nJPn1ORiInUzke2r2Y8TK5rF3bB/2/ezz3zUGFDAwLaGSZWdAvro5SdIPnuD3Px+SyP6VKb98iexXK1WUBpCDraprhX2Xb6vILSkrjKDRSL9vwUaurJLcGwg/MBnAPiJVlUFhI8UgIqnCveLLD5Magu5W6aVU4ewaShObLiVAAgQT1Js5J0eAhsHHa2VPAKaGUiNzKaViDRocWzL1EkhqzJyTvc4sSgHGYuAPMXEFlWz8jgZhTUCbfFttg1Kwozo0Ztq5glI/coGa7PnySdd1cpl2zqN0lUcub2vIqLB7wlgp3BzBwNFuLScd9ouqYc4YFt/Bkdj7JCboeCHaEvQ4NGif3rmR2Kg8YtD22VpOUyJ71JyUlpNIZK85uUT2//QyxAS9hpIScTqXY4buFmzVXcZxD6WGfS1mrO3zf02YESoXm3ZsfFyOTStriFicqwkgNRMz2pSE9XoM+LyFUKLb4cdKureVcHE6RsRMyC2vh1DL2kfk8rmWcAd7MxH7pDxAMuArMSNws/8u0CUhAQW7d3g/Vfs+xSWJbX8XEaCv+I8cwSRobspKRwtkjvf+lZiOhCPExCjtw3YiRmUbZtweypwjhiiHiVyodGPzVr/30Va/fh6bG7K5e2Z4f0tAoopw/ROAq/R2S5q7CwMPm7GhfA4RbwYBXif6daXWtx17J77n/TQKc+l71u/TQHhHD/j1aghRjXYMGFzg/2fFJVRviFxHcvebgwG36wkAP5xI9CswNoZwvWvH3tUbiPdQYHgBIY1dSwAVudtV+W89GDjXO6RpTyzMXIIZVMxRjohjy6rPSQurnhA0yGEA+Upv1wTvK7F/h/z6W7HnrHbkvb1ZW+10yhATNFR+fkXT/eHj/JbNtTIV+2JkoOrrmZvZbqY0jxDYVyX26BrCbQ7C4HXQU8gDU8BVmHkZA0KXO2hanodJucBZYwmfb/xSiwnDXfE7AjpgH2cvpXl/egjAkQVH+HmzCOO/hdKYG7FL2fNupVR1phJbocsq5eUI238F1jXCho1YUtNbfftbvk/t6sD6IJvyaY63Qde8Bss/JJGCb2fqDMGIZVc6lw46JstwHSDc3cABUIbVW48NzKL0AXAAdEQXOYw9a4lq5KCwn1Lltl3EO9TNzyY6HfyeSjdV+8djDGY2ti1bBgOgc5wZGiqvqwyBoNdQjmDSvoeI4P2jmAFfRwgBZCWzBSzk7vQjzMhpJgLvz8MAj8DBcD9mFWEwtmFs+yFC9KDcj+sicgZtJVa7t2MGoQLEewnwotV4ue2WEypcAjtyl1JMhUCOvAAOYSBDKmyKjZECW3Xm3DdiY+QuYihbRCSaHeV1r/T6rPQ6PI+xQ0ooOtzv83b/X2yCFM7KKZ3OO4l5VMATr0ubt7XP+6GeYG4UAzTgdZE7X6v3txiGNuzZ54jnp2f4vLenlgikb8Hm0nv8vBavSzvGuD1DmBET/dw1Xk/FEr2LcLWT21+5908N9g6uJZQI835s3uvV4nXTImhW9l3uar3YM1SSUQkN6D3cRcRhSUBBroR6RuXE+ychiaMEwJYLXmumP7dg8383ERen/lP5fuZ6jxBCBt3YO3DI+0L5oWSjtPg5wwk3fNlFYl4llZ4VVtAChb7TDcQiRyf2/gypww2VX62SNQYPY6OOwM6WQcd2Y8zQ4NxBOu5ibJTIKs4txpYGfDlnxGxzjys6mvo1enOx+QqRbHVEzoDR5f7b8owrlUovMbgDrNkDNMQ5mzC3u+nVcUzW2JdfuXSqVlIar6O8NgIPa7E6iQnZi8UtvTIAk7xuWmmSAMQllEpF5/wc3QMiRge/fiURE9SDgZ585vdeSkHNUmzAXerb0/3+OkeTai5zvw1EhpVv74dJ1eG6MQJLXKp+7ASOlJXmHn0FYL8puoEBnCMjCVCzFXavpvg+FPZg6Em/Hyak17X9E2JGv9i3Fac2EhvZd8Y1iy6cWTc4sZwqWeBzjgGgX1BM0LlehkDQaygHiWG4DTO8ajB3HhlKCnDv8GPloqY8KlcRiZS3Y0ZsR+a69cQnrXFOCUQVJJ4n3HFWYmPcKux7uN7rpUSnkwl5YIkqbCDGRcXFTCOC77MuUHJ1qsSMaiW9lILYBX6dLRgrNYAZoqMw43AYNozJuO3wurR4myWaIJe9GgzAHfT/ryPiPSqJJKhthLBBDWaUyt2qChtu91G6FrQNm5P2EcpsEMBMICvv1+jE5kElr13tbcx5Wz7j99W8l8NArpg2MW8T/Jh27D2pJYzmrKezVPB2ej2VJ2eu10nxZPsIIDwXAz1iFOWSOZ8AG4obE3B6AAOWii+TC2M9IY0uuXDFyVR6f7UTMVGXE3FYV/v/LRj4kNtbE+F2p9w667F3YpHXXQlkBaYUM9aLMZFSj53mfVRGSLZP9mOzMVmyDW7CXCz1Xhe8nR1Eqoxd2FS8xOuhukAIaEgqW4JMzxDArpUzy9wMMUFD5edXXi15qhx3s65JI4mZaAqlSnHiqadmtrUkpt90Db/HkY2Y0apzXIFud1YNbFfc84gDqPz0zO8bKQbKjy5z49x/Wg9Br2RKVca43z0A48rinJHYwFqcJPbDyxlBh9GUuuD1AgxAh48QU7BB/7GyOGcNwZJoe32mntMxgLE7s11JuJtN9/s86NsFr2fRUtsPea+jwFelt00jV6Ufn3V/OzIA6zMgsgoDP2ACBS/voTQZ7mFYmbPNI/tdxEAAVq5stZm+k0OxAGdWbRCCCcwyPYOV37Lb2Rg0CPAjmezscSq1/CwbdI4Bn2w5QzFB/9PLEAh6DWU0kcC0yf/lMAAy2f+XNHQ9EdepwHPFfBYwY1FjpVyVFMO5HjPArsRWunXcQUKKWVLSYAZzr//b4XXYiRmQA0TMjFb6KzGDtIuYH+Su1e51UbzEHq9HJ2aAziFy+Uz1+k3EwNB2r/cthCErhkJgpR1jhZSXZzilMs5Hvf05b6/km6XOmSfc8eTClSMA0mZCQRQ/V4BKeWsKWHyLVtzl4iaP9e0YWO3w9kKwed2YYV3tfTrG9z+GxctM83upHRdgQK830+ap3i6JbEz2v1uJhch8pn5SODtKKAKKwRHbIunnKZg5M9Pr3Ey8Fw3eH28kWMpsTJDi12ZgJo3iduZgYFsy2Hi7lahVSXYFEOYQMUhK5Dvb63g3If6x3Z9Fj1/rCWzR4CilMVWHCLCzDVt0+BevRz7Tj1d5veS6qdieCUQ+LrFqq72/6wjWUQypAHe2HxXvrLXvXV7PVj9uO2euHDv5If+jSpIkrdiaQxfwwzRNHznxGUPl1IoMxOO5x42n1MDMGqSKEdIq/c7MPhmyyteSNXrnUur+lGUGxBplgVgz7F7i280YQvAlgt0DlLhMjWxwF7scLHdjfUSDfbzFjCRlDj4GYhsoRjFWVZeCh5cB9kAhA67GlQWA6cTYp/MbYmCchAGKcX6OVhoVG7OlARu1vJ01DYNko71eAlFHyORlAsZVl7bhZQc/55cNqvcAbFTfV9sxRTwwAK9shRHT4x6TGmCv6rwRaM7IVXc7y6N+2E88Vz2fWiyORwBlF/ZeZMU15PKmv7dS+j5soZQpOkyAZvl3jCT8FasIYETmvHMY+GTLEBN0Rsqwkx8yVFSkjNVK5N3ZRax292BMgRgTiEDzGgw8dGKGsiSie/33bZih9wRmUHUSMTMLsOH6IsItaxRm8C3ChpKdmNE5mRiP64mYjOe8rpKyriNYpkMYkFD8jhTCFB8yjGCIZOCLDRpPLAYp2el2zMjejBmIcjvbQeTDEeBQPIWkqau9/2YSyVHLMKNVMVRipRQH1EOsRQocyQ1vkV+rgYjpkAtTHyHKo7iZNsyw30SwEaswQLvV69/n1+jHmJ0l3leKhZKcd6X39xrCG0IJUDWkX00M+73E4k6j97GkuGsJSfPNhKug4qc6vJ3d3p/HiNikTsJFskC8a7pPB5E7SeIWKwmVPkmNyyXtWe+PbX78Km+34sB6CFEEsVK9WFKBq7B3aZo/IwHLegw8ibnSt9ZCCHEU/Jhn/PzLCXGIJu+fbURiV7x+E/w+bdj0rfd3if92gffpQf83zf/H+05xfxBCIoo97vb2SjzkdEuKvVev9u9USpIk30yS5KdJkmw4wTHXJEmyOUmSrUmSfOJk+19PebV6vI57XAv8XZqmH8TU04fKaZXBa59yOj2c+SdmKGtk7vR/ElU4nPl7lP+WZYyyx/yEAD6KFZKy10js670IM5KzrECX/xuJfbFlBHiRzEyWkcgAiiN7TLlOK1/soTRjaB74caYb8vDKRgMRL+v3BmOxjrh/W5a5OuJOva/st3sd2QMv+zm7Bxyo5WH3xqjnkfz/z96Zx8lVVYn/e7q6k5AQEhJCMAskMSFOTAxLZA2iyD78QB1Q0BkRHRkdcZvRGZlFGdQZ0XFQxwWjIjiiLA5oBlEQgQACgbCEQCASIzFNSAiE7Ft31/n9ce/Jff1S1V2druru6j7fz6c+XfXeffeed9/rqnPeWS7hGzue94ObcvMSz82mbX+bx/3Cq53Sa0bq80GG7JNRXkjH8AywKRQqeA3sLj3d+lh4cSf88XfB2Nps3h4zUsxQWR/n4/nYt+X72PUaRftAdAghbXYi9ojtufh6hRTeZq99csfbfWjf5mYkZ11tA9QAcqqGe4K6gBkBFrq1lBSGBcFYmR//To/7V5PCgQ4ihagNim0WEL5CrAjAOwkel3UEZd6S90cSDJk5BCNjAqmIjIX6WNjODMJXin19ZXNH15CUzBaCIWGLVNpvheUZWb7EelIy+EJSae1XSIu7Lo1thhCUTAv3slCuofH4t5MWlRxG+MpfTFAifxHbW9K8FZgokkpMP0dQsDeQylMfEvf9IX7eFMebE+Vtin3Ymj8TMteC2NYUdzMebHyrhpdlMMEQslUMlpMi3c2DYXN/KymXJ3u8GcV3k55ErCFdI6s6OItUOe1EUm7QjrhvF0mpt+pwZrCYp6eJVGluLMkgWEqK3igS7mnz2B1NysMyL+XEOIZ5MSHlyI6J5/sIKbd4BSF3a2Gc46y3zR4SjInn+geCMWKpsgWScWb3+zpSFcATSUaBeYoaCMaZeedsjGMJ/5dT43jj4/lYLat1pHL0T8XX3HhsC+H/dDOp0IelEmyK83cyyRvVXZSqeIKuISwB+aNSO0WkQLBJTyF8VTwiIvMJtuAe21V1ae74A4Htqro5s22qqmYzNErKUW5sVV0qIrOA/8j18X7gf4DPicjZJPeDs9fkFUWLRzDMQLF1VkqFGWWry20n/BpMIBlCZsjsQzCA8hXmmgn/+fZ5FsGTYIq07bPLbQbP8/GzfVOY3MtJRpeF5UVvEmZo2DHZ2zQbwvUwoTrZDfHzOzLnTzQYZpG+zbOG3AJSZbPnwxiNJ0cPyqTcMb/LzJ0dn61wNipdolez3hfg1YdJjz6zoYfbofVhkqfF5srGWQ4v2lybnIZ54WxestcO0rzZ8fY4MHv9LK/sZoLxk7++42lvJGVD47LHP5fZP4o0L9nx7d7bh2T9Npbos5V+XQzBw+GqghtBXWAXQbkbQ/hDPVz1AAAgAElEQVRKm0l4Cm6lmE1T2EBQ9izMaFr8bJXOHozt5pLWhGmL+24kKP6zSAaQPQcZS1AMT4zH2fbhBIV/B0HpbiAon88RFP2nCAbD0tiHVVYbG8e28sENBIXzLNJXywrCV5OF91np7edIlccaYv/PEb4eTyQonivieVl4F/HvRFIYl50X8Thb28g8a5YDamWQLbSpLW63NXlWEQoOrCPkmJ4S+zRPylNxn5Vd3kZQbtcSlNuVJOPLwtM2xnNfSfDYWE7N7odtpEIUY0k/IdMJ19iKYawlFdIxBd8WKV0R58q2FUjLwVko3xqSB8zCE28ghLXtiud+BOFneDTBCDok9mdGVZFwnZpIBRvMa3MCYYkJWyjUvERmlJmBbt61dhoxQeVYS8rLMa+XGcej4rneQfv8LjPaV8T3j8TzsJA0C4G0hUzHkIpBZANprMLccEIFugUEbX4EybNF3G/30WOEsM0bopz2kGI6aQHVGQQjdSIpF24X4d5ZRqhsWyRcqxFUB/MEdcABIpKtizpPVee160P1XhGZ1EEfRwHLVXUFgIhcT/jKuKfM9vwlPxH4sIicqao7ROSDhOcbZ1YgR7mxl6rqElK6dp6PRAPq5g7Oy9krsoqkkc/PaCWsJ2Sf9yEprNn8DlNCF9JeIX2B9or19txx4zPbISjMT2Y+j2JPpTubUUncn/UDjyZ5kSAVb7A+zEAzRXs7wRCyEK7rYp/NmePt29naW98TSGvczAptWm+I27NGV3PuOJPJvs1eiO1tPpbQ3hu3jWBEbSfMvxmYQ0nV1czzNjRzTHbuLa8mYyDtfrxo+0vN2yuZzytJHkAy+8wjtJ3wddKa2Z+VIWvgENvlZbTt2Tbm7bFHttl71j7nj+mnKP369HoKN4K6wFCCAvY4QTGzcCyrT/I6gqL5GEE5mkJaI+YVgqI1hfAVeWv8vB+pAph5HBpi35bqaGFpLQTlazMp9Gts7H8RQYGbSlAqf0X4+rUE9m0EY+dwgjIKQXE7Kcq7maBMriaskWMJ+UQZbQHYaYSvv2nxXO4mfIXOIHyNziUo7o8Rnn89RjBATiZ5vozhhK/dVYRk/Ylx3lbTPqStheA9OYT2yx0UCMrplNj3KwSPwpnxfF4hFZSwnJQlsZ8zCbk9M0nGHfE4K/FsOS0TSAUARpAKT9g5WEEHU9otEd88OsRztOtg4YGLCdevSKrqNo5glDwfx7fKdNl1ip6L57wqns9xsd9jSEUCzFPYRFrc1rxzTSTv4WyC0n0R4VotI1yTNXH8BlLIohUWyHoqbP6I52IV9SynBsI9YaXfVxDul1MJ98JOwrW1stwWIjqK9LNsoZBj49yNIXnBBsV2VsjBzvOw2P8GkuFZjMdbjtJ98fy3xTmzfK3hhOs7K8p+P+H+MEN2DuEa/yDzuZp04gl6uQrrPownOUIhrc1cbns7VPWmuIL39SJyE8Fbc0q+XRfHLks0pP6JcGm/UuE4Tpcpp1Hlt5sSmt+W9yZB+xyPrDKff2pvhsLUTHtrRzzuSdL6RWaYTMi0fzI35rbM8XaMVRSzY7bTXpEfnTtmIXsabllFPitbdhxrs5D2Cr8ZHzYPQ+Ox9i/wHO2r7D1Hqs4HKc9qNGmOrIi/jZEPS8vKavtfof38mxfPyBqcJlPWq9PInjlj+ZyurPcmX+jA2mbvo/w9AcnwfonS6mqpe3OAUKR0Op/TJdwI6gLbCcocJG/OW0jeiw0EJdIqo20lKH1W1S3rcLZCCnMJSh4E48KeXo+M7VfH7WdnxjyaVObXckQOJyh3E6OME6IMo0mFDFoISuPY2MedBCV7UuzrV6Sn7c2x3xmkpH4zyM4grf0ynaDEjiF4yQoExfzEeH5HkNaKe4q0YCxRHjMUigSldmzsexbJizGDFJZlhSZWEb72j43zYmFvbXFftnT4cFIezKgo308Inp4ZpDVmZsRzsDyXYaRQL6s6ZmsKTY/tLP9nIqE4wolxXixs0TxWDaSy0VYgw3KezKixtXKeJ9wzq+Pxq+OYawg/JeaFtPLbljNlHpGxBEP3gjgXZgjOIRWVsPthbWau7LxWE+6f/Qj3xyBSWORxhPvdjPynYtuJ8TqsJdwj1sdr43yYATOd8D+zjnTdJ8TrZ8UsDo/9jo3na3lw5iFcHMceEq/XSaT03PWkEt9jSGs7Wb9DSZ682SRPI/G9peaOjfOykPA/OTzO5WrSIrR2b2zIyN5dKqgON0JE5gH/p6r/t5fDSJmhy23fc6Pql6MX5zvAa1V1S6l2XRi7LKr6PHBxhf07NaGRFB5nT9tNgc3WTs6TfaKfVWS3U3phy2z4U9aosmPuybSHPb0JjbnjskqxjbUyty3r0eqo2thL7FmCOZsfZeNlc1MOJIXyQfo2MvnNeMqfV9aoGkV7A88KUGzPtM17uLIyZo0T2581SrK5YLZ/YYlzMMwzmL9+kO4Bm4PsAkfZ+6NUmNrmXHtI91x2m7Mbn5Ju44URusAggqJp5fNPJpXLfYWUF2AVtyyZu4lgUFiozYhMW8vNeXv8vJGgZJqhYAnZtjaKVYa7K/ZhSf+2xsmdJCNsKSkRfiVB4bw1yjufoIC/lhQy984o++h4jtMIivd0goFwTjwP80atJZVhXkCIY7GwpBvjeT5GWqPISkfbUg1WlOEBglI7g/AE/4S4bxfBG1EgKPWLCcZZE8G42kAKJ5sR5+ckkjdnUpT1sXjMrwhf5c2kxS63EowiCwiwctZnkUqXrySVDbfS1LbeTQMppNFCoqbHY61q30iCcXR/lNk8JcXMmItJi9w+GGWfG6/PpDhftojuyXEcu/ceIBgeN5IWF51CqPB3P8Ggg3Cdrfrczji/VgzAfp7MiLiD8FM3Kc4tUeYH4phj4zycGGVaF8c8lbSeUjPBM2fHziQZbZaDtiG2M2N0OslrZCm3q+L1+RXBKDOjxPLWno/X4WhSyB+kMuczCffe4/F8psftd0bZLez0uHhsMylUsInwf782jjWW8H/REs9lJu2DXbqLrRNU7lUlmgm3iTGBMBXltu+BiJxAOP1bgM9VYWynT9NRiFEp4yfbNn9sdpu9tz4szGllrm3+Ze3K9Zcft5Qsti3fl/ESyagxA2Fz7tVa4th8H5vj35coLX9+Hl6i/RjZ414iGZD5+ci/N2OptUx/dl7ljs/Pg1Hqeufb5M8rT0deR9fsnb1HRGaIyI0i8h0RObez9m4EdYGtBIXrQYLyZ0+UlxGUdQvbsvyL5QRl3dZFe5CgyLwx06d5lm4hhX8NIyh4lhtxIkFpfYygVK8lKPujCUruMMJX3WxSKeAJBGXPcjwsaMByWkYRjIcFcf/JhAjoHXHshXHfelIex7MEhf4QggJ8FilRHoIi30TK1RtE8sIUSFXvRpKq000hKKErCIbektjGEusfip+PjbLbopWWL7Q6yvqH2J/Vn1lNKitt+YPZGKJxpPCng0gV+Kx6210ExbwY52ZHlOdZgiJ8GKn62XDCtX4dwXBYFt/fGeevEGWeRMqpsmIVmwn31CiS0Xo04T5aGftbGt8vJ3mKlsbzmUbwmhHn8g6CodtE8LicGOWfG89nWpzTrQRPz8bYl60btC72f26UeUGc02VxXovxnCyn5xFS+XGinJZT1EAKsNhMWttnZRx3JSlvriWeq3llivH9I/H8RsV5GRn7NON7W9w2m1TSmvjeDLMhhOs9I362ioBWctv+jy0PDML/agvhmpnBa4VAtmbmahWpaEM1ME9QuRewUVUv7oYXCMK0ThORySIyiLBe/fwOtrdDRA4Hvkd4LnIRMEpEvtDNsfs8IvIpEVEROaC3ZXFqSTnDrZbj1aJ9Z3J39bwqNSydekFEpovIE5nXJhH5RIl2/baaqBtBXWQQQRkbS8oJmkCqeHZa3F8kKOx3EhTJmaTJttAdo4W00Cokb8UIgjL7RNx+HO1LXlsFsNUEBc4Wp1xGUA4tf8ZSEt9DUK7fSHpGNCWOb/kxBxEUuuNi28MJngQLyRpBUE6nEgyCgwjGmSnttrbcGaT1bF4hGDcT4jnuInlQGkiK/SCC0jk0/h1OUHBtvRvL51gQz28bQekdTQo33EjQzKyk9MjY3/I4L1ZY4nmCIXNnnOP7Ccq2rRdzRJRhDGltqLZ4zFpSkU9Tfq3gxCRSYYUpBENlaDz/wbGvqYT7xYqtjiEo0zPiOVj1sdXx84h4HbaSSqGfQMrxMa/c3Ni3GUdWinxrfP9UlGM/UonvCfG4XQTDwdb9+UUcfwbBIFgf5waSF8SMRgs/eyEzzoo4h+ahO4RUQGB1HNOug3nbivE8ZsT5WRbbLCG4DkbEsUeQyoabwbUtbr+DYHSeQaqEt4hw/RuiXJa7lactnstQUhGSpaRAkI2ksNMZpAIfQ/boqXt04gkaISLzROT/lTteRH5KuGzTRaRZRD4Qt98mIuNUtRW4hPDc4RngRlV9utz2EkMMBc5T1T+oahG4kBJLJZWSowtj9ClEZCIh7+lPvS2L4zhO54/MOgmsBlR1maoepqqHAUcSfkpvybbJVPQ8g/DTd0H0tpTcnh9DRA4UkeG5bVPz7QjVRE+vZOy4b5aI3Jp7HUioJnq+iHyFCqqJimqH4dhOhoKI7kN4Sv4IyRMwi6BwjyMoWJZEb+WztxEU4INIT8pfICj2FhY3nFQ+2BL9FxMUwQmkJ+ojCFc1W5J3Oilvx4ooLKN9EruVdYagWNpCkqbETyWFBY2L/ZkSvY2gWC8i5dhYuuYh8RyPI2g1o+PxSwnhdS1xPiynYmLcb2WXW2IfzxGU8+fi5wKpatiY+HdhHN9KGdu8nBrPcwVp0VhLXn+OoLyeSsp/WUNQKKfE8x0ZZRyVOXdbb8eKRmSZS6omZt4h4ueJpFTYuYRH3FNIC4BaCqsp02sJxoLNja3pY56OUSTPxYTY9kHS9dpMuCeKpKpss+P8jIyyWQ7ZHNKinxvivLZk+l9KumfGEows87Zl83zsXjyWVEntNNKi53Y/riHcc2YUjiMZMcvj3zHxveV2HR3n72hSCOVjsZ+ZhOtiYYoHkRZq3RZlHkQw6IbQvlrfMpLhViSVxd5F8sZmsWqK00mFH+bG+V5KKlpiPzPRcHu0u0ULRoromzvY/4sqjOF0HRH5GfB5wvOBOar6cufHjFP4m5rL5jhOPXJZt77LRQ7X9qWmSjFiJZD9rtqjmmjqT04FPqeqx+e2Hwtcpqqnxc+Xxl33lNquqv+RO/484MNAu2qiqtqummhsOwm4VVVndjR2fowy51MAblbVczpq168LI4jIDaQHvyOBDap6WJzoZ0j630Oq+qFK+pxDWMTU0hPfQjJ67Ml5FjMsBhGU4MNJSpc9bTZlFlI1Lnv6bSsemPJs4TpT4utOgoJpypgZQGMIHgBbBHM9yZAxg83KDtsaa9b3KFL5JjNA1hMMqWyt3HGkx793kQogmIfMFk21p/EQlMtb4jyY98bmaAdp4VlbNHMIIXyrEI+1sCtbnHIS4en/uDifFlZmoYfmlbuD5LGwXKB1BKNtQabvBlJp6sdJCv1ThEIDts7SjwiK+yu0r+bVRso5eZBUwW9hZvyzCddtNmHOrYraEaQwK8sns7Czt0RZ74v7Tybk55jBNIxkbJgx3EYIm7TiEk8R7tGlhMcqN8ZxrcKb5dWsI4X/mffSCiZk6weZMTaLlD9j1d12EAwXy5ebQVpXyzxYr4vb7KECmXl6Ip770bH/FVFG85buJBXryBprJxAMv52Ee2x5PJ/BJOPW+lgYtw/O9GlkF+K1YhdrYl9DCfeApVPb/2y1qGLuj1MF4vpEL6jqYpFSdR3atb2Y3UUcqlU43XEcZ6/oSjXR8wmpxHn6dTXRfm0Eqeq77L2IfJX2RZz+EF2AFWPr60BKoDflfizhqX421M3a2hPvISSr69j4eRvtmU24ymMISt5ggofEjJy3xD5WERRDM2Jmxr/Wf0OmDwiK5hpSXoy9N/mzE2NV3MxIWR3HN0XWyGYzz4p9jSGty3M/SeE/JB5vlfAmERTYO0jVvwqkfKPjCIbI/XGeTiQoxusIiu1sUs5JQ5TF1hE6Ip7fIJLibZXtbF2aYjx2W2y/jaCsW9iUeeOsEtoMgiJs5zwutt0UZbFqbrb+T3ZNa/OkvC7utwSIHYTrtjaet1UfMw/VDJJXZGGco/Fx/0KSN83uAavm1xbPZ1ecZ0v+vy/O4ybae23MULWS0+ZBMa/Q4aQFSVdktlvVvGcJYYKzCfeA3XPD41g7CffXbMI1bSCV6J5OuK6m+I+N52Jzvpi0zpLNpy3sOoy06OxhcU5sgdVsrg+kXCxIxR9snhoI940tytpM+n8uEK77XMK9aA8/jiB58syzVA0qWCy1GtXhnBwicicpVS/LPxN+UE+tpJ/4lHVe6HOch1k4jlMjqlcjO+Znng1cWmp3iW39pprogMgJkvD47p2UtnIrpkjysiwmKFpm6KwlFR8wzLNhZap3EZTxEwlP0c1gGUxQBk2pNCUQUoiUVWizRT0tVGpd7PMpUqgRBGV/JWkh0iUEJW4JQekdQlrolczf2aS1ZVYTbhAzwKzcckNGXsMMICvMMDae+1pCDtLKeHxbPI9bCJ4IS1a3xVo3k7xUG0ilox8hlRgfQSq+YN6cuaQy1utJi9ceF9u1xLFfIXmaLAdnEakowagoy/rY3hZntVAx8/RZqWQrkdxEuP5WXtvySO4mVbi7k5ADM5eUTG+FERaQikJsyMyfrQtUIIV/DSXlUhUIHisLz1pKMDQsvO6R2HYrwRjZGbfb9ctWvBtDMFKt+uFowvV+nGCoPE8wiIhjD4/zsJNggCzK7IdwnXZGeUeRKg/uJBjNVnDADPChJKMCUuGEU0nV+SwvaQip+MWYOP5Qwv9UNlTU/ieH0Z6thOsAKSdpNulet3WgzHCyUMP1pGqPZoBaNbpqYIullntRncIITg5VPVlVZ+ZfhNtpMrBYRJ4n3FKPiUgpg8lxHKeHUNqXNy/1qpgzgMdUdW2Jff26muiAMIIIUTJrVfW5zLbJIvK4iCyIF6gkInKxiCwSkUVK8MRYyBMEBcgUv2yokIUGrSYtIjmMoPBZRTYLn9tJWqvFFLhdpNAwW4/FqlmZp2B97HsM4c6wJ9yHxPenZtpY2e5BpIpao0ieKFMSF5MW5rRwrakEQ62BVNr5edLTbwsnWkdQGh8nKJFWZe75KMM2Uulu638U4b/iEIKBY8ZUA6kctxlW0wkGpK1bY2GFVkBiB8HbkS1QsCy2O5fk/RkbX9Npb8xZGFc2tHAlwRMzlXAtrLjD3LjvGFKOUXM83gxK81jYekrHEjwWGwjevfGE62pV6E6L/S8jXI9bCPfIQaT8rTFx/pYTDKwhpMpvJretb9QU9xfiOLbeuRWIWBf/mqL/OCmc0cLizMjfSbgvHidViMs+BCDO9+Mko2Bb5m8byUBpI9wXVsDDylIPi3P0FtL9vDzKYyGb5hc3r9Cv4vGWu2Z5P2ak2f/kCxm5ZpMeaMwlhcGZ16kUkzLv7f96Jyl3q5qBT8UOXlRQGMGpHqq6RFUPVNVJqjqJcEsdoaprOjnUcRynhpgnqCpG0AWUdxL062qidW8EicidIvJUiVc2GSp/gV8EDlbVw4G/A34iIvuV6l9V56nqHFWdUyB4U0aS1v1pIyh+Wa+ILbQIQfF6kLQgJgQF035B2zJ/TbmcTjA+tpKMCeLYI+J2e8K9jva5GlYWuom02OZIUp6IrVu0iKRYWyED82bY0+1VBANnNEERH0YyfLL5E/Z+DO2DNW27rbNjIUoN8TwWxzFGELwkgwkGxCKCkmx5Lha2tDq2P5r2T9+3kQoYWIWxBXHMFwgK8SaSgbmW4ImwUL91BMW7ObfP5nRBPHYWIXzPqslNJWRJz4rnPjjKN5twzUzGsQSDZXHsa22c7yfiMeb9+hXBMJpDui4QDOKh8fNdwDsy5/4sqSIbBGNoFOEeuoMUtmkFFzaTqugdS1r01NZMtzWMLEcny9Dc53z+my0cOzvKmn18M5qUO9NGeCRk6wUNJ9x3G+Lc3E37BwprSUaGeY2WZ/Y/R/p/swcBVmWPzHHWZgNhfsw7mce+FEfF94fQPszV/j8GZ7Zlz7U7uCfIcRzH6SlEZCghR+fm3PYBUU2031eHE5FGgi58pKo2l2lzD/ApVV1Uar9RENGDCcpPM0E5sift5t0YTFqkM4/lbuSxPIRstSkIil+5leinkvJXrGw2pAIKkBLerTLcnLjPZLW8hyxNJC9AqXPIk5W5VH+2zc4lW6XOMDnN4FkXz2kNoQDA/IxMtoCqrTlkC8Va2eX7c31buJQZXwcRFF9TljcTvEu7onzPx3MaT1rQ1YoPZP9rD4/HbiRd0wlx2zZS2fMxhP9qO2+bB8tTKpCS7NeQSlsfG89pOClHa0rmnG1dqufj2ENiu7EkIz2f33I0wQCw6zoiI6vlh1nYmpXotqpwkPJhZpLKdxPPcxopzyh7H1i+VLYgiPmzrYy89WN/DyEYwFZC3P43LOfIQjLNkHsw7rOCCB0xlzBnJb8I4tgjo8x2XxLHH0m4TyYS5jBfgHRrFSq37SuiszvY/4BXh6sbvDqc4zjl6W51uBkKP+6k1ZH+e9EJ/bowQuRk4NmsASQiY4D1qtomIlMIOtyKch1kyRoxqwiKXDYX6CD2LE8NQQnOG0CmpA6Kn7NKVf548zStI4WOEduszrQ/guAVsRAoKw88nGD8ZAsxlAr9aWFPQ6IcZnCZclyqPzvnjaTkdsv5WUlQxDeTSlhbVS5TxOcTlNEdBA+YPeEfE7cVSeu0PB//Zo1HqwIHKRnelO1sGFxb/DuM5E0zY2IGydC0XKLHCddvK8lQmERacHNEPB+7Tqac2zysJhlGKwhKvJWunk1Q7I0RJE+DFdewioDDSfkxdk5ZA2gc4X6xfKEhJE+VeUcaCMbF4MzcFOLfbPCt7Wu3klk8RztPKzFuWF5Xtgy1GUDZwhxZsqXEzQPUQvLabM5st1LpizPHZ8Pj8ti9na8IZ+OtJBm7WU9SC+E+mhDl6HwFhr3DVn5wHMdxnPJUrzDCQKbuw+EqoFTZvzcBT4rIYkLF6w+p6vo9juwEM1LMiBlKSubOGjDTKf2E2qyyUsHl09hzfRorkJD3I04nGQL3077ktj31Nw9FljkEpXkclTMq8976s4krdTNl58GKLVgFMQsFs1LapsjOju1MAV8V99k5tRCU7s2kRVpHEeZzOEGBtwIUbaScrc0kBX4CwZAYRQhLM0PIFvQ0w2JslG0hKfdjV2Y8C9ODtHAtBIMoOx9WcW5CZrsVDYBUaMPCBon7psa+1sc2Q2M/ZkytJVy/KQSviBXIMCPQquY1k+6RKaT8pZmka5S9R22u88U+suTD42y89aRQuQ2Z87G+rBhG3gCyIh5TSPfWRtJ8ZY3s8Rk5zds1If4dTmkDKCu3FYkwrH32fFfSPsyVOJZ5NKtZECFLdxdLdRzHcfo7Vc0JGrD0+3C4amKLpe4NhxCMHSvp2xkWqpRdi8ewcCMLNRpO8EiYt8LCvKwssHmDstixkJQ5ewI9nfZrD8GeYWzZ0D7zBOX7Me9U/thsyJ6di7WxctBGviy3yTKJlENiWM6VKd2ljs1i5zA919dM9gx3Oprgacp6SA4hJclnsfm3qmgbSUbFVIJRt5P212BmlKGZFIY1gXC/PEXybln4YdaLYvNp3p/BJIPHPGprSddjeOyvXEhYV8mHcZbCymvn6SjkE9IaPdlx7J7JLtyax8JFy+2za9ARHd23sKe3thrhcENFtNRS2sYSD4erGzwcznGc8nQ3HO5QhW930uoU/73ohIHgCaoJtshiR/H7WVYSFCpTtIcTFORRpNAey3WAoBi2sWdpX0gKrSnQVhDAjBIzRsx4yhtAQ2mvuLfQXoktle8wK/c5bwBZP1nvQCkPA+z5lL4p0yabkJ9fnNVKN++MMuaNyRXxZQt6LCUYOlbJ7+j4mpmRnShzgXAdrBKflSC3a7MwjmcFJyCVK89j4VrbSGs+WdGIQVH+4YTrZ9f7KZJCb96q5sz7Isnomkl7L8o2Up7aKNK6PBsJ988JUR67HuY96Qpd8QiZ92Rq5jgzgKbn/uYNoBGkOR9LWpAU9ixfbeeQl2045Q0g4r6SVVByZO/bqaR5NopU/wtU6dQT5DiO4wx4qloie8AyEHKCakK2rG7+CXEl5EPdSm0rUt6TYUqxrQW0lvYVsjpiG12XdxFpgcpSeSJGR0/1S5E3ZLJP1vPG04Ps6XUoVWhhcWaflVYeRTBksp4HMw6XZvookJ7wZ8/NihFk+94Z+51IMmiGEZRVywvaSCprbh4uu25ZWaYTvBP562L31mbS/ZHPyYFQfS1brMBYT4j37G4J53JG03D2vOZmIC8nlay2a2b5aTb3+f8d83ZBujc6+/9qzrXJ/h+VK0Zi2ywnrZMFSncbcWbAjiJcw86O6yqeE+Q4juN0TpGua3JOHvcEdYEC7Z8EG8Mz70vtr4RySmo+JyGLeXqyhkRX8nuyVJLfYOF2tcqFqIS8griTPT0BawnXJB/KBKWNtGyJ7/WUVmyzOTmQwuJsO/G4bO5VdqxsKNjKEvttzZw85b7i8vdFZ6uHddU4HZf5m7+ns/dqKWM+iy1cm8UWpYXS52cej+EdtMlTrk3WAJrNnl6rjYT7ujPsnrD1onbk9pfKj9obKvAEeU6Q4zjOgMdzgqqBG0FdoI3SeQSmCI4qs78SOlJSD8l9HluyVWBvl9Kt5OmzPb3PLibaUzfQlA72lfJS5JVz8xZk5y6/zk0pj4Fh52zGT17pns6eVEMxLheG1pGsebpiGNv1XJ35m72nx1G5QTW8g30deSuLBEM7ew1PrHDMjlhMaWOpK/8zFmZnDx4aCHNSredx5gkq98LXCXIcx3GcquBGUBXIV0mrhKxhU0qBNvLr00BlhRXK0YDL1A4AACAASURBVJFnqatUEkZULSqqX94JtiaO0VHRhHKU83yUWlPJ7ou9CUUzw6WUgddRfk4puqLkZ69nKY/f1i701ZmXqCPyRvmCkq2qQ3dCBa1EfTXxnCDHcRynY9wTVA08J6iXyBo2lSxKWg2a6JoHoT/S5TroVaCroWjQsWJdrapunVHKO7g359IRTQTlvqeM6VJU+5y6g+cEOY7jOJ0zsNcJEpFhhPJ4u4B7VPW6venHPUFVZEsfKDfekQz1qFz1xJz2hetWTfrK+XQUDme0EL7KuyJzXzm/WuDV4RzHcZzOqY4nSEROF5FlIrJcRD7TlTaVHFspInK1iLwkIk/ltpcb4x3Az1T1g8DZezuuG0FVwJSyfUVKbu9J8jJk2aK6+1UJHbWrpI+9Pf9azVupc+/pa7RFlaG0DzWr9JpUKmtH90BPkg2H6+wcuyNzZ/OSH3tvi5f0BBXkBDmO4zgDHgVaO3l1jIgUgG8BZxDSpC8QkRmVtKnk2Hj8gSIyPLet1HJ41wCnd0G+CYSiutCNZ4QeDtcFivDy1j1TdJAyCly57SU4AHh57yWrjC7IA3CAiJSVqZK+ujheyeNyfXRrnkrJs7cy7q083ZGhwnY9ci91gQOAl7s5z+3I99VZ3/n9W2s3R/kaJl2mCLdvDvKVQ0RkHvB/Xhyhr/Piy3DZHr8XNaCv/c9XAz+n+qC/nVNPnk83fy9evB0u6+i3AmCIiGSXFZynqvMyn48ClqvqCgARuR44h/Yp0+Xa3FPBsRDqGn1YRM5U1R0i8kHg7cCZ2Uaqeq+ITMod25F8zQRD6Am64dBxI6gLqGo16wrsRkQW9bVVfV2mzulr8kDfk6mvyQN9UyZDVU/vvJVTD9Tq9yJPX76f9xY/p/qgv51TPZ1PlX4rxpO8KRAMi6MrbFPJsajqTSIyGbheRG4C3g+cUgX5bga+KSJ/Duz1A0E3ghzHcRzHcRxnYFEqjCIfX16uTSXHho2qX45enO8Ar1XVLd2VT1W3AhdV2E9ZPCfIcRzHcRzHcQYWzcDEzOcJ7FmctlybSo4FQEROAGYCtwCfq7J83cKNoL7BvM6b9DguU+f0NXmg78nU1+SBvimT4+wt/fF+9nOqD/rbOfW38+mMR4BpIjJZRAYB5wPzK2xTybGIyOHA9wi5PBcBo0TkC1WUr1uI9uNys47jOI7jOI7j7ImInAl8DSgAV6vqF+P224C/VtXVHbQpuT3X//HAJlVdEj83Ae9T1e/l2v0UeDOhOMVa4HOq+oNKxujW+bsR5DiO4ziO4zjOQMLD4RzHcRzHcRzHGVC4EdTDiMh5IvK0iBRFZE5m+yQR2S4iT8TXVZl9R4rIkrhi7jekiouulJMn7rs0jrlMRE7LbK/aKsEVyHeZiLyQmZczM/tKytcT9OQcdCDD8/G+eMLWAhCRUSLyGxF5Lv7dv8Yy7LHKczkZJPCNOGdPisgRPShTn7yPHKeaiMinRERFpLP1Q/o8IvIVEXk2flfcIiIje1umvaEv/FZUExGZKCJ3i8gzUXf4eG/LVC1EpCAij4vIrb0ti9MzuBHU8zwFvAO4t8S+P6jqYfH1ocz27wAXA9Piq5priZSUR8KqvOcDr4/jfTt+QVS0SnCVuTIzL7d1JF+N5SCO3RtzUI63xHkxA/YzwG9VdRrw2/i5llzDnvdjORnOIN3DFxPu656SCfrYfeQ41UREJhLW3/hTb8tSJX4DzFTVNwC/By7tZXm6TB/7ragWrcDfq+qfAccAH+kH52R8HHimt4Vweg43gnoYVX1GVZdV2l5EXgPsp6oPakjg+hHwth6Q5xzgelXdqap/BJYTVu/dvYKvqu4CbAXfnqacfD1BX5mDUpwDXBvfX0sV75VSqOq9wPoKZTgH+JEGHgJGxvu7J2QqR2/eR45TTa4E/oEya3XUG6p6h6q2xo8PEcrj1ht9+bdir1DVF1X1sfh+M8FoGN+7UnUfEZkA/Dnw/d6Wxek53AjqW0yOrtgFEuqqQ/hyac60aaZnvnBKrdQ7voPtteSSGBJxdSa8qzfkMHpz7CwK3CEij4rIxXHbWFV9EcKPFXBgL8hVTobenre+dh85TlUQkbOBF1R1cW/LUiPeD/yqt4XYC/r194uITAIOBxb2riRV4WuEhwjF3hbE6Tkae1uA/oiI3AkcVGLXP6vqL8oc9iJwsKq+IiJHAj8XkdfThVV5qyxPuXFLGc7devLYkXyEkKnPxzE+D3yV8IPY7XnpBr05dpbjY/nKA4HfiMizvSBDV+jNeeuL95HjVEwn35P/BJzasxJ1n0p+m0TknwkhWNf1pGxVot9+v4jIvsD/Ap9Q1U29LU93EJGzgJdU9VEReXNvy+P0HG4E1QBVPXkvjtkJ7IzvHxWRPwCHEp4cZcMAurxi7t7IQ8cr9VZ1Bd9K5ROR7wGWsFjzlYQ7oDfH3o2qro5/XxKRWwihF2tF5DWq+mIMNXupp+XqQIZemzdVXWvv+9B95DgVU+57UkRmAZOBxRJq5kwAHhORo1R1TQ+K2GU6++4XkQuBs4C3an2u59Evv18krPXyv8B1qnpzb8tTBY4Hzo4Fc4YA+4nIj1X1L3tZLqfGeDhcH0FExlhCtohMISSPr4jhRJtF5BgJv3DvBcp5b6rJfOB8ERksIpOjPA/TAyv4ZsnljLydUMihI/l6gh6dg1KIyDARGW7vCU+Bn4pyXBibXUjP3Ct5yskwH3hvrBJ3DLDRwuZqTR+9jxyn26jqElU9UFUnqeokguJ9RF83gDpDRE4H/hE4W1W39bY8e0mv/1ZUm6iH/AB4RlX/q7flqQaqeqmqToj/P+cDd7kBNDBwT1APIyJvB/4bGAP8UkSeUNXTgDcBl4tIK9AGfEhVLbn7w4SKV/sQ4qKrFhtdTh5VfVpEbgSWEkIRPqKqbfGYS4DbSSv4Pl0teUrwZRE5jBBC8DzwNwAdyVdrVLW1h+egFGOBW+KT30bgJ6r6axF5BLhRRD5AqBJ1Xi2FkMwqzyLSDHwO+FIZGW4DziQUH9gGXNSDMr25r91HjuN0yDeBwYRQX4CHclVT+zx95Lei2hwP/BWwRESeiNv+ySpuOk49IfXpYXYcx3Ecx3Ecx9k7PBzOcRzHcRzHcZwBhRtBjuM4juM4juMMKNwIchzHcRzHcRxnQOFGkOM4juM4juM4Awo3ghzHcRzHcRzHGVC4EeT0aURkS437/76IzIjv/2kvjp8kIk913rJd++2Z0qL5/ZeJyKe6Kkc89rUi8kSt58xxHKevIiITReSPIjIqft4/fj6kRuN9SETeG9+/T0TGZfbt/n3p5hiXicgLInJ5Ffo6QUSWduV3y3H6K24EOQMaVf1rVV0aP3bZCNpL/qCqh1W7U1WtSb+O4zj1gqquAr5DWK+M+Heeqq6s0XhXqeqP4sf3AeMy+7K/L93lSlX9bHc7UdX7COu1Oc6Ax40gp+4QkUNE5Lci8mT8e3Dcfo2IfENEHhCRFSJybtzeICLfFpGnReRWEbkts+8eEZkjIl8C9omelOvyHh4R+ZSIXBbfHykii0XkQeAjmTYFEfmKiDwSZfubCs/nn0VkmYjcCUzPbH+tiPxaRB4VkftE5HWZ7Q/FcS53z4/jOE47rgSOEZFPAHOBr+YbxO/4Z0Xk2vh9/TMRGRr3vVVEHheRJSJytYgMjtu/FL0oT4rIf8Ztl8Xfh3OBOcB18XdkH/t9ie0uiP09JSJXZOTYIiJfjL8pD4nI2M5OTkT2FZEfxv6eFJG/yPR1RfzNuFNEjooyrBCRs7s9q47Tz3AjyKlHvgn8SFXfAFwHfCOz7zWEH72zSE8C3wFMAmYBfw0cm+9QVT8DbFfVw1T1PZ2M/0PgY6qa7+cDwEZVfSPwRuCDIjK5o45E5EjgfODwKOcbM7vnAR9V1SOBTwHfjtu/Dnw9jrO6E1kdx3EGFKraAnyaYAx9QlV3lWk6neAlegOwCfhbERkCXAO8S1VnAY3Ah2N43duB18f2X8iN+TNgEfCe+Duy3fbFELkrgJOAw4A3isjb4u5hwEOqOhu4F/hgBaf4r4TfmllRlrsyfd0TfzM2RxlPiXJ3O5TOcfobbgQ59cixwE/i+/8hGD3Gz1W1GEMQ7InaXOCmuH0NcPfeDiwiI4CRqrogM75xKvDemO+zEBgNTOukyxOAW1R1m6puAubHcfYFjgNuiv19l2DgQTj/m+L7n+A4juPkOQN4EZjZQZtVqvq7+P7HhN+K6cAfVfX3cfu1wJsIRtIO4Psi8g5gWxdkeSPBOFmnqq2Eh3dvivt2AbfG948SHth1xsnAt+yDqr6a6evX8f0SYEE0CJdU2K/jDCgae1sAx6kCmnm/M/Necn+7QivtHxIMyfSlezbfve+jqnp7F8cq1V8DsMFzfBzHcbqGiBxG8IAcA9wvIter6oslmua/e5Uyvxeq2ioiRwFvJXjvLyF4dioSqYN9LapqcrRRmV5W7nco21eR+HuoqkURcX3PcXK4J8ipRx4g/AgBvAe4v5P29wN/EXODxgJvLtOuRUSa4vu1wIEiMjrGg58FoKobgI0iYt6nbOjc7YSwiSYAETlURIZ1Itu9wNtj/Phw4P/FcTYBfxSR82JfIiKz4zEPAX8R35+f79BxHGegIiJCKIzwCVX9E/AV4D/LND9YRCys+QLCb8WzwCQRmRq3/xWwIHrnR6jqbcAnCGFteTYDw0tsXwicKCIHiEghjrWgRLtKuYNghAGhAl43+nKcAYsbQU5fZ6iINGdefwd8DLhIRJ4k/EB9vJM+/hdoBp4ihJUtBDaWaDcPeFJEroshBJfHtrcSfhiNi4BvxcII2zPbvw8sBR6LRRW+SydP9VT1MeAG4Iko532Z3e8BPiAii4GngXPi9k8AfyciDxNC5Eqdi+M4zkDkg8CfVPU38fO3gdeJyIkl2j4DXBh/S0YB31HVHYTv+JtEZAnBo3IVwbi5NbZdAHyyRH/XAFdZYQTbGL1QlxJCsRcDj6nqL7pxjl8A9o9FFhYDb+lGX44zYJHkOXWc/ouI7KuqW0RkNPAwcHzMD+ppOSYBt6pqR3HqnfUxlFDEQUXkfOACVT0ns3+Lqu7bbWEdx3H6KdX4Lu4pJFQm3aKq5TxaXe1vEnVy7o5TSzxG1Bko3CoiI4FBwOd7wwCKtAEjROSJbuT7HAl8M4Z9bADeD6F0NsGbtLYqkjqO4zh9gS3AxSKyX3fXChKREwjesZerIpnj1DHuCXIcx3EGLCJyNSHn76VST8bjw4avExaY3Aa8L4axOo7jOHWM5wQ5juM4A5lrgNM72H8GodT9NOBiQtK94ziOU+e4EeQ4juMMWFT1XmB9B03OISzOrKr6EDBSRF7TQXvHcRynDvCcoC5wwAEH6KRJk3pbDMdxnD7Lo48++rKqjultOarIeGBV5nNz3LbHujMicjHBW8SwYcOOfN3rXtcjAjqO49Qjvf174UZQF5g0aRKLFi3qbTEcx3H6LCKysrdlqDKlFrosmUyrqvMIpfaZM2eO+u+F4zhOeXr798LD4RzHcRynPM3AxMznCcDqXpLFcRzHqRJuBDmO4zhOeeYD75XAMcDGuPil4ziOU8d4OJzjOI4zYBGRnwJvBg4QkWbgc0ATgKpeBdxGKI+9nFAi+6LekdRxHMepJm4EOY7jOAMWVb2gk/0KfKSHxHEcx3F6CA+HcxzHcRzHcRxnQOFGkOM4juM4juM4AwoPh3Mcp9fZ0dLGG794JwCfPWsGZ856DcMG+9eT4ziO4zi1wT1BjuP0OpffupTNO1rZ1Vrk0z97kuO+dFdvi+Q4juM4Tj/GjSDHcXqVXz75Ij9Z+Cf+5sQpPPv509lvSCMtbcXeFstxHMdxnH6MG0GO49SU1rYib/3qPZz0n/fQmjNuljRv5GM/fZx9Bxf41KnTERGOmTKag0cN7SVpHcdxHMcZCHjQveM4NWFnaxtnfv0+XtiwnR0twfiZddkdTBy1Dz//yPE8u2YzF179MIWCMPXAfWkqhGcyjQWhrai9KbrjOI7jOP0cN4Icx+k2G7e1cO5VD7BlZytnznoN859YzavbdtFaVPZpKvDdvzoSVfjY9Y/z+7VbmPHZ2xHg4NFD+ckHj2H8yH1299UgbgQ5juM4jlNb3AhyHGev2byjhZO+uoB1m3cCIMD1D/+JHa1FRuzTxNfedRjHTz2AQoMAMHv8CDbuaGHrzlZa2pQbLj6Wg0YMaddnY4PQpm4EOY7jOI5TO9wIchxnrzjz6/ey/KWt7GorMna/wXzz3Ucwe8JIBjWWTzW86cPHddpvoaGB1jY3ghzHcRzHqR1uBDmOUxFnfeM+9mkqcNOHj2PNxh38fu0WCg3CzX97HEccvH/Vxik04OFwjuM4juPUFDeCHMfpkO272vjc/Kd4avUmhg0u8NLmHfz9TU/QVGjglx+by5Qx+1Z1vEJDg4fDOY7jOI5TU9wIchwHVUVE9th2+tfu5U/rt7OjtY0D9h3E+q27OObff0tR4UvvmFV1AwhiTpB7ghzHcRzHqSE1XSdIRE4XkWUislxEPlNi/2ARuSHuXygikzL7Lo3bl4nIaZ31KSKTYx/PxT4HdTSGiDSJyLUiskREnhGRS2s3E47Td9m4vYXXf+52Dr/8DrbubAXg9K/dy4zP3s6ytVtoLRa55qKjWPQvp3DL3x5PoUEYNWwQ73rjxJrIU3AjyHEcx3GcGlMzT5CIFIBvAacAzcAjIjJfVZdmmn0AeFVVp4rI+cAVwLtEZAZwPvB6YBxwp4gcGo8p1+cVwJWqer2IXBX7/k65MYDzgMGqOktEhgJLReSnqvp8rebEcfoaxaLyyRueYPuuNrbtauP8eQ9x5CH78+yazQxpbOAr576Bcw4bv7vYweyJI1l6+ek0NsgenqNq4UaQ4ziO4zi1ppbhcEcBy1V1BYCIXA+cA2SNoHOAy+L7nwHflKBZnQNcr6o7gT+KyPLYH6X6FJFngJOAd8c218Z+v9PBGAoME5FGYB9gF7CpWifvOH2Ns//7ftZv28Xnz5nJGyaMYOP2Ft79vYWs2bSDz79tJuNGDOGDP1rEkhc2cuGxh3DpmX/GkKbCHv3Yoqa1otAgtBaLNR3DcRzHcZyBTS2NoPHAqsznZuDocm1UtVVENgKj4/aHcseOj+9L9Tka2KCqrSXalxvjZwQD6UVgKPBJVV2fPwkRuRi4GODggw+u5Lwdp8/xx5e38syaTbS0KRdd80i7fWP2HcRfHn0wIsLrx+1HW1H5t3Nm9pKkwQhyG8hxHMdxnFpSSyOoVKxMPsalXJty20s9gu6ofUdjHAW0EcLt9gfuE5E7zcu0u6HqPGAewJw5czxGx6kb3vrVe9jZWmRwYwOr1m9nvyFNXPv+o/jUTYvZtquVT5x8KN+7bwXDBzfuDm37v4+e0MtSh8II7glyHMdxHKeW1NIIagaymdMTgNVl2jTHsLQRwPpOji21/WVgpIg0Rm9Qtn25Md4N/FpVW4CXROR3wBygnRHkOPXI8pe28Id1W3d/Lohw7fuPYub4Efz6E2/avf0dR0zoDfE6pEGEopauWOc4juM4jlMNahnc/wgwLVZtG0QodDA/12Y+cGF8fy5wl6pq3H5+rOw2GZgGPFyuz3jM3bEPYp+/6GSMPwEnSWAYcAzwbBXP33F6jf+8fRnDBhW47x/ewsxx+/GGCSOYOX5Eb4tVEY0NwfDx4giO4ziO49SKmnmCYv7NJcDtQAG4WlWfFpHLgUWqOh/4AfA/sfDBeoJRQ2x3I6GIQivwEVVtAyjVZxzyH4HrReQLwOOxb8qNQagy90PgKULI3A9V9ckaTYfjVI3nX97KO7/7IFt2ttJWVAQYPqSJEUObuPWjc3nmxU38+uk1fPLkQ5k4aii3fqz3Q9y6QqEQjKDWotK4Z10Gx3Ecx3GcblPTxVJV9Tbgtty2z2be7yCUqi517BeBL1bSZ9y+glRBLru95BiquqXc2I7TF9mys5U3f+VuXt6yCxEYMaSJQpPQpsr6rbtYt2Unb/zinexsLdLYIPz1CZN7W+S9ohBD4IrqniDHcRzHcWpDTY0gx3H2nlOvXMCajTu44OiDmXPIKP7jtmd4ecsuDtpvCPMvOZ4D9xuyu+07r3qATTta+bPX7McvnniBQ0YPY9jg+vz3LjQkT5DjOI7jOE4tqE8tyXH6Kbtai5z7nQdYu3kHazftpKkg/OC+P/LdBStoKgjXX3wMx0wZvcdxN37ouN3vr3zXYT0pctUxI6itzY0gx3Ecx3FqgxtBjtNLvLJlJ8tf2sKlNy9h685WNu1oZXtL2+79H5g7mU+fNp3tu9p453cfZPiQxpIGUH9jd2EED4dzHMdxHKdGuBHkOL3AzY818/c3Lt69mFWDwPAhjYwaNoTBjQWGDS7wr2fNAGBIU4Hf/N2JvSdsD1NoCEUrvTqc01OIyOnA1wkFd76vql/K7T8YuBYYGdt8JuanOo7jOHWKG0GO0wOc8l8LeGHDdv7iiAncsXQNazftZPiQRsaN2Idv/+URHDxqKE2FWlasrx9sGjwnyOkJRKRAqBZ6CmFduUdEZL6qLs00+xfgRlX9jojMIBTnmdTjwjqO4zhVw40gx+kmqsrZ37yffZoK7XJzjD+9so0/rNtCoUH42aPNbG9pY8y+g/ndZ05iUKMbPnnME1R0I8jpGY4ClscKo4jI9cA5hCUaDAX2i+9HsOfC347jOE6d4UaQ43STb929nCUvbGLk0CY27WhhvyFNu/e1tBX56PWPM2xwI7/6+AkcOHwI77zqAQY1NrgBVIZGrw7n9CzjgVWZz83A0bk2lwF3iMhHgWHAyaU6EpGLgYsBDj744KoL6jiO41QPN4Icpxvc8fQa/vOO3zNscIGN21o46ot3sk9TgW272sJCpgItbcq33n0EE/YfCsDPL5nby1L3bRqsMIIbQU7PICW25W++C4BrVPWrInIsYQHumapabHeQ6jxgHsCcOXP8BnYcx+nDuBHkOBn+/Bv38dKmHfz04mOYeuDwjtt+/T6eWbOJ2RNHcsPFx/DEqg1cePXDbG9pY9jgRhobhKIq+w5u5M/f8JoeOoP6p9GNIKdnaQYmZj5PYM9wtw8ApwOo6oMiMgQ4AHipRyR0HMdxqo4bQY4TeWnTDn6/djMtbcrpX7uPA/YdxP5DB/GTDx5DY0HYurONQY0NjNyniR8vXMnSFzfR1NjAvL86kiFNBY6ZMpplXzijt0+j7mkQC4crdtLScarCI8A0EZkMvACcD7w71+ZPwFuBa0Tkz4AhwLoeldJxHMepKm4EOQ4hd+dvr3uMxoYGrn3/HH7x+GpuWLSKNZt2cvjnf1PymJNedyBfPW82+w8b1MPS9m/ME+Q2kNMTqGqriFwC3E4of321qj4tIpcDi1R1PvD3wPdE5JOEULn3qfpCVo7jOPWMG0HOgOexP73K+65+mE07WvnGBYdz3GsP4LjXHsDfn3Yoz7y4mX/9+RIgeChUg8E0uLGB7793zu78Fad6FAruCXJ6lrjmz225bZ/NvF8KHN/TcjmO4zi1w40gZ8CydWcrc6+4i1e3tdDYIBwyeihnzx63e/+Bw4dw4PAh3PsPJ/WilAOPgnhOkOM4juM4tcWNIGfA8OLG7bzzqgcZOqjADy86ig//+FFe3dbChP334fZPvIlhg/3foS/ghREcx3Ecx6k1rvU5/Z7zrnqAFzfs4JWtu9je0gbAcV+6CxH4/nvncPKMsb0soZOl4EaQ4ziO4zg1xo0gp9+zfusumjds57TXj+XTp72OVa9u459vXsL+wwa5AdQH2W0Eed654ziO4zg1wo0gp9/T0haU6S+fO5sR+zQx9cB9eeDSt/ayVE45zAhqdU+Q4ziO4zg1oqG3BXCcWvOeow8GUq6J07fZ7QlqcyPIcRzHcZza4EaQ0+8xj0JjwY2gesDD4RzHcRzHqTVuBDn9ntboUWhq8Nu9HmiM18kLIziO4ziOUytcK3T6Pa3FIiL4wqZ1QiF+K3lOkOM4juM4tcKNIKff09Km7gWqIwrxWhXdCHIcx3Ecp0a4Zuj0e9qKRc8HqiMavTqc4ziO4zg1xo0gp9/T0qa7k+2dvo+FLbonyHEcx3GcWuFGkNPvaS0WaSr4rV4vuCfIcRzHcZxa45qh0+9pK6qvEVRHNEgskV0s9rIkjuM4juP0V9wIcvo9LW1uBNUTdq28RLbjOI7jOLWipkaQiJwuIstEZLmIfKbE/sEickPcv1BEJmX2XRq3LxOR0zrrU0Qmxz6ei30OqmCMN4jIgyLytIgsEZEhtZkJpzdpbSvS6OFwdUOh4OFwjuM4juPUlppphiJSAL4FnAHMAC4QkRm5Zh8AXlXVqcCVwBXx2BnA+cDrgdOBb4tIoZM+rwCuVNVpwKux747GaAR+DHxIVV8PvBloqeokOH2CVg+HqysK4p4gx3Ecx3FqSy0fjx8FLFfVFaq6C7geOCfX5hzg2vj+Z8BbRUTi9utVdaeq/hFYHvsr2Wc85qTYB7HPt3UyxqnAk6q6GEBVX1HVtiqev9NHaG1TL5FdR1glvzZ1I8hxHMdxnNpQSyNoPLAq87k5bivZRlVbgY3A6A6OLbd9NLAh9pEfq9wYhwIqIreLyGMi8g+lTkJELhaRRSKyaN26dRWeutOXCJ4gD4erF3bnBLW5EeQ4juM4Tm2opWZY6tF7Xqsp16Za2zsaoxGYC7wn/n27iLx1j4aq81R1jqrOGTNmTImunL5Oqy+WWle4J8hxHMdxnFpTSyOoGZiY+TwBWF2uTczRGQGs7+DYcttfBkbGPvJjdTTGAlV9WVW3AbcBR+zluTp9mFavDldXiAgN4jlBjuM4juPUjloaQY8A02LVtkGEQgfzc23mAxfG9+cCd6mqxu3nx8puk4FpwMPl+ozH3B37IPb5i07GuB14g4gMjcbRicDSKp6/00cIniAPh6snCg3i1eEcx3Ecx6kZjZ032TtUKI87rgAAH6NJREFUtVVELiEYGwXgalV9WkQuBxap6nzgB8D/iMhygnfm/Hjs0yJyI8EoaQU+YkULSvUZh/xH4HoR+QLweOybDsZ4VUT+i2BYKXCbqv6yVvPh9B6tbcqgRjeC6olCg1B0I8hxHMdxnBpRMyMIQFVvI4SZZbd9NvN+B3BemWO/CHyxkj7j9hWE6nH57R2N8WNCmWynH9NSVIa6J6iuaGxocE+Q4ziO4zg1wzVDp9/TVix6TlCd4TlBjuM4juPUEjeCnH6PF0aoPxoLDW4EOY7jOI5TM9wIcvo9rUWlycPh6govjOD0JCJyuogsE5HlIvKZMm3eKSJLReRpEflJT8voOI7jVJeKcoJEZJSqrq+1MI5TC1rbirvXnnHqg4J4YQSnZxCRAvAt4BTC0gmPiMh8VV2aaTMNuBQ4PhbVObB3pHUcx3GqRaWPxxeKyE0icqaIuDbp1BUtbeqLpdYZ7glyepCjgOWqukJVdwHXA+fk2nwQ+Jaqvgqgqi/1sIyO4zhOlanUCDoUmAf8FbBcRP5dRA6tnViOUz3aikpTg4fD1ROFBqGtWOxtMZyBwXhgVeZzc9yW5VDgUBH5nYg8JCKnl+pIRC4WkUUismjdunU1EtdxHMepBhVphhr4japeAPw1YfHRh0VkgYgcW1MJHaebtBaLFNwTVFc0Nght7ghyeoZSXw75u6+RsGj3m4ELgO+LyMg9DlKdp6pzVHXOmDFjqi6o4ziOUz0qzQkaDfwlwRO0FvgoMB84DLgJmFwrAR2nu7S0KU2eE1RXuCfI6UGagYmZzxOA1SXaPKSqLcAfRWQZwSh6pGdEdBzHcapNpTFCDwL7AW9T1T9X1ZtVtVVVFwFX1U48x+k+bUWl4OFwdUWhQWh1V5DTMzwCTBORySIyCDif8JAvy8+BtwCIyAGE8LgVPSql4ziOU1Uq1Qz/RVU/r6rNtkFEzgNQ1StqIpnjVImWtiJNHg5XVxQahKK6EeTUHlVtBS4BbgeeAW5U1adF5HIROTs2ux14RUSWAncDn1bVV3pHYsdxHKcaVBQOB3wGuDG37VJCKJzj9Gnail4drt5o9OpwTg+iqrcBt+W2fTbzXoG/iy/HcRynH9ChESQiZwBnAuNF5BuZXfsBrbUUzHGqgarS6uFwdUdDg9DmRpDjOI7jODWiM0/QamARcDbwaGb7ZuCTtRLKcaqFeRO8MEJ90ehGkOM4juM4NaRDI0hVFwOLReS6GDftOHWFKdKNBfcE1RMN4uFwjuM4juPUjs7C4W5U1XcCj4tIViMRQpj0G2oqneN0k5a2UGa50T1BdUVjQdjZ4iWyHcdxHMepDZ2Fw308/j2r1oI4Ti2wMsteGKG+KDQ00Fps620xHMdxHMfpp3QYI6SqL8a3LwOrVHUlMBiYzZ6LyTlOn8NCqtwTVF8UBC+R7TiO4zhOzag0UeJeYIiIjAd+C1wEXFMroRynWrQWYzic5wTVFYWGBl8s1XEcx3GcmlGpZiiqug14B/Dfqvp2YEbtxHKc6rA7HM49QXWFV4dzHMdxHKeWVGwEicixwHuAX8ZtlS606ji9xu5wOM8JqisKDUKbh8M5juM4jlMjKjWCPg5cCtyiqk+LyBTg7tqJ5TjVoXV3dTgPh6snCu4JchzHcRynhlTkzVHVewl5QfZ5BfCxWgnlONVi92Kp7gmqKwoNsjufy3Ecx3Ecp9pUZASJyKHAp4BJ2WNU9aTaiOU41cFyggruCaorCg2C20CO4ziO49SKSvN6bgKuAr4P+OIdTt3Qsrs6nHuC6olG9wQ5juM4jlNDKjWCWlX1OzWVxHFqQJuvE1SXNDQIbW4DOY7jOI5TIyqNEfo/EflbEXmNiIyyV00lc5wq0OKFEeqSUCLbrSDHcRzHcWpDpZ6gC+PfT2e2KTCluuI4TnWxnCAvjFBfhMIIXh3OcRzHcZzaUNHjcVWdXOLVqQEkIqeLyDIRWS4inymxf7CI3BD3LxSRSZl9l8bty0TktM76FJHJsY/nYp+DOhsj7j9YRLaIyKcqmQunvrBwuIKHw9UVBRGKbgQ5juM4jlMjKjKCRGSoiPyLiMyLn6eJyFmdHFMAvgWcAcwALhCRGblmHwBeVdWpwJXAFfHYGcD5wOuB04Fvi0ihkz6vAK5U1WnAq7HvsmNkuBL4VSXz4NQfFg7XVPBwuHqiUHBPkOM4juM4taNSzfCHwC7guPi5GfhCJ8ccBSxX1RWqugu4Hjgn1+Yc4Nr4/mfAW0VE4vbrVXWnqv4RWB77K9lnPOak2Aexz7d1MgYi8jZgBfB0ZdPg1Bu7CyN4OFxdURBfLNVxHMdxnNpRqRH0WlX9MtACoKrbgc60yvHAqszn5ritZBtVbQU2AqM7OLbc9tHAhthHfqySY4jIMOAfgX/r6CRE5GIRWSQii9atW9fJKTt9jRavDleXNDYIbepGkOM4juM4taFSI2iXiOxDKIaAiLwW2NnJMaW0zrxWU65NtbZ3NMa/EcLntpTYnxqqzlPVOao6Z8yYMR01dfogrV4dri4pNDSgiucFOY7jOI5TEyqtDncZ8GtgoohcBxwPXNTJMc3AxMznCcDqMm2aRaQRGAGs7+TYUttfBkaKSGP09mTblxvjaOBcEfkyMBIoisgOVf1mJ+fl1BGtXhihLrEUrjZVGjp1OjuO4ziO43SNSqvD3QG8A3gf8FNgjqre3clhjwDTYtW2QYRCB/NzbeaTym+fC9ylqhq3nx8ru00GpgEPl+szHnN37IPY5y86GkNVT1DVSao6Cfga8O9uAPU/Uols9wTVE4XoufO8IMdxHMdxakFFniAR+a2qvhX4ZYltJVHVVhG5BLgdKABXq+rTInI5sEhV5wM/AP5HRJYTvDPnx2OfFpEbgaVAK/ARVW2L4+7RZxzyH4HrReQLwOOxb8qN4QwMWuOCm14Yob4wm9UrxDmO4ziOUws6NIJEZAgwFDhARPYn5dfsB4zrrHNVvQ24Lbfts5n3O4Dzyhz7ReCLlfQZt68gVI/Lby87RqbNZR3td+oX8wR5YYT6wj1BjuM4juPUks48QX8DfIJg8DxKMoI2EdbrcZw+TfIEeThcPWFGqxtBjuM4juPUgg41Q1X9uqpOBj6lqlNUdXJ8zfb8GaceaHFPUF3SEK+XGbGOU0tE5HQRWSYiy0XkMx20O1dEVETm9KR8jvP/27v/KLnK+o7j78/MJpGWCDQBURIIlSgGf/BjpYq2yg/lR9tECpXEX1g5pVWpbQErHE+RItYix5NjW6wi0gqnGhBrzVE0nvKjthCQYBBINBp+HIl4CghEOWrYmfn2j/vMOiyzu3d3587svft5nZOTmXufee73uTM7e7/7PPd5zKz3ct0TFBH/JOkoYFnnayLiqoLiMuuJptcJKqX2++UcyIomqU42suENZLOJ3iFpfURsHVNuIfA+4Pb+R2lmZr2Wd2KEq4EXAncBzbQ5ACdBNqu11wnyFNnlUndPkPXPkcD2dF8pktYBq8gm5un0YeBjwLn9Dc/MzIqQd52gYWBFmorarDQarWCoJiQnQWVSl3uCrG/2Ax7qeL6DbB25UZIOA5ZGxFcljZsESToTOBNg//33LyBUMzPrlbx3i98L7FtkIGZFaLTC02OXUPs9c0+Q9UG3L4jRP/hJqgFrgXMmqygiLo+I4YgY3nvvvXsYopmZ9VrenqDFwFZJ3wZ2tTdGxMpCojLrkZFmi3k1zwxXNjV5djjrmx3A0o7nS4CHO54vBF4K3Jx6lPcF1ktaGRGb+halmZn1VN4k6MIigzArSrMV1N0TVDqjU2R7BK4V7w5guaQDgR+TLaj9lvbOiNhJ9odAACTdTDZjqhMgM7MSyzs73H8XHYhZEUaawZB7gkpndGKEppMgK1ZENCSdBWwA6sCVEbFF0kXApohYP9gIzcysCBMmQZJ+TsfY6M5dQETEcwuJyqxHGs0W89wTVDp1L5ZqfRQR1wPXj9l2wThlX9+PmMzMrFgTJkERsbBfgZgVodkKT49dQnUPhzMzM7MCeZyQVdpIK5hX98e8bNpDGN0TZGZmZkXw1aFVWrPVck9QCbVv43ISZGZmZkVwEmSVlk2M4CSobNwTZGZmZkVyEmSVlk2M4I952bTfsoaTIDMzMyuArw6t0hqeGKGU6qknqOUkyMzMzArgJMgqrdEMT5FdQu0hjO4JMjMzsyI4CbJKa7RaXiy1hGpqrxPUGnAkZmZmVkW+OrRKa7SCIfcElU77PWs6BzIzM7MCOAmySmt4drhSqo8Oh3MWZGZmZr3nJMgqbaTZYsizw5VOPQ2Ha4XvCTIzM7Pe89WhVVqz5Z6gMhrtCWo6CTIzM7PecxJklZbdE+SPedm0kyAvlmpmZmZF8NWhVVo2O5x7gsqm/Z41PRzOzMzMCuAkyCrNEyOUk3uCzMzMrEhOgqzSRpoeDldGvifIzMzMilTo1aGkEyRtk7Rd0nld9i+QdE3af7ukZR37zk/bt0k6frI6JR2Y6vhhqnP+RMeQ9AZJd0q6J/1/THFnwgal6eFwpdROgjw7nJmZmRWhsCRIUh24DDgRWAGskbRiTLEzgCci4iBgLXBJeu0KYDVwCHAC8ElJ9UnqvARYGxHLgSdS3eMeA3gM+MOIeBlwOnB1L9tvs0Oj6cVSy2ioln01NTwczszMzApQZE/QkcD2iLg/Ip4G1gGrxpRZBXwuPb4OOFaS0vZ1EbErIh4Atqf6utaZXnNMqoNU55smOkZEbI6Ih9P2LcBzJC3oWettVhhptZjn4XClk3Ig3xNkZmZmhSjy6nA/4KGO5zvStq5lIqIB7AQWTfDa8bYvAp5MdYw91njH6HQKsDkido1thKQzJW2StOnRRx+dpMk22zRbMTq0ysqj3RPkJMjMzMyKUGQS1O3Kc+wVzXhlerV90jgkHUI2RO7PupQjIi6PiOGIGN577727FbFZKiIYaQbznASVTvst83A4MzMzK0KRSdAOYGnH8yXAw+OVkTQE7AE8PsFrx9v+GLBnqmPsscY7BpKWAF8G3hER902znTZLta+f6zUPhysbSdRrouUkyMzMzApQ5NXhHcDyNGvbfLKJDtaPKbOebFICgFOBGyMi0vbVaWa3A4HlwLfHqzO95qZUB6nOr0x0DEl7Al8Dzo+IW3racpsVRpotAE+MUFL1mtwTZGZmZoUoLAlK99+cBWwAvgdcGxFbJF0kaWUq9llgkaTtwNnAeem1W4Brga3AN4D3RkRzvDpTXR8Azk51LUp1j3uMVM9BwN9Kuiv926eQk2ED0b6AnuckqJTqEs1Wa9BhmJmZWQUNTV5k+iLieuD6Mdsu6Hj8K+CPx3ntR4CP5Kkzbb+fbPa4sdu7HiMiLgYunrQRVlrNtNCmh8OV01BNNJ0DmZmZWQF8dWiVNZJ6EdwTVE71unuCrD9yLOx9tqStku6WdIOkAwYRp5mZ9Y6TIKusRuoJGnJPUCnVJZrhe4KsWDkX9t4MDEfEy8nWm/tYf6M0M7Ne89WhVVYj9SIMeYrsUqrX5HWCrB8mXdg7Im6KiF+kp7eRzUBqZmYl5iTIKmu0J8jD4UqpXtPoe2hWoDwLe3c6A/h6tx1eXNvMrDycBFlltWeHq7snqJTqNQ+Hs77Is7B3VlB6GzAMXNptvxfXNjMrj0JnhzMbpMboxAjO9ctoyMPhrD/yLOyNpOOADwKvi4hdfYrNzMwK4qtDq6xfT4zgnqAyqjkJsv6YdGFvSYcBnwZWRsQjA4jRzMx6zEmQVVZ7OJzvCSon9wRZP+Rc2PtSYHfgi2lh7fXjVGdmZiXh4XBWWY1me3Y45/plVK/VRhNZsyLlWNj7uL4HZWZmhfLVoVXWiGeHK7V6DVpOgszMzKwAToKsstpDqdwTVE7uCTIzM7Oi+OrQKmukvViqe4JKqS58T5CZmZkVwkmQVZZnhyu3oVrNSZCZmZkVwkmQVVaz5YkRyqzu2eHMzMysIL46tMpqT4wwz8PhSqleE81wEmRmZma95yTIKqvdi1D3cLhSqtfkiRHMzMysEE6CrLJG0jpB8+r+mJdRtlhqa9BhmJmZWQX56tAqq92L4NnhyqlWE03nQGZmZlYAJ0FWWQ0Phys19wSZmZlZUZwEWWU12sPhPDtcKdV8T5CZmZkVxFeHVlntdYLqHg5XSkM10XISZGZmZgVwEmSV1e5FcE9QOXl2ODMzMyuKrw6tstrD4TwxQjnV5Z4gMzMzK4aTIKus0dnhPDFCKQ3V3RNkZmZmxXASZJXVaLWo14TkJKiM6jWNLnhrZmZm1ktOgqyyGs1wL1CJ1SWa4STIzMzMes9JkFVWo+UkqMzqtRrNppMgMzMz671CkyBJJ0jaJmm7pPO67F8g6Zq0/3ZJyzr2nZ+2b5N0/GR1Sjow1fHDVOf86R7DqqHRbDFUd55fVvUavifIzMzMClHYFaKkOnAZcCKwAlgjacWYYmcAT0TEQcBa4JL02hXAauAQ4ATgk5Lqk9R5CbA2IpYDT6S6p3yM3p4FG6QR9wSVWr1W83A4MzMzK8RQgXUfCWyPiPsBJK0DVgFbO8qsAi5Mj68D/lnZXeyrgHURsQt4QNL2VB/d6pT0PeAY4C2pzOdSvf8yjWNsHK9BT+1qcOIn/mfqZ8IG4ic7f8mCIfcEldVQTTzdaPlnrkSOXLbXoEMwMzPLpcgkaD/goY7nO4DfGa9MRDQk7QQWpe23jXntfulxtzoXAU9GRKNL+ekcY5SkM4EzAZ6/dBlL9tptwkbb7LFkr904ctlvDToMm6bjD9mX7Y885d6gElm8+4JBh2BmZpZLkUlQt3FIY69mxisz3vZuf9afqPx0jvHMDRGXA5cDDA8Px2feMdzlZWbWay9bsgefevsRgw7Dpuh9gw7AzMwshyLHCu0AlnY8XwI8PF4ZSUPAHsDjE7x2vO2PAXumOsYea6rHMDMzMzOzCisyCboDWJ5mbZtPNgnB+jFl1gOnp8enAjdGRKTtq9PMbgcCy4Fvj1dnes1NqQ5SnV+Z5jHMzMzMzKzCChsOl+6/OQvYANSBKyNii6SLgE0RsR74LHB1mpTgcbKkhlTuWrJJFBrAeyOiCdCtznTIDwDrJF0MbE51M51jmJmZmZlZdSl803Fuw8PDsWnTpkGHYWY2a0m6MyJKdfOkpBOAT5D9ce2KiPiHMfsXAFcBRwA/BU6LiAcnqtO/L8zMJjbo3xeeP9jMzOasmaxpZ2Zm5eUkyMzM5rLRNe0i4mmgvaZdp1Vk689Btt7csWm9OTMzK6kip8iunDvvvPMpSdsGHUdBFpPNsldFbls5uW3l9OJBBzBFM1nT7hnvYee6csAuSfcWEnG5VPmzPhU+Dxmfh4zPQ2agvy+cBE3NtrKNdc9L0ia3rXzctnKqetsGHcMUzWRNu2du6FhXrsrv8VT4PGR8HjI+Dxmfh8ygf194OJyZmc1lM1nTzszMSspJkJmZzWUzWdPOzMxKysPhpubyQQdQILetnNy2cnLbZomZrGk3iVKdhwL5PGR8HjI+Dxmfh8xAz4PXCTIzMzMzsznFw+HMzMzMzGxOcRJkZmZmZmZzipOgLiSdIGmbpO2Szuuyf62ku9K/H0h6chBxTkeOtu0v6SZJmyXdLemkQcQ5HTnadoCkG1K7bpa0ZBBxTpWkKyU9Mt6aI8r8Y2r33ZIO73eM05WjbQdL2ihpl6Rz+x3fTORo21vT+3W3pFslvaLfMU5XjratSu26S9ImSa/td4z9kuN7Z4Gka9L+2yUt63+UxctxHs6WtDV9Lm6QdMAg4izaZOeho9ypkkJSJadJznMeJL05fSa2SPp8v2Pshypfc+U1q69hIsL/Ov6R3Rh7H/DbwHzgu8CKCcr/BdmNtAOPvRdtI7tJ7d3p8QrgwUHH3cO2fRE4PT0+Brh60HHnbNvvAYcD946z/yTg62RrmbwKuH3QMfewbfsArwQ+Apw76Hh73LajgL3S4xMr9r7tzq/vOX058P1Bx1zQecjzvfMe4FPp8WrgmkHHPaDzcDTwG+nxu+fqeUjlFgLfAm4Dhgcd94A+D8uBzR3fgfsMOu4BnYdSXnNN8TzM2msY9wQ925HA9oi4PyKeBtYBqyYovwb4Ql8im7k8bQvguenxHjx7vYzZKk/bVgA3pMc3ddk/K0XEt5h4TZJVwFWRuQ3YU9Lz+xPdzEzWtoh4JCLuAEb6F1Vv5GjbrRHxRHp6G9n6NKWQo21PRfrtBvwmXRYWrYg83zurgM+lx9cBx0rqtvhqmU16HiLipoj4RXpaqs/7FOS9fvgw8DHgV/0Mro/ynIc/BS5rfwdGxCN9jrEfqnzNldtsvoZxEvRs+wEPdTzfkbY9S+rOPxC4sQ9x9UKetl0IvE3SDuB6sp6uMsjTtu8Cp6THJwMLJS3qQ2xFy/2ZtVnrDLK/hFWGpJMlfR/4GvCuQcdTkDw/e6NlIqIB7ASq8L3TaarfQZX7vCeTngdJhwFLI+Kr/Qysz/J8Hl4EvEjSLZJuk3RC36Lrnypfc/XSwK5hnAQ9W7e/0I33V8zVwHUR0Swwnl7K07Y1wL9FxBKyLsqrJZXhc5KnbecCr5O0GXgd8GOgUXRgfTCVz6zNMpKOJrso/MCgY+mliPhyRBwMvInsL99VlOdnby78fOZuo6S3AcPApYVGNBgTnof0u3QtcE7fIhqMPJ+HIbIhca8nu+64QtKeBcfVb1W+5uqlgX1HzrUTnccOYGnH8yWM3z25mvIMhYN8bTsDuBYgIjYCzwEW9yW6mZm0bRHxcET8UUQcBnwwbdvZvxALM5XPrM0ikl4OXAGsioifDjqeIqShEC+UVIbvkanK87M3WkbSENmQl4mGhpRRru8gSceRffeujIhdfYqtnyY7DwuBlwI3S3qQ7P6H9RWcHCHvz8VXImIkIh4AtpElRVVS5WuuXhrYNYyToGe7A1gu6UBJ88kSnfVjC0l6MbAXsLHP8c1Enrb9CDgWQNJLyH4gH+1rlNMzadskLe74C8v5wJV9jrEo64F3pBlWXgXsjIifDDoom5ik/YH/AN4eET8YdDy9JOmg9n0vaaaf+UAVk7w836nrgdPT41OBGzvul6qKPN+/hwGfJkuAqnj/B0xyHiJiZ0QsjohlEbGM7N6olRGxaTDhFibPz8V/kk2WQfoDyYuA+/saZfGqfM3VSwO7hhnqx0HKJCIaks4CNpDN7HFlRGyRdBGwKSLaH+A1wLoy/TLL2bZzgM9I+muy7sh3lqGNOdv2euCjkoJsZp73DizgKZD0BbLYF6dxwx8C5gFExKfIxhGfBGwHfgH8yWAinbrJ2iZpX2AT2Y2jLUl/RTa7zs8GFHJuOd63C8juDflkyhcaEVGKvwjnaNspZL/URoBfAqeV4XtkqnJ+73yWbIjLdrIeoNWDi7gYOc/DpWSzBn4xfd5/FBErBxZ0AaZw/VBpOc/DBuCNkrYCTeD9VesNr/I111TM5msYVexcm5mZmZmZTcjD4czMzMzMbE5xEmRmZmZmZnOKkyAzMzMzM5tTnASZmZmZmdmc4iTIzMzMzMzmFCdBZl1IWpumY24/3yDpio7nH5d0do+P+VQv60t1HirppI7nF0o6N8frmpLukvSCjm2HSQpJx3cpf3Lad3DHthemOnreLjMzM7OZcBJk1t2twFEAaYHVxcAhHfuPAm4ZQFxTdSjZ/PtT9cuIODQiOldtXgP8b/p/rPa+0TVQIuK+iDh0Gsc2MzMzK5STILPubiElQWTJz73AzyXtJWkB8BJgs6TdJd0g6TuS7pG0CkDSJZLe064s9cCckx6/X9Idku6W9HfdDt6tjKRlkr4n6TOStkj6pqTd0r5XprIbJV0q6d60QvVFwGmpR+a0VP0KSTdLul/S+/KcDGWrG54KvJNsgbvndOzbHXgNcAYVXAjSzMzMqsdJkFkXqQekIWl/smRoI3A78GpgGLg7Ip4GfgWcHBGHA0cDH08JwzrgtI4q30y2UvobgeXAkWS9NEdI+r3OY09SZjlwWUQcAjwJnJK2/yvw5xHxarLVt0nxXQBck3p1rkllDwaOT/V/SNK8HKfkNcADEXEfcDPP7F16E/CNiPgB8Likw3PUZ2ZmZjYwToLMxtfuDWonQRs7nt+aygj4e0l3A/8F7Ac8LyI2A/tIeoGkVwBPRMSPgDemf5uB75AlJMvHHHeiMg9ExF3p8Z3AMkl7Agsjoh3T5ydp19ciYldEPAY8Ajwvx7lYQ5bYkf5fk3OfmZmZ2awzNOgAzGax9n1BLyMbDvcQcA7wM+DKVOatwN7AERExIulBoD1U7DqyIWT78uskQcBHI+LTExy3axlJy4BdHZuawG6p/FSMrWPC7wFJdbIep5WSPpiOt0jSQmA+cAzwUkkB1IGQ9DcREVOMy8zMzKwv3BNkNr5bgD8AHo+IZkQ8DuxJNiRuYyqzB/BISoCOBg7oeP06sntkTiVLiAA2AO9K99EgaT9J+4w5bp4yoyLiCbL7lV6VNnXel/NzYOFUGt3FccB3I2JpRCyLiAOAL5ENgzsVuCoiDkj7lgIPAK+d4THNzMzMCuMkyGx895DNCnfbmG0701AygH8HhiVtIusV+n67YERsIUtAfhwRP0nbvkk2XG2jpHvIkqNnJCl5ynRxBnC5pI1kPTU70/abyCZC6JwYYarWAF8es+1LwFsm2WdmZmY2K8kjVszKT9LuEfFUenwe8PyI+MsZ1PdUROzeo9h6VpeZmZlZL7gnyKwafj/19twL/C5w8Qzr+9nYxVKnqr1YKvB/M4zFzMzMrKfcE2RmZmZmZnOKe4LMzMzMzGxOcRJkZmZmZmZzipMgMzMzMzObU5wEmZmZmZnZnOIkyMzMzMzM5pT/B6T2X3+3X8gBAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAG5CAYAAABIoz+EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvXuUV9d53/3Z4IEBNDAaNOEeBgRFEHgRGBkhIWPZ+CJbtuNU8aWJEyd1nHY1SdvVdNX121U7aZvXbdPLmyYriercHKe+vnHi2FbsyFZkyZKJMIiCQRSMhnAdI0YDI2BgAvv943m+PPv3Y4YZYHRlf9eaNb9zzr6ffc55vvu57JRzpqKioqKioqKioqKi4nrBuBe7ARUVFRUVFRUVFRUVFS8kKgmqqKioqKioqKioqLiuUElQRUVFRUVFRUVFRcV1hUqCKioqKioqKioqKiquK1QSVFFRUVFRUVFRUVFxXaGSoIqKioqKioqKioqK6wqVBFVUvIyQUvpISukTL3Y7KioqKipeeNRvQEXF2KGSoIqXBFJKi1NKAymlTxXnPpBSOp9Sei6ldDKl9GRK6V6/9rqU0sHLlNedUjrjeXtSSn+QUrrBr/1ISunrKaVnU0p9KaXvppTeWpR7wfM9l1I6mFL6XErptud7DEaDnPOv5Zw/CJBS6kop5ZTSq17sdlVUVFS8lFC/ARUVFSOhkqCKlwp+C3hiiPOP55xvANqB3wM+l1LqGGWZb/e8q4HbgH/j5/8C+CtgBvBDwC8BJ4t8hz1fG3A78BTwSErpDVfWpZc26oezoqLiFY76DbgM6jeg4npHJUEVLzpSSu8F+oBvDJcm53wB+H1gErDwSsrPOR8CHgCWp5RuAhYA/zPnfM7/vp1zfnSIfDnnfDDn/G+BTwD/cZj2azXuZ1JKB3x18R+llG5LKf1vX2n8zSL9uJTSv0kp7U8p/SCl9MmU0rSmsn46pfS3KaVnUkr/d5H3Y4W27Fv+v89XLNeNsux/mFL6W+CbVzKOFRUVFS9H1G9A/QZUVAyFSoIqXlSklKYCvwr8ixHSvQr4IPAcsOcK65gHvBXYChwH9gKfSin9aEppxiiL+VNgdUppymXSrAUWA+8B/jvwfwMbgR8B3p1S2uDpPuB/d2OE7gbgN5vKWg8sAd4A/NuU0tIh6nut/2/POd+Qc358lGVvAJYCb75MXyoqKipeEajfgPoNqKgYCpUEVbzY+HfA7+WcDwxz/faUUh9wFHgf8K6c84lRlv1nnvdR4GHg13LOGfs4dAP/BTiSUvpWSmnxCGUdBhJmljdsX3LOAznnrwOngE/nnH/gq5CPAKs83U8A/zXnvC/n/Bzwr4H3Npkm/ErO+UzOeRuwDVg5yj6PpuyP5ZxP5ZzPjLLMioqKipcj6jegfgMqKoZFtQeteNGQUroVWyVbdZlk38k5r7/KKn405/xg88mc80HgF7wN84D7gU8C6y5T1hwgY2Z7w6Gn+H1miOMb/PdsYH9xbT/2LJYrkkeL36eLvCNhNGUPRzgrKioqXkmo34D6DaioGBZVE1TxYuJ1QBfwtymlo8AvA38/pbTlhWqAa6B+C1g+QtJ3AVtyzqfGoNrDwPzi+IeBv6Pxgzka5Ksse6h8FRUVFdcd6jegouL6RSVBFS8m7gduBm71v98BvsLzaKecUroxpfQrKaVF7kB6E/CzwHeGSJtSSnNSSh/F/JE+MkbN+DTwz1NKC5KFbP014LM557+7wnKOARdoDBQxVmVXVFRUvOJQvwEVFRVCNYereNGQcz6NqfkBSCk9BwzknI89j9Wew7RPDwI3YYEWHgJ+sUgz29uSgBPAY8Drcs6XfCSvEr+PmSx8C2gFvtZU/6iQcz6dUvoPwLdTSi3AW8aq7IqKiopXKOo3oKKiAoBkPoIVFRUVFRUVFRUVFRXXB6o5XEVFRUVFRUVFRUXFdYVKgioqKioqKioqKioqritUElRRUVFRUVFRUVFRcV2hkqCKioqKioqKioqKiusKNTrcFSCllF9KrHHVq1/N1u9+94rSC8Plu9Iyr6TuF7rOFwOvpL5UXBkuwDM5585rKeMtb3lLfuaZZ4a9/t3vfvdrOee3XEsdFS8MUpqcof3FbkZFRcVLEkeu6XuxKKV8eoQ0R6B+L0ZAjQ53BRifUp40zLXlwI4XsjHXGZ7LmRtSerGbMSJeLu2sGHucgu/mnNdcSxlr1rw6b968adjrKbVccx0VLwxSmp3h51/sZlRUVLwk8bFrepfPTimP9Hb52Bh8k17pqJqgMcJYEqCJwNkxLO/5QgfQ67/HYTu2PV8YC2LRBvRfe1Mui+ebAM0FDj6vNTRiGrZJxouNFmDwCvNMptiE6mWFuqdhRUVFRcXwGI/JNBXXhpeSddfLAqOZdIuuoLwW/z+xOPdyIEAQBOj5wsKRkzBthOMSzzcBulJczcP3QhIgeGkQIGgkQHpmZoyQ5+VJgC4AA5f5q6ioqKioqBgKKaUfTil9KaX0+ymlD4+UvpKgK0SzID0OmN90bu8VlCfhbrTE55ocDq4CLcOcn9x0/HxogfY1HZdCr4hms5A+nNC+svg9XJ9GwlBC90IuJV5DPVRzhzinMVP+4Qj2K221Z6jxH+5FpHlWjrGemZ4xa9HoMVw7x+4eZUwTNNxfRUVFRcX1jnHApBH+RoOUUndKaXtK6cmU0uZh0vzzlNL3Uko7UkqfTim1jjbvaOGk5QcppR1N59+SUtqdUto7GlID/D3gKznnnwWWjZS4kqBrxAVg/zXkl3A+4p1yHLuGukpcTmNSotkESRqrsVpl72D0k7AUeocimrOHOCfysa04NxqzqqFIy1BC9wCXEq+hCOHlNDjKP5ymqjw/cZg0zweGGs+RoHu5ZIhzwlDjX45ZSTan+P8T3p6Oq2jTaDASidFzOtS9nc1YahkrCaqoqKiouDzGigQ57s453zqU/1BKaQ7wS8CanPNyzBLvvaPJ6/l/KKXU1nRuKIOpPwTe0pRuPPBbwD2YmPy+lNIyv7YipfTlpr8fArYC700pfRN4aKSOVxJ0BRgLB6olTcfbhkwVGMnkp42rE4yv1syp1Fg1E6mrEZp7uTot0mQuFYgP0zheMxid+Vjz+C3CyOZcQhPRrL2Qqd7hpvPj/NpQD9ZYCPDzGJtxHw2a+zYa6F7uJrSWOqexXMKlmkSKa6WZpUj/NG/PtZpgrmdogluSmOZ7PZ/LP6dXM07DI1PN4SoqKioqLodRkqCbUkqbi78PXWV1rwImpZRehX2+r+SztwH480J79HPAbzQnyjl/i0s/8a8B9uac9+WczwGfAd7p6bfnnO9t+vsB8DPAR3POrwfeNlLjKgm6AvwdwwtvJZqJTondw5zf6f+bBbTxTcfNpKifq/MhGo44Xc7cTnk6MPLVTKSGMzMbzSRr4dLV+LKNzQRiCo1Pyzr/31PUp99tDC34Chq/NoJgnMUIlDRezT4p+4YocwZGSPZh47iquNYs3IMta5TLIfcUvzuKPpWQBqwcmwGsn6MhwyOR6tFgtFrEZq2lxnI3w2sSdzO0pqica1puKp9Ftamcv51N1wAepZEYazzKJazm+qXpHc2zf+3IwPnL/FVUVFRUVIwKz+Sc1xR/9w+RJgNfTyl9dyiSlHM+BPw68LfAEeBEzvnro8nr+T8P/CXwmZTSTwA/C7x7lO2fAxwojg/6ucvhL4FfSin9DtA9UgWVBD0PENG5Eg2NBDUJaMrbTLdlkiXBfiTBrIWhyYkE/1Io7mRoczuRE+XpZWjzn+HMzIbT9JTEZtDLLEmBCOBcQqCdixEKjY/6v4WYzC3F+S7/PQW4289Jc7LE61NZ/f4norEGIyYitSI1IlaHi+PJ2L056P1a5uWoHbtpJHkaa43ZEuCB4novcS8Wenppnwaxe7GkSHsBmEojhiIGM7l2XI0W8XJBLlYNc344siXD45JI6bfGbAahNynfmM3Pi56n0SxrNRO38uU5dgSpBkZoRkrpdSmlR1JKv5NSet2L3Z6KioqKFxuSOy73N0rcmXNejYk7/ySl9NryYkrpRkz7sgATn6aklH5yNHmFnPN/wj5gvw28I+f83CjbNlS43cvu65Nz3pFzvi/n/I9yzr88UgWVBF0hRvKFkaA7jUs1NM1kRIO/EhMspWHpoFEDtIqY0NIW9BOaimYtSQuNq+Xldn3NxKzsz1AEaDKXEp5S01UK9oeHSTOchqiXSzUTErA7vG0tWD8l/h0DWjFRcYmnWQfcTJCtTqJf5zFBdzcmPC+jkZjsxe6TxusCQRp6gYcJUrvV/+u+vtP/30Hcr9mebwdmenWaGIvzNJquncLI2Qwalyvme3s6/fd87/c+bC6cxuZXu/dd/mTN9+8ERj50XmZd0hqNRNJ1/XJatJGgOd4c5KKExrWZ9Oh+lu0cKVCH2tqDzRMILSvYPRhKw6i5eyWasvK5GttIdNfmEzScg2lTmiGdTa/CCfWK23EVdWTgOeyWvtABEisqKipeckiMjU9Qzvmw//8B8EXMBK3ERuDpnPOxnPMg8KeY2DOavNbWlO7CttP8IvDRUTYN7H0/rzieyxhboFcSdJUohSURl3GEAC1hflVxrllTcsHLkb+BNCy9hFA1EbvjpzEh9muYwFeSj3KvHrwtWi0/gQnBEh4veJkSFgcw4bOlOFdOCrWj1NCUJn3jGFow3Ues/l8uGltzsAEJ7Iu9To2ZTJJuxYTaw8BRrK+P+2+1W1JSh+ebi5GFeZ5mL3Cvp9H/fV7f8qINImLNmop1xH3qxCQzjY+ezomYZmcusMfPtRTXO/y4z8spCfMgcf8GaPTsEzGYABzyvqvfkzFCNAN4k58TEVjpYyGysLqpTmm3Suj6QS5PhFqa/q8dor0lZnOpJg8u1TCJfLcX6UoSqWdwbpFX917kr9n78iw2doKeHWkPNd80FrO59CW5foi8Y4cx0QT9IU0OpiWGcza9nBNqU/4X2tH1kZzzPcC/An5lNANQUVFRUXF5pJSm6F2eUpqCiQ7Ni2d/C9yeUpqcUkrAG4Bdo8xLSmkV8D+xdeOfATpSSv9+lE18AlicUlqQUpqABWT40pX283KoJOgKUOrlJLwvwlaXZZK0jxDYOrBV7nIlvnm1e6iIYx0EqRoEpnve/YSmot/LKoXIC56ni0tVoZMxAR9iOXU24dszSAiQzYLrDIw4TMO0GiUpUN5mQXCQGIsBGknjQiKs+CpCC1MKxk9h2pX5mFfdRr+2ycta63Wrn+3eFwmo47B7stH7tRcjT7oXX/P/0hK0eJodnreDICxbMVM6SX3H/PfD/vtB769I33yCPM4hxlOCeidG2k54HYNensZVAR4e92vzCSK3zdu6BBPoZSp4NzYPJ2Nkr8f7vpPQAE3D7vkFL1tYReNGsroP0mBJGzccZP630MvZRMyHzqZ06p8IlsZJ81MvpOVFvh5CK7ifS0PSN7dtOaF5kmmjtF9zsWd2hh+rnYNeh4iN+n4cG682IkJcr5en+9XC2PhaGUaMDjeio+swDqYlhnM2HdYJtQkvqKNrzlmP0LO8sAESKyoqKl6SGKPocDOAR1NK24C/wUJL/yVASumrKaXZOedNwBcwr4PtXvX9l8vbhMnAj+ecv+/v8p9miKDKKaVPY6LJkpTSwZTSP8w5/x3wC5jItgv4XM75e6Pr2ugwFgHPXtJIKS0BPlucWgj8W0xu/jlCLv5IzvmrV1r+XkywklnafMK8p9evHcRmwQFMkNpa5G/BBEgJt4OYoHqAEJ7bMGFWgmofEZb3dFNZMzAh9B5stqruE4QQrv/NOsU2zy/NE5jg/biXcZpGLZDauw57Ojqa+kxRThdwC6a9GCSegIPASUyqehgT1Jd5nScwiUd+LBu9noP+t9HHrYMIRrCvaNdCbBlhIkbE7ia0Km0YyTpXtHeGn9+L3aceTCP1MDb+rZiAfZjw0en3Ps0Gvu5tb/Hzy7F7sYwgW8u9bWrrYUzgPoCZxq3z8/2Elm1/cR8gSOcx7D4/4Gkv+HgMevsHfFxPYcRoNxEsogUjIguJuSE/JREUPRiDfl9a/Zzm5Trs/h7FCNgevzbbx3Kf9222t6u3GAvdo4le32lijp/AyKiujfO6NZek0bqAPW/nsfs3rci7kpgbvZ5/GaZhK8lOm7fvKPZC0KLEZm+j+tpKPC+6l1u9nz1EKO9rh6LDDYtB7DH4i5zzX1xlJUM5m669zPnGFub8+ZTSAszR9fOYo+sbr7HuYZFS+jHgzdgt+s1R1lNRUVHxioVI0LUg57yPxm0Uy2tvLX5/lEvN2IbN21TOt5uOBzHNUHO69w2T/6vAFcvmo8UrXhOUc97tMcxvBV6NyUBf9Mv/TddGQ4AmE0K6MI4Q+FsxAalcquwihM4LmOC0ChOe5mMSjczhJITvIIjKREyQxq9NxoTVw8TK/UpMkJM2pxMTjGX6JuFRpj3DOam3eFr5nEAI3iXZ0qr3IKbF2YQJ2RIsJ9DoEyRtwBMYwZAQ+yZCqD6GmaZ1ep0a49WYgNrn9UnrsIoQyjsIE6vzBDHr8zFaTfjYgI27Ag+0EgEFFBRhGUF8Tvm1Ni97LyHwbsPeAmf9/N2EtmkAE47nexkiyDu8rEe97iV+fYnX/zih+bjgvzd4+WXgh9PezgcwCfKC9/kO7P6ex0jew96Wfj/f4Wlv8bL2Yf5IHZjWo/QvK5fwRRA0hm1+fZu3Y7eX2+HjvhWbw5u83dLslARopY/dRL9+G41ayKl+7YL3V6Zwqwhzt/3YnG/x+qThOVr0QYsUO/26yNhyL2cKQfwWFv/vLepsKc4rBPpCgjSN3Yt0RE3QiZzzh66BAMHwzqajdkJ9gR1d/zTn/PM55/fknP96lPVUVFRUVFRcFq94EtSENwDfzzlf1f6mpzBBq5tL90DR3ieLiWhUszEp4YLn02BvxYSn0pF9MibM9RNmV5Mx4WyGly8NTRl1bCImUPb5sZzoFb1sg7e1DRNkZ2PCt7Q++HUJpocx7UKzf4b8JSbSKPidx4heGTyhFROKl3l9xzAtweli3OZhAr+0BueBx7ysDd4+mcmJ/D1BaBJkZrgME2LbMfJ1zMvc7ecu+PnTXr40K+u9LRMI4joFE+KlkViEaQS0TC1ysZMwDezANFIiGtKknff8+73utd6eu4l1/n3e3inenwFM8FYUu5Xejj3YfV3h55cRpGwh8CQm6D/uaedhS+17vJ8ikJsIP6Y9/n8dRog6MbKo63j79VsPTI+PVb+P8SofV5lWlqaAK/1PBGkRjT462wiyvAPTqK3248k+Np1FvtI8UZoiiOh5y7zus95OEelSK9lCkKQdPjYyr2snzOj2YSsl+70Ph71/h/zaLYR2SeMyNhjRJ2haSun+lNLbr6GS4ZxNR+2E+lJ2dH0+kVIan1LamlL68ovdloqKiusX47Fv0uX+KkbG9UaC3gt8ujj+hZTS//YoRjcOlSGl9CHZ37diA6bV+xKKNCb/DrAv++YiTbnKvZ4QyCbSqJ3pJyKfLccELK3KizR0+P9OjJSdxqQJRSlb5MfSTPQTZjw7MTOwckPQMgqcnOnBhPcNhGA7xfO0EZqtfYRwvLCoZw8mWK7FyKF8nTReGzCiI/uYyZhgfxIjPLMxwf6wl7kE84hb6G04jomFh30Mpvl4TPa86whhepO3RT5DrZjwuxMTcqd6uiWeTxHoFno9E7w/vV72VkL7JfO0Ph8f2RXJRFIam+2YOZ5MCpd7fkmE7cBf+fW5PiYd3geZZ63xdj/oeaSJEsFswQT8Ni9XfyKkazCSNZNG37V+r2O297kF80UTURfhaPP65MO0Fbjd6+j3Y2m9+ghCvhN7Pi7Q+Ix0E+Z2vcAjfl7aNvlzybdH/lF4+zb6GMzzfpe+OZqHIlqzvTxpfUTiN/vYNe/hJW2oNLWHirw7iedoBmMZHOEF0QQN52w6KifUl7qj6/OMf4rZpldUVFS8aBjDENnXNa4bEuQf3HcAn/dTv41FVr4V2wDqvwyVL+d8vzaa0gr+VoIUzCfM0cAEKQlNzWGVSofuRwlty0waQ2qMwwTKdxPCoITRwxjhaMeIxUGM+Kz03/swAbOH2LdGD0QbJtwvxATXO7wf+2mMXPew/5+GkYcnMeFZUfCksWrGWRpDIUtrI83TeEzoXE5oTw5gAuwGL7fd23Sv93mi9/OWYgzOYQJwK6F9Wez1dxbj+Sfe3omY6d1+T6+gE5v9/GzP9z4f31Zs3Fv82niMCM3ESJRCI5/HiID6MMH7dtzLO+DteozQ6kz2vuJtXOLjMBkj1rf7uE33ulf67xZsXh0oxl59WYURCGmedJ8HCMZ/ALvf+/1vHKZ1OY3ds3bCJ2gTNh92Ei/SO5rqPE/4tj3sfRZ6MQI04OXMK8o5ht2vfu/fBB9fafOkjZO2qwysMAO7B2rLoPerzcdOhHeRj1sZaGIDoW5Y7m17PTbnjnn+5n2c9Hw275NVYq+3f7g9sq4c8gm6ek3QUA6mfl6OrkM6m16BE+pL2tH1+UJKaS62A/knXuy2VFRUVFRcO1LOlzXHfsUgpfRO4J/knN80xLUu4Ms55+XN10qMTylPIky8BjFBa7efkxD3MOFsL2ft0rEdjAQ8TET/moIJnbMxgXIOQShWEs7yOpZAJ2IgQW0AE243YZLKHV7Hw5jguxhbMZ/n5wcYQnopsARbrS8FwBmY8CyN1QFvt1brV2JaD2m+Znt7WzAtieo8RxACkaR+zL5mPUYUJch2EeGkl3lfHvB0XyIc4ZcTGpFejOgs8vYOYOSg09MqUMJawo9nNjbWq/3/PoJkPYoRqjlEREAwgtiKaYr2Fset3mZpA9t8vDZ7ew942q0EGVJEwRavc7u3d7bna8PI8e95u27zevdjc22h17sPu78zMQG/E/Omvw2bX9v8d5+P2eOEl+N8H9O1hD+afNFm+rnl2P3dSQRlgJgbLYR5WYv3a7q3RVo4BWE4T6MWZrKPR7l/0ExszkoDtsTH/5yPicJ4n/VzYM/dWkz10OX9FrFZRMxXmYIqyEEz1ng/msOcrcHuiYIvnILv5pzXcA1Ys2ZB3rz5Y8NeT+kD11xHxdUhpfQF4P/Bptwv55zvvXz62Rl+/gVpW0VFxcsNH7umd/mtKeVvjhDabPrfXfs36ZWO60YThC30XzSFSynNKq69iyHimzdjErHXi1b1pRXaiwlE0qLID+EE4a9RmuocJ/wf5GeisMwS5N6ECaU7MaFtFUaeZCalUMn4f+2r040Jw6cxoVG+MDMxYfNWQlCeSfjerCFCfWhi7MbUZXiZyzBBcaC4PuD9X0doLG4rypWWYBwmGC/z/i0mooFtxgT5PYRWbSOxh06L13UKI3EPe3vG+7gc9nwtGLHZV5QxvShzCSb4y0cKb7/6O8WvnyrKuAUjQGswYVrnf4qI5FeSvj5vx4OE+d87iOAVS4hoafs9/XjM50ebwPYD3/c0vYSP1WEi+l+//83zMVCIb/0tIUy6HvPx3uLp1mLzbj6mMTtHhDPfjJHTFoJcL/S2bvJzB4jgA+MJv6keL6vFx2mjt+8YYX426H06iJmYKbT5Ek+zljCXFM4TG8q+z+vWAoMIkPzstElsC2EGeQy7jyLV2j+q1NaWBEg+Y2Bjro195/v/hdh9W+PXxs7++gI244f7GxOfoIorRErpXuAHOefvjpDuovn0WG+hW1FRUSGMGweTJl7+r2JkXBckKKU0GQvh+qfF6f+UUtqeUvrfmFLgn49UzqsI7c947BO3kCAiIhBzCcIj35lpfl175GwjhKx+TAAtV5pl5rYPu0kKBLDd087HhFqtYG8nwkT3+O+1GDFaT5jYge3B0+95j3q5a/y/NEzyu1lL+FbIZGgJjeY/Ev6PeR8nY8J/6R+zFrgLE5D3EwEbthKaivOYoCpBvx8TyvuwIPUyMxuP+fB0eTu6iCAJZwlBdzNBGGd6Obv93HyMcC0hCFEHRjxWYPfnTRh5kQlXr5eziiA50ry83stf5+Pf5mlEbvcSBABi36M2jAy3YEK+NGYdGPlcT6Op133e/wf9/5M0BqJ4s+df5/087eMg7dVy75OI7BbgJ7yM93gbxhH3XGS3NH8U8erH7uMSQmO23O/BTO/bg9h9m+7jc5CI6necCLv+KBEx7mHgrdjcXI/No73Y/Fno/er0c/Jh6sWeB4j7fZ6Yr/1ep7RLCkSivbgW0mhH/SiXbpSqYBQXvA8nCF+1sXVCfd59giquHHcC70gpdWN7G70+pfSp5kSl+XS1yq+oqHi+MC7BpNbL/1WMjOuCBOWcT+ecp+ecTxTn3p9zXpFz/r9yzu/IOR8ZqZx+TCjTZpZaad+Hrcz3YaZKJ4hwwtMwQXIZ4bOjTU8VXkjhiidiQqAiXX0NE8RkiqaoVwexPWkOEI7lrye0TtO8fRLw9mFCsAIFyLvgHkxwbMGE4VLQ3ev1bPI+S6szgAmt2hhTG0+u9X5tJqLMncIIl8y0ujHhUT40hwltT7eP31Ef12VEtL0OL/+s13HRO4LwkVF47Pk+fq0YYejzNPuIPWzkY3Ta0+/DBG0FKGgtjo9hgu48r1MO/PIZkg/WYe/jZsJE8A6MyLRi5Gqv92+1t2sGEc3uKcIcbtD7fx4jt7O9zuOY5mS8j81hgjSu97YdJQjmBB+b+V6uyN5+IsT0Hd6+CRihusvbvMzvyUavq8v7NdH/S9N0EiOT64iw2dKS9mPzo6u4X9KkzCS0TVpEaMPm6V0Y6ZV/XTtGPJ/A5vSjnl+R+BT+W0EupAXVJqePY8+FNHjSIJXtPUeEh5cGVtrFo0RgiGOe9kCRZx6NPlHXhhGjw1W8CMg5/+uc89yccxcWzOGbOeeffJGbVVFRUVFxDbguSNBY4QZMMIWwnZuACXwPYMKYyITIwR2E+dApTACTiVIbJtxPJsyhthHRpmS+BiZklnu4qMwLXm4fJui1YoKxNvocT2yuut+vt2OCqXYsPEzsRCgTn3WYYL2QiIomEgEmUM72cnowYV0LD3cTYbtfjwn9/V7+br/+KCbSbcKEzB/zdvd5+vle3lGCcG3EhFOZqj1JaIpuJ0zqJvi4/rnn3YEJqe/wdkrrIo2EQnQP+JgrIpsiuUlDoMP3AAAgAElEQVTztRzzlZlCbK6JXztPBGlQcIe2ovzF/l9CdZ+P3XlszohkyYdHm55O9zoGfHzGY4RKEd+2e3oFGDhM+K/sJEJmDxCmfmrrEiIoxnKCoM7HyFY7Nq/vwLQzmqPyQ9vh9d3s9S30us4RmqQuYh8k+fXs8HF4iDBHW+Lt2oSZ7oERuQ7seTntY3gBI0+7CW3bMW/3OIJMPuzj3er553m/lhD3TfttnfOxEXlURLtjRLCOmT6u8imbjZmVbsC0XWXM52vDiNHhqjlcRcXziklcfhvKoa6PlOdK6h7rtB0jXB+rtle8oBhHhBce7u86RErph1NKX/Kozx8eKX0lQVeAC0RwA+2Bcogww9Gq8iJMeO3EBKSZGFGYiQl9UkfJZ+ExIkTxSkK4lJ/FmzABrHQeX0tENdNmndMxYe44Jpx9ARNARa52Y4KgtClaab8XE3ZFOBQx7FEi3rz2tDlMmPF1EyZhiwkS8DAmlJ7wfKWgiZevoAByYt/k4zEe2xpY5lZ3YcLyTiKQwz4fEwn++7yc9RhB6Pb0C73vy7x92zCBXQEStA+NAins9vMPFGOg0Mmzva8rsYemx8/v8XY+RATHeNDreMr7JvPEHoJ4KgiETOEGMVOthzFTv8UE0Zzu9c7D5pA2xD3p6VoxO0+Fx5ZfGARxVMCHExgRUljsboyESZO10PPf6n1YRJgN7sTmqMKet3ifFCTiUUJ7J03NUwRZme1ppMFZ5W3SPkZ7sLkrwqvFAmnQHvV+nyKIijSUJzDCBbFAccHrOoE9t9LuHcXu4Tnv31kfw8eIRY7DhCnpbGwOScukxYIthA/g2OloRowOV83hXmTknP96pKAIrwxIeJ7E5QXlSUOkmURsiqDzc4oyy2tlOYuayppTlDXU9eb6X1PU04F9Acq65ngZc5qOy/ZqNzPtzKby5vjfa5r6uKipX4s8jepcUZRR1kmRr9xBbRL2BS/HTn9lGXOK8yuK9qrfun6m+A2XtkHny3aW/W/uZ0dxriy37OMkGucPXP6+lfWUc6K5jJEI3XWERERgGu5vNMWk1O2uIU+aL+Ml1+ellB5KKe1KKX0vpfRPi2tvSSntTintHQ3hGKEdv59S+kFKaUfT+Sut4+8BX8k5/yyXBmm+tN7rJTrcWGBSSvnNmPAoH4jxmFA2gAlHt2HCEZjQvQ4T8KVhkOA4j9BozPNrx4iIVWACl/bBWU5E75J5jzYclSkeXpc2pjzh+R7GtAgSSOdgAq2io73J024hnPe1h04bRhwOYQJ8K7HHzGlij5fxfk2bcv6Et00bWR4j9tIZ72N1zvvQgwmmiij2ACYEn/f2KTy3NvLUqvsfeP/AiIII6aN+j+4Dvunpt3mZT3j/x/l5EbJxhP/WNmwRRXvadPi96sKIz0QujZYnPyCZFGrfGEX+O+/17S/Gvg0T2M8TEQe7CHL2oN+bqT5u4wgNE16uRGM5/2/HCMp2r6/T+6D7OujXxhNRzURqD2Cf3vt9XBUERCHYt2Pz+4tF3+f62Mv0cjcRdOEYYbo31f9vIUKlKxCBfHgm+/go5Pd2InS3NJnlQsBKv97taRRyXYEROjzPMSyYggjO57C5sRMjzW/EyNd+wlx0GUHMDvq4jPP70OPlbyP8hHoYq+hws/PmzR8c9npK/65G+3mZ4KUfHU6C5RkahdYzNHqoSvA9VBzTdNzh+WjKp3JUhzDHz50prncQSxknsa+h6uqlUUDu9d8qvxSSVYagbZ1U19LifLMQXvZd6bqb2tDcpt6izp6mdjWPidpYYkbRRrWhbGPZlknFedXZjS2nKa3KUz1Kp7b00DhGZ7j8ds9qU/P913n8WvP9XkGjRFOmbx7rOcR4Kn85Z3qb8qsdvVw6j4ca85ciri063JqJKW+ee/k0ad/I3yT3c1yTc35mmOuzgFk55y0ppTbgu8CPYp/j/4N9Qg9i4tX7cs47m/L/EHAm59xfnFuUc97blO61wHPAJxWpOaU0frg6UkorsGidJX4W+yR/AVtR/OOc8x9crv8jBNirKHEOE5YGCTOndv/bgj3GmzDhqgUTnLZgBGSi/99OaFY6iX1gFCEOTACVcHceIwHbMcH7cRoDKizHBP1l2Iy8BXs1aNVc2oOTmACrFXQIv4yzhCamWZgcJPYlWoFpAhZiWot7Mb+m5Zgwv4wQWE/Q6PCvvYKWedmKPKY9WlZ62bdgBK7by1hDhGo+RQiii4F/7P3q9TF4vff7bi93C7EBK17vHIxwzcTIFt6fvd4mkReRHIX3xsdX9/yot28y8fnoL9KLPClAxeM+Rir/IQIKUY3nW1GMSS82P9qxOdDr477F+yWTwcUY2V2E3YN+wifmAexedGDE6h5Mi3aM8F1bQgSNuIfw07oLm/Myz/xz789T2L0SCRPR3eh17iZ8rhQKu5PQLCp4wlOYKeY+7B6/w+tWsAXde2nFphE+QP0YSVnpfV1WlNnteZYRGszv+xhvxJ5H+aad8nwL/b7IR0kRAQ8SUQnnECHrZ3j+dowQbWcsIJ+gYTEtpXQ/8BdVG1RxdSiFRggBtLcpTUlQDnk6inSLiusSQMtrJYlpJk6HuFRbMJUgHEuLtGBvsB4aycFeIsSM6j7ZVMYZGgX+OUW5S4tzKrOLRkIzg4jjKoG7uS8lumgkA0tp3FtXWhnlnUQQJ7D4GyU5vNP7o+s9RXvUjpNeh8IxqY0l6Slj0/Y2HZcaI7iUeOkLVxLN7TSS0hXEbnWqo5wz6ntZ5yEa51DznGueT81EqDnPJBqJ08uFDF0lZA73PMP95Y/47/6U0i7sBk4D9uac9wGklD6DbaC9s6mIDcA/Tim9Nec8kFL6OSwi81ub6vmWb1dT4jXD1ZFz3o6JQw1IKf0y8FEv7wvYevmwqCToCjGF8H/YgZnLdGMC2iFMKJ2NCX+TMQG3DQtk0IUJW/MxIVbEpZvQSqzFyNY2L/sB4hUks5wDmGB3ARPu5D9zH+EL0UFECJtH+ILIoftNGHEY8Ot3e15pGrRZZD8RpAAvc7/XqWhxy3wstEGmBFi1WXsSKbKWQowrYphW7JdggmYXESmu39uleib4OKt8Oe3f6mkVtesEEYXvZs+/hwir/X1Co6OypCmB0G4pfPYFIoLYYS9fmjQJ9pMxgXg28YnoLfqriHwiStpTR35Hp/x4O0GoOjAzrZkY0TmALYUobLMIQA+mlVmMLYFA+Mas9no/hxGcmcBnvX8qs8XHq8XzrCWixK3D5mun17UJmz87CNK8jfCrkrnYMmKT2cNe1gzCj63N79s3sfm8lvCF6vX2yF/tgPfxNozkjMdEoFXYMylzTX3aFWr8lN83ma1N9DYrFLva2kOECd+EzaPJRTldfk/GEQRe2rtuQlN27ZBP0LA4kXP+0JhUVXGdohQaIVbxS5QCKDTurFVqQsAEYJGacuVe5lKq80yRdw5GegSRl1LY30gI5DK1Utu7/K8svzQPo8inPMq/oshzqKnMMr0E9JYifyl0S+vUU5zrpVGTA43ESWlK3EmMrbQ4pYlZV5FWfSgJ4STvh461BKcyttA4LiJRS4vrPdjXgSJNd3F8sujDjKJN3/b/zZqbch5AkJjhCEyzJlFph9I6NpfRXOd1gnGEj8HwuKnJxO3+nPP9TWky8PWUUgZ+d4jrF+EkZRUhBhwoLh8kvDii8Jw/n1JaAHwmpfR5TFvzxhFbbpgzmjqa8JfAx1JK/4DGSTwkKgm6AshxXKveqzBhagqxj8pOYsV7O+ZU/iCh3diJCXYD2P4sb8JeWa3Y470E067IJ0b+ImswIfNBTDjUavS7MOKgvWHWECZECuX7kOc5j31WBjFhU5qpHdisuo+Lmz7SSXwCthJR1yYQhErhvgeIYAiLCTK0mAgiIMf8L3taaZ16PL1W02diAqs2RG0lzOTABNXHvYx27EmUOeF4IhrfTh/vtd4/6WEb9K+YUKxIdW1+vx4jNGYTsGWHw4TvSjvhQ7TQ69yBLXfID2gFsZ4vk0FpW877scitNCed3r8O73+fj0e56elCIhpcj7dD5nh3EZvlggnpKqPP83R5XXcQ+xu1+xjs9N8bMDLWSWh7FKZaGs39nmeT90XmkVOwOSHzTJHfRdh8nY7dX4U6l6amHbvf+7E5XYoJ2zzNQq+vE7u3IqR6TnR/pLmbTBCWFiLim/yfthAEaKX3c4PX8X1v2xIsSmOft38+EV78S9jztJ9G88hrg3yCKiqebzSbgZUr/TQdnyF8YfZyqUak1G6ACdjdNJKDpUWZD3oexff4tv9W+i1FPqEDbnTi9Ky0J2UfVMfJxrwLfGmkD3gWgtSo3QUpnNUCR3T9JMya6mvgWN3PnoRV3oatk+BG4NnSVFBtUhumwo1d8GypXSnHbirMAlqdkDw9aG2a5XUc8eRnSpO+1XbyIoeYROwSWIzVUu/HrjuB7TDJvwxn1DZ9gVZ4/i2R9yKRgtAydflxr4+b7F+8H2wkxlZllZja2G+6m/Jv4dK5V2qSDjWdazY5lKboOtEEjQ7PjMLk7s6c82E3W/urlNJTOedvNSdKKd0A/H/AP8s5n0wppSHKGtK/Juf8n1yL89vAzTnn50bZ/lHXUdS1AxNnR4VKgq4AMlTZDHwIEya7MB+JhZiQOhdbre7HhM89GBlQBLipRIQ4rVor0tsdmFAql8j9fg5ic9C5RKS12ZiAtth/78YIz1xCeG3BhF+Fe9beMT2E1mo8EeZ5sqf9HBFW+V1eVj/2at9IOLQfIzRibcAf+f/xXs4+IqJYCzYz93j7v+RjoKhwrwf+F7EB5QxiM9VNhH/Nvd4evaYV0EAE9ChBih4izAdneBsmeJrxhPaj08fmm552I2Eu9iimDZFmYjGm4djseWUIMMOvK9rI6WIM9Wqf7GPeQwTIkHlXp/dzCkbEpIlrJfxeFPBhPLGfkMzeZFp4AdNA7iZM927x808SGsguzzfTy5JPTpvXecr7+ZCXd55Yu1V/1nva7Rhh6MTuq3xlRHAVmfAAdv9asOdG2pRlhJnmeIxsncbmSg/2vChAxeRirOVHpdDjilJ4B0ZIp/qYdfmYHiQ2uJ1CaPH6iXkyDdMetmPmfyewuSnie5u3awPhB9es/796jKgJqqi4SjQLh8OtqB+icVVd6bSE1KzZKM3lRESkuSmF/w5iYfbdnkeC7J00Ep6uIh9w4wwjICWZWArs6o70C2bA0ye5+JZaNdVeQE/3RBmTWgrZuMu60ipitSt+A0yaCkce4KLJ3UCLkRNtNnajC/yTWuBMIawvaPF24CRpEFZ5P7qB1pJoDdrvBURZrS2xiiQuOcvzixS1TrWX74PATNU3Kdr1LLBLZGcS3LjaiSNAh7dZffUxu9FJ0rPFOcA0RCoLJ3UnabxnMqcsSWk3jSZ6pVleT5FPaCKkLCKIT6kVaiY/zVq20k/sFUyEEmNiDpdzPuz/f5BS+iK22tFAglJKLRgB+pOc85/66YM0BkadS6xBNjY1pbswMeKLwEeBXxhl80Zdx9WikqArwETCd6AU4DZgQtFMTCjqx4THXkIrI38NBSZQmOMvYTNjOibI7ceEruOertPrXYYJ4buxWfFw0RY5sMv5HezduIowv1PY5NmYcKlXS4uXvQUjH3K2l0C6zNu1DTNLUnQ2hcCW/0k7jdbT470+RSwT2drmfevwdq3wY0WdU+AJvG8niH2TBny8H8M0PPIzEqb5fZD/SjcRcAJCgyczMPz6YS9rIybMbvA2KP6O9v2Z5+MzzcdrPXbfjhN+UqswrcABP78CIzZtPg7LCMIk8tOHEQ7dE2k4tMGtCOQ2P1eG7d7t7eggTLq0n9Qe4l7OIbQ+CvOs8VQI7W2YNklht2XGuMzz92BzVeuAj3mfbvPx7iKehz6vfzxBTvXZl0/XRs+/qOjjRsycbyU2P9p8DGWmJm1PK2Fwc4wgWdO93bo/Il3Svs739j6CESWVt83v62ex5wPssz8Hm4Of9TYfxZ7dFuy53EL4bym097UhM5Z6pYqKodHsS1EKknrzlQJueb3UeuDXJNxOxYhPD/ZGKM3CSvO47U1t2E74/UCQIC/32ZOwYCoXBfM+YNegCeRggvtR4O1TLeunsA/As0UZMz3POn8TyUThiAv465aGmQGe/+g94Xb0F5j9rnAEe+G3A31OXC6SF2/nLqI+sJfUAFz8Us9qsXJai+vPDhqRUhtuL8qVEyjY6uNGzJWcqVFGt7erz9swoLb6ODyFjZHK7Jtqq2RbNfYzaNRmTaLBdPHZQSOIZwDOwKQuOCNNXOkLtZRGfygIDdFqL7PQmF2sCy71KSp9hMqAC+U8bTbzfAUTIAhTmWtASmkKMM59faZgxkm/2pQmAb8H7Mo5/9fi0hPAYjd1O4Ttn/YPhqhjFfA/gbcBTwOfSin9+5zzvxlFE0dVx7WgkqArwBlCqNQml32Y8NRBCPuTMYF4DfbIj8OEpKN+7TuYmDMHe1ddIBy878Du9DSCaIwjzH/Kd6VW7OUw/y4aV6WnYFqMZUTExG3YK+QWIuLWw8TePW2YkChydBoTILswgfK8n1uPaU1EvLb47ynYK/RzWOAChZOWY/sqIqBAKzbD5ZekyHELvZxjnraDMHeS2aC0IyJM3djqvfx6FEnvKWzpoN3LlmnZAOF3spCIurfa+/0AEQ5ZQQYUUGEzYY63w+t+KyH0z/U/mQiuwATkWzFzQAUvOEUQ2EFMWN/uv2Ve1oHNJfVBhHa1/19DBGx4ivhG78SI4l7P040J8fILexSbL9t8LM4SfkBgZGiPj/MM/11Gs9tGaG8mE3sDTSR8enSfpGk67/Uo6toAMa+WYyRnJTa3+n2sLhAb3YIRrCcI08GbiciCYHOkhfB1Oujnz/q9WYJpwzZi5qirfPzvwebsSsL8stw8uNXH+R8T806meD9D+JVdO0bUBNXACBVXiWahUAKm/GJK87ZSANX/0pm+1AJ0F+dLs61JjXluxDUIACuMAAhHuuyFedTT73IioA9en2s+tMN4F65R8eOlRFpF2IGwT1Yz394CioGlj+KRqXG8itic7Sgmtimiyt3YS0uGNn3Yi3RukWcWjcHW+rChOlsc9wGf8b7/LrEXAf5/c0vjh34utkmh8Pe9L9/HXnB9wKuB7/n1nyD2zQC4CSNKA8X1PuArfqyPxqziXt3ZAt/wNj7bY1o22aS3t9hL9MwgLOjyfk2Fgan2sgdLu7X0I5oELC34yS7v7HA+Qr3YW/rBIr/SlRrJkqDLt613iDyvQIyNJmgG8EW3bHsV8L9yzn8JkFL6KvBBTBR6P7A9pfSk5/tIzvmrKaVfwAySxgO/n3P+XnMFmIjw4znn73u5Pw184JLupPRp4HWYH9NBLLjB742yjqtGDZF9BZiQUn4jtsKv0MOPYQLwQuwuacW7D3svtmDCvMx1LmAEZx8mUK7DHvM3E4Jlq1/fib33db4Tm03HMOFLEeOWEL4N7/byOomwzPMwAW4csWHpOcKMSyZLzddfjwl6ip61ExMsV3h/9E2a4/0UgTtBbH6p74x8bHYTEbnGY+/yHiIi11EiCAHFWEBEC8PLPo8RuJv9nkz3Ni4hIr1dwF6Le7zeLmI/IoU278eIn/bYGfA8UwhBWCZU0uxIwO8jAklozyJFMBMZW+v1LyPIlHxV5ONyjDDbgjBtO+HlnfD0K7Hv7hLsE7EZu2+KBLgD+2ZCaAXbsbDXP0VEctvtZZ3HCJ8CWOz3PAqxfqgYQ228q/l8qx9vw+SCY8TiVB9GKt+HPSMq903YfJG2tMvH9YCPj/Yukrljj7dtMREQQeaL2lj4Vq+j1/s+gYhYOBmbS7s933QfzzZM46RgG/3EokWv17eIiLK4G5OP+gktovY80jg/PCYhsjvy5s3D+4ym9LkaIvtlgpdeiOxmE7fS7+JMU7oOQthUhLI7/Vir+V1FWSdp9Pnptes3+uGzmMmXzMTYC6wOlyBtQCZBfT0m4L/aj+V/X15v2E3E8aPAx/3327BgvsLHsHXkn/Djs011KP6+BMvvAT+CERuwIThI7MsgK8CNBA+c4eWqjHnYB7nLjx/1tov0HKBR9v829gIV6WnHhkoxsGRu8CmClGg1VQRRKnG1+4i3U2+NR/2/PhR7sRf4J/y4CyM5IjQycZHmSKuBfYRW6lbsha86B3DC6wRzAaYDaDCDK0jQpKlOjKQ5HPTBkNZxKeEzVJKcQ8RgNnv8Ci9VEnSNIbKnpbx5/eXTpK9e+zfplY5Kgq4AbSnlv48938eJxRrttSPBtwMTrM5jj62E6TZMIP4yJhx2E74Zh7D3VhuhpViOCXcrCHOoJdijvo/QIm0r2tji7ZpHRD9bggmPMgs7QPjX9BPagcWeX/5D/d6XrxFkSnvMSKA8hL0PFQziNPZKOuh1fNPbL/+Lc37tELEx62HsXbrCx+bd2Ktyspf9JPaOPYS99zcTZngyz5N5mDZhPUyY9h0H3oMRgXcRQSf2EZYPEPdPGqdWIgDEA55PbVJADIhoeOrDMUK7pTbNw8SEC16PTOMG/NwT2DyQUcifE3NhBUF8FIxBRG4asU/PBSLKm4JhaI4OeDqRzwMYuZCPFN6n+V6O/J5k0jje29zn7Z9e9HMR4ZfU52P/eiKS3Wwv/xZiDh8g/KtkirmP8IWTxudmgvws899nCTPIRYSBsEKK9/q4TPD29fmY7fSy78bkJ/W/9N9TgIyFfm4LNmf2YKarWpTQwoPMWI/Z3xiQoPa8efOGYa+n9KX6UXuZ4KVLguTIXx43C5dldDGtsJembaXmqDznAufSpeaTMsmF4C5cSeRLBje2mFmVdLg3Eip6MIFZpmYQD/KPFNW1E9qPNV61oryAvUz7vBwIXx4J6mc8vxRdUlwpv/a/+ONiGO4lBH+RguaN4/qK36VLDAQB+/WiDjDVu477aAw1uZh4kW8nCJfyTsKITldR/9sx8z28j3cSqzcHsb6rze1epmKItRKbA0JoklTvci+jmyBKuwYb/a0mEUQJjATf6P+BiKhX+hDtpXHT2G/T6EPURSOh2YJ9LUXKmyPUwaWR+F5KuEYSdGPKm19/+TTpTysJGgnVHO4KcAYTIvXIbSSctnuI4AiPEivriwmzpZ2Ef8hXMSHtXmIRrI0gPcuJSHIrMOFtMSa8HcZI10HPsxETWMHeXz3YIs8JjDzIJ2M2QcbGE75Kb/Z2P+F9OEBEQVN0sS7Mj2IF4YfyMBEO+scwwnCcEDol6Ld7eSJ607DvRo+3ZZqXBxGKW4K1jDLkv3La02thShG75vsYrSd8n3q9jxs97b8gTBKXE4EbZhMEbhqNJn4d3s+VNG4wOg/7fEuL0e7jsI8gIo9jpO+2YmwHCY3eYj/f6vdgi1/rIzRTu7H5pAAQHQR5k8Av36JjPm49RLS91V7OBMJiQxrC8xiRE3HXfkrjiOAVImLnCW2T9sSRRlDzaLWXpwAOECG8pT2Sa7S0K9O8L9MJjZMCQpwmZKJWbEH1HYR55buIhYQ7sPsvQvJOb6M2nt2PPTcbvL/zMEKlvbP0XMgPScEwjmP3dwB7Vh/xvCKRWjD4SeC/MRaogREqni+UpkYdTcdnaNyzpYTewqXZkTz2IVhECxd9PHbtgklLo6hWjHzcUvi6tLeEFuYQEV8f7AVdxo+ag73IVZ7MyqQheYp4cZYaoi7gAy7tD0y0LopgqMuqcw2xvwCebgHxcV3kbZQmaBpGMGSyBrFRmWT3/xcz/FGbfsvrKfnkRuB/+G+RoW7//3bvg67P8rxH/Jr68ytNZe4oytqIEZBFvuD9h8leXDILvMn/i7C0Yx9omQHO8LRdxfVnCFtnCJ+oUrMHBekZhGdLgtJMojXHSuJdmsN1YW9+zVU8fxmFrtn8rSRDr0C8QPsEvdJRSdAVIBHCUhcmFB8mBKE+zDSuFxMGNxFESFG4NmHz9lZM0JTvyQBGRO7FhEGtfO8gnMYljHcS+5jIgX2A2JRUgqOEO5kaPellz8BeJ8cw4faQlzmVMOWbgr2re7B3rIT5cV6W/EX6MAF+sGjLbOwdKHK1lwh/XPrxKfKZnP8VoW6Ft3mylzsB+64sxjQcxwjzLIg9hpR+HibA7iQCG8ikTr4dE4hQ4AowIGuML3qeZZ7nFmJzTJkpav+aw0TYZxE5WRus8fE8gQnp/cReMwPE7gwKw/wzfvwdInqdgh4MYKRK61r7vG61UVqVTdh80saiCg894H/jCTKsMuZjhGOh93WLn+vH7p3CWCvYw16MjJz2azsxQi6SOFiUewsWVOCd2JyZ7vdgDkaaZPam+XsSm2si3NJ0nfJx2kSYROqe3O31nfZ7sge7n73Ed/o05vejjVuPYvPkOPZMnfV6u7w/9xF7Cu0gtLvSiGpBuNfH7QnGCjVEdsULgWYhtDnaG03XumhcVd9V5DnjoaQH4e6p8NAg3LjUHeid9OjFL4+Cdi+ytO5fRNhFfwXT+nT58W7CBwfsAVyBvSjAyMHHz8IjE8NnR/Jz38To1oOEWdhdXqYEdpEqPcw9mBwuM7O3YWTi8378fm//0wQx+jjwYUJb9DH/rTpFkkQ8bsGIlyxgpaURmRjw9NLKdHneRQSxOuH1inj9Fo3xtG7EXq6fSlFGaTm2C/i5ok1/hpG68jUki0i8fWu8X1pZm+nnVG4XjR/7mS1GlHTuqa4oC7C5tYsIkLAa+GtiAnQTLK/0IyobJm1SaZJZUXF5VBJ0BdBmmKcIH5E27N2jNQu9k2diq847MUFLgvtGIlKYfEkUjlhE6Sixov0uvzaH8KXpJfYoOU5srrrS2yiC04q9XzdiZmkt2HejlYi6trioS2ZiivrW4+1XmGqFEZ5LCNLjMCFWgQxEoOb5WIiU3eW/tVHmBcJM6lZM+N1B+FccxV5/7d4ntWsi9v6fQPhH3YMRIUXR6yY21uwngj+s9vHtwb5zS4p+iwyBCdkSzJdgAvREIqeK5XYAACAASURBVIx0h5eziNhA9ZzXu5rwh9pCbPiqoBktXvZ0L38dselpr4/3Oz1vSRL3Y/NM7ZGmpR/7/h7GSMEcb1uvj7M0Pb0YSZEp3Hhv40oiAMNJH5cJXt4FH4vHMEIz26+/m/Ax2+NjsN7LE5FU4I5ujJjs82tzMTI3iN3fbh+bDcTcmEpoxDZ7n+Wz1klE15tJaC2n+7Xve7pThCnjbj8+52lPE9EMDxMLEZsxDes5r/sRv38HiP2g5hEaulZv2xbC0uTaUTVBFS8UyhX1kviI3EjoVLQwSeIekWuSS90X953BVnDubrHVqkktRhzAHswuQtDei70opEm4GXsxy1m/GxOqJc8uwfx7/pEfH8RW59TEucAXnOyUvjCzCB+hjdgD7NHept9yiOO/OSe6vhH4HSJc9duxj/p7/fh3sRedNCx/7GlkLgdGgMqtKSd6X0sTuTtpUFIs/Y2t7Pqk2+w9iZE4RXS5ARs3mQGeJTRUYB/NAeDes3DA+38Qe8Epqt1mwscKwmpM7jnSpmlLyp/3fv+kH3/H29tVtKHPr5f9KtGKafl0vZswLdF1tQVgaRfs6iIIzSD2NdWcW02EX/82YdK5i0v2kmqIXvhS9QcaA4xRiOzrHZUEXQEmYEKgQinL3OoEtkC1kNBanCJW6mVaBvZ4jsOEtluw91kbsZGkTJ+PYSZmTxLho496OVMw4Vm+EIOYICyCtIggHDu9rPX+/2vYu2wuIRjK/0WaGAnu44h9oh/FBGH5+5SbTWr/bYXH1uq4SMVMgpTtJEwDuwhN1ZMYaWnD3rm3+zntodSKfUvkywomOCsAhDRdk72cA15Hq7db/jm9PnabvU0zse+ItpqTr4m0Nb1+b/qx+yzfmhZvTwe2UKjobds87eu9PfMJn60phOncTIzAPo5933Xf12OEZ7r/TcZIiDYzbcPIiEiQzMoGfAzOE+aO0vhNxsjOjqIud1tmv5fXTYS41vfJ/VwumtrNJPyYFFZdBEeLsgqC0UuEV+8jtJbHMDKh6IoKqPEnGJkd8OtgJvwKyDSAkZezhHZok6fb6OO6AyMxO2m0KlF98veZQewNtB8jeuXigHzNbvc2dvg5mXOuJjb03YM9e9rz6dqh3ciGRY0OV3GVaPb7KVfM5RcEJjh20ShA6sui35OKlf6p9pDParGPh4Tmt2EPTR/mM/L2IhqcVvsUa+EsZmKlKkQUyiYsB/7Qf9+LvejVBgUs6MZIyQLgxwmtDdjH9j4jPwDHPzDHXgZ6WTyDEScJlo94/TKf+w72silDTkrb9HFC8J+ErT62ElopaYoGPE/hj7Pr2VVBnBQIoSSLpVmgohjd4OXcDiyCCa1nOfeNiXZ+OkYW1c6nsbFWJL0u7IX39qJMvajBXsYfJMb+Ji/rohbHx+iI5/keYVYobVAf8A1CIzYTI7rfLo5LH7FumVJ2eYKhfIZ2+XVFhZtDBEbQTSrN5ZTvFUqExiBEdsV1RIJSSt1EHIC/yzmvSSl1YNY6Xdjr890552eHK0NC8mEigMBJTBA9hAlFutaOzc8W7NPyaYzUKJiAAiesxN5/8zFCcj8mqK7whq3EhDQRIUV66/P6voMJfSJCvYRT/A5i7x+Z6K3w9KuISG3biZX0hd7u4972NxIO8ysJv5QnvP2LvX29PhaPE8LsSox07cGEWT2v+70tCmhwzMtZ4tdWe1mLCd+UbcS3aQ0RRrqN0Nq8hyAFK3w892Kv09XYDZ7iZSm6m8wOTxEaHWktFGRiGebDVWqMzhHmXxsIX6jFxILaBYIALCTCX88mwo7Ll2ixt033QqHYB7FXvbRh572ta719jxIk56j3V8F+vubj3kMQIJE8mV+WvmQy79TeRYqw11/cJ81tzdkHfVzPY0RAGimR/+n+/yE/NwX7/kujo76+2/NtxeZxO+H3dpzYb6vX65iJ3dMniaiFizx/C/adbifCiW/F5iWEhk5BErZ5Hu379U5il4oDhLbtIYJYL8bmQIe3a0x3b7u8JuhEzvlDY1pdxXWCZvMgHS9i6CAHgqLHuanSjVPt4Xpa17thVZc9ZBKkb8eIgKLDvb+lMYDAMxjRUfS2N2AP++1+LM1Q6bfyHEz4smmdzj3qbZB53I8Wv6UlGaCISuZ1b4Ljbe7DpAhz/z260aDd2Aj8R2IF85eJPXcg9kiYTpi7Ka/InaK53eLHf4yRrg/78S1N+doJYoWX+yyh3VLazRiBexp4A5z7Z1PDHvsXi/IBuuCGjz/Dcx+9Kc6tBTrdR2hHsvLe79cm+ljcZtdfs/AR/uZLr412fZDYNR7vn6LZPUeY+L2B0DbpoyFSKKfLo06MnwbbsNWvPzvJNI1nFHL9EMbavk0QJYXZVuCOScVvuJQQVVRciuuGBDnuzjk/Uxx/GPhGzvnjKaUP+/G/Gi5zxt4dPZiwv5zw27mFCLt8F2FmswETRt9MaHiWe/5WTLBaQkQiuxsTnr+JCVrHMCLQ5WXvxoS2uZgQ1om9209ixEphhluIyFkytVtBmF0rMEIvQdggSNscwqxOpn8KVdxNhHs+jkUyW+Htl3/JDEwo1/4rm71cBe857+UPEJoGOc+PJ/yN9vt4iVR1E8EbIBz/FxF+P9JyyQRxHLFO1Enst7Pf01H0f4KXL3Mx7cFzG7EIN9fPa2+kc/5/tt8bhUk/j33XZfVxm1/XZpzaK+c2YsPWNm/vfIxUHPXjXoL0tXm5J4tjbU57NxF2er2XoXDb8r/pw7Qv3f5/N3YfJ2Jak/M0Rp5rIYjhVG+3SFmH13mCMFM7QGgDFZhgPWGi1ul1yXxSfkQD2PNyzOs67m1QiHHN031e9j6/X1OI8OitRMS200Twibuxefqe4l7O8DR3YNq2FiJC3zyv40+IiHmzib2nFBJd5O82QjN1bRhRE1RRcZUoNT1aSRdkagT2Zj5J6PYVSc7N3p6dGgQD4OkuO16FkRcw87d1hKnVl7GHTiZadxL724Cttt1I7OujwAiF3M7NcO5TTsRuwUI6i3xIIH8m6rhhzTM813cTsz5iLOjIJxfYi+fPPO2DNO6/83HsRSMoSILIxRnspTmruL4GI3Lq5/e8zRL2H8FIzAf8+F5Mm6UPzg00mjR1E9HYNA5/Rcj93/U8zxVt/3XsZSlfpo9jBERKlPvguQ/fxKzf8HH4jQX2YrvXfYRkgjDXSdFvJ+vXDrv+ZPutoRWD8OtaTxCjp7GX4Gf8+A00hiffQUShE8pAGDf674sh1CcZAbrR5+SzJ7E5OrVoyGoayDlbsInVHCzhFUqExhEhaiuuGtcbCWrGO7HNmQD+CPPEG5YEDWLC5znCOVvRwZ7CHskW7L0wEfsmHCDCVD+EPfeKUnWc2LR6C2ZC9TAmlK3AviOnCXMzBTpYiQmUEkwXYwJgt/+tx0iW9nVREAFtFtqDCXlaxZa/qQwiHiI0JUswsexnvEz5piiyW6u3ZyqmlWrH3pfvJBaLNhB7u8j8Dy+r03+3F/+7sWf7PPac92MCqHxaj2GC7naMXM7wfBMwgfVw0V+8PpHDHm/LWUyQn0rsndNNbLopa401hMmYggwolPNbPe0+YrPXO/y/Ajn0Y/NF+zEtJ5z2FW75PEE0V/v/TYQp1gUfj5WEWZf8feYTWiuZzG0hfH7HE/s3TSci9x2j0QdKBOksYcYp88XlRNQ7+cPtI0zKRNaOetrV3q4tPo5lRMLdfn28t1eR4xQKvJvwM2r18XEPBNp9rBYRkfQ6vE/aN3AZ9lxp415p4c4SWrep3h6ZG273MVJkx05s3i4jtIHdhH/SBO+zyLj2MhobVJ+giucL0vxIs1NGhyvN46YSJkcQq+wSNolNwiACxd0Sly9qARQK+iexl4EE92eIaDRgD9cHzsKDzgi6vQzZmXZ7E24p0n+Y8Pf5ILzmtd/ib3a+lgkzTZB+7hM3wVo48i+drWkfIBGxm7EXxwf8WLbuioqmCGnS/EyiMZDDRv+bSERvW4qRBAUImImtmon0tGMf2F/04x3Yy0lBDf6YRp+gv8LIhFT2+rjcR5gOPoi9fKX9mYURKZE9t78+8lMLGo4vrrVsPAsDEy6Snht+5Rme+9RNF8f+3I6p8HaYsNy1cHum2lguOguP+v26zdsq/ym1VZq/3wT+gPD5+klsryP1odXb3O5zbGsPLFhaaBtlGldqLBW/tZiXF1VPwiuYBFWfoDHB9USCMvD1lFIGfjfnfD8wI+d8BCDnfCSl9EPNmVJKHwI+BPacPkyYjSl08ErCVK70Adns12SmI7+eNkzw6sCEJ/nMDGALYtOw98V7vL4+TJBe7WUexb4FHV7ODmyN7mbPO+DlSmhcQSxwKULZk4QweMj/txN72owjVuoHvb/dGFE7igmH5zCB8AL2OrrV+7iBML+bgwnS573tclSf7OOpjWM1nnLu7yCCzygwAzRqcTZigutiwsRNJmR9RNQ8iEALMlua7WUoutk9BMmQ30krRkInE5vRqg4FLWgnghUoCMQUQmskzU47oe1SQIyvYQREhKLLy53n5T2O3XNp9Kb4eUU224fNnXbs+3MCIyG30Ljh65OeT/sISYOlEN+9fn/U1/EYGVjrx/u8bU8QQQEUilxjLY1Wq4/fBWKDXRHQTiIYgfaIOk7MSRGzZd4uaRJ3EyRDflWtRHj6PmyevBnTOrZ6e7X/lcao0+8FRZ7D2DwQSZe/X5u37R5Mnmn339/09skfTNq7xX4/rx2Zxk1HKirGAqUwKNLTUVyDWKafyqXmcYcIYfMkHJ0aL9d2GgkQhBZApmbSiEiz8yBGPlRGK7B5Yhy7SdX8/2yqoecutHH8qTkXNQ2zfvVpjuzrgre5NmMA+mmDP4Bz93k7ZwD/gRAUP4i9VGQ2twMjEyJSa7BQ0wq+ICfcT/hy0R+1NLqpzCS0RdqLSO3vbjo+WpxfWrTpKLZ6KM3RJK9T6Z/CTARVXruXeQYjPWcGzdTwPiIcdTdGRmT+8AUvv8uPz2BkVB6FH59o8f2dkDy3+SYLtCA8OBE2njXyA/Z6mondL2n+7jprIcilwTqKCR7SDP2B5xPp+TKN5pDd3jf5Tm2dYS/pi+ZxZfAODcZqzCROjHMR15UJXPUJGhNcTyTozpzzYSc6f5VSemrEHICTpfsBOlPKc7Bn9RwmJGnBZhUmUHVjQtFW7L1ziPCl2IIJ2hKa5B/yGEEyxmPvqh8jBMJ+ImLXasJxW+ZUWu0+QLgWSnCfQOz181VMyJN7rJzbO7Fvjhb2ZhBho1diQnAP4YfShn3TbiPCf7cQTu8ye1NAhUXeNvmXtBChxXcTQvBMQjPUi5GAZRh56sXIlQIp3EsQz2PY+3bAx3AO9r6VD400aBO8faeJcODjfUwU/KDF27ENe78owIO0Gj2EX84yzz9AbGIqX54pfi/O+u8OH0tB9co3aJy36xQhhK8jNnyVNuI8poHa4u1S1LkpGAk6TUTSE0HRmB7D7q00HCIX4z3PDMIYa73XJ5+d73t5iz3vUR+P0ldoGkYoIMJyi6h3+X075+2UaV87sXfSg35uA0FypxL7Nu0s6ltIbC0is7Yd3rdxxPdhDzYfpvuYLSM2fC01S/gYfhIjOwqigPe90/u3wvu2gTC6mEejAca1oWqCKp4vlOZw5TGEfh8iEleXH7vvxcVNRyc1Cl9Sm8/EXnibMUIhPxChj1iNey/2QCkKSg9WppOppa/dyq7uVezfaSdu6HqG1yz7Fn8z97UAHNlpWo0Jb3TtxNGp7Pq5VbAR5q+1T/v+b9xiLxGFbJ3hf6rzg4T5HZgAP5PQoNyAaXHWuX3AT3fD3V1hHvcFgihpPBZhASF+z4+7vN9v8OPNnvbXnVi93/fXEZl6GxZQQKToE97GmX78AYy09WGrjk+2RB0KOnALRpB+2Y8XAM+ahgfgue6b4KPwhs+bWuaR3rs4N1CoFLZPhKcmBhHqgntmf4UHBt5lx19ONo7fI8wR/3Ci9VE2wYuwF7oI5oexeyG+0kqjuVyX/xcxW4oHTuguEoi8i4x3E/sLwaUazVewFqhiWKSUfhjTPT4D/J+c88cvmz7n/II07KWElNLHsFfezwGvcy3QLOCvc85Lhss3NaW8mCAm2zGhUaFzZTygPXQ6CVOuUjugVWcJatIwnPY0rcSmqd/HTMu2YUKg9laRiZu0Nr2EYHec8BGB2DgVTMhuJ6JVKgjCMsLHAsIvZBwmLCuq2BRCQ3OK2JPmoNfTiwm7nT4OIlcdmGArU6zxhInWAOFLVEYCm4F9SzqJMNCTCVO7HZivB37cT/iDSIDt9LLG+RhqM8/5fh9k1neYENgVtlx+KIp+BibEH/PxOut91b3QPjpdhOZJ92o6Ydo3kzCzepjQJrRg82mct6sTI1LSji3xsTxMmKx9CiNX6osCMZwl9vpZSYTalh/PMe9PK7HP0iAR+EBmc1Mw7Yf8yGTOOOjH+7yva32cD2GLgxM9zWPYHGgnSNImLPS79paSqdvson+rPW8/EWRB83wm4aM2n9hseA+hyZlJkH9FOtT+VTuJ53Ay4Qeme3nC0yuwiCL6ScPbjxFUhSp/n5f7BNe+O/eaNa/Kmze3D3s9peN1B/CXCVKanS3e8EsNHU3/waRO+WOsxgRNHZfmRo4bCc3D+zEzrrsxuVSRTUofoGdoMJmb9ZGnOfKlBbHyNhNoLUyudnid8j+5z/YAesN7THA/znSe/LXbL26EOmv24fD5ucuF980TmfWOp80HBuyL/2WCsEzHBHk9bo+fhPumhslbN0Y0uv34CEYERYL+h/f5KcKJdSaw6yS83dsv0iOzrlk0Esinu2FBV6MvzKqWxlDSb8N8eMCI2xcwgjDJ29eKETaZ1CmEtQjox7APtMz6fhz7cCgE9gA2TjIbvAve8I6v8I0vWXzzWe94miP3L4h2z4QJa05y7uhU+Kifu8/Gctavut/R170skcznsA+FxrLL+9Hlxwo7W5LSPpo4jMaojAi3gmB/8l07Uxy/lEnQx67pXb5mbsqbf+nyadK/Gt03KaU0Hpsxh3LO9w5xvZumwGKXO381SCn9Pra+/YOc8/Li/FuwbYfHA58YkdSktBG4Oef8uymlT+acf+py6a8LTVBKaQowLufc77/fBPwqtt3OT2PrFT+N+U4Pi7MYIejEBKLV2DN7KyYMzcU0H+uBr2Or5tqQ8zCxyfV5TKiT38TNXvGtmJA9g1hIU4jkVkJYPEeYgO3B3ru7CTOrdm9HW1G3ou5LaG0jwngPYIKfiNAibLZtwYRDldnn1xVGWT4eIhAnCN8UMIG+nyBjMrnqI/xlxnlbegmNxzFMWJaz/kRPu9jbpsACippX+mMcwwR3Oa0ruMMSTy8/KUXxA3svDxL7PrX6da2LKvT0Hv89h3DQbyF8axYT91cLd9p76RShaYLwh2rz9JOLsZlOmN1pwW8PYVY4ByM2hzFCqEm7Epsb0uApUId8x7TPlYJd6F6uIhz/Zdo2nwjKIV8d3YOdhN/ONGyuSlMmP83p2Lyd422WZkgEUvfpcUyO0De/l9gvCcz88msE6ZiJffo2EBodaQPbMHP7PmJx4jEfB0VLFFECu297sPssIie/sxOEaekOr197Y/VjC5rrfDy/wFj7p1ZNUImU0jjg32HS+Oac8x+9yE16BUB+QRAEqMuPv43pQ0V+PFzxuq7IepYwK9uLBe5qJ3x+1mMPq1b2ZwH/BJhnBOXIzgWwPHPDTHN2ee7Rm5iw/CQ3d5hDTttr+wH4m5te63VMhLPwjc+aYH7re77DBz7yO/zhZ8127cjmBdaGbsy8C/jF3/jP/I/7/6W9QMH8kz5GmJqBfWQe0jBMNWfKN/rxZ/zauiL91kEYaIk+PTRopGWrRzFrX2rjdjF4/S7zbbn4NZlhYp4Iyau7zE9mlo/1TGDrSVhQHP96N0zqsuNPAU87AzrTYS/QWVOtPLVTJnj/zf93eTkiSf8afvSbn+HPvv7ei036B/z/7L17fFXllf//3qHJCYETYg6YC6SEAAVS+JkoEi+AF+INlWpLa6uO1dYq850WnY7t2NqOdjq0tnXmq3RmWuxFxqrVlpYOCN7AC+AlihJ+0AAjlzCBEITEkAMhJ5Ts7x9rrbN2IrcKUxnkeb3O65y9z748z7P3fvb6POuzPutR/nn7twDIGt/G4rrL06CnuSXRnR7XEKM8v46s/E42PCF8uJKMBmo3Vvk2g5DB1FatRECzyVJVIIDYTN1liEiGXZthiElu164WvV1zEXCzHrkRM3EBDxP8iMrA2/oTsBxbOtxtdM9We6DSU1jscOsBUPbV3jAMk5F1w8IwXN9j09mIB+fhyHa9kPS/FyEw+Y0gCOaFYVgXBMEY4Ps9jvEFhIh1VxAE19A9i9eB6/dh8AQFQVAGzNXFjwCPhWE4IwiCBBJG8FHgv4FPh2HYU0c0XXoFQWiPVQwZWyzWcjQeZ2KG9Bu4KEIvxLiqwYPf0fUWh7EHl75O4ga+5WgZjIAry/mzHwcNJnG9FTEgjUZlYGO/fjoQ0LU2ckyL+diIB+mbp8fidEywoBdiYJtny57Btcj7w+KezMjtwClm5q1Zi7wH5uKKcwYUTOLa8r6U4bFW5vmyOJy3cIpdFx5jZcaxAcBCBBzkIu+8Dj2+gY1GnL7XggMW84ZYMdqWUQX74d436wfz4tg9sFGvVxN+Pc2bYd7AXjiNz9TqWnTdBGT8v0jrbt6y/XrsDt3P4o1MQdDiebq0vz+hdcjFPTLmrSvUdeuRd08XLopggg3mHo3SBrMRL0ozHg+V0L5G9zMvjtEIh+O0RYv9sVi0zcj1tXgxA7F2T7Ujz5Ald7UYpjzkWYvjioUluACIJRM2+mK59kmXniMfnzxNIs9oDAFgRvVrwZkvm5F3/BbkvjSvY80x8QRlhMuXZx30/yBIHfYcB5tR67HNAWfX/txZt/dTj/cxs3c1rly+IAzDxe+3Tn/Jcvx5gqI0oag6XD6uboD+jsyoF5XqrHzEkD+b7vE8lifGjPsrkQHFBkZTTbEz3LKCNY3lZGWLcd3ZEYOOLD5TJvbPH1quJiu7k91NCQCy8pJ0tsYpKpM6Jtvj7G5KpJe31Q0RQ7oQGOueIJpwA74jC6oDr9O9iKFuVDRrj3m4rkReQqW6/EI9XFkq6yDi+cGpgmcgMUQXKFB6Qf3raSU98Bw4AAPhjkwXkBiF5FQq0v0LkRfIk7b/U8Blsp3NHJUiNDlTh7N6W/xVPwRo2ahRAIyBweXidslhL63kkWyXkSyRs5MqaljF/wdAO73ZvGQkj0wUjt6jXEstlZTQQINOeZbQQJwkS1sk6VIiv5nmlgSd96hNbb6F5/TbZposZqgaGZTNLO5P9ySz2+rlPuwA3rVpx0xEg9fQXb1+mwnX0zN0vJWj9AR9NAiX33HobYLb2IxDT4AHNcTDtwmCQYgw2Azgq4fwBI3tCXYOtr7HNp8G/hqYHIZhRxAEXwKuDsNw8gG2LQWetPdFEARnA/eEYXiJLn8DIAzDnuAneow7gNfDMFwSBMGcMAynHmxb+JB4gsIw3Ej3kAxb34yzdQ9bspFntxdiKO1AjE0zuE38wOSgL0JmotfheXlMhaxn8Hw2npm+Cw+070IMzQ7kcR+PGK4Gnt7W/y3/Tz4+edKGe23yIvXMRAzBFlz57BVti+WqacGTQBooG4kDjno95h7E8DUvSA4ybpuBGddtjZLWosdZr3XOQcBMlW6/HvdcxbUO6yPtKMMTtZoHyFKmWX9mIwaqiQxYnhsDc9aWt/G4rF8j47DFCZnhayplvZD3aYO2DTzFYA4O+MxAN8M+EwccjTg9MgtPVGviDgnEgLfkqBchAKhUr4ndI5b49RN6TGs7kT4qQO7DMcj9sAyPfTJZ7ZW6rZFiivGYIhNk6MJFDHoh94N5Ivfo/waawIUPcvQYlhS3XOtpAggd2n92r8eRe8A8VfX4/F5C612FxzjZfZqFeyotdigDpyJ2ap+dh6v61Wm/noVQ/aLtrsRjjNqRZ3as7lug7azEn3UT17D+P/pyTGKCZtNjRi1aDja7hjT3gLNuPfb/S8/sjQBeVXrDHCRq4mT5s0rUGOwNjKP7TLlpg9r/EXW4bQDboUiNzVLkQTDq0vV44KcdcouuswfjXISm9qR4adZsrKBvYTPxHLmFmlsSFBVvYnGX+GmH5m9gzcYKBpfJNGMnMUrya3n9YfUMjQ9hdUBF2QoA8spbiZcnySLFspniyimavoltNUNIFIp91nzvQAETN8shEldspfnnA11VzaQef6VenS2jZBAx1/FrpeLhsTaCUNXWtEGHGvu/QwDQC0rdGpUr/TA/srwmoq5QlCmcb/PirNX9rW9X4LNoAFMvczZYFIwZuAABdSb6AHAaJGZvpfmRiCT6Tti8Uaa2bimbyYMP35YGSRXlK0gSZ0OLeHnieUnoD1/jRwAUsJ0sUnSSlQZODTklVEWSBGx7dghZY9tcZGI53ZXMluMsNhBwGMNx+ZsIoDQH1PxSBUDgfIrtOACC7oqG4Lqi0f+PV0D0PsqRqcPtPAKgdT/wdXw+70DlQMJih1rvO4bhb4MgGAI8HgTBb5Ex/aKe2x2kDMR9BiAjS9VBtrXyNHBPEATX0l2U/YAl43AbnCxePoIYRqZmNiDy+208d08Z8ug16/dY3IC1XDb7cENtGQ5QcvDEjfl40tJe+Gx8IQIY8vBcQm/h9Kk25MKW4zlsmnE1tz16jOF6HIsnykRikOqQoWUdLkVvnqQMXBa8Eb9DS7W+Hdq2Aq1PHR7nYu0yWqCpkyWQ2BiQSStLXGo5mWJa31JcirpY/zMwkdBPEgdQ5+h2AyL7bKQ7jco8ChfiQCVDfw/X/7bj8VLm0RiGe4VMWMDy5JiUdDsOci0/TpZerwx80qtOj/GGbv8JPPZqjJ7DPCMGuntpXc0LeLqe2/rHKORNeq6CSP2eR0aGEfh9aX1msTJby5oIoQAAIABJREFU9bqZEmIjnlJxPXLPPqXnMmpli25Xp+1s12/z/tm1sglXU+Z7GxnZ6nHRUxPkaNfz52hbkvq9AfFqRaXeX9LjGfDdofub3Ld55mqQ+3aD9udqXR+L7JONJ6Ftwb1M+YhdMgy/T97mADMsR1P27z/4B/oHQbA88nlP4tQwDJfw3syY0TIOWB+G4cYwDDuR+dhPHGJ9z3Ie8J9BEGQD6MzezCOsx0HPEYbhqjAMr+jxeQe5PWx+fv8h2nWydCvRIHFwoGO0oVz9mMpWS2S9jRYFEv9zSoEHkzYhtLdSPLYDZHC0deaF2K2fXUBrzP/fEZDI2cm2xmK2NRZTkV8rCnBN/Wlu6k+MFInSRnLYSw572VYzhGIaqbjhNSpueA2WBUyasoBtFLONYtY8WMnrGycQo1NmuEZCZ1cW7IKsjE6yMjqlTj/VuvWH5hsHUjHvNR8cXtb2VY6SD1rXu9rkc7m26Sz9lOKSzxbM+m59975fUy/A6ZRc+bSCjD7at9vqZZ9XkY/1r5UhyABliuYWU7QFATlnICDtSq3/y9J2VuB5Cx6F5mUDve/PDLls4u+hI4COgN91TeUXN1xHYuRWEiO30kmMpzZezfP5F/J8/oXSd+uhghVUsIIs9fU3dJUQy04Ry04xlTksaq+mKL+RovxGGKRS2o8jn7Fa95R+TkGA8UD9XEn3hLCjESC0E/djlOr3KfphKx6ti/Zp78gnKgNv1+QEKhl4vMDBPocpQRCYp/7Nw2x6bhiGpyM82b8JgmDiYdZ3K2EY/hB5Qn4CTAnDcPeBtjtQFQ90uEPtEIbh6jAMp4ZhOC0Mw8P4yj4knqBjVXYjRs8wxADMxmWVhyOzwhvxmWOjTG3EZ6vLkVloM8J2IQbkHsQQNYWwQt3ekmiCjIVTEAPPPA999BzFiDF2EWJw9tF9s3DqW6ke29Ig7MDpVpZYE0Sa2/LDvKX1KI2se1vbswfPyYLWP4Ebk0ndfp/Wx6h7ppxmuW726TnW4ZSlFdpWozaN1+1MmtpAWQwZCyz+qACnMBnQydTjZCGGrcVjNeDgcSTyDjeDeXOk31dqHTbggOdVZAi22J8m5JrWIMNyBq4YaAH4TZE+KNR+69B6vRHpU/OaGTAx2txGxDQxeex+uLcuBzFvarQN8ch5LRdPHz2+xUbtx/M+2ZR+Pxx0W6xXCwKYVur6y7SOg7QuO3AKm93nRt0zQGuexwx8vnkZwpKow8UchiFgZgIObtYh918zcn/P13OZZLyJhYDfpwmE9vlGpE9XatsNVNkkxSA9j1EFLR5oo+57ln6v13YU6O8LtG/j+OTGUZeQw5n5RzKzd7hysNm1I5p1+wBm9n4P/DgIggnAkiM8z8nSzQA0b4+V3nicyho8PTbIU1jg8sQddOf8diAPgN2F4xEFtkocqu4EPhvC/YFvY5mjAfoJhWrzelFK6CzOYlxGDfFiGYk6idE3I8l0TcBz/fBHWMcIGtqFflV0wyau5TG+WCfTPaNuWcE7XadyFzOYerGgsoe4iXEX17C4pTpdh1G3rGDN15S79jLUnnOWg45JSMyNCR9sQV6Of6Venl+1yW/zbtVrtw6JrCsqFQpcb/VWZJd2Twq6qR6mlsIc9TZVjpKcONbXTciAs0YpX0MyNc5Kl3+cKVS4y5GXZKXuMxsHaVchQM+U+P42BXNiacnsxKxGCniHceX+KH1x4yN8s0xUDnaSoLysjvFLRFlh0sQFZE1JUcXrACxkMhfwIo+1XksiX2K6Huu6lpKchrT3iLwU7IzBjWqvZndKTqHbdXlZIP1iuGQRbvSA+HqvRxXidLu1CCgs1XUvmCiCrbCNox7N6BzMCeQFOnblXGBKEASTkSc8NwiCR8IwvD66URiGjfr9ThAEc5HJrCUHW9/zJDp2j0aiIO4GvnyE9duCh5mDvK4bD7Lt+yonQdCfWSx/zSeQcf8VxOCy4Htw6kwh8tyOxPPWvILnFeqFGMJluMdkOGKc5eq6sxEjeStu8JonIwcZRywg/SzEK56n56rRc9Xj1C309wRcZtvyuhiYMKPW4psG4Ipvq3EZ6BLcG7IWN4hHIHeuUfv24GpkptYGnrC0RPffr23bgyhX7NK2GW3KqFVWJxNqABeMWIaDUwOWJg6wXfvzBe37bETm+w09luUGMqECs9T2I6AtS3+/hHv7duA5aExwwlTi8vAcUIV6zoS2f7+2pwrPI2SxRiYyET1XI3JvWAyTUbAsV5BRzey6lyAAoUvP2Ue3PQ1X3tuOgMF9er7TkPekeZpKcTC5T8/doH1jMWAW85WNPwdG2TTapYlqFGjfWx1W4ZRJdPvVONWuFE9kasC7XuuWp+3JweOjqrSeI7X/t+r5+yDXuBixac7EvZwqSkW91t28u1H1xlWIzZeJC3kkEVBl3tuoVX9UJcSVNg5c+gVB8CAwPwzD+Yfc8uDlYLNrRzzrFobhD4MgeByZ2Rv6Pzyz1w588QiPf7KkS5TuFjUI8yPrAE6H3qN8t70A+6BUDXmbvTFD3wCN2ZQxRCFuEUJ/uhuZCVodMGqm0NXWLKmUQUPh7uCqtWxgmCTcRLwKEzKWkqX8p05i7CTBBk1E89v8T/Mj7uCanCcAWMQkNjCUSeXiiimhgdqMCi58+JV0PSumv8ZTjZczqljYnGtWV7KmptJpYi8jQG51ZPmKSDvXIjLTJgBRlCsDgVHV7tA21+PAaQRwX6ZT6CzJWL0uX1AKc9rgFO3vFfuEZnid/r8YAVEWE1Sq602m2+hi9ykgW6HbDMKdIuuBLVD0I1VqmzcEVkFi1lbpl4xaZtdN4zPloi+SJM4vyq5nlsavJdjJMDZwy8QHAHiGSyihgU7Vjm2ghAQ7mZy/kBId+eIZSdYzlHi+ClrUTSQxfivJVhndO5fnSmzWbHVPjKe7FzEPocQZ/e0ehKRlcWSF+v+mNtgUBTPn4pwKu5+3Rv4fGFk+wUBQwFELI4Rh+A3gGwBBEJwP3NETAB1MWOwQgmP02L8S+BkC0zcBjwRB8E9hGH7rCKr4BjBcJ922IuL6176/1h64nARBf0bJQMbHzbjogAWkVyEGlnmBzHhMIYaSxXqcg4ybU3EBARMHsMD7Nlyq2eJjRiAqWWciAMk8CvsQI7kGGb8LcVraWFxi+C3EeDSvVT0+6dKGx0qMRaD6TXjchsX6JHT7uLa1Vfcrxb0ulpcojrxbTD0tX7ep0/oOxT0p9XquKtLjN0NxoDNWj2eCENn4e9lm4S1/SxbuYclGDP09yFBo3og4nl3AAJV5uWqQp+4cRHVtKK5UFi3m1ehCaOajEcPaKIZxPXcLbtQbjbGfXovTtY8spmiP1rmPfjIj12i41tnUA7fg1DtT+DPxiU49/2nIvTYcByQdCEAyoz0bV26zJKb7dLlJj1WKx2tFY8bexu+LPZG2vaXnsOuEHm8zTotsRsBKJu55KkPu8cG6vSnONej5zDvVB48jOg3xyuXjoK4BubaNCBDswOXqy7WuBhbz8BDxel22/E0md245t8oQ4GNAFjx2bDDdWSzvuxzeE7QrDMP3UOD+zHKw2bUjnnU7nmf2ThYrUaDDIX7Xw956xKCEdBa1FYrGe2fKw2qJMU3JK3qoJsSQX4YkHN0iMsrt0fNUQeJMMUiHsYHFGyeTlSdG86kZ75BFimHKU6hRtLRJUUANVVSm9bLFEF9BRdoIn9M+lTty7uOaG55gJwn+ufFrsuHsGFXflFiVNWsrGXfLEl7/mjJ2rtB6m3bFcmQQNxpRNjK4D9LlPLp7dWp1m21tsEUByTJkpi06JdAfB061uPIbiOfsOpxWl4cAIANFCxDHnAq5MRsBB3MQT8kjCHjrT3cVvLskdgcgWR2nakoNFQgg/eevfYuiH22iUxtaSS1z+BQJ5Z2VU0d/mtmpb/wpzGcOU5moCZduZRb31NzLZVW/Zw5T07FANVSlfw8uX8sptFJHebqpWdmp9DnTL+ioOpzNnlk7O+iePykbWJOrcVVtuIy7eYBK9dvuuRZOOOATLb041rKk3UoQBAuRCLpsYG4QBODCYk+b4FjP9Qc4VA4iOrZBj/t5RMqj5/l+DZyPUL63AHeHYfiLIAi+jJgGvYBfhmH4x577HlU7PwzqcMeq5AZBeDpu+KxDnuGNiEG7CjHaNiKG5MWImtsI3KCNI8bXHgQgGZ3OqHIxxFiswgUW9iEGGbhnxGSGwY28BsTIHKN16aXbP6fbnonLUzfhSTwtb4/RsUq1DYP1XGakNyPWSgIfw4q1bRY3FH1HdETqaO1P4nFDnXjcSSZiTXXiAMGkjS3WyXIxmYH9Ni793BppLwhg2Kd9WI2DwH7Iu8r62mJqTPTAqIYmHw1y/dZpXSwZaDS1oEkpR0RE06Va+60Pck1Nfc7aZuew92sfbY8lMc1EDO5mrUMHAtCa8ESy5o0zz8VbuOfvNwhjwrxYRpUDBzRx3MNmOabMw2TgNQe5bw00gcfJWK6dej3eQK2/5RMyT2AJ7kUEl5uO5iky70wDPr434Sp9b+FiFuDCHQYgzYuZxCccxiL3re0bR+4vy/tjSW7N0xT1ytbjEun7cCeNCW2Y9/MtOefRq8NVBOHyQ4T9B/1ZjzjUDukJ6qmy0+O/jwD/hRCAtiK4/1rkFnvP+p4vHZ3Z+zWRmT1g44Fm9g6g9nPAcx/rF9uxLkEQlCACD6b78mAYhg8cep8PWh3uYBLBA/W/iPeHfNzNsBfI9d2zERBUr8ul+m2YqRUxlVbi2cOnpaAhlk5c2kmMbXVDqCh/DYC6lnKK8hvTRnMjxcToTBvNl/AM1SwiqaPFBJbSQEkaHDWTYDun8ptGQQdXFc8lj1bWM5RldcrMzEsxvngJy2p0eUDIZWVzeep7n5TlFUgsitLEGIvkCDKFO5A4lZ/r745I28HzHjXh6mfL6K6Scgbdk4r+ag2cPcpNwJ8ig7+ByvvWwKhRThvchMyY2sulAAE9U3EvQF/kRaCCDwwKhX62VADH+Gueo5n+aara0PwNVLOIYp17qKCWCaklXB8TauElPMMI1jEXSY5q18S8dNsoppR6JrCUuVwFQG17JdU5i6jXDsqik9cbq9wLt6SSxPitNK8d6P1kyQWtb5fit+Re7V/j7psnsh6/Bh0IvbBIV2zbrp1jnBe7sIcKj/wgy1Gqw30sCJf/66G3CS45+nfSiV5OeoL+jNKFPHcGTgbjM/dmlL6KGNdX67Zn43EXmTitZwxCdbLx0pI1NiFv2V/j8RPZyCSPeT/K9bfFajQgE0xj8CB3o3vFdd9iXDrZ4l2ycTqQAZaxyIy/xYIY/WcLrqZm8T1GxzNxhQG63xYEGDTgctzmhTEvQzZiAeUiBqzN4u/A37cW9G4AzeJWWnGwkMQNVfMq7MEBVzkymWSy5AbcYojhXorT0Mwo7llMBn1zZN32yO9dkd92nc0WeEnPZ3Gql+BiBOu1Xf30+1Wt+3jEEDfp69Px3EWW+LQEpysafc/yMJnxvhl5N5sSGtre17T/xiDA2MgCBrRNetscEibqYIqGJdoWUwBsxfNYXai/baLScgSZZLXdA/vwvExXINM85rEy7+gu/BnbjisPluEexnbkWprQRr6e62GcdvgSnmOoA7meURqcgWhT7RuOg3pTnMvGwf1G5Nq14femiXIck3KUnqBDzKgtBG4Ow7DxYLNrRzjrdlzP7P0PlT8BfxeG4VtBEMSBN4MgeK6nct7xVXoGhUfpQufh/KlVyJMQldDGjWwzQI1Gdq5uEs0BtAAYD4mbZTRpbuoPu+AUfcNl0Ul5eR21XeKuGJdfQwMllOss/hTms4QJDFVqU5wkKWJUswiAJUxkDp9Ke4NWUMHV/IGC4ncA2M6p1FJBXUt5muZlwIoBOtH7ZEDd9PK04d339p3svrO/093Gonl4dPkr2oWlumzyo0Z9WwPM2Qd/lYmGLkkfvYmDmDmIEbDI+mqUDPTWtyvagBYYpCe5eZSAJvv/DIQiZyDrTTzpqJm2d2od71WktDQGu2LpGcGbmM1t7Q+kczBNYAmLqOZf+CogMT7JWJw/bLwGgHVlI5jOTG7iIQCu5vdcx2NYqWYxi1RU9y6+B8DcnKvoJEZpRIxrVHEdcR0VB08UMNycp3UcH5O4Ic3pxGhtgzn7YjgAQttbjfS5xUv11hF/m01NWXzQmsiOPZ+BE9gzdLK8r/KBg6AgCPIPvxVdYRgeOxXa91n2I/QlU+EqRZ7N03CFryt03fOI8WrqWOYNiuN5Ycwb0YV4QHL0PKcjxtd+xOAzNbW3kNfWcJyeY/Sw8xCjcQCuMmYCARm6zpKlJiL71eGgymbvO3BBglY9bjY+o24qcmZI26z9ADzB5gU4xa8cjzlqw+MuzJtlM+o1kfpm4l4vu0GMHmiArRQBDTHtY4vXMmqeeRqG4zEja/U/89A14Im1D1QMZJjxvQqXUwa5Fwx07qA7OLI6G3hqQbSBL9N9SrTu2do/Fh9kRrcBYrvxzVtkHisL0k8hZo0B32YEhBmobkGulx2rFAcbcfx+MKN/vO5jNDUDHOch96ABBktbZ4lWjarWD3km1uo2piiYidxDXdqPw/FYqnNwhTmjNZqogykbDtD2j0Cun+U7KtZzJHTdduT+s/ssD7nPk1qPanzSIl/rsguxhcyjmoW8l5twhblMPd9mxMtrlLmVyKRHPcegHIOYoDAMP3eQ9ZMjvxcCCw+wzQHX99jm5R7L+xDO95HW47DnON5KGIbbUB+BcuBNTeA4BkFWeqpimXSwXcYCXJAeCdKPxgCVIg9zvS7XI3StqJrXXtmmeZj6aFcHjJqygnd16mAYG1hcdznfLP8HAO5ruYPv5N+d9jYYVWsE/wXATL7CDL6V9gTVMI5f8gUWavT/Eiawjo+lhROe4RIu4Vm+nvfD9D4xOlncWM2kMrnVFo+8nE5iDL5BDPLN80YKaLEcPHMQb8pdujwaGRSMirYKeeEt1eUUIlxgsyMgYLAUB1IzkFmnqJjCDBwUVebCFRFhhWHIAGYvpZHI8c12PwP4e4RyOFLXrQ7h8QCmKqD4OPC38JVykbT+4sZHmFTm8TtDqKeSWqbxEwB+yl9zac2LjKoSBFLNorTnDWAas6iihgVM1iaUMp0fU8D2NMjpTzOLqOZqTce4iVKWdk1I6w9v3jgCtgSMmygx87XZFXQ+mesS2qsQaZUoLh8V6adz9ffZQK1yEdJ4xmKCSvXbPJq99b+DeUT/l5djmyz1Q1s+cBCE2BKNHDhg1kovJKHpB1r+hCinvYUYYzaj3oQYdDFkPL0Mj6N4BgcXL+E5T0CM6v24hyaOB2+bEWhejDzECO2F02Zr8Vlri30ZjoAJk3/u0HMaKDKKkTF1WxGbyyhOL+FB4SbjbfEjLbr/YDwhaz2eDNZAyBWROhpFqUPPmau/xyAXfYy29Tk8lqU10uak1t8SmoIYpSaRbR4rk0W2mB+TLt+DJ582ypwJC8xH3mMmwQ0OWAYg13GjtmGwrhuMvHs6cPGIDGRyz2Jh87Qfm/BghxjulG/Eg+otwN8AbSYeV5TC1Qaz8dgitP7RpCwmstGFA2QTMgAHZ+bZMNDWD4/ZAvfS5CDAwChvSeS9ZIIMKW33DtzLV4WLUJyO3B+deDLe/UhKDLvX44js1xjdvwOxOwq1/05DQHM7cg0H4qByNDIhEdfzGJXPJLb3Rc7bilP9T9f+NxGLLETkZDMusBBH7tNlwA16rVYh99ge5D1sUtpbENBok8lHXf4yMUEnXAmCoO1wmwDbwjD82DE4VynCMq05wH+3AHp9+h3tqY5ROVBs0F6651ixGAvg3Reh6HwfFM/A5bGtLMAN9+uQwWI8JEplxGt+cmCaAgUwNGM9qfLnWK+BRd/P/wZ5tKY9PXO5mruYwQxFIDcxmwks5T5E4TZGJ69TRX+NW7maP5BHa9qQv5yFNFDCHRn30ahk2RqquKf47rShnrh4J7+p+by79kEGFqORvYYMLDN0eTYy+D7eo+vMZW5BgE8isy4gRNVWnNb1c+BTeIzQWARQWnzVBgRaG+XuZlxVCWRQvAIHRVsRRZpzEePgCgQAAVlPyiPQ+f1csgrbSKmQwfNl5zKDu6jVoKFreILLGp+mqFiu1VyuIl6VTHuG7uY7VFGT9uoMZQNJ4sS1ETGa0yIJ03FG6E08xDyuBEgDrjH8/9LMvKEUlTWyoUsaXpTfyObWSGzULiSvQ/SWbMUpl4/imcHtvltjHWKdvQ+XsYEDS2KfQN6gI8sTdLIcphwPIGhNGIaVh9ogCIIVf6nKHKpkIkblYDwuyLw3RnMDMTDBk5vW635m8ILHFJyDGIFbcePd4mKMzmbUNaOdGVgoQQBCHS5esAuw6d5OxLiLyiMntR4FWufhyJhsdJ+heFyQeYVMvjgPMVqv0DrvxwPS83F6lnkbGrRuYyJ9s0H/W4d7uSyn0XYcGBplLk+PMwZ591j+F+uDPji1ya6HtXF7ZL15cdbrNnU4AEpp3TP1enUgBrjFymTg8SwGgEwRzeSZE7rciRv/q3GQafUGp939JwKq0X164cp/fXCpaQOpJuYAcp1H6PZZuBCH7Ydub4H/Zch9u5Huqm7bI22xmJzluIiCKdcZKN6F3DOWJ8oEAqydg3S/OlwUabjuv1/717xQpkCHXpPxyDXarv1q1Lt+ejyjYppAid0rdg/uwhPVmgCIgaJqrfNahAKYo+f+tfajUexWaj1MDfElPW4bTkE0YG/KjjWI7VTPMSh/GXW4E7Fs+Eu8R4Ig6IukxLw9DMP3AC9NFvigbFt8nAXc5vf43htZziV9B1ee332G+WVcfhnkQVhFWgojUb2V5icHwk8heU+cztY4FdNfo66lnOZ69QyVwW7i1DNED9HAQianjeWrmctD3MS/8TcArKCSDQxNxwytZxiNFLNdreSpzOF6HuEq/pA+XooYj3FtGmjdyQ9Yz1Ce0FF2zcYKsoa3Ma5Kjrls5kWMKl/BmuV629yBzCz+k7ZzdQjjA7hXl+/HvUYgL8LVuLIPiD2eh+dJiun/Bnr+iACvxT2OoclSE7O20jzeRnng1X1wbqYb/g8hdIKROHC6UZTwam9Q0nMeTM5fmI7lubDmFSZVLWB9+zAAanKquLH4oTQ4nHnH1ym+byM/4mvaDfexkMnp+Ku6tafz3yNPTYPLBkpIEaOdHGYgYYBFNLKQy7mJ2QB8pvG33Fj8UFoYo7Mpl5z8DexWL93mmpGwGxIjlT65fKAAQAN725A2G1H2ywinfCvdY65OGQXvGv3NYt2i4KfnBMAJAoBOlmNWjgcQdPbhNzmibf7Hi3lhRiCz4xYUvQd5LscjhlMnYiBORYy0pK7fhSfvNKpbHQ5uTIjgbAQkWBJSo0BFhQRM0awPMqZabhOb4W9DjECb+TfDcC1iAJqC1x4cULUik1u99NOB0OhycU/FJ+mee2YMMsbbbHxS67kdMYgtDsfkjE0cIkP70pTkVuh+9nou0/1MycsM+nbc6zNYv+0YZnhHFcc6ce+JJd6091hU3ADcC9Mvchzzou3R/jCAm4ODS4vRsTiaVjwH3GuIkRyNG8rRurRr/1q/leh/jXqMAbi4QDtyL5jHxIQA4pHvBjw+pw/dqexJ5P1yIS4aUYjHGZlQBThgjjokTIygGI87M++U5RyyHDsD8DjecpyWWIOA/n4IuKiInNcEOgbgsXelyL2VjYtxWL3Ni5MT6RNTaHsbB715yL1lE7Vn6r62Hciz1qLbXIELnGzW/hmB3K8jcBrdRgQw3YQ8U69yDEvXIf896Qk6cPnUMdrmoCUIgkwEAD0ahuHvj+ZY//MlOuNtRqDNkI/rsX4v8sYolcW1usoeGjPwzYOyAJlVeE4Wm0f3lwd1KnR2xMjKS1LbWElRcSNV+UJFe50qxlFDLQI4mulPOXUk1K1SzSJu4qE0le0CXmAm07lZLf3tFHAVc/meeooe4kb6kqQ5rVkKs7iVxm1lTC/6IQCl1LOdgm7eiM7ncpl2zSypw/T+knfI2rcMeTkY6HkjkAHEKFmTcCU2dFtTAjLQeC5iuNv0xCn6/yRd/ixw2z7PI7QaienR0vz3A937AXB/psvJWt9fjlPufg5cAbXzzpIgTC07SbBsiQhCjJu4hMV1l7O6fFi6n8awipl8BYD19w1lCRNZoddmcmoBNbFxjNAL/t8jT2UR1WnP0HqG0kkWc7lKZM4RitxX+DELdQp2UvEi5rRPZXqO5FD+SvmP+PGSr6X7OlG9leYBxZKIFVzDwNpp99pPD9DXNsu3TdelrQajvtmyTRta1OsJRos7SYc7JuUDB0FhGHbAQWODkmEY7rNtPuhictQWj7EOMRaLcZrNMlx9ymbESxCjcAROc1qF5zWpx983FhA+HjG0zOg2ieUMxGB7BaHHJfW8Fkdj8UJDcZqYeWTKECMzG1dXbEaGiV7IeFys6y0fzOm4elqxHtPiJAZpe8fiRjHIEPS2tsMu3Btat9P02GUIALHEn1W4B2ew1skoekncG9aAq3Wt0zpZjI4BQJOoTuAB6/OBntPABoDKkcSsdg4DWRZntFn7zRTW7JoYADIxBvPWWQB+C3KNLkLsihe0reY9Qfv8PFwK3EQljG6VofsW48lDG7QObYi9nI/bzSYgYTLgJg5g3hzzBhbrOQfhINKulcUB7dc2GrA15UMTIHgKAexv6zYjkXsxjielzcIFNsYiwLML8YB14O+1frjsdSsuDW/A0kCpeZTA6aDFuHdmC/4MZeExbzV4DBm4AqDFBb2h5xyL53kyryKI98y8aM8gAhd78Hf3MSuHp8OdLAcoYRh2y1cbBEEukfdbGIYtPbf5c0ogOrC/QJgL//K+K/oXKz0TpZpxuDfyn82gXwm0wClKT8rWTQxfvIBAPwvON96vUrwGF29ic8FIiEGicCfNTf25rHgBi1uqSebHSRInQTNxkpRrCNVoenZtAAAgAElEQVQYVrGUCWkQtI4RLGQy30wJF+17sbu4gYfT3ohKVlBLpVPbaOYfuZsKjaSvoYqpzOGmop9QQxUjWMfdfIfXayZyS9UDdBLjxvyHqL2mkuuXiO7y8xPP4cL5r4iHB8TL0oE/1OtxWgMIGHkVf1kXIi+qlG57N/ADhD44FnmxW+K6R3Wfe4HKTFeD643IZH9W3b8bPiIJZg0I/YruM3XVeqwK4Of1cHMpTEtxWfECnmq8XIQG8qDh4hJumfgAD9bcRidZ3FN+Z7ovGyihgZK0l20qv0uDT4DXY7KdiVQ0UMIzXMwD3KbddCNxdlPMNm5iNiPaNvBE7qdooIQx2nk38DCpnBifaPlPAL6Z/z0+M/E/0p7A1zdOgB0B29bL8qgfrWDNg5UOfjoQ4GP3nHm98hBhhFGZkji1CeStUo8DHgP7+bp8goEfKyfpcMekfOAgKFLMOfEucnnzgG1BELwDfCkMwzc/yMqBdJYFgFsMQB9cqrgFMabBc5xYnEcjMn6tRJ7vMuT5zcdV1szgXI3P7uci1N/LcFAwGTEYW/Wc5+Ae+WbEEG5BhgbzHBcghuy+yKdZ98nH41LiuAS31esxxINgxnODts0A1FuIAbwVMTz3aP124AHv5yFgwkDbYK2TKZHV6/nr8SSsGXT3OnXi3gDLv2MS13v0eMXIEBjXdfV6TkuuvULPs1Xr3KDrTW2ulx7fPButkW+T4DbPXisOiix+qUvb3olLUhvt0bw2v8FBE3jenX24jLb1xXBcftsolUYFNO+e0REtBsyum8lwm1CGgV9T3DPaOXps80720mVLdGu0NEsCvE7bPzpyDRoRG8H4SJZMtlXrEM2rYwDTQAhaXwNv5gkarPsb5XMf4vV8Bs+1Zx6kdu2v4si2zXhupnL97y08rqkAue6NyH28TM9ZiADMpNa3Va+RXZP9OM2zlfeKYRxVOUmHO6oSBMGtSMK+vXgS1hBXWX+/5VwkJeiqIAhMw+qbKvJwnJYDGX+WNDUfj6UwYXst2/QvoyLdjNzodphFCD1ptPh7NzcOgQkpWBqjb1WSvsVJYnRya/6stAxzkjgrqEiDmAt4gZq0RwqGsIlW8lgcE4Q1gaWsoJIpzAOgtG0LS3PPZqomjnmBCxiXquHMmPCn6paczr0Tb6eKGmqpoJ5SPsY6bq2axRdrBIFcVfU4rz88MZ3V/MKHX2HcDUt4fbvmDdqFDDCmutaqfWED9f/F8/mADAaXIy/o2/FM5i8jL/tSXJbTyiJk4DQgeRMy8PyVvt3vR4wJk+nuSfB8HLkTq4G9pbJueYyn9n5SLm01MDbFKbQyjVlMq5rF6Y0rmFS8iEqdBqylgmIa0wCyjnKqqOGnKuc+kaXct+TbvDBRCDgLmUwltWlRiinMT3uFnuESnlHsfCXzeYZLAFjAZCaylO/k3w2IUl8jxQJ+gHFlS3k9uypNTXx9yUR50VpeoK/gFBiQF1gTMmtniWOb8MS+DMTBzzD9Np1b8wSdLCfLe8vxBIKeBuaGYfgMQBAEFwOXIjbjv5PONf3BlT+BDsmeHPUSPOH0WMQ4rMGTpIJ7YXJwsGFKV3X4zLUFyw/Tbd9GQMUViOE7FwETS3EwZjP/lq+lBTH+huLGoQGh4bhUdCYyrryNjCUF2g6TJE5q3fJxj5PRtobrftv1/Cbh3IAYrK16fKMnWUJSSyDaC4+RSeAGslHCmvUTTbxq3o4RiIFqlDpTPDNKVJ0ez5TqluMTeyZSYGID45Hhc3ikL0ytzAzcTF1n3hGjCWZEriG4uIDJRjfiHiGjv43EaVx1+HhvxeJQTsNFI+p0H0tiuln/tz4C97rk4dQ3ow024EqGr0TqbLJWw/XbzrkLB9KmGtcLp/vV6fnq8Xgtq1sr7rGxWCOjelrclwFoi6lp0fpWIs+MKdlZTNIWPfZoHPCVaz2Njmr3Ui/kPo4j19I8dOb16qXHa8eplHnankxkgjel+xgOid5fFlNl8Ur1yLVsQK69eZmOqpwURjjacgfw8TAMdx7Lg4ZhuIxDi/cch6WnNygaE5SPe4I+CbTBu/WyeEGp5J4xnf8NyGBgHNepKE9VpqGzRrfRuToXUqSTnS5smcyN+Q+lDWuL/anWYJg5TGU6P2aVyoE1Ukw5demA+ypquHTJi7w7UYBcKpbB41zD5Soq2EgRzbH+1G0SVbt/mfh/uHPt/TSN7Jf2eExmIQ9xYzoI88qq+SRviHvSUL7F6/8wkazbVVDgyVzYAqNukP/XTK8UYGEDdX/kxWHqcCMRettU3AgwGVWbJb0Cz6ZtZTV+aaoRr45digJEMc3s+asQD9NFunwmMjD2nP4ohazh2o7luUwuXsgc5ZZ9v/hOHuaGNBXxt3yac3mZPLUMCtjOHKbyb223AzAj9+95euL5XLrtRQAueOZVnr7x/PS1mZRaRDIWp5MYFSnpq+aYcAQNpN7GA8TZnRZj2EmCYWygf5m9taBvXlJAKcD4kMT4Rpr/qGC8FXl5m6djNEIpbMW5x6MQb9CmvZEVL+Lg3zxDJz1BJ8vBy/EEgsaGYWiCiYRh+GwQBN8Lw/CrQRAcF5c6AxnvtiLPYTEysXMFgtRykFeLGU4mPFCIGFs2ThqAsYD51bgEsYkZtOIJQ5M4Rc4M6v2I4WqKVsW6n0132rnNGLb8PRbTZFSjPMRwNxGB9XiAv83KJ3BVt1bE4CzQcw/X83bquTMi7cvWei+i+4z/aJzSZTP5XbjAwUg8rqUZMVDNs9GFA4QunMa3R/vjLcSAtxn/wXjqgexI242iaEC1VduCtms/bvgncHU3A4gmGGA0MaPjWQxYvv5eiQCQN7TOTdpPFlE9CLc1Nuv1stwzpqhnin0ma25eE/Na7cOB4lqcUrgSB5EGYo1uZoCrDQHdHXgS0zLk/TMCl26vRQz+AZHjteq12qzbWNLRXpH+MkpfHM+tYwIa5pkySW+jMZ6nyyncu5fU8xfjwNpocnnIfWb0tfXIPWOS8EanBJG2bkHuoSrElnsb8a7W4Mpydp1MYc+en9JI3yzHaZzHrBzeE3SyHLpsoDvj9ENcehp/pk9ptLhIwHjvXNirU/qt+jHDvVU3tXiNeuRB0LdyUX4jm2O5kOeJNe/Iv48UWezuklGlKqOGDQwjRy9NJ1nk0J72KCSJMyG1hPqY0KNqqWBcVQ2nrJS6v3tab2Ztup0Xhoh34r6Z32be9ItpHtKQ3v+PI4fyDJcwHYlDeZRrearuk/zklpvS52ykmMWN4oaZVLWAoVXr01LQT/FJWARrhqr7ZTVCW7P8O0/GpO1G2boCGZx/THeQcy7+st+m/5nq2XJkwFIvW9/lO9n98/7et39EXpg2c1mPeEXMMpom+ye+vJXmqxQwpOQ8nVfK9fvMDf/BUDbwxY2PAHBV2RNUUZOmql3I80xmQZqKuJQJZJGiMfdUAKYzk0VUc2+RgKI7E/dTwPb0tQX4A1dzc9ts1uUOTfdtEY0sVhfXtTxGkjiWPBXkmhbpVGSMTnav6k/WFQrcOmIiolGvGw9CXi59ddkCXnvjan4LtC976327t43u8nKGJE/QXEEnY4KOSTmeQFBLEAR/jwtSXgO8GwSB2b4feOnCVdzMEzQcAUAWm5JCZtzL8bgDU97KRGIoCvHcQoOQMXUMck8bjWwPbuSaEdmg+5mwwkbEgLMZdTPiTc0sGuhuhpspe5mh3Y4MG0YhiwZmrcODwW3G3AzVqKejDZnMqsVjpXK03cMQL7cZoibnbSIHz+PG/g6cJmfeDPMsjdQ+mYNQ80wwoEnbYX1Qqm3PRibsXkXmg+px+eux2t8x3d4EFMC9CRb/E0eu2y5cvc2Sk0bjkLK13+04qomUTgp6Og6sktp30xG1vWixPEuWnLQemfwzu2Qgnry0XY89HAFZ1k9bcYCZgYMUYxcYVdAkxO26GHBsQSYouxBQNUb3bcQ9N7sQ781q5B3fqNuX6jkN2Jl6ov3ejwDqt3V5OEIVXIVca6MCGsUuG7EzJuAiEiXIs5PAPYLWvnw8UW+jXgdbTmi9But6UyA8D/GyViLX3VQI23E8UoyERpyt7Y2C50HadhNaOOpyaE/QSTrcocs3gFeCIDCHPABhGE7/4Kr0QZWo+ltPQzAqC/MWcLoE8YOrq5gNmQ3sxCWh7dDau5sfHEni5q1UZNSmk6Euyqjm9bqJPF9+DiAS2Fmk0upuBWznp9zKRHWrTGYhC2OXpw3t63iUWKorrShzyqy97Lkxg3EpVYubPog4Sdp1hJnOTO7jDmZs+y63FkmQz718g9rySh5CQNBNPMSaeZVcNUVMjCuZzz/ybZrbVemgA/h5mJb5Tl0ZI5adovkRARt9r9/J7vn9UeeGDEjLgDkRefE/Ii+WaF+Nx8UWbIZUuci7b+svl8P8lmOBf8UpBo8jaYhN0iMPBt+wls3/MFKodpOQeJm/8tP95kufh5/BT8q+AMA/8g9cybx0PNYv+QKVm9bw6BA56DeZwW7ifPS7kniWKcBpcKMmS2UTNAdrmBAKaPpV7Aa2U0B97qA0gEwSp4ESJqmKxPe4izrK03FF9ZQygaVk6U1j1LrJKpyxqL2a3Yv6k5itanE/H+hSo3IAKS/jXrNT7Hc0OWo+cj/b72giiROrhBnwpz6H3+7DVoIg+CjyFO0E/isMw3sPuX0YHh8qnkEQ9Eccv5aPeRnC7d4FfDQMw/d1NwdBUIIkkC9EbJUHwzB8IAiCe4Av4crFh+V39w2CcCyePPJtxJi3GIsmxIjqhxhzvXCq0jok54gBkB14QtIu3FtxEa4M9gxiEJbo8YzpahScJK7slYHTrMwjEw00NzrXZmScNUloo3CZd8ekqy1XTCvuOdmICwXk4V6BJsSIzsSNXguit7YU4spzFmfRgoCaYgRsDcTZBAYwbLLDPDDg8uSWDNPirjK1HjHEAH4GGQJPw70zhcgN1gcHE+YFsfgRizEycNQL92gkcEGCbDyI38QaovW0uCEL2l+JAyzbbxUilW3UMyvnab8MxmN0DCgbvXAXTivbp3W2+LMBuu4tHDB34XLYxXi8UTJyHJNm79Q6WRyZUd2M0tip+5kZNQxPZgtOdTRqoMVOlSP3/Q7tb/O+VCEPfDl+XS32xqTJTT2xCQHCNglgnqFCXKzBaIB9cIBl18Mkuk8HTe0n/43A46pW4uBvFQLC1uKTDRY/ZgIdpwFz4M0wDC2i4H2VsSODcPnPDv5/MPHoz3EilyAIXkdupVVEJs/CMPyPv3xdikOUDvaXLz1zpETpcFG6EEC1q5WBzGRMxW3LFG74g8/SqydofNVzdBITQ7i9hN3LBFT888V/w1IkBmQ6M1lBZZoudR93ECeZzhMEcMF3X02nVlo/XQzsC2qE+/RuVW/qKE9TuD5eswF2wdMXnw8IqBrTtoZULEPAE3Bm7qtMYCmzWuQadC7LZdKUBSx+UPW+q0MmlS1k8XRZ/szM/+A353xeYn+s3fU49WyULpslYkH74xGgEl1nAZeW0MySp6aAe0JRngNJemovJZBEp6W4nOi/AveHcL1sn1i2leZrBsqAtAqhg302hPsDBs9cCwiV8DfPfp6nLhYFh4e4kea0pB2UU0cFtXzh8ccAePqz5zMhtSQtiHDB7FdZf+MgilIymve5vIsXFp3NBbPkWuy5MYPOWIx6StOevKVMIEWMT2+TztqTn0FtrDKtQHcBLwKkY4aySNFM/7Qgw3ZOZXPdSKcR9qO70+Yb2reLcEPIvGr1urwXXXg5siIqBGLPQHT5gyz3HNVYfkZlENa8dOhtMvsd+n0RBEE2sAR5mj8CzAnD8O4DbHcbYi8HwM/CMLxf118KPIC8Dn9+OMBxqBIEwS+Rq/xOGIajI+v/rHMEQVANDA3DcFYQBA+HYXjDobY/bjxByuH+ShAEfcMw3N3j76OB838C/i4Mw7eCIIgDbwZBoOKe/N8wDO870gP1RYwo8/CY0pUFndtM8EbkPRFV1ZqCUIPNEB+Az8K3AJ+nez4hM7zb8dxAG/E4kdP1fC2IUW6vszLd1jwZrbiRb4IEScQQtRgSoxJtRwxBC3zPxmlw6xADtRP3SuTrsqlzmUJcUo9nXh2TQd6BCwjEtW0m6mCgpln7rlD/78JBpOWA6YWMkR2I18Nof0Y5y9Hth+OJSUHeR1k4zc/q2oHnPRqs/dAH9xRYgHy9HqcLASOWw6dE1xsYs341eqSJHpg64BachmYxXVEvgsmfV+H0t2I9pwkvQHfxBgMdlizV6GYXIiBruG5vIgrmRcrTYw3HhSfWIjaOgTKbM87G5aStvQW67QYcZGXp/1H1PAMM9ZH/LA5nnfZBFQLaGiL9X4wnujWxjOHINc3EPW4GWqfi3q885Jk5TY+3A7kmDZFlo7eaEuNLyH1uioMZyPNhz67dv4OR97XFBz3FMSon1eGOtvwpDMOvftCV+OBLVB57L90tSrMiTYIsE/Zuh1EF/vdewKSIJiEPrjGNdmocUJN4P5bNu4i+1Tu5NudRHmydRt/xO6nIWcFSJqS9DwtUOtkkreMkqaCWlCKpOEn2fD2DPmsFwJS2baFvbpJ5VRcDkrDz3E+9ydO/Ox+AEaM2kIplpIUW2snhIy/BoisnUh6Tcz7PhVzK09yYLx6NB8dOI8FOz2H7/YAJP1vK4noBQb+58POebwJk4LmrjSL1gGxbMkTU2syk7C99wX0IRatD+24+DoKM2mby1Y8Ay4LuspKmhIYeOwXco8v3AB2uFtc8eiDcC1nj2+h8JFeOszpg3MwlabW3Hz/8NSiFy+a9IIeYcidxkhREJFyKaZSZNiReK5bqSgNOElCUaiQZE4DSvCjGBWtfFS4xkIzFidFJ5bY1vFAk9MRy6iht2wLqTFpcVE2KGFP5HSCy3Fmk0upwk1mgAEjOYbTJ8beIabas5iK55zZohe/Uvrb+Na/lGnByeYt+TPCjnveaji2cKCXMkFi5Q5fDkqhSwIVhGO7WFADLgiB4KgzD12yDIAhGIwBoHGImPB0EwQLktflvyNz9FuCNIAjmhWFYFz1BEASnAnvDMExG1g07gGNjNgL7H45s1+tg5wiCYAzw/R7H+AKif3VXEATXIE/sIctxA4KCIDgHcez2BT4aBMFpwK1hGP6fozluGIbbUK2VMAyTQRCsoZsUzpGX3XT3LCSRWWej5kRzwRgdKBMZS/8OefxMh8cy02/GgcdaxNjMQQzCKYhBaY+40XMKcW+KSSfvARYiQg1GpWrCaW7LEIjdCzGKq3C6WRZirA7CE47m6HIKMUxH67H6aX3r8Nl8o2bt13r0Q4xCixHpwsGXyTx34DP4ce3TDpzOtgvPNzQYT25pSStNCNNm+1vwmfwmBKCYJHYBYuwW6m+TBzfPiQGNuJ53Dx7kbv1sCnAGOMxjYtLllsfIwGsW7s0yD4rFPg3GY8IyI203ul4bwgXdgYz5m+mu4GdxYgagLQ4H/V2i5zePkNHdmvC8S3u0TzP0uNFcUyW46ES29uVo3BMIAtos/svEG/bhwMiA336ti1FJC/HcUa045dJeTRYH14SryhkQNeBu3lVT6QNXlHtF+8hyLRk90xQTLbanGJe4Hkh3uqEBoBp8grZcP3MQ28GU5OI4oDtmwggnY4KOprwQBMEtiKkUpcOdONbPEZfeke+edLhcnDZ0vgAgo3A1IQZndmTzv8I9Ik3QOSdXBi6A0SHxnCS1VPJ3xT8CJDaonDqylCCcoJlmEumYkJt4iHlM4QLEUK/ctob1RYMY1mFvTiicv4uhV4oV/PGZG+A+uHTWi/LnWfCRZ7rI+7p4ht7hVP77ylO5dNOLTB4ihvfCTZ+iakgN30/dCUBx8TYWMcnviislTuWteULBO/3ZOhgWclXZEwD8Yfln+Uo4ix8/K0lEGRbCpwMx00CAick4W7XnAz+IsGtuDsRLNEiXRyLAxky3xQhV7rzI/hMQj5Bdi3fxmbaPA2NTPJB/G3+9/qH0pX394YkkbhBOXdYVbRTlN3InPwBEaa+OcmapV/KnTCNJnF8WXQsIAI3lpiiqkmtTG6vk3Flv0qefWjRDgDWw53NicBdeuwvOg3dv7Z32zA3btAVS8OhpQrFL0MxO+tOq02xDWU8reWnPXzlrSBJPe6ia1w5kUvkCz/uUIvL0It40C662mKBHEbyzRqmI6XxX0Ue9d2T5xBJICIOAztjhwuX39g+CYHlkxYOa0FmOIVQwczoYoaYnPWwU8FoYhu0AQRC8BFyNRByst9QDQRA8DnwCqOux/3nAXwdBMDkMw44gCL6k+0/u1p4wXBIEQWmPfccd7BxhGK7Cfa/pEgTBHcDderw5YLzOA5fjBgQhTuhLUAG2MAxXBkEw8VieQDu4ErFvzgW+HATBDShOCcPw3QPscwtwC8g7oQoXLemD2CvmOahGXistyPvB4kRKkAmgbFzRaqP+dz0uLNALMUaz9LflZBmKU7zqcDqbKbK1I4bhNYg3ZAA+wx/T7W7SbbO0DiY3nEIM1a34BLQZ8ytxqtcOPdZKxPAbiRi7lqPI6EgmTGDKcJYA04QHjGplniSTSTZVMpNcNqO2GKfxGS3OPDA52h/mgQDPFWMGfTkSF2Ty31twj1a+Hs+C6+24dqwWnJKVQoZXM75NJc+8P4XIe85ECrIRgGlUMuufTFyUwGhiZcj9MwYx4usREDkeMbbP0bqVIvdanO7ePxNN2KrbmAfSQGiG/tehfWHA0dpoAhtm/JsXyOSxC7WupQho2B/ZL6X1KUbAxiDddjsCnJq0HwYjIN/A4Q7t/xF6Pey+asGfj/G4RLbRKQ2Elmk/ZiAPc5nWoRx5BiyuqF3PYyIX2fjkwmu63QpEgn4lLqdtdbPEMnU4mK7XdXl6bptXNyrgUZeTMUFHU67V729E1h0Liez/haUn8IkmTc3HdZqRGXWbQDfpQ/t7Ne6hAPreu5PdTQmndJV0Uk4dKbLSMSIgim8WjF9FDUuZwDb13baSx1eX/Hv6AVtx4ygqZ6/h3RuljnWUc+7YNxnRpq6AKlgxZBRFt8pTFk8l6fPNLvi6/F1BLads2ws/hGk/kWSovxxyLXdwH7UxETqQjEVJLrtBIjGfmvdJTmU7l0d1rxcF/OGKq+V3E/y4cbqAECvP4R6xlxHzMUpnewi4PfDcQndqX5rnZxMCgIwFOFV/z9DlQchMi4Eqi/Wx4wHMiTFz+nSy7pHp0WvzH2P2s9PS6m/j8muoba9kTI6c9HKeZC6fZLIq6z3ETXyn7bvU5Qr4q2YRp6zdy8sjzwDg3DPfFCtM43HeHdKbU2bvpY/SDDkL6AenrNzLKfOUMzkFXj7tjLTsdkxvlncQsYVpzGIm09MxX0uZwHYK2NYo98Mt5Q/w4MbpTCrTiISYgLmsbAHRu+9XOt9eXDTCfg+xvi1A7vGDDYs9xEA+HGXn4Sh36m15E3mV/VsYhjU9NlkNzAiCIIF04mTEDB6Ii5iD3LXvUXEOw/C3QRAMAR4PguC3iLfmop7bHaQc0Tl6lKeBe4IguBZ/XR+0HE8giDAMGyQnXbocM2JIEAR9kZRvt4dh2BYEwU+A7yIvyO8C/4xcnJ51ehB4EGBAEITtuOplCjFQzSHZhBhxn9PfjYhhWIkbr2ciBmwlYtibOpYpoVmcTUFkfT1izBmgMaPaZuJN5awWN7bNS1OKJ1c1bwD4rLjN1ufhXgUzGE0Awqha2chYvwv3chigMo+D0a72ab2G43Ejg5G7ebu2KaH7vIVMfu3ROhpVzQL5LWYIHEA0IAaoiQaM0HVvgM4tSnkVMXotRqYMj4XKQeZD48i72DxUO/AknauR2KKaSJ/n4V4bo7tV6v7LkBQaJk99Dk7rS2qbjSZm3jD0dwwXY9iCxKuMp3sCVvPSWRxYgdYlI3IOIn1UiIBoA6QjcG9jB05XNC+dxRENx9X3mhBAacyEJGIfGfAyeqDFamXjXhyjLm5GwJV58sxrZOp+BtzrtY479FjmYRmg5zH7YzMu5FCq/72k3+fhzpQdiLe2Hk8Ia8ctRZ7PKZF1A3ABhIHI/TNY6/QsHtPUB5fhNtGRY1IO7wk6KZF9iBKG4ZDDb/VhLFFvkElk2wz5W8D5HoR+OWLgm7E5nm5yxbvn9IcOEQoAiOckaSZBbWMl44uXpM9YTl2aDjeXq7iOx9IxJM0k2FOVQZ/hYlgnaIZLSMtbX7rpRZgPH/m0HmwXfCy1jj6b1BB/B+gHH79WRqV3H+stHprP+TFmzPwuL08/g68iuW3/ha+SRysbEEWz5JQ4GxiWNsQT1VsZl1HD0naZe909NQbLYz7wLQ+kG81DMRq4U/IjpYUP8hAvmuUHegQBQgZ6tiMgxwCnzcwYiBKnFYnlKhBwzUAxF9XrNnj6WjZvHEFDewmdy8UDUntxBYMvXpumlC1bexF/V/5P6X6ooobpPMBMTXaaRScf+TVk3SoA45S1eyEG585U/uMMuLfo9nT81rDZWwRsmmdwOfBRePq087l03ovpdlSkVtCnRq7PnqoMbor9kmkIIK2jnGIa056gRVTTSh6pYiFPz2cKl5XN5akHPynHOw06n8ul03wYhl2MlgDiEdqAzK7ZNnu34tOD6+kO/uFE8QIBdJFBKk0+P1g5fHvDMNwPVARBkAfMDYJgdBiGqyP/rwmC4AfIFMBuZL7wTxw4ZcABRQbCMPyhenF+gsTr9Ax5OVg54nNEzrUa11s8bDmeQFCDUuLCIAiyEPGsNYfZ54iKch1/BzwahuHvAcIw3B75/2c4K/eg5V0kt3Zx5PMkLpObjfT8G7pchkDr9bq+CQEqpyMAKR+ZYc7Gg92N4tQLMWA344aqGY/r8XwoRkPbgBh1G5Fx2GbxDaBYbh10XT/EQLRZ9T44tchiQUxRy4QTzsYN6ErcCzMWN2qtH0wFrU/kvEYBy0EMYrQ/ynCPS6H2D4jxaYa50eMsmahJIHfo77dwr6evT9EAACAASURBVE60jEVm/XfhHp5onIhR38xbAjLOmoxyEwKA+uG5dYz2aDLQIN4Ek3eegxjWBiaNQmZxMZl6Prs24GAwgYACo4gNxymKBtI24t6cDDxflfVLIQ6o8/S4Bnbzkfvzc9ov5mExgG10NhP/MGd7Eo/PArkvB+PxPkkcZBrNcQfO4jCvqLG2TfoabdNwBEBavqIyXBTCRCTMc2jqiuj5axBwYt63edr/g5H3tcnEWyzaIl0uxON/VuJe2H56rDlIzFIdAoCmIkAL3ENUgMuuH5MScpxoYf7vLEEQ/A0yzrfq8inA58Iw/PcPtmYfdGnBjcF8hAhhlHy1yG1G5mVk4LCHfxti+JtnqFS+drfKyF6Rs0JiOEpS6RidacxiAZOZy1UAVPE6L3ABw/SccZIkYs1sKxL6U1+SsAoufedFr7KpkgDrLx7EsLu2OAD5G+Bz0HSlBPhsYBglMxpIpHbynbbvAjBv+sXESfJ8SgQC7o59hxidPKrOwpuYTR2jGFesCTsbqygpbmB3vXodBoWwKHDVouoe/bIIWB2Tl0xppKvvQcxFq+ed+CyJ0brMq/b4Tnbf218CAYCsJ9vofDKX5nvVkO+NzLboC3Pz9JFUzHyN2ulnySXcDrXvnkXi01s5NUMCcirKa+lPM40UAXAJzzKCdaxXn/Wnl8zn5VvPSCdP5TU9xyXa1xMHMZU5DPuUuqNORUCdzYbG5NpcuuRFXv62eI8M7FIlDVsam0g1i9My3DVUkSIr3ffl1LGdU7kOEWdIEhcvkYHBVbwXv4AES9Tr7y14QltAcgTl4lNlLchbPRofd+JIZIcEdB7DREFhGLYGQfAikp9zdY//fgH8AiAIgu8hvb8FIq5fJ4K8pwRBMAGBr3MRAbQvH2G1jvgc77ccTyBoGqIAMRBp+LPIEHJUJRDX0i+ANWEY/ktkfZHGC4HwE1cfaP+eZRHyaF2M5+VpRoyn5ch7ZAsyLvbBZ/AthuY8ZCzZjBiBXXqMJ/Hg9yo9jhlahXgMRqEeYyueZ8W8JXvwWfSotyGGq9iZ/HKjrivEpaUb8Rww+bg89Gitbwse9xA1Ao2OZvWMRbZbi1zQNq2TxXFYf6zXNiQQr8npuOfAaHR5uMfD6GXmLcrGc+Pk0Z2Masp4lti0U/cbhlP+wHPtdCFjrwW6r4wca5fWvx9yrXfQnbKMts0C5O9HKFZZej47l3kbDByZNyQTMchzdF0dci2fRwDC6Eg9S7WOBoZOxymRxQhQNc+QeZZMZCOBq56ZmIcJP1gdwZPH1iH3m8VDlSHvoD4I+LDcRwb0rB+tXVHFvIE4SO7A46lW4bmgDJSa0IaB3zw8L5XFab2CPCtGhbNExVcj97LlurIJbnvPmxJfubbP7q8V2o7JSNzcFARQXYCArjZkBB6KEC7O0b7exzEMtw1xnfWT5f2UL4Vh+G+2EIbhu8pB/xCDoCj4ARl1R/VY3waFGlvRhNMIQILQ7cUG8sAMAzpkFrq2vZJJVQuIk+QPjUIlixcnSRKnQCPl+7OT/uxMq4FN2fQsLww5mwvukmD8l2ecQefFDXx0k0bW/xZYA3+aJovD7trCy9+Dc43d/wg0fbsfhY/LlFThS29CMcz79sVMi/0UgD/ycWqoYlZMDjKNWXya37L5CUEU95TeK4O42ZElKZbiDPy+hc3sHtQfVXOWwaUQny59E09sasZ7vda9SJf/Wv+zQP4zkBlE9QztHtufirrXqJ0prqPOv8+Fv0VCxEGAVxOkxd3GQu05ZwloUlntwdesZVtLMc3LBTjddfEMrq+Zw2VVQvub3XUTr2WclU5M++jET3HdHb9jxX0KfiuB+fDoDInnMYEFE0KgGJn90UvDqaTFJcx7tOfWDPo0dqW9RQVF27mOR1mhFL0kfekkxl18D4AnuIZtFDOT6XqKRjYwDPLkrVp0TSPbpg+JXBt89jfK9d8Q6dt3CxCAU68r8nlvstSecvEf7hIEwQBgnwKg3sgd94MDbHdqGIbvqPz0J5E58SQwXKluW5HUwdceYN9K4GfIk7QJeCQIgn8Kw/BbR1DFN47kHEdTjhsQpOpw1/0PHPpchFm7KggCm9P5JvC5IAgqELOjniPQMs1CjJ3xyNUfg8wWD0KeT5N2HoHHfhTi4gGmTJXSbXfgtKZKxEg1cDIAT3hqRqHN7CeR99M+PG+d5YZpwAO9Lb5lH2IImtJpBq4umUSMwVbca2WxKui3MchNwa0D92KYM9aM3jLE85CHx6TU4YZ3VB0uiRj3pTiIytDtTsPjQcxrUo4H4JsC2HBtVx/gCd5rjE7A8+GAjOcWX9mKU/eS2pfLEVBlYMqS01oxj8iBSkz7w9rwlNarU+tphrwpnWXiNEfzspQio1ADQtUahgfft+M5l0zUoE2PtR2ZA1uJq/VZ3I+pqRXg9K5cPKDfvER2TbJw+XeThDeQVIfT8U7D8/qYaEMHLqu9WteZh7MWVwi0fD+bkXuyQ+sVpfSZ0t4q5P4zOuEO3XY8/rw04J7EaOxcIS6bXYjk9DJ7xa6FASi0Tr9GAGxjpK2W6ymp+0zG84GZKmI9x6ic9AQdTckIgiDQgF/jux+OM3KClp6B4Ht7rC/9f+ydfXxW1ZXvvydIHggkBIIQgoEEwhCiXBJFowNEsZFaCkxtsVBtLXYcX+601Gut1TpWa6et7dAX7XTQ3o5S3wqC1YJSS7EoYDWKEkYNcEkgGEh4SwyEl+RBcu4fa62zTiKCFqxW2Z9PPnme57zts88+e6+1f7/1W7F9u8ImleDpniHGem1ss60cgSYHC+mZLav849KWU0mJqKe1wogJq6mglJn8InJ6qingEh5ibSzh5rg9z0fJ7cZUvCy8D42LtwReJzXq9ykwZgnRUuWbs7rTd89u3pwu99J7wwHevKU71RSwXB2Z1LY2bkr8kMp6McTn5UyjmEr+YZpkO32k6suMKF3N2l/J9qwzd7H2ByWihgfsXdoXJrXBjWqJl+NynADXAl8+CFvb4YuxfVyEjaxVW2lrTbC3QL2YQoRSYhSuK6Dy/rM9O+JtyBr5bfr9AWAcDCgSje2Glnz4GYwt+hOV+0vYu6ovmxcWQgF8bYKIUtzMv/Ng6VS+uHG+3OeQf6Kagihf0u+ZwvxZk7l4ncTOPDfqDMZMeJlLl4igxLIJ59BCOgUTXKTizcnd6X2P9h9b/WslcpRWJMq4cMkz7JshwQElFWuZXzo5ihEr5UUW8LmImngV95BOS4QM5bGJxqYsembK6N/YlCXGgansGR2zGaIQrlo6UT9Mw7yWdy4fHX0UQYKOeWgbAPxGx8kU4JEwDJ8ACIJgMXBFGIb1wKMaE3QQ+FeLnw+C4KtIxEAX4N4wDF8/zDXSgIvDMKzRY76Mi8pHJQiC3wLnAX2DINiCiBv897u8xl9dPnAnKAiCX3AEjt+xJrkLw3Alh+cVHjEn0OHKQeQ1MznerYhxVY0YUmsQwyset7IeMajMkO6KGIDPItQ6EGNqOLLqnYcYZ0bjMSOwG46+7EMWh8xRaMKpVxbzUqf1NbTJDMyX9Fz98Vw+5tAYIpCDU+q64MZxmtYxLkttsUypeh6Lrdmvx+/X87VonQbjBnea/i/CFcMMzTmIzIdGszIKmdG1wGXAz9F6ZeoxFtVnwe2GaGUhDqKNpV1w+e7Fetx6ZOw1FTYLrgfHYDs7RtY+Njf0iH1egLy938DFGQZqffvovVfijqrl/GnRelZrvY36txtPdnpQr5WKOwnWD9pxRTST516FO5F1SF/dikujb9T/JgFtdEgTgsjR45ch6FAjHkNlCNZ+ZFFgO2IPNOPOjDm6tXjC04OxultyU3S/Gr1vkzQ3RCcu4pCLPDNTk7PYttMRZ7wHMk8fxKlu6/U6Q7Q9TX3PciAV4eIN5yP9YjwuDnEIQYrytC364BTOYy7tnECCjq38EXgkCIK7kXnlaiRQ9mNY4oHg8RVw+83Y5gWSJ8iQoExEtcx0lw4Au2DATDXEK/IZPGQ9m+sl/Orp1nKG9qmhqOxJilnNT5b8G/894VJWMC6KAdlOfxIkGaoBNtfnf49ynqZghtDjChZtgRzYd64Y0T3mtEOWBOUD9J5/QGJANOKr9/UH4F+h9+/knp675Qz6s53rNv0XfB4WvjSBgsot/KH0QhI58kLdyA+5jAcYu0QCTT4/4Tc83V4ukyKQemUS+kLqMHEGk7UZ9MxsYe9tYmj2zG5k760xZKg39Ny3m7039oUH26AuIXLZU4mQnMZvDRSkwoz10+Q4VsZMntbAHStzjiyG6GWgnChuifVI/FEV7F3Vl56jd7H3133JmrSVao116s8OvlixgG+U/jsAdeRSQDU3q/qCiVMYvW3MGy8L7K3Uw3F7VCp7idbhXOi95ABvfUG+njQHgeBfk32emnkepVTw+lVDo7xQV4yYQzlLWaocyoe5hO9we5Tctp4c6smJ6FyPbLwMWgNS8wTeSr6m6oPr9dlcu4fkzzNkUlyLLGu36l8kXHGQjihPEx3zBFn5aKjESUzQsdHhwjD8H1C47u3bJsY+j3uHfRZzFFs6DMPnOn0/iCBDnff7wl97jWMpH7gThNhmIIhNEbKgD3AxnqngQ1GMGrYUMY5eQgzlwbgzMQyn9UzFRUhbkTFnCGJgDUWMwARiUJojZBLLwxFHaTGO4lhckcVu7NTr2ep4XHY4F09sakIKLYiQwD5k/MrS47fiEs/mnFjgfAseS2KIgOXoidOnzIA3cYM6PYchSnHJ4zjSZAle1+Fqc7afBaAbpcr2b9R7qkJQBDufdaRz9Hl8Uo+3eJAknkQWPY+hDi04H9Ikz83pMSEFW+Abhksq746dI0ePidPkzKn5PfAtOuZRasbV+kzSuRVxXsxhOognBLWlGruHbniuoEbc2TSn1MQb9uFOqznUOcgzGqZ/hs5l4RRFUz80UQmjKBYh8b6j8ZisPD13D1wW3OSx423cjDgMa/S6RsdL6P8m/F3KwpEmi5fqhUtbo/utw6W/mvX+LYHxaYhfYbFsI7W+Rn0cjDuThi6OQvqAvSs5iGU9DJfgtjY0ufMVHMdyZCTohDrckcu3EDXPa5DFryVEERcfxxJ3hAbGfn8OD/LpKnmCNildbkBX2WRk8e7ASM2TA7ASNtcWknXx1uhsa+uLqMvMpS0tlbET/sQfmUARayMkoJhKllIerVxfysOkkqTgx4I27Pu60KksTxAAL0DvhBiqb10NJ90Jy66SvDTjK5/n5vxbOHuIxP9MHvKyDKRLgAdgyrol3Ft6CV9Z9DCrJwvtK0mCRrL4/ATJm9ufHQxNqaGxXNol2Z7qE43e996ve5LRvTdlyQBiVLcHkHie6cAdaoxeAJS3wVhdoa/W9VdLlmrxQ9/S3wcgq0ILdHs1cj6rx7dgwLRNNMzTtn8Veq7axcolF8ApSPzSq9C4ciBVZYKyba4ojKhwAFNYyAKmcuO6nwOwrbAXJXPXsm26cNqyf7wb+kOTOnd9ViHGh2lwLQQq4aTf6vfPIm/UIPl64V3P8NYMyMrYxdWL5gCwbPI5ZNIcxYhNZYGiUTNi9VoUqcWlDmlj88bhJJViOaBsEw2/yo8m5eTwDHF+xiGrx80IpP/AdjhHl0Wf74p01j54idPh4O/d8YmX44QEfezLB+4EWSbvIAhmAOPVS0RX8pYc4dC/eUlFjLFJuMFt8Qm5OAJjhuB65B3ejhhmZyKG13CcHmYB+LbKvxMxrg7hKlxGNYpTibYjhqRFjG1DjLyBiBFnqnNG2zPFrxbE8DT0xXK6mNR2CuKgGQJkks/tOB2wDhl/DP3Zh8c65eHUvC44UjAQd9IsJsSM4jRkbDsdT/ppq/N2DhNU2Ig7CsqkIFfrZU7I83pfQxDj2gL0M3FUyYz+/QgS8whi0JoUd33sfAdxB8hkq61YIlFDtSwWB71OPYIibEfiSM7X+zpF9zOnsSs+75lIQxtOOatH0JE0HN3ppde0tm7HRTWsbhv1PjbjdDJzwIx5YghLqtanAEdajAZpcT/Wz0xYwoQ8LL7HkKg6vafByLOy4y1nVVecDlqH9MdhyPtyOuKwtukxdfi7Y6IdhuKk41RDk5nPxWPGspC+n4vn5rLcRK/ps2lB3udP4pS+HCQeKxPvn9YP7fq2YNGMvGNHSd797soJdbhjKmEYtgN369+JEpX4inh3ZES2BdpyyO/vA8EYpFPn6fcC5OUzatJoSB29h7ZWMfzT01oYnLOJNA5E8SQSmJ8TOUG7yOLTLI6SpqbTQhVF3H5DMQDz5sxg3xdSaMkX+lz2C7tlgFP79qS1QCuMv0ZQijdm92Mii2kMhY+1r02gk+RVCRbrNaa1zWXfhJQoV80f+SRz6i/nJzmSS3cpn5D6TpNrvFhVBqsgdaogR8lMaZpICWdOIKs/P9fvzcjk8Rk8gWo1Qp+zBfpMZPAxlbt1ch9R00+FwQvXsXm5Kh88ANzZBkv1BD+ChrZ8X2UZp46Z0UhAHmclbG6Wcwyeso4EScr0oLuYyV0NN/B6oSBFp1bUsO+iFLIr5Mbm3zCZi5csos9P9Hx3IxO6xgCtvmEEJTevjVb33pjcj0H9dohzpBLer2aMYCFTmDpZvLnxdz3P6pkjIieoglJa6Ek5TwMikZ1OC1X7xQkqTltN2pAD1DRJHRvm5UvMk8aE8ThCw5mDq8OtAugjEz4gA2e8X1sMUGcK3EfHETpRjr184E5QrBjbxnpsT5wd86EoFli/ATfoTBjgFTx/yjrEaHoJX4k2lCcdMfK2IwZdLz3XJ5F32kQIdurnOmQcbUUM44F6rXP1OoYegBibh3CjMk6PK0KMwGGx/Sy2YjCuymXB+oYsWByQBdGn4UZmLb7iX6H7v4rMneZA5eLKX91i57sPRyEsXqoJmWeX4vEeJo+8GxdUsHMbXa2/Xrdej3tV27gHEvtiVC1zApvwuJ1tuENryIk5MZ0lSBK4A2TOznY8JmZ9p/0N7XoNFzvogTyLVL2f/rotHX/WIJF/9+HiDGvw52bxOLWIEb4NaXuT9ja6oKE0O/Fn1YgnR31F28umiYTWMRd5VkYhbEWcNqO7mZCDxcF0RSRf4vS3XOTZ1eMqd2uQ/m6xa4V43qhuOIWvFk+Ma7myLFY7TdvTqJ7P4sqKVcg7002fSy7SZzdqPU7DRSNMtbANR15fiZ2rXuvZH6cDHkLeuTw8R5A56sdNribkOCYG+PiUIAh+dTTn8N3s89EshgaZ8TcQGRlNpzlDOvUL+rUGeeFtYDSqVixfTrI5neRrgmZcNeVuflL/TT6V82Qky1xEFaW8GEn4XsrDLGM8M/kFADl7djA0o4Ybl4hH8dCMzzGRxWQvF8N89VWSN+i5UaI+NubMl+E0eOM+yTsz6JodDPrCDp4rk+2ViRLGzHmZlhmpkeHdkMihglJuRmhhudQxNKeaS3gIEJnue9qvIjdF0pAUF71A5bWlZKUJJWtvc19Z3TBqWgFCyTPUpgSZ6O/GQbVJiIiBCQD/J0Jf65xryAR8s2HzXYVCaQBxgKbGJLe/BZwZwnDLydQGixJwWgg/lN963rmLmWl38YOK2wHYvKSQqyfcE1HRfrHxeiYOWRwlS72q9B4ubHgmUr0rKK1m2YRzGH+PeBPVj55CwY+3UH2DZHgtqVgLg4jifQZt2sEbpf0Y9I0dqNYCJRvWUjJ6rUDmwOszh1KyaS2v54tTc33bf/DVxC9ZrFzC4axnNcWkp8mzWllfxlk5FSRVcZAzQ2gLGFEkCnZrHy/xCca6cS3Qu6sbQAcOIF5oXCK7c/noqMO1kxLRC0+Uv758mJygO4DVQRBYmpdz8fDAD0UxWlQ7MmaZ8d8FRw9M+ncbYog3I8ZgFWIsb8fzqvRHjPsMZJw9HXdWWvXYUt3/CcTwHa7HHkIQG0vUWIUHtWfjBjd6HqNPmeFvK/p1iPFvq++GvIAHfO/Xz4aktOF0ORNVsJiWXNyBMunkehy1KdLrlSPUokoEHclDjOUivc9teCxJKx6PZIIGJrJwSNvUKFdVOOpk1LEmxAA2FKqbnr+H1u0VxDjfrddeE/tuNEBTlbNFJ4s9AU8I2wfPFZSGIzyZOIJhwfuNWo80/W8B/RaXZYH64A7qGv1s0tSpOH1wMx5v1o6LBfTC44ZexWN2DuIGvu2bjj/jLnp/hpZsoaOE+H6t4+lI/87Tc4zEnbFcxEkZjXBcR+q9FiHvQo2e42Q8H5HJqW9Dnq1R4DL0Oof03KP1+fyj/rYRd5hGajufoscX4ZQ+c9T/gicJbtX6v4bYNdbnzGHejAtAFSP9YInuU4o7YselHB0JOlEOXz4TBEHrEbYHSFf+GJbOhl93OuoP18KygTBCkwispuPkYnC35csZDbwWiCEO/GTJv5FVvlWC6XWn6cxjOWWUqKW9mhJKWB0hQy0Z6ZzaUBMNopcuf5TXy4bS+1k5vqRyLeyGMT8WRvzrLw0li10Mul7giWWzxWhPlomTVUwl82dMZmLbk+QmxKnJ27OFgrO3MKvqegD+3DaeixPzGVAlXt3ni35DW2siko7OTavja0Nm8YuNsn/P8l3sre1L1ldl5Gvc1heaEy7uOxZZZSmgYyx+MZ6v82dIDNAM/f7pWDuCIEtj8dWvyoQ4UibhlKexSLcpLe/TCZgKWXn1NN6UAzsD9j7Yl+orh/JI6RQA7uEqnmQid3MNAHc9cQNPzTyPS1SO+sJ7nuH1q4ZGUlD7SWP8mufZ97A4OQX3bImoboDQ0M6FHkt0eXAODJqwA34g+YCk2iUMpZrkDEGw6shlR34/UjXA8aaEeHWXcX902uV4mMnnc+bySNWXGVwkQVGbqwTVMtEK+iIT66pYW2cCDcbtsNIdj9A00nTnvv/RKCfocMenfGicoDAM7wuC4A84E/XGMAy3HemYv3XpilRuGR7rk40YQacg0rxVuANTiKADYxHjbzRiyK3D4x7OxxNNbsUlfU/X867XvyG4oWor7JMQQ822m/G2D4+dGah1GosYp7a63xU3xE/TOpVqnQpxuWwL0jcJ40MIYmD0LBM0MITCnBM73hCDVsSYrcMdk4EIzcmUzlK0XSz5rJ3PgufNsYgjIp1FCywPzWW4ohraHkm9Z0N6NgC/wxGgdBx52Y3P/Qnc8TsNMZabYscY2pLA0SATnRiCK82lIOO45cCxYgiZITImQjBE62zOdREu7W3y1OD0QJA+ZDmCDNVr0vay2KgFiPOQg08fhXgckCFIhnaanHcSF+EwRGg98lxNxMP6iAkLjEYcqHGx442xPQ5XdTsbeQ7Zuj0bl0LfqW1pz3AUTls0JbpuyDto207GnVxDsUYic6ipNZo6n1nOJmoCsgKzH3kHz0Gc341at2d1ew3SX4wqetzKCSTorynffBf7HNfQrb+fYrQgK9XIsoKtlI+UOKBa/dobGURO0e+1yCqBySpaUjGNd8kq38rQlBoSJKmglCx2sZ7hJGhjGecBMJVHeYyLuJ5ZANQwlFN310Qrdc+VnUHpnpe59xZRC/vK3Id5feZQTv2ceAw51Is6mQBBjF/3PLRBpsJUbaRy8ZxF3DvjEvqqdnRVRhF1Vbm8tEfiiGZlXEsudRHCVVS0lkce/DKfuVKk2R6/azpru5VEggF76UvqTXvE+QH4mVLU/lPb4T5k0GgGblKhgycCsr66lcYHBkZNS7cQbgy86VuJkKMBf94kogdj9dxX6DlVhnvEzNWsPb3EKWDdoXjKC1TOO1vQkpND2BXwSNWXWVEkqnilVPB01XS+XnQnAPfO/Ao38UP+zPlyjnPh1IYanhugKNvyl+EF6LFdZ8Ze8Mb0fhGqV/Ca5mcSH4ttk3uRvWQ31WWnUPA9ieka0+9lmAA/zf/fAFzOfVRRRL2SeUqpYCnlUSB/o5KxjT65gjKyCrfS0CT7DyjaRMPj+d4Hq5F+WACcqr/9GqBrTCK7u+5kTo/p3Vr56DhAJ8rxKx+4ExQEQbY5O/r/90fa54MsIYL2FiIGrSlJ1SKGl8VD2P8KPPYgDU8GacjKJJxWY9SzbchCkiljmXTwTt32F/19GE69K8QNcUNWNiOG7gZc0N1sK1NpMzTDjF1wpOoFJMZzPR4Efih2zG7caUriuYDsfAbSGjpgMUeWX2awtqWhD/Y/BTEozahsRKbrrnjsiTlJm/V73AlIaPt3oSOyZYIOJlzQjMR8WL4mixU5BTHaLe4K3d8ydA3D1eFS6CgxvgVxViwOajCeF2knrtJ3P46ItOAUNkNx7P8Q5PkaYpel7XE+johYu5kzY4pw5iifru2dpvWzeB5DgywuaJ9ew5KQmuNqin+FeOxVKh7zk8T7ewsu524UxPNj92TP3dpig/5+NtJ30nCEq0m3GeqUiyNudbHPJmKRhudvsiSr9cgz367nrUKmxYGIIxP3Nc5F+kMpjn7awkALssBhfXgo8p61ILbhegRBeonjUE4gQX9VsdjSE8VKZ4Ovs1LcHpwO1wTN/Tvuflrscx6yEm9CCWeG0BrQU5W8AF7cOI4ZQ+6hlAoe4yKqGUoNBZGRW8NQ2kiN4nWGs57XC4cyPEecnDFzX4YNUH6Lcs9+AqcurImShDaSRe9zt0gcCkhGwRuIqG/pbS0sm3EOJayOEnTO4nou5z6uy/gxANOYx1BquOiyxwGJU6EbPL58upxzUiiOnd3WKaJSljVWkaDcgeLgTFMHpw03wOcGQucoh5bm9EjFjlXAHYHEWVm5jSgAtOFX+TIQXqvbSpGVFW3rtfNKBEVSpOgTU57k6XmfhgFw1pAVvLhxnDhN1dDwM7no41fk80jplAh1+yY/5ofcFNHjigqrqKSYz7Q9BsC2sl4kypL0vlych313pzBo7A5SV6pM5RRkwtcYoexv7IYpUFCxxYOSz4an8s/jukWSjuv1yaIUl6vLSm0kyGJX9PyvZxYPt1/CJ1LkeQ+lmpW3XRDFVjV0y5CB1sJ7b4VDkwAAIABJREFUxiDtW6C/ZSODbi3wpg2YXfGlS5CO29kJ+mhQ4UCQoGNVhztR3J78IMu7kb573+Tx3ksJEeNqHzK2HUQWI0yKORUx3CxYezSe8b4JMaC2ICCtSWpXIa/uZtz4NZVMk4c2tf6Rur0PLnoQXzFv1X1MVOAVZA5pQ8aqNjxew67VjIzBxbgq2WDEMG3GY1MtR9kGvbZRqQ7hDofJKZs0uLWFiRDUaTudrNuH4SIFJqVtkuApiENTqPWwIHyjaxnCk6e/P6vnbUNyuOTiuZTsfxMutV2HiCGY42kIjiFKhn5Z2YLLd9u1DcyvwtGl7ch8Yc+0WdvITAzLPVOBU7664YpymXr+pB5jVDmTJreguWxclMOojabglqb1SNe2TMPjeKqRfmHCAUnEcTAqH7FzWl+zdjBn8xWkn9XTMeHqBpxGl4vTMpuRvm60O3OUrb6G6vVBHBGjVDbqfZiini0gZOHiI+2IQzIM6VsHkYUCc3pH4jmP+iCIzr14XzO57FdwcZIqZMAZqnXtj78nW/Vztd7fIWRe7pw4968uFhP0Tn8nyonyrsrRjD3DsrsDa+HAHk9q14qs3JmWgsUErdK/l8RR2Lu0L3uX9qWxNodPDXmMOnJJp4WLeIwqithFFqspph87FBlK8hkeI5Uk4zc9T4I2TlqrogelQC8YVLGDQRU74D/hzYe7S+D9lxAVsTZYdsM5LLvhHJ6bfQYsEUfGEIvxY5+n5HtraSGddFpIpU3jkO7i23yfWVxPC+l8at4yPlW1jFn7r2fsZX+KWmTEkEoGTNjEg9+eyoPfngorYETZahrvGEjjHQMZMXO1SF5fgPzdjNM+PgOUQ9aNW0muyhAncqxu+zSePygTiQmq1L8tyCC1V/+eRgID/kX/xrXJAFjeBuVtPP3NT8uEdkrIi/eXcdaQFbJ9FWz4v7kyKeW28TCXkMZ+FjOReXNnUEURF9+1iEqKObWihiqKRI2vvp0ESYndUq54j/p2mA8Xz13ExXMXwUbJE8SzyN/ZQB94vXSoDOgjYH7hZC68+RkWTp7A6skj2EG/iH7XRoIc6ulLI9OYxzTmcQ9X8bWUX7CCMlZQRuX+Eri6jaxJW8matFXa9Uk8C7plhjEUcpu27ZsgaFBXxCMyR78/Hsxl1M/DyWX//ZZ2UkiSesS/E+XoJdCcch9cBYLgEJ7L8rC7AHvCMBx4hH3+JqVLEIQXIk7CKsTo+j2C6CxEjCFbhbdYhHWI4TYVp8rZCn478i7n4YH6RmPL0f2H4opxFtBt6x5GZzJHCxz52KfXsOONamb7namf4xQ5yz1j+YdSEaOvnY4xPrWIQVmPrPRbXhmLobB4IXOABsaOAReFqEWcrh76fRJOW2pB0LCB+ttwHPnqgVPjNmg9TJmrGUl3bChCup4jF1n7TNXrrgdux9XvLKYIXPTAJMH344IQaXj8jYki7KNDfjx64cH5g/X8ryHoS1xS+0nd12JVrG02xvb5dxyVMpUyE8XIxgUMhug9teh9nq7XatT9crStliLzlslpnx47tnO/MmqjoYyGlvVAno054ENwOtwhpE834Ulw42jhX3AxAevP23CZ8Hj+o144he8vSF8zNTb0Wia8AC6znYUvAnxSf3sMWThcjYc6mNrifuRdTdO6DNW2sms/q9stvsqcOUMazbnaBi+HYWg6UX9VGT0wCFdd887bg1uO/Ronyt+mBEFO+C5ycL9PJb7qHUeA7H+cIvcp+WeoRiGC/AzX77nIhGe9Lk+/q6Ry1plbSU1JUkoFqzXCP5c6ylgRIQELmEopFVHeoPFLnufNCd0j4YTsubsFaTBu6lrgO7BVte8Hmtbf2fJv2ahzGP+956NVq4dmf45Lr38UJsBDEz4HwDhWcDYv8LrypyoppoJSpqqyQRnLuZ5ZfONXv/T7/jUMvl/jUr5Z6PcPvuJjKx7lQH+5/8bb1DwZq21jvJVaZGIzmNiCWo3LvEu/mwhFgZ5jrn6/Chm0/49+vxVS79lDsjUBcxQFeAGyHne5coAZKffRVxGxJ5nIRTweoXJJUimmMmr7pynn0opHxalB1OO4E/i6nmwHMrhaYO+vtQ2ugH35mtdpUzv78lNYnJBOkUM9aezndr4DiER2HbmsjzoVZLGLh7kUgGJWU0VRRIdLtiagOuGD/TZkEl2JU+T2IhOhIZTsQZanNOkvTYgFE3d8PkxO0G3HNJYXjO4V/nTV2Ufc55+CJSfmi6OUD5wOF4Zhl6Pv9eEpRoUy+tj5iNE2FjFeLa9JLo7QmFJWlR7fpvs8j6ysJ3BDrhUZazOQ8d4kni03UA/kvbcA9OGIgWw0PJODtlw025Bx1+JO8rQeZjybwZmGSyIbzSxL61BHx8VoQ20sKH4rnmSzPzJWWYLxzXhOITPkLUDfjOceuIrdfq2fBcVbfGh/XGQA3S8ui12v5zCZbQu4h47S1Saq8GO99wSeKLZA69KMx5wYVJqLo0XD9XOR1tWU+HbjIgWmqmrxRuCInpUWvYb1pQw8JsoSpXbV39rx59OM5x+y3EfrdVs8Me3JdJRit5gyo3tZnI7RxUwF0JzjIbijkaP16IY4VlmIPWCiCyapnY70sSw9thZ5ZhY/hp77TMRJKUX6hp0vA6cPGurXjucMKsDjuvYg/a8/EqdXguce6q/XMARwKuK4DdF2HaVt83ttB4uj2o3TJ0H63+cRJGs94oAuQt7hL+CiCHEn+pjKCXW4t5UgCMYBlyLzVVEYhv/4AVfp76B0NvY6G4IDcQ3s7UB3yNRkqbWIE2TGfh3i8Nj3bcB0oiB2gDQOdDBwC6ghnZYoJshiRIp1RJ8/QTSeLX4nu/R5FuZPYMr3NCvGtbAtvxcD/6gj6SBEPlopWeMXPi8vnxrq0/Y8ysJZE5hy8xLSJ8jbuICpFLM6omAtUEk2Q44yaeYuvsaAKzUJbH0OWXN2sbddRuTB/7GOzfcXOqBwI7IS8qR+Py2EJwIafxlbnz1V26c8tk9rENH6WApcDnyR6D551e+DGqA8jI7PyquncdXAKMa/eP4LVN5/NoyG4m+LnN92+tOwMU9QIaCyqZiiPmtJ6ANb0TBBjtcs4vNvmUwtefxDm8xo2xP9oRfssICrUji1OKbe8Cw03QkNB9VJ6lYjg+cLkCwUR6zH7gO0JNIp0ghYu/ZkVYh4iEu4lIejtt9FFnXkRjFdTzeVk9otSXKD9MGeI3extzYmNf4SrmxkDDdbUba8TQ0ZdFyOtGSpH81ygg53+BIEwSAkcm8X8P/CMLzjSPt/4E7Q31Ox9bRtiLFrAdKPIOj3yUgcTldk5Xqk/rYZeAhZSOum26oRg247YkQ2I0ZfNbIutwZPy2ByxluQDIAmRJCNGGaZeCb7rkRxnZEktKEdcXWtSmTF22htXREHZQhOERuCGId2zHY9hynkmex0ITLG2oLZYGS+bNLPW5CxzOpQhCfFLND7sWB7i0+yBbOzcUPcHCurz8l6r4Z6bdRt8XvNwJ0ME6AwuqC1jRmwu7X9jbpmK//QUf7anAJb7DNKI1qv4Z32T0H6RTy/ELijsk+P74E8x+1ar+HaLnHnaaO230E8bsrkpc3pKNJztuGoDzh9zGKwNuo9GgvG6t9D28cEDrrhktJoXdfrMWuQvr9Nz28Jcm0BzxzdXrjTvhl3dE0tbx7yfhiFbhS+OHq6/pmIwn78mdcj5txwnJIYd8rM8TM1wIHI8zU1unGIM5WJvM8FSEzyFFz0wPJ4lSJ0vQy9vwq9v87P9ZjKcYgJCoLgXmT9eUcYhqe9wz4XIuu9XYBf20TxTr8fz3q812uEYbgCWBEEwWc4SuhVEAT/gIgkDCY2v4VheP5fex9//+VwEtngSggjoHuGD2g2oTyo3/8ZMTRtxT0bsgq3RgpeLJUA/nEsZ4eOnvvpTipJruYeAJZTxjhWUKlI0cXLF/FQ2efoZ14NMGXuEs+n81lIX90iAwfAJ4Dv45kDi4FhStMC7uNyrmq7m+rvnxKd77rl/0VLmes2PrbpC7yZ350LeQqAtRuLoVtSFN8AuoX0S9khQgRA47fwQE/dzpOBC0Q8EciEsQU4g6gtyEccJoAvBjLRxstc/Lc5iMNjjlUeEpek991420BYCgP+Qxy1ygpd+Z8E2zdKxRqW5/P5st9EynwtfdL5+v47uTftKwAEB9r54YTruOk0ec1+zxRK1q2NHIy0/P1wM4yfrNqn82HhkxOYUiGN3XSnJFBdo07SqYka2AHLZp7D+EtUVvvhU2gjEcVogeQCylGo7nLmUEVRhBSmaV/M0yyyiT5t1LXnwkiVJ/91XzFhNXaKTCQ30gJ8cnkNocMZgglI8NArfBzK8VCHC4KgG7Ac6Q0nAQvCMLy10z65SChzNjIl/ioMwzt1Wy0eGfHWsaBOx2u+AP4BeDIMw3uCILj/KPuecILeS0lBDDmLcZiEGEKTdNtB5B21ZKU7iRZfmILLERs1qRSPiTF6WhVuGFq+n3bE0TDjz+htmxGjzWSW1+GoTwuyym8ITwouEzwER0ksNsQMyJ04kmLGvl23P+54mINkApUj8SD6HK17C2Kc9tJ6rdL67tZzV+I0qMG4mII5FBZ7swEXvdyJx7xsQ4z1uER2uV6va6c/o/0dxGNReun92MJSLzx+BmRuG6XtY0H34I6BSW9b3hrLF9SMh2caRdIMZUMN+uNJPNPxmB1wZ80QEhNrAHGgS/Hnavl3TESjUOuQhzwfozCaxLm1g+WaytH6GxJkAh39kX5ox9mzMbW7/rggQT3iYAyOXS8u8W2xVKa4Z0DHMNwZNflsQwZbcXTQckjl4rmqTElvGP68ByPPslHbaIW2QzOOgFo80gbcOYujTOBqd4bw/iV2P7uRZ34KQq3bpvudgy8YH3NpP/ouRylzkJWww04AQRB0AX6JRDZsAV4KgmAh4tu+7fcwDKs6Hd8POBCGYUvst4IwDDsn5nhbPd7p2mEYVgVBMBL4YadzfCUMQ7OUL0H0s45U5iOZW/4vH2tMLS6M0Hk1fCtiLFqPfxXo7zB7M+Lw/LN+Xw+8jCesaIbG2pwICSoqqqKRvpRQyXb1GGrJI4393M9lgATCf507I3W4p8rOo4gqTl0T14smWsF7s6q7qMHdrr8vRnjO39LvbwBfgt5L5N6uu/2/4FtQcNoWCupktHyrWNTHruOnALTkp/PN/f9BcZrknvnJkK+ylE9QmSNOT8PF+dT9Jtdz9NxBRwfmiaBjtuzXkMHgWjyB6lXQc/Iu9p6iinJLEVTNnKJJyDnMV2tF3pKr9ftc5HFN1u+jgYQ4OqDX3iTXa5iSz9iFf2Jy2UJepJRH7vqy7FMssUwmjDB7yFfIo5aVOaLOMKbhZS4q/G1EC7x60xzufnQGV18zR47fAVPWLYkcsT7nAhkwvkEcnreuhpMqYfw9z1P9sNxIwSZVkFO08O5RMyhnaYRUrGAci5lIb/VgKutLuDLnbpK6vYoihqbU8OKronBHOTI6mGNuSk3luMbjFkTbY23sGVGN9/c+yHtgVMHOiwF/36WdlOOBBLUB54dhuDcIgq7AyiAI/hCG4Quxfd4CvhGG4StBEKQDLwdB8KfYvDA+DMNdnU9s5W89XyBT881BEExD8OMjlhNO0HsoFpBfjeedMSSlCjG8LkJWkm0lvxwxUrcjRn8Rgm78HjFIu+DKY/sRw3Qz4pb3wRHfnXquP+JUKKtTK7KmZwZumv5VIwa2UbrN0M3EnSTLOZSCM8RNQnsnYvQldX8TeEhHjGijTyW07rV6P/ZmmFNg1EBzhowiZyp7cSpVJrIy3wUZujKRuI4mbSOjNw3R/c0xsaEgC3FYDNEwup9RwtK1nqfgMs4mgW2UxJFab/ReDDnZiceV2HXjuajtDW9DnncO8gz6HGYfA+3jz9mKoV0myx1Hgkx5z6hbryIOqsUhGeWsFlcvBBdkGIn0odLY76ZuZ05YEo8HMnqmIUqrYnUzqpr1x26x61isjznlufhz6IE8dxONMHqlsR3MwbdYpTrcL7BYYxMmMeW7bvq9AHm29j4uw+XmLS5pMO7sWRzS+cBvcJJQf8Qe+wuO0NbhdFHL6QXidEVJy4+1HJ0O1zcIglWx778Kw/BXHU4RhsuDIMg7wjnOAqrDMNwIEATBXOCfgGfe4feqTsefC1wTBMHEMAxbgyD4F2Tom/gu6vFO164Kw/BVxEx8W1GKw+4wDPccbnusvBWG4eyj7PMxKZ1jguy/cRBiUsIH9kCx0uFakU5t/sk64N9w4CgBVAc0ZArGvLk1n8/nzOUOvkV/dpBDPZk0U0duhATUkcvSNZP46SiRUG4hnVzqKNmtFmy/2LmB9D0HYAc8tfU8AMr3PMNJ38eDP88FFkL1VWqEL9kCjXB5/mzue1aC6k4C0staqFokS2hXTf4516fNiuSZ1/MPNJDjDsaXFIHI02sMld/MQcm6ZyuNvx7oiU6nahMuxZ2l3rD36r7etI0IvW2OJjYt38XeG/s6yvamnsf0GX6IDHrxBK3j8LxDw4AZbZyVU8GLB8pYOeUC+i5spLLqbM6auRwQx28hkyOqWT6bSCVJf511Xh8wlAfbLhUBBIA2uHr5HFk+AJH+/hIoSCMO2a+JJrtds3uR3bobdqvzg1AXsyt281SpPK9xrKCF9CgmCCQGyJyeGTn3Mafpcgb0kf7Rnx1ksSvikReXvkDlqrNJnSSvezKR4W1mSFAmHfMzATJCG9L5G07IYh95vghFFMBS+9qacQehgDAMG1AcOAzDliAI1uLZV95N+ZvOF0EQXA/cqudbgPTodywfKicoCIKxwDDNGXQy0DMMw01HO+5vVZK4rG8e8v71QIx2U2u0YHkz3jYjzlAt0hPW4xnqX0PG/H2IkTgEMQC74QHiKfrZkBajNo3EDcg8xMEahRiLlh9oGNJLTRI7D3EsavTzybjiWDdcte3PyLjcTY8zh8cSlhqFy6SbzZkxaWozirciTomhLwPxxKddkfHdUBETVbBkr7bCDmKoGjpjdKuXtL1MjvlkXNo6iRvNRoaw61Ygywzm+KTjVHeL4bJ5llibW11Wx7aZQzRW27mzukd9bB8rJvCwR9vMrm2ol6H/5gAZ3TJ+zjYcccpGDPLtSDtajqjhsXMZqpKGIJVdkQXFIjyXUC88BsnQOYsDMuW4ely5zfqo3XMV0iezkXdkI45u7cMlqw9pXQ5qfar0fsyJOYgLLhiCOUzbpxHPP9Uf6aun4aqHRtMDV9Qz1ZXheKzTauT5/yOe56oCl4I32l0XBKG1eCETMylB3l1zELcj795fOA7l6HS4g8gruSgMw0VH3POdy0DcXwZ5dUqP8HvHKobh/CAI8oG5QRDMR1bfLjjGax+t/DNHmcy0LAqC4H8jWhiRaF8Yhk3vfMhHsRwuGLzzCrhF5zdB7/4dg9AnAT31+xk4cgEdqXFaHqn6MlmFWxmf8gxVFNFPDW4TRqiglPRRLVHMyArGcRGP8VTZedF+p1LDQ4UianDp9Y/y5qzulO95BoCT9sGb+d3p3ab3oCplA9pUGWEYzJ8xmf9s+1cmzngUkNxEw1nPuMlC67qZH7CUTzCTuwC4mrup3l/A4DIVQqgqdB623ecviJyextocmXjMrh4D9IZP3fU7/vAvn5Xf7kCU4ixP59eALwb0XBqjeTUA1+v2vshkbE7QL5EJRUUnWIA8JrvmXKBbgqLLqnhxXCmQ4CruobYoj2KdaUpVM+8hJOdSgiSTWcSYTS/LOR6E128ZGsl4Z7GLxsK+nHqDer2DkAHy+3rNYsQhUnny7Lt2Sw6n/jURPbHhqhwSpcmInpXFLrLX7ObOURLsdCvfpZnMiC43klf5TJ/HaEQRM61n6mhxeirvPxuyIfmgOubluGOYQNTiMrVeUUzQHmR4scY/C3iRj6oj9C7pcLuORlFTtOVlxCT7ZRiGFUfYNw+ZAm2fEFgSBEEI3NN5QQ4+kPniKeC2IAgu4TBucufyoXGCgiC4FQF/hyOTXVfE9x9zpOP+liUVp5ptRAzZIiKFSmqQBaHR+vsaxNAbrtttRX8fEldgdDgzSE1625CHOsTYM4pTBWIU20KdKY2N0vM1xepnxmk6TgOz3/JwuWgQw64dGWNORtzzeq3HK7gxbbERZvx10boZhcxibYzil4sjHia7bMiViSB00ToWIQZrGmLItuIIxT6ts+W+sdglQ3qW4UhQCk6/MoluYvsaGmZIjrWJOTr2+yjk+Vksi0lnx4vFPK3Endd4SccdoF7I82qKXaMacRj64JQuaw/bx5J9Wt8xQYBUpD2HIe1uKmcDcblqy+djxv3O2LZcrbMpzFlf3oNTwTZqOzThAh+v4HTNHDxOtQiPhRuif9ZuRXhMlyVEXafHWn3NKV6FC3vUxT4fRPpaDR4jVqR1tHg0i1kr0vNchEt1b9DjrW2bEXtjNE51a9VnsQaXXm/Ve1+NWOEVuv015P1drG1kcXjHpRwZCdodhuGVx3iF4DC/hUf4/e0/huGPdVVuNjA0DMO9h9vvPVz7iKUzT/0IRTlBHZKnhkiX/JgVM/46J0s1OpzShLrniaG7TDdfgeRiMUP8OWSAsZwAfYFWRAoa6Dl2F8U5y6kjl/10J49NJElQT04khLCfNJZSHqnDfXfP96jIOIML5z4j55RQES5tEAeGQUp1+61esxv0nnEgQhou3PGMUOJMcGCCqJ71uLadxV8QR2p+2WRWMI7bka7zGBexnX7cxUzAcwxtvl9P8iqc9R/LeXFeWXRNutNRpGDkQKdj5QEPwR8e/Kwr5xmcbdTCq6Ud944WYz915R6Sd2c43c32N390PRILYxOnKbLV6v910vbLOA/ullnvU/OW8alpv+OPfBKAfGq5i5kR9XAe06gjl3vzxSniFpjWNpcfJG4G4Ps//h6JG5Iej1UHTIG3viBfT3oBOBden67CCEtqOPXmGvZ9J4Uef5TlxpI1ayEDpmwQr2j+hMkkR6VGlLwc6kmNJRKo4Cz+H8NJRXIRFVHFnOVXk3qaOEGpk/aQfCIj2p8b8disNmSyMKeowVaNjPYWV4eL//9olXZS2B8R1f/6EobhIaA4CIJM4LEgCE4Lw/C1zvsFQdATeBS4NobIjwnDsF4pb38KgmBdGIbLD3ONv9l8oXWfeqR94uVD4wQhNksJGtWmDZt+5EP+tsUkeG0F+yLEINqAOA6GTMQNuALcjbV4mGcRA6qPbhuLvM+fxFe6UxCKThpOkByCGGWjEWOsVK+9HrGbjO5ViAd5W+C/GejWoEbrMQemEUEUTBTBBAEshmkzLg9cizMGTDjB1MtMncwcof54PMd+PMGlxTwZerRNP5v8tNGVWvS+m2Pt1QVHhjbT0akxR2MYLqBgaITJKw/GhSgMlYqTU432ndDzmXqexZCY8lszYnAbSmIUMnOYhiD9w6heIMjFX3DDvA8+ZzbhlDG0XvV0pMOV4qk8PomrBlr79MET+abg6nngTqgptw3EnUCjSJpAgs03m/FnsBF3mkw9bz2eLBXEIdiIS2pn6/G9kGdmYgpGsRyGx9Oh5zKUKBtH7LZpe5jYw3r8ucclvY0I0YTYT6ZCZyp5m/XeqvUapiZnNEOjEJrwQiviZBlya1LnOfp7EZ4w+biUoyNBvYIg+BXHhgRtwXVMwBm57/T724oqtp2GIC63Al89xmsflxKGYf7R9/q4FYuDMEfI3pIYMrRsD4xQo9OgWYNVR+PGOMAucXz2PiiGfXJ0Kmu7FXFWSkW0sp9GHTnUU8FZAOTQQBnLqdWZY8y+lxmz72WnNqgM6BvThRc3qHCHoAxZun0KsAMu7PuM7LerH1UUceHN8p3Pw0QW89zsMyIa2MS2J7ku8dPI0K4jl3pyIoWyAmp4KO1Srr5M9LdTaaOIKl7srk5QK/CvSO4eYERZFSvLB0aTadaZW2lcMFCcxR9pPWfgCcqQ/wMu20TD09Itk9dmiFO1QLdPRdCmL+n3OxBjwAbgRQjSYU7WHW1wa4K9V6QTgSht8Id5n2XwNEG0ZrVfz+dSFvBJ/gjAUj5BFSO4dY1U8uZRt7AiIUIVANU3nEIWjXw3XwKubuVH8FtYmnEeABfe/gxvLVbpbJC3dST0uLndI/TmAxfDcxPOiNr+q4lfRo5mMZUMpYb7mBG1fR61UX+ooBT6QnKb9sFdOGceZFWrO2LUGPKzF3Hce+ty7psFiCNkjRfPhQUflVig96uEYdgcBMEzwIXIVBcVjRd6FHgoDMPfxY6p1/87giB4DIHf3uYEfVjnC/hwOUHJMAxDhdUIgqDH0Q44HuW9KE8cQIytbggp0eI7LCj9z/p9JDLdLEPi+YYiT99yCZ2GG2SteG/biRhU/RE7qA5Z+LkGNyrvw8dYcyJMbtooSnV6nTzcUN+AOzBZyFBRqN+70pGCZolXkzg1yuoGMoXGEab9uAx4E57PbKfWJQ9XGKvTaz+LLP7l6TnO1LrYqrw5jl1wathmxMAepvWrx8UqUhADfIi2335cCc3igkAQMzOEO0tWg6vVpeExPXFHYjfuEOxGnNF2Pc726YoYzWt4Ox1uGa4YCB3XqvrrvRoCBzL3xTlAVYg08yH8WeXhCmdJvfe4uMIwPf9QraM5EV2RZ2r5eoyCZvQ1c8gG49RNcAU+k2M3p/I15F3ohivkmQBEHjKP2b4n446yXasFF3NIxeXhzfnugqNgoxFHdRLudJnTZ/FlrXrtFOR5vgaMx+OUntdjDyL2luWpMuGEVj3PPyIsmB563VU4Amr5qM7HKevHVI4eE3Q8kKCXgGFKUdgKTEdEB9a/w+8dShAEJYjwwKcRQsqDQRD8exiG/3YM1z4uRSfrawC1ZHkGoWkco+be8VXOe/9LZ2GEzt+biJyhA68AfWCtGqCnIpOUvfANSMc3BGQkFJVVUXOFqwYUp1RSSUlEd9tOP7LYRU6MN1dBaeSQVA84hbw9WzgMQChrAAAgAElEQVTJ1N8SsK84RRKlAjwGy2afEwXjLxtwDuM/93zEdBq0SZOqWpqUDOi97gBjeJmnCs8DICuxi4t4nO/zbUCcoCKqIjSqmEr+qX4hWdlCVWt4Ip+6KTUejA8eQAqsLLpARBBMue2OgR4AalpWechAYyT+7tCQyHdRiZ8jg6Ktg69CjHrd3nPlLvaW9nW1uExt/4jbnAojofHXA0n9osbL/CmDnpN3sfk74jHMvv1yFjCVRQo3lbGCySxi/ij5/v0532PmjB9z17ob5FkUnkIFpZSp7botvxfZxbsdpZsCJ9X7Pc2+HK5ZKL8buPPW1yXprdEfWxLp/JTrWKHwoSXPtRixZjIjyiTAivZxjChaTU2T9KlkZgJqE04TBOm2j+PxV80Ipa9DwERc+OAAMjPHcyh9dByh46QOdzJwUB0gwz1/1GmfAPhvYG0Yhj+N/d4DSNE4oR7ABFzKJH78h3a+gA+XE/RIEAT3AJkaOPUVpOHet3Ik5YnD7T/yjDNYteon9AzO44/INHIZIoQwCaGqteA5eyw+pRFBinLxXCt2gVG63bYZegOulvV7fMXc8qqYMlodnhDVjonn+okjOK14nFGeHluPq9zl4eiNOUxGsbOkoEbXWqp1L8JRhJ2Icbgvdq1CZO4sxB0jk8hO6jVycdoWeK6WUbixno6rgnXTY4cARkBtR5yORtxRtT9DYayO1lbxYo5ONY4KGQKyClfX244YzNmhTKQ9A+FKGMJ2LuLgmWMbd4Cs7KQjxc3aqivOohiKt6MhHqY4Z1RCcAGCNL331Nh51iP9KantUIPTBEuR590FF94wpcC4bHgeMvIU4XS61Ni1LHdUurZhLY5gdcMdoExtmw24o2LPpw5H7NL1nvYhz+EQ4ux8Ek9Qa/Fd9s5YvNoqxKxbF2urc7X+XZD+ZMqEJujQC4+X2ofnYKrWY00goU3P3UN/t7xT24HnwmeAc3kwOBxy/x7LcUCCgiD4LXAeEhS7BQkS/e8gCBYDVyjK/lVEI6MLcG8Yhq/rsYf9vVNJAy4Ow7BGj/ky6BLvu6vHu7nGX1tmI13lv/T7l/S3o6nKHbG817nigy+HM/ZsyWUgjgYBFIhE9gHteDW6sm5S0N3pmCxzbMiL9R1p+U+v+jSfmTKXXQrdXMU9LGZiByeoiCo+0Sbj5opEGXls4alR5wFw4aJn6HF1O9vuEw8jvbiFEVSxbYB8H7/keelhFrw/GciH6lLxULJopJEsttOfFh2NKynhwopnSJaKofh9bqaMFdw072cAfGLak/wk5zq+sVCSpX5mylw51hyzl7QNbGK6Vj4PmKZ5he7Pl/ifuTj5plb/Gx75AnAAet6pMUEP9JWBy5CdVQjSpOHdex/sKwOOyT4XIBPodGUAzQ7kWhWQXJDB2Cv/xMqRF7B3Zd8IGbqLmexo7xclufsut/J17mTpcrnIvi+k0EYqrxcqvW1TTaSoB/BGWT9pAwUO35jej0Fzd0T3dI2idvwR3rxBnOveSw6wbMI5jN8kTusb+f14nIsipzeXOioojVC6V/lf1JInstggynD3l0G5eFU9M1vYOzzhE6IlZ2tGoldAJskacO7gAWS2iUtkb+XtiNBHoxwndbgBwG90fEsBHgnD8AkAmy+QKfJLwKtBENjT/zYy1T4mPhInAQ+HYfjUYa7xYZ4vPjxOUBiGs4IguABZ7B0OfCcMwz8d5bBjLe+oPHH43Q8CJ0V5Rk7B5aKrkEWqiYhRuhMx4P5RP9filOvByNjajszWFyCGag8csTCa2jAETdgSq5QJAVTodjNyTZWrElmR34YnlwSPGzGFrjRkyNig/3ciC1ordV9DVEzy2FCdFN2vHkGQuuDKb3twx6kPHqNhQe4peMC8jW/moIHHrlgOpGytfx1iIB/E46FORozj2XhckcUqmTO3D5f1NpphvBjdqjO+aolQTW1sC674JrSxPMBRoTa93rO8vQzXtjCBCcs9cwodnVdzVs2RM4qXoYD79Rp1iANiMWomfJGFPHOjujXj1L0s3deU0k5GntlqxKhvxOW703Bp76Qe+5q2nYlb2H3kIvS+/rrNcv+YqMIo/a0R70fmlJqwxjAERTUUyfpaH22Tbsj7k4r0O3Og9ut+QxCn3PIV2dpYud6TXS8d+AOSh2u9PpctSH8fjvStQwhef45eM4H0wT6I41iB9Kntekxm9PTiy8fHWI4RCQrD8Avv8PvE2OfFSEhT530O+3unfZ7r9P0gh1mwOkI9jnqNYyhnhmE4Kvb9z0EQrDkO532Pc8WHsRgdziTNNNiFV6DbeXBAnZ9tyJqtKWg/rruaYb4lgNpEpNw1oE+9oAKIo5MgSQ1DyWIXryovbBwr3mawndQIFzY+A8Abk/uRc+6OiE6XvWk3PZbsFugefEIxOeQJ8nl1qchbX7x8Eb17baFlVDoXr5O1gTcLu3N96fcipyiPTUxmEanTxDD/NVfwjYW/pHjKC3KbM6cz+K51EnQPpP5oD8lJGe4EqXJbww/UG3gTobVdiu+Thwwc8VDuTFWMA3HeVuFJ0IxuV6vf1yKyz+Yk9VI63Ty9ZjMyCE0VZ2Hlry6AXXDlt+9kxQQBP0fyPzxNeSQAMabhZYoHrOa5MqGqNZLFdOZ5/XQCjKiIS3bIxDFCNg86cwc8AG8pdfGkOxEax5cE4QFITkgllSRP5Z8HwIUVz1BVWhRR7pKkUkxlRH/LYhd9aWRAisy8lZRAAgbkyPeGqnxBw4zyl4n3vyf0/zaUv63OTff+cGC7f6cPhxcIOVGshGH4P4iJebhtNl/Uc/jYHJAp/mjX+DDPFx8eJwhAnZ732/GJl6MqTwRBcCVwJcCgQQOBk6J1Bwv0NqfEZJafRxZ29iMG5zB8pXy4HrsUcZhq9Xs2HWlURlHrghiTrXjuIVOwGqfb6hBD1ehzhYjRPxhHVYzmPViPGY0n6TQnJKn3sw1x0jbg9LRmxEh9DTF4e+BTaBKXr25Hhh5bcc/CnZJMPd+rsfuaRMe8MpY81pCXfXoOy3Fzuu5vTtwGHH2xegzUzxtxo92UvczxMoWxuPNjuWfALRsL/B+sbVNPR3q8xeK8kyVUoPsY7aoemSfbkc5m8VNmRls7mOMD8rwt4achamjbJHGkyO6vJnaflvTUkpM2az3WIM6DxdN0wXMf9UKegzkaG3Dhiko8+W4TjuyYDLrttxt5LjVI32uNnc/uqQqP97KXbpveVw89TyJWR7QdU7V+NXjfMeTHHMtWPZcp41nOI/B4ply9h2w9x0jEARql1ziIPPtcpK9XadsYBTWeEPe4leOQLPVjXg4FQTA0tuo4hOOTL+hdqRTF5wuHFD6o0jkWwv43IcII5hSdLgOGBQQ2IwaorR5cC5wWws/FDkq9bQ9JMiJhhOSERho25sEQmMIi2kilhXQqKOVSHgaghqEUUcXihKgtlLOU5/LPoLhNsPJBi3bw3OQzGNNgy/zIIGJOz9eBr8JDS0X0oJQKeha2cPEicXj2TUjh1sR3mXXNLdw7W9gySVIp5+mIolXDUBK0daAQzZhyN3Puvzq671Iq2FwptLJks8bdqGgDJ4cwK3CTcTsyMGxHsqGDrJvvwqMYmnXbbfp9C0Jvs3PMQhLBmlZWL2RwftOboWV/OowTp2fANHUSKvIZUbqatZOKoDrBCsqYqBy6e/ZfzcS0J5nJnQAMHTCJ77a5rkiPq9t5/b6hUXzOd/Nvpcf89sihGdRrhwzab+gB/yr12pUh/Tn7i7t5K0vob2Oelee1cPoEcqljzBr5/kZpP77LrTzGRVHb15PDfu2T8aSqAI1NWdCm/0FWpmzyRdv5NmSl64varpZHKF895U22BGuec7V+j78HH508QceDDneifAicoCAIWjiC2kMYhhnvtO14XP5wl+x0/V+hrKvMIAjPCM6mHFnVN8RjJDJunYPMkqNxw24dMgMbPW0ZMv614wa+KYu14qv0Jk7QqNfKRIzvFj1mCwL0nqL7ddVrnonHmq7Xz6b6uV/rYs7VQVx1LQtHWkYi43oPHIE2tTRbvU9HjMI83FgvQhwcWznvisf5WBxPO2JNPEtHg3cz4mgk6Rj51jX2l444YWlaJ8tt8yxiBK9G5qBDOKpiiJohbGZ4b9S2LMDH2c4aMv31eufgeWCGAw8Dl3AGcFIHlT1i5zZUxRyoUfjiX9wiK8CfRR8ESTNZbkPhLP4J3AqzKeQg0rbZsXschjgCpupmSGGu3n88J9RBHGUxqqSp9nXVuubF6tdD780c82547iWrr6GSFt9j6I+p1L2CO4Omljdcz21tYffdpMe00RFFHI7T3AzdK8XFCipwh9qoo1W6zcQtXsVzXe3G1QAP4g7PSK3rmlibgix8P6vHjQnOZh3HqRw9Juh4CCN8lMs3gWVBEGxExvfBwOXH4bzvSqUoPl8EQc5RVe/e32JGnxmBcUGEA3isRJ4rxYC8EGcQISK8BiwIonjz5KoMBk9YJ5LSiOH6mSHzqKCU+/ZfzuVp91FBKd9kFhWUspiJ/JCbqKKIEiUIz2Ma05jHPQlxQK4b/V9iQFu+oGclzqQlQ+qe2tZGj5+0c2mFqsd9Ft5aC/MnS5zLxdcsYtZ3bmH+7Ml8ZdPD3JF/LTcu/znLys5hgXLVWugZyUYD3Mz3+eL9Cxh8mUpkjy7kkYu/7PLVLwWkztlDcoOaILMDkbx+QLePRRyeX+vnTIS2Fc//2oxMSnP1+w8RQ96Uza5HBpf/1O/2DIyKOK6N8rSlPH7HdPl+OzQszCdr0lbWzithxLTVDM9Zz+P1F5Ge00JlUzHJ1zJIKzvA5oXyfCqmlLIj0S9C4tLva2HMNS9z0ezHAehR2c5Tt5wXxXMxCG4uvYWJuvhe3LaaHpe0kz1DeQW/g5OuRaiJV8C+/BSmzF3Ctum9uHvUDECcyUqKo+edJJV0WliqS6eGznWgVWbibW34gopScEDb5oDvywMcJiaoT6xxOwuAdOejpBQXEtB2wgk65vKBO0FhGKYDBEFwO2KvPIBMOJfi9vX7Vd6T8kQSR2Fy8TiNVxEjcB/yblpQ9WRk5dziHNoRFL8HYjx10YtZFnsTGjCFKkMzxiG04JV4XIU5QKbotR4xAnciRubpuNR2K2IYr8EFFfbr9o2IwXpQv2/Xz0k8KWm2/p6u9WzXbWfi9Csz+vP0evE4EYtbyUKMzhZtr6l0VETrgtB8K3FJa0M9uup1DSnpgYsAJPD8TBtxAYc63d+eVau2kQ2R6Vonc4JyEIupGkfkoGMizPXIMu+Vwe4odYYhI91wCtgaHJUwhTVzTjfHzmeioTb3mVDATr3nVG0ji4eKJ5Xdh9Mkx2tb7MQTjubijsxOxCHPxRE+S+S6X69jcTGWo6oXruxnCVT7I33Xno3RAzOQKceul4o8YxMh2Kb7GSJoUutdtM27ILS6sXr+KA4YeY7WPw2xqkP6pS0wGHVyJNJ/zsdjgyzebJw+l1Ld30QgjLq6Ubdt1fuyvER9cIriNQgu345TDdcgC5W/5ziUoyNBx0MY4SNbwjB8OgiCYcgrHADrwjBsO8ph76a87ypFx790FkMwp8eWuWLb38QlP2uRl80oWS8gL5K5kqtg8/LCSM44uSCD2ivzKKKKtrRUVlNMCZU8xCVk0sxZVNBCOlNYGBniudTRe80BLh8Vk33ZTpSLhno46Wzo/XM1YH+ADAYGrv1OHCSjvnE17OuTIghDBdxY8XNenz6UXOoiCtZw1tNIXx5uEkfo6cxyvn3Zd/hBkcRyf77qN+TOr+NhLgWg4a58QbtsMLoACcu+VL+3Ig7ND5FJ5QAyKWZC6k3aNmNVDc5oXbvx1TWAm5CeZIJmN4XwrSCmzZXg8bunR6orDQvzoRYat/XlrGnL9XHlMThnkzsUfQVp++mU6wC4mPk8XV/On3PGR039xux+jFkuqM31Zd9jVsMtoJoUfAK+P+t7vuKWQJA4BcyYiPSJ0/C4otYaKimRpKvAc2VnkEVjJNudSTOpJCNRiieZKLLZOfJqNtKXxJS2KEYoNSUp6OJQXXvojUwizbiDeA6RqqCUJqTznq7fX6Ej6vPRcYDAkKBjjgn62JcP3AmKlU+GYRinF8wOgqAC+PH7eM33pDzRjhtPo3Ep5924Id0VT0jxR8TIteSMbTh6ksSD/U1FKy6prOkAopiLIgSV36rXmKj7jsJjRdYjc1ce7nR00XpvxsUNDiGIg1HlBus5e+BG8X6t2zatg6mkmVKbxSJl47l5GvUctXiAfQpiEJtymRmdZyJD0ljEkjDmhdGtTP3ejGWrt1H42vEF82xcOW647m95f0wO2hwHy/GUgquRoe27DrdqzMG0RKHr6UiXiwsbgBv4ffAEo1vwmBhTV2vDJbMtBqURd1yycJGEg7F2sWdSjudaOog897j4Qy9cYa4ZR0lO13qpumnkIGbrfkPw+BqjMRrdaxviVFi8TS2uRtcNp/TZIsBOraupvzUjfewJJEYuLtluSXd36rXN2U4ifeFcrXee7nsawi4pwR35nYhdUoUsFkzTujch0+D5OHJ4CEGJWumYp2oIQoWr1TYxiqsliDWVwdlIn63F81CZeMJxKSGe6ffw5QQSdJgSBMH5YRj+OQiCz3baNDQIAuKyrn9led9Vit7f0tkhiktmb5d4ClNxGY+gGWfEds/H0YxyoBaSfWXVPuuKrVTvLyAvrZahShZvIZ0kCR5tFxSmPOVpVlMSIQNZNEI/qFSu2fhnn+etiXCSSUtPQQZMo409gBjpZvTWQ+8fHaB6sixFFczdwq2jvksJldwx/VpA0AggomDdtPBnjJiymnF9VugpcvhB/c30XLUrapmfVP2bQ/bxBJ0gL/oqkagGZKAtRQak/6P7bAE2qPMDInm9DkGMQJzNlQjFED3/KqJsiFl59TSWDPRnUQD8HEYUyQ9rXy3hrJnLefGuMl4sVQHE9XDWZctJ5ki9Gsjh6v13k2wVlGBGn/u4PmcWFzZJzPon+ixl8fLP8XqZODAz+YWgWefqNV8Fbod9P5fZ4+mEoDdTnpQcQNvye5G9Zjf7ClPIa1MYRgf0hWUTADiLCh7mUqaqFng1BSxmYpQ3KkmCJAlqNPAsM5rBpDRU5MvgamhkAbJqWok/n1ZksN5kKWvy9L9xKOHt1LePDh3uRDk+5cPkBB0KguBSZKgNcSXg962EYfjWe1GeMMqQUXV64HEtNTilzRTQ0vS3Ucg4mIWML4W4gbUZMagtV43lVcnS3/ojY8EhJHjcnI6TccTYVt5367VP1r9GPD+OGYsWe2RiBlYPUz47GY+h6YIjQhZPsh+nFllCTIvryEAMZYthtVw+TTjtrZvWyxb1Vml9Ruo1hiHGuLXxdr3PbK2nIQFmwL6i57W4mJVI/qaD+mfGuiEkNtSanVmN5y46DV+As6XjJg6fcs0+m0oYOC2uBQm+r0IcVTM1jF5ojlYp0k8ycMqfUb524zmMwCl5S5Fo7K14jiXri6a2ZrLQ5vBYHh67/654bFma/rXi4gUWN2aqfZa0tlnvu1DvzVCaLjgyZSip0RfbkT6xBnFGzBndhjzbwbh0+kjEuTDHuRhHjgyFjdPyTgEe0ev9AXFOMhCa2matd45eqx6PvTIKozl5JchCA8jzz9T6Dtf9KvWeDcFrxkUhTKTD+voxl1Bv9p3LCSTo8OVcZIicfJhtIXBMTtB7nSs+HCVu7PXh7bER/X2zDR7gQZhWVPms52RVOFvVF5rdME/QRuW2UhZnTuRrfSQYv5EE41hBZoqMuA9zCffylShGpITVtAxojCSwX58+lDpyKecZgP/P3tnHZ1Vd+f57AiSBkBASXpJAJIFQQoQPAdFohaAVsaIw2vpC1XbQa8XOVPRaq62O9aXXjrWOo3ZmKtYW6lSLRUcLahVDVcCXKJJwwQBDgGAgL0AgJBCSIDn3j7XWs04Q0BFauMr+fPLJc57nnH322eecvddv/9b6LZHOXofHpVyLvGgmRT0B9o6EnrvFMbhs2nAefPROuBTKMofrZTRw0tytlE0TJNU+VRK4DtEly0ULL+D3ky7hqp+JoX727W/wQsbFtC9RALMSYX9M+/7uEKoTOO3XwsC895NiGSgaEbADnufAtkuQyatKtxuRScoCavciAEh/b7hpgPS3Bf8vAYpgdamiwVND3nu0GC4M6ZkhS3i7F/WR7xRo3X7vT0immcd6zADgAl5mCeNpaxMabR5TeKX4LPK0H9YzhJMmbeVjFULoejpUVgwkb5Ys800tX8iWx4gBUGMfktZ08PqoMwAYP/kdCimjVv0dllBMQyzJE/SnngIqYnFIF/M820mPsXTl808nc+pGGt5XF7ZSPdAYtJXarzk41nlR+7N7ivclVfhzPhwZ7aPucFG5+P+/wZCow51whzvScjyBoCuQHAyPIJPWW/wNVtr+J8oTZjyC5/HJQWbFzbjRZIao5dOxxaR4xHhbhzMvY/D8Oj2QMbQCd1xoxA3TJDzpZAMey5qIgCwDOI3IIpq54TXicRnleGyRsRsmjWy5WxIj582PHN9Xr9UI2B54PJMxAfYf7asuuKFt7PpQZEyLRwBUMwIiTQHNXOvs97U4sLJYGJNgPh8xgCvw/EQGMrbhbIrN6anIImM1sthmeV9ADOA8xDg3YYLO4ZterK3puq/FmRg4+rP+tzxBJqwQLb3we24AdB9y77fhogqDEbA2VvvNnsG1uAtgFs6apeGMioHgXrqfMVDmvmd1dUPYuW16rLVtEM70ZOj1NeGsVTueINVECMzNzIQTjOXqhoCNodoXaZH2GHOVjACZKgTE2H22xYVKPd8mPXdR5Lh4bfdXEYt4Be7et0P3NebvTa2nL54762vI3Gv5k0Deq5F6Lusry6Nl+YQ828VRKodngk6Ug5QwDC3y+94wDDtFCSh7czTO8VdVKfrrlqjxt4POyRgqYWcajFZQ9CFipNtKkA6Qu9vUIk0F8mH1YjXM+0B8RhOT016OqbtVk00OVTF1sCxquJmHYuzMV9rWklTewYdF6k41dz0nt67nw+m6/Z/rYZcIHgAkLeyQyesRbdNS6P4H6L5YnFIzVu9i58zu9F6zl9czxe3r5oX/wbxpU2LnLOU00tlOo80GA5EYIU1c+r0hsxl3+WssvVRVCka0wZKE2MrYuMElLH34XN67WhmY6xHgYcrMIKDpRxBTBje3QpM/XQ3chhv3p+qxJoTQm86g6llgF5w2SYDX+o4hNGisS3aParkH4+Cy4t9xHsLULGE83+HJWNzN81zMnIrr2V4goGTWxpt4K/cU6hUED6eCj4r6eY6mW4VZ+2iGqsXN2cqALGTFCThpte6XRYzZaU7pzm6SGdkkLExLivhyWAxQFjUMYy138DMA7uN2ilkSk9C+bOrv+OOG7/gzl48MviZKYZPAblyIM4cD3OGacFEEOHgK6y8OE3TCHe7olOMGBIVhWIUsch+3JWqYL0NccFYgNssZus8KPHjcGI1huNFpstnGDO3Hjc58xJg0FbZBuHFoAez78RxEjQjIiLIuHVpvVNY6DQcGJiFtK+LDkGHDAMQWxJg3tzi7Dls5L9LvLf6jRrdtgS4Vj8Ew4GGCCyaYsAoPWO+Pixc0aztScMnoKmTFPw4XM+iGJ3Hdo/20Tq/HgETUgDeRAQNsQ/GFJgNAFjtljEGD9qXdtz3IfTemyBiaJtzlLRkBw3l67Bbts3HI4h84WDID3GKfDHQ0a1sH6nl/gxdjb9bhKnl1OItkYhutiBFvzA74HGJxYM04y9MW2bYYs/34fTfQZJLcJsBgogkGbs2FzvrZ+tpc3ozhBLnvJrVtDKABjWTk/pqCnS0QxCP3dK1um7tnHQ6qKpD3aIu2qw1nspYgc6o9nwaItuk9MaBYhcfv7cMXB67WYy1+yN7LK/X8r3IUyqczQSfK4ctzeFCAlWdx564vUTlwxduWaPKQUda+VwrAjEuQAWu6fs5HNFtX6vYl0HPkdgp6SCD9exvGMz5tCTVkUUQpaxlGIWWUU0gNmQBMZBEX83wsJihpTQcPFf0DN2+UdE5103qR8dNdDGsSVYHfZl7BNeueJqlNVgQ+ngBdR+BGcS/97kbdroaqGTn0/mg1l+QrqtkoEs7GeDyzYjqXj5pDlSa86ZmzneuZRdHy9wC4+7v303B5HwE/AI8lCNugsTBLv3uugBZzJ3gYATyjEXcykMHp2RBe1FgWCxiOMj9v4clQExDflx9F+r0Rj8caAayB9+oUeI0LBXi1BqyuKWB4cRmrnxlND/byvR2/AuCetLt4jBk81SQ3sHfXbdxd8COa6Sl1JMKZpR8wr0hI0zNLVZBC47HK7htONdkxAPvK9LP4+sQ3XLzhI6ANPiwewsmz5H7VzehFPf1pS5H7e+bGD6jMrY+BoEryGE1ZjPmR74bEAOovK35IfEYT7S8KiIm/qknisfL0XlQliENqlHvtg09ssc4dgC8h2/8vBvNzovx1ynEDgoIgmM3B1XauOQbNOWjpgkwf2YgRZ65B7yPGsLmVdUEMLwMTlnvFgubXIMboGt2vGy4YMAxZpU5DxtMJyJhoyUONtanTz0m4sIK5daXirkwWfG7JKMEB1NnI4s63EMO7RtszAGdxLLi8End7MwPSDP9kPIllGm64grtRGchoxeMpGnGjdSTOYJlrYSNiHK9BDGBjDsDjUfrSmYH5C0IfWuC6qZOZ25oJJaTTeQW/GZfatpKHMxz7cGW6RDw2qgUx1vMQ8NCBM2jbdJ+lkTqjSmTfwcUxzGUuep9aEKarGmdE0hAgAO4OZwl4uyDDvj0fFttSF7kGA0wGStu0z03kIVWP2YUALgMzUcbIXCXtuVqFPEv2HKL9awIZiTh7ElVCzNd9GxG735TuLG+P+cLux90fTXnOnk9jLEfo5wn6/R6cGbL8TOamV6H1Z+Auoun6/SBtQ4n+GRNqroV1eCxXhp1iWIUAACAASURBVPbFJmQMOCrlREzQ5ypBEOQDJyP9E40LsjWVL2GJugGBq2Wl6d+WyH7dnb2YoqvpL+j2OHzS07K7pA/vjRgPQObgqpjr0483PMQ/D76ZUoroRz2jdam+gXRGsjK2X92oXlzNbD7KVbZh8VYYCl2VZ7vmzaehEPZMVybozQ4YCU9NEYnsKxc+B6eDxt1TOW0gleTx2KQZzFooATePzZhOAm0xduL+UTcxmvJYm5J7NDObq3nhSVVeu1Tih9IzxK+sYdoA6RobqLYjA5cBlseQFakqYGkbXJggg+m2AC5UU2Z34MnIrFj+CYDvqRCCMUGJdE7hNCKEyoD0iXKvmhuTaZ+eLOcggdUUwPg2FnRMob1VAMiP5/8rmVM30rurjNr39LiL0ZSxVhN03J95EwWZFTGmiFL4eDqsvU9YuNGLVzP6zdXU3Snuc19/4A34F5x1eRM+/rnk+uF0+Spj7i4ytn4QiysqGzWcFnrE2KY8KmkmmWrVFrmXu/hH/p1FHXL/ryt4hMdrro/lP2pflUL6j7bQUKeUmblz9EEG7weRledOb3Z/xBKr0u2RuEz2F690EBeLdztRPn85MHfksSwvIusjLyHCiCkI+XncFJPvbUWYhOX61wVprCU/7YsYbcaG7EEAzSZcma0ZMTQ36G8tyJS0DI/vGIS8zl2QpU1Liglu0JkIgMle23dv44arGZEmtGBG9SZkHDFD0Fzm1uGxI7bqb4oVBTg7YkauMVqW6NRYqHU4K7YNYQ26EBPQiYGFbrpvmrYjBw9EN+lhAwbmemfMVqPeA4v/2IU81AZWbN42AGDsQx4C1sxoB5+XLJdTJQ467UVpQYbUgdrO/rp/JXLvahBwVa7XV6/7ZCELhvW46IO5CpqL4w5cyMKARw7yfJjCm8WMVWnbExEAYEIE8VqH3Yv9Wq8JXaQi96Qo0pfgYgUNeKxOh/ZbiR6Xpte6QY8xt/1ukWtP1eO24UIE2bh4hsW3DUEARfR96MBjzuqRZ74brs6GHmsLfzX4M24xQNXAM3qMSYPnIK5u2XjyXHtXG7SOOFyie6Xeq6/q+fYhz8oabf9IXDre3lWLKT7iYupwh/rTmKATAOgTZRgSnpmKxAXZ3xjgu8ewXce4RN1/LMJxCzKCDCCmEtc7Bc5IgcwUGcxSkUFuIJ7v4UP9a9MqE9shsZ3+1FNIOfX0Z9zgEn684SHWMowsaqmnf8w1roYs0mlgCKIk1nvjXppJ5qRZW4VmfVP+Pp4M/AToBUl/6CDpDx3yss+TOJ90GqANVqYM5/5pN3H/tJtIp4HJbS/xUNvN7JkQxyuTziKdBp7hch5N+QfOTlnIdtIppSgGBioZQjPJXPad30ECxI9tYtPifBpKBtBQMgDuUpW3Prj7GkBiKH+r8KfsrgR4sU365lmgMoC5AUxvE1bnAu2zsXiysd6I7HZ3YkpvbARK2nz16f0A6kQNrqGuD8mpzXBtIJPCMqAxgdOySmm4ewB/zLoUWuPJnLqReNpob43nlh4Pspav6P2o4VXO40cPPMwQ1nPNGsnhxBTo+gc4+er1nHz1ej4q7kfZncNpoA8N9GHerVOoHDWQumm9qJvWC1plf8AlMl+F3868Qhgl9dDqQQvJNNNAOvG08xKTYzEsz3Mx41lMw5oBNKwZQDmjOS2rlPjENuIT28gs1vigZQnyl6h9tlkf3VtwtTjT+Yg94+afuIXO7M9evkhskLnDHe7vRPn0EoThMU5lcIgSBEEcUBKG4deOdVusdA2C8GI8D4ytAg/CWZQq5PUzgYJWZKwyVcxvIavGlcgqvwV6b8KNe5PBzkBYkQI9pxmL5yGuPQXIuGDJL0doPXn4ynkVYgWY65ixK2Y0g4sG9I9sJ+kxwyK/1+CMyjAk7sXUQs0YNJYrFRdESEbG7GHIlLtfr28bbjw26nVZn5oLHXpe628TTDD3QHNNrMbdp67D8/6Zq5UxUdbHJchcVYO7qEVd1cxl7EAVOHCGpBk3wsGlsS33kIlTFOi+liwVrfcRPikiYa5W1t836PmGal2DESPcjjFXQmNnmhEAZl4by5Hn0WKrqnCwMlDbZLLZFvPTF5nHTLrcwLCp/63AY9LM9XAXrnbYgTwnJt5j96wOF+LIwGOhemm9K3F2y0BnG/5OWX4oc2czwQ57h9pwFUGQ983UE/siU+JgfKF1A/6cgjOd1hfG/CYiLNEqJGb5L1qvgc5WxH5rhA/CMDRHls9VxvYMwmUjDv17UHrk5/gilyAIzgjD8J1P3/OvXyRP0Ixj3QycCbIlnwH63Vm6repwZh/aCrv5ro5HXs5TdTsRmNgmxinEjO7RlMeM3GaSGU05Oboqfzav00IPViLyb5fzDFXkMHqFsDQfjhpCI6mxXDW9v7cXpsOeQhkJqhJyaSee0Q+o8tcEbYfaeR9nwcspk5i6cSHzc12hbBETYy54lrDTykhW8oOf/Dvj7n0NgKULz4U10PNaFYB4tk/nwf8iJFbH/LzHIgO9rUSB5Al6Dpij208gg42pw52MLPPaZNuGCCOYX3a2fja2yVwQn9L/5g54MqRfKuzQFXFPU0qRMDOxaqqZxjMA9GMrjaTyBNcCEp9TQxaX6+9fn/MGv51+BdcsfNrb1AvmFWsOptIF0AavF4vT/9lXvCOS2aXApXLI65lnUEMWlar21p96WujBzCZxdyxJOYsE2joB0HJGU4mwTwVUsKSlmIRElcx+fwDxQyM5mp7CAU9UMW7Bauit7pw7bcnxDd1hR+QPjr9kqXcf0Vjee+zg8KxlPzvsPi8E3/rSzRdBEJyEOG9uB/47DMP7D7f/ceMOd5AyFDjpWDciWrrjcQ7JuILUXxBD1wKxzXVqGB6YPwl3RbKcNlF55P3I61uj3+3ADdQKHNTkISDqVJyJaabzCrnFCRnzU4Wv9JvxnoMAqQz9W4e7QqXjeY+G4oAOxAC1aaS/XnM2zkBYfInFn1jemMF6PdZfHZG6kxGgZixLGp4wtAZZhDSxBbvWOGR132J1TExnAwKiTDBiG26wW4yRyZhbf9ti1i7Eret1vGzGwZe5v/XFXRkbcGU9yytkcukGkHbgeXtMUGCDnj8JF5RIRbwm9uOgNfmAz9m465uBJXP1Munvkbga3FdxEYf1OMAwMFiA5w0yF7NqfE7fgbubmcukgZ3XEc8OkzA3IQ5jh8zlETw+bYde5xY9rhGZ54fhgH4HLupggkBVOLgu0PuShQDxUQjAK0CcIeK1bzdp3ePx2KNVyLO3EAFfA/ApslnbH6/1XYK7R/ZFbJ638YSvlvIjWdsQdaX83OXT8wSdKAcpQRDcGobhA8AVQRB868DfwzCceQyadZwVe9LTkDggkxLuDnubIFcNzj7IIDZEfzbpxmgCy2oXDGAq5LGeVBopVZ+BHDZSQEUsrsQSpfagJbZd1PQBH6tkxcmL1wuL8HOtczgwH6qKZIeTf7qesjuHU3mrOO7G005623aSdojvaNc5MLV1IZW3DmTqQhEIuGfSbVzCs1I3cEfxncypuJ7LCn4HwA9qHuKie+fywmJ1h7sJuAt2VwntE39hE+11kUD7q5CB0Fb+HkQAzSV4ws6ngNl43yQgwOla3f45shoUFT4wv2QQF7tLcPe57cggqwp9pBKbeJsbxZ3tlzf9kOlPPsacCgleOqfgJRYwlVlXi1tg3exeVJPNPyuyeoGLGc8SEvSkddN7cU3p0z6A1QDXE8vpw2rgTTi7n64tTAUS4aOZ/chq2qrNamQI67lywXMAvDXlFEop4vkUAVIvM5lreSKWrDZPM8qerYBlzoYZnDP45RiIXn2qXp+Gd7EXlyw3k34zcMbwiP5BGrLxxXR/O7AcDXW4IAiygSdxb/7HwzB85CD7pSKQfgQyS10ThuE7QRB8HVnP7QI88WmA41Pa8luEzd8ahuGIyPf/03N8BXgpDMNZQRA8+WnnPW5AUBAEzXSOCapDdFSOm2LsQwtivBlDMwQZ84bia20TcdeifYiBWYYb9dWIITYIcaVbhswxoxBjbBSi6XoqHg8yEgdZ0aD3ZDqzCcYiDMJjP1JwRicDd+1pRoxiU7aztlrQ/jate4/Wn40btsZK1GkdjXpOc5WrwxN/mrR3BS5eYCv6xrwU4QHwu3B3pyrEEO6LG+CNeswe7YvROPjsr+dq12vahUt9Z2i7CrTtZTjoaqYzALJi/WyuWpYI1VI5HEodbBhiTBvYWKl1bEYWW1v0vEk48GzHld1MqAC9hq/h98cEIVbhOX4G4ZLcBqzr9DzmtrgPFzjYj4x6GVqfuSNWI3OwuUiaKmKi1lWAsE3jcCEPy6FUgdzPtyPHpiAuauaCV6H790Du3Vd13+W4CEWyXvMwBMwkRb43oQQDbzuQ52MdLhqyS/vF4nvycPGEwXp9puwHAogMtF0G/EGvsR1ffK3AXRkL8RinZXTOonlEJeTTEgOciAk6eDGLftlh9/pSl4PlCgIYLj/ZwL4KMXVsYMvE1U+AnjdtZ/eCPgy/XXPXVIymOSeZRY0TuSFLJLJLKaKabK5SfemHuJlqsmNqYqUUsT2lFxkbZQnq40LoalQ3iMmzDE5+QIxlhsLohasdLPSDD4uGcPIy/X0CvDXqFHrQQt0kiWUpZjGlFJFc3Bw75/SCx2JxKadllTKTR9leLJTX0kvO5ZzLX2LRwgsAaH8hhUG3r2FTjSK13ycIOLScQNOBbyMCCU+o6TIykN8tpueRNrg/wbva5K+NYUpFDIg1kd+j+Ymmh1ASeJLYVBGl2N3Wh/S0BmpLc4l/uIk5z1wfY4aMEbpj9p0ADGE9EykhY430dVF+KTlUEd8mnZn0jQ52vtSd3onSyJ2jutN74V56L5Dtuum9SP5WM0n3CuCsu68XGXN3cdLqrcybpmxR7QL4SMCP9fUVPBVLPDuSlTSTzG6NQxrGWurpx5wazcCb2M6imolkZomvRMO8AcSf2+QJei2fEvhzWkfnlEB0ozMA6n6Q7S9OOUrqcB8DPwjDcHkQBMnAB0EQvBaGYcUB+z0CvBKG4SVBEMQDPYIg6AL8O6KJuBl4PwiC+QceGwRBP2BvGIbNke/ywjCspHOZgzA4T0b2O+Q5giAYiaQqjpZrENPsjiAILkcyjB22HDcgKAzD5GPdhk8rATIGG+hIRYzmOAS+GtvyF8TA6o8sWrQggGc0YsyVIIwDeND+Zcg8U4EYc/mIe1glYiRuwOV6U5H3Pxlf8bYg8R7Ia9+ADAmWuNNcpuoQY9NiLUzxzlbo23EjugIxPC3mx9x/zOi2GAtzTTIDcUdkX8t1k4gnhbWYoaj8tLmrmSucxYWYOpfFEBkQNdctY8vq8XljKR4XE1W5i8eZN3A3MROkONCHxkAhuJFvfbk58r0FyRtAsdgbu9567UuQ+74JcZIxZs76yOKBTE77jwjgaMXjcAbhIOZd3CUtEY+vMcatGw7cLKdSHQIQDFCg9Q/Q61gJ6rDizGAFAmDeQebiZlxFztwlG3DmETzvk7X773BXNnMnNKEKi/cxt1AD78a8xeEy4c24q2SBtq1Z+zkeeXdStJ2pCGtq7ph2XQmIjWcsZDLybjXrOex+Gpu6EnmPTZhjJM66ViB2i13DEZdPZ4JO5Ak6SDFAGIbh7+w7danuGYZh0yEP/NKUA2MjqoipwtEEGSnOZuRDJ9tqNRL3ot/tLulD/LlNJOsIPrygjHS2815rEfM1TdPZvEEZhTGXqxqyqKc/w3UkLKSMBNpjg3HXx2Dnrd3pPVXbWQ7cC6/86ixAAuvzFm5m3hQ1usct4OTz1vPWnWJ0F1DBmXM+4KPp/WIJOONpp5rsGOipoIAhVMbyBI2mnK/VvA4v6oVNg0UVFzggaYVNpfkxV7T4u5vILKhh0wJVStiOAJqBIg4BUPtCLvGrIm5cc5Qxi2oTTsSFEK5FzDQDTQkIw3Shbt8dyOBjzNAlsHtlHxgYUluaS2bRRto74mloS+GbcUabwHgWx4QPctnIo9xAc75sz1pwE5VTBlKaIKzdlT97jt4/3cuHd6o8+eL1nSRUG+hDRs2uGJuVsXCXrALdAZMvFpm71zPP4OyV73Dmmg8AaM5P5gUupj3CVFSRw0WqtvE8FzOREiqyJBnB7o5kesa5RZB5+UZq50eU7auRlay5+ATeigB0G4x37kNmW3vWt3Bw97cvhlpcSPBZmKA+QRBEF4YeD8Pw8VgdYViLSqKEYdgcBMFqxByIAZkgCFKAYlQvMgzDdqA9CIIzgMowDDfofnORqf5AADUB+F4QBJPDMGwNguC7SDrHyZ2uJwwXB0GQc8Cxpx3qHGEYrsTflFgJguAW4C6t71mEmz1kOW5AUBAEi8IwPOfTvjvWpRUBM6sQg3IY8k6+gxhJFjhtwGCZfmfGogXV78NjdHJwA3gdwv4kIqv6I/E8QRV4BvtsPJh8Px7bkIWw2pMQY/erSGKLgsh+KxCjsUX3Mbc1W/FPR4w6M2gNPKXq99WI8boKYQF64AxRBwKkzJ2pAzFsh+KiDHGIoWo5ilr1+wzdD5wlshiSLoghvE7bbczOMP3d3MtakDlsKB77ZG5xA3BGy9i2aoRxNwDUX/fthi86gru0GdABd9cDd6lD642KAYELCixDFrcatT6LaTHGy65hj7axHXcFtEVSk64ej9wPy8NkLprG2PXAGZBWXJRgg9ZlbmwWy9UFl8dOilyfgQhLypuAPE/GrJirn63DteIA1/SoNuA5rExS3URGWnEBDotrG4O4a2Zr3xj7ZTFgzXptIM94Ki7EsV/3+TscQG/T3yfoNe3QazCFOHO1M/HgLbgAiDG12bhEvC0u9EcY22h2iiMqn84EnSiHKUEQPI2IGu8HPkCYs4fCMPzFsW3ZsSgHGnsHJkuNyMK0AmZzNiIDvhnuHyKTnklI5kD7shTaJ6nr0sLRjJv0GueklVDEe7zM5JjE8mJEQS6bau7nx/SeK215ZdpZJNNMUZIYzV2B3msiRul0YA98feMbsn0Z8J9i3AN8uHQIJz+wnqImOf7RlH8ge3o1RZTG4o7iaedKnuIO/g9ATI7Zymyu5vysl/jzhcL8cH8C3BTyg5n3AfAyF7C6pgCuFJDUvi6FTW0pnWOjCoFpUHupdt4p0P5YCkwTZqjw9lLKd57eeTIpx0FPIx5zhd6WW2BQsSCxTXPyyXxyI7U/0fr3QmbRRmorcmER1JLLaUWLaUgYEMt/tIRinor57MF2+vDgLXfy8U+8CXkrNpOXokt584ENkNOmKHgojM9cyPxcyVhycsF6yIWnXhJlvvG5S0TNLx/KEyRX1HAqPFEsAkq/XvsGr2dKHFEpRbTQg/5KL45nccw1DqChKovxg5/hhWfUNbE3MiAbrqvSvumDM0KpiPHUyX0jB3/ODQBVRra1E788ZftnjQlSADIaDnhRZNrdBswOgmAUMq7eiEzvEY6YzbiGVqyEYThPc7XNDYJgHsLWnPsZ2/+ZznFAeQW4OwiCKzh4sqhO5ZiDoCAIbDG8TxAEvRHCBcSuyDrkgcegdMWN4z1I40z8IBUxBlcgxp2pj7UjhtnziCHcFzGQbfW+ADEwS5Gn73LEFWcgMjaWIJ0zBncJ+wti4I/CmZDoCnsR8qT0QAzWCXr+M3A1uTicLWnEjfgmbbMtrpi6mwGADmRhyjwmjG2wOKDouoQxPgUIC2ExUv0RI9Lc5HboNfTFE1saG9USqa9GrykNl+zuon1/IfBo5Lxr9B4k6fUYWDSwZ+zBWCQFhjEM9XROcGoiAiYWYQlPEzh4ItVhyL00AQnzKDEWy9zK83E2xEBaPC4CZnVH+WJji7JwEN0Fd1tsxWOvDNyY8W5Aax3yHC1HnguT0ra8PIm4twF6jCXqtbioXbi4bj3yrJo0ezoOYE3dbrAeV6LX3gUXH6jCVeAMXI7Bcx21In29FLnHy3HXtS76XT1ynywPkam5vYrYTr9HPE7ORp67LsizYO2wXEOJyP2N1/vyZ9zlr1n7pT9yfw1cNSA2kSn2HXE5ERN0pKUgDMOmIAiuRNZ/bkMm7S8hCDqUsWfGob3Fw6E2EhOUiAyMNhCMRV4QU0irAsa3kalLQOV5IaMpp5lkEmhjMi9TRQ5V5FCsMUFyWA4V08RfIJtqTl6xPhYTVHbrcEYvWO3BiLra9rGuFXf9AVAOCfmSROvk2vXwJmy/VfzEbl7xH/CwxL9cv2IOAL8ddQWLKY5JYvdjK7OZzkQWAfAq5/Hek8UxoYNxj77G0sXn8i8v/pP3w1I8nmcpDL+9jNXPapLYEdqNsxH9wXmR/lolZkz5nNNd7MD6Lrp23V/rWKvbVwIJsKlC2aZn26idmetiDN2htkbNoo3AImgviodMYolqa5/JZe7ll8cYsZLaC8l6cEMMGC2eUsxdC3/OR6NUnjx7K0xQGXKAP8CS2yZ5G/8L+D6co74WGXfsgm/DR/f148zaD9iTFkfSxg6J6dI+aB6VzCuZBWSr/dpGAm0kxNipp7mSeNroj8QUbWIYpRSRebkAsfaOeBqqsiAj8H5bqn1umcNfRFhKA+8bobObZ/QZ/+KVDuKOmgJcEAQ9EUmPmw7CnHdFpuUbwjAsDYLgEUS64/8epKqDKq2FYfiAsji/AoaEYfhZlZ+Dg3x3WDW3MAxNw+gzlWMOghDPoJvweGMrTYgv4HFTWpDxbAFi3L2NGGNDEMPPlKkGI0b0BgSs1CCApQox9Mbpceauk4NLNzcgCnKlum8CHrQ+CHn/i3CjbIAeOxJZTBqAx/p00TYvQ2IZ63FFsWR8LDE3NsvTAoJATWzBmKMdeu6KyPYuHFgYExaHg7IkZHwfihiWZjAbcLKks12AP2k/ZeAxIO0ImGnFhRf6al+kIYtAg3EDtAAHUgauduBpBqxEc83cCPxQj+uFGMLmomaAwu6BlTY8KW207MBjoobq8RuQZ2Ci1jsAB6GmLmaxTei1Rx/8PFx4ogV/JhrxGCcjD4wxa9NzDMJZoHS9tv14It4s/FkxsQ6TBO+Fixf0xUGbAZBtyLNfiT933ZAX15iVBpw9NGauDs+jZAymudKZbLbhAHMtNLfSUxHL1qTVd+GLqKcioKYIeTfPR4BMgf6+FmdoLT/XYOR5tBhwi7czIRBzvRur96UDeZc69Lg45F21cxyVcoIJOpLSLQiCboiW17+FYbgvCILjUwL1b1a6R/5AjMMd0Pt82dxZBZk5vnsqsmIRDcbPw1+0oUBjAu9l6ILstoD6wf1iRjhAPf2YyoIYO/ESk5nObDLmynLbK9POglHEkqOOnrNaXsbIGvRbd54SM6Ljp7WR8cCuGJNkAYYJlln4XmAGJLc1M3+UGPDX3PE0T933zZg6XC4buZgX+MFCGV0zJ22EYZB+qhjKSx8/11enQFYSr0WsE2Dc8tdY+ui5DmLqkEHldP08HngMet6znd0TtS9O1vpM7e1fkcEuqg63HlePewsZ1Mzfeno8jIX0q6SNDU8MgBsTUIINNkIh5cQXt7NogyDG6y5/hMcfv5G7r5OTvpV5CjOYxWIk4epoyvhoUj/PE7Rgq7RJhcbqZvcSoKP98NSd3+TKqc/F7m9G4i4oh5Pmb4WNkEQHb/3qFPpTT/xMuR/lFBJPOxU6MhazmLUMo0wjLKcwnwoKKG8RQJk5uIp42uihAGZ1VaFIjBuHYa4ov8f739SPzI2zdzfYGU16YcupUYn4L06RmKAjE0YA0PHyOeCpMAz/6yC7bAY2h2Fob+ezyBP9Mp3DYQfizjEHnmM8AmGfB+4Cvv8Zm7f5s57j85bjRiI7CIIbwjD85bFux+FKlyAIT8WD+EuRYPU4hFEuQgyrOlzG2WJxQMbLEbiBWI7czavwnDiW4LENV18Dl3xuxxOxmsqXiR8YQ2SxDDtweexmPIdRFb7qbVK/plhXqt/ZmGMJWPcgzH87zlq06vXs0vra8bgoY1UsN48pglkcTAsen2PB7UO1bRdrnQ14TEsHDlD2RI6xvt2EvJlRoHIdwswY+LGg+VQ8d1Kj/n1b+3ATnyzmonYw5icKjky9zRxiLb51GH5f/k4/GyizmBtrizE4s+kc4X02Mj+b/Pkg5DnMwMUkqvVcFTibUq19twdZSLM+t7aaPLaBpH04mNmBAK423e6B3NNEhD3LxwUwRuHy2mvxPEMg981c/FIRW8piqAyM5mjbLE7IWLtteGJai9+pxEU3DKwaY1eDALv9eu1JdE7Wm6/Xa4zZm8iiw9t4vNsWPecgBEQZmMrTY0yG3u7jBu2794+GRHZ8EC7re+jfg5oTEtmHK0EQzETYnxVIdpaTgN+HYTj+sAf+VdpyrCWyDwwEjyZN/Qa+5jgG2CdGJMiE9CLyUgJMQ6h/Y4auRQY29Vy6qGAuJS0TKehRQaHKxWRRSwXDYyCmDw0sZjwzkSn+67VvCIPwvI4Sw5EgR3VJ+PDWIWRRE3OR25Or+96hbXgYmXyMfTkduBc+LBkSMwxzkCSuQ2uET0/P2M4Ncb9kiSKIRc9c4IGCQGHBu2RSw5/nS67di6bO5YUx01zJ7UVkkJmuNpPm+KERkblG25+Duw7ejwyiJus8Dcl+aL/PQSaKnrqdg6yyGvv0hH42MYZn27go63lemD+Nwqnvxtpe/szpnHO5xOcY8KhZIw7Ud+TfyQxmcdIaYV3G5y9kyS2TeOpBcW+7qO15kso7KDld6po4HwEf66xyoBX23KiJa2/qYN6vpogYwnzZ5eNvSd4mixPrSTNLKP6Ekf4oM/UyN9JOQiympYICerA3BpprN+RAa+Dg8RJkQqzFXQt344Gx6G9U4c/1XjozQzv4Iklk9xg7PBy27LDhLpQHZxz2HEEQBMDvgB1hGN50mP2WANeGYbg2CIK7kan1x8B/A+cg0+b7wBVhGH54wLGjEQenCxDI+ntgQxiG/3SQ8+QAL5o6XBAEXT/LOY6kHHMQFATB18Iw/MsBWb5jCh6GeQAAIABJREFU5RDI9JiUxCAIT0IMTcuLYy6reXhyTBDD7DLE8KzDGSGT/QV3C7Y8J2uRsWcF8l6b2lo1YqBt0fOa8RoNxjaD0GJoOnD3OBNMeB6Jn1iOMwFm9BoY2YMYeQZWLHdKEjIW2iKZxYBY4Hpf3LXN3KGyEMPTDNR2PV8FzrDswlf5q5GxzmSkzcXOmIkkvY61+t9ikzbr/3u1rh14zMb/xhXlLM7FlOqMlQCZ0/+g7azS3yzfD7gbXjRZ6oH5g8DBsRVLqvpV/c3cJ62/G/V6zEXPhC1uwgWBWrRfLPi/Svs/DQHEHXjeOFP/szgfc5WznDovIm5w1idtOLDagzOSXfSvFY8P26XniCoI7kHmpgvxuJ8GxKwy4Yp25BnIwYUjwPMsmTx2NcLIVOh523XbnhtTrmvVPjsbj9Wq0LpScNGHMYgq3Ug8/5Q9l/v1WHN2Xhq5N8l4HqH3tY9zEKYySbffx8H8OOT9/rejAYK6BeGy9EP/HtRTiRCgJ9ThPmMJgqBrGIYf/+3PeyxB0IHGXhqdYyUAFTGQGWE4ZCo9kYPgJPMkmo68GCaT2AqDJq2JuWxdVDCX7aTTQB+GqV9XFTl8hbUxCWQzbi0PUDPJXLnmOffDPknP8YBsfvxzqEoZSN6jMsqW3AgTB+PRALkI8FFvoMcmTaeIUkbfshp+IN/VZfZiN8mxmKAG+tBMcqwNr3IezS3JFPUojbWpfEch7bepW+B6ZCC2Sf4SyYlU+9Vc75ccYZRqn8z1vosu5aYCI2HcTM1F9NVzO8cE3Y+wQ1GS7lJcOCETGBgSnyrgov3FFKlzRAhLxVMo/sImklObiY8TFiaeNq7k6VgOnmcWT+f14jMoQ1iXduK5oe1REtoEgK5MGc7ouatRzzSZIL6FRNaBPCbfh49eUve5BVuFA5hOzCD4OFcSqN4y46cAXMwLvMzkmMx2DVk0k0yWLuI/z8VUUBBTsquggIaWPhT2EBC9dLGGjDyhbbCcTBmggoPiCjcc993fqIl/eUu/6A68h78HA4ixoMdFOTIQ1H1sQZi77KnD7rM6GPNpIGgcEn67El+3vD0Mw5eDIHgZAT41QRAUIncjHpkarw7DcGcQBJORJYkuwG/DMLzvIOc4E2hSIQNjnqaHYfjrA/b7A5K8rA9iSt8VhuFvPss5jqQcD+5wExASY8pBfgsRj9TjonQgRpNJAXcghukExBhaiYCL/chYaKIIXXCmZQNieA5GwM4EZIztj+f9sfgik5FOwRXW0nBjLRtfsBuEszeNOIhI1O+TEKPQlK8q8MDwNDwB7DYc+JiaGtqefDzPznKEkbfV/6g6nbmrLcVjfZYjxmgLAghKEMNxWeRc/fEV/xrczQ4cOFg7jVVojrR3rN4DA5k7dHsCMte2aP0GFFoidZyn7SzB5/4Dh8rNB/ls99TKgRGFQxEAMxSPRTEXtA10Vvs0dqRKvzP7YDTOGOXg6mRJkWs1ptAAEXjuoCxcsc8EBHK0zibkHliuoWrkWTUgGqdttZw47bhLnbFFE3E2LE7rNvCYoG3bhTOkBo534IlfK3HmKkv3NZGKgXi+IovdOkOvf5Xu3wVXZFyln5chg8oSRIbGnntz10zFZcin6ucCPCZrOfKsGiM1Ac9j1IHYY8u1/W9zFEvHYX89oQ53mBIEQS/E3aJYv3oTWR/ZdciDvpDlwNXuHbhMibnGqbHY/fzOvsJGj5+s2/mIYpm5cH0ImxLziR8hoQMvbLicQYPXciVPx1ys4mkjm+oY+MmmmmaSiVf3tWSaKcsfzujFqnG8DuYXT2JqluT4KUk5i69/7w0+1rxBE1uBfnDP9Ntix9+88D/ge/L79ffNkRdykoAfK48yMwbEKijg0QduJbhKrObCrDIaWtNJ7iEAY1HNRE7LKqX61+J9U1uR60wOwI+gtiqX+BflujPTatj03Xxq5+XCj3Ux+bZAItDMRes+oBqWXqpG/d0IsDJAORthemwg74NMQhdqfdsCmBvQ/q4Cs0K9N3kBtELmdaIOVxhXHgM91zMLgGdqpwMwo/hh2klgdu33Yn1NDeycJshr9NzVkCR5fwBO2igxQvQjtv9bL50SU9XbMymOpBEdsFAYIBDAWj+jPw8uFFnusknDiaedVJ3hFisrZCB5GGupoCDGHG3aMIzLBj/JHyv+HoD0cVtoWDrAGTGT6bTP4ADI+jq3vwKhHP2iis7leAE/R6d0EEfLEcp+h2G4lIPH3RCG4eTI53LcOTG6z8sIJD7cOd46YHsf8OuD7PeJ/G6f9RxHUo45CArD8C79eG8Yhhujv6mixHFTeiKG4ps4i27GegViHJ6PvKsmCW3SylmIUVaAG6QmlNALMaaTkHlmqW6fga9QVyKAJAN3aWpFjDuLAUrX9piLchZi0A7AwUyL1mv5fCxB5FA6gztzOVuj11qvdXRBQFk9YhjuR8bUCxHj03IKvYq7e3Xotbbr90WIJ8PvtT9q9Bwm8WwKXwbYzO2tGh/ejImoirTDAuyjUtfL9drsfu3CFdD24cDAQKW5z72K510ypisqIGFlwwHbI/R6TPXMYpxAAEc6LiceVWsz0GpsTbRsRu7pqbjCmrmGNSH3w5igvvpdPh6TtgNnj0w63dwCTVihCelfA4n2DFheoA5tn4FGExUwZUG73kG6XYXH0DQjz5yxhFW425u5sqXpf/XwjzGU9bgEvMUS2TP1J70+EzcAj79KQxiuJXgeqiq9lhL9b1Lk+xCvjnHa128i72QSrkC4Teuw+z8VT7y6QtsRDWj83OWEMMKRlt8it+Yy3f42Ymoe1NPgi10ONJC2RL4/03/fuw8Su6nEMJDRTV7mRbp7A5KNw3yzp0F8RhPtrYoOEtvJYz2zOmYwJU7igJpJpgd7KVf2IZtqJvNyzD0qmWZGNq3mrWKRoCtq+oDTKI0Z3hObBAB1NTaiHLgR7vqmoqIpiBH8sP4+Fl7JPIuC3Aqe1WCm83iVLGpI19kvixruuPVOqJB2fzvrP/lZ6u28sOFyqePFgPKrCmnXJKSUIK6BVXqOH0vOnvYZAkg2ZSor0xuYqHbkVciqlznrlMGgeWvYlKVCB9/GXedABo4HcbXy1QgDleosT3u95CsCkeweVLSG3jSSWVDDnx//BqyCRakDWHqv2KjPcDlZ1BCsEyC1LjObZpKZkSmd9cPMB8nbuJnZmoQnb1ol41kSc6M7qW2rtMfc4a6CM+/4wMHG9cgE+X1hfwDycjeTN3IzZZPkQjKpoYhSKlWcIYE2LuFZZikzOp4lFFIWez5OG7yERR0T6ZkjzFDD/QrYzW3wWe3XEnzlMB9f8QPY2ITLv6OfozFB5hr3pVSJO1EOUY65O5yVIAiWh2E45oDvPgjD8JRDHfO3Lr2CIJyEjA3peBD+HxEj7x0EBK3AA8lLkUWVdxFD3FgcS/RostgT6ZzU8l1kfLQklUl4/M9+PMbE5I43IYZsBs4GgQe2m2zyDsTAq4kcb8DMgtC7IMaqBcpvwI3WPdqmMbhxby5OZruZQdqOG43Jum0B+/XatlJEztvc7AYjQCfKTpnLnTFxVQgoNIbD3LVaEHfqCnxhLQ1heS5BjHFbI0zHwYC5VO3Cjfk6xDC2JNoWK2KG8VgE1EaZIAOjg5F7Plj7yeJ8LLrPWJw1dHYt24c4567CmZU8rWuktmmf/jd9yS14bI65w4G7Klqc0Ovajje1f8/ApcvjcBezMcj9a9LfqrWvemi7tuBqfyn4M2OspQEbuzcGpu13Y+Mq8PxXyXjS4HV4fJm5m5lk+VDkXptKYQ/8WbXEsfZsJyHP1tm6fyryLJRG2mzs6nw8p5TFeA3VvtqhfVWj9YzTfluu2xPwxYk/HQ13uC5BuCzp0L8HzSdigg5XgiAoD8Ow8NO++9u05VjHBFkxoy8tsj0cZ4bSJB4oRzdtIDGXrVrkhTG2ozJg0KQ17O4QsNDwbwO4aOZclnSMZ3rcbBroQz39mMiimCRyM8mMZGVM0npJyhnUkBVzjzp74Tvysv2nnvMnwBXI4AbwBOxJi+PBRKFJ79qADFI2wZQDHwH/6FddmTuQxyL9fzVzeJQbYuwUwB8v/fuYD8o533mJRYsviDENhZPepbz0dHhJd65CBgCbRJ5CYpSeQIALyGCZCTGF6ge1u60vFwA36H+Qgb0Sz6nQE2F7qvw64h9uon2pMkF5CKTPhkEz11BABeWMpnZDDj8YLF5C/1LzQ87JKqG0RXwHExLbmBd3aYyVARi9YrUzPW/Ch9OGSH4ggB/Azve7x1i9k67eKsDH4rHug6eKvsmVc59zF7oiqCwaSN4a8ZGoy+9FbUTct4ICnuWSGJtUzmjS2R47RzsJVFBA7WJd9x4YSkyQJf/bjrBkS5DJfRUy6LZG+mrnajqDnNXIjHVgjqzjpRyZO1z82JFhn2XzD7tPbTD4xHzxKeWYM0FBEOQjxHuvA+KCUnCb7vPW/QtkiGtHhqmrwzBs1OCr1bgw5bthGF5/0EoiZQ/yTp6PGE7JiBvM/wJ+g6u+WfLIK/TEcYjRugUx+lL14uwdzkYMqwJk/mlC5qNUxFgchSRbnYAYbiNwRtjc8wbiq+aJiIE2BlQc1Ffw9+BG4DY8p9EuxAAsQ0DJPjyAPAOPZ2pGGAlLNLlPrw8cUIAYpiN1f4tNMtasEWcP8hCD1gLak/CV/ThcRKIJH+sGaZvexlW8qrUfkxDXOgNBydrnxoTZdZp7HbiQhG1X6HVfjICdt3FgZADPRAuicVnNSA4gY/hsyonGW8XjILVR22ly0nV4nIwlWT0Pv3cDcEEF+z9EjzN3yy14Atz+em3bIvvXI2IezXjuqB24gEcyLhfdiAshQGdgsgoRebAcPsl6vnQ9vlTbk6p9brmjTK2wGxJXY8/f84idsB93BV2lbTRZbRMbqdfv1uLAyyS/mxE2p1rra8RV58xdsw1n/zYh7ob1+vsq3X4eeadMLORC5J2vwUHdGTh7ZnP1EZcTTNCRlr1BEIxTNw/zRz+eLJ+/YbG4IDMMbXSegvsIIN/vBDLU3y2Rzgk6LV+Dyj6zFzYtzo8lFU3//hZeeHwaN1z3C5pJJp3tFFHK65xFA324h7tYwnjaieeZlG/GWndR2/M0JIji2CuTzpKcQLoA8PFw6DobYRwAWiHpGx3cpbN0Za4Y3B8rtN1e3IuM2l18mDmEk0vXQz8xvB9ccSfzRgnKmcUM1pMXc8FqI57z5/2XsCkIUGNgKIIHQPma06Uv7OkZhyjC3KPbpyOxMz8iFvtDBkLlP4W40U1BJgQLFp6CACDbtkHW5ClHIgOkuR4+hzBP39btxBBGimrapu/mw68l/9ELm3MpGLyaV5nEP2f9iB9veIg/DpY8P0WUEk8bGbMEMT404x8Y/fBqMSoAciFrWo2Du59A74V76X2HXvhYZBBUwDmvaApX/vQ59twaR1JNh9yL0s2k08Dr+ZIXqIYsciJILp52+sUuWpigu2vuYVyW5H1qJ4HmluSYi2X7iykCDk1wsBZ3z9yMTACrkEF8ZxX0zkGe5+WRzj1UnqwvRukgjvaOI1eH+7KXY84EBUHwd4ic6VRiWiOA2DNzwzD83O72QRBMAv4ShuHHQRD8HCAMw9sOVKD4rKVXEIT9EVBSgowN8ciKcRYebG6r2xY3MgoPuM/W/23IGLkj8vufEcPbYieixcQQzMXO4oPWIoZiIuKGl4q7N6UiAKNBP9fheWn2I8Z9AR63ZOBpT+Rc4xBQYDlqzI1rs55/kH7uhbvXmVFv7ngmStCOB9yvQ4xdiwXJwgPQ+yLGvOVSMqlu9LcUBNwN1b42sYQiZP74L90/mp/uOtxIRo/JwIFcGp1BixnF3fQczyLg71cISKzXY8fqd7fgAhLGKiRpv5vb2z4cHLUiw3USHoz/NvAknosnD2FLzCYp1c9dtH5jv3rhLEiS/m7xVPv1/tUj93WF1pmm+5mQhrXBmLAMXBVvH+4Wvw0BOlH3MgNuxnQNitQJDvTRtiTjSUot/sv6qEXbZc/TWhzomwT9EP1vIiPluDS5MXGtWo8BM5D3wFieKu3jDdrPpjo3GLHtTBHPXCbt2YnDgZApF6K/vX00mKC4IFx2mKWpYN8JJuhwRQN4f4c8QgHyaPx9GIYHy2nxV27L8coEDUCYINtOEfaiVjdHI1pMNiDm6rbZlksQaj1bR9jKBC4r/h392RpTXvsKa0mlkVw1hAUcNcTc4c7jVRpJjanH5dVulpdWmYWPh0PXRxCRABDXCJCBDvjowX6UU8jkJrHkuzYgL+27MH+6SGQXUMFMHonlKiqggtMo5e/UzHjv8WKYGEKiOuGWJDDoOy74cFrBYhFKeExZmHEQP6KJ9mW6XYXE+EyU3wBZ2ZmIr5Kdq/u9r9vrcRcvgARIn7WFhokKSP8ZcUM0N68MZMCz+j6Ani9uZ3dJn5g6XPmTp9Pzku3c0uNBrbKNAiqoUSamggIKKY/dm1t4kOqI6vDXN74hg6cq7ZXNHC5M0b26wwRk0jX2Kh8RsiiU+2RlbcoQEnTWrac/pRR1YgIbSY3JlZdTSBU5jNd7U0Yh68mjdqExQYhhkaf2aUkgSnomSQueBijm/95E59xA9cioHnWHswCF46EcGRPUZUxh2GPp4Zffdif1PTFffEo55kxQGIZ/Av4UBEFxGIaLo7/pKt6R1L0wsvku/4MESgcr+5GxqQZZ3KlGmOtxiKFk0sD1+jcMWdh5Vr83sGEua6b6Zok0z0YMXcsDtBwxypoR8NKIvMLpiOFXRGcp4Gw8iWk6DtRa8NiQJj2mRuseSuckmO2IgZeFx3ak4sCvAQEqVTjLYpLLbXp9Vci4bYk0LSjeGJdGrd8ADFpno17zGL3e1sh+GYhxmo4YsuYxYIZxgfZdGrJo+aJen8XzmHy4yTxbfphsnHFK1/rM9c8M820IiNoH/Iv2pxnvw5D0Cunafgusj7oudsPzAq2L/E/X/kxGAOxv8Nw34/RachAAshkXsTAWx0QCWhGLz1iqNO0bM9RNwtykqI2VM/Bs15mIy6gnItOHSbpX6zEGPkxW2+LXjB2x9ltc1Rjt73gcCL6jx0QXSKGzcESH1mUxRmsifWvuhXY+c6uzXFoG1gcgz3Mdrr5nIDRe22+CECbBHpUer0besZV4gl9LHNuKx8u1cnD59M9VTjBBR1Q0gHdUEAQpun1g4r8vYTEmKGoMvoX7aO2A2jTE0kVekKrI4RuRwd0M8xiLIQZtz7HbWaI6FAZq+rOVevqxUX3sHmq7mWcSpsVYmNlcze3c53l+PgJ2Qd0koSMy5uxi553dPS8QyGqjrmicdOpWyt+HrqsjbSyEyukDY+pvFRTQn62U6HVmU82NPMJ4xMx4L7+YcYNLWLpQnYvHhWz6Yb7E+ADJBc0OeAAWQDspDkg2Im5v3XG6vBEXJwOh8h/BV+ROwSU5ASqhYfqAWC4i/jcixnC3bmcgg7Yd/xzsvr4P/CPsNLe+ZbB7XDpVg6WvDeCYK+D1zCKBNi7nGUAASDoNFJmMz1Z4pegsamYKaPpO09My6dil94O3pp1C+3QBsGfXviNgNUXBJ0ATJIxqi8Vj/Wjjw1Tl5sTuRSY1XMVTMdBTqMl156sv4u6OZEmOamxUYgjLAnGJA48ZcI8+eYzfIUL4pNAZ4GyJ7GjleAFAJ8rxUo45CIqUhxGbKVp+eZDvPm+5BnQUkJIbBEEZggv+KQzDJQc7KAiC6xAbmAAxrswwS8HjYVYgBtOfEcOxBy7xPAxPNGoxPm/qfhaE3ogHspsISjIy3l6Mu6aZSpZJ+1pg+DZkgcZW7NcgC3pdtL179M9YGxMkGIosUmUghqGNMfWI4WdxNO/rNWXhoCgJmSuL6JyfpRCPeTL5ajOsa/Ckn+sQI3KdXvNYBEhaMs8KxKA2ZqMQARMm92wqY/v0/6laj7l5mRtbpda3BXmYjJUyENcfByPGtDTgOSvN+LYEoebK1xd310tE5jUL4E/DY1GsmMR0DS5wYW5fbyMLblV4Dp/+yMM5AM/rtA0HQn31OANw9rxV6PXu03rex8GDxZIaILQ4J5PCNjexKjzHjuWYStS/ddonJoxgv6fT2T1xHJ5c1cQ80nA1PyL3YSUCnA2wGeBK1b76FuKqaeCtNdKm3yC2yH5cEW8ZvjhrbTQAZKDHYokM9IzRz2cjILoImWPHIt4tvZB39nXk3TKwXKL1HK1yIldq5xIEwUnAvyGRAf8dhuH9h9k3HVGHGweEQRAsRUR3Gg51zBe/GAAy5mcvLhesv3ePGPsjEMbCXLTqkdUOC4y/BHlR1T2qPSOehtZ0xqctibEPs1uu5rEe18fkqX+WcEdMIQ7ERWsJxYzWvEK9EzfDQsg4SSotm66yzRZW0opIWyjo+ej9fky9YqG4pAGvzzyD8U3vUMboWJ0W6G/Aq5I8/rjhOxQOFuP/N8VXkkUN5/dSELQqkBU0HZyW7BgvUuBrNDCpDImNMbesHGQw2Y5M8uArjzYR3xSKwlu1bo9HBlezNkYDy0R6G6A2Lxfm4oMXSObsH+nnaxG/mWZijFX83U20X5jCnOniKzjuutdIpZFLVNv7xxse4vbBd3HfYpGv/rB4CLOYwfg2AYMzix6ggAqu3zhHLjN3OCNZTelsCceuIYvxLCZjo97wVfDhlCEk08xJpULdVRYNJO+BzYy/VS6sMncg1WRTr3597cRzB/fxC24BoIj3aCOe3trZ7XHSYYOKVABiYb48f1V63b21/8F90F/X/xac3IqCeTtoAGItRMH/F6eEHQHtrSfc4Y60HHMQFATBGchibt8gCG6O/JSCL24f7vgS/DWIljuUZSIIgjuAjxFbBoT4PykMw4YgCE4BXgiC4OSDrRqGYfg48DhInqAiZCpZihitJhTQAwFA5saTjbAa5tZlzIGNhRNxRbnBuBFlhqjFRluel1NxI69e9zGVOVuE6oXnYhmADAU5yNiwChmnbaXflOrKEQC3Q+s297N23C3KXMK24a5LO5C50qSmTcTBlMOycOBj8s9r9H8X7RdzCatCwFCp1pOBB8ibkW6L4yahvEe/t3glyz80SNuTo9+V6L3ZhKDsf9R6c3CmwYLvTdigCx7sb8IFJvyQhauwbcNZJBNu6MDH7jTtR8uX06znysbdz57UdkQTo4LEoJg74j7kubBcRaO0nhbkPvdCgF5/bcse5OVZrvu0IWCqBQFNRbg4geW7MlBtgMaAF5E+2Y/M3QZCWrQuU+7bgyfENeBqbmmDtH6L9RqKqwmu1fPV4UxqKs5ubcPfo8F4LqJ4/e18PK30BlyNMRV5vi3WrlzPU4+7P47UfVdov67Qc5qtcon2o6UnmY8892W4HL65px+NcjSIoCAIfos8QlsP5fIbBMHXkTXqLsATBiwO9f3RbMfnOMdXgJfCMJwVBMGTn7LvXGAxYMEnVyKLXxMPecQXtnQ/4LOtgufhy/wAe2FvE/TW7yzo3IL9ByKDt/lRVOH5EhB2ZNyk1yjvKCQ7Tma48T0W8yC3xJiAeNopo5Ai3gM8X5CxNDm5c1h75xBOniUnHd1L8/1YLsihSAxLoZ0zHqbDU5PkNl9Z+xw7M7szkRLOVCqmYu4Y7pl2WyxXzUpGcv7g52MxQLnX3czzXOwsywJE/EFjn5JTm9n0ZD6XzfwdAH+s/nvZd7Tu3xNf/bLcCKnIio56m8WnNtO+KsVvxX/iSnAAL0Lm2xupfVzdwB7D2SIQQ+MmOgsnNEvfj7v8Nd7bUSTuev8KhUXiHrebZMoo5LkOuWG/GXwVoynjseLpsXtxDybKCz/veSt37v4pe7IkutfU9M6cIyIWW67+AMJePiHsgWFNcp/KilwN7sNbh8TEF+rpzw1tj7IkQRjCcgppJpn+6u/4AhdRSDlzKgS49czZDontMSZx02v5MjF8X8/5e0Rxz4Jb0fuQCLxjZpsxP9ESTZZ6PCVKPfIShnGu0HiifO5yzEEQYsv0RNqSHPm+ic/gvhaG4WEntyAI/h6ZiM8JNQAqDMM2dJgJw/CDIAjWIxPtgbZop2LSzaXIGPcaMhesRQyp83E5Ygu+N4bF3I4SkZX5Oq2rCF8NN/GBwcg4+lXEWO2Gu/R00f23IUaouQW14aILOYhRarEPY3S7FDGUk+isLDdB29IFZzx2ROrej8cSZeG5UqIB/ia5nIjHXpjIkLlhGTAcqv1peYoMdGTrta3B3QaTcJc3Y6KacaZljx5jOZssxUp//Q3tp2HaRsuP1I4s1m3CqUYTCOh1QD+YMW4A0Vy/BuHKcsagtOAgyfoP7X8DrK1azwq9xmdxtTkQm6ML7uL3VTxRbBIep2OMmanTtWjf1CFAzJiyvrrvYDwZ6zBcmtzYmho8MW0rHntmiU7XI2C8Udvq2j8eH2PPiLmHmevZDlzC3VYsuml7cnChA5B3Yi3uQhen1xOHu4TuR4DfKNzdvkX79GJEsTFNr80k1s/TvrJnIMpyfQ2Pt6tB7vkoHABX4+6ZLXqPWpDFyBGIhf0njryEHBUmaA7CnBwUMARB0AVZXz4XwY/vB0EwH+mCT3wfhmHFAcf3A/aGYdgc+S4vDMNKOpdPtONQ5w7DsCIIgpFIVES0XINgzjuCILgc1w87VEkLw/Cnke3/EwTBRZ9yzJegGPtjn5vwxAEAEYnsnd3EEI9iqLF0VjSr+uQZsuOq+Qpr+W+GsaSlmOwe1VzNHACWMJ5pPBOLCakmm2SaubZJft+e0ouT16xn5ww5aXxbGw1b+pDVJEZzV0uMqeBiMcVUT9rIOSZJ8i/Q/GAypRTxa74r37XCLW2/oDxBUMujzOQWHqTqOgEcX6t4G7bDdcWPAPB4642wOYgxQQ33D4Dpbfzxu5K7hkYEUps7YA7iupaHU9unI0+rTnLtI1LgAtBwHOn6PjjIuRtqL811duMmrfMC3V7aBvcneBzMC3D+zP/iz4u+wdKP6mmsAAAgAElEQVQx5zJu+Wss7XkurIXyRUKLDb+9jCUU80DcrQDcy530ppHJmmqlkHLi29r4ZcJM2d5dTjK7Y8lTSxImck3D07EV2wHvwh3M5L5l8lrtuVgEET7MHRJzvbP4LtuOp50HE36IlXbieZ6LWdAh7m/nxJVQTXZMEjuvRyXxPdpZWiqsXPyPmwTc2fKIDbLR1aYq63cD9JU42wmfVIY7UU6UT5ZjDoLCMHwTeDMIgjlhGG46mnXriuNtwIQwDFsi3/cFdoRhuD8IAguNOTDlyydKG8JQ5COG+mRctngTLn6Qj7BCY/GAbpMVnoAzDmWIUdmMS1QP07pOR8ZaM4iycTlgkPG3AlndnqBtex9hDqpxY3EAYghmIEaouQZZLJABmoRIO4bq+dYgC29mCKJtytJ2Vui+idp52VpfOmIgmhqcxZSg9W1AjMhExGjtr3XtxxXKwAUATPjAAKElZwV30WrBjd1WHDAYY2PKeGa8P4+AC0vMCQ54WhGQNEDPnxyp24Lju2i/muFvxrSB3zitt5rOMs77kfubrH1p8b5R9J1KZxAdFcowIQcDivu0/2Ku1Miz0aD1r8OBtTFRfZG5JCraYG5ofZH7k4bLY+fgMTYmmmExRNu0De8iz7IBHFP8G6f/39bfm/Sc7yNgJ0nbVYGzYyY8sB4Xk2jA2VED5BOQ538ywlCZfPefEACTjNzfMlyExIDM+3odxij+HnG5e1WvwRjIgkhbq5F3ux1hGMcj73QGnkLlSMtnYIL6BEEQfVweV7ba6wjDxSr+cqhyGlAZhuEGgCAI5iJif28c4vuKA46fAHwvCILJYRi2BkHwXQR7To7udIh2HOrcFZpR/MIDGxsEwS1I9vDFQRA8i/MDByuvB0EwDcHBIAtpLx1m/y9wiRqAUSbIwI85Xg8A+otMNsjA0IAPOnl0HqC2A42Q/rCsvDfMG8B68hhCJUsoZjyL+UoPEUZ4WR+JdLazkVwu5nnA4nXqeSJlOiDucX2ydtGgQT/pCQ2ctGYrH9tKyy5JwJmpktp92M7Zc97hselyfPWD2RRRyqW1C3gl8ywAPprej9N5l3mqrpBFDbOYEZPlpkDO+3SL6lkPhOEFZaweqHRTZQAlCSIMAcRf3yRKbVEm50ZgFrJKk4mo7LXh+YuMybD+S0AGD2MzzlsOU8Y4TzlW/z7Q7RcTZDJXjzxugj//5Bvy3UBYOuZcOAWu+/UjLGAqIO5/720YT+NgOclUFtBGfMwt8NLaBfARZBdVa5PamMmjsfiea257GtKg7D6/0PsW/zQG7BLaOpifO4lCymMxPr3X7OWt/FNiyXCf4XIqGcJURc5lFJJFDefECWgt4j3uarmH3ZqTaWePVDY9mQ/jRAih/cUUcb+05YvtiHE1AhfweB06j5Z5yIhs0noHxv98wQBRRwAn3OE+Uf4n7tPg6sbHQ2kJguAXQRC8HATBX+zvCOv8N8QWei0IgvIgCB7T74uB/xsEwQpkIf76MAw/NWIuRIxFC9JuRYzEqPvuqYiRdSHyOtpq/GzEmP09Eg+0Ro/7Cy5MYMa9rX6fgRivJltscStjdXsEnkh1CzJGrcVzs7yOGGzLcdW2BpwtWIkYpcZoJOIB4d0QI3ELnni1v7bNVNDG0Fl+uRsuCZ6hbe+i9Rh7sx9PPrkLBxgWr2FxOvGIQdqKx6DkaD0mGrEPZ14MKBhrVIkAramIcVuDLDt3Q6yjpfo5etNNzc6Ehsq1Lyq0b6pwwGCB9tGg+Fa9n9v0PmzS6zC3u104i/NnJAWyMVdGap+v/bpP25ytfZKES3QbIOkbqddEEhLwBKgFeg869NpNXa4bri5nggfG/FgMmElmW59aP3VDDH7LqdSM5yrK0H1rIucpxQVE6rRdyxFreb72dbley9DIcQZCG5F3zFwjLWlpIw4EV2q9KQiwNaZxH+JB00uvP5qg9lRc/GIJ8i5tw+OjkvQeGpAyl9YG3O1xndb9JkcvjseYoEP9AdvDMBwb+Xv8EFUdrgzA1yVAumfAYb7v3MYwnAe8AswNguBKhK257MD9/ofnPlx5BZip43fVp+w74/+x9+7hXZVX3vdnw+RAMBgTMCGYIZwGSOHh8NDGtoC1ok49dWzp2Kq1OrW1vk9r+8w4bzttp7UHO306dtramauj41THVkdbOtp6GhXqCFiNIIQLGkI5hRfIQQiEBEMSHrLfP9b6/tYOgqAyLaW5rwvy27/f3ve+9733vu/1vdd3fRdwP/YK92L0uL9MkqQrSZI/MJGEo0kCZ1fIh5GLPtx7EPa2BXe0kQiqnIsN8v+LHABqf3QM7T8dA9OhpWEcyx88nyq2s4z5LOlfwP3dV/EkF9LGmSxiIV/k63yCH7CYBWxgMr0UMI9lfOKpe9jERJpHnMnENTtooIZmKtk05SzuGnEtu0eczq8vmEAZ7bxILRUP7OOyO57ipmu/RTVN1FLHddzNfVwJT5oBXk4blZ0vU0sda5nOO1teoplKXrx3PkuWXswmJrB5zwQ2MYH9y0ey/yMjYSWsv30WfDeBBxJ70hZjqyjTMJGEzd51d2Feil9jA1svZpw/hq1gvgVLivqo/ysgBCcmY5P4QuBTsy3O5wX/brH3dxlwFpx29W6brOqxv4v8XrT4bTsLZv7LC9y55SZalo5jJqvZThVl1c00Uc1dXM/9/VeywDPfbmAyV4y+h/tq308+ffxZ70MsZb7RAn8MFMLeHwxj763DmNW4nlnf8iCsfcDp8NyU/8kfbbX4qnbKqKOWM1oO8P9NOZMNHhh1O59iHstYyM+opJknuZB6ZlFHrQHj7ov5ER9mQdFi6ChgbOVWo8kt6IXlLoSgCXE7IVNegq3eCSCOI4D7gNif9UTq6p2H/XYKlRQTjnitf8dRkiT5YZIkLydJclRWd5Ikn06SZF2SJL9OkuQzme+bkiRZ6/b1azKp3mg7kiT50yRJNiRJsilJks8d7fhMEX36L8ADA1/rvL9riWyVJEmewrjbN2Phhx8BdqVp+tnfacMy5Y+SJJXyWgdBWVKuFbBX7+1E/pTZmLF3FmakbfbjFEe5DgMNUjurxgzbnxDy1RIBaCNiKyqIpKOKk1Eci/YRfU90tBf8bytmnMujIQO4mKA1HcSMyUYiFkbB5lr93+PnkmepEDMKe71Ouda0kq+cQV2YAb7G99tOeGquIGJKBJjkhWkmPFzyWqgIVMl43kV4t7qIZKGHuxpneduVg6nQ6+nEDN2sAdzk+2ZlpAWkWonn4qD3rTxaAksC0CXYvNhBgKAZmJEu8QcZ6HquVJcEFQr9+E3Y87bS+1RgUsBGMWv7sHn0aiJGScIczUTiUQGfEkKyWtMMvt3q/7KiCCX+G97+4Rg4OYh5UdRfeL0rM/uJlvZeDBjWEoyTPsKjt4IQLygh8kq9QNxzgYVnMJvieYLuKRoiBGjf5f1xESZ1rgTBor/LA7SKkC2vJgQqFOtVDDx5AiSyZyRJ+uRr/D7abvkzwCNpmj5ytP1eKw1AkiQfAC5M0/R63/4w5qFZeqTv0zT91FHO8QDWdRPSNN11PO042rmPdo7f53LySGRDBImDAZ+JBEgqJ+TKAPLMwJQnaCFmdFf7dhXkX52Rip6YWuxLRzHnjTfKVRm7qaM2F5xfQB+bmMBEDzSqYjvVNFHn0XazWM0ENue8NGdsPcArlUPoKzBruJ0y8unjj9cYPe6HM65kPkvZ5O3+05b/4orR99BHAas9cOhLfI0v8nW+5FrPN957N2+7ZmnOG/U3zd+ExQWMvsZFCe4cBxVw2gKjaO1fNNLeNr3RJRgQkWAEGOhZTtDVCohM1gA3HISbMyNoE2aXS/e2F5N/cm8ThZgIguh1u/388hw1+ncTiNsnk/Fa59h9pwDmwZ9d9gBATqpaeXsmsIkGavgEdwAWn9VADZc9YGK6X/ngZ+kjPyekcNP8b/EVvpwTvaijlj7y+XDvvfxFwQ8B+Gdu5HEuyt2/OmqpYjtLnQf4MuVsYHJOQruaJnZTxot77P4Xl3TRvmJMxFaBraw9muk3MJBY7Z87gBZJOIHNGjszOytG6GRVhHtzEtnJtDkpPzkG7nhLcsxzJEkyH9gP3HuU+WIatpj0NmxK/k/gxjRNNyZJ0gTMSdN092vUf1z06SO1w+nTvyFDnwY+dAz69CFsuSAFfpSm6WsxB373dLhMKUvT9F+TJPl0hiL37O+6Udkiw1vJNEU3UjxIO2bMbsIAzGps6rnGj+nCVqp3EXEYH/LtbQTVbBuWdLOPEE+YTqhaKWBf9LEKbGW7kVDvgqAaDSUY4KJDKb+Q8hsJ2IhiJZW24Zix+Cy2wLWKMDhH+W+iaMnoliEt6lGj94uEIRTQXkIskHX4dWzw65xI5IkR9S5LvxLFbjYhd9zj9e3069hC5Boq5dWcHgjvWwc2VI7PfC+ZZokuTPdzKrZL+aAEFgr9+scQRvc274NeIu7qWV49LCs+qxgb0nuIHEt5BK1Ohn8TATCGettk1ItKt5EQjdiCPXvbsfvY7m3r8f7tJ7x1og9ux+Joevz3ndizXYyBtUZCRGEj4ZVSclx5JCU2oHYLPBYTcUEHvY5qQkJ9ox8j7+A7vF2Kj1pDALBW7wMBiDne5mkY2JIQRIXXr4WEBm9/EQYmBb4qMaShe/gh4N+JvEpz/HvJZp8wiWyO6VXal6bpx9/kKaQjoXIW4Sw90vevKkmSzMO69yFMje2TR9rvdZx7sPy3lWHY21ua2T5A8LoOMHCpA3uplM+mwneRi3U39H12hMk5A/Qk1JQ20FtaQF23GbULihZTxAHu6LbA96qi7XQzjBqXd9vEBDooYb7LVefTxyNcyqVOnyou20x9waycdwGggaksm2GB9l/gViZ+YQd1t9r5bh79NW7li9zKF7iJ7wPw0eYfMrrSKHAA117zz3QzLCcdzfYC3nPNfzDLU4p/Y+NXYR3sPzAy+uAfidWbBZgRrrXoRwh50Jv9u2uxQUzeill5EewIIUWqIrCjcxRikXT1vv1NgvsLcCswDcou2WmS0gA/Ssi/o5NPld4OwLenf5GxlzXy8O0fBGDmTS8wGvMMAXyJr9JNERMwG3Q/xQZWbHdu4nYaqOG5+aYO9xW+zBmNB3hwigGaNsq5idt5vODinNBFHbXU0MDdXAeQA7ii6M1kNZU05xT76ptnkV/Ya6IRwNT5dSxfM8ZMYAglQmHzOZhZOzPTd+s7sedaYKeNgd7PMQTlE041YQQOcTwTz4mgT08FXlBIidvllwPfOs6Wnsz06ZMKBInc2ZIkycXYxHjWa+z/Wy/92EKFSPKKVxni31+DGW6lxAJGF0Z90qrxRswgnI1d4L3AR/3zZQQdaxVmRFYThtlGzODf7vUppkPB3qf7d6W+r2J8xhKJqasIY1+GpIK9RV/rwgzjEm9XAeFT7CaM+eGE0YvX10tQpQoJgYYGr2+Kt01eg11+3m2Yd+A9DMxxI4rWeK+32ttTjQ1vUiE7SFDPtmBeGVHJmjFjXvFZAkilRNLsCwiZ6Rpvl7IOFGMGtuYreZekfCZJ6y4imB9CGU+UKyl6Zkuet20IFmOynfDUyPsj2uB475Ms+BJY6Pb+L/d7IEGACm+X8lSN8nMMIXIkufApPYTgRQ8232wnBC/yCWnsnb5d4NuyakUXlDdwGzZ/bSIS6EIkaz2IveSK1xlFCFpUEJTNaiJ+rI+QPV/px8vbWE6o0HV7HUqIOgMDoO/1fl+MPcMzsHdUyoxSNlT/q86J2KJrjV9XE5FH6Fh8ruMtxxETdHqSJHdyDE/QMcoKYFKSJOOwW/lB4ErMXDvS9wNKkiSzgH/Bwre3Aj9OkuTraZp+8U2c+6QtSZL8PXAp9uhtBq5L07TjtY86mYryBGXLHiKhzTvdPnS24NQREX8Btpo3lYhzmYO5lFVWQn3X2fbC+Hpw3fxaWrZU857x5nVpZySX81Au5qeYLpqpZLVLrV3Ik1zIkznP0FvaN8MIuKL3gdxplhQsyAkt3MbNXPbHT+WM6gL6aKOcSpqp420AvK2yjgUsztXZzTAe776Y/WsN5Pyg9jpufOpunugxtTgewwCOumoZsDKFOU4r0kqd7Oph2KS6kAApf4sBp4+q0dhg1eTbZ2M5gG7x7QmYJr+8Sz/DEtPKFb0cGxjlJ20FRkL7Z8fYILsI+CRcVPo4336Hv34LYCKbabnaRtsreJC/ufc73HKNobc6anmGd+UAzEQ2sTnjCayjlk9xO4+7OkM7ZayeMisXUzSL1SxjHpU0575TH2/yCymmiyt4MHd/lnXP58qi+3LepJaV4+iblp/zNi7fsiCkbMHesoxcOYu8HzWpgqkZ7pVXE/+bpXpqZD6SatwpUFIGZoQ/ctl9ApKlrgNu9fQDBzDwImCVAk8lSZICdxyJnp2m6U99vH8gSZKfYt6a8w/f7yjlSPTp2qPsq/KfwC1JklzJsenTJxUI+nqSJKdjwpjfx2zQz7z2Ib/9cglB35Ks9UqMVrUxsz0HewUFWERjmkwEq+/04/6VkOLdQsQCKYalhpBb7iXEA6RwNZfwLGzHnpq3YsBDssnyTHQSaleFhCLECm/POwhwoWSjAj69mHFY4d/JaJTAgrw9ql90pxVEKG4rAxN0FhD5bGq8DSO8j97h17+KyBmjlH56K5oIqWx5jiR3LXqfvGYTiTgPMYVVnvJ+Vx8Ox4zhIr9XMkzlVdpFJFft8nsjWpRAiUCvpLEkpVzkvy/04zswUHyIAH0CgJoTSrz/d/o9UOyVBCMEYDVnNhFgBq9vKKG610WAFxn7h7y/Fe+k2Bzds3bvs42+PYOgUr5CAJzh3rYybEFzsl97s9fbTHjy8ohYqzIGgrAe75ce328y4U0qJAQkSjDQJ8EJUdSasHe0nFD+ezcByC/3fX/pf6WauNZ/n0yINezCnk+JM7T7uVuxuVkLuW+2pARF8ijlmJ6gJEn+HXgXtgq4A1sV+9ckSR4Hrk/TtDlJkk9ijrOhwA/TNP21H3vE7w8rRcAH0jTd7Md8BFsDP952HM85Xlfxa/t/0jRterN1HaE8DfxNmqb/N0mS/wP8DSa483tSSjHbJSuRPYzwBJU6AHJ62/pOGJdJClqIDT56yMuBn4LrDeRiXcZe0UiRG6Bl7KYlx1uy0kBNTkK5kmZm5twdtv/DXJ4LtL9p3Le4nIf4UcE1gAkY9FLA/Y6X2ziTG274LpP5DQBdFFNDA+2U5eodyW6u4r6cx+M3TKamqIEXi82bdOPSuy0P0C9cdeDL2MrIhzPX9dkEx11mjbyf8PLMxVZgPkfIZrf49//k25qYsl1xFwONfTJ1VmO3RkIIO/xfo29/BwMEswjZ8kbM63OL7TL2gkaWbLnI8hMBS2vnMfeap3NUtBufupv0jxMumvIzwOhwZ9LGxa4ed+4dz/PMDW/Pgcmv8GXmsYxeLAi/uLeLbxR8gXz6mOh9q7rn+/1bzUxu5fM5kHRR0WPc2fwJxlaai2fsZY30UUDLo8YDHH1BEy3LxwWz7YPYQOyJaynAllxuI5McFV7t3cl+FgDKHnAKeYOUUf6/uaRput7HvacxX90aLOUMwDt9PjkTi71vTNN06RHq+JZ7cX6A0af3H77PUcqRApteM4YnTdN1HIeytMpJA4LSNJXzZB+2NkI2AOtkKW3YczcHW1UeisFS5dGpwoyrxZjhrwSoeUQsxGQ/dh5mTZRhilZFXu8YzKDT2NlJUOBOJ+heD2Ed1YAZ1wv8/Nt8PwGYXxF5WWYT0s09mJFb7m0W5H43ZqFkZZ1FX9rpxxwi8v9IoawdM4bzMKM3Hxuns0p0Ul/b6N8r19EhIkD+dIJqN8T7q8zrmoCBKimx4e16xesdSwgwKB/MFv+91vtzldcjelypt+N5oswiVv8Vi1Xi+ym3znY/T7N/dzoGSnoIRTuFZ8qLUEmo5kHIM0uhRAtfUrU7hN3TfK9fBAAZ/qMI00ZetWxwxs8ZKEmt9o4nYnsEWoYSNEVJZXcTIFqxbEWER3G4/91JxE91eN+Owt6BPdh8Ntf7uBYDKPKwvBW7R7qfrV5/lbdVLuF9GBCRd06eH8Wn6frklRvlx8jLpGOUvPcnfj0SA6nxv9MxT+65DMw7JCD8iveLYu8Esk5EScH1lY5ajukJStP0Q0f5/qLM58fBrZ6B+xzx+8P2ee6w7YOYZ+h423HMc7yBcg+2IvlvwLe8TSekpGn6VGbzBV7HBHtyFOVKOdwbJGNwFRak4l12xgh76WV4X++7Klh9EvbSKHfNWVb1/v5iti2fAme5jbIroWW8LY2Mppkzact5BsrYzZm8nDOSv89NzKQ+J7E8k3p2MzLX0tXMooOSnCdhAUvoojiXfLWemXyAnwKQ7wZ5OS9zM7fxV83/YHVWrs79BjB2fiPbHpwCb/X2fteTpeq6FBflKtzMBW7rhA87WFzsfXQL4R16zPtLx4CJJKjrV2IJQVQ6iLwJEMH/8gw9hwEiUfAWESAtu9o1064HPInqwzD68wY4qtjOz/oXUjDERpYfXHAds3g+Jy/+IFfwD/xl9N8NX+Zersk1cWTnPu4dcSUdHphUVNBNLXXsZmTufi1lHtdxD9/g8wBcxOOU0c4G/gSAF6mlrGI32+qm5OrNn9SZAz0tXxpn0uGKEikhqCsqS7CVyibfPnCQWBbFf5CWOpnKsuUUAUC/5ZKm6b9i6/UkSfINDJqTpmmz/305SZKHiNjSAeVkpk+fTOpwRyp/eexdfrtFNJlnsClDgGYsAS5Ev1HOlF0Y3Uaqbz3YwloRZsiuxcYCxbboPEoSmY+NqQIkUraaRaivzSXAyk7M+FM8hYLZZxM0Lhl18gjsYiCFTXS56YTIQpOfe51fyyTsaezElgaeIOhhbcRYpdX6IgJEFjMwIetQr2sTQVdrwN6AHoIStxYzVkdl6lGQPgRVTfNKHjZuDidEESoxA1dk0j28mne5GgOP6zBCabO3Zye2GFXn/baNoLw9i5kTHVhW3pWZ/tBwXIpR/sZj91xCCIrdGep9VEDQ+kZhz9NQDKhWZ+pSzJHi0yRGsMXbJUnvaX49Ar+7CEU3eQsPYvf+IKEI10HIozcQYLEus91K5Mtq8D6v9Tolr67cSnr+13jbqrFRUTQ9CG9UK/YMjSek0FcR3jl5tBSDpPbvwUC8nvtC7NmvIKiGv8DemZW+n2ilxQQlrtj7uJRQZjydULrrJuL1TqTsWP9r/MM9QW+CCndKljRNf4INiSOAlUmS3JwkyV/q3wk81V9gQ90RS5IkH0+SZKXx8LuPttvvoBxJKa7N/03FRg4HS3uxF+8q/7cIeyme83+KEVIwp1OU2hvHGIDYkcCmhKm1q6lfejb1S8+mhgZeppz1/TWs7zcgdBs300c+feSzgMXU0EAzlTmgs4j3U0sdtdRxEY9RQof/2kwf+RTQmzv+Qp6kl3xu4A7KeZl2RlJMF8uYB4sKYFEB9XVnm7fjO8B3MEnm6Vhy1HUJp31zt8X5/Nj/ff2w7lqIeciEKS8B9jbZILIEA0A9fuzD/u8S/14enVb/TlqMrdjK5wL/9xaMDvcx/9eDDVRT/N8SjKb33k5rQzXk39IJPbDtY1PY9rEpzK15Gs6CluZKWporubPu0zw95HyHjF3c+NTd1DecTQF9FNBHJc30kk8ZuyljN7WdL3E9d7GAxSxgMQ+OeD995FNOG+W0cQUPsomJvMyZ9LoQhakCzmMm9cykniq2czufcpLjhYym2RLp7sP+VfUyurTZ+n86NgEvxrD4OzGPWoc/lmsxT1kHsVLZApybB3gi2mFgo/swbDTuJPNDphxNMfH3sMgT9Fr/TlBxT4/kp98H/HuSJMOTJCn274djUQWvUpjL0Kffi4W7lyZJcvjbdbSSo08nSZKP+Qh/8WavZ0D7ThZ1uCOVJEm2p2ladew9fzulOEnSazGj+HLs7owgYmvOJeSKyzGgJIpXPwYcqolVbQGQOURMRxc23yhh5DRsXhlL5A2qwgy5dsITI2qOgvlFSavGDEcFlW/3/SZ5XWMw4/gczAhUvpkRvp8C28sJRTLR2Z7AnmipnFX58QJ2imsRRUleBnleFL8zw88hr4mo6KOwBTEF0PcQCVq7iawA/ZihrH2Ge719RGyR+ihLZdzg391NiC5A5AMqYCDldhQDvSzv8T7QfjL2XyvZ1RwMSErFbpVfr7xM6nOBp0q/Lhn0WbA6lAB7pb7fcO9LCT10YPdOXp5qbHoYQ+QzUnzX6USM1yHvV4ENSYTLO7gjc7y8VBBJa4dji6T9WF/3YP0tIYVfEUpsAtqi4en+yAOzBnsfpMSnOKVSr3MSBkAnYmCnwftLnrRCQsGx2Pugnkgs3IQ9H3MwWuRcr2MDZlU3YwvETxMCEvJWHsTu93uARSdAHa4mSdL7X+P3WcepDveHWHyS/BwWY/QgGWZhmqZfOcaxizkyq/ELaZr+3Pf5AvaYvC89jonz5FKHgzAASw/7+05slvLItmHlA+lxl2KxPllFs3VEboi3YJNTNTDNu+XRJCRPASpg9AVbc3S4yWygjtocVU3iBIs9Yc48ljKZ37DWidTVNLlCnI3IE9nMRTye2/+jW37M3PGLGUl7jlL3jf7P095UmVOsa6eM+rqzOa/W0kYt+cDF1iXV3kY5nqRzpZWxBZlrWguuNm3UuCXYipm69ir/LG+S4qm0SqcBW0xAPXGiAOzFKGDZJ7GQ8MrdTQRxZmO0FhJxRJ+B8xoey4lU3FD0z9zPVdzHVYAlml3GPJY0W9/dUvllmqhmsis4XMojNFDDSO+IL/EVbufTOSW+BmroI58JbM55hx7iz5hFPb/gUsC8cJv7J+TyAj3efTH7O4rJL4wZtW/liGhzPdHvZL5T2e/be2HgktMI4iFbj3W+PEOrGOijP9m8QG9SHW7CnJRvHEMd7oPHpQ6Xoy1jb/KR6NPLsDXZg8Bfpq8jGg4AACAASURBVGm6JLEcmw95NX8E3J+m6a1HqP+dQKcLGZAkSR5wbZqm/3LYfkdrx0XY0y769KvO8WbKSUOHO0o5qRDaIcw4WoAZSL2YAbwNMwbHYAbSZiLepYbwVGzDjCrRc8Zj05DUz/IJdaw6gso1BzM6lfSyGHu9S7DFk4WYoaZYlXrM0C7x/UYRcRyl3ta1mGEp71S7n1dArYgQRni7/xUY2UDIg+vaZBBCKNbtJMbyIUQeoBVEQk/NCcUYGJCi2ygin9HphIes0a+tDrMGJ/jxqlvtkDqZ6tpFyH1nzzkES3AyHLjdz6G8TUMZCIIKCIAEZpyfnrlueQayZSxhJCugvsC//yWh4Ke2VBEqcD3Efd1G0Lh6MOtOAEZxSVKuW0WYNwczx5YSSVPxto/wevYQwE/zbQ2RM7Ede4YkYnE6kW9IMtuicytPkADRJt/3rUSsmOLYBLIVI1ZN0NPkqVSf63nY5+eY5O1px56doUQYgxTh9J7twd4hxQaJqvoK9vzWEc94VsBhnV/jL7GFBL1PVdh7NgZb2M0KPr3Z8mZjgv4QS2KJsf8BWyWcnU2OfTwlTdMFr/W7xz1dApx3PADo5CvZFXBR46oz300kZyQeAIaNGPhzK2H8l2ADrwzYXkLVa7FT+GuBUSk5Sn+BKYQ1uRb0mbSRT29IJJd2UcuLzHMmTSUtdFFMWcYybuPMnJdoMxO5gxu4wWWevz3+kzzIFZTQkYtl6eooZur4+hzlbgKbqF9yNkvusoB/PobF+WQT/RViYsBgplg5kW9lNzZwKH5nAzZYZkFOGzYItWhW2ASFU2NQ/SQmnJA93wJCSen9XofodDMx8Cl63HVEvNCczN+JGMkI4JuwbM88akqN8P3tpV+EJnh39a9yp505/wV+UGnKffdxJSNpZ7eLVpzd/QLfK/p0jmo4kc3cx5U56lsN66mhgb/m7/k6JsZQSx1dFFPl/vyJbGb7kKqcYEJtUR111LJ/pSPNHiKxLN5nVxOk2lnep8ItEkWYBax2kJML79FsV425KiVTo++z0vBw8oGh3205Tvr0vCP8rjXsY9V/MtKnc+V3DoKSJOniyGAn4STzXfZixtWz2IpzH7bQo9nzceyJuAgDGWWY5/oQYRyv9m0ZbyuxdYxdgJ4yySwrh49WngswQ1uxEWDGmDw/on9N8W3lKVru+3f6+a7BxhMZx1JBkwT4RsyoFF1N+XmasTmgkJAahkie2kfk0+nx6+/0OhWfs4qQFK4g8gkp9nYmBp6KCWNwG2H0D/f+r8HmIHk15B2St0iiAj2YQS3anVT9dmFG9GLMCyatxQ7fV7FbG7zfK4h7WO7Xs8vbfSRra4jXPwebY/uJGKMy7Bk437/r89/z/dolkjCUEJ4QaBNVTFS5LPCs8nYpke8Wb0eD17mdoJC/gs2r7X6MEtgeJOhgUgqsJBTq+glRgl3eP7MJL9Qhwvsm4KoYrWK//j3EQkBH5n5I8EECBQKrJZl6tF+nX6+kryXwUUncQ6n8SeSh3Nu/hoHAqxB73gW0tvj2BmwxWN7HNQR40vtdhL0vx5C1Pu5yHOpwg+XI5QuYWMObFlk4vDjA+ixwzusFVydHkbUoo/BwIxHMeFQsRRsUlscAr9wsAgsHMFGEvb69GQMMEy3gHTCxgTVJmEj74IlfvI/Rl0n7GFr2VDKz1Jb7i+niDm7IeYbG0UQvBSzx2fXD/IhaXmQx5wGW9HP9lplsGm9oYRnzyaeX7VSxbI/NpDeU3sH3H/xr1p/hqgWFGNi41hvQiHlWbvPtnQSwAJuM1hM83ZcwMChlvLuwybaHECgTt1hRnz+aGLKo+Pn3EnmB1vv+/9O3n/O6rsqcQxQMtQkoW76T9lv8Pi4jxBuwNvY9PYL6fWcDMPXjq1k/sYa5lQYwNzORmdTnlNyWP3U+T1xwbk5KfGHRIj669L5cbNfU8fVczkNc6Fqqt3EzN3MbN3F7Tqgin166KGakLwfd03wdcyuX5qiPS1Y48JR3Zy0W2ySP2ULvG7298jaKFjIRm5RbIef5OVDNQK+QOi8r33d4otSTyqR8c6Wf41GHGyzHKL9zEJSmafGx9zp5SgUhQV2ErfC3YuBG9Kg8zBiTFwAsz8gi31e0nO0EiJngv1Vj46WSMcoAHoEZq0Mwg2s7trKt1feDfj55UFYRK+pnYcZlGzaPKdh8stehlXZ5fGRsKsZIcSeSL15OLnF4joomkNFBGO/L/PrkbVCszi7MmJSwgsb4Tmx402q9gtuVSFRy3jOI5NvvJdTChhNJOwsJql07ke9I9MEqLG5Efa38TgI4mu/l1Sr2Ohr892neLzMIRboLiNiU4Zl7s4bwHjQTHhDFM43y/jnLr1PGv4QWlHupmVBhk/dNXqtDBEVtBWbmHMQA3Dl+TzsIT1k+NlXMIGh12zFvRxPxjNQQgEZeqC6vKwvQVMcQ7xfRDQWsm4ncRIqz2Ul48ERf3ud9me/bQ4l1PMXE9RDCGWsJMC01Q8U0rSJAmmJ45hAUw2f9nnQQ75ZEPJ7CFh0bMLAz3b+XF3OIt2WlX2srJ6akHBNQnQiJ7FOuHGml8gSWf8RepaeTJAHLmfGJ/8bzneBy4LC/e4glKTDwU535vRr2HoTRbshPwSaoFv+5BEtnfp5vj8YM1uWw7XMR+E41zK19GoDlzfPJL+ylZalZ/5vnT+RtpXUsX2pKuTPnr+Y67ub27psAqClqGEBtW8x5LOuez31FV/n2ArrHD2ORa1Ts7y9m3pBlPNzwQT5f8yUAvvHUV61tavdjwKJeeNQVHj4N7OyFS337E9hgINmLt/ixP/Ntrf7JMN/qlMEzMl13H9DSaTLjYHErWfqbaGsCNTrPc5nf7yIoFOf6+e7y7ZuBf4T2kWOCOidJ7U/7Pr3YgPWwba5/ykDg5kpDai0PjmP7FVUs6rYL/fgF3+MObuDhpz4IwF9d8HU+Pv97fJAHAXiIy2mmkm80fwEw+hyYoILEFRqoYfmWBeSXOM9gUwH1JbMoLrLt/Emd9LWOYOZNLwBQ33C2edze4m1eRKwm4/1+XqafniPksadW+4WtJ2YSsFlvBAM9QEcTAzkFym9JHe5UL79zEPT7VrZgBtNEzND9FbHIkw34r8Jexecx43YZkctkMmYYK6GjYlmkTiXp6W1+HsXYSDAlzz8rpuIgkeOmGzNiJTc8HjMIJUu8ARtfFWwuhau3Y4tiUzAjMZ9QBpMHQmIHs7CghA7Ca7GWSOi6loj5kfIYmMEoAYc6QlhBhv8Eb8scwrs1gpACKfVjWr19F2Z+kxH+EwyM9mBjajMRf7rH+7bM2/5WP2an3yd5Qw55v+QzMEFrOUEr24ABiOmEwtge30eKYqLNK0mp6G5ShtvjdbT5520MTOapOCF5P0b59W/03+TFeYXI+dOEmTNiqmiF4VlCpGM2QX/r8Wtr9TraiZxMulYthBZh97YSk4m5wL8XfayRyAmlOCV5NUSt03M0DXvWGrF791b/LGW3Xj/Xh3xb+Z2UWHUEAYYEelf5tU304zcToKna2ykPWrt/9wwheLCDUEaUEMU8P/dKb/sk/74Uey/nEouZJ6IchydokA73Wy5pmk489l6/b6WUWKYBMxab/PNUmJqH5zW1F/WlzK5bMeO8LXPoRGBhLywrsJdvMtALyx88P7dPX0dBroolPRfDtF7Om2/xOR2UUM8saoqMwlVMF4tZwExWA/DEU+/j8xd8ifvc87CW/8Hf8//yab4HwNuG1Fm80W64o988GvlzOi0Zp1bLLwa2F0QuiweAnnzXufLfXyLoaho4BEie74SrR5jBDnDuiKAbLLrPv7zKqIQy7n8NrG+CM6ptezmwtQ1Ge9+f6/2nVZSvYUBIbV6OqcnJHX4XBg5ewu7L8xi4+y7kn29ekb7WEcEdxkDNt+/8Yo6qNu+KpcyiniXLzTtz57RPUFaxmx9cYIlO7+NK2hnJMkxK/Ct8mdu42foKA6RXcT9tlFPv2uBdFENhH2Wl5glqGTmC/U0j2b/b6W8tJqFe/wvzTrEIm+j1DC3AvFlSztuPDdKiAbZgWP3AwXgumUosncKrhRBKsaXNU8j7M1hOeBkEQa+j/BEhgLAFG2emEyv9ddh4WEWMs2cRVJ1+zKhqwAzjsX7sK5hhplXyLsJz0YMZrIewKUuB6fIglBKiChItKCMkf9cQsSAl2HJmGUH5mk2s1L+bkG/WSv+zBFgToBCoGUsYiNMID9dw37+C8CSVYwa/6GOVXk+jn1cJMqdjxq/UMFSnYnyGE3TBRr8WiDw2C4g4kmYimahW/EXXU3JYGfiKxakg7p/mnXbvyz7C4J7FQLUzvF0N/nsVNjzr3maD9w9mzi0xBQgKvjw/uo5y70dJjisH1BDi3q7F5pO1RCxUD0a5Oz3THsUIyduwnIE5pxRXI3VASV2rn4qxefdy7x89S+rDPZj9I/B1EPOe9GPPSAX27EoNT2CriRCVGEXczzWEMITikc7CnoNdftw+P/d076tub/dkIlPEOj9+C0GlG+rHC6xNxCTF+72uxX5Mn/fFcIL6WY4Fn8wg4vwkuf5my4mi1g2WwTKwZD1CO4kA8jbsiZ7t2+th/dQ47DQM+Khc6rtrlb4Je8H2O8iZgK0SVWOeGCB/Wid9PQWc5p6CiUWbqK87m+ZKi/Gp75/JhCGbqaUOgJG0U0kzd9aZe2PqBau5vfsmbi4y7lotL/LnzT8FB1blNW30UcDM+S/kvBNLShdQ33J2UNw+522SftUGLIZJFKwxDJS3bsQGK0HgcSOsH/T7HDLB+uKveff6dbPoIANSKfdgwhOKGWrJGxhfNRVY1ARvr7btq70+rbTOxfSx3oINwG/3Or8JfT1+P6sZ4Gm6o/sTMBderDNQU127ldu5CSYa3a2sYjdXDrmf1c61u5yHqeNtLOk310z9kJn0kc+fj7eMd8uYzyYmMIFNudxBbZwJHQVUVfpMUQMtdeNCbKIJtjWPi3ZdjPW7wKKMCAFMUUte8G1h9GF5cEAy2AcxkJOhcQ6Qgt/JwLxApxgYShn0BJ2AMgiCXkcZghnV3UTeGxmromktxoyqCYQ61hbCqzMEGzuLsfdesTvrsGG0DjPAigjZXhm1W7BxbywxlnRhwOrn2BTW6G1R/pRD/m8DESC+z+vPwww3AYNJxMq/YmlEQYKIR1F+l2Kv75zMMfKANRMKaKOwsW2hn6+SSHJ6PjbPvIIZ+eP9XGv8OvP8PGv9PM2YUS+VPHw/CSrgdRX5fs0EfanS+1nGdqWfe4zvu5JQKusn8uNUeR/UEp4nqZbt8X5TjNGDWEyYkqlu82OqsPsvQNft7RhOeE3KvH/6iHsn4YThhIz4RgZ6QyRVDeHt0xpvK6Ey10nkVCrNnENqcPu8DVWZ+kTbk0iE5MRX+fELMLAylKCINmPPYon3Ed6vAhESUpiMPRN3EMBH++g8WiCdQiRz7SLixQr9XBKpWEcsIEqBUR7PDYSHb6P3wXv92CH+nYDwFkLG/Hls4UMJgvXcZ6W/T1Qcz3F4ggbpcIPldZRsMLh0OWUoioM1naASAWwyu1Ir7svBRo8RsV1N0MIew2hapxHKJIuJ2JsC6Bs5AgpT9j9iVnE9I5l5xQs07LGYkdGlzRTTlVN/q6OWJqpzdLqRtFNZ1JxLyvnl7q8wtnIr2xYZOqgvmcV7Kh9je38V3/7HL5J/dSd9j47gtIW7c8H4M3/xAvn08eI7DAzwjxj9QWUqBmg06HwOo5TpLbseM9w1+ZYAe/8LRr/LQU2edesXgS80OW3r32Dc9U6dw3IwHQDOcD7AeV6nKHvV/p/Aw/dXwdTZAeS+th4WTYXv4Z4sQl5U4gI/xvjqDtb2f3ckYz/fSDkvA/CTpR/hbfOXUjXeAEsXxVTSzG39N1s3DGlgP8U5ZbfVzKSNcso83qevP5/2ISNZvmUBp1W0s3/5SE6bu5v8ik5ebJjPzJoX6OouZnTtVlqeUvATsLIgjHZ53/QINjGwvB9z5QskPeZ/D0j6ej02o2ajTEdgz+mR8gOpnELJUg8RgiSD5Q2XQRD0OkofEStRhE0pawiqTweRJDOfoGhNxAxNKcAdwgxRqVuNwoysXmItTvEbWhA53Y+vxoDSWMzImwj8B2YkLiakhWVsqr4GYpxRuyZh4GW77yd1uFGEPLJibIYQ8Uh7MvV0EEIGeZghqRwr+u4gAThkjEqiewUBNsYQNLAqwvhs9jZt8D6fg433E4kYkvHeLxUEEJjk56/PfF9DALtuvwYJLpQQwFWLf2IVCIzo/uqaRhCKYq9gXpqd3n7R2OTdG0rEC23xtkj5TV4J1SOPVCvhESzGzJUeIjmtxDAKCYMfbE2slpDGlnLcPkLhsM/7TV6VsQQV83QMELX6fpO9fyU2cAn27MtTOYqQxtZzK7U3efGUZFULCGu8/ncTiWf7CK+Ucv5U+76bgY9gz5iopf2Yh+2czHVXYKD7PQQFUPFY8gg2eXsbMO9oP/b8qa2KsVIs1HLvg0lEkphpRAiu1OTebDmOmKBBOtxgeR3lwGGfhxFgKLtiDgNUtNbLO4TFB+UAEhac30gE85+NDZiLiXw4txAKOT0YmJiTBEj6371s6p6Yo0+1d49k29opuJgYxXSxvb+K9iZ/s1YkjL2iMed5qCraTjFdtF/vAKdoNTU0sKxnPizspa+nIAxtL/VLz7YX+Vr/Yi2W/FTxO18DbiUG0Xu87UpOeh+RIwm/zmHvGiiE0INR1i6ttu2m6wcGDJZ4f+516/+ld8HWpqDLNWJepEe0FNJpfSsPyc1TrR2f7oSF3u5HsQH5AKa59Sngn4BbXG/q6oTyz7/Mi3fOz+3/Ys/8HCAZe1kjD3IFpw0xL10lzTQxLidn/hsmU04bSxqMPje2ppH791xpAKhpJJwFBYW97G8tg93ezz2wn5E5bxMrk+gzMHDzGLFaV04khgUbyLMS2fKuHQCGeV8dEOBRlOlzmCVztDigUwT8qAx6gk5IGQRBr7PkYQtCywjRg1Js/WEHsSgjCpbiYIZixpyoTpMxI3wdNsZ1+29tfnwfZviNJzw/8gQoJ84UwgjbSCjG9RASz/LYdBAxRwIEUlSTx0mlAjNUa7AV/x7M+NMx+7z9YN4vrd5PYmDAvGJAOghp5iwgqiBUyDTviLJ2uv+2zduW5+dSDJO8KP1+ng3ej12Z31q9jjGEvPV2/66ayJuT530/hJBBHurt6cLmfLV9D2a0b8QM6LdiRqu8WdXYvRuKgbg/9+PyvK36PN3r30Io+wmQVRNCELr3JQQQOkgo3UngoAgD0T0YIDgdM9bnMjDWqcrrKCLijQTyFKskyp9U1fK9f3Wfpbgmb9h47Lnt8H2LMAD1CvHMFfhfCW9IFCQbr6bn65fE8zXJ95nlxz3k1ySZdnnXJDhxurfzusz5urHYn8v9HmwilBineT/VYM/XHiwf0DmY2afrVVH8j7yUAvknUtHtGBLZg2WwvIFypKSRWS/RASJAo9z+6eeSPPNUaPuZg/D2vIgTUtDrOgJgPIK9PDqmyfY77Ssmeb1/8Uj65vbS0mSegpk1L5Bf20C7E5yX1F0MGyD/EvOgFH+gy4DSd91KngashPO+ai6CTUxgfX+NGeUytD+Ysv+ukRarBOQX9tJ3zjD4lI90i4FnR5hMNsDfYhqDeptn+X6iz4kffYb64b/gb99loKelybu12gbhR+RG89irYQ5YtsqT4UmXtjq1S0p72CY9fu7qd8EjT8Cn3mPbt7XBpeWwe4StCoENiJsIb9FyjG62I8lV+eK986P+622fP/vqA4B5gtopY1uD9W1fTQEtS8exfb5xLVq2VDNzfF0uj085L9NeaOAzv8Luz4Qhm2mnkvxpHpf09Aib5B71NkzAjKFLvQ2f8XZLdr3Q26xHUFm71rsHbdgIaPkv68sDAut7MI+QFBXkIVLRcz1YBsvRyyAIeh1Fq9w/wBasqrCx+CeEN0eCHUpAKYXQtUQ80DbMwKrB5gYZ2GBjQZF//25sHlmFGZU1RL4fxWkovqY4U4fU42Q4L/Z2iq4mkLACG6JlrIIZl4cwI7SIoM1txAz2hUT8jjwvUub6OZF7aFSmD7Tqfw6Rq2coES80iUj+KkNYhuBOP+4FbMhTLp4ZfsxOb4NiTAQyFUi/nVBRk8yzYqyGEop3XYQHSXLO8nrNxYzo8YS3RoAvDxPHGIMBYQkv/AobmgVcpLY32Y9T27sw0KP4H8mBK3/Ur7C1LS34bCc8kOOBe/36BdoEZs/x4/r9mA3YYuGvsOeqCQNco7DnY7bXMYGg5Gl9TXmFqjCAUpHpIwn2jPL+K8eeV4EMeaEEjATiZxPCDpINb/TrFO1Q8V9KfFqROXeJn3cHQfkUNTXfr0/xzD2YiIZo5+XYs7DC+1jiF/hxkhpXAliJH2gfUeC2YABZku0noqRY3w+WwXLiypEA0OHb2bxBB4AmlyD2TclmA1Tk2cunlav9GFB4P+HpKcFkoBXofgnQaOAHgDm9YSgD9fd67E6hew6KoezqneQPsbehq7uY4qIuij/fldvum5ufE07Ip5eGITW0F6YwzY4pq9hN+9oxcI/FDfVdUmCT1Ocyl15AeLSWY16fxRmvTgcDE5qeTeT8Yap5YaYA1d5Xn/B/2XIGITf6yAhnZPls/amp0WdgA9DVxID/KDDuPeEJWujg9BElnQA+kwffJFZofkCAC/x6O4hcRN8ElsHD3zA1OObA2Asac9TAlnnjGH3ZVloaAqDupQQmGpjc3D+B/WtHQi+Uzd2Z+44dCX27HOxJ2UZ0rWXY46V4qrkE0AHr07dkrqHD+2C019fSCWe8C/Yq7gdihpLKYTWRMDVbTlEg1M8pe2m/zXJKg6AkSW7BUqLJfvm8J14iSZK/AT6K2U83pWn65LHqG4qN/Yrj2Y4ZdDMICpDid4p8X8WLKIfNDCIGpJ1Qr+ohDP9nsVXrJmwsqMaM7T2YsSUDbgpmsO3EjNw8bB6RNwQ//nLfr5HwXkAEjjdhBt1QzECULLEoSWWY8VhJCELI21Hq58r3a5UXSQBjJ5GkVd4sSVArRkNzTRdBl9pI0A6f9f1ECZTnrYIARYpd6fE2TiakxZUbxpkWOTU6eauGM1DKWR76fkIiWvFUY7Cx/ZDX3eX1biG8O2swANTtbVWQvsCxJMQFFod7ncXeL1L4K8Y8U1LaK8LuvYx83YNOIl5GSm0N2AKtaJm1hLz2MuIel2DgXTmMlDBUz4u8PPImTiIAmGhwuq4Jvs85WHrnqwiBBgHRUkKOWrRDSbqfjT1vj3p7S4jcPwI3eu/eS4hOvEAkYs0jwPQaQuVthd8TxXHN9jp6CFnzKgJI92SO34Pn6PP7qwSwEwnq2jOcmJIy6AkaLCe6ZI1GCNqbtg+Pk2hiYKZUN9hlmG91T5Di/V/CgEQbBirABoIDDJSC3k3Om8DKAjN6te30gak1xoEqYzfLv3R+LPKPhP2FZbDCPAvvueI/eGLx+/h2iSXrpAXohanXrKbaVRye+NL7zPMgD466wp0w9AI3ErFNWfoVxAqfwN4UzNP1Td8uLLe6n8lQB5v8fCVTox9KCG8S2DUtd6C1CBsoN/hvz2PgQOCxEBNjkF0/y3//sOdxesTruBv4G9+nzo4fe4WhtW2XTYGVcNqm8MJxHbnVrbG1jbR3j+S8vzev2pK/vpiWwkwsTw1su3dKAJYKl7zuKKZ9uT0Ep83ZzWlzdrN/+cjou70EYNQ90PNQ4Nd2lm/3YJ4tnaPa99WgywjY2+Sfh2X+Zp9dASA936e4JyhlME/QCSinNAjy8p00TW/LfpEkSQ2hsVIJLE6S5E/SNH1NOn4v8KeYIaoV8Eex2IMt2PtbhhlqYzBD9FnMgJxD5GHZ6d9Pwd7zydh41IYZVRdir/EWzKD8d8wDU4wZWzX+T6vqozDQ0IoZZ53exh5s+iokPAiT/Fq00PI8oRDX6scpTmMFZlwe9PaJNlRJgAUlvZRIwXbMqMe/z8ZGSVRglv+2CzPkyzDjtYbI3aK8Onv82rowsDONoNhlMwIonqjH26c5pZSYl3sIipdic+RBkOcnG4dz0NvUQKjzCWQU+jESyRjj19no30u1T8IJAl1Kztnj1zUdM9oV69NNxBT1EHRKxQnt8/0Pebvy/DsluwV7fh4lVOHkOVlFqKg1+LVJhrwLexYUAyNq3yZsnur3ti0mEpJWEF6USm93t5/ncuLZUFyUKHMCgXg7zsEWAHv8WIk2iIbZTiRP7SPopvK6XpqpV2BWz6PEH+SRLcGe6SaCQimFO71PrcRCxkG/phqvd5PXsYBQ5FOM2okox+EJGhRGGCxvsMg4nM5A47AUGwVEJRoGtMFoN+Rb8myfA05NGjfCBguJck3DJsd2bLA4UgjGTAxkaIVpOvYyCXjUQtlbd7K+2X2qrvr25/P/DTBFsuu4m8XjDRU9ce/7mHnNC9TffrbtX2j/1n9jFutHenLUa1NTfxN9bRoDc/TsJMAa2IB3FiE5irdPA2sFFpSo6y7EBpJzyyPuJ5vzR3W2Ap/07RbM2Bf97Xrf/3nfHo0N+E2+vY6BuY62epvrfb9Lsb69kQBnPwUew2KswEDWVeQEIk5bsNtog/vs5/bukez/8UjqrvZlwmFAD5RdYl6e+rqzbRJ1T1L73jHWJk1QQPH8LloeHBeennmYm14xPo1+ndf69qN+HVnQ3JG5ztFYf2cZm7kPQt9KxqGdFOs2WP6QS5Ikf4zJnuwGfpOm6Tdfa/8/BBB0pPJe4IE0TXuBrUmSbALeRgxFRyz9vkMXBkqqMUOzGzOWtHK+BVto6cTGAIEFBZnLg4H/3UeIEsjYW4MxCNowA+wVBiaa3EUEiItCpiSkPUR8yyuEzLTy3hxiYJyPVsJlqH8IG8tqiQSl8t4IaBR6u3f6eaQyJ+NfXolybGFqlO8/w/tH/SIgIkrgr2XYMwAAIABJREFUbMKQFT1qMjYXSM3uEq9LwfZ5GPiSp6PXP8/1drcRSUBnYp6QGb5fEUFDlgE8yvtM4cL4PZBimACmpLAlECFAJSNb8U3yXkg1TyBzOhGH00SAyTGZz8oDtc379ZD3RQNmfCt2CMyjMxYDEpcRohavYLlvdH0COkOw51n5pkb5sfKQ1GF2wyavY7z3/d2YMuuz/reUyJl1trdb3rhmv/7l2Lvybj+u1Ptxge87hxDFyIqDdHjdil+SFxXs/SolFhrwvphN5EDqx+7jJIy2usC3pWAnL91GglbZ6X2hOLotfv/q/PpX+L2T2MRGQqb8RJRjeIIGhREGyxssMhbXYqOMtvdgb7nePDcmZZDmVtjd+JRnoilTdSs2qCtIfx3mHRLgULLPLDBqI7T3gfa2MbE6shiYAz9p+Eiuyd8Y9tVQrJmbUk0T9TgImoF5Qj5HrEj8XWKDfLVvfwYDHdnV82kEdewSzCjPKipfTRj2EzAPjYDcEmyQafLrl0p2y3oTMIBIzJfrS99XQOolDHh9OPN7U+ac7/T2SvBM4GMm1sfTMCW5EkyMAmx5tzdznfN6YXEBp80xT1BV0XbWf24kZQ/bDNf+mTEwB/Z/2r04l1ob2hv9fhd7Xer7t6awK7EJ2ml+LQ+OswFd0uBSLlK7d2CDfNbzdx7xCApEOn6l8bA+A+xGdmJoSjehNPO7lA/J/JadxU8hZTg4YXS4JEl+iD39L6dpOu0IvxcCS7G344+ARWmaftl/+1NMq3AocNexAMcbaccbOMefAI+laXpHkiT3Huu8fwgg6JNJklyDvZZ/labpXmw0fyGzzw4GiPlHSZLk48DHwUDEudi4vQsz6toIWtJ0zMC+kFDSUtyMDOt8gv7W6t8pyFrUN6m1LcfGOAW1C8hIJa6akEzuBa4AbsfGGtGUtmHDhooMxH4il5Gc+aJBLSdkpw8RuVpEaVP7ywia03hsTJanSZ6SBmxRqAObI7cQOZOkFFfq/ddDJBuVN+l0DARotX287ys1vtmYMZ+PvaGic83wzxIbEO2tiRjTV3jdkwiVtYPepml+LuUaUr3yJL3i7SzMHDcEe4jWEF4s/VZFqLwp1kiUyYPYnCDDO48AgVIrq8CeM9EcNUJkqVoSjBiLAYPx2DNSij238ugpBiqrXLcdAwNSCSzyehv8miS5vhEDWM1+njaC7ilBD8mgr/D6JFde4X0rKqTyEClerMvrHO/n6fbrbPD9L8SAlp4x/B6UE/S8PD/vO4g4I4HJWt9HIhgb/XwrCJppEZFbSLmcFKcH4SWs88/9RFzXiSgSzxgsg+XEFRl/R8uXIvlsFXmE9CROxUZOHe9LN1rlb8I8G9k4FrAXR7PqcgwUyfh/DHtpFvr2Gq/nAd9e1AuPRnJVNmNgQSsNvQkP/+CDcSlShdHECjYgzSHn8WB5r8UHSThhGvb5PN9eSMTe6Pp+TAC5Bd5ueXqqMcDxAAH4pmIASMfsIHjCYHLYFxNUhWo/58WZfikhANVLDIxLUjsfxWKwIOhzog4+jAEidd+yAlgWnqD1FSNhIbT/dExcVxM5nvzbLltKF8Wsv2ZW9EMPAYIeTQzMZFMIL8IAUJNvl2P7KMbnEsx7pUeoALtnAsfn+rGiz1VgSWVzpZS4+QcyJ6omboiAuk4i5bgsPe4UKv2cKDrcPZjn5GiAoRd4d5qm+5MkyQOWJ0nyBDZ1/hOW6WQHsCJJkl+kaTogZV6SJGcCB9I07cp8NzFN08O1zF/VjiRJhh7tHEmSTAf+7rA6/gIzh76QJMkVwI+OdfG/9yAoSZJseF22fAELEfwaxjL5GvBtrJOSI+yfHqn+NE3vBO4EKE6StBl79iSrfAn2akqK9x2YQT4De7+nY8aUlMg2Y8aZklxuJ8bHSsxA02q2JHyl6KUYFtGBpDInFbhlRE6YEmz8qcXodJcTalbZAPxi33eHn1t5cqoyda0jaE+i4b3D6z/kdVX4/j/3PpEC2C7/p4B8yTwf8n1Fr2sjJJ/LvJ9mEx4geQ92EsZ+jdfT5P03nRCKeIZQ4JMYgWKHJBihoPgSQvGsx7fbCM+Yrn985n4UErS7id5324mYn0Js6G0mPAcScygm5qdeIunpk9g81EUArGqCDjjE61PsS6lfey8R7ySqnvLuCMQVeT3KS1Sd2V80NIlatHofNGPz9wrff6ffk2cJj6Ji28oJSmceBi4EsCQksZiIaxqaaetl2Jwub6Hi0BQnJg9cBzZf696KriihDika5nnbOglhjuV+PtEBW/06tIBdQsid3489q8oXNRR7jt7ubZtAeK3yvG3nYs/4iSiDyVIHy4kthxt/AkVZT9B0YiQ9gFnzYlteetj+wIE2aPTV+ANNQLUNJBIAWIe9XFIsux4DFPK6nMfAGJyzsAHCY/VZVGAvmJq+FzP0q337Piw3kerowKhoTcTgOgmbSARyPldgv2kFSauM8j4dIBwMEFQECSkITAm4rceCH99JTOIdGCAQILnWr6s8c2x95vcHMMCyI/N7No5Kog0CTQf88wSCwnCVn1NxRNOA2zLnfA4DWc4Rzr+6k74fjwivzAJgP4y+yWKpXnxqfvCwwfrpesIzs9K3v094bnSvdB3lfp3q69vAc7FaWQxy4gH2rLRizxVAqysU5gD5TmymXUUg6fV+cerM5xiYI+hwsP8HWUYmSZJla9/pNm2upGm6NEmS6qNVkKZpSkhcyIxMMfbUpjRNtwAkSfIARiQ5PG/4OcCNSZJclKZpT5IkH8NM0ouOox1HPUeapmsxc3NASZLkZuDLXp8i5o5afu9BUJqmC469FyRJ8i/EGtUOImwAbAhuftVBh5+LkBLWino5Zrh+DzMQZRytwVaumwkBgAbM4GrH3venCAlsGad1hEHbRyy2PYmNScpXA5FM80lC0arW6/kVodQ1l1gck5iB4jIUj1hC0N/OwabFzZgxOBEb9/IIA3sLQcub5m0Zixnqat9BwqNR69fdTcRanO/19fo+FdiN6fT27PH+2YkZt0MwiD8GmydWeP1S6yol5L5rCWluUQIPeV1TCHU9LbKNwpTPRHOqwrwXMuIlbCDJ5kMY2JVkd7+fo5TIA6WcTV/xtuJ1K2Gn+vIQNnRP8eO3eJ+v8/3bff/niXiXdoK7OYsQe5CIARjok9w42PN3vrdlkp9Hi6e1RB4jCXxUEZLdBUS8m56bMux5FfDv8s8r/HuJgui5Vn2q+1nfvhC40rdnebslmKEEulMw+0bUxgI/X6Pvc5AQ8ij0a51ExHItwN6BJoJaV+39dhaRpFh5inS81BgrCMn2UX7+p7B3RR6tE1GOI1nqYBksb7LI8yOq0OG0oakMVIvbib15Mj5XwbDZGWxVbUpw6w9CU16cYiFBTZvDQJDU7n/leSnBAIPoCb1EMi8Ie1bxOdUEZQxsAJUIQtZDdRoBFm5J4TNJmE26PAXnL/LjJf09AQMhckCI6jU3c1y7fy/p508A3yGSey4mQJPOsZ+w1cWv1Tmv9d+3Zo4ZRgCIs/x61hH0Nymvqc452AB1o6/rLkwG4IG+z4yIpKpg4OY8aPmYiyGUYBNFU6a+JgKcXe/bwzLtHObnFOBUvI8A6UyMtqf7uQB7NtSu9VjsVi6erJNXU9l2EolRs2X9YfupkkzeK6uUU6qkHM8l7U7TdM4x9zpGcY/MS5hp8k9pmtYlSbKQAYRWdhDmazQzTX+aJMk44IEkSX6KOSLOP85TjzmecxxW/hO4JUmSK3l1Gt5Xld97EPRaJUmS0Wmaav3ickKj5RfA/UmS/ANm20wCXjyeOmXAScmsHwMhE7DxWQkmizDDWbEgKzFjtJXwsozCxq61Xl+FN0SLPkOw1Wnl+tmAjUeKXyjBjLfZGNhSEPlMP24FscDyboLKBUGXKvf27PN6ZxNgoRcTQxjl1yMqluSks9LeewiRgz2EDPYozLjcSCRn7fL2noOh0gsJFbZXsKe+z7dbMSB3CWE0b8HmAklwF2LG6TN+nqsxQCMFthEMVIHTPFtCAFZRx+TFeRAb6wWs5JGaRsQR5WP3f5efQ8pu8kxAxARVYffvnMw9ySMSwQ7BRpcf+z6K0ZJ37yD2/LR7WyTJfBZ2vx/HRgbFYlX7MTLWL8GWXURRbyeAZy3hZZRnrNv7cKyfR+B7CDaqXEQoBepZkOdpF/YcbPPzH/R+07lXYUCm0q9d8W3F2D2eTkhxCwit8XNvIOS1mwmq5RZv63a/J4ot+5X3iZKlSo1PwhCiJs72a96BPff6TcteEDmmBOy0CCqK54kox5EsdbAMljdQDo+HkNYlme9FiWvyzwI9MkZFrG7zQzT65zkVLm8gJ+PXmc/fPwgL8yK3jehj8l5UY14RARKJA8h+7cCMfHkv3okBCtGBrscG1R9ljtHyqGhbOxITKHjatx8DvkwAtdEE3xsCBzb5trpJnqFpfh0jCdJNtR+XVaRbRoCkTd4u0cQmYH0yN/P7QgJcKOBXHpV7MI+X8u4UAv+71yhvkicFA1+fzeToOUCAvktSuCUJgALWlx/wz48S+QTAHIK/9usEo9upj7JBBFlOzmkMdMrAQHO0BGg5CON8dN3aCXsFdLIVZ5Xg9hAAXRUOYyDIOVIM0CkGflROHB3umMVFw2YmSVICPJQkyTReH6PqW+7F+QEwIU3T/Ufa7wjluM+ROdc6Bi49vGY5pUEQ8K0kSWZindYE3ACQpumvkyT5CWYL/V/gfx1LGU6likhuuRYbX5SnR4bizwkDdzLhSejGxp0VhCDBTiKJZyn2XCumQvEuQ3x/xbLMxow7xZBopf8QIRUsNbXx3l7R7C7z30WPU9JLxagoZkLxOxDS0zu8LW2E9+cVzDAdTxiIxZihu9B/k0dij1/fpMy+irES1QtsrFaC1GKvpx8bFif4Ps/6XyX23InRzbSm2U9Q39Zg4HEbQaNqJXIKTfQ65AFoxeYsgbDJhLdAhrtitFYQYgK93m7l31mOzXfyUgzFnhn1exUxx5VgQHQekd9I9Kotvq+8HFJiO8f3kYdNNLKxfq+K/fcZ2DPyEAZeJJyhPEIdGLDS8ormt7nEutsYDOxPJoCH8k8JkEzxvpDgRZPXedB/l0T2JGzOPcevTf2Zh93fQ96XAkPjCaU7KdSNx+bbIRiYE3BTfir1mZaqFE/W4fdlLuEBlccHgmo6ioiDGuPn17Ndgb0rzxNJkd+BAdE3W47DEzSoDjdY3kA5EiVOZSf2Zg477DcZlG0MiHo74z2w9yCxPIAZtOSF8d/IQAbduQ6AslQvCEN8OTbYSpntacJbADa4ZL0j+zD2kzxDiyH/lk761o3IxMJgE+L1vv1pLKi/0e2qORgQkrnUhA3Qis+Z7ttqcwm2wvZT334rBsrKCbw4GgMNykPxNKEQBwagNhG5hHqwAXV/ZruDAE2t3jcCbp/wNi3AgEkPsLDABikZxAt6YU5Brs7Rn99Ky+3jog3rEutPyU9XY7c4G0vlyWhz/aBrA7uvEnTIqru9E/iZb0/BwJo8XKpbCoMdI4A9sNVdQ+NGeAyQI9YzRsDebKyaRA86ebUEdjY4KRsDVJo57hQs/cRz81sqaZp2JEnyX5hQ8nMcJ6MqSZJ52FP1ELb08Mkj7XeE8oZYW6+nnNIgKE3TD7/Gb7cCt76e+vIxI2gl9nopnuKX2Bj0duxdr8XGkUbsORWVR2BmChH0PpTwCh30/W/Exu9WbPyR16YCM7qHYkbcaq9LyRp7sOAleRJmEbSyXiLpY6Vfj/LENBA0vAbMoNcKugQWZmAG7i7/vNGPLcNARjkREzMK8+40EIpjkhiuI6hOEElCBbSkmrfLr7nfjxlKKJ+NIuJ82vw8ZdjcMArzfMwgKHCTiDgSAQkIepliSLJS3VO8r3VvBBIkbCAjfzwhfqCAe81FAjhS/yv3z6O83aOIHDg92HxSx0AZ7y7MAN9ASFfX+PGbCUEKxaiJKpeHmTCTM+ftwTxsy7xPBNCl0tbs9ewjFAQlLCGZbQG0DkLtbh0GZldho5yusShTv+LNIFgxL2DgAew+F2HgRZLyfb7fGmye1uKpQKaEP+Q1E3j/pfdFK6E8WE6o457l372bSNIr9cV3E+B+ufevRDO6/foXY89Xu7d/LSd2VD7GasygOtxgeZPl8NXxwzWBDhCKcWDLJRnhhL1tRLY2MD94ngGB1eth2FRLBnpGXgy2TRiIkVy1gmPlLXqn/xV4WIF5PT7r2yuxgVXUthJsUFD9BdD3d55YU+Sfeb3wzwUBYoZh3hEBs6uxQUIUrQNer7wZjcTA7eegkYEel5EYONB1SS2pKdPOFqK7O/x4ebQUN6Wu/pwpueUoeDq/zMBHCJphE9bniqMSaHmkwNrk2KDlznE2aKvde4ls1iryDoGBwFYi3mo3wVsn0x/riFVJ4WVJf4MBIAFXJYx9xO9RIXCgPO7FVskz+RLQ3k5sRpFi4R5Cbi4bE5Slxwl1l2a2T1EA9FssSZKMAg46ABqGmQv/B2fWO9VtJ/YkXnmE42cB/4I9WVuBHydJ8vU0Tb94HKc/rnO8mXJKg6ATXf4vRg97OyEbPBQznJ7Axj+tmNdghmY9BgikICW6VLXXqdXloYSalVTjWokcM+v8nLOwKWcb4Z2YhgE0GfACGCWYMSiDXR4p0dg2+jFDMQ9BK0atUm6VPGw8V5zKbGxYEhVbCm613vZ1mFEoEYIC31exTAJF2wgjvwAzkkUHVDyTvDICYsWYoXwOFhN7mZ9PFD2plTUQCVsP+nYDJu833OtQ8P7bM/2/CzNqKzFwOYGINWlgYGyRgvar/G8ZZsB3+WeBpGmEjPI0grKlvhS1T/QqJaiVIEA39kxJoEES4N3epmsI8LoCM9pf8XOXYPbEId+/g/DUXIQ9o/JG9WBAegH2HNf6PZDcOoTinmJklMR0j9+TbkIZDuy5f6vfHwG4F4gEv6v8uGew90MUx4uwRc9mr2u417uTUFBUzp9SQpyjkhBVEN1P3qexvt8o/62J8EQqtm2U37tFXn8hNiVLJELnk3cSQoluhx+zizdfBmOCBst/f8kmSQV7u7J0uenYLCPE0enfZWXR1mbqeQ6YCq3VlluoZb1t7z0Iw9xbJLCil6mVgV4hqaI9d9h+MuyfwybXyb69HLOJtd8cDFi1EspzbQUGUgSKmjApapHiGzEDX3UKWHzKtx/GuCMy/jv8OrIyz2CDhoCTPB6i4i1joGraPK8jq6ffQajB3VNgA6FAzzCi72CgDKWohVMZmAR2HzaIZm/nnMx1ZEXXwJaCd2dipZ7DJixd50hsohZl7xZv80xCdGGnt0dgUJzvTM5VHmmKC9jbaRd3QN7ELOcAbIZY4H/BnsdVvs96328TA5OjHilP0Ckmi50tSpT3JkuSJP8OvAsTUdiBiQr8a5Ikj2N+1JHAv3lc0BDgJ2maPurHfhIzJ4YCP0zT9NdHOEUR8IE0TTf7MR8hMkYdTzuO5xxvuCQm/DBYjqcMT5L0Ldh40I2NaxrT2gnVuELMUPoF4S2qJRZjDmJjoNThtmPj6TlEbMQeAjBJXnss4Vnp9+MbsTFNq/p5mPFe5dsCMOcSRuIWDADkE7E/YxkI0CQB3YEBEsXS5BPy4DK2G7Axs4KQLJ6JGcL5hFiAwIcMfnnT1G9qn4QbFAtT7O3p934eihm4RURyVimIbfe/We+aErt2+HlneLtGYQb2BkJprwKbC2dlvl9DJMSVSt82DKDKu9dKeArVP/g1lXu9Umdr8mNbMRAwDfNKCZBd6Pts59XzlfJI9RB5hoYQOaI2ej9N9HPnEbFkEg6Qd7CE8GR1YPe/nYHPWjcDPUS613sIimceA0Uhhvp2A+bVlKfkdO8jCU/UYGBLeYZEa+z1+6J8UqpToFE5nyb5vZqcuYYKImlts59HHqtagmYpL2GtX1cTdl9nY6PtOYSgSR7xjMo7N5Tw2BX59pPw0psNQh2TJOmNr/H7356AcwyW305JksrUGdgnWSlloGE4jFfHVmS3s/LZKuWZ32WQTiSs+9kYePKVfw56vb49jsg3pFOOI4CFFFsElD6Kvcz3+HYrZvQLCEwgDHKZSBMZSMlTPE42tkUxSGAT+zAC0Eg4QHS5RzHTbeVhx4hmAQaw1hGxTuV+XdpeTCjNgHlL5E3B6yonAoPBBjiBw7cQiWYV7fxrrC903YV+XVJqO42gJeDHCjCpDaJ1gE0C6k+w+1BBADx9B4fl8smA3gOdMGwEHHAQM3o2tDQRKE5LPXKBiciepWk2ZT5XY+AnC3QOp7oNO+y7kx0A3fKmxvKkaE7KlGOk6V6dDM4XxyiDnqDXUbKd9QrmAWrFXs8e4rVuIwysjdgCy3bMqPwVoTTWihmRis34pW/PJQLIK7HXXnEtTxDiCBqTigkq1wbMoFTCR61OS6q6hBB0qMPmiX5s6hK1TdQneTS6iYSrvdj4qvw+ykHzE79eGctriRV/ObmlDCZalWKgdmGGZKf/FRWrHfMm3I7FMO0haFBFXne111NOqKVtINjq04jYqUJvk1TO6onYLBnMHZlrUHyIhCPWed9LfKiAAKtdvi3xC/V9lW/rPsjz8DghM73Jj53s1/UC4bHCv1dbxnpbx3s7e7Bnq9rbIrGIBmweyyOSgW7HPC2HvD1KULoMo0AqvkqxNwK5edi8X4yBg3picbIdAyNjMRthPCEBfxbhiRPQwfcvwMCGhBdasWd9OGZSyaO1FnsXDhHerKb/n70zj7e7qg79d90hIyEhISSEhNyEhCEEMxAIkwYkMpUHolVBXx2KUn1oS61tsb7X8hxenVqqFbRonWmpYFWkKIqMQUBCICQEUkK4MTOBkJDpJndY74+9V/Y+J+fcIfecO2V9P5/7uef8zu+39/rt8zvnrPVbE6m4hukw1otpTTzGehyuJBhbo0h6hYVf2o0CK+SwNe4zKR5rYZt27TfFOS+M5z2MdP3mOcbdwT1BTvWxWxa5spjfhbdto8vsb6WLLSzpEcI3UK5wbiaF1UFh/xYIxlAzzI7f1E9T6B2aTVDeLeygkRACYEbSKIIH5rz4fC/hyyFP4N8Tn5tXZgihb0VDfD4tzmd5FZsIXzbmKbIwNatgdzbhy9JCv8xDcjQpqXAboViCeUTuiDLkeUWrKCwgsI2UOzOe4OWy14cQPFtN2XPLBcq9Tk+SeuyMInwx2usWf2z2xvg4hn2JW5nwXJ9+kmSDmCzbsucW5maenpcAtsL4GCu36fD4dsdwto3NhGvKvt3yyoRGsbcxD2czozvf1lG4W182gJy+gnuCusBhIjqBoJBZr5t6QvjURMLH1qps5eWEnycoh5Aqe5kCbEn6FuZkxs5UgpFiYWCTCQbQTJKXxPJTxhC+rywPwsoXWy7JwijX/XGe1jj+4jj/OFIekY1DlD0vOTyN8NM2g1TcYQRB8bT7fusIXpS9cX7LD7G8imGkamy7CQrnvrhtOinZ3hRya7JpXpLlUd5aUqW+tQTltDX+byOF20EyrBqycUZFmayHk+VfWaUz8/hMBf6TUM/RPG9j4pxWwruG1Ox1fJR5DamEM3F7M8kTYwbiBMLv54z4fBLpN3gCKf9lM4V5Xla0wRqPjo3n3kQq0tFIChc0z4ddd7PjfLNI4XcnEPKpLN+qIe7zQpzHzmlqdswkwrWxNe5j+UJvJF1L1qPomDj/8xR6aNYS9JfH49hzCTd4BxGujaeAdxIM7Tlx/c0Aao7rZZ8vW0s7Z0hVCyeQwiUt3/msuB6Pk0LadhCM700k44r4Wm6g7CJcs8viWt1XAS/N0SJ6dTuvf849Qf2GvusJMi9PubygUiFFxUZTQ/Z63o7btu8heYggfIPNzfazpPdchnHp4dEUVg8zz5Ap7kPiVJa3cg6xrVEznBSPMff34uyYnFHx77H4/Iw4x6PxU350LPRwcnx9PeHLa3Z8/jTpjpgxjfAjZsbaEFIyIiR3dWN83lD0+qY4pr0dewk/qib78/GY3LNjc+VY8iPx+ImkdWgg3b0lymJ3A22OPLfH2qmbzTuEWFQhL45R5Onbj5WvHh0fmwvqEQ4kP7aRA0vzWV6QXZ9W0KPYmO8vxk83PUFD5ylTOvAEPeeeoI5wT1AXGEzqKG+ldYeRcmcGkbwApnAOJnznPUrwCFnOzjKCsrmd8DF+lPDxPpPgLbAQH0vct+pltaRcI+uHvIpkUJ1FuFll3ov5BKPgflKosRkYkwlfMxYiZyFktQTF2pQ+C/EbFGVojGObMbEmylFD+P7eRjIuBpPyYUbEuW3+++P4E+L+1iz0xTjOdFK/ui1RrjnZmlmoFnGN86IBywi/gTtIHoCVBANlQxyLOO4aUgTCEFJRBlPSzwK+F9fRyklvjus2Mp7DUpJSbCFbdxHe89/G/aeTDK4XCNfOIlJvpe2kwhDmpZka9x1NUPbtPbHf0uXx+ZYo65kEY2FBPC/zYtRE+RfHNbKfj5Xx/TGP35mkcC8rfmDFC8xjZvk100jesxGka346yTi2kMfxpFDOMaRcoRnx+OcJN3W3xX32kTw7xHM6L8rWSLq+9xGu422k0P5GgtG6Jb5HTXHMeoIa9u8Eg8eqwk0ilae3cS2XzXLnZpDyw4hzjie8t6NIbU+6i3uCnOpjd9CHFm0bXfTYXi/utwLhU1bKKMrzhCzZHYIGvbVojKEhZApiw9Xs5SZCaFVB2FUjHBHn2dgIQxqSsv7z10NFsSH1Se9+jmBM5flITaTX55DuUhnPEwo6mAyQwsyeaw6GkW2fHZdhEylk7l7Cj9f90TA86fAwv3llzo/jmdxmENnzkwhfZmbcDYn7mMGTH2fjPkXwPMWlYRNhvfKcKyvQkJ/XpqL/5vF5jbA2tn3juCDkc7ZwZ5MMFsvZmRtPPjNyhl4Me8yaW0XKJYMU3maGsXmG8uvjuezxUJIBlHsoS4XEFXswi436AUKFcoIOddwI6gIYN4SpAAAgAElEQVRWsHwJISTGcndmEL4v8ptTVuRmC6kBafwqYUTcdzdBGbOvhVWkRp+/InlyzAMwgfA10xz3tZLGkHq+PEj42FtxALuzbYpoGymx3e7oj4jHnBLnW0EyfCzMz3KbGuP2haQbXnNJSf12U2o9wRtg1cMgKIynZes2k2CYDYrHXkIKR95BappqOST1cc65UX47xxGkKnm/Ink/hpC+os0IsKbfO0iVw7bF89sX13wbqZS1eSgmk0Kt5sa5rH/NWMI1cF+U05L0rXDFrCivKeRm6GwlGImHE4yTcaSCDivjY0tRXk4Kv5tB8tLMIxiPY+L2lYRrszW+R+b5eiKONYNgrK0leVgsp2o3qfCB5bBNIvWxaiAYSVujvFtIZak3kyI0rIDEjvhnBsSvCXrDPlKj3aa4xjWkvkvWeLUtzt8ax7B8JysusYOUm9RMuJEwLsp0F6F4xl2k/kmWr2U9DncTdJd7SaFuTxCuq/oooxnc2wjX9FSSZ8jyyKwCXqVoq+BYAwERmUFIx34V+I2q3tH+EU77lMqVGEphY5fcSLI77LlRlOcMnU34dDwXtz2XvWbznETwqZ+dbV8Pe/K8o+dgT1Rg92wNx+wXsxE4JibUR5kayQqFHR4+xK9ltxCm1BfmHY0n/FBaqWfzZlgeyxjCl9/+PJfNMGpcMiaOrg+v2euWPzQE+EGU6+jDw929Iw5PYjdkct2xHo5uCF+kAI9GQzEvKDCeZJBYwmnu7THj57VmmBO9VY0UGnRHkBlOm2GTaR9AQwM81QhNDeH5ns2pVLWd1/NkhmlDfF8uJp0Usaz1Mdm2hkyAcbDnAdL7bddFMUuy17OxgUJP4lDCL1F+7ebGDiTjvtgz5Djl8XC4LjBaRM8nhKVNJHxnjiIoxPMJCu8FBAVxPKmg4wpSnuIMUp+h5aS78JY0bjlDuwnfQxcSlLM1JOVvKyFH5gmSh8bKPI+P840iKGcTCIqhGQ1jSd6qWkLR9gVRVstbMqPFlL08L8OKMowmKITmld9AUPat6IPdVbfwJ1N0V8W1WB7H2EwqLjCeYPhYTo+FeM0gVY97Ij7fQAodtOR4Kx2+Ir5eT7rRZr1jbH/DjKPJUdY8H9Uwb95uwvu1hvQe2jHN8fytqaeVIa8leTMM86bVkpL0rRoeJC9DY1xHK+N8TFwTa6BqVermEq49u27Wk7xOo+P8Vg2tgZTLYh7D4aTKZ9ZraBnhmt5N6hdl8k2M220+81ZZGfH1hGtyLqnh6lOEtbebmitIjVbrSYUL1keZrIrgaoIx9wLhWtkXx7D3aUKUw/oAzSNc0/beW7jhiDinFeqA9J5ZiKJt25SdWzPhpoaF2K0j9S5cTvhMtLH/M9bt0INxInplO69/tRNziMi3CU7Il1V1Zpl9LgK+QrgMv6Wqn29v+8FQTo6uziEifwH8TlUfFpE7VfWyg5WpJ+m74XBG7vnJjRq7g54bMrmniKLnQ7PnvyM0udlDYVmXcaSQKONsksJqd/Rtzrz3Sz6nYXEQjUXjR+OpLJtJivFJFCrvzRQ222wg/CKZTPUUFnvYHF9bz/74taGHp0agELxKr9nYAMtgaBYWuIc4Zp77AmmdTqKgN87RDdHYswEsJC2XKz8nI3/dxjsmkzEvR/16PCdbx8YojxlB+Rqa3HMJmtG47JjiYht2PnZ++ftZHD5pz/PXbbziLqx5lcNjKPQq9eXQuG6Gww2apxzZQTjcRg+H6wg3grpAvYi+naCI7yYobVZxzDwmln8ASUm2MLNlhLvxVuVqFUFpqyUoscT9LEzpAoJnYwSp/YCFmVnTTsuRWU6qGGr5LSsIX4XWvPQswtebVbgyBQ6C8m65PBcQbmaZB8GK39i8u+P2Cwl30c0jZZXktkRZLR/VlHFLIv8ZqW+QKd7z4zkvi+OaR2I4qeiBKaIQvuasEtguUuU1U14nEYwv86w0xvHsjr0ZLO05ywfH8ZtJP2FW5GFbtnYzCWttzy2fCAqL9BhjCdfAeML7+ROSETQnbv8FIfxrJSnMaxtBiX81m2ME4adtU9z3D+PjelJhAesxtSGOb0biWXHtNpAa8Fq45uGkogsWnmnGLYTrA1K4mxktraQS6CMI16F5SYljmjHfQMqtMkPYcpZqCe/pm+P/E6LcZjiah2oUyfNmXjfiPqMI1+e8OK5dB7mhP4/UD2kmKSd5RVybMYTP9CmkBqkL4jmZMb4tjv3bChhBR4nou9p5/WudM4LeREj3/n4pIyiWOv1vQtTgOsLH+SrCJXTAdlVdUXT8UcAeVd2RbZumqquK9jtAjnJzq+oKETkF+Psicf84/v87wkf7LFU9m35A3zeCiimuApeHweXflKasmpJqCqsZS5a7YRW/9mTHGQ2ET2M+RwNJod1MoTFTXMbbckFyT9L62KPoAVKJ74bsuJNInof8vOIYQw+PzTxNiS5WxM3Asl8DC4Rfn83VSDAWzBvWQPg2NwPDjMW8rLN50ez5uRTmwhTnYNnYjWHf/cvSSDJu7H2wddpDoZGzNZvDxs5D144hJlnFc86N0mIjxMaz68eKGDySzfkIpUPV8jGLwzPz9zt/zTyRpcLd+rrhk9NNI6hunnJ4B0bQa24EdYSHw3WBNoKiuJWgeG0gJee/EB/PIih/j5LCZazD/Yj4+CrCnfE5pB4nJ5Aqrm0j9c+B1KNmPkERW0lKyjdlbxoh1OxxUt7PNsLX04i43wuEr++J8bkptzvi8bUEBXspQTmFYADZJ8iUU0hNIkcTFMdhpNCo4XEOy8NoijK+GMdbSKp+N4pUUGIWqex1Ayl0cHuU7wnSV+r0uP4WAmjeIssBsiak1vfHIh1mx3Wwam3mQdoQ12MOqUdPcQNMK1KRf+Xae2AG0Jw4nxVmsPLjVi1uDSkvybw9C+IaXRaPWUOIljBPoYVqbYivm1FjBsCauHZWlMFCIM0otEIXo0lesEmk97KeVJjCcouaSKFoY0lewi3ZeJCuwxWkfCCrtGdeQAvV20Ewdu6Ma7k5yjuD1MC1kVSUwEph7yD8RFoI6ONxbYaRwvDsvrDlj22N62rXgeXzmBfsTMJn1EJbFxGuC6taaAUfrNz5jrjPOaQqjotJpdN3URmUYHS1w5Eikv/y3aKqtxSMofqQiDS0M8bpwCpVXQ0gIrcRCgQ+UGb7iqLjFwAfEZFLVLVJRD5EcE5f0gk5ys29QlWXkbqVFHNtNKD+s53zcg6aXHksFSqXK63FCenHkJR5SIpp/k1ZPPaSbBzbPpTkSVhPCn+yOfISyqUMFGCPeRjWE34tcq9FbgCZnI+wX8HfY98i+eu5l2ZoHC/3BI0rem0PwejJ5dpKKnM3NPuDQkMQwjdZvnZ2Do3xua3J0Hj+D8TQwfz9Mw/cUFLRimLD5bnsXG1drFjBSYQszLOz15dwYPXA3Gu2lUK5rT55sdG5LHu9+Phiz1HxNWev5yFvW4uO6S8GUAXwnKCK4EZQFxhCUBjHkZoxTiUoRxMJSqIllU8j5ZBY4vsJBGXyHgoNKcvHgJR0P4ugfI0lKKiQFOSxBGXOwpS2EJSzh0llmV8lhSuvjttGEL6erafRKYSv1rnxOKvyNZagGD5MKgENwTB5PK7BPFIo09Y4xiaCh2ABhV6DBoLiOD0+/i3JMLIyzyMI1UTnkvJIlpEahc6Icy0iGAsPxrHuiO+Bra+FvFnFPcsZGRHX+nWSx2oHQRGeSvJUPEUwQGeTmrluIfzsWSlvoiyWU2XvAyQPEPFYK889gsISzVYdbTwhUd+q87WSyi3PyMazanpNFPbXyb0b5qmwUtO7SKWtZ5EaoVqVvxfiOK0ELRTS+z2OVJbaChoMIxXEMOaRvE6j41pMJ4WUbYuvW0GH9aSqgQsI7+N0gsdndJzH+vMsi+dq1QGnxXObRqq+aAU3LiZ8NpqinFsJYWzb4xh2s2FNlHUEQdteTcr/ss93G8H4fJ6UvwfhurNqi4sJ1+4LpB5blYo+7yAn6JUK3Nk7hnSfA4JHZn472wtQ1dtjB+/bROR2grfmLd2cuyzRkPobwlv3pU7O45Sl1N3yUspjuQRzUzZN+cwV7OLwp3z8/G5/qf3sVkcuY7F3qni8fF7b38Y0j0lxYYdixTo33vLzzI004vZccbdtJ2WymGfJnts5mwFhxx+THZ97SOzc7BwaST2Yctnz8yx+P4qNIjsfM4h+V7TdZLbnjfH5kqL9lmX7k81nj3O57bzzULX8WDNyiq+Hct+i5a6rctscp3O4EdQFhFQQ4DSCQj6OwhLSVka4nlT22LwPD5KKvWwlKFnWxNmS+TcQwqDuJyhX5rGwHARISqD1g2kmJdZbjyALJzOvgBUTGEtQqLcSjKEhJA/RKJISvJrwNb01zmFhYBaK9CuSEltPCvVbRVBELyUppZsIX31Px/ktP/VCUsGAGaQSxavjuV5G8BpcDfxrXIPpUZ4ZcZ85BAPldYKBNiEeMy2e23JSVTFbTzNe5hIU8kXxdQvPayUYELtI9WgsFBCCcm8V5vKo95mkAhStpCacFpp4Zvz/FKmk8z0ko81Kr68ivbevEwyU1XHspQTjdEyU+USCFmn5U1ayeyzB8zafcL0uJBgKv6WwmetpcV2WkoqdjiUZzktJOVObsnOwZrmL4/szhnAdvUqhQXYe4Tqw4iCrCO/ddMI1M4dU0vxH8bgXSWXlN8f3YRCp+IbdGGiN8rbFua0QiBnfVtRgBcGYsXwuay7bRLq2rRreLFIYoBXSOIvkiVtJ+Jw0k+4BD6FyBlAnqsONFJFbgJ+r6s/b37UsUmKbtrP9wI2qX4xenK8Dx6nqzlL7dWHusqhqI3BNJ8d3OqSzSuPWMo+h47Cj4nAm21ZskOSv7SmxPTcusjyW/TIVh0nlYxQbLLZPbjwVGxO5MWIG0tai1/NzWl80jxlnubIPyYAoprgqWm44kI1l+5lBWjzHnhJj5Gu9J5OhlDclPyeL8Si3LrlHzig2Zmzc/LrJ16lYhuJj7XUvbFAWxe2/EnS1kI4bQV3AHN25w/fR+PgCUv+bIQSFfC3ByFlPahBqitcEUtL2WArv/lq+xRqSl2M5QZGbRgqrgqS4byAoppPjPJb/MosUUmT5SY+SclXOJCiwd8XxJpM8VFbSGlL+CfE8LyaFi80nGBJ2zL44njVdtb41p1HoHF8ZZbWmlValbDxB4V5K6j0zOsqyhdRzZmEcz8oTjyNVndscxz2B8F40RBlNvukEA6ORdBt6ZSazFWawkL3pJI/cFXHcR+M+5i3aFue1wgGW+7OW5G0bH9fdcrtao5z3kRqeziKE/o2O78c9hPfysrjGE0h5Qb+Oa7QoyjSWcI0uiLJYfprlrZxG6v1ElH1JXANrHNpECpe8JM5v19sgUuU7q7R2L6mnzpj493iU33LL5hCMm8kEo++HUVYzCFfH88h7SG0lfC7M0zYunv8pJA/eNtL7bxXlLGzPcvXsNfuMjCcYb+a9tXBWy3d7lVQe3PKzzAgcQTLQaqO8ebeM7qIk466KrCPVPYGwFBva2X4AIvJGwkftJ4R8nY92c26nX1FO+yo2ejp6rdw+xdtz70x7++eKdXveg+Jxyz3vaP9SWDhe/ryYjs6jvX23Fv3vaIyuPi81dqnzbu+97oiOPDqu3fcUIjKK0EZ4JuEn6I9V9dGifRpJqeQtFo3QFwvpENTTf7ZCOqR2xyWpOViBD0VqSV8Fw0mhNxB+2a2i2+MEhW0vQbFaR1DkzCtzJuFXfzEp78cS0M37YGE/dpzlqgyK+1vvly2kcr4WLreYoOReEI+3JqqN8bnljcyP53BfHM/u2luPoLVxjrwS2gxShbUXSPktxLEXxP0uJFWos0amW6Os00n5Gg9G2SyEaXx8PJ2giDYRvE7T47hjCErwSIJXwxplDonbL4xzTCN55GytZhIMDOttYzQTFN0JhPe4kWT4LMhkmRPHMI/DrLgee+MaW07NKaTiFstJFU0tr4Z43lby2QojjCYZJUS5t0UZrorHDCYo3g2Ea6GBYGAtiGOMIBU3mJytxWJSNcG1pFya3XGMxVFeC6Mz4/SuKFeeFjuDpMnOJVwzZ0QZBpOKfFiV15lx/3VxTsvXaSYYsmbkbiFcW3kxhmFxzS4lhRa+GF9rjedoY5vBviiet+VDWQn4NYTP2+L4+ro452KS17Mx7r+O8D5bZUfzgBLHeIpUxfBMKtfbxzxB5f6A7ap6TTe8QBAuhekiMkVEBgFXEhyo5bYXICJzgG8SnJQfAEaLyGe7OXefR0Q+ISIqIkf2tixOZ+iNHJG+rLxXcj368nk6XeQrwC9V9USCWvNcmf3OU9XZmQFUC9xEMDpmAFdFL0wBInKUiIwo2laq/ON3gYuK9is7h4icIiJ3Ff0dBfwAuFJEvkS6D1wWN4K6QCtBEYZUWtn6Bb1OUJosvM2MJbsiRhMU9xMISq6FI40jKHfnxOe7SSWoV5Hyb+xOfN4sc0iUZ018bOFsEBTyXxGURAvdaojzmzFTTwpPGkbyQG0hKMJDoixWEABSnkl9lHU76U79WILS/GiUr5Wg7FrRhCVxrgdJjUEXEq7SOwkK6BKCovwqoc+Q5fNY1by1cf7NpJ5Km0kNQ39GCp0yL9l0UmGEXSTD8zSSF2oCQXmeQOrhtDSuYS3JS2VG6VqS58uq3zUTFOLvx23jSEn2Q0h5OTPiec+I67OQpERvjsfsJZUj30Iq/lBLeE+fIIVC3kMynhaR+vSsJOXc1ANvIzX3HU3yjhD/2zmZh2oYKa/JAkgeJGXJN8XzWUjKB9tA+GxcTGoI+2icz0LNmuI4YwlepNFxHaeSmr9OjuduySN3Ea7v4XH7SsJ1b55GKwU/kvB5sX0g9RMiruHMbL0tpG0TwUN4Qnautk8tKVvBvjBr4ly7KUxwqQSt7fwRw+FE5H+UO15E/p2w7CeIyDoRuTpuv1tEJqhqC8Fzcw/hB+9Hqvpsue0lphgGvENVX1TVNuB9HFgJvqQcXZijTyEikwh5T7/vbVkcx3E6vmXW8a05ETkceBMh4wBV3aeq29o/aj/7i9yo6j7AitwUswD4mYgMiXN+CPjqAWej+hAHuhzLzqGqy1T10qK/l+PftcD1wCsdnYSHw3UBCzuDoBDNIdzFhxTCMo6gyNrzeyksk2wKuHl0Nse/3HxeHY+ZQVDKfkbqgWNluAfF/SysaTRB6ZxPuBO/iKRUWs7DEIJx0kDqKzOSwr458wkK9nyS8rqZoOg2ZvtZDsqE7LmFi51JiCoeG9dhdzz/CwgK9L74t5ugsO8lKKa1pNCxNQSv2iSCF8L65FgRiMfjfqbMT4jnZp6rmrhWllNCfD4jWw/zJC2Mx5r3aD5Bubdyy1sIxoA1eR0dxzfPg1WY2xbHm0cwPNaSwvcs18vyhqy6WL7uvyUUCPgFyWjYSrhmphKU+l1xTa1qnzUnzcuxbyEYeFMJxsMGCjthDCIZFK/GdTajfAIph8aMYjunraQS2BMJuViDogxT49ir49psjc8th2slqeS4Fa2whuSbi86vPv41xnM/h1SFEIJXyK61laTmq1ZNz/pG1WTrAeG6sHODFIZnpegtPM+uRZvDKvptJ31+20hV8tbF9SjVY6qrtNHhT9d2VW03P0ZVryqz/ZLs8d3A3SX2Kbm9aJ9Hip43EzxDnZWjwzn6IDcCf0X4OnYcx+ll2uiER66jaqIWmf8dEZkFPAn8maoWFzxV4FciosC/xDEGRCGdAe0JEpH/EJGn41+jiDwdtzeIyJ7stW90ZjxTqs2r8xQpvMkUYlPo8hyfvAaL/VnVLzMirLDCWJISPYJgZFk4TyPhbv9T8bE1XCXOZyWyieM0kULrRpC8Tq2knA6ivGYQWTWspaSiABAMo1VxPjMwICXjL6UwZ2hdlNOKp9raNBMUSSv33ECqmjcsympG5InxfKaT8nVao3yTCcquVZpbS8pJsXyWYXGe7fG8dxMMEsvL2h1lM0NtFcEgWBmPnRrXxPrT7I37rYmPRxFCCS3szgzOlfGYRfFcXiV5mDbH/dbG92AwQal/mtSo06ramSerPp7n6wQjbi4pNGwUycs1NY5rvXQsVLKG4Hn5Dqkf1L2kSmgjSGm2v42vD4prDKkKGnHtriA1PW2N5/MLkkE+itQ4+NV4/Ky4Ztav6DjSjYCRhKh3M+q3R3k2R9kWkXJ7BpPSe6fGsfZGGSbGc58f34PNJK/OLNJndEH8b5XlNmTba+JYecU/K9Nu89u6WPlwOLAXVHfowBPk9DAichmwXlWXdmLfa0RkcVA8dne0u+M4TjV5RVXnZX+3FL1eR1Apvq6qcwj3Ia8vMc7ZqjqXEORxbewB16VCOoSf8a8Dl1W7kE4MGX+Pqi5qb18Y4J4g1dR3UET+gaTLALyoqrO7Mt4wglJvd4yhsN+M3QleTbjrbxW3zJOyhGRUWF7NJlLlt9UEZW01hT5BK1Bgc1nhAgiK4FiCUbSJdMd6C0FZG09QIkdG+axJ5wkEBdjyTM6I874Q55pFULrMs2WVtsxzYyFRE0l36McRDIKGuO8ygnI/iOAdsvA+a6JpYX1PkKqdWRjY5HhOCwlVw+YQFPS5BIXbwhKt0t6W+Jr1OSJbLwiGi9UXWkDqkTOXVJ1uHCnk7QqCJ2xmJrflf5nBNZVgoA2LctQQrotxUfaRpBLfGwjKucm9PZ77eIK3xkISawnXhr2/W0iFM/YSPGONJM/hhLgulstlTWAtVPAEgsFhBoY1YLVwyBMIhva1pL5Ow+MYo+IcViWtgfD+r87WeCypEIHdrjFf+oY4hhmCkELTWqOsK0jXzARSQQO77nZk67smrvdykqFbQwpfXEd4X6w4hnmGVpBKWVtJccNKvEMqt76Nws+flWhvJBnBEK6LCVQWpcMS2ZWoDucUISL3ktLYcj5FuKt4QWfGiUrGLWHMCd6J3HGcKtEpT1BHrAPWqardP7+DEkaQqm6I/18WkZ8QwtQeYQAU0hnQRpAhIgK8kxBtdNCYopU3ixxMUKp/lW2bQEoAX0hQ5h4kKGBmwCwmKGWWqG55EVaFzcoTQzAi1hE8M02EMCSrdGVKu4XBTSNV71pDYSjPZJJCvoGk1A8HHiMVVoDUXNLudFtOjimHVgJ8KakPixlZL8Y5mwmKqBmIYwlK7NNxPaYSDCUzZEyhtuauS0lXu3lRLKdmLKnS2EqC4mp9hazR6FqS0WHruouksFv/GcufIa5bE6F3TxtBeZ9DKiRhZc9HkKqgzSEkOJhC3BDl2RJltgaqqwlGgZUKH0HynuXhXjOinCtIOSoj4vn+JI5nxsiD8ZhxpMagYwkhYpaXtIRUPMLWYRHB62XV1H4Ux2mK24qbwlrRhaUkb+dkQshcPcGbdRepitokkkfNvC3DSAbSFlJTWzPQV5IMtw0kb9fuuM5W4twMJEjGtK2fhY1aA1/zlJrxMppwvdvn0Pp1GWsJ11QT6UZHPQd2C7U8t01xvkYqEw7XiWapHYbDOV1HVReW2i4ipwBTgKXhZyT0gRaR01V1U6ljHMdxqk/3a2Sr6iYRWSsiJ6jqSuB8in7uRGQ4UKOqO+LjC4BPkxW5IQRzXAm8u3iOrJDOHwAvAT8Ukc+q6v/uhIidmqM7DOhwuIw3AptV9YVs2xQReUpEHoxWakny8AYlKNiNpDvxewkGUF5FfwOpdPa9FGJhZIMJypUVOGgiKGmrCIqgJd3bHW8rlGAVrSC5tWYSlOJxpPCfXIG1oIxNBCXRvB67CQr1VlJBB8M+BVuy/zbmBIIy/wJBYX0hjj2L5LF4NO5jpbTtDvtdBEW8mXB1T4r7zSGVCx9CWGMrUTwnyj2CUCZ6RRxzDXBr3D6fYGDNIijMU0k5HE8RFN/tBK9IE6k0sp3bMFLVMyvpPY4QYmhNSn9CCH+zEDIL0VpDKjIxn+QRsZLmm0mV/J4nNdXNPX47SHk5jXHM3VH2yRQ23H0qvmYG1Li4TivjfyvfbOFpVszhUYJBdC/JG2dGovUOsrwZ4vrn4Zq5X3k1KWfI8nvGEt7XvaR8LTtXoszNpNwroox7Mzkej7LvIIT/WflpC1w275CVpF5KMmotZ89CNptI/ZggVSB8nGScQeENgea4Tnl4W6kcnVkkw3MXhTdGuktbO390ojCCUzli8u1Rqtqgqg2ES2OuG0CO4/Qu5glq769TfAy4VUSeIbS1/H+QCukQfuoWichSQqfd/1LVXw6UQjqi2r899u2FMajqz+I+XydUmPiH+HwwcJiqvioipwI/BU5W1ddLjLOfWhE9juSdsPK9myg0IqwC13AK/XbTSCE0Hfnz8vA6KGyWmjOWoCzWkgohmMdmIkHJXEWhF8eMixdJYUYQFNFmgkKZxw2SHbc1Ow+jPh43Mjsuv1sP4ZxbSUUZ5pDC9szw2UZYF/OcXEFQtpvi8WtI672GYEjuJTVtHUn4WphE8qKsjPLaebWRFNixBCPK+uusjePaXX7DjKG7SaFKE+M85vGwqnNmNM4n3NG398M8QiuizPPjeljGYv7+Wm6WhV2OiNvMG7iBZATZNdhE8BiacdBECo+zMuWQvBbWq+hVkufQFH/rt5Qr/zWEayz3ZubrY0blPXGN7HxmxHOeHGXKr4mcqSQjfUhcu+0UXke5jKWYGOc2L5K9F9a8dTwpZw7SdWwe2PaoiefXTGGFQbv2CduftPKhB8sIkXZjdBdVYA7n4In9MuapaodVh0I43J9UXyjHcfohN3Tru1xkpsLtHew1w38vOqDfh8OVC2MwRKSOUB341OyYvUS7RVWfFJEXgeMpLNh1AMVGzW6Scm5hWTUkBSm/OzyPFAqUK5flDKLi0JpS+xQrhaZE2zz5a01RtqkExc96wdi4I+NzCwE6k+TNgqSMjuRAQ87OJzeccmX3HFL402aC8WIKroVYmQwW1jeCYHRYqFwtKfRvFmHNJ5GMpKlxvEcJSreF6O7wHwkAACAASURBVBlmNEHwxiwlKObmgdhFeD/rgbMICrnlntQTvFZnxbms+KR5VswAvpjkFVoWx5sW/48jre3oOL7lvoyK53ExqfdMK+n6sbwyK1VtyvuO+LeZlGNmazo+jmEG0BxC+N698XjLf4JUUIA4x2YKm3+akTCWwmvGDIDNpMp4xnKC4WG3y9cQ3pPNRcdCMpQsH24q4RowY3Bzds7mLTOvUm7smAFEtm1mnGs7wdOYGzw2Xn7dmgFu1yEk438NYd22Z/tVqj+Q0YmcIKcXid4gx3GcXqYiOUGHPIdCONxC4HlV3W8TiMjY2IQJEbH89tVljt9P7h0YSVAezVBYTFCucoUqN1yst41VIzOGUZoTsse5F2dWtr04Z8M4Jf7PQ4Gs/5B5cPZSqIg2U2gBFrQLJoV+2f+uZKYtyR6fF+deHed4PpPTeg5ZbssQkvJspY1Nebd1GE8y8NaQmoVameZc6TXLd3a2/waCsWF9hqygQxvBENzftjjKsDgesyIb06rIbYnblxLW28LDNpDKoI+Mclk/HWtaOpZk5FnJ622kstzm8bGqftMI14iFYa4kBOoOJ7zHj8f/FopoOUmQKq8Z6yjsQwUpDI24fmYE53Uz7do9IVuHnN0UXqMrMnmbSSGhK+L4G+Jcj5O+mFZl/8eRqgteGuc1eQdT2ADXQt2Wk5oVbyVdC1bhbVC2LyRDNfcY5edQT3gfcl++lT2vBJ1oluo4juMc8rQS4oDa+3M64lAwgq4k5LnnvAl4JsY43gF8WFWLmzQdgFK4YOsIinJOnmtQjClg+USm5FkBgsmkniPzKKxeZb14xpJC16ztbp7JZuWqc6vO9suNLjPYJlK6mOvIEvvmYX+DKU9ulDWQPFv3F+1nBhGkni4boky2XqaQWj+g0YRztNCpqQSjwZToFwhrNpkU+ncB4b0bG8erJyivpxFyXZYT1ugUgrL/OsFIe4pkxNj78Hocz0otW7J9K0m5htSU1FhBKgs9g1BpcDAp/8eum+OizENIeUuj4lh5aWkrvnFCPO9V2VoWh7IRX7Nrp9jILr5m8zLokMpV595NuybyqojWm6cUgym89vdm+zZRWM3PKtLlWJlzCPlZeYLfXgqv4R1RlguycfPPbm70FYfCmUxzOJC9FObHQbh2KlmuprvNUh3HcRzH6Zh+nxPUk9SK6NAS263BaJ4vUip3oYbCUBdr8NleN4l8LMuByT04g0nKYYdWHEFJPyAjLVKcC1OMzV8K87iM5MCwwa5inp8ZBOV4B4UKMgSPkhlUxXkv4wihX7sI51qcw2RejXkEL9VCUrPM3LPQQDKs2sO8e7nSbo048zlHEQyGiaRQrt0c6IK0884VdDsm9+BY2e68h81eDswn6wztvffDSJ6IGYQ8onK5PeUYTTgnm6P4s2DYe5Bf4zn5cVNJ14aV/N50ELIVY3MXy1BOJqMSOUHDRHRaO68v85ygfoPnBDmOU57u5gRNV/hqB3td4r8XHXAoeIIqSqnwtcdJitlkyidvFyt9luBuzOJA8rHMAGku2raujFyjS2zLDaCaov8mS6mx6iltANkcpqxbI9SDvbAGk7xaKwgGwriifaaRDCDzClkxCghK8AqSUbiKwiYftt9K0ntiYW/nELx7xxDW2c5rapxjctH+Fqo4nNTc9EwO9IZsJhkm6+LzLSTvjDGPoMhvI/XIgbCuxcq9hYYZltdjpanLUV9iWykDyJTxGaRrbkUJOdrDroOtRXOUqmQChb2wDDP2rPCBvQers/0tDDGXbRxhPTvCvGL2njUX/R9X9NzIP1/trXdXULxZquM4jtMRViK729XhDmncCOoi7XlKRpCMjLFFr+WhY6bEzafwDbACARM7kKGUwlXK8OrIM9RW9N8odY7l7oDbHMUyt1Fa2R5ZYluOGVqmYJ5HatppmFcnvzNfG/ebTFqf3IOT93Gakb1+QXxtOUGhXkQqcGHhXdMIRsn8OMdEUhEAK0O9IR5vBRM6ai1vJZwhlaceTMg52kpa1ybCWpTzRuUG4iiCEQfhPcyV9PyxrVlH74Wtc6lqIcWGaTnKJfnnnsKJReONo9BYbyb16KqnvCezmM0E2fPPXqnPjhmn5da4nNFXqgx9d/GcIMdxHMfpGfp9dbiexqpClSJXoorDt0y5t4T8CaTclGJFsaPwq4NRuDpTBriYjsJ/ckoZYaWOLVV6u1SYnSmYeQ6RVaSbSrgrviabo1T412SC8VI8pxlE47LHefGJ3AjJi0kU5zNB+bA/qzpWbg3znJcRJWTM9ys2ZvMxcwXdmuAaW8s8hvbDIjtDOcNgGKnPT2cpvnaKQ/7y9evoeiyu9gbh2rJrrNRnp6PS28YwUhl6OLjPVEeYJ6gdRorILcDPVfXnFZ7ecRzH6Rd4dbhK4J6gLlLOAOosZvAUl5fOKacQd4eDUdb62p1nW7PVHKjAn8CBrKFwLYuLWOTKdntes5ntvAYHfoisJDMUrmGpRHtrgtqV6mLl3pdyBQlK0R0DqBTmYdlNZcK2zIvY1Wuw3Gen2MjO1yo3gNor9rGbwjLglTaAoFOeoO2qeo0bQI7jOIcyFWuWekjjRlAfolx4UnHp4a6QK9fFIUztKXw9eWGUK7bQFTpTCKC47HdnKdWk1hjMgZ68cop7KQO62CjuDtVQyjvL7jKPc7pipFXbALe1Kv5MVOJa7C6eE+Q4juO0jxtBlcCNoD5EubvYHTYwaodcuS4OYWpP4evtho0d5as4/Q8rW92XsM/EjHb36jk8J8hxHMdx2kdEhovI90TkmyLynoMdp6/pJE4vslOVnX2kZHo1QgKrQXuGZFfXsq+sfTWptHFdqTVb0fEuPYJXh3Mcx3E6pjKeIBG5SERWisgqEbm+K/t05tjOIiLfFpGXRWR50fZyc7wNuENVPwRcdrDzuhHUBeaceupBHdfTyu2w+NfevKUMnsNEOEyk0/MczHmNI4UgVXpdisfr6PyrTWfWMpejeP++YhQdjBx9Rfb26IsyuifIcRzH6ZjuG0EiUgvcBFxMCIi4SkRmdGafzhwbjz9KREYUbSvVDu+7wEVdkG8isDY+Puh7hF4drgs8+eSTr3AQOeXSsTJ8JPDKwchUil2dmLcSMnVijAPIQ/sO4vh2ZSoer5vn3215OkMVZKzotXSwcmTHVFyeMvN0hSOBVyp0DeRM7niX9mmDe3YE+cohXh2uv7DxFbih0jVISlHVz1gv4efUPxho59ST59PN34uN98AN7f1WAAwRkbzLxS2qekv2/HRglaquBhCR24DLKQyOKLfPA504FmAB8BERuURVm0TkQ8AVwCX5Tqr6kIg0FB3bnnzrCIbQ03TDoeNGUBdQ1eL2PxVBRBb3ta6+LlPH9DV5oO/J1Nfkgb4pk6GqF3W8l9MfqNbvRTF9+Xo+WPyc+gcD7Zz60/lU6LfiGJI3BYJhMb+T+3TmWFT1dhGZAtwmIrcDfwy8pQLy/SfwNRH5A+Cgbwi6EeQ4juM4juM4hxalwiGK48TL7dOZY8NG1S9GL87XgeNUdWd35VPVXcAHOjlOWTwnyHEcx3Ecx3EOLdYBk7LnEzmwY0e5fTpzLAAi8kZCy8WfAH9XYfm6hRtBfYNbOt6lx3GZOqavyQN9T6a+Jg/0TZkc52AZiNezn1P/YKCd00A7n454ApguIlNEZBBwJXBnJ/fpzLGIyBzgm4Rcng8Ao0XksxWUr1uI9sEKSY7jOI7jOI7jVA8RuQT4J6AW+Laqfi5uvxv4oKpuaGefktuLxj8beF1Vl8Xn9cD7VfWbRfv9O3AuoTjFZuDvVPVfOzNHt87fjSDHcRzHcRzHcQ4lPBzOcRzHcRzHcZxDCjeCehgReYeIPCsibSIyL9veICJ7ROTp+PeN7LVTRWRZ7Jj7Valgg5Ny8sTXPhnnXCkiF2bbK9YluBPy3SAi67N1uSR7raR8PUFPrkE7MjTG6+Jp6wUgIqNF5Nci8kL8f0SVZTigy3M5GSTw1bhmz4jI3B6UqU9eR45TSUTkEyKiItJR/5A+j4h8SUSej98VPxGRUb0t08HQF34rKomITBKR+0Xkuag7/Flvy1QpRKRWRJ4Skbt6WxanZ3AjqOdZDrwNeKjEay+q6uz49+Fs+9eBa4Dp8a+SvURKyiOhK++VwMlxvpvjF0SnugRXmBuzdbm7PfmqLAdx7t5Yg3KcF9fFDNjrgd+o6nTgN/F5NfkuB16P5WS4mHQNX0O4rntKJuhj15HjVBIRmUTov/H73palQvwamKmqbwD+G/hkL8vTZfrYb0WlaAH+QlVPAs4Arh0A52T8GfBcbwvh9BxuBPUwqvqcqq7s7P4icjRwuKo+qiGB6/vAW3tAnsuB21R1r6q+BKwidO/d38FXVfcB1sG3pyknX0/QV9agFJcD34uPv0cFr5VSqOpDwNZOynA58H0NPAaMitd3T8hUjt68jhynktwI/BVlenX0N1T1V6raEp8+RiiP29/oy78VB4WqblTVJfHxDoLRcEzvStV9RGQi8AfAt3pbFqfncCOobzElumIflFBXHcKXy7psn3X0zBdOqU69x7SzvZp8NIZEfDsL7+oNOYzenDtHgV+JyJMick3cNk5VN0L4sQKO6gW5ysnQ2+vW164jx6kIInIZsF5Vl/a2LFXij4Ff9LYQB8GA/n4RkQZgDvB470pSEf6JcBOhrbcFcXqOut4WYCAiIvcC40u89ClV/VmZwzYCx6rqqyJyKvBTETmZLnTlrbA85eYtZTh3685je/IRQqY+E+f4DPAPhB/Ebq9LN+jNuXPOjuUrjwJ+LSLP94IMXaE3160vXkeO02k6+J78G+CCnpWo+3Tmt0lEPkUIwbq1J2WrEAP2+0VEDgN+DFynqq/3tjzdQUQuBV5W1SdF5NzelsfpOdwIqgKquvAgjtkL7I2PnxSRF4HjCXeO8jCALnfMPRh5aL9Tb0U7+HZWPhH5JmAJi1XvJNwOvTn3flR1Q/z/soj8hBB6sVlEjlbVjTHU7OWelqsdGXpt3VR1sz3uQ9eR43Sact+TInIKMAVYKqFmzkRgiYicrqqbelDELtPRd7+IvA+4FDhf+2c/jwH5/SKh18uPgVtV9T97W54KcDZwWSyYMwQ4XER+qKr/s5flcqqMh8P1EURkrCVki8hUQvL46hhOtENEzpDwC/deoJz3ppLcCVwpIoNFZEqU53f0QAffnKKckSsIhRzak68n6NE1KIWIDBeREfaYcBd4eZTjfXG399Ez10ox5WS4E3hvrBJ3BrDdwuaqTR+9jhyn26jqMlU9SlUbVLWBoHjP7esGUEeIyEXAXwOXqeru3pbnIOn134pKE/WQfwWeU9V/7G15KoGqflJVJ8bPz5XAfW4AHRq4J6iHEZErgH8GxgL/JSJPq+qFwJuAT4tIC9AKfFhVLbn7I4SKV0MJcdEVi40uJ4+qPisiPwJWEEIRrlXV1njMR4F7SB18n62UPCX4oojMJoQQNAJ/AtCefNVGVVt6eA1KMQ74SbzzWwf8m6r+UkSeAH4kIlcTqkS9o5pCSNblWUTWAX8HfL6MDHcDlxCKD+wGPtCDMp3b164jx3Ha5WvAYEKoL8BjRVVT+zx95Lei0pwN/BGwTESejtv+xipuOk5/Qvqnh9lxHMdxHMdxHOfg8HA4x3Ecx3Ecx3EOKdwIchzHcRzHcRznkMKNIMdxHMdxHMdxDincCHIcx3Ecx3Ec55DCjSDHcRzHcRzHcQ4p3Ahy+jQisrPK439LRGbEx39zEMc3iMjyjvcs2H9PVlq0+PUbROQTXZUjHnuciDxd7TVzHMfpq4jIJBF5SURGx+dHxOeTqzTfh0XkvfHx+0VkQvba/t+Xbs5xg4isF5FPV2CsN4rIiq78bjnOQMWNIOeQRlU/qKor4tMuG0EHyYuqOrvSg6pqVcZ1HMfpL6jqWuDrhH5lxP+3qOqaKs33DVX9fnz6fmBC9lr++9JdblTVv+3uIKr6MKFfm+Mc8rgR5PQ7RGSyiPxGRJ6J/4+N278rIl8Vkd+KyGoR+cO4vUZEbhaRZ0XkLhG5O3vtARGZJyKfB4ZGT8qtxR4eEfmEiNwQH58qIktF5FHg2myfWhH5kog8EWX7k06ez6dEZKWI3AuckG0/TkR+KSJPisjDInJitv2xOM+n3fPjOI5TwI3AGSJyHXAO8A/FO8Tv+OdF5Hvx+/oOERkWXztfRJ4SkWUi8m0RGRy3fz56UZ4RkS/HbTfE34c/BOYBt8bfkaH2+xL3uyqOt1xEvpDJsVNEPhd/Ux4TkXEdnZyIHCYi34njPSMib8/G+kL8zbhXRE6PMqwWkcu6vaqOM8BwI8jpj3wN+L6qvgG4Ffhq9trRhB+9S0l3At8GNACnAB8EziweUFWvB/ao6mxVfU8H838H+FNVLR7namC7qp4GnAZ8SESmtDeQiJwKXAnMiXKelr18C/AxVT0V+ARwc9z+FeArcZ4NHcjqOI5zSKGqzcBfEoyh61R1X5ldTyB4id4AvA78LxEZAnwXeJeqngLUAR+J4XVXACfH/T9bNOcdwGLgPfF3ZI+9FkPkvgC8GZgNnCYib40vDwceU9VZwEPAhzpxiv+H8FtzSpTlvmysB+Jvxo4o41ui3N0OpXOcgYYbQU5/5Ezg3+LjHxCMHuOnqtoWQxDsjto5wO1x+ybg/oOdWERGAqNU9cFsfuMC4L0x3+dxYAwwvYMh3wj8RFV3q+rrwJ1xnsOAs4Db43j/QjDwIJz/7fHxv+E4juMUczGwEZjZzj5rVfWR+PiHhN+KE4CXVPW/4/bvAW8iGElNwLdE5G3A7i7IchrBONmiqi2Em3dviq/tA+6Kj58k3LDriIXATfZEVV/LxvplfLwMeDAahMs6Oa7jHFLU9bYAjlMBNHu8N3ssRf+7QguFNwmGZGPpgbvvf+1jqnpPF+cqNV4NsM1zfBzHcbqGiMwmeEDOABaJyG2qurHErsXfvUqZ3wtVbRGR04HzCd77jxI8O50SqZ3XmlXV5Gilc3pZud+hfKw24u+hqraJiOt7jlOEe4Kc/shvCT9CAO8BFnWw/yLg7TE3aBxwbpn9mkWkPj7eDBwlImNiPPilAKq6DdguIuZ9ykPn7iGETdQDiMjxIjK8A9keAq6I8eMjgP8R53kdeElE3hHHEhGZFY95DHh7fHxl8YCO4ziHKiIihMII16nq74EvAV8us/uxImJhzVcRfiueBxpEZFrc/kfAg9E7P1JV7wauI4S1FbMDGFFi++PAAhE5UkRq41wPltivs/yKYIQBoQJeN8ZynEMWN4Kcvs4wEVmX/X0c+FPgAyLyDOEH6s86GOPHwDpgOSGs7HFge4n9bgGeEZFbYwjBp+O+dxF+GI0PADfFwgh7su3fAlYAS2JRhX+hg7t6qroE+A/g6Sjnw9nL7wGuFpGlwLPA5XH7dcDHReR3hBC5UufiOI5zKPIh4Peq+uv4/GbgRBFZUGLf54D3xd+S0cDXVbWJ8B1/u4gsI3hUvkEwbu6K+z4I/HmJ8b4LfMMKI9jG6IX6JCEUeymwRFV/1o1z/CxwRCyysBQ4rxtjOc4hiyTPqeMMXETkMFXdKSJjgN8BZ8f8oJ6WowG4S1Xbi1PvaIxhhCIOKiJXAlep6uXZ6ztV9bBuC+s4jjNAqcR3cU8hoTLpTlUt59Hq6ngN9JNzd5xq4jGizqHCXSIyChgEfKY3DKBIKzBSRJ7uRr7PqcDXYtjHNuCPIZTOJniTNldEUsdxHKcvsBO4RkQO726vIBF5I8E79kpFJHOcfox7ghzHcZxDFhH5NiHn7+VSd8bjzYavEBpM7gbeH8NYHcdxnH6M5wQ5juM4hzLfBS5q5/WLCaXupwPXEJLuHcdxnH6OG0GO4zjOIYuqPgRsbWeXywnNmVVVHwNGicjR7ezvOI7j9AM8J6gLHHnkkdrQ0NDbYjiO4/RZnnzyyVdUdWxvy1FBjgHWZs/XxW0H9J0RkWsI3iKGDx9+6oknntgjAjqO4/RHevv3wo2gLtDQ0MDixYt7WwzHcZw+i4is6W0ZKkypRpclk2lV9RZCqX3mzZun/nvhOI5Tnt7+vfBwOMdxHMcpzzpgUvZ8IrChl2RxHMdxKoQbQY7jOI5TnjuB90rgDGB7bH7pOI7j9GM8HM5xHMc5ZBGRfwfOBY4UkXXA3wH1AKr6DeBuQnnsVYQS2R/oHUkdx3GcSuJGkOM4jnPIoqpXdfC6Atf2kDiO4zhOD+HhcI7jOI7jOI7jHFK4EeQ4juM4juM4ziGFG0GO4/Q6u/a28IYb7mHeZ3/N9j3NvS2O4ziO4zgDHDeCHMfpVVSVT9y+lNebWnhl5z5O++y9XPKVh3pbLMdxHMdxBjBeGMFxnKrS1qac/YX72NHUzLBBdRw+tJ57P75g/+tv/OL9rHttD5+65CROmzKad3zjt/x+655elNhxHMdxnIGOe4Icx6karW3KX/34GTZub0IVXt21j1Uv7+TmB1YB8INHG1n32h7GDB/EB984hdmTRrHg+KM4dvSw3hXccRzHcZwBjXuCHMepCi/vaOKif3qYrbv2cd3C6Vy38Hha25SP/+hpvvjLlSxZ8xr3Pvcyo4bVM/XI4YgIAHU1Qmub9rL0juM4juMMZNwIchynIlxx0yNs2L6HS045ml8s28jLO/aiCpOOGMp1C48HoLZG+PI7ZvHQf2/h3ude5vLZE/jyO2ZRX5uc0rU1Qqu6EeQ4juM4TvVwI8hxnG7T0trGqpd3snNvC3csXseOvS0cMayeH3/kLKaOPaxg3/raGqYddRg7mlq48Z2zqamRgtdr3RPkOI7jOE6VcSPIcZxO0/jKLi756sOMGFLHY588f38I2z/d+wI79rZw47tmccWcibS2KbVFxk3O7R8+q+xrHg7nOI7jOE618cIIjuN0isdXv8pbb36EPfta2fz6Xn74+O9RVd785Qf42v2reOe8iVwxZyJAuwZQR9S4EeQ4juM4TpVxT5DjOGV5+82PsO61PQwfXMfqV3YxpL6G+z5xLp+5awV/+9PlfOmXz/N6UwuHDa7jhstOrsicdTVCS1tbRcZyHMdxHMcphXuCHMcpS+Oru3l5x16mHDmcY0cP5eSjD2fKkcO58V2zGVxfw469LVx/8Yk8/bdvYdigytxTCTlBFRnKcRzHcRynJO4JcpxDnFd37uWKmx+htqaGOz96NiOG1APwi2UbeXXXPj7+luP50/OnFxwzcmg9Jx99OG0KH15wXEXlCUaQW0GO4ziO41SPqhpBInIR8BWgFviWqn6+6PXBwPeBU4FXgXepamN87ZPA1UAr8Keqek97Y4rIFOA2YDSwBPgjVd1Xbg4RqQe+BcwlrMP3VfXvq7UWjtOX2NfSxqOrX+UTP3qaV3btwypSz/q/v2Lk0HqGD65j0/YmTjlmJB85t7SR8+P/dXZVZKutEVo8J8hxHMdxnCpSNSNIRGqBm4C3AOuAJ0TkTlVdke12NfCaqk4TkSuBLwDvEpEZwJXAycAE4F4ROT4eU27MLwA3quptIvKNOPbXy80BvAMYrKqniMgwYIWI/LsZYY4zULn0qw/z/KYdtLQpNQJjDxvMDz84nx1NLXz4h0/y+p5mXtvdjAgH9PDpCWpFaHMjyHEcx3GcKlJNT9DpwCpVXQ0gIrcBlwO5EXQ5cEN8fAfwNQk1dy8HblPVvcBLIrIqjkepMUXkOeDNwLvjPt+L4369nTkUGC4idcBQYB/weqVO3nH6Im1tykuv7EIEvvXeeZwz/UiG1Nfuf/2JTy0EQkGEVoUTxo/ocRlra90T5DiO4zhOdammEXQMsDZ7vg6YX24fVW0Rke3AmLj9saJjj4mPS405Btimqi0l9i83xx0EA2kjMAz4c1XdWnwSInINcA3Ascce25nzdpw+y+1PrmXXvlZufNcsFs4YV3a/aoW6dQbvE+Q4juM4TrWpphFUqlFIsWZTbp9y20vF5bS3f3tznE7IN5oAHAE8LCL3mpdp/46qtwC3AMybN881M6dPs31PM5d+9WF27WulqbmVofW1/MefnMm0ow7jipseYdn67ZzWcARvnX1Mx4P1ErUitKp/1BzHcRzHqR7VNILWAZOy5xOBDWX2WRfD0kYCWzs4ttT2V4BRIlIXvUH5/uXmeDfwS1VtBl4WkUeAeUCBEeQ4/YF3fuO3bHq9ie17Wti+p5nBdTUMrqvhtd37WPiPDzKotoZ9se70/71sJiEitG9SW1ODagjdq+lG01XHcRzHcZxyVDPj+QlguohMEZFBhEIHdxbtcyfwvvj4D4H7VFXj9itFZHCs+jYd+F25MeMx98cxiGP+rIM5fg+8WQLDgTOA5yt4/o7TLd528yOc9tlf88vlG0sWCtDMW7J+2x5+v3UPc44dxV0fO4eVn72YZ264kCc+tZAJI4dw2JA6Jh0xlJkTDmfGhMN78jS6TF1tMHzcG+Q4juM4TrWomico5t98FLiHUM7626r6rIh8GlisqncC/wr8IBY+2Eowaoj7/YhQRKEFuFZVWwFKjRmn/GvgNhH5LPBUHJtycxCqzH0HWE4ImfuOqj5TpeVwnC7z8o69bNm5jw//cAlD6muYMmY4v7juTTS3tnH65+5lb0sbd370HF7bvY/125o48rBBfPcDpxeMMeawwfz2k+f30hkcHDXRS9XapmQ1GxzHcRzHcSpGVfsEqerdwN1F2/42e9xEKFVd6tjPAZ/rzJhx+2pSBbl8e8k5VHVnubkdp7dRVeprazi9YTTvPWsyn/jRUp7fvINfLNvI3cs38druZmprhAtufJDaGmHymGH815++sbfFrgh1MQTOK8Q5juM4jlMterYBiOM4nWLJ71/jpVd28Y55E7n0DRN49JPnM3vSKD5y6xJ+vnQD1198Ig//1XkMra+lpVX5p3fN5rDBVb2n0WPU1iRPkOM4juM4TjVwI8hxepnzvvwAC754Pxu379m/7Y4n1zFsUC2Xy7Hp3AAAIABJREFUnHI0AEcMH8StH5zPkYcNYtIRQ/nwguOYMGooMyYczqxJI5lz7BG9JX7FcSPIcRzHcZxqMzBuHTtOP+VbD6/mpVd2AXDm39/HiCF1fPkds7hr6UYunnk0wzPvzrBBdSz+328pOP72D5/Vo/L2BLX7w+HaelkS51BBRC4CvkLINf2Wqn6+6PVjCU24R8V9ro+h2Y7jOE4/xY0gx+lBfrl8I9f9x9MMG1TH4LoaNm5v4pJTxvPxtxzP+7/9BC/v2Muf/OBJAN5+at/t5VNNzAhyG8jpCUSkllAo5y2ElgpPiMidqroi2+1/Az9S1a+LyAxCXmpDjwvrOI7jVAw3ghynSrS0tnHG3/+GnXtb+MsLT6SltY3P//J5BtfV8PqeZlralJFD67jxXbMZXFfLouvfTHNrGxfe+BBNza2cMWVMb59Cr+CeIKeHOR1YZY2yReQ24HJCdVJDAastP5IDe945juM4/Qw3ghznIHn7zY+wc28Ld//Zm/Yr7kZrm/KXdzzDKzv3MbS+ls/cFfSpi2eO58Z3zaa+tobLv7aIoYNqGVyX6kDX19Zw3yfO7cnT6HPUeU6Q07McA6zNnq8D5hftcwPwKxH5GDAcWFhqIBG5BrgG4Nhjj624oI7jOE7lcCPIcQ6CV3fuZcXGHexpbuVtNz/Cxy84gWXrtnHzAy9iPT73NLfylxeewLXnTePSrz7M7n2t3PTuudREJf+uAVLSutJ4YQSnh5ES24ovvquA76rqP4jImYTeczNVtcBdqaq3ALcAzJs3zy9gx3GcPowbQY7TRd560yJWbtpJmyrXLZzOrY//nvd9+3cAjBhcR12d0NKmTB4xjGvPmwa4wdMV3Ahyeph1wKTs+UQODHe7GrgIQFUfFZEhwJHAyz0ioeM4jlNx3AhynHZY8+ouLrjxIVRh+OBa9rW0sWtfKzUCP/zgfM467kiuPmcKb73pEQ4bXMfPPnpOb4vc7/FmqU4P8wQwXUSmAOuBK4F3F+3ze+B84LsichIwBNjSo1I6juM4FcWNIOeQQ1V5y40PcdjgWn56bXmj5fWmZq7+3uJYwKCe3ftaqKupYeIRQxkzfBBnHXckACOG1PObvzi3h6Qf+NSIe4KcnkNVW0Tko8A9hPLX31bVZ0Xk08BiVb0T+AvgmyLy54RQuferql+gjuM4/Rg3gpxDjh8vWc+ql3cyqK6GDdv2MGHUUC7750Xs2NsChASBj5x7HJ+5awU7mlq49UPz9xs8TvWpq3UjyOlZYs+fu4u2/W32eAVwdk/L5TiO41QPN4KcQ4oXt+zk//x0OW+YOJKXtuzizV9+gBFD69myY2/Bfn95xzMATBkzzA2gHqa2pgaAVr/R7jiO4zhOlXAjyDlkeGHzDi6/6RGaW9v45nvnsXbrbt75L4/yyo69vP+sBt53VgP1tbK/utuQ+lrGjhjcu0IfgtR6OJzjOI7jOFXGjSBnwHPZPy9i1Zad7N7XigDHjzuMcYcPYdzhQ5g5YSQ1AjdcdnJvi+lE9jdLbXUjyHEcx3Gc6uBGkDPg2b6nmd37Wrn+4hN5+9yJBd6dOz/m1dz6GmYEtXk4nOM4juM4VaKmtwVwnGrzP8+YDMC75x/r4W39gFovke04juM4TpVxI8gZ8JgyXV/jl3t/oG5/s9S2XpbEcRzHcZyBimuFzoCnpTUo01Z62enb1O43gnpZEMdxHMdxBixuBDkDHvMEmYfB6dvUuifIcRzHcZwq40aQM+BpaWujtkYQcSOoP1DnOUGO4ziO41QZN4KcAU9Lq+73Ljh9n5oa7xPkOI7jOE51cSPIGfC0tCn1bgT1G+rcCHIcx3Ecp8q4EeQMeFpa26ir9Uu9v1DrRpDjOI7jOFXGNUNnwNPSpl4UoR/hRpDjOI7jONXGjSBnwNPSql4eux/hzVIdx3Ecx6k2bgQ5A57mtjbqvFFqv6E2VvFrUzeCHMdxHMepDlXVDEXkIhFZKSKrROT6Eq8PFpH/iK8/LiIN2WufjNtXisiFHY0pIlPiGC/EMQd1Yo43iMijIvKsiCwTkSHVWQmnN2ltc09Qf8IM1pZWN4Icx3Ecx6kOVTOCRKQWuAm4GJgBXCUiM4p2uxp4TVWnATcCX4jHzgCuBE4GLgJuFpHaDsb8AnCjqk4HXotjtzdHHfBD4MOqejJwLtBc0UVw+gQtrZ4T1J+orfWcIMdxHMdxqks1PUGnA6tUdbWq7gNuAy4v2udy4Hvx8R3A+RI6Wl4O3Kaqe1X1JWBVHK/kmPGYN8cxiGO+tYM5LgCeUdWlAKr6qqq2VvD8nT5Cc6uHw/UnLByu1cPhHMdxHMepEtXUDI8B1mbP18VtJfdR1RZgOzCmnWPLbR8DbItjFM9Vbo7jARWRe0RkiYj8VamTEJFrRGSxiCzesmVLJ0/d6Ut4OFz/wqvDOY7jOI5TbappBJXSOou1mnL7VGp7e3PUAecA74n/rxCR8w/YUfUWVZ2nqvPGjh1bYiinr9Pcpt4nqB9hoYueE+Q4juM4TrWopma4DpiUPZ8IbCi3T8zRGQlsbefYcttfAUbFMYrnam+OB1X1FVXdDdwNzD3Ic3X6MK1tbZ4T1I+oqfFwOMdxHMdxqks1jaAngOmxatsgQqGDO4v2uRN4X3z8h8B9qqpx+5WxstsUYDrwu3JjxmPuj2MQx/xZB3PcA7xBRIZF42gBsKKC5+/0EZq9MEK/o65GaG1r620xHMdxHMcZoNR1vMvBoaotIvJRgrFRC3xbVZ8VkU8Di1X1TuBfgR+IyCqCd+bKeOyzIvIjglHSAlxrRQtKjRmn/GvgNhH5LPBUHJt25nhNRP6RYFgpcLeq/le11sPpPVpa2xg6qLa3xXC6QG2NeLNUx3Ecx3GqRtWMIABVvZsQZpZv+9vscRPwjjLHfg74XGfGjNtXE6rHFW9vb44fEspkOwOY1jb16nD9jNoaoc2NIMdxHMdxqoRrhs6Ap7lVqffqcP0K9wQ5juM4jlNN3AhyBjytbbq/7LLTP6hzT5DjOI7jOFXEjSBnwNPc1uYlsvsZ7glyehIRuUhEVorIKhG5vsw+7xSRFSLyrIj8W0/L6DiO41SWTuUEichoVd1abWEcpxq0tCr17gnqV9TWiDdLdXoEEakFbgLeQmid8ISI3KmqK7J9pgOfBM6ORXWO6h1pHcdxnErR2dvjj4vI7SJyiYi4Nun0K0I4nHuC+hO14kaQ02OcDqxS1dWqug+4Dbi8aJ8PATep6msAqvpyD8voOI7jVJjOaobHA7cAfwSsEpH/JyLHV08sx6kcza1tXhihn1Fb60aQ02McA6zNnq+L23KOB44XkUdE5DERuajUQPL/27v7aLnq+t7j78/MJAHLQ2gIRZNAIsTa4APoKVVsq4CVh3oTUJRErWi5l94q1RbwAsteightgdWVa1ssItIqyxoeWmtuQfFeCPVeDJBDA0jQaAxeibhKEIiylJCZ+d4/9m8Ow2HOmX2S2TNnz/m81jorM3v/5re/e585k/2d35N0lqRRSaPbt28vKFwzM+uFXElQZP5XRKwC/jPZ4qP3Svo3SW8sNEKzPVT3xAilU6tUPCbI+qXTh8P4N1+NbNHutwCrgGslzX3RiyKuiYiRiBiZP39+zwM1M7PeyTsmaB7wPrKWoP8A/ghYCxwJ3AQsKSpAsz1VbzSZ5YkRSqUiaISTIOuLbcCitucLgcc6lLk7InYBj0jaTJYUbehPiGZm1mt57wzXA/sBp0TE70bEP0dEPSJGgauLC89sz9WbQc0tQaVSq1RoNJwEWV9sAJZKWiJpNrCS7Eu+dv8CHAsg6UCy7nFb+xqlmZn1VN4k6E8j4pMRsa21QdK7ACLi8kIiM+uRejOoekxQqXiKbOuXiKgDZwO3Ad8GboyITZIukbQ8FbsN+Imkh4F1wMci4ieDidjMzHohV3c44ALgxnHbLiTrCmc2rdUbTWZ5drhSqVZE093hrE8i4lbg1nHbLmp7HMA56cfMzIbApEmQpJOAk4EFkv66bdd+QL3IwMx6odkMmoEnRigZtwSZmZlZkbq1BD0GjALLgfvatv8M+JOigjLrldaNtKfILpdaRTSdBJmZmVlBJk2CIuIB4AFJX0z9ps1Kpd5sAlDz7HClUqlo7HdnZmZm1mvdusPdGBHvBjZKav9aVmTdpF9TaHRme6jVEuTZ4cqlVhG7Gk6CzMzMrBjdusN9NP379qIDMStCveEkqIyqFfHsLneHMzMzs2JM2kcoIn6cHj4BPBoR/w+YA7yWFy8mZzbt1BvuDldG1YpoeEyQmZmZFSTvneE3gL0kLQBuBz4I/ENRQZn1irvDlVPNs8OZmZlZgfImQYqInwPvAP4mIk4FlhUXlllvjHWHc0tQqVTkliAzMzMrTu4kSNIbgfcCt6RteRdaNRuYsdnh3BJUKrWqkyAzMzMrTt4k6KPAhcCXI2KTpJcD64oLy6w3xrrDeZ2gUqlWKk6CzMzMrDC5WnMi4htk44Jaz7cCHykqKLNeaU2zXKu4O1yZVAWNcBJkZmZmxciVBEl6BXAesLj9NRFxXDFhmfVGwxMjlFK1Uhkbz2VmZmbWa3nH9dwEXA1cCzSKC8est3Y13B2ujGqeItvMzMwKlDcJqkfE3xUaiVkB6u4OV0qVitwdzszMzAqT987wf0r6kKSXSvrl1k+hkZn1QMMTI5SSW4LMzMysSHlbgs5I/36sbVsAL+9tOGa9tSvdSM9yElQqVSdBZmZmVqBcLUERsaTDT9cESNKJkjZL2iLpgg7750i6Ie2/R9Litn0Xpu2bJZ3QrU5JS1Id30t1zu52jLT/EEnPSDovz7WwcmmkdYKq7g5XKk6CzMzMrEi57gwlvUTSn0q6Jj1fKuntXV5TBa4CTgKWAaskLRtX7EzgqYg4HFgNXJ5euwxYCRwBnAh8WlK1S52XA6sjYinwVKp7wmO0WQ18Nc91sPIZmxjBs8OVSq2isYVuzczMzHot79fjfw88BxyTnm8DLu3ymqOBLRGxNSKeA9YAK8aVWQF8Pj2+GThektL2NRGxMyIeAbak+jrWmV5zXKqDVOcpXY6BpFOArcCmfJfByqY1zfKsqluCyqRSEc6BzMzMrCh57wwPi4grgF0AEfELoNtX6wuAR9ueb0vbOpaJiDqwA5g3yWsn2j4PeDrVMf5YHY8h6ZeA84FPTHYSks6SNCppdPv27V1O2aab+lh3OLcElYlbgszMzKxIeZOg5yTtTTYZApIOA3Z2eU2nu87xnfwnKtOr7ZMd4xNk3eee6bD/+YIR10TESESMzJ8/f7KiNg093xLkJKhMqhXRDAhPk21mZmYFyDs73MXA14BFkr4IvAn4YJfXbAMWtT1fCDw2QZltkmrA/sCTXV7bafsTwFxJtdTa015+omP8BnCapCuAuUBT0rMR8bddzstKpDW43i1B5VLNeqzSaIanNzczM7Oeyzs73NeBdwAfAL4EjETEui4v2wAsTbO2zSab6GDtuDJreX767dOAOyL76nctsDLN7LYEWArcO1Gd6TXrUh2kOr8y2TEi4rciYnFELAb+B/DnToCGz67UpcpjgsqlmhKfumeIMzMzswLkagmSdHtEHA/c0mFbRxFRl3Q2cBtQBa6LiE2SLgFGI2It8DngeklbyFpnVqbXbpJ0I/AwUAc+HBGNdNwX1ZkOeT6wRtKlwMZUNxMdw2aGumeHK6XW78vTZJuZmVkRJk2CJO0FvAQ4UNIBPD++Zj/gZd0qj4hbgVvHbbuo7fGzwLsmeO1lwGV56kzbt5LNHjd++4THaCtz8WT7rbxaLQk1rxNUKpVWdziPCTIzM7MCdGsJ+gPgj8kSnvt4Pgn6Kdl6PWbTWr2RdYfzuJJyGWsJajgJMjMzs96b9OvxiPhURCwBzouIl0fEkvTzWo+fsTKoe2KEUmr9vtwSZP0g6URJmyVtkXTBJOVOkxSSRvoZn5mZ9V6uMUER8TeSjgEWt78mIr5QUFxmPeHFUsupmrovekyQFU1Slaxnw++QzSa6QdLaiHh4XLl9gY8A9/Q/SjMz67W8EyNcDxwG3A800uYAnATZtFZvNpHcElQ2re5wnh3O+uBoYEsaV4qkNcAKsol52n0SuAI4r7/hmZlZEfKuEzQCLAuvXGglU2+GZ4YroUr6nTWdBFnxFgCPtj3fRraO3BhJRwGLIuJfJU2YBEk6CzgL4JBDDikgVDMz65W8fYQeAg4uMhCzItQbTc8MV0JuCbI+6vQtydgbT1IFWA2c262iiLgmIkYiYmT+/Pk9DNHMzHotb0vQgcDDku4FdrY2RsTyQqIy65FdDbcEldHYxAhpsVuzAm0DFrU9Xwg81vZ8X+BVwJ3Kpm4/GFgraXlEjPYtSjMz66m8SdDFRQZhVpRGMzw9dgk9nwQNOBCbCTYASyUtAX5EtqD2e1o7I2IH2ReBAEi6k2zGVCdAZmYllnd2uH8rOhCzItSbTWqeGa50qmPd4ZwFWbEioi7pbOA2oApcFxGbJF0CjEbE2sFGaGZmRZg0CZL0M9r6RrfvAiIi9iskKrMeqbs7XCmNLZbqMUHWBxFxK3DruG0XTVD2Lf2IyczMijVpEhQR+/YrELMi1N0drpQqToLMzMysQO4nZENtV6PJLM8OVzpuCTIzM7Mi+e7QhlqjGV4otYSqniLbzMzMCuQkyIbarkZ4YoQSqsqLpZqZmVlxfHdoQ63ebHpihBJqjeNyS5CZmZkVwUmQDTWvE1ROldQS1AgnQWZmZtZ7ToJsqHlihHKqpd9Zo+EkyMzMzHrPd4c21DwxQjl5YgQzMzMrkpMgG2rZxAhOgsqmlQQ13R3OzMzMCuAkyIaaJ0YoJ7cEmZmZWZGcBNlQq3uK7FJ6frHU5oAjMTMzs2Hku0MbavVmMMvd4UqnOpYEDTgQMzMzG0pOgmyoZRMj+G1eNlW3BJmZmVmBfHdoQy2bItstQWVT85ggMzMzK5CTIBtqdc8OV0qV1uxwToLMzMysAE6CbKjV3R2ulNwSZGZmZkUq9O5Q0omSNkvaIumCDvvnSLoh7b9H0uK2fRem7ZslndCtTklLUh3fS3XOnuwYkn5H0n2SvpX+Pa64K2GDUm82PTFCCVXGxgQ5CTIzM7PeKywJklQFrgJOApYBqyQtG1fsTOCpiDgcWA1cnl67DFgJHAGcCHxaUrVLnZcDqyNiKfBUqnvCYwBPAP8pIl4NnAFc38vzt+mh3oixQfZWHjUnQWZmZlagIluCjga2RMTWiHgOWAOsGFdmBfD59Phm4HhJStvXRMTOiHgE2JLq61hnes1xqQ5SnadMdoyI2BgRj6Xtm4C9JM3p2dnbtJC1BLk7XNl4sVQzMzMrUpF3hwuAR9ueb0vbOpaJiDqwA5g3yWsn2j4PeDrVMf5YEx2j3TuBjRGxc/xJSDpL0qik0e3bt3c5ZZtu6o0Ya1Ww8qjKEyOYmZlZcYpMgjrdeY6/o5moTK+2d41D0hFkXeT+oEM5IuKaiBiJiJH58+d3KmLTVERQbzoJKiO3BJmZmVmRikyCtgGL2p4vBB6bqIykGrA/8OQkr51o+xPA3FTH+GNNdAwkLQS+DLw/Ir6/m+dp01RrPEnN3eFKRxLVijwmyMzMzApR5N3hBmBpmrVtNtlEB2vHlVlLNikBwGnAHRERafvKNLPbEmApcO9EdabXrEt1kOr8ymTHkDQXuAW4MCLu6umZ27TQakXwxAjlVJVohJMgMzMz673CkqA0/uZs4Dbg28CNEbFJ0iWSlqdinwPmSdoCnANckF67CbgReBj4GvDhiGhMVGeq63zgnFTXvFT3hMdI9RwO/HdJ96efgwq5GDYQrSTIU2SXk1uCzMzMrCi17kV2X0TcCtw6bttFbY+fBd41wWsvAy7LU2favpVs9rjx2zseIyIuBS7tehJWWvVGE4CaF0stpVpF1BtOgszMzKz3fHdoQ6s+NibILUFlVKmIprvDWR/kWNj7HEkPS3pQ0u2SDh1EnGZm1jtOgmxotVoR3BJUTrWKqDebgw7DhlzOhb03AiMR8Rqy9eau6G+UZmbWa747tKG1q9Udzi1BpVTxmCDrj64Le0fEuoj4eXp6N9kMpGZmVmJOgmxojU2R7dnhSqnmJMj6I8/C3u3OBL7aaYcX1zYzKw8nQTa0Wl2pvE5QOVUr8mKp1g95FvbOCkrvA0aAKzvt9+LaZmblUejscGaDtKvhlqAyq1ZE00mQFS/Pwt5IeivwceDNEbGzT7GZmVlB/BW5DS13hys3twRZn3Rd2FvSUcBngOUR8fgAYjQzsx5zEmRDqzUxwix3hysljwmyfsi5sPeVwD7ATWlh7bUTVGdmZiXh7nA2tFo30FW3BJVSRU6CrD9yLOz91r4HZWZmhfJX5Da0xsYEeYrsUqpVnQSZmZlZMZwE2dAamx3Oi6WWUrVS8ZggMzMzK4TvDm1otW6g3RJUTlVBM5wEmZmZWe85CbKhVU/d4Wa5JaiUapXK2O/QzMzMrJd8d2hDq5G6w3lihHKqVPCYIDMzMyuEkyAbWq2JEWa5O1wp1SoVGu4OZ2ZmZgVwEmRDa2xiBK8TVEpeLNXMzMyK4rtDG1qt8SQ1d4crpWpFNJ0EmZmZWQGcBNnQ8uxw5eaWIDMzMyuKkyAbWq0baE+MUE61isYmtzAzMzPrJSdBNrTqjewG2lNkl1OlIs8OZ2ZmZoXw3aENrbExQe4OV0o1J0FmZmZWECdBNrTGxgS5JaiUPCbIzMzMiuK7Qxtare5wbgkqp6o8O5yZmZkVw0mQDa1dTU+RXWa1qluCzMzMrBhOgmxoNZpNqhUhOQkqo4o8JsjMzMyK4STIhla9EW4FKrFaRTTCSZCZmZn1npMgG1r1ppOgMqtWKjQaToLMzMys9wpNgiSdKGmzpC2SLuiwf46kG9L+eyQtbtt3Ydq+WdIJ3eqUtCTV8b1U5+zdPYYNh3qjSa3qPL+sqhU8JsjMzMwKUdgdoqQqcBVwErAMWCVp2bhiZwJPRcThwGrg8vTaZcBK4AjgRODTkqpd6rwcWB0RS4GnUt1TPkZvr4IN0i63BJVatVJxdzgzMzMrRK3Auo8GtkTEVgBJa4AVwMNtZVYAF6fHNwN/q2wU+wpgTUTsBB6RtCXVR6c6JX0bOA54Tyrz+VTv3+3GMdZPdELP7Kxz0qf+z9SvhA3Ej3f8gjk1twSVVa0inqs3/TdXIkcvPmDQIZiZmeVSZBK0AHi07fk24DcmKhMRdUk7gHlp+93jXrsgPe5U5zzg6Yiodyi/O8cYI+ks4CyAly5azMID9p70pG36WHjA3hy9+JcHHYbtphOOOJgtjz/j1qASOXCfOYMOwczMLJcik6BO/ZDG381MVGai7Z2+1p+s/O4c44UbIq4BrgEYGRmJz75/pMPLzKzXXr1wf67+vdcPOgyboo8MOgAzM7MciuwrtA1Y1PZ8IfDYRGUk1YD9gScnee1E258A5qY6xh9rqscwMzMzM7MhVmQStAFYmmZtm002CcHacWXWAmekx6cBd0REpO0r08xuS4ClwL0T1Zlesy7VQarzK7t5DDMzMzMzG2KFdYdL42/OBm4DqsB1EbFJ0iXAaESsBT4HXJ8mJXiSLKkhlbuRbBKFOvDhiGgAdKozHfJ8YI2kS4GNqW525xhmZmZmZja8FB50nNvIyEiMjo4OOgwzs2lL0n0RUarBk5JOBD5F9uXatRHxl+P2zwG+ALwe+AlwekT8YLI6/f+FmdnkBv3/hecPNjOzGWtP1rQzM7PychJkZmYz2diadhHxHNBa067dCrL15yBbb+74tN6cmZmVVJFTZA+d++677xlJmwcdR0EOJJtlbxj53MrJ51ZOvzroAKZoT9a0e8HvsH1dOWCnpIcKibhchvm9PhW+Dhlfh4yvQ2ag/184CZqazWXr656XpFGfW/n43Mpp2M9t0DFM0Z6saffCDW3ryg3z73gqfB0yvg4ZX4eMr0Nm0P9fuDucmZnNZHuypp2ZmZWUkyAzM5vJ9mRNOzMzKyl3h5uaawYdQIF8buXkcysnn9s0sSdr2nVRqutQIF+HjK9Dxtch4+uQGeh18DpBZmZmZmY2o7g7nJmZmZmZzShOgszMzMzMbEZxEtSBpBMlbZa0RdIFHfavlnR/+vmupKcHEefuyHFuh0haJ2mjpAclnTyIOHdHjnM7VNLt6bzulLRwEHFOlaTrJD0+0Zojyvx1Ou8HJb2u3zHurhzn9kpJ6yXtlHRev+PbEznO7b3p9/WgpG9Kem2/Y9xdOc5tRTqv+yWNSvrNfsfYLzk+d+ZIuiHtv0fS4v5HWbwc1+EcSQ+n98Xtkg4dRJxF63Yd2sqdJikkDeU0yXmug6R3p/fEJkn/2O8Y+2GY77nymtb3MBHhn7YfsoGx3wdeDswGHgCWTVL+j8gG0g489l6cG9kgtT9Mj5cBPxh03D08t5uAM9Lj44DrBx13znP7beB1wEMT7D8Z+CrZWiZvAO4ZdMw9PLeDgF8HLgPOG3S8PT63Y4AD0uOThuz3tg/Pjzl9DfCdQcdc0HXI87nzIeDq9HglcMOg4x7QdTgWeEl6/Icz9TqkcvsC3wDuBkYGHfeA3g9LgY1tn4EHDTruAV2HUt5zTfE6TNt7GLcEvdjRwJaI2BoRzwFrgBWTlF8FfKkvke25POcWwH7p8f68eL2M6SrPuS0Dbk+P13XYPy1FxDeYfE2SFcAXInM3MFfSS/sT3Z7pdm4R8XhEbAB29S+q3shxbt+MiKfS07vJ1qcphRzn9kyk/92AX6LDwqJDIs/nzgrg8+nxzcDxkjotvlpmXa9DRKyLiJ+np6V6v09B3vuHTwJXAM/2M7g+ynMd/gtwVeszMCIe73OM/TDM91y5Ted7GCdBL7YAeLTt+ba07UVSc/4S4I4+xNULec7tYuB9krYBt5K1dJVBnnN7AHhnenwqsK+keX2IrWi537M2bZ1J9k3Y0JB0qqTvALcAvz/AX9waAAAHHklEQVToeAqS529vrExE1IEdwDB87rSb6mfQ0L3fk67XQdJRwKKI+Nd+BtZned4PrwBeIekuSXdLOrFv0fXPMN9z9dLA7mGcBL1Yp2/oJvoWcyVwc0Q0Coynl/Kc2yrgHyJiIVkT5fWSyvA+yXNu5wFvlrQReDPwI6BedGB9MJX3rE0zko4luyk8f9Cx9FJEfDkiXgmcQvbN9zDK87c3E/4+c5+jpPcBI8CVhUY0GJNeh/R/6Wrg3L5FNBh53g81si5xbyG777hW0tyC4+q3Yb7n6qWBfUbOtAudxzZgUdvzhUzcPLmS8nSFg3zndiZwI0BErAf2Ag7sS3R7puu5RcRjEfGOiDgK+HjatqN/IRZmKu9Zm0YkvQa4FlgRET8ZdDxFSF0hDpNUhs+RqcrztzdWRlKNrMvLZF1DyijXZ5Ckt5J99i6PiJ19iq2ful2HfYFXAXdK+gHZ+Ie1Qzg5Qt6/i69ExK6IeATYTJYUDZNhvufqpYHdwzgJerENwFJJSyTNJkt01o4vJOlXgQOA9X2Ob0/kObcfAscDSPo1sj/I7X2Ncvd0PTdJB7Z9w3IhcF2fYyzKWuD9aYaVNwA7IuLHgw7KJifpEOCfgd+LiO8OOp5eknR4a9xLmulnNjCMSV6ez9S1wBnp8WnAHW3jpYZFns/fo4DPkCVAwzj+A7pch4jYEREHRsTiiFhMNjZqeUSMDibcwuT5u/gXsskySF+QvALY2tcoizfM91y9NLB7mFo/DlImEVGXdDZwG9nMHtdFxCZJlwCjEdF6A68C1pTpP7Oc53Yu8FlJf0LWHPmBMpxjznN7C/AXkoJsZp4PDyzgKZD0JbLYD0z9hv8MmAUQEVeT9SM+GdgC/Bz44GAinbpu5ybpYGCUbOBoU9Ifk82u89MBhZxbjt/bRWRjQz6d8oV6RJTiG+Ec5/ZOsv/UdgG/AE4vw+fIVOX83PkcWReXLWQtQCsHF3Excl6HK8lmDbwpvd9/GBHLBxZ0AaZw/zDUcl6H24C3SXoYaAAfG7bW8GG+55qK6XwPoyG71mZmZmZmZpNydzgzMzMzM5tRnASZmZmZmdmM4iTIzMzMzMxmFCdBZmZmZmY2ozgJMjMzMzOzGcVJkFkHklan6Zhbz2+TdG3b87+SdE6Pj/lML+tLdR4p6eS25xdLOi/H6xqS7pf0srZtR0kKSSd0KH9q2vfKtm2HpTp6fl5mZmZme8JJkFln3wSOAUgLrB4IHNG2/xjgrgHENVVHks2/P1W/iIgjI6J91eZVwP9N/47X2je2BkpEfD8ijtyNY5uZmZkVykmQWWd3kZIgsuTnIeBnkg6QNAf4NWCjpH0k3S7p3yV9S9IKAEmXS/pQq7LUAnNuevwxSRskPSjpE50O3qmMpMWSvi3ps5I2Sfq6pL3Tvl9PZddLulLSQ2mF6kuA01OLzOmp+mWS7pS0VdJH8lwMZasbngZ8gGyBu73a9u0DvAk4kyFcCNLMzMyGj5Mgsw5SC0hd0iFkydB64B7gjcAI8GBEPAc8C5waEa8DjgX+KiUMa4DT26p8N9lK6W8DlgJHk7XSvF7Sb7cfu0uZpcBVEXEE8DTwzrT974H/GhFvJFt9mxTfRcANqVXnhlT2lcAJqf4/kzQrxyV5E/BIRHwfuJMXti6dAnwtIr4LPCnpdTnqMzMzMxsYJ0FmE2u1BrWSoPVtz7+Zygj4c0kPAv8bWAD8SkRsBA6S9DJJrwWeiogfAm9LPxuBfydLSJaOO+5kZR6JiPvT4/uAxZLmAvtGRCumf+xyXrdExM6IeAJ4HPiVHNdiFVliR/p3Vc59ZmZmZtNObdABmE1jrXFBrybrDvcocC7wU+C6VOa9wHzg9RGxS9IPgFZXsZvJupAdzPNJgoC/iIjPTHLcjmUkLQZ2tm1qAHun8lMxvo5JPwckVclanJZL+ng63jxJ+wKzgeOAV0kKoAqEpP8WETHFuMzMzMz6wi1BZhO7C3g78GRENCLiSWAuWZe49anM/sDjKQE6Fji07fVryMbInEaWEAHcBvx+GkeDpAWSDhp33DxlxkTEU2Tjld6QNrWPy/kZsO9UTrqDtwIPRMSiiFgcEYcC/0TWDe404AsRcWjatwh4BPjNPTymmZmZWWGcBJlN7Ftks8LdPW7bjtSVDOCLwIikUbJWoe+0CkbEJrIE5EcR8eO07etk3dXWS/oWWXL0giQlT5kOzgSukbSerKVmR9q+jmwihPaJEaZqFfDlcdv+CXhPl31mZmZm05LcY8Ws/CTtExHPpMcXAC+NiI/uQX3PRMQ+PYqtZ3WZmZmZ9YJbgsyGw++m1p6HgN8CLt3D+n46frHUqWotlgr8xx7GYmZmZtZTbgkyMzMzM7MZxS1BZmZmZmY2ozgJMjMzMzOzGcVJkJmZmZmZzShOgszMzMzMbEZxEmRmZmZmZjPK/wf9Nk3TpRy9EwAAAABJRU5ErkJggg==\n", "text/plain": [ "

" ] diff --git a/examples/random_demonstration.py b/examples/random_demonstration.py index 447af8c5..574162af 100644 --- a/examples/random_demonstration.py +++ b/examples/random_demonstration.py @@ -2,41 +2,54 @@ # Written by Mads Bertelsen, ESS DMSC import random import sys -sys.path.append('/Users/madsbertelsen/PaNOSC/McStasScript') +sys.path.append('/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript') from mcstasscript.interface import instr, plotter, functions # if the mcrun command from McStas is not in your path, provide absolute path for the binary here: -#mcrun_path = "" -mcrun_path = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin" -#mcstas_path = "" -mcstas_path = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/" +mcrun_path = "" +mcstas_path = "" +# On OS X most likely: +#mcrun_path = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin" +#mcstas_path = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/" # Create a McStas instrument -instr = instr.McStas_instr("random_demo", +Instr = instr.McStas_instr("random_demo", author = "Mads Bertelsen", origin = "ESS DMSC", mcrun_path = mcrun_path, mcstas_path = mcstas_path) -# Set up a material called Cu with approrpiate properties (uses McStas Union components, here the processes) -instr.add_component("Cu_incoherent", "Incoherent_process") -instr.set_component_parameter("Cu_incoherent", {"sigma" : 4*0.55, "packing_factor" : 1, "unit_cell_volume" : 55.4}) - -instr.add_component("Cu_powder", "Powder_process") -instr.set_component_parameter("Cu_powder", {"reflections" : "\"Cu.laz\""}) - -instr.add_component("Cu", "Union_make_material") -instr.set_component_parameter("Cu", {"my_absorption" : "100*4*3.78/55.4", "process_string" : "\"Cu_incoherent,Cu_powder\""}) - -# Set neutron source -instr.add_component("source","Source_div", AT=[0,0,0]) -instr.add_parameter("double","energy", value=10, comment="[meV] source energy") # Add parameter to select energy at run time -instr.set_component_parameter("source", {"xwidth" : 0.12, "yheight" : 0.12, "focus_aw" : 0.1, "focus_ah" : 0.1, "E0" : "energy", "dE" : 0, "flux" : 1E13}) +# Set up a material called Cu with approrpiate properties +# (uses McStas Union components, here the processes) +Cu_inc = Instr.add_component("Cu_incoherent", "Incoherent_process") +Cu_inc.sigma = 4*0.55 +Cu_inc.packing_factor = 1 +Cu_inc.unit_cell_volume = 55.4 + +Cu_powder = Instr.add_component("Cu_powder", "Powder_process") +Cu_powder.reflections = "\"Cu.laz\"" + +Cu = Instr.add_component("Cu", "Union_make_material") +Cu.my_absorption = "100*4*3.78/55.4" +Cu.process_string = "\"Cu_incoherent,Cu_powder\"" + +# Add neutron source +Source = Instr.add_component("source", "Source_div", AT=[0,0,0]) +# Add parameter to select energy at run time +Instr.add_parameter("double","energy", value=10, comment="[meV] source energy") + +Source.xwidth = 0.12 +Source.yheight = 0.12 +Source.focus_aw = 0.1 +Source.focus_ah = 0.1 +Source.E0 = "energy" +Source.dE = 0.0 +Source.flux = 1E13 # List of available materials, Vacuum is provided by the system material_name_list = ["Cu", "Vacuum"] -# Wish to set up a number of randomly sized and placed boxes, here we choose the number +# Wish to set up a number of random boxes, here the number is chosen at random number_of_volumes = random.randint(30,40) # Initialize the priority that needs to be unique for each volume @@ -46,47 +59,81 @@ current_priority = current_priority + 1 # update the priority max_side_length = 0.04 max_depth = 0.003 - position = [random.uniform(-0.05,0.05), random.uniform(-0.05,0.05), 1+random.uniform(-0.05,0.05)] # Set position in 10x10x10 cm^3 box 1 m from source - rotation = [random.uniform(0,360), random.uniform(0,360), random.uniform(0,360)] # random rotation - + # Set position in 10x10x10 cm^3 box 1 m from source + position = [random.uniform(-0.05,0.05), + random.uniform(-0.05,0.05), + 1+random.uniform(-0.05,0.05)] + # Set random rotation + rotation = [random.uniform(0,360), + random.uniform(0,360), + random.uniform(0,360)] + # Choose a random material from the list of available materials volume_material = random.choice(material_name_list) # Add a McStas Union geometry with unique name - instr.add_component("volume_" + str(volume), "Union_box") - instr.set_component_parameter("volume_" + str(volume), {"xwidth" : random.uniform(0.01,max_side_length), "yheight" : random.uniform(0.01,max_side_length), "zdepth" : random.uniform(0.001,max_depth),}) - instr.set_component_parameter("volume_" + str(volume), {"material_string" : "\""+volume_material+"\"", "priority" : current_priority, "p_interact" : 0.3}) - instr.set_component_AT("volume_" + str(volume), position, RELATIVE="ABSOLUTE") - instr.set_component_ROTATED("volume_" + str(volume), rotation, RELATIVE="ABSOLUTE") - + this_geometry = Instr.add_component("volume_" + str(volume), "Union_box") + this_geometry.xwidth = random.uniform(0.01,max_side_length) + this_geometry.yheight = random.uniform(0.01,max_side_length) + this_geometry.zdepth = random.uniform(0.01,max_side_length) + this_geometry.material_string = "\"" + volume_material + "\"" + this_geometry.priority = current_priority + this_geometry.p_interact = 0.3 + + this_geometry.set_AT(position, RELATIVE="ABSOLUTE") + this_geometry.set_ROTATED(rotation, RELATIVE="ABSOLUTE") # A few Union loggers are set up for display of the scattering locations -instr.add_component("logger_space_zx_all", "Union_logger_2D_space") -current_component = instr.get_last_component() -current_component.set_parameters({"filename" : "\"space_zx.dat\"",}) -current_component.set_parameters({"n1" : 1000, "D_direction_1" : "\"z\"", "D1_min" : -0.05, "D1_max" : 0.05}) -current_component.set_parameters({"n2" : 1000, "D_direction_2" : "\"x\"", "D2_min" : -0.05, "D2_max" : 0.05}) -current_component.set_AT([0,0,1]) - -instr.add_component("logger_space_zy_all", "Union_logger_2D_space") -current_component = instr.get_last_component() -current_component.set_parameters({"filename" : "\"space_zy.dat\"",}) -current_component.set_parameters({"n1" : 1000, "D_direction_1" : "\"z\"", "D1_min" : -0.05, "D1_max" : 0.05}) -current_component.set_parameters({"n2" : 1000, "D_direction_2" : "\"y\"", "D2_min" : -0.05, "D2_max" : 0.05}) -current_component.set_AT([0,0,1]) +space_2D_zx = Instr.add_component("logger_space_zx_all", "Union_logger_2D_space") +space_2D_zx.filename = "\"space_zx.dat\"" +space_2D_zx.n1 = 1000 +space_2D_zx.D_direction_1 = "\"z\"" +space_2D_zx.D1_min = -0.05 +space_2D_zx.D1_max = 0.05 +space_2D_zx.n2 = 1000 +space_2D_zx.D_direction_2 = "\"x\"" +space_2D_zx.D2_min = -0.05 +space_2D_zx.D2_max = 0.05 +space_2D_zx.set_AT([0,0,1]) + +space_2D_zy = Instr.add_component("logger_space_zy_all", "Union_logger_2D_space") +space_2D_zy.filename = "\"space_zy.dat\"" +space_2D_zy.n1 = 1000 +space_2D_zy.D_direction_1 = "\"z\"" +space_2D_zy.D1_min = -0.05 +space_2D_zy.D1_max = 0.05 +space_2D_zy.n2 = 1000 +space_2D_zy.D_direction_2 = "\"y\"" +space_2D_zy.D2_min = -0.05 +space_2D_zy.D2_max = 0.05 +space_2D_zy.set_AT([0,0,1]) # Union master component that executes the simulation of the random boxes -instr.add_component("random_boxes", "Union_master") +Instr.add_component("random_boxes", "Union_master") # McStas monitors for viewing the beam after the random boxes -instr.add_component("detector", "PSD_monitor", AT=[0,0,2]) -instr.set_component_parameter("detector", {"xwidth" : 0.10, "yheight" : 0.10, "nx" : 500, "ny" : 500, "filename" : "\"PSD.dat\"", "restore_neutron" : 1}) - -instr.add_component("large_detector","PSD_monitor", AT=[0,0,2]) -instr.set_component_parameter("large_detector", {"xwidth" : 1.0, "yheight" : 1.0, "nx" : 500, "ny" : 500, "filename" : "\"large_PSD.dat\"", "restore_neutron" : 1}) +PSD = Instr.add_component("detector", "PSD_monitor", AT=[0,0,2]) +PSD.xwidth = 0.1 +PSD.yheight = 0.1 +PSD.nx = 500 +PSD.ny = 500 +PSD.filename = "\"PSD.dat\"" +PSD.restore_neutron = 1 + +big_PSD = Instr.add_component("large_detector","PSD_monitor", AT=[0,0,2]) +big_PSD.xwidth = 1.0 +big_PSD.yheight = 1.0 +big_PSD.nx = 500 +big_PSD.ny = 500 +big_PSD.filename = "\"big_PSD.dat\"" +big_PSD.restore_neutron = 1 + +Instr.print_components() # Run the McStas simulation, a unique foldername is required for each run -data = instr.run_full_instrument(foldername="demonstration2", parameters={"energy":600},mpi=2,ncount=5E7) +data = Instr.run_full_instrument(foldername="demonstration", + parameters={"energy": 600}, + mpi=2, ncount=5E7) # Set plotting options for the data (optional) functions.name_plot_options("logger_space_zx_all", data, log=1, orders_of_mag=3) @@ -96,5 +143,3 @@ # Plot the resulting data on a logarithmic scale plot = plotter.make_sub_plot(data) - - diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index 750f165b..07ac586e 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -1,4 +1,5 @@ from mcstasscript.helper.formatting import bcolors +from mcstasscript.helper.formatting import is_legal_parameter class parameter_variable: """ @@ -58,6 +59,12 @@ def __init__(self, *args, **kwargs): self.type = args[0] + " " self.name = str(args[1]) + if not is_legal_parameter(self.name): + raise NameError("The given parameter name: \"" + + self.name + + "\" is not a legal c variable name, " + + " and cannot be used in McStas.") + self.value = "" if "value" in kwargs: self.value = kwargs["value"] @@ -139,6 +146,13 @@ def __init__(self, *args, **kwargs): """ self.type = args[0] self.name = str(args[1]) + + if not is_legal_parameter(self.name): + raise NameError("The given parameter name: \"" + + self.name + + "\" is not a legal c variable name, " + + " and cannot be used in McStas.") + self.value = "" if "value" in kwargs: self.value = kwargs["value"] @@ -283,7 +297,6 @@ class contains both methods to write the component to a instrument _unfreeze() Unfreeze the class so new attributes can be defined again - """ __isfrozen = False # When frozen, no new attributes allowed @@ -576,7 +589,6 @@ def print_long(self): specified. Information on the components are added when the class is used as a superclass for classes describing each McStas component. - """ if len(self.comment) > 1: print("// " + self.comment) @@ -636,7 +648,6 @@ def show_parameters(self): additional attributes defined when McStas_Instr creates subclasses for the individual components are required to run this method. - """ print(" ___ Help " @@ -700,7 +711,6 @@ def show_parameters_simple(self): additional attributes defined when McStas_Instr creates subclasses for the individual components are required to run this method. - """ print("---- Help " + self.component_name + " -----") for parameter in self.parameter_names: diff --git a/mcstasscript/interface/functions.py b/mcstasscript/interface/functions.py index 365a4300..f53fa917 100644 --- a/mcstasscript/interface/functions.py +++ b/mcstasscript/interface/functions.py @@ -28,13 +28,20 @@ def name_search(name, data_list): list_result = [] for check in data_list: - if check.metadata.component_name == name: + if check.name == name: list_result.append(check) + + if len(list_result) == 0: + raise NameError("No dataset with name: \"" + + name + + "\" found.") if len(list_result) == 1: return list_result[0] else: - raise NameError("More than one match for the name search") + raise NameError("Found " + str(len(list_result)) + " matches in " + + "the search for a dataset with name: \"" + + name + "\".") def name_plot_options(name, data_list, **kwargs): """" diff --git a/mcstasscript/tests/test_ManagedMcrun.py b/mcstasscript/tests/test_ManagedMcrun.py index 5088cdf7..5bfbc871 100644 --- a/mcstasscript/tests/test_ManagedMcrun.py +++ b/mcstasscript/tests/test_ManagedMcrun.py @@ -328,7 +328,7 @@ def test_ManagedMcrun_load_data_L_mon_direct_error(self): os.chdir(current_work_dir) # Reset work directory - def test_ManagedMcrun_load_data_L_mon_direct_error(self): + def test_ManagedMcrun_load_data_L_mon_empty_error(self): """ Check an error occurs when pointed to empty directory """ diff --git a/mcstasscript/tests/test_functions.py b/mcstasscript/tests/test_functions.py index 791ea62e..4268a02a 100644 --- a/mcstasscript/tests/test_functions.py +++ b/mcstasscript/tests/test_functions.py @@ -67,13 +67,34 @@ def setup_McStasData_array(): return data_list +def setup_McStasData_array_repeat(): + + data_list = [] + + data_list.append(set_dummy_McStasData_1d("A_1d_thing")) + data_list.append(set_dummy_McStasData_2d("A_2d_thing")) + data_list.append(set_dummy_McStasData_1d("Another_1d_thing")) + data_list.append(set_dummy_McStasData_2d("Another_2d_thing")) + data_list.append(set_dummy_McStasData_2d("Hero")) + + hero_object = set_dummy_McStasData_2d("Big_Hero") + hero_object.metadata.dimension = 123 + hero_object.plot_options.colormap = "very hot" + + data_list.append(hero_object) + + data_list.append(set_dummy_McStasData_2d("After_hero_2d")) + data_list.append(set_dummy_McStasData_2d("Last_object_2d")) + + return data_list + + class Test_name_search(unittest.TestCase): """ Test the utility function called name_search which finds and returns a McStasData set with a given name from a list of McStasData objects. - """ def test_name_search_read(self): @@ -86,6 +107,17 @@ def test_name_search_read(self): hero_object = name_search("Hero", data_list) self.assertEqual(hero_object.metadata.dimension, 123) + + def test_name_search_read_repeat(self): + """ + Test simple case with repeat name + """ + + data_list = setup_McStasData_array_repeat() + + hero_object = name_search("Big_Hero", data_list) + + self.assertEqual(hero_object.metadata.dimension, 123) def test_name_search_read_error(self): """ From 20996f396723b3e0379b62a362dc32225637bf53 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Thu, 23 May 2019 18:17:16 +0200 Subject: [PATCH 021/403] Minor updates: Added possibility for incrementing a number after the foldername instead of failing a run_full_instrument call. This option is called incremente_folder_name. Added function to load existing McStas data as McStasData objects, it is in the functions.py file and called load_data. Test for this function is included. Added show_parameters method to instrument so users can see the available parameters in an instrument model. A test for this method is included. A bug was fixed in component_reader where spaces before the SETTING PARAMETERS keyword made the file reader fail. A strip() call was added. Updated the manual to reflect new additions. --- McStasScript_documentation.pdf | Bin 155747 -> 156691 bytes examples/McStasScript_demo.ipynb | 53 ++++++++++++------------ mcstasscript/helper/component_reader.py | 5 ++- mcstasscript/helper/managed_mcrun.py | 26 +++++++++++- mcstasscript/interface/functions.py | 15 +++++++ mcstasscript/tests/test_ManagedMcrun.py | 24 +++++++++++ mcstasscript/tests/test_functions.py | 37 +++++++++++++++++ 7 files changed, 130 insertions(+), 30 deletions(-) diff --git a/McStasScript_documentation.pdf b/McStasScript_documentation.pdf index aee763e0a92dbbe7aeb5b3500a90ae345c80d62c..fc8296141b1aeaf6dd5d0e92da0e08e13cd672aa 100644 GIT binary patch delta 40656 zcmZ5{V~{31uEc~}5U(g0lm4+k@Vm6;o$4`BKQVEeC80>Hw|%FMzBU{VCIumYIW z04yAwtenh^#^j)S{{a@j|Cg9#!~wee+}s>yCTu1gJZ9X?96aniJS=P`#ulbrW;|Tn z92P9bg8V!dTW?53t1W;`6mrl!gJpybS88TxRfo!`OI zrMQ43RRnQfL#V_=ci|+KGf*uLL2&fLpX=)WE*zY2E?AIsMEK_PRYNe(WFxSZ!IxMlKiN ze{+PVA+c!8_biQ+7LQWSlJ5FWQX1V63pL6`wZXu_LFj_%5}F+$tU*Cbo7W+sVIkt` zVsV>~kY-6hS(69Av6Cm6iGbF>^rRj>zN5Z7sxcQ|DI^jRkXS~!0|<#DKaB${GrWxM z2#{v$e-VD2JQHLLIFHNH-ADOsFS~2Hzv7pNpee%F);dYz;DL2P$xkrk+T*s!q*0&84SE1g+L2ZO6|waD-LyFZs61Pp!4EnyaGj~w2p%3X$HM8 zc*Dv4&?G4s{IDdcz`;UUCgA1=3ur+xTq&cB_Jyo)avI>UAem~$ehSLKTEQzyFsFn2 z76$nunlvI|s{UDti=)DQ2gB47YC+JuV4*5O%1R-t3KI-yIqm^NgmUCbE6skMw>?E~ z;_AwRPzdLpWeLcL7J$An*)fb}1R=r1@DB6QF;q`6KvVB3A4hVYEt8k;@54jQ zBNz4PHV5^VH=XJ)pY=cd0{mM*h$h3E?dykst%LduewOUPJWdbadv;*0MxAXqF0zeH z^l^_*gemgCEnxrP_=M^a!OL8>%v2|>cDTSLsNBo*!tBeY|J`A9d$fpJwF3ejMKz~u zaqafMz0q$&SU(gJJg!NTWihI&g&pL%yaOWFhW3mGV}SV$#-U0#DEFT^-FMVuuHNuIxc_A@tG+a zez&Bq#;Of(^W`Y{cJ;TGKp_#x@TD9QO#1`{z6m>rrv!@PmnIBTn z0{UQ?qpM@{7gvA%tqaG5auh~gSiY8T00^MRFgxxwUK9KkiI5-g8ciM3G;PyqJvXg} ze)|_?8FFUDAvrqb*k=qO`FA>DkAY5m}W)CL%x#t&ZlGVj0WOn(jra&Q{Fj z(?6wl74OYZ&gL&WP;TeMZj{DNQ=xElQJAOp!Z)pG2;Nnqvxzc{YKpGn+2B;eP6l5y>V-P&*~W1a z(`d$L+{!RRSrrkBtb$d^W)VJXW*pQKaum}iwVO%W6$#_C8R&-;Ng#utID!d>oUsy zzKJJmHxu6^zdv7 zbmda`dOqROdL$?6bOTV(731kz!+40GO+=|asF7zKzL@zE9#Y1VcXxHdk#`8TWJsNY z&|Ge6$Z=py6~r*0Jnko&t$F7Y!owFzqjKofR7!eoHK{{Xz8xz?dKKNJuM2!6$GdE7 z)uHCpyz_L!^k(N7(KQ`Ms>}bnq?+0L1T#R_6TK&j=1KrgNj)@virh>RAES3tt4`<|q=#JA07lC1Nbd=WJc7OlA zMs1WZblhPV7dYHBO|KX7OT}Z%#`}#|WebM;w_r`(g5#od^FHZg} z<1TVGzBeykTpfsk!3#}!R($h!0_&w}Gh=(5MLN}t7b|!DUxYtV2{?mVFh@ii%O`u! zPMm?_pWOHg+0Dr$i}OJI;*`Rf9;JrQ)!`P#)6e=gb zjWACwR(0%@h~6ivwLi*NJJJCtL?!YLalqj`?4rcfr+u3C>>TiFPyYO&$ehmJ>b|_Q zHBF?xZ;{oVX-XDr<^${$hF?FY`=0}m>Y_&3tOrMh_4-pN@%V~P9%q9ePZ{;A$J7V9 zooX_2`qz0Ve<10h->8r6NvbB^`thC(=lc8ueVdE$)V&`(SNev_VH$(syYp#UFErjZ zm!n*Ej{HBhzt4OGHXJ?fpKWgR`;X&Km$QKR>M30DTAB2otCmtjEJtUZj$e~^OfciM zpCNl4kN@Vs=H@w7Lk@rB9nk0;YGa_Xo9`WBtCN$44b{!B@(`EB9iZW5j@ z{E3D9-HDs;nQ+hBKdQzhDblm&3*noIGJ{fFa04**g%-T;jqhdJHDkO$wfIB)T2uA< ze}abgn?4-Y9qg6Z(H4_)i)Hqd*FHm~V{ax4z0C$BIc<6Mc|jZe^!VRzH2wA8-*bPy z%s&^y|MYzB@F2M(EpN&FL^~esRBL54i%AEcoOT8AVAl_K_ zAsgl5+_=bg|Cy;eH_WJaSj{%yo-M@0A*{N*l_pc6aCHg5ZJ@vb5_>6pTo51Pt1Ik% z5bKb_{4Q41rU#)P2ueTM_V3N)#Q$BX@49TF|Le`V$$%B}QhgOx_q)(Q;VpYc3_ARs zm^fhrvltD@7bQ#@WlS39KpD7DJhOdPakA?h*m1NS1Mcg*pd&7Z5b>-ifoeCVU#!5^ z1(}Eccl2Ao=1|B7=xq4uN!16Hg-!$U>u+_48{GW;Aeir>6U|L1(!s~=0d?dNM{j*e z0_y4E3vxU)cfzlBB?;xuXHNHWb0UcJAG`H%g&D^L)RnrN5BQC21QXhVb!Sqe_xHk75a|&1Qc7gp zIFgVwF^qKBlxBnp*!Mu*mB5+@6$*LBk`DjQ6a6iF2jcdnWU1A&6aE+|7O)xW6#m1w zU$tGJLZg&kKX-Q3$R{V63FK8ydP8^6?Q8X`{+LA18i5Z_hGxerVOpRkf`KQI`VqAK zGX#|qt$DwZ68!--InwL`o9S|2qc@1H&iJmHDraCdWW|0 zF=q@4G0($@Dlkw<3J(J4ztoDXo&W z9jHCtjB&K>v!CzpR$9nnPf?OW=+_H{3MVdM05Up2rA;q$Nk^E{t*~fMCw)vp?zU+k z&$mju8Tv7xovx)WP`{dDjbesPuExRBwV$7L&a~8M z;Kz1br_1Ka_&|F)N-k2aen1kYOy@!@%V2;Oy5YB}C{Yg8AP5*{5U#h^>U;BJ4d&kt zJ*8Z_pzas?&~dVPjEDPn38)TKD+|PP$m5q{d9nm(jc1M6P)eU zY&<1vPA0di1?_TLWXQ-_p@w2NGc6zikWX8o{A@fZ{O#hq@OaGkvv6lV6~EZ#A!;Ez zm#+FNi;k#G0otsoqJ8r;fd8Dql>Z5hJ{iM9(q}*hPi#k*CvsGFzII-BG6JR{Vle*M z!r-UJO3_0j46a6rFb12xG35UKszaMDrS+7c4HarO3)KjL`dTZpiwieA+K-tF2)yhm zGE*G*TK$mdHEBOej=N|S<4SI;57D0oTfvGU?4sp5>X%4AIk}l%mdlf;T78Ys?FB?i zrZUhO1;1U?(fJYZ={|qW#LdS{qu*@UvuW3tmE*Ny-QapXsd@h1*qoK&gIa9ZKh>jG ze8~l;VLj2?6~U%xzU&02C^iZL%BKr6Gw*k)q8OnfA8LSr{$ow^t1m%k=^#Y`XjdWx zt%%wfLJUe5_NUQx5I?2w$NyRkxCnj;aV1&U&y0Iz{n}- zheLn%s3xl=r)uBjX z$)+0a8b~7~M9Ylfn(CyNIOyGSX@*D#*fqE-V6SgUPuN)__M#e?;mTN5$;~A3b&%2n zmA+ zBJY_cw6q}EGHK9QtBomvs$~e`7%XYV#`D_R6v{pGT$#-K0lv|@u)h5m^Z zn;@#%xVZm~rA}_fiEFHySi!f2bKi#mF>Tf+J)RSkDIdBYc8r_6Ws~S;nba)M>(!4V zWeWyXa;fzNb>hU@l*QTpJXBsG62@*-fp2LXPv+|q<6#4jm%(3GvAOF3wgblN(>V0_jL75; zN74u`L9VABZZCs{M?!)2Cw}~$d05Y2;HDDorL$h0Bn%jE!}B{R;hKpAB0!HGZe$B~ zfFx6s1|m*R{7l=BSe(uJrHk$XAX;XyjnB>b1j^z%z)X+_xmj1%c|X*CGLUEH zAX**>9iS&)&q_>?^!DL*hkFVRX)AJo6lJ3kCXpfgtF?z~(E1VXFlKhmN?vfbed{h~ zLCdLfe=~~CmXV=z34!XFhl9A)I65>~ICY91i#5mXAOHK;m*=EK5PrxG72Uj9wr3vt z&inW40GkXsj|RC|N~YM{&>DuF7RwX5%zYZLM9u`yjEm4c0X)=h3I6L)uobAr-Hb7> z*?^JI^o~WQ-AKlg*6d4!V5XIFd(Ze8TN;{07&wcDd0?peV979~SBoLhww(`h^V-R$VHAqvv%!BXV`4#lW+pbzC zS!C5L<`pBdNADo=NbqyD&zQLIrfJe_^)EFj#ZVhju*@;goIhzZYhzLOqxyOY)2yGlS4{^5b{Ar^AP}dza~^W zRJ4ivcHJBgm6dT+V(R7?{`6b&?PE9J)Jkl-aPzC(tf2t8jl|xY4oOq3-g2E60xwr? zdwUFBy;~i!dmq!R+ut(4rQP}C2`kz3zHcpAp|;p_^Id>F%YLo)oc1SlNXtOt75iAi z1;PZ(D)Zhq^KL%6%RS#0bVuMwqJVSCe4(%)n$tPrR&5M6g&R&d>SBG;d|*LNAE3|_ zUV>U6@4!P|My5U}H4Qb-K5k`J=nrAmN}vddlr^Ey^h&%x@90q2@7~FERr^A`ZQm{j19(k0@d`I_ldyx}Z1z~)OWN+nKnV_H9^nc6 ztS;cmrT!~2A@a+sH+N1yobXY9C=N`rBumi$$lmY9z%{94RuN*poLpnzfi(cBq(i$@ zt_>@o+*g{<=eF}JYZJI@R!WhM$JnY}>5HDusPU)>ewXUASxduSB-WAT=0}*q?4P#8 z^QRRaV{e`5Oo(I_@Zt>RxG*&vSy4Ai9FlmKLHAH3L``^urgt4ya3EueAMTP+s=?2!T-#9 z@mUj#6ckSoz4ZBYpo`GXL23~15{B8-x?gl{zz*oz7i?rZ&%cs4p$_^IH$>qBjDJ0- znd>4y>XL6ILc*)HfyXBK?ZD^nA%J~D4Taz&HI)>`8@iQ`4}YlBy8f=1ek)`<4WG;* z=KZg-^LCF#0E~e}eDJ|Ya~`DhAE05#9~|Tywfoq(s}jrK=%eJ4SPDt}RT}6=d7jgD z+FsA$XqZj4x$0%sM8Q#Y)&Qv^Chu7ea@B6x&9I8TSph<`kS_TKjubxF-Xf&6_`Nrw zKbVg8?|vE|x9ij2GqE$g(lcP(Hp3T2w({@i*Q#*E9B_AzIg2wH(m^YSn-zvKp~Rrv zT*(hsi_!M&aE;8j!e(y))T+UznirofhnLq#c7+^Ga`Yt7`pr2X<+oEnKTUAbq`uu# z^!ocma-0&8Yx=C^r5u?WH@+WoH4aH5xbaAuSzg^O8e|}{{Oaw(kT><(s_0yh$Q%@56`SV9K495CsD7j;|`FZM)wvSA6?cWTf;XuMPsRQl;BbHLpdcY}?bFu6-Frbs^m zzb=@l98(fQkr#36!cOmlY8xnvZe;|Totq6|(8>S0E9Bl!^S}~)^7*R(OCWEt5 z{sYhUJS77S1xb*hcxY&{KXqZ>*t{T0jY|H!NPbBnBs7qrm~5YgO~TD+DV!k$xHtk^0A5R0kLF2d!OnEArI#qS7M}diJP%-SwM?NtfaH(2tnp{ybFIcs`( zy=lTw(Z`RT80#7`{njJyRc<0a>DivhCWhrVV%}(S9mWM|;nKv30u|F@c3Je7P@;fE;j|;(sPQZ#=k!)A%gWEGmK2y zAHgpiC6LHvI60k#0q8zJDVDqHge_vV!sYd!A>9Tys~j!G@7u8zMvxE=+QEy&TrlF@-<0EFn@3J<|C9 z`Tcsas)^PWow@a>^P%T0lwEIN+?`7DN?AKmLu08~|IG$FCT3`ND0J~p$v=6;0KALe z=ho`noUtayo9tnaolTMz`)@@3AK2y$sq%_H7@a7n21>uQbSuFbA%Z-VvXSw)5QG!d zVzlD`W{{jdM3A7sB0^?4+3Zc2CD2qwlIEQsdJA|j=<3W%91G7SR}NKg1ZfQcU-+D2 zZ=~@wB~BmixsY}kpxfSgR(ud0e>-3k3S@VbH6LQ08ClD8{rivKI&huzP^o?8RYbkX6+& z7E{gv!Das;2aj}Dby zF1HjH&K->1ygnvkWx`=fW{y7X8h#uQS zMFCV$UCH>jhcoPoZvSEd>CIHqWY*-IEqv&7tRD~XI}yY`#@dmSX%-7Ed&&#zr$T7% zacywX`qIugzfH(~|8!H-(TX(cO8|rqf_KxU)$FhoD z9rp_OZOy)pO^*~bN5S%6-p4yXi_0U?=~#c3ysT(mZ2i8uKK9FyC1cJ9w@dbnQ|+2X zTq`-?inZ`&{>u4dt?ClZ9RaVo;s9sSY=hBc=N4i*{OW`i8n#wBgv#O4m5N&YyU9p@ z4xuhbg#JKPCXC`J#Tky@F%8GhJd?Lm-R%HPw4n@Y^XnS*ysub-Yw=;01X@#lV%O?! z!1znZTDD#Qq+HlO6$!-a1smg$YYVq{Bf@h<*92tG*fqMP_PswPu$nFo(k{4=y-k^a?c1% zgt!-9Z;LD-I@yF5H{4C()8eice~H`8a6=1m9F5aGQI_RmjV(kF3Yi^C3RUL{k+Z~EEd>RR9G%_g!D0?#-=CS-1 z0&Ze;n?7Q@Aw_YzqDbrD?4e#lN7Y=Hw_-Dt-+zYiil!WmTFze zA!N|gFThqx7=xYstdvbs4wzpoQz2gZ(hwpnJX78W-J{KZ(J&ksGIcc2|J`&SpPcP~_kH1ZZ5f^NPKNLMyRqvEjfI zw?a3vh`Yi(q~Od*XSCwa_TlaQYV}Z}^O2JK7~Oq6qQm|J#;6_tY$Rxhf6bWOS`4!#k_2ot4|AIw)AzF6lHmL&4zN%M^PdhHJ%l2EU zCgdGY-w^A!#=z+BetwZb4TfcDAIv2)=`VZ=ZhpE?02Sk{i1osTQ~k%97fMS3mNJu2 z^JX!!KWTy3N8Rti#p2?`0^KbbL$Jfhnuj&?{LSepDg{fTe>|tl}#sFQk^YHUV|iT2Cu#j1^=Ww{h=5}xJ-klaI47a3wU?~ zCO}6btkK^t1QA=!3-dGst}gP#SR^K3<8sly3z~rBSRW8;re3OZMFKcsyPl#MYDQmv z1DP5u$hk8J2`h$;njVQ> zFa_Fs(>MgC3_44xh;*S}rNWJZ?qEa~00Ef648d6<6GmMAcaeSju2!KS6KYH+*oZm- z_0+)p0?a+Ao9$0WCPsmgv%J|26`rUYnA-LHT!{fG|G>Fr90)39O5;Tk*e9>|pg9Hs zuBE;*7nxs-?Mr=P?0HNY)JYm6TyuarJyu~6C}xSOGtuFkTLTOPolzy1>nvORIu5;V zDbu*u&b+C-DwwUaIs5+v@G$WG&ZJ4=zmgwo6E4C*n<{P`ouCud7+GE_Od{aFMwNX zsmL*T&Z)ns2u*Ic2%0=+|KUTuB6uL^KuJg)G@qL)btW*4CLOwKQB9*WrVN!M)8H>j z&2%?lT@As!SV8RGt#dixsv(?=v4X&tl~9WIL*y43dkJ8Iy$q!6u$k{kn(C=IO7oe_fO9F+VC}OG#7oXsp7pa26ZBU4iPZ~|1bfM(RijH)K z0L#>rP+hwV^xq0>?_raU6?!V(TxBuLpfK%<`2jD2t9wJlvjI$`S{vF7Z^>yd>O~jp z7$|m%?+W|TO2T_xZ1=G386+@izL1~a2Y*qySfs>{IsV&1)~4ir6`Vn=X&_A)R*`S% zOu`j%h>v2$ekEab#<1OTsjQ6@3+nMU=4M337reSWj#{HImC8Vpsd*D|rQSkwNm}Ey zImk)TU_L*M(*)oSc1XJx<|C|u=_N&LW7ddWjhX+v6PEz0wv#0nb{U~+p!*Va8J+1RWi2nvv~b~G1v=n<6KzzDl0x4}>1L!p)$dQ43PTI>6RWoAqSMkGQP?hH z;^woG=z6DwisZ799{X|&uIU!=NTCIaDlR}rAaLZ;78vnUPVgR00*9qsJu1>sC1b+fRe>)f{v25=8har+AJ^m``);R(1fNSt^4xOX* zB3;o<9*8FCqC&c+s0e{CMnfoj7#QGC(LUM$BKbh+D{>XSzW`C7Aj*lUw9# z9UC)@FEw~MzQJ2K;lhLf{xwkM2RsYvdgN2Lzf725LHeC)m({A731Y}!T z@Ls2e1l?$JWttY*)`yer)c@*^q*-V4H64|f+<5f;o`Wor&Q4p59ag@+35Ep=K|(^B zB?K^7YO?WsOj$P3Nw_rM6j@#`Ul~lj60g4g5mKGkoL!nG-!IOFL@sr01|H8?uHC3% z49unk5qE0q&M^voy#5l0+WZ&KOH?&~8T~kC;Ad{cohW+O{5X}VEXvCP{~y2M`Rdc; z~>}ZUTd~hZ3+>>dYXcE-DdTbdW*Vo+`l;d>>kl>dbI7xdJDT* zE%qf}k5Gft;Qb=9qO}$82|r1bw1)}C@A^~vfw{ekz9!COMoZEyt0S!rLmFWgEo=ol z3=;}SiZE}PpNuq`6t<%1i8luXIaMNruneAyqR41zLJjg7o8ZEf1BEl-MIcZblpqH2 z3q?sH$W!RSQF9Xh3t2%79l(otp{nA-DDj}C7@@*2*VMs;Bx1>X;KERZYK8)OoZ1jV zRtBLop-AEAri5|mVramPOXvGgLa=F51D$lJ^vU9ROlfVD1 zRG0=M2u5_06{Wx>i3S36KUq@((1S_xU#B&?vtJ~HCP#C{^xSO%Sr7ur_js-GfZ_y)}uU?26Ge1b7 z1G~ZmJ;fhcH^w2ciZgJo zG(%uoSr80}=i%oTt|pi9s6>0vWK_F2jWP^$NOte51s~oTbF6V9j~qt{HJv$$MS=%0gRT zG;mH>zDQvX#{5+0s>MT5{Ks((^DyTpJ77Rl* zr~uLnk3DUb!evil5MvMJG)zjLjaF`HX5X48fgbw3kSt;86Ft zb0yBkwyw|yIWm*q*6MumB zn6(O7CNn+y{#+`oyh?t8v(jGqM~&r|awf>(_5?(hy;FC6RHIANUI6A<{;BUK?Bej!KVh(%3C8DO4@{p180M-w)PO(kP@9y9G z4OX4w(OoA8aM&CPZ1sefDF*fCnB9jP&yNhI5GwDa7n9+MEGQb*3!GfhV6Psj)h0V((s zw&B1uvQjT*+b_gVQu79in7jLuEdf60eS=_DE8ZA_#z<|PbEY$EmQ zs;4VE03qkqCU9e7Jlfat@Z~NG+`z=?(N7?ogqn1)~_n!Iif~t-GVHxstBv>ng8%z9^WOi8J~q6=0wN4SI>njBm+Cdwvj%|VFVDLh3Rh{-7qp0maqAqn|=^{h$@5$&nv)ZlZLnQts? z{ODEHtmiGsu=+pxPz&g)?A&;GfNL&!8255s!IBGMMTLd?C{GG*N{N&OFJTezx&7l3 zxj@e%)1+$&9(l&=qI}ObJs8eSL3Y7zF0NfTbH0WNS(kis6(zt(9vqvw z-S2-8gTGYQq2bCxL5>27w`ZTxvLxXl0c*L4^I^C!Kp+>%+Xd|XN1#$9sbUf@4SUKS z>n$s5BAc?vOpi^;nk{v5Hf}fj0SJ3(b(tH-qE>2SCuVNzJO(?o5BauJ0kqEFyU~Zb zk-iYs`wps63$bF-L#CDXXC+oL$7jMJPSf=!^v$b5;E%3x@n2;ncI@eJ>K=J(r=cjI zfhB(28zG{Da0Bc63pp|97-<<3zyjTEjV!}_P3m$vi@3EZ!3#-wx{+FuVR(^>?h~Xz z_#y9|dJ97auM5l-R=fU`=ls6w+kC~FOd-_HqgPEci%M1qG#jLj@BYUjH!&yGw2)XT;?l9AiDoZy;}r zUt#jLG-un$Sa)sA-Rc`zJYduY{q4HmhM8A}SGY~O84ip7aFz&`eX>giz90#H{ZGmS zUeQESaI8Y^Y#) zCTRuSGu|zZQX?K1$$*`S17p#-(2Kf~`;6)#k-_&7G^1E&NQy$%aiRw-?{NFFYWX7$4fxBz#!-0FTQUaJ$Rv=@(e`3R1_7-(TC zhBXFbsCfAB5Lw!t4ka``YE#e1fwc;(mf_&Xlj7hhOp*2?L~Wn5YTbg*2BhfkGmTHCT#yaaHaA!fGchTaVGJ1V;+>2$t4d zoP2Z?y7me(1>(z83#+)ki8kKIxvG4sg|r!YM;tTs-CwN8>3&Z{{p5*vlv51G(nAvS zC0>NkkCZ$<)}R>&$ZVf$!GZ6DOjx`5yV0S4o-a{()Sbm>NoYp=)teuxf%PSP1tLo* z4S^$zhrMC%Wuq|5Wi2HA0e#i<=R-uJ&u6+&q3j&hMM>&JkK&UI*p-~m{bkYR8rQC; z_qadCS7+b(p9XnojZhL(}GC1u#|+~#obw*BKBAgX^oc*F|yz+IwP9V z&?Sk**ZsJ!V2Pk63%uCcv*_Ip{M~Gn?0B)wk>^bL9I<2R?))E5G!dh}zhoDZIQH~c zG9gLJ*47ppTDE(y!93Ew^B|r8gm)Rg8u`2ig>l#Lv~3oi)+s#y1jA{1HZaZ6C~D@N zcGtDBZufBp4H&Ry1Ui1z;oUxQ>^{RKKKP}uyN_LYRmCTb88$w#p7}!B^$D4tK2OXJ zH1O((_kQ8MyW-$ESvxfWHJJ5S=XBhs>7ecO9r@*0?Ju8T*}ke0b8S9Zxwdbup|OozR7EM@@SD9ax5asurvnK* zd$dwJ4uYvw&&XkK<9a)lFCaF0X@7%Nh&NK>;^0Ef$}$iKhw(&U7U~`-`|=ng+(9BP zG@os*OGjkX_XnM&X}JIF!8cPuBIvqPUhJOuOYl5cSp3(N2j?+V6$nb;lmJdB!EQkf zLskVyoU?;*lTNYDeKlylve`IU*n4kzcG#_J*E4n*P;mF%ba2=#+c*y6hdCh}kP=iP zCbHl8+qwNymEMgcn|hnJoaKmA5;CdK>frE77m(}RVWso${=xxtfU2(=_wVPmV6ase zYq3^s8-CxV)}38cIk0VJ6VrvWFD1~$YRhPC>-V<9i{|RvejuanZ+SoXW77)_Dd=|( zi&Bh>f4URD7^|UL!yNk#S3y)>*UKE00D(g_T#u{xM>4}uEBhAB2HPwv>bw7xaQhD_ ze?k63lMx_?s$+MKY>VXYL4CGCGe?MG>>PFe$6=1ih1b^T?w#bX zwf6b`5&pJjJFDuwSe{8s-O~~~EVqtX4R43N%jHrVf4bQWSz+%GSt5?wX;Bpx!BM@K zW716T?#cy&dLgcJHz*D;d9jZ=7Rw*OQu zU78$D!X-4@Sp+d?;?CB;S-4JwX-_O9u6w23+dAjIw{@T|Ud0#HDkGj(NS4*2N7Wf> z#Egec6+~^3a>pTu`VNT%EcB8=wL?`qIc0?Aa*%V7`p$`9CZ70L%pelN`)^Ihk&<|} z?<*pQ^fKH}c`Mf^cM+;sC0Zg5?yMaM7C6zy?^F>7Lt)tmi!%nN2e=3>CaEnnBIgEv*DW9I zUwFAbo!W--i1sWb%s4vFV&NZRLPfKUYj>_n{PAd5(=c8zQn2t(auyf5k#}+t#J|BI zKBE${1NJC-NtD4r(QoS@!1Az|s~|*&Ujs#9AwGfch4e+_ykLzHNwQFhqNp^Ovb{`2 zrGM{+vHmlC`8ORVg~=ZfWQEs+HM$`}TuIAVU3@-^%yD^w(H7DZ*~n4tad}vVj3&o3 z19G||a-IT}w8a$>PpHXNp-4pl%HoQjU6yxkFd>0XWmY0B9Hcn^QC;`Bgxqjp3d&+6 z0DeFe!Bk~*6KumUarVIvRvSu+9=c*m98$+9N|SyRZ+&qEH=(JkgoTcH9dQM4512=8 z3Ba8#(0r*SL!F_Ra;;DlhUgE3o}>alQPpGxE;H_bkXei~Z2@drDKpq~08U#|T;V;S zc-b5fkku8Dg;j$>bU*_Ns!@RuFd~+34jdky6ANcG;oVZDCZoh5F`cpsgl!>R9S%Ze zt%}Jq3W=dFwitY}LggUDAt8*aIPZr^J?9T6=593y^uriyl*2&$CTsm4!Il={d^<1x z@Zx)0$L&=*L&l;}O&3)cuN{$2h16!IYK!iV^`1g>zK4BEwKG>YuZx4BQ%@M+*`r}M z8T#uZhj&gTS(6Ix`*?S=MCMn)fD&(zncZx@|IbA|{~ec5-{4Tg`NXu6ert7^L%eyo zUwRx7Im+gHlY{NFx^n6(t9yqO=MH4TV2~+m(d;YC=k004g`9kN9@En2a=O>nRJUn0 z>(=)W|C+__@$kEZvJ}>FqA@Y>hKWwbFl{-by1mgV69ZtxY#N+Tf6JLMb}6pvOX|(7 zRnD9kaQfn(k6iCEn7#u0YX7Jb>QMO^nARd|ko=94Y#UO#%KEv##h!XBbfvWitMO)* z_uS}A)Bc+sw7YlbN;5Mk{0oOrk{dzUZKyY|+3YTLh6c`kT%ga5(B&J*1;7p)e;ZO< z44%2IH~fm-af&sq=^)&<3xvGLMkS?|4!1`US~D8Dj)@)z9I@k*iPtg`xX0+opuKFlggiH=}GPzs!anAMtI*d3a7}#;rtHE{QVKX zy1Nkg>8p0^QD)=tn|U0#c;xmq`av>8ToY$nc1wi3R<4?Ho9#eMO}u!Ub`8r5ZhG=S3aA^_w=g-N1dP$nkon!a4n-{{kp;a_Hi<1~QAS{>FZiMu8*CQHF z=%IBl0@(qKhi4rS_@n;(1n)V2o_>8&rhEO~QK!Y>xLHMk4QXlo`5EogIuHuX=Wxs> zvE$0+ULvl_-c;`;w0*J_O}?Ss^lOFnEv?Ypg4dJ|XIX5NWcJ8pQX;b=k2SMapFCs+0}T=`Uf4eSULz3fAiNvUtoJf(GJ^VwCunI8 zj!h$uyZorv1bcr7#Hr}7;R3fTWVc|>1O6HGAmexS0YLDZLD_R;^u2H1l0$8tF?sk^ ziPq0K8u-7I2Ayj;%_2FJfm7gcne645s7wvanBBFZ3>iA~X~+IsPydag)xi3Ko#RZj zCwaw#8yE5*At8~zJgR*d6y?F4M1p|;XCCds?E(cI`G@;FJDWoTwlE`s60N*d7--P@ z6^cyh^oaj|xH`w!%%XM;_pNPv+D>iTwlTFawf)xi)VABHJ@s2#Q`@$2<~u)5@||R5 zXJsXO|JW;8PwuSiz8~#Gc>ilb_Z$=o1mcQJB!9>ukhz6A!gyE83+u4cro?;B@YY*% zD&=SYk8Fj%ZRpd{dF?xcq!#>&)4r>}%4qAnuiYtP7z9T>Uv9~lu(k&H`@dDyl~=S) z+DzUQ9fk-OHI+W!&xE#_;_OEK6{|5uyJi!*1ggAcYwlBA3&0&_xUv0eHxP(5y|hW5 zho}5QUXj8?U6%OAnNdWuDaN@NOSY4v@|hfyH(SiE^6o1)ypwyEbm9Fu60L~S{Q`XePm%LRUrd$ zS5T+wPGtKn=yDuhlMZVt($$=lK(;xh+z7*g%85X{1lz zSRtWV{Q{)pg>P8}{Wsx(JqyO9G3|AMi_o^G56?op%q5VKnH`*8FcEC0^qhGzuODZ>>@2XF^ML5i! zvMe~YLz^_im@TAh4}v~0?myty2)h0bkZz+Ao*c`-mqfK{9|r|XG-Ah39dQ6<1b}^# zI7(XFUcg?ldnDpQK1D48B`u%hlT)RKW!J;{3>R-(ujd8;hwo#FqYNsAGoh!su{IB` z%v6*5;Iohx11<&B@J9pDJm{^!6|`$i9kmkjW7Bw?Tt7{HeYo_}e%6S{m$$Cgap|iO z-(#VmlWu;oEuOo$q`8 zSeV@e_y+3p5(IMIM#21(^oBJ2uIrrC_fEA}YKone8=MQ$Fry($FPxwF9tVkoI4uP^ zb?dfM4RmvtOD=z0&!z$ja^Jq*+1yXOZieO4(Awa)cJ#ONSWAZ zZD>38hF5l&;<}bt#8u+dr?Av$vDNdzXduaZU;WgrjO4QSTR=b={FrcM%LGg$O+Dxw zxv`W`860j=#B>0VW4n$c7p@E$EPQ% z7~K~0U267hyD>2kF^W_na2^pW_S{;UME&=huSS^xvr{}HqF*urIC--YfN%1|5TX<& zFW|rK(xD&enC%GlglW|D9`*Ie24z_!_n{;eZ@|-57lD%ui$f?366y+4NR8eZwb=6u zP*>!!+F+3zNvo#o(ceSM995d{I%q7{$Y>)XN+2x0pW25R6oT8(s9_p_cC~B@mvd_? z7tVB+yNU^Z!56)iW-4PnvH%?$BI0974o}*Xf;75XorZsVP?Oy4b?&5>+V@o=klqx;psUCwlr8IjG+C^ZP)RZYIX&9D}P z@ouE6yTsV2$jNG(iVJz(NUWr|<|U;2_v{q@%ZLd#aifw&Oy)bfEVIGB=*pfXR{P18 zD^$pkkRb~e3#0oajDi#Pb5_Y<_F+lml zAV}g3p-7|W7q7LoySR083jKRi&z`B>WJxdHcsou8%fSB+qR&YKWNvKw5dSz89*>=8 zYW)uK)G{hDvXauiwHx}}5d>imr{S>(4FM3fzI@(n`b-1%HMw#pH$0yl0r_R;1rsMh zl}Ow-$NRf#Ww7zw8H53RkS%}Yi9kW{g<|g!_07YmW8J@QxjFGp<{h~)$|A67)ZB)vP+JCP6^RFh@4Y8qk*cT=d*gg&Ao)sYJIx<6E%KxT{jXANuwRTa}u$sTkj_!gj>lr!1^ zam>4LV42N>e?F|@_nmXWa%tEE(q-B6%H)gYL*iL1j9pdctHW-kRn#G#!EOt4v9=W# zB-wo)q|@>#iQGlRe8;q#vBy$QX#BoF0Z-%1whKraP{v#)s;`iZ ztO$ldriaEyKsWLn5yIo3PeTm?B~p2ZXVE>|RoJk^}AC6!|w8W4quX z26@%9#{ivVwvHOlfhR(OT_bzGoD zPpU^@KfZKaK$fvcXxC_hr4W%6^nuJZ!d8c;1|IL*ozp}LM{%VtQV(!W&Ir*#k=8+P z^ab9kX9GegD(N?*;-6k4XZIVDi!EqU0S7(5EgSDaQ0DeABy&059XB~cb_#uxVoz6l z2p<~Kq1U7m!NC3pYts8!=ymPlc&S5kDLCq%hIzIG74{A7eHO+I;)v9KVGt3qxS4j^ zBZRdli3mVcTgqlj$vh~|fr4aBOPN?+7#%+wb;-ZT*XLvzDsF5b`jpS{RN{YdOGDW4 z{mBjQ#wAN(v+ne4O>jLO_m}ti*znG^C;bURvTGiN3NX}QEiP^=BZg=9Yl}Rq!uWUYwY9OV`=DgC(UR&FzT~XmBmg z6Q3H6^#aALK&F^7Klo__E2@(BYQeQa*cblO$?jLHBrZt4Eps|1)Jfj6kzuGEmaEA~(=cAYmx*~{Tt+xfhR(a{y6ju! z>ywy#?H8lLm)qiQbkE=x*A1io7NXS9+Q28yByfb5;ENoU|KsiR2w~`LHKdK5K?(f5 z*U(+hQl9r6*sUj;PLZkwK_a}|XZDr(Pf^8TZr|0CHA}%qT`oCe-?q{4gA~Z=AR=M< z?2`J4WgN3&NFIF>np@L5W7molZpIHD#kdb^j}`;L1nFL!Phnl>Ne`|01jPgH{UD{e zfZx<2`HaCorWwtx5MXbTUwK;sOvm~k${_~@QHd}tFS-S`Co&g_jU-`MaYo{+v9lCM zk@sEq?acU>4%6{fcczt=^O@S1gQ@?;!Kwm(t zWY0`2GzE+n1kdwH$~tWi$)DFtDJ*E&$o*{M7)BUMIFb!gNb;u8)RS#fmX6$-sW9Mb zNg+ekL5Fqulq>a;IR``8f^&Oy1*^{Hc5CO(q-S%khE@&<{mBK%FO)MUgw7u|XKNC0 zL?-n^l1$Mz8MK+FuN}p4ReYzcpQ0qh-#B!Z+<0`N8w)f#o-3-yyt{H4sv4DwdIq|} z$KZboOxk&Qak3AgxthLX<1ai`sk;LWRHX=!)+pu9uVJQ2tDSC_xk-Klb{gzO?D}$d zo5Wb!Ve)20`TqcDxyaWw8y})7_d0B)vZjq?+2iOK&kjrw9^H6y`+Eh{x`sDpGHcZ) zr}K>)^w!OaQ#E9&3m&Z_g&^c%MX1DXN?$J0y%!FyTG=vrx;A3YZVL5|D#UO}EjnqRgDs(^`%?ou%#;&^P- z`9erpAPh*#QEZnY_;hRaZf$@U$xabEsmZ(ws_JMosvQn_5@|1)9BQ(FwAJs>gxmGQug$;AqGSXPd4GlqQ&)LAdnTZ!uBFXM^~vszVIq5JS!o4++DO z_x>{7xe9FKch0Kqvmp6zffc+E_bWj$Bj!tIh$ad>Bd@VYJ&A{@NX0|8$@8|pYMeF# z_?Zfxq!@9s%e3T}mFd7hIQ@yky$+Sd?|$Sz!BWfxIx{u)c>Ho>8YKeUO|aC5=B;~R zOZQ7&d7(9C`h5S&{x=N0z5$_w*K+=m3ol|P8Xy^$&NHg zT`gpuPsOX;Gj*tW{k)Jn;HY4DJGMU+?d<_d1Z1e(On+l(p!tD*;BT)77J{{xTGRgL zX6Q0idqyx|p;{;iT7PUtxNCn~txSYysP;G1*UI3fXi7khqo8s9EO_L@69vbLf?_ty z&`LZxzqS86_JRq1y}>X%`SfDj{Ane~k(ZfxRRhsAk!gOcb+VuK*TYf;=l2%^lMR)* zesX^n6%7KU{9!JzmH;*A+L#GeviR7WRGbRDE)4Ju53PAmSXng^_CuRgm^auYP#H~= zZ~z?eGgdVhs$aW+EV^XO2H>6m)h{A6U|Jd7-`_t806;I_4w7l_5XP6OApG{?SGb-Z z+_R3_c5LvhEWttJr$vTk&XTG3tmI&vp@)@(J3&GbM;`;$c~;t?{%8nM7?WYa#XF(80r`IhY?||Y@rKIXIH#Vk#bc+J1LewfsN5POq9_!FUafwq5m{hO` zhC36YVh44NuKo;-=xDxd=ks~1Mn@m_1W#I&?4g(|l zeX!MPZpnbS*lG-ry8LTDW3gEpJZ)-1Mn>+0DZX*U|1-{i_u_w04EPNKPkbuWksO!& zj_5$lA|gbrq=vfG=y_U`aRewC#xgn7`GJ3aP#()Q)PXb*QZY5fdTPD?Y_*Zk%D6QY8k>ndhSq)F^P z{M;vB6=gM?ctI<;CiRKnE!F3KqiLJRVGq%h7F8FZxO_?K40S;6jdJSj7%5H2-22a@ zR@Ae8v-9BhONy15P<*vlUYQY!0@wuNAEThKer;h+KDeEv8yhp0JJ1xZnBqvR9 z)>}JJ+hdb5XXrat8()U%xBNP25457b&+GFwv@~HlnGqe~OSn%Fadb5;Uq0<%MxADk zNf}}sR0ueO{a1xrCYL{B56(rK;RP`B3>z%Wh;^7We?iy$@q*xUpmdL-2$ueWd|5OC z9ZydvY!pG{zAf6%xs68ON2I~8U}BwT_xMBg5maFE>5qbvrGb!gDYF03^f zjEF3_au@q73#!e$I8h9;3f$fxYCa4#XC!tq|w^nG)j=53@^60q449qh5+D*L_ zBGU9fjFL#9u^F6`dK;_~8zD2L5GK&2i5YBBX>Y9pb-;&-be6wMW?zz)N9OjRJcyMT`=`)gU*miD9)zvf&^WA+?7v|GoQ7nqSpZdk8!p6Yy(;9yZZ=gC13ed-PvE3M;lwaW7(^M>PnO4YIG! zDiANI{CubH1Vco~=paZS5fRwux8Kc1AD*E4!)+vNm`e$Hn>VS8H)TH{a%Nx%M;^I6 zxwS|^5jp*{#se?pZ-`!9UQ(~^lD`{jS#Ze*%vAQlw zJCG1IsvO`gpQj^(M2Si{T)I_op`h~Hz zN2y$r#XFOFbwxR!v;yyzg*tsjIdYz-lKX(_e+IeoX}|I*8D=JYed1DGPLpJBljL1+ zK4u-BwsT;7t0f~?d;w?wFoEy8s9}m5$na^mPA2@0D?d5#OQaZ4yjfY#ZL@NqK#+`B zc57#auqFr0fG~Lq$b!0rtC8FGhGAwsQ2vNY9Gv9Zd;QEhdvzq52qG%upuqJec zFkp}WC52q;Bz(!ncg(QgFy@u*j4k8=p^cB)KlIkk+;p0x}v#-I@%K* zstjwDjb5J(yxxfQ5|({vWYTA&;07z!M^1a<*iP0#V8lom{$?62p--CM%}HnW_zs!z zOibqVRgbH6&27y9E1XihAaGlZ!C1pViEs8|@euw5SULJ7q!-Viwe}?E@b{$`!u==X z>Rv`~$ID+RfsXxNF2Jj?B9->xqH5Ze5E-?l$0ohLok127=#-b~GH)%bRBP|C*4W3( zT_g1Z^kk8W0qGj66=mow0m5t*%-DHT6u@w!RuZj+^4Bxc5Oss-+4#mFTR@Y1-u0`duaPa zH|N!J_OF7*Z_vBgWDGuJu2n<3ZZa~8^A62t7`U`t!JO_K3w>OL?beG4xC?b{_;h&zt)@gH8&1t8pP3NMwQqJ(P+h6ty{2>-=O z7R<_@0`r#5_I)3Tar6MCB$udVKJ8LFoN0)Scu1$9JE>j?83_Bf6SBsEuKCeA`c=VT3=FMKLAM-;Ex(`z<&U3in$g?3h+bq&!jcU-+2*f-C_(JX3T3w0~zwz zmx3mPB2Lh(ks~|EDo0pw&2Oq124RV8A0s=vWn+8hsy*{i{Bxsp0F&{Q-3dMp;1TuU zXntvVMeqDu<%auIhf__7Z`7k@J_OLgAhrT7m>c)9Zkd7kPw~bw{owl(veez04w+Wt!h+I**zV`yVLnQPsCw zrFn54a(&cv3%tNi1+zx#iNEAT_`!+n0XGLs4yZbPfT2-Qf;x!JE#3dH#sf$O@w-uq;t7sE3jNVh(b1e-nsB&Mr#F z_;aIu`xpm}-d&ZD$YdNYRnCGAq>n1b&qsW6XdyU$&A#pL0z2^YXwQCG`!$|(`>fD& z&+9AcPEA%_b_7-{Q5N`EQFB{&f||O$!vxHneFPYWXC8Q)^tr}$JTD+(RV1!bvnMjE ztaT>Zl>It%)b04}PILJPugL{7SENWmizLHKlpvEIzUdl)1u_p=38l4^ds|HY;4;~= zzwq}wTbL&*fSSm>DUBv7#(?E=D!ny*t!(SgLWEc@kO}=S@Iym}AGJ1&tsQ?C8+6&- zqA-;pBYYNw7Ob2&Rx5c7f6t1&=IUp^pNWfluq0JsEeLX~lxOD|HK*vDDrg_i7UJvY zzWXtupLJ^w0~eh1`BC6Y0`)R|uB7wKXsZdmASw{hfvNN%%)572jVif^iYh=F)o;#L z`MIR76>JMo@*U;sk|{`3<;h;T#R;%8l{Xdj%Uiv&sI$_ls%8}ngIVC4!s=H*oFcfU zK-FU2Y01_F7eQ6)+;3`)v$_ccldLBA`!;{#EOpRV!nD)XKErO24t{!Ts;g~{=FeMO zG=AfD1qv>j{3QC6aRpKkPf>qC7h9R%X4R2V(<;M&|GS+q(GOW9{u92*`J&d8Z3qOJ zw}DFbQ$mWj%|1)OdLc_TI{=XRF=7gFha@Aw-Qqnnv>SCvJ2gdo#nX=?qG)*96t>aE z@W|CQTSJv2JnbH}U^U-oACxnwqp)>Uhs)joV5a}t=L_11#A>x#nbyK!?iuM|+8Jq$ zSWP^`y!-3BPl`isO4*P8T5tq#Y{5n0@MSOk?u)2LIsGZu(^<)Y+0oD*r4$9)rdSOg z%Ip_*3_K(#;72{w5gold<7=?CTvJ|#tBjM27^pJ$eA$#$DU>jbrNotX0{b8RYk8{x z)L%4}_R!`{F|WXv=A{i^T*jVW`DYXQM+2C9HAkgt>7?*NjU%AX(c;GbrO=~OZox+f z7fq+3#ONnXJ~HF1p__73kp3+u@la89$}FzC<7qA>4NV6tP#sQFj~5yNH=VZ>}?8xKZM?yV~6o$B7t94cbR!bR$9-yn}L4!p^5AwP1i3ItF=e9LPcsN>r zyAajN#5XI|Cy-8?RER$-FJQDBm%;jB8q)%i48^-(HnvrX2M+z!~C#stjrU0m6Q)RC`@3R1fSo`$pvlOnn;Qfh6~)x$_hOPgy1%=7{(g?t`VrV)DY%6`XCSX^6X3|yM!2je zLuv{~iU3yXF;TDYe~c}$q5&`lLZFy~E$w_5G-Pr6YToFHjYH3M|4^jb@l!U-p#M7_ z0MWEw1v@wvn<5rPVr~CEcGKH235e`}c@dxKz+ip&L5x;2zJ5K`%K+DT5O&*ygt5v! z8uv?%7Uj;|-Ng@rJTFe6%00>And;Yk?;5`yg^8=6GjbN&tmY-%KQbjGsj2%Gon z%THfJsHM2?xDYggxQ(@T1RsF_6nB7EE{Dzda#mRcIuji~oNMM)I!7uJ49&Zw1>o+O z2W8o#lz&uKR^i?uBNY$i5)PNR||H z;GO$E=jCdxgURcFMq8?^ybkR*sV|63t!haN&YG?t)S&O3l%*aI32PSZ)K!++b^FNY z>3SOXTiB?34uiXE+qiXA4dOyJ{Tydr!b+cz+gw2()y~KI^qB{fH-r$uTgJUGo@8-> zBG=~oDg)1Wp*IyhHy&X(E+`XTb(*)m+}(|WxfU|61iQvS#g{CN*s^86X4m* zXLSb$m97kcB#`Utg1xa3P8|LWdE^uXoV`f)7D|Kukt=oREClXF(zKEpRD`y*a-w)M z&N^5dNy@MbY?cHn_T^`_(Q!ZD`oOB>EkR`LT!G*?zcXtCgU82wC&>-{U@ztchn9Q( zK=g%NL9%wM7u5XNNbVhKFdorHH42O(w)4BJh4{k(j0p1ZQ5h`;ew$GtxJw~$zW+n` z-EUlY0m`Dvu8o$yV?Y0%KE{>rqV_5mJ*Z+j@JvY$`P;cput~ebd4=7r>7wDEfG2DL zMufh#4mcbp?jS+^&=0L;B-M1c*&6UpcFzRG2uO#J=)BN;N1_>0(RCY^w}}$YfHU_u z_z@d2;4nl8{*>}XE+T2jV)*O=3*Z}}YaMEwiPF?M6f9evc7AL{Q#e2rs&syEo<7oE zY???A%`%?nzJ9JuK=bm2o%Tt9(mkdboA4k4Ab>3G2QmeM=9b8^u4*XzH2 z25BMMR3QAD+Di{e=}v&xS@5?j!%hWUNLUL=Y58_y*yfA-f$DIDf{Ju`&Th{)19n{P=XO`w9O)klS8>vTP=Y)i^`!9if zmat*3IT%h&(^Ggsk^V=vY&Q%Sgl|3VE^*t^(s^YWf0aOq33VHjDp%nI;rTR0bvo|D zACBC)0l2q^w*Cnu1!_Ni*~gP2xbCwtfCyX!91l?(Q(I0#gpc^?i2&TeD@0kp(7qRJ zwbbIQ@!>~0_ptO2#h!k+nagjfh+zEOiM&Z8U!jIKsrnH#R4$6C^f!2E@QNMfmXo7J z>#qT!q$pB+n;Xbi%?`=fekUwe1Tw0qg!VX?{s}=$gTmG=vqLvtBApPwt_?tTz=DP~ z7lrDN%p>QRz5W;WG^N8Q@onQ$&1L;o4dSydM@)z0pynDwrzM~IHGVp5$7x>`Ki1F9`MU*BhRA1OO`B7gq^6+lWwM8%;3|DrW;K2x$j zbFw~HwI~ETkOe!mB7U+gZ3O(K%8g5bo}N4W=52hb>k{_ReAp9b?KBcR?|aY{{)RC-o>Gz`F~5jKrX&*)ScfS zQ9X}zpR2#Ymsg@HgV&phjcmrWJJ3iJE~4O=xM{dwaBr5JZeKj{fA7RJD-F+CXYmr5 z&^#K%!ff$TzelsQDd&Tb!QOmO^G7iP+sGk`QQXH>Wn^gs|5nyT%ln7puy&;&5-;Kj zeul;4Jh$QM=DlONd~GkO0Z}SLXL@y!=d<)rgV7kN2o=cYVcLJSD{(+aaDtpbA!!ps z$#NKs7pfM^Wf^P`jz!m;Zr#n?4D)#s>x8qabYP_~^Yshx?+1cY=a-ARrkYasFWO^- z7p$9Z`A5;Q{L5C~ufwSoqlvt84*pP@271L9e(i1dgDmL!vc zq}|_Wd5kx0VePx*VmVp3o@iczg*>dKoUZ&B-3|hJQi#YbP{?Z-i8gQ=di3Qx^>48l z7q`(6dlSI5=BTlp)GuFoI0EpP3&oVxSwqPM3P*Zu?4F`0A=Ux!7ndFVi}p}QDyda% zzN0cqT(2B==4^Yq8v7qL?{39km6ZihMUVRBpSQzuq{<8zBUS2~Uo>LDSqG*vAhre7 zGM-PL=tU*2{@>B2V%R`(Ve0@7|EME*?E6(I2e8gB=z^pIqyGb6(-6SHnOn^d0lWlh zb7K=yyFr2b1}UGV>m-{W@PI?}?0AtZ%ZBkU#t+#0*I66jr`t*?W@n7NR!x2)Gh zGkBPJ9a#YVDz%dt+<&fLNS|=Gz8KwotJKz@I1|AJ;XEO9KOcGUmwesdY`k5C>caK~ zu{hs2H7W<{IABlFP;x9(;|KvUNk~oyZWZNp&MPmCd%AwrYO8^cygL=zTP|tGYN=m5 z81GwT9crrvD)plZKh?RO)E5QRKN=TXY^xmdi|tgn+_cixUd!&AY*h{Qb!$~O3Vyi3 z+HO%?zfEGKKWV5nn`_mi0bib(gwJzk5c4ra++2=V_iAlYg=L28M)`oq^xF48=h;oB z+y!6my9*Axp10>qp)EM8DV*Iwje~So`});C1K$7eTwW*OtY-9Nr;x$oa67}&EE6X` zj!?0R<_rX-mis>KG2zcYVzt z<|#h1KhjygVcL3?#n1o+#mtqpX@VGSXx-E+$I7rMrx&D+af?%Zu=EJRc-~SOpGlv<`?yohZB&T zx%k)?hJ``0h_skGNxa&s{_?h%*KsS1V&yfEZ}TlFBI2rKcv!5N$G)PL|DNbciNxu^ z4`7_+eWG018?r*FK8MixQBaimQF@jLJyKMKZ%plC@Tv|z>YUeL_aJ?rs*fo;R=!&g zIn+dir5t4>W`+qYZO_i{xGa!w*Vu}Aj%>#eLc_ns2*8l5APc;jZ5IM}FVc@q@Hpg> zPmHHNN@kx{N#<-WJ_;#r`Z!i)FzPBg-3!zfNl||quf711?w^iZ%0FIY(sEr00*=cd z4{10+fMm#~&+HCGy%o_CCc&PZwr1r0RK!*?dxm3mx(VR;?o#0UN$ADzv_8zOovq)g zq}2Z5?G86r5CWcT2Kdw5j#rwV)=-Vs#v=&T_wtalceiQFs1#*Wo)>mszIX2H3#o8B z4q;im%)|2&>Pnc%mLsGgsSPB#tUSzcvMek&AGcGy&p^D9gR*FnOa3$!C0Z@^bZu59 z+l9;oLK>isn(E}-cWQlQ^dN%dx%4I->+s0fSA1Eb?;12-$%$YTLRDE zurqh-kaI?Hdaug&fF=8_$?q1BNah(V-pK5|!jM2fR?$tmQ_*DlZ6*&iVwxh>d5Qwh zFtG-8_dZisD7$(lTwT0_1pdEf6?3G=(KbK$yp|Y@`V5(B(r=tdeaQ~=&eLKT{BO*J z4LqTU;PlKhmr^v*h@@#NZ7bAO=gb-Yl3ym&%V(grqr0Z>BI`_LKi~n+0AUn+>^u_6 zypKR`q6j<2?p;?*fT{!0_pgMC!O5*gf8dCLSaKQM2?I4WQ0bV z*Sn=ml`qJM8BusT&Qks4&V=q5%gqEbg^2pDbdaL(@|cmb^;@X=)K zx0=4n4CqNi*c>(#Uu{h#VQ0&@@O6k$9|AQ<8JD^8^eCULqPO6=+Ke`T?uKEpOk)I`J}tlfuwY)VSyp| z6mukl{QG=Aq2uZ@|Dv@t^7aq)t-9MlOL1p?{N?Ru%TFZSL5$6dC%3IO`!V|Erb4Yx z$ZpDTd{C?d+2blqot|)Lxrab*N@2I9cpu7!y_L^K&%-k?B+g8pBpCh_h>eYOa2bSomD>a>@(hr(l&~&se>eLpc;c4)8gdUn-bL* z9Bxr__5cvS;TanRLm|Q>ARI^yP5Q#{z3B57GNeM8ps^!jh(_EF?U}#SsHx@(YT;r#rnOi1cXPyFOA`S!6I!KBBPJ^BerfIP&QBv;R5qn4u=De zTYYTbcAD>Tn>sK&KL;{=6b1Y#&4c&)lU5Yb2V8Bq6ajX+j6Q~dm}w#~2@_Y3!6ln> z_`B8D0Obh7q)wD@Jokt5+8wG76lX5f**0UP2UizCu*%fR z1}+pF`0p_efsb_;oLiciRV>`*i|AVWsyhOj^ffi+Rsu*DlptU;3^VZ>uI7iSg7G2R zn8nuRSnVd41J2Kyb_>Z(dEdH2BQS)UR4v_*crD$SXd6IMW>Q?zY!yS8j`nFpHTp06 z7Dvi=j7qMBtHdO`yck?_BVQXn2<&_p2KMPXX?ZJZ9y5At7~IwJEAqTBrtORPZ9^CG z!>U&~*!2PptrH;A0XqU|vgM2+>=?~k!>3LB2v|103}0V_tIUz*{oJPeGMDa{WSko*Y6m4D+cZ9B*Gc)eI$3|2h|L( z!JAFhjzldL9X`JnJM0a$Y}9p-47pi%)9nj6J-d@&|L#e{rA0h@tPHy2Msa$XVS+5O z=0V-opoCFxBZ8^+i+0OQel!kT_&S;EG}G{#%`$M;mjmrZ9_MN4M%2MqkGNA{mAi_Y z+%ZPkkhykaq(rzYGi>=CSEcgrA23 zLb;LMBLX;3yI$a7;pK_gzyTgM7nopy!9qopBG=nXN@St|a_3Yk-;5%?9LGxo5?Bqi zbHTwUHko6Q4~#42i^PH#GNfT}r`DrnNP)un*O4LI>mj+45eV|~6p#}ZEQzRHccdSf zs7b*M*^&{1zgCS(17YPAC?GG!BSWYmE=tkBf1gH%1f*5gWJ80$hen2I4^N1TW*b|O zecLX{j0}N9YbB-(gf(K2ClhzV@mMGgK!rBQ5syf^J{1>D25Yu23xv)8TZUGs{|=lQ z!9>lEdKVWJ#`^c609tqqIDiHwCHk(w-h2X>P^3~3#FNGgJ8x5hyu6s`t*3|wI&6$| zx|zO}c}8|v$Ws1NSs*j|!Yey3eN$E#WSi)iB5P7pqtl)>JS>WTOQxCbF{wzE64{_5 z@{bJ#2*A`GyJ$?WXTNobG}4a^L*Uhxf#W{bg^n_=au0+Hn9`MbAJoHT&0!P1^<8+Tjl33&YizhT!(jaqHDrGb9>Tey7KM40@^?1JZ-!r zUQWH?-AJrX^w#uIZ4jeq^jsuv`ZQ4SiGRO%td0w}?;%*pi%uK>bm2@D-_1WB^-_yg zkr+GSC~n2G9ta?Jqerzk87(k(gu84OVMQ+2AeSle=4?ihcMB4+KGI8Pji+y<4qJp) z`{p~Z+Lli8bS*=!lQ1BLFus%CuPHYt|LWEJ;A0&rYI%u`Oaz^CjXDDSPg=x+1h zU6&o=^?`LicB!CAx@8%2Wflp%*U#tic`iujsah2ih+kc*Kso(?)NbyBL(-mNZjxG> zw+|pVHWl|G5S{$L(L1&nF0*qIPn%kvaBbL)y_O&ij`;onHZjEK0Ru5o&k7aC>wd;R zdr6~9kI=4jQ`nb$mpMXGY9)O`l6~{-@pN@SgIK7Z{cBq^<=6IkZbl>&U}b-FMh!mq z*LRSfx#(b9k0?HQ7x?#xK?@`#S~#%W&UXQ}&4~k_kS#q(Mf=C#10+`j>CB zfab+ma$k%)Lm=T*d=Kfq4@>r3mBPzF@ED7uv(tU|)>8e@RZD_kjl@ zfxPg#q))&!z|WZ4cpO)qUUE4^#jpQg@_McxKr~1445^GuD__GwDmc)O=FOq09H+EZ zV44rtm;~a+&!kIb&lFeiUCl52sEFC8ZwXb-v7$TJdB>PF3-9Z9yloQh3Z!=kS=QXe;9?6uA@!gYs@hGa1FRf>SQ73rUHTbQ(E$l&;Oqxe zbmRnknj{JMZy*~p$N$TW*OmLV{?Ft3pUc!;O)r`*5*U)~5yfoUPC_}Z6&S|wqLP7c z!xY0mKHgl5M38yL{p2sCOT>`n_@RZl@P(iLBGJnUQqaE~(LD;kK6(5$_#&0)_d0CG z9__Rv^RviStWL>LR&JEpEc>!KQvd?p7&zoyWM3;^l+%*GDm?l2Z;liMV;IH)SvAD0 zb&y)krMy1F<~UP9SyfwGA8!vR>r*<$qs?_0_i=5{$ZH)<<#*j>=QFC_SzH9WLkfg# zu4~PFV?;czy)T!t%lFDh16WE`Es+m{rE;c61>;%%c^>A$H87R$5if*7c|a48orWHq zQ9#sNEr{f+lGB{9dE#xEohizBh)W*lXjr2(`5)bTTe?ba*o)bOL21{T9JI}BIujs_iycx`lRse8B;u%Bsbx zNQ>fT_bbXp??HoZ3J-uUVP&F@It!1l&Zf7;F{ZC!TlIY4J%7roXzteD@Cb>WjEC%~ zDw{Qfg^sbm;)bj-4EH1PQEuga5tS<{VXC-?rFPAibmvf?>w@e`8;Ji(=bnTl3rQGA$1dwb{iH&pB}*)Iu3ieGs{<`;}-0K}wPAy|pimgZAP zUBd>Dadp78EnU_0w@*{bfemG$+aqGV<nUQ2 zf1r;1H4zbh9QCrq;0hM>$wwrrsugaIb&hyw=U#v5Uk@AiALXeTdzjN zHVHBfpL&xIacbHZuiro^9_E24sZ-1&$a7*~>;r2hW0Mr@6$36unH5Il)UKx*Nk*~S zH!zI&@-vT|F<&gnki-}2FY1MzO+fTa|J6hI$@Cu8{Fm6GhF>AH`XH-LA=$ERztzgh z3;uDy2}AzP55T9L#+|GY-hBJC1oS=*kP0r392 zZYisce__WXJ_r;Q4VNbk;4X<Z zxe^~RM^^8PbM~sFLbGm8;hpZn>MuU$C#`7XpTjWDwhCl?oNXfyor2T`E=y|vZV%SS z0_C`xH{@KL-97j5z9JySgAAqk5%*agW(x-ZJ9zVi%YawGe&g=tfZssJ$muS$f3O;V*neQH9L`Job~V z)ZxcbMypt``ImdtZog;bowcy5%NRhO!cw1TJ|w1$@ChkE+Mb$bcuNq%ZW{4Crm+~Z z&f3EQ1?lagnivdG5u2&HeCXjw>3Fxqpr<7P2T0bQn!i=k9n!7>OP_nqooj9HNDaC$ zrIri;LijO>sKX+QKO~(-kWH~UA}iK=k91FxLZ@~Z?SdtSG|`BnXW2`6yzA*cjVD6W zuc5(<0Qis7Pu`9rG-okF$E@r~r7Uo9a;(JS$Y2uy^t{Pl=jam+`{cQK<^JWLqU0K! zK&Nyut`GKDfiZA>tAqKg(^u^tXmgzWI16wJ@b6N|s3-9~@c~`EifGJ5O7%jBvzA}O z1qc8r$HLR+J5xc=Vk_!>VMbxrcmFZabn2x?++Ai?(_zskoi6S(D0Y zudc4tQ-v;frOWiU4y`6$X4y>*TED45+ zhp@3@#FGV{UWSboGt1fSiEvFxOWdrnApw6N2y+QG6w8D>5pqlP_oEmB8`X>{kv5cI zT*o*<>eoUNs6{J^2}|MJD3N}9rFi-dvM%i~+=hr-1w}3Zw}Z#&011Hha{+n7F{@|! zF64LNn}?eHx6g74q(9pwfG)QaX&(iDMt8S{W6i@j_EZsGJ6tUb;D-U!ii+^ZfKq=L zh2{c48A>o15r=@IzOO^n5t;<`1L<@ZAlV%FK(7(|9Que}rUqGF8d5?bWV$uL#3Deu0C_$%CBV5BpsTR^v3pQ_tD21RE&)25p#06B6xzoyt8n&Nni z5%|6jr3EN6?-R*DzRbVKKnd_Cz)OD#W7!yx>&v{OxqZ2yg>Wq6MwsWXApDd z070G3I?z3G(uHpkzM${~Q)k6m^x2A)xu=$0SescUE+K<}NcDLufA)0lDS9A@rp$W3 z4n4THGehttl!b9%+09p@EG!2J#u%Wuu(GfKqJ?<5vY7Muq_Pm)2izzW;YRToZWJoB zQeA*k4t7m~&$8h4*|<^5V1a)xzy|ni+^8iRp9?qIfE(TaapOa{k;CCufZi9t@om)< zC@bNQS3+0_FiHp);}KXj1){L{ZJqw!@q5Zsc}qmv=)|9PnCdHI_D~`vox>*O`Bk>Z?(++{4L! z8j^7qnnyLe0(RsA?1(k6BMI!t0Ct=Sm4Yrb@Ft&1<(e`CPhGme>&ujoL=&$Tlim~A znv#~1RaFQMFEf@d1O_QTdsn@xjoz znD0XVXlOuDUEz>lsjcy6-nHGgHQoc1ISo=YXt8CwYx{w6Mb#CDT|eaXG6k!C!k0h= z2xoR72jHm%GXoCSA7wGbhGc;-cQc0kvCx&np=;1cV2PezVs3x-*ExKwS-a$x}-W)>o1yD>#MU29X!?%53-GrwNP({%f*kLW*CCRY! zAQ`Wm1YW{yD0Ct*bP~rrc@#Bv6zQ%g=w4xi5uYr)q^cmdqgKB$u14bY)&ly(IE=h^ zA+|EzwdbBkAy0pgu;?mdehp>Qy6T7JBhvXjYlx7~mi5b-W3B*~y06CT;hKYmy2!f@ z1BN!lCgdZr3HfYuZOKF$vPX8b+G{rz;2bHC9?r$v7nw@Sf|I|H%7zF>`oqMH0QLNN z&7##rJVKVqQ0Hs*QHE=-m&-s%n<;3%kim9=Rw8!Ui~xTs2&P+$nPBW*UV^r{yz4 zunT>8qJSArqTE^oWHZS%AY-TFRghnF0kQrMSx;CJmt-mevVSokK0XR_baG{3Z3=kW z-C9eNV~H5 z+OCR+x^}yIclUSD`LJt7z%% z2YR7xs5M)oZt9^fw)KCDp>7)*ta}<;w@sMUw;!<{4qf9dz=P$qw;Xjm7Ga5|C3*mP zpo@bAdAd0)YPze2N0<%*uR#r%FuB1<|9W@x>kWq{OL)RH%Q(DirObFPl5%(R_8m*s zFbGR$GJki;lb^avM6R;jDQIt#H#h%Uax1P)#)V9*5SeqFB&wVJ0W?z9nRGx)e%O2Y zzz8N6pv-&FX1^^OG9HS&EFyQARPI_LGM6zKjP@VKRoA20g-MI<;jjyP4#sAT#ZK<0 zbcNR>jIXB=@2W6zKdOkG{^Ycd+Bx&|zttq6bku}qmu1_n!^z>K`h2y0S8afOQ&!>aet`43KEoTA{@6mwSx`!O zr7%)GV<9jh7th&8Q-qE>zzcA4ee)DlxU?#dKx$1rhPSp zBYy`xlkrC+-9vKH^ZIxkKV@!Yl5v|AII#7{0sA$a4y%H?NmnHsFv92XIL^gB`tuWy zkFP^6k-#p?tu@~3c*ej`2JB^wB17>g@O=A&OY$r?!q0~mNY7{@L;@~#xfM*k&l*lhcs--h%!3?=qz<~nK zok0*ik3DRz88>Kr8=GQJjJHHkd?rwC!3=~Q&7dQPSiQQypF5&O6KL1raPc7wZ-_z=?8A!1$mMWPJVEr+Kn5vaSg?$Z zfSZ5=;ei_nKLI!FJOVcyL7vz<7k}ONAK^z&Js6^KrUx+Cc&Z^&H){{3o)9B(5x^Zz zpTHeH9KoGmVFe=-{K6grcQ_N%2KLOs-4d=Ls3%MW^?XOXy3fLoVeTBNghL!}fbbqzQd z8R!oS=Rm4VGXAx|Ii+%_;M`XN=dAE>jx!I7IKer1T7+`|BSfO$C^Ba+LUSTJHAGL` z55#>5%s2?UEWZYOr!xi9BY*yTV!S0WT6#h-$tN)B1cFIx&{Ec$l-iQZ^qbYK%L$80 zdR?*4KG1)&_G)T;;u!3a_8l2Dt4ILJh1pm@8Sv4Xs3(SPCRjN{$F9afBX zSkexQaTop8YT8p2$7F~hXMAN% z=&GDR!ie->lE-y0XMa<4)bNS($j}Cy?Xd=QKj8w!jLRtCp{Kk$m-YL9{`3vax<4%9 z!oJ;wi^5{Pu2HIDOV4vqINm@aHOIR}!Z;s$o=^gcJef!fRO*W|u)v%pv|r1NcWHIg z4_y$u3&Ko*7TR>T45C7bK&Yy#tKbYUy!X}{075>tK__^-3x8@3kHtVOGBx3Mn&vA6 zpX{NwM#qbcxvo39SVg>70*2`+$q%Q{{QzZ4xBW2H3?4*OC)oS6@I0x=&Kcjy%v!L$ zge?91W$TNjE=Dfq{8BcTk?DPvPaXnc9_;GCIuF$X9OHmOxyi305YM6Lh8iJ~sBCw8 zF9noJ%}V0s#(!s(;+V}f&*NJBHI~r6!0M;+nHnXIAWI~`F;wB<_5+(}A_zTxg}4R} z6?|W9Lj~{2`rN|Ll;t4^|AdKI(}w`05iIu!DEk7Gez`fC<2#;#Z)MjT5vdpzC!hY;l7hfqM|z8(VR ze{8#9yhf;-vAo}fb;{xx3cf&5An=Ztz6*Q}MS;K~Du1~q-~eiDJ{AQKN4e4-Gy|!L ztcffDcz?(x9O5YQvd>=!zJQD@Bmo)8ypKevh?LWl(Nv|V+>0j(KuVurW>00**%Cqj z&2wL@z$&0}?w5q$Ghr8V@8vpT(6tc2=USGYZR>w`{&zp?X=b8fThV1Sr}}{$TRY^Q zx!^^|M{thhEd*tq{wa>*FTP?BeE|R@D{{i7K!0`%2qiZVhOS{9$siT+*gApzdm;mo zE|RH?#%dxhk>>ODj!hNp_xbnw!oVSvD!$i$0cZ%kQ|Ia$Km(T&Twe$@t|8C}G$M&0 z!!NKE02^R0uEA9ZnK|^zIoFHf4Q5*VCD6^Zh&R-8%hk=NvF$xR`t?wa{9Z;xZwi0u zuYX)xgzp-$JrsB?JLZigN5Xgq5QSTRqMt`7P*+DA8Z+Zif=ea+QgRBNp8)d!l461i zQey4qRl>`Aq3p?hGmdxwh%>5+zKFoAr^l+HUiwr(pJx=7hbx{2E74wIYZ2~2zyFw{ z0=~hHzVbU#eL0N6@#4XLH5Zp$%S>taWq&{lGBes<3{oPYzYI!o{$7X^MCRV37NWMv z;Fw%NO#zu$Y85NGCB~R_5oDhgLkR8x!4O{j+{>tlT!7B$?A zU%C(eopmu({mDB|T^+u}Vs>eX;-|W8b#hEkZkaS3w&WIX0@V2bB`kUayybrtzk9%! zJv9Qbe>gcbAU-|{b98cLVQmU{+QnMSa@#f(-TN!Jlx8A?cmvCH>U7%aGjZER+XXFA zHairl@=-VW`W`&!h%)U+HPdVa5Cks{&ONwzDNSyYH2LZxjp-Lx7cXB^olr`wlq|X0 zCfpKbWTG`EOrT_w{Iwrlz&UF@P2vRnz1 z`hNX!^$n<4Q9*=Ip}TE=?JW=Z_<)b6z7u$EW83TE_mqltD4ax#Z;sKTYF4&&cv)2I zf3n}?v7M~zn&P_e!gD&bJK_b!`>e@!d6&nR^)@zin?Hu+#Z*VL3XBQrKWy`mU1wFu zTn~7Csc$^1ZXCxVwTn&BG)$LGkJ3xwt z&<RB$&%Vs6f2=F&>P0BQJ1>=iK@`DRc=S@r|8^k4*LqPFZ5K3z zO8HPdjBOWZoR{dLgtDr8l}~v|kd(`@m&WKQyp+O`&X%H)$@^i`e~x-~oW6X` z*`ci!gBWn{1JaJj$eXpC)yNdFb{;Xpl(uwIjAOSbxI@!9+GYwN zB~|0L+hVsb^YaD)V}@u($AjQ4x-cjWVPxk6Q}lNG!PgV)YDp|2oJuv3ia&1%XiFrD zoGq?Ir1yc0q6#r{hs<38EesER8~fqsKcug|fBW^}fG+Eg36WyOe`C4vU$L`&_U@Dn6Nx~I*c+9!qk5aqfe@r zbAoNqJnDrlI&25ue>g}#TsaK~Azyy^*`!P{TTn5JlwnE_OO|t_JO_k9%7+-|QfA?G;|L^Y2fcy^tN9lIyWSk8rrf2S6R*cj1CGPVezpJZ(z z+(Db=^T-&s1Z+KTw>6)L8MX#W&Z1(NN{3a`IVzq5!XV>A3=h_~CoVOt^rshd;9}U; zXlci|P7$-jAkgAd#AI$6G0My$W@k$&dk=3n;QCBz=9)uNbPhH1!$b8m)I1A>sOBjQ zyL(1Hu48D$udo_sM?U{%6}Q*qo3 zZ<{=Sf98JQNkter7Vc{|bNZm;k8EHx?()MataIY^pZ?Xl8%}+qC-cUCS2x4%yIii2 zmhrRYu+v`mLnw}KKG#55$8=&s~*L7=6SIt+78Z$ zf#Fxzmtzk+jJ>1zz}@LRa!xlUgk#gM5EZE+%szdL>y8w$k$U2WgNhUa2PatfT5~_I z@7-CMf6zu9-y;fP=;6i0gu@1W*boZIXTnD!GyZfk+cQP%io5%Z2vAt8NIj7&FoAI$^3zS(;O9h}Yk^ zRsN1P!*U~(Y(7}^)rU0R$7(G6-Q_U68cpoN#p0$f^YMjUh-tvCh!`dpN=H@T{(k|r z12W%mm%TdzuYWN#GdUnWJ_>Vma%Ev{3V7O$S4)rEHW0q&SNJFavDbQ8_Hheziv&qg zpbG>=+XGjkEp{c!C8>3`zrHh^p&pJC?8O`oDbDMghqtTKYPn=}Vbz4|lCH%YuslC+3^i+{5u>aA5zt&G=MSwyNkn?BCc z=mn2tCpE6l(&-&7M*cfU3(UVCKi)kg>Bk_&2 zj9eoeQoBePNrZK(ZRxaApp8E91zq!nrXSjxZal?n_~kD}UCVkCuk);k?pxc_mFGC! zM^c`HM1LbHKb&xQ;_4=xPKl1)+;qw_}h-Pbiaq(Z?-RI?LZ&npO) zZ*bBFbV#wE%mf+&{e6em$7-@|rS zM#tXJx%?`+b9h?msvW{R)(PiffQ|$YtqU;pv46QzOgYtSVu5?XVl)w8nCCk((KX7F zv%Q|6ALt<|AX9XA^XQfkmsU9S60;*vgFZacv1mQ1_JiQ%Q}9v_-ouAq?>~Kt4|(** z8$$H^_jJ4t4V*iMA%!NG%%Pc`yM`I8%02;A2=5R&awu#rjjGVZhPH}Ptxmc(G9(E5 z<$oy5TS1($A3mv0h5Ys+VLb~YI_ac&ON!sOZIAk0(8!QhNV%R?DXc;urX|E$I%2jg z7HJfV>rAZQ`~1hRPEy08Nd! zzQnr}s-_YEwdD!r0~T{VR_q@{j&1$YNDTO)grJe^1EP{M6KLBX9fcO*Y?ymAeTNhT zh(D30Q(CmNQ;ycEAK)dQG>3WF_TuDm;Ojmc4kdX3GW{i?Yr&aOaUduR!8^1?VdGbx)2ov~Q^dRAS0&rLW3>#Wtj?Ikcum zj?l_CyWQBsLmm4#oH5|9PBNT8vV0;i(C;(xQvA!d9uEXP#yr)p?o+z%*jQs-=^z#{|KFK zY;HIgEF;aJHMue;tiw`CKb-+}QGu!iWD}9THd>-tr`ai?8wd*(jlcait684m8-A=~ z@&txp0E?98L3;F+C>V13lUD!9+d~H@tp?fLHhJhQ5lTc1T0!1HuKGE$oVEJWBUTFD zh^f&{vj}`o#?-z!A>+1v_F`x%>sVv3`HcG{SN^!kxwq94I*sjOF=VW78SA?$W39|)t*FfTFGLn$ohhfDSo(5; z7do0J5O~Dr|5b2w1{VbLEU~yz z2k4jE13j6fi#tC*zWX0bxBG;*oj(FW9tbisF*Y$aGc%XwT>>NsGBYtYF*Y+Zml9qA z!~ryu!2=hU?p^{&e>gQ{Vl!ejIb=96H90gnIWaS0VP<1DWH~oDHD)nkK0G;QH#B21 zGi5nqG&C|cVPZ95W??pCG-G2mWH~iqV`DyDAU-|{b98cLVQmU{oMU1D0VYPqzFGz* zAgdTe3Oxpqj9@nZBZRnU9fHk&4a_b9voC_xmx4&%Y#_-fBb|s45%>#M36Zr%u({$8 hYB<&-#MxeeNI71x>@NlY4Hyssm)Bncc9%|I0u{YAOuygQm zadPmPoAFy%n6QZm@tJX&v+-M)@))zRvGZ`SoAVj-^6?rQbMtd^n*Y}%Wgnc1jVr?t zfuiFxM6MK{ELj6WO5g`fQj)t^GW!|0u7?OD=Hb`1?La3UUIZ^ZSehVWQ+lK+ghvVp zVl^cg(gNTl6A?jhb#pN{wny;FF$IA@CLqwxNIw!4DH|Mz7E$Ar!@(mVfkpMOM>e@ZS%ZUzHSIvd!b90$ z#o;xbqs)+lbEOPG;-<{9kpSy1guD;_eGmyXOQxsvfT zil&B={yc5MhC`yz$G8yPt~g+quS0UZ-N0CkXcu8seujau0e@S7Y<|80X$; zVXee~n(M`-V5!uo#OyJu9)3DuS0`xm?G0}tqzhssbl}gD=NP`D(KRcR=@v@Jc&SchQFR9aXcskXS{0$5gM1&b+>D?baq3bK z$s=-w7X)@c1DP|*BO-zn-Ro+Z5oYLX{wimp!F@()@rqo2gB# zyLhkU3!}$qU(R2m(j>Ve>Ivw0+I}8jk4)(bxi{GLJdR9{By}6U<`TBGA~D5dYkY0?4(pn1{TinPu17)vTrv z>rC$WJpZ{FCm-AK*+j2R57YUlJ)7)(dFPM?^#{XN+F+Y3X9gtgEh-C*Dq^^840$;g zo;>C9-$y*@P9%>()myX}OZ=(`;P! zao{Q??CWUw(t*IfG5@~THd9*ML;6E#^ckpc%TNfAR;p6w_{*)J{w3>Lxe19isWzp} zF8ljuZO5YRzaLw02ti-(5+|`=0&TOdugI-Ab1?^Q@ql%3Y*&@u;7U+c6@%VGv$-uB zb-hn>(rP@`@U<|Jx-Y}f&k_O@QpIzBRx>=)t5T!}-5gipd~%J%O1&31NJQ%IdU6f0 zu-2#Z`5TZV!50H+KQK$9$Ed%jnleub1n2z~2#=RhSL>A_i$7c(Yuq*Pwq6(l0 z5%<9OQ-WZ0YniL}8If)RDGGjN<2#D^P~d@#hRn10OG41jWA9_9(-}t;8*H{G zv2Y)pp=ZJNe_NJE>g{KUPo<>g-R;daDOy5ElmlxpVT|wzTr*r_%d<5|TnQpnH=U&l z#{?@yHujvv+vu`&daDOzHn)TV*}^daZecae+Qv}!n8NK&OO~}fcSOI5OikEc^s4Oy z%x{`=DQD52Ok`?Y&x2*xH|+W;%rg{zc8_z57w_4}8i#Qo)%!>c>lNnQr%oc!yF`U- zM*$3puXlJg(_6^e47{;ZyUw*0^0U9Y$`th^yL9&I0$C8$y^pqU}R?9rvVcSJ+i)UDBK6HRHK+;6VnoN2AXGM}JttmO+Lqddk zZLZ{YFbpY32lIyMBuO`Q3v(6-OQmPj^(SibKCLAg4r7WD)l^`b)LYaF-Cgza+5nWN z`n0>W=#w?cSj)9$>a{R#hcveV9{F?>J*zurt|+-3UoaR*{Q_rKfoI=9n0eLV$OZL5 zz6ZX0lxc+26%*#LLO%AX?oEEH>(;${9Z)f{(Ras$0gEw8t5OwjckdQ<090erW zIC6$VB%daZW_6AKPCRA}2ePP9Cg6P;jmn7ZSQ3ngVjK`~sBXaKg>HMBh#XP;dxGu2 zicqgys6|q#wjA4)AiMAh`bbZFwMwvY*t>M@ z5WM=KBo%<%-oo7(5mAC{IUMfsNRzK(R4&vfh_?cA4j2gzO8=Mbb6$F}(=1AqhwZdCRo~iLSt-z~~Y}Z0|fMi2xN%-iShR=hI!Atp*mvG8n65t}aXgxGSosxQy zwd5_Xp4AMF`ms(|kv(e1aq*4EeuBAUdpz+Utm~1^L{gLU*N49_@k;t43@N3fT;897 zS3eI|{_5M~zgB#m&|a>Km#JcI@4-%U{E7x*q7Rg z$U359Q40t;f31-9`ErffD_TRDOdy9)2-=1C{yV=R*b+|cYf~c;Gt0-=b+F>k`ym)z zzpn-<@7$rQbOz&mAF^;k)>%h93<;-B+ARt;T8LQ|lhzTz1aRi$j}K-plu1u2t~UOj zbz@`>G5S|wzMR4|`JL+)F^AHr#o6JoD?rg*Ba)aIhd|~;GJjt5yw)kDaQ4Em;#l9;fh#rA_@ha@|rZ<6p&w|8 z`k$eojz4_6el%x(xUalNsqcIt>HKZ!{NTY_01q$Q|NY|HxHeR9q~uTTU9CfVONH35 z>m`j4wu4+0R6+9S3>02^CfAqW92`rQmDh3qdXIwDm`K%ZY^rGF79(b&$(#Z~kq*E; zP%_hcV)FmZ_vDBW?FC+jR2URfF~<3Yy#Yb?Z?9)Gu zx4_@U$MhE<;3eYa_VY;@{Kch+1_v)e9&vt_Gni)zA!g1Ujgmtubi9zp_hnSN z$c8eTfM28}N#PBhopo(Fdah2oh#4@u%390*J3N~?pVsp`s3JQe5Tb=P7BOGx6CR{X zD%byfD9dbK9ko)Xbg?um@iJ+Y)okykeZ}jnl(b8q8I`6dNQDNYWBIj*7$5FaM;?_- zlx0zof@Vew>PK6&EIHMLq`Bdg8(9?|&y{ea`$MaG< zUY5Bfkx!^GBEkxk-IJPc$$lk8)CC<#Aq*^@X-Nn`UwIi9`f9k+*M=$HN8}$+MICV; z>!{0R?m@qJSjl1j3J>u>%SOgnB@&bL$*%eeCKJPyEP7c+fYh<)x8fgDLLpX@yF@(Ix&{^ef7J`A0eLxDHUh+t*+BOW8{JT5NO}Q8UD2 z&bNg`dngCNvEt6-MKSJYg$S9y(rk9a1F<$dmCYI9Zr=`D*e6NhcAa@fk@k~!)%V5Brh;~41(QFSJ*@b2)a3oqh&(b5 z%wuYa^_dM8aey;e%Cs0grT1JvHHC);--zqRDID=^;=e7C>+sTMF)lC=Vobj)n~(-7UEr$?m>6+KCw>RJ;E(D$jmnGj zN3;UjKEgdffk<}5Qeoy;W^vuQJv4?(pHrv4)g`E1&9JtTfLmwK^!`wMP%_kx}zq}>07ic z{A(x}qZ<_SJsr##If*(=Q2UZtEXU(pxh>ND0e8;|euS4{P`=v^(}r|9t0xCG>koFVX;-5Oo_V=y^NXW$^G;mRP@diivZI2f!d1pg8XnSKpfc zRAVo+@9W~>5QRi?V9;N8g?Vl@XYS}`=#geUlX!+<>4l;DNC@ZWJ3*?0c=sTXtSdni zZIbaMmrBUhT-lZk%V*-H45;W)*#NL7dp_3u>3dZ7uRQ9N%HTGUr0YpPz9s4*%V~sSlK@e?K4YiHXQW_g6 z7DM%+>xlDIH+f=aj;srgxGe4)6h$4IV7WQ1S6D6FW=vSPU!4gy+P_fCs0KXI9L|lw zdj5IoW|Y6d3hfhSxx{uRDd^?Go3(BBvwQZZW>&ePzSki-oJ#sD=xLw>iQQDwy z4@VY7jrcv@>B<%z%dg|9Dh-TZ+0>SsVJRk_Q)3}1w%=euvmF#}BhZQU#ZvDwo=YLs zMnc6_Ys!e*lDDu@7?-H-Dc~eUN`!H+^!F{YWy#A0-a`wwMTV|6(`idk$Qet1pOu(h z%A~+RS5!3|k#3|IDfuc0$rjn5zw2-o2pH{_LO(s#PPsTD_oCa`5Xv|- zxW;06%uv!3*^qwFkq6QIVl4*K$fPH@7#Yyi{;#f0Vw8iwABVd)HU^F}lm3uGCfFn` zQ7(_@Cj^Ez1xZ;XBJc}D!zmpyWs@7O{9cylYw^hwVV74Ogz^owGUoQXC8T_-2 z!E}(e(0^XF4ZN(8gPmf^tja2J-7Hi|T5@}TF!IHm3PjWN-zfAM}uyvU>xs&FvLS_FpYRo}qy=x*Ywl1Id<>Mp)BVm+<@vIizZ8EM4uA}1{S%X>$ z-R^<@qh;MyucH2oCH;Xs8J701(6~M zBARcIK@3WKyg{G^D>fzzbWY(~2)A2R;8Pke$xd2naALgZ8&Gf>p0~Nf`M`3$Iua!- z6qVBMK!N1w=Wyn|?rSvvhgi7n(NDCu0CN-h)4fm=STXG~m?nce+x?3x*1Btg2IkrT z7u`V!<XZ|Cm$h z*l@S0-K>60*e(^q@os}F(u;Xfy&@pS*YLFysys2dob%6>Ar?ccX&O(YoEQ65JMgz2 z=?*pEkLtxU^R=F=MO}j^x!VN`yCw0?r8OPa0CISrlV>V^fm z?ra6BD4lKG#?ufwr#a0%kMujb*NO{XDn;*Yz{;f|n`+RrgcWHZ-v&~{0@J#FXLgyjb`u;%cCOu$3 zouTSuu~YDM?LD*S-|5B=7djnRTYyK}E@I58^0z%L6iTH17fct@_f;bz+!JseG^m>=MUuS z{t^}qj@S$+nEryJ1dRk@EiFppJ3X1gnhCa7Cj=N#$Ff*cOLIQ+cbHwjt&nVAkk^eL zq^8j5ACcXru|G%FIrwY<X+~v zPrwj1E22T}$YnkQ+$#%FHagy92A399tXl7;}AE&n82kc%I@c2^XZm!n=yw{(4_`kL*t$?>f-d+H!>RLd)i{J zw~55;UTU{)-2PM>T_;U7NOG)ZBOhjT*$3x3o_9ib=YVftR&+_zbOM{&-s=HQHko~5 zWG}9&c6f#-$EtP)PkJX^WupZRz9cu^Tpp)K2N^G=mssAIMvENMq_Ot?up_NI#HNMp z4Si7c$E<+O=aM_fPH_mDK#}5}Z67T*j#ZG2r+4;0-A*m33k46MTGwdT%-_FMIuUT! zm^EFawudZ9RYus2aRCL+&w6(#3{ZE!|0_lpDrSH0zDsRlz;5N29d^i~AHKYCmQstp;6o1hm#pud^9GT(lzTG#yA_3&cf!i`x!L4LOl9Nok+|0@=0t zzw}-vHop08n6=|vhrT?Y<8F0)(oBrcaU4OrX{bz0R+O2{2uv>>US*rSx%^HA6g~J* zQRb`)K{;5wxHm4Z;-!4LUyP5*wWZ{;)OXgO#6Cy8MfsDf)wb+E7sUij;U(4|5mgct(|JGsdB zg3rN)3(u>1?>8Q{Q_fXfF`hF(1}ptk$d1};ov!l2a?;Wsr&|xvDX&$B-%3LhhHKqUcWFo*in&ofMq%Sj(Me{VBbz*+>nR&i{OVwn zTGjKzv+h0Eqr<$V=ae~DE8>n=EC5}-ZyL1wG3%Q29bdr0JR*#+ziF#yi*ETfd{adI}iRKApFP`2_TjJWL;Ei|Q!HkC= z<_>26^Sk$-wshL7OMX3nz~~!Gv|GX(wfAA!!Qm9C0u{+PlL~USRE~~zcgJw= zJV|%D{mU1n=#z35Q&2rIQ$iCQFoMxHB*w3g79WASKQBrRx&Q9=XB|K9_NP@GvAUUP zZ7|{jeKc3~xHDOI{ocft9rpV~RZ7_CmGdf2Tuj2aP}F0_-+90ME7tL(Qk~cAS~hr| zu10A14b!HFd^}8-9z8rTf9B(4Bb!eyUyB&(QIjuw!!2&WS-;Tz%Bs@U>`Ps0|CqSz z^|u7vNLS;6(K&a-DBzJPWygB6`T2W#wj}_vh6-)!@)b{{)7P&ohGQU$dx!)-bvI4d zc1QCPd*SIh7vbN@@sW&gVfTTDsF3DdnR_9zA#qt-M@jp&I#LFcBKdc?Z2Z{IS*4k3 zPQS61w-Vz3eU9&vSoZcNZ2jq*9}$`!NnZd1D470U^$5`Es3El!bNc%c3PNUG9fn_1 zFgM;1erc?@B~3p@VC2?k?{c0Ph#YdtJa5(0jww1(bVOxOME&(#?SXml;>48q^!Ub@FHT9Gy?CR7V5v^*U49I^Wf}9>$gPQfDEz!Uv z{W(WJ8%DrX?YR5<8^*Y8Rb5FU#{j7&rj%wTA2U8z$d;dKy9L-{rA8J4k!!?d_JcPd$PImJz??8=2Z#1|^y&5uG`^xyS2N2w6k z6DNm%kLSZ9W=HJ7shJnu<{O_!dt4E7jT@pRT(n&5IaaJWYRqMQ;L{dwI>ohEoI$5RspRJb85cth0{)|qk3}j;Z=rx4>FJv4N@j;ZB>UZBw^UKXjL)LxpAS^`z$z>S)oOkBw=g?oT19;} zrjKE7mhsAui*w9y-PzE)~oquzRMwig88|S~gz9+5+D6lW9k?~a3q#>r$%a2-n9FL{5;WRJp1^}JGXpDk!UoM# zO>WE~f)O|r9&HJquH^jUe~FFh$Te~jc2~>zwNHpDqdwIcB+{BCa8NhJ4;+w7dB(I} zXVme(^min?K9RLul>L@sWBG!~k!Gdx5mXBUjC_Ewxaccx#J8l_fGGsR+`DlUSdhZC zw$xDa0--!BU7Wuh8S$=UeCePHYDVftVfjdIkPLG3H~VMn$0JF2sbX4!Z)BL2&NM!d zt%7S-OvYf^NH_S2#VCUHx2xgO$d=wh=QMoAKTvLSHtX<(IM+C=@UWPpa8qRFH2z!v zJa?k0N3#b3hxkd;jlZ_4B*?b|GL0~l-}95Wwz>w9L!t-#@?pge=McPRf?OPy@ZeL< z5>bX&dQLq6le`9b3$-ty88k=pEdM<`~tz{ zHXuUOw}#^rUL=x?=ww&!kQ~Yoyt7Y0tml>WVqQ=lP&rRt*pwWM)bA9PgjE#t=el_U z+hC3ir!M79H8QJWp$Qz3_)#nK*^i?{zFG9#{$ag5zWc+HHxCB$pJb}hysHv5EDy() zKggY{|GV*&0Ab492+H`UqS9=owHLuGM%kQ(dvViJlDL$J=d^-U)+eoeMl&5?oTOa5 z7p30@hvTP5dfVb)V2y9|j%HVP9#FY&<}U-+xJ}5`lO#gy?uMrTzL)l4AQwT9d7nw&h}Y+LIH)}^tw{OW$?!~ zv|C5@IR4q#lm2o}H}h@usC3FMXtuxKzTqu^Gt2eo-xgc)}dwFIeeJ&S>G+v~?ZRvUi{n=o2l75E;8BwY0MB)Yd&V~GrOa7(0 zEy}bfyX0A_f~s|z7JgM$!HH>6;yz-OE-I|e9fl75tVGIZCicRO5r{-2Hm+A)iBGB@ zEY1s<;FdaWXWgCJN96&kW==CrtO57B4*aN6pzf3y{sqJzwc1;v7T!!_KXLKIwYD%y zBMBq({?KD+cK%wO#EoNpWivBkf)RH4Ay_EZmp2|{xTaG1paz+WqX}&Y0lJ+|O6*xL z@0&A>NlYNylScVh1ss_a;7cx?Apdo2pvpJiWBi@a!seFr@%ktES=ksAvwk`MI0J?CndQWLko=;0@TUGRZggXw(?t0hMY*LM zxxDq$l;=Q9OJM#}D`nSCbCp1bJt&kND0)J(0{zkO>%TE0t#3J+B}XNxKh0YBCGG<> zt-`y>_=Y>r!2l|3+aNL{*VCLeQP(gBt2kO`A{{^Mhci{q$OtGGv7R{9ZFTqZp*EFw zln_n`rcpIKiuxRW;vtet=!&?U)!X-(7G(~+$R~&^?eZ=mWP)o;GE6+(VO+C-n9y#g zejjke^GIWzZ-|vLMPRlQ@e+m9NHTa)6hSb2C}A!X8Gtiga}nl+8XW}F;Gyc?#V^?+ zxxr3nI;OJ&XCj1D6mAS@FiGlIiGAb>SV}dj!XrMcfuLGm6zR~o-w9It(u#+w{mGcd z=tN-@3-h0FSTcGDbtEAWkGgd-MR$Yi|Ba5r)9y@HRPREB@JN{LOjnJy@n63%`9oDc z=2Vg>z@%Bk95g=QRij2Hwyt`p3MFJg5)m99DO=RPNoRo-Z5GN)sTOE|BwGlEj>!`z z3EmpIOsNKCyv2vL0f$_+Mu+vyiW?;iTz@lO(s)1>;lDcaV?M0z}n@#~=n|-fi24r2R7dP*QY8MY6-bZo@Nx!;{Tr>wB{{i7NSzrVjvnV%W4`{r2ZdhB1o0b3>}L9*5c2)q#x@<2Z&DfDs{@9516NuM=c@a_rUlP*2Z(zP1 zl^PA4z*on^Fm$@i?{L@i!Qd!;&O&sRt2z)YOAdjjThsG(4>ZTzc^qwDnMGLYV}9I?3M#QaA8U=jq4fyoY+ZoD>eL?WZf9=Q6%18z7K@;o;x6Sm=f_22?A%M-yl z9dg(OINCoZ=kcs*^DoC@fAos}J~W=tp$qkikiqIf;a1f6g?z3~1mVK>1o{^-I(YnU z-h&RsGfIaXcPV(`4l0>J6CeU4O=xB(S*3?4tY8AQtyXJSwYq39`?n>kBo~fQjD;F!!hIQJ_FK^a+}R=W(Y38;z~5pC@GehAtaitcou?>?&E9PC z1b^A{bOn1T>I0P1Fw52XxWJ6ZM^UFV-QUg8mTZtKT=o{Qy^=%VZqb1030gH?qSJ#* z6$WG2HZXl$hGnK@6sKGvQPeM*RpDeNGhpIYn>#<-zMZ&VKtXSvb?Z6YZ5O(eBaiaF zt)#}D(OZ_y3&kBGRL%(V!dFi8R{QrIt;?L5wE_8*goQT-^fhtWAyMLowsW$%d_Tqo zQy~)R_me9wtA+{+;uJ`l5=M?84OgP$K{R&p%nmA>CFNItBmS+&r~bP4eIAn)mtG*_ zhl$j_dCHY{A-do~8X0f5Av?Qh$bM#2ND;dl4r{ zE~GqP2QcZ@T&h~Q5-BrM$V%LSquFDFP?c(|i48!YJkUFyfi&+4HpTq=_+gTojOXUn zttG0gHV&ony501wH;^C(+66TShYGW+(6*9bTBbltFmbe+v69|!E`><}V=8fy^;A^jRZGBCIJmNZ zWw8cC(&Ge=Q7!0AjvXP|V!mD$v?UypJP^btsfvkw50qlLOr;MLVHNnJMt$LXf%6>g z9)wqqX%sy661La82rJr|yN_Hsq|p$NJC07bKF-tR&uiv4Dk}A!37IPl?#BJsl>HH|M9# zbEH*;@d@xUfm8SaiUEDLO?|B(wZi>rVU{TW)(inBT+B$bpXTb_L=iUG z2)J1#qp+ts#>!HaFSL zLL;Q6ZpS?$PLn_2vW>>0^UTwEKIrjw^E{r8$5C3dnN-sH2BbI$=UZe}7NN$ZajfcgH$yE@M6O-97@*8}!|%1wiqkLD!uiM~e9 zD-m$lQCj-T0r4rykn4d%JtQ<#y^7S4Ty^6QO$Dd8Y7!JX{2y^7_3)zIXx}a74)~basnN-#MnjmfAQ?2q}W(g}7i2|;(-Rt!h6wea@ zW+i#ixSY=ij5qzdJ0;_BBb*~%bPkYZ=Kwh2_r2hB+RQfF0RWvIQ=%05k>6&$7i+4#IA1h@Yy7pn8btj{k$$qAGNlk%5m zEV;OG6Z+#J^8WRDT0}YOy8TC24>I=?rz`6Yj$V88aUq8yt)t6SZ!9f|Qe~+V2x()J zKg0E1)Z5z=^*buYU-}0{M?vA)aBKoleZK?GJ1PDVgn@p`f}_mgC{23Jx^%sLG$_yh z`7$2XU@}FEYZQ4OF&@Tq2>o$+FH4sk@PV?y|M9XF>$q=te8{JXx0?Ek?(gZ5gtLgn z+`_~?5(0UIy8)Th)X!9X^@Yc*YC2eVqi+}D6x%tthY*-5|2p8H-?G&mBs+ou7lny! zRR@I*{$qp*a4bi!DR^vSiD0&{&_TZ9*{S884txAfz7r#4ef@zF�Pz)~!4%?(2Ht zeBYC4pj`APkQ>}VBxVr4|FJRZTPz00L^fWQ1f43NSNsI@yFjD)=i6htLXA*IfemJ8 zW3v*F75EM3&fzD+bCvM$g3H$co*tT{f{E2Cg6g*q{?e_o(VG7;$UEVbQWDX`YTeZ8 zDH*8-`R?v=eo26>RLbPsDXX+)PFSf%PJ?k_DVnQApr{g(LHBIBf=Q_cPxj}ov|wdL zMWuT}DRpDBCQio!evaL1UttkS$Y$OSjkwmggmCblYo;e_icNTccpb$>U;ZSugl5cR zP^9+k-Q|9i!RIgRSeW`$m<}Zlf;yAj-_|f9Cr_#_82q!-S zxG~6)7dfmA=#{?#P<)F6tr*~;t!l;tUj$xr)Y_@U<&sXwNFddefn7(3g1mvzc7`0-yFq43@EcHUj4!FS zbd~?@K|}ElesOTGgX8wlkfzt@M;aga*5&MnK!tw)vwC=-KUwhiU%^v9iX2 z!`CTuyn4^|85Md#$3Xo?t21c<`KA=2WR#k%U!TBGCF>>_%F6ZqpDC$W^BuyFi?upbs*vhk28O)(QCLw4v&StpC2b5)tTH;$;RO`DiUdA~opk zlvv8A9TN*H-a`+=V2W8t{?68tcU16+q}pQfKn^&Sm{k}ia7(|W7?s6UJEX4Ok@TJW zus+ydFP~SCEl!_j9p!0)_u`*!t`!kyZfB_U7H_!(igr{7F0$m|`03WjSHZQJ%UuK8 zlq5%!l~TymPL*0JwI`QGU1Z#!Y&5Q7eo_DAxirz^AYw*Qu_|*{Kl*Y<>@ku9CqwhU zV78!-3QZeCMj@E|^(cUTri1rSV0n078t->eNl_#Xjy>9-Fu0;SBGU#Bq0L>TepniR zTxX6pz~_F9l%uhCc(1iNUO>18;g3OjK; z+9ogoPT@uO|Jf$h>zGD z>z^WQ@I)qL$OV57-~yz)px(PrwViuybnzX2xhIN5JtW0)n|dX-NhO<<3iQf+)wMw3U5ANqGxHFbCuq+Ua{?z|dfU9sKn476Dkci1zp2TVzM{p)nXEub$ ztE2!V*)@aN>40J0#Qy1L;MH3s�O7Q-Npvf|j6Ds*18eB5MWlf7mAi8YT{E0wfqTa4`)AhFIGH z&krVaSis#&5(r5^mjvEFBmt#+bqNkdMlnln0>_T>{sac)$<$87fS^j$o}LUYE)h3V zSghJ#CT}hdH;+FSSYX(^h>sR)EMlg%z;I%SL%px$*hF^@@kbyg8BbaDdnyu5t!FPu zFqG?oHwrbiE(xwCPAC{75Kbg7f1c4K02>^vr7)u@SCgT^0}H{|uROs7Cnk5}N~Sw% zH%38Kt!#&bV8m|Q1cwjRL=%$;a;%=f4}KK4iLV?ni zwrmJlz+;}KpvuS=0t4B{PEk>IZLT;vg%Y$6F8HXgl6 zCOEw18S)Ys(-2x04zj?8ai1TD=hI9A!8K|uG4UYV)bS$9HG zCSAT@vX1Jc!~keWdD>_eS|w-W-8MX=OQT*p;i6j-E?sDZd6};d&m`bI|15p?_Strl z-|z)?C!ix^TG>9kk#T7UD6-%t{$hQ-9Y3%x{YmIEJWyM?v$85@y71OoDIXMUMW*$H z2z2*0T%m@^Hc4xxC>1Oql)mR*+zWUd`-2GamB1+VBn*Ue*3p>w{iPMEF`urqKEK&9 zCbMm^57F!Tj!tWFEZ2tG76BdcghjwG>ot}|4gQZYwhImycMEb6OZHjrzZb5O16hFb z@unePm)!jZpHll}mc>L1r};}sY>Jur60yI{Q+;!Cm*b2gr0dGMQ~zQ4$2{M8Lx8E( zhZ$H)haq5p8WsG0jdkwBhjc|*;-6TMN>HX6vvpr-o7AKtHshYu^d46PtG^2LelX?* zIrS!B|D?=;(Je4|L=)%VxHVau`NX@CnTr3mat!=1{CraJQlBQ7E2xPoc8rkg$~-o5 zdok>6RRC>{`uq!mdbX(YUnk+4}Y~j^wmrL(pWuHQ4n=)FK79-km zx=BM`y3&7Kdu*H=Rby6d9?*pX@wms=UQY6BEo3gh0;x6SI71^#lm85F z4liCQ-xQ1%oXh0ITW-{-dCBcw+z}Poszla4-?yVuuyo9#8|t13oWD`=QFpddcAij6 zuO`L7@NnqmXOsvWNPvRl8CrYo{L@qQ` z!Wh*+u$})H{#HZxUA3{yZ0GlRY!b?abR2AAby9s1%x_PAaHChm&z{jf#*cUOuYh8` zLgcX}4I0U?|9loe?@AWyZH&!`wD|nwCFUi!Mzt!|!-EQ!m~!%6sNe=*`%w;yl>iJK zL_3_!9}COjK+*=?%Va&xijhQ}b}fT@tAG8VTUS+oNz8h_V35~NWtt^@MK^!E=ISB( z3d~BWZIn<~<0v+h`^`9G=QJzkQp$z+5qQMAeMCuZ`kN@D~gb_^$ua?3UZ<0naq$6~lo!(1srG|room&6n)5(^ReoHOn*LeICN2N&>>vhvh3FbPV!s8MT;yvEx_ zPemdu(l%vpT*U}aNqT0T3q#B#EyV1arvLP*-c@C!IleydShB#-+P{@h0*o97!rD zRrv{`gV5aNMMgrZPTrbh_!e@4#*nYZW#xqLmak^CPH+xA6){YSy1$%(8b!-Gg-J0q zyZ1W=aAyTXD#2iTnZ$n1n~hujFRrdBy0T!~=ESy*j%{>o+qR94b7I@JZQJhHW+&;G z9lqTA_wLWCHTE90NBz_sRcp;T_wcVTvv-5hubJUWhf>g7u~oi~HbL6J;`LZdK6lK7 zysfs?+alG#MNaSbck%7!U2n7pPuf@hlzc`aSWgZxty|6H#|Q(`bw;SeG0BG{esNSb zmpkrWF;M?#pTRQ86}RPo*y91ars;cEIF7<&QkLr?is$>Ml9?`j5~%4M48C#00(X3< z_^0O2Vu@$1rEaQkRw%p+5(>A`19KA6nPdjk0pv@C+L-r4akP(&<9I_{Mbj;G7j& zF%m^|FPlyaD=wL-Q{coEac&o3Sk-h$S4Gr@CtS3A022iMMIqWkeA&yQ&7EX)sO^2x zZVy1F!zP2`ObURV_F{FEXRatPi5a2g=Z)Uu4oBY&v$PuEUh!(Cf=|aip&QayD ztQ-JG|48QkWzrDyITFxy-gT4>TWT`EjpwVvWDj0%;`B*nDI_cj-uJSB1PZ4P9NiCO zodt6pP9Rn<@KI7~xLOj=8HK>uGi3=5EKpVjP>=@qi<9*4m#3?k#PvZ_ds~k*oM~p zD#1o;ueq11zYAuEIMGq@igI=Zn!?4}4q&w9;7V>ul|`+J)EE)J1K7E3=$pX-l#?y- zqgdBUfPy_s>t6rubvy!_eEMoDjUNQQ{&N0!V0GR)KHLwbFMzzAgGKk32PB`)fih0U zQW-qM>&3JtX2*$c_~IXK+G+Bw8@dGyuCDl097?Q8ZHjnG0Q;lnePU-|xi;>(WqCXO6ncjkRo64BDJ5=6pNg@~{sPAYM11oK&--eNS%xN?8yaZod zj^dJPwbRe1eI+O+0;qb&9*H96xb0ACb@^iu!ifupCZ&sVf!J_aE& zF;XiI54@DSmYWGX!N?04fQ#3;Rk|*q(okA>R?l|+u&hc~?ymz3ILgG@&4-ZY5&Xjv zQ9y*z0~PL%Jj6egd7xy9r0OVx#;KaD`o6JmCpY5DD*@h#a_vU8dM)m}8w1~&aN$(6 z&3!N)!<%DQ>cVjWWpUpNAV@XvK^QyIzk%_=4n2Wxz;{tk0PiLGs1J3#2-xchY^eWd z3AMRCQLe#SE2{y#+K$+VzuS^f9xSG682y6*I#3_uBGhUKslR5d_9%uS6nGkHVI&ET z$Jk2{ONFT(Xl%5Mw;@SuqWg$1D`|tX3MET7RSNE@IzyHjLSSdmgi89u4741Zp@d`p zm46bW)*f3;gjtL20pw0^^!y$_O%j7gl&&hDVDBW$(T zPDo;_!tvZ5ECLb?R+kD>4=J4X%H$7@2a;A1=Lm19jVLw`TMmIm!B$#qjASyn1Li|! zFSoYSxZN9GT<}cjk*-3J3P@_9y)88C!9B~Qdaj>9ik2X6PZC7AGT)1!%qIm5;H23b zI(C7o$mj!`L|sRM+tCg0`Hl4IiLg(R-!fBO24@Jp6pepdm6rH0JXMGKY9V`5y_u)% zR0Q3wn>#=tcT2#uN!GUv!xg=(PRNgr%9_nDPX&v>1fdKc+3pweT=_t^q?PQ+ztt zuy4q!7MPzd0Y|CDZQ9F3Wm2UVn9_KZTGf>XN{DJI@)btwPV{&QYGTro*3@N-8c%jJOCA)R2Y?YexrB`e>M+6WF4@mJGGh{tCY&qVPVX>wvA?Ba) z`+f)|^zZ|brfZNWtl^u97?+iX_(9M0I#~xu+i1u08pJyn12&!R!Y&?^KG~K0hTym* z?2f)AhdS;cTFEyYba~kgE49<}1g(k(DyzV{ACN@+_MH6szkQ?eeY%T8-nJKE_%%Dj zvfhXSwChm-%8+`{a6%zJ!o1vaGjo8Anbfi3?`IWt1X@#C(Fb#7=R?TtqX->URyGJ2 zZK_)WIp;)(ts}JvkOSRo_R(#or3CO{PDUG_SR>DFin8AB)D|&_48n?W2X9{)O_0F# zBu{9Z9QGWyPeh9uRwii+xv=@KJa#Ofl{I7l(f+<-04a_Pu`DfeX2+$DK+empi^O6_ z(b<-g>lKyrE*J^~So8Koj^gE(R~s6?AX+D2v}G_FD*UWg2qLg-?aED-px>h)f(w-H zONB2-*<^AH+fG@5uiz;;U@vkrGY}ZV{m6KT^tu@jyDt<8X=Eu476HKgMYpoVPrI7z zFT8w*UE;Nqf%ilwn;H%%x!wagAPzN$`e}+)Yn1@!j%izpU^}2L0QEht#j?i@nKOqR zL)$|LAvb>F+e)=Fi7@RRUqE~O;_xR&?&P?V1%cD(6sbS|2i~MgrDYkW2Ao+nLzq9i zdgO6y!=Be)6>+_={R=zWhuL+PfKM2A{Cj96xB-`5DP(2*_9$CXOId<(FJPN_TAhT{ zz%FzlG80v;{#tI)b!P(&`ecJk=^YKF`j-c{LXt8MmZCjtXSi+0RghBa-t-+v0GM;3 z+?JJ77!NfVkSVvBnwPR52bg?!c+-Z6u9u?kP`T*^k<{|dCxf8-)ttLyqQ5a!01f+h z@gnLUff{$aCCz;zRiK-zNyFtwZ|O#MB$=lmzWw=lwHgmAO1RFt-cvY*z9Msxu~aub zPq&&kyNF@&dtQftQU61sP%MihLr9dAkCHmmrLaN#J?X++e?n(=3{VKlyx5Ny0h$z- zcEfl7w}|Ug+s!J*?$~LcosQ4#>dUj--;&d;{g&HSll_x5#^hD?^#cXXc6r1EK7lZ3 zQa?Lk-K-=nBkZkof>k~0oD`7<k?gAa1S;E3E1{0`=A!@$f&EQ1G_gSp{|1El+a(KuKsD*?%ez&dpstI3TrAndrbCKVAJP< z`=D=1O9wal&ft7KPaLp>HmtHp6*s@**76M$VOTsUhL5>Gv4BpLafNP_zq!LllVCUC zxxDp3w-~^dKA%teq>xCedazFu(nqRPz%LcfY@-fJ_82>tzpWg`KsJRV37F_pcn35?Bu+nnfVcQw-@8@SlxIHX+rj)83pMc z<=E>o?N%m8oCP(*tN?J{{g5prKhRV#42kz?urCh%lS_~RAePywHt!%6R#F6WSAL== zixQ^eWopF7Y(wVyXwk-hL|8KIc;t4Yjoym2rV%Z7)quz8EKRL4Y+b`?;~yMO(#5Or z*I~TBxKwkn+3=qdAM7VftSb#T*lX~W>Uw^lV~d1G?8A_RguPK!sQ$wSP!B3GomPEN z)s9M4F`qc4a~wmK+o`L8uA)|Uk@kVD(i;q6bo?;vGP>=1= zj<0N(Y4SpPT{p@+ZFkuwkYo*zT|4cO@mNBanGc8|p+7!uP%!Jtu=YrnYm=?3T*i^g zl4nBeeUI@kcutRk6q^Wm>S@}R&*X2q%ee3HO>ZoK5ci$W%?jb`4H-BZOI z*;_h0o^XbyYHiQXD04;swcT)hJL~rNEaE0A4|BU%j+XlAiti^dLJF}gEs4nN-z%~a zt+d00c*Xn?6zC*-LuaNv1l%J`5h3~f(&N@i4%JXwA@%Wh(wc;iwaO}zeZQG1$2Y@$ zFHtzcZb=B#s>{PSCq&vM2rFk6yT0D>dB!!_%5nhufC)L(OMpJ&W>}U&Kz1^`*(30To?v?a zSV56&|LG2>mawIm z^fEOvt~{Lz^`J%X15Ehr#sN~Lr6qPDow>B_UpUUTx#1vAvQpLCxMGCsuVG1BgwYfS zYKAC1=yT+0Va2DJM`UQ;BW)mtLV>Y3x&yIB4ID0LV1V`2n&S`fv1Dc`uQ2M}(4WY% z8zx9Yb-jlSi1e|Ip}ADhXh8{kqBxkQA9d>&m#+7oXgWgqa**P}J=1y!bTAk+c6-g5 zHsK{Jr^Q*ySj*;cq^Yr(RnFcJjacv!DQ2B($$EUVPU%!z)Hh6J5e+~V2sWL%TE1{M zHFXi_pG=N3A3q#H;dO07Dum2c zQO+K6gjKSkjZ_+#7i)n9%uL&V0)9m@DN;1h>RlT)ri@x!ve`!}%*7-3qf;~oS^YbF zbk+{x@m(oK$@w)0uQ+Tqr}d&d%JC7zqU8XRx7V4zlGcUc$|x9i9-yq<&jfv7k&UtJ z8dARBlJ?UFrIVb${AqXp{*tFy2LVT3cMJ1=WQ4Ms2n3(`EC3$}0kTu|$kuDXz_H1B zVCSQ@>k9F8>7_9v(!fOt^m(;{-q=6;db(FEGi4_e-lf(;&PVg^Xmw^1rS_CX1a*x* zA0MD8gqWHb7@(8XlShnZNw;&=$Bfm?A%_`-cVdx2ho``ryfY;+GxLIh$>^qQzm0<6)`C_vBLym;Dx;>d^MfNx*E=*d&gD$_Y%Lw_`kgt+OBq78UOHa+eR>rCoPa(YK*SLbIr#kgzIq8fWQ z|LodLdNz-6?l*OIQ(ZJ>j%*DsAc{VvzSWp_EQvC2S_~Wxv_Z0|_`$r$wnDNcJ9Kyt z*8oo5jhkTs*Q#p(@o0!ezkuxDySJsUmN)cbCCNIDe%N6hcQ3e* zbXEeIwayU=;dV0ZbHRX;aHz>w7u^KtO9;McaVYq_!!_6H0d-tI*N!aveZtq~gfs@Q z&tSo<=5M4(ilI(@VF%hlpMx*adA30h@PMm*MY{jB8?SF88QKYj!NVf8)lCl!^Ka&0 z2bwlk7&)qt`59sdnTJx~93GD-;#iu5%iY|O>H8r#WT=j;O0?8Fer&E9GJ<`gh*||M z$vS0hseQP7$a<{3yMiu$&?$O8)3 ze@h8^;QGIDNrJI(IJ;iQ;2Sh5CHVhs1OAGqf2qI2<31MRzaD)0t=0~g#hW!UV?NiM z>HZf@XatcPB?MQnhziGFp%$}zrP|&LiYd+0VpGwoa2%ud(0AC|qRR z6jKK@N@%<|k=5XQ!$9K`b{h>UG){xwbh+k5Fpt(o!Cyf~*e>!qh0*PA9V2g}1wa4o zD$&Q|DutY?@TqV*+x*5+R0y6RF>s;Rlf(6lN(#^HO*+#hf)6D}v0l5>$w2B9nF%~c z@gM2vvH${ytIlv*!I~aO1GM|S<7$AIvPA#W#29Hte@8Wf85*nsg<`8OL}jODR%cEN z0nKm%Q=%jCbNFGT-QkIAgPrW>rCLXX&R19dkzh_**2h%4cKxQ80hH`7C19P#{+U}( zcolda(hrDc@FU8E795vn?Fi%d+7QHA!AqvR6b_gf>pE4@@u+sehK@V04-pLevb069 z~sl^tZ2 zOTooFKbA=UV8+r<1wNQNV zp&(fB$u?JW?5I4_8@Av_NwjMU^XW%`MIA=b>*t(mzYI1QT}r@B%$&JrHh8m-y?-^f%^bS zsYoVjOMOj4rW39op$2YrdQ+OZF@b2>2>1Geq?-aR;i3HVMRViiXy=XSS)@Flr+rNp z2yKr2Bhys>v3MX}unTTC%ha21a`mf_)Ax>DjRlGC8!?>vQ913@C}Hn&r8?UjsU^ve z0C6H~M3@i;-oV#6!1KEGjkp3WPoY`1$->(t;s;So?Nvzpz=8Xl2}TSV*E})w)FEva zO%P<{)9QvB_^_pM4Q5WZ+4%`SyjBCP=0=^PTOI`|V|XmkDkGLHT-GF6vbSEy61yn+HN5iIbG>j8*+U}4H7m5vs=&6na zF_=3KW@m3S#!qt!1ddt#I13VHqi=;{yiUag|3}KX6#-DuDGf4^*?kup42&-m?g#kG zZ0N1|zl16!sL^)7*-n=OSqsVJ8rrxLt~@yM^Y5cIlheW7+L9 z3XmELx5Gj=N!*ii;*#<&+cJe?ofC%Y$!D^h8Q(y-W%><-Tc+PY=#(TS`2IBXavH{a z3SZcB3yi)EX_;lwxK9m|LHkAM(z`kVL7|Rl!jmg8S{~+~Q1k3Rpm_i|Od7*lL zi0Sk02OVvy%~*P!Y6i~6c>BjuZMJJmFH^7E6UeP2f6*R~I3kd;@Fw2c% zF-#mMVa53*O3xdbmZ17pmSEtIsvaRnWAbY(8^XHZ$b5LtF$ppklX)*JQO1CL`tW2SpF^TW198DO*n z1k=_3FBOeB{XS(PqPyf5l3+A2FB*9D1}tNZM4K5&Ftz2$yYA3@SIIaojLaS1p@bf) zddYupr^hQhl#BQ`^ZLO#V^=KKESVKwSiv<+j=qEr$_R38PSoY}GxSaCeK#dNXe@R@ zn4$qVmP~Nk!BkO)D~h>e2OE`Jd~Qn74*JgnnF_zp_xQ%yjj0g_lT)(Ml^VXMBR}} z6S@a^+XVdwHxmaH5lHkDvy1%$Aw39Ptn7%Vk}vB(qxsAX{cQ%F-!!BSr-U#~qgc|L zW04Qysj#r&Q0c)DNveK#xu9g98mPG1uQPOMk5(yYA~Axb4}7zQKKU|b@niQR-1&$Y zy!$+a{1{WR7IdQA=O5gX>4$_N4(|M0d1(G@ucKhGc>+#sm@Z~c(C6@Dlj2~CWr@Al zO6hV+@1`NFZ7xBp!KULn!=qR6&Aflmye4%Bb@#0^M1e4_h858zn+vaX7HEj;KFxav z5E5W{Z|FX8)L-YxUM=Xr{xkp`L;h+YwpoOtnGKPm_46>TA6W4!}Ubxy2$E0LIY2p zP4K|HPor!D7evK9dVdr#r7IxoCgf4_!TYK} z9#eC{Ic(B+Te}ZqsxW1tlqxK?rdSoADv7gJzx~#&CqjO)RsHU4H6gA{T2qZ*%smI* zRzAV(u|;jz@%pYbD}WSeE!c~^@V_UWGJg3ro7qt%&>9r>#Q>S+@t%=*1qAL2-hl~# zFXENaN8%hGP~#5)^lj;rwA4cYVcL5v0I#j?7Qlmt#X`(P>|ksS%gam5DB@u6YG&{1 zLd?vXiU2AEU{3=a0r1npZvm7*VpeW;&i`#RyWnx6_P%MHv5k$IhFygSDH7R6?uY{hpE7XHw|} zWKHh1JTaNfri%|X?kHE5-$c$y=`)#$oRpcYX13uTO4S!ZZ00NrJW2dho}qWBGrzQ~ zXy~ia3`f(&aC+>jEvNF^?Yz#U%}XOD^|H8vNQ7tYKrTq2H$t~Brh0m{@8$9UDt;nk zP8Mh*a~R5Ogis>ZU`e@1-7AePzNvl>ftPE=7+IHf>?-TVkj1@RzLUag_~@mr#Dfrx z`U9(4prbe&f+Yxyu}symB|Ewb0%Hd`?`$keDtXCSyH$_&*i5IyZEOJXN`a86Rm_FsJGu0HSUZ!*C0Kf&rHHS5t7qG2DTo#AtDA9O;zg*@eB-C(;!q&GF?taLc^(-q`*-k*h zeBu>w95@Ut=tK^gn8xW)=t>7@i1NatUd?=QV_yUn)Sok=>LxMq*%oc!1# zB$klh4S9Rx<#oZvy@aZ>JuGBheDhIu=oQ>FBp38IJ5r>k7r&lKr+VAf?q#B*xk0)? z@Q3~aH+Tf?(f#L!-TU#0sFzO`{sCYnOi`pk$G((N%$U7@7~5IZ582l}j3tf{gGQ~M zFUpm}4U|9%bV(`GUpny0K~FT>LDR53^6gC#`JB`0O+d<7ss8dB9!Ij4zAu1x3qkMJP+n`9J#d;>vUO0U3a^QhkI)5|J z>pNf}7-OkZqHpi#8SOgSYY_CA*P@|fT}pfUWN_xdGj(z9V)_1{JvUIV1ypQG^;jC+ zx$TWqTN{P(s(?ZqL!{qZuaY95+S>dHAwi*Y(LcqX4@J`L4>dpvxH1&h#zC+k`fpEE z=eu@x_wV9$pbROQElf#J@u+tHK8OF|I4tXmy&KTf}w#|e`zv|moLq$%DHibJsHwc9K8QR9UE-inq&)k#$BcQooT z5{j=!DFGs##8b$?q!Sg|xKJDw4hMrSEW?TBZ$pHS8d&ihap9iqN1)`$Zl_4c2`!L9 z{V6{eFSyn{WCmC01{4unRbrY6-q;+r7c^QjQx>ZZj-fnLl+OSmFkTpYh;?L1C7G-_ zS$s~`{^8T3xj%jxfRBW%jmWm90tm*W@6{Ls53Zjd5bYP&899XlDS(O!nYLOxMFa$+ zYR~;+l4#ha;J3Ji@v>B#tl;#h5*Q~*H=ofX!skJz)BGDf1SB%!==~y5+lcKZMvziUzkL+Z+9@}6$AXBh?I{> z|B=2&0u9DP(vdSzv=Yb5l4&BEwPrHMmni}7;$lb=TH1T99$6(Pdgm$+HDbx2Wrx2A z2n*J!rp zu|vgWrNenx{Or>f0Es>bD6;}{l#3LBXWOH-2b%H!MRD8uUO@-NPG)qQH5o=sEBak< zEksG|YCu?&lr$2CE<-6A)5e%V4eZU!geZb#h)VKYd#6bQBuGiGPL)Ea#kZpSth>`h zrLl{H+}%bckY3bWC;V*=vytP4hxLVm^`)v&E~t(*$e|Vfllg=oH8Hi!q{N8NIU!pH z=sPz2lcMGi#peZy_70XvcG2nW$EjK@<0neq?x?a?A9gOzZz5a!V0c*%WBJIS>PBT* zt0bg*Ll+lwGpf%>PFPs7pN41!n|@MlABpyFW}rWH%Fc=1OT4f%mqMkE?+Wyk##~6r z6WVYb=o6mD7CpKPoG6QKK%cCV=yEz#fcrV;4SnBa2_8R;|gJcWPfi!9tLbP z(osoE`yEm=#nAf(kh&RW!}gSXqvG;zZqbRbL=Gb@UY;0f_+0X}!r`+ERJ?j*yl;Z1 zobjMYVz^C>z(}I*k!Ah!mA~n@B zyi_*tyad_2&SdNsuROp2$};_{Q=#g^lA52$sSVg87Ovy#m?K7E43ko z=Jr?sAIEWZ$5;QSIlqd|FFJMpokAZK4Gi6iWm|qXnAXEM*mn90+*tTb$c^>M# zHJEQXzrl8lAZ2%2wnpdP4xFR#CcORh5Jta5HMmZD1`UbBx%)+xNzRpLtD9QDer zx0#j*mP)4wu;dOH_sOWk;?t*1(GV4)MncT_n&HFg`Fs@<%B7j0t~`+g{s5aH<4x~r zTcbEVWI)hzp!AJK<=~U!9F(>XF2cv9xzha+CGHETDC&yfnQ3<%6xS`aXPI{-ZKBmc zxziRWh$`4diAG-Uos;h{m!TbyDdci8$DmuPXQ~B1DM}RX_@k7uRsmfg-n$c0I30n2XP@WVXS{ZR(VGXEUT0+nB z1uIP3EZ4Uzc+bsv?y?0WN}-4a2l8J7T+upkSnsxquuzO740{at=mJ+D#n50F%o{4B zb2BtOHT*a6*ke+mMzUhJZ<*Mn8;12HX1@Rlnu1e!WN3iUq=v^D|~X? zErn2RYxmtYuOWP=7!f$J;u_ejC1ln5gbCwqb|SWU{A1?H@oJ?3J+<>%loYp zDR_a|%{@5GhK;3=sYus2Fg1ng3dFqntU`Q;wRQ`CQXAyu0itnOLSNh7&kw^S-d~x{ z{wQIR)#5zDL6=6iSGeil&N={$%74Xp~uV zt7}TS^i0jP(WF5&bvvR6nNfm@nwBv9Gn$*w5Y~U7FA+R`LPrv$ zzkk&i&~e3gB5|;VPrPKuT*%_y%TgiDGs8zaRvIEzPjWw%3%kpID6O0xRu@16WE4iQ zogJ$?yvHG8LN9$<+CUz5cD1+h>JFac5I_|`H8M)wfF)|CP?BO9F48HY8`USVU@%5h z(I_JaFG474sjL>h40{uhQKm<19b%ca9;7N+e;J?BMw31SsKxMz)tUjy5_lj->$RKY zL&1MUc$C3-mpU9rmmI{VoAIa##K_srMz3v|*mnnvnBX_Afe$|9V84 zE&C-A1C8noy+6UDS1o^6q_zzW#2Q|AgB9e$zk&th_vQ6H2ih|-`MR+&(Px{zo9d$N zgR%}>c5?7UGBHgqX2;rV-I%*|`Z>9WcI>5iE#z2$h%!|I@*eyeZa>j;5$PXjPIqrT zc^xzjRaYj$*FfGM&XUK!{`nXI_B8$^bv!|o0|&CDaq)Uh4Y;Uwa#U7DDO`28?Teu$ zAvYdYGk}Wb9ZubSubzu7>tUKcqQXLkRV1STi22_)IqZ0`_2;W7tvx)01+T<=9A%jYroZxd_&<(#!)o!0dNbin_yNH zU|v2Y9k=J;s3@)BI2s4hO)xz%-*S*^F~GNxByBdGr#3w67nxY?4NntE<01y6Wh_=1 zR8zP{Cocj=mY|41GxlN$stUE5@;ckpdl1XBYkbN}G=XWfgX-(|y%?G}p_vHAsg3*r z#7yD0*eEi%JC6>W1hZ=b<=vlGj2|j@K+`2!LHRP>bNl1O3$W9u0+6&lUjDp6l|4?- z8$VvgwV;V+$|4p0kyxo{FNZ!k{}Iju){bFx6oK}aiL9u!)EjWk3){(x!zS&XF@<1V z1@|=hFa`IZbbLyu^uypUH?-BnRrp_fU|(mYpnO|Py3#N+=G$=7^nSvWGw!8qKLn)DQwaD_zYNV zCL0?mx}!^GV#PDcw_rba%s51U@kqUVS$pr%b3uk$jcig~c!(eIOjSpWSm#6*wfpXw z!Y8fZ&yrD5s%Tex*#4{#Rj!4=`Z3a;S9d)8d6jWJz}Lm7yk>2F+lLY)bNEr~jf4CM z1k`B9?4_;3gVq6AS^me4az;lc>9F-bjBv%{A8MZM!%2db&W^?oglh8SPwL0@PXS~~ ztgcE+!G*l6U;G9|LXk_(gxd1D-q--}fh+N%c?H?dcCF&5zFwI;%dhv_?Kh+a#$d^A zX6IX{E=B%^S-M79a%B_KrkCb-qYt1;7Lj_N&-+-{wLtIN_0NE~#Sl%d6hr;=sus;^ z_iO%-L#Rn4{xZo@4kZR}w8UabH2UN8(#wWQin&U*1o>VB?GiNdMi`(vzPnft zDBOl%zl!(kXHcSuhsNN=urWLVvK96oFdPWwxKup#)Vha=+14qnb88aUe0-XxQc%V9 z*lX+1p>f*9)k@WL}1DK4zBmpjO5^{>^F!*S`KTl?o328Su% zoO(k;gs3YChRm#y_3=2c0?(1HTTHP>f0xplB7#CEvU(?;Mu&OyD0(2rF)Dsp2iqvn z=-}*jth^R|j+}qWcFioISe%Xpe|gDrhm4tr@LHffM4>yyh<`?gPd_+gFJIAK%W*L_ zcco~6j}w{j?1P0w?kM#cn+*p+S;cwLnYAD*m@Q&Ni_(}p+*iEQ>>!6o=GhWMk#jJI z-g_!MZcA0~o*PH}hcIxnjd;jVD4m~_tg+zagvnT%l^BJx{BY?eD3$B4BfM-RfWDkk zf6m?H!;?H%PPxD_kh#1`BZDccL$u_HUKTq5)#|Ac#wPZ0_{t*-yI?n%IOAZ;QlRt? z3>bych4L4NWl1Q?5?b_>4c0B8~uup+If17U9Lvcwz8o!4{C9Dj%una-H8KcNCMM z?l3Bp0^_pb4Eab7dy;633Fq3~Gi&Vj!T{{u%{!fi<}8^#K_9+G3g2pQqd2Yl%?cWh zYz3y zQ492jC7v7gJqWOs<}aA~0w0H5@8BVs0OV`|ffHig^J@Kw*FPJ;icp`mS?cb}ygdh# zS70*~-*%cBh7d$(&Fa`o=~irXiJm=~OqJZcC}+r@O5C+GN%>nvLg@Wu!B~0dY$`jF zr3xuF_*ECEU>`-_lkDhY!97#!mtUiJRL;u;30-7Iie~4g_x$;=5$yMLHAe-7KTWrvjJq*7gDT%na1&(# zQ`W4AWu59c34cDA=}DZ=@ZKHLuO%_Z0|#!~w%i27EL4uvXMxxi$g!A8 z4(?3&#bx712re>_YfA`i8Rgk3t0T&MZ<_&}&1d-j z=H-8*93U%?GW%vZ`zB37^mm9~>d+SQ>-I6iU{|XpSC&O;ma`lVAEntJQsNmr@IP^S z{)EzC(0j(BGTS84$ib^w{F;m=-OrnomZGO)2TUo3<*RQdaz@NTOBID1paN27ODw$j z?hoEGMlP)Il1*mQ!md)le|&8uWr-o#(##=l?i!>&+TL9yx-LcUDgPu3-8%Ln8iK zR4sdBR5T@w%{66#ZQx8t1xEnUZ5AbsAF`*$ZM)8Ps(w zkc1^jO>r(^I5sQkR-<-M!+i>XwDFtlSidEfyInJ?&HpBg(GD?)T3ry4*hML%O7214iESGH*>B2v8+zcvS=_v9me{{R(0{NlS>0T)T@47ujM73E&0AL=BHv{_9ZX>5H&CFWXLeuE^-$>#~ z1=D4ak2g{oF!ELGk4BIm!7Jx}8v%#42)02zm_v6hZe9Hpv*F76n3TGafw z90Pn5QM!wHvtus?ftwmxwdR}4K^Iw98w>UF-Dg#;VTA++8Z^j*=(nZuFST8R!!_?$ z7%AHhR<#%E65D%-g*_oIQ%mi+plw?m12N*)q6K)P;Ep6Hn8QvKi}Z(Mc1f#H-$HmI zLY&TQAgXkI!;Lgpo7uI+A+zp}$w9F~=$3ILC+l8)EU?b9!NP8aYk9RNp{>PT)xwbx z;j6J)Vx5(X^EC;utlpPRy~;{ssWw{3-0poLxwcBs&ZU8GW5UNZ3*ahnJy1LLNX1Sp-N=gCU?Wc5# zlq}6osInC*icBZa!jt-3WL;b+VbbZL^_r%2=&r}z3hQMjfodc?r0gN?f=^=7Q)`TV zvUAVV-&(l5*CEq!JbPBZcz_wjKFA6eHgX6XY@4(EX9BOqAh_8V{t2OSjY3Bl zkadd(&8xrA>W(fc4Pm0GPR6i3y`PI9n$%#ClKD?JEm5R(b6|Nq;a!;Hc=z)3Cb8Sl zN7Ub$ciKPKlIQuTL~RNL=e`7SSEXAhSwthA?6O<2Q&)! zbZq8jh_jk*&%bq+CzN_@A$PSKZD_YGzyQ2G%mu|KFLly^AtnIgV9_k!_HIk{n8=kO zZeKk=ig+&sfHWzh*aV3hru zBb*Oe*hyI-Utbvka(tF@j6>0}O6<(k>?BfA)ii00loU#DoDKuHQ3%(t_fHH3Xl+#{ z^LdjK#=e4F3d+*zJ7`Cr-!bAZper~#WBo!40T|z$7v`O2GrVrfc>^IzQ=hkRuQ(-2 z-giIuf)F{8#7kNjEbu@V>CJ8-;H(VEsoyN z;5GmI6$8kNbu%KK5dPdWV5S3(ZFLKMyXyyd<4rYT^y z3rPsccS~T)^`oF>2>93atFigA@K(ldyHB30-tOCY4axJR5C0q=kr|QRggA1*(oVG- zRW2tSk58UB-{qB(cx1H(SP@fNJ?5qI*?ItkGG-bp1uhR=c?h92KTSCdwXAdTA5X;k zbauZX75PsvQ#e0#J?97z+O+u|pIxnu#(yx5l}3D}tMdH{nJyE#37>Z!4Iner^aVdU ztXlSgL7@4NejV;e2X`*wMn3!k5Yx|4{jVp#CIM(ZkcH!ay}q<%k~Z5>dVhb*Vnx+1 z4R8JMpHLk*Ce%x4BJ@&%R-v>HJlbg^v=g;A-!2xB6j9k9JVuM!DJt-XAqA1QEkO)` zAU~qqL+Czz$OTA%J<7yp1+e5XObyWUk;%plTe>}dWKkI1Zw>K-g7eBjb0Q6(kK5xV5)Ha^#8Ebb{4J;k{i) zH^`smu!r^nsmraUCbV>$VW<1`_FSRPyc$lK%7VcxM}|~;W~FA+J<8@ZhkiFutH5@m z{TITDl|d`PlzErG`_KVUTZ(#WyOZGVjegRYSb1!KiL zta-cg>NR6ln><=gtX{tT=<1UGL2Y+a!$u4|&PazMCepz?nFssj4@1$?_kl5;W?S{T zanmnxvIWCyHVgWgC=hYWGNL+ zl^nT{Ci)T8Cy`a#0dz8xX%|%XdJ3R2o{PwogQvXdN1w1cx)yB8jQ-2WI zQ2xmDvTbI#rV0-`<$qxlrvJ8}44r5kkSbMvy_50BS>QGxdqMAH$ZsA#tm);_TVJo3^px3br3hTq3lWUfoHVHlCgXdgsadQ46-Kg?hIeoJ++7GXS*p$ZCSf^Fg|v=vwJg>5x(A$qLOxdDREZ zD5>*-mTC1&3F031f4Di-O3;|~@~8GpQF=NSt(3jlii=JYbN$_Mr^!Kp(3PP19TJC? z(Rp~T1cA`X2K^99FqhkhqaWYDZUno}M+MW8w954;N0%S$UloJ}n;I{(2tpqnlBW~t z?PXFH+#KyF6B((9$qRw4L2VGX%V0l$(=2KQl45%UWH3b8!G5Mj)F7G1%qqV3_~X=@ zsO-qkyeKq`3RW|J=CS)lveRg8aTLqqvGRGY+ot`YMbKIE!VVWT3YAP=Va^jbRO%98 zS#~+`ZPIr+7aV6&X?Q_^QP}o9qOk9L{l5U&87Ah}eLbFWa8vwIM+Y-7NZQ8n+aqhk zT$AQU3HVQ5trxQMDN!lWG*BTe0VM}>!N{` zZ9h-Ql%)C@XJ@#MnQ$FF$8`*I9Yb6vdMeb8q8+gE4d?1PG=z=1iDaz1|8(wiFa*3j zfWIf*-m&5}iP1P z46smliDA*OIIPxFe|$X-77cQ+;87VohcRuGp|FuSRN_9D!w$w9b$&|0@rLma48#v@ zI*B)l;!Vuyj?%|?19-K-CZB1@Npm5`eLCbEK}4r%=t+QoCKRyS7bavdUal)VeXvQE zo9cg;h0(JpAdQF$)~=I6g?n!htdQpHgnnvGOWkZ5bei(m&(aIqoQ(JBwKjlGTZH^|KfrojeM0vEN+%w&F+is*bjrde@M%|oHYtCh(wTz} z`x3N)g9_i;IR)*Vp-8@utE+tAOu2FJ1MY#o-mbs|n7~OrmtBF0;I9xKa!iX?y7I`Q z4fAN&p|>nx)p_gbjMNi@Q^1X|isLGd7pC(pXqllPWDm4c@P_sVlF!9J{K8_6BRKG* zOVoi7!jmXEIzLQZv17$+7HEIIr2USTKA%nCvE2jC^B&BWv=%z(C$J?0Kx?JG2wTFo zw9Nl!==X2uc4|>1h&&h3YG8=$RO#a>S~5bz8v5!Kjcbfr_HS9|gNYlSSP^jp;}66Q z3y;JN-=Iz`JvE)mkMyJG5`<{1NdyKH?;E@mToIXij~q$qOzyDyf!u##=1A_S1^jQ# zfqr2LlRK=5VFOD}$=w{UVXCM7gzE7hGA6B`T;ll&xyyl=$(<`-WM&sLv!j2^jHyEd zcbFZP6h^C< zWk+V&vHWn?E5K!VLOsbV#=-Vaxv5uLR@$*xv8X47Gyh~Y5t-?e4Fd2%);ed<%s*Ly z*a{!w6O~%&0TlF9>2w5eRITJuH9V?%961_J$HS>heUdY!<-#{C9H`6&Xje>WgLJ_>Vma%Ev{3V7PhT1j);$`QWnSDm&I1);`a^^2#H8QfDZsI>;3xlGN3RtL{ld0&kB-|}6> zouXZ-H2kzuNmzEo2qtfE_`q8aTh{IBB}^ClZQ0=WAs?!?;YEGRYi{$7J5}#7gca3x zSC{?3)AvXqpKuuk-1k*;e|IG7>wmm^!K-fe11bPd3~Dqc<`ehr7MDsJ=IeEZQsp&| zx8<;5vDZD%R4B2G9d(%asrWGDJ(9h8bA9#el?3V{kOACClu8{WI*wA62F3R3<1Zpu z!$%Mx(pehZ)6#9ABP$j3>fpoGKl!5l8&W2Yw6a7i1`LqYRnrfhe-pcN!oUsR?w#zn zZO5XPpLcYGva3o52Kc-q?F}m#Zd!LH*xk8f4x4=79;>>+TON4Xw(ST<02=}F7+;y| zsw)dzsp2p%in2$Fc-<|}vErb!Z`Ng3Kk$9QxTy2KFZ+m8Iij8+?_(8oks4<9l=4#@ z!K(=3%tl#uQuihjf7<%G_c^9Xl!}x{C7G{!lZg=_T85z46tr_!4qwV6GXoDSTSOq4 zrI8ZGm#ApBJCdSp;B`SecxpUuU%l08O7o?(DS$A8P8Mk)ndtkK6=6B-yM|t)7@w2~ z3;cpCu>p>Qo5m~TE~*Gj4^iM5exd@NEj4{vm-w|9s98TnfA|T5H37jp;I6D8n}IE( zz3uzz23XJ(f)87~9O{fH#r}xW=|Vawc381UuW@F}G2`=<{b5+G%cH$dq0?v+SsMqj zg{ub>afxX#I*mk}5-ll>htH{;JR+MgIX}H(;0Mao{xja@O|{$CWTPX1y0+jL$SUJg z%^QBy+Z^o2e}BmMyH`HG?*73U`OnT2aC1`)ys+Q2-B5NsOGXtpu^~n;kw2OOIBPKe zQ9*YX9L>C+;QNfV-c>jk8spK0!kfT(E7K@3PR&7A2DhO6=kR!3i*x*s7CsK&JD0A3 zU6dtBOdefE!b%V)iL%r^ZFyu6(;$noSkZbZB9Ub9e}PtlA(aN405=skYi`OfVVHo^ z&k|skMlwBVlN3qgp>Qfi0$xD-Lhn2oN^Xk7D7JCCTPN^$1I3%OMkcYcQ=`7CbD7Qkns>Q{8?Dxux(Rh z4-taHf5%}6_y|6NUAE!xd{h3_EindQ5CgIrp~<<~&IBo043=mK^=KiYL>{Tf@&C-t zz)j}~Re0YjZdz`d=O5hHl~W+7TYkkI`YsmS3p_*(k&T8oBC@lB4V%XF7#9dOY-%I8 zjmu(Sf0XIP@l6U!NjSXup25w52x;jQIr4dD zu4`gLE9{7wW!mXG!!M>nbrJhGmb``R!7Sn=pJ=0JqT4k8q5@b2taB9t`ouhZuy zg@TM#6D^t9(Quv-=Rr)04$8@i$r~N2!5GazQqtWWa!LL|5g@K8%QfaXxaxibOK7&E zf7_;f1Bb%~Vi%_;zAfy{#(OZ27mVaMxPytlq&q2pT#$lMNv5*@mmtL|1;J_jV}cZ9 zmPmVXkm3pbV}g`4r89GkED2FFHaiACqZT-(0za&+@ef)vV|2L~Wj`r~Qj)@f1;kKb zyG87aQ843{n=MPT^ClafEGHv=f^ou8e-m7e{04_E!7oWAeTVKWI=a>i{fn4-mOr=k z`rs%a)|Z+Jj{uJp(4Msi1SsmHzfOT$Ob4=}|t-cLd|!@h&P^eBL@noAN11UU&y}_e$_E zk~Ts}L0wAYv2!!ZOS8m0Z|+dXe@0}kR!~2zQi%pFPGd$1Ev`Y;{EA>yx%Reee=8mB z{FY>=&kZ0mudCnOX4DI|&DfUrZqGzDvx3gtWYLxI7}i+nRo1-*2lXxKY?|UadSL#c5 z+NK?NzJo}u8cWt1f=UBfe}$*r+kFRTbj7Ih^RCVtve_>VCF=(+OS!v`@v>k@P%1y6 z5WG7H>#83ZL$IhEm-E|3JA=0*!y1s)l>PIH-7`LFJ}vBF2&4PCI74F?7ij!JL0n#k z7I2YB>)=uk&!&HV{TcM**Pq|Oy?x5-gIgS(*=+J~bkG>`&O8KJD!+7C>0QNPQHg4K`7a0^}%qK;5Qe58A z-o);yB>4?#qxR2Kq<)S zFid@nCOMg(4JPycfAOwow3|T62JT;_5}ua6>*hD*3y^Z z^(wKT*Yj*}EF!Cx5eDsslt;pFaB|v+Do_X{$KM0HB8vcX%U~C132Vk0DM;}5YeX=^ z_{|^xH$avtI6kYF05XzF#sfYB$cu>Jfb7Zeeg!E2C>h|)m>qIR?S z^_d|lTk_h07g_XTQv95G@68My1)CrW{#-<7+TU*$FRqg~pp*#4;^1Z-B!cjq1zDDm zIE9fa_!PeUI;gv%maSQ?5`PwjrgLpC&GPfj>&45P#n%Oe6Qh6zH0C5q6MI6M(x7Y> zpFT%H1(UCXh$JEp?(NbhNC?X_=+(jd#owolp)pvK%#A6RaC6t}Y}2Amk4?x^xSBnW z33*PUgr2ma*(0J_*S;;^o1%YgQ7j@7iTGJ8ibXMGJB!(1d&`N)Izz0792`N6gJXqJ3CRGz?U;Z6Tmk`s?(o&lLB~b?#4>u! z4rRZ_fI#5vQB?4=_C1XZCP*emGJInAfW90v@HqF*>cPJeO@HgtN|*zZq=a%BaLP#x zDE}-QLNyUAokIc=oI;XDAaKAWVnpP8%!j)HY07dAaKu^o01!a~j-+W$L-}o27j0ow z*PbA3v@fD0Wyv$y#{?x5a=*0?q0&9#7jwuAn*nMGnh7H`iuO?2X;t|-g`-kmv;;@B zEUE|WX5qS9(tl99KFU$QNDjI@8|uofxE*tjT>-VHBB1kxg;#aoxg}o^A1Qa^jk+jt}J4A4S{{P^gy5m-FQgj zuWk>fT}EE)$-92_*VUUhOOb{jFQDlCIUA3u!8r9YbkvM4duk^0KA!n#3Y5@~j}ipD zfPc2CL>ITdEO}L{P1|WX28hRHUFb`3NIVX2RHMfDwpT*CD|7*6L+VRH{Hm@ywC^6B z9K#BGrgN<Q3czdYA z9&8tUHl0EOhlx9v_~!Ue^X}b}$B;Eu0aBaKJg)thF!y0Ak#La#Y3^=;s`QZw{k~fp zM=i=(`_Z-T8tef{W*Mnbfqd{a21&H*!1TK|6C-#UrGc{OVm za%Ev{3V7OWRXcOrFbv-FD>Tw~v0_m#dra?|UbEI)+kuv7i?u|#Bo){F^#usX7pGoC z0L1G9KT@mYkgSp~4=Y|jZ6BUqjM;|dwle96^R(fDK$3TYklcHQ~D^Y+#?fu?LC?-P|sAf}VfE)OE3xf3eo)YU%wW8qZjxdh7{MLjPP@rk z8f8((Q-Gz>eNTVV+00U-Ca+1<&W+BK%ssu^4IK+!4J4d~S{h!)|$30mfz2j(yt(|(+(CK47OHNw3-oy(C%KzBNelw^!edDwWoR7N# zkoufPL|L7d<>vOpp5atFtR;&paY>{#4h;op6ssRe!-BZ(HP9v#yPHksIctz{A;a&0hIH z#_M!Qjg2Z!g*^GAn<*eOm-!lA`VLHnGLz34Conf7E8Zi+{_osWtHR_|&xErdc%;=e zIkF0#qsXA^KQoaf{I!y0wW`zg{D;isjnC)p!#{KH@$0uuLjpk_2r)A;Gcq+bIG2`T z0wf4AGchwVH8nVw!eIi$0W*`q0~eQ`Vgg8iGG#L}VK`+nG&N&1GG$>kVlgr{G&3?d zWn?*KW@0ctJUC=CWiUBrV>V$hFfleVF=aSmH#j$8VKq55Gi7FGVm@6UK0XR_baG{3 zZ3=jtV`2aSCPv1-Dh4JXs~AKIw;|XfTR" ] diff --git a/mcstasscript/helper/component_reader.py b/mcstasscript/helper/component_reader.py index 1f233f6c..b4315721 100644 --- a/mcstasscript/helper/component_reader.py +++ b/mcstasscript/helper/component_reader.py @@ -266,8 +266,9 @@ def read_component_file(self, absolute_path): result.parameter_comments[variable_name] = comment # find definition parameters and their values - if (self.line_starts_with(line, "DEFINITION PARAMETERS") - or self.line_starts_with(line, "SETTING PARAMETERS")): + if (self.line_starts_with(line.strip(), "DEFINITION PARAMETERS") + or self.line_starts_with(line.strip(), + "SETTING PARAMETERS")): parts = line.split("(") parameter_parts = parts[1].split(",") diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index 9ff5f177..f3f557e4 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -74,6 +74,8 @@ def __init__(self, instr_name, **kwargs): self.parameters = {} self.custom_flags = "" self.mcrun_path = "" + self.increment_folder_name = False + self.compile = True # mcrun_path always in kwargs if "mcrun_path" in kwargs: self.mcrun_path = kwargs["mcrun_path"] @@ -96,6 +98,12 @@ def __init__(self, instr_name, **kwargs): if "custom_flags" in kwargs: self.custom_flags = kwargs["custom_flags"] + + if "increment_folder_name" in kwargs: + self.increment_folder_name = kwargs["increment_folder_name"] + + if "force_compile" in kwargs: + self.compile = kwargs["force_compile"] def run_simulation(self): """ @@ -103,10 +111,24 @@ def run_simulation(self): """ # construct command to run - option_string = ("-c" - + " -n " + str(self.ncount) # Set ncount + + options_string = "" + if self.compile: + options_string = "-c " + + option_string = (options_string + + "-n " + str(self.ncount) # Set ncount + " --mpi=" + str(self.mpi) # Set mpi + " ") + + if self.increment_folder_name and os.path.isdir(self.data_folder_name): + counter = 0 + new_name = self.data_folder_name + "_" + str(counter) + while os.path.isdir(new_name): + counter = counter + 1 + new_name = self.data_folder_name + "_" + str(counter) + + self.data_folder_name = new_name if len(self.data_folder_name) > 0: option_string = (option_string diff --git a/mcstasscript/interface/functions.py b/mcstasscript/interface/functions.py index f53fa917..04038f02 100644 --- a/mcstasscript/interface/functions.py +++ b/mcstasscript/interface/functions.py @@ -1,4 +1,5 @@ from mcstasscript.data.data import McStasData +from mcstasscript.helper.managed_mcrun import ManagedMcrun def name_search(name, data_list): """" @@ -66,3 +67,17 @@ def name_plot_options(name, data_list, **kwargs): object_to_modify = name_search(name, data_list) object_to_modify.set_plot_options(**kwargs) + +def load_data(foldername): + """ + Loads data from a McStas data folder including mccode.sim + + Parameters + ---------- + foldername : string + Name of the folder from which to load data + """ + + managed_mcrun = ManagedMcrun("dummy", foldername=foldername) + return managed_mcrun.load_results() + \ No newline at end of file diff --git a/mcstasscript/tests/test_ManagedMcrun.py b/mcstasscript/tests/test_ManagedMcrun.py index 5bfbc871..b894d986 100644 --- a/mcstasscript/tests/test_ManagedMcrun.py +++ b/mcstasscript/tests/test_ManagedMcrun.py @@ -174,6 +174,30 @@ def test_ManagedMcrun_run_simulation_parameters(self, os_system): expected_call = ("path/mcrun -c -n 48 --mpi=7 " + "-d test_folder -fo test.instr " + "A=2 BC=car th=\"toy\"") + + @unittest.mock.patch("os.system") + def test_ManagedMcrun_run_simulation_compile(self, os_system): + """ + Check a run with parameters is correct + """ + + mcrun_obj = ManagedMcrun("test.instr", + foldername="test_folder", + mcrun_path="path", + mpi=7, + ncount=48.4, + force_compile = False, + custom_flags="-fo", + parameters={"A": 2, + "BC": "car", + "th": "\"toy\""}) + + mcrun_obj.run_simulation() + + # a double space because of a missing option + expected_call = ("path/mcrun -n 48 --mpi=7 " + + "-d test_folder -fo test.instr " + + "A=2 BC=car th=\"toy\"") os_system.assert_called_once_with(expected_call) diff --git a/mcstasscript/tests/test_functions.py b/mcstasscript/tests/test_functions.py index 4268a02a..5d15044d 100644 --- a/mcstasscript/tests/test_functions.py +++ b/mcstasscript/tests/test_functions.py @@ -1,9 +1,12 @@ +import os import unittest + import numpy as np from mcstasscript.interface.functions import name_search from mcstasscript.interface.functions import name_plot_options +from mcstasscript.interface.functions import load_data from mcstasscript.data.data import McStasData from mcstasscript.data.data import McStasMetaData from mcstasscript.data.data import McStasPlotOptions @@ -169,5 +172,39 @@ def test_name_plot_options_simple(self): self.assertEqual(hero_object.plot_options.colormap, "very hot") +class Test_load_data(unittest.TestCase): + """ + Testing the load data function which calls ManagedMcrun, which was + tested elsewhere. Since the load data is tested elsewhere, this + function has just a single test to check the interface. + """ + def test_crun_load_data_PSD4PI(self): + """ + Use test_data_set to test load_data for PSD_4PI + """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + results = load_data("test_data_set") + + os.chdir(current_work_dir) # Reset work directory + + self.assertEqual(len(results), 3) + + PSD_4PI = results[0] + + self.assertEqual(PSD_4PI.name, "PSD_4PI") + self.assertEqual(PSD_4PI.metadata.dimension, [300, 300]) + self.assertEqual(PSD_4PI.metadata.limits, [-180, 180, -90, 90]) + self.assertEqual(PSD_4PI.metadata.xlabel, "Longitude [deg]") + self.assertEqual(PSD_4PI.metadata.ylabel, "Lattitude [deg]") + self.assertEqual(PSD_4PI.metadata.title, "4PI PSD monitor") + self.assertEqual(PSD_4PI.Ncount[1][4], 4) + self.assertEqual(PSD_4PI.Intensity[1][4], 1.537334562E-10) + self.assertEqual(PSD_4PI.Error[1][4], 1.139482296E-10) + if __name__ == '__main__': unittest.main() From 56b8e2a3b449310b84b2e7b28f23ae25d76f1478 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Mon, 27 May 2019 15:47:15 +0200 Subject: [PATCH 022/403] Handling default parameters in simulation calls. If a required parameter is not specified, an error is given. If no required parameters exists, the run is done with defaults. In a mixed situation, defaults are used for parameters not given. --- mcstasscript/interface/instr.py | 40 +++++++++++++++++++-- mcstasscript/tests/test_Instr.py | 61 +++++++++++++++++++++++++++++--- 2 files changed, 95 insertions(+), 6 deletions(-) diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index e240f8ed..bcf45f4a 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -1007,12 +1007,48 @@ def run_full_instrument(self, *args, **kwargs): mcrun_path : str Path to mcrun command, "" if already in path """ - # Write the instrument file - self.write_full_instrument() + # Make sure mcrun path is in kwargs if "mcrun_path" not in kwargs: kwargs["mcrun_path"] = self.mcrun_path + + # Find required parameters + required_parameters = [] + default_parameters = {} + passed_parameters = {} + + for index in range(0,len(self.parameter_list)): + if self.parameter_list[index].value == "": + required_parameters.append(self.parameter_list[index].name) + else: + default_parameters.update({self.parameter_list[index].name : + self.parameter_list[index].value}) + + # Check if parameters are given + if "parameters" not in kwargs: + if len(required_parameters) > 0: + # print required parameters and raise error + print("Required instrument parameters:") + for name in required_parameters: + print(" " + name) + raise NameError("Required parameters not provided.") + else: + # If all parameters have defaults, just run with the defaults. + passed_parameters = default_parameters + else: + given_parameters = kwargs["parameters"] + for name in required_parameters: + if name not in given_parameters: + raise NameError("The required instrument parameter " + + name + + " was not provided.") + # Overwrite default parameters with given parameters + default_parameters.update(given_parameters) + kwargs["parameters"] = default_parameters + + # Write the instrument file + self.write_full_instrument() # Set up the simulation simulation = ManagedMcrun(self.name + ".instr", **kwargs) diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index 45d693a0..f3627720 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -35,6 +35,7 @@ def setup_populated_instr(): instr = setup_instr_no_path() instr.add_parameter("double", "theta") + instr.add_parameter("double", "has_default", value=37) instr.add_declare_var("double", "two_theta") instr.append_initialize("two_theta = 2.0*theta;") @@ -992,6 +993,11 @@ def test_write_full_instrument_simple(self, mock_f, mock_stdout): my_call("DEFINE INSTRUMENT test_instrument ("), my_call("\n"), my_call("double theta"), + my_call(","), + my_call(""), + my_call("\n"), + my_call("double has_default"), + my_call(" = 37"), my_call(" "), my_call(""), my_call("\n"), @@ -1035,6 +1041,21 @@ def test_write_full_instrument_simple(self, mock_f, mock_stdout): mock_f.assert_called_with("test_instrument.instr", "w") handle = mock_f() handle.write.assert_has_calls(wrts, any_order=False) + + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_run_full_instrument_required_par_error(self, mock_stdout): + """ + The populated instr has a required parameter, and when not + given it should raise an error. + """ + + instr = setup_populated_instr() + + with self.assertRaises(NameError): + instr.run_full_instrument("test_instrument.instr", + foldername="test_data_set", + mcrun_path="path") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) @unittest.mock.patch('__main__.__builtins__.open', @@ -1051,11 +1072,13 @@ def test_run_full_instrument_basic(self, os_system, instr = setup_populated_instr() instr.run_full_instrument("test_instrument.instr", foldername="test_data_set", - mcrun_path="path") + mcrun_path="path", + parameters={"theta" : 1}) # a double space because of a missing option expected_call = ("path/mcrun -c -n 1000000 --mpi=1 " - + "-d test_data_set test_instrument.instr") + + "-d test_data_set test_instrument.instr" + + " has_default=37 theta=1") os_system.assert_called_once_with(expected_call) @@ -1080,12 +1103,42 @@ def test_run_full_instrument_complex(self, os_system, custom_flags="-fo", parameters={"A": 2, "BC": "car", - "th": "\"toy\""}) + "theta": "\"toy\""}) + + # a double space because of a missing option + expected_call = ("path/mcrun -c -n 48 --mpi=7 " + + "-d test_data_set -fo test_instrument.instr " + + "has_default=37 A=2 BC=car theta=\"toy\"") + + os_system.assert_called_once_with(expected_call) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + @unittest.mock.patch('__main__.__builtins__.open', + new_callable=unittest.mock.mock_open) + @unittest.mock.patch("os.system") + def test_run_full_instrument_overwrite_default(self, os_system, + mock_f, mock_stdout,): + """ + Check that default parameters are overwritten by given + parameters. + """ + + instr = setup_populated_instr() + instr.run_full_instrument("test_instrument.instr", + foldername="test_data_set", + mcrun_path="path", + mpi=7, + ncount=48.4, + custom_flags="-fo", + parameters={"A": 2, + "BC": "car", + "theta": "\"toy\"", + "has_default": 10}) # a double space because of a missing option expected_call = ("path/mcrun -c -n 48 --mpi=7 " + "-d test_data_set -fo test_instrument.instr " - + "A=2 BC=car th=\"toy\"") + + "has_default=10 A=2 BC=car theta=\"toy\"") os_system.assert_called_once_with(expected_call) From 2381b4f742dbd2fdab2d9a7edbfa5fd6eb24909f Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Mon, 3 Jun 2019 14:07:56 +0200 Subject: [PATCH 023/403] Added a configuration file called configuration.yaml. Currently it holds the paths to the McStas directory, the path to mcrun and the maximum line length to use when printing to the terminal. Code has been added to show_parameters (for both instr and comp) that breaks line dynamically when long comments are printed. In addition the print_components method prints each component on 1, 2 or 3 lines depending on the longest lines to maintain a nice overview in most cases. Tests were added for the new cases and of reading the configuration file itself. The manual was updated with instructions on updating the configuration file. --- McStasScript_documentation.pdf | Bin 156691 -> 158632 bytes configuration.yaml | 10 + mcstasscript/helper/mcstas_objects.py | 75 ++++++- mcstasscript/interface/instr.py | 290 ++++++++++++++++++++----- mcstasscript/tests/test_Instr.py | 293 ++++++++++++++++++++++---- mcstasscript/tests/test_component.py | 3 +- 6 files changed, 562 insertions(+), 109 deletions(-) create mode 100644 configuration.yaml diff --git a/McStasScript_documentation.pdf b/McStasScript_documentation.pdf index fc8296141b1aeaf6dd5d0e92da0e08e13cd672aa..137efa38f2f3c527f15ca3a58c82d96a36e0a2c8 100644 GIT binary patch delta 62343 zcmZ6SQ*fY7w624RZQHhOJDJ$FjW5>3*2Kvq6JuiAwr$%v|GwB&=bTl2@piv!b#-6% zQ@xT$V9J(Z5*S&zIoVi=nWTwziFr7fiCLLBiS>z@l!)0_h?yjad04qP{u7GCEdS-G z6SHt|vof@2rRSP}@g&QF^6CC(u@e7(!6YM2tjlj~YRqNAY;4NI z!EM3H%*DfF&ThfM!OYFWVrt55%*7(eZ)V2IX3olN!pUmR&BM*cX>7)2W@5p`$;rva zV$RN;-bVi;G4WA2iRFYu%L5b~ZU39Wh*SCbh7vSU z46Y$P(iF@i*$8YkIT&0AU?XOdH+Qgfv-lMn)z^Mq5KY z6Fohg5h4kouswDbkeI~DhoIn4;Qeo>3huFma9b2!>eRO_?RD420rM-nGv9$hB45|v z+mMvT7|Htcd?e_>VaOR5;p;z$6O4>hmq6!ogeM>{Y0P&ljb=WvM$2bX6L}}C2RS9| zZB0qAAR$47Cz*4T-G0;oJlq`r_ledParIr-TW&YIgOdgEIn>w&xMrG<-dH@jmTgTv zOW8&Rm{ILrMH6WyekTLlpCII_KT#{vT{odXR}M|;wCFM6D#tE3=^DBXQu4|S^$j~d ze${5u!`YUMRy(qmn;V-S6*C5_uRhZHCV#hd;8p;ai!N52`+LXd*9Gz8p^PbzvM2kn z6=ojg@&zF=`hOQaoXd+R4Hx^hn%CRg7&huMyM&y3cJ&)w_q+4(ri_A`(f^ zsuTLG@Q+lZm8DPX<;aje2lrH=t?#be!cbqiA9}rE{9p~*P&epQ&0GESI1v7;fVikjubpswJxoWorrs5I1 zMA>le`FdMLgiVa0cCPfQ{jl+0(4J0)FbCjV+KKJK*1f-QUR)_fQ^x7B)-hwPE^v!7As7-4{| zNvAxUmz4h5K#jp~oe2%Lh4DmmtMOugD-ErvS5gq4$_V#)4F;V^7Zs?$2o2#e{p=Vt zrwZIlM%g-(fa{T=7J+BmDX zKqCgQ-LB!kxO87bU?6A2AnLX~(H+3*j<^hbj|7-j>4@3<6Iq;2jtd)c1+0W}mU*i0 zcRfLcM~$Fmq0@}k69Mklr9)ZQfg9<(&|}%?d-WyVPJx`!QqxLp#ALXZfrI!qXRWgn z==Lqv#%N>>wi(@NL_8dmi&puyL>j9*hdCNK@d>ucEj?sT3ez2VCZT zZ=tPTGI+GTjq;m_z8znf;3rH1-P8eGl-U*Z!@r z-e!w#RbuK_SvcK~_C%U&X^nsDBk1P09n0(7Zn%!R@l?k!Z*`D%m*7{ldDlxZ`JZ)U z3w$Qg0gAc`ir_G5(oUK|dSbx8(5g0bcH59Bg)L4mQWLH_m{2jOa1IB@#%n~XxX1u5 z2M@A|*?yVZzYeRlExu^0ngsoi5wLpB1bmW-OC7sP6L&$YJ4-Tzm?uoK%-8f7tauI$ zWE1ByBe&3NLWYJP@1h{ynNjdh`C)825E|IK4To=Fw=?uPaeQ=mXBWWH9+73NbG`)r zcjOI7S6onH@NV=@&LBdixC(B{7)Id&%>yxmcwFtFJ7iqH?6^o`;K*OIv1W5^#?Zv_ zf|gq|*@r^rp8|LkK5EbeNx*NqStU2?9kI7vlaQdp^%aVi&Mf3Jzq6pe1l5Y4o4`pJEazu@s&E?OR8AhI&aozTPwH!T zu7d!=hVf2u0OPr}1c}B5@tf;;IV?nTV@s~>+;h@ckgOI7mJ1LqeRPkAi62}N)JS^$ zc67|D+snlb35((9p_FnikJ$@l^=}n}I!HWMmROcp(}wXb9P;>(sQkyTq_$83Si0*w zEbROPCgWYPk#Fc!QaW^5my#J}WSbTp)_M~wGwOhIoHJ}NCE^a!CG*Vh$Yt^ighPx} zvQ&)Jb?h>Q&L$wxddJ-3tU1bt*V53d!SfQGNOdACl}DITIY+p3+I)w{HW`2ev8Rto zEfY}HCNhRsfcE(D6cYHxF-1q5iA>=SUS?@EJkzt7l*l2bd!<+;*O)9Ui%?uEOdD1& zi%p{yR$qK7lZz}IUXk8$xJ}|}P@JUMGs^{6us?6FZx6uY<;K%3?IIs#Z}(w{UAzrK zJb0<~5g2=ATd~4PK!%S{h>?kX#{6IebW*>Mzwq&k=BJ1A=%51D?p4NLdZ~wf;#@wWs4a=M28{mvmSDA%##p*VQcS7GX1fK)P&zh`Qi!L?3h^aW6h|BT?jP`#rtcrTF#80|snx>!Dvn)k zU;qs(6eWi5Rok|75^dS(T-SrMs~xG;R#~Rpn_R{aI)3@HRx5PBq^8-BP}e<>3J7mF z?#>x9Y}o!MWFBIoy@IJ}(ky%s(f%K_Xrm*_0%QfXL7iy$QyiK%lYE4mkhn;Cdc(?- zRC@<@%NOt@UzM$*OG$eep}5t&l0V`9c>!_rh)@x=MVF(?1(WdiW|I5HyTvbgc(HD7 zvNA-lYD4zaW7FCQ*zaE~Aj_*ZtPo|i)lMvxvdZK*t$(S=-wvW^?Ty(-_g^m0y9Jbc zJ9eS7rtMtG2m5ystYpV(Sh{+jr8tPX4}ud* zjwp&5ZVNd>0^7THkLp zEzPk`&v*&>2YC;%^l%Y(lJS^4Pw~e%V#JZPjvR{Opa}mDW-8x8zrsIxo^>ePJc`JQ zl=VS;3)v6VE!-cm11V1>-GoLF3$9F$^PA(Li8~k*t}t?;brR)=<;9q=v7}wos^<|< zy+jsidj<0|DxF(ITMy(Qhs=OLAKCc@Le5*3<1Sbpe(jpzCa#tGxT`j3)vvkrVY7jb zJDK(2zaav6L^uPd>Ea)O+Z16S@6Qx$6?g-v{Y444NF8VxqaDQ#lMlhsr-^gqUhYHDJ1WVc!5I*qDSo{2=3SXXgIa(hGzw$7Ljx<-^p5!GhnX>w+V1vGyb}f@CMvI~Z_;>NU zE@_~`al<*wx3%}_R`9m*eF-O=0^O-BH8C@$d#~z7^<$BoUbEi&)r#}JqhnH_J`Lx< zjCfSNpESQq0sG=5$~A%1FzR)RrIKMAE(tynz`HgXL{6+}G_J^QCmGiWdDozHMa zfp8{)4^GF)3qh-s#LcYL$=M70on1Q>i~Z?1D3dN(S45F}IZGv%9xkzdkjYMNc6+kizno3$Hgx(Ie1 zwFEbYZcywu)Wk7?G;G5uVg?B)Y;q7YCn(qdypWQonel;59BW6s=DYWIjE@&WLQ+OY zRBG6lNZny)lVKj+mk>KgJC6Fp6Y1YyZ&SUCs&q7I^AEzH*Iwd?$GIe}wsa~m6``t< zS`3XaeYnOQs7tVTowbTDw6NzA%sMN?g(1Dvs4*+#>W4{A7?trqxp#`xkQL#~H7IgW z#%L&VFvbAe3{O!AtsnU6@RBXW>USzF)NU9-j4)M65J95nKY}r+Q#x+)Gaz;lK9Fv< zVUfYVe=}odcqx~_s(2|I1Yz{dL4pv9;}FBHQ-d8jmxGlELtHDMg3i$Pawp)< z@CDY@3jfeT#gLaoN#*>0z2YNzmgG_sftC++rM(5foZ}TIyo8lltI^t$oz)7IaHt|k z-#(v331g*>sUFoo;7_h{6PV81%elj7P+K3#b4l?|U3!z9Nlv z8>b0g><(XOKHnZ_#I;`PgpJg(7c796-ho@)NckkkNO-)3%(nvbb2RsA&15n5f zG0~g2&>N25c?J4oLOqpvtylY>j?YdE)H!|itd~yZNdb?;vXYKFC?pDj4!3m6cp6%~gEzMXazGju1YRZbQ|FSB#LP`zMO~96RjR5cW@j zmTm4>^jVXM87YHDbP4*yMZyckvEx^MNn1A0eP;->BF7iLDGZI%Rxh_4QDCX6K)=!n zl%-)wmA0{^9NCek9^6~KncszagOo!pqqqk>Ig$vfIKvzq+j1mH>6pTxtqsBampzz< z#(?v^IUX}btxsd(avb`=rDGgwe`+!AT`r9PB}Bh;u303W`4f#uDX|)lfLmf#jv_fj zG4$b4fq(wBzzzxZ1V~&=G%y0O2kAmgshsdb;J%m6M_#zVO@kz=Izgmw;{j$dGNpeO zQg46;9R4Q!S{kA<1YH}wH2ztS#lzu1N2?`f-W+Gj*LD^L(>8axeM3by7b&cf@NXLJ za(*W~!Xuk00&kMXA9v=ph4FWd+8&m_7EJrz8Z-fD3(N#Q+~f#YQ7sShz_y*ObU79tpYgv@KHV~~tNIzDL|$V$)hPOy8SvZA z`19QgYN8nh@xWD>$$2Rk^1})lZ2XO#qM^%a-9otoF=>5CoVS%B*u#`9Y6h3IryjrR z{O^=zb3bP{lCx1GI6&QA-D)!@?YK%zppv4aq>$$cc^`+SA+$GtZiLdpK=bi#nvT$BaZIP3t8 zSR4%H^Dpn)iG~roBl2H&0zyR5;286s6`sx?etY;VJtev$b^hfapo``mzfIk7EJyB` z%Sm(bPznC17xqhw&tu20?EUWZxGwneD>ci&zeF623^7H@5uy*9kZAOVVUo&dsA86o z#pe{JO-iGzIRu<}WpAYe#WHM`()go>xb3PSqbDssQmRRHlU+Ns-pqEx*SbIJ2=xql zr=g$KJI?kH4!T|BuEvI4l)i|8l=r(RKU$GDKJvX(8}P+Ywc3Y zsS;2q&V%+Y~Q zQ9XTjYv!a~jMF7R!V+4CJR;CoG1|MnYX=quyf|}aEn!)Tl@=JrsD>{sga5Qt1^$8} zUUlXCyKDC0U!$LDvf0zClGfjjz2EzFo|<`nt+XM;F>-x{;DV=y8ZO*vxce|q-FBd_k?77rs%^>XU4VNy8xNY-BMj#gpdI2DDVpQ?~ z7K7_KJzGxRXkYJKsl<5N+RPqRM{1f#P1kb$nMm3pebzI?6pGgxck}Hge`#B}eCmXY zvgz_e7?L#|Lp+|=RxHh!zN0q~Y;SY7+a}bRWT|YHGp*(L*m37V)=s!FL5Zi6J5Y2m z>%xD~_h{aGxA3pyp2Tr-3q1BJySYSEA&$zA-P#xNAMO@!z$w1m3qR{;8yob)nIB|% z+PuVi^*nFh)Drik5V`q_9JtGP9xlBn;c@mf%wiHi>whqq zhlS^Vr)Jx<*IEicB~w1`#+HojG;{P=Z7<)XHLabhL#|SPwgO# zOhB3IT-ltR*jT|baBy0`imc9i5RgIJGVnmnPC%2IIEUhD5Bi!st`Lt(Efk5IzwR-F zt)(H1_V)JjKiBbz0W13pBM0b4&=HW|6ERgnq_|*JAhJ#2M?;EN-}}Ky!xN*UaoIt= zi;Jm*R+rL_=SE{v5^zo&o~+>1xO}*LE!cRVU$i*HaE+W_p4Jbw2O#EbuEPLKik(7^ zUJ&9?U_3aTtC%U?FcO+29+@drkCa_apqdZy(ar-x=~MdM_TKzx z7&l@6#R-XvyQZ@aYQHgQFAqw2^m7P=hsD~5ii=7IWM=4uNg_YB=rTfJ2Exh#g8fDL zh0mQ>SY8e9P6!%Y%@)ictjy)s?p*To7Fo4G&R%@5R3Zp3I)$RxANAL}-DxHQnC<^RF4q zWV(2C&q8N_AxlVGSx!eZ{$#h@SBCC|HC78w50IH&&=bV*7Z%wG zJ3A1i(s*}vR*!ezXi)eE&L%}7%E0)&4p7P_#9CmJnh!5fjeVTAlGHUSb|14Kgf5Z^{1xJUC<5bq`XpObq>^j4;Hh~zJ>`6)&;yZALD<@PA_fTF+OJ@8ln^C3o*1qqyp z&EIrCEEBL|e}W6WnSCIANN*eWzX`sKzY9#>kUq*5FNj`L zDqn?e$ZW@f9jUdS-#zgiRo}$Gywn!w|7iQ~UzJ2{L^X9lq!4SvJK2|2#pW>M`d86S zyeC=6=YNIsz(VgsV);JNd%QS7RbbpVb=YZt$$XxqpV_|IkJ>_aHrA{kOQs|26cj%^_w96%mg$wT%Sy#|wNQeSdneasD?# z^|P8eK2Xh62o~OyDI$+$oB5{r#JVcdL?w<}4`z-&LZN?4YhmA0dh zPmpxL^E8zcc?Wn~Ays$oIdJ$>&=rx~x5N6TUZ^@TQOvu|(yFX|g*6QpM!hUMqr$}lB7=3g31$t2)&9&uu?gXwWpk@_R( z3rj#QW5VEt`5BW6AN64^n$Nf0vmE}T(ehJbqi#Trl@+Mt3HC2LX3`686u>~WEvuDa zWOuVFN!g5x%~I=E;r<*ePDeT~o9X(FK1I*g2qn*ajT0?V`z;=@xMOq9% z_DN{$>55EV-X1<=Q&7SCzM{LaPh2HlmZ=y=I|+AMLmawwIu&3caR5&)aWATL9{a-& z6D%YSiw{_^l1+Vql>k{KoGXSwZw{kS(VF-I5R~RDZ|BWs5m0-+@pemf#>C(CjMH01 zAp9#s!JT*2t}}%yQE9j8@>vkgX6Xn6kqfRrXc|-vQkS0hyW~m0)xTz0ab`f)^KIhB zNQrNxRJ{lx98Akj6?QxML7%-Y)oRW#2jxt;-aA^DNg2^sgU%IY#3Vh@=T}fi1i;rlF zd;xTH0%pV2CYi{u;qRy|PuQMl6wif|uZSTCDRqSYjFw>S8DD&_RlO~=+LjUCwAKce z4SN}_fu|ygwf1~$Y-oAJ|r9*^Dvd2 z@O5?}qQKxQ5`?ssZp27%=*voRfY6#iSoe6Z@xqWdM`E~=XP{P2gtXmb`nmse5TI>< z#}_NZbS(}B@ePJ6&LdyfA$5?qVSY!4yc<@~qs+jgOm4n|@h1|E-RVW9E>9J&oVv^# zp8=`R)4Gl9GHl`sj3LM?Db(mOtAbJ%rDwdr`%pip4)>3k>xD6XOciWZD(?pj)>vCy z_3yW5k7LMlCAa#L>%XK~ZmBZ*7(jW0&A6(JhkNRcrFZOOtKitwGX&PX%P@yL_V!pL z(dVsy;AtL@7VzUrOp>5l(epuM{*H4#CZ#Oe80V_)p-w$^2i{5NsW<%-1LJ^#G5$^ss^J zvFY`~2e#iDwIk8}su$aYhlVl^YTNRG}2+a7tVTYgmE=d)9`8@dN8;k{2gIn*s9V zfE~3u>%Ew5j(gVY*1i`d8W7oEGq9JOEhsoS*D&k;6_vp<#o(==d>+D0t!itE@|s=V zSjhZj(c!pF)EdxslNIH0R<8EcJ{&e8SS+mOvWt0Tic>dve^6D?kS5$zTYxfb&{F~T zM@%CMRd#DIrHPB!mTBs&?6}aBiwb4wXK^>ZwhGr&+@7=T&hqT-F0hW^yg|V!%O$jo zNN;0-0R6rIueB+-l_rtjgk8e=iM?-e1At|q&KDx}G*$UX9h1_=%F2jGY+9^+DjWz^aUHn;0pacIoM8aKHo-67|#gMmH&jP z8~N`!=aog?3QIEIgH=;x^`AvyZrC0djO0IgMM^)H4|YSBQGvE-nhmH0zg?@RObduhx2!wV=!)=7D?X`_d#?UmzI-t;6q>~DajYVSv!nnMt+VL z!J(zt5dshP?+KFcX9da;C&*@t*4c*0ru?#TnU?VD@x@wlV8u2dl=eKvR|~T7`H@?m zyGMI}FRFVWl`9ok&(Dyt2+fcbAo%r9Tm2Z3n>((V_1MqE@yaudJ zj!~tWK2X#Te!Fyt1gEhZ!nm-1f3~LP-eg#R1yEd)<7=y4vN`QoKEE?)@{!o)T)6~F zPghj55E<|=zNv?9K9G{UywJDG`9`UlMRA|JLglIIf;Q53En3UW+r|lGl4>#Fu|;3+ z!a!_}0nm>DMd97~a+yk95J~UdEx)YB7YeDJ{q;MPBOQK^yD_(-FfI7cTA0EqkZ&5e z^v=L8Wt5fltqiBEsnE_0);!i(%QB?*Y5=8&A34*Y;wN0BzH$a~q4Vx0%3_a(Zh0p+ zmnVaap{jpUl0i7lJW?k6<4x~ahNz{b+^Z>5NN7{C> ze<9??*9p;*DU?Z?M6Z{|fiG;jYy(bjTko6SDbe_HJ}P74aX8jheSj^vFb$t>1*)cu zrtQbp(M~pj`yqUd*4hDKiJf)W=(2pB%IBjSWWaA*+Q2KmMbqJid!`jdOI)`KouYLD zV5zNNGTubYdU)o?1eCc9HG{(lYr6AB`c5Zxz(1$e2x%PnGmB7KZRz`aHtS?tv^wo@ z(SR1egxTw+k^Lf{9+tfvjZlUHGOFLY@gSF+m2M;TkJr)g<%pF+aY%72=DE>H%*VoW zSOa?gP}8xi)Fy7#ezqKZhr`g9kRqm-0OlFMtA2+xHVhgPo-kB`Mt#zA`({K1&!Q|# zs(GzF&m$MuNDKhf}R;dbvyAiWbS z+SlHfI<-Uoj>EMO)ftlpYDQ~}pD|Rgm~}{mqmS4Wr;vH#iMjRYA369$L-+$~xu zW6T8;>6i`DcIht6wA0GL{y^`tz4WZ@Hu%_o>SD@j-+?d;qqN|^lmZ+N(~sN9c4h}-d@w(V;$2pSZ3WJ z`+lub4imgi*V~S!=35NB&jr8gcd>32NA?GLYSlxw()$ORA@y;=@?RcPTe#v{DPk|t z-=)qY5(xd8Tju0M3SA_Zyx6b)*+C|sk2^vx^_s*P&scJ4+`TVNfjM$B}B)4cBter@$j(=U+dE)et@ zn&UfR#f#I~DzP3H8%iTaDwQeJTF*s^X#D8!R)7!boxf|y_i$);CfBb|-gEB&kE$W_ z>Ti;Pn$0!b4M&a0fvY7&0Pb*cPy>E>E>tFgb&YM?V%eVK**Q!nZt~nTsm0z7vwRG6 z9!KxWG)thViU{%=?3LwD8`EtKVgB9znF3P0gzf|?Q>zg*+a!e6Qox*fg+Z9U`bUfM zjxsDqd=`{FQ%9_jPItM>=C@|?Wh7{CcB{IZ<3?1ff$eLmJn6?o(Ud*((; zTN}*&qd_LG<3O&W?ER2EWpeT|?cm-uqfcZi8s$ruhyvERbIoPHi*?5E zn`TOXKGBdadGk|b0Ekl!Ub^(L$%L8BM)m2WC|kCz3k{`u*?65lcnB9J(bY~?F>Gl@ z1#lv-j?2z|uq-N781UoHKqiICu12%q;tYT~XDc~vNi{4hXbrkcjnnVb2t4}^wP+d} ztDbKyxu3*P;9(*-p-I7i9>1^zn0LoyA#C!^<;NYrO7cIR1B*PRmXCBArsjmmGhn}? zHzq{@eZ^Sb4vxfSgQ&Wljto*PGptIffT`qL13emCvr)`CeD?YHr6~_5&b@d4*Tbz2 z8DyoJPkMatrJwSSw2L!$KRNw5?}A1og|0`_im_7vB+D z8QGfFeccm_#{i;8sxt7{^I@vute?3LnJIHW0IUJ8B+JkkgutYf;fI2Q``xv-4Yk^< zxql_^iePBatBQ-5f2W$_hixGl`3OK#Bn&DUDdR1IH?ll~OmsNhcekHS&1-gVzI~n% z?lWF4+Z3OU{*9A5%EhJTmm&CpXn5>+Il&CjLP7=|3KT>It5C7ptrsix~Bh~k6NxWWXs*a#+ zc=2`$g+|J~)tbG2lCzLbJ=0+RIK8Il6YxHOYEORk9L0veYZ^tsu>BO{wAYCuDFbh= znR98KndKpi{Ar$;^O(XGKbLW~8zq>h0*K*$CoF#IozU;PzhjHv3r=h4Nr4R`K;c@3 zmi+KnF<6^4DA@C%lOk=qxsYS_c6Ohj!(8v5S4s(CFOfjK7>Yy;uK$Eh_o+BN#X;V5 zZBP^^3Pk|Mcvyv1YF^8mY~_)p9c)5(=J)U{YyF8!ICXt0llD7>z3a{b1*XfMieP*harepD1J)K>EO$ZaG3?+L8TTed&qoI z9@zMC7=zdARkF4RP=6Jk4lOg$y6R1+c-r7C(?_Bl_lw<{ioz{hq#0=FHpKEHscN;> z_vFAc6+r7}oj3 z+>glk-KH_S#k1lL1#Jw5b;P*w7d<)&`RNlkX^o%A5q2)ld|bYhiO?9P9OlWC`)w6d z$)Lv^p)t1zN(UbCPtP__UtgB;Px$Qk~k9B{ImgaWnq)4H~*-LxgES^{=OZYqH z0-JQ{CacJM09RyfGOc_Pz`P&S5VxWrc`qu`JXE(^I6;hiN$R(xBU6cfqPm}y^1o#n zDp9jd=z`9)mwEo8ZOnh&_l_eN@pvHwm45?MXgl^*p<>JD^A_t-G*%xEmesgRnTa(+ zT4>MmCWrb~_Aw9Fo@??rEf$9|fm23Pp@AS$pGeKzE|3Xx*V17*z|e40VeKJhOD63l z_f+BW+9_;h@Y&c9Dn1Mq#t<@gVS4Xu#?druL84P6z&r;M>Kdn_py`CbOjnx*y{N8R zG;T9Xk00Wa=u`uqV=THoMV*4CH#dX)kkt?O15#rrG#aDlr&i+@Hew;WZKH zbbax9$m<{)2F%iLFwhl5%y^&A^^Wb6R1Y&3;r{o(tt8vZe~`LP2foW>>hF#=dbs$0V^e2 zZP9!-Rc7}rfK+Mux}wS_$<@K<#x(DC0V-qqaGFHUeJrmlM0$VJWij&oW)5U{J+KvC z366vzGS5Eu+11D8M{t7Y&8r`WYVeL6N2r>F8nQW$@f3Qu$SeI=am0;XOi8kfel;RVzS6QcSN(S?qW5rTAzAT~?-9O~EE2f+>P`RA?VXqvG zSTzMpLt&t-u;x3&@^6||>Nqee<|8(B0Mb~GS?10M1_O!KIT?B%t`o_sGI9a`WaO`X z;L-Fb!1P)T>9AZioDnp@B(iA(zZA9EPw?qAT8LLAuXvns(x=79TT7qF>WanQcJcfR z?b$-x|8n4;Y!@ot+*qto9awJ0CiuyO(M-Oa1>LDFai1GJtsZ_?qkVnY_Q#sdQ)Fzv ztzgRfXqj!jq{DB1i_xY(#ffA_;dE_Lu(J9sKmo7fvIv0aDJ~stCKm)EQJBP8d#98< zyI9|6^?>&a=?e79s7VZ2mtj&E*ydGbiPU<4fz zXokaher^TW@6C;QaaVI%Un)<+q`|&Q&i$utqfhE*GRu|;1)y~ra^#hlx}Da*hedvn zU1fY&oa(D#$XjyM6BDOL$_qsB%TUgdi)WJ{@O9<1NwN%aVQ;S%uM(+&t<(2$N$)@K zFX{69dVx|CNL>i#7wALIgKvAhRgVq<@Wkn!4wq`)hpUN|?tYxQ~($_L7vPY_hhrs zsY}W7J-K)gWUHbG-u%HFh7Ly~%ptCMaeMyn`%7pHv0;{VdsLf5BVz+oU3!prfKKgi zI#mn-1NgQUPQlFBD|mv#*drFEUBjKqpDvm6DV&Hug`qv85Q>bTbWrloz2waW7}XT` z|0*3E`Zp-R`Xc!aD3>;U(htTD*jbv*B{*txh!kcEei-H#a^@tt-yA=o5JR)S=uI(6 zdu5LWh&Bhnj3r<`_*V{Cbg)iU1HQt8mOUusn!g3dXSKda+|Rqt zM9G}d>sUw4BxK-dcys{|z>;kfMZ8!ty;#tU0;E)UoBrnh5cI^Uv+M10jqk%Pb59<; zE_D_ZOnQ54>c(Ib)BYcO7$Z0;qE|Malmk`2K;x()42z_f7RFPbdwGEbV=AL@7d5=;HNHMbqA#WDiy&I0FZsd*fI)drE+Rrz-zvBOsc{2 z!XFQyO563IOpA>ZrQNGWU`q+38!h9}=FGFT>k+}}=VNNGIQ&-erS|dNQM%H!WreQ^ zY8g>T=T&LLkJ=hp0PvPSOa&{-Jfi**DSuEi@l}Y358B+24}#N_R6Y^E_^*lUk&SvZ zjbV>H{dyN?S?xq4^eRc7^Up?=P`6?;4LE~6mZK5uNRbaVLaS%57OdDBQkN)bGUi@_8WRWyyiir#&0$7>6@g(;--( zPx3?%rVV+-NA0>amHy{v=^v9;PRcj#a-97UH~F;ZWW$5=a!pXA_v<-Py5dym%*urQ z)T}6Hwm+)4Kwa>{|cRrz6(#jQcb%`iuh@PW8HBCCL7Op82k zD{p-Tetq>cy9vx3HoXvRd@E8V8T3NS`aKC8OQP&%FMQaDZc3J>pP zrhTuPpj?-j0K29h9%ulfZ=n!dUTP;z&82A8<&_E1Pmj7yT**J$8Fed}72O*#LH~kG z4gp69Ye#V^t$;Um93bkEWzqKS?J-3XFoL!DWky&fX?qn|q?gBH5le;5ew(!YuT+$d zSOarR6VNeL+ord?<0xM=6<6(CWZe5Hu(<0ptKPaBc2?2~zq@8_?;m3=U*_|Q+qIXg zU(MUr78-w$NpI1($9FX~$Ij^5wYDW`fMJNy2|;48a%m4wVMAKO_46I1P$ULt zua;S{y55$qsyt(mPjp{4Y9P*zA-W471W0l-9|h;7Q8r=(A%(k$?ouj}V5zso`b zql4KAf&iL;`99?O-FOIPbi?o8*6OJI2dG_7$9Ckror{>sO9Z(|RV|8;Rm4&IwqmDw zzv6#!Xq=EcD$+Sez40)WJ67|;HA6M7Nh3vg@Vo~OV%CB&#;ke0@#!%q{$m|Gt`yfiT_!wtK?lLrlT-qHUbA7ZL^jK=_~(B{8uNW$nOo`thIiEC zx1spJNModSxlFu}vu(S!pL8tI3%2V6);+E&x`Sxl-m{9}4_NT|I}s!sZy`uR0&cSl z7lk3-iyt*)yX>Fjw0Mzp-*n3pjA|LgrGdf?zU|8!JksUn)ou7pTT13A(zx-8FDq2F zpRw+KCN(qHZu3*oOH&Y9ta4px1rIz`6h<=B^LRU+f%e|8agvkIuCZTYXY@k#*kfgl z5AzAabOiq~WQln!bu0*Hx^ZP0IkoYpAZLoqaUwcvlfiL&j+T#>iJV`r`=^2?cK|zi z@`o+xb}z!IFPhy}KGDkME=lKelUl^ZCRF=t}Y;O=Dj}FBGb^N99E&v*o`{g z^+97+mPma^!}7>MWyN7P&M{teI8$>(k)h7n66e!(O`%nDo8g+ zYJ-6V8wZYfeti6Ge_Sct0W}P_u`|9PqULMIY1{BLsdIkae7W|~I11G?U}w=9ZyPFF zx$D=Te60OG@wYH%g-Qc0|9b(Asr1jq`@^CCy8nh?+@ege@Z`)Y@98g&J-QjHeQM^b z>@qBh#oL5}dE+a3Fk{f$X1EZ+0QDjilXkctsUYHy=&+&FG;mToN^xk;N&1H2!g^O~K}LqpfVnrt|cz*VrF( zravW-J)S-c5;T8O9=vACMe;YfRXy@Y8%WXkI9|)PQx|OdfSy$5<)Ct`r=dYFZ9lX9 z&Oakqt=2YKU>0=neqPmV!^dIbNRj?Vr{qmsA?t57`TWIj*ve%61b{`-Z8(fbOznVI zL?P{IDRNVcvEYpiQ~kC~^$zlu49E-Vi3dN_*TXGW7pqurx`u=Wj;ms~Q@7Y= zZ-YIV$a1_ZsIvJ)Z*s$oeYk0Q?GW}SjwC<8!`zz4k#zp^)Bho^ulGvxell7XfM6Y| zJ@hy4wwk0uGF$W%Qq;g2X-H~ptnNzv6w5y!nMOnQuvs7=2#DA0C_3Q)f8M-$eSd%F zp`|ZVP4-}yg&QA1em5w$EBFP?FmU6XPg{st3jueTL9Q=(f8#Ab@cA28jvuU9aS83_ z7%-JXTwzfIjB!LPf|g_zH9Ih|qizh9Jmz%c+WPl12gG;L-q@Rc`=VrZ*Q3bJH66j} znr_xSoa8oYfSqV&687C^VX>} z)1(YKvZBc{N)fGt_!aT0R0r5&V~$PrZkkM&vyV&ke#3pqGpW)HnCkamy9`<9tJj0YtS;NQ(&_WsPmrlxiOx*~Y>+hG^2Lr9Jrx+^*D z**PluDJS-2ncS8=Y$0E+01a#&hk;@T*BDRZ>G0*0CqS7Nk zWN^kVhAh8&?@}i#HnPpS)EP1cDn8czUwxxx7aj-)bsZ!=H<5`d%YfR!bR5$du;E0^ zD~gc%L$^^x!lK?qYx9-hCnKaeb20}&Nnq&B4cXJ{jFe~`D@m||*`2wFSPykp1v719 zo==eRI+m5)WnGR$ib&zcmg=nb#EzV(b=PTWRyAT;78}^H^H^BG<3HH&s^KkLK{ka$dK0;FN--;;`lD}1fH75J zhkncN_1C1XY_#IWS+LBuBH9!q1nnPd~FBgOUg^(^NurXqTteP1+tc3a3YU1T?fEPTX?$0`3 zcP(qXYRc!3AQcVwr$()Y1_7KW7_)L zwr$%sr`^-GZ5wyajr(%$OGOrPXGKO-R@7d*zEx1z9#4Hi)Gdyp6jP?;CMZGQwSly4 zh)qQyaM)?R>n!{*NugTQ_tR0o=j-{VtGoXCEyMJYhB$O>g5gA}zM=#Yxz}2sAaUA7 zwR;y&F#gF=g>rRqeHU;5;Llv82XnaPJQ?@c`)EKy`UJUk{ zdNG|rO(vh&7%CO7OiBi6AJ3Qw--bC5l{Pn2M|T(2NAJ4_JwLh7T924)2Swpzs_W1OumxRep(pQCIO!=l za@~jw&RG`d>40OUx{0b6zbM4A2v&OP5EoPPvH17v)>{<6|CSTc5~ABw+OWYJQV=y= z;VufOwG+A%NnU=f_R5Cze7Z9;0on&k69?i)N70-`W5CU^Z1J;wyo=coZeUyfbEYs*G)0dpjY;5@KwJRm~#nt`Ok^o#@~CGaimB~IM24Yo8sQi z`(RKDF?0N|h~JI_xy10}c#WiQvBe7wKIcPPzBWSsHDuDo`AiQ7deqY(az1a7>@0qM znoAyJ}77OG{r(;@Tc zUHvobf*tNhOTaqXquO6#5&t{ov9sFzeUZ#u@o#fB+niNU0Kzg<+1FhfwYy>x(z)U%~@30^Wn8_DiIs}dSf_Yg<5w~>_XeGgUjw&d{{60l~X$)u*BSCz3?3ytVx z9$Z4OIJa6I032%<73EF@R!F0i#*7Z>x~>%?fL`L_a;-DKRX$*{dQL10R7Xb7`VS)Q z_~3GI&HM-(dTFc&3FaobdT9y(#pgSPFwoU(Ye-)({u<4uWRHprwmuJKF-p*YhXRJk|?NhumaDfVSB z!jEt-6`G8?4>Z3b&aF7r@nKpCaHBip*=hfBVg=;Nd!3&z#94O_8izr{(gxQ|6^JYrATaO}s z+8^4kcxmic`~-ewWsEpWi&s~-Flrzj$yb|p@kVV-u|fXx=H<`lR1GUj%7LqZU7J=+ zAgibVaP74+H+P2~lZAAcnuCAO1an{lQc^jn9`ubuG9{l22NR}`vNxI0j%y8{Qc>pt zxn6}vgt5V1a4-vX`m547wU%*MnL=o__-|1&<@dGBU@0H67PdhY4UO7i7ybK^*k7Fj z&Y#Lm%%EK@+Q2XPS^%IbbC>)zuI3zlsgr+jm3E-#~o9N#bi(OdNBh)SLQWThR9 zoj@+N6GMEZLLr!^*RWXJ`8j@Q5?o>}=!t+XD>)=HjS3-)k}CDBJl_BSy#JXi%Gs;E zXO1u=ro^BwP7C_OB@&q~`N{T`BIAc9Xz$AxmZ1`R(Kk?2PIE`YjcReP)|Aa>dMHZn zpsMPK)80uXcpm3b$4gg5g%6}23xk5pFa2V%f%H_;x#&i1sIt=*E!zfhNWN+GEyY$9 ze3BgYKD5vE0YIvB8$%3`0oJ$8?}2O)g7u;OJX4ZsYQtuw;acs5jLIb*lYHiYBIlOpR`hqIB6^Zk zrJ|CeURsD(rVEDhK*4@_6$UJI-VY7)A-Ws{zPWZcm6yiASQm;AbSy-?Xb4tPPDcma54asxM^Oyp( zYI$*DjS6fr;d$~Yt#DUjLPp-mj;Z%{5nt8{JYgy~fgfLjUe2{~t4ivi>0mi^Xam$+ z1V(X9wzjkk7D@nHP55fIrThgzjAw8T31NysuguK@bG!J)IIL&7daMYBedsD_Aukd9 zo^;B8`@|e4F+#7Xl+}XU1g$>9@sp+xx9YOdPlT<^!c zV9(mUhB^w!S7 zJCT(<-^HD(@%*L<>eYW%JB%}nW-9YeY#1xt4%` zey}707}WvY+Hsd?XHlw~a1SaxdC%NzRf%;*hWb5M3%4Kq*XY+4rjqpd8eW|$%ds9# zva$U{WFwy^B5W5^G0H^SbqKuo`FqHi7>RU6O%2`~Jo%bW8ycaj_nytwAHRblC1i>{ zs=|Y7Hnr$n-G{0+0<{&T?~igAy9pFi#RmO@wAcX=;!~){43NTJ-&%qEA%6O7q9u(f z%RwdFsl3L(A1~QT2{y|xdsN9Jw7TFsNUWve5o2^YZVXH59Pkh)8VhiXO;h)DR@#H^ zT$p{gUo8v?PgHE`B}Z4XQwc>@cr+QV5`E*gc+5v2YiiK2Xy|4DR6+;^PH+UV+Z1b6*J(}OT?QK>KE{#c3Db^>4zFKX}C)S-V;Pf^VWb|0`xSLPiC&R1tveVaG2g~2xdmNPV1heaQ$&%HosTp68F6)-$tMubqqXuGinnwN6?;o_ zcY$l=1mAf8=E-O>6Xfmq9LF+pPziA5FfR&rQW?X2nCF-j)rQ%FhbX$qQ3pX<3xyg9 zW2RQ0TFelPP1P6OmJ^D_K?ukprOfIPEsoNf;tf1XmH+LwO{$JN1vkwSg&^Y@h_VT7 zj9n>ZBL+l>70jbt?5~C99zrs3ejGDuxAy^k7ysv&Z&&!2Ci39vjjm!sHl-9 z()Bj%Ja|=%>#Z&ACvSrgdX`e2UDT|hRV;S&PkOik%2y1t802KUC=IZ&=PB{i8S9aX z*_6Yfzv5fwGP##DZ-&$yT?EXRc|0a;aWvhFY-J&mvV9rb$o-hL?PONWaosvluGk>FIsL>*bfweeDncn+-s%KYuFfs*`j6 zZA69a_GZ~$s;c%y;*lH4hv6IdwsN$91OsOsKi;@IaSi$N*=aO^S66 zx2b+mPiv_~yKtRLf77Ra-8!dQzM>$5?xo|~H;1WuH<0DXi7j=mLez0#h!@u)goPW* zlpMBa_HHV7@GrM7>;*X0j}z=&lJx(bb7W7%t8XL*sQUE!&eS*P17Kj#uYU!dt~252 z{dFD105;fZSrWcSF9PvVUGo~uWX*Anzl=qpZ*7&&5l)Vo$$`iN9GwI}Ee;J6OlH+K zROp8iXpl8)hXZ8>^{f<0$`P;% z+e%w2tnSAlY@jp_wVHZ7zjL|f>*@*BIIfEWDYn~$7Gql>!n{filx%=voLdz(D<>wVHh>3L+W>tj)BA=|*AGD=xGScn^^^humVs5LU9tE)V8Jlnn}gtVjD=()^S zO5I*q((2!m!2qV{Pa6_PHaOZ|qn8MCvLrqnh!N%`=(2T8daG^hsyFgBbkdc{ zTcvvC3q?^atEJ{>rH%>Wj;cMr3wlS*@#s4uP*Co^xWSW*o$t1C#i)fs=!ad^arD{M z;>unTIP1K!0l!yV`}wPg=Mnb_5)es|Bsgmz71#R2cLB{)xY`Dw0Ngv!zPV*E1~Kdi z@ZvfL18^BP+HUY0R6X`s0iE@u8!b}NCsNr8#sYz}^hv3VqMDIl)@+E|m(pDecV|4w zkSTA>Y$js7%-#{&H_{u1X}h~dv34YU6lr>PG=YJ5#+>vsY|=9B-#$7qUOp|8y#p`9mo^b1X|}52|dV{3TSL{$FSZ7P&X;_J~_W}qXHi7(PxH`^5tgU6Q_pb z(!y7*7->3*I&$4{T=+JbMsRHh~z+^RmV7aP2VTRUij>3Q=WAHeaa6IX-wxGqHZ5%BMNqwiB3HI9ayz zx`AaXja(sq<6ETxRBEiAhip!4uej&46%V#%tY2|&^>Wb);-phxziEs^wVFihsq7-w z-vCSm&mY|B=>0~#;&xt=q0l?yzy)7R)>T7P$BVPS#ymYbh_2K;TTrpyF=!FDLm^>) zwRG~fqj^rf#n0B}WnZtSvt0v#Jwr{eAJYyhK}Q?THBum<$y zWHvh?Onh9?G2b?dsi`RcTMuy;!_=*8%++ zEd(8%f6|M`JfjM_I;oWOC|G2IP8F@-i$j$I07=G;D|#oj>j2R6#(CSQ8lVp5GZq*#;^-->ix;S!t>b0S^vO06 z&&ce-3W9lXOf5zK9_Bpt)#_HGG3ODA4-QvU0wqf>-0@!ZFpSTVINvuj3^Wbl(wu@C zF%GS;MT@JU??BVgX+XfboNOrgErQ63PJd03N{De=<_N9N)u>JhE$O%;c&PrK zM5AOzZw)5aFvfMCR8SDX9*r(QuA2%s*IT&2925P4O5C`Z|I!7^OH9Z-r**774`kuP z{qeLwO|r&~eY0Qx*>BK@8v}Ur*)Bq}XSeDSLd%3w?xO8={WbAFyZP<^&O>Hkb8xoN z2@;qWz_;fxg;bsutb~fcs&S-}G&p?zVIAUa&iH-8JQcq9oZI%8(BQsa@QH75XeNZG z2nhE#ZGBuTPA~aY?j4j>Rwwleqiq_JLb;;`-c>+UA!xgh0=vk%?*wSBcFa+?OUTdN zLWjJbi_#vD3LtQZ{!{mYoEmQiiClp5G~Or0D?iLg`3g>*DcTcT-dhEm^!q&hPwEH9 z)Xk@$y=zQ6zgPMj0Re^mxqher`cW#%s-$QOsCVuC{C)n>cMgNfy9ts zIq$QX#_#rL!BFrt3U+`zh2AWWj;`Tu(0r0?QAU0j8!hzlsb7P!>XU$VDH9_OCW3}N^(GaMQ8n9xwJyUX9)-&E=f=DfJl1p2P@BnrL735Uk)8B zE&A}`vDkA-Q7-=5uf-$$#J{KYDV)fYxuHspag*~^amI^!n%`+}%NT0c#snW%5^pko zn#m>73wouSAC>~&%P;I!vab>fUVo7;d$GHb+6n+$+Mn8MA;FPaolR@;EGgT_YDfwW zS}toKXRPr#G9Ml0xFE6~o8Y-@WifjLn#$hlTHA)AZ=*C;D0Yq2(0-W=mLZP%q>;yP z>4e=!v91qd^Nf0$7i=`7qP-5Yz~4X>=2tepgB`9tLSa{eBEYJhqB+i3+_C}6mI_V343T(?q3=;0&J8B6>YLGqU!VEoE*bXcAYXcYT3j@2R}JLyeL zTau7)wzQY(#5$LF9OAPanFfQaTF5L;X0-v0-qgZ6Hp4-NEL6ACN}u8a8)$(E2)@Z| z%PJjo);otcY5oIpoUH0miZ(k2vMD5{fDb&%`Clsv6eRMwKjb&ntA_=dHZ=)aK@58f zi=Z~PZint=DiUjv7ORTL4WKe<)TK#Fb+k>H#W0so8C?+bM&X{d$tLY*)EKJIJ;H#v zY^Z)8b}L85ToOv5H>~#laE%dI`7XwMl|dZ?S;5fx0M5rVx8E>RKMFuiz_Q=oKNqg6 z0POOqNcDuxoOB6JzZ#|kZfqC9Wa{K$y5U+{v`FIA;|hj0d$STl6{PNcS89am`XfzJ zbdP7V0&?a}V7fUk^IPLl*ln`ISRcSzy_N7ii`=91n6~oDR$`fV`0rAC5!Qs9-7)$_ zl$CYZz-CBA9Go7@uhgomExf4+R)>3tq^p>UZ}NTbF=ag=$_BA_ZuEeHpp*B|m{>J^ z;F+6l&D3O=uj0|Pu_5RUvC7we7pQZ5u)ItHau5Wy3C=*V`BIL? zvn0PQ3n-EcQZ8-238zcSy;bKq8ewknUod9&rvC>?{?~FawuWKlAZqgSvDN~HX*ylnRRV@- z`$Gww_YZZJW+4U4(-tlQGLQdn$2JzY2EfGr-vE#+-tokP*2I@@m=J~Pa0Z+Y=k%dp z+a8x~!%?2sSy!O+4V7r6!z^O19Y21~z|_jq+K-A`Dq&pVU_?wAv?ziURO)TC4evMZ zBwKwSx7QmtYPwPeG*;8+L(|e@^Wa_g`e_s8OJURJCxg0rG8F*ZyR_$X?MY+b&7}`o zsztiVh6=mKiyhdSey0D+%Q6d;;vg7OP{GwA~Q zOL}X`7FdCjaMDtQSpG%3PRL6N(Lkxf$O#}H-CCi z$*3Es`t>@c{CUhP__oI2g7`!Kk=pNr_N#N%s@K*!w+f4$d%g-74f{62I#sIk$HsF< z2!g*i2)^%aUF0<(W8UInYA}TTqmbRjZOt#`g=#^`q!shYqhteLv0vv36R>ZK|ka)HZ_Hmlsj7ji;w$K90^pYn;=06p|^ifPEn3>q=9GIi}4BVRREE ze4%4KVZ+l!JBK!rx8utI_H`McE?S|lfndMQSxedF3A{&)%a1k+bU+d0MX6Y-fMFKT zlMEPsYlOq1#|*M{<=c29xKuyCK6!#XvHdzh`w-yByi1{mj^!NkQhGL<3?%VF8PbF6 zF};saTgmV#Q8USyoi5P%FN*~z7+ld2chpP2=lBZ^iQgRCjppoPV@0{-^C?2~_AE&swUpMJqYDwdYO( zfeL_pjrox*WY|9FGoLq>o2vhtS=koKF-ai-1WSSsg#}n}=o%L2lm(&-h{yxT(3waS z7Rd(z47#w{6G^am`GOazUpj9@2HJ1vJsn&alrv}o#K=F3I1UN+63#PN)6imybQqYY zXc}ZMAZLydQgp5al?7Hb8EEh@z`vsE4+%hY0PE5egP17}0!b^F3j8uzYqXZFUgby# z$iA|APZ)c*bfS^PEFjBM@|R)h4Cr1!26r5Sqp-Y13PLP17Z6zC(ClBpi0&y;Fx~_W&tQMbdm5Ye`hQ0za2V)33cJx0M!p8prWuYW z7but4a-Y#GGx%(8|Dm_Z0XFB4n}gzG^?as=_MBnA?D1ll#-=sb35K>(cG3i|m$#hy znnNn35q+zHJEH-aUFwx(nn4>4Fgfh~^AuMJn;L@mEhxvfT>%@=U#Sfa9$6l8Ix6kI zWwBK5Fpa?N-fuZnU*_ySjA*@7c2vhG?3_1Uu3`&nHu&rTn+QOTfF!hj$^GdTw|u1g zY>_Ytw+uOK#Y3iqc&6c_2C8Hni}dwmrE=;hQ^#v7j1FM2?bIE&r%s11g}8bs_rDMf zZ)OY~*lC~GX&9UyY)F^J$NFlK`kK`K&NVOkwfudJBg%zE-yHci_}M; z#5-it*R66SY3{*gx`sz1)L2x1WxbusrT(V9&sw|h6bGEx&!t6PoapwqjyL5q`Qpg7 z20fQhBEEEYb#E8u!Xe%gr9K-6%q=-8Rb9KeF5lNlfgOSS0xX;*rA>G>V+*!)ZQBeL znF`DZ>N>q#L9_b~@ymKwM+MG3D!*w%cG5`sc51V4tk=iDwUT65W3eL(5mDKLJ3IT2Zc#j)s~J(@-W9Qby)Q}rVn zoks-nk*Dz-0IjbPHhe2Iwe&F_LcmJ7;h?i0!K1Xd?M}6Ktd*eAP5pJ$X|12nU$@WH z(w0-&^O~t>Fq_cb(4#wK$qg{VT3ju@8Y_R%e~K@5cCDkphsyL~ z;%C7^E;vfeWmo5_Y`k0rQl%6V+JUd=Q@Ug-cr2it0OJ@3<=<-2i_8k!kqO)y+Ijot z=g_nL9*tV*sxy~~Y8xGlMrj16^$DkU+oss1RD3RZ zPUe%0+pIVSJ1i-?D{I7o;=eT0_T@19@A5YML9n~WA}q-uV72hxmLINS9q4zs@!W)} z8Hv@#05Z@m#X!|+ztG?Y{jmKp`$mVH4|&Lj8yy;CF{%zL8um7fmfQOrSE1dkR-KZJ zPX5A0dJ;fH8#2u%;*@fAE(TfirvjrGx&Pp<>*JCgZ&T%W;GkxuvEXYN5H;waLkA- z1&n|C2jj_(ML*RAXKTzY@MRG()l#cu!eieHulJA9+C&CybqA*>bkw6el^eyhYI#)v z!%H7YCWn(1cYifr>JFUqukz9vMxZsdS0por{9#cov7>H0EP&&+Zi<%G(i&7I zMHB^d$PEh#f)@J2!UE0!wdIBYmA<2$69!&#c?g{%T%t8m5yIFrJt!>WXvRJH2hcpv zhC2gXVAP3pU*C^iH5mj{D{GO_*}6N?7%j`AQW-A+IVILIIYi=5x!|d3sH$j=oe>+m zOpQ$x%~bMROA{;l=!}k(6^1us(UV9RTbKZ&o%l-*nLD7ksNnqlEBq_k#;C%#nhZ2*oY?O(< z0;fbYBvuThAyfGebn1{&lob{xY0q+Lt>#gY=)#az)6v}dD>6n*i!`$=KUo4%#jqHUl+T--T9OS0m4Do>3gfA zh^}c!9aeE$NOC`7l6vk#z+r38AffYNROh$M*@WJ~guidJ^gpW@6=<4M<-j#~PVjOsKtp(BXDNjGMCQNeoM) z{&b|H7Xd%RpdXuVFL+~z0qm8xl{!kD1*qMVy&p-AAW|Rm{66+R+s{zQyk_Y=)l8@6-A)#{I+ip4^;IF*P6m*V30Xh&ScH@c3!+J|d z%?Gaj#H53gqmQl@g%}akk?VoWN0J5JO6M=rNN4(A*gMypb(Yxx!0SGhmGtm({IHh( zY54g*GDlr(r@jGH4nXTtqUVMASCe~?dY?YnlyLXojg+!?7a>A^)H{KU^-Kg~x8^>; zxoUX)C;2;>tU!l80FM;xzsXZ=r||#MI#YTDxaRtr1TyqxtNmBc&gF53E#2`*0A}Ju zEDHSTy<*rA_!XSmC0(80H7Dz-HuNhP`|C8^nml6~b5QiJ-ngtW?HL7sr{;Ek*X*y` zzupL!21`6dbuT;gqXsA$%V&gVZ=re04;G?L!BQvI^tN_|0|NC?Pt$|oB8QPZAlTTX z=doVv{)PUxL_UA+>~AFx1S~5t-{cLe^Lq_wK#eV@HMBuD17M)S; z#rnhQ_tZqU_(t&AQlOQoH4v|sxwm)-$-Q|v{W+-*SYx*W`TqZtc@~=gl1H718*#Tmlgc8BY|+>+)_CdmQfdZDs`rsszVH-zp<0uZ9^<4}M_V}lDuD|yw6apj=*~X}q|17GV2R{GUiTB$4^dt# z*Oi`g;S%6Thz$!+L`o`9@Fgag@30A#NPqo%54Cs_@O@$y39d%Ih;LbS$ zo&on}aP74!+4FH_;cXuxTTd1iV?V!IeM6$L`aU|UI(HClR(R{kH6_8= zdqTUgXFBY&)(Y-h^5H|2Dw;H4jR*D65dUuxjK&$5o zlj>C62-}`Stb6wKNvF=OWwTc~e9QypvLr4s=gH;oGcWk;fKA*!*r7Cj^`V7BgZ8`| z7^IL_!lVu61J?pr{@dZ`3UAW+fa9LupkN}R6367$Z&4jV%C2$Ew#3@qg2p?2DuDDa zht1QibR*x)ii3b)W-?bJyDBgLp&=)5prCuv-&1i;GD=KTuD1=^HNk|<;ApCdk3J2U^@)hgbTS{8f3{KFoEh{60HYoiB`}_U{sYcQa_n4yr#ePah>O=aoNdg4 zrI#E1p0~gKjwB(wls7Y!;?QS{WMHJtOG)kz;~&Cu0^J`SS9jBKPKl!Tnd`LF#j>}7 z+B0Pq6T^kZ^%p7TJrnFf(~q)cs!%}sm^$Ujo$aFe<@bUmYc-lMxuyBwkVDI=e)FH$)6JTFX+mX$krc?>Kwr6J^lT+n=`bH`Q_wvmssjFxtY8d`qd9T!|uVK3$;yFez*pd?E~K$SVV3F}t5 z4*oQ1Abe2fKqT-?`9i9`m$t>k*nYMQEQ6YErjylJN#;N%tp+H}h8MC6*`}VO30kYl z+~!M%f*{yFcNjLPw63KP{h>l5Kp1keku;9nHq|0AGISWoc0pgJ>ul%IX=I$sFxqyJ*{RtV~xR)8Cdyk_g>MuATo0EzVkDlubE*6jurd!m0^2{w0k)*`Fn~{G8)lqak6o1pi-(vkm_UiIO$y=KiXG*6~IvlQAlL}N)0Vpw|x#01**c2A| zNbqzfB=>1+8+skSf7YR-S<@pFaOkRnWC%+8+xcxi4n~OzqZd<}J*QWyuIz)@{upar zF&LR)8>@nGPrmsWR-&E~q{#=yr%Jb*eqc>ktrc#nB1$YTL(SooVXr}G2K5TuPcIgE z@l$$kB3X ztoSF(;BYcAIb8Seu9!wpVFLMeYA07YYt%uyHA3*gZp5>d0fcA$jpf!p1jX%I|FAPv zO-zH|BQ*r$z%Oe8+tz55pA-j6rE}|SDu7`d>qPcVVakp&eRfG+{*fvg@| zI3!Jd`G=sNfvLz1sEYU1G_-Ojv|B1Xebws>N*eVhI<5Pdby?^^TnyvZ3n2eA0wG{0o#EI5yCZOf}EF=FVxuC~9d zn(I3Z^jMHJaCi^4xdv%n?1Aj)Ug!X3#$DS{gBwoJ-qM%%n89sfL_ZalAmTvzW>(pA zT|6QG{6K(!F>03zn!UgoP8uYCRtzOE6(e2T218VZ^H*CcSaSOwso;14ddSsHp4@t- z04cv57B`NPXZr3uk*b^5)|@4UjhwxeKrS1rB^+(#B<_?Sg~mNxF6clgRq0ZgQC|^raXUN2wSmAL&IJ*1PAwmgp2-tXmUmr=0Vis}q!_|-T z=NjI*EZR=j`TcQHpA&$@ih<_!C62p53|R*A=27bs6qMy9me4B%KDM z?xwm5Ben_1MKE%b7n)T376tZ?g9{zJ+`Z&+92uQ090jj=R-X@rWWb)nUgXbaSAB4HgIU|6S@qMWu!X4@ga?0$JA?1Vq6$_^LnJp1ygy8ZnWSU?%xngNh?x zCM6#A1~PzM3iF2eE*3qobvp9e$1q&(KbJ9lI_qK4As4P~gVrA%uF^8lV}=0S=ijnE0p> z?`bV5XUh^O=j8u0X*vHU&9aQa9$;O@xFSDpI@aWnJP@f;uQ{raKDwFr?Xt(KC9-eq z3hI2+P$nZq*gP_k%k5ph)bIY4%3@8wrSCDVfoIQs)d+slg^}%+d`^qHZL1i`AWej% zd)9G?6tWLFd_5gU)QArtMo3MxFiqm7B5ylqVSw=kw2Zc$f{PRZ!vwwn&-N=t75t?u z2Y2W-WkOtslvUn6Q0(JQ}YUSGVv!6i7oC z@64V)>q5I{!g?KF%8AFo`0ZD1Aly`Ey6otG*U?}caaeq-=S>_f6$+c0S;nWxb-EQEzv{XI!;w( z&uZIu7E$BW{F7rYER0on9dxFtQqqjQysfGcgADP2Mu^f^H{w1#SD6YCihFYt!5o;v zt3Rm|cjcn%9r(zh2{Ir?{vj?$Y*sUv(R^Wsse)$t`>VH?jtakfxEaXxfXCpdGC--% zqP$YX!p%_^7Vf^hCeF@#Tpkf{=vuO8wh!HIF2c>#AKC#o3^s7(gXZZSuq-UI>_^?c z#{HIis3Vg2k*JP83k;b5dH1R7E!J;NSk*<9vO}*XGo%?e#4PN;rccKprkVM5O_;z_ zl?e4X=7Gu6fV)-S#Osx=E>C(5M9sK(_Mxx4!`8b$K|tCI;GwAm3`Rh(r&Aw4L)1WAi{WCP z&JRn8gUf6LVb0;UXnE~Q`Bk=c(F^<*hlUyO$!()e(#W^s0E;K@l>t&%goPoo)VVG0 z_d6Ru@TGxp$c@tTUD~u4Oz<8h1I|Gcd{X`tlLc6Yv^+*jfrvLf{R7IeYz9RRL=MEG zS_Q^$qs%OaG3REENZtCLUu?g2G+(4l$op5+eD;VLd^}2Yx!LW0JQz6wnu`M6tK;5C z=7AH2I-cIf&~o|Hqo;4MB!}*fd=bIQxPoKv>|?PC1^(*)TIdA+0n3)Vdoj6VAITyW zXaL+r`8g1=_i^5e3VZ9q=BpI(LoeWwtDfY3Gq(_wj(6^_9JKF(c3Mq{z2XSsI9A0L zAi7nT??;@nHlo)Vl+mC$+~ws~UKSIuF15Z+HUOJHY0i(U+{|PG*_SOz=;e+qpk_Q$ ze?nZPgpc!HbLN{smHjfG9dr+ZP|Hc+>`* z2X$R9CvCRSi+#$F?Em9*?$v_Q>MAXiG_1Y z72i<9ypYRLu$oCkUw_P4$5UyZhXUYV{Y8tQ@M-ADm3x!Wrjqc^isKW^HAg3rJ0Z~M z@=D!Fp1#_l&zZCxIY?`~vq(f+J)yDOOXB-wv>e1`fvAvy1|zASFCoj;qqD{#D&R=F zLD-wJwGWB#kBuQb3&AA0U)0t}*vAoLgrIiYymNH;;hG!d6P>!1Mci>@QVF1=t#p2 z`l;h)r+qhY%{>dtp>o0hBK&pbFZC_OHQu*P@wT!-_S2trxSDBNCrf}25jNAe$g;V> zDFn^bL20o)hdv$9&6hs&1Iiz7lmnB7S^rPWW@Y|=Vm9Ao;(@rcyD#_2_QY z;=1N!*F_3pCiEE-t%RYZ3o3?`BGE6tnmTuW7^1mpqZ_Cmw4vvMgmPi#f8HV~S}7^? z7B8$^A8B=_kYdhF*98{SUzbud?gr}5Cv|AaDXi?QQm?1x1E4PUfYw!?kT-cT`UaRQ3z_gQ%E4~+JeJHzA|fh_H3{2j-|gd;BjlTNz(#-JVIOy;g0Ms2Pt#R zOnj%TE=Aelf(9AR-@_v9VuoGJbzCj`s^b;r$?MMx#)U8sfFGcVLPD~4*FumWciS0D zC^c0O$(&5PqA?|(pQ3E~y@R}hI*O4sQ1q>-W=ZCO4XKL434Tu*QyG4H?>xb?bf-_t!OOYEMuUhJ|;e;pi zZ;bWxj3FRf0QM%UVDH^(fQ1~V&^(=jLnpNSYS~cN?mI3-9NaUUHiX#9aFkP#Yrp>r z=@>nfWsyhsl&7C83*6h^csNl-R!eNQqAC1;i|#%bd@)fo%OVmad`7et5Nm-Ypwt#$p|OAy+m=@*X|{zyxJ|)u~B9aS65(CwG)JtRi^&Z^lLZ(5{xUyvWT@C>{m9v!=@`wnw45*~!j= zx7ci=Gl4vlZt#GZU*0D5+*t6E(`FU?lD^8-WG{KFI%|LEXGw7$AyRzn8t5zy31-S- z+(6q0YBnZld@>*;HytcEJ9la}_kywg8@|j95Jcf-)8u2l_?TR-VvZcsvWZg`k^rp_ zr+UC5$FSWx0^NZEU!^z?Lq8jdPFw7BFcU)?>J-U>LPOo8ThaP~aXKDY*i5~FE}Ks5 zL@{yJkn}e#ci>< z^cMEAG{*9evI&7F1jgilHEtjMbc7TVw6uAELNTo+&4En!hq4(C#hwWT=8dHyLjsoK z>7j?mztjj6E945E&LfU##PjX9;RSpb;8{2CX8ok!$Mvpd-6DYAF1Nf-+ANDt8xLpk z`1rd%;BK+nQMws-qjY`yWEg`YUS`=HF2mHwi82vfvIwCWs2IHj^89vCY|^zyXRoec z!S1c%sLguT5iuL6h2NIzO|hlwvtav>5Pi}tWJtA|3!bf>dOcM;>`cwIPkV?E(9%2W ztEm=+yDY@iL7OQXjBSLEJz&xK77()tYyPOO8SDC=}uXu+Gk&Y8KHsRfU5be202r#)M`j2?+LJ5>`%v1M;Do=06V2>3BHLzj#-004-yZx1H~eZnrW*F73qY`ZTTea zFexjTdH;j zwClaM-^he!LtGswu*ER&^qJ&k{3w~`h@c)F)37H(W+3)mD6Z32wSlc*U&W?Sf6ESf%x(u=x;+4}7?~Kqhqc%L z7Vz;B&1G)46}_BH_Jji5f? z>cYtB(>dPBWMZ`)NYUC**5*Z@ru{}8K#Z!9M>-$sXFkR9Bk5oob^@{?Uk`yhWgODi-CG)}L zMGEl#^jJ|fqvY=@hybVBXNH1|)a8bQz|nESgMTg#TTvNWaafZ?0<}t~2M^*ZBK_-T z_$ViWjJLYFpeU-T`6-H~Kg zPC&CQ7xu}=!#MCEX#gG8fhPVN;kyB2f@3WDRSg=y5(bkMVWY+aRZcK)o` z{J$|j_rK-3Rbwh)2E5L2TRpVy)AFiKB|lSpSQ0~Exb+a)E5K3NFFYCrHTaRdEMAr%hmXtb8;;tgxLFWD1SFc!=0 zhlF016OGaI*p5=9K?0^$`7c9=^koTui_y%K@}S zYeC#1CVy<$pD}p4_Kn&$V_=1jZhufI02Y6rDmaRJxQjk!ilQ5OV1yh?hzE=!PnWu; zT#g34`#`u%`D|alCP6k*<_38-Hgnmv)|{Hn2(C{C)knK1RLkPBI`|ve@d+cm7Lfc+ z;X1BEG&;wvgZi{w5n{WEtz%yp+Gt7#I*q728L@3@iZ(+wFS1C1#q zJLfe*Zq|Ydl|Z}l_{b?SVDYi)vx~xta8qD|yS`UY_u1w`uk6v1Y-&ALx^Pg08fmdt z6~e+dzrH~pZeGMJcpdjzUSK&7SW}ataK@NiS;qPtbLTEI1&;7lK`||N_eanBNPJ*L ztMI$2-Sy*(heuOs4)eqhRkeB8$8pu^X}I%Mm>J@=@?id}xNDHe#>VgqX4RO#W9LB9 zz1zNiN32Up=nxGG`qyRPA#+K8bBI4Z9i!2K*|bIURG!!}o;oCZ7U9bPob%*souUsC z;QZdI&s4h!?oCr(anp`$0@H$u38(}Sd&s0{g(;BO_lBBf0@Jd^&d2DhGVfw5JQmc- zX3IfIyHLyFy(Bhu>YDx75%)uU2fra!mbv4Mg7Gm4*ct9-x&Q=ig*rU~(KcdNWQbI! zN~xuAP(8D}1fO}UUIbzRzNyE|MU$OJj!d*ayQmwc_J7P-pak{qwB;5M(#B9hiJ}Y3 zb3xC85Hz()>iHdhKB2VP10jymYfM5@pGjF$oJ(4?;t8md*3hf0r;d0Y-;bpRDX&e3 zpHtR^>jk$ao6G;8n+DAi>SuMhSc*>bwZ%poYhD|cLn%EX{Dh(gybyazSXiO3+`LBl z@@ODww)YkRFe6{e=WIJEwFd2+yW7g`T%wdm)%uxzlfT-Egnz$9m+C;Amz4ysx#uoD zg~ts_+{*hA=K8U2w^9S~Oc> z%#NhVem|ogtGj>nEed>mH^-fzPoOw;PQLWl*yQ+oruExBpRn6ssAtQLj=x`7Ca)?% zDi2#vf1=k&umfz3&M}N{iZWpCk4uigby51B9c*+ssp@wEh&={}r z1ACrnNGESHi&@WKdOlS843}}|x2&<=ZhR`5e)vT-0V@I=6lQ=YRC%Y#J|)d`uqE+8 zfa8^as694&a z_NR1JE@M#|fCKG!?E-gAGZa|_u;f>FV?+*+8ht<6-ypxBAi)Xzy7Sm-e)Lh=|LxfQ z(%-ZYmwek8SoM_++c3qg8x$dXc{J(oa}>dcYZIDG&NBV9;be`xjP4AkHh2r_uWbrFdSJYG*Qi>Wn5^oWNI_5p!rl=JFaU20m&yuPn8ZnjIhU z94$@7fJ%mE(QI;KBQ_Q_`90-97x>CSmDyMyXN^-Ed=6~}wI2FJtQ%%IRQS|02mww8 zi5_xCphqpcIdxn$l|ZXvy?}iqG7ZTBwgU4-KoyiLwsNujR}V9G0ismhbbWe~Nv32O zW4qc&X}&;Tj^qaM_23>71Ke9Gr2V3P?=iP2aO{-sue|1`gszbxv3ZY}xtYN60LNaE z9;d6T6I~;Vp}1O3Y7PHj;d-q%a2t5;g@fku5IoCE8O!a(?i4Md4fK2SyNWP&WexhCDCOy*>Bh2d6OIsp9tCIjixc#WY{O}ib^W63< zS5X%HMfWCSxbZU0=9K@uUr(A4<7~|(uon^UGmhO=S+LXvs!u~_)Ji0Ue7|-kn|lE7 z&p$w_O;EUOw9V)JqhBLd*rRHE$kKoF$v(fHm}Atv9AHy+QrcpwJee1(Colc3c_Ls4 z{rH2YdFDslUU(Uu7L^<=Kej1!*pf(<`JY$=k`sag@oc_+2wm=bZSF^J9d;yJ0Q=6a zD^NAM_yQ&ITIN00@WWF<2IdcCt%cM|4aOD2kuqgZovq?u&E3{3W5lm@7qbr18Ii-| zJ?_LG%>zZ};^nnJpY`?8=-F~8Sz|Ni3eIZ=NdkeNjq0JxMa%3)J2hJ2=TjwgC*8KM zi6;LJfhqjB3#d+RRbPEB-2)bYMkmEpcAjp^_pp}`(jZxfYSepV#hs2L?EDYRv4b!g zvTrcZQ9u-wWhqVYbctAY7~2zv#Jln_Y#1|Uh~j5wVW%N)7q#IFlM8;(&%HwYo+hs+ zopt_bB#lQ!u;-vbl)kwGFoHb#SA{6Bjgb|Gu=e$`YGxJPlOm$cy^$KgT*EBPe&ivd z=ta|gm5;CL35z5g_9Y3&-=X@w zc5}Lc)PdUVW1>}>R8k*c&0x`R%fS!1PrjM;NG~MmysCb< z5v1?|RIQLtTz=*G;9)$#Y4!vT0U#_Q0W7E7Bu9aLOE~gze~anc1VRU)+*FY}<1MFM8Dl2*ow1 z5>DQ8PY*Ga3CqGJiQQy=O%-+b;ttEp)6UPXOH_$u4KS!Pev6 zI#Z_q{*d!f)QB@q+YjdjLH#j~b@)r28;Pb+PDssdOl)uBs(n^>1a2jlXbaFvs?1a%QGvEewSO z8V>X#^U46K3aB zwZeg@YLvm*7-@)o%kP*m=^r*crFc_*yViiY`?#dHD( zMg=7#k($lfF+SeckJ$QKolhs)X5x{k#TdjJn^73lDu3db<1NZ1{?^Z|Ra6kEpS$gr zplI?OQoX)$W(g`rQVa8>V`dW_xhMTSsKe`Od*2zDI0tbKMl0$MDp8Ks7y)+%6sS(2 zj?s0@-MzcCFfh?z*}|n0*naD(JzfE6_F1aWc`ytquDRC4UO^*8V`8a`by}{zh@)ke zw^mx)^S({638JH+GRiV33)U7EBPFXuX_X=DZ6c?9A|ka2m+G>$#2Qjz3($U$Zy6eW zt^Yu0Sa%bNAner;?{dCXgh-$CpwX)SM250Mp)Z79=EQiS&xMAToTZ@148R7YB!5_i zvPdcXC<>jE()fX7Yl4<41JVZ}Z?>2+?$?tzAAkvnp0ctMl4}*_!iGym6okPjh^A5JeiKA3{6`AvA=yH~ z3VBRw>i%`x64oY^oRGwyB45eO2stMhLtX@ZKGw+6!XGc55m8n_WVXl<)QV=JJ1!@v z;HR*%KUREvu`{T}4FxNu1?foqbYf1>EH?-xg*9GkPGF!EIC^5Nf+b+!kB0UG5ne&q zGPoXsl0pM7Ehi8{Rs=l}<*$?lt%C46MQ*7eY~ctmHt21Y?x`=0;aL-W7uIFpW` z@saxNASgSb_GqdHlgsuQ!CX^-}XQA5rvKnxpyv}@?y1X9;atYp8TP62Wx{+9b0F{-5k#cTaXx7ut1iE8 zspA#AK0*iTvd-7EI6m7uo^f4jay_5}E~2u%ImF~YE0)hTCSr^5(Ux5ZhZcqiaxwJ#$i)P1lrHL%zC zHCeARTOFH5*>VOx^hdXd&}-3BW~R5CQ|}y@0u#fM#A6SJNBBJ}N zUJ7H{YdZL4c)W2C%AVf^zYzI$a+-o&KtnLa86q!vWUf1D!!_F{MCf$(QYE^MxUr@+;M|Rz$&$uhj7JVGK{e#)rdte4?L2(PFclmm$nuT7EPD*d{qcF=x6Jp# zkb~=Ni`YXZBo-JVpN=x>rt!9NsWUzjZqrofjN!bkSv4r%OX|)K_SE7jjdB^EkVf5-Wct@&RPrub5#A zhGg6_q9I|&OsJWN%kp6T6^_^%PCd+e?Szq z6g-Hn2^_Z_iT3v1F$O)oy@SWAWGP6`lf(g(3omDbY-vKK!Ys{xEwPGbJa|bhgnfxQ zL7hL4f&G>~u<#`u6Q>Qn^d2zVI_@~R!y>hAaLDEaRHolSkj;Y?YQg0RK9y-!73TT! ziaK0PX_9kGCbOT24DSvo_@+7mk&%&r&?BK{hp7bxgfKUuFqcEHSa{N~e4f~?5WiD} z{oJSN{7S@uquXK+g&6*TZWezHPd4^K*1@4FzKfgK?u2l=BA&2Et23r%1RIXDc$v^M z2CN_XB(n|T8_#!PA<36Dvu^irWsitfGx+m)p7Z4oC#u#2c3E!j#DfB0Azj_?)=guod#OX&_K12@E*(SXDacFfMD0y#;@vWm=w>#DIfX}+_ z?h^28xX}-N{?q_OBQL~@qL!HF{;XCe#5c3rJNbIFJ}DfW@V@7Dt+(75;e!S58RwO_ zR-J{pUJ1)Ds1TzH7$rRrfykdc5fC$KeXph_tN1sd=hzBX*BC+XJj|)w8Dxc8(=#wU z56%`$lZ1v(GY-aW{5>UkLjIQ2bg#QvwHKf*o~Q8UK*i|7mpYDkm1)hf;cs;2kJ9(` zP5vQgo~G_MDr-PsWzO`^4!bX78l)K7sn18fqnb4t-D*j1=d~8d<6plVy9yw@p_p;% z*h#rJD4vG0_G*2PGsr0qbIM@)_G;LxmxDvTT7MMLE@jpJ)`rE5@IX-%{^grQ46EAhIbI%HeTB!J-KPGBPV36O_W5X(_2rs;xU%ZWIMBd5GFUD3uW1{Z6(;pK_{DEI{H zmsH>&G4kwZHGBfxV^SY<6c!xU8gvwhJ3xH?gybQJdHM)=A`FHl&A!s~1~Qn}wJCg= zK@cdI@IYrTzv{411e7fMG&{XN>_O$?NCsLGyyaSc2>cr>N0HGhxUdq&uJI8}<|O6z z0+r5s@6x_egud#YP2OsACTO)ltOOh-%Fz!JhYP zD+}~I6#R(Wa1Zn?aHvGAliZ>F^AI4d3pj$-cPhIf^~&^!hBtQpoc{L zsBbpmj3RMh5xcm&bX3r2RrEI>p$E|==3lA;<2Mu+iz*dcW~>!`jl=Zt$xM2by(-46 z=r#7c2~PnjRH)5K%3=WF&_kGE?`){WG1O9obxshjpYz#o7(MDY z{A5v5W_AI}zeP6TcxBa{uS&|;RSaD8n{QX3mLaytqclLmexsjsY(<#b$?p`EV4EgQ zh49i|g>r3U6B=b-{_R&mBFen##Rh`QwpT;i$eI9;T{e!LfeOK+&R#DBuYQxnO=NS@ zTFcf+lCYKVr>ZcD^#kYTYh0Xw4UFvFmLtnG#KsD9v3E2_Zs()E3+|7s%Jzs))^in9 z*v{~rG+)&0{ghwQ1j`c3mlI^f1oij$Q%njMgl+g`T8j~0{GSBB%Kv$>_0iF`k>mdN>$<;t^%2d9O8i%c3rx3B(9BEoC9_ zU>;UwN=Zqtj{SiVvNU^#=H{YFE#3zx;2WUI$TjvA6zQMmGWrjFVKj$5nL+lPDD z=rr1)>%_k6K`}L8{c`X7;c5#p0_wMF3312s4Y{u5lbXoQWt(EE@|<5%NyHG!YagzY z;KtH^18e#0To61vDzlCWLaC_7U}LTzmUa%Zhh zVrz1IjC8zkwhQSyUc9Zia1x#@^escVr_U-!zb7OY(-MB7Ez5Aym|pwkmJ2cn=Hjs0 zI{BHo;YmR^DaT7?U4NJ=KjZ@>)EM_naH1WN$A3bU`={Y?T_97yBtZ;4;`1l735X~=&*#&*{dgTxcBTlsJ8xlQ*mpwy zqZWSsWLMq3HAX+kQW|FG{Pa*$TwI-4{tzYjA3ps||73{eHkqQC@?!`+3kk}aDYWiC zyRsd8XgfYHhZ31XKD+cKh@e?ABBbLagcNJ{KDT4`Nc}EgvIMF_-y$b z>ZQEt&3`HI>HZ^DSFz5qX`mOoPH=IB;+=1gpJCuK%u zJ73e7Y`@wS?Dxj=b&=OrCfBbvkX8D;X$)d78=1_ZfasVG*}^?3Z)89x){7r#Vc99W zI+E_=4|pUb*`RSP=Pn{p{0+W*_lU|F1otHQ%9PjWGRz1@^9hgqmxUcJMR6Xq8er#S z{yz!%e^V}l*PZ%3H?S32(MRu+NyzDL=XG?GRKJoOH7-G^NMTLU5`}2n(yQekSq0H_ z!qGMw!le#KkPa8-<~CT~!6+m+$hlq~g3hGl)=NHT@*m6^mTn#zYP&iVnAD=@hbeaQ z@gb259rOR~LIO=Zm|`{Lg$D8XjSI&w0|GwOKbFM-_w6RQ{131D-7#APdTJ#YA17zN zA3r6F#Yu5;D~WU`#4q94e1Q9RsNIyUenqsAQ(iqOQd9qEUI+Fp8uWl?3x|bui5j9+2nr%z_o*WZUVErns6~jflt#lE z9!3No-o;|<>L{jwG<8^EuUNluzg&2eDoXTBTbM)DlTr8kP%%WxbII=_T#QGR1{IRH zM({|vK)~t|#ZUZP_Zkhq>rH$`H{PrmLNvttT?+B$d8EGlTsOgep(RA z1k9gZGuLe8p`TV3^OXj&L9}jy`V;oAU<`9hrk!&1_@gFBv&PMiB9``~X!b|uh?d6^ zPzG{~Z@`nscQ22dTRRt(>_rBO=W=~&T^W!}0j6)L3x`JSq|6(bKfV_@cnc7WTqN_= z=i#pZ?5MIA3XGUx)q^Djj}y|*DgwQ;zB8X@ZF_wqXGJ8Qk()asdjVt}d(sA}o11)3 zP*vbCGHWPQxHQ%gUKWeN0gY3QS?=V9XwpjKsj zfMo_7^CoQhyagD2&Fbu(x}97koY+Fs7#6Ydb#B&FsePD4SE}4)Th>e3>e63KzV-P} zyuQ$~+>bVgitr{KmD95H8Ns07Nf?dB6Yk_+R{Dvj-+G%1t)5W|T5&57T^G@U>9?CL zn``j|g^u76+7@B1<_H;R9&98tT}sLP00K~oI-U*z89*nceCjgN0%AEKKPU2Pld$ba zMeHDAb>vPsb1025lxat?>8V*`u=gs2x^`oy?k;;BWPz9cQtx7}$2Qg6EG%W8=Jf0j zSjfX0km`SEum}<6V79T#*o_SKhEck40W72y@K+#(7nT{W#}qcxg7%q^$V7I0fHk`aj^wCV-?PSalg|cwzPvHINqWo@rM`~GCKP%c z+)fkXx@E1u>>?Gk?^cd2Q@w;}{aeFUGGVj+F_YTHT~lkRdW{C#=~16q@#%9hGtT?& z${DxqwApov(Tclq(8D2@F${m~z^>BZG??U{xa-)2Tl)D}JqUmc8=Syx zuNB=WS_c6XDgNX#s4Mcirps?j;Vm}%v(qwcVC&}cbX|H%eJ?D+hh*m>Hc*?_WAka3 z?kgdYv(Lr_?Pi51hkwHa7W_OR-n>thHu1}h2Km6S9AjN13o#jVlxuT#qr;yWm8MAL z7&Sqwx(h=Sr0sv*tdj2*V5WB9o1ddUi~ZfFB(%$%U35-!%ar7&*(@5lox!jTNP{}X z3Opy&_<^-ztb6_O{Dj&VdSMjJk-=Rv+^W#XGl>lEzj?i9j1=bs43o~j=ah=8HJgM& zN4p6!%aeSFU6BZ04%m_SGS7wBy)h&C_8hYlxFPn7&4RuBnYP-ZbtiG)4&zTC{1s6P z-iHJD^g_L6(Az0ecrt%uJ!93!#y#csN+m7r5r6X7NkyE(2c${r$KtD# zM%koY<5UIr!eW{LH=apF_orvNkM`bdI+Fp{r#tj}xpws&mK`JbKXD54U(jf)iQDT5 zk2uDoGfo`T)_U}qx`|cU>?R_$?tzJs4$4>yYxZn z8iaxoR>i12@v)X5?lIqnLn$dh5_%H|DvI2E+wSvYiDMyuQlKXqwY4)E4aV$paKG%*R_gNm_hlXIS9s&k^*tVI-F zAoQ2(Rh^w+uoTsPchR4lWZqY`3CLgy?xmcT+fj6TO8mB<>N7G!1D7Z0ydcI|%*LoS zp=VTo8K*MvUUowEOIOkreiuc4%}Oyr&`9*K?>8|}-lDH4gXAjJ!^~RJwyi;9c7#yl zFGA9d&L`oEDWsW1gj`cqCZZT!u%jevE+k25N0m=#bSG%xjI#w96l$O4NRr!uJ$pe4 zIy%=o;ie>`{tH=8?Zl|{Ixh9X8>w@0^tVn*UTwO@?xEAjM_>jJ3!D0Y7PO5(+S%|wCc8Hl4OyUJlocK z88*bolejJGV2tBH`n(%~=Y7(Q`j<#=y?H9qgx+}t; zq5i2hqCpQh`#LG~`gxn=q45Xi4-NLfjy?B7*CK&d;FExWux;KijcmMs4dc!rC&>C1 zL*o~|xN&?>k9y#Z%pBUUU81WSxk%7X0GsF~2DS5<>=hS3B_x~0JS5}?W8=)mD2*13|Yv3lT++<2q3awLX9 z;|i|AhLjbAan?+Hr_pTem`XWGwpV4s2b3!nMe0d%$S)C*MbSoU+{%8VXw?NO^H4jP zY-q0H*Vwr8LNWw?=cy5-=xL>M5^eJxn%xilOHUsOQ7u=iVb#3|D|IbMfyxI&6dDAF znrP6o4VvpmgZKKUU~8%;gGMNE5h-_IXx*ls^!$nCErPldb_cT|`%^)HA{8*#XH=Gi zX00{>j(U5lPk=HSVW1(?i07C=4 za5`JJErh?xZ{%;!n^hFMC20cq+Reh6Yw$WhMHd>4aBv>?N_e(U%%V{jw`g0J;~pIy=;p&fBY2_k2Fz%VJ<3zuz`4I4`J8G^|FDAZ9*7cQ`U> zc!w85@PAyzz_M{;U>J4;CZ@?@SsOlPd6sb$#>>kEjIHd8R^`?(CeUU6ByLOUMp_aXLrK^+Ep`z2$#_74N_j zcy97?`QF7u9;ZX_5^!WD>pgzPiTG8AyDcqY6pgV)p9LfQ;=JKoAbKO&$wff*fdQS| zgAw$XI?76XTRBo$=w>A|d$5Wb@J%B`E}G06e=%~0{I8BB4VZ>bZ%tr+IJmV9*%9rl z{3N6M^Z9@v)Rq*;>*~Jcl>LpDLC7~zRWUra_fiIh(>xn&N75hY#vkyD-9}3c0|!Ni zAW7pz!BE@rRS=>WBNO`w7QD7F+}4ue)zU!ROf&SeQ?eM!4~p2X6vKj%L6Ib4xG7KM z)e>dMIGO=N^ytfnG=ss2z)B^B2@``?p=GYIh+~0B7K_Lro95Lr2p7DuFbq(LlYo~& zi{Pq;V zSRjHWV1ES}WyWNXgz_pG_;=q*`oV&Yk&A)I7HOg|34kbbkuV9MXcTn6`MRckt*9(} z|9^fongzrE{D#ScW^i&0{c3WC=#jxnmO46@shQc)@qOt2Wd46>-HysKOc=ey7$VDE_g&oAoeBS#xaDKmqMa{D^O z9Eyn(H=reP-1i45!1n6(2QdlJhxGMe($bYkX zKD=F*{0yN5TR{qp>Z$R~y!n!jm$+~?fyXQZ zQG)L9BJL5s*0UP2MkI;`lvp#7Sm&CG2T_X03(DhVU?e+YK z9Fj&e{=a4E@qpfvzHGwc6}q#IvF+ckEq&R6x4LkiUv+%phl7FD_R71~;s zCSIwegf9+bn<{x6AI8DK)|9qjn2Pj8@_?EOf2anmms>Y@C$ukGz^Nb3+m)#3nBdxwJ-fb| zpp?l=z`vlq%xo^hcuVoHu5)Lb0Xn7LLk&yQtA6xIlW$L*c@U|d3`;-Bx#|0_AFXyu z$Uqs_KdK0vi1>|9r7C%16m`u3u=*1ZXXck*Z!8U;!fE|DL%((QArGrlV2k)sNn(X= z6#`B?fEvtOEAoMm{SE?w=Ph*Dl>xyj(+Y2+KwKFtd8W|ha_%; zp`gN@f+&`@b>W<{xvuVFC^dTOrsALV=@<62+=)&IZ@S;-hoaB zi3T!utE-$-@&Tk4Q^Nv9NAh=X@(B`J9B;}Rs6*9=8n$S=1}hMT2nd@>7l4z;^M|?) zAn2VO&x4Z@nK_`_LUV+6FcqOzf$p=_oXF2bb+6H$FEkn{I-}{T0(u$o-@9&_g}aXfXF%h>I^XnXHMG z2Z(XOAZ%rn=}6-gkH(3JnAPP&UIUghP{gzGyQt%0)-AU~3Ipa%I83zAe#gy4^=Mi` ztHsbe;k!L#fV0T}-3DvZ{pDroxfc0Z* z5<2}c6=MGi9C?cEaNYt(ayi;m?u#SOTMsFo|ciAZS)p zq+jHfFY|t;BTB;TE(xX#mu(N*KZR`%e1oc1m_-H2pK!P_q?Y?v)iXh`Ij~dW-Laj7 zprD>nohiq!klwb_9O7FC|6YDP0ixhMJPDmn-!KZ;T;pH7^gR~tsN{5*l2XnpO3X`a zNm&h{?*{NSR`iXh?bW6<3C*1|7S7XLOl!hmVUUY-E2DRaNo9H6co20R23TCM&erQ# zYz1|PbJmQfu9pKyX_lp?rP5;qVZp?ik%X2AW2@Lm*z8ER1+YR0czt??02Z&v>+88; z4+H*0kDUy!)YS~@V-NUvfpp8^XAnhuyxDB?2M-n(TlYVe4~)-pvvvEt6>pow%y$_< zrmIf&M3MqZHRu(mpb;2&7R?v_D}4e66Aj52956p2%m?M79GxUDGvm&a!G;$j+x0)CU%U=&j?i;=0kh!exAl%%>n|32Ge(7*bP|p8IKr7AceZ0b6-3AMMK0hMM)=nRZ#3zBClWpP`7qhs+5Pl8e`&1csvopAFB_i?KK-8D`EMpJ;U(etFJrg*KMuZ$oM!eBc zePWGtiQL%6z2!IgULw8>9`lest7p;lv^cRfi;vb*eu7Mm@HYc(naBqpyNVKr0p^#` zaXEHB(J1^DTkos~ff|S`qm6t`P=)q@U_x8S278}eOgq-(M$Bob+aNWN$gxHr8v9tE zv-PHxLShq&C+`>3D2SPvn5)0|uq1mbSyKexy^MmqOvpiLulZ78epdkXVRj}Fi%`OC zQqXuX!hj7VSZ14iU$;UGmPjvB5#-|E9HM5rM$<&k*z*nvfD>xD3G%0B1xA#57}jAG z#+L!7l1XZM=&=Oz8-mitfI}!{?IL%QOSFEZhzBMVw$_e}(7^|{yRP|ITNEt!wH|T> zhws<8DRbC#(^{%cBWP*~j7q#~EnB^jrbsa!)6cyqm>NZ)I-y;~;VR=@4ANrn?YL5K z@?j^?Yg8m(Acvfwfw^bQq{h&L&<5V&0N4Ii-$Z0gpV6vpOWM%VlaI`% zyKC=cdwZ7b)h;~LP0U}_P8}t5TtX~KY{SuKPc(S(E@Dv3kuuE(n=A>zxi@)I**JOE z4G+u7>!N3qEY)j-7~8Fe82S`vwW0pC3cL|RsPn0EH(m|B-=^PhRCSXE{!P9kl%(7q z^->^M03~%7i5!;QPyv%noYj4-EtgbL^MMlt5>Y}`i>Eep)GEKFP_Xv9C;_Pt|17Qn z3{Oz*ObGlJL6`{IEHGD;54rmfNgT$JPq3K$eIa$TvwXcj%r)X5>wAznk$rLNmY?c? zDb>JQ2sTvu)72wUGJG<^3Oh&+U~nB_^;#_flvJ^#Iq%-JvfCR7z|@}3MyvtJ+tbM#^9uv+WuKSkI?aEf9RWWCiYx#zoB~q zfTiAcg5d~b`iq7Ax6_=>6@E!^DL5L)g~R!p4qxyU1eXquoG~l}VZA-6z1vX6T1tVD zniZ~_nbR-0@~p(ah~@c#MnCjrZ&O!IEq?zrBS$o#4KB2rfRHVxkqP&$?b5Pl5+p-w zcb75e-PY^^9hPva$Gj9mcT3$v*Ma$+2oPcj4OC)1MJ6`v{w)Pqb?1|&c?93B41CsK zV>51b&n6m~heuO2!##@kU6^L1f^EahVqpo`aocG^=6}F+hP>+@}iVl)DaE+Tz3an-L(=?`-v&wEPq^oFR0GaUE8)0=jL7 z2%?#m&|v660~HS1R-1J?%FC^lj^gyegQW@Xa_K zNA`&R=Pvc67fbAV@8luQy4m;B${M*&VRJ^!Q5#GDbHX*3eDvaMhkb9Cv()N48f6|K2Yd3K_XUZ zMU;Z`Xm#%Sfzy=uZ(M?^c90$YG+Q_{VO9CWw!SzrBuSpgNY1i`)B3nCtvB9@)8Ts? zH0Ok#3;q#CCF9A@9vDnXVTqr&%36^9 zrupVJ%!);n$DqDI0fd8opt*!l#+gs}fq5%BIUl`}Hz}xD@XK0olg0u7x@l2d@dKgPhiuPhkPJTD=z=HafC1w`dD*D z*bvtd`ETRMGy(WOd4hx`?WT`T0kau|9NtXs zRhNIe7Vc)-ii=dIH20El7|qQP855Ci^hRZe99JZ40!7l2rXJ%{V5c7~lu&Bozhcd( zL_9{BT!an|ZfInFdplg3yJjnk%)hqq@{_4pI=8N&O$WHoqJcVJ$rn!S$_4+vmBhcv z5wLOak}ae49%B38ySN&^fO}__J1sP_ng)-qQBMqIR(U3bM@b8 z*5@y`cLX%|i-5M=%af^9+KL(M7MK(bZ{hBBF^R_Cmv)BT|87QaUkm+-l#Xr0SGJ(H z5}$9oPXqkh1{=W|*BFb>H_DdY^v@cK=N~^w*A;c_%jFlFC*~sHs5pANW>u2=9U^eJ zaH#x`))ufJ{A?9{KD1RbJC*%lGX=-i%3L`8z5cLO)$hHvcz89}45=fE7CO#eeVDDa z=m&0 z^e}`^aDE89Lrh<*Q_ap*>Pe}mP3I=xa!{kRdPMTgpge)Kr%>>HFHwR~B^Yg*B?9-C zir3CI_4;R1@c!jq<^60N=^Lq3H%NNu{oTPGzw`i7nA?b$EJE`ed4VIcN%cKX_tN`Q zHXqD839fwPkXXX&NLKIzs9k*Vg!}7q4Qh!0MfYDq0ILRASpUCL=gJq}|Ju7tIEhwW zQ56;I@j5mns#+_1#ErIebQM`AEKQXx4n6$Fa~#^MgN zMoPk!ocrYl(i`mK`C(w}dmtXOc!rXf6Av-0M1v~1F~knqPqTcEmA_)QRRA7c+Qc9_ zsDa)>>hgNXY`bQntHx|Q9TW3C+k%y9A|jRwWiM|jGNDSL?fu-j`uDCcL@NTJY%^)E zX8&H}W%#Le?ZdRmvxBbT$U6?6*@8!hTN`~%U6|^#H5R%CKcZw*%S2j7Fia6q>9qF0 z^gm6S{I-MibXMaGWVFbgVnFBMc*RrP4^1qVUF!P6o3ZcBr|C&y^O+yhg2*4l*6 zkMK~4$DvUbBsFm4ee^R*F-7Irwmy0JUt&_WJU<%b+yg5L*dVcj{Db2VY+yi4R-z$T z!%9S5Y0wb+pw(|gQlef}V=K(S$B$udrPYFHuaAIQyj2LrNDkfD6bMIEBC3H&gkBDS zSjte~MnKc~C468^p|&xTy~_RiYS!CACEPL-$VJxD5}#@8lg{=l7e7izye9eaTKSmsS^Rn-C^{c`>BHy&1vj}(j2KU z0759#(6?aZx!V^_0NAI697aNY6fdJ;g~Fy|!lY4f$imS<)WEE_M1sWDOc}P(ZEc=( zP7IciLqXj(Yn~$gW|zxw{%0m#W9Cn@Y_y>%*SD?eRs{z4m>KU7fmig3Iv)*#LJm%H zd{1~ZMbf+~@)Po_2Kg?D8I@69K^(U{Ow~qT@o_xyUt1w5kVHTAA+~nL5ZPyE3A#^& zBUmiKue5zZnjHB{ssasGZ1?I@Xqu#ihm&;a`~(Yz7UJOFt(+8OkgwXq(4OS)M83>< z?$;jja@6~peIo1FUFq=yn6v`ZuwKGLC}57mu+|glXhkYG3LbC&S&y zL(nW9Oa8>wQz>-y;XokIwe#RXL8#i_bm7lEd@bI9@M(p>h+$U?74VLTqR<-Y(bnf* zi0mL8L|{w`tw;ALtMP#T)-!r$hCsA%^l=>p0PQz1YqdXCer3PlFUld*By%7}!i|}m z5Wha5Gs?2b^lIaqwEmzILh?n#j;Hzim-80^@W;TB zORADU#!o-0Kur#1h$3E`cwhV5U)mS5@zh%f+^oMl&t(ZvxD%ESe^N{uLaHl&as45= z0-Uj0)*Z56otxJk1Mc8SV2yX_o4~}tRAek%X%p~kR7wfK@bkkUPPuvxQ4$2)YtpmO zOQW!iy4Fe{o{^IvoQ$O6G?HT_}p7UjB%KxE4e!XLe?1XLipy&rid?k_+2+e@@NmOuGmF zOykQ1hwDDbEj*a?9{mYu&jWs(;$hF6(R@E_s0PQz$N zuQLI@!KgUG->K>%MJ^Y5_b_t#D5()U9$z?H>csK!6};^wNP0_?BCb*qeqEQxR@<29 zH)`KMWGr+{%R8UR1x5^}Blx92s; zOnS`;GgkYVLTabf-a2ctkZY;5Z8Y;;n^foN{uqTS+O+8E@|b)Hl{LU!Xo`xjB4Nz% zaA%S^)iLXgE0g?v6Z&KL&XMK~K5r!U*l}EB@HXU~b#=J$%#2SA?rB(7;Dz8WGAqor zF4Cq8jr7vuAu_k%Lhoy|X|T+S5=~@li9}By!z&cREii-j@o=TJeuQe-Fo5ee^>{k? zA{vjx5m2l(iibVKKjf=x^Yjn4!XkH<`7!?-F+V~24AE=;DJsWIS4HOIF(Zs^Zh<4* zL#>I`_c%QfZDe_L4;jL&*+Qay$Ozq}P+*F#b4VVFtzeEwTcv$S6pIeJ09mJBWvz56 zYquZD99Z;lJ4U(soH%;k>nUQgz*R9d(eY`r84Ct~VVABMO41*?)fiBR_nGcS8#kKv znXqJa&F#xWl6fW5qAjCYL_!s&{e9lBbYgVXkyM=wp4XoqWSKQy>%Z*5|ANaZ>ixnV z&pT!8?{)4kV7-I25q8Aj%}&A$b~4#9XhQ8fgmu?%_vI*KZ!Y{cUUjE8`h1c z;+d!))`J&Rf&-0Q{OPH?dJcAU|mzKU8%-yz=yq#xX|NxPop|6QA&} z0Q58j^`K5tC@}wT1*<;Eq9AUtuid&S`sM%senP0n!%+p-u(e@*b7{n$NOAckM72wC zl~ZN1}AslYxx=b@G7sBj|3#V0D7)j!#*6?nElk`T6por}o|v*o z%xshwUM%BbnYg4)wp(9|jK!Ty?aso436UW0^-DI*Y0;1~vM)VI==%t4_8#McbLRojw*@r( zBYnp?lA~eH24Y82#C_lI=aO+2Zj9_xeqPxyoti%;JPAKOH0gIeb_iVAdp)<;4P`Hj zuv{zM&P{e#>G(8NOicDTT?`TBbbW_ahNf55^BF(JwwCaSWfx$H-Ny zULv6_EE8a3ebmF*%HW_*Tw~xZ6w%~hqJQ5Rx%x^@S@+Pr49;vZ7VOA8ks|o7` zKcEr(Kss$Ra~CE)dPNZuB(yYBe(&UZESFycgq)@b*);lv4k!U*;iXV|F#L>M2E$h zOEAJ+0(ZaB)kMeMKTN-v{4|Fk0apPEEp+`03fIG#Ycy5uu|@j+JyMY+BS$=m);C+N zIq@4VLUp52DvhrW5E$*YeBV_vgoJ*@(J>Bq4U$@QZgh6I$*gZ(_Hez1hy-2T8fEpBmBNbcBJ57Zuu(vDF#q$uBYG0CA zKn#H|>#OW~E52N3 z@8@F_ME%9A`m90OMPl&i2nh6-sg%owGb0WY=W%Vvw!2U|FjwwoS`*M@8%IwFdqnQBnE5_s5dZIuS>Zd+Q*WFw#E zi-KCW=O&SQ>g9yr2^jx~23vD^h~7f^5H_IEPcC-A8fo$%iWkZL2wZD8jVRM=;O(aRig?RZ7-is|eP%^2n_89$wED@7>L%a48Y5yjrJ5OYhqxDf(7x_hmIPKSW^{41|Zd!H6yED>O=r}F` znW;h*U=2k$Ifwrk|JY+t)hU>}R7BHx)c%VlmLbhal$-dzpx{LRjbAj(2V+?P-yNN% zS&zS5g-$;_&R&B4U0ZBZUcPd})lppTT3PByBk?8tHC_<)c^fH0fpBJ1Y_I+XDH@BY z3w~_Cs|5<929ac_@mBS5+*} zfetR0`B~Wwx9abT1xXY5otFjFNK6W z-J5ckrjel%;h2nDF{&bSERQIeKcP;b)+K8DH=mK$6i~7csOq05LO+%AMFSc|Tw5zM z#h|dxqV0KE|3pp^wDLbo6(I)SDIiS`6CX_Lis>F*k`*x*%Slv*mObHdHgT`%v>FRP zkhQVC>uc}8^@FypIk8spU{+J8fC!4JV1}=gR#17=S=Oo<+it&0Tc5ed8%2u6`4W#T zDS=Rnp?3b7aN%aBqD7DEEtUD>h?AT?$CI8Yf!DSv8Z<&( zxF)|;M~!-1BMpa17fwW^;A7iC*S7ci~zG(p)jU?lq0b~%A*nkBddiZhRkJXcLucZi52%-+#R z9@SWJT%!;f(WI_mmR>+C!hS2qd724UXx@oSal=!*h;z%A0#a7?LC)q6-in+Z&AU{)mkMhbhz9pcn}r*LdZ>4*cZlLBUA)0YFBfRBmN_dg?H1ojbo( zCy-Z&Q@TnDo>1X?eygGUF#MmOHVxA$)}TwZ@yr7>j@e;e+>J=n(IurUu$gU63zWWk zp`n)~+^9Cwp?1D{6q5*FQV94e5?+d+G2WnvmV^`Sc9wV646$IyY?hy9s>onaANXo4 zNSBv>-H!L_F2D_gi~(ypR7{A!DRLm67aKk!VG+dlIT}wsG0L5CjKJPbKj{q@HFmDm zjjH(VR2@QEUu72<|R}WBN`QNzvrAc8B-TPhcKr!~r zRX6K4{Y2pq=GmQMka0R4_!EA+}Ws-{WJYQxzhop)_%$K)omquE*!6HT$#*uNZOKf0Zth)QLbEyda#b2lYF|PYhpU zn6`XeU=Q=nUdmJ^2OVOK@8zyfJ8lV24VS0uWMWy8pxa7VDl08`PvO&D3X%*WnMNCBK31j~4zl zt~@0C9s3qPWP!la0!H4M=uBw2?an}b_Oj`~lk0FsdWo&!6>4#aDt1}OslnLyhdD@> zuK|_}ugaAh$D zq3p8X+V@>`-W!{aO@_yb+ss?t&um@VV!S$FEra^AlLiZrYezh>_Q%mFV3li*)6>Nz zs+QQ-Ut54}=EyQ72sx+Bk5lKm+V^(#0)wnd#WV4zqOp+JB3i@N4a1&5iY9pB_e?pn zn9NPJRVC{%4Se~t^MhrPqgE+`Unr%vwW^c@FP-P!t|9FT$9dmAJXU(9XY>R4_&_Mf z0(#$qe@bRRVTiivBen`a{ryF0x3c^jejh+gurL7}_CE7&Yu=NQtH3>rUIrQyTpBK;6iAq!R@gf`g z@TbSNa+WWPZ5{@mpScnG8B&_p9iYVI(wW2Z*BN_t>o?(LP$T~~$8UB$cD%&Q?p=L> zlMvuhdCjoj)f0*vdl>EA`S@c)FHL#)54t@xSM2dLOf_|{j2!=SU&%)sDec%xwFi5y z1x`{{)X5xSwF`FR>gq(tD@)4s`yDEtNXrHPr^9Y<7;+K%TG!~sYjFn0G8iXll5onH zHl`c&lU}`Luz1i)3sST3*=mYaO6UKr9AIVu?rx9!W@+F`zenR3t_`*2 zR?PIEWo$u_yelD=)=G}+2QG&-Wva-Q_H{IFRdJ5khl3%4V?UUM6uMpf;6gJl{oj=| zS0e6ow5kK85T4ux1wpR8qhNIW4s`U?z-}njo3)wNJA4c{Qu;UBSSCF73&E|HV@d$O zL3gKJ*1((BfOQp5(aE{@zy0rwD$RrSZORRaeB#h;;IRD-GYa%;ed>p5DR*$=r_Povnq4~MEw`8WNbs!iI9LX+P} z({6pt0^%udF%;$geT0;^VzIb+NR+n&2xlZ<%A(zR2ge&;k+t%6Cf@ zM0^7M2L!dt?kn}EGm_{lFXd0ZP-B8Yy)=_sYEktAcR{ajRKwTmVeY^M%}7_0 zNYbHXMd;vlQ0THBBIIp8!T`u;kr!bAv0v3I+Hu~6uVzIfz@HBm8%ex=CkgMBWTa6o zVnceM7M;S#Q{dQnX?}Yc0~mThfgBEQ<-Os7`j?$KL6ny84t>51D)%pAF3)u5yJTZ7 zrv;l2+jldZ&~lh}&Guh>fB-VmmD)C(p9>*PmfROr3fxtTCrps7K8&L2;1F=DpqwGh zR-NzNWQl&GnZXgE@deg++}B^V9y8Rpo~|KfJX?nbLJ~^4S^who4cA(C93k_XcFC61 zGoJm2j(L92Xz%&CcQ^z#l~W=H;T7>yS&W>l_c}YRaPhdJLo4eVXagJS?3MB}y|&lR zXE7YK&>XaOGggy<%?_<^67W0s%C#=NPj^J6kXSw)tQtwQrx;3++?Q42dDQs z%Z*uSAQuE@9Tb_G4*YQaSG}I<$w!~Hz{bemyg10UP5o5w?SP==o7bL`Qot0OMW|J~{R= zcnv~9e(h5)0T;u42Ny!AP(tg!kA;O9a8J@RSjW+I`^?#`)t^dkPay&tWg8vt4*7%r zqx+Yy`Z&#t#)&3N{}5c-UTPJRE}w-^Y}*X^vxCcW+Ut#}$JaDPByoJms~Q zdiavb`QEj@{R`;ujoQ(f=Zhj=I!WP0AveWJrS%FW+hA?^6HYz!Y=r#E_QczHz?N#| zab#{LRBYD2-oyWLhYdn{16yr*hP?`<%B39}0R!wC>#3P68T0P)Y!Ik4*_LO?pd!fY z6$*J2T*6s5vykL;+n5*6sF$lC4lmAjC&i2ydJz`IlIV2f1T0homAFF=s0} z^z~&az)7pgdg0a99}X&K2@~gG1>NsL2e^8V2uU-)5FGw9or_SRfLs%Og0LMLp|Bld z8N)D8kt%@eKf_L4iY|2d6|cdo1jfS% zfhzF|r-{c*$(wR-ZzsFB8&TD@W7u8%1nQoJaXA0A^l+T+s)2Ww>P!lTR{3bZ>0)Z1(k9~h*#{hQ$&;ai?8 z_AKNKl#+|G+@Msf^0oDvQh^-vn@uP!@BBgzw2fybmVW#jzj@V)qUyRub z99{`8AqL?K>#D58xoXoMlzq3$avd!(S69J*!7C&mT#AK-8i6%C&rz+$6QFImCNmCV zlMV()d8OMsaoRyP7#DExj=XP=ZElHg(>{7Gv38sM=A5~4D;`C=0WX2l3xE}TgP}!n zooh)O?4(3L$NMyA{OepTf@6I2#2Ph2!3!x!GSs0@o8QeZqPBbH`kM_G1x{>q-}5@n zXVt~b2Oc3BjdLq*3)OLkw?ux{5+;?^Tk;l=hWd_MkgkY^VX^`%h3+)FMKq9mN%CS6Pu7JY%jQKNjQ;MxYGq6b`b-!Xdy zvbd{x>h23Xl{OcJ_oXx&$j8s4EY(aT;M{>k90 zB6?>fW}7n4EhZA4s*P;a{J)0=-NL4>w{w7H9qKX;3sxqbj^qGPw?P>wAc^&n`EMw?!E{bg4 z69J}ZSdi9{)|t{f)O3MYXJ2Esqcusgy?xPVF2f+Qp~}IhTou_F`0&8}u1Qq;Z13SS zrZ_)$1$J&O_Wy;1^cB3;+p)G@bgn(9axpl(Aq+i|@~AJSP88RN9dWYs<}j_?<&*G} z@oE0u_u$|(LuGlEM2&lp1w#(RzC5{*fa$rV)bF$4Fg637o!3#a1oOF%he*oB8Di_%JUA8a1owW+5`1)U*Cs;kTzFMKx-WJim2ov*e zMDWCVVjOc>HHCTR)SN_i2jg5hS8MrPU!wf%BD=~EF$n-}o=^X*A|R_bgwe=XY1;3V zs>aa#JpA)E%cwUnbcK;VF-7GScubvCc?haK-QWBvQjS?vqLAg%L}N~5}TIOp|)3jr*jvK`zieVFBqlG8KRd;F~fQVAH_M3eHx=$ z@=FJ`g3E$(RhmW#j2W&3aZO%_IT3!XAeXBcfh`O% z?NImt<1NOoWT5^d6E-JTq^dt9(zb42xD%Es*dg+4k?&w>b_O!^`l zEG{Ol>64JrPIv$w^6O~qaecr)=#}@pPvJB)c9Et_p*phf&4S>;Os?X<3pI95gr9OK zyzHrN=uPuXSv;T07%OpyTUx`Y-)81ANFA!RXDu7xl45SB zy@s2KLQ>=nb4nCML}FXkD9G~+5FM^Q;d2w-Ct`CnF(0k#a?3%X6qy3YjY|J_a3bZG zVS$MSzoM%$WD!8y&)^4(uR$tq0s|N0YT7${Kr=G}{f%Z%u|!=?B_`p)pYk+Jb?x6V zW_$M*5+$G>3irJ+w!7=MBQZO>_n$=(Lbdd2H>u)FC$p%li|!xQhY?PZ2C{}B>0{d7 zTv_L0BHwYw)vRHN0#2CJ1G^A^;zEySy#nK^aRa5Vj_8;<3aW0N+98dzw{7DpIk)5* zzEeVZ)UPdaW=T_|r9r5SEiwBwcE*UUnInfogx+mr$?E&M()@GcxJvYx%f3_iV0v6OrU|e^UwW zKDnKcgH~8;MhUgr^uY}ykNZn^0_19*e$Gj-E^3ER3q1jWz2J2s(EP#AU!*YHl2HuI z4OFX|A^Lgk8 zglfJQZT*;FRS`xsf+G8NDYG~s%QDw9EdUD~Xi`y#ubLID|D{tlR)jm0(b2hdv{x%XS?GLb$7lOl@aE@%R}rFM33!=N>e_Mz5Vq~RBq)!+ZWdjUrRdF z5FgRl%oT_REfP5%{%Y>?5^tYOqc|osvqd`uWZa}_haJL^_r|lKMJB;Ja*3-d5OYXn zK%|M`i@WFzgaq{&2^>}=o8Ww+ZYRLe*5twxBf%ElJT>5%o>2@(h+_QKC49Y|j27Cg zB%lhw_~483p1X_5SLVbvG;Mt)wfGfDFXC|4eIxt=b>H8V&`g2l;5?`6a#pDM9-%n5 z?y08pCW;#(cEFpn!u^cbjBc_NR8w|7I{ky@&q}a;UX=PGl^IH#ix*FtjVz$}2YtFx zQ_Nqujos2zwuCAZiEg>w;TfZvgB9VJ2Dzkez^U)x6R#o+{cU;TLR!H_H)#oamg6X! ztu{uq-p)(40%vQp>iK5hUd|02#$E{-;_gC@*)JBAiPgty97Y*rj+7qPc40Jz2!Ayd z&?!n}?CNv$K@)fHO#zASO$J=(NE9~~;0vSRC#4@O+QwagDl41))5pVI1No#<9+#~Z z=vHqgMPVzBS=BbTOAFKk*>k5}VC+?nSH;Jn(IoAX=mQVQ>-DNiubYR5ps&ahLC686 zmnrk`bF5qE&!M@=IwHLAB`_md7}^N~?@>Y} zsasH&o~3V?dyFz*AEY8UL!ul@)ek|=K!}~iyZA&tw1y|ASD631k8g?5inXbJ$235J z`1bmX9hdC`uZV+g)lb2xf~%d^AUt{1Jg*W}fPA8S0*68D$>@JQXlDn-gWQIP)~PT-1=e7kh4@SUn6*?A6SuT7?73gC zI6M(+zCFC$n?S7S`}NF%>)v`p|OvULMc3k!BY}{qtaEMJK9Q`fmvtj-{P8wsWIMcncGY71EL)T8`oh^@Oa@7Yt=LRPgY<^T>rd^2^mI`try#6LsNy|B2ut*Or!c;zrN)$F8v9--PBkU$!PZqG&2_T zEzB*+;$hC`#@=tMDBz2ODhWdvS>tNTIx`VHrL+*L1nix^&!?_#i(hT6?j@P=wTQ^z z;qid5^Z4BXWUM2(--@$$awz=C=l!@JVtVnfIY&1q$Hj6M;j*ta@CJ;Dc_RC$nU|GE z@qF#(K`wLAs&*qy^CV8LU5a`($S4?TZvG!0=7Xjb04USdn)&_pkzl~OqAFgwacba^ zC#S&=&|1LhslJ}d&oMvs7)Cw6nDEC^He6vMmY=`(ZhULr=ncdwA0rB|CYIp#_kciC z6}d%QyNg-#TqZ7}>7C|~UCsNjGafeHguck}xGefNfc^}_D&l{M5Mi;p^2R%s%cGUD z3Pa2|k~2sC^NO=^i4UijF-GJ8%;+5jUzsxFQ(|&0_#a{t>;IbRebZ4$Sm#FVJ<@ri z1#f8bT_0syV?r;H3dX06X@#kkG&q+}l~+G=00L}yB@{fnPmCGec=x+|eV&}Y8gBjw z^!FOwzIwP47A)z~Qg>V^8PjmF+!C)WhWvU^?#kkEH6pUub;O0L&SH(BsTZT1F4H&Nn?E?GpX=tz}3 z&;KX4b=I5Gukz-MF*mRvA?X89Tmao*6)!5OYg3+)ZIvZqI!1&A z0mXpC83=K+O(%wKgd?%P$CT|mEbP>6vZ9C0wV#lf$Xw{IpiG;gbX!Qf$6)1ACQ&dx z;%-u&)R|t3Gh|(6XoeebO)UKG|MAbgd$M?Y8@0&9WbuZdGqW5~0$zzVOQMPQ$e%fs zejQS?gBjJzegnhxG!IqLX*hEezCxqZJkEOy$8Ja;GRoC^Se9Q$S{2Wlc+o02YFF9h6k9sYYje-Rn2HsOK6 zW=>N!kgQr)DPP}2_s^d%9E1!rtNFzI)>qRt>zXCLtO+Xc^b!9T^wTh(;o&3nxlP-= z-wO-!o8=X1T22;F-#Rp)W{WlxQ3=Cw*B%0PgJtJiDkURuaBP5r(Y>Ey-Nv|XoFk|> zb=hR5lY~RMn7@~GW&OQwvO6wNeKg(t7!PXsJv@h?P)NaOf5(dFAAPuA!nqX`dL33l z^~Nd$-@;sPF}i9jUtL-+Jp}f8Vr}2%Pzu-&)lp$33g}nhr(6VvY8GN>^+y_Z{Gzezb( zL!5_^QIoUx<*Rm+;1FS8&E5eT;s6*n-E8RHF~SePbPO+E|Bb;Jg(#;P-_m`3zpzQ1 zcHVpe{x7oI@@&#_(XtM4gZj1f)HkO*sU2aw#iv6_j5ns2Yx7uh=Ee7OT!3%x;e5&cmgs$SUFvhRN82a|B@cbqB!>2=i1NA->^Bo5>)V^X*4m{dy1oD4o` z0VCZxR9+><3fj#%(VF_pQ8_A&iKP&qrT% z^Kf%>bFf))a#{!*{r3q-j)gfGIJNW$BLGcJT8%3SPa7&L&6@pzFK(DhBDVozGzMAM zK{qK3oFk&r9hQ# J@n!+S{y%F`_VWM$ delta 60317 zcmZ6wV{o8dur(UnwryJzCllMY?c|AVXTphXTN68ziEZ2Z-t$$RTle0s{?WbG-nF~` zbnRMQz6_f(2Ajyl&c(&cO2RBnqD#Wd$wI=$!b74@!mLQb{vRko!pg$N!pcsJ9k%~*PBRmB z6HZ<;9u`hs4qjeXb`xU@Q*JX}ZXQkxR%0OnUJGsxQ#N*UUK0)uHZEfmPGbvWE>jLu zQ%*BpPGi%Q9Z*UpuuOe8vW~A1=@ML$WK{%lK0~OaBzKWy))P=I47+*dER+$JEHk$i&EKYovdw zzaMLoWDEq-h>IN@K5_gmFeoHwcSpMvh`&Q%Cfqdb<3;kw(2vq4?#K(YF8q!1JbIsJvO8 zHod&dccL^SJ3TtJyM}byhGTNVDe_W81A&m5zbk;FDZKej_^)03M9#WDl#{7Rmde(g zO@FMucmtuTC7J89_iD70@Jz5)&W?(*KsLkMk?c&i^C7IEp(r+HUyaK%jhn)MbsXv?~@Z$AKl8;c0n3_K!7}L>z%YB!2rnqZTs^<4-pqPAFmA+i9=F3m5X^|P5jNw z0!+_@@P(E+mczoUpd@a{K^ohMJf&suaP-dn{$Z+wypX3>%s-kq#XQZ?|D|RdYDkj9 zu6RPgk|*%pz-^DVQ%pEo331x9OCq`NpuFw(p9PcBSZy|^(4RnB3O5%bRpaB{{>jOb-;KY&ax%X;UTUfxmE6M0nEeyHOaHnuAoFN262{57OLk7-c8vMz~2X zQ*Bu!zyTRU*M8=j^9iVa|CJF}cDd$)b0%#^TrN!TjKK`<7r~?>X-^(%f&!R8i9%hr z$_70tAmSD85sh#KP3pMmYiWzQ zda2yxqju|jAha%i{I`6`Y$n$su6bHimfe#B#>p#V#oJWaiO(r+NAOPHe!%m6F35ub zD(p*3n6Duw9s3~l(iPG!%Tx|h@2>~?fXmve<8!TLFLKWPk~B-8{?{ODq^o z+aZxYBT8@7Exg!Cb|v$%j3WLERNN2jc3iel*=&R^u*tXPUl^FK9`=bO&sF(l1)*he zN`fu38(cbB|CT{JegHqA*N>cU1GgP{DmPTIFEyo%yQc{$Z$mg_unxI_kdl!Y@5|Hl zaF61rB;g&;ikp}c0f4+Ym2l8Yk&!2&p2#GBJVX}Z>X)TZ&bNTSVy7CLVqez!%(pIC ztYTl6dz8XAc=e$j&)m|+BdQlUuPZw=RtTfsI2L6jVYDpHo|F<>p#F4!p5;D-)uKl$ z3CMF>lQaG?)hBkCvR%ONQ9ixtA~Mh0eq5-7#;>1%$mdG)ATTpf`!^1O!JA92H z-xRuH3=&kLtOJ|Jnk5DG;1+7m+)mssnlpiaJ0e$Imz_L$YEmSEGJ=9fAp=4p8;>0h zkjPUG=ir*4uVkS#P{Uq7KAOjxZn-TXqP^$ckc}gxf_~Z_;4&=glqJq#cI*^kU?~1R zZzrG1IaHa$Ef{j2o9C048o<7`BNs^0a4zZ>_Z*ni8wG9ydTG!PvsAgXZCP+g3*B$X zuN3tN_f!zmV+~BF-NgZ8eKzV%Ijd*u+DlCO4^}FJq`GvRph#XMe`y#NU;>%pyZpxe9>8;BJTGe zUp?}LhXvwkD3u$%QD_byHJ6-)f|FI*5~~pXq4zzs zULtQFDHT{Alf6=Cp=YO64XwoMBQRX7C1*v!zkZrt5nmg0jgs*q)4Dq4q#)1?5cjJa zASnlp@c+DTI6Y^f?^w_13Y1Y4JegJek!hE0cmphHMNCiZ1`9N9Bb&agIhH}hEgBxP2i7CrBebSjE@+{&m&q$6m4cK za2tmC$tvX@2>GwMzi zKOD%nGT!u{xw8yim3gI7d;dkk4Q3!4D#BUEpq(Th8#9EB!Ts`g^QJva%2P{`j=Wn5 zG5l7WJZ}Q8`-fs!{pwd{MbO|Gw+#Yg6-n1w*8Pi-{1F3BSPIJFur8{o4&-xp&S+$Z zFf26)qzfoKi|#OvGf!}h%`xNp$t3A7;bNe8CFWsSO!rFh#|tJ_+$4wiL)~y;_;M@4 zmXil7ospcr+=11Fsp64b%Faxnj7OA}avV$EUupk#t-5^4$tjVq`w{EFQ_l)r8WAiVMp9DOIUYT|pVEQuJf|5+AkGsK7&}BRCb$4B zF@ykGy3FDZziE=W%sJb6x^_ByR?8&AWC+hRnN%8Nq$>8LbRf?o znR6upu&-~XBOAzbNVcegHcX3^l^)Dpq)!Fs2XP!jpgyo<8g0J7LB$@BWKP>oAE#@k z4aY>bpB}a7eCPuU+a4LKeNg@%0u*6KsSZh)VV$ZC37VzqNrDyAW;lalC!sz)eH_&2 z{d9I27sd!PGyLf{0eG8W{?nK7*;oCcTXBS;m=K9Rz1X!;Lb@2xDe0p5I7(kpKE-*^ zVpLOZcfFlnhw4aG$o8D&5pG3G>|*|Lik!T!XLyigHpgYW&~i0)Hrq=`!El2e@) zmMX1BWYw-ioQSgOs+7dc_Is%jJc{6Bj%v#?Ok?pL#_@9fxFP8WQ`y`%pWEl;`Ds%` z)8>Ot*7xjU&aJ4}Raj|0ENR{67Zk$>a(rzZZqqtSCTWTr8y6_s|NN3u2H6OJLtJY` zJ*m6*ujsG#D$K=aN{J){B-Rn0KtkfE592_~OfRDw0;HKbMZ(XcM}o`&=P_CO+i0K7 zC3j8tXZ*5IGzIvY8Yf8{{II4$D8?LgCdl1x7&=&N@n*?(nq=r?3bq0!_?loegMqh$ zP-r14sol6ag`sxLHGKMRbUqv)^I23%>mX!~cF+rhFM`4kO_Gw)4@;6794w4=9Byu~ zfDRPHl`7h3SJ(>1g3^i z3xdG~3snhHRti~FgkV6+aR&$$&XFUlF#CSo^c1~{uPqHmA)IrTB_Icg=6z$cW0}kd zLPLn*9p++UsUPSIw*lsZT`#w{!mMaRQ2%cFgUKTcx~%~W*o`YiJTy9FBH|vO-p}pa z5K|OtPw4$|x8p)#NluxX(dh#>f%d%k5i3+!pMT68c+F|d7SxNg%ZSn-<*$Yf(!E4E z^2}5xY#O#QPc!rLTTcM!I9H2Zji&j!`Ra%r6@N`e&*wqeCUyjg@B4JJQxlz@f6Yz1 z!OPWGf^f>szEVs$oEGY3hParIBL(k<$O*}p^)NnPnax;QD4k& zA$BI5t+c~#jwS9!Kewy@>UY}>tZnEH0Q6?SX=C=xx2{pM?9 zc74HAH0hz(ng&?K5}oV*!nMNwm8I2j=`+V?p{x&RPFs#s8{Xv4QS$BVZz+aCB9Oxs zWyZ=>IXeVv(CU8fQ6f=ItQdKagQus|)|sk+E(;)@%clY%D!LlD-9#x-7^CD*-6xpx z2@ZM{agIn062&h`9Huc#1jkEJjw_Z?#&%93dkh3Ew*&+#j6jZt3+<5OPe?&yN2cSt zF*TT6`xk41YMvQ8B7bL<#pm-AvC45FXW%2}DGUVm!m`9v#pN$9D=ySVU_v>Hpw2H{ z%GHwyqQ|m0?lfEyEc}R+8}J%Q8`U&z)oD33t%81iiM9;Av4GJMt#O(n!;+p9@p?GX zE^R{ny$slejHHE9<5}Vz;2mj5{*od_^IV)i^g*=!&9{D$d=*)wnS1S2)%l!0gE?DB z>~BtAvxM_wSrVCu05Pm8MnH;nG*fG;2dOGsA(vnOn8sDSCsR3Fpma~UjSIU$8aG{q z($PhJj>Ze$w7foCKtoYZi$0Y-$VHo6g4Vg7Ulo8vBPJ?p3G4bJdl;_#;yZ&`Go{z< zI9bf@hFhg4G9~+}-hQ~3uZjVESAOc1s`MgZQ(CVbLd%6Nj3muD3B@v#NNJjQZsBYw zeLj$MAQuxC`@00AX~ra?INTXuj_FwzJ_?D4YO@tPZ&}t9{U4rJTC1uTelyc4SyBb= zbvZ!L(-mE~$1>Vmy-QW^RLwySUp?Z5I_%lXc@*1V#&6uhI89X<8HcQbRl#l%F=J*N z+#Grk+bgx5Mb;Sw+hZIF1gP$~wLvYbCZX^X4f5P^P@l#( zH5Kc}hkUMLzFwYAlt(*OdUtG09qzJ2?_)q2`55N9+$vsh*el3hH&}mV$3h0#uIK@$ z{R97okt0fcs|!*RUbo=UmG8+n6lz|jICQ~fgy)XuHvSSW^`9|eSP2g+Lw6Ui)n)D8 zt)@{GqL9RO;DE&#xs~~tN1o=qa!ANNXwFXt>NrZeb4DLkZ5Q;<@#ooao~2k#$U(=nvl{Lgdh z>75TS19UynTcQ~5L|{_tuHoay)dcY&dIxp>gyo%xP=@fhm^XvrSjL^@t88z&(`?>SCc z=Fi(EM8L0a-)Jz}@&0bqeogG;zC?yDOQ@X*!V%__&z{swoa*Rp)?D^~E#-lGntM|5 z%%--#9KUy7%;(ylmJ6moOb321hX16evhK25Sa^E8=D9o{Fd>^p3XL^7*?#hRgKf|<*oQ?0zhZkQ9Vqow@TlOoV=_`@# zT(ya*t=1xgdfJPPr)~kEFFFxtPz&aOXl?0e=h2BPNc@8bUp~7jg%ntv!!JtxJ$)Fs zl*N&c7Z{SwY+3VBgqy$>)1+#jv-ImPB7H^I4XdC1QFs^nvm@f&I)BK#UF<_p@h72MeI&-wdtE71E&&@6-Wsf`xXB-SAE?&;D4%Ued!P^% z$XmpL`*X015|bbH>Ds`|?8T1U>0O~Yy}i|KSw~CykGkGPHh1PpS*+=Iuwxhj{hY2B z2O`x)jnWwp&T{M3hcM!?e>!+ zJ2qUab9W4_E+Uh+e(>BGYcBigjD~N{$LT%Lc$?ggKeKb>Uep8^9tmtXyWKxp-57T7 z#~#jSNam_0am8z7GP*CCOAN6bopst3CvKQw#%ex7ciQh?=Dy_WAG-SUC(vJ(Qxf_r=UiSZwrWN}H?qqJe92i4IxURrQ-)g`9f8E_K zn{eHO?_}kqI3=Y=_~Glzw`!(Bt)}{zkmwr6l?e^Zn-UMylwS;8nP1lu4@w8{Q3y+!olkFC4kQ5^re>C&;%*n zsRfRc34&0agJ75Q@Bkv|;}ic)v&QQJ7K*6H7z@hQ3?jp?i%xBYM#}GtECtW*dOXYX z{R&6IT?oSBF(r~Bt2ZoG}`jm=EXAFTIGZ0+`7USg4yk`tlERWermrN!uF12>S+1BBJowesmCO}B{vY3I z`SoE%QS+ADf+t`89U4HZheNBuH>oPTuIXam1dB&QnQB9elM`za%2(UWG3rA;J3G21 z2)v-6AU-{G|1hZ0o`adfvnGf+vTsUX7y>{D{M*?#ceF%i`D7Rx9v%F9a8KNvkrGq| z+rK*hXL$5HKlq!{3JNN)AuNf#e{Ohc5bG`BdDawt5x716Pjpu!qfgjuOqM$E^hK(NiDYjrF-|Q!A4-5~I z`NRm{`J7?l&X#cgEm%!bbnd;M)E+UVh5?-bV){n@4_^(L12NB=^3{{ZwDwaQQ{yk^u*71$@Zt3pdwJR?FE+o1Amm%Gef>}P&ddg!1@yLjk$z19Q(p-$O)*dTRkqIwe8PrdZb<)Kl>1hO z9##-H-!;|{M$dkg=5@5p#!jX zo)WkKov#1h+w}b(@csk;+p;NEkAP5kn;8&(7h1j&{&=388Xn#phVijqor$CeRvJm$ z&pQ-AM&pj0epv<`C^6;+kJwH(tRG?vh{H+Pd+fyT7l}-)fb1Ow!MuWh^L;tiH9b*9 z*2hzX&1hb8_dxvV7*aS{(tg;@amYoz1K#H(l?E5p8T;p6fSw2RP9UP^t+U(A2%)q}gF zNZa0xrNhX=U!m%fLtvIQ0nFf@?J;@GcC*|?*@H&nZz4LU0ByXGli>)% zt?WYiJTZ2c>v9ohmp^h<{Zz9E;z$1u;?4A@&63u%rtBa9gMvFhF|>200_f6{d)L3^ zve5^66%vH(bP$r*q4dl~DN6cqFNm#vnRQR|c_roG%Q@4mFr^h)VV3*$p~lz*8pOmb zSTw)w(dpnZ&TO-j{CvDX-!l^=>f#>P)$q6`QQh2eIZEh79BziNUHom&$hfLHkwI}n z;dwIsa_l|<7-5o{?PejEtGL<~X+}nA9{&Sw4P1VwxfkX?#xC}ujXUwysiJcOEw5Ws z+$Qg~sT9H5qTSQ{|0x9$AjsKAHHzL(7TrioS!FUXrF5YhBRm*f?egsM$cHmOwwYXE z>27rzE9ie&UH_3r+i)L?pIa@@W*YlZd+@b{KC%1-feBEv^FetqwlYIORCloNV@ z9gn6-;~h4bg^KHV47}zHE8dC1Xr(sg%R9ttL6Ti;f61%E;*qg zO|T|%tty7^46;0vu);9grg7_EHSIbUwKET=Q?|92^X2FYk?LA8zd^R72B)i3s2{!* zP)%$=R7sY^AIFZZaJ#8Tk{>Z5{TQk^k7Z1YR^ zX?G>j5hmiIH?+jCoCA9V4IJpYTau$>7_-fU8 z82>w%mP*SW24_^q^nF6-&RWy^YpJlz~G{YJ5(y}iA*3NC-rJ3wR&deRhipPOGmX15%9PlH3&thTM?FqN^9mV-g`suXq4)oQVS2KI?_b z$!zNMh9$vqzPDR$e>0OO8v}<0Ft0^sR3&}*VXKRCvtH{)255$S_|mxaU)rV5%O9R5FR2;4mFGu(Wx|0*gD_F}d7rm$y9f*!hmGf)~^zHGu+zU2SxS z{EvwklQ>H_8gcpd$;`Gzr1b+gefG%!M#y!t%n^tnLm}n2A(k1S>nv%EC^oT0lMc!N z&(Of%WONawmqL;KuhrN1G5Jn#Foc+o`h;3Ms&N&S5r8ei)U{HKX83c_>~8+@Bm>+3 z9IQ%f^$NAd&OB~r{YUFMNk9Wg*EB1(bc)>V!uy#D^5(Hrp%GA6MEsAihySht(VJ?`Ddx5`82oUgiN27SPpg0tdVf< zp*U{<}h{qFGDOo8!A^@_*7W>;?|o1i`+HFblqUjkY2xX(p62%DNGNb4*18>0bfz-RNl7qrA?JTQQ#x zwD!GYoT+%(*-Ce?^oDRGC}^8G%R}TM*22};q4Y{ zB2baSveSX}r|oQw1YTg<6~hBjrgFCmb>w-FjXWfidf?>B3b zoj&KVLKX|0)}C0^tZz04v9C*^Xdcr;%m-)n@Qv^MNTs&pw5cU7$~`_Ynd)*KdNiA73M^W7#SMb8 zr>^AAFgAN6$!@`UjCHIse3^8Iw2umAWj7}$zlCO@?KNEImWn+~yz=#ii5p9UILqYCg}Pvs_$vKLoU#4mO!r5y zSAvM8p1sLJqmpi}Fn-!tJn#%mX|Qv{RwWRa7Q+t1P5k4_|G)@4jV%MD?fNk;@|nB0 zO7Q7ipcJt@l!HiP&N-b?ySCDMWQiVSsp`?pq9e_OjE@LTdg4nhM=-p;YmxD64f{!p z0nh6*;5}tC$*`x__95OZL}|Y9TQ|5UJIz-%b zuTy=7(&65NQ@ml4Of4Ug8@jE-fpqH*506vHPcA5PP%1gx)TNPo52@jcjE=}TbA0-t{75iu~K=&2BGX5=hqnC1fyzPGKm-@RARq-H2u z$P%8Je3Pt53A~XPeg#1cdp2UcG6>)+UybxUL#0{t+YQ3(w&c2jFQ#B`xC8I{O&6cn z0h5FNycXS!4u4yShH4Uq94}e>XCMpPh}xv$B9OU@H4Qu+;B?e}B_&6NA=%HVUHX2o zXhL(f{^d_+Yb66p(dxNa%%e@bTIdRv_(HZJVClkH z%w9hz=gI2g$2B0Vh-==u+YhCn7haH}P7&adrDHL&!9<_!x?n_TLy#QU;dzvlSIKX= z%~ACpQe73;adnJtWteFP%BY!)P zuBAb^o{LpeCXKze(S#Vb62Z6cro(W(+AS|7Tr<=O9hH5`HL*V9M@K8ACVhiFYvHXI z(dysSR2VzDEdK@4>Vd)KQF%d93IwBYb5pOEwp)N392NCN-ePbI&7o$ofsUAk3*bs# zijOq~==mh0u&Q7h&s4Zk#I9rpFb<@yQJLaCAu@j%oC_(}Ey39|k6sj+AX#Cs*=&)V zvu}{eLqmV@`9HwOsr@eR{AuH*QSE-Mi&>ol#W<4WQg_@sK15#U+atL#HoMz8bGmRw z4gk{I7!`alQL|L`$z%m3o?kM`>I4Z^KA-i?UZd$?M7DyK*|hr}EkIXm(p2dhOGrB2b{|+PU_5rJU*zD%(m67NngTpyJeX zN0*}xZvW~%kED;AUz2)*&$kX%?b8aBrvYX(b7ik-dZd!1FCqfZ3Yrv(Z(3RP6wyKd zvh{omnFmfHt%M)<>>|f@_CN6DG|5WEb;Kk?t&VkeVAEwQA5v8Gj-=7;9n?B+^W5 z;v`HrXWo{=-u1RH{|xS}0jWLbitE6{c-*9qQ7h*A)if6k9f)#^eoTd~Szq0&KG?+r z$v5k1Em-wWt#V^Tg?+ioHLs+M*D&tEooGg7sck_&;zbY^hX!Hpfm?Xd zU(1s9Hxa-t^qnw!Ee_*J0CQYZI~%y3Ev-#Mjsb8W5pEZ8 zwBur1R8e37g%po6JPZct4UU(N*1W6+_Mr_l@T+M4$MHiH%hAg zHp*s~rNtAhP~Xyn1@nKi+HCpsER{`?AZPKVJbF_{uZq7?y=xghc&@E1CczFxnUIsX z`pRAZ#2Tbm&`D(9K8>}MUI5OP=UObx%gsov3AE!SSq+KkLQWk*z&Z`-f9D>^&k@h{ zknF<~#}i;4*|Qf(dA&=tZr)R{sPt}RqhFoAGZ8^GigUwB;#@SfG7nei_)rFcFA-il z{6?kI`D7az#kPbK#JyfGl}ANsns&(1)fGp-DdwYQBh=GQt*M4Zb_Cu#*}(6K>P$v1 zkr&!asv!_53`<%sJ<-eAk?k(u=lf*eD`8c=`Qz}bq8k2jc(I7!XcUT;vxmq;VREA& z8Z=H5vNO)}6q1usv7oOF%EK4SZq<4a$*4NaPAJUC^e6ZQrAiK)j_kP(L=;T6it)tNO(h7=8Sq_!#4MzoItg5=wS4Gz{jKZ!qCE(iDEMjgOX>~MR!{HGE6p*QpQ+XF zM4hCvF#P?rA1%DuKRw-`F9*9<>j0lqNHQ44HoP%PBpO4OA0Zpo6* zbf;yzgN3K6)sM4PHIImQnnZtT^)f8=FP?wh`U2nWG4UxSC7O8~PvFAgn9Z(2G!&9Y zb_mOFx&qo3hf6F5mYEqBiH^NbQY|FZS*yNh^%xZJPozbcKSu3bJ;wec!{c-(xmiR6 zCBK+ac6$LG!2AzW8;m#84;{~O3Nmn73`r&{kLd!B;ft4;1JKaH+|ZQt$4{~L2yr8x z-sAPD*7u!XerY*WZ$Z_OP~np?xODCP_+AgSuD_737FY>r@}TO@mpDlkebr&bu{E7q zn*+ChGE#lUIdg|v?`UX(lvdb_!3oT;voR5-gG2#mALhLyZ`>8x-aTnpv%Pz)-aJI) zfhAD(g<5^cRuQKB87o$!to0JEGQ_7e&YQ^oi3p9Gv4ltTKkhGBH>-yT1LED*O2ky7 z8jy>~w_=DG&|$K8(N1rbjS8iyBe1G}`C*SMun_fiV5-@WTvPH47nw#Ds%_O##T$S? z|Gopf_U2yldB0*7Q7nt&^x7X)k5|Z5$x+|1b|g#wY+OCQIm**0oRXl`mGJ{NWKNXrYb_If+bH za#P4bz2H^*{5x`^Tu#`Xp%){-qFX z-E0GMmEaY=A7cK8fo)svT$t_&WunLGxDpW|-mOJ6^nF4Q60aTAQM3upl6G!W#j`PR zlZ7#nFBITKRICpsjX=p=Lww6PeLQaP->C@ud4nss+vD^^wI|Xu#3Ue2`*eR#aZ)(pFLY1Mq3x z?u%%8z4e3-9W`JB!R1nbc$=o7bR1RPf{{8T=dWfeb8viJuA`LF@pg5ok(l%gO=3Pe z)!5+G;5)WpL24tcibOx^)+!p%;?JgGuy|`F7$2X9UA5jC=DU{H6ljr@L|^*|j~Z z54a*nd^Ve= zC;4LWw`9uM6t^cBpl&$S@&OD3eFTYW-9o#wKI|#9MsUEB!GF{)j z@%ZPDWSXETyEQzc$w>>aKK!yv%p~2=wIkXYMbBg@nS^Dy8c+F=Z`!ged0l;QXNd-)**n~k z-!xq00Y~kViX-n)!AidPJmE9`VJ)pKDFGT@gVYVhbzg}1HznGC zi<~`r_}zFC?7O}3buB@LhOdR7k)w|6Il4nSd|fI~3pGF;QM{!u+y=dhKEV~XYA-ii zovNl5V(N6vO=fDG{%VpA)&c}g$4J{HHPdcb_*RH`*~D1@;mCcch^KR{El z38BsPToIS(=3T5(Utvh=?t;DFQnva(Mjjj*`L((=GdkGRg_6PH0F zR$Qc)-m>)|3}W;=Yj@~OH`s`wNB@U_?M*?rq91Tqc|w}hk2Y9EkoqA1u&PmRMy!L_ zZh}0<{s+Nt)aS-kF35V#*f>x9Qi!k8Cgm4Xz#k`BDXyZLPQE<7X@sFW4D@+fE^5zU ziL?-T=~b>ih&MN0LWAZ~Pw7xr8$=8A4T4VSa7QDphqba9;}&+1a#IZMx^ehB3^EEQ z_cWk-_I3t>m+dYt8{;MpyhLA^b1K{4AFbcjYyI?$qz{wIH+YYR!Ets0GWRHwO))FL zyP%-xMJP&JVm*mW)l??=16BHK&%{)KI%@P`VL=R{B~zN@H@5g*V5|sT#%%#q`c27^ z;E?1O*2Lwq=~anF(XlLhc?bIs#uK`g2_m2%XW&A!xCTFZh!@Q)K=ETv{aR@GbhD_o z)W~U_Lz7&&WSMax+DIeo6}l6xx?kVo%8qQ9AuXt{>iyj454u_YH7Ajy^5(6W8grw$ zLpg;6_I1yZn3xac7^4Xt9)hI;u?x>a?e-+s)S0HLDjo&7TkRtCrwPhwTv)#}e=ty` zgLj1kf8Xoun4XWlTZ}q<9DJ#bAS>udPYc@c=B8n_15P4oE_q}kcYX?8#JAIm$|iP% z_v>gSL*v4R*E(8so*4ps&HkFp+FB?ORfEONbjKo%gDIrzlf3q_nec21(PN4=XK)<624F#s#I z%*2&>g0+NpZY7ws-LC77iV)zBo}rlY7&$!nHBk@CV32`iWtpMw0s6C#dVXcszS z9P5!{SXukZ`?7}&_R;GD>L_^y=+O)ki-H!K7K?p6?J=~zWp`=?hJsLcIrk1}-HXyq zG(C_J>Fq8)g?eyOR;qO8>3}WjC#E}lE?06KqEwE5EV7V|8xHsH?>Szi7v=m%f_}0H z5g**yV?V_(kJcXZwFNTb+3L*rG(K8C5L(~LS^dE4%l>qnS4r*eO_DspV7;n4up1Xa zkUR^#R!-e^{Hn!Rlg}Dz4OQ7)^%Z|dm6=_N+dWX2i06kLT(iOM4+A`EC!U(saeuWt z$2!sEWxaG#KJx#;wXo+rAxEEA7E-H9UD^f}62{_slqMI0tFC=ZL2(x4PxTRLqHbdX z@027L(flU>pQ`}FB)eCM-}#Q#qmzvwIHCeDI%r?)bvC9S{rmUg#}v97GLC zCmUDQ+7`5aIM>Gwux?w0$TfsH>z<=x7BYgA@*1Iv{6z5PsH``xzK#1>*St^4e~*Xt zB^w6Cfw>%r=dDB$tRPBBBFf@hSeM_q5=^!-0T&PHwINzGVg@?7ZeDxeYJDzeWtn75 zJ4~hY`xeUba7mw$O5C%;>TDp7G?_Yo+E=DtQ5|NQy4H>73Ezz#U)z>SELE7Ihzyy4 z>r>!ho$l^r`)1T>h}x(L`aogwuxg%o&&6j(vvNk_csLn{u|#2N6$bac57nOPie@0Mb?51Kb=`644|t_sEcQ!8nLYpxeMlMDuZzk*+W~sMck2s~LA&9(1_uC16Vt3k7?4J(?MqRun#G-0p zo^Nd%vm5lKzID<|XFI_PJIUSk1{p7iXziO%#5;8yqh@uKtb2m~e-x|xAlAVW(AEsb z0;JCIosQEEv3|fSRMFG;ZY952a?&)wv(B!4{R3M3pO5g)pDTh>^m-L(HD>d#(lQ{_ z|F9~~xGopLV$=Rr`NM$6TG~{Rd~CbZW;Ar=Eb}6C{_$WJ>7&w*_*3E*uH%JltK7`* z-N@nP7pX(!`Qs)uTxxuG?I){mV_^|8O^ajSIMos*e~mQQl65!YIBb_+(3}scC;|4E zQzdX9>sw0?8l55YeRzNs8=h+)`q$Jh_4)y>!#wlf-**o?rRoQU{@tW(r9~tuxf!BR z*y->o_3@Tk6}1=q*iqE=S2X|}YX4*@j6;{{9BJr9>p_{Qa0&EiDQAB$u<8LVeP-$N zd8CV@*1>?i+_WI})*#ljm*oDILWt|V0UD4VNIZBkw}-#~2 zYdKwo66D8<7zvL!2ZC`6t%y_zL_?(w^w}CtPlIfO_mRr;&>G+bB~--q9IEo3|E706d@1)~9%G2K>e^NIl*vPWW*4Cb@O#U3<{ z02#BFu^GK-RIpNijTMnqguk$lE)UJsaoU!+vA%N~lqs@#u@w@zm0`*bOWjh=PkMSS z;w;Qw!KcTPfEu0K%wO{-afq4!LKE066a>lsnOa;Ru~l5+iUn%TfK0rr9HrhHRdw6u zT1p;i2vR9mmxrWeNV2xGBL_g~uo~Ld4WCL-=6r=mYRT6<+_^k?nE7CB4kDe8{1t9) zftpZ|r#d+gSm1Y*$cGg=<*&WLJ`9-}YNw^hk6@sA;j*I#T|%38l$q2k`~r4kQzEQA z9(T7$mHVYK>3S|8`V=e|XpeQyYNHPS!kC!S4bN5oFho{y$NE12dq9N0^Q}7%*QnVS z8g;d4o~Xar(s5Lf5mkSrC3<~Q^@SK6XY|8ij`=$=BY5{xwG2WS$F~jY8i};F?JZ#{ zWLykE8k1wDajpu2ICdAHUyv9rKE%6&f8$YUaQNRHsVZ0se|)hDOIGj#%@4Q|KW$nt zM!|*t{`!O2I4UTQkrHbN40g{&$tV$uQ<-U}+=ri0n{85B?QAN?i!f4~GI1!;Y4(S( z!?&K!5gWMu=SWdsgLXo_67UX2W=JaHceSuK z@}{jHBAa-&PLhNk-QPXWg7@o}Hdsl_XUcduMj;Gd`Q0Wpqj_WDUhWf;hvwX_VPZ8l zMiYp)*hFv)VOSvI7`Ak?ELUW#f8ZRS27r*}#qQBmY6)Bh9BzddYV5Vxgwp+yf9z*U z`gE1aYW8aOw3p@VecQfY_`1MCB5#)GHpVCBkqz&R_G4+QFq0t%^+NTc?&)$17hLS^ zXHg_OUz}Ft_7WPy4BATJGP?Kpxt;ct*0HL6Ig6CZurnO$=5iO10 zR{avalDecz)bv#M8$Nk;5Bu0F?dBh&eQ%xzyE@$Kkd03<6K{+>zfBuwWziNbFO;8u zzs^8<-c*X51*GIu7)2hxf1OqU)lBsKtrruMo9x zNz@^3NFQxOB5w$bHs%eYSCqv$C%m#klM?oXe*W6SIuUkcM`-olA38O3aj0Sx;1S8< z?8%?3YA>F^;)f?qf!z4+k#mWP)DVw{zf9iDAjhvQ7xaptnj%MqRy_5mm2 zXaP!5q&@;96(Tmc*&5PIIN-r-`8B%0FFfJOX{wFwz@d30O9>cR$uddka{sP90F*-- z3pK`N{7i33`R1H+e>J9xLSelkAlk1UN2ZGUhsf;SOHLz(*b#LnQ8mOPcTZPKc&v0e znyY@cr3!COb^*HtYo6jnF!;mQl%FZzBY3*YQw%c}#Gv%aHw=IoH#(9bXmoDKbe6v8 zlgU22lbhI3VJa`W<(Z~=cko)$3*V5IyT~T$kh(3Z6CE%ef7_apiOS!#A0HN&&Bt7N3U?ID{5CX-_(syQ5$U67;S~Qflz>OnXlbm#7XKhUL{?b|fOq?kscCGM-M49tSDrxlKiSjGbY7!-FfQ*;HZ0Evi~~(8i1k z8T}4+@CGPxsH}<6W&=oHe;-OSRY|25k9G_m-zo~gJcs4n+1g%G2JB$X{kZ8seM{rmMSR*Dty`p z)%#bN?j{q9Wl13Q%0KnKbifa9rtG8o z8+EA%KC7vvq5n+WjRB_{JV!2kXT{X}0*6#sXA}Vq))QtlG>?krxfg<$e^^=Qx{`Z) zmK-jAq0EKJFMm1fpaoPvQ&_{%YCxdlNP*>De-=jKK1VYU>U#>J=Ewa@GxoK#@f93h z(BfNQh)aquE|Z>A+0F|s=L%bp0y<%vU>qh!x?xy)m@9-5&}c3SM zLYHD*g7`K%%s7rAf&^MCgJh{at+*3}O2qlqK(1i5FHp3i2uinN%@^N!Bj;VGRy`L{ zf1L#fBOd|g2s0v4`)@*2Vp>W!=-=Qg1niRPey^%u$Dk0muC2JZDca*cbLC0~?mxtY zHwH)96$@F&5}*wQlnPbbG~Zj$UGQKAcyU*Y8n0pBirpQf^ng+q$`IM(rBU4TpBBPh zw^-$uyGFk*31cGiD>)InNN~YFPD$%pq+vOFMC|0E;wNp;@X4X^{%H>_>`L|F=_;e zq>ValrPVV|&jLElxCA}>NnIzgw6Yivk(f5Me6CY|C#j}dclhznV|9c>>jKr8e_}Zy z;TOhz1?nBK`cXDlNWUjv=0Vprim0#s@*X7eaaDDH_kQ{~xfR8lq>7Oa8oOZtX4Uy3 z3Oj;1{JQ~7&YDynWKdQ@ZkiJf{qYS2BGfn0-ie|CBkH>p(%ypM`I;}ardQ+#uD@uA z!b!GC=i~?XE^xI@Qv>A>^+K(He{J{X(qm@?Fi7xH>m&#JJ**$Hr0xdDi7f$fijHf`<17=C zWFSyNFgHUsALYD1$mAgBW|_-daw%>MM_tgPcw(bfrV3vWv!QNsf3U`VHBPhS+BEvX z^I%f>+6fO%v&R4m;u$>ZG3j|BF8RbxLmy3;IrSa1^QQE&4{R%J7`6_@9t4KD zGw<)T8PeD~zIcE<)i3fYbtD-3FZ;Dc=m5Neo<0k4_)AS&q zehUL|-Cau)>G)5|5CHigwz}457nV@T7f{%?RsbbM7tZ2HBb4A5fa$R8xTs~%OHXL_ zQB6V}4$3e=5wsj6x(n8?hI0)OSPBdVfH82Lp!={ma7Dvhe->-&>6YIb>^H$SefHoZ z=)g8G94r=ErtHyQ3hAnvwg2m({-N z*G}%@nq@Z870knqa9$?)q3qDH=?}&4Y27Gc;~3+CwAuHM6jAeG$nn^9JBN__m#Fb6nV@vim6+uUt^8LDm;C zR?%Ozjy6^a^_F5`5a@wHOBa1qnyg9*oBdgKQNoFG3-oX4gz@Y&=i6TuipT-%ouyK_ z{%+V>f8~bwSa{cL()5fA6`F+9nuR}9yKFgro z3yG%7B}Pr2B>I+vgwezajqC0>z-A?q5l9$q6X6r`4>&tQk?aXq1^Kj#>l5d-y;rfA zTpDbPSEEgv4kPapx@<{LrX#05X6f~qZsN9ee@XK|Oeuo(veH96;uJO_y>eiPlHP7r zINyw=hTBpteh&twQf|Z7HRjH6axup$>e?%6f*MW_b?knNKO%`?g%p%AM~-~M-8V(l zHX_eoR;mYeUE9c4yNJs&xotSQx<&+5Q=G86JVdxh@>X6=xpgfg*G?5YN6$6Eg+;oS`z zxQC*|lJ!MohBidwwm4yMY?le%$#AAnf2!ebQDOFb3wx(OaRePesPh-M%}WQZM9X#I zckiZvmBQ!c(c-e3uc#yRg6o%5xQma+DBN5&dld`nPSgRB{2?}sq-eXvHQ!ixE1BrU z?2JwB-k~2M%T4(RJ7pRPT?OJi)J6#KQCVk(8AW0}41k)o8vK@UYxer(sR!(_f8Z)p zR01gRAlQ}0U5+mXxO#ND6RTTRX4EfT9y^JBgMdZ#%UmnR`_clKrqQFKzok*-`+?|2 z>LZwNH;yH%S|j?UjjD6u*L4|;fan9YV7e|X5_it$hFo=i%e-kxuGPauVwW#Ee75KF z?;QEb)rj`q-z(5?5ERVY=xMzje;;3hu%k{HeUTfRjUYHN`n;RI$~@wXaA~CF zoRMa8jj_3JgV@EY@32l`7VH2&sN|?u>ync$1 ziRV|p$>~Ae!!jj@{L|dXfY51^Z1lFABcPuHE=D6_uR*Wt)G(@9 zV{5=~wd%9kZ6JsjdroygowldXqedQIi%mX9-3dns>{Zr}7}wt|lv^YB&8X>URE1OF zkb;tZb{fB8X|O62LnJ!rE-wMbQt|GG+Nc?OwhaYzK9hovuEq}>=x zbga$AtYeNEWmZWX!@WBheKd--8H<@4C)U3HB+E5WxLID(^sr&uG+dz`!^b8kve|E> z4)vH+lTzS+7EQE&bPpRD50@xGRiUr~xtay%jZkdWz~m%ZTR={vrR>)&gn#@(-aNz< z-jen3SNl;%?oEIwbkR!b%I*mXqbwala0WB!oW`{lWQa z9_iI5EFjvS6NzTEy&xXjUb!*7IJ4yc;cSQo4Nn_vlfA<4XjEdV8eLo*nT%8^+;K_9 zCoAbJ%12mK&xL-7kCbuYG8S30s`opSyaF-2e_0Q*487rre=aPyxR|aoJKuWXI48Sr z@og38Q5)3`)tCw!zNES_BE%oLa%b0hX3FX=xG-jgpXtlR+I)5nnx#fV4;e?PMs z7PePTcEk1XAUFGD+Dt-ZE)Ek86<85e;1o<^h0x4l^qUcBAZ5bHTpTR5Y=Y63Z(%rW2r8YncsX-R(OOu?aE6U3oFAUlp;90G;D8*}uXDOeSHw4aaxt0goySGuaV4 zVzr95e-#lGY=jN1%L9&o%NtO2awl*AVhrDypN)-2QKXZ;|qxb{PCe}NkJaz*afNqAOOtS{3i4|tW)U^TCT z2FLYIvJCrChC@sH*yymvKTjvwfFqTVbBjT=ib+P*C;TOs9+}lgT+CX{I0pP$Cp*F9 zzUP2mcWbCaYs#F}xDDSR*jW*;KX0I-;gz54wK>Dl>FK3<>N@18-Fhn#OYN9xuwhwp ze`FZDuQo7CqIt1V(Nhx%w>!fsdU$OQ*wIyKxn4xJ9&WF-jf04VLh-y`a-dY#N=dVQ zS)m!?Foa4}+uOPy6(q<3<@#dYH<|?p!l9)l*w6}!R~+bD%BpAa%sBHJv;#yySqI1O z&n_WSZdvlmM(OxfNB8Qb%3%Dtm&e?Ce{L;QpdM*TnLg5bAN1X&qPM|P%Ca~_?Lvb7 zX6@RIwSLB=95|owkWv?WST!j*ubu!8bh4I;lHL@i8F;L1#*n<(9`Ej2vH3)u6fK`` zR==(n^9O2LAtezh>1@Z3jjM9@z8fP3#T8}#CJ~4O$~DO!u=HaU*;7Q!M`4&ff7wFa zj+pT0{wQ2GmXVuK3?LrgdJj8C=~`wUcJ&4^xB{qg?dHY9XoQ<#f)m&4h&eVl%E|-l z@dnolv{uTMHIpOH_DctxU1?46XO~%*R}3`0?#Mk<;}te}KxD`_>cG1y1zJKViih91 zP@_S?x%aK?p;eX5I`xgs^y6b|f8CAmQu$Y?B@&3BCego>dOu7ch2HWUs}CF3 zhFsm>rFgLTSmSfmt!_!|t@6ppJs$Zhe?%ijaZzKW zL^z*r?Ze(Otkmd1Wnvxh%3-IlIcTk33CfUDyc6XQ>Ee@z9!46%Sgn$dqP=A&5Z$Qr z?k_lFbH_&3U!{l3a$u;h64!nY5Bi684#K7jLlnumqm1HL#aIWz7^9J&%CBde*pIe} zPaIhxtGIA7(dW|VF!o3|e+BEcHZxr9`jnzrwD&2V*;Ar}W5wuCk^Daa>Hro08ekyk zS15kAB)2(7Ko!D%Si8B6TwjyYl=wLj$vjLL#1{miH&LFsXDuwlpb^fW%NmT?X2dYs z<2KCN`yti}GV@s%y2Dy?mOkdEOCAG5xHZ8?P5f8AdMOL9POTz7e?yN@)^2`aGotS+lR$;8C}bDgmD%moQ8LJGUex z0?I^}K57B2e>E^SAU-|{b98cLVQmU{+U*_7awE6#zF)!eX;@`p@qQd~h|6)DSEUl~ z&GBJOjzpIEP{`5B{`>S}h9oG8;w-dUrpgD+48WO2H_+Wcqq`wFx*N&SpWn&u{>_JX z@4r)Fq?Aa`>CuPVkx9ZwHwwWBZJ}m5`my?^S**u8e^ig-8?9qiulPP+ZQFV^X}C10 z7mH@f&(o%DChdB|rN{YV(Y>=?A)L0JubzV1JS-dj`6IZ`7Fh)1OfTWi&5vV8aBPjWPcAOAX%!lXEQq*s?CBOJUaM~l%9@BVd)aI2g! z+UAt^e}sJ1Q8Jq^I&#}tbJPof-RQ;yC%j3c8)X3_&rnwN5(zQZRL!sT@*ZIrtE*YP z<=UEW$Gw1c@a0g+yZr7V--OiyE7#*tX??@w3C3A9s8L%Z7e;;^F`|2O#8&yr<`yW~&2!5kZSu6l7 z!Gf3O-F>~8HXDAaU31l9T~GOGvR*P3>s8kYTmGS5P5GP6LkEZYA0Lp~6{8Xkdk}_5 z5XVRu;!%Imqs`susOH~$fw<(|j01ad(ON`942bnkMGtm8j= ze{o;@cPG9EniDAmPtvP|bPCY%!UB8Ka4GJE4&wXo;wXvaHNCH-kTSs!%}0k1jP@sx|$l!)B`?u#%k zqaSaS^VL^b$G`lEb=BX;H_2E3r0d_{>Z%i3Pdm^t@fEs3JK$ce^KO_@;|(?5?w)C| z67>hvujzR+l)mFGfl3X$@%7t@De!xQalaNZMXl<)sYag@(};-bUQUDeqMgvp5l8s?3nSr`Bt_wseIF#w7_V;UY0{UJVu#DXaGbKk*iO zNGaAz$_{2-;L?F@Y89#lD@0V5K9IJ9Tg{b=;oyc+4J!=bl%z>?HIfcj6ku92P|ZLb zG~fXGPy(~UO`$r+lH=0Q9@3`ze;K}%npCee9sgcVpfg`uq4*T>*K5%y5++F5>2Y&b zpClp8fjUu=`4etizO{U-`^poV#S4d%2Q(U_FVQR>2n!)c|2}KK!v>U#SMl1Ei~9n~ z#j|n=nR4;0T*4PsF8WiIOJL<f0?|y7RBHb zyy3bz+n!MjNm#jCX27~Hgz8ti)^uIc^`5Q^n(pBp7h`4t@Dkel&tU-s&^aysimtx#1O~@%9#gmfV~RWOX@K#tth7!U@k!jPP4xrK(74!L8-njBjhcZP38G zP|=z+lu$RNQh%A)-hSklKaX9-?mxh(6vZ(UwkbRoRC+u z1>r*!E_IW+JG&Nv^@F#cV%u0RB&-*(sgR0RAU25ry_F&TyKVEkZBuO97`AQn|D$c= z4M_6!tYN$t-YS+&e^#L&-n!Jf0eq~ZR--N3H?hL!*#H08HkOr(fBW6GxpLd)$icUl z5S+)Cr|8InhxzLMq2T zJ6rYr&5qEF%oFa~Z8KS~rl%UU7Va5%^i+3#+S|@aI|kFR;pbc|PWGJxDKh3<-$558 zv+KD7C8J=1e@vG^Ffie|QxISg593w<0r)bOe6OSvF}NZSAX%vlg4RN6Uj)KPp}>|b z0uhA@WmtfHr$L%ZK)~V)IJXFd*R&~C0wPFZLm6kGW$H{3hzLtiU4})nBFG{U)95Y; zMRKmui|fj;0AnT<^`_P^?Z_fQ)y4@~G#=U-p)Qy9wtVqa=w?fAIxIW-?QTMT``RSpp(?GE@pcSc&m4MOat`Gnpw8 zGOJ-Ge^aImL=-WWVPVi&StMlEI5@sF3Lv+%pPa0Jxj#fTs5(VVp0ak93iaMz=A9U$-6)a@#M-)uTWZr2Z8 z6u=aN)D8T=f!g`@!dO+CE{?qJKdq{ ze>{hS4*i7+zda(N>&ub3@PV!8776?dOgYkC=&*xNjneH$FG?yf}DX z(eoWWxAZ(4-p~nmgMZslD(i7vu0{v~f7*Bcf{^VmAq0S2EDFWk3Be(mS1AOJTtw(u zUmrv>Y4*A+@*qN~846XO^19od*Zsxs<6uI9qtGi&c^2p!?DA0VxN^p&b|_T;93eMR zThtlo%|(}L=Wc~t7e<14ZAxQEUvi-5@ha#laaE)cM9>o1R#PSjT$cyehOR5Rf3{<2 z@^b}|p?dm$$94hx4W94ldDdyY&k$4=fp!|AVKE(-!;hx=aad1S?E7I~*y^XDK5TUj zlY#R>UQb-D#RMv+E(o~)60-py7u{=228UE$<79wwv%5%Hx?!BBV^!)npcig;!=auH z!FrL9FqjZU9i}|3;gpZnEteKte`>fi;Zn<`IhWR4Iu$3Gynvs|8Nx`w)r6cOZZj+v z8TKnK)m&QkzYXk@_-rt9Fy;#8ArMInV3&zQxe~8PcqAqFg_515zV>91BsCKiH4`-r zN96TSU#W;;B84zvY0kGb-&XwF(2ypht{}~Vb|hrFn(4p>;gf$k&Ektpe+PhEOs_H@ z9FqC_eDE3P0|jeA;tq;xR)$5GN>8=CH^OQ23ge8<*l0{X&bQp~oY7ctso~p-D{C$- zxzr3N^*J>kwPA~egFuzbEEY1Hboe~_{rz{!W`Y}p-X|;2WSe)M6W;p%_rWtsBso?j zLzJ0A&%@XhY*;b$6G`!wf22!d8e}&eb&vyvY}5<=<36>2R5-H~&{wb&kh1y~BU!N{ zF_yD?9t>nyl<)B_{EelBnjL}85*BmaLyf%Q;#O-|b(;6J1UK)LN(=xLGs5f19N{192xW}+aC-%?--|&2(y^m|xX_97|tka&O4K$11 z4LLuR(-{XKUP0BBaV>%oyE?44)(gMgSc<1&cczf8YJdQ@B!DAHLsoZ{tx> z7*dR`&n>^eXFK5+v+k`$-EufQRPNXie>h-6`m*C9m1y~$anXV6*6+Q%Uvqi2ZkxUH zmT9;7m;*?4JdYizGhF`fXEFxdG@YMvf4tRvwQV+S<|_`>e;?LujUCY)kQJ(Bz4>Lk zJ1gtpd-fA=f5nkKag@-ZKt2+1=?&bij29(z7>5zluaeM#pq#!Sp<@e0C_SFyc1%f0 zuY#495uR<1*3Lh_9h%mGK_N$J9Y4(0k9|7E!-mz-s$KlXRnvx!C2PjKvO1ZmvC9bQ z@;-<)vc!*5TqpAp{xHL7!phM1w5Eh=tl%Fa=8fDwe=NA}afY&kPn(C;irnH@ptkX0 zJ6|H}J@hBH(T{7s-!&}*th*o9I3Kb=Za&VN$FBC4-`c^X7zLgk<_peSAoOyt{fUr? z{dm2d&s~Qd^IgM^0!E~oK7HhEeC}RzlBCW~1kk4>R>ATzfDWX%S*1(17J#RFNIQD( zx&4~kf8S)KC6^j5wOOfq6PGSl^G*Zsm3rH)DKw%(xSDi)9h5MAmee`FwF?yB*)Qln zA`Y=Pg8f8a5IZ2q{qj_0TMzSFB;1h& z3sklPjgoxc3!mT&0{#ZWgcy>tq@j;rbf?I~`&BA)eyGg(p)==)%A6lMbAG7a`SBJU ze~bwY@_H1Oal$5j!6_}D!ooJjZ2Q{qszaaJz9u(C)P#{wrGb1V>72Ibx34vCUz;b} z*LY;IB{iz(umxH}On0XM?6+sTE!PvbIyzuV)+7=}#^!-(`Ej2ResF-mDT9*AU2OD=+4{+oj!+(R zm(FMFOCwY`8+;F|7$LC(Va1kYp04i_1%VGt*YDB8c_`S|LeGL?^ybBUeT|2Ne|)~o z{HKZk$C>#Ddr4=~^7}r*l<;UjB`qI220p(8#PccbIC=Oo5GWq02!!?^@}>xcvA}9& zgjfysRT&|8G?6SL#6?Q_C;@>78kHdtEX?#}An@!suxd*{ByznKLBI?=TLMB$FOn^y zLn}u+)+Hdc5i*n!0_#d;Vi|}ee_&EC0$~GX@s)sZ_}@Uv2=TBqOJ#%vC9EqWBqRY= zMiB^D^tmz_(TV;31t1Je;z1T^P6HEu2)YbJ644ZCPMES`4O&JBm^P_Q`x(;g@G-jBjGVKMRZ`)hb@Ev>jG0We*;+M=?K*l z5Sss2MF|L_=`5%c5LSv1V;Klo8Mrb+oTqd8NAUbC~ z*>LW6@6_7amadQ2=w3kcOgid5rhxuunXS4Yt?Z;X{sNQVUrJvG=`xq6uVawIqWk|` zLo(P8EZp-M?46MtBIw{j+Z1R14W7o6t`zDbq14I$&;uy^4@XM94VTn<0j_^DI3PYg z3UhRFWnpa!c-rk8%W~t!@xEWd$_c8nu=9RYDhIpDj-8YfXLrjvtbM?ekccw)FbGMO zzdrpKPymV53QJni!3Uvd27~FIp6;IRo}t9-dM0LnefNi?-$*}`GLP1(*}JQm zj=2kV=Dp69ftJPWefDkHlox-O#<}cjbJJkSW{c`4AvL^MUnrlo+<1FoO;$8j@u4nv z{6)c^+N@YC$_2Nz8*XZsY1nGLYnz+ZU@REk)am`ru3BGn^KP?Bjhm}9+VVnXscn?1 zqOLbsy~794@bkNW!0a!j$&GP5!(ZstJ@weYaLrT&kkDNJaF?V zeZPM9>ep8ix{I0I^IH2{c|V)4USYeHA@?S&$*d`7SFipv3CBZUY~w%b_)vY5)?Nd; zJbLeF>18ggoOvVi;50KvG8fW_ufGYim`A6mzZAI;5nfPFSX-$BE(C&hP@4}LHw-|K zRE$}UAY=tLdL9JlkKt)N?gcc??KaJ$nnB zqj?UaWLegRhmECad1J`POD`jUd%5Ehd0#2KUoPJ(>uz85Tu8pV?40*Gj$^v!OyBMPQLtFV1YJm`mZ$VK(~n zJdfEpowm+w^lAG)n2l(%3eXu#+GY$a-NXUxn1wJ;w-8|}%}VMF90}kct(()tFaXz6 z$1!6z!9KH1kUD?Y&b=6$ARUaBwlV$UY=ZPT>`CXa3H^DV$0nRkTW1scwEgKye7-9Y zEK8lG836deU}P0lkhukq{`6H;0hCG}Xi~$73kC}Y)qu9$^vQjMpO-;tk{js=BLG}8 z$*7uHZRT=3Y*J#7XPR} z&-2*A(`oB$VV|}?ZQIu~8O&%QM4gw$a+@^tGonCDrn z(-~+>)@gr0+n?6y^Q}|VDexRRWlq61qRy~j%DLPPmkZa)Xc8A#rvy^t)a+7JkNRT8 zz?>ahHHclos+kB*#wF+&eB~)M|IjaaaIWvcDT`l85wrK$DA0RDkaMHsnne<_uaUaf z-+;*WgxH&0fCWp2;U^&k_v$k)FyG6&WN zTvFiU*tjZ?HT=Z5&JMSq67oVZ+U?>xA(x zkpzG7MA^29pdRMi3q)Vvlsi~Bt3>vW-j#Rg?a=xSF$SLp5ojo#gqMg%t0S^i2`dKVOWaKY zMvcfbsFv%I9bUo4EaZ9UQVK2dAz@Wp6?OG{IjWiuOx0?jqB3A6O+x|vG?jS!`M%oEG*FpsYPJ|=Kt2F$|k{O>eVL=>w7634AJ!_@q+OZ&iyGZ;$JVguq@Ksb;31b zl18n<^11sY4ZQDGbU{UDS|=(FI~Ae0_9u0C$y^)XJZNa@dlQv>}FxD0TXcOyux z&!zF_K?+W`gE9I@JGFxt^0#W&?znulNzwuOkTxovv`=?i0mxCYN+lWvg%E%2EW}XY zxeR3Su4gLLx=06p$sK@p^z(?6*2Y`Gp5iGFUSh z3m>%yu`xt*2=bH|%}AKF8_vEO;7_%7P%C;zOZ&#(_v9-V|LCA@f8_n~18_GvL~#%- zO!*>EYRKZ+y6kQuG7*?ZP||;VvV0hO;4*vPbKCU<6vKrEFGTMHfFFQnoqaczUY)(3 z_=yR?l}ix!g5s20DwkBQd*wBiuc_Qpc{ypK1Fm@wlB~|cG%(I;9}@lZ!Z=taW3wNp zalv^E(4-CUHGnu0P)(U1>{mgCGtEzny?Fh2A$|51AL>G;@N~*jo9utDQ;(MAr>>iP z)T`BlPBDkpo5Y>M%4= z5XVz)AdCr;)SwFBj~j)FB72gXDnXs1v^18`13@}uHiau|E?|EShMXYP3u3U0-sk3~ z<;ox|!j*7=LoM!!nTf$nsn&KJ8RINrYs>3RQ>FaOWi-HqAyc~q#aXXyhNfYTz$)90ekgT1q= z+r*@4b}2X1mkacbgvdZ=N!O{e=2%C$w32wjAv0e0dv2ikNV$CmEyXuug3B4IBrKpg zI)KRm#fWJW`RYCmwPm56SAgv5o3_>LYP!w z{d~chRxuAcyp-TfgCR1?Jm=kQqc9f~B03R zEj>5XzNT_XPcFCAzC$#gFIFg$R>e2ZAg)|8KtTpDMXKmR#GLP56bxF%P;%{>Ya6aL zT)RhOj`z8q%buzTo|IQFMRHX1U~1wMF16b{n0vUkq-8wU3bb_`kuMMvVZ>0?m2kT1rP<8@dk%o8q@!>11^ z8`MY5yRa7Q!wB|h1mE!4H*OhJ4Cco&01Kw1CPKgjpQ2%SJrx4>!Ia)I-d`Eqp+w>AqbXx1^oWv(h)Z?M?~c{JvY=cvXkLb7{V6JDTaR* zqI;#ykn9hHdQPa}sU54B#B9~2N@_P-Bcuxy`W*BrV{)s9^exMJJ1yajDfwXRM-$$ZyDli_UBHyfh7y8&L#t}KD_B>> zP2Hw1I6G)Xy80#ti8pFU$NhAJth+sSlq!EhPSFR53^ko9pkO>E$vWi9#7BQ~cBq#T zMvaD!ozIX{O!P@S?a=aE^m(v~GM*u)xKG-Jhm0`i2qlPC5DuinSEo?gSGTe^;f zCCc4-H@L(H)pY*?U(i2%z!IKhAe)Ms>mUQGqPvy|^<{Ovtl^KS-?!c^t9@!3s@tMT zLYM|^(&$b3>rKU%06piYM-G1)Folf-pa6UDvg!??aiJp^obx-*Qo1g)2`?8VCPPuc zx&Cl(lIuVO-gmMg-Sonbt2NJ$MIIYc=NfNN74*+EXlx*Q&L>IG>8jbR4v^P;ATlrN zu^AmFT`{$%)5R{Fr;zEm0a}Z7x__x4;F}{MN2^b-Fk_35k0IbgzWRUF{KCyZGhRuX zx0J%gmUNDRpA^4bq*D-ARP7$C9-Js~OG08mRDsZN&f?y2lt_u9f|?1e=#>SAU-|{b98cLVQmU{ z+U-5ta^p6Z@A(QnO0_W>_shdRbSj-mvePr!#FK1Q(p$xrX`4H;Vdss?h6;^Uq#^=3o znQ4(?g1go12bjtMf`eb0G6+#bWj-DPO+L<&NM6(2e*^SZZanv|7iYoFYq+}kitcaW z>f`*o#aXiRYq*;EhVIv+dnDP2R0>u){T^s4Yec+<=9Wfn2!k8Czoq*X-PaS?L@#72 zA-hUiNL2_Th-8aEXbHp!g&>lMWwg-BiD1e=XeGRlWgvoZsSJcM!s$W~Nmy3~!a8AM z83?C9f0zqF1Q4)L1i~AkLLrDGlq>@goRFprLt_XyY z7EE>-2qlGAg&@3ewhV;U!Uk6cA_^BBfLOxnLJ&b1R|Z0Z z(;9Udh$OTs17Vy{whV-YKq(Z02tvv-5TJ6BDFgxGlUGF`ycHppfq>X6=uZIg#|P%% z1%{Ie%e?~e2^{n3QCL2X5#i3^M5trCI8#Q?D=sd$Xt>y8VK9D-5H9|_II|W5NbBZr zf1pXn`HRJw_jnCf&HoOC!QVg}yrcV??qP%|{nGc`arI_jUH zOf_JqK5uilN3-?!ay`~lf0_$7ED#1lWI{FJlt%(Mi?UBdDal+RX*sdD;l}D=8Y+N~rvr`Ue}XH? z-GO|iFh;uK(ckjuq}FYALV?dfOtxGjP0TeXi9hoXptj>$!^MURgy{^=gtap0KaGNr zud=&>6ADYg+FUu-#nLgtnug+8e+1B@0M2-XW*iO#_czZc2U>|}?8yj%2IpI6W$BJ9 z%jk!Kpjnq_M}nX|2?7*Tf}jO>8Z?&IC34_J!W7^T=Y~gJGb&5e&EaV|kSquKp(Bvg z{2PR27^Efk)GP;@a^hI4xz>(qYp$Vc4~dyPYhO<|INvGZ-9SORPF**he@dnTjRhb* zAx(Zlnm|-)7NaHC2GRtLLupbYnJ_F9;m?%`Oj4haaZuo=`>bdEQJDba-N^)+ZE(AQ z^+3J8Tp*9Vr2G4-Hi8dviR;3v3%UxqHtG3aah2G^1b1{dDA>`onH?0l0-kG%b)`z| z_c7mTR;MblPuM@(J=>Ccf871hr=#Yi5>9265soY=#EXDnUedQ{Zzyn3k(@N3>kU_E zQNv(S!5058TBB;Te!G6*uxPo+i@N6G3KunyGp`-%lwPl86}#iw_46%b1XB8wkxU`*yB+ZqKcq&gW<^C5`5Lg}dPv@&%ogbL7*`-*Pf%>n|H8ZSRC zP`I4z^(mO8|AfUc93lhs7hl254^X`owoeWGB4zF~mT(jME)YliE}+(WB9McC?MIH$ zYECAsxRwLA$dgLDW zBncF;$Jr-<_uk|36UFisT~`#{ujrnmeoPzz?~<+O7zT=LfAV)++i=l79}_q!!0S61 zCU8c8d0`$<$9O;qA7V%Mb6i_W!2~`3H@ZHMTx+QtEk+=v9VlVex3qL$(Ul@glFN|W zpD%spO%%$;lUWk0L@=FP9?Qdmn;dj6F67}@c6&Icf!Y-pH5a>y(9nZAb~I?>sQ43O z!zcx~-(&1Qe*iOpLH<`X$cj=0N8LTC1ZXD~ z8S_jc17ju*nhQl{fc)M6a*5F_F-fvpX9I)gl(~(J1n1bHSaMPEGt9z=I3*+MG-X6t zq0Q;o6$P%7?(B*^E+m7EnccvB;*1;AuDDinF(o7r0UF?Kn6%VIc0~zi(-`|-(ZL)` zi8{KyfA}0yqDE3;k4OpUG>v&mN@7Zs(=aR-CNi5x=IF?5&if#S_O)`)$QCG2wlp6w zwz=g3<86fgY*HY#(D8IEg>)kJ9GNgu?BhWlh(*zo(pj@V?vk8p@O%S)MFYmSl>P zO@U;>D381NILR7CAaTlEU1M-2(YB3k+qP}noY+n#cD~rQG0DW7*!*HnY}=R^H~0O! zud1tSS6BC+?y7xyorN7`&RtggE5>aye^5Fh@;GjP*6|NlCZ?=ZDql}mbvQMkhjqToZn;81r2arZNbbh#Vgt*TaSQ6 zzdK0+%Q@O62cMGyzkHT9g;z3_(%QFmdxglwy1N!6#<=wh4x$uqm>J}};C-}P3W?Ra z9ys7w_8FgOHx=4!7<>%%XHyd{hW$wjfJ1*6t9Keo;zvh`Z>$5I=QK6~ZUyc63(-94 zE7aFT=nk|o*%s+Dm>4Nqok&>&c1*U5qcw>8ftj#V@nEb!&h(=%d z8Iz-tfBa-1S=`|nESxCa-iwPMV61%4)O7YRS-IrSIu$?O($LpKe$VcM6Li@EaJ$ti zD_v?5sI?Z4cK8SlKN{*_Dup+MV5oWc@Df?s9}gxr-0RXz$%8cuE|=oqCy?RbDNc}e zBSdeWvaWdwymJ2dcwjxlMR?@@WNb)3XasFStwVR>)}2B9r6H}8Egn(}AHy$vuAAMR zIjZD=kO#9kSu_zevUPu+ZMUik*miZ`+?h}*|8Q_wL4;MMfqI`DO_6LOfsKfssx}uMCTBN z*5@5fM_@HlDWYfd-#B9*@_>%fGL~Pq>o_NMHu*i=%4!Oy#|UdLo_{m@Ox0LQ`SF#l z&*3#=R?Ua#l|sNGeS(D*m!CdA6gzebvjh`L)r%^*KZ({}D7Y(qs)Ti!_<&BC2JVm6 z6!ZaO(O>xzZDo`LaSV{e{7Gk_48W56`)V|kK-tYx9XRl<&@me~e>Zyc_tOPxkJ^)1 z9ZBuTzxuO-)v&&VPsjjCl|gW1iSQTfog5Sv`RuvmUeG6Pe||(Xh63g@HLCVuJ(T2j z^k{ymz-_77JY~xc*Z5X_{rlY!{#u9j?+$X;7;Q%%E>^~vA15EksLw~(T|tT$leg8? z+s?-qTS)PnI6MMX17x5`ZOOG@TU+?Xqrk!n;&JgJM>T(xhW((k>fM z=NMjKjPW=lCmrBq96j|)x9!?cyL~@}1_)d+1|7X<^KKnGbf4mu82C`!-o>uCsN|Qy z3?Cg^&3Yv3c!$i$m?h=_7<#oOct7&pTyXLptsI+z8cutxayjkNw$Ziw0+pSrJVp?6 zumSJYn-`Vhu8l`amk!OL_Jve$%&Qb~yhO=s|)`?yWTrgJEhkGjlmwxL=MH3W<#$TVG%m6O1*uIk{1@vkfJ{ zVLTC7ggg67KRiYVw~&a7ET$W4GZ2{!{6VK_>u=w?@Xghb2s&<5=R3##68sw|D*kK6 zi*p~Q4hkUnnFvlO$ze$YLtaUeG-D6rCX;HD_hi_3VY_xTxAWTc&vCo9Ro}#=U(wxn z-O+KqbnP%)0Op9WUs_0on8;!4Z~Nv~Wkx5GT-tT|Vzv`fN$9v@v!mk^ePEt*oAr<9 z+cQVde(Iho+`sRaLLt^2Y{fb?E%-g>Iyd&wWi5cIbxaqop41>0>kZ?Tjet$ZNA2a8 z-5@5t00lqzL$fn2Y3NrE%ikDh&w69ZOjS_L;Z8mK%OGk`tEEmVBte7K-1p1)2eLy@ zOS_hhhMTNQn%mDRxPALn%8<`!vVs&)wH(e-El~npsQ+xyED)lZ+K1eSlA9sw`$SYn zl~Mry@t7m>5jE9%J4Xd8%{{)oBA+(wCzai2i&N=oJ38X~Wj3+P5v{N{dE6SK4_E7< zOB`*Y3&hb|P3j_|IO=CJ%-R{99eH4ocVR{zC)3)V^Vh35^luJ%WnvOxcOH;*Nc&4} znQtZznaZN~#hcD%!N?SF0l5)D?Muu!lD2@_wl;@z&ne4ZNvgir$9%25C0_y1GbC?W zUmr#1cw7H8)X;Uqw$2{h;mS3~xzO1Yhx|1lAGC*<=g{mYk;I@$TN}^QaP0__o>)lSw<_D$waz^+tG)od z@(=1|COoguZ0mWC$`jPcDG%F9h?-xjZTp;>Tcnb(&&TSr1! zcoHA614sz30oqQ$k_7h83nIsiQrve1Yu5*NQR+AqIwDS<>@5gZII)J$G*KzRAl6PN z@wgGs7U4jGYHwL0>nS9D9Pr+~e{TR|>RVs@qL_zNht{knaYAq@IlcOQ5xG0d6ULu+ zaFN{1(i><*&h-MW8$PdsI6wZ0N4$v(|C(-Cxp7qyNI=7ygz;B}x{;404giOEk50@9+@b6yRRse@zpjM<%g17=gb*8g3KD~bcz*>HG5n(7 z18ay(mV-(XL#4%(>t_D-`|r&V);IJOSa%#3p}0ek6Il__>Vyb&B`alf@p=Dcfy*0$ zHkXmaPJ!xx%gZ`wJU*HgnA;JV`w*m}E1`sVL_?ttMJ7t3Dxvh=VRh326B_ih)LOKO zlMLru=eo-+?1l?dSQ;xy;)endN>fEQ#Wo6;;23ygv!$Z!qA#YxA#;kRGVMe0Hjq$s z6P~z8oNG(?A)yHF0dvnINpfQcuvloy)MPBCS}78PA?k(Dmr@iUsvIxJWx@R}S;V>0 z=fEaavO>)I;dHen6kh|27cEEvvpXWQv8qvs_Gm#twaO6!f#L-gLx7|EAQ-KI#o@NV@J{S|N zG8l*e^5*~E*wjQ^VDBXmQG9FXw7E=g#Pn-e+eO{QYfH3UF|Cog%ChrqwW|o7|8AE` zuhiE*c0XiaBtK}j{bDd>783a{znb>b+oflGV7zTUxhE&+0dk$oK*kd6lf%7Qm}A9zPFXsxH{gf^qL5HrA$5Z zI>(WihIsyjtFWcDsw*h8CM#)+yYt*v58@hYI@s2svbAdD2`n{sCk*SV;UFY%4teS* zOUdz-1M0J^h*S8QCi>~Tqi3`g^J##x6w%DM@Z2)0xA*9~FUjz`b8bI%@RrCJ)#`9MtyfZF zLt2@KU^asBU(qrQB~ehX^Pb)CwKgr+XbR)WT1ef)B~fk*BN`f>eZ z5WOmUETyfOa~J=Y(5AHtxiv+cxsB%dJ_{IVut@RT=E>&@flwRaO}}=Xm(d?%sE-7K zrq+oXG*SjE`^1f>-seX)cOgt zhhL>w-Hel=|KsoAQ=OmFNRFl8lsMd`JGrK66a7=>H!UcGMvgtYanGw60Vq24Y>(Kv z&O|#>7reOfp?8v!k{OG`y8FS=9z4mU7zl6{F)lnVP|#7mJf}H1oLaC&nTb?rWz8Z0 z!|snTWU8O{_&P~&0XIS(dB_y-L>1YH0T9DL3rh|7iLSI4wh`wo$@jdG?YHK1s?UKR zxr)neXfrVd?Yl!HmI6vMerqXZboD+r9u%>RLStSpcjQZ$+k*lFq*e9h6>U?tQ@6!O zp(4dirOywuVQpsEd(q3{H72Mx?7~+7)wf)&1Bx3#*rP0W_LO!*!8o%k+thhDs&4X% zG-jHzq;3}`QLUy}ml905PR`0_atyv)apy}S;9`E5NT{8YvZ_9LRtl3iMOPSL<^L{RU72}x{web6G5{n@`~VLq1M5K-A3Twl}L$0Gp}rQ^Ix|>ehfQP zatun$`{Rowv4LOjxGUsg05g4udg`gKpy>E$E^^!4&8i9=l{tdm8^Ym}eO(`2zp!-m z4#P0)w_(V;{FpfINDuMykep`rMN0t=GHSQ+_cviib<$o(~M-5r7KK9GbZ%otFQgJ^wo&xxlq(e zKfl-(T9h47k`zmY11QL1Hg!<@nhdKgRL`!}D}i>7@BGtV^GfQghK+pLW=g~K=h;Ut zP9%y(E#m3lUG0yf;>D>yw*2Op_0VG2Fdr$o=~H0g;g_l;ocln6c=`hobxs)(>C0TC%c6{=Sb;iL%^{XE4jJj^BtlV!QMnD9*AlCQYP`lYraB##Mj;3-1bN@9zlOE3eC|OD5Fm>e8=+#Ah=Hi350xiBo)#vH z%_D}82@2rcsprgxEkgo{nAsVN`EpklS_OgrWQe8Pub|xLZF#NPb3zAn7HJYsLFEEh z2nF;C%Sp0Y2rXv_fd?VSkJ-}a{hH1ZVec~YFp9I4kzf##ijesOVnmE0T3rxLjy>*% zw6zH90CBP3B=+1T{o8SXi}6EO-)l@)W0dLzhS2UuL-tw)$Lss3ZnOM1o>cg;9dW;< zX0NteQ$tbXC{=uyQSlP5?WHM{@7H`i#sWGw%{wagB^!ucFeeF0sz3xTMq&B_mU5p7 z^+?a+K%g%|tFHfOpied=$0~IIDW!A^ma(=7m||QUMrM@MP?Sb&^vSBlnqPptCXdqr ziP}tFGuw!v3@iJo+I-(ZYqd^B7a92*+>-LlG2HMMm@Tb3h9PiI+xFK=er@H#x$a6= z34RJ(@mp!O3g#m#;OC#nggD}()Ar8D<&78NP16Dk=n?si}_m1NER^q~>N~kw&uoeQ_RDC}Mq+0o&6ttT;w$wi6a6><^k!M-+G9&CCK znU+Sg7p|3?R&k1e^dq<7HMBe`*&-pCnzjpiS#pHN4Wl@gepU*SHJ`Z#G!sDTp~W-K7L^c`RQBlXKFEFhhjA;#Jzg2Bcj&NsG($lZ)W#6I9k zwEF%D+S_}J+qY*>bzAz5%7I}l@Dy((f%HT6ZCQ!oru!n15g^u=gnu%HDO*;D|hoF3d!M-UUpwFuoKk?CH(Sy zDAg)MO#YsO8^Q(K3q+j?7KL0YmH!>MA(7+hdOU-m1vi?J&ztwAu*VZnAI=ZLf|0_F zKxH%a=qvrHgx^T71?_q<7z1a_23e09wOR#&8sfZM3xYH`{I4q>G|E_x3UF@mm~%?~ zbvf&YiNM?*m6DnAQwJJ+B~jg%4S_#d|K99gG!z@fbcMZ|mPpdW3_gAgy5Ciz5bw6e z_MoLINne}XRcD;IJgKa4%6<^v^U$X!^43_2Aab7-2bthw$G6JWSm4K?CC>LOpT_DI zNlek;qwq!)ieL*Q23x5)SAd%p{E)dtY}K@AXj8g#x9E`nYI+~C&#FI9Jq4+n8WjNy z11O;2=kG|YG}IrzvNCwfHLm*7%U?{|@o3z07g$FM?TL{^Gg?eQV7Wl(<^=~>DN3^= ze_5#@GbvOk%L4I+Lp`}~;;gglyQw3y=csEEdY0E7t}+d*msej zGTVOvg)mB#yB9*`GBAlGD{>c=sh7=1M01$vdulA#M?K1GD8sx%J(d>YZL6+`atFMK zXXVq9`HKj-3S`LM+f3;1>b0O;-|$3Y+W`NCiRV}n{4Mj^WX-Bm@E+>Jj|Iv6&0~76YY#f@ejrdCyg*|cBnn^XE&TiW_ zqcI_6t~p0l;y`QFsLY+dY232(R^srp*GgV^;-N?pSM%Jy3qTTB#!@C`pqPuK1cFYc zkI}zBmw_T6)HkR#iB#GcKdQb*F^l9jljWCZmhCC3FYdm_HJN{ zZKWv14IgY{`S^(0dqXqD*sq1!9!WJd`DbF}ZunU(3b;$vEGyt#1hLeJSRb7kdcN;;&JZdd$CtWF|ATdQfsYA}vI%};DDqJ| z9~4Gb&AcU%`1Bq|Im~P zyCIPb0Sx@JA$gdC+R!OUkUp}IhNZDHDzL||aQxHWZ)x&J0)fUq96T}(C)+`1l%V!B z2_ArAPt|NCRRGB~Sd^+|B^$>Ft?O^AA+?Njb3vA+>dp>iNc)^fC;C>h{0TpKIKAcD zykh;;tT!`P6VgD>^W}3fKC*k`#c&Fr>Q+FZ3J5bCy*nrmgsVd?&1Vpd*0x~4bx4XDA9n19mD^nX;gWK(*3RSy6qq*Gsc#ME zMv+oZ5OZvqKirI=HTCcJYN4dczxxjEddwz&go3QQ0)g?JtK>(&4Ui;JjM3uemiJbR zIshnk3gO2?==%_wjeQG>8_%hB&B{dYq5t) zj(_1jo$h_LO5p$%+OlV2!<-eo8X1S%VYr)&wTu!B`j}Z3CS*n8W$AsYZpuh2U!TMk zYQLBazuXu1VtR+Rxo?>awh^R<*9SkbrvRgL_+R8G0v~Um$MC~%YoTo%jLKl|eMTPo zRtkLYfF6CZOp0`EaAJ{_e)F&FZ$uT3v2$Nb)+`MdeYNC*b=O8K08}KW2akg8cSs%} zlKq(zOZ@1Y*xZ`g8Mj`ncsp_UD9&?Kd%PF~B1HeDBQg&}o<2Ejs-oJ~Y~9cK zOYZp((pVAidolq|Y*TQcbroeq+&lNJq5EWpTpeiLH+*IJANacX?ft;#zPqY3zO>P> zAoCJN@>QXeThiNdubDDOjz>n|P1cb|N+ZS8d;7N@m!HJ5phC9U^c~(6*dG`t)jJyp zMFFi1&ij0twn5iR-2HkbjR_?eb&yLG%LGjYOT0+}LEaRWe!64E+L2!~9S&Ig{fn{c zu*0T&+Kpz(f|Idq!KJ;rf=zd8r?qo;%BwkFQ#+5C;q;O?1^L_=zVk=T`MM-5p=rag z6m!gN7G3t)Yez|Z75^FArx-C2DW~p|JFjj`W07XZb4B&IPgg!;Rikoo?_gKNIGml} zl!Lc77soKFo7p=S-oj&*h6lhe^FvekM|a-*fj&X?u8}R->{|7ynL?94 z`WxmY>6)_DMUOU7!r%%pqSWHIr7xG6J`0D}t?b#nU7NAzx4-m{E5rc>b_aAVR;9*= zOzM^1FNoo>lDb+C9b_2eV+hcUWpxd!tumE+9+E#TZoRn*JVhQ9+nBJ~(PWDKZ(sP3 z!JF4LvBX0fC&}XC0v|XVEa*^Hx?TL9ij{J*K|@YR6yP{y$UB~6V&xT#~ZG!^T&9gij}E9e@oq61iRrv5irQEViUT%zGD#nqJW8sdjCEaD>WHYAFLTMJ z*xozCs_DY+w#Un6f|Sz$uI*)*Gpso^Y?WS%<*#30iJ2Cz;c0;NoDDuI_4IEsTY6PB zSRh&hc-e|x zBS%uKwiqgm}3>A)ApkBb=_5leGmHJVJ&X**FsXu8EyIRP+ zo=VnuX6sQ32KXR$!B9YOckS(z934TG@ySqln3v;dp#%W_U~jL7mO`~x+A{$c=4i52 z`^L~9VcN*>+TFIJJhgS!tCOLcY6E{7YGrZLv?L)XkWsnqiXQoK#lSG5Az93`w3ALR z?i`oLUogOKHW^2zo?h&mKdps03$l~0YrwlEvn@`vPY*JdJ*`x+>%QQbZK*8`QU`LV zY2hIhj`9Ju_$a|QCd@EWB_}>464YSz;h?0rsLlH#Dr!+MA37u=d?BVmDyUingJ7U` zaccRH13E=yF~7%cK|K;72SkMj%_?IC1_q`;L7`UehRAew2@=Xw;p@Bw6mRB-_HCkf ze*W>Q{Edw&K!*gwk|W#TRmsUT%K#$jX|%7yaQ4oor=24!o-9E!aW+O241Tq6Aeukb)w4v$t^)KXj;K46yZXE zf)(5~%BBlNAb04c@K4Qp%B(VBK!!*i9HK}7lsidZ3n>z!p~;kWQ4Ut9>L@63z!yus z=8g=2gQd<0p(n6z7l+0A$IG@RbaeDygo2ba;oBom=`HY2DXi}W%CSB$;hxU&`NQ!1FyjEx{jR|Z4!ToxbQ7h zLtcv@TF?%uNq@qBOZR=)Y}(;<+DGuBL(v0OTDc-|fjlJlK|XW&86`u&()aC1EAHL6 z-TmjEBF)A^AhFh`pgzQuhK}Ycqf{QjJ=dB%} z*WQB zg)D^BzfJe~ceBy&k-Gm#(BP7-tceleSW#Y)siH~*=Z=qRy|9H@XJXoqK@3{?6jmZ; zyt~F7w#pVKn8UQmeen{tb>(^FL5li!!-N5)sc`_bC|D+45^fSz23Q;h+L`Iq z1ahcW&*m(`L))}JHy{bKLIw|jID(-_zyf^`xU)uW{+TZguYiU_#K1uZ_ z)s27}hYc81WG>Y#gPL(R$sI_a8kQFci|me9Y9B?=uIhj(LSJwoZ}2F99P$W8AORzj zyk0;JLT8Kv9;_5b%{ZtJL)174OdVp&h6qMyRA*=iK{S;??EpdaAZfsQqu3;9ewgOUlYHP8g z5>n=8jVEsCa;ScNP#QtvOSPm`c8b6&n=m$RL{41#84-8owG5K6(ikDQczqX@1M8kY z(T71mJR8#Sle@b9!7;MLinto|=gvaVOvFSQ*^wA)sp(v+69OO}axzsJ?b5`?vs6CW z@|{_ux}uz4Mv-sZQiGwQ9I3!d*<(=czX!R>*?`I!8Adi-L()=xUXxT`lhl1kAx1r} zj!RHNs}&PSLJ`-%2)^IDm{FQL(CBHeUN+*MyD&BAOSA+*qFF`XeXDY?NQjI`ZhLo? zpe7H*kl=gx1S`s7PGLgQw5UoO@`(H~0eBHt-hBT_qT9E2&3c}fkm3)1pbdc=xFJVE ziZoKKv&a=Y{|V#4pK~a(TugC974~c{s#Rx0B?(EZo5|rZLlIW#)^04EB7bd z+aF7aA_|2FZ+{saw0?JUxtd#5khjJ4hQB^(Oz6@^mbzO zM<@pBL6~LfT%m;`40~Aejtw&1yCxNIdto-)RB)+Od62;fxUmv}i%!-JGX-DY*JHoD za20#x1I~-z{Za~goBY4mDGhxp<}PIE!Wg8$;M3^iF)sz*B)&E;nu_KYniwxM$TG|| zb_N4>um)qcD;SR9(J9}}qFc;3UwNI$69+jb!BJxoxZ4@j#C{n8cW2$XlY1nlb8*?T zSAFi*b@z2c%m^x-qM#jdMiWgZW&XL##Ur>=K;_t%uzmug_WF~&)ACCnxQ89n+J07F z$ICLLV8=lpH|VR061C3JqFTnaFd2=N=N5y3gJBLL@Qjc7s$e~*RD1ui*2LG_Lo@vn z_+*)m4&fH39c|%G!_mLEdnAFK>(1V4(aIts5>1EnsSXTY@hj5*{3(g3z@H z=;EP4q=E+L&0!Ikr#(8EUVVq!#qC)oIH0X!ace~7*nLM3D7l{L1APl@_SEr>X)b8s z8dw8P+@f`{%Nl;j-l&Cj-DYK#6dYO1GIDFXfjHm){N?M$leL;M)sJ<*>An5*Y zVeu);05h*XX*Pz*767nwX?)Z|N|J8B(M7o|M+GidbD&qd zi!55U+7EmsC(r_wlU<`%_;pGhuxG$G6Cj*}@1^@BWx*ZWPRSYvzXCbu+pF6Esz(Vb zljS(*suAYLUhFDVV1aLS-9oi&d(>mMkqSNLbo6xD9t zC<1&B|9)Zj`GU{1hcNR01vOe6-=j_yQLKula;)8n<3 znkoQ^2{)EBHV%Q3MR;R|oNyli+Y;`@(IUJsgL4@z@^?N2I`>#Zr&)`du^`3*j-}wK z;K)-{8>FZXvdU3b9E;m(#vvF&`^Tux9=W*Qztvs^$N~A$x}Z}DR6U8lPGFG@V5t5X z1;y_I+vP?F)JM}zNpCb`;ZJpAZ=NR~z7L;-K40ZbDsQ-UC14^OI&x+mt|3hOI}-Y1ukJ^2n%EqF8K5kp<;zqfio&~cw4x1AAC zLV;c;q@Df0!=QxbJ#0ufXQIMQ0y4rr+>Wmg@qFV+0Nr8gn@rljwl*CtulPr z|MGp+^@_Yf&V+JC8;HK-MFqeJ9Re|>*GAj~`a<_ESFGdvHL1}fD^E>bWfU6DFJk|> z!S5zEvdhV#s__i3;--CJBRzX8L?#oS6i%A&#Fo z=;ylP)}EjG%GSGd{rBShYx2-eUtFikyp!;XUl=s_6PfF46FS4D2ecl*&c*gW!1YjH z-gSKxwdY*B-UY0R!D|bgfJ-yJW^+pGVsq5xkLH$O9|=W6Is^t-(*>X)06_*xam*Bk zHQE*BDC#@3AV0qjUp#7VQ6@Hk2bJ_=0yuVm{hL@e>u9NR4tOYYTrqJm>YGOg&Y3dz zcCgoh2PmLBPqFcDyx{R&W#E}NP}ZBCs=De3s#c~d^0lVnvFQXh_4tGfn!ET4GLFpt z<7+bDp3wEW1dmgdyiU)Z%&xN0oorL_@6gq7;CDF7=O?%!7s_6hCIK!Ik1SCEO@H`h zY6ca_{>w=$t)<%EW)1+8&6P{R+xKc=nXJ%40`R3ZnyQ+Bu9Q>juN!FR+I0SckK+cK zGNgbV88QB-wPkAUSYG_2$Kf80p$rk}yCA$^?aaAW$!kSA4(PvTa=z5uDvQLZ7ChDcqW>YZPb2s2xGThXwx-6w}K zC!?ljUa>Hg1GXiiaSgyOhHVN`E8&}wYF%&@QnSe?Rd1ZrOT?dIGsQcw?T)w7MOzKm z$yEOgze7B<^U=~!-ySQRx3O#_<#7{Q1en?pe#*K5D2S$MzMx91E$(va$!O?QpuxWB z2UCO4MWXJAEv^^!rd%Tc(4r0a`yef}WXJsTH%K4E@2w6{h{9NL#rPxQQNUiwzB%fx zhLnT45}wl8$1!0H99M^cPuX>2O-?K0BIplHp28z>FUto3sVEyw2 zbyRY#TD?qrVJQEcWGLgDq(;0ZfpOmB_1!nkDL<|3$3QI@JQ$YHqDaJww?WTk^rO7N zwA9r)aPUFq84r;Y+iqz?0#li&$L2npypJ{e08?7T(R#>Dsz! ze2^3HXn*N&;+84&=~Y_r(7?npX{pc$2vU#DxoYUA-4$i(#3lb#RGqO%=(kQ=~`O_kTm*$^FU8}h@)E^^^cc%VXTqx;{=E6P2b{*oCa@~ zLIxxC^@JXR-YkPY?jJ?~j-o}ZcS;XyC)wpyuTwYTZ89KxD18{w%ef)DXwb89Q-x;{ z=)wgZ8pQf2=uk0`)d*lZ3%3}(eivaS(hq7eG3n(8!$e0jclp1V=8hfg?OnWIV77h) z4O9wkqy05hP_YgC$=pV;qAyEg21^1DQtCO`U=VPECAq2zY66Z7umD-w{V@EK!{euQ zt1mtQ^|$AT67{aXig^~p@w%_I-+aymAEfcHGqMWa)1(HZu=Ys5pNqR@Nl&;!BT-@`;q@P~wf1p?_n?u3K1 z*`SFPzqV#m0t(Gb$;yND@ZD2OMA_-TkEvQIAVnC-(e&8**)D3XE}U)HAi+OLj;@K! zjKRO97`f*MhdB0g@RJ7BL{>VUJ>%Uz2%h5-P-7)aD_ixS0IE=)O8MWPc1&rvKOe?+ zR1cBw%Bv^T&lgdMFp++DzjjD3YIRNu@(^tugs@Qb7e9g=k;fAq$nr{B-JvMZ9QWm| zo9;!pmb~A08a=v|_VM>)T3C$-0JFeeJm{U^Xz1iIDs;fj373??u2UktsDgpQFui2M zQz-i`l#or0-%3*#Oxup|dGG$h%ysx$iieI%A!G2nIGdkfqu`(=9blC!;j?~RRhB_6 zgeU(lvZ%Z%|N!}TN{0$+?= z6o}q#21Jk_glC<}zQD(cmz470T>3xfd6Z(T5caS zK*~<4QqO;h>z3^_RaQFn2S^v0`kD{hSSb5WLwoBxIQ3P3B!q1TIM2OBls_SMxPw2c zT}})bvJa(g#M`~~gH$P40m(SHgTS!s zvTK7vCdU1y$c_AAF6V`YS9-g_`$MlG*m^XIYJO~{_6`3r8P!2C4vHpn@V}}B@8*mQ z26+0aj+FpNXI1g<)9_s$x(O)#Cqxz?Evp>b=omT<3Lh9^-S{tSuk+D@D`tYumGzNG zFLXmp+a)h59PZ2(jk*J$umqXl``0^Qv6*>-g$%+zv{w+-GTrBDz&bg+5|tt$oI+y? z!U}&9&XS02*s{J&{^kli_jrRFwIv$?2ZZ8Ht6b(Ikc2Kq%q_5jk`lPpqr{skPj5iN zu-EGp##J;$fQmtu&JWEqL^+Dj@Cu3|=OJrZh)P??`9^fD_@z%UeiZR*gB0gX z)p2M}h{h9!$|tpRYRE6;m0XfGBUFbPh<96i_wLV9h~sfYssV<{!0&`t!? zeEBd~9idoMk*UDd6aJcq?%XspjT;;laBRa1D7|c8* zV$(7=eCsXR37&Fe2y`g=16X%etp3P8c8T2|c;U!UK6;YaF)7trF=*8!I`8_4;glNO zTw~I!ah*pwML2V$dl#jGT6n5>a-{oW#5u~2J4TdVQiCz zE21E0G21_4>H{YA_T0HR5bvxEy`g(EHRy8U%Vmcoq_}jwc)YK^0&ux`$m%&(ap^>& z`~nt1NJmD;qX3ps|8PB1u|0FKJy*3ThB%RhIJF{tvMy}~E>q{nr$Np9JtFlnxzhFe zX_2%^PRg>F`Q?RBWu(BbOR>o#_ zDVHye`rE(&8OO~J*g@H?`-tv+r2ky216x^*t_;~|CNj1i*XckdR=kXcW#*yfdBM3| za=v@uAXiEEN7ze%0PxBtb+NM$nL;`v9MJXIZ4{9R^FG2R0P?MFT z3tFzMk5LGSz-H@8Lm*nj75WTMzRJi;6ICRxZHc1c^KylBsU1=)aXG|q?cd^-W%(tpqQMqMF8FJ-*Vf@F zW(s@*^!@UxV_?w{@>n&!s?BdqR+;;i^WK7eU+>^UuIAmn2(tLmp#1Z0M4m*2 z@p80EW9y4nJS6APOcuz#pjO8F=^L}C%so&SV{DLY< zE;4SFngTV!&nQ3nrUN-x{vRKBDPWhd&*QRvtc?RrKmxu_&_fJ*XX4t5uYZNQu>k^Y z?n=zjvQZPm=xOeKYzgqM)JbLZu-mwlIpt}6F}^3Q)X}6k7sUc%Kf(7rAA1V?{(89G ze7g?QgXs@ub-8tJR0+~`!kVU~;#{c476xDt6Q2#0%cBRznr~{9EIu+Yn zuIR>VXFYiF##mOV7ts~H*S z)v9e4{cwk|-=?^En?lcg(o}D@(5}e$3w}KJmz)m0Z_ii4+pyNt*n2~ohna4U4Qt(lKHrL4K4-w3R?JkVu;JoJ zJLA$EGnW9iaEYqcEFt{#D$i)JGdY%$>ro9^KFpq2@bjl{FAReY?mGN55AqF3OXx1j zI5sAwfz}U;G+((NnXIH3_TFW&v;ZM-3l$yOU?y8Sca2IiG~Dx0w@G=}QLw*SWY+=D z@J7|Uq_Ons{meomrJZ5s{p9KEz=FV}q>ETM%A`%)#i}GE=lbCMV)2?ROtx$1l)3K9 z(|F3vNjY2{o^bIntjvj#Ljj?eKi%m1gC##>_{Xx+D~;L~K}FJSE)4q!gqcY6=#2xo+m+#7FXe!(6}1DYJiQo6#Q}cC-abQ zfFU+szSjUT+(d|}5^XGQjsYlb&n@h@DpF|I+>U*YYDX7F#k)ffM3=813%Z_b7Y6ev zHi%2~JmOYJN}xGT<(N@T{~^w2<7I)BV`aVlxSQsC2H=h!mcL>aa1}FJvbY&;oST)u#SZ(io_q1>>jw&1}-OiHM4O#gikX)Lgn_fhQVAH3(*) zmo1Se6Rbp0_#sDU+nyhBisgV&hRXAPz5nHiG&`LG<`#z%%1WWAWlKv-d-`fM!@vQg z93{(c2|9r_)BsUWBY^Odx_Dw--x*;^VXTfkL*zY zA|sYD;MQEk&D3zCuIouLa{W`Bh?rLKaFpnp@@`lJ0cwKU}~$ zXgI|_2d|_G-y?tru|ZgWCiY3YXU`1-R810<#2o`PF*XvU0`cUQH|n(a=ksBjFl_v%HJVQa|F;NVOrrX(5HH~j@gFeZZqDp z+Y9exX$RZi<7f{6w~S=|MERoqa!&lh`Xq!qQJ?Asezm%W#X-lFJ6Vq7BKxJ-E5}A3mTaTFs@rG@a1gRYObIt*(ktIKU@!$HFS|Yo|NmZeKTF_ zfzo<3FyDWb6n}|_1P=J^pyKPZmr+|9`38pj*F0>Yq(s z?h8sDojG@_Rr?kH=uoJ$pf|oe{rHmg8OvpLE!<_iw=P7Qd&YfH-a*zgbCSXdQfG8$ zUYz=RQ>Olc#VKyi9R%S0dB#FUSBx|bi~!I;k-RWc7JsHdVMXG$g}5l{<+xfY5^ATq z>B4$bdKtBsnJ)m;cDSd4OnxGSYR2!!G216_;_M7PXfw?(r8?#f?;MT!Kp7Cv-kJ{a{=n` zml)6T*qpdL8si7{GyIP`G(i!Cc@Pm}$Y4(yo_sf-bYcj;VCo~K@GvuF46*n`%#%UM z7&!WjuDM(zmmVd0^(UfrGxIfI{UjSO^rkz^^@W{0O@(>pL<~fI))9Q8AcFBApSUj( zpk3i*D#oKjD2_6%8UpTXsxKHe2!NLv_a~9|(v9C8?qQ7Cwoxxc5WnAAdg^l6KtI>~ z)QB{^X5k$$8nMNzF($n;Tv^M0K(fsFg_f8IA|Ioh){7BLYPPZqop{u{G@tEujF31PD*wth{drm_Os;&$0~GX)n8s(O`&*(lP~J_Rrza=??MTFn~4jMKjT`Ls=#8r^}Ih@EXDfyl>Y=R3gh zm-O9bBqKUH)!L)P5* s(rizf$54=@b%Y`Qzys~FI6)ARJo2{r$J2FTh*UcZ1;)L zMrNHiEw1Em@rSm+uNr6ORXBTEw$LtpRR+Y}Xm6S*{Jvo|APd1cO9p7nORbs9XcIKR z!HACm$dJyH!$;RHwRoCMJ({;K1Ir=M8-^bcZsDz~2@lCH8;A7}4x(BD8qpgYbeUPk2p4LtJI=@4vf-C# zu3zbm|Fu|n_BhzIbq6RYpDn-_A!jM>U3nNZo7YNYu47?%oE5(6`JW(d$D%%+M!LYh zkLGXwpq}M3e6y|Em8_+v#}m-z_)k}75mjffW>L7fL-61bG&mP`cMlRIxVt+)?!kk* zy9W<)akmiM-Q5XvdiCVJ9@eBrwN{-~->JP3uju5WE`wyLOuL${pQsqYPC}6FqlR1pn?v zmMAe1az~d)7jl?t4HP68+GmmXcCY@Y-QKYfq+t1-`ce{^pj(Hym4vK0F0UT%|eLv;EIktDLM<-2CmI> z*JB_%l||OmGuH*ua5!*ol((qRoS21=sK8+1LK@M_%|FVNVgd4} zw5k+_kzS5tB?0m5-?Vc;pz(Fq@929*6$*vo!N1dG5C|q$qh!eek-W>u5T4bL9H|Ht z1%*$rBKnh-4NC$M6%;?go{dF@(7~LQV1a6nBSQjGE2^{L zL9d~aA=*RZ5@K0K=9Cnh#Tk(yuvjgmG=YeQObV0|PWT?bO9C+Azhz5ABwij%h$Tb) zv@Z=r%v&hMD$sugCWmn_^P*lQ#6)oaZ4|(OjEw}XfkX3QTX1JC9!fY;xe(?-;|a{y z6tAElE_UrH>hS?FMkdWv-_k5SD=g$s-k;Jy)(^j*!F-HOnPIT4VxvmziA{}8J66bu z82-%}rn-mZqLs>&{f_85Yl<+?lQ&?om>y4vRfr6l&YA&mvGL7u7x(O|3V}*Dj0=?V zx{pEC39fy=kK-|$?nP$9-$bR#Lq---nt=(VDq>KCE`#FriW7%4j+=ZjS?c3J=~+Er zj9oTo<=^^u%>)-vw|p{sM~~^yw3Vmp>K3rfAfpTV3opJbAW)PucdoRG?B?{j>Ensp zgEq^BZ_fo_f0zBR_LOiw`9gRlxjf!e-AlVhilNbcmay*AK+7*deRf|J8*blCw3Hj2 z&D))&Gx9mw7NvO7XP3%> zY{)P5tJ~m^)Q6a>#O9xydoY~qN;?s#PW}{(j?D&(U@p=r6N@A6HM`O0VzmBYUmc){ zDJ~ZX#7;RWP#UYViF@>t`5-gQu*&nvzL;9}08P1t`~^+!#kbqj)d36Uch$^-ZQ-O} z>)WX*iEx0W{lN(xXm-K3pOLk2Z&QyXE_oYRIAGEm5Ed)wTWsS$11jUQJ34yXI)Y?_ z56V_+>pJU3;( z{%w)s*hH>AN9khgOEFtn1GoMpcY4>NDD^xT+6o>toYKJUt~kJ^?2B3hzcd~^!Nx*J z353poC{3x#u!vRrVAS{vK z@N?P;OW__FPTlVthLId@u6+ z;8FYSom>*)wf_@uq{EKV&pb=1>PNbYN~7$0>AUrbA^^BCamu^MJy$%bq$a9m@6CO6UcpdxXr>&j35Q4(I)o~LuU#aoqwK3wI>=E%GL5_yw@{IN{`To1G0YJ`f{ zh$mvV<+t-`;~U| zEFi?JxT3qJN$#d*)WJFp#nH#%!uS1rKDU;~^eX_t-eE7*Gj5v@;FhiTxqI_SvEAfO zGuMX1^12A;DzRoUmCBY%OvElv+ikjjOlIIR6Ff^&6~6= zoV~U;I6wna@=_jDX0fNUeP)J~Ur{!O5&TWKmtVS_$K;NRpDgNTt6A|S-`dybKBK(Q z{s=r1yZfxlkO;a+i)n+S$Y0@?}}e!|WH$O2;cRF+0Wz^Dw}5+Wzz`d8PA?`X-$+sHz&f5{~Y+(qGt7 z?oPMgJfih=^@q69FSrALO;i+}gC4dR0-^j~g@^<-^@8=$j$!Ip$KR4RpB~)!SB2fb z1%Gvl#A0l`u2-k!m>4h#pL|gWacbI?s9(b<8sdd1u2ae-%5`F5?uBZhWD1z3kqSkL~*lEoG1&+CPqjKg$KE$E@xu)Ie7Tp%^C7ElbW z+RLm{OtxslIRn+22 zRK_LBqNXh+9olIJ$$s|=?}DtVpmE^TvzG8hnUlIKK3_Qhg{497EM>hf{>ihlD*dY2C+{>Dc7KUkKN%%!|7@l)j%8-xex{Ww zbP`q@Sd`MPZ41`N9msYyYsfx3xq0m6dqzQv8!(U-K;30`m?`Lk-XfeMUW9%Yf*5rz z2GjzMkyD*m`M<(RqL-<_uvgx(V~86@%Fz7?v*mZFxu;vqF26_gt(CBg^BCw{#Xr4bd9XOLB1h!VGWK-z zLmNUcc2lUQF^xsAbygnc7-%nNRisd;N_Z?)WrKGI%7@#<-@2RQ@hO3}l)R1Vu8=lW zM8=#;o*XNCN4kMC6FR8?0LG6+^a~=o#9iWX1mz@$Bf3((_i)z)IebdH;Wku4NE5x- zhfI5Ek5@h2hp_~B#uY4NQD}j~w4;~92+bMn&{0b}a%pn{{A^3{SW3irXhyzduhS3X z4ZBo1xn=%kZ(>v$TuwlmIQL)hcfnDRzUAKB#qqOtH@q2sUaUFj6Np+m8S^NvJ1(HJ zM+u9yP`O?hb;ja-C?5qH&avS5@y0~Rv&fQeSA>~W+wXF?u~g6*9lgdi5)^N3=pg{_ znGG{sNfz2UZt>wZXnR^iK2Zr9Du^BQoyc3&M~tnfk&TaU8w2p%qViBE%xOb)`Jj|& z&ZhmPgYFY9QaPLviWu zvx|n~EG{__PbnlK^@&u@3>^<@$e4y1mN@c7;wNaOmPPzaheGdH1I)EOvVz4}BRDFO z-x~vnEB485m}3BBD0EVhlbCC6{X&YY%f6#9pqJEC?|CmD)y|#Qo(qcGO1M9GGAmk_ zJ%qBk5lj4J)9B~z$pisAWK*HB`x^oN;2u8c%AvW zOBP8pwmqY<9=kA#;pjLnut!9?#=D0_kS=L^ zH+f{qxOX?YU~3D9_$766sFUH+gjOLVBLdPOL0)TJLmgB>sApS4+RbB81Li8iDjm+2 z)D?j}4nw1wetu#OuA+AAusbkHV!d3bL$40o2o(LRQ zsy43njre~|bi&J!=Ij8u?}APvIP0j8PKTk~vygrSF@rB@a^?0i*kP6R+j~yNlH(f;AfVGNWg9~&sN?SU(2j(zIX-fx}_35VN>zeL6Rlwoj8EoH8tgBMkw z((|u+r(4r5#NI3|MO5{-;tk5HuPoMouC;Kk!zA;fsevu)&Dw2V0-Yu2al`e6cW>F@ zD*Yj;B5;Tn?i2`{e zeZv*^j(QY*1USv86Hcn2m|slo)@19VGC$Ud#cttL6l5f0ATfO{eg}x*{a-=DgFfsMPk_!IQ0w z;L!Hr4s@6>u6~+bs(Pd+TNk?#iH{A^?oG=!+_;;>^zo#V11tFHa$`YB-SMMgh|nOIub@G86uwYS2r5=`PNz9qxu~F_IGRI*0kW)Q(?ar?m*ouS-8L(nZ$Z% z3;t8-9*1}xil0|OfD%E$st$}P#|S66N$HM8yn!op{Ts$tW$h2CZg8MlfSr?v?Z3K} zYdZhOw3(_k+>_Aovh0K=^>yTOI{i}2u#{av%;mGG@*CAIGFf)CG1DN|9xQ{UV{N{m zW>@V(z=;@ei12aEAh<6vJcJtPFbaHoI^SO*YgOc#a;}ziZjm+3AuPqVF{8n`tx9S+ zsInVW6htfUq9-O93Iu(z(T(}q6WiKESI==jOdQTN=}z+ zqQcwVJG?y}Jf>e#Di!F(+q0`CjV7dhlTMl{f#*K1L%6?X#rS$rxARe@;Wd?(M`sA$ z`F3TTx`p<~`OM9CKyrk?%vJuAIlMQMt6fT9zMxSrhq4=N=n#T+%otL_X zE_{lqEycR1V09L*h{%51?cvJR`aYt-0eIzGZ>bQKvX^|ax;NQVMm(_E!k_>L)lFXy zAzC`h2rZnLnk&2h4lz$PTdD3F*(!SW{pqJ=7vQI^xpn3raMLc-N0j=uC^q_4Mb4|3 zRZY-@f|UY)YDs#J*!Q(x{)GUTl{EF_<_a#{Vnvoka6^knG$xnx0hLbD zCHW)t^9W1o3QNx6C?cp6QNE>709OfXC77L|fvW))*jdTLED{yP9G1PPZCX8nps8$8 zOu;xo+ZsY{OJAZ)W966@2^C)&75iS)5R!>Js&MUJ?GwMMF8O2Zhy&<-*`mn4f4*)@ z+Hj8e1&P|lqik==C?X%~(%_Z%7-0E4Y$u-*K)1`2#py^57bRqZ#3Q0M1f)a^Y>t~N z?fEl7+j!AG_x%NFZ8c;aojCrelVmXG8~Aa9mrU7Uh@OWyiMc4O4k6X*CC?``EZFZg zq4Y~6*lhdt-lhY6M^Bu~Um%HXxv=GUMSEQjiA^_8k2Ec<CW~kNSx6*@oK1q!lqJbEvUf- zdTC2+Vle~n5pl`LfD9x|!Efnhihq+GPg3L4-!ET*H5u%s2!#<2bcwkhy!g}R%weYB zE@*+|bwu_}kJ~+!T#~HDYN;tX(jVnEv&;n=F?nl12g$*n_T%sPS>nYwbZ%%o_=JZT zCj*9D5p0mG&9vH|%;e?7vD?h~>M^8fIdA<2 z9HT(hRzbarTc!_4{OH+u20gTRf=-kdB}%0{`F7HlE5#SW%`pF~1ph^oCNb zBAuj76^o+yUf}YH3w~E3!u2Amo+hefhVl$cnCE$RWYq@&ofb1&2QfQqJtUej?%K2H z(N6e(|5z{UBt$JGDd4(wQ8_n%puntQFGt<7uwu0R8JaiNP>-5O$i6F9x={=05<*9` z-nR8whwvY$)C@loEM54T&tQs1#pbo5JuZb-!F)G1P%q317MnukyBIQ!ps?^YQ#`E5 z5`jeA8YT__ZmbsSuD>rMZ-%Ggv(D<_U4^$m12JQCoB5@ke5wB^i*L7R6Yau`+mNoc z&}fM9uNu_~WBDl;6`pkwO3tAUNeB;_PmT&GN+4YZ<;!t2dtFZ!b(6tZjE9xm9ELt- z2MR9ycJu#Ll_pk+J_7Hup5Y zS!yUcrmcp*U0bqK3lw%lKY~#@{TIqizU43LJSwTg7uv;_rb~hH;Yq@ck#U{6Um=Wt zU(HUUi+gNz`l3uCu!qCmz#pX@lEX|Uwe4Ak$j2eBy zscyHEp5U(`EcoZ-cz4ZZy}W3&i7V3a5cixNaAejWG(>}D&LzTsI?z+{Mqa>6dV9lx z=~m$Laz;}D-@Vn{vGL(td&HTDetWjTV;!u~rjR0*=kgI)`x}nAyAiG;vfD)p+6Qbq zj5?*tGV41xLfuBU36Q%)RLL)6Q@c=n(If+VC>ek@noTHcTOm9+OzE~+QZP(;WK|@< z2<16UO}tHa-7sZ<&=nBF_z9YDq%%&UEFyU>Y356D*=jT`l89Wcp}Dfz@1+l-?-MQt zRXq%O&gZEi8yrUXE*E=z#?wDBdk%C`a_mk3k2eqD6D#uqBi$J@aOra(u`d5^PTQvB zkhEj$E)%R-_8Wcd4ojCYrXMuar_as+q(sCW1(BK?GpxplWP}{|YLPGSuMZ_m0&`+{ z%%C+TQ^NkuU92MR>BG~*Go*(inW1X|fVM>JR6jWWC<2rELC*jYTthL92&RlA?_;UM zg(5O!sp-`~Oy|8Fuagaa}F9M$US zgj{^A7sT;o;@|&HEe-KRzzo#|3Ua0CRJ5dtK631+1j$qXRdYtp&V{;xN;D2aRx>`^ z*MN-qD3C#!v2a=63a$H%isAzL}~mc#icXe!BMj&WDT^`+UzS1b#sKQZC)BgR{eF=)ql z%XVY?@^^$^S)Zh<-`L$Ma=WzM&dpgt**+ai+`NnD0Q&v-PR-~I)42!WcKh_CvVZuO z9@%(!|J%Vbpfl#Y!iBT;^0_tHoHE1{X3X{2b@_SyLdWBrT!FQL$(7nf_MaMCpEq;U{`3aAF86%UCu}qf^O&K5l7AC8wWG)&3B7`Pbvc+Xy13s?Mt!dQn7d|W^%=jDgXDSZ-B2i(}=-QodD6Gv^v_4u0 z8|GcY<=;@PSQ9g>BumJWzuSt$wgdNez8ypI8)nJ&$az3S%{`pIBT4hs+A~vyYkIh+ zlb74o0vy~dI6s0qh)xn)ky>^3)5+R^15h*q&oV;@sg^zWo!5s%7NNGWd-+_=x$3cp zSfAS=EncHO29ms}O7>@$b~{kL@$scHq+Y)5YK_sEbH0-WW7%1_Iyh|-SmZv`pX zm2L%?*JwYKy=3E)$LdoD59vCSAqkTy1qmZBM!;OGw|iEX@5EAmHEyVG4+eV*V$u2{ z_3OQd=Kc?tB86bm;%JpeC)3s<=UOuNFZ78zIdt@h+|N|b5}~TnLz`vJH$~i%injxH z-_BtOgfSD0Z57Z_X>hg-ozXujXd4p}iC@9&NJ3#9eB8|o?BJT+3vQ#b!A2Hv`nm(q zW&v)ehq#6GMtahm$4~RaIQ8zNY>?z;SG5?E7P?mPIo@S+WD07Ho#qwe7M7bEcxaO_ zOR1sYO{R8MIy58G0~qyN_m|!U>{Dx5M#?NX&V(po2SiKxPf=M+H4;S+fiVThY%byB z`p`_M7=A=ATL;2LwOzo=-BtkeNgPtbzuAg)$Xl%uTP`wA*oUMHiHu}&O9AB&DG;gh zr^N<_$<^8vO~#tZn6L=Kh=@|jz9W0l=k5giRDSZAz9gPOo}RpGQ0l3fsROF5tj zFHMwTgLjXr!gZzED~FmQVoGqvk$bvlN0D^Uj%rVa0uiNn5sL&fvh2->`MIWc6sw|{dpE-b&9JtD4lVzT zi-gVaa+3wdX>#EjbG!^WFc9(`aa4>yEws#>Rkx-1E}O=Se=MzrT9vRG`^l%b)%#8D z3E4)+Da|e9>3uL9xHq2_toJj-)m+gzZ~DaVIDQMDgp}>mqjva63DuZb0+S72G1*RU ze{h*d&>j(teU#{E48HCU#FV1`G7{?Y(=*4HO~X(F5~}XBit3Ol008^`8?urFym;p} z+%C^~J8`y#;PdM~`YM<0yWF?=b|NLe0@|BFK#RNYyhE=hKIN)$uWs(!gE(C@zY}nI z&P1{RCGy zbXMY~2{DS(+)X zs|GXOj+e4{4|b-C%%K;>`d{khyrmn3nOF6uI} zUiS&yMBk<)k$>-vDUXpX?issfr|^Iv6kqZwe`h z2w3p`dhdkd8VxI}nuh`_xdNkAz~oLnN?q>O+}*{Il}{RreL6slPCt2)8QxMkXWj9< zx0bSyOS-WpSQM_2=+NMsT0UrOVuHf`rZ_~OmT3WMR1j=&mD*TII-%(VdQepr5p%KNmV7DhUpg}*;Jc2_{rYj ze0FlpWr;(pO1;tNt|c|JKHc`p(C*@?b5ubB;s1klU=$Dwi&2fjdRyP7rocOIV;tzy zYYfIROgrFbpWz%$Z2XmzM|Ma-PY$TNdfXhQV5VyF+CDeR**0L`Tcw52FaBNgK~k&+Z5#tQr-9)#s#Q|!E0l#*`4q+@p3X-ESKQx+=p~nn;J=Do z4b{RRaOxBrGW#c;qUQ-u<$amP3vpMnEi8-a`%#;=>#UAbqJx{ur2QMCexF8Aw&KXa znAL*G55Ig!%k6vTc~^f2P6bf%0qW--(jE++i=gHynMADJ-&q;d$NZ4Igj1M;L=J4r z6*7`gye-=_AFy9I4s3*QLW#OgQRfQR*V6s=uG8j;5D_}H7c~1{>YVd6 zg_}F(4awa3@_d5l=pgHNg~{*Jv1%5)t*0~_MUDpvg0&*sK5&N&4{m^REV#*`9QKRx zs7-P0XutqhQ6+CviB#ByHKOwg;PdmY08a24Paa;)C+9%55sJlcleuZi7)o5lSvJ+45 ziuPOyAiG4_a4a=ayaddn*O-G-`050M%w8(F10b5^c@{b5r1M@G2t8n9NJVi{%@AyF zN42*(=8n>|@#n%x^e-bff*M@Ad~w^oVcDn-bp9F-oeQ2^3lW?%AM_8&S>$@+FUCEW zk^1qwps?rbJiw)Q;uj8qeOoNes1Refr*!r9Pns(}@-rT}(A7ne@K*U}~Wd?G{? z-0$6gxhlWrY!UfanOwt$8A3%TABcM2{-7gpeooSSA6XGcpsj{qTIKROWWZ(&2f~vM29xS>^Xjtk zCl(1jqip)p9PMZ4Abh?IT1?OWgLe%_S9pBb8^-!hC(r1A)LCV)h{#v9MU>ZKO>OD% z8UCi?`zd7#rLIwH$B1#a<{@ZY?YS6a59Y%_!>>XusCV7a7T@17;U3J(YaKrg_(Baj z?_z=9ELVPcuD}SU7ya`G33t7a$+x_Oq#jX$_*-lgpl3-^FDyYENSy2( zY+P(y92}{itw2=&vDC5x^+SV`dSUQWIjlj_01pqRsWFE!C$A|FD6B_H`jmmPtL^@yU0 rl<-rku5BCBn&%Hy|I)Vr8QyPor!4SLXatzhsl+xQ_tYdC5bpl~`gf}# diff --git a/configuration.yaml b/configuration.yaml new file mode 100644 index 00000000..db3b3f00 --- /dev/null +++ b/configuration.yaml @@ -0,0 +1,10 @@ +--- +paths: + # path to mcrun, example for OS X + mcrun_path: "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin/" + # path to mcstas directory, example for OS X + # the mcstas directory should contain the component folders, sources, optics, ... + mcstas_path: "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/" +other: + # limit characters per line in terminal output + characters_per_line: 117 \ No newline at end of file diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index 07ac586e..e61f594b 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -640,7 +640,7 @@ def print_short(self, **kwargs): "\tAT", self.AT_data, self.AT_relative, "ROTATED", self.ROTATED_data, self.ROTATED_relative) - def show_parameters(self): + def show_parameters(self, **kwargs): """ Shows available parameters and their defaults for the component @@ -649,10 +649,19 @@ def show_parameters(self): subclasses for the individual components are required to run this method. """ + + if "line_length" in kwargs: + line_limit = kwargs["line_length"] + else: + line_limit = self.line_limit + + # Minimum reasonable line length + if line_limit < 74: + line_limit = 74 print(" ___ Help " + self.component_name + " " - + (62-len(self.component_name))*"_") + + (line_limit - 11 - len(self.component_name))*"_") print("|" + bcolors.BOLD + "optional parameter" + bcolors.ENDC + "|" + bcolors.BOLD @@ -666,42 +675,90 @@ def show_parameters(self): + bcolors.ENDC + "|") for parameter in self.parameter_names: + characters_before_comment = 4 unit = "" if parameter in self.parameter_units: unit = " [" + self.parameter_units[parameter] + "]" + characters_before_comment += len(unit) comment = "" if parameter in self.parameter_comments: if not self.parameter_comments[parameter] == "": comment = " // " + self.parameter_comments[parameter] parameter_name = bcolors.BOLD + parameter + bcolors.ENDC + characters_before_comment += len(parameter) + value = "" + characters_from_value = 0 if self.parameter_defaults[parameter] is None: parameter_name = (bcolors.UNDERLINE + parameter_name + bcolors.ENDC) else: + this_default = str(self.parameter_defaults[parameter]) value = (" = " + bcolors.BOLD + bcolors.OKBLUE - + str(self.parameter_defaults[parameter]) + + this_default + bcolors.ENDC + bcolors.ENDC) + characters_from_value = 3 + len(this_default) if getattr(self, parameter) is not None: + this_set_value = str(getattr(self, parameter)) value = (" = " + bcolors.BOLD + bcolors.OKGREEN - + str(getattr(self, parameter)) + + this_set_value + bcolors.ENDC + bcolors.ENDC) + characters_from_value = 3 + len(this_set_value) + characters_before_comment += characters_from_value - print(parameter_name - + value - + unit - + comment) + print(parameter_name + value + unit, end="") + + if characters_before_comment + len(comment) < line_limit: + print(comment) + else: + length_for_comment = line_limit - characters_before_comment + # Split comment into several lines + original_comment = comment + words = comment.split(" ") + words_left = len(words) + last_index = 0 + current_index = 0 + comment = "" + iterations = 0 + max_iterations = 50 + while(words_left > 0): + iterations += 1 + if iterations > max_iterations: + # Something went long, print on one line + break + + line_left = length_for_comment + + while(line_left > 0): + if current_index >= len(words): + current_index = len(words) + 1 + break + line_left -= len(str(words[current_index])) + 1 + current_index += 1 + + current_index -= 1 + for word in words[last_index:current_index]: + comment += word + " " + words_left = len(words) - current_index + if words_left > 0: + comment += "\n" + " "*characters_before_comment + last_index = current_index + + if not iterations == max_iterations + 1: + print(comment) + else: + print(str(original_comment)) - print(73*"-") + print(line_limit*"-") def show_parameters_simple(self): """ diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index bcf45f4a..2108b545 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -2,14 +2,16 @@ import os import datetime +import yaml +from mcstasscript.data.data import McStasData from mcstasscript.helper.mcstas_objects import declare_variable from mcstasscript.helper.mcstas_objects import parameter_variable from mcstasscript.helper.mcstas_objects import component -from mcstasscript.data.data import McStasData from mcstasscript.helper.component_reader import ComponentReader from mcstasscript.helper.managed_mcrun import ManagedMcrun from mcstasscript.helper.formatting import is_legal_filename +from mcstasscript.helper.formatting import bcolors class McStas_instr: """ @@ -172,20 +174,34 @@ def __init__(self, name, **kwargs): self.origin = kwargs["origin"] else: self.origin = "ESS DMSC" + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + configuration_file_name = THIS_DIR + "/../../configuration.yaml" + if not os.path.isfile(configuration_file_name): + raise NameError("Could not find configuration file!") + with open(configuration_file_name, 'r') as ymlfile: + config = yaml.safe_load(ymlfile) + + if type(config) is dict: + self.mcrun_path = config["paths"]["mcrun_path"] + self.mcstas_path = config["paths"]["mcstas_path"] + self.line_limit = config["other"]["characters_per_line"] + else: + # This happens in unit tests that mocks open + self.mcrun_path = "" + self.mcstas_path = "" + self.line_limit = 180 if "mcrun_path" in kwargs: self.mcrun_path = kwargs["mcrun_path"] - else: - self.mcrun_path = "" if "mcstas_path" in kwargs: self.mcstas_path = kwargs["mcstas_path"] - else: - self.mcstas_path = "" + elif self.mcstas_path is "": raise NameError("At this stage of development " + "McStasScript need the absolute path " + "for the McStas installation as keyword " - + "named mcstas_path") + + "named mcstas_path or in configuration.yaml") self.parameter_list = [] self.declare_list = [] @@ -226,10 +242,19 @@ def add_parameter(self, *args, **kwargs): # parameter_variable class documented independently self.parameter_list.append(parameter_variable(*args, **kwargs)) - def show_parameters(self): + def show_parameters(self, **kwargs): """ Method for displaying current instrument parameters + + keyword arguments + line_length : int + Maximum line length for terminal output """ + + if "line_length" in kwargs: + line_limit = kwargs["line_length"] + else: + line_limit = self.line_limit if len(self.parameter_list) == 0: print("No instrument parameters available") @@ -249,7 +274,9 @@ def show_parameters(self): longest_type = len(max(types, key=len)) longest_name = len(max(names, key=len)) longest_value = len(max(values, key=len)) + comment_start_point = longest_type + longest_name + longest_value + 11 longest_comment = len(max(comments, key=len)) + length_for_comment = line_limit - comment_start_point # Print to console for parameter in self.parameter_list: @@ -260,7 +287,46 @@ def show_parameters(self): else: print(" = ", end=' ') print(str(parameter.value).ljust(longest_value+1), end=' ') - print(str(parameter.comment).ljust(longest_comment)) + if (length_for_comment < 5 + or length_for_comment > len(str(parameter.comment))): + print(str(parameter.comment)) + else: + # Split comment into several lines + comment = str(parameter.comment) + words = comment.split(" ") + words_left = len(words) + last_index = 0 + current_index = 0 + comment = "" + iterations = 0 + max_iterations = 50 + while(words_left > 0): + iterations += 1 + if iterations > max_iterations: + # Something went long, print on one line + break + + line_left = length_for_comment + + while(line_left > 0): + if current_index >= len(words): + current_index = len(words) + 1 + break + line_left -= len(str(words[current_index])) + 1 + current_index += 1 + + current_index -= 1 + for word in words[last_index:current_index]: + comment += word + " " + words_left = len(words) - current_index + if words_left > 0: + comment += "\n" + " "*comment_start_point + last_index = current_index + + if not iterations == max_iterations + 1: + print(comment) + else: + print(str(parameter.comment).ljust(longest_comment)) def add_declare_var(self, *args, **kwargs): """ @@ -418,15 +484,18 @@ def show_components(self, *args): + " category.") self.component_reader.show_components_in_category(category) - def component_help(self, name): + def component_help(self, name, **kwargs): """ Method for showing parameters for a component before adding it to the instrument + keyword arguments + line_length : int + Maximum line length in output to terminal """ dummy_instance = self._create_component_instance("dummy", name) - dummy_instance.show_parameters() + dummy_instance.show_parameters(**kwargs) def _create_component_instance(self, *args, **kwargs): """ @@ -454,6 +523,7 @@ def _create_component_instance(self, *args, **kwargs): input_dict["parameter_units"] = comp_info.parameter_units input_dict["parameter_comments"] = comp_info.parameter_comments input_dict["category"] = comp_info.category + input_dict["line_limit"] = self.line_limit self.component_class_lib[component_name] = type(component_name, (component,), @@ -780,78 +850,182 @@ def print_component_short(self, name): component = self.get_component(name) component.print_short() - def print_components(self): + def print_components(self, **kwargs): """ Method for printing overview of all components in instrument Provides overview of component names, what McStas component is used for each and their position and rotation in space. + + keyword arguments: + line_length : int + Maximum line length in console """ + + if "line_length" in kwargs: + line_limit = kwargs["line_length"] + else: + line_limit = self.line_limit longest_name = len(max(self.component_name_list, key=len)) # Investigate how this could have been done in a better way # Find longest field for each type of data printed component_type_list = [] - at_x_list = [] - at_y_list = [] - at_z_list = [] + at_xyz_list = [] at_relative_list = [] - rotated_x_list = [] - rotated_y_list = [] - rotated_z_list = [] + rotated_xyz_list = [] rotated_relative_list = [] for component in self.component_list: component_type_list.append(component.component_name) - at_x_list.append(str(component.AT_data[0])) - at_y_list.append(str(component.AT_data[1])) - at_z_list.append(str(component.AT_data[2])) + at_xyz_list.append(str(component.AT_data[0]) + + str(component.AT_data[1]) + + str(component.AT_data[2])) at_relative_list.append(component.AT_relative) - rotated_x_list.append(str(component.ROTATED_data[0])) - rotated_y_list.append(str(component.ROTATED_data[1])) - rotated_z_list.append(str(component.ROTATED_data[2])) + rotated_xyz_list.append(str(component.ROTATED_data[0]) + + str(component.ROTATED_data[1]) + + str(component.ROTATED_data[2])) rotated_relative_list.append(component.ROTATED_relative) longest_component_name = len(max(component_type_list, key=len)) - longest_at_x_name = len(max(at_x_list, key=len)) - longest_at_y_name = len(max(at_y_list, key=len)) - longest_at_z_name = len(max(at_z_list, key=len)) + longest_at_xyz_name = len(max(at_xyz_list, key=len)) longest_at_relative_name = len(max(at_relative_list, key=len)) - longest_rotated_x_name = len(max(rotated_x_list, key=len)) - longest_rotated_y_name = len(max(rotated_y_list, key=len)) - longest_rotated_z_name = len(max(rotated_z_list, key=len)) + longest_rotated_xyz_name = len(max(rotated_xyz_list, key=len)) longest_rotated_relative_name = len(max(rotated_relative_list, key=len)) - # Have longest field for each type, use ljust to align all columns - for component in self.component_list: - print(str(component.name).ljust(longest_name+2), end=' ') - - comp_name = component.component_name - comp_name_print = str(comp_name).ljust(longest_component_name + 2) - print(comp_name_print, end=' ') - - comp_at_data = str(component.AT_data) - longest_at_xyz_sum = (longest_at_x_name - + longest_at_y_name - + longest_at_z_name) - print("AT ", - comp_at_data.ljust(longest_at_xyz_sum + 11), - end='') - - comp_at_relative = component.AT_relative - print(comp_at_relative.ljust(longest_at_relative_name + 2), - end=' ') - - comp_rotated_data = str(component.ROTATED_data) - longest_rotated_xyz_sum = (longest_rotated_x_name - + longest_rotated_y_name - + longest_rotated_z_name) - print("ROTATED ", - comp_rotated_data.ljust(longest_rotated_xyz_sum + 11), - end='') - print(component.ROTATED_relative) - # print("") + # Padding settings, 0,0,6,0,6 is minimum values + name_pad = 0 + comp_name_pad = 0 + AT_pad = 6 # requires (, , ) in addition to data length + RELATIVE_pad = 0 + ROTATED_pad = 6 # requires (, , ) in addition to data length + + # Check if longest line length exceeded + longest_line_length = (longest_name + name_pad + + longest_component_name + comp_name_pad + + longest_at_xyz_name + AT_pad + + longest_at_relative_name + RELATIVE_pad + + longest_rotated_xyz_name + ROTATED_pad + + longest_rotated_relative_name + 8 + 9) + + def coordinates_to_string(data): + return ("(" + + str(data[0]) + ", " + + str(data[1]) + ", " + + str(data[2]) + ")") + + n_lines = 1 + """ + If calculated line length is above the limit loaded from the + configuration file, attempt to split the output over an + additional line. This is hardcoded up to 3 lines. + """ + if longest_line_length > line_limit: + n_lines = 2 + longest_at_xyz_name = max([longest_at_xyz_name, + longest_rotated_xyz_name]) + longest_rotated_xyz_name = longest_at_xyz_name + RELATIVE_pad = 0 + + longest_line_length_at = (longest_name + + comp_name_pad + + longest_component_name + + comp_name_pad + + longest_at_xyz_name + + AT_pad + + longest_at_relative_name + + 7 + 6 ) + longest_line_length_rotated = (longest_name + + comp_name_pad + + longest_component_name + + comp_name_pad + + longest_rotated_xyz_name + + ROTATED_pad + + longest_rotated_relative_name + + 7 + 6) + + if (longest_line_length_at > line_limit + or longest_line_length_rotated > line_limit): + n_lines = 3 + + if n_lines == 1: + for component in self.component_list: + p_name = str(component.name) + p_name = p_name.ljust(longest_name + name_pad) + + p_comp_name = str(component.component_name) + p_comp_name = p_comp_name.ljust(longest_component_name + + comp_name_pad) + + p_AT = coordinates_to_string(component.AT_data) + p_AT = p_AT.ljust(longest_at_xyz_name + AT_pad) + + p_AT_RELATIVE = str(component.AT_relative) + p_AT_RELATIVE = p_AT_RELATIVE.ljust(longest_at_relative_name + + RELATIVE_pad) + + p_ROTATED = coordinates_to_string(component.ROTATED_data) + p_ROTATED = p_ROTATED.ljust(longest_rotated_xyz_name + + ROTATED_pad) + + p_ROTATED_RELATIVE = str(component.ROTATED_relative) + + print(p_name, p_comp_name, + "AT", p_AT, p_AT_RELATIVE, + "ROTATED", p_ROTATED, p_ROTATED_RELATIVE) + + elif n_lines == 2: + for component in self.component_list: + p_name = str(component.name) + p_name = p_name.ljust(longest_name + name_pad) + + p_comp_name = str(component.component_name) + p_comp_name = p_comp_name.ljust(longest_component_name + + comp_name_pad) + + p_AT = coordinates_to_string(component.AT_data) + p_AT = p_AT.ljust(longest_at_xyz_name + AT_pad) + + p_AT_RELATIVE = str(component.AT_relative) + p_AT_RELATIVE = p_AT_RELATIVE.ljust(longest_at_relative_name + + RELATIVE_pad) + + p_ROTATED_align = " "*(longest_name + + comp_name_pad + + longest_component_name + + comp_name_pad) + + p_ROTATED = coordinates_to_string(component.ROTATED_data) + p_ROTATED = p_ROTATED.ljust(longest_rotated_xyz_name + + ROTATED_pad) + + p_ROTATED_RELATIVE = str(component.ROTATED_relative) + + print(p_name, p_comp_name, + "AT ", p_AT, p_AT_RELATIVE, "\n", + p_ROTATED_align, "ROTATED", + p_ROTATED, p_ROTATED_RELATIVE) + + elif n_lines == 3: + for component in self.component_list: + p_name = bcolors.BOLD + str(component.name) + bcolors.ENDC + + p_comp_name = (bcolors.BOLD + + str(component.component_name) + + bcolors.ENDC) + + p_AT = coordinates_to_string(component.AT_data) + + p_AT_RELATIVE = str(component.AT_relative) + + p_ROTATED = coordinates_to_string(component.ROTATED_data) + + p_ROTATED_RELATIVE = str(component.ROTATED_relative) + + print(p_name + " ", p_comp_name, "\n", + " AT ", p_AT, p_AT_RELATIVE, "\n", + " ROTATED", p_ROTATED, p_ROTATED_RELATIVE) def write_c_files(self): """ diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index f3627720..4cb963b4 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -8,13 +8,17 @@ from mcstasscript.interface.instr import McStas_instr from mcstasscript.helper.formatting import bcolors - def setup_instr_no_path(): """ - Sets up a instrument without a valid mcstas_path + Sets up a instrument without a mcstas_path """ - return McStas_instr("test_instrument", mcstas_path="/") + return McStas_instr("test_instrument") +def setup_instr_root_path(): + """ + Sets up a instrument with root mcstas_path + """ + return McStas_instr("test_instrument", mcstas_path="/") def setup_instr_with_path(): """ @@ -32,7 +36,7 @@ def setup_populated_instr(): """ Sets up a instrument with some features used and two components """ - instr = setup_instr_no_path() + instr = setup_instr_root_path() instr.add_parameter("double", "theta") instr.add_parameter("double", "has_default", value=37) @@ -55,7 +59,7 @@ def test_simple_initialize(self): """ Test basic initialization runs """ - my_instrument = setup_instr_no_path() + my_instrument = setup_instr_root_path() self.assertEqual(my_instrument.name, "test_instrument") @@ -73,13 +77,52 @@ def test_complex_initialize(self): self.assertEqual(my_instrument.origin, "DMSC") self.assertEqual(my_instrument.mcrun_path, "/path/to/mcrun") self.assertEqual(my_instrument.mcstas_path, "/path/to/mcstas") + + def test_load_config_file(self): + """ + Test that configuration file is read correctly. In order to have + an independent test, the yaml file is read manually instead of + using the yaml package. + """ + # Load configuration file and read manually + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + configuration_file_name = THIS_DIR + "/../../configuration.yaml" + + if not os.path.isfile(configuration_file_name): + raise NameError("Could not find configuration file!") + + f = open(configuration_file_name,"r") + + lines = f.readlines() + for line in lines: + line = line.strip() + if line.startswith("mcrun_path:"): + parts = line.split(" ") + correct_mcrun_path = parts[1][1:-1] + + if line.startswith("mcstas_path:"): + parts = line.split(" ") + correct_mcstas_path = parts[1][1:-1] + + if line.startswith("characters_per_line:"): + parts = line.split(" ") + correct_n_of_characters = int(parts[1]) + + f.close() + + # Check the value matches what is loaded by initialization + my_instrument = setup_instr_no_path() + + self.assertEqual(my_instrument.mcrun_path, correct_mcrun_path) + self.assertEqual(my_instrument.mcstas_path, correct_mcstas_path) + self.assertEqual(my_instrument.line_limit, correct_n_of_characters) def test_simple_add_parameter(self): """ This is just an interface to a function that is tested elsewhere, so only a basic test is performed here. """ - instr = setup_instr_no_path() + instr = setup_instr_root_path() instr.add_parameter("double", "theta", comment="test par") @@ -91,7 +134,34 @@ def test_show_parameters(self, mock_stdout): """ Testing that parameters are displayed correctly """ - instr = setup_instr_no_path() + instr = setup_instr_root_path() + + instr.add_parameter("double", "theta", comment="test par") + instr.add_parameter("single", "theta", comment="test par") + instr.add_parameter("float", "theta", value=8, comment="test par") + instr.add_parameter("int", "slits", comment="test par") + instr.add_parameter("string", "ref", + value="string", comment="new string") + + instr.show_parameters(line_length=300) + + output = mock_stdout.getvalue().split("\n") + + self.assertEqual(output[0], "double theta // test par") + self.assertEqual(output[1], "single theta // test par") + self.assertEqual(output[2], "float theta = 8 // test par") + self.assertEqual(output[3], "int slits // test par") + self.assertEqual(output[4], "string ref = string // new string") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_show_parameters_line_break(self, mock_stdout): + """ + Testing that parameters are displayed correctly + + Here multiple lines are used for a long comment that was + dynamically broken up. + """ + instr = setup_instr_root_path() instr.add_parameter("double", "theta", comment="test par") instr.add_parameter("single", "theta", comment="test par") @@ -99,23 +169,44 @@ def test_show_parameters(self, mock_stdout): instr.add_parameter("int", "slits", comment="test par") instr.add_parameter("string", "ref", value="string", comment="new string") + + longest_comment = ("This is a very long comment meant for " + + "testing the dynamic line breaking " + + "that is used in this method. It needs " + + "to have many lines in order to ensure " + + "it really works.") + + instr.add_parameter("double", "value", + value="37", comment=longest_comment) - instr.show_parameters() + instr.show_parameters(line_length=80) output = mock_stdout.getvalue().split("\n") - self.assertEqual(output[0], "double theta // test par ") - self.assertEqual(output[1], "single theta // test par ") - self.assertEqual(output[2], "float theta = 8 // test par ") - self.assertEqual(output[3], "int slits // test par ") + self.assertEqual(output[0], "double theta // test par") + self.assertEqual(output[1], "single theta // test par") + self.assertEqual(output[2], "float theta = 8 // test par") + self.assertEqual(output[3], "int slits // test par") self.assertEqual(output[4], "string ref = string // new string") + comment_line = "This is a very long comment meant for testing " + self.assertEqual(output[5], "double value = 37 // " + + comment_line) + comment_line = "the dynamic line breaking that is used in this " + self.assertEqual(output[6], " " + + comment_line) + comment_line = "method. It needs to have many lines in order to " + self.assertEqual(output[7], " " + + comment_line) + comment_line = "ensure it really works. " + self.assertEqual(output[8], " " + + comment_line) def test_simple_add_declare_parameter(self): """ This is just an interface to a function that is tested elsewhere, so only a basic test is performed here. """ - instr = setup_instr_no_path() + instr = setup_instr_root_path() instr.add_declare_var("double", "two_theta", comment="test par") @@ -127,7 +218,7 @@ def test_simple_append_initialize(self): The initialize section is held as a string. This method appends that string. """ - instr = setup_instr_no_path() + instr = setup_instr_root_path() self.assertEqual(instr.initialize_section, "// Start of initialize for generated " @@ -149,7 +240,7 @@ def test_simple_append_initialize_no_new_line(self): The initialize section is held as a string. This method appends that string. """ - instr = setup_instr_no_path() + instr = setup_instr_root_path() self.assertEqual(instr.initialize_section, "// Start of initialize for generated " @@ -169,7 +260,7 @@ def test_simple_append_finally(self): The initialize section is held as a string. This method appends that string. """ - instr = setup_instr_no_path() + instr = setup_instr_root_path() self.assertEqual(instr.finally_section, "// Start of finally for generated " @@ -191,7 +282,7 @@ def test_simple_append_finally_no_new_line(self): The initialize section is held as a string. This method appends that string. """ - instr = setup_instr_no_path() + instr = setup_instr_root_path() self.assertEqual(instr.finally_section, "// Start of finally for generated " @@ -211,7 +302,7 @@ def test_simple_append_trace(self): The initialize section is held as a string. This method appends that string. """ - instr = setup_instr_no_path() + instr = setup_instr_root_path() self.assertEqual(instr.trace_section, "// Start of trace section for generated " @@ -233,7 +324,7 @@ def test_simple_append_trace_no_new_line(self): The initialize section is held as a string. This method appends that string. """ - instr = setup_instr_no_path() + instr = setup_instr_root_path() self.assertEqual(instr.trace_section, "// Start of trace section for generated " @@ -299,7 +390,7 @@ def test_component_help(self, mock_stdout): """ instr = setup_instr_with_path() - instr.component_help("test_for_reading") + instr.component_help("test_for_reading",line_length=90) # This call creates a dummy component and calls its # show_parameter method which has been tested. Here we # need to ensure the call is succesful, not test all @@ -308,7 +399,7 @@ def test_component_help(self, mock_stdout): output = mock_stdout.getvalue() output = output.split("\n") - self.assertEqual(output[1], " ___ Help test_for_reading " + "_"*46) + self.assertEqual(output[1], " ___ Help test_for_reading " + "_"*63) legend = ("|" + bcolors.BOLD + "optional parameter" + bcolors.ENDC @@ -819,23 +910,23 @@ class for each component and aligns the data for display instr = setup_populated_instr() - instr.print_components() + instr.print_components(line_length=300) output = mock_stdout.getvalue().split("\n") - expected = ("first_component test_for_reading" - + " AT [0, 0, 0] ABSOLUTE" - + " ROTATED [0, 0, 0] ABSOLUTE") + expected = ("first_component test_for_reading" + + " AT (0, 0, 0) ABSOLUTE" + + " ROTATED (0, 0, 0) ABSOLUTE") self.assertEqual(output[0], expected) - expected = ("second_component test_for_reading" - + " AT [0, 0, 0] ABSOLUTE" - + " ROTATED [0, 0, 0] ABSOLUTE") + expected = ("second_component test_for_reading" + + " AT (0, 0, 0) ABSOLUTE" + + " ROTATED (0, 0, 0) ABSOLUTE") self.assertEqual(output[1], expected) - expected = ("third_component test_for_reading" - + " AT [0, 0, 0] ABSOLUTE" - + " ROTATED [0, 0, 0] ABSOLUTE") + expected = ("third_component test_for_reading" + + " AT (0, 0, 0) ABSOLUTE" + + " ROTATED (0, 0, 0) ABSOLUTE") self.assertEqual(output[2], expected) @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) @@ -856,24 +947,144 @@ class for each component and aligns the data for display comp = instr.get_last_component() comp.component_name = "test_name" - instr.print_components() + instr.print_components(line_length=300) output = mock_stdout.getvalue().split("\n") - expected = ("first_component test_for_reading" - + " AT [-0.1, 12, 'dist'] RELATIVE home" - + " ROTATED [0, 0, 0] ABSOLUTE") + expected = ("first_component test_for_reading" + + " AT (-0.1, 12, dist) RELATIVE home" + + " ROTATED (0, 0, 0) ABSOLUTE") self.assertEqual(output[0], expected) - expected = ("second_component test_for_reading" - + " AT [0, 0, 0] ABSOLUTE" - + " ROTATED [-4, 0.001, 'theta'] RELATIVE etc") + expected = ("second_component test_for_reading" + + " AT (0, 0, 0) ABSOLUTE" + + " ROTATED (-4, 0.001, theta) RELATIVE etc") self.assertEqual(output[1], expected) - expected = ("third_component test_name" - + " AT [0, 0, 0] ABSOLUTE" - + " ROTATED [0, 0, 0] ABSOLUTE") + expected = ("third_component test_name" + + " AT (0, 0, 0) ABSOLUTE" + + " ROTATED (0, 0, 0) ABSOLUTE") self.assertEqual(output[2], expected) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_print_components_complex_2lines(self, mock_stdout): + """ + print_components calls the print_short method in the component + class for each component and aligns the data for display + + This version of the tests forces two lines of output. + """ + + instr = setup_populated_instr() + + instr.set_component_AT("first_component", + [-0.1, 12, "dist"], + RELATIVE="home") + instr.set_component_ROTATED("second_component", + [-4, 0.001, "theta"], + RELATIVE="etc") + comp = instr.get_last_component() + comp.component_name = "test_name" + + instr.print_components(line_length=80) + + output = mock_stdout.getvalue().split("\n") + + expected = ("first_component test_for_reading" + + " AT (-0.1, 12, dist) RELATIVE home ") + self.assertEqual(output[0], expected) + + expected = (" " + + " ROTATED (0, 0, 0) ABSOLUTE") + self.assertEqual(output[1], expected) + + expected = ("second_component test_for_reading" + + " AT (0, 0, 0) ABSOLUTE ") + self.assertEqual(output[2], expected) + + expected = (" " + + " ROTATED (-4, 0.001, theta) RELATIVE etc") + self.assertEqual(output[3], expected) + + expected = ("third_component test_name " + + " AT (0, 0, 0) ABSOLUTE ") + self.assertEqual(output[4], expected) + + expected = (" " + + " ROTATED (0, 0, 0) ABSOLUTE") + self.assertEqual(output[5], expected) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_print_components_complex_3lines(self, mock_stdout): + """ + print_components calls the print_short method in the component + class for each component and aligns the data for display + + This version of the tests forces three lines of output. + """ + + instr = setup_populated_instr() + + instr.set_component_AT("first_component", + [-0.1, 12, "dist"], + RELATIVE="home") + instr.set_component_ROTATED("second_component", + [-4, 0.001, "theta"], + RELATIVE="etc") + comp = instr.get_last_component() + comp.component_name = "test_name" + + instr.print_components(line_length=1) # Three lines maximum + + output = mock_stdout.getvalue().split("\n") + + expected = (bcolors.BOLD + + "first_component" + + bcolors.ENDC + + " " + + bcolors.BOLD + + "test_for_reading" + + bcolors.ENDC + + " ") + self.assertEqual(output[0], expected) + + expected = (" AT (-0.1, 12, dist) RELATIVE home ") + self.assertEqual(output[1], expected) + + expected = (" ROTATED (0, 0, 0) ABSOLUTE") + self.assertEqual(output[2], expected) + + expected = (bcolors.BOLD + + "second_component" + + bcolors.ENDC + + " " + + bcolors.BOLD + + "test_for_reading" + + bcolors.ENDC + + " ") + self.assertEqual(output[3], expected) + + expected = (" AT (0, 0, 0) ABSOLUTE ") + self.assertEqual(output[4], expected) + + expected = (" ROTATED (-4, 0.001, theta) RELATIVE etc") + self.assertEqual(output[5], expected) + + expected = (bcolors.BOLD + + "third_component" + + bcolors.ENDC + + " " + + bcolors.BOLD + + "test_name" + + bcolors.ENDC + + " ") + self.assertEqual(output[6], expected) + + expected = (" AT (0, 0, 0) ABSOLUTE ") + self.assertEqual(output[7], expected) + + expected = (" ROTATED (0, 0, 0) ABSOLUTE") + self.assertEqual(output[8], expected) @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) @unittest.mock.patch('__main__.__builtins__.open', diff --git a/mcstasscript/tests/test_component.py b/mcstasscript/tests/test_component.py index a1aef691..ce8cccf4 100644 --- a/mcstasscript/tests/test_component.py +++ b/mcstasscript/tests/test_component.py @@ -75,6 +75,7 @@ def setup_component_with_parameters(): "new_par2": "AA", "this_par": "", "that_par": "1"} + comp.line_limit = 117 comp._freeze() return comp @@ -539,7 +540,7 @@ def test_component_show_parameters(self, mock_stdout): output = mock_stdout.getvalue() output = output.split("\n") - self.assertEqual(output[0], " ___ Help Arm " + "_"*59) + self.assertEqual(output[0], " ___ Help Arm " + "_"*103) legend = ("|" + bcolors.BOLD + "optional parameter" + bcolors.ENDC From 57827ee764bd62c75ff0339441cf57e795ddbd43 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Mon, 3 Jun 2019 14:26:28 +0200 Subject: [PATCH 024/403] Update README.md --- README.md | 35 +++++++++++++++++++++++++++++++++++ 1 file changed, 35 insertions(+) diff --git a/README.md b/README.md index 2bcd92f2..00f9c1ce 100644 --- a/README.md +++ b/README.md @@ -2,3 +2,38 @@ McStas API for creating and running McStas instruments from python scripting Prototype for an API that allow interaction with McStas through an interface like Jupyter Notebooks created under WP5 of PaNOSC. + +## Instructions for basic use: +Download the entire project +Set up paths to McStas in the configuration.yaml file +Before import in python, add the project to your path: +import sys +sys.path.append('path/to/McStasScript') +Import the interface +from mcstasscript.interface import instr, plotter, functions + +Now the package can be used. Start with creating a new instrument, just needs a name +my_instrument = instr.McStas_instr("my_instrument_file") + +Then McStas components can be added, here we add a source +my_source = my_instrument.add_component("source", "Source_simple") + +my_source.show_parameters() # Can be used to show available parameters for Source simple + +The parameters of the source can be adjusted directly as attributes of the python object +my_source.xwidth = 0.12 +my_source.yheight = 0.12 +my_source.lambda0 = 3 +my_source.dlambda = 2.2 +my_source.focus_xw = 0.05 +my_source.focus_yh = 0.05 + +Running the simple instrument of just a source +data = my_instrument.run_full_instrument(foldername="first_run", increment_folder_name=True) + +Any data generated would be stored as a list of McStasData objects in the returned data + +plot = plotter.make_sub_plot(data) + + + From 7c4d79d44ba48d8d3d6fcfbc0ecf8dad2593fd7e Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Mon, 3 Jun 2019 14:26:51 +0200 Subject: [PATCH 025/403] Update README.md --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 00f9c1ce..efd2a6c5 100644 --- a/README.md +++ b/README.md @@ -21,6 +21,7 @@ my_source = my_instrument.add_component("source", "Source_simple") my_source.show_parameters() # Can be used to show available parameters for Source simple The parameters of the source can be adjusted directly as attributes of the python object + my_source.xwidth = 0.12 my_source.yheight = 0.12 my_source.lambda0 = 3 From 9099105fa30832a6f415fe355a1ce1591864a9f2 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Mon, 3 Jun 2019 14:27:15 +0200 Subject: [PATCH 026/403] Update README.md --- README.md | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/README.md b/README.md index efd2a6c5..284768a7 100644 --- a/README.md +++ b/README.md @@ -13,9 +13,11 @@ Import the interface from mcstasscript.interface import instr, plotter, functions Now the package can be used. Start with creating a new instrument, just needs a name + my_instrument = instr.McStas_instr("my_instrument_file") Then McStas components can be added, here we add a source + my_source = my_instrument.add_component("source", "Source_simple") my_source.show_parameters() # Can be used to show available parameters for Source simple @@ -23,10 +25,15 @@ my_source.show_parameters() # Can be used to show available parameters for Sourc The parameters of the source can be adjusted directly as attributes of the python object my_source.xwidth = 0.12 + my_source.yheight = 0.12 + my_source.lambda0 = 3 + my_source.dlambda = 2.2 + my_source.focus_xw = 0.05 + my_source.focus_yh = 0.05 Running the simple instrument of just a source From 82c4965226925bac9fedefeafbb985d29782949f Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Mon, 3 Jun 2019 16:50:39 +0200 Subject: [PATCH 027/403] Update README.md --- README.md | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/README.md b/README.md index 284768a7..bcde6556 100644 --- a/README.md +++ b/README.md @@ -5,11 +5,17 @@ Prototype for an API that allow interaction with McStas through an interface lik ## Instructions for basic use: Download the entire project + Set up paths to McStas in the configuration.yaml file + Before import in python, add the project to your path: + import sys + sys.path.append('path/to/McStasScript') + Import the interface + from mcstasscript.interface import instr, plotter, functions Now the package can be used. Start with creating a new instrument, just needs a name @@ -37,6 +43,7 @@ my_source.focus_xw = 0.05 my_source.focus_yh = 0.05 Running the simple instrument of just a source + data = my_instrument.run_full_instrument(foldername="first_run", increment_folder_name=True) Any data generated would be stored as a list of McStasData objects in the returned data From dfc65d7f80474f92033dbdd47cbbd0ed3e66f53d Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Tue, 4 Jun 2019 08:26:36 +0200 Subject: [PATCH 028/403] Update README.md --- README.md | 49 +++++++++++++++++++++++++++---------------------- 1 file changed, 27 insertions(+), 22 deletions(-) diff --git a/README.md b/README.md index bcde6556..bc59923e 100644 --- a/README.md +++ b/README.md @@ -10,45 +10,50 @@ Set up paths to McStas in the configuration.yaml file Before import in python, add the project to your path: -import sys - -sys.path.append('path/to/McStasScript') + import sys + sys.path.append('path/to/McStasScript') Import the interface -from mcstasscript.interface import instr, plotter, functions + from mcstasscript.interface import instr, plotter, functions Now the package can be used. Start with creating a new instrument, just needs a name -my_instrument = instr.McStas_instr("my_instrument_file") + my_instrument = instr.McStas_instr("my_instrument_file") Then McStas components can be added, here we add a source -my_source = my_instrument.add_component("source", "Source_simple") - -my_source.show_parameters() # Can be used to show available parameters for Source simple + my_source = my_instrument.add_component("source", "Source_simple") + my_source.show_parameters() # Can be used to show available parameters for Source simple The parameters of the source can be adjusted directly as attributes of the python object -my_source.xwidth = 0.12 - -my_source.yheight = 0.12 - -my_source.lambda0 = 3 - -my_source.dlambda = 2.2 - -my_source.focus_xw = 0.05 + my_source.xwidth = 0.12 + my_source.yheight = 0.12 + my_source.lambda0 = 3 + my_source.dlambda = 2.2 + my_source.focus_xw = 0.05 + my_source.focus_yh = 0.05 + +A monitor is added as well to get data out of the simulation -my_source.focus_yh = 0.05 + PSD = Instr.add_component("PSD", "PSD_monitor", AT=[0,0,1], RELATIVE="source") + PSD.xwidth = 0.1 + PSD.yheight = 0.1 + PSD.nx = 200 + PSD.ny = 200 + PSD.filename = "\"PSD.dat\"" -Running the simple instrument of just a source +This simple simulation can be executed from the -data = my_instrument.run_full_instrument(foldername="first_run", increment_folder_name=True) + data = my_instrument.run_full_instrument(foldername="first_run", increment_folder_name=True) -Any data generated would be stored as a list of McStasData objects in the returned data +Results from the monitors would be stored as a list of McStasData objects in the returned data. The counts are stored as numpy arrays. We can read and change the intensity directly and manipulate the data before plotting. -plot = plotter.make_sub_plot(data) + data[0].Intensity + +Plotting is usually done in a subplot of all monitors recorded. + plot = plotter.make_sub_plot(data) From 08c0c8c7286a49d7cd070474d57b300d06a62ce0 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Tue, 4 Jun 2019 09:03:26 +0200 Subject: [PATCH 029/403] Update README.md --- README.md | 31 +++++++++++++++++++++++++++++++ 1 file changed, 31 insertions(+) diff --git a/README.md b/README.md index bc59923e..750b6f21 100644 --- a/README.md +++ b/README.md @@ -57,3 +57,34 @@ Plotting is usually done in a subplot of all monitors recorded. plot = plotter.make_sub_plot(data) +## Method overview +Here is a quick overview of the available methods of the main classes in the project. Most have more options from keyword arguments that are explained in the manual, but also in python help, for example help(instr.McStas_instr.show_components). + + instr + ├── McStas_instr(str instr_name) # Returns McStas instrument object on initialize + ├── show_components(str category_name) # Show available components in given category + ├── component_help(str component_name) # Prints component parameters for given component name + ├── add_component(str name, str component_name) # Adds component to instrument and returns object + ├── add_parameter(str name) # Adds instrument parameter with name + ├── add_declare_var(str type, str name) # Adds declared variable with type and name + ├── append_initialize(str string) # Appends a line to initialize (c syntax) + ├── print_components() # Prints list of components and their location + ├── write_full_instrument() # Writes instrument to disk with given name + ".instr" + └── run_full_instrument() # Runs simulation. Options in keyword arguments. Returns list of McStasData + + component # returned by add_component + ├── set_AT(list at_list) # Sets component position (list of x,y,z positions in [m]) + ├── set_ROTATED(list rotated_list) # Sets component rotation (list of x,y,z rotations in [deg]) + ├── set_RELATIVE(str component_name) # Sets relative to other component name + ├── set_parameters(dict input) # Set parameters using dict input + ├── set_comment(str string) # Set comment explaining something about the component + └── print_long() # Prints currently contained information on component + + functions + ├── name_search(str name, list McStasData) # Returns data set with given name from McStasData list + ├── name_plot_options(str name, list McStasData, kwargs) # Sends kwargs to dataset with given name + └── load_data(str foldername) # Loads data from folder with McStas data as McStasData list + + plotter + ├── make_plot(list McStasData) # Plots each data set individually + └── make_sub_plot(list McStasData) # Plots data as subplot From a7a7f545bc86a55cd4989abd312d82234e807127 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Tue, 4 Jun 2019 12:06:55 +0200 Subject: [PATCH 030/403] Added integration tests and fixed a problem when running tests from another directory. --- mcstasscript/helper/component_reader.py | 12 +- .../test_complex_instrument.py | 167 ++++++++++++++++++ .../test_simple_instrument.py | 149 ++++++++++++++++ mcstasscript/interface/instr.py | 19 +- mcstasscript/tests/test_ComponentReader.py | 4 +- mcstasscript/tests/test_Instr.py | 7 +- 6 files changed, 349 insertions(+), 9 deletions(-) create mode 100644 mcstasscript/integration_tests/test_complex_instrument.py create mode 100644 mcstasscript/integration_tests/test_simple_instrument.py diff --git a/mcstasscript/helper/component_reader.py b/mcstasscript/helper/component_reader.py index b4315721..3a492996 100644 --- a/mcstasscript/helper/component_reader.py +++ b/mcstasscript/helper/component_reader.py @@ -87,11 +87,17 @@ def show_categories(self): categories.append(category) print(" " + category) - def show_components_in_category(self, category_input): + def show_components_in_category(self, category_input, **kwargs): """ Method that will show all components in given category """ + + if "line_length" in kwargs: + line_limit = kwargs["line_length"] + else: + line_limit = 100 + empty_category = True to_print = [] for component, category in self.component_category.items(): @@ -109,10 +115,10 @@ def show_components_in_category(self, category_input): for component in to_print: print(" " + component) else: - # Prints in collumns, maximum 4 and maximum line length 100 + # Prints in collumns, maximum 4 and maximum line length line_liimt columns = 5 total_line_length = 1000 - while(total_line_length > 100): + while(total_line_length > line_limit): columns = columns - 1 c_length = math.ceil(len(to_print)/columns) diff --git a/mcstasscript/integration_tests/test_complex_instrument.py b/mcstasscript/integration_tests/test_complex_instrument.py new file mode 100644 index 00000000..e008e7fb --- /dev/null +++ b/mcstasscript/integration_tests/test_complex_instrument.py @@ -0,0 +1,167 @@ +import io +import time +import unittest +import unittest.mock +import matplotlib as plt + +from mcstasscript.interface import instr, functions, plotter + +def setup_complex_instrument(): + """ + Sets up guide system with two guides that are placed next to one + another with separate entrances but converge at the end. + + It attempts to use as McStas keywords and features as possible. + """ + Instr = instr.McStas_instr("integration_test_complex", + author="test_suite", + origin="integration tests") + + Instr.add_parameter("guide_width", value=0.03) + Instr.add_parameter("guide_length", value=8.0) + + source = Instr.add_component("source", "Source_simple") + source.xwidth = 0.1 + source.yheight = 0.01 + source.dist = 1.5 + source.focus_xw = "3*guide_width" + source.focus_yh = 0.05 + source.E0 = 5.0 + source.dE = 1.0 + source.flux = 1E10 + + Instr.add_declare_var("int", "guide_choice") + Instr.add_declare_var("double", "source_to_guide_end") + Instr.append_initialize("source_to_guide_end = 1.5 + guide_length;") + + after_guide = Instr.add_component("after_guide", "Arm", + AT=[0,0,"source_to_guide_end"], + RELATIVE="source") + after_guide.append_EXTEND("guide_choice = -1;") + + # Add first slit with component methods + slit1 = Instr.add_component("slit1", "Slit") + slit1.set_AT(["1.3*guide_width", 0, 1.5], RELATIVE="source") + slit1.xwidth = "guide_width" + slit1.yheight = 0.05 + slit1.append_EXTEND("if (SCATTERED) {") + slit1.append_EXTEND(" guide_choice = 1;") + slit1.append_EXTEND("}") + slit1.set_GROUP("entrance_slits") + + # Add second slit with instr methods + Instr.add_component("slit2", "Slit") + Instr.set_component_AT("slit2", ["-1.3*guide_width", 0, 1.5]) + Instr.set_component_RELATIVE("slit2","source") + Instr.set_component_parameter("slit2",{"xwidth": "guide_width", + "yheight": 0.05}) + Instr.append_component_EXTEND("slit2", "if (SCATTERED) {") + Instr.append_component_EXTEND("slit2", " guide_choice = 2;") + Instr.append_component_EXTEND("slit2", "}") + Instr.set_component_GROUP("slit2","entrance_slits") + + select1 = Instr.add_component("select1", "Arm", RELATIVE="after_guide") + select1.set_JUMP("select2 WHEN guide_choice == 2") + + guide1 = Instr.add_component("guide1", "Guide_gravity") + guide1.set_AT([0,0,0.1], RELATIVE="slit1") + guide1.set_ROTATED([0,"-RAD2DEG*atan(0.5*guide_width/guide_length)",0], + RELATIVE="slit1") + guide1.w1 = "guide_width" + guide1.w2 = "1.3*guide_width" + guide1.h1 = 0.05 + guide1.h2 = 0.05 + guide1.l = "guide_length" + guide1.m = 4 + guide1.G = -9.82 + + select2 = Instr.add_component("select2", "Arm", RELATIVE="after_guide") + select2.set_JUMP("done WHEN guide_choice == 1") + + guide2 = Instr.add_component("guide2", "Guide_gravity") + guide2.set_AT([0,0,0.1], RELATIVE="slit2") + guide2.set_ROTATED([0,"RAD2DEG*atan(0.5*guide_width/guide_length)",0], + RELATIVE="slit2") + guide2.w1 = "guide_width" + guide2.w2 = "1.3*guide_width" + guide2.h1 = 0.05 + guide2.h2 = 0.05 + guide2.l = "guide_length" + guide2.m = 4 + guide2.G = -9.82 + + done = Instr.add_component("done", "Arm", RELATIVE="after_guide") + + PSD1 = Instr.add_component("PSD_1D_1", "PSDlin_monitor") + PSD1.set_AT([0,0,0.2], RELATIVE="after_guide") + PSD1.xwidth = 0.1 + PSD1.nx = 100 + PSD1.yheight = 0.03 + PSD1.filename = "\"PSD1.dat\"" + PSD1.restore_neutron = 1 + PSD1.set_WHEN("guide_choice == 1") + + PSD2 = Instr.add_component("PSD_1D_2", "PSDlin_monitor") + PSD2.set_AT([0,0,0.2], RELATIVE="after_guide") + PSD2.xwidth = 0.1 + PSD2.nx = 100 + PSD2.yheight = 0.03 + PSD2.filename = "\"PSD2.dat\"" + PSD2.restore_neutron = 1 + PSD2.set_WHEN("guide_choice == 2") + + PSD = Instr.add_component("PSD_1D", "PSDlin_monitor") + PSD.set_AT([0,0,0.2], RELATIVE="after_guide") + PSD.xwidth = 0.1 + PSD.nx = 100 + PSD.yheight = 0.03 + PSD.filename = "\"PSD_all.dat\"" + PSD.restore_neutron = 1 + + Instr.append_finally("guide_choice = -1;") + + return Instr + +class TestComplexInstrument(unittest.TestCase): + """ + Integration test of a full instrument with McStas simulation + performed by the system. The configuration file needs to be set up + correctly in order for these tests to succeed. + """ + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_complex_instrument(self, mock_stdout): + """ + Test parameters can be controlled through McStasScript. Here + a slit is moved to one side and the result is verified. + """ + Instr = setup_complex_instrument() + + data = Instr.run_full_instrument(foldername="integration_test_complex", + ncount=2E6, mpi=2, + increment_folder_name=True, + parameters={"guide_width": 0.03, + "guide_length": 8.0}) + + intensity_data_pos = functions.name_search("PSD_1D_1", data).Intensity + sum_outside_beam = sum(intensity_data_pos[0:50]) + sum_inside_beam = sum(intensity_data_pos[51:99]) + self.assertTrue(1000*sum_outside_beam < sum_inside_beam) + + intensity_data_neg = functions.name_search("PSD_1D_2", data).Intensity + sum_outside_beam = sum(intensity_data_neg[51:99]) + sum_inside_beam = sum(intensity_data_neg[0:50]) + self.assertTrue(1000*sum_outside_beam < sum_inside_beam) + + + intensity_data_all = functions.name_search("PSD_1D", data).Intensity + sum_outside_beam = sum(intensity_data_all[49:51]) + sum_inside_beam = (sum(intensity_data_all[0:45]) + + sum(intensity_data_all[56:99])) + self.assertTrue(1000*sum_outside_beam < sum_inside_beam) + + # Could have the plot window up for some short time + # Need to use plt.draw instead of plt.show in plotter + # plotter.make_sub_plot(data) + #time.sleep(10) + #plt.close() \ No newline at end of file diff --git a/mcstasscript/integration_tests/test_simple_instrument.py b/mcstasscript/integration_tests/test_simple_instrument.py new file mode 100644 index 00000000..c8b4ff27 --- /dev/null +++ b/mcstasscript/integration_tests/test_simple_instrument.py @@ -0,0 +1,149 @@ +import io +import unittest +import unittest.mock + +from mcstasscript.interface import instr, functions, plotter + +def setup_simple_instrument(): + Instr = instr.McStas_instr("integration_test_simple") + + source = Instr.add_component("source", "Source_div") + + source.xwidth = 0.03 + source.yheight = 0.01 + source.focus_aw = 0.01 + source.focus_ah = 0.01 + source.E0 = 81.81 + source.dE = 1.0 + source.flux = 1E10 + + PSD = Instr.add_component("PSD_1D", "PSDlin_monitor") + + PSD.set_AT([0,0,1], RELATIVE="source") + PSD.xwidth = 0.1 + PSD.nx = 100 + PSD.yheight = 0.03 + PSD.filename = "\"PSD.dat\"" + PSD.restore_neutron = 1 + + return Instr + +def setup_simple_slit_instrument(): + Instr = instr.McStas_instr("integration_test_simple") + + source = Instr.add_component("source", "Source_div") + source.xwidth = 0.1 + source.yheight = 0.01 + source.focus_aw = 0.01 + source.focus_ah = 0.01 + source.E0 = 81.81 + source.dE = 1.0 + source.flux = 1E10 + + Instr.add_parameter("slit_offset", value=0) + + Slit = Instr.add_component("slit", "Slit") + Slit.set_AT(["slit_offset", 0, 0.5], RELATIVE="source") + Slit.xwidth = 0.01 + Slit.yheight = 0.03 + + PSD = Instr.add_component("PSD_1D", "PSDlin_monitor") + PSD.set_AT([0,0,1], RELATIVE="source") + PSD.xwidth = 0.1 + PSD.nx = 100 + PSD.yheight = 0.03 + PSD.filename = "\"PSD.dat\"" + PSD.restore_neutron = 1 + + return Instr + +class TestSimpleInstrument(unittest.TestCase): + """ + Integration test of a full instrument with McStas simulation + performed by the system. The configuration file needs to be set up + correctly in order for these tests to succeed. + """ + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_simple_instrument(self, mock_stdout): + """ + Test that an instrument can run and that the results matches + expectations. Here beam in small area in the middle of the + detector. + """ + Instr = setup_simple_instrument() + + data = Instr.run_full_instrument(foldername="integration_test_simple", + ncount=1E6, mpi=1, + increment_folder_name=True) + + intensity_data = data[0].Intensity + # beam should be on pixel 35 to 65 + + sum_outside_beam = sum(intensity_data[0:34]) + sum(intensity_data[66:99]) + sum_inside_beam = sum(intensity_data[35:65]) + + self.assertTrue(1000*sum_outside_beam < sum_inside_beam) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_simple_instrument_mpi(self, mock_stdout): + """ + Test that an instrument can run and that the results matches + expectations. Here beam in small area in the middle of the + detector. Running with mpi, 2 cores. + """ + Instr = setup_simple_instrument() + + data = Instr.run_full_instrument(foldername="integration_test_mpi", + ncount=1E6, mpi=2, + increment_folder_name=True) + + intensity_data = data[0].Intensity + # beam should be on pixel 35 to 65 + + sum_outside_beam = sum(intensity_data[0:34]) + sum(intensity_data[66:99]) + sum_inside_beam = sum(intensity_data[35:65]) + + self.assertTrue(1000*sum_outside_beam < sum_inside_beam) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_slit_instrument(self, mock_stdout): + """ + Test parameters can be controlled through McStasScript. Here + a slit is can be moved, but the default value of 0 should be + used. + """ + Instr = setup_simple_slit_instrument() + + data = Instr.run_full_instrument(foldername="integration_test_slit", + ncount=2E6, mpi=2, + increment_folder_name=True) + + intensity_data = data[0].Intensity + # beam should be on pixel 45 to 55 + + sum_outside_beam = sum(intensity_data[0:44]) + sum(intensity_data[56:99]) + sum_inside_beam = sum(intensity_data[45:55]) + + self.assertTrue(1000*sum_outside_beam < sum_inside_beam) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_slit_moved_instrument(self, mock_stdout): + """ + Test parameters can be controlled through McStasScript. Here + a slit is moved to one side and the result is verified. + """ + Instr = setup_simple_slit_instrument() + + data = Instr.run_full_instrument(foldername="integration_test_slit", + ncount=2E6, mpi=2, + increment_folder_name=True, + parameters={"slit_offset": 0.03}) + + intensity_data = data[0].Intensity + # beam should be on pixel 75 to 85 + + sum_outside_beam = sum(intensity_data[0:74]) + sum(intensity_data[86:99]) + sum_inside_beam = sum(intensity_data[75:85]) + + self.assertTrue(1000*sum_outside_beam < sum_inside_beam) \ No newline at end of file diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 2108b545..840cce27 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -79,6 +79,9 @@ class McStas_instr: append_trace(string) Obsolete method, add components instead (used in write_c_files) + + show_components(string) + Shows available components in given category add_component(instance_name,component_name,**kwargs) Add a component to the instrument file @@ -469,7 +472,13 @@ def show_components(self, *args): Helper method that shows available components to the user If called without any arguments it will display the available - component categories. The first input + component categories. If a category is given as a string in + the first input, components in that category are printed. + + Parameters + ---------- + first argument (optional): str + Category that matches one of the McStas component folders """ if len(args) == 0: @@ -482,7 +491,9 @@ def show_components(self, *args): print("Here are all components in the " + category + " category.") - self.component_reader.show_components_in_category(category) + this_reader = self.component_reader + this_reader.show_components_in_category(category, + line_length=self.line_limit) def component_help(self, name, **kwargs): """ @@ -1150,6 +1161,8 @@ def write_full_instrument(self): # End instrument file fo.write("\nEND\n") + + fo.close() def run_full_instrument(self, *args, **kwargs): """ @@ -1209,7 +1222,7 @@ def run_full_instrument(self, *args, **kwargs): raise NameError("Required parameters not provided.") else: # If all parameters have defaults, just run with the defaults. - passed_parameters = default_parameters + kwargs["parameters"] = default_parameters else: given_parameters = kwargs["parameters"] for name in required_parameters: diff --git a/mcstasscript/tests/test_ComponentReader.py b/mcstasscript/tests/test_ComponentReader.py index c40a81b3..712ecdb4 100644 --- a/mcstasscript/tests/test_ComponentReader.py +++ b/mcstasscript/tests/test_ComponentReader.py @@ -129,7 +129,7 @@ def test_ComponentReader_show_components_short(self, mock_stdout): component_reader = setup_component_reader() - component_reader.show_components_in_category("misc") + component_reader.show_components_in_category("misc", line_length=100) output = mock_stdout.getvalue() output = output.split("\n") @@ -152,7 +152,7 @@ def test_ComponentReader_show_components_long(self, mock_stdout): #component_reader.component_category[] - component_reader.show_components_in_category("misc") + component_reader.show_components_in_category("misc", line_length=100) output = mock_stdout.getvalue() output = output.split("\n") diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index 4cb963b4..cbe358e6 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -28,9 +28,13 @@ def setup_instr_with_path(): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) dummy_path = THIS_DIR + "/dummy_mcstas" + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder return McStas_instr("test_instrument", mcstas_path=dummy_path) + os.chdir(current_work_dir) # Return to previous workdir def setup_populated_instr(): """ @@ -344,8 +348,9 @@ def test_show_components_simple(self, mock_stdout): """ Simple test of show components to show categories """ + instr = setup_instr_with_path() - + instr.show_components() output = mock_stdout.getvalue() From 294b886e2ed52c0345bf724792406f4b535aa796 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Tue, 4 Jun 2019 12:51:39 +0200 Subject: [PATCH 031/403] Update README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 750b6f21..0fb345f9 100644 --- a/README.md +++ b/README.md @@ -61,7 +61,7 @@ Plotting is usually done in a subplot of all monitors recorded. Here is a quick overview of the available methods of the main classes in the project. Most have more options from keyword arguments that are explained in the manual, but also in python help, for example help(instr.McStas_instr.show_components). instr - ├── McStas_instr(str instr_name) # Returns McStas instrument object on initialize + └── McStas_instr(str instr_name) # Returns McStas instrument object on initialize ├── show_components(str category_name) # Show available components in given category ├── component_help(str component_name) # Prints component parameters for given component name ├── add_component(str name, str component_name) # Adds component to instrument and returns object From a2129a7168e47921d33798a1fd58fb1fa3fa0d21 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Tue, 4 Jun 2019 15:14:12 +0200 Subject: [PATCH 032/403] PEP8 cleanup round --- mcstasscript/data/data.py | 2 +- mcstasscript/helper/component_reader.py | 14 +-- mcstasscript/helper/formatting.py | 31 +++--- mcstasscript/helper/managed_mcrun.py | 29 +++--- mcstasscript/helper/mcstas_objects.py | 17 ++-- .../test_complex_instrument.py | 77 ++++++++------- .../test_simple_instrument.py | 55 ++++++----- mcstasscript/interface/functions.py | 13 ++- mcstasscript/interface/instr.py | 99 +++++++++---------- mcstasscript/interface/plotter.py | 3 +- mcstasscript/tests/test_Instr.py | 56 ++++++----- mcstasscript/tests/test_ManagedMcrun.py | 4 +- mcstasscript/tests/test_functions.py | 5 +- 13 files changed, 209 insertions(+), 196 deletions(-) diff --git a/mcstasscript/data/data.py b/mcstasscript/data/data.py index 9ec685eb..43c4d9a5 100644 --- a/mcstasscript/data/data.py +++ b/mcstasscript/data/data.py @@ -72,7 +72,7 @@ def extract_info(self): type_string1 = type_data.split(",")[0] type_string1 = type_string1.split("(")[1] self.dimension.append(int(type_string1)) - + type_string2 = type_data.split(",")[1] type_string2 = type_string2.split(")")[0] self.dimension.append(int(type_string2)) diff --git a/mcstasscript/helper/component_reader.py b/mcstasscript/helper/component_reader.py index 3a492996..62e9fdea 100644 --- a/mcstasscript/helper/component_reader.py +++ b/mcstasscript/helper/component_reader.py @@ -1,6 +1,7 @@ import os import math + class ComponentInfo: """ Internal class used to store information on parameters of components @@ -92,12 +93,11 @@ def show_components_in_category(self, category_input, **kwargs): Method that will show all components in given category """ - if "line_length" in kwargs: line_limit = kwargs["line_length"] else: line_limit = 100 - + empty_category = True to_print = [] for component, category in self.component_category.items(): @@ -177,11 +177,11 @@ def read_name(self, component_name): + "current work directory.") output = self.read_component_file(self.component_path[component_name]) - + # Category loaded using path, in case of Work directory it fails if self.component_category[component_name] == "Work directory": output.category = "Work directory" # Corrects category - + return output def _find_components(self, absolute_path): @@ -273,7 +273,7 @@ def read_component_file(self, absolute_path): # find definition parameters and their values if (self.line_starts_with(line.strip(), "DEFINITION PARAMETERS") - or self.line_starts_with(line.strip(), + or self.line_starts_with(line.strip(), "SETTING PARAMETERS")): parts = line.split("(") @@ -329,7 +329,7 @@ def read_component_file(self, absolute_path): name_value = part.split("=") par_name = name_value[0].strip() par_value = name_value[1].strip() - + if temp_par_type is "double": try: par_value = float(par_value) @@ -381,4 +381,4 @@ def line_starts_with(self, line, string): if line[0:len(string)] == string: return True else: - return False \ No newline at end of file + return False diff --git a/mcstasscript/helper/formatting.py b/mcstasscript/helper/formatting.py index aef8ff10..5593a082 100644 --- a/mcstasscript/helper/formatting.py +++ b/mcstasscript/helper/formatting.py @@ -1,9 +1,7 @@ -""" -Helper class that contains formatting classes and functions - -""" - class bcolors: + """ + Helper class that contains formatting classes and functions + """ HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' @@ -12,44 +10,45 @@ class bcolors: ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' - + + def is_legal_parameter(name): """ Function that returns true if the given name can be used as a parameter in the c programming language. """ - + if name is "": return False - + if " " in name: return False - + if "." in name: return False if not name[0].isalpha(): return False - + return True + def is_legal_filename(name): """ Function that returns true if the given name can be used as a filename """ - + if name is "": return False - + if " " in name: return False - + if "/" in name: return False - + if "\\" in name: return False - + return True - \ No newline at end of file diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index f3f557e4..f4f4197f 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -4,6 +4,7 @@ from mcstasscript.data.data import McStasData from docutils.io import InputError + class ManagedMcrun: """ A class for performing a mcstas simulation and organizing the data @@ -98,10 +99,10 @@ def __init__(self, instr_name, **kwargs): if "custom_flags" in kwargs: self.custom_flags = kwargs["custom_flags"] - + if "increment_folder_name" in kwargs: self.increment_folder_name = kwargs["increment_folder_name"] - + if "force_compile" in kwargs: self.compile = kwargs["force_compile"] @@ -111,23 +112,23 @@ def run_simulation(self): """ # construct command to run - + options_string = "" if self.compile: - options_string = "-c " + options_string = "-c " - option_string = (options_string + option_string = (options_string + "-n " + str(self.ncount) # Set ncount + " --mpi=" + str(self.mpi) # Set mpi + " ") - + if self.increment_folder_name and os.path.isdir(self.data_folder_name): counter = 0 new_name = self.data_folder_name + "_" + str(counter) while os.path.isdir(new_name): counter = counter + 1 new_name = self.data_folder_name + "_" + str(counter) - + self.data_folder_name = new_name if len(self.data_folder_name) > 0: @@ -160,21 +161,21 @@ def run_simulation(self): Can use subprocess from spawn* instead of os.system if more control is needed over the spawned process, including a timeout """ - - #return self.load_results(self.data_folder_name) - + + # return self.load_results(self.data_folder_name) + def load_results(self, *args): - + if len(args) == 0: data_folder_name = self.data_folder_name elif len(args) == 1: data_folder_name = args[0] else: raise InputError("load_results can be caled with 0 or 1 arguments") - + if not os.path.isdir(data_folder_name): raise NameError("Given data directory does not exist.") - + # Find all data files in generated folder files_in_folder = os.listdir(data_folder_name) @@ -257,4 +258,4 @@ def load_results(self, *args): f.close() # Return list of McStasData objects - return results \ No newline at end of file + return results diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index e61f594b..29c48b0d 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -1,6 +1,7 @@ from mcstasscript.helper.formatting import bcolors from mcstasscript.helper.formatting import is_legal_parameter + class parameter_variable: """ Class describing a input parameter in McStas instrument @@ -649,7 +650,7 @@ def show_parameters(self, **kwargs): subclasses for the individual components are required to run this method. """ - + if "line_length" in kwargs: line_limit = kwargs["line_length"] else: @@ -716,7 +717,7 @@ def show_parameters(self, **kwargs): characters_before_comment += characters_from_value print(parameter_name + value + unit, end="") - + if characters_before_comment + len(comment) < line_limit: print(comment) else: @@ -735,16 +736,16 @@ def show_parameters(self, **kwargs): if iterations > max_iterations: # Something went long, print on one line break - + line_left = length_for_comment - + while(line_left > 0): if current_index >= len(words): current_index = len(words) + 1 break line_left -= len(str(words[current_index])) + 1 current_index += 1 - + current_index -= 1 for word in words[last_index:current_index]: comment += word + " " @@ -776,16 +777,16 @@ def show_parameters_simple(self): value = " = " + str(self.parameter_defaults[parameter]) if getattr(self, parameter) is not None: value = " = " + str(getattr(self, parameter)) - + unit = "" if parameter in self.parameter_units: unit = " [" + self.parameter_units[parameter] + "]" - + comment = "" if parameter in self.parameter_comments: if self.parameter_comments[parameter] is not "": comment = " // " + self.parameter_comments[parameter] print(parameter + value + unit + comment) - + print("----------" + "-"*len(self.component_name) + "------") diff --git a/mcstasscript/integration_tests/test_complex_instrument.py b/mcstasscript/integration_tests/test_complex_instrument.py index e008e7fb..b6b8396c 100644 --- a/mcstasscript/integration_tests/test_complex_instrument.py +++ b/mcstasscript/integration_tests/test_complex_instrument.py @@ -6,20 +6,21 @@ from mcstasscript.interface import instr, functions, plotter + def setup_complex_instrument(): """ Sets up guide system with two guides that are placed next to one another with separate entrances but converge at the end. - + It attempts to use as McStas keywords and features as possible. """ Instr = instr.McStas_instr("integration_test_complex", author="test_suite", origin="integration tests") - + Instr.add_parameter("guide_width", value=0.03) Instr.add_parameter("guide_length", value=8.0) - + source = Instr.add_component("source", "Source_simple") source.xwidth = 0.1 source.yheight = 0.01 @@ -33,12 +34,12 @@ def setup_complex_instrument(): Instr.add_declare_var("int", "guide_choice") Instr.add_declare_var("double", "source_to_guide_end") Instr.append_initialize("source_to_guide_end = 1.5 + guide_length;") - + after_guide = Instr.add_component("after_guide", "Arm", - AT=[0,0,"source_to_guide_end"], + AT=[0, 0, "source_to_guide_end"], RELATIVE="source") after_guide.append_EXTEND("guide_choice = -1;") - + # Add first slit with component methods slit1 = Instr.add_component("slit1", "Slit") slit1.set_AT(["1.3*guide_width", 0, 1.5], RELATIVE="source") @@ -48,24 +49,24 @@ def setup_complex_instrument(): slit1.append_EXTEND(" guide_choice = 1;") slit1.append_EXTEND("}") slit1.set_GROUP("entrance_slits") - + # Add second slit with instr methods Instr.add_component("slit2", "Slit") Instr.set_component_AT("slit2", ["-1.3*guide_width", 0, 1.5]) - Instr.set_component_RELATIVE("slit2","source") - Instr.set_component_parameter("slit2",{"xwidth": "guide_width", - "yheight": 0.05}) + Instr.set_component_RELATIVE("slit2", "source") + Instr.set_component_parameter("slit2", {"xwidth": "guide_width", + "yheight": 0.05}) Instr.append_component_EXTEND("slit2", "if (SCATTERED) {") Instr.append_component_EXTEND("slit2", " guide_choice = 2;") Instr.append_component_EXTEND("slit2", "}") - Instr.set_component_GROUP("slit2","entrance_slits") - + Instr.set_component_GROUP("slit2", "entrance_slits") + select1 = Instr.add_component("select1", "Arm", RELATIVE="after_guide") select1.set_JUMP("select2 WHEN guide_choice == 2") - + guide1 = Instr.add_component("guide1", "Guide_gravity") - guide1.set_AT([0,0,0.1], RELATIVE="slit1") - guide1.set_ROTATED([0,"-RAD2DEG*atan(0.5*guide_width/guide_length)",0], + guide1.set_AT([0, 0, 0.1], RELATIVE="slit1") + guide1.set_ROTATED([0, "-RAD2DEG*atan(0.5*guide_width/guide_length)", 0], RELATIVE="slit1") guide1.w1 = "guide_width" guide1.w2 = "1.3*guide_width" @@ -74,13 +75,13 @@ def setup_complex_instrument(): guide1.l = "guide_length" guide1.m = 4 guide1.G = -9.82 - + select2 = Instr.add_component("select2", "Arm", RELATIVE="after_guide") select2.set_JUMP("done WHEN guide_choice == 1") - + guide2 = Instr.add_component("guide2", "Guide_gravity") - guide2.set_AT([0,0,0.1], RELATIVE="slit2") - guide2.set_ROTATED([0,"RAD2DEG*atan(0.5*guide_width/guide_length)",0], + guide2.set_AT([0, 0, 0.1], RELATIVE="slit2") + guide2.set_ROTATED([0, "RAD2DEG*atan(0.5*guide_width/guide_length)", 0], RELATIVE="slit2") guide2.w1 = "guide_width" guide2.w2 = "1.3*guide_width" @@ -89,29 +90,29 @@ def setup_complex_instrument(): guide2.l = "guide_length" guide2.m = 4 guide2.G = -9.82 - + done = Instr.add_component("done", "Arm", RELATIVE="after_guide") - + PSD1 = Instr.add_component("PSD_1D_1", "PSDlin_monitor") - PSD1.set_AT([0,0,0.2], RELATIVE="after_guide") + PSD1.set_AT([0, 0, 0.2], RELATIVE="after_guide") PSD1.xwidth = 0.1 PSD1.nx = 100 PSD1.yheight = 0.03 PSD1.filename = "\"PSD1.dat\"" PSD1.restore_neutron = 1 PSD1.set_WHEN("guide_choice == 1") - + PSD2 = Instr.add_component("PSD_1D_2", "PSDlin_monitor") - PSD2.set_AT([0,0,0.2], RELATIVE="after_guide") + PSD2.set_AT([0, 0, 0.2], RELATIVE="after_guide") PSD2.xwidth = 0.1 PSD2.nx = 100 PSD2.yheight = 0.03 PSD2.filename = "\"PSD2.dat\"" PSD2.restore_neutron = 1 PSD2.set_WHEN("guide_choice == 2") - + PSD = Instr.add_component("PSD_1D", "PSDlin_monitor") - PSD.set_AT([0,0,0.2], RELATIVE="after_guide") + PSD.set_AT([0, 0, 0.2], RELATIVE="after_guide") PSD.xwidth = 0.1 PSD.nx = 100 PSD.yheight = 0.03 @@ -119,16 +120,16 @@ def setup_complex_instrument(): PSD.restore_neutron = 1 Instr.append_finally("guide_choice = -1;") - + return Instr + class TestComplexInstrument(unittest.TestCase): """ Integration test of a full instrument with McStas simulation performed by the system. The configuration file needs to be set up correctly in order for these tests to succeed. """ - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_complex_instrument(self, mock_stdout): """ @@ -144,24 +145,26 @@ def test_complex_instrument(self, mock_stdout): "guide_length": 8.0}) intensity_data_pos = functions.name_search("PSD_1D_1", data).Intensity - sum_outside_beam = sum(intensity_data_pos[0:50]) + sum_outside_beam = sum(intensity_data_pos[0:50]) sum_inside_beam = sum(intensity_data_pos[51:99]) - self.assertTrue(1000*sum_outside_beam < sum_inside_beam) - + self.assertTrue(1000*sum_outside_beam < sum_inside_beam) + intensity_data_neg = functions.name_search("PSD_1D_2", data).Intensity sum_outside_beam = sum(intensity_data_neg[51:99]) sum_inside_beam = sum(intensity_data_neg[0:50]) self.assertTrue(1000*sum_outside_beam < sum_inside_beam) - - + intensity_data_all = functions.name_search("PSD_1D", data).Intensity sum_outside_beam = sum(intensity_data_all[49:51]) sum_inside_beam = (sum(intensity_data_all[0:45]) + sum(intensity_data_all[56:99])) self.assertTrue(1000*sum_outside_beam < sum_inside_beam) - + # Could have the plot window up for some short time # Need to use plt.draw instead of plt.show in plotter - # plotter.make_sub_plot(data) - #time.sleep(10) - #plt.close() \ No newline at end of file + # plotter.make_sub_plot(data) + # time.sleep(10) + # plt.close() + +if __name__ == '__main__': + unittest.main() diff --git a/mcstasscript/integration_tests/test_simple_instrument.py b/mcstasscript/integration_tests/test_simple_instrument.py index c8b4ff27..848ee4d0 100644 --- a/mcstasscript/integration_tests/test_simple_instrument.py +++ b/mcstasscript/integration_tests/test_simple_instrument.py @@ -4,11 +4,12 @@ from mcstasscript.interface import instr, functions, plotter + def setup_simple_instrument(): Instr = instr.McStas_instr("integration_test_simple") - + source = Instr.add_component("source", "Source_div") - + source.xwidth = 0.03 source.yheight = 0.01 source.focus_aw = 0.01 @@ -16,21 +17,22 @@ def setup_simple_instrument(): source.E0 = 81.81 source.dE = 1.0 source.flux = 1E10 - + PSD = Instr.add_component("PSD_1D", "PSDlin_monitor") - - PSD.set_AT([0,0,1], RELATIVE="source") + + PSD.set_AT([0, 0, 1], RELATIVE="source") PSD.xwidth = 0.1 PSD.nx = 100 PSD.yheight = 0.03 PSD.filename = "\"PSD.dat\"" PSD.restore_neutron = 1 - + return Instr + def setup_simple_slit_instrument(): Instr = instr.McStas_instr("integration_test_simple") - + source = Instr.add_component("source", "Source_div") source.xwidth = 0.1 source.yheight = 0.01 @@ -39,31 +41,32 @@ def setup_simple_slit_instrument(): source.E0 = 81.81 source.dE = 1.0 source.flux = 1E10 - + Instr.add_parameter("slit_offset", value=0) - + Slit = Instr.add_component("slit", "Slit") Slit.set_AT(["slit_offset", 0, 0.5], RELATIVE="source") Slit.xwidth = 0.01 Slit.yheight = 0.03 - + PSD = Instr.add_component("PSD_1D", "PSDlin_monitor") - PSD.set_AT([0,0,1], RELATIVE="source") + PSD.set_AT([0, 0, 1], RELATIVE="source") PSD.xwidth = 0.1 PSD.nx = 100 PSD.yheight = 0.03 PSD.filename = "\"PSD.dat\"" PSD.restore_neutron = 1 - + return Instr + class TestSimpleInstrument(unittest.TestCase): """ Integration test of a full instrument with McStas simulation performed by the system. The configuration file needs to be set up correctly in order for these tests to succeed. """ - + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_simple_instrument(self, mock_stdout): """ @@ -72,7 +75,7 @@ def test_simple_instrument(self, mock_stdout): detector. """ Instr = setup_simple_instrument() - + data = Instr.run_full_instrument(foldername="integration_test_simple", ncount=1E6, mpi=1, increment_folder_name=True) @@ -80,9 +83,10 @@ def test_simple_instrument(self, mock_stdout): intensity_data = data[0].Intensity # beam should be on pixel 35 to 65 - sum_outside_beam = sum(intensity_data[0:34]) + sum(intensity_data[66:99]) + sum_outside_beam = (sum(intensity_data[0:34]) + + sum(intensity_data[66:99])) sum_inside_beam = sum(intensity_data[35:65]) - + self.assertTrue(1000*sum_outside_beam < sum_inside_beam) @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) @@ -101,11 +105,12 @@ def test_simple_instrument_mpi(self, mock_stdout): intensity_data = data[0].Intensity # beam should be on pixel 35 to 65 - sum_outside_beam = sum(intensity_data[0:34]) + sum(intensity_data[66:99]) + sum_outside_beam = (sum(intensity_data[0:34]) + + sum(intensity_data[66:99])) sum_inside_beam = sum(intensity_data[35:65]) self.assertTrue(1000*sum_outside_beam < sum_inside_beam) - + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_slit_instrument(self, mock_stdout): """ @@ -122,11 +127,11 @@ def test_slit_instrument(self, mock_stdout): intensity_data = data[0].Intensity # beam should be on pixel 45 to 55 - sum_outside_beam = sum(intensity_data[0:44]) + sum(intensity_data[56:99]) + sum_outside_beam = (sum(intensity_data[0:44]) + + sum(intensity_data[56:99])) sum_inside_beam = sum(intensity_data[45:55]) + self.assertTrue(1000*sum_outside_beam < sum_inside_beam) - self.assertTrue(1000*sum_outside_beam < sum_inside_beam) - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_slit_moved_instrument(self, mock_stdout): """ @@ -143,7 +148,11 @@ def test_slit_moved_instrument(self, mock_stdout): intensity_data = data[0].Intensity # beam should be on pixel 75 to 85 - sum_outside_beam = sum(intensity_data[0:74]) + sum(intensity_data[86:99]) + sum_outside_beam = (um(intensity_data[0:74]) + + sum(intensity_data[86:99])) sum_inside_beam = sum(intensity_data[75:85]) - self.assertTrue(1000*sum_outside_beam < sum_inside_beam) \ No newline at end of file + self.assertTrue(1000*sum_outside_beam < sum_inside_beam) + +if __name__ == '__main__': + unittest.main() \ No newline at end of file diff --git a/mcstasscript/interface/functions.py b/mcstasscript/interface/functions.py index 04038f02..bfae923a 100644 --- a/mcstasscript/interface/functions.py +++ b/mcstasscript/interface/functions.py @@ -1,6 +1,7 @@ from mcstasscript.data.data import McStasData from mcstasscript.helper.managed_mcrun import ManagedMcrun + def name_search(name, data_list): """" name_search returns McStasData instance with specific name if it is @@ -18,7 +19,6 @@ def name_search(name, data_list): data_list : List of McStasData instances List of datasets to search """ - if type(data_list) is not list: raise InputError( "name_search function needs list of McStasData as input") @@ -31,7 +31,7 @@ def name_search(name, data_list): for check in data_list: if check.name == name: list_result.append(check) - + if len(list_result) == 0: raise NameError("No dataset with name: \"" + name @@ -44,6 +44,7 @@ def name_search(name, data_list): + "the search for a dataset with name: \"" + name + "\".") + def name_plot_options(name, data_list, **kwargs): """" name_plot_options passes keyword arguments to dataset with certain @@ -64,20 +65,18 @@ def name_plot_options(name, data_list, **kwargs): Keyword arguments passed to set_plot_options in McStasPlotOptions """ - object_to_modify = name_search(name, data_list) object_to_modify.set_plot_options(**kwargs) + def load_data(foldername): """ Loads data from a McStas data folder including mccode.sim - + Parameters ---------- foldername : string Name of the folder from which to load data """ - - managed_mcrun = ManagedMcrun("dummy", foldername=foldername) + managed_mcrun = ManagedMcrun("dummy", foldername=foldername) return managed_mcrun.load_results() - \ No newline at end of file diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 840cce27..21fce353 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -13,6 +13,7 @@ from mcstasscript.helper.formatting import is_legal_filename from mcstasscript.helper.formatting import bcolors + class McStas_instr: """ Main class for writing a McStas instrument using McStasScript @@ -79,7 +80,7 @@ class McStas_instr: append_trace(string) Obsolete method, add components instead (used in write_c_files) - + show_components(string) Shows available components in given category @@ -160,7 +161,7 @@ def __init__(self, name, **kwargs): """ self.name = name - + if not is_legal_filename(self.name + ".instr"): raise NameError("The instrument is called: \"" + self.name @@ -177,7 +178,7 @@ def __init__(self, name, **kwargs): self.origin = kwargs["origin"] else: self.origin = "ESS DMSC" - + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) configuration_file_name = THIS_DIR + "/../../configuration.yaml" if not os.path.isfile(configuration_file_name): @@ -191,7 +192,7 @@ def __init__(self, name, **kwargs): self.line_limit = config["other"]["characters_per_line"] else: # This happens in unit tests that mocks open - self.mcrun_path = "" + self.mcrun_path = "" self.mcstas_path = "" self.line_limit = 180 @@ -244,16 +245,15 @@ def add_parameter(self, *args, **kwargs): """ # parameter_variable class documented independently self.parameter_list.append(parameter_variable(*args, **kwargs)) - + def show_parameters(self, **kwargs): """ Method for displaying current instrument parameters - + keyword arguments line_length : int Maximum line length for terminal output """ - if "line_length" in kwargs: line_limit = kwargs["line_length"] else: @@ -290,8 +290,8 @@ def show_parameters(self, **kwargs): else: print(" = ", end=' ') print(str(parameter.value).ljust(longest_value+1), end=' ') - if (length_for_comment < 5 - or length_for_comment > len(str(parameter.comment))): + if (length_for_comment < 5 + or length_for_comment > len(str(parameter.comment))): print(str(parameter.comment)) else: # Split comment into several lines @@ -308,16 +308,16 @@ def show_parameters(self, **kwargs): if iterations > max_iterations: # Something went long, print on one line break - + line_left = length_for_comment - + while(line_left > 0): if current_index >= len(words): current_index = len(words) + 1 break line_left -= len(str(words[current_index])) + 1 current_index += 1 - + current_index -= 1 for word in words[last_index:current_index]: comment += word + " " @@ -474,7 +474,7 @@ def show_components(self, *args): If called without any arguments it will display the available component categories. If a category is given as a string in the first input, components in that category are printed. - + Parameters ---------- first argument (optional): str @@ -492,8 +492,9 @@ def show_components(self, *args): + category + " category.") this_reader = self.component_reader + line_lim = self.line_limit this_reader.show_components_in_category(category, - line_length=self.line_limit) + line_length=line_lim) def component_help(self, name, **kwargs): """ @@ -867,12 +868,12 @@ def print_components(self, **kwargs): Provides overview of component names, what McStas component is used for each and their position and rotation in space. - + keyword arguments: line_length : int Maximum line length in console """ - + if "line_length" in kwargs: line_limit = kwargs["line_length"] else: @@ -908,9 +909,9 @@ def print_components(self, **kwargs): # Padding settings, 0,0,6,0,6 is minimum values name_pad = 0 comp_name_pad = 0 - AT_pad = 6 # requires (, , ) in addition to data length + AT_pad = 6 # requires (, , ) in addition to data length RELATIVE_pad = 0 - ROTATED_pad = 6 # requires (, , ) in addition to data length + ROTATED_pad = 6 # requires (, , ) in addition to data length # Check if longest line length exceeded longest_line_length = (longest_name + name_pad @@ -919,12 +920,12 @@ def print_components(self, **kwargs): + longest_at_relative_name + RELATIVE_pad + longest_rotated_xyz_name + ROTATED_pad + longest_rotated_relative_name + 8 + 9) - + def coordinates_to_string(data): - return ("(" + return ("(" + str(data[0]) + ", " + str(data[1]) + ", " - + str(data[2]) + ")") + + str(data[2]) + ")") n_lines = 1 """ @@ -937,27 +938,27 @@ def coordinates_to_string(data): longest_at_xyz_name = max([longest_at_xyz_name, longest_rotated_xyz_name]) longest_rotated_xyz_name = longest_at_xyz_name - RELATIVE_pad = 0 + RELATIVE_pad = 0 - longest_line_length_at = (longest_name + longest_line_length_at = (longest_name + comp_name_pad - + longest_component_name + + longest_component_name + comp_name_pad - + longest_at_xyz_name + + longest_at_xyz_name + AT_pad - + longest_at_relative_name - + 7 + 6 ) - longest_line_length_rotated = (longest_name + + longest_at_relative_name + + 7 + 6) + longest_line_length_rotated = (longest_name + comp_name_pad - + longest_component_name + + longest_component_name + comp_name_pad - + longest_rotated_xyz_name + + longest_rotated_xyz_name + ROTATED_pad - + longest_rotated_relative_name + + longest_rotated_relative_name + 7 + 6) - if (longest_line_length_at > line_limit - or longest_line_length_rotated > line_limit): + if (longest_line_length_at > line_limit + or longest_line_length_rotated > line_limit): n_lines = 3 if n_lines == 1: @@ -966,7 +967,7 @@ def coordinates_to_string(data): p_name = p_name.ljust(longest_name + name_pad) p_comp_name = str(component.component_name) - p_comp_name = p_comp_name.ljust(longest_component_name + p_comp_name = p_comp_name.ljust(longest_component_name + comp_name_pad) p_AT = coordinates_to_string(component.AT_data) @@ -992,7 +993,7 @@ def coordinates_to_string(data): p_name = p_name.ljust(longest_name + name_pad) p_comp_name = str(component.component_name) - p_comp_name = p_comp_name.ljust(longest_component_name + p_comp_name = p_comp_name.ljust(longest_component_name + comp_name_pad) p_AT = coordinates_to_string(component.AT_data) @@ -1003,8 +1004,8 @@ def coordinates_to_string(data): + RELATIVE_pad) p_ROTATED_align = " "*(longest_name - + comp_name_pad - + longest_component_name + + comp_name_pad + + longest_component_name + comp_name_pad) p_ROTATED = coordinates_to_string(component.ROTATED_data) @@ -1013,7 +1014,7 @@ def coordinates_to_string(data): p_ROTATED_RELATIVE = str(component.ROTATED_relative) - print(p_name, p_comp_name, + print(p_name, p_comp_name, "AT ", p_AT, p_AT_RELATIVE, "\n", p_ROTATED_align, "ROTATED", p_ROTATED, p_ROTATED_RELATIVE) @@ -1022,7 +1023,7 @@ def coordinates_to_string(data): for component in self.component_list: p_name = bcolors.BOLD + str(component.name) + bcolors.ENDC - p_comp_name = (bcolors.BOLD + p_comp_name = (bcolors.BOLD + str(component.component_name) + bcolors.ENDC) @@ -1161,7 +1162,7 @@ def write_full_instrument(self): # End instrument file fo.write("\nEND\n") - + fo.close() def run_full_instrument(self, *args, **kwargs): @@ -1194,25 +1195,23 @@ def run_full_instrument(self, *args, **kwargs): mcrun_path : str Path to mcrun command, "" if already in path """ - - # Make sure mcrun path is in kwargs if "mcrun_path" not in kwargs: kwargs["mcrun_path"] = self.mcrun_path - + # Find required parameters required_parameters = [] default_parameters = {} passed_parameters = {} - - for index in range(0,len(self.parameter_list)): + + for index in range(0, len(self.parameter_list)): if self.parameter_list[index].value == "": required_parameters.append(self.parameter_list[index].name) else: - default_parameters.update({self.parameter_list[index].name : + default_parameters.update({self.parameter_list[index].name: self.parameter_list[index].value}) - - # Check if parameters are given + + # Check if parameters are given if "parameters" not in kwargs: if len(required_parameters) > 0: # print required parameters and raise error @@ -1228,7 +1227,7 @@ def run_full_instrument(self, *args, **kwargs): for name in required_parameters: if name not in given_parameters: raise NameError("The required instrument parameter " - + name + + name + " was not provided.") # Overwrite default parameters with given parameters default_parameters.update(given_parameters) @@ -1243,5 +1242,3 @@ def run_full_instrument(self, *args, **kwargs): # Run the simulation and return data simulation.run_simulation() return simulation.load_results() - - diff --git a/mcstasscript/interface/plotter.py b/mcstasscript/interface/plotter.py index efa9b7b7..ab837c2e 100644 --- a/mcstasscript/interface/plotter.py +++ b/mcstasscript/interface/plotter.py @@ -11,6 +11,7 @@ from mcstasscript.data.data import McStasPlotOptions from mcstasscript.data.data import McStasData + class make_plot: """ make_plot plots contents of McStasData objects @@ -305,4 +306,4 @@ def fmt(x, pos): else: print("Error, dimension not read correctly") - plt.show() \ No newline at end of file + plt.show() diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index cbe358e6..a789c87f 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -8,18 +8,21 @@ from mcstasscript.interface.instr import McStas_instr from mcstasscript.helper.formatting import bcolors + def setup_instr_no_path(): """ Sets up a instrument without a mcstas_path """ return McStas_instr("test_instrument") + def setup_instr_root_path(): """ Sets up a instrument with root mcstas_path """ return McStas_instr("test_instrument", mcstas_path="/") + def setup_instr_with_path(): """ Sets up a instrument with a valid mcstas_path, but it points to @@ -28,7 +31,7 @@ def setup_instr_with_path(): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) dummy_path = THIS_DIR + "/dummy_mcstas" - + current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder @@ -36,6 +39,7 @@ def setup_instr_with_path(): os.chdir(current_work_dir) # Return to previous workdir + def setup_populated_instr(): """ Sets up a instrument with some features used and two components @@ -81,7 +85,7 @@ def test_complex_initialize(self): self.assertEqual(my_instrument.origin, "DMSC") self.assertEqual(my_instrument.mcrun_path, "/path/to/mcrun") self.assertEqual(my_instrument.mcstas_path, "/path/to/mcstas") - + def test_load_config_file(self): """ Test that configuration file is read correctly. In order to have @@ -95,7 +99,7 @@ def test_load_config_file(self): if not os.path.isfile(configuration_file_name): raise NameError("Could not find configuration file!") - f = open(configuration_file_name,"r") + f = open(configuration_file_name, "r") lines = f.readlines() for line in lines: @@ -103,11 +107,11 @@ def test_load_config_file(self): if line.startswith("mcrun_path:"): parts = line.split(" ") correct_mcrun_path = parts[1][1:-1] - + if line.startswith("mcstas_path:"): parts = line.split(" ") correct_mcstas_path = parts[1][1:-1] - + if line.startswith("characters_per_line:"): parts = line.split(" ") correct_n_of_characters = int(parts[1]) @@ -156,12 +160,12 @@ def test_show_parameters(self, mock_stdout): self.assertEqual(output[2], "float theta = 8 // test par") self.assertEqual(output[3], "int slits // test par") self.assertEqual(output[4], "string ref = string // new string") - + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_show_parameters_line_break(self, mock_stdout): """ Testing that parameters are displayed correctly - + Here multiple lines are used for a long comment that was dynamically broken up. """ @@ -173,13 +177,13 @@ def test_show_parameters_line_break(self, mock_stdout): instr.add_parameter("int", "slits", comment="test par") instr.add_parameter("string", "ref", value="string", comment="new string") - + longest_comment = ("This is a very long comment meant for " + "testing the dynamic line breaking " + "that is used in this method. It needs " + "to have many lines in order to ensure " + "it really works.") - + instr.add_parameter("double", "value", value="37", comment=longest_comment) @@ -194,16 +198,16 @@ def test_show_parameters_line_break(self, mock_stdout): self.assertEqual(output[4], "string ref = string // new string") comment_line = "This is a very long comment meant for testing " self.assertEqual(output[5], "double value = 37 // " - + comment_line) + + comment_line) comment_line = "the dynamic line breaking that is used in this " self.assertEqual(output[6], " " - + comment_line) + + comment_line) comment_line = "method. It needs to have many lines in order to " self.assertEqual(output[7], " " - + comment_line) + + comment_line) comment_line = "ensure it really works. " self.assertEqual(output[8], " " - + comment_line) + + comment_line) def test_simple_add_declare_parameter(self): """ @@ -348,9 +352,8 @@ def test_show_components_simple(self, mock_stdout): """ Simple test of show components to show categories """ - instr = setup_instr_with_path() - + instr.show_components() output = mock_stdout.getvalue() @@ -395,7 +398,7 @@ def test_component_help(self, mock_stdout): """ instr = setup_instr_with_path() - instr.component_help("test_for_reading",line_length=90) + instr.component_help("test_for_reading", line_length=90) # This call creates a dummy component and calls its # show_parameter method which has been tested. Here we # need to ensure the call is succesful, not test all @@ -970,13 +973,13 @@ class for each component and aligns the data for display + " AT (0, 0, 0) ABSOLUTE" + " ROTATED (0, 0, 0) ABSOLUTE") self.assertEqual(output[2], expected) - + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_print_components_complex_2lines(self, mock_stdout): """ print_components calls the print_short method in the component class for each component and aligns the data for display - + This version of the tests forces two lines of output. """ @@ -1024,7 +1027,7 @@ def test_print_components_complex_3lines(self, mock_stdout): """ print_components calls the print_short method in the component class for each component and aligns the data for display - + This version of the tests forces three lines of output. """ @@ -1039,7 +1042,7 @@ class for each component and aligns the data for display comp = instr.get_last_component() comp.component_name = "test_name" - instr.print_components(line_length=1) # Three lines maximum + instr.print_components(line_length=1) # Three lines maximum output = mock_stdout.getvalue().split("\n") @@ -1083,7 +1086,7 @@ class for each component and aligns the data for display + "test_name" + bcolors.ENDC + " ") - self.assertEqual(output[6], expected) + self.assertEqual(output[6], expected) expected = (" AT (0, 0, 0) ABSOLUTE ") self.assertEqual(output[7], expected) @@ -1257,8 +1260,7 @@ def test_write_full_instrument_simple(self, mock_f, mock_stdout): mock_f.assert_called_with("test_instrument.instr", "w") handle = mock_f() handle.write.assert_has_calls(wrts, any_order=False) - - + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_run_full_instrument_required_par_error(self, mock_stdout): """ @@ -1289,11 +1291,11 @@ def test_run_full_instrument_basic(self, os_system, instr.run_full_instrument("test_instrument.instr", foldername="test_data_set", mcrun_path="path", - parameters={"theta" : 1}) + parameters={"theta": 1}) # a double space because of a missing option expected_call = ("path/mcrun -c -n 1000000 --mpi=1 " - + "-d test_data_set test_instrument.instr" + + "-d test_data_set test_instrument.instr" + " has_default=37 theta=1") os_system.assert_called_once_with(expected_call) @@ -1327,13 +1329,13 @@ def test_run_full_instrument_complex(self, os_system, + "has_default=37 A=2 BC=car theta=\"toy\"") os_system.assert_called_once_with(expected_call) - + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) @unittest.mock.patch("os.system") def test_run_full_instrument_overwrite_default(self, os_system, - mock_f, mock_stdout,): + mock_f, mock_stdout,): """ Check that default parameters are overwritten by given parameters. diff --git a/mcstasscript/tests/test_ManagedMcrun.py b/mcstasscript/tests/test_ManagedMcrun.py index b894d986..129c944f 100644 --- a/mcstasscript/tests/test_ManagedMcrun.py +++ b/mcstasscript/tests/test_ManagedMcrun.py @@ -174,7 +174,7 @@ def test_ManagedMcrun_run_simulation_parameters(self, os_system): expected_call = ("path/mcrun -c -n 48 --mpi=7 " + "-d test_folder -fo test.instr " + "A=2 BC=car th=\"toy\"") - + @unittest.mock.patch("os.system") def test_ManagedMcrun_run_simulation_compile(self, os_system): """ @@ -186,7 +186,7 @@ def test_ManagedMcrun_run_simulation_compile(self, os_system): mcrun_path="path", mpi=7, ncount=48.4, - force_compile = False, + force_compile=False, custom_flags="-fo", parameters={"A": 2, "BC": "car", diff --git a/mcstasscript/tests/test_functions.py b/mcstasscript/tests/test_functions.py index 5d15044d..52545b9e 100644 --- a/mcstasscript/tests/test_functions.py +++ b/mcstasscript/tests/test_functions.py @@ -70,6 +70,7 @@ def setup_McStasData_array(): return data_list + def setup_McStasData_array_repeat(): data_list = [] @@ -92,7 +93,6 @@ def setup_McStasData_array_repeat(): return data_list - class Test_name_search(unittest.TestCase): """ Test the utility function called name_search which finds and @@ -110,7 +110,7 @@ def test_name_search_read(self): hero_object = name_search("Hero", data_list) self.assertEqual(hero_object.metadata.dimension, 123) - + def test_name_search_read_repeat(self): """ Test simple case with repeat name @@ -206,5 +206,6 @@ def test_crun_load_data_PSD4PI(self): self.assertEqual(PSD_4PI.Intensity[1][4], 1.537334562E-10) self.assertEqual(PSD_4PI.Error[1][4], 1.139482296E-10) + if __name__ == '__main__': unittest.main() From f46f27def9c94062ff7e0b174f2c16904bf9920c Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Thu, 13 Jun 2019 12:57:44 +0200 Subject: [PATCH 033/403] Updated plotter with new commmands for controlling the plot. The commands are included in the manual. cut_min, cut_max sets the range of intensity to plot x_axis_multiplier, y_axis_multiplier can be used to change units of the axis left_lim, right_lim set lower and upper limit for xaxis for plotting bottom_lim, top_lim set lower and upper limit for yaxis for plotting --- McStasScript_documentation.pdf | Bin 158632 -> 159586 bytes mcstasscript/data/data.py | 38 ++++++++ mcstasscript/helper/managed_mcrun.py | 1 - mcstasscript/interface/plotter.py | 139 +++++++++++++++++++++------ 4 files changed, 147 insertions(+), 31 deletions(-) diff --git a/McStasScript_documentation.pdf b/McStasScript_documentation.pdf index 137efa38f2f3c527f15ca3a58c82d96a36e0a2c8..92d9d8a865db1c2b737ec0ad7e47ad516d81982d 100644 GIT binary patch delta 17977 zcmZsCV{|4_*JW(mwr$(CjgIX+aVP0mPi!Y0+qP|WjE=48_xt9@d^1yj>h4u{oqOum zsIDMnT%PB_Zm=fW>IHr_;3LN;Db9xf7Q84`UGUM>z2HWpqI zLlS0X5_WbHW=RrWHf~-X5@sb5)_+iggq4$*m4iLe#2bvA1^8hLMg+#qn%obL4P^fT z#tV>jw6OI47l)0Pgp=bxQDhyhoJiQXNmxkKNSM`}oZLy+S^pcT+xl9P@cfIZ;%e#n z-(fjO{;!K!R)R!dfQyZjm5YPL%94ZEjD?+t-JFfp+=7FZmy?Z~g~gnUS4e<`jn$OP zoQ(s=)Pk4Y(!!F(jD?ez=idx-UJi2$ZZqEGeNaMfuaNZ-lB8R*bOy-8En|`51qGCG zTTn7XtdOxWUy^a02NZ_Rpx~(6?=(gebQ~OMBv=sYO!!V9fgPAvvI*EB7Tka3?qv1@ zPC(#a-lo=;ZX`Tx$?4$4$!`#(0QG-c#7n}gVCiV>ZbQQQZx4io;N09@ElnNZytBK7d3vq z!|H({Alw1IzdhMutI{tscVG)p7{dB2TE`t<6hOgfp{SZKL^9DM+xy6fN)SE}5IO+7 zn7#~ZWxT)FO3NJ_7!C*eKtKRkjO@u9D8#_7JWyCLb`IeDDJT;L2k-y>ES7Fg9YoG@Ny@(yvu7 z#EBmh{*Z>IFGr4u2V&+H4=qH2qIFbkiQ0+&T~)&KwS@&|n~K8DwYQF>cbS_2_Sid| zCC3hZsLjgGZOzt4)c9$!w~s&Gt6swg3n@(Bj$27argC*8diuEwR^0Y7#eu&VvZrjL zRpJF#TRpUqmvMR<1QHuI;|4XrgZ%X2wpSAOtWH>& z0}nlyAFCsSZT}|rkO?Ww?MfH{#Kq6kXPB6D!UxaLlg=qGjz?4LR$To8K%= zIU0goq~};B%8ROR0u&6BzFMX`OC3fi3gXbjx;O7!MbWWN8!X9Bxf9iwf1^#(!L1JY zW?0?Cbu2|0ck?x;S6P(<$!X`(WZ&m1>(K5cK^}CFFG{QQnoy1kkwB0ERY578T)5PG zTAUk(DQ3eTJBhI_ehN9n<#^5l@HPZipoZtjkFMNojWkzLysYMH_v)R{R5s5hg!2!e z{dy1s0r8rgS|72HAWNbk7KtV z`L(W$0%j!k^Xo79Il49h+bRL$XA-4=bJgT$!%gizabRDyL%k_-7GizZR%DNZ$)7#2 zosYU88T|qo_C`JBy1AZUi^`H1<6MN;CKrNNxUB{&ZhMc(KHxVI@k^Qit zb~8Wag7XjQ8SQVcrAqC|G?yL8)l-J=jhz0>*>*Vy=4Ml$j^fodBezxg_vo{SJdMVw zTu0Kr@j7twB2ws(^&3LEA}*t~oTtrKBT{ksZ0;pSZjVu;AQ9rMv~|z-@MrUoy=}Lx z$FfKxQx8{lSPmWl{wi7+dmyY5(>V`&T;fRT-A4$sPC{FS>QnpZN0BOx zI2cK$o&PnU^Jt%P%8G(8-aC_eO3epx=AlM<*O5GuBdfETFz~UdFoDhy<+J@!BRs@U&tR7G%un`6gt9sTo>!9M-Uk{UseeI4FVQRD z-Yw(z9zFqhIGj)?^@Io2uRZXljZ3%`5i(^;6v_m804KJOcj+Hfl|{UNfpzj zjKQcD(_MI=P=+BHT$bOtyH4O`RvV|^JIxB8yFF{E;R;8b9mTwGhPj`1+K(pn{5$~j z?V{a}W9d@l$OtC`7e7oYNGu4H0s{*Fp7?eH0FdJ5&rbf#rh*G!`BYr#O6@b&b|2_S z&xb(V!=QtB{i4bj%mDGu4=%{8qSPkW{){;!H=;JUW9DE<2Eo`?m>k2@gO!97qa#a9 z5(u^sW|SqX#-lo$(?Xb)RXUMqEs~c={+{hA)XwxH$b-?Qjjql7*=ubA;xL+~^ zWZGwA@BB0|vf0SpF0=5%6kra5ibz9PMwow0Z3lyQZwbZ-zn>lDmQxogpBT9kB3{uUr814BA*^VLkvdxoA~1#~AU<-#?CS<` z{1FYssq|Ti0$oE-H8s3DH4?vIl433hkmmi8NNGfNGOJshA3RgEj8DYMYq_wkJ@JMr-qfZxw$OQ99tU%uyU z4x?*|EKB>oY)GaKH)4Zk~z`@VW#6mP5KA zvyDzs5yDOVA_)?ZZ&gmLQ5BIu3QWOLqbw}Sa}!n8`gUNEPBQ6VjtS!(!DFGBYRt=z z(Oq0y>^vh-04oNhcCxo{Vu;#=kiTpRO?(*zO_8lSl=KhYK8bPtm6^5Y^irgH;H9eE*q@s zGfnaeAN_ivuV8k*p3?49Z{uf4i*@3M+!;Dap=fuiaq7P&2+#KcrFx~=SKzU;XhWJ4 zS7u1;l!3HPh#^vDa_~`<(pd}ZnY2Dv8v4^bY@LEih+PxNPi)Al%tUbUKM=C> ze~ZN>JWqbPM?XQC46|V(PSP(8D|iyeX@(xdt%9n91tMa2V~;=6&`7aEbZ5 zv;}a$utgRjy?v2*B~c#w6wPpFC7QC7Ak+!FQ)DqnmHk2$Rvb`q%{x>C7()rlzDlie zxZ3cQaabo4v2l20^hVH)oVgjS0l$I(&}R^@I&iv}0Y9{n{x*<=raLkaI6`<-=L1NA zP+4spRA)L6cAg=qPZKd}Mlcfqq6k>fGSmioB$z9jth4qUgbDdq*V}$sUf34#u0{xs z<-BgVcU+fr*^0l&EL$yl2hfKFM93nSAm(yb7~V$!*El;Z^@VV)JAl+U#VeI3l!>iv zF)z(RgXk)!%eUixcf07sMC>mz)#8um4q;Ioj^Ev`zO1-gT7O{4$i$TaZ_P0wxD$)( zK98?05bz?HyFVoE9`_nLatkND^$0gRsi~p)r7iSNT1YqKTf|peR7}{HGmMymcypWKeb9)P&nbWyEaa+FS;@{IZcL-xeBy1l*K=W4qh?(fdP zUtWD!FAKj1cidrFj!L; zt_tS&;qr{*A&TtnbQd&Pg@jm zbt`xl5CP8+HlEP{mxrj<;SNx|%8d_0&?kNcY3!gC>M^4GG6&?%jR-#;-BNr>1*_X0=9nM#+GpTX2TZTE4{7F%YVV*<7ZrRdtxV(RT+ zjJ2XQgSTt8@|~-+N!q5d$bw=d%Me3TTv&okv0F}B-&5vxb|6|#I*4f|4!hi&;?qzz zbTrqmwpa`RuGpoc&g4`PeP)x0l0$4Ml-Y(EJD+G((@4s*iTLCdm8cuA)WVLA3;gr1 z1#d`craPVt|SHP)JiP2?f3^8a5;WZLixB~`kB_{T5z>yA8Kp|gD z`{ps635&-{SpvFFFwIX$Ru`r$vzaE{jr1Gk>e`M0K3!Gxay9n_DI5O%#oM-ov0RVmpL9BNIGT+>mtH!I5jom9&1;ut$JoGdZv2+9g{fAxv|I}Fmo1#s+VLdO)_V|^^<#&~xkxog@}-thGE^t>4GRcVox|BZPN3~ zoQX*Z4mZ%e7kVugFA8T~PYy@gk$SrTH+Ti0SCh(uL0#JXw*`43X4>5!-oYwVThJ-K z-)e#}a)FwCw#ua9LliUk&XUI#K^E6~F6)JHvB=oPGV~cemMvC@NcUm|aI6x7_xnrs|K)~=gqd`!iGV%lv zAu&puddh-^ig%AH-=(heSFl>xSe{KW&huyWaDP4Y3~`#+F`1ds!9CWBJ-k9<_D{qF zELnQ>_#;m~IT!gL@$?@f$9%FQJPf~~u(E!?viriW=Nj!*MJQt#$-K4priE77dB@z0 z#4vBaJlz#-rTN_@ZUKA8jE{o-8S=&e%fycF{25! zp5$w&n|GKkZ>~h`J3XXBKi(8_AM#OGfAtA{AAKdLKk~1lN{1RsKR?f!t1UbPY2|eT z@Fp`pXoSc4Uv9Sl3lNz7`IA@k&^MIX>fr}Vl$M+zlIR(W@1;|z34OR;mKj`J?b2rZW z@Ma*@G;j<)+p>uh;0JGs8z>^}AX%%+3?VnVXd2}r>qg|Jmmn}ogXhjPedvG@ZUyk# z9pxQabm?Y0%n!BeBzDx}pA0LX(zCDb=CyqN0#+u>-wk~E{SNHw~ ze-y>ufsnl?ym*RF-hS+;h8f1gsYFlyS}t}(!Tx^IBb0dV4)ul*Jr8|`-s5o>YmS`y zEpEjljQ+J~yGX{iD%tX4eIRF{QgtnDXGgNju7}-Ah~XR3=7A>P($T^#xp9rBagyIl99T#P zO511$(9#8pDf}CqueGXzascQ4iHxn|bfDg(U>vN#`C3q_R$B#7dLmF>AiWM4Max&f7DD)&i|;H1g-y8xkWV*39RFw8wlS@*?{?9G z8u(m0_aK`Yg}VjnS&D3%{J@s1kd@tNSeg_<9{22JXuBCN$9e*8GK>70v{YeL3J~NE4cNF+6(obJMD~ z1E5i2;CQj``Loj4s4VSkZa7m9sg;xaD(gxv{HWk}gw?9crs=LbH}z+W9m4UsZ|kuQTiK`(Zrf)}G z^;3m{`GWK_O0tp$GD`^f**gd?Hf~jJ=juW%c7X#L+Hvm>B zoN4et{j$UGbU-d#uk+>h!1yFahR^+$bYUUQa`Vzg$@(R&j)QXdr_&i+?Q)FM0vW~) zai-7bO;ofYU^>=IGagBNJJ06VZ~#G9+(k5zwo9DXa-Wlro7$#}Wd*KZxXqA93E*U!DK-Xr z%x%%5V94M@esQ>3E+G3dEQFbY;~Nfcjz;OU45N#Y;vrR(^b{<5mPADik<>z!2AX_2icWaPjZ znwr>6Uy9U_R|f49RxM^FlCRe?{13g-P1&vZ;J8 zY@Lh-?(xkeQ4(uXyK*-A5{8Q|vCF#e2+zLYW~Y@0?!I%JBgKRZV)RnKWhHXxK(LtfHaeUi+c?g83dh>6j?Mw}y$ywMBtGYQD2!GQW zI3hnO^mL|nfDk48nMNtqUKH%RY9UPy(K9%1TXRWHRYAwb^~PXA0^48A)vq%H0Gifi z9E$Ze;5@5fCtlxjOE@c6Q?BDQU)Ie{qte!HE}@!0@unu5{=}`WWoRAxUrSJao+)-R>bnAt4p>%qbr;?tuGsrHjVkFH>$|?TPG33MP zuyu>h$Qo0cUsy~HO9#y~lf$-xDVjmkbNvJ&E2|StH?4q}1^ZrS|5_nP zF4m{dVXZ2IF@yv~vER4-U=@&!AwbuLwp# zeAOd=`}{Nv~;SZII17u9FsyY&`Gep(fb%N`)p7t4qF)>J8DsxMJjz6-l$_aH&PnAhWy7k+j@+>T zDs_pwr7c1ye8JLzI48FlRi^C~z`W<{KG#uUWW=WU#Nrk!l2l6eLNb@(N=2L(NT#C{ zSHzS<%7?l_oSLIkn&z&CHe=ayUi%PgbP&xDPUh_7Dn&K3Q4i(*zUrQD3>Qz84kx;8 zosGLKCCLMS`_%qk(}E>Z2vTnQY$AjvjFSAfP>5Moc>>n$wLP;(t5d`+051(GTl=~a zqDJAbO>hxTeF8sQN!X+_@DKUjc>0xwA~0<%-g_c!8Mo*yqSoom`Y`u3NU9KPG*pS@LEVq=QqDyS& zagXCHsN(Z-z?MY`d-bLbz;p3Y{`~QX{*YJ_uOf+vd)DFH5ZLn9qmh#Hx}#FiuXIT~ zwFXXZ=pa7cMO427Pl6Tua|j8Yl1j-?@kDC?-msWuylu9w%g)RC=GVeNe8kJ6{JH>6 zaLtN@SXho!T4!f4@*NC$HnvCyn-RS)GAzZN%gF<~n1s0n_3+&T;ITAC*$fnc%t=&hbeZE8SH znvyMFrbKam+zRU+FlC;FeUOU58Sv~qo<4*H%bDilujfV^MSmF_SJsz3PfApr#5+lD zO(aW#gCsG;s;EyHa{oTHG|+0N{30ZQxWKx`<|OraYh@FGBU11dB@B(iE;U>Jln@vG ze!wk{d&&e`P~4lGB07J?{K`}glp1(XL^9~cF!-4AhBws(++ec8Tir~yH=5Kr4>3(h zi2Q(xh6v!>KWXf=9%01Bly@6ee!R`Oi!LZ!?c-ky{X1>j8Z(ynD?jzu4;R$pforBO z$6b+|WqWX}5DpU^@Q7P@3~hs@Kb_y;*J?aEBUw!rQ&~$QhNW&EMh! z=c?LtM^)Dc0LK)y@DGKVTRE>HjLeuo+Bj9TeeqW&g{Uko&l!&xvYq2SFwc6QnO;RP z1mE+bU*ZyIla7SHmOR+04xJu7zWon_E&UL}Z-NN;G@ss6qPb|XCC%@+_&zV-HPM`w zaKuF*=TB9%ZDrgi_2N)J6E748iBCEtj^~Jt32oy$^ztb-QYLE;a$c7LnTGNpJp|C} zBD2BV3UvVf!V!n}%9poQz7reYuBY!0`;`Gafhqtlcx8h4ZzEA%mM$UJyH{bYp?m#3 zncm{-uoc;~o@|d0!f!Yicu*yvJ0zIyKdwXJ6LxRx(I5_@?M7(jOFYESa1heNt zJKr^=lA-PSXit8`1x>rXVM^nOB^Nvbf^v;Q6g*!#**LG2Lndgzh9WsvO^r7)){*0l zar?8U7CY*a3w=GWc8GexxQ3#bELpcH{F&;$AA>c*zP{b}UCBb;`#FFL4pEZ0{1`yR zE{1Ic>1||PTl?kmILfVU44@96vPAu@xt^s-70%F=irb{qw%5QtdFjx@$i4g+`>1sC z*?jjpy8Vbqp;DUD=;P6=58Q01&ANK*LGq>gIr(D2YfrdL4 z)5gf|*lbuXdm=NY;ytW#-H%{#ZHy``ho_#aiZ?T3zznsx6F}5jh2a_75Hpi6MUxFx zOew<7XfBk0NRv9K7p`U_sRSB3IWt^xhvtpbUoK(-`$soBcA4pCY9e}cH~<%=kl#j= z0_`s&Lt^JV9vqsRDJ*L-OKjI~EjuAxdSU4i6tGGIam}g{yUu6tgEHY$JymJRM9s2u zJ$bj)|9HVqpEEe-DW6=;N|gx}eXX_r=4X?P)VHDLa>R;F?#>Efprvu(a6DV=d0gX> zZ$R|`k!B%_QJ(jMsyHN#Env_RA-p9lc3dUhk9*{oGLCP0YrwAkNWl3zUIt*8cbxfx zV{F5_of{X1>Ug6cEeM*aKG6o=b5as@cS`9_xs$+B-GS5QqjX?F zPk5KY)0h~YU@Yw)RzYygNMlkrsGb{ZDF<*tM0LbXwVl|@1-X}GBVU$9sZWlUS>;Q1 zw6_Zjgq>L(%6wza2LM(Ke!+o{maL`>cy~#kx~&}O;nYA4oq&x8YQ=^s41v65ivIJX zqv4-ZsxKBoM&THv_@J4i=W^F*qn`ukJzJM6ut`{JZ-(vNgd}hv$vHKMBH?*_pMS`e zfFd9vJu!;~jD%CkU4gLmp{t{2vo7z_A5VL4sJGrp7uK&;$$-AtYJVgErilsHM|pMk zw36Hxui2w=x!)3O;ZJz3M$&<~eAM_OESD{cQ7ebk-zrhoFgz>6Y+psuqYO)hNJ}I& zkwk;jbc<+pMpj%uf|fA8Xj}>OKHfSLhROIOAIbA6kzgv@x_YA6n9o{?bDQg4^$&CS zu(P|!u`;o5W&oQ6I6+~Tno6O{h z<_vZ5O|Z@OAUr7%cxoj_oi9gc@Cw!V6t&khbmw%}U@-v!Tj@&hvJpMK!&aEHSMF7* zW2ZgVLq@a~f92UdOH0C}IuppLO#J-a8$+12vHkXv69D38nnuHW#3;xRbW=Ty?HXYt zOJ+lBkQ^W#A#FAQ1dn_hM`HBw#oC`piNdUa5+oaG^UqBVRCQKRcX&OoNQ{!kK`l;N zA5cPhzPYLgOsVO}K-+xJwjGX9iG&gRSLKD;y5TS0Vrt{W^&RTWb zngwO114u4zvIKY~z_|P^&hYK5{@Z(SEwr^vfQai`%v>#K7?ZjQO;1O1I{j4FVy5V_ z?F!tfdD?`$f>U8V`!tEB3DUzhw<1Kiao#x>?}syxm34r%`Gs*^*CJ|Lh&pUvsYmwto5g_*r|1pjQe8p9jKcCucVrRu z0nV2)fv_ZjOYQOtk7Zo##T8gU30XpF4}h8|9QQy~F5F!&SaKTaRbw;*ne%VZ!D4W- zY3bpi_Kw-dm}2$DIWVC4$Z&881F*EvkLaGnX8Q6Zv&EuK?bDg|#02;aTxMIg3#w`f zZTabIxw-o5v%}sxUYW|Zmw+0)6?>&OeYpX)t>P_gxdB5%cz7MRrHI;Idb*x)8elJt zz6l!#mrB_*XpT3d={AqzUkXlJmBUMou)mM<;%D|02U*K&%aaisfmGhx8HQKKc2l;a z9O4z~FL$1(2K{p%Wc5IoVCqu~=@?dVkO6wJPyC9qL$d#nC5Rav;LnSM#o@|wt%CFM zG}xGyX+qAXai9h?g}#-_b<|+l0XTnvL*9y`OM9ckI*Iu@p1nqLqtw>ak7L8}x*)k; zx{**znQ)Y4VS1C5x%b$1{bgnsd^guA2x1B=Y@V2QQ*SKIj){aR!$?4Uq}x^n?mD8^KR12DOLoD7lULIM4b)u4PNE)uELQ`& z!V6vCDVy7EaHJ=FH)Dk~UajhF#z5t_UTG8T#Rw94*6LQ`#WF>`+YRryZH1xaI^vv| z7|t7ndCQcJ3(ZjaV_ROc0G&#%?v=L*CI+lnZtF{J;YNXX9 z_=7!>spt+^xSXT;ts(8Dwa`3}>tno)=U?Gc5t1hn*ZJ{=rqxNYtt2tdkGst+!0TNo zcQsh_%LW4Gq-^0`LjY7uM#pQbz2cfb#dqj^c-u>IpYeYqjwg~o#N|# zvsPoZ`YD+VI4PK!xWD_a@j276A!T*W;v2|1P@BnxE1u(=GpYgd5s@l$a{}fUMz&%BcSdY)Qx<~BAuF#RblC3b|V$1OA(ddKkFzue0bPq42`w+yb zN20yYFwyXD1)<|GXd(N(yJPAUaom zrybPx-lF)+uwxd4n8Ux(bW5uH_j`xI>NnFODP$MLTA0_F33x6_sqcTNx)PodF>&&#s1UPR|F2(a+4G!^Q z1>jaOK}tAvrc^>HDD9|c&eA0hA;bQLh}x!QCU24=fVj2At_m~q#1aI{U2tmkh}wc! z>}*IJ%4r~Y-6o~wt6E$Toie{KDirD6q#QgHZdaoLZG%6GEb2zflJAdz5ni#-LO zt)Zm}$t3omS8CMIO>Uo;c^&xfa1PpZmoz)+@(@Ihi-Zs16^_hg_OdJHB>Ezo^W z0!@P-fUI2!-2v4f34DAud&&jkq8~94A@YDB>0<6R@I0Cj-pDQF9Dc)CeW0YmX=zopF zo1_u7W%>x-J~)-Qr3(K-j1K)4PO0#>j%olZEoOY1pw_gqY%A>iR%odBalRXso74+7 z^55TlOUK%okWR?u-j?iVvj^IU?+{5)TkSp#-agum!F@dBR?0d%*u5`7^kf)*83*{j z-*3I;6?kIbSMx`5f|B<#6{6`unAh8B748$<$pC!z5=8@!5fp^F+zPV$YZ5p1IBhF9znoHB-JimF zS;u9Sb_n76m8dp?qde2!osja`2h;gxnK$tC?qWU{>ekYdDXEu>osaX7IKCRw+QZ~f zLKC`Y$~o?Z)1=A=UY&b%$O*!rIZ^qqpfB~w+nhL`f8)Ky^DVoURT{*)@{w>Gyu>9_ zGYAuH$+I@Wbj7-%b+Of7|APZD{{E94F8J@cnO0 z>&XMNCQx@~YxgWDbIkt)g8#Foqw~8cITAf(+xuUGky}ZGh+rp-_Vfxp+Hf>Y#c*PI zHr#M*b7(GW8n4P@%{x#O3LC--f9=1W58I_mE(~q(U>fd9@clCUQA9Cc&sNtEwNtCW zusU0!;rR$~y?41YIKq}6Sg zRt4-J3JOtGJw*T`ZVh{CUkYqi=?nu5sw^};hhVUT_a4{*z8@BgHF<-sE^DcXJ;Zkf zKk#>!TDwlDu3rky!6WL5Hm)ujh`nEtU=Pumih=+?dww`7TLiqubI*FO{u~T~>q8I4 zi*@lo=-J-avekaIQZLZ(nZ7sVwb#8=oTbNaa%*wn!V1OIIl@+`f{HZVBFm{DV?{>+XMx=dEBP1muE5vARhZ z){~)n^K=-lBtSA0Z&i)amaB&I4`pxxi3>HBLcb%ggfT!?-NWoD1gl|04A2F>wBP`2 z)&wM8K!0+A_T%r>RFmcflNWVgy`O{EWpx}(r|IwVr?^yzL5`2sT#$Mm`g?9daHG19Ub|plk7Tv~2cWj23WD`CtOo3hY?_{E4ExyPVC3}f-rdM1+MBcSiLbc4xR#=R4^6UG2d4c^S7*Q8LEQp?j2kjK>H_x?xf5#KQnedi^HG(@qtHhJZNWK^a9@`t ztHuVMYXkdeLwX>QTRwXKJv7)Sjt!#;aZN|0N0eDcEU=WSO;WBONJ$VuiZuXlAc6R= z+~p^0XiP%P;_HZkr@-fGX4U!AU|Wk>*nc| z6{UqOlZy`&Od;=;MkAY)_5+&ZXhJdR&Tfi3;DA)O#pAh= zh*?A9MswQmzo#NlDvG&9Y!$1h)c+`?WasCbVZRd?lVuh0;jQ;B66Z`W!ljYx*feJx zccK9wBD8Gp=Y#gzb}$9N|Ms+SsN{C$vnTbs^)<8GU$pOmzOXT&7#$~Mc%WP_{&10n zv!cwH_%cqysKTHq`#VZOJI0XsbU;Cg^7e0RD`$O7po>;$<=+y@Q-sA+8p2ck8x~oQ z-5jAk-BOq);-B#~7;;EuuQMEem?qt2axkuB9r_m{b6PU4u_yrOyaF+jxQjAJIYe1u zfiu@FJv!%W>W{iOc6ZXULjVq`VbEz_1Rr3i0wKJ2e?I~oB)F{?c!FrJ07r&?vr0y` z1l&yKqIvb_X;_P1ECKg^Vr4VA&4lAyHMqFG3GPfX5)zy! zTbE+F7Q8MLqr~dsp=b1Wqhqw6wmWzHAtA0x%vExdj4ZA#s`BU6Mvw3mGVR$1dOus< za_A)1x`~lE=}^~M#YsElXW|2CF~)<8rGSt>&QXb`SuTLPwcMPXZI`}WxK=$1X}Tm% zRV>R+g>#oIT{E!jY-3kWnZK8G{mcV=Z0h2i`Jg0nGXMyKIat_=bI z@`3KcDfI4BFC0?-LuJit+lxS5C%a7= z+yM~#etZ5qrG;4QNS82>m5Fugs^}vE388QGiv&^gryGkHEI8;*VJ;R|F@=T(Ubbhc z^2WAz+=#qD!W(ioFpvMSMA%^wscT2HR4bOz4iO+*5?o0(_jkG=l>N<0J^={7%vrJ+iIkAe z^N|44AYyb;;WEthCIrX3A`_}EN`(%SzQijo$lpj1l~5t_GKB~hI&$HKbHm=p$slo@ zI$VyM{CT(-hf~ywo@xd=^Sij_0qcmt2u5dz?**u?T4fJxHV}GJ8M+)1o-R}?Q3he{ zu6r6Jn~3T6%xTJ&GVFKt)Ot1kX|9^?j#_<@7c0ijKg2gR^bv5dug410zc?txqd#i8J|d+xmg0p6Oz(jD+5 z^L(sPo9)j;CI;uFKdBM{ych~Gn!WE=8q#7UM|eY|RSw%fJanP16d_e103csRGeAu- zh8pHmR^$2=ll1S_qV^;F(FT0%g6Ni_yi^;3jmgmABELY8Fq4HqyOIoUa;AXfTLiJ2 zGU#EMG z3_*@-kILf**VA!aBP90_io^UmjEyA1P-oO}WqM)Em##B-T7E?p&j*MWqD8u6CG?k4 zy)ucU$!3>MdRrGCjqKe{H?NrSL}YIY1va>uDttp8ohkXif(k^Iq4_7S=L%<7S){#T z!ON7KLbov_oD<;a2La4_pkvN{rdw{g6vl;I5nZ(8J%tzdMN9RcGmcwRn=7!VZ;uqfgoh)3w2QH)2&vuyE zrruo!BZJW`bB2U$>7D6~UzQ|ne@ko$Bw%AwcBsFPRz-J@Qh!XjVgl~xxPROES*GPV z88I8}F!V6tWaIcwnJ2;wP_$4}z}`pu-k!Ogrn0;57iaCbKLK_UH?da}vmNy%1(1qk3X(VAbEqQ^>8!9OD4X_F$i#cKtTs2I z?jU+Xpb=u^(2MzAGq_=cMo)I8rp?5l7{ZIZ6Z%zG%00@Kyg2WV+XSI3!_{O(+UTJi zQaVCwfV9v26!PnN*Ok5bv10Tmwu4ZZ;p2nN)vj9IsM(sJRrs==+!r;H> z>{hwXbCuXi7h6MducyXQo>kMHcJ9iu!zHxd5G-J6LnFseNZ{k)WWB}j?d?Cor3Is^ z8ddbIq^O*}k=L|w(Z2%9V)^=m4!HO^68kL^CK3_k5Qyi1 z=1@c@JGz1|+yDz%4?S2nkpl{o5TB4J60j6N8e&1FOzspZD6A5xtQZQ93EG{AmD$wK zPEcDpc2H-DihqY-M8V@IWJmlT9kh=W9o;vxN$i`LEkp<=^LcUJKZyyyst)&N#Pn+i}W`5(!&Z z|H$p8IZi6UhQxN}0V*R@7?x2d3Bl1fX|08t=YE>$Sc-CR*Z+Vmq#jbma`sGF+6e|P zB{qh=XsOCMHITB)#WH#Kkn(7Dyn{n@?7apn5>KaW%@ z_Dlp>(j(_lR0>cujPgAbKd)7w7!5q^B$2}nS37GAM-l-))hnqeA03~%ZyxORWiNa{JcYbMg;RRcg1+aMKX;ajd$QXPk{(%mlM$^|V! z_~P3EnvcKr?;vkge{k=t9YMzVyX0MMToJyBEARuT_NEDoczJE`w=sT<=mNgYao&AUKTAkuH}t%PhHzSzG0-iC|*%NO3#%@d%6NAC@r8-Z4yU&++{oHctnw zo*@Ay(BrRtHR%mmV9b~hPuodBBJdlx37IvHNTr5SMiPgHy>A!i(^(}7AMw~K4`11_ zqe~{)NeG0TMUxWK7P$wyF{L7~pD#3`eE@iyDtLDndCMq`-`t9u6|5pKK#v{6XmJIe zuK8x7KbuCdS4`KgH29UB6hpO@m6Gp&=f_#A>#X%wE4x-{hG-P8cJ=vn=9||>?do$3 z?0OwO{?x?&*i(UWQaggWBP^yZH&2kOj&Y93rEaUA#dj#D+G}0r^}ICh80_2&QvsAQ z2l+X)Albj1ET}b-r}`TQ)afzG9<9471+c)&aM8I7i2c)_SIVrGiIhSkgjTq7_V zO#_TEz-Rv^mI~4%=hc! z3JS4vsstGY*7N`ISi3lROW!`5HI;w2R994;+!h$6QW=au3540 zcVD;B$w#5H(w0`tJy$rdYjwC;+|yFc`ZF)C${h*m`C>aU_OE601kTj0M!jA2@8agi zU9$4JoDw~4;U%l6)W}I;rlLPzDJraQDcj-1CY-+Y!>v{SysRe(>MSmwqh&4WyjbT|0oMkTRqyLPcfE+rdh$f1^VF@2R+Dxv zFWGQhvUxZA@%g z)-^03j}IT< zJ1xOCfA-^p1+!zOE7vFVynW2OWzqt{>6=^MMM}(4p1tI#<|B2*buCxlxvYEKs59YS z(Uzmv&h5>4@x^eyqPlAC`opX&PwR71_Df!wvu~qU)w$!bj2@+)OpCVoohquXPC8$p zC422uSL+UyOHyrZOeS4d{g)&<#_)4xOz!%7R;~DxRQtMUqj|db-(8T4s#giJ=5VnS zv0rfafTxn@HR+E&e181T>)sVw+&<86{w3tJaeGAg_XBZG?nky(?L5Ci#6{2Gk#+EA zYiBV}zUEJ|d-G-F-j&?2I?Rz)(dWY`Q`LH~{ z$w~REK5{d6o-+S%sXXD*l$kYp7L68?ksswGztulqCiPNXyIO6|&jZS;)1REss_0{C zo>reWW$K6PU13*u`I&u|H#(bNWA|R}A7i!2$G4E|23%6EzFkR$>As5==)4lxF(1yr z^E*m1^YdI1OHvgyT&#=?3@r`J42=y9OwEifrfX+1sc^t~;h9WJfGawH=c33nn!}Do zv9AZ73PR#ZCb$kVv5Q5{;B%6b7#P*uj;*m`Q&U(i;lib*eB;k`ftmzJ8Fywy&APtlX;U?6K|(r{^#$#oj!iv>!MQ Tuz@caeB#N(29D{IvzbHzeqttJ delta 17150 zcmZs?V{~9aw=Ejmwr$(CZQJ&a-7!1qxRZ|Ev27}({=G9>yWyqqi~Y%E+P zh9u0&BTOA>Bg5@r=QORxX#i;d*}d6;D- zNc06v%}u$@SWL}%IeDzuSh#t4Ejg?>IazpkS*d4B^Opg~DWhW|O3-<4LqLKqMzW zilnffkm`7Wf}`($F`96xJl{}(CX2&2W==bS0jVZnvsiHdLGEm32PYu#54EYar8@~X zPiiSRapoKyC@G*$!phE0!mMEFWbI+|?-Oy62noTtd$?JeI>PznnwyxIn3N!5ZGBWck)3oz}VR`3u{4{(YgQ6AF_0J_H;AE zOi~Ik{M12kvJ7-E7;s)5&Qxy5N+2qvLH-o(8c{u{=iIJTqi1C8umK|^Dw!0$CaK?s z;7Bc2Mdq|Yo*emOXip8s_U^hp0_`u)L$Aa^<))j%>lH~gO(-jcBW%0_sruJ>2NWfz zWp`)|%ez|(lxZO=o1Z>%4~Y(X_GqPy(AHA^iT2#=!(}OP>xxecitp5AHX!7SV8^}5 z80NUNc~!Cg8a-k~8u;njdEQ~>YAcrsa68FXvQX+ERWmBvHsW(psP#xcspd1M#bh@?6kl)Qfggg$|C=1VqLSbK=omD)BCv z^(bF)|-{+4foqc{22CD^%^{{5#eYARC4$VpUyD_b z8VSu`Ie7i|j%3;#8O`SPQ4Gu5&Xsi@4?Ji6MCxPM*Lo<2OYkeY{OjfTf{%LgMSio` zASHc8C2-gb85ivk1M%kY>UK*G`>+_rEiNB2GwwUsaB=8JPABK4Yb5G~=pb$x5a3<(dJL4d1DeeDYj& z^cH4K*x2~}O$@|0I|kvYAc9>FQWIyl@$ePwc9tPGfuA1#?BZyT*!r7mfh56K^bJUN zLP&DxZtPC(5Mq^tDqh++X3-+;0|}!$h@hVs{v@01+WF=UdMbV$e}+NOw*ioY}^4-~B@ zQeTHQ5kT1K{ui2#-XiRypsTRqCz_1_521?)SguxLx=04nbZ$PD-mx}LZ~EV!JSRcK z4bz>HAf|I$Nm9)Xl2`ZhayZDArq(?B`RA1J5IG%EY`0jMqkAMQg3zBKO=Q=vN5^dX zecU`yaF_vJ%4z2cSbfko&8wI+Arg6VByuF$b^y~|B-HUCaXCa>N_#jV9R2kjHcr6- zv+1t*=od^n89j!a+s|1Q6uVYEwgxjB3!0#F+%p_7Ws**^Wy|cZ=oN|!#6!$<@^sAf zb(~*{UB82EcPzcmT4L<@tc`sdy)Q9{)g~j-c}1vHaz#pKEO&VAQvrAoM~3+HUxI47 z#DFP+B8(TrQ&{jT=QKS@HVS1R_%Calk=fp*lw?kE{VSzn`KDA6ImD7W5xR&5IUHJ@ zh=!6=**p}H$jZ#l!);P`qmmTu-Z^gg!uCD1wAN zLZt$^!cr9RX9K+v0T<`gmambjdBq)*?o?_$Ft#zF0;Ors&Pb+jLW_k9*N`Bi^aUFW z(o2!h;Z&F}tj5Vp&7F>MlFrN^;JXOtZ07byaBY^rTjvOdCiZ5}4yEpEIxg?v09JXJ zJCXZ3XPX2&l*gXve2hR45g2hRaEs1aonuIRI?@8v(mSK%wyY?f8O*9FJ%i0<3ZK(< zyq}j+9l>egj`I_p(@KL?(!Z?-3RTsMDfHv1@~JuEew(ick7mR#0dRYdp|K|38Z;^UA<1Sf#d~L(Mn1X_DJ{W^b|D7v zj&-Dn6qjqi{rIE~#7ZFIRDvdSu-#-v2&)h%wVD$@H(x^xFS020D!D`x| zDl>kq+P7zt>dMXJxgVTe?MSb-$uZ~M<14Omk}AOz{(KLg67B7>uY)QSTi% ztXv?Fepa=KEvM{ZhU3-nNogT8`y?zNK}XdUUyiL5P9fY|NbQ^Mmb~QSfAjE=lO={z zA9kb}pV39cdHZAqSy{DX10a9V)wr-$$*EA_wpCD5ydK2RIht~e?Y~@}_Xw)=b?(A^ zpK)-f7#i3`w2>RHW$o^JmgXexISj$CY4752Ia>&+VJQ9nBj!*bfVXNybzBcd-DaOX znm-PNR5741j`rtcq|xjvX=$&)xC_r@5Cd!BM^MPQr@k;bW~@cE84H9UHC5k#mY=4Y=k z5=sNH7RP&DNY0(m5zwlgAbKcLz^v{ECtT|{S>Y1IEbA#Vhw78)dlQK+7O(qsdkwDG z^5Lm{ri>K=0W;UeKA>oIkKvdlDU)S0cG0-Exmn4kmoymiUruY=54Mr}@Qak0Fy>0HK;Llv!AVdgq9P1x=}xL0O4ElzUi$YI!&qD|ST z=!Pw%^2op;2ze5~Ok?LV(i3R2e0-v_ASLVz#kUF(#}vEmp(fn9>`OIqki zyhyI{ZQXtPKls}O{zQ{5!JgFC+E`gLeOL8khTo7~{(gTOP%p{sqJHKcam#{_FF^5i6mla(O8zQyn!In_iF_Ni1Vv0K)JKkWuHfKzmHRL z2Z3Y5xdEmL=mLDk!U8mqZG=PG0g}qAI^PU5*(o%cRFMog4IH07EMR;m46fvQj$41Ao9RaG%unW{mCwqp|0IMwhdTivfFxqW{Tp}(@64Q z>W6&$f}T7kl=)vWZT8eTews!aR2NcEj?`>6GB7so|L`P0iG=+h{gJYDbN3)&XJP#x zbYTngjfG1%)!}#v*GYW=Evvjbl;L1J#EIq zg9zxgj|9?j9%-9By((;FxSEs>V-svYo@poAG8}$aoze>(+_@x+-XD^pus#~Jc;F9( z#$k#JW>umV&rY#AiW0n~CS@+_I4xx^=D2;9w-}@j1c3&ER4a+booXwM2WAKpY;_7` zh}bzqC?-u>=S@KtwV^OH zU`MXyU_V75uNBciXX*NQlJI8vgMs=w5eOYLOa&>_bgr+zSNx>UQrzmIFbcu$bhlux ziAs|`BFbzv=V?X<)KO%wAJ1Y$-=vSJA2r?)POkEjn9n=Pc_L`hS~v3-DKv<# zhv$9( z8t=^d6x#?)rP}BoxRp!EUG4#$J%KU}p0xNy9Te*xmiArQ7p;0v>mxIXMuO0*>(2cB zj}13x_7PD_{m)22KAvvjk#A}o8oentE2xOsZOIlrdUrYdKQ6tYN&X%X9$1ie=wV%E z_8U4$j+S8SHqSSVIkU-GX`@FBNruBEfapSL{P?ecls&umzAL0f zvGWW6G^XZhn~z7X*m8BDVU-IgYvZyST~lj0iZg8kxUWWwfE&#Q8K-(yNiRlfG%<8Z zmL)ij^=OLnF{M#^JECQrBbcVho@!5dY%jrN*r!{`T5_j6) zehwDPK5wOCLsc#hIiiWEB7<(FpbG)t(I5V&3=Fq>WEk z>!rVT&2EwEkxHjz`EDf*@vNdm@G9)og0vgOVWlh%!NyMU@a2qtk^F(U zjG+`R@cL&M?l5hOhS4qKsW+ge;47`gGQib?^lZ!oUc*ttW-~YAxLRDWin8-(5$_Yq zJ}#F(2}b4c_af+uZ$yaR9*Er$gtRHo%e^2g{`MQW2_Hlz+;%i(61KFa1iraGQC5(0 z_VpS4D!DjTTbBe)xcWCQh_? z1I&?gg&86yC7XOZe@bSv+R~L1Y(AH9IByWr>x%7 zYRL3c-8*$&Ep{WnQ<*W7+Q%K)Ux`Tg5)HZn2Va&RNV3&uq=G|x2vxXs_|YD9xCs#_WUPy&D+AKi%YksJM7>Kpy#S* z+!GnEba>e9!$`7i<=j`gzHzbKwvcw!NwD%^E4VdDQ9MT>fU(+Yk-}z}%6H8vmrB$p zD2NX^mh`bKU1@fe9rGH zgqPq1Vr2YGTYr|=_?a|s@9DG&OxDbt-CDTlmf&^^lCp-^ql^kRRgU$o?>d0Ryts0G zU&gi;FD*2VSBqR;0oSrt11dm~uDWxZ?^^r>))=OL+wB=t%NTBdyWfjDPtQKTR^AZi z9KF6mbi-H23(3MVH2(wje0G0{+3HUM*cJ-}j|x$AZ_c_2^mt;Jt`tK7X?t$<-)9l` z_C`vVL_N0oqN7ksgnR&y1aWEwY)1EU2KLD&{K>5y-amjEVRWgZ@X$zPrWd&U;elsV(qtS2-;|6%(ifIBflq zn(?;yf=&tKUj*1b+Sy?q&H|vyGZrM*YZmzOrt-V1Hag z_kbhqfu5&cqVPBV<@XU!&0<4Heg8w;mqiSh@i-2MLOlQ+u5sG#k8M+i>_0XyaWwGZcB#Smq-v+mtQoUb_wY`i0z5ZG!Kj9%sbczMgn0JB$ng-Ntw2W}>H| zvvHZ0_xke|%Y~8{%L&V+XTzB#WY2|?)xnO(*QD-6Sol=r^qj#>EA>amHpMQ>1?@vB z(qC8SA9aAgt?Nn@=rB&8MGGq|$HUTPd+l${xHtlrr=07puD{#(up)zEOeN?MEFM)$S0ya9 z!HCTISv}z)Zty7GKQ|c11W7m>{c$=le-Oy(oxEw3Me%uzJvhAf*Gy$qwywW79EyLM z=u4kLRPlzd6i!R3%UqY;4dPoAhsv9s$e#Q}0rLusXu)J#T+o#orb1OvV1oV}FGGJz z(2v`6(LsT7Wcck2v~#37C5X-%vr&C2GnCSwJ>@ahyai1@1^&Z!fBaA7SU)}wnQA^KiGP##DS@r%OqW_zmj zQPSjk`I4AaOtn9A(2yNBUI`+`j#|oQKnWg5VsUfQkmZ+6{BzWeH;M$4-Ti}65PgSH z@y}~c1i+|Bh#tA3W1wao>XL|{LgsiXanckeQRf!G#i2CR2!;iP*7=f{p=vHSTZ^Dd zrVc5A$I`3`c!iS13MKx)`bZVNp&?6#ygPc-mqyveI}dTkP_ zrCp8tpMvlWtFtzhh3d|i4PXK4y=0;XoT?_v>L$P2!+km`wY5p5 z0CAiTTq%TKx#WUFS~g73S}a<=k$>xIhfx&1dt*^_i%h-N5w~AP1Q)XGV1;qmqm0?y zfkm1W`U>RvJP%{AzDvsJZxzAVlpmY^e1sEUmBC^(>)1lJTsz)pSbLbVipT%PAT#Gw z#dTO{NKSv<`lD!@fRO_Xq1)v*E5|b!HDJ>A>lNdVbz7nO;vmkOYD$0IsX#%nKK^Ac z;^AYrJ(75A+AYo6Ta^8Wq|O|nd9LPHVQrM1Fj4yL`^Lkh+JPi|E=P-W>Gx7FoRsWh z)^2)q_Y0iT0KOW=-79cT5dP|j>3!5Y+(7(bNVS)kRxTPf$A@#0-%#_1DMoKh{dqh8u{k;BIh(sV-Vb;0uJZ8sob4Hb_vJMO^UW0^g;< zm8bI6^c2DQIED!?Cs2NUr*s2{HuNZoKc*?kq0{lfhBEVB z4xvqqTLVI0wt392gAfHesXDZ1^onLb%WI|&?sN-|{uHY7b_C?u0Gs4O=rOlx{E*sJ zZ)Qqu;5|H4scM3*wpg?JvStuS{TRuf@f4g+({vC>LfqYgd(+AW6vCd7|E0d@& z@dylttymS|S>|WttRcu#$aV3W-pyB}HF@NmL(00>@i6sJtfD^kBF?Sl>0+?(_M+`M znSdk?Vbrp{#b2TN-^n3Nj*^~CYKv)~T~ZV<7Rrc~2bR3xus3mTXf+!OzmT*rzw2r3 z!1jV|TXA5n;6ksYQUa0W6(RJV6PA#9RM}Q4ncHrwKYzb+jWq}ti}5BMTTlRD<^!#K zRVmd-hlD;v3W_{xC{ke?k+2b_XCg(<>&@l)V+a!*z9$o2$U!$Ysp`~%9XQ5+R7MQD zq{JT*ays%h!~N7Le`&TUi%&eZf1eE;^JHB2^Zv(??ji|$P5>N4!+`qY%ezfOH|ahS zC!{e=cWHGTgu{bEj?+FR-vB6;7WO&|PHu_6(07R`{>~Ye#+fUK{xA7Hqo|{BtW+2# zVgk0p`o;nuYG4sL7Am`T?l2MJ*CD?>GLOuto(nT8fb@_Ye zDiytyILO<=I)F)qmof6bJ_F&OmaB0LlWc)Suz0ihs0)=0HHXM3f}9=olo9o1$2D@{ zVGXKZOfpN}?~(G*`@*u~CU~va4x{888aU;rBhjNYt&iYT1_c)*vhgzT>@k0Gce#wd z!^SbC9%l&%Q_cvI&kibV%_vK0Dw*SVyms4J(aUhp2LiszWej`+os{)CSH@86jK&S78hPNYMM~+{d!_`_tn@_ohc=i^&9Lun>;@T`!K6K$+gfNFm|6q7|_066f ztGF}@mC-X~T1ROI%0M(0hOJI8stOEtgBa{fClm z-$I%aQ93t|o5>c)8fzut$6iV4X8@|;v3P~ussASnf=*z{R2|0gm>^F*LYc1lySnFg z+KL23{;;(^y9wiYzbG*-=UDmQHoTOnet{^sK0sRjr|k0B)Z|h2I#>R0?I0dO4yg)B zI0E_a`M(Y12I2OCThvV^S%R-r$FdGl*=GiMa5kb$Miv#bL8iAk%#nNQ1P9)daiUvH z23mRRkc}h#NWkGLhOq$k@;T6Qm$sZ&o}8f+Fzmv(#R^q7*x2=t14>{!$w*s%)Gq8x;xLY1#xd zeo8LTNCp1&3yidP$21m)(ToXV8aL~6*H4fj`QNyDrAVL=+hv}*@`xb*)1 zaY14e4E=-dEznKk{2)fmdY+T-;~riM&FPmb1Sp+JERtq+X_DHq8^>{?jznXn{%p+p>%8z<{ix!v z&*U%RvoPxT5ui>48^`0{)S7u&fm4V)>%GnpPHu-M37HrAp$oYh>Mx3?K1fqG#=np8 zVJ~SSor?y(#{2frqZPl1tBQkf1jO+%!r7+a+4Jobc`hrk#f7lN9SA+LOM9O2P&~)B zKo_J1eoHRuaO_gD{qkHj2=JeM#1CM*b*YD1`1MXE%s$}A5>o+-X61@|IrTFjv+$X^ zHh4a=UqV>Ajd6tIm9}KZBlzD4S&JGm*z{d4ks`u3pxHYa%^NaBadU9a#36?rz z9%6VpyVoDgU^JT=F7ultLjoJ4wTRD#sz<$QtsyLSXg$eFkcY6*Cy5RK+Y!@v9sHBP zdOiFT9rQ7rK(bt$W*!JFH9n}ey2pH^!~$znlVa>K!fgwH)|A`83qXzVj4um~_{6%$ z3!TTeFo%|NCOj8hYI)FCo4IN{^x{04mRe-3e}`Ncpp07*bgDP`=ev zamuQthX0DKNnzr!;p%PCOW%E_B3xB`EIn}BVOxoBG(g`;t=#a(x6P(?D;xC8n((LO zeaAMzoYGaT$BtT`jZMc!gOj9frmfCb)($OE9&M23e!ZCq{dtJBW9~TnlbBSH@-@e) zsp1k93#=Q@=52r}s#FnN)+y`j%(=GavsJA?Kf7GvTjm-h zf+3&q>wXIvlE{Qa7je@=_{|S__lLrEd1)2y06<7IH+BH_h0lDdK2wk?K)s4!`ijNk z(dI*h82)Y7yqZ-J9Q!NVBULC7D~mlSdRVhcgn*GjM^;bx7wOm4z_)un9$XVAN)3(Y z%N(eqA&+gPY(Hk3Jak-tGefj<#B}cmK#|d?7{oXNff!T~lx zFlj^++X*&Ar`FtG+;6D~q0#W_HY~=^(l|4$6$}Vw@U1EZn(BkP+v9v#=)2PGQ#(dz zL2kJfGd^h=nUkmNii@WICd2UumBpMiQD9B?9Eo31m?iRMr;lVm2w^6HY85-Y)QHdc zdo9J8gfkVR;y@vYD|<Z0=31oTK3(`FmC_Lp`u;xLoc{uljgF} zcolKVt%r$UEY&TRyey!HfZ|>>4kr(h;=T|5oET&*t>klTdODbp9hBb>=>i9eKeAWp zVeuCsFMsbLe$A5mavjRF1lsaj*^3|Ks6cQx^~4tIK4)siSQY0(@cRel;Eh_i`z1g< z+>tDtd?fKJtp6rBY{?%1;yxd~56pLg2fh!XSH(NVan6OeYFRxnfENY}QLJt!8TXxd zxIr~?L#nR^joi?S|HOH5ZhH_N7S773ETELBEX$qu zij}F124pV$z|CM>(_zjvCt%?TJQK)JY}s&rErc*$bYD;|a91fFH%7AjGK`^xg~zFY zbOtwFaej1@AzVc@g(XDg4XW~Zth@ewLSOg$Yz;B<)ha9qfJN`!gyy>AFsb*H zOOAxD(ac{ojElntd#`^C#387$i~=DTw}_9@eE4*|+u3QEliL*yN=ZjwYXeYYE0>$@ zwz+XWk7cKUVyCg4wwwrRa`^o*Ci25MVYFwCyAR9+<17G8A(y*Ute%HRF4(F+u9D@?hH=!V#9x>5aFN`9(ou=) z49lA0nXtUKsh(?@gmJ2zrpCHG7{mip+{gFj{bA-ZDX^OnR>pKpP=dO4UREiRL&D&Z z|I384j~=#5gFKq7%fsClomQj= zVWJyMWl(RBnRW3yVv_st8otqC54&l>D9L#7FT6|3TaA43)vF+~O^X3vcJV5gxH?di17x0tfC;6{ggc+A zg3Fzx%;*qrRLgyLFX44+Wn92m&p0JIASDQnHfhc`JS`=1T7A?mJ{IIpv7Sr9fE(@? z1jDwwYNm*Q)Hl2KXY2bT*XP@S8X4)Ko^y#5l7@(?C;;;m#BGHWP-x0}ZNk~%*=Bh- z1>qn&2(q<_kqMy9@$Y)H2g8)Mqb{Uvu74aQZK|l{ZAzTYr#GcMd_2hHd(h&|9yN5yEtkoS;h4Ns}Tx->%y z8A(WjVP;kw z$Aa?ugB}R=I~S~jS7Crf`3-h*A7aqrDRn#U1-4FJsZ|*^5gT@CDE!Q&=u(GI;RdvV ze=M8;s1W<*H2$0=aa-o&<769u%R-wQJkVW>x~jTvZN`hJ!z9-0hg(nrI?=|;)`^j^ z-~!11jLk$ttusj4^)=x|Ob~(e$7Lu(eSZ03XNiiNf0o`yhH^)T{Fo`?1%VK=|1g*( z_{fvNnt_;xRCH02?U#(*C0MlDHNeoa#>?lm3_$z7uxEfO=)TSV%*%nE4)Wp+`!uIo z>e3JV+cp`bCO9Qh&w{CnKL^pXUT>(e*8u$uB1?x)yqFNeC@H_!{_nYq7^&P*!#0@3 zm!mfPN7q7&2*G$lI?BuOu39vQrQdC{T}MjH)Rghwa0|)$7vo?chha=Fa#bpE`DvPO zNR5J7r9wcF-)Z+xopzA)$M_w5q8?l0nwk?@w2og(tlTEPIcII$i$&9Hz=%_S6Ok8VMRv{ zyl&EcS6obe;oxIXIkw`rP#mXuO5|oNpwn2)1WzPJkzT9D6W|Yc6A{G4)*!eF{yK@) zVoNg>2k+NrD_ed%9TRu&8NE#MgaHU|Ua9lpmYSS2nr%m~v^l>7NlZ#L%SY53H`eICx>60qVr{K%}i_6rk1P{5k4Z zh>ApDWcQ5tOk>uC`FP?>C1z?!z00R^fzIv&Zs3ueM|C-Q zs<1xjh@GuFi(%<5myDN!NB#G)3mdx$GTW;pdd!0~1fnnQ?Zt%{MAt2~?tmGap$TYj z_xT&S9)8cUphuy7E@4&f%2%&dDkeHZ=iBq*q+Df7t zvv_HGTB6q67ty>45%Fw9a>se0pKw|>hI{2!okn$rU|%~|YWm(>ArEzsUS|p$2LiXR zXL~E~NNV-r)N&OX_WM6oVyTCY_C979bo&Ob(KE&;DZPVEsFKT%z-rD8Hiv}EFp5g# zvt8?@l7Kd*qtvTqN9-}=D#}b2W4a#-Ol@FZ2+4mA6q`4f{;D)9ws&f%G1oY$4ya{G zCUg6knl7d=f5zF-mJduMh`%P5RKJ679xobbgCkxzuRGE3pH+XqQR{&9i0x#4TdYh7 zsTzBsPPwAuJ@I`D&N3gCD#f{lV8q7N1AF82E(bJ4r)0IM>{UK#-38)@gkJxKAh$S! zcT*~4S}o%tJLj=Yp;t=SwNc5t%!?Jg+g9v5o791%yjk<_Vv^qu4~A)I{^? z+W{zjy1!*mN1-gI1!P}{i6%zb)A`D+QBnrz>Z#&}7~VUpzqVh#E{&8MNAQj4uLW?7 z-v>G1|12YwDI0>!4>0bK`vPOlM(?Cxy~oC^POgX*dnHmfZgyOWOXO_ec{WIoGQ%Q_ z&}XpsK!H_3X0}881!=+FS$?tYv z;BfkfLf;z|R&J!fQW%`fnNHYk({yP9ukt7hQJY(O{ZJ`^lPG)2{&&}n7aOh^p9CJk z972gs6S||a>9-hJ$eCHB;~Cm;1wt@4Kqy0@k)deYh9xe1t8mI z;?z$YsIg}$?cosLFS;0bq157QwifeE*)qdZ_9NYhL24}+&pB4!K?8|!M)J#$DsJq-1YdS9VL zO;$NJ@hO1fEL>&n?+He0=N2M`8W0Biy&9oL6|@_qtZ>X_{zyN`uei7 zy7DN}DN0|)AT(oC%ZD@jLR9!W_L!;_G-2Q=qgqf0!VnJBKiLB?rV`)x^W6~*BUfI< z%}Xn^VdlPNOgZ zT45-@kXJiNbhi{_eKUQPiYD+Lp<&1>eZqS;)53{8xRz~0|8a7_?Lax@+fFyKJ2oa= zeZjP>)9w#(CsP}vXGX!Q??qeH<1ETT2!@cP->#$=#$}jiyQcVI4gn2Ha07?=RmlC;Z&e=L!YQ0(=cc?n^y(tYb{$3qnog#Q_N0yuLdh8#p zZ=!H11=+m0ZunWyqJ;X2#APjm*J~2Xa`RPkU6lCvW*NpaqM9z)!Xx1%PdV%m41YG9 z4=gYWJdlZBSAa2vmIp=|8@#!T+=7c!ofE@iMzIRaCF!)Y11*g%%(3FE5lxeQUKyFi zums3PA00wB+bO7FO^W;~0JJZj2+xJPs9bq&Tz%t~CyDu=C^}(>^UhnLH^|4{#>6Ia zOb6##9hdV$jn7Dh*>x{f?GF*0P|-u4+-0s;+$J>R#o(&ai;<~n>b>O<`@Cqi1xi!o z78h^sbZZ#}U=MAoK|?e^sD;hKM5cr?3z2rI)!`MrlAQ(qgc_-&w$G{O@ZT90LD;Ir zsSC+3R@w;*uvc03(wRyl1gq`5G)qv{7R#=0_N`@HP~mLl5TWiaWEj1o(OH;1EJooJ z!DfgV@hz8zqX=-zhC zD}LTI4GutElO};71^&EBor9ZY*}8ZQ`;nq8-2LVR$gW%-7mOC7d7Z@-^0a9mwQjqr zqcu@X0}_Q{?a*)@C6p361+^L3dImpEko)X|l?A4WmEtIS!O7?eu(Ej;UdRU4aAkE1 z^H+O#7a1&B8tZmU0_BPBZ|rP2ZJv099ds&&1SSivciw|>|pSJu62xdz`yYrx#=@$!j8yr}t!~iR>0^umc zTMWRcp%fp#r;%p+VTZ}?g;4eF>Fv=Nd|A)GYX;1|fO0tP>z}G0HMi&O`FtC3W?m#9 z4|+yqyn?y+o`50VXY07{9NRViRS<2|k1K;>kpiJ1J^E*HQtr>Y^AhY7{2oPN_>>SV zfM_aL+ifb+9JH-vzHtXf7B-MC!P=B`hi7kBHP+wacd~6y1S_<0Kk=X?tMN#%?f_Zc znSHRX4$8zNxK#;de4DlNz2!*9eWC6?@34Rkl-hCt==Wn2Q;B;B^q#pA6`Y zE)*oy9Lqxlgc0U4j_k5LLZHLwIbwA*KnOLcq=nUt1hWL(uZQHcX3-2!?Tmb-suxt+ z@l%`@XBIavkHthFfBat}v373!UTlWr9TZABG2O#Wgubcyc!wq|2~*2BqSx`~TOPyW zUeNuf`kHWNt9Ov8k$_*}kCJR|rhG1}gO*J%#v*4F=7Qz+fb;jc zw3ThK>#ddjWK-T|VQE}kZZNDoK6d~K^H_FOVdg;=nJ?v{7w1bxUp=%`cFXYnX z)Xp7%Kx-axd9Th>BL+8~gU)W>7bj1H&FY{4?~(26r)wdBk`7HZ$N7>`?Y9BCb;ohX z`icsN)T2|o?W)h{Sf3vhwy1%%4uXJgB^2RT^Vh>JX}Okc!z!j^Ecdn6dDBLT%c}8O z%lPm)10y-TeU!I}x+EvVyyHRmdU^Ph(m#=N`4sgdm!XWNefR8(jRNOgM~((OEx|Khqu>u;6jqP9Y(GM zBL5uXJ7nJ-qS9+L67BEC>^eY-y=6<`PyE&quZqYWTP&epFbro{@C?2sh~?%4CASR* zwJPKG!0)P}0h1GhAk+_>JgxSt(whX&eqWpd@;>o%Foew(?O57j_N3k}6V~rAFq8Kw z3Le%s{(_>yvthde(k%v3EupO*{pH75gduncyUBTy=eo_#5VcuhnQp)hkZmZ(V$x}~ptLKXQZ+n8Dd5e*Y>+OysKBV{4L73@@R{bP5 z8!>bJW_H_wa{eszb-N6x+WBzAfW%6mkf)W;(a=y5Ny(`D<-WMmH-T+b+|-TmG8GK- zu|x7~gPrAj%MyY4s?|_h%bPuJ4G+vlK zda62RT(iZNG{6eHe8v6-4;kdsKYfM0wrH94dSgO-v$#e{&&>wveh>7i+MrHHmP4~Y zw1$G*V%qxsl$7Q_Jkdu+?>tDgYGGJ6$`w$UylOPnPR1r#$luStw)$Q>(HS44Hj-g> zf(yCy8Ig-$C@61uuw%*nmoCCT@xl@ktroMOa$^OYcYe0J7)>RPw>G_-4jgMesitRh zAQhxqWkg7k9O@kyl8r={$w-8NdJQCNe-A|oadNb#7POkIYx(gKJw;ZJ4J;(j8=>-9hQcQL&#vc#hR4{jd*IA5cJijQhK0YU(3gt|T z#%j`;KrA)B7h7lHi>Ba>(f+C$`Lcw(M`2j!FA(u=_I+Ds6yp~#1&xKFV%#YcZUpXm z1-(>y_kO+ryVEjuogW%HOJEH#8QolZdW}kP>SEjs3>qBWZ=PC>0s{m=Rr`mi2z?+} zv@>B3C-BvP$tZ4u-Uq!iGGT5Lo`w7RL1Cj9&79dh+#QnJ(oFJF(ULY%z1oe`;$-(6(}m;%lErA`QaEg&wHXK20vFE|B+yZ z;{P{$`zPrSE=}5ZFLTF>mie9YGTNCwR!d=TG3k;X+7UB5ZO|? zY*uyB)6<+rUrhY#6+U#F`@i}@28%e$XPt?A3QxFBUUI=*N@0PH<{Q>|D}}EKetaW) zE9m$0Bc%wxJn^nn!c{{-~0oSkL_I!?u~q@J)4@sY6%xEjb;xwgW3P3oMNWPd){HviDODz&$e0H z``{ZM0nNEAVVq(Qt9hoUK1p_1@#L$+hMm(DZ{)mExYWz5^QoJW;mlp0xu9bl%BTD0 HGl>EKN}(@G diff --git a/mcstasscript/data/data.py b/mcstasscript/data/data.py index 43c4d9a5..84633cb8 100644 --- a/mcstasscript/data/data.py +++ b/mcstasscript/data/data.py @@ -155,6 +155,15 @@ def __init__(self, *args, **kwargs): self.log = False self.orders_of_mag = 300 self.colormap = "jet" + self.cut_max = 1 + self.cut_min = 0 + self.x_limit_multiplier = 1 + self.y_limit_multiplier = 1 + + self.custom_ylim_top = False + self.custom_ylim_bottom = False + self.custom_xlim_left = False + self.custom_xlim_right = False def set_options(self, **kwargs): """Set custom values for plotting preferences""" @@ -176,6 +185,35 @@ def set_options(self, **kwargs): if "colormap" in kwargs: self.colormap = kwargs["colormap"] + + if "cut_max" in kwargs: + self.cut_max = kwargs["cut_max"] + + if "cut_min" in kwargs: + self.cut_min = kwargs["cut_min"] + + if "x_axis_multiplier" in kwargs: + self.x_limit_multiplier = kwargs["x_axis_multiplier"] + + if "y_axis_multiplier" in kwargs: + self.y_limit_multiplier = kwargs["y_axis_multiplier"] + + if "top_lim" in kwargs: + self.top_lim = kwargs["top_lim"] + self.custom_ylim_top = True + + if "bottom_lim" in kwargs: + self.bottom_lim = kwargs["bottom_lim"] + self.custom_ylim_bottom = True + + if "left_lim" in kwargs: + self.left_lim = kwargs["left_lim"] + self.custom_xlim_left = True + + if "right_lim" in kwargs: + self.right_lim = kwargs["right_lim"] + self.custom_xlim_right = True + class McStasData: diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index f4f4197f..8cbb1c56 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -2,7 +2,6 @@ import numpy as np from mcstasscript.data.data import McStasMetaData from mcstasscript.data.data import McStasData -from docutils.io import InputError class ManagedMcrun: diff --git a/mcstasscript/interface/plotter.py b/mcstasscript/interface/plotter.py index ab837c2e..a1e4db3e 100644 --- a/mcstasscript/interface/plotter.py +++ b/mcstasscript/interface/plotter.py @@ -22,7 +22,7 @@ class make_plot: If a list is given, the plots appear individually. """ - def __init__(self, data_list): + def __init__(self, data_list, **kwargs): """ plots McStasData, single object or list of McStasData @@ -50,6 +50,9 @@ def __init__(self, data_list): number_of_plots = len(data_list) + if "fontsize" in kwargs: + plt.rcParams.update({'font.size': kwargs["fontsize"]}) + print("number of elements in data list = " + str(len(data_list))) index = -1 @@ -60,17 +63,22 @@ def __init__(self, data_list): if type(data.metadata.dimension) == int: fig = plt.figure(0) + x_axis_mult = data.plot_options.x_limit_multiplier # print(data.T) - x = data.xaxis + x = data.xaxis*x_axis_mult y = data.Intensity y_err = data.Error + #(fig, ax0) = plt.errorbar(x, y, yerr=y_err) plt.errorbar(x, y, yerr=y_err) + ax0 = plt.gca() + if data.plot_options.log: ax0.set_yscale("log", nonposy='clip') - plt.xlim(data.metadata.limits[0], data.metadata.limits[1]) + ax0.set_xlim(data.metadata.limits[0]*x_axis_mult, + data.metadata.limits[1]*x_axis_mult) # Add a title plt.title(data.metadata.title) @@ -79,39 +87,59 @@ def __init__(self, data_list): plt.xlabel(data.metadata.xlabel) plt.ylabel(data.metadata.ylabel) - elif len(data.metadata.dimension) == 2: + if data.plot_options.custom_xlim_left: + ax0.set_xlim(left=data.plot_options.left_lim) + if data.plot_options.custom_xlim_right: + ax0.set_xlim(right=data.plot_options.right_lim) + + elif len(data.metadata.dimension) == 2: # Split the data into intensity, error and ncount Intensity = data.Intensity Error = data.Error Ncount = data.Ncount + cut_max = data.plot_options.cut_max # Default 1 + cut_min = data.plot_options.cut_min # Default 0 + if data.plot_options.log: - min_value = np.min(Intensity[np.nonzero(Intensity)]) - min_value = np.log10(min_value) + to_plot = Intensity - to_plot = np.log10(Intensity) + max_data_value = to_plot.max() - max_value = to_plot.max() + min_value = np.min(Intensity[np.nonzero(Intensity)]) + min_value = np.log10(min_value + + (max_data_value-min_value)*cut_min) + + max_value = np.log10(max_data_value*cut_max) if (max_value - min_value > data.plot_options.orders_of_mag): min_value = (max_value - data.plot_options.orders_of_mag) + min_value = 10.0 ** min_value + max_value = 10.0 ** max_value else: to_plot = Intensity - min_value = to_plot.min() + min_value = to_plot.min() max_value = to_plot.max() + # Cut top and bottom of data as specified in cut variables + min_value = min_value + (max_value-min_value)*cut_min + max_value = max_value*cut_max + # Check the size of the array to be plotted # print(to_plot.shape) # Set the axis (might be switched?) - X = np.linspace(data.metadata.limits[0], - data.metadata.limits[1], + x_axis_mult = data.plot_options.x_limit_multiplier + y_axis_mult = data.plot_options.y_limit_multiplier + + X = np.linspace(data.metadata.limits[0]*x_axis_mult, + data.metadata.limits[1]*x_axis_mult, data.metadata.dimension[0]+1) - Y = np.linspace(data.metadata.limits[2], - data.metadata.limits[3], + Y = np.linspace(data.metadata.limits[2]*y_axis_mult, + data.metadata.limits[3]*y_axis_mult, data.metadata.dimension[1]) # Create a meshgrid for both x and y @@ -142,11 +170,23 @@ def __init__(self, data_list): # Add a title ax0.set_title(data.metadata.title) - + # Add axis labels plt.xlabel(data.metadata.xlabel) plt.ylabel(data.metadata.ylabel) + if data.plot_options.custom_ylim_top: + ax0.set_ylim(top=data.plot_options.top_lim) + + if data.plot_options.custom_ylim_bottom: + ax0.set_ylim(bottom=data.plot_options.bottom_lim) + + if data.plot_options.custom_xlim_left: + ax0.set_xlim(left=data.plot_options.left_lim) + + if data.plot_options.custom_xlim_right: + ax0.set_xlim(right=data.plot_options.right_lim) + else: print("Error, dimension not read correctly") @@ -162,7 +202,7 @@ class make_sub_plot: subplot. """ - def __init__(self, data_list): + def __init__(self, data_list, **kwargs): """ plots McStasData, single object or list of McStasData @@ -196,6 +236,9 @@ def __init__(self, data_list): dim2 = math.ceil(math.sqrt(number_of_plots)) dim1 = math.ceil(number_of_plots/dim2) + if "fontsize" in kwargs: + plt.rcParams.update({'font.size': kwargs["fontsize"]}) + fig, axs = plt.subplots(dim1, dim2, figsize=(13, 7)) axs = np.array(axs) ax = axs.reshape(-1) @@ -211,7 +254,9 @@ def __init__(self, data_list): if isinstance(data.metadata.dimension, int): # fig = plt.figure(0) # plt.subplot(dim1, dim2, n_plot) - x = data.xaxis + x_axis_mult = data.plot_options.x_limit_multiplier + + x = data.xaxis*x_axis_mult y = data.Intensity y_err = data.Error @@ -220,16 +265,22 @@ def __init__(self, data_list): if data.plot_options.log: ax0.set_yscale("log", nonposy='clip') - ax0.set_xlim(data.metadata.limits[0], - data.metadata.limits[1]) + ax0.set_xlim(data.metadata.limits[0]*x_axis_mult, + data.metadata.limits[1]*x_axis_mult) # Add a title - # ax0.title(data.title) + ax0.set_title(data.metadata.title) # Add axis labels ax0.set_xlabel(data.metadata.xlabel) ax0.set_ylabel(data.metadata.ylabel) + if data.plot_options.custom_xlim_left: + ax0.set_xlim(left=data.plot_options.left_lim) + + if data.plot_options.custom_xlim_right: + ax0.set_xlim(right=data.plot_options.right_lim) + elif len(data.metadata.dimension) == 2: # Split the data into intensity, error and ncount @@ -237,13 +288,19 @@ def __init__(self, data_list): Error = data.Error Ncount = data.Ncount - if data.plot_options.log: - min_value = np.min(Intensity[np.nonzero(Intensity)]) - min_value = np.log10(min_value) + cut_max = data.plot_options.cut_max # Default 1 + cut_min = data.plot_options.cut_min # Default 0 + if data.plot_options.log: to_plot = Intensity - max_value = np.log10(to_plot.max()) + max_data_value = to_plot.max() + + min_value = np.min(Intensity[np.nonzero(Intensity)]) + min_value = np.log10(min_value + + (max_data_value-min_value)*cut_min) + + max_value = np.log10(max_data_value*cut_max) if (max_value - min_value > data.plot_options.orders_of_mag): @@ -253,18 +310,25 @@ def __init__(self, data_list): max_value = 10.0 ** max_value else: to_plot = Intensity - min_value = to_plot.min() + min_value = to_plot.min() max_value = to_plot.max() + # Cut top and bottom of data as specified in cut variables + min_value = min_value + (max_value-min_value)*cut_min + max_value = max_value*cut_max + # Check the size of the array to be plotted # print(to_plot.shape) - # Set the axis (might be switched?) - X = np.linspace(data.metadata.limits[0], - data.metadata.limits[1], + # Set the axis + x_axis_mult = data.plot_options.x_limit_multiplier + y_axis_mult = data.plot_options.y_limit_multiplier + + X = np.linspace(data.metadata.limits[0]*x_axis_mult, + data.metadata.limits[1]*x_axis_mult, data.metadata.dimension[0]+1) - Y = np.linspace(data.metadata.limits[2], - data.metadata.limits[3], + Y = np.linspace(data.metadata.limits[2]*y_axis_mult, + data.metadata.limits[3]*y_axis_mult, data.metadata.dimension[1]) # Create a meshgrid for both x and y @@ -290,7 +354,10 @@ def __init__(self, data_list): def fmt(x, pos): a, b = '{:.2e}'.format(x).split('e') b = int(b) - return r'${} \times 10^{{{}}}$'.format(a, b) + if abs(float(a) - 1) < 0.01 : + return r'$10^{{{}}}$'.format(b) + else: + return r'${} \times 10^{{{}}}$'.format(a, b) # Add the colorbar fig.colorbar(im, ax=ax0, @@ -303,6 +370,18 @@ def fmt(x, pos): ax0.set_xlabel(data.metadata.xlabel) ax0.set_ylabel(data.metadata.ylabel) + if data.plot_options.custom_ylim_top: + ax0.set_ylim(top=data.plot_options.top_lim) + + if data.plot_options.custom_ylim_bottom: + ax0.set_ylim(bottom=data.plot_options.bottom_lim) + + if data.plot_options.custom_xlim_left: + ax0.set_xlim(left=data.plot_options.left_lim) + + if data.plot_options.custom_xlim_right: + ax0.set_xlim(right=data.plot_options.right_lim) + else: print("Error, dimension not read correctly") From fc93224cf445ce7419c65160111da0e6839be4f3 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Thu, 13 Jun 2019 14:20:54 +0200 Subject: [PATCH 034/403] Switch the use of os.system to subprocess.run for execution of the simulation. This allows output of both stdout and stderror. Added keyword argument suppress_output to run_full_instrument for when the output from the simulation is not needed. --- mcstasscript/helper/managed_mcrun.py | 26 ++++++++++++++++++-------- mcstasscript/interface/instr.py | 2 +- 2 files changed, 19 insertions(+), 9 deletions(-) diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index 8cbb1c56..1ca3126a 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -1,5 +1,7 @@ import os import numpy as np +import subprocess + from mcstasscript.data.data import McStasMetaData from mcstasscript.data.data import McStasData @@ -105,7 +107,7 @@ def __init__(self, instr_name, **kwargs): if "force_compile" in kwargs: self.compile = kwargs["force_compile"] - def run_simulation(self): + def run_simulation(self, **kwargs): """ Runs McStas simulation described by initializing the object """ @@ -150,18 +152,26 @@ def run_simulation(self): mcrun_full_path = self.mcrun_path + "/mcrun" # Run the mcrun command on the system - os.system(mcrun_full_path + " " + full_command = (mcrun_full_path + " " + option_string + " " + self.custom_flags + " " + self.name_of_instrumentfile + parameter_string) + + #os.system(full_command) + process = subprocess.run(full_command, shell=True, + stdout=subprocess.PIPE, + stderr=subprocess.PIPE, + universal_newlines=True) + + if "suppress_output" in kwargs: + if kwargs["suppress_output"] is False: + print(process.stderr) + print(process.stdout) + else: + print(process.stderr) + print(process.stdout) - """ - Can use subprocess from spawn* instead of os.system if more - control is needed over the spawned process, including a timeout - """ - - # return self.load_results(self.data_folder_name) def load_results(self, *args): diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 21fce353..992b5bf6 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -1240,5 +1240,5 @@ def run_full_instrument(self, *args, **kwargs): simulation = ManagedMcrun(self.name + ".instr", **kwargs) # Run the simulation and return data - simulation.run_simulation() + simulation.run_simulation(**kwargs) return simulation.load_results() From 6955487620febfd73653d0c569853c9a10143dd0 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Thu, 13 Jun 2019 15:38:54 +0200 Subject: [PATCH 035/403] Updated tests to mock subprocess instead of system --- .../test_simple_instrument.py | 2 +- mcstasscript/interface/instr.py | 64 +++++++++++++++++++ mcstasscript/tests/test_Instr.py | 27 +++++--- mcstasscript/tests/test_ManagedMcrun.py | 45 +++++++++---- mcstasscript/tests/test_instrument.instr | 44 +++++++++++++ 5 files changed, 158 insertions(+), 24 deletions(-) create mode 100644 mcstasscript/tests/test_instrument.instr diff --git a/mcstasscript/integration_tests/test_simple_instrument.py b/mcstasscript/integration_tests/test_simple_instrument.py index 848ee4d0..952b62cf 100644 --- a/mcstasscript/integration_tests/test_simple_instrument.py +++ b/mcstasscript/integration_tests/test_simple_instrument.py @@ -148,7 +148,7 @@ def test_slit_moved_instrument(self, mock_stdout): intensity_data = data[0].Intensity # beam should be on pixel 75 to 85 - sum_outside_beam = (um(intensity_data[0:74]) + sum_outside_beam = (sum(intensity_data[0:74]) + sum(intensity_data[86:99])) sum_inside_beam = sum(intensity_data[75:85]) diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 992b5bf6..c193db77 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -3,6 +3,7 @@ import os import datetime import yaml +import subprocess from mcstasscript.data.data import McStasData from mcstasscript.helper.mcstas_objects import declare_variable @@ -1242,3 +1243,66 @@ def run_full_instrument(self, *args, **kwargs): # Run the simulation and return data simulation.run_simulation(**kwargs) return simulation.load_results() + + def show_instrument(self, *args, **kwargs): + """ + Uses mcdisplay to show the instrument in webbroser + """ + + # Find required parameters + required_parameters = [] + default_parameters = {} + passed_parameters = {} + + for index in range(0, len(self.parameter_list)): + if self.parameter_list[index].value == "": + required_parameters.append(self.parameter_list[index].name) + else: + default_parameters.update({self.parameter_list[index].name: + self.parameter_list[index].value}) + + # Check if parameters are given + if "parameters" not in kwargs: + if len(required_parameters) > 0: + # print required parameters and raise error + print("Required instrument parameters:") + for name in required_parameters: + print(" " + name) + raise NameError("Required parameters not provided.") + else: + # If all parameters have defaults, just run with the defaults. + kwargs["parameters"] = default_parameters + else: + given_parameters = kwargs["parameters"] + for name in required_parameters: + if name not in given_parameters: + raise NameError("The required instrument parameter " + + name + + " was not provided.") + # Overwrite default parameters with given parameters + default_parameters.update(given_parameters) + kwargs["parameters"] = default_parameters + + parameters = kwargs["parameters"] + # add parameters to command + parameter_string = "" + for key, val in parameters.items(): + parameter_string = (parameter_string + " " + + str(key) # parameter name + + "=" + + str(val)) # parameter value + + bin_path = self.mcstas_path + "/bin/" + #full_command = (bin_path + "mcdisplay-webgl " + full_command = (bin_path + "mcdisplay " + + self.name + ".instr" + + " " + parameter_string) + print(full_command) + #os.system(full_command) + process = subprocess.run(full_command, shell=True, + stdout=subprocess.PIPE, + stderr=subprocess.PIPE, + universal_newlines=True) + print(process.stderr) + print(process.stdout) + diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index a789c87f..ee0c27a8 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -1278,8 +1278,8 @@ def test_run_full_instrument_required_par_error(self, mock_stdout): @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) - @unittest.mock.patch("os.system") - def test_run_full_instrument_basic(self, os_system, + @unittest.mock.patch("subprocess.run") + def test_run_full_instrument_basic(self, mock_sub, mock_f, mock_stdout,): """ Check a simple run performs the correct system call. Here @@ -1298,13 +1298,16 @@ def test_run_full_instrument_basic(self, os_system, + "-d test_data_set test_instrument.instr" + " has_default=37 theta=1") - os_system.assert_called_once_with(expected_call) + mock_sub.assert_called_once_with(expected_call, + shell=True, + stderr=-1, stdout=-1, + universal_newlines=True) @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) - @unittest.mock.patch("os.system") - def test_run_full_instrument_complex(self, os_system, + @unittest.mock.patch("subprocess.run") + def test_run_full_instrument_complex(self, mock_sub, mock_f, mock_stdout,): """ Check a complex run performs the correct system call. Here @@ -1328,13 +1331,16 @@ def test_run_full_instrument_complex(self, os_system, + "-d test_data_set -fo test_instrument.instr " + "has_default=37 A=2 BC=car theta=\"toy\"") - os_system.assert_called_once_with(expected_call) + mock_sub.assert_called_once_with(expected_call, + shell=True, + stderr=-1, stdout=-1, + universal_newlines=True) @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) - @unittest.mock.patch("os.system") - def test_run_full_instrument_overwrite_default(self, os_system, + @unittest.mock.patch("subprocess.run") + def test_run_full_instrument_overwrite_default(self, mock_sub, mock_f, mock_stdout,): """ Check that default parameters are overwritten by given @@ -1358,7 +1364,10 @@ def test_run_full_instrument_overwrite_default(self, os_system, + "-d test_data_set -fo test_instrument.instr " + "has_default=10 A=2 BC=car theta=\"toy\"") - os_system.assert_called_once_with(expected_call) + mock_sub.assert_called_once_with(expected_call, + shell=True, + stderr=-1, stdout=-1, + universal_newlines=True) if __name__ == '__main__': diff --git a/mcstasscript/tests/test_ManagedMcrun.py b/mcstasscript/tests/test_ManagedMcrun.py index 129c944f..ebad42e8 100644 --- a/mcstasscript/tests/test_ManagedMcrun.py +++ b/mcstasscript/tests/test_ManagedMcrun.py @@ -95,8 +95,8 @@ def test_ManagedMcrun_init_no_folder_error(self): with self.assertRaises(NameError): mcrun_obj = ManagedMcrun("test.instr", mcrun_path="") - @unittest.mock.patch("os.system") - def test_ManagedMcrun_run_simulation_basic(self, os_system): + @unittest.mock.patch("subprocess.run") + def test_ManagedMcrun_run_simulation_basic(self, mock_sub): """ Check a basic system call is correct """ @@ -111,10 +111,13 @@ def test_ManagedMcrun_run_simulation_basic(self, os_system): expected_call = ("path/mcrun -c -n 1000000 --mpi=1 " + "-d test_folder test.instr") - os_system.assert_called_once_with(expected_call) + mock_sub.assert_called_once_with(expected_call, + shell=True, + stderr=-1, stdout=-1, + universal_newlines=True) - @unittest.mock.patch("os.system") - def test_ManagedMcrun_run_simulation_basic_path(self, os_system): + @unittest.mock.patch("subprocess.run") + def test_ManagedMcrun_run_simulation_basic_path(self, mock_sub): """ Check a basic system call is correct, with different path format """ @@ -129,10 +132,13 @@ def test_ManagedMcrun_run_simulation_basic_path(self, os_system): expected_call = ("path/mcrun -c -n 1000000 --mpi=1 " + "-d test_folder test.instr") - os_system.assert_called_once_with(expected_call) + mock_sub.assert_called_once_with(expected_call, + shell=True, + stderr=-1, stdout=-1, + universal_newlines=True) - @unittest.mock.patch("os.system") - def test_ManagedMcrun_run_simulation_no_standard(self, os_system): + @unittest.mock.patch("subprocess.run") + def test_ManagedMcrun_run_simulation_no_standard(self, mock_sub): """ Check a non standard system call is correct """ @@ -150,10 +156,13 @@ def test_ManagedMcrun_run_simulation_no_standard(self, os_system): expected_call = ("path/mcrun -c -n 48 --mpi=7 " + "-d test_folder -fo test.instr") - os_system.assert_called_once_with(expected_call) + mock_sub.assert_called_once_with(expected_call, + shell=True, + stderr=-1, stdout=-1, + universal_newlines=True) - @unittest.mock.patch("os.system") - def test_ManagedMcrun_run_simulation_parameters(self, os_system): + @unittest.mock.patch("subprocess.run") + def test_ManagedMcrun_run_simulation_parameters(self, mock_sub): """ Check a run with parameters is correct """ @@ -175,8 +184,13 @@ def test_ManagedMcrun_run_simulation_parameters(self, os_system): + "-d test_folder -fo test.instr " + "A=2 BC=car th=\"toy\"") - @unittest.mock.patch("os.system") - def test_ManagedMcrun_run_simulation_compile(self, os_system): + mock_sub.assert_called_once_with(expected_call, + shell=True, + stderr=-1, stdout=-1, + universal_newlines=True) + + @unittest.mock.patch("subprocess.run") + def test_ManagedMcrun_run_simulation_compile(self, mock_sub): """ Check a run with parameters is correct """ @@ -199,7 +213,10 @@ def test_ManagedMcrun_run_simulation_compile(self, os_system): + "-d test_folder -fo test.instr " + "A=2 BC=car th=\"toy\"") - os_system.assert_called_once_with(expected_call) + mock_sub.assert_called_once_with(expected_call, + shell=True, + stderr=-1, stdout=-1, + universal_newlines=True) def test_ManagedMcrun_load_data_PSD4PI(self): """ diff --git a/mcstasscript/tests/test_instrument.instr b/mcstasscript/tests/test_instrument.instr new file mode 100644 index 00000000..2da161ee --- /dev/null +++ b/mcstasscript/tests/test_instrument.instr @@ -0,0 +1,44 @@ +/******************************************************************************** +* +* McStas, neutron ray-tracing package +* Copyright (C) 1997-2008, All rights reserved +* Risoe National Laboratory, Roskilde, Denmark +* Institut Laue Langevin, Grenoble, France +* +* This file was written by McStasScript, which is a +* python based McStas instrument generator written by +* Mads Bertelsen in 2019 while employed at the +* European Spallation Source Data Management and +* Software Center +* +* Instrument test_instrument +* +* %Identification +* Written by: Python McStas Instrument Generator +* Date: 15:36:48 on May 27, 2019 +* Origin: ESS DMSC +* %INSTRUMENT_SITE: Generated_instruments +* +* +* %Parameters +* +* %End +********************************************************************************/ + +DEFINE INSTRUMENT test_instrument ( +double theta +) + +DECLARE +%{ +double two_theta; +%} + +INITIALIZE +%{ +// Start of initialize for generated test_instrument +two_theta = 2.0*theta; +%} + +TRACE +COMPONENT first_component = test_for_reading( \ No newline at end of file From 73b883bdf8f8ef69c61a6e5da2106e8344f81d48 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Fri, 14 Jun 2019 15:00:36 +0200 Subject: [PATCH 036/403] Added show_instrument method to instr that calls mcdisplay. Can show the instrument in weg-gl (standard) which opens a new tab in a browser. This is a 3D view that can be rotated. Using format="window" instead opens a python window with 3 2D views that can be zoomed. This is documented in the pdf manual. --- McStasScript_documentation.pdf | Bin 159586 -> 135588 bytes mcstasscript/interface/instr.py | 136 +++++++++++++++----------------- 2 files changed, 65 insertions(+), 71 deletions(-) diff --git a/McStasScript_documentation.pdf b/McStasScript_documentation.pdf index 92d9d8a865db1c2b737ec0ad7e47ad516d81982d..21c7457bb49f43bffe32ebf47ea20b2bfcef23b7 100644 GIT binary patch delta 117883 zcmZU)b8uim)BhXW<|Z3sW81cE+s28p*(94}W81cE+s4K=?>@ih_g204-l;mLy1ULy zb)Wg?TQmLH+k!2~he0J*6cwjqqGy96?|#brgkxroLnUBkVPoUuBxaB#)*6qzW+!G4BW7Y`WMg6_W|0495i_U~GqJESadN~Nx`V?pv&5|tfifn?`G8_4 zpn?hm%*3o5|CuXgZ|*?M%t*{gtW3BP>aT5Q3 z27{C+u?{bju_-GHqdA)qGczM66N?!Wi@BMx5fcZiu`xT736l{&FPEvYDKjUd2@9hM zGb6J(voW$Mhp`bOhncB47b}Mmmr=qlC?PvfkF5#Hs3*e26nI=l8L@Id;zSn+$!3O- z=?n((C{7NDG3}&__t(UGB6TAg_!9-zem>0-on-LpUp|k&kyI~>TG6Y2j`h#VrXb+Y-pG@ z(StzN%?QIR2%0iE(F0~$#|wf6-H;ZFltkqUF;F!VgL-YUIxsWS(?k6Aq!S~hX;yFZ ziU0#?q!yr9hwsiONIcQ=+)F6w0>*@`NfsNJ9Vm2CwHnACjjpG|oxH8eTG32ZZe$1o zqToX%l$=BfMwBe~1PTkr%#oa14T?#@&csa2!NvTa%~3RRHnVpnW@Y}r+hgY9;O1=d zuPPR{8*|YFPfMf-PKSe)*WNn)AzTE@~%yxCQJ%2(Q zv5clR&Y5Z~r_N+iSF_l_9TiMgv9Aul8$9)2RCNNn)bw{xXUHO}Dqni*$eTtwjmdLI zA_0-_!)29i&MR)o-FhGBD};*7g_XZnAT5;5Xw6dSA-)3!_F&wGo;q$Ki}!-zg{j6% z>$c>4`)j{c+8+vCU+5+|97+;(F&ff;Fz=>dh=*^g=j|Z0xqd}NMqVZgkHL@{h)%ItCmF_Q4GD72N&mM6=z+2fHL6};adXale z|g`Dn~ zynK>vB(a|^6Ng^Kx+`?TUajB(buOTLTm(p?SG8{@C0&362^THzmrYPdQlSz&PY>?f z8!Fwl9){idy?QCSVbdR6MefUiZi(A&4~oqktW-MIL`rZtN@MgIYxq?4B*#q^`*@kj z>C?$W5Ew>sULw}2qEu@}y39Xoss$G1_)tP`vg3+G1e72;tI~2jvag5({j%9@H~^NS z_-MrDL%}4yVXPrEEwCMxjYg7V(2@YyHem~q8o5oiv+qBZ<;w)C3%Z{~DSu@DK})G< zv)fEUhmdXFTzgnUgDei7Le1WP1%mDs`1fQj_zUwCWV*jrt-)q zq=&Kk?6Iljp%a+i;yy1yUj!m?J^_?E$zsNoM5Y+QK@!pN{`h=b93;X9bMc}u=DpW7 zA0u_vO0R6jCIa?Xp#WhA!NdA?PPcTcp+uqTQGVU`bmKE$4^*%?XH@Lw$S}(SmOO>^ zD?o7%XA*8494~~U$V~VyRu8?uWLJvd_!r1en&XOgkgC37*-Nyx1zG->PvC$HJbKh7 zYpy!VIEQ$?4;kH_&dYUh1}em?y~+}Um#jf)Fqee}Y_sZh9|T`MKR&G~WYm8C0Hsj) zjrvsuY-=G~q^5Mv-wdb|*~vKzzjyF(!N7``y34{T8bHB#Jowqcv0}H1vh##k8GS?_=i8R@V^q3kOn6aJQmbKi`J6xO*eDsCOw zS+ftyeKjREg2NRuK=B~Q_gGy@jxA!5xj_jfKG=W4na%hoJ8eNuKW&6Jl|y{c`;QVx zRz$F%m5|gi2{Si`0;9bvlb57s$YUtvWJIL>fiLu5RW!bPC zCy>v#XaSuKP4nau26h)^l4#XEUF^NS8_(#6a6B$<5@xKqVqRIVjk*uaVE_lrg0AHqglx_+t3 zl@{U*Dl|ynX_KfIZJuA53$fz4Iwecf@`F&Uap4xk{Nt1xds3^gsnulqTQmz)D>3%< zyZGxp>1CAvpes8|mvYtl&>1A4WlEi>s4*Aau1T{EbCSQHPvvJk(;uj}Up~3u-n(xS zPLai-(V!WU6##@V=hHuzdswpKqD336MQ;21Q`4C@{J1tq3J+h&w8%UQ{3QlBPL_Tw zVdNeOC|v)cbhgaXOncZ<6kozo36Z>9&o7f$cbztk{khHv7Af~bb7ngvsv%b!*|pk2 zX^BlPtw}~h*6j^v{e8(g=B_;(0A0%7;xpF|CZ%>QSOo%)$WP~}@ChKe_JIV?7kVZa zo%uq+CgrY(d4;gDbwV!HQ5|z^dcOG-oMSJ{Ir@zW*H2e zx5YbH1umrp15qc$^&Zj$p@` zn`J#2hdiJYWif%@C5}K@Y*1R`t#ubD39w0;xBysb^#|+K2@Ht05SI2_FKAv0Exws? z2J=G~sGI0YzxiosRgc0bNryjIe!iHhA&cP1JUWphkc_=I?U&0mi~?P{nCxHV{=m;| zmK#Z_KNw>GI2RSc+*DL60lSmIiZQAj%|m|EPb!oikJ|0dq+XR&QK3{~^_#x~NTFrQ zEx=d$N}x1;`291~wd=W{(9|IgcMjs;TZS8*p(}R(ryKYy7p8ceD~s8_-|ed!qVTxr z^@3(C%9<#28Sv8yEbd=Vy+JJ4Q(J=zGWoeK9F*NfAL~wE0z8_M^6RNLYs_6PP;j5)J zAV?5ETbat6ejjx31y-c+L}g}g3iV$Nmz-kk{|e{~)+F()V2KNb65 zkL90|`X2$v#r02E{VxT$7TpA?s=JCtFB=5aoCAs{b3L^AZ{S(xv^#k;Lm*!M&JhZ- zaZKL1Oxl4+4v{cFnwseR>R$3GU*`7fDyz2ExcFGq4^L7C)Pl7p(9DtI!-VuwRy8$W zK+&X6ZFxb|)se8&)!kLKwdHD}_>LJ^Xe!x9MsX2>Z@;35cOjTvyy~RVT6u5&7%B#I zl=B5dgZB(gP7n1@kHHyQm>s?$qaF<)|7LXo*8%&Z33AIwHG-R{4tBJ20@2juugr8e$p#j`|A}=Abt?IXUe> zgZ(Q}Yl3*{2P378kvByE&&nWF4w5qzS8L!8&~AJvs&pYiz!6 zv|w-n#9RUKb1|zv6n&+4Fm({u_N!fN=ZaOK{Rd>@p8z3Z;*uzq)2mmqUU}lEV!J1Z zPcNX(T``4c;f=u%GE7_h!@h5B5wrvnlBX@`fb1)eH&yYgRx4N+M7N@%g4b6U*$;{_c4a6Xu0(cyzhsKSb-ZdWrv>&m*zXSrmrfvaX z{`m`w?84gND?I%Y`Ri-g4hnSL=TppcuA+QA;WN=tK?UT)pbY7FI#mr!D@gDA*IA+q zlTR8rQ%U2;_BxDv5|mHC54B!;EOy}Mp+fu8)%SX65uq|hi|Z>L$exLzu~&hv;?cSq zpEjbz1_VG9q}u z55<&m6_}k;K7#OzmzJfA9awfZX&~a~(O?|W>Um2b;;NP%)f4aS5AAo^megTlJpn}Oj zZ*iXPSKzrqDeqUnS7RVnmAt%y#t0D_u(tWNBXCKJG6HTI*v1H7j{;NsK``g7LN0zf z)xko+D%PH#AU%EFxwCNO9Ul3f)y2$WIe8*|{$Ysyc$sZ{@EWH`%em*usDfQlIp&w>jFepw2=bbq*rVL$au z8tThST6VRo6N9|c07;Y?cl4h)(VHX8 z6Iov>{Nu-rXm0vh@l&3ZIqU20vbpG5x7XHur;X556?UFa+&$Q^hYK=oYI#`X-Wrsu z3PbrSCAfKya7nBY{l+&0I$x(z)04l>;@(A-xItHVK}Ir$zuC0ZYMqhzKIXEMe4XG=BSs}l?a(KE8YuDTHMTb>b{~` z3Mv6@od~CGI78te2nS>HLbgQqtKmig4BAot?VPQw^y`IWE15dZsN98$xlPH|$Hpd? zgYo!5a^3;ri0=E(dvvNJLMKvR^rCOxu2I<=58g5s=3ntF!1X$2@Nm(j=^37dCt+%a zPaXJ>Vvu1I+0}XJw{Z4dj^_K%$e-EH2S1Q=k!z}HQMI$9{}i;JrG8s_d`ov*GYOhb zVYM-*ns`%^)zAuKt^6(7dgXZh<4S+D^sYA&ZZ3I>ALHE^&TBCjHNlfmaXiJuj=ibG zUpA4-6D|&R1ju^=*cz3B#gwaIi;$CPJHDPQu8l!&v{nwAGBLMJ^CJUeWjb*)tLrZV+qKk*<{7p;VD~GB zc5b8zcz&7Iad5AE8d+CGHt5e7&d2`%14LoH5^pTS*FpJ&w4tQGw|{Y8}(iu*Czz6Kg4Iv zxOoDdEm~F!{}e7tdAh20u_!J5I-r63_Q+Y^TzuoxX#QS6H$wa4C&&{gt}OMJo9kzj zgH{PY8SqXxG|s?K*eQFk;SzpS2_|~wu?+q$z&8U|G;pda-HaPLsupc`Nv9MxKJyoplOOd}nJ_o6L7ApVnK>30CoDCEK!Z+>HH z2N`dyt7{NR9d7yDwSn}&FiOcx@4FOqHkocL4)EyP=P8=i^?VOA4$~y2{%zG@_TEGp zq_{%=m8l*bJ0oWFZGx-`7+f4b3qkYhipFtaNf#LIrn5X?oVv%vMS7C}U4$NmiuuK& zM1;MnC>lSiVW9Wx`hvSrw7%Y}f|CFtkt|k;ak!8Q;oC(}jdXeH!!R*4TAgiP!5mGW zC1CkC&EZ!Wehj5nLO3?|+4F+M%?yX!5qJK+h3UXrRSZ+@9y~unQwM`P!`$rrx%LJ8 z796L0?)xqapE*lU#6%D4jY}4?%<@n|`NVcm@FRGP+$-t{O)Oo)&tX;1{zK=oA{)_t z<96ZZv^Ae?j=ycr+C)3Xgzqp>Okil{+ki*X`+2%;Sfei2kJtp73+OiTO%a*oH*+Mn zzJ59#LRf3m)MAq{Y*>z3T|SXlma&g;^l-405fPK0hh-x%wCx2K5Hr<_qb=sxX5-zs zuLFd=DE4vHPo-^d;O;oLZ$WO%T9{$v{jBq2GuBulrd>$c3^r2`*#)-io5VL0Zh!*I zU%&T7(64g&K^l>aEB}&z4f+l|_k@qAb6@G2PQ=xXYJ$3$E3dXN)`<*o)r9 zfV+jWMjG5Ul!ixu>)p(5I=HTaR|6leVGa4^pp(5r%k1$xA4H9r27;*=X<&m;+i)vu zqZUmA2Wy!8JEgUmYMZ1LP^rz927Sm1!HXR7r?37mmnOF`W+6UXci4lNMhET-)5 zCbaF_HDqAE7OZ&aHqPX$cx+g$znwJ0Ex+BLvBDol>AX)n6W>(JYRaWtvcnlda(#IT zMO{R-X&-WUdf+c{OG;?NGz(W;Ql;1f5k453G>o}5-QUPV<*us7u{2lTN{99Ad8uzV z5gmJlxZQ)zI8fbhh2C2VtO5ru)13>z-6rO4mzg1kFT$o%tE8Gp2R#m5$?m8T@VDxvsNNmKX zTnlrpnT3o<*6KQ-PygYF7k*V>d*yNzm6S%8ar5Av=w6c!jub=#SO}$1XwZZ#9{k;Bfgz`(UP(;bm+DAVGPG(L!1G^xlc7^{( zMf)PTjR`p1R)g2VmEj4$birR%8p7~18ha%-nB;=0gI@5$UQ+Of5$Q`^3U73wm{2J@ zjAksxzD0)IrlZMIbh`bbR%$aJ$)J*wY-->IEPL@zK}ez{uY|L%IEt4&FeuMI!vwE9wU zh0{lpQR2egS?|HwcgknmX!Ut7k4Q8-`Mv&|D<~hhau4l{_USe?MAzhC|FR!t&nqx*T67DUF;%`w>O4xXYgKqQioX~a}m8oTAnwDnPg5!}CpcyXroRh`ixfLziMG!7p!4TlqM56lKlk*O_hImVm=@|~A>!1#; zI*yAs>ssdVj?hU{Td{p86g3!$D5RG;re$5=erEP&)W$^x`Z%fKokgN`HrNk;Azg_4 zJYYYe6E&3RoP(S&Q802Hh)7LB(ztf)a4~L*P*NvO4q?gte)ls@S`P*JNWf}${%DuEOZs%nEvlbycAI z`){yZBJ7Ni&55lH$NQ?e+``=6T>DmDyERtQEZ^PvK$O0az9sQ|&P%U8N-DH$<>>|c z*Bj_@?0UY9q3|OJo*aiZwZSak=7rR0iY_6NI7xwI8R`I8e(Xc(Kj3XHDYPd$@7oa! z)m{C8W+&Zp?uA*0PX3Nc$Ml9FM3O-3MSe1W-d_o_ZiOi0(ei1TJ7DeR1DRJ6&JLqD%_m!RC2uWLxi%gUc%4l8nYKAvkqnRnB_^< zp#`U@6uv&znxtB`xYEqP!qfTFX^h2Q8crpM*SAc);Pj9$htp^uk zUcbhzeX?u-^k__)6kY;uY>@|^eovPj-qRLFX>*~{vp0UqBeSC)G{=h-wSPLhLuuX< z8b2^wr3k~GGCPOX@p)5o5eE9eVG}rju^``%w~w~g%}jRgq^7{(k%M+!R5mTNDR%iGqEdWbCO)lLA;(~w zIUX}?+azU$skWfIrx>yLFjJ+Roa5FAQ(XtQtY@G_TI!5fMoF!NJ@aa(3|vKvd->-$ zdt;~)>(5mx%)QfZwtVIFgG{<2%F=h?0FXSZdy#My%K#a}rHp1&p%cMx;j47fHjA+$ z4s6DBZx<<9jJwokLT-e}p;&u+Lmc1tu11AuI4yFDZr!Fx306Sz&A8a9C%*QA9Qp|c zL)xB+-Q~87fpt)p;%hWhXNd628jr?lu6{|#a4vCS__<8{SiAF*k~yS?&4Tdl&I?Ru zf#6uB74QMtEPpzT9BdGsvTYV%+}ytDyKl) zZM~)v&l`s2Y{2)JAcuk2ju)39l-RQ|8!GGi&`&5Vq>``urkB{`d?Op1^&!M?6hyu)?T6(0zP zUvRHkA4YI>p6{ift*{a!s-`)j;)ggzf8`rs#Im8-jzs&TKoI#pQ@{kSg>ow{S{~Q+ zZvo!6X@Sezi^6_toc4x`XCm=buQ~h#ZWqY=y4P&*!D?AZehE|7jTB+_pPM0)lLT{3 z)vr+nGuAzeU}MDbEl0Xec$@jhoZWt+)~e(#ywNDN`)8I`B>G9|i7CsrSR_UZxFLU( z#`lCJ7qPov*|C4Y08^oN$lu4Vg|Dp134sK5Bc&<>Ss23h#GKK zd*fzuII+?CV)F7VIHoSJy%oK#sUK05q<^DlZ~`7wG|Nivs4sC)^yhjw1oI|zfM~&| z*iI~}k;F>S)!JPJ>{m-k9>6WtN_Q@*xINpc-M}?Iem;9%vpkTrT7dE+cV|*~&DU<+LTuTV;J}#UfKC3a)M_ z@|r^rx~siNEYj$Y#xmWvOgn!gATMum-XZPs0iF8v|Na9VESn@#-YgIE|g0p ztt~#ujO83*+_asMZ6&02e-1CaMQw9JVD}T+fmcYKrnUb?BnWMBR>2d|i&r9#=r>tr z*@CRnY2?eZ!E3I5*|TvW6%1g+#p5Ub&R4e_zdvi2hr?_y) zD_L!t$2io012X3zEQ|ye(rVq+0e+fV%Z$ulO$Apt-NxbS=Z<~P=KC}>KlOD`^fi1& z5IT2KFGz_vfisomfk(9;oeWMZJhWIwkROv6I9JdgRogNq%+c&_%5N9eiJ|@;-qX1D zqDne6ejBNEHGm4#USLaK)ux2OM!LlpahH_rs)i|5rQ8H0ipvOn$LL6Pw-Lh}p@Oes z2)~$iG&^V)JQaXx(Tuq^d2cJWt{3Oz(!YDaB%}`DfP55g>iR(?p`fBOum*2t zM!m|$TZ~pdeD~>Cl+*OP?%(wTP5r&DaTTx1p#M;YsQe2+3gG!`3Ow9CNK1{9*eX?^ zD~u}$AYq{LQ`qWE-Ex0|4#F)0U~&QT)xTafID1KJAv^h8ER~k)O2;UmwZ2?*qXS7k zbO$oZ2n(QC=56f2U&o2L@ZIxri3dKEgzXgiB-=T98?LmnG7GEqou3Q#P}Ht6J1!;H z#ZNi&8iarVZ>vfnD#|1`=d#j%_P_TIP?^6*lO4A)%Le`7yRr&f{JBQXw6nSW9lkMZ ziR0YLH?_92GX~fg8BjS38<0t*P|Hlwr-%B^Z|J#%bG#S@IHP;jwJERRJEQ^*MnM|Clz)^|ih`P*w=U1X;w`Fy zigkUnO>NF-aFY&+#i8vNsV1=v53MP!;yFCVPHAj1WcTR7JIuZjAVmt*!Ag4GY$1D~ zTl@K%-o&r$5G36jBjP8#v+_)shJq)$+{c<;$)Lp;(j}F(8>Xam4W@&?j{U4d!aZhw zf{O#Zwj7zF+@p1a{a!RiPTi)NFc^c^V`MUz66EC3@>{;ai#+1AN^jKvcdL|MX!&dJ zUO6J9tUD?_&Fif`yp8z{N~d|k*Y9`x$%@+FVK4hRrV`>W6tEG%0_|D{~We#P^`+43}pry!!I(bus zdqX69nm>FSo0_PMlp)lCeaE}pFWD|+g!+y4mqc@6j}&`0P0Lea6SRde4s9V}e~}sS zZ(_R0rcI)P0HgE#wGkWxsBo9bEL2P{vvPlc?;~Aio!83}5xamXYAoag^ux2oUrQN4 z4%#ts);O}OQ$4AD)oo?u+&Z(!uWIm{kaF1KD&8K>Z@cWzOFhq*TUSxF?FMPf6wwB# zv2tM&kC!!3e<@3~En<3Gg+hk>%2>Z+f&Sg(d6a>;hcs z$(tS|(}F_aXEM`1EB%73f5zvuD#34oycR)x{#T*f&X6UUUpe~2)*Jy8m!@cL8(@mh zmj$dbL|!_NF=4UG3K?8+K28qrFdht+pS%0>%|Mc&?rn`~Pp36wu8EibK8I9wvLM)4 zri*C~T}Cn}#S_crkwNIiFACFix@snS-A+Nm14E2-4J`1B`qm|7c=uuqx!5vb{vcv$ zH~|xMNC$+|cAoPgxGI9kN#11Ju0m~|V#}cs0k`lvwuW58P+hEHXvyRPxmQ(Nn4KmV zM-W-IpG%lxWNbJlVl&A5)9LP-HmjHRN@YI3Iemgu=AJIR#yoRI{7!$N$zazyaaK zUDEYCVk$z%6UB=|#)08@`fbg3IlbsV&mE78_u$U1A?itqVjn{9{h$E~?PD4CKZDml z`qug*4wAW>&0x6he=v&4(JNEU_fz&x&yV95lFstoheyD08CNTOjDpIPjXOr0}wXaJ(N$o>< zrbZ=X!je_gcX$Or&Y4$iL*13>vb}m9tZn}0PwtwF+H{zy9Qy9tVwn3i5_N_A{8-!m z^7iexehgEoaR0sqOC$&KX1Y*jx+VN|Effr-jKNw}lL( zZo9cn2#oH#72`G{wnU-a*{H#^=HGR|-kGmh?pw-uV?{M^1ZS|19`?qnbxJV0OWVz3 z9TB4b*GZ)Sx0n*t3Z-+VNgrc*$PXFsfK_fjJ*IeJJcy-i zf%hEMBDTEWIbVs4hWd<+-~H}{oG}>-vp6pc`0pZ+Seqq+&hG1By$QR2I%qqU%G!gK z(TW|EcDKa>3HC75e+Wo}Ynr=ZSlen;?(K2^*l6S*D0{wGmt`!p=_&lml8nsMcF)+d z^Y}Wjf19r#zf^8WXvZxd!-zJJwF48ripI8@GEBq3P^^-rEH(1|Vk5n{eR7o|txTEB zvza5p!7n<0Y>V28Q+9DUU5~+(WDs3G^5%kVnu!Vpl0-L)?6Y||9#3^ta;MbhXL0Rm zIGZBmP>12)Y!l#(@v|7P=XC1XB;Zvfqb6L9Uld*#$&-D_#oy{=2ok559>vvNh+!~u z8StmF(M0qmvey`~k@-3+`NT5K!)K@BL-vZ~37i;2!?ynzA3zk_-xbJayEZz`ZD6^v zC)RHPp(~>r8_e@5dYU`3we|b!j^e&aM0dKJ@*+4(j6Ha(DEQyMt2kuLK}`xAo%mGE zi(d$G9Yw=P%=$`1Y+Akd%ZA2V0{2nXb1Ed-c(WTC3wxXHpH!=Jiw?MU>8OL*<6fl8 zD=Ou;KC74URtIm=mnI7r5SwS9fu^wxu#y9S^5mo0h?9+8%X#gIj0IN`I4Q0Gh+uGMTGgYz!%=eogBj*=+glapp;iZaM%>1;$yay8a`BDt+kH^{o zzw`uVJJHjwg=FzT%90|VPZy`4NnJF>z`e6B!ksA9`h@)awHJh(?|w zV{|vg9n)z5YIU5>c8mRdke0x&ABqUd`AVKt?|AcabcdjQt}_AJOc>8SU!N(K(rWf^ zsfoaXhy{|0ap2nAI4=YMy=<%}8$km6{%SYtpe|KgQ-|5O!$`ie?8vwgs`#aMgMfY2 z*5%R`bT*ysMX&T|R#Bg8qs&r+f$XP~Zb?4-2ct8inacbsHry!{iG;lR`B;>lW+Ag{t>ZwQuuST_Ns>+^&nQZ1WeH?_pneC{tX-GL#wzGfMFWBIjz98G& zmJrZd#YlHBnbgL2B*~wD+Y~^kPquhZRwSWeHZB@?6{-60Ar7Gq4X(6#cD^5*q0aJt zVsp4wmU&p^>eq~;X5eTL>A3))+Eb!M50?|B0IhT^KO{%WeJ5Haqr132Q(jQ(Df+KL zUd(WySdj;H1(pJ{mcnXHjRISJJ4>*r-wzte8p##N5MN*nbcfdMDHlxAfB~tI{Z(HWb=?fN2dX}^(VrCm_G~o zc5xZ7(oL%Eu)Q!*SibB{i>csMP3Wck5`h%6oSX&;|MPn=d` zDn1JHT*S*33pMuIF5R#y!cI+(l!RoG!LE1%pDVV$%EEO>YJ!!`x1T))Nw|DLX0EF zi;~f%<-NUW3d%;_^2m6d4O65ER6A^phNI z_?a|G*<(B7CK1Ct@ z5>oIeV>56gLR?7eNEUnjyaSRoVcy{#)^^&rNPKjEWXtp8mI~35557Q3N;D|`HQW7P zUgDqiAJBrC>t93N{}30dUXEt}XcXgw3T7m5CN}2(Lz@8d#4P`y3vnxFmw#*tJJbK} zxXZZEI&;BiL;0FA$c<%`t(ezIGfF8{L6erGmium%>g$+cV|zMKdhsWzJIn9*()3Mu z^ZK<<*1nUn(!KF*eR1D7qa@@;n3_};1@9Yrt`KZONVNWnv}a+68VL?*1=cL2Q8XZl z?P zw&pBj=G#3t!!NKy!`WlFH6wFSz{q-tGq5OOmQhF%a{du7jDof!kUl>IdI^ewHv%dp z7Mi`6m`HR6jyoSlK6Se5ReB`&WfG7^$>)VCK%0(3#=$&t>ziS8pyE&Ez#%&#g@RkH z?#8-ZHRk6p)!4%}BqD-&$@A|<`#U2B6`pSoY8{NUV?vQ>2ie;~9HzjphXBQ|!b%LjJIfcK^4 z=2~$-cl)__c2|LNn(?%Y74f0YY|SnODv?L)@gpf*qFUY{6Lm|?YHh`C{@>wC``qK_ zJJM^%uzOZ?)u~y2E0tE1&1|=3U9rF= zvcWeY90mQV;o3E%{A~o%m=*G0O$htlm*;@hHBikz3A3DHXCr$fICxmt(xvLDX!YTd z`%=vIP9h8wOvS2nq^D-*)UK!&*fKtS+3&6>UC`ZFyWEJ;x5<;S4F%B5>njoJCf)m^ zFh?^XDHp+1x!CWpn87-$odw!kGD$UIDHHUpj(hzoe(VX)fpSDyAS)%YmcqKwgzt74^oR7@x*1TGgRmkLS%=Ldn;V3*mE zjP<=fXZ~@9;x$ZoKow{%-Cye=^*|a8>z>`=<*t(LQI4gp$>opNU+x;uhbJ^kTMr0e znyl&Fr0IE^)dw{h$iR z4w7y@(nGJCnw6`90i_;S#OT-+wIp{2X;t&!X2!7BOCy(6-T{6}6~uy4d#{2XrPi52 zw8~~E6#gMY0f#=s=?p7~>A{s{>R^57!A}%B0(%jF zVx6I0O9Bw+O=S_I*_U?Uq*@(`qS+Ch-67z$Fw_#bHmYetqiU3MXf0HiDw*>0$FQ{0 zUgXE-+UdyP5b2)&vTTH!M-NVnfalkUNAB^w;VJjMngIev4WnKdWdU4>;~3JEx~Qro z$fQ5SYKS4BTgu0v5zt|Gn!sUqNg?CeNfK&^YcukOOz)Bo&<0T+$;?wH2d5}~;nTw+^D=uMP#E179gPkO8D_tKQ{r4;ic_@s%4VN*-@`5) zi==HCK?m3(#N~M)BRXm|3^h6vJb|POlcJJp%fLDvxX%%$p;}h%bHj>oGEKI%^OtDr z96!@Gq$2WrZGG!CAEP@iR4AG(H?&d--UrQ)L7w{k>8{C#?8=GABm0PmBv>r3FM;plP@Cd*0oI1n(wSC?(&O6RQlf zTnti}SX8hW5fWUIpc`s_-C#0Z#j1LWC^@o)0ZqO~;nDmtd(r%GZykiqf?S<23wA}9JuY!u`!4=%MC7H? zm!vykd)(wj^^-Vz^zW@`*KdK*?88#t1cpON{gK*^KaFH!w~fAhq1_(;-rYJQv|Mp2 zFXB@NjU90u^Xb}ChXlu!9hKPgFNMCe*nl&2@f7XkUB}OF^m;y15q!}GzKOdRuNiO1MfG^> zv%VI=Va54p-e>tc35%BOgaU1?U`Fq@b!F8+7_-zNcEX-X6z}-=5OggUsSbuAbAWG1 zq*cM`h>GYz`~_3&*_a8hyHun8^`UGR8{@K;VA|piKWBNFG;H@`(^8!A-ee|>$l;*i zH>Wyu%Fcw2?d4JV>#gxn=CApOKXjK7Des;76CS~c^!Gk#Q-9TvZLQIp9@!ypX8ZG6^TmbOo;^n0cKIA>+A^eWpg zDn9$NK6$`cDv$Nn_KPp(%3dQ6sE5n~yTQ8JWLlC7Ei-KrVo$HC{+P~Pz5`l<|EA;Q zZ@%#n(P{j?8s}KfUli3BY`r-RNz`a&({zE=RdBdW;_=QJ`1VPpK+Vh7*O_y#TPQcp z!M~K;bw$1Ii44EB-Nm~*7c!1UFSQvIGLCw+u$d+zgLsA5ZGVpF;3CCq`NY<>>Q|mc zR-2x?_FTQfmwTHXPxWqx2TqK7RRg>dyYK!@b+wc*Os6TU?k{`ZT?;wehyBYbWQ=E zU?smwK__%|30#42@Q?~2q@y80`~ZTPQ3TTu{aGAKNX1$88) zTthRO%SLa({yzsh@I1lIdiNGd8<8n>w;KzsivA8(3|{YE2A@4lJ$VneHFJJS~5UP7(?Z zUH!eBdcGQOY^Zf>ym?1XO{wrwnNVvplTjGGuz@v-AUVQo<3`;{qG(7=gZmv!bGHgK+@bq=01d;aT zLnI3r7uw3&f$Dy(UA}RBSd7zuU4oVY$S`a>fXnE5mj^wJ;6w4OTPi;bZa2X61=v4z zi+p~$y%=bH8sL9?T}p1Oj-5L2EOrxo0_TD@F0@a8PlrcU{XFo7F|yh<9W?pnwg~cJ z;~HvLDf?M1HwOF64=>DaQ1R*W>nLXL$etKo%!SgV9%vlzURwObW2JS$|D9Kv|6&k} z1;WRIKL1tQsgPWI__p7F(@FWo9=H|$7m)e6inE^f&Sv%_dlgg=8ajuEVBUwe*7p

hMR#jg ztvv7(J$Fslq(f=-m$>b*)2OSCvOE{T zF}nGU3WY+p&#=GyxeuQF6wfnLQrruJe-0_gK>tTAoMZZ&m*OlVq!?Pi%deK98b zlvY|ovp@i*2u$&izYCO?i*Vk&^`z9}lo4ds7*MNcxdTMQFV?!2`(&=MfFp=l85^Up zfwy+`pKzalU#BvbWi>)b!?583Yo!U+4)FI&x5}I1`ldP8%m2#mZ7!{~$R&&H1R=ir z-`8ix5oXC;3!@bFxy*$@s#g$1KI4PTY0deHiU>S|8Fa|69t1Qzt?qiI2!b@dT z)?%9~r+T|ud1VIroti_s5u62BTDvh5#eDSaMG(P_rr)j^y<1i_& zn+M#+)nRLSiU8@uo<+5`a4yp-c+%S$3duL*Vtk`I|MGDiF$!Ar{**_!2|HUC^TJ_) z3VV$%l)JA$lBTbM1;DLd0o6cW)nA54T6s{V{9_u{J6me@&Rrt#%deW2b3UPJpI7{_QalU3f;9^0nZwz!1*oF@|*uECR)ii)s^ zC}3YxuHe%)GP&#nu~TXhmwwvK(0freh8j-rDq0Q(MeQrvfVaqg(^a^{3MRH~ej>&# zWtrS8LzPAj)ur91YzyZ+dyGn-O{5$zpYeorw;|=wZ0gcH@da)D_sTiD{Iz z#7v%lbx&k!n{4)ZH4R!oFh4#kD8FD$psID-1@%422pj3_QRZRF|29MZyN_A+X$e(& z@@~1Q8nE;z`Kb-BA*W}5WViyE$SNg;Y;oghlBqqgB1fJMk`K6Iw&l}GYaYcUuXAw~0HNMZFeaz}jVL@yT z6DbJX45$*scX(M>Y`q(E&ff6bIiDrN!llrTpYYC~9KVGo6bVEmW;|6b$DA)?0ykaY zuYTb?KP9(U?dW0^+hJkops(noq5)GT5-2#Wy|A&=c{QpM4cOMcaZzvSYe2CCSCjeZ zfC7aNxshnsWb}f*%1!qk$-C?;zl|Q_&9^vh0Hl-z}LqL z1E5)0DZiv3<7FnTp`Ly9!-o_Ly|W@lyN4r3dYqbeb02WE^o{|)+C;;$N|2t~@GOYR zh>iZO;{ZVZ_pE`Op}6T(qj7JYxG+}{+QxaHS5sfPVO6hH?3B6(YjW0r@~iq^Fze;m zSAQGvYm{~vv|uoV?{dAS?NPtm9rl7B9bkcA$6X>deN;fllHM>+dFPt|M_C&FAFBnZ z^?=qu@^Q$-xm{r1wK;W0nrK*T`1Kwa)ru6qcAj!0b1b}x9rWYCPgFFTMLEoXlq)yX zrhKJF6W7>IW&yLk-32R&X-zeB2C6>%7yiiQi1};0sMN~EA$Qvb{H}k6$6~e!J|JkG zE|67dqQB-7)gfzhC1ayrNXHuiw92~>n!bipQ0<3vj=iKU3*bN1O2=bG++@;Jiwmvg z_g>og5Ndhee^PdkARO{@v!E098DF3s3eg2|%sKVD(W%U1x8MUqwt5Y^9D09Px$V2> z^?dMY3E3-&7t6$(!QcXg8FY_!1?1pM_M;F&%~xMSP4JGO17W81dB*tTsa9ox2TcWh_!kE*8TX4S#PxjI$5 z_Fn6Gg9^<^rN)phYwB^Dtp*Fz{g8VWu%cK_C|)6;D?nTFu>sSoh#V0GMh2uyfc^=x zI(m`_r6B!%0VT>L4);vg84I;48N*7^A0He0zBe~k(>at$Kl__H4T6ZmM3 zwz|Cpo~nds2hqTxguw&wXITkdq9)Ycy4?BN{(I5W({&<&02&m_zhs3d=<$S~;4?9h zy}R#}hkSq;da=#QSx-^l7~<=SjxoV1ee{y8tK1LOq#43b0c#&?GGag{=yLbXrOND3 zHui*h=x#hG2O_Gjl0*88p2ZAuk>TbYD_GnB4v=V$3^|dAbG89c30Wu6Q_X72oRlrT zWjpn|E3x5pSD3P6lCA|DS75Gm#5Z$H=E)E)h3h&`)=oe9RDkHz!{3xSToR|SA1|0k zgMsWum!ihQ8fo&Shgv{Nt>ZHncFiyk)sLM?=z&~)9;4#ao{*9)~ zP-7`_)0T)&CTayVjGhM4a=39itZX|8K+H93m&r$-tyuev7>Je{NEv75g^Etq*^un} z&7r4+=0oWROdBG53G>|Z>paoY7gNx0mz1(=RL=u&X=C{BgXm96KWY?s;J{7mQ` zG98Qk3sl*&zGLItZ6vN}Umt>`hT6kdHsDV+)d6mPLtHPPi)o7eS2_T)vV9AmbY&nE zaPu7eSz8BCDCkdYw9$&X7TugPE#swsfqz^*CWF38_vN%L37?Az5uHwI=0b|;q^Khf zGeeTZL6_G(ukd9P&s$5F$Q3YWZE31Tob{8`^m&R{m|Gb6t#4X~rwaW00Ezw3;YmsQ z1(z!(sm#>TaOt00T|*4&;L~pg%E$x-@7gkJ-*Htyyos+~RhBpy-L1u)I8Ne8|kN%cHhdEvTH-Xwuv!lGOHdsL40+Ou#yH`*-k3aC{AV>R@IbFzd{(Tbwaf^tw^|J7v|gtRfp+DK_iv0X zc61qlNo^V9_9F(nG*Ue8y>%9*fPs9$s>qIWS2lku?qxvRZie*`*iS zE*id-lsqQ`dKHr#b!@!xx{!r_!VD;D=@EDUM_|$6iWeP^STu~ilq=DdeT0^`e2UzfT`-?L98fEt^}RAV94WJ`Y;fl5pP%~M?d6%|4> z1J!>UBm+)sXBnZlN`Jb?I5ajjQ`Rqo7QsmSk>Ffeg9Zd2$ytldAHg~gMh)WhdHHx5 zcY2aqXsO$+jBN**PT0CUKq9nWh8XMKAXcl!N?OS%+i}I40gl1QsqsWxvA`AA5UR`2$cn3 z|1>d*UQ>cgz-(tcvB&EQMw1B$v;&$ia($gjB6K=LXw7f&>*}q7BP{h^^Umhm(%GVv>REDVF7*oM$SbG|q z`ROCkS97vkyibZgh5MsNu3L$rBuM;1XTTgqr?t)(5S?ABPPSqk$8MaV42-^l2~B&J0b6H zPdz;_$PcP*=gXZr#u8{ogR%?Z$Q+W-TM1Y`M=FT%WwkRI&7Jb@nR!MF*1bJk;Yo-d zz@IZXeA`BW%kK%@k!E??WbUUIB+cl<74fWGI~Gf^4>l&+Tx|!~(>*w0F&aGTuOQM0 zU~}ji4s%Dj)I@|~6F%#wy>kB2JFssx`uk1U2RW>kGJ9a%4p{>IG=brqN#byz8Po+C%l>v8}YdY9-;a|w`HY$ZPpRm1d&H4UA32KKj&UUIr|h{|NFiG zB?W8Qb;*VZ+#xTo2=zQk+l^66S60?yWvo;0{(eTUU*ZVB(8365V+5CRT(UG9z7Vae zcL)ugsX;G)uT_|Q{gW9FjZWk%{S5bPRjo7%&&DthF+OTxA$b zt!x4C+<^fEZlOD_e=ZZ+!3dx8BQuG7O22t)(6JEsQf8bMTYt9h`73w#4B|TO^zEnl zUR62t2&SPfDltwdGMa88YB^?Q<#+vyum;mg24$!hxXRIpe-#r#;Y%$QZtcf-Ga}%U z9UkHZeTC>&G(;dHo)eoYP!Z|O+HWr2}s@JxT)D0q_^);~?IpiLtTieS#U-S_S#$`=) zC#Jj$!iK=xmPQC6`aj3BUT^K)i9{E(f*>ETX+GFKPsF02%kYi+E3;u-TMb>hl*TAu z1P=nj!X-D1yisr|X$SJcw!rIEF$`)(_aJ3Rh4@}2hS!Oos0NYt0~qgcj&~8}~sEx0%cst}W6sh!6ci;ld&Vore zYf_8Y$Kb+c>&2i=P^SfGriL#6U{C&L4+j7^6C}JujRQ=2E1jy`lf3v-CRd?ys$p&q zYB#tUyf69_A!a)au&>A|;*0O-TRIOIqN`gO=;d}Gp?=Vjwp zklDQy3p4en-M8JIP0Y$v*J!msh5X!Xi z%N0GamfgE8(nvKR`TJiJutwU-tr1#P&p<+4adupahuC145c$|Ux4J4luyD)!AB0O| zS2FQwdw4c$_qJPP0Dk*1hE3ssMco~R<^kyzMSM?E9^*?Q!j(>#oD4cDZ5qG|)$uX% zQtM-<`sez0hEV#-n~$*pro8k?Vs5Odr8dy_T9B-{0D1J)tl44Szsh#IxXii}sN@>- zT7BODVi}CyNr}4wn?2k@ywmjkV{a~ho6A9WC-03P$8#wkst0!SpfHBXL58jF@d5oo zupEt8?O-^40%Q-@L8lW(I2~}cbQqT6Ph0Y-twN{utl)*Kb>*kp^LUxdK6cxw>5FE! z!$hjRNZtSuSt_K(jsIG|JF{6Jt=S$7*N2}6W2;5iMWQ#WGBmwvwm6QoKst+6dHPQi zIcIPYpYSS|JPlb>u8+rcz<2|u5VSdgL8iG97>74f6B|1xIaH^pVi&;J>x{m8RV+fX z+SYnW_W8pa05Kag_9Zt#VvN74H%Nj0Yba3K*(h43;Y}>?$)})x1jSk+o?i*pQB+e< zO%lSgg>Vmd(RJuQW1Rt}Wp)l0-;YO>m<_^uhz0ZIdyVBC^N{N3Z|wqf1UR4>WiG<% zJJ#W~imB=xhnQBH=mFxyzCW!RMg;vNQHMAhg#SoW94yo`o_)D4nG!deQf$%IHeu6! zb!Yx6RNIc-7@CR5Msn-q)k{co>XucAM&0ObJHTETAc=!QxB~YP#%elesbs6LI~?TL z2cYXHH?&}IEGRaFm4gWGD~u>xk0_RT!O==wMh9%*p&9Rr-2hC@GKY*{MB9Ve*3go7 zau?y4@R4Q#uS|~%Zg=Y0f6CYCO{#&ZsEm*c_2<$7_n?Ub#&U>N9fXrl9^N)g3k}#T z7nF5}Kp9xkOj|gWHI!hskPbN ze6PNVKTyz*;CNUeAd1rK`c`nr%3SQCZ{8FQNtOX7#DG?zX$o%f3{6>#V3H-OnmGlY z{E{Of9AcJj@q*MBp-iFOch!Se)Be-1HmX$h)*x{k#%+0eWet-`#k2C}E8}dVC{XE{12a46azZ7_f zdJlIJXqN)iKZq%5cOop@;UH@6-|4~kNlRdu$p@o#ik_iX;Ig2yZikoE=Np5Lqx+b@ zGONy?1#~E=VCta@9!lEf^Ady4_}Ey7tTcZjE3N%(j1v<%oG}c0G2L@SAcMG9tnk7GC~qla*KU#TRe1Yguo=u$r+2zCAj!l#c#v+&#dh+bDkyU zwGYBvC?;y)S^*3p?JJhnsm34f*tU-YxQ4bE^Qgc#zC;3gsmGq^MQO!X3FR z5RUKw^Bq^M#A(z{6C(`K4=qQ?p@Re?3caayZWx9gq~!V8Ijt;Z+SvUyKQ10a=(cG< zMNS<&bS_C`mNu)3~S@?OmXX+UZ$M-q2j&H#&eINf>+g z(Kk=ryw&5s9H*4;tiA#>CUbVG(`j(BPcJi%Tb=pR##|3 zL2qHSLge!) zlx+!hWgShUx3fSIdLdyPH`wI(G#_T8Tj+c#jP`_zlrOG=4^?|m_C#!JFU?1R2+#!X z;o#GnNY-xFskgNNvyp3Z`r&WUx*J*8-1#*-_YTQJPUXQRsQ~qpMPI;>aXDo;>{X`C zocA-*Jhw!a4~w|et*Eb*nt2Zbl2ypp_Hd=HrffsU48f#=xZdeTaZ^xEn5C?6>;XDEjoW z-yKeQ4{zXFgn2NDSD|lA0%9#~e4w?Vew$NYeuDzTf8OGCe}rskWj%gmIH`_k!tCyb~M(U0dEAHY0rr3X&HF&4HQQ6QOT%i zMMZ_^Wi5_Q4SB+Jnk{UIT0TOfh5RBYm=sK)_XMDx2f$g`f{jkI4$t7{-P*aWe~!=p zZs|8PY_!0WSg{|a5~dzL{|)bPy8dvRu73(Et~O%f@Y}a5y1{HdI30Y2Wsh$rT=_Fo zO_5g`oc|1f1knm$jP8XyA(I_j{^SR4K}eW$riyJD==9_v>k1ggr3fk@1t%vJiP_vp zVhEv=svQ1FKLS~^llMiq@0A8EoJyG@^cn`QbCkQ92{0Mn-^lXD`@Ka`zLJ0-Krorn z_Nj@*tXZ(NW~QIO!uj3{&DhL{fj@4wCI~~J5XUPj;_;rOL}qN@NL%;K**rxj zZ;#&y6kdpBE)xI_Ep)8aaPMoP9`7moi9%X;odZqy&?(oJ<&0&3&U#Ed?e?gZ8q?Ap zmY)THdun(aSf(LG0wZ!4jo0iYmr~V!+>Q^=r7+JX>?WYOz02{t#RfHqjKSQRqy{VT zIhK@~3;+}|^{qMdZ`i(6u#1JI@kp$hr634Q%^`V^vll=<^7|DyX&NSfM*7kS>xG)P zYsZiy#4lO@YH-sEED=RNeOTTlx_4xmArS+_l&zhgO<5rOnUHpT^@-1xU??MheLUU; zn1SSOo%%mobc~9{B5HheGVc7%8_V$|n6eFZn$PSOUO9dhHOtr%ZbEo3e-o|Fs0C14 zuK>}YH(!VOF1s6Ve|R8_?>(w3inWwy*K}A3C}q>HiopCSILX4yPsOnLTO-YD%eD3s zbes_-CJ*~-^#@Wy}y4%-5B$x39z34`ND>ZjqWFZn~z4X12i^B4~F)*N=EE>k(8@h z{DAu?=uk8n+|*81uv2laU;!+<^j$FgSiuQ1GInphQ*9Q877?RF-Ecn$<1ePqW}5T> z-DGarJjc#KXF%Q1E$fl2knEd~t6ha{W-VD9v=lN%i%p1|G6N2T;Kcs!r)v*@mDKi- zZUDP9$HcBBGr#Fg*+On%jVNi7hEAol3q-pa>X-amPdG)y16V3Z#P1V9g;fP3I(LD^ zziX?U4I!NXT(F7`4avz#RW8QKKQ@-)t<{ceej7|Xfto6OCC zPSvodvEv#GbZv^T&7~;Rvc}keZ^y76EYQm?q7TArhO@d8!t)9F0~f?B9?ckjik+~l zWx11d>Zr$ww5ylx_!<<}U_4A;@wHvy6~U#;eAL`dr;f`)Wp4^=#wf(?{a7JlazD=D zG-7tmanMXBB0+w~)Xg>ENl67`S;7!Hh#(*l(A?D~utk=K^g!U~vZ-W1X6cTSm_%a? zV?3j2ku;j};Ftjue$61po+{dmR?OYa(kef0gN(AtfDL0CZ#v{lub&|OQynQ>Aypw&hYiSNB*b4m+jIcBW1Cg|q= zy{Ak9BO2MVxlpXT$+Rb9vFc7}*9v!R<`h5Fdb{hYN&7#WX=Gj<3F=|L_C;L~H99&0)MB?maynY_GzA6#rg)flMC#c{4gdr(n8EYK#89esocEeD=T_Rd`s``zeyKu~X>f^#NtRV>OR z81FKfVKz(_K}IHl+^<#UI?(nG@DgZR&WlKLLFp=+o0W;99rZsU8 zpaOODOmIcnp4DSljZvUZTiV#~K6{otyO#uqXfg^~s^7~<9@qZ9LVD~uwq!$; zqh}BtDDY`6UXeuA+sl>d_nPcsMfRQ|&Svi$3=aOGQ zIpQ8aO<0gAq?`1{;!Xj#CO%XAE`fhWvU5%(M5k_-$ji~AwPeb$2{dIP68XDFiEd)1E7`dVug}3h3uY z+Po|jeXKWNgoQI1vp?}XOLDjdR-?fA;2VvQWS5A$*KDU}k}i*+Q?YhM6UZIUwocg0 zyBOYhVFlHLqlb7MEPD#njUIHvhB%LY*NLDVnmgc49W&2_z9Q%-K)BZ7r&H>C1Zs+$xep3_4H2&7tJR>F z`QFfx$0<`MrAUH`@Vg2rF$)ZqxV6da1&MYTA~5#1D=XH{AQoda_@PJx+lLwN-Fn9g z&L^Pry{v+!7f`CMDaKS}%`h@;v9{zHaId5Tu;s=B=5cJIY8J3$3M4M`En)yJ3H&8fG}*p6IXBxyba#vX*}?5wp}EPTrz6c@~`|h6&KY{I8{IJkdWC1 z5SzDk_(NB-TO%rau$=tsR~0VMTTzY@En!yyf53iyc8{bxH7d=HVpCRWa-4%bcf2#H zJ13Pw-XeM?^y|s@KmS3i67wEn}w?P#< z%^(j(dxoGT_sJOcV_L2Fyo^Dy%=l9Q5KeYYtR}u@pe>ko7;KD6U?}Ul`z0)iSG3y{ z^-Vqp5@3JgS;~q*$|dJT)ZwL3EEFGjaEBK8Pl_zJzY+FKfuFxUF!bW#4`vL%2|f^o z$wPdg9ictUlgrv$PG%U|?kvODJOPok?Q5oTyVNy44s zI`UyFjBC{9?E<{KyY6`(m`2DHfOZZ!LBDPyE4M;L{9XlhEVU$^YP_Jbr}Mef@^lWY zcB0c_R9YbHB21dWMX}=BhZaYKW5~WtK(wVxqj2~Wg{R?kZ2FsW4iE~Jef2j}!v}&H zF35^-C|k?oMWi{7xEMiEZ0Ns;dLSOoOLp8hNknE;#NDb(+;?_D&H5HLfJa;00&C!g zXeScTJ>@Qmk3i|J(N)pt_APsgC=OtgB-g9=>&!-&+w)~eAIFnxT{Ndc)~SxWk zhCgm<2PmK);3}!#%2iz*Kc+-VWnrG^E*Fmmxji z7BY4~QnDUj16?IU`qC`m4x^_0=R8Me7#{@X&!P}I?|iV2#!eMAW^=&ymXK33<&nO6;*EUcOCIb3%IC^s_TY z4r`RZ>w(MkpD>c|0N)&V29~Ui@+XQ~hz2d5rn`eCPeI20(eMv%VMz50F~&?;m@`!U z`KGIl(v)}pG5WVyj*$A4plP}Da+Ki~RjC6c$sXKk$NBRQBb-6tc@66JpWpMSjBezK z?EGzAS~o~)wrurZrf8&}N`HS#(^tUv$7W?LAyxOS%f=}opl>T3TyZ9_V*W*iwJ*FO z8M88~C0RxpbKB-7h1id`<^yU^9Dv+t8$Uo! zGEn{321>^aE8R_LFIM*dx`fa_S9XS$(9FzL@59NTbBRcA~SMwvi={T zkcp6ym4Pj_Zwd$vz{tkL!SMfJh0)Jo3RxQsBXA&nTRPwfeLtMvR<z(Wym>e4z1l2b%-2ciI@S?!?ORLA3h5essAw)X&z@Lc!&_W>EYHhx! zAGFYKriA5}sjaPCJAf7fawDA^NH$vVmxmDsjZ;S~-Vag+RPj_I;Dj;roxBfV&P|St z1VJDv?C9YB>3e4m>`E;D1&7y*cWMZx!05*2=E%$r@}a^c(6>7M!C%bS`v-Wj%5VDH zwQOChwH1du9fS|IS>TUT-2Di$T3mV?%C3={UqvIXz+4~h!?k`J0Ad#C%ZcNcDfsbs z$@|QC4>FM8x2CnVrKR18KI|O;G~hQ7x`39GUqKLVU}Pu^UN5HclUiPV_217CPa}4t zyz2Tf@!p;y91zl=WT0UJw69V=vp*DhfsxFC%(G9m*jV3E_YRZ$gv^Rw+}uuak<1@@ zZ-ahv$0Yd2pYcxP0<0#2FE{WAv`cwdxmu6C&e*f0Q9?MYJL-} zcY1JeaHt=S!3{LcD@~K}tI0p3H1M@2YZ8#oZ+Y|RTIcpl-8;$P3Z{|a`z7GnmCcnI zqLrg9XK?{aOVa`tyaAYfGh}LgWb)_qpv;2gO+3u`{x7xgv-o?? z!1RewYo=%5`!Ng)Ff?S`WZY=+{pSvlO-%fR|I5x(75*153^%i1dU`lo@7Ofx&F79s zQk4JqT;Id9rbS#ZuiyKQBmeXnfVAVY6oT*DOu+otH+O2lr}#+*2;cYCspk(|Sn?lS z$lvnblk)NX@2;oeqlfM7TZMGb((0Z5`vd^-@%<8g>DLU%`3`?M)mBT5rHX6$P6M0$ zhFfC!em)(~%mmW8{Hj%3A9^vu4iZcuz>}Ss9PS-_vg4lB06sOaEdh0AY{`S&yh%4_}(;N7oe4(o& z(^HVy8{m}kfBS{X8R=dhmFYlHu!LTzv1ER+*gin$PjWW^UUhiaUxhb%B>)r*KgA2X z{jbyNZ)6G>KgDx9Lof!ZZ&}=5Vr@O)D7}>5>^{bdAM_54K$yv2C9zr5fCX{6rJiuO z-m)ilpNqWP|H`Z0{ukjv&siaOV$T`C$Zg>pc|&|U_I>Q?`m|>{Ywm(z6jq<*8^RZ| z@df9bc$dGEAb|EqB3!Hf@+S~~pV^ItuKKxUviT`omtSJX2r7Ai-B9ZHp30Z7PxqFO zfzSMjJ%SgaiQE6m*?;BrzjD;`GG`h^clGpb56G(i$A2T-v;p|3;qUx0Cq_*p|2;VQ zDa9*2HvpHq^2)@85tpyp%HzVW@6hkZD+cyw2KHdRj28AIxcVBHGxstia{JPqOk)FK z?9Q0>;H6Ep5hrd1c;q9mP6OH~UDT`ejac7J5q^W$+imN@;3;FHy1hiCslcwqSs)XG z2H_LtXu$Nh^ZxIX@do;ht!kq|Xr{k|-R6o|u03cO#eMlso$K$}E~I1POG++!7A`=- zTh8Ntkc?P3aDfv;LlKZj^Hf<&8e~c|Jlrc}vU}dNEFLK`qz(^hj10s5-Mp>ZVi53~ z>wTV@@s)xCnrzY{Wytp>a_hr<+IWGeLIuA$4ajrrOAojIEzNZ;xZ7>~-cg+Y$lsoQId=%p)@O zwhQlQG-ol@`?2PGBppJXTa5Cf6hyF?2D@yc=P2mve*rN6ng^V2dAij4uWPI@rd-8y z_W<2jBKS@&?1mZW`rk<0e~$8iU}{tRTKCVFr{Eb+DC=CoeClbLQ zJ7`?Nq^45n><~mrm+K`Ao!FtL$aPRl6xx+s#Ad0tu$T&YXdfAGW-af`(=lrD1Z6Ak zm65~(X)Tw$mgT}8-VO6*D2M79er3pr{sIU^xd9-&zi$$`E}r$qzD}c!XN^x;d5ZdG z7)n6L(e8p`cyd9G%ur7(GJGiYZ$HDNcyA<)LV`GT@_G3Xn$)CvDnf9j-%uqEeELJX z6mueb(g>Gh=>MI}_)m!*k#AgN0)gvPGbQpkM^p_I9k%o^AVcYT2#_{OI@L?!aRTs! zy!Em>-fkR-1W!14b@7E-^MT69;NEP3}BIr7L>3uO28ndlQBMgl?_> z&g(cH@f%CKUPFmQEj=ZIOPt+Cr$B`Y^e}HxZ^D&f{J1?T z2|0Fh)4f=|3Y}bCG_Ar{LC_D2{kcO|6Uu$NnjP=+#|j+b;r3lS6-uO1yMVXsb zLR)%i4m1k`cNFv{2Gs;6UI5_bBSxwlhw*NHocslnLFKsm_?Nky2qF2S>eo&6ol+mncc0+wH&HfdWO15s1)=Lu+C#m8v{T7cok zkr8A7()w$38ylWYY_Xq@_&L4`zO9Y7b-MjfQqbgM!9B=j*I3M{695>K`&QH%k?y8f z0@07XH%4DlXDX?=7L(YaZk^pl@C7sNn%M`B#$4rsMK`Dxzid1RL%ftd72XXV7)VFV z4|vJ!Hl#ow?$Ub`uYU&@pP5r7fflWUn7cgd&d~RN$2nmq^m67SgdSbRUA$1lmimnA zOra1g*ffCIFkc-E?E#=gDmK&2>86`pozPc|^Q1&W;?u^@Q^gSY;eU&r)^OlzQ-Y`0 z|3&Th4@n`)kQqm-25cHjnnlobE{dm_^iW{}_!1YkO}5@CM{!mOf4l;U->)PFT3Y2= zs_0fl#%Enk-wKE8YxeBBspM`g_U=uXk&Q3IXO+hU8o`_E^nfY>1F6(J!b2rciJ-e> zUvMvk!D`<-18VyvHX25ThD=A-YX!tF{fAtF_@vHl*bkm~>80+s{;^vkarvp_bAdsK zuN(eaQCJ@Tjr%KG1&nK4NJMY{c=fyyJQ;q$=rxOVzk~R&v|6+Y?eG>>YDjK5#3g^% zX}R7;_httMazM551ZX;58I^Yr`OV4mLmH}W;{=ln1d?o9+m1JK3$vyTEA_W zwU)jKHo)%}E~cxx&Yif+xD4VflkIh`8Y1B6x4@5bRT|l!@3}7>ZdJlWOB!K7^V^2L zP_*6rw$ZFrfrED;48_SBLYpS0QWd0P9L(Af4peMeK*hG!;LGB`y;jDOT6OJ?UvMB|Fj+v{pSbU~l zkJwX;2psS>Q|kQU5cfV6!gNf2l9~R7d1z-;IjJsKYi|uc!W5|)L$mD$k}MO5o@q=b zd83>SwF%eF}U^W2%lR zG#^8YY>L!~tWGYm9G6F}Ftbcv_1)qH>u1@6Wr3yHEy9u(XKZOk_^59}{QIcpD?t78 zVa@;0AE2;@(nQvroXngzs0PGO``UMRG=U@5B`tmx zpbKTx$_lhmFZ_qpMIP=6RC-0{3I-j@s6OWT;#$SdHFN(*v~Aif%~VKG3XO0BY}Tzb z;gU&-2+p0|@~fW(*>75Xb@gMn!0WcLYmp?Je$E3WacP#QFx^lj%ZcCzVxG*T0M?;j z>E+PjO0HfyeD!F!14YL{4Mgt%0)G_SKB#p;u^N+3#JDGUvRU*|!~OF+r4%G*qV>FF z5YzchlyWi*Wq;MX((SegPpkn1!ArI8w#*)e(8HL*4V8Bk%}R9o3PK-?(EdeBB+Z-% zyLDZ9HX)qTRVLXHRo4lgg(Bap0l-50s^)PcaL|h6Vq_0-2ft=h$dlXXn}6NzTB4tS zo^OCIbsj4d z^O4{LH2d#6IrCdSlNBIA7F0^;Llh;D+hSTx00{~yj z4`q=n^Z+{)WsM1ghTixcT1tYLL{4F$z@U%% zAM^rJA#Cj;N_R^i3$PPo!e|NLW2n@b?kLf7i7wzBJP`wS5AZVW=_)k&s?ngiGr%y~ z;c<ea%vv*Gd{aYc+}VUs5?zYF?u&bIvyc9x3an*^v;Zl|_a0FVcP3aeL>15XjT z@E=_Q!oI_Yt30l20DP*kab#W@8$58x`l1GH-%FOBOue&r5IWp@Ww?Gex@io*B;T)! z(!261hsK)?#1*4SS~kZgF%zb7_La#vSvJemtJ55TUOBvAlDLb1e~-4Z+|lT}A0Cd~ z|6HByKW|r6_emMoNI>Wf{!B5?eZ9$HgD{mI5HOn+%J*n11K=20)J^iMTK|kS$We8R zA5mbIDr}gfIx}g%!~{8_@L!s*pyO2+$qK#{FMx>Z<`gJhb9^voV1< z6Y7dMYxlaA0FF$Ev{)|jmu-<>exS(e-stlzUgL1K+m1uE_>hZTe0NG*&xR%gJ06Zz zfu5HE$KRHxhMu|=FrqLA7Z;4jvu&G>^I1^Luu=klyry%3AzUP>rONI-ZJry~KhJRq z4pTgrp+z{iirs>%p~B_bsC=AmXAztptuou{R!R|h0IvZ%vX&cZfB$iL^MH{II-9`$ zObt}1(WQRyD_4`D!`+tP4fZuZca2Y6SCTwR9RqH4y45}w8Jz(v(y^weFAmNsUB z^q2`edL5!^Mg+-l=7kfJL#`1K>GL^%=|b%v$*u?6^R8DK7mQr=lUyjc8rxu?k>X%i zx~gI$0vuq5S~b@gW}?{{-P>VqGwDmmBqo*^^*m$>ais6A=c7ZPKa}9eIGR**Nq<%v zqvjk1h4!$@0zuCSlJux6v$t(4;wd&? zkXzC>x5t5C7@Je+LhmdOBMAnNjmbCq3EB6D$$0k|us`Mx=T-+l|qj&tN|5pw#ain$xINo<@|W zKVD4LenhtB0*Gor1?Z6-tt0#Ohrg3f0m1FzeqAXZZEY6GlJFVg3{q%U^i)7aa!kC1 zGcjR{T1fB&4f$?Bsf}s2R&!XRU5+$M^ys>qqlqCY#80Ur)vo&tD6}b;iJRchbt)mS zNx%~cLLnR%r^Y%du*0I@3*vBk>i%MoQ)N3|%_ z-URQ089p*tJFiOd4a&zIv;4E)o~CSf6>lEG%q(FvH))1MVcKD>Huy2)v4uWE?%o9Z zzTN6_e2d(2C!x z76rb9?O{z5ukr8B*&bJusr&2k*3uT_j(3QUnPX~(Uh6whD0awH(HF?90&YpBtY(6tHt^RTtHyH*u|rqK{2wB)Gt<-Z!Bm0Q6de3HK;b zjxiI?!r}8-fsWnhk#b`S?MI*iqscbT(7nos*=-MK?$ni43zbefQ;A2ts4+vjPKA%Y zDvhY4`fbz}D~mkQ!_f{zEyS*TwJOoY{V?@^txE?Da@0EORoEJTB0fn~WHiItqByYT zgMglzEg6jKrrZr1og1`;0g7b&wGM!;@|?lrKGjhK9K{JMRs;e=nz|(!jCMh=E}u@L zaz@ibREzVT@SLwK;Af1$5~|}T^4(;y)IEr|>8+`yid8d79#-)#17(Lj2KpD?C-QQ- z;!UOSd&h5L>in$?b?FkC!?-r3%i3qtSLa7`vf%c*s_=^?^2aY^1u0Rm*ngJn?$Nm)yqheVcAf3}qoDiS60sorwxvtgz=!Y8b zakM#0(=;wE=TqH0|9FHc0D}n3`pp6q#D{FvC{Whf^|nQwyUYiCx*U{>Rg&>ThM693$WLJpV5cl-E#CmxC2h zb`-<39Kk9mtQHH0)Ezj|B8M@L~JoP}&@NWGae|>WQ9z zsYmvWfQi2;tJpIv=2+cP>Y%{>l&3N!!801IDIHO|j1yN)s!@7v&?@u>9Rl%cRYSua4WynHQ56({udTUWD9 zZ_kGVmOy4)$&Sh1zREeT7LhhQ@+_Q^H&^c=c^=DQ-J3_jwX9C)DA1K9i{beAM#vjS za903(UnT;#HZCPzzd~YqqMJcnnkHOW6!46k&J=qXB8J9kv8Q5ZCJQ8_7$b!=d#qGg zedPS-*YqLRWIG%bDh$(L4Fff3pKjsTXXKhY3bG#L zkY-^1c>zbut-5uhw)v$O*!a#1B|9VBD2eZ2cQp(r`mb5Ue_LZVylym{02t?9ccvN)pGE>< zex3KH-UOZ?GX*#;vPmD!PzlDRcVtzA-{^xU(l>PSyv!X7!B^&b({$JXhzjUSt>0rf z$~eiefo78uXQWeElC5`MV&Cm*BAKH;;poYhYCn3&bTYClkYMf$w$-8$S zG!#J%T~ES!rOPpjI!w%URwHB!Czbi^r8?c3_j$R>A^`3_Gwt_nn16|Ph0e^oO<0Oq zx!-bZSQa@9CxwBJ8teq%+~@ zcUp>Yb-MEofgR7_Jg?DVJo#8uEH7#ciaOn<4dN0Rp#pp8RhbeXM;5Yk15@QMZapKo zyBLFJI@Vj*l@NP>r?GdS6fUN}?Y<}ZM?~`BYRKL3;GUjGG15njdpq|ca$61M(3L89 z$ISQH28>z-Jt^kMLg$K?U$HBWcgw)$0`XaGx*1!-F1*g?WSYDIy=gWh8*=zSU~OAL z&DEdWG8pZI7$bUsR27#YFUA{LQeXQyj|4%fC=)X}gnoEm@Ems|g^1w)VC)-$bm7@x z$2w!%wrzXP*tTuFW81cE+qP}nKKJ|Y?(Xg;i{Po$ld7aT>2%k1yfYPl^`5?3zBH7d zpB49sHk6)ZRs)&n)Tug;Hs)R;NdtGO4oQ*{oYU;_kM|n ztF**1^6j~$`?1+gH?iLFk&-fZhSwNr)7@wxwgUi>t$>-0(PPI)u}YlN<4GN#sh*RD zKjD2fHRC{4LQjf6$a+|{ALe`f_f=jNywM~Do*Wq_+c`8bQUSo&aty1(!O(A(3aXOz zcRGnILu)qeUX>2fi@tenuT{~Tz$=cB75m^qUEm1<)}&t#KkcDU5ql80rH|@jy;RRI zH823tFi*Ts=SGSgS6@Bq(bQykEY&%pf?I^CgtOjCQY3mVk4LR=KljeRvl&!UCkrANCIK2F(~S?fSyMbF_c5TIEV%m`h?aaM*j<7>~$VVnb85b9O>-SjpdQ z)~b$H%y4XJuhIG~EB1sd*T!11hcTU!Uj!JcMp5B?hw=6;VLPEt{;|NJU65f<2r;1_ zA4;LEHz)@=TU*{iM(#&4eCTW|V#7HPrbiYhrBZAAQl}V}qC2^@jBG*5$x`FBDr^8+ z4$fEA8FAoLqV*obGM8~^sely1eK3!mvHY^D_qc=d*;DA|U+z+@SklE$EoUhu%HG9j zY$?}qI%*vTrk2%TLlNk@C)G^ZIXsbn^o6TS<3Qk^1j zL2>g=6@x8pVB;Nn5^RxPhp0)u1$@AK5Imi)sy;at#4sE6!|f%_y1`ni1!Y;r*eKzM z6=>P>AS!T{0m$X14~KCuE6M`rx5}*bbpz-=cO+tUw1DZKNEnFlxn7T{ z(|Aqs!h59O|6mV` z?=<;roC&g0{e!pDiFwaDyb?eT<3ags?})dk!H&@*(gtvi|6H+k+jsT1e)-mUX4t66}) z6PsnDdSMS%j^mD_HY3TrC*(5Rh5A3;gYxqej9;!oO}UnAP=%hkU~@p{RaxXtP7wE` zIDVTP@^Z=YRGp!5s@3J&E%o5&nr)mk(>+(`5h>sE)|+~UGgH5TRSNu#md~%RO2EmoBEy}@|izlmpV!!S+1bjN#+P0nYu+m)`2hBGByL6Hp# z2*V6>j`pALSx)jvFLFS{&80m^1nrjB6HEj2JRgMNj&aaf_(fr)>b6dY+Fm%Y>nJno ztq_=VRnB0`35#(mHNPn1Tw_2!91Ee?<_K45s0gZJCjynwSq>O51^?Dub}SLLX;fZk zcCp`{o|}Y9A1>{BTNy2w?kACc7HzBLc%1pTfS3w?>;+&WyI5Ej9?vvA)Mi6l zQ>oq1{g7h_6TPr*fq9ZsIQKRL2D8(_Ce5vLag2bjmt63>T=>|mSu5r`Zn)5t9fIeb zi{3~ofhp6lK*4hG4b8x=garIVZHloPRVuhud>38E+Ov{$HG}_m-N(R`^pRfM)SlU7 z&Q;k z!nzV(hu90+tvrQn79Pe9So(-KL=B_M%kzJo=1ln^ z?X~x1*h=0IJP5nEdiqh4Gj2H~GX@A)8T`IQ;-<k^RO?$`mw#`F_5w-0}HS-xJid<8jMlx9b zwx7NAZmt^7#vlfYs)d%{Qf^%uhiENWszxasu9j{6M_=k`G#yEli9M2v=~P@(;qgc) zmx{Afx;{|0GZTtO;$CrcHEz%#SyWr$iL}fdA*wB^0Z8MDipqD<^Ei=Uo!khjH333e z=&J~1w0o;VX;$bF7E~nZND+QdG{y_kjDifYH@tq3e_uf*f@Ua^kW9!&iA(5b=HhgZ ziXnHH81%9iy9l!;;IAszXews;qb{RNz`;Q5^&a4+UwoAa3HHRs{LjqXcBG-4rSo`bG9OG4pn4?PhHT4Cb4M`l{TTx_VE_>kJI?)oU`F_LN1tS(&#E3AFN`N>Cf5>Zu%^q z?g4AP83B`hX^{_2mXenUTMxYPCQOoq`+Wx%NJ&HBugf3xSElB(Ndk!F;fm(P!xIrJ zYZZkFG#Q8~&LO-!EGv$t4M!y3$ys#5rco{|eY-Q4R2b`Np5m9`y^>8wd~?Ac;vGZ; zHkT7ZC~X|HWR*VpX|I31xmP*c5_&1J#3H{zncogN6(2-dmd}oBwoGdHoKP?VE#$I9 zWwUTZV}$m^;3=gzeEy?&gr!wR1BaLrLJFffEEo+CDlEMd~4L;(Tk8Da;@pYmR zM*=wQtJTv?(JzO_jARKex+T-cTlA1=Dc-fer}DazaZhSNV1Q-2CGXxIJ!*NwF_K!~ zjXu?ayqqvYSG7-?tDAqF@t%UCyy@^4H2x$*`xtfP2n0Es*ogJv<9gsG@s^&W9F=N1 z2)-M1_SF-wq(eo{S?{whhbH{^+N}e`bBhmw-Kw+(EZfetwgYb^mRygyW8srk+`@#} zoQ7UT4oeiAIsicvHPNnjALuURAJGOJgnPhl3UUhv)=fgMA1nJJe$>iipF=_O}#g}ivW&+0(S4!ru>X#NXkf0Ho-o9 z8OtSANB!4(MNJwU7oDncEL9tRt~BmvJDSCn65QAAj>2OILFflpt z-z(X`XMk3{3mFJxJ-@2FDI>z}*&CeH1RMtos3>$$oK!>EhozbaAx01lfn#!s>efb_ zw2HlPHk>rIc}`Y8BWClUxlO-ZTg3#IG!wT84Q(%*_CQ~dHA zTA?j_kvJuV#*O80e~eb&$TS2JB*h%*g_2>v;@Bw(kar@cAj2N}Ohwp)dTSu7E$wb^ z6Hb`ON-(Z5owkuI`SqV1v7-GKi^;*jjorS<^8QuKXZK)x8R{q~!T+-K?cro~^&M0pBdaDLl2P>oKZTl*y@tn9lFpuKFr2fTU*1v)OT6>o+%+TSKc3&DQP| zI=eD+?Cr%m+TWh1kv=-I7K6PeJX1&G{g>5w2d~!l+Wu&}X$4lYTgPkk3g1fZF3fX! zX3MAF^KTgWYweA)8-_}=EPe8bwKY{e3veI2w=uExnP?xyy($zj%%=M>fIg8LhK)0C zK(@?fX8yCAo-OG3E7AypRM}8b`vT73@!@G2_7WHL#6Y;YKj>$80a)cE_e z<|hHRxQ`d0&R&!Rm9icnh8CTZngRvV7)Hi0c$(kD`zoxkfveNUQ|33#eUsHH$mu(xqZmTsB8}W^fI_k0qt{GcZ zi~iMhI#ueh{I#TVjMe7ii+n?|c7U@r$5d@7xi>QOGbnBKmDvK)Y9W2F$1!o3?QMoP zW^okNS~OP)KXdm2%fET*k+(=SahO;mz<7QE7)nV7SSW{VPBHTiYMpuPaY$pkeZ2zI zhm~U-L|*P_fFGbU5Xa@-;3sl81#OZWx@$Pz6wdKC=PSbH!}-njrQp5wkt8v@`810EgjI#>DOSyebir%ZQ)s>2nUj9?*Iw*>EGNaIjnLB4^=RX?vV z8Os*G_xH8chPa9ZIFk?T0ze^59!y@vu_1Ko*b#-caR-bPpbu6}CIUDQ!Io`!!g`_Q zjuxWLT!}z*Ok9lSR8alK-(a4Sz{KwBO&Q`sLaaCX`!~u*^X-F49;b2D%vVobRszY& zXE1s3AT_m;F87`{su0GHe%`Kksx-3$t)fIbnrDHPt-7{+%^!lm2+)`&(A0gMi0Tj6 zSZ);ijyifWGr!#g!@>|Gv3bG7 z(hnYDaE6$SW`*aI2MEpN;16Nnx-`^-^0QH#H(jS}EqZy<5Sau0@sMTq;5<9H4@kp+ zRm%k*_BZLq%6m3dhTze_qY)uUz>LOyq8OX=!o0W@aI(&jcrp~DamjFOPSA(ZHr>kp zx14fUBTP<8gx2a9w(mCfVlb}yoj{6&%{{(u=*5Wv*V0yf09c&!U4^uqn-Xq1hbfg_ zDqUnqw{=!gE6r+2t`m<*=kpW?SDnGaQ&(G;i&fCZP7mK;zX@OI+m7$cN4NZV_*o4z zU|Ap*Wt^%<+-AofY287nVW*t#QTe1Yfn%lf=B1oM=PZ;xT$k~He5zQJyv;b#a<1kv z+MO5p=5?@O0C=P5z^3AHNW{z(3OZGEU%`naYI^Ft=2o*!nOZn^?>vSf(J)I54=-bZ zm4QAAGl0wAhNR(SVA{#g%I#fUs^%}ez0E4>*JC2T%_$5 z2DBn>p7c(<9^yHU00XPfscM@X?aGp9!+S#7P--^k4gsK{1^Hbaq%SJ(`+sNkn1sr{ zpbOUY0JcdsyXAW+{pD61pqf3m#E>fMf_@Xdj&E94&p+h*lrDp86=~VJvUel0cxmv| zup@34U0MEWv(#k?Rot=7&S-J*vqE-Y?vOYg0+2+_$e^@pBJ*&2?tuaKMl{iek)`ko z&3hmehjw0)@xxjv8{DxFjDqe`x%t1_Y3mk509Y{LuQ1;SWNTr5nnXsQ#dDBg`>~;= z!(OyI>c#D%5tDyBF=-uYDh~& zPD_IU;+yQ*qR6Cc*@uP;9=5QFZF3$S0THZu7Axn;pU4b)W3ppw65$&N)av3#jB+#x zKx6yJqr8X&QV!-!9Fc0!)!synIDV+HVsRLda}k-6+w| zM%uI}`N8~UZZL~KLDxnBAi_55UAHEIPsiq{xv(Y!pJTuFn~T4pC0-@I)Jj4eEGcJ| zwnLYc18~hkk(Ic?P7IG=goJVztax1l>lj}qYt*=rsEkanW7VUYE3RvYaM~$SJ<7_V znpB_zsV>-BmKiCNB$BD&h7eZYuDnSPsiwIC-ZkPDk)gfZ9j`*WF$ z8=5$5;tDCd0G;0Plf&6Hp$AJOJ(lJ9FKeN?I{HCJepp$sA}(e&xABvvE^J_ z1GQ;e5{#3^|7L9K&W;-}Hv^F(h7n42UOQB|a-Nrhl&M>*Fag`h&jknx&8u z8Q>}*GLtig*x2?LW*hCoB|_iW5#t{&^q2Ti6?6XK?scdDxQyBJ!lUOp#I(o7>jl|a zBNM|b>~0GR*NN2rnvNN8rddNee_I?t(-Qqi>2XR*l+e-;u*tfMg`XgyU{nvng(5HQ zSvz{EpkK#e6)ZH@IAH2SDl4*h*vP&Hg%1U*236_SRZ+`&pP?(yZsT*P6K_K);tg7S z@>`kr#@Mg`vKIdrt>A~zqOT-=6u_aT`3*6n z`;(HyAgVI<6%)$ih6P)k%7-03A(k1R(rzCv;3luej=?>Fr88sW!#7s6Zww25TNH@s zuac&?$4|#(JFU!jt7hNdSG%{tvU%XQh{*%T!cu;NqVcvkPC*-1mnH5+dW?_P0%Vk% zNcC6Glu_zWiI=aNp&q%?`lZ9$b{c$ZFCMZ2G!MH;hC!aa`tF$h_)yJ0uIXOUk2z8k zz^y%Ekbi~dK(Mq^&qdM8xpixlBgmA~XmYr*J#2&2<0Q)FC76RGKm`s!U?pb8%6;v^ z8=uNn(QKWtzjcqB>&x|z&c~jM-})gd*yd4X#@@=MsI)BB6}j+w@MR*o^H7Mo(_U0t zY~DeoG z*t=*#-Bgy~p4R!~7^_xGiZvEprF`QjFJK&n+$vZ$1Yvo1VY&DVT_Mm|e@eLnU`k9D zIA8K)3=5JhJ#8?O;|$_rxjSPNO+NgMJ#XBR@w;zmD&`v8G(e=;r=HOyXnKF}r7q#T zdW>|C5 zu=#!1sW%Y~pHaJcU7m9Y5S zzy?zb37VS&YQ1|rZ;e;whB(R>6>tA)jlSTwV3Ds@k9~=4rm|<~@j4>p-dftNinML|t-__dO3x_%tm7EI%?L30vcxF4+It zdlG?TfDt^R{KoheC`o-_-|;9<G^EAYr=xJFXBy5hlkGj27T68!-9!#HZ?0< zBEs_eJYZoR^=R3;XSM{HFoaRahAJ|!ww=$6Gg0K0wu4>yIm>$M6(zF{pz`&8p&M0Q zOq((*`lM4g$Fm9mGAn}M??u0g&;ylHy1GgT{4^gYr#jF)4eR6N2N>PWF?P0K-gog6 zd}aclX4~+qh5sBIeX76%TN7aozF!iQ7?FaapOXZr%rB)&wG6E^%Et?fB+L{h%X69R zrHpcc_X*#WH4&jML770UW*v-ve7>Wy*1tcYJh03TxpN5s7O{-tK$U1~8C7}CVF9aZ z5h*D#*!5$cR-9xgiWAr)tI3DB#c9qWZ_m-B9v5&Wp|n&X8-Ji)=?r6%sPP;)7~*MX!xLc9@^yU-W*z0 zBhd&jt6Uu+uSn+yP1^i*{!)nfMHSXNVAoKV{97Zy>x*nv4&#Qk=rsJo2$W>5f8gZ= zChJHINr`_NyOIp`S=8JBNwES2l_k1?Kqj!D?I~l}UL6#uz`x~K+@Kh!(99h*MgIb8 z#Zr?CHnP+5MPSQ?m$Jv!|~8$TJkc{U%MLO<|W) z2XVh!G`ZLE&4x9}CUER&-7Ev;v9_1K{W^*6JeuU~Nc+-rsWe+FU|w=|CT2noE@nbqLWaMFPNsG)gsjYjjD$*r3`(ZX_O4FGrp|<{ zENMifAh>CdR=^Yh7A_91|3_WmMn}dOrvs_?OTFF+Tdk(vLjc}eveK*hlNz!P z!Pt?s!A;U?BEj@*t&9NEDYOuu)gl9ufRxv)bOFwV1G^t`a^gi){`Xg$Kk@fNT!@;& z3OPoSTRu>lSemUvr`z*QPu}eQIuC_PHWHBJ?d8nWunJ>Jcf2)WZ~yyqYHz>y{T>B_ zQX=Xkudu5pXM`;EDHSiZo=$FWp5(sbGStSVDJ0;707*280VLD`@cf6$a;jR;CRt_=3`t+lu8V8TorKG8T*}gCB(4jLA+iXE! zRQxmLwQ!$RMI+ypwLNRw6B?%54}NU>YUqLC4D(j*Ki6 zxj)qor8vwCvk+CRg9LpqUQtfb%qsjzOtQ33mZEA(nmGSo5WHY{G4awElu?X~&Q^$S zmxKh%vS8(gXi;SP6vqQlAFWcYd&_z;@1n&or#hDgRZ635b~qVq4)VQdbSN8{Q4FY?#9Hl$WlcMy zqcFuNv&3Z|i9?CC+b~PFi0P{XCuA`)GFBKfQjjEtLzwYlWld|N|NK$Tpl5cyGN4W} z)$t&+fifjEpmr83g~x@en*y|lGp0-slQd0)BSy;ZNTp9^Q;`7wZvb<+TyU~j>1}gZ z%FaX76h-O@{`1a>DOX*^7LVRv3Tq=(k=)erJVVv&=xVbWRo^wYZun3HT)+6V5%sDU zi-PO1KPNvU?cn_W=#r`D6fFh66^y^I+SK%4Chtg)@$)!tlJ zmS2>h>JM}7Mj2o5=|c){^^Pp%4mh+y1frOvvBs-@78~<_OykX+Oy{PLJ0&a+AYln) zZdfmep_9&kwYf8r+~aOl*@*@Ns!wFk#}3M59-GdVPi^ivm!|_9zE_;jR}1d0TeYRj zXWMy@5RV96&l$TK0N{`p8nj$+7wo2j$t5%?$a*87TMu_Tn5TxLR6p|z9c z#sP(bHoCk<13Y(N3HDQM=L~{`8s(ON_u~RR#M35RJ#1_H%)SUk_y6-FaC-b={ z*8?uhaKV$*JM8`q6CH9*a{Bx))5@-~%!6wHg9E4K7(leR@>n$=SL)@iqo8s9b<|tG z@?RmC@;(Z`EOL%MM-g}rjLvhdG2QW@uum7F+&&i&e|FB-^1Naut#8yefNeNa!bKq? zUmI8U8UE%|KzLvwgzB39SPjRos-E3kG$}*xs*~w#IZ^^zHY6@#IA9X_GJr{vyhP&L zj?J_HaH=?1Oq5|uL;qe|n00^kX#s1GcF?82yq9~3BFo(oUAt2z^u1m_JW+D=KEq>DA*OAGs z8(}Pvux>}HkG!O4_@M{M1qB@ARSNh{dyRt$Bgf@PcX<74^ran!L9U6Uo9@pRBy}9| zNO!YEHI-i0{UVOW; zpbs#P`RRIjBowO&QQu0l%lvqea}Q5<6c%qHYn^RGx`!z~_cC>AWJOzR`|<;2tR(n&ky^lqDo*fhw!0Xk0iT6n7sE{{DNBD z(P6bYHRLaP!{?JpF7LJJ;rVzzoKS}|jpFT#-7hJGUwq=S4vZ}HpY6AMzB?U0V4Jt< za=vi`exUjme%jsR@ur140vDoL9aLSP9#Ru48k-=$`aBpcGOM~J&4bV&i+9jv6i6hO zj`k|N1xx_jnDzp(OxVUtiBPRhO?ht+L53F*sbZL%S7iE7mmLhYBxrI z`HX|hlbG3%RMVN{BY!QlH}LE)01F$Dq$5t%ogbRlJU}wc)(Eq*%jIoFUTklOjLA}A zJfO4*=9YDUnh9BE#hR zQdz_#(F8jyjX#|FNDl|j~G54lJNXbyMsR{mnrBWu4g2Efd9S>`D8pQ%J)59Dp z6orK?i9`|zA&%6Q$-`rXOPGaVMGJam5jD&Qyt>1Kmt2r4gM-5qa_C8b69WF5L7*2# zB<+f5ca#RXWZ*bJ5S>e&=7C<7`hU$-PC4kSQA{b&g+$DhMFxlfJ@PPBmy3pQFfa(Q zPD{LD@Jdi7=7(^P7>gDX)nTzcM-o48U5n)omQy>ssm-hJ!DjYu`{X zq~d~_Ck~)K7xp6xN}o4urd2%aY0%7mt)pF5w$y=z&;mvy8po&!>E}NfFb&tR(V=ko zdjNBA@}^`2PFuUTm<&U9-L*aPeI=tX~^$52u+fa z*OF(pzxquH>lPYE2@(Le-(N=pVL7}x;>X#%tcy-`&GZtb#-^*du+du#fJ)V(XZ!E? zvK0{jD-(0qqYe>d%WshgWK_uwsY@|_|H(hj_7g?EP>zzDuB;e9vKS`oG*ri_N>M|SY)@CXOO`?cp#B5lY~za zF%3cfFja<*f{h|An>CyEeMU#iY4JrR7GQSdm{#Jg!ey1-nBCrs{6=6anr14ChFI_# zSt}Jpd*Nfm`h8RS>z2SHum*O`_jHBK;41gO^kn{*9^Iw*w!7MkDP3h|&mOK(u2D*z z+tWtiCC2B8YbumjR9GbHXtwP7uYkn{Z)vH%^@gn!nSVHF=9 z5D{QPIeUCA|yeEJ<#WUt*O< zAU{jxCHJ@Q8zNe4x=is1hw&evM<}~JbUYWh-^Hx3XpDuk5+66hkPR=Jx7__mzfNw0yG`8eY7jf(Qu0Up4GTM>u>4g7r3n z20p_CoQl5)xVWj}@y##ezoq=2C8u6KzewZpd0--E9uf0*sp^-P974yrjtCss?@nEL z{^>j8R^vV7NM1w#C$OszFw5qSp%C7F_^_Ice?uzv?T1L=fQ`62IQY^lBv4<`k01J@ zj$RnD-IY()q@z67$|avpH@(0_qc>>F@5&W6)&}pI48VYU8pcLtan}H!jC>Q8)NhCu z2zFfoWJJ8ZjaF~{;A1!jlsimsKP#kFrTxsKhh{lJl82Qi_e2E%{2=R+DrbC{#$>>r zck?OUEqnh+e$+VPFLD{T08QnJD!7Z~^|lv3E0^7j9-`?+6}JZ7SZ=plehaxkX~{3R zFb~SGS!H^AZ5OA^r}9W8p|7G*U$bp&6Id)!GOBqevd5Ir*bT934moCLDLl!w8HNyw z!odC7gtDOP>kT?^LGlw+=mFF%z5f_C_2kFfdV!s2(tNY^tw}>3YG0^GP3n$qh(8&{9|P@7L%Svj*SP) z@@4@WLOu_haz2+aP(NHUSWoxF&pNW^I-R6tg|~b&-Z41TlNYicdBsZ^sN56z3+2b1 z>c=Y86&heVv$H(gN26tnpZ-mNzc8Bb4=7o*`zH*7<!D*FUfN9kFj!w>|w4Y&NlK7ZYRdmaEZT35&dxh{qECB9O@w<`{eP+xI!{$?X*G1kke zIRAvspNpa7tz*95a4L7e#KwAs+Qid{P!90e5h(imMk(qfVr>u9P0?oT!>xSoN zu0!`EF1bnXWW$WY-BL*Ok{6(27@=erm1rWvE#cQ_Y{jd;{pxi!F$kY3^N^}b#_{V)5`L_7K8kPA5+)v-P% znJCf%Y9QYjXv~*+Zgu&Y%V4ux-*#}Ru)hE_V!nO)vK#Cj*f}-3tsnhEtW}r&zE_s* z{P~2v?%Xt8+NS}>TdMv{Q`aW5q3I=%J0+`gskG zKmYu=^5t$1;1Li3Nmkg^`Rm*dO9LRB|K@4v)%jb8*EjSXrn;oRIOs2a+==Fw=g4;| z$(|}QB|C_H#M1(T2kGy0ex$NR(Iq&G5CCH6TBNSExR#Yky#<3YDBA&_&}^3A$WozG zS$y+kZ?OQ724{^!;+z1qxf z53M^a8^HN=7{HhWZ*!wY!{JSUwV@kj-~kQJTP*`fjMoV_$*I9kJzBk(4&dXgp~PcJ z_b;eXIeCJ+o!%0mX^!R*dD@wG1Dp>n5spKVM=( zL3xNS4Fzhp80tc|@U=hQErCTsZ!p{bz5l5!sHdmf0BKD&?^2cUHmd%bh zqOb!xSRA*P*nmz4h4ZY#85c~0>OqzW3yn|vA}_n8yy{|gHb{oc;SN;Vq!_aav-I}1Ay>M_9f9l zL7L-%w^%`f!RSmd<3JA%#_>nwp|vEpDBS?k^TJvZ4a$Moi`20>`JwXwba0UMiKBIB zE2!%QO2quo|1TPV8ksyY z2U{g!o);c0d&v})N9eg!ShPVoh#Hype+@`)j@MwSU~WFRPzAV`6eg!CP$sxWONHk{ujE$W^;5-E0m*rcE@K*t?^2b4+4;Km*q0-W5 zhcxdqcdu|Ko18R{Pjul6_c68R%{9g7O#Kql&KZg&B2oIk`1b;xQOK1BG<(K!^^xAY zoJG;@Px`5Hvwv7~uuPwImz<7L$<^1*wmL`Lng+wn#P+zZZvYO7tOG37^F{y3K(IQF z2ufD~$yjl*Dg-ope~0CGcAkj1)R5HWP%KR+m3V?sZ&ftjsAS;ig=#W`s3mM{SsKu=Js|euKscxFTv_q4+WD%gxPKW`Rn53{v^&-&ZDB>y!-G;PX&9UyXfRI~ zpmz)@uMwNa3Ib-`5?DBdB7B>H7GuiRsWGd^I$m8N!>(^JhYHJU(=_iVkIZja{pc>M z_|#d%@+OJDx^Z8rXhIF=&Y=SRm4oDSP;1t61{^KYL+0^C+nH=JxteR9d=^w#yrPm` zaVym*^y?zIl)S|3BTGpVEGY@0x}pw2N(oS8%UEj2!~kdaML8%05|`W$ka)jSKCuD3 zB|u@-6>yrV&Urrzbi;fq%K6t?=KP; zg-x)*`~l*G2XC!|$`)~8+pw7WNE7B3VViu^XNK!?@46v-SGrLHvP3veJ=J!XlHta2 z*|ui=$o`J)a37|BQC0q9U9KJ#>`np#hSVOvHH5b{gkhoh*8RwSt4DpU!kk=PDAdmy z+)LvtoG(q>O6w~cvsbG*8*-rA2Oe&L+0D|%lK|W4=*=+EBr5x9^AoAL($uFa$43SH z52Ijq6n99PBEgu%!-zzoP)rm4o}?LYz03bStkkE`Ze=}3j?$HDC_2iGG)65^N+U43 zmx5<^Hp|VH)}!to&dGdpjpcE?KLzX#a@(W0-eJjq5~RM|E|~r-O)8+K9Jv9UmYYY&unPOHGgNQT?m<%7}}M*y2lIwh!d_fxN-$C8)Q|6bNTJEN^eYAB>pT;<2{-wGM9j<cmw2MTiIkU1W+k9&ZWv=yUS>xJ~!u=5t-1IHeNvr zj&?3%?Mjpu9;ES^TsH8oDA=w+O$=_JrA{SA21a`EW{Ze}a>p#lr=-4S$-z4~OIK~^h_OvwJ#|K9kksxvg&6fCifNP@H5IcFMyv|0q8^V z8x{WaZr=3nL|Hx0=!vNbPI&Sp}1w%!Asn>rJlX!fYXQzIi<`PUF=M6bVLUxP+1+v|*Kb%7jV*G6Q=!mG`Xytw# zm_7cm1fFKx9$6Zah@5WQrT`=0Gg{sV-eFUtV6qRSw1~Q?Lgy^^Ih)1`BKF-$Hv*A z^=4*7#t&>w zMy0b4UrvM973*>#`rr0}`MX;_@l^MtO`;1>XR3FYgYVO9(wfcsjk^S+*@0RaRNp?9T18$*-;zVs#S* z>-bKy!0TYEoT*F)_wN}t$4~dU=B3BU;WRvdpzJA!UF*prdPoUV+xVUWT@dG2{(7%; zURQgf=`y<4{M~h}r|dkgM!>RAFrDJ%B5x{1@NJdtW?qP$k`;mo?#L=t78jQn$}^5N z!dkO5xR7NU8ixG5n?bW&6`do4s5W{3AVPbVjOpv>7dN5_Fzd z^E!;cxi!fJROyz3Ofe?dI%X`N2Qan*fH($So+En0*p4!HwmzviIXKoZ$uxKhjS7Dm z6XWFSae=;sUoNh^-ES`#K}c4^yJ&J{&E2f2ESY@zzHhRP)NG$gN~GT*&aX9b>13)@ z9+?(IwV%vv6bDI63~yjF6>2JR_C zNl@A-&8nj+{x4X?;~_Skp%~qgJx3vD@NNJ;?4Vr@)c(G_mRZWo)`oCgu^GR<(@gR5 zXbc!EAP%x{Z;&)rkrld3ta2I3a>VgV#P_G$J4r$4GG$&qtXUc){POf*Ll(TuVfviZ zFe^O*b3frcq7lB4#LH9R49zgNPlA<^P*Hnx#u08wUREw_{9p7Es1KuYkdO8(EVTer zq>Uy@1qb77E;LV&q@w`7L*FiIQj?4KryoG4E#ejKL_Vm*7axnH`A$&o&>Z2=lH|s1 zjLfkgGP-P$)~L<-T4GBPUaTDtG+{i$WWQPNZPny4mt4Xr6d=!OJGH0VD=xf&>Fh{K zyamevGK=|;<#Fd)O{-tn)ah6cu77xXeQ2ORP}7kn+8Pp=sQdAOwm41J&1=rTnlpg^ zIO6yaHd#EGV-{=11>=#-^d?1z8Z5L&uPlw#Xj6;@dakE%Uj6z0qE;iU>*O>QZdThM z+iY2wbVV+Mqm8da&78m6mL7{*T=5qCiaQwnF%@y_mp;rhM90i>&s;fiiP+{1`)OxT z1t+-UsPlo`sz<^io&{hIY-=JGu^|RZqD==5YX16O^*e1I%QfZeE&)@Fi0h+ZNQSnY z*>(%3S;}^%#sCUp?tEg{2TI^SL`Z}4M5M^sR2pD}Y60eo8p@xSzB>2x)F8=O<*iz| z%|~gpDW12_oRrcvPLnjQZ)N#V>;cMTL7b#g$FxStHm?d!b8ZLIdw_`4L4FA2P^o*Q z#&y-!DhgaJ6Wbs?m3W51v`z-D?8tWijZo5$)%D5&XhJDM`O6-|Qt_ZvZjyl0{4xLQ zy7|XUqeT|EQmZn_U2?K{##t_D)yMDr17fCUe+^j!cj6%(DF3hV?g^>%hYyGAgytt@ z@3D*gTmpIqGAJep5~QndR$2^@Uu#n4q_q$)aUoG~gEh4fdZ?y!94z$lyf*MpMT;tw z15xk7nP$(17Unz8DfV+Lj|)*#Q>}>uh}A|P>Dt95OC)Ob)zBr23~Eh*U?1bJOu&6n z!pW+6JDP8VFGc$Nl)ysq;}_l(#4on>z6uE4*1AHF@b!I%5n+cN8yk6`WH<0zm0dvj z@9lS=zq{t)H>VG^(nk-~GO@dDC?d!J(C_@AEaedZF@%pprJRLgy{QE%4x87!6N^UQ zm$`{mcBjuO2&bjXq6sA%SH<5~Pzc762S<3~2*AraEpffGgI@rl1I2c^t^X5=%{(78 zKUAVumFTMX(tXYZ9xch5_~i^vInd&*gb)Hj5x$%MxckB}t;*IFu5ugUeOD6GxYNGc zNEIfJU&w_&o}xIya76Z_@3x7# z_Ke8}?b%|B(99xV6@tm7CZJ2N*E(WQn^rdG~|r zjH2XrDJ-k|HGaV!IkHeE4oI7;2OS? zWZAs;L|=!J4t?mI(y&E;tvGpBjALt9X^vGm)!#qL2HEgrWXEBSChQGse<|u<4aK)5 zrxQdY=bb?xWL~MUY>Uuc-HqKHgmt1F){nm#A8q;P)9n!3o<)1@1MOCx$CS#QqbF2N z>@OD(#9}hl)Ud_$uf=Qc_{YE~RK(sLtHAcY37;~>*LU(HLN%v0>*}_U)36SdzZS?# zm+})2=>QXMSK3dme8WQ5IrU57bZIM{d|&K*_Rg1?dSLfe=fGXS!pFNI85m14e|iS7 z3a)9z8w)#L`Z;>KK$PI6?)E^re2}+7#9;yOWIL#$xlWs{p0r3lX=(AjL=lY??UqH0 z&KI|TszGxIdgwVwoN8!R$rga*?hHXhEBYfwpHsCeN5uQi6-j)KlR`B1ACj5c@{n_F zrzdtjUkRei=;~pxVSG^+-LIQDO1Mkpn=zdcAAPo~kmsuP2rOA<22lHB++k}A956JX zuiQmgn%lf_H-_y2;$lWFB`usIPH%EbvMXZbdQ}ync&Vvbc1U^2{hHCz{=m14dG#dQ6mJbHR)v!SFP|7L*2n=+2>6pRgEgNMckv{nk;T$yDXqfvx`H zmQR|z(^^5!)=UKl4y3b|G2}$Sw)r&Q0)IaFo)8KaDq?NegIBomhoXAitb@Gb@A_YpBdGQa8h9p@9&gN0C{p?8-lvPS3n)M|~1wD2)NKk&L<$xE^(|TUB zE3*{Rg2J0ip}II0wja@AjzEFHIcs$p7OANGZ&DqHoE+0Mhn4k)>VPlm*-_zI*I&yW zT!Qtb0tB%ci^}7~SNzPJp{!P3WXQK}eLj|2 zU;yjQAXo9JNi_s?U|5ln8pG7s4 zplJ98rjS_PAlAW_9%y1Y&x8$=TQaujw4Wv;ve!FPZ^h#35IZl;GBkwWMEmWX2tG@e zzZ>Xqke~<+S;~|X3X0?)EpmjKC7nv9T7#}cAy>8wxL|`g2}K!j!G#4%M$4g9un(TI zECj`?_aiOtEmpSwjM_|uJsgNRskn`E`qKlwiCz#TZy*f}xml&QnjLT>@1(!HT zaavK)DOpu9WmslYsL)2BSg{PDvC3tH7o{-`%qwbgjZ==H-waSGBv8|Rk=fyb`rssz zDNn-gDi`NFh}9K6NzeeJDT?kyXh~f&r1n(E=f$jX<|5AR2!#B zMbu5bXgRm=0b z>erLY=-e_%c_F=xRVM(8^!YJaq)r~D!w0c=A+a7O2Y=A&&uU$Hczkz?5APupVjdb} z*tC#>H|JvUNm6CLb3F2|&~`GPUZb73J1?qDlr6un_Exb^;CoaF*Hwz;O&3$>&$7Nn zAcTB0j!Ycr^CwpNkR>2>I`{vI5IFw_At>hoXo3H!v2Ec`IN@>LU)LJiEvf%jBZ+=F zh!1M4EXrzF>1auaIslW4HC2C|MWp7PUisw?CW=6nKpOMAe;o`e4iF$wxC0XUQsdqE zvcTF+`R|4mKz$RD12;)41zx24IQ(F7BY3+FzWs0WKo(->U4;IG-;NBZGA`=3?EP{n zIOEsm^ZX&X=Ot2S7=5Xy|I`^E?=y4P+l16LA${WuY;XIchZMT*xnY1*bOG$bfhQ@4 z6g3OF(Ex5vN<__hwd=wQ=ze}&?mI!b=ni1F;GNpePFkbozsJDo)q)6++W}P#cBU&K zKw;Peowp6DFV6OH_2GcjZ&7pj`JpQlm9KGkPJ|YXy0)KTPZwskoCfn7V~^*w@`!nO zuv1MfBQc0KQ%*_SGbNQz-cKZ56{#2DjgLD=SH`F#A2E2JBkl%J`p-S@Xt2hN+SRO+ z>p_+fmk`au=Xyx~6U3Ly{8X5oYjdKCi>|^*fj@_{sm?_lD4Kwb7yYc%QHmr*W|66T zB330nI1Eju>q&e44(6&j4ABaA=~9BvSMHY0S-(kmNyvlJh}TO})=Py{8qT37)AB)W?sApDq-iuvTH z^$ng>iYDzR67LA;G=H_b^a819E~VlqyaL;!{Jwadz*e-BboiR}H$j((?CK+fIKgaKo3 zBBEPd)UU*-o42L19J$K3x*lLh1;rSe!BEfAlA4-El;io8b-LH;>y>x5)2smD@?Nke zl$2(#8PID~-*;=H!gC`MgkY`(;yYqYb6Q!^6#4?btwWxY?d80}Jp?3c_OG5!Rg|E$ zheoh^Q>vBYU5eh(38hS&*?Dh6M4Dc2qFtRsf7qL1UydQ~s$z0K97DeKC z0e|82r`I%0Xr}s@5ftgg&qQ=G)1Gqf2;h-BCw{>JhMYtDFWle_U1p>}j*xBPR)kQV+s{sIpok-hBC40sd!=<)lF;p+rEDQGv+!Xdyn-@8 z0PK8j{52@3c=9E5_^$BFFMu!y2()Vh0Fkj4RcFGcoOc#RmP`UDm&T5dQb`<<0VHH; zq>whc@HEskO)*ZJo&IDYh|LZ?(ZvBWm?na`vxtDW6E8D-}k zJ^&8Cz>>drzkt4&@z_FwxLFpCVNlYjHAz1=`j;=BSn;p#MGcfQz_0dOq z#vqeJ8X`OD&!JIw1K1!{{E)~mrBj@=pYzsCF0q5nf*32x)rCBEPvvuwXDn`GWgHfe!*G;Yzziv&fD{Evu(<>to z{AF#-y9A<&4Qi9enM>6;m=FCV9&kUeXt18%QoIzaN|shiEmRMhj0F2QL5eB4Qg~M2 z>j97(WV@SU8(Ezzo!f8sA}y}yGF#7zl7|q*g_nP+lSi23gngoN2b!Id&3;A&EYBhn z3JFdJzC)PPoIwJ>WdyPiPtybFBvL2wUIwDVR<_?h~m0GdAq;XBWI1~%~~ zyZSd7(>ew>hZg7x!8Yi!W_WmzVpGH6$dGCa(WYbyIzdUgi@xKxY1pf2$qv#$GPw}O z-w817Y^_aH@G{p|fs5A(t;$@-BH#*MO2*!X#OhH#1(jU4Y!nY^n}epyAnfS+&1cgR z?O^u@%zc&tFmlp)tS8|gw(`*};?a@b*-%KfgnSNiw}zJ0TzvyT+lJ-@9A6Gq8~V1_ zu|B0Rdaol>(H2gn`epAWAH|}GI&X40z*4{+sp{w+-`pWG5EdVtk_SY>|1NNf)$%zF zKaV1Yq~s|}UxX!Q4A-m?2}#DdQT(IeyQ>bZXM)tiLgK?CWg-{p3D4nG7uD>oZnE3i zBJRl^94q>`D!^5yEEW&)B3o4Fas!@xrSl6-IX8M;OoEvqBAIxtT&~waOr0hht(?5I z8Fa;QlZT=ZnC3Grq%(3zdxk!DoEPsHzcD4;FeMDhJ$j`=G${P)b}BXszAeuPXKU(Y z7R6l1Z-E$oMQAP`?;)|9?~j-=*2@BM;ba(lSKl2G)+3yghh=rNHj1{ny!aVm>v`nw z4}pC0{jHpT5T^wSD{THqj3gQ$q*pPJP}#{V|24M=k_Y*_I4FPXmkD`Nj_0n{H){_2c+o;qdlHn%W|LHoYRUMX?V-` zRw;7Ft?WTKY1RHW)N5Py$-%Z``2?n9pC)>rm}X+(VUFb-ud@5hEa?R6F^vCN>jJBa zOx8LL4CYq#KYBiQ%m&3D^jHhfh!1#Q@q#!?wB8J~Ri~%q^$M!fLQ!r%i za~ELAN|g-FYw2`=TJ?1(m4G6qR%|`;VAEx#?f2!&*%zZ42|hDci@`L6{)?ZX(i!ec zY0`wScqdJ1k_55IwJ|n^efg7D!-J&+E<7U<$c!UaniYKp9`3?oju-Cf{aDI_jmDWq zEDB`^9qwASitjYGJtE2kXZv)^otk>#b6~@!Q;bm4B;2AcCpeu^UGr$oW;OjV{1%LJ z_I^51uFvT3xU38LV*k-jv$5A)*ArDPHLhF$a z22IZCV&RSyd?-M{wV{a9{|ouVJ+BoksR*nKN9OZJp={UF;4xGT9zPtL3z@kLKsZd7 zBEhU>L661!N5E*XaPMB?H$;K)ENH?EP^;WtCXTtKB+=BccR`j!SgMVJPRMH6t8~oz zV307a=u7QRuY&K+2aeFpbJu6Wq!R8|-z9d) zf&f#>HaUYId|J3KU!W^%WWFeRn3Q^OSVb*d&O}H#2_kX82c98n zo-uH>fbZ_4Z{f6U>g4xOLx18*aWa*X1-uk*9mPHQkyULr%#R=A46oUu^#Fud-0sdl zxd1TC_vo;H6`VjUjqnjBKYzRei3y>h2uN*fsG4l=B&<0`?vZnn^S}7XWU}!`o&BA! zCQit+O-{L5DcxkSZ=_E*p>Ic~CEIY|*U0zG5mDP!5VAQ>h%OzW!mncmSM7hKDhC$C z2U6^b&mlnJq%AQ>jzs+anPk`>!jM;=0vd(G7Dk#HC)Y^Bgg60YV5=ktMl$wC@=G;n z|9ZR&${a{AaoA27I_{uwND5z`jqZXGFFQ6n$YCt&8J8kl`|f2ptI&|$&*%G>s<@iLVwjC>{qtnp(YZZ z1Yz9m(;kJd64N4cYBu&EEcf{zc)k6;4P&%|3eq=h1M=Z5ExAhphj&@&K&A@U9%mN) zYkKDm&gZz6sw*7Zc{1Ba;^Nr0uG_X{ETNK0`C*MSrhHdQ*Cdc-$ZG%LH{s>H$1n5m zF$97}UBOB8Vw4vkXNyu*n^>(dW5IzU1;c?>A^|s!p$&q;3L33$kX8DnGwh*$@YK~5 zO-Oc*QwZ2l$dkVTjUyxGD3l*Zc1F=&n+>oleSh4r=no7Oz8=hxn)`E8Ns>^W9S}J0 zKnF|PvdP6rMv;H>!zAUL<7hfR7Ur9soBv=Ey~%lXRMgm8lxM23a(on9If&-6Ln_UK zU@|T+T6hXR99d^OI?|0BpZ2i6-sJtFKX`DQl&U6Z>DH!lnKLyyb!Pl%`p z>8~TgJLo4B3Ii-*4@%4iX^sW#yBA~$*fe8`&0n0uTq-IrbU@Ixxw^{C^#Q z)?A9xn+S-6yCM36`tQhBXhMdc)Q?@!6o6Lem2C7-j+$)joWX$^Sb@3Cw1Qn<|Kcz$ z(C%n*&mGF`F4vyBm0By=XA$`c&=XlzWfcI&W=pn@!tE}QU@-=iOQPb zW~H>ElDd+=i7#WBXI!3eP(VsuLqlU_P7OU*SK;+gq4rg=!H{A=T)zEctT2ajg#W!( z12pFdjoHy@zs-F8bfeVGIe;qv?GX&a#?8LbDIyN@bB(^>4GsS z0~<4|F>#_YLQPf+?$l$rIbC;}a!1YhZQw|QH@vpzHnBG_`Ob61*8lo-(_+D}V&?At zjP3LsugW(tmDA;i2sbl|V9(^4WsqrTrE`8ELdu=c;cuwX({yO#yaV8`yS^0z=@m$dKYCC)s4u&kR0sgh6Sj&A+p2T4{^4%S` zy6RD9A&NED^>s_pk>nUU-<>aPlsL*!=a{>WDod&^S~ejNu^2l17;?{t$7CM8SqGhB z!8K%Zdh?5BVo;H>k)gnxtlZF3Opd;g1!(-53lF_)(58oyc1TqSBY5%5W*!=Anzuc| z*epBZVm6hWRm}6YsP6Xwg=2>YT5LrC>-LbO2HIGlBu;yl51bB-y}$3Y+BhqL)8|*{ z@IO2Z1C_fYXw2oHP3Y3z{ys4IBg;+m!BduuPNXP6SFs9)_Y6>ydjv(T?D_%A&q^3t zjBU?H6}BqaLAvxbs6q?unK#>sr2j4<5{F2muk;TeTiBIxFV7Cy4cW@T1y6hFFjudt1D^_Bmkz+2`) z`Q6*7Mpi7SPz8_*q$m~?BoYNcOyCf}1L0bPH3>Rkv6#Nli(s^H)9g}&fzH3Bqf&|Y zTWOxzL?NI+IWXWuAlO*MT3Vc+7~_V0ggyvdt}oUH!gS?wbSULB8{ru)iq|Av?Zo6o zYr04lb|h;&xZ4j0P20xYhUuuyOeLZ{q(`AZ!mh3oW<=fP({(V%NDWp@s)Nk(PxQyGEgbPGKHZ; z>@ykrOOX!|XOu9Av}JS{TicWya{dk}TTsP9u3Es`m%o<}Ld&PgCs3$Nc>g1aYw9tZ z-CMtwry96oqj2#AI-|`KLi_0TlKy2`+ln96cd;dTaB%A-S0^<1)h)stzzv}7OT9T27UWnFHaV!CHgmtjUX%D@(j5sva!P`Q~xd z_gBu~@oKepuXT&^?#eI{2~qd!&>yvPQ+aI_GjSa`23=Bc*vruWHu#wB$=6wk!d4nJ zBKQ;|J|z2asdZ<;I)H5tUQjw`{Upm*Brj6J3?VtP}LaVizNG zg##Psenv1$w{2fPHQlXWo?|8_@+w)*pE+CuL?ZTFZ%9`>cyQhg;lx?-#HN8aSF|t# zuheylq)dPf#)17Gj>$=2U~fLbe;^A$w8_FIzx0ax)I|C{cz)2kB(tFAnuN~=Qvp1} zQ9&YW%duUP>6|xn{CTM6v#_{bkJ%hV#euoa@#=v{*)}v1qQRj!hKo+<$?%i+l2p?T zcN(gj=GpW{>wHc7rrSe{yt>h7#JE(O86@jS=#k?8ga)PN4>}ns^#_fd<6b_|jxHEY zrASrwKNuBri2)2r#^c3`QwHWc&rjy2VQ_HosHf8euaZzpY391=S=WC@MV#UzX@LFx zh0f~-S0zvl7rm8g3p*ehgSr%T&bF>A^l!`%wL%CEo~T(xDU;Nx2QJNe43eSE3F*7? ztW`sbb@(JhZc9xn#KJ%aM`6JTTP5*X6k^ph!suWi@jnhBC9s0sl6+WMdoRFILPm$M zw>5AkM88Dx2J;`n(z;jj+cAQ`+_&yqg+yGY>mGF>u0z?Y;Fy$>hv%7QIZNuhj~|H=B+G0!1QXx81w(No zfEoc#kC7QoyhRwuVf`jm4E%@XRa66Y&52*l9>9JVo#b8AUcdob6|1b50cA+)jJgz3 z2hMcZSW&sr@&i}QYj$^!3|kt)uXu@DLV=1Qh??|`Z2-5q-|Ta zxV+_xVu7r_TdS&Nf(klu`VUWDiqn*O>zPCt68pavJjk++RkfWHCZI;+R2w81F1ArG zS;)TvpLE#9UQNRZVmeOz^y!Ok`LfP`%<@*tzlJfeZB=}H#R9DMo-s5p??zM4^i?@E z0SWSZ5d>QGjOE2$Cw%c>={(O<%as`MtimE*W(xM#!g4ibtjYwmdIemvV9=nT{#Mzq zlvV-|Gqx=g0#;(|vp|5g<6kouS&R}aH@z5|`gK@St*KwD&vh9&|@_QgQ91_X?>Pb3(~zsor5&KXba~(hW2< zwRquSF?4YTxdP8JP5Jdvh&1=JDNAX=EanN4n3*c`+!D8-037(Mpf>=K0A|BsA!sZ$ zOBiUYG;kv=P|)VC6mjAvkPfP(0O;M%HBw|lQl8x{RODqQ0|_}~LqmP6fLqk2SO(C5 z+7u;Hj}qBAJ~C+7Ng*l#AYmo4K#rm~x}pa>c;65{1IU6*OfND=k(h@XLbYx>@82{l zo+(=}a~i4nlSi@A3`FQ^jAi?gm{u0&7i2s}cQ_{oRGdH7T?s0S--MLcTjs^8`bw1 z@LwaYY;(gCv`6U0xR8I{_dYfy%1!CGlly7>&B^FOu}@?>*jLRj9-d{kB_HO2LODjW zsz3#8_m?1VtN~KRpM>=4FMvEwsZu!?U{#M)&9;Kdw`-$)=A25rTg!IKDdrEcDU4yY zGVHy(jPR(yC- zu+KFV#4cVD2x)CBKFA|A5*+w4dNd;#!H+AUm@NAEEf(CxUz`_5Ex#buiC%M$&q=!% zTt<)fVZKP~r8?w=YjLjy@nyMTfw&Zg9YVdYD9~jbKgX(Xy!RiXKJ$@7C8GILXVakT z{05#;pak34w68;k1A7-1{h^-A?S+p&0I&qZA{GpA*&+GPWG=(hF;t4N@@2zZYfuib zB7^!?I%!;{o}*_D&79q((fLf645Bv#oy%x>B)<`YXXZ5FAL1-+%a&B;fM!%RWlN@v zdH5U@5R)KFT=epDGV%-iO{!Tbk?$ly#l`A!L+2!%RK2i03Qjn5xAo;_Nii74%A~$9 zQn~OVaa@F|0z4FBnkxUU#RGTx1I%}iZQa^V?o_rdzRqETdUUUzUmL$nO@}|nMg=|+ z=R$sN-k-ih+SI+hF6@cg05c9?^fNcR{Mb^5dVRvBwflmkL!Ky>Q@x)!mTOJA;+`@O zpuAF{jIjO@B8VB_(5$kRfJdUR7)iw5u7wfb_~ci+5k+<)+vxE5Lt6~2FSFJS41aoE zGTQ{v*S()YVy=w9YyVQjeoGUCTj6+qEF1H8>}x|-p{|%I#VT>C1Io*TBpBB)5 ztwb$|2WS7lR}u3C3N&I?K)oE5(zF!^TMRTpICc?(enUl_^8sI-=Wv#hEeiQ^JsV7kMC-aq=Vs2&X0n}9>8A}6`9NW`x|sRStWcUWl`(bv z8%M7-N@oxbL@_kTh1Y^sJc!y5TXdqOy)!-1I@O9p$KG9kQ~>!mBoX@`stI&+KWJfw z^*(Q#(6mD*oKlC@pE6*n7)cVXWjhR+d>y#>RDE1hNOiAiZiPTU(8*7tBB}L-)U=WKZHrsN zR)sV+VXY+U8IQdpr+A@2A@{;LB(`=>N0rulQj=dsuq#hwTAp9iO(>lOY2J z#_djw8vkpkK!%y_S^s~DxkE?oubQ9TOzlo641oS?A?hcOd>vh3o-em^Y^U{|>!~a=Dxgb2X{0bK#Ua{2s z%!F&Kgd_&4YHP}B#1L_xm}NEYY|% zPhU5~kpz{VxQgCoKQVqxVuV!Ak+8Q+UHi*v%E@aiC|YrMRp(ZL@R zWS68H+nA$#nk2A4&li%?#zry|+j#pG8C+b5)L{cG;JW)G$i(hfU5O$8r?|D_xZD0@ zwZopHO-$GIaK91mG?VcO{iPk3=KSnpkJrok;%dqv)8l=k+q&F)Rf$*LF&s}*;k5D@ z2dAy}8c#PTeqR%kLd15=u-HDanyc zSa1j!#YRpcVeVtE9^p@OW#1us5f9#ao~!tRkG4TGrVteqN{`2rz%mVR`ZzyWk(5}w z_ru|42fN*i1NeBrGFdIm!rL_ktIG?=5P__)(*aeNM%x-W=DDV#{eH*bcZoJ7v*2&Y zP{Mf_^A!#KQvav;#JU<{Iv&BL8G2G5bjJ=o4QdIXzE&)#n}MFml8 zrz7SG&}i8zva)KfbC6pXRlon=T}xrV=A|7ZLMe@yEKj%|BHrU_dl&bASQY~5zu44v zYvob$b?H+$lHOl;M!rZsZ}z{AAwYU?s>5Q05H0upIevr9>ME(k?R>(ufwdCjFz%yf zWpgrS83}Fcvx&kwHh4Np-VNFgYE<1X4l-tk-?ymdsWEULtLZ%XI`J&k!jVsS$sg0B zfyf43^6owGXv~yfglRHD{)hYH39_l+L`1^3WQsY-XH&Y$@xJ@qDDrdK{cXDoY4%w&h{FJq$ z6N)_d`{g0{8fskzra|}t(}C)*u;>T}zDumIGM+gwV2ma{z$-^s zL;x#Zh9C{3Ft+Z}@-m?i0@W>V7g_pCxi*xLt{$`DLt~-k@y;5)=ni7v@;3j8haMmr zyn{vU(tiV%mA0@DJB&Y6YSq;d+esHJz@W_T*kV$&e5G9kjzHK+7~hMz0Du&9b?x~T zQMgJ(j(qCgpCowMQ6mo|!D9Lhkhp9)_&xzVSQPB!ozaCASE}XxXh76l^JvPyT|Z6bW20%nRU?Gbf$Ce zdXP`36F6dke1mjM=G7JdJk*A$SZ&>(^fkfTpaiYOwq z^%RDDYu;0iWW;{5*U2CqF1c$P)JvA7)ZikGJL|_ve#xvWh#*VUqnLF~h(WVWlqW}w z<25dM9gubs4pGtn11*lidw4JD(G|o2^4=WMA1W0L_wNV*e5!~E2LwE}^ z5gh4L?no#e*$N1m4kj$zWG9XYjv!%RCd`!er|K_q-)cNqpSGf5E?A!xrpGc(=in?A zlnAmRi!CO&!=aWJIX9PHZXrhAifjgcb?*gYaH^6?yOc;9do=zTeq-sJ5ZUEu?j%LK4kKZE`&9pMz53s=@Zfhg-;0hK= z`skKu3+fc+44C(Qhxd={5O^0}QSQsFDdV$F_&9P9#KYFA)+IHaQXLX(Ro5wp4l8vR z>Dk(fmYkBg)}$4;qty0|siSg^rGGxl>N;>?Kst<8nv-);2k{Fq&AL#RrKRc%`|CiB zzVyk+72)VG*HU?8gBjwbvh`!vc-*?bv+Tm{<@WPK)A{&)UN!MAQxq6Uit0J5Eafr1 zV+ETW1Af^J*CtmIoqXlJ5|v?T;4a0*ldZew!SD3qLms7qrSev*y;vt z!?1P|ASqaXYLU!hni&fy8TAu$l(DU+0D+;9@O!+cNswqct3JIH-;vCb8Qc$`eXNuf z(KBOULAw*XB@;iJn#3jo!s`S4F<6)91K|tU!~fXznf;~hT5{%`P4iIs`zV8xy%fC3 zE3%>7_(QwSDON{Dl`$kW?YFxlGebjajuKY=DCw+=_yWd=GSwdU^>4(wt%+TSEFe>C z%B9s|s6P*z`QxLA)vm zrLjJMK8veZQKe}iyDb8u*l`5^8vA2l+QwTzLvGCodZoE|uq03jrk>6Ss#*pLdkiE^ zXzt7J-#e&j_j*kMw>xB`<_S%ZAuvOZyLiH~o`CVDg5fy4K6WpoeKbQ<(se~~=A7#Q z3#D(Ra&8D;K`YVbTT>RI4hsunG6^%OskepZE#T$Jky~4{e9eDn1?56t=J6wT*iq@i zS2x_8UWW4hip#BQV_Ln3Rk5g3^Cx)7TUD!GnG%ACz5Bx6o8Pr8417# zvM{kS|7U@(J>|U7g4*+5yZb0M#YZy8>2R8#&2!VdAgeR7KsZl`4coFt`I|iaI(V`M zYc2ER-H5{?^29Zc95}I}c-ndO{&qDVlAn(t+R8Akx0qcSI;*9geDUtG?|`MD&YICm zOJ;T7;y49A?$}d8G!D5ONL^jJz=0$8`hBf&+*^D(9zS70Ty~N4NC@$88rJi zTz~Lr#nMowV5BV|NYE5wZ`t(bV^M85q6pr4;__*TG3=3q4M+})NhTwF+)i(jqi{%? z>1^}wk{d$|8pC|2i7Az}c?k{*p=P{9Kj<~njC;{e)ZDpG%@2X!z05jGIayA#mF7z@ zs0EImQ6To^McC-*eU@S1b;Aof`LpHmp)BAFywJfHcv*VOx80 z4qz>vl#>TT1{SmZ2H-!KMAKV~IX&&UL&K2oI_6URGG5by6+*#{3 zP>@-SW8{R>8jQjrPRV_0(KvLeD(rqrCj${e>T<;GfgkACwJY+KGCUiK#0}L`fCTt5 z|JCKh;GMntv}h}lBXDIFdB6|SM6*fzhNEY#FH#^9|c~=_m_NZkvVcc zwJ}WsU?d0n)L*C4ipV!GyV6$69-q5}HN8yO&_pk*V`7YzxiSH>DQYzk_(bZy@Vdt| zR0zf7a@2)vYFcQs%>`p2o0SYWokLpA%>Xy9Asv&ldx0yEV+<7NB^WMad^S0`@wtXe zBs*H1d?C98yJFJa(*!-*n@C}|o5*~80f&k#AVsN6j8KNNb%Y_$Y-h$8srx{Q&1|_a zzXxNPDpw${F#r#-9?vvRrO@UHT|~jVQF4&>9Gm;*S$?&}ef4f-IOaXz@I7A$(7Tj( zOtpS7@2xB(Cv?><0FEs|)4F|t98VR-B%CR`?ob&n$HfF{=pHX#Q~&PSjBXesyt zEaoRp1!q;6{XN&3Ng}n>q||=>ZP&0Wd*V0C{R9Lvd@GIq3TqNT8_92+D z4Ug44@Roe<{d+#_Q7?Ka%Ri2Y?JNoe*9|{`8|Mnru~iXHH8OD-f!-`#i^u;F0@D^B z|G|{uq!i-2p;!gVdQsE}lWkvGEXq|GaNlT>kEDxQ4xc^nwkKfRgGybb_FDl7*myQj2r>um-^cuihrpl&KUb zU}zZk@;(_-H)whFn}SIDtowie25l-@doZRO)tOBup|AM+8{5X9I?^90HxL362Of*Y zY%eoCC2x&v-CQ*tZ}5YEup1XOqyT2HE@} zwG$#50sH_s9if|s-KQuaiGMlaru-O^x{A9}rTE$4rWY%|pkPzPKq7y9KU8AYTph9J zWit&>+M0_V^yu`!vaxk(!|0~RKg2nK0VspK@UPhu(_dZ)x#1=taZC$kAqOh}=mhsR z9*E)jH?>^QVV`%ZM;~l3di`5^@5(rDKRE~6oFJ1>MoA}Jd@xRPpM62FF|@im@p}NK zdYpcEt_1TBlY$k$6Fb-Y0??_nk`r!Aq)SX2~rUd=^=lP2TOnN_|jh(XvRE`=M1Jtf&x)10^$6 z3{=-}tE*x>s2)@HPFO3B4>|}uCimvi6aMrKe*7p0 z<|kmJ;45cAFe>gu!wRR!if`rt-krRUjCS94I1|%`Uo6o|JvgX>?m9pi zM}2n8JU_V|&$47Y`#j}+xdwxNbvM+a<5{xFm#xotLt^LD2mH(O^gzkQVl|HPNWe~$el}`+0Q#ESZltbQRrR4&|cF zFKD!o=|yBJOgv!{?-2L@^IT}yI&9=btc`K_@CUBxpyy?PSdxWBG6 zh()z*@u)j_;oA1rHmZG_w0PN7t3C|<0WPkxgh9SW6X|?x%a3GTTIVe~tc215FyS+i zvL%sNMpJw=Q8bDn=5vT$eh}6Zb+s{V%%=z4c1jJ7B1TINp^n$MdQQ$s(jRE2vmX*X z^EtxF3$9I1$@t7Csu02LF}Hi1L>tqgodi!(hrJ;J0kQJ2%?KLMci(hA6Pe124U_-H zKf`G?-QuXoC-Pv2i}~`CQ7Fb-2W>uJ!eFa2Qnr#74{}b&U0G!g{vHvTQrO^-2ba0& zMpZ=K(eh7tMl;}vuqEeI;RWl*3S74BP*1yx9F>2roQ`xAjHW7;?b=g5g$>yizzn+P zs>Ik^9ZG!zR#l}LW%Y#^R@Hp)tZxUc=I+kBH-Jzn28J7zkXg`hw>N}QfRmrA!(_f%pd2hD{T0A_9{^I4f zJ>Jy`AzP20+`7}$&~@>&9&{yt&IR3Rv$)oH^BBdQsyOrUmENViLN7N5gAniVFrU-R z$kZv-u?<_f=*2wtFKQ&!VWnCE%`R8HaaOy%wRF;+#p<0k=ffI8x1~nvu6fPm18hJ@ zW#sg+BXLKHTg$l=M}ingW_CjA#edhlbd1 zMh5}?uagttWHZLlzTDZ>^+Y~vx^~f+vwz#Vd8|Xbxru`#eUW`@TzjbV{4hf;Wk_!b z6z%fp0BxB*eNDB&YyNhjk>r9Q)yczo;%)VO#a8&RTSntbq4K7p9(a1^r20-yfK!>` zMboTyn+i2)5jo>ALtUOk>B!z+N$k2e*>@xkSK$ciX4anUA8+qZl@FDduV*VpTyLmy zKs5$U57h8OLIVPUqo&{-m1gmY)zNVJ{0X1Qge+N>KE_u0GV%Ldj4;G+EvkK zBx<@-ho?al@&ga^M5H9{I8{nT!Jz%m<0$;uHPI;k3wet{YRa9^F{RtIzxuK#4}aa) zQx`I67$FrU#lLQaHATF6aYNpDOVZrt!No_8<;g95C^F0M1|OwUG%_e~PmudeOclP1 zmKX@(s$ffy#am>MmKK(>;?|OFuN%}FYbCrT%y?T!ScGS6SMnI#EaTHrtF1R9Kfkwv zRbl0p`WvI}OKmB7J?cN#rwJn?Ri`$uaf+I+QM^6nHu>>dpY1~^Vh3vOJA|^vj6pWz zsJf4REPWNR2OvbRZ+YOzgkxNydplySkSyZ&10=w^m2+?WbeFPnJur z6&^ok)-x@G%ZMht{;x_0>?_H8-{~5;0|kt32WGA`mAS|?1;hJCET=pkNk5){of&L- z?NzyM@M;1bi{|hxEy?t(ZflH7>FceMz_Kp}9sh?9v$0R0Hhnpw6w1{xE`o@=hH|(YMki{ZKB&9rN-xvSp zH=0cCsrB)5cfAcx`4#Xi?OkOgw+$Gdy@0&F@fZ-~shHpAH;a?bVew}v#qW46C6n~=cvWm80GiYb;;S_@B3nyUkGqhi3rsDLpr?&KZyHr8dzX~VQu$yqZ>$xd-P&FA9A{EC`L?` zI=^lwuwvO_HQD)*xEF~5e9{}uYfwHwNK}=Ln7?VRR1SQS^*mn+Dx|wj7!p71c1`Cc7LD{7XqpUgFFxs>~Q2rki6aXv+z*4?Q z1E92&D1Zpu2W;|RK%NVG26(Bq$>=VCD|07dh6iKxrgmoF#i%A{Vv z1?~%)!GE6CZ@;zFg-Q(IHpoZ7bScYf!*=dN?_x>?U3$&+NS z>}3D*O+LG*5N3B17L`(2T#}KMi4%^p`>Eg)j*T}Sm4Ka-my?H!gjt$IkA#J9}f&`A8C4Q9{lr>Q~1Upp$ z1&kMvaWJ>={AY%ZmxPn!KSpF6EFDSMxJg(@R7sds9Ua|B*jfL(p=RT4LBjLTq_T^J z`+r;IAo>3kW*Ko3J$^1WPF5}s7E22bUQ-r!9(FS}Rx@)BR$fjvZWb0ZE?z-?7B*HB zE;BX`920Y1b_;V07E=~ZUY>s=%y>D>%(+c@6L&xfxjlkbhDZ`_$kG@f=vD+^Z=9=88>N8QWGf`nPj#LdLc(TYS+FmZN~4p95IXS^iL@)izOZq_8M z|8_-C5YE-j#lplM&NIu**x1}uE0>Ulu_2teETak92u?d@x!VuD9-ZJX&EDs7s3q{p* zCY*sD-qu4#T#WFJfY1)`VtO;Emhx6Dmz3GtGwk>EfPes4jO=i!$5fz1sTXOWuwd*Q ziOvw1jQ=8miH)0!golHbiRZtfK-t8_!oiJ%gZKX)p@pmC4;Qn4j&rc3&TfI?r>04R z(g6Ps{9gq9FXvVl@C;nnT5mSGgAxS^IMvt(xMx}pUs*l4mu$^EO4vsQSkUZUMdRrt zvJ-)=4-g7fO|*(s*9~aUJ;BgKww6R!FK5n@+fKU3{})5ngiWM!tiV#s4=v;c zobG!5`1-Y&es%BwA3zUoV=;c)@_1=|l>|1T|N6tAK^*o9Mg5JnWzu`zf8TxKp)x$s z<}$vEOi+GiOWaUQ>@;nPiAg)O{{%hZl!De;$_JKSkKNsXvreh$)xw0MKEPROhGnd* zu=3hZ-XP(#dGb$*{SZZd44P=?+O3NSI@WQ$1^F>|yxKw)8Zb@=w>03LZh0Nk{x`y? z^IKC|g=JYPIqgh}%-c+PE!v#~$h|i5SxJR%Bg#Pm5(sidK++#BTsb7J&dvuZG@;1e}0h5Vi90qa_zo1Wh~#mcp8tk$D{BbWfiae3}=AepBK* zd3EP}935*L%6_9K;w8YTO5&5jnpTfkYEPwooe6R#VqM32c$dBL-Zog*9&>9VsuAmm z<{UCHw&8y5S#t1bE5+TlFYv*hiUltG9>qhHJG>a56^KCnB#VM!T$2PU0g*wf=3;Xp!M)>()~5S;Yw=k^AD zEYfD%J9si?eXsw_rt*p^EC*2*5)TQeV#Tm5i5#@mloEW^9X-PK*t?NZOAeF+tCOlw z>O*5e9GwHoN85vXXpoPt{xs)_kIaEEWhD>?&nrQ3=LHRq)H^4v8}H$F=bB!%jZXj` z3Mcr7dh7?)uWj(g)pNKcVKOC36v{YyPHZo+;Je#c^&klugFd9tWRDkk1m)Y*+H2B% zAVfAE6OOV?)tUx|Q=bu6hn0g3qx%8j2SOkJyPCeE4Nz}&I&$2}66_ONe^fCQaJk!1de?K-Pzv>P&j3u{RBFVXMHSe7s< z2tKek5#bNKBg{DY@PsbVzwC`>*4y7lM>6smJxXUOS7k_wp;Wa=l0|hWqcAE(b>{9V zlwe5u7vwf?ui|)_RY&Q!k26DOZcc#aYOYYk>0!(>Cz!iQ$DK%0_m5pL?+)6X7?utN zj`UD6aIyV_{P=u-Nw8F*sYX>-U9@MGCtW}pR+8(bbIQCDvd~c%h>fK+147)7s&7a1G z)~h)irRF}E{LBGRVJQd;2(u4qE#fF02C{;`WjDnr9UBt3vFa8RzV)yc&G^V(|9Lwd zZ4Sf;y_+89mQ@oj8ymV1BwhrxNvTYtX$XHeM@gP62M`!R6A&M`V)k@`IDC(U;#B-7 zM}e-Urm4BzR#NL*2LOCodp?bRf#E}DK*#K@$!x-J@WGAhu_IzOQIFqS-1mun?mRs!%I`X z&N(;6;~0vqrg>d{cw85r>lb4yc`Bv$ViHk3=ySjc%B&rW^zk|eECh8xW*Hu%B7~aw zgcHOe-zXnhp(-GOnofJZ|!RhyL^qC2}Z+q#FL z0E_yhwlX(xqKI0A)4|j+wOVmBDQOa-^cT?4{BFgQn^`jUo!=iHwus7%H=Q6Rt(tig zc6Y9!I4BR6aJIJJ3NvE2ZhH{5HVpB29!`X{u+%1}23&}`2o`}o8Vkk{+Qu8)fozF@ zII6Ch!K68FF=p!z6g6We3myVXp_H^4|L&fL_A27!(Q4LMkh4{_TN6wXd2s3NaNdrC zR(zJyfM>d0dZ^NL@gVv!&5qKL6Z`!ifEF^R2mVuk(}KGmwWYznf5RCKB=JpJQ&~ll zusA|-Q#>0RTN-eQb4V5|&`;~-MkY5~X;$r?r=M^icaP_R=6?>^LsuivY?;4&-tS=B0)dGAN*3mFrwq)S;;5xqa!g-ZdZK_dD{=HW> z_yx??+g-|S;&t>SVZK&upF3SUAsFpeB}VPn7~$zoiEc^O1$gu{+JMH`g((s{r9Z7B zVvwY%?Ax3Xa;?~DTk7k{rA43gHQZra2xZ@L!QWeTRrpXz)Ge#u5B9o1kR7#Hv4gGO0wsw9w#1>!-`GE~tkr59rwg(|Ids!qV?tb*k zIcJ~hi_c4u;WKPd3Eu3E-p(~;UEFOI}jeS zjb#{?D7%K3C@E+?W|zLJpwzBXvbr2Mfi9H>x*D&V>&>4Hf*;}9Uo4fVKb6Qov&GV# znB#uLVeFXP(7NF?*-xj9SRzy;iU?Tn?NS8Adm9dE6$a zWZ3uWT4MFTO0HePb8@>TB;HsmHhDDS0LA!k`mOydp@#8vj`o0Yk|^yYvaHCeo}n*r zHwwaHI12~!|0`7f)&3)S*f~>?Z$RmR|3}ZTk#KYH{*#UWt!~)=>4X0fIy@XaJpV5- z5Zw%^tiOiF6lLoa1cA@d`sZIkW*I@aymScMRt$pnpw@P3*-i<`>-~t&a=mJM`UDny znkp=>YTnKaH*Ebnzn6__aHb6~kRAfUHZaS{5z*<%#3cDeQ$yg!76-iCh30yD$+LRC}JXoG?LWmdGMkHS_rU8M?5o2(0}i;VtL!We*f@8kyIvTO!Q-}qiV$WWe@YSTj@2YP1_&LP3{z$=9x zg##iR$r>t3>B)N#>|QdhEw8}5BDh_-!B;ZVyHP&X9iZZ{)WFj^Ii5Xyn6Rcuq_nUt zvEx3juyp)Oy;dw}Yl|TUdO=~_e~7#oXdVos;pk^pf^R-+VSPjCYsi{dM$OJM23v%CBYx0t9I6sd1JUsfi_C6Pw z8%sWbYWy$FbsM+?v(~4q83sAS{&o<@U}kYGMYi9mJpydMIp*f^(32&TN^t zVDx-&oh_0B0=|fS0n~wN143V)Y~Jyyln{1T56B%c*xwg!y8U){QIrCZ z(V?LOBC>yB_6(0gZtv`aKYw^&X|T_1Y1DqA(?K@}fjocGJzAuGYSg}M9Vxv%+0B4{ z@};uvOEe0DTnOQDn;)1qdA^vu0h+J5abH4#UsJch{PPzUKyhK|_%*EXHvIMFoXHz- z-uX$@VZAu{An_#|mr4ur#jFASyfi@v$|&N1^mUf(%IT91&RW~_(cOZ&Plk94p<5oL z&uI6FHg4ozwIybW3Sib;rE=?v7_+#RcAtYnxcjOURW9LugXHoYTKQN#FHlo}6y>`f_NucQx#WItBR46BTxV&b z;_!aM`TB|b&zLk>t!%=M9bd|n*J5PXA5xKzs&1j@vqx68;HKhhd`*u&ThNIV4=0`O zNyW4sy`#IirVrp0BLngo1#exkie0NB?zL4j8@GR76dgK_%R_m%i9XnJ9>5QbhWoG| z|2|d#ZJ5f$V^(Rqji!jfvWI2x6RwA_G${J%(s9RiN&>8hOf{BucT~Bf`-wQp??`(* zg3rf}^}}0JJ~bNO>;K%NsG^>t$MqPR#wyG|hXVj}Z1=I+D=Sn(s8>?wwTj^IF$_vzubHV=3f+a^ZHA{!9+t)W>1{w6^uU@-Y0Vu7d5w*P1P=i+4q)0SQ z!Y$;l6)-5Zuky7g%gqaE|8@#=WOJf$uA$YYO+3P{RbE8w&=ey*p%(tx*x5-nv)`>P zXMfw3zmtr;usasE5~UEm_J*BSN|#T_ng~+8Yb_w;Fhw<0Zhml>%;TUJ84+HDEIWe% z$4I?F+;#AC8M13niL1o2$>t`_G#=Qco%a^s)EK5rM>%cXTIQ-hDlf90UCirlkY}$G znEc9#bOwCM977!Y7W!ixoVT84&yOdF^nAtg2faliL#rcr8L%V%$jS1hp+zjT>r zcsydJ#~JYEZfkhcC`ik&+1B`XAQLfY_IV15)Lb#?y@3*W=7j7wgYKvW6<>~vW5`Nz zQt^U}xV&3FyvS6?{x>wFLyE-MROfPCe21|Za8@XtJgEYNcJ-b^`p>B=UYah)XP+o7 zBO_U#%n`5sSOy))$jvK9C@6ISW%v@xV|6(XywLFlc|!!04Hq+oVfj{1AWo@d1kJc& z=8iUcLb>NJR_m|50YiVhWweq8Ixl3d+lDN~a5SUe0J!%l#F29m!}iE3T+u*#JL)gm zpWmN5Hxc1!=qXs3!W@PlcNEwQb1FGh%2;&{QN-ASnG-NZxK>$X&SD3!o9UyL%AYXX zX_x}iC=jaJynJ%w$eDhi0R@gnw?~j}P_cwm8EA>dbpVF4U!2|H$T#$dAIXTp0J|9f z!S@i`r3%W7%yF~99qTd*uc#0~S_#W*JM1VG!|@`aoohAG6on*dT?rh_2mQM$75lpz zgtNEVR>Wooj%`hM6N&>S14 zW*0~Rzkib6ji!PPFuvcACLy=cw)?G*IO_Z(w=uh?!uAJRbtvY_*i~3pgcM4v-oP1n z9>_ixWa^;3|!2z2l{+AwZfx{j5|_ln?LT{F#NxAkJ8`-1s{3@Im@*z zBIXzRzAMOS%iORn6^@?NzE(OSk52gUBgwtQtcQ~u`Va~b0aP)CipSD6^Ic&9q5d!Qrwb|Nr)yv$_Bu*H6$M+VWKa9FQ@kEuQ!5j;lW#Z(=M z2Vv`|oijjUi@Q=jA_Kdc_k6JOmK?@nSpufhs~}qBEE+|#=`Qo~VBvRH{0frJtK^HB z@o2WZUCRva9n2@1sU3{`%M{w$Fr0Cqr)G6%4yi%~5S19tHy82n;D)KAOm{b%(4v0w zNg%e-k%L|2k@yh`R?5rZ-y~FXvlz{FPP(FUzo9M1yx*d?z3b`e!PdlIiq{p&SfI2T zGDj7ldbN4jI^F#jciF<>zbrrVxV?$QlXP2>mkUCDb{;G}yt$H)JSJU9P5auc=dEN*$$ZO!4YV z$r}}@Astzrm7~aMzmhkiJJJ>CFJgvx`tCjg6q4&P<1()pDp*bZ`b3q69tkpq-e|C( z?R(A4p&i@8cNcx9w8ONES$t<-t+ztsCcGw;Dmv0&mQRL8PqiJ`rVFmcL0SPDjGQ4h zdijOe{!_RPL7uL-34{$MDoRJ#3FDi&L}~L8B~2VgRWhYWz1Ode{@o!xg9Jq`tlmsT zV7f#AVZ$n7q64dV55{1SFp_Ae{=NxJ8_Q;9*$KTM0Xj8e)2&v`S(bXG3K9b7$4TDy(9y=eZhX6E5-JL5+>cxhaBlw# zFJn-x%ZVt~i7K2s)d(bJ_ud7rg&4?4L+47828?-pzhP8+dvvH-1imf&sE*ig^^=alu2Rd6LpgGA@EpH=uSHNdCFd*en0ASLZ&RA?H2s~WcB1rsY z?uq=WuzriE(b$aSIYEDaVxq*#rdEaVu@MC~r0G(Aou&&x$jlvbKcNf=O{Yp~>vQlw zaq_M3<l$L*cS?-moD;fG%mYO&Wvpsjm}Opc=ftQX+n-NSPF z?e^fjMg86mAWvY#HhiP%F$^)PPvjUqaVNq65ox?c^La{l^lgrc>-nhA3@Hb3zn-P@ zU%fyt$G$UUMmWq`z`rPX;f7(%w41sy&xUq=KUU= z4z^NgKajroDkJ#KJK6Ow5dQC32&wPKT^!iOTJ?R0xC@t@RO+9kF=8j!jdXX-sEUIC zV#~B}6qDeLd2w;PMx((Mtq~mM{U|vYAJ0#ygA*!kWIyE2Mx zQq4CBYE4fVx^>e7=beVL+)rpER-v~E_;Wgg%8n8JI9YprQEf=9Z5c+#tCmWbL_P?- z2EB*X)1#}M457WZxbT*Uf9$4N3w~4k<`xj18u7Bu7h1K+mN8_`5rm(|q+Bw|^XU|a z${7Sq3TMszS+Zi80R+bI$+ z6O62Jw{vuGx6`khNMoOrB{QggrG?=361wJ-N;R4I5Rb@e~RkaeBRbZd9hSe3|F|Rd!e+Ur4ClnGtZAQBU z4j=St?6{(WpF6EykYwMZ5(@F3e7xz;9$3pyXUwRd-ZO&}x$jYIow69F+8dW9i5F@2 z_?3SbZ4Hn>18h+)bCtwY00W$a6QPNvbQGri+3LS)Ywj=6%x;h$eEc093=Vjg*Nxlw zxR{KJdgJ9W-g2AF2?IW1<$8IWhj20WpBxJ%jV1?RIgPeB?q`v=fpibws&#!zpBz_5 zUYX65L?sT7u#TFIeM#8$iq@2*->WK+P&r2APE6Ds0O;JA5kduV7azv;AKKNg;g>s8lFo^RZUBq92V~%tAm^`XnnT2Q4 zmCfaz0VEo%@nbDdDSQ5JovAZJgHBeWz3;()KKW=dwL_ZAm>2bCTp)y4Douf`GsOl+ zz|?uyw%&HRk`DrHR@eLQ+^;g75H0Cuh>T8wtxLb+K&*&q@BA!-Z_y;AbIa|&&%fxx zH6tlXW>s~Sos?;9&fbb0q3L2v*20t96m1%dfkDO5J7HzF(b=VAF^&bS!=(7Ovr|so zhp26;)pb`PIRp;d?&)RI^)7tYfV;0n+c0M`qV4zY?kf z^y6j4G@cjCr)yYRb)`wKqY2`|JSoexY?OJ0Y(TBLR!uRYokoNX@}_ZVnGXvw7r1o< zffVt)Wh&Mh&YX}<#=LL-Q?l3V%a4^a;jY&`X|)1$8~L!tS;LJsb|FRg@IIW}I44^H z#+Y?D+^m^nh9*&Kq2aU-q)SYYh&=*jD<+|xaNBC~Z@0C~Sh-6K-@GZW{6}FtpBBwb4o_D0gh=!}`@T_eH`%rrJEUPDfNq zJVydtvs0}@3tqfSYpNX)^YX$*;5v#W?o`8cJbsJSmhT9otM`42#k-z;mZ{;ofQrN< zCu)SU0rCUg2YqWDXbexO=X~@so=Eb%vVcTHefTPnc{?nOfHt9&JYTp?c2ht7>bSbg z9{rQa8$nrtTexVKUPdb}kuc{NMO9&Lu6I8gg09r$w^lGa%u`gG+aZ``gCjF6tm&EO zpPoV_)>c;g$$O(5;G96YfTt22NHDBkrRdERGIv|Ec{iV0eMkxRwnX*baSW)@vA}SAT1>0WHTKF(_Lu*?@hf$ESxQ-R zk=1?SnQf`{SMw7c-Ywb(N|3GGq$CV9r$y)(P=3Zb$uao%9%N?w5PF!^cFM@3R(R~SbQA|F9 z^V)dvOgxnC$)>03eFu5(5@xJDP$Lg{O4g9!C{NfdyAc{bLBQ?~)P%_vDW8cnfsOTW zN7%pYs<%tAMtnkFC(+0r^5Es04ll9JL3B)T+tzW|VUg`5={)bxR_uzxG+`?RuZ>GS z$NoZnC%*W{!(E(!-?;> zd!;liOAwviRJ{@^Kwo3lo)L{VJ(-UCB8hgc;}pxh_7H~JRUS){QQaExNHQ&~KrLO} zs5g-xSiE_j*8?WqRw zm^;^Se%JAULlb)2>KVEg^``N{BT)t*0<_|jp-LQeDdS4SDk#Zz z3}<=Bn`85_0O-T1Av|xskDW$E@JZ^CG64%)g0&>Tu~p_gNM0qWEGWT?>>g$GJg2u}DP)?`E2Vd)2u_|Fjmm zYHeOLeb3F!JQX$YfEuM%$f6yJ-5?|%;hS@{r@J&6>fFG32{`bb)n4Oxjwu`qe}0#+ zS5kdId82F~QeX3aM8dz`N59~!JhKu$=B|IK)WZR?Mb*_I)n&d&4xYYd6r(R!S+Osc zDuG_Pf9*z6>@8A6-+B}~(yZFZN?ZN91n<5!KZpHkrBk+vCw>v6<5foy-0mIt)GSHp zU)WBEzR&|>jYL!~%IcO`0}=AQs`;H%%o_)!=toL!_&VxV$TuSnW?eJPCL%R>7Zb-Y zWPPs;@U2^^iLZzYWDJK9uheftqJ3+v>X4o*{mWd5UU;}2v!cRQ;VOlTrcVP-G~Gwk zq~XDnPTrjVQeQ)155t*K&Lzc{7Z|SrfXOjNd9SkHZyxOPwueIVr`oVi5FE^a`?vy@ zd~b|g?NwI&XCSUehUJMwS1Kve-w>BV&c+b3+cuZAo2M^+b2U^1ro5LGqa?c~V(;Mn zv2zBArLdP##dCnP*iD~uE}Z!T700JF{&V)qN&nqJg07&%EdE%Q3eR5j7ZJ$^7stI- z9*dTr2mh}eT>5$JG$l$CH{Pc(hZzr`R}J-z+t3}9np>>f`W9pCXeua+bHREM-2CgU@+Qs2h z++R?FYV$gg;&xN_yx<6-&LH?^L%HSKkgU<9Om?n{daVzA!Jz!9;ZiPz5!t{nIyo(C zu#9iAhXyv;#WPX=jz-itx=n}%4P!UUxm|pSq^^g*9)DQ<_?~@(hW_jMnl>s8E z0lCL5wX`;?*}WSD@cXCdVdcQzANA_73e)kehMs5J%>CV+*-%=F$*qYnw`C3fr>rys zU6HxFSQe2jC4&e~#f&omZ&6*Q`dPr}DUF}dlRoQ6XbC8@azOAzvF`k_PV; z_KtBk9NZM1*4r5rA8zg4nJ(78c?AI1!-n!(`x49iAA`_YANNgf)7J>N>A>Jisowmx zmh1z@%TKJDn_=~ly7jju)V)IG$1dfVmwVR9ag{8Od45PmFLXb^P@iycPE={oq{B+H zFG+ZkSW@2cesAai}NSs(Ua*r&b!LB+iqZpdfkBU8Tsvv2# z-~qTG`+rPAOYI2&nR`7Calrn=y(H6Zn0v3@%O+(Sy&byE@y8ZPE|gX2+OXuEl}vDy zIhv1;VO!HGM+YYb4?9e~`go4NTwGf$5y+DhV@lT1-F}3}Xh5J!Tw0WJUUeo_HT`Cy z+4cE4@7;^2`J5i9x!EhzMpZaRq@mM$YL^Cb>)*r2heKpQal46G4gkqK?vYYKl}4Aq zMI+CxlhwPA2XK7T5HKPVN&OwN&A>>q5vRh(dQSw-(@%nKTBpGxuh=(s%59g2 zf)dK@EAU|gGf-;LVx0C!E+*&d^x5;h$d(8?U{eCrdv3w8PeCL}g~lvYwU$RKgVYEU zSg;kgHMxPPw$0laQ+BZk58gi+{Q{Ri1yzF27h;Vx9`yr8)T@ zcKQsSjgL{CHv!BcKL-(msf!|~6fqQ~yY`b?aK#%&5a=u-@HB>j5sR`W72I(4g$}@l zpWxGyR|r=b5qtXZqI)o%?NZZ*c&V9#WKy7Vzz~Ss9MmvaFR@VsGWfsEa+0o`MB*pm zY_v^O&hDo$s@@{n^2XOye{ywk}0^CV967PHOHR!>Y}M>)$WW0e!TzIiS3uh z0M)=D^=Nf-X*YXOLzSc07k)p$7l_iLRH2PY%ccc)#b4WGN}~AwqR!=*=KtFO0*Xjp zbpY5cpugg_pFjSFPk67u;rFs*TWpd!dGla9OrJ=eCXP<^GTq<5MV|z=#NTZuE?a=w zh3iQpl{=N_k}S;bF@Dk(NaX{6lOt^|jn%btiG>l32X${UBCzxn9~n!pI31t=tl8=u z(dg8Dwu!qgE9~qb(_Cn($VB$gC;Y+_AqOB_ydUS#$Z)Z&2;8Y47;q<%E1rSc=L@oD zLzHehx4Yn}VMJOV<8y47eaD|bQIXGNCwxEKU7j{U|9FiGn~lbVhG&%UE-;!PNiJM_d><((YlHYf_CsdC8tFq^Bq#t!RXT%?7mG zNNi_#+2^>B989vkM-{FlBi~QM|?>K7J6QxjQl+6r!9gWe}0qzscmxo6h6G%@oXkMq7?~Q`o%hY$lzk3MZ4@8>6{;sgOWp_n5i<*fY ztphjf*A^av+5_jWL^oY=!3}ipBLlumZpc{NlC^*2oxAkOz`utqK4%w{jVtkKZ=H@J zgfO-`rAoN&QBzVjys_$#g z)@JZQk#eFD$Vyg*w5i>n0R?&;s)5kXAzYj>i6efq*@vb=saMm(7CJoFv|ru^CH%kS zq5a#guAt3b{G-_&#hf*b(6~gSAGyp)^VU;cyqv;^F2zFF70Dz$!SA0fwPWX=Y{uS;iRwy zWwr0z%lJ83V;ncDr+x_OdHUr3|6m(ji5#4y;B1^+|Dp5&MG_8H5@tyo7uWxg_}u@S z(#YD-(Q{pEM)SX_=`owmsuNxhOjoq>jnEr*HXUwj-h*DTwBt-TkXGNlU-Dosf>BXr zpys_up9&wRtX&>#`J)|>v`~Pu2vZzYt7(lM@}tj_vJ#uC4>N?Btdq61;)8G!mQ7NuqcGX@Za!2%YbR?)-3T+n2kv}PcT$v-<@cS>_Z)`_>& zgK#WnbwWL3I;2V$eTAplYS7zLy;wj5&2tE%&ZmXoz4&pBvQm)Ue*#yxcj*ZxpbL-R?Q>m4OG0P^v{@8dN}?jD;&K?n0K zacAilrlW2QDSZZZ=4+)3&433I@>5QCffI8Ympg9rmu&1?+S(@JbRM#=FHdV$pDIgM zI05FN7pb%RO~h@N49W``p4*!tA;jyvv!5e1NBJhK4(J`&|Qx4wf z<{eW^gP{T^;_zGP!`IE}*HX<-;O~h3O^fXxBkVhSKydGShQ9MN9?aj`DdX}kOoam#~Ag0rs5-SNZygZ|Riwwae*XmN+7#};ow#rHK zLat7E_k5z%6NJ?#G~j$6)hg5;idU)OegOK&CqIQ9^tW1+$d2?bc~b+z_XpRcz}MNI zMFuS{w8Z@lG`e;r>>mI0^I}s6?dp-_)MAc=P&)#Bv<8mInm96(-9wWmerv303@dAi z6~w z%KG-Ex}|3GKH!2~D&j;|1<`9dfhaM^hC+#LknztWtx5_>Sr*YZIR!=PdMwqDgTs8^ zyeolgQkn^nn5f7y$XzIR5~^B~2=7I3YE)u$X&M6zngV$BI2LZdJ{$3|9cyr;-6T-R zXOo^;3@5^(krEcajw4L7Ba)@L35zVIaW_M~2HD!yL%^$}f?l@zE|sJXIHqXBhA^7z;q-$}dj?0NA=SB?4r54`c1GjMxyd2gKa?B4d1P*)MKvYIo+{oZ z&DAJphpKTgZ88c4Cv-57Mv#3m4h;)w2)0n6vmumhn+g5_wHQ5xEE&cm1P{gwoj_a_ zQ!p=68USfPk1UPdmmbqfWZ`M;m5N@=ZJ|gV`5D(f!S+xWjk!A78Bgw#^4RmLFXAz_ z#^1Hvj`Cn$3sKHR$Kk*<{;{~jUrE`OTp;*}a>r@^D6CzHw}fF(yLvn)0*}}gN=TdV zv^ZmIT#Un=YSs<25Sj8 z#`ao{F^11kvrktT|9%(247|1Au|bf*wVKI%W}GiHa<&M5LXT#P79`R+TZCL{l;oD} zg=|`#Cf1LH55R7Fgk5mr(Pcs=Z*I>2F*ZMxH~PR~$~5Swfa26X(c;H%aF|{%AYUGS z1cZqX(6Z8uNHgY{!P|dE!B#-jpxVP!u1rN+xYd=?h&JdKwpO35rF(fT`+O@wv9iTd0*~DwkySPUvDM#=vLHl zOtmZV3hMd|X5Eu3Uh7sDY2Sx8iQJ2P*u__EOwUVC5o%BFMMQC5UGe9~NmHfy4*^;^ z9Y4JB^miJeQN9CQBAMiq_;~yqp-|0?~!}$32_&kGGT_o*n-ibwU1%b0% z=dVv=ZPBJ0qq)2t8$g}O?^U4ewZC`paS{_|4|=Mcpfe~+@x?0a96Z!l%?F-q<1pJH zn@{0#szPR^W^B|lE=p3`lcwGoHi6ARI-8k+w}{aKU%A%vvfun~FpK>-VcVKaVt-S_ zEk5PgOA&C>RT*~hr+kOH44>`T6kusfi{3;W=ksDEig65xk@Scj+C;KalO8~BaMm!)LDmV&Nh?NRlmgG0YJArQBV706 zwLQo^Fz?XGvY#Dj(~fVi!#^5SI;Lk|+RAPHnkVV*J0XT5IGHgg5KtF6Kx8g zs1mc}5kmi*x0xqnTasvgw%V07SFX5{(By~F$(Fcl@8Jd0!aw5b${bebrdOkEz);t7 z%V&NsZb9=}2l3)AvGx$S1wJvx|K5N6%jg<+)i%$XZrvPv8LNO_v36q5bO`5E*~$`$JaC)s zI%}ND^|Z}8Bu-#^_-VoZRd3gJ%d;ubVcW&-A;|CrX?;(V_aCAa`M-1T{s(F0{twbh zgU-gv$^Ad@D%*dhBJw5*31R`P|MDLHcTQW>(|<75#eiSCDC-7z@Ry2Ch?mvT|5#Q% zl2$PorrwQ>4bs*>e5swW=DA;;S)uHAP2*Ar~<4w&?tqU?Ubj&P~mt1)9Q(y+t z+5wW|S^1go2Z^w}GAPJ<+4a@~FW$GbHD2C1z6`w&4f1{?2fH0@jVnhaq);CwQMfbP95lhtqQ}WT- zAb?#|R20FvK8Tr5KwV}&Zod&|(#A#97Z%&ck9U>emeTAh!k+y?1T)8fI9x1Hn-e39 zZ5EIi+)&qYBn0^-S1T_MLhdR?9S~UeyAAQ2_=I!CF6)FQsxn6YIyjtpaYh;6)*yjg0D>i4$!R^4{5xSEKBr z!ib6GzjB8^9236)wa?VluO*SMZrli7J)IB6()ZN9uUGKdclr0BFI@vtJ^I2g`a~x%|MQ@{=-&&#n)M}(<)x(^h2y2U^<$0m%Tn8z(JxC2 z2Qvo8GwaW#LP+7^fstpxoOsQ``sL=?={;?13vAHv;RlFZ*AxP%)Bz&< z$j+cR;$LzEQ6NxtLIV)SC|_a||K1URaL68#o1faC2nj$qVGqg2PaY5iHsF}N{hatU zoaxDE_dT5H>!;u@?Pq?hr|iFuoLl18GNl7#KXI)OG2+>U&lxGV2O;1d)nKoC;2|IO zU5q#b3OE*@2fIp_>pW2-xQx%S4D~_AaT^TKXdpV0+TJRk&b%3wxh`6 zT!!!ULoex8(>VQj;jZ;J*0)Apk^F;|Gl{Fr-M4bdFBTgK3 zusx0{Ql)}EaD)^xri`9gA5qB&5$`sld3;+vOJNX=Rv!}UbpvW_Y<0Xreq~3@`az8X zm}s_TwGvDmZq~&~8!^!tYW*raA7e$S$Y*6UK-X8~3961@<_^lpmg9*V-84bQD!QWt zj+@*l@`68#cU)snS9s#m*6;zlf(riECH=L1{0hmEOvO0*ahTI8($J05i2y6919)Qb zkHSjlu~L56AR%!$0!udXsZX$CAfuRT*(mVUVH7%2i$DO9%7XRvti}8%^sY~=-C~^y zK=M`3G`(2}!vF8Wu=BRsb*4ZiBIQP1J_EAFJQZ;u{I4qnZG);|^5WB8mpm!B`sXYg z?hMFU-uIX>GLma4RZk*F2eYyhg`G}*&?nCe^&2;w^?a4$IF*j2B=OOGoog+FB^KPG z$T?UuRn&Obk_lC;rjYk3r`OrhGb9;rK>jf_QU@#t!-60^A3fn)7YVeTY!=%}0BBSt z#dDSLoLd)^!mnz+hK~Gi85qgjOJh&t_RFcd^{v@Cql^~{oI2h+V6qD~7p^Ov0`FPP zmy%c*;v+gDpY-$s=EK#d=_oH@Z)mNLI3DPfPX&`NNWq9nbwqwlR$zb9KKWj%fZkR* z9jl*SbT)=o4ZCS=0Vg8yH^u9ROfM_a8={WqVUlDcQ&T$2gzW{+$e5>fn4&55ez|`x zY9Rj)TkjMb`1eNr)}Gp!+V<4#)V6Kg{MI(6wr$%sr#7dy&+mV7Zcg6!b|w2}Cp+0$ z>v=w_MkC;7C)}oiv+x|fNcerG@xx9j6T()8G}FCqU6Ql|^&*&pCz~h98rI@kk($|} zm7uu=ub#rth7*oZIkztX+XN~}8x}w_ABJ!*$Q*(k>C8o@a`K^1eB$oBw4J$t;fj3D z(&k0X&b|m+)s0YZ6Z9Jxeno^EE*@nla3m3Q~o$O@CN zc}%_VeGbsn!{dpOWV{vugZu`=72%Sp?-D=E-88+UMcxa^?^B@XQXn(k#Q;jf(bybb zBSB~PT1_fRy1Ay@n0v-Nw)0QSJVRpL zJB_l-VDC(X6Mo+M`k&=;X#fDkm9Q8=jhy>~(Bd7(Vsvs@q#@2#{X@M<%r1h1)>D6a z_Nh?LZ_Q?dfAH&lL!VG3mn)ELo8xYXL{n}K`iGcS#fdSdc#iTJct%sDT3v7glT6pA zaSdE55~F&~C&t%HAJ{(YRQ81Te?3^IgmmNQzg3!0V#RC*ibp8{72xa#=~LlLO%{@q zBO@ezJwK!uRw#RZivQvuwhUyb80tIv9m*&wBy>(#+*74|h}{`c8JvDG65M$Q5(Wg8 zTA~LBL5Cjl^pFje3d_B)b(U+!>-K>M1zPxE?a+QwCO`l5LgT#aS40}~485nU!bQ+8 zDkW=Ul-JDirUIrXGoZ_Uhp^qR<0d1*?Yvz1sdF@BjK4@w*=Y~+${449`u?!Gvhj~# zOI<$7s9s+se5tT%1gg~baB>SLku~GYdD%&UF()O;ids=Gou(q^Ozgg+_3rBY?cT-@ z$4zn$DNcb^L^><8A29Dr2pU`b+kZs!TCj^*KCutXZUC?}RA8|HsjsElOZ(1@11`cUi z+A}aqWbxu9M%66or3sD7tMJZupmpSy!!%Zjw`oT(wVfqRD7yTO6YvGT?(D3mH=l1~ zMhxc!=nADFDu99SzGH4#_^qHA(>+)XdB)&*1m>poN&Z;glSjD3bNO&DOc^C;yLzgD z?H>gr8z<5E_0!f`)7)(Z7~xzl#;Mcj+C+DGhlQth6Za4`hw~&_0@xqcKmK}w?zk+* zq3bQc8G}+=vDc~1-$+rybQ5!rw_JleKtUY5=D)6HhynFj!)E!Cj>`%4-9B~=rNf>V zZX5Nny8^74L&cwe4&kO=Y8uUL3hm8eog-Nsd4&Fu_v%P2SZEK%qU}lV^EMhIxohv| z4NqymJ0}Q^4}d?2mUK3)Gk`#w{j13dlnCYRy1-!AJ}Z>CBN~A0H7qG7?ZSt|N|cu= zdb6~fNC(0{Ckx@xl5Kth54P{|V(;hq3SpYlaxiv1-OeQ)B~$FPbeHn(hF zanu9fVa{#D>SiC8uN?qI{ou7pg^YKYxcM0y(hQVt&n&!2vPAijUy|W#DqXTV?3zEn z)2s6kTW4K4`Af`JR<;r9aWTB91aCc%5Wl?8wM%!CRni7+qU%|n)||Q~OnclB18TSx}KvP7-fvJ?Y>@ zS0e@CM}3#v)0@lFVTRy#24h>5_`4#leFAV;H8e~1ee3#Rc7ClDnO1G7A$Ft!Rx#B0 zxKuyR@JE_X(&ivC!|V7+v1E!wb;8$6L%{!qRhxCl;cfeU>pM9TU)oD?LL?T)vU&ip z1{b8}(XK>QmsGd@*goFPByc@KsMT0M{8?;c88W^qQ?K~>=mO=JZB65U#j|WY+IY{n zCTEW8QmIwAL9o&>C>CcVY&kjyF$HZZNkwlr#**r|nY!Ce<=5=+H%tNt;oK~k2GEqa zzh|{fvPP@d4E^ob<`X}E-7%NO8#Z>6qn<=kXaFWdL2jCcLuBe?eoIoyzAKyS0bbZ!0} z+AG-UIi1>#73pp3O_kCmbI0ynfa-`z4LzqZ!OIY=Q^YbNMEn}n@YNM!01)|}S8T>h z>KW17-REr6h#O)q8A(KMl5|S+VE#F)8XolbEZa}b*y%usX;u+dQ2zFZr5~pOkCOMZ zKT196B#Y&Rimh?lM$zu@6?N(j@BWcV<|CQ!Z?-;+D;uDYK79p1qR-HT%yYBrbR^Sl zNZNPp0*|OA^%!iCgr3jQ-wQ1!8q4|u&&F;xVTD1}9>J{GQA-9XT0wUJm8?^Zm~Rn4Ys+U! zzry&L`nObr;*KIDOJp9DEnQ2vfL438$0}RB=rSC%KQl!KqU3%W=|cCpbW2h{W?{R( zLwrU!ew-i-crUUJ!V?G;m^xJ$$zmLIy4C|t&jfDd^Q&vT0H~9Hc2VZD=KU}#&d(=W zDSVGyV9&ph{;UsYma3AFI%;)4-Te$*?e6*d7slSoTxHv!2hDsOPE3T)}! z%T2fwceA#EWbTafxF72Bj|5K+sxq`nGp|INv8vcdySCnQgt1oB_7e!8H*!ObMj83O zm12$7iJM6>(JFv6MEy;)B$QaSVJC(=E2cF{1cN$AMy|H z_txJwmFun+nv37%{u>wlE4PeUG1C$Uj9No6@DP9`i|SP|P{f%9Zf3X#7-_M)?(IAq zo7V2#e0x3rxKDez?2vmpZk{BumyS)zEBoPFzGZOf`z)@^R;FCDmh!%=H+^+^bmBZ~ ztqw_#I}J1b!uu|!kx?QG+IDYijkmso$-+@UfqJvzAR4(3kwSxf)QlURlC@KV0 zu+@qnE(33^U2tljo97}8S2In>dQ4`GTSzKgpViP2 z2OIqXjcXoU4B@M&w?3_xzwbp0h?8{O{F7$#bab7f#oQQNlur&~D;7olHxiB**zgIL z>Q#AmhJ(E2+$bkP82kg6;9?O}tbHwSv6exSu(Jx@UEIeruk$4;=Fs-4N<2Vug7iwo z;-bsMNpu&d1x;h)XZ>zMG8@sa;;)Ea!10X{uH zG@!(6Z6BE@!VMcg7GwB&qgu-P5V}J4>Bu}Ct*60=lB)y3JasI>{-DUEr7+aIO@f}9 zc2hVnoU%@1V_zCPT^6)q-hpFyEiIYK2Q@@@fPvQ`^u|tA9vc!q*>W2O<<|5Cl8Pp> zZ9;0{Hc9-#qHGE;aWF0j@Tuo=-I+}c&@9+y$tviY!`SpUSD`|AoUz`G8d>3Ni$tuH zW1byG)r#(n?gnGfV1v`@5v(-+@R9ZQ4xsU!a?W|5^>8it)<1t3bLX<4ltSx z8=2qYo5kzK{RofSYniZFJ}>H$)x@CRK#ZMy(V-QUnLTxpP*p<)!fc!zc{shN6JRim z*-euu4mv7ll0Z+`gXeDJH$3XEBBy26S*9-8S^iG+oo@xs4W#Iwch8H;rj zRD8r0npY($f17LpF!|koUKV)^cQBiK@9oDh;_!k9sw(`GX}S)SpkvAxbC(-XRR2C6 zt}6d3VIoowYNI*NogNujJHR|zf3D5tFk2o;2hJFb1%?7hyu#IUdO)U3ol8cg_4T)8 z*B_F%CI7tSoXI|3JA|waKO5>p$AzH6>O;jW&F-Ji*&Am7OQPLEex_Ma(APMX`7Nge zCfb_R=!NyYztcA`Azw$MZkLAk8m3BmECPG0ZO0RhYiI?}I%17$A;q3NO8z6<#qG~D z9zqg@5bo=i?7?GvTE*YcNCZzmrEAO8vL(=Pw7SrO4CQ#bXs)t@?V4%i{IT+>lBYMs zxIcsQ!D}G^w0gd{-DI>7_5J4QHtA{e!{$6M7WyX+h-*ff3UMJHJc=_de21y(wSE|C z-V(075uDG*t&M{C)9@lKdC=QP7Vt4;z%BP&8MMa8aaCvO{^PY6z_>hyK*?SFog*g9 zR!;ANb#tJwIuRfq3lYN4_FJ{kz&-(;&I_|Q#pG8QKzfft5l&pQbvGll_7oJKP!WJ; zGk4fC*>8FM`{ikR1<$wXw+yj+HjffD9BaPNwhSz;vyc7X;xl$x@|`ZIpFtnLDp+T9dff6v>(Qe75O{60APWm7~k zqo;T|17WKWiC8@YM@_D$AiM58!rVN|B7Wi@5&aR9G6ZF)!z6j<1&e`1zrS>wi2u&iGmbWw%;Aniep`D70mTuoAH~Nbu<~UVv9EBX^Q^I-tS8T}PJy zusCC}b^LpdLVGsT^t~Kvmg+&pTbPIus0YhQ+X6qGGMLMgHlsbWCK_--pwYqaX|iny z+4)$vdJ2yjwB}FV7%#JK5VOnXH5+d!ElMCY2&L_afRoZ~%jcF`6#@|5MI<6kqys=i z3lcf%?&Oo^mm3Bw9`K@&u0XF0T7;1Sp`&Ln)_>Jy#zIK#{93lG@h~Ck9>N2PezodO zj_cB0=ZmTsO$=NhSBdIb7b+a{^JimFNCmUGtE0qaj(^jiPBo-YeEjGu`5>v&?syhv zSEr8^^2g8-Tj4RDpW6Ypds9Ph+`n1vFIA@@5@27&7rwLBk*5uF>1C@w`Cznw#w;0y zm0pK+@KGTM(yO!&vol>~3>kCw1|p)=a2dWZUP+1tGLcN;A3Qx-9b(KQoY*^mi~bTS zgKf|aa7r9J@UCccMZG{P^Q9~W^70KJ=OT1G-l{|f;fc^b9j(;9kJb>$-$kLB^JO8M zbe?m;(1V$*b*Le<_z?R3F{a=LI(JI@4xFOQNwtq|0}7XBqyC%uV@lKtvRAd%g7yOg zC&-l?{x#hyaOPCJdQT=20M#xhgtvIOfT6|S1bc*QTGW}BeSZmqAw0^wVT)>&U|^_c ztW5{teGC;(*n#ejMefFP9S;@)jI6??WL|&*q<; z*Z3lK<*IH~xSrQ!B8%$-tYPZr^5U?r??NryEZ#`?*Se4jF!*mx7tmZs{$2FNRr?p< zUrZmtuWjS~2uYtBYPYncmWD%E%h!&?QkpD#Wx5lNsr|TG4|HetqK+#T*iI5eVd}kY z|9-fI#1-IZ69$*_^Z(XTg#8M}l<`%d8)FGildgzN(}_Ulu(cX$?1w}*_xdeUSm9_x#ME>UmHus)!5nOjdbYnxbbP& zb)<53Y#uWsgh?Ec8(7D!#H8S8c(i^GE7mRKal%P-!U1!#P~xE-x?2Y$FjHra&bO~c9I^CHZdE;Ju6xp!p!BX_KJ8qDMED5e67gvNDig}tks$Di>dG;baI^!ln;pR(O)|&%II@wzwd=!73h2)*@@C4k5g59;W7+UACe(m6!Lf z{FS;j3qox`+n8)Bw_*o=#P-+{-s*=je`T3lL;f9?nRQw`7YA4D@iEn)7}N-w)N+$;OleB{mXNoN^{T9_f&Sbf`N-RlMWf5w~I) zk^Ny)bT7zcknlg@Y{<_fWbtNB{C>M-n00)6y3G*#jbUwlnf$C4v%c~#)X8Nwi=o73 zyG`6_F8NJMq>4GAu4SyeLuY=+UcPKBqSU?2u&>6qyyrEq(!LjRUfhnbw{B_c8*M2A zlzF}4_Uz~A)^K-p1jikw)0s8x^IXj=urWCItZ$3yVd!IYLlWz)UD_g$8xz#se(G3k ztG$C12u0)U*D=Y}G+5IXe<+KfwXzn)x0PfEWCVpYWqM2;GLp+-8#Cp~>ryJV@>THk zsLk^_EyXj~nVkOML*p|&fZDj545Ekx8nd%4RZw{kQG1?FY{%bVI*FD~Nbm?oQ z3f7NQLPQ`L3H){_Ew6nix^|t(ueo}Rxb6ZD18b%!`FK3$LtY83R-N%LO2?XjJnvVg zwtBzOU6r^UXdW<z7GCN4_wvc29mRjc)RZYww`dYV$;vgF<-*x zbOH_76J<>gi}8ZA1pk@HqKjB6SdfmilM0g3%9Bq4j^yc+gtV4M!;`k`Z69q@Sy8VC zXZ%KYY-C9v)}TB6KhC_-Y_|PMW)Erx{yjnFja=mgvdi9a@ZWj+CVQP%UoIgf z0nrBuAh43Ut+S*txtM^MjP0@K#3|Qz{FaBKof98|$pKriGTW*ym$!V$Hj6cEPrLc= zK*$kFC>MJwy`d#5JN7tUeEc0>TyfkXWek^zbDjXg)@%D&>(D>q7rfee(w*b6_BG^wkxww=jg3-fo2PgNc#8Su2KB{(A87&GOx8)qKa4&`uvp%8QkjW| z#|nr3GF+vci~2P&CHbg=Ci!Fhf=qYlZCZh{qeqUh@rAHld|e^tY6^@DRQ}lZdQI=7 zRu1k#KR#;wfjH}_s9Ak1btc8WHh`19@x?QUjVKf|V@Jucy0&zEfE8DyXu0Ja6yiUr zgxyKiW}OM_fIS&WvA@eIv3f;r{eqqNa8dWz{W+L0mh^xCdut?3+}-S>3n8Mb^Gf}G zI$q}Y!!lfRq$2mWhPYBJ^YgrUC>Z*o8^=6=rU0`J68Ilp!u^Y%)zUQB4 z<;Q`z_7g(6-Ci zc7jco|3dkO$wnr2Cb9s}c~$mE$r7dveK7;mP^j+a__!^dfIDG68QKtJE+Q53&~d@5 zUa90=L>PQJzeEi^SJ9ZB#ll(pe5ZyH{t*DZn-sBBTF*>y=`Dm&JN(aVp}W@l)7xk3 z^vuGBK;8-`6x?t ztM6XzZ@%^ES4y0o=he2f2h0IsE`>m3naeJTR&r_na5$IB$`AF&28~1ENhOD+ESwON zhkhq08w%KL{i^DnK@Z`Tejpb6U|9OZAv~KV6ksg*IXv z>B7aiTD$1R?&d%@>99Y}|3-bJndO0f%S0B!g%ZoVm$~ZsnSo73;MIUzUMEfzJ5of1VbQ3j9?A3H+>ng z0s6cecGk)?k09-JA|tcMvK)y7k=%tf#Zmc*4LL#MuG`$Cdd#>i#=mR#u^^wzcX;6I zFIc4SP$;aoqFK%_#IFNN<74V338uCJ%`nZXj*78&l(U&y?y@yxV|b)Dp(}@ElVZwJ zU3~(KnMxbBktfCh~glZd2Ih`~sjYp8A5QOAJ*prc}{Q zP@KMV19{s3hl)bru)}KC>G%C4g-T)XcYEEQuji|d&ic!jG}C)3(%_XbrX#7^sv=nA zUQ1nq_-QBA?rr?f@ehtl)XR&j+kgZ9Os3-gHz!ry*Fy-z(87h?Iv$ROCuCVAOXCLh z{>!SRV6UlXlNkUlnS5qrutcmPDH*J7Jbfa38}2|v%FI9w{jI}mKK&iU__8?cdU)!O znaPKkdVM=CN)!fCF#QMwX_yGCOp7_wZj2f}z3(3E!sKF09a6F_427eKj(w{Q_;NEn zd9VCQckz+yMr3gIia>We0xQ*ZRGrvG0k(Ot;$yp*s4C!N9<{LX8pZFwL`_$)iwbV#h~Y?*n^&W?x*@fY=EVFH{hg(e1L?iJaL&9T;QCmm=*cc}N=daE z|1YVDbw3(XFIo4?vb%nq?r0<1m>Ab}5y*g7)=ThZpCyD-F?ZSbiSEYy9o#r_qy>U! zYut5FPX}-p3~nxJMi3U^?9iV>{9_!yf%G-DXtCbsd{EQZTFAeeOsXi4>Ha{MdKygD z=QWa@#m`S;S-1ulbrUg3+{l`{B#Vobkh&gde7iPn-})dUjBW$vz+W?z!e{+<497;Z zD04hy{x2e?b z25q42U57FQm?cwB7E;Cd$%w5ayZfw)=tNzE997QxtOQpt46|XB#CnimZIY{%qyVTsUnwMyjV_KzzZEolM?j1>B~{icUZ4t> z>Wr1&g_mVIQ}&rmW+Cdlc-2H~KX z%b#{>gKB24gw?cuY%x*26$<-r8U&@AF952)-UvEI!rMrP&)pSX@aY|fv;LWtS;&o? z;hR=vLSuXun*Frz?<(l*2T`lOk*NJ~B5YE1MT5e~s;_kOV^%e^{fg5kW2)>&_+FM) z!sNM$2`2jLO~(gs>Uo5=vT$z-owjqkV?|i!@;6`r4grL9}-^Mz-LAot_WBi zXK%h=kqDB~kx|2~r>S{rve7@?Sn2)u@0&4zf@WDa&fB3c~$Q^-DC?pvB;u&lTWez|fi%_K3V52#bG!gQn=Xs`WPv)rt0?(#0W2 zQo#U5p*NlJ$1wMDf$@lYf71)n+^S->B%&Z?_FM*?tP z`2E!5>jLSubz~u28ET&0qiq&ghL7Q-idt&3Z27w*>$*`MHEJ>gVH_%ZQwIQtEPsl$ zM-=dT%CKE0NL{F8ILRE9Ih3j#5TM^Cp^Brl2uYEtSehWyDI+>0T~lOB;#qLvxxzLS zz}R0cX2jxAvbun@H=AmBYwBLQ3~!MUxaOF-jgJ_U7|0~>s)6=95KZ)}5e<=9rT(_` z_OJrIB^^1l{!9}^yr^o^0R`5{BM(yG%Ipkd1@ZRGcR>SWwOk4f#0RaGP(QT@vpi=P zOciyu9)$h0-nCruQ`s;1fBKb{GU6^TU0&Y6se-j9UvApQ8@4jV2Kg_Tl|7wP)vqoq z1+MK{w_t%-Mg>4>{VjEKx9>JyOoOXF`0q_H2PPmVm4WNRUdty_@&PU!Ojtfj-eiV5 zuGM^sg&havy5;H-M*4ff!7S8iFN)*Tnnq!z@}X5?&LXBtZ+|m_C4I=6*#=P6)oX@a z^zMpde{~2reJC+8gLgJ-fx@8k_xv7_!rwX|1b z!satQ7$tj9S$V{1=cpXKfcv2BrK7CO2UdrTNkQh9cCl1XdMe>mc&$2E(P4w0WsNi_ z*EsT;Vxs~%Ne+J(+Ut4`kSgB95KDvV+2nOYHw(f0(0-gLN;kIRuu^f_l^PlY#g^>b z$X>oQ+oH_vfKnc8{Yp8R3iwz2^M27l<#2Bf!XCYP*dCHLyNB_JY~nG=M>aT0PFYTQ zU;7^ro01n$fSDf@LEZ7R!B@lNMZslqQ zZE5N+7H>5YsM?h9=YuewA=oE`DFnSRH}%i$5*XpKp6TeaA{z8! zD5r)z0}=e5bV~ERq7IXop_dq3G$Lg@3cKiaiZOUIeZV5&ZdBEUN+~*P8f50SzBak>w+XG44&RXhTF& z#VW!K_w)J~O??|qi)tksVEY;0Qo=sKn z&Owpl(nTJX;lb6Lnsl!2gOwYBS_)EkN7;;BKNbFn4)_OYvPXzbp&c_o|MvRQ4CD{- z(_<4UZb(@PD(3#fYXtiKoTZpxy#lvK1tgQu>Ok%wvzCZOjM8PhF)XKX{D3-9Uqo1H zoVug4)EaQ-!s@;GY-UJ!)ZDyVq)t5F=0!9=rfz;ZRb88E&&3SI7@rxyVbnYnY}kqQ zd_UdSXKW?!PwSRm}HMj$skY2-JDk^2f!vgo{T>PV6wGMh#ERA;&r2E?iS3fC#HIqYO3 z;4T8jY>3`nbWAIN*K?0&rb1Gtt?MRE3%%@($-kdPMKo7M_Q;JRARhdcS zGM$?6?_^K2UPkKK!oI^)M)2=rfhq1*2tDXVJ)$IgNE%rV{6wOvD!eqLG+vQ>9x^eO zoCm}(v#&*6F-@Hv`M4T8{r&>UL;s}i!s>UNUQp%Ej9X0Hd1!&q{OJ}aZdxhe6N5jc zL+PtR_iB}VB%ZLMnaJrDF1%%qa+-CAeSj3FT~!JVZctU$@m#~J;Ev^LJ<6Nuo^Qt<@C zTe5|Qv!$`S$hCSx;M5QIXgHYx_IiAdYY{o1cxk^N0&!9i!+n_RkQCL5)s2rNvdK{k zMOp)c771snTKA`jAsB}W=#6g84#nmm1hPpfGrL8KqBN&?1CRd5IlFC>s^Lu`OtVBG zN_z&PZo(SjR7e_1_%uYV)y*u*H;m$=&TM0qsBMy==-^~&ST`F$U-LXmtKT0rul^Ey z^h^As%iuf6jYN%-mxEY>BHZDWi(;kWnSUHx!}0>vR&}sv8Ox6Z*afq5D&e|8>K0co zLs1bbsHX~dz79DJTo&PZYf1UZStEv?rIckAHmPeCi5~qIJzRt2DTJ91a57$$1X$bg z6#Hq9c1y-=%Hq;r@~vG zuz!wX!VYWyTV}7Lwa}zpyvm`!?p3>LnNulSm6yiw()R70!&15J&vf9#kvvx>YQHeR zk82jf#tUUi4%;(*Gm$;`&)om*b*dL9*t0C*@0@*PN5rdVC<;`5cztE)>GuMdnDpzP zL8t3XxVrOz>j);O{!a7q?>me_Fdvn_UIQ7d*{<>bVo~W^TI8~SC&$cWL*)WTCjl@^ zgF`vx<(j9XD^%?Otc!stv{{E1;aDQUy-4;KZ-8T- zTN>o+t*ra&p5@xPiy5W#il0QNHZWtTDc`q0*}Nr$ zw4qt+x-3*k-dtGF>fMmRP0^p$Ck}6Lw7x_y6J}?MzuOZdE{M}*X&d)cS=&}^_+>6H z<5_D1X-ecRl09+-B4`#>l5@0@$3Nqasyx2(dq&Lg>DwbvQExxFA(M=pZnttosf9x5 zhg{Wg_1IP8N?#B;YrV1n=T+A}{z~Enr2U@>NTkT(oYl|@e|yDto2Kxz^uYnVTkzhw z6$l1VoCwIGT6=v+X*b#~$ZIrR_E-V!^`mP*lT_r9RHmFUU*IflQZl`;dN`Oh3+m>% zWY^r?311>)${Q<-i5NelXPEYt^qOJX_O?N^4VeH{ik=-^pg*25JM9dIw3OS~M?1#L zr+KnW@)=rRe=jOb)cwZHW*54g4jf$6RCw;zYo1LrLS;6E6ivO#9odNuejGb*=Tt&(kTdM8lzCn zMv*!y+lcj7rk_vm+-VqnhP-07UJ{|OJL91FpUYO2gH*>$v%f|?J=%#bRXv*lH0(D_ zTBPkzXt-a^9lUMmo>Q;!vo*O{SLrFPoWxi>F62#mF5HT1AhhebMnv=( zu3yF=)}jAYiU(jG-h(t(C~T2lB&=L1`eN?JEwK^J%=H-eV@25&V`EM#8DtsPi+?`B zOwbLFTf69|-wQhs;R-&!bN`eE2F9|Lph>TXE;*8B`mcp8v9hL z&H3)Fdb2Z{91$npFX@gHD8^oo0?qz!&Rkkpc;L;NYlCeWdQe z=DocN=u>b0+1@dhRy67vmEYMxrKn56A{}(9VELmcR4D*RGHO`WJ*i=r_qz#5r>98T zYV{i}iJA6l*~?V<=4%t(oT$VgmQHbx7P?snKW|vDiK+%^XFg+rGbN6mvb=bP+1WZ? z@l2a+750qG8Yus{0Eq=?D)@IZ=c=t$wHS^%4O6^xxT5`3wBW)U?@O%-qrT!bpG;Ases17F^DnYX#ih|?3aZ)irjMqFzXmzeibxLSK z#~r~#HGdL~ni0J8yA>*9Z zq2@f0g%9uB(;O|y3NQB6ZvA_|UOjHqo6lwmmOZOQhY(gelyVn+uXEnm|Loe?|BZ)C z-}>NeqXR53H-Hb=v!6mP%M4aTBUn>EQcfBeI)Aqc@it@pI$@p)UwX=EeMqQxU(f#_ z&_6U4!dC#o{Y_dP{uZSb|0?qi$}Fvwe1X$42}z;cQHAWxCn^`TSxkXnV%>Las&dFy zvrWj$*}{Onnv2rvmkju6A3aw4jPfVm6dENT_i?;el2;BGVx)Y5q|OlOjxFn{gimrl zPaFI5&M|fUA!z3s)5hA2pSO zKhF*5d4`L=}w0e&I(RfnJ6JKfSRQpik+W`@7k1;aF zveeLkoobLN$y7<+Ce5avr_(%5cm*;5~)U1 zo>z>j#pCo|JgbaZ>lyMU@u3qdm2j@Yn@x8C<~4Pfu$FifCI0rM+eTxVyIBN$bg_R6H>6F!Q;`0z-&gZqWkdfr)iCM;|K zVN$d8_$xm zjiQPyZ?Ea{7wn8RK3n>|-3$**#$yu_$YCpu+3VL(@>bK_HV}Cop|M1@ZK#6v%V4kw zanK`;JVr<(>^h2dy%$|z)YZ6PqahXPv7ZI~0x37UwDuinckLDmyA%`#Rp}tjO&`s) z?TnYyXKNDcA9%1cm@Dp3%t~{AwR>;!M6hNDZ+;d$7=#;WPYF z*($Etv{a`jYsa`{0+cM|8-E!f^A^G0q1m77Ph8eDp%1-0@%3F-^;~MRJnGXZ^r;`K zMnrbdo0v2wA>(doE!T>6Ec4jMXF4zq1XnhbnV-yRHF#71*0vrBGGL*)nO6J|6WBlx zOhEKaW?NBir?dL6l`Pf2UzU>

WKq-qDvyAu$2o@hKO6t;$o7$mM*KUstUi=4V(} zCujyS>@6;VTiduDx|b@8|BW778@udckR1U zBTm;HX^>)gJelT`GjD>@&3T#K7>&ShlO4wT{H?S6ea9mEAT_F`w7Qj8>K*P}VkgX+ zki9!fzl6HF4jRQbX$D>sl436pNe3$zk^D;j4A&j-}fF>(iNht7k%T#2*?jQ zc?*q+Rn-HXx$e^VlMMG+b(7U$Cj|}nCll_~^lxKI>CEr*BLfMp7rqkEK|`+KtdqZ^ z@d#X7N#0#PCerv}hX~U+(x+y$9vPk5iR)5a%PYo&ML{MH$xBxIz|l$tzI_0nh0!v7 zZi~~>;O#0Jyq1@6$!-3fBaX{gK12?V)a)8hQ>3$knT2uSU5GEs4OeAYZpKe?Fhtb} z&Op(H5{`zmB)=_l7?KN8E-k)vc|y!GUHO0O=$Nzv(~D-Xxoz3=V_7K~WYnXO*b}Xp zQ<9qFLGP1uTTo#I>KjYs5L6yVNAS66I^{abwhAwT|ufS_##LAoRTWP@;bcMs%& zMJ#>(mp-2Jy1&1#ok>F*mT(-+&HbsAy_}(9!*q zp`){bQBgTxv2*JKqEO1%0vKvmViA45nULK zGxzkb01!p*yr|~%2ynsvp=me^qzMZ%BWML@wnnH9&u@7cEl^rcPD*|=GkJM=3N&wZ z3UMrHVs0q^(&kJIL5x#4ms^kw@GlzdJPRYFk4_c}2pa#6l;(>aCw6goPI)veA`r5= zMhn%iY=j-%1T%(SAxI}K=Xw~T-N|L zRXx24QX(jA4IL~nFJzQAyo1f=gJlgc`u~Ktc-8==13o{W$3dF(j$;wswt=Z{c6~Eu zuJ*W!j0ZsdLq9t$tq`j(H6aMHZ){{7%;3{{yiEw{>l;t(?|(PP_O(ZQV6X?X`qu1q`(5KVoujNYXIEL;u^i=koW_-M9VVcO-E4-E#Py z8ei0zz16$a^u6%?T_*dl`m*cW7DP+SopTOU!2yB*JnY-L0`lX1js|49dh7DLR&8V& z!Ub7`fbQ~ZL(E!T(wZ@^y`ecXeR*f&u2tutR@uz_5=6z#rTObZ3zR8P>>hB*D>OBO z@8H%EqJ3q=Kz4EZ;w%mhN(TyG^~IxOlHmWN(irW>fZ(#gID+|T3YpL2pFY--Lou;( z{ptwN0m-}j0L6@DfB|HaqtN>3-cnEPhalGr1j6z9=)RzDLDB@igt|b?BECuNFhLp* z35Vbe{=5aPflMs`$UOd<$4L7iOp{+iL<~*RXhTh+zUi zrs_N=gqWy#f(~e?{1(dlhxf`8@)Rc-$Vg6=ZrKee%gB00F*oBnkJSvvf~3RHvR zpALXRfL^)(P=g3N{ZWHLI)Pq$4*xR-4%UB5|91%NAhJ$Ce;3f}?H{IG|B_id{^=

xp_MN!vPe- z{T~oCK97Gue-JazKadUN?ez}`3h(_72%3w}A9A2bK0uehQ~l31XXfq#8jRb&UPPcf z@IUxpUn_t>FQ6I1%A%tgf0#`}Sm#5XD4{3g!KC0E)qz$99i#7x%XjxD6xdX{+U$@m zm*1kPBfV(rdlIz2L{>>(eNWq(U?bX7R63shUW}4de`gLl5SFKL2B(ToMH>f*;fWa4 zMSl9dI{Rq`+d{U1|B$81cXsDNQ7*)M@a&iJY8OIC+ zx>)z~QvqQ#goBv-DfJaCSVk`7O4zj>MlqOf_3XAl;-fALv5n5(nmraa=|ro%vyJb7 zd1M`{)1cNK-{&Uhjgiqo#`{m{?GGa@qkBF6e_Cb21Hwd>o~$1vtn{MS*Z8uC)1fQf zCLp@CfHGKU467cgJTK5D;R3!P*J4iuth>c5EV?|RRtkLL5D6iX9DN{-`2BP$SZ=ny~l;T`n%!ACn zB>`1SUGQmdqPz6Plc7@PBNa`_io$^0f3ZM>--^NV$C5t$x*!pps9!BXYz^O)9%#Xk zve7o;sj`2rK~flfA8FCNej^YgR8xN_r104W>sy+g*drU8*`xHetI;px=x+t^bH-*u z+9gqwE$sz;x!n?^jg5Y@h;H4~@Dy!YC92Pw9|Ufl4Ua>KQNVs@XTcJhJd*|#e^=0C zZ_1a@W4$k?RQ_WJ@y$@@!zZ^?JEq(C_w20_n(NEyA@!;LMKDW8lE{1Quwp zh8q&nu2nIW*(D0d!WjAL(P_}Pf8VA>QDjkTnV?tt8^mQN!DQVk!KnLuxnUBy>Jcb{ zHK+TgyH6Jur56ZOZey4$Mo}b}EIr93IX@?OUaLh?`qjP%JE{mw9!{nsBF-2Gd=tna zVP&cCgUfsu=s32&Y-)L2&fXlcy4uVS+p0MZf@^NBtIHA|!8aDZG+hqkEb5!n(`G+86A>pJp)xEL+4?Hwv)pBMEX`T!6ve|gR$U&z_<1@9q0=cv!>$T6+U;hl`o^)TQ{jmr6&M2hQ* zN#%Y=AR+c%qeY39qxsawro=L*nf{eaMwyb*?)mtsx|J~ncU!L;?{pqGF%t7IL;!~` zH@-y8MrHZgwALr$UUnQmlfm6FK%ttgAJ1pgJvlQ!VxH^6myQpmf5-#9$W=4%ygw$( zw}ktP-kMcBxvKPg zaZ02_i_MGlh{u^s-hB4!9--rDz&@)cbL_B~ph*4Q(>WPSa*s}dqt7Gd`Q!BcP!Lsr z&5xN8Y|ov|9X12Uf6Bfsz*nPJVHvA2RQIC-G5ZTi7+k()Rus79G;_F$VQ;ScknYt@ z0I?);c^IC&1E<=JCv^qm>0DiHu9VM1IqwOc;4n?{KJEBxr_76$;#1S2@4gZS040MJ zQr^RC!5$mhy1BHQdYD|{?8Lrbq(y7tQw?5mjs3bQ70XHnfAohZ<1eSM{RJsoDa;nX z`f}{PQz=WZ74VU0iqffx$us{HsKmM8#HO0nrNK4VatPSlT36o3? z7Xy|77RKYNy6l*Y-qWv+OS^BRbp>H6`W7hX=cs^agt<7Eu7$q!MwIj&*?V8%=$$L5 zD!<8(^3PvuN!)h_SNt0K2x!h zfiUnGc9oA+uSSm*7ytsm%*E5m#P>ztvDs$J0#>Q=Fm ze5l+Xio>W)P@o?&bqe~#@4Hbs4j){j!j5yKsmZ@w&^Zw~hk}gpRf$O{ciWnwlZU5j zktFo2fA3ScWuBnE;I;_42pR>mu7Ih9j%?^*PfhJ)7hH14YJmw%7wIr zG5wv_M-vVeR@}Pr06-P*uCr!IYuR`SAlcQ>_Po&5JU+_-#V4r;4z{M~u$XU=NIusG z-yk0Ss?r59x}>l&)I;%OSB!!bH!r1(y!9J(e~Rd`CE<>P9hWzFge-i5q*C*ZfE@h6 zsq#dzQoN`r-l)f?l)%kdyF%*2<_DdFr6!t{NieO|>4Q+}?n0JeIlvn}_7`SrcAf)e6P0M4L4R%_nOKaBqz}+COwWKwPiL_&(HK` ze*m|N;tNF}0iG4n$MJ>@!~yb5GLnG(Dt>xyC;ehiFMJH0T`2^^4Ni%#6YEDQ*ce24 zM(b^9QqA`}SI0rLB%(-mEtoSGtj6m+?o7At^cQ<819qHH$BKX z#GjHfe=iS|Gr5TIMp0rrwCaf0h_gQRyH%QtP~4aEfKA&fM$E^^)q&^F@fUTU%%|7| zOFq%UATGx$-bR;#^Kb8zn7>u`KA(dp*Py*@edvr97%VMF-5bCR!>ojK?JngNe`uCU zKo*xU4%a*`wA%hY(oco0k}@e-;;8(+e|H8wG?20~@jLkpJA3E7GVc=anQojbZv;4v z@m>uH@|nx3)+3+d=aREw*STLqpIb;pU@StBvJHu~Ho~ddI6N^b?0gV^QqHq!U1BzP zZiEk>De;=V7afo*mF8iNPH6Rge~`p5*kCR-_O6UosfUjo`K+&!+Dj<;p>o|?9p^gk z$WRgR+uW!~!8o+|lNyzJqhh-pcS0>3y=vy-nVw5Y*2}QYuK~<+9cQ3_XZ}ceKMOfh z?pQM@12J9fMc*%6Q?Ysne{XLbbhjWsWOfKv+>g5cx^m3IG8OSn@?J!QBNG=Vjq$}b zgJaSP)ctmLN%E5g*8y?c)G6H3RXM|)l5s}=ckSeS7PY*9(+?<&R#ZDoB)_(RtR|kL zC#I49v~TnllS4k<w=Tp@!+fP3IRkc8I}@m4bkxDL;Q$gFv^a}--Vu1D;$R~U6uXNVU_|YCC$2PscwaR1U`&GpZiB-i+?0%ejH5%nF>E!S= za4MA5LT&xLSi`!EhQ*BUs6lNe3@m?UwkZzZ9#|=1R_O{Tb}6FzWwfoVmD=vrji0lUg24bAB8%wava7Y?~g>1EGNR1um{9@!x+ zCS4fXXcNcKD16NlE4eu!7iTbmKhBt>Zu-1jPAp>ciVN8Pt!JIIHmMas=<|`?4;81R zPXtwkfpc`-f1kePJT{lyFvs!3s^QZh8Mgi6+joPKt+x?5!SbqV43(f|ks9TnY{y}Dq~&YGg#58#|2NJnr^TIzS6EeRIhkD2yi z6<4G0CMr^9?F%3QjzFlfO(3#Y$)+i+j)tY$(O%Cre^bJdv;#*}4w&to6glO%!L?q2 z(SCG&Ys;G^(b8!(+q!LYwH)qo8vZ{9`Vaf=%3-iH05fD`X*#KACt#0c^WZXY^EwCR zb9wl3R7Ykd61A;oB+prbVk_e^282OsFs%0gircw%bSso`J(W-LR+T!82O$A!E^po@ zoB#!7e;uicg=u~gUZ^-C1E`7_Tpci+m~au!pyZ9M8Cn8_hwLOF#GJm+mXVLrHW7tr zd#>0n*dbo)X$U`=dWBY}7i((^rfk!{uG;nUQ>WEZ2pq0{sk;Ft(pk*xOZsFPw+yui z7w*ZJfr+R|Q>O{MLw6=$Kmk1*z<4l&b0kBEfAse>>nqs@ZcS=L$-KQg_xP^o=&^Fm z$cntKpwmK3rxe~6qjs1r{MonCvQEcJhxW*&D$>wv4rweDTxVeCNwu{!Uj1KwH@CFv z^f$*DA_mPbQQ1rkkx6%5#wba@!;MVDlNvpKi{U?tXqdbSOxl%g^(a7T2sT)!K%iWK zf2~AaqY<|f4(7}h2vfs*CGI#MtLwQINvXlhf&XGs-4w)#l_?r%7X9hi&QS}zNrCnz z0mcQarHo?Dcxl=}$Jb`fnBC6~!h`s$aXXESUH)s}c0Jia(@VjxIpyBbGvCjJFcP&H zmx7Z{CP#*d!OK>sO16;3IV~4idrl8ee@Hbv?%wN^E;nf#x2f(37XD_=ee|3?-T`E< z8wLwGPlONMXDAvBHQ-%t`E)<6`J`|1yOhHF*J!^Q0hNM}i6u3=-khglaD=MekGA_6 zrT8LuuKRsLbHlTwb@izdG|oMiyTM41r+xMe@wUgr;=HMX6xDZIzp)GAebqkQe-`ev z$C6Ecz+s$Y54$I}-dmCuSx*eMmdBnHvxbfX9gl&$fde$0; zNTcVELjF!L^gk^sEqSddiJ!^`f4~hyE)^b)mknpzq~w0{b5_9=dk&p;K<&%8IA4mE zvs;LUZ0Vp|yH^MGZtVBne4n{Io5j#^K|3b?`0F=cLfoo339M=f5ls?GTSwE*U=zyL-_vp=<(pEdf8H*HR}7)^ zP-u}ilnia!d#4Q=r+itZOt)FHzn>LJH)WE~$6ZW~soq4-4xKpq@2}Ome3O@l{ZqvQ z*{nZqn(YEtfZc>c;KuF`A`k?AP}OIo*o*6tM@?S_4Oh7cFPL+^XP%8st_mIQ?2@*JfC*eua3gvowq&!+z?i-{~)`j#*Naw zszXu>M|1>zX|sk*Og+0IdL)ZPU-dKcM_UIR#wv#3uQbJi14=HB1~me89rP%QHN3C# z>F*qqWfzCSSzuE%zt8Ub9s?zD%{8Uu7a8aeaa^&hrQV9Se+`*iE1aA9phkX!Tg48b zRzE)Kl2rSIeXMX3L1MoLVtmQUJ5pE{5wf8Z(6Tb#SLlosdS5CWc@NkDZl7y@lwI&k zZ*SK|^`9vdcZnXx9aJ9{9X>*|zD6TaK;L>2H+zdr<7+I^nuU1i{PI)f%hg?-qR-;1I(o|OHTRBfEE z(#911e2uErO*RRZS!lFC>HQ*`*hOQr;>brISdEpX;5lHKX* zh|Jg~l8hh+DaDYA__ zfBkQ&?Rxlg#g26`HBR1751~Dc;Bl3?c^cM`-Y|!S_5z}YqSj?C;_pa zFx3x7blB0cDSP3DSc+sWHGMihB?2X%sBvA=`9;lT#0ia=BZK`B7;OOHTt50^b~mWw zuhH3Z90VUGg5?m- z>}!oMHb{Js`uxN;4b;#Ge z)X8%uj2O)N$@+xU5sud-WkSQ(!Dq~$OU>X`P}ykj949!cSsl=+qVA+pqNu7@e-?eO z$-RgKb711_+oemGxSe2`c|z$Q$2!4 zG26%l3VW?JW?kjRz%4BXQ^8__=OF7Wa&m#*>; zjjjod7NSdTE%eIjHsjfjsVcXTe-j&}7%3?Sk&JU|4vhz9_yn1EX%FV#U8t_i8tdfM zefWlnA}yQUN3Ei7FXBPfr>{<>6Dso^=}-$YV<`c1>q0`en5zyi8gsR1-=tt;OC4I{ zPhtgOb&2kkt0!EflVMkeiI+`1;;Zx=y#!>qKmWi`W`cTAg;6w{hQ5K6e6Trsq>@)t{ zeOD`-irQoHu^T@cMe}rYg-sK{y;vzT5 zoY_3iorEangZ_M3%b1TzB?nx+KpVQS+?b%OB=^ta!r_}@rg4=R7(hS{)^c1cFb}ZnlQRf&4;Od#I7KWYo9h+s^N(AQqHV z4#t(0)J}3l3NvEke+?xtS!}mQ_YU=VnaGkLY9?Y~2poi%hu%d`Pj{#&wUbv`Xq5Vd zLaWEq{Qi(`1>EW+{`CVCq+hqTg8A<$x^T$sK^Xhc8f8xD8(FLNdW~35-Ykdk61J}N z{v17ZSOQ$-;NxVZU09Zv%-zS)^y6OO-F|+t3xHQgTh{0of7mi2xq3vwV@Rb(KNSWB zpp4{z38X5#P^ePRFWPBqaKSyGd6jk=udm6bI70xx!nbE+-o-53Lhsy1--PTp6BMwd z#>zTp5Y92eZ#d-%Q-f0zvq5|S{i(cuD`sB)XYyvAcJ zg!J3N%vTNnfbp6VwnBZxzQV-)6tbK-)kAwf>zMNwdb!@s#IJw`14_=OG5#jYo zZ8Xntf9~1QbEh$e-^AConeZ%cB|Ur(QLmF?u-W{y>L0J za9EO-+X|hO4?59R6N?kP;pv%Vm0&{N6LT{v{O1;%(|=g1k;WJ;Cr2IU!5R{sv99Io zH;Gw}fWCFTPS#-DTVp*8=yf*HXaL5GI2{P<@;dMdAl|n1P!nXRTaXkRCTNtHQL%R| zf3k{iovgDzd2LZ1wVQz@*3NzGAUA@$^Rim(U)Gv}Cyre)S?# zAHJFL)c9w@OM)LD?M^-*m2Um zSmM*qIcwC$|2P~oLP*XneV?DMnw33uAl1kHBY5(2rh5H64k7O6B^pX9e|!S#*4V~* zID2@Ob}I^8mZ6*A&bu5={%y_K{)2Rnj285Bs&)9hURQv~by=XN`~a6*dKGTdEK6V^ zT*vNuEtb%)x8v>YGp@D6_5}_N>Q~+O;Ay!hhds2X9FdT87Bb2n1|LQz7Z@5L_2Xc& zNo}kk>(ODPMS|c|36Ewff7Bs{?=bW*iElrVC9lbguoup>hF`d-b(z4i=SXmlU6zbw zesP_4u&OR|w$E`S`k)zE&JM%N0Qn894~q%_IC_q76^_eW8U0}*e~g+}vB_{0@kK|`M14Eg z+}rP0!{R(65>wfbSJSp4+YVdY` zNZso2qn0}Q#y=tve;US~z2SLXDGxI49Km(J=7qd-yD;mFOgSK#z)#AK_v3J-I)_Ib zC)88)41d_h(>FuZB@wIe?)j6dt^t|)VqshFHYC*i){JU!qhT{W|v=gj0F)}|ied)P}M9)M(8}2uYJFKXr zJ~j7bO$W3$)8(l{6Blnicom?RkDr5g`iB{0#UOoEdWi_0JgLo%;sU31a2~d|^2=D; zFdC zh-J&7Uhg8&J;LM^q#ix=*-%m~6?TntxUdP4_})zziVL0X*wCQxcLQPl5B2{RwA;L4_;kAf7-*!<+J+Xo41Hq9}cmCh7%N? z)i*YAa0P^{@7$mp+i1)dNHixYMM~mmUb48&Qm{_GD$o}K439T29pLUq*cI5awi)L<@u73fX3! z(54-u*tb(0vnBcMwh>$nRT8EBg*EZ!ccY>}s~?j>LqcT{|G+G@`?nPoT+Hwah7RNc zvlXkn3lpVOO?ZD(NFqD&Xg)@j)dKGhTe+W_e=vonj(HdD4MJF03_M>0D~dWr2t<63 zbUIyiLp>duVY*2*An#H?z5z%4lwz0QTpA7-yeG;OK9H9>!~M(dYU=Bo9Y<=b3$DQ`*oT?UNr1q&*Eci~@t>vjbLu>S`!Su6AA~#(ZAdPB znd8TOu)mx8J5iTl3k}WvZap`(8cOkwQf%Zb8wjUJ=nhM7KyCDmw%yT!QdBvqc()Fw zO+EU}SXtGng2R`Zc_e5~@j&=6<4f9ff5UVl=H&cj#3R{)K^Q4d4%Fk$?`tvjYFydx zhEPM9U*VCMFiN_Ex%X)$wE``gba3)^a;97dco1i3O8v%~C{%sU_7eNhSyF=**kx6D zVDFjtWn#j-neM0icgHmQ{XGw2D0xe(!Fk`QE@Be{bZF$9_b6Z~dTpKS8Tz{~fBcix z!`XbZ4m>K<`CkNg60x7cs!OcdoO-eSs zmHR!m`Ew6c>St1@#k%Q(%#UwhIUKnmMvRtka&`me+{T%)v3{mK@@Z{;E}Oo^yan`S z5F-#n{f2hIG$Acvce%G+eENK+e+6IELdDX=W}#d5+Gc%r>5gH{k6CQGw^X-j9o)|9UYu$@2n|eM`6I5asVAu+^wWswRaXVXp z5*6dvsucX2Smm|38t0{Tb1QRt%zevnV0%myBEQZHWQGAdAf1)M_}3c>bzd}i)=40L z70IeKn`yNQ+(F@81Ai)1(#YE`y92p-JJgl?5v&ll<58Aoe>_Bp>(j|Q^j9LI>aTuU zNAFWg!nak07wY1SwR$K|8iaI*(!nA2p&io9ng&Z0Gij3R6>h&h!_mmwUST2GkOba1 zcWA^UyRCXT^khb8XlgKJFeDi5RCZ}GoG5&v-<(kxWB8r=h8GD%lRoVaLjOpK8Nam` zL-BI4r3#t+e_q#@`l?rSk8R?>yk~~CrqVKDm(aG&%&+q{-9CR)+V7$JW$xzQEF+2}uY|M8JRdG^Z?X<=pFG}qESyMD8I%0g=q+=u1ap zD=wKqI#53L6;^XBzs)1Y!QH>CcVmBLhHai^+yh5HTh`Pe<4eKDLXfvl*p#iuj{R0L z`o4)VM~&{{^XkuCpbw#_WGcsP$&VdtOe;G6d$gd&lS4zmL7FKE0Ps z^h>11)}q6ah{+ z>r-k8Gmb|v%}iKAZq-$D35doa&PLd%9@mUN$ZHOREO5C(_z`(u^Bwb`o4l? zlPqtQ+5;m@n=4|QA@c`GI)=s1-rn7^b@6pVH)JQtVd(E|jV=!?yLRI9n!rQ@Je1oC ze-_~(UvAVdvZpD6*uR`vU?@spa?T70_q*ONE~X8kb6>~XWArW^*`#V6;3sxS`Fj>t z`xr^AVIVi3#bSa_S_d`;QE^at;ZoA$IZZ$mDbjX^r{6=lNii=`)O19VCEF=9nMROI zoj)DlA>XF>i3*$BK20)6KeTb#(u?4Ve};LDdja))2OZca&FM1W>shPOdx9mm12Lx` zu=t9a5U}s?4@u6`*x&vrOHN^V3#s4tJq=8 zJUt!1)FWXPS5V^ZVEzK)Iq!+)f4k5}u{F#+I4Z^Z9&}k{!)A;~F^|1vW)f~A$Ti7$ zNNJ~`*+Rd%C9JF!wtQLBe6oJrOVOT&f-H6Mo#mkL&Bu@CLZ z!aKXbSH1l_#p0pcXc?>cl$2L4${Z1`B-=z}&W<6oL+(cM%RXd9QWbhRf8Rn%a@PMM z+pI!KtvU7KhLt1k>dAYIwu?}*d2~||zxzY!Op`!BrL>RUuFN^#yqTEJbF81jY@FH` zuj|cmSacic=0(%`Dw>fKM4l9s!5waP1={Mm1rhtfm-^@n-|1!<9HP0H*kbbSI&1j% zk+lrH_7J!l3_db^#G9XPe@dDbl!qCPw(^J-xw%EMD#UY2YdpO-PV7xoes*^wa@1y~ zKAq;4l!H-r%)>G&sQalE3#nu3%OmCOCuA2W@wN1`)N3iDch!n*z}|h~=D7`e&!sQr z5MDaIvD8}7l$1x<-@Jq6Z<_0q zpfV?@WAAt-@wVD9L&o5oiH&Clcg~blWf6JIQ^?2=MCQNPRVIj1=`}3j31j8{QdFoI zGMxX~;^4Fqp&Ha0f9xn$ZDue!>lb}SSN2VW@6e#|+slcYgCj&>Md1i>1AZ9a8Jxsc z!LHtF%JXAOgQ%2ni0YnF#Y*uj>;{fi<m)D4tn7xp(+!-@A zE*}QL;T%BU??clXX4GBwf}e1^RECg4=d zPJns}#qgf|+N2{X;n;Xc=QFjmk(*uADW=q!9U_EtNkmbKLDDYow>61ZG^E`ETEqk- zMQG*Mj324veyGEmKJd2e&`@7L3Hv6skA@s6TTKhsf0PUlUN|xA5REBD7I>7{H8cf9 zcG)tcD^5|92J0JIIN$TWnz7Y>MIKvoTyjBSmen#1j32`A4HG|UZrNZ(V=_}SlKPb4 zuInmRR(bskC-BZD`rGhA=G2#3qoVGy1?2!Sf4 zDrpF+f3wqMmr3FYm~7RQC_NlyVtaDlin3nGA5X+;wS)i%MiKVU@y0uT3vATad_uX^ zd^f$-67TC%BSw+g>@1@h_*9-E*A*C}OpStSc*-}b>%;eJ!$n_&cX&PA4ufZrRwu09 zpI>}}MC-uWP^T9x>s{!M(R(JLvN!3$-e$`ne@x3zB|h&>G^!PbxTTTW`m^$fe=Xbl z9f(7-iGgB3y`f4G-bG@i990bE_)Bc>xOMNnKM-({ORi$%TrEv7Iq>Nh ziPa#5Q)91%qMx}D9a^{SJw&+d(k>lgIfSsl&wQ}O&9y*gbU>eE3Ii)G*M7tdv#0To zf5YbL2umDtk;iffMt>z#I5e-eGoP%g`(pJ+UF}iVE6D6~9`UqpnTChmKwDB3_9T@> ze;xa$PSp=h@0rNCekWz&m+h5(&P{voBq-AH;rkO@#OpschcI5VS75h|S|RfNy@4&4{TyyE`9z$|2vyI4_{r%ec9a_HqOj z&FrWpj!{23A-yl>JMJL-^4bpim1!LR&GI_8ik&4r&@z8q#cDjG0CEf60+@rfj3mQ^aYKHp}Pfe zhE9q4l4xdKsy+cA1544$Som7O`F;pOVbCNRHW8r7x;vP4gqPFO3<<2be?E|6z_>ITcFH&%w}MwEhYRXop{W&gx>l59~9Z+{Px?xxFOy}Zv zO2JwXGyP{eh3dwS0&mG$j!%PO=FOAw7PCqH-6~U+oy{x0_jWT^ti(0muq*U%J zP$7vL0>`4Fp+}<%e~$A&jLRk2ttX1c7%)&hH)6%xEw#aCzu@4>HFjdrKiajGiS(rW zkm-$t*0#$6p%;p*w{c5M7vtE6jM4cEeo6^E>p5>##S~zqC|}{pZi86QU*SUOAX;=O zhxMLxQp!wrT}ApJ|da+dSTdpd)xju?7CIosd zSdtA**Vh#a;kS`4+MKL%TA$SUYj}L!C~F`X>T5Y7f8rIyqKxf%6$7tIDUk$-4#E$zDyZKwAl~>YTi%T8C1yph9zb)o+MOT~+aEKMcYasw{E|e@i zP|~MYR!CvQhp5#{Hd|T8d+CUVa+osv+@T)z9&=w4+Z`+c_eY8xs~EqxWk|SwRLV=& zc&p`Af0T8>UwI_kle3gBrnhNmlRH@juu}FeeP}Nc3POEt5oY>e)06wv+8}H6%Vm&M zDN#!`AL39LmVoS~=oCMymJ)Fau~tVxl?a@e>qw^__F_f44uxEi1`7S4efu*Zd!dos zcp^FmDsC|w-1{W=LQ1~+8ibIdhSd}HSsqiQe@iVvXrgbF#oHSKL3D@&9GBlmOa!mj z2~>N_gv0K)bH26e2mD0s(mVo*&8nuIZ1^a$Tb@RX57xcy`>hOL*o;Tp@1Q;z8`5zS zQQLn!Mdl3Z5z(q;l{%|PX0FiEiZDFM*sSc<0Y}65js_>YP4rRo6Wff6YSQzFxP#5I zf7@v5&A1loV^qLY`l;r{4(~UXZMK60nM0ZF>)q}j=WWfF)&sAE5pBYI<#3Hgf*1Q@ zi_csSg>@c>`b&vH1xUQOUnYN2ru)afkJRJvDw7ZEi}D# z#V;DDbLWSvm!>`7-OxU2*M)&YwcZ zzHAs-O;r8Bzv@8wG+cyoO81g^V6lzJ&dSR1umVgDx_{Sy;iA0o9$INUbv94Xe{gdc zP7qZP|Fz)^vuT}%W{1O+3(O(sO^PR57&O*F3C(hs%NaQ(C9JrTzm6ZWt4(2=_6kCj zjJ%_IZv0iHWEG+cgN~zH8=E#SfwRi_0V|CBNW?X<|HxC41FyM3o~G1%yTfohcxW2; zGSa^Hv)RoRF?KF~KXHhBOn2d7f1KGmQTK596S7~YnT3La6`zo|kTkjxK)qNKm&vX; zGH%e2MwgoY-d^yv6yi5?6skEZI8Xg%p}bSSO?lo8tiseLIYN6aLg$uXVfgcIVRbFG z=W&z2Z-Zsvv*%tbhTko+A8Hxr)l^lB<5Kw-;N4HnXT&X__(E45EhSyoe?;-R{$ya} zX6rYB8xb5@(^H3|(52Rf&;+1|xthZ5b2^YWJW2RH@OAOl z1e0n)X*=K*h60N4nc@%_&tC1S-;uA;@40*pLO&)OT&|8v{8(oJ5bL^COZ^ne(L8#5 zc|MRJL@W6wVuG%PjY@iL)?`LZic{-v9d4$jRxX3$?(PJ^&i5WZe>3sL6NzHcU5Ior z5WXZ2t_6Zk@3A*hgYb>mq==Uuv$x&Ob?nKXH(kmuObxo)z$o2NA|+<4-i|qZ)Ihmy znT~`CA2z1UMJH98*o(|h@{8`0HlPCkk}scMJfxNNto)m=1ZHh|O{zmyXAO<=W3*KZ zT7W>;Bc3*z+-cLBf3I0}6mo|fcjjl_Yy?w_J@i9M!E6K)mvK$IfF#r^^e|iFm+}wh z%bHqrKd#r!#>Z`QFo?`|sCgjG53kL}6d6Bs9rxG1h-I<4+o)0@322Zat1-Xw^+TNBf7!mH_Iz5w1iely8-6|-k#B1nH;eqeyT4!d_$l?e+{YXTfJ^KivLnkTl{!+NnYTgSxKE3T!>6GwI=jLmK!FSeesx&U z#RW?j!oaN85py(vQyzAil}1%q_==|RpnffRdl z-48=rdBM)?6=<6#DnNqe*Ck7?oE!6_6E8C{)SJWS`pN9#fX46ZKXW$)Vh|(v6x!PM zJNx5cTN`bm?BgJAq@BukTbO#SD?(La~xt4e~FQ=K0wgbta6e?yb9+}SZC}brD6_mse-0s|#8Q{tk`n@%%DvaeR7CdN~ZL6O;5;7LowdB?!SDf_x zHpXQL(h`yxuYwY(g7v~7uxk9l#HEs1$@VjjlBLO8P5ZRfR>55>b%^7)DGC;;)r}r?Rml1me4R|bz*o$JVt7?wbgrKBNUOWc*BK6 z6UgPsbZ-T=#-_ducoDqUHnxAE@T(uMA_@8~e}F0Igq_&eHB{jxzTro)g^?iAmwwaL zAzW{8%){4)M-|Lz-a$LmYWYd1HjwUw7B+Hd)=^FQ+BsU3L?o}Ph>E&8m7$K%Utj%l ztMk{fZa@v=4OV3H@BW1iSw+amXIy9zbpZqg*Vm)N@!=%sHas&q7{YnCMxtNe&Ae1oU93W8=~;aS;7_X~IpH8b*A`bFdR6lV7#uS3yqkuPv6 zm}0hty4bou^ux(Kz+wJEgS{ZI$@gG0Qnmw|b=C*MXe$1DWEFq9LM>f|Ou zPm*ahEF$e9Zj&>We*c`(-)4)%!Y8$wUY;&`Bs3mPb*H|^!CY0tq>qzQj!ot86A$G= z^QuSw!C$=4!l%i0>ej^?0@=J^f1~35(5dKwt!y98wDHohjkjVTopG76w2T>HmIMcL zqY^!C=Lu`5nncNbo@CJVX*yTj6)P;!AVI0*Af5CE!dHv;wUV9v$ey-2sY2Y>AcP9cpw(~of>ty)H3cv(EO27I6de!yh$D1DE0Cf%e;1*ZS++*z zW=1C&JM#TIrVmz+ocy3-P@XHJ`#bX^#qGDo2U*7vG!G11YF7XCW58*0=@j)IRekky z5$=;^pC?A<6K?QV*8lfl=4Oz&v>$&H=dfn#cx)YYs1Uto9B*}CQ@*fflI)W99e*H* z-c4@u@ajPTKwJ51Ee{z?e}*0giDx9;Qhe^Jo`YYg#f=-vkg?&IL%sRdbH9)RH;a2NMnOl2~%SS0b zpxp(4DtwiHf?#pMBbLjblI}H)?53Tn0T$N&-QY9>HgyFoB?P;2tR#QjF8g~H#~(8} z6U}ovXi_+s2ZdjW09y#ac7IUQqa{cYgj(Ba)Q3L-3&5(?rIkB`da;$m+Q^p#R{xcs zya3EPJ@h@}60l)FflUhb^{ApnqmKvmpabmVZKBO0{{!WH-61~-O;7jddVTF!?(mg# zGr;jOU0PQS|1N9LGD}%>I=>$bS258Y6r~o^{XVU+UFIkI3tf}$41eD%b4mAPeOtYw zAiDjbG&h}pp{T*(q51a7rnMCx5#XlOH2l3v78KVB<@$Fiyar>axNX8{I5SHcAGo@n zcY7Oae;0;JIOBn^Tm$@z68z0*fm*0NL`k7ilk+W69U9b@{V=m;cUlX+*a^?c!_9k5 zg;j4VpMi|IX@)fKgnti z$_Pd^EUqrZxDr#BXWt&M?3ci(p?1Cnq6{oBZkjs+Uf@^_fAYdR2@o)R!8#C7uP64< z3yG8?_=q{hJRPpICkd}}oYAaf6Ki$`pBm8_F_2-gu-6iU;D0qo&Q5R0?s!#_hV7N4CGG>IHqIJvONzN;sj*b0Fn44IaxbWRNuyD&>Wl z*mSIgcdn&hKYv?Yw+0@@Xhmjs4XMBJvyl%P5p7^%7F(X+y0WFQI~B}6h?WLh9DH#b z4yw+zTfYpx()uList#r%xpk@8vp(AAW_E3gDbN{IK2^0~oO9-c!->nwY+YBrLyrPd zfEyl(Vrm#fE%k8Thxk{;dn;Kz*2zI&+%`7oGux6fV1Ln0;>!%N5EyCSR5K^HZ zlg)IR{z~UYdd7jsC2I=L<7#A!Ej4V^8Z$!9&W0iY z#rE4UdZMclMwy(*23p%MMkBRZPj+eeH1Klm8tP?z_Qz-~WEQw}A>!)M;MeHp(QE_j zq<=Zg=7$yCyYvEs1E&&*DykYcl|fEpj?m9*3pf+~4A2te#Hz$=xwpVMq9rJKyBN#? z*4Z7f4yXTLAq$0r^&SSKVt&XoVokhRja%?m0o#Sl7H{x|0Ci5vO(OyPf&VDoVU#b3*6&`>r2i0-_Z2ot&DCL2v;qt8vhRIK>jKrTt z6orew?^Y+YB$9tYjNnjI1WBO$)1kXsO`$E8wSi$n;H!85KB;1epK!To>0UK#L4V3p z4d|^CE5G7Ky=Z-wRl8zxlZoz6qWa*>NS|9<%=(}0Re46)9r)CP<3yVCOswlm5-Awq z^SL%qd~-@LW|F0i-|)X=YMszw7wluG{K!dsLYTk_Ql@@xw%VP5uAWnH9x1Ktzagxz zbQGO8)sP7h$#HrC93Bl*N1&!*vVZw$#pf1c2NRi623D6k+@yLgCteZ2bSjr=`?;r< ztsp}GB{zaKh)8?rZDOye@@+C4>ju&X;oG-jLswM`kLU%5m^1E2QQY z^XJY7#D)-iLnPx339lt2wthPYi|_`bkSAreKzg=prLUtdtMP#$?=UeyAH3=QFB6;Cn3pg zY{D-%(}8yAK|WrnbTaw;!3N(LW+$_FEb76}(6$yKfjR}(rp_vdjeqf=`>Z4c9){?@ zrKA6XfcF$tzhW=25uUH8TDSv4pS{zo?~c*i^U>=Vevme2!8AR$2b=XD%Fm2ROh&0! zwa!LW>M?Ny`Xl%owtUW4}bmhY)8CXvuIu+S6HEWn0731vf-~IXEI5Z`ycjQrkAAaI+S$i zvL_pnf)}0?o11*N^SGaGa6smu6A^^8l_n)3oky13xNKxKpB%1(s`ErxHH(7(9YvUq zx;SUlEEV*MsFv#P1ac!|s|o;8TswG$_gngg#_^pX%l&_lyHh8x;WgmK&#WQOYD&JVn* zb{FWIq2;uxKkWc+B7$Y-M}|6D=XC29i&Fa0wfmhBb{N6=vonwUxTAh(dcfg+r6}in z1Zvfd5NdW$;eS2~#=MDl@KkBTfV&eR&`9`+YQb8Qw+wHR77;;+2b5?~-I?JKjCyf0 z{LHj^tIHw!$gtlz*FFqbEU~f!eSDGC)rJYWdfYwFc6u-Y59&;Ou@!Vr+S@U<%Ks%3BEHnftU34iCD$MwPyvam7N6EG}*+30SseB^)4#zLr`bk$SaMz+86(67~Ot1>gFs>SRDm zsuu*dY9|MyDlpEjrTn&OU1S0$sc^lgx#OGmyMKk8-1myAhkg*UZ2qtA{OAnLw*T98 zlEZmcdZEj`Hrcu>ShyCSfYDbhQ0}VqJ?%tHDJU&aP!%F~9Vo|%d8qG~-B&a(GMoV5 z+$~eO0d5xEBtz3rDfn`GLC+HmfE-SnDuLv4H{7Z(d?nFMORrx~G9-tgM6RxYbS?eE z8GjcEp|Umt^m*8HDkOwtvGfDAKWyclUfQ~;Ejzg@?0{45j};ZYl*cqG5_wl;odZvqM*U{cxAJ;N;NnQrQy+~C!WFxIs zbH?10XI*FJraldo6j(?4Mm6L+>5d&HKF@hY0uf|q_G)w z)92s(cvbWZitA{%p`%|rr8Wj12m%q54FwUTw&Ncq}GJnZ6 z{oDBMFSnc0mpsbBg$v^$d`{^Wmn0<3$b?1<1>*ynw(zRCO^)1%*s&H}K)~x0_>m^e z4I3Vi*IMOe=vR7Djm%aM#(f_5zv+3>vqH^!wsSMzl>iFj(c$&>JFKGWo|!H8;OCiGA|MSK1>D#_fJ4&!hf+&UE*e zJ;}?5mI;+CG@0cb**ao^3ZbQ!S!|^C?T+}$k5)|-Cg_CiOLoDOUs~&T3t$fas8;S8 z8S;!kGQ)lJh279{u^6fK*MAU+@`79{R4p*O)fOliQ$_8S16Ex&b;>hz)8*GG0$b@a zjZ)W5m-o6XzksLk1k&J``;cy16!q(DAFVNsz$Zl(2dB8frqT)K%7`xWWW}#C`ewX; z2PZhnBf?sz_LCRvn+B%R)ItJsHgGt{ENK}@qs16Q(G^r0yMY5Cfp38-uw za_Z<;Hi}ld?)(l7u*@B1)ncDoNjmS^p%qc#f*9lPu_tbB!52T^%!2pm#gE!=J8Yy( zfh&YI5-}e_zqh4MxPL*dhX@--pi<6Yinv)5XBEv3w5Q)%gphjS#hS}jP4>uH6m|;1 ze-bvAwX|#i2g2x>v!rp0qN=3I#$`Es@_O|EJjLg+c@^SpgQIUkZ;^DLn>iLq(9lB} z@xU3|pP779xZ9gJKKjE*;t!S$UYFa#u_ADUtmbQt^A=6BDSw*mv>HDCnL!M}z>2iL z02fl=d8mu~p2qt+raz7f+kii+xueH)I|&bk2*?&gfzfKBZK|k9)>YW%z^z58kc2z! zES=CLG!90vBKuqv&spHo5YCO-NptzK^bmfV@G;2ck{wr~(a7c{2Grc=1tg}Qw-}+j zG9?1lcv!0wYk$cUN1BDrjPWXkCeC;i$Y+V&Ek0J09w?lI%3r7dSk(Np(z7f834gl2 zApkaphW|t~1F*o<>A}MWyyNAsPXX)Ww6cdd*9BBC##0qJZzd5$bl$!wfHwXo$+eoy z@?UvV|?G!+!fmp7}?7Uqx;BuM+?#*cN!wJpV$+xvo zF)U|c=+M&$H((4b}JrCF#`0Q=MCAYN?nR%cZ{4r)Zn%t7#lbYQ}_t%?O+W%G8IK|~*92_o~*e|cnYVXdpR9k_o z!+(Mcti1@v4cBi|J0rA#QL-6AVz}WkvHyXUhkyWBQQLNBNV@FD@pchNIw_x&Hi#7O zezA8);%k{2tCaR2;eiw=8SOI-)t~oI=pimM!bBn_2IRoGeE}LC`tBcm@$|MTK7hJm ziDxR`#{+73Kbjy&orU{jBleWauViG5aDT`mg}nk%e+G0F24q>CV2Xp`P}t_nM9Q#u znZ#6R7Y*g$!iwE3fuo-cZ%&%woh^mUvs2z0{M*M4xtxMegeOnLnoU=z8YI41^p1rP zi;N}#g2OdjeP3SsM$PKWwB7hQ%ky?SCH9q%X|XbF;wW3@HNd~Q>9N^veLg(c^?!SB zx5J;y0v6Pfa5-238NJaSvz!+ux&?kAH*c|hQ0#4DHtaf43)05M=Io853~J7q@SwWY ziRw2=wUDSdF!#rDP-yx?yBjb@*}R!%^tr*p$Pk%tc9Jl>C>l2q#6Y*Jq-I(4|7<|- z3R|p|Z0p&1+7;?}4mwwQT%^ZNZGR@+b0s(^u6-$dDXXerLbdOTbR__R76(Nw%&yi& zkyPzzg54b79{cRFz&YtF;t{|Y=slXLi*BfBN?jf9fkDEtk8gb_1ELiO#~4~JT{$`~ zAaFU$f*AXDr0oT}lnA{UN`6X17PL^q+v4qtj_&xsm3gQ#HzScR*vU5b`+p0B55z9)AwqYhcc9Kbq*M+l_)za z!33Uw9eAB@qi_aF-A_VA+}OVCBa>&_ToPsu_@5PC+m&xoVET)n@*Xl4 z^nAvEdr)+$LyIYV^%elb4WewocmoOhWY#$lH#nF1m}V2^j`ZEJ@H9lNh1Ta`#xTfS z?A6q$Fqr{j*AQI@>E1fZ6ucbSh&8gE;(BNWm5a{u+{#iEDxRRE$K27n8M4^Sd8I>b z8ZxuL3T19&b98cLVG3;uWo~3|VrmLAmk#j(DSt9GFfbr5Ol59obZ9alF*!6bG9WKZ zWo~D5Xfq%%ATLa1ZfA68ATlsGG&UeUJ_>Vma%Ev{3V7O#wgpgJ+qS5U6WoJ`Cb+x1 zyE_R^_W(hI1`X~m!2-c~z4tzMC+Gfu)q6!%)8Fth=9p_W1*x(cgNUiU zF@I3f-p-kUg^`&TAf}+o!U|w!W@BV#W<{i+P`7lp0scpfNTCS?Ia%7<@%~{T1_By6 zgJt4I&R{zQdpm%viw%H<4Zy<5%fiLW%nV>ORC>S|g0Byk;O^j>+YW60U zKxdEt3PH_p;q2_d%f#g7=Ei7b>%?deG8d$w2e?@}TL4snPC$?=&=l}j!vIAiTi`#P zF(Og`)GaKX{*kNMn>o7~fq($8z{b)9Xy*j>aIrH5f&k#;05utTfRY2y?jK|Me}4?< z0sol|fQ6Ce-*Er&{wt8B-QUheCMNc_4n}q!mUiX6@U@A!T+@9WCF5uaCTyJvb6cDMW(;PfTt{BXDViI zYYVha0-p$VIKVW8QXKMCW6Q(W>Od58UjxInM@&A~B zMToy;=0Ilv2QxD>7Y{oC=m-G1n^-XY6<*!L0r(nGCn{?14)9`NV+Sy>aXCCJf;6B*!4f>PyL^}K?C^jSc>-Gr3C`0fA9E5 zW)5Z(@CVEP^QQmp^8dHse}6^!zwP+{E=bbF#^!G|_22sckJ`xA(#GRI2H>4_aR%?d zf<5>a*!^!)E#Ng>0z>5WZ6-|NefA27WiP6s98SDZ8x90;evj-vmb)uXc049;YME?*c zfJyW>ae-IrH*o`)#D5bHfJx$C;$j9cN&Y4l0F%^jVg)cs|0Xs7lgw{o2QbP0CU7ls zzX@E6{BHu+qVSu*wSOr7CU7lE{}MO27Ukar&aV2Kz}eM)6F9s2Zvto6_)XyKn!gF0 zUF$c2vupn*aCV)4i3e}>yEYH%|Szt!Mi4&b+<-G3buJIjBh|9wbo z;9L$s5cuu)hkq&O-!e=4KMv=w@j3qX0uRU0#oifcYHai0@mN^Esz0X60v?jn@6P@r zpz9w~<_6c}WMkxH@ka=7IlmKtAHqz|79ijsn*#3F+0FhB2XG9RKM*{6 z*FO+EJ-0vB2JG$r2ZF`nNBtr~*6?&?Gc-5B;J1!gJsw9;u9yp}-SE)S^iDKxd&fg7M(k(94r z&{uaPsBeUqNuIq<+MD3RI+9d6AHAOp5>%)6IuRGYy&anRbRyC?NQ^+lpf0@c{p{$i z8DI_F4u9DrOOfyB!i}n2h;`>SAm!dTSg|r5y0E9RU&|?n^i(m!5TgYw+veE~ZUIMY>ZD&+ z-G4`9<}PJDXTn{Nc4%#|FMgV2*$?&XPdJ&{;_E}EP&79O3LMsTq~wVs(Gf>PAMybB*Z-odWWsCX5rtf08t_&R3TmTY+J3x9QJ;k8!vm+Oho*XMdg49xtD73ON9Xvm5- z$ymC%O7ZgNvjwpng!(*9{n#(OrE(p#u--o;5d(u?z4{{n%VGW%3lj7j__>dcT~N4! z-B!%{Y3?Vf4Jv~#RNDPVXMRT^5nYz}$Y1&JJ#@b+-#E9y>=Z)16@0BG(vCB(F+5=yooVgXnFog;13O%DZO$PT|76-&NTz_q@jxNA{M zbS`=}qtrl?nq8N>?)i^TiElk;vwt2LbJU`e6n>J>gs$*^ZH@ln`m8)_;ZMfTB15KR zu;;Y)sdHdN@|U?wUH{J6TjNcu6*_0Q(7V^9#Da@QlssGIN*Z^nhn+Y|R!%QN2eSnW zvwcn1Mk8Cs^a6CyX^r*r>LXSeUW+WST-tqId)6|6$ zKc)JHdW2y+kumJ7vwS@dfoIE+gGEZWg8l0|vboWXB6&2qlj)UV9|jQMI;*fVi8Uhn z1)gC&&SUU6Zg3ouFWOY|G=8;RVNnhR0^Rr0C!X+oT7Z2F%Hk=m5RC@fV?vzlWm9j-89ho}#5CE-1^xJ@Pb z(FnCe7mK~w$WPTY#^%!Bw$92ezmesuGC@I9>`kV!_yF86|B-aoG=k?wBkYK$QVQhPbYU)bB;i*GoMU$CM1P_#MghnlfC&=A+!+fh zhpL$!I`BYH7w1PRMg6zrn)SR*U9m@de$FqVNatO=R3V5k@p1cYEX1A zG*(rl5y_rI1S(#Tq8jqI52TdUuvqa#dxPYD-t)g~DWC+^yQi${w%#0pTtez}gca-} zTU{o#3@L;N&{VjIf4WJrnG^fJ@O2@X7Q?lz+Kk#GOn(rxvpypyX>48Jxb$*vr;9B_ zQ4kF3sNYbj{)`?bu$qC$vtM8#R;aM^k$;J!gSbfIReEV=8aMnU9CR?7HygW$1A+6E zy)Cw>QWg<4SQI&Ge1yDG$7sGz8V5ln!Oxuet&B=C{x$zPA6(j_t2h4{C;Xh$(yp*` zjH7mFw142%*Ek0m+-izC>UY{dT~kK)xqMifcpz;mMQY`iYy2TeIEyjfq^9a6^`X;c zK5W+8B>Xhs#JQ$Q#XtGRwrXfitB%}4T~n@?+mFV{p}NTMp^sXk`cy=gl+B437Dy{n zc)VIPjtr~&QZXXo)TB5aZQEq>t>TiAaphhRIe+X+`0Q1-ph`~|WjkT&uzStk$#}b` zT{>z{c&N2lS)G}q7Q<4?a}cLvggrcMx&s~Kt+|zrZa(Opg)?E?q!1e~Yq9gv<&p;_ zp=1WB8~?2%$vNs-U8f|Y!Yry6UilVZrUWj^_7 z)_-F>KavOLF_{C}ucM53{Z-LFVY!ES>yqjZqJ4IgF#2v*Kl9^jtEKI0b__c^A(L^9;_E3DLB=h#+{zcW zy>5)ltE2jWN+pXaS&`w4%*HN3{ZdRG*MGd(cn?}acq$oN=eF4zUQ|Z<);92!8@$ zR7pMejpiOhCv_{SY;&vbXAkWSgzhp@y;{%jtHR$ITl~xKagaIAA|R$1;*!MWn>Y+W zOVWEs)sE(YrL|1&KnJCP=!fPLwaOGpQSN{$)8n4hUibVtk!O>W!SvCNse-~M9n&@H zU|QbXJNp<@!|=jF5rqe3%eMHQXFkIwI7AR7Z*7EV7wMG{^+CSjn>jqkncn5)QGk zTSkr;g^?d??~kcy#thh(h(G(t=@it`HJdI7>YJ=B#qUxc^q~aC4`pTq8u-@`$NHL?wfYq!X$kXk5J;uuYw) zBP5*)L7cmSLTj?k8aJUnhkyR9rq_w2{^u>{=A5_0E4`!!EP$@r0aH+eSMif6a^ens z(v0wx9^GO~LU*Lt3Yus8jU9#;%n`HdsYXqY++{QoJ>`7B@)03P-A96<>iE^&Z-p%K zqIH#1m}IiM4Uo+jz1J`OmuOpF9ME?s%?_kTu3DL>8jWmw9H zgyyWA`>DQi^Dh*Wks4JSQgKJx^~cQFj|ya&<0m~g6=YsMY0 zj22Vhpz-c}V{yM9PJg}{*)>dn)9g*Tq?C|=$_o%`F+s;eUAV(W7F$Uh&fwx|U@#nB zB8RE1R&d>bKPEnY>)jYa=`;{MiCn{}O*&vsW@kDT_94j)V>dX!jyl+MDK^c1&Yt8~ zsX@qTvOO#64*yzb1p-ufJ<%{q9~#uVFn5J`nI3(_?w{2k$bU`6)sJ--(C?9F`mF|9 zHv^L_y_FabBzWA6)u1|@21VgL~%j!<&H8N!qVg z60`_dQ2j*SZ`f%Uj$g7gLw2%<*d+wW5%(#HF}zh2Dc=&{!8PX)IMdR1pBSfxbq{D7 zcwNqw@OxL+w}0%+jf?K1nD=u*CRThjI5{yrqNg&mn52g^ARg~4)H7D?=$ z!QO-=33V*i5nEMDeuR=QAU317%)=*xr0>kO6Ne9BJ0sPyDYbCCGzk|VYT#B3UQsGg zHwQ|anbI<}Ob`Q5_E?e@Ir2ObxEl$XkUJLOG&^=`OMibZmA3a^1q9}x)9Oq55Ri}w zAuAK^$F})1z&)M&rV`lp`&wNjXD7aqbS2Up0+2+=T`V%9!+)gGDZCwu{iz!mnTHia z91*_Yy^qO537_3Ph`MeD;zHYM@mJ~cwQFSn$a6%fVD6nUeTanWCc^uW6zH#{>H;jq zeG=T08h@BVD)xkUsI^iatEIQnItWO9tGZm{!qw!6a@u)kWov^N8kxzKN4k1}&jU&f zJ|T#)L^wh>bQ$0#ZQvj$Xf%N-yVuajcv2eW^YvLNLu;K0qg4Uob~e!HWuZ{5ERl8AFy7E>w6+>u}tb+bT_k#SsznJ z!YxANBMJV-c~&lvRBhXvH8x4|8(+*qyd91|8}E&jReabl8ei*_%<&}!Dv_wt6;(ko zqJNGJ1%00fy--tmQI|GqxAc)gO2E97EG^pk+-J2IW^e36G4~<+o?=VIXn#3jMd9@5 z6YTU~X0-#mYxhB{>vf;LST2AHxTax4DToTO+#{za*o(QM&bY@~&w~By!$t}@tbONs zU%GR|-5lOm@>yNhiNHKmBTO2qseWwHfqy}*XPj|U+{Aqrt52}r^T4X~U3ZZtJEG=B zol@j#1h}GYFv;M)Lo(+(Ok!3rBk)>Ge3WD(Mo5YYQgf5GbMO(bXFh{}IQi*uvukAb zDagMpTZBzW;x?916+KTB6>8gybU4xjs2{bLR6c!O*LueQO+<$by zVK|;rM8CPkG&r`C*iqbQj33l99a$wAGsK7U%aD#wH?gIf*lo&wrp zT=@NUDodbdVF|Kjn9y!vpsc7_NPj+l&Iz$<2^74g*RC{K6T1ZxbqHiWq4}V17b5p( zhK1Pg$06Ml*urxJdg-6{%S2#`|BWQdGx->Z7lFOmB zlC>ozP({A7k*nd8LoZ6}TT|f!8dbf%R|}!#54Ir=LS(1zMQP0RFmC%o_MVMbS*@#Y zWVT%tMWxZGP9YmFVsQsGwSOvbqDi$m=YW~oo!3l$K2CQY6FHe@)GIzbED>kj%)Pr# zOX=YQaKBt&Bldsd9@IGv7fGRbgn#^mD|RIdkxvsqxzTH@5J5o*vy(sG1E2X3Mx>|j z+xQiigIHC5k$fp;v8-r2^UW>BO_r+feUa@eCtpx(HG-@1HVu|k?SIqGo-!T+z_7n)2 z+q*)46@33VG4cXuKYv8BavghZ+o6eAPG7A4q3as1XlcPH_?&7G6ubO+sdZ9-E}!wp z*`Rrbp31-Ei!#mf^|#Vo5bZ3+7Q0r6!*}w0Bq9wjVut9Jvgtt42*PVXUUVpd<8ppR zA)=9?(zv(dPK0SXY{B~0B-;@I^lX0z`PMPhwfBsI>O(7oVShB?W-W3#ALqWpgZE%w zzq#*~|1TYYOT~wJn=5MjuBBJFxd3y53>yiwQ@5nnw!Vd6I{#=tho7d)joLQYapKx8 zB-n+yQb_IZj9C?+fYm5_5wyVX-|sdoRadm#x!Xk!(XMi4Y( zopqn}G7$3yI2S{I7&9<`MG70h+a>l{e& z`nlulN9#MM)ItlvmQ2Htggm2|a^*T|Un>gbn$Wh9uYZDQh|N-3HYxG}(?U=gIbpla z7xyK%Fl!0rlzovFE;kUA-S0#oL&?#j17qeW9%6Y+J}M)>m!f{Zjy$+sasPbN9J+N1 z`?a?ZJ7oqP!ZQShC^|2V?tRj(KVcj8a$8V^=C*WXM&ivfesc_q)Nx67;R*@{hJxZb={f4zed{xhB0W*wqx z8-GQSPUwH1}ZBv{b%bo=Q z&CYXr1*n>{=}%^NZ@Y`Vu2cv0vJ{Hv_Qg%fg;sI+4%HgM-6S$6<5jb0u8*fm`imoX z9qZRmQy6TQg_BoT-~HyZeijBX2B>Ai(SMEL3R9wWM<#q6nAYpfG1l5BAT3l}FLqeM zG3x)poM;x;WfQk%*Ex$QAs&O=$rOhY={+g-AHW-X715Uf@K z2?=f6$GPXXfJ0kjFt8rVdXIQ&@Um(U+7K*dcGFIoZ@>H<9re->3;&=lnV8 zUIujROZ{2(Q(Ct)=}v142aY!f{YC-0x5AhYoWP+r>`EzzmykAkD1RflFScXq zP?A3gr9SAijIlH%Sah8fC|1P5%i1r{fAGE`_7*l6xfd|r-EiX8uTlnOs>N4ppb{$m z2>vXP*cO=ZqTE-0l^79Q}dr|;e2jASLNF5)rR`WX>=A>VE(0upAKR!jer{@Z0n zk`b+w4(Bb*>PVU%^3U(s;6zIRP#GzpmXnW z>r>l~Wi?wT2e(a!&5x?zcRcsiN{t%iI&p}J5&{Oz zDvC_z=t9jdet$qFa~;05XGlTni7ZOyQDZ#M*S15mn^<4}y5~5@dEp*a7!Y#K!9^O+ zT+x?46^HShC)Qsd4Wca!S(ylr6$^f8SM$ZfNsYRq(X}6>N7=LtLIfya*m@>2Gf7#M z9r}Eul*%bBVq0d7#NaG`F}UevEZuB2zi;Zm@Fg4C`+vMA#Pdctl1I1-iz9!9Ks(yY zd@$|h&7uc2^a;H8%$GHJ9to!xw_t9_*#cZ|gG1!KwYX6k)p=D~A;lbF`fC9zANnu@ zP6XaD*^dEEVS{-e@K13MYSH={XKh}bZ5LW`$#`-PsPtSy@;s2a2d%|-e4CAVFwC`hCFS) z5F{Y}`bx$5#kOd3V32&uBt5^k0)pdQ^C>%nGgGIieEDp+R~;v1Mh6~+^RU_{S3(1A z{k!o)hoX0VhcMxC9Pd;d9+Op3N(`0!OKnPu!QGq%1J}8o*JMViAn6!}=C8{2<23jQ zD}N&clcs6I%N(iQnwy$}tFS`{^X?3xn9NlgZDhZzO%4<2^|;wU8UIPsb0?2uu5+fi zGSWkiwK{y$6R1uB8RmwK6-67r4%jrJmF?G0yJy9|T1*ll#Duz5n5Z1!IDw&JI+NITk&Ll$4+o^Hm4v2+8r&jaLV%CVpGK+8b*56BcczqcUex5EREs z(e-i(=kz5TVUBz9&Anu8Mmzb++vu}v_;E!Sd$oqyu<`g~Y3g8@latCzGp=kx>VKIm z>zW4R5i*G-oQR$%p7xk+zOmW41QS-MX&z$U3&SJr&)HXtM#rVxHa>-XUf7#>W&i7lEN&mNt zbZaMdL^qWNxt_U439&O@E@#XYm&X0$w9t+NF|fP&PV&UEr`?v9ORgF z$Pa3qre`yV?j|>Fg*WaPU-lZ)9cr;keDL_WCH!vFP-2;sjeo8h7}a5l`9(=YLObix zAL@?%mibm6`ttllNZh@xzva><%|m9n;G51Y3Xi4sG8rd56IY{bR)3-hXk_94U;V66#qfOD~a3*fbYsSMIMO?LV3BEtAr{r<*nvrj5+H zki7{Rvp$nVrqAZ=j0JBiD$&xQ(!}vxABf8eUGS(MRKRAY8tVM0DPi(O@*_=C&+Jwx znlm2*VSbFX7KJ@o@P82qaC1pk)A(#WdUYxn{zIln+VAb!gmyeH2Mbg-fW&PkMCC#d zeyA!zd3#CR((xPBcV_iKnIhu8HL;`RPa&_R$K|Nyh2(GX2O2JRk|#EzqCt9v3vc}! z5j8FFnowRBbj=J@B17#k&I9ymg_3W>tk$%6A&ZX8xAoXKB?_A| zi|dQX!YOglV5^>npI>46!*egV4{mlxy$Wc<5iM`OMxs&35PN?YvdOGE)ZN3}fuV=*_uTr2wWOT8e^yiKW z0#E{@Dzq?MYcnbPoMY6$=Yy1M8^}rM;Z5`&5*s)T#edtMXK$KSAMn5O#2L8zrBt76 zU=d&NY6ldRn$i<*s!qNK2D^F6_%s-Xj`Il8rfRMFx zr`##*n}28j3h`aWJzlKN#75ee#Jl3|8kEw}v%u@0-{4RW76Lj8$*%0hKglZ3?p6h2 z?V>H`y^oZ4FN!-W6}uqIim74UE!-wMVe~+1%wGJEh_3|XNv7E_imP+ZHk07?im#Yz z738iv(XAnz9B^o5fb1fh8UJD}oCW#@xomMxS%1T{Ytfshy^>t2(2DUPu<+K1H91g{ zI?u;HLcfHKwE^c6pG_dfgj^Z@l;VGVK!4l)35miTuOxd=f_)m$sd$p9`pZ^#c>y%^ z`MrQ~w=1#X&S3qp;%(*hWELhFmE3pB}$`=y`K7UN1 zWv%zvikd0nj^-Hwi4Ed((xMSD^tnZb!`xXzWj(o23PmJl5q%F!)2)lM#w@NSgpntL_XmdW|DQr0}fP8!5CvKDTWv%yFl|Po7>r2IF z8+h<0`Gf)`XKoL|jU6tvpIY#r>Z86GOQJS~N1WGk1g!E$O`98*6GB;8;4UT|%CH$= zzvFH}LXe;#u=xV0=j?5hvLFUCQmxlUD^SIG&Bm07S-+y_H9-a326ZNSpIvwKX6lL#7D(AIX_H3TiDq;z#8|L>`4_K`h7W+gCn-I`)hZ~Bmo(;)1_f2TG-NPm~qwk^sp?j89q1z(WjAZT0C-Ek}VI1qBM>v&f z-}x4q&Wa1dWz;@D*AX^+ol}f1QJ03>wr$(CdD?dOX}eEbU)#2A+qP}nK5d+yp1Jsw zNhWhs7qwC=mA#Wnt+n6vyy_%e*T2ra6a7`ypkN)xSsvG1$i7ei$PL7gc^fT&di)W%kCSf!2>Ek@Gfg!p23Sw9 z(cAccpPb|*I9>T2)xDJ{1mpX*z_Q_09avS;=LJ=h!uBq`2evruaF9u&3y*a}&MOmxWV ze5m=v`$f46w`3wm;^?uI2N7JhATRUt$A8^qkgXOg%mpCvMb60I)q;mVf1 zHa(YT5>-8CLXjplD^2xj*{{K{-?P=Pm-L1a%i}&E*L{3XTl5?WvPVoe> zweT}?2;s6Krz>)wMoP9rKGD1Y!vUd0CR>00No6UtC315UBaUOA z@q}YD5<0d=8vZMucqeL?BB|^~DA_fA2BKKbgFk!@x;={=mt4?3SW7TyIsM(d;|V^} zmISstO>3q_4$02)SQ<8&XmyMPCILxb!>F?FTQ_{elj+*o+AU*9K?1Lt2u-*?fk^eB z(W*TQkhJXGkP?qd=2E&1Nya_jphs5r@p#lk%D5jU>*)4|G%4 zJpyjAQ<>72O!94w&)iGY!KV>Mt-u(om_0=PYZj)L#1p8oDnG2%eQ)a{SPAUkx942_ zMmNNmq~ZPRMt*QCE1qb#La#d)UPa*0uDp>A5R!Z^E%lir3Prnyh8Y8Quz5&9z-$_T z(M=SwT*V!|fsgm+*GSE^#04(2t^CX0Sa-j-xiyQM3w*Op_B{)^t!Jh|=sNaz2|cDJ z5AKkK0@Rb_QGV_hYPk?t7+CbN1w@5!9rhKqqG%d@^h&ZKN);CtE{}~gOa`Y-Fe@At zppuL?l?4d-#N6`Ng>Jcn`Y4rYO>BKjp$b|BYS!F=8b!I=AyaEqz+_A%ZAz;CM3mw6s|0*h`7;8OA75STOn zI9D?lKMo3JaqPasE+rIk7^@!!Gj`CB z!0WNOmW=hIL=cZ-C0rg%;&la?<_g2^W(3D0arT)^`#NVmqlWxfgFu!=L4n089Sq2E z%v@yBylK_DJiQL>dD)N?z*qy13+gIKAg)=bLw5a1Tm#xbhb_j?plJ}^$C^(YPfJtY z#bD}-WY#pjtSH?4>ApB5?dm#m7IREB3rpz!9dPw|AWJX@Y3EtuQi1FjrF0^_ zaxpqG^n^J7bH-qh%N>k(W}m#Pb&<=_{t2I@gc0Zn4>~g*r(kYlQdYFgYXhJ>|GorG zI56ccW!a)V0k&_g)C=7jQoY_RMG=SkHc=feFpK3gTV zwu(~Q6|)ovpe;}Wx-7?tjr~=Xdk)3cLbg*-dArifqArB;q%FkRlc*W2br0?A4Qkk2 zBVLM4_HrBBXU7{_8FD4_kNsRwTPW^<95n+H(SrV@bZ(L0V}j(v2&L3nD$xe}P_y3Vs_FAS036lFv1}iyu`Ch0SfF4;cEvvr zNzWC_bi1*fv=MgY*PBtFqExD*=dOHlz$ukHAK=c{LJdnLX#jkmsJ2(9#JRMTvLhxQL1@KMvx%u1{B=WpO->20JAXT#@h^vc0_ z&5Zb2F9XA$(GYS|1g5c_F?T7~oVs`RuC8sax`J6G5O>0eNGC|=6ZP#-9@k&P1^kQf zXuc8FMXg1*>qeoD>Az2XXr$g^o;yZX^Q@8^SD7}0nj@S?s8P@TLo_IoVLv`?CYqmO z07_xR7yZQclYbqIihn(VDu7C5ij|}tMv5BX-Ts?Z=@dYe6!zpxoSADRM>sMiN#Z`+ z2}Z14)MXOVLQgaOg)gt#l8bFq&E#OlaaClBLCG_`U%M4xusWH&o>5o&K=PaOJaPBt zaoAQGu1)2kuc1w=pm9sp#}2s}o#NH+1z_VE&PhV-N}dJNUBUY z`{q#+ka(uUa{klUWF{nEIjq%k1JHY{Gh_n4h=rOL)IVW&!(qLPDuU@IV?~X|sT1YGF=R=}7=@(0{Gei!Oa5Xan4b*>EcE*b{5syu>PeoaCiWo8K%l(l z0EgJ^zTjo$Fh!=ROfYQvZ9K+^=PFtTw90Z-MBI2CkyP?C>%q5Tz6x2*R5(!g?EK|R z_wZd4E(%{@ky1bOf` zwkVG(T|PH;%jSETufp7p3fOe4;?S~B!#FhIiAfAR$e(l;fwQyR&-6b#df_ZyS0xOD zpRFE;s{0ZS_+RChgZ$J=rec8PPW!j;mxo}Jkii24N%sk-$uMH+g-0hWv|W+Q8aDDhT}_ceJvc)L_= zQXQP1R%=O6zKl4+PUbNygGq^xsf4Y&_#8(nJJ-)9wHQt5rRu0b(8wV}&RQbw7m378 z!B`;*7NU|wk1p0sBW;klt0aztY^Z(q8c+s4zkNHhD-kH#sLo#*s!^8vp(uEEH#a4L8`rEm1$svu zKq2G*xFKg!5v1v+N5VVhg3e3!0y-mq4rsELwUj2C>M18DexoV!;Jau_D=}> zqFFo7hNluYvTjEgOHvcE@VU7+Y&Rchn&yaT96tJU&Q^|w|9CV*6>i2fnff-UY$bh* z$&Smx}fsHi;|318_OGBMXE!=+EPdS$m$ONMHJ}l{?C+{=A6{D`*fckLUEKy%a z8gQX+VM#2@wnaL1KICL^7DETK`$t3J!sys#)E9W47sH#R3`$umWRK)=UP56HFpf}6 z^63I%%$TeqSQTWyv0l^{NJmc;rH)TFyaoM@1i`27S@$%LntTH-RRPAgx zHS$#028Yxcmo0!r*!=v@&~k57zB}*E_?#+*QABwH`56Om`n}LFw*GaIHyL7b(tz;A zr>@ifO;P|=Bljd&P9=F--yvulp!qc+;-DZ#l=1N|!|kC6rf;Pw_xaH?0e3l31@u0c zDLUNv>cyUw!_BR$zoj*;N~GY>VB~Pq(RmcXHyfRGh{d-6E{QL@OJj0`{|KhV9|>8u zuB0-oj*=CdGxpTrIl)fKNoT)Xj)8{$x%g3#<)QQ!TG#cDwlPT1pZNg`Z~-5*Oc?Hy ziio5nQW+H(S!>wGl-CyeZE@rr{#9ez^-$6Bz6qz3gMH@mc6Z8~9s*=h+}Oy{pE&m1 zdeBdYBDv2b*va#iI=eZrnn8N748q$UD6Ta;CEnRgLZE}4Jfl7@%TyPcNTi#5;L3S1 z7ra}^2b#IWM%TWkXs=-o7?3a;a3<6vrlY?zGp96*b^K8TR8*9S$0Wd4A>GNcNku2u zkYZ6hWR1qVfHT)bH;8bztT4YsKGOp`?7cQ={%9F3@*;HF^rSMi2kcD@c#_t9|2YML z-!BvHL3Kf!x;UE){Hg&av1E4lOlQCkbuTR!a#}{m+^$#F?Mhy4W@g-4;unZlrhWpAA#N7PjsaLzu=H&_()w>YX~ZYBVhubN!eyNVjwC z+bV@X;q0bJK@4aCXm+U7LJr{K7mstqGP@Yep2+Rjy&kp3$q)bT7$R?52}b`5wOTt~ zFIJ%7-Z6qpPS15U6X}It$@1lyh~dvlyo9%h_9ELA9{ivwbueLQJwEozJ&9E$5}!dT zl8FDaSoM@ejGG_yd$cwe8TzAU;F3?VY*?~y(FWa_E2oT(FGYSk zQ28~Yw@)eT4}SPSWrOw<)NE0)_4l_#e~Gf4GzA{}_Z7Kn;QDTFp+kxXhSvpI*OzE< z`xmc5)1z-p4HzAPIX2XLxnbtMICI9R%}Li-N#%fXl&R};I|@Hc{2{E)MBv_7>-C6S z#=*i*$=Q$wkW71EfLEGvPmB#&in|S-RV%GfJ76o*1sh*w7C>yw>CbePBVi+i+;C`C zv>&sdM#+H5ykb0phk{^Apo%%tFQDwOgM3?ZqSy`QWRh_nEQ5mrp0Hy+} z9;nsck~0(dXRw&t!Y>$$=iIgP69liWKTxRZccx3}qqlTXM)=@+W21v?UJ{R_h>>hw z&Q;}8`gmk(ad!!6A?|G?y>_=;3bWm>VFfWPcB;E*>=NE?%9tLI&TtrqOALXlS=jPoRbKSUQT@sWxW`598@OAkrXAWl`F}MSARTvuRq(qYROea% zTm6YKO&A_$!a^zJbLybpqVQMxE;uoy3^CXI)7RMZi>6<^ovZBaIC zW1{O~^A+@IHG@gh8dc!6-LO}tf86T@H!*3nUg-8maiw0Gu=$DgHu=3uRByn~OLy#J zEd`pPq&Q{%Kn~g835JJ5S!6yK?;}RF4w!jleB}bQAWGk@r!ov`%20eZoBIf!vj`Xf zAPrrn@9pfdX~a#@0yPI}BX0qdJVnx5_)h713#-OZqg#RH6Wohc*=tu}L(9_qQzm=J zxy_&1fHXY@XFc<8Lp2)71iX67`DO)NOTjk8KV$e6?`P}y@S#QJ%5&f*e%@1LL)sB56( zrxTDGTr%3`ppc3)oUZ_wTl}^2eB${RqTYr9V_d8WADOs0iv%`(ZrK?swBZFtNT4Iyn|XHm&wRYIft(@?Zv(c-Ei7qk_v9o5eHr2RM2|{t4_P0N2|#E=U?fGI_Ei!lBZrb| zT-mg#^M;uP*g;Mjh2$-2@!d@?^0~R2x=~lsI;xQNz9-5gcDEe-pvQG{L}fW?#xIUE z*nz>OEM%SZ=OU7uHwg9s9z_D%JdvY79KFn(fe|QD;m#Lkq21lVc??gWJ7slP#EF%P z;6s&qkG{XDAZW1gv?jhuSn3WlooJDm3i^bTQ&n?*f7D9#)wG4*W#A%u;B4&PwqX`A z)4<|#(mZrKDIUnrUU=z+N?(hHU85xf5hp+ zUNIdjAV@1)LVYdwn*Tbn*q_f4-e_z z?X8nm^g4hFlx#T!`}G`^A+U1k#+@2T zW)BNYH%<7_HFcQ{_!(j=a+EXR5Sy$H1P>C!chjAs!^u+0x2XCToa9rJGGg+c&f(_o zhdLtm-8I!v#nU@f(H6hdtysI)f2@Ab*3&piAw(;ycIisCX>sUxZ+K>e&vv7Ov0QkNOp0_kNX z^5RxlABAz?=Y)4hV7htSSgPEN$Qlc)3rUGxm&!sIG?{Xl(XhUG?=61vH6$ok9MxdT zeer+_Lzwgo3R2VmrWdniX!*Q{N%u zg-UDJesA$|9wOSoF#82-*}7}6*{->N-GSgzKDz^){t3pm%N6Pi10y)~S{>kR%`#`D z2WT@CKqn=SyhHe0DZ0`+LVc*>+9nXfE>rsRH*e!Z$EGr$flK#6)I=keoe77JZLHjl_AXsvc(r*l z0sQ^c{T>ejwk2tpsUxas2n3#0H?%P9_(Bw{I=D=QZ;d;Wv=wpqi)G#JizML2xrXrp z#(JW_&ajF?)GP@bx3#e{Ye}Ogmb;1!T)@mWOU8q|P~PZKi#e|_!OgW+gXyz3UncTx zJu|?t{%WjQ5_Gwd>QR6*w=wJu9$4s?1fa~dPbo6WO?)Ki*vAto0X`a%1hRHUn55^*V=rWwBk(10J+Eqdkk1Z}SrB341Yuuk;T#z`GQ8)vun;lf{i{SFvco6~xBRVCO77>Ig?CkK!YUB6i zXj~sSMYTNT6M0L@h;#NMVB2kTpL4g>2oT~~G}aSPw?w;>G$B8SIr^YYX>5|lbvV9} z2)N;@r?xF{liQ}L>ylxVF0Q3+0efgKvt=xA#SF%!vzm`vEA>U1PrA6poK37$gZpoDBY5Rn$(0;wnJAIXcs&U8Z(SqbIZ<5_8D!o#vK z5!*(O0q!u;+$`n|Jv#pGC%ACg-gbvvqFhAm7{ct7xV&u6k{tOYP$iUi02yYnZi-hA z+^|>6Fd+3KvA&=EF}S`Tz0wKF+GBZecc4Dpu5)^^@}^Il@X{)F>wl}_nk&4) z@X4fNH%1b3vxg(I{NbjP0T$_@Jc+})5~5LrAW#%KO}Bg>1_LxBj=(v)lG>eLp;ecK zFKp&9yH-q`Uy~R6N&(1-d*^U)!hye+p(6fJ%F7jl`1o*JmoWKo|1l1%EjMQokEsi0 z1AY&hz34*t1^0A80dQld-)Lb?xwPB{gxUSLqzB#a0Bw{u6xm*H6 z&H>cajt{osPueN2tWU0tXAf=WMEH1-W{xikCCvTUUR-c~_bsegKOW^z)wv=uZ#Ebhh5O ze-qD^l+8NuVv%Hin4JkA!Ziw{e{&6>y0BTFHfAdw2oTdRiGJu3a`IfYm_wBxP8>vf zyRapg5(fnXlI9m7leP00$*jw%%5t;&yYPaTN}%&93_Hi}-i=AlTMYHuM`6@qp-Y%J#EBT&?R>V{BV@$Js#XN<{_{T#p=voQCd z;vbR&LLPmv+9ZKJ=7Jxs-)9!e4^e3UCGKELR#3~$ibf`l~l`*4U zFw?QL!W&+~;PPrBsytay1%THOktaXNQq19CE}LJz8K7dvRJ`vJNnM67ZjN}Un%mX^ zRWwxxM}dJ0a!4hblP^HTICf=e2&VX~mm^ySZs3(*Pj19~p#pb854Z}1P}Ef4B$7j> zGBh8EdKtiDxCEDqTU&PFHz-xKTISASv#MM4^E5RN?8lgj+g%E&fV5aAjm*Ul)Ek*U zvu0>@0q|T~t?jrA2<>YDTKvt|w7oA_PH10)t5S%PNw87n)V7f$JW1Gv8h^W8OS|9+ zBc4))Y@_!x%St62i9>xeCDCkW?C)K}RBibC7zjsB%d$x($H1`##>gTI_ps08pO>ZRZQs!b^O3fV_1du^uHFk@ylH z^za+^5;lP4^2lgzQSo1&E}HkW8Yb?CK^PWZ#l@Vf`>3Bx~kV$Aq6|;n`kuM zSEZF$t`yT1K{GEa5X#hV%l4dEkPeNEX7UJiwZcADbcTIv&IRcbk8k4b2;l$xla2PN zSAddFd@@R9y#4B*t)pVsfCsnAj2O}!0aU>N=Jh_8cZ9mYmYE#u;vv4|R?-~ESN>WO zIUH^fWAYB^o=5`FzpwfSihh91EWHKl&MPPCJsM`M_J7=VB$*V-?i8XARc%t`JF4_i zlB?&fpq`8KhZZ-#a{gM{^#&pD?GV|B_x`nPgjikJ9y65F%pv&D*JC{I=&f_a2jIb0 zPDJraq+m8+qOhK-vW5v5NY0EO;JJ76`|JO)yqx5V16}-?OtouW7xudxV|3afNw^%C zrtt!??UXfw+h4&nShC06KJFeJ^`#;31W4mY6YE~vJ23n!u`gqGPb1z zb%A#v!21fPN?dq84ynOu#uZ(}X=#(Nvl^g5@}0t}i2_xqpJbflP2Jxd3|Ki%44g4e zud%??oSx<|drwhaQZnvrg$%wpS;;5gnRchB2t=M!Z5d)xv(X-K@XONCl-BytpCY0{vwJ&o zjY0IMkKKq!u-YdKP*rqp*E6RTI!A#ZW0(4tjzSmm?b~vVH-!C&oM;IZA1Sue*zh_j z!^P{~rt2%4IObP0M&^>=cvxlnd)_|_M7m+66n<~SY9Hfslf3XB#N>YnlWa_>h(CzQ zRx(Op6JoUgBhK9V6Mx4ChDnVN1LmV==VoVM;p8CVVq<3D;wI7~VpKG8GPQFiV&ncH zQ7RKLDx3bXcX2W?{X@jglsdl)jGKxO4on4LV`Aqb5)gp-04=ff#&kZZ^Ns&y#R<0kVOl)kqfHO`*C-(d8?)?Z9ro=eK9yKGr9oY`JkUVQMMd9eQ`RVt0xO6 zx4BP!zR;dD_Sstgprv|L>$QE+==FWQY~7XZO=yT(p$Q^UU!6#X0YdgeblU{wtI%~U zTYZF6^{y{RytMn+TxL(YT*~jQY_GGc81&ciQM%?l+}(_c?Cj{ZK3|{C7bE-Wl$CIE z^eoM@a)7;EY=|j+ntZ7k;GgY(zuy6FV%<>QBa(wc^(;j+J+Ni%53RbrUjEh^H~R~I zcc1{#R1uV2+L_Aa(D?}j|Y?_AP{w;n0fff>y*>X70F?fQ*NL2ep->U8{3zx@29Nci-{x1>`S5i)h zT1&}*gd=#<`sM0J4=NRT3stvKtCY8Zc@5v%5R@NxrPj6FeD{IB z97e;gm9SQo>f*8C!U2L{{uaUKy|t6PI(XDeB2*2Aux|vitEjc4cx7qreL1YypL2O5Fbd z2>GVsH^Us$R=5bdi4wl>iJpkz*^;e&tLWRwl|TE2EKnz{@K=A3@7An^+{y&rBgWN7 zD+M~B5c0A_JVnqjllMs$48JAZe#w0X*{b4gJOW(0Pe7kM{ui;`20))R8=R>Hju$(!+C?EV!o26o? zkbBzzGl|zf9s- zB-krBk04D$^C{9HVBW%MkbVE`IYvmaxnfinSg|Cafg^vv^2#v)iC90@)o%=9rdS9h ztspA!t0b+F8n!x>V__h>imH7P?7fnS1{PEQOb;n8!;%@$egAZxSOf==U*^#mFk5k~ z9xUL3M{+9``TdC8iKf4C@ZuY35W(sePmn=k#@6{n`jEL(*|jYk#2D=D^81n7yT*ed zB#*oai1)&>W=X*Sc=3Ndg7Qcw5~<(w^Zp9$VaTjF7|kIb%QL{e=ckE>2@9hAh5DZh zu;h{WPpl8wBc5Fs%Rx-Q-pQyB_3bAiu)>k)Pr~r7DN-=LcnyyrKgtIh>$bX|I}-a4Vp@(La6Pr%| zP3W(bdVBXwcX=I^wm))MD)*R1;I{8~9I7vKwjV~co+`VlqZGDITh7-p`PG~Jc7QDe zAb>+6TA$RxbhB$7(nFSLsHAJUJhtKyQ+yoL&~ZIg5{`M=Mv_t)b>we{8%vCKVDX)l zUDu}$`%Z<}Iw-e!2!=OPhIZ`KPwZ3-PIoq>E8`P=wFrGpYCq`s^t^p)c08{x7{NDQ@gp; zh|5#mzLxREJSHC;xt74^VoJo9uFkHVf*d%+JED|lWB<8j2c^mzSC^HCT4}IjaDb1w zla!1JpJq({wysU9p(0bhDM4+ArweFS?-71!&)SIKg?q(6+TcC5u9_$UXIvM}6hlfs zgf_Hkk~s7I>beNip<;HN9x8AsU9$MV;7g&8A)YzctMZl{_7-nYdbb~{D=;S_OOON> z-Lre+u)jV3E>DVnc!SfhU>@=`9>BikHQbtim8OP1+Fck}DJKkc_9JM7_O8vb=AN|z zG^(+$mO8cN^ZD!UnOeqTN_#;w1r25kx(j+_mn^9sMnvn&o4%U1Cw&w+$7g8m;8tUG z9{s!Ma(B-v5`3^!FFI}(EclY6*i3G1uF~4mMKDELF}@A>nm)Nxww%`-3g9@7aai_G zEozBbVJ9M}5FDx%#Z5@RDDzf787|D@}FgDnV_tozWll0bT^>AF;VMRAHNdDWbaN3 z8RoUzrebHAn94NM#Jp+Mi(>E!XP?ZHWizjN(2f^AApY$PlR&FR{_^ zO|Fg-xZvq>mYA)fnJIj~h#C=$p!#-714+&-QeRpvXz#J?*W<P3JH$UG8i(tMT6mC?n0gY?Z$%QXT)^s3mqh>fH1i{&+3c!G}mYLh4Lt<(lv9v;f zVwBO0Ir8u8R?P+n8Idl1s0%B3B$*saQrzQexYF&v5Ln}*GYm&-Y%5P<3?5@qEw-g@ zILe3Pvuccz)6yDHCPfqjv(E_)4ulpSV_^YjfZBFNfJ)od&JG1HzB+i1&)+lL| z+ukc=L4?)xo#Z3arAwY4 z6;_Hh4QJv*&P1!~O}V$*TVzf+i#I&2U$Ifs`?RLNB;$j(&EM}KC?-_p(N(4Z=w$l^ z2s-f4B1KWC`?2QTwiSo!9<&PWh~F6pU$W59n5YNz!y@R#WQJ#)t^3a}QQnUW+vFJ2Va`ch4!eAqUT5>(`UlC*hcQSb^G%^`}mv&Co=N+Zi z0PxyRWhFhlY+tP98PeT6Z`tEcwlg1pDtn*}X|aofyz9w*NWD*QY)ZI?e+`s!_m{!K zzSO$`jCD)|qjzTBz&UDo0;hSq8LU7@0B`qX?D?dr)-!mfMAIp~d|WeqO#)f^(zU+p zXQ#5*qvozSBmgsU0u}}S^nMZSF#IY`&9bh}pX$?%6l?lbjDrmt9!=g+jX5a#S1(-F z=(hCy`Kh_xKh*~tcCWW0B|(yZBfD1Y`%wLrjDMwvWo@H*{2C}gn}VfIsP1X$1cU|X zqn@P&!bJ=ryF;+C$t+;K*8Zga`9wZ{?(U0}Tf9NA5GMQg&va!E0~6dV55D;CqzM9T z1$ZV8_XkaUyFnVv;Y+2#COBE(2(#ldEejAHWiwPS)DoHLIzU#N8~5zL*kMP8ShMdw zZ)rN(jyAtL$q?cm1}=0NI{sM7*8f0nt22|nSpq+PDh^gw9fJWHtGdm{_*&}QJF0fv zf4ytbU=7C76k_QOsy%YDM$kI??_qgjvN+NrT^8%kBSh9R<;Sd__1_GDB7iYL-cBE% zP}l)u+CW6qkl2iB57ro~?^7e)(i_2NbG}xFR)3sY#{SX~B+u5-^yef%e~rnEoW|a~ zJ^=JP7r{23?sPn_4vaC7@OnT0U6b?aUrVpfJ730dkEq6{#WILc@OXk~Zl|Z0*D9m` zLW#4nDrp2VQ9)Wm7~3Ogxyh?p(MJ+O#llNxUPDbx=;Kh2PZKLRPz9*Q8LRc(YR?g? zF%wM^MOHTQ2eQk}BR@ZYhSko{lya-?>B?m;Xct1&CQ);{Niq(~Ctog+4zvB#kmZr( z-y72}!I7i|S}jF&>YiA%-$I^6t}zQq0n!d|m5)j+G+!^a`D+Gn` z5*X|eS%N!mDx8+T*YwyhL)BJ>0Nn%i!}PqJ_CoWcMo|) zN>2{8-lK*7Z7@`WU>I=IK>1W9;-jgFCiQU(?Fg0u97DbmC=`Kg)uD13-fM%>oxKL? zVl2^I$eTXGx67`)GA*sxuz5tdv{1D_DqMspBT{I=Ho4Eydxp05q?0zA&^=bKOHsi9^;|)UXhqz zLpm}0$O&R<&RJhjTq7#J;C3_OpmdbUXyANLX{^?PZiNJZb#1X#oHG`00Shs(h?KAh z<8N)Wz(cT7l3kjw&rRfbAkNVL&hb)EwG8} z2RoDoS1%e&7-;vqfk85P1x)H(8ZaO3|IO|g}mIgMA^lt1Y_hxOB)OauSSs=c64MiO@eyXsHZ&X5y0 zK*+6d{!D_Cj1m)-`)!kUT_}F5=&h78Gjd#ix;NJPqgMlFVGo2n_ zVAQRm1jefbBjA)M&&~~as$~>|xO|Pp*}=?Te!11}ew*)eAPL^1yq%$xfIeR$10!u( zPIUV_{vjeS*!9tVeLo%Rm>~9$u|Z2+BzG5}JyU8vF;rk&cbRO~J;5G0{U}$e3I(K( zsZ*BJ(I%Ex2AyPQ`AE3q;$G5(MhpfRSkMlZ^ZFM4b#nJ$PBdM_)m~gO8ID0s;u$%v zvqv<)DQd9UQkt?uOVE4tbIiMtAd8;r+O2E{ttzB3Y`-8~RtJ;I0;@nL&R@b7a1;Q= zC=u0#!UJJeDL^FQ*Tmj~T)26T4F&GNH+&G1L+h#UoTKsREj-Kn4tVqCYe4|4y*pu4 z$`4=-cdQxdoSz~NiGx!`W1jtgYszYkWZ73;y6r3!82g=qAQOAv7?iwQ( z8SKBSx78)bgVTYX8b<8M&327`_jevpzLFiSSDn9+%$npZmZ2b;IkcFt4S$@cH@87l z|KQ|yopDJ;JeeD91DG@e6D_Gg$jNR(?CSyRIj{x+FjF^c* z6qGe()eOvJwsw$hluZ~`h6~W|KNeK{XmX~(Q5j4Ro>96WvhoW)3o{_3mjUUg~v~UF+y2?OV zf|9;A0qc*$5u$>qrQ{}$>D9_>yFj)vW36ijBU5Z+RWP2(H*doV)H8zAUjcC`GHt&< zu%;{53$|1dC0ACU=5R`}*C8|mdjub*mkQnU^m+KQ=iJX}L94{gPyHIGLF2Z~FFDe}_|H0{M1mCsjIW z)Iz#8K=8wE#<2lPMP~hs<<~!iBy3y8*qJIProkVO>Vt6LS2Tfbsx`_^i-M%ncyzWD zz_5+=B7guwKuJ)q(&?YJ>^ik4qT4F5-8UM?EN-0wv)hZGA|I7bpp0(ICx7{rg|d0Z zNDak1P8H3oK}?cX6wU|y^j$^u=63c+UHm6Wqc23fjP?MF%z9X|DKlvdRS+*$c*F=C zF5EFln8AM!q3-ox9i_l%y>V8>mq5C%l=R4`54i4sDGgbSI_DQ-j>i;;(n97|DCt>{ z{>GAoN=u#?a?~RO&U`OpFf?D;iM|-%HhSa|;Y%~K#3L4lz8pbDNdTfWQN=WTYa=RZMD|43_x>8_-5s`0{3P)Y{ub)QIrtvAm>0$tZ*@6qH!5{MeJ zIdF7=08;7Fo+}1BnTz&ti|daRTTtiPLI{n{dtH~N;R0>FD~8U0zsC&3UXAlQ*F8OM zvj+edEIzkQFB#d3PNUm9ztof%F?3(o+FsVo^zHk*&B^LHyarlb0<|vpL3VX7bpSKt zE^Vkm^`~fWX)F88;5IN~p9;$mv7r1jYwS7B9*|?-5FlWT+9g7!FK~vF21%dggNaN< zNSAj(5S3v9RTc^sJU+)NIG%uRa&?m@*KWX6GMD|*=5f+Y@4W|7rBl78f+a=TBeef?drXOwFSB3K?C`r&@NAOp}1b z7qqC?62QjWD`iGtgYCs2d#ZqwOj5mxDj@`Y>bH| z9yf%8n|CcDlrV>&wI}$^vGfRLAx9rv-MB!G;l0Zegkfl?Eu|u^9*;sH$H?JISu}&4 zfv_!^EV9I9VvCoh7M-^RHbi3sp61t14Nt6}l=O zlII>}%~8}Kp8&h-BX)f1AK~rw5%VPzKQ-b5tp(+5X*}iJum4`O?4L!mC}pq%Sd}ua z{u=*1+GwBDAE8pGIiip@vX%SKd7n>9^uX8!)akgsR92d>X?P-s$E$3)&+RLP#fpAg z-+fvG&yMH10sOQRBg-}Ef);hhMlpgxh6qXby!{9%_yBU~=D#R=r{F-o_}e$OZCexD zwmq?viS3SU+fF70RL>JC5R6siPm@y--Ld&ae?Ye(M6>O}drC3V~ zSX7hNI$e8Q4}!D52$8=0J?qgOYQ9xo}YQ(ap<5sSi4eK$8hh`!Cu%RU*OyeQxgh-TTkK zlWx~LBs_+eoXO37_si1=3(Z@g?ULySLdAeZMmsz!>lDX9m!C-u=;&u3mkZP0kG!H!hvx(4`Yn#v-gVu;*8hFyuM2;i3l_xfwuTLSIi8VOnd? zzq+pJ*&H)R`62jvk9#O+dm#c0wZMT$D2@!;!w0CJP!|&T*vGR&GLn#TYr)vl_$@l# z+cN%Dzd9L(TqI%P`oD0B^vPNU)|?Otls$4FO7rk=WLDp=O8Wf&jqUl-K{@0_>-#ON z+Y2Z9j8K5)VhG=>zDWS`R-r9-F*0D1P4_2^xvcBKQTi{UJJS;I0{ zekZ4!Pwma8secp$Du2FpOBlZ1Np-s0ZNJ_cI|9wcK^`^n&t$WpiG%I;&!ZT5f*COr zmpIac*9U&c5am1}ao6^7I7LD;2HbNUpq~&q3fGUO*Bryy?$Tb{Hh72iABiVCVLZp`xI$$2nu^`XW41=jI>T~0 z42SFdysEPjBDRIrr|||*i+k^VEnj{tK=GQ|MCA zTTwZFRypc^xH=$@%JS7}Vo~lvXOX^M3iP5?${Sg*A1m=?b8v0^-p-xSVhO)zv}2VK z4|phpK>yV}nnhi*rwJkp142G>=prb#nbA|%M^JPw(fW`O207eZNZMm#YiA!4h9)X| zGnD3+e#hZ&7UezqbDFeYvf5kozPGo+8J)kqk7_@^sT}BSuk1J2U%h=>F%RBvo^Z3n z30wewiXt`4e)HLSPDYbp4K*hN5iMl?>wOAb~gTF1GB`>B6+-V zH=Og!L`i__D|zY?`xx9X?Go!q zbCp1?c@}^nJfFdcr1EX(&Qo}n(xs8|$&MEg&a=QIQ#c~h>hwK z!gn6x^8lF-8J@A;O{(XmHHy!^?EU2|vpRVqLa6Y`-g(ybIW7@c=5}h!&1uYuz%GG| z$xm>>1mj$|bn}Y;gUHoA{}Q>o6#QT}dq=%vA!%-bZN-7%%o6OU(ML)PJVBfmz8~Us$fqEuS`;?f? zad37~{rQ#}+t2?|95hOi^77tUx9MwIz?&#~)#Ty9RvhALgB66jda}}aaQ3dZ@%D5v zB{0IZHKcP<#C2y60u3huk_M)2{1FR0Mf zEnc2|PvKDD zm~?KIUGb=j?`Lricip%ALo!c+?Q1J*42)a-bOGD94#cq88OXQ=B zFjmE$U4Om&rCU21+hHU(6!_kQc zg64Wuk{V)gPEZow+IyV$_2qoA!|^+x_qTt3Koo8v_+qapv^>o8%~K7uvV(}-^7L!m z=2E)`wyChGxU|+F02K!3;uvw}^)Xj<)a&42FMwE3~uYFDvDixh7nLPI%~Tw<9ZfpnjdY=`AAG9 zITI-|>xJ}7_~)xQ+=Hpye>C~p%-^L{s9B)KwyfiohbF=rAgJ%L zDll!f4#T#iAyzBT!ZA)oVbYg4?M=qghdD*DqS4Vd=~cGAVjYhK6*beYVajKaIuZ3J zY0qa9mY&+RcY`kHk&x3HuQ=At3feJ7Ogg=49(X?v9D~j79NRp3L12O&Bm8CsPFWqa z?!o0toZ3nTimi@e^_jBYFQ3FZ>8isF(+~8Ww0}Kg54*2)GcyRCFMh#Rt9dQg7oNi( z7e-l+80(=3L?D<0&d2Oy?hjBxgBRBK(5NPKWI0h8ep5FipxHB{!9BB9W=g?R-QRZe z1(X?s|660>&-*@T?=j@&< z4}RH9IU?tPvhYqUO@F23+)2^oJhX2!W>(w0uh+BH5{IoTq z@fSsy+v&69LvXE=8@LXp!mDW0dGKjaUP&9M2UZ!_P6)X`V7UX5T52oth&!Qz?LX@2 zbp3x+c3wH@Y*z4~a+eEjawj;PinSlHvx{!;g6U32K|v@aGd{-45V1M$xFP~o}`BgyHMhWt; z35I`T`|wY##aueJk63W~^5l?uGK_Ojsc^+D*-1eC)a^s&dJge4Dr1#HV?*7}kbbr2 z>I0S7e2}Ld4ZZ{pkui(1To5hG0vX)1eFFYS#2n1N6U}YHYd&@k7+*7x9e_*VbwhL` z9(?JDw57hU9Hwcq5N1m}1atF>mq4@grd+*~ZT6;CRs8Q?Bb8)EflQLar)_xPmFc@M-gpA065p_g^)7IXgz>w6{ZY(bZQCO`0dZAg%oU#?8t>af~ z;{$dKUN*hM5$N4xD}CQ?PMU)8*l0HrBu_C_YWm%2l#qCsZ*Sj{bh`!0>;!zk zceLtkPP9vWQt+p!MIjxenACCeu1GkxqdQX&9A7O=qh@4-o)u&3tM_pV<|P#WikID| zE%dCzRK*N_o#85o#i2|@pP)fm2*?3TL|5)7cCbe$HIWka>@7cvaz=?%oRg+(i<3te=ZFHtb&3hL zS-?c?Phy-iT#{1h32B5*(2Pm!)?EjVa%Jxo@jDA016|%w<+L|;W{IKmAgq4K3V2&#+%o1M zY*^WNJbkB@@Al(hr7oVCr~n09kbf;4#Xa1`APYs=4FfPnjwQkeMp2|sU0wsJe!ca?9pIJ&0zvJD39v@y(~i4>as43mhAY130@aSqgB36>=utJ z@a(33Y^`%h80jf{EN|ot!g30~9cVf|))bca{=m+mTx9vVi~Bb~15n5w3*=Y2y@wk1 zcY$d|h~Ux5s~XZZ{`}d!o-&&`cmJE`PE$e0EQC!Bj|>CT|$-JWJ{J6^ePP=*>~wO1R?CNRIg zK^|pU#v**3_*z|J4b0n8lcI3Pn_XEa_#g8YE;EOW3DiO{FZT__&HGDzV8y8mdTQPc z;Y&uvQR)2VOB${1^ma<*X*AIG5~#5-#_Qn2{8w|=ER~Oq5g5jw>QVsqEt*^eE`K*V?O8)7y2JMLH*f3x77-+jy%fUtu|k9P>#M#73bk;YUdwG0lb zPoA&vGk@)i5Rf1+^_aV8w)4o9iPd|IG0AVsEG_!B^>$?i!FWR_DJ&5zFim)}W!lkFE#1W}t zQa%n8Mv3e?tT`K05#^0*IyJU}gJGn{#ud%+SJD~2d3`bla?e5WYsFX-a#8EWS8Fba zeklmsT7XFI(81M-YN@;^(==xb~skLja8#EVfAYXI67P&5p1sUdspeJoBht z(PSQrL6F>hgxnb}(~g~jsljei2AW~iMI8Y<0vr@(un$yqkJ&yY&2*SG@o=!qRZxTz zHiETr5ahzOO$Ld0p?=S2@jAR*=uL5HP-Y)1x;C3G-QS}$xZDcWQz|CR{xGN0ue{{( zSU}sE?%VegFC7aM1q86PS1(gUE|7Y|Km|LHA5f6s1c7};9QCY&lup08ce5*-+leb^ zH-=XO6e2gwaT`a($X*`Jh6Y{4@ZmZ|Ce!lFKkd2MV=m)*!Whh@;FTdhRRh??{T^Njt<2&6gM7^nyaWpme+P zLWjV0JhUuQ0b^1gsId0Erc`fNb{C_1A+Mll!9DHlY z3NZ>;lz)GP&{VFdEX;6gB|oS+8{IEgG=`dx!EZz1fo-*G~8Xx*Tc)^oayd%xb8psb>%ZoE#DZqfXGM0RzP?^u zy#j{HYBi}X{DYOpwZZUh$hj{Ln)^f8EI(xeuP>)-oRlGiSPP5Vr*229D35^sJ-JrT z0Hu&$q-)s13;Aa&{|Luyq=VV5b@II}p{!e2(F((H6!Wj!UwK73p^-I4qrkM2@)!hf z7s-0^X_}gjf{>$)0NG2JA9z&%rgE8;i%ira(cH?Il)Li6=YhKa$jM`b;=ueA! zBS#}gU3Kb|dgW}cWbqbIg~9mjTyu;_n^)iOQo*`C1Q4QKM>Up*Kd9U0wr6?D^58G} zHkqPKmuWVqg60GJvqYF?>w(L?=p_HY*u6hXmU=-AY3NNlh-8rO*Ul6Q58#6Yhe^K^ zlrEcW3;3}PX(xz!*Zv)~4%&QjDsCd?`r}m%aHzSeZZZEnnU`oHul%NSB4iBx$ja9? z!!X{q%)sxqWD-CM$vh8iZb?+fMayu`4UbVs^DCQdXKEK(|v?p{DC=s5J^Ku3j-Ys z#6nqD(u7S{NaROyJaI|As~y8evS5a*eD;*~81wg18^18Sy6&%S3?cp#1d=oVM==FBp4HERf7%Xoj?J7jzrpXYynDwDxtsBJ3;KYJ z;fC#FqE(sc5B1CGlNspX^TAJJ_Sp}gfQ2= z#&KU;8O3QyFi0_gfG9~U_!X#W{n$G$v1Uwrvj(h;% z2jmk^V0AHgB%hiHtli%d>jj(xY-tE5ndCZ!H&|RWn!ny`pRHve>0tvJ_9u)Ia_nZe z`+tuH01!c~c6#A-3_B-g9PT-BO1xsF-~!yxNQTJN8M+QrX(xGe>H%ik-3Bt+@O~^p zCBnl-+radEn$?{>a47bg>=NXlX=7!VB>b4+kIL@^${)Y+YEbGQpgZSZ8O7SvZnsU-l6rJQEA+5PwF3JVt^mJX= z^QV$TKLo+4N$)6Sh>e5uQd&HTe6>Ww1)ig!{did0GX%Lmjb{e)KHX1<3yAiMcHvZb zfM2zKLTs=-_$fa{kSRFs7!_~!8&}WwP(8`RPD~`FE9K2!^k)tq?lC8kmFAH7Sp*Bo z5;K;}ny+g5l(rH`_mPlV5^?u3*-%iuwM+V1v{g(kKX7I+$Ml%9o9qPjuv!`s<((uebAkXL#Zq#4QZ1Y$&usElzt3+zn8s zI)yq$*R%BU>(#};M1$psl1t{W)7N~w%5nnoG@grK7}GrpZHawD$I8YfG8P+kJpvH_ zR9WBJ=x)ykw8AEf|A~-SlTTl;wXzzkSS8B(8P3@$b}Aqy)_`!SrO-gEEfcu_9SHfB zqdnO14|IloH-!koNfYs|fVL)F?xY`$PD2(M$`OU36ndE(>HciP644-2v(yt(Z|ctMfowi&Hne3y%Ij< zm$jp=SdDb>9B2+dtRfQK$SegnPX+m&xGr`aPBH}bQ5X(matBIONhCZIB#S7u+m~{m zoa+E#uT(e@#V^vw%aRQ2Pni$K6h8&n*$K&YOABG6q@znBVU)$Qs0(R@QA_`kf_h80 zQ?NrGlbU;dJ+^|q6{R3NMON%f&Y2(=gkdO&q0c9nSX%|*B{3l?D2vUO8H3u;O!Ord zgqFyPss&*sC6&8@THR2vQ(BRZB~7OkgwFDUP*T|9WfX*j$bh4#Bq&=O1p#PitcdW+ zqSj$e5R??!cv%G@5DH@GDJZ{Wtmu?Q*C`4sg<(s__#tH@#+#XhVV(N_`wpG|+Ht2I zLE|G0IYLnOK<&}gjig!r+KY7gV=OGic#GqgnXd4v*@dr!Q_3E#l2mrrKt)VWTRnY+ zTypR#wCIkkB`(|0A@?czV?nj}OMSlOkO&?|s$P zKMAx;s0JE9NjIDwW?zfT{X}Av>$bhMmtaO|)pHYRxUZ@QuWke^m#M3Va3Gi9O(jLn zOBm3>!5}buz9IP`)+FbzCLZrB@(M(ftTM$c{Y;KKH5=gVXXq?t-BA69nC73#{s>0V zR~l9^pOf`%QUN^rK`rV6o;Uk+hr{|qp)Hb>QFi!&4H2sESCXSxgTf$4_W#5m8;l{l4HC?XHuI^`C_xeI_=-`Xkd_OJ;rO%q>vyF*_GJLdU_sfbzv0iw- zmtVd8ecM`=)1bkT^|sL>t*hHc*_60Ai+Rj*#Qv|a9gR`Ic>&%DcvZv87zyD7UC9qbft`ZZFn7>!Oi9L=OFsGQ9=a%H z>HicWQ-7#N9Kpi<;67pURo{wtx7oDyljbk9iy!3$S_|TEmQnglwUP0Wh{#`KPE1^( z<=rN6vRk#WKYRx#$eV9$>5RB{V`lQ?aF-LUN`pti6ypuWv6LeO{O^Af^6audp7(ne z%=g1@p{2#a_NHk!cb8k&Ipap*t&HweIcakkSryl#1BCVJM#+Jg5ks`~o5*KU7rn1{ z?xyj8O+ER~!*^@N_cl2||LJs3Q{kWv^3SGcJX^y&eD`lEI7pD?8z%+Mc#!+!^AOtH z_tNl#>wK$(LuMp47)&g4nhPJLh3D=E*g#pN#p7``YLm&_2v8krN_jA*=v)7){MjgJ z_tkx!)^gVo{IR7*0ooBw+wJfEW{YqCfO^!H`xW+cP--Oj@ck+ zd>E~f5?lQ%S41v97$iIW?iRNN7khnldG_hb2pp{yI{t;ijIbi^-ldeEKT-q$GTv9r z$S?XSue^A8)80Es(%_v`vkhwHZXGm9~rVS5XS{Gqo zYED=$6EbAT+8-9af@|WmIe@_%W?Rn-r|`E}gC`uaB>|QBHxOjYFy#htC4x^inpNd_ zfugc*4|AHd!ivfKCnDp!0}6qu9U~nH>khTv8XDR#0Xsy7-O+sIClw%oRAI9IUqe9O+jq~8o z#=gD^@N2j~ABKV%!H6clh!X3w|?h zD~TO?3v&Zf)}9Y9OzL2i4AF>yVA@1*{2$wUO-%)rU%~yyHn94p2nOeouGMZJE7UqZ zAyGwe4q!SYGy*z_FrI(k)6*uDZb{Ae`r0%G0J`#d3O_DXj9z@1Nv*2Xm%D%As8c{k6L5*wfH$mJD`Y8;S&h^~>?AV8R=U z8Q1Qe^n0W7X((IYj`u{Pg6c@u9A?^A;{k&L9P-tsqv$Rfo36J`EEa?Zin1?k;yz+z z(}3Q<#d_W$$7(JCgaB_cGl48X9$rJNNU4&g4}z^I<}8Vv{>pqsm!J~%m1~VxB*|Lx z2{t6H%td12GsJHE_iP@%lK?M~dK-w6OOj(dj#7XEr63D-we7^|O7wwM>@bHHo z6%VAo*@QER!GT5W1N260W+v&4eumt_1*7fe|7#tn8Gj>ay2qblR=yzY#IMp_jP@1$B=}MN&zEDceuSZ{JSZ8I?X;Yrwu5{{ zpXqOrZ6`%eco9-RUg}0|^1}=IePG^GneK=${@o5&rNqRo*X_FUKuafdr5=Lf5t6vdMQqX>h&xB8r_ur4}p}y5eG*>FgAKmUSeI~7& z*dULXKLN|`rRtz>AU_WLjFN{jy~D>MjOM%WzUTT0w8Gh{w!K1L`VVz(U0q;Z+UGe? zmOfYlk+tTOlnh$f9~j|Fvv+8o?s|Cl6!~T*B}Lsah%U|}P)!B=j6|QMg0k5p@HOO6 z_CDwWwC3OhScxM(nzaJc3RPiVCxMFW%X{TVYW&dYaMOR)^$^qHf?@ebgoO&NrGJ@AH_r4vjwi6?u($+~yx}0w)_NJZG$80X!ms3?2{E$f{hEQAk z@R$TQl?xnRE9T^Z;M-B3bx9VaGn&CLCt6!w&Hxm42+f~gHeK0rc^_sRt)+7WyFCqlVzUAP`8LfPkmu6C1Hv>u*1 z@LNHsAmuWWKJ-MR>4JtcCsnW)WNMNCh-W~2{$w!&5$ELld^&gf+lZ8(E5_-?U)mD+ zjZpBYUC=PiLw|6MDG;)fhQ+NoJHi|nS1&;@Tos?a~yMVJfTl1K~)=t z?)_(PzOz4F_vhtk3QPEBub~tXG+R!zT%weSO2gjgcKjY`-~~*cP@T^Mu(I|7Km*;M z?Y|;?)i(VEFNHq6SQGSB8eLi^+OH{$xYsOO-49-1%=RY|7Qht*V?=I_ZZ&4kBsO=_ zXVkZgbxg_j>pZ~hHlDA`e7ACWesqGYG89c?5c}H8=Z*%)#dj-|?#cKe19}O*f$c;sJfoN(#kL!bf- z|35yP{}-<#oh1{LARTh}OICBU{107y{-5t=h3DV)h+}sA+I~au&7dg+%L+F`Y;(EpB zO!0$7^U}>jb3<>pGP7pf{BMe#Vth#CQkUX?yO6B_AErb-d8ttne#^q~%dn6?HS4k@ z;I-WfSN!37zdP=Lz(B1E)L~Lh=%h!ymYRhuTfw8d5HXvRV6KeY19@ePVx$pXGTl+^J@`fIK~u2@m{1W zS?mNJo!NsYFO8L`hG)Y0U0G(yB!+$nzMx8{bMf|l*Fjx(%vaO(kkMwSaObkJtpOKJ!Rv~!h_DJ*lhJNo!^4Ocz`IyXSp9=3Bu5=tIv_D5I;0rYs(}(W(;4Yp z`()DhK3Wcu{#;>KhKup2-mFfN*a9A-7-9oFq6A8w>tCbc_r6K4=qFj1)L(?&yukVp z&Jx6not5Wz0L9Vqdot?7&`%2zxq#)fNA8+~67cXK(7b(jIChNBnXFnl=v5Pc;rXt*R+3s2=k&x&ab^};K@I(>AyfV-`+dIo?_RiNg za&|=G8O6CXvKK(Xr9W$gx~(e zNW&9A7`GX0;ZyVLaXSwbNmdjER?96+~T3z~uDX>2Oi8mNgRrt~ATocu*r+!+MJtG_%HVLEMa>AST!^SY> zly;!4)aDtbqyx7G(PI%UjA6UYx~&0ESmX#Ep>q-DYL1YR=D}V%*S(S~kN^OsXyoe_ zk_YtCtEVnwtRR+?iwk0|HVHdfYZ68f>tc4ISR!alq0GC>%}*^_!u(btw7$3W=P*kF!a^S2fYkj%gGGq81anAO#%^JBGLF?x3}z#(fxiMN zy|B*lIHs_l7Iw;oL?&`9KLtA43w1Yyp{1p|Z7YnUT+${wYO-xCy*J#Zs`5)4gPF2G zzyC(Bw%EvRb(97pGxl)%UK|nhamo#9!ciRN_I%ogZCqm^!(NH)JfE|qo;EMCA52S; zPdZNR&c%l37_MrdwiK1cTS2n*Xvde)B8Ji?ZmT>jG-^cfI5=MRogK(8gCjXAH}t7D z-xRRNp093+Yn2)tDf+e3_`wjpxu0N+`>?$!487ACmCD_(HpC`CbrhgauO4{hWt6_?hT3I?V zi35|)OuSA=zGawCFn|Dfu)zsD_d3u`;`9(ek&;d>LwjSc>w5#Yl;0BaKYOerhqrDn zPuJz9wDuyS{YiE%5<Dx)0+)@Jl&z+ zD|TrWu-_HYn1}@V@{|*8OyXV$u8X2ES|p?MFYmg>5!6B9iwO4dwmPkc&h#- zaZ?E=zK$`B0p#~~3+jv#hVFw<`bH68gthUSPXg=}h^%zAPNNETjG0i#m00Uk>*Bp30{E zBy46DEC3bn*s16?$K2>jv)OJM;Iokqxj9;*@ zE7TkU7Pl+5nRxAO`y|OCJ9)l??J{h*i4SpS-oZH6f!ui??1YwQ0X+e-F@Q6(1nE{9 zB_Z%_?V^II(gA&2zx7^WBgN$;FYQ?}z}*CsKc#8K7*&2O_yCltSb**eXi^$Z25|4= zMim4nN7kprb{=it{&rdf=xjvJP_z-R)i)PQan1+4?F%m1l@oH zT7ypl0>ZI*zcjY-{$&rIK~7c(D2K)`eevY_mL2=RACo(}-yn$YjwD^Zpy|?59T#Wr zBj(MfrYQsKZMrdQt*(1N25;7P4_s>t%BX{cOJM37l=OVKN-GkJfxK)qp1mC1+q_S9 zU3Lh{afB$MIdiM~`)0C1eEaNJ~`-22CuviX2r_7R6aJ3z$Z;cVw>QCfQzGK>25p>izD-ASSm4`^J8$PqdM?d<&jS4g-v2G>#5`3l{lW z9yA$jr5C@O2+i1Dr3aWTBUZ#4D8lJ%wQVc{0$qu+`J8m3rP)ySnH9`Cb(d z`}pm)Wx;JhbE0`QnglWT5xU!jS=%qF976EpDjt@D7X!n%J0vAb5zE&2G3OhYZm{u? zl_UQf5nQBPK`O=m6~G8F2~9-R8!5Pa$X?g^_mYX>=2qX|;P8k_NQ-YOocYetP0j-e z0lb3jAPlGHPqiWFKa;m&L-yu7uw=fQqC$ap39-lNaJ*z3`N<}4*+j9xx+u@3C5*Ch z_PDb!gdf~D0t-ZMBs+x&sQxgZlY212K{7{qDb%wD=9GS6{6Hd<4=0{Q)-l1;opq6Z zh~gMpE_k@0Tyyl`cfH36%(5sN!@HLsiX${RIV?6VR95#gG;-7|~c6q%e^Z@al9d^;U^& z5NQ(8Ib_rPx<*mLH&({M%863&@~GTIjLZ@NR7l_uCjjYiu>^=|l-uP2LEuqh(Ksrz z@IFDHMIx9BL?SeZy3TfBA41@s3K$zim=x@fP?OyF9FhorRimK3Tj@YpuyJw;5QQ=w z6lNh1wJ$EA5Q=t5-&=r3*4K#2a|-$wNTXBo`(NO1^3WNa0^`8?f>8!!unLx8a>z1h zw0I1nc|dzR@r&Y;4N0n6lnqG+OYNmip=_Ec0Vj{_IjUNgK?D;f0WXg%Zm#5^7|;DK zatJuN;QkAYJ^Cp4j-;BK!$Y}!9c~H5%#9n|p7J+vFd1{lR1l?k5Bfl6 zW9`$43<2jq*N?ER>#K+(n!Kz(Gpn%M66xa&N`DS$tV81-2-*oCD2q+0TqXmR z^Z()+xyo`L5lG*yk_3@k<=_**yB_n_ zhI}}Dznehlc?%tOWmve@yvENY1XmtQiFxx+f+zZ`iSj{kHT9=pMVx{`%pS4%I)ve{ z;F7X_lJ{lBxH(x3fhRa*DFfn|XauDHtshQ_%n62hIvFZiD8wIF=Tu&!(Lyy3(PTxl zF-1r*5{2+-AK5C>yUf%K;yeyOV>K}agLH-$(v~%mR6?cuT@Ilv0Y)I>m>oe-d2v{n z(pp&kw*N;0eoJF8-acOQzh-CAg|s`pY4njV=6soz2>krG7?b+isq+W~FYXa&L;0bx`10&w+y{?G#Sg#FTz_;7M! za)XQihg7Wj5VPX@WCu(^CFYQ_TG%J??y%DOLRJqx>KFks$9BgIRdc0AoRj;5t_+l~E_zd1n$ zyO|BsZ?IS29`Gg#98~q_FXWt8(P0z#e4p?HT`iPbqy*bPDqKxCnTph;)~u?v>a6oF92KIJpjhEP>GSNc6W%Xq}G zD9N+CB$)C%4*eYel()U{jcPk!7L}!C;c(+gt@p3$W1Q<+mK6@9?8eY{!}!`O zhNja_no~N2mTox<=UMLN^^veJ$YuIJ<93Ki75F{*5cQph+1#4V0u=ZZQSRtdD|prxyuPPUv+gNk`_{} zN3S^rjmE&UYP$$p85A;_Ximf6f{}%=98rvQah1NzO*~Hn`@I;`WeCbo7rB!6S z;(KU+gkA{jT7*5nt#>!r65E`#VbplarP8?lMK}xWZf}l$u#$srt3n+lc7&ia(7;eS zifV?<$*qo($Ecc{u`9YCvvcd`(9&y2Zn*6U{%LW9&d7weAbqAz-updP{d+7!RpQpK zxCA`olhAZ)%h@$+SKQ*UdI1CWk-i*Ag10y;q=pUvtV)`g5E6pf$%x!_nt$lxg^c54 zz#397BWcQ9Gcd6rmk+gbiAb^`1ob5;&(vG+$Md&;&jfDb(c#C^(QourpIBqPVmA(n zZ^f+vmxwPT$9$yET6r}6?XDbcl7E^gKS8F(1lxelT;zj~T@|UrV9QJB!~#cIG>X8* zjyqdmq#h#AWTRLIRJkiSjL-qH*~z~U(~&)`1#=qeHdGTNX1v9p#wo%7Y`t}*l-P{o z$?pX<7Gh>5{^}P#EXkgF-W0(%Uz1Q@GjdS6Yk>?HyBeS=($Oq>5lXaE1{x1W6tIT` z%k5Me>{E`%5*t7&gIxSoK-5OxVxHoYaNZ3_aYHS)LdyEoV8m)gVjb3EAZPIZWR{s8 zeXPKwMNr)sc8;KISmaH0k28!B^Tve2*4>d8Ir!l9(zhJ%jD_XBHbAc73ixu)vP4d| zu4UM_fM!&{s3&ER8@DpQee4}X`|x7O+Idu{A}yY}I)YZ$xGTgb2?wI@#UeV^ z{)rMGS@zb{a|xg$--5VJ8&0WBaa7-PMw1TPy$K3w^dqAJ370d1v%2W$^Q{ujw1mu^ zElejVC@+gPQ=6ynyf0cXN@jB`O9y5c??W;b>%5s z?ZQLd#Q)Oh(NjgoCB%}(HvaSMg9b0zOALxRR;BY`pC=_e_ohUukf`Lb;cY#6UG{92 zr*VxC@37Sz¥>IXbjfgEwXjbv{+?$**l-Xa4O*LqB!+-{d<&Mf&a000jbIRnd5n z!e!kD6+FqzT{p16c3D0|1|Orv&dH@0otNyqBgwr$(V z9ox2T8y(xW?T-ESdfr{NYt`EO!}Yq00kW@wDe_^2IS74Zn3?F@x~8s}gxh7K8e0+KM)yDre2 zp-ioRvD>;V+TG!nmsNnG0NprUZ|d-c-hpxHV96OngW)$h5<7Z~W^bky8>v}gdziUc z!&K!ax4~Bx1sk#G%RZ!Um|ECMnUTU9(1ey)O@ql+QOQL5H}q-QFbR;LbbHE}^X_T( z0gs8hG@;)LqI#qsqUu1|0+R931cz%dUZazn585gKth!4nb36iHRtA1sAMx1_x>wUJ z%wrSjnvq^*M{Z2>lA-nyX7SK??AYB@VM{DfeMJ~YGG3|cnLml;B6#k5MuO?!VYoGn$mkc-6sr$?lC>at>?pL~cBf^BY zy*6sB7cV<&9C};f_BnA^)*2QzyxX{aHM>TrP!?aXuvKG~C*;$$9Z}NbCGNnvS8FSI zS}+tX|1H-(nX@bL1(a>0R<;(O7J}E<1XzJ?iSB?_3l|{zc);a!BJ@gEJ|TL=o_k8Z z>ctbfKe>2`vF;2?S=k^qD(uXwIcsC+|4h3VkWSoO?Xw>qa8_6`qL6oy!eMeuhBc-x zDQn4sG?zL$#a45&8kZTIcDkbif$a-S{rE%&!bbD>!&2l4jN~lqIc?4cGY1k~IGq@~AUUV?+;C@! zwb%IsELs~kk^DSDo_c*AHkmiq-{Y@s$`v&$69T~%mi4Ad>$xfrW?c>LW=<2ZB)is# z!M(Ca(>qPv0SU~QCy&vj5zThm@ag{b^D$d_aB&HEwQtm=#H4w%51!Q>;ZJN14{>iM zA+0!eg=Kc(yZNug%(oJ{RnxdUS5y|L3BIIZlbL-=Y%rMtWF8SB1m)lE-T&;mc6}nq zOneK*gmvJ3cU)~b(GG*}b@Wj>(x1Au;$)eLwCvXafa6G7+ONbVtK4N-YRylNF;)zM zLVEROGC(BoH;P*rd4l%_yovQuU^~K(*Ux#uVMj>{u1w;m^I6RgX_s{sZr1guo4{; zObQm;HJggox_g4! zhlGJUp5#f?YV1V~4vI}m$9Ay~`Ti-&y zi}8#10@NlTlW!e&0@PDpiNE0yg8}3S@BQ;~Nxwck4E*0<8cNi{&Oz_ zbD3arVwpu@wHh#qWG2O4`GLIRtJLuQe=E1xpS{uYB>;CmHvBve5&8rjzCMrQ;$5Er zzQE@0)hQMhYxE@5Gv^9YA2=wHI=!O#=8;}Oy3@$`7|WHQRPiQS7YIP50u#0KOnuJn zioZ~tXnB8H#s|l1)D2Re2W)$|6IY*sN(x%wQ-!H)5tlilTUEabb#HxtWQ#z2Q(&sb zPYA_*PGtqY0Sznf-Y{vlyTAl#IQPH=NWZwah!|x|?aW;)ScurTSd#*R(E;q7Tpa&R zX~wuisw7=DvM)eOVV;YCv*!d;^t{mEmxLk_C6kdQAS`&_;ulvvB9P>(04qlR+X|OZ zRP;h_7u-J0_WcIbc&o2S^=5dM_B>2=^*ZcyTa)Em#5D(15F={<*Aq#=lvh_(K|=rw z5+MsBNnrf}j9bEub`E^6fO5(jTEO8&#J?j3v*1AVAGpvU(IJ#ai2$__w1f1M2-LTu zy~d(JfuTVJko`cA%qt0?heK`=l+!{j36U6J0hO_!9LI$6a2q;$e*1wr348h*NRIP- z_H6}3+A*=>!3YAm5^GSV<1&z<9l)>(3GFjgzx);gI81UHHc(L$6U)oX3x?y0Aw{?) zAMQhX4K&CJ2xCEnKKrkOGHOFy2yPhwv{1nuKw@(C(sv<9i$PaV14DrwVbnR%LjUaP z5D;A%S`abt%t9mMZm zDl(Wee{0YaM0fvvKcHT$a7egt(ck`WAKzvBc_=_|5F3L98u|EB$gx15Jlt~d&ad=` zCvl!l6I` z;K9QJ0!$JrARdq}dq1CXO-EBmKa$1%2)4>ZbF325bTV+H4I-TijG6c#g>!Kv6J(B7n<%EVg#csc!~6 zSl4&itX;39$q?rdQUmt{tk+}opa+nE@5#_jmU7q|oc_J`w@tAAJvD?6>-aPlxHgra zYGHI>(G7jOy!v!bq(Cv@Zs7L)Lo()kMy$5dXQn#+D+m~9l6Z}5Sftga-*do#2nZbn zEgdYXBM;BC{a9dgpiffHM_`L!clqVOhMwxx(rDTx^k+sF{4g zvLbfj^%SYIVZc0!wUSNVMfTHPp#M*L-e+cc)&f+DHS{p#02@#9BT@2PMk zC8lo327XOFLeI?2Mx+kD7lz~_V;)?Cty|DYm610b0Nuw)8cH*^C3<3RvbThO(GyPM zxw=3L4+|%|Q_hHtEpL`un+TU+G5DSykDHfsd1Dwm^XIN5u9 z4kG`q*s~M6I5CsDEPJzb!z0&PfzYtW$Uj=WRIbTgBI9Csuhsk|;|IngIO(r5K|In- z30r&b)O&$i6{RMU-um)rGP`y#3%P-viDCaP-0|j`WI9W$-uueo$RGFM05xj=Q^lU+ zC7Ke)pJu+eOI%!@H^>ICfA;6GS&&&1B3Y~$)Tp&lV`=7_%hnP(%7o-?+6WdZKYsv{ zJnsS3C!BvM+@6smueE&1#1g@it)4X+tk!oMFG{klpQ{qHP}8k$j4Rt*2+)sNO-z~b z$8B8dnA^KHB*82-+gD zjV4HH9!fH;Y}@S;)SKfY`gl#tnz$rwcn4W!@1m^!h)$LB32tHDepm;-hz%ENLq<8| zM#XT`fj7$v@Kn9_PU_~>DH@{f1n{KxCP#NX*0R(1#;hX?Gg!~ZSx*`7r(+K>?+!gtrZg*8n3g?d5rD1zu z0K*2~{mSomE@^4z(2p^WockJ3jaTAO^a>t5mK6+^CggXi(RFln%RgvajP!S(NfDR) z;8<3RBy%0G_&tw$$G*G9`ZR<-@vrFWX+W6Dq;|scW|1mTj;(s&65~p3q!N-b zy9pk$2sHRrZd_gMj3Zz@L&dokg_i%MX}tWsCor2gCaW~8N$`1^BMY?TS~My$MwVz^bgP?^8r(y1iZ;%)T<|5TqcB%b#1KNVz@VYNs zKUp20&AhrDi(Gkq<4Hp!u9G1;>xAa{4-^}~dGNcb4z;IThgFs}qNPk~-5or=KbKFG zv7Z9W4q!j!rC3lUnTzI%&OkD)L|DAES~>>9!)J=Sw%I4e+i$>2Zo;pqiTTEBa&m=!3@Y)-WCaeehkUz!u#H@ce555FY zNoq(H$lipg@xG*j!8Ieq!eV(5v8UBpgMkU7!wk{)DoId+rZiX9niTl3~7gHE_=0DF;{ zK;knscs!k1TeAENG!UU~8t0+Fk?^O9D?7ZHf6@6yK<6u=jph%ldqP6jVa-K%@U%zo zp@Jw~pG>w)^Gd>ktl(=i>ceP?u2%GEB?zCW4kZWJ+n4Ctje$ge55}U#O&$Tnu@B}v z=JkK^Y}h_m4oZ}d;y+4GpX?qms-vm!azaewQw(=Nk*hl|hhOXavgtW)J>Gz7D&+hL zoZ(yikiY5;&pg$R_9uwuT%4?s>s*3d*=4=GT#>x8;rC*VH%V0Vj&FinigDm$UNOKH ziO%yreH@T^|6uep8bE_KcP;`X7?NBS`Kev~!KtcFVKd8X&FAW|s%0%zd2**P2q|?C zB$o6!4`80A&9YzeQR155{Aobd#Bx@Pi1@1WQ&u7r0~Y zHbmUS5KnQ~6GU;F9RgZJ*UJFkGX{oeJ{mW=tU`SwUzzpP5z$EpezO~GYBIUIZ~<&_ zSDz1$fRd#FKZFoTi1Tah{1tXQCbDDB$B;9b?T&8Ycb_oh^RK_`O)4AS-z2EGUO8QV zC1pW{IUbX%R-;`Iclz4^ySiDa(na|<0B5WYFW09qs9W#TO*1}Enk%*{pb8+a#xLB9Jh7yU9mx|K!)2?U4qLX!9+ zc>vAM-FYbdYq1B(A5@8Nn@i>>g6?o8fFCn*6?+^1g-bv z?4Dv2oIC?qRabWMztf=N*MZ_f(U%MV(ljH(-P6rqJ|Ls+X}@|uWI2o_rLt45I0j@) zt9^Xg?4SWw&yyC=j#1!hTveUUocu;<&J(T{svlCn8HIAP+n;yU@^#TqHN?~klqc4JTH(Ic%z7AiuREy1dOt53 zcL;vmm!s*mLyf7H+&Fwk;ygL9`G?{bFq^JQj5u&8npv&hE9L4i6|gs6d3{*{byP(= zhFIrh8b0FHe#}U@PrBtwkv_!iOu#I9`Aqh2ei%O@gvNn22;jt*h0n%K<@U=nQCN(L z4vt>hxXE_9)?(DBdXKmTTG_IJpe0yB5v?bmStj0MJ`MVWGX@4oPgv+X&94 zbFz$r>E*5lJSvdW%0D;X@UsLqScKh11bVuKPbMsV$ERd>9g>#2ckWZ~ zJ1$W^r zY=bWW$W*q&seQh+-u`aXciPlFDVHH;@iMS+ z**dU5cSRJFf=55akTO2O_7^)SP0&Mp4c=V=KA3m2ty7oJqRn}B^bSw`ZNiwaXO?me z@RV?)r1>>E!G(1HjB)q2gcT!`TEhkhFsg8nUbPy(rc`aad$$kFPFc3GMmfJz{(_#L zr8m#ihv@5kb+LjH-tZ!0Y$>|7&p+zx&Zw>(cl9Xa^~!0#xmU@;o(HD!aas*&r!sK? zC^W?9M1B;d+`#;MERwh`MejT0NhxAJGMpu~jcC>@%kCO-X^ttc;+A!)nbb#w2E|xpQ2Vu6dQ49% zF|su!qD6C7ED-&x8m{3;pUSt>>f7i5;Ol5Xg3pl8J<^Pm8t7wY^I};mZBtTOa(U{! zza-aDrr+GNCF&)GslRS8safU3jh;Oof2TLw8CTj~xtRbCmMtXf3JLP|GoRZK32q(X>vD7gczdd6 zoUJUv#?_{;_?|jjb#uN=1tzT!?yVx^`%OZw1!PyxvIQWArD{rvDU*&n_foq zWX33Xd%HJh@)XvOYT1q-z!m?zy~|;T3SSCy%ixirP^;d|C)pygb>7&rX5Dx8B(x~0 z>PA$|+qgut4g=3Bck|r0@-6%8_0c-^4$t`M+PVZeSo1W?7sI3l+uwbB4$^$bmLgP; zAqp&_og=Zdfa;{IE~s-r_=|h$Rt_VR|Mqa_E`xB><>ASLV7Dj?a7>T&mH=NepgdlQ zYbZt0mN3#OGXr~cWEk=ZM*yrEHjrTB75S!%vjK)^U zQsgL|9z~@Lgf3g#gRg*V+SX0!r2HIkQQI$O1ws9i8X4^pA&kZ=DAHitVv0MNi$lpJ~ug?i!g3I=W*$% zy;0p7P;=JR^kO>Uy?#``;i_|j0KV;Nwb=zMhI!Sv;f(pWa@2Zb zii=AJ-lt1(*g_h?kOd*?r9ntfnJPi9yGH)yA5p0@42kU?aIlF{_^+}FeY{FZhU^{k zJwBqFYDzWr(7Lh&vX67eJ*bL+h%s9g@fNB3ny&L zkEXvFEh{fnDdpl3Z(@?LNIhgBz6|YA<$28N#$F`F8h*_WkYY7seAdF3*PS3ScPUE2 zPQiJt;+WM8&=n1GY}zBWKqA~gyDN;*t9ra}^0;(Us7U4^_Wj9EYJ1i>?8t1M>WK<$ zGyDze_34(|N*6Dyw0MIJThKK#v1Z+h?tRV90}+WUudYMOrR)1FupSRIb&8hKHQ`mb zkvi?nWBs?X4S+>5g1BgB%h0ivOS>km#zez=zesWl=vZ5*tf`mTP)WrGorjP1$?yxhc~;0(bN5O6RTg1D zY;?f%dGim`Aqe6Y9kCU~YwMn8ADsIl_s}|mn?(wm!3R+fDfYXbe&|(dFnW@w0nXbQ zFeTY3=A#?l6NP;-Q`yzF-#!JjnTXkOl`BvyPPQ-q#NqPY^0LwUCeTFjVzmQx_vaqa zo*_r?pnhRe#+b!5!rSWVzpUsE z;P~Uod}Zr5u5>Yod6eM?(xQM*Gcea9W-N3OXwMHEw6yfvfjPxZDYNfRAziifcH@qS zNj1DeFXC=H(VFFh4gGvMef8u!tDVyO@m6q1O_a$WZ$0T|duSaUZP`VscMRmg`*erQ!{{A|V>~7oDj+&5 zGsyfTOjxWjW^jJB2=O5WLbDu3T_&u<=h9CY{xK;XOK{N)JrRU+3bsQpkGoEzKMdP@ zi12HMp@1>1ftFmnp#F*e;jl#mVEoH>(;@Z#wlMHr4^MAgFRubHM3~XWf}w`MBV|#w zxb6eWwgs0dbn}*+5#mFL9V!ivl;wJNjbvuQ;o|a@%|h|``H6K%V5qZxjz$-oyR$Vf zxu3|=g}J?%kOHRT=A*PwY|My>iylxXo9HaNuX2=g%t6XW9U(sa2;f2i*d^1)XO7K2 zRLkIOIL7A4ks51*{8~LO9Im5(K>)imNj#?n&E+RxdO`E1cd_;upCzvf#2pzU9%8C{ zYF5tac4ZE+HTV(bhm~+A^xTAIGwbeO@A_vF{i%=Fu1$7-47TY$n9Q%&C{`YQck9Y4 z&0h<`Y=v--LM#jPv;pt}W|)|;EOz$3C7q};Nk-yV40H)t2ytY}x)g$;%uW(Mho$Q)BnGVaB2QkZHct4g zR=zWzbL&I}5h$ntOffzz3H5%pQyS9}lIh>&zvo=Tt-1hHEdKNHx7=akh%CA#tkxUM zJ^_zgJZBzF4)_BEo=;7Y1Ry;#U3^Xo*UB2#E@*%6$4J7fs^e%2Ka6bumUS7pPR$`( zuWoHFgyZ%Um1u+3R+Q?Ie2jR?*Ah5fti3TIZ(_g6uuc#GN>FyO`NYA3cl^EIx6zk; z-Eo|CGoY1H2A^N}ap@B!)#b;CAyxcg$*Dor|Amu}GR_k4 z9(k-tC$UTHIk%+}&r|Eq$Q`g{UVBxuR*b7hLqZ9jDt&C{Dpe9J?cAAj6w-r3QOr|e z*El;7ewzoXt_Q_<_IeC*CD0;IS=`k}H zyS9HyBr&{Z&kqll{!wIF`G8Oa@y0B7QJ0@$Px$he3L9oQ+N6zy-q_B4a1P^|V6+>o zN->DzY*Yccq!FkzmKcd8bA37uRz38A)kAn#{sEqtG-dpsmE+8;Y5u#w=)i1Aj$r8j ztG!RI|LlDNv!x;ar*iy%gc#TVHICo=_6eoXs4J=>W4zqQhsD%s<&AsLR7`9j>O^F! zk|dx;{x$h}vdkBZm~&uVh*UGNCm0$b&!4w=1g@79cPHh3{|oL5^8NNaJjoc0!z`Aq zDMUeV&!ks>yFZLPu*gMNdM5*elu#7@4Ym zO<>W)_;o3bEkWiVQkLw7BT_EDRGcEGjGB9I9a@tgbX-hF7wzG4{*ifjnWhBK!v!iFuZ?x5eqpb(y#T0j*ce7 zTOPJRka3>C>T2zU0~G8tcrQxnV8wD8yCAhkD+~kS3pNif8+jiL#^N~wGQ&=yA->Dj zP%y%wv(TY3$v9+TXu;~CwmPDL;_GJ(yJ&ZJE_$a&%1I$09@;f85p3DzvR%*3r0dNB zsn(3PHRT5PR6S}zU|w<(ouY6`KaiJVp^!*HiO!zzPiKkRH-x3Y|D_ARB+z5BtEveT z*2XBh=&HZZrvD2wLYxAioBbBuyrPdDbg%?IBES+T6X#djyCF`EwwA0$ffhZu`w^TY zD(B%OUcJ7+fT96AK7Wvt1P}37dmcTMuubO6S>pcaC#^z$sy`yIi9e8@I)=(DHjUW3 z2}X_^fyEfGSEFFPvCH|&KDuCkv5uzK%m-05ECu4FP=TNkuv-UIBr$!((;^T3ple{l zW}&W%RE*l}!5S_$Ojf`eLMJ_2Erpm2`GcdhlJ|x8&W*rYh$U=ppo{mGeH~;3HH_#8 ztU!CldO#dTTII@lM}n$DsX^T!x6$<1oE-&DokZu6H7yIUY(7ueAS9+v0*?)Kgg{V` zFQP+TPu{BSVV(eLN81k#Bt$9I@Ybqh9n3d--ko>@=pp5ehk;A})kh|J7AFgY+=+yw zm#K`&?M;g8Rf+7`Uv`4%Q-J7SLw`zF^CSgFT_!BR;n@?s6!6yHg*r@cg#5T%k>9=; z_lfO>KI*rUvwtw~{zhy`@5Pr-E)kEyg_s(v7N0?xm`wys2q6)xa!)r6PlLHhKT`q; zndl1!6PYjMtgM)29_W?Nr&JW6GQ6JzQ}4kqki^JT$#ZU zET4Yg#{dA`f8#bASk|rc-f>st;ObL3;Ge`8PT09^`)`#=5ZKd}&lzbZ&0%#l)?67xcdh`8jxDFW57+iB=b%SeB530Sx>gWT z5EU5E2h*%PrH9=sR~B&wmBMJk!!%_RG8M{ z47#935ay-)+f0?Tu61{q_k1UW^rP=n%}Xbz;UZc9vP}CBaAu{8n}M6|-?=~-ou({y zpTR!;gGL?E6@ToAxkT&9V`u;PFM3Ti4sQYkg!R$vIP2{?r!GOja==`BsRCx+obIKo zrzbhplus8mS{X{e5eyYm8a}LgSIzTT6}S}E^a1{qKt1lQ(`M-Q^gx z*0*0H-iVE4u?M1*kfEAlDhGsW%bkG!M5~=<3E|nEES%w6yHjHXut{B+6>vRqj7@E| zgzZy-^v?chOp;zhJrbE=uvE6&zv-E+)A70dEhS~Q(~GFw;)zCrSG}UAcA#rd2+O~E z@OuJ8?FNsT)Z-M7xLb$3L>6`*4=#+T4Y~&org0<#LNuNw7oPQdPY-*cdaH zG;VW^BJD4_#@9G5V9kEv!s7orT>z?|4uY1jPST2gYzG)>NgJfKE-`)jQ3KCS4ax@N zgNKXEP?7dN7b$=(gW(bjXd_0QH9c5*YD$^#(>fkHLp$&IXGvC16Csh=CBk_S}KgOP=nV>b6_#i3!*pCa-82I#1rp>>hf z9SPvRc7$0PUUgv?TRJ^NrXehWj3X;BuE5e7?<Z z$y`wA(mPQxc?`gsb0|RgC=Spp3*CK|AFd=%5JWL>>vvM@Wl>%0Mv>J;Vr?SsWi1pkZiG0MpO%&iKL-E`xgH0}Gu29wi)L zI%pP&Z{rNbc1Y+TT`4*{;Vq*+)4|-{szrI108|UmZ zyyRWM<;96z!nx1ChG!dU$cz8Hqy;n2E&K{`QEX!JI!ld59$6keL;y8xHWqFl)J4%R z;F+TC9FziQ&Y#0qlW!jsK&OVtM^OJGzfrQ3vHu6$Xc6GzbcT5QZ{q0rt|yJm09HU# zLBXNSqRSsx!zkI%5urJ8s@A3m=`+}m&}%g4(`U@+nmdvLBX&=uLS9BT4g)Vp`TM?Q zVn^qwE}}3QFt0T|z&NY7@#m%o#|n!{z~h4@mUBwa$NkEO$7~OMEBKVwgN2X*=zOwc zK!;lB`Uy~<0s@M5Wk^=c`!8}&^oahEvt`z3Ae4^uV>WP2&fDL}#+{nHuW7SLtTzVd z5@A{V@l=aa^fEN_klWsD$l+PraKh^yf(o3Sez)7Olav-BRzW;hpQ*tlkIKqVa2p{l znBI<~3HC40U8A7>tIS7JykSFaj1d# zgZ7#NHLfI+l_~^$#6tp+n0pe3?bZov4(YHT3-5spXHpfH#7Vpt5{B4aPYj~xqn`T> zIECnj3sAznOWb4KrAzZQR7JzeM*LNM#}Qc?hL(l+!HMqt9fO-2+WWb^Xy5blRB?yG z@rT^3Er@*^C>@Ka$zsQ~P*14xD_)rr!VLMhzUp#RmuSXlY~BH-p+$;afbCXurO9#)bwflQ}-C)-8Z^k>>hq=k_N_Ees@`=eFyX!&x?5<2G zIS3jBP0#T&3^QSuC>B9Rs?W1P7LRxH_abdHk1qxy>uOHg&X7>5Z<7t@f8&G!U_Fqa z32sWhB1`~usW$Wk8YcmcJkV7rxig5wZ;V8t@*@nw*dz`r%2O$XxfB}w+%XcySO!@V zGGhHv*U?L4%B+X_V_=T$Ul2VI>D4ShMkjI}6=o_7MUi8weoMS@j6lez9Ha>a@1&=W zb|<=Hg8i6#o{G3fubO?52(jo!ErU=&z9JNMKa3ywfIZ4gxefG)E!3%3{$t4TAA9oE zcjV&wxA4!RSr281(lyG=yaA@{C*+FEZWUfV?+gDk0aoDC=UnfANM91!O-z}_CU#~3ndu}*W3!#mT<2vhF zD&)AJCe&=zano?ug@f{|)f(>P!mDjtZCk>*ZU1k=!JuDxn~r$fPzM2mZ(E+Ls>L?p zMuFxy`Rmu`K4JQ432O**?5UG3Ji1qBef4vNjOea9t;|&bVG$fvpY{)@%12#XksCn0 zO4>U0r*?I)S3?))JazZ>-FCUv(qP$9^X04d^rEcPcJZvd>*+myhcyB=DsF6e48DIT!Kt6q>M(8Y&@YsjW&?1*ui1&J zBy+CU{Tk-dlu%^oh6{mQ#(XrZ&j^8Mw44zf+QZNb9*EAg?&N7K%ZGnf-@QyIZ06AS$jUrH7f8QCHS*X z@=`}LHcu^pkoW}H&2oVh>V%#c;m#5y;VEQ4G{6T)>)i2!-M@lwN@F)Gt zAfM$R;)$R-i1@}52L`}XjQ@8+QX!RGQIJ@wwQAqW{cxdN#{qNBV2Z?0S zipE$zP;r$^I#-fwq28o2InKg`(~3nUzr->*5EPSKZe6P28Rar}iOz>5Y#Cym6*;yN zp_9xOA!|RC5JgGo?oYDVkb5T>5nP*V5>c?e+6qI}v%>9c zfXB9%y9Cj8$;(0jcYj6jRfR$7{j#BSA9THh3iip}Btar`VuyS->JplxCZXfH*9hl6 z-)5JYEB3^K2q5-5_+Ox{Oop%_g)=n(J&;D8lkoWos=wHg66+qDts3#eu#GPW6DFt` zYo(fc0nXEdn1oe+6SX;7Vr)TPXyYPOMnIY`EMT+udZH<91^(KAz6^mrP4Yd(d0Y==R5MW zM?bEQ0C1zn$zi%*6w*olRsb*)C>K>aWEay<>2sV(lbYw<`))ILeoGp%;d1FpbKVDbw4or zdP3uRxpT{Gb}n&4XZg&j{A` z15{Fi8p)f=@?I(=QOrmU)%mK-Rf91m?}eZ^qL()umPJOuT;kFf|68RufKRNz zCp5H*iqkm$J=KTqYX(HNGGDI3N`oIGHQLGDFrl81=`3F4Lq|y5Lfkto7o1Z{&9KgRn;DzilhVE2jf7kt}LC08dAsrVTJRmIGC1TB8lSBCu)*0Dn z9Q=9|^j73hnJuQmS%OXQ=S)brDBG!dnSf_J*~shq(6nJ|K;4VG1j)fT8ciDJ^$-bv*Se0&QZDvQ*-p_5ycg zU6Bpqg33O@t)6wCN)W5a5tjlb)bd%P;8x zD=K;p=4^w9A5E?|_}Gxt&Mb$RuB>BB*GaG4EU@g$vhS8j$*<~73xM0=lk~;YG3^nd zC{9Hp0mrQEg>G8wjcXG*+ihnhpLgk!a7rzV)X+g(oTH$2Cyod+=GPDcDmjImuI#DW z0IY5?(|G%AeYdr{`CZh)KwRkSlk_?-RzU5Fh){5jSZY^S0ODUL(riqDP8K~{FGOgv zzmBJmzl21LO(=)|J_4RfLrFDP$EVom-rG$j*7hyxMp54~HZ^@bEQ8KOGdS?{nxYyX zkVwESv?7FFP1Y7C3(-W2FB`R#2GEfTlAM1hZ7y()6(<8UyM-)xR_}CZI%O-Cbt*qv zJ0pee?0j6Af($e<5p3}mi;v$M2$ZGgl z7|?8~jy_t>)Dg5-0kLI&vge5jiW9jeNzDl)iLekvhL~lw$pargrj`cUtmR+%Mc@~h z*I4Yup6<;oLa_u2-XnfPBK;DZEq{)W4f#0Wkj6e^fG#NROG*};zh-=6C{Gg`_((v| z=|R)^obrG*)CAn2GsBwQO?EUH)H@6@Oo#|rK}3T2a_^rub(xRQW1>qt56eH@=lqQ< zC|v!+vletSZP^w*mKT+u5@qFxTs&~g@NKs%aJOs&iV?_apaB|s4~wR*vvkbUfl8{JaD0?PIFv!d+^UJRSNl(nYov8FG9R^$(ehEuh0DS&TLETcqWl}2^`77a4c98J2Q{-fh zP#@niuG1u+Y$JKH?jYxF$&X#JNxd;PX55=t2JKzRGK2q7x$wlsL9mL@AUWWx7yHy_MSvv@on&mWNL4=Yasp)j3X?t-2W?D(g4@M z=xI^Az%amE|K(-<|HC-{C&Pq2ZEhDBADHX^v9ehId$R0WThjS(1iklCJ>My?lCJ&b zcu#u75kwG%eO%HA1LfX>Y7&+SLdS&|hDdu7R^j5Ma6tJ3~ zL73{^I4SGTz=arGq&ezCtt!`1BciZQ%6hgSZtUs zyCKr2;5@FfKa60oZ;Z+;hooF63b!z#K@GLK;DObd1>@*j5HgZ3MUo6vOvyses4kR$ ziWA!^7p`U_DER5yJJ4Nm1m%s>UM-@h^^b0L?lRKO)Q0wIumUbi!GH87c{^T5hJ-FS zU0GE(lbP0{msoD!TXzE4wSv<_$)M#1Vp|kNb{)qKdaF{C2wEiPdh_n9|0#Qa`=i(j;@N|X{P#q!*MJz7qLypUcS`>1geEh zdU+m?io)PjmViN1xRBQ1m~n-4Z;p{Dc`UE=Hs4*F5#Nh-oD9G)*Er)P>qM@_L#Ng> z4nAyw?@1sd$eK&-{ECRxq-4&}z@xvS?Lfr*C4~7j_&{M330o`_fmR~;6wUc}$3g zFNXS%nGX~_T%Xt(qW8{R%odanUKxHhM?2EN^R{rW2%KN1W+|H~9 zdA>f|BLE{Bx8T52O;S|?w5Q~cvZWO8(bPaK4X=eOa>a%s6rQwcvi8f9o$lco#Wxc^ z{qJbKIRBaBmvW~_y|96c-mR+@=tPXQcioO2d?Fa2q?}rKfsj1zuR~I~Gy$N%-sr^w zdi<%RZa?UTpw&^MS;r6Y&*!~&|AOY^s?e}u7^Y99mux`6@vXL)tcw4Bs8m(i1a zx%U!uVHhlX6Y;=YK62bKhT|65sF`g_jY5Pu6z9q?%Xd-aDBV&a!V*z!IKkjF%_2&@ zo*BE9{}S3al@p%U=X+QDFbTKl6KOs<0#s#tcW(p><9QolZcF`}_E8QuW_C9zMkeOn z3}6!v%RhKnA|xU+L=c#XN`tb55Wc=LT)>NR(7C!A41lv=x^k^?mzfmWlA$cT39{MY zk0T}kODSik@onb-TA>)1tn`+O>X7afAjHdSDP9R$Hln3<)CP6_#<41PV!y|HM32(y zBR{)mYKos&ZvZ}(iJQNBrwg?8SIwr$(CZBN_Q-PW{i+qN;?J#E{zt)1uHjotWfY{bTUKIEwr74_*v zMP_AX{;t#+KOh{^EiAFo!`ENF1PWv(1>`{42pb2tIS|!Z0X?A&+(OX`YWsCqsr_kU zigPVhy&wwBM|zs3yH*`A^a@1un7=D8RMzxI*we;5KN49#V$=9WVNA5%`%#&z?%J{- zOtb(=#m(jbk9a7j>*5UWuIlT){TqSJB|La+?_$Pke*Nf_4MXv^PdHR&#v`)<=rFM%;yFhtK8*n{N+{*z7%ePml27|n z5Bq8u-4IXctbr+U$M?V`vX^pc**@6!(1Se@E0=j}-NhA%UkOQkN-uztAQXFFStis~Cs2F};Z1Ec1CjkYV1FSn$+-0J zP;=Ylb4M5e=|7KLGEV$YT8ZEVap`N$J&<`pf{RNn2uBvI(ea4Q>th zHs4tJ{ncsvD^8KZxet#Lv<-8)FMX*Iy1n8(WT_ENO>krlyS0eYR&uHVe+pnLiMjzD z3zI_LJY??DgpaL1b2eh)UjW_wFfp82hKST$)&@XyL-YGtC$P~bc3h?Ddz+iJ`x>3UVd>(2_ z%`_rqQQKEZGlsmA$hB8v+6Fj&f`Z?PqDp$ALOY0f+n>Efa3a;!HjHD!a62J5U%C)c zN*J+~WubeLl)3g=b>`+_xOJ^MboPSLowuJt-g37qAJ=^}eqbQ3<*y#X=fhWb`B!52 zRgMXTC_;&WeWqJg`R~{x(=xSLXTb})ogI4qYat#Q1V-18@4^;%Qv$qrNT-ZU;icxA z)M487Tv(9~9p0QtDT8JdsFiG`7rd2ToWC^xz>0Unf|6EKr|GFUi=0G0S}#?nb%z!@ z!IHOhSYk;|cyGiAsJ&SP$aKa!FwmVh z3UZez92c4(4aBs*WdXXHZ=7B4_xfF3W&SorP9Jn89kdf-jM|ro9xJ!`3#+Bp#`}Ui zlPGBqnmL`L_^cxArnXW&lIo(pkLO=uQ{a;(64v{02dCCcuq-Fi&yBmx&co_lD0VlR z4M_U~W+klNctMNW==hM+K-JP*pekUG7QubbI$3P$?ZL}sP5(89$GY- zs#Q-(q(F&5OhkQMe~-@^j}0rTvKQZi*8^Kl%wKUG=bTXtlKv5@GBw3xEJPNKaT(Qc z3>#d>cJ0?(PQaJfCeR?=AmJfl^OO-$IVTzx6>aHbjD!o0fL&0J|e^?|L*7 z@#$FvzWB+Pq29*cqR%7iIj6`kXe?;jHRbBlDCnk96aY$^fqd|DzZ3P96#Rr|%kMP< z+CN(5f9rS701>kJHW_b9^wfNG>aF}RED(ctldXn$oEd@UBBdyb{o}+@%xK@^VQ!{W zMA{9V5j+yp1QZ*!OvNui7t{hRC5sI7* zi$XXI2Ci8qw|-ZP@}rXH_eTaJd>EC32E**AHKMHZMv_F{YMApJ@EPC~E8J9mPu%I7 z8xc)l4tb3mA@sguz z^Z}4`D4^OQ`yzmj&ty+Jfn5y1C%{GQ($YL^f>ZScn`kK zsji{uXFr|8wHBjA)A?cl_d?^x8^79_xq^eZ?dpkEgV#4J70FYayN!aMEMQcaYyU%J z{*!AikkP&e4UNpH^ewbme=D_l3;%Z*FyC;l=3h*RpJo*CCsWMmb`R8E*f!1g28%mU zEppTN3AAHqGGS90_LUG7@;#JX?z*005F#~td<(D6xUy_Bo?ut*x=WuOL^0C|nZo;*Tz^kivodWF`?Lp%_9(E~Zo*C-d6C-%m5B%FE(9 z?Mt2Ug5*0NndL^5$w(VK?k3@&1aBZ2w?%MnvPBTmEqEWu9z9ZX+7F90ztMiiOM>o!@HOINB&O`_B)1?6X1PZc6P4kwFTM z@0l)Vdk{>OC?9-t?A0R03xQ-u=DmWv)Fo|qV1KE>d5_~+axSaXi*e>5=G1$QO`@a| zB-oT?Ziecd>#aXaj7Ll2=qLXHb~dkdhDn1)1R+fOYzBq`VPXE?ty|<^`Co#D|5pBY z+M@)puyb+$50J=|j%-@iU*zqXx?MB!9Mc1T(BE{~sJu=J_5{z_w!SwYq!wa9LYVQR zy?p{tmTb+F(d-!Rjkj!DZ0bwuhAXldb9Q8fg8I;c-+S-pBQ`1G^TX?0==wWiJiqm= zi^%30SpL-&Zr91tt<03DxdWb@ADpfhX&j=QoBV50yLcXt-qSAnx;^QWr2cX>rH)0M zcBnMCLaVlKr`B(kR{3qi^9xW^J%^=*-Rbw%y%t!m(CGW=Rhg-~4?|%H?mn^tyg$tr zYV(GiomNxedkOCgtZ}y&+qzFEZe9z{LBr~c)~_xa2|eEspbt?QiU0xOz1H@MW`1vR zoHL#);X?s1{iwk>F;2ewy<2-4R+?`Xss(CZQxE#ww%V8SGqmV3bU9@Ru!86}Vcn9A znsv2x{ym98`eG~~zlSRpl?(N=E7@q=HE#gOa}WkWKn>ILr?IWqB>1`&yA`q9`d>-# z_&QS9m^S8-si1K2ivaZn#2n17hrxhQ2LyxXtX5Oy2}K_sku~)aNYL)>r01{}Jv&_h z#cSuoC|>JZzhd<{L=E3r@AIayK0BJ0h)On+T136UBmwF-mLB4 z+V9EdATQ+;Kf`C{3TH8XQGsEaQxf*cOX8z4o-keHj>$jT&w%o4dAeqJH$rE*BrbI7 z1er#qCkj+jk!HO>1J&7SJ8oai%YT~>=(xRTLk8{xad~z_tSW7%_Eaj*fQkgQ` zv*OqOC~@x?58Yhsyt>P{1#8t@-w!077>y*7)*`HBa()-&+A(GoFc4} zM>15K4FOSFWZ2#LIlEFNfkgeHBST@~_p(?NNRLfm=_L(vgiq2@#n4JzDI|eZ`Jx3c zfpFxABTmQFx?cnkNeR9@CG?phlV%!Vzv&SpcIk9Spv=O5O-GP@`t{$Ht}{4FxpqN! z-kveT?r+TR;D2o?YGg**zS@p?L3O-qYwb1IsRGOpv4ciOonT%gwu22@t9C+bKdbV% zxWU~ zQULQ#F!|XmJzRa#!qm`ZoI9)?+$hBK{1UMy+t{`~GI9R=$)tUfC?pe-K53>{>JSXt zGaI6ISU}b7aX2nSBEKN9qu4EZKT_bx;T5FHST71m7I<|w!|KH-X=DC3%0$G7nVk3 zqvQB=kK}8`pH9*+7UUWK)Y}r#s?f;Fu1CqJ$LJEC_sPhS-v5oQWPTmvX`>Wc__hXf z6=86d260u_KqKm~n!qkOijWz1PG@& zE`$9^*g={lA11Fb!4# z_YBri0g4FuZjpp&4!EDv*M#qdrf9zaIhYa2e9vAT*b!?KC1dz+wR&Gkl zvO`-gSf?6^FjW$(ERtoT#J)q4uI}G`w!R~y$lFJ}cIE~;HhFQ*`NMn;K5BtC!TU2M z#@-Y(t<`w?uWtiT%EUNzmiH0@2h+9q2Y*)&cVQBN1_iz? z%*Eg+CR04B53!IIkzobsu4qP1Avz<39KZUy`Cxv zW_`C%d$Te;fq%RFHJbYL%U;%NgO?3M4qE0&5-q4tLBnkcF`9T)Eq3G0z9>(ac3d5P z%=+)Q)zozc7P}$FGgIi=mR@cFbIfnH?|dSL8&Oy$vU#4c#eH9>0tJNgd;r1}kO)m=s1zfu5#I5R&|hUIg+jXtZ^C6K#2*B(N{Ap?sX{n2 zEt$~5*%8m?TBRNVm;yjstaX-RIn>D@6sdHx=`jig^GU&iD)hB-|L^GK?MWLI$7 zGy72i2m6c69N_va^>VCMm+i|yA_C)~JE0Vob}<}eF!L~=FswmO3il3Atr)U*c<4k~ zDMYM<2SB`xqJx;E57y5oug3N%CK}kOLmq%T&;)$$0BM&Zy;d85j7ia8Bff$WF_Hv9 zIui|TuqOlMn+33%;w1ZGR1zzaM5e~e!QuuB1sa_M0M@mwmjI>~w^-#Rpaokj2-sFu zKRa35z3;T9Z&Q5+`as8ZN9A!tYw1|dVdA@R#UVbOh6Z9G$kVFWQhiXSi#Hiut-m9S z=lp~VQ6gM1;s;78-WY^ZrL#*XJbx7*{n@>nYFRen3d`OQ@NaZ6miqxeI#ck12Ih+> zL-9>mQ_Ib;FiU;MfR!pag>0vbKgYw;4FH(*LPnp3r<-p&6~+c#5nQz9J%<+eM@bBv z<-=hCuv7OKfr&l+Js+B%bYL913MN+|y zCl%I}Zjk3nMVaA6ux05MXKlLzp0^V=Fjo???RCZZ5Q?J< zlGb5!C?gJOEHM6(H}5Kui1uk%Y^+D#gY^bM!bQuV7W2Gia6$)+o@`G}nTSBpg%)|n z4=68}yOk|^usWZsiXvVNV#Zk`&p|P{5*zm zHc@eNH{9p|%=qZjYtCvkPhB?%g4WF1tZv~i3PEtPt z!WU#pdgT|6c|M7jY(>#*5ciqS) zvTbHG6COPH)fgv>!8G=@ED%z8f!rr0WU&gTBs(jIWo+CYKCf_*c+3`Cd0j}(wO-Nf z+i!mksM{ca;9Zf-IJa=wcF2ts3RzSA%@ea>iC=J|e=zaQZ>q!W7*}+Km&BqDBk?Fc-;l>TdDEKUEU>2>;9a6i#w-^KouU zd2uZ<5bFM-rd!<$gEUHsE!V{jKT@jLHR5MVkC;PJDnL>*$ahcpx>16l*K@NGM-0_p z>8jQLlK==;t)w7-vVRV>;dydX>N%U?hWAptG=$YYtlEUjA-S34*a@c+*Ku%FPoTvC zR0AipgUd_9wq7Zv*pFPLyIjJQ^P2@wfik^u{a@Ms%>}t;7H!*!8>k%vyVd zQhf;nu|xg7_lxtXtP;7;I83F-@9db-MWgIQIDGb^39%`&+PhH<&u67jXj@EQ zjvNt?@JQaY*W*{khwCjBv3Pbj1eL5AzS^%erWfO?c*hJ7t84qn%HpvQ|DD>HB8;QW zxzkP?n@eEfX7lRoXIb18j4L3@wfuyIX1hAoi@?+k%lHaWV3IF;FD(xM%cLd=^0#i! z+WZCr<}t&I;&q0K?9IwoO%hhNW|Abap02qftCBwhF#d@D0uRxdpH>H&(qVY}@{}^p zX#*U4Xwvex^r84`AK1^fxG=>j@krqsj_1%9kUB#m|Nn>MVEZSo@t+6b<0E1eb+AwS zZU%+`Vfp`Q&E#PJe@k+3u>CJLl9U8WlExSb3<=<3V*MX(#7>>pWrGQB`+=5C#iPNb z=Zd+<#(PS~!46WVkbW8EC{a!CWd)OnNI%;f85pS!@l&d%$h0}Om#^CEtJ%lXd%RUy zhs;aaeC`_QXrp*NSy}%?S|gw&ruR3?_`Z6kMTuw5v{PYLm}@6$u%o}76BE^ixVMWyp#EyPU9bF> z;f+V8D{}GPp>@6|wbQSDwoMFsz&g2NbHrKyXi$KKsTm%K1(l57!!!cb{FBPKT2JB2 z83KQqv~VoN+?%yAqA=S80EqdKKBFEa=<&7>Vj*!(c2Us`PL)4y{z^C!32#AC(|2PD zyLULv$Gd_nQa{|dP+cXGpWnx+njz4kj)IpfCa=1gb#ZPgJ;uvy%1m$z_POERSBM@& zekU_n(k6GuA4No2N5pP+S&&z$1|@9=-K62g7A>MXcZ8{DtGtm0be?KkA0DDb{#~Er zN$e=|=;}2c7!NG5!1EmZhhlARz9inzXrUtjh9WS^m|NsJOChVuyt8~XbVEc~3Il<# z=0&N1SeH;7G<$TwQlc>m5jXhlu*LO6e?@GXVkZ9l6>()C1ur)039=wFlW}t})Q>QM zg^-tZFyNS_mquy?h`u_2Z%)idPHPIi*2c;t%_<(D-lrt44OzMtt33#$i{Ex`9$B95 zu|0ic&LgHIx2qch2Rj1Tn)P8XX7@J8cu$Y&153F{gA_I^{B`#6F`03s!C(Fx71~ZV zj}sOK!WOlpSZpk;hX`Yt6!kSl;c|}?UaQNJOTTkHOQ1srP~n9V6F?Kp-|CkpkzU5V zlS5EIJn_GF;@aqs<9t+`U=7#OeCan3ksNOE?wBb@6Juc7=T&{+6~&N72)@Vfalj+E zc3tHeg0k?8l>^4}4jpiv#~bnk0_DqwU%4!KFw-j)wYF4qra2rZT#_Tm==jTdJMUpM zpPb>#z!iwiseMO){R}uM#W|y-^`Xdq>n9~oI~=3&j0Fi!1z04f+^$6Z>)}%1cpzk% za_|+nA@~ONVY|CZk_03C4?&EN%EI(-m;K)iVrC9jCaxqw0So{;`~Qs3qF=z3vUL~2 zU=OaZ;jXUA66dV>B{sHZUnRK|k0VyfL87V3Ffl)H>r)GBVguEarVHJR2 z(pik*pExKdNLA4?kF1b_1)uyvdMKh3TX>@bpn9i=rn}pwMvzr)?YD1K%Zq-*cqUii zOdzxjVCPmMRY@=!CtY3-$o!7b1)toXPq0~>1>n`!S5K@T0|cZNW;Y-l+#sN+Fa?ZK zjvMS4_1T(E$KLgn*cgtG?!}Q!&w**^_(Km&%t2on4+X8rfNV^a8pIwi6H)uER?M+5Ndt{YX8_G9+b#y(?{3Z z;-%r|_a}aUeZWlh&DAJ`(bvVpj-mGrzJ&>Fqx%o)_Y0}TT*AkzvH>7@Z-@M6g_^?R z0^-(ee;0zO!KDFsbybTSh)=H?=;mkZq=@)-hezwDIt4sq4dnHk{N*eAn{@4HhhOO9 z2Dkw9^Tt4?^(My#CjV>Uw6j{T`p*qu^;@v*V@LM;$L-Cq>$8vJ{YRbb$ky(wE$`V7 z_(#xR6gR)+qmOi(cLlI^<_CjjxAP155g^Jg|HIxHRZ1cBE9>VX#f`-`4?;Qq%}0{8 z!HK2G`FjGvH5sHcBhwd*2V3{E%I4c#^T%epI*@1~t~Iv5Z=30+N=y4E?#6E{x@LQa zB=)A}t!?7bFYKGMj%;jo`LNE|^kg3bi-!xVleE6q1C19GvmcOjm=si>R z9KL;_`txs=9q>Kt<39C+vcrr0UEo140XWtFeFunq;2-+Xojz84G*pZoIV61b=PCW^ z_vo+y+%kfE4}CD~d=kF)c8v($_5=VR`ZSH+5Pj3Ez7Ty^tR5iOw$%f_18*vAf7I>> zKKw<$hQ4Yit_fcmCcghOd;gic|IAt6>o%a8PNBB-$FVQ3=0WgQzh&Z|iM$YuJ@ISV z`0xAUpD7vLc@=aqy1d-I^{4*)8uTVi{JGuXjIXH3s$d@6XVf(fB${~7fBxW67SSx- zf_7Ip44jCt;hMsi_D$Q#0~rPzCw+6m zz}+aAif+a3pU8aO43L|2n$}Sd)2kDloZVwtH@uuS$CrXtX=;KVD9)_@ZzG5@PEqhAk0(G_?^LZL2<)BnO_odoSAh$3 z%u(3bVU+Fp-3kRX*3dW@N2T60n02D^-)Gf$7};e!Y6-#XLdzONf%>$}itfL@p@+V= zcnFps0=f8L+g9%e*Ri2h}jYH0rHH%g6J+Z#o}}Ol+pg%Qp%jd z41ZNL`-H54&4YTQL-QR%7LIc@4UMnhk=E z7L8|f#m?tI3?^Uei{-o`%Be{AG}q^dDHJI{!UlyUB0i}%PEt@LU%J`BqaqSfy0UlQ zt7r7G>%jvLz#(%>w3GY zQiCAYi3!u=M{RQavh#j)4&wLxCkBf6lrR?Fd-cyf@?3g`*)1;~!f%-xo&A`;T2*1d zrh7p7Q=5}3Q0cI9Y+!>m`9JwbJJBDqTPp~Fx9o43eNn->#0tc+s(69}CDgBRV>&7$ z@lNPjKZ+SVE{BH^iE_#l*zv63cZ3q^KdO5bH3xWPo5h?&$+iufc(chdhO%=lEIY|e z-lb~p{8VfMza8wKu2j?khQCORHo^D-b=x)g=WT>~(bMST-0Q?BCW^gG*{g7{V|+!* zrP+xw5-?Fwa0xyh2Ljl43bRDeU~P+!VN9kg>%5}MToxg)Z4L!4mmVd zS@goy(BnP7y$TKYnmiCiKI&3xmr$?>dl^kh!@V9fP=!ZtW2k)UB=-ot`%WkT&_>0T z9!otUT8+vh-?kWP_iJzgP&7baU~ME!3qWDT2z?}0>Z5ORr(o;=3DSBBD;{K5YR2?m zUUDjF=7;?ff8|I(z#enH7m)|W&seeL@^W662G=L5J@NHT2Z6lH&WB?o5MV6ToaD!msq~PTWkO6wBkr9x=w%1)M}Ot^?`=| zzH*z`#>vBTn1`N1#%`gsr#LipY~~n%qF_9EnzU1&*7w^VFb@xOH^0&WWJ5r;6-sWp z3Vy=%{xQ7_s*6(IShOkMS!9GAPq8o(zx8{lcNW=?49e_-04)e*fmbK_jqZF3ZAFX#?gcH;pvD&;@p$46xW75N zi!aU!V?}v7pyZuDiNyT@K%<=mDi3p1U31UCP|b2#ulAyl#c;=lhLYwl>P8Zg-)(

S$H@ZVJ{eYM>p6RkU`K%-0Hq%GUD7hGTD8P`d+>>T6-)oVS0!D@SgU0)cxH zkJ52>znr(rUVUT^K3~Q1!Heke3#&)h8)pYcPj_YTOxwoQCz_^-)%FohN^k}aN1o47 zsph3qf1@QVeQ+BE9DMYjkf;2WKQvdc>@h+q$m~a2Mep<*X9OQdEjr-tE1GCFA3wZ~ zniBf-%nbE*`Kr)BCDM-CmXf^>hH5}!#ss8|l=P0f|El1%A_t~`Yu3JCeuM5aBdR%w zZt)0=c5R~Hn2rb0Kyr*1#|WqO)iN_&h@ngSXYjsY8y4~1HW~j7#bec*2t)*7ebCV_>hGa!- zyPP4AmgktsyB0b1JEeJ=b~U-^e?`GvM0uyhNCmqGxRBp-u=vVTenEQVGq{ee|B|C1xjGN*%Vz2^`Y<8l3G!|ew zbf~NyP_#}re|Y_pt0XS>iwS!^JhYZyjY_ij(D0{SS9rQ-r+;M{u^u|3-(2$dd>{!! zmDI!n`0(OZrGGlSc%o1>K2ql%ZuaK!E)zuAQi%hIT&y2T(hwH13@3Wpb_iM(Z`}n69y-Rx5LYA@RBc|&cznxPNMVS6>!RG$Ls<9?))YE@qAC?pB5U8 z5&=T)&ZgDeX|1m{lr}E;IH8=I)40^t-zQQ4Ls7^afsP^Lwa4+XgXE-2;8KWizGiSk z7O!Pyb7?XEY-5xdd3P(whm03TCc^Q9*5{SN;G^U`BmpZqp@x&uh+d5>9%nAK)>|yQg1y0p zNn_EbKTrdz47hS&Qz~?1=&^Pc*QJB(uDm|=T%c}ik-M7kyH%{ku|rJ6+*f{_JA`H$ zYSJIK(6kZ}woXztEgAlmQX=T%QC|ncvyd$Njcz&z1PBcxgggw`v(ut#PznH)KPY`- zZ}v$JgNs^X2|q^kf|waoSL9txV;%_|f_(ke=S#{C&(j$MiIdZ$*tw_+>#AHm+ICG3 z@K3<%7Yf}NnJ~bb?Voq+w%lj9bg_z%P99?UJzBzY7+Qul&c9@HNATfB*EQ_8p=pD~}>#MGUB+a`B&t(TrwRbqDQdFhm1T@DR_iu*3LY zmh4hLt>%Tu_g(jTmvN&7tt;*-(MX(|keBw%h+w933KmRv(H4Cy534(JUg_5#J2yzh zLW$wkd;M}@`j7ChtPPd#`DBqk5A!smpjTvjfH(%MdAlwP(y#R2gPuwMx{XSi#De&} znShJFaTNtt9f?~4$GHPwtkw`M0wa86@i1tg!_^QU)v-29HXoLjI6H;|3?mE^#Xn?Z zfyYs+6|q={OyDuZL_e~za{9&TmoMtDCea8wmd<}Y%rKxq2mdzq`Mr;^!K`&>A=?Vg z0NTYx6Z}s2MT-&y(P4*ml!Ng!It(!{0hh}iV2GqUE7M8)fJh0*HpDY4HS}MSUPx{x zGw}UeSn64O9sjzwc|^sf9`{r{U*2Ko2QImqZLJ6Va7h8-S3+6{j#a3W`!0Icuw}w>9kpA@k>-vJ1pCeFmx z=?JYk;6U|9lz0Y}Stkx*9k`EIjzVzX?iLrvd}3-1QQtV|Zc=q!pl?{Z0@;y8*gl_= zERN?v=n1^Zj8kpcUw!*s29mT?XfARw>JYlgmbw%}bW(Yyj3CKP?P}3tZa6{hlC;KT zQD*QXG@KhCj%H+210jpB62v&rPc_4frTl(?;&871M8$(xE8}zu8&jw;F)I*@@@vbi z0M@nt;sakcn7bxlZY7@D|MP&dy$%dcpE-}RAb>6`8)??(+2Xk>$}V-$RCbuw0-lj! zqkBeFG3eZ6p1q|QXa~)Sdg%Don#7d2Z8Ox`Fqjg+dpKef0=NE|ND(EORh@Gz(8P*J zp>|u0Z;1O*cKEmy<$e1aw}JIUeJQ>RK3uMJ^1GHaJWfQGUnl8QE`YkbX^pTquj z!|ZYD8jC=VoYzeeYT|bM_zr!P2d`jUt;<;82YurkX;MFi2E&H0B;79lc>%>qm?sBJTOI!gNU<; z^;492?e-fD44KEWDIN3P*xrcrvK*EiCX|lO@itb80ZLd)Tbhy)4!B@3zKtfwHxCvM zEMP_3AUm0rICwpJM{AqVmm_Nbn}m%ES2T#perV>d9<45iL^1r>-gw!_fX}``&-VqO zjK*%{ww7M1pQ47J22Ha~tKL}0!Pl)>J&q2DggPgG1GxN#^Tqf2f}iLU7Y4ae<$a$a;f+%lD&Y~YXmmm&HC6I$>A?0IhrerpzpdR-M$6(lCa z-oo*^N_P^j-7Jw32dG>#rqIz!B!&oT6}o3~-x_8G-B>gmQ;XlX4{#Mr|U& zKBAM+?wLkkYSt#Fk^B-y!@L5N0%uebJ4ZOF>>BytfQRhjP{hge@o2o{|8==V!%@Qu zB-fwgtlAKWs<mEdE- z5CLyA?=4jrkuukPKF88`u|2QwO#FAdw~`eeDi4!!wXnlpe!sx#|NF{0X@ z`KRcV_p1TUK;9cD3oAS0 zP%|wKicPE#y6Ds|#cc~+NyACRX?Lg!murJC+Ip;+E3wSAo$e)3L!R& z_4(Wy4U|5j_qKK1syV^8hgb`dA$}8^7mfArOVl5H+Mm+xbR#Z)`(5zdHBc?SeQ+b{ zS2e{pOR3JBP6;+Z$8%ee4)7F=m-19s@TTpp)q#(Rj|+0h#>%cpb9O)HN-+}6vj(3omx9_1a=w8$dm-FMyeA-Qh8Z*fg4;f}7WcJR8LDOQ zHHLiOi%I;Q>4n*U=iE>XOlpgOEa)(Vrh)L(a)A^Hy>ET13p#&w0gfjjpm>hbuj zxT&aizV}aRuSk=M^a@}QCQW{JG9#d_+w`smAlwL3XRSFuId1R&BbY8~)Qnpx9oN=$ z%t;AjePUL}sYN{ZHR45+k*gyqP*5_q`m9`KnH8J}anSl!h;H_xY2K5Dly?`Y(nf_< zIa+7qBazE^5eN#z`I#Is-Zt(TCCEg2jB&cJSeiwoZ(3p6Zh>)KEg zk>3dX^cqe8^A?^&1bhAJBu%xcNm$qY%X^fn>|kwr8R+JcAeaUJF?pLQf=e9|SiN_9 z*7uL1D1s5q2>+t$Y{`at{cZvexz<(M*IpvkguDxY`(yi|8RdQ^=?Vk8GGnq@rDlN& z?654kI2m382YhWzhd}{hu+PgRUq5q}F?;tl#5C2dC|0ow{cKlWhp^eZgo(qXGcQk_DJ+$R#@AiJu1CfHSa*`2rszN8=3Cr(7Wm;@@>Lvl*ko!4?Xu0fB&EkEw zUQ^h-W0k>9>C{~&XF#0pVizdu)wJC?+OZvQoE`lvu+n1I?QjwBR9D#^(!T>|6b4!@ z!U1Vd#q81c)Wf69SeCs&=-gy8=0CmXq~_vJdk$QKu+%QMi#Wr=LTmHzsrTctY8H2 zHa~hjOq@|S3)RG_co0Ye|CsgT)NMz}Li!rnR8=ccW+;+kW-bOnwpeT!rz3Y0+au`! zLZbHw8K9OU?Pw``Uq3&NV}dUt2$64n2giNlnkrQ(UK>y4W_FnH{R=J6XHy}!Re8CO z_2oP!I|a->&KVeW#6YsxrG%m4#99Tg=p$c2q|yDGCvks3x~p9;vN@xCvAY$xk(a*J zAn2Bt-)}VAMzQPq21OGtt`aB)erj!Jj-c^+V(3|blX!cm5lIR|205O?za&II;i1Fg(+ItJl%Ld^M?EcQn!|v9oIqH+U+T%wj-#ALm2%8L;1uM@C z(H8K9qRE#;vT;M`!nAh~ku6?4BYl)qmf{G~M+|$b8Nfqy?KLMQR}nnCzNh4hcG0J) z-bZ=u7$o5Tt^b+`jtMI)%2TPwI69Ww`=t)@i&SN|e~KNwi^D4|SxfYlqf`0MR$QK3 z-sGl;&Z)9KI4zJKY=`mK3NHpAui7-q80n1iC4{IhRa&O8zKY$jMO3ZeY1iQq3O72>0*~UoZ82f(Oz9bi*Ou({@1-Cnq|%z z2^}C{?49gOr5|Wg3>=53Bi>Ciom z_9`{6t`MQLD7QZUH>I9`BQspxt=5;Rz7t=x4Jz55>I54?4dexA}^ zh|`If-5G5_E|}kp2fqf86F08*l~w$%>lQ+W_d#@*DPP$bIBZvvnIbP=Vz$5N(Tvjw6K!EKu*7&0NZ9t zzf?QAj8ANL3rHAD3tN=h47^*^z=kJ%YsvbUY3uDAXapv2b>AU!5T{Gx^8ncVVJ=%T z62bEvy{#ZwI5v?g1F-Qcf%0P;8F(=R4!+)Ze``(J<@pr;;wVL z^PXhPE4?c>=j|@*`D5hJrXl!;I?bVvICGt%0J*`iBs^D9+V|^kQR$=xCSrldp$VDa znBFdSD?nVNx%ylEUV^O|7`K{dMK(i8%RQV zMHV$1Q&#~%{$H`soN*qDELpx;2ra(mm zb{5$gd7es9(b(jgVl9#4rBE$Gyf-mGKz#)>=k8y-aE%$jvX|>FE8^l0o$ZyBV#O_<}3F zY!(-sAPzs>pl6ZNQ2QNiTgsJ8#AV`)ak5&7fhinL`UxB?_dgSgHA97^Kj27b*$k8-dm2dV1b@h;QQ;>sp`^@j-^dKaeRD#FW{sDeR5ImV|+e@ZwdYH{PY4)@-e)_fZmvq#JF<6DZ&> zi-`GO(7@-^auqRF+5wiQxgDzRtwWS*Cn6yvYl(#BTWAm|Iwn%-vcz(z)0Q2_kkqc?&5a$z6C5VKc}zo2*}OY@Q)@V=g>@0dN$P6_ z)$CdOg}IR>d7RPwmpRE55&fFb*=V`Z-D@jwV5?8t#8aEcGis9E3tOw>aruyrBCf|2 zl6BPugBCmxzsT2O^A|^1DT7_UB=LzzEv}j|%6}&ktw&Db)N5|3#k#lUsciViGsxP@fe z53lRYSyfD(^h#V^sIjr1n~tOfW6N+ils9e)dgheonIjDz4`1ZUzh6SPFOmb3TzeN5k zGCC)B*+1zuc-}f}yj7E6;FhFI0-2RV3GE4~8vjf0?0DZv{14hbnV0lrqJI`kdUgqz zxfM%Tq17|eIc*HmY7wHA%DS(T5ouN);yZe+I3U&j!achQ_;a3^V6zueT(Jy6A1sw^ zQQ%>>Fv$%ryAYMw3F-C3h3^KMsS{CyGGHj;V4bnDZ#Or5XjIP-&qk%x@YD9MoN>VS z`pR&Y#u4b)HoxGv5(>bg1Aq6AO$`s>lFAAE1Dg#aKJ!AyES#`lHQeH`;jXhy;UvpT z_KA4=boljo6HgqXk14ki8kX9LcPCpr)Cdo-X^*m;={jPSkamHeGRu`ji3s$v7pM`K z-9-E98-Ey41s5bz6}fJwOk$Y{Fq)5CV=gkyDZDPjw=jw>D2hKmV1IJ$c0V*~C0WhT zrJD``g`G!QVX$!z*&t^4Y4`AAiOw1n`*qG!49r5Ga5Rh**}MQ9s_>}Ovp(aC`~?np z8rs^VWGhfoZuxV1^ruE1o2tQL%(^dB5uB4wVOgcZO$ki9cNZH}6O!=k6amqq&I&Uo z(sjI9N>9`0c4GPnB!AyKvI6n_7iG;^XBD~H0DNHJ!bQ-{=XWr$!K8=5m7KFFG8>T9mt3yT2|;4oB^@3AI9E`hN)0=UzqxZ@D@$OF=Y- zAf7x@kutcT=_7bq`(P4%7?HKTV}DA0$wYU+ZvZ0^FU?Nb0_cuHwoW=YfHvA~+acHJ zCPjJ0x$nm-ZMB+c)W7kwmY)THDZN}_=?okZkKDKvErt&j`tp}n@hi)Tp28n}&w#ib zQ%rZkU*3qGK7SP)uwB4=+i#&rUV1&htJDu)F=eIUP#CGdsfru$ZUP2*snSKOvWqAc zU$k*Mj|8J#xbwfTeQWF(i;1w2YuCo`H}ISw?w6r^xQWEq<2Eym?gMwQz7REf6E0?$ z{dD#{+vI)^t(zS^qYimUFphs;%Yi81I2P#P9to12|_fmu{Dg zW4p!Q1}Jh>9QDk7hkerf{9aq-GR^fqZT?`03df~XSXv#!#)@X>F1o-2j)8wb0K@j1 zg(fT>S$`0+E6Y}~y)ehkkvxX5C zs0ij)Y{ia-k)pr9+9@XKE#7Bn(Mk#k5N0EsSR!R!WKsE-LrxRJj92N$4y8?G9^FX41UU z-zEtHg~^`AB?t~tR~zP{BYWSdZt7=U{C}{A!^2B6le(%rNvcrr@B|+M^e-&d=I1%y z7?DeAifn^;N}Q*!rbBIz$Ti@4A|3hSuKyzh+`2_$pFchsf|!&7h921sA`>+Em{6n|Yc z1j<~C>g5~hjP-&y=%;?n;O5zGA{bk$WG7an`B^F+<`DXPT(2N`MFDegx9X}~Ja42r zywyiei3NCZ;~@+1v!4ykw~H}c(o^Y;WcrcjecqDC#=r7yp3xL5f_tpZL3ttLJ7iXk zZ02`iG`f=bL8eV*I&Y~A?S2WphJTgC39Gv7w6Y3jnplFf`+9~$d#~k@Q*l%^F6b4< zd~B&D4P*jot+SoHkYM_!dao5(Bz0yAI}C&8iN=g^sGFsgM<@UlelZ00*g#Hm^EwR z*D%u_e+n)cw@)D7wJPt@-=XT4A%J62(1?Iz>6|dxM=-eJ$2+@4las24yyN!Gmu6U% zl^sd=YN7^)5n8>kr!+#NvpJ)Y>ilLgsObDSh z=po$TUDR8AlUKs0>m*k?(QC=cZq^c}3^H=^7%lJ-8*}iq@Yss-5wc@;9P0bL2q5FW zGX{;^hXDB7Nz5B*$Uh9ymyG%3mp7|xsZKHh&ux2={Y8Y%1*>3|xP;D+$EMaU{jSbuB6@x*`Z^!w$tZDsXQXp2%I$TlV|Z-ZrBPc5lQ)h#_IdY?vMPi#ID zMJN~06;n~FIB06t;=#2)=G{lkEmzK!ROe3tDsqZKE5!yQFN z%gu6qKgJ_GXE^3^8#uHtnI0wnYd=!aOP0um^1~4En}09+4f^fsmd|;>rvT`j1)fZl zay)kP@cLVjCdvd zpd0XC53xh8k?1gWeFEA?lt&L<#5DRS;EM!Z8`F?DiAp#5{l>f-3|R=81H!p> z<`YJ18GjKqtM}BSQr)Rznp;e$v-$-{_KH|tg(%!NEe?x*m-RRo0-Gv%E+zP~>Hu+* zJS>YqDdncG;DNi*RMnm*Juu(W`Sr61jYQ3r2H7X{sJ%0kig88b3`lr{ro6{dtfeiEYAAXSW z#K{lcI(}bhIJYvccIH?=hM&5%FZ>bP?Mr`cKP`9g0b-ju7y4^JHi-T~EcyXoO?Tv(au3>n?^O1DeVmK}t1x)I zGTu&5qj{G}k;pUO{dYSE_h12e|4aN=^Xgf+8=C|grNWH_EMsK#lOzcyRnCTSMf3g1 zQ;?QE4-S$u#%F6DoZ%!Vrcc`5Ex*^DAAcsj8_!K&P~5#rO1Yo5D->&Ar8vvMCeCjf z%DGFda6eo(BJ*T86CHJidKiJ{AYE8(aE0tJqi_1irlvR&WzI)Q)M;-HHAQ+7A+{jc z9F)Cji{5Hc^5Qe2Kh9$Ry0xMev%XtFIkoRB_b*iK0m?z|)qg87 zCuXJu>$W+0i%nehFEHd*+zeta#?N4ip{*?$8hW!ek5Bgo09K6I?1pKrX;C=i44RJ% zqoDyuuB5^thKmNhQcUJSa!9goq(!1%Uu9ajrkhyMVhpl*PjdTD$vtI;RjaIR;>uJA zv4>)tymm%2Kn7^>J~t=HpR^^Uoqw5@l+0gSJRJ}j;Azd+P@;;pBMhcvq+}407mf4x zr=s#10uJ6##|>WR_LWuRco8r*8QqrlCU(=j2F)RceYNFT0lKfX5BY41%jrC~@xS%A zqG~|ShcBUo=}AmtI~tqgV>H%DFoMS4EC|qIA*Tyhp4d2F&x}6c^@%{2&VLyd_q(4C zRx4u_?CxzjieG$1ErOow1Dm^oAB=)o-yrYpJ-1#6hXe=A7V|=7-nP+y>}08Q{zk!H z5Je`3+bMC?a!u04P;JKjl5*tV5~}D3PIQX=sujyb@`6Pat))5O*R!BF;R$j(cJFP) zh#%a{+4aUdfe5zlKOW)7c7I^9Sf8r?BsbLOE@k;hCU0&PYH~Yul;>Jo=t?i?VS?Iw z6}dpaMJF)yVWw`TYI$k(M{%C1Od>qiIQ)lDS2*ZH_FWWq2#x4IPt?$t&C6P28Z}wg z3Krr7Q&x(cdrt1|h=6;lH|lVfdb?9?DzDJS*kINq9V#7;-x#DLbAPZZ#iKBOL1>pq zV^G&cTt^G9t3eK9vlUOcf>gL)zx`%U0X^A_RY)aM#uzL+Gx&xFm5)AqAc@5jA%!-V zdShLnLlM|d_*!7fOYq>hQQG0|ZMITlJrd^A^_fq1U-deRDuo19=t_T@gn)!7SWjHg z>Hey{ia+@UYHLrt+kZPr*hnf9MBJfc6ILxGQ1Tcp_-dUrvv;CkEQM(aGf#EI_yxYkD(j2wO|`lqFc0n5LrSDwP6AFg zJG9~*fmOyhr%8LmyCG-!-=dtqga++``|#5>%Z)h<2!GdEM|PH?^m**)>{T0cQFUB$ z{ru+H2Cwk6)9}lU(hOTVNN^><0j9&fLu$15j)Z8awej|fsK8qj`qj=0VOU3Y>N_=B zT9#v#DC&|A{x?GNPYIe>Tk=u~1Bhns2#=EfzV!G^XQUX@_;AV?T;L6+v5AYQiciUu zDy7g$H-D>+Zi08hLIm_X~rNaRjkw~c*Z8u9|>ft5hrIEW3ilb1j*f0UXQ z?erzIUs`A~hVWGzb{O5lFEWn!-`NlSkk$#`ki54j>5H>gT30T%T1ttXZWM?5k=A#a=wBVeTd|Y1O z4-juONyg6*e$qWOZn>rh`L;XuQp1bea>ltkEpc2-0N3GNO&C&`9o@FP1Rf5omMrz2 zPk$a-$9+T36a9jXYoL=LdMcn%NqJ7yhJ;K4zLke;&I^&DJ6C%4Y_Y90YJCtHcB_Ux z56-7w>&$I3(xSJHohC;1sjkl$rN(bu7ynG$k_qE{SD~-;$XWl}7dncGZ`R`05e_oq zt!?BSZ`eDcLUBbwT*JOj)NxInaK?k&1AlMhSR1fQZ6IQDC7keU&zpw{?g1osHOpTT z&@-Lwu{#&2rsDyHSsw4Qrd6VarFWnw0AJE!DqBo%$vytW)f^Hu0B${ygso6Pk@aLelz$yH zX{||A`=1gSS!hFvmwYJ*9|N6?LoARd7n^!vB63Ma_`VGKBDX1jr{d_5`nEax3%v{# zeE9jHfQ$i!|!>vVO9jXV&5p)gP<^*Dn7vqHCw{JB~Gt>y=CXY``e--#u< z!tDc2C7ckREi`>bVZIoY-w4^P4kJdpn97Q~O(*-hgLK7(oOn+|LNiRyF!GCQA4tY5);`1;neJt zbk=5RXo75RJm)sCn3Dtb%^F1z*E-rpb&#NcZTgr~eB~?r6nLs{5d@RtlC1cECQfA^ z+gTCbv}{O8A@*e5@i57)Yg>o~Yea4)E^-31csc5G^F*S_RDaD_PzZLp&ji5t3(aur z(I(v}R8k!EKA}EFcvHF6x<)?FG+F(u^E8`LCojl05xHGc)$Z`shoUhQjncEnrb+4< zg?~|MWz$>qM>uvZYZydK_3%@WjypM^D!?#vDH_NYf>?e}5hx=x%fOwRmzG5R@jDNq zix^F(t_I1Wzkk_PY)4$*ryR9AU3?@S$cc6bo=AtU`9;L=w@Uj5h4 z1_jPUKqQ@1OH34U83OSisSLvjqft*_HX${;-8fw4Cxj>D%%5QM8yD3Lku&bnPt&}S zF4Bw*!;&*_Pt3W!yv7dp_3ES#a-qz^5m9aL^W&;CqJP;vjTCfyE*gg2WX^sw?3g}j zu&)YQw%Ige1(vqqTPIAE6suNxM{qG%saAGuGZ^ml|bXEs~=G99#8y z%2L<-qDRWw2F7(uIz6Y>y^MMHSm+=pxy z6@sCx7+dnis4SLPHO01_4zQ0Qs`{qbvI4IC@$nH+95pHF z8K=~HnTNyuc@jeqOR2l7OeIx?cD|3^D%8IxHW^1@vWI+6z8O;1=qP&wGdhZ0iraHP zCIy8#OJ5%o#ckU5KI{t{Q3c_TL`$q?EPr3~UtvYYp6qqa07GV6eP^f@Ttd3;xiyzj zI;pNVCF7g^&0fV=bG}~`ZSvLd%HQdU!PPcT^fXO77C?pMNZckMbl#de!C4XG-3w>V z!XR1~!orl}B9S55%W@7;JS<06qnZh|Jo^HR7};Uwp;cB|*bM0zCj+k%;wg9KO@Hm< zp+lLW=?E)7ZL#E09_f|#0|_6nhz{$l)So3f5W^QgdZYGyTQ$1$IfmDbc&${!sXa_p z+$7tWQ`5ASRn!fue+^gJl9d@ivWYtveBGWtmR?c=?<;RrIk&kYTh}5vyIj;E&kjd9 z*1G!`K~o3qnZtfbg!p0A+Gf8%iGT1kB%WuXZLUc@#LJ}=yNI*YE@Bsk;>J7@PNX9L z;6?(Yi%6*@_sf01lFKD1+=Shcu+G69(#l~N>=xdeZW{4-sS_sO50@J#j(*#Tb%Uct z>%5u|%s=DZ)U)%T!K}G1P|VB8kqDICl}&-2(otJME-UlqF=K(!C#NN%v&!A7ne0K@!MHN@>X;jfzYLSeP! z%q@=bHk&zG8&+ca^VY>@55llZwN*niM_|6aDL%&T6=lef9LDVB90e~KVx8J?>AQm@ z#j;6gFFPtkttm!V>;DrU1ApNBkQ569InSq^S_wosVcREn;ZR&$`FSk>N>lnBLwpv`KYy9EZ+gO0W0-h$31t*1a z{(O2~x9$LW#uBia8xw)`FRn`ISl391>&nq(zm;CamvL{Q?HB9m#ec?@Lu{;XC$hoJ zjIbDpYlX94kvZBrTfn`}kp)3sVQjTE!#{dH3vFV=awi?e(`htEcsFM1N(C!i(iHCG zI?I|7@BaXJcUr3qQc2q|keNTt)P)G|9yW1~7&vroGFPlU<85;>Nr-?e;qf0q%qwa2 zj&^moV^Hd6V-yy04u3~5SJ=++tw0AjzKcRpTD3^Y)H56DbIJNCy(JiC*OF26_R9Hp zFvx|VW9g64_p-uQ!NJ1z6Tr?9F=2!)C1-|j?$}Hnof%hxqZ@5%b`8-sMTw2kUX%>| zCLCIm!n@oLeD@|+{4f){`a6#tZe4!8sgFmH-G(H3)p-Cax_`R;`j;(_C!>#LUK(fbfn9+x=CHiEtK_Sa#Dm<#isu_Ffh3+N;&K|n>YR?mHebyvtgs+B zo$H7}%lDa3UVl{cJp-NUM?;Jlba8-!V5l_<%g{bRtwG>zT0?2lvakz96=w#%QdBE; z*Wob*t*sXQnX@HY`POnPwBy@hQRefC=qOHH>l(V;JkRO2z6vbjSW{kQ_Q8s9F>|yl zn53n|lh7uvw61E9GR`$kQF9w}+GixUnD5x+FjsPAVSf@}__HzvUuaIQ=V2%0Ujrfs z-2gnHGY88yRtoS+oNeF6kE*3?E&Cm*99}1}#DjH%s#z0O<^WY{(Q8t4Q6G6nE9#{O zrNW8zcjj{(fq!BM=b8JSr#WgrmXx3M4xQYzMYGlMW4iR@PILvO(0#MOwriJ%ztj7! z4h|$r>^1RSMbTqg3i5vR+W2K{c>)6$AsZBdxpA%GlK;V-S5H((EGPnGx)75V_6lWg zWOHr@k$@SOj}ZbDYIM4# diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index c193db77..9e0d1411 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -1165,6 +1165,50 @@ def write_full_instrument(self): fo.write("\nEND\n") fo.close() + + def _handle_parameters(self, given_parameters): + """ + Internal helper function that handles which parameters to pass + when givne a certain set of parameters and values. + + Parameters + ---------- + given_parameters: dict + Parameters given by the user for simulation run + + """ + + # Find required parameters + required_parameters = [] + default_parameters = {} + + for index in range(0, len(self.parameter_list)): + if self.parameter_list[index].value == "": + required_parameters.append(self.parameter_list[index].name) + else: + default_parameters.update({self.parameter_list[index].name: + self.parameter_list[index].value}) + + # Check if parameters are given + if len(given_parameters) is 0: + if len(required_parameters) > 0: + # print required parameters and raise error + print("Required instrument parameters:") + for name in required_parameters: + print(" " + name) + raise NameError("Required parameters not provided.") + else: + # If all parameters have defaults, just run with the defaults. + return default_parameters + else: + for name in required_parameters: + if name not in given_parameters: + raise NameError("The required instrument parameter " + + name + + " was not provided.") + # Overwrite default parameters with given parameters + default_parameters.update(given_parameters) + return default_parameters def run_full_instrument(self, *args, **kwargs): """ @@ -1199,40 +1243,13 @@ def run_full_instrument(self, *args, **kwargs): # Make sure mcrun path is in kwargs if "mcrun_path" not in kwargs: kwargs["mcrun_path"] = self.mcrun_path - - # Find required parameters - required_parameters = [] - default_parameters = {} - passed_parameters = {} - - for index in range(0, len(self.parameter_list)): - if self.parameter_list[index].value == "": - required_parameters.append(self.parameter_list[index].name) - else: - default_parameters.update({self.parameter_list[index].name: - self.parameter_list[index].value}) - - # Check if parameters are given - if "parameters" not in kwargs: - if len(required_parameters) > 0: - # print required parameters and raise error - print("Required instrument parameters:") - for name in required_parameters: - print(" " + name) - raise NameError("Required parameters not provided.") - else: - # If all parameters have defaults, just run with the defaults. - kwargs["parameters"] = default_parameters - else: + + if "parameters" in kwargs: given_parameters = kwargs["parameters"] - for name in required_parameters: - if name not in given_parameters: - raise NameError("The required instrument parameter " - + name - + " was not provided.") - # Overwrite default parameters with given parameters - default_parameters.update(given_parameters) - kwargs["parameters"] = default_parameters + else: + given_parameters = {} + + kwargs["parameters"] = self._handle_parameters(given_parameters) # Write the instrument file self.write_full_instrument() @@ -1249,41 +1266,13 @@ def show_instrument(self, *args, **kwargs): Uses mcdisplay to show the instrument in webbroser """ - # Find required parameters - required_parameters = [] - default_parameters = {} - passed_parameters = {} - - for index in range(0, len(self.parameter_list)): - if self.parameter_list[index].value == "": - required_parameters.append(self.parameter_list[index].name) - else: - default_parameters.update({self.parameter_list[index].name: - self.parameter_list[index].value}) - - # Check if parameters are given - if "parameters" not in kwargs: - if len(required_parameters) > 0: - # print required parameters and raise error - print("Required instrument parameters:") - for name in required_parameters: - print(" " + name) - raise NameError("Required parameters not provided.") - else: - # If all parameters have defaults, just run with the defaults. - kwargs["parameters"] = default_parameters - else: + if "parameters" in kwargs: given_parameters = kwargs["parameters"] - for name in required_parameters: - if name not in given_parameters: - raise NameError("The required instrument parameter " - + name - + " was not provided.") - # Overwrite default parameters with given parameters - default_parameters.update(given_parameters) - kwargs["parameters"] = default_parameters + else: + given_parameters = {} + + parameters = self._handle_parameters(given_parameters) - parameters = kwargs["parameters"] # add parameters to command parameter_string = "" for key, val in parameters.items(): @@ -1293,16 +1282,21 @@ def show_instrument(self, *args, **kwargs): + str(val)) # parameter value bin_path = self.mcstas_path + "/bin/" - #full_command = (bin_path + "mcdisplay-webgl " - full_command = (bin_path + "mcdisplay " + executable = "mcdisplay-webgl" + if "format" in kwargs: + if kwargs["format"] is "webgl": + executable = "mcdisplay-webgl" + elif kwargs["format"] is "window": + executable = "mcdisplay" + + full_command = (bin_path + executable + " " + self.name + ".instr" + " " + parameter_string) - print(full_command) - #os.system(full_command) + process = subprocess.run(full_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True) print(process.stderr) print(process.stdout) - + From b1b0d2fac5fbedbc58c94004d26cecc68f73a38b Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Mon, 17 Jun 2019 14:38:34 +0200 Subject: [PATCH 037/403] Updated an example to fit github line width. Allowed name_search to find data sets using the filename if it does not find a component name that matches. --- examples/McStasScript_demo.ipynb | 171 ++++++++++++++++++++------- mcstasscript/interface/functions.py | 7 ++ mcstasscript/tests/test_functions.py | 13 ++ 3 files changed, 149 insertions(+), 42 deletions(-) diff --git a/examples/McStasScript_demo.ipynb b/examples/McStasScript_demo.ipynb index 5b9ee82c..305ad40c 100644 --- a/examples/McStasScript_demo.ipynb +++ b/examples/McStasScript_demo.ipynb @@ -15,14 +15,13 @@ "outputs": [], "source": [ "import sys\n", - "sys.path.append('/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript') # Path to McStasScript pythoon file\n", + "# Path to McStasScript pythoon file\n", + "sys.path.append('/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript')\n", "\n", "from mcstasscript.interface import instr, plotter, functions\n", "\n", "# Creating the instance of the class, insert path to mcrun and to mcstas root directory\n", - "Instr = instr.McStas_instr(\"jupyter_demo\",\n", - " mcrun_path = \"/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin\",\n", - " mcstas_path = \"/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5\")" + "Instr = instr.McStas_instr(\"jupyter_demo\")" ] }, { @@ -81,7 +80,7 @@ "name": "stdout", "output_type": "stream", "text": [ - " ___ Help Source_simple _________________________________________________\n", + " ___ Help Source_simple _____________________________________________________________________\n", "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", "\u001b[1mradius\u001b[0m = \u001b[1m\u001b[94m0.1\u001b[0m\u001b[0m [m] // Radius of circle in (x,y,0) plane where neutrons are generated.\n", "\u001b[1myheight\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Height of rectangle in (x,y,0) plane where neutrons are generated.\n", @@ -93,10 +92,12 @@ "\u001b[1mdE\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [meV] // Energy half spread of neutrons (flat or gaussian sigma).\n", "\u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [AA] // Mean wavelength of neutrons.\n", "\u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [AA] // Wavelength half spread of neutrons.\n", - "\u001b[1mflux\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1/(s*cm**2*st*energy unit)] // flux per energy unit, Angs or meV if flux=0, the source emits 1 in 4*PI whole space.\n", + "\u001b[1mflux\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1/(s*cm**2*st*energy unit)] // flux per energy unit, Angs or meV if flux=0, \n", + " the source emits 1 in 4*PI whole space. \n", "\u001b[1mgauss\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [1] // Gaussian (1) or Flat (0) energy/wavelength distribution\n", - "\u001b[1mtarget_index\u001b[0m = \u001b[1m\u001b[94m1\u001b[0m\u001b[0m [1] // relative index of component to focus at, e.g. next is +1 this is used to compute 'dist' automatically.\n", - "-------------------------------------------------------------------------\n" + "\u001b[1mtarget_index\u001b[0m = \u001b[1m\u001b[94m1\u001b[0m\u001b[0m [1] // relative index of component to focus at, e.g. next is +1 this \n", + " is used to compute 'dist' automatically. \n", + "---------------------------------------------------------------------------------------------\n" ] } ], @@ -120,10 +121,11 @@ "outputs": [], "source": [ "# Lets add a parameter to the instrument to control the wavelength of the source\n", - "Instr.add_parameter(\"double\", \"wavelength\", value=3, comment=\"Wavelength emmited from source\")\n", + "Instr.add_parameter(\"double\", \"wavelength\", value=3,\n", + " comment=\"[AA] Wavelength emmited from source\")\n", "source.xwidth = 0.06; source.yheight = 0.08;\n", "source.dist = 2; source.focus_xw = 0.05; source.focus_yh = 0.05\n", - "source.lambda0 = \"wavelength\"; source.dlambda = 0.1" + "source.lambda0 = \"wavelength\"; source.dlambda = 0.05; source.flux = 1E8" ] }, { @@ -142,7 +144,8 @@ " \u001b[1mfocus_xw\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", " \u001b[1mfocus_yh\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", " \u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[92mwavelength\u001b[0m\u001b[0m [AA]\n", - " \u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [AA]\n", + " \u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [AA]\n", + " \u001b[1mflux\u001b[0m = \u001b[1m\u001b[92m100000000.0\u001b[0m\u001b[0m [1/(s*cm**2*st*energy unit)]\n", "AT [0, 0, 0] ABSOLUTE\n", "ROTATED [0, 0, 0] ABSOLUTE\n" ] @@ -171,7 +174,7 @@ "name": "stdout", "output_type": "stream", "text": [ - " ___ Help Guide_gravity _________________________________________________\n", + " ___ Help Guide_gravity _____________________________________________________________________\n", "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", "\u001b[4m\u001b[1mw1\u001b[0m\u001b[0m [m] // Width at the guide entry\n", "\u001b[4m\u001b[1mh1\u001b[0m\u001b[0m [m] // Height at the guide entry\n", @@ -181,15 +184,21 @@ "\u001b[1mR0\u001b[0m = \u001b[1m\u001b[94m0.995\u001b[0m\u001b[0m [1] // Low-angle reflectivity\n", "\u001b[1mQc\u001b[0m = \u001b[1m\u001b[94m0.0218\u001b[0m\u001b[0m [AA-1] // Critical scattering vector\n", "\u001b[1malpha\u001b[0m = \u001b[1m\u001b[94m4.38\u001b[0m\u001b[0m [AA] // Slope of reflectivity\n", - "\u001b[1mm\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // m-value of material. Zero means completely absorbing. m=0.65 glass/SiO2 Si Ni Ni58 supermirror Be Diamond m= 0.65 0.47 1 1.18 2-6 1.01 1.12 for glass/SiO2, m=1 for Ni, 1.2 for Ni58, m=2-6 for supermirror. m=0.47 for Si\n", + "\u001b[1mm\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // m-value of material. Zero means completely absorbing. m=0.65 glass/SiO2 \n", + " Si Ni Ni58 supermirror Be Diamond m= 0.65 0.47 1 1.18 2-6 \n", + " 1.01 1.12 for glass/SiO2, m=1 for Ni, 1.2 for Ni58, m=2-6 for \n", + " supermirror. m=0.47 for Si \n", "\u001b[1mW\u001b[0m = \u001b[1m\u001b[94m0.003\u001b[0m\u001b[0m [AA-1] // Width of supermirror cut-off\n", - "\u001b[1mnslit\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // Number of vertical channels in the guide (>= 1) (nslit-1 vertical dividing walls).\n", + "\u001b[1mnslit\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // Number of vertical channels in the guide (>= 1) (nslit-1 vertical \n", + " dividing walls). \n", "\u001b[1md\u001b[0m = \u001b[1m\u001b[94m0.0005\u001b[0m\u001b[0m [m] // Thickness of subdividing walls\n", "\u001b[1mmleft\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // m-value of material for left. vert. mirror\n", "\u001b[1mmright\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // m-value of material for right. vert. mirror\n", "\u001b[1mmtop\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // m-value of material for top. horz. mirror\n", "\u001b[1mmbottom\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // m-value of material for bottom. horz. mirror\n", - "\u001b[1mnhslit\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // Number of horizontal channels in the guide (>= 1). (nhslit-1 horizontal dividing walls). this enables to have nslit*nhslit rectangular channels\n", + "\u001b[1mnhslit\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // Number of horizontal channels in the guide (>= 1). (nhslit-1 \n", + " horizontal dividing walls). this enables to have nslit*nhslit \n", + " rectangular channels \n", "\u001b[1mG\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m/s2] // Gravitation norm. 0 value disables G effects.\n", "\u001b[1maleft\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // alpha-value of left vert. mirror\n", "\u001b[1maright\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // alpha-value of right vert. mirror\n", @@ -207,7 +216,7 @@ "\u001b[1mnu\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [Hz] // Rotation frequency (round/s) for Fermi Chopper approximation\n", "\u001b[1mphase\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [deg] // Phase shift for the Fermi Chopper approximation\n", "\u001b[1mreflect\u001b[0m = \u001b[1m\u001b[94m\"NULL\"\u001b[0m\u001b[0m [str] // Reflectivity file name. Format \n", - "-------------------------------------------------------------------------\n" + "---------------------------------------------------------------------------------------------\n" ] } ], @@ -221,7 +230,8 @@ "metadata": {}, "outputs": [], "source": [ - "guide.set_parameters({\"w1\" : 0.05, \"w2\" : 0.05, \"h1\" : 0.05, \"h2\" : 0.05, \"l\" : 8, \"m\" : 3.5, \"G\" : -9.2})" + "guide.set_parameters({\"w1\" : 0.05, \"w2\" : 0.05, \"h1\" : 0.05, \"h2\" : 0.05,\n", + " \"l\" : 8, \"m\" : 3.5, \"G\" : -9.2})" ] }, { @@ -256,7 +266,8 @@ "metadata": {}, "outputs": [], "source": [ - "sample = Instr.add_component(\"sample\", \"PowderN\", AT=[0, 0, 9], RELATIVE=\"Guide\") # Add a sample" + "# Add a sample to the instrument\n", + "sample = Instr.add_component(\"sample\", \"PowderN\", AT=[0, 0, 9], RELATIVE=\"Guide\") " ] }, { @@ -265,7 +276,8 @@ "metadata": {}, "outputs": [], "source": [ - "sample.radius = 0.015; sample.yheight = 0.05; sample.reflections = \"\\\"Cu.laz\\\"\" # Copper cylinder" + "# Set parameters corresponding to a copper cylinder\n", + "sample.radius = 0.015; sample.yheight = 0.05; sample.reflections = \"\\\"Cu.laz\\\"\"" ] }, { @@ -300,7 +312,8 @@ "metadata": {}, "outputs": [], "source": [ - "sphere = Instr.add_component(\"PSD_4PI\", \"PSD_monitor_4PI\", RELATIVE=\"sample\") # Add 4PI detector" + "# Add 4PI detector to detect all neutrons\n", + "sphere = Instr.add_component(\"PSD_4PI\", \"PSD_monitor_4PI\", RELATIVE=\"sample\")" ] }, { @@ -336,7 +349,8 @@ "metadata": {}, "outputs": [], "source": [ - "PSD = Instr.add_component(\"PSD\", \"PSD_monitor\", AT=[0,0,1], RELATIVE=\"sample\") # Add PSD monitor\n", + "# Add PSD monitor to see the direct beam after the sample\n", + "PSD = Instr.add_component(\"PSD\", \"PSD_monitor\", AT=[0,0,1], RELATIVE=\"sample\") \n", "PSD.xwidth = 0.1; PSD.yheight = 0.1; PSD.nx = 200; PSD.ny = 200\n", "PSD.filename = \"\\\"PSD.dat\\\"\"; PSD.restore_neutron = 1" ] @@ -356,9 +370,10 @@ "metadata": {}, "outputs": [], "source": [ - "L_mon.Lmin = \"wavelength - 0.3\"; L_mon.Lmax = \"wavelength + 0.3\"; L_mon.nL = 150\n", + "# Since the wavelength is an instrument parameter, it can be used when setting parameters\n", + "L_mon.Lmin = \"wavelength - 0.1\"; L_mon.Lmax = \"wavelength + 0.1\"; L_mon.nL = 150\n", "L_mon.xwidth = 0.1; L_mon.yheight = 0.1\n", - "L_mon.filename = \"\\\"L_mon.dat\\\"\"; L_mon.restore_neutron = 1\n", + "L_mon.filename = \"\\\"wave.dat\\\"\"; L_mon.restore_neutron = 1\n", "L_mon.comment = \"Wavelength monitor for narrow range\"" ] }, @@ -374,11 +389,11 @@ "// Wavelength monitor for narrow range\n", "COMPONENT L_mon = L_monitor\n", " \u001b[1mnL\u001b[0m = \u001b[1m\u001b[92m150\u001b[0m\u001b[0m [1]\n", - " \u001b[1mfilename\u001b[0m = \u001b[1m\u001b[92m\"L_mon.dat\"\u001b[0m\u001b[0m [string]\n", + " \u001b[1mfilename\u001b[0m = \u001b[1m\u001b[92m\"wave.dat\"\u001b[0m\u001b[0m [string]\n", " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m]\n", " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m]\n", - " \u001b[1mLmin\u001b[0m = \u001b[1m\u001b[92mwavelength - 0.3\u001b[0m\u001b[0m [AA]\n", - " \u001b[1mLmax\u001b[0m = \u001b[1m\u001b[92mwavelength + 0.3\u001b[0m\u001b[0m [AA]\n", + " \u001b[1mLmin\u001b[0m = \u001b[1m\u001b[92mwavelength - 0.1\u001b[0m\u001b[0m [AA]\n", + " \u001b[1mLmax\u001b[0m = \u001b[1m\u001b[92mwavelength + 0.1\u001b[0m\u001b[0m [AA]\n", " \u001b[1mrestore_neutron\u001b[0m = \u001b[1m\u001b[92m1\u001b[0m\u001b[0m [1]\n", "AT [0, 0, 0] RELATIVE PSD\n", "ROTATED [0, 0, 0] RELATIVE PSD\n" @@ -398,12 +413,12 @@ "name": "stdout", "output_type": "stream", "text": [ - "Source Source_simple AT [0, 0, 0] ABSOLUTE ROTATED [0, 0, 0] ABSOLUTE\n", - "Guide Guide_gravity AT [0, 0, 2] RELATIVE Source ROTATED [0, 0, 0] RELATIVE Source\n", - "sample PowderN AT [0, 0, 9] RELATIVE Guide ROTATED [0, 0, 0] RELATIVE Guide\n", - "PSD_4PI PSD_monitor_4PI AT [0, 0, 0] RELATIVE sample ROTATED [0, 0, 0] RELATIVE sample\n", - "PSD PSD_monitor AT [0, 0, 1] RELATIVE sample ROTATED [0, 0, 0] RELATIVE sample\n", - "L_mon L_monitor AT [0, 0, 0] RELATIVE PSD ROTATED [0, 0, 0] RELATIVE PSD\n" + "Source Source_simple AT (0, 0, 0) ABSOLUTE ROTATED (0, 0, 0) ABSOLUTE\n", + "Guide Guide_gravity AT (0, 0, 2) RELATIVE Source ROTATED (0, 0, 0) RELATIVE Source\n", + "sample PowderN AT (0, 0, 9) RELATIVE Guide ROTATED (0, 0, 0) RELATIVE Guide\n", + "PSD_4PI PSD_monitor_4PI AT (0, 0, 0) RELATIVE sample ROTATED (0, 0, 0) RELATIVE sample\n", + "PSD PSD_monitor AT (0, 0, 1) RELATIVE sample ROTATED (0, 0, 0) RELATIVE sample\n", + "L_mon L_monitor AT (0, 0, 0) RELATIVE PSD ROTATED (0, 0, 0) RELATIVE PSD\n" ] } ], @@ -438,15 +453,50 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 23, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Using directory: \"jupyter_demo_12\"\n", + "INFO: Regenerating c-file: jupyter_demo.c\n", + "CFLAGS=\n", + "INFO: Recompiling: ./jupyter_demo.out\n", + "INFO: ===\n", + "Warning: 509245 events were removed in Component[5] PSD=PSD_monitor()\n", + " (negative time, miss next components, rounding errors, Nan, Inf).\n", + "Warning: 510508 events were removed in Component[5] PSD=PSD_monitor()\n", + " (negative time, miss next components, rounding errors, Nan, Inf).\n", + "Warning: 509629 events were removed in Component[5] PSD=PSD_monitor()\n", + " (negative time, miss next components, rounding errors, Nan, Inf).\n", + "Warning: 510551 events were removed in Component[5] PSD=PSD_monitor()\n", + " (negative time, miss next components, rounding errors, Nan, Inf).\n", + "INFO: Placing instr file copy jupyter_demo.instr in dataset jupyter_demo_12\n", + "\n", + "Simulation 'jupyter_demo' (jupyter_demo.instr): running on 4 nodes (master is 'CI0020872', MPI version 2.1).\n", + "Opening input file '/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../data/Cu.laz' (Table_Read_Offset)\n", + "Table from file 'Cu.laz' (block 1) is 19 x 18 (x=1:6), constant step. interpolation: linear\n", + " '# TITLE *-Cu-[FM3-M] Otte, H.M.[1961];# CELL 3.615050 3.615050 3.615050 90. ...'\n", + "PowderN: sample: Reading 19 rows from Cu.laz\n", + "PowderN: sample: Read 19 reflections from file 'Cu.laz'\n", + "PowderN: sample: Vc=47.24 [Angs] sigma_abs=15.12 [barn] sigma_inc=2.2 [barn] reflections=Cu.laz\n", + "Detector: PSD_4PI_I=42485.8 PSD_4PI_ERR=25.7979 PSD_4PI_N=8.59994e+06 \"PSD_4PI.dat\"\n", + "Detector: PSD_I=35503.4 PSD_ERR=24.9716 PSD_N=4.49414e+06 \"PSD.dat\"\n", + "Detector: L_mon_I=35503.4 L_mon_ERR=24.9716 L_mon_N=4.49414e+06 \"wave.dat\"\n", + "PowderN: sample: Info: you may highly improve the computation efficiency by using\n", + " SPLIT 8 COMPONENT sample=PowderN(...)\n", + " in the instrument description jupyter_demo.instr.\n", + "\n" + ] + } + ], "source": [ - "# If the folder already exsits, a new simulation is not performed but the old one is read\n", + "# With increment_folder_name enabled, a new folder with incremented number is created\n", "data = Instr.run_full_instrument(foldername=\"jupyter_demo\",\n", - " parameters={\"wavelength\" : 3.0},\n", - " mpi=4,\n", - " ncount=2E7,\n", + " parameters={\"wavelength\" : 1.5},\n", + " mpi=4, ncount=2E7,\n", " increment_folder_name = True)" ] }, @@ -454,13 +504,48 @@ "cell_type": "markdown", "metadata": {}, "source": [ + "## Working with the returned data\n", "The returned data object is a list of McStasData objects, each containing the results from a monitor.\n", "These data objects also contain preferences for how they should be plotted if this is done automatically." ] }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1.494, 470.3132617]\n", + "[1.495333333, 472.9846513]\n", + "[1.496666667, 481.5639576]\n", + "[1.498, 474.1251374]\n", + "[1.499333333, 475.2808707]\n" + ] + } + ], + "source": [ + "wavelength_data = functions.name_search(\"L_mon\", data)\n", + "wavelength_intensity = wavelength_data.Intensity\n", + "wavelength_xaxis = wavelength_data.xaxis\n", + "\n", + "for index in range(70,75):\n", + " print([wavelength_xaxis[index], wavelength_intensity[index]])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plotting the returned data\n", + "The plot options looks at some metadata in the McStasData for plotting preferences. For this reason these options can be adjusted for individual data files instead of complex syntax for the plotting command." + ] + }, + { + "cell_type": "code", + "execution_count": 25, "metadata": {}, "outputs": [ { @@ -475,7 +560,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0UAAAG5CAYAAABBSJ/+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzsvXt0XMd95/mpBohHEw02CRDNV5OgCPEBCTJFMhLNkWTKkscKHTnSGWViO97EzjjJJOvZnExydjePjT2bTWaSnd3JnHV2N36PN+M8rF372DH9CGPRkkNLNinRhsSXABNU86EGAbKFBhvvrv3jV79bdZvgGyQl8n7P6dN9761bt+7tqlu/b/1exlpLggQJEiRIkCBBggQJEtyuSN3sBiRIkCBBggQJEiRIkCDBzURCihIkSJAgQYIECRIkSHBbIyFFCRIkSJAgQYIECRIkuK2RkKIECRIkSJAgQYIECRLc1khIUYIECRIkSJAgQYIECW5rJKQoQYIECRIkSJAgQYIEtzUSUpQgwVsIxpjfM8Z8+ma3I0GCBAkS3Hgkc0CCBNcPCSlK8KaAMeZOY8y4Meavgn0fMsbMGGNGjTEjxpj9xpifcce2G2OOX6S+AWPMmDu3aIz5nDGmxR27yxjzbWPMWWNMyRizzxizI6i36s4bNcYcN8b8nTHmp673M7gcWGv/xFr7EQBjTKcxxhpj6m92uxIkSJDgzYRkDkiQIMGVIiFFCd4s+Avgh7Ps/761tgXIAp8B/s4Ys+gy63zcnbsJ+CngD9z+rwH/AOSADuC/A0aC80668zLAVuAQ8Jwx5pEru6U3N5KJNEGCBLc4kjngIkjmgAQJ4khIUYKbDmPM+4AS8I8XKmOtrQKfBZqBO66kfmvtCeAbwN3GmHZgNfApa+2k+/yTtfZ7s5xnrbXHrbV/CHwa+NMLtF9X6z5sjCm41cd/bYz5KWPMj91K5CeC8iljzB8YY44ZYwaNMV8wxiyoqeuXjDGvGWOGjDG/H5z78UCb9qz7LrkVzbdfZt3/yhjzGvCdK3mOCRIkSPBWRDIHJHNAggSXg4QUJbipMMa0Av8z8NuXKFcPfAQYBV69wmvkgR3AS8Aw0Af8lTHmCWNM7jKr+f+ATcaY+Rcpcz9wJ/DzwJ8Dvw88CtwF/EtjzDtcuQ+5z8MIwWsBPlFT1wPAOuAR4A+NMRtmud5D7jtrrW2x1n7/Mut+B7ABePdF7iVBggQJbgkkc0AyByRIcDlISFGCm40/Aj5jrS1c4PhWY0wJeB14P/CktfaNy6z7K+7c7wHfBf7EWmuRyWIA+N+AU8aYZ40xd16irpOAQcz4Lngv1tpxa+23gXPAX1trB90q5XPAva7cLwD/u7X2J9baUeB3gffVmDL8O2vtmLX2R8CPgLdd5j1fTt0ft9aes9aOXWadCRIkSPBWRDIHJHNAggSXjcSeNMFNgzFmI7KKdu9Fij1vrX3gKi/xhLV2V+1Oa+1x4KOuDXngk8AXgLdfpK7lgEXM/C6EYvB7bJbtFvd7GXAsOHYMGYvhiuXrwe9KcO6lcDl1X4iAJkiQIMGthGQOSOaABAkuG4mmKMHNxHagE3jNGPM68DvAvzDGvHijGuA0VH8B3H2Jok8CL1prz83BZU8Cq4LtlcA08Qn0cmCvsu7ZzkuQIEGC2w7JHJAgQQJFQooS3Ex8ElgDbHSf/xv4OtfRztkYs9AY8++MMV3OIbUd+GXg+VnKGmPMcmPMxxB/pt+bo2b8NfBbxpjVRkLE/gnwt9ba6Sus5zRQJR54Yq7qTpAgQYJbDskckCBBggshMZ9LcNNgra0gZgEAGGNGgXFr7enreNlJRDu1C2hHAjc8A/yboMwy1xYDvAHsAbZba8+bNK8Sn0VMHJ4FmoBv1Vz/smCtrRhj/hj4J2PMPOCxuao7QYIECW5RJHNAggQJZoURn8MECRIkSJAgQYIECRIkuD2RmM8lSJAgQYIECRIkSJDgtkZCihIkSJAgQYIECRIkSHBbIyFFCRIkSJAgQYIECRIkuK2RkKIECRIkSJAgQYIECRLc1kiiz10BjDE2YZEJEiSYDVUYstYuvpY6HnvsMTs0NHTB4/v27fuWtfaxa7lGghsDY+ZbWIRETAaZbmujItcHx8N9tdAyKSQg2ozbbnK/w+P1+DQ0VffbuO15wFRQbxoYD44B1Ll9jXonNd+17azKdXVz1sDP0758ivNvWetQNCAx4rRJU0Azkv4UYH5wa2HT9Nbmuer0Mek+bZt122E7qsQffQqYqDk//AtT+MeNu5YNjjchcesagvOnXFub3L5ptx3Gu5oMfuv19NGMu311QZ2TwXFb8z0TtE//5kbiXcC6+vS6VXy3Ijim96HtmQ7K13btUFAKj1WDhzcvBVP6B1SJ9wF9uGFDtTF6MzPBdu2F9M/TB4S7qRRQdtsNxKE3rG0Kx43WWa0pF3aaak3Z2n26rceOX9N80WWMrVyizClI5osrREKKrgAp5L2cIEGCBLU4F88if1UYGjrN3r0vXPC4MfPar/Uab0UYY+YjIYY/Zq39+5vdnstDFvgtvCS/CDhTU2ZRcDzcVwst04wIeiNue4OrMzyewwuTY+6jM1eOeA7PTcDB4Jhe/yAStVrrBM9Qatvp6s+6zRKzEKMzvvx8d0qszBjUB7PrcqCABMwGycazHuh12/cgcrEK+koyCu477/aVgkssB4bd73G3HaZhHQfagu1moK/m/GxQZzNCMFSsLSGPXY/fCXwTWOG29dE3umN6X7U89UTwux0YQp4ZwCvAEqAlqPNEcFxJnD7bEv4ZNgL73bVfr7nvLHDcbZeB1cF96DG9j9NAxrVLy2eD7XriglJ7WFb7fzO0N8Mp7bdjSJ9u9cdp5vxctnr8YE15iI+vZmAAeUAjbv8Gt3+3K9NZU7eeq22aIt7nlZWPBOXGiI8DZikfIhyLv31N80UF+LVLlPm4//cTXCYSxcd1xIJZ9l3NA7/cc2qnrMs9liDBXGOu+9tsYuKti+mLfC4NY8xnjTGDxpiXL1LmMWPMYWNMnzHmf7zU/qvBhdpxldf4H4C/u5b23DyogHemZhvOF6zCffp7HiLchZJmK57EjLhjnUGZM8QJWHPwyQW/VQLf4NpQdNdsDeoZq2m7okZgHRqTz3StIEj8/sr4rhyJbK7eLEJojiLCeydCbvII4WkmTr5CktKCEJTFbp8K+/rZj5CeNlfnC67MRoRwbUVIxTn3vQ4hQttdO5uJa4663CN43n20LfpoS3iyBtDvypwAXkWIxgQie2dc+XmuLesRcnHcPYM73X1tccca3WceQojy7jPqPkoYm1w7j7s2bUQI0VFgM0Kwsq5ci6tzNUJ8RoPnrH+pZhA8ivyP5aCMQv/bcvBp0bKL3EcJkT6sEXejRTwZ0r6Xw/fBkaBsLqgP/DhaVFPvPLdvwD38O91H6w8/et4UMgaUrWq/D9lrc821ausIx0G4MDI30EX6i30SXDkSTdE1YjHynkgTZCF1eKOmDMSNHGqVrbpdW1fTLHXPhnC41i4+1SqhQ9SWnQ2z3d/FsAo4eRnXTnBz0cj5FiJTXF6fUKzALzJqP649N43M3ToOwvoz+Ll1gftda3RQu74eYlZrHIfQUiR7kXoWION1trpmW9+HK3tGl48qfvn7qvF54BPAF2Y7aIypA/4CeBfy1/3QGPNV4PBs+621B2rO7wDGrLXlYF+XtTZcV5+1HRe6trX2gDGmB/j3NXX8MqIXOEBcxHwLoHZ6vZCoUkuYFCpIjRC3C9MeOYYIefOIC5YHg3M73X7dPognU4pWvECnx5YH36rlUYGu6M7R85qJr4DXINQUgAjd43ihW4+r0A7yT2fxxKaA1/7oOeCJ0TgieHcF+4eC8vXIRKxNbAHejTw+fXmBvDBUIzLgrnncXeNnEGKl1xhHSEop2H47XhGxwp23xW33uetmg3aohaISNyUyLe78/cS1T2PB9UGe4TBe47Xe7dO/+wRwyNWl+7LA+13dBNdrcp8lbn+4srXd1aWE817gJddnNywSkqf/SQYhTbo9hDz/cDhMgyfz4LU2SoCUuNdoIyOyroS89s2sJH/K1THgbkQ/ekyvFbYhJDKtxLW4+j0v+H0GGR+hllb3Lwq2x2p+z7ZocOVILJeuDxJSdAVQ69JliMCfQoQ8FagA7kfeD2eQIXcar20OBU5djCKos9WdO468w84g1quL3Tl9eA38HcBP8EKctiHjyqh0ogKnvsvU0rYRsahVq9xFwfWqwfZixCJ3Pl6obUTemxW8kBs+A5gDO6IENwQTF9g/m7BfSxi0X56pOd6F739pvAX2CNI3y0i/xJ1bRvpPNfhof1U54RzS/zLI2GvET4+nkf46HpSvw/fNO5C+qmNWydGyoK7Fbv8xZIH4daQ/6/2lEHmhE5HOa42Q5g6hU8JV1mDts8aYzosUuQ/os9b+BMAY8zfAzyLi3Gz7D9Sc/w7g140xO6y148aYXwGeBHZcRjsudO0D1tpeRPSMwRjzMPL3dwNjxpid1toL8eA3EarMbkKjUDJUS4RC4W8KWdUeCM4JUbvyXGR20qMC4f2ujNZ3D94cKBTcwu0Nzl1DR3rn+beSafYrGyACsQry81ydah6n5VTTATKw78YL6m93zVAzLyVEP3TbP+e+df1gPTLglVSpRaASrzXIY9Hrtbjy4a0MuO1ssO84Xrh/1d2TkqgW1z4lKaPEzcwAnsI/B30xLse/eDuRl5ueU3JlpmrOeZfb/pL7VrJ3PLhn8M8j776z7hovBNdscfca3mcWT9Am8EKDtmk4KKvme/Wu7x0Elgb1nSZOhFcjJGkD/n/JAOVae4Ii/g+qNVXrdNvFYPsgnryfcMd1e4Dzx4rOQIpaRzVFOKZqiVlIwpQQzTZuwnK1JrJzQ2USUnR9kJCiK4CSB9WAZN22CoALkHePKnXHkZm8jAiGy5Cl2AyiwT+JJ1GLESEs7eo6g9dqqybqbcg7eBXy6sggAl/BXa/syjcQtyKYF/yecOek3DWakPexXqMOeeedcO0t40kR7tpTeGFWBeH5rv215CjBWwuzaXjmIf9pFU+mlWyfRmQZ7evDeJKuZaaQOXo+0lfr8MQk464x4epYhRCTDDJm5iH9swr8yO1XzZQSLD0+gydS85D+q2b+TcF589x9LArKKwFah0ynbe5aeq9KsIaRsaRTsxKrHLJIce24JClqN8bsDbY/aa395BVeRD02FMeRV9GF9sdbaO2XjDGrgb8xxnwJ0ea8q7bcFV77grDW/j6AMeZDSDCLtwAhAv+WDVeia0nQoppjICRGe5iudk8F5WtXx9XPCFcuFP7UpEivqYJkp9tWoTMUFmuFOpxJXCAshj7tKvQqeZhABOJabwYVsjuRiUxXMUAmndfxvjaq6bk72G4Efiqob4y4n8s5vCCuLw4lMLoSGL7gNrpztEwn8mgWum19qem2Bh9Q3/6sK3+X237FnaMk6WXgG0CP224BHsNrtcATLR3Raq6nbVrhyuv2w65exWPE/Z6miBMSfaF1ETc7HOd80xK9xlb3rf+vmt/pfWrX3O6+lTCFJDj0MRoPjofao1pC357zdUxDnLCollXPeRF5WLp4MI84EbrH3eAGfF8Ol+vAj62Q1IT+eDpW9fzaxQOCciGaZ/k9mwY4wZsRCSm6AkwT7/5nkHeqEgMlA+EKslqD48qqxkgFvgMISSm6Y02IoHUa/+5djCdj+i6rQwTNMvIeWYJfTDvt6teFnxlECskh76qpoI4Usoqu20vwJKjk2qLlR4J7nXTtHkfmsmFEuH3DXbeOKzO3S/DmxDieYGjfPYDvq+NI39JtNfVc7L7V3P20K6samZI7ZzFi3aGm73Xut2qYTiN9rg4hTK8jU6HKCrj69JpqfVJ2106767zh9uWQPq4WKXlkoWKBu9Y6vJn/iPu9AunfoVZNiZiSpbnTGlkuYT43hUgEX7PWfu0qL1IbRkwvfKH95++09s+cluf/AtZYa0dnK3cF174krLWfv8xrvIlQazJXq9nRlWY1iwvNh7R8uAJ+BpHew0AKtfUWg21dQQ+Fs1qh7Qznr3ir+VFYLkAQTI4hhBipBqgLeSkoT1sCdDZ7rc8AImA3EzerW4GftPoR4VwHmGp5dBCqeZ0SrdMIYVCZdzkysENTtylEcwNCQha6NoQmeS+5e8HV1U48mEMXPhjDBEKsvuG27yROxB7A+wXp+UcRkhQO8e3B71HkZaRtyrrnED6nLjxB0YAH4csQPFn8PvJcIE6mmvCE8yzyHLSLzSD/r24XgUeAfwzODa/1uvut19T7VXMAEM3fy3gyuNq1O9QuTuD/T5D/dLrW1y7QXsYCMZwgPi4gbuqm6CIeyQI8sQq1s+A1thcjMa3Ex03YznBb7+NihuBXhkRTdH2QkKJrxIXMjxRTXFxgmkJWwENoQBrV+Ki/Zo64NklJTRveRGnGlRtHBMV5yJyUxmuG9D2kq9y6QDflfre5utWPaJW7hyzynlNNAG7fSeT9qQLp3A37BDcbVTzBOIkQYSXgJWQeVM2h9rk8QppDAt6G9FWdu3VRII308QxCtu5E+q+a0Om5M66Mkq8ZZCyEROw0XmMzhZ+zw4XWN5jdGl0XNA6779PBsdDl4GL75gaWeBzh8/CGtfZXr/Eix/EGNiB/48mL7D8PxpgHEbHqy8DHgI9e47VvQahCq9afYDYBSSNphc7aWmY5cYSkJ3QG1/L3483j9FwV0Da5YyoAjri61JRI2xuIW7NFEg+1EV341RGQgR1a/Onqf1PwPeE+emwj8cnyMWQQqpZlnLjmSVdrlPS0IyQm9LfZGlyzz/1WeXgLPpKbSkFLiEes20jcxEwVDaEW5zjw08E1FhAnB0vwPjp9CBloxJO3pchzXBNcJ4PXvvQBT+AJZdm1Q7cnkMla2/wA8mx0++HgnrYjK1AahEH/v/WI4Wzo5NmJf5aLkeemGqQm166Xg+1QC1SuuZ92d8+hz5f6Vykx+z6eMIH896G2CZjd/6dWI6pjSh0V1NcuRKf7Vv+6UFsbEiZ1aAivEUKXzmoXGWoXGGp9k+Ym2IIhEeCvB5Jn+iZEFT9nKIE5g7xXliNCXx55F6pJn5raqcFGHhEU1USogjdJyuO1O93ut/oPrScu7L6MNy9Wc6g0/j14DhGUm1x91+winuBNBxXt7kD+4wzSZzrdb12ETSNE/hwiB6g2SM0s1ZSuhNcIVVzZA8icOxLsryBzZgXpn1VE1joc1H0GkcUWI5J1KF2/NTWVlwy0sMAY80muTVP0Q+BOZwJ3Angf8AHk0c62PwZjzL3Ap4D3IGvff2WM+V+stX9wDde+BaFxQ0NhKjTPqRWOVHibqjmmq+B6/nK88KamciqEaZQtLV9019ftWvO9YKW7vlnIjw5aXekvE/cRygNHx2CpO6+ACNwh6fkhcVM3gvO7kMH+jPsuIELwRE3ZxcE5WUSLokL1cXedl4PjW4Pz1fTuObf9mPutbdyLEJSX8YJ5C0KEdEUkg/g4Kcn5CvAUrHrvIQCOfXW9kKsBd3wB8iiVQK6QdrQ8JZL96Mvt0o69wEem4Xi9f3mptulBd/56t90Z3A94Mzht0/NIG37Fbb+EkL3a50RQr9Z1NiizBf/aOYu86MNAGCoU6DUakeh14J2l9f/bSDxKIEif6Q+ejZoLvOq21d9oaVA+1CItBU61xs3vQj+2+k6YDv3pNNiBLhIoUdFFAPBmpbVRGhU6tnQBYewC5cOw4FpvrbYoPDY3y8Yp/AJ5grlDQoreQpjA+y0cRt5LncTTk2WQ9818ZIVd/ZXU1CmDCIt3uPKqCdL3WSMy0FQzdDc+lZ+SoQV47VAJEZAn8WZ4CW49vI7892rdsAr5v8/hfdnUhE3NQ9XHqA3vi6N9KTSha8IvCE8g/aoNT+ZnkD73I2ShM++uGxKgWyuwx0V9ii6pKTLG/DUukLAx5jiS2+czxpidwEestSeNMR8FvoX8JZ+11r7izp11fw3SwM9Za/vdOb8EfOgK2nE517gFUEdc61Ibr7DW0XxeUL7Wl0LP06hvJ2qOh4JWJ15Sr0WReOhunNZnALKdsq3RwsrB8Y34IAgAb2/2QvQ4sA9vBlYgTojaEbtU1X6U8efe7T57EUE+DFpQwgvuTyIEQLUJQ67sKbf9fmSy08ei0dYeDNrwZHAPDyJk4CN40jAgbWt53JGY3e00f/QsYy87p6KsnHNMGUs78Dq0PSYXbUiFWVfh1IHVcBxGB5wk/wSk2s5RbZ8P+53o5XSmbX/q6zj14mpol3fAqpV9FIp5qk3Oq/d1305AiGAJ/8rIIMsM6qO0BnnxroCWR919Pd0uz+d5V2Y78p/1u+2FeD8q8Bqvl9z22xHNTqfbHsavgiHXirnuaFduwkucy/FCCcizXUrcNG8IeNRtv4CQcNW6DRHnG9OIT1KkWVLioxrQ2nEFcdPR8JwwsMI84pqkMHqcbs9mCxTmWwrN+EJT2GuDITGfmw3OiuEXkN7Wba3ddkXnW3tZ5twJgDpj7JuxE6aRYbsJWeQqIkKr5k4eR8yDVrnjSxBBM/S1TCPD+BA+MIOaTKkviJIqdVwfxkekex0RYMPFnQS3DtSf6E7k/+5G5kDVIk7hw3urGaWm3tB5Tv3RFiFzcJOrswkRH08i5OcMQtpP4y1y5nO+membDedgn7V2y6VLXhhbtmywe/d+/oLHjdnah6yxX4umKMENgDF3WPhDvECU43xTnlpiNJvPT0imVEgLhawNQb21oYSLQR3UHHP1z7Y0Whv++jm8r40KpvNrzjkXlA8tiErEQ1ermUGWuPaoNuqbhokGH/46NE2rD46rEK6j73VIbT5HtX9+/JqqBdIEpp1Ai2MUQ/VCRsbdA2ly+3V7Glo6h+hKy8UK1TwT443MTIv3b7qlwvCh5bStF4Jz9nSW6r75vo0roK3rBMO7vVC89J1Hmaw2kE/Jm65MhlI1SzYlD6ZYyQmpck1YuvYop17Ls3SllC+NZKmrn4naVCTHqZ2r/X+kL2A1L1RM47vBYoSE7vbtpIV4oISteLNB1T6F2ip9iYOQtnvxWjyNyBfa7oNotNqDMuP4dr8e/NY2aJ8BH9JXSdUpLoCQtKi5XRhaPjSXU82RPqgN7mbCsTWA79hFzvc5UjPYcJyH2qQwot5vXNN8sd4Y+5lLlHngMuYkY8xnkaifg9bauy9Q5jHgPyP/8qettf/B7f9NRE9pgE9Za//8Cm/jku240LUvo74ngJy19i+vpB2JpugWgJoancS/M3J48zmNSFdB/IjUdElX8yfdvhPICr36s6r2SCPO6bQaEqpysJ0QolsXajJXQgi0mkquwgfXaMCbYRZcuXXIFKPBN5oQrY6Getc+1oYQogl8gKcpV3fo33Pr45LR5+bCpyjBDYFKiaEQBfGkq+GbFc73QZhH3G9BwwCHoYhrE0oexC/j63ewml3f7CeK0EZbTZe0OhXmR4n785Rqtk8Q919/HTGtUs8x9R9RLc8YPqqbij7q56L1rsf7roAEFghlz5Aw4a4fah6aEEIUmvQ14Z0Hm4Lyrl1tG09w9nSWdLsQkpnpOibGGtiycg8AaSpMU8eeoiw8r8sdoRC4x02MN3Jf97NM0gBApTnN2JL5LN10FIAcRYrkWPPOV6g4w6disYPG5kkaWkXLtJST5FMFdr/4mGxvOkpb9xD1zs/w5MgyUo0TpJ1x8KnXV8M0/LhN+sfq3ECcbB5HCM1L0PzTonYbO75Qnquq53EarBZHIJcgBGm7O1ggriW8C9FEqd/Q3cA38aHBlVCHCpEB4F8Dn3bbja6MBtbY7rbVnE7r1j6lhEn/X3WWDv3BevHDJOrTzXCqM2hImNQ4jFwHfgFhg9vWcRcuUoTmr3cG52h5DZRSu3wekqRac7ubjs9zdXntUgghug+Zzr9pjPm6tfbVmvNvaF47a+2g+/0BRBd8RbgtSJExZh3wt8GuO5AlvCzyp6rc9XvW2p03uHlzhireklYFTw22MIO8o9Rh/TQ+wlweH9NoBm+yNB9vDnUSL8iCkCvw/iEakjvBrQnN56MBn5rwJpMaHW4S6RcaIERdEzQoh5IiNZlbjMhPdUgf05Df85HwahpJ8fbCJaPPzYVPUYIbAg0notDsdaHmqIgIWZ2IBKiSZJikchHxleYwX4quencG5TcQZxB6LT2/2WsBMggRUZ8OEKI0j7g51Ea8+Vsb8iJQo8cuZOC2B9vg1byaxFS79Zi71S14My/wmigQQftlvDZiAu/jAl7mVG3CANDl/HSA5i2OAHzP2YF1uvoekwWHpSsLnGrJk2qcIJcTGWqy2kB1opGNOSFBp1hGqSUbkZwf7HmIx7d9iUdzEobt2wfey+PdX2LXiNh45dMFGpigSAcAPa29/KDpoYjAFMlRrmTIpks0uJm01Jwl21qi7By4KnSwjiOs2iR+S/XMUKzkIk3QstaTtLUO0zsijKat6wTDzy8n1z3ozk9DVkgOAHdBdaKRlsdLjB6SPyi1/BxV5kfPvvkJ96zGHSkaR/7jkHSqL5T+F0vx5nZ97riihGhulGSfQ4hZL54Er0DM8ZR/jCL9Rf/XE0h/0uFQwueFAh+IIXxV1gZmWEq8z0RkJQyCEEZYvFTacl2M+KegfDiewfv0hSHyQ5O7DcwVLjPQwiVTOFxDXrs+4HlrbcXt/y5ipPpnNeff0Lx2rtxKZAGxVjV/SdwWpMhaexi3juGY5wkkatKHgf9krf2PN7F5cw6dLk8iK/XqZ6QJMDVwD/hFJSVO6l+rPkRlfKBYJVh1xP1wNdVCglsbWXygjUlk3lQTTSU6RXwOrSreb2genuzkERlKj2nwhV68meY4PhLc7YVEU3TrQE3TVQjrJL5ifIa4qc1yZs9jFApeSoJCh/IRvA9Rp3xlXB3R2qw7v705nkPoTiQowv5gXzg5KJrxmp5QaQVS31a8ZkhDNIeR4L6P+KKATDRbkFlYBefQjApE3LobL+RqDP4Vbmx8vx7axZwNYHS8Xczc3NrzWNNCWtYPwd3eBK75fWcZK8msVRqRm6v2z+fUG8LGHlj7D0yu7I80QQsXl2hITdJXkRu5b9uzTNBIv1NjrOokFAQLAAAgAElEQVQ+xK6RR3m89atSJwvZV93MxLioPybTjazqPkSbY5OlapZ3p79FlhKfee3XpI6VfSykxIRTmaQZo0SWe+gF4CxZKul01IZcukiRDjpbBwCo0EzDtqOUK3Jf3ekD5LqLnHV/3nClnW25f2RfdbPwA+er1LziLBNtQvYmxhqoDs/3XWjIPW9XllK9aIJCw6psze/QtE1N5UKfMyXGqhsYQl72uq2rZeEawgq8SZ9qlZQE6zXVMEzFfu1Pp6khRHB+6GxFbeCE0AcwhC5GhD5G4flqXgfejE79iXS86gx57bjMkNxD12rSzYVzy30F+GNjTBtykzuIL3MANz6vncO/Aj53mdeI4bYgRTV4BOi31h4zZraUGbcWVLB8ByJ8qmnSfGQFX53k0+64CrNTrkyYpw5kOOvq/XxXbjwol+DWRRGfokO/dR4rI6RZ+5SSpAxCoI4j6tk78WRa8xi9iM9ZFKbSuD1xyehzCW4i3KLaXuCEtXbWVUoPjQ2qQths/gahZqcZITW1glMYVUtXsgfctgpxoUnOGJSduJTRqt32nYhAqtVr1JM7iUd6C53iQQRS5epjCInROt7u9qlPUa2fT5O7LSU+7Xgfkg+69uxHXiq1EeTco1u66SjFYgfVV5w24+3i+6P+PLRPw2h9zKcoky5LxDeg+YGzTIw10JwVlris9SSV1jSshC1OjjtAN6VqluqEEJSJ8Ua2pffQlxZC0sAEz408SLrFx7V8qvVpSm523FfdzJpUPwfoBmANfeQYjDRNpOQaOYrc50zyinTQwSB7KkLEMulydC0QkpSjyBqnKTpY7aYymo7asDm1jxJZimnRTh2odNPYNMHwcekvq1b2cZi1DPctZ+mmo5x6cTXp9SVmputIZ+Thjh53GqR/IX9g9TPz5X8YdR3gNHFNkZIehZJl7T8aGl3LaHbv+qCsmi+qL9A5dx2N5JNF+kRIrMN8THp+X1B+PDjejFsQqA2sgJiPKmIR6zRSo5KeAeLR4prxgUr0eG2eonAcjjB77qS58Uy/gXmKZs0tZ609aIz5U+AfEAr6Iy6wonej89pZaz92mfWfh9uRFL0P+Otg+6PGmF9EhvxvW2vPhoWNMb8K/CrM/u+8VXAa8f8oI9ojzSuj03aVOLnJIgSqhH9FVN1xfW/VIe8y1RwluPWhZnEgRHocT46VOGuo+ALiGvA6fqF3EdJntL/NuM/3bkzz3wK4pKYoMZ+7ufhNxNDsMh0DQqELRFBSNqGO3Cc4P0x2SKaWB7+niEefWx6vP4MQIl0xP4WQEH1pD+Dz0CjUdC40kasnrg0o4QMr5BFhVE3bmhCSEyZK7cJrfTYiE0RoX62RxV5CnPI7iUelUyHXvWxOHVlNy4ohRrOuEaP1NK84S129+Nq0tJegXTQpAP31dwmxcPepJEK/+1+8i1WbDlHPDHvZQrmSIZcukk2V6FkpWpoGJimTIR8sVO9o3RmZx33vyLsorvXPPp8qkKXEu9PfkmuwhnpmItI0QSNd9FEgzyPsopd7yFOgjmna0qLxWkiJPAX63MOUFAhlvndAFtY3dL/EYEsHHSkxl9tX3czw/uXct+lZQLRTp46sZvvabwJistfNAYZXtEuABuffdOq1PC3tJXLpIqOj7Szd5LVNMx+dpLN1gIMH7pUbe/s0vFxP20ekz1VG04ztXuhN2ZqQF30YwvvlYFvDeY/i/YBGiWsP+4hnL9PgDuFq6zr8Km8JH9EHxAfpBL6P7keGzHSzmGUWEOL/KvJ6XQqcUk1taM4aYqzmW1WjAzXlQhJVmxdMI9jVJkO+dtzAkNwXzC1nrf0M8BkAY8yfcIEUfm+lvHa3VfQ5Y0wD8kDvstYWjTE55PVsgT8Cllprf/lC57caY3uQLl5BxqUGLjiET6yqEdnebFiEEKPl7rcmaK3iF/k0aawKrPPd92nivqm4cw8gD/TWComc4EJ4G9KH6pC+rwmBx922+qNpWHfwfS1cSG7C58fSFB1vRuTwniDq56vBSSbwpqY54MtzEn3uDrt37x9d8LgxH7zmayS4OhhjVgD/Bfhj4N9eSlNkzJ0WPk48xG8YFrgTYSNh9DiI5x1Sc7owWStcdI04JDS1ds1qBhdEROM4EhhBedZ8RIAMsR9PpH4WH2sf4Lt4nxG9hobMhvOTqna5NoxC6n6nnRieL+1WkWoJ0DJNqtFpTDJjzEzX0dEqb5XhSju5dJGMW477cbGHXG4wpmFpZIL9R0T1tGHtS0zSwFInT6mZWu9ID0+1Pg3AlytPsiXtrX8amKSLvsi0LU+BQToC/5806zgcBVvooEiBPDmEsDzHg2Tx/kONTNDAJMs4GRGrRiaZoIFGV2aCBmaoj7RLQppmovJHWBft1zaWo2UqontS87ocRQ6zjjQVNjtVz9dG3svY8YXc1/1sdN6BSjf5dMHdl/QtDe5QqmYZ3r2c1F3+v1rVfYhjeyQ0ecvGIUZ3tfvcStOcb0TVyPl95jTexUYJ9m733YUMEw0N/gzSp3U94TQ+NDjALret/V3N+cIktS3ElTaxxLAhQkITBlLQICaKUEsEfsY7QXzMhwgXRa7tXb7RGPudS6g12qYvb05yvjx/P1v0OWNMPXAEsbI6gRjcfsBa+4oxpsNaO+h8eL4NvH0WxcK9iCIiymsH/GS2vHa17bjYtS91T1eL201T9NPAi9baIoB+AxhjPgX8/aUqWIVPUKm55caREMVNCMGYwQuC4KN2VWsru8HQaHHD+OAtVfdbQyOrxkfTDs6485Ygw/kcIghqCOUk6tztBV0QUJPuRfgFuxLeBPM00nfUX1cjI6o28gze9PLNAA0XnkEI3Txk8WAxMl404qwSwCm8L1UD5wdavnpcUlOU4Obhz4H/HgIp9JIIE61CfLVYTXUGgn2L8KF+wTORmjDAmjj1VE2kq3q3qS3cSDx+QxhFDKSrrUAGrwqUasKmg/O0q0ePf9edo5qC+cSjmanplArGd7s6tTxEZKw6HDj3t0/Ttl2m5LOnnc+PM2UjM0a2tcRCbUQapqmjxc0+CxeXaGCCtBNCCxUhKvetFcE/687LOcG1lx76Kl083vpVel3DH04/Q54CHY7U7GMzBfJ0uv+nlx6ylKK6MpTppSciTSWynCVL5nxnFkA0RRM0soa+iOTs4lE+wH9l0tUxQCcP8hw7nQ96gTzNQRrqPIWIWAHMUMcBuiNymKPIZGtD1Ca990ka2Fl5DwD3t74A3US+TmkqTKYbInI1OJKjs3Ug0nA1pCZZ885XKFak7472z+fYa12k1ghJGh3KwkYf5IIS0BjkezrU7v971US+AwnUsd1tn0b6qQZseB7ROGluJA0KF5pm7sd3/XuJh4gPFwOUcIXJYXH1h9EXgfjYw11UzecGiPv3KWkKg54043MjaX134meIcFHk2mAM1F9Kgr+MqeRa8toB/6/zKZoC/ttaQuTwlsprd7uRovcTmM4ZY5Zaa9Wq9Uku4dKg5nMz7lsFwjvwzuLqjN6ND1V9BzKWR5AxeAIvSM2qa7xOKLtPH/AAPtS2mpVP4XPOaNAFJUwaFSwT7F+AaKPnJj9zgrcClOjn8HPJfIQgTOC1jIvxvmnav5Q8nUM0LYe5eQE6FiBEP42PvqiaU10c0PW8PF6bqlH3FuNjiykhnBtU8YHKZ296Yj5342GM0fwZ+4wx2y9SLjK3liUBjeupCMNrTwX7VDWjZnN6jgpRoVA1AqdrnL3VX0e7jlp86aBTXqZkSQXFRiSK2GN4Ve5eZIBrWZf8MxJIW9z1VPuzHxkAOpll3fFwzbkpON6EBEDogrYVTvPTt5xUo/eFSTVOkM6M0ZaTGxmutJOlFGl+Vq09xP28EGlMCqk89/MCXxt5LwCbW/dG2iCASRp4tvgg21xkuTIZutJ9jJGOyECWEkVykenanso2fj79txFp6qDIJA0MOkJzliw5BtnMPldnC4PkKDvHmQYmIxKjxxuZZCfvYZ2zA8tSopd7ouANG9lPkQ56nNqtSAd5CpE2StumEe1KZOnhx/xjVSLgpVMVeujlqOs/zxYf5J5cL41MsCbdH5zTy+6IkYjWS83nHm3dRYF8RP4OvtZDc7YcmSqyYhqG6qm2+HxOzdkyY993ap08tGwfYvTzrlO24PNQaZ/KIn1V+0Qj8RWycYTEOAs+XkJM7mr5pvILTWLbX3NcJx8QMzoNIqHHVLjBnU8OpsOgJuGiwwbiiVqXu0ZuctthyH2Vijrxvkpa55sL1tr3X2D/juD3TuC8yMzW2gdr981S5p9qtqeAT11BO2a99vXCbUOKjDFpJOLFrwW7/8wYsxFZnh2oOXYedKVYo7CBCEw67+QQE7oMnlQswa+ua0LUVXgNy1Z8AMcz3LiIW2XikcLq8O8IDUypgp/6iKjAG+Y4mqmtOMEtjTLewHcx0mdDu+bFiPimfSZEBpG7NMnvADcujHs3Mh1pf70DHzlvAp/seNy1US01VE7U3EzLEFIktv4+yMTc2nYn0efehPhnwHuNMTuQV2CrMeavrLUfDAu5cLefBDWfC/Oa1EJD9ar2SFeYa5NB5jgvulyIcBZfUXMsXI1QjOO7WBYhL8fx5k9D+PwMIAN5KDi+BB8oAYQANeFNo9Tf6Ctu+wnXfDXiaQLG6yWc9H5RYaWWn2Nd7ggDI/7+RoeyEdlrSw8xSQMb1z4fHd9ZeU8UmKA0kmWwNUdPq5CJAnmGK+3R8RxF8rkC+0akETtad3KAbvIUIk1Q0ZnGqflYd/oAg3REOYVOsoyHeI6i+7/SjLGMk+xhW9SmfCxQlrRDtTgTNFIiSydHOezM4BqZoCvIqrqMk+zkPZFGq4FJTrIsMsl7lF00MMGAi1+u5EWTv+o+xercQKRNU5TJsI/NHC36Z53OjEV+TbtGHmVZ68mIzLWtKNKQmozu7QfffwjulHDg4HyMXl7oucOKaUZ3t8PPBJEC+5D/stasU0lOFzJ5qC11Fng3nsyr71FIvMOQ3CVEu7TdbfcRT1YL0m+X4LVWGshDH1ekNQoDJzTjCY6G11acIO6TpON5EUKU+ogvgoRlrh2pFDQ3XqLQm8UU4y2E24YUuVjqbTX7/psrqSM01W7Ca1Q0D5kGayy7C2kAgtAPJ9zWFXYV0O5Exuc5ZKHvemqRfuTasgnvKxGG4q71LVIipL/1ndZEgtsJGk2ujDc30zExiQ+iAD56oeYx0qn5NNL/richyiB+uVlkTFbwJCbM/6eGKbrAvghvGqcmdXVIv+90x+rcb73X0FT22pFEn3szwlr7u8DvAjhN0e/UEqLzMUncJyEM56tQIUqXomoTP54hrjmqOa6q+3AFXm26wZsUhU7xYWS544hp3CG85ked4sNIYaFm6JA7X30y9Jhub8RrBxSdwTVdSPDhQ8tp7hJrm2xriYMv3htt19XPsGFlLwdfEy1NZmWZY0dWQ5MI2i3tJRqbJiKNSn/rGna/9ihrVsqyYpoxjg1lya8UQT5Pgf1HtkYBCIZpI0OZZ3iYNnyQgx5+TMk5suxmO3kKMdO7/8oHolvKMUiJbERC2hjiMGuj7XpmOFDppjt9IDqngQnGnC8SCCkqkOdhngGEsDzMMxHR6mCQ1YF55UtsZJLGyOfoLFlaKEchuIvkWMdhTrlMgu/mW3ydHSykxCgZJmikQjN5CrwnJ4vvB+imQprhijDQda2HKZKLSFFlNE2FNGtahWWktp8jnRmLtHr01bPhnS9xuLgWcCaPQ8CQ+8N7EH7QiY+o00W8T2nYbjVv24poIFXAOErc9E3PCSMmPhZsN+L7nPbLNcDTgOo2yq4N5WCbMQlbDzCk40zHrOYMC6PRuXNiOIP3FfwnzsfcxIwzBuZdihQluGLcNqRornASIS7DxH0M6vAaF52fwn2lYL8KWmk8yVCHdfVp0IWQM8h8dj38keYhax3L8IKtXifjrj0PEQ5H8OZzuvCoPkoJbh8M4xOWL0D6yyQ+hHsFvzCAO6aEugn4iSt7PQORZNxHzVo1wmKoCQWf/0/NRjWsuAYfmcKLqw1uf8l9qz/RFBfWA1wdEp+iWwfzkB6kdgW10aya8bmJtKdpgsjQS62TuGnOmETVAk8+VBjUGV0H4H5ktU3zu8zHB0IAT4j+WXA5Dcmtk0K921Z/pBZk8A/XnKNaqufxeWW0fNM07JbGtX3wBMOHltO2XtQAZ09nOdW3GpokZw6IhqNQyUeBFhqYoGWF94xvSw8xOJKjv1XMzraxh8zKcmQKN0kDS1cWIu1GmQwb1z4fEZb+19bx+MovU6QjUHB1USTHsNtTqmYppiSZKsBXqk+wPbU78geqZ8aFTpA230MvP6Yn8mvKUIY0sfoAHkntYhePRveyg68z5Mr0ck9k3gawhn7+j+q/YU1K7MI6OUqJhRxGCMh7+Rp/UfwNVucGAHiIXRxmXaSd+rrzTepgkH7WkKEs0ehoi7RRFdLkKEaR+/Yf2UrLiiEmm+S+drTuZOfIDg5WJdR4PldgcCQX/TfcNcFgtYOHcs8BYrK38IPFSAvI9xAt4W480Q5Daet3H14b+TLS7VUx+CDwabzP0ct4DaUitGHO4rVMeo1+JOKheqRoRMZQiFnd7E1P24GhULOjeYjCEPth1mMNvKDn6P4wkmSOOfNATZGsSl8HpC5dJIEihYyj08gco4QHPDlSP6IUMhVqaOu78earmgBVgxiowAU+5LEKdduAdzLXwRwFh5HgLWXXXhVglaRpqOVqsL9E3Iyucl6tCW5lqB5jCvnvJ5H+kEFe9epTN4VoUhrwpnQld6xwXq3XjjSiGfoZZN57B16uC5MSq/jZhDdtVRKn80sW7xM1321PEk+R8QY+qMo4c6n1sviEG7N9EtxsWGt3XzpHEfiQIovwOUtCaLje2mSteqw5OCdH5ABe3yxERc2RehGSk0U0P+2IrPY4PrpXJ9KZ1VRovft8EyFEC/Epj5a7ujoRIfZVRHPU5I6NQvNPn5XjnUR5aFLLnbHpRmSQ9+C1BEP1tDw1BHe7IAot02RTkhx14eIStE+TajvHL+S+yJac+OiMDrSTzxVYlzvCsSPryaWLdKX76Er3sYV93N/6AqVqlm3soZcezpJlI/uZdrPyGvqc+VtzLEpbhjLbV+4ChMikGSPNWGQ2t5STdHOAhtQkBfIRAdmQOkCBPP10sae4jWnqmKGeNfSzhn766GKSRgoVMZnLUeTkyDIamIxISkuqTImFPMouKjSTocwL3M/TPMVzPESJLJM0UCFNLz38Jb9GT6qXLCW2sJdBchTIUyjmuYdenuNB1uWOkKfAGvr5cuVJinTQgCSdrWeGNGP00sNm9lImw+7qdoDoGus4zFoO04KQysfXfomudB+bU/toSZU5QDcPtj7HxHgjE+ON5Bgk21qKSNC63BGGj+cokmP3gceoDs9n+NByaEIS6D4AqzYdEtO2Rki9+xwtHxxi6a8ehXGJXkeL+CFFDp1L8C/lrQgJesz1pXHXx5VnrHD9TScmXSS4y/VFXShocf37LretZOlOZBiudtvNeJ+naFBoEAWVxJbj84vNcwNBCVErPiBDDj/GQ1J1mRH9L4X6S3wSXDESUnQFMHghSvPzTCJzTRjBDbw5mkau0lDFuhK9GB/RSlevz+HNknSxTh3B34mY1V4PcjTurqk+FkraUq7Ny/Cr/XX4BUA1p0tw++Ac8p8vwC8SzCB9J4zUlkFe+5rLSAMszEO0RXOFO4CHkVTa9+OnIKUPM/jEsHV4v78mfD/XMalaIE2XsiCoSzWorfhFcN2fdWXnBqoputBHAi0YYx6fs0smuE4w+FViXSFWotOJ9zfSXqvmcxqcoVZwcv4N02fidtx3IkKi5oMBOT6EdJl2ZMW9H+ncY/hVrve588MVZw2d/DwihK529W5EJqPtMHZ8oRCwwMa7OtEoSVQR0rSh+yU2dL8EWU+YWtYPif/KiiLb2CO+PqkCLe0ltuX2sItHKZBnI/vZ2C1qggrNPL72SzQwyVkX4W3nyA7xp0mV2MO2wHxMAhNUSLNvZAtnnXmbBlwoVbMUqnl6qz2UnTnZruIj7Co+Qr0Lfa0R7iRqWyPDtLOHbZxiGb0jPTQwQT5XYJQMw7SxjT1sYw+7io9IXqN0gTIZDtDNo627mEQiu21O7ePYa10M0kEvPaxmgDQVcgy6gAwTbHHEBXBkqy8WZKGDIo1MRKZv+1/bQp4CRUeWGpsmosAMmbRohQarHeJzRS7SnFVIU6SDFspMU0c7w9QzQx5pewOT7Co+QqGYZwt7Y35KvSM99NBLiSz35HopVPL885U7qdDMqu5DAKTaztG84iwz03Ws6j7EJI2iGeyRiIOjT7dz6jurSd11jopLNDz6fHskOKXuPycv7a341a3XkRe2hsZaGGx3IsQ94/rkw8H40MAfBONDiZGOGxW4Cm6fJj2OEG6Emp8xhBzpWNVxrsQntCNQn0EXLOVakUImoot9Elwxbqs8RdeKNmPsL+HDDivJUajZjZIFFQYb8LlbdN1QTdPUDE39GNQUT4lSFhEmi3hzpWHEJyOMg3IteBJZZdd5MTShU0FWSV0bMq+qcPw5bpyzfII3B55EiHIb3gdtyn2H40E1oVnE7PQQ8AJzp11ch1hl6DV0YUHDZOv1NfIjyDw7QTxgSPi7ivTvRmRK03GYCsrp+JjEa3zbgI/NSZ6iJXbv3l+84HFj/tckT9FbBBJo4U/xS1mhPwLBvtBPSFebVcVTk9toQ7NPQAlCWMbxQp6aMhBsg5fN1AdJnejWIYNmHO9xu8UdVyf4ekQbVAjq6CSuOn0dWrZ687bR59sj4pZafo7qifls3yT+PNPU0U8XpZEsYyUhABtcwtTBqpimbUgdIM1YZJo2TR31zLANiR63h200MBlpd3LOPEyRp8CP6YkIzuGRdTzY+lxU31E6o9DTmZj9lI/slqHM2iAPUS/30MOPo1xBZ8kyOJLjA61fBCSE9zb2RIEYJmmIhcs+PLKOda2H6WAw5oc0SWPMb+kw66J2ap4jvbcd7OSL1Q9E5nTrOMxh1kVkJ02Fp0eeItsq9Wnepqd4mq/wZHRfRXLRs9S2/thF2Qt9mABpT7UhuuYwbTQwGfliFcizGh/CO0+BZyoP05UWG7n9R7bSvOQs2dZS5EvVW+1huG85zUvEh2zsuItc1+I69v56ITAa1n0aT14UoYf4K8QjHILPUaTkIFNTRoOL6O2+ivR7NfE75c4pu7FX3+zGXRiCO4wsp/Z66h8Y/g79j1Qb3H1N7/ItzcbuXX3xMubgtc9JtxsSBdsVoJ5Yku1ZnavDRYcMIgCq03YRESbLeMfz+cR9YnXO0qFUcmU1Yl2D27cJMdWdC58ezRnTgH9/qIBJ0E4VDMHPvYlP0e2HEmLdMInXvOC+lyH9Rvtvmyun/WquDMBW4TWYrfiFiPnEA4Ro2GxdaJjAL1AoyQlzdKn/UQlZmFzl2l9FFiWU0NUG9Jq7cZD4FN060N6klDwUlnD7l+ODMagvwiYiwWvpIslFpHmJXiWu2dEBpTLXcUSYVB8iJTKLg/IT4OR6WW3vQfyF1AG93W2rdLCEWKLL1OZzhKiemE/L1qEo0lu5kolFBktnxmjcWGL3EXEIWbr2KD30UmjNRwvsjUxIDh8neNczQy89rHHOJ8s4yQz1UaAD1a5oZLhJGniEXQw6QrKXLdQzE2ldHmx9jj2VbexIfx0QkvVo6z+SpsKAM1HsoZe9bImIVicDDLA6IiQZyi7kttSZZoynWp+OkbFneDgidi2pMgspRXmPCi15GpgkR5FdxUcAWJeDLeyNotFlOUsnR+nlHkACJ2xhL42O3OziUT6Q+mKUxyhDmTyFyG+pQJ4HW5+LiNheNjNJI4Pkon1ZSqwJYlev4zA72cE9zo9pM/v4Ck9E2rct7KWYynE/LwAShW+YtijP0Z7iNhbmSlH5DgbpTh+IiN+qtYdYSIn9r22hlHVlWou0rD3EsQPiRLSx+3kK1TzD3xQ/pObtZxnbvVByhwDNK84y9omF3m/oLGJSpzm1FBoG/ijelFS1Q8eJcigB3oZa/ZYyyNhQ4qWLAhk3uMbkH/FjeIDzg6eo5ldN7V4kbh7bDDWk86phSLRB1wEJKboCqG+NWvfrSnITQhim8NHj1FwI/CKdrqSHUd5mgmMziBaoAW+SpyQsDCi0DCEk78DnCboWx/UDyPDNu/sII13q9XVFXAXKk+74zU5Im+DGQ/tCA0KEGvELBGpSNh/psxqEoQwcY276y9sQmU4XFHSBQdfjzyB9thoc13arvbCG1VctrQZFKSFjVxcocPepPq1aZy2Zmjs7ZPUpSvDWR4P7VtOaWrOZTnxY3068sBSsJp925+kkovJVGP4zzAc0jahkQ8Zeqz1qDOq5G3Fg/zh+BV2FTRUWxxDi5CLYVfvni7AZcPfR/e3M3C0jraO1SG5TMRLC9+/cSteO5zm7QKTNLCUqNEfaEMUkDZFmA4gIEcAR1pGlRKEogvbq3ADP8mCgIRljkkb2urjfj7KLEtkoX0+JLFvSe6P6TrGMdRzhq8StUKVdImk+x4OUydCNRI+boDHyLwLopi9GovIUYklTVbP1hYpofvNpMWsbpo17cr3Rs9hZ3RGF1D7CupgPUo4ie9kSaWE+zOfYwzZOjkh0uf/z9X/LmrWvRJHichTZwdd5mqcAScSabfUJZwH2VrawMf0So+4N9+XiE9yT641yIOm3kqASCxmmjZMuot1+NtLAJL1V0Sxty+2JgjAA9KfWME1dpBV6tvggq3MDkTYQJLnu6P521myTqAdnydKRGmTYZRke27tQEsL2iYia7S4xtnWh79cvEyUABkS7eRyv5ZlBHEyP4wm9+rlpmYzbp5z2FeLBG8aQBQi9xrQ8YQ/V/IamdZ3uO0zYXJsQdo6QBFq4LkhI0RWgDPwQEQS7ka6uOU3UZ0H9ETTktgqJGv9q1vgAACAASURBVA5Yw3iHwpU6o6tj+jxEmFSiVcGHN8ZdT6eTBa7Mj7j6HEc6X+o1dFVdcy7VRs6bcfd7PRzmE7w1kMabzVURjZD2oxmkL+v6WSuyXnatvkR3EA+zrbm1lKAowdEQ3POCY6rp1LG4AK8hnay5F+3rmktMFziK7h4XIeKrkqX54MSHuUCiKbp1oP9jGDyhk7gJXRc+UpWazAXmctPISrV2yjzi56OC3Tg1vg+IQ7vKwBvwLB+kI3fhBb3XEQL013g/jBVuv0YCOy0+IlWtZC+s2naIwRERECfGGli4WIImgGhxekd6omSfzQ+cpVD1PimTNDBMOxvZH2k42himSAf1bpmwjWH2szEiJP100UNvFGVtusZOI0OZnexgs7O3ylDmJTbyEBIM4G/5edJUeIH7ASEse9jGOo4EWpsjTNJIf1Wk5OHjLsJazl9DTe4Anqk8TD5diNp8imWUqlmyKXn4R4udfCHzi1FUt4Ov9fDAymcokOfHRSEUW3L7GN69nImtQqYamyZoSE1GhEJzKSmBVA3RWJ+Ym/3zTV/lMGspOe3U4dNrKea871C6pUKx2MFLuY38uNjDh3Of55H0Lnq5JyJ/T+a+QoF8dM5ZstQzwz681VWxkqOQ9v9hheZIq3eKZZG5I8CgC/SgZoSrcwP0VnvoSA1G95FLF2nbNhSRu7GXF0pS2E6pf033K/QfuSvSeJ76qrMT00lmC0LaVYJ9DgnZrdsrcGHB8cgiQosOM9WaahRFzU0SRrFTzSvIEK0neD0XiUeGDHMaLccTI/UjUsxR9DmYy1wQtwyMMSuBTyD//hFr7X+4kvMTUnQFmEISK4MX8NTRvAkhSiVEkzMPvyqeQ4Q0depW5aua2CmRakOErNP4BQAV1vQcFTjVEVx9fO7g2hK/HnPXvAPvR6TO5BrOWIlYAz5SXYLbDyW8GZlqOs/hIyhWiPvSnQMOcG2Yh4wjjRyn11afu3CMvIGMS12YUNKjgUI0OiRu/wLiYfUryPjWfj+MzI2vujZ89xrv5eKwEKyWJ3irIwzZq0lYQxO6E/jgCwfxK81hbqNAoKoNZbwRMfNRQa7dlQlNhL6JT2p5wh1/h9t+hXjCVw3QcBxvmjTqgiioAtNpptQfqKVdCNGp10RoLrdnGHt5IUu3HXVVimZoTU6E6DQVSmSjoAYdLt/PagbodX4tIFHg9lQlX08+VaCDIhtdXPA6pl1gBL9yn6cQmZ0dYR0TNPJl50ezlJMUyLMFiWynZGxPZRuNzULmDrOW1QzQkRJzt80r9zFIR3SNkyPLSLdUIq2Nmgv2vygOXas2HWJ49/JI29G85SyjA+2MlsTL//FtX+Jrrz0Z5fUZGOnkB69tY807X4nCdWdTJTIu+AEI+atEb1bRVg2MdNK28UTU5mMvrmfNJtG4dOQGyVGMTPo+kPoixVwHvdxDOjPG54of4j25nQy6IAv6LNYF0sMEjTQyET3rNBUKaR+sooFJtrMnukYDE/TTxZN8GRAt3X/it3gUifC3ly0STIMykzTygz0P0Xz3WcaOL6R5hfgUbdj2kkTeqzqfL5dYdk233NfRtk7pg990IuurSL/VAAr78ZESQYaMkv+7Ec3S29137RjSHF6dSB9X09My8ag9UYhuHY8aYS7MZ3QQn+xkOX7FIlwImZs8RXOlKTLG/CbwK4hB3qestX8+S5ksolO+G5mkftla+31jzG8BH3H7eoEPW2uvytTBGPNZRL83aK29O9j/GPCfkSn605dBctYCX7fW/qUx5gtX3I4k0MLlo84YeyXduQsRDBcg4+9OZJwtxmtfVJhTs7pJd66uUIfhu9VUp4wMP418VXDH/57z3XgvF6uQeXIdnvyowKthlufhHdOn3HU/c5XXS/DWxduQvrIMb5LWgCcnmvMn9EH7n7h607l17qPa2FArtIC4n5Bqe5T0aNkwiayGnAeRHd9AprA6fL++mgWGc3MSaKHN7t372AWPG/PFPuAZ4GvW2q9dy7USXF8Yc48VHeKA23MGEZR0FunDEyJdPXa+CLpcqavS9cFhFQRBRJRwNXsFMui2u+0hJD/MiqB8CU94TiOsvxMvDLowyaPH5UKpBeeoTjSy1CVCLVcytKWHIof8ovNXUaKhpl/qt1IgT5ZSJFRLVLcGpqlj2N3Mh/kcL3A/de6Gj7COtRyOSI763ag2o0gHw7RHzv45Btk5soN1rTJyVQDvHRGSVVc/w8b0S/Q707ByRQjdzHQdHa2y0l8o5snlBiNyp4lg+w+4KBYt0yxd6ZO5Fip5Roe8539Le0m2nclX6q5zYmrotBVL33uUUztXxzR1LVuHopxLIKaHx46sZ9VaieJ2bOd61ux4Jbrv3XseI7VGkqeCaFyUUIH4MY1WMwz3uRxBTdM0Z8t0tg5w8MC9AGzofomDR+7lvrXPAqK5K1TzbE/tjp7tvpEtPNj6XHS8SI4uxyYmaGSQDta6t+Qguci/SP/fftbE/u8iuchvTJGjGJk3Dlfa2ZbeE2ntqhONtLSXmJmui/6/0UPtfkJZMU2qcUKeL0TBPiIN6BCyYDCAP+cUIoQdctt1SN/X41OI0kfr0PEwEGyP47VVQ7X+RAfd9oma/aEqdwBvgrf52gItLDB27wMXL2N2XnxOMsbcDfwNcB8ifn4T+HVr7as15f4L8Jy19tPGGM0iMx9xbe+21o4ZY/4O2Gmt/XzNuR3AmLW2HOzrstb21ZR7CFni+YKSImNMHXAEeBfyz/wQeL+19oAxpgf49zW39MuIOPA0QtT+H2vt5y7+lOJINEXXEX01299ANDH340Nft+E1M2ouB95aAjw50bDZi/GaqH5EIF2ChO3eP8t1LwfH3PcEYu6k7wldiYe4iR94i4wEtxe0b6i5qPbFeXjNp/rZVREZ7Fp8iXoQ8rMYnz9LI79NIcRG/f1UG6uBhnTxQTVEqgmahywqjiMk6GrGzPXBJc3n3rDW/uoNakyCa8IkIig5ATXyP1BKrvlPpoj7HATJWeuJLyzXhhZWeUtlzePICsJosN0IjguIA/oW/Cr5aVdXliicNghZWLNWVun799wFK6YpjchJahanAu1CSvSO9PBoq2gGJmikiz72IFoeDUzQyVHX5HRkYqWCdi897K5uZ1tKIqJ1MMgM9RHpqZCmTCbSTpTJ8PP8bWRONkkjj7d+la+NvBeAx1u/ytPFp2Lk4XsvvisyO1yz9hX6v3MXq955iGOvycNZurLAqSOrJdGsQ/+Bu6IXXtv6IqcOrOaUahaaHHk8JH9K44oJRv++PlL2VYfny8vFKX5PfWe1POfdkPpZmVVHn29nNNseaSuOsZDU5nMRSVq646jkE3L+OzT55KkgZm2jx9ujKG7D31jOfT//LJUlol3qae1lmDYKlTxLu+X5d9HHwb576Vzr/4+1qcORz9AyTrKwdRe7Rh6N/u+udF9Egj5f/TBPpL4SBVLIU+AonVGkv31sZg39kZ9TgTw5ijQwGRGlA5Vu2tJDEdmbTIu/Vj4n2/XMUKzkWNYq3suqOVq1zZHF17rk+ap5nCYYVmgOL/AR7LYjhEjHjkbFUi3rceTVqz5G/a6skqDTxF/NSxfBqVCTO4YnRLULH4pN3ODZpt0YszfY/qS19pPB9gbgeWttBcAY810kwOyfaQFjTCvwEPAhAGvtJDBpjJmPe0MZYzQA7UnOxzuAXzfG7LDWjhtjfsVdY0dYyFr7rDGms+bc+4A+a+1PXFv+BvhZ4IC1thfRLMVgjPkd4GOuvqeRIMmXjYQU3WD8BB+17V+631m8gAc+1LH6S5TxvkML8NHpNHhKGSFOq5D5bwpPcq4Ee/EmQxrZS1f8NTeLTt3qQJ/g9oQSeTUfhbhGRs0rVdN5tXgbsq6mAU5Um6pRGJsQmUMJmObRUvO+cFypFmgcmf+urxnc1UK9DRO89aH6SiVBm5CV4nAV2WmGdBWsERgqSvhfECGsEX9c866EwtlH8IJfHpHLNFTvekSwU8Hv/chqgAqQze5YCzAk4kBz11kmxhoo1rsV7SxwvJ4e5yi/t7iZrnQp8hOqT83Q0+qd6PMUYrmDFlKigYkolLWSpDaGI6E4S4mO1CDNbuSeJRsLld3JUbawl5fYCIh2opeeyARslAwDrGZiTJbsSq0LWbi4xMS4sMUKaVLLz0U+SSdHlkGWiBCBC189Dc3ZcnQOEGkOhluWQwmWvlPIxKk9qxnd5QnN8KvLWfobThuE+0/aIbII7EU0E49CdV+wpPgynrQ2ybExXXJ8wIWrdpJaavk5RqsZ0i3ynCbGG6EPxobExyi1/Rw/+M5D0CUd5AffeIjU9nNUd89n5qflTfy1l3+OpTuOsrPyHgC60n3sP7KVDWvFOWBPcRvvye3kw60iS07QSIksz/EQAB2pQRqZiAhqjiLvYSef5iMAbGYvR1gXaQo1Ql4YajyXLjJKhr6K3PiT6S+ToRwFpdB2qe9V9Y35tKwf8v+X66tsdHmxsmUJzqCEZwjhHroIEFUa/F7ijqvmqN2dp6vAWWRxQSM3jhJX+mSBU1N4Le8Y3kdQsYjztUY31Hxu6BLaqJeBPzbGtLnG7cC/TRR3IKLq54wxbwP2Ab9prT1hjPmPwGvu3G9ba79dewFr7ZeMMauBvzHGfAnR5rzrki0XLCfuvn4cnGPghfFN4OPGmA9wFaH+ElJ0E6Cv+r9D/t0K0uuU6KjWSFe608G5GtkLvPAJ3vS1AZkXz3DlYYLT7vwc3kxJhVsV00Jr+Hhg1gS3C17Ha3403HwYVVEjv6k/0dW6laaITycaBETDxeu4UD0+iMyhZqmqHdLvcWRcvMibOZR8Emjh1oGSIhWSNHmrOmBvIHLOLk9JuXInsQhXGiZYSdFp4oEUtiAijAqDu91vzeFygnh+l+fxZkUggmMX3jEdJ4S3TDN6wo2qcfH5OFCRCGOrcwMcHlkXBRwAn5MHRIjOUoolIc1SYpCO6Hg/a0SD4bQNZTKR1gjEeX8ZJ6NACUVyvMD9nHLajHfzLcpkIuLVQy9PjzwVJTWdoJGO1CAHB8RkbHS8HVpgOifEYGz3QlgPq1b2RYL2sSProRfGBoRgjHUupKVziNF6p54bled1qiCkp+VxeWCqKaKEECI1v/r/2Xv78LjK89z3tyR5xhprxNiSNf4aI6PBwrLlCqzURsRUFDcQUzi4ISWbpGnoTkNPv7+uk+ScfdJ9Jfv0pOfKbtpe/YKmTZqE7NDQmEJxgJhaxYmCGwkcS0iRkWLhsS1GluzBI488Y0nr/PG8z/uukb9k7PpTz3WBvGZmrVmz1rvWeu73fp77vgFJvF8wy91I+eKrFHvnhHHkwTLk5mSq0cZj82U9k9ZOvTqP0di8YrZDTUeB8JoC44fnUfezpvRvZDVTB+dR9cGDVghjY8tOhqmhMFcAyu79zdStfIO4EQxIxFP00GCV/Brpoo+VlglSM1cVweijnihZFhuSQPu5NiLledu4jwyxonNcTo5OmqmKyDFsp4WB11ZbL6scEbqONdp+ryXxQQb2rraMWGx5hsJUiKOHncT3W4sCkt2DuBJRPf5rzLFqMsuvIpL0D5nlHyApuKqVv22OuwKPMvMZjV4oluS+DbnGdepYTVy1v0gj+FS7gFDz1gsI3/d7Pc/7E+C7yAj/Eac+gMqQH/dbvu/v8jzvz4FPeZ73pwhrswI58t/yPO8jvu9//TTf8/8ZludvgDrf98emf+YM4Z1ut8/xm7pxZ/W8YxYUXeYIqlY9gDDvo7gSNmVuNAlVKe8cLilU40pwpXUgyd/5GGV2IDxncB0t71NVPDWynBVZuH5De9yCDJCaGWt/nI5Ble1+N7ERmSwIft8civvsgoImBeRaULU59d5KIXfsn3BhYiSXJmYlua+dmA7rp6vPqT+RSoikOcX3RHuEtKTnZoTpCZYGjeFAUCuSlL9olpNIYj693C4b+Hz1BBwoc8OuYgJOlFGelAS0pjJNhhh3RXYAItncWNllTU61LErLpRrZwyAr7HKBEO202Mb7QyyhgR6yRG2PSZQsXTRaILWZbfRRb0UOho0oQ9x4/nTQTIQc39srE869yYPiRWSEGUZ3L6X1thfINbhyK06UMZozAKYbKjaN8NYf3+KO7e0TkC8joPXA2O7q4kRbzQqBscFqeCZwbvJIkqop5QDygNcCn2rz33Zcz9dcpOZdt/EdJBFXkKRMn3Z4xMxrpsSvqinN6N8utfs0/sx8bvzoj225GSegrkWU3JpWvsruvRuIrcwQJm9lwCuWZ4tYu3ZayBGxkugJUjTTYUUwUiRopc0yRS20M0KVBU23sptBankZKb8rECJJf5EJbQ3DNLHb9pANsoLW2/7KAucqRslWRi2zFKJAyQ3HLRM4lDHmt8sEyL3Vc4tcC8qJVOHAaWza3zbzVyW3lSkCeXjotVKB8zYCmTRYiCtNzYJMbOhFpaqRQSZIS2aDBq+ruGhxETJ43/f/HtMe7nneH1NsgYtZPuD7vqarTwOfAjYB+3zfP2zW/TbQApwCijzP24jA0q3AHwG/OcPdOwAkAsvLOH2J3kWLWVB0BcWzCChZhuvbUQYo6HGkjFJQ0vsELiGdi9zXT3L+UsE/Qdgr9WRR36Rg47pKis853QZm45oP7R3SCWhli6AYvOQRoPJuPLR+CrmDKsDREj0dc8qKTpnvmIeAdxUymTT714OUyV09pZ6zTNG1EyXI9JaOvnGKy+cC0ttAEUOkQ6AXuBUnGzyKJNCaqN1OccnPCrNJTQ6juFIicBPWQd35sTJRA+ueb14ro2KZE1qgMk2I/CnMgQotpEhQxQgNJql+modoptMmtAPU0UK7bcZPU0OMHHnCJEiRQPx7guarmqRrIh4jQzMdvGIcZmvZR4b5fGDlk4BIVw9Tw6oSYS8Ktw2QJm59jfhBGYzCWKv5TXUG8NyLUx/bXUb5g0et3LU9PtvNvzch7ILRXeBLyMPyDbMcQ5r59Vy1Iindv5rlDK42fqd5bRL4CI7NWGy21xrYZhuynyCJ/6vAMkndRkeWyn7peGmjOOY6oYj+XJKmla/Sn0uSjDhWbgWDTFBqAWgrbWxjM0tM7tnHSgaoo9GYuw5SSw+r7LnKm/OspY9a9lhrxkeOCDu4ixbabUldmhqGqaGFdnNo5Jgr8xc3ioQa6Zx8l/o7yfeG6X1NmMDy5FHGme/G+e0T8K9lcryVM9jNqa7brwb+nUCAkJ7veRRLeoMAoiA7k01T7F00iFxkc5DrexWOMQKnUHcR4iIwRSBCCL7vDxsp619A7io2fN9/2/O8lOd59b7v9wF3I4/W/cAGz/MiyA+8m1NL7/A871bg74D7kILFr3ue9z983/9vM9i9HwI3m/K7g8CHwDg4/yfFLCi6wuLfkefVzyCXmjaMayO5+hwFTWNVAGEOjlmai0wSjnJ+bX2HcVLGauSqjID2Eels/btlAGbj6o6TyPP9JtxYAMfYhHFg/TAu55hpvBdnzqrjW8eddtwoCAsCork45bu3kUmGCzE1vjwx21N07YSPsD+aNKnIwtLAsvEw0X4GkH+rYglIoqbJT55ixfZ+5OIIghxwFXoZBCDp7HYeoU5vN1n0gTIWN+xj6IkVlH/oKONvz6d80VGaIq/Tm2ywEtEVZC1L00MDd7LTgqQGemiky5bCPcBz9FFf5BnUQjv9hiUIG2YpQYoweVIkGKbGllgNU0M7LTZhlnXyPMkjls1QDx3t+6mnj33UFvkh5cYiTLVJCWD5+49KidUTxnwpiSTJGxDyzpQRjn9uvmOKWifg1TLXh7IDoa/1hvaqOVdtZnkNTrkFBOisAY6aZS1R3I2wPaqQ9gWEzbsFATf9FJd+rUEYKczrYzh24xbkHOv5LTOs2JjrD6uv7GN3zwbGRmL0VycJz81TQVZYtrmiqJfNRdkceR4Qo9tH+TJP8TCAPebaz7WCQfqotxLcX+WjhMnzGI8DsJ1NxMjQZ3rI4oiRb5YKqxqYIEU9e9ljDrbKsSv7WCBkwTdAc6SPVCRhQZMq9KkU+b50LVW3HCRfKxfK2IFqOd7dOAavCXkgaEkpCGjS/rt95txoLXYeAcB6Lalct57/jPy64tC+QQ2d+AhK7083FnuX4XGxSnb+2fQUnQR+w/f9owCe520DPu77/iHgt4AnjfLcTxDp7aNGyOA1ZOS+Djxxmu1HgA/6vj9gtvvLGNGGop/jef8Lw117nncAEUv4e8/zfhPhvkuBf/B9/43p617MuG5Aked5gzhNggnf95s9z1sAPIWzE/9FHRCXM7I4T5QMzgRWZbnVYHIKSQbVXyUb+Ewpcr0v5PxBkfYSaSlSllOlkCcpVsibjesnlA1SsKzz4HNwjGbOvH6C00wdnSN0PCsbGmRK9XtUglv3B5wk9yTOaPXqjFmmKBie57UCn0Pm0L/p+37bZd2h84rawL9P4maOwZXZpCFvxBaml7eBJLyxwCoHcH0RKWReVwteKpDEXbejvkUmSj5wnKl/nmeTZvohsybGjZ/4MWvpgkrYfmyTmHma8qrUVIJ1JZ0W9AxP1dBV0mhBizI9wfKrMHkLXPZRS5Yom5F+n2HixMiwkVfoNGVwkgDXE+MoMY7SSTN5Qrbkrp861gfqHnqnGri7ZLtVTOujnmY6yJZE7XceHY9R/n55nI9/aT5vVcx3zMCawLFQI9xvmuOrrM2yMnkAd5tldWpRBcBa5ObkCA051ponnzTb0mWdyZyHnN8wAqg+ZL5be8NiuP1cNu07FTjr+d9NsdloEvHyUS+pE/PZ/fYGuaWUlTFGNbSOkIokeO/K7wKwnl10RdZatmaYGgaos+drO5topsMySfuoJUbGlj5u5nnGjTogCKBZwiHLCnXRSIwMUcb4MN8A4Av8IQlStuRO1QUfQZi/bdxHC+2WdcoSpY4BXuoRdcFVDa+LVLhhkKZG5zE6Oo8bTbnk2Ei10zx4x5ynctxMbswcU/U3wrxfjwNBi3BiGSDZstoQgSRXQ+DKYReYfys7rE9GVZnEvBbsL7r84fv+xjO8vjnw790US1bo63+ElMOdbfvfn7Z8EmGOpn/uv5xh/W1gBuMliOsGFJm4y/f9ICH6KeBl3/c/73nep8zyJy/PrhVHn/mvHinSvAlXthaheLJQZ9FVpCGHE0hoQmbsZ6q0dQi5rG9C7t3HcOAnmJQqWJqN6y/eoVjsQwGSgmYVXJhEmMolzLwIuAFRUdQetsnTfCYouFAw3zcPp+o4AJwigXPVxIUzRWcywZv2mdMa4r0Lo7zz3o938R0+Ag3mcmq9+xUcPpJFaQ/BEYpnlrWH6DbIBvsScImXeqXoU6sWYQt2B5ZHsEkwI+Y/TeSC/UQYmehW3BBrhiWVh8gRsUIJmysl/9DlVSU9ZIg5UFKCLaUCSaIjgU7UMPmiUjhliTpYB0ADvWSp4DkesOtVMcpGXrEy3vfwIiNU2eUa0nSxlkeNum5XyVp2sZ6IQX9Dr62g/LZXeD4teVy4vMCK+KD18Ml/OMTUrnnuOJ2AqX8xxyIo2Htz4Firv8W9geXgX5WxDHrjgAMpmlxrqdyt5m8ToA5jqxDgpNvQc6XMz5tIYq/Aq8K8p59XFknZrBMIANJ90Id0ObBGJluaIq+zO3ernVX6Xs/P8b6GZ9l5THLj+so+Wmi3IFelz5vN9FaWKBlitrQxbfqANBrpootGu/5mtvEUD5OlwrKLrYZe076zWvZRT59VuAPoYZU9/5vYTgfNrGoQhbywyYDUJ+rGhh/zVs8ttmdMzWFZiOtI6TbHptUsv2qOtw7lcmSWWY/1CfO+sjHq76DHVAVQssG+Qe0NnN5coNd3HCFWLkJcpPK52SiO6w0UTY//DXeJ/CMyb3NFgCKNPuSanERY/aDim0oTq/qX9h/NxV3HcziV4D1bqDmsbk+3dcR8TwTHUM0yRddnlOAYSmVzFBBh/s5DxsxJZg6IliHP+IW4MT+JA2ALzffqxID6IeXMd2mpfjdXc1yUnqKvAH8JnNbN2xji/RUBQzzP855FbjenvO77fs+09Wdkxne6/TjTd5/DjG+n7/v/7nleHPhT4MMzPRCXNzxO7Sc4gmOK4hQrVSFS3MEZL2Uigk/q3Tim4E2k3lRDvWFNlRivIxfER8yYGiuDQbhxsxMgmKCUGBl690uSG12eNTP7cnoLRk1Ok9/NbKOdFmKmLmyAOlpps0xS0J8GpB/oVnbTbzL3YWqoZdAyTPrZUaq41SAO6RGKW4WzPGE2sd36EsVJ07b3Xt638lnZx9tC7ORO5i90tMmhY0tsn1RF0whjmXnuuLyKMDDBdu/FiAaXPtjaEHD5tFleRnGZYxNSxrbOLH+fYtnmm81f7dA4gYCaIAjrp5hpOoDcNPOB5abA+1ry96+B92M4oYYXgQcDn38HuZ3UAidkEH3v334O5sLkGuH6q245SOfUOivB/Tyb6aDZlrbdyU7L6oGApM/zSQuSy5gkQYoXuQeAB9lKnrAFTa20ESXLMHEmAwN5lCp7flMkCFOwxri7aaKVNquI104LizlkQXAXjQLSlsu2Bo/V8oGGJ9malh8/1TlPgOKPceccYBlWQGS82yj7KRCda86HTkR0mWO7O7C+GriCjIMyKFaXjOMaGUAA0kEcY3yEYvb4AsJjNoP/T4jr6ZD6wEue5/nA48bAKu77/hCA7/tD5mFfFJ7nfQL4BJxeG/BSxI+Q2fNRnKqWzpAreAnKIasQQxDYnE8cQmbsQ2ZbOSQ5VXNZlTgunGkDs3FNR1AFToU9wLFGJxDwMl2h7lxRiTxzdKzlEFXbUuRREmRKS3GMqU4GvMbVDohAblP5s33gXGZ8ZzLBC8aZDPHazvB6z7T1L6kZXyCOclXNjc5BqIBggqSy3Mi/y+Iw0QvRVfLL8kjirBeVNngGYwOubyWG9EIsNstaHqTwNI9M+/WX2c9XtI7wVrtkiiV1xy04qVsuhhGw2wAAIABJREFU2owhCvRRb2f6m+lghCqb0GpCqqDpEEsoELIgKUGKGBm7foIUO2ilwTSYD1NDlCxP8ggPGMokRcIKM4D0KWmDvi5rHxJI30vryhdsz0kZk2SOxYhVSlLdSBcvdT9gGbOx7aacSkvjFiFg5js40KL9JzrJr+BDk+o3kVOn56MNmcVR0KTnICiSUYZjKtTpugw3FftG4D0QkDNdrPhrwC+Zf48TSMaR3zcG/ItZPonMDOkQS5ptjuDYpOQEjJRZwDhePZ+KZSM8H5HLdy1d5AmTMxt5fOoxWkrarVnv4zzGAzxnz3+UMfpYaXvIGuhl0DbqCKDZyCt0sZasqVWrZpQsUSvO8CjP8Rz3s9HQal00Eidtz3cjXbTTYr8zRJ5+knYfGyu7aJtqtRLe44vmUb7oKONN84uNipMw/j0jpKGzcFo+10Ux6EmYfyvrOkFxu5BljfRga/9QGnfNV5rXdCKkFldud4HhcVXdDa+WuJ5A0R2+7x8ywOe7nuf9+JxrACbheAKgVADVZYlnEZDyUxTLEgcTUu03Uo8YTSwX4p63M4nJwH+luJ6mucilfbqSptm4fkJ7hXQSOzge5iFj5hiupG0mEcbNsQXFRRSUR3EGreo9NGn+fRB57v/glK1ejXFOpuhcZnwziTMZ4s3IKO9Sm/F5nvcLwD3IcPvLGX7PFRATSFKkSdBpePsJgFVuslnVezWRjiGJs85el+O8hcAxF5rILaVYjEFloBUkvQ1jmWoqNgjdEZ6bZ4gllDFpk9pxIsRJ2xK57WwiQq4IkKRNXxBIghojw6SZAskTZpIyaswsfxeNjBOxcstp4qykj/vYZhXGfo3H+St+w25TQZKWbGl5nwKne3iRdlosc1DFCFWVo7Yc76XXHpBjp0/5JNIfEix1SwB34WZSkuY46bFScKLH9g3EKFfVyfaZ9xRU2RtQ8GQukM+By7YmcGBoDLlJqkHoPqTxX6+Q24H343qMWs17ev63I3m20vQHgftxbJYyUcvMv3cAG8ugDOo2v2F2p5R69tqStP4ih1NsP9lDBv0NEydNjT3fBUKkSFi1OhAQo+ciQYoMMZL0WxDUxVoyxAibqdUuGhmhisd5DJA+pwQpywweJWYFHkCEGdLErY9VigT5E2HrnRW9rYuuY43y240wQsX9IyKjrsdGpexVLXAFcj6HzLKSjkHgcRjHAOoxt3y5iqqoTLcRUaHWvKefUXb4AmPWG+U/Ja4bUGQUNDDSg1uRGcu053mLDUu0GIy8zhUaowiLswSXjJZSbJ6p/ZsaNyCTh7XM3KPlCI4NUOlt/Y4QxSVNs3H9hvb8KDgv4MrbVBFxcIbbug1jv4EryQvjeosyyDMoYr7zpHl/EpGdPx8xkSs7ztlTdIPneU8Az/m+/9zZPniWOJMh3oyN8i6xGd+3gW/PcPtXUOjP0lnjQYrV6Ba45Qlc70geB4JOIO3NmqCNI4l8cMBX40qmOiguxzJ9JMw1j/qkLGsvRnx5HxOUMnwszjqTq/WTJEm/bayvZR97qbeN85vZRooEO408djk5xomwjk5AmIE4adtTVMokecL2/d00sdckt1miPMhWnmczEXIWJNUxQDstbD8mXjebKrfTyB4rBpAmTh0Dtrl/57GNlJZNMtZmpvXnmt+aNL/7L5GEVnPTVoQF6scxBWvMsdORPIIIAgcfdn+DA5yLkQT65LTlMsMcTJQb0GtA0oSWV43DkPlMFPmMJuJlCOjReZGdOINXEAB3L1IWCfJgD7IbGYTxUE2KJKKgprNTd2F70LTfavRbS3nrdqdY94sN/0gXay0LA1ICqexPhBxdrGUzolaXJs56drHFSOR10UiKhAXVGWKUkxPgYn5Ilgq2sNUCsBrSNNBrFQ5zRNjOJu42CHScCFvZYsUfBqgjQcqCpAg5GiI9tsRz8Fit9BTZvqAJxgarKak6zlTYnNBqZJzoz9yJAKOgzRA4wKqlihoJBHBZUBSc8JjuWRQsk53+Be8yZpmi/5S4LkCR53nzgBLf97Pm3+8DPosQML8MfN78/Zczb+Xyxw4EmGgZWzApBZc0asWF3gdvQK7fmYKig8jjeyHF5VAhnOJXmllJ7us5tO9MnxHT20qPIeNvJuVzYWSs3YADRKUIPDiMpI4x3LNHlVEziIDItQOINM7KFL3j+/4nLvALzmSIN2OjvKvJjO/yxRyKjRtrp72vwgsmeZqgWCQBpISrGycQcAApItTJfO03Ggy8n8SBKDVlVcZkbhl1LW9w6Jiotq2jg5enNrGxcqcFKlWMsJI+C2rka0QtDiRB7aDZqs9tYjtdNFomqIV2+2/Z3ii/zV/Y5QQp6uini7WspM9IcseJkuVjpuHmc3yGGoZJVchQWUkfT/NQEVs1SpXtXxrvnk/VhoNENwstM/TUCvGp0X4R7f9RzxpVHjpAsfrcSODYnURuTMoM2STXIKvsEWAVjGjjvEmEJ8oDn19K8R2qFyFGewPbUEYBmFiFNCepQlmlNPLrPoaRq+39ZjmNsEh6I74FGQvBW8i/IwWvo+Y/Ix4w2r/U7nZFdYZcWPZBwc/wMTn/v1b5OC9yj2XpRqliM8/bHqM6BgyIlnOeJ8SDbC0aP2rmq+atD/MUXay1Y0h7yu4xrsMxMnyDRyhYECXKdOMmA0mQIkSBepPV7GI9WaIWVA0TZ1XD62SIMbR3BZwoo67hDQaeXe2Ynm7k2tBrKSiyAc5nStnFMEICBU1gT6s2pQbMwXGg94BKZj5VOBuXI64LUIQ8ebZ6ngfym7/h+/4Lnuf9EPgnz/P+K2JE9cHLuI8zil2IMlwMB1D0b1Ad7jiu52IK6UlayMzKmY7gJseUMdISKS2dKjBbRne9RwkyBkI40Kyvh5Ax+qMZbGchbjKuBNcjpP1xqjQXCbyeQcb1m9M3dtXHJWGKzmSI13eG14viajPju3yhBaDBchlNmMBSDGXlDiaOIAM86IUSxg2JJMUU7P3IhaZlNK0U+RCVx7IsqTzEQLLe7kEUeQ2kjGlVSQ8FQpYJihjmR1mbBCmijDFk5K/zhNnCVgtICoSop896BmmDva5fyyA7aOWugLPoAEkSpGyinSDFOjqsN04tg0xSSrJEAMUgK0iQss39Txt0M2ESz5K644y+upRVLUKhDC1ETE2VcWtDwKaWrak0626KE+ETuIfkBMUAdXG5YXRUVm4VAm5qzfIenGknCGIJlksppdTLqX0oq6a9F9hG9QKXiA8gJXV65f/vFAM7VVTTXaoyfxcGfvsmKF/knEfyN4RojnQQirhStqH9rsesnyQttNvzuccwQQpgFnOIndxpQXOYQhGTNGoOYp6QZR87aWYT2y1zpEauqngYJUs5OQtyMsQYZIUtydOxpiArRJ4EGTfmTBld5liMimVygjNTMVOOYBBjrKxImZFm5LobNMs/Rs5/sH9vAEcIrUGAlR57leeOLgioSULx+YRZoYUrO66LQ2qaen/qNK+PIi68V1U8jZhgJyhWnNOeixySQKrIwknk3rgeJ1ozk9AENOh9pK9PnWml2biuIsgEBf2CDjPzfqIW5HmjwCiHA0IqIKLiClpOdwQBRNceW3nOnqJzMkVnMcGzZnxnMsSboVHeVWXGd/liAscEaQTle012NTEOKZM0qfSiXjz6V5PbxRRjZmWWgopZjQhDBIy3zWegNUrVMmE38ifC9OeSJCMCNo4SI84kE5TaUrQsUVIkLGvzJT7OfDI2IZ2klBhHbc/QdjYRJWsTXFUM0/KpEapIkGLE/Iga0lQzSg8N1BkWJUOMz/EZHjE+NtvZRAvtdBpptxgZ5pOxanXaS6TM0Vujt8CyCXq/anSvl1Es3l4BVb97kNFPGnakGidg8M3Asb4ZZ97aTzFgOgy2TwgQPrwWV5On51p7yMbNa8cojuCYGDTLvYF1kjjgVetk1sGJOejfbyE3RCWjWnEKhOC8dtqAj5v7SlsZ4xvm29tM+bKj9FFvz+9DPM2zy++3IDlMnnZaqDLNN2NErVACQA+b2Mw2Bk2yv5I+yskxYCiYFAlSJFhHh5VU72Adr3CnHSsgQEiFFDLEGCdi2acW2q08Nwg7uZ1Ndh+HqWFPQAZcJQSXVB5iYL9MCIyNlFGeFINiQMBMB25CYQwZNwpyliGTEqr+14dce8okavYcfNCVLTDsnwLg6dq/wZK6C4zZ8rn/lLguQNG1FicRxmgucvvUHg4VRdBLUpNU7flYgOsxOlvkkOv8RlxP0UmcgEOUi6afMhtXaWiJm4KiEHJ/Pok8M87HxyrYR6TKiTrmgnLfCsRPIBN2P7zQH3GlxuRZOdhzMkVnMcELmvGd1hBvJkZ5V5sZ3+WLEvM30D+SDTJFgWbsBO6CeRNX4qOra49IM+5GD5LAZXEOyWHgbShvNrLDmfncuLyfMvM0mIjIFasJbYRxGugpMl/dwV0GkEh51HwybGSnZYAa6SLDfDF7RQBLDWnbNJ8jQjMdfNVIpjXSxSC13G/ojUFqyRuGSBPdJAM8xuP0W21pYaB0n/KECRkGAgR45YjQOSWg6b0N32WIJaQfkiR07IDKzpmNjcDoby51zMAOc4x1RhEEULwRWM4CjEO0PLAMbqY/WOZmPgu4hFjZHz3f+tQcxCXLCpqS0z6j2z0m66uYm0pE676solhI4zACBlsDu9WPzKKOmHTPeBmVVInBR348xJbKrRa0DlJLghRJs9EahkkTt2OmjgELgGWXMvZ8AuylnloGLcBRJcMMMSuk0UBvUYnlYg4xQpUFveuM4qGe/zRxckQs0O6ikSUcst8RMT1LvVMNdpsVJVkijLN4uWwjWx1lbHc1VRsEcI6OLZXDrpMMJxDmRwFoUM1HIwg4D5pjr+cigwGaC4wASnAyREOZwYsQsz5Fpw3P85YjXYQjwN7z9dqbBUVXafQgz9g48nwM9hapepfKIk8iU7sLEKntmah0KRukCamW0KmK3azoyfUdKo2tTOUcBGzr2MudedVTYonZVggZW5O4HiX9qwqIBeQZdIhrsZcIIYrOXpd6MXqKZuOSRBlF5VNZdbY3iW90gQxmVchRfxxN1kFu4sdxs9WlwHxccq/GraqgNi1JUj+ifelaAFbEB6ljwJataaKaJ0yNKVV6mKfoYRWN7AGgid0UCBU1zteQpsJkg/fwIjtotf0fGWI0sicgwS0JtZa8fSr3J/xt5BM00GN9avqpM4pzso16+sgQs0BqJxvpotH2oHSyjjoGSJVIEj1GlBAFB4bazAFYFvj7EPBnZllrdttwpWkqoKC4bC7QWx7IYcdhVTn0KrtxB8Vyywso7h+ZZshrfWxUYANcad3BwGf7EekZkDvgIOwz21q8ShJ5ZTP6kbERJJfjOG+dn0eA9GEoWS0gKHFbilQ6YT2dKkqybGWLPbbaT6ZGq2lqSJCyIBjgp9llQfI6OuiikaRhbRrpIkHKsjyP8bcUCNPBOu4w3/EKd1qvKoCtPMhdtBE16P6+3HdIRRKWbcoQo0DIslnl5AhTKCrpq2GYdSUi5pEiwQB19O5vpHW5NIWlI3EKLWkG2lfLj9DmVM2CVUjhRGA5WF4XRk6pMpBJRNJdSxxiGCBUbhjccrmm94EDuyc5P+fIs4THRUnEPM/7PURX0Ue45kd93z+lhtt4zHUAB33f//nzWXeG+3GxzL5XAs/7vv+453mn9eo7W8yCoqs43kSuywRyXaqp5jzzV8vfppBkspKZG65O9wTURHUqsDxTJmA2rr0oQc6/VvVoqVsJMu4mcY/5c8UUzn8rKNigDOckroetEgFE/841Gj5uovn0cTF6imbjUkQJUBJIgCZMwrTRMAc7AcYhewwq4s7HBggQJtJDEpxcVrEFkIS3H5cc3T7B4uUpsjnHBAGsjUtCmyZOHyttMhqiYFiACushM06EKGNW6U0ZIJ3FT5AiznARyxNnmE1OkYAcEYZN4h8hRyNdVJkp+B2RVjbxMjvZaNmHLhppoMf6EoETcND9bqbD9pxok70myV/b9qs0bX6VqqTcdSpWZqlnLy899YA7bm04hq3aHMf7cJjlB8gDdTTwmWoC5VLlpspNT1Ka4nK5BQgLpAzRQRwQguJeo1rz70GK73rjOLBl3i+7zb2taneaiC9Cel8UJB1EFOY0LR1DeqsOwNQ782A7vLXpFm5c+WM7NnKUEwuUR76MKP6pWuB6ctTRzzbuAwTkDBOn2hyoMAXuCpj3thzp5KsLftEC3gGSZIjx6ORX+EbpI2bbHUQYZ/WQAKn04hpKmbT7tD1yN/XsteIfIGDNyYCHiTPMVrYA2LGl7FOKBBOU0rS8g1fSopI49Y6c/JI6AYdTB81gULnzG8xfPd9VCLhRYNSBgE996PUjyVdQcj1aLtexSuXb8ks99zpGLkJcBKbI87ylwG8DDb7vj3ue909In+dXTvPx30GugMrzWfcymH2/Dvxfnuc9jBTJnlfMgqJLFOfjEzTTOIJUVSzFecZoKR3I/T+Ha1Kfw8wV8tVUW/2O5phlba5XAYbZuH5DzX11vAWV404y8xLLOMUT5Zh1F+JAvpbWHUTEoK7ZnrZZpujaiSnkhjkR7DnBzeIDtnxOZwQWIc3e+cAqQSngJC4JA6Fn3+tKoeYvzDD02gqqmgQchMnTd6zemppq4qvN70n6yVJBkgHyhNhLPXeznTAFyxSMmjKmKosWpGRKZ+mzRElTY5voh6kpKq9KkaCPett4n6SfPTTyEE/zWT7Dx/mSLYP6DJ8FBCRliPG6och0/1SSuY962mmxhqKtm1+ga6qRRImAvd2f2cBbyVtc0qiJb9CCp98cfp35vwtp2FVAoWIMei52KusX6BcpI8DSlFPsS3XSvBYslxzHqRLq52txifIqisU4bpPta6YWRZjEoLeSehCBE7tTJ7Nu89oYAp42AV+Htz6e5L3LdwDQ2/5z1LW8Yc/nwzzFi9xjQW4H6ygQtkzSM2whQcqeiy/zKBt5xZ7/pxY8yHJStBmAa/2uSu+mnBzVjDJAkka6+OFiIQQijBMmb8dYKZPsYr1lL0uZJMkAX+ZRAGMG22iBV4QceULWYLiZDl5hI33H6qmP76V3760sXrmPwlSIuhIBYgMLZebBqvCpT5XGzRRfe+uRviIFTco0BcvngoBI/5YxTZGwlosSMxNaOKfZt9lKued5miqeogbqed4yZArh/wF+/3zW5RKbfXue94dI/+ornuc9DaaRbYYxC4ouUVxsQKTRj7A6jbgypgIuQVWlLhVKUPL+XAlrDMcyhQN/obhfaTauzwgCZnBeVgrO3z7DetPjRpyQgpZoBgUWtDQ0ipTLv8XMpeWvyjg3UzQblyE8z0sgM5iLkNvhE77v//lZV7IJszIF424mGST/PSAvF80INONutjrzpBfUeopLesqAEzC1S2a9c60FFt+2r6iBvbZy0HrONNBDDw22NA6gmlG2sZmHeYpq2mmhnW3cZ5Ng9YTRBHQbmznEEiuHXMWoTXwB1k120le60pY+3cOLtjwOJAGuZy991Fup7nJyRMlaZihPiDxhq1hXQ7qINchSQYYY802GGiXLupJOm9hXfEqm6McGBfyVv/8o41+Y7/yAGs2xX4RTF/uxHEvbznMXIn9tI+4E5wCR307jAE2c4p6RSoQV0venTyPq59I4dmlcyirtD+2V91T84XWkmfI9gc1U4HqIDlNcwpFBgHMSGUNvAx+CknCe3TkRpShfc5QEKWrNfrbTQgM9bDXmV4dYwof5hj3HcdLkCdn+r0f5MgVCdnwkSLGo/x3WrRCmabi0hhgZ+qhn0+TL8h2l4mWl5yvCOBliHDIKh2lqKGXCMpqqVPh7fBGQvqcoY5bdjDJmwPdKu70VDFKoDDM8VUNV8qBV1FN2cvRAXARIlGV72xwvZWnfCLwOMpmxEAeKliFjoSnwfgZTQjduWKIFp+rm6LV+aUptzmr27fv+Qc/zvoCoL48DL/m+/9JpPvpnwP9B4E4103Uvtdk38ALw3z3Pe4R3QcvNgqJrII4jCamyN0HfolIkSVXJ5BiSiJ4LFE0i99clFDfTK9B6m/PrG5mNayum9/yo9LuauMLMSjVVbCtk1tdSOnC9cDkcM/Ta9A1cotDeuksSZ59xmC2fuzwxAfyB7/uveZ4XBTo9z/uu7/s9Z11jBYHyGgOI9KmrctuqcqWvVVCsJnYC51PUgfQUmXK5il8bESNWY846/vZ8YpUZO2sfIk+cYQuSemigilE7oz5KFS20U07OJsXDxGlkjy2bA2GGtHRtPbvoo94mydWpMfoTy2yPUaE0xAoGbSlUigRxhi0btHrXAPvX15CjnKMmKZ6kjGHibJSaQjLECJG3wgogwEnFH5rppJpRWz4VolAkK/4fIy3ueALjL8yX46zHsRsxvP0OjglQBkZnML9k3tNzA6afSOstdiFgRvexF5lyVFR1EDcNCfLUHadYnGHQbEP7kuZAVsvygLJVUqKlZq3VyJhIBzZxGCcoUWF+4/fM8r3IGNPXASomaI53MmrqwJrYTYScBSQhCtQwzEoDemNkmKSM7UaoN0GKevbar0+QYgettl/oRe4hnhzmniNtAAwvEB+hBCm2lQo5ECdNB832O2Mc5U52WnaygR6eYUuR8EKcYQuSUiSoZR//YfLjj/I1/hv/g1sNDRsiz8tsElGQEjnBjcu76JpqpKJExmFFdYajh2Pu2L2NjBEdD1EcUJYfitl5e6roxzG/C5Gxkw1IcK+gGPyMlF88MHQR1Oc8z5uPMC8rkJH+Lc/zPuL7/tcDn9E+n07P81rPZ12NS2z23Y1zJDvvuOygyPO8Bef+FFO+72fO/bHrM15CrtcobsY+aKxZgks0FyATIa9z9vgRwksGQVZQqKcK5480G9dfKFcejBKcyMJJhNU5VyzhVC+iHI41UrNikHzlcrFElwwQnZspmi2fuwzh+/4QhmcwJuC9SHZ7ZlAExaVuahSnM8cnkdnkPG62eoN5XedCXzavBUFSFxY4jz1dDUmZ7QcoLZskRJ639gtL07p8e5HcspbBlZqdaKGdAZJEydrGeFWiU1C0myYa2WNn4evoZyM7qToiec2exEqyRK13TA1phonbpPveV9p44c5WOoy8dna9iC9PUmpVy35l1zf49vr328Q7w3zu5BUL5vqNRaiCngwxtrLFlnjFyNBFoxWQWLw8RTpdw1QmoLh2C66Mbi5yNm/HPdRepXhWfx3Sh6SsTAbonSNiCwC9qxDwoiBpusqcSnaPB95XIQUtpzoduxTwtirHjCHzfmu5MBiKq0YpBm4PIXPpHzLL/eZ3L3KfqajOWDAMUqq4jk57LqoZZTt382Ejj76XerJErS9RnhC7abKeUTtoJUzBlkxGyZIgxYsLWgG49yttxD4m50eBcYIUNZPD5ErlOCzqfodjq0IkS2Wgd9DMI3yDXeZCGKWKBnr4LJ8B4BGepECYcjOut5qSPgVN29jMSvo4xBI79gFWlfRYsB6NdPLPBz5MxSbDKr5aLWNBj6X6FCkJquAoCEjvQEQIQUp2FppTNWHO177p8tsXUZJbH7gXFpuAfb7vHwbwPO/biEtGENjcATzged5m842Vnud9HfiXGayLee+qMfu+7KAI+YGHOD0i1CgFll+a3bk640eIXo2WuUURdkiTVE0sTyC3YU0+zxRZnBnnZOA/baLPnmP92bi2Qz2xQC5OLbHUsVageIL1dBFFntUqwR1UslNvLP2Ot5Bn1DUf5+4pmo3ThOd5081gTvkIMOT7/sqL8F21wK04oezge58ADGg1j6zFgQ9MjIsqFUgCNYLkSWuQpGoQuXCUrdCmbi2Z6zLb096YCiAmYEijjElWLZdMrm3vvaxa+bpNRhvoIUvUli2BiCLU0W+NMlVtTKOFdlIk2MIzgPRvZIjRsUCoh/rJvQyX1pDsluacY6tCUIo1dz12R4goWZtkZ4hRTx+7WM8v9H8HgOfX3818MhaIxcjQnOvkLyK/BUhfyjgRK+5QbsQbNJE/xBISpNiaE+Zo7NVqFv/sPtu1MFS7Qopq1Iy1C2HcunFMQdKciy1m+VOB8wImNVsQuLHFKa7OWYCwQwqOajlVglnR7bHAZ+bgZGnUyDXtFquB282YUUA0YD5eZz7jTqeEdpHMRYDelwEjkB+em+fQsSV0VUpN3u/yRb7Exy3L8jpNFAjb8rgGeillwjKFLbQzTJx9Ric8Qo44aSuCkCDFMDXc298mv/hjy9hDI810kjgiY6xjwRoohWSnjJk961YySpXtIVKzWAU0zXTQT50FYvXs5a/5datO+Bz3W3ZUYxfrmU/GMpr7qDW9dAKCUiSoSh4kNyZgvmT1cabemFd8LEcovn6P43yJ8uZ86PgpN+8tBOaWC5jVDFvBdrR8mrHrBcTF8SnaD2zwPC+CjKS7caMHAN/3Pw18GsAwRX/o+/5HPM9bf651zTpXldn3lQCKen3fv/VsH/A871zExnUfHcgk0Tycn5D6yERwDfBzzWduRoDUmUKb2m/CleaFcKVRkxBou52N6y2yyBgIAqMQxd5YEc5eplmCMwcuRcZoCa7nXFUTTyKpR/dpt3KNxaz63LuNgUvxHPE8rwL4Z+B3fd8/BYiZJuYnALzSZp8pXB8LwOJyt5xHEt48MsC1fGsZTrVqg/mrIKgaN4MNwmS0us0nI/1kiVrGpHXlC4QoWM+ZrWwhTtqCnnZa+BhfppNmyxykqSFL1Cp6tbKDr/FR+x13mhI3BVF9pSt5T3e3gCGgsrdAz5oGWtlh14mSJZqT7HEiUkpossC60g76k4L2IuToo97uQz91fDHyuzbp/Wt+nU/yJ7bcqondpEhYNmoX64mRoSoi+5z42RTDUzWMthlKZQwBE1rT24wkr9W4ee0uJLHV3U4iKZlO7KcAemGo1rxQjgCjdGA5KMl9hGJWYBy5uNfiLvJx5OTrNs2QKlNjX2DkCDwR7OfkAAAgAElEQVQXKKiJgWn3kX3OB77maYo9iqqBMij/v48Sq8ww9NQKYrdlWFfZacfIf7CetXRZUYv5ZPgAT9vStGFq2MhOlpsxUyBEnpAtt1zCITpotiweiCLdC0nZkXu728itiRAhh2eY08SClMivmyQiQo7GI3vxHjcb+BikFifseNjOJoapockAt8d5jId42gKzn2aXKcEUtjNPmAfZyjNssWIcoliXZsKAt979jVQtSzOeMYNipMyBGhCGLYub+qgw/1bslcapGOqx1nKaE7jS2WCWnYWLxhTNTGjhrOH7/i4jRvAaMtpeR+9fAbPv8113WlxVZt9XAii6/SJ95rqPkzh1OC1JyiDPAZU81hKlmU5GK0Ok2w/6FoXOtNJsXPORwbGGqk6oZW8nzb8PnHFtiVqKJ+WUMVJhkElk3Ga5zuTfzy6tN1s+d/r4wEX6zBnD87w5CCB60vf9b59zBa1bDg7ewzgjTi2dW4YM+EEc+NHyKC3Z0bKvj5v1lK0woCk8V6ilNHEKU+7O3FSymxdz95CMCChqpsOarYLIbw+yggQpywRs4uUi0QMFTAqkJiilgqxVsHvPrm6ONYeoHJYpsxfWtLKJ7VQPCQjav7iGPCHCRhx3UdM7jKyvYNHQO+xfLP41cYbZzDbbQxKmwN1sL+pj6WAdfUZsYR0d9LDKeuPU08c+am2vy/b03ayNdzE6V5XFzFT9D0zKM4okuBW42fbjyA1pupeAsnSHwbE/GoH+ESopljAzxqtFggrl5vWgjPc4DljFZbncbDMMjCxwmdp7cIIJus/6Od09BdYAzVDVdJDRV5cyvizK4of3WbGNdWZSv50Wahi2PkQ1DLOTO62QRg1p+qmz7GKSAaKMETZ05iGW8Cu7vmFr9PM3QeLEMGs7TN/RDQKcorkx3l4nutfzc+8Q7oI97xPiVk1df/hpYR/nkyFEnuWdArzXr9tFjnLLFLayg/2BqqowBXKU2RK+OGme5iHGiJKaks81lnQZE1g5tj+9vJ0CITFxBaiegIoyNyHRhjzE7jHL7yApu/YQxShWqxtBrvUVFCtdBSM87fMXEheHKcL3/T9imqSIeX3zaV5rw7mAnXHdaetcVWbflx0UqdHTGXqLsr7vn3y3ZlDXW2SR61RBTPB6UaZIy+hu4twz7yqDrMkpOLZpViDr+o6gUTAU5/GTnLt0DqQaRcejMkQgY62AA91vc5o6pWs1Zsvn3lWoZKuG53mVBJ5vvu8fmf6Z8wnP8zzg75HKhj+d0UoTSL6r5TdzkUQo6GtSjvTn3x9Y7wSu/2gNkngpM9RNcd6dBJZNECuRKy5HhFUlPVZZLB2pIZctJx2R6W1NPlXAIIYoj+WImL6QEF00GkPXkICVIy+zdcH7uSMlamI7Erdz10s/YPR9ZqeqhB3av0Zm6e/tb4MTWOYI4D393ex5zFUurk3t5fnE3eQJ0Uwny4eG6V+8jOZcJ6nIMvqpI0/Igp6tbCFL1KrmffTIP7F3QX1AUKLAfDL0G1SZiJvyP511GSlj8W37GDpgEOmL5tgO4aRbu5FZmQ3IDUx7jIIzN/lgo/xrCArRniIVSFBEO93MtTawXIuTsbsNB6wMc5StNYvlDkRj9mtNYPkWisUBDuDkuJHfMHpgKVRAeSzL0P4EPctz5AwYBilNrGOAHqOAN0IVd9FmVdqWk+JveYzP8DlAJLob2WONdmsYZmR9BdX9AoLDo0gKa1LqPYmVLOEQ/ZE6Vr8ywJ47VzIWiXJ0fYz3dEsWkr8JvO/DivsHAQFaa3Pd7F8nY2onG4vMXjPMZwX7WDcpY/Lx0seYpNQCtQHqGKWaBCnpkStJMUEpVYwQJsqedCPD5dNMVEfM7WKZAdCry+S4BpmiXty1OL2eW/sC9yHXvPatRXFDICi0MhtXZFxJp+c1JE86imDgGDDked4w8Ku+73dezp27GkK1btSUWWfutTSpNPDfvDNsIxiHcb18mrwqQCplNne7niOCjAEt1dQeoGBf0LlC5/lCuHGpvUraV3Qc6WSfqefRVR+zktwXFJ7nPQZ8FklDVKXIR+aBLiTuAH4J6PI8T+eK/08zi3n6KKc4oU4hCbi26yjwSVJMq2oZThSpi16DS7iSyEy1ygCfQGSFTSjoaYiI/kMZk2yJP2PfzxFhI69YY1YN9RACKYsrELLKcG0LbucXdn2HkfWyE61HfsCe961k7ZBhAkahf/0ykv3mR/RC//3LSL4ky5U3DUMX1K4YlOXhArwM9930sp25e2N9HTnKCUUKhCgQpkCBsJX1/jBPsooe633z2QWfZDPb+CK/BwgDBq6PqYeGIq8kKmCofYWb5W8FnsN5Q81FSuxOmmNdgYCjJop9pYoo69sQIKQXbPm0v3I0AxreOKB0EtfEdIxiWe9V7uMTSJKtifgJBBhp58Zqs+9tZnmZ+W06njZA022vsrt9A5sqt0Ml7KGRzWyj0whfqJKgAo5GusgQs8f0KDHu4SXLsNxBO3totKVtkclx+kpXkksKq7O8e5gfPraG97wigKcmkabqyBjV+8Y4dkeI2slBKnsL5G86YJmubKSC8Koxy0atHdrL/sU1hAzI2cw20tSQM0+NAiERA8nL+c5FIsQ4ynAAJN/FDmJkiJfI9SGAfy0JUmyKv8ywKRPdVyXgPVxeYLx7PiVh+c6paJngWxUzqEDGQq1ZXkqxuS8Ug54T5t/B11xL04XHxRFamI1pcSWBoheArb7vvwjged77EEHJfwL+mnNrk1/38TTF17DO5k9S3O8RQW7N5/IrUkUwZYcUWGnZ1Kx56/UbCrgVLAcNVks5twiHMkzaR65g6CSOdZqD5JRvch3FuZmi2Z6is8cfAqt9379YqQcAvu9/j7OLAZ0a0/1J3gP8AJfg9uL8DRQ8NVGkFEYVkuDeYpZPIImv2Ub5oqOMvrqUmhZJSDexnV2st6VPgFWF0xgnUlT6tJltVr4YhEUKMgEVZNmzfqVlDqILsqzt30te2nsI5yH5pwfgAfcdidwB0GnMTmABVO4zHanvwLFfClH5bMEKSiQbBwgfwvahNNBDnpAFeSEKfI2PWi+cLBU8zmM2cX+Re2igxy6rZHPvoDBmdZvfYIDVbgf7EYj7BRzzoiVnCoKqEbZokVk+o/maMg6DFIsqgAM/INOWyiQF+45AANZpIorzwwHRChvFPeSP48zhAD6CjBfd1zdh94EN0DTB82mhbrbEn2GYGmu+2k8dXTRaQBmmwDgRK49dRz+bed4Cjj00kiBFrym3rCsdYG2um1DA9PY9/283ez4tzGDjEVdGlymVHa3sGCa9pobly2XcVr8yRv+dTtZ9x+Lbuav7B7yxRsQeEpMpMqUxyxy20E4bd9ERkX2McZRxIlYcAqQXSv2RQEos72KHLROtIMtRYqyID5pDnSXbEmVgv/HDSiIARlulMuY1ZX4HzWt67GPmvAQV7KDY4HeEi+dTdJHK52ajOK4kUNTs+/6v6YLv+y95nvfHvu//vud5s6d+BpFHrrOTOLYInES3lr2V4swxzxY5s725FG9LwdHZWx9m41oOBT5aXqmKc/OQ5/G5Llg1ZNX+NJBxNoozbMW833/K2tdwzEpyX2gMcKUIY3oI+6DJ9g+RhErVqjYiyW4ysM5hiqMRSdKDfS2NUHKDTLGXlk1SteEgw1NSZjRYUkuEnE1wAbZNbaaxRABPFaNWrAAk4e1jJU3stuphd/IKR4lxx5CgmvwNUhK1IyGtvaVMsj9ZQ2xSMr/wzQW5aFW6eBjCLyLcGqI+VygN2fIqwlB5yKxjBPrCP5FepHsfb5N1Ph6is3SdFXsYJk4Vo0WKaAXCNsH9GF9mJ3faRD5EnpenNlnwsC9dS93KNxgYMcBI+7ImKL7B3BpY3k0x0xeDUyWVK3HAppbi/iCQE6zMj/YfBUvqgj1JyLrRuEuYlTXUTeQRprE1sLwGVwv/qtlPM6aqPniQ0ReWUlGdYWy7IOmeBxrscQW4izYSpGwpYgfreJinbP9OhHF2c6tlcfKE6KSZB9kKwKLUO/jzwDMA99iKEJV3uPHndQPzwF+BHTPcBMu/MkwwkiscXboo/wPIY8fkcKmM71LzZBggSY4Ijx4RRcP2BevoopEGgx5jHGUvUl6pDFiULKVM2uV91LKCQSvEADDw2moHaA4j5Qw6BvYhDz7dzTwyjhRrd+JY4JvN3zFOfRheTFB0JWXw10hcSYf0iOd5nwS+aZYfBo56njebf59H6CRSAQdk1L8o6DM0l3Mr0MVxUslB1qgSSYJLzrzqbFzjoWMpWEapoHshxWnB6eJm8zlddw7yjKgKbFt9iq67mK1LvZD4NNDued4unLA1vu//9iXfE/VHCJo/juBK4XbjWCMFT1pZpYnZC0jSq/0LZhZ6qkwKoMc65zGWhFUrRVhPVMD6rWBBghR3l2y3iWA1o/STtP4/YQqUG4ltZYrSxImR4YeLhUJ5T3c3+ZtglWFpFn3lHXhv4HflEbO8d2Rx5PMVVD83xvN3ikjCfV95GeYWipJD/2fAq8Kqj33zfQ8KKyS5L7nSctZNdtJXutJ8RYhNbGerkV3bxHayVFgFvBwR4qStyt5TPExdyQCjMenvmXpjHgMDq12/SKZMjnkwAxpH9LP02M817xfZTJa7dcrN/6zE8iDydNQeo2OI0lxQne4Ixeat6kuk25jjVLlBjvG+I1BmWq6XUlRdRz1SOqfllDqDaY716O6lsAjGBqst29jIHpIMWBC0mW38Bb9lmaNqRhkOgIlmOsgQIzlk0MAoQt9r4n8cvF1w7DekDC1TGqNwZ461f2EYoiagS3L4yi4DlvKyjfxnZTF0AgpzIWzGEGUCrpRlGl1QQR/1VhxCvZC2Lni/fCfzqSFtx/0wccrJESNjywTjpNnFejv2x4gSI8PYlEEpJUaUon+pO/bKzOpyP673QF9PB95XN/I3cVg3WFIzRuCudIHhgT9LF1z0uJJA0SOIioUWQH/PvFYK/OK73ajneQngqwgJPgU84fv+n3ue99+BX8XNzZ29PvwqibdwIjqaWAbluTXmIMaZZwNFKeBncMluBDmAx3BldLNxfcZxHDBWoK39RRngXB3tOjaDPWsKjCI4hnL6xPk1H7M9RRcajwP/hvAWl3cybQIBQTopvxinNAeSYI3gbtYHkJtqE87voNV8RsFTDEhBSZ0wRfHNw8TI2Fn8CDkjPSxgIU6aLBW2FK6HBhrosWxRjZHnTpBifk4y0nSkhuXdw7Z0iSrp+VjUaTLWVUhiqBf5EUQMwBBQ1d8cg164r+lleUEb/1UpTUvBusA3JXcfGnqG/Ytr+OEWAWLNR7rpWVBnS7ZAmuc16U2RYJi49U76An9IAz1sM939Labvpe42Ue+NkmX3axvstmw50+dx/TjKEL3f/O0w7+n50jI6DTvTr8rslTjlDMy/B3FZ8VLz3xwcu3QEOaCBfqSJcTgc8LJataDYG2cZDqjtQsaH/jQtEVFZaZ1hGoQPbH6S3TTRxVrCFKwCYTstJBlgrykzq2NA1AIN23iIJfTQwPOL5dj+Dk+QvykAYA4Bm6Hy+/L54TtDLO8OsECjplyyt8DIx2RGIJoboy+ykrXPGeDUDOF92DHEfqh8s8CxO4yh7NAY+cUhO0bDo5CvgvqIrN9FI2vpsuOji7XGP2nYluStpI8UCQv+84TJUW59imoqh3nrQNKNjTUTcKDMJTr95tgrU3QAedgpMAmWzqmhroIkHSsVTAPZ7z78EgGSs3Fx44oBRaYG/Lc8z6vwfX/6sLmQCpoJ4A9833/N87wo0Ol53nfNe1/0ff8LF7DtKy6OIxN2IZzXCziBhMnAv891PR3G9Xmo5PJcXH9S6ZlXnY1rPNSoVdlDcADnBDIpfjbFuIXImAqOQQVJBF4v7oa4DmJWfe5CY8L3/d+/3DsByI0yOJM7hFwwOsNegQCGflxCpU122ufSjyTj+kSMAY1OXW1sKkq4JG9nv1toJ03cLrfTwjo6rNIYUGTeWiDMM2yhkS4aI5Ishsnz/TXrrI9NQ3iA6tQYvtmEdwR50DSaDX4LURozkts8gIAk9f9ZAyyBvPl8uBe8PwI+Bt5LwD7wH0Pkl9eZ73gcop/Oct9zAqxG7q/gFTba5v47ujvpW1PPl3kUEG+lSUpZZxuZRGRiX7oWgKmBeVCNa6K/pUyO/5dw5Yvqeq5J75g53krslCPgVDHOkJbK1ZoXgqILusJaHGg6SLEynb42rXyOuHgTAUQXyPHTxHwZwjA+ZJZ3m/1Xyfak+U9BlPG+Kn/wKG1TrbSWtDFglP1UgbBAH2lquIeXAOhhFZt42bJuidwBXozcY32nRhZXCHPUaw7UcdifrGG5AeLJvzgAP4uAJYAPQuXLBfLvNYDZ7Pfaj+91AOTFwGEy6/AmDJbKsa1ZnKaFdo5GRNJ7NFJNlCyrh6Thp2txIykSRM2FsoWtpInTyTrW0sUIVaRIUMOw7Y1rpoNX2MiSStnRDDGqlqUZ/bqco4qHMoyNVLvT24QrT9RzUY+TcB/FNdZqQ+xqxOBVVYX0fbjOfCaunrhiQJHneS3ILaoCWO553k8Bj/m+/+sXsl3f94cwdnm+72c9z+ulmL++pqIbeT5NIrddFUUoRUrqtBck2Jt5pijFeZlpY73GHGaFFq7nWIYDQSrkATLGMmAKbc4cC3ElmUGJdx2fYfP3XGV411zMMkUXGjs8z/sEoi0WLJ+79AKGE8jswc2B1zI4obGTOHZIS3IWIkmWisONmXW0f/wW2W6ZQc6hElFrS5u6sw6aSZCyymsJxCRThRdixv9FBQzq6OdDqWd4PnG3FV9IPneA79/fwpZJYWG8I8Cz4P2M2Yf9CCDaL4taNlV5gymN+nekn0gT+UNAE4T/NnAcPoJTUFkhfSf5ZhzD8EFYnnJsQ3X/GKmkM/N8YU0r69llZaTjDFsTUf2dVYwSj8s20tTQHO/kP566Uzb4jhxH7gH+JXDsq3DnpxoHlEAYmYU40FRWDtQGBDUqkTuWiiYcQTJ9LafTzwziMu3pTiRxRIjXbGMuMpIV0x5Aspd/NcsbkLGj5ZX3mt9gmKJfuu3v+NrcXyVSkWO0bSn/zIf5xZ/9R6KM2fK4R/kKGWLsZCMgPUa7abLAORbJ0ECPZR/TxImS5ViTnPfCupD0B/2b2YfPICyiKYXkRfkTPoRjghYgGpG/Y5a7zOeDY+YdJ9LgHYc3Es4r6Y5XOoukymNkrAAEyGRAjAzlAeZ0mDgN9Fg2KWQUDtM5YSPHDlRTcsNxbvyoHMxUOiHXngLMZRQbK89DgJC+r6xcFAd4diHjSIUvgqWxFxhTJR758LmysMI53p+N6XHFgCLgi8gt6lkA3/d/5HnenRfzCzzPq0VaKXcht+3f9DzvowhR/ge+7x89zTqfAD4B5ys9dPmiC7n3BEuj88jloROSc3AM+5lC2V+VWw72f6hB52xcn/ETBMBkcT1n4OTab+TswEjL5RQYEVhWkPUOrm/1uopZ9bkLiUfM308HXrsYktznH6UUl8tlENYn2Iz9tnlNy+UWIjP9r5vlh8x7ysrMnWDxcndVDLWvoK6ln/nmbp+mhgQpyxSBACM1Yo1Om54uEOYfEo+wmedZ1C2lScc2h/jloX/i7cUyK88KSP1+gtWdRoZrAwJ8jCx05byCJMRaTnUH4luzzbACR4Dv4/yZViAVZjcE1tkN4ZvFrwZMAn1IGCKA0GSB39n6BN/fIlRSy2Q7mdKYbawHJ8sNsIO7iHGUof1min6sjK7yRjdjXw40TcDTZU604AAyU6jCfQcpVhd7E6l008Rdf4/tB1KqQ/dJ9V2n+xTVUlxyNw6LDVs0BHCbK5dU1kfHUBxJun/PLH8RGRs/b5a7EYNfs49fe/ZXaXrgVfqO1VOyWuoXo4wRIWdZlee4nyZ227Ky9ewynlCyXL1rjPuWvyyMIND/26Gi8soqRuRcKgjqBb6CmwxQwP8tXGi5pYpzfB8BQiq11QU0Q3qBjMHCgjCr+wfctm4GjsPbSXk/TJ569rLE0lPY3zBoAGiWaFG/XReN1NNHIiLXU8fKdSRI0XlMgPVU5zwBQMr2/pji6/l1ZDzoJXUcJ8MavObn4saKnteLED4ehdLQOT51/YEiz/OWA3+JnL29vu9//nzWv5JAEb7vp8Qjz8ZFKyTxPK8CcSP/Xd/3j3me9zfA55AH5ueA/wn8ymn26QngCYBSz/Onv38lRga5TqO48qMwrjRJ2d255vUz9f3dhPOcmW7OOcVFm/CYjaswYsi4UL8iBc7Hcb1BZ4obkcnMICESVFOZg4ytE5xFBfdajVn1uQsK3/dXnPtTlyj0aaE3Sh3Q2hSv5TZLKb6ZjuPMXN9AHu21sliyLs/Q3hVWfa5qw0FrUgkyY54iQamhL8IU6KOe9aaYNU0NKZr4qKl1S1PDenbRxl1suUmYoVxpOZXHCyzaahBLFTSsUV1iZOZ/CKsuZxkCleT+n1D93JhLYB9AklxNkt9EEuJ3zHaA/O9In0g6Ipn18hPDsASqv2KAVTO8saXOKuL1L15GH/UMGAptE9t5kXt4BFEjS5lOKVsuN1LGeCZqk9Wqnz/I6LeWCuhQLLUdYbC0nE5L1fTczAF2UhxRIBsUUggagh6jWH67F8ciBWvFxmGoPLC9cYia5Q6KpWKVGFC2otHspzYYqKeVEfMoqTtOmjjjB+ZTdYvUeW1jM5vZZqWqH+FJCxxkk1200M7yfmGG3l5/A4uee4f8x+X9RE78hVb3mzHxPYTN0jG7yvzbYGryZv9/ggM930fGhPaZHUck0nX5CPAmLPqWGYM3AD8DbyTlfK/uHmD/GqeAuI5OtpeKGTBgJwl2stEKSkCxPP0SDpGmxo6hCON8b+/PUbFMDm7VvQcZ/fFSxxxWIOVzWuKqs8paPleG9KDdjGNBb0bAdpBtrA78+wLCx2PiApsYPM+rB54KvHQT8Bnf9/8s8JnT9uWb934PgeE+ckYf9X3/XbWbe573Dwi8H/Z9f03g9XuBP0fShC/NAOSsBJ73ff9xz/O+er77cSWBopQpofM9zwsBv02x69m7Ds/z5iCA6Enf978N4Pt+OvD+3+EI6as+VCZZE1ZNWqdwzfEnKb4tny4O4SS4NeEtxd2XZ8vnrt94m+J+taA64UnOnter75WOpWAZ3XHzN4IzIL6uwudyywNc1eF53m8g9/mMWZ4P/Bff9//6ku+MzjAr01CHyAj9/+y9fXhV5Znv/1lJyCY7ryQxGxJ2GkwCAgmDkjZKBKlQdXCk6lVrrbVvx46d03Z6Wjttz3R+tXXmnL786lzHX2dOW8eZOq2OVTzqQKVqoSIKSg2VQ3gnMZFAIDEJSXbYYW+SrN8f93OvZ+2YF5BAQHJfF+w86/3lWWvd3+d739+7w7dMGQIyrvdNm4atlXMZwsyYJP/Bw+lkXNZO7yHxrEpD2+ggz3PsFlFLF9M8JbE+guxmnhdeJyFEe7wk+xBtPMPN/HXnQzTkipxW2aZDHFxaQM4scSyzWuJEslPJqvUph81CHFsQ0LMOeNy0yxHQow7uZoRZ8l+X7QizYIBV4EkgG4rbTMjcQfj3Wz5O2WcbzKWrJzxgGbKyrYdIrY57Es2PcSdBovyCewABRa2EmHaJnENBaD95tLNnpkh4d7xeJBgmA+uc1iAgRF26IsRD0mB7dXT9ksoRsOFxuYjLopGaiq40Z2gu1sPOGjJPt9kp01TZ7JUm+FiJHbk8hDBbG01b+9YN5nejOWYT4jdYls6RnFlcver3XiHcUuqpZAcrWA/AU3yM73MftSahq3hrG245Xv/dwzziNzVQ/KLcm57lRoRBhTY2k5hD1ghsAL5s2vcj+WY9JIbUVWH7SJXZhl/qqgp86vFwAObXGSB2veQAKSaIkOmFyIEIiDzGnYRo9VjTMM2kEmc9ooo4h/2euAQI2zRjdiNHdsu4St68vXDZYY7lyUUejKTLta/D2h4S2Z9lSFEAZSS7zHy/7O84hT+4OJ6AynvehuvuwwzTGKXnw2C01q2NlJffjfjp81zX7XMc50ngEwhP6JnjOAVAn+u6Ed+0Mtd1h2oFPIIwPL/yLZcM/DPwEaRXv+E4zhrXdXc7jlMJ/GDINj6PcHjfcRzndmym4ynb+QSKvoigwSLk5F8EvnSmG3WEevpXYI/ruv/omz7D5BsB3IJV+r/grRap8aZOqo7eZyP+liqHTUee3ZFULFrMNlLNevotiJptXHTKYJPmmfrtqdjCqxpWCfZbN5zlYgu/Kmg/ia1/pQCpk7FV7M6ljcaqjtsAgcvFGPEwnvYF13X/WRuu6x5zHOcLSAHwc2sa56BO9i7ench5CBnd1xz86YiTrgPAvYgfre7EJdDbnpNQGLZh/3x+MFviqd5kIWGaPecwSjAhZOgefkE9VtVtQXQnNwbXUZc7mwXbjBJYudT5ydpjOmIjZHXHLRN0EPlaqybsHsSt0iHMbBJB01TEwTVidLTIPlgHXGembUdYo0rb/sT1T3rMkeZQPT1DpOGmzejiIGE+3fkkAIHcGJtY6uVFrWQddVTSnCTn3UUOAWJ0HPIxOUdJVHrpMMepnoDiFX3ob0ZAh4og5Oea4oD+vKAQiXlC/rdiE7ZOkZrWKTLbTMmVPvKKjtmWyD70I60FRbU/RBDgrJq9d0PGQgua6YeF816nmTClZiPT6KKOBcRNnOBNrGEtN9lirtXCwt24U25YZbhOAIi5VlmNcQmPVNGEQoQ90ci1PDkOzx39JtIXahD3FiTvaBXw30x7j1lGQdB1iCOjyoWNJOQQcQAW1O73lt+xKIdUYp6IQg5dLGETA6TwgulkETIZINljTTVHKgfJmqhjAQW0caRLdvT2ny6Do5CxTFBzbzgdnsJK6qtjpbfKX6x56PGeGPI7DiagaKzwOfIdx6n1tR8y0U/D2XKgwXXdtxP2M3JeftPAGTwAACAASURBVDeCIdIcx1GB4hbebdcAf+U4zkrXdU+Y9/EtYKQi7X42mRQXv30IqHdd9y0Ax3F+A3wU2O26bh02cNQzx3G+AdxntvcU8MsRzndYO29AkVGfu/MsbLoGIWbrHMfR8be/Be5wHGch4oY0gRliep/YOwgP6s/T0DygKVgVujxGBkVJZpk4Vs1OJZM1L2m8JPcn7cKyKdgSLOpX+NXjRhth0Len9k3/NrTQsOavnk8CPcP19SBWhW/cbJIpOhNLchzHcV3XBW+kcUzP4axYPz42ARlVUolekFHkRcjI8lQEGOnIk4KnfPO3MgdTgfYUT2o6lRg/m/051rMCEMevhULP0QsQp44FHiuwhcWUUm/D6YIF7KCSWzp/R/si8fbyOnuZXt9tRzbmYgENyPT7sU7f/0TUwnT5PKSQpZ7nHkxgjWkfRFwn/4j7QjNNxRhWQeBVPEUztwqcR+DGL/4OgN8EP86nO5/kiVypWxSilQCxhMK0ETL5nPGHusjhicHbbTjdiRQBb4exhE4GAlKfN+3pWGIHBIxkAu25tk0r72Z9hg6RhHzTT5rlpvjWaSUh7G4Z8ELI/g32WtYifaLEtCuxtawATkDvxnw+sFLEAjqi+dRHywhMjTEnaT/PDt5MZVIdi9jmhZJdzwtso8q7dlHSWMorHFwqgHQLi7kl+qyH9Y6WZUtopYZHrkTcY3VxX0VYI62nZIq3shLxxEAA0HeQfgNy32uwH47VJMi8UwhvlFXwwZ1mgW44elM2wQEBmAu27mdz9SJSzVt6H3MopIU6Kj1VvTipFNDqqe7VsogBUjzxhihpbGldTN6VEg/Xsb2ID6zcK4ILIAyPEToBEhUhMfdlL3KvliChljdhCwWDfNTObYhNu+u6VWMvBgjL8/hoC/jz8k0ayk+QJ7oPeNF13ReHruO67mrHcWYBv3EcZzXC5nzkFI+piERu7RBQPcY6zwPfcxznkyQ+wadkEw6KHMf5KTb6+l12pkX3XNd9leE1Ei74mkSj2VtIz9HaMTrwqGF1J5FX+WjPp4YuKRvQjS0CexJ5z02CoovToliArKZs0ViDYYVYL3WARJCu28jkwsgnGvfwvkEmmaIzsxeAJx3H+TnyXfki1s09tzYFoeLVIYogzquGa51AANEJJERuO+Jg5SOf/r9AnKwy7MNQAjOuaCTPxOAF6eMnfINU02m0CKvWmAnT7Dl9IGFFETLZavyKG+s30FrWTCQ7lbzOXhx1YANYh1RFEbS92kzTl/9t5jiV9bkLCQfUyJ7jyBi0ykanIwDoW0g+UgGWOdJ8q78FbkRyfJDinf1fTxawBnzmrSchG+ZVi5xLyUAT65NXMM/Iu7QSopmw5/hHyCQ1KS7J85hrOtOcw3YktOK35v4YWXAyzb3Q8CgdPdQX3HSgPpQ4cpOSm8gYsAfLHOmvqtL1mWkhPPaoP03YKGUjdiJhlzoe/hpybXf5jukTWE9uKpBjmbWFwTfZMziPjr1FhOa1cnPSs3SRQw7HvD6yhcWAZU7CNEtdoGzx+kuD9USCGQRqpT3t0m4oxgJYEHCmIGgvcs9VLORWhDm5H+lHGxBnYipwr1mm2CyjOUcqyqDs4/Xwwfqdts/FINTZ7QkxZJbHmcM+jykqo4EWChkgmRyO8Sy3sIyNbDPqjCA1vV5hibdOiDaqTDgqQLQsSFtPiECaXKc+0uWe67VOQZ5tBUf1yHNaiozqLcHWMtIkb7964RnaIEmeyuSZmklZWUWiQM3QZYbm5U9DWJtZyFmudhznU67rPjp0Xdd1f2xYnp8BpcOU3Rlxt8NMGzW333XdnVjR+tO2CQdF2DTHGmAeNunrNvAVHZi00zJlcfwFXBUQgRX+GSoIOtQ0P0kdVR0MPBXnd9Lev6ZCHVFsHrCCm0Hk3T9SeKXWMvJvByxwP8H5xxKdU5tkis7EvoWohf4V8kF9ESn1cO4tGatQBTLeWU9inRMt3voOMiZajzjEU5HE/xWy3ozbRb7qyMEwqcS8sJkoaWQS8aSq04yqmEpVF9BKpa+oZeoQlS43V4BVZndcABFwcFEBxb9pk6AXJIck6/44MRM+F9iOjCcrCNqMLKtf618jZdiVSapCPjQ6Xv0j5OPUjXyIWsw62eB+VhZxahAn2TjBmdFeKRZqMI1bBbW5FZ6D25RcQoxUFhl34td8mkwiXi7Vtp4q+uqnkXa1MGh99dMEpJ0w17weK2f9YXOcysooiO1F2C1NsH+Td3tQ/WDD4/qwEttg6R0dksxCANJJPKZoFonj4mlI/9ho2iEkycBcJ36PAGp/0n47tJQJgm04Op+k7ONcN2+N1wfipkbREjYB5v4TseF10W7cANQHJU9tzsB+stbFvRd1oBtx+o3wAltN+w7T9ocOqJUDP8aO8bchctzKK6xGAPGPTFsLuarPv8b8reINhVLjKnSdgOSG3Jnk0OWB4i5yyKOdNKJ0MY1lbCREK20UeHL061lBGlFPiKGLHPb1zBFBDmBhcS3bD1ZBe4o9h2exz68+y9ruwtaMOkGieIrmGB3Fguxx+MANjF+1yD8H/uTPtffbcHn5yNup0XXdd8wyTwOLsdll/vWXIEMOzyBvhy8PXWYEO4S9eiBvzeFC9MbNJhwUua777wCO43wW+LDruidN++fYR2bSTtNU8CUbcVo7sTkcWrtI64uNZJ3YZHgNv9MR/hNMgqKL2ULI/VfW0S/EkcToIh5TzTIK0FXMQ1/vmYhfcFEKeUzWKTojc113EBnD/vlYy551G0ACTfRFeRXyiW8y7RLkYbjMt0yYxNHo14Eq6OqRN3VaToS3111GykqhCloJUUUtz5nYpVWspYGQBxb6CLKAOjYh1S1UongfswEozG2hiRLC2c2e6EHxzrYEoYSsB+OQBwFVm1uOOIhGZnjHr2FBOjaHSMOeTB0juhH2SHNMrjbTYtghUbOMc5dvmRo8xiBwGZAHPTWmJlJbnAXRnTwTlPC5GKmEaGMdNwJSxLaJEjp8WfAfumITf9xtqnzk90NJitwPDU1sRACpOrMzkRwSNXWANRPZA0xNZkKIxMpqWcibUMPqVPdVwZJaJ15OUWOuDaEEcSPTsQpnZQh4UCal3ByDhs89DtwBfTtNoasTsGB2HWXU024YkOWs5xWWesxQlDRuOLKR52csk3WCEA42e4VRd80oZV6NVR+MT4XATqz64AES1eZ+hPQRDa9rRO7vLDygzQHEtX3StO8nQeadSrO8SrbHEOCl62+X+Y7pg2UtQr/sqpDrGiGTHLoIECdo+PxWQiQz4IHDSupoo8DLryuhkdlZ+9iaJchtX88cKeaq9+q3KQKctX8cMcekNaK6kIGNIiyTt8zMV6Z3OuPmOA3ieGp742B3MELo3Eh5+cgTfqXjOEGkUy8Hny6+Xf9y4F8Q7rcReNRxnH9wXffvTuG43gDKTfjdYYQX/eToq5yZTTgo8lkh1n8HeT0Vjrz4pI1mB5AoHFUC00Kbg9h3lUroj2b+51dH+DU5fnJA++K1QSyIUVDjB8yjhVUGzbJaUFhNWUnM70vjdbAXkrmMYyGC94c5jpOElE3IAmp1IG3IMg+NJVV+KsuMq+l91HAZzQ3yjyzPRJymK820fN90kOT+Luvkli7eRdcNUUoRJzVKGqnE+ZwRfGomzHLWe45eM2EOEiZi4rF0ZFkd4vWsYAXrRVTBLyO8HauAl4uEuSlg6Ubis0XEiwXKEKiq3reQsChTtJNVCCDSl0IF4hA3YmW6i0kM2UtHHOVvSjN2NQTWwJZkCfW6oX8jgQ6IBmVoZQXrqaPSU6P730jNd2XUPpn1H6I6Zj5oSXkxBnNSEkOZZiGj/5pjtBZxcPV+6UgjvnYK0F9iJnSSWKhVRRT6hrR9lgKk5UKkyRxDri3+BnJPurDXfipyX7S/lCHXTV3RcmAjpN1tGbFj5HgS5QDbqOIPXOsLm2tlx4zZ3FC/EYCDZQW8xDLCBQKs5+80gMiA5FTtH7rPYqQP+0LdOA4mbQ1+gjBDP8cC48uBRjhsxAaLahEX2/Qp2uScTxp2cUoVIs6g+5gFbIM3/rugwQBxOsjjw9teA+DpRX9OhEzqKaXKUJhtRn7+GW6R8yBGCU1en3mThRyhkKC5X3Oy9rF93ZWWXWSaAFD1mjtIDHvIQVhE/0hzk/lVRyuDcTOXpDNWnwMwoOYjDMmrdxxnHcIHXsowefmu664zQgZ/QjjSNzHla4ZYELjNdd0Gs93PYLlO//4eR2BkvuM4hxCxhH91HOfLyNskGfg313V3DV13PO18AkU/BN50HEd9oWuA703c4VzYdhz7DRpAvjE6AB0nURZ5JNMQOQ2TUtNpqjo2aRefvYMV7sjGinlovxrNNG9I/9Z1TmDl4jOHX/W0zK/7dMHYODBFI9V7GLLMsLUf3kNNiNM+jvewj48i7mknI0fk3+w4zmhjsA42MOrcmHZyPfMmxGHSdhfihM/3tU8ggEgj7g8g7NFMSVRpjYZYGHzTK8ZaSR21LKLEVhKljkqvMOf1vOCxKLr8FhZ7kty3bvodFMLBigKK/2A81CrE0V7ubVC0olQ5LIDkiRin+MDjUF6MhEMBP70XvvIkNgysEwFWur0HsWySOtYtCGOmIXYvIwH0j5hdNsr6yoCp56Jyywp+VG65kjpms4+IUXdoJkwV22guEmAwuCsdykzxVgVBmtulxTliCGOh57EMcfBHejlFNAxOQZAKKPiU5DCS22r9GBnuEmm3m9XVsdZ9+dXnSrBhaErgmOuR9NHjDO5KJzlFHP28hYdpbg2zIrSBAtMH2ijgCW73ruXi6GvsCFZ4NYDmdTbwmZefFLADXqx9e7V49Pk39sq90S5nhDhOGvZqyt1m3mVm/jPI/c3DY5M6DY9bZPrE4Yeh6FYsEF8JfBamvGram2UfHjtVCMTggy+amM+pEKsCrVK2gDqiBLmFZ1ncKaBoS+4ialnEX/P/AfBDvk0mvd5AwRxEfXHPoMi2FyS1QUU/fUcN67YCcfu1z6oSoALU15F393ZzPzS3zA+E/AThGdopqs+NvR3XjWKrL/mnq3RGC8Pn9uC67n1IONxo2988pH0SYY6GLnfH0Glm+jrOoQbAeQOKXNf9peM4v8M+7t92XfdCyLU+L60bIe5V6SuCdTzVadV8kJEsFwFTnby7flzczLto8z4mzctXUzEPsGGVqso2nGWTmKumMtypiF8YxEZNnIldcIBI7cyZokcYUu/BbyPVfgD2DTfddd3dQ9Y/13Un5gCvmWJ8T5Gohab2NyNcC78NLb15dk115vWFOx1bABIzPR+rKjIdcX5n+rbRAVwOpcX7vEnT6PLyP7rIYRVrvaT5HI55+UUgyeSthMg0b+r1rOBmnpGkdeCNpRVUde6UGjQqctCGuEFrfO1rsepim5EsLePQlmQjHwsT6f+VuxDHUUMSuqFnO2TpdehAnNvlWOZAVXu0nlEVNhcLs+wG6CrzDcMfgJUB6Qobc68iRiqVRtKujRBNzPLadVSycXAZgzEZWU+rMqP/ZdOsO6ihUPqhm4OMLiqmeQ0BJBo+1YjcOx2sj2QhiEZBURaJynJ+kGSmpaTJxVMHOgLMwAK1MqRPKFioQEDaf/raXXggavCxdCiD3r0SNtgLfO+Kb/O9/T9k7uw3+TS/IodjhGn2+kRtcBFxUr1Qw0BujLJi39jDGtj19VLmf8EgsK8iYNHkFLV/P4P83F6maIzPZmy4HMg9rcGGUwK5q4BXYbN5kiunIv1HazDUIZLvj5h2MYmSprOQ/qJ9pBxST0ieGUie1K+4i0/za36ZK9FWDZRSQKun1LiETexnjgcOn2Ml0+gi2ivsY1tGAWk5EfpeNaBI33YqG19PYu5QHnJrmxAAfQhhtsIkKk4mCHFM2vlmEw6KHMeZruDH/P7naMtM2qmbOp5+2WNleDSkbjShq1bEaQ2a7WjeSKr5NwmILl5Tf89fyPekb95YqmwBEtkhVTS8BPludI286nlhmZyl/j82UzRm3YkR6j34baTaDxtHmL57yPrnuu7EIeyraljIOFxI3YSbqohoWNpCxPFWp3smVpkKBBgtM8v5Q+76oWGd0ElJi46TGooTNWxDCgMMkOyFQuXRQRfTPGAUppkGSr3cgxtZJyE3BrB8sHknsTyTI6J1iFqQkTB1OCuQejKqyqOskBn/naKFN9VxP2DWMaxAzzOQ5c+bKkc+JJsRR1dD7Qqx4XONsg3XSDY7tcBKqNlp1BwMM9AcFAS5OCphU+uDgtSamEWEDF5hCSD5JHOTdrMtx+pl9tVPs5LXIEn0M7Fs1asIqlARgwDwmtJePvNEDobIa6cA/bnYjAANn9NcI6C/FVJKSAixK/Ftsx2h5VVLayZyfT9h2q8gKmf5dvkZqxq9PJo8Ovjen37I1Vf8njns51d8mn/gOwSIe2Fk3+aHRAl6YWSthGARlD0jndD9LMxf22CZoUakb2i5pk/3CmjW6/ZzIAzfN2P799VA52rIvQ57fw0LV6Mp86r8pIAjYP6ph7oSAVbfNe3lCDBX4FULTjZMW2q/HDeyzlOWq2YrORxjGl1kmAfuWW4RVULzaqlmK82EmZMlAxD10TJysrooWCmo+O2HLhOQqgpCGgrrB2v95jj3kijf7bs/42Uuzripz02atQkHRQgtdsU4LDNpQ6wVececwDI96ohq3aGxQp1aEElA9dOGE5aZtIvPskkMv4xhaxSNJpBQiPhjg4gvqLlpQaRfqrrh+Q64z9rxjZ1TdBKJ4V7ruu7a97iXkWo/nFJNiAmoO/E08FOjYLTpFPcz8aZfV2VgYghT5JdbrkBe1EqAvIZckQzEActHHowSSMo7TiAtThn1RMikkRIyiVBPmae6FabZU9cCaKCMSuq8MLMMIjQTZtcMCZXKM17a9PRuYW3uxkomm2R2WhBndA3i+M5CHFKF5nkkFj39LCKRZJzkLD1/TUjvR4QUXkZeCA8gL4XViHO92szPA+dRRLJ7AwLEfGzTsbJsT3J7S/AqNrGUSnYAUEUtW1jMV/gpABEy+HrrPzLtErk2x97JkePvl2vL64iTu9a0/9ycTw6CV74G/B1ArgWLClxnmN8jQwQU+kFoA52Wi5XhVhAUgv4+IM2MtHTCa7mSc1MHfIFEVaNjiGCHWiUC5lTLy/StxtYSAFrSCrnpitWkEvdYxA2soJI6buEZgkS9nKNb63/HG2UVVEW3EQlmePfPWY0AZgXNAWwxVpDwuH4saMoF5sJ9etotkLsBW3soF8kQnAVkw47XYcGtWGGFqUh/2ODbZzdyv672HUM2tk8FYNdNpcxvFjbrYLiAVkKEaCWZfrZSTSEt7GMOJTQRJY0ucjzQ1ESJB5AyfG/3VGK8fVBou7RPHKPvN9OE0QUJXTxGItg/gBXF2IvIc+8yy2QgAx/jBIxcnPFUn5s0Y+cDKPozx3FGE6tyGF3MatJGsB7EyczBOq9aiBXEuxrrkdJQJ3V4NdTpgg1NmrRxsW4Sh+79OUKqsTRcH/ErH/oBuVbYzETciItW2XBspqh7HMQCRqr9cMo1Ic5x3Yko8F9Ocfvnj+kDokj/BAKQNHzuSmTUuRcbMleG5Bg1IE53AHGQe2HwcDqxIqjPKiOPdi/sJ06q59wV0MYWFnvFWnPoooXCBCYlRBttRqp6/osNAkxWgmvYI2cVAliUENmMOHzpSDjQZgQo6ah+C3AQDpjzKl9lln3EzC+UbW0282sWIs6jSi5rflEjAqayzbSXsUIMc03e01rJi2m/KYM4ARb8RvJA6j8xkxCtXlJ9A6U0E6bWePav9CzhxtA61v7JUE9HEQc7ox+2pwgAOAo8YNq95hyOI+DwM+ZYMrFgKIC8yLyen2bYIWWGhtQgShBe0LyiPqAVZpRIM5ImoOcNM/t1xLHO9G1iI9YxT0FqOfmi3eKDqdwYEppGr0Ep9R57VEY9BbR6wgs38wwLojs5WFZAiDYiwQwBm+vMia3CAho9773YnCMQ7lhjnrOBPbDVMInVdyDs0UGzjU7gMuh8EXJvgwUmFK7nGR+AvgPpExrCOZVEgu6fEfZIiZJ0CA80Y9KmiIdTWcF6NrGEYvOcbKWaEppoMvlbml8HUEITAyQTI+Dl6y0MvkkH+V7B377aaXJuOqhxzJxPk2kfQpyt49jnuQH7PPci91Ix1xmOrLnjqz43acYmHBS5rjsJdc+BqbgC2JCldMYGRYNYKe+Tpu0Pm5q0i9tUiRCkn2i45kh+/QAkvMb94Z3JyPfEn782ETahAiJjM0XZjuM8xJkxRSPVfjjlmhAXUt2JCTMXOTtlUEqxFe/BOrJTsQ9MH+JA3WDahs2YcYUMw6cSo4scjxmawz4KaKWOBQBsZyErec4DSWu5iXv4BS8FlwF4TtRcs377dRnkb+2FFnD8oxTKFMnCcg4a+tSJ3LFLTftLwGooF5xFz/2Q5RdhMxFkNYZZ6NwKuUoza2jh55B8EgVaexBnXJ3i41B8pI2YyWPKb+6F7/RS/yvxPpsJc0/nI9yf+y0APsZT5NDlCUrUZVVyjBwyLjPD9JdB78Z8OJRiAUY/Aoj8dgjLDO1BerwClmoEoPhzRPqVCdIV5mJB0RCRBbXMEhuSNSNNXn7+JP1dWLaxHSu2AHKP+rFCDF+EjteLWHtCwN/ca6WCagoDXphYC4XMZp9Xn2c7l7Mw+CY5A8KiZW2PE5vbS/s9RljhN70eqwPIPWnDqg3WIDWICuwx8C2o1v5xEOGGc6HnOzIp66uQ24iXZ3RgM5TXYIHWQcRB+Zxpt5j9aYheDdIffUAsa13c66NRgsQIEKSPfcwBYAmvECfVy6WKkEkldV5x400sSZBwbxssJXYiwGB3ujeNcmxs9wwESPsTs3chXLg+23m821lSTn1YAexTt8FxUp+btESbcFA0aWfXkpH8jgA2D0QlkeMw5iPlzzkKIu+DS7D5kJN28ZoCBwU0yiaOlqem4gx+tTrNbVOAFWFiQdFwgOicKdmdG6ZopNoP+0aYnmDnc90Jx3FmI6ILH8D3fXNd99rx2scp2yACakpMWyV8VZVLmSC/sIKCAn+eQh1ESsTzygvKqHUDEv6WQxebWOIpZ6USYwuL+bapgnk9L9BM2CtimkmEfczxQuwyiUBxrzi6SnAsQkL9VDPqNoTBUVB0DeKMG3nkzo/DoX5YYJzg/k5zHhpOpeFQxqHt24x8QK7GsmgaUqf7CJh5PnGHgzMKCEUNFbAH+CaEo+J97gvO4YXcZdy3U877uYrlpBJjq4nMXMImuphGZtAOz/e+ni8j+34Htg8r9pCOiC3odbgJAUGKaw4j62s4VArQ7wc9Q6XG9MHOxao3TIGZaVZqGiRsTn3zm4HfYdmoKhLz0JYhwxL+EMWF/eTNlO1nEiFAjLrBSsJJwpjkICITd/IYADECTN/WzeZFiwCoXFhHVm2cQKPZqUqlP+K7LrXYQqvfAq6FA6ZEcrkRYHjC3KrbC2DzQaj5W2j9okzLqoMDe6Dc3N/y5Uh/0QEhLd6q+LITCcvUkE0N61QH5kfg/kgU5kBUCZsJU0a9x6hGSSNOqscezkFyhxQUzaKJEG3sRtTnUpOkYG2vP7/vdSwoOmaOVz9Wekv1OQcbSqftGFJwdxxskik6OzYJit7H9jbyzGZiC2xmIs90Kom1ZkYydRDVKdSIguMjrjFpF4P5B8cU2Ognf7QaRVHkO+eX39ZBYz8DOTSzf6ItaexFxs9Gp6nGZIpGqfewDrjbdd2WkWo/nGJNiPO57sRqJFjnX5jo1EcXAUR+hH8C6xTNRRytd5ARaGUL2rEhOlOBS6SYJkDbYAGxEwEWB0VIIYdjhGgjYJ66EG0MkMwmIzAQIZPL2U6fyb35MBuJk0q9kTdbyJvC1uzEk9RmDeJwarsWuA47sl2JOOHGkT/UDwvm4uWYZK5GPhC+0CZaoOdBaRZdaa6DX/a7zexHQVGBmabb6DRMkWEr3CopIlobXGSuQxcRMnmuQjbYSogupnlS5BsGV7A8ab2XW7V9zZUSdgY2nLEWCzpAwhu32/OiCWGK9JieQoDSWsME9fchbzR/DlETFhW3YvOJfDlFfkD0Dok86g/MPjQL73fItVcpblV505w0o1qXmiRDU7uj8+htz6G0eJ/HmMxjNw2UeeFzmfSyb9FsD1hn7YnLPdNwuTyk9pD2h4PmOim/e5v8Xa6Cyunw2MNwpwFHnY8YlvDHXnQb5Qh4+rEBUt9caPanQDqAvB20P9QA/xPLFClo12O8C5yYBTil1JNBJEF5sZdMdlDp5Z1FyCSPDi8vLUwzv+LTnkhJM2Fe6V3CjGvloI78aZY8lyrB/TwCjBSwliG3Xu/NCeS+NGBBURGWeTy3WpiTdoo2CYrex7YPG6qkjqg6oXHEsT0VcONXlvVHelyC/Y5P2sVlOlCp+UHarxSEj2Rhs24e0vdUDbcHq244Fatuer7YaEBvXG3s8LkxmaJR6j2s9P09bO2HU6kJcZ7Xneh3XfdnZ2nbp2eK9NUU6CwzvyrvCVa+uhdhCepM+w5gqnX2cpK6yAxGPOZnN/PIoz1BbayQFk+dTpfREeUucuggjxuObATADYBbAU4hVh57KqIlqMf0C+QB0FCltxBn1IQLLLgVcVZN7Zk/dkNNORww2yvPlWuRpQ5usix/+GEoMCBnSh7wv5AaRnreL/qu3XVABwRMQdhdny1l/s4GUivkyZxFE62EWOcTQLyTx9hhqLftSQupYwHNUYM4Usy13oh3P2Z8upEj351l60g9jIQxHjPtjcgLTO9jPgJSFODMyDViC2qqRKfT/LlFJSSYvjQjWHU3NVUyA/uS1XC5ZeY4n/dOGkjhiAE8HyreQrA4SpQgJTTSR5AWCllELUc8xAGrWEP+WssM9SxPJavWcP4PIvWZNJyyGGELzb06vAGK7sL2lxa4swa+bwDPfXcghVwDHu4A3gAAIABJREFUMFc9zp1weB18817Tfl3WO2D6VLkCD31+2hDwpUxRrWmbffYUpJLVFqfaVIzN39lLb0Umz7GSBeZhCtNMLVVeaOkRCokRYLe52GGaPYYJYH3rcmaFmmh4whQSuwTpG3oMJ4BpWJB0yEzLw7KIWndM75c6UeNgIrQw6cKPt51XV9RxnKuBclOz6BIgw3XdxrHWO9d21uR4x9n8eYld2OcxjrxXOxk7d0KT5jXPI4rNHTnfZZMn7exa0Pe3X+p9NJ9ev3Fa56oLK7owaH5jXFjKKuMaWjd2+Nx45BS9n22t4zj/FQkq8rCs67qdI69ylszBOkhq2sFBQsb8ydnpyBf5EFZg4BAkVR/3Qn1qo1W0EqIsKF5WiNaEmjPJ9LOOlRSaYfwC2ihlt1evp4kSwjTjGrajIXcmZZsOsWtpKfNXmSHuzcjVUwuYY9WQvp2IU6zOXS2wB35s8kO+lg2dj0O5Cenq3Aq5D+AxTQc2Q/ld0PSwEEJTahAg8DiWjXgZcUB1nxpOd0Sa8zobICb1aORSSsyD1m+aw35+xLe8Uf9U4sRJZWXwOQCenP4Z0sqOQRn0PSx1aI5kzJKkeOUtQ4izrlhGAaw6uDEEJLWbL+2RoTlDWZCZBpEmEk2FFnygKWLWu5xEID0d6RMaojcTAWMacrkRYXE0vycGXIknDvDH/UuZO/tNyqj3almVUs8AKV6fqKSOOiopvUnuf5Co5GwpE1SB9GMN0WtE7o/JISp6Gno+CVkmQPXwOigqxlQDMgIKX4LOByFXAWcLFNXgsWSaU1SurJw+rRpOqqYApANhNI0HmxWIw0rIf0aAXf0tMykYaOP25CdYx40sZRMxAt65Asyghf3MocxQO3VUUkoD+5gNwKxQE12DOWTcJBe/d32+FPzNNjttR/qCsnQ7kedEwaE6Xe1Yhmunb/kztPEq3vp+M8dxipH6eO3A/tMtQH7egCLHce5Dus4c4JfIK+hRLHl93tiFAIggMdxVmaJULGOUzdi5GxopoKFNKraQzqQC3cVu2ic0BHPQtMeKWVIApKIKg751NZ/o0Ihrj48FGD/2Z9yfgzNkii5y+4z59RdzdbGyAOfOkpDQGXUE+5BOp6NJ+Qjr4FefO4AkcKsTbJiUTa0SDhfM7CMv2M5sA5ICxJnHbi9HqI0QC9nOUqNcHjXMwDqTW/Ml/pn8F3s5eJ14tKWdh4hVwfyvNIgctmxUmArjaB9+AIruRtgakCtZC51mxLyjX0DON83H4mQjHOiHauMc5lYhrIIRX8hLgcNfFL93iuaGHEeAoI+D3PpFqL7LNAqRWklGorkudzaFuS0eGEwxD03Yp/a+mC2euMA8dhMhkycP3inHsFCQauxEwDr7/2KOQR1YfQlpIdWFCMBVFi8NuU+eQzCkfhFpZt7Q3CK1ELAHUuYKCwHiZEewdYkafIuChGa8g2WW8hAGz3zI0z51jMqsOv74p6XeXtoGC5iXtNu7Ns2EqaTOYxdTiZFKnOJtEtzWszCV9nAG+ZsNc+RjBQERyL+VBHmUrBpY7+N+/3TQkltZt8GBB6D8XjwQdHg7FMRgink2ygugZ5tPoKMKAUQa2tiN3Hvd5yxEPv2fTHs1sBnaPyE0XsFAG+uTl5tFG2kmzDFyCBDnel4wl7qUUho8ZghEmU/bi6jlqXc+xuCudJ0J9T6X+RjybBug7sm367Igz9I2bF+qwNqbnJGNV06R4zg5CN9YgbwrP++67mtDlrkBeYqTgYcVaDiO8zVEyN9FnozPua77nlKCHcf5N6ROXZvruhW+6cPuexSbDTxnin0PW8B8NDtvQBFC2F+O1ODAxL2PFokzaWOYDkBegk2G9ye0Rxk9KR7eLd+tdWUmAdHFbcoSaT9QQDOa8hxIX9RQO7BM5QDSF6eY35mcXWA0FiCaMAW6sZmiSRvFXNedNfZS58iSSCzuqOE0+b5lDiGjyxqiNc3M1zyFTBiMBbzE+ZykLg/ogOQQtZPnJY+HaGUeu72wsS6mMYtGL48iSpCj1yV74XfFLW0EpiIMjTqcecgovHFLir6L1Iy53Mw3RTNzjVJYx1sSKldu9AcjO6H6Siy4r4CtD0O1AR9P98PdV0JROhZgXIoAQq1LcwKq12CT+x9FwvNMCF+QKKkDcfL3yIVyCyH/QC/11YIuYwSIkOkVbwUJh5pRLMDgyB9myTXOgLQqufh9TIPf8u4Xj4bLqRy51gnSnJARC3P6pbdBmKE03gWS/Op1fQggeta0P4iMQJqwQRaSKMFdhjje5l7F+lL546Gl3gv2unlrPHnyZLOjEG0codBTMNzCYsI0075ITjRKkOKdbXLPQcDJLLzwSC5HwKP2l28A34QV5l4eboOib2GVA1+G0FQkYNbkkBWtxMZOA1wJWS2+aeXQea9IdgMiwqHgGQSIFCJgCKAADn6iwNtcfksvi8NbaCPEmwb1DpBC3EBAkJyiLSz28szCNPMC13vb2EYVg7EApdcKddhwcI6oFepIcTly7/SY8rHMkZ/J0+cepI80MS42jupzDwLPu677McdxUkkMAsFxnGREBP0jSM97w3GcNcjT+NfAPNd1+xzHeRIRznlkyPoFQJ/ruhHftDLXdetJtEcQmPsr33LD7tt13d2O41QiWXd++zwCN7/jOM7t2KDgU7bzCRTFXdd1HcdxARzHSR9rhfGw94BCLxjT0Dd/bSI4vezj49ioAX8y/TlNPD/PrBNI/RpyIR+CjIu0qE4y0jcGsSBjrL6ldbPUNIzOv16U95arNp5A5n0uyf2+NcdxpgB/BehQ+UbgFybv6Uy3fXrfCn0odMwznwTVNpaZee9gHaU0fHVvgBzIm9kqxUaBju4irp79e3oNVTCH/exnjsccgYgMKAiKEyCPDi9UaivV5NBFzSap5+NWiGBB6glwFKAUIyFSnzXttWbakMR6jeEofxFxEI0TnZKCjPSrU7wKqp9GmB58OYcd2ET6XBLr0tyLhGfptVto9mnyWsoCh6ivmEmbmZ9KnNbqAqo6BYH+Te7fE6KNNMOG9BFkTmi/x5YEr43SsG4+TIW+VyV8jqlYx1bbV2LZilYknE0BST7i5PrjyP0eVb/s2dIHWcgN7sSySnNlO8o25ANP9Yk0N3iFe708tJnmGkwd0jaKeYM3pPOhVZuobRUBCg0FSyVGvqH+XmEJK30pfUt5hShB1puAt0/UPyuy2iqs0YK4v9817c3IvdN+/FUEMBnQVLQdqBV1OTBhlG3Iy1+B1m3yd882c2UWIn3oSTO/0gAivZ65iMt8ja/9KTxmMbYKil9ss/3pOLSFBXzeaM5VQyz3GHW5LSz2CiEDtJNHpiluDCpIMcdbD7DiCZhrkkGixH4I6ScKkKci/UPXScemk+k9PwM7heKt+Y7j1PraD7mu+5A2HMfJQt6VnwVwXTfOu8fKPwTUu677llnnN8BHEfCSAqQ5jnMSAVPDlVe4Bvgrx3FWuq57wnGcLyAkyEr/Qq7rbnIcp+QU973bdd06hFlKMMdxvoGI+mxyHOcpJPLslO18AkVPOo7zCyDHXLTPM0zy7njaaCh0uOUvX7SI2tq/JMO554z3PTQPIRubxzpe1oJleBTYRJCeG8Uq0Y1mGuqkx6vb0/C78T7mC8FSnwU++gFpXPu2yKZeZKa5Qwq8QYD3qYDlHmSwTfuWspj4tvVeQMnZAjJjga1e9xfAX+I4w9UlPU07N5Lc72f7GdKN/rdp32Wm3X0mGz3dbwUg/m8XlmlQB0qT6BuQ/BUd7dfCoNN928iRujPeJiuOESdAhonZKqPeE2EACacLEmWbFwMmdWnU0UtmgJrmbfTUyDDZtuRFfHjna/Iy1+zdbgTwfMu0r0cc3kJvg+Lwb/C1c6HHrJ8WQJxbXX6N1C5Su/1SeOx1uHMhNnmwEhnTNXVsqENApTqc5RC7FAKaWD83lRgBrwjt4uhrBINRak3SShXbPAYE4BWWUka9x6gFiVoWT/eh8tqat/I6wl7p+HYv8rLS6zTXLJ9QpwhsQkwaghxyfW399YkudGHZpilAfpp9B2isuxICMxFWUQmwQ+Z4PyYHMbe4jj+uWcrcVRKbteeJy/nB7V+jhUKPHbyZZwkQ81iGTSwhQJxbokJPtZdlkP9ArxVWWIMwOKrWtwe5Xwr6H8BWLAN2/BoW1Fjth/J0k280lQShhK2bodqwjT3bDVOkfWY50ucUBHUC9yCiH5jr4VPtC3STKE6B3OPNLPZY1VYKyCRCFwKC57GHDvI85kiVGwuMRt4WFpM3s5XeQQPjtabVUbODbOT51Y9XH/Y+HUWWPUFijkKMsXMWTtEGSSI2NlPU7rpu1SjzL0WGZX7pOM6fIcF+X3Vd16/BVQS+uFTpddWu6x52HOcniB5hH/Ci67p+eRQAXNddbUow/MZxnNWIb/+RocuNYMPue4x1nge+5zjOJ3kPvNx5A4pc1/2J4zgfQV6Tc4Dvuq47ToruI9qIKHT4xeOM1yUb6vecDXCRhLxjp2DzP1SeW2sOjVWEVZ9fv3y3KtFdtFE+IZAyKEDo7Yk8kgkzvfcKkP2y2mP1C+1Lg1ieXvuWAu9MrGsx0TY22Eph3GIiYKKFpC90+6Drun/ma//BcZz/Ow7bPc1vBeIAVWCZhb0IMNJR5HcQBqQLcXYjiPzy6yTK/v6F3Ubf0WlEsjI9tqWWKi8sCgxjQoHn8F7PC9RS5TFHbYToKUwlq0UGg5elv8bRimymH+m2DmiLOXZlBh5E2AB1k2qBrT6lsLlAI0TMxyLrS+YcjMN7cp3JFbFiZ9x5KeL4KmFxAAmRMmINtCFskxAe7KooZf6RBm8cOqslzvyqBsm/Ao4FswkO9NGWLOzAelYQopVfmuqfVdRSS5WXRxMlKCDohn54ynzTA4jjr958GcIaab7PJUgYn4YRejkhTea3xLBHub7pJVgw1GT+9tcp6hMg1WXWCZP4Ai3C5hVh9j2AdczbkXDGajmHPV+phBTJIwKYcXsjP+ceT5UtTDNxUgnRSqpBNXPYz3qWs8Kg3Pz6Xp6vXsYNX9ko+6hEwvdUGVDl1hUk7QVexXthL1gIZMMXTT7cjzfDN++Aw49DkarNbTBY0+SpZYGAL40P6kYUCLXPzQCuBteEVzqPkMg8XSPrvFEhoDgcbqaVEPl0eIMGfQQpo4FpZih4K9U0E/aARRsFNBOm1FzwLnKYm7SbbT1V9lqDzTk7QGLI5HHkuelFPohHsfL6Gk7XzsQW4Xu3pQBXAF9xXXer4zgPAt8G/h/fMsON9rmO40xD3oGzkLfYasdxPuW67qPvWth1f2zemT8DSl3X7R26zAg27L5HW8F13Z3YrLzTtvMGFAEYEHS2gZDfxkShjuP8JfCXAMXFRVxIpgns3YjzqUILmr+hzO5opqpzCoKSzN+djF3j6H1rJ/S/lIsYGYop8FZRj7EEOLqwoh+qLgvCXGrodTbnDyA6dRs3ndWLvk+doQ04jlPqq6F0KeMDM09pxNL/vSBQLOOn6gQdQMKg/J+RXYjiGciDtB0r4wte+FjSfPEOA2lxoqRRZmK8OsjzxARAnN457KPJxOg8wy2s5LmE3IOm5BIq0/d77elbuwWwaM5IHhK6poEwdyCFOlX0YDOQ65NNzsUyADq/Cs9hnfJd2HEvLCj3LZMOWx+A6rlYxblsbPhcMcI2GX5v/iMNpjCpXZ81EL1HAUc+e5ILvJyQEK1kEvFA0Gz2ESPgKY919eRARj88n2JZmlrkfuijXE+ihPLriCev4XWZGGW5Ente7ZAAeLyQORKX8/KKOiEl17JNEaC9E2YZkHQYeWne4DumKizQno9ImWsO0qEUyLF1io7snsXV835PH0EqqaOeUqrY5glzAKxnOWGaWR+UhJ+SsiZu2LbRhk9mI9ddFe5+jIS6GdBDISK8YIoQ9TwIWcthimGSvmnYtaK77DLEYMVdsNnIdtcUIOBBL8saxNXWHKO9wMPgKDCrkEuH5hwdxMsnA+nTL1SXcj0v0GBUD6IE2cJibjGUVishkhnwQtDCNBOm2avhFYlm8uqhj5A2XXLO0pYdo68rEx42bvNMEmO/i7C3XkPmPoWwkXq5DzBuNk7qc4eAQ67rbjXtpxBQNHQZf/WsmcjbYQXQ6LruOwCO4zwNLEaGDhLMcZwlWD7xPuDLp3F8w+37rNmEgyLHcSKMgvxc180aad547H64XQ7Z/0PAQwDJjuNmOP/lLB7O+NsU5N3lZ3p0dP9UHicFVP4wKa1Fc6Go8I27vQZU/lH+fnVCj2RCTSMD0pE+NRUZ/B4thE5luHNI7FNTSRxA0xDPC8HG9Z0wmVN0pvY3wEuO47yFvN8/AIYuODM7pRFL//fCmVLlchzL+uSQqPBRhLARfWZeFzK6XIWtV2RYo0EzhB4D4lkBLxxuNvuoYpunwhYzieQlhr1YxktsYTFtxttcRC0FtBI3jn5A83o2I+FyHchD+iCiMgbCThRjR+2r4MDTUH6rabcClVCkTNABhOFRxbLVsOABvHCnzQ9DzVxRlutZDVkPIoDr59gQqMuwTjgIi7QXG4l2Kbx001XeKH8DOSzjJY4ZVuA/uJNP8hg3Gwf4WW6hYf98D3zkXXaYvt9NExCTgzjkleaaP+rb5/MkSrDegc0xagRSSkzRVrDgR12Woapz/hpGPcjbr8kck48pysy1IXqXY0Gzmkqig2WvzLh4UulxBreme2DwQ/M20UsmewbnsThpC2U0UOBjiXYzjyq2eQwSQFn9ISiEozME9cQJUFzbZvO7/hfC8BmQ23mryf8x4S5NJyDvAZHlBgRcKchpAfbA4T3SX2qMJuTmt6Dmethq0uKrFyL32zCBFCLMovbBvUgelSoiZkNZ2yHcGkGLPVWp1LCF4EAfkeRMusghmX6W8RKbTLphIS10kePlUkXIJESrxyxlBiOEZzd7rFvH80XyofKzPtOw/aEdC7BLEGLweaxq0AkEXGq061OckY2H+pzrukcdx2l2HGeO67r7kKs8lP1+Ayg3IXCHETGFT2JK2TqOE0Q693ISh0cAcBznciQV5kakZz/qOM4/uK77d6dwiCPt+6zZhIMi13UzARzHuR/5JPwa+QDdyeh1IMfDzjkKnQjT/I9k85uOzaQbi+1RcQV/eJOKL1ysxVsz/hb424k+iok3VSOcgq1fpRLbI5k+0Dr4mkxiH1OQdaEAonG3yZyiMzLXdTc4jlOOhGA7wF7XdcdDff30vxUpSIfW3IypJMpvZ2BH/JU6XWb+VsW6m5Gvollu1iqpnXIsSTyrLqaxjzkEjJM7m300McsLl1rHjRTS4tXraSbMB5t3eg5sz9xUsu6PCyjRAZ6dCDhRgKISzAqSOoUl2mzaNaY453rDDK24Ejq/YKS4QcCRKrcBNVfC2tfhhhbI0hCsVxGXSh3vqchonmESeBRRptPrkid5RAHDLD33ieXsYZ6XNF9CIxtY4YGmTCJcN3uNxxQFidIRLpI7+jp2hOd5BAyBsDILEUU6vUfqAIM4+RGgy4ChNNNOUJyDxDLUIWxYnZpPyvuomeUfcdzu22RAzt1To6sC/ls/bDeuXCnk/cVhGnYLkuqft5c4AZYlbfQYkCW8wissYTFbCNPMtGg3sUAqWXuMV3Ac6stmUvaM6XTNCEj1j/9fhnc/c++Q4zhsGL8Fy4FG2GFAcd/9UH23rN9pwiOL7pZltNZRDbK9ai3AMoA8XSqkPwtPTMKza8A1TJETAw5CR64k8KUOxCk7coiXZlzlsaafiz7CY8FPeoCxjsoEOftK6mig1FOjCxL1pPABqOgXJk5ZvWPIfVHQnG/+9SHLlGCFGXSZGPbenaEJUzQu6nNfAR4zynNvYQaRHMdZB9xtlKC/jBx5MvBvruvuMss8hShG9yMBpQ8Ns/0gcJuPvf8Mlof0zHGcx5E3YL7jOIcQsYR/HWnfZ8smHBT57HrXdf3hCD9zHGcrQtaeLTvnKPRcWi6JUtrqiB5HHNc4Y4e3qoOryeZaaHOAixMQTVqi+XPLTkXo4B0swJ6KHfhTcJRplrkKIeQmyiZUknvCpO8uXHMc51rXdf/gOM6tQ2aVOo6D67pPD7viqdvpfytUaKHUtBuQ5GsNpQmYf5dgA/O2I6BpSIHHpGp5UqIEyUiKUIXIdgWJUskOL0Qoh66E0KhKdhAnQIFx9Gqp4qXwVSxLl6drW/IiCr7fxvzmBhuzWoU4vDeZ9mbEgS3GWgjmqvewQWSYV2h43QuGOVDmqA06H4FcHUhqgZu6gQ5Yb0DPClP7yBN3qDDHoeFWd8v8+q8LoiztPESgDlzDFIRpJtlHsR6hkN2EaDVszWz2EaLNYwH+uGWpjOz7ACefQsLUNBTtKAJiteDOdORF9Zxp6wdQAUsEEpXlEA+r388Y+dki/zLegYszraGGRxH3UYG1am2l+eY/n+IB7cHudDq600nKk/4SpI8gfTR4nVByZ37Af/dqO20JXkWYZporxMGeX98ggEhrRn0WYQ4VJLeYtoLeW4BHfflC64AsKDEOR9ZtCFN0tb0yBx4WVbod5rzmZsOUAPY5uAPpP3pdOhEgr33sLSAbnNW++bchRWeBXeFSojPS2MRST2xjR7CCZPq9PhCmmV9xlzd/N3O5nO1eCGbdYCXhUDNv/8l0gPx+W1sMbCaNDpVouOUlWJYzj8S8oxNY4H+GHzgX51TU58bejutuB58yi52+0vf3OvBJFtrp9yHhcKNtf/OQ9kmGEVFzXfeOEdYfdt9ny84nUDTgOM6dwG8Q1+AOznLKseu6/ecahZ5LuwQbyhTHjsifRL65Pdi8xpFME+Gjvr8VGE3axW3KPKqYRxLy3RqN3tVQO81D8r/StW8mMfFM0YRKco9VPGzShrNrgD9gXXm/uVie4z3Ze/pWKPtz2LRLkZFidfQazDIxrILlRsTxKrLbyLiynWhEvOAgUVKNwhxIONwWFnsSy0cMElH55ToWAHjhdrNoJJW4Fz7nsS178GrIePyXgqTrkPiNG007BgQg14RwHdggdWjWmtCnm+YinoVxWE92Q24F7DAKdAsuhcOGRbhG81KAkzH4o3Gsax4366sDmQs9X02l7BeCYNrvySCfXpxOOz9EK3nGA62lipt5hr83ahEvHlzJdcXrvKKmSaXHCS7so3dtvmXuarF/g4CeciwgeYfE8McwQwpw9pFI87ZC/xQsgulBQutKsOzRFJ90N7KsP4E/E3gMSyxtN9dEi4P2mn97TTsHyJciv7K6UE4hWj3nfznrCRDzpKY/XP8aBODfwoLx5+U2wDXgFUVZjeTu/MG0CxEGTwFJI4J2TPvAQTmbBcry1CFA4i3gSzKp8165HAuMG7z1cWGJvm/c5/sOAK9Cj1EnzKpCALPuM2COQ/vqSjhalk2HiV+bX9/AjrLZ3qAAQANlDJDisYn1lHI5271Q0zoWeGwawNyk3bx68MN84Aq5uG+vu8zKtuu1P+Rrz0Se573YXCgd9VNhDHjXgMd7NQmfGxemaNJ8dj6Bok8i4w8PIh+xzZwD1uZco9BzaRHkGVZxBGV6kjk15TmwjutQFbpJlmjSVKZdAc4UbP7ZSJaE9CUVVtCwO+2fWlPrQgHdAcYuBHvaNjoim8wpGsbMiCXA/a7rNvrnGXZnPPZxet+KfuRFqyFB20hM3Adxbmea5XqRoD+/dcFAfzKD28RDbV0Wond7vqQzI2BnEbW8YvIk4qSyknUeaFKzOUcBCmiTXCLkbNzbTMKUOv8FyOjFOl/7SmyO0DXISLgJheoEylfCTeYj8cQ6uL0KbwR9Sq4s5DnJX4Wil4E9VsZ7ykp4+Z9ghSrebYeeJ01oH0ALZBGX0Xkgf1Mvzy9dxuKBLd45PsdKrjexSaXUs40qDwjcXvwEPxn8BjOukB22tpq4ratMSJS51rRjgdFCJH9GWRsFuSMmyw8Nm+tD3oppvraafn3Thvwi101nn0QAkXpqKsKhYYSWABIztZN6e8VTj1+RSg5dHCPHq9m0jhuJkOkVb6VM8oY+v/M/AJE+Tz0BR68TxDo9u1sYO32KGhHmx9S12roOqlfiOQkl2TClwgKcr02FLC0AbIQSqu+V7XQakFNdAByB+/RZ6YbOTsjVYr4bkGNQDNBh2reYdh5Mf6bba+8qKyVCJs2EvT4AoiinoaSvsIRK6ryQyjDNRMjwmKTmwTAzipt5+6ABSirZ7i++XIFlfnea4ytFnvUKZGS6icRnfix1q0mbUDtvQJHruk2IvN+kGRtay+h0TZVEpyIAScURdFRfR+VHM3X4NExqEBvmNGkXr/nzgFTlUMPyR6N3FVxPQb4NCqIGzXpZiJN1oahSjzsgGpspmswpGt3+DyIx67en8MSdz6ElI0EpyieVIuyQskCalHkIASGaYzQN+4J9B/pqp3mjy73b8yldvMsDOVGC7GeOV5y1gFa2sJhlvATAUjaxiaVeGNksGsmjnV1h8abnr2qgObeA4vQ2GwYUQ5xOv/RwCxYUvQidLTZnqB/EGTSj9rdfaSYqePg18FfQY+anfRee7obbF0KWCbE7+WtY8WXsyHobZF0fh/9h2nuAPOhZLonlWXvi3LB2o6eAFlmaSYg2ptdLstSNhb+jORimwJz3c6xkWdJGan3doLc9B37rc4FKsEnxIEn+N2Ovy0bEIf5z09YhCd1EPyTWICoxvz46613hc2mJ4XP5CKugo45hxKlWdqHazFcn+zDCcKnnNLWfpNIYK0KS4LWP2ZTSwAvR61kQrCNMM09wO2GaqTHgIDjQR3NymNClEqsYCWaQ/1Yv0x81iWeq+Kcvu2zkfpv7Xz0XufcSdcaUgITHfU3D524Bfi3iCk1mEzV7gL2Qa8IfD6yD8krsB2Ih5H4KKzih56ugqMXsX2sVdUpbw0hLqSeTCKnEPPaoiRLSiHp9IEImtVR5AhNSuynVhp8mCVBqLhZWrz6/TJhFHTxlf5sJAAAgAElEQVSoR+6X9pcyJPwvjICinVgBFQWvGlKL79zeow2SNB7qc5M2xM4bUOQ4zi8ZXs3n8xNwOGfNTgfojIcyr6p9JSOASEOUNC9orPpIQSxw8h/PIGdplHzSLgjz56gNYPvIVEYHzH7FOV1H84kGkAATrXl0UdpkTtF7MsdxLkN0urKH5BVlMVHEYzKJxUGVnfGXrUnBjl71IU55PjbRvhwJoVtoExPy6PActyhpCSPhIdroI+iFywWIe8AIRIZ4Lrul5g9AC7TOKKA4u80eXyOSP6Jg4HVEWEYluwshdzNezlBNC/Q8A1k6yn8C+Co88bg0//yjkFUAfzQO7xX9Rsvgatn/gaeNvPcGLBAzOUSerQWyIXOWjBi0V2Twy4rP8dfRnwLiBAcH+nijTOLt1nEjORzzrsMC6niJDxMcCkpSEIZOz3MmFsyVIx84FXu4nsSaQUsQp9yfM5KCT42uBxFW0EyaVtPuIyHvyJuHzJ+K7SPKLKqC4WHkPmlYYS2S66Qf4vYUBo+m8CJCsXxg5V62sJjMYMQLDVvJOqrZ6in1le05xJy5+0k19yf/572QDvV/LZRZ2SOHJHTuWrOPAySGDd6LhLUpaJ4r93OrEaWojgHLoWglFCmIaUEYSBNmVj5XwjDLlU3ULJfjvuXvxgKSKuTZMqCq565UstbFqWmWXLuXwlcBcIwc5iDy802UMECK97z0EaSEJl4xlXC3sJgYAS8Es5UQETJpOGjo250p7yYD/ZaDgKJmZAhmG5KPtpdEJcU3373qe7HxUJ+btHfbqRSgP1f2WySF8Tnk9ZiFfV1dsDY0RO1cliAJI9/WoQ7mFOxg9FgRqXq86rQmYXNJJgHRxWtTkL7jBzZTkXC40cIyo1i2UttgmaZk5DsYfPeqF4ep+txI/yZtJJuDpKHnIHlF+u8K4AsTdlQmx8MLuSlFRqn8ITS9WOevD3GyXwYyIanoOMzsZ6Bf3uK9h/JpGCwlkwgBYoRoMwUoU6mjklYj5xWijRBtzGEf+5hjJAdauSUqKgI7Zsxmx4zZkA0frN9J+9IMcTQLkXC/GsSZ24uMrHUg9YQ2I2FUHUAd7Pg1UG7YgGy8ImM9y+D2e+UfAKskf+iabPhpPxTdAZv/Cal3dCsyOpeLsBIBxPntNvv7Z+AeIE/UxZzjkP9iL39T/1Nqg4s4FsymjRBZLXFz1iFCtBIgThW1VFFLPWVUUevVoglm9oli20ysNLqCm32++7IM6VUViJP7F8iL6k2z/CV60wwQ8uS1c5G3XKtcEDqxEt19CCLuk/mXYOZNsSF8KsKh/QczXdULXzP/7iYhnCup6LisUyL/4gRIJUYOXZRRTz1l/EPn37OP2cQJsIXF/HvFx8lqi/Or3I+zO7dU7m+hiFmUbTM0yFzkg7/X9I1LoeflVHpeTpVQx2cQkKvKfbOgern8IwCH/wkOPCChdjTC+u0I0Dkg/YjjUH4XnOzAsmZtZp9VyMfFr363ExGAOC7/stbEYS70FKbSU5hKAW2EaWYBdaw1aYYFtBIhgw2sIECcSup4hps9FlWvUQf5hGgjPpgqMu69KeTNbGXGyka5ZZeZf11YudR0RKAjB2GGWxFgdBIrzJBhzsOv7HgGJkILKaP+m7TTt/Pmqrmu+3/8bSPPt36CDmfc7Gz4MaeqjOUvrKnhb1N97QhjM0W5JKrOncCO9p9peN+kXbgWRfqOhr35+8RofUqjQjSXSAG6DogOIN+VS8EEAI1s79v+d6HEDp5H5rrufwL/6TjOVa7rTqRwobUkZNT4KtPegzhGfmahCHFqtfNr+NZC+R2cmg4noK9smmwy+zipSXE2Di4DoDKpjpt5hhBtVLGN9awgTLPHJMWQmkbq+N3YvYG2YIgF22T0/OCiAoq3tZG/rdcLf4sth8DDWBWeRthxPSz4FiKLfQSP/VpwJYkME7D+LVhRYNtZl0HPw5BlItfuC4kTXbMQeNGsGwa+CxgxBvIQELYajxVo/3oG+b8w46TL4d/LPk6INrZzOTds3ciu6lLvvF9iWcKtaCZMHZXEB30j65o7pKFp1yAOrSq8bTTnqezEdASIdCGhde9g7uVwuUQ6PZdESW6d3ooAo7lwRBXrcoWdegfrNGsdJS0YOxMBRiWm7VczU5sK/FL+DP+/zeyOziMYbCZGgDDNfDn3AcI0U0clAeIU04wbwMvH6lmVSlZjHKcFAWZXI4zULKRfxoC3IGuVGVpdDlkr4aRhEqeshM2PQ42qFR6AouVmXZVtXwhbt0PE5KUVAAs6oK0b6IaiVcADCAvVJtOYhc2l0o+M1mtaY/4ZWfBmwizkTTrI52OmIFCETD7MRrqYRi1VBInSR9DLMdpBJTECtA0W0GYGF+bOftMLUWv4x/lyvZUtvBJbbBksO5SDrUnW9f+z9/bhUV3Xvf9nS2JGGiQQkiwhocHCkpEREsWWEhywCQQaOzhxzb12ndppY+fnJmmTpm3a383tTZ+0N+3v3qYv+fUl6U3S3NhNHNdvLa4TE+xgW8YxCbVkcxEIC0tGZjAwsiSERow0g6R9/1h7nXNGSEg2GLDReh49o33eX/Y5Z333d63vctdw1P0FRVSUNXubdo6Kt87aBLtoQNEkdiWZIqCz5mym0TXjnJ7XCz64UcbnTJYM/CpLpPkk71mndNamtTmBvzTiP2k+0UzYR2WKVC5eTQUXppOK1+2852z6OkWzNokZY/6LtfYvgTuMMadJu1prv3DeD2ocYQE052AOQgjoSPhcJByqC5GCBr+Aq9bv0VAuhwXGD88lVJZidZY4cnFKSRPmm/w2ABt5mjApL3k8TikNtHlgYU/5UgoZYFvjOgBu3NEs7NBreGxV+GeIA+q0COiDFSsDx30EWUfD2+rxGQSg9DXEkXYOKlthdC+84RLvFy1zMs0n8cPlXkAc3l917VK3fVeHhueEHfIYNaCJVi/UyV4JY2R7TqKq7+10ihRhUqxmJ1uHRGX4+nnP89SrN2fmeIAAHz3PXAiIkclL6ceBdj4SK6xMwNFhZIMKkvrd/xMluYfJAFIFRT6O2j8MBXm+w6wvSi3gWoP0J71uo0h/ccc5vm8u1R/aR1eJhHz9x861lK8+yHqepdfFqg1QSANtNLob2Mx64kVlXn2e9Ud+LqBDX+RPI/1Qj0mZDj2GfuBnMOez0nzha7DmHvx75YAPv8AH2kdh1RX4feyDso1FKsmu0xy4owJhITWE7wV3fK5OFU1wrNGXMhygkN1cTTG9XghlAQk6qWYtOwDYxSqixHjZJU0tYIA4ZVRnCerpGq+me7CKSL7zgkoQVksFJ14lMwcthj/goX1qBOlTKuseBFFnabPqc++MXTSgyBiTIDOn6Bh+1YKLys4VGHina6HMR44zhEQ3KwhKI7GJyvye6fiCjm5QLjmbCy+bPGsXzjScUllHBdfZcMaxqwjy/KiQE/iKcwqQgvMuObNMN1Ixqz43uanLdlpF9QtmWciosMYZL0RAkDpFI27+G/jqczWIs6m1cpYDV0N+pXhbQ78oYWi8gGbHhFRndZEkQoWjeWJEuZMfevkiCQo8YAB44KhJL9MSxAE+iO8EP4I8gArM5iNOsKrRPQdcCW9oIc4PwguvwZp50i4GIUIC8slFd8Ep196zH6oOwrz/EljmHuRjpLWN+oCv4SXvMwp8Fv7tw6Jy8J86f8LyWBeDFfK2ubfoDmrpYDsbAUgRooweT4Cikxqax9cxfEwYt6cO3yzDrvfjAx9NfC93v5XuOmxz7RoEAAaBaglwMCik0I1P4+S5dn+grfP0dxgSeQFPLE9COJTFGkEYFpXcvtrN00K768gsclsDA+sKef9iAc2hxSkiDPP95G+wMiLJLF/mf3CECk+U4AaepDZ5gERE0F1ntJKa1GGfjWlyCoUavnaCzKo2jSKdPfo30lyzQY5J7/ccDbs8ig8O/gAJi9Rr+aqbrwVaX0Puj0pbqyT4LtdeDNwHLnVKGM+jPVjXhz+eeoxt5etIE2YXUv4ySozdrPTAYC/FZDNGnXt1tNJIggIPWPe9sojiq94gOeSCuVVcQq/LAoTB0+c5il/MtQsBy6PIvW12y+TiM3tnKbQwa5ObMWYx8A0Eoh6w1v7FW1n/ogFF1tp3jaDZuRrIfafzqeci32VV+dJ8jxDyzSngzOqQ4/i5HeNkhkgR2OasXXoWLNg6hvQF7SPTAZoE8h2ZWAxYscAlC4hgJkzRrPrcJKYA0Vr7zzrNGJMF5FtrBy/IQU1kinKRF25uoK01jDSEq5NMduIyAUSaU0QhFGZlvrXv5S5ucoglThnb2Ui1i/FJkE81nQwgYGCM7Iwip8ei8xmKFlBTfNgf0V+GONnfdO3NiFOuDMofICFRWiPmVVjzN/gAB4QlCIYHvQpzXB2kFUVuvkvAB8Rp/gTgxBn4LBJKp6PyLcAPoOm/SyJ9qgJfVhz41I4H+N7aO7zE89/gB3yXe+h24ON2HqI1q5H2pXUADIwXkp+V4PXHrvJh9LUIwHgycNzD+AAgjDi3CnLzcYIYQdGEKnzaR391/jwELVb5ajSJOJRUQa8DTjlFnrgGIDlou/HzhjqRvqLZ1pUI7tJjvApSI2G6ckXurK9zEZcvfYXVkZ0eY9JNFVV0e2xiiBR9kWJWJyXq9EikAkYg5UL4wiccIHLCCXwYwXlakvMTME8BNAiQec5njnZ9VQiWez6PFz7HZ5F7ryD4VURZTwGHSnFrH7oCP8QFoEGWT8kpsPjBHo59fD4L98oGeuvzuaG/mS1FH/EYMBBgtNgJLZTQx5PcQKtTowuRpoAEfQ6JldcdJB4vZUlZNwBdDQvk+usz6+TPM1ghkFucj9yjXLeMPvML8UMhz9LOpfqcMSYbeRLesNZ+dJL5v48MXVjkdt5trR2ZavrbPIbvIcGrPdba+sD0GxEx92zguzMAOUuBJ6y13zbGfP+tHsdFA4qMMU9bazdMN23WZm5F+Epe48h7+CR+raIk04fPBfO7FSCpvPclqxA2a4wj4FpZnSR+XzuTonQSv3hwsHir/q95RsWTrn0J2PRM0aydwYwxDyAu1xgS4T/fGPN1a+1fXZAD6sZ3lvLJLNxYhYANleLWekWd+OF0uTB0fwlZvyKxSPlX9XIwXsWCy8QTi2bFaKLVC6OppYMYUULuKVzFLo5QQcLFeKUJUUrcK9yZwxjR5GFxeFXELopfWwl8lkId74eRkXptvwZ7/gBW3CPNRVciIXYKmuaTWWgzjDj+3woU5/yc279zpPk7pEZQT2AbKXF+AQZvC9EZjbI8JuDvhbWNLOGgx5gdoYIjVHjX5V7uooweX0lsKIe+bZD1uZOMf3Ouf55X4TuwcxFAopFulyEfvmCdCggAnH4JhUsEFe6GyWCFFBglAiF1KfCAUxTpA0fdPJVyDhaVrcFnXEbxGUeA+lGG7i9h6EZBsMuWvkz3YBVL5nWznmd5P7ucIEcZYXciTbSy+GiPBw5XlB6AFyCsgFQlwzWUMYawhhoeqaGPWs+pAgGzDkSv+jVY1YMvow1yP1/DB0UasqK5VK8hgOh/BM67B59ZqpC/sDJmR2Dh0RMMLhOQcJAqQvMPcIBayl2fUOGBgw5pt9JIirCXb9dEC+3Ueep0xfSxhVs4GK+SfRxz10Lv+2EyBzl68XHwKD5TNLFW2Tkq3iq7OWde2O8iV3zexBnGmEXAF4A6a+2wMeZh4OPGmJ9ONh3h8ILrlwLD1tpEYFqNtXYiPLwPYXi+H1guGxme+WXkir9ojHncWttujGkA/ueEbXwKkUH5sjHmdqQgwFuyCw6KjDG5iL9dYoxZgKsjh9yciilXnLUzmgq2BJ3OEeRCJwLLTVdHLJj7kQr8r9uctUvTtNaVhtFpSNxMXtFppN8p8BnBD9UsQEDTu4Y2Ptc2m1N0tlZnrR00xtyJuG5fQlyR8w+KssisKaP1SvYFltER5XWIA16LOOHBYp0LEbU0YOiVEj58zePeKH8BCdKEPBZgM1vYyWoPBMUppYw4DewBoI8SnmYjK516QDG9vK9vrzilq/C/uF/FH60fREbT1EnWBHM/hYMVn8dnXG5DHGCtb3MCcZoVHFa4eVth3n1u2hHkhaAhet9AEu3vkuahzaWENqdY2CpMQDI7j+V7u9hXL6ghRIo4pazleQBaaKKCIxxxJ9REK11Us3KxHOTur18LH0WK4irguA7JYdH7dRJhyfS4f44AAnX+lcWYGPqWwRzF8YUWqgL/B3KLgh/kg8NQkuczQ7sQEKQsjTrUyibmItfSq52TA9fB5YvF30wTYrhzAfFrgnlN8AX+ga1IflU7dSwe7WFwk6sB1ZLm2BfnszDmaJsTiHOv4V4nwD4MRssl9yH3XAHsq8g9dqv3PyJFWAe3iiADIH1nL/Q7oY2im+HUVp9NPPU0zPmKf16peyD8NH61sYOIQ+JykuxdokyoACdMmrbsBq84ayEDFDKQUdRYhSdUVKGFJorp9bYxSjZlZT0cfcl1/BEymaEhdz/0XryKhM0VIn35pFu2Bv+2T5bk/TZNmKKzzykyxlQCNyFVwb44xWI5QJ4x5hTiRh6ZZnrQPgj8ljFmk2OXfhN5sjYFF7LW7jDGVE1Y9/1Ap7X2NXesDyJVudqttW34sijB8/lD4E/c9h7Fz0ybkV1wUISIbf4e8hi9FJg+iE/gXzQ2XT7RxVS7JyiNrOyOhsBpqNN0pk6uMgIJpOefZBYUXcqmICYo1qF9pQBxC/onWQ98ARDIzDkNqhsyzTbOp73TuX+n2eyDdTY2xxgzBym7+Q1r7SljzGn1786LpZAOraP9u8kERN3utxDfqXUSw17Cdhg4AeFc+aokF51kgEJqnW50JzUU0+sxJFvZRIqwN3+AQp5nLZt4ApBk8qV0MOae1gjD8ALYD0NivitimUoTbsBPglfWRhPn58Kep31miN1IDaNgVtemwDndAIPPSK0iz77prs3Vrt2A5PLoC+E2hCV4RpqL5/dwKFrqAbGFe0+wrX6dd95trCBCksc9JCdAKdvRFW2sIJaMMtTt0MatjsZ4Jcff52PIPYni27P4H9IXkHs1MThIgUoqT9giDxR1IyIL+kbb79p5iHsDXrnqErdO77BsRxmHjyCAUvvQB5C+ESwG+hO8e5N150nG/3UuQ1fJsFJf5yLWXbPNA83t1JEkwr3czSqXoLOLVQxEC/n4UUlkG2wSkL2gWFBNWB0aDX37Epin8O93H+L2urDDN3Y7tTl3nYr+APgQzNuPzxSVA0vgVSfZvioOc+rxXOo5tyHg092msI73K2jXj4UDXvGi+SxsPcFoo/TrLmqIU0qEYY81jBKjmypPjS5NiB4nRAKwlA5aaWLA3dD9B64WMKoAtRBxgLRmlOZY6WDAlWQIgXjqQ/vx+1QuGRLqZ2MzVJ8rMcYE8yy/Y639zoRl/hb4L0wxFmmtfcMY89dIgO0w8JS19imAqaZPWP8RY8wS4EFjzCMIm/PL056g2CJ8DhuELVo1zTrbgD81xtyB/5adsV1wUGSt/Tvg74wxv2Ot/YcLfTzT2XRA4mICRCEyR+AV2GguR+CdMqmpUEMu/rM+lWrYrF1aNhEsK1sE04dlvon0K2WIFFgFi7rmIuHXFwMoOq+AaJYpOlv7NvIh/D/ADmPM5fge6Pm1OYgjpcnhNWTmRQzgjyrr6LOyK0EJ5iZxbgHIHSUR8F2K6fXqqoA4vbfzkCc4ICPkx2l13uj1PM+CQHxAdCwGTdBeVO3lXsx7Og1XiaIbgPld5GOgOSTznRpdMAn+/sB5qfOsIVF/A/P+Fn8M+VtwKuUS8NWxDCOBLupSPQKp+RAOsDFpQt4+bIVeJkEHDezhB/wGxU51row4AyzwVOgGKCSZyCOrWL5k461zuXzTK7x+9Cq42+3jr5EQOT2Pa5GisVpHoBBx0RTYZshyq6m4AgjgGZwwLw8/jC5gA4FlhgkUgM0TAKSOxY+RXBx1c7vxo/PcebEO+g47Zuhl6FhaSyJZQF2kHZDcmTQhOljqXbvV7GRb+ToAbuxspnbJAR+InETCv1TM4SsI6P2aaz+HgB2HRxcVA6Wwy+WHrboO4Wq/AnzZrfMJYL6rY6T7qCczvO4F/Dy3JoSp1A+C3iO3/oLkCVLL8MQjOqmmjnaGKGCTox87WEqKsFfIuIE2uqniXtcBNrGVOL4KX2RpktGl2fQMyrUcPrxA7rWydvrx02e1EP+ZVtluZfKCbZUVP0ubofpcr7W2aaqZxhjN4Wk1xqybYpkFCDuzBDnDR4wxn0Bqip423Vp7/8RtWGv/0rE8/wuottbOtAapmWTaGQe5rLV7gVtnuP3T7IKDImPMh6y1zwBvTKhEDoC19t8uwGG9J0ydTAVC2fgKcvpOSUyynlo2GRESnApsI5tMJmrWLi0rxFeMA39QTMFyLlMD7mD+kC4frHUUQkD8JRlCN5tTdFZmrf174O8Dk143xqy/IAejlKimDE9MyA6GaWlOyG4klC5YsHMv3uh0XmGC7sEqNs0TR6+PYilG6sKC0oR4lnUeUxQiTRlx8tz8I1SwhINeXkUqO8z6imbq+rsw6nhXgF3i2AA4PXzqE4gbpOFSzyGj4Qp61PHV/I//jji4Osq/AebMJTPE7jPSTjnHO7wfwi2iegaQzpViohouFx2LcWOsmWNR+UJFxoZpzG6hx4U+dVJNF9UkXSZsPF7K+Btz/XuQgNe/I4DIA0qFc/1wRoBHOT2+fDf+i2khcDQOBWXeNjNziOII+NFRDgVCRWSKMZzyRSxy8oRVOBiQ7H4Dv380IUDoMte+GiiBvI8fl6392QJhLCqda/eBUY4+voSsVSfpjAhg2Mh2Ckh412o9zXRRQx0CmgaXhEhm5zFvicsObUD6qMpfa96XtpcgfaA/0D4Jq7Rw7xEExH0OSckHAcBaKFiX2Yvfx8KI8qDOP4g8LxrC+Qzy0XF9LnwCjtXP9/r9dlegNUWIbm8lMkQXkkTII+nlEDWzjmL66BqXPpaflaBnsIzhFhEp8QRTlKU77n41507zi1501wyE41BlSdw56eDCxWFrgJuNMZuQo59njLnfWhuUztgIHLTWvglgjPk3YDUC1SebfhooMsZcj7wJtwB/Anx+hsd3mEzutpLJQ/TOmV1wUIQQr8+AKzucaRaYBUVvw65EHFcVPNLXsv7q9DMBm358oYUQkguikskqxTxd8ddZe2/aCNIftP8Eaw9pIfaJJQuD6w4iPoWGowaZJ/2/Fn+QfTI772Ft58vekyf19s19UO9Evld11trVZ1h2PvLRXesmPYdkyJz/V9UYmTkoCoYU8NTjjzorIBmesGw+8kC50ejhoQVUX7PPk9lOj4dYltXu5UGAKGxpCNAGttPGCm9emBS1dHjO4UpepjNSTU+klHX9oj6WXgapcIh5Tc4p/i6kfh3CyvycRJxUDY9T6eQ+byf0fx6KlEloRRxgdQYr3PluwnesXwE+FFCUOwksA6O1k/pFcU6FFQYrQmyL+uFzfdmZ0ixh0hliAtGyGK+namDEuTyXQda6k4y3zmW8xZ3YKoQF0heQ3ovgmHYUSeP2bE5AWEGBzET1Of1V5mgYP8RuAmt0GY55cuvsdUyRhmpsRECRsg25cnzDf+Yc9+vlJ6vRAb2uuVTfvI+uh5YTvV2c/wEKCZEi7MQ4nuQGqun0+sSj2bdSSwc9H5Yh0xVHDzC4xO8PexqXsmLLAT8jZDfyZOoTdhsSTqlVJk8ioZiv4DNca9w5aJ9YiXiCOgqrhWPVVrlp2gc/DL2N+VJ0GEhdAQs7T/BEjVBHTbTQRgOl9Hj5dDtZTR37PXW5DmqpCZx3hCRxykiNyI5LIz1k54z5TGEnMmChIOiku/7qRQ8hLnsx0o9UYj+G/8y3ktmfzsLORfFWa+0fAX8E4JiiP5wAiED4umuNMRGkYypXOdX0DDPGXA38E5K3dBC43xjz59baP57BIb4IXOnC795AhBzueKvn+VbsgoMia62m633VWpuh3O4uxKy9DStCBq6Co/HquOqo/kyKZM4hUyVMJbmDTvCsXXqmbJCCY81RG2N6nz6JgGwtCDyOn4sXwQ+lu2yqDTh7T2KHcxA+N5W06YRlJpU5fRvyp2/5ON7qPqy1zwPPG2NuQT6SZ7LvkVkG9NeRRNvTohDecZuDsArHXLuSTMntV5EXcD5+Pc8GZLQqP7CdffjFO3MhniyjICIOazQrRoyolycx7Ea/hx1D8gB3cgc/9ELmOqhlC7ew0cW49VBG1Vg3y/d3eQ5p+CCE56d93aYlED6CzwTch3xE1GmtcPMU/LVA0X8LtNcgOUSaU/QJxKH8JpLaLQcioXPaS/qhd20+JTHxII/VzGfhj07wxMfE6b2p9Wk6Gpd6oChKjEe5laWOKbjeCS780PlPacJkhVOE6+W6Df9sAeP75mZmHPQi49IaPpFCUoD0mH6B3Bv1Sg5CpqiCtvVCVSFp0iqpth+4Bhku0h3PAwJ1io4Ow6158IIDWIXuWun8+90xBhXMasAprsvx9cJ4paCHrOqTDIwX8rHbHyFFmCR5xIjSQJsHnKvp5AC1XujZ3dzLDq5nzVNO/vw6mLc77fWPFZ0H5N66fC+v0K+ms28ms/grCMN1JT5wWoPIbLcF2s/gg6J65PoHCwareAFyPYr7/WK+4T54sabeY0yTRFjFLgeMBcxFidFHsZdPB1LHS/OtYuNRGrLa2H9YEt325xaSFQ4kRNwzKkIW6vbr8ejz/AvkzbMQ//7kIh8ybb8Y+P9MYTozMIs5l+pzp5kxZitwj7V2lxMseAm5Iy8juUmpyaZPsqkIcJu1tstt95N4EioZ+/sXHE9ujDmMiCX8b2PM55GMtWzge9bafRPXPZdmrL0wOagTzRjzkrX2mgnTWq21jVOtc74t2xibN/1iF9wKgN8HLscHNBqelB2YdgzRPnxtiu1cjUg3XcE/S9kAACAASURBVIY4r+A7sp1u3mydokvTKpAQ8cvxc9Q0JK4DCc+fqhxDBRJFcblrq3iH9s2U21438Je8e8DPSWg9U/z2TKwp21gduJ7MTGL6fRhj1iLjkd+fDBQ5mdMDBGROgV9Dbt1p06217RPWn5HE6mTHMdW+zySxaq3tces+jHykp8wRMsbsttaunG7a+TCT12QpDwycxhDQo2Fze5ERcHV6Vaq6hMxaRUP4TnENAq6cs3h53Sus5Xl2OIrgTh6ghSYvjKiaTmJEWe+qR7bQRISkFyrVQBtxSmljBXf3PyCHWVTK4m/3+IUxy0tZ3NnjO7A5yAi/OrDlyEOr4XLFbpoOcarDq/khBxEQ9AkEL6xBgmrCfriceVX2se2L6wC4sbVZ1nc9/4VoIwUkaEfqDpUR51Fu9cDhFjZTTJ+n0reblXQ9s5y8JhdmdmwBWfNPMv7kXJ/x0lA5zRHKR1gCdcRHkHuo8wuYwrFVjlwZoG73qwBqolxTWSBcshvKq8SxBh9Ia27V7yNOuaaa5yH9Q1PRq4AmKL5NiuncnvUQT3IDSSLU0kGINE20kCLEZlchuCnZyoORX+WTex8GoLO+khBpL3etJtlFLFJJzVEXP9YGHAHr+od5Fbn/mkuWIlNxajOZNatAwN0m/H7dhjBMyhydRPrIZtfuAZZA74dltKBkxxCE/TpFOyMfYH3s53RGRUowThkd1NJHsZdn1sw6ChmgwN20FCFaafLmd1FNbDxKdZawkf/xkiObS9zD1pwjfUXVCh0A9ZikFHKvcpFnQIsyF+KH3tXjj0S/bM7qexFqarAlLY+fcZmj5oqz/iZdanbBmSJjzFXIONj8CTlF8zhL8UJjzF8hYXlpJNXtbmvtgJP92w/uywG/sNZ+dtKNvAutAnEyVSNRB22Cr+Ix5Hntm2wDzoJCO8oC6Mh+GnnFz4KiS9MUZCt5PxKYnosMAk4Fik4iQSQKznPdtlKIn6X1jwqRb/xUoP09adMzRdOqCU0hbRq0qWROm6eY3j5h/fMqseqWW4wUrp1ONGHYGHOdtfZnbr01+PFL59eyyXSaL0PGUlVxbRXyAq5EnGJ9YHrxGaVrkQdBz8CFS+kDF2GYAQrpS4pXvSNyPWX0eGBgjGxK6eEhbgcEBN3Ak174XTt1bGIrm3gCkwIbhsWtAoj2lUvyxPJYlxynhkPNd8etDmwRohSnkf8bEKdQQdNJ/Lo6uHkt7u9mt50jsrw5iBSBXQKpz8KNTzUDwlbEGis57obZ22ggSoxqd9GGKOBWHmWPO+9GWniAOz02pIAExeveoO+7LjmnHsZ/PNevC3Urolk1hK8uBiJsoIClhczshjm40LmgktwwfnXPOe7iBMPqVHmuCgFPc8QL88QaquBoPww5AKVgQY+pBRlL1xCsXgSMfsC1b5Fl+nbLeX5r0WcYb55L+e0HPYGFLWzmn/hNQqTYyk0URBKESXs1fpJE6KCWUgfuwn34krMAufDiXfW8b4uL4ZuL3FMlyCqQ+62xz1vctJOIztnjCLN0EJ85mo+IWgSJt8+RWbehGEq2uBN3YOh4RDpZKT1si64j6a51jCg9lBEiTZxSauiilDhl9BB3lGUBQ8SIeiCpmi4KswZofskVCdP8sr3OTS501/5B/PZhfOZIhVS03oTmgb0Z2FY358zGySI9fm6Kt86abxccFCGpAx9FulgwrygB/OZZbvunwB9Za0eNMV9DYie/5OZ1XYjRw/NhV+ALIajCl462a06QOqJnCrQfwK9FE1QJU5vNJ7p0baJgRy5+P9NirlOZFnpN4IMqBfEJMtXoyrjEQBFMJ7RwRjWhGdpUMqczkj+9ABKrAP8PM6s38VvAP7vcIoO4ap+c4bGdWzNkqplVIh1fz15D5Hrd/5WIg9mHH7L1CnLFdPTKOeXVqyWCpCO+lLKyOMUR8aqvZjcd1HoCA3kkCZPyHFyAZ1nn/a+j5PupY8F8ySnqbKwmOhbzci0GK0LMy0lLwCNI/scV+KDnu+64vuXazyCMziOuvQSpAaTtryBf+pPuf5Btq7P8ObBzoTNSTc11MmrfEVnKESo8pzdFiCgxL/RpK5tooI0Chxa6WUIHS70k+jQh+nYv4rpP/xSAn/3jL4vj/izigbQhTm2Q0ehFAJGO8g+55TSkaxnwZp7fBuQtVhT4X2W4QUCQAqNuN20YRoMS3WWyvoLpHASY6VBBJZnM0NUIoJtQ2yD/KukPQ4dLoEFyz8JZKcKkGCWbnaz2AOMWNtPAHrZmy5hGC4000cpNe4X62VO/lGzGOFQjYCJeU8r7Ynt9kFzqjlPDCue64/PEI/BrF2kdqmvdfBXrWOnW03VeAb4J9m+laV6FF+vrafqgL922tWgDhY7eq6aTbqo8lcXP8G3aqeP/5/fZzBZAQFAHtd5591FMOUc8IP36oRoYyqF4pYDavh8v8m4R4Ncg0qH6N928YGFW7TMKCCuRZ+MY8ozrh+8cmB03Xv7TrJ07u+CgyFr778C/G2PWWmt3BOe5Ub6z2XZQM/0XnIVM37vJrnC/mvcTFFlQuWOV6T6TXYafjzSxJs2sXdqmLKHmlSmIUfB9crKVnJ1CBoaj+OA8CIT0/7lI3vDPz/GxX9Q2PVM03xjzHeBH1tofvc29TCVzOmP50/Mpser29yfTLeOW2w38kjFmnmtfGDlukAdkEf7DcBhxkpQVGMJXrNKr14042xqio3UTtF05Cntz6GqXJKPqun00v3QjK68RxYatbKKaLq5HPqWtNNFIi5dXESPKGNmeMymOokgzq8hBQSRBW3ZDRk4JT5Lp9GrIGYiMxX34yf8rEXkLzSFahoymq/zybjftR4FpCgSdR9JVVMny+7q8j1lkbZL1yWbiEdmoKu7peWQzxlY2eSFfm9jKWp5nS1Lir8K5KRiBn7U77K6sXB64yEI/5Eud3nx8RxaEJfgRmSlC3kbABz0ThRcGA+1h/FpFus4g5DjgNOo2XOB2MuyOSwU5FrrrpIB6xM27xbUfBAphqFnorazGk6woayM2HvXEOFaxi26qMsQ52mjgDn4IwGYeY4BCeutlJ7XJA4RPQG+5tN8X28u+aDVj0Wx//n48IG+bwBzxZdPNc3j3NeVOKzyK9IOA+lzqZhH4AJhXnM7IOrFXCiuadvciFQ7RiK822EoTCQo88L+VTXRSze08xGPu4jTQRhfV3kCAhhSqRRbLfdt/SEBS/sZehh4t8UGxAmQFoCn82wj+Mwp+PtWbZDphhUyQcJ+1i80uOCgK2N8iWYhB+4dJpr1d+xTwUKC9xBjzMvLG+mOXzHuaGWM+DXwaJv+aX2ymOX2aAxQURJiPfKdPIiP0U6mDqY27ZfUdoIBKBzquQIqBzNqlZ8oMgS+uoH0tDdNq4rzp1tGiwmmkbyog0rpaZwJX71WbZuDhhLX202e5i6lkTmcsf3qxSqwaY4rd8VwHWGPMzxARnzNFCr8zloM43MGkeM05AHGyFBSpH13p1gkGjk8s9rgQ8qvEswqRpvqafR4jsnN8NeGslCe0UEqcGFGv3UAbKUIemIgRZSPb6aKaB6PiPJYRp3GslcEN8hR3ZC+l6ea9mKCU8BL8mkJrEKCk6Q0fhN7P5FPylEN6YYQl+rCbr1Lca/Cd4hNyvbxaOUeb6b0rnw5qAailg+2RDaTcm2Xj2NMUnEizpUhATzF9dFDrFeJsoZFhIgztlotXsPogWdUnRVxBr+levDpQgLx8TiLFUEGA2gi+bPiPkVEadZInzSkKskDBaeCrzu3Hj61yX+dRjT0rApb5/WHU7WddYHPb8J3ujyB96K9duxAB2K7PjL8xl937ruX9H9rhSU1HspJ8hm/zvMtD28B2mlkfYNXCJCjwQjCXRdopGznBEaepnowOSEhlUD67Bw59TADr4lgPnfWVVPfrhQK7BszjENY+chDpQwGWLfwwhAed4uEh4C5oqRek9b779rL8hi5Sjp2MZUepSXbhujXt1FFG3Osveh47WZ1Ry0fYxISbH/IYVRBVvqPtS7xna+j+kky1Oc0503yvY8iHTMPnlgfmB6uTT1Sz0sM5W6EFaxgbna0Wea7tgoMiY8wHEG3zy4wxXwzMmscM6oMaY7bjd9OgfdmxUBhjvow8fj90844Ci621fcaYRuAxY8zyyUYVXbz+d0CEFmZ+ZhfGtOBqkAVSR1MdV43QePW0tTMtCwFZ6uwqSNI8kGNTrzpr73Hr5/T6QuD3k6wp1lNL4OegaiHXQgQcBYUVoqev+p62GYjPnQumaCqZ044ppmfYRS6x+iCwA/jPrn0nMhi28RzuY2aWjXRmTTivRPxhfTlrHLMCoyr8ukbqT+aSKfs7kgPHYGhAvN6O5XnUlh3wwshCWWmq6PYc2DQhSunxwsrilFFLhzda3kEt7dTRRAshxyYpYGrLFqd4zd5WDtWXsniZxDqlKiD8VfwQv/lINpkySUeg5MEhD2z0RvMp+cyQH8JwAvn41EuYHID5PeAzeA4rr0IJQ1AuI/lJIhn1mLZnbyBdFPaWLyVOH8Weo59PglXsYtlq0c/uGS9lPBX2HdTDSGbcCfz4kT8ls1L5tQgA+bFrJ9x6GRq5Gg4HwgB1gyeBrvLb/YFlq8jMO1oUmI4sm1Pkg4Ulbr/bXPtGhGnQIYiDyFN7p2ufgKxfcQISACPwnz/0Q7bEb2FJWTcgQPhe7uZuF43aShNtNHisSyED7GQ1v873ASmIGpmvKhsibd0VjbO+x3H4bdB5VyU1D7pOuwZqHjxM78edKAJDmPsQKRc1zSfSS/MhBCxriOYG6K3Pp6nf0Y/L4Hvld7CR7QAs39tFZ32lx3alCNFBLQl0n31U08lWbqLG0YIqQKLhcwkKqKOdJ5M3AJBM5FF8ld4XGGpC7oMyoL1IyKWyuiMIKArWG8tF+rYC5l7k2VUp1f34OYVnyRjZcUNqeDan6FzbBQdFyKByPnIsQV9+kBmEu1lrz/ixc/J/HwU2WCe1Z61N4T5VrpJvF7CUSTTW3222iEwgEwREml8EvpzymSyEryw2hh/epLWLZiW5L11TafZgwVYFNxH8/NipTJkm7VMa0jmRdTorpZV3oc2gduu0TNEZpE1VYvXIVDKnM5Q/vZglVoustX8WaP+5k/I+/zZM5hdN5ZyVOYohHbwRkd3uRpzuGnz2Yi/iiGn4lIIn59yPvzGXWEGUmog4fvF4KR1ltV4+UC0dGWp0R6ggRtQDRXdzL200UEAigz0ayC70RAxSV3B6PZTbgH9x/89HVPOUSTrhztMlAxZUDInDqw+zYxZICXvgbS8lSmgAVMAL5Y3eMaQJ0Uk1BxwTUMgAKUJeDaYG9lBNJyGHQP9x8HPsHF5NOC/tH/PhHF/V71okRwQkRgX8eXp/9JrryH4J4syr1zQKAojUsx/EF1IAHzDNC8zfT6a04DzkTadxG2WZOUoH8UUUQELOluMzQ59H8JV6Lt0wnjvXCw/Mv7WXfz1wJ3RCV9VyyusO8hm+zU5Ws8WFlY2RQ5QYve6tHaeMTWwl7U58dX8rfUX5VI11A1CbOkAsUsmhRscMHeqhpvOwz/o9DVTgy0UfRAQ1DuHnEIWRPqLhkyMyr/dlB2r2DgmL49Kz4qvK+NSuBzi2SqiizvpKkkS8cMkmWjNy57qooYYuosS8wsUN7KGVJqrdjS8lzj+2f5FldQKc6yLt/Oszd2aGwXXj99uPuuuv13ohmUpVA4gDNhBYp8AttzewXDCj8mzMGgH6s3ZO7YKDImvtc8Bzxpj7rLWvn8ttu3oYXwI+aK1NBqZfBvRba8eMMVcgr/T3RD53PT4YUucSMkefTyGv8emU46L4I/jBddXmMWuXqp1C+ldQ0AME6JzCz8Geyo4gA2maUxSUfJ9PJgt1Kdm5YIqstb82xfRNgf+34qc9M930Ccu8MKF9CmGOZnoc0+7jLOxZY8zHgYdd+1bgiXdoX2e2EJm1WkA6vYbNzEFeri8gfnIvEqpVA/zMLXMKccQUJBVCXuVxhgfEGbxu8bOkCfMfh0RNrrhSnEKV6K7lAFFiXljRep7lWdaz0iUFxYhSS4fUrhkTNiBKjHkH03TWiHe4P1JHC01srpGE9ZrYYXEG7wqcVzBn6AgCjFxOSfhJ/39A5JiXIKIF17l158Kejy1lxdEDADxRs8HlgAiAWN3fSk3qMF8oX+8uo5y/jvrvZDVh0h6wu2PeA3TMW+oxaK/vvEpAzcTMt2B43GH8RHnc7yIEsOr8cnwJZo/VUWGFbsSLDworvITPAg26ecGCrcNkDjF2u18/34djeZkS3QNIQVcQZ7sbP7xOR1RcKNdQdwnkjwI5XF73Cq+3X0Vz3TpKiTPgihutZidNtLDF6V/X0sFWNnny5i1FUui1NiX3piOy1BU6daDo2h5S8yGsfbYV9t1VzfIdDnX2ACOSF2Q0UHYucIXUnwJY+PUT2Lug5Ki7QSkoHBtgINv3PvasWkptUo4hHQnTSQ3Fjm4ZoJAEBd45RYmxk9UkyCdGlCR5rKCNYvq8PtNOHdfV/dTbfguNEppa6cLnflEi110ZnTfdtddnsRnp8yqq0Iufn/Ym4lXud9M1HHK6RO63YuPGL0Y8a+fMpotyOZ+WNMb8lTFmqzHmGf07y21+A+mGPzXG7DbGqD7OWmCPMeb/AI8Cn7XW9k+1kXeLFSHfWFXyUsljdVzBf2cOMD0K1HXSyHdcnbW5ZEYZzNqlZ8r0aLhcNtIvggWCz2Tt+L6hvoSC/VQZqAL8KJ130i6WF6EyRVP94Ziiswide6/bZ4AHkEiAFBJO90VjTMIYc35FFzTYuhfpyBoqN8cdmQotVOHLcncjDMVCxPlSuvQw4gCPwPDhBdCcQ1Y4xc74atoGG7h8cSfXLX6W1EiYHkq5kwe4kwfocY6rhhC9zErW8yw7WU0FR2ihkUe5lTilDGQXEsuOsiX7FjprZCRelbn+36P/QCEDxIhyLDof24RIOO9FxAf2wr5oNfTAYFNIQuVykdG3lCTfE4ZUE/JAfxi4zjnFTZJzsiJ2gCfKN/Bs+Qe4KSbKZ1FiNIy10VVUyQvljaxmJ8X0ecpzEZLczb1OnruLMbI5QgUPDN5BFzUMjRfw+gGnBz6EhDYdk2PhuDvGXjkWht38+xFnNozgmhH8FKCjCJMzOgxLNMxNWZ4gOFLWCLdhBUQTKx0OuovktlFe5S9XkAfX5/l5KQOuH+Qh4SB5CCV/FaKz+yp+eNdziLPejBQcrYJYPMrlda+QJEIJfaznWZLkESHJt/mMB44KSPAxHidEiiQRmllPKXG+Ffk04T6IkGQPDTT176Wpfy+DpY5FXIaAX80de821bwOekfpX3lO5BHgaFnaeoKz/BKyBdC4cK5+PDcPgyhAFJ0ROO9rfw/JYF9mM0Rmp5sHIr9JGA0ny+AG/QTt1tNHAdjbQRzFlxAmRooUmwqSpoZMIw3RSQx/FXghmlBhpwnRRw/7xOl5vvwoGBEgONZeIM5WPLyrS4vrLUUT9J+zm6cBHIQKELkMkwzWMrsb1mTy3PX3+z4WNTvM3a2/ZLqbirU8hsd9/CHwWkVF901r7pTOueB7tYi/eeifwPve/hrRqwjqI8xpGRuNfAhcxPLXdjeRxFuDniWi+x2vAt8lkhWft0rFK4I/xxzODRYETwHam10/+NOL3JfClvOfgs00akvcL/GTAi9nORfHWXzLGPnmG+eUSGPMsZ5dTNGvnwUx2kyWrxX8pv4jQ70GmSE3DbSrJrEMzgowwaL7OOqBTlLEAhh4tIe+W41w/T3SCuqimmi7CzuvaQwMraKPFDW/fzb10Us1qdgLQQxkFJCgPaF2U0UMFR1gRk1H5Q9FS0oTIdwe+cMcJ9q2tZnmnYwIeh2NfnO/JIauUs9a9mXckDS0weHOgvVsS8xfHXDxVCg7ViAMM0FeUz+Pc7IXtbWIrMaIeO9HGCsKkMpLoQWSWAbqpop064kl5Qw31FlJcGadvm0M3vfj1njSBvtNN003uQxgX5UUVQHkiCN2IpxtgdegOLDBxnFVrFr2BL2HXTUZxnpyqCc7sfllWF38TCafTY7waeUH+nmv/BFiPv41m4KOQtfwk4ydkqKq45g2WZbUTccfZwB5qvFhCAQvZjHlCC19I/gNbIrd4oYwLGCCfhIAZHNjBZ++Wt3aJ8qA6/nMF7CxsPYFd4u1GVOlcvaHBJa5v/EDCHVO/KgVZVyclbyn8mq9mp/scoNAL6Xsg+w6PFQTJH2qixVUmkuPLI8kRKshxw0u7BldRMe+Il0u3/1AD+SUDwhCBAJ4a/P6xG+kvGl73MoJlg0zSHGRAQxOujyLxWHo/CvDvXe/ZFW81dU2W+6fJ+Gg8u328G83VtPsGcmcOWGv/4q2sfzFxb8Uu3vx3AyF1z13og3o3WTH+CHs/8vyNBaZp/RhtT2fz8cObNEQqxOTf9Fm7tEz7muacaU4QSL8rm2K9oCWQfqr5SUG2Zg4SgRNheiW7C23BwYJzYedBfW7WzodlIc7Qi4FpweTqAvwcFc0bOYwfggMyavAC4uiC+NADMPQj57gVwvBAgScwkJ0zBhG//lAtBzwHEUSquJFWL8woRNpzJtWp7aFMZLujfo5RU7LVk+w+tLaU5bEurPPltXCGgiF9GXRnV0k7Kn8rHhSQNXhbiHBxmhApT2hhS/Qj/KejP/EKxgJUcMQTUvgaX6KUHgo57o41n0KOe8dcQII8kp4D/KNDmymu9Os3De0toW/vIt85DQOqHaCOei/CCGmO0UfctddwuVEkfE4xT04VjMbJyAfKEF4omtDWFZeRGSQbeFuOvgQF1/gf2fJlsn+NIluEMBbq5o4g4gt6zLe641RhhntkmUjBMNGyA9616qOECvYAcr8HWOD1kQhJtrORRtf+YeQOGtjjCTEsYIA0YbYUfQSAtTxPQXKI6IgAWrtEWJ+wSpafgIUnT0hxXoe9e+vzKbhhiJZIIwBrjrayr7ya5YMCzsInID+S8CTY2+obPEltgOMUsoABXs6W2McG2ogR9frDRrZnKNGpHaXC61MN89qIEmProEQVF1fGOf5moS/XXkNm2edKd72fdW2V5lXVuccCy+rtXYI84xo2F+aikuQ2xuQiwjRh5E306GTlD4wxhUhFsnqEA/+UtfbnxpjfR3qZRZ6ou621E/X2Znos30Myt3qstfWB6TciEhzZwHdnAHKWAk9Ya79tjJlu7P80u5hAkXajo8aYm5DI5MozLD9rE6wAP+QIZIBDQ91G8EffB5hZYeVgzpA6wGPI05Pm9HGwWbt0TGvYqaBpwv0/gi+tPZ0dQd6wOkiuYXggfTXXtS9DojDOmW7zObZzCYhmkFM0a+fZjDF/hZQbTSPp+XdbawfOvBa+Ax4sYpnAV5+K4ctyg7AU1QiRcJObdhJJYN/u2jVIiJRaJzCSQ8U8eTqSRBgYLyQ+Ig7s6shOGmij1GW4H6eQGFGPgVGBhRhR7gqokWUz5rE26aIQP4zcwdrIDrfLGhYf7CG21tUMurJHRt9VzrQCUg2wovOAd5j7aqo59nGXP9J6AvpgYcMJDpX7dYd6y/NFZhnYHtnAKnZ5jm0DbVTRTbfLzylgiC5qPPCXoIC/5wuerPSyxSK9/B8vrfWv24/x84dygAXIaH+3m5ZCPm4KUFuQ0EYFJG8CR4Mgp9stoBvQQq0KkvoRFKOKZqfcuqcC0yCzOMYySAT2kUtmxN0+t7o6653uT7UbKl1b86Lcy3XovhL2r5OJ6+q2ESXGmHP/WlhBHe3sRPLS2qljJbu9fK51PMsQBdx0VEDvt8rv4nqe94QYSnYMwRLYE5V6VytiB0gU5ZMQvEPJjiGONcq9V5amZMcQT6zd4N2vQ+WlRMdi7PmCbKNqrJs0Ydqpkzbd7GS1JyASJs0honQ7RHuAWgoZ8PKFBigkTIo8kl4drgQFRInRNi70VGNWK1sHN1E4Tx7Ao4eisDtHQilBPmav4oOkIeSDpITUboQR0uf3Sve/glgNFcwJ3K9hJgh1nIWpetbZWQr4kLV2yBgzB/iZMeYn1tpfTFju74Bt1tpbjTEhIGKMWQR8Aaiz1g4bYx5G1ETvC65ojCkFhq21icC0GmttJ5l2H8LwfD+wXDbwTaQ4+GHgRWPM49badmNMA/A/J2zjU8hT/WVjzO3AD97qBbmYQNGfuyrkf4DUJ5qHTwrP2gysAD9JHXzVuDQ+MAoh79Tpv+hi6pwGk+nBB1uzdmnaIL7YwhiZctoKmK7gzHlrXYiPGMKvgaWS75oTV4iAohuYPhzvvWCWaUHWuZDkfs+ZU9b7bWtt9zuw+Z8Cf2StHTXGfA34I0TA58w2BzjVDwWOUkkgX1xlKCYLqelCQuQ0ZGsNImqgco45yIu427U3yna6DrlR8d4cLr/mFS+sLEkeacI0OFZgAQN0UuOxQ5vZImFIdHtMQANtDFDoMQFRYh6LoNs8tnY+ZUkBTbEiCa8ruVZi/g6VlxIhyfEa+RJFxoapSXYRi8gYp11yglhjaUay/hAFxCkjHpFjiFPGD7nDkxK/hS200uQ5yavZyXY2cgMSbLqVTXyFr3qO/U5W0xJvJK9GmKXhzgUCHIKS3PUICP3uhPumY9SjiFPs6r3yLw6seE6tAqCgJDeBtiYi6TCHxlYEhxMVAJVNaHdL82AeFJT5x70QH9ipJfAVzQqR3qrATpXQDuKJ0reNNxDNinl9RPuG1oB6nI+xmS1UuGGox9jMUjrYVi7LC6DK9pT+OtdWUjrWw4pdAoI7V1VS03nYE+ooKRpiYecJ9tQsJduBouRakVhv6Jd1YkWlFJxIEymSfJ/u7Co6qWa9o013sjqjD77g7rOaCi3oObXRQJQYB6hlyA0TFzJAnDJuyXrMWyeSnxQwBDCUIwMO+ly2uP/V0SlE8gX0Wl9FpiN1GB/8aL2JXoRdVKGMEWB/kH46C7OcNShyiswarKtBWV1zagAAIABJREFUGxk5Na4Q9lqctIq1Ng2kjTFzkachzxhzChkXnWzs8oPAbxljNllrR4wxvwlsRoT8g8eywxhTNWHd9wOd1trX3LE8CPwK0G6tbUOYpQwzxvwhonS6wxjzKG/RdbhoQJG1VqsBnMAFCxhjZkHRW7Ai5OKBP8qupTDUgU0jzuZ0IgtlZAonJTk9XK6IWbtUTUH2SQQgK5hRIJ7F9Gxk0v2phLzKcSsI17pYQXXTs6x3d9GbBdJnXmQ2fG5yuw94yhjzz8BfOkW8c2LW2qcCzV8wg1IRAJwaJzNfBL8YJ8gLVtkJfZAWuj2sc8ucRACRxlQOIQ9BgC3KKj7J+C6JQyu/+SCvH7iK6qX73OIFFDLALlYBEGGYBvZ4YCNEmkZa6aPYA0otNLGR7V6Y0RY2czf3euxSlBiRsWHCzv1Z3NfDYFPIZ336e3iyaB03tjYD0NuYLwnvscPedShL9pCI5PO+TslK/beaj5Ai7Dm+CfIpo4c62gF4iNspZMALExSG67h3zHkk2cJm1rvYph1cTzgvzfDeBZnXv9v9/9FR+G6OjPYrE7SPgLIc8FtI6KMKlH0gTxLsPeYvD0aDktwaL1blfrvJVKMbxgc9RROmveTa17jtaZxGkfQPdb4bkfvvpwCJ5bvfLyF5OuukmbXoJOPfnAu/BlnzJa9IAZHezzFyPAAEcDM/4jf5J253te47qSZBgZdTFCadAVhiRKnpOcwTqza4Q2zBFvn1rrbVr/MYyTE3ZLt4Sw+RzUmMS0qOry0lXRSiZq/0kRfr61nDTp51J7KYGNvZ6Elul9HDAIUecyR5UKM8jzCDeSR5khtYyW4vZyhKjAISXp+JESU1EiYr7JKfwinGW+f6H5n5yICEfoA6kY+e1hxSZrc5cB9G+6GkSJ5xBU9v4uPiXkRAA87+YzYzpqjEGBNMPPqOq73pmWNjWpFhg29aa3eRaVcgZ3GvMeaX3LK/a619wxjz14jY+jDw1IR3JQDW2kdcXboHjTGPIGzOL09cbgpbRKaI+WFwL7OpbRvwp8aYO5hZUFSGXTSgaAr7In607KydwW5Fvq+al5Hm9BAmZXvexAdPU5mqzen2lDEKPoOzYT6XrhVyuqLhSOBXa1ydyfqRYaUr8OXjg9Lcc/BVjWuQ4aYfn76Z95ydy3C8S8WstQ8bY54AvgK0GGN+QOBSWmu/fo529Slw3uIkZoz5NKIhAiyWn4kDw0FnSJ3ZYwggGkFCn1TxaiUSafUJ1+5FXt76Ah+B8aq55K0TRiQ9HiJr/knPEQyOngO0DlbxsXmPewpcskw+BSScWlfKk/DWZdKEXJ0gCaeq4AjJ7DwKimQfsZpSypI9pCPiZPcV5XPjrmZeWOXyRWKtHIvOZ+EJOWgbhuMRSbx/sbGeHspopYkUIa/obJQYtRzwQp9ARvbv4AEA4pRygNqMgqM9lPLl+J8DUFt2gNJ5cV4vFFCUV3mc4Z8skPpEAH+b4yfNKxDaj3xI9cW2Hd8BhoB75UDQaBE+EAIBOvPw6xRpTpGCpmAoXdDmBab3I6ApEDMXzEFpRgCPguJcpK9oooHmwbj8lvGaudJ3OmE8fy5Z80+ye+e1LFv9sifLrjlECkhLiXM7D3mgOEyalezO6DOFDHgApZQ4L5bXU+UuUB8lLDx5gmIHvG882UxntFJACGFq6KRzs2OR5soyK5J7aYk0Ul0hoKipfy9bij7iHUOcMkKkqUWYpbr+Lr5ddJcHcApI0E6d1z++xpfYxFZeZiV9FFNMHx3Ukibk5R3V0U5HYqlf62ckR55BBb2PIayhAtJ65HnVfK3DSB9SVu7nQHmRiCv0IvlEmrfwTuQRWWYSgtc7ndCCtXYMWOnyhrYYY+qttUENrRwErf+OtXaXMebvgP9qjPk6wtosQa7SI8aYT1hr759kH3/pWJ7/BVRbayeK409lZrJDnuZ89jLTgatJ7GIHRZNdkFmbYJchY1Fp/LwhdVRVGnkQf2BhJrlAuYjjq2zTZAVcC6dce9be66Z5Q0FglBWYpmIL8UnX9m1wwroKqLKQQfJCxIech4Ry1/PeVjxUNvcMNhs+N7WdQrpNGF80c0ZmjNmOH+QStC9ba//dLfNlxA2ZUgzRjcJ+R5Zvyvx4R5Exz6Ajo2pnuQgwyiUzk/Yw4oipUxUmMxGvU9YbdsIJwzkLYAj290niUvFVb5CflfDyP2rndTDAAsKulxXTRxsraGCPJ2KQQmS9tehlNV08yq2e06ty2ENF4lzmk6AjstRTftvORm5ZtcUrGPtCtFGAVbnQG200sIpd7GlcyorkXmAvVZFuwqS8WjnZjLp9HvQuxWNs9pL/9TiDyfT5JGgqk+KvXePVRLNivO48nOEHF/hy1kHbje/0fgD5mGpu1ACTOLQB+WziiGiCtjVFYnjCb1BooYjTv8DdePJyJUXQOwFFl+BPW5Ino5+6yya3W+0zzchLU13C3e7vo0DuKOOpMOtWb2NH/HoGyuQLfj072MwWD+QcoJZWmrxr3UiLd29BQHI3VV4+UJgUMaIeQM0jSXG01wtb6yyq4QgV3Dr2qFd3KEEBYVJ0NsqBFzJAJ9VUF8k1LOs/wQIGOO68DAHtjSTcKMLzRdcTp8wL+StkjBBpfsTHAMmte5mVxIiyxPXbUbIzFOqeiG+irKyHgUHZx/CxBb5qHPgAeiDw+138GlHVCLsYzB0M5hQcDPx/rvKIgmY5fcDlbDZn7YAxphmR7gh+Zg8DhwMM0qPAf0UCMg9aa98EMMb8G7AaEbXPMGPM9cibawvwJ0jZ4ZnYYQjcNOnp72h68cUOii4OvfCL3Grwe416AhrOpAUwNZzuGLiAhDNbLX7ivCqMgYCsEXzZ5Fm7NC2N9I8k/ndAgbj2i5l4pHsRBigXX8BDwX2h20bIbbuMzIHb96pNc91mw+cmMadQ9HXgceCaYLHumZi1duM02/8k4lpusG+1joX6xB4gcp5MwtWuSeDLF69C3AD1Qa9EHg7NQ8pDWCKtjpxyy+tDmCt/+VXiyZdmSZhRUE45j9MvzTARmhBA0UIjhRz3nN4YUco54rWT7oSq+2VUf2dRIx3UssnVyA2RppUmb0Q+qHwnh+yP1qtSy8uspI52Tyq8g1pWsYvdLoGmnTpu4EmPreqimmL6PDWylexmNysZdfERqZEwu3ubKK4RBqZv+6LM4pol+KycUtwrEQBR5dpObc8Ld1yFE7wI5hD1k6m1+UZgfh5+eJy24/gqdZNYb7ebF5Ds7q2CErfNGH5MPEh/qsRnHIPgCIRVqgRqRuHn4u61VTZQVtbj3U9l3JRdDJPiBp7ku9wDwA086TE8IGC0gT0ewNBCqRqS2cAeFh49wbZyAeZ1tLOLVTyQfYcHtMro4VnWeSF4LTTxyV0Ps23VOjmGohRPsIk6x8RlM0oNXZ6QQitNbGA7T7tEqR7KiFPm9Z8ISQ5SxRK6vT6xf7yOUFaao+1ObrAT4qtKiRTIvciv7GXoxyU+CFJooJzGzxEgpP3hFferIBp3X3LwHbIE0u88MDTshDQuDjPGXAaccoAoDwE6XwsuY609ZoyJGWNqrbUdSMnadiRs7lpjTATptBuAFiaYMeZqpLj3TQhUvN8Y8+fW2j+ewSG+CFzpwu/eQIQc7nibpzsju+CgyBiTYHLwYzh9XGfWJrEofqiRvt8VxOjQaTD0bSYiCwXI9zYIiECe8Sz3e/bCJ7P2brVx/BC3MTxfzAvbHEMAzJtTbcCZAquQW1bBu+5jDOmvqqx4Db4i6nvRZtXn3rZ9GbjNWrvvXG/YAa4vAR98q2BLEuGcE1SQJy/OcvdZO5UnnXsUXy2sC1+BDsRRfwHfUa8nk7kYRRxf/ZL3Ql7NcZIJt4+IU9VykXzK8ihIKiXuqdFpLaONbOdZ1nkOqTrPWremlg6SRGhxaTFlxIlTysKjEh43VB5nzdFW/rn8VwFRqztCBZvYCgjTMJkM+DARLw+li2p2spqNTnYvRdgTUQARWkgR8hiMPooZJZvXH3dxZfmQf20vffc7sQOVUz7sXydKyASgzfhCBSD3LopoWUEAEAWzafPwQ+h03sQ6RfpEKyBSVTrIlOzGzX9pgphDNwxUSfsWJKNDwU+nO2YN23gM4Ts/G9hkM1CZ4wHv5FCE0nk+KOqimlGyaXDMXogU7dR5ACOPJFFi3v17lnX0UOaB6wISNNBGiUORpcTZVr6O9clmQOoNbWYLMaIeQ7mT1axhpwdywqTYtmqdd0zF9LKFzR57Gcx3A+mjB6jNyBcqZIAf8OteewEDjJLN7qSAsxsiT9I8vo7yOqFw0leFyM9K8PpO6TP5K3sFXKpjs5dMJnHiB23EXXftUzlIV8gBDgZl2gPm5aGdAxvnXBSBLQf+2eUVZQEPa36/E6+5x1p7BPgd4IdOee41RIHzuBMyeAl5E72MY8knWAR5N3e57X4SJ9oQNGPMvyBvsxJjzGFELOF/G2M+DzyJuADfeyfe8UG74KDIWlsw/VKzNpV9FKiDjLG/EOKcat0/DU1KILzjdPlEIM96Fn4NmpP4YU46f/7kq87aJWDK2OSSme+peWtzkFyh6VhJDThR5TrdzlxOB/hz3PSbETrgvWiWaesUzdokZq29/h3c/DcQIvOnxhiAX1hrP3vmVQDGZS0FKKo+d1TnO4e43DVzEaerDx8kaeiTBrOMIA79tX778rpXeP2AOHZZ1SfJzhkjnOcHYb5/8U7ak6LaFo+UspHtHsDpoYw0IZJEyHbD2Z1Us5nH2O5G4RV4aA7KE2xiNTs9B3Y3VzPAAp4ol0T7NhooLz/iST6Pkc0mnuAhbgekdlIBCarp5Af8BiAgJ02IJxyb1M0SVrGLb/Lb3jqA5wRvZyOFDNB8SI4xK5yituyAV9QWoCbSye6aEv/a5uC/cHLd/7fi54ioKUmz3y2n7VeZIvypyv12c+Zx3DnIPR+cMH2iZNE1krAPwCmph3Sla7YibJEGeuqu1TFvQhx7FVSuR+ro3O+vM9yygIEPDXggMz0eygixLCPOBrYz7Gi8lezma3zJu/9a00iBykPczlf4qnfvaunwCsOC3LNOqumhzAM1tXTQSY2XM9Q41kpH9lJPcn2AQv4b/593jAeoJUqMO1zkahsrqKbL6w9lxOmhlGqnQFFLB9vZyFI6+Nlhyel/svIGwrk+ikiNhOk7vIis6pMADP1FiVwrZeGakTAcvbY1yPOoLnkVcsuVpdPnexTIKZOuMFFM4VyGz50DSW5r7R78IgET520K/L8bvzpWcJk/QcLhzrSPFya0TyHM0cTlfm2K9beCQ+TnwS44KJq1t2/1iONZjLxmQ+43m0yGR8OP3mR61Tm1cXyWOBiKF5RLnh3RvnRNQXICv59o3yjEZ49mYgP4WqCqPqcAXMPnNFeuABkEeI33Zm7RDJii2Zyi82zW2prpl5rCeoNO8CSjxnlkFucEiXHW9jrEab/RtfciASQ/ce1yeH30Km80e3xdGAoyw3P+48BayBVvrHhxLzGidCbllBojrRSQoIy4J5ccI8oACzKUvdqp8/I5JIxpAZEx2U80O0Y3VR7ro7lHHa6GTCHH2clqNrvs/y6qeZ7riREl6Rzve7k7A2ilCRMjyt2u5IkCMxVeKCNOKT18eLH4Skny6KKGod0CgqpX72P31mszwcJhfLDZ7K7xCH541LX4IVFy4pn5XKP9CIAJiitU4d9fnd8dmF9GZk6Rym8HgVAw5G4efv0jZNuj+P3h5+5XCwLfgoyh63lVIkBcD6EJGQUdRkDgPUCLXL/dh8THXba4LUPJLUWY51nrtTup4df5gXft+yimnboAq9PHo9zqAZQYUfbQwPMRGadodAAqRtRjH1OE2M4GjzkqyBahhDJXT0sLser8pXTQQ5mXt5QmxG5Weqp5nVSTIuyB/RhRCkiwi1XkLRS2KZyboq9zESuXCmJMUCCKfK0u8/paMstOrSOzBhQIc6vzFZDoIEcOMDrs2CB3zQuARD9+H6li+kzbt2DnEmTNGjALit61VouEEl2GPJvF+DVfRsgEMMoSvcnM8onAZ+c12T1JZh6R7nPWLk2rQPqV+hUaRgfC+gTTHqazBDKIGWQ4/y977x4f13Xd937PABxghhhoQIAY8TEkGMAACREqJSKigogOaNGxQseKdKtEvY6dxKkdp0mub3OT27RJP00+TdOmaZo0bvOw68SubKd27ESKHTOWQ1u4koOIDmnRAg0SMGCCHL4GBIQRBhw8CMy5f6y99t4HJCVQhCQ+sD4ffsAzc15zzt7nrN/6rfVbmooXN/uO4ZjPFPA2hPW8FRsIvwpTtFJTdNNYjIiSWAooagoV4tD4UQX9v6rcgICgTlzp8kMISNKIQwFxvvSBfaSSqY0NxDZI9HtgupXNrcc5eUo8uzmqOFTqpD0pb4IqZm3Kmsoln2U9bQxaJ3eIZt7LEzZqv5997GM/H6n4IIBxd3O2h1CcWTK49KxRMrQxYCWg48yxj/2MU89+9vF/8WF66aKfbXSY4ilVO9NjLlBBFbPWCT5MJ3kyVoihilkKk2ke6JLct2Pldrm+yqicR8CPXrcqnPKcFtf3IJLXej9yyAvQ1oysif6tzMB8HvcUWtyvSG1xDckkUUZpg/d/7cy6yHHWCFDKfK1UfZ6oMIcWXmpNyyHkN/+w+fsx4D1wpP9+qBGPOkuOesZ40QCKLYwwR9yqFmbJ8R/5VbpN/c8ojRRIW5n3fexnmGZ28xwg97fKaBaqFaijhWFGTV+qVgb4EP/djhlNrdMxk6eREgnLRo2SoUDaCmvsYz89dNs00FHaKZG0KX895W4KsTRJSsxOy7hrrM2Tbv22Be8L8xXUrS0w3mJA0XGEE9Y+UHrffTamGpdOp8pyCkjHAAwgUsaoCDJe/Ptdy7LY8jRvXbFFtgKKbkJbhTila5DXrtZd6HfqTOp8UcU4ldleil1AnF5fyU5BltaPXLyeH7FiN7UpSJ4hCr41vXINS1cnVDXiGBi3yaXTzS1aXjDrVCONx2+1NLqVmqJbycpIWNk4QcU1XNEhKpp/DYiDO4aLOmWRVKi7vPVX43ysFqJ1BTVAwzx3ZwRcHBm8n/FUA+s2ibNZLKWoT45ZMDFGPYfpZJ4KC2T8njXj1POC8RK1kP6n+LiNxIM4sM0M2Si91gbp9310cMpjhYqkyJDn47yPBznAf+dDPMgBCtTxHG+lgxeZo4r/yK/adCipGZngL059yJ5b/aZem6KXJ8PO2kP23L9+eo9cT5NGlnj/BNMjdQ4U/ai5zk/hUqSakRepJvtol/NINP4YFhTNg6sRUnsJN4NrEdSi9/yS2X4bjlXKI29nX4Z7Aw5INWEuqjtmJdHxcAGXXrfKLC/W62pCxDpMKmb9e84wO1NFKlmkt9RFVfUsj8dEaf5FOqSRrgF3B3iQX+T37f3PkWWceit/3UcHXV59EMBunrOgqY+7yZJjjjgJSuTIcpY9FKjjYfMET5Wm6E1+n91mlEaeoyXSsDVNwbKQRWqsKiJgle5aTV3Utlg/51hPoZy2/apOvrxVmKHx1dzX/izDR+9iesYbE9MIW6TM4AIOTIOMhSocaHoeAamqMtdgtrUpdEQFFmy92TLWFK2AomW3FVB0E9o/QYRw1iLzQhkc3zkFl4Y0Y/7lLtvT1a2WaONXPYYGSlYctxUDqaDU8aG9hvSfKsa9WrLAC8g7PYMbY8p0goy3JA6EKSj6nmX8HTeKrdQU3UpWxqVBqfkOkWGNGnC5zprupeSBkdy2u6lAJouup9soW1ANiXSRI5+VoqOad42RSeY5Oyn9f6a/XkdpZ8KSGVsYoZ1+iqTIk6GfdvZygLOsp8qgrToKjJKxTvEcVRSos8xPKwN8lb02At9BH8+x28olZxhllAzfMA7vu/giv82/5kN8mEbytNNPD3sMGIozSoYcWfax36qVfZW9fKL8Pn5p02/L7yDJl9jHobz0QspmcmxhhMNa9nC00gFNYLqnTpxXFbBQbf+HcEpts0RFLNYuWrZKcrXe8ghRQYVVi76vxd3zSaJA6CWc0txL3jYJ3A3PG0bKLKqymSrjaTTUJ5u2YUQhkH5GM7j+RgCnYXxoA9taRUEik8yTK2etHHrcu+8gY2Q/77T3u55xmjhhG+nmydBBn73fC1TwR/wcH+QjgDCNPeyxQg1tDHKQXYxTT3xBwl5/kvwZO74Aq3anLGYfHfTTboF2ghIF6iwY2s1z/Hn53UzEBJidHNzKjtbnGR66y6Yf1mwco1RMEKu/KONm4zyc9lzgtQgA0nosZYI0fe48AjhViGOxYlUKGS8JRFxlXq6Oe7P5AHjFblRbAUU3mT2AAKIUzvlUJ3KxJDK49KaTwLeWeIz1WKVU+5gHV1sELnVqxW5Pu4SMK1+0YxUyJi7iUjlXXb7pZXYBSYXT3pU+yKrGsZyqTDeHjP8F5H01dPkub2pbad56q1glrhknRGtLADKyis9GpJBotBZzdyOAR0HQJTAticSGzO602etDSLrQ98kOp0YamLL5PcD2eTKZUevwnqCJOarooM9KLo/QRJw5C3J28xx9dNi6njyNHGanTVUaYQtNnLB6ERnylEiyxYTQT7DFSmsDfJF3sZcDPM077D72s4+f4uPWsY4zZxXmQJzi7liPTacaYQvjJfe75qii54mHSDwi9SOxnRcpP73afk8P8uLUk/w8gjtUuAKceMVd3jr34OTQScD8Nlx9yLTZiQKaXVzezNU3BUuLU+fO4FDNKpzzbLaZx6X0TZvz1QL+LJLyp2CvyfxW/S27zO9I49IEt8O61hMc+6bU18c2XKR8ZjWb75WCqjmqyJC36XAjNNHKgGVx0hTYzzt5lCfN+nG+yLu4D2lj8wTvZR/7+X/5LwD8O/49cWbZzz4LamaJk2aC5yp222O2cdgCr362UaTG1rkVSdFI3ircKVOp7NRZ1pON5Wxfo/qWMwxMtrGt9QWO9cvvnHq+IZpqeBxJL+w2y1MIUN5uloeQl45Gk9eabZSF075jem9O4NIb7T1uMn91zvvqhNdpIStM0etgK6DoJrLvw6VIq+qX2iUcUAKX9nYRebwuVWABs58UkqWxgEtbqjDH1ZS9xcIqK3b7mC/BreNEQXMMAdVZls4ofgthfrSkwk/NXEW0fglcAODt5vPLmiPcpBbyqs1bV+ymMr9Zp/at8ZzqeeMkpTyFugbcw/XvkMi/Rqu1kNPvS9SCi273QLl7NbF6mUHlmUoBVPrimKqkMJlmrkacz4kLadoyg8wRtw6mqtNpof3HeZ+V8gZRBnuEp2zfob0c4BzrbQ2KOr6qNNZHBwXSNt0qR5YsOd7LE/wkT9ht/F5JvXTxn/kVmz7XijSdPVwWZmhn7LCtCbHWYhpwgji49yOAAAQcZHFg8/uBgwgAVWxVjYhY/AezvAVJR/Sbo50Dthia7QQIU6SAJkE09c3IaUdqjDRNzkcxPps0DZXbYH7ELK8RIKfF/A3IQ1IjkhvNrvQ3bCDaAPgQMn42eNuch3O9W+wZvTOznwOJvUyVxbufnakinpy1SnAd9JGmYFmZYZp5lCcjctjNDNv0yU4Oc471/GuE1TvAXloY5tO8m3catqiLPnJkLeg9xE6aGbI1ZFpDpMxfiqLrbWUsScl+lqfRpvuBMGGbW49zrPeeqAjFFA4cbjXXR2W2h8111FqiXcBf4xihbxNVo9uIpDnYIThilCZrRWxBbd4HQctYBVtmWZu3rpjYLQ+KgiD4DeADuKH/q0bijyAI/g3wzxEf60NhGD79ppzkEq0deSeuwTmbGrGvICrLrUAGxKkcuYbjqBKYbq91IjPe32tr1rFit5oVcAILCsA1LuuPk7UsTWtnAXldKPBR9UOtJdLx6KserjX/fwvSKOFWYFhCbo3fsWLg7uQVGKKIJeQrZYtOEJWBzhDNfR7HMQGnkcmooGkGGIFkkxxr6ttmVqrj1gDra89yIt8EQN3aAlXMEmfONrnMkSXhOZxa16FObzc9jFPPLsMM9NNOgbQFQ8O02HVBnOYCaf7c9FyUwv5xfpN/xx7TdWyIFpu+B5KC1cgoSfOmGaBNapdiw2a5lelCirZaqSEZKrWwo+t5C8yO9d8jgOgxcxKfQkCQtuh9Bkmdex7HDPQgYFSFh4cQ4kdB0TGAhKshAaDJE8qY5vJ7uw33BFTmaJpovtsiRikBVDXJ/8eQh5yKJm9E7qU65prjrvf3oPk9KhN9EQF3s7jI0Z3AxnliVZImd4hOKioXyMZM3VkyxQ6O0FPuBiAby3GITiuCMUucZ9nNWw2TlCNLmoJViuugjz46LGtTxSx5Mvw8f2RrgBKUmCZpgVUnhylQZ/fRSJ5HTG8jgM/zGFOkLHCvoRipW5sixVw5TjxmQkrV84xOSmpq7A4JEFQl5pidjlOu9oQVNkIEa03hInLDZlmZoTTuxaf3xm/UekKVBTFAKIGrKdR7nGdZmaKVXOtlt1seFBn7/TAMf9f/IAiCdiQudBeSMXYgCILWMAxvyGGWQQBREnlua3pbCtf0EhxYUXljZXSWKgJ5BxJAURlkfeaqQzruHWspqVErdmtaFscczuB6Yfm1QCmE/VmKdPZJxO9TERGIgi5VUMR8VkLeTwvmXB5H2KalqiveqLYEpmhFkvumMdXl9dOl/EixOkeXIJ1xaXRbvFW+F3l4q+N+BAFEPWZ5OzJRfB+7BStNbdkBdZqHYHjoLmI7HRebJcdQRHdY6km0T00rAxym07I2wzTbCD/A43yWHvbYWpQCaZoZto03n+OtNDHCO5CYYx8dHGYn93HQMgGqSqZ1TIfoJEPe1pQoe6VsQJYc2U05y14szMtTp6TXuhJJi/obc5J3IQ+kEbPcgQCijUQV6WZxt6XFbKekTgoBGxpeVRCrD6bKhOcMe5YyjvI05nuPSZgnygTdk3DNYkHSQ87jQM4hhFxSJkgxmK/uP9axAAAgAElEQVRguN07tx8wf5XlABLdE0wP1VEuiPt3bnwL29pfsIBSBTEUgA7RQhsDVvltmGa66bGgOUWRAdrYzbOApNstUMGgWT9BiVmqeJJHvOa8LezgCMM0259aIG2/z5HlKR61IOgejrCffbbGLMUUh9lp148zS2NslGOnBIyv25QTNqwayvMCgqaHVgsTpHOhxdwTvX9+h3vM//3UVW34q3Pt28ittiBZb4aKaOi9XuP1nVpGamclfe51sdsFFF3JfgT4TBiGs8CJIAiGgPtwnQBuGPsniPy2MkTVyHNyLS5lqYQ807U/jNZlzHF5PeAr2ctmO30+KPhScKSvQm3qumK3n6VwaZngWBztkeU3+73zSju4in0Lp1qnKorKGCkbehHHSK0y32nt+QXz2VJr525UexWmaEWS+6axSqLpUxot9gvvTZ1JARn4qjynjlqaaPF3PcJgtJnlCcSpVgW605D4oQmmj5s0svOIY6fg6E6o33qG8SPi2Y3PVvGlqn1kMznbI2YLIwzQZp1eredQJ1eVxX6OPwTg3/JbPM5nLaBJmNCcNgPdywHyZPg47wOESZBC+bRlkXZyOOLkdtBHkhJnTYhEG8tqsf5neZwsOSpNqLytdoAiKWEHkGuW2D5B8n45l/HnN0SLD4fMNW32PsvjetOAe8FtNX8rEVCa9b73WbohoDrhHNVLROt/UsB0IqoMpy9WZQZzREHxeXOOev8y5phKxOn5qtdyDzJGDpplHVfVCJh+Xpq3rnubo7s6OWQZOoDCZJr+2nbLEJZIcpb1tv6rhSEO0WlBUIopeui2NUaH2GIk2reZ/Y/Qx920c8yC3wJpeumyKZoDtFHBvD3Ges5GaobypjGrijH00sXIZBPp2oK5LCbsO2OA3uAWlzY3T5TdUYA5grBB2gPsDBLB0/uuwFMdqGkEIGn6naYsqBc9r/2ImnC9pqYXqRdmWDZgtKI+d0ULgmATIq4+BgyGYfjb17L97QKKfiEIgp9A4iy/FIbhBIL3n/fWOU003gZAEAQ/A/wMQPAGnOhi24g8Q+/AFZtrNP5lXI2PAiF1ULW3S4Fry2K9A/fMVucXsz8/cq+ga8VuPyvixoAqzvnpc9qMtYiMnzuICjJczS4gfkkWAURpLh9nPntZIhog7UTead/h5k3v1Ou5YreCzePqSkBGdxOOt88gOVlN4lCNAayJSix/B5kQfoF4Dc7p7UYmw5fNcotRWtM3+x3Im8041YmNE4z3bCB2lzzZs5kco5MZ21kGhKUZyLfyWEYKckbYQh9308GLZrmJOLN8jPcD0E4/fXRY4NLH3XTRa4UblOHR7+eI08A4vXRZNmonh2lk1HOCM1YFD+Av+n+Sd7V/jk/yXkAU0HJkyZXkbTU1luaBTc9QqpX9Nd07wrFTHUwPGXCYQ6KGKpqwBenZ87u4Qvsx808jOQXzXY9Z3i7X14KcPMIkaXTIB7V6n44A7zDLWvszhBNzUHEyP4Urh0vZO01UbbAFAT4qDvEZRH3p35jlGfO7FKh1CzicPlTnfkfLPOcGt1DfIhTYMzN7aE/22x5Bpdoke3jG9i3KMEoHfXyED5qfWaBEgoJR/MiR5R08zYf5kDnFIcapt32vBmizDXzbjGR2iSSzxC0Iksau/fRxNyCS21lyti6ti15GabQNZAGaakcsM3Tu9BY2dx1nXauAvXNf2yL3cQh8nRHANegtmOuoXuAQrskvSMplGgeS00SFFaa4QmG1BkBqiTJGi1MobwwLgiALPIFcrTLw0TAM/+Aq61YgPvSZMAx/2Hz2i0hL4BCZXe8Lw/A1QbUgCP4MEY0fDcNwu/f5Q8AfIG7Hx5YAclqBL4Vh+JEgCJ641vO4JUBREAQHuHJQ+teAPwZ+E7lpvwn8V+CnuTLGCS/7IAw/CnwUoCIILvv+9TJtLbAZF8xaQBzEWWR+LiDOXxInu61MUhFXp9F7DcfV/ka6zziXp61q1L6CFbtdLYlLaUvixs0qBBwpoxNHIg1LAUUgPsRGZMxX4ILm2pw4jcyBEg54LeB8iHsRP/DrSErezWg3ZP7uir0GUzjvx9oWF11vA0agskk+mkdAkKZorUKcN41OtyB9UjSaPUaUAUkTlehWcQGzPH1U+rKoMtvJ7hY2bxpiqpwiHxOHroM+yGBT2wrlNF2xXssUNTJKG4MWRPXRQSsDtmdQBy9SIM0z7LHLObI8ZlQP2unnGbrp5LB1nGepIs2ErUXKkqOPDlvHkmn/PSpYoNGwWcM0s4uDHEhKkVCuAfbyVcaNB2x75uh16jDXabdZbjDXtBMHIJRR0JoircHRfazGMS4gqXlZHAg6bdZRZmErUTCr66ngnFqK6D3c5Z3nJ81+a7zv/XzkhxCw9ytmOYvUUY3IYv39Z4QlmyLSTXtd6wmb7phN5khSsvezgz5epIN7jKRhiSRP8Yit73qUJ/ksj9t6nxaGOMt6my6ZJceY19pdQHEjdRRsal4bAzzJo1ZNLkuOs6y3oCfDKAfZFUmnA8c+JilxbPAe/mnrp+X7TVkO5XdSlTDJx3ci9287bu5ozyEFSTXIPdHvQe6d1u9liAoDnsFFh3X7CChag1S3+pLqLy1anuQGU5+bR4iCbwZBkAIOB0Hwd2EYXikT/f9Goji1AEEQbAA+BLSHYTgdBMFfICUpn/A3CoKgEZgOw7DofdYShuFi4dhPIAzPE956FcAfIppKp4F/DILgC2EY9gdB0AH8p0X7+GkkAfXXgiB4HJlB12S3BCgKw3Dvq68FQRD8T1yW8Wkub3F29rKN3gRrQUQVvgfHBK1CwNAF5LmrNUNJ8/ci0ZQ3jdIfZOn1RCBZGXfi2ChNk6rw/paQSP4KKLo9Td8LF4lKw6sIwkUExFxEJtgZll7r8zKS/laB1BbFkbE2jhuDJRwA0+NeMH9TyPh9D/BZbj657pXmrbeSKe/nN+J8CcfdK1OU8GoO1rioFjiZR42MrUVSpTRdbhfi5GmLl3MIs+CDqI3e/sbMcrfJ6TlSyUlaqN+Yt07v4fJOxoc2uH3WAK3YovhRGhmlkQdNM5x95Oilyzq8SUrUM27T6fq4m33st4BnhCYqWOAguyx71GCYHz2HJCX66LD7nCPOLFU2/SpXzpKLZak3TnVXspdP8t6IgARTldRvFfQx/uUNrHv4BOdOySs/VjVLeXi1PEj+1vzOtyAunT40tJ5EQdEZBHQq07ADedgoCPoOAr40ta1g9qXkwYPAAOIjf5/57Ii5J7vMsvYf+qS3j/eDKecSJ78HB7Y2mvP/z2b5efPPYMLSVJLE9gkRGJgVQMFUZUSkIM4sJ2jibgNA9Rrnzd9pkmTJ2ZqjD5c+xDuST9t7N0sVRWoswHmGPaSZsMtFUgzTQjNDNrVSQY4u99JFF702HRKk7kiZpJ5yN9lYzo6Ps5Pr2dH6vFWrK5ZSlA+vhgcMKKqZhzHj3ur90jRIZYJ0binL2oncL2WClI3Ta/+qACSPAKNaIvWCkWeAyrgvgy3tZdEQBIEvzvpRE+iXXYThOUxFWxiGxSAIjiEwMPLKDoJgI/BO4LeA/8f7qhJIBEFwCXE9r+RD/wDwL4Ig2BeG4UwQBB8AHgUjX+nO5dkgCJoWbXsfMBSG4XfNeXwGKX3pD8NQ2xFHLAiCXwZ+3ezv88DHr3BOV7VbAhS9kgVBsM7ceJAboXGWLwB/HgTB7yH+11uAb7wJpxixXcjc9OW1/ZQaTVu6iEszVtCkQGbWfP8tMGT10k1RojJQmP1phoCfzrRSU3R7WhqXKgcODGktkbJG1cgrIr54B69iR739K0DXZa2hW+0dY84c4yLRtLl9wD8igYGbRdFtRVDoVjJ9vWoNkQFAlzXq1P41a9xquukqJHKtD9u3EJ2Amt+sIChNVFFNe60oiOpDHOmjcoB1D5/g3De3MFGVJpuREPnZqfVsbj1uo/L72G+dTxAxhDQFvmqk3LSfjWUejETzYUQ+O0Oecept1L9Amgc5QIG9NJqQ3ed5jPfxCZ7iEXucLDlbiF8kRYqilfVeiFUwRIt1rkskyJcybMmMADA8eBex+osC7gC2z5PPN1pHuXy6kpq9Y0yNNTgW5gjiIKvzDK45GsjDaKt3L6qIymHrbdb9KdWtL29dN4dzuKuI+sjVCEuk/ZSOIs6AguLngJ/FOfpTwAcgcaewNNPUOXAGTD9VJ8yW64sKDfMcG7yHHa2SN/aNwbfyQOvf0VuWezxxIc1bM89Z5i/OHBXMW1D0aFLkuBXkJimRJUer8TZaGeAj/KxNt8ySo4MXGTG1RmpzxG36ZD3jPMtu2z+rSIo2Bmx/q8bYKBOkOTkoN6e+5QxDpRamRuTib2t/gWNjDS5d8jxyr86DbZF1nCjjpoBXQWsBl3IHcm98Fknvu/6EeWSezvvpsCPIDVdgpHNc53wT1xamfgUr4+b11W0sDMPOV10LMIDkHlxyrm//DfhXeImeYRieCYLgd4FTyA/9ShiGX1m8YRiGnwuCYAvwmSAIPoewOW9fyjkhAM3X3jyNCyFczb4M/EYQBO/m2oSXgdsAFAG/EwTBDsTfGAFJjA3D8NuG7utHhvfP3wjKc524VhSXiKazadNKravQAFWt+SyNBJrmkIj7tQgsqF00x/Jrh7RGSR3SJOJ8XrzKPlbs1jZ9Ks4gvlkSF9zWhq1ag1zktdWe6Vjz+xIpIPebFqvqnT83Yma7NPL03Mo1horeRFthim4lmyGaKrMNQTz3muURxGHKYz3qhjXRZq7VRLtkH0Uc6h3eZzO4uhhlCXZ4y370qhMXTQDOPSEF6VvuHeHINyUvLNEyQRan7PZU+REaY6N2F3HmiDNnleCeYzezVNnCfE19U0nmNAXqGbfNXwuk+SN+3ogsiBP7Vp5jjrh1moukyJOx6XPNDPO7pV/m88nH7D4HaLXiEHka2ZF8gWNlEQxY13qCuXKcbEa2H5hsk9RB81Lc/PBxTn5tK9RAotMAiuN18vJVwLLR/F/T6/RW+rnAR3H35yFEiUwByEbkFmtEscVc//M4UAMCgBRYnUbSvrQYoBPxo1U7V+uT9FzGZb/Th7z+TKpMA9A9zwObnmGcBgbykpqWTE1TKibs/dnW+gKVLFgA+c9b/5AcWQtIWxlgmqRNj1OBjL2GKeyjg/3lfczGJPy1QCUf5E/4hBHWqKFIHYVIryuQOiGtGapiljmqLHA+QRNTBggDVkTjB1u/AMCB/IOUX15tf+ex/fcI+6nskMpnj4HBci5dTpmiKXNP/Pqtam/9WS5XpMvh7vcYi0QUXsL1nNJiMe1N5gOhZaorWsY+RUEQ1AB/CfzLMAwnF32ndT6HgyDo9j6vQ1ibLcjV/lwQBO8Jw/BTi/cfhuHvGJbnj4HmMAynFq9ztVO7wmevWMYShuFRnBj/NdstD4rCMHzvK3z3Wwgd+KaatiC4H5mfWsujYgmawnaJqEM4h5uzKopQQhq15rj21CF9Pmi0vYw8HzRQpg1jXyYqvbxit5fNEX1PqOqb1hJVIU/ICqJ9Bq/FlM7VtPyLyNjTWjqIysVX4CToyzh5cM2Q+DHktXScZYvTvW72pkdmbjC7XjWhN8+Un1QmaMT8/ab522K+m8RGmcfWGJUys0oReShrhKsPSb3ya4pO4+pcOs26WpOURiaQ7i9hPkt735+H4a/dZcHB7HScw3QyOy1ObiYzSopihJVJU6AwKTvJ1uZoZNTKdOfIcoQdrnDf1KSow9tInjizdNBn61g+y+Ps4IgFWso66T4/wgf5ieQTXrPODCdPtZDZJKDobvookmJ2Rjza8bEMNQ0FiklZf/ponQgO/K2Ah5O9W+01tIBiB9GXZrV3PfVaa/NUkD5IUSVz2AMGK4i9HVfIX43cK1/h7F1EHfcG5H6ps92CPOgM8xfrvihpf4tN0+mmgIZ5ahrkpKeON3Bu03pO5JtoywzSwhDPlKTW6+TXhHXZ8bbnyZPhgda/A1w9ljKAX+BdlsEBAaT9tFt57Fmq2Bbrt8pwLQwxSoZHeAqA/ewjzhxFUowYab29HOBZdnPOCGns4Egkpe9YuT0CxE/km6hKzNFbcoxlfcsZxwRWA6cr3XWdQYDlGI5NUdEEvWcNRO/hBeT+jHn7SOO85CrzmeYdAfI28fNo9P+1uDdNLY6O2sCyNXANWQpT9KoWBMEqBBB9OgzDv7rCKt8PPBwEwT7kCtcGQfAppLXtiTAML5j9/BXQhUhULD7GbmQUPwn8OvALSzy9N7zM5ZYHRTeqZXBCCnci00nT1S7hanf8Jq36f5UhnkEAitYQzSDT7SSvTZY4bs5lLa6I3U9HUoU7tRX1udvTFIjXc3kfK802qcCNj2uR5fbtKDLe1uDYpxmcVPda5OmotUR6TL9/lp5f1pxHC479/PRrPK/X05aDKbqais+ida6o6PMalH6u+TzeaDWhN8/iSM6UX0+QINrHZhoXYW6KrgbioBVwanRvQZwzn2lQqWhw7IZvHjMESAqW7q/TfHcnTA/VkWiZ4O5MH7ly1oKFQiJNfrrRpqat4yyHyztt49Q0BdJMWCGGOHOs46xtBgsizqAgqUCaXRykly7b2PO9fJI0EzzFo2Z9cSg1hUtlowteiOXnNn3YMg0gQOknkjI8Pp5+H9lkzqrT1ewYY2G+gli35DeUz6yGAtTcP0Z9Ui5YHQWOcD81O2S5Pjkm6Vq+RHMBh23vRx4o+oDrwTUEBVegryP/tLkXLbgUvRaiaV1Zcz96zPJRBKwZ5q98eLUczwCzxA9N0Fibd2llO0RuvX6T/Iap6gbOTq6n/PJqSpkEQ7TQkhwinpyzfnqaAhny9tqOU0+cOZ4zag+qPtdj6MidHDa9puTapyhSxawnhhCnRNIC3gx58jSSMWOgly6GaLaiGCDCGR30WYGGrpiwSAqky7NVrM+McHZyvd1mvGeDvdaJzglhArV6ZoqoAIbWh/lM0XkcUPVNt6v21sH7q/VgR4FihsvVJNcgc1rT6RarNTRxo1gQBAHwp8CxMAx/70rrhGH4bzD6hoYp+uUwDN8TBMEu4P4gCJLIU+tB3B3wj3EP8D+RmqQTwKeCIPgPYRj+2yWc4j8CbzHpd2eQqr93X9uvvDZbAUVvgv0Y8kxL4ep11OHzxUzUOfJlt+eQ6bYKAUO+RPFLSDrxa+3Tcg8SkVflMI26+20XNCq/whLdvpbG1Rf7zI2ORY2XKXNzPU1+zyN1cW24cejLcOscwBxLBUeUWa3w/s4gQKpoPnsfMp++hWNY32xbppqiT7BIxce3qyn6IJf6iko/i7a/qdSE3jybIxoZXoNLp1Eb4TKZ7vmEW6USqQ/R2gZ1wP2aIk0VAnkBJIj2UmnC5To3IDUruv55ZEL0IGlYR+sYeERSzeq7jUjB6QyJdNGCmoOTu4RFMmlH8dgcozRGUt9KJC3bc4QdNDNsa1DaGOCr7CXOnAFUBXroJkeWdSYIPEgbNd7bsDffxd2ZPlvXMlpuZCxWbyWeUxRJU7BNaBtrxcnPJl05QoE08Vo5p5PDW9n8tuNMlVOMl8Q5P3l8awQ85vJZqPZSsoaA7nnue5sU//eX2ikVE5S/vVoPQOIXJhzzVG22UQDUgEvxUipc84zN/U780ATTX6+DxwxVNFZpwRtIk9p0bcFe6xxZ6ihw0jj2ja2jjFdvsCxQ7K6LpGsLtNUO2OtZyQJ95Q66Yz32/qSZsOl0c1RRImlrhEbJUMUs7ab2fr+pj9c+RSDgVUUTUhSJM2cFG16kgzmqaGOQw+wkQ54+7o4AsThzPMtuW8fWxgBJSrYuKdeQpUSS6YJ5+h+thBaI3SEDe/pTdTLONSmrgJM9nzD/QNINfYemBQdAtXmvX0fUguAc3ec8i5gin/UZIVovOGL+ThLtTTbCsljIovS912TfD7wX6AuCQEMrvxqG4f4gCPYD7w/D8IrMTBiGB42QwTfNmbyAUWpeZEngR8MwHAYIguAngZ9avFIQBP8bSQRuCILgNCKW8KdBEPwC8DTyGv+zMAy//Zp/7RJsBRS9AaZ9WjoRVTl9n6nT6EfZwUlpa22Efq4Rcu1Z9DKO0b2EsL9+APFaTJ3IOK5ovYwDbOrczpjPV9Tnbl/zwcg4bnysRtw+FQbxm6++VtMxrr5fhfdP5bi1xk2buZaIBsZVmETn3Wrv3C4gPudZb5ulKuW9HrYEpugV1YTgqio+vl1N0afnKp8vviQ3lZrQm2ch4hRpDYGyQk1m+RLiLPlOk/mrzk4Kccb8aPUZHKhRx08JlAsIg/GMWf4+BHoqoaLy3irPPI/L39bifNPnaPzLEt3etu8Fjg3eQ8/5hwCo2ThGZ+ZwpD4E4MCkCC901Eodz7ABKG0MMEecXaZ+O08jrQyQYdQ62PWM001PRNChkVHLNih7tS8mzVv7Yh2MkrHpdrlSVhgQo5B3t5GVLpnrWUeBuXKcZEwc9/r7z/AwX+RjU+9n+ryAmHX3nqBYSrEwL2+2ZGqalkwfuY3yO+Ndc+TzjfZ3L8xXUJWYI/02SfM6d6ekhimAmTrdIC9Mk8pY89gYU2NpYYUMe1SzdUyAlVGGS9aUaNyXd01o08LgVVULmBs/voF3tX+B/aV32uuULzZasDxaboQCFtBmYzmKpDhyqpP6jQK8G2OjpGMFm4p4It9ENuNqyJqN3NpBU88+VU5BTOp8QJifZobZY9DEAfaSIW8Baz/tPJvfTVem19z/QbLkeKr8CNlYztzvMfrKHXTE+sy9znMov5NMRq5lz+BDUD1PaVPSXsup6jSxKrkO5ZFK2D5P+a/NU70SGcvKuM0gUvR34jCIRn19mXQ/dREEVOkDeBVOIl/XBaLMLzh99QTRlFj9bg3RVLobp3lrGIZf5yotOMMw3HeFz3pwMJIwDH8dSYd7pWP8/aLlSwhztHi9//Mq2+8H07X5DbAVULTMVoWAiu04WWF15laZfy/hmKIU0Ui7vv80DUjfhS8jU+uit/0Fs14acer8VOZrtXuRdCg9hjq5ftreAg6kKSuwYrenlXDNVVUNbg6nfOinss0hTM+1KiGqfQV5n3UQVb1TMKQpe6uQebAeB8oUQGlAFqJzMYuTDlf/pQ1Xn/d18zvWc3mWxethS2CKlqwm9Ap2NUWfJSn93GxqQm+eBbgGjr6NeP/31efAFWgbKyI+lIIkfehqHcQw4vipY5dFrqjKQusLRGG0gicdzHcijqQv490AseaLUsiOFLHHdl50ks7AcLmZiQtGSCFTYI44FZUycpOUSFGkb1JOIlebpYteXjA5YHNGlOE5dltJ7bhJv1IQNE8FKYpW9jlPhmzMFeorq1FvPNX2ZD9FUlYGXC6FWz9PhvHTGeKbBDTVxIp8vPQ+YbwMu1AspcgmcxzrNShx4zxHxu6nZqscoyZZFFZI8UptwUp8gyiglUhYQFPfcobxedcod+r5BknzOl9n78vUSAOb24+zxYyJnlN7GZ/ZYBmQ8pnV3Hfvs1YeO9v+PGdZL+AKkRbPZnKMJuSYszNV7Oh6niOn5BGhv3fzpiErSpEja9PSADozhymRtJ8VSTFKo2VtHok9xTDNtq5I0+cUkK7nLCM0WZDVQR99azvstU8yTYoiO2OHLTN0eLKTXbUH7To9gw+xo/V5u8/6ljOMn85wrleAZv39khaY3Gpqpbauhp5KB1RUnU9tBlcf1mT+TuCa54KM/dO4eIRG31SkZBYZG9rwtwFzPD+A4Qc58thmzJEiPhCRFXB9jJbBlqdP0YotshVQdA1WgasBUsByCZlL6iBq6s5a5B3jF5lr00mttdD+Kn4jVn2HaU2Pgh9lk8ApfSm78y1ee8qc2h3Iq1trCy+a/+sxZ8066oCWudF6M6/YG2UqBqIMpTKaeH91bL5s/n89oAiEl38ZAe9rcSp0c8hcUNZ1NfJq0sBCEVsyYYMOOic10UHBWxIZ0wqgqhHfsoBLAXwJl+Y6QrSn17U0Sb6aLYEpuiMIgo8CXwzD8Iuv8TBXU/RZstLPzaQm9OZZJVEHSFPn1GHSCLJ+rgDpJUiZp2txWtLpVKL5wqJdakdjHaBHEAdR6dk+870ua5RcJ6pKFx/FAauXoVxY7VL1mqSmQ4v3F9vIZBOz03Er6V0iKU52rayfJccn+z9Ad7s0hMmQ4+OT76OxNk/SXIs9HCJHlkJZZueDsQOcZb11xI8N3sO21hdsIX4bg/TRYdmJOap4lCd52sizFUjTyKjdPlfO0rxpwPa92V/ex47kC+SSWU4ellSzqYY0x6YaeKBLBAfGaSC1qWh748xTwdzbqkTa29i6TTmbwtdzai87Nh3iZEEQ63QhBTNQPijg8r6Hn6VvsoN1rSdoNp754clOkkxbsPCDm/ZTImHrbTKZvGVoAI6c6qR5k3uStmWEhZmrrbLXukiKzZuGItelly6Gy8322i5QyZN5kT9/Z2Y/ceasOmAHL/Ln/LhN0euhm0I5zc7YYbmWpp/Ux00GVJJp9vCMBTRnWc+DsQO25khrioZpseIcs9NxSrVJ21eK6nnizJFRRiUG40c3ENsp4HC8ZwOkBVjK+kQZn2/jWFMQ8HIn0fq8I0QbH2toxmeKvoOLnqWRYIEGJBbX6gGX1wfq3zW4vDvtAqv/j4i7vXZbBqZoxS63FVB0DVYHfC8umuwLH/i9WjDLWr8QR6aI348Pb1m3BZduNI44eOrUaeRdm7KuxbUBvEC0FulabTsOmKVx6VGqneRLIftiC8sgfLJiN6H5tWyrifYlUrCkvYlSYBJarh8YfRcZh1uRgPgcUSGSFC69dBZ5t601n2lStLJG47h5Wzb/8kjQ4yxO3rsKeY29hAuKqPjIZu/cUiwPKII3pKfS1RR9lqz0czOpCb35ps7SCOJEbfO+0473mmaTADLeAz0hb+kL3iY1OActa5aV+dlIVJJZr7T2eTiEcHXqo7UgClyP4ZJi/pnZXpmjeaBQydR245A2zMWyCwIAACAASURBVDM1VUlio5GyLqS4b1OvdarHqaeecevgnqCJde0nIul2u2oPUiBtU7VyZMmTYVtMMjVTTHGO9Xab+1qfZZx6XjQUWCULPMqTdn9P8w5+q/RrfDD5JwA8xaMUSVkQFI/NkSNr97czdpgD+QfJZnL82L7/BcDn849x9yaXmZqiSH+p3aauqRqagr8k0xw71UHHJiMbvmmAI/33s7ldktjnqCK9qcBIS5NZjtNUO8LIZBNfPy3E6rr2E4yWGxk/LqmKP9j+Bc6x3l6XNBPEmbPn3bxpQPo3jQkCSG0q2todEAYvG8tZQNPBi8xRRZEUzbFhkpQYJUM94za97RCd7OZZC2q+yl466OO5SRFa2Ft7gFwsGxG58NmmTg4xRIsFrIfYSS6fpS0zaO9/JQvMleO2j1D9jjMMl5tJpszcSE1blhBgqNRC4oEJkjXytC11zkmtld/fKYWTMk8jwF4ZowKSMuor/SnTo3NrFpmaCor+HhfRBmGJ/hHPpqEy4UCSpuxZ5lcbs04jdNQ281clujEH8Jjg67EVpuh1sSAMXzFIt2KerQuC8D3m/xodViZFW/lqylwRB2QKiPOY8v7v9//R2h2QMe4LL2C+1wLyAo49uoCQsdcLTvYiAZE15nfo+akkv/aCieHqRWLINP8YK31Vbjd7GBmDWcTXUklucGAiiTA7ysJ8C+kId3IZjr8GeMA7Vj0OAF0kythW4BrK6vzT2rg40ZRQHeOLwb/aHE52vAKZGxcQEHYB+Cgcvt7UtkwQhP/sFb7/8BKPYWp5/uZK6nNBEFQCg4ha0Bnk1f9uBLNe9vniwlajJvS/8dSEgO9eSU1o8Xlc7divd/Hsm2FB8JZQeoQrJzlJVFRBw9hNZh1d3oCdUZVrxPFS50+V6DSa3YI4b1pLkcH5YiCD9LS3/REkquDXGKlQgy8TudHbp36vL6Tt89RvzDN+Wpy7RLooDqvZvn6HE2gA2LapzwAgp8Ohjv8ojTQyygCttDEYcfCHSi08nvwsgP1cnf1+2iMy4dI7adYyT6qA1l+SvkV7ks8wQdp+/5VT++jedCCikjZLFSOTTbYmKk0hko6XJ0MbAzxZEoW8VLJoG5cCFhQocKujwMBkm91+eqiOdfeeoI0B+sqyzs7YYZ6b3M36WhcXWMdZW4+1j/300WFFK+ooRMBlmgIlkpbNypKjRDLSEypLzv72Amn6S+3sST5jz3MvX2WOuBXCaGaYOeKRayuiB3JdPjb5fvbVuhKPDHme5h0WyD03uZt0bcHe7xxZcvksXZley4DpdX0xL8csz1aBD7QP1bmxKz9ExvDi6K8yoPPAUzilP6X6J3BKiz3IGNV0uHEERGmAYAYZ88p5VyN4xxdW8OXy53Ve65vCZ4H1/349Eci81hyb9ut6XwSrOkPSl4m9RW0suO530u1mK0zRNZim6IADNwqO8sgc1joHjaJf8v5qqpymxqn5qlkquKD1DRr9XsClCQ0hYOh62CHfNLDoH2MBJ4U8i0uZ05Q+Hwy+zIrdLqbspwbTLuLACbjxUcKBiEtIoEALR64XGL2EuJoppI5c64zUT1yNS1Dw+3ipuqoKhGjd0HqcYISKiIADRzo/V+NUIM+a461H5odej+u1kFdlil41fe4VVHysmtDVFH2WqPRzU6kJvXm2imhRdROSUqNMkTpL6lypXLcmnyKOV2qNRLjXIQPNR+wqM+z3HTqGcxaPIhNPH9j1RFVIxpA79LcIi7QRB47+BmK/cpHywdXEdl2k3GNm2lAl40MbnDrd8xsEnFVLCH12poqq6lmb5nXsa/ew+W3H+fqgsCM7Wp+nnX6eKe1h6ngDO+6VRj6jNErtEDlhIZIODA3RQoa8leAeLjfTFeu1jvoJmtjCiO1rVKCObnoYT9abyyLCAsp2/NymD5MjS5w5hmlmHWfJk2Fv7QF6y110xXpJUGKELZYRiTNLiSR7kqJiUSRFX7mDdTEBNDmyzFIlqnUAGRGdsPVA9x6yYKcj1sc8FWTJsav2ICmKHKKTvRzgBE02zSxXK6lqmkJ3N30R5khBj4pcFGrT1FC09UCP81me5FFyZMmQp5FRupIid93JIfJkLChsNDVH/bRTz5gVrRguN5OOFey1a6odIU+jTU18kQ7WcTYCIOPM2t9aLKXIZnIcK7ezLdbPkdI9Ii4xvppY/UWRGW8BCjBtmvmSlibCKoLBRgSs6CFUKe7/M8s/jDS2VYxQhwCicSTUM41E8YYQEHS/2X4WB/Y3mu91fowA5xbVBBaPQcrM36JOQl9d0g9u6L9aonl8N3qnvNvbVpiia7BMEITvRN47+h7ya3u0tqLefK5pPOpQKchRR20VLlKtUesKxOPwQZeCrBzijC13rsnPmPPSaL86jb6sMeYcYuZctZbjydfhfFbsxrU1iILivbjaM23cCm4869i9E5feeQaZD59f5vN5C+Iraj2QzskKXIpdtTknDYyrmEit+UzZLZ/N1XE/hwB/7aEZW/R7db3fXwamaG0QhP/HK3y/HGzUir0xFgRbQ2kB4lsLV26rrY6XSZ+L1B151oAMQiULlObUCNlbzDqaErSKqEKIsj76/Q7E+fNVfbRhqQKtAvCQt4/zZp8KnlSY4Ywng1IN1AhIilXN0pYZtE51YTJNsqbE+PENPNAu9Ts5slZsAODZvOmRY9TIOuijt9RlJbbrGWOOKsuQ9JU7qIkVrZhAhjwTpC0QW9d6gt08y1nTLHSYFoqlFKlk0dYEaZpXyXQM7KCPEgmOlYVt2hbrp46CTcl7hj2USNgGpCmKEWZI2Z98SRizqupZ0jGR01aQU8kC7+Bpy9oM00KSkpUmz5Hlbvqs1PgenuFLnsjjVDlFTaxIJ1Lv85enHo/UftUnx6ijwFCphUxSnPGzk+tprM1bUNPKAKNk7P1pZJTD5Z22Ea72cVKWrUCaTg5Z0PSXgz/O5tbjdn9HBu8ndsdFmz5XIsF4qUHEIWZMHP4A1P/sGatGd+RUJ0xVRhvlnsely3UjLw6VN99OVK7lEFG1e3W6vuptcxwBQyo8vRoBTbofdYD8mqM0MOYHNvxUOB8AgUuj89XnFivVbfO+23N9TFFFZ8jqV2GKiitM0bXaClN0DRYSjZCfNcuTuDQirc1RJSxNj5vEKV5p3YVGrpNEJYPzCKBSWW518F5l+L8mW5yCrg5jClfPpABw0vwW/WxFkvv2s1W4lEqtQSvg0tYWENCsMbQRXJppNcISeXHw67ZLSDZEB25caoqnsrYqE65zUFXpqpE5W4VTKL6AzOVJZG7Pmn1lcOO9hJsHmtK6nI2M34CaohV7Q8zXFQUZfb76lHa9ryUq253nsuhzpQeO3gIcM07WOrMvHyQVcGULF5DUIn251Jh/ekrjuJeaL8JQjVPh+jLy8lHXah5xStV5PG/SnxR8aY1Tp7gX5ZlKRhJNNuq/ufU4J/u3wgwWUAAcKjnfrSvTS4ZRhk2RSIoi2WTOpqhlGKWXLsvidMQkRc+vS6lkge5WEXc4OLmLg7W7LIMyV47zjuTTtv5JflYF4zSww3jNSUocotM67lOkqKPAn/BBQMQe7qbPSlk3MkqxNmUbjOZLGTnnZNEeM0uOAdrsebcwxJfYZ1PwlL25x5zDOdYzRIsFLMqUKQDRc1Pr3nSAFEXLHGURqe19yS/xHG+V86zNs4URW0N0kF1kGLWiFSUSpGMF6pNyXdIU6KODSjOe48zyxa/9KIlOSXWrbzlDJQsc+eb99v5vyYxwrF9U/Gqaxpg63kBsw0XKCoq6oTSV5MjXZZvYzouU/8FzRxM4ZSeQOMIOXDzhDoRrNofkIhJ109q7MwiQ34EDQTuQcanAqxJ5eej4v9JLaewlaDBzbwxkfurkqsWJKeh3TVwupuLL8k8S7W10HVYmSkSv2LLYCii6BtPUlnGc06U1ChcRx2gcV+PgM0mLrRqZiyXE2YrjmCZ1Gi8iwKnM9avLXc1UNU/T+vS5UPL+r41hwQEovQ4rLNHtZZpOVsKlyvkNUv2+W+DGtbIvaeSVslzy1hogP4gUp2SR11IMV4tbxs1T7WekzVxTOKVIPcfzXF5XpGNegxQKAH1FyOWwN0h9bsXeEFt8N7Uvke8U1ZrP/RS6DE6m+5vABpg30emxjDhnDZ7q1eJi69M4lkclhrVZ6HFksG4wy/VIelE30UlZAzxv/j+FEFy+mING9DB/j1Q6UNUDifebJqTGpsfqqNkhYf+Tp1qsNKvfhLQ+OWZByzgN5MhKjxyIKJ+B9DoqTKbJ1Mp1iTPHLFXWEW9sH+VQqZPOpIQSKyoXmKPKij90xProo4MsOcs2zVFFPWNWBvyTgx/gn7Z+mp5yNwDdsR76abeAROtuFEwcLu+U8zS3LkWRWe+YEzFpVTtXjtsoyhAtVkkP3PXQ/k3NDFMiYcHeHHHqKNhGrMO0kKZgweUOjpCkZFmq9ZxlgUoWqIw011VmDQRgqmqdnsPhyU5OTDfZ+1eVmLPX+sV8B5vfdpw2hAn6yuDDlO5Msu7eE3b9fCljAczCxgrqd5xh/G82WI8ztvOi9MMytW7lg6uFjlcRgx1EZbU34sANyAO/2lv/AlH5liwC5NO4cTpm9qcqdX+PBBj8cXwUx05VYlJXFzdf9nsOrSHap0hNU2RHFn3+0qLl67Trb966YotsJX3uGiwTBOGP45geP6Kr2QeL6xY0vUazFdIIkNAotqbrqJOm0esLyHR6vRXeHkVUtPS5oM8WTdnTdLkirgeTSotfBP6BN7fZ5Yq9sbYdx8qsxQUENINHAwJ+nZqm0oG8TsaRd9rrmVmdwtUwXakfmKo8+v6kAh2V8wbXyNgPEKhinaa/Ypb/1zKkttUHweUd8zz71Er63E1jQdAWwn/jyrK9agp+tCBbU2/u9tbR2gSw4Eklu7W2Ql8wa3GiCr6lvf/X4DJ9tiKTdh1uMryARBbU19PRpi+JJmD7PHy+0u1vHgFWiKLauY9ucUXvDabvjNcMtkCaNAVGJpvsaVVULkRYlXSswHCveLDruk6QpGQlu7OxHLly1jr2U+UUO2OHSSPsRYE6hmm2qXDNDDFFyrIjWXLEmWWcBtrNG6xIijQTDCIpcCreoCAoT4YmTlip6XrG2c2zfN6oxbcxSImEXV+32c2zABymk3kqqGQh0nR2X/JLNBi2aogWhmm256Tn0U+7Pe8URVunBAJqfPGFQ/mdViFvvNRAV7KXKmZtCl4HLzLosVUDtLGbZ+3vzpPhXP8WK6HezDB/euqDrNuUs/emJla0gHX8+AZ2tD9vmaJEywSNtXlO9pq8tWoZI7E7Llq1uakjDSJ8oGPkNKL41GOW5xEAo/24KhFAr5e2E5F4uYg7hoJ4XV/nhK7jp4RCND0PLi/Stupy/pydXLS8WFxhBCeUMonMZx9I+bbv+tLngs7w1fOHbr/0uSAINgH/A7m7g2EY/va1bL/CFF2DhThJ7GokDUcj5dp/SIuxNdKszM/LCBDKm++UiTlv9llC5uwFnOTv62lrEDCk56+mMuC+c6jNYmdwIC3Jihrk7WjKEK5Fxr+v9lZhvlPGyAf9q5F5EDPb7kUktv/hdTrPItFmxpsRSXBNCV2PU83zG836dX4VyHs5hUt+ULBUQuaA1gm+SsPVJdsKU3RjWxAEvwz8F2BtGIZX7FziTMNmGmnWWiEFOIvrEZqIFkbA5d3g1rhNwdG1mgJ0mstpyxlcxs+w+avSxepo3o9zGHUSaM2Q5oiqGt1phBl6xCx/2azzlCyeG9lC7EcuUh6XnL3EnRPS6LVJvs+Vskz1NMC+E9LLB2CmkvqWM5x7Qpp1Jh6ZYPz0BnZ0iaebJ0OhnCYekzqWCdI8GDtAnwGPbbFBUhRtzVAlC+RLGbqSUv8zQKutiQHoL7WTShYjTBEQEVZoZpgDPGi3y5BngUoeRxTxnmU30yRtLVQbAyx4b9MiKfpp56AJz2iaXZGUTdFrT/YzSBspUxOUJUeGfET5LW9vnkh0j7DFgiKbRmdYoGGaeTTzFEdM7qMCon7aKZGkzdQP5cpZWmNSS3VwcheDtW2W8UpTIN3+Aj2DUkg20HoCTleS2SSO/dBMC43JUU4OGdBTCUf67ye2QdDHdCHFKNJwFYwK4VAl5bHVTM2YPM4ZBBDpmKpBwLiOuR7vOxBw4jsqmrPtNyf2RBttdNcHUhrNVnn6ZrP9d8yy1gz4xwTcHD2GzD+9HyNcngp3iSgg0vX8hq83Vs5bEAR/hkhVjF5FrTQLPIHcnTLw0TAM/8B894vA+5FXVx/wvjAMX5NreLXzCILgIeAPkBHwsSWAnFbgS2EYfiQIgieu9TxWQNE1mKpQ6dxS8YQ7kSmgIEgj6BqNvogLVigbdB6ZTklkHn6XN7aWYC0SJNQUoArcs6Mal9ano9vvYXQJ138phWO9VuzWtxQy7rUZagUufU7BD0gQYAGn5KuKi8oklXlja9JOmuPfiSu7UPGFJDKWfTCnoD+LS/9TdbpJHHuqAiXLpQQJrwqwXg7D8GeW8XArtkQzzsHbgVNL38p3gC4t+iyBc7RqEeepFkm9GfG2S+CKs42k7+K0GT/1TQc4yKDdjgND9cjLSAPXlUg6kRaVg7zUNEIPrp5jzFt+DPiMWfbBk/lbPrzaLk8XpL9M/Q8bJ/nLG6BJGAfGKqXWZKiS8eoM635CUrDO9W4hsX2CCXNScWaJx2YZnRSHtLE2zyBtVvGsRCLCsByik1SySG+pC8Cm0bWYfKyJZJopUjRxggGcOEKWHL10mX0myTBqt8mRpYJ5C1Ie5oscYK+tc8rTSAPjdvsuenk/H+NjvN/u74N8hD46qGCeUaO0V+M9PZRBmzdPxzhYkAYwTZIiKd7Kc+aYGaMsJwITrQxwmE66DeXSRwdJSqQoUs84A7TRzBDbYv2Mmt+RrCmRJ2PB4fDgXWxuPW7VBAE2dx236XVqiTuFlZudjlP+9mrK+vQvwPRUne1JlOieYHrGpFIeNxs3IWNPU+LuR8C1ymHry0HT5woICD/qfa6OFMgYP0p0XhzBvYDuQhq8zuDmwhjCJqlk9zE8dsi3xaInk4uWfWnuJqKskDJF/vKNBYqATyDMytUAxDzwS2EYfjMIghRwOAiCv0Ne8x8C2sMwnA6C4C+QLmef8DcOgqARmA7DsOh91hKG4WLFmcvOIwiCCuAPkefuaeAfgyD4QhiG/UEQdAD/adE+fhqB178WBMHjwCeXdgmcrYCiazB1/uqRd4jGBNTJK+OcJQUJChjyyLtGlazeLEsiPV40hqE1RWXv++/i6p00GDOL/AZt3KkF9ipRvAKKbg9TcYELuLQ4TSdTgLGAjBdNnVM2KYaTu14w625H0kmXqfT0FU2bHfumIqrrESZJxVPAscEqNPIS8jtUKVIVJrW+cDlMRSJW7Ia03wf+FfDXS1s9RjT17UrOkNYZTXrLeVzRD+Y7jU5PA74ssPm4OO3WPZZxKXTVSNRdRRM0Jc5PQzps1lNQ1CGHsGkBi09bpYu1hmieaGrSEXM8BUtDQCW2QWls50XKT69m/NAGYu+4aHebSBcFKCFqdtOFFLlpWS6fWc3me4/bZp6jkxlGjYQ2CHMUZ86quGXJ0TfZYXsODdBGh6filiVHJQs0MG7BQTv95Miy13DMCn7GDLXQxAgF0latro8OHuVJhgztNsIWiqTYaVifMepJU7BCDl300kM381SQZNqqt1WyYAFJkhJ5GiM1QnkaLRMkty5tBRf2coAWhizLU8Us6zhrpczjzJIjS5YcBdJkyPP1wbezrfUFu7+uWC+95S7yF2Sbda0nGJ3MsM00pS2QppIFC9RKxQSj1Y1OLnvMjAWzy8QPTQgg2iHoYvp0nYxTX+TguFlWZbj/gYxFv/7HZzzPI0zkRu8zX4r+tPcZyJjrxvUa+jYOcOm4PIHMm4KZn5Yp8uYS4OinxfVAqj63ONiBt16eKDt0jOjcvh5bktJCQxAEfo7dR8Mw/Ki/QhiGz5p+cle0MAzPYbo1hWFYDIJAf8TLCIZIBEGgr8ErlZn/APAvgiDYF4bhTBAEH0AqNyKZ4lc5j/uAoTAMvwsQBMFngB8B+sMw7EOYpYgZNv/Xzf4+D3z8ar/tSnZLg6IgCD4LNgyUBgphGO4wF/4YmKcbPB+G4c++2v5KyB0/iWtoegEHfPy0uQWWr5h8OUyLw+9FAJEfjb6Em9a1yHNHQVIJp6inpgyAOsjLlTq0Yje+qZqvSlarWAHIK0Qluss4VvSSt7wWp/CmDEuWNwYUXcn0uL7U/YD3/Vpcj6Mm3Ds3g4Cjs7jgyHLZyny68SwIgoeBM2EYfisIglda72eQLgfIKF/sKPk1CNrD5AxR4LTKWx5CmCO/uDvjUZMvQXEN0fQc3KScQQCSRuS3I5P4+81yD9LsawznsGpqUpNZriJK6z6DgB6NsJ/HOZxqCsYw6xaw5Q/ljU66u/xt8//TMN2SsuyC1qCUh+X7dV0nOHmqhfqNRiihto9vDL6VfK0Alziz5EpZK9mdpMTO2kN8/dQeANOoNRFRpztU6qSUTFomZpYqsuQs4PCBCEgN0VnW84f8HCA1RE/yKCVzzTOMEmfOiiYkKdn0PsA0YZ2jgz57HjmyNJK3aX9pRLJbj32YTs6x3jJB6znLY3zeqtGVSNJLF/WGxjvHeuoZJ2FAVj/tVt7bilq0uB5HAL3lLjpifQxktJZqlvW1Zzl2Sn7Hjk2HONJ/P/VbBVGXz6xm/MxqarbKMafmG+T+m2jSdE+deJYKzEcQgD2FAzWn5R7bcfkAMt60X8N2ZLxUe8szuHxrFRBRtbkWZBz2mOUaXLmN7iNtjuvf1lTCCyyAC32BY3lGzLLOW/9tNUkUKKmQigKqWqJs0RmiinXXY0sCRWPLWVNkfOd7gINhGE4GQfC7CHM+DXwlDMOvLN4mDMPPBUGwBfhMEASfQ9icty/xkBuI3rHTuHLhq9mXgd8IguDdRCn3JdktDYrCMHxc/x8EwX8lStIMh2G44/Ktrm7TvH4qcK+3aR2FphCtQd5z2oizgDh5w8irXNOh/Ga1SVz9VBp5RqkjuZwyyyt2Y5uKDKi8dQp5DagoAbj0UpWuvohLv1Q1OJBA4dfeqBN/DaaiJxAVFPnuovWWS5J7OZq3rthrsyAIDuDiyL79GvCrwA++2j5MFPajsr8tYRQEbSDqUOl3i9kkX6FOi7T91B2/KewiFqohIZNL3YgOJIKvYljfQSbs35vlVUja0U7vszuJRumHkciFpiq9hWjkoIMoqFIVL9+7OI1ziNNIUfx2XHpUN1Kn5G1TblptU/aKpRQ1DQWaY5L79I3et0Iam9I1Rz0tSceYaE1O9yZhfXwQod9nknnTwFUosSQlDrLL1usUSVHFrGV+qpilk0OW1SmRJEnJNow9y3rGqbdqcwmTtqaWJ8NeDvBp3m0BShuDEXGHw+ykhiIPI1M7RTEirDBOPfNUWJC0v7yP2Zkq24MoS46eU3tJbzLiEKUM8eQcvsVjcwzkWym/bADpPDxbnxZZdaB50wDDg3fZ9Y+c6oQhGJ8RhiPRMsF0Tx1TNQb1zJj72Y1bngFUYvtlZExN4aJKp4nWsc0gYFuXNT1OK0sOIQ5Gh1nuQ1xf/T6HsEFNZnkEp/5zzny2DhmDikkaiAotWOlsnyka8b5f3HxVVSInvc+bzHqXvG3y3rZrWD6maAkVqMtoQRDUAH8J/EsDiOoQ1mYLMvs/FwTBe8Iw/NRlZxqGv2NYnj8GmsMwXBxGuephr/DZK6rDhWF4FIz6yWuwWxoUqQUS2vsx4G1v9rm8WRZD3mvfg4AaFX5YhVPMG0eeIbO4Wokkrni+iAsYxnA1FTNE2aYVu3XNB7+qwPgSMhYUNKsMvQoyKItyCXl9aKaNft9m/l0WYrqJbLnqAUNciuFVbKWm6HWyMAz3Xulzk7u+BVCWaCPwzSAI7gvD8PyVthHTp+Xi9Bq/J5HP8ryEU6FzxfXy/Spv28V9ULz1tZfKFrPPF5C3vDqCqnyidRNbEIe1gHMotUHsiFlWCW6tB/lhHAAC+CIu5xRcFOEe8/f3gT1EJZW7iTqkPchLSGuZFok7TD3fAHfCNwrSa6f+/jOUppIcGzQHmQdq5nlg0zMAHCu3MztTRSnpEluLpRRTp8WRL9w5QVPtCMODd1HcKMCqMrlAnFkLOOaIU0ORAzxoTrGbOHOWlVnPWQ6w16bbTZnUOV1/CyMM0GZBVD3jHGAvdRRsQ9hMbJQ+Ohi31f9iB5ChmCFPnDnLLDUyygCtVia8MTZKKZmwqW1HSvdw36Ze299pYb6CY733sLnruK2dSlMgnSkwQCsgPabK46tZ1+4ktaOCHZUy3Mw9nz5aJ8v+/atEQAqIzz+LU4NT8Kv9q8CpxSmblCbarHE18oLRGiLdTqfBODJu9fM+4HtxTNI2cx5aPwQCyi7hvN4xnW+LAxWT3rI/Dy8hTI9+5itG6rb6Tz/TY6gtntvXYyFvVH1SEASrEED06TAM/8p8vBc4EYbhBbPOXwFdwGWgKAiC3chIeBL4deAXlnjo00TF1jfyOneCuS1AEbAbyIdh+B3vsy1B8P+z9+5xdlbV/f97zUwySchlyIUEksAEEi4BJJSIqK21ogW0BdpqC7UVrZXaatVa+1WqX2tRvz/RtrRWUalQL9XirdZoUbwBahUkQCAk4RJCICEQEnKb3HPOWb8/9t7z7HNy5hIy58ycyef9es1rnmc/+/Y857nstdfaa9m9hCfgfe7+03oFc3OIvo0mRi7JtG8R4W7aS3hEkxYoBdvcSOGBqzPmS4PbZCqX1hltodAElGN9+ToqMTpJnuPSZyQJzUk4LlNtSlah+p7YQGF2R9xeQ3jjVQhWPFuonoQ+ElHw1pFFtF3v9YFsZmuBxYPzPpdrgdZSBHeE8OlJg6Q9hFFcGkzlglJyyACFEFUb1yjud0yFUES4agAAIABJREFU0h5Yl5n0lCgGn2kgOC/uJ6cM2ygmsH9Bta+HowhDkzRuX0V4ESS18JhYfxqgdsduJa3AXxEGwElTtDr+3UEIsJmTruh0wkA5jVDSvHImjO154OheTdOxr3uMbTu6ej28Pbt6NmyG8hnhbbPn6aNpm7KryjnAtMmbg6vw9dE99vFzGcv+Xi3Obsazk0m9rqe3burizTM/07tu6UeVl3N+2w95LEqTE+nhbs7pzb+ubS4z2dirvVq+40y6Jm9jf2Vsr8brlt0XAPRqeh7b2M3zZi7vFVh+uPF8Zs58hpMyZw+5K/JO9rHq4bN5ZlY4h+Mmb2DpxnN6zQ5Pe9G9bHvRNvbTycaN4RZ+avs8Tjp5Ra93wBMWPsgzO2b2Hp8waU9h+5yu+dkUQvE4gsYm/b5LKaJfQ/gY7KMQcFYTTALuyMqk4L9Ji7OTalv81VQL7x0xTy5UdWT1LSBoQdN9ne7pnRT3/jaiiVyu6ckDq6Znak92PA+2mh6Q/HmuFXryOpLGKBe6xjB0xuLNid4alQo3AKvc/Z+yQ08A55nZhNiR86njI9zMzgb+DXgVYSXXf5jZh9z9fYNo/i5gQTS/e5LgyOEPD+d8BqLlhaL+TB7cPS2IvRz4z+zYU8Dx7v6smZ0D/LeZne7uO2oryc0h2s1aIqhTWi84h+oLk9bNpkcyrYmaQRjcpoHuRorv3SzCtzA5YBhDYW6XnDDkVrhi9JK0gskgZDuFJ8IewqdhDOFTMTbuH6CId5UEbig81yVN0uMUgvcswkRgmiQ8khiEpki0DM7BLnjzmeXJFFMI4wnf/NqZZggjxDQgS4u7kz1cjRldKQ7SSrnQND6b1Y8DuDSYTFodKEyX9hHGg6Us/VmKj0L6ACRBZSKFuRPxNOZnXUsaojwQ53LCTF1uPncbhaZoc9zP48pA78L8Z2+bTdvpu6iMCyPvp1bOgw7omRwEkolzNrOzNL13jdK0RWE9zL690SHB+P3sZFIQLqKwtq3SFQSk48P+qofP5tyTf8LunUHbNGHSHq574m2cdHyYtpnbto47eUGvEPWze17Bab9yb6/AkgLKbstOoottLGxb2avJWTThXh5lfq/ThXkz1zKRnl6zwBfN/DlPcVyvW/BHmU9X27Zes7xlD4fYQO0d5d5zqOzr5NgXBa3PqpVnM7F7Mzs3d8H6jl7h9dFxp8DE8AM//vCp4beO98TOp4+qDtZ7Rgl2ZqaN46h2tLGTauFjLfAzquNbleJvmTsAyYfPOylibiVmUsgvJYK2Mh/Q5GaiEGbX0n0+P/ZxD2EYDsCWEN+rJz5bHcD48dCTe49LnkjSiXRTjJhWc3Cg5drnu3YklMzr0vN80BBz2DGz/yQ8gdPNbD3BScENZnYzwd32icAfA8vNLD3Nf+vuN0dHBvcQfqF7iWPlGiYAr3H3R2N7VwCvP4R+vBW4hTBkuNHdVwzNmddn1AdvNbMOwp1+jrvX9X1gZrcB73L3fiNhtZv5EMYibhgpGOsYijhEswiDrbGExzJ50+oiPPpdFB60kpc9CO+lDRSxXNK6kd2xnZWEd+kmJByNdpKHtuTKej/FvZLM57ZQxDDqItwnyRJmRsyXgrqme25j9v9Ewv2Y1h49SOtoTnYNQWDViWZ+Vj/Hfx6+zLeiNUUjHrMTHP5fTWrtGzIJRbmHuTQaTDPQk6mejc7XMaTZ7FyIyuIfdYwPw5V8+rNEYdp2L2F2PbmU3EcYuK4jmCNBYSqQ4sZ0Uj0WHE8YhCYtTheFoJT2HyH4m4IwGF5MYU61mSAgLaMYaCffVmkQPIeDg2/urdmfWILVHb35Tzj5wd4Aoie86EF2ViaFeEkEoai9o0y51M4xkzfy7O7pdI7bx9ZNXXSODwJKe0eZznH7OKatMKcr0V44LGAuHZSr9o9lQ6+26v6NZ1LZ18n4rp7e+mZO2MjG3TOZP2E1W+ni8YdP5dyTf9JrPjeJHo7hmV7nDRPYw92Vc6qC1E5s66EjqlR2M4GnVs5jYneQBjrH7ePZ22ZzwsuCWufxlafSNm1X7/nuXBakkomLNrPzP6KEMiv+fmn000nQBK3Nfj8Ihk/EY50QneoVWqXcpBKK338dwXwymcutI2h28nVmyfFCejyeJAhBuYfDPPrNvYR7OBmvPkUUcrJzyDVNveQe5JLGNXessINCMKqnhckDsU6OZXMHDOnBSB4l92RptXHKfu8wg7cu9DqWajWcc8QFbz1cjgSh6ELgKnf/9SxtBrDF3ctmdiLwU+BMd+9XrznShaIUkBWC8JKCr6ZHPg/U2kYYsJZjehJ20gB3JkWA2UlZvi0UE4ZQLKR/Gpk9jWZSfMip8W8fwWJiDUFYSvdVCmY6l0KzOIlwnzxNtdvurpi+Kdb5CGFeLglbmyjc3a/h4InEkcZQCEVHmfnp/Ry/awjaEM3BbK4H/wzpq5G8yqVBVD4Yq3WcMDUrk+dNpnJ5vm4KLwnpCa1dt7AlOw5VA75J46sHpPsIg+Q0Cz+XYk0IFFqEc+L+RgrPXlBojJL51AyKD0lOvozm2VguDYJrA9CeSqEtSMc3ExbrQyEgpYHzA4QX1KQif9vpxZer8qWjwtqo2uXe2ygEsYml3jhKOclBwbT5T7Jvbyed44q30u6dE4r4PPO3BrfVaWC+l15tx/j5wYzvlMkP8dCOU3qD2E6cvo25E9b1riHazQR6dk9i4YQYf2njOcEhwrIg/I1/6Vb2rD+6Vyja+fXp4TpEd9is7wjt7qT4/WYRBJ6olWubsit4AcxNFHOhZyLhd0laxUcJ1z3f30txSyUTuNxU7puE+2BtTDu1Js+DsZ3NWfosqgOrbs7OoTsey80tN1N9j/XkAkg9kkCUP2PJ2yNZZ3dk+buz9FpvktTkh2JCI5VJdQD80WEKRad6sGrrj1/V9+IQaXnzuUFwGdWmcwAvAa42sxLhEX7zQALRSCG5NJ5C+FYlByvtMa1C4VEumcN1UWh79lNMCs6lcIucBqHpU7olpq2j8Fp3QpYnKZG7CK+ACTHfLoY3DpMYetI9dxzhfkmuuFPQ+/UxT5nCHfcaCqcLULje7qFw7LGJag3lLMIc3ayYbwHhu5xiSaY1bCkI+Wi9z+SSe7SQPq+15nO51ie54KZOXigGWGmgls9GQ2FyV+OS+6D6Uvo9hMAMmSetnuiWuCPLupxiefPThEFyGjSvJzykyYilVoDZSxj0pkHzLOCzFJ7CZodme2M6QKGNyFdpTacQkjbHv2R+tTO2kZtPpfhIEF4YeykEtZ1Q2XtUIaCMi8IAhTDQNnsXlemdsDleiIlw7K88Fkzz0nklF+cEU7yd66czN8b8WbXybNgG488IAs+e1UdXa7fGEcbDE0u9QtCy286j7QW7OPb4cCJP/Xweq7qm95q2TZuzkXKpnaUbkwRKMGWLfdjzdFhXtXN1TOiM5x6Fpl7h4w4Kzc1swgs7+IegsuioanO4OyjcqEO4L75L4fltM/Cd4jqwnvByTrfUTsI9k857aSy7LivzbQqX7nCwaVy+1g2qNZipjR6CRzkoNEWJHig0QaljueYGCjPV3BFKcp6Qkzs1WZul52Z0ef251jbFHcvXCuZ1HA7N9T53pDDqhSJ3f32dtG8QPGm0HPuBhRSxYiB8e84ivC+SeVxa7zGOIhhrsoLYRLEIvkwYvKZArMncqUzhlOFpijhMeym+Z20EISgNfp+l+nUgRgcp0Oouwv2wiWKCL1+Lm5aQJq+GKcjpRsIE3gaKcdJ2gpC1hnAfT4n5k3BepljXO5bwHd9EsY5tEYWRwzqqNUhJiGtF9JkbTRjVAkxt8Ec4eM3BbMKdXbtuIdcEJZM5KExyUhvdhCdubVZ/7uyhm+rF4dG997zx1ITlKWY0JhFuyjRL/9ge6BpfbS4HRfkZVGtgllN4+Un1JVId02IXk1CUZkKWZ3l3ZXVsJawVSTMISVWdayc6KISi+YQXSjr+UqjccFRw9BC1EZVtR1Uvmnykg6eWzSsEizQbMycILDsfnA5Pw6rV0RaxO/Q/aYraZkehK53j3pjngY5CODs1xGp6al+UQDcHoWrP0lDHsztn0zZtF5U749d+DmGtVQpZOa4E0zuKNrYTBNAUyeU7BK1OJsyxFDiaggdCu71amUXxXHP32WsphCIo1oRB+K2S5i7Vl2ax0vEHqXbG8dtUe59La4CSYDSLcD+le2sb4fdO+SFognbWPE899TSu6VnKXdkn1lLtaCEXWtJzVqvpzcm1QrUa4FTn1Jp8Q2Vv1BxHC0cao14oanWmEL4xaSLnAIVp20MxrZvwGUyutrsIgsxCwrsraY3KFILNjLi9icKLWL6EcH+styf+PxDrnErhUSyZPo2N/ZxFWDDfyoNScTDpnkiBWB+n0Cj2EO635BwgaYry4K2JMmHyORmjHCBMFt5HEJCSn80TKILCpkDJeynM7sYRPjGzYpkzY760Zi43PW81HGmKRg9t1DevSeQDuGTG8yTVAQ6SC+7ZdcpAEQMlaZvWUr1YfHJMq3XxvTbbngqPZYJS0hqlgXbS0KQB6s4aASq97E/L8ucunbupdo3cE7u4gmJgvZbCkwvx+FIK7cVtVJvHzaHQFkHQEs3Pjv+UMPBPg+w04E6C3WbgUsIHcl+WJ39hdcZ20kA+1f29OGx6aU3+78W0FKSWo8JHMzfx+hmFMwmyutfHOudHr3qprdVUC1YQBKJUbllHtTZqeuxDGtmtJ1y73Lwtj/WTWJ31a2fs87js2AqKPpxJuG1yxxtPU9yyZ1Bt2gZBQNpMcV53xD7n687ydUmbCffJC+P+LwC2wOZMy5oHXu0ASrXusdMzkjo2huJ5gMKT45PZPhTPShJk8kmN/FmurT9PS+1PpbovQ0nzXHIfSUgoajLpHXsiRWyg5Jp4CmHCKwXGHEv4rObv3aMIzg3GUazVSJNb6bO2jfDoryM8rrsJ76y0JmgMYTCZJuzKhEHl04TB6QLCpzZ969K7rz2mp8HuLgpPd6n/nVSvORKtSVq/k8wvk+C8hfA791CsD9pFuOf2UXiTS+Oe7ri/neKbl+6ZdgqX7mn9UdJY7o1pZ8W8yXHxrvhXoRgjpfjhc2Pduynu/RkU5ukrKVzU54ykwMPSFI0m8gCO6f+TFIOv2jUJUyk0O4knqQ76Wm/WuZ75XT5gyxeHpzVH+ex3PpiMlKhucx/FQLyT6gHvsYSBdIoRM55qzdAPqI5j9L+EAXhtDMsU8I54rIdi0JzaTULSMkJ4xuQLK2ka0sdyEdVxkWYRNA3p45QCzF5IEBogCEz5TM54goCTCzW504rbCC/D5KBgcUxLghpUm/x1xfLfJTgegHBNUzkIWp3NHGwdmc5lDoVmJ+13UQg024CbKITB6RQzqkdTeI7rorgFtsb9/DedSPX1O49CAPle3E/uQdN6snTdNhJ+q3S/nBTz5kGBt1HtXjSteUoaxiSY35XlqXoutkDP1OK36BWI8mdjFUFSzy9mHpy1dp1dbR3pudqT/R9fs1/79dhT8782vd4xMZKQUHSI1Ib6ygdZkygGjmnx+V4Kl8MzCYLOiYQB3xwKrT8UJkVlCmEnxSg7izD5klxiQyGYpBn24yhM2p6kGCCmAewmCqErxfDbQjFITWuMHo95k1vv7bHPeym+KckpwzqC5cPMrJ1WnqkXgTR5eoBwL0yg0CzOpjrob1pnNoYgeEyhWEP9NOH+mUr4dm4jfJOT1qebcN9siGlnEZ6NbQThPH2Hk+e6LgqBKq1r2kv4lCUzvWTKN5XwvD0b+3UCxf2Z8iRvePMpnI08TvFcp//pmYUiJMd2wrc/CV/p+OEwCE3RFDO7HnmfawHaOHgQVeu2LU1lpe2+nDHk5IOqyRQmd3CwgJPHXIFCazSz5ng9skFoT6ZJmkicmY9lnxofBt95VWnwnZo4jWLAmwbg46i2e82FgzlUC0RQBAGFMOD+NtXLP3JNwxcJ3u7SwHsO4cHKhYe9BOdd6SO8K+ZLA/c0sM/XBG2mEObOJGh+kinaUkJExGQal9yWJ43MsQRhbR7VMX8eoBCcbov9SsLfXsKLJu1PpFprt5pgKndbdh1SMN7EOIKA00nw2LaZIC+MyfIvz+o8LR5P8RO2US2oQdD0pOuUewyEcCuuptpxw2aCcPRIlpablCyI20mTl178pVphIjeLW5t5l0smorlQNDueSJpSS89ZrnXdmJVJX5HEGIp1QnkbiVr32luonsDIy9VOfAwFMp9rBBKKDoHObLuNMMBKa25SXJbHCe/uDRQDuBS/Jb2rHo9p6Z1ygELzn5blpRgv42J+KNxsr6MwiUsz92OpDvPbHtMmUawrOivWmdxoTyYM+HZTDBCTwJQPzCZRDCr3UnxDJmXl6s3Ai9ank3CvpbW0Bwj3xhrC758mAiDcG2motZ9ivDOT8PqeQPhenkKxzu2h+D9N9PYQ7tdpFBYZyWxvCmH8sJBwPybaYv6eWF834fuaJirnxGNlghXPAcIEQLpf01hgB8XaOWJ7C2I/1hCeybQOKpmgJoGxdmnuc2UQmqLt7n7lEDUnGsp+Dg7UWCskpZnrtL2Dgz3NJYHnQFY+H6DdQ/Hk1a6byGfJoVhInvcrDSbTYC25Gc7XK6VyM8Oi9nnAY9kAMdeITKKIEQNh4JoW30Px4UsumZM2Y1ncPodi4WrSHqSZjMRewgsmDcifpprxBI1G6sP0WOa7cT9pkl4Y8ySBKK1zmUMQcs4gnO+xFMJNmvW7M+ZLGpaJhBdUPiv4CwoTsAeoNg9bFK9BCoy7K6Y9SHXMpnSt0nkupgh6CiGCSy6g5GZqeXtr4/ZcguCzPuZLizLvpogX1UnxYuwi/B5JyMmFHwjXLN9PM7Bp9jYFsns09uM0iplYCL/VpniMLTBvapHeE++xDqCUgh1DuM+7s/2ZVL+Fk6lbeqbSsSQI5c/LAQqvcrnjhdzdNtn2qvg/17im/VohJdcSp4mPoUJ2BY1g1LvkHkrGmnkyaUuDvCRQdFFMeuTrI/JnP23ns845+cRJqnsG4ZFOA8xOglCSZt3TwK4tpqWF6ql86ktyzJCMJeBgxW/tayWdZ64dy90i5+c2hdHrDexIJBdya7Wj6bdOwk7SFKV75ziCdmYfxT1ElifP25eb7RmxjnSfV+j7Hkt9baMwyUtu5vdTmJDmTKVYs5TMVntiHfvi8R6KlR7pOZlAEbAYqt8Fm4bAXfZYM5/Rz/ENcsndMgSX3H9F/XUI9JGWC0pQDNJy71X54CoJSLnjhVqTOqieDU8rU/PytdSmz8z211JM9UHvG2JStiaJPSFGUk4eM6aDapOtDsJDnw/Et1F8EJOb8Kez410U07rJJCwJB0mYSirrJwkmX0lDk8p1UQhzaVYwmZ6leEq5MJdi7JD178xsP83u1GMzhVlhvpZmOsWHdG5sozvu57GAyNrLtXD5CzTNYiVSUNT/zc5rWiyTa3LOoBCgUryoPAbUWorfIgVJnZOVh0JQ66D6t55EMaOcmyLuozjvXo1pLuQkw+hEHq/rHg7W3KR6IEhuqzk4hlc+4kmaoMSeuJ+76K73fNTT9OZtD/S8J/76MF1yn+DwngFy/YW+F4eINEWHQBIfa4NJJhOjNMDLNTY9dbZrBaI06MqFmTSIq3VYkN5/tYO8CtUD13Q89WUfBw8+a+cYame7awWivH0I55POWQLR6CK/v2oFgPRb5/dLvp3f/4nk2bCzJm9fcYfSfZ/fe33dY2li4gDFs1kvby7EJy3rhD7y5u3mz0n+bOYC3VBpSTX3NxrJYwPVaopycxuo1gTBwXfDHqoHYsk71syaPLXUptW6E64160vCGRQmfeOzsrmQFPvb28Se6kXwibSItWcPzE3OGmKhrvHhoU8D9bS2J5WZS3UMIah24zyOas9kJarXGM0mDMjTiCdpanZSCBiLYxtJI5S83yXBJAkK67M6uikElnUUkcyJeVcAKfDYKQTt0nyqBY7V2f5SwoslBf2bThF3g9iX72V1JuEvmZ0to9rPxiKKmETpPJMKPgl3SThN1yZ5iUvnkV6uyUX7Xor1V1Dcoun6965Nir/tnnif5PfD5rUUkh+Ee20V1cJ6rQODXOOTyO/j3CFJikFUz9ytVqiZXZMnd8yQk56DyVnevA/5c1vrcIE+9g8Hmc/VI8YefS8wxd1fbWZHAdcR5khvc/cv9VdeQtEhUCsM1Q6EnmtgydpB10hiIGXvSA6mKYaW2vv/UMqk+FmNYjCCRL32D+d5a8S9L+9zo4k0aKl1fpAPZNIINl/nUE9AycvMpNptcK45Gs/Bi8lPo3qAV8+7XS5UJQEoX4eUmxLNj/s7svxjqtd/9ORCVS3jw8C5RKFNSoPyNLDey8EumOFgE7rcVG19tj2OavOzRwkCVNL6JI9HudnfTQRhIwkLaT1Rvoj3QQpX06lcrUeiJDz0AK+iEHCeJAgwuee+fRzsuGIm1WZve6he1zQxy5u87t0W97sJt1KKIbWW4hrVxgFKTgxeQ7W78nGxzTk1+fM+dlJtwje95vgkYE78bVdR5+XbTbVwv5Fwn27J9idTmKp1x/+50JGPTpJZXLoH0/OU6/nT/VwrWOXPSlqNmtJr4xbla4xqnaLUqzN/liHc9EMlyAyNUGRmfwX8KeHzsxx4g7vvrclzIfAvBKOKz7r7R/pLf479uJHgW/EZdz8jSz+kNtx9DfBGM/t6TPpd4Ovu/m0z+wogoUgIIVoBaYpGG/XMe+qZ4+Tp+WxyEmbS7HQaoNXmrdX45IPDfNY9DSRPy8rvAO7P2hpPscYibzs3was1dcrrrseeQmMA2UL6VOYALJhZLMTvIgys08xDGtvmMY5yM4pZFIsSITg86KTwoLaPau9npXh63RSD+dMJgkt+afdQCEV7Kcz8Uh9zQayjpjwEgSgJOGnt0HgKwSa5v05j+BmEtUfpkk4iCCxJUNsYzysJPfNjvbUCYHJ1nrzC5QJkugbpPH4Q689N9JJ5IgRBMq0LgmI9UhIKk9vRdJ7jY97ea5Mu5A6qtUO16+fy+zRdxDx/fmGTJ7l8vd3kmuOnEW6KPE5REr4gCFz5BEKuCa3X5niqgy8nLW2ttmogE9mRg5nNBt4GLHT3PWb2VeAy4HNZnnbgk8ArCL/qXWa2hHB3H5Tu7itr2jgG2OPuPVnafHevNTT9HPAJ4AsDte3uK83sTOD/q6njT9z9mZq0ORT63wHnHCUUHQIV2Lyr8HswlNTOs4wE1KeBGWn9AfVpMDSqPyccbgUVuKXn4PnxnJF0HUW/bNgMf92I70U9RtozdjClAY6vyrY315xPT296NU/V/E/8tE79v6iTlpdbVfP/udJ3+ef+G9Xre39t3XuI9dfrVV89TW2G3yScU96Pnpr/rUeznqXD/F5suAXe19+3AmCcmS3N9q939+tr8nQA483sAMGivNYC/lxgddTAYGY3AZcQ9JP10lfWlP914M/N7JXuvtfM3kTwDfnKPJO7/8TMugfZ9kp3X04Rxrg/kkuXZRR+lPpEQtEh4N7vGujnjJktHWmL4dSngRlp/QH1aTCMtP7kuPuFw90HMTQ06ntRj5F8Tz8XRtv5gM6pVWiVcxqKb4W7P2lm/wA8QVBzfd/dv1+TbTbVRp/rCY7g+0qvbeNrZjYPuMnMvgb8CUHzMxgG1UaOmU0DPgycbWZXAR8HPmFmryI48u8XCUVCCCGEEEIcQZjZ0QTNyzyCAeTXzOyP3P0/8mx1ino/6Qcnun80ank+BZzk7jvr5avXxcG2kbX1LPDmmuQ3DLK9gVVJQgghhBBCiFHFy4HH3H2Tux8A/gt4UU2e9RTuQyCYom3oJ/0gzOzXCI7fvwn83SH0b9BtDBUSikYGtTaeIwH1aWBGWn9AfRoMI60/Qhwuo+2eHm3nAzqnVmE0nlNfPAGcZ2YTzMyA8zl4pdpdwAIzm2dmYwmOGJb0k16FmZ0N/BtBI/UGYKqZfWiQ/RtUG0OJgrcKIYQQQghxhGFmfw/8AcEVyr3An7r7PjO7OW5vMLNXAv9McIt9o7t/OJatm15T/4uBHdExAmY2Bni9u/9bTb7/BF5KcHSxEfg7d79hMG0MJRKKhBBCCCGEEEc0Mp8TQgghhBBCHNFIKGoyZvYaM1thZhUzW5yld5vZHjNbFv8+nR07x8yWm9lqM/t4tP1seJ/isatiuw+Z2QVZ+oUxbbWZvWco+1PT/gfM7MnsurwyO1a3b82gWec/QB/WxvtiWYpFYGZTzewHZvZI/H90g/two5k9Y2YPZGl1+2CBj8drdr+Z/UoT+zQi7yMhhhIze5eZuZkNFL9kxGNmHzOzB+O74ptm1jVwqZHJSPheDBVmNtfMbjWzVXHc8Pbh7tNQYWbtZnavmX1nuPsihgcJRc3nAeB3gZ/UOfaouy+Kf7lLwU8BVxLiTi8AhjqWSd0+mdlCwsK202Ob18WXRooyfBGwELg85m0U12bX5eb++tbAPvQyDOffH78Rr0sSZt8D/MjdFwA/ivuN5HMcfD/21YeLKO7hKwn3dbP6BCPsPhJiKDGzuYT4H08Md1+GiB8AZ7j784CHgauGuT/PiRH2vRgKSsBfu/tpwHnAW1r8fHLezuGH7xUtjISiJuPuq9z9ocHmN7Njgcnu/gsPC8C+AFzapD5dAtzk7vvc/TFgNSHCcG+UYXffD6Qow82kr741g5Fw/n1xCfD5uP15hvheqcXdfwJsGWQfLgG+4IE7gK54fzejT30xnPeREEPJtcD/YYA4Hq2Cu3/f3Utx9w6CO95WZCR/Lw4Zd3/K3e+J2z0EIWL28Pbq8DGzOcCrgM8Od1/E8CGhaGQxL6pub7fg1x3Cy2Z9lmc9zXsB1YsmPLuf9Ebx1mhCcWNmDtbsPuQMZ9s5DnzfzO42sytj2kx3fwrCxws4Zhj61Vcfhvu6jbT7SIghwcwuBp509/uGuy8N4k+A7w4/eDRyAAAgAElEQVR3J54jo/YdY2bdwNnAncPbkyHhnwmTCpXh7ogYPjqGuwOjETP7ITCrzqH3uvu3+ij2FHC8uz9rZucA/21mp/McIvoOYZ/6arueMP2cZyf76xvBxOqDsf4PAv9I+EAOyXV5jgxn2zkvju4yjwF+YGYPDkMfDoXhvG4j8T4SYtAM8J78W+A3m9ujw2cw3yUzey/BZOtLzezbEDIq3zFmNhH4BvAOd98x3P05HMzst4Bn3P1uM3vpcPdHDB8SihqAu7/8OZTZB+yL23eb2aPAyYRZpdxs4DlF9H0ufaL/aMJDFmV4sH0zs38D0gLIpkc6zhjOtntx9w3x/zNm9k2CmcZGMzvW3Z+KpmnPNLtf/fRh2K6bu29M2yPoPhJi0PT1njSzM4F5wH0WfPDMAe4xs3Pd/ekmdvGQGejdb2ZXAL8FnO+tGz9k1L1jLMSa+QbwJXf/r+HuzxDwYuDi6IBnHDDZzP7D3f9omPslmozM50YIZjYjLfA2sxMJi9HXRPOjHjM7z8IX73VAX5qdoWYJcJmZdZrZvNinX9LEKMM1a05+h+AUor++NYOmR1muxcyOMrNJaZswS/xA7McVMdsVNO9eyemrD0uA10UvdOcB25OZXaMZofeREIeNuy9392PcvdvduwmD8F8Z6QLRQJjZhcC7gYvdffdw9+cwGPbvxVASxyE3AKvc/Z+Guz9Dgbtf5e5z4vNzGfBjCURHJtIUNRkz+x3gX4EZwP+Y2TJ3vwB4CXC1mZWAMvBmd0+Lxf+c4FFrPMGuekhtq/vqk7uvMLOvAisJ5gtvcfdyLPNW4BaKKMMrhrJPGR81s0UEc4O1wJ8B9Ne3RuPupSaef1/MBL4ZZ4Y7gC+7+/fM7C7gq2b2RoIXqtc0shOWRaE2s/XA3wEf6aMPNwOvJDgz2A28oYl9eulIu4+EEP3yCaCTYBoMcEeNV9aWYIR8L4aSFwN/DCw3s2Ux7W+TR08hWhlrXY20EEIIIYQQQhw+Mp8TQgghhBBCHNFIKBJCCCGEEEIc0UgoEkIIIYQQQhzRSCgSQgghhBBCHNFIKBJCCCGEEEIc0UgoEiMaM9vZ4Po/a2YL4/bfPofy3Wb2wMA5q/LvyVyZ1h7/gJm961D7EcueZGbLGn3NhBBipGJmc83sMTObGvePjvsnNKi9N5vZ6+L2683suOxY7/flMNv4gJk9aWZXD0Fdv2ZmKw/luyXEkYKEInFE4+5/6u4r4+4hC0XPkUfdfdFQV+ruDalXCCFaBXdfB3yKEC+N+P96d3+8Qe192t2/EHdfDxyXHcu/L4fLte7+/sOtxN1/SogXJ4SoQUKRaDnM7AQz+5GZ3R//Hx/TP2dmHzezn5vZGjN7dUxvM7PrzGyFmX3HzG7Ojt1mZovN7CPA+Khp+VKtBsjM3mVmH4jb55jZfWb2C+AtWZ52M/uYmd0V+/Zngzyf95rZQ2b2Q+CULP0kM/uemd1tZj81s1Oz9DtiO1dLMySEEFVcC5xnZu8AfhX4x9oM8R3/oJl9Pr6vv25mE+Kx883sXjNbbmY3mllnTP9I1LLcb2b/ENM+EL8PrwYWA1+K35Hx6fsS810e63vAzK7J+rHTzD4cvyl3mNnMgU7OzCaa2b/H+u43s9/L6romfjN+aGbnxj6sMbOLD/uqCjHKkVAkWpFPAF9w9+cBXwI+nh07lvAR/C2KmcLfBbqBM4E/BV5YW6G7vwfY4+6L3P21A7T/78Db3L22njcC2939+cDzgTeZ2bz+KjKzc4DLgLNjP5+fHb4e+Et3Pwd4F3BdTP8X4F9iOxsG6KsQQhxRuPsB4G8IwtE73H1/H1lPIWiRngfsAP7CzMYBnwP+wN3PBDqAP4/meL8DnB7zf6imza8DS4HXxu/InnQsmtRdA7wMWAQ838wujYePAu5w97OAnwBvGsQp/l/Ct+bM2JcfZ3XdFr8ZPbGPr4j9PmzTOyFGOxKKRCvyQuDLcfuLBCEo8d/uXokmC2nG7VeBr8X0p4Fbn2vDZjYF6HL327P2E78JvC6uF7oTmAYsGKDKXwO+6e673X0HsCS2MxF4EfC1WN9nCAIfhPP/Wtz+MkIIIWq5CHgKOKOfPOvc/X/j9n8QvhWnAI+5+8Mx/fPASwhC017gs2b2u8DuQ+jL8wnCyiZ3LxEm814Sj+0HvhO37yZM4A3Ey4FPph1335rV9b24vRy4PQqIywdZrxBHNB3D3QEhhgDPtvdl21bz/1AoUT1pMC6ryw/O3nvsL939lkNsq159bcA2rRESQohDw8wWETQk5wE/M7Ob3P2pOllr371OH98Ldy+Z2bnA+QTt/lsJmp9BdamfYwfcPfWjzODGZX19h/K6KsTvobtXzEzjPSEGQJoi0Yr8nPBRAngt8LMB8v8M+L24tmgm8NI+8h0wszFxeyNwjJlNi/bkvwXg7tuA7WaWtFO5qd0tBDOLMQBmdrKZHTVA334C/E60P58E/HZsZwfwmJm9JtZlZnZWLHMH8Htx+7LaCoUQ4kjFzIzgaOEd7v4E8DHgH/rIfryZJTPoywnfigeBbjObH9P/GLg9au+nuPvNwDsIZnC19ACT6qTfCfy6mU03s/bY1u118g2W7xOEMiB42DuMuoQQEQlFYqQzwczWZ3/vBN4GvMHM7id8sN4+QB3fANYDDxDM0O4EttfJdz1wv5l9KZocXB3zfofwoUy8AfhkdLSwJ0v/LLASuCc6afgMA8z6ufs9wFeAZbGfP80OvxZ4o5ndB6wALonp7wDeaWa/JJjU1TsXIYQ4EnkT8IS7/yDuXwecama/XifvKuCK+C2ZCnzK3fcS3vFfM7PlBI3LpwnCzndi3tuBv6pT3+eATydHCykxaqmuIphu3wfc4+7fOoxz/BBwdHTacB/wG4dRlxAiYoWmVYjRi5lNdPedZjYN+CXw4ri+qNn96Aa+4+792bkPVMcEglMIN7PLgMvd/ZLs+E53n3jYnRVCiFHKULyLm4UFz6c73b0vjdeh1tdNi5y7EM1ENqbiSOE7ZtYFjAU+OBwCUaQMTDGzZYexXugc4BPRTGQb8CcQXHUTtE0bh6SnQgghRgI7gSvNbPLhxioys18jaM82D0nPhBhFSFMkhBDiiMXMbiSsGXym3sx5nHz4F0LAy93A66PZqxBCiFFEQ9cUmdmFFoJSrjaz99Q53mlmX4nH74wq3XTsqpj+kJldMFCdZjYv1vFIrHNsTH9zDHC2zMx+ZmYLY3q3me2J6cvM7NONvBZCCCFGJJ8DLuzn+EUE1/oLgCsJi/iFEEKMMhomFEUPK58kfFAWApcngSTjjcBWd59PCLJ2TSy7kOBV63TCx+o6M2sfoM5rgGvdfQGwNdYN8OUY4GwR8FHgn7L2H41B1ha5+5uH8vyFEEKMfNz9J8CWfrJcQggW7e5+B9BlZsf2k18IIUQL0sg1RecCq919DYCZ3UT4uKzM8lwCfCBuf51incQlwE3uvo/glnh1rI96dZrZKkK8gD+MeT4f6/1UdG2cOIq+Y8wMyPTp0727u/u5FhdCiFHP3XffvdndZwx3P4aQ2cC6bH99TDso7o2ZXUnQJnHUUUedc+qppzalg0II0YqMtO9FI4Wieh+SF/SVJwZG2w5Mi+l31JSdHbfr1TmNEOiyVCc/ZvYW4J2ERfZ5sLV5ZnYvIVL1+9w9d4d8EN3d3SxdurS/LEIIcURjZo8Pdx+GmHqBN+tOrrn79QTX/ixevNj1vRBCiL4Zad+LRq4pGsyHpK88Q5UeNtw/6e4nAe8G3heTnwKOd/ezCQLTl81scm0lZnalmS01s6WbNm2q04wQQohRzHpgbrY/B9gwTH0RQgjRIBopFA3mQ9Kbx8w6gCkE2+6+yvaVvplg591Rk17LTcClAO6+z92fjdt3A48CJ9cWcPfr3X2xuy+eMWPEaPiEEEI0hyXA6yxwHrA9BuMUQggximikUHQXsCB6hRtLcJywpCbPEuCKuP1q4McefIQvAS6L3unmEbz+/LKvOmOZW2MdxDq/BWBmC7L2XgU8EtNnRMcNmNmJsY01Q3b2QgghRjxm9p/AL4BTzGy9mb0xei1NznduJnwbVgP/BvzFMHVVCCFEA2nYmqK4RuitwC1AO3Cju68ws6uBpe6+BLgB+GJ0pLCFIOQQ832V4JShBLzF3csA9eqMTb4buMnMPgTcG+sGeKuZvRw4QPBKl4SwlwBXm1mJEFDzze7enwciIYQQowx3v3yA4w68pUndEUIIMUwoeOshoIWzQgjRP2Z2t7svHu5+DDf6XgghRP+MtO9FI73PCSGOMJ7ZsZcpE8bQ2dE+qPy795e48WePsWt/mWOnjOP046Zw9twu2trq+U4RQgghhGgMEoqEEIfNmk07ueZ7D3LLio0YcMqsSbxg3lR+49RjqLjzo1XPsHHHPs6cPYUz50xm1uTx7Nh7gL/9r+Ws2bwLo3AXOXNyJ69/0Tz+/KUnDeMZCSGEEOJIQkKREAKAnr0HeGr7Xsa2t9E9/SgAlq3bxr/88GFeduox/MHzj6fNYOnjW2kzY/EJR7PnQJmX/9PtPL19LxPGtvOW3wiCzPInd/CVpev4/C9CCIKjxrYza8o4frhqY1WbY9vb+PKbXsB586axeec+frHmWd7zjeX84/cfklAkhBBCiKYhoUiII5gD5Qrfvm8D7/3mA+w5UO5N/7UF0zll5iT+/edrGdNu3PrQJj59+xr2Hijz7K79AMyaPA6Ap3fs5Q8Wz+VdF5zCjEmdvXXsPVDmjjXP0t5mnDtvKp0d7ezYe4CHn+5hU88+du4rccEZs5g8bgwAx0wexyWLZnPvE9v4xj3rm3gVhBBCCHGkI6FIiBZm74EyKzZs58TpE5k0roNv3vsk//dbD1AqO+1txrgx7bz3ladx5pwpPLZ5F49s3Mkjz/Tw4wefoVR2SpUKFYdTZk7ikrOPY3bXeNZv3cM///BhfvrIZi5ddBx/f8kZ3PvEVt72n/fS0d7Gda/9FUoV5/3//QBld77x5y/knBOmHtS3cWPaeekpx1SlTR43hsXdB+fN6WgzKhU5gBFCCCFE85BQJMQwUK4431r2JCfOmMiiuV24O7/+sVvZvqfEX718AeefNhMzeHbnfn7y8CY+85NHAeOiM2bRPf0oTpx+FBu27+Uj313FgXIQINrNKLtzxuzJnDWni137Stz9xFb+zzfur2r7+KkTeMG8qUw9qpNJ4zr41fnTedmpx1Q5N3jTr53IU9v3cMK0YEb30lOO4f4PXFBVz8VnHdeQa9PebpQkFAkhhBCiiUgoEqLJrNiwnb/9r+Xct347AH/4guN5Zsc+ntiyh5mTO/nAt1fygW+vrCqzaG4XnR1t/PeyJ3uFIIAXzJvKa887gae27WH1Mzt5xcKZvGLhTMyCgOPuLH9yO49t3sVJMyZy0oyJjB87sGe4sR1tvQJRs2k3oyyhSAghhBBNREKREAPw5LY9lMoVjp86ATPD3SlXnI72Nnr2HuC7DzzNj1c9w6wp4zhr7hQe27ybz/50DRV3Lnv+8ZxzwtF0TRhDz94SX7lrHbc/vImONuMfX3MWK5/awQ0/ewwD/u63F/L6F3XzyDM7uXPNs4ztaGPyuDGcc8LRHBPX7wDs3Fdi7eZdAJwxe0q/fTcznjeni+fN6WrkJRpSOtqCxksIIYQQollIKBIisnt/iR+s3Mjy9dv5/efP5eSZk/jmvet551fuw4HZXeOZPqmTB57cfpAm49gp47j94QN87udrATh33lQmjG3nC79Y25sGwd30285fwJ+8uJuuCWP5PeAPnj+XijunzpoMwMkzJ3HyzEl99nNiZ8eAwlAr09ZmuEOl4opXJIQQQoimIKFIHBHsPVBmybINfPB/VrK/VKFccSaMbeeDl57BpHEd/M3X7mfr7v0kWefff76WX50/ndsf3sQLT5zGRWfO4uern6Vn3wEuP3cux0wax75SGcN42WnHcPbcLsoVZ/WmnUyf2Mn0iZ297T62eRc795WoVJxfOeFoxrS3VfWtPwHoSKQjCkJld9qQUCSEEEKIxiOhSIx6LvnEz1ixYQelinPyzImcduxkxnW087+PbubtNy0DYMr4MfzB84/nkkXHMf+YifzzDx/mP+54gukTx/L5PzmXsR1tvO6F3f2209FuvdqexLgx7Zx27OQ+Soh6tLcFobFcccYMvPxJCCGEEOKwkVAkRj1vfdkC3vSFpfzT75/F75w9u9cJQaXi3PnYFvYeKPPi+dMZ21FocD506Zm856LTmNipR6TZJEWaPNAJIYQQolloxCdGPeVKBYDTjp3cKxBBWLvywpOm9VlOAtHwkGuKhBBCCCGaQdvAWYRobZLGoUOL9luC9vgzSSgSQgghRLOQUCRGPWlwLU9mrUF7uzRFQgghhGguDRWKzOxCM3vIzFab2XvqHO80s6/E43eaWXd27KqY/pCZXTBQnWY2L9bxSKxzbEx/s5ktN7NlZvYzM1s4UBtidFGWpqil6PU+J6FICCGEEE2iYUKRmbUDnwQuAhYCl+cCSeSNwFZ3nw9cC1wTyy4ELgNOBy4ErjOz9gHqvAa41t0XAFtj3QBfdvcz3X0R8FHgn/prY4gvgxgBJPO5dglFLUF7XPdVimvBhBBCCCEaTSM1RecCq919jbvvB24CLqnJcwnw+bj9deB8CyvhLwFucvd97v4YsDrWV7fOWOZlsQ5inZcCuPuOrL2jgDT93FcbYpRRaIpkLdoKJOFVMpEQQgghmkUjR4mzgXXZ/vqYVjePu5eA7cC0fsr2lT4N2BbrOKgtM3uLmT1K0BS97RD6h5ldaWZLzWzppk2bBjhlMRKRpqi16GiXpkgIIYQQzaWRQlG9EWjtIoG+8gxVethw/6S7nwS8G3jfIfQPd7/e3Re7++IZM2bUKSJGOuVyGFxLKGoN2kxrioQQQgjRXBopFK0H5mb7c4ANfeUxsw5gCrCln7J9pW8GumIdfbUFwdzu0kPonxgFlOPYWkJRa9DraMElFAkhhBCiOTRSKLoLWBC9wo0lODVYUpNnCXBF3H418GN395h+WfRONw9YAPyyrzpjmVtjHcQ6vwVgZguy9l4FPJK1Xa8NMcpIwVvlfa41SK7TS2UJRUIIIYRoDh0DZ3luuHvJzN4K3AK0Aze6+wozuxpY6u5LgBuAL5rZaoKG6LJYdoWZfRVYCZSAt7h7GaBenbHJdwM3mdmHgHtj3QBvNbOXAwcIXumuGKgNMbrQmqLWIgmvFWmKhBBCCNEkGiYUAbj7zcDNNWnvz7b3Aq/po+yHgQ8Pps6YvoY63uPc/e399K9uG2J0US4rTlErkYTXktYUCSGEEKJJyEexGPVIU9RatCt4q2gygwg0fryZ3Wpm95rZ/Wb2yuHopxBCiMYhoUiMesoVp83ATEJRKyChSDSTQQYafx/wVXc/m2DmfV1zeymEEKLRSCgSo56yuwK3thDtcsktmstgAo07MDluT0GeSoUQYtShkaIY9ZQrLtO5FiIFb5VQJJrEYAJ5fwD4IzNbT1jT+pf1KlKwbyGEaF0kFIlRT6nscrLQQrRHrZ6EItEkBhPI+3Lgc+4+B3glwWvqQd9PBfsWQojWRUKRGPWUKxXa2yUUtQrJfE7e50STGEwg7zcCXwVw918A44DpTemdEEKIpiChSIx6ShXvHWiLkY8cLYgmM5hA408A5wOY2WkEoUj2cUIIMYqQUCRGPVpT1FpoTZFoJu5eAlJQ8FUEL3MrzOxqM7s4Zvtr4E1mdh/wn8Dr3RVdWAghRhMNDd4qxEigXNGaolaiLXmf05hTNIlBBBpfCby42f0SQgjRPKQpEqOecsW1pqiF6Og1n6sMc0+EEEIIcaQgoUiMekoVxSlqJZKpY6ksTZEQQgghmoNGimLUozVFrUX6rSoynxNCCCFEk5BQJEY9pUpF3udaiGQ+J5fcQgghhGgWEorEqEeaotaiTS65hRBCCNFkGioUmdmFZvaQma02s/fUOd5pZl+Jx+80s+7s2FUx/SEzu2CgOmOMiTvN7JFY59iY/k4zW2lm95vZj8zshKxM2cyWxb/auBRilFCueK+bZzHy6ZBQJIQQQogm0zChyMzagU8CFwELgcvNbGFNtjcCW919PnAtcE0su5AQQO904ELgOjNrH6DOa4Br3X0BsDXWDXAvsNjdnwd8Hfho1v4ed18U/y5GjEpK0hS1FNIUCSGEEKLZNFJTdC6w2t3XuPt+4Cbgkpo8lwCfj9tfB843M4vpN7n7Pnd/DFgd66tbZyzzslgHsc5LAdz9VnffHdPvAOY04FzFCEZxiloLaYqEEEII0WwaKRTNBtZl++tjWt08Mar4dmBaP2X7Sp8GbIt19NUWBO3Rd7P9cWa21MzuMLNL652EmV0Z8yzdtGlTX+cqRjClivcGBBUjn3Y5WhBCCCFEk+loYN31RqG1o5y+8vSVXk+I6y9/0ZDZHwGLgV/Pko939w1mdiLwYzNb7u6PVlXifj1wPcDixYs1SmtByhVn3Bj5FGkVkqdAaYqEEEII0SwaOVJcD8zN9ucAG/rKY2YdwBRgSz9l+0rfDHTFOg5qy8xeDrwXuNjd96V0d98Q/68BbgPOPvTTFCOd4H1OQlGr0C7zOSGEEEI0mUaOFO8CFkSvcGMJjhNqPbwtAa6I268GfuzuHtMvi97p5gELgF/2VWcsc2usg1jntwDM7GzgMwSB6JnUsJkdbWadcXs68GJg5ZBeATEi0Jqi1sLMaDMJRUIIIYRoHg0zn3P3kpm9FbgFaAdudPcVZnY1sNTdlwA3AF80s9UEDdFlsewKM/sqQUgpAW9x9zJAvTpjk+8GbjKzDxE8zt0Q0z8GTAS+Fvwx8ET0NHca8BkzqxCEw4+4u4SiUYi8z7UeHW1tlF1CkRBCCCGaQyPXFOHuNwM316S9P9veC7ymj7IfBj48mDpj+hqCd7ra9Jf3Uf/PgTP7PwMxGihXKtIUtRjtbSZNkRBCCCGahhZaiFFPqeK9sW9Ea9DeZpTKEoqEEEII0RwkFIlRj9YUtR7tbUZF5nNCCCGEaBISisSop6w1RS1HR5tRqlSGuxtCCCGEOEKQUCRGPdIUtR5tbUZZMpEQQgghmoSEIjHqKSlOUcvR0WaUpSkSQgghRJPQSFGMeqQpaj3azCjJ+5wQQgghmoSEIjHqKZUrWlPUYnS0GxUJRUIIIYRoEhKKxKhHjhZaj/Y2aYqEEEII0TwkFIlRT9llPtdqtJuCtwohhBCieUgoEqMeaYpaj/Y2CUVCCCGEaB4SisSopyRHCy2HhCIhhBBCNBMJRWJUU6k47iHujWgdOtqMsksoEkIIIURzkFAkRjVpsb40Ra2FNEWimZjZhWb2kJmtNrP39JHn981spZmtMLMvN7uPQgghGkvHYDKZ2VR339Lozggx1KSBtYK3thbtbUapLKFINB4zawc+CbwCWA/cZWZL3H1llmcBcBXwYnffambHDE9vhRBCNIrBjhTvNLOvmdkrzWzQU+4Dzb6ZWaeZfSUev9PMurNjV8X0h8zsgoHqNLN5sY5HYp1jY/o74+ze/Wb2IzM7IStzRcz/iJldMdjzEq1DMsGSpqi1aJf5nGge5wKr3X2Nu+8HbgIuqcnzJuCT7r4VwN2faXIfhRBCNJjBCkUnA9cDfwysNrP/Z2Yn91cgm327CFgIXG5mC2uyvRHY6u7zgWuBa2LZhcBlwOnAhcB1ZtY+QJ3XANe6+wJga6wb4F5gsbs/D/g68NHYxlTg74AXED6Kf2dmRw/yeogWoVxOmiIJRa2EzOdEE5kNrMv218e0nJOBk83sf83sDjO7sF5FZnalmS01s6WbNm1qUHeFEEI0gkEJRR74gbtfDvwpcAXwSzO73cxe2Eexwcy+XQJ8Pm5/HTg/aqIuAW5y933u/hiwOtZXt85Y5mWxDmKdl8a+3+ruu2P6HcCcuH0B8AN33xJn/35AEMDEKKJUqQDQ0S6hqJVob2uTUCSaRb2XQ+3N1wEsAF4KXA581sy6Dirkfr27L3b3xTNmzBjyjgohhGgcgxKKzGyamb3dzJYC7wL+EpgO/DXQ14LTwcy+9eZx9xKwHZjWT9m+0qcB22IdfbUFQXv03UPon2hx0sC6bfBWn2IE0CFNkWge64G52f4cYEOdPN9y9wNxou4hgpAkhBBilDBY87lfAJOBS939Ve7+X+5ecvelwKf7KDOY2be+8gxVetGQ2R8Bi4GPHUL/ZA7R4sj7XGvSZtb72wnRYO4CFsR1qWMJpttLavL8N/AbAGY2nWBOt6apvRRCCNFQBisUvc/dP+ju61OCmb0GwN2v6aPMYGff5sb6OoApwJZ+yvaVvhnoinUc1JaZvRx4L3Cxu+87hP7JHKLFKbzPSShqJTrajIqEItEEooXBW4FbgFXAV919hZldbWYXx2y3AM+a2UrgVuBv3P3Z4emxEEKIRjBYoahe3IarBigzmNm3JYT1SQCvBn7s7h7TL4ve6eYRzBR+2VedscytsQ5ind8CMLOzgc8QBKLcY9AtwG+a2dHRwcJvxjQxikhCkdYUtRbt7da7HkyIRuPuN7v7ye5+krt/OKa9392XxG1393e6+0J3P9PdbxreHgshhBhq+o1TZGYXAa8EZpvZx7NDk4FS/VIBdy+ZWZp9awduTLNvwNL4sbkB+KKZrSZoiC6LZVeY2VeBlbGdt7h7OfbpoDpjk+8GbjKzDxE8zt0Q0z8GTAS+Fr2JP+HuF7v7FjP7IEHQArhasZhGHyXFKWpJ2s2QokgIIYQQzWKg4K0bgKXAxcDdWXoP8FcDVe7uNwM316S9P9veC7ymj7IfBj48mDpj+hqCd7ra9Jf3078bgRv7PgPR6vSaz8nRQkvR0SZNkRBCCCGaR79CkbvfB9xnZl/KPLsJ0TKkgbXWFLUWbW3WG2NKCCGEEKLRDGQ+91V3/33gXjPLRyhGMLN+XkN7J8RhUpb3uZako80ouw8ccMsAAB57SURBVIQiIYQQQjSHgczn3h7//1ajOyJEI+g1n5OjhZaiXXGKhBBCCNFE+l197u5Pxc3NwDp3fxzoBM6ijvtqIUYa0hS1Ju1tilMkhBBCiOYxWJdcPwHGmdls4EfAG4DPNapTQgwVJcUpakmkKRJCCCFEMxmsUGTuvhv4XeBf3f13gIWN65YQQ4O8z7Um7SahSAghhBDNY9BCkZm9EHgt8D8xbaD1SEIMOyUFb21J2tslFAkhhBCieQxWKHo7cBXwzRhY9UTg1sZ1S4ihodzrklvBW1uJDpnPCSGEEKKJDErb4+4/IawrSvtrgLc1qlNCDBXlGP9TjhZai3aTowUhhBBCNI9BCUVmdjLwLqA7L+PuL2tMt4QYGsoK3tqSJM1epeK06bcTQgghRIMZ7LqgrwGfBj4LlBvXHSGGlpJccrckaQ1YqeKM1W8nhBBCiAYzWKGo5O6famhPhGgAaV2KtA2tRVv0FlhxmdAJIYQQovEMdvX5t83sL8zsWDObmv4a2jMhhoBSWZqiViT9XlpXJIQQQohmMFhN0RXx/99kaQ6cOLTdEWJoKSt4a0uSNHvlsoQiIYQQQjSewXqfm9fojgjRCMqeNEVyyd1KJE1RWeZzQgghhGgCgxopmtkEM3ufmV0f9xeY2W8NotyFZvaQma02s/fUOd5pZl+Jx+80s+7s2FUx/SEzu2CgOs1sXqzjkVjn2Jj+EjO7x8xKZvbqmvbLZrYs/i0ZzLUQrUVJmqKWpL3XfK4yzD0RQgghxJHAYKfP/x3YD7wo7q8HPtRfATNrBz4JXAQsBC43s4U12d4IbHX3+cC1wDWx7ELgMuB04ELgOjNrH6DOa4Br3X0BsDXWDfAE8Hrgy3W6ucfdF8W/iwe8CqLlKJflkrsVSb+XZCIhhBBCNIPBCkUnuftHgQMA7r4HGGiUeS6w2t3XuPt+4Cbgkpo8lwCfj9tfB843M4vpN7n7Pnd/DFgd66tbZyzzslgHsc5LY1/Xuvv9gIZXRyDSFLUm0hQJIYQQopkMVijab2bjCc4VMLOTgH0DlJkNrMv218e0unncvQRsB6b1U7av9GnAtlhHX23VY5yZLTWzO8zs0noZzOzKmGfppk2bBlGlGEmUFaeoJWmPLrnL8j4nhBBCiCYwWO9zHwC+B8w1sy8BLwbeMECZeqPQ2hFOX3n6Sq8nxPWXfyCOd/cNZnYi8GMzW+7uj1ZV4n49cD3A4sWLNUJrMaQpak1S8FYJRUIIIYRoBoP1Pvd9M7sbOI8ggLzd3TcPUGw9MDfbnwNs6CPPejPrAKYAWwYoWy99M9BlZh1RW1SvrXrntSH+X2NmtwFnA4/2W0i0FBVpilqSJMRKKBJCCCFEMxis97kfufuz7v4/7v4dd99sZj8aoNhdwILoFW4swXFCrYe3JRQxkF4N/NjdPaZfFr3TzQMWAL/sq85Y5tZYB7HObw1wTkebWWfcnk7Qfq0c6FqI1kKaotYkmc8peKsQQgghmkG/miIzGwdMAKab2dEUZmqTgeP6K+vuJTN7K3AL0A7c6O4rzOxqYKm7LwFuAL5oZqsJGqLLYtkVZvZVgpBSAt7i7uXYp4PqjE2+G7jJzD4E3BvrxsyeD3wTOBr4bTP7e3c/HTgN+IyZVQjC4UfcXULRKKNccdoMzCQUtRLSFAkhhBCimQxkPvdnwDsIAtDdFELRDoJr7H5x95uBm2vS3p9t7wVe00fZDwMfHkydMX0NwTtdbfpdBHO62vSfA2cOdA6itSlVXIFbWxAJRUIIIYRoJv2OFt39X9x9HvAudz/R3efFv7Pc/RNN6qMQz5lypSLTuRakVyhyCUWi8QwUaDzL92ozczNb3Mz+CSGEaDyDdbTwr2b2IqA7L+PuX2hQv4QYEoKmSEJRq5G0e9IUiUaTBQV/BcHJz11mtqTWnNrMJgFvA+5sfi+FEEI0mkEJRWb2ReAkYBlQjskOSCgSI5pKxWlvl1DUaiSLx1JZQpFoOL1BwQHMLAUar11j+kHgo8C7mts9IYQQzWCwcYoWAwujlzchWoZSxXs9mYnWIWmKKnrliMZTLyj4C/IMZnY2MNfdv2NmfQpFZnYlcCXA8ccf34CuCiGEaBSDXYH+ADCrkR0RohGUK641RS1I+s3kkls0gX6Df5tZG3At8NcDVeTu17v7YndfPGPGjCHsohBCiEYzWE3RdGClmf0S2JcS3f3ihvRKiCFCa4pakyQUVSQUicYzUKDxScAZwG3Rtf8sYImZXezuS5vWSyGEEA1lsELRBxrZCSEaRVlrilqSDmmKRPPoDQoOPEmIl/eH6aC7bydMDAJgZrcRPLJKIBJCiFHEYL3P3d7ojgjRCMqKU9SStFmKU1QZ5p6I0c4gA40LIYQY5fQrFJlZD5ltdX4IcHef3JBeCTFEaE1Ra9LRnoSiYe6IOCIYKNB4TfpLm9EnIYQQzaVfocjdJzWrI0I0glKlIu9zLUjhaEFSkRBCCCEaj+yKxKhGmqLWJAmycskthBBCiGYgoUiMakoV7zXFEq1Dr6ZIwVuFEEII0QQkFIlRjTRFrUn6zcryPieEEEKIJiChSIxqyopT1JKk36ws8zkhhBBCNIGGCkVmdqGZPWRmq83sPXWOd5rZV+LxO82sOzt2VUx/yMwuGKhOM5sX63gk1jk2pr/EzO4xs5KZvbqm/Sti/kfM7IpGXAMxvJQq3uveWbQO0hQJIYQQopk0TCgys3bgk8BFwELgcjNbWJPtjcBWd58PXAtcE8suJATQOx24ELjOzNoHqPMa4Fp3XwBsjXUDPMH/397dR9lV1Wcc/z5zh4A0mEAIiCEkqPElWMvLGFErrcCC+JZgGyWh1pfSslDwpVAL1i5RlFZkWdousBKFCiw1IKikFkWLUJYYXgKBQMBoSFiSyiovCUGqBGbm1z/OvuFyvXfm3Mmcc+fceT5rZeXcc/bZZ+89986c39377A3vB77RVL69gLOA1wELgLMk7Tk+tbeJYsjPFFWSnykyMzOzMhXZU7QA2BARGyPiGWAFsLgpzWLg0rR9FXCUJKX9KyJie0RsAjak/Frmmc45MuVByvM4gIh4MCLWAs1z+x4L/CgitkTEVuBHZAGY9ZDB4aDmxVsrpx4UefY5MzMzK0ORd4uzgIcaXm9O+1qmiYhBYBswY4Rz2+2fATyR8mh3rbGUD0knSVotafWjjz46SpY20QwND/uZogrqT4HsoIfPmZmZWQmKDIpa3Yk23+G0SzNe+0eS65yIWB4RAxExMHPmzFGytIlmcMizz1VRvXPPzxSZmZlZGYoMijYDsxte7w/8ql0aSf3ANGDLCOe22/8YMD3l0e5aYymfVdxwePa5Kqr3FDkoMjMzszIUGRTdDsxLs8JNIZs4YWVTmpVAfda3JcCPIyLS/qVpdroDgXnAbe3yTOfckPIg5XnNKOW7DjhG0p5pgoVj0j7rIYPDQZ+Dosqp/8g8fM7MzMzKUFhQlJ7vOZUs0LgfuDIi1kk6W9KilOxiYIakDcBpwJnp3HXAlcB9wA+AUyJiqF2eKa8zgNNSXjNS3kh6raTNwLuAiyStS9fYAnyWLNC6HTg77bMe4nWKqkkStT4x7KDIzMzMStA/epKxi4hrgWub9n2qYftpsmCl1bnnAOfkyTPt30g2O13z/tvJhsa1usYlwCUjVsIqzc8UVVetT+4pMjMzs1J4rmLrae4pqq6a5Cm5zczMrBQOiqyneZ2i6urvkxdvNTMzs1L4btF6mmefq66+PjE03LzmspmZmdn4c1BkPW1waNjPFFVUf58Y8vA5MzMzK4GDIutpQ8OeaKGqan3yOkVmZmZWCgdF1tMGPdFCZTkoMjMzs7I4KLKe5p6i6vKU3GZmZlYWB0XW04Y80UJluafIzMzMyuKgyHrW8HAQkc1iZtXjoMjMzMzK4qDIelZ96JV7iqqp30GRmZmZlcRBkfWs+g21F2+tpj75mSIzMzMrh+8WrWcNpoU/3VNUTf01MeygyEogaaGk9ZI2SDqzxfHTJN0naa2k6yXN6UY5zcysOA6KrGc911PkoKiKan197imywkmqARcCbwHmA8skzW9KtgYYiIjXAFcBXyi3lGZmVjQHRdaz6kFRf81BURXVBMPhoMgKtwDYEBEbI+IZYAWwuDFBRNwQEb9JL28B9i+5jGZmVjAHRdaz6kFRnxwUVVF/Xx+DQw6KrHCzgIcaXm9O+9o5Efh+qwOSTpK0WtLqRx99dByLaGZmRSs0KMoxTntXSVek47dKmttw7BNp/3pJx46Wp6QDUx6/SHlOGekakuZK+q2ku9K/LxfXEtYNnn2u2vr68OxzVoZWvyBavvEkvQcYAM5rdTwilkfEQEQMzJw5cxyLaGZmRSssKMo5TvtEYGtEvAw4Hzg3nTsfWAocBCwEviSpNkqe5wLnR8Q8YGvKu+01kgci4uD07+RxrL5NAH6mqNr6+/oY8vA5K95mYHbD6/2BXzUnknQ08ElgUURsL6lsZmZWkiJ7ikYdp51eX5q2rwKOkqS0f0VEbI+ITcCGlF/LPNM5R6Y8SHkeN8o1rMcN+pmiSqv1eUpuK8XtwLw02mAK2RdyKxsTSDoEuIgsIHqkC2U0M7OCFRkU5RmnvSNNRAwC24AZI5zbbv8M4ImUR/O12l0D4EBJayT9t6Q3taqEx4hX11CaktvrFFVTrc9Tclvx0t+FU4HrgPuBKyNinaSzJS1Kyc4DpgLfSsOtV7bJzszMKqq/wLzzjNNul6bd/lZ3tyOlH+kaDwMHRMTjkg4DvivpoIh48nkJI5YDywEGBgZ8h1YhQ1lMRM0dg5XkniIrS0RcC1zbtO9TDdtHl14oMzMrVZFfoecZp70jjaR+YBqwZYRz2+1/DJie8mi+VstrpKF5jwNExB3AA8DLx1hXm4AGd/QUOSiqopq0o7fPzMzMrEhFBkWjjtNOr9+XtpcAP46ISPuXppnjDgTmAbe1yzOdc0PKg5TnNSNdQ9LMNHEDkl6SrrFxHOtvXTbk2ecqrVaTZ58zMzOzUhQ2fC4iBiXVx2nXgEvq47SB1RGxErgYuFzSBrIeoqXp3HWSrgTuAwaBUyJiCKBVnumSZwArJH2ObPXxi9P+ltcAjgDOljQIDAEnR8SWotrDylcfelXzRAuV1N/noMjMzMzKUeQzRXnGaT8NvKvNuecA5+TJM+3fSDY7XfP+lteIiKuBq0ethFWWe4qqrSZ5Sm4zMzMrhaflsp41OOR1iqqs1ieGhhwUmZmZWfEcFFnPGk69DJ59rpr6a559zszMzMrhoMh6lhdvrbY+aUdga2ZmZlYkB0XWs7x4a7X1e50iMzMzK4nvFq1n1Z8p8kQL1dTnZ4rMzMysJA6KrGfVZ5/zRAvV1N/n2efMzMysHA6KrGcNekruSqv19Xn4nJmZmZXCQZH1rPpD+n0Oiiqp1gfDDorMzMysBA6KrGf5maJqq/cUhYfQmZmZWcEcFFnP8jNF1VZfX8qdRWZmZlY0B0XWs557pshv8yqqry815KjIzMzMCua7RetZz61T5J6iKqr/3BwUmZmZWdEcFFnP8vC5aqsPn/O03GZmZlY0B0XWswYdFFXajp4iL+BqZmZmBSs0KJK0UNJ6SRskndni+K6SrkjHb5U0t+HYJ9L+9ZKOHS1PSQemPH6R8pwy1mtYbxjyOkWVVg+KBtMwSDMzM7OiFBYUSaoBFwJvAeYDyyTNb0p2IrA1Il4GnA+cm86dDywFDgIWAl+SVBslz3OB8yNiHrA15d3xNca3Fayb3FNUbTt6ijx8zszMzArWX2DeC4ANEbERQNIKYDFwX0OaxcCn0/ZVwAWSlPaviIjtwCZJG1J+tMpT0v3AkcAJKc2lKd9/G8M1VrWr0PZnh1n4zzd13hLWFY899QzgoKiq6j18J3zl1p7o7ZOqX4fRzNlr924XwczMbEyKDIpmAQ81vN4MvK5dmogYlLQNmJH239J07qy03SrPGcATETHYIv1YrrGDpJOAkwBmzZ7D6/1HvzIO2Gt3XrrPVHap+dG5Knrjy/bm7a/Zj2cGqz98brL0db1o2m7dLoKZmdmYFBkUtfpatPneoF2advtb3d2OlH4s13j+jojlwHKAgYGBWP7egRanmdl4m73X7lxwwqHdLoZ16DPdLoCZmdkYFPkV+mZgdsPr/YFftUsjqR+YBmwZ4dx2+x8Dpqc8mq/V6TXMzMzMzGwSKTIouh2Yl2aFm0I2qcHKpjQrgfel7SXAjyMi0v6laea4A4F5wG3t8kzn3JDyIOV5zRivYWZmZmZmk0hhw+fS8zunAtcBNeCSiFgn6WxgdUSsBC4GLk+THGwhC3JI6a4km5RhEDglIoYAWuWZLnkGsELS54A1KW/Gcg0zMzMzM5s8FJ7uNreBgYFYvXp1t4thZjZhSbojIir18KWkhcC/kH3Z9tWI+HzT8V2By4DDgMeB4yPiwZHy9N8LM7ORTbS/F56Wy8zMJq2dWVPPzMx6h4MiMzObzHasqRcRzwD1NfUaLSZb/w6y9e6O0mRYeMrMbBIpckrunnPHHXc8JWl9t8tRkL3JZvHrRa5bNblu1fSKbhegQzuzpt7zfoaN69oB2yXdW0iJq6WX3+udcDtk3A4Zt0NmQv29cFDUmfUTaezjeJK02nWrHtetmnq9bt0uQ4d2Zk295+9oWNeul3/GnXA7ZNwOGbdDxu2QmWh/Lzx8zszMJrOdWVPPzMx6hIMiMzObzHZmTT0zM+sRHj7XmeXdLkCBXLdqct2qyXWbIHZmTb1RVKodCuR2yLgdMm6HjNshM6HawesUmZmZmZnZpObhc2ZmZmZmNqk5KDIzMzMzs0nNQVETSbMl3SDpfknrJH20RZqPS7or/btX0pCkvbpR3k7krNs0Sf8h6e6U5gPdKGunctZtT0nfkbRW0m2SXt2NsnZK0m6pvPWfyWdapNlV0hWSNki6VdLc8kvauZx1O0LSnZIGJS3pRjnHImfdTpN0X3pPXi9pTjfK2qmcdTtZ0j3p9+RPJM3vRlmLJmmhpPXps3dmi+OV/Gx2Kkc7VPK93qnR2qEh3RJJIaknp2XO0w6S3p3eE+skfaPsMpYhx+figHTvsiZ9Nt7ajXIWSdIlkh5Rm3XblPnX1EZrJR1adhl3iAj/a/gH7Accmrb3AH4OzB8h/TvIZiLqetnHo27A3wHnpu2ZZA8VT+l22cepbucBZ6XtVwLXd7vcOesmYGra3gW4FTi8Kc2HgC+n7aXAFd0u9zjWbS7wGuAyYEm3yzzOdXszsHva/mCP/dxe2LC9CPhBt8tdQDvUgAeAlwBTgLtb/N6p5GezgHao5Ht9vNshpdsDuAm4BRjodrm79H6YB6wB9kyv9+l2ubvUDsuBD6bt+cCD3S53Ae1wBHAocG+b428Fvp/+rhwO3NqtsrqnqElEPBwRd6btXwP3k61m3s4y4JtllG1n5axbAHtIEjCVLCgaLLWgY5CzbvOB61OanwFzJe1bakHHIDJPpZe7pH/NM6QsBi5N21cBR6Wf4YSWp24R8WBErAWGyy7fzshZtxsi4jfp5S1ka+RMeDnr9mTDy99rPt4jFgAbImJjRDwDrCD7LDaq5GezQ6O2Q1Xf6x3K834A+CzwBeDpMgtXojzt8FfAhRGxFSAiHim5jGXI0w4BvDBtT+N310irvIi4iZHXdVsMXJb+rtwCTJe0Xzmlez4HRSNIwxwOIfsWtNXx3YGFwNXllWp8jFC3C4BXkX0w7wE+GhGVuhkdoW53A3+S0iwA5lCRP8ySapLuAh4BfhQRzXWbBTwE2RTDwDZgRrmlHJscdausDut2Itm3ZZWQp26STpH0ANkN4EfKLmMJdnzuks387pcxlf1sdiBPOzSq1Hu9A6O2g6RDgNkR8b0yC1ayPO+HlwMvl3SzpFskLSytdOXJ0w6fBt4jaTNwLfDhcoo2oXT6+6MwDorakDSVLNj5WNM3no3eAdwcEZVa2XyUuh0L3AW8GDgYuEDSC6mIUer2eWDPdCP3YbKu+wnfCwYQEUMRcTBZELegxfNQrb55rsQ38znqVll56ybpPcAA2RDPSshTt4i4MCJeCpwB/H3ZZSxBns9dZT+bHchdxyq+1zswYjtI6gPOB04vrUTdkef90E82hO6PyUbcfFXS9ILLVbY87bAM+FpE7E82jOzy9D6ZTCbM78jJ1vC5SNqF7Mb66xHx7RGSLqUiQ+fqctTtA8C3UzfmBmAT2fM3E95odYuIJyPiA+lG7r1kz0xtKrmYOyUingBuJOuhbLQZmA0gqZ+sG75SwfoIdau8keom6Wjgk8CiiNhectF2Ws6f2wrguFIKVK4dn7tkf353+EvlP5s55GmHyr/XcxitHfYAXg3cKOlBsucnVvbgZAt5PxfXRMSzEbEJWE8WJPWSPO1wInAlQESsAnYD9i6ldBNHrt8fZXBQ1CSN9b4YuD8i/mmEdNOAPwKuKatsOytn3X4JHJXS7wu8AthYTgnHLk/dJE2XNCW9/EvgphF6AScMSTPr36BJegFwNPCzpmQrgfel7SVkk39M+G+jc9atkvLULQ2luYjsJrEyY+pz1q3xBudtwC/KK2FpbgfmSTow/W5ZSvZZbFTJz2aHRm2Hqr7XOzRiO0TEtojYOyLmRsRcsmerFkXE6u4UtzB5PhffJZt8A0l7kw2nm/D3Gh3K0w6N91yvIguKHi21lN23EnhvmoXucGBbRDzcjYL0d+OiE9wbgT8H7knDrCCbke0AgIj4ctr3TuCHEfF/5RdxzPLU7bPA1yTdQ9aleUZEPNaNwnYoT91eBVwmaQi4j+wbmirYD7hUUo3si4wrI+J7ks4GVkfESrKA8HJJG8i+hV7aveJ2ZNS6SXot8B1gT+Adkj4TEQd1scx55fm5nUc2ocm30rP3v4yIRV0rcX556nZq6hl4FtjKc4FBz4iIQUmnAteRzTR1SUSs65HPZm4526Gq7/XccrZDz8vZDtcBx0i6DxgCPh4Rj3ev1OMvZzucDnxF0l+TDRl7f699aSLpm2TDJPdOz06dRTY5T/3e7FqyoYMbgN+QjVjqCvVY25uZmZmZmXXEw+fMzMzMzGxSc1BkZmZmZmaTmoMiMzMzMzOb1BwUmZmZmZnZpOagyMzMzMzMJjUHRWYtSDpf0scaXl8n6asNr78o6bRxvuZT45lfyvNgSW9teP1pSX+T47whSXdJenHDvkMkhaRjW6R/Zzr2yoZ9L015jHu9zMzMzMaTgyKz1n4KvAFAUh/ZCtONa+O8Abi5C+Xq1MFk8/936rcRcXBENK4qvQz4Sfq/Wf3YjjVYIuKBiDh4DNc2MzMzK5WDIrPWbiYFRWTB0L3AryXtKWlXsoVg10iaKul6SXdKukfSYgBJ50r6UD2z1ENzetr+uKTbJa2V9JlWF2+VRtJcSfdL+oqkdZJ+KOkF6dhrU9pVks6TdG9aQfts4PjUY3N8yn6+pBslbZT0kTyNoWy1xSXA+8kW3Nut4dhUssVzT6QHF6Y0MzOz3uegyKyF1EMyKOkAsuBoFXAr8HpgAFgbEc8ATwPvjIhDgTcDX0wBxArg+IYs3022kvsxwDxgAVkvzmGSjmi89ihp5gEXRsRBwBPAn6b9/w6cHBGvJ1sdnFS+TwFXpF6fK1LaVwLHpvzPkrRLjiZ5I7ApIh4AbuT5vU/HAT+IiJ8DWyQdmiM/MzMzswnDQZFZe/XeonpQtKrh9U9TGgH/IGkt8F/ALGDfiFgD7CPpxZL+ANgaEb8Ejkn/1gB3kgUo85quO1KaTRFxV9q+A5graTqwR0TUy/SNUer1nxGxPSIeAx4B9s3RFsvIAj3S/8tyHjMzMzOb8Pq7XQCzCaz+XNHvkw2fewg4HXgSuCSl+TNgJnBYRDwr6UGgPrTsKrIhZy/iuaBBwD9GxEUjXLdlGklzge0Nu4aAF6T0nWjOY8TfA5JqZD1SiyR9Ml1vhqQ9gCnAkcCrJQVQA0LS30ZEdFguMzMzs65wT5FZezcDbwe2RMRQRGwBppMNoVuV0kwDHkkB0ZuBOQ3nryB7xmYJWYAEcB3wF+k5HCTNkrRP03XzpNkhIraSPe90eNrV+FzPr4E9Oql0C0cDd0fE7IiYGxFzgKvJhs0tAS6LiDnp2GxgE/CHO3lNMzMzs9I4KDJr7x6yWeduadq3LQ09A/g6MCBpNVmv0c/qCSNiHVlA8j8R8XDa90Oy4W2rJN1DFiw9L2jJk6aFE4HlklaR9eRsS/tvIJtYoXGihU4tA77TtO9q4IRRjpmZmZlVgjzCxaz6JE2NiKfS9pnAfhHx0Z3I76mImDpOZRu3vMzMzMyK4J4is97wttQbdC/wJuBzO5nfk82Lt3aqvngr8L87WRYzMzOzQrmnyMzMzMzMJjX3FJmZmZmZ2aTmoMjMzMzMzCY1B0VmZmZmZjapOSgyMzMzM7NJzUGRmZmZmZlNav8PQPlkPQE73gAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG5CAYAAACUWkuzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9e3RWx333+xkhIQkhIW6RQJKRuQSb4NgmOHYcxya3xnZudpo2SdtzmrZp2rxN+55z3vQ07Zv1Jr2utm/POW1P0va4bZpmJU3cZsVpc7GdK3WI4wt2cEywsQUWFhfJIJAAIYFAc/74zVczz9ajCyBAwHzXetZ+9m327Nl7z/y+87s57z0ZGRkZGRkZGRkZGRkXGhUXugIZGRkZGRkZGRkZGRmQyUlGRkZGRkZGRkZGxgxBJicZGRkZGRkZGRkZGTMCmZxkZGRkZGRkZGRkZMwIZHKSkZGRkZGRkZGRkTEjkMlJRkZGRkZGRkZGRsaMQCYnGRnTAOfc7znn/uFC1yMjIyMj4/wjjwEZGdOHTE4yJoRzbpVzbsg597lk2/udc6ecc0edc4edc1ucc28L+zY453ZPUF6nc24wnNvjnPsn59zcsO8VzrlvOucOOef6nHNPOOfuTModCecddc7tds79q3PuhnPdBlOB9/5PvPcfAHDOtTvnvHOu8kLXKyMjI2MmIY8BGRkZkyGTk4zJ8Cng8TLbf+i9nws0Av8I/KtzbsEUy3x7OHcdcAPwsbD9q8C3gCbgZcBvAYeT8/aG8+qBm4Bnge875954erc0s5EHtIyMjEsceQyYAHkMyLjckclJxrhwzr0X6AO+M94x3vsR4NNALbD8dMr33u8B7gfWOucWAVcCf++9PxF+P/Debypznvfe7/be/w/gH4A/G6f+mr36JedcV5iN+3Xn3A3OuR+HmblPJsdXOOc+5pzb5Zx7yTn3WefcvEJZv+ice9E5d8A599+Tcz+RaJceCsu+MMP3mimW/SvOuReB755OO2ZkZGRcjMhjQB4DMjLKIZOTjLJwzjUAfwD8t0mOqwQ+ABwFnj/Na7QBdwI/AnqBDuBzzrm7nHNNUyzmy8A651zdBMfcCKwC3gP8JfDfgTcBrwB+1jl3Wzju/eH3eoxozQU+WSjrFmA18Ebgfzjnri5zvVvDstF7P9d7/8Mpln0bcDXwlgnuJSMjI+OSQB4D8hiQkVEOmZxkjIc/BP7Re981zv6bnHN9QDfwPuBu733/FMv+Sjh3E/CfwJ947z3WaXcC/xewzzn3kHNu1SRl7QUcZl427r1474e8998EBoAveO9fCrN23weuD8f9PPB/e+93eu+PAr8LvLegYv997/2g9/4p4Cng2ine81TK/oT3fsB7PzjFMjMyMjIuRuQxII8BGRnjIts1ZoyBc+46bFbp+gkOe8R7f8sZXuIu7/23ixu997uBD4c6tAH3AJ8FXjNBWS2Ax8zPxkNP8n+wzPrc8H8psCvZtwv7RtIZvO7k/7Hk3MkwlbLHI4IZGRkZlxLyGJDHgIyMcZE1JxnlsAFoB150znUDHwF+2jn35PmqQNDYfApYO8mhdwNPeu8HpuGye4FlyfoVwElKB7KpwJ9h2eXOy8jIyLjskMeAjIzLF5mcZJTDPcAK4Lrw+zvg65xDO1jn3Hzn3O8751YGx8FFwC8Dj5Q51jnnWpxzH8f8XX5vmqrxBeB/d85d6Sy05Z8A93rvT55mOfuBEUoDBExX2RkZGRmXHPIYkJGRIWSzrowx8N4fw9TVADjnjgJD3vv95/CyJzBtzbeBRZiD/feA30yOWRrq4oB+4GFgg/d+zOB1hvg0pnp/CKgBHixcf0rw3h9zzv0x8APnXBVw+3SVnZGRkXGJIo8BGRkZADjzQcvIyMjIyMjIyMjIyLiwyGZdGRkZGRkZGRkZGRkzApmcZGRkZGRkZGRkZGTMCGRykpGRkZGRkZGRkZExI5DJSUZGRkZGRkZGRkbGjMAlEa3LOeczy8rIOH9wXDwB+UfggPd+8dmUcfvtt/sDBw6Mu/+JJ5540Ht/+9lcI+P8wLk5fuJk4hkZGZcv9p3VeLHSOX9skmP2QR4vJsElQU4qgNoLXYkZiHrgCNY+I1M8ZwFwcIrHLgd2nkG9iliMBYWfTswBhpj6fc8ELMdSD0/WsZ0N1NbzsDicFP5fihgozcp8RjhwYD+bNz867n7nqhad7TUyzhcagV+70JXIyMiYkfjEWY0Xx5i8d/mEhcrOmABZ4XAJYF6ZbSImEAX0qTzsg5hgn6J6nGOnSkwWTLJ/PyY0j4eq5L/uYbw6Ccew+9a9lDu+XLudb9Qn/3dyZsTk2tM4ViQwJSOXMjGZXpyc4Mc859w9zrm3X7j6ZWRkZGRcSGiyfKJfxuTI5OQixxygjijArwxLaUwgkoOiFkHbW5NtTYwVkIfDskggloalBOzxSMjBZF+R+AgTaU6Gk/+6h+NMjVzoXoaxe0vJwKwJzquilBRNBa3jbK8itlVxuwik7qW+zHHp/nIk66ky264vc27G2WAE08WN96Pfe/9B7/1XL1gVMzIyMjIuKDI5mR5kcnIRIn1ox4C9ybbZyb4RYDVGDpaFbfXJf5lv7cYE63qgp3CtKiIhSAlEBSbsVxAF7CEi+ZhHqbCuaxWJz3hkBSLRUnlFIb8FIz3VSTlFgqT1NuzeRNpaKW++JnIwDKzB7nE8iKzdGJY9oS5FIjKMPaP0Xpcmxy3A0gVDKSGSRmQOpt1YRinBXIq1i+pcj93bcuyZCtKMjKdtmugZZAieSTQnGRkZGRmXOTI5mR5kcjJFzISGkhA6C7gFE14lIF8HvAboC+tLMeF+LyaU7iLO1FeF81JNyO6wT8L88rBMtRbVRMJxFSb0SsCuwIiHyMdCSgXkKkyIbwrnVITfqWR/isUYeagI9z2EWYrvTY7ZFo45nlw3JRxLidqRXcT2a8S0TboOhXNUl52hvKXAWmLbiIDsD8fKE2Ex8Oakjq8hEkEoJWbDREeIU5SSjgWh/KeI7doajk+fRw32DESg1oZ73ImRFj1j3c8sSgmK7mc8bU1GikxOMjIyMjIyzgdmgsx9UeBcOVafzgOQhmIVkRRIm7EH+CEmGFdhAm89sB4T3sHIzPpQzuFw7pqkHgvCuXOSa4kcaBZ/N0ZctmFC8Bqiw32qZegOSwm+bZgQ3xOu0RjOOR7uJRW6dV8S2o+E407XaX5v4Rzd00Fge3KdlKB0Y+0gnx1pPbYSiU9N2HZ92C8Tqr3A15KyfogRiuuxdkqJwX7svhdjRKkXa5dm4Brs3qUVaaKU6IGRnp3A24gmazsx0rg2lL88ub+lGMm5KilD91PUlk0Fp2vydvHDM4lZV0ZGRkbGZY7LXXPinKtzzv2zc+7vnXM/f6blZHJygXG6pKcC6AIexARaMDLRgAmjqR/IEUw4/qmwvgt4HhNGrwrbng/nNGLCahUmfO/HCMm1mJC8EzMZk0ZFGpRvYgI1RIKxmqglkNjWldzDLko1HKk2JMX5ctROCUw/0fxrPOiZ/ShZiniU87tpxgjC8WRbqtUCuAFr623AIxhBacG0HUPYc5mHEY+1WBsuB57F2r0Ge4Y1of4tGNFajL0ne7HnPNF9TYSiSViRTF768BhlHO+XkZGRkXG5YzrJiXNulnPuR865r42z/3bn3HbnXIdz7qPJ9k7n3NPOuS3Ouc1nfDNW1qedcy8557ZO5drAu4Avee9/FXjHmV43k5PzgLNt5FQwlCZhGCMk6TWWYjPqazChtjFs+yGwDhNuWzDzqj6M1EhzIqG6PZyr9d1EYX0dRjL2UCrQy19ChGN7sm+4sLwUUE7APz7OvpXA/RjhuB5r89VEorcfIxFPY0Tieuy5fpfoyD4cfnWYBmdWOG4IM59rw551d7hOXyhrFiY234SRyb2ceejnlFhNFint0sSkDvEZGRkZGZc5HDGgzni/08B/BZ4pex3nZgGfAu7ARLn3OefWJIe83nt/nfd+/Tjnv8w5V1/YtrLMoZ8Bbi8cN9G1W4nz0Wc8c5fJyTg46qcvxdzpakeKPgDHC+tLMRKxGBN+a8I5B4nhc9uIs+nXYoRCZKWbaEJ0CjMTG8aEzoeJBKcGMwNT+c+GZVuhTtOR6+RSQZGEdYTlYowcNGLaqsXAAPa8lmLP4vmwfi3Wzv1he3sooxF7HquxZ7IGe65DobyFwJ1hu0zCmrHnLbOw1IxvOnF5EJbz53PinLvaOfd3zrkvOec+NO0XyMjIyMiYdjimpDlZ5JzbnPw+OKYc51qBtwL/MM6lXg10eO93eu9PAF8E3nkaVb0N+HfnXE243q8Cf108yHv/EGPjB010bcVYgrMQNTI5GQdznTtnZavRx4sENZnpjfxKTmAz8NdigmsrZsJTjwnJVWF9iOjLANF0qw+buR/AZuXfgBGVLswZuwszH1ob6tSDvaESuDOmDmmghoCbgR1hfTWm4ViMtWsTRhivwchKL2bq9SaMcNRhBPIg9tx2Y89sACMe27FnejAs6zGyuhwjENvC/8kIc7kIXnpvi2R5vG2XFs5ec3I66nHv/TPe+18HfhbjpBkZGRkZlwYOeO/XJ797yhzzl8D/yfjDdQulFvO7wzYwO+RvOueeKEd8ALz3/wY8AHwx+Ib8MjbeTAUTXfvLwE875/4WOOPQ+pmcXADIAbuHGLlqopC1gtSBC4g+IAovWxXWWzDB9BQm9B7DBNROTPPRhxGN/aGcRoyI1BNJT18odzUmzKbhiTPODgeBTdiXXBXWd2HP403E6GLdGMFsxky49oZjFxNDKNdhUus3MPH4BDEIwv6wPIVpXvqIBEKaLr1P8iOCaM6XRhZTxK9zFRTi4sC0ROv6DKehHnfOvQN7Xb5z1tXPyJgSKifYXjnOenF7ueMnKrPcOeX2lTtPv/oJzi9Xl/HOn+gak+2f6J6mep9n0i7j3eO5wvm6zsWJ6fA5cc69DXjJe//ERIeV2SaTn9d679dh48pvOOduLVeA9/7PMfHhb4F3eO+PTqF6E17bez/gvf8l7/2HvPefn2J5Y3DB3jLn3Grg3mTTcuB/YPLyrxLdGn7Pe/+N81y9cwpFR1J+jhFMKE2zuqeox4TGXeH4gxiZqcIETZlwrcH8GxaHc54iko0GrGGHMcLxhrC9jhi29hpKw+iCfWj/edZ3nFEOigQG1t4D2DOqx/StC4lEtAojGweJZn+d2HN/C5GM7gz7G4mO9N2Uz+kyTAw9LJwK56TmaacbJY0yZVz8ULSusyjB+4ecc+2FzaPqcQDnnNTj27z3/wH8h3Pu68C/nNXFMy4iaFg+Gf6fLOwrkuHiMH5ynO3ljgHrBQYnKK822V9ZWFdvNJgcW8Qg1pMNFtaFtFcrXi8tI033W65HE14Wjk/L0flp/QaT9UHK1z3dVqxneh8HiW3TgunBywVpT+9L7V5b2Jeul3sW6f7Bwr4jlD7PYltN1nblUHzf9F5OdlzlBPsuXYicnCVeC7zDOXcnNsw3OOc+573/heSY3Zj4J8i1FO+9li855+7DxpmHihdxzr0OM465D/g48OEp1m/ca08XLhg58d5vx9JzaPZwD9ZAvwT8P977v7hQdTtfOE7Ui6WRm4TqcMwRImnRjHYPRizmYN3NNmIY4GZM0F0fjpOJl3KgyNRHIYOHMNOgaoykKPpWie3JDIX8Ls5XZK/pxjyMVBzEntVyTFO1CXs+e7FnI20XRMLRTEx8qVDL14SyVoblsXCu3qVlYbveJw1lWi+245mSjEuLmEDUnIyLRYWoKPeMo6ovopx6/Ebn3AYs6kk1phzLuOghYjFVMlFOa5AK3OWEeBgrQJc7r9z+FEWhvbawb7Cwf0Fh/8FkfwulQngxpqH0/QuSc8pdU1NnPYVr6tyDybEiQ8UyVe8GbHpnsHCO0FHmnq7GgvBrXdeG0pTBVWE9baP0XrV+sLC+oHB88flqvXac/elxKmsPY59tShSngiJxK55brEdKrovbyqHc+59+JxcXsZkOcuK9/13gdwHCWPCRAjEBeBxY5Zy7EnvQ7wV+zjlXB1R474+E/z8F/EHxGs6564G/x/xaXgA+55z7I+/9x6ZQxbLXPv07HR8zRT/3RmCH936XO4e+HjMRqa1+I9at7cYkkhpMUB3PB2UBMdTsqnCsqGwNFm74ddhseHc4tgbzeXgQi9ol4XU5JhCDmX/NdB+CZZgmqQ+7/5XYcKJ2a8E6iSos1O9qTEOwlJj8UPlZLiSKZKAHM8+6Cbu37xId3Hdiz+nz2FTHTuwdUO6ZKqKd5kLsefdhfivt4fhdmNbtCPH+9X4txdpSw+2lp/04G8jnZFwMA08CX/Xen46dbVn1uPd+I7DxNMq5rBEmuDYDe7z3b7twNZlotrhITCYTutKZ8HTbZMJrUWjXtlR4L54jc/GiQC1BV7EhO8cpQ2ggCvBgPc9wOCaNL9mZnNcUfqng35TU93BYl82B6qP19lDfpuT4qrCu+xCx0fowRjbUVs8UjluXlKX7SoX0KkrbheT49BhloUqvrWs0FJbDhfuASMQgkr60/LTc9nAfaVutIz4zlUFhPX1mKamc6Jz0/SgS2VTLRmE/lH/vy30XFxcpERznVrB2zn0D+ID3fq9z7sOYODcL+LT3/ifOueXAfUGWrgT+xXv/QJmi5gA/473fEcr9ReD9Za73BWADNgG3G/i49/4fy117Ou9zppCT9wJfSNY/7Jz7X7HB5r957w8VTwhOPh+E8qP7xYY5WHcyBzPLOoUNS3OIgvhSxmZIX4fNoHdhXdUA0edEiROPYAJ7MyY99WHCawOmfdlPFNyfOkf3Nx6uDdfUvUlgXhbqNg/rspXZvi38P5X8X4fVfz12jxWYGLkfI1/avjMsm8N52zDzqT3hGqvDOUewNjxd5fd0QCZWndgzexf2TI9hJKUHMyIdwoai/USy0RuOW0YMUTw7lLM4lLkmnDsPI0ZVxISOEP1a9pOJSSkm1Zz0e+/LOh5OgnOuHr9MoJCbRWnxAmEy06t0W1H4SwXDlyX/RTbS48tpDEjWRUwakm0yDJZA2k5pKtZ0XcemAnCKWqzZ0+s2JMdpf1PYdhjriZTyF8YK7SJUK5P9B5N70LVEqKTlKGoLaonC+UHGamTSXr6d0rZUWbWFZXqPtdiIquNV75ZQhyLhK5KLPZS2m9o6XW9P1vUcdX5P2J8+/6vDf5XTSenzHySSRV0j/WTKZeoqEpVUM5bu130XNTwwlrScpNQksJz25WSZ/zMfFZQPKHOmKE5Uee/vTP5/g4JmPZgIX8sk8N7/oLA+jGlSise9b5zzx1x7OuH8NIbMPaMKODcbG4xf4b3vcc41AQcwaeAPgSXe+1+eqIxZzvlaxgrvFyOWEvNUaIa/GhPU+zDBei9wC3GoWh72nwjH12FkZQEmgCqekOaing/lyN9lTjheSQXPNRTqeDWl5mpPA3djQ41MzkQkqjGBWTk9ukLdFVxgIOyXJkkEphnrAmuwTuMIUVsyJ+yTs3hvKH8Ya7suoslTf6jD+WojgNdjw4/Ix2oiedC7UU8kGr3Y8NBEvKcdoc7SsvVi97+AGN54HtZOm7F3aU/Yt/sc39/5wgA8MV6s96li/frlfvPmPxx3v3O/0AF8j0k0J8Hn5Gve+7VhvRJ4DtMe78HU5T833bNQlzJCyM1/Bv4Y+D8m05w4t9TDr53jWpUjIxJex/NzKEc+ioKgyhGKmopBorC5krEagWFKBVrVKRUMU2G2h/Jal/Qe2pNze5JrpahlrKYjFZCvJs7wS4DWNZuwni3V3hwGXpncUwrdTxPx/lMzq3IQEVBZe8LxVxeOO1w4p2judJhSMlIU/J9MzmkI29J20bVTdIalevd0e1GLoTrpOJXdUFhX27YU1ovvpK7dnuxP21vHF83yyi2FI0S/oLSMokaw2Lbni6B84qzGi2udm9RJunUaxqRLHTNBc3IH8KT3vgdASwDn3N8DZTNjlkNKTMYzSZnppioSFuXMfAoTJmswbcdw2L8XEyBvxLqFIaxLayPmvXgKmxWvwIT3Hoz8rCJG4dofjk/nzc4F5mFzWE9i3eFizIxsPTEhYQ3WbSlkbg8xW31FOE7BA5Tx/FmiI/8sSofgxeG8LkxDsj/sP5Ysh4lkpx0jLAo0IKfyOixE76pQz52UKs7PBSqIUdOUq2Rv2NZGqaapmdhOazBCIm2atEtdGFlZHc4bJmpn+sNvHvYOHefiJibS/Ewvzl5zcqHU45cBFHKznAfyecZ4Q+pEs8mpwJ+SkdTsCUoFdqGHKHgeppSspCY+RcFxPB+R14bz2pP9MqvSeakg2lko95XYJO9rw3pKgmqT/6kAHnw5XLim7wzbwkhdWwWD6ahda/WbH1YPQSkhEjHpIQrfVbbdhbbyBSlgfrt19qNydLjGKIZhURUcSIX8FsYSsWGrr6rBjyklUSJaMFZTsifcd5FsrEuOp7D/aiIBS83HDif/U21RUTNSJLcyd0tN7NJ3Tu+CrqnrtxNHxCJZ0fMuEtty5mLp/Q0Wtl8cDvYOqJ1Msp651Z8xmAnk5H0kJl3OuSXe+31h9W7O0C+7ApvpbqM0L0cNUeCfidCs95qwXIDVVQn7FNK1BhNYH8UEVTA/BZl19YVjpF1oJArlEuy7w3ldnFuN05pw3Tqsm5W2RKZrdVhEsOuIAvlWTC/ZTXQal2N/d6j/0nD+TkwjsI6Yzb6KqFhfjRGh1cTcIkqEODvUoz6cIwIDkSAeI+pIl4f6rMLInwThU0xv/pcaoq/M09gQci3x+e3H/E6U9b0be1c6iRqReowMDmGEYwFGslpDeduI34cc5eu4cP5G5XyA5lAa1riIctrSlJhUY9/E2WOESVpmnnPuHibQnFwo9filjDTkZnAcHe+4UTNg+4LPBco5rksKGW/Wvhg9qZw2JRXWWpJ9EhIlMEuwTc1+BjHhWIKjnM9TMtJDJBOdlAqa7WXqk9ahaKo0DLUbYDAVVBuCU2DqE5I4gtcCg6mGoT06Eeq2V1bFiC4DTbbtULiGa4oBVMEIiAfmNwXiIjTE1HAHqqyT1f5DoR4u9P6NTXBII07YfiAparTsnsL6YCJTVwGvjOuLquBAbUKQRAxS4peilrFtXTR/6iCSnx7sHdhDJBfSgukckbaUFKX7oXT6thhsQBqu9rB+mGg6lz7fVBNWvI+ipq5IoMppTYqYuaZeFRVQO1lW4plZ9RmFC0pOnHNzgDdTqmP/c+fcdVj30skZ6t/rMIFW/Vsa+SpFqkmpwIS1XVw49GBC5fawvhQTi57C6teO3cNh4nxYIyYcdxIjdinnxS6iJmYORmauwQS4RqJT+XSgKpRZDVyF9f1gAv3zYV1+I4Q6tWDEYjGxO91JtNkcwoTTvuQ+DxJDJYO1xwLMLGkl0SRrYbiuEhB2EvO6LMCE2uXY818TtjdhbdNCzB0ibZRMzRqJ/kHLMS3F4xhZmK4IZxLItwNvwwTsBUTztBOYtqMutMkqrA0PYu95TShjFUZuFIJ6MbACa/M52DeyAGvPbiZPAHouUW7CYCJiom93Im3o9BKtc+JzknF2mErITULktHtAZl3nAqnDuwSq1K6+qHUozigX98vpOiUKqeBZnHlO/RzAejOV1Z6cU5Vsl3ZF9V2XbFOZEP0/qigVTtspmX2vrQpFpf4fDfYhjsqeDdapHg2C/6GgbUjjTezBCAlYZ9VLJBaDhAGhKe6XiltV+gnWuclwRrpIZXGoC/XR4LcwlLMwqcOiKutctb8juYeF4ZotoQ61wKHDsKjBBogOIsGShqcR6G2PA2MdcKohEqT5VVbnA+nzT1EVuImeSTummVHvl5oNpkERUpM6GOtwrxvQvvTYlkJ5OjfV7km7I22KzNX0Tql+g8m58k9RGeU0hiTrE5nkzSxUOKitmeSg6Zkxu6RxQcmJ9/4Ypd0B3vv/5UzKKs66DmPPXzPbqZBSnawPF7YVzUE0o34+naPlCD8bmz1vwmbNnw77T2FC29Lk2L0YIZBQPoIJsMpAXhfKkR/Fs+FckaCzhcy2ZPa0INRxCBPcm7E2Xhiu3RCOVbStemKejhZs+BsK9ZMm6VlME1BOEBWhTHN2dBA1DUUod8xW7Jk/TUyAWE30u2ghamIUOa0GG3f2Y9qHpcANSbkifAo2cLbQuNuHkcs2ot+IzPvUzYs8tYVrd4b1fmycfhprx6FwjDRtqSP8+Ub6PQrlcv5Ii6Ljh7Hvfpj43gnTfy+TRuuaVHOSMf2YYsjN84DiTG6RaKSzwxK0Usft9Jj2ZP8gUUjVKJRqGa6mlMz0lFlPr6vZ9c5wjMyMtL6A0khZK60cRZ0ZNYcKx7t262AOhTpJ5nxFqPNP2u2yXcQyHPYRa3b5UJV1cOJVezAzAHUAjeFyIhJHsYFE62ux5ldA7h4i+dBMmGa3ih2NZO16rHNMycjxcI7q0Jhcsy/UtzFZb2uwR9eJNZvsP1oLS9XhKDA32T46SxjaTqRGElLHcHh12uP+Q1dHbY8fpjTwgY5VFDAYG51MpDk0hGsP5aQG0lBKSlLNR+qz1J4c00mpuWFKgKW9S9/7onljEUVtyoWcRpsEjihMZJwxZoJZ11mjEnsXUnKiV7ecgKK+IZ0j0LbiTO25+gQmC2O7AKuTZu37iLP8mourwkyhOrB76cVIgsLJjoTjh4lO8fJbgRg6eDpwAzH7vKJKaX7uFFFrpaFT9anDhMoaIonYQ0wceCLcx5lqJMabUVfumHnJtYdDXa7H2ukYkQRC9DUZIb4n14bzDxKJy3qMRMD0+KY8jiVarCP65sh0SwT1KkxLtI7oi1JN9D1ZTIxWRqi/kj7KP+lCEBMw0leUGTSxlJp1KRBAI/G7lAZrZ+H4mehzknEpYryEiRL6UpOs4jYK6xLmnimsqxe7mmiqpf2DxKmJFsaGjn1t2N9OdKA+SDQFkgN3KnwuYNQRvJbo8AjQEXr12lC3GkzAFm/fgQnbqsIgpqrfipEIbesjypptmDD/SFhfhJlQSWjfT6ml2UKsE9CMENiAsST87yTKyQdC/dqIznvCkaQOa8OxIhvPhHrfEtbvD2Wkav/GpDzNpgyGczaF82uIbfM4Fttf67vDT02vpczH1ri/rmUAACAASURBVGLmAKrT+qrSx3+ARFMF0QQtIa8+bF/UnpQ9zFg/lvT4ohmYSK2Q+g9JCzJIKclItXNQGmK53HdQRHHfZGZeMwgVRO1YxhnjkiAnJ4kTHkI9UcNQtOqFUmX5AuxznUM0d+rDhNDijKyIQTF53eliMp8X9VnbMGG3CiMhh7E+T9ftxJy91UfWhHNqQv2OEU13DmICazfT8+0sJvpfKAbMMNaGh4njmULWHgx130MUmB/EBOzvlSn/fPg+lEveqIhcMkHTWJJ62ypymEzM9DuFCdt3Yu28k0jAzqaOMm0TMZIDez32Dgxjz0FhgjUJNwt7Lgo+cIyxfjw7OXc+WIokVkQF9n5UUJ68abIhnSyQdkzHa24vPSaNZDa9OPsM8RnnFhcmN0xqylX0MykXfUvTFQ3EGW39h+gPoPVa4szzcNh/I9G0ax0xhWvqe6LrS1h8NDmvIVQ1aFVcUxwQJEyX+GP0wNom60TmA0MNUcuxIxwngqFkU/r/+nDc7aFMaTckuD+OdVy7sQ6qFSMyrdhAvDtUfy6l6tBrwjGbiI/g3djTl8bijlCH3eHYa5N6dYfrqqO8PxxfjZmA3YV15q2hTHWu64Fvh7rVYZ3r06FuJ8PxfRhBEcmqwwY93fPC0G77MA1Rc1LGfuADoQ22hPouDuvVRKfUtrCfUKdO7FFLeBkgam8GiKTEVcHCKpvJ9DAqGbgm8IEUu3bwIhOyT4P4fqeEu53SnDUyARMJ1jewIClvkBihrYdSopOad6X+Uek3lGofs/PGpYoLHkp4OlDtnJegUk4YWoN9i0Wry3Rdmgydn2o2dGyRqBTPnW4ohLB8LeqI9vWa9V5O9DsRYeoK683YbHobZsrTiPV9muXfdpb1uyWU3Yf13crHkWp3TmGCpsYUmRSBzfDP1MAE5dBEnJCTcK37H8Lau48YKUwmdMoZ8jSRYJzJtRcCrwllKkjCMEbuZhM1bEPEhIrfxJ6zzBNVnwXhnD7OvcnieN+HtBzar3DH+4lBC+Q7Q9iftp/8gzSJ0Ivd3+7CvukJJbzUb978gXH3O/eHUwolnHHhcW5CCVdSaqJVdBTXNs0aQxT0rk7W0zKK4V4biLktIEZJkqblTUSfEF1vgQmk6WyUZv0h8XcIyxXhtGcohS4pUyfxsacxbcDTyf5biEJ/C1HIlzy5g9g5ArwqXP+FZL+2gRGTLZgWAYxjLQFeEdZ/QKkDve6tBiMIYMJ9c3K/12CCu7QUEujV1BL+NcO2iNKoJ61hm+5pO0Y0HiFqfHRdrTdjZKo52b+Q6A+jAaQvWe/GnglYuzQm5W3FZHORMcn+64lmEa8K5x2ST1BDIJ6B/M6vsvLVtrp3kcjRCHF6Fw9jD0DoxBpNU6cQSUtPsp4uU0Ki7dK2pOWm30lxlDqXpOTsQgmvr3F+8xUTH+Oez6GEJ8MloTkRvVLyvXqiA/MQJpzpe64mhqTV+vFkXRqJVJhSxKsuykMaiukOUSyzrnpi2N8BrG9ZjZEomXt1YyTsIHFGvwuLwiQtxWxM+DuGkYQzgSJErcMEQDm5d2Pd0S6i9n5/uOYerO++kIEGpgM94afABGDPYwgzq+rDSEFXOGYekRAqy3sXZkJ1ugTlINbOSi7ZiL0X7cRxvpuo6akh5rtZSvwm6rAuf1v4f66ISepHonutx8z0bsKisyl6nL4bEY/Fyf9TSXn1SX1bQ/n14T6GsHdtN/bOH8PaaA7T5Vc1qc9JNuu67JHaxReJhjQkqQ9JVdimtzpNjgdRwEv9CFJ/k3WUkpswA67eyR82p+4BorP4gR6obYqv8nyivS9EwnBNWG7EhNcnwvqrMLIgLME+tNeFdanwJYCLaOwmTsAvJJpm6bZmEc2yTmGzMBqkDoRzN4T1oVBeKtQfTfYPA/cCHybOiq0N5+i+dodyVoX1r2AmCGr+A6GOEh83h326h0NY06vOS0IZN1Lq7Lye6H9wCiNUukYdJtOLOKrjbg/rspPuDes1GAnUs5IfjIjkEqxzPUA0R5uLdZSt6XsDzE2IQCeRxA1QGkd+fhUcaqI0nPVGollYSjT0Hj5DaXhiKCXqTYXzGogaQrDvougEX/RDSffNMO3JZW7W5ZyrA/4GG+43eu8/fyblVEx+yMyHBBgF+1QI2H6igLSbyPePYK0m4VqoZqzQuJTY15wK6ym/13WmMyNoCtXnFFZXJWjUcCaB9Rqs26gJP5nHKjzs7HAfnWFZztRmMjSFstYT204CrjQITZhgqCG1FxOEL3ZiUoQIl4Tp57FnIb+T58O+I5iwrIhkI8Tx8HQwjMkIR4gEvItIVI4RI9RpOUTUrFWFep0IyzVEOeRcBFbVUJiWXRXq9Uj4Lx+qOcRvT5Hm9I0dT5Zp4klFaIP43u/H3j8FJKhhOvO1yOdkvF/G5YlKSrUmmmVOyYlMXVLj13QqS+uvZKymJXU4riU6wCtErMhIu52yEHtVPRY5SrMnS8Kvtsk68BailkAT3x3Yq9yBCbgHgPdivh23h98G7MM6Gn6LQvnd4Xcb1gHNDb+1BOEYm8G5CuuwVobtx4l+KXXEzutrGAEQCZgFfD/8WsP5On4F0UZVavtWYtSPtlAPmTntw0zAwDqoeVibSFNDuK9VGLnaEcpoTdrhDmwQkGP/IuKs3C+EX2tog1PhJ63NhvA7RfTpqaGUfA1h5l1tRDJ3S3JeKhDcFX4riX4zK8NPmhv9ijiAvToqc30od374KVyyIwQ0qKI0/8uNRO3JnvArvv8LiC9cC9HES6RHsUeFnuS8VHtCmf8zEGnAh/F+kxXhXI1z7jHn3FPOuZ84535/nOManXNfcs4965x7xjn3mrD9dufcdudch3Puo2d1O8592jn3knNua2H7eNd4F/Al7/2vAu840+teEpqTaqLJRz32+ndjAtsaovnSo8SJD4iaEBELRT+SdrUd+9SkFVlFNJmahwlDMgFL7d7PxheliD6i2YsmuLaHa6/H+nYRFMXYkGO5khJKUFXm9FSDezpYE66/jGi+pKzq2zHi1oCNh93YxNc2LlzejHMFkeDjmAagnpipvhl7j9ZQmvSxGWuv9dg7dDqz+dIuyDRPk2JrMEFcUc9kskU4rgKTFb6BjeHNmFni/nCsxKOJiGo5M8eJoOP2Y9+akjxWY0PWHOwdUThktc9S7F3S/72UWmqIvCwN91yNtaEmB4RjROt89QnTE7VxUp+THK3rskZqrgXRXj51LJaPSXvYtodSkqIp8KLj8Mpk/RlKs5b3wDVhVvvpJtOMaJb7FCY0t1MaUaSPOBuv+Od3hHUNftIYiHgUB7Tbk/9zieZRqW8F2OyAnOb/Mmz73zBi8+aw3olpBEQO7g7l3RTWZSqlD3mIEmG74hW2Y2RPUA91W/2W3fksu758FQAL79pDLy2j9zWvvZv+1uZoAfeBk7C5srTerSQaiJMwVMnLX/5jAJ7761cy7y+66f9MUBHVY1qRKqIPzIZQ99SUoJP4LFrDMRvD+gHgI5QO0CJi2t+LaYTULluJ2pvWcG4fRuLAIqnsIYZQFmfQa7k+/Bdx2Yy9ujvC+uuATQWfpEPtSQWV5ySNaXoHpe/po+GiCtxwNWO/l1SHr28l3VZ0wj/CjBVfHdNRtePAG7z3R51zVcAm59z93vtHCsf9FfCA9/7dzrnZwBzn3CzgU9gXtht43Dn3H977Ekt+59zLgEHv/ZFk20rvfTFl22eATwKfTY6b6BqtlAaXPSPM0Kd7ejhOfI37MS2B1rdhJlD12HenyFZLicK8Mqorcd1eop9KP9FP7SBRK7MXE4TmEIVzYTpDWMudrCbUeRMmcD5PJB2zifkujoX6VoU6K4KiTFzOlJisxtpEAupIKFORwNSefVjbbGPqJkOTJdqb6VDkr52Y/6fC20oIFxFQ/JJZWO6Sbdi7Mlk0r9RVVmZbmmBsJDrlyzdpMdGB/unk+nuJGpTdTGkCZ1Twn4yYiJSkxw0RtR0ywToS6thI9DlqIhLqecRoY0NJue3YO6/yFoayBojvOsRnAdNtspajdWWUQ0okimZdqQCmWeSi/XwVUfrcgwluT4b1q4lqDYjZu4fj8Yvak+yvh0sTD87CPvLvY4ShDxOUn6E0ctYKosA8REwKBfbhnQQU4P8B7OOVqdLrgH8CrgzrK8MxtyfrrVinIzMuMLKiawwDb0/Wh4ANJ+FoEE82nITdlbGZrgIqjWAA9H/NCMLCu0z47X22BTbDrr++arQevf8W1ETBn6P/K81Wh7frmpVWv1QIV4x5gB2VVPzKAM+9uMbW10PT7JfoH2qO9/kjqHjtACP9ddZmT2MES89nBxZeU2WuDPcqM7kmrJPTHIgy1otYgD2rNKrZBqJ6eCP2XGuSthzASJP8WK4LZYqcHsBeSx1fE9ZFVjrDNTvCOzcIJaGlGxvg0DPhZqSKOxzWZabVTqlZl7aneU6UuFEXhfFNuWoL6xclFjnnUnHsnpCLCQBvzuB68lXhV+Ig7pxrAG4F3h/OOQGcCNqTDu/9znDcF4F3MtbN+DbgQ865O733Q865X8WmBu5MD/LeP+Scay+c++oJriFqv4WzsM66JMhJEcUwonuJAks90XegiphQrwoTghQFSfRvOSZMrcUEvtSS8lpipCRBTvPlcjecKTQ7PoyRhP0YGTiBjRGnsH4szesijckqzEtXZlh9nD6qQ7nqr6sxQqHALsqzcTCUv43TMxu7mIlJEQeJeTdOYG0jU69Z2KSeonrB6YdDP0Z8r7rD+QPYeK3nP0C0VnicKPi3hzqBDR3TleMGIilJM7ZL47gUey/kA7YYez9GiPltlhPbRfv6k3K7iE7zes/03pyfoAqeS08HmHH2KApMafK7dLY3ze2gXkJhWkVW2olJMrTek5QpE5jauL+WJHN5gwm68know17Za7BOuxEzaUod2GuJZkBgHdUK4gybZu4lYN8erqcMuIrMMpQcfxtRuN1NtPddFMpZhIktEsobsQhYcmtYDGxNtRiVdo7qOARshX45tgTH8WNHzQaitvUQg5XzjSB8CRZ+dA+9R1uiY6TKSIT4V9/5EI89cutonZa961m6etoY+UHQxrwbRp6oGyUCFe8c4LnPvnL0PmubDzF4/XxG7q2zuASVULFhgJF766h4T9Ds7K6zwUB1kNmVXqFOWPjbe+j9n0HI34I9O4moraHtrwrrB7AOXkRjA0YM9Qy3E03bxAPk9K/n24dZZklM/nmMRElQ6CJotBJj9lFzL6zzdleHXDd6N+XcXiTZQqpFEW6kdJpOPlowNoljGjFsBkJmXRPjwGQO8UE78QT2pnzKe/9o4ZDlmEj2T865a8Ox/xVr7NRFOvVqGIX3/t+cc1cCX3TO/Rvwy0R95mSY6BpfBj7pnHsrcMZWBJckOSniyDj/FZhxLXEomYO1soTxvUQnclkNK//TTkyY2okJYHNIJrGYPo2APk2Z7cjJWrPyuidFNpJmvhEjNrcRSZX8DKY6qzwPMzluC9dZTNSWSLjsJCZHvNR8S04XTyX/5ZgtM6c2TONxHNNC1WGmWk3E8MWToRvrqfR8K4jvqkhqD9EZXsELFMVL26VxmU4ohPHypK4iZ23EfDazku3SpNQRNSFp+jq925J9VOfzT2gn1ZxkXJYovhMaAYoZtbVN5i9VyT71zp1Ekxdh0EK7CgsbIhlxmOCaZkFP84UoTO1WYqxzOarfFZZPhP8KS9uBmQml5GIFMWLUt4mRrkL1RsPsgpGIfUl5csRXfpD1WMdwFzGiVAdGelJRpzFZD2GF560NmpJNzVGwh1Et0ODuxGmkMyyvgt6vtFjHIz8asPO7GHWQf+zFm2ElVKwwqb2rp42Rn9RFbc9RrDMK1xr5SV30awFm1xyH5kMMNs4f3TbyozqogZG/CI3wPqyD1DOoOQnPVsZn0Qm9W1qiNmczpjX6XBDTFH1MZGURJue/J6z3hLI3EJ/jvnC8noP8XEQ+NmDPWHXYgnXOEq5fh2naUuWenFwhOuSfwnychAGS1/gg9o63xxsd9b0iVFY+KEJKQA4WlkU/lGIC1AuMaXKI996fAq5zzjUC9znn1nrvUwPNSmx4/03v/aPOub8CPgr8uFxx41zjz4PW42+BFd77o+WOKwNXZpsPZQ4AvzTFcsbFJUFOirPPaQSg8dBK1IbqaSvxIdi3Kw3MMqJJl6iqhCPNJxzB+tyUkEyXADUnXL+ZmGRRfh+3EUOp7sf6CAX5kJa6F+ubBjg98jAHeANGvI5RmuOlijgT3kUpKcuwcXeAmPtrFnE8kOP8YuydK06HTISDmK/oh4gRuMCe/Rys228O/5uw92MzMarVTowY1VBKpM4EMrlqJRL4fqKp2vUYOZKv0yliuOvFRM2P3lVpkzQEpe/qZNoRxX9J39HpDfGdyUlGEZWMFZSK/iKdhfWO5Bj5oKTRjjqTMoNA5wN5cYGYjGZrD0tNOLdgL75MqvqwmfS1lJpUbSVOZK/FOnB1TouIfgtgQmk/cbC8A6uDonNtxGbaJSCDCa7SzLyOGHo4FXs2EzuvX0jqq+Va4qASBuP+ziDVrz8JD1RGAvX3mDGKonvJbnVtco0OSsgEfUS/CoDrK2EzjAwFKT4leOnxci6UE2e4p/7faKbijwasvUS6bsE6OZnQLTK/ldFXYmUl8z7STf994b6OA1vg1b/3EACPbboVflgZNUzVoT4SWBqxZz2UrLdiZnx3h20HKE14CaXZ6wcxYvL/hvXXEHPLaP/riM9iQ7i+ntVoOOYkq7wjvJuaSO8hJmqkzJJwQb3IafQ6MCJTjqzMUExNczJleO/7nHMbsaedkpPdwO5Eo/IljJx8gzgdAPZW7KUMnHOvw97Q+4CPEz2aJsPuqV7jTHFJkJMqTBCSdgOiY+wuok3+TqKmoVwUn/SVT8mNvn2ZlswjGgEOY34GT2HC3xysj+hNzpfDfZrT4XRwjGhe1oaNFQpO8iPM1OsIMfRqPdFBWrPPvWdw3XbijH9TOF9kTOFe9wM/ZHrN2C4V/Ah7/1Zhz6gOe/7SHEiTsJbTIwoy8XuaqOHfQ8wg30D0/9iOva/yj1pADMyS4nS1fHL4P4x9S0vDdZaHujQRQyYrYEUv5h91CjP9k/ZN/l7jYRnWjum3o22rMTJ0DfAwsT3awjWuB+5hOjBpKOHsEH/Z4SRjZ3ObCsekYYBFUJqSbXsKx64rrBMzfvtwimbBe4k+JGAD1OuJguNJoomX0I0JmDpGEZo0Ey5zp6+E9ZWYkN0Z1r8XrvuWsN6Jucqmb/zdlGpStmIfpsIMXxVMrz4TNB2KDiYh/PmwXJusV2EDDQDBzEuE625MtNJc7ReJyROvC9tqsIFQ4Yc3YB2xxCtpbzaG9dsxAqUZ8C+G60k0lJysLPXvC9qUPljyW5awZd/DV9pMkdpid2XpjPqXoH9WcyQSPwLeDY/de6utKwKYhJUa7JlKK3Ud1L7pEINfDO04j5gzUeRqECo+MhDN0w5g5EXkYyXRJwmi+Z/aVgRXmpONmA+LBnuFee6rikKPp5ArReGziwReeC2liXVaiElbwEYZ6dKhNNAEzLhJowrOmpw45xYDw4GY1GLGgn+WHuO973bOdTnnVnvvtwNvxIa9x4FVwWRrDxZz7+fKXON6jNq/Fcsy9Dnn3B957z82hSpO6Rpng0uCnCiaoEhA6rS+hqjVeA1J/8bkUbUqiInrRohRuWaHX3U4v4sYvncvceyoJ/ppqG7lCEK5DPZFqE98EyaMbcOEXmX6bg7XkR9IHVHgk8/Dtya5RhG3JHVLw+QuCHU4iAmgaeLejFIorojaR1qUIawdh8K29Uw9WIGyut9MzGGzBhsvpEWsxuSOZeHaddg7I1+hYs6e09XybcO+B5mp6V1TLp0j2HinSKYKoKBQyk9Rmr9nvEzyEDUoI1g7KZmySPi6UH8t9Q10M51TOdkhPqOIekpnc1NNSQsxfwNEDUkTUW2xh7G2+KkmpTNk6w6ri7APSjMLawmRsoJmZX1Dqf+HzIc2EGfz27HOQVqM1cRM5oRzFxEnvZ+mNPHffOwD/nZY/whGZFItyG5GZwlqmw9BMwzePx/+3bYt/Nwec1CXOZqEYUWYWhXOF+FpD8v3hWU39pFLdt0d6vUXYV0JEhUpDEyolnO+7rM9KWMlJqbVJmXUYKRE+5uIceCfxzohlXeAUaf/ffdcGYnVF4iR0LaGMkSIWrFn8SVbrfiVAaprTzD7bpP8+7c2lwYX2Bju6wOhHzpayeAn50ftTivWiR4ict7bYeRjiXnaHcRM92ADwQHia3wcI7QikpXYu6DyWikd7FeGe9iTtMUg0FXwjRpNYQ8mTbQQCYn8qtqTAjqJ38YzlGaOL0pM0xUbdZrgmA6zriXAPwe/kwrgX733XwNwzn0D+ID3fi/wm8DnQ6SuncAvee9POuc+DDyIDcef9t7/pMw15gA/473fEcr9RYJzfcntOPcFrBdZ5JzbDXzce/+PU7zGGeOSICdHMW6tqFF9WGvVY61/imgWexvRBGQHNtM73qy1QsZ2YEJeBfbtLyUK5cqjpHKWYm/ItZRmk68hhnItYqpKymuJ0ZhWEbUo12HCYhvm8NyL9S8nMOFsNdbXrGJq5lcVmOArQVf+Jor0JMHv38nakqlgG9adrsKen6J5pX4i12LkZCoaKIUCVq6QOURiKnMpkQ1pC+WkP0A0ozqbkNdyfF+LEYxu7LvrDPfaTEwACXFSbQCbcpkd6iNfm/GIiTQ912HfeD2WoqCHSLT2Y8OaZBaF334302kAMGko4YzLDuns7YLCsgjlgYBIYFINCpgQVvBbvYUotKuz0OzXVkxYfX3QrLQT7WwJ/6/DTG8asQ/jJoxMyMdAvhiaGVc0LuFDGAHSTPyGUL7MutqBDqj9sHlID/bVA5WjZl2vWrOZTfe8GQ4YKYHgA1IfrgUmbHdXxjI3YyZaErplFyqNyvVhqcHsJkxw/4Xk+AewzvSTYdvaUK5IA+G+NetXg3UY0lLsDvs3hPWNGIl4d3KuQiTDqF8MYORga6jHcUpDB2+EhX8Z2qGvxdov2KKO7KhjsKOOQXUzIkQ1gYzMC5qXA0FsW3QSVlSW1rkGc2nuTO7zDqLJ2+5QpshHT6iXSNgtWLuK2CqDfdr1bcBEUrD2rCM674I9p1MNMQv9qLlW6rjSSXz/tV+VVmLSnmT9MKUmlDPYIX4a4L3/MfFNL+67M/m/hUg102O+gZl3TXSNHxTWhzGKXjzufcVtU73G2eCSICe12Ou7BRPGlmHf0iyiM/JBTFBKnWyvC8f9FNaHdDN+BKNdRO1HN1FoknCoqET1GBlIzatEmE5w5lhKdIAfwj7rU8TZ9wXYJ78Y6yMVjGM43O8wcUybDLdhgrRmtruwe1yIdRHPYhqoTEymjk3Ys1lKzP0xjL2bMssbjywU54nk/9NL7Mal3dsflstC+SKWNUSr4IXYuzKZ1nA8M8BWYshq+dqewoYSabOHkm0yg1RkvFbs3SkXBEBmbwqdfRv2TVdgmpEniYlRK7D3UxMCVcn97qXUB+XskX1OMlJo6NQ7oZldmWV1UipEDWIEpYcohCk/hMjJjUF5cjie832gLZCPLkwMSUMupsRiFjGaC9gHN4jNwV6DCdgHMLMcCbSKQS9swGYPVKUhSoX6YrjHTTDv17vp7zBpdt7Kbguvu9LaZdNn3zyqyejdEmbCd2PaAAnzmyujORWY1ft9xNnnx8NS/u67sY5nbbJ/kChAbwlt8jSWyFBIycTzobx3hvUfYCZrbUkZc4l2ou9lrImVYrmDDYjzMaFCCRfbk3qozLXQ+0lrh9r3HzKN0mvCO3TAwiXfcfOXAbj/u+8yDVV9eNcUDrpTdai0jlSiaafV69XrHuKxvmAath8TcUVORNKUHXc99o4pn0sfUeuk9RbiO7KQqIUCE4aUn2E39hyUCbtWRuBNMJiabaWkA8zXKs358yTRtItQaJr3ROaRWp9hDvGO0w/DmTEGlwQ5OYl9Izdgr7Acb4eIyRQXYv1JNzHL+xAmxPUQZ5aXY4KkZmRTHMO+aUUD3Ib1N6uI5iOK6CWtL0TyoO/9TMyg9oY6aYJiGHv/FVa1hqgdOkb0SVlKzDdRNOUph1ZizhKFpF1K7E52Y/3wDFOkXhR4FBsLFhI1H4ryWINZLXyBsW2rLjglDD3YM12HkV5pD0Ry1M0rk7pMy2qImesnwkT+Sf2h7kuJE3CNRG3QEYw0KGLl7HCOJhDL+Xvp/m7G3uc27B3eTiRa/cT8JrreEEacZRamb03WLWcSOrs8JvU5ybisoEx7GkJljpX6kKS5G2Qn3xR+Crkqk5YwizyYJFGU8CYTrFpM8NsQ1ovRWJVHQ0L7I0Sn6dZQ39REa24oe4gobErYVhX6YMkHX2DfNyyRScWrBiykrlh/B/Rvbh4dXPqfbYa1UNtoPczg3Pl2zk/qolB9OyFtW1h/XdgmMqLEgveF9TuwzkuDkPwgUg1PW3J8IzaIvyK0wQZME/ClcO/SatRQ6rz+AtEn5TZMAyHfG4XxVSemcIny6bnbrjXvTYGoHSXO3skh9Q5MMGi3zYOb5lu9Hwjv0Eor88Get8RrvI8oLDwbfqHTrXjtANV3nbBIYYTQypXw2HO3xrwyzRh52BDWu8O9SOt0PUaqlMhxH9EPCew5vUDUYn0Fq7POHwzHHgj3Kz7xCux5j4a5vprSvCcQR7Y9xFwnYD4oPZT6qKRhhos+KzMM0xSt63LHBScnzrlOYjCfk9779c65BcC9RGPFn/XeHxqvjFqsbzmGCfGLidGRlBvhFNEqWI7zijC0ExNumkNFbgzllCMQ/Vi/LRMylaO+ugsTyhrDUg7AXZhfwJ6k3DQnxFRwBOu/jmMCqUyt6rHvQfebRuiStkcz7RPh9ZjAtwZrK7XNVeE6fUTiN9PQhI0TyjKUhoWeKdiLjW2LiTP+R4jJc/XJMQAAIABJREFUGuVHMUB5cpBu68be+V5iKOE52HOSdkKaiSNEsqqobqmYPRVn+AqiwJ/6UQ1h77mc2uXvdSK5pyNhPY2QV8RKYpvMwb7FznBO6sCfagXnYO3VHepQR9TQSGOoCYLpwQyancuYAThJaXD21KRLIVNSnWcDccY39VV5Zfg/zBjByxFn+1eEy30+rN+OzXqnRhfVjM0G3w302az8qDOYZtI3nKS28YjN4APz1nfTf0Nz/FBfc5J9L8agPCM76njjnV/nOy8GAfpAJXTDsvdYgbu+exV0JGF9n4eR9dUlka1GtR4iJ5spnTnrxdTJvcnxD2DaC7CZ+xaitmUlNksoovAoJozfjzXnRkzSqSGayLVhndhHwvq3iY7mYGZLaRjFNHEhWCejsMgw6rfR/97mUtL07aTeu7EZxOD4WvGRAUb+vY7a9waTuA5rs5F7g41DE/b8QidW8YoBRg7UjZLLkR11DDbWMSjfnDdjjqVvT+7zfSfhvkr47bAuXx2RT70rG0Lf1lFphE4DxCGMPOp9GMKIR9rWfYyVJEVU2ogEeDC8264BfA+RET8Z/qfmje2UhhCWfQyUEheYcf3yNEfrulxxwclJwOu99weS9Y8C3/He/6lz7qNh/XcmK0TCF5jgspKYpO4YpTkT9H8As/cfIvqRiHSsBf61zHVSDi/TkhpKne/lm9GH9bNdWF8o4XA3p++suz9cIxW4DmOCm64nZ2cdM0ycKZ9MUN+FOdxrwmcpkYxUhP2byp96XtCEEaUKbDy7jUjMFCr5xrBsxu69GuuLlab00bBPDtlnQrTOJkTtTuzdaiOaAfYSkxO+CfjsFMpRgkNF5arH3qc27N0/Hsp7Emu32diYtj2sdxTKEuTzUiTOIr2N2P03hfMWEsmOtIotxHDWfaG8I4zvV/L6UHYN0XxyT7iXpzASto3oUzMPG66Wh+UqoimYQlxLY3QeNSc5Wtdlh3T4lPOudJYHsdni9rAuYewZSsnIYAwNXFMFg1WloYIbiYJ7NSajLdLxjJ1ETnOOyGfiEUr9N/4J++gAOioZXFk/yrH6uxex9g2Ps2/EvMVWVOzgsYdvZe2dxiR2HF5pxGSz/B6szF3Pmf3TG9/wdb5zz1upeGdIPPh4nWkGFhFJFpgWQxFAPhZ+tyX38DilkbbSCGIS/qUB0qAk8ylC2W3EmfvmUEYai+AI8MdhXeZvrUkZfUQ/lzTClY4/kNTx+5jm6lVEjdYm4NeI/hnSVAWuN/JgHTwCg7JX+yKs/e7jbO28Id73EVi4IfiobGnh5R/8ccxSH3xPaj9k5GZFQwdb594AJ+O21Q3b2fLbN0W/la12zsKfCWX+Q4u9I0fD89xPjNgipIJ2OzHXCZSa1um5LLJ6j7Z9S2ibRcHM64AaUKOQkjaKMXViI9eCZH8RMmSHsSaWFxhZczItmCnkpIh3EpXX/4zNfYxLTjzRnv4IJpzUEc0+6ogBQSTIP40JbG3YsDFAzKLeTTSNeQf2vW6mfO6Ug6H86nDc/mS7ZpF/iAlUSqK4kJgAcqqoJ5qJdmGfpfJiNYTrKFTtYqLAqT55Kt/KPKztqol9j6IftWATduc7KtdPEc3TdJ+LsXGskTg7Lh+jE6HOjRhxm0U0oxrGxpITwNuwLrAfE3zLBSoYD2ebO+N5InkaIEZbAxsP34blMhkPIhB6RiJLCu+s90BtJX+j4bBerP9y4v2LmBaJ8+pwPSUcHcbaWdqf/UTtlcj5rLC9aMaokMbSIMkMcQH2bESeFBp5byi3NbTTdmLQnGVhKQf5Y6GeCggxfZqTHK0roxxSn5I0THADpT4nTURi0llahKJxDQ5DW1U8ZQATaPWhN2KCn0btbsyxXcLjWqxzSd1jt4YyJAfegg1IYUCoXX/ItBzhGhXVx9k3spSFFaYmeOy5W1l40x6OBPZyTcPTPLb5VmrfFGb7d89nyZoXRrUr33n4rXAoCN5gcuXtJ5nXfID+r4VebjjUSw7szwO/SCQrr8OIiDQXirKl+1SUmjSaV+pcVkvUkijU7/PhvNRSaF9yzhLs8awO61uwxyQn/adDWSnxU8Z7iH4ytURCcx2RkxLOPUTMrt4Fyz79LLv+LDi2vBe2fvaGOKNSg/moyFdnCJ578pUsWWehio8119LfvWjUrKuSU9ZFzT3JYLcRnu2stuz1YZ1brJzZFcEDdn24BwkIcjYV0esL95BGY7ufWMcBoomboHNVZh/2jkv9PR84VEy80kPUlNxIqdqqmB8oDctN+D8T7TkyzgYzgZx44JvOOQ/8f977e4Am7/0+AO/9Pufcy4onOec+CHwQ7LtQ2OCnsD5aQsoQNkzIKVwRklZhwlsXkThICV8Tzh8gEptlxBn4VLiTU3oX9nmtImZvl3mJ+rvUKbme0yMnyqbdgPXT84i+jArFKid8mQ7NIYb8nYozfnO4tx5ivyLH416mcxZ6cjRhGq03E30y9KvChNoTjI2NU4fdwwBRMNWzP4G1k/xyZI60EusKpVWZ1kxCZTBMbMsjRA3VcWJ+jokgArET8zlpJ2rmROSqiASlj0heOzHBfTUx+EM5YlZMZLoda6elRB8Q5U5Zj+UYkbV8H2Y5ovOL5SvQgr7b1aFOsmCQdiZNar2fGJxBJmzD2PcuorOX0vDd0xvi2pNDQGSUQn4nEAWmzrAukqKv4DAmdD1DlFYPEjUrgKuCriSZ3fxQjMyhjmMCvJyXh8IlpRJfiwnMSi54FSZkbyBqHTYAd8dM6IMd82Euo2Rjds1xXl3xKBsPm2qlYt4Avbub6A33c+KKauiDuxvMwWPzmvWsoIOeahuiR/oqqf3QIQa/YsLw2t96nK1fvoH+55tHZxQqNgww0l8XzaheEeqsz+svMGFf5OXnga8TQ+reh3Uw8pOQCZFmLDZhncnVxA7gCUyrITKh2RO5BO3DBjlpOcDIiLRWe8J1qpN9W4nB1b6Hzd79HUZKliTXkukXYZsE/Q/DroevivUGe110n0HzMG+tFdDf0Qx9sO/JK+M9dMLNVzwMwP33vouKDQOM7Khjyc1GYOo5wnPPvdJCOoORlLmw77uhjEAq5t0SrvHtZvMRUvicJcQZL4gR4mTpF8Ig00Yc1NopJYLHwzkyi1sL9CX5gDzYi94ZNsj3RGZcCiWcSkypGeUMi9yVzbqmBTOBnLzWe783EJBvOeeenfQMIJCYewCanfNtRD8QhVpVFCGI2oRurF/rxL43acGVs2MtMa+HnH7lAC8BqIYo2B0PZV0Vyq4gRucSuSHUaVkoU0Lk6Sa+E2TGMxTKmUccAhWxqzrUR+ZOUwmpKsKWpjpqD/XdSXnN0XTjTaEO7URNlvpuacJmE/0d9hNJZR1GQGZjz6GHaHZXlfwUZEW5a4axbvBm7Pk+yLnNQStfnsWYYK/ojjJPuzHU8dvjFRCwBnvGaguZASvASgv2Toto6L4riJN7KVJTruKzrsbGaZlarSOS4vsxgiF/r2aMrJTTMGksV4SyRqwtlod70T3cTDS768TaZSiUfYpI8pvDNQeIwShqQjm9lKawPTvkaF0ZRVQyNiN8Q+EYrVcRhS6Zo7SHZdje2GDJ7PQRyLlKpkaLsA9R3GYQm1FReNsmLOqUcjxvxQTdLljy1y+w76+vtFn0H81npDVIT4tOct0Vm9nynNl9XfPyh7j/xXdYwkDgupsthvALJ1RXWPKuF0b/P/fZV9J1Vxsjx6M0Nrhp/mgde2WDdoNpaYBR4jKKB7F7lsnVFoygyBRtFdZhSNh/glLzNk2afyG048qGeO8SmFsZjWYFYfsKSv1z/DAcDcRwKOwrmjTJhKw27NMEvzrdj2Gdmjq6LcTnpxDOXwjrR8N5aWe7ilHH/mW/8ywvHW6icbbdRP/cRVy3ZjNbvmENU3vLIdrWdI060C97z7PMp48te24a1WTtA5a9/Fnq1UgNsPXLN1Dx2mB2d7waairp7wxarWbzZSlJormI0lDTHcSkjW8F/hN7ftKe9IVj1Pa1WKe9Iax/TzerG1dUL0W6e4YYNEIFpPl/qpjR4YQdM0OyvshxwZswJJLBe/+Sc+4+4NVAj3NuSdCaLAFemqgMmUjWUKrdVSZuEYI6oqOtiL5s4puJs8x9mAApoVf26xBDlaYaFIUhXhXKbiCavMjvYRYmvF1DzP8gEywlmZsKFhM1JHPCtRShTKZrmixqwYR1Je2bStlVoSwl0+vG2vbxCc47G6zE2ng9Vl/5CcnMpwozvZLf0Ilw/J5QR2lVRCYkuMqET89gGGszBUsQURRJPIV1h+1Es6ItnLlD/WT+LHuxNq3H3huFBVaekjnjnJeW+zBG5vQeKj+bhHWZukEMCKEcP+WIg4hJMdeK8qOIGCg7vDSPrcm+vcTM7cWw3CJjO0O95BsiszJpukSQU5M9mU4qTHBjOF/vrPxh+sL+1ExuepCjdWUUUSSreyi1G2pP1hUKNU1OJ11jgdBohnkFpim5JlnfQjR/ug2bpZdQuBibbZetv/7ffpJ9D1/Jkt96gb7DjdTecWjUYf3la35M10gb73/53wHwmed+nYUr94wK1LM5QRtdzJ1tvc4Th9ezoqGDbQS/h1aYM/cYbQ2mYnjZFT1seu7NLHt5cJB/8iqb8dsIg0OBlChU7V2hnn+EeZX+aVh/a2hKkZFfw5y8hdsxwV73qTwuK0M7NmJzCY8TZyeHsM5HZMQTNUxgxISqaHK1COvcxKPqsHaXLbX8fzT78X3sPm8jOtNXY89Ez+st2Oug5zmE+QOpHYIJ3qt/5yEAHvvyrSx51wumXQFeffNDPHbvrSx5j5HDJnrY8t2bWPIGWz9BNdsPr6aiZYC3Nln6ia++eDdr2DZKYF7ftJHGd32LTS+aZqy28QiDW+fD2ugQX3vLIQYXhRt/gKi5E64kPpsDWLjmjWH9aGi3fcl9ahbqe4GMuEBGZM6opIWD+lYasG8j/S4U3Q7iNzSDyUnWnJw1Lig5cc7VARXe+yPh/08BfwD8B2aF+qdh+e8TlTOCCaFS9IlcNGF9ivJAgAlVbdj3IyfaZqJDciMxjGkqBA6F7b2YuZGEX02k9ITfcqI5jUyx5mH91i4sSIo0GYspP4M9ERSFS4J6f7imTJ4UUUtRynaFbeMJu0IrceYeom9ONTbR0T3OeWeLO7FnI2FUBFPRlvqwtu/A2m0vJsieiYWpolldhc3RyG9tcbj+CNH/oxl7zk9hz2i8/DfjYSr12x/KXYoRM2lAFH1rE2M1OEcK/xWM4VSoexVGLCSwy7xtL/Y9yM9lIqTEZA4x2WEn1i76vhqJGo3niaS5gvLERPlRtifnKYDQCJFMHsO+T/lmnSL6dMlXR/cniITp/dH7XsF0ImtOMlKkmhMJTxKo1jFWgFpAqXblMGNQQ+yEa7EQtbLhH6DUBOgA1nGIM0tbsDGsvxt4BBa29tC7sYV9HVdSe9ch5sw9xpyrTGf/MnporOjjYW4G4Kdf/nlW0kFHmCpvoof7uJuFgQm0NXTxVr7Bnz33ccCctf9Lxd/wNyP/BYAjFfVQc5K+E8aYbln3LTbd+2arj0yAPmr1Uj0r/nbAspjrPuVk/khYfg4bhO4N64r+lLZTBzGQAADPwIFaojpmEL6fzr7Xgtd0DaGAlYzO4h+A2NNgbT9InO3Q9aTlej9GqB4kmoLtw56fCNGj4d60fzfwgZOsvcLiKm7degM8AI/9KOQo6YF9z10ZwkDDCWZTsWFgVAvSQxOsPElbKHDHyAquaXiaYw21fPW5nwFg4co97GAlbU12TC8L+XHPNfz0FdaY3z7xRlbc+ThdJ4xlXXlFJ1u23RQtrNZiHa+exSuwjlzaoCEiCa7DOmLlY9Fg1UkQrEJbdoWm3pNoqQYPE7+VBZR+O+2UmnQVo3XNMFzmDvFBlv8bTETd6L3//CSnlMWF1pw0Afc551SXf/HeP+Ccexz4V+fcrwAvAj8zUSGOqOnQrP8QJmTJBEjERT4hCuio2Vs5JksolpCl/0uJM/oj4VpFYqHkiyPEsKuKoiShSSZimrEX0SgidVJOsR2bLR8K9VtA1A6cIvqZLMCIi+zuJ5rzrcaGy9nE4fI4RoRqkvXpRj0xq71McZQEWb+DGDHqxuJ3FDUSEkSHMW3IYoxQvIGoPRfUzo8StWEidhLu68JP2chXE83mTsdpfiqQU3sXcaZfWochzLT8PyY4fwH2Dioj+zxi4sE5oaxjyTaRv9SSIdWSlNP2yHRQ/hx92PsrgqOw3HuJQQs0qZaaLc4h5si+Nhz7IPb8ZYolkzuwCUppSo5h74HeD5kqLsbe8VnYtyBCrcSkQ0xOyqeOrDnJKAdNHyhpXBoOtYVouiUdd5qcpMEGLx9mlOdWmfCqj1DRpjQ7X4d1ynJ4n4sJ9NKcvA/7uCU4PgAV7xmgt6Nl1ARqRUMHvSwaFXB3sJLZHGfXi0ZGuhrbuLnhYbrCRR/mZk6MzDbSAbx0uImvN9zJLS//FgBHqedhbqZ3YyABzVDbeogTQzZ1vKnjzTHPdTANmtfeTf+i5tE6jXyqznwb5Ly+kTh7AUayFPJX9w1JDo1ngKvjfXdBzKshk6Fvg7sDfJLgcgxxrErWe4BaOKTnVQs0Jdek1Ek/9VX5QLJtK1H9PhjbAML/T1Sy9cPhxtfDwqv2cGh/9C4f2VjHkvcYsVjBDroWt9F12J7Nqxo2wxUwO/Tgb6/4qj2LkYWjmquV7OAI9ZxgNgDXsYUt/TfR12TXuHn2wzzY8xaqa80rdfvQaqi0fDYAI3vqbHAJWpAla15g38NXmrYLjKzIp0ToIJqYQDQXUdutpKC10p/wPGqbwl8REj2D1MdETvLCDErEOA2aE+dcDfBQKKkS+JL3/uNljvs0FkPnJe/92mR7J4UUHWdRl/GucTvwV9gQ/A/ee+k+3xXq+1Xn3L3E4OenhQtKTrz3OzFZpbi9F3jjVMuRw7YiEVUTycEQcUZXZlqaXa4nEg6ZRe3Fvh1FEDqOEZqucHwjcSLgWkqdpzVb3IQJvbquSMp+7G1pwoQrOS8XnXbXEzXBRShPi0xgukL9JGArIpOilh0M2yYyTxrBTGSPEE3QtNxODJkOY01+zhS3EcMiHyGOu8rJ0YsFlXm0cN4w8FtEIVR+BkewPrQX+LmwfnNYbySaqD0djr8/lLcJe94KUrIUE4xbiIJwGzFK1ERRtCaDEgWmeIr4fjVi74beh/FC7wod2HOT/4YIhMiahlsRaznGp87u6bMsp+25iqjREInqIzqcV4V6iMClDmPHiKG9rw31UmRUhcU+hbWvvpUeYpCJTuI3LZLUiYl7Clqh715GM0uJmqIBLt4M8c65uzADl5cBn/Lef/O8XTxjCtDQmQpMitCV4smwvBpcE/gWIqGpBV8VM2kfJSYNhJg/4lVhXfk7JAg+jnVeMj2aS4lQtOS3XmDfl6+0DyaY7VRyioUcoClYSn/nybfy6nUP0XaFCcAv0cQR6lkRBL8r6eTv9v/a6Mx7dcMJVvMcx5Lwrh2s4KffYPLHDlbw455reEuTSev3z30Hy67oYNefXRXNlb57q3UEEnM+gvnJqHOtwczXpPRYBfwtFh1F993VCW3ttt51NTCc5EqpwnqKdPZ9XcitIWhkVOby4BmfhnF2DeCl5RouLKusXTU4XoPd029gfidgAvyH+P/ZO/f4uuoq7X930pw0SZOcNmlOb6cNJLQ0pNjSOGAKmgJSKFMGHBR1QHHeegPldZSR8TaO4+UdHEcdRlCxOAzoSMWxSMdqGbBR2giSXiA15ZJIyuktbdOeNG0up032+8daa//2Oc2tbZDKdH0++eTsc/b98tvr8jzPcjqjT+txWdDViwQ4Br+YAR17pgdB1rtnf5//jP81VSGJlJKsjiA4yyWV9tvqgWV0H87nhqKV3N/wIQAW1TYQoz2ohDVQy9TZL5OvaaMEca6OreE5jT72HopRXL4nCC572grcoA/sRon079SN7sBVsSxWmIK8aG3wHY8EI3a9m9CgXKc9hG9lCl49h5CAxILFcMAPjjxvN4iB719X1gdc6vv+Yc/zcoD1nuf9wvf9pzLmux/4FoN3IMhs0ZFmyvPu8X2/K/Rdpe/7LRmzHrcNz/OygbuRp3IH8IzneY/6vt+M3MFWB+3nJO21rpyMiXk4J9eUfUzRyZxTCxKKcZ3VwQ01pnxViDhD4WrLEVxPCuOx2LregFyFMIbfJFftO0siGAm7CxlvjRsR5j5kM3RgAuK8xXFOeU7of0Q/9+EkgPsZGTq2BFexyEJesR36+QjpDuypBiaLEYe3Epepz0H7hCHX7tf6vxPB+Zn8fQHpvISo7l8Jjtg+R9djnJJu0kURTDmtCnEbGnVb9jRW45oB2n1j138acl3bODkhg6GCjU1IlcSaL1owtQDJ/W0eYjkz45ZMw/U9Me6UCUFYUDIYvylTmcvMmhwmkWM+h/RnwioWF+jvptYZtknItbUkQCOuQaZV/KyKaVCxHCS4MOW1YpxqnD2n+ThhCEs6WKXTII/GQRkz6z/pcRY4sQyU7/uPAI94njcRoQefCU5OKwsrdYFzoDJJvgYbOgB+D+LRakCTl5OewC9A/C1zP6oRf8zKqsbFCNNaXsDBoEymsVICkd2vxGEKVF/wDHN4EZDgIU5CZGeBD1zwrxymkFe0UlJBC2fRRlLLMUmiVMWa05zgMvbSqBFTDRu5jkf4xIt3AzB19svUxDbSkBKYGL3j2N58LlwCL6RmA6IM1fmNKW7QXUg6DGaPHpsN9ltxUCHQzHy5KpupleakVzWYDuSE9AqOkn6y56qD/JxOa0UlCEaQKkueTlfmCEzLAsnEUXgyxwWGO5DA8LNIANkKfBch9dtxXkt6J1pVwSr+kCplbZ0CbXDxpVKVaqaK4po9QcPLi2euI3EoTrQoqaehgsXUB5WTaFaSwqIuUkSorhWWaB+5FNJFTKsQEfq4nMeDYKSbfBqpITUglZWKohbm8CJNEfm9ZVGE3LyUiByADPS9uAA5ibzQw1kpe8m26X+DAVggVwrsPwQ1em4bj8LBHNIrJHNDKyjHsXlBrpW9NeC0g3hlMZrKSanneWFX714VeQLA930fx/ax17dPhvm+/xvP88pPck/fAnzY87ylvu/3ep73fgSIuHQU2/gzoEULDHie9xDSAqQZucNnIKH4SSOrXxfByTEcSdYqHDm47tW9OOWqo4jjbZnwOE52tQ+H07eqspGoTe3oBcTxsYxyTP/CnoNJ19r2rG/KPhxR3qoopoy/g9E7vOYwH0UctA6cHHK+7qNVWCzQGs5eAm7AybCix7qDkLBGxvZPJk/xDiSTPkX3KYI47PsQXk8bbhx/E/I+uhTHLyjGVbzMkS/CZdWN9F2Ik4S2Y89HgphwJe0tuOvwLNKbbKuu9w3IdTEFs0LkfP45sIZ0aNSp2h9wXChTJDPYVDnDBye/Re7FGHLM4UDMghRwEspWvQiLxAylwhZHRpds5Dx0IedlD1JdSuF6xBhc0u6NLAR+aEGTQbYqccIUh3BcsaOhZZM40n2/Lms8MOMHJXGNIftwlVIbxffgKjtjYmGd/pO3+zmxDBSIu3P3KW/5jL0Kdoz0SMF0/8yM2AtOfeiQm6cXRwYG51xb2JpE4E72ez/p/vXl+r89tNxmmHWpjKLbG86FqChmrWoXAnttrIHdTCMxIMHIkqy1lLGXvpA3lSQa8BhWcR1xEkHmvZIWkkSZqb8/zmXM4UXmz5aIqpt8WgcqiEWkMtN5eAr0wqza59m+Rvt5RKH6jmfYeqfCmXYDK3AqY0nkpfQswfy8E/ieTl8F/KIdrou589YGbiTrkaAiDbmVg0iZ1en0Nhg/F3rCfWkyrQd69PumozAxx62vNCdAegHy+UnSxQv6Sc+OfAypEhmBs06Os/NxiT5nLX2ew/MLWf9TKRHlXX6QsqJ23jxTvPrfpC5hXlFTEGhMZRcdlJLUwHLLwPygP02ZzhMnwV7Kguu5hLW0UBlUzg5TSJQkrcr076CUdpJ0DAiZpnBiF9FIktylsvyLDedTXKPBJTi4xkGcNLR1FQ6rkrwUOjc7gNKijHY/bQQQyKCqEq6M2EkGl44NByU9nFawrpE96/0jQa303bAReW3e7ft+JpBkOBusRUf6DL7/sOd5ZwEPeZ73MPDXuPrkSDadUK0SuaqmUfdT4Fue512N60Z0wva6CE4sNOvH9Ud4CXk2XsJl2AdwTg+4xEwW4iRbgT6KI5ebo3suUiGZpvM8jzhLccRBDMOdjNxrJOBOHPzqJRy52LgrhrMfrbRwLy7DPB6Xbc/SY7N+KkbMH6mfysU4zL71VDJo1WAwrpMtoJ6N3NEm8ZzCVSGeR+7uWbimj1W4apL9t320oMxeR1b5seDSJOitMmMwN5MVNu6e/V2o+/XviMN9CAmMduEc+gKd51IcSf9EbbAqhVUijN9kzSNNrGE4U82cIBgrIGgsHPCfJiP3gIkOjKb3h3V7Nwj8FF2XpXrsObgAx93qx0G5epGA/c9xFT07nm6c2l04kGzT/yYrnMQpVJpq3OTQ9gpwVVILtiz4NGDHYC7HSZl1eh3ahs2EwYlloDzP24YIgvzC9/1NnLHT0MZxfKelcFfrsPM0PTQd6uNgRCpwUsETQtOEph9HnHTLvLfjlKtAuoAXjmP7rzQISEpQkExFmTg5ydysZjYeqmFhUSO1WQ3BnoWDkSqaaaaKRiW23MQD7GYaEe2UNZ/N/I4LAw7D+TTxHPOCSkyEPuqy6lmsaa0vX/AZ4bTce64LuhqV/P0udSbrx6Xjjuv1PFhQ1oKoRhlPoQ8ojTni/0GkJJ9Q2E/e+QqdCj+wPeDVgd+m03nQo1yVwEKBoxdTBanQOkpC+2CwhLBSWiVyjEZgtOZNioTiI/r9zTp9PxKg6LFvf6WSkhnt3Pw2UU5rp4xfvHINE2dKhBONJClhf8AXaqCWGjb+MZjdAAAgAElEQVQGu/fprK+QJEozVVyogOh8ummgllrkej/HPA6HwK7LWE0jCynJksg4QZwEceEpAdWzn6G5vUr60sgM0m/FXNg2xKlJ4iSt7X42x2Yn6fCNgwBHXRUqaB5g1asDyLNi5z5zFM/h+K7xp0lgAukJh1Mw3/f7gfme50URbna17/ujzYse16LD9/3fDLKNr+o759tAhe/7mdpsQ5k3yHe+rvMI8L5RrmdIe10EJ724BMUuJBgYj2R0w9yTOOIEG9F6FuIoJXG4fHNu9iCvmT/ocpbFNdiX4dtBsvzTSO9LYYFRDJfR3YLrqxLufL0PGYuH932cRXHyuDm4zvHgFKkMzmSBylA2Wf9MdMTO07P6d7IwrnCgVY2MW+W4viOHEKf3AVzTvDcgdcEwUd0CiX24DHsCCWzakXN4SD9X6W/Gu0ngZGlNlcukhC24K8Y57VHE2f4o8r54AElOWpUa5PpFEQm5Bhx3ZbQ22LWw4zIn2/hOcYYPLPOR+9kqFEYEP4ILyC1wt2pC2yj30+BgCeRa7NP1Fet0i27fKpUJ3L1i6ZR3kA4rM8iVPXe2v8bFmaL7bcHKubouOyfTcMFzPvA/ui9WMSrR4wtXAE2V9ZRt5MrJiJmwIWyoDNRHkUtbrDjg75zEus/Yq2b26gwrDMHxBHljQFtND3mwdyA3aR7p/SHsZQNyIy/BEe/MuTeVKpPTtbundxyzlj4fkNuXzVzF6leu489mNlBJC2sHlrCwqJGNh2qoK1qnu5KgjL28wOzgyArpCjgn9SwmSpImTXuniIg0LQI1ekFHxy4NVpazgi0s4OeKDGlvL6My1sqsDzzP4YFCKrJa+V3pm+GfgUo5h3nXHiRalGT3+9WLtx4m9lL/PFJZMcndRqSiZOdtNxqonC/TPW2QVy6XpiZHMyrmCFs2PgfHYYAgMAnDwHpDUKO8cmgJyUD3AFfmOKhSNXAnUhc1Tf8OvTZGkN+BZAInqCN98zgZsK6U6YtnyjW5f5PwRbKmH2H+zEa6tf6/iAbWDixhapYwXa9mDRPoCsQLCumigVoWsy6Qer6EJ6mkJeAI5dNDPj1pggdhTkqUJK2HKqmeLbCwFLkSmBjU8CLks12bw8iL/RwkS7sRGciNRApyn8/DNQKNA7EcgrjKKiUGobNqVfC2DD9T4LCN4YrKaUSIHx2sa9Tm+37S87x6JBUxquBkiBYdxwUnnuddgty9q5An7SOZ8wxhO0hvIzaDMe5f/boITqyCYMTdAwiO35j2f0DuF3tmLFsehpP0k14RiODgJ73Ic1aOk0ktx1VerNnbG5CxphOH7TeIFzieicGSDF5jDnhYNnZSxnTYEgjZ2yBqRpDv1f3uQpz3bOS9NpzGUArXjNA4BAaTOpVGhOEK0F8g18Wu0R7kLn5J93UWIjSzGMmRpHAQrDZcRvwlBOLUweBP6LODfBe2QpwM9GJcUGZCBxbIfg+5fxqQgPMlJGi5APc+zEfugSsYmgwwFJdjMDuKg0WZ8z6e4ZsIduOCyjCCIK6/2baNkwJyzKOp+FjFwtTm2pBgoRcXbBgfxQQXrIdKLRJwlOMQDCa2MANXCQv7+uNx0DTb1124aoxBK7fjuDPlOr8JgvbimoZaFW3MbOTKSbHnefcCq33fP5FS9qAZKN/37wLuOoH1/K80z/PiSB7Binv3+r7/r6/+lo1zEibEx3DBSgvSnEOnvRzNKx6CRJFbJJyn3E+6auo8hIBnzq1J8Ro0PwqsgqzbVVmps4Dtr1RSPEWy4I3UBA7vK8SZm9VMkigLixpZrGWHJ7mEPnKZqKNHPXXMDfFLGlMLeV/kfq7XjT/NhVTRzDqkT0YFwlEIc1A+3/4FYjGBDcVjCSL0UUY763cspoMYl83+OY13L6Tzdq0L10iQtPtdGpz8iHQllCN6DgzrGuae2PS1wCp9QOPlkNBasdUyJwIHVYELkFEkJJ3lFWmlxKpaeTqdURmzHh0lyLptdXuQAOpYaL/qkMHYpqOyTNYSSeMMtI2TbbSIG7a+961S/So9Fjp3KSaoZxIhRV1WPe2UASIl3E6MFoVk7WZawCGx4DKfbibQFVROAFZzTfA5n266KAx4K1U0kyyK0nooLCsmASRoh/kaHMfEPv8WcXDOQSoj1tEaPU87SCfEQ/oAbVAVCBUdLaBs0y/sxu8hvV/Q644Mj+d5k4GjGpjkIYmqO0e57FAtOjLnW4C4O1cDLwM/8DzvS77vfzZz3kHsGeAchYXtRGq67x7N/o3WXhfBiTl2U3CSssY/2Ic8L1nArxCYSi7uWUnhsOkGAeoknaexD8fd6MRxTQyWZRAqQst2kw43KyCd/B3F9anI0n0OBwOZgUG46WOYc2Fk+5dwTRdBHLwjOElik8HNhGktwclyh/tVnQiOJLxvmbYYB9WyAND27Q9I7c8I7wa5Ch/f48j7uhkZA3dx8kFTF04Y5RlESKUXec9MxvX0mIFc81m4Pl5NOs8snDsSYXiI1GgDE5Dj/D84EvgR3LkYzppJhwZm4WB52bqPhci5jpFOyh/uuo1HRpxu5BwZXNgqduNxIi3Wh8R8KhMTMGhWNq6aMUX32So7xhmxYMLksa0aYvtvkssGtbR7qB9339r6jLvSglyvMbPhKyedvu9/4CTW+qpnoF7ndgz4hO/7mzzPKwQ2ep73PyHOzqts4extO67L9QGE47BIJo3Kmlfk4FrWdsMClEr9s9//HHF4f6DTdfr/Zv2/FaiBgQ4ppUytcp3bAW5gJQnidJNHl44kNWwkQl9Q+YiToJu8ANbVRy5bWBBAh66LPMJeypijWpTrqKOdGJXq/LYTYz6bg0x8IwupjTUEwY9l5lcduo6pM20bESF/63H0rJ/I78a/2ZWhOxDOhvU1uRlxdn+p03cgLCzLFJWjbUrUmW0BaBNoVoXOsxNgkoMS9SJKaVZL9stlMOux6zkJenJcY8edqHqX/hxFIF51pFtpxnfWlBAk+LwWBn6mpa8aPSa93lMvfZk4iQAyZyIEBqlbRx2Lqed2vgZAE/NIEg2R3VOkiLCEtcH1XckNfLv/w6zMvgGQ6xEnwXxlMrZSSYI4Lyvfo4FaWg9VMqdIrvdUdtFcVBVwVF4YP5vOrVOY+ja510R0YZwci71cdgI3kk78P4wLPuYh18ju8x3IubfrebANvPJ0CF4awec50jvGn0Z8ExirJoxTgf9Q3kkW8GPf9/8bwPO8NcByhW39CNXw8zxvB1L9WMcgLToG2UY+8Hbf91t1ve/FjS7ucAbZhu/793me9xFEMDsb+L7v+78/5aMO2ZDBied5mWDawWzA9/0xFcQ5GTPlJnOyrcFhP458vR4Zw6x3hxHUc/S/YdhNEcgkh62qUYxTKroABwezqoRlbytxiZIBxEGbgngbR/X3Ad3mUd2nfEbOZmc6keYktuu+Wdbf8PbmDB4Fwm/pTJiWVQX6kbElpfMYRDQsLjLafTObhYxD1m3eIFlNuP4dn9T/cRyMax9y3hLIO2kwjbxTtXbgq7rdixGJ/ULkWmUhges05Pp8A7neLaTzYHKQwMq4KqOxoaSYe3Fju8HPDOo1XBBhUKlJuMoXOEhfGAaVuV2DFIbNAmvjNEZx8MaY7r/ls0zOt2uQdeciua1OXLUknBwDx6exnkJWNenV5UuQe8CqL3Ysxjsxorz1O7GAZx8SlNszMSb26lVOXvUM1OvZfN/fjQB70EyhNRj5IwQn1iwOXO+FsM0lTZIhD/dQ2SKHSSfAG7kKJBvzFlxQbAqqVjauxpWXgYqqlqCDO8A3m/+Od1d9nwRxWgfES5+ZlSBGOzeo599KBRFSQXBhwcr5mt7uJp8OSgKY1kSSbGF+ABv6M55mCwsCda9cUiyiIWjqGKOdhWxkQ1FtcBqSRKm+4Bm2rlRCfCNc9c8/5Rf1b5Pp5chLwnqbHEZewjfq9ArE0bci1RHEObaXaB7Qe6EMIFP1uxYltFsWp8dYeCGS9f4ecYrD1qIpFwt0bH3bcAOUbXOJft6t/1txogUg7t234eLviRrX+ua3SjlaKwi7N51FzQWNQaD4nfYPsiS2NrgW7+FBqmimR/d5LUu4kKc5qOc+RS4x2omS5FrFUL3AbOqz64JqSy0NtFPGg7xHd2kdFbSwFOko/xU+zU1FD5BS7zpBnER7nO2dwmOaPfs5OpNTaG+X9bF/nEDqrsQFjx9CaNDWW2ECEogYd+oZ0qsmM5BrbL/3livXJ/w8FeFAyeEK5WloY9CE0ff953AdgjJ/Wxr6/K4hVnFci45B1rMhY/ooTnYi/P2g2/B9fw3ojfMq2HCVk136NxjswCwbmDmme3QSZo6YEdFNzQekKm649zgu82oZ/GzEmSnGyZZaBt/I5bNwhcNeXDM747IY/MWgX+DGSUuL1uj625AAwGRUTS0qCwetCvtAg5HkrRO98fPCPVVsWetOv4/hfaqLdDmr+KSQ96Ntc6TAZDgzOJdJvLYhQaJVL96ivxfotu3dvB2BVP2Kkcn8cPLqYdat3PqX3IALVizbb7K3P0S8nVWIWIwFMv1IcHcE+PEotjkUh6cfuX/sXrZ3qDngg0kAg1z7mP5uqljGxzTujVU/UqSjJYar+hhHx5Y9B8fnMDihKd2Fr9Ec/a4ZxxE9gFxje9WU677YfW8cIIM6GnTLgntwFS7reWIVEyPH2/qMr2R9X0YcoUdrI3NORqycvFYZqNfSPM8bpA16+izAbt/3Z48w32i2VY680I9TtfE87wOAXp/izJ9PwsZxfBO/MLnaHKg2ndbM7/jQYnORQMMQNHuQAdemD5JOqG5FnDz73bTX1YXZS4yeZCHjiuRGvbjqf2ihkkpaqMySN9IVrOUxlgSVlEK6qKI5gAaVsJ+/Z2XAMVnNMiKk0gjVuaS4hXsAeJCbaKaKJdqFcAXLWcqaoNLyGy6hkRq2v1LJZTNlngRxXvzp+eRdpVChyRP5xaa3kXe7Tj80UQYJa2w4Qc/BQzptfBMr5z6u5zEsnOZvg465LpAzONb+kHpaXP+DBjs56TjZg/UQr0N3WgKccFfzKK5x5HpkfTMQiNNO5AXRiNMwSgLvgvW/Ujb5DKDmGPNnNuph7aKbfB7XiGZxrJ5fvPg2Fs+uBwRSV0ELm/WCx0nwbv6Tx7UlXD2LKaGDBmqp08rVIhp4iBsCEvx1PMLXuD0ITitpYS1LaFPPJUKKiSSD4LOLQq6OreE3Ey/BLK/moJMWrkQgdb244OIR/WwS10/hpFNB7tlG3EvuCNLM0TgomU0ZgwAynAjI49SA56+yZY88yxkb3oYLTrb5vj9o5Gbmed5ILRj+KJaFI9VaUGFKRWcj44r1SjgHycZXIu+B8HLh7LP1UehFnK9pOJjJFBwhfhcOMhVBxp/pBPBS0OVLkPHKiNrmTBpuPwtHNA6b4fvDAcYkXBdzI9ibdHFS/wwiMxwhvhAZmk3yOFuPeTR6dSM1Y7wKCeosINyDQMXWI2P1BUjAZuT+A4hD+yzwff1+NIEJjA3itB0B+Fv/lck4eNJ85Dw3AN9E7pk3IuctBzmH8xhdcDLc9l9Azhu44LeboQMTcDLExteI4QIrdB1W+YgiydbhGHUWlO5BclWFOBiiBU1ZyPkJy2Ef0HVbtaIEJ2RQg6uc9OOeR5N6NkhXErkHpiDP6iYcV8kC+SiuIWQSJ2SAfm/+mokgjNnrawwqJ69VBuo1ttY/xnvE87wJwH8BH/N9/7iASJXT7pV5px3XL+DEzWSEww5TC2mEa688HZpiGEgbOLchDqpF4FOQAcggIR06bU7flaSTka1h1niBtLz4ShWzZrYEMsFTs3ZxNWtYx2KWs4IHuIn/4noqaA1gPbmkiJMImvJV0BpAf0CgRRPoCvpiWMdxk54tYy9f4POs4joALldZGFP7eh/3s4al3DTzgaA6004ZeZcfpGeHOLjFF++h8/Ep9CTV4bWs35/rcdaHzhE4hSs7Dz06f5qA01zpU3JQRwCvXCtSGoyU6jqCWyUP2AYdSqofj6h7WWWkFOjPcdeiB+nV8ZLCvi5GFG+2IPNMR3guNx6jZIa8yTrumA5vguI/l4PpOljIQEcBz7XLuX15YjnxSCI4h93kc/Ps7wTXYg4v8Bm+xGf4CiDXpol5vDchb55UPJcqmnmaC/lbvqrX4wkWU8/TGiE1MY8aGgMoWDsx6qhnNcsAWMaj7GYaUxVZeizDy25PlVFb1MATlVfLF9rRorh6D51JrYVboGjS2Enk3jals3aEZGoE+enA73HNRluBZA74sdACdo1g8P4mJ5uifBVsDConZ2z44ORNo1h+NPP8UWyf/hnENBvXt2QertqRwEFcLLgwjoFliK2KYI6PcSCKkICgGKdSVIgDjJvztRMH0bHeIxYwFCLQoG4cfKkcV6UZzDIrKS/pMrm63kho2xbIWFVoOFhLXH/fh2tiOFoi8XCByTTkPBqca5/us2XqdyLqXVOQc2zIhAQiftLH6AOTsbYWHNzPlL2mIdcpjlQGmpHjMxK2VViuwcHVwFW9RjtsWvBrQgkmtfsOpGJzlMG7zNu6rTM8uOteEvrNZLZHYyW4KowpaBnM0Z6LfbjrNAkJos7BQeMGcD197J7vwgXEe3DqbXbfGcTrD7gqjUkK5+CqS+F9Sej2d+l/g3OawtiY2VDYOrGT5Zy83u0vx2ieIU07KP8X8EPf9396KusavY0jXS7YIEJFbtpvIwhWSnPczWgPZa7+2cPaRnrn9BIE9mO2GXlZ6fxZdUcYWFvA1PeI8xqhT4KNLEG07SVGM1UU0kWSKO/hQZqpIkE8CE6iJFnBcuYpdChOgtoQLGsZq2mlIpj+bOJf6CuBdfl1us0UefQQ1UihkC6aqUrrIL+EtXzyxbsoqRRCc8dT02E8LLvgYQBW3/t2cf6NKH0EFzyABCMrcDCv3cC/H4W4VjGs/4tVlPrQSkieg2lFEUJ8acxtwwfmWR+TNvDOB19H0J4cGfDt8nagjQQ1mCktgsVFbp/PQV4WecjgY8HUb8fRUSj3QMmdO+l4eDqd31EnfgZwruMMnRVrIk4iCOJu4kHe2f4jlsSkhLSWJUEzTZAKVDNVNMTl2hjHaBq7AijYEtYGjTcBNrKQWhqCbZSxl9UsC4KRDkp5N//Jx/l6sJ0S9gcd4yuKWuiikKxiuZknVibp2BGjc/0Up45icEM7N1HkxWqB3X4E2mXXyzgnYfECv42g1u7FpBKWVkkJE+LhtIJ5jQ3n5H+9DRmc+L7fC0NyT7p83z9q87zWdgxxjLKRxEUhkoWeh+NfGAykEAcj2oVk93chTo5BSK3Pgik5mQNtDtoOnANmWd1C5FksQSTA25AqwC5c5d5UInuRV5ipjLXh5HRHsm7EQTboWiFS6bgcl0iajCMiD5fstSaDR/XctOvxPz/MMqOxJYgzampmA0hV4SgiG3EJUjmJIY5+O3LdfsCpd6AfC/scktjpRo5jEnK9I8i5fxQJFq7DwZgmc7yyllUhRpvP+S1yXqwyZk54I+46DtZl3ioHxgGxB9aqDei+DzA6HUKTtbZtmmBDQtdvvJPww28QMpNDtv0HV5mz+7MX13/Fpu2ZSOKqittxAWKvfmdVwgHkWYvgJKN3Ikm3fch9NVzF6YRtZFjXyXJOXtdm/VvMPM8rIvTe8X3/QOY8J2KesD7vQyr9Xx9p/rG3cOWkCPfUtCMjnMGJ9PvSHIElTcA9nAlk8DASlpXPp5NOJLaypM430FFA1pIj7P6V4L7mX/oU7cSCQGM5K/gKn6GPCEsQrkeSKJW0EGNvIAv874kP80pcOAT5dPNlPuOCl/4k0exkAOv6fbyCNSylPCRKvpIbgr4mrVTwswPv4MuTPgFIk8aJJFk2+2ESxGknRlbFEQondnEJT/IN/gYuhsuqfs4TzZqNn3AMfjnOZd536Hn4Wug8vCsnXQqwsR2mauDRhnAWgq7xR+Fgjzi5+5V7UoBAiSy7MrFc/pcYqb4NEuU4ueHpkCyCqzSY2YrLhIIjd2/V/bMApQLZhyfh4MKoYxF8D+647QusGFhOxw7Z7zrq04K6u/gotbEGnuSS4Hqu4jr6lDDfRSG1NAQy0K1UUEsDf8s/cztfYw1LWcW1VNJKnARbmM9cmjlINIB9NbIwIN6DQMP2UhZc70YWkk8PtUUybfC/qpgs00EpxVP209k4xZXln0EG42okANuP3Lcmu3we6VaC9q7R6f1HSesL5BsBfmdooXDV8jSGd52xk7bRqHVtQobOg0hMGAV2e563F3i/7/sbh1v4j2FJHI/BbA6Sfd2JSJtaIznD5YODrFgfEqtumDJTCqeahP5mhPGUThupOB/Bt+/AOZVhyR2TQbXMsCXRjE8QTsqOlGm3jtzm3JXjVMmswza6jTaGhmAV6D6ORxzaYsQRHMwBHq1NQ869qUZ1Az/DZf3/AnH4S3Rff6D70DjYyl5D+xHi4L4Dt7+TkMDzUeQa/AI5d6a4Ng9tXnwS2zMZ3l26nnxcIHsNAiczG+z+sHsuX/dpPE4dLgcXVHRlLD/Yukp03l046OwfkMApX/dzO/I82b3ShZRRreEjuIBisv5u0vcmfGD3/FFkUDGIWlgxz6S4rW+RfY7h5It7EdGEaTiuVVjaeExsZFjXmcrJMOZ53gcROcseHKrcR3JBp2KLgJuAJs/ztuh3n1ao3KtombCuzKaLOemzx9VRnotz0mp0MStnFuj0b3XaIF0zdDoJlMP8Kmk60U5MiMkarHSTH8B1QLp/38BKIvQFHII61nE+TQGvoZ0Y8+JNAefgSS7hen5C3QHZCW8bPLdoHu85INChn0xaFgQ/skvRoOEfQDNVrJ50BYvUuZ3Di/w7N3Mb/xZAwe6K3UY+3axlCVU0E6nq44k7r+ayO34OwBMPXO0aGoJwTWYAf6fTK/S/ZWVagPfF3HndT6i/CUBOKFDJ0SaAyAsy6PiOU9wACVZ6gfOUR9RHOh+oErlW1v8jiuCVo4ikBUgwtVK/r1SVrjooLt8DX4Y7N30eSh3sK5c+9lIWkNkv5wm+xu0Bn+fzfIEIKTq09Pb17k/w+fx/CH5vJ0bp7sPcNvUukkSppYEoSc5LtPJUfD4L2UicBCu5Iaic1LCRu/goVyuqNEY7H+XfAh5LLinaKQukpuMkSBJl6yYl25Qe4+KZ61hfrjdhNa7/gmWvkggk0a7HVfrZfm/UQNL6ouTlZEgJl5MemJiFB+TTSK3rDKxrTGw0wckvgVW+768F8DzvCuRW+zFwD47u9ZpaGO4yCycUAeIsLkAcdVMOMgy8ZYizcb1CTOb2Ql1nL85xNwlg65OSE1puK+LA7UEc1stxjRknIePbESQgCcNkTArWMPOZzqLBz8zskTyCvM+qdf0p0uE8BpXJDEwswTEHeS8aFKyT0fFNhrKzkapJOS54SyLj0GTgi4ijb+TnAzhC+lhaJkfnZO1ZZD/fh3BM8pF74suIOtdLCA9lPA4OeAGjC04y+9jYNT+AjNEduDE+M62ceX9YMrUbd39alXASDq63i+Md9sGCYIPFmypWIe4hTyDH+zzp99WFOC5W2NuchFMQMwii3Zd2v0aR+9FksCM4uW+QfLSJTezRfX5cj+snON8uU393TKGBI1dOztjwdjtwnu/7+0ec8wTM9/31DC/a8ipaGFaSQzpJdy4OfgIk2oDzZTC0DHFSZ7EzYpURyzoVICVlyzSrr7al+SL5ME7Uk7pi8gSU0R5AuEB4H10UMp/NAawnQZxKWoPs+3Wsool5XKKe/TsTj/BUfD6ePtwti2awiAY6JgkmZy9lVNHMg9wEwEI2EiXJKu2QeAd30kIF3+GDgHSQb6WSZqqCeebRRP1AHceyJPWxnBV8rv9rNBxSRS9Tu7IKklWUwmKoYanMmE4bp6EaIVdfh3OITZnGZJtNi9zuHHu2w4WwGlypeb7uj21zik6bTOPvEQL/l3Av/Rkw//tPseUBuV4lN+6k+3A+nV/TA7rxGNUzN3OWVqESxHmOeUFfk3x6uIW7g8rGLdzDWpYEVa3N+VIJWbxbAskNUxeyYepCWqjgvV+VYPLRT15BY3xhEHw0UsPy/hUUbZDR9m/e/P94Dw8GnKMIKR7hWspUOtgqKKb29TLlREky9YKX9dS3y/02AXcf78GV0kHEDJ4hvdnoS7jrFc+RYM/4PS2ZXdbydIUWSR7ImD7N7Aysa0xsNMFJje/7H7IJ3/cf8zzvK77vf9zzvNPmEhip3SoUmbYZCRZMvcpkg01lK4qTUC3AyZMWhuZB57Mmcjk47klEl3kJ10Qv7Cxt1+9NMnWSLmvqYiYb28/xvILBmh7EcXCwLpwMq8HXdiKZ6YJBlrXx1vgwAziHdhKjd+4zKzIJJJA6hMuW2xBj0q42PplwwekamJi1IBWUIhyxuwoJVlpwkEBTYEshQd9wx2XBZmYFI3z/2fWA41PLmcGqvQPsnrQKSTau344Ry0cDdcrW4yjHwcT+EDpOU80Km6ludSHvJoPCGQzLgmB7fuzYDMpl5yKqxzYZ96xMR95jVuW0itBWnBJcvq7jVeMqvXpSwv9brJXjhQf/hC3z1ZmJg9c711MYkH++/DSe9JhmN5LZQH/bj8vO70cG+jBRLAnFNYJn6lw1hfbyMs6KtAGS5e6ikBqVPVrDUi7ncbawIHBo8+mhg5LAWZU97wkqJ9P3dlAY72LdVKGTRkmSJBr02ljefR+5m6FuUT3gOCYmPRslyRYWBH0x5tIc9N34W8VlzWcLs7a0U3GBeKefe+WfoA4+WPRdAL75rtuZOjPhOsZfjrSIs7pYH8JDMe9jLQKfst7WK3BNEs3hhYC8HdhUXAakBNePA2SQWo/LgK9DnM56nS5FgiJTFLOg5SFcxacUtjRcFFR0Ohqnw5Uw9dPi2EfoI06CEvUu1lHH3/K1oCP8daxiA7WBOtcCNiuhXa5v1YFWLmQLPCHr73G6RZMAACAASURBVLqxkNr+BnZlT8NfbofVwUI2UnJADuzKXfW8Ul3Gg28WAvzXD3yKb0y6Jaik3MZdvMAcgdshlZI4CSo1kvgdF3KYwrRgN0a7vAwtiDys59mydDVI8BIOTqaSDld8KnSuJ+bAQfNEwEHrzI7qybfvrWp5mlRPPF4nHQRfWxvNKTzged4dOCG/G4CD2hxmeIroH9lG4lc8jlQUjeth8sEmCXsEGZMsO2v9Q0ye1HqV9OII5Canup102eFi/WxoziO4JpHWn8QqLkYuNlGLkd7gxqE0bonth8FjzNlrx2WtM+0qPXbjAtg+PMvIzr01dsysyNyKa3iJ7uOvkarVrYjTnou8tp9F5IkyKwinamMZmJj9EKeaVouc9xokOPwtcowxXIA6j+GDEwsswlULc6pN2MHulRKd32CKRzk+WLUmnzt1HyzAMbU5ax5qjv1wZsR5U9oy8rqR3XeSfl+j85yL3PO2LwPIObMmp0mcfPYBHLTLVPVMmCFX5x+P3NPNuCaQm/TPAvdMme3eIb4fM3t1mjD+b7FPAQ2e5z1NaOjwff+2126XTtUy1bpySId5Ab4+2RNjAieaHprFOpfajVuABCZGmAcXsIA4xFHo3COll7yrDnJ55ImArL6cFbRQGfAWammgglYipGjViMf6WfSF+1gQ5+2rNZ7eBtGFSc7brWntI8iAo1muRxdeQcWi1iCbv4tpLGAzezWzbttdiTT9m0mCFiqpo553pn4EQCyyFybA716R/b545jpSM3P5ZoPitlog8p4+MPXax6H47j10fkm93x2kcz7eiZAA7a6yBk/9OPlDq7qYAFRSthN0hD9YJANOWCnNx1W5cklHFl2MI3aCBCQFOt8MxNmegQRH1htlPlQvfYZESlXLDpaxva+Sf5n5fwGooIUVLA9gWvspZSLJ4Fx2k0cLFVR2y7XpmDSB0sRhvnejVLFu6F9Jbl+Kt29bzf6FUula1LKRr1fewsdfFunnVxaW0UFJcP0+Nekf+Cj/xhrtY9NOjF1MC+CBtTSQSx/rWAxIZSVOgsZAWgu2vFJD1kLhEQF09k4RJ2pi6HyZvCJ6HntwfRfqSBN6CKBygVlHOKuUDAbYPU0CEwAP/NMmbf+na6MJTt6NdJ004bf1+l02Ask/KfM8L45Axacg/sm9vu//q+d5/wC8H0cXPGH8cDh7bp/bEafFgvnJyPiSj7wLOhDnazsyRpmDc0CnrTKTgzhv3bgu8sY5KUac7ir9vjy0T324amcOkmObpNsOd8M2InC4mWOmWUdtUyYy5SNDBYSPfyhnvRkJMmbpubDqiQUWprY0WCViMPbqZNy7wgKjrYgzeTvyTrYqTwLpYfLo8at51Wwk6eOR7HHkRjVY8SXIdduKnMutyH1SoPNsYvDzNJKZ7PLZOKECcBUIs/Dx7MNV+6xnjxHS7TpmMbqGhAXIPWmBs4kqxJBAI4rcp+F9qdLfinAVHyOvG//FBCWiuIanFhhboD8NeQ6P4GC75TjVrXUZ+9o9yOfMqtKY2ciVkzM2vH0XeeybOM2SWidv1rka3MhuDpQSeEuVs2BVkDiuAlCNVAVsoO/H9YYAeQmEO5dOgVlVz7P9lcpglgRx17SPD1KjvAKADkroJo/5bGYiSRqpoYpmoiGHN05CAhPd7qGlEaYd6Aicq66yCKnKCKUJybyX0EEufUT7Zadasyso69/LwmzJ5sf7E+zNLmOZju7/zO1cxyOs5AYujzwR7HfF7Bby9Vz915q/gupjVNc+A8DW+jeSTEWhTh3OlnF0fmeK64PyyEQ5Z0Y0NVhDEmfTdTrs6PqkK0KdB2zUylYUeTFZQNRKunPdiiN3g6u4WDXgO0jzwQqESHkjcu1+AXmf0/2+fyJRkjQfFA9hoC+Xy2auDYLLC3mab/ERHlDIXCFdXLRxC/GFCT28KDNZyUP579BdquS6+Kog0Ch6OcW6yjcRXZhkwW6pKviT4OMt99CyUEpGlV/cQcfnSqjQSshH+TfaKA94RC8wmyqag0pKP9kcJEqhprWW8SiruSaYHkeS3b1nMdAyjs4WjWCvPCbnqlrdy80Z18aaaFmVqkM/2/WMAuS4SsrB85FUoEWWVjEx6ZcWxJU9PQIUPwtS/4s5J57nFSCUjxRQ7/v+D09mPSMGJ4oR/qjneRN83z+c8fNIjc2Hs2PAJ3zf3+R5XiGw0fO8/9HfvuH7/teGWXZYMx8is6dD2JnZh8Ag5yMOWAHiQJljCK6LvDlpIE6TyZSCvE9KcHj5uG7nCOkQqWLEaapCnDSTVk3g4E6GpByNc2Xr7tTtW4WnU/fNFMrC68oMWsJNGy1gsqy0Ef1H648txokIdOq2X9JjXIDreN6rx/xSaNmxJC4P1U39VFXAuoBvI4m4OK4vTTi7b/dIMXJ9TyY46cMFiiaVOxmpnGzPmM8sXIUweBO4SokR9q06Nhqz7R9BrltY8tdEcsIB7AHdT4NnGTE/QTqsy/b3CC5w2YQL9E1OeB8S7JgoxX+H9i3zfglX3zKfnQxa8snbGbWuU7Vjvu9//LXeibGzY6ST4ItI7zg+F9gmvTAA4kXp0rhJXUUjaEsQGUASOJhXS+g3IGv6EbY3n8vsqucA6Bgo4Xe/ejN/eam8+1upCJxKkD4YbZQzkSTbqKKWBpJESRFheb+wypPZ6l1rwJRbkiI1HprzJagqpIvKx3aw/wrNxD+2kZYrZvBgtjjQt+6+D47BghJZwYr8/8OtLffxcKWUHBZTTz11LGQj31UeSj7d6f0zemHWzBa2fkVJ1tdDNJKk84taKfmwnKeez4aihVxcX4y16eeJSiQEtopFDxI0hHkpScTfNWmGCbIfQfBSh2RDwopch0PbGUd6o8jLEYc8jjgeP9D/i3ENC3tg/Ytv5S9ny/VqZCFbBuZzQ5Y0RNzCfO4cuIOfZf0FIGpcf7/w0wHvo5IWKnfvYPNU8fTf2f1jGvMXUtOtmkQPwuKS3/LobVcwP1cc+OZJFRRO6qJytdx8Oz9XwoIN2wJFHr8G+idls446Pa0pUkQCkYMoSQrpCgLJJFFK2E9E3zJJolTPfoZEeZzOylKycvsYqNcgxQbfyQjvxF4clkU156xUr0e4z0nP0dAKjhL0oQFk9C/itWs48OrbUMn7jHnmgHbTFDsb+Hvf97/ped6VwL8io8oK3/f/6RT25ftI16G9vu9Xh74fahtvA37i+/5qz/NWIuCTE7YRgxPP82oRFOcEYKbneW8APuj7/i0ns0Ez3/d3o9Q33/e7PM/bhutgNSZm975llMPBiqkhNSOO38X6uRxXSbE+KdZoLtxR3px2q6D0Z6w33P+hHXHYw43kLICxV4l13E4weNXEHDDjp5gzZg3panBdwC1zvoV05ywcaMRwvBALKsIO72idWLPJuO7mSYRY/2tcltx6vWxGnrhnQ8uO5RDzaqdkLcC1rP57EIL8WuT9FEWGzTcg91MXJ34um3ENDVPINTeZ3sGCxS5cJ/cYjhiP/rfljGeVeY7CHJnJuCDaOFn9us5+5AE1aJhVZCbj1CCL9X8Bcl++AYd+MFlvU+B6AReoH9Ll7BmxfbV+QOfioGSZ98sBXKUlnIDIxcEcT9nOqHWdqq3TLu2rSYd1/YnqgGa+Oo2ga9ncdv2smfkwIsWy7z2kN2EcjzjU1sBeMzlZdeJJDnQWQC8Bmb02q4HnLp0XVCn+i+tJEA/kXpeyhmz6uXXrfWyoXqibb+dRrqEsWzghse699F0GXfkSfPSRy7QDHSz4kDiCDz1wLfuvKA0y5Ykr4rzAnCBb//DUZVTSEhCob916H/urJwTOrXUx/wqfDrrGx0lwT8PHeXft92X6bQmBnV2px30Ytm8610Gy9kDJ8p10PK/uwUOI5xAmwJtSl1k/8lJswkG1+nDBRivupYtek+m4gbMJ8Ydt8IiR/mK+FamstIW2afOWgvr6un+a0W8aB8cIYHf/xKf4Sdb1QY+RRmq4JeueYLGNLCRGe1rA2TK1MrgWzflzyaafXMWVvPKFMmYm9nLNVx8T9xCoohXvbmB5aH8sMwSsnVRHgngA9+snmwRxDuqJaKeMQroo0Zv2u3yQPiIB76WVSipooSNSSmfLOAYYR1bdEReggMvchZsy7sM9E416fi2rNgHSVNXIQQKTcOC/k6GV8l5bG8jy6MsdKS2WGuH3wZP3vu8HiGrf919Aa55Ks9gJrNLPdyPiojuAZzzPezS8rC5TBvT4vt8V+q7S9/1M9/N+4FuI62bzDbeNGbguNyctIzMaWNc3EBGmRwF833/W87w3n+wGBzPP88qRBPvTiDTkRzzPew9y237C9/2DgyzzAeADIPwjc8AGw5ubcxiuokxCzugf9K88tPwhnOxpJml5H86BS+J6l4SJ5xFkvOxDwt6wtKpBa3bhssUmr2oKV4Nl3A9k/Lc+EwaVsSqiqZAlkHH4AQa3+bjGdrbOpiHmHY29EZfB70SOoRsJ+oxrsEu38ewQ6xisweDpZj9D5JBNIe1sRKHr17jO5FY5maPfD1XNGc6MHG4kc6s8DWbZyL1oinA5yL1k8r0mk70Juc8z768wPyaFa0raj8D+wkH6EdLhYdbPpkuPcScyWllAb4HJeOQ+P4rjdk1Dno+U/n8WOZ8WwK9B7s2hKngWsBvELfO5H/NmnmfUuk7F3q3/PxX6biykhF9DC8O6DNJlTskBYK6DBnXgMsNz9P8W5MEwh3iGTpva0zzgHBholbdLVsURCsu7Auf0Za2KPMYSQBombmF+QLA2Za111W8KOCbW26S0W+bJ7QB+BLlnCyhi//XgPQpa5GAeTZy3tVUI6cD+ZRNYsHqbqyBsgL6lrtLyYvVsythLvF+gSE9nX0gb5RTSxS2I4/0p/h9ZFUcCkv1Ekry48nwuvkGAE+tXvlVetuW6ja3Q8YPpLsg4DwkADB5nkpR2HtuR4OB+5AUE4tv246pXFRyvTmvqaei2w9PtyD6F5YvXhpa9WPcjrChWCXRBXlSuV8UdLbQeqgxgd6tZRi59fHNAyOe3ZN1DnESgnNVNPu/j32lCOshHSBElSZd68YV0sWD3Nn55fR0AV363HgrglU9KkALgNULfJ0ALKUxv6mDzFXNZsFW+iNFOnAT9WslayQ28m/9kF9N0H4TnskKjmziJQODAbP2LbxV5ZD03A78vcERDEGhdAZKpQs+7lchBgpbJpEPl9uOU1PxtiFu4Qb8IK0rY9OkTnPh4pLIjI8w1fHAyTPK+eYhFLgNafd/f7nnem4AW6x/led5DiNuSuexbgA97nrfU9/1ez/Pej2jcLc3Yl9+ojx62PxtmGyY9sYWhac8j2qg0BXzfT0ivq8DG7DXted4EpLvvx3zfP+R53rcR1Vlf//8L8NeD7NO9wL0A2Z5nfV0pZ/Crl9nPYUfo8yREGvVsnMTvFJxD1aWfjX9iOHl7tqYgDpc5oGHloWk4Z/wNOBWlfJw0sTlt1j/FnL2hzIIak+TtD23PgpvJSEKuivQeMAaJMSXGLFzlJ8rwNhR53eRiDYYU5gdcj2sw2YyTqB/MTrfAZLCg4qdIMDILOV9nI0/zrxGo2tm6zHjk2p8MMduCXYNTWcA33H6aelu48aXB6Ey9q5h0qejBKjEtyIjVoevq088WTFhDUrNzkKDzHOS6z8JBwO34bTsG5DA+zCYcpPEP+p1xa/4bSRIYTGuwaqJByTIrU2Gi/ZjZGc7JKZnv+2e91vsw9raT9GJ/OYF0MHOBdkjG3M+tSFbYMv6FOFwviH9l1RNwpGu9wSdelKQkq4MOZWnHSVAT6hDVTBURUkFDxGaqaKeMBPGgT0UFrVTSwuZ8IZkk8uMs+ORmKh+TN2KkP8WhmyIUvSzOU64VuZSTUrr6MH2XaVAD0ASJ62fwgkZctTSwjro0Nafr+Qn5dHMPt+iqtnBH7M7A4e2gBOYRkPbpA950DHrVPanGqY+ABEb7cZWV9biu5OBgQxfjkECXyL4G89j+W8DTiwxM4UoJOJ83LPcMEjgaptvmO4gETTZQXQRsdrCuxOVxerZO5N7S/4vZstkP87GsbwCwjSoWs475B2SnFzRuw6+BskkSaKxlSVpPmcrVO2CSKHAB+G+H1ZOu4JoPP8ZT35YLdtFntpA7zR3nzitKWPDYtiCbumCDbKtPm0MuzV/D9N0dNE2VgGgJa+mikFx1pito4UkuCXqtVNBC4ewuOgZKKK62EiDSlLFcJ6pJD9rsnJuTU4e4sXauk6Rne3uMY6X8Ldo4Xkr49OCbgAQnfcFBDmWHSz3PC7d3u1d92uMsI3k/lL0Tac8GMihl6tQd1/LD9/2HPc87C3jI87yHET/7rSPsuNlw2/gp8C3P865GKuUnZaMJThIK7fI9z4sAt3G8tttJmed5OUhg8kPf938K4Pt+e+j375EONx/WJiMOsPXl3YFzMIdz9s3hNqfJlLkMLmJ4+XwkeLCgJIJremhViPE4CfVendcqApt13SbHao0KQcY8kwaPMDRfIRdx+IwEb93ELdAwvH8+jt8RNju5plBmgdcADl1glum8DoW/MCexV9fZrPt1Dk516gDivJ8uTNjMYxvMUR+Ku9KE6+Runc5Npt0U15LItZ5BeiA8GjuCE1kwKx5iXpDr14a7BhHkHjMolTXofBoXiBZxvFOfhUDTmnVdh3DBuD0DR3DPklWPCnGiPqar0o+reBgnqxBHkt+DnCerINp6bJkYrroJ8r4fLFgcDDKXeV3HxPxBNp5uZzgnw5jnebci43xSpycC7/J9/57hlzydLdzXZDpO+BokcJnkZvURJ2w/6epbeSiMBQlaqnEvBXOklYNy7Fg2+ZHuILP+u01vpuoCl4pLEKeEDjYowXoRDWyglkU0BNn2eTQxfWsHiWqBCr1992ohv2tMlduXIvdBgmxI2Sf2pvNiiqElv4LzdmmEdQ1U7t5BRa48qc2TKnjv53/MU18Q53gau9jCfKpoZr6WOtZRx+00sVxTVStYztSql+lOaUZcjz+rWOFsOwrkobZg5BFkYLDzdAypppjrNg552dThMnNP4tRjQF6483CBxHj9Pcyq7cEFinXIYPN7nf4Jct1sHz6LawC1nyAw4U3HoEXcrM71Uyip2xl0hK+euTmNAA+qljVJHP9HrpB+I9M0RfPxu+7hl7fVceXGekDEC4r2pgICZ2o8XLPhMbgMLmrRstKXIbR6kvVRps/r4FCZZPYLO1NBDxs5LUkenros4LlsYT4RUgHsK0GcS3gy4KgYF6UiS6BdAL/71ZvdSxD934NLaffhBCJAIC0mGUros3Wq9nLAP4TD0FnJKyzbfRoR4vGCStQwtt/3/ZqRZspM3g8xTwTp1WxV6cH6PvmDfIfv+1/Vqse3gYpBeOVD7tpQ2/B939rDnZKNJjj5EEJ6mY4MCY8hiMtTMk9KMfcB23zf/3ro+6la0gJJSm8dbPmwTdAZ23BKSebUDHB81cQcL4PAGOSoBHmdtOCce5v/AM7xN6nUYlxAYh26p+OUs0w2OFzg24M4spZR7kIcxSO6bAfD18EMrH0EyUwb+d0y5WEZV6sChc0gMNMQ59Uy8yaHbDZaknouaNFZttup2z2AYAEN0tWMXJfTxTIDkRNJiq9FYGzFyP0yB7hUv+9E7pcC5Pyey9DByWDd2cFJQFtzTvs/lFnjw17kHraKiym3mbgBuEpO2Kk3hStTbbMqYSFS9bNWCya7HX6f27qsH4oF+KbyZdMm3GAKXd3Is5Cr87bjOCmm8pZ5bsKxgVVMTNYaXJNMkxuuQZ7Dnw1+2k7MfEaqxJ/hnAxv7/d9/26b8H3/oMII/kSDE+sQb8GIyQiX6/RO8GLpizyCPARzQ9+F38AVyENVp9P25lNoUmfbFCbMbmLjIfVpSo/RThnnKyA3SpIqmtmiZY5GasglRQuVgbPZxDyml9Sz+DdahpimXoYqAed+C3Gstc5VtCYlL4xVui8b4LzeVlcxUKUXzzDBN8P+L0zgEW24eAMrSRCnnRgVodrnV/g0mRaLSIUgfluCrQ+8kYEaPTl3QNZ/H2FgrUQWU+96md23neX4IzWIE26u3uNIkPc06STrg0elE7mcLBnIzIG2gSos45yLuxY7kMDEPJ8+pOeJOdRtSPb/RmSQ/CUqjxu6wFNgQlYXx6bIaH4+TXyZTwdVreWsoILW4Nxcz0+YzYvBuVy0dKNwffRcNyys5cqH64MYOHcF8Ek5jqcqtXKyegv8I1hbm/N+0woFUJgrg5l3AJomzQvUuuSw+wLY1g2s5HEuC4KQFBGaqQruuUZqiLGXFJGg+SdRKDl3Jwf3yfTAxgJxWKzHTKmeO4uJuhCnyIL2I7jqF6gcdwxXKZlEetXk9IF0jaUNlrwfwq4CNoUS+9Zy1GwGQ+gseZ53CfK0rEJUeT8y2HyD2Ki3cbI2WrWuvxrLjaotQmL6Js/zDD36aeBdnufNR9yBNgL069AWQe7tDlwG+0JkbLLMbJhbYY6ZOeozENz9SwgMydSF+nGd001C2JzFfFy37H04lS4Ldqxan49Aq3YiY2GBrq8YJyFszqdVLkYDb7LEgpHrJ+FgnCbnOp7joTBGWj6qyxgP5ijpzvJosfp9ONnbLCRx9DQCDZqFOL4v6PebR7nOTDtVGeChbCiC+UjWjjjA1bgGnJciGMM2XG+QaTh0wGA2XDWvHXdeu0nvw5ZpUcRZT+D4Kf049TcLUobyrS1B1Y7cM3NwwUoJDl51tq7fJKcLcAqc1u/HmoB2I8dv8EGrmoCT1bYgbk9oupPBA5NwBcqqQSZwcTZOva4AAb7uwvUcGjM7Xcp+f5qW5Xme5/u+DwGhciRg9mluebgsrjlPbTpdJG8we33n4rLw9tbdT/qNPYPBsxD6Ysg67wgJ4swpEpbYsaJsxtEfVEpq2EiEPpYpkiJKko0sJEWEeH+CtdlLqKKZR6dewTWNj8lKTaTf3sBTEfT6/Tp9Fulw/wuBvQSVls3Xz2XB/dvo06YCUZL8nKX809Z/AGBndQkLEtv4j/g7+F0IWVJLQyCha1Wd9pRESPFIguJ37iHVK9CYnv+YKLwbabTO7lficj4NHlePBBGZOd8kDkJ0EfBSjlNCA9dkDNKJ7basBTAgzsHy0DbHA9cS7BNbcNWSPoTcPx4Yf4ys8+TtVRVrZmvzG5lfJfrGG6jlVu4hqsHJ3dzK1/k4f4PAvFqoZPrqDpZfdh8A+ysnMHPjXpQOwpID9bBIepcAzLxob9CA7KLH9ILuQnAuFrg9AbwCnu73oeURFm/4bVCa/311jGsSj1EVl4rcWpaQT09Qveknm2z6g0AkQh8vMBuAxCG52ade8LJcIwvMKpGA7X7dh/16bu2+NzUfM4PXBXK8MY0/LKrfhtyAFpSchpyTUxzahkreD2HvwkG6QIRoz1HI1k4E8vXuzIU8z1sAfA+4GmGV/cDzvC/5vv/ZUeziqLZxKjZkcOJ53r8xRCkITr15lu/76xm8NHRCPU1AfIZGZFw3/HsKcZBNyvR5jpcW7kOcpnCVpRlH1DUuiT0j5sSbRKtlxy0jXIjD//fjID4HcGPcPl3/LFzQc0TXcQTXj2UWQ3fzLsYFP0dxULIcPf5Jup0Ugzv25aH9i+jy7Zy8I1eFnIs2XCfxPch1OKrf3TfM8iMFCa9GYMII2xzJ1iDQrsnIOZ6l35tCVRQ5J29EEABDHcNQgZcR2i3A3cnxvAvjAPXrdi04MGEFCzbt/A51vOFgeDISWJj6lwU6EeT+bNP5BnT72/V/FLnmJg8cwfGYjJB/RLe1M7SdbP1crvu9g/T70I5xB3KfNYeOoxAB4to6bF/tOUyQ3mvolGyAUQisnLFhbC3wY8/zvoO8Vz5EOhL9T8wsXWDQrTxkFC3Xaf1vPtMO5GHoQzLHRmoMy8kZEdhI9JXyXV6l6MHEixJE6KNO25Q3sjDgdpj9jgsp16c0SpJmqriEJ0llR1jSv5bW7ArhhSyTDvCRZSkWrd4Ib9cVPIG4Ouq8+rdKdj0IXqYBb4E+rTAs+Ng2nvrmfKr6xZlto5z3fvHHAaW2n2weil/Le+/6MR23ldJKBS/ruTGFrzgJ7jp0Gz1b5cDPqm2jc+sUN9hUIwGIVUrax0mu+Fs6PU/3z4QGypFA5TCO2P5LXd407HciA5zliZOkB4pxvR5hVsB+3AD8V0gWLiwPvQJpUV2Dg8K1jIPz+pg4OcnugWksq3qY36SkmUosspe1LOGDfBcQgvvn+QJ1yhlaTD2/XFbHlRvqAfjyotv4x6avBFAFbwOQC9mGl7Ls0svIdcrVc/cyQXn50N9HKPrHVADML9qWEodCr+/e6jKi8WSgEGaVr8e5HBBI3vk0BQFlB6XM4UVaqaBnx0SmVr1MhD44PC4dJ/4U7lmoRu5tw8eYUIE1vMzTfbdKigdyM4Ql7/I4PqI8PWyArFFwTka0QZP3vu+v8TxvDbDc9/1dnuflIzyRIInv+/4xz/M+goy52cD3fd//PcdbPvB23/dbATzPey9wc+ZMnuf9CLnDSz3P2wF83vf9+0a5jZO24Son9lguQvwC01N+O6iO3GliHrKDz+MgKRZQGEm8jfTAZBriNO3BQZhM9jdb19eFVFBrdRlzFrtIrzIYrMtkUK2Du81TwPHjnpHqB3AV5QGCpEiwr4PBqzpxKmHhvhbWc2KX7pPJu2aa/X4iTn+mkpapohnc5xDOqc1Hstem3hV+fQ4WiPwp8ozbkXvHqlbZoe/BHafxLIc610N9vw85rwaPKiE9MAk3G+xC3ss7kPvIkrUWrFhVYbjqi1k38j63CkkUF1Dbb3aM43HwR1OLjOPI70bktx4pIM+GVUvCgi4vIO/yl3BVT0jnORnk0QoYBqEr1GPsRu7TZpwgQZi3c8p2pnJyKnYHoq74YWTIfozh9TFOc7O3QLhDfAwH82oDyl21BJ3VVIn2Izd8Gw561IM4+jmIHAAAIABJREFUntZJIClZ6OQhyVK3p8qYF2kKHMeZJCinLVDnitDHYQoDyd5CuoiToJIWGqmBbOmVEelPsXiVwroakQfSKiNvRx6cmTLp/SNSSblRf48B90PudTq9FC7avSVYft51TTAXfrmwDoArv1pP6pON/PNtHyVKkvlsoY56GqgNKifX8xP6eiLkVUsQ1k6Mqy74Kb94SfVwfwCUhiSVOwrgvbgqiGXdraphdiUy0JTiNO6tUlKKDGbWlXkq6VjXFsRNs0F3t67LoElrkRfbl3R6MhQ/tIfO/54i+1ONOA9xgTV1UMDHlv4TjSxkTuRFgKAhpvETrmMV3eQHwUYHJSJ4oNdiMetoudl2ACqP7IBzYPpjyu4/Gwk6thCoq/GUfv4XmSy6OiUQvkX6+y7pddJcLZFfHj1MT3TQEJdIoZEaCumiTEf9L/NZXmBOIGZQQyO/4RLOoo2SKtmPPiJQBdsnKJH9l+OkymT8HxMOMCenF4F4WTBiFbBArQvkYrXpF4eQ6PL0VCEfi8rJMMl7fN9fGvrcTToY0b5fwwiJft/3N2RMH0UqKZnzvWuI5UfcxqnYkMGJ7/v/AeB53s3AYt1xNPP12Ku1QydjA0hgYh2qrcmbQZtakQy2MetzcY7dZJyzZbf6G/S7uH7uQMa0KaQrDh3A9ZUo1P+mjBQWYslH3kfm0O/UfbbqiJGXjdAfFqrIDEyKEUdvH+L8DeDI8Kb0ldTPQ0mqGU+lOHS+wo6r8R3CjrMFJuZ0G3fB5GZtP1r1N4M8HcUl3eDUA5HRQLxOFq51ovZrxJEuxjnBO5FzZUGxQY5OdBi15p/jkaE4C6kE/lp/zwR3bkd8CgvOrR+OBTf7GLnfh1V8tiCj3TRd1zk4UryJ3MRwvJY+5F43wYjpyHkwHkm4v0k3TmQiDEmcjPBbdmUcW35omW5cb5ULcIF8dmj9Xfp9H3IdwjLJp2Rn1LpOyXzfH0D6aH/ntd6XsbOwlHBPxrSaQflLdZZxYKJUZCM+l0Xi8xFn2PzPfQph2i+v6fgFz3GYQmZqumcCXdzNLVyt/kGEFFU0B1LDXRTSTT7x7h205MtGKzfukEFUM+n+J0VuVosYsr8TcC7HXGSA+4FO9+p02K15ngA+1ZVdSNP15dT2C8eFYtjMAi7n8SCo6iafQrr4DF8GJBipjTVQqdFFCxV0UMrUG8TD3r3pLOiFgQ36ZjwMfBS0gOQ4JlNCx5DEBSUgg9JUXPK9DwnM7Fr0IIOQdZSvQ5xpy+7n6frNoU4iDrfJI7ZA5zOiUGWVrp5vT5RgUwOiBwduojarIah2HSObJubRqNHpIg3ZzOIkaGIeZXG5OItX/xbOgpZqvUEmIWxgc1W3IZ0nwgHxfOQaamBw6OdaObHg5TKRjj7vMjn3foFUxZb0i07ymuylREkGCnF/zfe5gzuDak8DtczhRZqYFwg1HCOb82li+45zAcj6C+17Yg0h9iPXzoJLg41YcDhDz3NJaH624aqUbcgFNX746QPpgtGqdZ2xkWw0hPhpyLvf/KsJOL/gtDBzRs8mvXu1KXbFEafmCsTxCVdQrG9JOGnyOMI9sXVbR/gcxPk2fH2YuB6WSjU4mLbfYhIipfBoxvxbcZnncxAH72xdTz+DO1aWLbZtG+zMYGUJHMzstwzuGF+B47lYUBJ2XAcYOgDI9M+ux6mTmRDBFcg71+A8Q8HTTsZGU+35Y/mQm3BBwWSk0v9DgoRZUBELi8KciOXjeoJk44biTEsilb4wP8WCTuMVTeZ4HcLMIO5ZBCZVoMu14e5pg4UZTOtcXEA6BffaMPRTCa73iolJgOOA2fvIKoNW5cm0sBSzCVLU6rHtQoKUPboOU7vbpevag6BTwu0ITtrOdIg/KfM8796RhAJGM8/pY+FXZjgQMS/XOCiHjs97FuLgXCAPQDK06CKcGhSklyiBMm3I95zielLksoS1/Jk+2VtYwDxcZSWXPpb2ryGRP4Mrt9bLSophZ2UJpWdrn5M7kQHb9mkX+NeAZ5n1FQia3fjrq2SeAAa2FXnIlUA//R0dTPtOB56+ZPtuEic7Qiqo8CxkI09ySSA/3EwVe4kFcrXSpdw5dyXzd9LxyHSoETWmqTMT7L7zLPg7neFG3Uc7j1ZJSeJgXHn6+0M6fRESeNiLrxxB0VvV6kkELPNU6PetoW1YBcaQ/lfpOXzTMXoeV1zeJZB37UEuL5LGNY3UECEVVIyOkc3VrAnOy9NcSB31AWSqhUpm82LQk4aX5VxX/kAxGPORwMSyf7v0u22w+WfCz1jwxW0SnCgErmhuCv4ed73XIIGq3ta7bixh+k86WHe97GMtDXycrwfy1B/jG0RJ0q4KCq1U0E0+17GKVUg57cXm89k67o3BuR1YWeDkoEEyXGHujz0y5oz0IdVEuzb70RNvIrH2VjEP6/+z9/bxVVVn3vd3J3BOCCSEnJBAwolgIkgkNphYEawNSoXS0lsdHbWjjk7p1Bk77dyjnenLtE7ty3T62Hk6fZnWjh191LbaWvGWRyyOSmoLQg2aNjEIJhg5SSCRQF4gyTmQ7PuPa117rXNIIEBQbLk+n3xy9jn7Ze21117revldv2sfpwtTF4yZreuMHEPGYpx8A3jF8zwtXfF+4F9OWYtOQIaxVd0VK6+Vq1uxEKd6ZG1oJBmhMRIdaR2iCM1G3imNLrhMTCEsfAUs1l+TkTOxiqpStGuOy3uQtWkGMjcozEtrqaQaJq4i+RZW+YtgdSb9/aDphygje+zbscn8WizvROpxYI7VqUK96kVY6tnhEe7lj0WUEhfEaFTHnT7LBLawpytjiezkIH2qldKVWGEkUgE1MnUcqIGiUQiNUqRe09W1Z2HHtTK9KZxMDeAsZC3T3KxZWINAaayjyHuhBUx7sGMBLBmDGisuY54aEaWmHduxcEh9X2cjBs0+BMrWZ643iBiJB7HFH8uwusVJy5kK8ScqV3qeN3iU3z1g6dvVmJMXVYImIKNwttkeMH+qMM0H/xBEJyYfOhnr2d5NMpWfGiYKNboBaJjA1GUyy3RSQBmNgRd7HjtYSk1ARfspvksn+UEF8jBxutNz2MhichZIKCTv4QMUDXYlec5pwIbGvwXeSiwE53VEkVfPRmq1hDXAFwnO1/uzENkPJYK8iHAtcKl42DUq8CyXcw2P8Vm+AQg0qGs4QsdhUXirQluF/cnA2QaeniaTRK2oK7tfnCPd/i+mDXvAqQkoRsZqZEJR+1GphxWWUEcybXMLySxqF6bs/0GErlgJUu9CJijDOLXq6l+wdtO18rw+vIeehhlMXbCHntoZrB00llw3NF/dERiT0+imlqqAKUthXitiNQBsjFZStLXLRrHyoXdRiOxik/ymuSQaOfka4l3KhYUrjCJ/FWI4Vph9FiHPW20/9diaYZ011EfTNbNY2i9tCA3C8tz1QdJ+Fn10kB8YkgrRe5CbAza2aNlT1CYqScwwhAZ7jbGmFTS2kwwPUV55nSWaTPuSQv0TsfQyarWru24S40x9ckZOAxkLW9f9nuc9jZ2WPuv7fmpJjHdUtNaEKlu5yPv2OqIYqSKvtL/DiGKTqjRfjMzBw8j7sRhb6yGGGBiZWEVJK7G7OY1aa0Jpfi807XgPYqh0kFwlXqE7YA0Efc1cfL3WftDX8jXnWhOx3nH1XOci85aew1WICxEDQvNDQpx4PQhVDLVaPUj0RyNC75Yp40SgYPuwOUlnYdUUrX2jzjXXSaQwpbGcW/ObFH63YZR9JyLPWqMkCj8sMO3S385B3hEdQ66BrjrSJdhiiMpEp7kle5BIRS02zyaKNdD0PrtIjubpNTX64t6/5jKlIf24geQo0zBH9pnmMmk9oCwsG9gh5287UnvNLUJ6UjJupWf/pOQzY9jnN6e8FeMuCuHSWUPBlA7Ma1K2xc9HEGPETT78DTJAW8x2BbZIl5G0yoMBaxUhSUAuNW9IiATtFAZUtM2UEKEr2A6RoJEy/vKFn/PqpSVS6b2YZE9SHFFyFUtZjCTFK8xrMuz6Rj7FXzFfaF6DwrpWA2th7zdES8/qP2C56oFdM/MppJ1C2vkc/wrAw/s+xidzv0WFcbVE6GJV2loyQ/KWP8sy8ukgJ1vuo+S6Jho2XRjkpAw8Mc0me2sbbsEyUkWREPZu7KSsFY91Us4huU5JGFHabckPOxli9vtnMKy+oig0ETBQPdWxUpSBiw/Ts2YGU6/aQ0/LDNJKDjLcI5r4ey97gQI6gmKTIeKU0CT0wEiU4nP8K/8e/QcAyofqIR9+8cVVAFy7cS3Z30pYY2Qzkj+idUwqkAlxo/PdOvMsFJZ3D2JQ/qPZ3mh+N8Zk9rYEWYWtNOZKDkp9ZjlV1AZQtEe5jghdQXRO291MCQdM6GNr7zzyszuI7Y/avsvDyjzTr2ogZ5jfNQKk2G3t+2kIDXQA38omeZU4/WBdJ5tzckaOztY1Q40Q8/+IcgHuPu+kpCHzu9IFH0LmLVXCupF5Qz24Sh3sShY2ugEBfXuQW6IRR1Xw+hFjQKMOavir4bEPUexyEAPlf5z2HCI5cRksVj7dHOcaJi5eH2T9KkfmoRxzjEKIlKmoB8vgpDVQVHKwTEppWCrZVBlLfodC3AYRpXWW+U4Nrnd8cBxDtJ9PFAqmz7kUWyjxZYRaeDr22Sh0cKwRqteQaHcFopz3IQaumyultXo0egE2cqdRHY1cxIFNjHyf2gdKj12OJaZyqYgnYiGR7zFt2ocYQPuc/fsRw0GT6XOx9YEw12rBEuJMRvpspMKjbv7JAmxeTRa2eGM7Nq8lw5znbJLpi09azuScnJBo7uIfn2iOiaswDWChJ9UwcIjA0piJKMtu5OQGc4jmpcQQY0YV5KrDDDdPZt5i2aFuVxULil9hinH5HCCLNVzJ3dwFCAyoj6wAFhQiLobKHKlP8eqCEqlzsZNAGW2rjFBU32XhT3OQF0oVxTskMbv4PmOcHERexLizfzbkPWassCXAR+DVmaLcJgixcOs2flVZzU92fwyAz878F77/zB3cfoVkaT/KdSzjWV5AWKzipmbG7h2CFdvdOgdyTAQFc32l55QblwlYc3VqTb/egExYs51H1WL20cnJrUpego1eTUa8GsoQVocYkqoTlyIKtYF1DV81WaIWtRMgCj1rZsB0GG5wQgRzxWDUyMkvuYZGygLFv4ZqVnMfpc+I9Rq/BOiEi6Kyvz8fvC8Q1KSJfxLCdyNYFhCj8ocI5O5e891q4CFkQdL7qMLm0tyEQPaU4KBTijk2mxuvopY4Ye7hTgCu5Ame4EpL/0wBMaJMoY8DZDGFPvKzO5hGN2/WSM4Jy0z/qiF40PS7GsitiALVYrZdby/Afo2QKNmEOgJUNGp5ekC7zuScjI8crd7fWLLwT1mm/vGKwlbOwdZpyEKUKPWsKjvX+xHlxZVUD7/WcujCeo+LkDlcFT4lANHkc6VQBRudeAuriM3DOsU0aT4LmWO1Fot+P+y0Udum8KAOklmiNDdBqYl3mja9B1kyU3UqhXQpzbvWRXEljaPT34Kt4g12LmlH5m1NTnaNkxONzqTK0aqlH6+cLAHTbxEjQsdeIfIc1ODLQPqplOO7/zjy7BKmjWpQ6jm6sM+nAEvhC3a86DEh5Pko6xwpbZlt/uuYUtjgK8gY0cKaUWzf9yNrnLJ4FWAZ6tRoBxvNyEHeg0FzT2VmnwZz7lqSc5NGYtoqxzLd7cOO3wuw72IL1pgbN8MEbM7JaH9n5E9U3CT41KpGE63e1IAot6r0z0LgW82IYnixOc25zqkaJjBz8RvUvbyIupcXweAE5tDCbgrZTSGrWEuYBOtZznqWkyBEKU1JBkqELvZGp7CwaRsJQuy6NF8gULVAOxSt6JKJ61xE6e1Etm83f1+HhfdukxeyEDEMXsd64lTBzDZ/tUA9lPY3U9rfTFn/NuLzoYAOvjrzDn41s5paqrj9im8FuRYlNNFPJpfyGzIZYBrdNLx8IbfM/SG3zP2h9FXeYam2fvFhuW6N0817kQmgzvwdQAyTF5HchRZkcpiETCIarWo238eRCXs6MlEbCmcWmL44B1HmXU6keiSyor93mzYtICj8dNZlr8EC+LOrfwIZknuznbmsZzkPcTNlNHI9jxImwRI2UclWOijglSvm88oVBmNWCMV/00nx33TSnhuh97kQ8T+H+J9D+BYsixrmeT2HQM/SkdyS7yMGyuXmfwWiw6sNfZ8Za7+Wv/h8CK8To6ODAkr2tZJFH5VspZKtbGIxX+7/F/rJpJ9MFrOJUhP9mUk7B8jifOp5IzGbyLVtTL1qD2mRgzIuuhHI3XkkGx9Vzv8qrME4xfwFUMmXzV+L2amDsVdke/tkmDQShI76d0aOLUeDdb3H87zRcnBBsMJH+/1tFVWyXWVoEJlztFjhHsRgOIQo7jtJpmR1KUyHEYP+XGwORzoyB7ZhjRE3YdhVhnS/LKxnWKM1WqRvCJkXc7Fe6MlYxVE9yerZTn0NVSHDOWYIMWriWFhXqmjxvASiEGY696FyNKVdleILSFZ+AT6M9FURsm65OS/j5XgeS5HKt1M0YX0IWZvasW1MIP3h1ucYqygsTiFS2djn6T4fjRbqmFQiAo12aC2bZ51j3LZopEH3BVvk0K110oG8E1NNO3Q8noXNc+ky59DE9xzk/clCDIuXkTV+0OxThkwiqYab3o/KAiRh//3Y3Bh1EryG6BwxZNxlYHNgkqtAnISciZyckWNKLzIrgrwdBTaBOo543cuRAboXeSGqsB4cZerKAHrgrOte483Gc4lUSMZwV6t4qUMmrllHBeXUU2JYrjQZXpOXo8TYxGLyYgegBxZu3cbmygqKn+sM3IrxxyF8G/JC5Zp2vg58wbRpNQL9Ue+8m8wPNoSvIdUFwD6Ih2Umyb4kAXfAs9csI0qMDvJZzCYaKWMm7cyknRAJmimhg3wi7GV9x3Imle4PEsc5ALQ6qop6CrUezGZsJASkdskTpm9rzHdVJItbR0OT6g5gIyO6vy5szUgOS7XZ1mrP6q3pk2MWzH2JhtYLYRDefPBcqD7MUjawdOUG4oSppTJgV8unk+3M5W/5T0Ce5839D1GbKexd4c8jEC5D5FoU62JD9GKimTKrlZ7dKpOoRkXWmPu6CYlobQbaYeBqmPRPWKheOWIsaC2WMEFOSrhLjl1uMgC9uERRtAhjHnvZkFkd5KAMkU4HBWxgKSU0MYU+Xki8j56mGcG4jlS30XXJZOnLCxGjfCZ2gi81bVHIXRQZh/p8gCOdAG70pI3TSc5ETsZHjkYl/K6hG1B60VKs8tSBKFXPIPOqKlla/G0nMsRd2MgWkvHtjYiyjTn/TuccqrCpweJGNxQmFDHfv4Y4V94y19NaSYuR+U3rlajoWlVl2jASFEgdtulYmlezptGLKLKTsUUd3SJ8OWYfhYRpjsFo4hpwqRJBFHD3d51jNLH6WHKsfI+3ixr4REULT2o+E1hyhhzk2byfZLa20cQdfwlE0Q9hlX81DF2GOTVEQPppMtZgnGzako4YIC75gwvb24noRcp2pUnlquhre8Am/2sB0C3m/nTCCGPhVmrAt2KNFI00Tjft7iB5/KSy5xUg78kHTFsUIaCED5r3ojkug1jY5LHok8csx2brOiN/kpKKd3erVmOVXa3rMI9krH0DFu94I6JQrpDNNx89F8ph/1syo763eBMxokGieEF2ByESQQJ8B/kspSZg84oTZnn/M+yNTgkwxIsa6th74xTyigWGFf4e8kKrnjcHUWJvN9vtSNL092Vz7zemkPetAzbvoRyr4AL8DF6tKQm8w9EXY+R95wAf5aeS3A1srKzkOh7lO/wdIPC0LPoChTdaEOPNdecSWmnzCmZe9oZQCoO87G3Y5PRWROH9oNnuRoykJiweuwmJFrgEa1XYhLS/QCoFK4wrj+Qq5RHk0So719eQiVW9UPvlc8OUC4lUi7JcktbM756/lAeLb3YuuZWnTOf1kcX1PBpEudZwFasGn2HJTikjt/fbU+iggPO+Ywq45EJ5tF6MTUyfb8R6VK8y932r0+4KmDQZiaiAJP2vwybIDyKTv+lavxAS821hx10z8wmRCHJM0hminvJgzLVTSB9ZRIkFOSeLQ5uIlUXZfa4kHnXVFCVj3qOI4aGRqGdNv6vBexhZOHVMtQEDriYxCVuVTrdPr7yTM3LyMha2rtNeDmEjC5p3ou/CUkSxCSGK31vYInAXIp5cVzFKNQTaEGWpCFH4lf1RHU3pWHiJXlsNB6VHzTHnVTgWiLHSgsxtU7HrkyqhIFGNfo6sDD7VXFMjLgonU0MjFd4zSLKnXeuPaNL1vhHu25XRDBPNv5nsnP8ikrH+IzGhpcqxDI9TaZiMh+GzExknJch69yzSp8rGphGEoyXDa3TM/b0HmZ9HKqCoBm0/8ry7kLlea41o5EHvbSJiJINV/lNhexlYo0OjkBplc5X8MPL+LMYSrbyJRCN1/OmYUcO4wPSTXlPfj9exxo8mz6eOGc1lnY442M5yrqmGmRZN3YON1mgkclzkTOTkpMTzvLlIcvxZOOuO7/uXjXrQaS+adwKyOuSSVMXaVYQ1+bCOIN+DVgS2olD6vYjSqC/bxYeZOmMvc0It5owdNA+XcF221kOWfBCl3Y0So46KoIJ8J/nEMm3RPoA8DpC38UCgjLIZW9EcRHl1izKGEa/Kv5njbzWGiYmk7P3iFPKaDvBKqaGubdjGeV9pttXb1wGVsJVKqNwa3EcfWfzOcOxEibGfHBopA+DNr5/Lqs//grUvG5arBtg9OCdoY9p1BxlmsjUsfovA4tyifiCPQvtSHe8ayVK2D+2eIeB67DlLkEiJJt3PNJ+VzKDG/H/J/L/BXGsz7J8qxuPvHriUyGfapGI6wrb2ux2Xcsnc/wEkkTyfzqCg4Vf5Z27L/Tb3xv8ekHow573QbKFzEci764CFZH2doLgiAHHYdgnM/yH2+d6FGAOXm+1O85tb7XknQR6Ld7n0TVHMXHQC5OR3k54uxko3OZTRSIExDJooZXtiLtFQLDCyDpNOc28pA60mtNVq+l37TD26OuZmI89GjZM8kgvCD4C8Wwqb3IKsuPqCnV7FGM9QCY+P/FEYJ5mI4hUhgHsGooaKFnkrQ971SzjSMBlJngQ+hvXMKgRqCFGQtBCjwsmGsEnySicMMm+50RX18mp0ZQ9WkUonmdQltUZGD9aJm44od5p4rIaBKsdwJERLWb0U/hPG4vNGipK4nmxXmVfjawibT6lJ9sqk9BKnt6Tqm+79uaQER5PfY8lFFBal8CYtsDmD5Bokruh1UgkINBKjOUGpBor7HDKQ562J7RHkmYVNOw5hnXyzGNloPISNSkzHkjzo2NQlQEs1vGnanmGuowaSjnuN1mnRTzWmNeqo7dKyY6Mxu7UDf44sR25Ry+nIu/cmEmGcjX3vcsx+2Uee7sTlbawQ73ne2Qi4Zqrv+9cca/93gfwCSdf9L/4oYlCafJtahFHlEAw4s0nXxGT4FohhkoNNwm5DCkfNNmfO6WPChCEOG0WnlirmpzUGNSaqEGX/Zh4EJE8g4dTR6CCfJWxiLjvIGjJv1z5ouzRC0WeN8unCggDmw8ZrYYmpSs7XzK0qJKgA4ndA2ERO8n52AAahrN9ozHFgDvS2y0yYSA/xKNdx+8Yf88oSMWCy6GM784JE8H4y2TZcxpQ0aePcz/+BGFFmXiAhpkRFiK7XigJDYbhnMpEVbXTdZ6y6GQgbVbVp4+uI58xVBLKwkDmwhmCN2dacCJUHzD66CKdjDRvMeeqx0ZrN5vqDcH5BPXUPLoKZcPhwOrGQNOQqnqBkblNw382UMo8dAYTqHu7kVh4IDMPiwU4xKoxi0DRzFqXntFrIWbtp95fM9idhvlIq32n+rzb76OTfhUTu1DiZY/7MwuNPhvBOaFsgYY0wcfodXMcarmQxm9hg2L8vYgtfCn2F+7mFAjNItifmMrBnGpeXPQXAcy0fEiNI86leNNdzufenYJWIbgRil1SEsQ0b3stGZvnTJqsgSQTW9aebV+J53mTgPxH1p8b3/Z+cyHn+KIyTOPL+NiPjX+l9VZlT9qpzsBSpgyTnt8HIimkfVvFUr24OolhpjRBNmFdITZ85ViFXRdhckJ1mvxiW5UiLNqoSqnj8o1UWV+gOWLpZhdlosbpuko0clW5kntXikpr7AtYwcZVoV5F1lXmF7Kiho/uq8ZbG2CInMHaK3VMt7v2NVRediEyTqoCDPGeF3SllMyQr4DrG9DojERAoTHCII1nVDpnrZZhraGFNNaIzkWdfiH3mTYxcKwVsFCJqztGIZX3MxI6NN829Xmb+qzGj74D6jNRw1shLu7O/RkOasUx17RxpEBZijaMc06Yu7DvVh41KdWOT8jXnJINxknGAdXme998IUrTT9/0FzvcrkFrP6cB9vu9/w/f9ncDHPM977OSuetrIYd/3f/BON2L8ZAJHVINPkn3gFcAsMzOWIkp+OZaVqAh5AWabbZdtChgYnMZAXhYVxZJFv3u4kKy0viBSEiNKlBgbjTFyFU/wHf6OZQbDcxVraKKUFmYTS49y/TNPQERqWQTK6bUks3O1w5JbsLkUdyMKssl7oA7CjyOJ1OZ3/2sQ/rnZjsCuG/Mp/qaxZm5KUDJTYEkLXxAD5quX3kGYBH+GDO1MBngi7coAp7+JxezYVWbzTBQnrBGRGuiiyFYc1+Q4LXaQgUx8Rc4xrebvY2Z7L8nvcx6S9H6hc44mktFCVVhI3vuwkyMQ+WwbXX9fBEug7sFFVNy8WZLKO/K5quAJAL79/Gf53mWrWW+Kssxju0SUjKzmPsLE2XyNYK7qKefj33koMB5L722VZ6F9XwV8G8vMpRC957CIp1wELrjGbB9EPEk6mS8x331ENr11wCIYMGN7B3PpoCCo/j6NbhKEA/rjdgrpJJ9Mp6P+WeYCAAAgAElEQVTKQ/U0zx3guU0fsn2nmHtIrs0A8k60ItEvEINR6z8EUkSyNqTgdbAP6fQoXCBUwieXc+J5XhR4EFHThoEf+b7/H2Pdx/O8FqxKedj3/dSsq+Npy5jXLfPT1cBjvu+v9TzvUYTY+7hlTMaJ53mXAOeYmifTgSm+779xrOPeLlHIVjm21oPmU4SxFcwVpqJVt8/GKkWj0ebOwtYtUQphN/lcYVyqkCvOP2Ha1IU4WLKw870qj1rJ/SASqNR5MRdxIuirqN7pfqyxMYTN9Sg0+xYio1GT6kOMrGBnmd+0cncuRyq+Y3nNNWfgEJZpaXbKObQg5rEU/aMZJicCvTraNd16MeMh7VijQNd8zd1QWNdIbdHohkpqmzUSctA5b6ooJE9rkfRjjeh+bGFCNZJccQ3QqUhUUQ2pbpLZ5TT6qPsvNu1Vg3wnsl7HsIbKHmSMag4IyLg+2xyn/ZNa1wTTBn2f0rGRKI0M7iHZCGnD5hornbIaUeMi4wPregBRIR7ULzzPS0cQ/R9AXu2XPM970vf9xpO+2uklaz3P+1tETQqmWt/3Ty9MxnGLNn8S8raoolQki5DWOXEpaC8x23NItm8mm/0XOd8NTghgQV2tBXQV5xExmcK1VAZUr7oNBPkATZRKjsmCKZQP1fPIFVdy/cYnyG5PBDkHvRUhsu9LBLAeamHfzyBXq5fWwbM/hGVqnCxBvOBasHAdeFPN98j3xY91suEfRdNc+syLLM7fxN4lU4J2NlNKB/mcbziU59NInHCQp7J7VxQaJthIxWGInNsm0RMQpbwVCVmbrmYWdhHbg0QxGpAJR5XcdEARcZpsrSMxhkxgSuusRZsUghchuUL8d7H0u0DXN4rgNpg0az8Dz06TyEmrRIEe2HGb7NQKn9z1Q75ZLHVMtnAR/8Gn+a7JvVnDlSylhg0mBHSALNo+FaFobZft+29hczFqkTGkkZNFiLFZANxhvvsmssB/zWw/g0TB1JB73fSBJkQWwoZStRIkGpdDd5APdCf3sIGlQfSukxJCJIgSo55ycuiWvXtzSJImrAJ0wFxTJ2f1KiksL8c5Bkydk4nYl0Uput3IyemTc6JsXScph4E7fN9/2fO8LGCr53n/k7IuHGufpb7v7009sYrnefnAgO/7fc53pb7vp4J1HuD41q1Z2DfphF16xzROPM+7C5kO5gH3I6PiYex09I6LOkc050OVLlWolPVI4V/l2PdBey7unENzWEB6Xes/DGFhWOpN1grtSgMccc6j0JVyBLriKsQTkblUr78MUfAU/uMaSm4uQisyN2mdFVUYXQ9xGAtnGwm2lu70hxaLHE35PZoMYSNEqmRr3gDYCNLJyonohKnXdRX/U0E+qLVp9Fr7zH+97kisaalRpdQ2azK6EtGkTnd67i5kLGWa75SkQGvYaJHSVEXdNUCVTCGMpbfWfCQ1CNx7UHY8jepoUrpWi1eShmFsjlcaYgBtR96Jt1LOOdXco1sPpsB8jmIjL32IEdyNHRtZ2P7MRd6vBSTTE5+0HH2azfM8r9bZ/pHv+z9yd/B9/wXP82anHPdeoMlESvA87xHgfwF/bMbJX5r/blFGnyNZ3d8lchh5O1RLz0VG42zZnDTRhq5BFLI/QyIlCu/KQ3IcFN6yF3kxaswprhdFt3Gu5GKcVdxEglBQZDFBmPUsZ6aZ5ZcR40OsC7zaMaKQIR74xfEXuYonZAx/nwAalL0mIZO/3sYWyL0c9hkDKfdGWHYfRxYcUh/ut4CnsAtWHZAPc9kh24WwKX0xBXQE0K+bMx8kTjiopXG+YRmrMVChDxY/SXNxKTcZXejbw/9bIFyXyCnTIgcZbpksSW6YLr8Xq9TWm79JyITmKru3Op9LsYbLLKf/wdJ96rEKaVC1bRIySarqZ2AbA89OC9pJHux48Hw+ePPjADTOLeNmHgqiEKU0cQ938gVjOWxgKZn0s9QMgD6yxDAxi3Pv/BDZ8xNStwTEKNmGze9ZhRgrmkcCtNVD0d3Y57Ua0d70Ps8296EwvjgsbXoR30AAvDdgc6Vmz8MP+QTz2BFUiI8SYz3LWcXawCiGPHKyu8lZLJ27++U5orgotKwEiXrNwEoEm1tTiyU0APOMWkiGdRU5B58+NU5gzGxdR10vfN/fjalG4/t+n+d525CbbjyefY4h7wf+xvO8lb7vD3qe93HE5F7p7nQC61Yr8kbVcfRyJUeVsUROrkLKC71sGtpurLTTRjyscTAZ6Q0XZqTJsWdhK5qrcq/ea7cSu4pGUxSKEkHWlXNIpo9VyMvZ2HyPDMSgScNi5d1E4VasJ7gbm8yvychuGxSupQpbHMseloGdP1UZbDNtO2uU/mpDlMSDWFpWSFbgUxmTRpJDiBKcgYWVqcEC41xn4iRF2zSWwpInIv1YeJtLbqAwwrGIVktXUQN6MjKPp2pxek8R7BhIxz6TYWRMaDtGEoUOdiBrYAgZB24ekULS3JdeiWyykHdCjfKDzn4u5G8yliXvPeazRj00ktWDrEnuuMtAyFnVwVCIjOtM53e9N3VGvGz640QM7lHl2JGTQ+bSa33fX3scZy4imfG4FbjI87wI4u9c6Hne53zf/9fja/DpJb7vzzn2Xu8mUViXDgp9k8zKM4BUiNcnm4eEx3eDqTVooUeu1BEUYYwPhGABSVj+2P4oFQWCwSqggwrqAq92mDi1VAXGSZwwvXNCLN39Ir7qSs8hL4YquFWIXqewrH8Aep0SdwWIAaWawlTEy64gkW8hzF4aefkZsNJJqN4HS/traMosYU3mlYAotPexOkigjhE1FMkyM/eRRaw3yhe7BSVSUVxL14KiAA43zGSBBKku3IIYKGr0afHFPqzxEefIyEgL1uF+AFH0tUBmjtnWxTgLMRqrzfaNyPPTvJYo4vkcJGhnxdUSftJE/1Ka+cquLzOzWAZFBa9wKw+wxCSZXMejxIgGOSizaYGpUnsEkOrwN2AnvArEqNQoVz6WjctMyEXzkUVPx6FCwtSgWWT2VeNkM7x6YwnnbTUMYQhd8GxzUwV00kk+7WZ27WcSy1lPB/lBLs0EhiiliZ82/pWcYJBkVp9m5F3QKJT+pvc1m+RFIAfY75JNtHCkTOB0MlDGIHvHCrUyhsFCLC/bWPbxgWc8z/OBe1MdZQC+7//C87w5wCOe5/0C+CskEjIWGXHdMp8fB77ned6HgONZC5NkLMZJwvd939ykJruccjkKnu0ImYB4SKcjilk2MrYVUtOAVbzOQhSvqVhFSc1MNQ5USYyb/dU4UPiTQlIKscUfz0aWpnRs1GSG2S+EOAVcNu6JWMrjg0iujLIr5Zh2aaI1WGXOVUjduhbq7VbjIMLIEYI0ZFRNxNIq63lcz/3xsGxpNfAsrJKsydCpxsBYk8xPVkYzQk6FYaKi8LupyJuajoXWTeboOUSQbJhMxeZwaGRM2bbcPCIt3plJUFmByci4GzLnTDj7porbHo3waCHQ6VjoXybJkRtlxHodGecaKenBGrtDyHPQJPshZJzrNbPM8e44bcDmZoG81/ruabQm0/le2fQ0Qf510x9dSB+OGwr52DknPb7v//UJnNkb6Wq+73cBt53A+U5L8TxvIvA3wKXmqxpk0TxpsNzxrBXjJ4cR7Vhn9QKzraPZaJRai2MSMoDzsEt6CaIMK5xlJvJyV4uSNRwPM2nGfpqHTbX1wTBlBY0BZGQKfWygmnkapUAU/73kAWIUhLuATqirlPaU/dM2wj0I/AfkRdFCfSCTTDbwRbO9FTGWttn94w9AWOueVCGKrWoF+fCrVdWseLgGgKYbZ5E/1JlUGDJKjHw6+TxfBwSO1kRpoNwmCBPOTvBcg+QsbM+Zl0xFO4gYF9pvIE9eIXR7zV8eyVTCLdgFqgExFFeZbaXv1HOGEWNGPUtFWIYQkIkmDxsZexoohQ/e/ThPP341AHXPL+K9l71ArEMsmDe7zmVV2S/IMrNSCc1spZJ8M2Y+xXeI7DvA2twrTFd20nlpPgu/Yjp/DvIc1MN5H7LQP262P48Yi1VOO1XDU+O03Byv7F3nIsaMGpfAebHm4Bq/WiU1TZ7gyqDNjZQFdU8e4xqixKgZrqYiTYzmPrJ4tneZvbZGoXTRykPUWH113kCejdI4r0eiT/oqxcAmwYN9706/AowwvmxdnudNAX4J/L3v+yMyAIyyzxITSMgH/sfzvNd833/hiLb6/jdN1OMHQInv+wdS9xmtaSN855tzHsTGKE9YxmKc/NzzvHuBHBP2+SuEceWUyfHisGdXVvKr2i/yUe9KmhDFXuFcmouhOHT17E5HhrayCbZilW1VEsOIEqTK/yFEmZ+BLEVKH6wRX8XZR51ra5JxDslKucJU1GhSqFgGgqT8PUeKe/wgNhF5DxZ+AzYBOZcjZRibNKyJxkqH7MpIeR6q8Ov/NOfYdqwTKQ1byyLVGDiVhsmB/we483PABKZ4XzmFVzpSlJVLa3qA9JMbSUg1TFJJAHR7IjIG1SjpQ3QIPY9LcNCPPKcmbDHEdGR8atRCDVhXUXefr9uOkPO7jkltuzsehpD3Jwtb7FFr7YCNaGikMgdZz9V4HzT3mIJMBqxhooQR6vyciCWT1HaGzXm05om25wLgy/4TwP/C80aaR49Tjh05mep53o84/siJ638FmY6ORSL4bpQfII/mP832Tea71aMeMQZ5Z3N29pFM4TSAda23QMZsq7zuRgZyDrbGxFZECVtgz0AYqLWJ4PHzQuRkyxvQ1VREwQWdAWRkPznMY0dgrPSZeiGazLwp82ImZQ5w0eS6AFIV/i2iDKqxUYeAO/7dbFeYNmjYtBb4NAGV8K6X8im+sNPmOSgTlNgZ9D4VYsVdNcHEX0sVfelZfHzjQ9y75BNBO2/n+zxpsrD7mUQZjUEE6J97v8pN2Q/y3Cwx0kqym2iYcaGd+PaY9rkTYRdWmxlEHoUbVi1FDBZV0rvNMfr7ZgR2p1656VilGgR1/wHsBPdBBB6lcqHs+/SXrmbu3X8g1htl4JFp/G7wUs5aKW6l8wvq2TS8mC+n3QXAU6xkGc8FML0NLGVx7iYWG/7CesppYTYLb5GH1VsYIvuhhDUsC5BI2CfN9hvI23QnPCvBF5YtQgw5zfeoRZ6xGiPPI9EYMx5euXE+Zf3bCJsxumJ3DX4YYrkyRYWJU0ZjwAh3DY9JnZO0GGuMAVNKMznZ3USzxdjc8fj5ojRVO32vFXPBkkJosGY28oz1+U7DkB+4CVoKo4TTKd8Exo+tyzh0fgn8xPf9x49nH9/3283/Ts/z1iAwrCOME8/z3ofMQGsQ4ulPpu4zipzydeuYxonv+/d4nvcBRGeeB3zJ9/3/Gc9GjCDHicOW2MYw4jTQaG4W8g4sM/+13kc/1kO7hSO9q6qsqWLdg4XXaJ6cQm5KEGVclUQ1ghSzf9CcR5Oaf49N5I2Y9mhtBhh79lA38r5PNG2Y6tybwta6Rzk21/SHGiYurE2V1lQ9zE0ij5NcVT7N3JMqlaqkn8qyECNGYKaDDNG3X9QocKFPcY5kMwNRurWGTeo5wPabJrG7LFgjRYQ0GV7hUwlslEFTBxXCpwQQqWAUzdPQBHaNRkzFwhTd5+myYk3GstipQaVFl9Vo18iGW/9Hc2Fcce9PqYrfb879W9N3agT1mN8VvqVGkrJ6WXfBOMmpiZy8BJxjwuttSLWFj57AeU53udD3/fc42897njeSD+Z45R3K2VFYlypGaqjoLFmU7PGZjV2Q1GBRRqhqs52HeP/1pZgltLlZBbJCdZfup4P8IGehjyye5XI+xXeD7RqqA8/8bFpoYTZlUxvJ3pxg15J8iuOdgihXVHknoo4oImYnMhko3c2NSPzOeNqLd3eKd17v7QpEwTU0sdmdCfnOKPHX3/sEez8xBYoJ4Gbd5PAp/oPbDM3Uo1zHKtZywzqllIIf9X2aBdcJEX3Dyxdy1gWv8WbLubYvb8VCtGqxOSMgC+JFwK+d+5qA5c3H6XM1wgYRQ63FbMeRiUe58jTCooveWwh/kYazLzHJ8E9PY8eO85k79w/s2D+NyOq2wPg4TDoVaXUBDW8BnWTRxy/6/xyA9ZlX0E0O0SFR6ivZKuQFRrLXJJKxvcrko5kLC5BncTssU9refYjSonVrLkImTl2sl2ArNwMLH9gGy4VSGKArdwo/5BMBecFe8o4YYw9xE4dJD/ZRlrLdbXNsH+dgaZu1/ozmmKh3WHNQNJzum+1uTAPVNbWPZIPExaS88zJObF0eUhZ0m+/7/348+xh0U5rJQ5mMvJF3j3D8QiTQ8CHkjX/Y87yv+r7/z2No4ilft8bE1mWMkVNtkLhyNDwbAJ7n/TXw1wDFxWKC69xfgYC/DwHLsQm2Wt9hmGQFyoXTwMisRhodAav0LcB6mF2vsSqqqkD3Ip5ezU/RRGJ10szCeqbPQt7L1PwDV1KLNr6JLIuucqwe85Ek4vwWxiZSg2USS+2D1DZpdEiVb40K6HkHSVbIx1tGjMAcgvEGbo0FhpaJNUrBGgATU/ZROVaStl5zD5b8IMscN9Ld6fiLY+GMIHN/NzYfqJ0j4Xr7nP9nYetjDSPr4EFshDATGcsKWRt09inEGh063pUxrst83oJlc1NDxX3JGeH+tO9jWAezFhzNxOZsvYWswdvNfYw79nQcIiee5/0MUYvyPM9rBe7yff/Hnud9EgEzpAP/7fv+qyMd/y6XIc/zSnzfb4agjst41Ds55lphrhesF9aNfLKilf1UXLauARh0ZoAWxLt+IdZrpKxTqiCrNe94lSLVbXQNSwJBTnY3DS9fyPkXiBIYJcZ25gWRk25yuJN7gmreUWIB/IYMKN7YKdfswnr9OxDPuRYfjCMv8zfN9kXATfD6p2XzHK0urmj5bRB3CgGGNSJjLrv5ExXksZfuaA6f2SpG1ObKCmJEuYsvA/BnPMZ6lgcRBoVBNexaCMDcC/7Ajk3n28XlCcSo0wjUNKTyrcoW0+63sLaiev/0cW1HVCr9vgp5dJoo3ofAprSOycPACuzEci8S9VJmtUdg4PppUA6R0jZ27DiftFsO0vVwEctvljDGIx3XsbSghm5z0VKaqKGaUKbMevPYQS2V1KRXA3D71h/DQdh4qbCwLdmyVYwKrTmzDYFkab88hEzGd2Ar2W9DJvd/MNufRAxNpY6OIVTFSm9UD+yExiUl5ucoVWwN2hwjSoSuwNDcxGI6KCDCXtbuuJbL50ptk+UF63m6R+BtfADxBms7FeOriYoDiBKk1MJRkhFbGcBANtZy1OrwLszr9KARBjVOTjpysgSJLtd7nqdP6/O+76/zPG8dEiM7e6R9EJN5jUEMTAB+6vv+r0a4RiZwrTMn/yVwS+pO79S6Napx4nleH9Z2PUJ83x/X+maplx/pkinX/xHwI4CZnudf6a0I6o+8hCgqCodJQxQ9HdJZiALXgiwnLsbd/aySWgBvCFGA1MjpM+fpx8J4FPf+FmLvH8IWozvHXKMKq+8o9EYrxqe6/VzDQPMIhsw9uLE1xfkrxEWL/6qHPA0x3D6MzEsKx3EhR6PR+rrG0nZkXtccH3V+aDL125KYlCo/AFZ/ivEs3zMWGJrm7Sj1rcY2tQ6JJnMfTdyIgV6zDGtwat7FSNLLkXV2JmPhiyDj0jVMUmF7apDq/mosKxucZtrpODmEjGtlzGrH5takYQ15HR+vIVCrbkT30fwYhbGNBiFUg0fzefaZ66h62Wf6KI6MyXlYw/AT3oojahmdsIxDzonv+zeM8v06RM34Y5bPABs8z9uJzO9nMQ64ZMawVkDyeuF5haOua2MXzTlRmYS8iQrz2gd+dnIRv9cRZXcP4t1vQixuNQzOQaIneswMmJnWHnhhd7x8Ppdf8BQdxoM8hT6ixGgy14ywlzVcFcCjQiQopYn69HKWFG6VF+Mw8iItQNJiCpGn4BZizEegXCCK8EE4R3NMFiFqk0ZWBk3dE6OkP1J5Je/jNxS9IG7xRVtFZ/LnwH9V3sRVpuBGNRuC4pFf4wvk0B1440sLmpnH9qD433O7lkOO0AkDdLUWSbFKVbeakMVIcxa6EZUpB5lIqpHJAazZ+mOS4XQtSNRKv+tAPCmaxF2NPBdDVkAJyd4/Q56aVn2Qrs1FRBa10X8gk4FZk9nIYt7ccS4z574RQO9AIG8rWUcdYoRto4y/47sUNUnfPVl5BR/55jNcsHIrABsPVLKkaauN/sSd54Fpz5cQY1OjKs8gY0+NxiXmd1Vy3kAWhyed36cS5AcBSYr2+/gN93NLAD3Loo8Ie2mmlFvm/pAHdtzG1Nl7mBMKMXfuHwDY0Xg+acsPMvyo0QoWmL582rmPi7CLj+YMqQFcqw9ELZYBjix6evoYJ8OkjYWt66ji+/5vGXluw/d9jXu2j7YPlsvuaNfYmLJ9iBFSNt6pdWtULc73/SwAz/PuRqbTh5CO+AvGsXzAKHJceLYBrHd3IvJOtiCGudag0LyTXOQd+C3WiHBrfKQaJmCVdYW+KCxGA67KXKQJ7f1YxW06Fn4yA3EgdCBL2O9Nu7SQ3kEs5MqV6dhlr8m0IW6uczbWs56BVRYzzHU04qtK5bBpmxpR6qQ7EQiWQnM0goJplxpsY2WpGi+Z8jLgxTm1ae8ibn7IIZLhcPpbGOmbkWByrriGiQufU6NGFfTRUuxcOmm9fi/WmFRImEuYoj7dTLOf1jepRbTGKHZcTcVGH8sRI2UilkYaLD13FzLONbqhf5oDphXcFQaYIJmEQusS6TuXhtBwf9gcr4VDdyKGkL5z87AGmFai7+BI+uUTllOXc/InIb7vP+d53jnIo/KA13zfH48X9R3K2ZnAkVj32SR7c0l+acuxCdfNQCWyEKk9s9/8KXY4QwovHj4sJ0krOkgTJQFMqMDMFGEze4RJ0ExpoDiu2FrD3sopdFDAqzNLYCZEh2Jkb05IO7Rq9/ewC18vEiUwk0fv4ybP4fvm958B9eDfKJvefYhxY6Ins3/QIkUezT28OrOE825tJvF9iezcz618Zvd36Z6ZQ63RPhezifUsD9q9icW8kHgfBSETIqiZAN3Q1W2SFBYhCHlduKuRyeElp+vVG/8+ZJJQJaHG7KNF/jT9dxE2yR2s/psqajjmkJwXkQGTPrifge9NY8HnpSHNlBKpFoPqrLmvkUUfv3v5Uv72AkHg/BP/xuf418CY/H9jn2NvdErg2Vve/wzMh4MHxCJa0rBVVEE1DO9AJkxVDxsQv3kv1oDZZe7t12b7IfPX45wjTgBP8wshkQGLYmJUvhKdT8lQMw+l3wQIjKuKrQENdIIQMaJcx6M0U8JH5/43fWTxBrPZseN8OelrMHyu465slf4KolR7kGT/OruLy3qGh3E3XGC+2Ig8HPWP7+NdyNZ1Ro4hY3ExL/d93w2T/8DzvC3YwO+pkOPCs6lRkoYoJr832zEso9ZBbGE8LTyoEQw3gpgKp1JIVx/yviu+X+tK7MEqhOnO5xeRNWcflulQjZpCLCxMVelBc+3UKA1Yj7cqlrmmLep5VqiYRqjVOIhiFeVMrJLs1nFRGc0r74oLccpNufYg4unvMu3K4B2KnrxNkpofovk/hxCXxYtY6JML+RpJXA2tg2Q2rgzs8yxgZFFDwDUKldskHRul0HE+D+tIdMe6ss650ReNTCjhgfIUdmEdXZnIezQd+8x7kf5QY1lhhmqsaE7YDMRpp36vuGmf0mvHEfRGT8r15iG6hBu9BGtQYe553NDIPscKo51ozskftXied5nv+897nnd1yk8lnucxWqLnccg7lLOjGrB6byeSvJIUCdxor5kh3jdRPP0rsHCWacCVWINF6eyqjJJVO4GuvAIWFL8CwO7phUSJBRCbkHGPTTGjv4XZgaIPsCJcQz+ZJAgFeQzZzyWSq5Rdjij66sX6NZJrYbzWHRMSZP8CW8TPQMI8hQ3dD2yUKvEAi/6mjt7vhdg7UxTqPrJgoSTnV+lF6qF2ZiX3GS6EA8NZLE7bFFQZjxKjoeXCAAO64OaXmEMLaxtNJngDycxaU5C+1XCt9mkOdtGsQCYvpQpW9jQ1QDaTXDpuJqIdaR7LRYhBudts5yHwMjVuKmDgnmlMunN/EOka6M5iYM80QnPfMPfVyIQLhgKj7D5WM4W+IBLWFo1IAcOZBvb1cCtshNBK4wZ9HsiHuElZDv8botSrKT4Hvrwc7roNa5wsQsaU7vMQMv70+fcAd0Lbr2RQFsW6CK+DX91YDUAO3WxNr6TaWHWbWEwfWdyLkBtUUcscWljP8iDC8oeOcsKTEnYRmw1TS/fQ020Ax/eTDOuqJxmm14ZEpjQnxQd5YOroL0Ae3OnL1jUOsK4/eRmLcTLked5fAI8gw+QGxgcrPKr4vn/4ePBsbr6EJrqrYqb5HwcRI6EAmcNmm/1jJHuuU/M8zkaUoVwsc1c6lro4F1GwYlhyj1zEMFG4TxGibGneQTu21kMf4qluw8Kh3ICgUgq70oEonwoj03t04ViqEOt3+l+9+WCjLYcYW9qwq5sp7EcTozMQKNpkZ7+RqGv/GCQ1J0cjGyHkebyIrHOTsfVpjoelrNWccwa2lshI0DDXWNyDTQ7X5zKERCY0aqHRku0kG+EKZexD1jGF+yXM/fRwpMGsSfBF2Poj2hcHkfGpETWttfK6+ay5XiDr0gJsoWJtn8p0s38Ztiq8RqOU+lhZRguR9cxN3h9XWFfimHudkSPl/YhatWqE33wsEeoJyfGuFeMnA8hMr95bNVKUyXO+YRgy2m/3RAtT0dXzWSR6ogquRllqzLKcBwxOoLlXQivV2Ruo6V3KymxxlZfQxO+4iBKjgXeTQxZ9fMRgdDYuqKSADsqppztdFN6+K4YoWtNlldWvI5OBKqtfQyBAd8rmOcoMpZPFw8C/QdzgKsMPAWEp1gdAPhKZyZCXJTKnjn//1N+ykFd4xcCXmq4oZTeF/HA65MoAACAASURBVAQJv/w07aNE6OI7ib+TSzXNYNKs/fSsEWV23nU7WPv8tVBqjLanJ0h3K9tTDTIhaf7HfYjB8hLWGKlDElCVEaoU+A225oyOGNebEcVGtbYghqULB1jgXHMBMOswA63T2FFv+KOzgFbYnSGBvd1Eiczq4L1p4uJRxqtyYxH9lI/ymdh36S0Uxbbtxgj1N5azYneNnO9aoB7CWpPmCnOvmpT/ebhLWdR0Mg0jb1+hc8y92Do3XwNuhKKHjSWQL9ddsVau6S+B9txI0NaQqfz2VSRneoh0HuMaFrOJehMKKSgwES8z3gdap9HzyAxr2E2SfglgGx/EQhvB4vGToAKTsO65DpLzvU6/nJPD40Ql/KcsYzFOPopwyP8Hsphs5G3wTB0Pnu0QVrHXvA1NmN2OLCG52JwPVRqVYWg0bIHWmtAK1xmIspSJZRrMQOZ5zb8owCYCa1KzRj5c8pbfI/l0aeZzudlvD8mFU13DxC2M6J4rE6t8arRaE/VTFWllkFKYUDe2LsqJSAQbtXkTmdvPwhaHdKMAp1pGSuQ/Gcli5Ckv9Rqam+GWQtXcC6XOHQkRdDTSg+nIs0lDnvl07BqkooZJG7KGqpGo0+JkbCRDaarBviPaX4romGGuEUWepRrW0822Rv3ascVI3zLfaaRF77PNnMeFfukYzcYaKMoYN9I7qEn2eqwy4mm+10Ess5je32Rk6eoy1x9XaOHRLcwzsK4RxPf9u8zHu33ff8P9zUQ7xuMa72DOjst751QymgbsPwTTjPGiFcmrsUralSRDWaYhVrrRuebe/Ad27CoLqIQ3JRYTzY4FCe8R9vJetgSe+nw6iREN6oXk0E2IBHlrD0CusYDORowPrXOhoV01VtaYz5pA/XVEydQXdBWwHmpNttCSXyOTiXq54xBfCLFMoSQrfbiVi27cwjy2s7RBMp53Lcing/wgwjOTdr646R7mLpYchWVlz1EzXM1AuSj5v3v+UllMDhh15TMwacZ+BhqMEXC/ubb2ZSmWAnOF+a4WMWJUIY6b3+udY7qxE2YUiZroYlyNPEMlL7gRgcNp8lsNMMW078rDlg56xWFoks8fvey/iRMmYsIxpTSznuXBdj4dfD/6MfJNxnsh7axoqqF3jhgr2T9LiDGkcKh2JC1akYTbYOPdsOQmAupn7pbv/W/LprcOGaaataCJfAY64VdB0e4uoSgGYqvyKejvpDTTGsB1LAza3EkBF7GF+1gdEDdE02Js753HQKt5Pi3Y5FcVfR9AFIRLsJA7EONSo1YBrKvI2aGFZMqZ0wfWNR5sXWdkbFTCLQg142krWmldqYLVMZWOzMVvYXMhtKbIQWwkJBdR1FSJVoW6B2urq9Ifw8JLOrBzmTJeuRTESt+qkRfXRaj5LqpA6tw+AwsZdRU2F5YDVilUlialBHZrSLiRE1diwFJkblPlbSxJRKnKdK+5ZgZWMdc8DPVu67w5WgL2eMp4nk+LEY5lP1WwlXIa5DlqlADs83VFc5EUPuVKO7YP4eihSnfK3ollsdJjJ5rv9Vnr9yP1VxmS41GEJWlIbZdeUx0AOs7V6B1G1nY3yqEUv2CjfVnIGH5+lPtyEwdygMWI0aPGTgjrZND72YmtMj+Doxe9PC45duTkDKzr6PJLLGhc5TEkdvAuFTcpwSXlBvb3QjTb7qIh8VrsC1tv/q5yTjMJJt2yH0AYqvJsbsn+UA7l1NNhilQcMLO25iw0U8JFbAkgJc2UUEYjbasibKWSj8SekRfkDmzewrXgh8FbaLZXIhAmNSm1HoZm9UwFLoclRqnvnR8i++4EpmQJ8S9BuB1K7zOr6QJY0rQVPxeaFojB0kRpUPUe4Dv8HTMXv0FHQi4WD1USTYsxs0xmgIYpC+G+CXCeOWAihGbHGfhLs11NclLedmy//9Dp21Js5GQWyUl4OdgCYWA9brrdhMAyVKH+nvmsi3S1+d+NGCNVh5mU08fAnmksuExyUH6662YuL14fMF11ESFKjOt5FIBHuI5Smlk+JOxe2esSbFxVGTzf897fLBqbopvmAL/AehbfD0v+A4mKqNEVBpaApwvRHcgzNpTE8SoI1xEYq97z4F9GUMemoL+TTZkXBwZTLVUsZQNPGetmHjvoZxJV1NKUVmq6IIdQRpwB1S5LEYVK83nqpa1J9c4HsVUA6kzfq3Hi6woyGkh3gNPFMIEzsK7xkmMaJ57n3c/I7Cd/dUpadALi5lJoJXWXNUgV72FsNCEHgd+ox1UNk6kkGwWHsDh+TaZXr28BNqKinl1Xye/DFrJrxxZ+BFECcxD7P2TOo2xGbgK11sRI9bxHsRESNYw0D0SV0NEQmVogUiE3CotxJdUYApuwnOrlTkOcOa8g886HsTU1ypD1OLX9422YjIeMxJh1LBlGntsMRHdVlrXpWPaqkfrXPX40I0jzgDSnYrQInxrlmng+hIwt7fM9yLPYZLZdIzOM6Eo7sUQMM7A5ShphV3iZm7juQhW7kTHpUlirgaWwMtXPOrDG6RBidNgKBxZm5sLW+hCDI4QlmujAwt/U0Nc8rHNNe8eSSzUmOXbOyRkZQTzPOxdRK6em5J1k8/ZzZoyzuHVO2jgC5pVKKKRsXHqIKsr7zf9BoBoGao3HeYbQ0v6hQ1zlZQWNlNIUJCP/gXJ2EWU5osxewXoWs4kthpJq+dB6YulRSh9rpfCyZ3gyegUfmfCM9Lri+w+C92mChHYqkBjUl812DIF8KVYi32yb0pnZzyUkEmMmp/AS+Rw3ym24B9gI3rnwZK5YMOp11/tYxnNsYjGhkJxka28VV2U/QY3R+Cfl9DGwaBpsMG0oh54vzBCAOcgCU4qFx3Wbfp6BTEo5CIQrA8voNcl8p7AvLZKpUYkaxMuhUa6oOed1zjXLsQo3MLVqDz2/nWES8ycwMGsatELXXNnprOIm+sgK4Gu3hh6QLh0Sxf9AehZ9ZNGXbrSIlX2UD9WTvU68Ik2rZlHa0GqHWBgxKhQuuBOZrJdgCQxuQsaViYSwHGFpM+Hy8C3An9vtvddMoZ9MuozFs3DrNnIquwMDaR7b6aCAq3gCgIe4Kch9qu2opKpgK5n0Ux6q57cZct+RWR3CsKYGU7fpf+3LR01fK/uaLnTq+R0AWY1m287mD85nfclOH2jXGTl5GQus6/93Pmcgfp7TqoJxGtYwGcIqUG8hyn2M5IJvmjwMln1L5RDJ0YEcRMlpNJ9V8dM8Ai22qEZPGrZ6uu4XNW1QJ8xELBHFIWS+TGApUIexepDWxEj1AGuhPaUwBpmD1EEyjDjAHuNI0TpOymqkhoQroxk2roKseSeHnHZqRXD19Ofw7pETpQ4qRdYJNUZAnoPL4HW8fpSzsUxoSuSgxkAWyc9HySA0yVwpjdWoVeOmCmGWzMKO8TgW1hVF1rZzsMxv3dgk9p1YI0sjkW+Z40qwTFn6/PV9UeKEN7HvSRdiFB0yfTXV9NFb2Pck1RbIQlAVZyNOzDQsdEshY7PNObuxEZ1xkWOzdZ2RkWUe4q/IITnvpA/4+DvSopMWXTY17wTn/2zzvxeGJiazQakXLILoU5XIQG1DBvbFiIc+A5lUphwOmLpKC5rpI4s1XBWwWmXSz2HSaTbu/ARhptFNv1HW6tPLSWcIZoLXDqt4Bg5DW2WEor/vshNCIYL5jwA/RzzrW8z/RxCl8gZEgfwmMhmp9z6MRE10EV0n+4ZNDsGuK/LhGije2slFbKGqfyuxzFk0UsZK1tFJPg9yM8tZz6NcRw7dlGfXc3/iFjJDA+z+0hw+ePfjPF16NTNXSrhn97o5MnK0bweArWBytKVP67GsMN3IhPU6MgoVHz0fMS7UuGkyz2Q9QqvwM0TbUZrAKWCCHCJuhflroOeeGaR97CDDpWH42QR51sZwiBIjwl5+N3wRl4Z+w/v4jTwjyqlJr6aDAlaxlnSG2EolTZRyc/qD5G09QO9KWT2i/a3ixTGGRu9zISnMqJP5RnNPPYiRWWj66GxzzDPmeV1mfjuIwKnUaOiCyPwDhKYmKF4jBlPbNREidAUkDACNlNFIGSBRu5m08xA3c33BozzScR3TpncTSeuCvROouGAzdTsWyYQ9zfTHQeR9uMf0dwQZfxOc/m/AGpJDEwUimQQaTo3pnz5V4seDSviMjA3W9Ut32xRkeXaU3d8RSWDrdXRjE3WVWjSCzCOZyPxTBvyUZCNEPbmuR/9iLFXpDGyi+iFzTr1eAku3CrZwXZf5vsmcJ+4cPxtb5X0z8h66hR5dGSlvQz3ycXN9N89ADZTUgnsaDWlH5iuNhKfBmNO3XHiW9pXS5v8aicj2Y6FyCzj2YDkWxGsshRBPlTgo8lElC8vM1WK+UyIFhYcdHPHI0UXH0HSsco/5rIq4GsLaPo1O6P/pSE0bsEYGJI8lN6+mCxnX+8x3Z5v/vYiz7gLEU1GGOH2LsO5vNUwUtn0Q0QuUCtl1Duhvw+a3xaZNjSTnVbl9/zo2MqMFVXWfJmz+iXs97ZNxk6PTgJzJORlBfN//P8D/8TzvYt/3XzzmAe8KOcyRS2cLohm2mO3ZlmMexBNfjQxIraXRhCjHQ4gXPowoyeaYqTMkwhCelCDWGyU/W5LbtQZFiDhRYoSN57qOCkpoCvDuMaIs41niC6EpUzS9mtxqbm/4sfW2X4ssUrucW+lFYF/fN+39B8RYeQPJ77gbCwsLw64v51P8HQPTWo1kp5r8j+KnOqFHapxEibEhs5p6yrmKNVxouH8j7OV86smknwQh3ssWukM5dCTymfrPe3j641fDFw+z+3mTojQD+BcsxCqKTIQaLWgAPoYYEhohwvRxLbIILiO5GGaN+b8FSxN8A2KcgeQHSWOtlGIT6rtln+FXJ3PWZa/BP8Gbz58Lg/AFQ3W2gaVE02JBpKufTG7iQfrJJIs+uoiwvP8ZNmRWU0Yj3eSQ9+QBEpUm5+TxBHu/OIX6L0p4Z+kzL8r96X1fhsAXGoDbnXbej510PwJ8AaEcBpgJ8ZUmyd4oONmbE+y6RiB2XUQIkQjGXIwoi9lEp8H7xQmznbnECRElxmcK7uEpVkoBzbzD1O2qslEo9SJVY7+LY+ErOYjd0Y0Yh5okv19XoBrzhUZKWpybPAPr+mOTE6lWdw5QPN4NORmZgChZw1gFqRuLf1fvria0K+bdlZGU42HEiFColipxWlV9CAsjCZFsGBzC5mMo1TFYyMoQwsTVjTWkNA9lBslFGF1lUo2D1xDoiiqdbt0KVxl2FX+3fsYwycaSHu8aH2q0uCmfrqL+GtZL7hoPXYhjJpvkfIjR5FgQr3cSTTOWnIUibG5lE7ZujUaRElhIVaqMliyvUUAlLNDilqq8a59MNdfTvKs0bHV2hSIqtHGk3A4d0xpt1Bym6c73CZKjYRqx0MhIN8lRxX1Y6GAGsp7vwY5LNeT6sFEh5ThyDepu57My2yltca65lsK/ZpjPhaYdpch4HzcyhmNHTs7knIwgnuf9o+/73wQ+6nneEcW8fN//1DvQrHEQLcKoHtsCZMRrluIhyJloB/ElWF5wTQwuRQaxJl3vR/Qvk1vRV5LFcNtkpi7YY67QybOJy1kWEtf5AbJIEKbLYIuqqQnoeEEgOE2UspA6zosJhuw8xZJppKMdKIR9JsE9dzXy0msptjeQ/Iqvy6afC95VWOMkAsUrOombhMrw7QgDlPn9leh8ItEulrOe4t1iwGiNE1XaY0SZTyO7TGLLWj7CKp5kU0gYohLfCjPw7DRr1H0Ppj6wRxigQCbeh5Hq5yCeizzE2NBJ6zYsBhvE6DgPy9JVbf5rXkszohxfb7YHkeeW4+z/e2ygTCfMWbbC/VmXvUZnbwGf3CWJL2nhOB8qWBdQCScI8bf8JxvMxZewiTWZVyYRGmz48sVBvyy5cROlTa0s7TA2fi8CS1NDY7Pp9whWs2tHhqUyZ90Gk1ZjI1/bILwPDDcB3kboXRkKlOtucsink4eQOicV1NFNDpVIYchHuY5MBlhKTVAMFKCiuJa6xxfZvmrARrq0HzWnpNS0WRWSHMQbFQQfsjly8nXp2vZxOuWd/KmzdXmeNxn4T0R1qPF9/ycncp6x5Jz0kZxzsgf4pxO52KkShXFozYN9WOYqLfY2iIWSvG6OOZpHPovk+g1TzZ/mjqhSqfknfaYNBViDSNm8NKcErOKuNMZvYat5a27LSIUg3XsFG/EE65BQxVVzbkZLiFel1c2HUCX1ENYIcQ0TSFYWMfscNPc7z9zDi9i6J9qHKiPlq4wm72S05HikAOkvVbq3IPepBm0Gcs9NIx49ur47hPSdjp9ekqMKKmpQJJDnk2uO3YNljNM8rLOP0o4eJCKi749GTdoQ3SnHuXaDacsFyLKxB1vNfdjsq2MwhjVKNNKo+SFNJNdUUdFnn/r8Y4iOp8x8+0zb1EFdhsC934e8p5OxEZaTlmNXiD8jI4vWpq496l7vOtEijC6F8HySijDuH7BsXS1YK76UZNnvfFbaPWC4ZjJMh5yQSXgfLiEaigUJ8UvYRCNlAcxLoTfq5a7Yt40tuRWEu6SGBkBRQxc8DHu/IXVI8nYfgI2Qe4e5fg+ilOvTSkdeJGPMeKuRiILigE3CdVgXrYOwOVrBoh4JnZT1b6Mps4Tznmnmv64QBbeOCv69/w6+liladZQYv+QaOo1hV0AHCcJBnsNAdxYVV2+m7lGj7F4JPc86nJZRkuvFZABPIfkiGtl4xPyuEZBFiC6rxshLyKPcbLYrkMer+m8btrI5pn+qsLCAC81174Ph6slMvX4Pb246V665IllpDplVsJx6HuOaIJLyIDeTQzfLzEkj+w6wdN+LEDbGSCeysD5sTnQ7YmSooVmI5A7dhyUyaJB2Dhj2rknfQ9zLyjo2xZzDBKVeXVXCeQ83032jROP2GsNXYWgxonQRYY3pyAI6JeLDeh4xSSSxRJTEYJjIlZLA3lVTJNfT4qKYvnXrF5SSnO/uJugGsfv5ZlvfsdMHyuXKeLF1eZ733wgkttP3/QWj7PO/kXilj5jpt/q+P+h53gokhpkO3Of7/jfGux1HucbVwGO+76/1PO9R4NQYJ1op/nQWLTqXwBaN0wKLWiyuC1Gc1TAACzVJVfgw5xlG3pke5zsVrd2gicJqjCitcBo2GqFeb4WkKDGFwsN030wszbEbOSlE3mNXWevFRmvUS66Uth3m96M5ejWypF5sF8Gpr75bLwJGNhZcdjStVN6BrZA+29n3eHI63g2GCdjIWhZimMxC1jNlaXsL6R+F5o3VQNO8IKXMHUZyNkY6/i3TjgxkrKrhqXO9EkDo2j3amNdaKfPMsTmIwh/DQteUSthl51JK6lnYca45NznIe6lRxVzTxonY6EuLuc5207aE2ScVzqg5J7rGaaFHZYjrQZAbzebcDnfSycuZnJMTEoW4+b7//+l3nuelAVN83+8d9cB3hbiRk/nIiHRLpWbbjwPIYP4Y9sWcgXiVXbDbb5CK6xAsOJ29cs7ybEkOqE8IrGdaqJv95ATUwhW8QphEUDejPTci1eN7oHCy8AXGz4bwSsiLGTf2OkQxVROyCptoDfICNWBfpBsQ77ySQJ8j5/ANjMj7Oiy6uY62B40xtLuL87Y1QyF8/LOmuMbqh2gqnRVQCS81me6qtEeJ8UDjbdZAWgR1n1lkX/wOhCL402b7QmQC0smiFPgQYqC0mO8WINEU9bDlIOdfZrZfRQwZZQUBiUo84ewfxTJKlSOqoCbQq7K/Wq7T88gMIje2EVncxSe4F4D7uYUOCsgyD/Ye7uQ6Hg1qiJTRyErWsd1cpCm3hL98/ucBxKq4sxPWYp9NBJlYFaK3zbSpAss7vwBoN9ESkCF6Kzba0mWON/uf195M/GrJEQLoq2wkTDx4VqtYSxMlQXTnQW5mMZt4ipWBcZwT6ia2P2qphEEWKG2TRp/UZtOK8Sp5iLEYOIM0cqKOAOUBPT2nDx+P+PjAuh5A4pYPjvSj53lFwKeAMt/3BzzP+zlwved5DyFgvw8gvfuS53lP+r7fmHJ8PjDg+36f812p7/upPswj2uF5XvpRruGWMz1hl95YIifP+b5/+bG+e6clhq1MropcBqIQpSEKozqstHbIRKySptXf1RCZZ47bh/Su1ppQhecQFsOv8C1lS+ojmUFsovMdpp0xZC583RynyfV7ODL/Q6no3ShIBBsx0XpFOu+qcpeaMuaeT5XNDGwBwVTpwxpOIynU7cg6W4DMNxdgDUK9xrgph+Mgo0GojkdSoW3K1DWM9EUrtjaI5l+8hV03x2qgDWKNDoXopTLJaXI8yHNKc45Vw1fHrgv9+7/snXt8VeWV979PQhKSkHBIAoHAwUAiSEw0SCwY1IZqxcHB0RktvWntvE5tO1Nn7Dhv63Sm1pnOtJ36qa1tbe3Q1mIvUq04pUXxUuKFDGrQaGIETDRwuAUTOEkglxOS/f6xnrWffQ65CbHGvq7PJ5+Tfc6+Pre9br/fGsow0eM00qMGjGJXtD/1XiL2+ilIFG8qDvivKcSH7fGpOPxNIw6LosD4M5BxX4ozoMC1mfbbS8h79DWkvUuR8RbGRYq0/opiT8YNczJ65OQ9zMkIYoz5JZJcM4DAl6caY77led4339k7OxUJutYhnurEsibrojwHCfvtRLzV2M/f4V5Mc5Bwoh4zHSg+Tl+PpQaeUkRlUg1ZqaJLhIkwi/1igABpxGgn108T+iT3kEcbTaVzCHfvJe1VSKtF2Jx0IelDjA1l67oeUX73B7Y/Gdi+CPqusSxPwNYblrB8/nb251hjZG07lNpaGcB9s67gw+0PyQJhDZifhT9EO3lca3Wd37OKfA7RbePsEcIsKHmZ1mJRyjtaZpJ08zEG2218tQXBVqjCPYBEe1RJB1ks5mCZs3BRDzXClDpYiyhGkTQjbZdWpHs/aLd1IVH9uM7ehyra0+z17kNSwZZB99EMjk9O5u5UQeqXUU/1YBW5SW22addSRBN1tjhlmAiNlDBgNYBrD/+abVeV+/iOuW88Kn23Vi7pfQDMVFwUa6v9/1uurZX6+bBNxM/5MsLgpcfUIYu0NRReuaqIM7c2s2+59Gc9Zawa2MTqZFnSaqgkmQHfoAwToZYKnhtcypQkGZf5HCIrv4uG5nNd29XijO47EMMvGEHUujRyUenTYEQRcFZ9D/FRk4kZQRlF8owxwWjyjzzP+1FwB8/znjLGFI5ynklAujGmH3ml7gfeBzR5nvc6gDHmPqQcSGPCse8HPmOMWWWjLX+DUECsCu40zH2MdI29yGyoI77821uSYY0TY8xk5GHzjDHTkFI4IGZsIrnTOy4xZD2aj/Mua6RZvcmpiGKjSn5QUe3DrUuKJzkDp9D14yItqvxl2O/UCFH2q8MIS1iXvdZh4hXCAvu9MngV4JTYXnufc+z9vMnQuAf1TCvOoN8+dwdO8dMOTEztSrb7aC0MVVyH2jeITRlKGhBHTRYu7fYOZNRrEcvhihn+seVkDJNEg+Zwwm9n4/pA8Xvn4AoidhBfSHMoGYq2+XRE6T6GGBkR5H2sojV1uu3valiAS21XQ3c2Doc1kiiwXceyRl8UO5OFGEsv4caNGmUasSu196RGOsjcTMLVNVEQu7atOgk0WrYQ0eF03ATbvx4Zjx+y15uO86NNt+3Wi6yQGWA5ZcZB3sOcnKqUeJ7XaYz5GOKv/wJipLyLjRNwb4jDxFetTpE3puYVqv6Uh0zYOkQZ6w3so4XpVBHugqnnt/lpXUcHs2gl36978ntWsZLNHAmkcx0hxFnWaXmIGfSQLqD5/dC3CNJmSIrX7Ads5aUCRFG0Ci+riPe8fxJZCLTY4FpI24Yf2l3+F9vh/0LeVDnftv9bzrKGOjpniEG15vBD8rz1+GldIaLE6PIjJc0U8/Cey/noXDFWnmi8jPNLHiMjVd5GL0/NYrAvzdl9DyD4EsWLzCEey/NhHH4nHVn4GpDjZwWOCeFGXxSJwOg5KpC0MPWQ5Nljquz2DcBncGlhrfisXqWVz9NQcy49G6bRsxo6pkhqVGhulPKkOj/lJ0yEalb46Wtl1JNFl9+/zTlzKBloZNlaSZHbdkM5y5rq6HzQAuS3xk5MlpyHAOCVUS0NeAJyvmd/z7XPaPvPqxAmN/XKntnUDI9Cy/JCAC7mcf4z+Z+5xpaU/yQ/5XZu5j/4EiC4mVbyqUyqYScLWcUm7u68gcrsGhrmWIsnOkkiTJrGNQ95eei9lyJ4FB33s+x912pkJBvSU6An+JZMJ/6tOXGqxA+SNJa0rjbP8ypG22kk8TxvnzHmdoTOogd41PO8R40xVxEfA9wLll88/vj7bSHc+4wx9wN/jTPHR5PZI1zjQeB7xpjLkFjfSclIkZMbgH9Alq8XAt934vghJoR4yLBciGPnmorz/qon903c/BiJISqMEF+k4CpNdyBKlqZeKbNWv92OBa4NosCl4BwCQY9wIxI1iSIGUDuidL2JrI+aivYiDuA/VJqTYmt6kU7Rwn8KrFfFLjE9phEpwqhYGWXsSmyPsaQgxXAOZZ2O6hlXutlzECaviSBvFcsykj4awuFq+nDKfw6uxs5YvPdD0TbvxkXTUpB2DuZXBp9BDVwlR9AlOhcZF924gp0jSRRR5vWeFatyEIdlUTeIGhyZOONAK8VPJp4BLkjdrUQR6jTrwFEgq3GrTgV9jhQc6YKOxwjS/lrAdD4Ot6LPocVIx03ew5yciqQYY1KQrP/veZ7Xb4w5oX7Wu0s0hg4uxUtTuTrBS4c2a7xMRrz2usBrUcMiHAnRMkQh1lShmZCR2uOzceUnCZg915Z0XUE17eTF1Q1JJean3NRSQRFNvMhiPt9xl9QcmSFRDT9VKHJIDBP1lT6IKI1B92MrdK61CvGrsfh8SQt8b8uQN9+yu+vovD6VWLLsX5dTRIQwl7c/6t+Xgq3XW4xCEU0UzW2i1abElZdsg2axUgAAIABJREFUI0LYf+7BVzLlJaZYi2VIkokurLXSVr6R91Pgc0h+Zy7uxZQW+P9NXC42OBC2Ghs99js950FcdAXkBV6NW3RmIX388eNMYoDyym1EloVpf2Q2zBQ1KzI3zIE9Ya6bK5bgOq7hSh7y07zu5gZCRLnKFgDIoJviV/f6RADLnqqj6cI5FG+0b/NFxNM4gyg+dbaNFiFjTqNlIExdD+Ibo+YS4IAwdqmkXY1QUCOMYpXU+DVpmimiiWKKLXqxiWIihP0+3cQqUif38UTNZf6in37+EXq+N83VjElGPFpB1XwK7iXRZtta8VpHWqEnB2cZtiKWZkvgBBMnevLHYuuyQYO/QMy9KHC/MebjDK22DbnWep73Xzbq8QOgyPO8o0PtN9Tlh7uG53nHcHGyk5ZhjRPP874DfMcY8znP8757qhd6O2UQWfOfRZSUdsTxcw6OCrgRUWjKEMNBFfHEqufYfdQfppESpSVW5T8Xl+KiaVGKD9hn9wmmgAWlCKfE1SPvgUJkfdX0McXZqUc4MRUnyHikEQrFAASB9f2cmLf/ut1XGZ4SAcnDtUswiqSiiqQyOBUga7zWo9DowkQxTsYTy3IVjgWuw/4V46J0vbhU5JORDKSf9B063LmUtlmpedUYV8NTMSej1fxQZjkF0YdxqWXBSA24VMYu3HhLRsbNbFz0RA2bIL2xVqs/jNMNNCrzJDK+zkbm6XAG8v8iWTJh5N18Oi69UZ/1NUaPFo1Z3sOcnKrcjWgTLwFPGWNOY6ImjY9ZhkI1Zcd/qsLViyvYpwpuHvLSUkt9L3D9cah1r+UDjfOgRCyA1tgMwqkRalkCwGVsAqRKN0ikpIRGPz0qRJSjZFFCI53lTlnK6ogx91bBFDTdNofQbVHyNlqdpAOXfgCiQJbjGxtsjcmE1PQoy782+1YxmLy/l8rm21aX2Eds42XKKClt9BW2IppZzxqfZWw1v6WaFTzReJmc7BnEKNAiXV+EpKnHGPw7u4Kph1GhudXEy0xE+Q4WUWyyz/J0wr4a6OpBXvzBivFpuJdnA9KH/2K3a+096vH6Mm6bRN13ba7YeciaYft3JZuJzA37GKHl1HA3N/gA+HxaaaKYheyUttt4FOpg37/alLmN7VLwUNt+kb1HNU6eQFLdtuIA8W8gdNH32+1V0jZtt2luoeCPtC4NBbC1dAmFVvHfzhJayfcNy0ZKyKWNIsv6toUVFCXQrIRSo+RXHmJXzVnStA9Pk/u40u5Qh0RK9Ba0jUOBk+wDeoKG/6u4uaU5d8HOmxhMXSCvij8SW9fFwBue570JYIx5EGHmvxfn/gAZqUPWJjTGXIDMlA3ArTjOu9Fk71ivcbIyUlrXBzzP+wOwL6GyLwCe5z04njdyKpKEKEsViMd5OqIgTUYMkhyw0/3EFJsSJCwUwtGfT0XWmgxcSthMZL4oiFe9ulplPYIo5qpIHsbVPklEF0Xtb0qlqp7niL1O4j0GDRNNAdLrT7ff9ePy7LVoniqtwYiIHjeAGFJB+tegqGESjDQMpZs12ftdau/lbOBhpJjvOYjCuXCI494uGUtdkqFkpCjRcFiVhbhK6urECyNjT9OgYPg6L8MB0wEW49jnFGCeKGpAHsYB85UmGpxhroZq1xDHBkVTELV44Q573v0441MZ6VqRvi/FYYsG7Tk1oqRRQwWsq3GvRk8/MqcKccx3WgstMTk2UTSNbr+9znRcpGYAMUxO4xQSXhPlPbauUxLP8+4E7gx8tdsYs+Kdup9Tl0Rl6CxOoCExuLz5CtwEUmNEB6wukG3AI5OcEdMESSuPcWCdoM9Pu3YHzZ3FhLNFUdxKJSuo9iupX8O9RAn5aUEF7KePVCoHatieLAZNEc1kv3rIx2sUb98Lv0U88OD4vzVB41UgDfIOBRyq2dD5PTE0upKzmP1UO51flu365DKWV2z3owG/5XLOop7NrGQGYhA1U0QfaazmtwD8hqs4QojcMwRTUFTSzM7YAjJWiTf8Ju7gDm7iwD3z/Hbx9VIQAySE80QUIfpqA1g7Thb3R3AQoT5EQQ5GTjTiALKA5OG6uReJquhirrmzdXa7HD+XdtY3bbHIB+dBGZy/4DEA7nnh00wtPcjCVDEmfxi7gY+l/tJX9JfyLF1kUW9DZ0tWbSdreYyCwzYF7wmY23eIzn90hmb22pgjsbLP1faDKeQ9avvrA4hhomQCW4Hr8X/fc8kM2sKQlSvbGzKuIJ9WemwDCxX1i/49bmYlGfSwzlILh4mQRRd1lPsGzBuxQtdmIIvzTbhUwYOId3e73e6y96dRqhZE9fWDIdm4+aXyLG4Q5DCRDBRvbGld4yF7gGXGmAykAS5CzObngdNtytY+JNHxo4kHG2MWI6ThlyHm48+NMV/1PO9fEvcdQsZ0jVORkdK63o+URlg9xG8eEhycEKJK2H4cImgQGcov4hSUEk5UepQoRQ2T0xAFKhVJXdG6KOqdTUPeKVr4UIHqakJmI9EQTY1RmmAVZXNSD69KDs7IGKlgnxoaXbh3naaxaLrZMXueMMOnrqmi2Ec8WDpRxhJpUE89OHau3yEDKBdJXfsU8KMTjhx/ORnDBEZOXxvKMPkQLpUoGCFZigOnHyQ+HzJRhjNMQMbRVKRvk5D3sUbjVNS40JQrpdTNCfyvKWGKP0o8NihpOCzSdBzgXvFPOt61r+tw0bFuZI6chhtPSkihqV9ZyHunFZd6qNUhNC1xun1WZZ7TNko0sgsRg+t1206K80pB5q6mFo4WLXpL8m6hkJuAYoyZinjmLrRfPYmU8xvXzLs/nkxClKOgNxfiZqhXGE8lnFg7ThVqXfCjOC5sgDwY7Mj0FeZoLERRdpNPFTyXCHcNfpZrkgQP8DgXUcF2P3KSTytbWEH2/hh9YYtzOHxIqpTpm38rcBH0vF820++RquAKaPfB8FYBfuWGIs7c2Ez2Jkm5yi5oFwPGpg0t376d+5ZcwYcbhOYqq/QBMuimnjK/vseVbCBMhOesBTSFLlrJZ1GSvJ2faZS09w6r3H6j/Au0f3O2w4sore9X7fZ1CKuWGieTkX2DBkyatKefGbTZnkMjBlWIkaNUwlOQRUbZuiqI5yUvtvvbsjHkIgvXp220axIwE/6h5Ot8e/0XZZ8+6OidSWqlYILWpX6CdVzLLOtwrqGSPlL9dLay5Hpuz7mBG7slcSXtC9A3FdYmi2X5+afucsxdAB3QtnqKRFxUN96KRISUXe01+93Vsjl346G44N+Vix+iLy2VrmQZYyvZzFqup9wiHrtJ9yM/IPTVO1lAPof87ztaZjJrwRt0BF9wDThjIw3BC6m3TDnmf2W3ZyEvEWO1Eg9kfukc0/RJNVaCHMR/OmILnlchuO+9wK2e5/3YGLMJuN7zvGeNMQ8gasZxRN39ked5x40xf4eM8mTgJ57nvTLEJTKAqz3Pa7bX+wQym8Z6H2O5xknLSGldt9p//83zvDeCv1lracJIMs7Lq4H21xBDJOghbgkcE1R8lB61HXFiafrKAK4+VgjpyWxEGdVPdX5pPZQue75WHBWvXuc0XF2RYzi6Yy3at9tecygHrSqcqjyGcSB2vYeuwLm0joqmxwTltMBzKeOSAvxHK4g4lLyO1HCKIcqqetYVl6P3+W6oXTLWNgjjUvY05W8h8diKVEY2QBIlOCbTcJgPXcN3D3OcKuEKildChC6cERrEoiRKGjKe30TmSzYuCvda4Ph25Jlfst+djmN7U4NGI4mtyDg7jMytFPunFe+15tCbuEhTF2LIJiM6Q7DtEvtE0wmzkPl9DFklP4C0/WvEF0U9ZRk9res9tq6R5SeIivIhu30Ngg44ISr/7pEenILUibyB1I2dDunZ8dSLzyAUuJrG0oUot6XuEKEXth7g6klMvfggHbWyWocWRGnYs5jSuaIo7iFMblI7JdblFiFMlJBP6dpHKivZzCvhIkJESaMP04eYhXqbHeCVQrotskgazL673YEnlRGrXD7O3NqMt9yCqAF2wLdu+KzP3rS4/VVCRGkrlZydOsrpJoNCWnzg9zquJUYq5Tbs0EyRf+8A15X8kHt2fdr3vLfXzYaPBLzia63a8ojdrkcMhWftdtRuR3EGjbb5Zvecft0ZgC398JEUBw49gKSAaSRlG664I7ioiXoeNSLWYu9nNUytOMi3X/ii2+c8eYbtnWKk/UXDZs6vfIyjdodi6ugiy09/a6KYK9nArRlfAeBzGd+lh3T+tvsuOV+HvQfFi7RD3nYxTNousXVsHj3KnktmMPffJWrFPMRYsWD0zlWpZG+N0Xah7F9LBWEifl91kcVSniXDrsAX8wTrWcMkq6Vk0UUfqb7BDHDagh3sbjzDeTx3IPNAsVR1OKYcuYiM+3NxUksCSiLoCEix/7/MRJTxohL2PO+EorX2+1WB/29FnD6J+2wCm/c5/Pm3Jmz348qvjuU+Rr3GqchYKsT/Bp8X0ZcHcAHTd1y6Eb3hdRxLj+a8x+w+6t1VCSo+mrdejjM4FEdyEJk3ivFIwxke6pVOtfsoy30DLuqyD0dpoCBjBQ4fxCmzih1JVGY13SjoMdcih5241J9uXKqYPsNknGFyGk65VY/+uThDQpXhk5GXECVQDbjT7TlfstfIQdr2bOIZpyaijKUNLkaeS5fKw0h7ViB9qyQ8L+AiKmMxerTv83E1dEDW8JGMuvm4IpAKFO9HxnChPf7JwPkSRVnhgv8r8xw4/Az2U4151a2mB86tKVYZuEKeBTjDqdc+XxQXWWzB6XAF9lkuxmVQLEbmdSonGli63WDPuwGXEvcMUjlqXGT0tK732LpGliLP8/4qsH2bMaZu2L3fFZI+xHYAmNvTSlzdkzlIKpF64F9D6AFUcVZlWTEneyHWm0ZppfDhNjx4LrlX7POxGgcGCwgnRVhrLYiVbOZpLuCj/BIQ46SdXJooIoMewkS4f9ZqCj6+n+U/l5yazn9OlSiIes/nAWnC4gRgaqHzolTS+uRNmvaM0NduKT0PgMr5/8vnN95Fn/Xgb7uknEubqtlXLNaNpnLVUEm3ba9U+rietdzIdwB4puaDfKryOxywKPx1rdcI+F3ZnG4Gpkxy7aQ0ubcH2g1cgcUfINGnWuIBl6U4vIZGUvTYKSli7ARBaotwC1sVEtVSY0a7vtB+ao70A4hBsxE6HpgJtwkgHGBGditnUe9HkP658j+oodIvoplFF8kM+O2URh+NlFBlQTX1lHHpndX0WYOx7yJIa4fOAktWUBeTBbQW8r5o07o+LuB2H7dyd7sk8Nifs/eLYZJ7WL649Fg1nQWpbE6WuiaaqqV1To6TTBZdNAXKQGfRRTtpdJNB+2Au7Ttmkz7nCH25cl+DoUy34INEmHID2yHgMXz8kp/OomVSjrQgGoU2+j7iU7wS5t07LONVhPH/dxkJc3IGkmU5NQFzks3wes6YxBjzTSRdLIboN5/0PC9quZRfxUFEtnme9+nRzqfRCFW+g6BdlfmBk4JT1qciDpcVuOru2Bs7jMvj77K/a+RCjRX1UGfiqIM1YrADURa11korojipVzrHXvsMnJJViHMAwYlKaRD/oPn86i2fikthU5CyYjAOBs6htaQ0BU4pYRMV6LMRpTCf+DU+UV63xynWpQxRDJ9EUrv+HGnvNUx842QssgJxkml7vQ78Gvg6Lg1QvffabmM1/DTqoHV2+hGDoWWEYxRXov09E2cYaLqXFvIMit6/GhvYe59s773Efq81V8L2+aYjaeoKaFdjTKMnSuqgLHDKHNeCS/nWYqgRHO4qJfAbyNh5Ehkzixl97KgqGNzvd6McM2Z5DxB/qtJjjDnf87xnAIwxy5lIGsVbluPE336h/dQR3gPkB3bphNJsUQonI/iSMsQ7/2d2l1JkYXnYbn8Sepqm0dBrXcqT4X1Jz/pe69ykdvJp9dNpWi0gXqWdPM6y9LRt5BEhzADJ1FDJ8mXb6SuAQ8kz6Frdw+ynbBrXBmAeGAVQXyQK7J6wZfeafwimwortVoM8hksZQtiaFhfUMXu7nC+6JESzLdoXIUwJjWxkNeu4lmYLvvmzygf50a6/p3yB5FQNVmeKMfBxe9IXkQVGU66akMWsKLAdIp5WVwHwtYjR8jCyAGnJOE1D0AW6yvZJb2AbnCFZh4R71bvfa88bpGJsQ152qh3dJvfRM3Ma/ACO3t3Nxqar/ee8l2tJpY8m2w4DJLOZldxsra4aKqmi2o9i/Cf/zKXZ1aTZAoo3fftr3NF+i48nKruqni2s4OrcjQ5D9B3g6/hRqdml7XiLwKiR9gbkvXGUn10oAc0VOdW0k0uBfSM8zkXkc8jHnDRTRCNFPl11lBCt5PPcrgs5bcEOcpPaOZIboueZadIO22w/TUcY1kAMkxDO2XMQGUea1gUyjdp1o5B44onDxOdJTiwZJInY4NvP1vWnLiNFThYiUy1EPO6kC/ibU7zuY8AtNjfuG8AtCO89QLPneeVv9YTDpbyoBD2uBXZ/jRooU5BmNAYjGMp4dBrx9SSCJCw6z0JIRHc67lWlURbFNChD10wkwpCFGEJ6jijxXutEfWgg8Nlt9xuw9wcOa6BeZvVgBzEVCjjWgjV6zDm4FFxwUZeRDBMVVVRPQxRaZWp6DWe8hRg6zezdJFci66a2bxcOx6RKNsi4GEvBxcRUNzV+1bhU7NJQNMDzEcNIo3sZiD8pioyJjMB5ZhJfOyT4GaTY2I28j88OfJ9hrxXBsXZlIHPkPFy1eOw+JciYDlISg4w3jWSqQdMf2E/TERUn8mTgPocyTNJw9YdUhqJlHjd5DxB/KvIZ4GcWe2KQJeMT7+wtnYoo5kQVpHRcSVrwjROfUChdPO/pCJ5hCi5SogvsbESZ1vQXkDelYlAK4eEX/pKLzvk9gA861zoni2gkRhp1NgdrBod4mTKqWcEqm32xnwIu4GnaiiWNp7hhr6Rg2Qm8519nMPfAIb++85bi8wgToXirvclMaAtPIW+SeNo7ZwhtsCq//7b1P+lclkrtEnmIhezkzKZm7i9ezU2HJR2pMaeEn3IdN3EHAHdwE+9b8BS1raJkL1jzMrvuPIvyD4gSX/f1ZaKJqKF3NmI8KB7kCuKLVyrNbxMSHdH99iJFEkFe5u1Imh04WmBdfN5EANtVdrsBUbL1+PORNnolsF2O9GceYmQ22M+84/CvUpTxzxY86Ee+UomRRRePW+DIP3E7jZT4RTVzaaeZIj+y8rWBW9h63RIabfWmm7iDbeFy+qyXPnUgxtX7N8KrOKro1YeYfXc70Rukf362/ENce/jX+DJPIi8VFp3eSAn5tNJu8/rSiBEh7JMsdJNBPod82ucYqdQNlpM+8wjTbAcMvpIpClCvbd97EMNNSRZ2IlNFDbu9SB+q90wLwB3R1TyITAQZCAqCV5kYYHgAPDh+/I/C1vUnLSNhTv4H+B9jzIWe5z0V/M16vU5aPM97NLC5DWFlHXcJRhn244wRVbp06J+Gq83Qj6RyZuLqVwQNAlXmtCYDuErqyYgCNoiLnrQTz3yVhRgBms9fgjMyptvvEj3c4NK7VBGLIvN/AFdZXr3VQUaukH22RMawBlxFd027GWo6jaXWid6P4ksWIo6bHyPOkE/Ye5iPJJy3cHIo2ImAWVH6WqXsjSAcqSBjZhBRwCP47/cRZajImK2P5RvByoyVKIpXUiIWTR9UMPphZDyr4VuKgw52JXyqpCHv7VZcREaZtjQio/VzQAyzq3DYkgzECaY1SZTFS6OMwTRGTfnSe9Dnfc3e86cQAyUY8QyK0mEPh6UZV3kvcnJK4nleHXC2MSbbbr/LaYQhns5U0Y6qMOWICRbUn9oQb36QOlUZIHQb4nMk2yC9VNKCMqZ0c+TNkJ/PfoQQW1jh1znZyOXESPUL5tVTRgW1rGKTH1HJo40BktlpKcLycreT1X0Uz2JQ5h44BMeExQlgxQP/yyNXVZG+XB4kjT7yqo7ySHUVABXU0k2G7/0vHthL9hsxn5Es9/BRvl/8f1jNRm7P+RwgBlLQiOqOpfNcy4V+u+xqPwsuhrpdFvCxzLaJetI/giizagceQF5oGuXYgFy/GbcoGtu+iqVpJ74AWQ/Q04nfn8dSZM4r7TP2fJo6VgSsD9xDE3ApJM0+xuBmsXDSrzhCTzSLWXPlJg78YR7PVS2lKqkagE2dq6jK3uKns22lkiKa/LasoJZ1XOvXtWlPzqWJYq4fkCIl2U/EmLvokH97j4SruHRtNffftpqrmyzs7RjwBpzZIJGPtNI+IjkzmPuaPW4yUIBv8HSTTg2VvjGbRRcvstg3RjLoJkLYpw/eyOVUJVXzm70fo26H7a+ZSNqIrpfFtn3VK1mKo2aGeKY1CNST0WhJJ/Fupxz7XXByTWKiGCiDg0nEet9L6zpVGQvm5NuciDn57hDfnaz8NTLNVeYZY15ERt+/eJ6XyEwOgDHmU4j+MmQ1GIjXJaZyolc1C3HChBHF6SAuNUnpgVXxU4eKsg4FIxS9dl81SsCBgIO1KabjvNenI3PydbufVohXxU7vTxWvPuKVcwUR26K0vte+195DNuIF72VoxVY98cqk1IczuILpXX2MzUBpt9dKsscX4gw5pVkuQJyCn0QG1VuVd9owyUeMSTXm9iPK8yDiFFJjuBtp8+GU6pFEWaoUn5Fjt6PD7H+YeMMwFelTzVqYGthXDW+Vofo1aIxrjR99Jq2Lk4MDpDch75lSe/3duLmix+9HDC4le0hFxojes+JOcnFFU9VQvhiXVqn03Ho/ialyicarYnFeZ3zkvcDJyYsxJhcBbp4PeMaYZxCylfaRj5yoomldqiCpkaI2V78UYVRkWnqKTGqtWA4O96B6TC9OcQPxOl8JPVFZrXuaJFUmli8H1MTKmJfaIrUvgBVsIZd2H7OgwOosuvzUrxipXL71UfYtFy29zy4QMWsQbcmpooJa5j4lyusrVwmYfvY90k1t102hqXqOf74wEYq7m9mYYZMrTq/mlVlFPkahLqec1WzkFr7m40+ihNhVcxZdlfJclak1NC8opm9Bqm2WGLsePMsZBtsQA0UXhRZOrImhAHikzejFhZCxx84KtK3XL2xQWmsjHejNdiDsPOTFpfufb6+rxk4bgn3RHOyFsu/gQ5n+AtjzzDSohwOa93auRE9+c/BjAJQueJ6aWKVPLfztwZv4SdJfc/l28d02LZnD9azlXkvb+/Wmr7CnuE4qwwNbL1nC8qe2s/VCiThd2lDNK7fZSIvClHPgxa8vYvGjksc1Y9Ehsg/FaLvO1TnJPXyU7hwZMxr92MkCAB5lJXsIc601eGtZQiU1bLBWWhFN/KbxY0wtPkjHQUuz04vkqquXtcO2r1JoP4t47lS5arHtqxGuXu0PZetqQt6+OtcS65zARKkO/56Mn4yEOTkPKegy3Rjz+cBP2QztZE88/nEcKVRQvmSjMhhjvoSs8r+wvx0A5nqe126MWQI8ZIw5cygvm+d5P8Ky0yaPodJwB/GRlIWIoqw4Eo2wv4Yo/gM4HIl6sltxmAJLaU4WLho8gHPIJCNKWVD5m4zMRy2UGEEcaYoJycRVo1dDI6hABo2WGE6505z+XnvvCsJPI34ND0oLDpOgxpg6gRKVvtEMkwxgHQ6TEEIU+A8h0ZMaRMksQAaEGig/HeW8E00uQO4/CWnfN5EBWIpY6kqdG8XR35+M5OOM5N32s594bEhQNEpSYO9NsVKa1pWFw8AERft1IfGGVDdubCmeSbFXQeNZJYoYKQM4ZjYVjd5FEeNDI4qaHhZC2lHJJdJwzGOa5rgUlz530N73UAQDwfvKZ/yMEngvcDIOch/wFKCg+I8hTqmL37E7OmUJ5sFnI28IpcFKQVZia5xkIsqxVh4H0a2CHrDnEYNEIwB+2ot9TT8Np31hB8/9wbIxz4HWBT0c2COGQurcPkslLErbDEvvWkSzX+G7nDqYKvgGgBczylm2tY7OZS5HPq/hqI8jOfOeZsiFF6+T54oSoo80/uZRUVYfuaSKrIwu/vbAjwH45qzPkcwA19sS5HfxWSKEWRTAwtw7eI0P8gdhhNr1wlksOEfYl3b901nkfmMf7dtm+/uwF0e9twOpqqAcos8iEQ01c5sQTSIdZ/iFkBQsVSWKsyUSovpuJhI5Cdv+6kGUaQ01H0AWeq0g34xEAjQS8xKS/L4X6ef7cPiUD9pPjYjZHNWGyYuZNTfip+etTNrM71kVRzVUNVDN13/1FQC+/PF/poRG1l0ofbmCal65sIjlDbZgSAeEByI0Jxcxe4ltjLnCwLW4TIyT7CdiUIafCpbX3c7+nFwu5gkAZkfaKQo3+wbRDA5xDff6kZXL2MSd3Oizc82jhfQ5R5g0aYCkM6WDBn+cKcadjt85iKKjxgfEs7AU4xQvkP6bHDieRcRXhFfDRDvvMBMpcuINGvp63sOcnKqMFDlJRfwKk4hPee9kDGlYnueN+NKxnMp/DlzkeZ6Wve/D6kye5203xjQDC4iHup0gwYcYrmAege9XIIrcbFwF62TioyPqQdbohHq0OxFFKRVnhGjhw8mIgtSPKF9aaFc92VqkUdmX8nEpYuroUYUyeL+JHu4gI5feH7g02hDyStRUr6CoUqd1K1QBhOENmdFEvdgKmta6JyEcg1KZvT8bRWY+QxcCPFkZqd9HkiCz20i0vwXIu2ky7p7/YD97cREKjYC9jmOlGktaXFByceBwVd6bGf75enH1RdQIOIabtIPI852OcwQGJTHCk4Ebk732fFrMtBtnyGokMorLVlEDVzEkSbiUriDzXQzHkhe196ggfiWmeN3un2L3ieC8ImqYaNFGFR1T4409+WPXYDTGZAJ3IU1V7XneL0Y5ZKJLjud5/x7Y/qox5oph935XiOa+gyhO5+B4Fc9B6IQDux9AFkL1vocRD7wqrecik+hI4Jhp+PS1s77wBtOIstsaL6ULnufAYAHn9c1UAAAgAElEQVTXzRVDoJUZ7GSBnyYE8Fc8QC1LiJFGJTWEiPJKaZGvEGfRxZ7lM5gbkajGpZOq+W3pJX405tKKavrmw+KnLIK6QHAo+y4RrbyYJrZQRfUsqad5A3dzL9fwgFURtPjicyzlB3wGgOakYjYOrmZ1kqQeNVFE+TnbiAyKkZV08zHad8x2b/16hDRA8SG3E+95D7KdabckYqW3IwtZj1VoZ2XHR1ZygbZs1zcrkL5R6uAwEsFRD08TjsgABJvyDI4B7MPIYrsaZpW8YS/RRsP6c/2XclJaHyU0+ilUNVSSSsxPuVvFJm5J/holHxfDrpIaWpnBQiTS0k4uyw9s918+ffMh+99iLL7oVd+49DLh2u57fb296ZI5pBLzjYvtGUuoGqimOrkKgJZwO5tZGWdMptHHdmsxhYjGVYTvJoPUyX20N832GcBIRgwS9dDVIS9GNeT2IcZktd1uQV50+qK8wLalp2+8FGRFLwwckI6ba+lMqMiJZxjsey+t61RlJMzJk8CTxph7PM8bDW/+lsQYcykCgH+/53ndge+nA4c9zxswxszHlQIZUY4jSspuRldQL8cZEFFEOcrCVaxW7+4xJDKJ3U/tYE1tUZyJ0raCrGsZOKzKa/azD1FuI/ac6gBSYPFBXJXvofAmicptAbK+DeJy99VbPhmX+5/Mid5l3dbIiyrlWrX7VADrjYjBNx2HPfkLJLpQhyidufZa/UjR2K/YY4NUxycjJ+vVHorZLVFKkDTnChzr1Gu4cN9SXN+pkdnByRle5yP9q6mDSch4OUx8XwZT/jLt7xn22CA2STEd3cT7eYeTYqQtlVFO54VSZU9GxlVQ+d9tr1eMY25TgoZMXEHTmTgSAY2o9CLp2/uQsRFF3ukZuBQukHGlFZ+igesnpiwG2/xk6/YMJeMROTHG/ARxyBzyPK808P2lCK9OMrDW87yvI/U/HvA8b6MxZj1uuL1bZYsx5sMIsR2Ig+v37+D9jIMENeD8hO9aiCvd3dYPeSmiVKsX6BFkQmmGzfm4BQRESUvDdxgf2DSPklWNpM8U66WLLMJJEbZY1PbuxjP4q5JfsBpR+hsp4VVKCBGlnDpqqASkCOJ+a8AMkMyZTc28WCz3WkMlK9nMiywG4L7SK7iAp3n6QkHlf3jjQ6QWx/wK4m3ksYJqrhwQt/jm5JVcxQM+BW0lNdRTxte4hQ9Yd84qNpGb1M76zjWynb2JZ/asIHeOzOri/GZap82go94mXlTYNlPq4CqcRwTEOFlJvLIrNyftOQeZwCGgzfZTA3CkH8qsG6i+BZgNYd22x2u9wS0tQDqU2uPTkb7TOijPIwv12bh0NDvDD9wplsKB0nmQBVPPl7d8ODXCE+suo/FaiUqsZDNNFFFm0YrrWUMNldxmy1isZw1VVFNrDYWrGzayrzSXu7kBgH878J90flkKKCpBQRdZLNteR2e5aDBFh/eyP0etBImMVCdX+fTGldTYiu+L/e0HuMqPtLSSTyMlLLcg/S2soCJ1O08cvQyAqaUHCZ0TZfe6MxybWottE50as4lPLQjZdlaQZi1ybJO66PqRt6zWNdFEGp1zrzKRIicMGugdC2LiPRlJkkbfhW5jzDeNMZuMMX/Qv1O87vcQ/eoxY0ydMeaH9vsLgZeNMS8hjOGf9jxvTEW/R1Jsi5E01MWIsrQQmQvKHpWCM+pjOPYhpWbV6IOmrWQGjtH0LU156cABgIPKTAky33oRZS0ZUdYUrD4dZ9wEC9EOJfsRKvCDONzZQhy1sDohtAL3UNKBKJIDdp9OpENONnoCQi/bjEt7SwYbDBaa3WeRyM4gojSfDVxrfx9X63cc5TxEizobaZtjSD/9h/39zxGSFjUMdyOpbCcrGUif9OMwIq2cqGQrgQK42iNqmCpYvx2JiqQixlQD8RiUoUSxMvpaCIL/g+M5OEYnI+8fPU5TyyA+2qDGWwEuGhK235UgbTiA6BzqTNbovj7r2UihxT9j9HkyXoYJuMjJcH9jlHtw/l8AjDHJwPeRRyoBPmKMKUEeT/24fwpwlxuAX+L8NfcBnzfGdBlj3oXg+Ek4zIlPyYUrFpcNpEBPi3wdTpHFQ0m99iEDPRfxOPciE7QaSQu6AIm0AFNvOijfdcETjZcRyo4yI7uV3Y1nULengt0PnkEJjXy05Cc+01MrM8inlT1Wu+4iizARVrCFx7mYCGFaKKSLLB4priJKiJLuVymnjhBRVrCFSmr48FMP8S98lQy6WchO7lt9Be3kMmPgEKnEKBlo5AGuoj65jK7kLH7KdfSRxhZWsIEreYgrqGUJt/A1FrKTGbRSwH7aB3OZkd1KVfYWfvPCx+D2SbQ/MpvcpHZ2PXgWHS0zYSuk/9kRCb1HkYX475BF4XzbXkq73G73aUZswr1IFGOJ/X8arlCiK3AuC159J0wrlP6K9Et/aCpWKeJ5Ki6E4nwxJBvsOYuQaEodMkOvQlwIFUAEP82JiN1vJlB6XJ4NiULMuvYNimjiwK551LKEs6innjLu5Rq6yKKKav6DL/F7VjGFLjaxigx6WMguvlX6Wb7L5yihkRu4my2zzqM6ucqncW6miGUH6mhbMoXsuhg1yZWszbmGKCHyaaWZInpIp4hmwkQooZENXEEhLUQJUUwTj3MR3WSwofUKdrKAMBHOop7Ngyt94H7dYLmk5E2BjoaZ7L7zDDHamu3fPlxKB/ZzCo7SWftBC2ai33fi3jotyFslMLdOAMpPIDk+yt+fsBhjMo0xPzPG/Lcx5mMne56xmHe/QHKD/xz4NEK+9FYKX58gnucVD/P9b5Cij6ckGcj4L0GUGgVlr8J5oPcha456nxVQfhhR5lSB0tQWVc401WsQmW+TcTnzmk6jIHcN+RTY/6fiIjDgMAphXArMbk6sap2BU1b1Xpfi0mSm2uebiQMPa3rYSJZdNLCvUgGPpvCNJg8j4S6lDx7ARWMexhmHM5HnPh15zzyTcJ6JwMxVgbyjliL3moQUVvw+MoZWIM+SgyjWuzn1cqlqYKpxNx1X1DhRdBJqFEVTrqI4vNRCHGYkibFFc0qQMZiLjIuw3c5ExlpiFOdNxNml+KlgVEeNeSVpUAY7fb5jdp9B++yHA/eYj3MERHF4l35k7obsM72Oq9sFMobHQn/9VmQMkZM8Y0ww/fRHFhfnzuF5T9laTkF5H9Dked7rAMaY+5CA415ccsRYnEgTWjzPG4oN+10uQUrTbHz6YAAOW6aWQtmMtILJl0hIsBRKFFHKjiPe9zDS83vxJ0hHs40gFMHU4oN+StaskjekAN6cXJ4bXMqspP0sZJcfScmii7Oop4RGpthjNGVHcSldZJFHG3sIsycjzKuWSrb4qb3AUV65sIgqtnB5k4C0I8VhUomRXRcjm0N8cclXAKkEX0c5YSLUsoTnLG/scZKZxADHSfZB9Ou4hvbq2XRXHOEQ+eSW7yN8Z4S6byxjV/1Z0h4bgAroechW4rsdiZg0IR72dBzNbzWyAIVxL1OvE45mS/OfDzxtAfAqUaA4xaYlWJxJMrDI7vOrFjFYHrZ2c162LGLN9vigF68XWah+jqQr9QFlMLg9U6JjNnmxvGQbdTXLOK1yBwDPrP8g5695jCghShc8T3NnMQ1N53LaOfJ7LUuYS4RKajhKFi9TxmVsIpWYHxm5mduppYJ6ylh5uJrqnPPYtyTXDpdm2mZNoZYKupbI9Lu2+162ZFQRIsoStpPX3U5TRhFRQkQJkUEPO1lAIyU0UkIrM/gS/0lXvhzfTTqz2M+spP10k04WXezadhbtvbOdRynf9onm4KYRb4joKhm1f7pgFyMG5XGk/k8c4QRIp2sxxleRiaTYkwmU1qXe6VOU4SLtgd8nIzi+NESXf8BWjMcY04JLUjjueVpWdfzuY5iIP4xT1H8sxkmu53k/Nsb8fSDV68mTudjbKZoHPxlR6HJx1KUFOAUf5E2vdSF2IOuXVnRX/IgqZkrPqwB1rcVQgGNKysKB4weRlJbDuFoT+xEFV9PDNH//JVwxOvXKJ9YkgXhFMAVx5ryJi8LsR9LFBgLnUwOngHjRYnyD9tmX4sgCtMp4ULl8q7ITAcCvstshe78v2es24woFJiOZ2fuR93Lwud9pwyQDubezEYVcDdUXcEanpqipd/9pTt2Pk4VjkYgi4zKoFGtRTZBxXIirJTIdN46TcXVQunD1bIaSRExTI2Kg5CDPrvgkcJGZ+YH7yMCRMpyOw77kIAZbCQ6bpWxu/TiclwLw1VAO4eZhvT1PKtLeuo8SA+g1B5HxtRvpj8X2/zGFXccoo4Qv2k7yBTAbFyEBeU0vBe4EvmeMuQxsns57MoHkODJbg3nv2biconzwrEGi20qHq5OpD0l30YmpAGr1EGnakHohUqDjmZmibAMdj88kduk+jrwpiuqs/P00U+RXiL+Dm8jnEEcI+exZubRTRLPP5NVMMSvY4hfVW8gufsvlXH7hbwHBG0wj6tdF+SY3cz1r+eqSfwTgGu6lmSK2sMI/PkqIWXaGNlPMQurZxCpm2NVxGlEaouf6LGRV2Vt4+KN/KVEREANkGi7drcz+qVI7D/FmaWqQfq8eiSMAPTAn23m9winS1vpi9ICmVgjb/jmKi4oApBdKZCTdGi5a50QX+BCSCqC1O/qQWZwbuI9lyOL6c9ms+9UyuAB2Tz7Df64IYXY/aLcrjpNbvs9nzIoSIo2YTyWczyF+zyo/5SpMhGKaWH1YDMe7cv4Pfxv5Ma+Ei/y6JHdyIyvZ7BMirMu4hhipfurY9zM+SxZdFNpxezGPs541rLEEqvWUsYErfJzLT2PXEU6NEImJodnRNBMmw6zKNzjQKOlrSUXHpJCmprcpDkcNulziaZ5BlATtz157jKbg0cKJFeGDtN1dTKi0rvGTe5Aso3XD/N4HfMDzvKPGmBTgGWPMw57nbbO/r/A8r22YYzHGzAB6PM/rCnxX7HleYrb0CfcRiPhrWdPnjTG/9TyvEVnBNEnvpKP+YzFOVDc6YF+U+zl1B/u4Si6yRih2Alz6iFL/6neaIqI1IgqJT0FRNq0ku189oqRm2u+67HHKZtSKKISDiAKlFecP49aohfZTlcaQPU+x3acAeWc1cKJ3NlFxzLD7FdjrqeMhhiu41xh4rkQjI8j2pOtsFm7NVkD7cDKWPP69uGrgGYhy+iHgcYRC+EakDaba612CK4z8OuPLsnQycjYSoS/FAbIVF/RjxAgus7/r2DqM9PtoIcWgcZEoBTjwudJbd+OcdXodFQWN63k1IhEcQ2o8a7HCYFRBo1NDAfZzcOmKajBEA+eZigPFdyOGQBgZe/PtuRuR8f4mjmlsur2f15GxPYhjAivARQG1OGoBYjzrWNf0Lk1TbsYZYiU4ggeN3IWI5yk/WRlD5GSqMeZHwEbP896KMTEUE7rned4xhNTuPRlGjDHfRDiSYshQ+KTnecPZ4G+TaEpXCifO7mwIWQWrF0nxyiuMT29Jw+lYBxHDw6ZzcQHOo6wSha4jdtUpPc6RN0NMmy6P3PDCufzVOb9gLdcDQi2cSh/VrKDCavBNFBMm4iurJTSygF1+VOMhrmAN6/26FluoIoMeNnAlAH/LXWTQzQoL8FA2sBv5DgB38vfUUkGxXbUOUMAKtohn38aA7+AmVv/l/XRbXr+H/+kvmfXLNziwaZ5rK3Dh0AqczQdC83g9jsljCpI2pccZYHK+vLxt4IVIp0Q/jgX2CeW7xdCz5WCVjKCCeHAbCKheNR8dZdX201aDByTPtw55QQTSAtI/fEQiQfbYf/3Al1jPGv/0H527ji6yeJ/lJ87nEHfxWW7lNkDIBuoop9heaDUbKaeOO3I+Cwg5gZcpEZdPNAi0q7V0BvspEJY2pE7JThb6bG1RQkQI+/1fTBO/Z5XP3tVICSvY4hufkyYNMI8WJqWKllA3SYyTA+vn+YvzYEumKFIaAp+KTBNl62rDjmm7ohamxNc9ybT7+AaJFjvVuVWNaDj6+wzA1Xt5x2VskZOTjbQHf/dwNARK3Doqc21A3g98xhizyvO8XmPM3yAIiFXBnd5ixL+RcYr6j8U4+aqt6vuPSH2TbOAfTvaCb4ckIcbJYft/JhIV2I9TsjTXPgtJ6VqIy4Gfgyg/+ch8SsJVYD8dUa6SECUuy+4brNegzEZJ9lq5OKVRCy8qgF4Zq7R2hVIZ6++Jkqg4dthjU5GpnWH/179eZNq+ac89Egh6Py7ig223LETpU/xAokI2ljz+J3F0uNMRBV8Zyx5FXMLHkHfvQhz9sDqjfjrEdf9YkoXQ15+Oi4j0I221GYmKlSGzOgvXdgOMDTczkie/FNGyiuz5Bu096BgYqj80WqcMacG0LgLnaMWN1b2B34YTje6FkTGikQ6NaPTbcwbLMjyDzMNM5LUxExdx1OKU9Ugb6pzR51IDWVPaFiJRKjVc5iP6yX5c/ZZmXCplEmKc6TzIxGHGxkM8Ro3mdXie96mTOPVe4rPg5zA0Y/S7Uowxm4DPep7X8jac/jHgFs/zjhtjvgHcghCt/BFEMSdqnLTi8rVAXpOLBHQNyChPFyX5qPXGR5HeD1DH0oADQN6HpATpRGkCKmDwHju7CyG8xjk52/OOEyFMhl2lFbxcSY0PUO8jjQhhV9iPXB7nIt9bv8RWCk8OuKgW86JfxHEDV3AZm3xldgtVxEjzU802s5LjJPugbRAg90J2+gxe5bzIxk1XO8/6545z4MF5gjIFSdeqCrTJ47aZ1Vi5HqFSUO2lDpk1aji8idAGTyPAfJYNbdZAUVFqQ4C2lHiWtBbiAfHK3KG4iDlIX+kLYK29bsjeTznwReDnx+E+udGe56ex4L9fZtcLZwFwZ+xzdNTOJGm5WExT6GJD55XclH0HoEUZHQ10JTWsZw1HrHW7mZXUUe4zax0hRHPOHCrYzjdLpeDlJ7mHHtLjCBCeZanff5XUsJmVrGALIMbrxTzhXzOVPrrI8g2i/KRWNu65kvfNFUA8xyW98EDvPMfmoz7z6kDbVeHSvvJs216Q4tp6Cq7/DoC8ObSvDiMDQOfSImS+Kc9zMPVrAojHWIyTk420x4mNYGxHzL3ve56nlXc84FEjZTbuTjR8ADzPu98YMw+4zxhzP1Jz8IOJ+w0jw0X8AR5kHKL+oxonnuf9zv7bgaTZY4yZUMaJ0pC2IAqRgsKVyaoU5wXWJLzXcKkog4i3XEUdWxp1UK+uprTswwX0B5G5OBMXUWkhvvgp9jgFvU+3+3TjmKuSkakYw7FvDSdBumFNdTmGKGyKiVEfXirDF1EsQMzcchzTUibigd7JyRkIyv5VizNMQNphtj13IxKBmG7vuRAH8J6Pq4HyThgof468g7TOiGKKXkdimh/CkShoRELr5JyqTLd/B3HjYhAXjRmqPWL29/nI+NF91YAeQPpS07rGSniQgowZpaPWsXEQLOePjKtEamJ9V7fixnEOrhZQkBpYx/h0pA313pRJT3Ez4Oaytrs+H8jCNB+ZW+o+GrD3Nw6pv4Cs9LGRdznZyMnzwOn2JbEPISH96Ene5kSUe5CX5M+A//I8b9ymted5jwY2tzEGivvxlyAYPjFHvgUfc5IO9OZbylr7sy4wKkpfNxDYrkKeDEj6i2Pk5x/iwGs2wnDecXY3nkFpidQMSQ9JsUU1JLrI4o1YIe9LfZaXKSOfQ9RTRoxUH7Mwg0OU86IPbh4gmSghn2pWPehtllN3BdV8ia9ymUXXTaGLfFqpsEbNcZI5ShYxy+6UTytNFHMt61g/KFGC7qR0BxoDaJgk3sTr7fZeZGHRtkknnu3pAWSBUbbWI/2wLAUetkMr3Sq9RbiIyyygIdvVQvEQL5MPTrOREzVGIsSTsYEr6ATywpyF68smYI3dpx0xUC4FPj3JVfI5Arv+cJa/KHX0zmRqxUE6Dkrb/mjP37JgbqMfpVjPGopo4h8QY+VxLvKNTIBrWUeYiB9ZCRPhN1xFFdX02bS9x7mIGwe+y9pkadwSGqllCT+0dWiaKaKA/X4dkwt4mqe5gCIb+drJAlrJ94syzqOF0+Y28Vzjhf59HGicJ32lET41MnU7D8HeaH9HkVVPZYD4lLl2iHfFaeRE51YLznBRmUBpXeOEORmLeJ43AJQbY0LABmNMqed5DcByz/P229Stx4wxOzzPe2qI4//LRj1+ABR5nnc0cZ9hZMiIvz3nuET9T5bv7POcXJHvt0WOI+Ndac+PEV/sTQvUafXpyTglRhUeNRBycMB39Zjrd6qIqtKl10jGUfe22uvoPJuJKIfzEcVO6VmVVlXfRcFiqiNJFuJV1nQbnQNh2wbd9lz6jNMZvs6GRnnmEF9oTz3sJ8N6oMe8jjMYtYilVhGfijjBHrD3qXU9QojpfTqSSrcZwUW+3VKAGCWn42h8k5D+bkT67zt2X63erhihfuSZf8epyXxkTUtGIgutSPRpqEhVsD5Mtt1OQjTbEC61S42TfNxY3zKGe9EChmfj5oDiQPoRTNFkpI9aiU/De9wer+lbWtOkBdEFgvTWmbh504sztHQ8ZONSuQ7iagTpM6nhmG+/ywqcaybjT6pwqpETY8yvEHUzzxizF7jV4vmUJTkZ+Innea+Myw1PAPE879fGmN8DXwZqjTH3EmhKz/O+NU6X+mtGyOAzxnwKsP0zGmfdWEQVoWCF+MO46IkF7ppC2dSCQeCK+6UTX2jqdETJ1UJ/6QhewQZKBqszOXD6POcBaJPXd2OrKJb5+ZLa0m4vVEIjWaldbORywkQo50ULWK+IU3IPke+nfYWJ0Eq+j1F5iCu4nrU8jVAJN1LCD/kMdyGpRFJ7I983ZpbSSCMlfgpXHeVUUsOd3Ej7I7N536qnJJJTEvEV4t3rz4gr2ld+7TZebi2TYn4qefjUvPQiXnnlvfthiii/2heTU+SlVmvpm48B9Yk2cRPUL3J1TDgsfxHVqFOgpx8i9pzF2dDUgt+/4RRZFPX4esR/XWT/mhGv3+OQ/ncSkulpmCYvtI/IIUmzj9Hxu5lQIWMpPdQVl3K3kJ1k0UW1NVZamcEa1vuG329tv2pfzuCQz8oGYlhMI0p1cpVvXGTRxUo2+/07QDKNlPgYpHW2+KL2ZwXbeZyLmGQt5o2brua0VTviNUctmliNjNWbgR/ijJOI/V+nyl6cwYlt0tbAtkdC1Eu1qSC+q594x8AEkrFFTsb3kp4XNcZUI7OiwfO8/fb7Q8aYDUga1gnGiTHmAmRmbQBuxSG/RpO3PeJ/ssbJUFbTOyaDOArWbhwYV1OycnA4jMl2n2P2d63wrpGQqXafHTiAfAHO0FGDIGI/Q/b8GhF5jfgemmp/V8/wm8QbAtPtfWsq1WjShUzLsH2OdlykI4worSX2fsZSozRmnzsFZygoluGUKNmAXyHA5C/gFNsypB0yEUV2nb1uIS6qqwbCRxAFuAaJxCjmYTxE8SIXIO2mpAm5SJsokPx3OLbKpQjxgKZzaTrek4xSJXQMko8YJXpejfzpGhc0SIIGbDuiiB/EKebKjgWuvTrs72NR2FuRcal002fb60zHzQUtNhlLuDe9ZjCqdBDpR8We7MMZJordUmeTGh8Kptdq8wV2H83sb8SRVqQEftP6KB24uT8eomlpI8iokRPP8z4yzPebOHWit4ksytGRhstEHJMYYx7HBWCD8iXP8/7H7vMlxFoYlhXGpjX8SPYveCt52SNIkIBMU7yCChTg2eKFFEvqkHroM5FFLxh6fE12Q03TXgSzoJM5C0lkUyk9Dm2T/IJvra0zGGzPJKtE4o0bOq9kVfYmwkToJp0aKgkTIZ9Wym2Z8nbyaKGQhfbtcwc3iVFjY5aNlLCVSj/NaxWbWMc1fvpXNxmk0sdSi5NopIQr2eBjUNKIESJKH6ksWPUyUUI0U8TDL/yli4xsRdLXrDe9rn6ZjBY12ioQtpGf2u2QbQv1XGkEpdh602cltGsm0JMCvAq2ngtNi0QB9uHCPYiWrIxe1rAZsNtNAOmuDsoWpK80EqPpd3U4YNwXgQ9Dzz9a4Eu6bIshBYN5mXDpcabOlJvoaJlJfnarn7a1kF0s5Vm+YTMVU4lxL9f6YPdFNJJGn48POkKIL/PvfJfPUUmNT3KwLnBMFl00U+QbOLUsiTNUpxFlCl1+TZx7B6+hfdtsmCMGVO6l+9j9whmu7x637fAQru7MD5EZqxiTmXYf7ZMGJI1Lz1GGGDY9gRTIXgJ9oehGXc0Va6JGyQSJmPyRxdYF7LeGSToSo/uGLeCb5Hlel/3/EuDfhjh+MfDfwGXAG8DPjTFf9TzvX8Zw+bc94n+yxsk4Le7jI6qcKAh2Jo7NKgkZ1iWIwpKDK0ynCiC4tCj1WBciykgS8s7IRdZDVdjUCdZrj9WUsSA1sSr3UWQeRnAg3W6c8qkKWlDxHg54Ph1R2tQwKsQBzzXqodGdThy1exMuJSaYMvYLxKU5x553Oi5ycqqFEQFeRBTJOTh28jSkXScja/l/IYCmKGIoZOEYoJKR/qrEKeA/xym+b0UW4kgSrkLGgkZBdAy12/vtQNKI1dC8ElGw9b0TRdrmMeJpbE9W9LxKrKDjQt99w0XUpiP9qZgezQzRtCxwRuqbyOr1KKNLGjIPdA5oxGgv0m4xnGGfaa+p13sJiQSpoTEdV98mBeljBcoH1Tt1HFgfpm9s9Nt7SMNFs2baT8VsKRV3LzKHuxADdDxrnbxNmJM/abF0k99CyiCdEyy6OxbxPO/ikX43xnwCCXxeZAGif0QJrkDKHhQsxlhInHmcDpAiBRkBWlJESVMlfB/ibVdjRNO+3rDbmquvKQK/miSKeJ68xtPO76KHTJpaxfM+2JxJfWUZIaJU2qJ504iymZV+2s4hZhAm4gOz+0jjOMl+lfkSGokQ9hXdGirZzEofs3At9/I0F/jg9lqWsIUqHxCvHvgwEV8hzqIrLuONm8XI8tnKNPVAlcTwEeUAACAASURBVNliZGFTvEc58hLQyMlrCDPaPtv2URzWJ46rqNhGPwBy4EgwNahHOiBsv4ukQFsLrv/2AYukDopKKEBNvNE+zy24tKZe5KV1bmB7A25RnwP87yQ6Tp/p//77wlV+HZSawoNEUsN+X1VSw04W+Cl1t3IbldQE2jjK3/Md1rCelykDpL+X8iwhO8gy6GYGh9hkMc+p9HGULFKt66WPNEJEybCKfzgpQvucfN+AOvJmiKTZxxjcZ6Nal9rnvQJnjDQhi7XCjqqJNxYvRfpMbQs/PcJ+MS3F9p/ukI8MmMQISXrgcwIB4sejYi8jRto3IUmQecDPLO4kCfi153m/swXMNxhjQHT8X3qe98gQl8gArvY8r9le7xPAdW/hPt7WiP+wxokxpouhjRDDidmY76h4uGrv5yBzPwcxGtRLr0xB4GhJNWXrIKLgB9PANN1EgbWqKGtNkwEcgFcphbfgxqQaJpoSA7J2vUa8N1ejLYmK9nBvcMUXhO3/UZx3WxU9xcb04RjCwNVxCUoKomj24aqAdwfaZzzkacQY6MQVoMxFjB+NPGxAIhNK05yDKINBeucc+7wfQd5dLYginMKJ7fUhe95WxKEzgDA7alRG2bAUv6A00YqFeA2XhnexvdcMXF0ONRyCiLC3KkHmLMVJKXWwUjon1rxJlFZcfauggq64o+7A7yHGTq2rhsJkZHyV2e+TcBTFIGNkPvGpgzuR9tKUrEEcXbCmRGqfJuNSsvT8wahihj2fGjm7kT6cifQRuMgnuKhiUuD+x0PeRrauP3X5EvICHPdUNWv4fAF4/1s1esZHgqZ1IpVwNrLiK2i3E3oECE2eVWr3Es/OFULSgXTQnomwTGialxommu4yCzFubPpMz8PT4LzjDHaI4vi+yqdoHiyiLynVNybqWMws9vuYkzARUokxI6DcpdHnp/Hcxxpu41bW2XK5afSxgmo/DWgjq1nCdn5qdZrL2EQXWdy150YAPjX3+9SxmKNkUbdHXOv1oTLhGNIo0AcnSTRBX1SzEIVXtZMHENVI04SqEc+DHr8IID8+lWZaChzpxHnfO2FaNhwplE1Nret51f1OulvQDZBb6Iwbky0LthokIUThrrK/z7H39fPAPSgbmy7yUXvMzbKZe+k+2nfMdkOmGBam7uK5yZIrlpHaQzNFPobodm6miCbfyHMUw612u431rPFT+ED6O5c2P4WuiyzqKfOphHeygK1U+uxrrcygliX+NQ7smsfqBfez8c6rsReTl8Gv7D1fiaQTbMNFsP4OHycFyJidjSvY1YADzWPPV9/vaJt7QTpHUyRfthfWvtI+7Ql8TjDMyXC59G9BRoi0K5vWfrC80vG/q0o42vm3Jmz3I5GUsd7H2xrxH9Y4eTcVzdKIgLL/aRRCweKZiEKjHl4FxJ+BI9hQli81EvoRb7XWebDBePqQETEZUSS1YF0KMgd34BQ7NRi6cGuepmN12mNfQhStEMJONJ/R07vCuAhPMrImKP2xgrOzEGVOvcw7GTqlpx8XCVIwvtaM0ft7q6L4ETXQtth70OKLqmhqmyfZfWqRmVaGo4adbvdRY+WY/V2jTooj6rPn0f7sR/o3B6cIZxDP4qQ4og5Ege+27XWnve98xDA5HWckgSjI9cCvT6JtghIsFKhjV6MROo5Ha//343JeJuPGewouGpiKMwh2jPHeNEU+A2lT/dMUstPs/WvETokOdIw1IPqD6huK7dph9wWXJnUQR4qgeJlBXMRRQfT9SF/EkD5YiozdQhwmpRs31/MZvzonWiF+BHkvcjKEeJ53wdt4+u8hy99j1ku4zfO8T7+N1wuIsnUFPev7cOGAIIAX+32/gLXV4zAZxwoFjmJPIyOKYdgX+P4Ijh53Do7xC6mm3teTyrQ5oqw+98KFvO+cp6htXcLudqmlcV3JD2mkxDdWbuS7RAn5nvWdLCCNPt9bX8F2qllB9WAVAFOSulhBNX1WEy2miQhhPzWoiGbu5HOkh+RN2kwxMVKp27XMv8+eydNIv+KIGFPg6lqo0RUFPo5jezobYefSuidLA22CbWYDKCHcmYU2ehL0oWbHs3E19YsB02PTvAyWTtiKh7B7VViFubZfXuIR+xa4ABcJ0eOvs98tQwyqA8jCrj7rS4Hl+KD69rWzoRhKV0k+W0PjuTxXcyELKl8GJKoB+GQFWXRRwXa+veuLAJQueJ4QUVqZAcDLlBEmQhp9vGpX2RoqWc1vqbZWVCoxcmmjyqIPI4RZyWYf16IYljS7Omct6KKVfE67Ud4chzrz6blnmvNW1SLjsBxnVDfYZ/x/7L17fF1Xlef53bJlW1b0sGVHjm3Fii3n4TgPgkMgJJWEDkUIpAgpqoAammYooKiumqpPzzDT9ZqBrnfVVE3TPVXFTIqi8mHoJjSPpAmPpEiBKUIIxHkbJ05kR0Z+SLFkS7ZlyZKtM3+s/btrn6Orp2Vbtu/6fO7n3nPueey9zz57r99ea/2WJrjVEL0ATfRaKDhgH5Ygs/S6jGDvldgHZDlJLSVPM+diTSSnMSD+XJaZunXNOanFFKANmKKqFeiVuDKqLOhDuJIjn3blT5LIOqIEhWDjnXKh7MH64DZMIUpjDrSEtwhX3lbGcolZqxVPmrgYdw0qAhO5ZElkEVqNZ8vujtcTyFB9BWC0iDGeW8oIptwtJb+SvYa8cizFUx6g44mCxFP5IvZsbsHmGmUgr8PBzNOYG9gzGBi4DXgb3o6LcHpixQ21xvIWqZjTeButxMsCplX8/Vif6MQcKEewcXUtZoFbgynGDdg66EA89hVOHpikolWARXg+j+pYp8mU68W4Eq9YplT3OYoDa2V772dyl7jduDVnbbzGGnxBaCdOYTyAgYWUVliWSq19yeWwDk+UKHa7WjwoQfWpJ58MVMBlGE84qfdYCxGN8VyRTewkH7F3MjJLlvqKzKJkWdY2+VGnSpSEUQrSUqzXLk22O3A3L7Ag62RT+EWgRK5LGjzXk89xsggbkLWvB1PYo2l+8P4lcCscX2JvzaXXPc/24Utpae5k17E2brr4ezzLtaWcF2AxItfyTCmj+7t5kE5aSjEnj3MjH+Gz/GKV+Sq10MllvExHBGE/4GaOM4/maHn5ePdn2NC8jRvrzY3s8UM3clX9C7DoOLSbulH1rgErq+qhCS6Nb34CD4D/LG4yB5ss0xd7CwZuWlt9Wy50pZkqagDL4vPoGcyDldIIqULU22eL3vpBW9lXAPwPyEsT8I+H4LZ6myTeE+vwKP7M78eA1dvj9rNAD2xdbX5fF214lWa66Ry1yv1i1Vf4CTewYzTS+lYN8+mXf4dfufRzgDGlbWNDybIiUHGMBSVq6O3Dl3LXAvjF6GsmFy5ZRoxWuqcELg9Tx5bu1/OOZlsQf3nb1Wzc8GTp+MH2JWbt00C/GrOCfTtpuoW4GwK4UUMWwpSNDgwELqn3lazeasiqsWAkcLaujrgtDkjNjnMMpJyBgPhzUc4JcKJEbnJ1AgcmI9jYvwtXYltwRp8+8gxB85Lj5F7Th1O6CmhIkezCmbYkDXhMiXJFPB2v25hcU6v/E/kjFFN1ypLQnZRlPa7sqX57cGV8MnkA431bixMKKJ4ldT0SuJlpFvQd8fNrsYzVWBuuwZXf5zDlfz8GAPZii0/LsWfUG8slsHIi/lasjRR9uQwpDqgamzMG4v5dcfv78b/t8dyN2Pyh+6n9hmLZZFU5GSkGkOuZCmCcwMP/lo85Oy8b8HlATHDNOEBUn9N9XmFyVzHwoP9mrG10jZVxexhzpd4W77+esckz5a6oPvoS1vY3YflsLsddt1RnxVKJ+U65gVS/2niO4rzS8vbhYFWxZcV382RkEstJxa3rvJN0xEnznWj7OlyBqqe0TKBDF5HvyArkTgMat5PvxGlmBMWkaIBusN+HG2IMQnMnly2wBIvXXryFx352G/TM59rrnuVZrgUspuSrvIfHRy0A+mjVYu772Uf4o4ttdf6DfJ6HuKvkQtTGDj46fC+/teD/tnvQyQa2lRI/tjRbbIksM4Nbl9B5Ywt3XfwAD91hiRxHH6m1eijs9n0YUNALthVzZ7s1bu/Bkk9pZWQ9tprU02HbS1qtTbdsjgdcAYNF+tlq284FwCd5ahYJOBYpauPzE6jpjPekBjY1e4bcAeAT9WYheARbVXsFi0F5BZeEparqNwYYPbaQqoVWsX0fvoR9v3MJDa32wHsXLOPZbW/k324wQru/+9lvsebSl0pUw+toZwl97Igo73Fu5BI6uIuHeIi7SrdcQl/J0rWQYR7hbaVcOC108tXR93BBlYHRXS9fDsdhS7N1tGs3ROY0xZhcgK0eSjG5EgNsjd6U7Mb6cMpkBtH9DvPOCiT8+/XRBU9tLwf0lPkO8kA/zTE0yJxx6QJTlOYYXjob5ZwAJ9V40K0sHmITasLGtjRPiZSYPnxeUKK5DXHfK7jSKGYu5V9I/d8fYywAmIcHcO/Exi2xH2nFdyX2Di9nLNPTeHlJwFeD6zAFLM0NodXlATzORkrkTsYPqn4n+az3cm8TXexeZoeSVXX6LmYVX4PHC6yM5b4GA407MQX2MYyt651YvVMSA3AAIoYoJdGUcj+CkxYswOa9qnjdA/E+6j8bMDCmpJCyeolgYLak+Bw24m2frrvuYmKK4jrs2bTi8VGqp/qaLAkCMI2MfZZF6xw4qFPMkvpsF9Y/V2Ntp2B5xW9pgeAADrrVl1pw4opGzLVxGPdiUZyKyqr4GfXJqli/gVh3EcLK8jaCP7MF8T5FVWOmMgXLScWt67yS4tQpbUQ9rgZb+U0D4lthsDsqzvWJO1I8vB1TyDUpaeLRitubkmPAV/7l698B9MNooymSW/dcz0XXvcqNPM4LXMW1F2+h++JmnuVaOkdbeFvVI2xjAwsY5m1Vj8RbtvBvL/7PHImgawubeAM/Lq3Ef5aPsHjBYC6z+QO8uxT3oISMWmm/6cbvsIM2tqSoajXUtB1k8G5z62p4Xxf971vheU5exa0nYDrqT3FdVcxQe1ptuy9+StpvM+YTdp1ROWfd1r61aZ4T+RVEBbfEFKW4hqXxv/j8SnlW9DzrYUs3tESF+QIso08NNqA+gj0XJVyYjzkh/rHXY/SvaqEFRhtjX/rUcZpWd1scCrD58lthC3RuiGaioflczQsl8oFuLmSYhaW2n88JLmJvKe7kMHU8sOAePs8HaWcdCxlmMUdpprsURN9ED/+66v/j0z+zQJhLL32eC+nmsW1vBWBfnyVXbLrb/OgO7m9ktK7WgcejWNyJAONF2CSh1VetnB5JmraU/T0dneUWCfYca8gnYUyBCYw1QU6XHqcic13OCXAi1xKtHKtL1+FhVVp5VbK2TtwNaB7uSz+CJ0eUgqYg3Z14TMAufE4oKi3L8QWVFckxvXjuCc035eJLJoulkqWgG09AeQuemfsYvjpeF4+bKH/KN3Aq4RFM6VuJAbRVmNJeTLZ3MrIVa1+tcK/CA7YVRtqC1en72DP8euEaazAg04o9o2Y8zkUWlUXY2Hki3uMl7Hk8Gq9RF+u2BqeebsKea2p16cSe97bZqf6YeqzAYzhU9sNMTkgwjOsxAqVygZPirtiel8iH56bSzth4JLlUbcHaRv2/EafwFSueLIByrexLriPwtwF3x1IM0Ty8TUV+oOSKAiNaKFCeIllRDpB3QezDnls7zvY2gOfYOVmZQsxJRc4rOY7HnYCvxGupag953phDMNgBtLqvfUaMc4ir9puwTq7JQz6susy3MV9/Ke0dGCOS/P8vwhRjvYD7Yd/QJTx+oymhx5nHvs9fQvfbLqRuyWG+yZ28d8GX2MxtpYDp4zHvRVNc3l/MIJ208BC/ABD313FhVIhfo7lEVQwwPLqArV+4nks/aHETj/3MVvn50Xxq3h7zfbTVMfjYEjZ+LMZafOl6izFRbMYAlqdaK+5XYS+2EvetUtPHFfUlzQUXLbAZYQ9QD0GuXIfIW7Jq8BGxJp4j8DFIXnk+ZKBSGebF5JWygUnROI4NlFswq5Cexx9jA5tuuSzeRhz6D8+nd9MqqlYltu1N8OghI6y76dLvcJx5/PPj7wDgohtfpZlt3Bx9zD556D/w/OBVfKT5syW2tS1sopsLSzEkDmyaS9tbhl8PQ6YKdh5qoXvRhaXbb7zxSbZ+63p6H15V2sf3gI/G30diXb+C9ccd+KrWrapXUseS1FOiBA71kF2Ba1KHYiMdSo5/MfldNEvMMWBSmSxmRc4JcLIAU3y0gjqKvSOteFD8CVzh1JCjAHJZH2RlWYArc49gY6NWZZWfoQEis7uLlFwxSw3hgKYOU+YWYwqZFLnpil5f0bIOY9YNJZ5U0ju9G3I8mCypYmcsfxPukiba43IyHtXxVEW5Q16HWZnWYoq1AJ+USlkHVL9ubKx/genTHDdg7XMLpiwP47S2cosDjwsSWcC3OfmcL+VkKda3ZHlQbIySe052zw14tvb9ON2vnovA9l6ckex67LmWiyVKn2k63MvytxKPW3kullOsWU1YO3ZRHuR8EVtgk1vZIgykKm9KY7JfVMJrcTdFBcmnAf99WBsKzGtbVpeVzC6gnMR6WHHrOq9EU2cKQGpwhaqm8F9UhluAzkPJvsTNawe2An8w/v8/1Zvyp4liPhYgr1XrW3FqPjAF/dbjlnFd1+u21e99Q5ZVvukDxhA1XGPK6kMLfoG7+Hopr8XVvMD93e/lxmaLGXmBq7iN7/Htnxk44WLLCN60wbTy23mUx7mRy3gZgK27XwdtpuQCsHs+TW/cQ++WVQyujwHwHXDvPR/kY//r521b9ZF7Wif2Eos6eAvWDqrnCQys1CTUwaUIS7DR4gpyDsiDkY1LhAVK8heiNpCRP74U46BndbVdt6R0rrIgbsXNyHpzPQ4er4yX0GD69lgXrVjuxpitxI/0UTt3tMssX72ttfASHGuyCMrH+m6DoflUrXPwsq1EL4LF9tTDZm4rgcfP8hEuYzuPDxuv7/DQQm6vf7QUbL+NDfR3LeMNl1p+vp9s+zkWtHXR0GauZVufvt7y6Xwx9qn12PN6JmmqhzG2m1Sh2YFTC1+LgbhUYa8BBlPwp8hIsNF/hLzbVhpjovOE8tLoxDkglZiTWZFzApyMYoqnYjz2Y+9QLWat0Gqr5ETyrWBwuRctx+LtRHO7FnflqscDdn/M2NiLWjw2pR/PwaAA3Q5MSWyJ95wsG3w5dq3b4vU1DihmZSWuZO+N9xMw62RyRbcu1u8EebYtMTHtJA9GxgMm6RAyFVHwe0qFq2Doofh9GXkrwnIcVAxhlp8UfFVjbmDgMRGQJ0dYg7fhcjyHykC8VxfWFt+eZn2mI0r6uRhTsAUwTmAxSt+f5Py9GIgWsBNT21o8xnY0bsu1XaxuKR2w+th4z3QBTumr3DSycoAHzKuvi13rOfJTRiceEC/wKaY8uYXpmV4Tyyc3SPXtNJZSVN6L8SST4NbNncyu5WSSJIwVt67zSmQ5SRmEwNm6lPckXeUdjMCk4GwoRaYWU8KVa+NH5FklDmMxDa9Pzr0o+d0OPDjfgrrA2KHEBBLjVnq/sCoXt9J3qJF7H/ttLr3TLB0HaaSteQdfffl/AKChtYu/2PpJGjbaBZrooWVDJ9uHLeP4vyy4mc7hFo4viG/fF+Zz0e+9yr7vGhhiETRV9dL70VUlhbbq1gE+9rXPOyhZjw20H4jbL+G5XSRb8XLfSt6SsgOg2YPke6qNMau92fOSLKu3AUOP4+CLQFsMvCaClYTqZUm95UERM9oFwMJqY/kCoNoGIWWeb6k2PLQCD+S/LJZNXaPWblliv/lPGFHAu6Ma9jcYWFkU4yfa57PmnpfY9SVjWmv6pT0c3N9YAo6dtPDaoeZSd+rmQna9fDkbL32yRBXdSB+dtNDfZY3dtLqbh372btZcbI68R4drzN0vMn7RYWVcvCDmObnuSbZ+7Xrv1iPkrUWPYat97eTzt7TiIO0iPA4FvE/qWWSpEzb4MuHT8XsVHgQPZkWR2x3MKWAClZiTWZIzAk5CCJ/C1gmkT/5e5EwmhPC7wK9ieshvZVn2SNmLFETKq5RarXqvxN43+biLpjVVdOSr34spOM34Kq0yXSs49/t4ordUlifn1+EK8Vp8JXwDHmcylZX4cnkpRnFK5DT3h/YLhDXhuTiuYmySx6J8D4sDESg5jCfAq8aCxL83hTLPRJH/J2zueXsss2JLRFBQjYMJkRzIlegw8Ov4c9+PM5XVAe+K91BCQLG1iVpY8ShLsf5yCAc7s5FccSK5De8nsrQdxqxHC8Y7KUod1rfkWlWLzfFyX5TVpBrr/yIfSOl6izKeNWwYB+qK5epL9g/E72txUJdSFqcuYq/DFw7rMAvYBjyWSN8K5hfDnuoyhL2HXXgeE1nQZGlpisdM1uenIxmzE3dVkXNJium+6vERsBvrgW3Jdj35QN7IDpXF7d6oKK9LTqnDTfQyY2vBuC9e6kjy/+1YQkAwxfqOfBwDG4/DkfkMbjWtu2rdQAmYgLE1HWMBf3SpxSB8evTfsfE6Z2va+rXr+ff3/AeGF9gI9epwK/0dK7jxUlOY5//eCTpHW3jDW2wlfkv367mRx3n5+NUlE+foI7VuxpVcgg+4mkhV30HseIGX34EYzx/rhAEdTVBLsBWUPmBTtbdlT3fC1nWFTTRSIgcwd7vXx/+3RNpnJXNcV23XUIZ4sIF6KG63YYOPfIaVPf4mfFJWvpZb4/bq4/Cj+bk8Jxb8Z2pZw+1d7Pru5SV3uAuqDnNj8+M8tM1yjmzc8CRL6vtK5ANL6INLX2Lry9fzry79JmCWkaPDNSW3rd7Nq6jZdJBd2wzwXLThVV4dbmX+/KgNNUJ/1zL6e+z4fR2XwKbjsCWqirtj+6oLt+FuDZrMesjn5+nDrFQpHeoFeNvSjM28aghFXwqMHMAelKxYS8m7Tc6xgPiMWclzcr7LmbSc/Mcsy/4q3RFC2IB5aV6J6aGPhhAuzbJsQg++Uey9qMMUlgWYcpImUdTilIYWuWnp9RC4kUKkbOI/xla3q7FV+HKuRBtwK0xnPG9LPE90uQdiGRYydQW+XMLE/bFsGgtErwuusPdi465W0Xdhin8xbqMoL2EMSnV49u4hbK6sZWrgZKayF/iHZPs34ncTNhSpvmLhWkxeWZSVaSUeW6RVeLGW6ZmDWxqUufwwtsj1o/i7GCA+2/Lz2HqQno8sBGBD8JPjnCcZwq0C9Vi/UgyiEkuqfUaw+u7H5vERygOvIjARMcMxvA/Pw9psBR70vhRnUtOiwFqs/z+DuyAPxO2N+DsmEHo4XutRbKoawmmz5U7WiLtvClSm70FqSd+Fk2PMhkzBclKR807S5VHR0Mq1qBtzuNUxV9gxoTnJp5Gm48U6seIWwClZ5et6QXIceGyK5BLgH3HK3YeBzfPpbVtVSjxU1XSM0a3zS4r/6I5aupdcWFJOb6x6nMe7b+Tvmm0E7t3dzF0XP0R7REw33vP/8Bff/WTJBavpA3toaO3i2y/fYzu2wkX3vMpPHv85214G9/V+nJrVBxl8IZoh1se6aAX+B9hqe+oWlAbHfRTzB1WCw3VWlxJ4acdWOWJ4C8/iq3NaRewEaLZYFjDlGTw4c9DKWtKPl1XbgHZz1Bg6YnmL5NV3xO9FsUy74/d9WNb0+/DJ7O14DhSAnvlOFQlU/dkAoztqS0nR+u9bYdeLFqNmXuOb3XfCBaaIb338ejbe+GTJRev57qtoae6kobWL3ogE3sYjPMDdbLzUZpTGS/t4jWYWb7Cbbj90GYNdS1y3X4QBJrGUtAKb5zsN8F1YWyulahvGPZACj9pY5s1x+yAG/GRZGTwEPdGlsSR7MNc5MK1rBLcwpoBe29P10ajI2SZzza3rXcD9WZYdA14NIbQDb2AKi9hKqKfAXLknga8WS7HdiwOP9bjP+05saklduxZj1pLxgPBy8ni/Md67GVPolFVemehH8RXs6coIHsSv1fLt2GLZiVgv+edvx1xjdiX1n8wzU+BH7m0jePLBQ+RdgU61/C1WfgXOr8eBhdpVSqrc14j7U6uDQONQ8q0M8Fq5T91nT4c0YGN+IzZ3ihFL8RbKbD+RKJZEeUhkbZALIbgVRSB8KZ7TZSpeuurzcpVUvE8j1udXYGBhFA9eH8Cs/Ptxy6VY7qSSbcX0rf3YM1agu0CU8p48jT3LBdjzeks8f2fcpxgxBc9rQUKAVM9+tqQSc1IRF02dAh+ire2I29fh7idgvbkGstQ9pcaOCTf4ZftwJU7bSmP5MK4Mgw0ivbiSLjYKUdcuw14G0UFujUxez5Jbvb9swcts6TZfsc7mFuqWHC7lOdkH3Lft4zRdbmjhqSObWPMWt4vu+tbl1Nx0kJoVtrp/rGEBLXSyr8vcut5+49f49v9xD4NtS9zdqY88w8oANhBL//wxZiURGGkEvgQxCb0Bi904uBGVrdpBVpljsY32QSlDvFZ93oYpz3ItSzEl2ECpFT6wSbaJ/AratXjQ/s1Y/X6EgaUP4YOlLF8b4/EKDv8McAk0fdbatrc9WreU8/sJWPOHL7HrW2bl+MmQAb6L7jGft327L2HHoTbW1dtSWt2SwyxkmPnzT3BBfH73vfxxOAL9y6yiGy9+hpe/drVZQ8CBiFZ2+gr1bo//6dl8AgMe8hvejA22F2HPpTF+L8StW+3k8cXBGmNHC1FDy0YwVC4L3hXYe6Qg+FXkXSRTYoM5KBW3rrISQlgL/D7QkGXZeyY7/kyCk98MIXwQGzr/lyzLDmK98InkmN24x21OQggfAz4GpuwNYcq//N3BXVoW4CvHfZgyuB13G+qLx1Rj/Uo5EuTeJCWtGAOyGHtNWjFFaCf2nu/GM3P34WCoNpZxMZ5tfjqyEs/pIkuMrAry2lR8TCPOSCYmrsmU0e8Bv4y7oUlGmL1kduNJMfcHWMzC4priZAAAIABJREFUc9hYLtfWZgxwCaStp7TQVLL0DODtISX8EJ6srxOPJ5nIvW423YIkC7F5TIZrPUe5rA1gdZwokFvscZqPBT4VKK7nP4CnSFA+mT5MbZosniWVA7jrILjyX4vHT+2O+5uxhdCrsOfZGPcV21kApwH3YlHizzrsed8Ur9GHE0lsTOqld0z9ex4OQKuZ3TBJJTydQCoxJ+eVaKk5nUJT4CHbayHmJEeJGhP9ZR22OdRqnTeLGvKy5nyioiux/xVorJiSeHrJFUrbrdiLcATnzR/CYzYA+ubzky0/V7LG/HPbO+A49G8x58uauw8yuHkJb9hgGva3P3MPu966pGTFuenO7xgjV0ywSB/8hJ/jDfeYW9e3P3+Pra5fQEnhbbipy6wCAgZ3Y2BFbF2XYS+6LA79wMdxa0djvJYw3Y8xACKl/30YCFiIPZ6W2Na95MkHGvE0NcQ2UbzO1vi/rFW3YprK3XG7K7almNIuwywEV2HWEcknkmuswK0JSRkO7o8P+O+h4U+6GB4yU9nrP7iFx770Vi59ryntx1hA33Aj+z5vwG/NBw0kbv1u9I/bD5e8t4OXH76ax9pMbWpo7aK/Y0WJJGHrw9fDHZ4Qk+WxfJrwRVuadt9HknaRReSyuN2HgUR992D9bRAH2ddigLiUIya+E5kaoo18HFYH+femHluGShJi5nLYzCGXLpg1tq4Qwm9jdsMA/H2WZZ8uc8wdWPTSPOCzWZb9+UT7Z1iOz2FhvK9lWbYx2T+te2RZthP41RDCVyY6TnLKwEkI4VHcvTyV38fWDP4Ie4x/BPw18GGcZDGVrMw+siy7F7gXoDmErCXe7BCmCHXiilE/Bhz24nEGjbjnIuQt6TruFfKuLsWV06PYeLg9Ht+KKU7KYi0XlJvitaQ0zWNmLom9uIvLMO4KtB/PISFlVf77Sm64E3M/m0jp3Ysp/mti2RU70xW/18Z7PjvD8k8kE5EDiMSlmPPjTRigugxnZDsWt8Xm1IGNs6vj9wBTjx2YbWACzq4lRjTFUAhc72Jy9zm5Ma7F+p2y11dh/X5FvN4x8uClE0P6h7A+KIuHaHwnAmoC7Yr9EHVxL565XYBeAfrq6wJGh8l75C/ErFYidFBfuw4nQejCAKWu/QoO0J/DiRS6sSluP9ZfVsffsxknUmGHrMhYSQPi09wM4IG8YIrUFeRdubrj51bbLAUGN/slB/Fs5C2Y4pcGFoPPsicwdxu5fV2EpVpZhXPWr8ZeInXmjZjSLXclxflH4DDYvsQAx2hEAu8/bvELUR986tAmGlb00L/bCnHRPa+y708v4Sfbfs6v/x3MkhF18P77VpgiX2Q0is3AViwzsFyLnojluyWpVzuu6N+BDTSiIOzCQELx+lclv3swpVlWjdWxrFIEUhYuMEBYZNbR4AM2+fdjwESWq5YI7rZEd7aH43VVrruBQRj979EMsR4OH6xj9JiBkxcWXUXN2w/y8stXe5kXUQJhu7ZdbuVpiw+jbz7PPv1GGm7vKgXA93cto6phgNGN0TdwhYNIgKo3D3iCRbC2X4aDk0YsWaasWG3AO5J2W4QTFSj2qc/qVeqnPdjzbmu17R1Ea4m0r2hVLL0rzYwNgBfbWjlRCvo5IrPA1hVC2IgBkzdg0+vDIYRvZln2SnLMPMzJ5K3YtPdkCOHr2Ns+Zn+WZdsK97gQGMyy7HCyry3LsqJX+30YXcPnJ7t3lmXbQghXAX9WuMaHsyx7bTptcMrASZZlt0/luBDC3+N6527yi/SrmTzdA8exd0VBzStw5Wk7Pg6LPWsl7qICvtq6Pu5/kvGV5dW4RVNK+zWYkrcfU8TEZLQ/HrMfZxgcZeauUanlWpYg4jXnYUpeFc5QJhYkubuk4+p40hnLf4y8W5ziOORKNJnb0ekQ+foVO0g5AHYqqICnKxux59KMz3Pr8SH6ABMnXUxlZXIO2PM6hGeUlxuXXMa6sGcoqmzRF0t5n0r7HMA8DkSPvRsHsgLKIhx4CQPDHfFcxWqtxsGmAO72+GnAaYrnYe9VbbyGLDX9GCDrxXQuxbkMYaBZi6HteK6X2ZApJGGsyHkp6QpvyjhUjb0xrXH7UHJ8R/x9BTYaJKNpTbVfsgdTFDVA7InbWrtswhR0Kd1ig5K70wvYZNhOPiZgCW61WHYcNs33yaEPnwSAqlUDjA7W0vtgdGB4Cap+dYC6JabPbFrwFP/89DtKblr7Fl1iSr80i63JdaWwLYtllBFp03H4wnzPVSJgoHq8ERs0NPFegFmRdO32uE8+FoswwLWaPHhow13cPoBN9L8Zt/8eeyz/Lm6/iikVss5chLtpqUxDuBLfgVMc3xr3/QAGH1zi91yBr5yA1fcuLE4IYBMGFKL62f/TFTT8QReD8iVZhpuo4/Wa3riHo0fM4Xnw8iXwKPQvWlFq/6qGGMeidhiCqoXHGI0B76M/rTXgpTIvxAZSteUeDJiofzyKKVyyBh3BV//0PNZhdS7F80QXrna9Ax1Y39d2K3kwUmS+UxJGvSdaVp6jlpNRpgJOloUQ0vzb98YFd8kVwBNZlh0FCCF8H2Pj/8vkmDcA7dEiQQjhfiw0YvM4+4uq0S3Ar4cQ7syybCiE8NF4jzvTg7Is+5cQQmvh3PHuvS3LshdwwtQZy5li67ooyzKFWL0b79ZfB/5rCOH/wvSv9cBPJrveMO7SNII9gdXYeKwVWsWVHcV925VocDE2ju/F+lQKTFLXkKp4nTfF666K5zeST+goRXAFnrxuBzbeH2Vib8nxXImqcNClIGAxKCnOYGW8fmNsE+XwqsIUeYGLiWRLPObtsZyKu9FqfVus03eZGwBlrkvqCrgy2RZgfgHPT6KEhVNRgp/D5kdZ0BpwKwbk+60Cxvuwd2IA6yOTov4y8gw2TWgBby8em7QAe/eW45TILTjT3SKclrgcK9gonvukGWsPWRtfwXSwZhwMdeKB8AJGYiITqcNsWU4qebUqMlbmk2cUUlA8uOPmoeT/NMkfjA3srYn6VpIHpROns23CEL3QfWPcToHFOnwQeAqLrUhjWDZjE1eS+I+DuJVCptH4/+ixhbY2msSxjD5VS/9uQwr/vOwd0AoNH5IDKfT3rcivtC/BAJV0yJcwa4dO+dF8u59cph4lvxK3L9ZNGsNz2MqFVuzXFdrhp0m95X4EeQrcRdijkuJ/LbZOrbatieVJ15AHcaX8IKYftyX/XY7VQ8Dv+ni+FP0BnHEMLDD+saQe1REMboko7EqzpFS9zbT80T21XHrn86Xs7vs+fwm9Xav8ecvClgDB0fZanwAAuuI+tUUD8OakTB3kV5CKJADtWNs+FbeXJfcVocEO7JkLELen+UuAcDVkz+PoVPmBBDaUIDPVMDqS37JS6vg5ZjmZGjjpybJs0wT/bwX+JITQhFX0ThzmSlbhXu1gT+2GCfbnJMuyL4cQLgHuDyF8GfNeemvxuHFkSvdIJdblT4DXhRB+N8uyonUlJ2cq5uQvQwjXYnN+B/BrAFmW/TSE8N8wHec48BuTMXVJvoEHUPfhU0Ur9q7I770La9UTWMs2YWNlP+WtJVLwFMQsd8xmbLxeg+dKGY33VxD5dgzIKEfIAJO7Q42nmAocKPeIKFTFdiQ3mMbkGvWxLeQ208XU5CbcFVfucbJESQm8nAo4mYqkyrEsFgIOIikAe3bbmHpiy7UY6B7A2a5acLa6AZy9S+QBYCBBbHblpFxunaLU4SnPluMLA/NiuYbxOV0UyZfjbmByd4R8f9e7thcHTindci+utimIfgh7l0exgeT6uG8rY4l1TkYqlpOK5EUK0XhLTYfwXCfE3x2YUiWAsgdfRYYxOVOWYXk6LohvSzt5QjB1cgVtPYgNztq+AAsuuwlXlgRKFMitgUJyEbYKIF1vyKhuq26NCvIjtbYalgaf4zEqVesG7B5p3MWzsaxyPxuJZXsgqe4gzkr2BLYGq8FRg4l8MWS2laWln3yG+LsxF6pN+IrCOmxCTtvmCB60LaaQdNCQuVZluAMHSDfjwXaqA7g1Re5bV+KT/pZoydjsblQNH+qi/4HYMK3RcnKTX2t0Ty13XfdlAL7Jnbz8patdUVGwraQVZ9HS/t34AArW9gpQBxvIX0jqvQfvM2B98EHgI3G7i3z2aYHIjmTfuritfhWIYCT28+xFTDtJ34PWZFt8Ito+hCEo5T0RtfC5K1mWvRhC+AvMKfIIBsmLCGy8MIjphEf8ZbR6fAZYl2XZkXLHlZEp3yO5Vy8WPTYlOSPgJMuyfz3Bf3+CoaspSzXmQiI6UlkNrsFiua7DxpinsQWiHzBxjEMxOHspHmAuRqs+TBF7BVMKFevQFe+1K17n6Vi2PZxcnMY1uB8/2Orzm2KZbsAT28n60xDvqZXkYpD7RPLfMKWwJZ4v67aA316cxr2bueEyNRWZiuJ9KmQp9myuwS3di3HgIKA5VfriOvJkNPvxGFH9L2vCK1h/bMTJAy7HALuoglOZSvuonGJPE/hui/VRwL6+T8T7rcf7SgvOMDaRKP5GrnBKgipQ9Ao2Fw4k9wLTSx5lkqWcaUrFclIRl+OFb9GUaJlcVhTRo76Y7E9dvwpuXaVVY+K65FJf5W7DOr9e2oXx9oonuZk8s1JN3D6IKZnbMeX6/RgbiOQOXMneiOmGrXF7B/Ce6P4jWYS5g4FlDh+gZPUY/WGtZ2IFLrruVfatuISatoMM7o4moGWYBSfmaeSNsV6657ti06jeg7FcqcO34lCIdVQciup9N6Z0yyJUh634awJ9Np4vVWxJ/Cip5T58sMbawOodt7dgg6rAXiseW/NELItc1wQE747tKDau9dD/+wkxQB3Wbh1xu9Hutz2af0Z/mDwDgB3Q8Iku+h+Ljf2m49Ay3+6tNfmHyZMJCHCp7VJKZ7B2XoiDvd1YUP99cVsrSAKO9+GAT22Xxj2BDdw9ciqGvLUR7AF3J9tprBbYA03zmpCcB3PKagKzliE+y7J/IPLDhRD+FH9LJeOFQUw5PCKEIJ65B4BP4o6Ok8mMQjCmI3ONSnhGIspQKeD7MQVsG05pOg/r7i/hVLOp9TIVARMF4R7AFMvUitKEvX+y4IneVlTGG/BM8RMFoRdlPAX6OXxMa4z30FR4IJZ1L6a07cDDMlX+FZiiljI4TiQ/juW4BgNdUnRF27sUG/cvx8be7eUvM6fkTACTy7B2EilBVdzeibXhUaxtO8e7AGNdvRRwrmShAiadOEgH7ydrcO+BtXgm+nJ9fzqSuo0p1kX9YGEsi2I/lAOoOm6LmGID9k5O9mwUOky8xk4M0K3HvCNuw9n5FmFTWcrkdrIyBctJhUr4vBRNoamVBExbPYTTowqEdGCjtt5qxaaALaOVkcFoL+yrt8vqRZDLjSwO8vuXItoaj9HqklycNuOuXkPYCyRLh9y3pHzOw+IxNiXHv5DU+/3HYfd8V0aV60MxKB2XcOk9z/Pyb11tSvIFMfFgG67YP4lZa6LLVMO7u+j/4xVepnfj5lBiWa7EY206sMEoDWYfisd1YKDjcGw3DQh98Tjpy3fEdpBSvgMDOO+L2w8CHzhuuUnAAMgmXAl9EFf4xU51JaYASIVrxJR5uVEtj3UTS5mYbFSvh4AeePn9BnCb7t5D7xOrHHAtwqwuOv5H862OjdigeiT+/kf8+bVgYOjZuL0Va2dti/FNOXSGgM/i7myHMYwgK1hTPDYjD3J0LYAe2bsFLpSgVLI02U/hWMr8V7RWzjG3roxZKU4I4cIsy14LIVwM3IOtR6fyJLA+umbtwXrrr2DTcLn9xeu/Dnu734FFWX0hhPDHWZb9wRSKN969Z03OCXAygi1ydGLvzihju7IgXbpSO5lypmBysHdYfvBH8WzckjWYIrg83u9EvFe51emJZDwl7RqczvRA8pt4nzV4AkaxHhHLtBdvl6nKUcy6uxoPcpa7moDX0njdDZwd4OR0iggE1GZHcYAygrWZkhg+zcQkCUWleCeeTFEqjjKj9+Ogeii55yYMsB6Kn8ky0E9FjmL9ex7u/icr4048f8ww9g7IC6EF04FWYfPaW7B3qehQO57IjUsU3YvJM5xp8SANsTxZmULMSYVK+LyTdPrUyq6UKrELSQl7EdNKD+DuKbKSyK3rAO4wCfaG7KFkjeklKoBR2VtWb5NY6ta1kLzSfgNmodiCvWzrcB9M8CDvzXFbwWTp5HgMX81PTZPE4Op/nO+B5H+OvXwJM9bLP9vgWd6H5tsA8DCeQXwJDqSA/odXmIKfrj7vx4O2vwBNn9pD72djuwzFMn8o/v8K7rZ1V9z3Atasclfaginpqs8KqPn0QQYf9USRVW8bYPSpaK14IwbCNOlfG+sgUBZpnde85SV2/efL7f4tsd0EJvq83SBSKn9jBWv+0CiBd33+8ry152bs2dxvm71dq0plLdVhH74yJBrFfUm93of1i0f9vpzAwcYQeUzdi/UF5dZRPElah2O4IbBnxBNW5lizO3BT2CCEK5wym1aMRi6VEfwBbyYPQATgi4AlzRA/h2T28px8NcZpjGAhDgcBQgjfAj6SZdneEMJvYg5C84DPZVn203hM2f0FWQz8UpZlO+I5/wZ/i0oSQvgi9nCWhRB2A5/MsuwfpniPGUvIsgndxM4KmRdCNh7J3HRFLl3KIfQSNhZsL/y/PB4jK0sbtpJ7gLw/fbn8HTORy/DM6Ar8XxGvfzk27iqfSye28CWgoiR4K5imv1y874044xexDLW4leooZ4/15HTIQmxeug4bp1Zjash+8u0oa8c88nPHZLIJAzdLcZDRgCnrIk3ow/rh9+N3P9Yn+uJnFdPLdTKeKJx3OQZCxKalZKACXSJmEDiRu3w7HpeyIn5P1TY81RzBA/DUJMGHk8rKELKPTvD/H87CPSpyeiSElVkMczxJScGJgEkS3M4q3Iat/1K4HLPGlzR/BZRoNpM1Jm4vqfeVajDE3IJbA2owJVoK8278JZN1pRt4L2456cI4exRHIH/I1rgtJVbKVhum3MrC0BKLrDJdjq2cpCb6VzALgVbWFaAdVyOq3jbgdLpA1bsGGL2vlppft5sMProkx3LV8M4u+reu8LI9A3TAmn8flfw/vdzKJ4sLULPpIIsvOOqsY7pOjJXhAaj53w9ybNBG1NGnontamlsldYESCJAsieUbgprbY7kfNBrmErvag9g1b43bXRiAUj2+grmPpS52K/C8NmIIk5tYT6yj4n/+Cg+43xy/2+N15PImTn01w1XxfloZasQAibpgH/nUPKJCVJ9bgjOtlCwnWjbrIC+66Q+xvi1NqRsnhwBDPsWM8EVtPx35Z9tq8qmTGsvD4k0ZbZMstb0QKvPFJHJOWE5mIsrrIAalbkwR34or31K8B7CxfRRTvlIv4SpsfH4m/m7Gs9DPpqQB1Kuw1344lmMdYy0jA7Ech7G54fJ4/nQtOdvjeRvidjXedtV4sPwmPDB719jLnBciPeCNmNWkDncAXY7NRS041bNcnaYaawJmQVuP6QeKV+nFk292YXqF3Az3xm8BgBPYfDdbcUIC4+n1ZEmZh/U33U9xKXo3luMLAUNYn06N/Wtxcovx7n26pMLWVZHyIsVITo4pHeoBHJykieNS95aUbliSBgonStrBejgYM52DJ75TaGot5p4jZVcDUrpifwyLCRB4aMYGeSmW7cDrcfAyiFletKIC9rLKwaQHAya650vxWwp2W6zC1mSfzPFRfxu9dWEuMeToU7Xw/uOm3IMp162U3AGaF7xmGc+HovpSB9wc836AXSsyVtVsikChfQmDy+pKwAEwgKPB9+0w+NgSt0rI/aCUci6WT/EhG8m5MTVssmSHDa1JgPtCLIi/Ix50Bw4swIkB5Er358fhyHzvDoswwFFivcJAxx1xew/WhpuTMn0Be1Y1yTUuwF3olmHPIl3j3pPUpQeLHRHw2hivr3r/FOtLjUwgaSwJWH+uwc0tAuFpHNaq5PhWytPtCCV1xGtOK21GRc4yOW/AyWJcWQdXpkQPrKzcy3FWql5M4a/HxhG5z4ispAtTrqRsyZ8/dcOZLavJXjwgfSk2D43iQcng1pLDuMtwUzxPCexmkqPkOaydrsODmJVXpQHPUn891obzmHkul7NZWjEQuBgDjiew56DgcAWBi266j+kBE+I1e/HYki4MnIpyV89nGOsjK7F+0osnRTwcy7iG6QPJYvgueH9XosUT+HsmljwRq6rvLI/XqcPmRgGYDdh8q1wm/dj82I05s1yO6T9FgJ3Gao1HVXwyUmHrqshYSVds63AlDPLpRsGsJHvIW050TBognCanE7NXmtixBg5KqWuDwWqnGu45BG31DiwWkY/TAM9OKuVyOTZJSGkewhw1VifXaEyKtIz8QvZ6PG8J2GD0I9yt61ksVmNLEpci1zFRBx+Zb/fXykQP0D6fjb/1JABb770e2qDpDivEy/debfWRi9UKcj7WVesGLPB8Nwy21ZXu2bS623OCdC2h6do99PbF1fz9xkhWsuDE+JGqKyNL2VO1ZtERMUA71Nx0kMGt1vj9W1dAFxxuqLOBXr7QHcDG2E8enG+TpBR9JTxUIPnmGIsjV6q7cJYRMGvQKhw4NMa2klufaIyfwIP5r4nbAlkv4CZ7XeMV8iQLy9MyYe536sa12AAtl7smEqa0NJePW6j85MHk+2nGgpe03xcjLVNqYXVAqa9zKN4EZtOt67yWcw6crMFpfdW1iwqVrAdysVmMvY8jcd/SeLyUnS58JVrKoSwZ/fFbLitDmJI6Wy5OC+O1LsNdZxrxaW0IT/0ldx0pb9Xxfw0Z1djYONVEf6k8h883mkOUkX0/Nn3KqtKAe4meLUxesyErcbaqNJ9OL85IWYUNwc8xMyrmlZiCPi/+7sP6RAPW3nVYf+7Hnr3mbOXFIf5fHc+fLjiZqMzptWS07ybv2lgd768FACX4FNvcFmw+fQ6ba+uwObwO61vbyE9ZAljpOyELx2yzs50JQoWKzHXRMtAgeVueqEoELOQz383YGBNpMjXY7CHwod/NyTaUwIwSNuolX1ZvA7KU2SdwQJDSx16EB2n3YQpoEe0ruPsI+QSKbeSV3zTdBJgyflVyfh+mlB/B3ZnasRf/WHJMP660x4D2rV+73ra3AquxYHAo+a023GSmlP72FbkEiaOP1Prq/pao4jwLvXevomqVU3D1bl7l9aqLTFop5XIPlsAwSvqbFQZwZM2puf0gg31LWFgzzGBfPE7KwOb5uXqVVqTkcy2L0t245UlteQHevgNYews4PIyZ6duT7WIW++dwxjbwpJ3S57VKpnN6sL7RGrevjOUQmD2CJVWUFtCjgraStxKmVr/WeEwKstN3ZRB38NV2ekzRgVedTpWYYwHxo5wcNWtFgHMMnFRhispC7J0XKOnG2azEDqQFJAW9y31kKT5mLMWTuYkRK82Hou/D8RoHsHlhNmMvjiVlEttTJ27FkRuZaIb3Y0PBXhxIrcLGoJTAcrqrwKPA54FfxjPR61rposoJbHxchzErrmHqgc5no6zB+sgIVv9D8XcL9rzEZCWLwhBjCRumKivjPbZhirwsJdtwt70BPOeJQPoJrD+sx/pKL27d0nsxW5LmcBnA30EBhRH8vVmUnCMQJ2YvUS2P4CBsN754cAD3WlFbaHFBaRCqsb6felLMVDIMBFakInkpcqsWLScaabVEdAX5LED1uDK2CltRXpVsQ37FWMAGGIz7swheekYsE3dK46rs3C9gSqmYmrTaLqVUylQEAiWK3S3YqrtcizZjCqk0h2vw2Bbif9uTKrZh934TntdkGU65SyzLQezl1z2uTcrwZsz68GC8abOVsf8b0X3qSCxjRzz+gvg7efGrfsOsHqMdtX7OZizGA2zSvOA47I/3eBhzn0pzsdyOx6AANe87yGC7WU4G718Cr8DgiiWe52R38gGzeKwnH7eyAwdlD8bfarseLNmhGMMSbgTA40+0angEG3RvAb4Z98nv+r64rcSQsoztx569ulVHvG8aU5K69PVhoFggLoN8stEOPNmo3oWnGRtDkqLaQ9honR7TTR6sNJOPzTqcHDuHgAlYm1QsJyct5xQ4acLftaW46wj4Cq1ofcsRRmu1/wCmHOm3VmcFZEbJY/lqnJFpNqUKU7zE2SJA0ohbJzSdNcffw7Gc1XiG7v2xPosxhfQabEybLrivwnKgbMJZKeUqJmAiq0of7uLUh7WZQNW5IErKuRhPuHwYUzWG8D4k4oA9cd/JALWVuPOIqLGlM3wFo/EXO9jT2PMaSI4RQF2L9VUB7/EsDNONT4J8IkXw3CQjyT0Us6R4k2LsiILq+3ErClibywK0Bp/Dd5K31gn8HGP23Asz5oblJISwFvh9oCHLsvdMdnxFTrVoClVAb+qqAr5aLPi8B1PG6vHlsEFMm5XStic5V4H1YMpZOoIewLTKZF+qGNUAV1W7+5CS7Q1hSrEUzGXk3fnBJ8hl8bcUaDDlX6xX/wWbEOQ+1oettqcTrADRHmxAFCOGVvO7MWuACJzejC+2E889Nt8V5mZswJOCDbYSJoYpmYx1jbtg9G9rnXb5WDwmZQTrA+Yn6tAiDLyIpeobcZ+OfwEGG5Y4EcAbMaX+BQwkaHBqwAMRwfLLNOJK/8GkHXrxLMfggEhtuzXeIw1uX4i3i/j+F2ET9GYMTL0+Xqst7ntjcs3WeA1tb4zXk6vgwUNQU+90wC310CkmOoCnIdwA2SE8mWIHYwHIIP4udJPL5wPkNSq9HyPJucXEi6nqOgfBSSVA8aTlnGDrWhBC1oIDkZRRS4p5LT5OKLg9HeZFiSqAUfTH14rwTKwOJyMbsH6ulWiBjVrcKvImPEv9PHwFX0xO8vvfiVvztzC9/CtFacZiUIYwBbQKt9zIUrMCazPFPwzguWekXJ9N0oxbvMXaCPZ8ZJ1oiseJTlo014uAr5/EvW+I19gEXqlPAAAgAElEQVSIx40MYIDlMA6C1E/Bma9ewl2LlS1ez+gyzEX8dMrCpLwpoJ+MfSutG7g+NYS973o301wuw8D2WWDSWh5Cds8E/987hXuEED4HvBN4Lcuyjcn+O4D/hD2ez2ZZ9ueTlSeE8JUKOJmZzB5bVyrqnRfGbfndq5emFpGUzzGlgLgCc+NKV4wH8dToAi2a6VoZuyK9yiwlEBXGA7CkNck5kRKQY8dm5KljlwAH4/9L4rUEBKRzylKi1RblfW7HBpbNcXsZNvjcjeuWx7DJQRSFsuKoKrvjOVLolbldCt9BzFqg2AyZpPVGCVCtjueCAwLJUCz7Lcm9U+asI5hiL6uFiAVSi1AaFD4Yr99OHvT14BOF/MI74raC6nW8Au7T2JwXkvscw83FqlMfDhwPY2AqJR94Ix5wr3sEvK3S8oL1hdRacgIDKHmeYPI0vmmsCTiwUN/uwPp0moTxRfLujYdwX7IOyjN0pfeHUwdKTpKtq2pTxqJJliEHK2xdk8k5YTlRbIVEK6eH8ODYETzvyApMaUsDZzUeaJ9yh3TiiRYhD0xOB1AR4JCvvjLPE8tVhY1FN+CZwbXCO4zTvCrUUgAiba+ZSHcs27UY6LkMm35TC4oAVSMeFN6KxwpqCp5uUPjpljpscXBX/D2MlV/AYAhr2+VY2x/FyV7qsDaZDVc/0QWL1l7grwkbzlfEey/G5jEF4Cu1wfJYFj0bJSmsI58K7lTLMTwmKpXDsYxDmEonL2SVS+qf3tHu5Ldy7oBbS3S92ZJZsJzcB/wN5iEJQAhhHvC3wFsxleLJEMLXsdf+zwrnfzjLsgpFzZwU0ZDo8YjqoRj0Pki+53fjit6L2Egi8HF1/K0YFGUqak7OrSeflf5pELH+kqstcSN4kDzV+Mo0roz+IM5kctkRKGmK1UjjGMAnkGbsZf7HuF2DW0/A2Z3uw5XsfRi40Ir/CjwxFzhYkVLdiLkpiaXqGKa0q9l6YhPIAvEqNgntTq4rMCX+9E0Y8JDr1454HynlezDrkCanx+K22LwWMtYMruD1tC6rcKDWgpvYwawoFyVlW43zwIPndlGCxEbytNBbMTCVPptjWBc7GAHD5nob9C9KjmlM6r0Ed/0DYCS2Y9pHi1YLyIMTWUX2FP4rBrBLWyqSRVDYLpehqlyekzkaEF+RWZFzApwcpzwr1gJ8HNBrUYsvMMhyoDwQ4MxTonmVq1g5EHK6LChSsE6QD4RXORvw1fl+3J0HbKzcg+e4aMSVuZN1eXkGGwsH8OR7K7H2rMNciq/HY3GUuFEKpRjUFmAKfztOUnAm3b9W4hnYD2D1GsUAoCzv8zCwojWjWqw+J7B2VrxEH55CYKYiooFFeCxJE9buR+MnnUoU87E3Hrsf78tyP9yFu0Vv4OSsaDMVPWPlfNMCAvh7m1pKirExC3H3tCKwkqvabFnXp8DWtSyEkKor92ZZdm/uGln2LyGE1sJ5bwDasyzbCRBCuB94V5Zlf4ZZWSoyp2W8KbTo5iV3rVTpkp99TXLMSHKOrCjq3WkOFX0fSq4papQoBzvsWs6ei61Wp4HJ5JVR3VqrdWLz2J3sT1e29mCgQXEUHdjAIoW6Fs/QmjLF9mCTAxgISQLa6Y3naOJTokC9XeuwiUdlkrUm1VFfxOC+yrqdfILDx+J5AkBKmKgyXInFmyieYwXuVkW8llwzwNwXROOsazyGGb1S8oEXcJayR2I5U3CRGiUasckjBXUXJe0wSP7ZilK6ByNHAJskep6HHlkp9sDBVre2yJKWCQAvxWY+9aN2DDS82c8v3Rw8aagSHOi/NJYqdQMDZ6ErjtqpS2QKRtJG0flpQPwck4yTX/2tyLkDToqrsJBXbCSKBUiBSdEakvrZnym2qTRxXyeuyIMp8oswULIcL2/6PgyRH9vBlNMfY+OzgqOf5eSIJdSOK7BhawizOPXHe7yCA7x6PFfLNpwGuTnuuxxr/wEcFDyJu4DNJkVsMzYn1MbyKl9HS7zHylinJ3FwIHcoBZ0vjuVWLEc1Ngf2xus8zuyArOsw16y3Yn1Bz3MeDlLVVjfgAGk91u678Lxnsrw04xTRJ3AGr9mgvp5urEox/gu875Z7/4ruayfw6awKZ+5SbM5syBTciHtmaKZfha8hgzXHDeMdHDMG/wnwuhDC70YQU5EzJiljUEpvKin61YMvaUiBK0YvVheOk4gBbE+y7zryK85vJs92JMUyvWZ6/ipymezl0nWw4HomxVcxEaU8KN2wuTmfrPEJXPmV6xHJbY9hAEXJBUWCJbCiAUEuWXdhCrmAgXj8FTA/GP9bnfwvi4KsMIoNSfOvdOFNdwx3qwCPN7k/KeNbycdmHMH18Tfhza4YnZswMCKuhM5Ypr+O24uw5k/zv+zAXa6EF0QdPIBTcoK3q1YiB0dgdyREyA1WV+B9rBUYgR49X1nSBF6exxpF/+tmMiEV6dnAid51jaeTY8Fmm7SflwMb6beAyUSuZMeZ05aTsz9aYtZluvGS5wQ4gbxCVM7dajXu4pTGkug4xUzMhEXpVMh+nKJYQcCtWD33xn2KKVmJ1U3MUN8nn2Rydzxfn048uPoY+QWgmYqsA/V4ThbFNBzFFeZisr15+MKScoDsx+aUxcBbcLcpJS8cwJ7hdfFaYrBS/pchPO5IAOIA7uYkxXc4nteEzWdi3NJcomB/4r2H8QSDrbiF5DDu1rYr3mu2XNVEobsylmc5FiNyC05J3xXrvgqzFizHyQ8EANfH8o5gAGphrLcSBq9l9qwns8GiqP5Y7l0eJb/wIOuR/hN4O8xY54CZyhQsJw0hhHuBh7Ise2galw5l9o07tWVZ1ot7+FcECCF8Avg/geVZlvVMdvzpk9RvXuxF6YrwgWQ/mIJ3ABvZYGyPk39/c7It1y6wN/mH5KmXwLXcqxlrfdkD4YoYn4IleiyVJTkuSzb7yDOCHTwEFyTuY2kshgbCVXhTHIlFEoDR5C0g0IRZCHqTayigX9VaiE8c0mP14n8Hs3j04IxgTeRTZeyL9Uh15D4cMF2JgSOVcZBclnoGY5nfGrc34zEmqvMTGAjqiNsDeGyKpJ28zq04E5LraYRYhAWm9yYueTkdPgKTQSLdb7xoTX1yzAjW+K1xew/WX9QwV2AzmWboYn95kTxlWBr4LlBS6Ds510Ww/lrcVwyeT88/UNifApNzW6Lb7xZgT5ZlYyzpIYQOnAz0uBbIZhLHOEEZZiVWMnoH/GoI4StTue8584QX4AkGyykRezHFZby8Dik19WSBuadDjmFlqsbqJuVYCvN+bFz7ZaxnrsRdXdfE7Xbge/H30ni9RfH3dgz4vJPZoVqVSMHdCbwulqEBp19XrMbRWJ4GnN1KCqZYx/pw2vzDmGVFIGcDzkQ1jLE6Kb5Fc6cSFcoKk8aByPqxASdPGI77U1YpATfF77TgpAQLseexDovtPBXAdgCPN5L1Qzlv9sT6t8cyX4ZT1ivORwD1KD5nrsVpqZX4sCNeeyVzIwZI7+BMLE9yXUy992dDThEBy25czQJTf2aT3fmclhBCC6Yi/uxMlyW/gitLSppgEbxny2KRghUxc72YbKdLZqnLF7iCl1ITUzhfMS4dcV875mskM0YHZOnKejmWJSgBosF4zmBrUo4at2JkmKuRTJaDAFGhlpJ9EIv5UJF6knPBJrsUYsqdKV0pAgceCnTUfq0aKUZD5zTh5QTTz5Up/QjRfSyOOH3VY0Mc0oD4WsZafwSi0t9bk3oFgEMOAGswoFIKiNdoF4FBD/lHIeCRXi8FOwdHYLDoQ1ITKafVhzoY63L1vN8zx6ql45figPcQ+dw7g3g+HvkPNCfHkhxXtBym78QevMFTd8hUUitluj3XZFZT9v421rj1ExxzW7ooM14cY5ZlufXHEMKFwGCWZYeTfW1ZlhVVgPuYYqxklmXbQghXMQvxkucMONEK9niyiKm7BJ1pYCKpwnO0KFdGI55tXNnHn8ZW85txH/x+bLyWgr4Tmy8UGK1kffNwetrZrvcz8bs51uP2eM+98X59ePD8PAyo7MTzSezEAIle88cxxVrxFwfisXWYci7igHV4Lg/tr8PaSEkSW3HrlPpOA+5CtgabM/ZjLlWtOCPa92J53kSexv5UiKw9I3g+HsVMjsQybsJznkA+UF8K/rZ4jCh4q3DlfRE2n3YzN4AJTNwXFU+SJndM5VRo9kV2vzLSn2XZx2Zw6SeB9SGES7AZ+n3Ar8zgOuer/EfgfwP++5kuyNhkcMcpnzwuBSU15JW09LsYYKzjOpJrphC+mzwHb6qE6npLyduuazC7d8qklMYcVEfLimzjUjx1D1lc0nq2QU8KmAbj/61x34uwZQTXt6SMxmtnHfl6tNdAe6LchvoYaxHLOJSyk8X/tzwP4WrI4jGl+Ix47MERmxAUCF7yiY7b8lEWIDpInmK35xD0iKAgXr+mPjpoxnJ3Ko9NBAZZNzkrxVAzDKasVbpxq28OgoEH4OAg5vGp68WYpFLcSWs8vwO3vum5pCQKzyf3aMUtHrmbFrYFeK8oHKP+I8CtWaWGfALSFJzIxatoQdQ1U7dDSdFaMpfduqaUIn7SGMUQwmrgHZgb7/88jQKUjWNkrHPELcCvhxDuzLJsKITwUeDdwJ3pQdOJlQS2ZVn2ArMQL3lGwEkI4Ut4qoxGoC/LsmtjA7yIkxs9kWXZrLgwzHYOktmW1C1NsRX9uAK6H2d+Amug2zEF/kY8rq8ZU7CfxtxnT+AuqVeRpxTeiQOc1Eo/26I1GzFH3o4Bl5W40j0Sy7seUy7ldjaKaW+tWN1XYG/YcgyACLTNw4DLUPx/PR6D0Ie7RymeZSR+ZIUSYcBirC3bsPYRkHsy1mNDUq9TScG7NNahC094uQKLsVS8zCKsHzTjLG5NsZzL43+yuogFSy5c+/F+ITVC3u5z/V2RZet0kyZMYjmZ1K0rhPBFjH9nWQhhN/DJLMv+IYTwm1h47Dzgc1mW/bTc+RXJSwjhFzB3h+dCKOcdlzv2Y0AEjw0THjszKa7qFn8Xl+FhbE4U7StaLVJJwcwVmCKa+vYreg48uV0KHA7hIEb3TrNzQ97euBSy55OydJCnMNaqfAqkBIDA/bl0X0lzcs8fxu3Uv+lF8mVqpfTGl8oTFfDsx5jSHuspy0LWASHWMxNDmcoQ652lli1Zs4igoRkOSimPcTul7bSOsXyDzzN2gVuueqpXopRnHdhMk15zKW5Z2EPe+tCKtzd4X0itGB1xf0eyrzXZFvjR89yMtV0KUFJzjeqpZ6Pj0jq1Jr8lCXArgY+0H64iD0LKAZJUyuU1mWugZFoylRjFT2MLL3UTHJMB/xRCyID/NwKcKcUxZln25bgodn8I4cvAh3FHxclkWrGSMP14yTMCTrIse69+hxD+mvwC6I4sy649/aU6syJg0oCv4h/CFFO5QIEp7nXYcKRgc2UEH8GCnJfH/b3YENGIKex9OFtWLR7kfQIDA4s5PSvnjya/FUCf5u4QaCKW7fqk7EV3JFkIqnFKY9HJd2LArT9edx5Onyv2ylewtr0Ki9WRwrsVa0sxSa2M+08Xq9UA5m733lhG0ezLPU8Wsj24O5cW/36AtZmC3XfG/1Kq3ZW4F4Rc1wQUZyMG6XTI6QRRU0jCOKnlJMuy94+z/1vAt2ZatnNZQgiP4mHKqfw+8HvAz0/lOnHSvteuufIUhqtKYSpm5SkG9OrYOsaCkVQp34XnTinSqXZQPtN2CtsVaCEFVq5hqTLYTT7RI+TdfAbJ0xX/GFfCa3BQlNYhVWb1W9duJQ8+mnF3ITCFvZqx7mmS1JVI56fAR2U5FIEM5BMApsek1+3A6y0mtda43U6OgpkO8oHmuk4az3GAfD4P3T+1WqUApAZrr/T5p4BqvHYo1v0KStaWMflCila4+ljGmsLxxeNSy1rRFfFQ4R4U9hXdF6F8mdLjxwPmMLGPzFyQKVlOJpQQgmI8ngoh3DrBoW/OsmxvdNH6TgjhJaYRx5hl2V9Gq8dngHVZlh0pd1y5Ik71Hsm9phUveUbduoItd/0yFvd83ksVjtJEsZvmg+jHlMq9mDtTKz5UDGPDjIDMMHlq1jV4gHQLRgoitq4WbApUwsrTpfSpbFvL/CcnAmUXX47VW1PvUsyKIJcwWRcGMNBRHb+fxSwc78RAidiutmFD+iasXXoxS4RikjQky2XrdAUBKJh9EVavlzD15Qas7Acw4LoAd3veHvd1x/1vSc5dj7t16frVWH2qcNrpKkwD3I9TPo8w96eB0yUZ7m5YkdMnWZbdXm5/9Gu+BJDVZDXwdAjhDVmWdZU759RL6tY1WNiuwd6mouvXIGOtLhp9xM6VKm1FBS9V5HRsGrCcKtQ6RgqlrgGu6BfvI2DTkRxftA50FMq1GQdDqeKpa6icRXe2tuTY1CLwPPncF/ovjbZPRQp2K17P9sJxsiCkin25dikypqX/P5rUT25JqUVlELduqdyyjoCNsGm9isBEwFJlfDGWe1Xyf/rc9Gw7yLNzHUjKrWeZ1i91uZKkFibdS3VKn3Xqnljcl/bbpYX/9S6Uu6ZmnaK1JJ2Niu/RXJKMkwUnmKnuF0IId2LqQH0I4QtZln0gd6cs2xu/XwshPIC5W/2QKcYxhhBuxvjhHgA+CfzmFMt3ymMlz3TMyc1Ad5ZlryT7LgkhPIO9NX+QZdkPyp2YmuknNujPfRHg0MrsUvIZ1NN1MM266hXLsRX+NTgVrkDGcmyIGcaUz6XxXt/AA6ZvxJTzWzDltwNTUk82B8rJSjHPRTEGoZzSLAcF8KFV398Y5z5y+uxndmh0ZyorMZBwA24FSXP0KMZEVi+xy4ng4DnyHD8d8fsVzIVOQe/LMaCSJhoGZ7kaoXzekIpMajmZKVtXRWYg0a9ZJgWx1mw6s2xdxXiTVFJlLPWVL/rSlwMbqRQVuTSQWEpmMVZFSm7x+uDxJek5xeM7CuVLZ6RifEGqSBPLk1pZ0nNSqSE/IqVlKNcGT1OeFQo8MWVHckw1+bZSvYpxDyr3ddgSWWtyz7TtimVK43kGcTe1YhkOMLY909H2QFIPXUPtl5AYlKScRS4FG6pjeo968s87taRpuTPtg+VAMcnxg8knvWZ6/GTKehGkH2csaC++N3NVTt5ykmXZ7wK/CxAtJ58oApMQQi1QlWXZ4fj754E/ZIpxjCGE1wF/j8W1vAp8IYTwx1mW/cEUinjKYyVPGTiZyByfZZmCF98PfDH5bx9wcZZlvSGE1wMPhhCuzLKsuHyRM9Nv2rQpe+mpp2a3AqdRtIo9isHPfvJrSgp2VoLC0fj/2njMYjwupQlTQA/hiSQVIL0fAzc3Yz4kV2FD/OWYJaU13uMwxn7Vy5lN0jddOVsVarnU7cWD3+dhz+cJ7LndgtMCN2J9YhsGToZxCxBYH9iO5wPZiFmn1mLWlCIjVy1mLVP7CRSpX81CZvSzXqZgOZlpQHxFzhsRECmyeqVKWDlXsNQNDMauLBf/L8queGyRFQnG8tlJMS3napNuF5XZPcn/KW+wrlcOYKT3TAOii8fWkGccKwKbDsq7Aok9ChwgCFgJ/BTbQtt7yFt7UrCUlmskOV6WkPHc9IrnF6X4bBSnU3wGRSvGgWR/cZ/aNgVhxeebgpnis1oKvFY4vxxIK4KXqdD9jtdfi/vPthiTWWXrGiMhhG8BH8Gm/wei5Xg+8F+zLHs4HjOVOMbFwC9lWbYjnvNvgA+Vud8ZiZUMWXZmssWEEOZjb+PrsywrS3gUQtiMIcYt5f6XzAshKw5XZ4tchimVaVdejgXIq1HWYg2V5o9owFx2RIerfEyi1pVrl6h0L8Pcm9bGc7fFY9bGe6/FYy6uweIdWuNxAkYVJXX2RcBhDYbke7F23ok9ByVKXIuBCOXX2oA9r5vwwP5t+LPsw4EpmPWkCgMbshAVveJhfNa20+nuN9syAE/NMEFiSS4IIbtmgv8fd+buiuVkjovFnPzamS7GDKT4xpZzbSkXOKzj5pNXYGEssCmnUNYUfr/G+Nae4jlSfAfL/C6enyrI5UT75e42keiaRUU7vVZRsS93/nhlGM+asBQDg3Vljj9M/hkKMBavX7RAjOdSVc5CUXSnKpZPUmzr4vMYr5+lfQnGAu75E+w7W+RTJzVfhHBlll9zLyfXnPScdK7LmXTruh14KQUmIYTlwIEsy07EbJLrOfMeRqdUtpfZVwxG7iQPXpTjQ5S8HZjCqaDwtZjCewOmtHbG+2yI1+7AjdWLMeO16Il/nFzjML7uJKawSgKG2ZHF2LPZicXDfBcHmCswAFmNgcpF2HNTrpeueN4GzOt5BHPPkzVtPwZy6rB1tz6cn6joSSxpjv+NN+UfZWzY6fkkU1gLq1hOKnKKpbiUUE7hm2hf6rc/XjRZufMPl/l9fJz/y+17bZzfxWOnmgZhvGxl491/vHuXq9dE5xf/n6je410v3X+8TJkmO2eiMk/lf8lU7isp5644ngvjZP+fD3Lybl0VObPg5H2MhZc/B/xhCOE4tkD88SzLzlZvnVmTVCm6CQMI+7EGWoSHBt6Ax5y0xe8+DIg8h6+ib8AASwvwT3isRjWWu2MrpvxKoW3AgMlhzH1oL6b8zkYm8PNJlJ6qFo8LWo+7Wi3HE0Jux55vHWYz7cW8oOU8sR9nbhNF8mLsuW6Ivx/F3MF6carhpbg1TSIQk0pKba3f5yswkZyiJIwVqUhFKlKRc0Yq4GQ25IyBkyzLPlRm31eBr87G9cu5rJxpkWtUqvhNR9Zilg0xboml6WnMnUs5TJSfYyGmqCreQArvYozVaUs8rjkeI7efw8BtmJtQUzx+BRZUvgVzQarFjOtS2A7gK/xnUo5kGRdMkvPgdEga5zFM/nkLHBwgn8RYFL5q02cwsLgXa1u5ZDVgoLMbeA9mSVEm+AUY2NmFPftvJ/eVO1cxh3C59+TYOL9TKZKWng45U8/31HoRV6QiFalIRc4NqYCT2ZCqyQ85O+VMAZNitpzFyW/FbBxjrFvNVETB0v0YC9NqTIEV3bCsHW3xW3EIWlnfgLn/nMBC7a6L5dsa/1sev2/DlNtWbNV9CxbfUBWvvQtTrBUro/wk+znzHepMApPLsOewEmvTjVgbdeNxI+BJJtdibduAgZDtWBvOwwDjGgx47gWuxdr6BOZitQgDn8MYUFmPWcG2YbFKSsB5Q7znm+K3El/OhpwJZf1MPd8Ma8/xPkS2rhDCXWekgBWpSEUqUpE5IKISnuhTkcnkTOuS55wUQdF4QcTT9VWrxhRXMb83YeBDsQl7MWuKWNGPJmV5Jf73HBZv8gymwG7DvXdPxOs9FvfvjOd3Y4BlCEvsp+B4iRimbsCASzFoXmBtKaasF1ft56qsnubxaUZ5xY6IH3slnlNGAVYCLktxdjZltN+GWab6MNLHESyx4lac2asWAyTt8dpPxjLU4UBRMURgZAjvphIzNFOR5WS8DzHmpBIMX5GKVKQi57NMNltUbPBTkQo4mcOSPpwiGaEC4vvJMzSBAYkTGPBYjgGVzni9rThA2I+tzoOt2iuHyiJMOR/C41RGMEV3BANGkpvidXfiiq/Kupp8nhJZfgSwLivUtw6zBqTb41mYBB4Wj/O/9k+3gy+N9909zrWrsHJvIA+02rG67cUBqXLR7MLa9hieZux7STmrsfZvw9tWQGc/8LrkWgfivbZhz/Il/Ll1YgD0snjet/F2Wo5lWSq2R/EZVKS8TMFyUpGKVKQiFalIRWZBzllwcrZXrBqzZIBn/5YoqLoaU243Ysrt3vgZwSwYN8XzFmPKahojsBDPaSIA0h/378KU850Y4NmGB8cfIB9X8hgeLH1NvNd4ViHdW3UpMpUpNkMApRi4nYIBWSBSy9Trkt+L4vGtmGI+maT1Ez3z0eSeG+O3aH5F2wve15T4EpxkoCo5Dzy+RACtO7nHUHJ8XawDGGCRhUs5cQRyZC2bh9V1DWYZI5ZvN/Zc9PyLlq1ybHEVGStTsJxUpCIVqUhFzntRzEnFretk5GzX4ceVmebkOJNuR+lKvdI5wdjM5d2Ysin3ra3Jf1LsD2HAYSQe048p/lVxXz0Gfg6Qr7OCn1djirZWhVWG1LJRlB+RBwv1yW+xfKXyusK2rAa1yb6VyW+t8svaU3S9ei75fQCr504cTJWzhMgyo/ptiN9KOinFM23jNLUXeF87ioM+uWiNxu+0HmCgoZl8/hC55IEBJN3zpfi9HAMaozjI2YXTB2+PZdMz0sutdimnRBefQUXGl0rMSUUqUpGKVGRiqYCT2ZAzSSU8J+VMroKeTJK7tZgiLnCh79TKMd7vImu83InKsTSV27cQAyKix1U9tuGsaeWyaD5T2BZ4Sa0lfclvKesqbxGATgZIj+IsWpKilWcbUxO5pwkESdJsoqOF71TehIG54jVhLJtbes0UgEmUCEixR8X7TyR6BlXYsyoC4YqYVPKcVKQiFalIRSaX85utK4RQC/wd5gyzOcuy/zKT65yzlpNzRSayVKQym5kqxwMm48kxHOwUAdZMWNNSC8dEgK1ccPdklq+tk/w/kRTdw7qZOpjdi1t8YCwwSWW8thf4G0+mC6xTa84o5YHJ2UJgcKqlEnNSkYpUpCIVmVxmx3ISQrgjhLA9hNAeQvid6RwzlXOnKiGEz4UQXgshbC3sH+8e9wBfybLso8AvzPS+FXAyx+V8THR4MhakmVi+pqqAl8vhUqSOBo9fKcpU8hpPJifTNkWZCnPXmbAkbpj8kNMulZiTilSkIhWpyOmQEMI84G+Bt2NT4vtDCBumcsxUzo3nXxhCqCvsayseB9wH3DGN8q3G+HngJNbuzgm3rlHoGZgd3a8oy4CeU3Ddk5FKmSaX01aegSnu4zxuo2nIMqDnydm/7prJD5lYRuGRw1a+8WSutWVFxpV9PfCpUzFfFGUuvmMnK5U6nR1yrtXpdNbnJOeLvfxEbmsAACAASURBVI/AH0w0VwAsCiGk3u73Zll2b7L9BqA9y7KdACGE+4F3kfc8H++YzVM4F+AW4NdDCHdmWTYUQvgolnHgzvSgLMv+JYTQWjh3ovLtxgDKs5yEAeScACdZlk2FkGnaEkLYkmXZplNx7ZlKpUyTy1wrD8y9Ms218sDcLJMky7I7Jj+qImeDnKr5oihzuT/PVCp1OjvkXKvT2VSfWZorVuHWBzCF/4YpHjOVc8my7MshhEuA+0MIXwY+DLx1Fsr3NeBvQgjvAGac9+ucACcVqUhFKlKRilSkIhWpyDkgocy+bIrHTOVc25llfxmtHp8B1mVZduRky5dl2QDwP07xOuNKJeakIhWpSEUqUpGKVKQiFZkbshvPvQzmJlUMEx3vmKmcC0AI4WaMxPQB4JOzXL6Tkgo4mVjunfyQ0y6VMk0uc608MPfKNNfKA3OzTBWpyEzlXOzPlTqdHXKu1elcq89k8iSwPoRwSQhhAfA+4OtTPGYq5xJCeB38/+3daZhcVbn28f/dYwJkAhIIJCGAQQiCDBGZRAZFQARUVOKECqJHURRQQc9RDuB5HY4iOCEqAh4UEEUiooDMIlOAQAgIhEEIxIQhZCBJp4fn/bBXdSqdHqqT6qrdXffvuvrqqr1X7XpqdXXVfvaa+DnZWJGPAxtLOruM8a0XRXTb2mNmZmZmZhUm6TDgB0A9cGFEfDNtvxY4PiJe6KVMt9u7HH8fYElEzE73G4GPRcTPu5T7LbA/2aQEC4BvRMQvS3mO9Xr9Tk7MzMzMzCwP3K3LzMzMzMxywclJIul9kuZI6pA0rWj7ZEkrJM1KP+cX7dtd0uy0QuZ5krqbwaCs8aR9p6fnfEzSO4q2l21V0BLiO0PS80X1cljRvm7jq4RK1kEvMTyT3hezCnOZS9pY0g2Snki/xwxwDGut6tpTDMqcl+rsIUm7VTCmXL6PzMpJ0qmSQlJf6x/knqTvSvpn+qy4StLoase0LvLwXVFOkiZKulnSo+nc4aRqx1QukuolPSDpmmrHYpXh5GS1h4H3ALd1s+/JiNgl/Xy6aPtPgROAKemnnGshdBuPslU4jwF2TM/3k/SPW9KqoGV2TlG9XNtbfAMcB+m5q1EHPTkg1UshsTwNuDEipgA3pvsD6SLWfj/2FMOhrH4Pn0D2vq5UTJCz95FZOUmaSLZ+wLPVjqVMbgDeEBE7A48Dp1c5nn7L2XdFubQBp0TEDsCewGeHwGsqOAl4tNpBWOU4OUki4tGIeKzU8pLGAyMj4s7IBu5cAhxVgXiOBC6LiJaIeBqYS7ZaZ+eKnRGxCiis2FlpPcVXCXmpg+4cCVycbl9MGd8r3YmI24BXSozhSOCSyNwFjE7v70rE1JNqvo/Myukc4Mv0sNbAYBMR10dEW7p7F9k0ooNNnr8r1klEzI+I+9PtpWQn81tWN6r1J2kC8E7gF9WOxSrHyUlptk5Nircqmxcasn/6eUVl5lGZD4LuVubcspftA+nE1LR/YVE3pWrEUVDN5y4WwPWS7pN0Qtq2WUTMh+xLBBhXhbh6iqHa9Za395FZWUg6Ang+Ih6sdiwD5BPAX6odxDoY0p8vkiYDuwJ3VzeSsvgBWXLfUe1ArHJqaoV4SX8DNu9m19ci4uoeHjYfmBQRL0vaHfijpB3pxyqcZY6np+ftLtFcryt1vcVH1vXnrPQcZwHfI/uiWu96WQ/VfO5i+6Rp/sYBN0j6ZxVi6I9q1lse30dmJevjc/KrwMGVjWj9lfLdJOlrZF2JLq1kbGUyZD9fJG0E/B74QkQsqXY860PS4cDCiLhP0v7Vjscqp6aSk4h42zo8pgVoSbfvk/QksB3ZlZbi5ux+r5C5LvHQ+8qcZV2xs9T4JP0cKAxUG/CVQ3tRzefuFBEvpN8LJV1F1oVggaTxETE/dZlaWOm4eomhavUWEQsKt3P0PjIrWU+fk5J2ArYGHlQ2V8oE4H5Je0TEvysYYr/19dkv6VjgcOCgGJzrEQzJzxdla1X8Hrg0Iv5Q7XjKYB/giDRRyjBgpKT/i4gPVzkuG2Du1tUHSWMLA3ElbUM2aPip1C1mqaQ9lX3zfBToqbWjnGYAx0hqlrR1iuceKrBiZ7EuYxLeTTaAv7f4KqGiddAdSRtKGlG4TXbV9OEUx7Gp2LFU5r3SVU8xzAA+mmbt2hNYXOj+NdBy+j4yW28RMTsixkXE5IiYTHZCvFveE5O+SDoE+ApwREQsr3Y866jq3xXlls5Dfgk8GhHfr3Y85RARp0fEhPT/cwxwkxOT2lBTLSe9kfRu4IfAWODPkmZFxDuA/YAzJbUB7cCnI6IwqPc/yGYgGk7W77ZsfW97iici5ki6AniErEn9sxHRnh5zInAdq1fsnFOueLrxHUm7kDWFPwN8CqC3+AZaRLRVuA66sxlwVbpS2gD8JiL+Kule4ApJx5HN2vO+gQxCRau6SpoHfAP4Vg8xXAscRjbofDnw8QrGtH/e3kdm1qsfAc1kXVYB7uoyi2Xu5eS7otz2AT4CzJY0K237amEGRLPBxCvEm5mZmZlZLrhbl5mZmZmZ5YKTEzMzMzMzywUnJ2ZmZmZmlgtOTqymSApJr6vC8+6fBoHniqRJkpYVZqQzMzMzqyYnJzbgJJ0u6dou257oYdsxlY1uYFQrCeqviHg2IjYqmvHtFknHVzsuMzMzq01OTmydSFrWj+K3AfsUrRezOdAI7NZl2+tSWST9QtLUdPur6xDfZEkP911yjfIriqZg7Lr/DEmn9jeO9NhtgV8AW6zL4weLtE6KP1PMbC2SJkp6WtLG6f6YdH+rAXq+T0v6aLr9MUlbFO3r/H5Zz+c4Q9Lzks4sw7HeIumR/nxvmQ1VPpGwSriXLBnZJd3fD7gZeKzLticLq6sDrwHXSVoCnCXpLQCStkhJxMaFg0vaVdJLaXVcJH0C+Buwg6TrevrySwv8/a+kZ1OMK4C90r79Jc2TdIqkhcApwJuKHruJpD9JWiLpXklnS/p72ndbKvZgSuKmAcenfadIWihpvqQe1xNJLRhnS/pH6nb1p/SclxY95+Si8nunbYvT7727HOssSXdIWirpekmbpn2TUytPg6RvAm8BfpSe80clHvubku4gWyNlm55ek5nVroh4Dvgp2XpLpN8XRMS/Buj5zo+IS9Ldj1F0cSgijo+IR8r0VOdExNfX9yARcTvZelNmNc/JiZWNpK0k3SjpofR7Utp1AfAKcKWkp8gW+bsd+DtwrqQ5wLeBZklHp8ccTPaF8lNAwE3KFvFrIlsM873pOU8lWxTsSmBnSU8DPwZuBR5Nz/NbSd9VthAiZCvNkp5zO7IEaX+yRROLv2TGA6cDs4H7gHenq33bkq1kvk/adwbZiuvDJN1FtignAKnL1OWFKgJGAVsCxwE/ljSmlyo9hmxRrS2BbYE7gV8BG6fX9o1UBxsDfwbOAzYBvk+2cOcmRcf6IFm9j0t1uFYrUER8LdXXiSnuE0s89keAE4ARwICcaJjZkHAOsKekLwD7At/rWiBdMPmnpIvTd8mVkjZI+w6S9ICk2ZIulNSctn8rtTo8JOl/07YzJJ2avlOmAZdKmiVpeLqoMi2Vm56O97CkbxfFsSxdeHlQ0l2SNuvrxUnaSNKv0vEekvTeomN9W9J9kv4maY8Uw1OSjljvWjUbYpycWDn9CLgkInYGLiU7oS1YDMwCDgcOJDsJDrKuXDuRXXXfuKj8AmBxRHwl7VvG6itui4HpRWXfAPyG7MR9AXAiWTIE8D/A7gARUWj5+ICkrYFPAl+MiFfIWmpeZHXish1ZMrE18G5gAtACvJ4s2dqUrJXlZLJWlYvJWg3OLXqe7pwZEa1p1d5l6Xg9+VVEPBkRi4G/kLUs/S0i2oDfAbumcu8EnoiIX0dEW0T8Fvgn8K4ux3o8IlYAV7C6xaovpRz7ooiYk/a3lnhcM6sx6fPhS2RJyhciYlUPRV9P1qqyM7AE+IykYcBFwAciYieyi0n/kS6gvBvYMZU/u8tzXgnMBD4UEbukz0Aga4knu0h1INln4pskHZV2bwjcFRFvJOtu/MkSXuJ/kX1v7ZRiuanoWLdExO7A0hTj21Pc690lzGyocXJi5bQXWZIA8GuyK2MFf0z35wONEfEEWTIynKw1YXuyhKVgAvA7SYvJPthHkSUEkCUne6UvlkI3ogeB0cBI4FzgU8AOZElKA1lCUhhPMprsStoGwH2SXgUeAiYDY1OZnYFlEbE0IpYAM4DWFMPe6ZhXAD8ja2F5jqzl4He91E+kxKJgObBRL+UXFN1e0c39wmO3YO0Wi3+RtbgU/Lsfz1uslGM/V+KxzMwOJfseeEMvZZ6LiDvS7f8j++54PfB0RDyetl9M1h14CbAS+IWk95B9vpXqTWRJw4vps/nSdEyAVcA16fZ9ZN8PfXkbWcs9ABGxqOhYf023ZwO3pkRtdonHNaspTk5sIEXR7TlkCcYJQEfa1gq8mra9QPpSUTa+ZBJwGjCGrFVjMVlLRuHk/nrg/WRJxuy0L8hOlD9F9mX2aESMJkuMPhkRhdaCA4Dfk53g75jK7JzK93XSXpdibgPel67E7QBMLLlWyu8FoOu4mknA8+twrOhyv5Rjd32MmdlaJO1C1mKwJ/BFSeN7KNr1MyXIPuPXLpglFXuQfaYfxeokoKSQetnXGhGFONrJLkiVcrzuPg+Lj9VB1gpPRHSUeFyzmuLkxMrpH6zuFvUhsjElBavImtZPJvugJ+3vSNvuIRv3AVkLRJAlAQ1APVmLCGStB+PIWjKOJevaNDsiXiVLYG4lGyfyeQBJo4CXyJr/G9MxJpO12PwcOEfSuLS9QdI70u0HycaQDJc0gtXdmJYDT6d4z5C0gaQjgY+SNde/N5VbQuX+v64FtpP0wTSw/QPAVFZf9euPBaw5qL2cxzazGiVJZGMIvxARzwLfBf63h+KTJO2Vbk8n+674JzBZq6do/whwq6SNgFGpq+wX6L7L6lKy75Wu7gbeKmlTZTNHTif7DllX15N1KwayGcnW41hmNcvJia2rDZTNZlX4OZksIfi4pIfIvjhO6vKYW8kSi0Jy8nvgibRtW7IvisXAdWTdsX5P1oXorvSY01NT+JnAV8nGqixjdXenjwMfAJrJkokdyAauNwKPAPencmeTJT1fAeam4xea1wtjQJ4ga1mZleIo7nL2IbJuBIeTfen9BCiMxThZ0j1kfZSbJL0q6f2lVOi6ioiXUyynAC8DXwYOj4iX1uFw5wJHS1ok6bwyH9vMatcngWcj4oZ0/yfA9pLe2k3ZR4Fj03fJxsBPI2Il2Wf87yTNJruwdT5Z0nFNKnsr8MVujncRcH5hQHxhY0TMJ7uYdTPZBan7I+Lq9XiNZwNj0uD6B8la6c2sn7S6pdGs8iRtFBHL0uxP9wD7RMS/+3rcAMQxGbgmInrrB93b479NNg7jIxERyhaTnB4RRxaVWVZCtzEzs5q1vp/FlSTpDLKxiT21APX3eJMZJK/dbCC5r6NV2zWSRpNNb3tWNRKTpB0YJWlW0diUHknanizm2WSDKo8jmxZzVuq+8CrwiVR2W7LWlwXdH83MzAahZcAJkkau71onaazlT8i6IZvVNLecmK0DSW8i68q1BbCQbNaub4X/oczKQtKFZF0KF3Z3JTldBDiXbOG65cDHIuL+ruXMzGxwcXJiZma5I2k/sivTl/SQnBwGfI4sOXkz2RpDb65slGZmVm4eEG9mZrkTEbexejHV7hxJlrhERNwFjO5lalozMxskhsSYk0033TQmT55c7TDMzHLrvvvueykixvZdctDYkjUXAJ2Xts3vWlDSCWTrKbHhhhvuvv3221ckQDOzwaja3xdDIjmZPHkyM2fOrHYYZma5Jelf1Y6hzLpbQK/bfsoRcQFwAcC0adPC3xdmZj2r9veFu3WZmdlgNA+YWHR/AvBClWIxM7MycXJiZmaD0Qzgo8rsCSxOi+qZmdkgNiS6dZmZ2dAi6bfA/sCmkuYB3wAaASLifOBaspm65pJNJfzx6kRqZmblVJHkRNIzwFKyhe7aImKapI2By4HJwDPA+yNikeeuNzOziJjex/4APluhcMzMrEIq2a3rgIjYJSKmpfunATdGxBTgxnQf4FBgSvo5AfhpBWM0MzMzM7MqqeaYkyOBi9Pti4GjirZ77nqzIW7FqnYWLl3JytZ2vBismZmZQeXGnARwvaQAfpamddysMHgxIuZLGpfKljR3ffG89ZMmTRrg8M2sICJYvKKVUcMbyXph9t9j/17KO8+7nbaOLCkRUF8nhjfW84fP7M2UzUaUMWIzMzMbLCqVnOwTES+kBOQGSf/spWxJc9d3nbe+PGGaWbGOjuDA791CU30d131xP5asaGO/797M4hWt1AmGN9bz6+PfzG6TxnQ+pr0jeHT+Eu5++hV+dNMTtLR1UF8nmurr+J/37MTrxm3Eh395NxJstckGtHdE588rr63iXT/6O994145M38MXHczMzGpNRZKTiHgh/V4o6SpgD2CBpPGp1WQ8sDAV99z1ZjmwdGUrX7z8QZ55eTkA039+FwuWtLBkRSvjRw0jIli0vJUP/OxOvnbYDgxrrOdbf/0nS1e00Z66aTU31DG8sZ72CJasbOVTv74PgIY68ZeT3rJWC8nCJSt52/dv5fQ/zGbf123KxI03qOyLNjMzs6oa8ORE0oZAXUQsTbcPBs4km6P+WOBb6ffV6SEzgBMlXQa8Gc9db1ayF15dwfvO/wer2oPP7r8tb5w4ml0mjgbg6lkv8KUrH2TsRs3c/pUDqa8TLy9r4aHnF3Pmnx6hpa2dFavaaWnrYPImG/LEwqW0tgdfP3wqjfXiv//0CAC/+/ReTJu8MQCvLl/F5y+bxRlpX3NDHZts1MTX3rkDe2y9MeNHDe+Mra29g5sfe5HT//AQm48c1m3XrXEjh/H99+/C8ZfMZNHyVU5OzMzMakwlWk42A65KfdMbgN9ExF8l3QtcIek44Fngfam85663QeNfL7/GFqOH01i/5twS7/3JHSxraePqE/dlWGN9r8fY/7s388prq/jDZ/bmdeNG8Nwry3nvT//B8KZ6rvvCfgxrrO8cMN51jEdbewcHfu9Wlq9qo6Wtg6Ur24Bs/EZxwjCssZ7FK1ppqq/jhcUr+eQlM9li9DAuvftZiseiD2usY1hDPVuMHsYLi1ew+chhfGLfrQF4z24TaI9g5LDGzvKjN2jiVx97E4f+4DaaGur40+f27XEcSkN9HW+fuhlvn/r2XuujqSGry1VtHb2WMzMzs6FnwJOTiHgKeGM3218GDupmu+eut0HhxkcXcNzFMxk1vJF7v/a2zpPqBUtW8sj8paxobWfHb1zHmA0aef3mI7j3mUVsNqKZ2758AJJo7wjOuuYRnnl5OQLe9cM7+NCbJ/Hbe55l+ap2AtjpjOtoqq9jRWs7DXV1nHzwdkzfYxKjhjfS3hF86cqHePaV5TTWi+aGerYYNYzLP7UXE8YMZ8GSFv4+9yXO/NMclq5s5UvveD2ffuu2/Obuf/FfV89BwAfeNJH37DaB8aOGMW5kM80NPSdSGzZ3/3FRXyeuP/mtZatXJydmZma1yyvEm62DJxYs5aTLZrHFqGG8sHglX7x8Fv/vvTvx+L+XcvIVD1InOOvIHfnB357g1eWtLF3ZRnN9Hc8tWsFZ1zzKHluP4ZQrHuS1Ve0cv+/WHPeWrTn4nNv4xd+fZs9tNuZ779+F515Zzqf/7z46OoKxI5pZsaqdb/3ln3znr//ksJ3GEwF/nj2fL73j9Xz2gNetFePmo4Zx9O4TOHr3CWts/8hek9lr200YMayRzUYOq1SVlaw5JSct7U5OzMzMao2TE7M+vPmbf2PJyjZ+OH1XDtphHIedeztPvfQaI4Y1cuV/7M21s+dz9p8f5c+zs6FR9XXiyk/vxa6TxvCRvSZ3HqejIzjzmke48I6nufCOp2luqGPbsRvyn4dPBeCB/3o7D857lV0njqGuTmw5ejizvn7wGrEcft7tLFzawl8f/jdtHcFJB03pNjHpy+vG5Xeq3kLLSUurkxMzM7Na4+TEhoy3fudmXlzWQkcEdRJH7bolO4wfyTMvvcYVM59jVVsHre0dbNjcwBWf2ovtNx/BO8/7O6+1tPHlQ7ZnyzHDef1mIxjetLpr022Pv8iCpS3U14njL5lJQ51o6wjq68T5H96NLUYP5/i3bMNv73mWltYO/vPwqey+1RjGjmheK766OvGNd03ltsdfpE7w1y/sR0PRWJWG+jp232rjXl/jNZ9/CwCt7R386+XX2HbsRmWqvfwotJyscsuJmZlZzXFyYoPW0pWtbNDUQH2duPDvT/OvV5azYXM9GzRkU9f+adYL/ObuZ5Fgw6Z6NmpuoKFevLxsFYeeezvNDXW0pHENn/3N/Z3H3aCpnrEbNTPjxH356lWz2WbshvzpxH057NzbWbKylf86fCqHvmH8GknMjafsX1LMkrjp1NLK9qaxvi7XrR/rozDuxWNOzMzMao+TExuU7nn6FY654E7qJEYMa2DR8lYO2XFzfvTBXTtbI9o7gvlpxqniFopXl6/iHT+4jZWtHZx15Bt4y3ab8uryVp59ZTlznl/MhXc8w79eWc6uZ11PR8AVn9qLDZsbuPXLB1Tr5daUzm5dbe1VjsTMzMwqzcmJDQoLl6zkyRdfY+r4kTzz8mt84qJ7aWqoY8OmBl5d0cqo4Y2cO32XNZKQ+joxYcza62SM3qCJu7/6tjW2jR81nB3Gj+QdO27OF9++Hbc+/iKf/c39jBzWyB5b997Vysqrqd6zdZmZmdUqJye23uYuXMqxF95DBFz3xf0YUbQOxrp6eVkL9z6ziP/+0xyWrGjltVWrr6KL7Or6LV/an/Gjhve4Bsi6ksT+rx/HnP8+pCzHs/7xVMJmZma1y8mJrbOOjmD3s29g0fLWzm2Hnns7Xz5kexavaOWnN89l7Ihmrj5xXwDmLVrO84tW0NhQR1t78LWrZtMRwY8+uBvbjt2IBUtWMueFJfzxgee5bs6/CbJEZMPmek49eDt23GIUc15YzCV3/ovxo4Z1rj5erqTE8qHZyYmZmVnNcnJiJWtt7+DR+UvYfvORNDXUcf5tT7JoeStbjBrGH0/ch+deWc4Hf343n//tA52Pmb9kJefd+ATPvPwaf7j/+W6Pe+i5t69xv6FOHP+WrTnkDePZcYuRa6ywfsD24zjxwCkD8wItFxrq66gTnZMVmJmZWe1wcmJrae8IVrV1dM5G9fKyFq5/ZAE/uWUuz72yguGN9XzjXVP5/vWP886dx/Oj6bsiiXEjhvHA19/OrOdeZfImG1JfJ75+9cN8/4bHqRMcv+/WHLD9OFa1d9BQJzbZsJmGevHo/CV856//pKmhju8e/UZ2njC6s2uP1aamhjpPJWxmZlaDnJzYWnY/+wZeXd5KY70Q6jxJfOOEURy712R+fvtTnPaH2TQ11PE/795pjW5VGzQ1sPe2m3be/9lHpvHw84vZfNQwNt1o7bU/ALbbbARH7rLlwL4oG1SaG+rdrcvMzKwGOTmxtbS0djCssY4RzQ10BHz6rduy66TR7L7VGCTx/jdN5NAf3M6YDRoZNbzvwe9v2HJUBaK2oaSpoc5TCZuZmdUgJye2ls1GNrPzhNGcN33XbvePHNbIHacdWOGorJY01dd5zImZmVkNcsd+W0tLW9ZyYlYtzQ117tZlZmZWg3wGamtpaeuguaG+74JmA6TJyYmZmVlNcnJia2lpbe9ca8KsGpob3K3LzMysFvkM1NbS0tZBs7t1WRW55cTMzKw2+QzU1tDW3kFbR7hbl1VVc0O91zkxJB0i6TFJcyWd1s3+SZJulvSApIckHVaNOM3MrHycnNgaCieE7tZl1eSWE5NUD/wYOBSYCkyXNLVLsf8EroiIXYFjgJ9UNkozMys3n4HaGlpanZxY9WVTCXudkxq3BzA3Ip6KiFXAZcCRXcoEMDLdHgW8UMH4zMxsAPgM1NZQGITc3OhuXVY9bjkxYEvguaL789K2YmcAH5Y0D7gW+Fx3B5J0gqSZkma++OKLAxGrmZmViZMTW0PharVbTqyavM6JAepmW3S5Px24KCImAIcBv5a01odXRFwQEdMiYtrYsWMHIFQzMyuXip2BSqpPgxavSfe3lnS3pCckXS6pKW1vTvfnpv2TKxWjFbWceEC8VVGTpxK2rKVkYtH9Cazdbes44AqAiLgTGAZsWpHozMxsQFTy8vhJwKNF978NnBMRU4BFZF8ypN+LIuJ1wDmpnFWIx5xYHrhblwH3AlPShawmsgHvM7qUeRY4CEDSDmTJifttmZkNYhU5A5U0AXgn8It0X8CBwJWpyMXAUen2kek+af9BqbxVQGe3Lq9zYlXU3FBPi6cSrmkR0QacCFxHdmHrioiYI+lMSUekYqcAn5T0IPBb4GMR0bXrl5mZDSINFXqeHwBfBkak+5sAr6YvH1hzoGPnIMiIaJO0OJV/qfiAkk4ATgCYNGnSgAZfS9yty/Kg0HISEfjaRO2KiGvJBroXb/t60e1HgH0qHZeZmQ2cAb88LulwYGFE3Fe8uZuiUcK+1Rs8wHFAeEC85UHh/eeFGM3MzGpLJVpO9gGOSCv3DiObk/4HwGhJDan1pHigY2EQ5DxJDWRz179SgTiNojEn7tZlVdRUn5KTtg634pmZmdWQAT8DjYjTI2JCREwmG9B4U0R8CLgZODoVOxa4Ot2eke6T9t/kPsSV425dlgeF5NiD4s3MzGpLNS+PfwU4WdJcsjElv0zbfwlskrafDJxWpfhqkrt1WR4UWk48nbCZmVltqdSAeAAi4hbglnT7KWCPbsqsBN5XybhstdUtJ05OrHqaGtxyYmZmVot8BmprWD3mxN26rHoK3Qo9IN7MzKy2ODmxNbhbl+WBW07MzMxqk89AbQ0tbR3UCRrqvLaEVU8hOSkky2ZmZlYbe1HiuQAAIABJREFUnJzYGlrS1K1e+M6qyQPizczMapOTE1tDS2u71zixqvNUwmZmZrXJZ6G2hqzlxG8Lqy63nJiZmdUmn4XaGlq8IrflQLMHxJuZmdUkJye2hpa2drecWNV1TiXs5MTMzKym+CzU1tDS2uExJ1Z1nVMJe50TMzOzmuKzUFuDu3VZHnROJdzqqYTNzMxqiZMTW4O7dVkeuOXEzMysNvks1Nbg2bosDzwg3szMrDb5LNTW0NLqbl1WfQ11QvJUwmZmZrXGyYmtoaXNizBa9Umiqb7OLSdmZmY1xmehtgZ367K8aG6oc8uJmZlZjfFZqK3Bs3VZXjQ11HtAvJmZWY1xcmJraGn1bF2WD80NdbS0OjkxMzOrJT4LtTW0tHkRRsuHpoY6t5yYmZnVGJ+FWqe29g7aOsLduiwXmhvqWNXmRRjNzMxqiZMT61QYfOxuXZYHTR4Qb2ZmVnN8FmqdnJxYnngqYTMzs9rjs1Dr1JK60DQ3uluXVV9zo5OTWifpEEmPSZor6bQeyrxf0iOS5kj6TaVjNDOz8mroT2FJG0fEKwMVjFVXYWYkt5xYHjTV17F0ZVu1w7AqkVQP/Bh4OzAPuFfSjIh4pKjMFOB0YJ+IWCRpXHWiNTOzcunvWejdkn4n6TBJKuUBkoZJukfSg+nK1n+n7VtLulvSE5Iul9SUtjen+3PT/sn9jNHW0epuXW45sepr8lTCtW4PYG5EPBURq4DLgCO7lPkk8OOIWAQQEQsrHKOZmZVZf5OT7YALgI8AcyX9j6Tt+nhMC3BgRLwR2AU4RNKewLeBcyJiCrAIOC6VPw5YFBGvA85J5awCCt26hnkqYcsBL8JY87YEniu6Py9tK7YdsJ2kOyTdJemQ7g4k6QRJMyXNfPHFFwcoXDMzK4d+nYVG5oaImA4cDxwL3CPpVkl79fKYZeluY/oJ4EDgyrT9YuCodPvIdJ+0/6BSW2ls/bjlxPIkm0rYyUkN6+5zP7rcbwCmAPsD04FfSBq91oMiLoiIaRExbezYsWUP1MzMyqdfyYmkTSSdJGkmcCrwOWBT4BSgx4GIkuolzQIWAjcATwKvRkShQ3nxFbHOq2Vp/2Jgk26O6SthZdY55sQtJ5YD2VTCXuekhs0DJhbdnwC80E2ZqyOiNSKeBh4jS1bMzGyQ6u9Z6J3ASOCoiHhnRPwhItoiYiZwfk8Pioj2iNiF7MtlD2CH7oql36VcLfOVsAHQOVuXB8RbDjTVe52TGncvMCWNT2wCjgFmdCnzR+AAAEmbknXzeqqiUZqZWVn19yz0PyPirIiYV9gg6X0AEdHn2JCIeBW4BdgTGC2pMFtY8RWxzqtlaf8owDOEVYC7dVmeeCrh2pZazk8ErgMeBa6IiDmSzpR0RCp2HfCypEeAm4EvRcTL1YnYzMzKob/JSXfzzJ/e2wMkjS30AZY0HHgb2RfNzcDRqdixwNXp9ox0n7T/pohYq+XEys8tJ5YnzfV1rGrvwP/+tSsiro2I7SJi24j4Ztr29YiYkW5HRJwcEVMjYqeIuKy6EZuZ2foqaZ0TSYcChwFbSjqvaNdIoK+FCMYDF6c56+vIrn5dk650XSbpbOAB4Jep/C+BX0uaS9ZickzJr8bWi8ecWJ40NdQRAa3tQVOD58QwMzOrBaUuwvgCMBM4ArivaPtS4Iu9PTAiHgJ27Wb7U2TjT7puXwm8r8S4rIzcrcvypCm14K1q7+i8bWZmZkNbSclJRDwIPCjp0qIZtmyIcbcuy5NCkryqrQOaqxyMmZmZVUSp3bquiIj3Aw9IKu4ALrJuvzsPSHRWUZ3dupycWA4UWks8nbCZmVntKLVb10np9+EDFYhVX0tbB/V1oqHeyYlVX1N6H3rGLjMzs9pR0lloRMxPN18CnouIf5F1tHgjay+KZYNUS1u7W00sNwoTMzg5MTMzqx39PRO9DRgmaUvgRuDjwEXlDsqqo6Wtw8mJ5Uah5cQLMZqZmdWO/p6JKiKWA+8BfhgR7wamlj8sq4aW1g7P1GW5sXrMiZMTMzOzWtHv5ETSXsCHgD+nbaWOW7Gca2lr9xonlhudUwk7OTEzM6sZ/T0TPYlsRfirImKOpG3IVnq3IcDduixPOqcSbndyYmZmViv61eoREbeRjTsp3H8K+Hy5g7LqyJITd+uyfCgkyi2tnkrYzMysVvQrOZG0HXAqMLn4sRFxYHnDsmrwbF2WJ8UrxJuZmVlt6O94kd8B5wO/AHw5c4hpae3wmBPLjUKi/P3rH+fwnbeocjRmZmZWCf1NTtoi4qcDEolVXUtbByOHN1Y7DDNgdcvJCfttU+VIzMzMrFL6e5n8T5I+I2m8pI0LPwMSmVWcu3VZnnidEzMzs9rT35aTY9PvLxVtC8CXNocAz9ZledLcmGbrcnJiZmZWM/o7W9fWAxWIVZ8XYbQ8KbSceEC8mZlZ7ejXZXJJG0j6T0kXpPtTJB0+MKFZpXkRRsuTxnoBnkrYzMyslvT3TPRXwCpg73R/HnB2WSOyqnG3LssTSTQ11NHilhMzM7Oa0d8z0W0j4jtAK0BErABU9qisKpavaufPD82vdhhmnZob6jzmxMzMrIb0NzlZJWk42SB4JG0LtJQ9Kqu4tnR1evoek6ocidlqTk7MzMxqS39n6zoD+CswUdKlwD7Ax8sdlFVeYbpWjzmxPGmqr/NUwmZmZjWkv7N1XS/pPmBPsu5cJ0XESwMSmVVUZ3Li2bosR5ob691yYmZmVkP6O1vXjRHxckT8OSKuiYiXJN04UMFZ5bS0ZTMieUC85UlTvbt1mZmZ1ZKSzkQlDUsrwW8qaUzR6vCTgS36eOxESTdLelTSHEknpe0bS7pB0hPp95i0XZLOkzRX0kOSdlu/l2ilaGl1ty7Ln6aGus7E2czMzIa+Us9EPwXcB2yffhd+rgZ+3Mdj24BTImIHsu5gn5U0FTgNuDEipgA3pvsAhwJT0s8JwE9LfjW2ztyty/KoqaHOizCamZnVkJKSk4g4N60Of2pEbBMRW6efN0bEj/p47PyIuD/dXgo8CmwJHAlcnIpdDByVbh8JXBKZu4DRksb3/6VZf7hbl+WRZ+uqbZIOkfRYakk/rZdyR0sKSdMqGZ+ZmZVffwfE/1DS3sDk4sdGxCWlPD51A9sVuBvYLCLmp8fPlzQuFdsSeK7oYfPStjUW4JB0AlnLCpMmefrb9eWWE8ujpoY6Xmtpq3YYVgWS6sla5t9O9j1wr6QZEfFIl3IjgM+Tfa+Ymdkg198B8b8G/hfYF3hT+inpSpWkjYDfA1+IiCW9Fe1mW6y1IeKCiJgWEdPGjh1bSgjWC485sTzyVMI1bQ9gbkQ8FRGrgMvIWta7Ogv4DrCyksGZmdnA6O86J9OAqRGxVrLQG0mNZInJpRHxh7R5gaTxqdVkPLAwbZ8HTCx6+ATghX7Gaf20stXduix/PJVwTeuuFf3NxQUk7QpMjIhrJJ3a04Hc0m5mNnj090z0YWDz/jxAkoBfAo9GxPeLds0Ajk23jyUbXF/Y/tE0a9eewOJC9y8bOO7WZXnklpOa1msruqQ64BzglL4O5JZ2M7PBo78tJ5sCj0i6B2gpbIyII3p5zD7AR4DZkmalbV8FvgVcIek44FngfWnftcBhwFxgOV6BviI8IN7yKJtK2MlJjeqrFX0E8AbgluwaGJsDMyQdEREzKxalmZmVVX+TkzP6+wQR8Xe6vwIGcFA35QP4bH+fx9ZPZ8uJx5xYjmSzdXmdkxp1LzBF0tbA88AxwAcLOyNiMdkFMwAk3UI2o6QTEzOzQay/s3XdOlCBWHW1dI45cbcuy49mr3NSsyKiTdKJwHVAPXBhRMyRdCYwMyJmVDdCMzMbCCUlJ5KW0s2MWWQtIhERI8salVXc6jEnbjmx/GhK65xEBKnrjtWQiLiWrKtv8bav91B2/0rEZGZmA6uk5CQiRgx0IFZdTk4sj5rq6+gIaOsIGuudnJiZmQ11PhM1IBsQ31AnGur9lrD8KIyB8nTCZmZmtcFnogZkizC61cTypqneyYmZmVkt8dmoAVm3ruZGD4a3fGlKEzR4OmEzM7Pa4OTEgKxbl1tOLG+aGtxyYmZmVkt8NmpAajlxcmI5U3hPrmr3WidmZma1wGejBhTGnLhbl+VLoeXE3brMzMxqg5MTA1K3Lq8Obznj5MTMzKy2+GzUAHfrsnxq9pgTMzOzmuKzUQMKyYm7dVm+ODkxMzOrLU5ODPBsXZZPTfWeStjMzKyW+GzUgDQg3mNOLGc8lbCZmVlt8dmoAe7WZfnkqYTNzMxqi5MTA9yty/LJLSdmZma1xWejBni2LssnTyVsZmZWW3w2akBhzIm7dVm+eLYuMzOz2uLkxIgId+uyXHLLiZmZWW3x2ajR1hF0BE5OLHea6p2cmJmZ1RKfjVrniZ9n67K8kURTfZ27dZmZmdUIJydGS2s2TavXObE8am5wcmJmZlYrKnI2KulCSQslPVy0bWNJN0h6Iv0ek7ZL0nmS5kp6SNJulYixlq1uOXFyYvnT1FDndU7MzMxqRKXORi8CDumy7TTgxoiYAtyY7gMcCkxJPycAP61QjDXL3bosz5oa6mhpdcuJmZlZLahIchIRtwGvdNl8JHBxun0xcFTR9ksicxcwWtL4SsRZq1raUrcut5xYDjU31LGq3cmJmZlZLajm2ehmETEfIP0el7ZvCTxXVG5e2rYGSSdImilp5osvvjjgwQ5lhavSHnNiedTkMSdmZmY1I49no+pmW6y1IeKCiJgWEdPGjh1bgbCGLnfrsjxraqjzVMJmZmY1oprJyYJCd630e2HaPg+YWFRuAvBChWOrKe7WZXnmqYRrl6RDJD2WJkg5rZv9J0t6JE2ecqOkraoRp5mZlU81z0ZnAMem28cCVxdt/2iatWtPYHGh+5cNjM5uXW45sRxqbqh3clKDJNUDPyabJGUqMF3S1C7FHgCmRcTOwJXAdyobpZmZlVulphL+LXAn8HpJ8yQdB3wLeLukJ4C3p/sA1wJPAXOBnwOfqUSMtayzW5fHnFgONTXU0eIB8bVoD2BuRDwVEauAy8gmTOkUETdHxPJ09y6ylnYzMxvEGirxJBExvYddB3VTNoDPDmxEVszduizPsqmEvc5JDepucpQ391L+OOAv3e2QdALZ1PRMmjSpXPGZmdkA8NmoeUC85ZqnEq5ZJU2OAiDpw8A04Lvd7fcEKmZmg0dFWk4s3wpXpd1yYnnkqYRrVkmTo0h6G/A14K0R0VKh2MzMbID4bNQ85sRyrdlTCdeqe4EpkraW1AQcQzZhSidJuwI/A46IiIXdHMPMzAYZn41a54lfU73fDpY/nkq4NkVEG3AicB3wKHBFRMyRdKakI1Kx7wIbAb+TNEvSjB4OZ2Zmg4S7dRktbe001IkGJyeWQ82Nnkq4VkXEtWQzOBZv+3rR7bdVPCgzMxtQPhs1VrZ2eLyJ5VZTvQfEm5mZ1QqfkRotbe00N3qmLsunpoY62juCNicoZmZmQ56TE6PFLSeWY4X3pltPzMzMhj6fkRotbU5OLL+aCsmJx52YmZkNeT4jtaxblxdgtJwqJCeeTtjMzGzoc3JiWcuJ1zixnCpMce2WEzMzs6HPZ6TmMSeWa4XJGtxyYmZmNvT5jNTcrctyzS0nZmZmtcPJidHS1sEwd+uynGruHHPSXuVIzMzMbKD5jNTSbF1uObF8avZsXWZmZjXDyYmlbl1+K1g+NXmdEzMzs5rhM1LLBsS7W5flVOdUwq1OTszMzIY6n5Gau3VZrrnlxMzMrHY4OTF367JcKyTOHnNiZmY29PmMtMZFRGo58VvB8qnJA+LNzMxqhs9Ia1xrexCxeqE7s7wprHPiqYTNzMyGPicnNa5wwueWE8urwmQNXiHezMxs6PMZaY0rnPA5ObG86lwh3gPizczMhrzcnpFKOkTSY5LmSjqt2vEMVauTE3frsnzq7NblqYTNzMyGvFwmJ5LqgR8DhwJTgemSplY3qqGppTV16/I6J5ZTdXWisV5uOTEzM6sBDdUOoAd7AHMj4ikASZcBRwKPdFd4WUsbh557ewXDGzoKY04KV6fN8qi5oZ7L732OWx57sdqhDEp7TB5T7RDMzMxKktfkZEvguaL784A3FxeQdAJwAsD4iZOZMGZ45aIbYt6wxSimTd642mGY9ejTb92GB+ctrnYYg9amGzVXOwQzM7OS5DU5UTfbYo07ERcAFwBMmzYtfv7RaZWIy8yq4MQDp1Q7hEHv89UOwMzMrAR57cszD5hYdH8C8EKVYjEzMzMzswrIa3JyLzBF0taSmoBjgBlVjsnMzMzMzAZQLrt1RUSbpBOB64B64MKImFPlsMzMzMzMbADlteWEiLg2IraLiG0j4pvVjsfMzCqrr/WuJDVLujztv1vS5MpHaWZm5ZTb5MTMzGpXietdHQcsiojXAecA365slGZmVm5OTszMLI8617uKiFVAYb2rYkcCF6fbVwIHSeputkczMxskcjnmpL/uu+++ZZIeq3YcJdgUeKnaQfTBMZaHYyyfwRDnYIjx9dUOoJ/6XO+quEwaq7gY2IQuf4vidbGAFkkPD0jEg8tgeM9Wgush43rIuB4yVf2+GBLJCfBYROR+oRNJM/Mep2MsD8dYPoMhzsESY7Vj6Kc+17sqscwa62INhr9VJbgeMq6HjOsh43rIVPv7wt26zMwsj0pZ76qzjKQGYBTwSkWiMzOzAeHkxMzM8qiU9a5mAMem20cDN0XEWi0nZmY2eAyVbl0XVDuAEg2GOB1jeTjG8hkMcTrGMutpvStJZwIzI2IG8Evg15LmkrWYHFPCoQdVPQwg10PG9ZBxPWRcD5mq1oN8kcnMzMzMzPLA3brMzMzMzCwXnJyYmZmZmVku5C45kXShpIV9zUMv6U2S2iUdXbTtWElPpJ9ji7bvLmm2pLmSzlvfRbrWNUZJu0i6U9IcSQ9J+kBR2YskPS1pVvrZZX1iXJ8407b2olhmFG3fWtLdqY4vTwNVKx6jpAOK4pslaaWko9K+stZlXzFK2l/S4qLn+3rRvkMkPZbee6cVba9oPfYUo6SJkm6W9Gh6X55U9JgzJD1f9JjDqhFj2vdM+h+eVTzFoaSNJd2Q6vEGSWPWJ8b1iVPS67u8J5dI+kLaV9G6LIpzVvq73lq0vSLvyWrr6XUW7W9Or3Nuet2TKx/lwCuhHk6W9Iiy76QbJW1VjTgHWl/1UFTuaEkhaUhOJ1tKPUh6f3pPzJH0m0rHWAkl/F9MSt+ND6T/jfX6zM6jEr7rpOyceW6qg90qFlxE5OoH2A/YDXi4lzL1wE3AtcDRadvGwFPp95h0e0zadw+wF9mc+H8BDq1SjNsBU9LtLYD5wOh0/6JCuWrXZdq+rIfyVwDHpNvnA/9RrRiL9m9MNhh2g4Goy75iBPYHrukh7ieBbYAm4EFgajXqsZcYxwO7pdsjgMeLYjwDOLXa9Zj2PQNs2s327wCnpdunAd+uZpxd/vb/BraqUl2OBh4BJqX74yr9nqzmT2+vs6jMZ4Dz0+1jgMurHXeV6uGAos/O/6jVekjlRgC3AXcB06odd5XeD1OAB1h9/jSu2nFXqR4uKHwGAlOBZ6od9wDUQ1/fI4eRnTML2BO4u1Kx5a7lJCJuo+956j8H/B5YWLTtHcANEfFKRCwCbgAOkTQeGBkRd0ZW25cAR1Ujxoh4PCKeSLdfSPvGrk8sAxFnTyQJOBC4Mm26mCrVZRdHA3+JiOXrE0tPSoyxO3sAcyPiqYhYBVwGHFnFeuzucfMj4v50eynwKNmq22W3HvXYmyPJ6g/KUI9QtjgPAp6MiH+tbzzdKSHGDwJ/iIhnU/nC/07F3pNV1u3r7FKm+L1zJXBQqoehpM96iIibiz477yJbT2aoKeX9AHAW2QWPlZUMroJKqYdPAj9O51HFnx1DSSn1EMDIdHsUa6+xNOiV8D1yJHBJZO4CRqdz6gGXu+SkL5K2BN5NdmWv2JbAc0X356VtW6bbXbdXI8biMnuQZexPFm3+Zmo6O0dS80DGmGLoLc5hkmZKukupuxSwCfBqRLSl+7moS7Krnr/tsq2idQnsJelBSX+RtGPa1tN7suL12EuMnVK3ll2Bu4s2n5jq8cJydJlajxgDuF7SfZJOKNq+WUTMhyzRAsZVIMbe4izo7j1ZybrcDhgj6ZZUZx9N2/P2nhwoPb3Obsuk172YrB6GklLqodhxZFdKh5o+60HSrsDEiLimkoFVWCnvh+2A7STdkb7/D6lYdJVTSj2cAXxY0jyyXhufq0xoudLfz4+yGXTJCfAD4CsR0d5le3dXvKKX7QOppxgBSJnnr4GPR0RH2nw6sD3wJrJuSl8Z4Bj7inNSREwjuwL7A0nbkt+63IlsLYSCStfl/WTdd94I/BD4YyG8bspW6z3ZU4wASNqIrHXqCxGxJG3+KbAtsAtZF8TvVTHGfSJiN+BQ4LOS9hvgWHrTV102AUcAvyvaXOm6bAB2B95J1qr8X5K2I1/vyYFUyusZaq+5OyW/RkkfBqYB3x3QiKqj13qQVAecA5xSsYiqo5T3QwNZ1679genALySNHuC4Kq2UepgOXBQRE8i6N/06vU9qSdU+IwdjRU8DLpP0DFl3np+kK/vzgIlF5SaQNcPNY81m6sL2asSIpJHAn4H/TM1kQGf3moiIFuBXZM2OA63HOFO3MyLiKeAWsivqL5E16xUW76xqXSbvB66KiNbChkrXZUQsiYhl6fa1QKOkTen5PVnxeuwlRiQ1kiUml0bEH4oesyAi2lMC/XOqV4/F78eFwFVFsSwoNDOn3wPeBaG3OJNDgfsjYkHRYypal2Tvvb9GxGsR8RJZP/o3kqP35ADr6XV2Wya97lGUv9thtZVSD0h6G/A14Ij0uTnU9FUPI4A3ALek75o9gRlDcFB8qf8XV0dEa0Q8DTxGlqwMJaXUw3Fk4/CIiDuBYcCm1JaSPj8GwqBLTiJi64iYHBGTyfoJfyYi/kh25fxgSWNSl4mDgetSV4+lkvZM/Yk/ClxdjRjTFdWryPrwFV9VpegES2R9vXudvWqA4xxT6AqVTrr2AR5JY3ZuJksSAI6lSnVZVGQ6XbrPVLouJW1e6KueuuvVAS8D9wJTlM2C1ETW1WdGNeqxpxjTtl8Cj0bE97s8prhv6bupUj1K2lDSiLR9Q7L/7UIsM8jqDypQj73FWVSkx/dkMuB1SVYPb5HUIGkD4M1k44ly854cYN2+zi5lit87RwM3pXoYSvqsh9Sd6WdkiclQHF8AfdRDRCyOiE2LvmvuIquPmd0fbtAq5f/ij2STJBS+/7cjm2BoKCmlHp4lGzuIpB3IkpMXKxpl9c0APqrMnsDiQjfqARc5mDGg+IfsS30+0EqWtR0HfBr4dDdlL2LNGaY+AcxNPx8v2j6N7GTgSeBHgKoRI/Dh9JhZRT+7pH03AbNTnP8HbFStugT2TrE8mH4fV1RuG7LZz+aSdVtpruLfezLwPFDXpVxZ67KvGIETgTmpvu4C9i567GFkM2A9CXytWvXYU4zAvmTNtA8VvScPS/t+nerxIbIPqfFVinGbtO3BtL+4HjcBbgSeSL83Huj/mz7+3huQJSqjuhyzonWZynyJbMauh8m661X0PVntn+5eJ3Am2UknZCcbv0uv9x5gm2rHXKV6+BuwoOj/f0a1Y65GPXQpewtDcLauEt8PAr6fPjtmk2bwG2o/JdTDVOCO9Dk/Czi42jEPQB309V0n4MepjmZX8n9CKQAzMzMzM7OqGnTduszMzMzMbGhycmJmZmZmZrng5MTMzMzMzHLByYmZmZmZmeWCkxMzMzMzM8sFJyc2qEg6R9IXiu5fJ+kXRfe/J+nkMj/nsnIeLx1zF0mHFd0/Q9KpJTyuXdIsSVsUbdtVUkh6Rzfl3532bV+0bdt0jLK/LjMzM7P14eTEBpt/kK3DgqQ6shVbdyzavzfZ3OR5twvZPOv9tSIidom0YnoyHfh7+t1VYd8xhQ0R8WRE7LIOz21mZmY2oJyc2GBzByk5IUtKHgaWFq1qvwPwgKSNJN0o6X5JsyUdCSDp25I+UzhYarE4Jd3+kqR7JT0k6b+7e/LuykiaLOlRST+XNEfS9ZKGp31vSmXvlPRdSQ+nFWnPBD6QWjA+kA4/VdItkp6S9PlSKiOtVH408DHgYEnDivZtBOxDtrDSMd0ewMzMzCxHnJzYoJJaDNokTSJLUu4E7gb2AqYBD0XEKmAl8O6I2A04APheOpG/DPhA0SHfD/xO0sHAFGAPslaN3SXtV/zcfZSZAvw4InYEXgXem7b/imy11b2A9vQaVgFfBy5PrSCXp7LbA+9Ix/+GpMYSqmQf4OmIeJJsVePi1pijgL9GxOPAK5J2K+F4ZmZmZlXj5MQGo0LrSSE5ubPo/j9SGQH/I+kh4G/AlsBmEfEAME7SFpLeCCyKiGeBg9PPA8D9ZInClC7P21uZpyNiVrp9HzBZ0mhgREQUYvpNH6/rzxHREhEvAQuBzUqoi+lkCRfp9/QS95mZmZnlTkO1AzBbB4VxJzuRdet6DjgFWAJcmMp8CBgL7B4RrZKeAQpdnq4k6wq1OatP3gX8v4j4WS/P220ZSZOBlqJN7cDwVL4/uh6j1/9PSfVkLTRHSPpaer5NJI0AmoADgTdICqAeCElfjojoZ1xmZmZmFeGWExuM7gAOB16JiPaIeAUYTda1685UZhSwMCUmBwBbFT3+MrIxGEeTJSoA1wGfSOM0kLSlpHFdnreUMp0iYhHZeJg906bicR9LgRH9edHdeBvwYERMjIjJEbEV8Huy7lxHA5dExFZp30TgaWDf9XxOMzMzswHj5MQGo9lks3Td1WXb4tQlCuBSYJqkmWStKP8sFIyIOWSJwfMRMT9tu56s29WdkmaTJS1rJA+llOnGccAFku4ka9lYnLbfTDYAvnhAfH9NB67qsu33wAf72GdmZmaWS3IPD7NNaXtrAAAAgklEQVSBI2mjiFiWbp8GjI+Ik9bjeMsiYqMyxVa2Y5mZmZmVg1tOzAbWO1PryMPAW4Cz1/N4S7ouwthfhUUYgQXrGYuZmZlZWbnlxMzMzMzMcsEtJ2ZmZmZmlgtOTszMzMzMLBecnJiZmZmZWS44OTEzMzMzs1xwcmJmZmZmZrnw/wH4xBeFiBxAWAAAAABJRU5ErkJggg==\n", "text/plain": [ "

" ] @@ -487,7 +572,9 @@ } ], "source": [ - "functions.name_plot_options(\"PSD_4PI\", data, log=1, colormap=\"hot\", orders_of_mag=5) # Adjusting PSD_4PI plot\n", + "# Adjusting PSD_4PI plot\n", + "functions.name_plot_options(\"PSD_4PI\", data, log=1, colormap=\"hot\", orders_of_mag=5)\n", + "\n", "plot = plotter.make_sub_plot(data) # Making subplot of our monitors" ] } @@ -508,7 +595,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.7.3" } }, "nbformat": 4, diff --git a/mcstasscript/interface/functions.py b/mcstasscript/interface/functions.py index bfae923a..6c033ca4 100644 --- a/mcstasscript/interface/functions.py +++ b/mcstasscript/interface/functions.py @@ -27,11 +27,18 @@ def name_search(name, data_list): raise InputError( "name_search function needs objects of type McStasData as input.") + # Search by component name list_result = [] for check in data_list: if check.name == name: list_result.append(check) + if len(list_result) == 0: + # Search by filename + for check in data_list: + if check.metadata.filename == name: + list_result.append(check) + if len(list_result) == 0: raise NameError("No dataset with name: \"" + name diff --git a/mcstasscript/tests/test_functions.py b/mcstasscript/tests/test_functions.py index 52545b9e..0feee07a 100644 --- a/mcstasscript/tests/test_functions.py +++ b/mcstasscript/tests/test_functions.py @@ -16,6 +16,7 @@ def set_dummy_MetaData_1d(name): meta_data = McStasMetaData() meta_data.component_name = name meta_data.dimension = 50 + meta_data.filename = name + ".dat" return meta_data @@ -35,6 +36,7 @@ def set_dummy_MetaData_2d(name): meta_data = McStasMetaData() meta_data.component_name = name meta_data.dimension = [50, 100] + meta_data.filename = name + ".dat" return meta_data @@ -110,6 +112,17 @@ def test_name_search_read(self): hero_object = name_search("Hero", data_list) self.assertEqual(hero_object.metadata.dimension, 123) + + def test_name_search_filename_read(self): + """ + Test simple case + """ + + data_list = setup_McStasData_array() + + hero_object = name_search("Hero.dat", data_list) + + self.assertEqual(hero_object.metadata.dimension, 123) def test_name_search_read_repeat(self): """ From 82a377b64765abe858db4aba81cdfe385ef82700 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Mon, 17 Jun 2019 14:59:51 +0200 Subject: [PATCH 038/403] Added support for the SPLIT keyword. The component class has SPLIT as an allowed keyword under initialization, and a method called set_SPLIT for setting the value. The split value has to be an integer. --- mcstasscript/helper/mcstas_objects.py | 17 ++++++++++ .../test_complex_instrument.py | 2 ++ mcstasscript/tests/test_component.py | 34 +++++++++++-------- 3 files changed, 39 insertions(+), 14 deletions(-) diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index 29c48b0d..94e69e2b 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -341,6 +341,9 @@ def __init__(self, instance_name, component_name, **kwargs): JUMP : str Sets JUMP str + + SPLIT : int + Sets SPLIT value comment: str Sets comment string @@ -396,6 +399,11 @@ def __init__(self, instance_name, component_name, **kwargs): self.JUMP = kwargs["JUMP"] else: self.JUMP = "" + + if "SPLIT" in kwargs: + self.SPLIT = kwargs["SPLIT"] + else: + self.SPLIT = 0 if "comment" in kwargs: self.comment = kwargs["comment"] @@ -489,6 +497,10 @@ def set_GROUP(self, string): def set_JUMP(self, string): """Sets JUMP string, should contain all text after JUMP""" self.JUMP = string + + def set_SPLIT(self, value): + """Sets SPLIT value, should contain all text after JUMP""" + self.SPLIT = value def append_EXTEND(self, string): """Appends a line of code to EXTEND block of component""" @@ -514,6 +526,9 @@ def write_component(self, fo): if len(self.comment) > 1: fo.write("// %s\n" % (str(self.comment))) + if self.SPLIT is not 0: + fo.write("SPLIT " + str(self.SPLIT) + " ") + # Write component name and component type fo.write("COMPONENT %s = %s(" % (self.name, self.component_name)) @@ -593,6 +608,8 @@ class is used as a superclass for classes describing each """ if len(self.comment) > 1: print("// " + self.comment) + if self.SPLIT is not 0: + print("SPLIT " + str(self.SPLIT) + " ", end="") print("COMPONENT", str(self.name), "=", str(self.component_name)) for key in self.parameter_names: diff --git a/mcstasscript/integration_tests/test_complex_instrument.py b/mcstasscript/integration_tests/test_complex_instrument.py index b6b8396c..a39bc773 100644 --- a/mcstasscript/integration_tests/test_complex_instrument.py +++ b/mcstasscript/integration_tests/test_complex_instrument.py @@ -90,6 +90,8 @@ def setup_complex_instrument(): guide2.l = "guide_length" guide2.m = 4 guide2.G = -9.82 + + guide2.set_SPLIT = 2 done = Instr.add_component("done", "Arm", RELATIVE="after_guide") diff --git a/mcstasscript/tests/test_component.py b/mcstasscript/tests/test_component.py index ce8cccf4..462fe2a2 100644 --- a/mcstasscript/tests/test_component.py +++ b/mcstasscript/tests/test_component.py @@ -22,6 +22,7 @@ def setup_component_all_keywords(): EXTEND="nscat = 8;", GROUP="developers", JUMP="myself 37", + SPLIT=7, comment="test comment") @@ -38,6 +39,7 @@ def setup_component_relative(): EXTEND="nscat = 8;", GROUP="developers", JUMP="myself 37", + SPLIT=7, comment="test comment") @@ -123,7 +125,6 @@ def test_component_basic_init_defaults(self): def test_component_init_complex_call(self): """ Testing keywords set attributes correctly - """ comp = setup_component_all_keywords() @@ -138,13 +139,13 @@ def test_component_init_complex_call(self): self.assertEqual(comp.EXTEND, "nscat = 8;\n") self.assertEqual(comp.GROUP, "developers") self.assertEqual(comp.JUMP, "myself 37") + self.assertEqual(comp.SPLIT, 7) self.assertEqual(comp.comment, "test comment") def test_component_init_complex_call_relative(self): """ Tests the relative keyword overwrites AT_relative and ROTATED_relative - """ comp = setup_component_relative() @@ -158,12 +159,12 @@ def test_component_init_complex_call_relative(self): self.assertEqual(comp.EXTEND, "nscat = 8;\n") self.assertEqual(comp.GROUP, "developers") self.assertEqual(comp.JUMP, "myself 37") + self.assertEqual(comp.SPLIT, 7) self.assertEqual(comp.comment, "test comment") def test_component_basic_init_set_AT(self): """ Testing set_AT method - """ comp = component("test_component", "Arm") @@ -178,7 +179,6 @@ def test_component_basic_init_set_AT(self): def test_component_basic_init_set_ROTATED(self): """ Testing set_ROTATED method - """ comp = component("test_component", "Arm") @@ -193,7 +193,6 @@ def test_component_basic_init_set_ROTATED(self): def test_component_basic_init_set_RELATIVE(self): """ Testing set_RELATIVE method - """ comp = component("test_component", "Arm") @@ -209,7 +208,6 @@ def test_component_basic_init_set_parameters(self): """ Testing set_parameters method. Need to set some attribute parameters manually to test this. - """ comp = component("test_component", "Arm") @@ -237,7 +235,6 @@ def test_component_basic_init_set_parameters(self): def test_component_basic_init_set_WHEN(self): """ Testing WHEN method - """ comp = component("test_component", "Arm") @@ -251,7 +248,6 @@ def test_component_basic_init_set_WHEN(self): def test_component_basic_init_set_GROUP(self): """ Testing set_GROUP method - """ comp = component("test_component", "Arm") @@ -265,7 +261,6 @@ def test_component_basic_init_set_GROUP(self): def test_component_basic_init_set_JUMP(self): """ Testing set_JUMP method - """ comp = component("test_component", "Arm") @@ -275,11 +270,23 @@ def test_component_basic_init_set_JUMP(self): self.assertEqual(comp.name, "test_component") self.assertEqual(comp.component_name, "Arm") self.assertEqual(comp.JUMP, "test jump") + + def test_component_basic_init_set_SPLIT(self): + """ + Testing set_SPLIT method + """ + + comp = component("test_component", "Arm") + + comp.set_SPLIT(500) + + self.assertEqual(comp.name, "test_component") + self.assertEqual(comp.component_name, "Arm") + self.assertEqual(comp.SPLIT, 500) def test_component_basic_init_set_EXTEND(self): """ Testing set_EXTEND method - """ comp = component("test_component", "Arm") @@ -297,7 +304,6 @@ def test_component_basic_init_set_EXTEND(self): def test_component_basic_init_set_comment(self): """ Testing set_comment method - """ comp = component("test_component", "Arm") @@ -361,7 +367,6 @@ def test_component_write_to_file_complex(self, mock_f): """ Testing that a component can be written to file with the expected output. Here with complex input. - """ comp = setup_component_with_parameters() @@ -376,7 +381,8 @@ def test_component_write_to_file_complex(self, mock_f): comp.write_component(m_fo) my_call = unittest.mock.call - expected_writes = [my_call("COMPONENT test_component = Arm("), + expected_writes = [my_call("SPLIT 7 "), + my_call("COMPONENT test_component = Arm("), my_call("\n"), my_call(" new_par1 = 1.5"), my_call(","), @@ -438,7 +444,7 @@ def test_component_print_long(self, mock_stdout): output = output.split("\n") self.assertEqual(output[0], "// test comment") - self.assertEqual(output[1], "COMPONENT test_component = Arm") + self.assertEqual(output[1], "SPLIT 7 COMPONENT test_component = Arm") par_name = bcolors.BOLD + "new_par1" + bcolors.ENDC value = (bcolors.BOLD + bcolors.OKGREEN From 5a42459831abd04c1c2fee01777f707af54cfe1d Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Mon, 17 Jun 2019 15:19:57 +0200 Subject: [PATCH 039/403] Updated documentation to include SPLIT and name_searchs ability to find data based on their filename. Also added the set_component_SPLIT method to the instrument and an associated test. --- McStasScript_documentation.pdf | Bin 135588 -> 161681 bytes mcstasscript/interface/instr.py | 19 +++++++++++++++++++ 2 files changed, 19 insertions(+) diff --git a/McStasScript_documentation.pdf b/McStasScript_documentation.pdf index 21c7457bb49f43bffe32ebf47ea20b2bfcef23b7..db4439d6c80146643cd3dc495f0438db7a9f2850 100644 GIT binary patch delta 143829 zcmZshV{~Rg*QR6J&J)}2*zDLgI<|A-j%~A(j;&5Q?ARUKww>vBzWHX&%$i#DV^`HW z_o`j{&$+9vl47{TOL%lDWeF)JHfAmas_w_44+M6;M06q!ZZ>XSHV}&pNDsuv%?V;> zV+9$2Sd>5<93U1+5FZCC8#{iZOfw(yTBO>cy=?G%y0kMKqK`g3{j&2|hw*MNa+4xw1c>hT%yI6Sq zmnt9V|7k3;5+FSROA9`8J_`$OK2t7pQ%(yr4o(v;c1u21Q*%~6Gj>yMAps6PE;CbZ zZWBB{RyK213m!f*Q&ui+R#Q$h3sVz5OCI**ZE#{9&*0@jP|`I<1|xLhnvqD!tODAI z4LrF4PVjKKF=zzu4vq0wU{K`s=Yg*=CLW$N3OpF)5#q0OI&=ujWMhbXMuh*lcSqB2 z2m%8C_HANi;R@nq|F3k^y`3yTEaE0^CU%ZiAR(dTnFV@4?cbU4fmjqQ9IV`||HZ8T z77$$BTr5oN5xjEDjE#*=jg5u+dd7QtaE3s`V9>_g9FT|!BR7FTAweb~;A*7Bc6~Ik z@uc+77iGK~^$L!iTda|y)ImX_AD5q-4%8;t$p(M<$*_XM&@#@rmyz@7L_mLfN~RD> z_<}MJL5!-SJySgeujy)qLlo}1&r$YKD+_~S%t%OJ-pQ;?2n~W3>k1* z;9tdgx&P1XR^|x|Tvyw!*Smw0g^0M+I0ks8TMu5?Jb4yv%{+f_j0mz~*t?1)(o5zh z1Do$)l&YE-mFceQu;5GkruEv4IEYoFXWR^p-G(Xo_06` zEDlPTgVmSs>3x$w+d2V)%JX>_Ywq2h!_&*c__0vt6d1XqU4%+=kDm&KAu$FO^B&GW zOD2rw`?XtFJNol7=|UftOWndA!)3cS-MNwx9)0cF^wY?%MA*&yuvPJ5Aq~Weo%+nv zrAY81{*3^g^y{n?o~bP=JYM}O>{NU0Kz5V0$`N~mH|Nly2eVr7Yh9!D z9zA|S?B#9OYti%1&TIxcayWnmnKSl8-}izp_}QG*4=5l^Dpd^H9zMvt&K;FD>271uErY1H+l zIiu3DJe`7WI!*R^D*Jj9)NJJX&b5f&_Qtzg5Wja>+LFbg6+V2aixiY=y+PuW|*XhKR?|qVxf{f-M`X^ z)SbD2xocC2TzCQ1I|RLlzB#0x1*I@^KL{@4G6o#E<5!WP4p4n@VK%eg<$?y}^jpz`C^{1cz z^(7+so&`1gQV7nZHMY7*=v3M%;(&Og)0c}Xz^=S8I~vI08Vtg5exvAveEJeDg%HjV z?25xvhaqXBOs^H8S~eZhgvQsGwusM*!oc)h62i1HiEcB^q8&}@NBGWQGTlscpZ2|7 z$`KnH(n$AY>JiNssAG3kvNLoQgf$=SSp9WpXby$1p(4_=p?xfR_D&!VIrm(oD$0yPOL|Wcej6oEV^5y&1Izv3l zM*ACNDt1F}!1RXlvMM|$Ne&7x2wbspNDd?qYc;8aSbfWYv^Dx>q|}-R#QBBJ!pis&YK`ro={R&Nm!L53j+ z{h}Flr;gr&Y+5-(ND(1dqC%reVBo^_77w|-iB}Jnlr`u>2}|{SMnqD+Nw2#i+XF)7 z60s4e+EuM-;kfjf@O9WY*|ECsk=&7jXwVGNPaDR80b7iR@SCX7#L=ixd!#wwhoN2% z=hYYf`&9|9+(wqpFZ;lrG`5Ud1?sz)Cul(!f`u_%;S9r!l#pNJC3#UD`#dH zIi&brQek3YfD}Z!aP{b?D}WL=b9}fvl?o|*?)~#zM{1j?wrfXQdL|g^77i24Gn%?U zFcZwHAgC~_l1ht0>pfr`(1(m1AQP4^I6;(w82#l4)PLt6#4tBP~H# zVYgF5JaTFx<)ee=LZl0THW{@^EG_ZRmKdqyr9dJhSR&GWSL~iHFo$nZFkFi76=<+E z4AkR)Hpd6!XN^0PLgMG6catOj-v0`^ivcO!Fv>T6YXbgf=1b} z_K%E6_u)1iT;&oD(N*G#Xv@rXx4nJh$_~AK1Q56L*i-1lx94vGzUEN+riik%&oi#| zu>{6at0_Jgch9ThGyPIrB`>A)UThNTdwos>A=%X<(LO%s!1>@#=p4f%bfhp7-w2`v z)NAEKEA+1@V1*_SsgdU9<#~z9OFbL#D2G`LPY1;D4v?|1%r$1^2bj(-Ew&!vXuyI# znXT+Kf*7(EF$DtB<0yuedCu1pAZY^^ptO)A=?82x!n4F4O6)E3sPJ?FQF`%RK^;|(XM39A;qq@C?6 z7*4AFMZC?e*W#@B&6^%%t#v~J-uq(_EgZFp$pIIV-$V<*F0BPqC|%Pv{y?r|U;_2; z=|3s6KH@Ca?`Ueq%oe;vmcnTn(*fN*_Z`)wsUtOP@nEMbYBwg>q6&~QTM>Mn`)!1* zWr0uhI}9*onG(Saqne#%p~v=n?tm65mnY$4fAhSD9*w2JUO?k1Ei~zMMss;(iiiYK zX>%ewJ9`Fjfp#6F8q>XsShoaBL&t`0S~`&Hhzl*}3xyo7!ZPyuw?rZpbr) zt&fMa+xW}Kanj#9@jaeQ?W7Ql8i zOyyo@jZo{vPukO8jxQ|wWUden+C!=OmWt+X)Kw9~q|i65e%|+oY@u?3s`MBDJ6;PXiG4wkwbY)f|r1&nB?94@pxP-@Hv~%7b z^(Vi#BI8H+A0u%6HKD~^%*y_o@$JSUXRhZIP0Wby2|%c^Va zvslMCK~ziLo{r>32E_40`($oR{`SbB>m|m0okpV9;BRi z!wwT?2i6bVS57Uojn`H~kZeY!eBTQ!o=Z8pG^f=<7w)t|lo9d}tjMvtQ7aNQxTM0r z)zp!y&ndb77MYdbF#-ADsMr+HN&u8&KN&XnE`=M%GC4Z}$3QXKDdag()jflskTjpf zKM^b(%>S2D`4|1i^Kfvbqh5nE0RP+2u!DFw`MCev-f;Z$2mkGKcsY4_|1UET+XAhu zzly;eW9t+QMabFq>t91<9Y(sia0uE`42Jcj(ROOxN((LMeNW7By=;H{0Ooz0D=jZ; zUr!C!ZT-8xm5*p}WehNq9RMOWa7(F?v6-o)pu&>LK}chZePc@t3+cii3sCJVke}Se z%C?ZX1|n#zp8y(VPLO2{3%4xCB5ocA6jFj`BW#^B*izf`ve%Q24)|GBmER}1Sk5ze zlH~VzuEg&F}F+rrCK{mP2=N1Eonox->LVN__ z<^ih<5x|3_%#89fH7-oYLW;sgH6MO-8I#jJm(tz9YcQ_8hKcKn+?j3rx-vt zzMqAfMm2}_^Dca9%V>uLubFfZ5zhZ~d*cx^F@w|&X4D5i5V1wW+s{8^u`HN3dfLCr z70m;KT);gC>cO=E;m;3tpTu-3D7(vh)c2|923pw)8-{3(xB2UC|D7E)r9f0nSlGbG z+-U5cp%LhT zCK0f6VFDiWebZ*IXOmYz^CdswQ#j~z@&@?(^oavdo?AM84t;$c`uudx<_kRQ`k?N# zUYNL-{FF;brvv+B(SUtg9H$3o5_LfNJWX}w^38-~t80GmZbjcCN4|m5tq9gZ~YpV)anyGpQ@AWWZq`o>yduBY)2Q9m%8Xn=xSlNk*0h;(=m#n|}`br{~*`2+Py%;On#7}?nQ9rCjh z7m>&6Fx}>(xFuccGwf5JSfqev8p6UG+!P=~`=*Dx;;cp?wb$FkL&hoJRhFzcwAXmH zcI@#zE<;W$m$-A=k1Fk@6xG#TI_g2yE$nRO(8?ClRAQCC`N4M+HktDNxXUA@l&-UP zWGCPB9+Gl+Kq0H>^>@7D?-fyxy6Wlmo4IF2ht8vlFkT*#clNw{$bF-sKHP`7hf1Iw zTbXp!Dr2X~6gfohpd4}B^#Gn0O+Qm6;iz6oknMoE*0TPVI)7v@8Bh5QWtUgz>BzBR zXmirHR^wa4uRAnV^b^d49z)akuYaE+0DvXF`$+AD4W=>7JEiMNMQG@V6~RI_FK5Av z<*G6MJXDOOXm5Mok~5ZuwbRw@^9wMI3VuAN*CAd6PG@OEqo6d{s8v288jF{710B5# z0i*U=vHEDaaV`_kL5YcKP7=XAxYE2qK>WGFhm0GRW~3+FDlij2Gofbov#s@Xu0#17 zX!M!GvAB&SjpU^_{G>{zVqDHdi26-y9x0DGrnze4ozvtm9%hLV@pQiCflnXYoaianf{z%hs)Rw&uO+Jm<;9y#5+><|>KVzk)<( zz>nN9)Uj{AKhD8<^Ks_vXq;5v1;)R-=y9zj^LS}1#+owm*6T8YJBcxaVdR%n#ZY1F z=enS)^~>L4BD!1gB}nscOsYWTq>Su~E9P$hV6SqvqL$q-ezE1dK;|=A((#wuh#%Mx z=#RuW)%(QtIbTRq%0ULted05iX0*=nQfI$Tdtkx^Y#Sr7@6Dn-gUe9ZgZSLQ2O9P6 z@f_)26$T2>oM8kiOGPNd$5j`;cUuy~bz8(r{Os_<40NxnslFH{5ikUq?e+w=s=a2EFDc@^(|Mva1S*U&sr_XKeOb?(q zR~IY^YEu|&dV+nA!ntAQAg>HI$Zi!@VkeUDf4gEHq0zN`@}Yde5g+!?lzl=ZAZ31- zhHUA!Ml_9qwhW(XOMC;ek%MQRCSl0T6;s|CsZghn$$v8Hj#yCh=eanBE|;d1&dW+D zxD_IbPIm5n!9Y2nOpZ@?uFxfP7>$EugV8CFE<);1?>S)jn7rhp{q6YV8>3}pB=7@hoOhlabA+#GzJTY|^MzV1|fTir8V0SS51@qoL6*&ap5Et107HYd# zNtKm7X7*>>x}4HGCRB({((=j7Yl@7nBp&v?{%y62{p~f<>FZ2t zs+7<@bdJ_4b#xb->@B-#uGY{Io~$J4@20XepOm8`n}=!uHT(>UTA_zNJWs zRZf8ZPXBcC^-cv`-B!UzphdE`MAM|%Sosbg;f!BH!tmCjeD`OEY6nw$mL zawuuwO|_|KFKlk3VW>BgTjn)&_k=QWRy4tPRIts@-RVP_hPk3TDo50jaeo06`RBN`2ns`AVnGssI<8ppNXF*x@9@B|fa$Jk;|6r+ z7tiR3FTr81v#-e|%L zhIm4QhXPw57yUd#S41!3x;d8eXiH1nk%u)~L9JkJ%NJb__xLR?LqEL_mWZpRG0V5@ z-uM>qIG10V;Y)Z~klo!%24;?ynC%!hIrjC)q56{!8uah5)rTTOMk&3SYoZ9CY#p`p z20*s>%N4`2@GAvR`^&GX;jETFAar`aij_Ev#n5he$Ufg&_}`YkfMxP2`C(^0m@RG9 zu|WES@QY<@hoDBA!de?fFb(w7t_;qiRH^`Cl0${&qMn{SaP?G~9%kcOG>^VXq&7P8 z@C&?>?qLvRe2f9j!nM~6vD{~5%PM#4+VU)Wt$JHKUS6K;%>rcvzr&b{lvYA#sRLCn zHxAmSy61q`eq?4vdtBQs(3?(>$WNhFj6Z&i#f|B;I30h^4N{_iY=p$>&sc)}6wd$> z_jU8P%CvIYmUuPP()ZKh*~FA2tF_u4syi^nP7-eU{$dO`p7P~4IUa8Mv6l9kpg%aU zAL>l{``NyJjYA7!i$Z9EeV+6d?)tmW6DCPvqo^2LveFD6Js zCaNYUPm#-hxnNj#_;*l%s2TFfo5wIvOrghu&$4Xz)oL>O16>AoIM@_+z0rcM?}Z|M)`ZSN{(G zSx({VVAH;-2v8yt10Ux~W1IBuIr}fI4fu;=@~;ZQUSa-I&HXq+SLwQugMBk9{rL9- zk$%+!YlqE7E&)-3@G1l_1{$6KH$o=i=4PtPEd4_=Q5li?pOWo8wsdvXt=qbT<+9~( zN>VKobKv_I_=3_tsooGmz`Ww)ThPBNoFu#!G|scmA2BMni1i_u(RSZ#$3fZP5q_Ci zof=m69NN1hSxg|5@(p%7`zx@tyRtlACk5LBM;rV4v8|p7m>85Xe+o6gxnmAd)}Th0 z3t7AiT_k_92}sWEy$xCoHIS8o&6gqz9QFKm&7}7F3jta0)k7 zx4Jfgv`DR;y?QToPBV&OyD3@HF>TdOSK|_*$@E?PVSU#2Q9Esw5^}xi=!z8I<>K2V zdtD|%EMYg>StOcfZGNuAQ(=MZr0w1n!8R37jAj!^j|5Xq)zbbnI4)kmHUCDmKhOf zCLvjWB_s%%jQ%WZ4dW^A#mK`c-$P-gkf;3WBc0{0nDFb7lFi%xhG4W<#d}$w)oI^8 z+=Q1Lvz2W79aB1ssgv6{QKqBik0yE{`Bd;0r{-f1-!rQaP`$r`Tj(>tBdgdh-Ey6z z*8GU2TR$~$)@3-u^N0bm3cE=noYncG>=@aPm$Ta!(~iQ{o@I2jVyT2p;)}#*(0fob zHL}vh7}k4(k7$Yf%WjIT=qHU|ei8AB5g*&%Vykw!a>ndgqKLD&v?=(_cR>=wq+-&?jaZkUq5WQs zZC7;2GpChvQ0^T%v9Q4L`>X!UzO}+s*0lP`9SbCh$1dgO39Dhcy>VHJM2U8ff5kVk zwm?Y?z!vQyUrAgAFu+SX79L;BL}M~hDaf5#67wGI{bRf96YT6>i$7WL0 z8>@)(k>6lR8t@IT&@0$DK!~&d;GF-_WU>#D*JO+5aT;|KM1TLKM%TCO(Q#$?g~d!s zO!D9m=di`t55%EYvZ^HWR$YmL&N(c9Y@+4>z~)a66MvO(@nu?bhr~}DdbckYIej)K z4TlnzV%}oiNsb}NwRyJGhl|zP-~V}$1x#v@kAD8Y|%o_G$4J;v>8@}P2Q7LiR~KAV3E zfHc?=M_V7$b^~6!(x(UiI9ZAHzJ>hy;HSgZ4s9uCSEnN_Mx?eY+BB5{e-uYq}W)_dcIp=W>QWD!wPq^?S-vR_) zi?B$VHKlwtsm>!{Q)uT^RQ(tgR{jhQ-SO+Eo855X9BHizl6{LhG`mWRPO1*nPm~ka zc$zn#s%34{l_9%|B}xeQqAJ(2QRWl20k`_SVu}^(G%UPdFojRYa!`yt&!Zy*q)8Mk zQM1)@<%MoA6?_Spl)GA6dZ?O?aJ}lus1u}LFN8PF8EUez3oW@r^yT8gJKhX5#;(WX zVapyhG>KUai=ewFTV#et?h!0sHVNxO*iut?y{Tit$zNpr;zM;AFaqb5aP~95kUjI! zE_U(C5`V4q22UnAiXnb*epRd$NDm@-^H$49Jm|K^lt#a0YOm3IO%{vj?MzGSv1q5~ zA-qwvRpBgrZJkK8oWzo7V3tPUf!39%i&a8HyJg25(yy7mD-j7c)#j~pI;2+OJrv}g znQR-J_vTw%Rqc%Ys~}vAz}r{z8Mlh!WdUd{ad_6e%&zj;<&QI5&NCl z2TA!Wk4VW5gRE9UGI8D!n(Eit+1|ZaDEcy!pIRXtaE~$VZU+#SjgBnv@TR9;zj}&M z*xK0aC+>{$fHNZHBHk)YAjz<1g|atW*xYT^=FNO^Lc$i zk-s~bKhg_@(RsFeCd6tsoqbqDpT(_u<0;}Oa5J$rQpYoI9H$Ges)F+qi~Te`9l{|U zMJd76dkt5}rLqcIgrQG2MA{uko$6{KWu3<*>fE5K;LkIBN+G5MaDMi;hpInZ8zCUE z8zF5HUreyJvbLAjej_}fogY4o9_ANvcZoF4fu8%(3vV`*Bm^d0cP;X;B2*{?I<;*o zo9=Y|g%tZ9vdnLin3XmVl}VqJr#h{6V)BzlPd~!Z4)qm6e*P zuu(-6LuVfI$k3OK+&qLJ<>>Fka1epdTfO8*LH?hHmgE&@$P(x#_wEaX^HPdoyqBi) zC(^-8FLpgupIhiVmvCe4fm#LV6Y|C^M+M>*x%IG!aUu>6pf+5tMEO*-8Dg}DC({0T zN4-OuE%F2QDuq_=fR~`qbZC)n7OHcc$F`o+4u^a@MdxX6rgBFNt{GP;WOYpHDLxwg zjpB;EbL$t3Y+1^AJ{+o?B=5fKx9>Lx8JL;*FU}u+?}~U(R!v*v187R*D~(J|liqk? zQ0c~5p1&gd^2{ARtr#%7oA;SIsXl)n6RmaXX7EPD(y19Ad&wcS@s{fg7G7H`{>Nwi ze7z)gKkUfo8GG|SRS4vTqM-&6P0cP`9V5)$8Op*599tzT4JyWH!v=?kD82{i7NFxw zju$tkyxtg6?h`XzM@{I6dURXHcTxZ7bWkHSlA?+9O957h%e?k7|2pA|ccdF6VsBp| z_+KRg4$YYDE2o%RG#keA4m&2gK-h!HK>{EC_w6P{$O)R^azP7QqSX|@u}$_YSV1MFJUGdl{0?p8te~28HMkS1 zgRo{RrP(j>%S18{JPS?k-1QroPUOxJx~4eEP~=v+c$DH-pBCEvJJs3bfQ(l98f`ud zeXos;0u?pLz*?m?=#p*9onRDSk?S+H$J-29n*5*!Nd(C4m0sgS&PhCr00Ecq7czZ7 zdA)ofN?-GCSTdl&SHI}9BD)GP?zVri%+mq7Rn^rY-Q{nIJR(Ew2v%RdvSMF6brOSe z|LV1r_-mA?zV!%hlv$0DmA3lT4}!b8!aR=0Q0&2vN@J2%;JNsxMdagN>^!o41HQilBqtDW(`l? zOp2Dm=Z0EJdpNGN3T|osf}lhV079NA#%G1&ZexFsuOkdrAl-&-oM?X<($^KRqm;`>UvF|gNPWo>SlJrGC%o2~}s0r-FqDesS+?;n-1*}^B zo&wQ%_zZt>GnA-I-1r{D9i}~jUN!Vr9zzds8Xoa(>l>`m!^z+ru4yyA*IljzYCY!f zi=i>L8hnGf6(J>&Qd$^wsbLNd=Q4i$$gsmzPpCTF1ZlIec+3oCxPBY4k>}(LrKYTL zJD4XW;}6QpVn1WZ4Q4R*txd!YAH#+vl(J>?ZqHV@xTU{DHi@7UXc&S4Z1QA^v8UCc zg4uL(M{aVcXRr;ayB+dh={6+=52JS(3GSn|HM@240x$Jt;HddlYHv_baQJZs-J;%b zGVjnyVBY)-A6XC4QHS6Xmu#vMY-Giz(;m~fB7d%sa4JR}VW!;p%9{<{v!X+!dV`Sbb>-GCgK|a_vbp&x>UF*hMSm1d3>Wh$jmQUvFe&KRLS+3? zJvDI2&!0&8w>4tMFl|CLXqmcM&+HOIrF1<5^aR2i#NnNY@nl`sBLXxR?X-NtL) z3u)glIzDFqEIefFFFbmg&FDUbK9ROy?a%Wy?dVlrBGz9yUS$tDX;u`xUm75z8&G)O z(8y@BnccZj0zbcd9aIg>xi_fCf1OHfGxR#$V(IVh%7xKVOl?bsyD4uBIANn5_#KtM zgJTiZ`r{9hQz_Flz*kbAt$rFfazg7b{HV`19QFg8ML95Jyj1t^k#J_)X-#y~C`ad* z8yq3_?W&#B1{E^TuAp8uD0gx zGhKY()Lsv%57)1~E~4)iD?j{Jj(fgin;28c@%$?Qt>}&E4;bnb|Ctq2`eV{*rP-Gv zGQpzf!Bci=`3RTUzVKryvDwN=vPEvgfb+K6=+aj1w3~u)tG7umMuWDKjq9f~Rs`qB z`^L8T=1R_~4$ck3rws&2uApXeSh1L8g^Or{crI#>9I?TUIy{p&hLU^bE+loZj9SP5 zLa_ZmCZVucEFyu#VZMajzn*PuR@7a*U|9!~=H=){zkb9lQK={XV@q>_*kqg+svOrVP%iRh#Axra;92Hz@O9f1MARk6{M6*tP+*1a(qM2> zg?%LHT9Y&nfF6ew>wqBp3(3^abs1rUdP`&2{688j5icEOaLRD*Nq$*gAIEfYa z>y{=D5YxVKGi}Nt9_h*VE304d;=7Pa$k}|nk%j^R>`zGnlD_K;FV_Z|B$y1RfP*gI zKc{1()Mw2AOX&AM$RRW(QIm>TiZZ|VQd{vQ8i$eSEg}gthJay<@@5tM2#)zqz(s)Q z!;()JUl|#9>fpTlPbT|?rVZ(03nyqouxh{%h}!t0VX*eYMiIyo_%g#qwtO5#n1Z+7 zK3+Amm&T-egKW!}ScmiS7uVutUVx4KtH%!<1>*3Q__JPJ3^lE~?ct#Jx1T!k{W4hK z8hB)$ZEh|dX3uKq@|1fbZ~KITFER-+kruf8Mq&HOZd1zPBA>NT$e;z@&bj>hIrVNP$=s=r)s(D?3D#GD8cHACB?TdJwCu1&y^LzUO2P>8U=FVhTaPcuQDxN`cDzWfMv&}iO z$*KEv1Ak3U#Mwc%rPx%Fnf$&_pXl^&2}Vgpe{KHlJZ#ewqf};+%MN}SlvJlS&`Y@5R!wagPgAhh zW@f-%`RFhK?vl-yhK8Gx$d0pUUnW`ZjDkJN)psDjd5YW(M47_>thBk|a78+enT{W+ zhcxTg78!)ug%qg5G+lPV5Ax_E2fj(I%Uax!cf1#zx%9~*zJ)G4o{S)c zGPOD7p96uuHFfob~4c_cnjDbz{O$Vky!g*Ns&E_vB?m z1$jteP4*RYs46CB{u%8&%M?V!o@@g?h#+6Y0 zrO+UJAKE7L>{DFYEPG9LANrM_F)mfusm!eD`15mTQJ7)X$5A^Z+vrt6L>~@b8hda~ z$M&79zoRwQQHy%|yRe>@Z~p%W+u%;-PfrVl8BIRBykQZ_EG|3UG2{!dCH zXC2>Gjgar=^&P>#vy!1|Mz3OJg&ssE4+kIGIgCS!q|if1i0PX{^?KS$%0c372b;X- zQQIfYx?RfWqfhS-OTu8bao!yS3l=@cdduwJAn zhspQZWRO-n^+=b2a! zG@`+}N~}|2tyslYpuhru5q@HB8NSZm*aYSK6Y z>f)}93O@CFeB7qM=JVynwmcfyBTTYQv+sI-0YOuh^!}YGdt3D&=3E36Ab7gSiJ(cV zWO+EBzKTH!rv6sWmE;JUK7Wt(b#UxtctcQVW0Q|^`Aa(ThG7zMM?>?5LW?2O>-sLP zbgfa~S*|DXwvSHRyXN+{=Bus{np&keW#{~8m`A2aMdBH>4?LJSdqb58Mx2A@4|?Z^^x!yGT8_hw@KWj+Zpv0Vth(fKA} zyNZ7$vADxfxBhCk+Lo{yLs)7t&Xbn(+4aY+m6CHj-R})Z2+KnK11y?P)=SGvNaU zt!{Mr{gt%3>k3xq5ycwSw$5rzm&m!*Owk^0nKhhRg|PO!g4Ro?wl&;Wc+W)srV3N$ zc+#QN);)$l!_7zhV#@J>h;+BX5HiQGXF^zN8|BWYZBx zQ=*ojB#HdJ9jXt_{^@l`{K3Ln><~U$?CkNR<_fpJ~=!s(qK zBAun>$irP7`zpWsm{d8!WD(TaBA@ET8&os{ox>TQ?eccof9h$qEKw_CXOi;dw}7ib zRQeKn+bc-{Yrh-Q@oFgN(H<3!*=X^k8Ysor8f>#M%n?*m`^BvaN46zq#i9}%NJe2- zHXuoY`{0bH$|Ll996_*t5b(0o9HhLFPZ@z?$3-F-2B478`eRIH3RNU&LMM#xNUS~4 z;L`Fv0y2q`CQn{d_-2Q4HDQ?}y!vU|oh_EB#%zax_wPyuxyjqYgah#f)dPaL^uj_P z%PLXv*^4F=scfJ70BlC5n2O~wFMVtT|5B{0ipRFBR;gco>B#ct-v;&Ql;zR}hVw{sMQPhr7Cr7536N$*)>PfD+ z0-ulopzv~)1^g++RXejnCwq~FzO8+9QgujhhfZ6h6vkKADl0m~>Qh+RpjJ&`-<7mY zyhnE-8Y;oa7kujyyFF+Ua3HSf*X`4zCon@~GwioS4K<(7P@4m-mLC^{!L0VhVU76M z8nY(Q4Ne>{U4VNOhm%XCq+z@yzD9alTNX3{IJR_1&ygk*zlcNF%{WLlA+zU=D;Lja zmXX?Fo9{-(cj>k10cFVoKYSDdarHs`Ch83fpC$%NZf)Ti#=lp)nOu$rPG4=kD6l!p z=L0@=RP~j;&}}ypkbf2bap5s_Jk>1|ut&;LP~tdH7g*p0PapH*9~`sDAsg#2i1Km( zWZZI8BT*>OHOvG|BRvtuy1u{Na#8i~S$huq5E1!qy_t+yFc(eAdu{aR*awj%?bd;- zCN**1>tB==V?9FghW@m4m`t{g>7V@uTDFVLpOGGZxPuVp@@u#fo$Y=vCDJ$Ow+&^n zd^;MfO$Wy8pJjy7d~YJ(BrnFwZZZXcl&O70Z%U(4%xAgZX^wk(&x(1YzXj59Z&cH6 zLf%*dH?4XG8zVcD7F|HXqlH8xgnVhc*{U0(t1j$#Mx#nDvKk?Zalqdx`%~7C@43Ow{%;tRE;i>U$xX!jPNebVlKB3zm4J7mtF%<7Ee_GFu3a* zVgf(^`$Hxq?(kiu-R=ID(f#+3=<{p_&>-Su1yNT}gyJ)oxQ8g&=KMnN*VgABdRB_b z*|*%lmf5$Sfq&TzW z{=!1@w^swl?n&coADo#AT2Q$GW@KysGFIR9UpxKO^h5C0q#) zM)3yE(tP-i2ljfL8_b$ePG>&8*W~^dZ!fR?kHE>vUtfduYsM$eO5*+npncKEp|*Do z@>%b6AKdGK?Bl#6?ftp93(l7`wGb;^ZK0$F6Zi8?_gvz!IM)kK@g(FP)|i)5thqc> zuPk%>N#O}7`x>3qUSk;z(ACT#(LZ!$VWZAg#T9uQY~ckhytLn69th2UwX85t%lQ^v zbAkw*RnG}H6nHO|(Ry|P2k&%gKaYo0x;xSi6U>RGG932>ZcoIx3D(Ac5Pr)W(7Y+< zBXQrRuoQKjpYOaK+Q}k@V|?fzo2CAaB~;MF^<56xk+|C(g~pHm=kIe$Q$JS>y0m`D z*P59xzV}Q&~4X#!@D8bY3q>9zc>a!1covY`~z9h{vW25=RZsWZ>hse-vAv_8_BycVrNPn;(HEwQvu{)$R4QcwC?y{IFCcb^f@; z7O|0mHs0CUDR^Hc0$JOi89Tr=fe(Y_j>l9BlM_HxgUPjo9}Fs9eC`G(4ULbC#AOHd z0`v2!B-ZCLj;F?>(vpZyT%PQZv;_PF{B3xI;2-q(AjBr_4^NxBx;-!p4%Z<7KE>{9 zj(!lzU|>8XgR8h1;SegO6(NNgY>%{CU{WZj$mHbGfzjyfr)mN8+b=#aYM&pU9j~qT zMsefzAKWkm1S`6$;Pz`1_6p$C2bzOm03Vx;4-F5EF4*+o5sPF&YVrAZ!D(n~2WZYG z0ptfL zgW;t9o>otf`?@Pj9V=cR-xbE~V-!B<`-hj~ME?w~Z7gex?QMP`m97IO6=HM20K1r& z7@{+MFf-r4`s_mdek1Ud_4Ald9QJqjHdKy0-f>;O}z= zD}^2*!=vyCV8j;EQJ&KoMKsY3$bZx-%M33dZ^;e~LKK);nnAF#)jNUnF5!W1e4a{^ zSbtm!;C(L1EoCf0w0)#rNauefH;i>#1>S5Tia|da88x(!Cfgzvym1_@#Ms4zlaeZY z<`2C)CVv8IAL;3zi=v<1_>p{iI`2$nZ|QxX@kG}44*MUDvGF7B9xqD(1paEgLEUqA z#kavvT>~;bhT>0#WG9G#v*3c*pYy<~^#!fvg{2*(Ho+f62Ek7OVFvBGZ2?EyC33x0$$_QWPP zZf6Ik^dsJ#lilOhHwqj;y5nw9B&80F-{}OWZb7L7)@k_(14XZDive_+K+!!^XK*}; zPkEvkFqnGb0Vrd%Px0}84+%g7bPwqIyEZsd5)eV$1A70?3x>oF98q+fk-kJQKN{`4 zMKFJU7uuowD2(@#`?rvHL;6y#w2$g9q4h3KIy3(~;^_7s9`ZlV-sH zN8*34y6+Z=+40^Xg(<@0Bx zPbyW+$U|=aewLGd?`QkUGoFuxA+CWlGD9!uc#rY zq?7+NO$|PRNTJ(4iZ4kQ96ozcA20q*?g)Gge(G?ETfu&h$DQ0n?T;6HL;ZaB;Nbq( zLk+T8x!y3$Rfy+al&K;PCY zDL0zNnMd=tZ9j3oH1UZR?k}H8US{viIUt_xP+EQt#GCbI2?Z-Xxs5{j8rD7-R(zyw zeJvnP+T(ke%!#=1wnnY#+Hv6Wr(!53yZwdWn|h||#6tDgZH8WDj-6UqYZC59=p*`5oN7lI!fZX$&aAU z2cY>RH1+(BNM76=+UNMHLil;XaAlvk3|f?}9K$>ccUnOiymmSkWFvEcOfGdVu5unN z6MzpEmOvn~WT%+?fG7pBO1YPef?ga(V578%1fi)d*j`Rs&A-F$_{Q5U)SCdH&j#kH zjbbo?e>a9*H#M%)MJkbL*Xjyc(5>d_$O92`u26K1s)nfxkGsDW$RO1}X4vtk!Bz{t z#f_4KuB27HNT40e%8$QpcL{($dY!9ZyWy=Bs+1St@Ao8#*h%yT?lfL{0!P?2?urCLK$5c^1Rg28J z{f7A(UBlnlS@HI5~j?XrP+`P@X>vEUiTTaV`6b_ce zu#V^l1B0OXP>pFO+H?3TM%x3PCnnWn(Zn-K2y#k2i9fRy#IKAG{^x3-w~b!M>bp0+ zjiFWJPDXp+v1sCT>DmGF^RmpknB!Tv6#4Mvq|Op?N0Bos_DMbV|6uE#q66)^sLR;4 zZ95ew72CGWiuJ^-7!}*LZQC|0c18dDb@xS&9(}tn&lu-s?X~CpncCo&+j&(BS)&z5 z)Csp`^hn>bv>_1MJK1l%G~&gX5T@u6pp_LaW%u;w((ffu z+W?<0MwJo*rdCG`~-Ykw=Nbd=C>SjX>vcdX=uvRlzT( zDf1#=L@w~K?jXMkow^2N4D?J4F?!0Vq>@4Ho6Pq**3YWPD;53q*O=gUHC%NH?*}aQ zL`Q5*_P-bRQ>aTt*M{Po3bG8>6ls0T@<5=oPC1<2 zi3sA)JHLSQTpld|fVdWwAgodFcobQ@=UV)oToz@FdtLunuNJe1;H2~1pPqdtlJir$ z+2}9)M&HmURLRu}B*)gcI}*v1yOZG&mQ8VDj5)ruVg|m+RH;rEoX{l8%~@OnkDAn| z!LL)(o23sN-whf^;)iul_9+ql`1x43j{6$GArwMT3OS36FcOR19@ECn9B@@@xTgIqnj-`*+-CM7m#;t3G#*hK>mq39Gv7V_lo#)=xhiRaZ8q3b)kdqmCN% zRl=8wsz;*9>z97MOBVqpoNa^)hHHbI-&cINR>6&fo2CB06tTa>;ND zts*hlSRlf@FCl1c3+|+f=e6Jzvwh+mTHFF)X=uP=0dikUwYTIc8Qt$iJ>g&VW!_*L z=$Hl7Cvn5{7ZmIa@(t4QACh;!q7^b$fqzP4DuyF#uz|Vt|{p|Mh-sRzsOFcoB)UWqX=GmiO!#A@x!|+zV4i4ce~x$H+ca$;8e@ ze17Aswbnd$M+rtWmxp=k?00RVhoaNMbGw;GsD{%;5(;b?LrYAG;^S zo;g(fnR)~_^;*+tX; z#OGuoJbJPn5%6gL9xw5Jk*^efhGMpCooR?-$}ba}Zi%oNSEMBiR%8Q0WzS=Ly(ANt z7qR29e{xXqx26wDsY;&h@&W~$$P8H?l3)M4-A`hjT>QO>?*P*#mekU^eZ|=Te3v!1 z5xbjnT(Ncl6zzlG?hj-pYn==KwIUC-D%JA<(*NJkJL8n z+9g10wz9H~*no%WpIXTFBN^%ID?_`iPo#=jH6N zntOJ8bvDct(#~XRuNHq_q;o(B4y%D~&3Ry3Kg=npvm)23D>KB2T)-}Y79aP=pF84- zu9Lhun8NrbK1w2)Dp8a8?aCMkcxBgRA9DJ)^S=F^97Q1Otvn$Xi)&py0N8>H)AH$7 zqG?KN+J5Yu>}3+V9V66gZ5$C5+gXQ>ugcXce?GZF`DfeG1zhtjn~pXV?D@H4`IwFr_R=m1G(a=avf`Ux`{$4N2(HvMUG`P&xuN8 zITc>O9@6uJo{d?jF>$T&wdLeH9)-Dr5;4WXx&V09?vW=(L4(8MM~cyD&id~D8Brs! zD#?&(-e?bX!zYV4KhpvWslQC^d8MJ<-ug^Rf1S{}oGsv!eyn_I3=?hWn;#_~(uosL zs!CwoX4vL-fC=Oa3B0$`*0yqQv1pbZ_*TZdeFzXf_=X;BDllQR*-h2622=j@M(u31`a zv)~N^BPAz!n&)`rils+C<-s@9J8+U9w zWy}@EyX0kfJdtl}+k&h}fs4e7C&zWO9aPfgq$AWyze%j|oF&%=_bE6}+*l5;l=N?7 zDlg?z2G~6qCixZlAeSVQ!UoAbI;CiEoBd<`JF&|)I7ez=%uF{Z)$86MdS_6IVTn|C ziLl?$oWKb?PK@4Gk?pj|PzotRu}r?sdLdFo9b&Lo9wE4Y@xC$7-J#Q&LcbyDz^w~B zvX^qhuMT}p4%4Hn7dKd zkD>0;6_}ZmR&%wE-O|V@Z-%vC5FhXN3r7J4uLvnDmv{*Hm=HR4ZBHBG91zhy!ec? zX&M`=T<)y6o&Bc7$3k>MmqhqHeP#7G@BN*DxXrha7km09!T)r*%u{0dM6YgYPJ}WC zmL0VHRUR*R~=#>`UiF9LCu}=*2g5I}F#rUsoV%0nyF8odiI zi*(8t0b>%Kxm&C@l=qg=pwg5SfCFGgux$9S$No}C=U<5=|4<}?*4x@FErRjA<6(jFchF?q^nPI!k}UGU^J(1Qk`cBzV^jxCA2|`r0>_(HE1k7aL_G~J9@CkSNP;Lv#@fdwNgcyU3(FEUmc(Rnzhx0WW<|> z8Gq$}m(a>6kq2#iu(!qE*u`SwDxgBUU2zhRI)F%_Lpg57i%7}Zwg!+J`nAO0Zqil8 zP`5mJyM;m`WdGHfy?s)!lFhu(VnLkWFz^X@9YJ>{y?Kn|Al$c%BVyWqigMZOM3R<) zx7IGWw9n1+kVj~kCuBV(v&Su@UF=5+<|>QgeaA0<>YXv{yS?LxJqXTf=}Cf(B0}R? zh7?2iDI07|8{{8&(*u%Z9k+jFS-hOxrs%OY2NxBSgE@-D(f*D^AO$si!u|2CJU_=p z+5Xk2AVwU52u$#>2`ksWmABZ+Axk;fgzPOI;9J)DkrZ?3dRHYLqPjqO|H0;A$iz+b zkfaAq;}B&3ZbG&g*8FZT?6GdkCSHJ*9yFp%WU?{I6>bzRCojo*x!iVzG9B z!WZd|LlBEOe6v|CV|xT$A^&`AnU3DmU_#B)fnfP(EYk6?$hD;~%(6|2k(Pc-G%td> zPHXc(7Cc=Zv|-+fYj`a!nZ_3_RDXbp-zn_YL0u6C5()7bu-p419&Tq=e&UJsRf?Y?r(B5uEB!fyGZs7qcOlW`L%cJft^UR-YW%vDNV0|f}Tb8+V5_L)wA!8GMGPog^P zsGLaxJ>?9UyNloStiO($mfK*Py5eM8pXkZy?ECjrUtzSeu)iQl1|!B%()Z8enQgk5 zziT0&MVEfMnxYT*g`!Qal}Bnm2x^E|nV)nJ8DSox+bbL|`eQ{hTf&jKSU*9{S5m2Y zRhs&z*){-^-<|rp$X~dN)!h5wIEERAA52(P5s*yRb*KUzQ@)tH+<>aS{&cje`lEz} zL^HUJ?jm=3WMJ(O>v-d(HkZp{c_bY;XEGHU3MBK6(9G!pnKJ)XGAe6mxGlf&n7kvM z`kHet|8(ONx;Fe`YzQ3}iUw;46|*#Za53j-ngJ|{cZ>L&XF);V;8y0hoDrJoYSUsA z*7yEQ-^7A^8;!nO8rpA|D(SHb>aDgPPc*He7e4QZHLZn|c=jv-uo&YGW*UzmNkWMa z^h@^PF+XkMZ|S5$rk~Sw6>2#W=(t*4=|P5ayj-WQm4Ad6 z^KomVAOUpz$V;A#cG3j`EE#aiJ=aF9F$z4@S^9tZtp+f!P9RWo7k}nRh;o!Ox?cgO2$Hj3Ud5ZFEnyYz+mvk>P<2G5e|?)pi)JU)@XFT-LJP;9FR~*Ci}%adalQDQQ=W3S3o5x0!{@ClRbTSu>pgVH zO3_yPXCAu>i(3Yn;_6LhwRhq#2k%?c+`A>{wAtfXQdzf&+@4^m!*Q48i1*tCkWpYW zpdCRGo|G}Ux$dTpaBqt}rs@(CCs(F7d$*pF~*0zW|BG(PcETgwbmAek; z^jlv@InQwiu()kHQbw4~sB5UGlL4L9%~y%c7JJjxP-&X0LaLvK$3N_fsAde5uVx_Z zm7t+aRn&ZVwWEdX5+1SIa4!rkxFFG4a+hBmiu`usJ&Z zzC@$HSZMoQ4K>U3py4k}#0b@c<)m$cpG_If<;hympWBiQxFXQ$5%e_KH-zqfY}hM~Oi;6ISH+aGL>!yI!P76{d@AcDVmw1BC@*#vuxXI|8qm;G=BgDE=7x@nJQlVD_QV5-Xi@=mW> z@rU|1AtU&%7HD_*&EBfXiV+L^+u2ft2b?2vCvMEFe*#$UHkXr9VDI* zSDPrff`7objxy|52$r0m62lntIEe=ks;+pX41rS64NP*ELD`dm2Ebcs&&Zeug%5c^ z%~Kt>Y*lI@5T}HJ3`kE`RLj@ww(y(cv&@|oYyQ|=Dz3)Krfg)ufX9nZ!>J=zaNzKq z86i&MirU0JX(c5GN5`l4e_XL`p^OtvVh|0SlZTQF>(Jjm9D$iScm8#^TI=(8$I_RJ zpi7eh4Z!~Cj7ixVZeczwwTCr=rzU=5=SjK_C=hpla8k#XJ>W4>45CUu%Pv_oE96P* ztl7joCo|x`N14qz(ydV2tk+F4;L|1Lpn70OZ$p^5dea?}tWYe3CxjXp#gUf3D3Q(H zkLAP*){-Z~Q|94`)IhZi62V|?bQq6VW8izp0SIpAf+7=yKGB@o>>oD%iX&+L>zYVJcWz<{nu=tn@*{%vUKQHf(cCF$_*yT=h)y>bD`LM?UV} z0!-jcJV(Eav95O`HZ4ODnrmW3kqn~7;U{O%*9pi|>_yM~+2ftD&f|mS)Q3%ARxBb= zPa7~H_Ct9H<(|Z>j4#vA#aP0@9fZt(c#2eVEqw}E8Tyx&7UG%_@}m=TBuMKQG3lyi zTI^ibjV>HIbe?0pUQfGmpBoXBVouu^F6v$+i<<8uKfjiSl0EBPKuJE5vnoGMw74^H!P!xsOUdKUocjNC&#>tD_Hv&g^&i9D{xTz~max4JDAdbkwTPj{;kZlOZ7%sq zPoj=Bp{Zl4y31gB&sn}~DyGuC%ygh3u)Oa*uhzaFdQsetu)kq#@AunU4k+_}!|OT7 z(XZj{=m?2BN@uWWI^esWS>Ry$)w8i9VSs6f*$qi*uy$pSKxs-?clW7hwWIM4QXujh z_n?kNp{Bu>zW75`484`TD88*EJ1`?Sv?$?c)wp1*UWU-T#Ush>~c2M}WN-T&%?O%deO((F+El2Aqkq zrpLv2VS2*x5INmlY0(| zqz_xr-G0P#A9TAN|B~6mnt{L1ka;85c|n}=cV!u#y1IbC1>m(g(I(y4qZC@H&(w=H z+4DhbR+d0>Ps{qmNo~bxXH=WsWXtPudkHU-eM~EuNsy>g8V#yAhEo@J_<K>}eh&ibGk-ppAC5==jvbj)!hfdOiTs3x885Gf#HPZ)3^v$XJ%dy28>&WZYlVZwSB zu~R&)N|2&U+z-XPu(V-lp^N4y+qF<72P18#+jC|5xXpNfH3eJ$80}<2wOsz$d5eKq zFx8Mi0oqYNZzy&Z34I%)E^y+O~aa{ zQ!d2)n^=;3)j^X2Fn>U%JM}iLKshj?#Mt>kSTDYFd4GzMqYk`6F6K zXpdCn-qny+N@V^#hx%z?jXWYbF;Rc5c8=|rheE3^bKEN69~h_ERd~h;{<3}j_Wu6P zL&s32lH|@I13x*2@@`OWmmdwoICSfr2hbH@)j`5vrBUchJluN84SiDy*R2 zo&u(_NNcRBfHAI!Mc|5zf@T*MPUNkjqWgkwY{%eX`jFT@`ah0VpMgjj-OWhyOHD^` z`j*=bcPH7c+PzLD7=e;U+|a3h;kKc(i~9D3IjqaHiR(H-OKO}3O1AI$XL`kPAg=wC zSYfZ1f|Tw*bdyn@>L@O>^ZYUjce1U>(n>R)+=_tOJhcb!k!fYQ=p#n`l)Hm)ll9*) zfnkb~iQS1Tz-wNeGfKLICBsm{$UF?HyE#5?TQBflR6veC6orRGjWTRp__|jnc@GJO zfWbde%fL-Mrf0Em)-m6uVMK5Q!00ANDwQ>`5MKHh%B&laI$P+Wv+?}zvvqprdeJ(C zc9x7$N9Jdev|@PsFhOOU3iT1r#Drr{kzCDh%MXqev*pMZrtWC-_K81Ibm^yTh6Oeq zaL!d^iYMf{CUw?>WIqScckjA1Lo$55xhU!uJZi9M)HtP3K8nOi703EZ0IwnE%%tC+ zx>rhR#9@EMMW8MgLnjf?Zo0Q*z@s;}O?)Ue`+qFG!9-H>ZReBcn_%GB>!Htmd@;5s z>$a6BS@btmatqLAKzmbq$oiY7t;L{ft`0PD%kPJFZj>%(jmL`hM_T2hE-|dWd$<4d zt53gH;r6U24GecJ1ft4Z_sDdTOY?^#c+^%9HJ=)^jzlL_oR+e1L(LxhU7+l! zV6zRYs&@xHMOXTPSe(OQ*;BK>0vqiSl%0^yd2viO==wAyVEz8)#|2(eceWKSoU7Gt z$??#wbbWaZIKi5z2Swz}FYVG#Ai&6-@v8@owxTHm()k~Un5DZo;Ecv)^=2!8>xVTO zJ*Mfw#`P6UT)LpfIyI!;TC7aV_-cr|uXEtzQ~9FEW!BpSS8@GxRc00Xh<%hR5BF;A zqC2O%6T_s_!MNZ*+GFi3PneuWQ0L-#w0>^@vHaBlpGU zeS0T`8nU8amPs9%z^LJEquOE^JaS<#Q<%Q(RH;R*IVtGeV*k?RD_0JKcM>hoskoaffxzGHLTwBWuyk^i)z?e z8}mHEw6}?j%pU7+5yfvBYbd7h$p1vHos!LpsY~?@2{C6X z?J(~6Ju6J=fwJ++TW7&C+sY_Y%wT+oW&YuWCVu+@2&*qnZ&Z9qT;?+g@xPueN!2%h znWuJ7AiIBQf`%Qyg$?8w#8^kt1$(*}3@!!tK!Z(?7-ZDW*-PP;-t_b~UcY2n-v1yEUYlY$lWVLhgGKGP)Fnus zb<*tJ#S@Kxa8;sRU0&Y>9tvi%6!-sgQP+Pvf^tCn9#>4#i|Fj5IL*b$HLGzk`@w6^GvpPo-LzeMo55 zx8tEkV>^?ZYliF1FMmC)>kNIh*M@w%UO&H#1W9DxP*1 zAG>Wvg=DV?b+;q1)7(VYNn94-ScWJ+wM&Sr1HP8g3!87zf&tskB+JO|Q-6jG-%x^S z84C8$z-^o{oyl_ZYIIgNWfsz0Scx#+*&4Z!-`fl4EE@uEPUMQ79ipaG)T;^B$<1v0 z(UE&8x?h+7*H#{FeEhx$@{)VakBaQ zYb}e`;Gu0HB}tmt@|I-rkQ39^1C9S~%-gp=D2RWzfpQV78Oso`e>+Fupj(wWAF+Pi z)jhK>+T*`B2X0_Is?Yxv4Y*SoJ+H|F4n#9@B)%*-?6TLu0i+d}($Bj;v>rxnpzU2p zasyZ;Q_og1#RSPntz>%#?8+D0WEaX*q^Q)HVoMP)8^OHYeFz@7H9) z35V&=ZhejWe{O1ApyhjbY*b+T>5+yh1AP zP#Lz?uMB4DGTlnXVyK%Ga4A3*8X#xcY*#^eq*lNF#vZg9oOKimgCT5GfpRq`XJtO$ zTassUXyvF|GIHBXzo*Ut2;~uq3>xgTN0OXPmuAqFomX|%!_i#m4=Y`rf~A#=V3c~( znGuJ1mkUfsJo=knk>^&OYXz{ag?KSt2<&x!II{ye3f})!@Z)T{`g5cJkAaurJx6nbSON91eD97%i&u6)-x#zL3}tHsRN zd@44Vkd78p4gZ?Dm#!jO3l?S17c}*&%PK)@d$uju zAlA`=kUHz7?jDZari*EC)rbH63D%$ll%z6neb^htWNHDxm5T-2SH*|Ic-O63K)JBv zkW#-~Gt$IxKO}^WHtkh;oL1W;yi_r)O5&H8xyrxwj1XyGie`=hG)>K#Ay@F|t;Wg`~(3{-QRc%Od^{b#tiFFWP}_Z42mpS@zq>z4$m; zF3>aNy9@Y$hTsixgH%yNO+{6owoT7TyCvI>t#h7*4Ue~ReYRgXK=Sr`WLUM&X?&5+lED0g82K-b=kDU^ll}?qIO<9fhRzaX2vhSHE+QqxA zdyY6Xrr5AHP8;^!H42p>`N{5;D*c--c>mK6o~Z)BUGfXklGobRbf;O`uQB8BogR#q zKdh`g=5}ya4Ozf@)b-X=RTTiM!@;7W@K3v3swY2_aw)t~AFSxG!^pBl9#m)?c}uZV zgPf#(h`T|4> zdNHWX_li4BVuf8{^3aKu@hRhps>NLLB+D$SFXDV_}ZJEp6kJ`k<+RDsPn;(nHdITajQ3=6rib*jm zzi}i3nKim};{IZsN2_fiJgD;JKJ#)^Ce|7o8FXJQ-o6W7V_sXDNih;?dIKG*E3ux= za~^*7)UD{e?x z2`=VML6kD1M4ed;q^N&}KK{)HPl8^PHLlb35{)HS3wTs1G;H56~l>(v)JecXd|sxJ;KOf_wS1 ztk;oxj_~hrwGo1cSYV2`6~X|z(SRh$5t2@xiy)DtstP|1IgMW|pN~R8p<=hlVUWJWKCv#5NEKb z@*>ls=H(!jpo(_5O2h&Qr>=3Y#>wi^PxrTRq%>UJ0!5nBGfSG(l^PEG?9JJ|=8)HQtNvXbs5@u~w5ar1RBxDEe|g&N~eU3C#{c zkh^k#0qx@m1bvn{^|Fi6DzkF1WaTfhN#ssREi6Cu5as4uJqwG`hi>#l4S+$UnO zN4Sph6tkoOY|^#iT12%F1j*M&jH^A>OJSm3UOqSc-u?+)*N%bkS?F~aPlcVe@-DxO zX;9tYtlCP{)IZ5QbD{*W{NmnLj~7wk5NzVdfrh<_Yv}Kf4&w=e+OnHX3E0%*nDC?8 zEseuEdMj=E#p@i#n_i9UmN~VuRYh4$Z(YCMIc&AN{!AxsTfgyAKqUX28O)=78c{iXYknu3!eTw z;5LEf>WGP9<> z+#rldlcGr{0wg22d$mwXo`_v2*X(y@9`&XYPx6v4S_(w}&1&=!OBK} z{&}v0{s&#OzGvo!0S>h`sx1OKv$U0?rG!aJujFZ@dIKw_hU!E6v)#Xh&^B~iebDx;ydV^aExGBc7`o!T)uGZJz%f#84lJAbBNDGn-S-Pe@Rkrq3oBo;0%lNjsK$;3= zi*%1dff%|~mGm6F^a)Yiah2y+e$R*n0b_e48rt0_FJzL5%iVU4IIT!1 zr+l!pSV##ndWPxW$ZwdY?e7}I+fWG6WEeRyg!$^8Vw-`FuJf&rG3ZD^2{T&h;lH z1+UsMG7OTnlzQX%h*7!`(?1ec zScsnAdDAfajQJ((y`{oncgI2VKbLJP2Wd{0W`B%&dA5^Wse3g8=s5qd=#h8Apy7Tr zcks7icul><&(`E-U2mjuqz9)ad&Z0AxJa;hUMiaPT)G$6K{%=MV|V@Ep_<6upy7-gB(OMX7XOfU?O+qxR2 zKZrV!;0Zsy^AgDd17q1L(BwBmS6oRm{Wqf4IJyC^d>Lp7=q+^t&V-tsP~C6iOic;U zGCJeTfimQK(Cohjj&CrIgh#{76$=wzB%twN+XP3VV#}`!)t(yaA*kjQEd?HIdb2Z{ zoRKEpuNYWw8$`3OqV@o~+OVKBqfUgP-Da*#zz_R+kqQ}j}RTd3$%%EO;lo%%BFby7P;L3zi3#ni>?M~XFX?wGbjB$WqtVqv%7t=;*~bpD(V%L zHBe5p0ErD~D+P43=4z}}wHS}O3{$;xxuFv&Tk+tJ_h^J;eH6#}y_sWSX#On8&aW2d z(hgs;yvj%-3P)DEk^8YVo?Fo38nV+|h_*nOKmwNw%WeQSFGvQ;10|OCvHWS?=jso- zz({Y6_87`iY4{Ih8ukwes2(>58ey|As*>}(X;Lvjir+j(Y;&Pbb4F~%z#GX&Gk^LU zE#vq0Kw>p>T-Rwi6$$+D$RhNH+0UjrOINrPk};UX&C7*PJ&4@Igp3P%r<#i(HUa!^ zFH7_!8~oTehmG%pdd;{|9|5~1Sk9~#Jz`kdFzP*w{myyQfb*MQ0sr_Y3~dk3H#@+B zasvf`ea9)3vdj==biy^wW7VXAp^JB$P#+8CuT$2kh^6P8*2jc;kB$5fLc=3-5dtM3 zBEYQWalI(5_(z#faAs+(^edc>S!fFNt~z9AK1sQ--C_#-68nL3QEJJ;0B zhp>ZNOq-y0+8YrOlzmqPAO51eB0Z0%tMZ5WehS>ig9==S^W_L$s)pL(NyMS#pnnDe7br@d%+7ya)s%6ogDPACujckCTdTP3f){h^eib$!Z!!N z+fmAfn6q?wa)V^K9HacUKg3MTX!RW9lj)?67lF#uneLI)w-XZFK66xzb*ZrtC(R&B zlDUeaU7B4zU#Df7=n7=!sFjDNqkiwZ`oEU)F~RZbB*s$YEkw8>!ki9zUh68@o52f2 zk}k6(J0`ewIdLg}+5O)?w-XudX`pNX@$6W=KP@t~aK}xH@ckc0Bvz|3;(~Wsm)<_7 zW;7uslG(c$#_W*N(b;zvrp8Ki@DTQS$olU{P%g1%yQL;l&%Yjo{}|i^o#CBgG~rhl zxadCI8`!!rp?+;40TI;F)Ed;&vL zt5#E&YuBc$Tx=fr7tN&s0~NaOaPy(JEUJUt>>McZ^FtB5GD7|W?-ks z96CA?e=aV}A$bWE5ye^!^mjXIeVrrZ!WxlkErvZSx|_2+E`Oa0n}=>1CaP1av4 zxmadVzhvv(O6Y6lh0|K@RZ`J=9_4QjZWl^x{SRD3b%Kya z+;tr5_8`8%tgm&+K}Rmu<2VcY1yXKtW$QQ4?$#|5ekCjls@6fCn?9Op-x)7$$k8Ox zKk(>aG*{fAoR#MB=J4L+g<#7G-uxnbI0!e;o*qKQnz_|JAz{4=TrrNca#Y-K=%`Om z){gPY1*%vnHvTX|;V*){M|Zq1oVcoM!Wepe7U;XF>bcTodorX`>eD~vbvpE>J#y+#6grjA$xC>aS3g8 z13st;S_uyi=(hSyt-RVMn2Ka~yoXANcyxK?WKwH52a5e7!NHbmr&9v5^$dt3V0ppfOKK*6I3aJOa;ll24bf znJhv05yCXC?3o3*@`@>OQLx!#@{-K~aJ*7M;20=iWwOke+v2h`c(;lU zuj4IRa+iPajO+T950Qf_GrPvu6!lBV!pb!0KGcuxmZvg2H-m^03`u>0J4k$?gsb5^ z$$#4thU}7@M@JxCkr=B?U-9n-1{VFm^r8i9Zd>;JSXN2~1??y#&O~eGl(hDE@cZQ4 zHdJ_l=H?P51dUjw#ch+fSWqex%&68;L>%-h<$BSPg;_qMr%!LG@9P^0BGzV8s}Z%Z z;cq`xY*m#s_716@%8P8xaQFDn{~sdSkN*q$0kCoYC$;{6lyz+XS3;waJ`S|4?O+HP2#@eRA_l3sz3Up#|Gah% zmKHPPSvTL6*VQ!zFAp6x%lLF`m~K?c@R9&~d~#thK6-q53NlGe8I&1hT|)zVV?zU} zin8@u+j`&^DY=Supq`#R0paTxCCN1yn;ZBdh1_4IB6o0ikeBgxW!@!VVLc#)^Xx_qP|sT*e}3Kv&n+ZvZF< z7rPQ+;yNio0ufi`wv889D{L<(6yBcSf;u|+6r!?%tlHkndeze67Z6C7ztT@9)UOIT z!vW3Va##W3jHe$P1~&tJ&1MlEUm|++u$YQa13|RKU+q1=h)s3KDPbZ3Ni(uEMRIY1 zv~AFIt6jlh74#xAKP~{4h4E4aX`P9pg_!^zE-z{HhK})e|!|%**IKV-I!hM z*&iA~)-~0GgC-Yaq-}R?;eeJPVf8}FU+EF{|0^LX;c_prFbeD?NGjze9AicM|o=CkTs=9naJDcZUJ+SOHf0=NJ25 zh>ffdjf~&;VBtNevE-rgEj{9^hJ?tB&<=<*Fvk%4#wR8wrYHYUob~EMTNE15Do6) ze*dASIyr;9H9s(dWT|&<01N01|Be5#_uXruCTITzduZ6vfRq{wveR1#`R7~+)#rm9 zr0JUhns5)Wr{xJM#e&HDWIuwc%Bniq6YBe(E&Td3@!bpiZGZf24~%^~3aebZy94#s z-v{5{b@EsCf4ja>L6ECE@jXE?2>WgKZUOOT5rDaxY;0g;`|I1qd|R$Rn&iUB{AHJI zqfKVrGmt^eZfmOgJ14dGJfpXDYGwqq=-|xe;av-qB~bSP@Z4KwYlS2xtl3NWh=v4n zocZoZc4hHsdhIp=?6UMgRI#yD9mSlI`XkWy;2~}bAjd9iNulak_SN8u}t}0EvDj9s)N?cn$UhWk~!M->L$^Di?x*$r%=kKtEc%C+0#k}zN0<+>dQVvjBacIl(o)( z#1PLlchG^|wqO5^bpAJb{@>`qa0vdn^aVPQQvREy?!R_3L``&hba^`?jPIgW$7g=y z_x}MsK*GP5{`a>0mjO=9{0{<$Yi{FW?rv{s2X5+r$edsw=8ksY0s0Sx-v zg5aR6{{_L-w)qzXm(BKH5S-J$eS_;@{|ACkHBC5A}cB!VV7B34i1QzVQAf%Jmn`#_>;;Ilu*Q zvU7L+mrpRo`HvZJMV#Fo-9Q#*cK^o#??0UXB?EzAjek`b2+sVEbxyF7E6CpFe`kU7 zw+zSw^e+n7h^x(?`QZR(<7#K>`mg2y!O8q_3qG`2+^k(d|7te4T5g_>|55xTvi{}%rXS;iGgLpc)99Fdms~pBA5h_v>1whn7I?Lq;l~Li2lbP*^7PkHrZnD=X};GHP~Fc2q+2k z@PCP+uQ5lbsC~r_QsnR!d`pX0zb|^V3KWy(qA;eeGNCgcuw~ZRs6{(8_ttrgE_DKT z^O6DYY2JRv+D)u0YsNNqAy>w!X)}(-a;syv1rZ-~T8gc;-)MDPzDp%q=ACYM1UD6~goHjpGvin2+dK`@^e?6#iHng1Oe6tFdS)$CFRDU61 zn{)Bk0A(?UtaR^>h3cUwgAng`_q>J7r&?8-ZJ#&`RmpabqnXAI8iNPLLc{uaZ!8YB zZz?LpjBtKBYTch#c}9v2#cpYEzt8{BsTP#m<*J-6EgB8=`F3Zn7r~6;L_^Gj%)U7e zOn5!?^g%|UGS9m;pK5Xf2R zYq3;Wdn?cs#vMb=TEAWh#onrG+!avxY(n%dOpoo5jZE!O`r1_)lyLO50Qfm$(xL6* zsmT_0f-){Q1ZiWUUM!tJWa78*a60e=*g(PXVF z6fKg{Z&=fmf%WlYw!yQyfS~7GoKv69R93fDsK3u_G`?gFRRu zm-0&uONCuBpX@yoUmXSw#((C^q$sK!S`9PIQeVBe+&F}sTR8-EuP-<3C$2g~ieRnD z-pQ_`xp|qnw~3e0EM>!}QVUj|XIWzyX{iz7%wuxRZfcMnmD}N^foPcae7o{$zj5&=iM&vB|*wBI8z7KQ-fj zaUQ;08~91{26w#xD1Vn+=b;R8b^^g$=%j3oXDlGInq9NrM!puf`c>(yR@Uv?XpkSN)KP=eRq{H0jOy}Xax`R zIeQ!!o5s&w)Pv-T$A|WPBF)-!;Z^uWRraf9RIE#BFn{z9CK*R?effzSi7b}az1emh zR4S5e`Ftc=qIBwF3M_j9<+!JuSmok5qJ?QZz9U^ov=m<#bzmH%U=zsUqao5D z-t+jXEjlJ(boXiC(e4^+pF^36z68qqIVvImWf!2u+ zEs5^9zdpT>F=4RtC4|2Psou_iG8VDK<6PvuVTF&cjnNPZE0E z8-E^Vl`Ci&p@A#s7&!(E;}TmH}i#lo>%Mknj28my{bGL*-3PQS)Zd&eUZ(~Gl{_*;D1(D zbgBd*#J47r7_DDJ>L*VpBMI28;Ah}=GAQ!&BEZz$mPRyM6tT#J``lxVJ6UU{B9aTE|wx=*c11ZZtb&yZ7v$x->@GkHk>wR?Pjew*v*{LEy zId)mrzUNa)Dn1@`ow*)JY9$^Fi99oMqEK!>adO3;TYo z%xm^q_=8;eb1v5Kn07C{6o01S8p~%B@A4ScI)uofBm>ptp0`r;<*POtxW7Ig7%2g6 zEQ|{kO+t&p)u}WZl)lPy$JM|ysHM*z>$?lTTSi=%HBbt6e9@vnD#Vj^!}pJaS5E=NM~^{c1VVnQ^?0ff~QRpL9E};8=1^NtZGyu z_LY}v+*mm`vduJG?{PQ`z&$Zhs3|mrUokDx%!h34_kD`Q^w>UA*jW9#SHO{Y1x%w1 z#B#A0eLZze#_sukd4J)cw*gI`-X>UfJM4OW?wE;fCgL0KJ&y!WCN54I?Tcp)&#WD& z*K~YFvd4<&fV64m6lUeBl4e24G-Ys8Gd`P1tsvm^?G0uNnjIFhUu!_-7oLL$=Apin zCI-v#0Uz&Dk5JMr<9acl>fwmo@GCZ9kJ)y3Sg6Cx_Una+UVj}((?T*Hg1I7l#FUi? zd@Ii-GB`x|JMJG+2)ZKP>V^To!g8U~tM2U_#pZujCL)lgWP6aY-XAnaNhO6KuWdY> zmPu}y>PLoH-l=$T1j&Tu;rJcGX+M48Uy&x6$41x1B4-!7;#|6X+PmA5F(99*(1*PP zri`bbm~$%K@qd;(39)g@wTV4nHoCGvpGGxV(O#8#;ixjAx(Vr5Z}W^LO1t*A1oM%q zQSuscVN*vw*n3yg*)$SFc?|u0*K?y?8m-W$CT2veCT42)?Z~UaIB!8Wo3EZzv83kB z#@^`)_E{7hR%}}pTI1Wm(npqeMPZx$OZjB}>n2I3M}HF3+C)Kv<-7B$I<1tjG8-lP zXrpejMOEzxfrE3*OS(kAL>3)zDqK>~jjxU!R)c%sQ96~McHBgjV3-t898#iFg<*`> zagB__R;;iS8Uu20zsK=^G$E;-JSmkIi&#JB0`)a@uaefpw;&279oT(Sb&3xstSAVa zq3a57%74CZEWTj*$PcGZK!a@5dd;`%_C~JmoyZ}!S4BgpBrU7-F#q^hoE24PsMxZB zBwG!d*7F>6{v3f%&TkzScin^C>=eX-i8_4%&N0GNMCbU0KIiG;VBy{9NgtrNIztyx zp$f1!fCMxIrOq~n#9kqnqPRT#KG}};*GwZNJb%eo(2(j67JDZpPI+!f?PpMwA6@Ut z;<{;+OiIg z6XLa+g1E=rBeXm@UsIDmVVhdLY}dz6ol-*~u)my9dja}HXF0Vi<&$aBJkTs$up?^@ zA)+orog(lG)1Gkp2IS!Y!Gjf?Efqp!uz#afSI*vlX<8*p=I!0S!}n{30XxT>tkCNm zCMCpdLh)t(!xoFBKl?^X=F!OKfgN(`vJ{M}eHu$e*D1JJQXOs0XaA?0#^x5?zQ&J6 zNI|m;RPV+H$YeUtqLpP{;fKazNsaHDqWKRZ>c=kvr@WwTcNEs1}O*sB$m?Zd~u$H#TBY_KiKSJlIDxt z`qk$XniG~Oqh~-Br+MPB*abm?GU>Bpgugi=_R*UvNJ(S6rHNe-zgp*LQ-8SK9$PNq z4wq?${rxSm&CY_1$m*wH%Zbou+ZHwEqs;4P51OC>duB|UG4-7uiMG)tJMSk_eC|Zt z0%YCmdGUs-e*2$|Mol%+?wrQbnQ(WFOTf>MXl^Vqvq&$SA4j*(5jQzL)B&p;B8?v< zg#4Xg8TKs8t$3{|i62V)A%6`;&J^!W7LBG`rR8t4@vRjIV zZ0KUxxK{@CtnKz*bWEKcPh;x3p#LP6xW3_w`?zdD0;g6Cy#`1Wb;CeDVk-Z{h)uWs z)wH~5=&SYi1h4*ViTf+O`aV9dd;-CHj6MzdGE*JOT~Di_#3toX{eNvJujseV1EGc9 zZ)9mxUfbWHb1IaS%XXPJ`ukavbWz6pNNi(iPV{{8Y}5V7(D7WU$2Weq-#1azp9TDO z(P$UA1nPP_0BPcWCjv$2_onig6lZ=l^59FxccW#lx2G&Q-cyezrsw&Xp9fK*^lQeW z&`qX0Mm%4!@ob!3vKUAy9ov^ z{f9$@Yit^;13juQYK@(+UYXBjbn-A}v{1`F&k3m$lfo4BVBsV5nY@V*z~oCQRgXzZ z!Rgw!A=h%@uO1_9-;E5OKF}xN%s;CRZ@e_77a$ zyZ-nb^k~Z~tABHqU|Cp}H3hx>I`RC-fVK2lNAkEN1$~hDaEq*KvX`7*Zbh9NwQE_I zqz0bo0Osu73JNjx^pfa-95O@2UgWpdHh9csOu_3ErTib1Tpso6gc`aSA1GGvs})jT zImSy)_k}YdCTMPsZ+q_prSL4Yq!s2F8TN5qaVn)>ihnkZSX#=Qzx2Ktx`DKg=|`)) zztAN z(QG0#F@GU65`Q{Em*1fpK*FFe1VzSumg`lu|9LWvCR>$#(2U=Uq9vA;{gPCDl&}1q z8OF&9Rg0TkJRFPAaK7^EX%?}I)_QOcftO)zD{Q+E-S$~-ccWpDUG_aRr(-9&{(k1RDf}&SNF$IXw4kIXd0b_#({|U(jsV@^XOc% zNPh;T>F@VfZ-k!shO~?yp@xL!KJ(JcvijrBG#ZfmF5#b7j>+tV!j~D@;UqVk{(g^ zv$*+lbtJYvL4x>s{RWHX#l$DMEQ8esT#_oH3taQ#W&EJ0do(}T5x35Fz^U(gSIx>BH8&ldR!Y=I6$#H;A`>O z$#d#GF@(*7%^|5HJg-aQn5M6T&xk*ly5Xguit)|~Zt#aj4M4l9hLdWsl7E_hNz|>f zW6`s=GFLgX#rLf$LJ_k4h13I4Bf@IDeR-tnRq8tT?Hc4zarQh|7F#xVP7S#96nybk04dLLH1 z);WgROmxPrjZt3NYBJq6QGek!bofp=T3XscB<;k8L-URWAx`#H#)IXi6U~)HbCtZZ zm%!+gNb`EvL5t|ilXy_&(X-R%G1b|&)HidoBZ&bst3pDTSj!Ginlm-%P10~NpB-9a z4`T%3^oVX%D#u)865y5wi5Ja0Vk`6=y#!>rlfGf9Fu!?HgH5TeK*`>bWx9!8K=WY8?-JB26SQTUYY!nm?1$p#HmyrjVN+nTJd=pKEb@{MTlVOQy zP`jws&i!xGSJOU%o@2iT>Y99w%?W||j$>3=ioP$Ut>~q`b$`z^r;KgL-svK$>LUN0 zCB1Q!J03~Q2jlUqhA9t=N*=U)iau~^wKhgsPVS${h08a=LgOlfA{(jZ|MGpv?)+0a zkZpEHEd3j1$uK=m>}*58o1Y5pHX5k$Bv5=(cGFcP4&=?L zIhdA~lH19VD1Xd}P1cklPqS?|SAvJ>B1YP(OU8g+Z;0 zE3m#l%Igd1QpBr_=U@GSihO-(E1371s0WY29)!6IqgmpVx|X?Yuit?E;LW;^AZhE$ z;Lp)ri!H!a3OPzf+KFv-#?tjOiec0XvdhmeW)AS|XnzZgdV(tUSybqx@cNpri!%oBD>gl%@XlxA6?o^|`^IIxn4&_& zH=$dVRE*N&OK?eITIMth+2}jb2I|^h=8&KU-p9 z%avmuwtpw)Ih6D(Uioo#qM48?2U7y;s4;_}>$6bR_%FHzZtXW~9W-W{mGTnoP+Glq zg%GOYim|pasmFC&inDOk{VO~wffI>1ooH*|7n5(8uhC8xdj?bbEn2>(^%fc={GXx5 z1*W!Uqcj6nMJBksftNk3$P)(Q@{Yg073w$Zaeq4*zPR9cItgh;QhzKD*YNrfW1*Hx zBO5cv*mkn1J4s!v)}xTqc4jft&{jZ#E}vTy%+~Vzzm<8Lt;TYsC3;TZJ5EuRqWK;M zJZMgj;ZqjPgSU0O%|leSX&&Ltki)1uH>iI(_g@XdJ6A4@vH8{Go)|GfzYZ8zOSDrT zdVda{y}Q)Nz0C|!HKYU7LXC+E8!KB0iiu*L#xiu+B2x?B*PqVJ+a1}(E<3D`pU+Ja9{GIjuDhy+bv`LlV{VN9 z2)IeHnV8iattrEmC}1#ZnqEck{?eri@qZH%UgCWQ+Rf!`B=$#9GR&Z)@|ZYIg!(>_ zGRJZBa+*RXRE$})r1GD^$k+)jrc_ak1KH@pr~9p6)na6Hfr$FGtfWs;xR6$wuFYd= zP3J=>p}P_C4Cy+KZ=EN}*k9f~ zmzSe4Myem~hQcd^et0ZrUn|$X0|GNueO0YeHPKH2yAhg>hBdW6SfFt)+Wb07k&V_6Agb-vxyGR+W;UE2o4$k=9%{yVEOTOE)>#t~Kb?*x z9*2#5#_enYG~-%$?n&8?;zYw|oa^r3Qp59iNjx5@>*>6BVWF7PB*7WjqJOYo#Gzr? zdn`hP6vqu{f&+6@-Mgw}%lh*L--dV-yzZJM96-M@9#}Y`!OS|@Rh6-vAo%bLFDvK- znN?k{fT^6}R*tQEZ=M%q@k) z&^JS8<4X_JW$mMjs)|Bna48Y-RTC6|zL-(EPVNG_g2q$t;wqNJJL*FOWt2O9j>=3o z35n1bEIkwxhi+U1x7|8w)*cWxkjLiXhXsR$87;EfP6D>_L~0IXK7UsBwWti`{sJw- zi6aE%GuGJN3>HJT^{c9BC!Ak*S{|2!xme!}c3Rthr=@4-7PAfAHDG#jR$+MXBz*O& z$K)4&vT_Ac1N9RZA1I1d6s_c4xPHBz2y8!YJpGWi92j1d(}8WZGsRA#6J9l)h;MkT z@S2`q_j&`5Xx?|{8-H3t5VMYj9fj4s5c_Gu)_V%`R}(k$43y)O3RkUY;2y3Wm1)g; z4*i5|*GMXFFo>uk`(9PJUfvYRXc$z~P4fDZal5Z7NYYCiM82-14q*`tC!aPzLlL^5 zW_L=ozsDqQFreg4YTR77_mWm#oR;OAaU}1coeB01cDbYd(Yc+}D^h-YI-D(Att34R?xwOmvj-obPowtzZ-iZTe9oy^{3pu)%D^#tX9Em4o zGy_$h519&i27iazTkq-E%{Dra3_s;RPYol3knw5#9K;hUPcw+(nx7Nnt7ViI-|&eS zBwdx9`*0%Vz)Du53SC2=bfpDNhRBx=vp~E#uYglSG?tP7jw2jeFkN>wo9+SYxBugB2*f$?hB#|JE1}Ut0=_0bHL!$eSPMl z$2b0u*?;=9IEmSDD_uvOuBm2o9lu_a9205PW)e5cArRQFJrV$3`q>8;bk4J&%%0>a zsP%3K%2tX9ub|;U+pk7Os_G)^$xSF}w^>Gz%fxXqEW>dZm+*3P9x+cJbD5D3w(T|L;eThoLyy38a;5>{o!{?fnKG{NqaSWS z778vZh=4j2)GlR5d1n$u(+mBrihd@N(x#EN$Jr0t^=f|X648hVG<`1TP5`bL3b0cs z^upxCf z?tjG|aq%c~JN&DN{QSNwE+9Qzvg*Y7c)f!Dfv*!ggh4M?%N#XN?<>5WQ;Gb^@Hdvw zDeh_N=Bj(Ct1kpQJ^sHuiOe<^5%dTn-oek0`Tqzq`w=gw^em8(zzF07!hT)89P$x7 z@yjcBUu;D~e~)PuQJHX2%FH_itW6G*e18O$ODj(Ru*|mTZTo6lvBJiNIy3{KkQT~H zmYTwBR`4m?ka-d=U$gK~Vd>0>6A~X(T>3?-glB@N*hM~E>>xapmd*)J2o3P#w{}V! z?YSL;Om&*(@ijH!gY!sx-tNiztOBWw)IUfzoC8sX6x|)Wbb6<0+i!p7CjQF0Ie(Ld z=%v|)lDSnS_$cliZ#yXE64kHotl46;4mVMmMh4Y7ni+q#C9L<^aiZ1p#4wJ#mHYyM zA3g#_qo+Vkg5)Lv&Y~QV2FLq!*rH>AZ>ki-!esA)jnuu5K70UqkanG0_;lH*xURz; z7A;=pMvZ>3!d~nZ9dUm)`>oMKZ+|THCrYzcKGiy>bH^I$FSul{5mN`Q0OK3`D$T_J zY?V!<)=8QqNQ~!&j>$-Pe|BLUPrp6Fm*GMG+jpBq$K_tAET=V4lqK~9_2+$N{AoBX zGwqJGTsU-#7%v|uCqtH3TC^M$DN|lR6z%|y&IfYk;pw_vz#=TAZFp1nn@^Fo@cGcA` z+#L;xS&dyAXLk81So@KNA!o3@4-JmxDkA_C^x;;(MtXceq(8d>** zm_+~W(rPh_(e_)S9nU@elFbE}omN2)hCqrS)2mzEneALz8_os(&VRjP#-Ad=E-*1! zv9ohE_xh?zS7NlxZ>~bU;QE>z22l?kd!5G`79qLR z^&aX&gOc~KJDF325r4dJE|xdjal=g(JK`7XPoa;rn+9eL!tywPml6TtnwsFzT)l5A z&Xrc?xp7s*h+i<%cu+8I^tO{+TQ^<$uDuUb*00&9`ctND5!2sAM14CFkodS0l?-7+ zqauYhlKun!`y`r;!6)ezTrDmlXH3FZiTK7*#O78>N|Eycfq$Oxg9a;8jA;v%UH!bG zFt)Rxt-eY7w^em!M{w|*Rl=~ioGsoBQi4|>2;u?^#~b3!b%t*T#h~TabA(jt|6OXjLO)VP0T*>A+3mN0^u5C&tYGF{U-Dz=O?d z;*hSy;vW^2hkyHNAk}$@xNrKI76ao!d#73MkcJ|M*qhmKqPHgeXa39+e`a9MqA7nT z=1x@ZPn0L-Bb_=^EBSaF=3?Q(2(%2*vmY){tmTxRF^H z9>2>*av-;UGG6n=_f)lYS>&IfiGNhoCujE0vL1&`wEQ+7!l|{!IJv>sYmCbscAP?~ zCkb^nijgvkM`&_nG#^1`0V!R`_?jnMIl`c1qM*f*ko8367jyAWn~||;6(X6fyU81a z=JWG6pn2$~LDP(j&_0=#`Z~$IPEqNz)-R2ShV$_sPXS$)j8Y>(vZiwu#edyYB1(19 z%@s}s*23^X&T;OtR;p7b(T~ogS>A;Ql1PoxZsgm$N`4@2xAq)4XrHT`qB|O?LgJG! zTG__$i5;0$@`X8$V|P&Ypl(U$%*wLSf>Awk)dZAW=Y8?ztkYA(oVR#MS*JG7pPGmh zGJVk!d#K;p|GG4!N3nMX(SM-7KIo{D3N`X*$eA+@#UO0pS8spJh(r_I#k_#X#3jZp zCIqpaFvp|yr1gD~f6J_KO3`6&XNLZ_I^UqyrmCTIss#(O@8hZ#y972MVps$0dUnmr^0J5FCb)PFgD6PN7uE9)2+_}X9^ zslmGLC^4C~FR9494$r8zb@@5x_GW$e*W6aOa1>c5OC?m%=r>g}>KkqGE?a`gfJRDd z4jj9a!!N5tEeiHTG^p$q>zoW(j}CXN{5X`_4x6ThowiTXCK)tUcpG$9%H{eT?WXBs zb?>uH^yQ)Z4u4ds{7ftZ5cD)zA84Mv?KWNvYt8lETp1ToqEBM7Qs9}YCcpat@Ep1s z;9Xhbw|{cJf+h4*E?*ioW_h7n9Ve(-_CCD(4k2FB|cj-iL&38G(bhG7poC z@9Fgg;|r+G#Y@&QE})Yrb?8?~B?&ax8=4yV%6}>@Qdx6*l^Y>NgYZW@qeCQSZ|a|x9mH7{$NW%XBAA=1PpB1MSXPH z7Ej~(PSf88^DbVS##P|`O2xCM59r%^iS^>!yy(56MJE%aX|8vz&qjsbVs>U({VLJ* zWq;>hG3M4VtxzVNP=Zu-I~QqYvpyS3fR7yHkv>vRef#mbrI#Em(9$i(!-9fSZ|G&P zF;nleyM)=-^{(aD;2la8G@E?3SGl*E5Dvy+s~5j|Gy`gqL{W|r!j!jo_VSO*LlidO zcM{BRw2Xc_?MQSVSMG7HBFGo#W`nFg&3{^aBcRM#3oJOGo1;o#*Zj_OzIb~XGtvS} zme^vv%;2$w_EjUYG@!aJ{OkkD7h<2uevnm~TdTRht#_o1#o5>yeqRU)Vo6n}w@ zq|>r@-l9dHI~=+(Y1dPIOL|5(kq;y{3TgN6L z(hqv8XeVB0$vL|$mdbdpZhj;Wt74PcEJd-!_LB$-OeXk16^|Iphew2;8R0E6tZ>ir zmN@%*$v(yA(?j3tJHd~(&SL<$eSawTI3G56rs8v1n$EE<3Bpk^-KdRcB6G9KFq)ZX z{o{{xo>Gly3;US{vl{Ni@0FiAACx@GPTeqCT7&Ssdy>B}1Q<1)n0r?~x^pf0k;svy zCbkzrh-yHXE^ywJXVks&L*ZZcK88ipPc^D;+(5wKFNx)(0cKP>pFI6w`Dn8g_z_0iI0_Qw z=v{g=0=GXZMk!$^`+JD%-jj!UWQBA>>d;GAY2^&bqmdR6_G7)OjDP*>H#cVjwlW1V z%d(M<7-gh)4I^UC?3nzDtvR;4)EPY7p8ysQ5M%G3LQYE{BaVb=MfmP@*vAu-nb*FR z^Q1@3w+1EB=oweh^6HjP64AMJUuFZ8EVgJw_P!LMk{Nw`geBpmwG{mS%;bQEWMX+#YZ8G=AptM$mu zz@;{CQ)*Ui0h6xORyePT&8nG(3EmKeeCF7$M~1e%=T;p7UVrm0?2BqxOo%i30Lj-Y z11QAQuNpX%1o%&%H|B8*&3(Hg3fLKv;7gS#rP*scIF-evH7$kAn2ZyvLc@@C6?8~% zkTH}|Fi;oYXv2ImYOAP@DE%}T9(J0q9uS+di;;4=^%#LZ+8w+9h!5c-!+s~Vq-+SW zLp+=BSs188DSxxMt(_H$#B|GT0ce^QMLIWHZ6s7%RG`z0;l*~g371z<^4uIjWx8mHfFZd>xj`L6bVQ+5?gMa64wY!~8ojl!&!_c}e7a`w4_H!Go+5_KMxOCUHa#&;w&W-$^SZ=<8HIvm+36 zCDl8x7Ml(+2kStGUD{3~K>E#p@JdQIpY6H&mR>Pmd=@h8^Zgx5Z$s^Rs!{2tuM4@+ zH-8yq=Wle4t9Qf60yJ~s3~Q5BVIx(@6@nOa#(J0~_WG767}?;nS| zGoZRI_(nZ0H7aAAO%C~i^2DA#(k!}U!hetzJMw2VB%vHXN)avU!)jr273}UcUbm}w zG8$;jju7!B{geLBZstIXR`FT72m{MF+sdJ*LCogfj)%J<9E=>rYT5PsJ((Z465i0F zyhQ+RM|mNPd)g#UsG)tA9oS@L;Xv86TUjPi!&474QU;^_rwM!UkR4;vAO;z4hktrk z#@e{Og(!c=sdJFhne-mUD>0HxesGKf9nkmY+On#hH5K(${(QBPkk}c$hO8UMTr(@b zWc)+>S2w%E-ob74mx`j8aiL5$z3B@VDCp|4*(EY7&>6frCEujYP(U4;1NtxzH=L9v zRYTNy0bbD|w_;;2taDOK*yZS&vIxOL39BH7UjW@=3_{0(qy5S$c=+ zE`G}7geVPU51PFWD_Z*Y*P*Scd9koIQp%u$b5#Ke8Q%Asewu3<0)K&7$cB`? zfv=E@GFzF0NBgWIAkN|ON9TlE+DN5l@#wRIRxzYx*wOvgrqj2MJNK(OenlZy`Ar!k z3I)d|nBO=I6QtALq535=zHzc*a0TYkoJKBIq13PquMS)YJQ5i<43KGY@xpkYTgoY1 zKLMSNVOw%#s3Of=mgXvfn}18cOpRabxio4cJUD`hpdW>a#bB#0-4J22%(Ce3(qEc5 z-Ua9#i9d9}(plY$U{roi&}cCx)cEjHD~3dMxKL26(&VU?gY`29otep^D8X2HeHNg$ z=&~^7ibuut%xQrJQOasZ2IZa95o9K+#Dcj%ly?<)Le1y!l*QKk5F*6UQd&Vsg^Ba=_;L9afd*rz} z>pF$9$J5-h_z_I@7hwuf8Nv?cKr*21!_Zsgm)K5%%a;^bDn2PxB~& z1Ln{Bx}6YfH+e!F9)CPG2|SZ0g*jjFzvk<`8m?yGLfhz z|FnFLxy|ez4vXgMs6#vCInKx7rJnjQ+Kw|ppAV9d2+!8HM1OW-J!`8F4>$|z=N~3f z1HW;0n#8}Nb*mW3aaq~Fl%AW~beb=@ruKZcD6GO>U>}r`LjU%wp9ed-d-TGTK?59#>CGhc%OYx(A1i#mw}i_N>UhDgZ3S>j zq-GXZdZ9jIgnvp~s?gVsrXn&i=dTC&B7Q_EV#(r%vt(QH3m8drKO0~$l*J&EolALi z3!}v9S%o8*Wj%-jW$oDbTE3~GeM%)vNt&g2isx1_I9RI7elq%Wn-Ldbe?MOG5;NS> zA1>gJwaoa2rG{?OzRN*2ype-i-NB8ClrF2ynH)DcsejK6n@lE2_4xS}OZ$fJd`^fe zUYpU0tSLi04&j+^!6iJ|&v+79+>Q?Zo*tifL!QxiWx9Fi&E=f(55-$DNMm6Lx;)>~ zA-eUS>J{8eF2{jqGbmIDWku=@pHT9G}YAgmA8q==6H(ZpHKpRmp3r z(AG<~yPxn7cN&+G7Jyob!E2ShNQpe!4ieH{Vt-8G4@lzFm3jP_={6|Zql{#@o;0v4 zQzOfkLiiOfPU+G&ooN$q0f`HDXL6kPs8oJs30IgkPidt|#vJ)19|(iVbW3D8W4KMJ zE$C+&Tj*E@u5VF)paW6v=<#|eJ#iAS;Ns-K|Jz_C3 zj(;iBzu#9#>oh}pciv`I#INUSlbG+SicC}tyVTl0>)S?>prO@ffQuiOo^if!TG}^C7l##YTXG_GQJWqaJ03Ft zQoby16NpVM-sjjZDsM8xKYqusl096H7=Lms4X{l4g}KvWIBLUy>crA0L@}mYL5)VH zKn)aBo{dl0pd!h8HtJ{(qkU5*Y306TY*Cel=q1o8_(CqR8DS=4Hr0Pk}dq z%)?Dp(hXBMV>)m@W-XkI-fC2&1IsJkXG^FJ$TD`n{A{poPBB5&-{FsC4X(|}ZT2h4 zNxbJe_|>;Yx2QS3VcB;RD1g1DYf@QFScjBsw9aG%I)pYnFGlYU(D?Daoqt}p=n(n9 zU7d%#P)A<1pY3>66rMg6g0+KO@rZjcLm_m2#)xh9M<;YkBWL>khW0GN>jdMZkuR5@ zN9q}@>BAc#a4N$|TDX07X+`Xn`udQ)!n#EZ*fx&r{Oy0*?NuNI#|r~c=wWHoRn8;#d-)Ab-LGX`lZT=iCaL3=L}@o^tcGu2 znADQfcX;B~q!A$Ls+Le8P9N||$uI^;m$uhQOve3}K190{egE~Dl7AIw1y-UNw3^g= znv{5cd(e!z?&brGd$e~$qcDIDtC0vK&4Gr>9AlN~iDWy5sxDLIS3!2BzrDJc$E8x1 zuG}(`QdHs|o^E0{GNDg-imjLFr3WPPtIBVmYWcL#DKEoxYeLi&mxOr5U-uo1l3+Kp zoUqb*=$9WwrIPvyf`4yo;YrDV0F6L$zrYh$gll$TWiq!4BFV_Ds?mz4`hWiyJ>$Jd^Cm7SF@8A z_#)A3%ytEr^cyi;P=iiiD<0?67>*`bMeMi*SHyI@XwlP_9q+lFE5Mjhh3@$ z04%n~+Gtd{$xYu|W08Mi>YRYXC4hjk%2$!<4eDWXnE&o`_z;^Psn_L-wMugUTaC0J zLvQB|f^!7~py<`w?yFcA%B@LHg!zT{WzBlIyFLXLKBV}Vz$&hdIvh#TNZD|`=71Ab zT3@3lUj8m^IL6yl1g7#H{7eeW_AGFsn*P2t$48%*eXgRFW5j z$C`%*@0OY&U*9GlZh(l4o3H)6Lq;N?o_er!qD4^3Xoj*wAp78^S=HrIek#yXdaQ!5 z^sb`?XHa@bd6|E50nSdo7<#5GNW>1)jH(1T^bHU+OxX ziA;o5K7s!I{LMDs#DX$DhHS_fL{Uiz`xL6Od--3SO@Du;TzGpvS#c(8nD^Z)w+%z z4Hbx0N!41`+J4lLg{EE4#!I5;=1!LL$MsFf`I& z$XjToiLWycDZWn6f$Of|TkYx)1twG#nCyR{&~#jEQJ{jhnUqJoHzFE8*bTgVL74RUQNngcyBOu=$WzqH@rOkXmo{?l{8u~C!-(DHv> zO8X@`+yBe&BmRvI!SH4`RXBZj(mooPKJ)YnBKr9u|#>wkVkYL>;17q|gR_ZmG&yB3LccK(id zzysegZ+d!Q1vWwHNkBNr#1w5f;4atb0Nu!4Hj~Hw;`QR%MmDXmm+pC0KJCA>RBj)l zkAt)n-un(7qMu%trp-4Lk|E%XGkV;5XA>z_(;c<>>BqeCkkfr@_fRowB*%X_ZY^YE z{1>WcCdR0wo{NCe{^9kh$?#zMQh>}yVn;UcDu@{o8J7t8rO=)lkH`$9+fZmq1Y^Ex zPv+z4D^KJ+HiOs6lUr*?XL0|#)Y8V>&RLURRtLIx@(Jf(A<`6V9AJw18`D6~I{K{X zD)uvQXi_Z!mp+yeqctp$(qDaJp!crbVQP2Y2WYt03@)ySg$z;h!5W#!nbsI`rFNL+CBHAv-fPgmT-I zU4dKwF;kbVhNtV590_)@{fS6Pp7lxwrWpjOqZa3 zxowbeHBriTqSm;UIp2SQ6L=3IsKR^?60D$gQ}$ooCMcXdY4%)qW}o3>HL7eTr|aRh zP&JYH0lAz9{2zX~(Vyznd4#p96@sRya zZE~%<_OiFr0Wjpge4wrysA5%|u#xU*vuNSuq<1QyU52d~%cy@a{OV79tgQP)ZpD4k z`2_D4pM%0oU4%I3CThOu$BRrkLnMz`E_U$1IpsVrfCyYPe}%R+9L%AZ&5VTu#HdUd zJ8!~RYN33axq9NVj#B0#z=HI!K~~wVRx-YcnD)|qw>~BPjB$o>57N|r&HQtbbW_3H zEr-zC2c7eK6~KS>>xrQw)Y|{UY!XL{3{$OEEKawFJ+N4c0>ngZvDRBFnH=_LnK{6<1-+TXb6)Ktb5f)9V%fSqKh_VSn)5S>5YaEQ1<&RQ!jsx7?}RgYkAjL&Ujs+Y&6YL zV@kR%z;-7$J&-R(bZZI@ak&XX){@>L>M!!Pu7-ZAtTIHOEsu^1)ViFq;cU{r88}lb ztZWl3#ZD~E4j>;FWnlIWVC{2_zaP0X7~p=A`upf_kiM*29oQf-DK?P=0v7k2qRNUw zbHO#8v}b>D4g$Fj?#aDad<9x_a_fhgo|G5m#S{h`9*H9^qtDcH1n6H{qP_|kJgqp` zIbp$`Zxp{(u@^rtFOq@Co-l;QuB!P<&=gT?p-3PLJ(2Qq^u_Byz2C*vCtnV1ucCgk4$Wa~BmtD!|+gG`PK*v0lbuyPmYl zHQSA_^yTm8*T?JpKV@|Wf^Tfq{q#oQY~{_qQhl>h^t+K7EKVoOh@by?MclaQn7c$- zyYhcqC77u!&6fO%=|4~XrLPIl zDn)7s1_b%b1iJ@;nm)B0mQrpa^nW3X#>!Hd=XZueM}{OqSL|ps!ygNjay9YW)xX+7 zFd-`jD3ip;nTwlLb1)Op)rM;6?Ubex(8pb!OL(pWW+As-Y z!z2c)7fLtT!j4RYjF}#M=1Qc(!)R|j`D1RN>Fvz&e4yZz07#{NOXV&MiZP3GV@6Zz zVfE)@GNM4l=_BOi$xC#fP&xUDSz3Rcm2MRb{O~c` zIUyA^`QzF)u$Bs`P-{%@pd~gQXpF+{)|RQvhtC5&`jylUh&08e=01v&31ffnGQ2d= zFTE|dIIfbWG)5EX)Hld~hLdN1)>uK`Q>-IfFPzYSr4LYBv@o@UwV)GC>-!x}FEn;_ z@v`eju;3#suhPZT^Q1eHW2~|SZ2|@W0$+BFe|&U!5L}O{E0mv9-coVtHq>X#W#Jjd z(uHiJ2Yh%U33QwlQZ5VS^EZE(VQIx4sOuJ4Ui#<1;``=uTk+EJ)7rz2>wh1v-2nGn z%0}lVZ5iosPuKE#1Aj0^V>h&ZFgV(#-<3j6(`uHqT{E%@gTazUelBx6a%!N_St}(HH%s+oKg4e|`iX>PAJ)%diQLv?QzPNHc2F>L2*@fa(YsL%p6%XRA zn@4x_jhD~L;=IHeptA@Em@Ojjq;$fo#2-4%vrL8C_9NLFqk2-qVKAEs$T8CPgEC2> zL^gK6xx*5h3?w8Y=E9sb>GT~9iiZ=_*5%N8zV7!);KZ?9@WFpg1TbFB%XRPDWdu0fF#43@5tbNO5*nv(q0S;`x-*rJWGlQ8k|y$snB>vl|%_C#sc zC8*MZ1wm`AEbC697LQ;MlUtp@W8Eh(VOg&@U z3AXE0&zyfkHx0Q??-lfZS>STYSLwCaLn^`JW#3)&GqWW@GWg}4B ztps_sho{7tg;35(Yo91D{3N3`2X_PU&fmV*9RG$PMQnOiyqoa0F7<~3G4^KDar_3Z zL^P@it5{iuXuwHP63h8GD;x&uTg=-Rx_km%-DQ6gv=;lBrtu690Dt9*8s6lWlWxp@ z4!cEf{)zp7`|M4|=)})RAw$H9;&{nEY0U6c7Q+C|y!G8E8JB5xKMp#CxflrU)<((_ zS9b;P@A8a8);)v(5_<08qR8SPMP@q8*e2>%>IOFGZZQ?28j89d>|`F>&9oHj!UeEm z^16Q?9JbTH93g!Rc*KNMy@qWaeHpkqUk|QfZU-q#;=N_>b1~? ze|fpl3q>!I#+;FjA<5((JB3aITCB(CdsSQy{P|^V>DG29-YEWW5mzKWC{}uUuyz;) zlt)NPbQwB_%UW%Qldcup=wee5E$2{1@JfHv#oKXJmdsk4uC5Qq%lgqP5t+Asx^fbK zxxi?*#|*3){9j1hdQ{KrucJ?Wm4 znnrDRcV`ui=H#Bc#OYHF zkPwC6CBFcFppKSQK(8e`N!Pbe0kC%!@Etx4fuYpnvx0`8pm47iVxtj_pS2yyh6;~= z+v2IMf%gEm9mC83gxmj!y?cgeRlxvlKObIkb+Z#l_@sJH#WCYG^?_HxNuNk7gpJfN zO%Fzl(2Muni@r*&2KnzUNymRLoay^xkx7wK0DOq1##bW&%<+_}1+Elzc)>+k>=Y+I zXK$LypfAR5aVMM$zGpw74eL+CUt%Q+iY z%*94i=kKKJ?8ZeuhI@6}FNLYV>sr5P7!$h83_@Pcng&mt|8% zbJXH!KN5*duF{*4qTGKCBx9l;12;0i98S+h61^6o9sPYs^lOCRt=1`NyrNmuff99F zLUd7May~0NpeSw#;j87#n}xJG><|On@>HQq+XM7Ld_w0K)6L6o*v!?U19kamJoIAc zrdC2NN6qu@Ki;&0L(2qG>HNuO{-2{^jbBch059%EJgr(yESrB%wge%91cZlHIw0-v zKpU9bTGsZTGaw$Oi6@%(c>MVJ3B3g-+$fq6?rNC_0gAA zQZ^eh26GJu*P&Jwjn?3GGi*1-Do!Q0QJ?!39X9ZcX5-*Zt}Z#OtQ~PLY2+=*edmUF zU^`)cHSl)-08gZwGjEFX+QfFqX-hiIR5Lf&*YVvb*RA?d~B>V>Fx!QWN%_>3Nx1u@c}7+GBq$TATLa1ZfA68G9WQIG%+$D zFHB`_XLM*YATS^=Ol59obZ8(lFgP?eAU-|{b98cLVQmU{+KjdZP+Z%#sErfcgNG)# zySuwP2~OkMxVyW%2Y2@XL4yVj?k>Rs!Fj#+K6fYQ{(sebMOD+^@G<6?Yc&O_vKoVk zsl73OP}1JcnSq6onHM0YpvuAuU}k1xWM*bXq@Yl@bhZKhM~q0J2?RM=+S~E|VIT$q z8aaby;zrJ3I|X|?fUJuRfQ1df!pY0R#mmeLU}a|J`5!}j5HCR7$koympuh-_wYLL0 zAySChJ9vOB%`Ke4Y5wOcfZBuxz{11BMgO;dJ3z!12(mOWvI8g>Ia>g2!5K}AYyfKZ zCYC^FkN*lm&2QoC?7+*!@K?hCMI&3_ zKb(5tJ#}5yBUFi0InGJx2k>%fT|MC7Skfq(<&PFCC_O=d2b{>{?<^VHG8z4YQQl8P--I*R>WM}%9 zp^=S~J=ovK)yUGu$QW$!cjZO^Nf8x*5xBwswC7|3vUG5EVsx^!`Kv{yzruj0EMaFV zW^Zc?v~zYs{Hs23OAycmJa!MJe@@na+Ron1&g(y5W@%??_E!_8E)Gl@c9xDVKpFA> zn1Dryzh&k?X8;E?Gcy+tI{@ei0J@u4F#Q!?-NOO+x02;AF}MRCF9&-EfEl<6ppT^) z5d06(%gM+U2yh0u0DZjvRQxv~vakS5Elr#O#z1pRJH+47!D672~1K3^s=6%`p#1-gGa{#Pd|YVQv4VqjwjFtBp40C>2$ z0bCr+0H6PkqHJXOpDLJtyUN&^*#mg~DHc4X|0&q@Kj%;VpSwW=`0rSX_TZ%j0;qrQ z_(x_AW)tuS%m4GH|LyYsx8Q$&Mftz&`2Q|Q(#6K+Z#DJb`u~sG$kx)v<39%Aopo^r z@4tdQ_!ijxZ&NMcKX+CEXlm(V`@gj^&PL#SAYx~3^Y0ifog^*Yfu_oq&L$TBEXzM~ zjlV9Ljint>+1|E zC%^~^m;Ov^e z37lQ)H-WQj|0ZyDoqvf3Y-#kHz?R0p2|O2LkdcWs5d5MsbN(%7`&a(YZTVLL4sG%; zv4hJ6KT&OehyQC~m`wjba01}J2;K)K;D5zqVFpjb>^FkV&HliDzm%50-P!&^*WdA2 z{u0>y*8gR0?*jTGI@rMc4+Ph1@w!8E9&3^WX7USiq`3rpf{ylGE?b z{vx33A5-K2n>&GD760Z2*W+YkY6A1bz)qg#I$V^;7;L$q&{i*>!<^G5N z{@nlsx&uuRmlo_z_=2q(g1heOL-TvF=*$r+1M{DY& zUsv6KM`Y$MWj$xYU5|EXZLlwXnq=7z_3TeLncCv(L#9wPHwOwF)^()hi6hYwM!jv! zA$GatX(xmwh#^bK&dhITYgR@YHqdL>J3*q!sy*x+bVIxgA3WZ{uF$A>6{)Sx=g!9X zgdhzc7kl3d6}C0u@>c5G7O(g^X4sZ&cA82k8?x%v;jCUSV`?%4{+4-OJC9-xhA3)$MFNFZCf5C&Zj%$QL>=b>tiZ@ji%% zkVh)e!av$~>g;-shM!Gs8V@DJw5JkEwjW{vSN@$NZPZN<1!2ezzZ(@xzEi-pzM{Bm zQA>0#dN!lfK$DtXm%Hxyk57qjJ!i9j9vO4gqLLJTlF)>%@PBQM{^9zpJZs@k#?K-{ zrev_^wDzfUU_|nlxl3LD&e>bzO{*0;XSmS2*QCUPi$|0^Tjfd`cdCb-I7(JdFGB~j z1q-wY++R~q=pQZ!(TyT`G`W-Mm0=$S5a2qiurrA@ zBKifMVLi@c@HlR89Fi~ERP!``wOwIR4l{RklwrjOQl&C%W|cQ^W2H=gJIlO^xYLdo zk#CW%nvoLKtt8GFi%d?~4+yMF8_nPH;@^?zZn|px%-pu=Qud~x(Hw3= zwY}*0UYSFTi77zYWrTQ8_4cQ1Y`;@_umN$=ctc_atVgWh5`njuYG7du=Ri~LXqsqR z9G8{MF9P@g+%W%XQo%JW&6HHs%ATgWEREO6@ws}|A8uh!qZ#Kry(E$M1np{2 zbTBklRiqKgo1l7Bztn0Sk9D!Uy>U4w^ z>>^uTCbbMHgb2`7xQTzdNwJv|`@isYA(LvA| z(`7zv*4rffG~mR!rb@*>`Npt_&$nc?$TB7`VCURkol?PZ(u8Vd}7Z&ECm) zyQf_`YEO8mwOCo5nWGlNQp$4>r(=XYJZ-uI9pkOJm5pvb=$(Z#Vcet;8!v0I^U~## z2PL6o2B{nWts}`f>RDZ~~S2j(%E1KO{tI%qqBpr2NCjOx27NDwz+c!!jg7-8Idb9tWigE><6;XJ+L zbMN(WtMC0)(LZ6ihk5Ig>JOrQc9SsrZdO0@<7=y>?Q3=nJ3AqhagE~ZDHTD+EwtRq z7q-1_jLWN|`hZF$iz!)=;f&12Ez@lXN zS;BoIRrmaU(vT-p(r#5G$mA@)@XTh~%Y3+io?V{(d|b7fL2*+o>&1S8L}T*02hGdj z&1DK)PC{m|m$Bo|9^`7=LRD!=|v2Bs2>#_%&2f=@@UB%-slo z0%251J@<{~9z!Q}E2(UAtL|qH?G1$PGE%)-&+n_k-x*u{%kOcJInE*=rWoRq#O0ef z3_wfLdq>rd=7FWPOz%JkrGe;&<`cEb6iHF;fGX4Dp449V{5g?llas;p(T=Ht!Y3Wm zHR@nm-rPI;7*oUW!a@;+2W8{n=uifKyH5#WN43r{iF#zs#Sud`=9FJ&fn{mcXosoB z9Hv;)v`P{P9Pudi8tN7g_-i(xdr9r-|VY?+&tQ~fr( zrCuW>oeDvmyMjV%vdtPdp+1Ly{;j6hiKPDLE$8N(x5O*Gqy{X2uGs-oP=i&$@Rc6jVoO4Iq}U3YXZwvEh8N5cv+AivO^@7VG!Z@Je8BP%AxYgwf}!g8)!lD} zEb^jtl~b5xvbznC%@@7bFa4Ko#16Q)%s3MOY=}wi5Lrx&1UW8UdGYsuMnx$<&Guzj z%7}#KtepF)zH;+2QAf+H; zO@6hVJUx4!{W70PVM>NtKo~$N#U5=%2a$+Wb~p_uJ!3xe1ju(W4D!4O(Z85*s+McU z9k7fRQ{SNR?tEi$zaLJ2z8cvzOn}quO}V6$kbuey5Na_&$3tDX!$uZcNgK}K;%Z

LU=U`}RdIu-UI$qi#SIKYlN*mNm2&3?|F zF(rI-CYY;XUKG7BWYgNSiZR%`c!nEj(d!mZ5L1Oc=wPfYM3Y zuT~PY2v|`4MBZ=MX%~)PvNS_>vWM6u1jrHhDTy(>RTL@T65zo#=MXs4(s!R2r-pS8 zXc~B3&Xw?cSJ$_H?97de?xUFZb3rCnd^9*YF+HNEGP9VZhcqA_?<>?gtp9sGAIKI- z?4H5ige3`eEY=ZQRZD(^k}n`Oqqoe%CxfK#%(fGU4`Dka)v_tIaJ)1L7a(fjRt#QI zDo{5EN}HL|GPFz(15ox@k`_7gJQBDY37L>P7T`2Hc4|w1e=e1__g@7B=AhH+OZpIy zkO?6x6Yj^h`7^*ho%^N|*!KHcT_k5GzL9h#(i{SiM95t%GNQwOq|zz89g6*_8yJ~~ z6+;{mzTmx&$wLXB-93o9ZU*8)+iLMw>GHK}WdO)?M5tiyoiTlggz6^3`;ZjqucYb% zEX92i+>;uAm_jP{gm|d6QXZ?Nx6(QYNPerjT;syka!i?P$~Lc$lm0`fejG z#m#+xXI|qBwqBKhvY1cs)2adM>hPTP^9?o@<;f5f(h(o9UW)5`B5bit>RogFJ$E|64h+nY5uN%9+C%tE{!jz1gkjg(b<*e@Di>y*s#B?T&xsL~Zx zK{29#jtvEUp9j5AQ+ZLBHfp!@kwHqpyp$|0+WFjPwHRh^>_aj4A^Vo-dFNjUDk=fJX9l08mg&&Y|(*#L9J(;aZ}vHeHN=vu-@~)s`OoVktRE$ z=0=@Tr>2b4b zWcDe@zbspXO-SN4mQfWwPZSk$19mSU4c25z!&~X9jILdSn7j!zEwB_85nn@S7ysOU zbiiRao>D}=xy3Yhp%3EY5F+3iUA#aORLNHSE~RS;A5^vRD?7nFE!084D|FTXZ6t$v zPI^L+daTJst9!QC(>qIjylF>MMq#JcjCP|anDYw`{J6zktWVxbIR!#IClb~)s1hD!{FZfePWS+ovbLQ zjrm^JQ!f7@qjez0iPpsYMtITJ*4oUqOpJSNbQmi*6a|Gx-9cA4P9Gy^d zr|;YN6_DxT>IV*o{d?Th&B9n0jA*Bg}jihW)hzk;c$bg)`p!|*z#*FY|4W&8d$RX z$?yJknb8Z6bOpHNU*lQ#Ee$ftMRPn|Va^SS^u&&a^-Smv{R5_>JA#{FX@f@Zn``zI z2$|cvLVp!}|2Q%70%t#eM6z-ndu`jHiC9iwtp1_v8m?$*!6^8gY7i8={CTN$Qh+X> z@yOYrd4`_KzvPQD&GPlP(p(VjEXEeQR*1uQ@_ZyB4KHGb=$5kSK+y=oYd~IfD1qa0 zenugpk)hJKx8qKPX*z7d`qm`d5drjUe+T*2G1Im8jDqSzD}!NwG~s3~aycL8zQTj| zU|zqu@0I^A9e_*4hkBbUYWuFGSGc(VbAk*T3A9tUq}H~+gmK!0+GhHY`?9?z*KC0prz~y_SNz87c z1!R4J&iE2UXf^eJq|U>FcdndN3aV{c`l+YxJuvOUoZ-2tr4XrhAW#>d1buBs2)RZO zG-I80pY<{j^9DEoPQnVnMvuNGKWc=}F=di(5X6@JhSEyDb=mHhYb2%`$#-42#rq-Y;qQ$ZZ|8 zt|Rq^iJ8iOuaHjh4E+vj(QuW0VvP;?j=YG0&^$cuKodAU)mbl3v3lsR4j~Vv4z&fw zeY#C`GQ%gs_ltl4gdyvMY-?7LEWtfWq9FZ-wL^SW&uIZOjEJLDnmcnVk+mc$_b_8o zWmEpzonrl&So&E~wEhCu`90f3Bw5mgdRqRPdM34h2B?uQPy!0$JU-gQA68V^wjM-S z=@f%ZPu_34LP&BVNZcfTIA=sFn4HyBR16d+B;NUQKw^Q16J6v@f_Wi#AjmNj#mGS| zxAlNCD@X?)8brt5=`k-{hO-Wv6Z=hc{>KL$lD4ko8-yxi2E!+e=#+@$gv*Hp(&ADE z@A4aeRZRsDCxR(ChE>e3O1ByyL0(67%o#NWqaow%6^e6j5~3mA<%nN+?%{1yoE^)a z1pv*?b9x1+nzQLoW_NG9i@mN?2lcWPis$ylP058;arh3^8p7QqGAH9zvuLi5r%L*Z zBX=F^*H2RzY?pok8>&-FN+9)6`R9r81 zSi&*t|G}JS7T0AHw`SKlizp!;gWTi*e<%jxy{x+?#@L%XRY8XlDB6WcIKWb5LrtXaMg=B@)lg=Ww+^%lJITnt7(b3KaBA@fuKn(R z-h+6E)Aa&3lppY2fe)MGc1@fhEz30vp< zIq6;obnHw0S@ly|w>0TaYYPXCHwXPj0lK%sm=B!5p*G|D8B**@DTkMkHhL(3Be^fO zW9m?nKM18h=(LQnG$dGbofIfm#KFtjFVKJRz9IG&HW;}VFy7s8;?}QH24$+nS8JdW zD*XulERfk@>L@zUcm=_L!$Hk+j$lLUPpNK-4QYI~)pBtPv%#?{l*#68 zFDD4X^&B7}e4e+0RnmVewgVx5dFZTSDloy9zNu0j0sn$`9iy`(xIW=iG36br<^xeI zUpxp;5z`72Vo^w?|C9dP zWk!+}oDnEfITd7t!cM8|o0vQ%gC#siD=nyu&*#-i>@^$ZrB!-H0pG}fT==G_+)Owh za1i8NMy65U1r*Z|U+&c1yb^iCiqfa*1)zQwEl&#}bIdNN<_={I(Kx_NzV6kdT~Thm z@G?@Hqi$4hl$uu{db7=ERH`!!-|f?`P9U_R@`c%PUmndE{0pkC%*Dk3u73}*)Rmhq z^OC_1eokyybn3QCg&R75s88r{Mf7p2Q=5q@!O=~X)^^K$eyx%Cgi@%@H~Gy#HWgfG z-B05b!WSc552jLU6uMJw1rbKQqv%)1PI&Vaw^%`nS=J3c9K`vA>A7!6s@?85@A z$3_y|g3Hk9qM^jZ^GN7S<228VMr?)+9Fd=!BBr!L07;3pMTc{LEMnYlmEz7svyYVJ zB0*P_>xN9NhiRwr{Kb7kXh_7}n%0%&^?3{YGF)~+*6_}%bH`^(=3f+m2;5TPFv%O^474d%Ltxd=T!pOX6$pF&x8N18b4Y&O4d>cH?N8`}GSyeGu-MmUm3xC)CSe}zCh z+RJ<}?d8p)2Q~Bwy!XtPHF+Khrx&+iZphgJTyKLzF;n;^sI#<5{bn*9)BzBz+9W%%9i4AlchZkmzpC?G|s$! z!?o=((;DB0Q4v!SPEW+B8k<;#J|~la%$GuD7bNS!B_THgzeio za+_Ux_&G;NN%=$}6@Hj(Ixi{omiLfj-QszMpUMk=veu-DVL+XV>^K1SY`9k)CuK$l9)N{YeVoCO2dxt-T!MyVj_7>4Gr%Jt(k z_z5e2BLkDBX~WALsok2Jnu4paLkIKj4566JRT^z%zpG6S6X^B0*+3cpNz-#Dk7KTL zrnoZFLyomNeA5%CP5~L_hK&_P8@~?NG@_O5*H61=#lBih5+THdx>lH|G{o?3NWinfDWzu!4N|Zwlo{tygkXZdzy1cheSbSnI*8W>sqn+r-KN@;c3mb1xJEr z=L?ZS-WoUuIUfx(_tgI@lQ1VT$=hNkl?B z>(L+Tj{TPTRv-HE{6t9Hy{*6H(k9JAX1U;-&MXR#rS>uzCp{Baqij}xq6p-w{V$Uq zd+L~S0?{lkc8NS0MD|ms{8t<)jG_|iStv^{kxbY$7iU-QuOjU~neHu<(!HmfHWj9g z%({@h2^q6KlSHP^=Io3GZ!0R%(xB4B@mwE>%L-las2^0oW~LhI{HQ5m@!FSrkGc1OJmXu}aLZ@)&OQOFQ`e;2d~OrBe!@KLIY znL=8BGLS@q2)AAjMD5;V$%nURE;b@d8#Rn8y$7Mw7&_%=y9J$1XcLZqIruPd0OLP- zbalQxNinn}lpIKZW&oFTI-_O|+1OQqh<2XZNghH=ZI@ob-_C2Q^S<@&?!rf>J7`-4 zC&38j?i!-3Q4-G0l~&G?;O@X}tYL*tCn1!!r#T~Cwph9GHv7Pki zjtT-$0;4LlFkEXhDf^sb)WGM1lxrKvN$BBC^d1r$I1R;r+n;A|npGe0zw*QxxcjA4 zpKM?eU+`)N6qTCN6K|?cz6S=odCK@S7>17d7JcSr{$aMgGWrcDQWOk1LO;Q+ctzjh zA6hLKP}(-x-73`-kj!LuBCU#A9ct%_GK_}ewkBm&ayNC3>J1Tl%3e3@^CjvCz1e_} zwRET4DeRknXa5TEUB*3Ltj@$n+Ly$;;_e!h($TZP>!07?P!ARYIt$6J?8QIHD$nj# z1!C=@E$6+Dly@(RJ1Z5tAj^uWVcjj&$3H^9gpIWU=T&48GgN(;cmrExkHfE)?zxA+25AbRtZ|EJxuV1X#`5_X`D0R2 z82zqosIHP|P=)s`21aSf?6Pq7ZNRKYuJgoa3n3R65@yY8vpetD>8O-<^cx+hUt2I- zQ5QykXs_44r7dV(MHxCf#!RBW%G*(sztw(U*%ng$vxwW(lz+Rgz@xoh ztqP(?AP5HvFEKdxM6!_L>O+%Nq#P{v7QVX7#ypXTbDl+QQ;`BURU|2&wUSPYBMn+m z{*}_l{jcYQDR>Bad|aPRAjX7T8U2*ve|HI%>2h-g$jg=;=ECp!)P!KtwN`DdLXi83Bn6;&jrY5i#_+MTW!NSwm$#xljs4BxVtP4_2WXP%l-`6ds#; zS={ihP84XiRRvb`XC=P(D=bkbKLTe{uZkMa8kNZMa>RW3<|b<-C}}J#a=+|>Y(;{f zMSszEf7a4Ph_FSl{ZI(Ic3QVeFZiH;vL|SBKH@2CIWK^Gd*LT;lk;V*_gR%cmYeHK z#b+CM@Fw|$0wrf|55kQdF14Rp@Sp0Vz8FiQHibu=*K!1`@<&aZ8K0g91D(+{6{~Q%h zs$MZD+O!YUdf5}AzFL2=A7xMsB;an|NM-+wh?aTV#d6{aiwD(YY;|Hm4aj;$^Wl<- zoJNkp3}}~z`bqP+(QYIAf_mS7d5s>O_W2X_sVh1i;^q`(??@`=wORITp42L038@?G zr@FjBd#fTYMkQD3+)R9(Q*b9yx5Z=IwrzW2Ol&6;I}__4+qP}nwr$%J^Gn^gukNk; z(hq&AcXd@)o$9^L+P`%_ph2vj>8>BS%fM;%8^`8~dkGKg%dm?q(Q5g!#xCcB#^ zqaKP&uq;%w-PI;!kNQ{;(SyHknI^(8T#Hfz-RJ69M0J`o2X{LNZol(1(om=$1iM3&g8t6ZlqxM78|)hbU6U1LV%yw!yv1lb!qVC|3uq%1bmk27B5zcPU9$LbY8S*kxW4 zAt3C$Vx&!n!}gmj3J9(sbEuJUUHv}uO7K%rg@Sb$V|iG0Ci_15E88D8>SZ_&^6h`@ z<|Ce?&OCPPG2!00j>HgcsjwkstLtEE#t4T58KBH^A?Amqmh&NNxC;BPg~ zMsMx+eSDl9?|A8ZSo>NmAB6AI49kXBxo=rPpBq?33fr^z7SysE)f@8s;_(8iAVBL? zN*wTJw0dM;)wRNTlM`W1J9Xa;ji+pC*B{y{t#l8LXcg+zr_aF5;4ZLEn1!)#i8aX# zzGBB8b%Z8XQj^RE0FV-xsk4{v4c6(Y*0+>zp-%jPD7~Gx=~d7V#;L@GSDHb z@}TAt?iOUvl^Q@ww|#orMMq9HUWT>=e8Zc6p{N>eW{Q{a&~)Wi@PK=i-B%8D26HKI zmiE`MB>ln$++waTS01Tpv!Exn=&W0CV&T^WRTeO$y+X{+eIFXZ*_oVD7*%LfL zY)$<1Y{Iy+-myJ0Eo;xd5J)&Z+^O=M$Km3w;14uUz>t3kk@4o=FUd^#)&y>DV#G1* zQ=TwvMnZ?S2!pSp@i(G2Ns@{#gyJ2OCm@QYT=;{hz?;*EF^PGt{ndE==9527+aBP< zt%+beQ?#a<EnU(E6eRE(3DAUVMdF`011npbxEHkn65S_bvC`WhN zLGO#Y^ts5~mAgA?Bwh}Qe>ZZ90i9&V`c9t}>pR1ocpQutS)n2Z*Nx|{2O*<68GAMq zZm!u-+m4T2GM4QViJl&RzxXT3tabQh1HdQ2%i8hY@>!YAKT}*!mFk8b1!hubRq`-X zELUFY$b#S`OPuz{D!6?_a#9hjpxwpnjRmv<%OQE4zc#P#W{_;ncTkd4<%|#gb*Ihdd{;~eY zc=B7k6EYcVA%QAJJL6*d!&KV-&Z_6!Ngea*X3Bj-^f^ zb9P>PNd<;iyQAMK@s4oXk_I81r(B&fXD+sv%>2FBZh(SPqi|6MtDorn$thy&lGKPndZk)4IxDORpyXT`!Pno}X{NLI(qK z6g?Y}IA>D%CP%MLdsaH=2ryE|BC%gxeV=8;WwzfetNb3*pP4iTT>2~Sp9xB0j(B<%R&rCL3P z(^gVyxnP#y0JH>(L6>A1v9UiZbIzdHn#s2FD{hv1Sk#129<_uxyAw2mH1D9Dyg&__ zs>MpM$)0awdTn__DuOSizu3k6~rVy>O4>sv;te8CQ0l-nc9ZL6*8cGweiv;qAWtRPN zk#t?KOtu=zNE=|6f4>^`DoCa{c!2N$h)uj?|ZWzISaTY$yf3qd~h~;N-GrtZBV_oI_^ZUDBSq5 zl96;80IG=IC4(ieL+dDDl{;hAbm`R4i+vz^W zk@MkU|3s6JMSXEUl(GR9)O4rFT1nE17Bk7+1?QOUBQ6x1+Ty64e+csJn&KwoRU8u} zdM{T@zij#`ZSG{wjtZ&eRCHa@Oq`?$cG14z0q@m)%&fG^fBywcl-xvUbJl;{L@n=+ zRZokZ_AoH~9SJ5kL0}r)9(9v+$*z54@9f;-s?DE40&yb@k8p%^I#$~X;c@vrl+V8a zkLD9@RoGH^vt}6LkoM=qn?~|A`l)?*CD$^kVTEZUuqoVWm>TuWFIb%-3HJTNdc5f| z8lV_TeBMWFH}TKju;}*#s641-hG=o>LBub8yqm8X`YRJzYw5Km_auKf&k}a7 zABJqC;98aMd+S>@^BXo*yls)2&?#Pgp8?jMW$~JBBXMb${&YyMRPOwu@xuFrQ!X22 zVkdO>*A~sX6?@8G8jiL{{W#+ZoyMtA6vIV94eo>jJd^A-uiURd$|Dzp!Q4J(|H}Id zDKx)3o|eTqq`q$`W0VNJT=Yfa>A~<*scfHmT$MHLomp;(+OH;p(eSKmfKn;)<^daX zJsxq0!bmNLg`Y3Ms=PbJeD|p{4*qX%B5Z>%N>{poQg9x8s|AbR*ma`vWlbMiw`JhJA6+rL4#*iV5Gw$w~-W&8K#6|pWIe4{;j7$-f3}Hh} z{|BO^T@gWZ*_OI>6L9i*J~wCA8~=8N%mViBn1oW3;GQ(B!g?OZ#N3PsWew?GlTqB_ z3+N0Ec+{u?f559rI9*(KpU$gF(u;>W3Eb`(#O$7*K}f2Lgv3>8-q|5`8BmTX7BlRg ziYM&ww$8mxPU_oVLQ%#(5Q(ID-=_dITi)6UL;eJ$gh+Whb!z9#4qv2ctpH6!v;tU_)&VaQxSB;zKrR)h$|u1bN^O z_Aee4x;$>`=8d;fANkpBWw5Cjg~287`Y~w2W8-LekiTgx0;i`rA8CKLb;DRZFN+xn zKU&-mRQAN}@juHh2KcEJO+*7IvI)TNZkNoF=|LUFzUY*Q?6+6gfx)#xS8~Ii#C3UYV zlI@%ymaB;6opnhY|dTqpgOm1e| zvxT!ELv*W8Q`${2{|z@Wg0hAqrqUD1a7M2kUg;e>9S=0yk}vM12!jx}3Jj zizFL-SThv1NEns#%QoirOazvx)iLF(Qre}1hORvwuxta7rQ z9DXclg+uCy%@V*OY&m?~I-^Qv6j2&Se!{?;dMhx9se4)AO@f%1&?kKM zuI;dUl@LHx&p8f~RZg1Hvk%+?Xnc-~*vpF&rN4iryWSVV^e#8%JUw{C<1QsAgWd%( zMTHq%KHIT!xVm=sHMgWzisT>Y4IAtB4u z7FUGUQnF%m#+>Ls#oJ0cYVUQ)GSJXJ6+H;D+?V`D>%98$HU2*bQn z5Rnu`Dk1|SY7Bara$7^b%@3WzKC4YS@5`ItHsG|gu}_^}Z%=sBf`QD78X8#o5=Ng| z_WS5iB=(pDJ9s`*W;Xg)(n=_q+1y_$*81i zQY?!5%#k=}aOUc$dJ*pCW#;FICwgG}-Iqp zF~jchFGa&&`wgQJz(csMiHjgi^rO$wTsLG# zjWimS-nJd0vrUuGO_BJ?dRm9x=@1ocLCYR7gh{MEU4+kv?ulcIdgD?NR|UVFR2$cx zjbbnq&Q7uUd?33LwJkQBGKYtaq zee%jTKKMjegV7O~VMD!@8D#8n z@6Z3Vob{;yiPU=rc*SYAgqYyP*qfjk)sk}6eYR2^u(1_p0mO#vz6=*x5;j7}b^9g- zyHUF-lysPkOU6TZC8rUyZsa&dJr0erEY_4aP>{c4IcL- z)%`PSgN1F{N`-4)%VH#iPJGd@(%>1MgwM2(2=hQdR58!1rR9lds|M=z3;t5i87G>QA^M7c>MD(&2`+kWCSCQ$K5g$@z0jAi?o>AL zh`9jJ6Sw%ctiDZrB-6-WR~K(8c<&#z;Xnw0XY`E!6urzb9!KDBt$ALZ!po|i4a&Mr zbX09jp1dBd#t+uLK^b1l6?=Kg3@{+Lfk~tJOt&|JEBV}r%}=bm!S7kDat(e~vTYY* zA7W(-_$+*GY6;{QR;Rrg<(KLn&P9$%vdos{!HM#WcvN}oy~*3PoB7Z&Mz{styPT>%|E z9)ncllF>E=2A7}WeEP%O;IE$L5zjpn_0;zp;bM(@OUKTd$Fu1nH~Rw%rMB64hY{B_0qd;JjD{>fsqnnZ4KMX}G-0{pTw6ilXhv5NqtE2{tIKEsS zbf8@4-uo{F1PvCR*4QTzOU-_|11$nmUXO5MvU1k zDp+iGs=H1H#Xb4yGcUbR$xGpoOB4mxvvrvF@`>XBJH?tMEhi74S1cLT{lF~quNYnE z3#LOk1ZhQch>yi?)4!-w=@41SErl!SXZ9TiX&Ww@Xmh*Tg%dm)DdPlgQy^Nmp+UXd z-8Itk9_S*&>*7oT>}s{vwPCDtnmUdzE?IZRailWc_ZplJiRJ^a-%pY00?QY!+$j-c zcCf&7Q-trGlNVWlpCPtF2U&d%(TS=6@IX;~SDi^ZoJ_?$^UANFMDOb4VdJ+n4p%>4 z)M3%@&dK^po}R(-*0{wkg__;IBegruuEN`TQC&}{P^V+%Fhor;$s_P?&?yt*w)#y- znx>y9hOO}73kC3QSgq!$&) z3!9<66h;9b<6i9nX=bsbDYDZdt1PU}B*nI!%JZSnWJ;xmLwaUCH~2|ckf2<#R0GL( zMg7VQp;FT*Xj$s-V_9P6AiAAQ$xXHKWs2Jz`+ne|1GQfkb$|4%bVV&w?q1LOxkB(N z-lT^gnYnNQ&BpjR0=ufYq==fOBdTy;%pkrX8}0_Kc&wBQXCrE&+rYCL<*rea-@#)A zimO+?uW_>OB3eN(d-a~thar> zxqLeV6g(h%^jY?uar+h8bdGClEb#!T0C!VRBRw`Y8(ym_(9k(u6Ez)WH=&A(3!cU__D}+ux5f;Cp}zoV-k)} z`;W*~4HQUF>{|S~=Q7-~_Cy!RZwvWW&>w6PvG4L*SH5td*g#9GKJWw9@Ht}~bY&Gt zOUJi_Uo8b0-|Gr=H#Vc=*HV$^_1Av|>p;W6rFkQ2pb^VVhr!1*RP01~l`J#7SU(yA z{(b0tj|BqTkkn7t5>?j+0MDoym>aZzA_`XSU!=gd#2!l6h}i$bvTE}|5^&{Q#drr} zJ(g!@SV19bl7NlfTwk8CpwSi0SwRNQXJ(rr<3XM;YjCf@oRc5t=31@B^xmB-75TQB z?q^tgG14dwyjV|h&&QcvAMyeZDDX`LQ0CYr7aHayJP@?+;fWLj9}Y?YSvet0(DJn( zkXCut)jLwAtgr@33x+kK0W!k)-`b*r$_R4pKaCvOJ2mylO9TJKQ2*MP$ws>SUaeJ~f zF87?jG(F@Jc#BJkv-iSb+iY^4a<)_n5aL+W*Wyt(e|05lKzr70G#)mcc`&W?@jpp^1(L;#Zhit8 z*}#Jc9rN6)(UEYyZ(;<*dkBqz60&VWM3{pMq#UcgCoKdy(G7}c#+PZ0Wu}@656QrU zZy7%LyTM3tvzXO)Yx}t!t>d$$7k%our)H6B-)kk;Y{4~# zcLo)^5t68@9UPfO)?W%Tzydv#2XSa;d=!ch1d4oz$)?Z!fWJogAvkAeVw=+ow91n3 zx%C`o=d!WWOVUDb2>=;!_Y4kBIN;9`RQO*?IoTo*Z*Oj^VkU3yzeWKyWo9g5(X~Nr zz;A&w=bZ?@;ond@>b@@B)x88lj6`2gxt04>H1>LJsud2>GPE!D02vxw$0|)wi;oBM z6FZ-RTLcY-XVbHZqT(l+{N0q`|2D@`qBBit14HezW>pIVK&lsPN}_H{EeKEO?~O;i zZh}dwHvT?8Y2JG`iYM*inP1WOTT>N+cIdP{@x;xIKc=a#8z@YO-Ty)QcJfUyt(LXo zPi0Hf`AuoduVUY%1=tmGdSDNky20PA`^7?+lEWscI>a;(+c{F#I}7%LM68NFn?qp0 z*^ipi{?0b^K|9Hn`N5U`03RoE^fSyjJ?ee15(0~!e9~-@n`pgr{4xP^&%jAW z?$Om05R=?=!Y&LE5}uXIau-T$U&sL z16zzKzMtPOVRjxoQ8R~;#JZHCBs;UW122fF2s)?CupJdzM$L`B%hI?H&sW0cv?l3B zF5`!4Ee$)r2H^hHG#EisrqHs?iUxCAp3b8M)G-A{Z zVmgwNf5nR*SXxOyl_M)G2k;so^5i92h}!SZX7S540hDc-iuRl%s7vw1%n%P$a$4J= z3MXsfC@^qA4yb-*=Lrxoj$T?AfGIrbX3La<>wCuAksC6fE5jYr115^Pji)h*<34-$5vhCi-XQqFk7 zh$mFRTj+hvGLrF!Vo={qi8Nd3d%IUKmFs@q`oa-YGHen_(Qs@5(K5&aeqPH$){DSn zK*0<|M~w@7^oosXq>E3EVOHSi<1JzauNrvO0My3;o4Eqjuwri>ATONfoL?i4E9=`FVbhQ#Z!0r0>AuXNp!jh= zf!qMw(oDKXrf@!iLmyZ5C}s-w-Mc@zl$TE1#_B{Hui3~gf(J0hIx1IK!TH-}8)!6L zmn9WgE)-Mcfz!{+5K7dqOLm-@koFCXrg8|iHNxJObOybvPWfr#53gcv2;g6SNrrpW z%RouT-svUMUcPltR*^BQzyq75h773=0IDDW^IEU-8$xYB^K`aV(I8(^3u!jw3x5rX zEDkq_5qY~*cLV|GzZboI1z$i$rtUm-$E73nE)BD0+ZVSjNd|?I8^y2t%2vs;Z58@R ziIuY!P>+SV1M}mWD~sW=`xX9^F)g zI>*}=;C+EpAuc!@gH-1<<%%lgw6KofUh!8a`A%llK!GaIOEk*%qV8)70xTaT1WX&H zRhwgKOigi^z9p+HDjIdPKn9(k@HB&gOJxyUOI>BqEx~;Bf`@`>k*~(KQJprl6%?bW zgPwHgx~;i%gxEbT&&l?}Ea#DLPq|T)2O!U?G!HVVT5I*&`(|ouNNK+7O%hR|*}fjS zL?imq$E=6PTkaA1t0*|N>6+0BouNRGu}gkSMWPG&^lrMu8Nj|rj5mjf4Hwy}uX`Ss z;^K8}(e;*&AMq;~A#=&C->)$JJL{VPB3-vs47)RAwTt$?PMZJUgh@806vQ9IWD6N3 zurV>(|FO>8^0WSi4-AtM7YfWr&(6)xz{1Hv#Kp$Uz{O3ZOT?&P=xAc=M8w8T#6+Y- z#HeKQ*Us6|*yJw}J5$Qs4lr&CLKrX=fQ^Zr>%Y*HSA1jf2hH)%Uob)Pm7xqc?~bVh zT-$D!ErSv6*BMu!^mXNE#e*zj&TZd5j=b{_vX?& zE!Bf+kIl1skI&0R%Z^M>e0}6HO(2Qd%6JkC5V9|#>jo%axsF5W$^)E=S6vz6h3)&s z5_{ssVqQ;0Tdi&RfSue9+%MaE!x9RP#ySqUI$7m&-yNRDad>6#))f^Vr0%!@tr9jg91XuUdDsd#CwaVay~x#ur~QMYX&tWlvlf2cpV zhai}{LGXTS=^(EP8u1hlQH3Gw9fs^IY-xNh%~uUbBrTgy9471gjQ%{AFYBP=0V5fN z`|`_J9syM2Zc{}ZqqY!4KR=6#Z9G06^K-Q4TjHF~qmWFB`RxNCUzh)3m}S}w6G1mt z#1}r+6)`wnw6SaX^?H2i$G$ED)Ilr!*%#=uIb$xnJdXE(arxdtfet8uyeJk+7BtA< zeUt&iZw|9tbel%DEPovf2bby<&?ArgO>DbP&NjeD3 zTQCK(=a)6h2q`*SgvtUdnh4Z?=;vEjF$y3N?ZdkKgF(y`1A(L&NCkeGs5xBCR;zp@ z3}jngxhI0XTRdLRV&a$KF3Dw3JPo?%m&Ox=U@!99ED8f=GnUnz1zhk@cG*0y50N{; z1BJvS;Qkb2DrDpRIyNDL9~BR|8oJBI28L?>qT~tW7om5 z7ZtE`H0(uv{V516e`xYkFsyTu6pSxU-96Bk@}9=3wf5)EI1U4yTYe{c+|XxV$`r%# z!~*5=TJ{r~c^bdEqJ(oTxd_41ZO zPh(KIG@^GUaC;;my+f_ML?d9M4knAecb?)ZZc|<8z6s^ny2Eb+`ZKxC&Mm`DPFuP4 zuPm1G9i}0;&D$-9%JZzvyCJQI@{Y;~g^lB;(^Yg{)ds&UU=sldV4r~2E4e?_ z!>b8H8+OVEb_xck8ynK4(XpOtxSj^JFLYem?N)6Sq;#&^U!0qgDT_)!TejA{QghEn z%D1+sTATF6k|X|VfMv%wo(kt02ruNz)Xw*73!xz8CeS``Vfa8S*iJmDkJB>_W+n)@-k;Hr!;e zh#jY!3LHv@EG{7ELg;;vXV&GitT~&#*$b53^@r*T%!$YnD2_$<Howi#&w~uxow^v*KT&siu!|69!hy4h5Zg4;-ewZFQ)=V=V`bZ0N0_PHFyl`n-Lj zmNuW%n%781gV}`cgdW}@ORR$t(fstHucGZv8v)Mt9$ekOQD2!u|1P}P*|m%SA1Kj{ zik$%qy5J}>m0g{!u<~#gOqNoJYX!cdPwJ2<<28cs!U(Tt8TP08m17O*2bOQZU4b8rs8+X zaWI`=+-Akm-(gAGU0Eac7w6JQ*_XrYz029~1;Oqd2{R{yfYro%UH*3!ZAZVugXbb# z$w;gU7?FW)Dg>%j=_<#Jme)CthcL^#i%$etJ~W!TyE{LUxjwDSanD+ zJeh+FcPD^|G+>&E$0_D+UktDmNCrkRaE1tWRSpOQ*UCFn1yTaF5h+O!=9omB8|wUAV;n zyJH`|fq1ebk&iWjnd-AYk%AkiR^fhIoq?%wZMEnQrG`<>njU4q z_}(s%;26yV!6TbA8181y)LGxIEGWK)Oea3jffC9nBsMuFLO@M$+%qzU6F>px2vBVE zd{EL!B5ia?TD|+)$9}usVR%RooUJMV3@9t<*-bhmrnX@VO9UuJX^rSZzuqpDEO3xv zsgnEJ(BcP@iNQpLU9S2|oxXE{RX#d{Ftmo&vP8z9Q5KaV8|wPQJUBkfhDcdW&3+|P zL{Tui?2w=UXyH*77H|frEf)l+)E%v?5b&bQL+B)tBF*u#AjYn#ei0da6P^jcXyZH^ z?lf?oVLQ@&Z7+7kL;z5=tXW!n^X_ zH8xQsQ_){d4XntcGdfaM7{0VccOnsN5dw@_fk=jl(MVwR;s)8R-2xUwSPh>EJ~AD; zqzM-1gTADrION`hv7cuYQz!tYY3)P0$S3zgqT|yOz{GtCQh?X~`!Mo0MJ8|A2xC2Y zPKiiJtSCqWrqXZdbed9hpat;1kZ<1o!^=_twk~~JVkaFVOjAMiya;K#URS%q>(TQ zsIdQ1@ams!C}0bz!So#Z(8v_*imOGKj+SfGCw&PYsb_LBruG0rhuaM@YRIG~F({50 zZA(Qj0Dgi&KmN15;E4?gu~phuY%6vYq;^g8{8vO;?zBqBVs~4Km25@BnQ)&y-lB3{ z=H>btksZe31yAc+WZ3vNrQs*Rc<*KX?|Tr62~}xig~=Z}$!;Ek4m_k#;TP21Xwy#X zvVB!ITDeyEpY;7t8E9xs)P4FP5%eN5gHuj&>rKZ4{FOJEy!H_QR2#zhZY(i*NOuvb zY2VdoR4OPr`tWK&kRd@0xi0wca5Dc}>D*-+>2%)$N$yTME6^dp%Pk3eE^)Hu6rL%;WKuT|*Hlk~K!(0#wfE}Du{7qesWTP{z)T#E zMS(xHR|q=SR6Hihc!Sf1QR$gLg!I7K;AG6PGorH7##$a(3r$)&9Ee z%Z*5Jpv1q3&Skq^R6j+d-)W(lTWIdT`}5HzVX5P*x|=%yq5gWPr>OyO;e*I-5NvGH z^H?u6Kc#=R$fu8;J&`i=R|pouB)`7t&a5F|g6pM$XTR-KL7+{4kEEf#!0~TaNc~xS z$yC^QM{^uuc3h?<0m8#9hN}4*B2yiE$SO0V?!9MQ?1*41_MN9q4F{W%rZ-1vLfnIZ z`A!3eP6I&Q5A?PwBk`Lh;QgoLU}e?T@29b>-FS$rp}x7LYQz2NS&ag#HyhCIEV?Os3>Cc4l?{px-$NHgR+(W4X0p zi~)pKdwFjfoR444J=$-4=|kPW)IZFZK!k$E;(z6IczAlQF#63GI~l2vh9eW@r`CtE zJ%E-OznB)jCnA*3KX>HTS4W3D40d}rvVsGZgQ}mhTHUU6AF>)T(Iir2W+A^LJ6}KW z^8;vDZ4FE)H)|g+oo54gAXKaqG`1QgVxheAWE1Ex+fEEv9$3C!nSKinC(hGqDyUI+ z$DsWY@+fqPo=^0bvWKg9P-LOGwTaSq#3j`sT>#@wUvph1D1aBoU=Pm}+;&ywyf~88 z`>0GnwInA!#!0P=G_&U_g7Y)5u#ivd%mtjM(s%Ug+h@MH%OO&FaH#ei&i8GBq3Q?0 zfSUx!r6>{~PL4OKjhSnOv-IN_@D)R$2xO@YmPzwo>6dKp)>9W@{mOy7?j@`ppuAS9 zDL&`MCBTso8x*7nmz1aAkB>9mVLiym>cubUyjg&rY_5^-(=Ohc3_>6}YNO=EodwuG z0q#xUTC0^a=VMAjTi$2SsA_yth@f?;sAKswbRq|NfX<;j1CnkOX7z z3huz3ZWs6)4cgOmv}uKRC?q+|4~RbiQZ41DqvqXZJh0j=6!oo7BW52yMoh^*?G21= zK*bl_YC;^4iZmVxnCmWy(cIT57YDGeF0_bo#^B9kAqEtZ5*A|otBDf04^m9DP4y94 zh7$Zdr{%mQ1dfT^#KX1qZ2i^Ir{ubMLroTq?!k$Huz_E`RVSstQYfh1y|c^@S~*Xc zQ1e3(ZF&4<*|n!fI(cp>o4Ly2W$HJZA#sU0PyYKp{es^H*x2Qr9ZH?62Ms0^wChb@ zKZ(2?CS^7im=E{=(GgNiPJ!uDE*!^G~nX2@0hra@Vt~{HS&YoWTAM-l$Vd<%4UQP+Sz&xC3^Z%Xyg5jnxm_qMCM zsThZN(fjmuTIxdCTYs(T60`Bae52ZnB-5^O_JFAe*%B2fAU#a&(!};w(cDt#L|cmo z!fj`_;zl%LFhKvjR*NXyz}ug=qWB;O197{Lh3_y^HQa?FgYx+@^oVS#cckE{!onKk)0?!5T+FZMB=`U z?A^!(8)w*1;P!k&`@z|?9(qpM>JMJRGrVtrS1-P11iBSwW>Kh{tuD`YF&s`id< z1yQ3F#<~@Q_u;(14AqJnq*m;@qT+l0@jQ5dO!Xjj>@enz5ptpa-kVx$ZBiUK9oUIM z__pj!=g4J)fwSK%%^1fHzz;~@scLI90@Qj7Krc&+8tX?wSy5I_!%Spp1=>Vf zhhn8W1O54HPQ{NVYZ4Th&UEh)sRJS-H}5?^?f#M;qHkZeKVKfQ7f-vF6_vZE5J6KD zZnx?SWEo%l84E@e$DW@>(J>~KEL|Bv*F`axBK{if`)jWzH<-M+VR5>65~a=VsyQJ~ z8IX(;C7KN$i;GQRmWu>WXH0URvbLey<~_O&CC!=|CXe%zxF$nT+}kQ(^?oo+lpnd6 z)aX97QgLM)z&2{6dBtF8f^DP%#xwEiWl)ZKN|5r~KQ>vq_0K!jRK;5UrV66O@-oyc zP6_rJghoKO;QiEMfm^N~4`0@-t1C}aB)~T|J+ll;pnnHYcX}@l zl3=u6I4fd{Af1zLgth!>Y9`O!IFSVO&T9`&?N)T zcq?TvFk9Y^I`8K;eBct{OEtB?BNm3f7)C~k2ck4q!8CYibFdPnWIDg15&;;*Kt{MG z9<$Z%h2)Mn{|qi;F9bp0@~|doez!oi)IEQ4C+eVS@X4i%K-&VFz7b zligutkZEe#C4;T> zd0UwI)qAoHs8dY=gnGxFj&tKszLxGKL&w*jQGL-Dquh=)5BHm_e!w}4_f6w-de(yD z$kz66RYgV&otM?t=T%cZyS^?nvN{gW{ubu|&5J#d9i0np!1S1ND{5ff3EFGw@*Xp| zHH_$o{1QYADF5^-d$yB1C;z!v)0#hN<#cd!&MW{ffxx6`# z_mMJ=2cU~w&G^x!3ox0)Ww*F-lsMgU=Z;k2Sf?RxL6JHEy6~>=;VePF?B>C~6K=+f z;)?PU3aB?8*Q$&){(A=7UOrAf2lUzBVApH2Z&-TOJwrSzW`GromY?TeD|!HS0C+&; zda=bl5Sf&nI2GY zb3VYHBH(B-M}~{HWkrZw3MSa(_Q@vV4?BX|UuQICh@B=AZES(Z4Po!y{>$AfFpY}>{Y+qN~qB$?RB#P$>0 zwr$(aWMbR4Imw&fdH*`+)V;TE)vjH;dhcD`)m4qvYkfbkbcA=olGrk`T-gXrbh6)8*)(I!jUuXJ5LO=BjE|mQ}OlDs)smq)t7` znxkmIK7h8D2ONYn-+{N62Q25z0yM~XbQaXprSa4=ivQ`f?C(yqC}p$-T9q;_D~_9t zHrgfiN2u0mjwq##Y~+4A@A7Mj?HRd%J08}T%E=Hn4gbmE^(tHJbNiRVYQ?ar=RWz9 zz?S#20rI#LE6X+Mj1GOvS~-GImIOuTwEX}jcn^B$YBH9j0Z2%Sl#*a>lE@37Y&~OT zg!2J5kF=gZiWP#w1w4aJ_o+nY&(fDc+Vz+)BdAn%2#VeWMxl!__Yku`bRiE+n_^D@4e9fyVG7d{d2fj zAZlW25tppc;hdB$N+s~|F<%0THCgxkOr^%+iP=fZlua@_iGZ6oNDChWm$zB zXg~lmOp>;;9{cXG!d!q<)RU6{VaFU+^+A)cqYzbRCqM~Hlnym)#Zfo>dnKI(!v}5% z5I8N^SGBcxSn%1+%SfpUI*I^D2d6oW^h}lrGee)Bzy0U==k%=G`2h)!zBy}Z>%jH; zJj_hv9@uux_#2^Yz$~pDo|Sc)0^R;=o)P;$YoCVhLfyt6%i72i z4%n3>##E#F==r^uw8?1XR8!y1KgNiFVv%n9TnI&4NY|?CINg$!r3uge$SG%!KFmhP z`m#HxPI2hsNhw1SRsihf4I~VC)?BFQVOn+?urIE!r;9M9rRTJ^Yi2IX#9n>~zRv9t z3ffkP07KP(ARLM#jppbHsv7D_0w4QiZb(KFQf@sEdj`K*%X3G@x1zO^LC8rG7Owvr zr%0FhGtZI}B95|04n%1I9*)f7*G*BM@9Fry4=t2kPNc5S;)bnoyw?Z?Xf}rMCk4Pf*OQ zZ46F<(5xQ!dLmE*N%jvm+MAc)Jq3GPqk1GcAkJz?KtO? zrJ1N?ykl>9zikJ+!}5>B3!X5ZePv8OvTIe@Uib-H17@v$DJ_QGZEjA*MG+C(V#~`! zJ*e5E=G?gI^;8CkZRw(vZqD#Ldin#+2h?S9*f{?cSDrC+G3dRh96zfZbw6A!Fo(+g z-C}Y{?n!Hju1*T{szu5ZS+E}~{%vb;ed5u^mC$S%zh|^#jR6n%R04tC+C7>Q`<*Sa4FI96c++H+>}q+V`Xh)8x(>jDtkAS;*}@aa*E?9d|5!B*JZPG9vBB|Q1b>Mj)zAF!=)NYh zxH&ovB0>7}jrA`Ep=wWQTX+EQsrNe$=(t=={NBVY@-a)CXxIzo{1#CX;Cf4*J4HVS z*3URa+f#X)xJCZjdlirUL3@c8gW!-Nxvq|Vu8^%{IhBC9_K?0tpxQJCgdx0~#R#YJ zuJ6uKc$LxyNO@((3JB+zVUj5v6aDP;OxaGFyxeBUp0FO?Pi?q0Prz6?rnT5j6yP>o z3gj_IR!YZ!lh(+Sl4tM!waO_jWKXwF+>^Yy2aTlc{Jpn>VwT=3Y;7R!<%~8&Qom{1 zK0J7L$qDq1O4-aLZ9g;yR?ySc*@G0bA)b?&8oquqy15Lq3RD`_-Sa&Sv1cpQohOaP zcDQ%Df$z+;wVSrDpNDL7v8Mg(JA3tJ>w@(kZDShZ0$0tc84xrEYc1B7kAzG0EqYNQ z*l1-zz|Nw^cx=;`1FsL1m@9Ny!u6KdQP>$uOyvCnAIjo$6g+-I(VRfn{!|Hs6}Tob>M!NSpcs7mPE^hD$Xq`~NU< zwJ*Po+`Y1I*Ek0o%l~kV3rr;JOFFvwKn_y7x_6dr#Rej;X-;&WClhDDo-)%(8Av;$ zW63C!a0^t|x(ULO%uE_y!*pW|KIO-kiL#t0rzdMACo`Bov+=yA)|x;|I5uA8n@|3` zkePDR*LXUv#YjqK<6x6{IWg-8cLv(Ftat~%DoUVU$kV*UXL1}~TvdL3BuDr2e-;Le zQY5|o>#W`KHqPUX7rkk8b7LzEa<;+>KwUdq?L55rr?dI-ay2b5!nHl5g*N`1Ha7@1 zPT}y=-3kAqtH^x5mzsyk);9SrEfj<`aUlu!pZ8|q$)Y!?(9Jzwj%`o=aSSkr@+dKtj7pMC<5duZ4U}`g?WWVlMR4-ff_jiMPqXU4WeC> zf3P4>YNg1L<=NG~I6DOyyGoZhDb&j+!owJ5&*8kEJj22)aKh$Xm=z|hpYHfMB-SQj z(8*HE)4ZoPUT&7O_B3x)00+GP0{K%wO!4MY02b(GJ!Ju-t_CKZonccrs^a}sn8mQW zpPOGxHM|Orx%szAnx%i;^9d^?3Cdt0_asQkl^?{bqP2k2`ou@-`nTt(AjMA1HOa7! zf6_-)G~UrqsAo8v1wRq1`>trBQ+yl?v1>lh8k*9f_(!u(thKZBK@gxd?gpE1&+Ur8 zxdNBS9KDiV2dv^s>0sy18$MJl!V`ivl*IB-q(h-gpWib1CU$7$Ddob<43^h|OI%CIarzuMmqj*yBcL zuCeGNWDApDH!MhmEgxu6Voj*jkk19iy^G0P;DaF>`(A&1=7ylL5s{#Z7?>51fVciH z#`E@iq0sK+AD<`FsShv$Hy?bdR}@+vX6Ejt3R>At#AapYJ!WgUT^-w4*jQZp=O7R& z1kTAm?84)7zT&vo&dycy6Yo1o#CiRZ_@UrSuqL8WeBt~Mq68PXcSUjgs;HM z8DR@851O1!KaU&S(fXk%cKsDXK*ivw>AZsLUZ7!myglzFF`eK@q{yrj)Gy(iyFoKE z8no!JQHi*yr+PWjLm8vN))(?oT$D?U64$Z{K21x8oxBj+-};W8g$*8;1Psneg9ysX z`8%C+&eZmaSPFCvq;mb;=xw#|kW{8>h8o?xfma$F537fuw$G}-xYaTY+m41Yre7g8v49A%6iOD2Sp$P!R&WA zZX5M@h!PyQxUr8$HK`@biAq04-GqQ<%Zvv1%37W-1yA*O-_7S&VhD~Ce2GZ!9?LxJ z@#XwCDg z++6vQzjZ*2Ibj++s8+>;$X-XYmZBYcs_xROJqRRj?wR({RFA}85@Bwq%a9MkwM?w% zI-Cxzph@My2cW!@)>99x(X*Wqa)H2d`z18jl;aV1LIv7>*3oMF{x0vlanRZ-<3Z&v z724vCvpW}SKW1ka-Pr@vo{4~hP)KBWj+G%|bKG@79E+fA#&8fT#J+rshu`FQJd!y) z&j6m-s8mS_{2Ab!)*ri$&+vB{m)8X-9)EfO*cW>&Xtl#qqizx)2Y(b%a|}Kb8*z8qI{+ z;*Y>wJYpr#Y&gU_-yl#(Hh^Nm6-M%#`Yqg9Rn zj4ADz9BKx)Dm{cW0%mO#+t^*w3sjc;6!G16LzkKgLEIA*tBPs+F(_TJc2=Im05zBW z-flOJ+N(~_50K4#K?^!u5f11BiZ>=ITfhdQQWZ$&K`4sl6O46R0-DhBc9g_GQ*1Lr zz=msc!oU#dxey^g7KSVV29}&wWDy`OvS~pB_{u2XzZpCzh@ld!tjsHmYifRoW9SXB zBSMB{!HC+U!D(u4Qea4GYc`bTgD5OjephJHJg;oQU~T{Xwc#N<25?osS(70=Dl=whVhUGNB!JC+ZPsj?(e!d1GiIj`DJ<_&^M(IlJae~x-XfH zNzn!LzkD7oX|t17XMTlEX*zr!9W8lzL&-^P_wU&Cq1m2xKl4Y<_3FfzM06br@Cfwo zvlai_X-b%eaocP+5F}4BR%#sUG>D5o%C)s^PPpF&Wp)65!gsW2ZB4dId{OWxsYW0j zCK=Uo^R7zRx1&2!5S-jB&Y-4cf?gD2>#Fr}3g*NWw#LdH(B!+wK{E6z((wuMb139n1XOwDtRA`!(XC3|q; zu&t}aXQ%?#Cs4y5OqlfGaa@|kU&`kQyzO*Jvj1ujXk^rSRG zCurIfcFUd}N2#*ss`!JMmYz0muyV==JF`SVnkw)@yXX#?pfga5NM|Ao6vTnoH8q(& zMFhm^Am}4$6a7Is4G!!0Pd)S12iD49iWjPI9F{w)lwOWAz-VS-_eYdLBBplbZ$pU8 z6{!G=KiR1%v>2jm)#(bl+7~i0L{d<^ZgI$TE0qVcZht0Bl&a=3llGV8u@E z>8L;owgBH6IEqKOt3eiuk~@0fI60OG9~eb}E_Gd{A^^SbP_#nz;y|e`Q6WnH4tXvv zd&RBZoSMT3ZcrZ8_g6`nw#9XA2o2fE86&(lFoj0>HojXtCeOW_`njdnE^ef!bKIX_>HZOF*w+cB1tE+_E2m;e+wiNp zdn0Kseg1Kb=Rre3%Or?R6^^seX*0>U5As{{hAE>k?>$a#){Y95NW1#{%q=x+@ww)^ zhr*6e-%RYCTcDcvylOWwBoq$|kU|u}L0bUcw@L8~ib zrY1$-8W*U6VqWPRidpcL`oxM+6Li;j7{Zr~h@sLN<4YK=>GX7n z=V{Q>^bn{rGsNrQ!#u5eXp+js#_$he*IanuH2unZ zxUb&HCrW)*Z=5|aY5k=_*h&*qt^;vdQ5Lf9k-z*B5kDeTNXo~7!XS}Zi#2bBDx$o3 zORLJ3cQ}mn+_0)K@lHC+x1dW#PwqY_eybR5L@sK%^lr%o(JuvIT>~VNJF;_jpjs~N zNTz!(+g(Ty88(>6Gnip*BbWv;gmE43g-eOo25g73IFY9K%SJ!f_OT8w34Jn|<4)2i zQk=V_TnA`wakXA(+jtZb_63OaZ`;!e4yno))FjFjVC(5m4j2h{gRRp!g$qnm2F|Cu z<_X=FWbWI;#K3(TWB1yeaJdI53^VR9F^jJq}p z#(H}RX=wTpSG5G}2yjrCfnHFRJthZ~fSC|W;^9E2n}9F}Yy?Zg0LaB#t27eveBGX} z!VP%2;Jd=&fb>3AbWJvG+P}vsaM@))&Z!tN`$HVgzw;$eL<2P)X_nM%nq{j%j|kGhWO386QYf>$!5k)t18SMb*y0K`(iuE=yTo4)kKkS$H( z|Cp6a%6x`R$%yhL5CQ>hy>QHGEa%e^d zkSt;=vs?w%K)GS7mMVQmL}M2r$~4S0W+t0tOII*?1M2eWXD; zEa?xN@B&RwoHGMd*ZqH>Yi3DpJtAgrC2~E%ah7Gq>+0&n)G1)7tW}a)!#`QL-RceB z2VHvOpt(MU%<)sk@p^MQ$4Kczh&8jQerb2Ki1G;7K9c|J8K4yM33m=zd?WvA;UD3c z3%4`5w@iGrCX{svDOjaHiC}KMZ_O#t3J$L_7zNHaD33$%c9Co(o~Nj4DG1qH36Q;o z_<%?BZz-2pILSmT5iOmcqb@>OOU;L$Ip-8y&Z=I-j8>b~8Q2@xYpYQw)hTCkC5ktL zDh$SEW}9M!TfKY#k_y!BA%GC=I<7K5`c2(7zca^Ek^_I$x5XG?yaL#o4p{K-&k$jp zs{>x|M<)3G#qO;xTJ8na2hbUH5Xm4vu3sqRAHoL+4wL>OC|)tz5%6Ih(u@=Jtob`? z8L;)@P}oS!^~a+U$f4@|W1G49Y(b)tyqrnvOvn)WnU$|?mNkAqqJmDFN|9C&+Y~x{ zS**r9Jns?<2Sw-V?R~J2^F3+wZ#$N) za~Si46tsaPgTT*4_tWL0W%r?-8?6cos1tgS?l{!NkTXGGiazfF)u*;=Z@!ivfj|q* z9*UdX0^L-m@V8LXU7CXpM?@xmqb zPxS;goCPyf<*TQ-$B@65+VG9p6+c*ZzZk#2#rs8PLofzO^H~M#HFyMNaQ+aCpn(2e zIT~zpe3c=*Yonr;MNRjtglKDj99U4vYSA%u7} z2qb6j??MW2Jd5gqQ%yTs`zB7n82AI0XYYhQcN5-TULP=RxPIq^Xbq4?3iMq!STfvp z^hX|4YGXgvOO1ppt(L^0^0scjnkhGMa+Rxk5QMEYYY)(S3C_V>`V&-8u zSuWxnVoO6f$RyS(e8A$O0seZjeYKQ;q=pQr+nzB<$g!K;AN)NY0D=hqY^M`W#jtT; z#^Ih9r^G8%3e3X|4yO-Ko~7+DmUfUgr5<3m-m5303GK%sR3bcTu=Y>Q1+4AvgF~@b zWkz}8R5(qG+SBK=a7N$0xhI3zb>$0R4g3@$l+>h3Jo}e_euVMEU?jAyc)? zxo8F{`?t&Tznmx*2jEI-I~{x33y^M!WRE++VEcK0gE>3kVAN$adfWx4lhtKWSbu_R zL;MdT&PB$Zu{!b7xs>8{t~BM8k0?6HRa{C_sa%8;#`*b%uzR(VL_Y+;tHbus$Do49?1WrZc=QpJ@6$rNsuux z<^&aQj)|-1SFn!cQ70yn(v9*~E8T_Nr)$(%c)2NLZU(_(qQtB@v&OrsE~T{u(qlN} zPl=dEnM^3C-kN3IpEMPW&A)MGF((dY^Jb?NEDS}2nhy1%3el~OgCHW0u^>WOZx?KI z;fChaJ+_TFE6a+SuSr26~Ebws}efJ$vJe{qFC7>G#OtOfg9FxBafuQ2p> zcb?auuPy`SIZ%9Qg)#?lV@ii9q>)DKYoVEbh@5}SdE&zJiPt}~($rm%x(GA<5zc#Ee!A8yz5pEHMcoEQR3vR?@8ou&R5aD>PD72cVtXG>IQk2Vokl^G68qlB^>?`jyLckyaWD)_V1pLy#0*b;A?nH6f5ex_3@RX=Q z^mK7~DnG+uX>ia36U&1nVZ{td#o{m*%Y%gg%|uDX!4LgJ;k+&d@=}hW2zEza5^5zf zYG_PjOEeyyGV*>CRtKpMl2jf7?CDNQbAcPqF4oeAf%x?9(abj?a*&|gFN*?N|h{i=F(DxlT{$Td zJ^=oMLD9sU)-G5E7l)q`Sp(({VOn0sl%qX1tEh6=cz=}HX$_De5Y;~ikfb(FM!aUa>DdC`C0dUBX;8i&; zcdC470vnp8*)Rn*gYK8Sr)`Qt1{2(051?f3Tk0PB^rwe=# zNDcb%p&CPo5Sy;>-ENgRL&@tV2fcZsF+SQN_{HkO#gHRjH^HbcgHZlq0IlNJdz~2^ z-yjbDQaSR*Yy~a}_4dBPN{>Wc8ey)XDuUB1|K$zak$iLbu$`@$Bn}h3eT9wm5Lj(( zw*7SRx<|h-5PQTzT%-1Vy2KFpOf>3tTNcZ3l{Q%KE|f(2$9Qp~5A^r%ublz`2@J2Z z4iw>h+c7w&JjGqgVV)=U1^z=7)*5ap!&?JaH@=@Dp-#NtWU|u>%xL(r(=LpEma5jQ zgtC+?M%n1yL7xx;=KCv`3Ws^2^S#oitG~S3+LyL;{?V+SK}hk>kweD&KEBfISfkS6 zp5Zw+nS37OeeC?dViXcSLZlo&*37h}k0 zZ3Bkovy&sDi*V&vI)!VziM>8B?WVIW$~0XJ7D7ISbD5sxKOCVKPO8yR7e=p4D*AEu zi_d<@^6EV>U9>z9x`&#c5Z#xdUeoz%BzwdIU}ZuaS~+642=vR37A5&yGe++x+Lxx| zmo^S}3m!Z#of`}7}OM!`H3b^8PTYOdS3=<}Y?tDHhM`t-!9P+D5M56*t zUG)GicD9jG0)Ls_@vqN2lGT_wX-imV*7e0&D-N$uhNpxd;rTkFgWg=8|qBH8G4*E=ja+3KLni_DZsv(z-0wpEI;AW1j~E+j?& zP7(l;@p^@hoiU>lQWXq}JEw(Bc}7u#iY~Ro(|7FP0I?G`CF};;OaW&3?g+!q=%s9C zYjl{DDA+A<(948FTazg6yNG&vyN6gzwYPV_-2W5>2)O()f^q9%t(z`JNc%BOZ-DrS zy89coUJ`}6z>uV7@{=Wj*#Y+6+$m+*@>A0pxv&0CEr<+x*gBOr%ONdEp%lqHM7drf zoBN|w8Avax;%1NMmXn;H7Fxgy-0~8iO-;P#e@8l`LI%r$p8X@BBsNRE^G$Z0DpJ*f zks;VDc=5q$MUo(j5aKIi_#TZP=|pM;(YeRWMmDVe}bg%NrW+w~$v z4D|a``Cb6ITEMHnv_AlC;r{f-$PPwDA4!<==cpgrgflN$U3DR{r|-AkBq%%7+hUG= zhqgqy4^?ZavWnWSj4=E`krW*nXluLBl-3u=wJHY^{Vz&yMZY}WQ+r8e{;UKdtU@ZQ zOr=O(;!$I&zT&8P+++1VM?#;_C0Kdh1)z~1I`7T{h~3I{g%bvZFMTsz>dn5g3b15n z;wF^gfnwIVdH2|bN%_QBe%;&!t8VbmoWnrh$hkNSAE^;Srcw^m2^9f&&`NWd;VuPt z>l1IFZCDogG~edgh5S8UwIWggk$?;iQgLs*&j@m90$`F+7+X;cN;;JB*>J~H7+8ql zmT12m8f_Bx1sNBgXKP^R8fQ6hGmpd?=@ed(vtD!<@HPW^Gr^8w3cxxZTs3BnsY==s zL#49jN!$!JB7!p^@y~~e^VMf(p4q2L7vz!&xB)R1$X2D0cDOQ0Rjv7};0c9kL|~|) z9}Nfk&o+vil-(OtF6UqGuR9eeoNwa^l=fLW(o3MF1M5@!_1vgz7&{RZ8`YIM_9);d zio`lmz4;W`-MH~DneK-?u<3T(LwySzDlvm(52%0w1V}5xk!drM$(UfR=dOQmi>(`v zok5}~h6Q{WP7tmK-I#hLFsEUT(1+a=YGpND*GN&d94hA`yI*_n4U+}msR1P$wLoJi zJ#C~(;dAzkbv4BL$)Ihul>T_}r3%AeQd4}-*WQ)G~fU%j!{>BUH!<^`1R z&oaHwDxrE)UX#zIjYDB(ospST^=-OqLC02T2SLe`B5>qd`03v8?1e$*wONREK6}+8 zT+ygScxq_8Hcc0T#o`DkV*~5&wSt}G_jhLDnY?eMEZ};4$}sDfW7ao>x=smd<$JU7>{y)+2^X!JG0gH zUjMwmbdFcUVaXx(Wl`6R7;Fz#4ygys zQpErAR=Hlukf+5cN_6d(j#80U&%%#!0M9X-Na~a4T7ucWG1ZIi9a#oC#%PHK{S$ua zF6j8Fmyz2xM1QMvnqaw+B?t>RXghU_pV$iso*t=9T?X+zsV4TENYUvarr$xZHPFChGt^$|ED*Nbz*QPbS0-N>g zT_c+_kAKP8c0Y8cGzZPWxqZ0fF3mZkxwmxTH76>uvi_J=90}p!F%HyH&c&MDH*j9X zurwfKQNEOaC`v-S(GthI)@pYYT`tEnTZSdHWFA+VE_Fv@G|jMg6F`HO*Z+M8I~uUi ztBSMwz%m4V-VN-RMcnaE=7#PzSDlLH@TCxOz2#@KKkHLgdjo6p<2xgDj$1|NhLosY z5VRv4s&|p%@;kEzxin^h=JJajNc+7FqJ~CVDRh1Vg<1p3V z|FW$$?Z;H8i@kmzd;zl*kduizKo8DQ$;3=u8}YD&mIX{i3-Aoudzhi=p8c2A_V=IvT$js|EZrS;EF4K+kP)JUgFh)Aj&>c<@3*_XjgyGIE= zMKA;xi_`VNF21JZIr`FO+rhG${@t~Mm3$zeg$4SOUi1Me%rm3#^&t>ypVFfh+C5iU9nGXK{TYEsA~*ZL zA}94a_NfV0wVdtJt3p2sVx@6?#fHEyS*SsRzrZw^aM=Ghor5PeeF&6}{{KZx^S_`R zsVwQB1gVh2ptRq%GwXk|oiD%DHRP?gHMIt>>{Z$W?m|Bf1JP=AU58i2HF!cFiOk01 z*-ae*$m18Z`nk63AqUDBl#CX^$$vzKc37e%zvVT^Q7=2LebC$bH)@}+Z+qw0LHIEJ z0W6O8K5WYVT6R!VG*lc-@=({2#3_UEz=W1EY|V~6U+#eIS0fc*mc~MJmg-NQbmhT< zw`G(w^PKc{p166sVIQhJ3`DHd^|u3*i{mk>+kH4FVGciHubQ~Q{r(PG#q91+&vOvrC!^D ztU?Xi#Sd99#ajCoMwKNyP_Vg>mv%X0-x;!iRq~RIp98V(J_JU=1UuRRH^Aa9gf@bq z|Je5RK{q8XC`)JwH5?I<0!Pun?l&8+{D?$01E{9iG9W)8>Q-P4$4JQrDsOceRQqJ? zyWVV`kJjjq@7>!U6n5M;lrpZ{C6sGi<`Ee8A>G{<7bYfoes;3V@TrKbxFb zx%im1=4^52BWMpG{`1|0&8RcMn@h=95*$F+yFJM?sgILNy9M& zU9#97dA1}Kf5T-oP{FuXwR%ECnn6x=?zq7KXKFsKBJUl#=SqVYH=k@Uj*wk5IwvFwQuTuj=4pF_&1X#0}>DO_`Yl zerC`ZbL84v0$7AZDX`l370hNt2g4Yf_&@>BjM;uMgFlqNKT6v~2Oa$3A~FH)H-2=w zOOp(XXHdMtyk{O_h{oRLTl5onUGtOYE@wGvy^i@_x(`tFq`)3cj)|uA4MA9Gxt^ZL zEzT@pI68?2x|L>1FCri6h*gp}CNJq|;(f@U1l}<3gWp^)XRO}~$gf>cs2_T&%K;f^ zYH`=<>rY#2WH12KOYz%j(zMadn+BQ0k3eNy}5d3;v zNz{!PzJ+jHW*~o!+MMq&&OlGH=(}!upHI=GX7Td+S&Lqu$zqWgF&3YmB5{bpQ?DLI zKOCgkM!Tk~2De$0=OiG&#iV{^s;9PmNx6R7I{}UU79}2Xf_l_Dz-P4jg2_uBeY!kN z#X+fU(yLAV7e^pnlIZ93iqZ*lcSWKxPhIjv<0>3MHISrtdfWriDh-5Be%&cQ1a_yQ ztVwJEba*GNsbC%+h`VP7gzl|*p%MJ@+1!il9o}xOPtBU2c1zz%hF*PpyH!O1K?RUOHqCjJV)w;Ytev_Nd11<1ripGa$~ff-VI# zS@Bj26>fJQUkv-l)Q=mx`{i9(VQYB)A|nRmyxj6Y$p{UToZ7CakCp+&&t2tucAZ!#m#&Q5*PxXs?xgOVF1Qqhr^#p{fN}jk~jW% zg~WgO%_<^Cb@*xxVUvbU^L~nyFMCm zw?Wd+g{^~CHg6%;Ei?#V&p-Kt^BjSAK=pGH!pFcm+yTWKXZqUs8_=oG2q0>B9LTbw zQBL;6nsDWiBW1R3>gog0_KXq~L;~vY&&1uax$uk9w(sKTf#{#TSCnhR^;t_H{m2V4 zA}oQ|Tp?sHLlk4ZtpGzPYJ+=w<0jes5e5okk(DAR%nkLf)=^l8$R~k3`upabIZR#n zkbSVCoF>XBqM^EDwM11DZPGX*(^YWY-{)sCdYZeEy-BpdNUVLkWYIEnTN9A!;QKIZ z5msbSB(=y*4sTYYx7JFVN3#2mLKgan@({!tjVK&4a{Q0-I~J%SKn&QT1e{~c@2sYb z9RVbi%b+5FMkFod@((pPa3f-+bt{cTVI$?Ed0p%pEd~I6Xl2n0&e{Tv;8Daljd2xT zBaJh~;fN+`Qqt8c&UwKa_6ZOMEy;=-R+LQhsO!r3LEO2Sc(0i?#8c5f2%<9eoRDJY zVIdDU7VbP?xDTVv7GsHHI>_ZG%O@`lSH3RXSj}Mg`Q~sZp`+T)l5FZrG>OfUq%zjb$L}P{LN&J3f93 zS;5Lya4ogUYe?C`)5T2L0Acyfxh2;IjGaLfuz37# zxmqtov-DL&HBU98H6reTj%I?_wb&tAUed;K?}k`KFr-7!T|PX0&4>cy=3V6t7oBQ z;4u)a6jm5uVzi#gU?L#xo`i3x^q9u{{7_je9Z6sq(?T7zNcyayvB{w!+9-7@=~43b zg6p(MFre@nG-+oPTD15vp+?I2OYo-IE%FFZ@=#oIG`T0E#`kH6C|F}l{n_yE-0{2- zY|Z@QHdv9N)PYDa%9$c2w`#Kdxs4=w_;%_>)C_#f?Sk2J1(+ z7>c9}_wHw46LXkzg}QO0a|UUPTABbP!R#@ka{kp=jnSM@-7Bz$FOa8CcuUxKNvLc9QqQgseZF$4-)=H z&d73Y%_B7|)#e3yrDrS3^k*&pMZEnrPGoTdouk_YZYp;orD{Wi-=_Xy+X<#L4406q z9_KfpBZs%_+$AcfiH&) zZS(ztyTCKMnrn4azUs=Sy6s+VXVl#*PW@ls(VL4=mDw*U+aAC*XI0QlhiGc@}E?`unKKN^2G;1o$1#4)hB?do{eB)sqeuL`_29M!Ef5G?=#6ffl!n0O3Cx^_QGK_i0|`e z2;_4Rukvp@1r&sZ3iGi(3k!)Tf<$E+j`I89)dmY4EDwW(hLPW>7go1v%>Kpw3tuGn zhFvrJ?~Rk!@F9?+#J@Dm5W|%NNaQtp7uS2&EG|t8K9Rj z9zVytBO!bEf?W)B3;;pb$|Xw#k6StoW|}(40?B5KZ;YO13C}{$n>lo7Q3-3snDav-!IlnMv$YE$2b0|DS=D-@MBI3AE(=kK>sjb#DG!wZq2wKU6!L z-?W-_PAuQ)+L?<)cJ#(JaPO6D8GJ4UYK4yQhD-T1XvqQ_1P^23|kR%)(q@nLz0jQhTqp>~jDsTQtGFH`iQA|+03OaS**DeJJL-Nqq zA^Vl9jzH&4}~%T}MTg^hWfuu3rT@xk6+$4H1xLi-%{{ z563U&7GLS?;Vd!hZDa6%^_kG+eJF%U0*~^c7J-KbbVrYp5zpgZg1!%5QfLj4{yGzy z??W(bY4k*fUCE@kR8PZsf1t5rKRbUCW_IC>3jJw=?TPWJ$?u?e+)_!M5ZC0nfr69O z!b=E7f&aJ~WtL7{p!vfnK_(6dn}mKq>(Un^R(cggl|7b_4HqJuft3H8q$YO4M#mz= z{~K7*L{38^THpe=VnQYsQQ-MpiX%^o>d8E7iQ`>V73nWK=T~+V$VI|sWeUwP#$hpU zc^Fi|aN3?n9i>EPBtILVu>m)eJ`^$oEsTwZ+5w`k+I;-YzL?301IkYyKYY8XrL?&| z#57SyYY{c=(Dn>gAq)`^wp6ZwE}pMfKY=>JJ}C)&I9XBI!wT(yW3*#$WJeVul9Q{O zs70VrsaffnL5B03*+tR?#(Qfg9c`G}6aw+K(!y4Vk3@A+e?6eP*vtc5p@-D?(y(Ht z1seBvYKKNd0t6Dv;;S)vP=4n37Gam^nyQhLCETBsX z-=@ktZXe&zMRVxgd6BXqjb>qi!knMz$IJZZFDbI7=$8oB>g4*YEovFgH(`GmXjxGJWRck0Ylp_6rG z2qFl2zD6VTCN_?Ws4F{!v3(Dh58kzAHJvMO%4FuU{@DGZ9|hxr;-pAHdH@2n5GOS6 z97%c^FAlE_<%T#?42g*826ziWZ0yZXtcCnH^v85o;CG$Q?BsA`dYMt)kf5 z#9uwTkt+_S#>Hy6p2Q}49%Q=SXJ`ZgbHj8_-7K%USd0sZbI(4qU?{wrP6OLr;yN>J zxd?m+$^bUw(h(lsBDbkAS2<9V-;zDLp!~Fce1?$ryex0dN4Cf4`M^E1kk`A7?t1I% z-)C(YRqk@h0GBa@3;*u+rpPA)Iq0?u)IoD@Fw9!oh*BqsHHfJxbqOlC#nT~Jdz*NXV-@bxUX5!tpu* z9rlsFEJ%Wn5R0e!4j@>CG%+D01hazyx%14%=+zr7$LAkQNS(92LPeIGq>C;yX7xBpV6Y0ngI;t8I5M;F)Bd4;X8YP-g?5^rTFKSBu8*SAph=#Y5XLArJXlh3*GVQAeaHv7Ax03+*LA zFHYzKEy7gOKzhKRf2MaOQz=~d=+1lHM4EOW%c*$AX!$m+ESpx~%qpm56xT+-&4wF7 z6gdo%M(|M$3Ij|6hYI6#M~7%c72o^FRiP#0PQmub34kCXQrw=$D$R}&NLOBcex;oQ z)`l;arT3|B&VZz~E9GK>s^!xi1P!gr3?fQ@FzOL}{2iSnOfTWO$Evmi5Ov8O*dvBW z8eN**vXMiIIE3LtNLbT%ad{A=)IN-v4Hy4cHGkG=INoA0CJ|vJ1#H8a<#w3=L)kgS zXd1L>xNY0EZDZQDZQK2|t!dk~ZQHipJ>Apx&i;F}$)4=dn^dKeO5UVWPvyC+V|sMd7-#TOq?`bH>{Ns@Ql`LvjQB=<1ES9OR@u-9uvsKszq9T&N# z#hy3>x0$DL?^)lyKB<3P)kzb5l=FeD$atm@Duo4@S2WvUc32F6hsZH<)DO4%+nU9u zjLPAH#SYP-UDs8Ut=K{?teNnW`APl;>wSu*^6$96AX}e@6wy?@M{5thYgf9Yf~A$**S31kP^Ctv_F!;3qX|LA+8Wu@K~;A34M{^;}Q)2%lhZv_VW0*y9M z-TDFW3AyDgRHK%ywM6oN2uJ9p>2Kep>D!wbXa}hez%@dCu;ef5Ka2F$Q_=41JkoZV zlO$s<;nP5fiH`dRP?rRP+7WkQBEk|Y@k>dRjDNHVW&a2W0Nz{`Xv~ek)p(Sd{UFh& zN|)GCr`9v(qO$#5DWP_%uzmw7AB;B>xaa^5i-*>jImXWgwsxbXvG$wr{-956ZbBga zdbNI8RbxoGMB%VQR&;^+CL9c82!GODJ`z=@rRhQEV(jINR+9d98o4Da%AQtP5vX** z)yPfQ76Z$U)T`EHUfdnIAl4Z{etD^L;pvyj&BbLp0*mYPY@Q2Y5y^MyJSW^M|wh=eOR|jul!%*{Ga465lqeNNVVcZ#f zIDv(b5Qabhgj22eb9u5#KivVsm7><*l$R?{o#LG8)_Thjjbt)reN9npY*`z=i9@(5 z`Afc;eI`9M-;M=NlOdvq!UU?R>7>FzUmAS^mafg(?ys9tc0fbSX}jPLHf*Y2R<;Zf zH)dBqY%N4%CzWH-=mILAtqB5Wq})7fL4!F3;)f+SM-ZszkN8HH$-4m2F&#{07I;#{ zZd=yZ@#&6CNtvIb%9xcNlM!06-QKlH_=as5yVI@iA!y} z-E|`g;jD;jTyEXf&y-4~c{s8G8M41ZPk{Yc&*`Br5bpVFA)m-;1gO5fb!VDM@P|1D zE_3WRzz9W&sdDe}a6BM}wYNL_cd`0IwY~Jj;h1P?!yS@cMzO{KG&AD<6U3I&!Q&2zva3G;io&P!nH zEp^|0oBd8%Zauf#xkUZ!yF4wWs+|-P#&Mti*u32^d-I`s00N*?3kiS-bkDb4iO_GM zdSe6fH|o>j;@^?ch`QMqUI06N=t#Y9t{ZS|NA3GCOvnhP`xk%0Q_XqQgRBg1lDm1k zO?3;?NTnZd#UFP+zs0q28`Ny5P}iHt>gpDYUcUjP;=gOAzvgt@i>Ig`V=Bv^W6ClbBY=8gwZCbwAXy>DW(XM(eLd~^Y7b~ zdlD}S1~7^Z_IGSvIi9u?W9knHU03$QLRO6&km_EUgjUm8bP-m-3X>m8F9fe?M<<$| z`t>RR;=!SeqG>3l5sc^dxX7kYH}JVuLma|-x?o4>c9SX^q+m-5J* zFGzimphW8QjF4MEdWGmtBjaZ*SB6rT!8!f~hN`)Ql_+NjYm zOnnxy@8L;Ue+DW!Xn{}lt zYJ4Z-P+({ffn+}r zBn!$y=n;_H1m(0)%OWI(SU_bgC?~ODygWuuUf=#;&Z1rchEfx}pMBebQT9x1cre01 zZp50D>9`D}XooOtA|eM&)h~h~0LLjVqXsH!Vqyga1>p$XUr3Se$wvo}-h&PDLZVm@ zVb1{@po}^Ym%`hI0Buw-N08W@{q#Ku(qhn6)Sxh6Cm0Pbw6OktT>_$OBTFI%-g!wC z$ny9gV*g+_f6&)J00JZw2G|enHsPNsA;)1x3n;WGS5aZ4UB?j8dEi?Z0O)1a1(b15 z{ihJr;5Q1C(+H8%HxeS$Ho9>*=qC+6h^h)3kccDx_XQ%T_>huj3=zbw_eRmY8P+y) z70GqVZ+m+tFbvT4Y6bAPFkz>&TlzG{`yKlVVHwJzd!FBKWgd4LV*DWXTf zfj>|$Rs4SoEknod9NV-&s2GF$Ro%*Oav4t06b(wNQg;N6~q(r zW&dZ6%Y*n%(Cst4j$#lPx*N`2i}5!9yLRIU5xV`y77Fn$Z{RV3>vAw)`^UVKToMj! z#4qq?&iCi!?@!U2S@KWH#gE?aO;C+B1NYm#fS)l0r{FH{AL0G-51?orP(3nxY@{D} z_TaBwJ-u}P&%iAJK!?2nX`6?N1kWiM11K6MNDOdwfW_X9IsMIm2kZ7Om$m1eG!^O+ zN^0ow8|(E1J@^46@Ovt3i=`a)7H43;{cQ_uU|${K!zLk(1+Go?r&<&pSbWpKKCeEV z3n}QAXg6^C!4VmAJ|k9J=`&NE!8HU7G)aPHHZ0Owli)lsAQD0sL0cD#>e$mO?H~@= z0_c;J>k$|ycIrDCy?q)m)%T1C@em{oOjwqnc%gXqJ|9=4EpDz5xT1tzcr#7vVidT5 zVxw%EciBFp+^D2~+x(2$65nIUZga-KPySN$`S#M)OACJ;yITkea&3JTckLdjf(fZX zq2i0EWiO`$_;>SSkOB*UqQuk--Ndh{N9dWo z-Hg)3_r{P~V$6eUuyYR{tupq31EBjl%Rp(xwZu%$PxY42FL}X9K35lL<6+@sm)x59 zA)^+bAa}p#kmAYI(D08Jl1M9?@aTx$H|1}e&}NMS*5q^4ji!44T!1LNEA{NgEltj* zuE^ak-}1`0RvgTI|S*q(*H^!H3Ee0CIt|g|-2H-X>_f3`!$z5L^ z`dq$h7NaHb|J<8vxLV=`8~QBQRA!v)j{CI&q(8-cx?y?-%P4(>AL~AT<9m_-#Yg3@ zC(-9M(SO?J69BE8i#{ITx>+sVGf3PA7794~cEo>T3LbB=K7zK0?Vt&hT7;3zsMvM8 z2KVOpia*}avL!Cd7~MfuIk>85Jfc(Oe1cnAv>(-hFJZ%l*^*HXyHhdTwxAE+$u2Vk z6#RQOm56c0XsF&^U2a!%BS=}7>}%=3yTr@jKSFoF7f;_k$T5}@LzBMujS^4sn{=)X zuDfo@DDYGg}1?5uWYAQyg}}pZd{`Pv~51)4}%Z-;~dLDu*cc&J-c{+;$D7}25>Az zE|im3M?{|&2*O|L8u~67P2xat=QIL8GIvG2r`uoGlEQglc4^uj8p5!{cfShwUr1S* zI}Tt>Am_dYR^yd87QKSUjAw;_rHS}oX?7i7{}C9nD@OWzz@&sret06MO_I3*So&T- zz2n$hXL}k(pZq7$dKwg^GOeAox?Q3Ql4tB74u8Rcr^L8cAFYIB%x;2*ECLOAm7ma1 zKj#eG$WV2uMWGcqZJH>5?+ME0i_IzxZxVi<;miUpxe#J#v`=_beI)7#a^WDIgr~I#Bk)#4Yhz;jWY(!X$SqpPJJHwrmO9$dm>M$F!cmTnx$9&vgM^g0AvW}G91 zD&7D2yHe_R6O$M3%7qjTc-PiE!7X9!9YNpNfyZK*OVTBv(c$C%Tx})-P!fvq_AFZJ zz8WFD&CIj<7)!w*4WxqFY(YTXB#5`vH8pk{=D!GhZAu>yYGVcJWpOaVSoOJ4I*#Gv zcAh&P?#VTAq)w{fG6-9mav9~G`UU@@z+9rb&MtM>X+T?)AKCC@A0Vsaw_VV%XOSi#C0}8XPeZz_<>>vxD0(a)uHy3>$1tQMYfblZ+L*G59IQTGY(LI*#jJ=y_E{8 zq;k>R&>2W(lnINM*Gk7>c=^q6*SGqlncSmSu(&C72B$=}-mPDU zyU6a2?9k|$B~mA-V2kPM1(+13go73kbodds`s4OZy}vB@AMSE1oElI43JSg&X6Ky$4E0bcY*J9{ z)EFcC@0RXbA~FL8C`%H}IIUsrBSm>|DyR)#I2ylDp@#`!KWxGSdNimq1;Xe9}ssE(utIog-$+D(AO1&88LrC<047P!SKqe0_Q^yzA9jNw=7p2|tJcO|WFu^Fg~7?!&}Q3<(rRJ;4-z zvO__O=z1C8d&a>KEym)MR#xhW#qknakiP zbyF_3BLKOEUu7m_3#D*$MA?=HgNUyD6S z`cWmnZLgT4kp+MAaS02AB>Q?uJ2g5CY^Cr5JhjfGw{WkUMBIbylEg9{3|1#PvGY2q zV;&asC~%gfC}zuB57II(cwuDA6nY{`s#n&9YM2#;*djLUe`~)dXZIAN;N%&?s=0BH z|D6GqxCxRFiMd*ob(>7Hr+@&y_5NMr5&kmEFwlFm-K<{XqYtMU_wlJ&q*<3ahC_D}}s%}s8X*HmIYPx!o$Qa7V9f)JUI z#es8nJkM?jG)?J8kJ4I>Eo~PPnzS5Dbmg`1T7ecRmoN?L)3OIf`FYiJ7bBs@T%#7@ z+$}13?UbZr?|j}>E7Zk2)euuFQl8oXYDN3jGV5VHyzih2>;1iHJRk&cUyf(ik2I%S za^vxxi1XyZ79NUQz-+rJG2+3YXy&wguT`qURl(l)6b$5qG*Ff78RA@$Y50lP1~8-K zKj~H~#rhDlGXZnx<+Is>0xNgmyWlRn#g|BOyAGaSjs5@-MpLk(RENxQgutAmWw_K|IcQ2QJ zl#Yi_o2a8KQ0$`w2ww!xP&Pd-rS`NZU<`=}WNOdF=w0zlbsfx9)ftPRWEXsN6mj>u z_9@|)Dc&gLS8CcFxws8&x)v`0bmU@j0MI}Fq9Xev9a7koePQrK0OIk{jFUT?q zW>&fy@Tfq}D*JE0;pYf!u?V}33H0>}pG;Z$PR_{gI;5=j?mVX7d!G5un0`nCPGqXX z{!&al&ok?!A_GfucD^fp{hjq9-%w+7z2=BpJ+J#&Jkg0mP61%ef z-wRl*DE8Xc=xXQ)|Fq>6aRulKmJ^*M$Kq8gB(AU>Zr^!g*iWZLAgLK+!f70E*WwY$ zGp1!(Olm0yCgSGV{Q}Q@>jFEEq4xb3*7&2ymO{v=P@M#~Mo3?6Wi*|XZWQAUsqqoR3favRdb+v{P z-Sj47Y$>{N$UpAu&Zw@PaPutV^Ui6%y;se`UI3=?bzTc?r!sW~C^jVIM12&c+`=6B zSWC0ebOvvTUFBCcc)VM=)w($BdQUZ8t7(2jRE$C}zdL3_B8v9S28Zdz6e>Z_q4yo} zrW7$B8_kj0MK|u2n3vs1OVA{3Vk77W128A+4kQT~5vbA1{rJ^VKET_}cVUzcUx> zZmzfKprj2W@zuywcIE+?7}c^Bpr+<9N4NC{Z?Co5QEw{znMv;5oyDP^ET+Z73^`yr zuJ2%^qZ?j`K1#|a^Vy&G@2ft9C>LC~RmljhK(~l_zog{=$w<$XUURpd?SGGWFXQg*GRErC zOQ_;gOv$;QrTpP+nH`VsS|ccL^5A$1s9zky5*mhRO4h=uLB?j@!Dz2R5mx4eD>Gz@ zOg+gTVD?i^7r7Wc?V2x8U#g@?YuFW3s>(|h^YCRJYdyVn=w-D|XN^O4c6xKB&S3qi zR_p};+zHP+dz|*D@TD++7(6o+Yc-nrrCKDnFB)6cZTiliM3$t~+=+_$8kcD{VBp#0 zZ=d^CzvWn8A8q39@Jya=Y)X(rw9c~pFicyp13V_?AuV?8D8hspqQN5DITK3@s7}l3 zf;$IAzj&tq$YW#*{5jga%OKoxeR%RD*eePLoX}&v{e~|YRGFy6HIk-i`#stzI}3Y! zY!}t&oSMdoTA_yLV8N`#Z)}Uzpd8n=Y7tE5~d$r@6Ux;eET5Ml59z zj93t&Um8U8Rj7W;ch@Mq{G&B>h9j}x0}i(^3jgV#&?l;tWy#(l-xDIcsixIZk8CPS zAZr;;++mf8(X#Twlv6Gr z@g}DTi!?$P6UxvYRiDSLZym%^Y~a`Z0V&qACg&~udELJy=dZ*mI4HPoRGqS#0ea%W zPEGrymPmw~Xm^FN`c;pY&YoB9iWSMc#C|{dNo~)%M;)2X(>>8aZAOBi-kP$3z_e&&afR6R0dNNar(uXqz{1>L*8ov*q@#ObfX(qU7-%_8i zeVk9q-r%3wK$jVnBkr^tW4Tw^-4Ii|P3{`W&&5MswZ5!%I_)vXH=|geP!CYajp`QS zq}$;d2BKFZ&938?oMAU>fl^_yNZ!_q&FW5&D(Coo&q;;d#-L&kVd~Bz0L~i*UN!Zy zo2seUpbPLZz8U_(x6g|F(|_1p=4ww-buix4s^vq5HSwuTs22as44an;;LZhoY^l+- zu+eFC`UCqnRBQNI`4B2iKeiy6aoG4ZVp6MG_+qmky(d;3M17OO#nVlsb=Oe8nf2Hj z8}P9cd#BF#+)3)@u?=cj0lc+D1Y`vsA1YxMnz*{jFrr`i9sW^8|2#(Oakm8V$5bds}_m-n}v*4%y4ew9TU5*r^fect{;%1S8X7EGQL;e!1ryqWm9*UXbZGiJ}0ZdDE{_@p}=!wR@ zoUQC?J7}K<+DgRixXu--l^{D%c;a;ZZh6`4eG_V;c(LAvy6e9Ov}efEJ8E2-mN8~= zkMi|8#}TBUR~B6#f>dFDRB3;mBY8C|+7C|*mTX<(YxpX3kfluDdUmwX#l_1mJaoD< z@85AJl+aM8RcosG0zy|-;P8n>>Ad}mc}<5*&G0hN?=(s!;IAsW13CM>n6K^pCzLOT zFpo3*L0S~?X$I$eewm0|1~~`-2QM$bc3@8PP|6;7P{>p*zukHuVp5H)(u;Z6O|~Zf zb&dtY-t(eCzGEV}cRzhK2Bg_+%0NF~&0IhE&FSPc%j-<)1JD}LoOs9d)@%MQPQ4qM zWV{s|Q4?hfB-l*3+a1}`Dv>Yo64@;%)l^D_Db;h2oehY5+#$qq3;i4qoTjvHQF zFF|}rgV3ymQ7>vO79wD&KG88bTHPDhv z6x2V_KOD7a0!&!_wj5LM{}cwj>*MK9=;u`ch6yv;STNKPc%?0?mNtAr*|*^`MQ-1c zGeUg{vBPBGk+R(GZjj6^IbB`9vRNn|KR>aK2#j<$F3{-Wa(A~Eqz)2Ux-fUPey4!x zy89|G7Mn0);-UxE$tAkT9jG4XoN$uzQ%6dSJOa2;0QSlB37O+_57n|bn@({#@}wp@ zAgpUAg(G$JF9=|FrimAnpt%ABOfP6Y^sY9Z6LaKMLAayi#KTN=Pt7Vh-EPdGc7{LV z0h`vqH@c~8<Z}|6|uCrj?PNvy>h2Z+@t{X&fbmEM)lJE^jzsRn%P;>_o#GZ zmBf(kUhK)+rO$k;^%eQ2qVyg%E~5QG=}&e%0C`Wj*0Q*0-_8cJRI$vL7DA&oBUHkg z-$mJuvEosNgUcTASJJNP@5=t@f>GF`;{nQoU?#e=bMKODc!cf7g$b_T7G72gLp~(v z%;1|Ct(`|BUnP2I;`)9Xg~4g!3G<>c?1Zeglud+th9xFQ2%D$;)~nx{&$)Ht!Uz;p z0H#=9mf!XMwbPn2l2Ym4<%08W5!PLRX_kP6gg-pt5{N8%C2TgE%)Wt-+q~zVO^*13 z1YS=~Q3N18vt9hoiZ?2nH?C-Z@5f0Zs;c8@3qOqQ{+4wax=qg`+pKMGEk@w>6qV?J z)>f42lYESNDbx};Uar3}A#Y*7$+Arn0ZLHzu=ypxLUsdu-gnTK{XB47^fI88Q-+>! zb|3w_1qOq~=GHu-U9|g2+_?>ilIrqfe<4-$v*gsE8nEKzqfD>_zDJ!X(Mj$Rd(CgF zCh*nBtDE-X~M8+eP2Prfz6M67zB!JR+;S`KQi{TYAh5$8Q{-5=o41IPxPx zWPX&GRzDz=KzuOET{RS@IevcyNQaNG9B34g zSdWf}dkdUxzx(UAW!rV-s*``8@?+ZLW`deuksoe_$pFZMsTX~~J;~B9Jz}GWM%$iv zNh~JBt^2eL-}#@EYT7~G8YQGMSBCVOe#H^NCZn%lgo~Q{cE_mz1r#$gFd`u zAG#F8wJ(jN6I)2Gm}#`X`j#I)o&<;Xy?wvfH`m*-RSxey=Nd;mIrPu<_G=%?Fs?l| zUotNo)dc*2ra5pv(Y5IH8MLhwdU%u95yRO8mXHT~EjdGYnYk5*t~bvEHdbd6o$Pwb z7wb}4XXlfdo8&``ziV|L5PPjXH)t6A)kOeRUP-_DE4xZ_)ol!=>#aX|78J|!(p(ao zZYq`VCm>-AqI<}(H}cA49=d6rMqqMMOXkA|)c`Rn!GBA|l_oYRq(6WYJmfWZ+XfX_VDlw$7*;zt(WpDT}9Pm8wk-5TV~4tX&@t9VFlzY@)foi^94Nw{8^! z4#eOFmNN1~Tw%)ZL0(7bl%_+LkER%-l>lf9Hr92;2`nPuEg>r!rTrs9^X4U1VYXQL zVKGj0isTSz>mX)uDx0d@Wyvulo)ojd9sN}feMv>ws)H;rsL>0c?0PZH5#Y+~gnpng zMONmjw4~iU>8Ht~;Da!N`ikGVf8kHklIx!T`k}p3WqXJ!LWMV~36$O8;=I@t9suA^ z3{(gZB+#E;^A;z_>T3Iq#C{i>XoQFp`uUV(6aG->ti=BeOCLkpO6^Mwn}9#CO4ANj z6Fi7^5!vDe;BWrR$4zfEln%(?_zHVbILfDAzP_E%0T(~p!$p-VI@<<}DaV^Z1RTAc za)mJVEj#UPcPwf{6W*LpTCP7&oC1t>&X8YVNc%Z(z3jx0^Nw@TQDnPfeBRo{kwWRp zX$et3E>Ai`zbpbxU>o0SV+O(LlO=5GBsxjUsdQ(7p_CV*71yc(A*c!+?XkqUY! zVp+kEH+_h2Oh_<3iU6KgE;cx+7^X|&T=FFShosMsVb_OR9juja*}K@YumHArYnbG@$bZ)Apw65mCD-X$ z?4StyGdz@gnN9A?vksS8LqL`GxOn(E-Gisd z(aI*`ywl`g4pe$b@Gm~;C#f7S%?;KRk{BOOs(@)9iPB?>ZI=v zX*yjLVSEP!(4jA@v5Xg*+wx82W)s=I5&t<5s`v{v@7&$kgTn^?z5*g&G@CK#HZAUX z+7CVTeO#5%vV+G)XL7x0!Xb6I=+8Qtf{`byW4f4v!ESPE z;k?sHgq3}Ok!x*sq5~{C(!OA{g9l1Uka5kp#D#-}Nrm&wmU930!~ffbPif7BW!1BE zadQjLZR-GhadWhONsaJ|H7`(BGef@c_=YR6^v7q{ia2oRr?ES&C&K`_!YW^bPSJeB zImgx11o}0%q^MCYSBmdm1sXw)v}4%$H5@b{kElD&o;l8*82|^M(^hwHS9-q_I4U?c zxJA_5iN_9qYj)0HevJzIFD0}>|7n4$+5^bh$MF+?t7}U){=}5-%h#SYP^i@<&Z}`q z4x3S8a$?SPov?{vT0L3f)7sPZ!XN8{G@O2o4_M9w!xx${9L>K}D#3WQp9WG{T7|X~ z5opmN@EplE1>7+d)tKFV`=U4mDE7j4Kt*zn+%C@YQ{NA`g8W#6$fHR%Kt_M*80P=8 zt;1I)Fw`B~^(QK;g3PIzpt64>_$#j8Z$ZDR8W{eCNYY5xRnW!i8{OXPc%})kEU-hu zqc^DcI}Bda)%Q*pLtCs=asLH3h?UcHlnS}agw3924$!?sHD50aZ39&-ibZE2pqtGc z%d=R{R#LH<$HydX@ibB|*1OG1*0yPbeB6puMs8s#UQ6!XoC*$Gb^heOWZocM5x+jx zWa{q>GV9)l%v2ybqJk}NbVF+7k`f&hq1iVc?J^O^>!x8-h0Le$G>V<6@RA8DX4dpJ3cwdlC>}^_);?pC^BGk&oaxsLj;Tlq z5alOC{S$q*^4`wtUGEv<@-6D|coi(;eSG%p??0K3oA&2A>lX7tE5*Ng_&jze_Qx(1 zn8ed(kK&P3AA7$-$=);w6yJbvgch_{eca0p34l-r_ZmM>=?MUrv`x&o@MSeI#}`1; zwX&>85ri{3dL`b0&OkWACgoZTb0)J-&S6<+frMq+cV$;PdiOabE>tc?U6ngKsRZG- zpk|5{>A56Sv5SfcdaiQLbiA^Ts)KU-=k#_-SkccLwu;)lh>R$(YtqW*CmE%ZbAJxa z1~?I!lepqs)78O2(6vE!6LY!}h`VDKEIU`sfdmKV3*mzf{{k$g{2rj3@?GVhls+&P z=N%4Mg{gBDIF#e~PAQv?vxfmjg;XAeJ_iVVmO_ZD_Y2J0Ow< zMsLVh#wb4hN@PFZkavXXsM334-Fd?h2!K!8#$2s9u!W1U5`;fX6Xc&(*>x^6oN{Hq zU;CU}_#~83tVD%?4rZP!DJ7`MhE*M&ep-4H5teK5WmHOK*i|z}K2O(1-Bqbfw*6eN z67z>TsPP0O{KGo#9yI+5dbET}a$K&jHncnL<&E=_xK87%_z#jBGPkzH+AQFMjOHv>!pwKh8 zLnFQWB&z9t5vyQlWIL}AzPCjo7vOzE6%w^&)4WHKHD*2y!6@q9`DS|!M!Pybg)Ham zc<-2sgN^{Cv~IP$9TGvDET9PxXc|qZmN5E3WWQyl0Cw?Y+kXI81Q7+_mu7 zs;X{Y_Ypi?``+1kuI$1g3_?Kl)Q^&*ol#libL+Kc^S!rZ<5Zf+;mWum0K}r*MQbE; zBr}Aa^Pqil<)<41O;tA=E3#O2b&d%nE{i~*>D>K}Qjui?-K~dV*aLF#-0x#~Wer~A zHw{2>o<$H28_91Xp*#{e8l^FrbTNf9Aq~Qgw%|xXv$Zw$Q29z~o>N#3L*aAu;SPsw zw^}$q>t0yT_XvkwzZqD2qm7M02GRy@P5&Kj3>yblWOg3;&&hw?@mn#@1iOU= zqwm%veo&x_g~zq}nFSVnSVw-5*L=sB0X9=f*!iXAYl9Zqm6zk6kS@4qFov+K2Zk9g<{6q{j&BoGL6CSN1es; z4a}`iy@uwMknV4wycXDp_Bp8G&fwe(qq$966o`l62JFJ8$`GOTUUt0Kec*W?D{ypg8uG{YfJ78Qa#WB zNf6A#)D=TM9Enf^TWa#rZIke^^DMboW;}*h`Tc}+UeqS!keU!Ah3h*=M_tqE_5OU3c|i5f;gEngGL)GVUQoN;Zr+R4EqT(og)w8zYbq^LIB-I z;6dFVXwC2|3DZ#h63x48`zNPlRtu!p^9JHB^%>hYaxRQv@j2~xt6+d2>$zJhoug3B zEUv2A>PHMGD?zLAygB*%qP+Wfm~dT_X$V13FVw33?%WrT@A%CUfU5Mge}OvFfJ&fXLV0j5O#(b7C%Pl z{^uW%%-7!3|Dz)2_)kTgjE+3zu7prRn5a>{`AeQ0fikZCO2!3*YaE5 zA(bxdSmxvI%p5dbVds5)p$k&~ynnA`d9X}}7!F`@`~0Jh|HBEH|2Iy^TfHgo^hf_2 zz@_?inD(;Q^Zxu*_0xmmnK3s!{m;|nRK054y50SLfhnMK0N9)1QW=!V>$M4c7xt%C`cmkG?mWuJol{+PAU_kUWsvh^g#`Tv`eV9S2D8GCyJKt|(o6DDT z-Vyjlqq};o>J$vO-F0xj3baO1Z3KJDQg=0H=Muhj3qAYT2Viql{;- zlo3;(Zm%LktKqHMc%w}qKp=`<$2mF0`A6 zSS^wg!nCg4L{{G=N^~0chg3T$RrlMGzeBF8*zOt7uNvCp!;obyKL99}SV$oUsBA2_ zo2rkfrLGcG#*neuJpM*R2tKx;Lkk7qE5oQ~JCC2;NP~xuit7VW)D{9#p;{K{L5AG{ zFrBNBAr;T> zM#M9|YtN`|C|7<>8-SW4qjdDS71B56HNrBcrEZ6+g2}J6 zzF)6X1%hQtuiR=R!CdO(9c9tY6GTe`3VK8_2;ZPi%W3GtrrYLHLFiReH|C&)EV6@{ zle`gx1@#;i1Xl5^@vemMDd#sHR|Q%T+^3*cV$u0-t#3rJe1L@2IV*hQjOf}b45Dij z>tA?^1TGBE1|rB;Z*}aN;X`UBKE4Xlc0IF<>UK0&wOj5Loeo5k7dPWwC(daY11iCE<3^oXV8~>S^npJnMi5zaZ~vC(%SgzHEs~Gy`_5YZmI_iGS9Ap zI#hU9<`iJ&K>+W;LS*O8rqaKpbYWbCM%0>8R-z7(=r!4ws~-PYbJ|XfYyHZ| zS0iy7Xm?kU!fXBas-^rwT)15Q3%BxOV`Io-kQ)?MA{a2m)VFgaK`hV3Mrf2x9_nBY z0b7OYN=dD=hJAaZOvZG{4P zu1FA%K~iQxj^Yw-ZE7~FR?Mwnf!Z8(A}4Z`SZ$3#S7#AD^9F_*)5=if!V@eef)(;q zRxrzkYM=c}A}`61!B`mlDJP5`1l7KW(I7JTk3?A;gAP;L2P00zHjSx23cKx6vSdbN zcz4dCuZdZwPEM3R*+P2+Ufbc>10{wu9mS&G@84V-ff>bn>Wa*m%rqTMqEA(k{v!S> zP?<@~6`PUm7Gp3q@Gj0^Qw zM`6#>saSJcII9&K$6J)l`EVK1X;^dN5oObMKw=!L;UKNj8_cp5Vb%Z-pS;hc1mNiW zlnVupj-XG`utz<4b(!SgpxtN>ZRH$Wt$<4b^Sl9(X%$uGUoC}MA-#lHTHPogwS8;=<_^vQahlvC#ot<;{y9I-+n_P5lNT&Di?^dEQ_5$>Z z4Z4rxZb;$qwnLUW1mfA>|FF(-D{d_|X<}b;))odHf8neNj+B?swQ}Lx!RGkjOm66I zaa$9RQ6NHM>$%#FAc!J4DAK7hdjTESZC5)?zuc-0%sV$BmGxpmOY$9Do88A6PVU7e z#nZT?t1YQlo&5GI^w&(#?A!~^8|g|3Zp*UQLH-E6Bp^74@&&08xrLZkdk%)yfL7bS zk^DpL@~7kp6jL$x7Pr$=Sq_nIeH(H5|0ST>j4UG29%_8 zZ6ZD+A2yE&Oomj&K6Y;GG+w?szHkn$t!~o2S(p!@_4`|4$w~vrN2eoh>?O}?9^Reo zyA3>}6v*QOX6<$hi5kB7eE^8_RH(*>(9i$Ud-Hp?Qk&0+yd5p6)1Gf|lrJ)r0^3vG z^CHan!)b|6`QRPa+e=!Az<_^|^yEh&;J#P9(asa=Z%j0vY?&y@1!!~%Ddbx!Y7rwu zC1o%~=21kdF4b&UCtQ{Zw_$ydkDyP`Yjf#hmUlKz|{^msCcvBuV)ZTPu-37 z%)*73M+vs~WgO)NImPW_b-zauJnGn4D1&0Z{rMQ)3EUx4+4E9DV$OWvM6z)Hc3%D=tITm5}Q5dxWG&=lP`Wq^)%u#C(@DYWr(hjTdkb1GUQrz=fiZ}i-pUMk|wUx24#^!COR1Dh_t3gJ$1opfi z%q1PeF;HKS9DqyiVZASFZ0wg@Q}NW0oc*t(bn6%WDwO^!@90S0PM+fL+EQMT-l`K_ zCLBrm5ablr+<+oolbA?ub>Ly8-q>J27N8-T)7yOZf@B`&N_6Y3>}nAyUIv1}<*n5Z zRqV6NYJ&-s{oV?b>>Zc{tSG&Qt>`CrR(rwa2$ zT*<4V3chxh-ztB9>!32ogsITUk5%0{(ZnzQ+L1Xa&^h@xP3jys785o%ZbzJ){EY^M z$nyh7^ojzNoLDLj4W@|-!MTM3MO@l}A=Hm7J*5jooQ~y89YDmTX%#h&6x5Ad2?v&L zH3cB-|Gdk-P;elLdPb=Bf!} zgl?w_O)sWYPlB{>p23nbFRGqa1BLdR{@<-O3NW5}p#m;$8cPET?4D|+3NEf%I*In* zljSf`5r1)IgoKb&MDmBL3jHec!>egg9CV|c0vR{UV7w!IvB-(2;%j6JXck4yVAPTb zV8jP2q!3f6RpI%MJ%9V!oD*x5DzZN&(4xS?n02uDRThNnW(cgzi^``WgYX|uqE&_g z2nunnp`l>pQ~$H--%ucdbERZ2{J&Ky|imVi}e1b}ng4tBb{!$7~){JKhp)}cW4{P^r zc26fGPw#HIG~CVS7O!3`&W0lZTVUtF65T+&=iUdulk~SMzolAb3kVO#swYyfN0lkQ z(`4fe3la^jpL!E17mRkVu(c~h#5@_O0EG=$1CirE2ItIZMoM1>JD4sf(QhM~){6DK z52K2hKF!Fsg+i=Ov)o$xv1!Z2W;>d9sbnTd6c1`?E_kxm@ZXx3Xx;JvT{+Dk4qTfb z=>;|^qZ_26O=5q1pnv2k^?UAYi2d(&q}F&RaXJaqJUidoLl@k<4~s$Av%&SuAO-#M z#(i5|l({(wi;~1^28d7Y0WIp2GYAVk6y0pOkXkmSg!xYSnk-egxlrr5dX&FU?51G2 z;blD|$_I1c)djZA-ef2M8xs~LLKVzB+_xnjrdkC7t_EEVzdR8~i9UCL{CKp2iQdn8 zt;W#{)Tje~^V-piXWWoM)et81yLY;Ocv%=m#RH||@YeknUqy(%*LxNC-n^!uvcyVy zL&RT*OAezWM66e4`h{0gxG$$u8uBmut?j(|$A{0q^J;d8H3H@UiqYBf=rKvH>-Ojh zr3W$gqO#g|zGiKPE7I<{&vk%G%goIVCRtpg3u4|r@gY?}sVq!BIjw2O?uoCOk0f*m zazah8+xIVF_HDmb3lI)-#M-1mLEk4zY+5}Pz1pN6=Qi+hhf(4l%*PL@9Qtx5Y*4>@ z0GMED@&DA+V9sVnc4>ecVDz-;JzyB%|Dx<2gEWh_D8aOC+qP|IrEOK(#+SCU(zb20 z(zb2e=z7x~6Y-{JVxrHF9dY8u{d+dn+G}zD2VwsIR_6WR)rB}xXLo?{fw})Dz|6wU z@n7Bam5!|Q0S8LY%zwJ+8XQs&K?Ls05R;9a(H1{GgSk>a9;8G^>7!L95@C~`QzEx(#$U&SH+(t+ zt+}kzXsW(NDHi}ao#|lb_}a!7`|qz~LQeahH>EZ?D2(WYwJ93sNbEC~6Sl@}bIyrN z(eIPwInO!uzsaNa7x(AdUegcXG98}_7%~iDJl0jy6JfUSF_H3f8dJyTFPXVJpAM{p z6`%sq9Y~cFOtogFPo?lqOR1SPk)Occ;~SrXx@je+wKag`CZ^;TDZ&7<8NgO`tLWP) zD;lOeUSk=@(lNub8Y&Ax#(-+TigkYavb2q0lkI|tckPz->4(&8@yrLw+>6OO(G43L z9E5>|rqcu6SI2L+dVH6CZNzSZyW;HGnQ`#9z+?f8n2CtBEu0JcgYDl3Vdm&z(m^iX zE!6Z;;Oc;#k@*%cs*5o&xvW0XyI)2#hD(|yb~GxO`n$fnW>^T=T7MNM3K*5;Ii=d< zaw}XToUaY-F`u%0R?G~BfQyifREuI%G4;X>$Yy$ZZ7RgfR2ar1{+<|MSx$(hA1HiK zlxYpe&=eBNtCl#kpXgsIFBqb&pnrp)NqO{VQ|R)Xv3u} z+2T@BX+;kp?Q94XY}# z{5!@9Cwk2_=OplL0`cd@^3dmnH?gOFB+!6@<4V#i<0Q?CN`fg$b3yelUlR2y6}=Z~ z>JUf_aYX0oP{Q~V}Egr%^M^b&)5g$dbNr5xOPM=8Ld>xoxFnBVP^K6^AQ(uzVCcpPQ8El>lC8h0T6_BU) zbxEUlc<@CUT0-WACe6!EQIg>)oFeXkN71NH;&(oj$do`IcGKHV$;k6x2E$SepdFE( z!kt(@?|0i%ci#d3T8axJ;$I*q3FE?dG ze>lk~Nm?t1ufMPz9u+IK{r@<$jn?4rTj{czxF+O{j2@V^Y@A$w5casyNJC6!Ur@w~ z!N7>8{+#<0DX=;aDAfCn_rxGUq-e7^`b$u4(NRgu7Z$(5wp?!oK+tUfLkI)%e^2~5 z>-b%Wp*EK~p_yI$lH_z1R_G2md zPvK&=NjvQG#?`khSM&*02-5ASA*C5u{wy>ZG5(Id_)7%DlC1MRj<`%I^pDh;GL^_23IZ%dRt6ICU!n?&D z1LkA^_Tn^in$(}^P@q7^-Fv*Z&2eo}ftMtNm%eOJ*uO``Z9#>m^U@W#NCmD&x6k|A z*5`*j&4c^1#?f1$r(xtbh!WJ=tA!U<$g~~ez*3gO7nbX0Yi_JwFsj)A&{`cceX2NdQsPzu$w9BHc-2E$s*0GR^CldO+;H!@^>c;Uo+cKjBK zrk#_+J_YH;Ztrj zimGY$CjWp={@+C%IUPxP&D;w>*otXXoYBtS=@Cv-e2N%WF~}HKuc)Y7xf?z9%LnZ8 z0gws3G33k$k!>r}?F<@?NeG55_^(9%fz!FHJQrMl8pgt^_gwk_CClHxr={-SOEz*&WZ<&!lM@YZw>%qB66KI$&2$5E(5SMJOUM?TksHPXy`EJX z=Ej$No2zLzw}S~wK8{l7P7?BE`?rd^pOcS7>$jK3$o|Fyoa@_h<Eg+`Z@(RW-TM``blPH{6M?zWP zM%saJGg!+3vB8^S?;FB!LlW%9GRK)|yTx%&%+c=jYSA9~Q8CanH?t)tJNlLhJ3`AR z^dKB?BfrwkCuDmBi5E&3qgyCNYOlEkHN8lHgKC+_`f6|%s#FxXep_*es4AEj zd_aO;stE1}gpY%-YDX*9iymj*V1`&R{rd;M_^h+!plYVs+bsvU#dW32i*$)3m$@95 z6aH_Y6G?((P=5k@ihQqKw1xyQAH6FMG~$S*p_cW&5PFFg zKzSomXm_!Nnl7;XVm%UmeFCOUzn7U0LGB55Qc0^B-Bm=Hl|GhMak+f`{O@NraK{D> z?YH+BMt4luXn*{U_tj9&2jb}g0x8dd11%o^2){@5r1Rhj`YL|1z3fYd{!F3ZQze-?MoGc3(amBDjOn(p%5x zsv@ofl2ZIIA7Q<8L3&F!8Pk)lz+V{YJ6&SAZ>1TDKpA(V(-zdf56}1-41`eVn_!Iq z1WExgIBTtp`Lu=_z|kL8f56+M1;}XzPcY_=ZLlzQEt~PPB~KFQ<4ptVQ8-Yo*3I z`(4vsxG}KOW9g}Be|&aeUMGahGAK8+0DSv$obb3rh^2ma&qDIO3>6DDafYFwaEjFy}+RZxrIy7DNx;ehHUI%P# zl<8=lQyo-gi5{ZfJ}s89nIr!T0ywsJ@9#=_{vTDI-eOs0aG_A;^nF>t;H~_M+9M*e zCi;O)-C)LRu*BSSkg10y>D|>B3q%MSM96$v)S1q0e&OUwl(;B}rZHU<@hliSi9@4N zCDyGJKb10wuX3<7zZWE%2}eTxqw%qMxGP>T-w##~Rt;8XA@1l@qwB#W>ZkloOfK57vbC8^Yx~ ztXmse+p18ty(}N^zY8FB;6-F)lPirLz{A2p?br4M9#EMaERv8&ncqHjQl`_4iaNhS7HRN+iV4r!Uywy3TB z_LPCv@<5hLx2o53Cyk(=)_m9}cgS{ZcN3PfXt36TIWpJn!?2C=`MvIbk+Jck*+Wpd zSG%Nn=j{Gr-3C=x7Y9b<5we_phrsybE6eSxLVl3 z^oCy_Iy`IBQlyYCJ%PM8pvg|JxaQ)Ujqn86!jTu>C<~w8{eYd3l<+!RONN3t}@sXibD|ip9H&KlpSMpEXPMhmJX2QzJoqgLx}JV3xc;h^2RA0K2rs+)KoU zn5^qU#D5E5OTa^1!BzlA!B2V?o45>J?sDvdq;9=jX4%SHH~PAJkIet(DEl6Os$1Td zhG;nDrq_JgrHFV}RM4B|r64Lqt{oPPxE(B)#ac+Vs5l5Rq=RJ)+Cie{E3sLexc~OURC+)d7%PLY#jTT7j-?aqvA2r~y>% zqy`cBMR&Zi0T{K`jTm(y#^CjHuqwKk*6M`RQk@tD`uovs6_^90#cAdsYYwyY+ExQ# z5>hBrRwy$NR5%a*&rT4>C7(YBo^bjquSWJe;;hLo0o)u{QXeeGHfMbC20C#0OL$yS zWFJE5O#r^YKiaUPX5T1*mk}Z;Z&rjQsP}Q-HCl;LTB$C`LmBCjg4V0RbT(*bS~&LV z+Gkk!xrmtSXj!(lH$-k8&n2$$u7xT9l3v8Me3QRIvHY<2F3e!1q8|ExT73E3 z(RmSs5Ewlsd!==9@dN&guu_QXSZM;7y=Lv!%LNCN!HG_YdGTmwe}4DvrUH+9SVymq~RST-x!nADq>j7Um$v-5%i@fP#AD8 z6%B7Mm4X-wz&QHK>$e#B)7-(8!7g{&_o0cAA*V`DaD%=>)5H{bzg0H?p|}&=L}bFV zp1eoGaGVRYv=ZtQ`~qpe2;@lQAf2x(a&Z5!B7*o1t%9-UeekoCnJZI(yMvZ4w%6?Z z+%LHEUAVcUpdxHh=p(6Dss(AQS^MRH4xAk$m-B8?vvj?=oKS<-fyvNSSKlhi^^9}n zCzI*h z#$-GD%?^0Ox6Qy5ZzYZE!s&_=sfRpAT$B%-;DZPgeB$)+-khTXq~t(=l54ucMH=9K z5vHjYnzgPaV*H|LhK<3*HBb#Tp=fQ8ySUZR6i{(wzm&DGqjLlkCjpMA2Z`e(TouC< zJ|#x5{KBt%$=4q_&mKL;I~b9@&t;<5`3Ca;a9(YjgPw7 zYbG56;{co_YYg3MF<>|Q48mbN`-IhJq0S&}BiW1lzBTQ&o^G|u;e$-y?zI~OUk6ka zh2%cBhs+@fc!mgUnELrMd?#t(7~TT})PPAIq(YR53RUca6w0uNuZK1;vB<0R2}wbk zBrs>09?dStLvfY5k=;S_elv0Nm>eWpCht}H12r2D%s9*d!d8bxpX^OC+ZHT>IxEE% z2nP_U0$ByJc7!gMu|zi1pis_*vj=JW3xIWLv=E5}c!ldN_~ony+|J!}dL_Pak$CCN zh4eyuqW4-BeKXZrM~QB8H777_1B)g6(s|z{44`5n)|ykz2*%OHmG82FQn~$v%Y)2A zQ&C++t>k2Zsl86VlT4lB5rvi2?(%m^FzQObNb*DnqK1{1M;J zRAM6lP>{T#8OufAZdBp}&r4=+y1!ujKIuvoKYpy!NQmi1!+t3D8VzL%9$WjV18PFa zf=s1(&&4)FN43ge)5?i3t*w_a?3SS1RCWdYNB(m=c{u2m+{2l^p6r zS^t*4W8rQ}ZZ>(nEYxD293H1XdLnj=n0sC1?s&I41b9j$U*s?laEnl+j#aW!%5#lc zKQVR3CfxpaLLCcB>TMG+8VC#P|8cd-`oF4G*8f?pGIMdW{uc=FS6lj@#Q<8*hsG_{ zlo(V!=!na?%lcVH+g1KmKnhhRexz#qqWnJ`i_S$X-K{9Yk^vc5d26}h@himolHT?7luTm~w|uLfy99o?*OSt9EF>b0!6kUobvE>I5i9Lds?FEJDz0K9(wgA8W$^A`17L{)!G-yFf ztfl`HhWL`3d~Z>d-XD<^S|jD!6+(@jKD2*2_((Km8_z5H_x^E+uO8>geeSp;`k1|? zs#T(UWZIA15>X{uYs>i!Wy=7w-mwENtrhmat~((&E?DlSm}obR6dOl+1hf~nc&8iy zxUnc|@kSU7)J1ojhj={;wNYI}58rY^zDm2S7;!7i%!08My*E3{Q;=m<3GkHHVRE@E z`IDZ=G`q}qUjj1=owzLx4RH-qvpWGdH#bL1_M$hvOJ~Cj={!`JnoI!S#r+hlX2@7x z%>C4^})HbSv2 zfM?sPt-|@r=y`cyv^l_1&p-E>LFOKvUhyP`2P8&@T88hAJfRE2Z_Y0&Wy4`DXspwt4eV+B-dSU9~}F& zL8yf-YFi=q6hD=aA>CRUx;P}!5zEQK&n@lE>w!hToli#BAeX$3}LYTnAlZnB-|{N4BzE#9>HZ_w0>fZa|P}&m~cK z4g_w@eV%EZvu!9Gu8)qJ!ob7qs`T1E`xn>wsbxn)R@qd+KB7k|`Y2>aPM5{ZJTQ#K z4n;}Dznc!fnk)g58Th4)2BOaaRp=o)hJ>bc$Wq;PvaeS+Rg<(QQt1!^GMM?d2hn?p z<7$Gcs?>?vIaJh8obRMAVnGQ7CJw6YuJcg^6z}^Sj4!~^x#3dGoD`H0sF4m(S)kCU zDVoE>zdnaNkcEbtA-ElOYhsS?`!}(zQDM6F8is!qxGn&zbF>mF18uQ3iw}(n)W%nQ zromLUXJptTc1jLmCC<@PXd*Hd!zQhN?F^1jdn8C`wX>SjHcs-+Xbw5+DSMWL0Kry6pz^)tb85*zm}#NXUv& zp$k?4QRP7e$_4GdIS<(T21w+@G+1B3NHzm7ys%(FXH#cbgO$Z8b(fY(tFERG{*L)U z^Q25h-uEt8W=v2jKkU&0WBSw3vBD2^m<^{6cs_swqA!OdF1&D`w z@+|V3lm1%jvTp18;hugzF{b85&4^gqD4par_L;B1;l{C^@<9fU9wUR<>x~#&Y@u4x zornO2RA9wyqEE?ibb@CU8(NXB3#RTpf5T~kG~~FiXT%M`NrIAF7%__#57wOFVaxy< z<=qj7LVj$Zw&JM2Z$xoBFymP_HJRv^#%md){Jx_$W@(MaGBYP`Oe+4<9oCBL;7h^b zJS9xc1DW}@SNx7`lLIbd`hXU?)h#YCZQ=l!ZqPzv&U#GdFcG7?!`i?R>ue0V9|}P- zCl_+u)1}XmG@wIYO?KGR#6uk1pqSao_1tz>MV5$-_*k#b5;%RO#f6F~{d9o6$ny9q zt<`oPtX6z9-G23RWzFiDID)an?xYV(dhQ?;(c+8vh;nBn9T)hOF0&T|Bq zSDx9WGp9FNoZh3Oq=^~2s9fuMVin6is+5$!;%D`^fB#|XjC*pIpF2{~a5fShCJUN9 z(MRJQ^i*1`ki5(GG_Z+i31T%id|f(ox(o=bcW)wSLcR2^ZZ}wYxvl}o{Vt5%K@MShyfrc&Faj08g90IfR@*_OtQ#)U2Uk|@>U(?&A?ciI`C4# zyHT~8p7VZW5h$_o!7jZnkz8jjUF@Mopz>v_4(>H`32bMZ>A5#I2{*%+cUcB>Miog4 zUrAEUHpl7mAfA<@UiRQ~%yt%x%Rn-n79el##UXVYI!zoH(+FdZAMQ^S=)KtDLIdQK zG4GkMW3ay4k@P*bzFqO}-Z5Lpd*{qo?Sd1hAj^B+;)h=}V`6%}@j^8U!}UBgHy_Oe z{OVwt;aAa-2lqwR%AhxY7~wG~cgFr-(mUJ#O7H(aE94yP|4;iM4z~X*y(cAslB6<5 z07C+p*;u*%E5FBR$i{7OAoZMRyix(zuXt%aJHom|fk`Xn!GeizfNB)byOEERm%Fy~ z_ONE<6U3rk{>4L}p1#NoYpqU=-iN?FMz*xBMQ3R6q8Z}3U2A&9HItXsQ^QqwZe zWP?=berKiOknU1QYzp^_0yL7HSF0&jN3UpUiB<4s3QW(Rg2$Osve!({pW)L>eDg}d zPWBQCZu65J(MWTI72JZfR=Q@`CF)5x5bXQnNbfyqLrcS>PN2fJ3-o;9iD z#R%Mi>pg^&5Uyv~@%^=aJz^BsoA5%deW(h**4bD{KH=JuRL%(!1CY`j@-4Io&bJ07 zhn5-6gu;m+GQf=|$}3|OK1jT5t*~~g5gYUdb1ii zKXWJsfTW}<;mv{$3E}T5Pn|TgG&o&d+;jX!qf{c_8FbT-7}=g}|NOUB>Y;sBfj_{z z41Hqc9}9+94a@Xc4`^4G<6g2h4)E?bWB)~Uc|C_)3IcWDtIR9&iOPl{reby|v?WrhTA_oJg$(NB2tYNdBb-%FC{V5t^7%|+ z#1Bi#b5`Uj8@bbJ8~3g^I~uPp)t;kHT_r+PLO!I;W86ZAVTl%XAy>8Y@i|hfpgdS8 z4fcyHluI<72N%3}Xb{R%CKu9g6Q&xdm4@%qF*bO9Ii0xg4dd6(I)x|Hp?G^}7JbZF zyQa&$wqv5bE5Lc$?wd|;P%SW9e(Yqza>XRsH-Dh@@u%y$XQ&gcq67t~`3U+56vLTc z{gO~D*7j>&3hp&OI4|K6v>=fc_4fuLeh9{%O`12GZx|X_xL`twigr_zO6+n4;VyYD zTbSqC^ZudZ?u7s@0=XwJ%NKdh^_JYj6T^;p?oxR^7T`T9(CSBSI%YOj*@C<6l47UG z;Us~-R%qWF{FLU!RWX*W$-W#+)p*>xxOUwCFGo=&cT<#PPkw!3-i%H?Hah(t4VRA^Ge*?Jezc1)q?KOVboPt~(SVw8(Y`u+> z0sxLhJMUFYal4k~FADi(&MR8Ki2v~n-wU;^4fx@gYZQ(S6>evIn8pk0|+_` zpV~{;iU-F^IQtxm-YF5IOke!Xq{lk+5M~b$DqyM3gRKzT#*Pbv zZe|;Kwb4WqJ-$=v4J#RPLJOMo!#35JaK8_`Nkh#k?x>mJ8fUgJgZKueOJez?AXR;cMLwOZ7$rJp=F`2WZ&o5Si`!Mz0v$h5l3z@-%e=lt0}xidRsu=Yuew zYf>#zu=u$Ko3Q9Vgqk@095Dr(0F&-*Z{JsrS&HqaI`;w5Wznt{i=84%lpXy7g!j;$ic?Z(p=99)($Fs48#h^Yo->`k_lKFn~Fd- zgkpK4ot<5ud-mCOe4j8dwz#a`V*lx_Kq_-wwNeE0$*jz zn~{IxKiG-9ny>;mT|pe`8yfB#9)RVpfJ^L#G3Wr~znoiHzc$96Q{TEF>=k)+c>UMB zu}ijvSQlOx!4xG$F;)DNf*Q+PPXzIQWT9+qfKc=5QTs+0@t{Or8$UYN7B3Axzd!N) z?fhq|Zmvck48JZOb_~33@Xd{38{B?Szh6kr=Mp|%mGl9B_IAjBR;Ve=FCcDB_je(f z>YeL>S64N;f%tT*fNp-aP6~-{cX%{^s*=Ie*Favs$zQ&*zDd`PcKC%pZh-SaKX3G9 zT5htfVe-BfPCKe}tA=j?tKWjHA3L(&Kdx^Eou9oN?>}l}M>e)!t+~$zz(0b1qPTg@ zAHAg8yeojUGhY}q+Z_wwM}R21{11CaWC?|kMdr^%vMY;EE`(D2o3|uuy(3Gb)As~| z%O8-A^b8*`9&DY@O6zYkjUVgnssN&exR%(y-fgCvN=>bwxEtTm=<4kqlGvN-x7LYA z-_UQ)TC&mA<-=MdlaqZ2EFLbb4$`_FcQjs1%sxQUl`oCF+}5|9IS?%C=<=B_^lrC= zy?=T&=zsxYN+xU{$$RRV!4Rxr!mFqc5XRUK3L>q)_&H)dux8N@60g7bF`^@ors)q7 zrN8(!q9dp#+CRGofAKrSZVQcf(VMm8AK9*(HNo%v7atnHDSz%cq1R05bJ+HU%Fn;A z?11lCZ?~x*lpS8|?|gT93Bajd)Eyw=fq(ErXZl$2(Lgcw?;+uu{=acZYr}MAiZMQ!FqF2N44bdmn@(a;t#qt4iZCfqiJK(0m=1298;KNV!Yw)XP z;+pW4VdDEgVedcT?mywI_jMakMW;~H^5f8(Tm2w-tJgg7FGO4j#-8{#Z~W)}@h=pQ z?7Rv(8(v=S-uh90ehqjLCjQ*+aK@LHXO=S$>@(_^1Q1QU=RJS$D2Zs4Y(cvz90p8; zTXRj}OZ%kmp8Xr=nZ1 zyD6B13F7e3v({b?J3Cx@9Q@@b9jCR`LUn5eCujFq)(tMF&G4mQm0OoL)pWA@=h+BZ zNrmOaBnS5I?wyE)!Cb@5T^GZB(X-R9{uH}(eKI*FO3}IA#%~LbPdBsIsrEx5Y|2sc z@rku0^-lAkDQp04jws@PSfJDL*UyrNydw+Y+w2hUOWB?9RM2hIlp@U3r5@Se{7%ms zNpUd^DF^!}ke+y-NcO&+cN_9wm&Noc_2^T#nu#_ZK_OzijlWz1VoBEa)JopCHH$xM zd0^8Xt5OQ-M?fV2!^U3e#mhwG*O8O4dAu0K_SPg1*2@6V#`;fw%mVxAN(*`p$fn!! zjlHlgJ$cPxaIRJq%8E@F!~AAtB+M?o+{PfecG$^;&JtNbJi3(W>sRdL>trqn{|a_D zT($XBT5A*yhOGfvb3JN+T`~oN4wX(d54~~1F;udCdgAA9uRXJ49T||pY#GIZV-;Lw zKX&~-w+Y}OpvpA=7em_pFEk+08WK2S;<{G&o>s(i1Pzwt)2KNy1kqTf5k-twFl)Kj za+!qDoZMvtN9{LEy(mm_yZ}VUc3fbs#XPDw)@a3OS&z7b6}LC7kBLeR+YjjA&2e| zzhJ>)!lzyFxGKzYC!E}@xvd_H3;B2(cz4-I@74=t2MF-!N0V9N@!jHgdj&Mv z6O{p@ejU(z6IyJbSt5-HPLsfs-RnZUa}t_Pzrj;8#BN3 zjkjys(OBO}tKu<3*7gZxS_fi7cVT<*Laxa1Gp6_8ojI|Jy~Kg&wbRuTeo^&vT2l0D zf%{4VIp2*R#*T7?fa1*RMHxbra*Bc{xjz9yd!}j}Kw$5jZZc&OxbmH$V~#>c4+ zs29!TwUGBTpfb$V4zBO5`}%1rBW8um`^z%|3!*#I6p7F6Q%3u3ODS;*GmOi;H&_8| zHf|`xC18+2jKv^Cj1R65h0W)vkUBk>A9lAQw_+%AEl11ba_e=5oAd*Z7L8_e#LnkH z^e12IisU@Q%cw~AG}h;cDHJI{LI;E;!au1uPLfe1U%J@ABf}F>Ic9hn zv*@4ynjLJ2H;@Ghdo9hyfVA`El6nK?GosXAOl{-O`R6b#1W^@SUSl;ka$)Bu9)tKl zNjNM2rm(vCeFSD{{f&yf^&S_zu!UeW)ZAIO%Y*W!H~!$Q!MeL{BLMTG0_j3##*r%H zMyKpyI=WlCNtu$+;QzxgB5nsgMf??9w_*mh z&CMJNsRCz*#)DLXHE_rtN2-ZTI^u@T9H%^O2kbN+olIhUBjt3l*aIRvovt z3~$*OXB>{B+dL%#68%|`IKhe~#)RalgP}maJ4QD|*rRz-O__m(>vFrQT#X>sfeF*? zOKp7ovh#j)4&wVf90NssN*D|8wK{x{JeQVkddrK45G7Nsy&uzCqaqC0bn`EJYISr0 zDj9N$4XC#w&lnlA75yQ*wS)k8$wtZSiwf2zmLrx{#uFU;Lj4*uqN6et?|`25rI^9v zvVZt1QAT+JJC+&rj!;ZJtg=^LeSk-{S;R^7$EJQ0Z}v}&f$Ur}%g!GruM$-^ek!*9 zD0{o7D`ho+fdz@-CKx}UcDow?yp>QldK!Ih&&*E#)>VMoBg^pus%`cfv;yW0PGcTvMBgRXSTuMx$CUf9G_`}h!NlA zs+Y0>C-~|ME6E0ch@HdjS#t66v-?f ztpXC;IA!8;BQ@=|ImDyNHQ}IkiRBa3QWGH#izB7zGW|7EqftEA3mOu2hj!Z>4m zF0nG&Fs=nvJ7?wtlU4nJS1b9A?sN)mNsIvQ2`y2t$`>F0c;W`Qzd5>#FUkyMMR_`) z!2JP0qn!jO4RKUnbI-s~&2m|-_Mni(aL0y(kmfDwL=chRZGWbJqc`@K^SkS} z{vlsXjDMJ|;m#`QM6k%}exP{4&iqrXIpSPdOu57qDTk?A8xQXyq!Irx^m3rRj$a$KJf4dIuua+swi_Z})yzhTJFx0{0{ysqN-=Id7Y_ z`p6t~zKZ3I7vAj~T8FMX#tx32=EC5Sx{a$xG))t$_&-~=3oJfE#x#Y?C5MoU=o z;5q_0_~<(!Pac;)G*kH9ZHSVe(TB8(-r+mO2tI~dc);CTIMHM_c6c2*CG_c$5#r_i zRj!Uoq!qa>C3_zPRgc7s2}u20+%x88QO;{g4om^pq;>d#9(n!BC z9UeGxZP@aU$4wKIiR{wXLJHhXEt$jgv&sh`Q`bk!_=6%dBGl&PDC`VX1urtVAy1#e z1^>;Qvi&g5^fbAY`WXIe3TQ|;25e}eQc1Ux2KPKBoWB>N{;CYo(+^dUb)+0%`5jGZ zxF@!_tl<}VDSE*p`3@3zN{6xyQC=j4Bc|glic~0#zhfDMBSep&>c+>)lsZPcjjsyO z-#SN`;}utwM&NO#gN#lV_C=eOA-6%=pk?WvsGrQ=XMTvxC+aBJcv2Y^A_#w1;WbT;-uKX@XDr zAsLw%>voHO6hkVEH3i??ij6FTk{GQ(4)gXr6BV z@cRC#l(^h4BJBQf*Ia%zEY8|P!=H9p;pv*4w#YDKJ#<39x#aKuKoW*3u8sxp;l-^= z|FnDZM53yHq|80s?9Jm{CWx}75c?B3TRjw~A}nMYOmw&I7AVCv6X6Z+`xsHJm8$BY zk4Bax3``1dhm~35{keQP7h9A&iOz#pz$vX6wFC6I@fY*Q^F57ynyWWR_zSr?nN)G7 zw!BtTT07_Agm7+7<5E|BpGW}=L?N>U+6Rr+9>+!x{v=fZmq3K^HGvzjcrG)WNsIYq z8KK0;yIDd$q`x>Y5sn?SJg*c49sS8g60npLsy`VCFT(W-B~6-^7X;AjCg&-UXqn=- zP5771BO_3kD;Ixh@B$opINrld&|~Jkz+`b@s%JMKw2To25Uc{AG06cS%?^)ymU;MN zAcT)GN_hnK7k5MEbHE1J^<2-}rEwcgF#`c&2M zcxqBGxtKeDI7W(j(EI@B=`s+#nbrpDa^n0%LAU6z#~Dj4b>_=1U~jOY(pa=<57dB4 zeXeZS|kRtx0N5KcA=U2>a@o#G|fbW zt&+wX~*$YF) zOjU)Cooi(EV)JQyEEj!^UACwL>7a55E*!4v@gQzf=-}Jd;`=_%B6+{aZr3Qcz%o)c z6%zb!OMSE=d>R1cJXRjs=2;IR>ndE`TDFZ3@K3;M7Ybb% z88E;aZJ&4RHr!{pbg_z%j_zW4-I~I37@CVdt|m%|z|~}eNul&c9 z@YO?zsL@?9Y`3okyXp7#z53AafOc}x1ice} z(V_%GwA*4GWn(;z3_;9Gz~ylJ8zAY-%5=~^AW{Od4Dd`#4E&a)7ydMn>HCZqlz7x! z$G`4v9#L_r#XS|xm$lpaf=jMuS?K~lTv9;z7LyhL`D`P$o_qXS7U6>iKF_n7xa`B1 z5@azWL=9=_=E$o}{kX1Qa7E*<_q{87a}?*~@~8ZaH>C(v4sSBUiKGaw^zC=@z&!No z_$3WsUUlMN1wZlfIiW;S!E=t_kP6PevWK1c8q=Onh}vS@vioq>5J^Wd>SwpoSm-W7%id)!2{rH_OQBKwZ=j?b;tE^NX%OJWK9eRiJMHNswovmH9r|S6K7)UaDdk6x2GBw zC7wZL){aA12kzySqY&J;{U_*ZHZiq^sAm*-H>t8N&^shuj_kl9Y?sGL7RU1-^aS2$ z%Bec!r?&kr14&vUG#9ZLc?jKTLtTO)I;k{MN|5BLdbMaiH zM>DjphLA;A31sZ=qnhExQhGl?u|HRPqT)fUk#RhQjVVx{m=%acvDh-rhjr<@_`sJ9 z;;zn+v`twwksYEnhi7Ei=$a8#3_LfU zXKyY7+Cg)q9z1@vA~7Lu-3+lZ2%-e=9{#lshFkwkq==NvtjazXXk^tyeG+rWCFz7*dDA1eEG^IGz$f^Ng#6`*H!<)inC#o^fXl73m_fHYyAmS`y{S;Ckqg<{K+>N8XitT=}5jrWsIn$lc`P#jk__mEgR>KT6`kZ*RPr z>Ac(k)yB(Bm?BR}VYLPDc6thsyzF7y2pr;{$M}cXjoKJqWL|F@;W64(G|^ZgNQx+` zKmE4(WAIu%ubmWuVNys*d=e&P_2hJXFU(4TOr`NKDodbhO;9IzPN9% z%*~6!wQKD3V^dhxNisN150$3kE^H`Z_>T0Z$C~zP+@(K1)FTf-)GZ`i5-HADn>2m0 zj;?M84a4nua$0mg+%l1!tmlvYHz68^3CaHe_P93zzcmd&y{?R@3=|V$Z{~Pir8^1J zYf0;2)p++iT1h^u@za#Z=LmIcN>(^Q2Dnbf{DtfufO3OPm2x2zMr|a)KBAM+>Yhel zYSJR7k^B-y!@L5N0H;?FJB2$c?;3jJfCum5P{hge@u;izH-kn7EHR&EGH zmfsLGUWx`*lcN)&4NJ5?7m|0s4uPg@IErA|=X-D=I7L^~HoxjfC3qV%gu@%odr1|9 zC(m`A&$0AgY|kq^6OXU^WjAi;Gq{X3=R5t8>?Seczf}dW2CQzoHCV{2JoJ02-?(5v z#Xam(78^EiXJ9@28P>K@Bn)5MN2@AK`+WAK?zEz|@s%_1n^k##Sd$MGfao66WNk1+ zIBR(-SFuKGCxcyFN0Ep3fLOf@+uHnD=~ zqEo&Ux6O4V4JOH}d&-QomA+ytPRdFZM`3o#qGM7Amy?#VE%(xmV{GY||GY0fe35f( zvgDT05Z4E-uWyk~0Vbh>*8e$6_h;#APN|n}b&vumM~`&Ufyq1lBpm1a2tKb@Vo&EE zRxu|OubN#J(LTu5E*zfigW61YCnZ)0j zUYPxM&J9$99T3Y7szSSEEiq|J{B(vGqK5&YdHj$!E-UQy+&MRqkH=?4jfFMyJ;NzI zB8|$@D}etIj4E^0!U~s7(9D^Due@XNt$#tX3a@Hc(#*+je*Zt1LtwNUs!5Nxv*tG^ z3To$MuQymB(f!4FDw&>IM?RsY$k_H#t7w~pk_O|p`JxqM_g7`Tmk^)viBh*H7^=sw zYk6}9f9QGUO6Yw^C@Jz#vr?8f#c&*M*nF@?Opc|<#QvEXxcQHV-6Vluqqn=;R66y^+{lhTLyiY`_*a`M+sILy(zSS2RF*z;!!TrTh zXVzNhk^YS4&CbpT+|uJfSlI7zaC*7mSb($7Se1%4fTvaH7K+qj$q$nJk<)Q5ZO2?h ze-AxcZ^Y+6^;N_2M?Qm_S=^au8+&BbB*Je!)@jto6>rTWc1IUyD`!RUJ8V&|+U+a{ z$^MKET=EHM{J!4elk*@>d{L8N36@T}fAtuB>r&1{(9Q3W6<;~_jUd*i^i*d0(6CoQ zWx3ccZBXcTN}a()EbHI^oA_h6a*S}ef99Nw_CD9OWV~s6sXe zZYVK#xAna`Q7@;RHC|oO_Zc%PzjI4Gc>IPH^xgNilIFXi_r$C106!`)tSsh~&QL%v z?THSv(|3iYL8qz|u=Brx7E6him%?h1IfKEM>9HjxcljiO+B|g(W{}`G9o9}@e|lx* z_~eq$Rb+)%8maR>lLh#N;u!sM z$V<%uHOV)DisddM)Voj?QgJh@e`dcW*AFUN%AZE^<0If%utMC=QS0E{f!m*$-LXG) zpP;~C(6=VwbomG>hec9>LxWBeoPQnCs6Jes-`)|D+vdkqz3mLZ%`pw6Y=nFKoD7VFzY1WhgAU8n-aH^Ct>NSP;lYb8v5L+FAlTjqt)x+DTgV0V=r!1Mpz%oe-+Ahsf;qwau5}N zK4E&4d?;OkVy$|=Ax|Cht*Q_7MeFtCJ-ysKx_3RQo@PF<7IE5mI>>ru7bkDL&J_4a z(p64~P}EG?(#n;vJ=>axRdud>FtEBEL$?T&ZX*0dX~Q)3qrC390bB*P!Y$G#Za_D2 zAvJOo!AyfaWI7$Kf1QuXRQ;Qz`df8`Bpmx7@tRGlvVp{HrJ9vZO{HYw)OWNIy(-l! z#rIy#QkQyu^odO#mZh=?f>bW}_B}!>zJS-_22gaMwwQ20L{|)F5s>E#9_aGBf)|pY zs$mV9GoN;-csuiug)#rjXIPu5XX&h?`zS%ae+7QOFgb-_{%-4u-gO_H zH7NPFlf!biGAwR3%pGd^Y`;`oDAqElMvb!1bttyKI*zdAR|7sF71~#Hz2PvQ{zStZ z)CF(CJc1tbw#T*aGm{clMGC-|Qgch@3fuZ9jo&KoFGhs>RHXkj4~>llwTRAB!KS!W zw$-5fyS(k;f9m$T+&b)3kiDX2ii#MbZJUf)g7}A4VH*1kx+9{h9$rjcupSv}&0VHh zjHf(A;N1X01XvkEDP#q_Ltbk-nBCQC<}ls)>Hx(GpV;DWiNYGYM*QOeW%JRTM~M!2 z>J_)4ltGS?D3usy6MwMRtMr9ZCYz39SD)`Lj4pGpe?L*EHLSKXIpF15_W(Jsaq)W0 zFQ2CIsAW66r@h8tZ?{%I#wnL?zag61CZQ3rU!{khPf2|J%A=;tRu>PUcjRIueaKwk z8Mc2#LbR;@Rq{qOv;iBeI>pA`HKbafwFs2tu?@2Z2`)1`+_g@LSX1~ghBN|^sHvMN zG%&lNe@)al>Cs`IGD{?&WP~dnSM=24rjLr&=3lFnOfeyqT+<|Qr;zX4TbuO&fmxd* z=_Q|1qoc^o*-x$@Py9%E+SB!r)*o(h;~MJ2Laa%x&@6Uh_o>~5RW$H<9I%&?y3fiY z)gQvnU4O`jE6{3G%^Y4&2o z&GXXNVka|>ABmCYR7q9ximFIJqb+XJu_BuA*vY5C1#W#VR=Fc1Jb5!&?4~>+dv1n# ze_VvcQ+V7EoO-zX?H1K$x@>x%6VY~luG8)pfHL8pc1uEYehHj;la*;XOp}ryd-i0H zgONoI&aqr(m9eh=jBKVjlpr`_au(;y}gFliy9-DgT4ox3LWZp=SS(*$p zsCMG&%>c$VLxrV3;7DiL43r{!8c6E|f5@g$;U_Vnq|9&SSl$>-Uv%z{cBHkQ;KWOd zt&6umkSP?zl-aE*?2W^ggn^6j;#H$J-ld(^Y^|vGQ4)xx8*RoDDBv%Pi1}a8z~|I* z6){%Y0hXt^9jflFLzHSKA|WJeiG=1`Xb>qnCQ|9L#B`TSwJ%^?IV-g)kL2P{e_@+e zcpQNDvo{6PmL12C)UM*qjUB`j945YbOhZoDygPeSYdENdbrHo$>T3nn>{HM^53?Yi_B=vYn4wqbjmqHwJ`2exs?Tih!#o zR&vHz;GvvdzEU6+wQeUD9bd4PJ+x8S|A-7K(nFFMv$&m)GRXQ@3Wg z`buyI0n|_1=ucEv+zEF4eGFTDJ%HFcwBWO*L}(ruf5LKJ(YDqFtiv%<%qe4=N6oOWIFWayHpqD|GFl@znnPUls6e?B zqR*A7)tTE^4P<;Cg|5D2e<*!p^Z?_iS+aW1%J61$RI&FBG?v%`xn_~HvAm%z8S{<) zET_e;51B+t3UwO4u^_ZaqoT!@@n-g@{zZD1&9oH7z;)D$4lHrFg=E?fuj|ZNRZN}q zN?cv2v9X_8~4 znq4_CF%j*n;Hr!`e94!COl+N5s>9~S#QG@s_PjfW1)IwyD8Kj}4i z-a2f&Rg+-gmZVDpnUzBc?Fp$G|4Z-ec;89<586JNm-J+!e-=x6b_tld6-!v5)icsL zZ4AM z5S7>o>Gi~g?*^Kw6H$XQU?}2Xow2fSH#dA}RL>C4My1s7)Ap~NalrTb%5av(5$M=9 zzu>nL3c#WRfA^0~4G-ax$_e}fn++pA^FqfgoUmXu+~Tm|uCq@xo)RSVwnjrnvYy#E;7w2ye`AHFp4fHia$PJe{$`1KQwA3S zuyGIBAZGY!_wZtg&KeZ^bjD4yZ{}l@Tk+XKI4o01rB%`+S;UKD^OBy z`Ez>or$!!|s=;E+x-V1_oRdyrS*5~F2~4|p7aLR)lJM*l0nwt)3Nt3sb-Y)~OzzZ!bF1Zy1c*{|*gaZG&@ou{!kU8k+r>Je@cDHM0db%03#7E%}&_@=#E0RPC7V%Hrj35A=l_8MR~=!@5d`` zwVG(uzwxt{p9O#^y*=U+_)4ih7T3`@|RZeE6a(V!XJIlfVdn}On1Rw-iV$) ze-#|CUBG+WZ=pzDdOg3Z)DK@VWu@Uz7^%OhiW~550tR`h(nYJXizpRev~fF+1fyNJ z^S`itYwQ?{iLjAt*T(QS@SGs-m!W&OiNx3AHZzUx19z~#5H)%eE@qhhboM>lza{ST6A6Nf35Yw`|9g=yR&qH|W<< z=;a^PoZO%Y(&lPxj+Lxg|2CYKbGc`#t>x_)?}0kR@BJzRIA<}JZkLQ>yT#uIC~{RC z^~`;TebW2k-^#Phh>PU2#H@5yA$BM^G)c(1pL!Suq^ku!`(ae`6e_4cSrG40Q z1h356<-skTq~0l=_O`zV(^*st{YljD&f9%d8p?nbp^`heL$j19(UJS&(61h8OKB10 zLq0rbY9(bP3`t+bv`XbIjAtEIN{S0ED);JCxdTQ?=qvy24r@|o(!A2&CJ6$C$)3g~ z2o6zK8|I=Td*7&T>Sta2f3Szc!%H)hx~e=$s!;Io1RnzQFD%yP=Q-XOkxOdjJchYy zb!`}S?~N7-By+=e)TRoNMHBs>~IJae_b^M%3O=;Z)8kZ=^cB)kjW=1$c4e zAq()cpAF5oi!of%Q|XOl`jO^+-jc`0zw&LK(G)9!d#uetc_HIFWLAxA=67KbFJehIyXf0e}vtGev8vI=IJSc0?rdWJ)LujP?baa1)f=oQC&Y^fy;WCCfe zvz@$P6UJ$K~Q!%O6q>J_wGeizt4zVtRYnwa@s`reGe{kWxRoI5{NM6T(w)ANh z1@G6`;kEhd%wCz$}S#9ZC3VsXaTb z2;mHvN>S{ke|E4CEbK)`NOZ=_**F_450+w*Up~QZBHbIkS)4|9D~a}t+yPko%y?b`76$Sajqk z7;Y@T(FhwuUA_1!-x%NCIHOYS@vqr(Wqaf z?$(~>8H)ucG}+#`0Zlm80y)LVR$ zSHh?3Bv(4oYstxO))J-+GIH`5E$|T=bMUnA*oyKIvSW4}>ifJ1AmhF>294Z@0QlQU z%o}OQKMc~BjQQl3H>+!@PBH<{ZF`aZMTE`;t6-M6gwBu0rq)?V8##s+>moM@`$Cae ze`~_=#DDDc`{lK5W%W^Li&7!THYP1^gJoS$EvZS>Ej=fCpGII$Y(5i3C>PKbQ&Flo zXlmBt!L>i;-ABwVSI(7Iv;M?JH~*?62OVW#C&VFqmhCm86(@Sb9YsdV&2oJ|#v?pu zIOcL2IJ7UB9wq*3KT^?4mdJ(j!w~VCe=qwD`t9nL&w0S70O*_ro=lW-Ja+T&`dg4F z2gyUhjN;moa#=IL0SqPc~!nt%X<)*LT zfxFRE)t)CkFyGSo^|J_#M9r1s`S)rKCi8~2Nz>52+vSaqsIG5-)`y{A28Mb4ivqAh zwBCLvZYWvqihF#=>0L-QDkiW!e*(gS`KpHcr`Nih(;riT4D!>RGrOn*SfSMS2n;wjkIXl)Y(--fB_u z;xnVT6&SL+%wW1ZXzFR>#weKwVFI4RT%0chde=9L3W~Kz|wmEr= zOqVn^@3d46=Doa{EuoJ!OVftE_F}%2Wukhhm$&c1ANm z259jq)%wJnP9S|AdY0cPBqKdU645nkGWDt=Tjq~@XqVgF64&G45 z4PNK=l~v<-5im9x-In$ycGJ8D%^`+;wdGj>y05hl`D}~J={&dbzxB7GYCz71FQJ6# zNlaop8k^%|G}cKlg2vx02+(37rwdn}*f?L$j6UG?i9name;F0`yPpnLD`OSx?rk}W zUwlO^f}ZOGo4bM^jDlI;An)xxw_XT`1P9C(^Fn3bw$Xp=WT|xiM!{bYMJ9*aDRI?u zP143tZN~kQa^&9OH`M1YW%)=ZZ*CQ8ayxaD=UQ9nN-ybQg4%l(xj?@~CouG3 zrf#Ncd1>`Wah|D6B0SbO{D)9iIOs$6T@-c*jp#m4)XTs5NyHjl{uh7QWVAdoZDjkmB7^EX}f3PaWqcDC!XqQN1P}fCVM+>j3 zK@MZH6;HT=RJdQi{bo-AJ=u&^NF`Io7%V$8_=X3Sk3M@KiNzBkg*KOZV_l#_5!g@o zT42gc@Zh*n+TrePwo+p~66VwOnNN3L^*W0xg#=aTN`IP!fP^SmPh8OH{;Iu-Klue} zYfrq}e>+LoNGcOV+@WI=RxKn@@)#}nYMnH*ccNe{g=q;hPj$rPEqj6Fn2&pT!iK&D z@_OybS;iaeMcfmQp&PZeU>j4Ue4?SFok}oJscC|{Ei)BtIL|$R>!4*2 zSwal8XlIySJT_yR|6F4EtWs8+(|j=u*6ZQ%e_I!uhKNc%!j)ZJ`y@LvVS`d>04RF! zkt5U*^G)5M*kMPrdj>BHvwrc4hgP76KDFeV3~zofaK3S6n0TfA%xbw_!6_jPk9k_| zmz%~@?;G{RqK9lhOoK&v76cQ~!48wkh~rd`gZR$wzKvt9>h8x`>9AHC4Uawj2PMJ> zf6jPVayj&ENtm4`O=J~ar&sn!-c+q{3Cr>At2Ml8cgq_M-C>)_dF<%yRU30rbzE}&{N~vPukf_f z@XL+T3|l%#a3#P2ro+8MYP9!`glMR>@%DXHxs zH$wAI37S}2@=^%{h-U5xkCOhr^!Q9?q!`oqaLO25;0>m+iHoR;Psx-jrO-+@f2)pe zf_K6~1oS)PjGI)^<1$T1FQ*Wq1F7*d!W-L||09uBOQEcKpGe;!)LeM8R^ z{eq2appzhaDxgtGc}~@agiHdym4|H33z4BaS9u!|r^THN%f5$BeH=~3S4JB#g3?OO+(71JQm6m$F4m5|nye;qYxtw~h-pAs2a zXhVsYd?^SY1D%XRERZJ`n|fg)a!E$`z6|;zw<&+8;^>k3wmJF>y$lt9Bt?~Spb-O}o(DHGQaCX&cHuSr41a;=Z+F|cQ?jO~!3BcY2er0ZGPC378uj4M z_J~cHjVsAxC>$Vee}QzCUSGfI<|0cty(}4Hu;n{?Fq}gEekvy0?fNWm+t*WfR$ARn z)vIF50t5mN6}LB#a#Ak@p?lb9y_3?>_(#q@q3ZM5UwYMDX14PL6Bn{|r7a>)$7+Sx z4-r>k-6?w@I>AyuZ)+{I;yCk(WUpDoV82_xnn)Cg<#gk>e`fJaz2D`HJ{FX9*I}&; z6P5l3(RmhNX1BMI6GtJZKPc-^7_O*iuuQRz4Ro&-z^(ZD3J@`q2k9j`L&3zVmUm`aphpU*om z>rcCWi?;+^?5HH0wf3TCfGyHn1$}+-=8;)D;$wjie+`9k`x>=T-0i-F_zg@pXZGyF z?|HUiRs_0Y-zeFGpfH;&C6Qq?+GggnLbr_kxmo|M<_Bi6y$i?E_9FoDiNZ zG<`;4z8I9>2-&O-BSyQJ%8I*9C;PgCbj5|7cuzw@GfdAg_|~jF?-6n1s1c(Sq)Ad1 z%6pY*e}&qZvCQ?2m|Jb$3=9I+)(eGvy_UXZH8AT@L$ZYu6WIdc)a;XV)@EsFf^2R) z=QgpJlLPh58buJ-I@(5ckf48U`j}IEEtoVQ?PGuk4SrOi}Y)DBV z_GI1hFv+cJTZjc~L~bT7assn>IqGxsM54)5f6Z7>2zI&81i<$T&2a0{Cfz7hQXKU@ zp*}`(_8dM zICd>-7(`6<@KcbEJ2{{#z%X+u8psxcSbk3tC?hn>z@3|ymPGyWI}f6Z7)__H2Fann zf7w-RM_k{h9JM=Ld?MVF3WUi7;k#q(FPO%5co6j=BmErU(pN%W{nyV11ZA{Hq0GV&QEl(@#PfN-tDvp6UhS1ylhz81!s=t~=GwU!YsLPK{ei|QUzHM}YOf`fiJ zAQFT$wkBf0@>LNobb%V(H)#X+-qPyr<)N@E5!9{uVLG!k_)%a0+ppKtnuW&We+?yZ zh#-U(A!Ijh*6s9+Bjl0k-pox&yHtfVFJ(b9*4|~88f9NClA{6~TlIO$QrG;VN6Oj; z#&t{N#K_E6UVo!JE&F*X?Sa~UxQbEatbCD8GHs?n3o&oh`F7?B7sN3S-6v)C@p#i0ioija*U zFLopIIiTj_9Jr=d|BP5GUv$#Hzk^TNiX$OxJY$9v@(_(hLwMQThin!Vf}yM!Tk^%I zES6X`#kQAU2v9|_zGWPyi!>`G{ubh}sOW}O?wjdNgX;xxuGP{1fvon2f8)zZOsBD8 z3Ax80@exrRH7V&Cr__6yhr|7O z54lI*MJ2+jBoA1%)|FUmp|2 zZQAxe>uiGORQxqe_!)oVMWHC>~+lmLuOokXQ&liLb~p`HJ4F3sjfFAff9>O;Lz$uJ2rEBr zvE)%6>6P{a2_LYC4(qJcpCvjF!xuk#qxO7THM;aUhS!aFtyIIQJxo>HB-@x%)3lXU z)D5eD4OiKcl^H;?i8~j3-JU*{UQz?^D{oafx49x)*CIK)T+|`Y4o5lGy89SGQwQyt z!+uGG_+i!BX1_p*fABOUo@b$Lu1P(_%cT^%h_lo#Vi$(u#yk>Eq$2;|MgpUYNU0_F z%YDC+%Oxn>gx!&_&cPkh%3&Dn7T%j~8u53j6DHpemm4UKe%pz4gQG?3yqXWpKjYoh zv-6 z;ux#X^VmSE)c#O*oZubTBjVYTGUEspUvn>kt= zR$}_|*2QNJ!mvxVRYNmJV7|R6KF019Wyp{m#_Z)B1uq$5o!W8fyMrXfvPoz!J1Ru2 zDMnZ8{}Uerf8hL(6bl47&!?SQ2}C(z+b4J7P+VO3c`X1+Q~Fz&OU+jO%&vQTy!(z+ z7C=c-kmlb*0b%K3LN$c3O|>5tL( zvcgxv!NT?vz|IjdVT3IuXNGU?*i0Rr8CQa%8*OTK4be75iH*@-lnnhQ99omYyW9_a z_a;{SFcZ7_JC7W0U4Ff(k4KQ*h9r8`c>pT9f4cqpmoH`QF9`?95}<%(o-AdNGPS8P zXBs<#CJbN!)9}VR;<9i0zUS3b8}%gnB8+kckD0kqVDqCvYDI45v<>nnhjc6_qmN}? z8fWi;U4by>u)MjexeMX9m7fR4aDZ;V}iRtrq>6 zvn5*j)^aPfZJ#z!in{F=5ri@ ze_{ydnfsonIch(al%Mquo!qoVv(@oqy7c5ubOoi*eY3!}YnO+=)BCOt4kSwKHSt|V z(PLT)@_zK%_+@Q*0s|Kz8x(=LajoH!|G}MCPgF=OC<0`<5R(@63T19&b98cLVQrJY z1QnMj4+0elHZeCbGch7ne;C z0zZE_ATLQoAX_|UWjSOyWo0%wVl`x9G-YEmG+{L|W;rloWH32nGGaD9JTo~pV`4To zVL31{WH4nnIb&ilH8wC}G-G9AVL4_uGCo}(K0XR_baG{3Z3=jtV`2aSCPv2W5C$e7 zs~AKID1%5wFq{7xLR^#|Nt_ETUIJ#bfyFROK_p)eh?Gu3i11$rs|2wb`6UqIyjpN^ n2JT7(n`1qK&Gr&RxuU=50wDG>r@k$@PNj}ZbD?;KFV delta 117889 zcmZUaV{qWX)8}K`+}Io2wr$%sela$iWRq-c+qP|68*FUz_WwLrbR)lBvDi>~gO zH{Y7+Py7{ZVF3&(g_4*AJu?G497WGl{wEv@OFSw88!J0I7Z)+36tONbH#0jiGdCBp zJ~5*rF$)JVqc|}$6B9c#8!@B8KZ}@AjhLC0otcX>-pB(Sj)gUTod}dErH&31I|ao9 zj2n=4Ff;f17l(y~n2qy4QKTI#9En+&h?$60h#6HJ9o>jo*#3K?YVBiA%)w2}sN`bq z@!wIoi2t9#C@n^;%g1bD#>UEI!EVgL!o18&k~4R(bhG+ra}f&&z`44)m>b)}d1aa! z85x-v8D&rQB9Qkm!LSH{rcO=vf|=FxfuKP*riURVQ@cS7R?o(wUYo8B&d&Ds5`R7E z#!73MH`u-+z(5+S2P)O$d+-YpPxe0d5lXp&F=K0y#|7mC37=H21#!fn>+ABQ?5MF- zwoq3X8-ai*`cez03^9TcrM#bj!h*4Iro_{LVN!B1vk-G~v;60Bl#E@>9o&f7SpN6* zn7cZReFoxEPQ@ukP4NPQCyK5-(ccFPou`q{Ae6 zpB_ARHdTA6Xi#=9?+>>_PACy`+*{F4Gh?L=Ql*bt~*YT+vNROK< z_wlk)GGPy+v)*#HiPe^;mw?)(9@i^P_~_D~DOBlun&E=KCq(Aj(1TUh0?i7MRaifnPz)k@J_(dL%VEZrMx`3VK@!pPegAx08Y035bM>Y) z;k(zf7$7F#f@lTK+w8xblAl3aPa+hfBi*f?7pTGe( zc+8k>_IypWNiOk1KQg)ly|>%YEL5m@N3|6OA9bifH_bvx|@3zaqsBqih&h5eV2_>Jcxqvc<`f>bJczgW%mi^ z?8;i9g=9CBXs(ND_I1|XdSo{f6j&sBq>0>J-ROi39qqJ3q3SOt7x|WtbKio96yCKV zCSeoRRl5($b2TkKio+c`NckYo|5#H-fh}s8wMhjfF*I<(mBaKqCw)=gAbpfCjZ@V(0!Muw;!bpr8&7f{PZX zE;Nx@6Q}-dlwM&@?es~n61fMX^#>oV*kTofE&3)8z4Jv}i`;g#aPU`OJ@%Ue@gR7_lZB(c6K6v<#L_f9_4vqQh5mZE~-|0Lekl zljZNr7{er`yv#12-Ylyr=l+JX@xE*md)JWzfG+23^II5%kkPmmt^q+u6sPml_yiE#`#_@C z3j?#O?n04Jvr2d5g5qUef;SN?3}4@Qh}L|V`a{v?Wd_?#^SR}UI+b}}YbV}BmrbR> zr40*?B%S?siHfy;1g*KAkU&y7?{#_%QJOpF8tlPJK}9O|WL6oemVy+6{&xiMNtn3W zEU`>?bq~b89sufVU=yUkF!Pz|on8NgE{P<@h3h3x+AL*!T`t!Jy%@)_?{ABl0G*bx zc_t&*ZOJZHp^I1HkCyLwxE2Ku2(1NB;STQcUyw2NFTNlHmpg|ag6vYJt^ihg!@)*PA|v80gp~vL3!1lL zt6x^U;ll6*>K3~4F9BLQwWDwv=xlc7sOgN2L!xx zwZ{pRPA~ij(m(b_gR?Ytk@PN!&_<&2g5b?H2qD{<@F9=X2m&uA?7*|mP(Ms@n+SoX zgWnWzI)*3?{lvw=rE`+P-xlVZx;wuaSoi07j9%cas6-TVN3km~#F4|&kBz{L1Ox#8 z0g#I+5%;7kH!|{?HHkiqM+gOx^Y5m2L42|ceApMKbUufpw7)%HV&{M?SfCQnRjy_1 z;DZqy&n?N#xc-gj6L_Ropwo(%#2OsZEJwLI>Q8qqMOjax2P=1~75fxO(I+%4I2xJl z^wZWJ6e0+ut4ia`xDP(~0xMR0qBeIhgZgg;monoHhM9 zvPTDs32<}&lTrUe@2$r)L#pYmp)tq>L$&0B;>lhQZ~Ys1R=FL{o-GiFm%nm_gKeEs zb}y56AyPsmEsmxqyS{pseJfUY{JYC*Y&0)EmJA}2Rn$YYC($gB62gV`Q`fY#UO>@g zPVM+WG&GQ~G&DTabadovqxp{kMpoJ?j?pn(gpk{>XyQEx7FX|j>GU?fo8LxCft?ln zfid8{!&5WE12f}rMwaG>Z^)=egUG+wT)}n0erti;GEtA>CTV~j?Vdn1H#>Xl90}Hd z@WA_k;1dxcFA(j4FvE<(+8IMZQm3`81`;dM>7=fKvl(F-{fhnz6y>4=jn2-_yU<|& zO4Obtp8n26Wozt18OXaj1eJ^A0>#}H^c}PZABs9dSP1YK4wiwRZ3N~0vR(<)Zfnip z4gyhx@~wr0Ieo|2gKL7|2F=ETwi=}YQzHxi%I?pmzys>bwF!E)+qv|J0$^b1K zS_H9BMEqRJZU{qP?HfuP!nOPA5Z}FGQ|$N-+4MV5n3%XUn)USRmAp@ZIJ(6C3F6bc z-a{#sckzwU2r^tp=fk0YehIV`5|Xz)_<;N?pD#`6t4=#a4+PMwtgPho(*yZM26A9* z4E~;Fu&@AnACY*`@=^wF=m?z(-g{aG`-^cE?*2aF^uq243api@E!eN?>*ColbbJ`9 z7DBfbWKww9i277;EoYLrLhxo`k2i=P1gcVT-4wj`^Yi1w;+~vQ7H4t$j_8%>FFZz~ zvc|%k<$J?^k3aC|4-;}ACo42`U|Lo*X79)t3Akh9ZWk|pXBQ-$(7kR z9h|we>0@UD#v>WZH}Jc99|IN#@Z(UiWBH1t0a{eJoXPU~N*A(sa(Mhzu)AcezSg&$ zJ2MC4B?A7Qjq9tc5MvR{;>EXrwXGG@LP5bIyR=eK#N_WEFs}ywn0$)SePl%N!0$?_ z6RI$~W&D6)Am$|O!&B64EodN1k32w%1fq0FGzbnt`w`=%4Jxz*%%ZFAI}Sb#vb{my zfCgd#WX)7dV8UO)nIO4SJ-g_*x5#F`I*_l7&lvD;*nU6UU$GCsK(f9d+dzd#@H%4CLL0|3Mtk(xIPkVO7_ix zPV{<+%EDTFse$m{4}&&g?=oXFV7C2n`TFj5KZn#9;^^}zp3Si`mxQg#PINWgB{^JB z479jeliPVn+P5U=f?njgCA?H={4_S2W3$ipUPeI0On_&_g#*7VgI>NrT*7deekKd^ z<0C7-+S83i-hMqhzjCnb)EH-9%i@i+j(mt3-DPx^q%`o224s_|GVd5ZabmVcSthf; zR0SrEnb6z~vJ?4OED9e@DmBI7 z0@YI7{71NCw#WgK8v@<0)99J0pJ(y!V#++At9&4)p-uixG^bm#B^Z8cJOTC}=kr{K zl$yvfFa6Vxs%L&>+fpSC+dR(v1pJd9>`OH9Pb|?dZL5*8<<@)`T6DNs9W?#Lz#JvD zppI^&^A4PmNHBz>iA526635j@lOP7&n7~f%c6P?~Vv4nFJy&$zV&(jnRNG@yv+Kb` z!Vm@DAaP{R{pUS8^%0>nnIC%bHy^j?oXrOxSxbwr1lH>f%#e}dDYG*?OE1E-Oy7F& zVWnWBX7a1^vTqR_dz>xzpHV+@0GEUB$a%=MHFT&tIWfNrJI>O+EkC|xxUZWA&!n>1 zT2N2EDa&bUhqG1vl4`qhI{toTFjjWg7X>$;GA)4dZUX1Ml!uz=MW{59YHH8XTpA#k zMC}C^4?CLw1h6+Lhls0eo0CFC{9HLxrh%knHH)tocxTr3?Mz|DC_C+>0zi=Ks;lj$ z&Up>)f6YhA%eEh1PnFcgqBq&7gio7V*rofEgRwE6xSQ7xl!NVA>BjJmSRHWqS3tWo z(FQ)h%;-9LR6UJus398;WR4Wze}DmEu--{H%6`FyX?22eoadr%FC@&{yfPNMKGdgJ zvZMAv+FmFj$V4q)peu@v04n!781IzTqExn7jMcNgZq+Qj!s2Fwx99ZO*7t)W?eg6US#DyzI^X2aL+3cuY zDnR~DI6T3~SkxtVu<06cR0Sq><+%d>F33L%S3G#CCewl&Hl`k92;3)ZyX?z}#c_A2 z#!`);?UgfK(;&*L@YhVcqK`zkRUU7l6t~dIgyX&FC=5#cU|jwc2s8=1awS;YnAt-n znCR&lM$trAJ$G*+Jur?@u`u{82cJ!4m`Ly%IOHpt*Y}cyn}ll-)BLh-G=FcV3RYTW z_{!3ViJKKS{x(V83;;t*6KA1l-rX@cuB;h?BR%w12TarVn7Bx9lAue_V^Fa_S(S;f z*ObH(#xxD}e_mhkG>J7dcvo@}AS98;DKm`}Q6qf22(Fc>NP8F|hDNKm%P*X#?YFY} zo9_6t96y#yJ23(q`|Nqq@@AG({)new-_mSwy*ie;?hm{G0?^#a=)pKYw{Wg=0ly8$ z<&pQk$I5TP+8a69%XZ_MjV!w|oLDir6CCmg9xMNfdO{mVpZH@$&1>M$rM%cyY~Q3q zq$PdbcZc(DyNeFdt_k5gOf)kXn#GQ1^80y)U3ilo_xHF&+6(A*iY-yuls5|`_x=HT zT|!tJ)U*=QaR3{Zvrdm+^p$n|BLY1FEOk`W^v7ZOXe?bv;RVEO&C*z_1-AJ_5AN$A zVIPV^e9co?`y03i&h1;UJBv1EIK=?l!uYHWmZ(`bQVyf-G(=9J-NqL2&7`{`>tFx( zCD5-5g&|te%x*jbTakX5A1Ospq6!g9zU~c%7O(rxR=|7F}0WX*cadrbE*Ze9yB;qXJZK%hF^~79p zHW=el{{Eq@5UGC*{u>3~m>mCs!OS3x{p?_T8c@gaJB(XV!zl~L{5K9=LW{UcfV=RH zU-z(~#d?U+q5A~0pVF~WjloXxERVv@K<27II2GWsPdA&;T*qd{tx~$n6-s)2c?m^R zOugk0dU$#eAbCqhXv;hYS5jK7)C&k%RatxJ>S$saw(`bk5imJJNT^p-JVio>G++6^(Q+b(o z1Fi@Y=Le6W9E`acW={U70ODt8Zxsdi~_6(a3 zZPr^Ca<#^SvG*Z2gK>C;xM384)(poXNf%%}m6qsyh9VL{a)P@AuX@gk#2KxFvO7#lVf8^Dcu^l2_`|5or5>dZx^Qfmv^_=( z7E}KcV_x&o)G0dsesLR(xteLWgqSl17c7bLw=hCHN32zTSA}cEzXp;|LfC7bdOG%~ z-~pwW)|1}|m$K(#vqm*#Vyd$9&m*LA$9RR|&{@-8M zft%mLe(V<+T)%}WP88=^ae}3ypFEPMS@RLK%C9Dcy1^LIJuf`_W%&+lva~Dtd`Czr zGeC6R8}fFBD{gcbGTU@`?hl^*u9dZ=kna)5GqdiFn#Zt6|CCg*m@5tMGTN>0cYy`o z8N)d%9|iZ8P5HMtIW>GD(-F{X8JQQ}NvAfms!G?^%3gFjk_NOQuUIso&~~6b*iOm6^UjO^ajMQ>jSt(uj0rmkKz&#?cP`Ji{d0KtRiV zcSAq5GuGTugXlIF$cRA`Xj0oeFX4UXg%fFFj@srz?gFp3SV^}I7z0X?p<|Ob22eEk zTS~*BMD5g5xTx0!E^L2&p{|9q*7)-qQEhVeDW{*iu|gvSlE1#7dA`Lvx|N5fj@nDp z>8XQo9$Td`9X?{GQ%xxRbv?JHL%RsZMJpV3ZzffH?#+FNTt~bm$nuJS(R0**R-3@Z zn{zAod`IY_t*hKQ6b7P)q7a4kv&OY;3O&xu-;CS2sX-s7G<~v3wa$~ zCUv8SlU#C<6DJEtuY(Y2NJ*R4j~y>2%n(ZJB`6@Qc;4@R#LMWTAfKErQVQ~I(q>i(1pzZ+{Jjx3NnG{gs?_)}x=tS)9n%?cQKxhE0A#BR&=Xw+Z8 z&+=8klJ~TWv)!r8H@Y3@)+tI{b?Pm0K4IjVh28x=ThSg?arBE`;+zU2^e41)VQ1aw z9{V)#I#ZODB!yE?x&(g%TbwGba=gi zp1^M4-yDuOg5b?{Y*!!3_G?*8o1yF$CXJU8Op&DtloP-{l=%(b?wU$>virUh$yn1p z5M+MRBkxg^edrwEqnp8E&nge5xJO|g^z>JejBHqONiecHXHyfu#mq$M87P~)>OY?;`~OUBwfqG za%cyYW0d%?BkQYZ!ytNv6qK0!!;G4Mh@WNsQm79T4ZsZx%>RP(FoZ|b5h<+m*IVKV z7&v{QGtxz?(&N!JE&->(Esv-AuVcftFb^)Zh)anv_oL>b?sh@st!UG9`(t~)aDB! zCsA2xtUizUCPgKVrEf_?PrX`#(Q|V#UjkspNG`aKj_Z|hjnA7@9M^F&l^Yy|%lEOOUoi^mY?RNmfOTWvff`zJs!>xTj{KKxa5qUs|3LcHc1{!d>IOT1eKW z|9OGQKg={kC)O?8RKj%T?lV2%?#7Z~G9iSne9S^4@PX4?1|{5`l+^uMjAC$%U3>dS;@Rn@TY3!Q;v0&!`;2M z@SE{WxDMF|K2s+t(gKf%KP=C3seWy$%1ZR&T^cVDH?G(d&!D&49uIih#wcqkQhxTqPkm%@@`vVpv8D;g;BYL1W@H~o zDxVtufUX_5LVDE#BWYLk_@;FVL+C}YpQ+N%IpF%sSZxh_5! zYQzTfRf_ZP3|p;V`2!$RZisRW-8cXw@7kXzILZ}r#!FeP=ptu=Um{l-V(pgW#hlno z89uJkau|1MErdJ>QNwW#4uBDk-+OnHVho%%1!a$3bCe_-AoXTa;@q21cR>OD1cM>t zz|7%#Th7QfBuDu*mZdvP_+^7f>pb7EENnENv^eryE^(~WbxFk%TFY)p_;%+Frn^XR ztlH)+e*N1~0j*J-=ex%A%irqjcw2Aw-89lpb~i0c4fS9n@ilw;3Sf47=q`;*F#fhd zOPTi#!)h*&BsSP_Fs}2(br>b?Y}}UGrXeNI@lnIB`$wP01@cMWS{fzcE5o#paD1TF zA4j^bdecv1nL$_`3OTI%$_>>k$3YS2GyFyA1DYAaY&b5Qt8V)-X*Yc;)K>CJ!ibFf@7{8e=!?13Rk`ul)C*hD{E4NNSahfVAefp?Cs-$gza8zM`fX2TEb_i6jv;QS zrPz{Vnp=!ct@$pFpaNgX++mrMEa$}J4-v(b>DGG4Fqcu@p6PsJlU4mA2R&5%tnS9$ z^l);s?Zx!vS!i5CaA!MaL(3qtI@#bx-|z%HxOk3@!U-^tJShHsJras}6E;Y+=v!hh z9^FK0E#zk7p$hi1wKN~#k#3_u7gO4q>(XiDo|rhFJFi_COkSySJd(8~ON_ghZQI9) z<8mdSHkNy6q^l+Urey}hb30M(R;cFd{pZgpe&PE3o=><3P0t_hcEdC#5F;7hOav1e z?f{Ss_Y^=ON?aU{P|lRe0&?m=*n25k{o1FT)FXB~%Xp5}PsFVBXrc?RXrCPmaR#@xLA5)Vxv-3)sYwc!Pktd#EpO9fAVLrg8Q^dwFtXucQP zM)m;&FS@3SX>*a%>k&-C?ggZDGTL)wmM=Gq1!(-5hSck*T!P;}WZb4YlF~i8erFKp zCaMDjRu3yB#pYUk=ELU)> zDJtNznUvhu`zzi)OrLf}K`fh=@>@bnjL^5xQ)}X>9L!8n^UnA|C>9E`c&eb4UqG`ukVbx`~@az+p~ zf6^dCg*b^bo$ZN7y&sbTPA4+FR8CM3n-nx(I1pXeIxfQ5;$bFWAKrzb@gC9JwEm(- zHau|~rF}JsT6cjhb5)lb4jbj3P|QIMUeBbOPjx6@I8#jFg$%$8&=P#OeUOnJBehemL|2?p z6hy*66`-`!oxbJy1Ra7~0>A+Iz=fKhubNzaWOa~T{H|8YEA?gLl+fB=u6i*+q#t^N zndO9qP^=5K_TaA*#N7BE`FX^HAIc*3iv3a@oPCW~+Syq}H3lxvg?~`gud+HXr8Xo^ zx$+x@1AVNkgsG{L-CfGd1~~rSJ3?js97}Q9!7LvNfbY&OY7O8XJ<|blcmf>1v1m)+ z+$uD;b#O2R+8P^DyNDQ?%G9dkMdpOsOwqx)OSRczxcn1`ynAgV zvA=0#rx`NB{1!I#T_ZSOj00WJz3bam*6|(F9F2oDf2w>htr7z@KW|%^g~eM^2Nm!B zW|!8I+2}448izwSAX)>E+C_xbmR0i}9%H9AH5+kw_TnAp+z65(h3R4?KX0{?KhUrL zc+F@QP;m^F>5CQh7uj8XCQL`c6IZJY zd2Ky1L%B!m0sFONf}FNPJ83u$ug}D6I4#7*tL?vXgBNwgWt{;u8T|WI$|$n>`R86G zGPJxWIwRftts$bFqbT>%)OC)gv5MS|AM%t1YM48d=Q^W-I3+*qd*5V&B?74JpFUc*?R>F9+#l-z37R0|v z8KPUZNs59@E(_PjaEzcL-KKL;v3)Em1A%^z^jY=ZFUv$6f@Y|3kdx34&z66!WaXiq zlIBdJy1O)zJJ#G+N6&4tiv6pHz6q;@FRkJI!TDvM^LeQcc)i@ZiK*{2%2=g}HA0P7 zh>&`|tcwLmTd8joGuSB>F&0$C`M0n~s%>BWk<5T#hyE0)gJHiWd4n!0-H_lAp z@+6%R5(Yn$o$*~A5Muj1F|S<(ew*JagfH+aeA^YeEc-LpV8n(qkn++D&3zM0>G`sd zEtbez_c1mch+9$2+zJ%m(85;-fF?$}qVFHmkfHX+~^UB}e|6q-gF;*G=0rWeS4YC0kuv>`Y` z$Z`YRB9x=!Be9WN!9JhPch_{;eRNl<3k5A1lVq~@^bxfdS+f#%28+#xd%j{NVTHhy ztw9ZD{DwmKrc(sj+4^c>d$oDIngs>hG$W5h6vUtGmM*e*-kdR|@8;YmFr$a&_>pLz zb&Fj9y&?sdm$K;PnS`{es&2_L`rSUyHDn-_rl#Xvp;dM!VhS;jL6Qp}smzEz1v2*~ z{eTmu5_AGlf&^qd7><|!_CmMwi^22!@q|P#?%X<}zO)$jA@rZ`v_%eajQgJ<8z24a z1Ca+QJT2xh-1py^#N`=Os22vP`eqg;@QcWRIsW^INEmLD8pUq{*(w{CCY5q+Pi?Rd z8MV@|R`ZV9)eroFa69;gj!KuTXb#N@P*#Y+;RB}mp7N!#cGzbw#q2Kyhy9kXi6t_b zT^V-T=VdBL{nKoA#;Rjt*dz_ro!O;oVU%;%C9GqhvgH#_F{XLotlcy;V5#q112F}F z?ByY*zinGk#|+F>z;o<2nr&dj!`?6|-`ajwb)-Jh^G!R|Bhw39li$Dht^$W`tY6Go zO|EJA_0(_y(_KP)D5Oh=-Sn0ms#igw;+mwTiFY?0y_R=jwXmqPa;$&W`^F?t&z&88 z?Pofp+T=}Su-akSY|h8CxvB&RSs|T)LdH*W14c?6$MXaGsoyWg^cmU#PN=lM$M3>> z<+i}pYu?h=wbw_ZmJ(NZn_)?vz zQwy82W*7G#UO~=VRPI3CmFuy;dL689{Srv&o{!#goUIxr@oP28`x=eDLVkV(>N;ND zz8yD=V=5Qz-?w6k=0e`g6v@uCMx1T(s>xF7X#6yQ#r_PtitC4+4?6X-G#%oxl!esm zu&@n<(R;UM+CjvYERsJPGn~=-y8$@3@R!JcOPy${tT}=++(!?8W79q*7~7-k;kAhj z)%feIT8LXh1!|4bHCrvIWq0lZjLHPHOHSj4482fa{j3Z9F6$Gx#>21AoFIY+v796L zo~u^Op8qTND~ZX-fT@YZ|4!Hilc^}1>#|VbE)t2YMKbv8z5&*Uu;+)Pj&qru16Vno z_(54udt9Oe49#x>vXI)A9vHUvTGe|8+~2mE1qUi#FE-_wi|zV~KeMHxfGi!4%x!zm zuLFm-g@%bsmBz#l+=_9G7(+RGFp;YmZ0l*GbPNooYB{PhW4|wUvWwd%H)*n})Tw;i zc_JMA;`7J$=w+E)Ic(4oe3M6zpIL0Jj)_tZaN|KPq6}lGox7e&To?gh!TgpLb)8bCa3vLEO(Bi zhV8J`G0jbug;ag5UAel3{S7Axzht62JuU@NoMon7yfqYj5)xHMAafpSO7Q5!w|YV1 zLWuh)21atuPcm}L`h7qyEWrx6kFJ?lCDp;3+tghAv*qzgy*9t(h-;sLI+QcvO}4VC zT5;>Uc9~#(@FsIgyUXn|Bx~S5}>wH^P-a^=}ZcuiCp^ z+k?+$a=aM;;f?f87i#in-qyU70P^7FTf*&S^-b6g4N`;-o<%RUwXj z6p$Fx{kTjG*7pb6@6xMz_#p>f{hTJ^?hL4E@BrezLG|1;8s0(ep(dP0*Ws&cO7|k6CsL-KG zSdtCgh(*5M)xb`ST&zX;Q#oYb_j?f`hBI66X&Uy0V)M`q>%LGm;1VK+bDg$nn;`=N zKlTe01?d*zF3oLJV{OGjnWV|cc(O3XSkodv3~R8H;$)=v2ftNpR}jzm`W|}Ww3$%z zQ(EL9Ubb4QbJTU~g;x`HX?dn5rjQPGCm5P6|E1UT*FMGK;^}p@lV+0qGnkM>!C1>FP>cB%BRNjG8ZmULJvSEeQxwM3Dap-`g zG(5`qEZnFtH_`@@<(~n*L8;nspNLKyd!1V(e)`{X6$SCjMQAApUm&HWnw0;V>;5+# z@z44XR>8uZn9f21&dkp8Uq}g{K+O7&r;xCAas7vla4`SR_PWdq?K4+=c9gGa!@M{q zxyl9IbmP=ARWunX8hH}yG(V?ITf5W2vWwrzJ=y-pmu7DwTi37sat>WoRUS=m8%z5p znWdpOA~a-jD0tt{^Mqj&Lt_k9WxR?))k$&4DzWAujbi{Qtbj_Tq?%B7CIKB|;W&la zZ=v;Y>jg?k&{TPy&Hd^kkQbq(DOTtUT&b4@@)Cyy10{ml-LEcR&)lhr&&+qS*-FP2wmj z&?EzYwVbOnMaO<(u_H}VjCf?nRG*p`v{7qE+s^f9)t3lfA{%}a#!)n=9;sVLD%e3F zi(RGo*^IE?b9oL}UjsD)Q!p#3_O^02LPLi|t=(!~O4c8qc`qgG@1!CyA=GTjNBZja z&K*kXL9G)rmjfP3GKD=&bt_F6{ad`5J5T`af`KxjUh;ha3QG(#l1ed5wX4G}t2wNT z`dN^J6|;0RmI^`d+JyJdlE>bNTqq}$Me;II8)>WyE%>h3QcM2Yujf=Dk&|)}RQ^a}XBY@S#+zQRM)EHVG4glU6ENU8I!*#~t5cCbv#kv@9;^qhP(3@FWn z5=Q5qm=%Q!NSnGR4-1BaemaGm$}aFjx-bru#%B%mD6QTcqD?MSvFJBB3OMv3PFHwg zY%i`Hb0^zFFMg8v85a~e7^VCI__cO?q=_DT|MGnv!E*uY2tS8lwH517sXmb^U+D-Y z4|pYLsv4?gm^~D?V#EC)w4}6{3nlRo+ki(HSybHOG|O++s+6GDtbHys*nFUjV4$It zXJ>MFGk&C0XXU2&bQ_;LgAAVr;4!qW6oIf0`Np?;+Mt2o8s`G_S{jJJU?ztc!?C;z zC*9^m6vKh&;sF7#jiH{%y;(yW7G0~7OJ}LJT*X{aFpj02{-Q8G-$73fhe-eQmvuAD zB4%iE6uh8TBI*zC8=gx4t2rQO+&JcqQ69*RIDsKUrH86UicI!hyp|Xey0u~)8UY=4 zw;3FEj|?(_gEX<0xGpn)*z7L(0Bs26k=!Efb=5e`W8CWZH*Q(nl#0{69J)SeU82X;lDGa-3f_b%~mRP?3FkF+OoXTtPF?UOiX?C-5u z_b?CCb-{R5ulh8LQr zwq!OWWbN37<~F5p&*}3UgTC){B!7&dU((*iYvvnraRVO5oS$V#cuB#T&so84;*u2y zpg9jH~nQ~>U)>Lq-O{s!@Y0%^j~#kI~(-ohpQi5r7v+IP(DOZI+_F@y;(h-^ zX4BVc#sSOaJkA#<-XJ5z!B-C$j9F)z!9m76sSb7WN4e9Yvn+ySj2e=~3jw%+)O=rw;`O>nLhEQuKi zwcVVCCTX^?Yq`SeDLP&z^ZH~De)}X+q~YW5@5;T`E0Uk#6j)B_zM|RiLWbYo>E_#; z51l|`klqRooj|=>+)5XfMZ7}naX3eGbd~0_dSdTh^RLJzugl0=f38{O&%4b@pnkW< z1Eg>dsRM2F<*;vHXG2Pw>|0-3A?vG8!PKysj@1c66KUjYd0 z30pz)g|J=G0|~%|)|a6UU?dq#Z2w*weGW~YbWH=FV5L9HKqvL|2;6`O@X$(Oq@!UW z{6K=)F$A*@gE<^4NToV<4ruPSFGV<716C?3UIz(4LQ_){Dz}L&q-p>=z=kKVqAd|u z2=@TS#R)VGn~jnqH_ zkgFw7T9tYbNZwylJ(=cTheFWLPkSJ#xT#+mmpgL+1xw2dFOHR+ovl4|qcdmA3m6l7 z3m7PXF=&pPxtVzkB7~pVLlC49+kAB+gq_=lIeWadcU1)r`bR_tWVfRqICEw5U}|x7 zF>_*Td6gyGH?-c4)1Dj_8(dz;GuuCad0P1tn<5k%zWRGP{d_gi)L7@Ri6|Kc6sJX=SBgZK-EJb#DP6 zroX@00Yve2rV_*_d1eyC!a{=qWWb}UqJT98qP-gJG=S!oHbA(Xy{yCf(2i?I=@eZYqJ0%N%UVEJNgJlfLU#wyALvG zXY?IZ>N-#FhkL*uWh zb5(yvY**O+bDgFG$3R#6G7xpPh5j6|%^&kQ+fi}@oYe4|vAsZd=b#_=JO_yX{Ibar zM7mOu``R@$`y9!6V03$t4DLB^o<{nL1Uz4Ek^M9sACdi196yo$R*YYe{jg0Q{`pKk zpwo7eR^Q9szuDYvCw$fR$Toa1)^|Z~e8#=_S9k!ESK}AJ_Q=*Fk>%azt6Ae0bhqON zQGe=A%jI*)yCH-N=!dE3)n)7z^4OP#*G_H$=Ijm8Y1&ToC->=71ad)Q8u&3$$xHR@ z*wP~r=oNS7SJ2hp{eS7C9KXg@_{4d}(^{|h@n#J^LX+--qdn84~A&pQ^X=_Q0E zpjQ>#^LnxOQunv~&;;HgO`c`%%!#C!gMRPYBjHxlTe3WV5;C`|v{%V41OHqyMgLVT zO4q+|hCJISeHMr0qZ2(L3=P`38}iJ}?KE2E_#2UQ94(yp@2{-+p4uBM(GRm8t7WPz zj-9w1Tw#bDC53N)(+i}pcYB&m~UYHGX;T)CP_g}C)BFkrfI0OpxSvs94 zvV^Am`eyYh=!Qz*WBWnqLE=370&Y%UFPG00W$m{&U%|Kq7Ncw@oi0zH8{$bj1jqe_ z_xQMk4NQj4wW`($zv=`S!5}Gch}n!dljo!1NruLMKwkygn5QsTSPQT{e)zGEWhtEGjuwI^U0b z(}j)D1V+l_zyoZ9syQl)fWW-O@El6K#?UX-ExK;aat7;Ylhs~bE8i}*;ht;BVt0N`Z0T-l$TNuKQ>jns zp2_d+5oEP>H?pE4LCpvWTv{2RICd4wg(xgo8i=iucXpVgmgRFcD~_HGm>LirTg-0mQk;p@FZ9M~Xe5H_?3{typ)VTqP@@@L z{={0g?{m8?neU1n=&`HB4KX_i-9m&kw>ir2eG=2yt+@m%*99l31dl2;0F76hH-deC zA@#G&@=R(C_%yA@Gpa;eHWN5?r>}!nS$qWdd?m)9aSk|^Fk*2whm`uP{|nUIZkEPd zQ<}0KV%-m}9w=??G(u}HV{F@?(4VpXg8@>y)*

szUu8zNNJO|t*TDvQvDhX=Emhnv^bJHYZ6@bl#;uC3X;=D)Lp^I$IX`I9>B zsCN-+nQTrk!}xv0=hn5ctlq<`Ti0m@5Iy9rYF4jIi9p5O{pDGa7Mv^WCnQG%@@-cO zOHoW~NWC_(#qBM`n zG7_5wd9k4ugo9`y!M2ADMmQrmHefDF#n$c3@Jli+W@+F_XLh|ZRpSZ2GDy$#m z#jYO|u|`>I97CjxLJ0nn&`q--qgtpAzK>rJ_C zw4nFA*X}+_ObL(;ayy;oXY<`OFDU4bED+BV1q|F%X-({ zcC8wI)RE*xUvkkmd>LWZe>}hK56M@s%SEOnTCQ+sSY|yGRDCSp<~O0vxMawN9Ye3tymh$5{_~J z1Pfb0?JZl}d@O1XM;0O4O6~f^k0|u7}K>vO52fCoF2L<%X=Ke+vkW+C0foyVAxOgx) z`4A4XqE)2kzlN0lVKE!IQmi0}YkUELKr8y}>jB z>Xg#A7K6)xrsBK2Yzh!5v@S;y==gzoUAv-GDaW^=LfTM01xQ3J3s_xF3fbAKPmi$` zJAzbWQv!S=PieT{X!-O!02i6jvxLIRp+oli(G8cwTrg4JtoCknJW{roTAkPLrkLWi>P}{M~6~LDMw$(rlp6q z+*~jdv0uqV&_AT--VF5M8PYc|yBE3wJH|qTU4r8=Bjiw29G`2rMEOpSmoM@?@q01( z?rEYS{Y{jp$4yi|p^#Gr5JXif7b}wKY8Pq3H`|#xM(#OKVn16hD(J;rroj`$Zw4Sh zt|zdFS1+`G!W2{XX_OwMKgZ?0c~)9&@m#%I8IFAqJbcd=0rW2A9n-8|%=@T`D2iNl z3qj&a(Y0XXyf)dcyY`%i7?)}aS)`}i!YU^ zD2A`J3Zs@BxS_>{RAhDtAsX{QeI%s(NG>YcVDgoED=8NFeESf>+(y7|6?99v_x^7@ z>{Ty*sUSFxjOz*%hct*dK^W%=)^|`BO*1uj8-d*{T}vSR77Evvknq8h>7p9yx1mx6 z&VEtU2$$_xS}e|1A}#=BEiT-@B2Iq%2d>*l!apblM_>MS&ZsovlM4Q=$K&^EJBm!F zmQY93_P5j{Rb>^fXcf46Fb%07viRWf;ac6~;ER{#&Wm#(S-RjO?{^v?bD2)gzN%5P z4KWl-oDvHG1F=WdZ2Q|PB%6>0taK$;`ZRhMp~q{YbTEOH09PZA>7uX#ZAaTsERQW_i%}NTPv`?*8JO z>x@Q-g6bbG`}=*v`tnzA!!-;}2B6}AIDq=*vUepASJeHU3|qgwkF$ov^^uxsHG=HH z0@ahJ;R;2nr59p&1f1O9p%V{{YJIFN6Xmhha$R&N$k_M3%m^1u0t5jF`XVU^febfm@yea zWn=5ICNWKqze#g~0?`Kf5nr<>roX(AawE*a;#n5TLJw8|u!){+d{D#lZ<@K_!@ln{ zkG{ANj7GPNK9%u4{)$cxIl<;(%+fCSgb>_TzWc%uV;FUHlJ@{?t$3q|Tq)LXs5?r) zezXy7#R>H|rGD0z3nAo@SDHO!;BN>;^--AQ<(ZEN(a4thh5naITOsP+BgukD!%rkj z-aGaFgO@bvtdd(CL=Z)|ectWCN_}ux(XtrG^UyX3UR;FCiJFxr7N%>s)mj-E zC%hHU7a28dpMBtU*lE`>ZZc4M#Xt!-Ktz~@TL`|WwlV@FlG*vNRdr}S4Zn~itgOfR z+Xts!*Xnw-FZ3ba|J*}9%-vWjIXn_^u+#A@sr1=LIYd{~`P#w=$^U>~-Qf*03?l^V z-7cqaC#X^)z_d}8%gz*kXOTGZz%Ik$d+PqUsNb9obJttpIDV7^Cl44Y_{t$4$XK6S z%CLa5c_it^(lq=Zn?6`M)9%gySOBj7n_po5|MH787GD4(I4jqG=M$_fJpWl8?9$$F z+2BI;d(poA1uC~m1eZOV%U-o*Yq_vZk>&qRVuGH?ax4i&#{c<#ZHBWrq*Rrm@DPFk zxXfvUiMB+q3Zn1=raHYp>|cJ+Wx?3uS=%xN4YAQQ<|$Y?li!=D!T>`TY!XX!iMtoX zn}I~oTb^^m(eWqRws=Lh0y7VYo|JtQ^!pCOS=jc15=pjNA;A?4*MXvVTC-zT`6=xL zHYMBH=c(_@HCT+RyJ6NH&(ckP9DRNpQbUKZ?ace-G@akn(QtU2wnu2+fjEi_buj8L zNW_N6`HtKr@g=&i5xE+bd=6J4#xv!t=fIt6e3N_nyha{IxdwNvsRk9<4$i2#wdSS} zY5XByoh=ST$zblSC>%FVW}TOfk`k;JWcr(A_v&+=%m`cJf29#+dEx|;Vy^9iUs%%u zvvtPv+gEvrPXalD_sC$13p|WNGTSmcMY0A$k}hS_pz@Q?q&jH#9~~6vW74P349$X(6e0Z#EkC2JI2V#R1p9WW|fdcl)CJ zO2g6uHmj6R&~Rm>hmTy$%DLd4}f z27!fkCfx6FgxZ>o?k0N?x*d$*aIm$nU3T!0fyb81x!6ozLZsqP0ol%LS(e9TzA=Zp zoQxNrj3dw%x+sewQz}c7v8uJKWUxyXR&`<-DaDW{ z+KyOIhZAa^C~@7fM?UE-b5i}Wb~eUMD2}XBwdX+k6gg^N0yXTNuajWwbgc9XTm#8c ztC~yE%%Eakx?eY?;qLCcH-HEkDw+$KoKwoSvLg$!>0RXdQmK;*~S{_a1 zyoJBlu)YN6TI`a2go_9q{g-N~MA7|~|@^wyoW zmfp)J&8(uu^RB2K+oko^nHdqBqLTm`l;1djJek}Al4LnuIOP9+PN1{x z1XYK-r?>a9V%}`yk_pG)j!pYSw@!N-JA2j=+xDc+XwSt_wtD)g{wQml>%&8oRo3h^ zP>c7%?NVduMI*Aar_0pa`h}Y9s1NSht*fP~Tgv*pv%9DDcM1ZXtCTO>=sI0$QWg4j~e}6Tl_ue$^SQ4hj9^A)hJUuwsIhd&)t*+k4SB}2kQs;iLeq>*n-Zp?B^89b`lX}Esf`j&jxXvX&usxL2P#9+oOR_x9 zGMlixxSW@`o@RI5u+c<2`7M6V$5P5NDto7v$M9wqzpi>?vpMnEy;Y1FGndR?XbnGd zN7<|KfO(o0l!yS$Y+d6Jw^%3ncqwcN;IuzGgpni;)jf9cRjt`0EGDr{A8AaqnuJ4E z_<&z^(AbnyVv5IW_O&9Am4Vup=caCJ~OpEJiSiT|GO8{6}KAC?{gbDRv}fP zrhEY}D~B9viTmGjH4BGIsC|x%LRm6niDAYI8yvHm@q8%zXyH{(h}E^1)p{Xo$+;L5 zyI*BRj#qtGYhpTWpiT5^>g zu6Hgwr6{jQYgvd-Nv@BwNOSEFM2|_!c+%gO|KdNMM(%I)_4jbQ z&71x+;A!T&+88cdUR?en;`-(zK(Lo`G0lG>^FW{-^Qn8oQ^J&V0uJCGNnQvN8vDv{ zzK!pRR!L%6Ume6d5#le9OZ0fv_cl#w`Mlo_B+x(MVP;a%$oEINY#vh`^CXEsS`Tg^ zaizk~?N_h*hV8JfNVWTe@h6$Qf{Roe`!Ab)KvLqv=aa?YvlSzW&-K`HRvp&U zJs(5&W6*$4`r}0{s)ul?x~fU@RAax2$tE-{+lQz1|D;my zzYPFt54Q!3NmE=zfwGjX2%s=09HI?{Ky=|y3I_qG__wJ=0G3ncMSOs|APPwNWq_L>CIjLE(5D8U;mYq0u@}3>0N#poc|cVY(0u z9D;#CV0aiBi$J3w2pkr#r-eZ2p^QBL4t*g8%>+=kc$b3Yw&CVZ)|1P)gbCgkGKc** zYw-Hka+^=2=ChR~W|^8H<{GyopKy1%&$T-oI@XeD*sS Date: Mon, 24 Jun 2019 16:30:55 +0200 Subject: [PATCH 040/403] Removed paths from random_demonstration.py example as they are provided by the configuration file. --- examples/random_demonstration.py | 10 +--------- 1 file changed, 1 insertion(+), 9 deletions(-) diff --git a/examples/random_demonstration.py b/examples/random_demonstration.py index 574162af..e9f1a540 100644 --- a/examples/random_demonstration.py +++ b/examples/random_demonstration.py @@ -5,19 +5,11 @@ sys.path.append('/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript') from mcstasscript.interface import instr, plotter, functions -# if the mcrun command from McStas is not in your path, provide absolute path for the binary here: -mcrun_path = "" -mcstas_path = "" -# On OS X most likely: -#mcrun_path = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin" -#mcstas_path = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/" # Create a McStas instrument Instr = instr.McStas_instr("random_demo", author = "Mads Bertelsen", - origin = "ESS DMSC", - mcrun_path = mcrun_path, - mcstas_path = mcstas_path) + origin = "ESS DMSC") # Set up a material called Cu with approrpiate properties # (uses McStas Union components, here the processes) From b4bb3e05b53275d6e01bd411eaa9dca0f6b14b13 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Thu, 25 Jul 2019 16:13:11 +0200 Subject: [PATCH 041/403] Initial work on animation plotting routine. Update for name_search so that it returns a list if there are multiple matches. This frequently happens with monitors that produce more than one graph. The configruation file was moved due to preperations for McStasScript becoming available on pip. Further work will be needed on configuration when installed using pip. Unittests updated to reflect above, and new tests added where necessary. --- mcstasscript/configuration.yaml | 10 + mcstasscript/integration_tests/__init__.py | 0 mcstasscript/interface/functions.py | 14 +- mcstasscript/interface/instr.py | 2 +- mcstasscript/interface/plotter.py | 263 +++++++++++++++++++++ mcstasscript/tests/test_Instr.py | 17 +- mcstasscript/tests/test_functions.py | 41 ++++ 7 files changed, 340 insertions(+), 7 deletions(-) create mode 100644 mcstasscript/configuration.yaml create mode 100644 mcstasscript/integration_tests/__init__.py diff --git a/mcstasscript/configuration.yaml b/mcstasscript/configuration.yaml new file mode 100644 index 00000000..41c6ac82 --- /dev/null +++ b/mcstasscript/configuration.yaml @@ -0,0 +1,10 @@ +--- +paths: + # path to mcrun, example for OS X + mcrun_path: "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin/" + # path to mcstas directory, example for OS X + # the mcstas directory should contain the component folders, sources, optics, ... + mcstas_path: "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/" +other: + # limit characters per line in terminal output + characters_per_line: 93 diff --git a/mcstasscript/integration_tests/__init__.py b/mcstasscript/integration_tests/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/mcstasscript/interface/functions.py b/mcstasscript/interface/functions.py index 6c033ca4..11bc7769 100644 --- a/mcstasscript/interface/functions.py +++ b/mcstasscript/interface/functions.py @@ -5,7 +5,9 @@ def name_search(name, data_list): """" name_search returns McStasData instance with specific name if it is - in the given data_list + in the given data_list. If no match is found, a search for the data + filename is performed. If several matches are found, a list of + McStasData objects are returned. The index of certain datasets in the data_list can change if additional monitors are added so it is more convinient to access @@ -47,9 +49,7 @@ def name_search(name, data_list): if len(list_result) == 1: return list_result[0] else: - raise NameError("Found " + str(len(list_result)) + " matches in " - + "the search for a dataset with name: \"" - + name + "\".") + return list_result def name_plot_options(name, data_list, **kwargs): @@ -73,7 +73,11 @@ def name_plot_options(name, data_list, **kwargs): McStasPlotOptions """ object_to_modify = name_search(name, data_list) - object_to_modify.set_plot_options(**kwargs) + if type(object_to_modify) is not list: + object_to_modify.set_plot_options(**kwargs) + else: + for data_object in object_to_modify: + data_object.set_plot_options(**kwargs) def load_data(foldername): diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 06245751..bf9ba1c2 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -184,7 +184,7 @@ def __init__(self, name, **kwargs): self.origin = "ESS DMSC" THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - configuration_file_name = THIS_DIR + "/../../configuration.yaml" + configuration_file_name = THIS_DIR + "/../configuration.yaml" if not os.path.isfile(configuration_file_name): raise NameError("Could not find configuration file!") with open(configuration_file_name, 'r') as ymlfile: diff --git a/mcstasscript/interface/plotter.py b/mcstasscript/interface/plotter.py index a1e4db3e..048c96c7 100644 --- a/mcstasscript/interface/plotter.py +++ b/mcstasscript/interface/plotter.py @@ -2,8 +2,10 @@ import numpy as np import matplotlib import matplotlib.pyplot as plt +import matplotlib.animation as animation from matplotlib.colors import BoundaryNorm from matplotlib.ticker import MaxNLocator + from openpyxl.worksheet import dimensions from boto.ec2.autoscale import limits @@ -386,3 +388,264 @@ def fmt(x, pos): print("Error, dimension not read correctly") plt.show() + + +class make_animation: + """ + make_plot plots contents of McStasData objects + + Plotting is controlled through options assosciated with the + McStasData objects. If a list is given, the plots appear in one + subplot. + """ + + def __init__(self, data_list, **kwargs): + """ + plots McStasData, single object or list of McStasData + + The options concerning plotting are stored with the data + + Parameters + ---------- + data_list : McStasData or list of McStasData + McStasData to be plotted + """ + if not isinstance(data_list, McStasData): + print("number of elements in data list = " + + str(len(data_list))) + else: + # Make list from single element to simplify syntax + data_list = [data_list] + + # Relevant options: + # select colormap + # show / hide colorbar + # custom title / label + # color of 1d plot + # overlay several 1d + # log scale (o$rders of magnitude) + # compare several 1d + # compare 2D + + if "fontsize" in kwargs: + plt.rcParams.update({'font.size': kwargs["fontsize"]}) + + if "fps" in kwargs: + period_in_ms = 1000/kwargs["fps"] + else: + period_in_ms = 200 + + fig = plt.figure() + ax = plt.axes() + #fig, ax = plt.subplot() + + # find limits for entire dataset + maximum_values = [] + minimum_values = [] + + is_1D = False + is_2D = False + + for data in data_list: + if isinstance(data.metadata.dimension, int): + is_1D = True + + y = data.Intensity[np.nonzero(data.Intensity)] + if len(y) > 0: + maximum_values.append(y.max()) + minimum_values.append(y.min()) + + elif len(data.metadata.dimension) == 2: + is_2D = True + + y = data.Intensity[np.nonzero(data.Intensity)] + if len(y) > 0: + maximum_values.append(y.max()) + minimum_values.append(y.min()) + + if len(maximum_values) > 0: + maximum_value = np.array(maximum_values).max() + else: + maximum_value = 0 + + if len(minimum_values) > 0: + minimum_value = np.array(minimum_values).min() + else: + minimum_value = 0 + + if is_1D and is_2D: + raise InputError( + "Both 1D and 2D data in animation, only one allowed.") + + # initialize plots + + data = data_list[0] + if isinstance(data.metadata.dimension, int): + x_axis_mult = data.plot_options.x_limit_multiplier + + x = data.xaxis*x_axis_mult + y = data.Intensity + y_err = data.Error + + er = ax.errorbar(x, y, yerr=y_err) + + if data.plot_options.log: + ax.set_yscale("log", nonposy='clip') + + ax.set_xlim(data.metadata.limits[0]*x_axis_mult, + data.metadata.limits[1]*x_axis_mult) + + # Add a title + ax.set_title(data.metadata.title) + + # Add axis labels + ax.set_xlabel(data.metadata.xlabel) + ax.set_ylabel(data.metadata.ylabel) + + if data.plot_options.custom_xlim_left: + ax.set_xlim(left=data.plot_options.left_lim) + + if data.plot_options.custom_xlim_right: + ax.set_xlim(right=data.plot_options.right_lim) + + ax.set_ylim(minimum_value, maximum_value) + + elif len(data.metadata.dimension) == 2: + # Split the data into intensity, error and ncount + Intensity = data.Intensity + Error = data.Error + Ncount = data.Ncount + + cut_max = data.plot_options.cut_max # Default 1 + cut_min = data.plot_options.cut_min # Default 0 + + if data.plot_options.log: + + min_value = minimum_value + max_value = maximum_value + + min_value = np.log10(min_value + + (max_value-min_value)*cut_min) + + max_value = np.log10(max_value*cut_max) + + if (max_value - min_value + > data.plot_options.orders_of_mag): + min_value = (max_value + - data.plot_options.orders_of_mag) + + min_value = 10.0 ** min_value + max_value = 10.0 ** max_value + else: + + min_value = minimum_value + max_value = maximum_value + + # Check the size of the array to be plotted + # print(to_plot.shape) + + # Set the axis + x_axis_mult = data.plot_options.x_limit_multiplier + y_axis_mult = data.plot_options.y_limit_multiplier + + X = np.linspace(data.metadata.limits[0]*x_axis_mult, + data.metadata.limits[1]*x_axis_mult, + data.metadata.dimension[0]+1) + Y = np.linspace(data.metadata.limits[2]*y_axis_mult, + data.metadata.limits[3]*y_axis_mult, + data.metadata.dimension[1]) + + # Create a meshgrid for both x and y + y, x = np.meshgrid(Y, X) + + # Generate information on necessary colorrange + levels = MaxNLocator(nbins=150).tick_values(min_value, + max_value) + + # Select colormap + cmap = plt.get_cmap(data.plot_options.colormap) + + # Select the colorscale normalization + if data.plot_options.log: + norm = matplotlib.colors.LogNorm(vmin=min_value, + vmax=max_value) + else: + norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) + + # Create plot + im = ax.pcolormesh(x, y, Intensity, + cmap=cmap, norm=norm) + + def fmt(x, pos): + a, b = '{:.2e}'.format(x).split('e') + b = int(b) + if abs(float(a) - 1) < 0.01 : + return r'$10^{{{}}}$'.format(b) + else: + return r'${} \times 10^{{{}}}$'.format(a, b) + + # Add the colorbar + fig.colorbar(im, ax=ax, + format=matplotlib.ticker.FuncFormatter(fmt)) + + # Add a title + ax.set_title(data.metadata.title) + + # Add axis labels + ax.set_xlabel(data.metadata.xlabel) + ax.set_ylabel(data.metadata.ylabel) + + if data.plot_options.custom_ylim_top: + ax.set_ylim(top=data.plot_options.top_lim) + + if data.plot_options.custom_ylim_bottom: + ax.set_ylim(bottom=data.plot_options.bottom_lim) + + if data.plot_options.custom_xlim_left: + ax.set_xlim(left=data.plot_options.left_lim) + + if data.plot_options.custom_xlim_right: + ax.set_xlim(right=data.plot_options.right_lim) + + def init_1D(): + # initialize function for animation + er.set_data([], [], []) # wont work + return er, + + def animate_1D(index): + data = data_list[index] + intensity = data.Intensity + error = data.Error + + er.set_data(x, intensity, error) + return er, + + def init_2D(): + # initialize function for animation + im.set_array([]) + return im, + + def animate_2D(index): + data = data_list[index] + intensity = data.Intensity + + im.set_array(intensity.ravel()) + return im, + + anim = animation.FuncAnimation(fig, animate_2D, #init_func=init_2D, + frames=len(data_list), + interval=period_in_ms, + blit=False, repeat=True) + + #plt.draw() + plt.show() + + # The animation doesn't play unless it is saved. Bug. + if "filename" in kwargs: + filename = kwargs["filename"] + if not filename.endswith(".gif"): + filename = filename + ".gif" + + # check if imagemagick available? + print("Saving animation with filename : \"" + filename + "\"") + anim.save(filename, writer="imagemagick") diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index ee0c27a8..84f5b717 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -94,7 +94,7 @@ def test_load_config_file(self): """ # Load configuration file and read manually THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - configuration_file_name = THIS_DIR + "/../../configuration.yaml" + configuration_file_name = THIS_DIR + "/../configuration.yaml" if not os.path.isfile(configuration_file_name): raise NameError("Could not find configuration file!") @@ -834,6 +834,21 @@ def test_set_component_JUMP(self, mock_stdout): comp = instr.get_component("second_component") self.assertEqual(comp.JUMP, "myself 8") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_set_component_SPLIT(self, mock_stdout): + """ + set_component_SPLIT passes the argument to the similar method + in the component class. + """ + + instr = setup_populated_instr() + + instr.set_component_SPLIT("second_component", 3) + + comp = instr.get_component("second_component") + + self.assertEqual(comp.SPLIT, 3) @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_set_component_comment(self, mock_stdout): diff --git a/mcstasscript/tests/test_functions.py b/mcstasscript/tests/test_functions.py index 0feee07a..6e884f7e 100644 --- a/mcstasscript/tests/test_functions.py +++ b/mcstasscript/tests/test_functions.py @@ -134,6 +134,26 @@ def test_name_search_read_repeat(self): hero_object = name_search("Big_Hero", data_list) self.assertEqual(hero_object.metadata.dimension, 123) + + def test_name_search_read_dubplicate(self): + """ + Test simple case with duplicated name, should return list + """ + + data_list = setup_McStasData_array_repeat() + + hero_object = set_dummy_McStasData_2d("Big_Hero") + hero_object.metadata.dimension = 321 + hero_object.plot_options.colormap = "very hot" + + data_list.append(hero_object) + + results = name_search("Big_Hero", data_list) + + self.assertEqual(len(results), 2) + + self.assertEqual(results[0].metadata.dimension, 123) + self.assertEqual(results[1].metadata.dimension, 321) def test_name_search_read_error(self): """ @@ -183,6 +203,27 @@ def test_name_plot_options_simple(self): name_plot_options("Hero", data_list, colormap="very hot") hero_object = name_search("Hero", data_list) self.assertEqual(hero_object.plot_options.colormap, "very hot") + + def test_name_plot_options_duplicate(self): + """ + Test case where several datasets are modified + """ + + data_list = setup_McStasData_array() + + hero_object = set_dummy_McStasData_2d("Hero") + hero_object.metadata.dimension = 321 + hero_object.plot_options.colormap = "absurdly hot" + + data_list.append(hero_object) + + name_plot_options("Hero", data_list, colormap="cold") + + results = name_search("Hero", data_list) + + self.assertEqual(len(results), 2) + self.assertEqual(results[0].plot_options.colormap, "cold") + self.assertEqual(results[1].plot_options.colormap, "cold") class Test_load_data(unittest.TestCase): From a8be979740cf8dc20e7222e15968366b98e3a2b2 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Fri, 26 Jul 2019 11:01:55 +0200 Subject: [PATCH 042/403] Added a Configurator class to the interface to simplify updating the configuration yaml file. This is in prepration for distribution with pip where the package is installed in a location that will not be easy for everyone to find, and thus allowing them to set configuration from any python terminal is an important feature. The code is tested in test_Configurator.py with a number of unittests. The manual is updated to reflect this new method of updating the configuration file. --- McStasScript_documentation.pdf | Bin 161681 -> 162053 bytes mcstasscript/configuration.yaml | 13 +-- mcstasscript/interface/functions.py | 149 ++++++++++++++++++++++++ mcstasscript/tests/test_Configurator.py | 148 +++++++++++++++++++++++ 4 files changed, 301 insertions(+), 9 deletions(-) create mode 100644 mcstasscript/tests/test_Configurator.py diff --git a/McStasScript_documentation.pdf b/McStasScript_documentation.pdf index db4439d6c80146643cd3dc495f0438db7a9f2850..eec3becb7e70159addecee03d144ea1c5993357e 100644 GIT binary patch delta 61546 zcmZ5{Q*@wB&}MAg$%GTzoQds;ZA@&vv2EMN#I|kQwv+$cJ$tdcebJ}-)ak0HyDzFv z)zfj;ut9gQs1yn!V)V=m>~Iv_&-q_)tW0sJge)vf?5re=5+qtA-0YkrEX>R#IwXwp zB&=*CjG`o5>`Yw$Y2`?m|C?1vm^qj^nAqa<-9ee-)`-A3I8*9qL9tU%T)?;~ByEgM z-2St|%0%*?!T)SX+L+psuyBzuktmTcD%sjPk+8BP*n(nfaWJuy{C|T{QiMc{kBOU& z$;8Oe*qGhakkf#Zi<5(i%gET6+rW_B#F*LGNPy4Cn1hXj!^p^l$;80el$p)MgoA~h z#ni}viJ6ntn3*+U7nG2d({FW%B>t8ql@2m4v;9}$oD9=Cib&fRWSnBJP(1U=4{-GT zZz~P`PJ~FZ5D1XhHn_HwFBdSM1bwhIaJc_KCV;bmvL=9{k|Z2~qewE72nfJAIysma z{DpJNG}71CH`LeP8t<9t>A@N&83BRR=U@egj~#XJ^$YMb=yfq=5FZS@2FnJcfxIf= z+Nzt-@0ekd{8j9mAP7OkOP&Z;==a2I=O-$K`+|$3LcxvMCNG0Qt5+whxW1-7666O8 zQW-*D4`*Uy{C}MOC)pZW!m*~@oPuJ4vZlmRgE4}!aV2a)FvO!$0VFJJ%$)x>#bdM*f<8+)0K7^$X?j7BOdDrf{q$&EY-23QXkp!*YqTrrujVsCTo z7sQM?+glJ+TasA&&!{h#6rcRhtKF-w8qyf!^n=!g*?x|ADazJJxUzUD)7gGX5902! zZEjYevtroPu0oH<$Cq7{TqT~mCy-q<-i$@lj7Kr)L3+Yevx+rsczbnr)uo=WI`U2g z9<$0Mtx$^j4B7F$uapG{$|6lJD|I8&5Y3k;oPp!il*TD63SH8qG$~8-Rj&$)<@xH; zG9h&_LKYF}NV8gg*bLK)Q_)24rbZb<$6W#hFYpgkOKzc(`<@=XKwR?narjnm!I9|m z!dBdznwxXf&CIRR*PqC0cnldAM)4K8PhI$|Wt%f5r*u(p{?te6ZFF77FKU*EespF? zl#w8-3zuac;vU(P_`JbNVz5xY<~s8?^RBPXatV%qxJ}qN?6=1eZ2|Iaokn1)lyvzBxkl4_&EOVgN2Ma!d&vzwdTS@ zX*OSge(q4G*`Q0{O>6J3^GMuCNLvHBW}M3dn`{MDgw#y(0Z(~mwW!i$AS0z=-|SU{nrZym-Awiw-_R07A28D)cK1(bpYcxUo~G|62PIQw$RqqT0qA_F-MYaZYQK?N;* z{2UfNG6kNanAP)!xt!TC?FzuNH-w)m^c&3AS!mv`c-*&qu1vRgatgD0ErESKjrv0( zfkQs|JP;|HUt`bw+A_GZNHQCEPZ9A>tW~g&GW7NTj8%cem_4-Oj5!g7;UuzgbMv_| zj~t_&N`me=?j)pVbR53aWR>MWIp=%4+?aJf+=WJnr_AIGoT2wk%?4tJLYWyfC{z6G zYX>kh*rAEn#Qr-Iotx_EG!7V6e(wv0YEh4LvhQb0-en9#xZ_$1M$Fi3X{OqV<{KO0 zG8K+5vh>c`!8M!LkX6AC8qeT`&Th-z^%}{sYQ@na6JI#U6dG{C{^I)sH>bNTxNF!w z@OCGYKf9J71HCQ$Cjgi(pFmq5xwLNn!IzD}240h}V*oU`1*$y4Q7zQ@RHfW{boN%7 zwI6a@A0P4Z#TfiW3%hfu12MHXs*-GIFneG)3JvufcmYuw7=_MK3rQuPgKWt&Ll8Pv zP)y{IjuWW6=hMvx*hV+s#^vM7%)wS zFtMZ)K5(w}zm1e?+G;pTwcGQqg*95S(OWgrc{5=U1OwPM#osxIb8OW0XUIkY7-%SI zAzE+RiYadl4FJo@yOO(|3)hFB{vQq< zo6cvl`S#0f)SVwCyIS=ol=CkcMb{roXnEr=UrQ7;U$E-ZtM<8d8rFNar#q zTHC6*=m*p#_$+P)m`l+R^URGoPX@1HG@qp#Tc9)NWlrzv%Mr_yL|mS0h+PUL_r#9F z_F++5<({C9$beO8PLAkr4cIrm1kjuFllE`CLU^4zN=%XUnqSkV=y8rvL!`LTSo+$sO`%G9&-0uD{H}Rg|2IVehw(EXQyuBuP z;{35-A0Ay`RO}M%`+g^^6SUkdusD|6Ez^Knb;~RF?qkEb5yFNz4>?m?!#XD=ag0=p zvH}?9F-Vh#mfaE5&t$VGBw0y;qL{j=>y-u{aj6+W=p~f5qWL#Ws~hDKrR=r<+1I;m z5h_oZSorfV_AZffLD&Pl#WFBi+|TQo90l6M_f_8d?^0V1HhSfb<#(y<6diSH896N& zc)JE&*QIjB;SD^{vcAszG}y|Z{a=B2rWU06DVIIwA|Hv!f4@+OxwZ+T1!g1I8el9;{Qxt6 zX+yq&`(TP7qc}9QajZEVJ=lMnQ4@FwaOw`gEEWXo0eo zo?zPOemX=OZ%jG;s>*tE4@9w>uG|KvGH z-VZcr*gE8Fc-F?dRj{okFls$Ok?|?e-R8Av@j&6fArr`m$PtYCW*g`Q5k?+5~TDC9@@*vsZS$M z#^0VQQC5h>V~r zGqVvWz7)Q`(lQiawe|XX5DNjBFw*Ea__xy)z{gEMtY^V`8HtFylQD(v52Bfj$n!u3 z6M|HKJ=_@J3c%Wj3jSrEJ-tO3VeZJbI zMfvdzwLj|g+$JctD49g{cworak`X;*4hicqJIw~imPplbf11*cM-HO$kx&(D3!O55 z4%-&Ccs8=dFR-=EO}^TeShY}pF_TpFXj=bhxoQjKTy+6mi1n^p&VlD9yH8d@6^nh( zNZFrW4uQe%N^HhM@h1zYh}7M22bPToX5uxj^4kgH6-xi=#`8bbG%uB@Jzd!XxNGnA z?YRA%*e+zA5U8N2SjAJ9vwtl;4YSil5_HoYmjbHtcvGT9>ehrAYH&@dXIkY)pZ5g? z;1fXh@;kDryo%oWa0{h#jH|00ve3)usUb>*$?Brg=%0*Hq@oMK&3T}xr@KTIj#nJ( z#Y}Dd_G=z{+CGMRLr+G%JAb)NZs-j$V(?pWUeUT{tTV&{b2-Iy{oj}16(8{K@j@H) zFS0vpy`O-KeUXp7ag*-a$B$LvMAV*Rm<{+fq@zl2kRhb1ib?OjQID94rp~`MVkHi@ z_q0j7sEk`pzBogdI`^(S!ZfrZjccfq<;b7&Lpiog^Vta;oPi2HBa6j#Z7S|K z)PuQz!`-R3!1^zTejLk0k<`{fdamLP$53q_o`X9755p>jDYr3`AdJ?5-YY-^Q^LzF za>?`xiZ%&f?C6?HO{M5~Pe+-uDo>}<4wQNPP;DnT0+5R%94Tl!j1%6)Dog7lhb&GN z`QRcMq{Hvw5>Af%#gH**^rH$|Jf0PigC#gvX+k}KFdlD+2j}nEAr=~)U1YfhBVP?o zkgPiOPSU#EQPnI@i)x)nu_@3|RR3TDAMW2z@NR_2>6d1dhpVBFF%&`4)ll_=B9dYq zwnEm1BM)xng~TL|$H1jj1WQap`h(_>q`dqNbW;SP1m_1j?7)! zDa;GT6RiNj+uA6|LCQ7}i(C3Hb+gA?5n@>+V>E*ZKkkIoqFB(lb^>tuebR@5vj8o3JP2+*WQum$U@!Lk4MUmlaa zmPfffAI^Jcw2E&QsRZp38CBMZZ*O&yns3;>R4|7cmr{JV z%W$Aq4noVnD7H0}gK_r|#<2;rSR$-{G&#JmXw=F*(}j}=wiaM4H~l-BU>@1OWSP5S zJv4oSR?pwsQxPnW#X$bqo^#f_$lf8=!n|LEZ_D_dxbC1P5GQ|_?L`U1zu&cb{XjmH zekFD%*BeED)%>E{9%;VI;!E;&XJ9-isyu{#H2?u}K=CJs?xb|b{XTw%+=*?C#Sv^S z-N|h&?)RQ3`2g`o+;IuLotX&l30B-m^XK+DP@ocG8 z+-+C7(?dT-9n8#}ke^HG%?6T(zDa)eht#rWZ{s6aNrZZ-2Kc3XW_X-}-+cWOB+$0r z)&*tuAN0lGE$5wsEns>Q;mmhTyxYF~gEa`vi|JOS_f?t1P$kdg( z>4mfOd}qi;unE@DdaCRY=cWOqKZYclS2SF>xH#&@Pz6+w?%vqQ_Q4n_#s-<|Bt*IP zuR&kKRgBXiGQzfzO4Uo8;D0QYfNERfDV+KNul|(t>Z%-PPXN;+g(m|^_%j&&6Z%K{sLnXT!g*z;3ZRO}^q5MVX`R*+DjG#HOeMxnU zY%GU|L!(fIGEnw3iVf_{f(M5uV`UUl(G`gZ!t9xt7#f+FfRq1~XL@P~{uV=!{Tuw? zz}f<^9eziKSENFjIn<$qa&qTPY;Fc0X;}kNUjd=Z?4Z-`n3w?hV``fHjkCsk3pU_u zlUxkqF6JBANjQR={d-}ncYbtkqwkP^8V~?0l{E*U|}bgKP8s7jl}$T3Y(&VsKdn zctTrNQ30)l=EXM0HR+2Wi(@RjZvc>%mKKo!4dMXd%O^vZ`X!ZnbPDpOHF}rw(h03+ z3+)N*yXuKgq9@Hd^G@t$YnF=-v$J;qclY>JvIoFs2SMsvTI_)_L8WP}^?rwaF+in# zMr>bikIsSTj(-UF(19Fv`+U7ietY-HTwYr9eW!kV56YzP<@2!gIepu_b^}tVsGi8a zoZ!&-zJ5sokUf2UL*P4m`cN-lwgeQphu!D;U;DIw%}kMZUe#K!j~{a4H^2D77ru2- z@Or+7lxl$-Z4}?P>D+T>N2ZL9Z^PGbzAK>p<2&Q7JO85_>Fv8pqHl5N$d>=H8{rFh z5Ym#yp9Zu#pg9`etS z6;K%#AQZia{5fQ+Vf;Jq`2r3&;cwpq!ruAY=ZHO~OYTCp?#sUNp1mxAlTNKi!G~;} zedJEF3-3G6RXX8&?mr;LZ^&MPR5OA%opud^FW4Gi z*xT4ogqvTfjvqzMuFh{E-|b=k?G3 zC4Mv3cdvJKFMQ?s)J*KgynU(@ZgH-E5l3}*Q>Ot0|LsZoDnL$tmdg5mc&&Ew0p312 zw>)>JIE0RYe?xcKeTOmqp3V$da=8G(qUS5a)zi0~Tg>i%@NBm(iC?y2-vzIBH`n)x zUx>Eu|65lsZ@&menD3n(JbdxIy(_+U6@Bk^Z+nx(LXSZB{9WA&WE?1GE`0CO#o5jR z3~V*^{S4(<1A==!C(DK(QE@qvimx1JkV~|77wUd3JnGn=Wyo)b>UG5Mq#N|}CM30I zdu1b{s~$bI?Wmd6bxmOq!*Y86_z>#JeX`g-9-I{?o58CG?~o5B-JVUt*C<2z-11hR zD>#)td>*Ymu8-h^hGMZeS%LQxZC$^PfqN83T0kl^$^F(wAvFT z*53h#9KA#sxn!Q;lG}K|;lRWb#1vz{(5zJAW^1h*`XM1)T%8_AxqBy<`KzopU~E8QA4zC9{A|sqm~S_9iXmfEQyDgCa1iBN^QfVCETJ zB>2>fcrvAjiPl5qh5lj1zIr1J6i>sy{+0OgJVLI1k^%bt)lVf7T7@az$iEz`IxnR& zqph8cSu^2FxDa@ujDcHWY0zmiHk(3#YQ&Z|YUzGM@*XQz-R3}2%SB%w3s=Lx@zHi6 z7Z&T<=3Z?m0JfWAkriqYKb`4xcwteR=;s;8C-rv`Ayh`@B9fvcT$Z&JC>4yicX%q7 z4@Qk}EOLp96%+ zRe(6=Wxuu-miPXSy$i4;%6pd0%Xw27RtVg*Zzj>$4ji_%RJ=_`f?yJbOM2X7|S*Mx)MayyIRmH$Ic}utn|K3rL{g?eW z6-+%fN5^#Rx)Xh1-Amh)e*>G9d%&8ibkU@A;Yw(5ms7CC7GIglewF?6=T5BG&X0wC zmF=f6@OkJ7JpZ_CAWce!Z9ZU-MNHRjytOxAm{_$-={zqn#7V9I`!{0E(C(d|=3kB;XtU z+9#8PcQe39{)+P83G7#C|Lo{a zrjX!{CNLm+fL)k!SHWJ22dRc#dH){TbSe%$7?4GoHtcJF^P95)2Pt97V>?Sf!=&|_ zDXSmsXdzb9-s@9Tq2$cTLD`(rCfrk85_;o_2{d>Dz#=bp;!jZ}>Rk=XNxkb)KBLtC zv1MB-`nkyZLuOY1JUJb@<^p6r(I~CkPC23ztt|pPi~Nf~QJM|EST|GRh@-l^8Bx{N zSy8V71iXYbsI6brdWYytn^*V=0rv%v$l_J>QyTBJNQ8br^|RhF#$fMkQf2x4C{ zSx#Nikj!mTJ*Rp8f{>TJFda!8{=v<@mTA2+z;9A%gOj{e6uW5PY2}4;OLsFL3DO#o!lmP(pa0Y{;gY*~nZbl4Pqd`yd*8Z$$^>`^tGx z!N(mzhfl37i`OxWlSk9d`~U6e!x=8iT!w!A73F8Tqp=x-7Dy3wqs8oWJ!B7 zQ#fpQk7-qg?Gt%8TB`Xda*O-gPhzuOAnCz~b+yK6nVpW@kG;-hwA=-GP|xLa#PAbQ za4z^1{ix|gBRfG~U_?g4hsZT^q&5k3gadTK%j%KAZ5 zl!47hsV>jh3zUO2^aNbDDnWydWY@eyRO=YEi#$BeyZmdG0KUzLmm4Z#Jl5VZ(DKty zOhNd;fx$}P);Wn)DnSpi^n&7WEa_55$d|8^_oVFux2gBC3?}rct3&4J)2J(J{trB3 z40tjUeOmQ(`6LSY!NH$AAF->5xn}pa6H*!5c0^;S{a0(63hogy47e)7mWZir7QR)6 z{Bj7zFkVj>^9iU1?(gBX$gd02KveJFhB!(!qGyEhqTZ%>dUI=$VZWASviElvr-Re5@+j>b}k zsjNO6or-ehx=QUh5%R-(hFnv>CQY^p3^>eTf>QiOhJA6 zfXrxgFvpk0l<>;C-Q0tY2WQ=?s=+GyCoyWRCyO4WvCpu<<2Ru&>q*t{s37Cf9HwGX zc|WVz`(j}l1`!v>yxud49sE~s;9kzeloh(;XAfUirNcISl91aRupK}%&#J# zL9TlaBd-6a+s2rbRhe?uOsNtWlQDvcCPP{{DB3stMwR@aHp!Kf4jNbve`S_ zu6#q*AHPRYyN#hnBPXe4|Gm{EDsdIr)(F`PgIjiILwGypOQ6yv*A$(%@qT?{tmZd( zAa8wRwSBr4RouL!9b^4_fUwtq&ic`Y5!&&a61X5EgY2Dz%ca*qCq>as{hJO9gZcfC~It6*{GkQ@25hRUs{#SDj!CrB$eOjONy31af4dl-< z9uf{RR>8t4vS8H=1ZiBXNPZHG1Hnt(=en7Qn+f~9u(zWN!pkkKAc+`Dt-30Mxd@iCt(!WXD_@=>WN_Yz}!xh50#y##lb#HHRmp#?jp zQ7&=9twzi~54ea0#n{lMO0!jJlx?#n_{1k@T>>Uc{`ab#U+`bknJL@{(oGQMF%1zsv4OqK?v6Sda-e zf^?{OWx=f#w_O-n6pTRWZZr0j9rT4RWjUj`QxC16KPVu<10&y-y>uEp*y*bQQA)86 zg#^3G6Cp0=QkXYh_-a<0*WXWR+YrPZNbYW~R2fZGx_`4aZ0eJ$_eWwO67F^*!TA{4 zT@bI^q^J&p*Fx@5_$vBn5(3U^%(xVeR0NpaGYF|8bYK3YML+jPRd2jiUGcDgl9mM+ zUwe#ZNVlAZGb_{7+w#JmB<{TYam3}?kyX98tQps`%+`1CT4DbF|kOg`z-kT@bM-JQ)JkH^FrAIg?7C&ooxKO zngq}NtQu!7E0Kr8wP zMP2&th$0(x_oJFS_oCJ9QozEbr^i2wJ2T+NSg&baO>}s&ex?=v9(HkSi@ubHF>7yf zc@V5TxEz=)ME#38rb-SAoG;{ArZ>i&w?H>sVg9ZgkJxfBRxEJ4eGG{Zm7wX?r-gwW z(HF}iRH%Ys-O_yayr+#qDu%y|W5vb3Qc5jlgAV???wlYr3w5n)ig}~2ZzqmgLz~-z zSAO_0WoRKvUd&e%1cgb9qmbMx^}fLuIMYebs`f9I^oG=zD%G$8=*wPKL3CIuZ{PkI zA6~=viawRCM+7S|fP4#3Oo^w>Qy@O-4}rY5y!*$x7wlgWV(>b3N>1ST2e|d|Gyh&J zzt3~mA48Eaun9j{KFrbY@cdcPs_tBveU0e?>!XFkUmc77$4#0MF%>dP(}&Bq7S-BY zpmddEl^*Uqq}Zq)KpoAw@ArLx>oi)K7C%w-{i+NLtG1Xs#1M@5qGdzl6&nE*0=C#d zv|}=B{;dTG$rj~+31@o>U95C_|6!QcSm#x$Op7Gk6;PkRSI;vWTo$uY^S9*57H4Ot zpp8xyJB;lJfzc*u)8WMU3`Lx(w+@f|;QKjagS&oz8twGHw(6(!FMZx^8a-XQEa@6m z$FA8zlzou_R_UbsMlS9mirdIR7cV|cEpEeUF)61^rx>KSyyYXlS^cMRl(xNpy}uUo zBGGCrbJa`_SaTkm_QJI<2z!s_H_iv;IKia4X@^}t?ujOA$r@)df9BdGi<>CyJpC+p zIVow1q^APozG(6(7dLEz)h$3XV3>6ir041XjMT*hSVnXD@cJ3v6b&Z5iC`DXDT zkCy@-_$3gu*_8fH+YSrL7stOXYaDoa5#P z`t~WAroOqg0tgh~j9q_y4oOH|-&5P_t^we$3s$2x{CR7;?tB(+$>kvTj`ez}QDR-w z7LO|R?JPvx9-C8$Iqz?Z#&nSIx0p6a!=iy`=!xG>`&qnYS?z#P1|+qh0el%yn==!mT7rVZOyjV(9+qR+HRRywlaXL z-8gVOhuqdUbqZzVQv`NjBHh*NKF$R^_rN3rC2-xz&Gz2j6FL?R{nDG6(uyJxp2NLB z)u=XpJ&{hupsx72yVbeFxC~o^!_QG|*NfNcXo0gunmZ+%;H+8>$wd^lXi{mH_{F|; zUdm%=9LD{CGs_)WT;m?2X(|8d2P7baq~}*6IVbOn#I*@dr|+Q+d!BC-3N22A6s&YmkfotgwMWm#bj7YIV^E_)c4@28T44z36D!9v&AFkI7|}O z(lc`zSa&+KvRWHPKIf$8D$f`@DN2@f z!wDZo&Tt3xK|_$VTGfYFATaZ6wabRk?>oS!)qer;v|(mg(GNpR5-$2%R-rh2pM4?1^DL`5#7hCx{tgy zW2SQX3rWK7JH(F5_Xz-1FR>L3nb$C|=WHPso)#i`(sP$5%z%YvP{ zQLtl1D@2nfT<${7``Q<58~g}?ZpxX&?Ra~^c|2?kzfRHe`4AdM;n9+-HH&!}g`^~tq4bC^TysQWwQ3@zy z&QY^t;odf=YuZ45W-r=LmU|-{f5V##yjq)q50Kxc*neK7)-;xn-YEN&d4Bq@oV%OO z8@b7rX(~cnsr}N%Uw`Z+02h0~r8FI<(8Vfo_614XZ93L5&b=z3~4T#W$S`;-3Ee8n?Ukb|Q8CUF?W zANVq=lqf^z9GD-2Lbz7qVHWOiH~qM)MiqZ+Y?9r>w`klf*fvF1JttqKaXruX9XR2uO^(uI^JK16;B;o33_{a}C#7Q%pF2_8#^ZD5wqURJ zWUK33>2m=hI=)Sgl|>mZ#)+!9slP3w>XKMRqyoCgoZ>r`7L$XFB4m`}g2t>}q>)DH ztNHS)%eJUg^z&j0MIWJ1e_o10g;UzD&oJ0OKlCp8zYL7WKrUMOhcCsXj3<2zxS~Xc zH(TYZ37T?K(dw*bwlL`sW0t$Uk9#uixVpy#$@~WF^VH8Fn`gIPil#ov6+Q771xnh9 z>JsA=a~~S1)1yxu{)zmQUVyb$nTf4e-jBHo5U|ahsp6>7`KoEs`aIEM?kyXQgWn{` z=|F-k!svMbFJCBb`jexaUl@)I-;(Iad%;0}Ju6kfy9c&WpJ;0aDvAS&k-tsU{0v`O@~iy0{$Ek%8nyzN?3BbugD`Blf~hCm>6B*Jjh`?*eL^Ox8o|F%_`E?Z zXO=-+3|DR16>`TdjS~17G?ruV9$&ALFDt>)Y;?lX-&xyPpRvbHk0Y?Dj(5>FskGiY z^t-mEELi76#t?e}Z@f!}%9V00hIQ+9KxnSj85Mf?$Xr&7H zcjzel0}cyvRed+8rO_e|+bmQKg{{q<4u#KM1GUX^;;J?|>9@-}lU#I(gUQ5?Nf!>K zlb7}-sAW(hD+z4a}N(V>BE*0_C9v3$yVqUj+cx={0*Va5>%!j?aTSwI%Hoe zRqS&-UI@W>RA%M^&Q=S?cr8n<;PFSm&D7@o(ugwgyn8^HA&DDlMaNxVN64sPH&l84 zwo4^@JyPCTU^Rcgxl#d#Uz$ZVL6j1_G|%wpFk-SI)oiT|kx~IVb%~M-pH~;;9B!f_ zo)RlQ9Q7a5bUD5XGW2gs%s2D9S|N`8*p41U@h(w{(HqD)Pc6LjX1kW9F~lW+-3VNG zN14o9i-2Vtp1ydTt6nkKv>Ti{DAkfBl+{`(N&#!sS?0n+?JnqvI!+}Lc?d15Qzma` z4sS%UTcAkeHY`C?^@F~8F7@mnJxO}vm-__d(XwBF84J)Q;)7LNc`KDR>EWh~`&iJhz)=-nq^HX_Mhwr_o6smvLJ$+D!=kg)eyo+q3EjD%zfK{JAttGRIgKHj5zn0z-yH# z!dj^mHt#-Epx?)BY{y@>cjoqyBs@h3Hn`(_^N$}*e2|%jqlr$2$0pP`ib9_-Byh!K zIJLU)6UMcf!F+B@#%dZIKn^>aqZSO>g@l?kY*BEghNuh!Up8s>n!abMuJQ+bmB=T% zmGv?%D_Wv!GFijTV05KmEQj){{GQK!M~;c*9sFh08}+QPyS>a@r#iGq9(%yk-n|ic zNo>z+;+v*|`QH6=LA={hcL&8e?qb2q|B;%Ca)!cdyudd7==7}w6r6`=e>4AC!?}W5 z?CY61U3rBG((HB(NFeQ}yHsOojAQW1vnosc1dV|4_g(j(J-pO~G3*%RJ(kvk+W33G z!s*_?&i{KWqBdfYfCuw^Na*6;=~SHYt26*-s}=vedBKul z#fd8MfkP0q=Tb@^;MnwIhWD}Bf_A|ra2!~{H4(<40LLMX^$L1jHN@xq9k6lDDfqj24ph4Y zCJw7nTV?Q8t>$n|xGxsQe%_j@#y|#5Dolp(U6_gSz5GYKJYu&Mur|_$7>5r|B8mSa zS|c6`+*&{O55i@`uJkzVY((~#UUx_${@0sg{g7*aQD`C@d5zu2pWka1XQsM%Ne#3k zz01We`JE8`s)*X?a01zFeC@fouW-XgfKJTIyKaiE$NV-8#e^%-jbvSd=-w-rnr@+e z^&8aShbie`O8M?c+;F|V9pt}@${Ma5Ok_nW0Md_b+>N+Z?6iCq{Fq!Gj0TiHOmT7k`)0(me_O93TF;Z;6QBq>H7`=EJh|f}ldu8|6MiphnTjFqz|XfVG)v z7eb+_uBpj9;CE8El7_*YP)d>1@R(gFQO*>{+X2hmA;Gca$d{7R<*H^tnA1$VEoH3} zFd>b1wMZ5Hs5zEIFj3T^sp^{1cll6%cFbmDsxLJ4yzYA0v`kkoO&adBJv+Ras7X7k z0;eag6{4k+(d}|-^MKO!%PYl1M{A|A`|C1FuBa~rSXKpf(3tXDvBD^{~CadFZtw!jxkx^*c!yzOCJ zTntIV&gwjp0%cMSm}#p?+HC$ulPxK$$<${hdwE=^(piS!UJq0!$;*3l5K{`W1#%)& z+7yF&0goVTJ|SH6EhX=3q^BUZO#DfR)7f%19ne(w#7+}>EJVsbxN^|njm#1QOfeqb zf9M4FPaBRA;B!u+8KHm}P{Lcf(N=%y|DLikTwWHy5T>fO0N_?p6t06Y%CsayI7>icG0ASknh!PK&3$^ z6W-S404ZmO%Q&&brlTp==$F+1WcX$k!Cg<=x&{+z|XM@*gw6qYFDn=OO<0d z9XS+&L5WIie-6j!@7p-D9}-}zGIW!h!MD%h)#)Tg#I9PXD7=yc^%fujr%a-sQ<(QN zn6v#<8)G;j;owiI0o;gVI1{s}G5Ay-X%(8AD?;&TtWEzhEh!X*3hK3xYY6jfUCizT zz6RNQ3vRlLnJziyA;t~$3gXy37@|wd!25O>xwXwXY+Z9ZwB@f(N{sRU#K6iH-Wm41 z_d-1#_GZeSMj>bQgOlb0VLB(P!9qT3oL&a&$e&pS;Z6SX8(1cVM+)hB(K0OrV1z?p z;VJHiC#2!5m0+Z8uJB}}nNc$DjbdDh3^Uy_dLvYB53(X{19T_@aMM-Ue2fSDzj~a^ zoeVi;24j7Zebod|c%!F?PanHtX{(wA;dym!u-_4hgf9?YpT*)jc-1%o4R zig&_BHqBjxksdiQs~jb#Cgic&{sC1Z0WYtr^4RYM_VW8w5o52dhY6 zp>0=$OfFh~C^~JU+Q#3z(&n&k=|K5O)ORK2t~#3>a&E#LZ^?GXGuKn?8a_xT*fODu z1!<-{3iFlz)RPYZ^CL~ifvK&f0n|^#?W0;B51XZwJ-rr8{R!x^;b#Jv>^m7M;G$&4 zN4%shqNEB=V&Nj>)vx=k_?QT;cE_u^Vglh*vf_zG0w21ZV$!o;hi6FzW*+&{gxTH@ z24gXqxcJOO*M&-7aYgSMH96tdQgM$H)+O5% ztuoUtdJKhQ_Ugnbn_rX_R6<-s8W&2cEi|T6}r2r zW4ft7p4BG>n96*&`?RV5&0?MkAm9n882m{0A2|(;5XUQvdtK1?RJ*aTYz%j%6~; z&^1OW-%nG=+?B9jzzCwES??3%KepH{BWIY{*4z#coWB-=bG!^L2^_-WSJ>Vd#- zoTk@*k*{F!JQ$j?^!w2Fco@gCH^rw25?pS{MM--yAJ?}S-L@w`B>OH!VwAX(vXeE* zlpe!z3diG0P#xTa_7YhZYt!kR{hDBpzF!dOC=}h^R`bESmmWW@9nHrS7RK!(`#bf$ zMQS${fSo}*vU2c?F|}(yS?=`XkpH$}|BBpH;PMOMME?Axge7Da*34*~i4UqBFDl9W zGi-tqJ>OE~NL*HW_fz6lHvCugNspwtgLAa$%tc=kAreNBU?Cj>r*%k5I3;rRH$9xB z8`|mlp{-7xbzRx3v3q`o5#)kj^I#KNi`L*h@RZ>_DdXtQFq7`PRx(>Z82^KT7wbAB znz*pikvc+#Ya|9z7mm29AtW(Rj+!n$Ohz|7Xs*jkM>kJr7;X6v856i-bDhABFg^1H z#@{Td7XavpLHs%OIFfrMT*ThH5_<+Wrg&QQ>=V}?w6BANL&w11|C;8ca`yryY;&jr z@cs{1=M)_16SVu-wv&zXk8NyhJK5NFHhg1iW81cE+fFvNjkDjWIv3x$nW-97P2WsU zPd)u>rFU||P^dht63FamtJ(;pvEehJy8{aX+%B+T`^+3D1b-%Wp%I2)I+Aw!j`l09 z1G=W)ba#!p_A!U*wXhb!5yHV1)|PZGDFTp1Fl!PHJ(((FEm`OI{gjLo&%eF(Q*8dI zlpSqA>fw_W%EC-qt-LC#8`De<%BTC82n7K7iz{exZ4O5>#j)K2Ziqir%);{9-xjOv z8J?$_cLJxa-^rK8A3+cfa`={uf{Lzp(MvVp=+Fi_4$3!*AFym8$p6B!wj;CTFlsx& z7-5R>rSBRtpQ&Ge2>+JWS`>iWI8thqMbm#eV@4aEjU33-gikMWhuGp`HbWIZO!NfU zzY@zFLd{^7m7OCxvoot}hw(JE=2X`)4Fza(eLPRBNU!Z%l-p4?%pcqNa%ZrS_W#zC z)v>FreN0kVLiWsN!#j;8;Qpf7ayX>V9N;58_~p~YZ8W2o0wS{Wl1&4)w?}V={vu81 zO4-3eN2AzuIlF4Rc>w)mbIo5w9?3*}iwL)bvS?vX5)`;`kbxN6^oC z5P@(~?fsi!_9f_0bKIa~ur2s8rOjl^@wcTkeMOHFg&0*x7EZo8i#!@S78mq%U7fg+b;* z^=U_j!Y}!+h-3)5pC&-zopj#sPOk0+hho}{%S4EawPSf)$AT@kEXgTvwL$h8^s(&T z72V7a&N&na;p%=&1lo)rN3&;dlV>XTm(> z_4QmG6$3tV?>|-WiYuj3G?L3#xL|3Hwz~~u3DBp}3cQ61!t-n_je*ddH)Rd){(IGA z%A!)Am!22)=~&qiw6sxJwJ?2bbspC@;4 zG0tLl)Y%CZ!xnH5y`2$GX^puOxNTvj(nJcNaSO2Ua-jzqv(8%WRFF_`U_?rC$75zf zz;d@8V(R+ZfS3&I54Od)rB@uNJg^JpR+g$tr<_7;eq)CNi;Yv zMDX#;$^ciUaSbF#39m0J+b*<9!Z)k-Z@5a(qcx{NsHCJl#;LnGd-0uu0v%_Y@%v~l zvXsVnW}FPbM?B_|OoAyyRUoVjgH}WK7gCzIyX?D{T$N{$ODsR=52Er;oRUz_n+B`g zU=`U}G&4FgSr+a)T~F-w#9La(pNr-kw5z>UsQ?@o8S;@CIa+-d>)-%^Wj4-Ig=De< z9q8s;X#|>=z0U+n7nt27G`fFi_%;)xAP%UDljv^s1$POh; z{NoP2d0=mGZqm#0E7aAH_Nwr#*F$|atFp)|b7vrX)X!BI>#rqAKf&97iHd)pWg9GI zb2YTS?|Cjh5*=&eMWPrH9sFR>ohjF#8Tn}T6X+U75c2E}{>$X-!3PaqLhGnX`#I7Xp5$+-(eWm~8UFd{c`IuAd2*iQlieVme zm>};SjrFaX(|HDOp?clSS^0DCCJ9tc<_K~M(i>cL`xwTy@|BYbY)eW+yz9{W02_ou zB-{aR1w9e;igf9B({NscZzEV000AR(=2WFd3nQt1ibxm;xkneS&&vQ4^M+wwAe5@+ zTY*l7IMu8BVSj)Hqt@4$Sx`a9aI9PGL}V!>D>07z-0e*3y6~3NFPaEWMgZRH0Xuc| zg5cT8)bmuW%sfP<7sMRBibkud5iBTl@{BnNk4lL_Idle6DP2mP(D8QJDrUyv>r)(O z67y<(mQs+UhUP9duF837U%(vNTNy#pFM2eJuw~CZpJPST3I6q6@J9nfz~`yYj@}x; z&zUPloq{kzx{FD+6VIul1n@E*WbyyWhAYX2qrv0=;HmKAid%S~n5{=0h`rOtU^Pm;NL1o>~0KODWZB^nl7g0FsF z*TJfDNJfe&eGWT29jD;!Oa0sj%9AwjA$ge~(K`)Z?YP&7-ukBb31Ch)Gvs)SLU{v8 zMB!tmUl&hIl(pV4*&McJmjjJ@%R)UO;$TOYMpkoC>Fc`n9qh1#LGy>}MyN%Qe;l*0 zCJ?FV&H^Pvq{KeLU&=s5Xo`*#1^BU z3CnKEqNI3vU*Pwp9>9rWk7EJqu&dyBn25n`W!dQ$MxZKzs;S#RWRc4%PldZMz4wD; zO_>Iru>AdC9Nf50?#oLePi^SMLw3vkmyIg?iMZ4HbL3CJyqXA?`ZNNrcGsU3skPk$ z&U1M}cZbD*DL08>!%u^lmg<)fFKtF~G8iuj7B=WTbpUmHACN>a>cp=jp(m(Xg*!eu zpNls9+g++NUAS$!ZaZXki6p1;>mIMQ zml4)vbhTq)0r+D^EHTfRw?+S>M1DDV=B;0Pwk0gM1AdA>C+b%KA#&y9y=qGbsK17Ophua z1yGMPO#hY`i|Tz%q%WW?5D@-E{#(zS)yjqZSCE&;8fFfOQ9TBq ze$aic8c@(EdG_V4T$}7uq%sYtVwrs61PslLe}~E%`87^ z5MsmS_el*yOKX+fO!;y0aL1<-y(p&$*j<`mIU%=g6+dT`e<9w8@*YoS*= zX`~Y)JY>BW3;l-11DiRj=xXGaC#mBVu7_JGRG;N*bnqYQgPN&`i2Oc>w^O1?15?Ym z1CkZMwC8msjs1G_Hx6Oh4w)N1Qa5i59oE>u!Go#H3?!E~u%l}{dW!y*{B^BUMbaPW zsi%4%FT$NOY*=E}sonN*=%mzEc|9yC=r6%ebITw$S(l5WgG5}prU90mw28`djclpa zVeGwM26PV1r*Z@FIJ|mqlhx7d-Q^};fy}#PW33Gej*J(&p}EcpA{+lh>%X-OR?ib> z!(_o=wm7}D-jEYn!59nRsl}8$DF?ljG`0UZA&5bjbOmWGSLDpjmw2nXqTy^7?{v8V zQ_;T;h`4UsYMVh27(~8Az^e~e?+(t+-JhMwKoXa#tKN^Jgx%-zvFg(kwTtrA0W7Se z%YJ8vX}P+#Xk@(Z71JHTH&grHaPnP4uNf`U1d^)_v~MUV0wU4WIa}s3p{Kp=I7($! zu*%fiX>Xm~95?$7PquF-K}YQqAKuf__QA3;NVUe;d4F`rA88PA;3XFJh^-U$gs$Or z_b(zq+^h)FG87Q!5wu@i3!}6jfMkTjYg=pr!p+tZzN?yZlSRjHWFR8J1>K( zSe0bxdY~d>x@ISZQM(H@uoLZZDQhbYG3K5`CugkF)*Tx`q-_E3Iq19bs$cjf$x8Z7d?Mqm|q%L=ooqOzm}!05WDq*IVfsx z1|Gbm`~t|8TU-|f8yu+(PgT$Llz2aCd9)?M_-Dj$Nq(x1`?9^AYu4&56BYYIsFAXR ziq984H0IjK93@E-YG>Z314{a1=3?wTmxFq44{|VFXfxDz8h(+U;bX=2;Em$?oj(gc z5Q@^i#(gxJ=wI3pGRal%($}-}MESeOCz)`?%vTg^$V{t@47A~<4S%|#mt-;v+mCI* zrj_V9#dyk%LqU^go3L1Oq-BSd^NOMAVLJLm`Xm45jHO*W}HUDEPStM5sg^d@je>+8fPsNG;5m6r)!+`!>RZQDv!&a7^Vx zf!CVOB*|(+7evh_Fg#jzPbH6DfkpBoZqFP*sx)M4M-&w$&UWMJ+LLBb;DmB%SSPCV zp=JA%zbSVcbq$EB0OYi4jgnp%9BOY7-d!+n>=JkI6FaF)icA_G6;0)>2g&76CRO;& za0lFk#x3;xG%SO8x$Ez#;~|}l+|PLbaj`42qb#GNmarqr8XE=`Ky07_RRnwajJ+J+ zgOgtGA<$lxMAp)iv5v@(t?pPBd!^p1qehg)jdHYX5CafOK=e0Rdj?-NmaGvQdHkr4 z#l##q62}d75>0_*U1Q}2UjaaeDe=9lI+zdIuaxqXe1W=V(kqnTH@u_rFZ^D@Z;E62 zk)%gB!mu;~)%36Hst z7_vDM)`}8(v%B&Tje3@}1fu}0rH#syXOK{N>moC+&U#uK(~3VF(+#=|WiSzX9oT=b zS2y*VBj@{k=~x+~vifHqvTs~GeC{lbYSBGh{LDfjz#1+@unpHl{Crr;mbiX%Q+lsx zQ!L5DEUo8J^zUnh3VC>5y|3G9di(6i*3>^`8fxX6Y>FPlXBFHLco2z!N08?{hJ+0> zxq8YJcj9^(gj{0Nj?qt9*)prRGYT+%dF*d9e{f(w zSr}u{(gp4EBeC?RO9?xDobGBcim*#T5H!g$0@)59>}DzFKRUhIt@v?O6%uH(JWJ!t z3gBW0FzAWH@bm_B>d$>gJ;qfP_KHJ_6ILndqgQgKbn-vCFM57zSXC-+V+*7z$#q;( z?&FO-3W;f3&wtu2IXBCf?bUSiDc2JVD;|^%xt=T#APMUGn-dtM*t+gH6cbE)c6L#+ z0tmys^4NI&cWIl=hbIuS-ALDZRlbFfkt=ps+Iqf2^*>ay$tz@jU8uInxyVQqnf!;H zS^9F(B|$#0VCHVxJydyl<9w26I0>isn$6R0Z$M9N51U760eyekU8SldWuo1%FTLA8 z_msWK0J4nOJu*mB-D6hvvHK@Ih-U6$4e-n=V_ae%DNiQH%V@|JmFgB;6~?uH4p2Qt zBzL8)&yVq8oTf$|8yYNZ@z!kqU6KBp&S}~0*;mpm z5gdJxeVT85f7`nWlAKO#U}q>rTaapQQUkKLO|a+hN2>$w*tRsWcUUru{5h=W0B8+T z{^7X99aTq#Ql4aNDmbq?q}{|C$-UGFAS+gf*scC_9J0-^%?Mb(VDqmqSAgL6vIkPGzNkpVF$|18k-VCg8Kl}#MyWNR!k~C)Z z@$T?^42VMe1=}7neY*~nhVusR0Wm9+jMKQ24wqKn41HOF0_`RhL?Y4zZu`~*u@1j> zYbNLCz?KD$Iu@?=AyQU(`c~cwZux{-rC%1vrao0feCFXQ4JZQ4&qt+?G0z2fPYK5& zFCC3=gHg<2q@Y}9x;5X2XHvAbBN;aC=XIQ__G^4y3U3hM`gX*8J^AuIfEr84dL|D7 z>)-tI=Pq!Zk;rT0a@d(3V2)33r^MS~`oQsf%lu!crm}Z`tHR)WuEayu{S?IyesGcs ztSCU&KN7?zAhSccDR@0(1~h&{V4}GdehPxZfj@rCg-B}H?HP=HRc~HX!tOFDwUPA@ z8H`U{j_vI?P~)tXl^770OX{Q+Dg^<2OCCB{ansWV>bE@exAX?!Pl( z!(#nCeVMieHJgz?sJbdGljfV$`s0?5p{mSwKQ>dbf87&(a@ma722j|_#>k6l=@NX! z@pusqcgrfBtYOEJR3OlR%!3L!+?ZbF2V8ksXH8?gpQD$kY6e8NXScM?Oc0Nf&MbDD zg^~>63|V1LjZ=M@4`)f(eJ|9?BtS=o@|`zVfx~E&AUz~Hr?B>KUp<_BC*qrGy8)Z^ zr-Erc=HhJ}KpNvOz(Pn8>LYM(s6Et;a($oPrkGE~>+VsBaJ8nLhW`rk9P8*1rMEDE zZe&T%EG0E8gOKg2QbkYoWWd{Qd6=3B0jXQURUap-vNBbWCi_D1&FFLc{_Nqs+t80P zewJJYmH|{TNn!S2baqo3VG0T(4MocvoDXuUG!a{?9af4TUB<)Fzi z9hUV<=Mk(l?GIaDtI=B|Z6%YtPJNL*Zu+vH(8RARF38j#qIX87(=Q<%M;qUND1?^N zyPmwiFF`*jIqcxNb(V@Hn^#)Xo#`W;Lvco@7jRn z?kT)pmh zx+&Y=e%>T-Z$mH+v1INr9S`MA=A-!Bke?j-5 zC!5}dpu0DCa<+cb%2{EmW~%NoASx2A#tf8da)@vPS(-f3wK^;nhg^5gL6XchE2>{X z*OuR&QGdIF6G;*oPHvy51ZDkSiWaVeHB=>Z=2hzjDLA()>xTPdqDYWH*TBkMLUX%u z=JikHd$kh0X9SoNFP)|cz%V)HqbbIf@TM^cWQWajwiZc;Nl|x=FsBxOjc-qRi_K@s zOIJ6NQXpA=P>_uKA+%FD^~SmXZj{OZOq*F|tQk0+(Zqw9jq#n(wZ3CT@~z6phu&`*n|iP{g7W z5^nldnJQ5T7X(K;z7Xf^*5K&clW#a8Z!8jQ;re2cqj6OD13-TU~Cw(S0`$g%zLJ#KqMLZ$eTfW(pj1mBZWB9kf2hZU3{JpA#3@hE7w+d7c zA=Tw^5RG{dY)Y;yXe?jUYgi+qd*`mnPTo(cB{km|Rj2+oncYORu_RP^_kt@{mR#~i z*iO&iQ+~6-0-}@X51K(9obR{MPIg~Y7DoJE5sCLL=G{i*`}h?3@H5HTEyv*8E&3z- zV)?*t?t3|BH**pk!+i3<`yeV?Qf9cB|5h>)Z!TYrS&8KHhX6yG@&ZMUP8=F5MQu}C zD+VetP#cybFlCpp9cQVzUS(Cw`1~^>n(|=qhY6ZM8Y*u%<9UwF?|^rEE^dcIH)-$w z-gTK9EeiOJGOppHnD?62?_?Qj!6lEog>OJ(LgBvSu;jDrPDNkdH=A)FE4xP`z@tto zf$FH?EZQ>dvb%OtU61-7E7k;uD zj&f$~qjY$c)wiJF;=^1LJeUcSpyTMuT&?sebK))4*Tg&71v~Z{m*s&~qzC|Z2~6#J zJR#B(c87KK;g1km^Xotxm2Xc?c2@?qOq+k~xV0;;Dd%8#&I)7=p6T;VttLUx*b~lo zj_>u&*+#LyBn1P`aQeODu`i=t7gr83>eht>Qflg&8B(8+8%sG(&a1OOP-aaA9$uFT6^jT)8{Ycl{W45^gpCC{Fc9*~H>=_LbjY(yBpDdw0c=uW z*K1gIO79ZMRMqY?Fp@G-0%T$$t!2(2%2`fVvUqk_$bV zfjYYTgVO3) z&FrH0_Y-F(mL};0K&5xQ?G*J7t z+@j8!OWE@m6liN%XG0;>S4HtK zbL{`STHqh!ARwaDMpg+~Oa%(8DpG8}KcDEo4PDJek+Lw9NKfh{)PVnKz#^zeNgWM; zqC#qsGtg1zD>k>)=7tNe9rXuL!j(s%%!>Z}w6(PNiz{2v}fTz&2P7lAq4Fgly7VHB?gC1humhLlU%9$EiQ zy7YlWMiooc+-O&<-}g-JS@XzsP>A(-N$h@SK51%^NA{Kqm590uqu1@VKkKvTM%jXk zjr&vTEx4%)kTdeqW2ee5ZRRH4+IcD)q6;F~A(#ldelLIuky)A>=5#R=9R=dyFLFeF z@&jgOw4^buNy5d-NMeQ#fw1!|l$<7iBDMu5Nq6!_-CosH7}tN@pAuo^VOITBPCbez zcBIL4u$=D(_oDeLBWJl*V{X_^j z*ra#N!OP*OR&jZpo9+*Jfw9Z^{qZc={S9O~z=uiTs8s|gvS1(zT6qQDxk!3QjB=*M zZ!Ga7OknN(!2W%=kAy%uXW?3qJ9d@w)?(${GHrDHFOx$J+mrVQY#DJo7zhDuC~rcxC-l{67?;`e!IcW=aO9MS}yFwr-#i zN9~HMZ&x#env3K2oku{Uka>aoL0E9%A$h2!3P@$nH@r_|_ExXm7kG*`gPQKTLWgV? ztPr86gYBOQ403u0o52#y=bpVh_%3oFAY@i4Yx|qpO87=*VOYJI<#DJ3? z^HE~Y5*1gXu4&uvH59@biw75{^!Fa71D9YvH>}8OQk3Vf?}{;;tYi*`Qm}9cVaGdX zX%JAIiXbH?ip3IoX0%Z&4CVeD#T|h&y%f>$SuM^l`bibHY(>Bj7X>&k?13Q zl#S%CPWLj@E4|ej_<#AO8QWR>R0u-3!46H^@y^Ei!)=(fy5eAVE39LWAP6ojC7vfDr5+m7F+pJFZgHc{pis!)&O#TD`4fwt znVwzjDcR32!Pmu9vsZ}*(^2J|q>xU#biFsP#e%Of7(Iek+ho13d8CvD#Q`D7RP%*I zmQLFQPc_a}Oy<{sz)Bhm9kq9fjpCTCHXC;|0%L`~wZ8^)OaUW=k6W{f?B5 zuKiJVjAtd7m z#nHKAs&k|woIt1CzoEQegYPUT;iQk!Le#S+|78NT-n)`lLI@$=Re~17o9k3fNoS(}%?_r_gca91>7NV67kp+)s zAbxyN?zw7UwB66{ak^l=OPfBW>)XX$cssF&9jIsT_OQH}M)ChDvfAPvh5q1stu*^S z{HVo&&EDE$?CTKOnWMU=_^5pe$MSR_;6}~$^X=r)mzRjyT~ZFym2DqX1HVY(i5crG z@Wl-U%;I(wyNkVfM>#PDQ}-frla?Qc4mCsz{nk?(ZI|IHSCT)q+m^sJtm5tbW6Vkgtq}vTO|wXApwWOaIH9kRy4BwL~(O3rx!wg zK1lvs+P6X!(OI;Ts^Sya-*!+l>DfA-%^KSR8D7|j3p;O?*m3r8J$WCtSY9)`SJ6Ve zh<^koyxv`2<|YBYSad88U>o1<>ppGUw@5F5;|5gz_t%g`AcfiloJ znr$I@B(n&GGd~Yqrx@@9C&skwuO_~v-E^p@g5Lx>EUY$=ND=G^NBihr3H&4s+3QpETvRJjUL8?h&!O^Ak=*k}nr!$p6dt6po*!j^ zSa_c)i({(FK0hpSk%=C4+R9nck{A%bD0hI*Qc%1X)(L+0-|N%(C}-AB%b~HD1p05c zBS;;blBY)zl3OTpTm9+VUa?(8?~kMMntT*pFh}1%fBWJlziEQZRbk-V0@-+9`k4k~ zQl)buJ?w)Pj==s#U9DP7{?4pv`-@pncceTumP|{_VB4yiqj2V9Bw#gQjx__AV{!5{ z%+5)L9{;(v?@@7UbO`hdRBds(Z_*bz+ABHie*d(QL$f4YSV|1fH=_Zz*@9Inxt=kl zKvT$NjCjruT>44OgIUf{zgl-Dh%t#);ZCq?G2@)R%n?k*#Ch5)6Yf&FG42{97wZVW zqKl%_v-~H~Scdz)>1SQ6w|9YZ#>x{ibXNy5pf4Mk(RZBFj3E==!(cEvSs55P6X~jM z;k>+D^s%It7hb`zuS*9BQ!3|g-SBjE-jMfaQUATBK<0!&l8@6I#@0w!)&*Zu@{WU6 zejlu-sHqz2<7?c}(ZcKjTF#Gsvd#WtN&8a390%7woDe(QJ;LqYX$ZvLMd4T0li6u{ z%@eBb+4`rikYlBEfJedn(lWE4qiQ=2ZdCZIANC1Vh)mn{PX|di^kos?BKf=+^Dmu@ z$sx}0j~z_`0u_AcdeyVjqijN zR4^GvCF$y9q{Uz6bZnrQM|@KLW(CTSDChK6a;Dy@#D%9c!(u_KbT+PKI7=p2wLr}* zYC6(PB3r!ktNYy!Rs7}Ul=Mo?ZQ#k(4)MQ?{)oBHwqq#o0>W;`44tZqWRd;6`kb(r z0Rz(c3=g6*QT&@ZK0KfJ4KGjqV+9s>TOXHQmP-G zRpwdi)~cf>m+6o^m*bsr;xV*y${mBD8DxyRsosh z>l?k?)A)aCLZxhafvSLVr7(GeY5?s28@GE&FyZvK_4cYp@iM#|&-lhy)e5;IDa$5a zTCJY7iFrIUnX=tmy}(R{NAgp4i0R6)H3+!}+g;gvZwd`7y?f$(-lns&S zbngE}7~H=oEH52g9Oy$o*40Fsen?NFUw^{EI2kspx3Vpm#}{jQm!Z4D2X~|O?hny623+BN;1DWpS>k>)qQZa z!haC})J4?UB2TdU!)jIx+0RQ+*TUs2PK5ta?e|0Tpf@6~k{rJ6J(D;Xg*1$|KZH?d zlZ1@&=y#2o!Q|)6I;P;yS-4OBV$`!q^pPbotud>63o@D(F(<+`A=!Sr(uOSiRkx_e z{FGJ~!i-@9FO7y>=oVz9zZjLps_F1!+K;Upcp*|k0fNtU_WISuv1-vW193fh`5%eC zp|2xy_Naa+n90o?d*IzCiYK+Q1||>|&v?LMkB{s})rI`C6xUd1*b0i4K^Muw=3H#{kHreG z9y7O!grR%)sl;_2hnhA|_$o6jJzYUA8AKQN?C7JWA<8Fi6%v?`lWU&kyHAia6r^1u-S%@ zD}^JVU9xG(+nh7+Pi&MCJ%98&@waezWJIch( zuIdy8|L|T-I zoiW?#;#*<~FfQwT2lb*nc>VDA9(gTxrA8GS9$mP2Nm@B-*099FSftRtriDz+4U#p@>!#a+EXq4D)c8@RuwCgJY;WqtKSxZ= zL;C46WH^oao^+K>F1Eq&(7ze~!OpzNjSc4`D0zf}Mw~2n^67q7RbbaNhK%~JZAMx; ze7lPN>0T&AGo=9Z*iB_hed1N|e$lArm7=vz7d^|`D!Ul_?ArSvbYv9p*fX5@Z4zZb zJ?|UDBZCPgZuyx>i7*+6ZxzstBv=irOK7Qzz7Ah7SxOld+{7J&TJiHb%6PC3F8(i$ zqY{^33@Wl9p@eAd&4QzxD188YK{|*J#z?q(1gSW0F)V$Tq#FjYHusMtyrm!x;Sk3t zKeaLg9l|AuRKSUVtd<$Dz7}WS%VhE-Alnw|a*TqYsKg(Ul&sx}F@~@a;IxZAf!HV~ z918Q7;~P~t6bIAOqIuzXO4$yTiA8 zeJqLvs#G?oMw`lA-oV9oJ!!{Ru`SWrbgr;6^BG5uyY( ze|S!sHtuSQZnS@&Kyqm8ru%PXGRa5ClW;kXjb7`tp&Kke4j9`jZch^^!xykevJGS6<>xYj+( z8@i@-yRUmqO32AC~QK5v7p`oU5tl^E{1iA=-W=PE9{o;r%U>8qV{x6!ra!1IL zTxL$}+@eZr0@pT_Z8zj0(5KrsEOfpyX)mnnP?3K`2sD#;J%(@|<|>#SEL$LC#aI%D zHsD!-3fu=j8f1|Iz!1rwICfO+|GloAHCuFvEV6%&7=EI8M&Jmt%Nm%6!`u4C5JWba zKfDT5w>QKuZ#s?{Oy^$BHFIaSK@Z=v1yp#+;gT$pfn>4{{Q^}tq|-Ethq17S{ibIa z+-k@-7nxzKfH!nJdZ^aOgKxr8;-^)*!Y>s@@Gdj9=toK!Q3@)cv3@iNtruL}U8(3Z z2uGbNCh|ixAJSu4W}?QO#8E|HXf^wHX*UD5w9pB+wf*yzWvgQ0eq2`@qI&Du5xg>O zdkUmw;+BFaVA@i{NisJ3E`|>uUdsfUW$KUuQFC-R!%csr-)nDe-M#-rs2*OyrHMti zx)f2oIkOT`qN1*TK{LL(rA&aR7H!%x3*g~*7AkKm=U{S_pV$ZQse4D+G2{9#Ma606 zTpp;WrWs069(&EEc53=nxxVsCd}FAZq7K#=~(R;%g)NoFQA#up#4y*L5T3A1ISCdXWBsK~2a7v;H+8k8NfJ#mzIoj9>hm!JKz zbL*OzYAejV&cqZSgWTOotD&&z$uKDSH>nlay`Eb0!beL=j? zdTXe3)H1QT;-`$a2>*UzuS`>G{OLDfdc)(kb(7Ef3BRq$^iO#_KGOkE@KD6*G@qJL1Pf>hF(A>BPMYg)#XWbzGR}$9%;1c@%X8-h;_tpCso)qfi!^$- zAjd^Jmh28c)?5FHOh!&I>1>hpglbmYPW`D~i?(ezKPJn_sUhw?wyS0J{EN3xgpyy- zK>3ttsl#$@`x3z3i>QFucY>%7dOusAH9c#gKVE$oAhxq?9`slF&Cg2R`TSl2BYP(;>Jl2EaIf|57c@i(cMuSBX@_)@FF2>i)o>5? z1Be`aUfi7dZQ&VjC$)h^MWtK#{@sJX{Hj z*36YvGg)rlh6rc}Br(M9bL?WyP=7Aifxo%>A!=gd3GV03E0qd6#W(oWn^nNOX{pOF zNr2jMLh~TMK5_6O&%7xrdvv{1qvU%C^XLsh`f$S17+DcH;X2t1sv98AJ(0Q}#f3l) zb>(~S_yan*UJ_WxC|(r(`=WpHRrgj+OT2_Pjhg3 zEt#Y{bOv8Ch2X_qn(IhxpE;X=#&1TPKiTF%tb1f$I=bkwRGyh=&9)LI7A9pawyxdU zE3a`!Y=Bmt9H6+N5|PCwEaLt#8~z>pm|>l~!8>*Ht`2bzruk$V&cL#t58*C6 z$n|1MnmY0g3i6xDFy%)isK&n#*W+IYaR2{mhq3s-!%okya3KmNFRo=zhr5A#d=oP> z$=H^{JW&TQ2;p}9`;;h|*~=@uDPS;c+%`>2|2{jAqeU?zv~4sy0f zu_6vAFGUp2LdP01?e#RCjyd7R$HUW8$-P|?c0qYK(`t4AgKiZi2wo*P-vdfl?l#~) zr>BlNbp%koNexm4eBX~EYYASU0!!vyA_u!aot!RN94MwmNd%!FvVMNbA+n4)Vynyw^+J z#mCht4SD8kUiK%j^cr&tK%D%Y0W5YMD(TTHH>Ke!)%8{4{X!3Z)OpQIc%f%uCKkdn zf*XQ5f;80o3K?-T)xXlEY?PSm(-vS>eTELoU|`oDlqF^aDU)prLaKqU`;?N) zFbDZM^SlO^k9n2V0tdquy=FK@JKW-8>ZTyXaX~9CW8x##n$bt#W&m5W00FT(Z-{~qH zdgvQTuY;AR)Ji3jqS#aDzD$+cHz>6yR=hWUXsTcMCgDnk~-;}o3bX082z zr(tS-RFG6LoksaoH>gv6E=ARZ8SK5OWU53h+0n*h%>0I2TN*B#qC(lIv?kl;u|;;X zIv1m0R*-8h26Y^c`-=@14-Qp z89ZU9|(Hdq(-?}`7Y(M7SBI|%&%R4q&fE}gpqz%<}->uhlH*x^<_ z(Q>(9kl0@f6hHNe{*$|$L6_NdNmz>nj_V2%EHh=NC&`728>?t!gl4YxLO6|G@{1H} zYOaSHxtc^kYWtx^&x5=E-pfC1-)6X7nLRE3SiR9{GH-4yJUl)+VM)XKzxAeXlyq~W2Ao(5W zN8<-V!>Z(z8;-vue1rqkzWCJ?ZQ&zkvbION&>s|Rg* z%&>zdDx?~T0t_@e3Wb)2_8mr{NT39cL!q1qW*iFmsrPXliU3l0910Y_dL#-ku-rHl zApA`nhXR&nqeg$C2w?7#-IS>JNc0)yohNW3J^IFgy1L? zk&gC9pfJ+Hl06OuXtG|7L;)tN9fv||VS^ioA_^>@yijQz3a5qA zBT;!nkoLv=JIiu~8_J&}tkC1J<@3hr)uP6h@*5LdtO{K;$Gd5(St~UX4QGtq5rx z3b4I`{tYO8cdtn&J*jZFVwi)m57M|YIQ<3v+AQzp+@Wt09?2<1M{-KBOB|i+ zBDmfGxlLApjdv?_WD_6yz383-w(;?N96fzhB0ql##e1!gsu(;BzM;=*ltfN6qd-(W zatcIFKm~uD-6cZAUWD-eK+h%RAQGL%kxFn8n;n3*ksO_;Z;stN9G@xkZZKvxgCbi_ zZLUWoQG+7uZ-z)BXmQTG>_q`G3G_wTI~QlNkTjnN)|^?K?nDJp^K^i^Jk&YHKL%9J zkivhk(FNE3o@*!3laMI2*PNMMQWcQ{o*i-uy?wkoL$Yc5CHu9$XRv30lp-}FG3*3j zT1VK5zil~%(#s~IH_P(U(kXAJv9GLTu?zxG zBPZmiY@eWq!c?$0SB`~o>$Sk{wcLvUg0z3YlR5J6q(c#dJ`Pu71lo(e9chU^Tq#RS zcUf9S-)98P!bCfET4p~HJi|W22wDUO^c$>@DU4wRFA|gc-v9>foW~_D+kx$P{?8B|C{6LGgM=&TU`LkjB2G_vf-Uf);U) z^TM<1=t@9Ldit+8ORQsB#WR=ztC}{G17D(H7dpjWa|kvJh&frFs>E7h_pQ0!lv*#W zyd61bVb)^yxd|7h6l_N4+9`dH3l4vo4l0tGrul|P%yJ|2CRMWI?{SWb!TdGd#385| z}VP}eBk^lX&N=#NeBea zBN==eq#wFYC^igXa*wM43^p*aBema=zl9@}51ti0@p_S>qe&L>j^wdxuU&s!WsY#S z`(_-Jtp;^BWKK&Lg{M8byr2X$q`;!0x1Krl(1XW!GvqEOJAn%8(tpA1n9f(^i?2XI zKVtPjuifsz4^rkbLl!r&D*~ppZ*6L=&)9Ncvwg>ATFLtfD^6wGZ9douXc#>8b^;Wc zcaq2=kQ$M<8A!nhXuMsGP!xYmp84Z%1nNLapH)_XEt}^-UUrW%x?5=fGE-nee~;|P z6cas8BZ420NA#A(Ri3RF0C~-CIJIR^UyTT0Y|IB5iup<8huE>fu3zRZ4cTgeXeiozt(aDe2!iUK zSD7sXT3&2_E1ONVyd4s~L)9h1GJ@Aj6mQfhwjq>ewVyUa5PU$u*6Oij{zkWEa(${@ zxpI$cPAwQz3^oi31`UHN@=UNG4{nBKLKNC%pKfKY#4=E+WvhRAB+K+$|Mb6{Wi+!) zlC0NRz6xS_+uX8ewdH+w0CNTff5V;l5YI7*x=kkWS_E}F3yTNBmF>b}FLO!naHi?$ zPrT>mI8=gTE^+6%1Z+T~sM1jv7?p5fT@Bj)3+k6c9#Iz$7_Y%2YQQ7*0*~;XrZF$^ zNKA>ZLwENLY6gD=gNnfegJoAT@&XiSx3r7j!8v$4#JDR4voH>HdY5j72b>kAz5S!y z3oC{4gO!4Lz%mb5Ggv9ir&bD`s8VO$xRoNFr)o!>E3r^)#ixe-*9HNOsz;M58 ztD*gm{R(Vp16VOA7~lv5maKtw87_%??G@ijrLFxyO=*8G)dp-zY_H0YF&+{zfF~Os zo@?4q*!6NY^enq~!%<;;d+^ogDLYtqGEZ3!$3%P@h$oElc#e;q#OqRqZ|f-H-Mk$Y zT_jigkOOyo?2d{9pS9(9WTJ@D-V6^}4X|BD{0r;IF(k}ApR8;L z2Qvo-`?G)Nx9BmBwYfCz)CwJ{2Cc4<>cg28A98ld$AasoC`QvpW4HZ*pzUsW=ZzrVVRrFDy?+>T9k5+5;8b z&I(|_(lzZ05H3@%iKb7zij@P!$9w<|49-xmhhBd|y;z$!V?=+@=fLzVeacjBy2P7fOW#C0!m#ZRx1&9GR1;NOlSj!~G4Ft78sj-FYAiL7A9(DF~oE_Fg@P$rbP39vTEnkrHDfZdoD8=SI*Xgs-#ex*lb7jG&ae{x| z_+hKF7dHxetA8_Bv|`^dvFg;uu_LiBS?oXK2lp~RxWPJ+LyD>!S|`rxJy+$2kc8AX zbB3v-7G7n6t1q5mf-0T5EuDuhCL71L3%b8w!aB!uZwSgb(LZFE{uwkALS{)WTGBQw z1$)c+R7tSxS=4TpxHj}y&ESE-6E}Z=ZzAYcA2Y3o;h+b%{Rzt9+BaJpQ81C(VKszI1L zIk_W|ms|BE2C7T#)Wdr`8}tmzEHEnBeqLAaDX3YQix>QLSJVw>aPYg78wVL(<9f)d z&3py;4!P@?L-7p}6IZ^ka&&(;tb;-xq6)Wdieq-Q;oSYMn3v*Q0Jra#82?Z!K!MHY z+9=6@23o6dKGK^C9IFiq@&J7cz2D_899Ru;P}o1r;z)3G3vCd}5WlT4>#%RQ!2A9u zT$*#Q%Xx)US1v$11v=)KfZY5ujNnj(k9q=nnR4vR+ELQt1zqKTI zcaEm^)%z7vHr~fTJ~V%>S8dK;*4x9wGJiad%bq_I-2(iSzy(1B5_baT2{~4dnO2Pv zevw1~7pQtU*f%mHP?+^*`t_E=TN(;hx!!IlR-z%BCug1t1NdC!t^i$9ti|47;7k*h zXqzaa?_l&wVr8_7?io@PQ`w3z44QbXNXmYwMaNTzxhz}YCbEtHrzz(fv zb=&=pj4^T8m$@r6sQ51{Rv_Xyj$qgKTvg5<|_#|;O(AGtEM)j(g%FSv=6T`<_y z<%eo}*sq>Ay?=iul{ohqO@O#VTGF1bC{9tVuW|$7b$c!bCg4~V`#mlpRC}Gfws-3zY&gaKD+C2(iRbz_YfQRzFSz>?lw_{9COf4$-ROgtUEQ(1!fw9`3lR1Q~$bmkw;Ihb( zK55gy;Mdiv?JC98rFQk>xnh|-8Z`R32@Ndhho;<%VQfO}99Z!lWxdckp1X?+GV6Z; zMDe!xm!qHoR{=Pe`=9|>e>osNJ_>Vma%Ev{3V7P(9Ltj1Hu64Sq1qEwWx;qq4tsDa zcP!q@F6R!hvi~8a#Vjv->TxWTGx11FfA_*;u zOOrK=x~%TtG2=X|fAU!odd_b{xw!WYCL7OZVOsNQ1pqsgRkO&eae-3<+(t|iDI;Z? zVmz-VeM3t|)#lJ_HMH3tTJIPdig|dxY>M54m6TY$m#{!TCst%#LqKX8aSQ}OoK-y# zG==qWNf0cdQl&sJKnKB6Ai&0x1}5$n>(sRgknjhu%0zb1h|d7DN~YlszT&DL@Y?%hNzOqSDwx zfF4pRjhdi`5+Q&ZQap{CpoSDnqb8^!>C&hPYDn5NT7Vi#GjJqmA*qt6DM1TK$C1@eZlBg*`3#9=7B_wPbF+m9llSWKXLPDhxe-o6DkZH64C6s13OHe|BrBM@< zkf3SQ1SQ065;YYlA#ReWsXz&($vg#0h|4q(poF;KX&``_ERC9=ggBL_2OIXpa0Dg3 z1>-2MhL&eH!;y2!VL(UC^B8@Zmd)aW_&6LfN@*6OBu(jKO+H3aR-xnXRMF2bz966% zf58pwe~Z_|ah}9dv?G+k#$g&*SM8?|DzQD&GaNLf@}L-v!@j$I8%BQf+x2iHr8^iJ zD)M?-7WKaHkPiz@!r$^HwA96IQ5P7j^0&A1Iy~>v4GA;ilt{2lI^=nWz<<6$Q~_TG zlw#TSx5JT^TJ2kwdcMfp6~RE*eAx!YR;$AHf2_)mVV|rLV-#F3j2Q*Bld?<<5D-*& zSR7#WtdpPGf#~7JIz5RX+BS^Wu9J@IWWqYZEZe0r?NaGAE&VEK?gdC7m+He(b85ai zH}x#qrw{@LykRhF=)pkiu5lOlWwSp5+uYBW(@4QjtH?7Hn>h5KnBOjN(oP7`PoWmM zf89&hBBzf)&TJy5!L@2yUbw$L|;I+Wdhi6ki^( znAekCTkHB?H`hPG4mMP8(V%_eXWvfI<3B0Zdv`sgX@>;1-8pLH(C@;I{`D6a82suC z05F&c%QhHfqYnjeLP&GC`8RTekzW?Rz8&FeL3OpBR zL;aGf_6frJbEssNPnSi~P{42N(*y&CdUt=dk2g5AmCcXkbh_Rww&ll3**r{he|+O9 z8hQ4yT-;u$M(Eu z-4B4QvBM72VjSy_xFY>4dz6@4t=w9F+}871yWGWoxil?5)p_mhA)Ey;>^H@9jw}Bd zrF;f| z<;^i{hpkP(q7U3NsEffZ@YE?|toveH`1y|OTj=GvRKRe=8KXUuGO$?DD>1}M78a2O zDny7cU)zBrPIKQM%oIu;Jn%hX>6q|qiN&IGH|{jfLs299I9xRjs|E~he-r}o*B+Y) z_83Q6;XxYPw;j1ZVd`wg4%T3?TFtxD9Q$$S{yOv5hmDrXUkjA-v5qsb)XTicCJOgI zcnxt)*0(_F!G{r3I{RCPmWThML2tk~%pj?-C_{1AxvNfx+C>B!IoQ1~j-7}(bs`32 zos=*MxXe!btA2_rQnFPhf6uc$Ehpk)Hm6m@wh0UTz~)rE-JEEdNbdPa3gmXJMD};| zc-%QQuHLh8r3FtJ5eI#0Rm#Q%O>DU7l3?G))f*dEJ?F+X!4w3IiWK82TZX$j6ys17 zr$bHIxJKF2C!(|Wh^!71(P1JwOhku?=&Z+h5+G!qJHw(2j&UK`e_iw@j9Z3c7K(>Z zOgC{lVWz!OQ37#ct8j4LLF`=*ffwH59}&J35o-i-A{qwb((E522@~fqe>P`%ndXm0_W&F#Pemy5P|TiEhcgb7vgy>} z%n&NJs1t|(9EwFKf9eiSVV1Uz`M z+L?5U3n7W4TNJ+wylw@(fBOzq=ryX)9lBL}-Kvk( ztv1zOlO20aozq_HIxkzP&f7sFpq2KS8U7H1$Kd_z0tS78{T z_3b8q~(Q5BEe!ZG;B?Gn@OnNr{mpj0wfz zd;%~2(FdUNf9kGiLAI#Qm-V>t0UDmYxebkg3Cm)K$FjNi0htYGWz`h*qA&28S91W3 zfqu0koUT?;YM;sNDO40ycoNV8IqA`gNWg9Gk8{?4&HGf11ItzkpA#UcPCA?s6c4AQ zhsCIg+UE13&d2eX32-UnbjEoVuv|yqp>+b24z(EIe}oP=J;3|rYiT=2LEy(yyK)IX z4Hflg3cd_~*g{VdO;;O!UiSipKE||tR%ZcESXnww7}$872w^8gjA8T1^99|6V}KC5 z6frEE1n1UXX3!0hbKrTWTb-S0UZT~>LC~Wo3B#fEH?q(8;Zzc(*%|13|94A1$^ZlQe=I=dUTbl$$5z+EUn_rI47K=bGT3P34Z~yztTN9)P?VuSEzJ1I45ZniFzb%D zUthlFuHPjTf(R4cp_n7^MBZEB1%i-{D7RPMOG1U}%KPrX_*xUS9u)pBzAxJ>YE*7C zf14HHSfba46tdtcKGbD36fAP!mi45(w{s4((0*c)ckv1iAq?&vLPVlDK;*7Z1MB68 zR0b-TIv)M9AN>@;SMok0jhSpv!Kp4n#tPhxmv!){szqqP6v9yRi3ZpOpCgV~0E&wy zw0pl7%ix|urKo3Rl~4OTD)5NW19cHQf1g!2$21Nez3{>pe}tys+lN{adp&WRoA6*# zpm$$kE(YFWB1-3vlaM|&US*HOoJf4uL=#fK|aypI`Wp`nZqeVKWO%CzR1J#5Q%Bmo3;6+L$-S2IR?s|W4A+9^Lmy~r(a@gHJ&af7}uD@ zBv|k=U}oLK#%25Bcbf+@D;I47&V5mbXpPElR;hvAiTX%Sd{WJ0t_?cz>$IZg`P_M! z9%1@oj_J8lFur?Ecisr^xPp?Ze}j@LLs5mso(;n|C&=Z1tCKFpyXTrn!@IK{hvDa8 z_*uAn=rmTXHtizn?=XE$@!;$O-?HaDlH`&SPR+%z6TX4!?8QK!Wt!@;=S zOwSn^t@X+$0HfJ@cK|$CbO4<7j;{*t0IZgGgH0CK=p&{gf?e}!Xm$3@f6yv0OQH5N z*4|?6SFGJ&?fUuFl3OqRE@dsDw89-eUWTG6nju@zRCVEuL2KX!@jrXivIic%R4fE6q9ceJhkI$!g4lZSyaCbQp2TWgU zva@P*nO1xPUwAA#{-0 z5jX`!t<)}W9mKJ92RDG~Yyj9`ZT|dW7Td<3mdvTqS>@+>xOrpzk`e0Oa7i-L>-@ry6Va=AZLgl9ZPA9}@>!cw9Y;DqXYOHh9~ zKb6k61er2s|F;AqdJdHYKNEIflvBqJeoBzzYXa>Xc>c}clfUP;@hQR1*ZpRZYs%X% zr+s74qk-Itf}OKX#*HrmhFAN{#-?1oY#BK-r1n6UKZhXr@vX&XC*AQAj_f45w@lVU ze~w3_48I}bf%cdafWm(P-ntk>3T2lfumM&9IG1^_0a*btmyzlL6u0NF0i6SXweN`> z>&l_qO<2&i7-~9B&yH}Ii8$1 zRF>31~5JG$8l4=|8_@|wC9)Rdrte6QNJ_tq9cK#6E4ihmBlJnn{E5;D^trXht$^`Bs zZN@6S-d4Bu0w${_-TScE@pAew1hfD3q6k(f7~;;wva`Z5qt$Ch5v(JBi^X>KeNDB7 zihbsjlwgU6h%8t>Ip!1WJ8orv*<+e`PQ{Fhd%|tr!>!t?8C;*=K9v?UaZSaHihC-i+ep2NI62RF5N9J!UVy8fHkUpiPEvr`yLQ$d$S=Ah zFKLhK6gIBY$jU(SK@m4eo{yx68`LCNw;*iq!III)9&L&bug4F63r4OwpY081vXe=0 z&0&6M5cI^4&oM~)DF#V*!=@5h0ULsNV2B44^#tOd1rLm7!k^EcFksHuv?uH#9&l#O zng?%zyhvO?KayJP+9gj!Pe z9e*#kp20Gay!aN?7vINM-Q%kxzH;KL>GRdC`D%0c`b>a-O@KPH{pcD66Ql`6SH`$k zY#=weY9{CdV@r&K;KO)+9|KsU`*K0?kgXTyR7-)X)U#N&t62(xVWZ^*2GG)D^zm`v z;(>;gpQ+;!QppX+@B;W!-&al5QUGQBd=dN^K#Uxz`g0xG8&R!vP|6jPLK)y+1Y!jfnnQ{1%k z*$(Wxs+_>Ydx9ft>@j|X%QYgshQXzMA&*TQs!j+R4!R`0ThfTO`h8W?$}#FyZsMFU zh9V}=P7zXgc!-orm5(tXMR63UE>e(lT;rtG1n+TwfM_QqMX_2`DY%xRx*HJtc-mI8 zngkMqGN10caLsB#VL4nS#mCU5PVq5UOimeN)tF78BPln=ilC%)&&OC7)xJPSkf2n< zNe~jjGUs(4qbH)P{SdE}G1PMkBqUh9T<;(Or>6$ZcvM&yEC!~)b)&GZc_ys8it*P; zxe4umQb2YcPF(LU-tCa10=K5qwH5Ap={#+I>0;gu>uuTGrY@Wad$xpkK|Q2?p=(8Z zszVt2da>vTrs++vPZvZ)ZsNXTQ_tujP7-RrQ2MQRq1}$UJ(qz4wRSRULTS`#f*@B z3GA~BCD6deL{M6Z?QQTlcHCW5!;@^f#(7aK*j{Pv;p_x6Aq*7E2Xh_VH3l|V%qTvI zwR6mXxdVz7Ms~{Nezn9Pytn;q6QF6qLa9FAPs?U~cJ4>cK&jk`kkcX>^6PV}T_iGp zmhCN_nvt-Ab2v4YE$u}iMVGxm`rjN5=681uXTXq@7^!a__DSh;2tdD?m#KeRFP87s zht%~b*Wi*M#CRzG{3fOd-u!zV9NkM=32u!(NLrv^P;0_&L2%5v7eP=gc(VtBH}QHw z1_X?VNs|LXaKSu`%K`yrJGdA*Aiynu;aX*Z02MEU%>tn?(2&Jafo`(R;;Aq&PUSJx zc&0%E<$wT%sPn|aX=Y3wPw^m;c{~lA*^tN6;A3zz1BB$3c`&GQK!Dl|B8#U|;`y8f z0o{13@<4rE2 zLUHivL>5aG*g7tVJP?6-o5fNvLs(E*ELF-zPc8?91|QF7sVoH+r7(F+wH!>%Jf>RD z6whO-1JgcFz?CPHH3vkH;PYfLRdWtDtIPx8nYCF=)xt8TvY4u+W_h|-E6Kdi;;Ggc z*S2{e0^>4|r^YeC^LT0v16wP93q<^uEK6x=FPO?(hYv6=kEg*gZL@f4@H&ag;;9je zS&=2*Mha%VKHfb&;P+#bN^bYn+rM6-cYOWBFK@w}4)zIGe{+4WD%)vYwTJ!w)uM|C zcenZ4>ZWR|W?b#WkNVF0lioQ8esXn8;N#RewMPjx=?wGcY!Yf{|7qoaUh^iPRv1L| z3dh6mzJNFfT5&?o9u8bR`-O*!SJ8XR9LIU*@$$kfKHtaZd3U+LK=-Je41R!Y?7fc^r)J_}A`5St6-1p%PA!B|=c$*E?UFBsv8?U6N=U zp<{AHr@*1h5pCmeh4a3<#zYZii{5^llP}Uo=Zo5y2U?cL<%^!p5NHcD13d9_hiA?r zrJf7Iqaz`~l=sG*CPjeQp+tbOa2o7{$4@B#+Zh6rogrv9k`Uj2ov*t8TJW+2K_sko zuoL7LCJ2ntFM)6%L12~0fe=6m@{j`o69gccc_1jPk^@3G7IYRV;ztA`j}{8lV#uR~ zmf)?aED(k>Y4T`cJg5tw1p*TUJdYL*_PNiag_q3OJX&CeK;_W_GXx@w7MLM$A&VB6 zA@DAX7BNGhvuF{2Qv@=P7MLR7d9=_j-WkpTfhhu$M+;05fEkqo0?#3lM+@{!vh-fe z5!gIZq#Qv8h?pagS){-qh|dFn|KTAI1ZD_K9wjhCpz%$dJc|@DJ>c_5p(F-qvOs7! z$8;V9IL1UCDKI?{@#l(Pr+8=i3j#){_X(_T213ccd=q+;`XP?L4S;XOftEE}vM$byvPH2-HRmQ=Joq{h9znu<9U&G8H0liARJl-baf*>IG$P?WZC`1vaqY%8Uq zdnpZvDUI}k6XInbl?iQ%Z(hV<6^`ex`-1P)UIO)*e?allOpcU>0WVT2$G<3*69kyZ z`V^TQfV568d~qh{1n6{$oNauLN#vXWg)Wb?jY2d4Fn@yvz^f*3;>^w@(_@{|K|3Lq zO-$e`R6B4!QrhS4sgH)}-ze?ohj#wSWdHjUV`3Bw&NlEx_I~UQ4EYcIQ$4+xn!f?F z0XMf!zyXQ|f2awa4pqv*dYul=V3pOb=}{6WaALf%0nSBPu?GZO&x%V9P-WzsVBWHr z(v=d9YFthN$xvKgkWjWy#021Q2}}XaT^E>76)5wppi?^Z5(MZFe!QCTaac^dDp&LP8sCq}JMT`|nU|Nde+gcE!9f1$y2_VJY9gb<0_h@5 zIsZUn!RQYopdwi{%ihoP2xyxBA*3nt>8@KZ%{ksQpUkr=p5gKBoA#0Avd-$5c%4-v zIn1E_c@>Wb%Zsh-MZT)5vN+zkp8@r9{#2NR0S#5w9rGp)*kI5Z2IqB{CU3h*BQ;?& zhf!mYf2;Mn+sX-5TM~o?`LD@elE0v5PBF!;0G&>P4SgVlMHNqhI|zTHdVeAe=j4Bh z$5C>xD>L>%ugn-&BLME<0#L@`Nba=%o4+!X;_bsTgH62ud-ux)ONMM40MI|M_(iq- z&jVD~8O=IzdR?2?vmb=mb?L?3e(B{__N66ge-+Fid$2D9D(z)2^b3o!(%ntJvTG(n zc`@CgVn8&6><5@q8aU7vvU~Bc5E9jsbX1DGe+$I<@8k2APxqu^7FJNDBNfwkP_b+} zT{E$ao%yWD*++MR(7lQg`KLNBrVWY1@+K{=cF`$jAIjEdY})9i-QYJ+Pg4gZ0Nmx; zf48}M4B-iKxGV4gC_7W$0xWD+9*3H zf{I%$@EIv-#cxypXu7B?p?84#)xi9?fA=9d=eyXOYh#d=F|!o)PRZ?HqLU2Y63rkJ zIBYU_Q4XnP5PnZB$eHvkvo-%EQHeP2z{P?v3l6)Adm3Vaw=!wv;A+WD5OJL13vYgS zG6JK2JU)MY{*=@HLSfMza*ub&QEI?%#~h9@*AfUU0fbQHyV|&1y|1fmQsap(D!f?BO=!;xMUdFA^oYBMcWe%ZIX-)Kgkb0<@-aa*nJxG-Ib==dyPb z00iMc%>RCff(?v=H=|S!e;B2B%^*dsY98kp_j>Jn`Vh91>C8tavBowNf9oGYh@;w5 z>L0VGjE9v^?qg1AusCe!!OT zY`xERHq@vr)kwhtsA{j~5!jqmhvzylc;oX(jHF%ckODo(HP7m%lq`NcWEu+((Uz-fl0U`(e}4(P!;;9e=0JhI zD7v`u{SjLzD>R>`9J6T$Ug{~fKG#|Dh(n{IDp%LXvj#H7d`8v2 zCLpiK|CXM=G9x>ofBkzHy1*}8cL(6?j zwS5sb1er3X^BKJYZ0tqo`&&ejKphP1UY{QUNpZ`2g z*rqU`D6@H1#pE*9z`@J1E))E-fpmkBuQ|l@S+k?qyuE|C#6tnO^-m&Jt#3tO;-qAz z$ln>`zc56S^|`)^^=-HlyxWLM4x1NZJ*w4S*^;Ag5VxLRif}Y2c zKF;c^T|{%kf1y4{)SoyUH>~IU@ibCSZHGVQ)#g*_DsO*i9sjyS`Q~p@X6sGfzxCLB95{S$eYMp;>eb^0Tar+bXO-qhP1f`G(tmmgf1f?+R zS^hXg5Y{;82S-~?&fG=>158+mE!Bq+L6sPs#9OVLe^9k0Js0$ZVd!*>DO%8qTLHqn zY=rLvpa;2X)dBc3Rr{8nzt9sYpi3Y6Ur+qrS2zxDf4sucZvMB=03Cm3B0XK}m2{^G z9cnp$bOND^hu9Pifp5TjNz(IzDuqzRp=>MdAs{HZ^Vhtu{@eM4!R>fikO;`#Vqe@mkReUJ+4$mY*ReCJKT{5QCz z_|&(1&H)u10W_D9>H!@CJ9q<^vFZUbf5qr_RE+-kqWA#(!}W`oUz#wIQbcRj==x@) zqj15Fyw^e*z|2P9j=!qfyJljG@oaLX0o*hz&aA7pt(Ui4_~z?3udg}#uAFZw&Nep; zO9oTyrdiw*SXRq+^4;~HUVbV4J`Kg_N;wg_;jizYFJ;{LtLZmwx#oNt4YU8Ae<(k$ z-akxK7&ogKBOmJdoOA2@dEIih?Rr|3_?!1!xNT?-n5~zHZyPR^45mo$72uIzs^2vZ zhmCLRcSO#Ti`0Iz!1R0SqgrtV@@0>bG^>ZZW{n&{7DywEam<3YX-k-n_Hz6{-PgBw zi4w%sYlhW-Hrz}RS%{)3Q=4Vof7bn-h{=`p1@O7+r-Peyb+btw@}lD)Ka`96dFu7y z4rhwFlABGNi5z474_v<8)U(uf{eIn6i{9y#yoNBW0hX2w=1t2P_eqiut>8%|H06;bp71_*n`4t>#S{0jutsdRnc4e<|L`@#{oG zoqk@0t4*lIB7^BN;rG-vK6~h{7Tq_E|1cZo4P2z}p9NxSr5@^-!-UMO1dAp}?pV9V<>lgodA)$FOlARWIRtX0)lv&552iV#ae=Vl#tX{dQ@)}6lJeDFzK=o|g>`la3gJ*T z(&ZF>L*sr;G`ykwYs$mnD5Dzxv#>>yR~v8`5t4N5im>RTZ?B|vw5P=MndU7GRr=oYEr1C%I=t zp>58+eB9tgC<1lmVq#yte_Xe){|sS2 z0SQ#l0ST~&2;~%MoFRx%&WXZ2CStKa`iGY`x29ofK{joK<0JwMAF-!5WEaoMol(u_ z^v-ZzpvlaJ_3~uH8f_b`9GiP^vX%37!;^44I_#lTCsN2TCEErHv+AFPG|Orx4i1}q#kyI^XYCwoVS~f@Il#`ru0Z*m zxO0XesM|RiMaS%%A&BU9&LI)Mq@5#wo;&9ZwyJ^sRq%O!3C5}kPB^E}YOFdkRxKHX z?t{iE42Hx7r%p6hf35NPG^aFrL+OHOxZlGpx3t-(ja3bbWB>~B21%)pQMfpu$`XIU zRQt4ss|)D7O38~W>CQn)@CEx+B&f46#G)x@K*{QyC29O07_6%4YPdCrIJCLwOlf|e?4NvXVV2Mf%{cz#~a*@ z-({s$SNarV8}d$MVQHoSkdnd>7oarXt1~ctDlHkL-&I_fknNFcV(nuwK;+JOImeOV zrI1Qq%#q;@Xy;^UsIwdyj_wm=!P3^PILm#}ub>qeY%&tDvGAuTXfS9B&}Z4Sr#x`O zV8P&?X=^gtf2zF_DQzW>yKS%oDecg!v=yjYWd>lAQUMzHoJ|*?w9mg=Z4{u(FJ`xb z=i+VhWc3rfH3}6&w^?6Ku3*nW>VtmbRC0Z%l7Dn6!5N~mGsJ)B4B2UXlWBaLY5Z;7 zzQ#A1#Iea7015^p!N8VfK-YE9YD=s#-Qp^ zr3Uz}^#D^-#tNlDLo z3Z&S9f5rYSFwjK2paxY)m)CH3U`a|Uf#<5Qi5!0iKL}?0b^<=t7nr=k_~12{D;!KBio(cKc1H9h2pbO;XU*f!GiuJLsTJssi;-HqFbipyf4e88)|l-9{dOW{M6C?zHKnii@}Qwr zG5#F&SkWWZA$D>s7+_ss84vtG^GReJWdT*T@}dYQX-HT|30%y0cdUqmSA~Y^0MvLV zj5awnPl@=mAH1}qtM4NoymSN>7lS-_VOOen#)H?xs&4xjTsWbD9Yc_$z?U>ii8?~CWv`nWrKuy};E?w7vu0V{uL;Hj2&q`d_lAD-fs24BnP zygCSnlN$U-=o7rZ01}&IW;)-@m|2Gp1y>4MD(MbG*f@SjbwZ~6c*Y2hw4oe{8)c^q zw#>l-3^-j)4bIDdAX`U&lw6#qfoE<$5fjlqoDn&oF?45n&K-$-7Hi0 z9AvfECvkt8qIY^CVrbiJ7H5x$(Nd9}eIaKYh?(%620P0ug9gj(0dL4Pokx*fMkuvh z>a)P$APA^qfY|6xx-!!EWSP&pM_EZ+tZ0T9&=}#Q%16A(<~{G`O(j$$+VVXV9rhoL z#(1=G!P5qz@UU?Up@QAUo?_S=I0GjmsgjuK=Fdn zn>Dk7k&OFo)^-=5>^VRgkvFR*bB@fAG6HpXyF!xXjleb)PHePBil)aeyQ?$Xi_Q_MP9YM&r zy+-?OvUyC#Z16IQPB)*8onXc4;&Mb29~?R#Ngtdzg+K;jZz=osS(nrw@8s!Pd}u8A z7EM!^HT3~0f9-i*l1(ecQ&&87zG~Eb@u(Fyk;$DnnduIV6!42zls1$uhUnS{ejJcY zF@R-OS}`aYv|Zg}AE{8H@F=$6BZX5;G!5Rc^fuoBZ+PIpGWaut*F9u_60+6|L59Jg zvyhWileEuIf7FHrc;M!84i|9KqE^p&qcL9X z4i~WDk5^Y8jadoD#|MEcf!oaR#xk170Z=h=#if!#o3-q@k&u>S8I{xmw9F|Ekt@g% z${1Ylk;q!kuwP{Om4}GhCx3lBH(nn36K_ZfC{0R08BziOUiUpPSs~>R+))O1LC%~R zk6SS@f9+n$5UZ47q$XcmnchzpBACHu5DH@iiGPa1MAMu>+0jIGM}EElUhJXn`shz| zOdkF7ms&jz3H$U4j~;_A=F=!p{fPSb3*Ax1^zGS|5_C)Pm3mv6skxEi!7dcBE(>L`>XMVkuhcfPdH=n1$x4&U{Bau zQUaDeVfz73*a>I!$-Ge(WXZ*xH!~i#Vp`h05<9{>WW%7>5e72@-%U>>P!~oNX`;64*j%zsoj0^^#uQ4$6HEYK`QYp0mz@v3l35E zcrjuX!Sw7N*Uiyh8(wKz`3rf&lw>`4`smHmnM4p1u+C13g{Bf8P3Z z4~WTalBc;%7>a>gDPjoaNv4Vt8l-Sf_MYo9seoUA+0#kD54+*C+#})F<1TqPQ1!)V z@&IO~N}+es{@+>ZoF(9kQ+5DvX`jKD_-tq+ZT}+D_6P812EERb0S?I1d4sCVIG6Ee z#=}+&+N?xh+7%tLVbJR=X`zOoQZItF7jpWh+29KX_Zf1@WLCQp&E)aTleI!QdpeyU zs6rc=(b;y~AyDoZNbEe$`||R5hb;`?uzm1rh=TxPXN1!uP~$>N-S?6JZ2vFQbiS&$ zDft1s0e`3cF}w>AG_y)l1@yQC@V~^r9vn4%KHSu)0^$}IDA%cZm~=?(pSjTMJapd- zH>uWEo7}gmX+&Eus6K*7<+f|Co3_e;ACf2KJ##_NoB@}FevFNZ87%XJjZ?B!kdOp` zQp^i85hy}oNk~>BxxnPjJMjFNZOTYygPC1O7k_7t5Z>Q3#58F~iIgsqih_XG)hhjW zKe89~#9oZR>PbHzny$WkBP}X*r@jM^@#3y;+UpY-x80UTe`r?qVcx54x2c9^+p;7W zpkX#XH?EeqN_yn6#FY z&TT3nJTiniqm#(b_vkc^I;m(j%}mE z1fd7imxQL{;bmr(8Y)oVXT#@eFRz(1VXD1;SV%M9wf#h$#CqRscI$W;X2o;$h;Evy zx2k{5|LAB?J?y%1f~t#M)yFB!H1FGLsB-`1uMz%o=+9{seomFhAdXc@?&%_JGRSoB zQx^!Mga1Gr^<@Py8Mj%IV8!ZkyV-!K43n^?@($uhD6CDYN801eBi%TT8CKXqU)*!2>XASnh^(-$DE7(mr%rd{%Z}^;c(U19^aEv zTd(trRh!DX>$Y90?i+}5dOPxNx!mRdGfAvB>rslAnHYzXg8@02IP(!K_>E|X!wgUpX-cbOg2WjybW!F7=dkp#|C6y#Y`scc%>tM?TxByh zZBFVttSfb6uT%gsjJE65HoqAUkO#@tnhE~stqNp8$VY1LAb?0G)u%vEV3&V610jlm zD1qPw^TroJfXx+`>a!sP7a3FlLEvW1Z4m_QQz45OA*5s?6mf!VXKBk=p*&M%5VVcs zNN6ij~=ia=FL2k=zQ{7rTr*>ec%g;F<)FyK(Gq`_L7CyKrDv|p za@NW+FUxqL$<1sLI284l7gW6L<96t4f~`FHF`JPIm$PNGBM;0Ed!7sh)(Uo}e#26!pvZ&7Ww zZPk6uK7)mrr>J6#YDIrH3Hb(&VMNzXo4p6aP2FVw!H0!0^J=}T`*ZHecDdbU58Z`x z!ctf=h1{g{dj9=xL;uX4iVQLNH{6{3mwx`S&r@diQuM~U=#8z<&A7R378gDQ9j9{B zseGKupG;-bONlV@Opf8h?HCQLPn;%4NMvu(DH_XNKWsN=yn}yqSrN3Aa7bhEioAmq za>tG)SlZ-x_0L?G>Y5f^2{rX1{cS;xYeFkhvsw1Zc@KgPZ^dO^9YUNV3$kyUs_Sak zE{Xb^)Xu){Q=+ebhUpEq`DXjOF`f0Xzh+;%j1iXiY{@KSkY3fS+~Asyrjc?7FK>IlhL@q`Oo2UywiMW!_>daft)CO2nXjkNVslweDtQ_J=I zpLtsj-LC#>Je5X9;q=HyLW+HyxxjJs_67L| z*v&HNDIczm=JzoT05pjisWqgco1nN!t@`MNI8qv& z(;%eKku09_PTFZ1O2sC1(vW|E6;Amm& z&z66*n06IHlrA!fs9wkV`l#N<`gN=iv3~RXiSElGcGA}rr}cA_3PwdpLVm&~%DNN> zIc@>cD?7N=)H4FKj+F)f3`v@8k|E>@6uIZ|GD+eHWjpf1vm^ zq!*TkSm3VtE!uO3#c~3yzHqphk+rO8mneTlr?qvY08y9m`TVpqNoi*~JS*)?!PW^u zzC_v?fpXy!GN;M%LTi66d0Mj|!i!)fxkp`}LF;q#z-(aBp5%f3c(dJ~Ndh~~>>3kk zQQgGE-&ND!uB(raWofzNEG^i|(}Z8@AZtGVFQ&J^jtBSzI_EsaVfkhn8~dAPNtb_z zo7{}XG1cz9RwaPf^%fI%bahDmT}^j{d{@i4U^I}N2qP+IJOM|!#uyWGtOAImd>aS* zWB`U$%-un2LMe6RR4dfBIa!60c3eD!skg27sWMcTsnWEm%mXgFWbOAcA1Fekd+T9D zn5(y``JowM#auBrW^qNBQxcxc`x|hmBx5`ITc}C@0uNs0xaxOqD4pB3q_V6%-NWH*o8 zd>iN?SEf)6^pMj<@@*vLtdpWF*XwlE`^JL_} zirE6>0!z69IqZGs`^tYY^Vj>PU8T+p?%-DINAl>WmU+x6#WK%CuCo4N$CBnOaPthW z*B>4}mkW5VGbnjQj~BSNNf)yvD7Jeow%B?{%tna{*|I>lEQ!5Ax5=B{5k-hoA|8a zb2tsa{c#~|ALEKxjwU|a_*}*3Ha_>ygcr_*u{8ysyijGq*|;R0pAF7RCD~mJ_;Z4@ zQp(Q_&blPHIGYGvX`&#Zb)8x_sTiIM)t+G`b zFB0_iF#Qfs4J}gVPvD5R$a1~Q`KtDi5(pz8TLje=^p`)tnyY|I{9 zCxw6b>Q6FOx~95ZCwt{?3y|N8LwYah_metXP+>9#`r`lGRi?NKWo~41baG{3Z3<;> zWN%_>3Ng3I2m&etf7*}7x(0;~qZr5pra>>$Xz$A&m%{KQbI1?@NMU>`(^-VHh)Fsx zkV~^a-V$&Oq@#I8Ax5F$K|!{8T601D(~=8;RMC2&?TVD40jW+ADT_Vj*z+ysblz3# zsxH!i>jSAS)|8+=`tFGCCz2p)zBd|~+_G8uGen9 zZ1|B`dzT&6{5D#aSG1jMqqHGSkg%H^ZX>KW!ZW9nxU;s*R-;iUb0q`y4JNoVDx2NBR ze%B`q_-e8q76K)pqXe`e2|#iilXCd>8E6M?VP~8qel1qz*l#EG0LXB(c(kGh z*I&G#i>G@18mwlJGP_ow-<`RHwJ}yQ`+|4zN^^rl=@6bnF;X}NeJ?>&Ni#BRe6@9sk zmC4#be=eF~T=YmAa!8vpfJOVVNL|P*D=~ohJ=MGFPc%~HCJnP|_n-D-53&GFt98i# zUe|~EIaEIZba5s?f++b&2@(GAJwdl>ft?aycEJ30*CRn?^6z#npg{7P>hyUJ`BqI` zH#mcjdpMXV;?PhZyS;Oes39Wn*nhJmx3e`x@y4xssSTa_#3q<rcSO?J1h<@ z#@KC$epvGUV3eYTJ-V(Iv7%cPfRtvuo~B)vZ8xK*K-D>rnAV;ttnJCxH^JJmc7-7+lKQYn$x$XOAJzmokco6y9SQ6u) zhvATTife!*G==?dOvyMY4n|#0)lcWWf45RN zBL~b(X4F=9_c3Pncv{jjufer)mI-0b)IrbzHY>n47K9nkO9nHUSIF;SnSiY!()MUh zc04B!u85qTb=>Q-i=@E)0jV-;!`Z8Zjt`Ed-DHuZI9jB1@J37H$OHP-qJ9@@YV7S<43Us%Wf9kwxX#lif32`hg^=Mv7a(A>ykIva>na1;Tllf`% z9FMl(!?9DG3JOoi{5X$pqn8#wF-UfzlaaNV9vQk6+)dhRUs*mB>usG(QVcm4o4dh8fx(PoSDG2npcAowe|kpjpv3{; zUPkON7RdEgV!s60LF{9)=ZO6i_T7tq1Uz0P`dRp@1WY4@Q{d~RV`q;7XVT*q@n1{e zOnT3FFrPngW@6w>#Tb=*Dsbj`MUTdF%me?_3z5E$8YDYUU~ zzz5eyrF)BU-*p2ztVvYbqQBo$1U+{&Oto2-4{uX&=DtdIpJaN3W5$Fd*MSCbe&kU( z0O;{%5~>GIAsb1+*VS%A5t3Lj zf!%U5&)vt0+zE$%e+7oGunx?Pri+vDq*Bxhs_4FU{0ZCFWm+F>&?R{W0D9a^5$`yP zMYqsH_bM2W*tK=An);gInw%aH#HO!wO@_Bfz#&)DF3{@kvt6c<{j>W{5?jq z^6zIZUL~O}4B7JMV`(oaY>PKGQyx1aT@dLt<+t=(Qw;{#e{29Hd~J=+S9tj#Q3GSL ziOC`+sOWW6^g1f~Lz9kPRiK@eCSYYCitxLp-?OXrvapY#GU@B+?=Ic?=np3Wot1tifzyAb9P6{w(*eftu+ z0(KR^xUWW8e}J3hL-H-;g_Q+tdmhC3%3{ppi^@WZKyX;<2#4i!a9C>Ql)eC`LI&{n z!j#un!(lMY2rMqZh5=X6>M0wa3l2Mi!~Xwp_$fGy5oGPc6c4|zHVc%M42NehSRhOz zrB8P-Shc@=!$JgNnA;;wEEF+`m&N7Bvg|22S?NkW6rD zp499N*ijR(Bj>=5ieN_(*zuMsWqibecTcfY&MCvdjPk^*^x+&Wgg1UD?$NBbk!~H6 zCML7Gf6#(EV=uvl<#Z=H<|5JE4&*7RMm+7sg}Ynv&-}nA0We3V)XxGi1t8R1Vo{{R z#}RTOjxUG5yh8lt=#7BGH(e>Ogd&p>qM1bJJ(?V}HR3q*5^YV?eZU}g)L~?60@)g$ z@-5{Lwgz<76%P58nwxOq6QjrGCImn;$Ke;ee`Ay?UpHMJbBn57?ABdh#K*W;^$W-x z#3=I7J0!qQ4OklRx&B)&`qVHQA`|ri?-U*^G~JoTe>7w0AwhYDZVre-*jC?{}6#yF|GtVtcg!( ze-!OJNQRd-65pOIV^Bz8P$-SLn7#!cI?8;#STrPnCC0KC0!>gO0yi7BiUE(*gCZr+ zCqme+PQ!U-bbhlu;f4; z*eOe!iCiW~?gaVTzx!Rn-w#3v(wWc~*V>x9S(Wo~41baG{3mtGbE z^?!(d0NwpHI7Rj@E3&^|6-V?hH&-uSsxp&Ol-8>3<}TBvaKUEYYoQGEtg<)xa$OC> z;@Xr&zNvm&XqDHCw>Lju{q5%J_bUl26`9Orp+%5}-ZVyL%gxoBw?(#s!Jo52=rUyQ zY3e33qR+JQ_KTioE3on8xQz^FVZhs`U#Tjj0yfk6H%C!qZI+IF2T( z*|l<_@Sdgkfi0>Fli$(O&={J{mc%JENjZXeJVL7jO@ze$+r_mt`LFeI90cr-3Jdwa zn)RBOfH8QE>z7*?0x5r0Mct%bz+S(4OVhbVRT^9nJZu5VThp5tsGMLmy(i0`E z6H@8S`5>&;EK$>Lcc78+!Q~@b^5d4|10%RnfifRJo9()4*?6Bi@g$Q*GL>hXd>Ws&ba)~KwO|H*3%TrQ!G2Cbxg?3kWf_jIRtLyATOYA z!Xahy8%;{Z&NkARC5qFhU*gz_o_TL`brS0E+py^vC01SwhXL@A>b!|wJ3R~1BA z*voL$utg?i`sMJf1aJpF^v&TJ&zQLEZkgu;pv`|JpiO~85NHG8_n-|s518u3w(m=uy2TgpHUsO z2-Sb3eD|mh*FE6jQ>rn>gL!QP54)j8WJi5piRDbGAbt4@fh7|lrWE$FSk8dMI|x)4 z647~~oqQg6&NwB43YWoi#u%Y(`2WIlsFbzgB6uz_&}ZQ}`wa1%0o34?elB zmiew(ijJQUO3FQy3<{y7cW5V12IaPvI{$8Q9ZE)`nqSvNj-bF9+#IP*{sxJL{f17D zFW^&=JV_>R_npB=#@d0gcE~?`Y8XH?`&0Ea!)R*&CfdX>9rNv(teDhE=Ws%%fDnK6 zA~HcBLI`_8rn?g%uuzcq!Ug!6!a-WF>^c~N--JQgQL$`?+gw<-*pj6eGpXY#Z zx_LzE4tI(SZ$3SF$^a~Z5=(0<{1cO}GEQh^X)SBZ2^tP#AI0vYFncfyZN7g~22r6r zU_jM3bvz6(yd~?603YwWs1v;1M>WU$YUCE1nz1`iqw0Y2Jk-^K?$&3%&KW;w;k^djXNA)4No6hut|HJJvyz0ss+}uDpmqvJ6lkm{g)=x7m^umkb^P9)DRP0gkZ(k2fFK zL=!>ip%v2lJ67*Qy^hs8k=40{A1}#&!nADp0{~J!?cFdmw_KH*Soa#*9BNFb6x-7& zolhi9vB8GL_1b+|L(Evede}cUtNQ5ObEng2#N!U!x)h;&A}-fK6fV$Ot_;cfoXg2i z@ycSaKY20m6FTS=u77W;w%P916r*Die{(+-<4d|?0b^{c1>(c0TJs0*9zMn({~?9~ zCb!KP;r@NskJA-G(@v%RCa$xr4x!*1)B_4sFPwQU^?;I4xY@_+0SQ3Qms3Fiaa0;h zh#5%3WX0qJc=wR=OHaJ;^6=}Ck%uIp6PdS(2sM-C{>fRcP=8EG;%UZ@ni9;`Qwpd$udj{$t9<&xNT^t++o?X0JriH2>%7txZd2R_&U z3xK-_@e~~%;c#ScASm1XPiY)~^c9Eb3jiQnQ8G9MvN?fJN(W)+64ud0A-qhj6WM=Y zGBW8CnU={|!+)e>(tf$#si~s=K&`h8bV{2oU{ zuPeInHzBX$H;vRD22O2p$Q!2)62?1#C=zN*AN(T_1%DW!4bt9xbq(PcA^5Cp^-bJtBnMXVEZei;r z;Ddhplw%^o!H%J(J*mGPN|A7Uby+?al!6~W%jwhp{~D%92n+Jz|4H~Pn34$nZE#AU zt0BoCS%1=rIuW-aau(_WYAVRZ+L~0+H8aM%i!l4F7)nWk1Q!rPSx9Ft6=TVaJ0=^J zW}9@j+*!|_*ae-R?p=-inlJT~n&jCp^-s(&MVecF?AEJ&s(_+vv%l-YXqVK%XQF=9 z#)_EpK32$a!Mo`@_m19KRbxFIz4N|r;&)igFCZOL{7$#7kKFX=p2>o0y3Lm>F6d%i@Ak_T(~G*wt0mGdmX}%EhHMejzRfp(F2@#GEXhLB_Q6En z9DKE{n~=$~wX=KsbbFo4zl(OF_01+Uh_`i218lY^sI6|!6jllp%BarF(T zSW!WQP@%hRf9)*~`1pX2r@j+-Ze!c);`fw_bts%fi*Jt6qH0#Qb$D4+>$2bEv7M~z zn&P_e!gD&bJK_a@#rv$uc6pb_m-RL_belhhOXArkX>h0$XpM2eW`Ce zt8N^}BDIT6(d6r{e77`o0XCIUK_$L&393DH?x~3BwyEFe(RQ}=*!}CO=!&c?-p7v} zFD|WyG{1}A98fa}bfSanCeONj^8&0e8M^B-MHSNS)~gkNxjWatY{|^xT`1TU?cn3G z%;R^5wBxbDL;OB#@{n0){mrej(}m|cHihBP42|!5FF-CA-_`9?dZ(#H{?ES5s;n#O>P0BQJ1>=iK@`DRc=S?#%KvsC!q<9H7HtAC@Bax`Xh2gg;7Vx;HYx* zq&G!P^u=vn?gJP<5RqbROb!et6yacU4kS!iVi_Al@dM*U01@XJ6 z3OsRH<9{cdb?oRBqbXrrM>XpC)yNdFb{;W*!j!gjQjBA_D7Zt@Iof6lAthDgw%cO2 zFZ1&T0b_<}M#qETExIr$4Pj*G15@;N`@z=}>}p9YBAiM!k%~WW2xvBxkKizfEI>_zK#9x^B>Yz-@pC(a6p&!$An0+Vl_hl*RYsR1qwrnNlhY6N)R-E zo+m;h0gopVY*`g&?pI4I7FTCRL&OY3#M7eTbhn_z)Im`x(cC`I`3&(dn36CRNIxM2 zn=r%90>NN-b2`TGYN;idJuM2m57|6mTJRL?E2x02KhS4Y0%Q?X|Xdd;# z79F;OZycl_uAGL0kT1XdY*MC}EvT4(ManRxhb7B7Ql10CAmu|0Zen68C!(VPqMZU?x4+o@_A$o zTLQM8x7(Ue#0*;lC1+7FOr^uB=^Pc$0b!8wA%+L*+Y^@>R{GP6IdCy-YqYduT&IXx zVi0KYDPl6Wj2LBR5wo+Ul)Z7l^Z@kcf=8h82O6xKQM`cMCA-3_Nc(UW=OzpI;J_gyYmNXz)ya@c9F z`yrIYowz@E_m&RtB<`bMY}Z}8gj1wb4lVTz&SKUQM(rHVa;DNKyuO-$&09ai)LFiI zlxpvp!IRhj2kk!A-!(;-PaVyL1sRhJMxT37?1=NGs8x^RJM+BQ5^V=(#K7>Y>&vkR z9>(6$eBkc%9yzBQ6T-3SSBQ#K5oVu0#&t)E*hoEb!$Cy~frAsQd#$;j*Z1zMOlYHy z?-7MC^zdS0!eIkGYzT#at=)Z8$UB)9)y?Dmrr6%8)ST1r(arc+vhik|x|1Gh&m2WN%`ZcPRp+0XUZ%Dgqs7+s7@?EfOR}fi4gfZ4X?Dw%L^^m!#I&{`$^v zhI%+ouorVUq&Tl{9^S5wtL^HScUxY6dVF{HknUGWzRB`3T|FLF*?v>*id9u*n=}Vb zv-&eCH%YuslC+3^i?bx^tyNF0jMrIJm!T>GAAi*9mX}fN(F4Rl9pF;K=Z!M5cJ1r(HfR(l zQ7zxYwydHJt#sWE;T`LQ^Dsb1f``@x82Wg+QcOA3Yhrcom@bW2mDF^T2!>{+B zKE?Yy`r{2D`u%%4UWW$G9m9}96HMmN%+B438LY}K0aXa^5IS-wY%V8NqlqWlDn_+B z>fXqZAncceFmDBM#(wyuIu-KUi-h$ojOe73<}E3H-?lyKcR?dVS|R0nTBWcGfq$4* z5Nqj(*|J!qQ7o=Av3~FKAHO^Y3}xzU6qFJVBjhQ49{6!9v;y3!@UX`@ z5=vWVh5+YVK>cf*mX-v<>qLbE&qkOBIb9VD*=}ufF*x8hPzMOVFR@oOS zd`th&>+VZjrcgDN0H`fbC?Bwx>wmFg{~&T~>z9+nfbS~^8p+-xDmgQOw*A3TXc5ka zxd+pCNI`)36KOi7MN2#7Xs!DJUh+w^pO2lUVkfnRR%1! zAzja*H8paCR=z3Av4@8`_Hj64z+atYIDusOL|~xbXX4AR2odPUMxm6q_N9zV4s=+y z6grFVD{yjM{W5NTaC9-sF-vHEXPJHeY|J+}XJFwM#P|nngR5*?Hrj?VeHZbz0YBgu zzTr;8n&8bAyIlq?bzpl0%YXJ)Zvcg@QbEr=%{;2}G!K9|i3zKgPP!fw1n;)$nL&&@ zL5r=8Iy+D$&v#VWkn22(2OD-WyrKA2-Sb}K*<2&mL`!s`gS@B!L%uWPX(te0_ySB+ z!{X75X0W;8T(FEZgVyBAoUjf{E&X%`)I|lV7LZLu`r2rTW}RlIgnw=zEL1f9_S>vx zd4_NJv5v_j7=i&TQl1Ct(O05i$mx$-{U>h^9h|fpWOLi(p|e6L5iw{5c?Y@b=g4Z- z>MM^}DR?8MMmNnO@I4vR_~wL++xFpyCls?x`_VD1Cd=h7z>UrOTc#0~(-H18Zt#dD zLOmgThB4bHdt(H)VSm;F)y}P`dHSv>Yg26Brd457{$AZ%I4V3}8<_m3X`YRg7hm93 zNwq18{nD&^ESr9Q$VcE3Nvn4n60Ptv(KGE(Ag%`~ajtw?95NDHf}=CIAed)~<&DEzG)W45qyYlTlEPl#FSWutVvgRSEwz7s z3UTsP)`LT2uCpBusKAb@7hDZ+z;;Q$s}9c`T6nP|J0oOk(b3U0z9{HO#$Q`m)&#%4VS(70UNjfF9P30 zm)Laz443M30u=~1GBz+cH8(Mr2Xz7@2sbh|FgP_gF_$xS0;K^tk=h;tIWd>9D*+dm z5OxASe={&3FG)loTRbp1G%#gjVq|1BW@0yCH#j#oFgRmmWI17CHDzQmWMe)&V`Mfo zHa25pWiVx7WM(lmWo0%pH8N&nVK6Z_Gh{I{K3yO_J_>Vma%Ev{3V57jVgLaqMn<1# z1|}e@7(@yQgGfd&oBu09TntGKKMz<<37E|aG!`!fk$l-8QYHx@!ha2{62g{1i1TW} q#TmIO5o*}iBiL*&K%^WWh;(HGi~nK(0E$8l{FnZA0)CfycLEsA(4#E? delta 61219 zcmZ6yV{oPouq_(f=ETOt$s5~FCbn&7k|&YNO>CcUpW3%>-P_eadUaQ? z->X+uhu*>`T*0GLDT_-ou`+WaP<21$eXL%EI7r!8SxEIs zzblclvy*<8AO*3ru(FYUS0rWq52};0a;8eS_d;O`Dwr$4&G1gaA>= zIGCAx{l~%vBIV@x9}XD@3rA8mZc-LfRnqUOj*f1m?5s(S;JCVM>>$$rUwoGlC)MS* zFbA1|%+0w#CY)v_9OkC%9LAh%79bWAGZv63n+ca7KRbxi)P#%67{tPA#$wJ5GBsi0 z*EBClp2wa;@zV$ zwg&`8+HZ9}4gvm{+ZVsQxe z^-T2i;0%+FfI%B^u|p!pkKP6Z1_v4kgR7Ag*!9uC#*xrNUzYG})yg||?65?LPzNUQ zKz-vaoJJ@F1*Ri1s*d$c_vF5%spSn*xa+(`+DEP}4T&-%A%S@(u`nT+JD9n;xtJT< z|4-#;VuQe*wrc>64Z+Tl<}45X9UPRj0>uo@k*0zSK?AUXc(_Of1rh#t!)tAkK;Lz} z~C7swRUG(Y9!`%8{+i+}Ql6kU28quK z04Tp$bg|;v-#b3P%8MHhVNQmTJ=sSnH}fcy&kK&$|GVhnTvj+~xY)1Nyx!LTCxb5J zaka=T^eIfHd)u8e3E|1tu0=1E{92gJtPfiiF9uRyw7{v)EKTwoUie@U+T6jmJ0jJs z^GRUDh-UlY%KfH@feMtV^cDu*s%Y`>@0kW;6B^THpBj&;fZ*)YR<0>6^bu4K-VW zX2Q>oa-rGk{Jhh31tF*E8wax6%yssdTf7B_HeHzYzwMhpnjg^PCPiQ0_q~=q2lwWZ znZF!15)F)HYe;o;|IAr%+esJtM=@qkSVtH-Lx zO9?v`C(9dar0@~_*B|=z;_z2!>Tj&glRoqQ2Of(L72$!_mkC|ug7P!l;s#=3XX#VS z%vz!Sr>m1@wMvbz=EfX#0nSo0EMuhw71w_9`iY-SlkLU!LzH>3 z7^0o)w=N=>I45=H6ervXYKxT^;{ZLv@_A!s zXQ&S@+-&u<7ZD&<)0I25c35hwCnMt7d+=Tzs6M~AADkNRG06II9TRx9s`x+>8?N{T=UNb%w3C0_|glg+#~2c z_RS{o%q@ahC?>dyO&@UNid#p9Izsiuh1t&hkPXZ|U|_PlxsoilBmc4JK%tgAcxT|a zKV#itFYqUu=46tnyVj-7CnR6NF5uMc%6q4Y(jLVl5( zb9t}tB!q8{(4e6Z<1Mvx&UW!-^N_!8wyegmNTJdUmbaPr?_DaG8M-4alh8X2y8pwI z(76i}VjYLI2-cV^fsNLJ(w#ezOLO68kN&7S7{f@L_@4n&e##40iQ#2)zd3d$r=RCbGknP zE`=BiXB`$)!FLeSc?CT^J`oP2B&D4N7(~IzyuWrf8RAg3THhg4uKKYP!A3A)zO>g zJoS}16sD?(2M|FLly}~+h$y{t!a50_es``Jl{^5>NVJvdY9%-Q%FwpJcxaQ@1SQqE~UH`pfwcR5U zmF}o-jEEGIR*`i6nC&{dakLvcfD30xcHvuDMI1{QH54Djn~3lS!7+Bce0X9P_yT)_ zsnw3n=tyQBlV`~+)tU@x5sa!9X^N;eRWw$GsP^1Fr4k%z|DxR1?NvPJyXq*z&Pi72 z%*|;NP{kFBJUxtk?gV!?>9`w7=JBxy;nP948_Uw6z>yJ34k>n!n3s^}FA0$*R5|wL z3ZTT!o*wT{r$7o_c$ZyhOYSmNckXFP%?3f;!C``VMp5SqWPo|)2Igg!Q)yCYencNo z7|`h5e&=9G0>j#rA0NTiftP?5r6*5F4PH zGS{*M!di65W9$ifg5%mV%@#Zj zD%!+oy+uq6zgzK?CYH+a6@i zO#=d+hf`rq9JR@*0he!GL`(YstvOQ&UBeCjz;B6wcJg7DASifM@zW2AGlz@gRmVjgFF# zQ~LvVKogbIlklm(anVDU#zOzVzy6#Sn&c+Ev9vr{SRARSF@cSZE&UR}J0g!0=%@2` zBbS@4Fs<^))l0mO^?gZ~5go9z0VA0kP~9Pcg2=QSc^l-C!8bbs?QeqZ0_t z(G;-w!PA{q$Xj><*D=iR)elcL#Q6676j;3O&ufc-J~6u!uAV)-YA+Q=y~;J=Q_VAp z^96>cnokJFIvR%0mU0UmUMG}XIIpp)O*P2LzxV0{zd+dfcu2WTypEnG&ewl9~SK*mgC4Ez|oFhOCb@~3k|4w5vHeVa2xtr0tGO?y4PH1CtX zMmTB>q3T=7U$|9QMGTch-?l7!=nvjOWtY2|u|6p^xI%UG!3Y3c(!cE{xIe-u`b{=F z1uCIv+2=SQbNoGQtq53>IKB8!EE~KOUYIWS{)vf0+Pjw{_wTt%6b<-zLr67wtgG9j zy|TAfO`O{)rGk2O*73dOtSk&V`OIoP{8@$wQ~Q1TBL5D!l{-l-&nzb+n>MqYO6_r> zWjM*f)yn$|wQU4If8auwXC^?3?L*1TUKWapdmKkO|2d%k;`3Hy{0tjZLNvW&u=De! zE~v+y+{Fy-`AWNHA6-0{9r*Ug31#~+8Bz>cENkJa;s*O)jAN_-ss&F^TT(p(;>5Ah z)5<~B5NylO$&X#SxoJQ`axD1syES+XQCY_uLB((QU;lc56%G>#y8{uSTUmzTzx}Qz`Ia2C5xd9Gm0x04 zAzAeoKaoC-7Pg9@itEjv4T>M>+FvZ~TYuU&|Ey*U4-$_15r@ftM^=wq*G^5e^*5Ho zkgSG9pkKK!Iz{ZA8Z&AkOZS?=$_RfDEXlFDQUAtoaY}~SRMn8EFDSWo3D3#x8I$_p zs95LHiUXA6WenQ~S3>pU860f^iCQl|4gWkThS!W&f}GPx^pjNi)QRfUdtl zu_puPO44N^hv4M?zlT;*Dhnq7AJQ>`LxLpVLr93}n@#n0-b}*&&D#z(>A<79Y3%GY zL1*)5p>2EOc4){2+w8 zCifupSLiC(hoY4w;%?_mSAb;z%?LP-zL5b~O2aLA01ht>`A#3A7i>Zm3;B+! z@Z^p%Hy$iHuQj^xGMX__@*>O$W_%EvGzNkf{YlWE6tWP>=fk{`=w*x}y-0YSRfTAW z_(p+>Eq|^#{xbaJcncjcGZdW^i2m_nNft-FAC**x(GBrxr8J^>s82Oz6b^NHUqS_+ z@+&TOn}7S|>T*{OjqC{~$-2>ZGbfjzp+f5L-h{2CatL!F97^DPnFB$CR>|UcF>M`# z5={NQlrzy0Hf`|%OJQjIY-CG7aBCYxxyqY{yk(F`+*a4PCEo-XFuiT=<4RQ<2K@W& zNxbW$-SVNaYtwk$8B9~H6szo<69x0c6ro5wi}pzl3a@7vMt>I0Ujq)4{JzB-tA zqQ%(Sz9QYERBkQ=@@e#a{j=nIv>)7ih^5-=L|UhbcPzel zvge*7GIUQvB_9nC@ik@_eEtC0^Hh(nAlEJMFnVt%)L!L$BPO;B#y7m!CTvylD<>9n z81B|v?^fFpQey~BDZqKwl=^q`xo@fD90%GkocP(DztpBU@QMt%1TfuTR~y#;jkLzL z&2OEu{s6K+zMg+R>xNF?147MjASbK8-c~m4+8ZATmbt)8)E*KGPk<;dAA08{IMhUs z%#xKd)Spe9lu&P+V=Mk;oCT|atUuThMgh*qlN_ef$9hW3cyTLjtrgQ|^<4JUwj;yl z{K1c%P<-A4Ka6ukCg$k{c6(n8N>Am5Pq5B&ov3#cUNc}?Ut3cHhi1bD^qbx2a{9|@ zbvETKFT#O>ACI5hKM?e_(&R?cm!xUTVDi2O|Cr_J!BLa42J z49ddHMt??^;sfDnZbQLju8ksMdMpRu>TJ=S6*7H#*G~HLVRIxDDI^+B*c%cw1th-7 zJ=mf8&>WuMw8b4QZNv=Yqs4UXUh!zC=N<3OIw1hs&5<6p6Ho&aI&yh4d&R;XMWx6i zoo$CI?R`wD?4dFU>Z}pZwPJND8UfB>j4yV7_FBtyHJetbm9aBOxO1Ao)ga1!3BB!= zBsaS1)9|V&7tx;NPg!a4BxB1sWCVf;d3>4^fDlI!7@ zPLMEu_L{~wJ(jHs%^2m;OWo~gvPdyvJ@)P@XONw`%Zon}TT(qDSV+su^RcK95u3Yg zK#|PydGN<(bc+7FI_{;1jo?>=b^Z6LC9@fjZ0}1$mNT;%(xsQX;wl*7nW(LmrPE@cujbV@U*hXZNRamLwboYo@^%$W;12~whfuJXjHy@F}sS?3fp); zIc)-)fz4(U4&9lkI`*S0`9HiZ{RU=R+ z(0`cnn?!gbjCcNezvHCpKd|x~@gXAe-FY`2HD}JBlJnZ?&$bUFOWdykS4{*OI3Dya zOA4@_pm;*cEF7kitfKqpY)Dt_Vsd7sMjr1WggAfJU5m_he-shv>G#`)e7AT%8LCbL z#_eCE1yg-*Bi-p(5xpr5$1q=HyHXtwbYB$zjCJv+;ohpI-Uh$31Z-RO z4An<;Brdy<3XSCvjS_-V_p<=it+90%Hax>IB^UA%7v6tL)#g;?=Q7%3XHT`+qtmyZ z-Zb4KLZ1|rTgW>)&DW}im&k9LYAS|!m;a)#b`WjG@oS5204Ve43Sem8H`o|{vFlSh zIQIBMrPb}B-SFX8aMVQ>1L+Xr)L){`z;MMEPB9M=vhBsCAcf|aVqL&eF)8cLM)k4W zr7lBOvOw00w$53G%Dj!<-9gJGr777yIq0BOiKgIN;e69ZLi=wPkQO2B6`k@F%|}$6 zIVYo#I<@Gc}_GFKz$KhhJD`UQl9OcCQORdX>4%NLIkT1IDhu~h1 zWSIv3(k1;4%E6wiVmV2uDC4$;Qa4Be89-Dmk{ zphO`mv$e`13ZSc6K%#%_%)~~WtBB3_*5APkTzYMNxH=MCRIvDKmYQu7Rdt34{Ht8x zcgXc#E}`}8Jo=zZEjt}n>26CsjyEHkPIo-yzdIA#^5F|;nd`o+;1t$jBSUI^#zss9DSh`uU zk+O1vSV8{}WdF}R{@)2HD>o~M=l|n*Mn6F->#Z*ZMD3w%=o27bDmo!wR>icpx9gI& zh`}-UZfM4f;93y7ZTtCRH;ZlcSE41*aZpbj~-;w>*G> z8;2`nXNAPW*FM3=&oCYxO_}^%5&h+gB3EVeZ^z2Pw*Lba*%;O|cYZhnZst@>WoQY8 z^wbX8$ON3F)|K7aiJc819Us5-v%u=S2N?~#Eu9eD>;ycqiEAjf=Af_1;}Yel*g}!S z`ST82*jgIeXm4*X_hTI(BDJ#rXXF6a06qftdm_40h@1eT5=^!!>}W{w@@qdRad={M zG&U=+cX2W0o7IK1FIO%>kG>yX!Cj zpKPa)trv(g6c7i=;3{THIE;#ENl0M|+au)`kQl-tJT{e}*LYm7Fgly+=r6e%d3i7jS23D^z}m7_jciTf(O3! zbuRVI>hp>p?`uVNC4B{=#~r9c`e?Vr5I{11*G(p2k7OV7xyEL}&;nVP^-XR2=8d!RGPi8wrkd&()+zLLCsd*8xu5gi-@+(((}oh+J0}0O&LUA_u6> z;CSL+azxQ!FttJhP)2B9ViRCt)j&9O59!S>EpVhnAe^{|^y3!~7!n(BLech*byNahr1Mf+T>n$se??W0w2@TT0^vez^=}lPR^^++ z%8*KwW{!5{xE&I1d*_X%bDByVxz#FYWDU$mj8{YCRRl0VJ%&5n%T940^Raia7D7@@YRF*bopO%kN7682Xd?i8?%+8-zIj{5cC z!OrzxhUjNDbG~DksSq!`DpQ3Y%Qo{(@riYnr;17(w;s$Ky@$a4mj01}e!ae{$l_c| z=W8yY4J4>XWE-77^L*SmyUEl12TC7!r#Wz?yZuZ_UZ$(?Tc?U;XQEIEUi&w0d&qZYo$ zQAMgm&=-N2QpSYI3+E#`1u5d)S~Qn$yJtBJs=@L@Vxx9I4Paxd1qJz)9)H&hY7oH2 zuq~~TVCHbMDoWmrjmcE&SK;{>D@;Q@FP-W7iabTv7R=g38`*X|b)%mq%3Q;Al)!V7 z8%168NArnq=;;biTHYQ$WLHoj{JLbgwoh0kU6v^y$2hhV;&1PxH1K|s$x_uW8|dQQmS6xpdCz0PZf4M`N5yOF4S+_@HX;PfTDPnj^$+W(F5&kP5osS{KCjN zcvDsM1lQsTRh-6<_bI2>+0k_W&cT3@)Xb_%>_H(g5N zV2O`t10tUc3<74uRVEo|FJW&OEsuDfm{d>slP@U2$jP zdDB}PSk~{Qw+5VwB-|8j95KJFN^gof{tJ^NADNocULkJFcSglNtHl;gt@F!izo>?; z(hB_6j<8|mDmKF;9)6c)dcR%5g0z__$8x7%10=~g(al3Bdvkb`ui(zF6lz$^+X!1) z@f#=)th?Zgl=1ozbBtk-x8Tyx{zAGFW(`G)bOlkWAHN%t9ecViY-P=1yQ7`4wfK;6 za?Zn7bRyN-1&acMFR0McR=U4Nf{@~nG1q^_MA4N9l_|XM z@VH}bu~olcpFECX&XwHiimv{WXS$`x0Q%Tv^)}610OKO7fa9_8>1d5q!S)ah6gw{MTs%ygw9HtgeDUuIvof?<1AMvKwKS2 zU3%ES_1N@k;T`Yi8m%MA-KrP+gou9p?3a22daR^fU(qlPpni%>@mTO&m5u7+{2iL9 zRuI|;H;gkcC1AcEPaZl<65|c)7JV248urhxxW{s(P=`~}QUt>yRD`oORBR|*jYKal z;x+@c$pJfBb+$V(+idsDm#uv-fEqKrzj|OVDN9gra;|>X{WBt+b&APbLHRtGhgQ|r z6#XTutRbJ}(W1j~o21ph?K(5UyQ*IjcC5^&vMr{@Dsn|Vd+nwcE;AVFn*?EJC zOO{(`8HLft0vYaY0ZD69a4S_Jw+XL^?E`P$;u?TR$C%GY?P;p?kvb-)kDk{PcC9V- zfmp-D&aXU*8)P^;YewS{4(~<_3~XDUx4TR+AeWb0qJBmACMN2)=Gxk9sy-v~>x+(A@PW%i#%;B43)=Z)k(dWB0rl?`^omC}H>YNi?4rz)G+ zxk${eoitaQ=WHp%iRFO4Pn<+oCweM5%{{i7d4_5@oh304!z0@Q$g4i!+ivr5SO#+l zrr>looHZJ=*RnKlon*YDO;?akFi`t1c`wVElC`*l7I`wxiwU)zKOO2y2EETc)@x&T zgxIqNiat^g5GJ0h>MiXG94%s9BiWq!L{h1`^`z&lbo*m5cjfl@>rGKTb@y@yCv@Lj z6NE?mAnzrL+Z)yZW-wTbe^q~iq{H|-&as)dP79=ON&BF?jf=}DI*6cg6P4r(U#%U+ zGQvN`3lK4r?Y;r`_HXf$Z)bVRzfRE17Ok@k(M2v~*5eAb(<-mS8^ngoR7+wcr3nkWglP*DNM(w zTaKYAqiOrTb+nU3?0$$;t+jUWt;o(gbaYw1R^{Wt4aWbsEq%Zx-=gVo{oVH!MN0y= za-9NTop`COUoy@_%zAhRY68|=hL*`;ge}c^BW>nXac@#9ib>qM;xGLO6>K?8lk;+gigkn)+Se>I+v3`54YPbg(m8WBkk^dWCF5B4jU7b)OxfMx=gce>dV~3{03D z?*44iOBv%Vm`F!&khe>B;iR5c4E6_jm+qxyZnq)DG^&d!t9=E)GmX+iMk)C_9;O|) zQ^xYc#8$a%q3gE!Nw{=}cOqv|{*=iBe13vw3CwtUhz#{R)GNA4uvY!GJM{LN<{9gl zro%Ps4&MLSD&;W2>vXm4XllO2#QT&NRkw?Kqd2lZ&{Lxxyp`5J&t~KssNKo7e@P}7g zCfbv{JaIhk!Hk9Hz?Kn)*x!DUz%}& zOm~5}*U+5E2{%rh!B&awxX@4wnj2o;S!b;xJ=EDh}k9~%$7Wsj7#iq zX{#k#)VI{3+2XU{92q)d`3$rxSSc z9cs}uHdZ~~T5>;$rXs{acEXfG`Z#`O^*8U1&P3kio6C(oev#w{9?lm*#g-2YKTOTP zq0K=2j@+0O0rVAPcsn=~mJK3mcRJF^am{cmr2MCnZVdG32+T%tYKb`JXI%Lq4sy`TsAeS`c9qAWmZZ)|4xNZYSB!#X<&B0A$BSB2gRGj|5qVKT+Kb*(z zE{Kkb+<@|Y1KkPWP~%WM2CS-o`V1*`16g&v!2{=oV*O8y!99g=#E_1pjSh?Yo=ad zaN%W+zsi94;Jm6_8@K53l zhfV#$>noXym1KIfP3|b!R-_UW*eNCwBR@LxBW{l=EFfvi z{_=T3zDs|;Xj6PVY8)qbl#5NtEk*V#+cdiHdy-P)C{?RkNqJi|n7q6=Ja(P7)r4ju zn1lmHpZVV;wK9tpz+3L@Z3)-5aoD)>sWGmXoFpRmpi=134jT!=Q?fU$QR{lOBwnsE zR7cP^ym&i>Lc--~$i@ zN+Fx8=UiH6WBrQ~3aA_Eoy%AukPK*99WxEqKw8Y&KiBhh}Iz5P? z6Wt!&3BjzzfuPeRTyFaQQ^D6aklt^?$; zV4AR#;5|HUw`t67@vN{zK^vQC9VK@BS&u zi}*X{0-AIgCMzj>09Q0^3N0X)%)B4mkf1y-X)hw&JVdu!I9`lrN$R(x*uvhryc}*w8X1dyR zSOvA+q8aNr&@aPLHwy#1brZ#1RzcmB_M?fWRSd$XZLy}+(2|c{#Q+Xd+}>3E0W@hS z$)0}kE+Y1aP5d>zbO==o6>yqN4{@&#Bj5f-~HjhbT=L6zD1|M;!?urGikDD<3p(La)69A!*y zxYzs2%VU93u~4Cc9HKu8j2siN7=3WMQ_OgNQQVpwj z@3p=XeSVx=BJ^tzl_&H3&8JF-z@8_vB@a*F`qOc>=#*1|YP$m_xgN{+r6W~e>gn?> zbihin`zACTuNpyAaxi-zYS%6KSKAa|#b05p;3YOj4EBZ6ec`g7KX6hN)qh#vL0pC2FbgUxVrPtAClYA=~Mz|<*Jg08lok;@Rt2S(H3n{{L+)>Ojy9?F0 zYk+pY)wz_@KOO)Mw@q8h(04PMDr%Z!o#ypt$*d-O)8$YZ+KU2e(fvanyF%(I1C@&@ zD0}5dl*%atIw}KYg*D$H*2ZZzspEi%==YeE0T^RF7MWWgcx+U9=OnmDJ`;q<_P?;@KvNJ|l${lp($qxpoD@`}glCw*GXyfusoY_7N* zZU3I4FrO^6{VoO?WxFs4=f+}$Y9aolZ$h3-7|rC$SumX1lJ>bF(d!X)HQ3jMZojYD zJch^g+X^PHkCxijNjm)Iw-{|IDNLX+3S(%CK#&FWTk?1nmqh>+PjTr;Gr2%8iTp&a znp>r$*~Pj(t9!yI)JyP7qb4ylk;5k+_J5V7rXr}Vf;#r>@o=G8<;_0mx-F$=jvRuv!^34sQJ@5%fn=)&Z`-ZCt7mHKmD1?1)%BDZ~5k?mnV;u z^F{zHlx9Tir>9nca4pQ60jXDq+OeoIqc(_#kHe5xjbQ^_fDUgk3)_w+p zV}dYSY12Sz`bpxKYDz8GzFpF@?-FH6p?i1}Sg;V_YuKre~q)X;}3jbG0en`(Kv?4P&1FZa0FJ*Hc zb`=#-V}*l5{{|IAUpT)3_0pzK+QIk%2Wzvr1ZPb)iNb6ilwoc@S9YTN_3Xlq@r2{n|Tkytw4%2<;-+515Wk5dB`Q#zu z$`&DVXvV}qtF<+q90Jlxo^B+r>Uil3%dJ>U_50;okSD7TU0jjSR+2C}OE+-S`gMN; zO(4Y8A_l4GAMmB40{&`Eg_hqr&Rq&)PYxb{Xr(PLe+K?zbPTh%u$gh&-y}9CEjnUdPXcng7|d28VW@R z4zH;pk|eIkb=;$7G73mcLI%M9e#y3pDo!kkQ7mvq0Y)mUO@DKL2yWuk+4W|*+V}p3 zr6&hTmo^g?KCL|_Wn-}E`+kW%yb&S|$qPFu=`tW+!sE{A2d>;6$V4fKI^*Pb@w{09 zD80RE9s88rfd3Y4`p<#xU-k7`-6R7(T`~^pJ9f+#q^XM+-2th;N(BHSF-+euo{Yj- zvE1+7SWbdqEd_D{6%Z&w1Kl!61dFxaVKjV&k?-yg(e+GFM1s%1=X?=WmlrA-G z*^sIOTSgSpcvaenBDR2$1;XWbQ^E35kBGk{%I~z_`N~Da2W_q?2O;T-DjrFn{no_w zC`LV+#_+}-qu#_>S38j#7Ga3ZHE|+I`_bbFlQS7=1QaNDqNdVzc&Ds$`QSPA;S;_q z6%zeO?=vCsL%R#*9>*?^FV)Y%TEN5aht9iuh){Mbc?ek=cufb=L)}8U+`qvn{b^Z1&fmUO)bAwn^0}wrWzB}xr#~C&7)LZ$ z(;;49O!Pz+rVoA~!sxm%m2UiL=@*?^M$R|xa-8)ZJNdZhWCOx~z9KHri+W0sES%8?LsG4ll z_89y8dTnNn6ZL!wJLkzGXFDiPFJ)llPP*sNk`Lsq$_^7PZVbw=hdBd<55(P3*aRG- zTjY6LdF#rF>Z+zWOyKA67=;kxlBv|rI;vKO&z~q>7&ZZgl`%@nS=Cjh;^{1x{ONBm zNJw60+IOn)%C!mc2y5zL0R~|D778(C#dgxP+=^yhUK!B+j2PRb75t-}5jT>Vk-fhr z7@yH7p%K3!*ioHID-cc{`-^&HTC{z6drXn}kKk^8ntiL3w7m={(92=9h@rvbxJle@ zEEZ)T{ec6FY3i7&Z8KWla+WQcimP@mGVf^!EbjWus<-Zjo)xts?XFqd`$b#Jm-@UA zbnX4oui|ZM3yC|(V6Q z7m3E-t6@>BsC?}kmUu89ek%!#4}~dQPQVTX%_g)*QGJb z@3Iij>|l0+EPyFsz7Mm0J046OS^xXDwK@j>0Y=y3u^lCE=ORwh67iqJ$`(bKO45jZ zTd~uesJJN3A19QKiVV&Xub}T`j#a#f&9Dt?(x|^YKyLwqI5iN=(Q96>eELk)viWO= z>Y?HQ^mk(aZ5rz>x{Z`!OU)8N9y?zC zX@#Mt5##>Tq?b(8uKZ3#wb*W zH&)tkKOZm5K>VMFEHRI(jtlL~Fs>{kr#Ai==uDL{PQqYqGB|F}+49~pksbB2e<}!= z+;UJRz1xCs_adMAV%lx_7fQG=kJ=g(1O2lN zfMK-GP?2Y-89<^|4(mRr5Y+k`asfy$v2cjXeI`G;E$4<8^F#c~-80*5zx;FyEe?#{ zPXL3L(Qlrnh{?f`l(#?f9y_JAoflX&;MsheQ9p2M)ozMVR6e%9&N%G5$OD=w_<& zsh+R2OSdQ#ZxagQjVtfLiN z_0D1^K+Vd~Vhh}NMZEBIVE{(xygAxtHB9l|P|NY=OsPJ8Bf&pS!R9ohtt^d49@jbOt_`( zC-&dDXT+;j+9nGuf)3tKtD0>@_}@8`rN6MKc@tJB`ddvtqL>a_zXR5f5aA3P4kHp% zJCNlOsC!z9JXB+>gd@W=zb#X|1HC2vbAo%~AP;r6SZtGykWJo)aM|AU(pbp`M+yd3 znJ-h$B>Wp#l79XGPYS^1fzEL1ZdihGU_y(r^MkUUe_0{}H3UTlsl9LcykxY~sfBc5 z9UayqqfC3NXjdM|o&vI*D}DGG>z{o6cqk$!Jz@;s(9_R zEw)+P5RWFZoNo%M>^_m3Jn&=hZkk>@-})0qlJ1eU;h{m04E3&ZENFcu?pgv3E$$Ma0UM6;rRXgF~AlzX6 zFHB&Na%gOOEF18i{lOV2Q_PZSC~0IK2GiLXAGfI&2;7PZ$TNhZfk@SDh zr_fE4GwH~RCdnxMY8@mhk5i>Nz#AKL>?)M6ine^`NHJTCXkzY+GH)GAlcvu&W;4vU zX+v1T<_&sc!7(c;@ixl$TPvhv)99%dH-Z; zP1bEGR<`JEDCZWS%Y^lz@|5#8PhW{a*Ie#v0Js%)L)+I%7PCiV#d{;H^3WF;m*0F^ zU;Sz`E>*d`&noR1_E`gexfMi~y6uqbB$wn3hJ)0XkToCbv<}3^Rh<^H@k7n-dtG4c zsNsJbR#a~HdxQV#opa-uZ7}s|Ng;au%@6avrEhHix^OO6 z0`AH2u+8*6xpjEKn&^9l6yKj(WgftQp&R38Pg-pyQ%022G>4dlo46BNm*uOC04^SD z3Uj@N4=2WPr@c|ZSGq&(Y%jbU7Rpc%fF8@go3-ryk%>o3@BVp7{PJ^$L$nq-DR$_# z=(K0&s6azb?9(!-Eo<2Dx?X)g3=y@Un>kG1cA~^0)|?D{=01Vj5t%Bcijt6 z+nDDPr@xG4W_4MYp^~Fexv{4>t37g{C1~AtTAEdkn3l!_bnHCj=YjkN`#x78BK-!! z;C)pr{_voD?$eka(KSf3wB&08zqBjb{*Jt%pH5Ztmad?gBBH*ETskG2715OF8xmtr zmD^$6@O%9=sVyBXzjhWZwJnb{#SSKfTI3)6KU|%2j3+R+_s6zv+p}Zawr%WKzp-uG zw#^;Sj&0k<-RI`bdvotUZPTVFO_QFc=X~>NLNl*jA(-ViyB9L91UBQTxY(sfYf{b4 zCF9i2F?i2!4dBpyn9#vo{TQnVnjjBn{h`I6UPzD$BK^#|Ia|#5g|}KFz)BxCXjntp z22Wo-OPBZ(pA7@Iz?ji|ozoAm%u@_%GkF7Oj~Vn*L1BA5^#xJ4IEqqCnUb5J1bx>A z(zYQs6@|cIr}eJ0@WUj9YEj=$NBy3!=bNtX`s=q0(?=TO(6tGM6RG-&5=i7;Ykh*m zX&2S*T|B|~Cr1^^)y4H4AmD&Mi>YMb-C0fV?GOwhv}k^}o`<9H8A(pr%A`?a;Hr8t z*lX&=bOtq)RJ<}N8KiwYVP&#s`qeRY};*$W*Gi>8H3x zLkA9W6gpxs{U{h|m?*Sts|C|;j5;2@?;iC0rs$Tq}5X&N1>8V3pOwGq4YJTG_ir;_BiD(JYZ7OZp;0-B= znyzpc1=QLJ-H9YGzgBx?LwY{lnVA6XgQbZB@uQ`THW7x#HjEY_>V8pa6trsIsrSG-`LlcHoZg zL)k%$(y3=l=@PtTgf^1heO4tjqV6G%YHuSc+xs4>>TSv6GbCWmM3YHPL9Z%fu@)N9 z$vn7(U~z7MS{*pnE-K2M2&|AsDUBH&(sf-cMgYCU#pPOOfUA7KWc8d_7O0Mlp7kF@ z+VR2V;F|dnHuTb14-(8xa`n;_0E*9d3dvKGixZ--qE_E1kjbW$>T2aHMA2gX@fmpb z)6wusgo;UNBV->9Yxun*E=AE&!wCcEBJ7MbpOp|`$w#*13^|Krf}B2V2nK?=;(3=g zsCM>RL|q$xi;3#JNW_2BFet-fUhUUAe&=X-JL$-|yW%Szz2ivsrFprf{OB2;S#=g9 z`d5)Tfx|#|Vb=hVdd;n59sG%iY4tS?G9#;j@-6(VT4={Lr%&coIehqDwsykgxv41z z+R81U^OHC2JVHlBq%Q_o9?%Ec%gb<(M$+5M!J>1m8K>zG5?XW4YQuE?y1E_|9oq0KtLq|_HE`QzEDQ%2sr`n*)&5fGI(hxV+0LzX78=$RQ72q>q?wy;ThWb5E^#jm8|Z9GZ0y2!+CLQigCbBV}eh z+g+4nv2SCmUo>>x&A6w`#g~IC)^D`c8clLCS)4&ta$3<|3qx_HJ*aYV43bhbgi`Fw zV1ysxUMe&hbsuPcMVwo4s^i1765vL6#|phxX%ke_xb`{ zz`eGPEJdn9EpmEw%md5u(4Ey#%50acggdiuniNo?CNts2A#yf#LBT7YBOMR~{GK!I z*74Kks~AqQ#$*qrs|E$=w@IktC@n)$WGfdZ$aKqz4oO#)*phhWU3jjsj0Dj4S4tQ$ zd6ca$z#Yt|8sD3H7O%ovWd&|HX6^v-5q~5Hv+%uYA^i@-68&n$LS$E{f2_Pctby-H zN6&1&(!~%is@rve*U2LfQeevMjba6H_bhgS1LU+_iVP)&tQS$fv zm_Sxh0pQweWp3^cJthn3Ff|AN&IEH{0#Z^rs2=oSeZg-wfJvQGv)WS%wQ=WvKF>M6b+5qVHf@TlGtCJ z0?wbxOw6ENE!w~^D1)b^F){#4@FHSFFh3FNu_YnDhx$2WsTZvP*Yf78Yc4ONh8*880MT3Y=!i<4{$!;c zjGaI(wG%^pr9vT?r`NDp-1#|vXcAmvE$E4WE-N`CGmQ!%i;^n!tvrBl0KEU1E6Ulc zy=RUvB&NimE=~*j!zB`#F8Rs!l_KMZCTQ==7nY$Cd(k&gQ%-Y7!;NZjuhx{!XL=|~ z?x3pbh|}IlC3qg^QO8SHMTHNf9t(ql%rE_7v4Qkd(z)nHZK$%-7A@NbaY(*t^ex3! z6?~E$_CB=F^#MStbPI?fmI2nc&F_J15rXxh{XA2WX==k}rQ)0X7Ty}U-%j|uf)wI7>{72e=~-B?6mv?!?kU_V)D6jV%k!85 zv}$>AVvP!HG2wagDXnl*JbBODY*mSMMuz%5R|~fv{MYE$7N(N)_!?fFD$B7R zPO`E6L}VkMCn9VYQ!&a!+jR)M_xXFsm>7w4MNJLf8$9`%Pa7JctM{JG)gQluA|+&s zJ*vWkYc{p$T-}GNHUhO3rSFe&7`q7+Q^f}Tg8*9W5#m#*#|)6dUf)`Q{2_k&Y@#KN zDa%16+^M|Az#lK!N(na0Fnd(VB(%EVJ4mdh;t^wXIc^L~=^XG7CmIWIi%nDabXMAf z?p&CCw_hy`2~S#^_Y2gC=i9sp7RS^r&!=juQyqC2q3Gi?gV>B(hk}hev7R5N`v#0{ z)nfo%^=9C-r^t=xQU|K|-XItC^Vw<4#3 zkb4#|hw4%A%`O^+%@L&jBIIm3@7sEkwLxd@nxfblq_ z<&V*Obvt^3+Xr<1i79Y^*z=sKIAaIm0>Fy-)Jw#h6Y3Z6p>|nHiRp(LGih9wb2Hw( z+-dgfXaif=PnhZ`-b3sZcN>^KWRpHok^?x690y(^QFS$LI$}DnXaNtII7{v$LYVpY zf}XgR?v6rSt-ZlOq12&&QcqFM2X-H@N>}C`2F_ndfzX2KR%dQnX}}jce@dtFH=t7Q zdWC#6p0Kio$oUQ?ymgLpnstYLgD-gnIyQsEEh%_Wd=tR(@ZwOPEp; ztnBQf8`D!Bz+Qec8RTT?`llAVt;`WbO`oXIB;&ZD*R8H%@b3l)1y zb9aGjPNR6DIi%^Oz(&?OsY^~{8a2#99@(R&jeXwU0%a3Ru%+9Hd;|8u*QnLg>MX0Ee zCermb>^yi?jO(o}?I&-85PFtUo?Xr1C*~AW--Xgcu^W)W6x9Kr!&?g z6|*UaLx07$%w=*fY2FN}2^d|RFY|az*y3oq7unVvmKkQQA*IXUY3Nk&;e7n-I1(r@ zI}AqZ!UobY4u{uok=r1%5T!gT3r$k-^1Pt(2SUZ4FJ&UQ?*RFQxv-Axr*+MRrIPbl zH1-hNA)aiO*q=qJE=-f44h%2(`jCF5w`MU^#M9IJhS$q4q5Ik)005hfT7Ujj)Kw?v z{M(2M+3n4;y;N20i^L;0k`Kc-?rr600SN}qI)1!ycj6lI=d;sj0CD0&i)(!{C4C+}al9VH0705G<&dR6UP~=Kp^g&4h0}R}(M9uNWcdS1Q{elc3 z=C+l#R#@GSL)buR9BMW7cz)+{&DYfvs&QNw2U2Xe2`$F9LWFsh8YtNS#W=SzEYM$G z_t!hiv)B8iiPH1PTGz*-)Izp_LuHh*bg&RNPU(|4iBM}~MpsvP=y8bNn&Z)TM4+JDeQ|>)89U!?<%&@Yh0qVXs^jRh ztHqVQB5>AuWdnY%xc2i`5ziy;6C@y#B1v%8Kq{{F0mOHkr*O3mKmoXSpnY@8U<_i| z5#Ysj4hG;dZnWLtH>i5-u>v~lM>kreqEDo<6^sP}XX%qt8AUZC!K~R3w=bo;7Vge? zk|9&xnAuFkc$vK;v~Q$04AXXZjbiOc_$bo!>}Uc5@r*g?XV|1=+`oNvV!V7>Cd;K> zAPo%m08wFL?ziT)yO0%hprB%AB6D}NvDH3{+FBQ<(yeCc# z$EAg@S~1de5_ROd2(9kR2sQL{KmIR1E|zkJrCKO*j{nZXDc3T%~-$U-sGL< z0M_4_2%bN<)6x5lc*X6!BtxNh#(@jImaMCWsE!wBe~o#1bP!#sdA6Wpy<^ZKZihm` z{A%gsZAbH*dW)Z}&C9-CPiM;rN=^2N7s+)NXYsgDFzvl?E2#z3Y2X?aHDI`T{R6fR znOY?gfN}T$)KaOqMS792e68e*u^YF@1|XW5>opm`jIuAm!kAPx%r)O}Y!o8qIffgLWu57HXzYl=vbJi38ovKN=ZZab2YP)Yt$k9kHFbahfG=~1xA1f42c!54=r2LO_c8&~vBYS|V1ZUZvtDU!C@{KiUS zroCGCvQ&Tg+Ql{}s?dpLQrx430JrO)=Z*8WQ8hpv%x5exX2j7`Ru?Z&J6p%gp6Qcq zBA$`igB1kx;Fwy9{yofj>Z{eQMq|z+6dxR}s02!uT)5-C>R}k4C2_uQW*BH1!lgL{ zHDVlEVT%@5nMnj;h^jZTzc$D73R_)*w_A!(=J6AVVDg|@^1nM{9z&R_4BmmJq0@kXbvfBk@LL3t6`lT?B$W{3w#*S)pQ}-w5?a!6NAOVn zJ&8uijNTedtYM7nKB=G}f;}2tfLu2fZmzd*fjK7n1C_XOG5@6tmY0~2c~0wCdmhNb zhx_AcftqBE8~bLz{-uZre|GcR|DA`-z~bIz2Fny;LuD6 zPZ1FAZ`%5}R-9h)tK2&%tE^7y6-L`MB!zNE4ZN#>s6xu$h>#nmPI>lSyq)JmslVokPhVM+BHX#>g0}G9yEF zsv)K%Gi3$ablV1=E{k-LW$>&qOLq+iy}l2%_tuI({NpuA^nfzNO?a4L{M=4jZmVkO zo1t@fqHfb9TLzdlSusgJnZ0P?twee|DhO+_oLJqoR_QvJqvi$JfzLxC%N1!c{=4i8 zFYgmms^C(IoEe-VgwGNXK3tNX-~o~J-Vauu2}@fMQokHJ zR$BDo!(*}MlA>Jvw_l4#_=$f{>r*(9Cv!uU8sjGCtKy6o^)$cJ-j*@cu8j#kt|Z=M z{4|qGq!;u`H$N-|zL#Ivtz=&%6ukZ-UG`#kBLUh9wzNOB*Fu6LwK|*D;#pF*k=2kC z9JE~4K+ag>b7Vd`%yB_vJvPB}*~((}1~iqu)wQ+_Mc+ngtWfM4tD*fe87xB_^+_X- z;nE4ak78XP#O4|GG%wg_NJV=cW`VzfD$K8Jdlr0sSei)%3|Xjdr zaoJG)KI~SGjJYI~LT^~@{oxuTu<~7u`6`1t2C{;o^8uWXXKue?rhXKFnt)}$y?-uT zR{_}NQ<3Tkn>pzcoPIS-2i({$g2~j$!*s*7v}lpUsmB!zZT4m*hAK$i`>xao)AdK1 zr05>cW(DNTo4|B)Ugo#Pqp;g#hk#h0wR$VzdltDz=`n5Pm94}w@9^KH_9CnaIlE)@ zizqAWuz}5xia0numS3q=S6g^f5v&gP5J^`t72o9h-ebyoLX-_+@7(AC1wkk8p)s*) z`oJ?c-I}S%FkjWT*`4;%kT9uPFmGmSO(|tF!skbZl3cHRrNBc*T*28VYk;wMIIgWE z?`|Jc8N9GVxM^&eQ*&C6%r2e8b!o1pWfQ{UAk)X>MeF^eIOa7=Us;h0Ap`4BElz1#{@U_ME?evQsk2sK>yuCfc&5q_oC^ zJ|^e3Ai@ea7RkY=M61kio4rH>QyHMfG!Mh$AYaMXiVw|A3+O$(`^tP?--zHbHk#WE zDFqFpeN`}3l+#%|C3~yRb2P%-;=lffbN2r!$4OCKG);|uRN6^lesoO`YpqI28>`f9 zM>N20#A#hLz_e|~s2~UUX*#mNVyImIk0x#Q+rib@#OyZ_J5ySLJuq(Cj4UuUfQkKo z146EN#}f})6JNezLKLdQ8E`(F(}#X-dt9~+M|oanU4ha!RHBs*vxvEN{P;NoQ!7tv zKPqmigmHy~5iw=Zq6kt@skhNKyx+K!Z1sKIUT@r}=}H;USWTY~O-ql>gLmEQr%jYE zg-xHI4C?C1Q~+%6(w@(?CyjkKmp*8z9@YBnUNrjrUN72qWcm^tqnBxdNz_*+Qec3P z{Sn5oyu1p;Z%JZDiAO1KQ@-wlP?wv`l>qW?JI`@bbOVrI1hFWo_g1b#YEfM}`-$}jBAqzmYiGnW)@zE6h#E^L&bl&D1-YK>9ZzJ&E=?fLlq zJbU|d2RP%4VmBM;fua?mkP9?VLvWdj?L(l2hGw-M40aA3<1iA{ebKk6`^doMvk-?g zUUhs&#REz!2vO@O8IW)UuG_xc{OLg@qi&$;*Xxw>=P|F~+Zuxl;t%~tYQGQKug+Dg zUR&$jDlB&H`6^&E?Ar+IRH@D%8_yjf2>#w6_`bJwk=KNbd5eds!4US3LUtFoHNTV> zss$yJR?H`lk_~*tew`~+bkT8xkqpCq2V^ae)dFz0siKZi+X!M`UPQ$Dg>Dki-jRNDr>Z^gcpuCBvsg%_L)XxFtK z{9N4Wiqbd72Sc0byl}9FbMmh&l}yoyFA{Sq2SFxZpDqIBz0CwSjjs>A70(Ay-Ql@& z{?WeppSFu7P@#7`YpKo_t>oa={}6BlDgg2|=0~!SVf&!ZeBM}Ys{U_gWm_o6B!vVJ zED1go7GS}lYgnLD7Kkn&A`c)#XChHpBp(DY=)z`CB*Eh43tpst>AVpcXuqNNbZ}u% z&Y%epBmXSoI3(ChIL}~BLyIZWVPKx3X^_2uoH<5F(YX>-7Ff|_puxic|B9+VBmmI? ztV>f2Vx~9BmJ3&+SHv47Thh5M1Y(%7{v9Yq-& z>c#c~wocW^f9M}7Ne5Ln^R?4QAi?kQ3*-UJQLV1LSc z8k_d|e?1d840Ila-RKD;Uju2=49AlTl*?WLXC%9Wv?bRymS1_uw*J!=n*uEULe<-cIFGf79M) zt=)Hu15WJc(jqTTbo*P!oAQ}_ab#PAo=YeZU%I=xw+nOO5O0Z6pN#|NmK>F;uH9Uh z@9U(%j=+5Z7S58=CcK)l1zWndZH9_W1!e?wonEe>*?oujWxcDT0_Pr;-?SmSY~8id z1TMI)nyH4A{s`@8(pZkH9Ux$Lbzp!Dt( z7(c+Ah%CY4Sai=GO(Ovgd^_B!`Vo!JBLexz(|8Vm*4GFdz7?8U`WO!(V5Qt}(AkgR zQQF&fr`kK#O3>)0{yOTk*3aj!+h=NN%PH-7%~Uj)P3Ugu(H*kn1{h(jFCY3E+TM&Y z;9TF~)%_cdmA~je#TPrf)=}U?WqL93vtS_?93|$mt8-O0UakVEQi=)fz*qDsT{0Cs z7En%rag2lVZ?)(}W`*s@1a1xOynXX?Xxf+(WNRkn`0$sJJeQi&&Y}xGy@3snMy+(! znaf1AjSfbmG=kImgwwliQ|wYIK9@Wv^GU{SRvd#JmXzIWXmEpm*#4M(qeISzJY>U- z4h^yxRfiP~dmBc}?R}1`&~8?%PDw^5f8ioM2_T{knPwAlO1U~0gRJ>efl&-yp@W(N zdMRkXKrtqPDcqqX<&p%be#nmM{lA0i1B0bz&6^B!{x-RqlNJTj*|DkEURNPdSo!(_ zjJP9R5-Bp9e3E~P!IG!b6@-Os>9$p#p~(x2)09|i_{}pYZ#wq=WC*19BqoYt1o(_n z!%s3E82S+#ja=vHD1i%{EM<$@8Je5H4+yIf!3d~tr8bh}&LZ`v*MasO$$UMo&tR!Y zr+e@-_aG8+6lvg?^D)mTgB7;Aaf$5$#y|ao@npxMpX!3MHRcxhvWS>!sZ}!JvG0Y~ z`^RW)A_KO%gVPf_>d~Fbjbd80yefe4ecd3zFrrH>?&!^w)fzZx%f2hRCddFc!z(3;vS zk{Lt(u&9>UQ8ykI!0}o)Maybw4Jwl&ih?=hhJ^${3;khX0cU{PazlVh-_gzq124He zgiaAI(VD0TVeFY66qa!`O{J)@5ip13<9c^waDmf-JNKRmgP~Y zjF*6%5^I?pBJrnO@YFO^RW!%Wh>cyQ#wLnpD*3IYi4}cxMn}pD!<(__NhFLdOn_0( zAI&iNCmL9zv`Kbrw}=H1R?}~imrR!~Ws=49U?Alv0l7bE{NEg13}k71JVV_6bER`?FVbyg(C4_cr+?I&^Use%Xd zeiD7=ND9xdi{0Pue9D3V;h^jEz12}f*EFOKtGF#BxgRk}J@+Btu(fB9(D^W`^IOZ7 zwP@yr=jh%NtbcMCv7>{4I7GR;3=$@ORdx|YpTW7NBDSzPOz)9T&1`|5gnERTSh;2c z($~nbMkW^%YA+ykxZM!rrfhl=!_uff9qH&rz|Sz~$EMp0-q>LPd*yAVj#6gW6;dmr0}pJ6B_ zROPW1ra7eB3qpL+BMg(=_df@VrWP!KR`O7rY znf@2{&NXM9Wi|ltx=&>#J-i%0tfhZB{(K*qqb{~n-vBBHpmizH^TPbA$vsHDPakYb zxcl!$O4+-M5FtP6oj}HVCW5hBb06SbH9Y>4{GCizphF*kM+)}ep6?sy~sGjSpo1^)D2G3*HZ3Qp~kuFmh8ll4>^`W1}*bsBC> zo-vI%DEe1#T-KQOjDo*Yb34Cl_SfxSZ-h&OB_5)>mmT_11C)&AGs3gC&^+Y_3(=-v zsS|5@Tf4#mf%>SY=|OOj!^j>GY;4l=Sg&>eO#gF{&!0Pc!WEWp5G;f#0RuDLIU~RX z*Goe$0o&;UK%0SHDI){H6F=^d26On5>9C2;mN-J}xJ*m@goil{HS={u=DLoMH5SIb zdoT9bQK2^MJI|Y%PIhB0@6OVMxCcS=-G)xxhW~U`;IK7W$v-SXAOBt)tgJc)gEZFl z8;=Qf)Hk zNqxX7lQ}t!gGECi=uaMkT>{<7cz!(?V-VrhUctL2=hJszUk zsKzO)&FxC>A*(SHO)^Dx4)O=G>-8fa9}R%j-q4J4v;OJQbuM@ZLe(}&bE{b*9?G{s zHi-_i&f1NnT(yd7f5FQJuOs4$V~1tJp1eJ~>dz5w7Y{iG}9YF2=wamsFQ@ z0gNki&3&1m2woh6Ju+Kh+g*k8;z(BivpNaYnw<0)C%rn_!tqxLT!5jKl|n{${y89> zzN_EBG5g(94w2G}L#^*{eqaj>)gS~0+$=~gO^Nt$YNA;pB^qdQq07pV>Sb!o@Qh|amF~NL?^&l&!AHS&k zW&wJtwN7C`r*vy71cB(NgOUe#&JpkoxHp4quT{yOk1Gpr`w-cBvalHY`PJ$h5{=dO z(NWd;4>gCXk#xc(|2eh7TSu-b3C7+N+J!yS$^SbRw6Eo8(+2NQP;!(Hkaz&3R?bI9 z&9lpRV6$5+>fe|_%szUIn3j9m9~|F=iZ8I$f;c1rTPZlxRfW>y>o1T&Ml8rfBO`40^_ zfdd8Ii~gR9bCOYFqH?`$(5?w4Y!<(jQD#Mr>reN^*?jbAz^qS1WTun(xFqcYb8}|U z8vu-YRFuGYlwkOsljPXB08e#{q7WCaaX8zU1xqhC`aN%d`yEL_b}4UWD8-@A7RkU! zo0pQ@AI3j~AU1=Jo*UD^1K7ye0Wu6knM1*Iy-t*M9nrB>oyF&hx36lR4eL`+VSg3N*{&C^WZ@;wZqi$qnJC! z$i)VG@9ORKDGA_oU?+x=+p@FWV?P63`;@O_hilbmZzQuOxeMheh~|#1CTt@gXBjQ+ z5H+;?ygM$qq{3dzO?H7ynn6jHh=3|{bQ9LCavl6>)Ij*4%z;SYnev5HeJ^c`iLw1` z8CV82-ApH|v69SzOj-?4m<=yv7qU$~M-#MGmATEA4##aFQkGKscUp!NUG43@q~%{I ze*{6WeeN)9P-$IDA^JmwMu0HnWFu)vFMNSc;2by0vnH^E@PjgUYC4*Y>jA#}(96=I zCI-<^Hk8#fFq1jj!FJKM;aHijK&HPfsrb-j%|fCxneM%!bwOn0=6&a9JYO@z3>+)= z=PSeZ5^48xV)FMCqiE_P9ajB;tP@MW;=yPV*b8$gy2hnarK_XpdMN&;iND4Ai|p0q zhmyB8EzXoqp>#N0wI&s)qykW4M03I8aj_{Z@{!=_Oi1q2);9DyeE+ONNwcO$DB#dl z1<4SU_P6ufd>o7t6-FuTm(pd3Nmcij(oxJ za@MGWbZdm*gWZT{D+376`WwrweF%!%wfvoaVacSAyNjg3-6WqU5RHG4(I_deF?T#XY%xEYVp_M(U7c<4i0|8P4@JoK#flUg=l9Evrd{Tv& zplU*h6W$=cSKlTeWcofy3`dxXms7_x;Bp#YU^DxbbXutF%W$<&hJ|D z^1R6zJO{A&-ZZ~t<}5gmZEee|DKTQ`zOJ^vteWdP4D?u#HE?(jwz&prUF?DE=w9dm zX2xCHQG**!(B9IQ_n5(LVMIR_mLTFl`DRwxb6q?k|NKCJfH7*93YxvZ8BQ7`e^v}7 zF%=_S+y+Bbh4WWiDp+#+9;x7X0eZ;QO`hC(rT{6w92Pf@l4ttvJdvuL8#EQHDAFfE z7d{NUTqWq2J-pa=A}x4O+)-?49P}p=+EuV71MZcE*6FIz6W(GCdoe#06@jF}nCBwzrvLQq+2NP)V_+k?dgdIa2Y%m@-!p@M1 zHL=3uf^c;AsY8Sk;t;U$0>3_z8pSN)=!dHx=g&2~b6tcm3=6ZPRK(TeRw&{aJyA8GhnCC=H+)uI&D zOq1_J%kd|OVm-Ta$*(I!Md~u#hjtN;n@KtiM%_(y6-I0mkc(jCBri0n_$>$g6)?p=IG`?1sg05=Ks6YgNjNG3m%Y~ zP6e{AGYE)+ZSYlpv^{J4N7yAVC!_`wU1%A z+GNAqzfb4E%}@lb=y`kl0ljXN%ySd5GiCIa`<{Wj;IkIK#Y)@XknVf zO-0^z&cXoW3uqZ_I|Uah0)`2E0iNwwiYoX^R}SvbYs!SU4k@d=d!X3Ioyg%+Y;fcC zRk;uP)wd%+VA}O;LdV2)ib*BwjjnFteJGHIF5a0veb$9`&xG|lzLXP>f$`g~YNHN- zHMwgpQ{7(bB5&zR7!jxeSkZyu7jktKF*reXV3pogQ0>waFK1;LE5TS;Gymg$a%AVD>?<}Imsri?bxv(%+;dRiNrbMhr5<0~#SpU)_lN@LXjoL@4gfO$2jb3a|d8PTZA?u6N)ghbG8?82Jan9I;u= zU`F$W8Kw%F++%VX{l@FSycfhi+%(5SK`x^IK?xBuI;zy!7{wy$H{^#yf*ITUL zoUp2kDrJXWO=d_lZirdfe@&l`K}<9A>zXiurz#QZam)jgrvZ1XzKPc>U0t5^8i<;4 z@$5%$a&9QU|J@}DSu!nQB*a1meRT^CMVdVyCVZ5hlim-A@9*u#Pi^fztLvVd&o*_G z9fqxUe}aIt7r;YP2^frkU{9w$euk)lxE903Je?nw5(k&r2*RAhZPD`DmGY}>>!KI< zEe;Jc;FH@%o1~F%#Q_#i-YWy7um}r7VySam-0ycbe&9<3;gB1p=ex9NFPPvxN(P*R zCitZMDJBcB3~70cmI4uPdisZ*W7!Of9EcoGx&Iv=yJ2${dh2P1T+@~x>v`&k<0@p40SxcjiKf8r$-|FzHw`~#LPclTm)$3BupD$oG9i}G_IV(;U;6&3c@h0Rwf;)h`(IUpZ*s1?{w&5PQWD#Br>OEkJauF5izhWo`WTElwE?n!{aQZslb$ z0qauh>tqA4`IF}SxXR5;CXjvEl7wFF$O3A{BlRc5RZ93c?=@$>31kWIgRl%Qiwxxe zOkFO3!s5endRgXKYnirQ0{FUB!V8gq03+djduU_w$<7Vmd0DW)^hVJnd?S6|e;Q8cA%B z_37DjLtuG(d=^ZE@a-2DPy$5Jk=nlaNX4Tz;5?}7dO2ycgyre8s>#uj)K)pBKrDc#yXx#^E?y) z|LQMV1cgsSPp;gXgf^9gcUByqV6HhjiQEZ+MweIWPV)5C4t>s~?Z`n|ett{e>Ba=!19c{fMPzfvi1&Nu_+c$%|>j(>9l~Mfz&+{-_ zjzaxK@>pD_M~^$`?p%9^S;xjj=nf}Kx<>!`n-6O@bii0U<1izw_XQuKbo1yc-Hr=FT-TiJx=10+gg#@Ul`xcaLB)_# zB>KfyQ|HbPLo_#SbOY6cHuPMOP%g}Tk&=<3m6Ael@xsdWkyd94DdyaCU0^Z&btyID zZlL~rQiqnD!phDn^?GVP0P14j3Rv|Cd6O4IzLceYO~_(Dy1cIX`Amr!;QcNN93xA9 z|LUsS_A$xlP7uCra(8Df3U;x^2t-~#U+X%${LnWz} zYfJ7MvmWdQQPn<3D?dw0H19PA5{LwPPTz+BUS(Qk)?}r^zC?~1g`l=Og#^;BEjV1{ zE3=ko&-Uu>So%8y9=ArDG%e7_BgDlJ?#S+PkTS>2#COW-Qj{GoXprIjJuK2LX4u7C z$JMg0I$mL(y#BmkTnO{<0|1&RBqV!xEd&X2x1F(sQd0$y%*nJX8dLK5DaxkbJIE`j zqZnBOMc!R__WQ4pj?qI|7I}0}dHTt+z`gyAhZ9v~ zwZvvCn!^9*dH1>Ci;0?97Lg#~Gy08C!l^=>(zcy@1Xw);VUNSPLvm0k-%GjRl+_zxL3%3w_a~<31Wr&fVeEHzN~O;DfRQ6LB`aV!iHe z7KXM)sTt~LUyZjAFuB zis0$L85i+GyIRWfA~!#wcog)`nl7u@9);>=Cp!z?VzY_P1oBL}!2@D`d7IR8W5G*K zn^o{j`YKnGz2vd#to@;%CB=D!Nb#*}ptCe2m??{K18pCu*_fd5$$*gDbgH&)!!*=TkbO#E2mEt@M{cI#U zZL!nAObl(PQzQ!t4Rw=lMe7H~>3CpaGxY|#Y&x+M!9b$sVitbMgL zt4J43Rj5JQk)D%g+Z*PH+gcA3oxs)dNULQPx5ehtTiDCe7|TB(Cj_1l7?c0ixPA1~ z5mHFd(&hmQ#k7_*2Qu9s%4RqednOc^H1N!G()I0=VGN3R znPqpl3{xW~%0zInON!K2oy}E)0ySIv?HtShO#B87zep{|L#g?ki zg6%^>^hvXjA=PRwc(!`#^;GS!Gd0&f?IFSzK<})trdky4vJg`TZKiB6wpCIC=h19f zC3PAXE)~)TaRcSxIvwjdJ|__LFaN}r+6o-PE{Gue?|K?-KbwlKTPLmUaxUawWdhs3 z;vFtTI!@Twgm?ErwC5rrz~qwXU*e<)Se^G=;r~REx1c$R6k%SyC%|s8KOIXQU1Xlx z0hFpG_$CH9W)1#4NIcXI6pJ)!rmZSeq!Ti?<&(6N13hnp;NIIlpQ*H%NyhXO^6%c9 zA5+eRattXHthpvR@u^<8eoNggz+XhBud}OdsoELPuJ_)4BNLhpadn`;7Q?{PXOfrk zqhy*Rf_ijJ!=4D4f!KGUxK4X6#w<*30Q98?VdA-6;av%b-a8{~DW57vsG7_LSrd*y zTs`B&Q0%0H!My ze3CcU2DXBI6`Ml+Ej#EjyB&1t_5i?QWMcdt)?WWxz{g88m$}_m^l~!U6Y2&C3T5*p zVxtm}@3@ofZZ3KV!Dmw#4ThLFsIOe$9wFC6QRlI$3nQmb=XfWRiPd%>MQc;#J!edR zA%&R3uFeQ0j)Ynt!!+>__Xd_GJ%j)7+tj0^fD`os#;9i8c?!;uulp-YWQd%{_TaD= zPw8E+?@yJ(bV&m|QW-(jFWLl1QnZ8)LZ&E`%m!Xf14T(@;cVQGsA(tyo-|KGL8rtMQ3MgBnS>%4;mt%8 zV9NMOD1gO;P18_-En)RU6hRm_4TUyBgDEx%MG{&~Lt(($w$o5pFqFbX6hTNi4F!mt zWG12j^U148D7>Yeg^X9@>f=B`_rbjE>H}|1bz5cRJ;2Ui z0G13Y26)zH$VV%J!TA2>)>DaL zMgJr`lv9ch<&j7hP1qHa?z^qqmPrR30+AC?!5?pK6Cq+pLU_NY=ZbO=iB8iNFoG8eN{<>{ zakX1+%L1iyc$pC-Gk=19t_mde3hu)(B&PB#f5{^jK|2B@qFpDjt4=5rz~w@!Q|#nV zu#-)UO!5!Xke%3fv1cbWVhY1d5q?{yh+1gxuZAfi=;|&DT7Q-)Q1OwyM2?_%y(jm! zuWyjXzNYu5vNnPiafkE5v+L+qKumi67n~*5F|Fbm%z#x*n}5lHJWuoW2E~4J2(}D} zIa!{n#9Cqht-aio(wWos$T{>@O<81wGgAsSqjTMqe!vBXOa~Q7P1AhIBWAe~29qk; z_xCtQ#c2N8e&P@`4DzII8QkNfvj4kwEK_>9mSt?qsnzAC5sYZ#u7@){)ZE=8if5)V zK=G0LtE6evY=0*q5IB!y@M(~K=sKa;FoelHt_CpJz{HN!envx;qu=tn{=;pBEH?hBR2z^fosRUG(7b{SC60lf6WR zh3UUwdQ9&u^5z@R(2rQX6}I0V_^Xt;%$Ubb?2CXc?SDI?TI&?c9bcZkc4{@MkqaDD4LBZc}D?Y?iOroxnNun2CU(Lc|K)nLn zD|3lG&n1J?nRcK*@ur*Oa0!mN#GU36Fn=`cMZB1id;*yvWUyAOp95f6H1{H&Q2CKego| z)$wYWAVi^EzW<}#3rmIaqosnGz%mn9Gg>Ol=avecs8Z`DE)~IsaqBCtcFT=ea(^l> zTcmkeW)Mvb0+#!EV+}U|uwQ{qZ2)Tq1p^#`z@jynyFt#Do@M`TI5dp!j=qL0Wk(B7W+_W7#oJARSi&feC;8Y( zyf9_>zK$Z+%^OnDMRK+eIef>b{(rDI@M&8PP6LwRA8)kp?k`+|g}eq@yq<-`16g-h zW|egnF?yXD5-b zCO^7Svp;dQ4=5nj7f>x z@y6p0EeiaY1##A2!st3>=znyZf>YapQWIF5N8a@fo!*l-_6jzrn~_~zT#m3!6j9o% zA#4lwXm{~m#q)&id>9gT_J-0tC6GFNHgt|hUj#$7F;o9qy0$_&J#O_QSH8j}KYfXG zhSmBb|F%5FHPVT1Wb`5; zQ&~+vaB4jw`i6Z2ioxDcrf73Xiq;<1>+2EK25d*uiRyHoqV3UB?2gB+X0TvzU~pPg zCzP;In>Uk0wE<1TkDHxk6p3p4d|O9@TD}|vLcHg!XXa}sxYOX$Ii{Wq?!ewIieuO) z-p_*6fx((VF4C~?<9~~ie#{rYt)$n#0beL9V!9ql5B1yZO`+urfV&FY} zGQ?PrLVB*u$7zDz_;I7NA2-T*tA909bW-0it?JZ8vm>c5S?WJw2lp~NxY06^n3zV-16Q29MkTzKftceav(|jynb`c6@x~ z)Sf}bV8P#VsM|GTIfkOR0F?j>(v86@p%R_I66<2wK0Q?(c_H9&u#O`y1QkN};(t}n z->>lh*Y$sBSbx4G@SmbxmoJI>harVca<38f4^iR0=NF^?70cy`C?Y8c2aSJ?25G4% zhR~=*pNTd2H%I+b=n0826^Bv(zNNllJijMl`Y?7Ig-YY48^N}G_*~pRjt*G&Q3Cme z#t_5PCTOVa>{1yx_09 zqG>sU!{4RcILPQ5H$YZx7i++G$X&-Aig1XSxbl6KX2tY7B@v3G> z^ACrNqUvC7VzJ)W{MM1+?J1htS0C0$*?1!Z`OvsQwK;#))Q9_3{&*ahJ%1*;1^79E ztD^&nJ5xakZOo);)fnX$NCa_7ldnzu2^kV7%z88bwx$4=hQd{D>Mcb}G-UJS%;&-Y zK7UuaD?pbNZE-LdIMYNW8lz8xpc#dUEQyuTD!OAxaZF_=!Z2*&u_7sl!4@4)9pETJ(rjq&<;l>l$Np+N4!S3ey_SSFL|{h{mT6jETu zlzP|Y;;t>5Q>b*L&<>qzb=Uo#j4^T8mw&k{G^qH0E7l<5IFexB_v73!or2`Yb;pg# zbr`!cb=5#$%QxIa$}Sk}n(|{+ANK1)b$itxrY4 z1RU#PzsDtnYHxDamX9Dzt3|Qy8gO53%Z9l51S5VZc$hHcDy;~H>djOvN0Wd)y_9MzLW(PuDL z`%_&dY()*njB3lf($v!_0M^F^Qky2~*-i*eOS>?i zDU)>r_zAAFyuM$~iVBg07R9B>nnhh!_wbl;o_|&OtOz~lccEN7_y&`W=d&=ad9?z7 z9m=X%yCW(}hGEFg_SChV>C8KI{Xto;KY!9vX3=PFRJYP1&e!@yhtUgFs zpq~>fvaTT@HH|n0f*{VS9tfJkdblJAmQbluAQ+&7U?~t_<51wU1PBf&Ns}n)96U&( zB!8oZIFm$5#uRZniI$AR6PZLzCV*juNCN@nWNGA-Ku(%QPNj%-Y2?&`Sd&Ih!~9>9 zK%l%$Bd0aQiZpUMASX{ECkGW{X%aa(s3YS<8VE;>Ng^lbh8QiAKnO+B#08gv7@?Cu zD4-_iX&``_)Fy$@hG>^YO{2hIN`hbo(SJIPnvM~z(x?fFNQtz3X~8xNz_!JgwkZ50wu&{8VFEAT<|my zKuwlLO;AFd%JYK_2Vyva65oPxlvhK`v)kdwIpr{*qvm;xzD&zz@m_owju@phi&2uM z^sy!%BPpxU@pr1|rxD6+pmtK0i2(wF3J;3|te$o9Q#%qp+*qfb2%>Gncs@lZC0Be2cGd^wF2{J4rd zL$QfN4~qHS0w?W+5d9Qtk$>C2bS-lF1mw&naypLQgVsO4zxfGB#*FP^71|L_11wO? zI*8y#`f>bj(XP!Oh(huC35$6>*|)WB{&jov6YO9^^%f1o_7zpf2-|)BWcTAV-PTF7ZGIOcMVJED-jWpSRZ&c0H4nXzonFFhC@||oImZ7#gbrow2(xBL8mzC5 zkUWHqa~uMz%Vl=^5IeT#J?nk|WQ`qmm=@z$f5H{%U)hty+-l|4`s1#i&)VfK4$Gx! z`LWJxZx7)tfMLHbrgL2Rrzqv?2%(v`Td(+(&mN~m)72hLiGPhNRETE@3QIU>FMLqn z54Kv~ZX8*j(6_^4kt?K=gez~3VLNPX0v3JXo(KJ}Uo_|q7>5}o6&7VE?mKtY z`B1xvKqCjc_vNV*G3QRifUJ`eCIOe(d4JWrxFRK6WqjQB z#oNt^mWkw^kEB3u*Ggo6M~}x{V&m!q8&_KJlo4^zr>GT+qaZn=T0sZCt&van*Bf zToX(|(5Of;uCisgt3xpkMR7jVl#OeYJ%1uPdxyyCFcBRlqQgXVn264Lj3)s?*0~ET zy5JZWl7HPrZ^F1`C}yE}48?R4r!!{SD-|UW7q$uq*B!*(%@BCu4PIX1YZ0+V5GSHxAg;~+F_JKG3G-)jme*m7$o2qB?)xdqmNflk+_L z4&^2f0-gua$~{j*(I?=+lhw|oQ(Op19NnV$eHgb6MIMSjJE$!}@%j9j9#o>wAnlYT z!n&)Gb{a-DQL)NH(oQPEnQq11tD(aPHhA1JQk{%YLCTg2ci#i|2VdwTNNiBsjPBI)iSAoCD80-RkU2^BS#A4uT#%Nf-{Lzma{$ z52unS%`QL}PD2Jrhc5SF;AKFg41af%aMy>8WQhL-kddHnU~hJiX~OW+4l;{#iK?F4 zq~(J8&;{_zG!$hh7U#p+V=#`al-@%TCTuyA-GyQv3S=OGp$L$EUoWXMX`I_gag4 zJ+`_Q{#yC#VyMLzlK~eIb|;VKf>#hl+a9rJ&LZ;3V_QkR^q>OIxf$hOXc#6#V3m0W zf}#usYGKCDW+2Uug<1E!{rc6n-1WPJLJ(o1I}~#ScI3SkULXkRh;j$zy(CnquDtIK zjIT9O>p|iF;`_4AqDJLLvwv9ujwO0+NFfWJ;$vM_L%|{kZdp&tdpnmv3+*Q+c^9wX z5W?WzAw(paBSh}{G_YQdNM)dcspHWv`_WGkd?oKA(wNBx6`blKWURp5cv%OJs#=5w zOd$+4pJ;$x@Hyg$1)#WSLc8~Su?+4hREm05R{6BgqXLf@Jx~|1^M6@|b4=sl(F-qp z@keM1zI~__vDc2<+=K^{0=@eRb20E16Hz*UoP_kL@hW>H=0xJNCZcec*P-IGFM7cg zpW@rq<3&5vyq*;GOUyLVtrNSQRO0!{`}n)btqK-P4Zxfx;;?md)G^nVIAJ^}#_hgz z79Xxy@jhmhg@!Udn12*A^lEXJlX@1AQS4e!o+9EP8V;b-CQvC~+!+O&(Pzr*x3#e=gCe9NBqNRmrRI5k(pPWT3@ zlgCYaM{LVWC!H3L3dHsft5H1y=PO-jWvEGL3Z&x zGjQs_P*nN?xPUwAA#{-06F3D$t<*km9mKJ9M>l}#Yyj-7HnxfCGaNK(V zmq3U)O$7gYKu9AOH?!?d%(03hK z^6{eF2baRgO*gER?};vj=4G=26gy5zpJjkA&m4#^#pp+G6d(o;0Ly0UBXf^KmbC=h zdd((}uW7BLOo!hoUA@bex1ix^o5zA!l$gQM&cw2e^sY#kML|YU;h3DxOjlu>*f$j%|^HJpr20!9!rmC2RbrxI)8mfeMP7D0uLID_z#jE!FAaebp?h8Q1}q`IST)PE+uS}0NK3xHi{3Vze~A+yRugJimcI=< z5yoniL=`$A$CLAh%91*WeB^64`06rsM>kvH0S13kUQ^eCni5oy?^WCO-r6DvC=u;M z@y{Wc$KCLSfci5W0Fu2j-~ z#TdfAl|uVnnZSLd%~++^+v>Jnz+}~=dmk1%UQQo|VD`UW6u}AwL)^Joc2+oMw0g}b zf^~mnvDnVOuc_8hvCn*x5-jl$kp;^q$9#f)$F1xydrTA0shCl5Pq@u{xK&#)B(ldn6#qP3x65n zW`762uJ|cF|9#!!i@(L+x3QO=uZJV!ZBKu~%{~d&xb>{E#Wz^E;%986Eepkpik6Bo z71bU+0vv?jC+8Ut;%vmp3vkub=F$hm zNeVD~*Us7l`9*i+CGByY!p3zPSs6$^DB>o`^N|#BgPH{E7KH6RSTY*fqfPPQ_4t2b z!N^tTv%SGgb}|XBIm{0Yf}Z&CIR;5T#USZ!*i<4bU_%fO4Do=XoB!qic&yEa225l8`2`#FYcfGgCgu5T z1Z|iXDf{UTo^#-hCl*`|gTS-P8Xtctssl1a24B1ZGMgy-Qixd7q>Z!y8jq~k#nmuI z=HchB_;ZOr*T{+=@aY%o9a$^j)CAS$A|s)wskrUcn%Co-;!L{p**pr)aPXrdKm0+y zX}yl#T@CT9co%=KG4df;d5Y>9CYd>GH~V*qP(UoI#fvh~88YAH~adKSxeHA^8d zY_z<<09tyCK0XdyJkXHxGj%*dD!JhpUI1U}`>Ls03czef4pN|mVjZRnSlAsjs0~9h z@u~t0q__(D`ZyrnQiuTnXqoAB_K;<;Us;McAVv4e@ zy4j{vSQ5=+iko&m+kt&ol@pkFPjF<7J;sl4xkjYdFu1fYMB<03f5tNkf z`55b>+85{u5|nB<2|^-R=DhA>^h9*EAL6w#hI&qcgaoUX>m4NE^wgjkj|%I8#lRG} zZWPuv&xCbXG5$I!H=%!B3dpX*iR<0PyB%^=;MR1yw!%Fxou|z&UCg^-y)B#D)P)ma z&zA5msE5=qbggJlbqHf$FBToaG`$J->4J#JP2ATJ#FE~K`x_g!BBI#dg|8=3`G%;} z_UzE8!X2sb&DAh++Tpko#jKu|>0TDy4YQjV@4T&V>xM3d(Y=4Jbek)(D&6neD}o`| zf$|dE>q8Q#m=Ursfqj;t1RB_w2udrly$v46j=PI$c#=)mI4`ON+bgX-oSk4Mgn@$j zV6KC^#=r)P8O0~Dc8(b^cR;bi$WEEuua+2u_qLyH0yHgHDAnitY1ypL&i%+4D3v=A za#}<~etmAWi$s6Mvc08KGZI#C4yVSlrM)Pm=&~0`|C__X{O+#d3>cCUBlXS0J}G?; z0q8gLGWAdE#qz!Skh&h_8e9^D7!T#2-^3Kbn}4r^qkBm!!L88;NedJVYE9TJ2##6z zA_$5FZ}vd&CSEVdfPfJ(X>uS4E|`aLSs=h{2Nxp;1h{`CT&pY)pyGwFSs)Y!8nRd_ z&`q{kJQW7UsXV3{&opSD91x%ob)Hx_&5X(8DIO#;kEek%8}fJ>d<<@8fRNlW4+d2Z z2vD0rWbsr=JfE{5pc`*h9*7VlsyQIEW0GeHr!;RbboZ@f1!WE%SKl0?X1B z(xY9F$I^dbnAKTWC=NcI$YQAiTgL^F2O=o61;N$r$m8HO< z6ef?UmV>F8$5iW?;(1JUVA|&ixbkGO=70zie4Z?(YR7(bWD!u6gYG_qHP?maNc*3tpBWh=jEcc7puE1c5R7B@hlI2&@u05CSMc9&#XHf&e5l4+Mo(azF^jg3cmE z{D?s0(L#Y*40*KB61+8)1;TJ9O&%?b2X*1IKwyG^=h4E!KKFUF@RAvuM+?jls61L= zhCpP|0y6|IWYGdM1m0!QB4!A57A=2bia_Sk0#gJ$j~3d+JHt63FhyYUXn`pLG;uOO z;5j7nXn~$dmfnjw0-HyQlq1Lh5px7Gixe0H@p%C7KRo1tzzl)OqXcFMR30U?W+H2U z!~}uQBLyZ1Y#u2vL7?+U;ou~bSr9Nk5L^}r%n!IMQeb|-8kq;evpnMj(*u8=XOSYN z2YenWl*9l{76=XJn9hR$$C$_?1*Qi=9w{swV=j*r4l~_Z5IiNivp@u9cper3jxnD_ z3QP~+zkbHOS+v0PfEW6B=k$QjZ@~VPXObOQJMK?<7Rh`@`A}yTkM)gUO=KoB^l8Uy6)VSAIQ!%HaIey`LG8=!IG8>vQ8;;Tz ziqaMiKYzu7ZKX7HFQwryrIB86LcHvwGNDcJ&5Jm!!twldU+}%!OQ1gU4=7%m$&u19 z;6+O1_!p&ef&dd)pCXe3kk;viFV5tg0G%$8vyIO&iJTLl(B*NqQHTZr=5Npdc+~_> zoY|RVdaP4AXeY$7i3u#6Y6s3oO8eYB_0bUh8>QX+(9S=Z?0z_3|3j~njR&A0w=~B8{k}&6?;Ii z^{lw$098i53Fa+}DP1YysK(_akPOA;1qo&QL`(n^T|A`;u#*_ zzG)v>F6*q0iPu>*lEVzzpI7mCu)NsHUgWE~DvRTt`x#I#=TC)67|>8<-7#;{fDHzn zVQ^lDY4Wz4G*S~ba~L%Sf4N$(yRDp1wIxAVkpG(eCHV__<`h%h3ef2!*w6<;SXA*8 zxP$OFs`n?ta8CZ0cpN47x-w%Q^vaBZH3HxsE&yd5j^s}JzxgXODc(LjGuXuYzjwb} zuw=-#0Ra62i(gdR|2#l-ozbilr`NTKJ^Mk3U6)?m?U!C|WnWr?e^$W^vIqMzpweFU zLcg#mE8X4nE4yYQlo!(-Dh5PD$bNt+rGW!&A-fk33n5WGNk^r~`?o-x|2{r{`E*Yz zW?=E9ae|?*)#}J+%hYQ1LEP5Ko)-Th;Fvx zJ!k?Cb9{mep^dVGBB;340-uqRR{S>gkEV;d5_$)yUk%KUe|sO2bH0ncxi$t_88b^! z@08pQCOXOREzt}zfx{+)7v+#z2I2SAf}BauGF$Us5|xPK4qPkQcFf@jb1i|u5Gs3L|Pr+ZzS7h;q#o^8dF+4`*Owi>>(8fvK+2jxA&lcc#AKKl}%bb zhc$knw(%>+qv{$a8mmuc*H2rQNOeT2E>pvbff@FAPeOkZ8f)L@$KJy7doQs&K_?b}oB20YDHA#Qg7vDA>R_cr!}%@P|=~*9=nBs^)Qyaj)0Drw?IEna+G< z5^HQTf3f}{ggB}_rT#H{%6M4$}9v{?6Z~K1B7NP zyA9#lYpnOx+g}ga&er>EXG4w3QjHWWfU5Rt9)ZnCb$G4=gEu~p#7Nr34k^&%JjT=| zyNisuFsEl6Nu+h#YQO}9jc(-rWO$6^aLrFKe+?P=e4fu^%|)!Qft!EICo8noa1%Xs zL;MEC4~cn4>RN5y*kMOOn~3ZiIb7EKm8wzD3?#uzB=SJ@f8dRH%)|WxIneAtdx^{r z2*2Ohaw^IN^Up3gW*PZ^#U`a>QoiKGkBl?EyquAwR`aZGO3C8KL#DCt5N)}tCi!Cw zfAE*EJ1mJjYYr6Xi=vAg-ygAsvO@D|$}yXE;H92o>vNqYk2o|cs&aLGJbM6@CK!Dx z_JGnNG5V-m_kp(VDZlZzZr!JzusL<;N3hQNPAex=ZAlOoJeaf7-u?p$p97a4FzsT!8FtDSY$9A1?%4@*T-| zRdU96B&Qt8IkeojRNEI}Q@|Y6ejDJRwRE!F17*XaTzVj7>jO{2+1h~i;cR_iXh>Td z!_RMjIUZl5$~YR2#uv!MdfmoUPV8%Q@8`IEo=v+C?-se;n#_ME!}wal?AfA5SCY)OPq&UTr>=uJZPW*72`P zlyCkfWwzerUsE=4q19Qv-o|bJ?MmGDZEX%ej$6P*B!S3mq1O55)`#6d7Pmi9-?Zd- zL{JKuz221YwPXesHwa6o)i;#3ss7EcFP@L@^|v%C&rGc zi#Gdxz%WBz9zPtX@ z%P&>fr$LUcv=>D;{Pi95rL7--HT|Y7*PKtIVfNn>e;vlv`-h1x#?5NR$cK79=iK^! zUbmcWyPj4h{^mUwZX22dX6q&5+lEUegDKK`1$ZQw>UWKc!^XGuJ0fSvMQXoUVER4v zQLVTF`Lahzn$^Qyvqp{}3zQYsdS*e}v?WZ(1T}u3?(5sTLRHN)yZ8*ZkFEJV?i zsm-!(f9w8E#N^5a34HGQ>ELEv-E2~ayy!T{59Q*1o_c+_!NGtSVIF|$sD zV*ajN^AEmic-bm0epW(%t9g?~z^c2Zo>psMe@d`w{5sK4r=OQ|lC$lqQ60$#3SW!8 zB^lYDr%Us^D{;jNotCB0hr(5iQ-kuRMN!GxCP~IDO$Rf3)4}3rCC!C;MlyIVzXMD} z5rsuK?6X{?+;&f3fwvFla6O^*>Y-kzhX2~E6BS9M`<8TFlhAMGWm}=z2m$vCKwPL) z8lI)?R8Lth!+23Hmo#l?26>#>doJNR^E@P%ThIYBe-hNys7v%{bvru1yxr5c&uII_ z^^5Ffhy_wLAAJLiqiJST zD-8ux3W;SJ?qQyvaS z74`U^(#a&RuE1eLk)&f+ghd~Hd!?Ko|0Y}2e~!I8GwK;v@F-hV0^5xihNyoZcDE3pAP8uwI^QSfg!Y zv}bb>O=|| zrexbdVOIT9D!Z&^;^45!SFD?rde+Wy4mLQPp9Ab1>30>^C1iW#nmG4Z3=p|M z95oH@W#}$u>=O$QRD0DefBa_?RK0(l;2M2J`LDN_V*D3Mzo1&qUr(-FA)l>pl!nbw zFmW-SbjfRsFxKVMJXzmdc^${U2Vl(jkAT#g1RX%lV8)>8QKc66Zp;8v)7A-XLO!)y z9(cu|WbiJdt!423d=hVfP`(Yh2#Ghv?$XXZDe=K{0{?0PP83M7e+P^GTVSA#ctH)S zkS?#`@W7H%R07XcV-q$04t`MB@!JXbR9|5729sBqTu)pWzsB6(x%Mi6XrXNo94%k4 zed2@HTwZ#ZL=@7hQ+7rS!Wf;iq}PM_|P)kW;&STMl4 zf@Qqm2bxbJ<0uQLvUL!$I7vgoLMq^5#=B!h9K0$tR0p6Ycwvprsd-AopZ(xvJY9Vs z@!(}5uviZA;Dudj`HTmzhgIG7F<5$GfE`1Sq`{Z8TIV!P9ec)9V9mf-gN&(_fI~eW z6Yq=X)%v(Qda!tebN-hf)&VPj8Q`f=Ze)T39bY`fD+9h($a!@T4yO$GkI*N0e+5Wv zl9}mzGh=2QJ``MOXsMMy3}NH=A>9d?4&xakIMRl4ByNK{{Wij0Ext8$uf>uQRx2z9ee-E)xDUZ2E&X^P(IiHM~jSHSO2t|O6D}^rH zHue<5-oP1vi7Eu%t#_MW2kK$)abC=L|_W}Zk%KUg#vtcRH9rtOG^o@f1GrYK;$tS^`k9}AD^La1L&Vl*?vBW z4lH>{KAV7|c!Rl6SD3uzinH<37@^(8+@GQizO_%DdhIBLirZ_n-zJ;KX3PdJLw36P zZ0rOp*2v2dO?+_Zd?a&l;z)rE!roH$?XxbaKiBH&Mx*IGO1ljTG>USClrCE{5nj6#O`#m|_6Sth8cKGHAQH$3BwO zLIxCD@R5pBOf&=DunI2U0B?BUzcTnUgV#M|fD&@f4nc;+ptB+;<38iYDr3rXWDH{? zf*FfvHkA}?Y+`p){gbrMPk+>g5ECywTX8cZUnu@W-pGkH)MN$HxbO zD}me0^2V};$N^9>a>b>RL7TPgxsgzgV;QwF0<_F24w0AS2xSbe_ef+dXW1{Z{K`W_ z?UTPgo*OTZ{7JB+1hgR~pe-o@0I&NVn4C~*2<~W$yC7%IjK{5*n16P!WQkSUGSZN* zt!?io3lYpXVWMfypzLU(x+6bd05A4XcYX9HCMJ*m`Ae-IhlG84g-4G; z7xQTpsD4C!{Dtl)WBT@N#c_=V>9FO+irdVeqf3cq(m1--@mgVOVP!^$h+^yNsL$1^BJ_ZL4uZ&<;}=fcHs z)4@5}eE|}G&CYN%vb(5WGN}2!y4@?WAsPA5-ywfwWVv_0zx{dB^*IDv3bKTvqOUk9 z6zK7%l0VU1^={7-Hp6D z>OhO8tP)zLgGI@wo(M4*-u-HPVPuRQz!T0Ge1V>@mh1^TM@qo4C+t4p347tKIhi-w zfh_r$^Jd1wR!mE~S7Jwahin-1I>KOP;JfLG1R80DOcTu(&+!*6&UK|kQYw{PH_wni zGV)00*r;EybAPNI90BoSbf5-{u6u-4>S-NVSbKr~u`(ja%Q;jq8Z35)iax)5Nk#E{ zm%k0n9j<=M)f>hyG0+2tS7hFUU;>Czn1kQ<3!$=%cqlZ8xNuB04VJHS}rHCPv zCz&c*7?8p}*?X?bqzn84%$-gGe%KACJ)mX-2a`W&RGJ! zc>4uNvVKw{@{ z-d9k^J8Z=O4%-L6hBycy_EvZ^0yQp-GJP)z!1n(Fn)tq!w~E{Wya9g)_($+AM9|DC zNfprJ62Siw|9WuL@cD34rwWK$T%cU1=3&wywSVS9uk+A-Gu)(FTWxaRs-_Wby`cIC zB9+^&xo+Aj1Aa)Jl=sX9J#z+J68bSVDrT_E6E;rCRzX4%07@}0%tW9Fg(V?bjpPE8 zH}AmnW40+HnGI%kAzgo*IYM}U(-7079VJq_NGb{fURSI1-~Gs5)DwF#0;?zed}zA* z?v1pl)SdbcJjRQ=zG<&dVBB_F8vUVJ)rWbnw%w*0nr+LHV1S0%_>i;idUn$D!;#Q@ z!r18&<>P^C=D`%K5cL~@h0~dRv#y?9VNsql$K6=!OMh|TUGsm3d|W9^$AWV#?|xh7n9?`x0mv z5QO0qG%_37RP=unrgTRrVh4?!I(}gw4ts0^!_lDy)x;C$-Sqst5W?d0P}sqWDQ7-O zg;{5qf?&LW3L{WLJgvdHU3+G6f@KCL-%H>lIkt@s6NDa6UlN**hnJaEYN$YcpADa@ zy}V}5gsJxWVIj?Y*Y*>266<}l*{$PYm=({}Bf4p--l~5#|D&Tp^|0&4392r3RUfA? z)4Xr1q00T2zef1Wp+Bcl_&HS~gE&?txu=V?$sp6gPhB944*mmi)Rz^+WZY&+f)%UF z?Pdd_GEBmn$~%Z3p|Cco9%+v=k8~dmmFVqv>!DeQIpzatM2nzxw)r59JdoDUX&qvj zi>|8{Anbo*YDOGT9&;}CUqTV<`L8uthr?B4dwfqyZN1JfR&6TluG@C0x^E!L>Fvn7 z<#Lz*)8tta`lwuG?ygsLm&}z2bKOB-=LzcHn||oOnh=+dj>{b#N?IM*t#t;CzNTGv zbyNX+ErinHE=%@wKU*jq>t-edW`cUcq7ibsv!?PREQUCLA7Lq2NohlGiKuf239Lsc zUS?t(N)86(Wa7+6u;4eMz5ckTV%x1!=WW$tz)*K5{7U%Vy}XPoixHP`iE{7mHZ52+ z)T{LGYBy}j$XQ02pj9Gu!MJu)NgTGxV2V=rA)?f*MjNW>+1bNq!Z`yAM}x~Szun_U zAx=0nA7Pw-C53Nh1`DU1AJ4*Dk|(b;9fhHu)9oCh)u~#Yp8AjXn zYMbAT2grluYRv?H^i~D3Amk&pcMw3Nlj>6-D6q?aoPiLX5sElLwzITltWch*G6>qnaU~#dN7lBC6;?7s=XwDM z$61+BI2=EuAPYcvQcq=^2)NGjB2GvynJ=P){7pd>f(W?Z7O_IYM&+)I6$+-m3Pm6^ z%okpN#tYnYrPE~~VDRWNURW2eRwW>y%C#%w1+KYxy$D1Q%!)Ezz<#u@h!=`G=5!G+ zlrYSTB3>w|nD<3Sfl@G8bQv!+?iRw9f$)s`GF}+Vgel{N)eI+B5eO%l^kuy87-!0O z;XTu`j2F0TX7_&%c_zp3 z;dYD$)+bJrBP6o7=oF3Rt{=9WGu}aex~vG=N;sskctzep3b|uP6D)0Vy!vM@Om$6* zu7sL;k^Z(I$2Fl9so5<19g*<{) zAa#Ufta!qOtpluV`6AOA6+PFJd6Sznu14DWDN3-V(5dBm{?EKEhi+GYHJ(Z%qi}lU zBO%2;PF86MD7#dg3vnAV$#ukD0{epe1MFrQ^pp=*NAvrb27%VO zGzgDngZ=gbXn0)NxSFETjPyq|`qUay(M?d?q*i_OLL4cL&S?-*=tve%c_=)Q#nV#p zv{XE<19i5kRi$E+I%!CMzzV1QAVYhGV->Qr9h#7~*-u#K*V8cB6E6T`6~#(Mu~Jd2 zRIJMrx%?zh)7jA}t(kxIr{y+jTn>z~U(7D&h6$PND*4DRr_2kFSMxrAT$#|b998mGDX1eu!RNfi3=^=C_eT1>kNAxamSL{zV1 zeSK7KWBoeThgiRP{zUiX5IgB>iqrbJNd==KBq2Xx6J=eB1D)4t#4#T{6Y8*9f1Y?N z4|U+b7$v4~n-?~pn(7Jhws&%e750`Ck~efJqP~mI)IU)C8qy0(Lo9ID{1)xG!(urB zR$n+=%*a~Sv`dtKqSM+sQh=z-_w1fc zJGwfg{;sAwLcXizTre6)PJ|JaGoFB>Tw{!hIaUG0QNE3XeKG*UD(3E>HKCL`a;g<- z+nlUINjokc!qnT=`&1dK%T#IFROSJfU9$H3m=6>o(!KRCBFxp>)cnwluwt&58?(3~ z%qa;^X7Xr%=y9oL(i=$Yqp3W&GLcjAky{fkONLV{PRFb8aVn3}M%_#0pn9K&&X{dl$8Dy2oE~{3?TRt2$YhhMF|9069zZi5(putxfVdc5lYKk03nzdaw&iy zI9O?l$Pj|O8>$Qhm}$!h!SQKa5d;Npx+2NOH3A@i%CImZ+DSzq$kZw$#Dbf?Xpag9 zc7`JH7L-2_igu|8U}q?kZ^|FwMTAK10HR2~r7!?dM2M6McY~shDix(;xH1r6XBju4 zf~+i(Z%Mx)k!5sP3Skv(R0%CaQLrKq;AWXJmC!?0m#qjCku6iF3W~^<=~D$oWQ{5V z0d|&uX;cM8RHn)l6p<}cs0xaR@*7J)KoONfpv0@9eX5{`tSb_4T#9jlFWRRHdWd`& zB_Jq|txTaR(nDnmRg)eHMZ&2`50xoY4L#&|k$h|DAy=kQHS~}x5(^4txiWpKp@&?V zKGo1ePL>e@J><$1s)in-8)^v%3Qm?OR1H0Ut3!fgJX}^L^!i znEC5{)2>oy26u3)^&@%oQ_DQ&lwz4@B3D`euwzMc7Pxta*Xs`tpGydUPuUA!Lgaxi za+-@TCwwk#3cGPb{$VP%so0!yiQzASpPN~YyV2oG)ZB9?GU5dA$}bI&rN(*@j09Z;QqJ}wvTZ|EJqWc zZG5ica~q%gXTl5T!q}REPhP09;A~tH&(8*DrIPF}2K+g}St;e`24`IoT%1jWt~61Q z(7H~on^X+Xg=){R67uymWCRgGJu1`KV zv0PVupF(g)zjl94$cs;7UH{mwSL62x#%~?8*W>qij>BK8!xstqdYFEPr-l}(^Cxh` z+wt2xsf1p6`l|)s&{#iGN7b0Ii1G&NHeurr82B+Q(fA__{c+|hCH-#O+@H|&^ZfGA zRc#NgK4vDy&ZvvWNLlQ-i>Xn6^F%eHr>^=uv|29fBfQW2*nd;C&F$S6B#yFk51-&6 z;wXToObVbSD`dIe<$P6pNC|`ykgbDt{zgGH+y8D(nF&1Aj2~ zXsl~c=rD?bOkf)HGL81W>~Sd!PcnxL5r7oNr!t*INQ;=H^8&dv`{OME$3QxoXB1)- z8Xgp6o2NAw)ITk`5J(lR7uv2!85)r46p^ynQ;t2~Vov8>wXW(S4Y)p#>S9d^>Z9+D z=zbyzqUNh3?P8Ny>#H8kCuToZ{eOKTR;*K9_bDlb2Np#SbIyhznYDM>QO$3oWqC#0 z$u>$G(gX>+$>BD_dLuk@I*B`L%WO5;)~E4bzEXgo7-3__ur(GVCW1_ z8^U;`$b6Fip$J0FKEN5Y`QN6;_Qft>rxpO;LcXKlj(&UkZRmG>!ho+P>tP{K0y;`S z8^ z1^V5YOIRCYC9^Mh7q2uoIFt_IITRy>W6<{!M5P1-AAGm67FE%g%UGGL4S(dK8OBAAv>}JI zDFaxvFN@TL%(4;#h~HDatNuhIRc_KSyLSI+KlUIC(6m~I{O@&rsGmdi6F?Vd0wjo% zkCYJM58o4Xs}|TP0cHoxZ+ATsR3`s!*8&P8uc=O-_mFSZ)OCY1__&9Ii6RaS_0ih} zs}HU&o82K(z-<^f%YT^$fa(C6Ketu6Vov&J;Vu`}!F_=h{&V~Sjap3YC`P|A{ zLq7MD4)?&F0}I9FrMQEmWYS5h8xW#(Vet0i-fQaQI<>>%&|-|;hUkYS?+->PTG*rO zY7r~CMFB`@#_MU?W!ZK!dJ0sX1Bq$vnbP_^r$d4E0fIP|(0|EX!+Cg2RKwwP;W9)G zn1V2+xi0PqvdEFIYn6xkhl)IG@UxSgNh%ZH7CLXLezz=-T%ko%H!a8);BXQ#m;)wM zn4U>$wk}|=X@N?jPv@Nbkai>yUJXH#p*0=0Cf45WH!2i%9cZJO6BwjKB& zfP&7SGdk-yl(NZ(t>JXQrq=#w&PnlK?W0l_n^ygF-hX>5g)?%%%w$Gwb$1_QW{;;O zE%O>&D`%My=1d&~9bmHpd}BeF@w{X(lX->w9+nB%8X|3v=48in^5BZd=~>6UKD$T? z+#irCvo@T)O6d6DSlUe%Ns6OIN(XPWG>$x=e{Jd%85bp=Pd#@497tpZ(EH;5atcXK%J+socB1$ zKHpM)O}_=zY`=X~#1QP#sqsR>8w2T(1b;$zKNsY(PY1b<71p)K)p8MU4o3GU3SsaF zPbqrQ(^XxHa8#&x+Sr7g6G)2%Ubv;YLw{5RdJTb*U6(=|`v!b)eN?))824Q_pu?I( zr7imVJw?!SN5fQ`W%=+n1!wN7boWW7M>u9oIC33m0Ov;@l>>ktZziF7;1sfv1bkiX zHWVR=)x`JXI2#2BeFkn3$nreI3L6_8SR6{qbVjKcNo|$H}l+mtjL{k=zmvW z_zLU5+-SNu8BZ!jt)PnTYsa6keO;#Y!3JHDX8@qb%@pyDqgZqcJw(1ne!xCtv}o2b z@-cWsMe?FG> zg2J|VV>9KkBhm$tUQ>QczctlhfPc*fP{P;N=zN8j4-z#nCYzWnVuFfZM@6rrqCYh0 z=v4*UNofLB2BHYRYxYg7xW8yTmrwR+%K7v?FIKQ zExUA%Iq*p@AOkPpjF{6_{^aRAvR^oUbg#Jie$bqzD9urH*h|J_m=TW=`n~a4KW~e=kgVeKi~g!;HY<0&Ey? z6|J7K@wwozBRK5;4~L(E!x%x2ZL4n%Qq}UAcna; z(!@d$lZct{#tny9wdEhXJ%1pIL!}pgbQ=YWB()#<9snPfszh(wQb_jCYKd2s)DE8& zwgb2Oc17D)iyc12nY$F4(EW0dOc>Nb>T6N6uy5dGzYNI)r{+n`&VU^?0XuRI?5GHK z6oDOYsZz#A9C-H>OXZw049qA`yhB1F==8ltA7hExHI+=Tv$$b zqGK)+-R(f0l4``$UR=1l75~f+d=db2WJ>)k08;=$%_SB^DtsIvC*t^W_{%HAUyj}g zIDFHU@=7Q&86lcUbl#)ML0cn^Lodbjt4S!~PIro^~G7ZA>;56v7oCe3q$sfyP8ObK<{hk-8#AmjN&P3t~vFxpM zF&`t9R-P{bsT|YLd@O<01gRw4vK-J8iKU$jnBaYcx&TWK)PbF{w3*0dg5*w+ul>tU zS&#n#gej=G))uTzI!Syo0!Ze6q6dV)3T19&b98cLVVA%80rh{_F96+NgHvShvLgHY zRdGcBa&z_Kr7ANiMQN?dZtgN&3KwkVy%x$q&nkP9FW1#DEUryii+pI>ck7zl|5&~rtKqNJ zSn+dr`)j=bx*X$k&$MbI?Ry-qKE~lYrsI7*kZ)eRlzy&DkzFe%3h!BqAK0V1F!>#^ zhQ`orwxmv>Ny`z`;}PNxG*J@!Zx`3r0V#h? zMcbr-HMeZr5qD|OE7-7kUk|%=v^~ z|Eb2NYk9C4cx=_Ran{g%B6{5QEqOpj&sp*ucidNzMcXmmfj-bB!Gkit+ohH|wscdE z_b?q4UV#~>wq|-lY#}7P>q3CtZ61F*A*wW@3?@Az>5h`t38{4Ed=OS^)~IQ>JFv+3 z;PMeY`Eg77ffHP*z?ctU&30Y2?7UA8@uZ@^n0ih_Kq*})F=SK#;~wyk7FMc<{9{TfWO?MEZi_oED#!^1Pt>)s68NR(isButXI(APOZWUV zExyl(dW^>nWM%I z2WRM;!!w>SN!i`9%m;r!n@d2Of&)RI4V2%5HtalrHXK2j*gIF9`VY`!;2sRoIFrB& zHr_XorP~z&srQJFq>8`}r|*FsJ{*7@aah2}9(rL913R3FX#;!a!0r^LVVI{}0`sUN z*xCGti0VQ_b;zilT6+ecpgQauV&G>~2Q7a>b*bDvszbg9JbcPD z#&|HVjo@K7)QIe;?<=vKDHWtIe<84B0>qTUUKYz4IPeYv)rC}aUT7zu2c9!diJ-z| z@SHJ5XdC{&@EjUtZMX=YOC0oBc+NgUJZAtkc%`2Uo`cvfw0tIT&MSg*vLIL_8P37e zNjMjTQKY^t$|rxJIgFr*9|jh_W8tT;OpwBW)C))tRv4H*7r$k>Yu2LUCxnu64<&;_ zDCr&g$&*95t){dk*Ma^b&(?|a0VAgYLmY~qG7$E)8h;HR3uN5$=iKrFp{x$ zV5}YT51%>)5Y2v9JC zsAf_o1$P6d)VZ$T|MJs!JnMFM5)%&HCSDL$t5t(qRcn5p1H$R%5ve=eDKfnIbmu7p zumnmht*!7+OuouEp_L_G)|L}A9L7GX-A85iU>1Mce5VYmLV3V|s&DGJ8DMxz-Wvfv z-gnU^c)O2gj`!8bEp|0ycb-Po0p)q9s|DSy&z!kxdcIIasJ8_8GH`w$k74@`N|t{8 zabGVGeyERd_i@pARE?c;e$c{u4YJMZcf zNK6v~0F|!1h(fXqP#>67qh+_*k`|Y20RkR>MIr%-u>y}bAJ{|}LFge4Y5g6m_n}_L z>Yd2y9OK7J@}Dp*TmArmly`eK49zW9h8Bk!(=NsKv`gm`$x>{vW07CGFKb8` z+gA_!$7WR@y?btV8jX0|!LcqyD4&SSbr6LM#LJZ-*`ISg`6*sm?Cqyh4Dy5yI)&?h zo2qTLyEVn=Sj6AlPsR9>u2{esn`(jhaH`h);dBolW03z4LjjZ9W{hzEzU#;73ZZGI z(tZ>9EUQB(_y+ZW0@Dj;o=ZKTBouD;@p?c4(DUU~5I`K2#u8!%(lA*uIRV~1zDHhd8+xq9G@4X^;Dix79w;Sn}R_6CBo z&Ht3f@kd{Ah`s;-vKJ+TQy`lY2&HrohA!b9T@=F0)H_l92PPwvKGA8Jj5SPuIwtLx z+nu^9`tQr{^p%4{s7-pO{|L~K0WZcb0yMA~EtPvB(71#`6VOOBf((B`tOD2oYjFvw zN@)>bS0+-Q3~vIs#eWNQvu8q%dWc=qexBHY@X_zPdXo1zB6?lXg}(`T6~Aeu{xGm> zi$mTxwUIF10Ys5dTl(N1fhaJ4Az9H>nuHo$8%?}y2vhL<44?;~6jM~x6RS5e3a{>! z@kf`Yz+d*UPL{B-YX z3J4n7n0t2S1|ocFOpjtuXn@7z0j zXH|{$aP-dmzKP#qF~4*lOz}J2x;{FlNB2w?4jZHrNajr&5uc=NbC00t7Tx}C>i83f0tv6ES6*;Y5O1|Zw`8G>n3FKZ0+RUK0RLN z^6#RYD1EaD1ERK$X@JcZMb&mqzod&@ltPv(VN$QxA6MVN6e}u-5GttK_SatWfR7LO zcTJ$+ai>6uG)}gYf)@8rR<2YH@HN|z`h3|A2cVrh7fA6y< z+vQyzE9-3>=r(^0$%`pPvkDdy)OT$2kX>h0$XpM2eW@Qjt8Sc)MQRtDqRH1?`EF_G z0@hSU1(x{6B~0y2=e~-VZkzgj9%W}+kKI>SMOS2H@jiBTc5!Jnr1@R!b6}cDpc4wN zn>_3C%?ntC$)K*w6jeyOThCVHf9{-q*^-&XyHKzz+QG+Vna6&IX2)lRkJvwJ@{n0) z{mreD(}nLk4u$E^41@1`Pe3jg-_`BVZaYAVf-nxOcnd2)*ruJ-t`5GcRFD|bxfBw3lK$<2L zu|yE1XriekN}6Q7yZG&oG})jM$`Ec%a_5`w5>6y#$d$?4i=U?Bk|9)cFH1m{w}7A6 zQI9Gj?!5W?HsY^?6Qj0O-G%Zd|EmXuy;)aW8X}B|)|El_wr`-LcbZz{|Ln`G%DSSi zUW5|Vd8!N+L=l{YPfw-%e{TmO^wx{AXuH56G|GqOVQ#xPJ+YeKsO7|JohXESL*-Lm z5+vnv?4>a}3NNK_q?4s+wB-G?X-AqJr!QYa_JOPwgAC@Bax`Xh8igOQ?Ra8$W<(u<-d`rK*Y5MIdI^vjpp*f+!<>V3cTU6#{W(@>)6pNMpMGL zj%?KPvymxc?L1_Je<*F~BpJtUQE-Q*bBxUtLQ1N}W4Fa_U*_jc0>%u{jE*P4Tc|KF z4Pj*G15@;N`@z=}*42_&L^zddA{Bq$6wsDP&b%zHL^SUM8buajse__YqPcyZ^BLk_5G5fh82yA0Y{CjV3j~Ad&FL7!tEHB( z>}gThb!78^aiN3KBQRlm@^lzwFbGrsHH<#VUd{=QLG!Q|vgmLeeB&VfaOF50hcE1FK=?lX%TjCwU&@@Kh2h#=uUY zwE}OX{1mhnM&YcWXQ8!|#c5nK-duhg==}9Bm!FHzLTPMK=b*E|X4ecGk2B~z2ZG4v z5d?2t$6{yQ6KO2xLc~)GL~M-cBpO?U&`+|r5bmPQfAV=~3|RuQo_E@skHic|10`o+ zF+`=quIU^W&jDee@gar>``Z(@8dmz-i#c#H9BZ_+V_c_@Sz;1s@hM_5w~QENW+Aha zrIfvgw;OPMCN^`;K`A;1oB83T`WbAV1wv%=6o%csMLy1BaL%$>5HXzel{RBUC-E5D z8brIZe}nSGg%D;XKyl$*EuKeTEEU+5aN$@S55wCg&)=VU-gi_HMvjU5+O3>E==due z2#u%wa0~04c>SlZT6e>(PxNHo_VbspyEGH_B#Otfsf4ucGM4jcUM@{WLGkEg)|1i6c^>BpmGh$%))#-BVfrqhov>v!Oy+`ip#s=Xy z^eaR~stB`BU*ozfMI5A_c;TQT1;Jqx?0c=bU)T5Uu1sj7j^7c5F!b%j04yK^My8 z;>)64_iY;qe@s#r@-P{V82-5sUU=R9bsh2g7q`m4(Pr3ggp$n%slNG;#`jo_jlX*w zhF7DAU3ggB^kqJNunRE_*cB1O;zHS|3EclL4JY5p3T19&b98cLVQmU!Ze(v_m)Hyf zqX9XWd<_B}X<7Dh3v`PFNl~B+1V!5eSE4O;CCVkKb+*60Gn}CwjuY&~91bbY>zjwS ztJ7+``sLl0*PkBW-94m-Rg!PAe3z~skE`sk+3kx}S!SCw2Tr~EGb%PoyiSs|h<=N+ zB4gw#4>Bk_&2j9eoeQoBeP zNrZK(ZRxaApp8E91zq!nrXSjxZal?n_~kD}UCVkCuk);k?pxc_mFGC!M^c`HL?bHX zJkz#6(zk<^hNxiAh73XvE)2?&O;Q%4^G5gG*EKn$LcvK?vlCr^&npO)Z*bBFbV#wE z%mf+&{e6em$7-@|rSM#tXJx%?`+ zb9h?msvW{R)(PiffQ|$YtqU;pvAI%AIn`@ofqTJXG!bB!=Q}ddHOi8+y`G>S=piW} zQ*?Lp=#~(dRyg&460;*vgFZacv1mQ1_JiQ%Q}9v_-ouAq?>~Kt4|(**8$$H^_jJ4t z4V*iMA%!NG%%Pc`yM`I8%02;A2=5R&awu#rjjGVZhPH}Ptxmc(G9(E57;o}ir=?wkNREE$dFb@xt>-jtU@4vrX|E$I%2jg7HJfV>rAZQ z`~1hRPEy08Nd!+;y*JG7^p~AQH|Ge(L#Jd!#rV;?P z3WF_TuDm;Ojmc4kdX3GW{ia=SV#;fOrLW3>#Wtj?Ikcumj?l_CyWQBs zLmm4#oH5|9PBNT8vV0;i(C;(xQvA!d9uEXP#yr)p?o+z%*jQs-=^z#{|KS zxiTlL!%|5V13lUD!9+d~H@tp?fLHhJhQ5lTc1T0!1HuKGE$oVEJWBUTFDh^f&{vj}`o z#?-z!A>+1v_+f)$mT5mahSg-b`~|qNet*j}!g4yooyH9wu|%jRgwHT$8)a{dz&6Z( zTA*)VFjqPGFWUOx)>$@s{W39|)t*FfTFGLn$ohhfDSo(5;7do0J5O~Dr z|5b2w1{VbLEU~2{i zH8N&7Fk)mdIb$+nHaWj8rvVlXu}Fk&=gWny7DW;ZfET_8R_ z3UhRFWnpa!c${Nm00AaO#_SLVCLpUAL<%T_NJcQ5{~AJElpjf)3oKp&X0w4Y#Y;gX zUk-?rPC|(AUk9rMu^IU#5aPUAaB&9iN(7r@J%Y{l5=6Q}%>Tsz03Bcrijy${ewXlg F0u|Myp?m-U diff --git a/mcstasscript/configuration.yaml b/mcstasscript/configuration.yaml index 41c6ac82..7941b8ef 100644 --- a/mcstasscript/configuration.yaml +++ b/mcstasscript/configuration.yaml @@ -1,10 +1,5 @@ ---- -paths: - # path to mcrun, example for OS X - mcrun_path: "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin/" - # path to mcstas directory, example for OS X - # the mcstas directory should contain the component folders, sources, optics, ... - mcstas_path: "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/" other: - # limit characters per line in terminal output - characters_per_line: 93 + characters_per_line: 93 +paths: + mcrun_path: /Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin/ + mcstas_path: /Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/ diff --git a/mcstasscript/interface/functions.py b/mcstasscript/interface/functions.py index 11bc7769..bee77418 100644 --- a/mcstasscript/interface/functions.py +++ b/mcstasscript/interface/functions.py @@ -1,3 +1,6 @@ +import yaml +import os + from mcstasscript.data.data import McStasData from mcstasscript.helper.managed_mcrun import ManagedMcrun @@ -91,3 +94,149 @@ def load_data(foldername): """ managed_mcrun = ManagedMcrun("dummy", foldername=foldername) return managed_mcrun.load_results() + + +class Configurator: + """ + Class for setting the configuration file for McStasScript. + + Attributes + ---------- + configuration_file_name : str + absolute path of configuration file + + Methods + ------- + set_mcstas_path(string) + sets mcstas path + + set_mcrun_path(string) + sets mcrun path + + set_line_length(int) + sets maximum line length to given int + + _write_yaml(dict) + internal method, writes a configuration yaml file with dict content + + _read_yaml() + internal method, reads a configuration yaml file and returns a dict + + _create_new_config_file() + internal method, creates default configuration file + + """ + + def __init__(self, *args): + """ + Initialization of configurator, checks that the configuration file + actually exists, and if it does not, creates a default configuration + file. + + Parameters + ---------- + (optional) custom name : str + Custom name for configuration file for testing purposes + """ + + if len(args) == 1: + name = args[0] + else: + name = "configuration" + + # check configuration file exists + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + self.configuration_file_name = THIS_DIR + "/../" + name + ".yaml" + if not os.path.isfile(self.configuration_file_name): + # no config file found, write default config file + self._create_new_config_file() + + def _write_yaml(self, dictionary): + """ + Writes a dictionary as the new configuration file + """ + with open(self.configuration_file_name, 'w') as yaml_file: + yaml.dump(dictionary, yaml_file, default_flow_style=False) + + def _read_yaml(self): + """ + Reads yaml configuration file + """ + with open(self.configuration_file_name, 'r') as ymlfile: + return yaml.safe_load(ymlfile) + + def _create_new_config_file(self): + """ + Writes a default configuration file to the package root directory + """ + + run = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin/" + mcstas = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/" + + default_paths = {"mcrun_path" : run, + "mcstas_path" : mcstas} + default_other = {"characters_per_line" : 93} + + default_config = {"paths" : default_paths, + "other" : default_other} + + self._write_yaml(default_config) + + def set_mcstas_path(self, path): + """ + Sets the path to McStas + + Parameters + ---------- + path : str + Path to the mcstas directory containing "sources", "optics", ... + """ + + # read entire configuration file + config = self._read_yaml() + + # update mcstas_path + config["paths"]["mcstas_path"] = path + + # write new configuration file + self._write_yaml(config) + + def set_mcrun_path(self, path): + """ + Sets the path to mcrun + + Parameters + ---------- + path : str + Path to the mcrun executable + """ + + # read entire configuration file + config = self._read_yaml() + + # update mcstas_path + config["paths"]["mcrun_path"] = path + + # write new configuration file + self._write_yaml(config) + + def set_line_length(self, line_length): + """ + Sets maximum line length for output + + Parameters + ---------- + line_length : int + maximum line length for output + """ + + # read entire configuration file + config = self._read_yaml() + + # update mcstas_path + config["other"]["characters_per_line"] = int(line_length) + + # write new configuration file + self._write_yaml(config) + + diff --git a/mcstasscript/tests/test_Configurator.py b/mcstasscript/tests/test_Configurator.py new file mode 100644 index 00000000..a543ba2b --- /dev/null +++ b/mcstasscript/tests/test_Configurator.py @@ -0,0 +1,148 @@ +import os +import unittest + +from mcstasscript.interface.functions import Configurator + +def setup_expected_file(test_name): + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + expected_file = THIS_DIR + "/../" + test_name + ".yaml" + + if os.path.isfile(expected_file): + os.remove(expected_file) + return expected_file + +def setup_configurator(test_name): + + setup_expected_file(test_name) + + return Configurator(test_name) + + +class TestConfigurator(unittest.TestCase): + """ + Tests for configurator class that handles yaml configuration file + """ + + def test_simple_initialize(self): + """ + Tests that initialization happens, new configuration file should be + written. + """ + + test_name = "test_configuration" + expected_file = setup_expected_file(test_name) + + # check the file did not exist before testing + self.assertFalse(os.path.isfile(expected_file)) + + # initialize the configurator + my_configurator = Configurator(test_name) + + # check a new configuration file was made + self.assertTrue(os.path.isfile(expected_file)) + + # remove the testing configuration file + if os.path.isfile(expected_file): + os.remove(expected_file) + + def test_default_config(self): + """ + This tests confirms the content of the default configuration file + """ + + test_name = "test_configuration" + expected_file = setup_expected_file(test_name) + + # check the file did not exist before testing + self.assertFalse(os.path.isfile(expected_file)) + + my_configurator = Configurator(test_name) + + default_config = my_configurator._read_yaml() + + run = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin/" + mcstas = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/" + + self.assertEqual(default_config["paths"]["mcrun_path"], run) + self.assertEqual(default_config["paths"]["mcstas_path"], mcstas) + self.assertEqual(default_config["other"]["characters_per_line"], 93) + + # remove the testing configuration file + if os.path.isfile(expected_file): + os.remove(expected_file) + + def test_yaml_write(self): + """ + This test checks that writing to the configuration file works + """ + test_name = "test_configuration" + my_configurator = setup_configurator(test_name) + + config = my_configurator._read_yaml() + + config["new_field"] = 123 + config["paths"]["new_path"] = "/test/path/" + + my_configurator._write_yaml(config) + + new_config = my_configurator._read_yaml() + + self.assertEqual(new_config["other"]["characters_per_line"], 93) + self.assertEqual(new_config["new_field"], 123) + self.assertEqual(new_config["paths"]["new_path"], "/test/path/") + + # remove the testing configuration file + setup_expected_file(test_name) + + def test_set_mcrun_path(self): + """ + This test checks that setting the mcrun path works + """ + test_name = "test_configuration" + my_configurator = setup_configurator(test_name) + + my_configurator.set_mcrun_path("/new/mcrun_path/") + + new_config = my_configurator._read_yaml() + + self.assertEqual(new_config["paths"]["mcrun_path"], "/new/mcrun_path/") + + # remove the testing configuration file + setup_expected_file(test_name) + + def test_set_mcstas_path(self): + """ + This test checks that setting the mcstas path works + """ + test_name = "test_configuration" + my_configurator = setup_configurator(test_name) + + my_configurator.set_mcstas_path("/new/mcstas_path/") + + new_config = my_configurator._read_yaml() + + self.assertEqual(new_config["paths"]["mcstas_path"], + "/new/mcstas_path/") + + # remove the testing configuration file + setup_expected_file(test_name) + + def test_set_line_length(self): + """ + This test checks that setting the line length works + """ + test_name = "test_configuration" + my_configurator = setup_configurator(test_name) + + my_configurator.set_line_length(123) + + new_config = my_configurator._read_yaml() + + self.assertEqual(new_config["other"]["characters_per_line"],123) + + # remove the testing configuration file + setup_expected_file(test_name) + + +if __name__ == '__main__': + unittest.main() From a74f3fdd8739fc7fbcdf8176aad285d56fa048d8 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Fri, 26 Jul 2019 11:07:08 +0200 Subject: [PATCH 043/403] deleted configuration.yaml in old location. The new location is inside the mcstasscript package so that it is easily donwloaded when installing via pip. --- configuration.yaml | 10 ---------- 1 file changed, 10 deletions(-) delete mode 100644 configuration.yaml diff --git a/configuration.yaml b/configuration.yaml deleted file mode 100644 index db3b3f00..00000000 --- a/configuration.yaml +++ /dev/null @@ -1,10 +0,0 @@ ---- -paths: - # path to mcrun, example for OS X - mcrun_path: "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin/" - # path to mcstas directory, example for OS X - # the mcstas directory should contain the component folders, sources, optics, ... - mcstas_path: "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/" -other: - # limit characters per line in terminal output - characters_per_line: 117 \ No newline at end of file From 6598ee8ed51b60162a96aa0f13c1a19510f839b8 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Fri, 26 Jul 2019 11:52:23 +0200 Subject: [PATCH 044/403] Manual updated with new recommended install method: pip --- McStasScript_documentation.pdf | Bin 162053 -> 162306 bytes 1 file changed, 0 insertions(+), 0 deletions(-) diff --git a/McStasScript_documentation.pdf b/McStasScript_documentation.pdf index eec3becb7e70159addecee03d144ea1c5993357e..088dc99d7b1a79ceddf6acb0394021bc34f38ca8 100644 GIT binary patch delta 50185 zcmZ6xQ*@wRuq_(fwr!_lqhs5)tuHn@X2&)7RE-*I)?3wF zbF8pC*x(0PR7xdrNk&#CPB_Zm=fW>IHl9ROB35=5E)r&G5?vA=E)EhlRu&R{5@tmb zc6JhG2@)PQ9u962W(5+~|57y)RxZ{bTar8$@8-tm*U9pxEgFo?twbKOM}> zz5Zii<00YX_#cj+4i=6iY}_O)Bq}7#DvpkBB>QlzoZLJttZd2qpoH9>!RsR=Nw;Vj43LR>6C^6mRFOv9-A_B+0wrD4;CKH{ck6;6UG0 zUmw;a$ruQv5f?i+{IBu5z@U&I;}8&b!y>zZT`)z^RIq1uf`8f;ECyB?#U!eIeI(z{ z-;UhL_0i+C=f6?l`bA;nJhCstXE8{AnHaG#fG^|-PeEeQn(tW}DQ%8d%zc^`YQ09w z!Z+8%h3VnofShnK=fIgen7O(kx|kc=|4-;>VgtvXzHb1E3C7Nm?koq&49b(d2Ehc% zk*btY0tAgHttoV2hn5M2by~itKZ4_e zM*XBw3@|KxeYT(eZ>%7&OqBmdqGh0Gisom%-JUrXt*}excO4dxA9lC4w*si`C>Dow ztP4BsDVpV~W7#T_MJvx7(7R)R>YX z6*MYqro!f#WI4?$>HYL)37Ze@Uab#ju-*-WiB8;`z5iZt_%ysa=^BoUx z=d|tuRY5U~gI25)OjVT0^X1+;k;)CqG|A93x9+U5D=e*S6cf@>qgw zsGS$Mj?^Q>O>ER#EXvJ9V)uUCS40jJ{^I2awpKB1+D0p~%#j}VrSTCC8?QbBC{0$` zXUGrIhaylr?Dv*e{}5C-a5kB3RTEOXnYM@5Foy*#D81tZbHi$szLjVu~A&@N|Ryh;|5)^|E#g}`tq9c zKcU|ymq6j@f`%kx3LgY`E}vy;&pk!UPvJ0qytYGAd0p?jg%%-$7)S``&~lY9zv9z_ zG)mE)Lk7(#YUK5>bH3FMEj4WEs!jrtF)w^-PT2@9s)V(SU%(_rC2vTUV2kL;~N{={Iz z10)OY{wC3Uj!UR(eouhXb9(Dog6KQ)sQz%x{8smxA6zyU(Q?;fD%X;8HXeOj^*$6c zYR<$sk3`6CTFD9YE|fnweu!X$u$hEw)G6=~vDu+PsLWr-pu2g!79ier!L^s`(J5>(t9n?8w>(2 z$VIQx^H;jF>o3kpMv4O;?K}cu$cb-4^7W2sDB4jds?*)8^dl+r1YWRWFMydde&#K_ zkEG8@&2{7i)#`+?K5oh&3gcZpUU5lFFT8af-HE4%5+R8F2(tSa5afB+_6r<@CZTgD zxuo;gnX>~pOg!LuQI|JOUm;4daAFv(sS>8(QdHMYsfMTS7g;*Lo7YBXy6jfBw-Q_j zBBWx~rO$F*epT@ZzcSzH&cwk3N;}tW%Y>}O`{&NqS|?i{Gw0yVM4o(z}Sv})4CMQjRJ5%TiPttQ$m%L;`FRld%uN0 zsf=@c*?4<=MT%$e_xRIB#RDT5ebCUnqxwRihGR2bTHv-ff$;st2)uf9#?r(h*U)^U zeYuuj2v)R8xiDb${_S|oi(5nA#bY7UifbRH<_r*qINbrHMc9ryPk=OZF0*0(_RHUe zXX%0)H$d^4NuI$^loq=GT<_{|LD(@6ILp-L)d|3L$DxNj^r0Mjo7}y7&%7{s)bq;CBC4<}b275O(~q zyP86&DfV3w=D!FQF9>b|M1 zlmLpG)fW8uYE6ZerVly8Hg(Y!i!>#I#KOqzMqr0o{fTh4jN*)+5?;eKD|w%+12K&> zCCecA{B=|*(CDR_O<^F0n=(~oI-k@3FL+TUyhJIFHN_L-b3odts9rB)6$me5QNMXH z1t6DWmP@h6j^SlkBdx@_x4bT!RmpQ&_vqa&v`en4ld0uZ=TBM@`iBeE`?j~#)g}Ph zVLwhJk#q53ZRvL38j6|*FW9rH4ZrPvD;1u^eLZyDRnyfo=iE%$D88_db&ngyjnOlg z4M^-~6A`*2ints8&3=f?{mDwl@T^#}*u-&ZHvlaL0 zYAc8Begwuf9>kqbfnoVz6Y^DX9E>t!QRf{W=yHCI)elPMR11e~Q7I?iEGAqP0t^}N z#!ZKh?y>DpY5i8fbT5Qh^#Ku8iiz_%P`C+mU=$CHFAQqg=X9W@@3(eu;CP6$?T$sM ztixQLyrI_|aTJn1CsL98D(_dzZwT`5fExtD z3a&s30r0&@hze?5=BnEm_Kcf>uxLKXcl)TYt&#hjs_W^o$0vRWJe+#bteljEUxfqV zb6v!nTo`Nji^>!lW?y~q;2@berHGWz?AJ~|&iA0@_+M~R`dg>7xZE#lfh&!}jcqlk ziinutQN8B!jzO$Jp43DXNX34ZbXVN-UDF>POiInaJ^c!QaQ_WFGmcKhCNe|4U>W&| z3R{t!W4hgGxM&5wEBq~v>HQ#`5g~19okWLtNaX`xknnw``vX0j8j1!&M<1po>$#$C z(pL%Ao{dZ1n%kLPxwq=A7(nTi`?7wZCCOFHb}EP3dZu=fsN5@1Xye%n5U&Ljq8FmV z%w>zhg0Cp}N)00J{CxAW`x{-m?=(5;gb2+@qxv1 zo{3eXo_mx(b`VKO_v2_a7CkUqqW$MX9>+8V+yOF6Qiax<28^F@H1J{@DX^!!_sl@g z-jYNfoA3HQwDaEa+pY!Wa%jQArS-j$nZ6Bi)k8z{%dClJ(Ckt%3%Pa346<<|Hgodj zNT3#GrT*`VA6h@&3SncvYyXkOo;OTug%WX>^e+yX*FxX!4|1R&oWUS%daIKY_^ z9TM{ke&Zp>;(z2J)c@6e$)6A`>4xZFkWE)e_N1U($+|3LV4Q6KE7z0LSV)1^r}t0H zH?MzNpfx)Sa%JqoqB1bFu-0e``yoMyZ4Ioq_q3#1-l-1Z=1L&c3Wcg$`jCN@A-urZkMmw|xbm^gs^@2M4fe8vC zKj>4`Q=JrO%2EO`Cu}p2MIiyB{X!*H98g*HJ5&f5eF;k8N{w;2y0DdTSV!T4qcG@U zyFh2^KTWAO23Cgs-yq*2NcAjm-_*vz%4C5*b-Ypg;0Wnam2Tm7M2f3oVank$a0xb` z4oO6*>rw0wS))M8C1XIFNf5Ll_Mqv)A*PDLdw+f1Z+nVfCpeS_qnHEpvZ-ECZBk_x z{P~u+tFYUXZ54B)u~HB0g}VUr(XE%8vx?&IY@px<_MN&vH>M?v1em99a#rX>krcCm z(C+8=&b%xN>GS*HxZA%DZb^3O8mY%4ldaz0@gr8Kus$o39B>>d)J^y2r<-^bAZj1X zx)i$)%w?^#aV<$MJ>-U2{AzHBqD7;kv>yN5hov&70YUE-bj&qf(1 z6VTA=>jTrMsDK@&Dcfk;oMN+V(P&ER>&Owpb8~C_?EtKMZX{v@{d8-AnbQfI9(p|+~!)cFqa z{O%19`uHuXGXfaSUIifKWZC3qZ8)TP3Jv1Y*hx7<;SdNL^YNi}??Az11SMC`BOxs> zFQBJ}xnr$@NCYO%O?frhOOW9h84Q|c@f5o{=vu~F+6CybT12a73zmBQN}%_Gx@tvt zyNlG>&k&hPPRqU7`|ucZqatyOwpVIPx{*GV3(@=BngE3F&%_RDbvx8*jTtLfxEALL zogXUQ867I0x(k}to6e*(*JNxlCFi*2L!hPnPi(+ve@_?H!LliQ{WZ!KR>url^IM0K zgRLgAKWZk2bbh~1-O#|TrC8oWD}BfSM<73vnLw#(59xZuWrNJDSVY>2;2uz9h-u|l~lp~bPGdBk}^fBM8%}F0cWa| z7BC9*l$4^g3Z!kMX|fl-fb2TP`@W}7JwROuxjgJWu;`2u< zGmw&4b13{I(kJnqDuKx>#o7TJD%KbY-(LR-ISv?D83|S{5F+$p6Mw+Rq*3&sEgsts zmrtX?8;TgUvOjTPvB}}j>^&SPrW3&ahnL1Ch}$6c(_NB`V5rCa3g)MOkbH|-^Be!h)`0U5#bG>Yc{#y%>_-q=SIi!I`3 zsVgRfBin+mk-fDpidjD?Izi?>aH$l<5c@0bS5Ci(n))$#M-)swgoxm~bbN8485$Hc zzTeW?R~Kc6xM1kp5RDk|rdC1D0)C0aj0!aJ)G6GX;&5^UCo!O!mQQBOknYiq=!gcO&(*su$Z5gAS2g{ZgVK~b8WP3)0xdAev zE+~%c#jINZDw{MRKUFZ(+W=A)5=jU0foAZhY2?I@kewmNOrpE;gkL#AHR?@Fd=V#M zZS?m*?zQpvtK2vX4=)%7ITA1G9|&1eS5$k0fl1U8J9@c9vK<>-nK*xJt37^LP0Sfrywmii z7Mk4sqNWHS6$av3Zx(yDh#zXH$biPJZNlw-0h>wOhLYP=2=kXAVC4S&Qv{Jy$Z*+c z&)ZRp*&jqO;|c0B=65zd$%tayqR$K79d9Zze)KHHo&6K;pT!f4)|rY@x4+A6*YX#) z7F4)#RQvsdBb3Q0=UGdyGb&ksO6*KA>)d;C2Bl+*$n?^v}Z=UV~`)+ zlzQ{HUU0m{u=F2Bv77eaMf|CmB}3*B`}XUl#w8BSKb=?bl?rQS8nf4Lx`-6tG$jW1 zx3fY~M+!;c=R2tI9if|Gi;qUvt#k}?ku$<~a7y%QBK$RMRDepy>skF*T>&C{EPGwf z`C1JMC*V@j_g3|5;^XnT>|Y+<-$h@sZnhqj^}=X`4HQG5ryHv5`IypT&@oBr@Di6_VK&^0v%(C8#b z1TX-sKS-G6%pEM*`B9bNj{eoaiVe(N%S0vwCts z%JA~G0o|6yW+#x5wB?QUU>TX~IGLH+`?R#nHQSeg-_iTDoIy;rEAdEO08V5(i2Rl? zn=?B1uiwE%;KD20NPPoPM*BzR`v>M0Q1xu=_a6xbMexkRTSJ2z1o?e1zuetGItEmu zd3e1$wRCmbgBCt!6+z-~83V&2B4YL(Jp&^JfVts~sUgsOqXP@bKhWkJ>l^StC{cc%xy?dB7kp_*`t@yljlYdh-aVE@KCAr1Lg9jr9O zx2^@O8@Lk-JG<*`J$T>@NPc=I=Az;La`*2*fL{9xErj>x+1M8xo> zr=pk;p$`1{ z!0im0F%*E#9r*Ku`xYdF;!8|#3WREWcL>ZV=}o>Ggz9{E2uf#hcL>QS=~F&m=O_TZ z9P4!#qEcd?JIF@)LmtT2N%<1n`tJnLX*&Npf|+Z+%jaMI?S)OzKjaQ-wEdz|@~GK` zn5g~C7G8J%65}V4P2PoQV5%~eysL4G=0#2 z{xdZNKXw7YIs$hhfDD%}#wL%CL#Hpiyn9FHIj5Ze)@R^JsmC{ALKtN6n`tFOK56^c z^(8Zy&j+gn(yw;=QIFBnj|Q%|rt)6DVd3CNex(!e+Od$*54P>jJ( zWQe$(Lu3f~+53cMP;cMQp!}O1fW)d%ur~%=;tl}q_(=ZSOJr|x&6Gdi@%ecND)9Uj z@%^O;2J--x)nCWJlXV-m&Jpe|uoQ#h)w7$2s+GUBI#KBVuk&Ex>MIl>TS51k)NJus zfx_Pp#NA&r_(a1i^=SB6%9q{FOsZ1ml)2Zk$ZWa&Q{m;9d5yfOL`Xa;7~I!&c*+lYF3T_8$hsb{ z`J7C>rhXw?ngEK2EUFJatNd4y%oC$j-l22PMM9RnoSjjN--!rU8i~z6q>YA;xibLQ zud6_Tx96IZs>zG?f}Qx-xl7hE!rR$2?c&FRFUysULxLqtuEP2P8kv*YZlVE6ys#ol z%yx>@QNZY;0!SROV(u4dS^e)C30&i)v3%!mXfS(+ZROK?>JPD{n{g(K63OFiX?=Op zXXrmFKdje=LPxnG$F8hB?JAfzyAFWedGc2CA~XYQvgo>I8>rec-`ZJ3nH~0fb`71% zs6rCDjS}Ot6MD+=JZ20^Cls7J4rG&_yR=F7Ig$6zlu%??-+RJXsA@?lb*7&zb_d7b zF4w_*sFy9qTvHEkiSy-bA2KxpUVd0!1Vr2BaS=aeB2H`gYW*&raBW&~z;uC|8e{M6 z^IsX1TJlXqTSCq$&!)T2GRd~C7F7j~JwZVqPb`Mo0<)!XY`J9h1B^V9U?gH}BQyPb z#A2|pUd5u-!3SU#v$fdPuj@-EPKg84zEvb<(EVvnM^V4eO&on`VFx^41uC@R^h4?p zF^2_YbPn&7g;-<|IjeZwyw8E$ZwC4PC+)G%;fyk@>`EswQT&Dxp&hK}#X|}2e!9q< zJc)3R0sQvoF!)m*eXHYE|@jgkBbgunDk|J z4avhvm@*tQpO@@(c3qrHF~^jNqRZ6*Wn^}boOhJYA-^mXhWX=H{b~WOn=;&>^gLIhb4813ZUpfJc9zq`P)SvWN%=0_SqVX|8Qkk;b-Y1}ojapbCl(^zvc-sz z$1zdgWzxH+bb{*H+za5PifBeB{`wwb$)CrAuVv9|;EuG0BR}2^^^H>8Ql#;9Fa6=s zA-+`WK(Z1j*2L*RN1g8H;_f?z@oK?i*DG|R{_*0k$t6_#vpA3opsJ!%afCrCZNg)Z zkS6z0+JoG9=O;=(#G0hNI%u*98u>h>N2pXjsf~w=Ek^kp`wZx|=i#-pE}U+e?TB}s zmCDex{9I-HsYdEt60+0>Q}v?u&e=c1(Gsi>CVeG1LSL;m+n{4YLs-LV5?+PuTyh}T z>@!mewE)*FmKN2$$uKp?F?__f)i6E%?M6STX&(+zx0WvH8TSW`Sz_(E!OeDUO&B&n6l>N z%+l;VCf-rqTm0+{OiiEaCSrMwyAd{|R@+!ooKiK8c71LKHi-Tupr?{__%=su`V~F1 zFf&Szi|zTPzW+y}h^cmU<_ohtRmS}6aZ044_JH0c%mCnMq(yznK^v+c3$`Z&x=1nd zdatphuzcV7U~o>fxbcM=C)%KDr6Ox*bs*lANg7@g#V7#}`O{79>M~tnl8MjYc6O6M zSo&Zb^*_{|R!eoPZR zm1!1lu2i7G>gn#)zMaqb;$?xpU9u!oMRsG2U0t)pnUBZE1}oSo?TJ&TzK2yB?M;5M zCSoK^#6)d0e&T_tJ2Jb6iF(19oJ(WQGb1u|!z**@$ZNbP~;3Y8`xk7Xol{-?1G^zQqy1cL8rwIr8*a<4b(1 zkhZ46K>1Z4|Hjz-SAL78XPRFt=nxG)QM4qa_rsPLqZow9QG3B<~>1&2X3lIEsfW#Km{c`r4@8fjSkeFBh`9BGyk85#>J5352Brt3~ryMn+iGH8Am zD&6oWX#C|{L}oWk_m?rJd8e+pH`Ik!if>@SoM)bWM|)%K9IFFGw;h#Y2BzV*F|EBu zuhvTyRoWui=WdrLIfp!N*;9s%j)CO;AYkKU64ltli%q@)^A2ZVPC2I_eVSmsW)Q$R zDW)s_G5wi3l&}{UAbK6@BBYCa9!TtCsybWVlO7M^fgj~7t{#Rp-rcLUx5$!1eT*}_ z$lWY$5vh8QQyi@my^ncbCTsH}cHxlL_-?w;`0LawyZLi7!pp-0jA~J5xK-8W5U zHpRa}$>R_@eubEJwL7ahH$(yh$&J=pdPBYu3rAyzyxip&;CE?_XQ+I#mA8;a5*COP z%HgyTJR=0ZlOPDB&{RUgJC@OR!hcIKD^drcGQJ#=?O=o@YdOq}A(N@S(PquU!8#ds zYNP_zBc(JvnDVh5nNhf&evDhjGx9h#2$jbt2D4bL(;#u>5H_LMUJe7XdE2xwYZZ!!7~g6d

ePr*?^ zQo8p3(69&)G>II`3>Z#7^8G35Pq2=?O89VKCm%Lk&akM?(_bJ-Yd@&glwpedQrh+T zI6p4y7c7JGRcRw1mDB(`*&g)^+NFOSZQCDQzjEN(=T0b!Q za!JXpn@j)3?qSO}bdbM}N7WU(weEEnz7ONI&=6QIze??lB{$1|!|U>q6IQ895K>A0 z)AL-CAz|>R#|G=So<|*O*Ky&$H}{)6_C$0fB=!{!5Oh09K0PdekWo8cR?{G7s+i() zeQefSyEsq>t(z)xdcD!`K&MI!@|TYJSEk zAOU`bxyAngv}7@(O6%?R{vC-6`CF&u)I^a?B8ZxnmV~*jo2n|gAd8n1%7=7I$QwD; zN8F{3*5uj7>@6Wm7~(!Ae3dvBJ6ZO=B7Ws3eoH*^)7b{ zPx^YHI1-JVfPjY03)vau&x1DG+eC(1(<}Cu_NG1;DdzzriAw9#vJekjE?c4P!T;Gd zj~GSU7fBr*uXD#Id|D9vIVTYNu{{t5Z{Eo%T|(bia3vs|ORfXy{~i028LBWFMU$D6 zLi*=2K&Tae&(Oxq$q}P;0{*0CS;VhBYEr{_d>QMu@oHr12u+NdJg6bu z5fC(bn1uEOF0_MpjkCPwADR6pF$Ao49HH_+S&aN$+d7!J52yhDH`1EI`Rar{ zs)&`MK%0yw(z0^mi?ftUXiU!l^Z7%?hABe~1d&F=A+k7mesM8qE2vjYbw-^$R!Aei z|MQjqkkQ1SS485K%>MS0#VajE(4^ zBU7E>Et5Ct-=0Z8;+}o(=?VDHWseUnbQQ|pn_*^39wW$x+Z~y83W=RXsI}5lxf&WJ zAZ947t^zI^)x(Ys=S>J#JYzDZ11P)Uw6z)()= zQk^l#wMYNY)-$)Q3|$*DZ`!;YW=Rzh*otk)stl+?!f*jU>?%9Jnu*a8YrN{=mQ?Ta z^t8S+#dA2)mZ+r)gr1;EMnGZ>rrcGgYYK+!`R6jh{F95UZRtgcQ_&il8n}fzVP7jF z=H6-brNSyH5WyrCUkjzUM#E88h8Iul=Pq~-VK11r;QUCbr90c?jHJoZKY`Ey$cmC} zU8I0L8uGT1SBssha=YPbbbG_%f#KM*u!ry z3S~>1?xGQ3lxAPQtX=L_Iyp?Q5?t=8qAjY|wG?U9MjPP?gyb{#(CV}q%X<|`HQhMu zwq)Gy0h@3!Svquwl8v;ul@h-Iqzk$aP_&g}ZbZAfh{Y?3NsVg!pNq${*K1I$2KwP) z86v$A z<$V@Q!8Uo|!SYvt`=CJjRt#u$q~(w1q5o9P_F!8O55uqZ4gou@6;62rDt^<_`es2 z^Twfn+)~qL7Z558n8pYbqabZo*w7SSHIrZ zi|4tsKVP-inn@t`Z*_`E5pV4gtaQewNt1d@ou?l}>W>FwEwBnD&-E-C~{7>WE$p4Zz_MynHzjbg#5iF#N01cV}C3 zq(t2M4@_JW;|P#z3rBN$d_A9*iUyY z5qSBpANP#qg47P@*#4+U!(M0?LCwlf)bsqr$mOo4qTmgO%HZs8MfrQ}ZSnOMRvmLu zqiGxdkYFcIwUO^Yq2t@4X&p;EIfd;i?CKL?)=eJH#L{C&t+9+on%uxlMT9<@hOfqk z1;iOVZo+n~&IxXLh#(TpVyyu{JL_4XE4*p33g`JIsT?U>zAyVASlevEB+ikwho^*s z9rUkDCqo~>(WIK=__Pb(J{MB|!QVIh3WwOmxIV<>J@g#da5NBkthnlSCg|57JfIew z0S}|@-47O-46MrcB@FZ}F$melj5A%Gz@IXyrwsV-6U;<~rOoE)R|(5oew%O^{{1qQ zJ>QhLv%M$U)PWyusE3KF1|*CT;z9ri;mu}iguLxCr#;~~;&Urj4o&nzuR!+Ql01*CpL1 z9&UhANBlB=*=f~Czkc!#GH=CjzuIFACnpx~{Xm59-HjLMv=M?Dwx9nH9tk;LXjdxl zQW_5OS?khxTwdIG8fd>0dCNGlowkGv@)aYP(UiRHhCFFL)TM?zla{g|`WJRe?)yv_xO{mQ5ve4(P@5~(suLj{03 zIW4vK`Q5FmvSM!l)>0wJ0v#|s)`lNqJ}ZwBDk?DJu;}U(b-9oY;~wcIfRCLJ>abOC zGg@y2%m48*RRgMi-x54VNObkg(o4TA)>SLM=Y!-$*S<&_FG#W(?43D$WZr9?#_)8n zCX4*Tb+suzeWtKMA8S@m-yi-X%NI~3n82w{0~ZqtCzlIbAWW_n;;@`cx2$Z|7T2kM z>7KHNoHVh2D@pVuEN0%ZzPNa2*dNQMy zs{s#6!PUy_+}NEl;(~9O9lc54?~rR?AA4;<$(uDTtBLHF zS}!o0^|OJX0%g0GN;cx$MG5tymYrQU^h_El7*;v{3hKgF2`Hve3iar!ciYTMrSxbN=JXpKSiQ8nWs0`aoRUU?yvXkt!QU44ialDo^8m{&i)Rup)?Q%c`z+}tP|ucHzN z#TK+MTTc{}gXC&CUr1yG$vY;DRl;$1t4){I9Ib z+6TcgguatsxHODG&juh&k82Wh75tN^y&?l%?%v$KVo7|k=fGg}q8cV3@2M{5QC8_5 znm(BsKfEN?F$Au)vY^GR2qi_OA`&iumF3~WNvu9m9s8EZ;UXwPkIqdi3MxXUWRZ=5 zbI8D)LVFM|ge6^7B$WO-<;@A-u+QvI@P%CwWa74~LGpw_=POXrwb4iM0^iQJ%g|hg zdy0;glk>htz~=0P%Q%1R@Of2bLK(ZvPB*Vt1ILst!$rLnM)3%Paq$eYG-Y6tG`Ynr zzoeKk&zi!0^{0MqsB=-vFXNYFK+@7r6Gg6)%nCdxFJWf1jdkb!Xm z_&q#QL*)L*Oj*#&CfsWum+XlrZ98~15~5}{5h1vfp)`{;=E5%H*3j8E(X+cw@ejQHAi(<@&uw9L;$7ES{D#WfqsW1eEn|!_;><NekI>!GX9sY!Nt=K9*<4%OK{HX}K04~(1 zX88amiji*N5rgu0x9oE{cGdmYW0>Jv>Ow|@QVb~$X{xd|C5+jylRKJo)FtyLQRrff zV*1IjyV5hwioLnFct1E}ScKyg$~hG|v|lcG`7(ele-jP&@p=NKjLL{brcXf=Nf?LD_0CX*;Y%4I@8)biQ zkJ~2`FUYnrDv@n$MqZeC30;S@Mp;dhUz?vuxl_`%TspbC-AO2Wm&Hx^&-eJENEUGL z)b=n@j^(^hZi`KWxfDDtUwg1MdpVJOt(dcIyHat8&_ItTN=qP`hufT_&p_12 zU-^6U3C1YEux%ldPq^47>1z_;kKQS@ww51mn=<7f4QQSET6$`^ zxva4zpTCTo96-r_@l0|7$NS3ODt1LKU?4T-vmIbl8Lv zbeu%z_I#>g92wkVI~^>G)-E;ZOSnrN83TLN!D81A=V3A}$`G4KM?a->`{s#UZM|!@&u(?hqx)Ti3 zEky4GiIvF)5piB;EbYY(YNz2+#BDeA7V@rVa4T0Il{>=>Fy+$g)+5yc!DM(cTPpQ( zA|Tl#L3Dhr8*EaTrB`Os3jiT4yeS3?ARAA^_%*yftm{g)o2elu%#GhlTDll;^--Sn*$ zPLjGkonCFXsvm2bcNr0oLSMVR)?lArqY_W=?*02uBv`S^gHk|XwW`iYRsggw;`MW| zRC;4OJlsPeVvmuf4JFck*=#AR4v%U9@iyp1h`MZs$GUNGJp-otps5JvKf8^7iu`)& z0FhZ{9=pD^1cO#hYar1oNcWpJdMx01ut4I9-)FbX|G#(Ee!pb8%}&|}G-@);U(L+` z=0OdG)WFXrvhs@>gu(hxj3yiL{8i1z_c3-@{Z75GnD_JqGX7tGT#0RVA|-7_O^5&H zxV5m83gE}} zOlaaZndqaThCH#SihU^UPrg)ezo@2UeYj^41u{Wle!@I!+VN3A-Q^@`vzc93ulTyV zk|-P`L zdMaleVm;32UjY4?q-!T#d%_o4qT4?$kP+Hj)y_FTsFq;ewK(`;^rhWJs!;5VlOA{< z_awG*n5o;tKCg%@sHB#$ijr`uq6gkSoA4kqcYDTW>GAAKsC>0dSas5@HS8LozLh-T zOC95^>~|lA5ZQ1tAZAf!Kz2A7PB;EoKKVngss>se=@K+3B~9j}e@nZ`*Ad?>LXNk? zlPW_oDM`KX`&FB<YKqx zZyQG?^#Y1_P#uIqZ`N;Y-P9_vXNgTO;YW2Kaf`jXKEx2~mg)RAA0c7~AtA6kwdO4b z<{!pJrWoQkke8@4b>ZqmDWRVar~P`*54jZWl4+oZRdBc@t#fqS5U`xgGWX;szUN*Y z)M@g}VhjiD7*jKO>7rx92QH~2RQ?wxxF6f%yMS~4FhOKZrkpi%OEOE*uMEEsDuxT| zh?pYk9hLVUl0J@I%d87uLv5Fd>%!_1)foA`Ryn>hh)fhiT4L3Jn`mfU{U-Wa4DIBE!J-{B>PGQJ(uY zacXb+lk#ab>zKXYPqbwU4O}@Yd(rrBmglvcHS3*Yi~z62Dt)`4Kr-SuPG0b7z;QYi zx;NkfNsiV&DS19k1FZGGS!wh~7m6;N0w}NnnVwS#w?wspf@|vf8^3Q_V+vX937rGe z)8CD8Xk#=>6kfa{wmbVOJ6*a^T^h6%k?^ZHxk(i79}F#Zj8qwT+<a3SP1)8v7`BQ()Q;MYjz{_Ca`kI z&B$nn;f;8VF4nm{iVM{Pl9bIdYxr+%{OVkGX+Di;YOL6aO4>ATXn1cW0=WgYSTphU zjQ5t|Sx6EO2I3+r73!<_nvGrEncFg!bD5N?XxQM`ge?p5-@e{7(HQTT+XF^xwx$e< z@}-3HDT#1rMulA_UrCdTlLT)XKQMZ4!lq9~=bUb0_6Xz7f0x+kW)cYvj)%Yx?n zzUH`{^InOSGThzZQ-8NF_l)PKu)tTj2Y$(JWYC9*`^rrS`N>lQWrlj9^!N#?y1PX7 zRiL_HzjCXcA%EIX;6sM^{hVgJKBG5phS^6SRRjk~+;v`q;q5F}p(h$4V^s*9}-)C{jGO_C=EV&S>rl#qY-t@w7AyjN6&8ey4Uz8dE-*juM?Z1m zrr-6tm&r_(3%OpOc{@7i;&3q;pStIWN5?Ga3r^-xmrjTr;vqs}fL-u}rA1YE%L7;e zC9VoN4ZlG4X*e`$HRd=-XQRCbg0u~FZAzD@Xz^$Ow-nk06wf!l%p2@#cfS+4ZK9V2(>1*Moo! zZ@%=>Pr-3JIiA7~WVxw#+(DRRy|Hyv+?zFzv!D=`aV3voAOpYQ&k}%mmNMWp3%~}x;XkkK$+C%;y07^i$zY}>2d_<FA?QVa#+CTzNZgP>D$EEy+j)sbB1FNjoffFbmEQD$r zy5K`?#!tWv4E}%OSLVj?P(hiTXRixp`BQ)K4V_Z@4JfGsan+=Z!%aU)icS@+FM?_m zIhPjcX1pGWGisU+O%OY}2k(*B;4nUBlo-qN=dVek%WRyjww>b5e;d~44&2uE)(K38 z#w&BQEf=DHogoh6uRhrin8s;ZWx~*xgC6&aSSgNvG$ViGnCFh1(qzdICMnI899%7g z4bVjd>^_aPE5%fWt>4IlccCZGZ&HkKo>yzu2e zzh-}tR}C`k6E<`0wW}r7@#1vd97;tcT-mg+P{F5kpQe@{)DZ_l^t>iWSj%_Z*p$U# zIK$%Zo!qpYQbvZkZhA7fv+lV2%P_WQ7Wc|IVaNsgdfXVbV?nt(dsapi!hdq56xciu zs`=hRNmiOSeS#$C8CfwUiBx^HmYVoEq!)jol=3-Wel(4x0?(^rKhuDV)LfL3Bdd1f zcuZh%tXkfqAW@AN-8OMxD6=rOkKWq4=e&vTMMwJzhlwOMV##Td_2=Ebd89_Na8mi5 zd6j7ADv>U^2joGpg;nmkV%^*-fEr*PN`<_ftMzKX9+pyqx;RDrq`o6q5q#ncRq%gP z?&VXKdZtnCF0q#DhV-G8`Ulq^L=<1=tw<|!-6<`3P=v}P+`f9v& zr;w=^63tvK=ljeY&Y(jtI;h60*of{4Q@YZARM8dKZ2r z61FN%;2C_(iWjRTxn{CleOAt*>KcDcJF-TZO;dkDJ{79i{}}xn*@E2{Hy;H~C^j*0 zH;HAPTFa@x0k)73tfk|+_{LeMDN*Z?hr3|MD)1{#w0#R;t!DzwN}D-oCZpfT#tp(Dg>QfQ2>U4> ztdV()sCF>^74sx)cc$|5$;)bsA6%~e#Lekzja4b7QqbFnAVs_~^$h45Yakd9LeiYr z2x5*`SF9RW@o5oxop)uJ9V7mNOUV5i6Xge<<27?AwQoE_er^E$(FLhKLFS&TJ)ULh zaAKl~h;+xkL4WdS@$0W#$OnJdfXsMsz|3dMtRgA^Z~Jt{=hpEgBIS}j+c6zxZnRxI zUu&u5_!2$3_KRgYFY@^~2qju=hNLu>%Bj<42yi`KzvoRkFq1PjdCO0oDX(W>7(?$^ z{rujC21Sya-(III;1P4F&im6RpFn(a3o>m3+&$PqpS9N1u^u~#a zBZ5l!yt`naj8dPbiwgw!B+wV$=As3bVGf1_5BvJM>OrP_n4??SmOeA;z#^H1Gj~YK z7T0iO9zSQOO@8pj^^||<)8MsaP{naXt%E#50-sz-w*1V@8#aBvtQlVENwQSf`=yXo zoC|Kk2_+uIeg&DV(vSwtC`i0i9`gn(I6KM=h)+b@cdStT_gHDcW2??|PGQ9H0N;{Q z_P{ta-b$_IHS@$h0W9*QL?)~|e_Sv5*>_y^olwKyVaBYiyY+v@HymPk zJ?W%%?sX%74SyKAFVe=?dg{#mw&DM4@ms=hu|CSz&Ye13BXp~K3I|36^NH}oW-x;o zs_yk88WspEg`)icpv(gC}r&e60)odM>s$lc}YS)Z7xtkO^9$m&!JX?d93mR0W3 zBQd3Jd@ih4O(9pN;*{+>Gy@GuA`ijL*`H)dMMIuiH{g=sHq)m%BkEDZtrKHUb9i^1 zznH?lB=Kj91xbZ)o)VwCwx5s>sL`LCqx3x}znL_|wi$o8>yfKTbFsZO^(2rRu|MuFv;97B$zn{@Sb^sRQ1TlOi=b=+a8+Aj0n{Qw|i=ci~Oo71B|m zex>A+zAwyF&HeDJ=BFcda!Fg#>u#(FJ*D^#wr#WJb*kJAv#HfV9Ou@wHY$dUzkfbvSYlYJV=kkZHobofsBc=~hL3(lNE9L@3oh58AfNpv z7VN=-heYAeSLpnZsu<%Qk(jOG4KIsot5t@)$D$$24e^s*gelI07Szl38v zLV%50Y!dgzjw~Xz;-25pz}*tBr5=(dc$j978GCqGh1DdDR|hV{A>Y?}-I8(=qP>?0 ze_nqfG}a%x#>k>r_Z8cA(Rk)+#Fzl4eHo;j)L+sHaxuP%bCvx3XYIi;=qx%lEIkb0 z6_gGbc){CMNqq4E^tLR#hc&+m(U0> z6?v&k&wG)RETpfI6;!GyqEGVe2o5NXF^_*3bc~h&Uu`JQ4`@pw88L5BWxV0!e`%07 zQhDe#qgBM4Uv3=wdH0#0%>6w2puHZ`$be(n7$E#@-7g*Uk^njM=?uNfjG(}*b~y^U zapI}>?3-ypm3B4-p`U=yk~|<;%PIsy)r*02y?7NxoTcgU=et9k`wX8~m+9!BtgU}y zYRHc%SQ^X|KiBPzER>*bOelU5V^&yPtouM>pILVoHhK+C0$xKl*@4GD5CU5$agt8)m^*n{}LwU8GO(xEsp0^?3NW`7M+1p02sHV=Q>`(^r2T)2KRy zd!lr{8h%80RhJC`5G`a+7w^`1}t<9(=k1vLV&6Lz0!s48~Rv*IAF9v??9&(!(p zBV1bohc~keS=?#dD_F{xdn)M$^+os+BgY|ha9n;kf3()$0aG|{L@p4IJ^m8d0nD$c z2n`Mj@Z8V!mE_k@$%B8nPev*@zk-PEQX6979DfuU{#c#Xq|>!amMJm7j9o`Di?Th5 zC0x95pGMk+;Bh(F3hGpfA z$Ya~wJdd#zTdG{+2zumb&ekh_2zK%a4^Z-!i2jwGfio(*A~b(%N2F(W8l9J`$d|7y zl7?9}+Ua4|iDcJhlC;f6THAcpp>^l-k-z-3R_FHRdQe`irAR$C>j~du z1WLndL8gZhJa_YKldG>hSh_1su1LM5m$mi=*Iy-@x@n8PL5cep%m>>5eT%IbjNru$ zOjkzB4z+^sNkD)2Xq~shN|0rN>Sr6O{~($9A<2@F@Wc#Bc` zbRVNAU+v3$={QnFYlH-)VxzgTtbR$(S8E;i{sQ8{MCfFuhMe#Y4j$#P&^rZ~WB!hk+PcnZD{$8|}I?<6vLIk1EAly&hj+9X% zauzbPoy&a+KdD6VIXW{V=lUscLlMG-A7|zCdd$LFPE4HkWmJTWVyDI*GRm*iJptN5 zRe+Y-lQmWNl(x()MI(TbP5}E__eYTmOCb8BnVT>9%WQ?j*q*ku)#EK~x;hXtB2wZ3 zrVxKG0uddtP4A2tLmyU?c})?PI}j(3Agysf(fZ1jhPVrAHYMW&+U-5=d2Eclj!P^e z{tDe<*M8lTO_>W)vAPkgj{mB7V+`ELKz|eayU5n7phH|5&yxy;x+uW*WT5n<=ugA5 zB!?|z)QR>~o7}m@kESwfFjO!nMl1%}(jR}rwd!CfDe~&zQ<{*%F6R}xWQ>gQ6_Vt6 z%;)OU3v5^r{dw|CFpe^R>`NxBDl~tV3fHsAYew3*P0Cb_m@A%bJX1h*J+GEoanx7D zF->yw|N8?f!U~4811(9bGPj*JL6GT?pdc+TPkkg5{ih* z(or}A#uj5f?I!iShdFx80%G0S#xH*ifo!NNs$Y^M)d7zEPdd|-qj(y>k0nwP*ohdb?>71nR9?xJyNvkd{DvEY^Op)0zE zajtS23=hYe^EzWRzlBP3P}YBbXPx%i47LIT1S4t9b;&)QYGiEx3j7vx@i($uI-L_J ztRYDwY#~B&CuH)xYS`>O-b}Y<1;TMbM=AR3!HH_F1Lebu=ggn{yw33G&W_MkBFrqn zhzI3X*^SQd3O85XBrv+h`JIp9U237O-reDc%y@~+;*P9R1*=Q%l^`Lw`3qV_DZ>`+ z&GWS1f7^vq4hfZ-AFO}aTf6WNj3SO`60QSffejKM1x>*6`}ChI6o;{ zFjpimAJS-aWj=o*XdT8>Jj`iRa{Dxbm-^>REQ>e@dPBC$7c6xKJ^-|sPFVDXc%Z85 z14yWkyATPX@Ept_e~}=sZz*h|2Y~4I?qfa=O3LLm#vNevv`>p2L;QQAY zWwXoR+G1j}<7FyKQrJ;Obtz#kt##!myoPP%vSb`(;oES|tje`L%BVC)SKtY+=p zK;Y|ZGHQP|Hv!mK#M_&HXU%lxASBdcmSC?$YTKD9ja$rZC>D?D#&h8Fp9{?-v>~9w zgssivjC}g=aXVKl{XYN6E|M9resp$t)|H%YxYWR{c@HkwFs^J0eRh5*edk$XAqs?| z_*DgqV9Vm<2(F8wnOl=OvkAmEMG!}j)B`_|IC+0Meb>1Z29wSET!VJ=g{jC`Ty(#S zxC^(}+5U@OTF-<_15~EB?%6x>7YmPQUcL#tOHsp6zg|~=Fe2E=5ARx)sKTLw{T30l z(gsnXvIpP4hJXAy$pe(5ly^JyQD>YApI<@B$-VDbj1rw@$LCD5QS^gskQ;@4!ZEj+ zdY6A4V9+Jmk{rOtup-i)0;7IuoZ*Hem{JGMu~5uS+17#HDqEio*Etl~F$b}eMjC|J zkz5jKu|~w84g7u%BjtpO4|UCl=4&UfNn5Xv%e`kZzw!zD!VGXaKWYR*OP-OR#= zYjMCp+;YLs*n?wf$$3`nwj3hbgCr)r=Y@Yogyty*R=2O={3|ioEo0Td8%QQo=xUoK zRDHb(#>O)p4wU5BsCP`qZ%BLGCzH>KoF5DKXL&Dgs5SMHm%?>&vhj$Vb&e9eEq=B2 z&8-?J^rhXvlWIM3_U!@Yh;ncKPXP4~3h;pE+Sy@w5DqmF!wlI>wkvV?5&HA1;--I! zWBhCho0^23{yG_DG!M$!!XmR!D~Eoz<-4AWZ=rf__Q?m15MEbAU=S&Mjj5I@@fQ$D zg2S|`y;+*VE2;4WK^Qjh7Xg->H{$$(%n7Zo9He?v0cG?mpU?z~aqvlkyzo91qG+j~ zRK~;Rg#|He4yX}Cd#4LYT8>^YDRti?L9%tB!NP;)67isKNXfp<#hf$@#GWl3CKDWsXwf_9@*(f^@yG{BB1F#PH9+XNQ< z-!49L0vd<0h(8lU5Eu)w5Ty(e)(xrMi(Hbr#J{dYCnq^2K6+b!zgF|69QP^NVMgua z^%Km?U>;_mmy7qB$Toj_*xea}j5{=S>|q%7eqYEc@7b5FA;nfz6N3D)*bF1pY;>#e z_zdMxE@q41j_Gg`;MuwyJp^58ANUC2_FG|5sX|qcJL610!l(lTyZv~`RyHk&y+A1` z^^?9#v6+jv3)wcEn<@tjH;vgL4frW1WW+)ngXM^U=F)7)0vdk`LF>@WZE>PV8lua8 z(wH_68bKYwW_IK-gkJ2sA^3P{enawa^)i})B+f73(O%KJ3lIjZa!Bkmh&&m4bxqL@ zvD5g~=iu>y=YkqeeiOvLP}J-9%7qOMyf8l+65tx*swNKW|0Ir+A9ChwZhSP*saPT> zMLPx~3&dxR^csJi&3n8)FpKPfkM)4lfb8u%5h48HL}Xh@v6%h(B98aJFj~}}5L^AQ z{CXo=?Lrtc1)sznJyE@{nEyVgi_Q1ms9#fd+wtP2WAM$jnaNaJjS6?lm?lXAsJXBr z=cBR^0oo2H+~4y%m*ViGI@RC;SGvE(rSVMYNb6%9gEN1MiF9c*6wNcr6LUKP7Y+j= zB5EHH8$jQnlPhJx|98=#33O@zSee_~A7<`lp)ZdCQ~0*%VCI!hO!gMSQ!W2h5DC~( zz!kpwRATQfcn|Km$VB5ya{jf?V|4{~$jBORbWqNx|5NE;cOPD^x`mVyyj+};m+eL~s1C3*6Z>$^x~;03CDV)Wc>+sU zb5FE*aK$(i09dIure+QMq06HpRVYL;=O$C|aEB>NI>RXAUb=!6CVE&X#o7@+ z3XTHkJGAgXXJJT8Z8HYv}YQUMc1SMYE028&xEm_*|i5+WYZ<9>+{qLk%|44>QfgT zipjis-e~zg))6yvFEQ|~(9oydZ8Hqs6d(iLsm-r$eWAB=j{c@JO=3wW?CC264fUB6 zD?7!5Sd}4*)+ISo7{Md?$?ysPJ54XcVyiFtuCGZ}xjz+k=^$(2YXSerS z+UkBaEYjm10A^0c{xsF6LN4Huq*kP$4orWKnytGw zTV9^;@y5J9$>USv2_{+M4eToXxt`(_O(u`Dcvex{E*P)e0=r&_m+T_UdBWUEYAS0w z`7Wr~eH!urmM_K8&$n*kM^gh;PfeOFQJW^RJ>aK&fy5lS_Vb10(kxT%P^k+O_>rl&^nUP2t_X`wg%F z11UY=@hJlS)Cu%ZR^HQMYTvM{9xvq(7$5H03t4OL&v%5ofd^|8&Zhq%oU=cOOQI$W zYGBLRE9f_rp4t}j3`!QMHFcuGDXtV)28=^Fmh@cg(euveSkq#wPbidmOEmFj7g&7@ z;Xy=PGp8MRtr<&T(gc6=F2|Ynv@I!5<)>ARlwkgrJxwCH`A-DlM!$_vrzbMV@uSmm zmbW9L2ll5K)~A^6+5%=vrN*<-v{Dc8jbdtt&mO#3R>1jy6Y<_h^}DhauHhIQ3@9Hs zR{)l*t9e#rm2c$Mu^Ij0)->;oEkN=6BXIG*3eJQ2<9F-O!H$2Mdo1j&{njQ8_7QqX z_Q5|XHTFY-UD3cR$}O1&*RaiG&;G#5hu}OwwW@YHtRQ!0)0-o>Zw3|_qOStG@0qkR zk^)e2fC40d%0%SAjQ`*z%D<)eM2`cUV#k_^;0|avBg}LLcj|5cQyhHKm z9B?MV@i?~DxAm+jN5V|3nE{ZXU(SdUd$fut?;3v;<jSCwyzW% zDV7*u%VvKPLo{&|s66qx2L6}6&{SVx9?5fRJ^CxNq)4_B`!}*&JDhWN;_oTKUKzT9 z0cd@TCHX-%kiyEV$!ja1sE-_Me{Ub+`)^siooSXgy$QjK#eZ1Q1yC37#}c!zj3D!m zR*`Xukli^oJw9E;hDj^L9ANdXlq71V!~$Y8KEMz}7G1%wrOPltA?0f1V( z6`p3H3W>BYdpZL})IOoElsCD(%nImZu=D{!LkZ$uSFL@lYbaVwum#}zhE%6#IX02r zeOKl0&G<0?Ki2o}L3?Ta2IB-!(F4vfLPl|Qs36iM&Wk%ODRX?6fy>CCoKWCRAQ*Ie z@lAhf^UkBbPSo~QDm@45CRD|6j+)LjBNd8r!P8{{5rYhRH!k0fj`=Od)Q@+tB2pTY z>fkZpNzdp6=?_Kr%{qianE0CB*Wbsj`eRw}&)kHePW(l_E38cZR+yOtKJ4a?>7w?Y z3q=s6P#)iXz=HzuLH>I&1qTmBQJ7;Bnd5)FY11dKuM<=&Ea{IcznizhdshM7l2mO)E_mij?4n*aptth<+Qr z@ZEnf1k0V9Vie5O#6(pbJs~pp=!|HgQn-h(%y$Y&Fz+5db21E%r5P;e$ArU}W(j1U&nn%?_ihH&n;h?*+|D@+65$F6dY4%S}FhD0?BO<zx zmH`V_fqwW#1UT^@NtG12lYSqs50`&0s;9rXp=I>{%(VD@G6|N5X99YT_-6E;Pua@YT4!9S|($l!p%UclPfoF-GVY|&S>7QmSc?HBI)_yFTQ zDEp869|2WWTNc2)oJ?jg&vO$H~C*Y*hYrAknYw_x_(cDsL&9+h+_ zBovG$`k$kC|D$sb91Ij>PhY~HYxIU;%ebn;^P{_>MT8WdO3kOMGQp@<03Z0B^-G}o z!1_TRFGOSZ)sDAC~3Uc$+z- zL>t#+N^8bJR!aci@!GF6b#KgeD3#|{pDrRTutneRn&;x}fp~M=Pn8q)8M~-n@A?`M zy$Vkk=;HgrRir3zA-?p&`814Im769XM9wDp4h-!lXP zmy0wLQ@ED_SohD3oz!m6eA#^&5X)BvK9Rw9GStP7xTTk`*uqH7eEqgqEPpnYNB)bv zGHyChd~hW~+{E@Rc`Up;yD$4qz?G9XkuOAeYrewpI{zO{fze)t_IwO|DCLzZ>2=jZHC5J&%)_CTX-~)+9TP zU;2OZMcIFTO2%y<*rWpYkq2+og!fx8xM!Ya`<|u@og1Oge(A`Siee@ziS|aj5DfsX z{SiSwHDw)UaE#J2ZaX88K0XR_ zbaG{3Z3=kW?LEtq<2I7_{tAUps)#N$-T)7KSkJ82-kFJs9rvDWAJ`JBiebG>QQhvp zpL~E4sb)QBsMC;pdxMf1^E9Wb`>j_*1*( zw9f>3Ww&d#yQYSgTyclAA&hdv7613)ut99v1DE%o_ieQnh{+oXoS$_MJ!|e~XEpyi z4cANB{@43Azr9h=T+Y;SFijA~y4hm=2J4-QBG@$Ov!mJ-sbe_5~q$S7vLVlE_z@4kz(LKI$8`$9xlKs_~taaY>RKU4bwl`aUU z3IMBw0ybiy4W9RlN27>kcD^kwi zO?(9=G!DA5#60C-d?y2#+Naa=573!p>60ju69JgXeFAHS+)OO~x;ji5VU4{SC8mOq zI@vOFIVA>QwZ4E3>!bHtIxMgbQ<`*`dPIk5;Q;+?f5MdW!WUsk*_yjwaQ6)-2d>?mr!@9X}ZgQ72U?$ARQ$rIruAQ0(@G_5 zxSr*re{@3nv_7zx)3g8su47zhLe^;9uT(g#Ky(Qao?g5fB*aHgKT6WH# zIypM_)q>t3-^Q}qFPi!TIY~NC2swH%Lrxv8MK8$m_;cNGc3rg(TXwMQ#o1gzs)pDE z0bA50xa=;ng`EFm@nc(#t^Ac2HpZEkUPv&0PYkRT(zxNk4ts|I5DrYRhoOyNkqL)- zf3t6!(IGhz;Zz^YZ3OLU0t`_B{Tl}J{dToP7CD*N0hz9XT}Y5wG+15X0|pE|YFJxx zk~lzlLJ9}ByAoXW$Y2X5Xe?n|l&lbfGaiEK~RbR(`@q z>Sen_87)_1ZoXf!UG+INhlLmdfkjCl{+_EAho=xWMZMA%hm405X zR?uWih%gr=4hIb3x=iy0D!Mc|Lt#;IfH7|p0$rn~zOTFd-PsEZoG=k49yv2Te+=9s zu1t6@IGErcRw?^|UaVGIWceqo^QU%+pnaYAMwRCrp{k1CEO{Ua*vFeRq6s^uZ0b~mbf=QJWPa!qOgokNRZ|4@qqHtM}ig0!`T!HP!M5eVWl1Pe^Ei~4j`yDM9%{HdDqFlasg8{|9!VAH%A>jh9BrS zp$dN?{2+~;N?CqPSm0*NBg6qaV;&)}_;f`cAs*OSxGWIxD*7#QKtvtHfXxL5Q1}6su?DTvd5+0ao@<0S& zrpcoNjF2~3+CqaF@-}Zwf58rUo24xb*dg=>=70c0D8=dCRa7$TpyxG-Rde8?lj^SN6N2zb?pJVMYA<&7!Yp=k0zpm#A#U0Ae3d5a5+ zcBsfA#G)N4@(4jYROAr?hA7A^bz#8}1(~HTEEuAYx45uii9+7uf5L(#3M!8futY)S z5dxMd=sZHe5(S;5E*w~*ptID4Q|Q>vgHVubeDe16iG8+brvmM>I~R}D7`5~AO?7&2 z#MRL`h%7Abh7gagqa)0tKb9P1=wJDD4CH#z9LCNdl@IB*c5Em9C-2LRoqosWHX3m68Y&N;My#L;X;#4*=Es??b*io)O$6JP~t`Yck> z`=?ptI~3V7UpLjF-8P>eVG;V#IxdBAF8KkM!WoxFJv=H1f1oJOSCtO-Oc6w(l6(5w z&aVeDpxHZ(>B&2dB@m4jg@}@Wv?cPn^r>F0QkyONxXOC-C8(z70y_uz&ENm|w;#Tw z+XCVd1{G)&APHHckLKQhLLE@v5%Nu<e6Xf2n>i z*Sl5HI}e?>f0SH4=K|LC-UWGSlP;+{;Y)AsckEtX)F>w13#`MwUW}{pT1XYIeS}v7b+K-=^IunSx2wE!Vf6NpVEpTkWr<(iUbp7{{!uf2} zD+j1pH~;(1ZQEvh9z}gQRnS3PlHtuKcId~`KiG$ z)?Yz{oN*xXUSG{jb?6f*UJ~YOrS2vwj7SLc-|1P>b4|}3J;CGznzt^-!Q5ow_Wm{I zX7FH$e+!}~KD}Ujc5X@$p!t9^HFvyWG`{}a)RMb%-7y;B;CwoCngAz!IR`N2{Vgs= zIo3;ZaGvDIUP;k$m~1)0SQrDt`Vvx2F_ln90>Dy*s=!YQ_IhzQ0k$OHA|a0Li(|4_ zBu|wqPWFS!sjSwte3+oI#Loa}kmP)w74l&x54XoJOYGQDT z^0!-)fTG-** zr`Gxr2F{w94ps!E2LS_xac(?d;K^u#gk6xZzbY<-9jr^DkI#k+95V{_YNDu*k zGne?y8;Sv$BYuf}1v|FoSf|!P`kXr@e|;W^`Qfw}`PXLCYjeG%wM*|cJ za;9ZK0KF1(-d7mi7F-qxWpGWF13|+EPWvnn2Bv^ic_7$Jkpse_w@YV%a8`iiW`ThH zFs@f~K!8TEAy2YG1e0g7K)_DX>pUzlI7?%S}z4lKD*c_3i9BlEEEL712|$uyWC>$0Z0hJ~&(d00>YPu`%? z!D*Io8W}`zSy&harp#nbGNTPGhjTy}ST4joEO5!{^B{mJGg(vJI51^dlgxN4bj+h8 zXkmOF77;9&$-^Q>^5W-!C_HUce=?znJtX4Mb=bz=os-n4@5z+ zdO08zSTYr+Z!DkKlEdc4g|sC<-a&J7TUbLk&FDD)4BO$t$o`ow-Pz+(e^V@`%V~Na zYYn!?=ezL5c757-hv3fk^@E=oYI!^-T&45+(}zEJDqrt+tCBYVbRL~{_}!^uIN`;J z_k1*?J9mtWFLJ#e>10B|R^00D^Q@{l-sf{@x})`w|jqjh(orueKvlqJ^Qj||MgB{F{-@?S989j0!WC9U*jYe zztX}p97o3pP{5PCIA4y3jz~ZXkqa*59M%APrH(@~choQA(Dd?a%2$+cd-;X}abEjy zmA*YIm^b+880IU=uX_0n39!>RQ_sa0Uk7We{n_n+GYWIo29wNmT&kvDw=;66Y3FZWN=TecNN{v4swp}FPk~eP#ywX) zaH*XN)jvkaZPXT(23`U}7jk%F79{C{5R8dZ8jsrxho92JQ_vGXq%RbL2wI}pYKotL z=eqZ-=((Y1d*kh^e;x3me)|3>b^-YY`FqMgB(?Vn2fh(#ryP&~ z_tW06^IxW3eWI?x8o(Mwl2JY zpDrK~M)Cz51BtjBps^aDzu{8JrFHk)M5e??LydwlS73=?Qet?SEI81q;57*krDR?x znda)H%|#)po5(jyMoq&Jc?Hx}@~w}NZz+RP&B>ON4gWUvE-a(2AP7Q6BUe}G&pF0wu7lllJ!;S~*ng4G~N2j3ZHcnVYLOEvF}aN1m8obfz18Z#W{ zJMOqIf=#P_5dS7x0V?i z%Tey(WqmK>Ux>#A$T6<;M$IX-6#F9q>5x8Be>+5}PeJd542yJ88D%(G;O%b5W3D69 zBw3olVcBD}fo9RiA?FMI?yA*dJe(JAdh$}wFzn5`tgvUWH$ugTppH252@?g(j&K*Y zN9K7sk0)xDWjkikWuWU4FF*qx@LA&~(je7fh8d&NgxS(DBVHNbeYFUqd-`w@*D2e6 zfBP!626Ig@#d!9)=LUSC9lr69TCK{KGsi{}^dIQB!s};s8>eTd^}`hKv7`9b>>%l@2Py@tfj$v#*-=>`U_B4%@awMjS5! zU6;+T`|gdK-urw|e0IGj#pp^Cf%<|13_wN>BtVq@4a7bwb(hax0apPzmnUBVSC{e4 z0TX}YHu64Sp~{J>iZOUUYAc7NHnZ7mrD``bl|4-6z>#R1wY21wWP2uGzx@DZQl@2T zsP*`egWYTp0=j`lqZ{3zoLo%g`yLR%=A zPu>^5%-(Lw_4LELpI`m>?$v)^DfqFRs7Ze`0_ss+Yt>|S_3HfxIhn(|pC?k76eo97 z^J-#+G!CAc$=g@|8tOI%5oPRmTQAm|)%46JSzJ|{%jNXUsA4`ni^>;kKmogZNR*aV zB$ZA=m6j2nZJ(^`a#aF7)rv<%J~Fni-#FE6>rDA1v`_Gmgw=r?dwaROTLWWG7PEhw z)oKc`T5OunTr{tKm&z_GES_`GH9nVAv895_>jlHjWz`nI=-pgFYe?qnH!5_gk&`oR zg_ViPcz0PtJ648vq;Moa_bFFQgCDyo|I#-l+Q+{l6@s>?|O{^ks z3V5@AcfJHq7!1Os{ii3Zi^)#Oubs&}pl(n4^78R%D|}e)R20GH@t>@!$vMc|F@4c^$M2^V72O$3IV|D0t81%U0fniR0Xhs6|1xaJramY4OH$~v09{<`YX0aKFD<2 z(w5(A?!V;zS3T^Cv5K)x56d-y3t0Na@6t&qunM2l^9fQ^!bbmM1SvWpLso=(k07}q ztnsZN!I}oKfH6X=ca%2yrAa`dfw3g%jX+qP|eP~oaGAJjZ#^B&7M&P>aFjt zRuJ1Ii|q|#9~o;HL&=7%hnA#vglb>Zj9oCe2I+Lcy_o6t zN+_QfmEEtMRgCR?qk45TQ3zHHY6c4iIHgWodg*DQDIbe-#u~;d#%7Fd7^@j9xo|O{ zv#l3FN21+$HAZJUXd(IjD4ci5h)n60`~_nrV^{a@q&1EtGLS?DU%bWA#Cn~%0kC3F zF+h7VDJqPt`T?9XzfUFJ;*h9Gl%TGp46j|xV$R&)aNxIM5Irm?4{|#dmV~ZY%S6qlzY6KOBYE*eu ze8V;bu#+@xh$K*n3=-`$nNDo%M-uVK(rXg^(kR~%a6tYFdRTvAJxld$%471lQ_^>E z&H@MyFn4B*FrX0+areCP;5VJb-Sf(cXby1q%K3a?uEENKUFakPX{m%uwolQ#nlO&%;ROcwxtx^Bt^`=Sr#vL(-hWefV?MC3ViL?V-i1GQS?sDWKo zt}gDq)iVv|SOLRIF0_(TqK9jX`-vb+tjp1WgS)O~%f)|usCjC!*ZcxpVXlb|HZ@Q4 z3-z~t^5bJ;I z_XaOxR1;wIxp8YmC-8dgC`Jry;z5qmoCY@h5cIev5*T}N9ej94i`jN_UB%fO9e#DQg? zmyu-w9Dib@%IM=AqJ1u-cEZNk`v2$!HaFm!c_|adO3?`fCoUP;eTyF4`Etb`Tz2Jr z$CV=#V^=c_w<7Wp97#I$Wp{B!an;XlP;1w>+*UyMI%*6vXU|nfTQt?;VsqK`Cqw>4 zgkKCaH(Orad#A9vOy4{0y=LdM+;FpZQ&rSW!+*%f*1g9%^Lh>LJrjwg*%Q92TgtW` zE=P~EZ~d5)Ye9obKlYp=AJbYqrcjod|EXHxaiGT;yTOw#?|}H)N5X&f{4n-Uyhk~5|j6ie0SUA1Rr!@5bX3e2`C|)nGav=rUv9-%7oqyx= zAXR14ET?}o6FkZT)B7KK^_glc@$_o`j4^j>3>b&$rJRXdgF3=JXUsiCK79_{3W9+H zat9kLQDxj>>McA8vmb`^Z?+<{KQ{YM&4&1V6R-_Ao|* z3&%6U!D7jA8JRK1u`~`H1NeM=s}C5#VSd&O3#%2KAH5W{0cL=XPbXM>9j$>jN=T>B z8XY!Iqcp~o)+&t-Xu9N2%Smm=G~kBRgFRe5#A9jJ%5cQqa;Tnzpa3q8 zZO4BODFpY-3PC0jOnfm4K^bARdpa5D>u3a^&gqlb5nVn{qY}o`)~bXqZGYMkUv5W4 z$5Q8r0{|Zx48_>N({~}9U>0?RMWuFD(uzAS8O#~fJ=)gCGxx}No<;CDhvfn%n||ZE#be#g}8lI^la$)S#^J*NkN48a*QLXgb4>F%6$b@h$$rgB*syP z&C_VY@uanyutVCPitx)7VX(xAW@8V)n)70>8EY7n3}y@}23K4&V+#hGww0sFcwA*^ z)>Z7~Db6BQt}XmbnR%$Pj41;Ae{R(TT0QC)W2TvygjMdK6v*e-O-LP{Lyp%?JwAU= zqMS}ZTUJgz+Wyo|U#^{!$zEsQBJ)}(SS;fwOk>thf4XpJ3N`ybpK=j%p0`W#gjZp8j<5WiZY3ILbK))qI}C<=a&ae^ zg=o%fb-U#cqZnL`?=(^(C)B!+LBXq=HHDp^xZ<0PxyQRq5;zmpW|Il(^vr(|sph6y z!^Al)i+B9S-pBaX!(q9clzUNk`jbUTNxqa#&X+}ztIg%IecffWtu5&?Ee3WLgI7sa z(Uj|)^ILr?udbU4iIt%xR5j=b;;BW6I!>`6v%>O~eInoUeh$M?%AC#v@n(K}?Y z)N&$wo7FvZ!?`o7`G&LW-Eht&<$U|ZfXTuqijF!ICm8)tn~W?oyv%>Kx}+h#mD64m zZEX^;DcvkZbQ__?{xOdmA1=%Mc9HuUP)dV(;XeJFR0`}^-{Wu@ypvrwyy#5-mNyp6 z%BHFE^LB|2N}G?cY5R$GO8EU(AB=EH?+cP+USa|h9^0~JSlargzw$y$bCS+61uwwf z)$1Ha`(dY;1Qbrxslk67F}KrcHE=1~xFD1br|A_eZ4X{Ruh(|zfhYN?UT@a?%()~e z1oL^`u1sEmrri)gmiQI{JW(qsh@fr3lLGstCy)0@82N($oBF!F*MK7TjOhWG*=&7y zDgGj9ZD*b_J-}$TUcIGLhI>#kSTGoJB25s|TcTMzGsaW1AkBZ#_qnfo{by{`!^%!{ zX93zE&UT{HpSnMrPma%kNk;^U-YSg)P8E8Z+2>M>Jo zi@zKjT~<$}n;d#;)&y`ntX9{DUa`-z zT!1|aa5L(2N%4@+C6%|^PXi&EC#2(6T+!E)kRqn$37>!AhYHLg+Fs<=9@4O&m^U=U z7p<+$mC#T^Na>wev+t6Ai$5|&z2REukYJ@nJ*)b^r*9-tuM4iSmF$E=IMkW4t~7Hz)}E{96!C|WgKOvDp*dKrLO4HRIw{a zyMs+G%YuI&wi(U3iRTkNP6^wzBQi9y)Z3=ISgz`P zN^_R1(564A?J>nx8lj;bo+9ytFV;7+DSw}Zva{Fu*aPHgRw2=J?s2`TXZcOp-uqqC zxy)KTeH|MIR{?R!3%h^1tOsMx?w>Fz6fhjUP(DxgE@Rse{lH~xzyC6JOI$>!$DN2e z@G?z%M!4rL_S2W8F~p$?p7PH*<$jsRKOdoG*Jem&`G~5&0b%6A#RzH#l%3K;Nj@+> z{{so(P&1b|ZUI*TIhT)a0akxBIW{0ZJ_>Vma%Ev{3V7P>JNpnDxrc%1mTs zi^*~#CjazCB>2tSH(z}#{Y1(vTB{~+?Q zVOq?~nVjA~mfI!P`)SUP=Xp~stNL*k)bvmMq*)c|S+&6*`)Rc;wljRP=LhAseKT*K zpyB6xe!gE-Gidu^o6UZC`?og&Iy`AFYEmyJPinqDj`DNf{l~X&etRR~bup3M99Wro zqbKvt8?3i7KrzkLq%MCZ_iz5=MQt44#XA0@7mvm7)0${#E{onfS`wKFE1^3!(<<_k zNS=j+@vCpcBxcbmdS8l6hzJkp&Bg3aYFIP|&7d?NR8|aXSf?1L833cEF#SPJS9GoD z`an$&CQQnhdF!Z)7P<&C_U;!kS-``;!MJn`lLvZrGf`O#*tdW6(y-OTJ-K4x{53C#{?Q-C$ln<0pdJ z5dxV2!G^((!J0wAVE=OD!~UdB!jOjR|7BG8g{FX+nm4b|_l89yxn zl~P2kiXKU!k;M=o9Rqj?Q2`c3tgJNs06@bn6kJ+zsp3-2rAL(IW_m?&Dq-)-YKfZ?&^My;oY|uw#eI~qp zg+3|=i=^~vA01LSu+WC?cXVA-4JsPJ>FE#9SI0aCV9Q|106E9u08YBDy`WVd-*xS6 zW}Z&(oZEk|89XxBGiVs(Z5OY`k3vJIZ%2>|4?90km%hx7QTRSPYTknZR16vh^`LUc zpky#VC4uNOB{lWKn^8K9fGsKd!H9m~W`ASwfcyk13P=G<9ki%c;dMdRg6eC!mvFT{ z5C+z@5s)|uXPMCH4EW#`#-Uuuq#6uk&#mtmthj#@1(#|DsRVB-?Dkt4#J|yizNP!` z>As-*{W(sA{=<$wzW>_$OzZG;0MKksUD(k5j_%i~Q`cfX7ZoV!H?tYK2#PxhEt(^9 znfsLNxbM5!ouk=w0!6GN1>BKh4mD?XG2D6#wdUg(Asb?*v>A5$JvBY2rs1j`GnkCn z9hHBWj?AHm)TdZL#Oc2xg9(ES7Ay`1uBcR*>5p_@(zT$PGq#TkFuB0(;|B%mSY}ih zj%q`#SJe8V>xreU46q@8N#Ujk1f*GR@7eMU=LHWW^b{ES=)n)D~<6qu;; z(%?)cv>gs^*f7jf0NzDZTBT;o?Y;qeGN2`Gie?21rb(Iy**ZUS^ZD(* zhs?rW4&(^XUZi9lGG(67^3WwFkuM_%N$E0}ly<#$2hcN&2b-`#ht?zew~*&7n0o!8 zohtKf|DYA;+#z{H9~T5rk82V-uEj}70E*A5L{^xFC9!KS)-_<^>%K3~{5G?NUI?-T4S|{vv@!O%Si$#B`1_H!! z2pmafTE9WH;|?JGdQh>}6*c2R+hNelAJ{+XTAwC7TomXAMf&FQhnWTOwmuYlE<-0W z+*?2iTG51{S+eEvF~ws=dU;&|vV1{3McmNod9!}xm+tFo^Q7^0MdUWm*XKrb>TX4+ zo+h$b7dTEKnH{kZI`0MK016Koy663OKi$>kMk^NysOL~?mW(oLdG_h&XaX=Ns1qsD&$D67ZVSk`9p z$xN(zU0ApN0R@Eq5*M(2u?yH3^5&2S4+ylP`|aTVbhlTL6r=GIp+NV+Ep9Lq&v|oR zI6!@aZfGk|?Yfi6$&fK9Q2eTqD8Rn5<4_n2KOKhxwq`9yqVQm< z_)#dF1_faxikL|;4u!X1Vvj=+U}JG3QMfF`aVS9K1Q3FwPy~Pav_ArchM&4H4h3kk zV1AE70Vb;%heD~$csmY7$cz|=Lc>q>I21-?%8f+fG8xCAuqu;kB#P1clm?L#!$=gM zY{+paJbq;!hl0Kkk3``!FZ3uBQD;t%L;=Q;8-)T`EHiN&3a}-N8i~SZ+Kxk^bf&-* z8-*ffN{&OJ!PA5(J`-Xb3J^I_k3<3Hlar%RIFtD}4h7g=UVQo1B#NO-@RViK7p@2(I^q+;|7@ zW_+#&6nf>&^YJNQ8y`QAW2BFa6euCt*9xVQ!E*2nV^)J8a-tOlqUw>8CvpNR_{;1r z5+V*Gg!_LbT~}0tNK_n0D&7X{wg=iqa`!C2W0Ua7dWy&jREBn5eX zD@5V~7}4?hFp8LY&=*DT!#Ie4$VC#Q-273lbDMB$4%~1fljf5@vS;Zxk zUM3Q~8J3rZzCuVtVH#K>QOqTdERyL5mSe#TPp)Ck0Dw3x2g?c;%OC(1azeU__6m9^ zECq{mX;~PzVGA5z%cJlhNbwkiqXD55dQ;cAQkijDWTBQ34Vv`f;`UY3@@^%+62 zFj0S&qn0^P1ixXQVFVbm_0*PiW4@ulP7~qnL8nV@cFTRi69~aS&j^AUL7l1sQNBXx zaPX0-Jjq{*hDFc}0EuYZ3hc5K$^>w`5b_*5xijo!A|n(0gV<*$j$G{6Ne-AoGgJ6K zmMIK=#=4!|!I;d5!1U!VG6ihkEmPpe4T^u)JBn`mdWJOiHQhgzwE?tE9F3cF{`^_Enj^>sUPPOHp- zg-Ym zs2uyQEX$Nmt|b}UaA|eDWt1Rt1RdU$;h{VHe~728P&GF(S8_!LM# z44sf{7{cNncLSJgU}8&ZzomE!ODZ2+OSqgtsm#vB-JKeC-xutQHd) zh~#G=4a1}Lb}dRlpRW+|52qC6N$b-Q6vB|WS&GZ?Q5Ybbmh8_n2{!ak$bWxKF~Q+7 zBKU<3h9d*Ry#E=a1^L(!N_0(TGeuOLQcn~xBjz&s_$(ZE{h!F5=d(_0vhcf8PLWLU zfYGwJ&9fN;AZ_{$mnsJJ^@tzVfX`BOSG_Ym-rH4(xijZ>H`;R~juqXcm?#Yte1yY^*g8PbG za;zq+DV-a)qBW(OK`Fh0h83T4Z~b|`Q~C0N%15&yT0Ia=MUzez({_ImKvLcFHd8U6 z{l)a1*=(#Ohe&W1m6rhf2%a#J?5dG$MM%YpKehaC=j1JDE_GG(tr4iL! zS}-UXY#HPX8U|P78SBCPx*a*@@Iz0Ew3qryJmawU>J@mV-}}e^1j~xcC(x= z!7`WF^IQUEpqA8VbZ!inNHA&Qu=l^CjydEKdGRabHMm3$xWruG5_W8A{T!Es82M0i zcj%yIkTWP5EE%l2Hv{iMo?NC~77wn$BO=;fF{OpZgNMrA3>SZB2gKd(7516ELb}0T z!CYXN3ydD@75YuU~zhGJ~Bb@s#15OvI<2ctT5uAM(M2az@A8m6dhu!|j%|4)nlrNxS z^o6c^=NErtt5GCX;&-GCLBh~+sFh%?NXRz9R>7rXOhfOLs{70vj$T@n_#sK+q`~;X zkxJicH#wKKJ+;QOJP+*o^{wWUoO?Oj)b+r$&aXz;D*Eh(tY86%x-@U$GF@Be`*fWG zq7<(Pln$TFo#QYZK|^aYlV+4yHkq_)*zHGdeT9E}etd~^hVA+T|F$?LHd2vKW%Cy& zLS;J96D}DJkj)F0BVdUvqpw-g6Hn ziq_Yp=wRvS#f^}(3Sd1(nMgWbCTVkw7Q5$ps~F4~92lGz)zRT$qL|4zN>ppmG~BS; zNk)H>s5YmL9R+&%qL&JB$yFx?Y%929@8CI>P6fB;h!@FeY$SWMpmbocW{_T~IsWlk zNk8O^KUUJKKY%Y_WzFrd1vyue$W-DPNgqR>Esj!b-ix3 z;lM}?N#d%DUot_Pj-6L$*(GP=BzIo*T_&t_JPnGViW3Dy_~|#Gnh-KWg3*w=VJPcc zs;5T0;RvJFUt-%FWHo~&gGcTFpGZ)xN~YUL#~p(ehd(}YY0sc!Fz06}-R+vO920+1 zT!TtX%&d+#LnRh$G1bb=r{7iw!3a{2^PwM%AiZyI+!xjS&%ONrZT%mbmY1aelbN?| z?mzumx&M@cUEiwL$o;1zn2K%S=cU|#`C@SIueIn!FXXpNt zumwiUtk}=}_Z^K5v-&+r)`uzFC}V#b@7)Nt#lxqv_i>KEs>>C~H#CQsr7pd|naWZq z)gaxSnB1YvlPRO?*O;*`wo4E9;cWIZd}o2_$@cTQe9!;KBE6pT(_LOST)|oJV*B4K z!m)EbWaW0g27HG!bgbe3X%VNX@qL-nykQ%Z`Ve)vs>zSl{NFF)bid2zMRtEKliN=# z%!8;Tpup~PYgA-F6Ro5_pYlz5PTB@9@&x?=qu-?`oM8=dQ2sxx;*@Z79Bq)&5T9+Z z>acJ4h4=kOxHqR!7xNOAu2_J23UtiL0lE8U7{Q_vAJjzRp;~|O7%Qf^QkT*oS_vvR zFaqLo-hMI>9wjm~psyPu@ZNu1C+1c3l}BN|?xH!=+dUU}x-e7sZdX^ky3CtYam8gQpRbeRCb`ot5PK2F~s5{j~g zsf+n~U-4Z_f_LX=YG1xzBW2^k4CF&?d(Ec$Rb3sHtMu?VFMEDWbPIp*Qvw%#Egn`! zfz}c9sAWaZ1)hLMTs|cE_E%&`pfKa~^t+1kTx!Z%xv934G*Oe$lPXVz0X#0#P=GEe z>0)m(aHWY#NXLtQIC}-LGMYvA3@MwbXhj%iPdqjxL_g=E<)y<~mMw7eD}xGj{G-2o5DQrl^0>P90Aa;K4T($ZZzulmF|Zvnac;=&C-46qpfRJMF=f`=+SR zp;Cb&E87U`cK96`W8ttb(okqp@t;?$LBw%F!EWrwwP891$&dSvO%tAYxSzr@w#~p; zi?6tgRGl-})y0RhI_%evT;4yCN?iMdCP3UFEh$H56{jfH*QtMla9f>Ah6y;<`F@XE z2(@0Pp)DRkn3nT=-F9GEY>S$>`3xhz&v}|K^D6BG_PKwQgtiktJk(sy? zo>G32*MRS>=-PUgp&bS0XetblK~3^0*&am z>X!iz3j|lLJ*AiZq5-o3IJdE*0g46$C`_~Mw?3)?n+F6cN%*|C-LU}`93eFzK0XR_ zbaG{3Z3=kW?HtQ;Be(IsU%^UMs>rGci#Gdxz%WBz9zPtX@%P&>fr$LUcv=>D;{Pi95rL7--HT|Y7*PKtI zVfNn>e;vlv`-h1x#?5NR$cK79=iK^!UbmcWyPj4h{^mUwZX22dX6q&5+lEUegDKK` z1$ZQw>UWKc!^XGuJ0fSvMQXoUVER4vQLVTF`Lahzn$^Qyvqp{}3zQYsdS*e}v?WZ( z1T}u3?(5sTLRHN)yZ8*ZkFEJV?ism-!(f9w8E#N^5a34HGQ>ELEv-E2~ayy!T{ z59Q*1o_c+_!NGtSVIF|$sDV*ajN^AEmic-bm0epW(%t9g?~z^c2Zo>psM ze@d`w{5sK4r=OQ|lC$lqQ60$#3SW!8B^lYDr%Us^D{;jNotCB0hr(5iQ-kuRMN!Gx zCP~IDO$Rf3)4}3rCC!C;MlyIVzXMD}5rsuK?6X{?+;&f3fwvFla6O^*>Y-kzhX2~E z6BS9M`<8TFlhAMGWm}=z2m$vCKwPL)8lI)?R8Lth!+23Hmo#l?26>#>doJNR^E@P% zThIYBe-hNys7v%{bvru1yxr5c&uII_^^5(jNH`_D^8)zAEK$sa)Z@!9i%}HOYih5g zkTOCAwS?7IrohEO&}OA+hHMz1hKzA6P$dQwf7k+L3{%=vIj5A2B6udw0lC1dZ@-hH z8C1eD3KNUb12tWYw1@>#H6MKgjH790R4XIAI+*5^#s$I(KVDG&p7IUlmz1ye@_iKg zD4cggPzZ;zRX(Ti8yfd(qTvnYUsE0qM-}z>pVG-BudcvhM3JOpSA<0$eS4*xAO9v> zf7Orw#7g7`Y)Rlp#A5~XGfFGMtRC}2yC7^FfF0T^U_;E=v8KUG8hk-{CU8!e>iGHP zECHnUZVZa3P;zX5$5M}F27u%F<~W2eztnNx+_}w5P=Mnb`BfvHr zd2K`ypX8nu(zu*^`M5<8g)FEm9~1lPf91M`{bzw=3$psIjKT#ilt*i?N4g`ZC|u3~ z2vX6DP}rOzJ|KY#Iv@e|5TU&$jWYxh+Iu1GV!I8GwK;v@F- zhV0^5xihNyoZcDE3pAP8uwI^QSfg!Yv}bb>O=||rexbdVOIT9D!Z&^;^45!SFD?rde+Wy4mLQP zp9Ab1>30>^C1iW#nmG4Z z3=p|M95oH@W#}$u>=O$QRD0DefBa_?RK0(l;2M2J z`LDN_V*D3Mzo1&qUr(-FA)l>pl!nbwFmW-SbjfRsFxKVMJXzmdc^${U2Vl(jkAT#g z1RX%lV8)>8QKc66Zp;8v)7A-XLO!)y9(cu|WbiJdt!423d=hVfP`(Yh2#Ghv?$XXZ zDe=K{0{?0PP83M7e+P^GTVSA#ctH)SkS?#`@W7H%R07XcV-q$04t`MB@!JXbR9|57 z29sBqTu)pWzsB6(x%Mi6XrXNo94%k4ed2@HTwZ#ZL=@7hQ+7rS!Wf;i zq}PM_|P)kW;&STMl4f@Qqm2bxbJ<0uQLvUL!$I7vgoLMq^5#=B!h z9K0$tR0p6Ycwvprsd-AopZ(xvJY9Vs@!(}5uviZA;Dudj`HTmzhgIG7F<5$GfE`1S zq`{Z8TIV!P9ec)9V9mf-gN&(_fI~eW6Yq=X)%v(Qda!tebN-hf)&VPj8Q`f=Ze)T3 z9bY`fD+9h($a!@T4yO$GkI*N0e+5Wvl9}mzGh=2QJ``MOXsMMy3}NH=A>9d?4&xak zIMRl4ByNK{{Wij0Ext8$uf z>uQRx2z9ee-E)xDUZ2E&X^P(IiHM~jSHSO2t|O6D}^rHHue<5-oP1vi7Eu%t#_MW2kK$)abC=L|_W}Zk% zKUg#vtcRH9rtOG^o@f1GrYK;$tS^`k9}AD^La1L&Vl*?vBW4lH>{KAV7|c!Rl6SD3uzinH<37@^(8+@GQi zzO_%DdhIBLirZ_n-zJ;KX3PdJLw36PZ0rOp*2v2dO?+_Zd?a&l;z)rE!roH$?Xxba zKiBH&Mx*IGO1ljTG>USClrC zE{5nj6#O`#m|_6Sth8cKGHAQH$3BwOLIxCD@R5pBOf&=DunI2U0B?BUzcTnUgV#M| zfD&@f4nc;+ptB+;<38iYDr3rXWDH{?f*FfvHkA}?Y+`p){gbrMPk+>g5ECywTX8cZUnu@W-pGkH)MN$HxbOD}me0^2V};$N^9>a>b>RL7TPgxsgzgV;QwF z0<_F24w0AS2xSbe_ef+dXW1{Z{K`W_?UTPgo*OTZ{7JB+1hgR~pe-o@0I&NVn4C~* z2<~W$yC7%IjK{5*n16P!WQkSUGSZN*t!?io3lYpXVWMfypzLU(x+6bd z05A4XcYX9HCMJ*m`Ae-IhlG84g-4G;7xQTpsD4C!{Dtl)WBT@N#c_=V>9FO+irdVeqf3cq(m1--@mgVOVP z!^$h+^yNsL$1^BJ_ZL4uZ&<;}=fcHs)4@5}eE|}G&CYN%vb(5WGN}2!y4@?WAsPA5 z-ywfwWVv_0zx{dB^*IDv3bKTvqOUk96zK7%l0VU1^={7-Hp6D>OhO8tP)zLgGI@wo(M4*-u-HPVPuRQz!T0G ze1V>@mh1^TM@qo4C+t4p347tKIhi-wfh_r$^Jd1wR!mE~S7Jwahin-1I>KOP;JfLG z1R80DOcTu(&+!*6&UK|kQYw{PH_wniGV)00*r;EybAPNI90BoSbf5-{u6u-4>S-NV zSbKr~u`(ja%Q;jq8Z35)iax)5Nk#E{m%k0n9j<=M)f>hyG z0+2tS7hFUU;>Czn1kQ<3!$=%cqlZ8xNuB04VJHS}rHCPvCz&c*7?8p}*?X?bqzn84%$-gGe%KACJ)mX-2a`W&RGJ!c>4uNvVKw{@{-d9k^J8Z=O4%-L6hBycy_EvZ^0yQp-GJP)z z!1n(F{=dGAw~E{Wya57d#J5P^0SEzq$GSW2nf7^=#bkTDdFN+=1uNrtY-!E|{t-ul zgF^Xvor+=7T24B*setgv5ax_dB0t}w(>Us+qDjS&iZf@EkcL_8bwbwqN2Ob`;KNk9 zCsg3L5&neit2FU073;CMkA@LUX!{aq7!ZWv6Erd#+EnxtrgTRrVh4?!I(}h)AP#$M z1H;jw1=Yk8=iT)Dyb!|T^ibHriYaG4NrhQwn1W!ufC?i}LOiX(x?Ou_ae`$AC*Mop zBRRH>4ikhPP+t<7j)#|-Rcfd}eV+}VtG&Et&V;G<`e7l>eAo69brS1+v)QfVVVD)q z)g!uTs@|$L|D&Tp^|0&4392rCc2yszFw?wmtD(yMm%m2%%b`D~QTRDkB7-lb+-8+jXaRn&uJZEnTxKg79i|nYDOGT9&;}CUqTUo>-n!WSck(^ zV|#p0N^QN)FIH_T>#o~&sk(0<%IWRMyXA71|I_4I68flIW$vz5b(hSQ2y@**U*`$x z-t-edW`cUcq7ibsv!?PR zEQUBAVJTQiX+v*`sB;H@39LscUS?t(N)86(Wa7+6u;4eMz5ckTV%x1!=WW$tz)*K5 z{7U%Vy}XPoixHP`iE{7mHZ52+)T{LGYBy}j$XQ02pj9Gu!MJu)NgTGxV2V=rA)?f* zMjNW>+1bNq!Z`yAM}x~Szun_UAx=0nA7Pv&g>PmC3#XkQ&%#@Ok|(b;9fhHu)9oCh)u~#Yp8AjXnYMbAT2grluYRv?H^i~D3Amk&pcMw3Nlj>6-D6q?% zfe^(<A!;dE<+JAi(B|OZC|hf{P3)fFN+Q=C%j|_NkCXj1W>X5sElLwzITltWch* zG6>qnaU~#dN7lBC6;?7s=XwDM$61+BI2=EuAPYcvQcq=^2)NGjB2GvynJ=P){7pd> zf(W?Z7O_IYM&+)I6$+-m3Pm6^%okq93*2+1(`6uF@aQssURW2eRwW>y%C#%w1+KYx zy$D1Q%!)Ezz<#u@h!=`G=5!G+lrYSTB3>w|nD<3Sfl@G8bQv!+?iRw9f$)s`GF}+V zgel{N)eI+B5eO%l^kuy87-!0O;XTu`j2F0TX7_&%c_zp3;dYD$)+bJrBP6o7=oF3Rt{=9WGu}bEtO(jlIHa+7 zMczSw3b|uP6D)0Vy!vM@Om$6*u7sL;k^Z(I$2Fl9so5<19g*<{)Aa#Ufta!qOtpluV`6AOA6+PFJd6Sznu14DWDN3-V z(5dBm{?EKEhi+GYHJ(Z%qi}lUBO%2;PF86MD7#dg3vnAV$#ukD z0{epe1MFrQ^pp=*NAvrb27%VOGzgDngZ=gbXn0)NxSFETjPyq|`qUay(M?d?q*i_O zLL4cL&S?-*=tve%c_=)Q#nV#pv{XE<19i5kRi$E+I%!D23a9)aLwkl}6|%H{9h#7~ z*-u#K*V8cB6E6T`6~#(Mu~Jd2RIJMrx%?zh)7jA}t(kxIr{y+jTn>z~U(7D&h6$PN zD*4DRr_2kFSMxrAT$#|b998mGDX1eu!R zNfi3=^=C_3OuGspN*9?#RIg)yeSK7KWBoeThgiRP{zUiX5IgB>iqrbJNd==KBq2Xx z6J=eB1D)4t#4#T{6Y8*9f1Y?N4|U+b7$v4~n-?~pn(7Jhws&%e750`Ck~efJqP~mI z)IU)C8qy0(Lo9ID{1)xG!(urBR$n+=%*a~Sv`dtt)7m;xfT+v(e16)0nWVHc9iEkT zreN!YAYUTwj6k{Y37OMmd7-sGmprXm5aC6zlH8-N&!F|Wd0;j$X;1RNe!SW4&m@7J zW_FERcxm}>W4s}jI}>w1fcJGwfg{;sAwLcXizTre6)PJ|JaGoFB>Tw{!hIaUG0 zQNE3XeKG*UD(3E>HKCL`a;g<-+nlUINjokc!qnT=`&1dK%T#IFROSJfU9$H3m=6>o z(!KRCBFxp>)cnwluwt&58?(3~%qa;^X7Xt0aj9m~8%XP;sXVxUGLcjAky{fkONLV{ zPRFb8aVn3}M%_#0pn9K&&X{dl$8Dy2oE~{3?TRt2$YhhMF|9069zZi z5(putxfVdc5lYKk03nzdaw&iyI9O?l$Pj|O8>$Qhm}$!h!SQKa5d;Npx+2NOH3A^Y zurMOpNkt&Y)G8x?#Dbf?Xpag9c7`JH7L-2_igu|8U}q?kZ^|FwMTAK10HR2~r7!?d zM2M6McY~shDix(;xH1r6XBju4f~+i(Z%Mx)k!5sP3Skv(R0%CaQLrKq;AWXJmC!?0 zm#qjCku6iF3W~^<=~D$oWQ{5V0d|&YR0Ty;rpgo)ku6hys0xaR@*7J)KoONfpv0@9 zeX5{`tSb_4T#9jlFWRRHdWd`&B_Jq|txTaR(nDnmRg)eHMZ&2`50xoY4L#&|k$h|D zAy=kQHS~}x5(^4txiWpKp@&?VKGo1ePL>e@J><$1s)in-8)^v%3Qm?OR1H1k$`q=B z9&)Nkz76z$kSkND271WpBKbCwa#qU-fg*Bc3e`Xnxw3niF)t3!fgJX}^L^!*`Rjetu2N?PcW|qJ^&@%oQ_DQ&lwz4@B3D`euwzMc z7Pxta*Xs`tpGydUPuUA!Lgaxia+-@TCwwk#3cGPb{$VP%so0!yiQzASpPN~YyV2oG)ZCY5Tn{5ejNbM zO?*~=@j09Z;QqJ}wvTZ|EJqWcZG5ica~q%gXTl5T!q}REPhP09;A~tH&(8*DrIPF} z2K+g}St;e`24`IoT%1jWt~61Q(7H~on^X+Xg=){R67uymWCRgG&Pd+%YTvvUcLU2cazjl94$cs;7UH{mwSL62x#%~?8*W>qi zj>BK8!xstqdYFEPr-l}(^Cxh`+wt2xsf1p6`l|)s&{#iGN7b0Ii1G&NHeurr82B+Q z(fA__{c+|hCH-#O+@H|&^ZfGARc#NgK4vDy&ZvvWNLlQ-i>XobL^Y$QuKGN*S}yBg zBfQW2*nd;C&F$S6B#yFk51-&6;wXToObVbSD`dIe<$P6pNC|`ykgbDt{zgGH+Qb*pk7 zlixAXIfHLtAy8>pf-b^>N|-rl+#)&P$ujPqJ!z5!P`Z(^j4gOu5|0{!mHC9I9HlGzu$i&vT(97>1q9Ey>`G3a{`AaF+|_VB2Zu7)&He zXF~wNIBXfc1r zZbS6LlJ^Ir6fNx0b+w2U-J$@bG~@L&?XqmU89fE6&Vj_V_DpGgp3|W~`v5^4OXy^- z;XFJhs^M_Da2cWoOhK5^To-o)S>(vqwaP>NLq#4o_}NL$B$bJ83!OJrzgw0^uF#^X zn-=5?a5#w=%mEWBOwS}WTNkj`v_O9)(Wi6HeMmc!2(N}9$4Ux7-bF$+( zd2mJK^sM7vpIsyc?hioRajQQ)=Eh*`0l(}2}vdh$1*NKPYRUI2vZX3xd>ThK|T8^*=T>|>b~066>e|B z57Yhf%jomS(52vR(q8+@@}XF7>tvE*$hp|u4JHZ9%zy@+i2c(uVh1e_0QWLt zhp|AeuM+zu$PQv3lRZc5pRn&<^dsQ$D$&ovS0!K?A)EqVFC9C36gZO}w}}5*0%y{D z#)J9%fin{WXDY_1i7m$G$a7N5&D}VBI9@#G-i5A+0FpsD}1&!?6m(Ufk zs{qD*HOd0qBp;G*Aup^fVB7N`&Q}&=9$!=zQUrp-Qb#x}pM%3vGpF_7VT^wuYZszFh# znbn0B+!=cbE-a@z(J>c^?sgzgNj2hWFD~5Oiht$@J_&$1GNpbNfGGf><`Rn{6+VuT z6LEYw{N)wmFGp_#0oMX3{T#mON_iy|nT!z4Bs%YZ(d3}55yzpIXltVG0|v394kKF= z$kzCjZz+GUHK41maLBLJ+=LUK7(F&OApn{=4!__Xqg462>H3&kRPAE7?)oA=#>J{% zK;|Guk&oUX0e))0(tywP-*VBXhS3ONF1^=`g|_T>?FQ`xmR4=Ej=3(~h1W$gWLP;^ zgjLgju7@u16%4VmxSo55f{eXiwAGfLe=42d(j}<^AVaB4@ugw-rt2#DhX|~SaV6Mc zO?*P5Xy-vPytI+{_GB4@LJEUIY0Sm+E%?w;=Ih0xAptBgmcUya}6 z{oy}T&Wp)gu(TAMP|pM>)T`~aizd=WbL0lIy_|c@Zfsees=;se=<2BFG)loTRdVhGi5Pl zV`VTgF)}hXG-hIAW;8K5H#KB3VK+EqFf~3rGd4M4Vq`EgVK+55V`5=5V=-nnHexe0 zH8V9gIWRFYK3yO_J_>Vma%Ev{3V57jVgLaqM#gMm1|}e@7(@!GfJjC#o9`-uEp`y0 zhMxy4UIJ#bGJ?fR!Rm8Bq)ZY*g#S8NC5X+)FM$x})q;yNa8)AM?CTM1wih7Ml?^QN Tiva*ms}25>F#>&;@OT0hiv+Y* delta 49996 zcmZ5{Q*hu-^kr<@#>BR5+qUieVohvKII(SGV%tt8#>Cq1U%L;x+Yh&Hbys(t^U{6m z^tmDbV8icWQ7M(hB^g*4Ip8S!o{PTV*qD=0iCCC9*hrY9N%Tl~IJihySy)I6NSKsJ z*w{&!BuKb9n7RL3RU~2gFRGKUaI$bRvnLt*fU+cQ5P@-WW$a&qVyB>jiV(6fll*ti ze_Lf7EuBbMxk;EwR7sdrot)fB*jQ7XK(X~WnK?-QzriFUPNK)p%)`!XVP&S7cF zWx~bH#mUTVW^T@7V#;A*&SGvR$ZuxO$h(No7DdndOWW9R2XyPRFHMprk1$;3xnKiJ%~yo4c!pi36N>u9>m1v8l1~ z&Sd{oe?QhF$ruQvF((^1eB!ukP;h9l$$+ONqtr;)4Oku+E#!3>_fEr|e-qf4#+^*w%@%W{tF_C8q73WWb6ORp&RCfAWDlKwph$E7QW z^SdN!MVHE=A}dI{COnb%t5?s0%+m~6T)aEWZuQ@Gv{90}E_xpg$^<&@iV$##f22`% z2bDhf^ym-bS$K%UzkUaf#84Q$=I!3rmalDPZI`|IL|(^h%Ct0&uiW?7liyyUEoXYh z5CuoGG1h3S_a=E+w@l)rCr7%11X)|GBKH{g#DygA4ORw&mFl&?L!gasbA6s$X!65* z%F*?(;|1iM2eYz;$b|0+`Wirt61}{A@!4G(+b4=#cbTo=K`=Ky%c=ExPm8)5A6RFHNZRo2~s<=U@d~ZiuHk%|LZ}A@t%4hvkDw31)Io0HHOGk9wX~rk9D# z-0l)Tr^6vw7d9!-`bx-{Ob{^2IC^sTgkngRA^O?Dn|~owthF~UMhh+4p#>r6pD%B<``-PW^Xos!;g($`YbIt8i0)j{I(5h zz?kEa0hPO~Yt17>f7r^KJVGWwj{pa*pM@bliMofn1VOZa26^i@u*}>Nuz?hygU=Cw z&>mO{i$o&^`9LtIPy?*ZJwpa5b}Ufd)0Mv`{N0oP?6LAJ`aXVo%D=iLboyRz?0{f5 zg6V8v@g4u=-VZ{IdFX=2K9qJE34J~&1934M41D>z)tN#siHMe`#3m)KTiutQNWU|;`qx-Pt z`_TTmHrv(1CC28z0`~PZ9s-F34*3-Lk4Vk>2769q$K={3&1(2PLp&h0UfCtiG$`aV zQ5_Ov{@9Ky;YgL7(k~ zR|ya?ZW|dG2@~_>xmstsZ|sPx)Hp%Na(m}TH|+kScEzN$ei2JOeYOLebutsRD&r*< zL2!^6wBUq8r4L8m?)N)zH?RlbUG5f|`?es%1MLE5V1OaNVCNu(oMF+?m!ruRUaOc} zC^WbYsuIFUJ=Dcawc=)c-cFW%FmmT0Kk@421pH+?hewnvF--ufszOu*M_3FBEzJUW zF;Ny6rNK%&Nj1N#LfJE8I678%LhPu4JE)J})9nY?Rv-V?=cyuyFJ3eZm%WBf%6S>$L@cT{|DDTLtP@t3}IY6*>+FXm;`nI zRYsRvuqNxV?8m<^B=HFtFkQxI$+R@}NL{dOphb^%^ax7GH8oZa!Af3MXH_Rw!w| zV72AeT?!huVnMyhc>>s=d3LOvBM+;B@YK`hh7$^&@j26j$rHA4nG-fgz>qH;tqwV7 zJb(}K5yg)WaG`Jgzx;ubJ*!-3o$J;TA5d4|^SC)+o+YC!bGO#KIeez^{I=fgVIEvp z`2*`OC#+A>NrhgK&KXoZQ+uwv$0eQB2SNto!*=EQ`4XZ!ux~~wptl!iUEg@W;SCz7 zFvU0PL}sC#f~yDHN^cf%&83X|Ov1kdrhs%xh`;y9ZcY=jR63}6k8OrI^$SuiV*~Ip z#*n%weUS-HvLY(b-Q_2i2cs@#Si-h3K|HRD&TIs$zltQXFvZl8+ACwUHxVQlXQ{&Nx@pjAr^XD@unTa7WdV(b zw8@}&`p}3qY7}rQKd|r%#cAR3eW>2x4bwT1Rv#oZkasbCnl<;B28Ak9mEH`W2}_B) zd_ESY-itb+d?c;*eJ+T1H-yeSK9*c!;)~5nJ>!Gk@5KzlSNjB)Ckp!Hn^0@+_!Qp* z9l5q5*%22Z=j!X&7G$MQk?K*_Oo2j1If|%?dxFNfJXYm2J6TW^OK)wX@`w{|Ei(wC zl*$gYkfvE}vjU=w{dOSlX20{N`V%G={^E;^XRKm4_Ap z*&SC$qe{2R`%DhX?gp)#{B{hyeUsjsa>de^CSGWTAP)grY&FoKFIyz=G=LJs*K`N_ zaU!L#@EcT(mrt>NzsgS3U7(UGeDR9K$oniC+?M+BE41L}@7Q2-`+m4rrUBjvTq4h> ztUp3fVkJAEUD+R1!V*3?gG-~1(_6l+?MRC=o(C)?fzq+fA}BorvCea^FP^}U~DXdt$+|YQ~u$H2+DA?Bs8>1tOWxj*yin-s{qAwuAJ&aq)ilo zE+KoCW5M){lko`t^i5#4*BVLY(ql;H$<%1V7mnvjVoZ0dhUZI+j4a7QMkUR=t@oQU zj*}T0p8_{15B342f=ppSUZgK>XFy}}yN$j`%a96B6DEtY@}CwtHc;_rl>a~mB*{Im zR4RoG(0UD?>{&RcyGu!zsr84vR#vjUPvFF|Nlzu}P``KMvx>&L|L^6e<4`f}U`p4m z?}l!8_}VnF&dEmlbe|P$hjNmeV&3X|I!2pp$@u$K^Xttg48?i2dKa8ZV4&Cosv3+M zo{M{FZ+~?dJxEU+6QIb}_~I*BOsv+FmQ^1S?UXh4B{^_vkY*P?ojjt~R_t9Rp*P+B zP(Aol3a@(VJQ7o~q%Y4_T(R%2-&7kWrDrHE5zf@VOWC6y%}D!O-5MBh8$LGkX{ZBh zIeoLcglCFDASyV0ca24*At<&-izb7=k5L_pTNbV=0uSx)?mnnfC?DcNovI+i z&6KLeOdJLWK;cLh7HRcsmqVoVqIKTO^e1Ynz}JZ+S%-0n=2(YAkI*CdQa3NEcq8|r z27-Tt5Dv%8fPFwIt7~aO)XVrS5&ToSMWWsO4Uu^q!a~N4g2)7_J~#gpC5SR8 zNKT#-tiI9M2x2KT7e)>p2mfxi3i!AUP4p|?tRN8weB8|`4M~aSa$+yS7%d1gLyT|} z&h*5A50$avyR(Dec`-&H0gcp07jJ>IGsZDtm;b0aV3Q-2;&;2ZUZ1b`=}<_Yp$^C0 zpF4#lmu1qZACFA=+jHVats!B3=V#gB*i)&S9{y%@;ZcC7f27nTIzeYFUch!nFQ1R? z2ng-~yF3)@ovAfTjhAz2HIJ5!kGAVh`PaQbFJhzDjz`#q#r~6Bc-8XYGg98CziU{; zyDGc+X!6+-Dk4o^(vfY;k(E@Pm(p&^WR+@j!(`E?mhP1rjh`2LC{O)^u`^GwJNu>l z69P39HJeoCYM#i-(;p7{Sb{$K({eyV32z3FDABej%+Z2t%{KT}h%Edv{?`F+Dkfa8jIa;>qZvunal+PqwIRCJVj2dV#nB)j+XkaqEx+|8f(^Csj+V(0z6Xho{uhm2QBR@;RN)-vB2HITty$DN;x6 zp!n%peYO7yQD`OTT^9xWBej;6VjdG4an=*b^Uvr_Grzh*Jeuk9gLLAQf|1ah~r zj$UXcHG{zZK%rIE3`Ce>10tLj8j($|O=4BP9pvx;wPY(L^xL5d7LD+k5!R1NC8=zDgMDtGD45v z&n=c7E5evFVn$j6EtSlM$jKTJp*p16#t*F+ zA;8`&+*Q^o6^lpCfu;@ceJeq%h-Hdr6c@mql3kVzUzxV?+2LIp(jC;J%{D`3$un6@ zH^yFR*I5AH{2{<=T{zJ8PX(!`4GIceufWBP_sK5^YF>FbYC(07`=0v_X&Nqd#grku zkeg+ydy~ids&(&j3sjE|u5Lv| zy4o-Bh>7NMu?Bm+Am`By&nXCpNHANVU2c!-F}?AtLO7>vXDZFpAsAFJBo| z!#|HyhIWOFs$j-{us%)0|Hr3XD4zzGO6pIq>F|IegkDHVVn-Aw)BZ7xTPtR%bo9`8 zdd%;VaXX(}Pc9 z<*)?biRn9a(^X3_N$EJxp9)BRzwhuTMLw2$CHA2(8b^QC{i5F;YrFr&pBCW5$aGXv zeGL6-0s`cN;!ls>%NkAwfBcBNm)x01BG_KJSKL`X95_=AOg7_5N*UqO3zl7H-UZy1==_bn&=AqoWHInk*5IIZ<%M}3UDT3NXxKbJFD4X2NOll&Np ztY^#H#YeD{j`G(C4bJ$?@%;;a`_(K&pl`ox2+9&jmb1d;L{g{r+EDl+Pr7T7Kj68s zb-BW`oT}J^xB6)#urozbJpVi9n`VJSCaYHF*A0D%jNSyNqzJ5ld5TIxqYa>UOzwykJxi@p$A7|zH-jtnS8?3wIubOL;w+@i~7@2Ba z)pY6U>1LQf9a=@Uf9t3)2xF#_7;bHl66ZCv4xxI#XwP25G#e=|<`k=1yTS#oX{!p< zIuXwpy!r_cIbb>Ham?3hQUK29l74q;UlSjX$YnR*>`P_H5uNBdQ8x2J5f09EeOm^h zUC{TdoD<+tmu3f>hzx%o{G?Dlg>A)X7&EGCIz{w9u-DE>I&TPv#b8v4yM;jh6rz{@ zOz-eW$DNrq-%qqzH1&O}wfOn1t#5KPMcNcOsJ33 zLu+^_7`;62$W9(YrF)shxUTB$6$12YTXPAI#614Rt{!n5+->IM=N)0RuUE-b{5u*LOM_kfR&k>o%8<@s$yFqmGw7U z%j3|uLL;f#ySlpgU=3J6PqCWismi;6&7I$x1PBQH{ zAS)X2LZd2rSd{Gsb+7etbdIKM{k%5&H+nCkIC+rx1)SEKgpE#r#m1gtx|)7cdI? zVG>)~zeiqC!^Np7sJ-btk}N`q1$zM^+42v6@?S&<}hxx zhCn39_4b5*v5={PEHTjk`bw%=&*AC94GsdS?;l-&us(%&a&BOQ3<23Y0^z{*2}%Z^ zyCyb!1rW|azq9@$k#xN4{C)RDmsqmBJ0nR&_0)=;Fhfg95$f)McuWx4& z8Jk>h-+CQOg276(ONp$!8f~kihfiHy2zo-LGXJbmja3_8#6o8GZ#X}mNr(lPg>}uj7ai$p6T(7 z!nk+enL!d!eHJIeRv^#-8yg!oG9Snp3`l2=HuEQ@;r0;dOIz|W6H7ZdF%z^ObP#Sk zY(YW^F3Jb;{N(r;CX6#w2S`Bom-+`6X=6QzJcB|m=%}!p9N+Nn{D5h}x)6e(e_{#W z9ypu#vo^>S@cH?!fZT0Z`sB$;)HnStXhg+=iHWNM*$MD|X;A~Twl_$(rp9K_%=NDI zAl~gAp!x(;Ao<_%MfT>e`Lvlp*Th=ZI=J^24HkdNH_h6k(5cdAewPUN%Z+x-(_RTA zSUGU>B4vqWiGB+``TbD(eRcocwg*VO_FcVvGfFRvjGj1gJnp`ICv1$ZEQ}rsLGAtW zaDlq%3lVt1S_3|v)EM@Jyfi_rZU36S_qDLjNbdQOm|8hL+~6?$qF~q#E}cl9p~Cv6 zpA>S9>toD{DL8haTrR;{=Ugt}nZp1&a*)h{(Sa!xv&ybCc?`i= z2b*gETyO<9*?m(vd;S8Vq3vz{<@BeI_QCRFnlOeK0%FRC~aPnF*BA&?Q&M^z>JMUut^a_WGCT>h7KP z7uwp#%D08%4cHqw?^^!{GQ_IgU6=2zHv>OFK;O@lvWsP$bxaJyxOR>Vk+ATF3^BWK z@?RKzO3>_2c_GXKzqEz!6#~u%dN#fpp)T#ejclFSkouPQjFI-*inaklbiPU8_jiD_ z{hmIOFv`o-b0p2_F00(T5YlPg9naSj81kR_ksVxXTlM<6+T!A6+hCs3=0=4MCccTzCUJbmav#DnrPSR{MIIbheT>(gJz(9Q@MLMZ&c ztN#UoHlY=$%d0QwkRiX1;JtC*FGeJSadenB>SaJ+OkQ7jZ=U!2vl3M3_$%`JYa0Zj z6I=l$1M5=ZC8P!~r0e=z9A+E9d7^@}qF2AK=Z&?qrvdu*&E_bR_7(|$wxp_FMH-i#qR4N%zkqxTi}+C6&@~N?7sQDJgdPq zM%+ePCzngQIU9_t)Q|Ew=Y;nr?oCF-m%Yc!gqiTtO|GK5l$`pE(mxW^aub6XMJ z2;{PX-{I>{!Fx4#aXqFlJyZRgOo1WoM z-Py=8%@3*TY~2`IjNljCHNUoPqwBSf({n~H<@v=_dKDDY1<1zG7~1;tQ(4<*m7m2S z{T1I-T@dGf%KfRaj_3ts(bamIQTvvNPij%(*GeL3P~`RWMs`ciih0}SLOEON+3*q#A2S<7FmzQaE@zt zcF5k{pEf}@5QG75{0g6IOx-1}gw6FkLKLXrp+-G#CMZQa30O4|;kqpqC1V68&xO_A0uFIs`)}3!cKb@Bvt(kW=Jlt| zPZe&);`cyChn&Ip%(~v8LKP;jRr_4m>hIx@pHiv(ddISOUX_u*xMejJnZ%%*AmN)~ zwv5!2&Td)KnP*QjhT+oGi1{%0t7=u4c9-F8EYqj=I%myoz=2E@UhVYQ3DRea0>ToP znm|-lnKJ*J5hRWRK4z(ur~Bx5l0nV?B>bO|Zgzl51bppWlwX1@KfdjoKs2Y@{IRv( ziNN+<>fh|VGZoq=gqS(!BA<#RsmTs$nW5${N4s!R{Vl}VO?jkI@=1)&g0tDi`s

UXx_{+^!lDVH&6X7SUORUWZHr6cXhJ1# z5xzi}311S+Wp$Ik0CKR^WKyVvY+K0Z1z%&wd>ok%dq>LOG!tSdls(?6dbVf|vNy;) z6M-4CTW&{Zf@G!*^#}IA76TI%BsMRPRFe^C)e=^F%QP-$vl4l}$?ll;#dz!_r=;5K zlycESnfEFY6pj0eCmYdR8~e9>xTKBL;U56KhC)-e84Y1AvuR{GvNPqrKy$kSs^qc`N zhFM~<(KN#A7Gd7Xk56Ux_I+x;^`I{E-eRUu)l${FXu)k6w#Ft1r^0I2*4fs&1Q}^l zOkgh{Tg=}{?knser;_BCQDv%dN2~58jGh$xS}?h0p6B94jFO;Z#6hrVLtD7;w2_rr zguKrftFR9Fb5MolE(jHnoCq$aJI#RbXL|cd$a=T8?u6%)T%^QYtKZZj7BtG6L11n# zq;7i4ZAtck_a#wuW?Zk}R{N|gd?^PhiEw;qHd?Y$2r5Q2Tndd*7`GX%^N{OU*{?2Dv;+bCV!BwT->OZu>u1$FiRc;wmTz z=jFS~6<@JLRQ1`xV@*cJq?$l^{X-HET^!mjeW2lMV~NN0K}q1woWq6R6$u{vkk-S{ zTA_-C%At+HW9uK*t@_8hR}l|dgkoSe_q8Tgmi3F{o0nLBqqvIe8<+YccWI%v-YvG+ z)4F+YWtAHmcgr@0_uOkk$UsfJl;-R^@_hWjVW&TpXfobs`7(L&IE zWs~BAeQ&sJUw+f8XHTRPSv|x zmpvY#>RpwEY=7xDH=)C(`F+hna+1rjAqvl>+{>j#Yk{m1js>5|dA;BC&bW71nE|h@ zl6QHFw$87tVyq$62{!{mFO$<}Wad?vewhlS&0Xv#u! zs0#e=8uD?Ta~*>+isC`~N^HYdETdAGrtMG{)40S7ko5QiieL5{bBYWrB-9pyuQn@Y z{6fjlCoEau8+8@D)_fra`I;WF=Up_?C|oAqk*R4oCR=`PK6$`nD39vXK7Y@l+s&g( z)y=2IypTypq|Zh2IdV~eXA1M1qo&Zqp||B(TaYZ}Pa2)1{n)8dMv+fdd7{hVV25XU;ZRrki{q3vwG9JiqAnxw z9Ctz_M(sgYVeeLTZH0V=7T0xR|uMMG+6(36bE z2~Q%nyGf|99z|Hoh!T1q`-`!(z>&iUbDmReCkeP9nXt;8A@M9G@SBE<#`ORxU?KK4 zjR@E_l@s;)y#|+U^&UqUfjx!VbY3B;kg#RJjw*2M-+zxvDzhyWQh5HdyzLZDe_!O0 zrj}{m*oBxljoq`#^qJu>jMUyf#f=VPA0=~zq9Y#*!NX|abN4JMK_fK%WT8C~6?Rgc z`(DxO`oO9pHF+e9dBiX@BofQ%CW$n(7YURU-$Ku0vZsbRf_klAcl^`@H3QpM2yFSq zFW{H=$(k=?A{(JAj3Z1lLgXL;ofM_+$&E-YU?%tgG3LdBaNi9*-a7M!mkT_F zz9$U_nZkQ3cDaBz7fNDZ;IIvgRSL+K&SBG;W-1V5;5TtgFLbJv#~I2AT9DbO(?n~A z(N_Kx-*H;A!Hzd-WEb;nj9jCH7(;!giDv26z@XVh+Z*6GMd4mt@XE(2i||0U#`89q zNxSvaT5Y?Wiu-w8ocZh~LZ#`?&dtLjP*ld+l=(Z7orLIyZi%=0+fRUa3=5FC%p2GV zqlERKUqRK=kP8e;W+LG%ZkrmS4*h*I)rua8Y{Eyr+(^^n+|3S)O=7#JiD0NgtIP#0 zo0GM`+ANO(uKc8(jKy=$kJgS4o0Z6iwa3oqX)6aXrnNpBK|-7qES}4~p(G~4lG34H z|7m??>lgU-UW&H%^sZ|_VFgh4Cb?5C5P&6$j~URj77YQv7ihW(V?HbJak3&Y#RyP) z_j(e>#bEQd1)@3~p$&K7Rl|Rc3D4*vb?S~1k~XP)0aHVSr6?W| zG9VwiM_J8BC4X0NHPj$elk5Q-F z@HWAY*1e9wN_0QJI=MVvWksOP!U#ds8 z5bZ?{%;S5#VgTzYpS-CiGx@Eqynm`WxukRqtg2f|tJ^JVot0oH!2SByrOD3xiDs;i zUN1~R`hYWC1yeu?1Jf1UlZgaz#awns?{8&ntwCsJH!M3tJq8x4k(f31_m+FV33r~V zcwff|yH_Fd!66FS91KVH=i_u-OTFb73-UW%~0b?#$_*&qEP4;XR5x#cw zhjbf#4H)!V5-ij4RziJuT5j53O2SxZ3{9)L07sl9JQ;*X5Gd|3EN^Ta+D;;$aXDi} zNB!gc3f%GmN=GVF`set&^+`!oGe&L`f3dl}z>1dRoDzoicHRO^lYUkID2sbFTvcQI zCN1_L8I4{U{*d&ZUtQUlYLSoib8yF@C{v?nYS8X zNR-T%E0W?fnYuu8w9q;i$+YmC24!vhT9pqJRP-W3=gG2Kq7&q&N446X>giIH`@0YB z4D{(6lRp6mL`yt~*fNFQVZcWiohK!Hk`lUb$Glw?iiikIQ;N_Ic>XJ@P zBmMUsq`Wwtj3|x|Ptel6)$s1b8cVc%0Bhelv|=UVm)6?79fSQuC@Y?Jx6_Gzk$gNV)Vb^_=rdOGo(-O(qg`l9AleM$(tOzCk&XZ%`Q;@ z)Bl^BI=icM6|fA#?M>k7+a%X4hVxforj3H!b!gDVg5Y42d@v$0`c$4%Nd z6Je0tNThELo$Y&ViB@|Dh+7B(fDhZO*7kd)wKv?D_uE=1GQV^(Zi92pTs0~I&T$a*8o~lS zy5K8Y5``Z~mmf+D<1fy1J?6DFqJulmo@-623$c!xR@LRCxd&YoRmSBp>6*rVrfg%j zgFQ|SNWx;|LP_1e5hoD?#^;N{%}#z0nfk~J(vtUO6b1Ih^S2wgeETmFbb7$Ox3nSi zSwImEvOz@r;AM)t4p^uaGQodx)l&{XX>~W3JeXz;bVK;Lb+`8s8liJjc&}EsV}Bu&l$R)Zlwok3@lpr+V)brm)Zjzl*&QV8)O^&%N#K_3|tVQ6~{VxyCW zCdL#0v-6jQNk5_qDF^*s!TswGG+}aU?Gb($ttr$Hb?jMc)KS=EG{nMzD%8zAzJ>xM z3Uvq#PlU!)oopK(iHM<;#}qCHWHIUC6=sZ^6Iv1J&T*6x;C;RCpq5KGnFk3nJ>%vJ zS)SeWSIN@Lsq1G?tvd8$BSy^W(}==&xTebs(lXxQHU%s7p+=K+Z9x|+=xvs(0ME}Kq(q@xMm_B zLc~KTJ^*j8xFv^~s!z4bMWD$W&+PW}DHG>s-LAdQ>z(4>;DSvFS2l$Buc0tkB=OL_ z(gg%30GNwQv^qJMN&F*%TZ*KFq^9j_G@p@*wMObx!n3|)#+7u3vs(_UclyEe*AUA6 zQtngdQBAjv{jZ`OJajx4^rs|fXWL*Va&CVi=ixi9>ZL4AWJV&V?+@}0rdG3a@3ZA!~LkkMPAN(lNL;zd~8MA0s|uf}prSakxfLT|(mqlCH$ z2cVm(C|Jx$GX5x0#Ui?`F1y*@k2R;PVmx43d&5QbCEazT0YkIQ(vj zvI~i^h+=fTwB3#7GZeE>b`Dt(h{d1;50JV|F_xboSs>1H_sjQQFBcoAIQHDKs^%0s zsyn4-YmxXiO6#X$R&N(pEet{R3-~Ucyw%r@3CIg*h?xt+$m90gORx zas%X2RXdDMH3!K5lN!Jw;Y-XDZ$PSjn9jVcJ#*sz30V7r5QHT&Qiv zTX5)6L$@hJ&cXV1H7og}T(`*`*j=*_4Cx)A^bezUpX*cF%EsXx@w!Asqk%z9)5gf3 zoQX~|1`1QT5%#uNNsF9E)61TynDNi9wu&|7Xd8WZo^t>3*(cJ#L2;cK03`l%?ayZj zVn*KOQm+^hBNj0r=w!hpV8RF5Xg!P!%EWaR&9@N$mRfH{5QX?*yyi>A#wMeaM)>Am zoH{|nV5(;sH@rt5$kP7Tf_~ecv(M?g|CSPenj8TWQYF8`-5de5KO0bQG-EX4OX>Z;h$XN<@l zT~NZQXSPQ^WcByPS?ynSI2l^>2oDiJciFF>vptc1;G9w-fS8d@4#>05bO#Q#T(K4VU95Erl?~lN({C`7S=XTayg;t^2v!uB`uPcX1!kdeRKL+T?M~G4Ori zk&>2q6(_|E%(UlaqWPEpoM^Uv;1iKQ0pGatJK99}SInirjxjc@2{c?(1iwQs3I)m6 zo9xKzNUOD*aiaeO1t8GZ1{QLt|3JeR%BEIU?*D4vu0=>~Aqhw`g5)nw#7W)6<01PCEFC#` zN~z7zBtgY?c20IkRlOMW!!<%-=9C7WgLz+-0uuV!WBa-=F7Pe0=tiAjR_j*U&blBL z-@@y^h+eJ;ihB|fhbe*IhqT6ClyY9so-qDmAqL{Xqlz3}*apF-{A*k}6QIcLU${6&=f=w3yXO4F%(m?EIrE z?CC#Be3N*;`{^EY2T8uyiOsVnyB8M;Y`>O>_4>OPGn;ec%#@S~IksAR(eo_&i)^Sv zRMu$9+^D=Cc~6-Ry$$Of5a^oaHbka7@I&NRv+G(vC4oOBTbzR7{)W4|9!h5@dF9yw z2iSI|u?EIQrvKdR=#s8bb(<>QOd(uO1)w^?J@lIJ{`-eoN#*~O64(=9#ky(AZtgkL zATQeNkYaJE&XYfKr)YjWZo{OqTPLLIk=#p0Q}zdLI{LLg^>1;g`OLFky3BXmPj@?N z4{@$Es16{nLkhNm&4|%z3NvH$^RRg?9-O7V>s9d~fj^c;X|B7$mxCc{34-7#(_;+T zHn-G@E$W(z%ORZW8pr4fZ;{ZpLDv8FrGxUraZ%YcD>c4x0ba8Qt<<+Vq&FDtBEtlZ zxk@ewspfqEMGUEx9e=Z1V7%Ec+f6D`T*N$!vL2|v&~11r3xyfpx0!B*lnSvtg-;UQ z!Q+PJAx30-UPfisERf!kZ9-dwJ6)>^`Zcp}Ic1b$ugC0`nqZ(pAHPUKmO_J5_Ny(N z?MfNlF|38juVs|dvja-?l@*_0_nA^Jp_oK)Y#N2kFuM3u`nH+F)wzwTV4A;U7h+Mm zn+C{(Z0uc*P;?6%9As}{ww91CT}p_vE$)~u!wz-Q+&W+7UBg*6iFuWf5f|mVm?u7u z|4e_?B!0X95SQNSsp&gjpqdu5?AXhhp@&N-d1A$-7C_f3w%06zIja0*N+I$)&vXTw zr)Ttx=EoI(QY-t=BA|&aLOa*_A;**?zXq^lTWMX_kzEO8T{EOC^pxdrVwT2Dbtd+} z;x-AUh?mZuT*g8=(b3K?6f6wi=@Umy!WrC_6RY=Img1d%l+&2pOWczysLft#{>Ww{ z1~&^0(78p0adwl@Tzs+T_w}H~{t_#d-nhBi2=nA;f`(V;3>tQz5g|o;GdN~@3kCjO4O8y*|ABP_~-9i87CQYX1EGiQ54TpF7#7E^| zxXo5J#CD%XP$v_+Vx9s2XA_?6G*rFP>`nSJeyZ)oG8PfC@^PA@TRBekkP&(kZqRjG{064eD* z6U9Sd+6woh;RGuhjH8AOVso2jZuwm zZJ{yJvKP>uDiwR7p}Kq~UI2ESi1=5mfD?-^lhz*AH^d*R7zjL~LIXA461xY)x(qnV z8=ULgw96QYQ|6vzH8Hw`wx=p_Vv?qypv zmpNA7aCZiy0*2Ky!;%{r!(9j0c&Q8XP5l@7yL-yWSYW*Hq2XEKD)idZ+jI?}6BF3zP=fM>7B$an zG1)W+@h7;T(TE4`3q`0b|2iZhhPHIXECf1~;Up+5QGozt%|bk7CXG1^q8wkHt=n2f z4C_`6NX>s%l)cY%^eWUsU{-2%F?h3hX=C@U!~U-)RCW|UZ0PA-`!0j+B|`EgfO#)q zWkDjUUZVa}8K%oqw@sGmrJ#}8+D-6)#-4{M$lq_D+A-zfKRh~VLg_gdawAsw-nUe* zVPKS2fFtr?93f*%zV2=Qd2ug}ToGruRPL%PMD@LtLJod9x~PuM9wQauL_Mx?-=U+3 zXkr0r{VQ1c>7_$TBMFqV!%qK5@`veCekUKY7;w1a%cH| z|H$XILZq3W8G+U~)vw6)N`K<_yj#j*@#=jB5V5$SB_SvTMo)Wf75+_tsZ?pm@?)bJ zdC7Mjy{K0gXdt#wMxfYp+>y5Uj*Uw9*&J~_fc*)*Y;NyiDuOuXEAgk~)x>**E!v4W15@Zbc);zpYGv_GX1l+^0DaLiQDCSfTxC5~EA4jTv}#BC0XNm5;v@pGax7=P{7gbC0GZr5mazJWisu zo}K8$$BC6I*z5FD{|E7(Rz0O&0r3-C0HYx_eNxR#*+}TZX#@0$Qi_jO=9vC1@(Ds( znXiz8hf`^{H*3#NxS6K={0B_RQ<8v)B_*@RcDAXq(_3QfBFW_tP>l?}e_m!YHg#(N zM+~+6Cj(f`qgSykcd| z#J~?)EC~v&qH=1IabGF^^-l>_*MNa{8E5^s=0Wj&>Lx#!H0E!z0QMbn;vFcNuf;Nc z;ydZnyn(_PZ>zj1<7nXGXvKtp0v)QxW2~=uF`uZ=DjduO$voAl9AY=Y&R`$>eR7hQ z?0Ok=RR3D46iyh}3eQeZePCM!FcgH z*ZkMIc$5Frnr`~O7nVTH(rGZNT~_rT64@@weZYv3h0#ZFgZLNLfi2Dy3*@Sk!2be( zK!3lDtjq>_ws+S zhxp2!uOaa{&qqPGj}Veb2xyCwU8V(5yp#m#mnJ|qigi-~n~RUXsgJ=UaanqZ`_VRo(HW*>y$3Hh#$Z;2eXJ`yfjr45 z9p5_7e?m&VOxW)|-?utF93Tv)Set(nmneP)Z4za0{}>xy=!Yp*z7kczkE%-!n-vGG zp$O5F@zYG|QnLc6-hRKjM91gb_{H5mfQq(55>;W`oJOZQD!rhqIt6;E@~p$WhB#B) zsKT!@l|vcu7uwdWAhgYyBQ_NmRlzz97o8XgM9V$T+suswq&*KsEW{6#sI)hi&O~qNg@ojxSs{w();B>9| zEW|IASA0(HO~c5Xks#lyUA>_uI+zD>Kh4dP50o)y}^8EYch9r4Yh2Y@iHZCdYfN|*%`^EEf-ii z8^mZ&2=zzgp`ZN|sXzpX1dZir2C9Cr8SE)gLzpd%)|F5atT-4OI&4V_nm25PGYlxJ zBs-Tf01@VAX-?`~sc=@uC}pmXv9_aA6si-P(Bf4lsdwWrw~T*+^s7FOpxES1EaBWj@ zS+lUZ9T}&|o_>rKnv(L=LzQQ^#`xPjM>{jS`?vk9nmx~^vM88%6^#UCv1_OF&!$bP zsB$t6bW9py?{A;nzI^L`RoQ1Vb5@-3~5@ z<;hh7@w}_FnR$Q{2jfkYx9EAw_mzK#<5x-7U9DlgH54~D;DCk16k%-}73-4WdHxy03I7Xb)zkv67~DVHR5 zb=mls0S#91E#0Smi*(&e0w2;R*v)7$r0Y1(^pSagJ!MnCo9Tn*3l(iRQ++l*&}aMU zRcA%zgoDs8!gGfyUGsh3_5f2X#i@Wko?SAfJB@!Ik%r+j>7`z?K8p5Y7{Lk`kHcUd zd-S!hBs2S_KO8pJiA@AX_|_3B>=thB#u|B(&-Nr*?Vj11t|d;gKAdQxqG;DF3IgSh z(2JDOWvu#5En6$;sKjz&R~$G9?36x`wOhJN+4V(N313?@j$mK3!wr3FJX#!CSWR_b z%>92N&t;jYq={$s@uh~C?Cp!s7sync7(nsy52uAgdTkqC8}xeOPf?t0R!fPW5Vz<- z>qM^-h&2KLiP_X+VAZ<3RlRr*ay{UkXfCd_j7ZzLkeRW_dZ*#V#PA!Qg*D^xMh1cU zyI`h3e9Atr%!4utf*3JG+i0DRW;$8c%mIINC}?flU((JW*dxE#rmp4=N_$QVEq2;L zL5LGPkuGaf25naxi5-ws7$%6A0d@A9hIy}naPq0_wy7YWJAGS5B8nPamVl1)x$xr; zZ#7`T5XQW-F}rRTj>5RKVsVOZVU}S;Ine{f(_26tOB6+ba6Y5k6V#obp@&)ZT04J~ z^{qyu9lpSnQLcD)nhpNsN0F__@qEa90|oIMIh7mV^8B~-3wSQv6^zIqhGz>-_!8O) z=AkxN;`S@YS%W<x5H<~(UeVFSiG6)_w)KcBOdoQ+EOvVWT0)o8hr3&7Z?dlhR3RrA83T=0^i`2>MY&?K0St;sd zvt71vD*E7!pQJzZl1K8!CrId*Alfy=wO!lSW%l6(6Mb>0;SjT^lNqHxqQ*c+-`lx2t1Uq*ovslzf8nskh?NF%GaXGq}Fb&uZVI1+8Jrj6h84o|vSMrF#aHp?Pj z`0X%5ZNevQ@k{CDq$y2QU3U~^bV(lI6#fnSuE8-gD^qjxgUhGyi(5Cc{O^s{;>oVg zMd-gSE_26*C1nmU$lia*cu01hu=+K;yxlmkqR$Wlcpr+3atCzgR^5j>c232jJ<|;o zeu`_Px1{gcVTW;UmWlL&r`cT4@W_IJd=OU(6c2Dq6y+=5@%%bnSpu&44OWH;%P-|qCq zZAlEcQ}V#FxLKmJ+*EyT5w#U2_<;9pd#RFHc*l{M?1C&1`6zikM3O<`AI)~#sYT~3 z^6qK2U8~_!{#buM3A3i$FHLv+O`2bVL>%@jRerNNl!lWiy z|GW0qMm9X(Z70; z4?z&ONEMqT18e62`)Iw_R}Z}$Rc@;xpcT&=Iagf%k7e$Z8d6*nQ zar)Xh-X$Y|!lx#wHN%V$TGjGXY@a3fV?Uvt1Ob0QWaI_yk!EW3O)9RB;*4KDsjlK0 zA$Rej_txWV>(qbf>G{E{Q*|ctdL?%r>IJ& z5r6zT(aQKN$E(mz94d?NgM-t8Y+7?BSS$Sqr82v6#a?7YBQ{ zu4OAd&gInZ?o!;k@4G5*t#PoyV2iRCk;`sCQnjn+wWIR%}hdVfX;khY!-p0^dDE8zuO6HVq1cvfJTo*~fXwP0!wY zw>Pt!MBTwzN_bJC`WuvsC$Bb-ta}h)&tAG`1;RdU2&ruAT-(USA*j<9KC{yz>${Bh z=fX^%`3UVzNvvMyfQgz10$K3}?X7mj3i{y+ul zwOXKTI;$Itu-;r4M_31=_O-u=-=P4_D&!!^4UPQJZA>aX<;R*-49;bhDer`+)|uQe zdL^%4B?1hMqSVu4pT0>pBe=u?Q{%8w)8S0QuV<|#Cp^Z23E@-Ox3c80D;|RU&jWZI z5#XnHUsq@u7{q@K`o-H^Dk+yKLAmF_C(x3EFalNj#Yc5rO?}baj#gT-6Y}M?MzOFX zg6dvqX(3BA+#}5C#Bylpjw}k_b5~F5VdZtlegWY-7JMS82vS*w;3D+VMo-|$4y7Xe zbpm2Ldr&FeKW_9m&}e9*`Ll`!Hc7S4cy~<9XUb^nyV!qR5Wd~2_xZ9xQ^(Mxt#oe8 z#`UAP3=q4Jojw>Jwf6pCY2e3Ay`b=7=_r;jLQ={R_7)t?`lDcvvG~(Fl?KbpUmy2< zu)A;hM?Mo*pXP;3QvT)ss^L@r5vr ziDK;cZ!>>3cXzzOwzrt9LZahe#^c*@bjJ>UofR|0GJc{AlsuihSIfpds0kLO?Zl5R+HTj9M-E-EedrSv~C@~2J|yzN%}E`&dUG4dGd4TRMniG7z3 z5K%&_jDw4>V8Ae-xQG8}uf(Y^<} zuSygsUfypHb#1jk@1;iP+L^mv=*1`tqqpH924#?6EQ@~pUFUMQSG3ioIIBHxNx3-T zZBd2@8sC;k2Eth?-Y8Xu;tY|~<(@>Fye?+-C2!e#^jXOzkV%SdnDgM!}}_yaAPjF<>h;y=8sSyMa~eU zMv-&Vto58B8=-_`$FH9e3Hz?X>pW1X#Ye!?Y!!4kjK37XI92UNe?Kr#+26mTaF%%%d+H>-{X?a> z{X0*z^nQ-61S}qB83_8RV4LAZF`CD0=Df(JtHNT8Wp?(t5sMzWYknDQa%rG^ktz$=5MH53`=Zn|4ehG#`Hl+Hkc{ zZ^&=W5}FE|>@VaE2nH~cD30V_q9?j-3)3j&-G-D`@#2?$EdnZF)xKb!1y|g1+d6rb zRpRL>VAI|!tWfSdYNiklyd6Y|sD{rvll__ei)e(6raJj*YUg{b=eC?EVKt(E%z~`) zDOLHEo02`w7%{ks>My0xcv^p8{Z!*2Jvi1d*9r3qn&u|3qKZU-mUr{9RptFG~bEl@ipXN1QyshpRM576 z+`*HMv=({jK|q!z&{hL{Lk;X+bsCN%E{^Rz&Fz^zFbs~-&ze>5aGBxiSEPU+vFJ>M ziUIs4;{m8s5DzG)+)b07gnUI zvhDh#DWu{(4GEn5ig&UxF)^5E+ZYV)bW@=M$VS%ysP?A@+3B60)6^}$bA*-%?EvNV z<^rx8BrCOqhN^$)8vTL_?;Y6bp&`-tAiuK0VjCFBeM*qfXp%Hu5w?N>K$y90dPaMG z+gDpLO6R~h*pbj>1;a0ti-`2JMx5yBu1EL^U#KRH0JB=imPGg|$s`7~Vycfc(|79W zEKoNJ1QMCw|Fq!&AzoV*B^VB!D_X*rowN1T!E zqcRhp44?JsY*<4#>HYHgl_g{&$&(e_*WEfmvmz*gJ8aNPXHA zxOIIW?B0LL_*87f3?PM2bza@0lFuPp)vmn^OBdV{NZPkcpMz{<9j}r3%iHg_vUk@z zGbC+R^8HT1)@!qDmRha9puyzoWF-+sDFiJB&aR#^Xm- zIGrn((O{dR8H93Iqb0Ugk-fC{O`o6JT#W2VTT};ce&$jlZtpfd1Ld&LAgG?0V)t<> z8H0soG9r}(7Bc8w+&_iTxM*5`7=H740=D>pj8MV1qJ<7b?6MJ$N; z7jdcvBdfNDere#f^Nr|AhfD|EQ0)o#HQ#?ON^LkQj%aVN)8`y2Nn?{aW&kUA#l&9l z;MpUpzX_#b?xvg`8Ln2i*~S>^DzP^HI81pj$`Gkt`>z`ON4DbxPWFtNKGy4ZIhTth zZwmn|%^&-`%DK>1eupdH9%gmrKxrKmGV~1W)#vR>#Gsd z+=##?VuSq3e7b{~XOPI3OwK~sGBba5BBpM?;Vxx2Lm{eD8rWV zrNUD#h)K>86rET5$(==L0$sc?mbI{wsZriG;(-N-!?6Bov1DFrT|{b^@%ib(IENgo z`bx(2F*qBxV;vek;8ma_4_Tt$~oh7B>mcyk9%`6Y_OfAD*@~qOKwb(nxs^UQU0Pm*RR7G$M9f@c|1|=h5vTpb9 z?E2}W^bvZ&YQgC_fuwD`%3D~~IsjAwz9uOU^|ZEO?p07KEOhOrYXg4`vN3d+W<5JC zqx?ILM?)fOpD=Bf`JqWlXPoYT8nQuh87zc}wpHjJkgF*r#)og{u3&xSM1dUqR-lji8c z~^4+uV+l*_aX1U)n>4TnP#cnSBpf6d_B_i4BjltKW@$r`9g`Z1rRF z{9OOZgaK_Lvd*v|uCjvx&sJb)V7mPeKdj>Gmkqa&)Mxjq8iZJ#e4;WqkxnrpKq3=VV{%q9=hQiLZ$)a#76*YbPmfaJi6l} zt$VSuawnJ9GlYLiKZ&#yf18Ot`niqO`O2_np)c8(n=w<)0aC!LEj&N#1*UbnH))VQyi7scaQ$7^)fz%Ro%Prwoc z8j2Kk9(DA@Q>U`Hz0`FOH&PNegRQl2Q}Lt>p)@-VgFkN}# zcJenvS$a*AJEo{1p5clMxow~JpWRg+4v{if*^(37L%oz(2mHl0zzJn4Y?R4cHvbSF zISj4L-Dn$?xXmfBl?qYn?MUz76!*`lGWn%0VyDko^xSni7i(V~{USqzB#+44{QzQZ z4FW*sI`V&3EFw7j+!lk9dO*noA2i+ui)aNtm*!UcmD7cEEW}2flBrtBoS0@o#Y+l` z-C^{CcnV25GH0^BTY-4y8w{O%ZsRyZI3P6^K{Y2EJ2Z4hHlZR2rYG=9F+{y4_<3Tk zb9A$;4d}RYD^aKK0A$0Z*Awp3sA6fv2?_n-1{Qw`{rQiEUppDa9y~yBUB+Am7pa46 z)6GWiHLXf65Wx^L`sj0C?eWL#TZEk8GV*wEDdXL+a`$R{EttxCS*3Tu`K&n5qwW@c znEYH@uX&bodEW)j{fP z(HDQb)?;+|mD9kde-RJh=?n}(gJjhRigPDTOr-*SeK~8UFnu|5VuP=#XEH^Ou!S@M z`h?Hwybewc`V+gc{_J^Id_IR_MEU4BQ^HhO;lORKP~(}KTkGMQSUBcXwFuPpCD z{Xg9vv!vxALlLdW5;~& zh9a%obNBXH@_n>MmEjy{?JdG=D5L|sT)Fl-ksqht2OD;ITt8ESH}&NL9r!!;rkkvB1y-_z)pg70{m^U^jol z6PLRCG{yWY%s8Cg4edE`M3l)~=nC=Dug{USqb)YvI+coFPSvIkp9Z{ zX(zQ?4MdA1fET-x0zs}%BlDkM2)ut8Gxgfft8g9W0g&(H506)t6FC&*9$3)0y+L$$<Uhs;VH6*Tt(fx)%F(4#^IiS*fD=WIm1wM zBH|x9UIed{KHxE;n1!$3oFRalYzrx&iVCOQW)hA3A8}G9d78@C3>l4waHgzcFI|N& z})P|}DXxSr+pB;l;#?k0& zF1K|$?P}QGcs@YkS%0>HXV_YN>N4gl_=T*NAeAB+6HHaz5sG>uH9&u}WOwaJbsRwt z=O~8V6~Qq}NRs452>&pYD&3ml;Oz>m+JSvvL5s~xG)I+=3^ap|OA$VSeAYm0)B(u= zhAtrGw9`B-QM8#O)b?_TYXud`w?$z2SRAes^}}t^qg9EfeL4VqT=W?9Mzat+lk#01 zv*42gueL;nk+TJ#a&Icm;*Uw9ufH8;z9gz&} ze{QIpEcGyoJU--pcUO%uCN<#kWS}SPblziEAlvz#5w}0%3S)mhutCe5mZ&iB>^QYrb>Z#SF=aI-IFO%AZHL49g0V8GaPqM1hY`9--71^$7RVc{v( z0F~x_nx{&9fU)*#jE~p>!`!H0E|_sBg?};Gz;*f#u!FYFo@=GVJe9X2o(K3nuOdtu zIRauOx=Fr^9s_^#_+H{rfPb5uUD7GL>~bmKDlu8P{yAJP%y*+_mb7||#Jdgv^A)|kFZnxP%fa}OFa^516>%z?{ zdjf5{OJNM*))!yYZyVYYy7OV2do0@JMAwq#8Cfw7kfffUtLXPc&zqfTT`xt|D{3{f znB<&a!9hI%|II=9$YF5iybRSWR%H9qcz9%#G146cMrnrZ*->TR8E#Pju+$cKTRdNz zZU(q0VxfQe3Bqi0`{v*dqjmLmJF^+=rr8aW1gTL5*T$^Y6(uLUf3{OO`7u+-+))VX z9O6DZ_zYAbqv^>9S2t!jjifheY?9vBf>$E{mNQrq2%}zgPJP1O-W*9_~r)n=F6T3jDwYhy+?C*pRs>=(D+_rV>{J z=eu2a*><~!Z}!&FOu!1(p(WnUcqXcY5zthuHCTEcLEoLg8)S^HkhASe`W`Q&zv z4}mR@+KQ5D;U9ujP;|LxD?sTI1|&5||4ED$Kz_j7c9CEU`-{r9hegJvZdclS=BOJS zz1<=#z^KaQJy2p1I8EB}*D&+x!Os9A+Gj(zTx(wFm00X?^nD*<&OmlJCN zMH4t6Fd$MOFH&W5Z*_8GWpf}jIhP?M0vwlzYXK>LH8dbTJ_>Vma%Ev{3V7P>Jz10E zw$bnVD^z~cRPADM9}jtmlQ?mXN`3LZ*?!1qtA>6E^TXZM8%UN_TQB*i!+y2B;cR=GTm5Ob{Yff&rRFz> zrfPQ$S1;DpJ_G!CyINd9)h!oSdv3AbRZDn_VTbv3v)hb7L(46`*4E8+wa8U>6@mJN zaK5R<)z9z#{z?L&v+kj1&CTqj=08X7Jf-b_U*5g?^_7C=a;AFTIW44%v&H5W);kqN zu$jlRrk-8D`oFXKIJU(){-cJ+;(zj38t6`>5IhZ~0yGq$GM^w5XoJs^X0$8B($DieF3BUava4{*)K2pogOp6o|;Cl9d z1CUGz4*T;;1Y^edEx6kqCtFUgIazUX!^we@hLehucJw;@=8c{I0TRbhtfu!YgND+A zla`YeC%aJ-oP*NL13e$(0dKccbnzGN2^13A}oE&4AE_ zK19qD^jL&>H~aC8a&G?3XktD7ij?!WXTD-2;u|HR3(uCGx90;nw_nHNMWT3rIrB|( zc4r_MVWK31^MogDA~6cjD%YG1@a_3yGagQ&#eZQbs-sXgycj8JP+DbeYAz>50c5?Wyic z?Y^+gR$eIh`K8Egl|%@6t79)GvjJ=hm)Q9Z@p~qjZQ!7WGCNq3*}+W9Y$v1-7obcz zASv20X>0Cy#b|7~R8OE0HN1QY2CE1|CH*8C^$3j{F11`j(Vc8}aMTii&h?aNOw>GA z9@o@~-RJFhI?YrN8YCB@0n#JD8dbA5)(HzoLc+t5ws7-5!(ico;IOH;SGfJI+SQIk z#i{W~&fq*NU_?8+(JI?@_Vt3^A@j|$-Y=Tfd$JgHmZaX0L&l&w+kL9-vj2J2aCTF- zw>!2r?ZwGjL8?x%kJS5R!NTdqYb~^K4-Kpp5*myKcHBD* zfN)w9ENL6nIJhmB(MGqf?;qcuqu*~=?W%*VA`BOQrwFjxk{u5A7rSe& z(dGYpnG1YQ2UgJ3@rHC~-Jo2sc$;FHq5?M4?V;UL9b}n~Xr$s9D{t zy8QLY3kzH@5f&Z@S_^CF`|XHE$22krgM$VBex0-L>BV}zLzaKUI)7}J3EHnR->CAG zBUDxMn-vcv0sC;3hja*Wxog>i4EgnHn`?Q){W&v?`fQf2D z^gKa7-F0(cxqzvf|8}>ow!I9V#7{n0x;8*(E&=xn<8nUK@E9ZHl_((tVPnofF44# zVhIRPMBeE#5Wr4XMhGY(@5%@PMdW>vv@q!1D%)EaP(;3Lb74Rc`A|lPXBT1#2v9^m zlo5h|il}T%Q4d8^1_G^%MdHGu9xB^hSkyzQh!BfV272i{@`>Ppl1GPss1OutBn&EXXv4rengF zvS>LcqYs;*nvcz@?QGG@`no!-vyG#RH3Tpmy?E0BKqF~qVV}J*9_E7@8`L(7{XJ%X zW-B6&xRpYtQVvC7aDxfbGA1`=fWP|NQqqzW7*(r+P%;z^KWck}@^nafN60sslH1if zlgk$2As2Y^;tmWZ(P(v}pvmr+`nPIxx6Wecwwo_i7kWG90@e-Qg$dJUQL^f0Uw(6c z$JXV=3g=1p0*kOO7p`lf5<0w?a9tBYIQS=o>nac)viAlrF(xi@)L`TYxxTc27**~# z!Qfb%C^$BF@_B-^Kxd&FGPrFQ=2|yis zaBY#x6eKNhY{aJ(_rLA>A0mb8*{Ej@bFpsz&#O1d&;L!&f56ktC)PgMHR1)>pz-LY z^_UGy>b$1T+dfZ&m53iuzoUGAb1r@U1%z!FpFr5Xn1E#yV2tFG0+y}R-9m*C31R*l zJu7-{=y^v^P&t9tt&4HAHhFS;{~T*Gc+kWN=rN#=%EB3>2+(}QnH6`uWi-D0+SHP} zbDbBBaBx2RoX&s~K3@YEzW*9`qlp+SImSJ$_tXy-lA61?kU>4nD5x)0^QH-N8@aqbpl!3jD zqF_y$n)k(lz)38?`Ov^Suvse#1A!xRgf)erw9>;U5Q;>}(JZhAV8Eh+-OqA46&)IQ zgtU;*wNOqyvb~OB%&akm22W^khBX@NGP6EZ z&59x<9*-74_b+T!q=z~E$Qj29W$i;-eb}a=r9mf<)@mFskc@MG)8PUS#tJZYI;qE^ z*v`N%vQhf6V1fRCnPYBfK~IDb@E3=f-+Z1JkvUoP2o6+sp)F)cMk z_LhKvlYVq%Sin&!6>(GRAfzl>sM^4xw`e@Hg%gS^T4dV6w#TS45O55YWmxziOe|Vt z8dQ*VMN3`7KG&HtEGT@ZY*5KWM*I>GxaE&UOWjHf`|=_zEV}hf z(IT@NG?_AGAR>KWUIGFRh{+c%GHXGVnWCj`9q2Muh6NnIRT&Z<5AH=v-G(5_jtQixnky2Moj?3Fr>$-JX} z8HZ+nkl#?grhGfdHx!5S+^$vn@GLQJ@Vhb0*OXrm@>|N^P`;)7?fD&j{p&nat)}P+cy0#Inx0#FwpZRhn|l}K)8G1O7m#m|zoGnX7JJX&?u|e@ z4Us;}d;4_w(ae85j}sPof8HB*{_~mMex+W5Ht+#Xc>cv`gCIqS=JCs=zKS*g;GB<5(L=ZqA2#Pk_r42?=KtqKIM2(=JZ=NH@tqY0agY zOA9WwTv~By$E69!HoC~+rwhyoBl-4?(Tunrp|KvJzvWWJrA_zSnM{fI1{wupUVtWo zMTx;>GI5ww;ynourDR?xnb+#2)kTtj)J^0YGNY#9h`a;pD*5)x$TyuqX~oHolP&*t z<^@|Ar}p(jAn^tyZC}puz(wFteEjCBuc8oK0&#wk2 zm`b0Ed2fW%<^to4?$~I|c$}}f;}xT^=2FecmMbeRZMamQPwIVQK5D~f7SCsY7B@Px z(9ubU=aKJkzf*R!aD#w@RJU^TwO>Q#;iu)k`~7T95@{XN)s%^%W+{K(G=)>FIQJDv z0hc68Vmj;ObiyEKg)-_9{O;M* zw>RzW)O~3vPD0ldZ?T#Hh*7FNxZ8SlbK6dVGFEumPa|>^Afgzyh%~evsl5xQr~4QZ zs`G_jP*_xleSTxRySFiU0jfP0=-xH>X)E}nF^~$v#*>f6zQ;LtykU=j@{Aj-vLkL- zd(s_L;cbDM*CZB~y90~}U0G&mEGN0=g|tuOUx@t%qz@~-Qgezd#r|l5bV&Eqj!_y? zFmRAzk!~rY3?~b`+O79;^-PnbX+})Dk2a7jx*u}B&F{KiFQ%h;@tP+uHKectY$ytQ z28AOOtRmRVi)iC9nir;jI!4S+@Ye=m9-ry)NYAorr*t}~n`qNTsL+tN#+^%rRHId9 zjLwT@N1jH!{=WNe5k~m<=_2k`cEk2{ZVf7%!iv%Tx#tFaqaD6+n_I1`mP6v9vY&|f z!(bxPn|U6oL>utYJQ{tH+k1Ln=T9b-nEV zGfVeb@oKxToA%^W@?Q_Twn9eqH-T=d=9m5GAGqZA*;o9?{hs)rG+Vma%Ev{3V7P>9LsX!xbg0#EmwK>erfg{ltE41WDvOV6fPd`A3wCRV2ipPgN*v$qZpc`m3 zy3q~F$@xT1{&FH8fIogXdHc@BiBcjtrzaoICMF3V-6RAfw1txSrb1u5X=aMRx7uB{}=U>-LhTBEe7Hqcbs|#pt`su^p z-o8_zON*SGYAa;SWPDiE(2kX%fHoJa>8TFbAr|n9SX^zYv#W;7ZWh&&pVn8)WxYIS zg!;yZO?@$i7Ot9dTd#7>?TX=ld9~#R%lu+B)v>t7`qlcnu5NPa8Q0piSz?XrsdGhH zH|6Ih7w_1_*TgFFrmV2mGjEsWI**jV*C!GNVbcE7llA%JPRTEw*?dObpFW)Y_e4Q; zIZ?YgRz?_UCbNqZEO#o3VDtD-*459Ug3(t8ssLWLICi(0J%|8 z7YhW6ssMIFz4wMpX(>VoKx6=cOgLsAKgr1)Ucy`olj7uts$NXAND;|vChuVYiQOLg zAky5@p506CzU1!LJ?w&iv5K*656d-y30SMeZ_-I9unM2l%ZZUx!hjNaEn+0CNXGHN z>PO_r1!0YE{2k(lX;U^(aW=+rMc^dPSMwPfTgOeSjDL#S*x3~zcD?Yv4YzGw1 zSF@&k1gP_xvXAR#6=OT!s9YUQ6oNH_n!%C*PN~zDUV2(*%E#i2v4*jVu^D4q#%cyD zE?f?1Z0kkPk!aU{+K$oK4isGS{ZTmUkP(^E9r;VfO2#hs@1!-3Br=dh24B3#(!^?= zxdE_dP%(g26O*FC$eJI(83XJ$>b7vkV9TK9cPqx03^p$(!rloRUys7_Nl2gfTX$>` zwlT6LVrbR@kkO$5yDylEZCa#A`%$I@jHyYw&)XUIUvvL|4PzB!%N~grT!=Pm1RaNZ zRC!f=$2J78lQeCJBvFYB674iuPHgH&lJUsmYZCp^DBqEAK>iGhSYka(^=!&x@{mvR z_MJ{$C*U-I;K(pJHCli;5s&|vz2BCb`$HQIm{w-ujc>K*Ln8}Q05(EzWc%I5Afk-a zls0*2$&5#T7G&#z7#gPtY?kx+z*MIoU>7Nq{y z0Bg|qd%m7}ln&HOkI!b`y*$-2f@7(``vH3<5wbtn-<#>ms`_?6e?x@ND6 zyvWtV-X!7Zmp0WPeZ9d-o>hdDf)&<-LnVz+Ky+_^u=+kL7%{L(q=`$Qk9H;dL2Mx@sa(%w{ zR8KWnV+D*Vxz9>UiQcU(_VYl7SeK&#=XO)gR?GQN^VDLm`6al)ToavZYM!PS>hFBy zhsVf&dEsHtcw~%VDAIm}I!hG>Mrr+=CJfAj8)|~K4nM95Tpejt6WR--%%~=eg|#`3 z5vxJ(jAO*X3XW~LC9E6ANJy~X zj$;IDJ~wWS=mguU9mR-&O+3g^n$y6BAA%m&L;_oAl;(sj8%)q~j2N(a#%W(;!M>L< zgaIdi1v}l2Yys>7GinF0%7Z&LjtUKifghzfEjYzNk7LA25n>$I1Xu=c93$}4q(&)D z>#ay(93ufN13OA_+6b0`9LGpZLite&$0o20j6U2Uddy|C;8;Z4y8q|}Hdo-9f!mxg zPKr(-IC06y?pyTW&Q@#o;Ib>{JFXm|7`d8%VW<_6&)`VXp)b3OYl^Afwjr&%zU8h0 zy4O)-h&g+%I@+SCmgn0=*Pjge7ZH9j(A;cwvG-14b(y|*+I!8;X}RTQZ>FlKn}(6k zt$UAk=Jf{LdnOV~vnPC0x0LNXT#g)P-}*r(S814=H1Z%IpVC@z3sTGc&(#_a13k`v z*cBdhc?ZP*CY6B~yFr1%?is*_e^K&J9Ug=shge3@bSUERI27E8gVW1=NJHU12Q!C2|>nft96%osEbGHL6!%6-znjB{Qc zgEri&l^c4IS!?9r zeZGE(htjN-;fTHEP(8;$0h}M&jvdkn?u9i1o<4@xV@Mb)g7;4+1AQBf0MsRa6horR z=W$fRc-mT>(53AUL*nZViRf7B9B}~Pe=~!j7(2N7E`%e@qQ=;+y0enj+;PcZ&Yf~$K?86ean0Gu<$T>(~MELdWa2xxB!|1B=W-Ls-+L(ea(3t@5Q^sZN- z3$+$eJu6Y}8>m7Ie5qq-!VZ_mQG}x@YxQ7!`i4o1F9)JyJ#a=Sje=sN+ z%otP*F1TjKmJGISD+iPDu)@-;so2R=oI|QyTX;)pd8n|ADFXa|X~iT%o8I>-6ccEi z=-jjNAHRWSQb^@djI=JF$I(sWX={~Jm$pB&)7NXKWU|lMx5vB|3Kq-w3DcPL)1NM! zCu>MttZqRrJoH#8=||15vZv1Oe`_^xTfe77T1(d!-tgUq>rTCFy!o#2rX6MY%7j-M zl%g9F2m}{;#vGDR{FHCw*{%==OIb6r%^8%EYjp=M3cbHl<9Fl*L%jhBg7*Q>z)_8% z-YlpEZ@#88584N;Q5eUec6B6e_(Z$j_1aa%C;GqNKkj9@_Jb=hIY|Vge=yxu7?opY z|E3Fx#@U>S{w#Cn&D?5@YW1 zCX)oNM77;!f;v5OK&rW_HZXBc%i;sSvHK9;W;iOBQ*zJiPJgl}DaDsk$@!iraCcD>8Zxul%$o)|D$_(Z`` zhvEdI|7DwzRfdaPt4kW>ty(@nKQsx69nufKnRN3;XPE zQYo-w{eZ(|@H%$gfAFF+{R`e$Fe{s;%FnwcIw);E3ak7?!*->le>{1@Dg9WC9Mck$ zjsT5Fa#-5>roZw+OLLUYF#|8a*3s)6M*DuJm;)4!)G1!^0OzIOX*F;m+PEN;4aeyf zENu^7K(E(!>47KtrQU2e{LHB&CefocUcDsQ0!{Kj#u%Ci=s}K1_r1K$% zbL;a*6rSIie~j%145Z<>@?8f6r#Xa{=%pza;nx7tfLC=0f3RUi z6_3Q9kvsAFb*e(~9{=g7%0B8LQ*Dbs9U59zPbHf?fA_|$2@DyHwQWo`SvzD56}8g zQhB}mC=jA~LONc>1${RODPn3Kav5@OKUQE3(e@&D=8%R3#k`>%zHCixu7q|HLQ3w$ znthM-e+~Y~6!n&Cp+AC^mi4Ua|DL{%M7=J#%8EaG)cHCRm7e9FEm|V)e;o;n2j~?; z&I7sg`mT4N!I`H6f;jly9s^4OEOOAjLTfk5OjX8Ejykr5ny@2CcL$q1mL)&z@|ktV zkHKd&K38}z7?GZ5gfrnIds|!+k0*MZ61Htee`IK6skd!)zFOD$kmfX5p-q2K+f$02 zG(tmnc#6amzSvyNru=ah%FW*7QxA}*S%pN?vB%}Mp5-@Xd+T>Y$1)r7^j&QHJdy(9 z@PkYC@y~V`OsI4CWx4EfH7U@|Hot@pXAExPa zf*q&af7HdBJBj~~^_y#!+dIwh`&I<=0$BECi7qnYq6BwB#5nk6BACbj0RVU~VVB^H z0apPympF|9R(~@&G$1}c3UhRFWnpa!c-rkf$&%y7a`*WPhEHVpb*c8{;DcT~%g@i2 z7imH|jN}LmiEhH;CJ>yS*4I0i0thrYY_%|=7`6|ML=}ozTV_^fRaUl~JWS-|pWet8 zisUBkLr?05$+MhqURU<#HwwziiJF)sd~}oG0XjFCuYccQzEe>IJ5dUL@i-{^s{{u*ievs(bi3;@I zPep800)!$p+XXj9#6~B4vcmz`Q@s_nVNLHldSB5y_8|d#d;=+F3!jDAppDuEA%pu2 zZPXqnNt@F)dL(e*pf$bk=((bt5=YjX>3_G-R?jR3V8h^n0Wyxq4xBXI1WB_zzUd}7 zVV@80oa?U{JTcfaXc!c26R*aOT8U`v&G4g!ano6lo6G!|Wa#sw;YAq0mO;ay9%Swq zR1D^)G?0SO%1}eR9>ZW#0R@C%kG|z&Lg>1mHjuPdWhA7Sx0_z3=FKl^b<6?vqKx8(Iw&Xzo5sD|?yywCcF; z>)D;B(ex5!tS1fJlV%P%XO=Nsdw(p|=KUBc8K{3j?O^9cY%Y?q-^tf7=vie)*A_hTnXdofyiR)rh9h)EyD(|2%8x!cYjYX!+G&@VCeO` zcB;#_?bBeC!mxj)_Q6C+lPBs2scgMRYeR#|Tt6JvFrJ!~O^HThQ&*dZoY=qwa>?yI zL#9|*+KFOyWQqk^fDw(-19f=eqUE~YF7emU>8AYH@LRQKxCcgnS|2x@e5{&f{;*x= z9~Fy5g~L>=I1MzgE`OSaT8HUn^{`yQAGN;AeOy-a8EYVz+!b{u!i==e*z5A=LsgfH zoDCF+{gBubVQm&n+Z{Im2{?d;wc1iOKDG@8z5H=mH2l_3cj4oroT(`hIHy0%97wm- zq1VJs~-Phaov&vUnqPKam zI@hB-e<9Bw&ASG34#{FwVn3x~e#G2@ir{_#*m`qp$jR)}r)tBH8i7B2#NTb}pEw)Z z3_pctZ|jWfv0AP2Pl}&rtSMq@S6AD*YPwp{?uGXc_$X`6$(2|jRcL5YFF5sq(A0Yv z!0YW?IID%U`hQlGHD^&XPS@NCb{>l)+VM)XKzxAeXlyq~W2Ao(5WN8<-V z!>Z(z8;-vue1rqkzWCJ?ZQ&zkvbION&>s|Rg*%&>zd zDx?~T0t_@e3Wb)2_8mr{NT39cL!q1qW*iFmsrPXliU3l0910Y_dL#-ku-rHlApA`n zhXR&nqkl%C2w?7#-IS>JNc0)yohNW3J^IFgy1L?k&gC9 zpfJ+Hl06OuXtG|7L;)tN9fv||VS^ioA_^>@yijQz3a5qABT; z!nkoLv=JIiu~8_J&}tkC1J<@3hr)uP6h@*5LdtO{K;$Gd5(St~UX4QGtq5rx3b4I` z{tYO8cdtn&J*jZFVwi)m57M|YIQ<3v+AQzp+@Wt09?2<1M{-KBOB|i+BDmfG zxlLApjdv?_WD_6yz383-w(;?N96fzhB7Z*##e1!gsu(;BzM;=*ltfN6qd-(WatcIF zKm~uD-6cZAUWD-eK+h%RAQGL%kxFn8n;n3*ksO_;Z;stN9G@xkZZKvxgCbi_ZLUWo zQG+7uZ-z)BXmQTG>_q`G3G_wTI~QlNkTjnN)|^?K?nDJp^K^i^Jk&YHKL%9JkblCk z(FNE3o@*!3laMI2*PNMMQWcQ{o*i-uy?wkoL$Yc5CHu9$XRv30lp-}FG3*3jT1VK5 zzil~%(#s~IH_P(U(kXAJv9GLTu?zxGBPZmi zY@eWq!c?$0SB`~o>$Sk{wcLvUf`7EYlR5J6q(c#dJ`Pu71lo(e9chU^Tq#RScUf9S z-)98P!bCfET4p~HJi|W22wDUO^c$>@DU4wRFA|g|CJE;Lv z7-ov_$1(+|>c-v9>foW~_D+kx$P{?8B|C{6LGgM=&TU`LkjB2G_vf-Uf);U)^TM<1 z=t@9Ldit+8ORQsB#WR=ztC}{G17D(H7dpjWa|kvJh&frFs>E7h_pQ0!lv*#Wyd61b zVb)^yxd|7h6l_N4+9`dH3x5uo4l0tGrul|P%yJ|2CRMWI?{SWb!TdGd#385|}VP}eBk^lX&N=#NeBeaBN==e zq#wFYC^igXa*wM43^p*aBema=zl9@}51ti0@p_S>qe&L>j^wdxuYX-!WsY#S`(_-J ztp;^BWKK&Lg{M8byr2X$q`;!0x1Krl(1XW!GvqEOJAn%8(tpA1n9f(^i?2XIKVtPj zuifsz4^rkbLl!r&D*~ppZ*6L=&)9Ncvwg>ATFLtfD^6wGZ9douXc#>8b^;Wccaq2= zkQ$M<8A!nhXuMsGP=6Fmp84Z%1nNLapH)_XEt}^-UUrW%x?5=fGE-nee~;|P6cas8 zBZ420 zNA#A(Ri3RF0C~-CIJIR^UyTT0Y|IB5`R9#cHH0M+|n*g(9?gR z=LzRpOT}n10!i&aduCluP45Lg$+jfE3_1ULJ7^|);q}e%r2#I06*AAs#T%DK1l_R< zsW_JP9yV$q^}wKHaK_aTY&t_^DM4_Lxse{F0R4N|`j0>iup<8huE>fu3zRZ4cTgeXeiozt(aDe2!iUKSD7sX zT3&2_E1ONVyd4s~L)9h1GJ@Aj6mQfhwjq>ewVyUa5PU$u*6Oij{zkWEa(${@xpI$c zPAwQz3^oi31`UHN@=UNG4{nBKLKNC%pKfKY#4=E+Wq+%AB+K+$|Mb6{Wi+!)lC0NR zz6xS_+uX8ewdH+w0CNTff5V;l5YI7*x=kkWS_E}F3yTNBmF>b}FLO!naHi?$PrT>m zI8=gTE^+6%1Z+T~sM1jv7?p5fT@Bj)3+k6c9#Iz$7_Y%2YQQ7*0*~;XrZF$^NKA>Z zLwENLYJUa=gNnfegJoAT@&XiSx3r7j!8v$4#JDR4voH>HdY5j72b>kAz5S!y3oC{4 zgO!4Lz%mb5Ggv9ir&bD`s8VO$xRoNFr)o!>E3r^)#ixe-*9HNOsz;M58tD*gm z{R(Vp16VOA7~lv5maKtw87_%??G@ijrLFxyO@C=G)dp-zY_H0YF&+{zfF~Oso@?4q z*!6NY^enq~!%<;;d+^ogDLYtqGEZ3!$3%P@h$oElc#e;q#OqRqZ|f-H-Mk$YT_jig zkOOyo?2d{9pS9(9WTJ@D-V6^}4X|BD{0r;IF(k}ApR8;L2Qvo- z`+u|Nx9BmBwYfCz)CwJ{2Cc4<>cg28A98ld$AasoC`QvpW4HZ*pzUsW=ZzrVVRrFDy?+>T9k5+5;8b&I(|_ z(lzZ05H3@%iKb7zij@P!$9w<|49-xmhksr|y;z$!V?=+@=fLzVeacjBy2P7fOW#C0!m#ZRx1&9GR1;NOlSj!~G4Ft78sj-FYAiL7A9(DF~oE_Fg@P$rbP39vTEnkrHDfZdoD8=SI*Xgs-#ex*lb7jG&aeso|_+hKF z7dHxetA8_Bv|`^dvFg;uu_LiBS?oXK2lp~RxWPJ+LyD>!S|`rxJy+$2kc8AXbB3v- z7G7n6t1q5mf-0T5EuDuhCL71L3%b8w!aB!uZwSgb(LZFE{uwkALS{)WTGBQw1$)c+ zR7tSxS=4TpxHj}y&ESE-6Mr{=ZzAYcA2Y3o;h+b%{Rzt9+BaJpQ81C(VKszI1LIk_W| zms|BE2C7T#)Wdr`8}tmzEHEnBeqLAaDX3YQix>QLSJVw>aPYg78wVL(<9f)d&3py; z4!P@?L-7p}6IZ^ka({F;tb;-xq6)Wdieq-Q;oSYMn3v*Q0Jra#82?Z!K!MHY+9=6@ z23o6dKGK^C9IFiq@&J7cz2D_899Ru;P}o1r;z)3G3vCd}5WlT4>#%RQ!2A9uT$*#Q z%Xx)US1v$11v=)KfZY5ujNnj(k9q=nnR4vR+ELQt1zqKTIcaEm^ z)%z7vHr~fTK7TZ>S8dK;*4x9wGJiad%bq_I-2(iSzy(1B5_baT2{~4dnO2Pvevw1~ z7pQtU*f%mHP?+^*`t_E=TN(;hx!!IlR-z%BCug1t1NdC!t^i$9ti|47;7k*hXqzaa z?_l&wVr8_7?io@PQ`w3z44QbXNXmYwMaNTzxhz}Y<$ouNb@=p%;S9HRM%@q8xo06b zl+YNN#&~_aNPzdCbEtHrzz(fvb=&=p zj4^T8m$@r6sQ51{Rv_Xyj$qgKTvg5<|_#|;O(AGtEM)j(g%FSv=6T`<_y<%eo} z*sq>Ay?=iul{ohqO@O#VTGF1bC{9tVuW|$7b$c!bCg4~V`#mlpRC}Gfws-3zY&gaKD+C2(iRbz_YfQRzFSz>?lw_{9COf4$-ROgtUEJ}(#fw9`3lR1Q~$bmkw;Ihb(K55gy z;Mdiv?JC98rFQk>xnh|-8Z`R32@Ndhho;<%VQfO}99Z!lWxdckp1X?+GV6Z;MDe!x zmlUG`R{=P;Y@-2A2?A+5x4f(Y(**?Hx)?;4ld=I=0XVnpvH=SO0=4hA`L+QM3k3XA zJ-wF!YXK9NAHo5k0XMh6!U2i~1E>j|w@%3cn+F8ArTEmB0c!yhw$T9s9G6Ib0TK@* zxADGT!Ae!C$f^iCcmtOs?Ex}>#prfajQ;qd_yGLF^^2EZnlO@5L~GUP`evk~aKVne z*FqV<%tqgizpC21W@3x+Y;vUm+%zlBtgE)Im$zK_=Ib}FuQ~g!oNp@5Ha84Q22<>& zS==KTK2@ zH>(*VAL{v>bL;zg-Ey|=dRmqEoA+F}ZDHDqT?Vxl#Ba$>h<9cXNtL! zn@yXE9Ao_tT)y4Zv($F|e%)4!-szRRhA^xFmX-|WP0JbNl~IuvV$(wZWm`8(#KlrNQWvjUOSqc5E=1m#_tL~b5TCIV9Dc;EO>qJAHeqPQ= z&bF&YbtE4sd@c5tWMqGyHqG;{#1#uFElW^`!WG7;L3z`nsAO%EBx9DQgPFbQVDYn( z=0ZIq89bNY0Vbk|!Xg~@SuRp;yC<-~+Xr*Fp3r*rP_I+Ne{I%@iX_r~OS-N}=r{AS ztx#=vkNX86E>tQS&(e0Pr!1F#yeOATnl?0pJkIPrmvEhV9tD?c?*TJ^1*of0m#ER| zc65MwyQgoT(e{h$7yo%7p?NWqofdXh2_Hw(#S27R8H6`UQI1yC=;p=Wjv8Xu7IFMX z4R^)2=}^!xoQU2#IuoQQtORPD0Ddt`Br_rP`0~pziXu8i?PVc~B0>eVgw>Zi;9?+X zv(hv}HVjZh#yA$J5qlr~k)DOp6}9TR7PT;SEW-xZ@7RKhX}9mD8>nl464 z#DG-IN8bSBXqp+-QVS;!ra7f?fw17l3(DV9zM=e*^3`6xk3tuPb#@2};ZQcxg=_R8WtIFAbEM*vYs%)%W5VL4x4<%x>?C*?Hp@igTwhbz|O(0K>3`wbA}+O z+c_CU$LyRTi0F3CArZf%og;sqJLe3xs)7Ag@Ogd-#;OTUIH%8QtU5AQEg6LFgT^Wh zhQtM@PBd13t?~IZr!;y)>4Ipu-@`1owArVPRSk+{01EL2NvV%fxHzE75`V!|`?Q9u z3+TK`$%`xL&Ou7>1^ZMasIxG{qA6!U$?BXXY5X4;vS_iJgXQrP@3CkN zShUaLwYTATUORMBB%Fgag9U>PvwY5_l0lobTr#+SJz~UX(*-Mm`&DYk8{CcGWu;YD z`V?au@=j!7X{G>>lEM%dpfumBGcbKBEg7WWRa}>l?U8F@?PD=OL$!=VWQ9vm6b`-&{Er$G-=l_4to~REh*0K+Ryrpz2Yj2KcV^ z08>-O3Z;EMwObx|#h_&HE~Bkw@cw)fuYpj$4Y>%3*I{>QXP=aKuRDQ%H326Iq}YLf z#r`cY&_ukT231Ix*Kl}XNlGe#=c=%Y9DfHt2xk0t0zTCjn7qN{6(-jc>&LG#_jj(n z@*rAh8+c30=S`pZ;5C;k984mL!pKv0M)X2!m9yiP2i`ClHJ4^w>Jw(zr@@&4s8QMo z8xIy|&EwBAYR;&s73hwOky^Yk3u%{syCq zz*vKfsic5IJs%VAi|5t)xI22Vc!ag?moW7KD}QO=sg`!6y#*Z~p5m1TU(4sbItYi8 z8vIA-6TH6w5}RaZI^WEgS%(h=R|;Ax=?+8KIDSZVLZ1XoeWj7~!PKN4&}AJ@4jCB~&EZ@;wwC_8*MKc(ifB z(*~jNuyG5ag5AcRV%Qrv129oZp=+3LDSzw{b6p4=6ilZWW?WS-8CxzJ44`A=Hii`{ zczeU58nDAzMbPh3br*e!xN_YM+|}Mwv>qsvGz!I`g22oZDd`7`27~nw)7-Qj(a`g( zKg<*bY`68f1e)bGWmi>-gxfx}>hV2AP_|s)a9_nSegJbl!MGF!3At(4jQNSVEq_0; zH{>UD&Maj_>b@iAb_3M)4%IWg9lt?DD5_X1`)Of(1`>+{jRxo4Tl7@en>+nuFM;JEq*wkx+RbOa;|=qf$`%r z)U5~o(<$4}C((i>56Nc}P!w-4_fQIxw_I^HUTQ6ry_ow`w86Lb$y2W#LCCnhM*D5D zc}&J^@G^={H=m82V8!az??Rj33O)JGyS3GsTYSeu3s1-Mn$(=Zv=?;w)@QYWJHk2-g=-LN<9FR;gfMr%% zF(?_dUEO0JsZgTuD7N4ug;Pv44c@TyHs1hmc;LS>_%nmoJ!F6qvepbihQXk-kdtwr zabuM+X%qb3$E65Sb7+mj> z$Xd>@Uu5`|hltuIe||Oo-BHH$?b(cJ8LR-O_)^#@LllKleNRVc;Rb$Z6)uJu z-iyK|+44^Yx)gFNTd(m8&GBC-<^1)3Uj7w+?}!R|i}?qo=ktc8lftUYkvNBEP>Svk zKR<6+!pUd-#caF3?|y&#^QP-_ z2(|>WgrcOcI4Kn9@u!kM(Oq?R&lA?edctl{PZ(uZTQ`6woJs$&p6~!L`>XMVkuhcfPdH=n1$x4&U{BauQUaDeVfz73 z*a>I!$-Ge(WXZ*xH!~i#Vp`h05<9{>WW%7>5e72@-%U>>P!~oNX`;64*j%zsoj0^^#uQ4$6HEYK`QYp0mz@v3l35EcrjuX!Sw7N z*Uiyh8(wKz`3rf&lw>`4`smHmnM4p1u+C13g{B-uiS8h{a>gDPjoaNv4Vt8l-Sf_MYo9seoUA+0#kD54+*C+#})F<1TqPQ1!)V@&IO~N}+es z{@+>ZoF(9kQ+5DvX`jKD_-tq+ZT}+D_6P812EERb0S?I1d4sCVIG6Ee#=}+&+N?xh z+7%tLVbJR=X`zOoFM_ofa{8v(O5h6y_Zf1@WLCQp&E)aTleI!QdpeyUs6rc=(b;y~ zAyDoZNbEe$`||R5hb;`?uzm1rh=TxPXN1!uP~$>N-S?6JZ2vFQbiS&W0c!yhx32pE zsR06~{kK{D0SEzqHv;H*rhQ&zG1(q(-uYQz!OA!uTblELf5egCpiq8Zr(&42mXpqH zDj+;EggK*=$j|raG>$r{Xi_nx;>_73q+u3&oshNuQR$W}_%N032^BbQgg+tsDowmg z#d<96qhSOS+P(xD1_WXF1dYswHWmGZDcuo@*g+$wj$asmh{GP+z;JYEK{fHjc{e>j zFNCl-Jrs7ZV#=9MQeoB^rXUzEpuz~05Kn8cZr7e!oM4&3$@dcYNRDlz!vvuR)R%;& z&uGhwQ|eppB|-?jZjoy2N^a=Y1ps0@>^rt%KrM<}dKsz=)6%p=`LLnV6q-Fj#iVvhMh8qp$X zoozlyBM+qYb6SU3=A!GW1ql0?nh^(-$DE7(mr%ridj4w-*5Po~*dE`LQd_U{i&dM- zy6d)Gs_q+za(X-RZn@m$|1^1)ggz=)nY-&%-6eA+!d!RI*Li~a_og5EuO`IhqvLW% zhmuwYc59tMqpxX~T^&`p%aT3a&lU>Dx|s=qnV_DqXoQ^Ztf~A6iy_WOSPE8B+R$4f z>fAwp0_#zVmzfxcl7j&`nK<(iEclIRuRrdo*mkSbd0TZDFx1@%zY@N8FE8WDV#H-! zqTIW?O$$~H^(y_l+6`MWa+XmhXq8A^Fs|KH5{GRvn4;8uh$uCy(S~YzcJ}a@aL&NO z!5L&=e!ItyLY#1DKEgOl3g65O7EU`qo`tu6Bu`#xItpoP+>VrkAe6t~uB$d}@_VZ~ z;$}Px5YHDuPQwgP6KP7TV}isPF?3Pp1?RBzvHz2?Pi(zPT+ITQIb3BkHf>JoJFF{p zW3N;IGK{wC)i%Ew50D4R)tU+Z=&cH5LC8mH?;wCkC)KAwP+*ri10jlmD1qPw^Tro{ zL4eH_m+G@21Q!`p072kp&213`>{B6&7$Kx&A{23gY-ef9SfM;qWe~KD<4Qo_j;w7N zE39OO&h-KijWxOz!2~)-ks~JwNA`nh8 z>C1TGG0v3n!h5D=882|x(!R(t&|EWPig=-g#O0vK#L*I#L7CyKrDv|pa@NX!GB3+` zp~=-<#tS1^uw}fkg7GrrSz8zfp^O*KF;QkbYj0SgWRYv5%y>3jFjZze8y=W0y9F5G zSQ!q|Fk{O&p%kwF=J|K*M?4BDdQPH4;ot`97Z=8RKVLOV3I=#7=5JALwr$mY%szvK zn5U>>jA}(U3Hb(&VMNzXo4p5r!%f{}|G|faG4pD@tNU~A$#%KjWe?qjbHY+sGKJiv z^m_jNZbSdfo{9`H`8V90{Fi?IvCmUx_fqu6y6BCq&&{~GZ59_k1RbYx)2V!%%AZVS z(@Tjk@=T85!|fOitWTUKM@VFE(J30sT|aC$XS{=SSrN3Aa7bhEioAn=6mrLoCRp0! zc=gX*nChAqT?sYyBK>Vaj%z|IQnOk1$$1Zg4sXR}UL8W5BMY)`o2u(-*Di_ro7B#} z?&KNNJjSJ_E3!Nra0#Ay7{=OJ+&63?BP0w68)0#7#|=OdZA>szE_`#@Z`ZqFjOtdy z&2+U7q`DXjOF`f0Xzh-FW6R@p=^0)wrj#9s(}^@+j$n0)Fv1jCIS^ z{4XeUIF}TWq7y2AOp+qpQBs7$9-^cO9%76iPj z@=$mpi>IaHX{mTz2kLB7t4hTtb<&W46;Am(7?7n06IH zlrA!fs9wi^`ueEe#`<-v53zpp{E6<%A$HQ&6sPrblL|&fNJ4(XCd#@L2Rg6Qh+{r@ zCe&fI{ygzk9_qkGHPsX1ZSUj`E9@;PByZ?cM12>ZsehpOHKZ4ohFIXP z`7PRWhsAONtiEu#n31)tX_qKPr?qvY08y9m`TVqhGf8P@Iy@`wOu^O(LB2%V8G&-) z6EdgC@$2Vk7a4O<18)M%F~2j>L6=A|1YMuz>Wv_1UlzD#bNno8XNnYW=WTao7{}XG1cz9 zRwaOc*Yy??cXV|~{asCWgnU=axnMMqoCqT-XFLH%xyBe1bF2c0qkJ0&`(yxyRm|N% zYeFe?S1g5%S;A_xlHbVZVlYXm@)VPQnHlZrr)sZ~aQ zhy^!&(H<2J>&z z)29lG$Qo4!0_-f)s0xaxOqD4pB3q_^P!$vrSyv?9xD?|8 zU$jpZ^bq+lN9x79)8hXg_BKg+PL#|ArYUm+XBo-9P za%K8dLl3z!eX5~{oGc>*ddQV2R1G~uH`Edk6r3zms2Y06l_^vMJ>*o8d>iP0Ay=kQ z4fK%HMe=PV<*b$w0!8G?6smzDa%J~2V`3ow*)EGm+$n}a{Q7>bQ1qYVTp{}T*S%b! zW=xoPexi_mI8iA5lAhw!Ue2QnRX7>uuj6mq>dTAk_3J!Ua%j=d@bhHkz>3)dPU8T+p?%-B`>qqkFr*x zpRyOegvbM3Nf}*8Y{EX_CU)Ax5=B{5k-hoA|7M;&V6+!2NL{ zY#-x_SdJz>+xT3?=Qcj~&x9Awg|RgSpS)0I!P&SZo}UfQN+sD{4ES?`vr@{>4bHkG zxHy{#U1_2qp>>^FH>nt&3)P-sCFJXC$OtwLPkW1{!k-IRL)mEcNF>(AWMDp~Ex8t{YQVG5C^j8bMp|O6Xj;b+Z5#*R_%lWGIkP-+ZAX^9P{EdQYxch9+1Z>P6TqlKp`07tG zR=TFTTqk?wZVQm#j6-@a==YO4TTo##2KwUv+*PKymjP=56Sq4H0xAOn+K-oK4g$%4 zHv-r(%mV|ov|_RWzxmN;fdwn6eSjm1nu8jGc!R)Ygx`M1D{k@+sBTrxWAZyDI%n_= zECebIOVCAFPzf^!jawuKJXyxwvnNfm07`dq(#FgRkf-HtI=hERxQ}W~ip(eJABrH<>;s%ZoBwTpdTd|p0(NQv@Gay!`t9hqr{9Kt*C!14YO)>{ z0wtiM1hgRuKyn+Ca`^TcXa{a#XPhJ@fJ*BVdl=YnC-nfxaI|=|q6XJryr7Gxdi@%# zW{@(wR-oUVxrDVbRxMo)st`z_J}+5EP2GOqs5WHfm87eYuR4$=X0Jnqge@ zNE>oUn=*h!`?5$~$Sf-{fcQPtyXsFgQspKMvupRC_G1sS08OiP$p2o~hx$2GKLK=c zCP0EH`A7*7{_s6Pw`zf%5@2?J!2EXCBSB^I?{+PqK=PXE^mz~YR!vay7#G6md*fwP=x0H_Y2`Ey&9E9Rts7VdJv9GF4v9D|8O>1+rf7zZxT zk2MF+Ij~S%UWz+7N+zA8x&a|t7Y1)H?!Bf?u2VZK4lTxi*lmb@Sn~d0 zl%j<_x~>+nqFWSzlxDo1rd^h8H>0OO)j5!u)}AS?&vQByXdfVmV+oziHJpdXL^T{v z7cN88fGG%5n(N|@Ad4LNx>k9pf2hdA20uH=nWQrDZK3m~>UYcX$Q4>Nb<=`;0S+e- zgE?SAh3T23X6pj>nii;kB>HsDxesYa65-VlBpF)MVQXUT?S7*|Vb_5+npx4sZqDo= z4h4Z}RJP_!A5sFum72zqMh&6`^r4MVN1{b;qL0{Yr}9LF`8H-n+SP+bs_Usc30j*o z4UqAKiE_g@x0jhH*Ua-|q1G5-(T+bc(fzsY`(`~}(-e3R`P*23662tVd+nU-ay2{Y z0A|~P4+1FY{5hkujzcM%eApUJ2W)EXkLH{d|J6P!WwB}1Pv^b2QaB?A%uHs~R(JO? zX7+em(lW2XwQ`mTVb0V+&;d3pz&93z8P7`wGnrS&?_rsMts&C(Xij!KCl9WOoSt>u z>$8ib!2JQKGHb(s*{g((500hXWRaveTBLOFMoZ(!1NzsdPO&lh{eXyJI)Vv#wCTn> zdd5&-xY%b3bhni1ylH6wv|tHwEH3qEUP^Lzv`CN6*=U)@^K+B=Y4jYAw&25@uL{cw z*jgzG2H%}GD@XI{^;KfO z1ld9CW3uOn{S)@xi+%(=UM2cj_^Jd!o97j{;}X;}-E>OW;g;&v-DOKX7JZ z;7r9Bm3%6HaOQdBNd|pp;7kK5n#^t+3D+@cA~$nvD8q1^3$UR%lj=ywO{Bja#6WCR zBc^1&i3wi%SRcc9*HXoZ7rNM(@ca&Kdj9Q|7WoZiecmEq!*Cqr@wU}i1YzEA4AglF z%XyE3?DH+<*YsOZ&Gy?@MGV0%ofsVo3dt5CS@#bK3 zf1(fukMNYD7d>6or3gobil>cD$T@+uSm1?QsyjqQpw|!>*>x$jv2VZ!*GHv$i*es| z13IipRNA7y-%|uVcQj13S(XoPQ*h?KN_U@RdW2)fgd^9125^4lQ8@tU@n#aL2Tmay zNx;{C)ow!(l2}cAKaR6efY4{)7J)3!L#(i|(SgOGq)ca|D~mSH4RnWr-EuR}-N%aD z35R|KhOe*=%#Egtlkucd)C#KTzIOZx+t+1UA8gPic?JM_+)NSgIEqEL&_m>FyjlF@>=LaZ%|Gd4CJPh{c9qxksJw~(g?`JMvC7~`1 z+4AROX)h>ji#Ik?9y=mk5a~7LxAa?64F=e30402Fjm}qi`5;jPW3q|KA||NlbyV~^ zD*8i{j$T!uos=eEWgv?1yQbf{69|6450{uTh?#k-9?hEQ9yn>~cR|0P$0hK4%Kegm zIoV!t|I)Hc=a>VZ^a3*Q0?vpzZRJm%&LjH;B+){<5atmTsGyO3`x3eWb``+5uSQvb zo8&|CE#!rj1#EjB#QDl%%;Ss7LW)3eSn3Fe<#TXYYUY%_0H;C*@b|)$*H^<~Fw6)n zF2IHXSJCPz8=ngfJA%Xh|8V#zIE)d0WbMKf55KQA3zU@%hi5QYAWS2rPj@g_wZDAB zLIh%%+apaZ6fudI32)qRh*ewuvD*WpI8=J^N4HV1NK*Tu?*Z^(sY>*=Ern$Ntd@9H zN$v1iVLNcUZ&$Q^wb;yCmYZB5jDz#w+iVPtCp*&3hnE#(ik26WXG z4*8Xun{eV2qsQhZ1VA&#;TODPlqz30T_1Ccs$J~XU0=kzBCNqbX`UN5P?-Ot^_-*iBD)0?L0_^mo^gL zo-AWfNMTSYjk%b<1s^)fe7#sSB!DHxvKRtQP$L328@7r8kJN)ACD12DnAD?pKr?0& z8A~r_ZiZOLLCEuu;fvvaim^MoVH`g%qigfgvVJ*>>Y3n#dbPcF(L~zI=)04!ZF+J4Pu3d${pACaDpZ*k@aLSPP>~Wz8-w9rabWbzdPK>ytP4W9NF^a$@^&38ofCCX>YNzEVsn zoGcm>PEX#xRhelMGvk@<8R|^AEG#;wAJ}cbsm(N#ZM(iN;}hBGe&tNO(|Im3%5E<* zV!G=x-Lry;XL@uwlO(H!skx!W^vZH3btrRbInxqG%Zaz-m@EyaKYYU|KE1Jm$*$hm zKtbQrMIqY8z|zDZH909I#WXF+Jki|3+|0ltIVHt1G08MF#V{q=&L%m<%*4zrIXTrJ zH8Ca4&?Gh0%*fOzEjiJ^(A+r1(AX{(`Lypj$w>^1YHn`xGuYG=R!g{WaW;Fn8O;8# z?G(e~$!pIa;mbMWESHIxKI_Dqn+ic{oQj9)dDjRXn&!~)IqTq2$(>q)SvRgL-^kH- jSRy0eQIg8s{XdC;q05Q)&-8*yrrL=OEYsgsGKm5JljalY From 65851bfc4695e1aa38a1470894f64e3c09d82a39 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Fri, 26 Jul 2019 11:59:55 +0200 Subject: [PATCH 045/403] Update of README.md Updated to include the recommended install procedure which is through pip --- README.md | 21 ++++++++++++++------- 1 file changed, 14 insertions(+), 7 deletions(-) diff --git a/README.md b/README.md index 0fb345f9..9843b3d4 100644 --- a/README.md +++ b/README.md @@ -3,16 +3,19 @@ McStas API for creating and running McStas instruments from python scripting Prototype for an API that allow interaction with McStas through an interface like Jupyter Notebooks created under WP5 of PaNOSC. -## Instructions for basic use: -Download the entire project +## Install +The package can be installed using pip +python3 -m pip install McStasScript --upgrade -Set up paths to McStas in the configuration.yaml file +It is necessary to configure the package so the McStas installation can be found, here we show how the appropriate code for an Ubuntu system. The configuration is saved permanently, and only needs to be updated when McStas is updated. -Before import in python, add the project to your path: + from mcstasscript.interface import functions + my_configurator = functions.Configurator() + my_configurator.set_mcstas_path("/usr/bin/") + my_configurator.set_mcrun_path("/usr/share/mcstas/2.5/") - import sys - sys.path.append('path/to/McStasScript') +## Instructions for basic use: Import the interface from mcstasscript.interface import instr, plotter, functions @@ -83,7 +86,11 @@ Here is a quick overview of the available methods of the main classes in the pro functions ├── name_search(str name, list McStasData) # Returns data set with given name from McStasData list ├── name_plot_options(str name, list McStasData, kwargs) # Sends kwargs to dataset with given name - └── load_data(str foldername) # Loads data from folder with McStas data as McStasData list + ├── load_data(str foldername) # Loads data from folder with McStas data as McStasData list + └── Configurator() + ├── set_mcrun_path(str path) # sets mcrun path + ├── set_mcstas_path(str path) # sets mcstas path + └── set_line_length(int length) # sets maximum line length plotter ├── make_plot(list McStasData) # Plots each data set individually From e645a6fc573df183b59db889d9b577f1a912169e Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Fri, 26 Jul 2019 12:36:48 +0200 Subject: [PATCH 046/403] Update README.md Fixed small errors in readme --- README.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 9843b3d4..8195fe16 100644 --- a/README.md +++ b/README.md @@ -3,9 +3,9 @@ McStas API for creating and running McStas instruments from python scripting Prototype for an API that allow interaction with McStas through an interface like Jupyter Notebooks created under WP5 of PaNOSC. -## Install +## Installation The package can be installed using pip -python3 -m pip install McStasScript --upgrade + python3 -m pip install McStasScript --upgrade It is necessary to configure the package so the McStas installation can be found, here we show how the appropriate code for an Ubuntu system. The configuration is saved permanently, and only needs to be updated when McStas is updated. From ed4f445542e1b7552e4b0a0e66e96d7af2434bd8 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Fri, 26 Jul 2019 12:37:26 +0200 Subject: [PATCH 047/403] Update README.md Fixed small error in readme --- README.md | 1 + 1 file changed, 1 insertion(+) diff --git a/README.md b/README.md index 8195fe16..845cc7d3 100644 --- a/README.md +++ b/README.md @@ -5,6 +5,7 @@ Prototype for an API that allow interaction with McStas through an interface lik ## Installation The package can be installed using pip + python3 -m pip install McStasScript --upgrade It is necessary to configure the package so the McStas installation can be found, here we show how the appropriate code for an Ubuntu system. The configuration is saved permanently, and only needs to be updated when McStas is updated. From 221e927e4b2430772f28dfe880a0829cb1fc8b06 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Mon, 29 Jul 2019 10:38:36 +0200 Subject: [PATCH 048/403] Error in documentation, mcrun and mcstas path was switched. Thanks to Jakob Lass for pointing this out. --- McStasScript_documentation.pdf | Bin 162306 -> 162306 bytes README.md | 4 ++-- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/McStasScript_documentation.pdf b/McStasScript_documentation.pdf index 088dc99d7b1a79ceddf6acb0394021bc34f38ca8..0c488bcdd1eb61f6138a7c9551590d18b21dc80e 100644 GIT binary patch delta 6793 zcmb`M)mPLHpv0G6I%VnZTFyT3EZvQCH$tB8Z-17v#}6K7G@)24HXczwz3xH7k~1_g*Low9p`haq5WgRagQVV5`%R*7NjuBP=)Z1mxbvAx^it=12%Z7QU|IfjXTBZkjlR{E)E;#11? z5xP}Mb=FDPrtkW>>GAzsR70&6!U%QSkiF)6a~%~FxJ3KA&FLciFijgnAK1H( zj!dNhVS^hr;G<1P5~{D3KH?nKV8fi;cpQ9q!gzBVKTiK)PpkbhU=Ud3*^Z4k{<_39 z;OwF#1>}yRn}+mK`aU3QiQA?G?4F=^h!&D zA!gE>d1wi?+rfdpSA~?Ahbl~rfYA`i;-Iv=&Z_*69rPW;&|@LkQOTylS}xF|JcJ2> zJu-fqzt#XdQ+$hI7}s5==T`W@TxF?HUoj#RM?kh2oT(JSrmJx1hE9a$=2QLITakyZ z6dQC}u$s8~$%HyFLew(!%a`nNUX@hnTqoU3;|L2$$A*xWPJudt*Bzr7=-xJ_*P-x1 z@h#{|?Xo$$WJm(!J(k^1zWn3%Er2smM>f0i+e|m-*bc{>Rr~X0$WnARYNgWl+OTzi zyk%)*ls@2{CYliBT8be4M4GfO7tTv@H*A`~#OSfz_#zrrI^bK+?`5}T@Lh3CCA%LQ z|57>AVIitq#vWKgUdz$}G#iYlCl?NIUaE8d%`SG9h2G<>20BDY(qwFSgV-ETgIJ^} zOZl3ns({>Z(cR`=S=TLDF_S0^HSeR8ZqP{Fm&on;b8|FXz5p8S4!O6JF}R|6{oGUv zK9^*11hO=a9vp#VSOo1|yY=XhZ^hFJk_g`(^X+^Io_!E#Y_A@;wL0Qq3dmanh3;+K zAKPB3eodAwzsuas@Pf&^ObWJ#tCq&%&kEc>5Wlt7lic9!Xx-*SB$1%ILgK|80v(=0 zy{}#J)#Nm#RlHo6aSL7XzsTBE_hm_rWQ@d#o&j6}`(lNQ4<3KEv(g+vZR3mh?hCI$I#7*d3i zT+LNK>=wRex#)*axi4uUAYYn!7wKC45as(&bZVZAma-(K+pv5~i)nrUU7cOK0F2xi z)JefRzdrO*HWD_ewftyltq1Of20Y0s@@}@Ayd>jEm;=3$U4MR*pX=!E9TlvbG3fpa z-G_~o3GwdsnfiTmtfGC1jrYPk?yJB>Eb4W=kksYW!nqr+iZ8r zzyaclEFhU}I~sp%EJ?CL0?dojy?^AdDSI{kmIRshw%%9$m#w>oD2~gAMf9_^rt%Nk zA+*pXj>;u2SvGu`3B<^5V7GbAiFkpQ%8b7%Y3(lo)6mLn`j#_@guL(u>dtL{0ceDdz>i7P3h0|!uL9k$U2$S-vx|o-V(_*2 zMO0=9y5D`@K;$3Pn}VvxStbg)a=P}^D`Sy8NpKU9`ece6JFnJZ2zAljL8o!EQG|mm z0Fx{S||2)$b)jiQi|2I)&gJ6)}p* zRagkR(1W@80*FY`4|%*gpLKiO5HTZOU%e14BHK%5aX-g5mfy4wdFd$eSfo+;p{UBb zD>eun(wgvqcbsl=4!~@gXD)Sklv$q$EzcuL(NwYo$z zecJ?I8tl-dqqUCNJ2OwhAgeTsDBBS%&@~L5|NX)Kka8)2oL=9Yvp#d@ZGHSsH1?E) z6h5c2FQMUkn6c!JuRzJwprj;FkK$#VXGs_&y!+YbO?A-ssjH`-vAxzyN#!O$`2j#* zpA{$loE16N5+>+8{agxe!XsqiF;i=BCv*O~_^17piR|t+%=S>Z6^ZGH9HhjgEV&Y3 zoM4_O(~k||I3qi4XD0Qaoc65$D$KaFc12)kfxsg7&|Q^|#iEqG3U*r4wwTsZN-;{g zL*c~%r8lZms-D@d@3_tN<7WYW7q8jETyq7Te=nM?)eW_FRpaR5L(q~s9dx{-xFbC| z80oPJLSZ}yd~tL`Te~?BU*CJqf{drG|(;%Gm>PC*SOaHtRZ-+Z%?rVTA^?X;@n1uzgvFD!_Vs*riX3 zCiiQJqsaQ@YtunE@y|bg4`OAo#H-q!n*_?QO%3aA+8cG18agfg=S>>d3dB=)@q`kN3X_*Qf6#IkB4G0fLa*+_AegC&3GJ$>G1?>pJ?DP~JCq>Zcg`U+MBVK($0z2;_`6PYkwd|8UVwvKXeMbjJUx$1yM*+B)3QvnnOHK2+5PSTUkpF_glvoTHX`CCQ;E|0Wve60vqFttWmic?Z{=u!6u3`e4(ERTO?6i|3iCu+H&SV-hIH8 zzBpO^=j;kGS%Xx9dyjd2h%A~f+G6<=#_JF!M=VImGzNuCF-?oFB+N2_&MTU2 zMkc@QHgNW&6D}@)CN$>&SErHkXA+x(43Dvu8>9jnn1LRwPwy2|uKALbc^TC^Krk$k zeb_gQ^t#S1G}Z?^Y}K)P5BW&Zopm&A4hy$aa@8)Gb4*COg-s5sr@2C?=qHOCd^M+Cijk`w)VTpvU(r+Z2Px0!Bm~{qfkQ@=T^7d_S=W zOQ=)Zb`u>HEeFdTP!pq|BfRV?m;>WY9h2qs9CA=W*8gs6IreL3f!5`1|r2CHr5LXv)zujZO$#8tfMg5 zTA*M-xy28(@~NmF9AwUuT`i4IAsSEcJf?isa4N|x`bxZ|5{Q-mW2cKqSN&=fx46;G zu2UVIft*t)h*(g=)CaO6JN44^uZep&z4CHkNaSh`8*}ZJ6@3xQe%;L?s%H=c#^6{c z9h^~wa)6@(nq6~e=|u^5^l2xYQI9eO-H=oOM9a#iJ2(Dot2t?lw(4N<1&s_EF9d71;e4$x}80W3+HsO=aR)u+PU{2eitfiNq<_@;e9VTsc<|*ERT_=U- z)l=+g&2+Wsaw-^Ah&kwAV7&=dPQ|g#Cq zgbEsd%vT4gI-J|biO~3tG}NsE_DaaP?>)QpwdLh<>z6n3+n>0Gx+Qh+?euJ0zyYK3 z6O4c+6X%qlg^g2%tIVM{-n*0r1)kwG9Kp@|a3%{{*SX{ydY*P}aSi&u8sX|sQSqxA zRcHD0(TEYjY9uc_?#L%OZoK8HTOmNB_7y&y%q$xPlMv^uo;ud?p{#Fam5s#i4jxWc zU!ffm0_J~bM0l+ueS!zoagHuvJv=ZIzU@~==uZM$bz_q{=t(;me414Q=HNHVmaKDH zad8rxPv6l3y|R8e%MoW|+0)CZ<)kdvQc91|e#i6Qre$Upfvu-~!m+>!Z2}m}FhCc# zyhs+(DqV!2s=S^_c*sx|z9>ODs?fen2)%dzJ{)8i$@QK?n+mUOU6c;TjhHKjih#6( z{0i)jn95QDJ4u+7M$WG!1qGQT#a9d;wQ>F@A#&_UmxQb|p?@JWHx3&^VS78YDEi~( zuYnMTOZp^&>H1?Tf{Pk_|L`J)F-pA!x!HZV^!bNR9gS5{mqHLy;IDRyLbQUU{yt%7 zK-CB%Dv3_A@$Nt<0~Vi}sgbrky{jiohB%`8KjLYS=+n>_#e|MAq6+BD_=ktEV2P=j zipz0{<77{){NeD|*0a8vF0?-Kf`vI>PrGNwf7eUYre=nrU=Xe{pwat) zW;9msmTlWZV9?)rat}&WlZNtCp15VI`J*LlI4-Y|43jH>X@*xlK#oGMT#DqCw;uPZ z^VJ<8X)$fxo-WxzDykY_>M*AQoDhu^MvTk6Mn$s(rLI!MWxCu@_1tdWY3|SRQJ21D6UWu#th@7Q~c*t*|9zM z3!>833`(En6DLJJk%oU;_b_jhkD+-9#t z8*^Vq%0Hm?f94*Jp|KHH*BDKTy?b6s&Ld4XxtPkhsfS zf2$OBny%MiM;4%UtN4{D96z*Vo@?UaTQ9E2NR_7*rAfRU&btH}>hAkK$u=CIlF0js zikg*O3@`1!=i`6?T{~OWp%b$0kpuLj$9DSXuEQ><Mn}-G1kU)XN4`hk(LMDXGIO6><*gm!UBNqWvXbdKL$!y5@JY|dRo;1Q{D4GKG zXU1_9T$@c5%N8yOLLq&168verscH(rd5sLVuMX!tAt*IlK_u4Iv7lG7CEcjKj@P^c zw6K(nX-d@&tXiZ8c$6C(VzFTW#zX4iUh@vJ5(>Y<#!M^?Cd0PtFQUGcBC=%B z-OS~;7XQIbtd(@`V4eNwN_ql6^E=zQMesMH$CQ7l7G%FiAkuyU(#3SPCg`ZioUadp zB4(ZYt>N0}w^pJA0%UHhws2@8YS|b{|NGegMzhCE3_H9T*~Wzw+!*EFmxBTzGsWWi z^K;5;`?Fx98pXapfWiBX`5a^Ht6}^pty6+o_p?7?NNu_)-!7_KnN9h-ACk*=9F~we6X3?748<*0|_Oh`ERM0I`9yVV)YHvl*Zw-Ty zRPm*?j>HSKP){MjEV>A;8UY0N=jkv|&4d-V_nvfyH85?<+{!BixGcfX;&9kwxr>nW6~>xetC=gIl8$*d6PoM1iM z?9IRI;!ne#0|sIZZ-V}XRbKuLZs!>NS9x`4wc}eEyAuv!+`O8NH#sANnC}Nj&W(m6 z>#hGjyQ-}b-8}HjJn=(P044|^eM2f-!Q~OQB8iEFMIo&I?!8p_)F~k(3=q>1(ORS% zRq80KvnunU;-jBS=?!dKHUt_tbY7ai!5Pxwi|ohT8Dfsq!tuoFvEJq@fKdn&(ICAT@$xo06y9#mRt!{vu?fK zxn3@=$nOhcr+4S0@1Jd|syIZIK+~M1yfwW;l>2b#zmU%1eO@WTX~jqJo2Czo+1 zLRnPpC0ux^f>rUgWV9ZWd$qv~b}{pYdXK0QOFgy<)3}mrl&9)^;tLcxPgT;5d9D5FnaRY~C;-O0(&>|`&=)Jn6w z%M_k8_*|^ot4vZ;hfaM@`|X5(B|F+;$XmyQrLrO4o6GG$kvJk=RG-SL8TWCT zA>BcQy&_I*+}cvS$6 z(@;G~L3f0CG}TD`OWqXOKGz1#vjDJ8`!fkk%Lxs*e&vK#miO{1%s3^5Y%2RQvmz?rX_hE%Xp>HTrs_C309-K}v@;ocmZrG+f z`Z>gRB3o@YWL`ZTpubNuGIha+GI%*=7dKJ;qZr|P<}nYj_dLi zWfZkgOD_}XJ29JY?=rg@NMT-Dv^={~)@!cj<%>o2>=k6wQn%|Nye)&mG`gP+Ry-sC z34Iz?`sbP4@N1hKxtgNMTMIng-eF0at6mLSE0?a9*K1UKU7oc9 z;*s7Oh*jYXyT%?*_ByOK^Ns@IPHRNu?%iN7Goik-E@78|^DCJ@D}M_}N;x%9e`8~T z$VHPws;^zO;yJvrtX-@;y*#X8&REv%WkE<&cNn5j5&r*fp-g{YWaj@9?d876jQ=0M LQ6`o@^1uH9qVT?n delta 6798 zcmb_h=QrF9xZG7&?=@<4*6N+;vVssq5WROBeYKz7TZrCktO%la773CNC3;yKL~uvz4$HbCQ;}laQ2>kdl!T6%%j4f}L=IFPST! z{`6Z%*0GS9B$|GuQSoa3{B%h`A+hz*_#+!MXCf3LIymTl8+I)QB7*V!{*?5DaI$jx z8`AGma@K{RdK%+3Lve;#U0V(3^WdHxF?X%#@#JpPtxpk0WvSKedeQVH1NH0IK0z{Fkl)g z?@yl>EJJ2qaL0;Oc@w92JoFtt3%p_WmvZd|8&X=Q5*jcNl%S)30mA@_OOh%Vy!LyI zaQ6wd9;V&$o3X@&otzmc^;f{?Y>h{teU~o-X_`>}=@LsHY>Q;? zg;#u8Zn*Yl$;KXLi7gTK{qDqc&7W6OSeunbERpvs%dp!FRH@0pI6Q8S1}nKLGUOG3 z)df1Y&QVl>Bl$TN{s17|Y(D%K&SSSAG0F8KcO;&w+jC=Xp_S!Dz0k9w{t8ryWbE8@ zSB$4WsnQ$&G69)^_bFQR91Fw5m1*+3#F$$R@%I=5%!1w_ADRCY<@KwL!zfOVsctOI z6f5rA<~3dDmof|1Yq#c&68P%KH_wLr9#qH+q`6Ar({~h=)Cy!DR`Ea~3+(&t9>+1Y zSq6m0z>n*MxJ+gc38YCca{R-d;uF1wE5@nkbcxdFuCb*q(teMj6Q$9&y3L=7UmQkG zuE9W!zpPpy9bK$f|2%mgAi&pNtB1JXuE%K8+c4J9sdo1b=!}e&i9%^2M~}kbL(j2` zLfW(R8ZE6`Sa(FP90~Kc!P|?YpUN^gQ?qalpecoZUR_<|^^?bQSOTn8#IJeVy^3|s zl|rBo{)vde_8-^C?3o_KlX!$jGskR|lPB{##9)-WtLP!2u$oQKjU^kMwk=QjFcX|- zaH+aso~bJ$1qNyjaZ_-6>GoWf{yK%|^Jgd6K$Yuf_)e6{@WVobjex?{3dPq^)<4Ld z03^CatxWQO;7Bo$CvakQTa)cRVXJ9#(ecmABSl=D5;A9u)7KJbsc&gCYeuIrbcs`T zwxt}(p%VrO@JWnfRN4s3GHV-$^e7@?ldR3_gYw%jbF03#5kEEB4Tq$WDl9?xO$bpW zp;GTW;{5n%c;2@)k{?vrE%3V#^a&CP1o@>?HVwbS???3RAb;278Qe4g15qH{N76!u z{rm8q-hIZOd2hTF1g1$@qko2^XC1BE$53y@P$5pP;OCqopP8fd2LQUF@m-_}mfTW` zPkIYM(1D;`8n=h4L6G(1r~?5ZmDQu99%c*5_(u%qAk2AqWZ+3>1}=y{y$4v&s_x0y zedUD_lyW%cH5-i@lMH=MZki7-&4$#oGR z{I}NlpGVId_3TjmwG{kkCjcyw3U`q*c6^VLp_C?ccAIJ9A*ill>|d-$UdLS+j!WLT zAp`CbH1ZVt!vqr3fKPdYgoN^=mdar3vB_RjT=(M$60|L;yoI1GoL%*ZP+@ei#QBcY zMZlm0g3}b%#Vj(rI&xn%7CoWA_|M)Eif7H(7tUG9;B9^ZzzIu40BiKx-~E|Oc=@rP z{t-+M8mf9C>R_0~@W&da_(SS@I-sc~7=La(OJMU0wFVH+=L-b!NCmCvqeW!BpB$9E zuMLxpKB(<0;VAB%*Sx}0v#R476Qt&fDm9wDA>eAIW-0%J&B)JqI0%w>5PR~z;_+7r zjI#Lb@oL%N0FjX{0Ov-G5ISy;vKg_(>lVhx1K=Rn*?q zs6m9y-+J+C^&#S7Mc%+v5OJt6Ou!uLmS%&C`<@herQU-4U3)Pe*M0agDJx1kf?El9 zBLNS^_fq8DpJa)=Kzl?9t9TNr8{=XUyO*WU;j0sTj$x)*g zZMEIQ^uu!5uPO2M(W1G&OnVr6*#MY9TXA4$g{;he#I9{pHUpaj)i2Rc+EhfStRnlh z9_v{bT#U-S1|9MYo)-^ycFhzd+vE)tWoA?JnA)1LYT{MA&swDk&Pf*%;ws8p+l4#H5N-6Wb z8Ck#SF7{}rJQ$gA^69u~77^+sTL>^wyK`vaA9gsoRa_L@0L;nWWH&C zK9m~GJkQ#U_C;?wZ6F~XC6(ZsAo`SO`tJ;r#?Fvcf#-f$x&5z zMQeZ2o){09!rOjYAUD>U=5@z_=h;R01!Ar>B_5SS)tXY~h$qbD!lb&QZV)1KZzi7@ zCh!&2$oF;`jj&A3+lM^YR^R=Sh=RosAK}<7kN%#qtE=Pz3&B@y%qN7NE{hNuO+sj3 zs`)rr1u$RT3NdwLs z55sYfTh)c$b<68A*{1d}^VCFT$S;Ze%JC4`wDm`j|Ejz+mxne1-%x4X>_PG?!H3&qxc7Flr);@lr zH!uf`1DE!~=vU1mEztkTi>)dk_Yx#%8pC}p0JmGjVURS$CsLTx#i_L|!(e+enld6a zu)Twsn={7$hJf0db8EBNCp;dVCEFE#YS*ognsR4bLG(FW3N8zT#hoF@wdF?)7#^lEa+E)mNR(Z_QK^YT=V4uB#H3Mq3h6f9yx7iRjR@PS23 zj%OdwitiCPQ(_U9c+osyvQ%D9{$eg_ofGq^d0C|38dpwRULPVCEUNyLwLw#4?BuWS z8X~~5jpAiM)4|6j3)Q-~MLh7!@7$dSu;$pJd;353FVo)t%Vv=Nl%Hz_7Y)}Zt*4vm z#14{JL2lIu3bm#5miCW;Sk@h+U^l%v8Lvw!u(JIobDfVBY|+orxvb2huNs>neP zquYSmLc#1OPo=lz+qegqs;)U2&N(-%u?HN`uS$Eig(hc* zTQ!(WIp`#aGVlQ8grwMR-BWzQZb>BEiBj>h$w?@Y zu5vZ#28qb#ZLpgN+(cT{o4j8<1EQR{U2hdxxdGE(rrgau6+!7D`ryC4BMx z^3-UoabK@)o3k=NrY>Yh@}a1Yo*SrGJ=yl&AQ@MBzfTW{YWu-SSt;RL#u=r$5TWkx zS$f7`{vZ}dNO_8Kc!`$SfYR2t#`F~IqcBenR6vL5Ut=#r12ep>bGN*rE3vFk&1olLmLJQ>GUx?8;Bae5|ok?7HQ zF{uq{(g!Y}iV$>sDFU_`g!fQ^T#EW8A|pz;*?loos%9fh#?cI!W?n=!^Y+9ES1%wbBY;AA9ZQ!*y$u3BLcD{sP&R6|Jl7Ky zJe!*FO5BtT8M9@zXr>csZ(TGwvanj1bdmFn@Mi=_eXDp97kuD{jEUepfu&Q5YOFiE zlHkUT?YtKzWqerL(J5+^5IV*+a@zHh91=7auc$Ufxt%JoT<&tBQWhwtV`*7W83M8o`10S z$lSDC0u*`_N15JG$@R5TIfunz*ZRsIAl(X{X8AP9kxdU?Hrb+s1@J;9E;8UL3njIVk!oL%k`>PK2{;Cz6 zA5;W%F0>p(W|iqb*CW(e4b}mw6TOP9aw{I6C7#tCoG&mKS|!djD65e|N>3g@g^Mio zJfBgZDDHe?@n{EU{(K!D>6!&YDPVQHj{*;@tiJQ}u94Ia_gkgB`(qBLYuuJxj9^ts zA8Qe7ctZSNpFr!Ra3{04Gsra@n3|Icb`;rYpoIA=B!lG7@EjxGrUE5gyd17_+G69h zQu{migTtENb_TufxN^;5*%r&`rTOwS3EdEL!JV(Pw899F!M6oB7{A-g*F#qx--QTk zO=a$HCOok__fPN`fLu5*P#i_TlC z#uUBcII*&x(DmP?5df^Hf4Wy6@d~EEA*Yx&n_Exdvb*eCR=1NP!h>ZjAO zO#(>;-=jX8kN~eIRApBY5>kP^wvzpKtKTzweAmR7u^XZCegz=DP&q=;pSQv=ExCCe zA4JL4n3eYQt2_@mv?(L*@HMreo>;cQW1K<5*t$V|;)~!{G61-p8}pDe?J(KC*_2y9 zTj=RU^k>wE-f1NU*o6zrM^P4BW$lQMIgxE?R5RRRSEd~B7-3!y%2Wc2600($2ZT5w zPARpj23B3+jF8xhDg=EVuBgp3^uBW!3&}51MRk#gjGQN(L*!!1*<|&L%Wigvq?1lS zAZ}XVUK`8*1+e!cDt56Cc>IB%HYZcQ(rr1B^oPN^&&NpINYNag*pw8UtEiU*?RN9S z=D5TET7#X!ScfxSs#B-pXKg~!GxA|`7au&_l3oWrvI0>=-0D7FT>15Obi#ZQyZmubL2y8~e&j(Pm@ZB{Ie`qiH}87QXh(qAu|LA&N4 zn3*&XW~PkzHD4X{#4E{!Q`m?i6fwRJoN`16NSGO|$%;CfWql12^7~rJ9+^ z!Tvmx{M|SheB+%RA0x8+poWDK{2MYJ1zNFx*UXzQoYJH@ZydPG_~#LYhU$l4ISyLD zRGhBH8(O-UIsEfeY%7oQx~i}5OH*~3iCx)y(iQB`*j+wsZE4fc2wL;SHJIIUO7n6`gh>FOzC?+w&H-lYbZNe?8k)5P{~S# zz?5VWpFXxd2Q{?G>i*GbeVyF;j;~AZUJzIVfF~qdZ*tQQ%nV7eJRXG@3}*GpTBpUQ z!BvP~lfbrE=0PFVY3kyE-$gd3&Q9Dvzj)&vautX3%IXG@-LE8+C-ZlY@u$$|#^5Wm z?cV|z!#msH$H3jfUJyl$@tvC!m`yV9mFD%b6F9iAx_<<^n}y778JuQ%o!PCRr-;}C zaC1#8>T0YzBz$UJcf75iz>9R@2tR0@fIL_~(&+4y(u+q3R59_KveuaAclvAsD;zZj zpCCJW?!73=lte@3^c9l$(wSkSDH`P}5!xt-dBvhzQfb6a_htQVSGjY@=HWZm zJN^Lh6~R@=XJziTOJc%)DwnsMGg*^>w>7zP!Il23tnKT|+4ZJV>l&-DiUu_EAhU6> zztlWv;IR46)ywibTK9+r)5YZa#A^quN~yuJ9D7C*9>y4~X|8-)d*oKQ{P)Ld7FKY0 zo-VwbZG2Yn=@mS8T*dWcb&?JVtj(gXt95&3Y`h)T8&L}5pwc?QXTeSEd{72_U@jZL z8je@{U#@7>j67CPjS_odlW1dT7nBc`okDF$5m8h-Sn=oo+^?R{?b54O1cU zzdt{DpZ?lgAlh(Z{J%%&Uiusct!&_c7%~aJ=`A^o#QvTr>FeFs7lTAtKw-^FyIEKF z1Xwz@OI~B2PVN>)+QJPtTWk=zt(@F9_M`V`}j^ou*xpjM0 zk7|BaO7}Yd>2-b;twiEk>=(p(dv~PZNJt|CS%mvb$gKUFb7l*-JnF&lz08E4<~3wP z`Mq*ZW=CiPKG^LGWvaonb4ToECihZQCua_^`lq9}&+clEM+{Z0(SV`K=PPTmJUXUC zY>@!4_aJB>L6cSfhqtis_XASD9MQ?k`+JaO(L&E5iBMX3qI@Sh5?uo5V_r?0lB=uP zGQjL)C*$?EN8O%#9<9WG5SnFaKP>p6X~G4PVm#yOjIZklTt-!xgnAW|sP1v`RcJTq zU&pm`od?DFR^8Cj0Cls)RtBbT;=_XNTf$n!igDhAz^3Nhk7u=xo$br$Vp5$;Q*R^0 z1G^p4Pf{LyZKm-u4Vh;(o(8-&U z(%x`^_c9(CDrlheRe#5jCi^{Oa+EdOIP@B|Z{V8cHY-5e0!#L-kxtX2oI519M|E>{ zibV|G!6$~_L=Psq>zkaLWYj(;l%>g@5Yga&O+zrWKmLi7OXqXTaa3@cb}aivEuwUR5QLVq_W#K+ zfB!jW6I*`555)Xc*N5y)aI4pqeY{kOBfxC3r6Vyl6yhCg_l&Lz&x`_Oe}D{&Uw)8q zj7z@HVznQ9o=q+|{HO3oa7$ys#evQVhJ2-6LyJWO$1-=K@#ZMCaQ!CKAT*$l@8j+h zn#k)Y92G5cZk0E8WFwCR{fQmD9DMzJ9Bn=S7kS%t)P{jSUlB@+%1O$JO64L0ad`fZ TbW{i8aQ%ObN4dmEoWK7Ag$cG4 diff --git a/README.md b/README.md index 9843b3d4..0eee2d7e 100644 --- a/README.md +++ b/README.md @@ -11,8 +11,8 @@ It is necessary to configure the package so the McStas installation can be found from mcstasscript.interface import functions my_configurator = functions.Configurator() - my_configurator.set_mcstas_path("/usr/bin/") - my_configurator.set_mcrun_path("/usr/share/mcstas/2.5/") + my_configurator.set_mcrun_path("/usr/bin/") + my_configurator.set_mcstas_path("/usr/share/mcstas/2.5/") ## Instructions for basic use: From 741157c55261cd9177ed32e025bc476a2db04a37 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Thu, 1 Aug 2019 08:12:49 +0200 Subject: [PATCH 049/403] typo in README.md --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index c7f70078..bfbd6711 100644 --- a/README.md +++ b/README.md @@ -41,7 +41,7 @@ The parameters of the source can be adjusted directly as attributes of the pytho A monitor is added as well to get data out of the simulation - PSD = Instr.add_component("PSD", "PSD_monitor", AT=[0,0,1], RELATIVE="source") + PSD = my_instrument.add_component("PSD", "PSD_monitor", AT=[0,0,1], RELATIVE="source") PSD.xwidth = 0.1 PSD.yheight = 0.1 PSD.nx = 200 From 96d119d0c8d82b9987ccdcaaa40232862f32f335 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Mon, 12 Aug 2019 14:08:22 +0200 Subject: [PATCH 050/403] Major revision, added instrument reading system. The instrument reader is included in interface as reader. It is capable of reading McStas instruments and incorparating the contained information into a McStasScript instance of an instrument. It is also possible to write a python file to disk which uses McStasScript to reproduce the given instrument file. This feature has been tested with 20 McStas instruments from the example folder in McStas 2.5, where all are reproduced accurately. The feature should however still be used with some caution as it is impossible to test for all possible syntax styles and keyword combinations. It is highly recommended to run a test and compare the results to the original instrument. There are some cases where the reader is known to fail: Use of c unions (very rare in McStas) Use of multidemensional arrays in declare (1 dimension OK) In the development of this major feature, several smaller features were required. These are all documented in the manual. Possible to copy components on the instrument level Possible to add c code before/after components (%include) ROTATED statements are now only written if necessary Possible to append lines to declare (useful for structs, functions) All features are tested in unit tests. Integration tests for full instruments using the reader will follow. The code is also distributed over pip and all files needed to for the distribution is included here for completeness. --- MANIFEST.in | 5 + McStasScript_documentation.pdf | Bin 162306 -> 167419 bytes mcstasscript/data/data.py | 8 +- mcstasscript/helper/component_reader.py | 28 + mcstasscript/helper/managed_mcrun.py | 3 +- mcstasscript/helper/mcstas_objects.py | 161 +++-- mcstasscript/instr_reader/__init__.py | 0 mcstasscript/instr_reader/control.py | 226 +++++++ mcstasscript/instr_reader/read_declare.py | 280 +++++++++ mcstasscript/instr_reader/read_definition.py | 143 +++++ mcstasscript/instr_reader/read_finally.py | 55 ++ mcstasscript/instr_reader/read_initialize.py | 65 ++ mcstasscript/instr_reader/read_trace.py | 560 ++++++++++++++++++ mcstasscript/instr_reader/util.py | 149 +++++ mcstasscript/interface/instr.py | 235 +++++++- mcstasscript/interface/plotter.py | 3 - mcstasscript/interface/reader.py | 81 +++ .../tests/Union_demonstration_test.instr | 422 +++++++++++++ mcstasscript/tests/test_Instr.py | 167 +++++- mcstasscript/tests/test_Instr_reader.py | 342 +++++++++++ mcstasscript/tests/test_component.py | 43 +- setup.py | 23 + 22 files changed, 2909 insertions(+), 90 deletions(-) create mode 100644 MANIFEST.in create mode 100644 mcstasscript/instr_reader/__init__.py create mode 100644 mcstasscript/instr_reader/control.py create mode 100644 mcstasscript/instr_reader/read_declare.py create mode 100644 mcstasscript/instr_reader/read_definition.py create mode 100644 mcstasscript/instr_reader/read_finally.py create mode 100644 mcstasscript/instr_reader/read_initialize.py create mode 100644 mcstasscript/instr_reader/read_trace.py create mode 100644 mcstasscript/instr_reader/util.py create mode 100644 mcstasscript/interface/reader.py create mode 100644 mcstasscript/tests/Union_demonstration_test.instr create mode 100644 mcstasscript/tests/test_Instr_reader.py create mode 100644 setup.py diff --git a/MANIFEST.in b/MANIFEST.in new file mode 100644 index 00000000..e71699ac --- /dev/null +++ b/MANIFEST.in @@ -0,0 +1,5 @@ +include McStasScript_documentation.pdf +include mcstasscript/configuration.yaml +include mcstasscript/tests/test_for_reading.comp +graft mcstasscript/tests/dummy_mcstas +graft mcstasscript/tests/test_data_set diff --git a/McStasScript_documentation.pdf b/McStasScript_documentation.pdf index 0c488bcdd1eb61f6138a7c9551590d18b21dc80e..deb1fb8ea4d8ffb14681dacb475de2e9bc0bf311 100644 GIT binary patch delta 109880 zcmZ6xWl)|?uq}$ayYu3~-5r8U2=4Cg4iE0`?j9V1JAvR1!QI_m?zhjmb!*q1A6?U{ zW~O^}|5-INLHF=)*$C)VO5Y_JS(!KysCu7@J`vbi6VZv;xH(vPLCn%19S|=!D~OGS z7o-Pb{sCg=1Tjm1c-dIlIY7*cAlCn^Du|Vfi%Z7$#w_gYyd0cHyj<+O=H{G6=B7s6rmR8&oMy(RES%Je=H| zXxv;Z946e{#yp&CEGFDMyvaM@#9XKWE5o3q8}bYW=)@c|kg^qZ#swUCE~2QZD@%eY z5*ADYHZBVb>*v-bELUKlQ%NG2t`mG;x}z6_U$P;@Ar8X-N!`KN8bLtdzqE}k%v?Y` zoXKU7q{&FoWPr+lRr#-U@@DoHu9hIy|40i7A-K3Yn;F?5c;=WG8X6iK8VXJJP4x9~ z<%=eOBlOvt!{C6D55OT|6SQ$xT|Wv|g3}4Rn7&Z|jS@2eyGj2ET6s zUoI#aA!_pO3RfXYJer{Wuq_r)f{~%KK70vpU1Smlfhxxe-c0w7^$ zVWV`u{e?%*DaY+2lVi931Inln{i;e_4>z zyAUCW05*0Gp8ri^brOF(X}{${$e^%_sJeD_DGKXhY|?#&iROTElQ{pJhzFxnhvfG{ zVujzk-!14eU1elLvDzt`=zT+qfygIw?e@ zY04-losP~7WBp%$-Oi6in_qu{e~UA^=a*Yg0A!v38l5bb62uP@vq+>z8G=e>J{-OH zPCxRdYeII-`M5IiDMMxoY(y|GRV>6s z|p_{(`2z4&ciQzVrxiK1*BjnA z4!sRtmaD_w$f@&a+Z?ymF{^%FrGuUM22xq0 zX&=MmQh1&us3jZB(k9Gh{siZTbP_)y7>PSLZTV8ZeBUC>bnbkSxfiPIaGQhR9i|Fo zoCbKV8FruXW~Ox`!-SQOi2|i&f2>}v4-wN5iIk}rw7n5^-S5Tq;*|#W>9`P!4NhDh z{WjUX3}W!}L`-ME$|qVSDD?LG0I@L#3HWQ*x$oJZ-I_ufAGSV14)o{WI`r&US+g4^ zhB?eQj=Y4sI~MGG0(vq9i%48=@FtJ^gUg;F!X5!jD2uLY{EMcpc#PWQ6glC?X*AH? z$!v6(L*C;np>gW1mkGXqTJWGD z) zv-fQ}7wnb?4LpN2Sh|Q3rj@N?$|K^31p2{PCKH~#W82${mJ363#2zU+)1U@Z7!8Y_ z>Y-N{e@X=KO%b{RvV!dnJgIt{vgf@A&hU&~=AO!u5qvrk@)F9cBj=L0na0}3n%^4J zgK0rFLbjMZzw{mFFDqsZjhLVF4+upD#_Q%Q38c$(@R+D1snWg`v=}4?$jO3S(VsXw zKSoe=;y|bd?Da7V0t6ac=3{|U$ni{hS0}gMsmTk0KjwZx1CuqOLBa`$H&A>@j+XHY z1I^Hqg6IDhvL-(n-kQ68d}yQLFeoO1$Peb5t~RYA>hMNVf;y%26-$X!$(BXytT;Q_ zL`*>6`P?f5cy>1+04~96PnJz^t`^eGD^OffF@s6Z*+^&i+3`$9svjHOY@A>*&J|Md zXTLE3!ojjZYY5@me^shCL?&|;>~h>RZQQ)##T|Pg^vapF6_Ds@i?NyZp56SFbDzq* z`TT3P?PMy8=nQJ=>?17B1kuV>@(kNZSX29C_Mj=~aCt|@@hfi>ulywyPMPITh;4(1SY8W3~`H`LzI zS}@k8v}1U0iXfN+b@CkSXMAWFIc-;WT`cV199_sZzFYg0L@}F6!5i3jCd~JwpNbdS z&iFG|70?c#Mu;3Mf=)&mrzIY`_1E+r`qlC8!#f&lO?SPT-?c-S^T&$@3|OeI`@sQ2 zJS37Ad8d;m&JksSZ81kY$bd2o+7pVA4-iWXk*BG~NDRcmz;?pM-J)mSq17{Ul)&;k zWHxX)hZMwo-{V(SVBw(sNmBxuF9bk%?ESLYqL2tGU+e7T8QVr|>||;xlfeHx7^B!E z|9IBGO2IPx60`$rNn4#KCFA=c*8-G4IJ`-XxJ+eZ@LSSblWJs8{BFf88M4t+i|p$i zqFWYM*GA~Sq`yHWikXSrhKpqm7jUD6aAj$dar|T`)R-twi9*-*&9|Y(!FsioM}bF~nb?$=`5dBHOY7e)_3vv6I!bH|r`pqAG&~p19Ceb7tPFG6OfKWgl_|IY6^rR&K4D1E0tB_hkJI_9b97~=18z=^};a8C;6Ih+w^;omxuHW^5HtSmOad(#of*W0( zsUi7g57ltZhHd|Z-RE-HD3Z4LJLKYIcBAgV=iD+!>kge?+A%wyTxgfuhR+jnUl!1R z$X#Ys2U-LUg&9^OzpBufJVnE85TYVV@S$sJF~{+bkkG7$%+?bc7+*t z%`kXcT&akt^dpZImu?Tm9M@cH?dP&CkLekDg!Zgye+5Y|=A&lNDuqU!t(og=y!bhn z&+??zwuYf*y-goD#kAsF;NnnBp$ZmIzn+WdOy5LBW{1N7;gkv6z?`+5sMI{9|mdO}1Ltn&KJdDRP7(P!x{OjlVI` zrgm&IjQL79d)143Ys$w9EKLm61&|OSymYnaMyq6y2l@VlQjZX$7q*vYGD?WAJ1Cv?Tc)hA^YYgw# zJHZBdxdl6gILL{*O>6hx#kI~USM1Z?xA$K@&$#!U)uO{f^qcsA%0+WPt}Xxks@or~ zF~3_MyLM@^#ip{%J-Nna`Lt?PnuEyiTDz2Dy{UcEoMq5z)Y9)P@Om62}I|Y#Ddh_vZtUy>e@Z zv+>oArfA(HZ#}qTJMd3#U07pRg9m;{6r()AD_+W#XAp)R3@$?rL2<@YR^3Kp4rPf~ z7ZM9y(wHCfyf0FoWuPl?yv0TO=%WuS#zME0TBm+XM?ySM=P8K^>*^xd)eu03CeZk-XMszvt2NgR*&;tNV^ zRj0#=?hV81tVYY6b}YK9-Tn5!tWsOYh)enSF=0?laFbDm{3Ak8 zRdykRChVJ=7}H82(UIX2Cej4#<7fh#l4UVg5?&~hvxo^>RU!xNDLIpJ2?-0>LktZz zQeTc{3UME%yEIs_lN?3sz?d0|X9u#Qmis<=n0Y3j|A{AHkQ7T0AR)+Ct=N|pUuP`t z^1XY^FMV89;FQAy9dfunBvv;4L%djNb(sb0b-tKp$B2{=3da=G$)TL$D4u8*1#`2* zs;$$e6GK4rW9O=!)ygbw*YB)xYDP%CJs=}hNww|ZyQVT0>}|z~XNuCZnsr&dRxm9W zrZ9>$=Qs?&GL=AOl5qCtMOXT)KXG3^T4r)aS-5G+`1j0ZGct8LtXXdq3J>+hrI|oo z>Tu8kfoG~0U+Jqfg{m8A^!;iQX@ z#g=p1pAze4WM+wcCho`bIMmW|(o@G|RobBu_T&(Nt!TnDSt3Ox?Mh64Ke7=1`ezVD zhrCe8=bvwb2_2e+Ije-fB{pYCG^eode@s@!F~`+@7u1=M-H-@fVzlzw^ja9?9pI0pAi!mfr7XWYM+^Ut&I4zCtJXE|-WQJC46MviFC- zg?^PnD{PLTI@4J=b9JOP-8j0_9y$B-+7a-6`H|z^7QgFlj{Ufe2jC-_zbUQx5G)E3 zp)#8nb+K-&Wv>r3%?WxIby{qXD%y+#9LhQ~O_8%g!co$f!=(cQ;n~v=vX#X%Qf1TC; zNUCQA1~*RL43Ho60ypvWB5W1`@nO9HX5kIppmC|&R;D?Mh|8ltZKV2fC;#Fo&jS{s zoVA&C%HINYKM-1Z6FzNVZ}A{FL-1nyoQ^|Ys?7Ye&C*;r_<2k_x>ik0wi*{5vI!Z3 zYyHa2PMa9$wVKb7b0{3$oGy1eedHB%a{1OC3bJ}m=ne3=we#HTyGT`ll+KOY9VDH_ z^N&SGf73$gCH7#(-AV+(_B z&IiKz!H0leyl932@Uj zmhw7(Y;REhd7N~+QhNZP!BRBkpOX1j1Ta`R|GyhFHV`W(&wmQ3kRBWhVC81zWclB^ zXf@^uT1j_pDIj{+zMo2D@A49*pEzht(*_QWk_Re$`|^LlAfI~2l{e|fm#tqN ztsPO94k-C9G3}bFrgW$B#^xy0AS+lOTxu?Jb^m~nqGu^CcQAT-Say1Pehlo?u+(VA zW8pJtRX`h5-;^3G_$ACi*#{~ZU(2GLIZ*gH+fM>IvPLxA1FLtsYr45^YJ^zU(t7zU zJ_b94m4?`;o&bxQ0ON)ANnpoF4GAu$SsojhJ7Amw{2?qAPQYw^eFb8GY{)<7B8K!T z1%e{z$HwrDKGBv4&CnJ68QOum0$+cjYYIxEfoKY0#OTgWe)gHE%oT83GWox7j;+oO zP!)kWqK4cF_}g_!;Ibn8Gre*ql0^`fn%cZyas`)$m%AuX!C(%EE$U?;pCfKe4Ig$i zylWid0;XSJO72iAUvgSI1_&_$fCEZEZ01Gp<)__8ItBe(Z){*$8H#(Hh|dptAH;xm zAe9lWfT5=Ee0OI64s131qZF>$&E2yJwgbGzHjvr@0Vqd-l8&x~2ynpu>=d$4sZTAA zW^Zary)fWxd_Op}%Pu{iq$D~&7kOlwk_HZFte{~sdoDU@#(Po!4R7{uY`zJb+M79; ze`?^H*TykqJ*q3#g0x0~vo1!m53MEutR1XPQ%lRM?F9@(12!_akaSQ7Mvxa*&>LzC zF!nBPpIsbp!?6JLkoz`fDBf>kx9%_?DQ(Q0q`ROV zPpxJNFTKwf@BQi|V1i4nk0y}ypARor%)zZF>@M}K5AVgFPv}k3mh^N{XKcWG=l&PM z&=9cz*rvQL5g4^Q6BigEAuMS?cr^C*Td%)rfcn=|@I!n}b$2^tz?H#C&&52T?EdC~ zI`ioxat!u$CO5iM<01;SDjZuoJvL>v(|gi z{H6T-l?ZuJZ7cXybF4hbH4SmY2j|KF+{BBEPr|s z*5s7d2#A=|sWX+OeOadiH8!7|mM!X!AZ%ERU%jsTXJ3ik3h9-TYY#i`OUXdA zh{NDrFInli0`bIW7MnYhJs27ij5m2h&uFffo`R7yn75Ap=_bllybiMQ^nGjg?0uULF+(&*Fz6{Pl`iTY`An}Om z1fjYAiN+luv4h$@r1CEAaFg;mqa$$eg~3c8AaU?N;M;%T!q6+gXTw^|h)_er+3=J{b5Cj&Zxb z6;C~+ulHlWqrP!tM+4hBZfXB5xvl;TbkJIRhuoTL`GD;?uzP}C*}QG}`fqx1ZLse< z@8{$AA^x70xkq}lCdt>MP&X)y0Qe9z@_ayUv3&qi#I_EZd|#D!3dis6gCGC4batm& zM2>)z;YXZ-gZO?OccwJM8R3>wMn7DSZ~(9C#qqx|*jJCJzVss>q(|507dNQBE>|!A z`AcUG@A*dTZqUJ7B)ot@xI^+Y>F3)E41`yJd}10dkvz0mwT;-SzaK7zv&CvQT2|>Q zFt1o@a;p#1+9_1jPcyIPhr9~46-kBqWLSM6JG&WGo6zG)%KfiDywz9T&hOTX>$QZd z`(IQuM<_pwmLr4u+K-s$JQ;D1skjPMsAuUu`7u&ARxq>gNVrrA$S-H`?`Ly!C?NlPhYuC14Fr$ ztQjZfu)+A)7VcH|;Ee2k!~`J=q33IStTWMIW$kb?h{f9_akcAk<7_m$H4%x7OAxv? z8>pDGXqr17R9c+8R{Sg_8HiDO+&OP_Q&z>Vx;rS&)B%1>KX zaMru;=nf>QC?{4D=wPe~ zA&ZnXE-&1#`CG+(z}G#a?~~dH#3=+zs3So?k$(SK(1Mf8@u(}FHX-{UGVgS<^zOXz z$Wna!<0sbnsn^y+QrsK+kOGUu@EA5(Fp-$GXH`^SUr@@30Kq_+V{~?r54Q1VWXDNT zCfq(n6P;7j_k63Bxyq&))UZqRsN+<#WDtVPs7uQP8_LD>i(cY{iORoRzq=`xtN&kjhq9HmrOsARIIv~B`zcGI5eIZ zHuaA=R=l}4Z6=On&+)h&f$~Q7lxw|F>@JaV(7v@61~(}OJ0)*J&e~iJ8?K$^e)QJz zcZ9V?&hY!-O3wkgWPjh(kmC2gEBhz$LVo@Fe|dDm3-2tx^t7u3k324O9C4LWaBY!~g-39fpdhPk)Xz|Z$+wdKJwuY|VU z3aWO2M(w*m=6XaQ-qpHEd~2AB2ZNVaLpL|}hzno&8zQlRUziZ#!KM!v11X?^_w)HA z|I6H>^#io}Q_QXm`U2Acqcj}Dq&0}tH~kMZ^`*Z*_Son;X2=SmLE@HDmg~f#f zAS{MK+nw#cWqj#KGwgFbhejCs7xYh#P?R#H>6gW6!Pff4>h61(LVHdLRpq#9>YQFC zS9v#i{;sA$sB_xCg@m*69d85Ah5}#R@vytfoO814Zc>(DAS=8H^bE#zXlYm0M4I=r zBGjl^RgPfVHNQB2@9kSZs7^t+@gNfYoHoafekw3SP;7vj#jj4N;zqI32Fvzrn+8QzrY&5+?nUvg@DOQyw;oSgWwpby=s_R|6BHVB?`pif z$=vxpH}RL;BQAefsQ9`^XRA5*kI6b;d8>-vFMle@!&3L{t>#X?b^-@w$G9mg0DaW%nae+CLR!d2xKuai?9F+qDCOMh zmifi$1ksO!=meO?HioP-(m3wDpG~<3N6HB=*a|u-eSvu@k|yX7E{8!-zs`InyL@(& z-B0Jb)g&9NzI#wR!%S(9#ft4@9tNqBMad>q2y}C)W~-W}BF45ju-X$Wp%$kzC%5L+>GA>|24o{}HTFd<7fqi&qC$Uk`eQYGN?sigB1JTv zKGZOcIFjrS*Yw2k#Fnj&g74daA71dH=iQ&8CRp}(B&xG%uV3~_N_W}Gc4o0~iy|@W zsga9^zCfy%=36VCc$ogW7Z|KX7_-9^qyF6Ux0seZbB7F2FK%lx0zEhU&{4ir@GN@HDA=H5XOD9EZ~BQ$y6UqZ^-vWC`0gl zOj*#V_9>rwGCC3CY_SuT>|L8#Jgv%{c`jD zT(m>UcmC2y>Yw_OfKCJO53ZQcMn}S!7*;a^ zoeF3|;g^3SET!l^qSXHs0uG`dwNN&0{$+;#c1(hQl_`UAP+8OV16Wzjp@?Y4wZu2j zzfO!D&#+6j;?lu&dJ;>9lVA=Rc!UIo)qEKg`*XubG*jH4Ncmu$X8+*pzWh6JuZ&6N zK@lBhWa9FL)QCi?qy!TWo29`Lnr9Kke4tRs+U=r`)$cq?xM5rf04RA1WDG`QTd#`n z*s#K)@<+7_MvcZSgW#9pG?PCUcWNuD6P2h=7}EKwWEYg5mWj`iAT_P0zge`;QtO}_3V0=q?a^6M0 zlDK#xGiV>ujQ3{ftY0j7>9Me3DDb42Is93!uVf!a{d^a{323@wZ1!#r)Awk55clC) z6f>abDp5&`?^uO))qWp2M{4JU>5s(wb>~2QHy%i|2s2C&HVeF5U7Mwd{@IVIMLb&kf=6E z&-W%wk5fxT+m4Jhfyf{l$tFE(d5<`I$bZ(UU8PE)QAu`L1_@Iny@rvYrONIjc+<=5 z71avl8r_k7EZ?*EGx)7PhGr;Q>y=)0`q&E(CiQNl%pgpNY; zD9^OLFvQ91pD&37oV?=UDh_MpCP5tsJNI4$G%g$N$+}$T1>Pt>46&n$y;@k0gqb)H z^TWH}9SIp|y~gqhI7P}B{YZ2*D>jl|=9*&80H)vhM;ED;VR^M-$ZV0>wQ*6YWBT`Z zZc*l{&8gu<2GTHt{xzH> zIXypO9pCY>fSHIC_^S8|UhI7oQw{z=&@~}$ELkAeP>yZ-aBz?J?7^lqOeT~%Rr_--FUot~DQ|C9X~m3G>@i@#j*6~Y@=Y!rs?(Y< zz2a7OJ8c%PkxvN_`*`14Ywx1UMyaS?hFe{29l=eT!Sbgfzs}jWX3?zv8Oa52v5;0J zsrSZlbHOVwTw3=J&A=FO;j!6|j11#y0Wdg^@{Sp8RIh;KIfb7q+?LaFfSP$=pZXu^ zyXtGw;XMB9&LuZ%VMZ;o-$|2*$R+P-jI33OqF3m;s}9$y-U(tJ;?}9i@FxS6*@;Ea ztQLl?xcC*Eh&NUeFDEXBA_sPaxzHhtSLP-3bkyH?Cj*HD@2&_)y$&@q;KdaN0jFX} zbPgkOyemepDKG3h9vYxW>Yi_ZZ;SZXM$4xitb6CAQhQ{v2)5#cC=2{`oAm}~hrZv+S;14mG84}29-14$5F4cUZEjb1JxLT$gYGlGfpB1-4}{Se zqMij0L1)CUn4&b)*ni2;*56R0)fPzv<>>tH7RtZvEyPFu@vTGuz7>7iW%2<8|!Ly4U^cG3j;vZBn~p%S3%ET;M>UdM0dn>_PB~*3W2#-$Y5v$gY%}vpUZf?So39{#JfY}$`vewERN+FB4_Nssa&DDE5dCvEm&_}K(X%D#yqH6_|+-8gyCreG2L zo%Z?Grhub%zEVu1MTWAM5f`s>MrBMoXWPl?zh3bFFsIYgoV-~=$~JAwom!G zfya$Oszd(zhEGAj-5)ibO5JZ1OY&wI`BYcd(Cv3cSiJi5(_zvsd!_83gim${wOS8h z)^%!!VqQ$spX8qVS>CPApu z+INM0P0(pcBEu{B5{o$GNxAzW#D;fK?q2b8W(9!=74eHqY%+c!Z4Z4NUT%yS_Fue? z%PQviVi^5%F9v9~%d|={A6#9QmmSlLnK|$9Lh`h3e|+G_1kSKW$nH8DtTeOu-`!El zX>oJXX#nH2!C@~;SoTFs6%a&5-hj0-X(1psUt6t8Gj!_h)8fSnhoY86T%tyEo+uSO z6Z_KN`dKuvp%lvQn%`%D8h80HRghK{u`}I-4pAUQg05HAi_2VVpYlK}FFE#@Z7^EF zmd@PJc=HYFPrjGi+9Ef2f(0*0y3NPAqFutmEs%-uLFmz6Ls}J|tD;V>k>?iuI3|~A zgyio*xP1Vh#JR0G7Ypv~$2RdGw4JhA8|qXI6L)ME=7U`D&;+&}H5KfpAEm8=hdNm{ z_)y2+PHe35EQ#5dHu}9S(JbTq^Hp7L4o0S@d46IBkOs`*0D%z zVPJH9tRaU&f(BxD-+5o;V8O-)~ewOqDC)VoJ7L*h0N=$FlN9+j= z>lF^(<{w?j4qHOvp$u0vZCs~`9ebznszq(8oI`uLjX;6?Ec+|Yg39denjnL+N}bN^ z`S!i$Z;FejFfTpIchzqGuUEdIZv?;l3yq^iVEiba%GZvF#fS3nr)lt;4s}AGB!G2O zPF2cV!Z@9Lym^lc;!YSxLRJQ6aQ?C5fAR0HhcbIWNIIj zlUefyxl8;LBG4=O@5SLm=eTIbK;Xzc;17BY572Ko;@8XJ<&e3!C8}P2$=q35Fnf>8 ze4Mz!9x;jmj@aW`8`X|OJh`s8YgiEz6-nheXMj8x(10*ilrN$Ec{%=V@%o3|zz7!y?h@ z`sXu`f1XMSJR3d1uIb@8-;Br_Xqv8;z_@Xzf9(JA7iVPcoD<(BQ9EcCRb$6Y4pcry zdmQi*hp6JpFP5ka%oRgpmOy z3Rg??QI_AN;~*dICz(D(e&1!ALXlKlxKFG@HylxgY>ieX6z>|;*P&_XU={dS;5Sk=K{HQ4(psoScbeN$Q+IppbqaD6=)pU0{rXr( zomOLMXhSV&uHVJ4zAp^ZCoFo!`NjC!{}T*5OjBz4;yp;WqWzuFH(O*x1Df?KoX&Si zuF2i=uHd0X#Mk95%ao(YAmd64?oUOt`INJ(I>J7)MGOvM7tnzauBH?!55B}V5y`gE z!@{_24xU+<1_{?aA`?jKFrhV$8Vt=ZI>hU~Mvp7)$IVyOlsS6Gj&RGx!6QA`$}x?_ z#fpfoD#b_oUEpEpayLeqbPPdX1@zNN7~aSK?hZDHgg|fyoCbPk@mE%1gl6G=IF&KE zGsD=Eh9`1~J}?C4G~DT%OfX{Z4AxwcH<{y0?W$?40cRp>f7V_0Ff!f9B0?Ez7MuI> za7BFeEJ;)i9jdnZ7?03WUF)p1WE~oNY|HTclZKlw$O03UR)>l>8nLr}wtrM171|HE z9_C0O{A3$ImT0iCpCL=_&J?Podw2g4T0ZDUtBsmmo?Ty$; zIbB#suii_92n2ebkk~rnpqQ;VE zHfmxTl+{3<4lss3%kI*g);xeE^kXQ=@nS# zp&EydJbQ@rv`ybA+1wv)YpxdSs77jKoGNma6NcY{4Vk*mDIs1Q6(8BE_x)@~??V>F z0UY{6ni=O5u+uMvNXRJ;e+Khx4%kn|g9=lJZmqf%y;0gbB|*8Pk|^!hm#o$9J-=8L z&s-ad6++Jx{EytFWGK5E$z_#~@V4gsI9|0SMFqukn39dTtS;Ao+r%K(EEu z>21B;dOz!X!`Gi=Sz$ElV<_Dh)Es%*0kWnZr^=Ys6d#4B_2|m$-q^nL#j^Fj#hI6* z;j)>+ENJP6@~2iu%BJvoHc^xu;(hynT#*|D?P5C=+S~YDY)G8!C%ASZSu?5yq+`;6 zLQYRD4_OWp5meRQY*(fCoB`>hwv-0L{%FCcc?ZWC`fLHv>L(*3mK|9v23O~?R1OB6J7q_*F-X{?BOy9shi%aP z>*72|>QI`eWp9>FJ$n{GzF_v+Z9Pt!!St55*GDh;r)rOYZd>(IPoc!hySQxjzl!z0 zTz@Op;;pvNs1Rd^Ejo_UoEL1;frnV97N?u6RGXABANzx>UUr>iG>P@i;n~I|$ZY-TAzY$+R3n1Y6{EN)jFev;9?JA+#aS75CgtXS)z4YCE)1%(FrK1**SP9a-|u+~sN^C6Ha|_uLwK z5}m=`7g$n*K3yMu7&eqYxz+v1_eeKtm`{~ov0WufLZ@@VWmICG{11e_wL3ovkY4A6 zk~x$8!&T1f6Ou;{{N){l4;Z!b8iWgZi->B_9k^zo^P?PDz*sfKb8dcq;mP}3#3els9JCo(hGQ>%~ysl~mYMY?c zZBH{ZY&)REsK@6ewg>lz{n*UyyIKHkI>%wJ?{n zSMmIsNu5WOw35B1fNweTJ`p|g_CDJrEJQG6-11c)4Qh*UjC{4kWczR{ulL}JJ>C;P z4vPHLgp+Ls9fp2ZO;3~(S!#%(+*}|zOQ2~Eyo6R~@D5c6zQL}OrJMxkXfX&5{~8w; z^ZACJTT_ME7zT6ayB=b?m|xRi9F=z>okqrS@fxry=GE@L2z)9>r)bsN4kZ<03Fie^ zOSvyl><^&56N%OfBotCz8Y@lfw0oI2HN6w+2k)=hx%E?j$nBuqrjO`Q3OmI;4ij5` zC&OvldlIrW*XQ{G&lJaVa z@6TS-lE=>jLSV7bt1c~kaL~swc&juP)1^B|R6Mb|@t@b@nmL~&!2K$#Gn2ho?5 zYk^G`moCu@Y_5Vmd6ggOMVN7s&HWk7#<#EC5^aiaR|L0s2c#B1gj-Te#o|*r?$x(n zlI7hy340`(#$<#dQ12J~u|o%+bC&zMw$YQwIr0wEMSu~PRS0YY zVNI{vQX~D2m0zs%ntha8>Fl;t4RiCny*iOoyTNj_PImDfT;kkJ=EDVL!^;}1IjU2& zV{whWHpj=6R~9;c@Cb}0hx?hMw8J1N2&PO2l#y=Dq=DFe0%W`ib2fJ$*v@teSF1|g zR$sLgCqN#X%Q`p~*G*L!`)-PH8h6Q`zkv>%UNP)!MnJG7>NfU+A8_MrzX=$76!2G%K&Z4g!P0=3P0QHT`Nn7a)2Zh#uhZ zVeLf{SsP|Zju*C4kO`%<+QTvv$L-Y!Wm&T|x`{T@f!PV1ih{I_{Ko&#Eu{PVW&wQ= zrO<}SJgnSNJJdVR{5G=KFERJ5_s_uH4O8AmIetQV=h7ItFy})YdC=WdVpxrkuR*vM zG`v{bO5wSsoI@@9%R*D4UYL4aH8jCA78*Qxj6fYt&d=Rn^^WzQ#LgGcqm$!k@P#^L z28SNz3`OrZWSXiSTmg zy$eb_0)+J!lSkRAtM!RB68n&*u2=h6Q@x=eaGAfD^G*Z^)EffKA-#T*#q%|l1k8i2*DNY9pYmF1~ZhIb43RmVJ zyxwnlb`HVilc{y+_n{xjs$zg_F{?=1xx28Y;ek#<`GQFY81h}s8r(DiYY%ZBZ{T)C z#btuD8W=pa;L0DH(fK^|ONr2%nEBX$AhPqS_ca(HI<9H`Lowd~<>`P0x--_V%_{{-Vy8Xaf7D)o>sHYP;zOIRmN5RZQ9 zgTR{At7I=dDNu(!jb;_F;>rli*Xcr(Mry#Zs&upypk;d1d64_*@p-h{=l9u-CE+DN zy8Bxw*JCOA#Bswd=~*g{>^$4jW12^KN7MeJ5gF&`MoeKHOG+=7FYjV|_yuu~0x>RG zWO~$VQvqfA!#-`p3{d>#;i5Zjw4MAN^2n+!Y{hjI>Y9NQyv`{i_J=T-k3 z*MA=|q-%`@&ZS;}Q$G6^Br~k)P@RIgvXY-QgsiX~QRl=BxamkG(mC?*#xHz->;;l< zGdL5f)ml_1X=z)ZZ_g%`yN#4g1>eHj32t&yuG{X(cn-&@R)&|T)}h=0`J)M3&c$Ky z55rni7Df(&$-Q3?O)SFm1gNOcIEc}}g*5GLfgNSUMk5LkpZ9Qb>x_J(`nTk^qQpje z5&x;P=TegJVrUSRRtlUgl?3YiwF;B2BU@paABE{*gU=kUTWFt$)rStJ}m%~?M6M_xWQ3)5&Qx?peLSqS#QX_>M= zL8)sDSJ`i%W|4*i+)v~4w>RGpY`Th&X*M>Ht2@d|Mr^*0&WA!sREEJ?9+i}xmVjyd zZ2xuxI`QJFE4;iTg<`njQd~I00#%%@$&$CZP5GdKo<*FCdV^SG;f3F%ysF-oDxdrc zDVR2z$b^2*Vq5=P$ANbjLNA`n_nG`@xC6O8j5K>-rJ3qmgPGt|rJYc3x?PU4j4Vm8 zvG)T(a}IX=p1;TmhIu_wH@=2^sr6>bmd-HGY-b)1vbPl|iB5h;4NfX?I;MhGnxO0d z0d7E%zfdN8Fw1mO47S80v$TS=glAXWA?WR+Tp;UINO%<1v$!UcTvO3d9Sr%w-s zFZk$)Sn$Z!9DmZ#*GfP&z!D#`Ef!v8KAx<*OdfonSoz^08T!=Cb0NmAiz|zwMX9!W z;fIy9BhO^)@SPcT=ST*0DxH+h-r^^+cpQRr{GCw~fqHkWO$y($bxzw@w^qI5+k z;4sdrn9TLWT}Biz`$^KPV!CV>W3Eb{xA0I+{$MTY! zK^prfziHa7>>028W-R1Jh>OzZers?1JLX1M$u0iR3fP~!ypH#-i(ohu7!qGiO^KAj z!4kW4K7V)E+VClNb76MMJv>n`N_Dd3t##SO#4M`%(&U-vKM(-^u;b-d0s1cpN1^@3MSq1xEr2mMBZtjN>rwD)8Tx}Fj>2z*inMFUzKfW9DpLM>5Qcyue5fgjeq6j z$X1ls^zlUOiP>WDODp0ShiEJ~fbiX)O!Sca)n#jn7vz%#eWf@QWtwmN;8#9R92U|tkG9(9mc3=h%>DT#v|lDF&crt7itiEGZ_V1Hh6vCV(> zW8Y7hr^%VPQ1h(i3usQ}?4zdE^##P0S*)5anYW_Gh}N<}0^9xJ>ZHxtX~@Pq>XQpv z0c;kIQ@QY}NOKS(ml=#BV{Iv{sPs(L!w;|4nIG0Be8>3{^U$r!AqQ`osr|n~$0H@o zu-YFNdx|K4ad=0udI3LMk$+9|1M=uCGucCKO28$Kj9W*_8zL_;%=eDgv9};}A7RWS zn|>BMCjnKdWW_-bkpFy^lsH=ZWlCTNsmHp6235 z*8b-?5Co7}^EZCEzzK2k(Dxb}3keL%jQh3yVdJA3=P7>%mL-bO1%J-?${_b2@xl%H zj&mC1C;XQdZPRKHBR5JGj=YVu(%U{fwZc9G=XHip8TUG+-D3}<8dttOtPp?u~52$x!BLeN@G?>Y_$>Xlw+CGYS}X8LMHZX6cF zqHUNaRHY0N$SLc$ zh^N0{yUj6raWa}%VI^^8-P@Jm zNS9rJ5(g?i`TRgE;Z3$EaBO;Ch-J-pg4q#b!Y^Nm$nuJ>v+H92o)q(&RB?j+y^_EL zL)Faz;+~%y4Bq>??2m|sD0RZT5OJtu;jysWaDD4vl#2btAMpf!i$byt7?~5olq|h6 z_W9EwdO_jw&VR|P8}0+vgoow*o)26`wPCVTq_a(vJ8<;IW$1Kog|V)4S1>jE2N}H) zu?E4%C~Q_o#tzhv93gWdb?@Yq?V>PU)}^Ff9eyp+XlKt$^b#8B!q`miF%(JNcR^c) zRIabei@9@F93(`H-0|`qIOef}NNgG{G^=Xxd&<+2tbZtGky(o3ZM}MK+7Az|eyRItK8K#PB7-)Wo2yu) z$fEqPEVmbYwk0g{-brnqx>h|-?kTPOiCwKyGYG5_Oc8|#KOk* za^zg7e8&&EfwLztbNwZvX({rB2mt&kv@`+jom%Jo54~bRO$Iq^`iA~!An~t zUp!)^%|0hC%+Wq5+RHqeoRL{#%WF)>EZVj!@)Y~~P9)m7tVe_{$yb9})A8q0ysK!7 z4}Z?pO)SM*Gl^tGYqxnLm^XD}k?uRV(n;i4Eg?9H>J zb6?`l!M6Mp32bcjXw1TFiTRV1pXJNZy{om30w1czGKr)cX#g=q5j~1SW^9#k1;3%a z0b>CX??_R1sA?CnuqxA(Gqf^}a<)6zE`JPPGQ1UrE2)0|yw+bDfvV)@hwu5$2*RkT zB@joqrz$zFe#%33c>baOnyy`-Wk?d&Uym%j@x9yU9frtJ6vc={9eFmgPjRXBm7k1# z$RL*m+}ArNx`sGyeEl>T0TQmY^nIj_+QGAon!YImVpuL()r?B=i;0F2YqpiGkbjiR znlCW~X0-P`y~tgpqr{H+10z!IM4d(uMnPg`nM4MC>q>NlaqZ=TD98nJjNl(v^C2xM zha9!GBl0BGU$}OAf84PSgx3B{rdd^;tMPxC8gSc=JM?6(=~b0(=x7k`#3iQaG}&qo~;rn_p5dF=Ghq zXs}WGQhQ%a>>RuzAvS_Zba5@Dgnf42SFX8fuBKR3zYCJAp!gK(XPmQ4;D1am&%gO9 z?u#3M7Wg$w~T^n0!Uk1f=&j`^F91fdudj z>AqXonAG|3sGa)@5#sw89enFh z_B54*KD1aRgM%(%n~Kp(Q9zb19Bmt7$JDNw$|4b2FNBZX)^BcLX@42WYQ2YGXHS-Z zn`4aM;)st+KKE;5qve2gQ@})qj;*^_Q5n44PY#31`^dI}hwWth5SEE}V9=xMZejQx z6>WBHl(FnfExY6z&m*B{#FW1G*fxHkkPjQVdpiMy^2b0VbIuQ#9`MMQ8qbKJMtEnGD0(a)R?H1h8g;aH;%CRL#8i{vuVB9 ze}_$$)+s~CHJH%~OgP>i3nsl&o^NTb?7nRZ$z1B=#x zMk)xuo8*%qg@5i5Y6!o2ztmL>Tkv#V0o#hO?m8&*yr(O1e-&MxbD5^yC0boG>P$Tg z1_4#M4`EnFdCSICmDJ1=1lWd+N7^)NeWWy*L$VErAfKWs%@70}(9k}Ulyp72f61X; z(sEf@c8iQyae4_C9hs2)^yt`wZpLGoo~*H17&a45$bSwnB z=RO9-1zp8CkzxCw`RykdDb#h!4tg#N3(T=4;rw%-zDLH9B9ta<@35!pNIIVhQC1#3 z)B7xgcZF7IJbEk`jLe@>F$V!t@*{wWkO+f0)~+fK_^+hp0rO4sHf#4kgCFSa!=^3P zf)yZtbbo#tkN5f&qJJNI`=rp!$H6lzYE0q~5C$h}Kk5ThJqVZS(JsE#&RN^g?>B1< zvE3v}G^VjR7rxTia=~XpYL!SyrZ2*CzBYa{We?Oz5X!ntygNOkl~%3M`70x3+& zYUw`~c0UKLjHmHjdWuiEr@V_J@QuP(1Y%a#d3rlBuyyALFF_&Xk~=|ID?U&{5&zcx z^nY%7!X?313I(!nhWg+ZDTg6@Ui@Zl-}V}+)l1`BR$wF9m(_CjTwN-^$n)V<^|NPc zM6e;JoSOgd4*ERtoxd)%^A0%rOIS+`aT!$BP$JrfnhvO3Q>=v=NJZL!EuM1PED4p(BC%jyb&ttzN``3N?NGm0`cmDw@M4`1WDZt^j@z>WbbDJlzc%n32 zBYt7KW<~KCO#p&N1jJQOBl~w)Spm>R6WkrTIX$IGgR)L6y~q6m1o&a2WigzuB5IeaCQbsI_i?pH=4 zbD_z&=3<$Z72RK$?f6OQ(pY%`W$C=lUL-7b3$zp7mBM`{QW6xr2`%I0%$SqT=XiG0 z0QauqJVttP_1b6MDn2P_xfXWiLY?zr;}O({P9YI>kX$qeZyF`UUZyFJSc|ZqV57`3B_y?HvF4} z?kd@@C||z&wLy=U>XGVUSXeJ$DXm;pw*ypgvT@hO?y-Of?#KSHiGNq?AWj<%X3o%E2iLx9 z&XH&cV!C};cqe{}&2t6tO2T*#DlLbs(q=o$YO^>xqw^({%DBv>gs#X{a!SXQF5s z2WzCJ(H;3+4^$IgoR-WeHO#f;Z+Qk$nfDZP^Ow|lwmhhYg49(xSXo$aldZwtXz70Y zsJWmKW`94!yAYb;g8(^mCFf=Mbsm8ydwgy^dlO|R27lz^+puw-I7WmsW`M%ojP`rY zX6z~kB}luqH*<|S_iX3laS07!kC)}rswXom#d4_WQ$$u*$3h%EK##x(K%{ws)*B*S z2yct%7-uu>a|TnOio+r%Hj?{T z`#p_ljeno3Gt#p_9R|5B-zF2nhA6EeEhWhii=Uq=B5a!q<8fa-?H*)lV}S`>g2~*e9L2j!gBJ_si#4~I)%`96h~d6 zO$nnZy?o@%xDkQm;zrD~AqI(y7@C`5jlo=SkAFIY?o2r3ChLNVcVkn62z!n;j2zJ4 zYxKGjNc;{~n0K~sCQzCoS=P9~*0I)t@ZVlFI6Tt1qw?6YeJg)+v+Zi5j|p3&26h7@ zb{aabNo>INBJW;aVA9YQe%@h^&;FPcs_hF887j7U9hNU;@)4Iz7QL=0ODE^$*37VC z34gf1Y>vg&{7PQxDr!zGTp}0XwCY zC#_$&`@ahOP$^yog9JgRhgAzE6z=OS{eSr=lAP{N-_+Hbq~r=9d(3AP2>zb{bODS0 z;SG#y4=E`y%EL`*rnbc6``sisdR01kadA1^%uS*OF^1d?_-`eT&49}%{(plUy$wv9 zh|2aHVXU<29WW1C!x|F)!fswJi=;}`YB6lCU6V7&(nq|4!bEX@yRZDWTY^c^2!A)z zmqXWxw?p+$4oOUix>--dF`*(yb0ACzsHoq>y1_-+AiVoi+%L26j|nyV`}`f$n~UAV zTiM9^u2RwQ@r1}JI$;X5wjkEhmCZeU@MP7X#rsGg6?hcOH(pb`Re?6gXYz+q+LrP_=sxqvXC~`SUNKjr7KjuE}N_q--)8=^s5ukJN@9icKYBCM7(9~FoE9o;I- zx4TLR6jzF5GW$ktd0`BfQ!4>Hvm$>fT9*Y)0V)$RH83IFff;) zD*+ULGB7qYFd#lY3UhRFWnpa!c-oA&1yEewwy28}+#Nzgg1fuBy9cLn8h3YhcMHLS zYj7tJ+$FeMZ~_Fm{ma?OKJQiCTU0@R!^fCouGLVGDXTGvnAw{ECG9~j3@nVyyZ|u; zRTfqNGcy|_Gczk91% z0o0~602Uq|F8aUS0U~xlCo5B95J17$#S&--&S+|E3sAE+wF0_${#OWUeoGe@2VN$B zCUfEHFD#NW}uVxajy3_g4(D-VDkGkEt{0L*{={O6NCc)iT*LAIX1 z&Hp}MCM|7UNfkx9e>(n;PE^!?-UHyxz{U<>VC7%|@NjbjxHy;rzW*IX+1TpeDwuz} z%7D!60X+W{3!c*d6zulz`BVRUH)sI=9ZS(3ytF_7_3s`3z|6sH3jW3N|GepcyZrwx z_+L@}Z#(|K3zBrTwf$R7{kQ)Aqc*m)vi1De0KBuVF5vxFum|4)(Em1n)dK!=XBB{E zR<3scTPx#Y488{yp`8fq=^P&Q^atRR9bu z%*_8w2fkURHsB|RGk7EaRsq2m=f6`*fK2Vp{<>kT9Gn1SCnsZ1L}u_Jv2t(#yjj3k z(G2ME_YMP?7(w5*?xIJHhxxEwOUnk1R0bmmOOY{$M0+>X96BmF<>^E@(n8be* z4}eMHKg7ihV3PbzEC42{-^2=FlKxF>04AB=#13GR{Y~In;MiIImHzj!v4L|r0G+^Zz&}hm z|CU+V|8Y2fjnDD77kD_1uJ$fKGZWkYj>p0RR{b$m7VwaNoPT%r7XjV=m?8(*+!_43 z_)l(dJb#epMv0iFIy^nyzleu=%X2E1N{ZETb820 z(Ulujxd`jteL%{iVX$I#ENo#sX_fyY$ zh4Hl+v*o~|x4%EX9o#&t``K82+G7}hPN)UPkRNnV+ShXk#D`#FA|9zA%YYca$+PP@ z8h$plX?&DWv+hbL*?x!xJo&edw9&WS6hxsr{O(jN1=6aC=sswG4R2&m!|q$#Bnk?PL3Yz*oti z7Ou7ZJ7>5io7SszE^uM@ugOV;7r#*Q?UXBNJg6Rb;wf1;_|;4uxg6PQJmPqfRp?WNI|=;~qBSSoxc5nzzni8mlDLt7>K*D9hHXd2 z0NG^wc^v}JR-y)rmF@)l*LP&|Vj4v9Y4RpAD#P^#5a8NBV`q_QMD`0j!+M^_;&a^M zIHX*(s^)9_Y`wyw9A@rlE5k|%qDo`f%r39z#!8)bk$DyIpdBlIzeV=lf>ae6Uphby zg1C}TwO143Ok*?PREW%f_EW6F^5RYvSk^#QJA{KsbZ$z*>Tp)b%SVsADI z(lkx5xeT^#vh&JsW%)jvq97{vq|jcYEXPU__k8-ex$KjjG}r$&LgVAB>3H=<(IM(c zneCkaRx;;|Wfmu_9s=v~M$=S&!dp_^O*f63tZmy4WgiL}&EZymRJ)6|#mZa~OiTgF z4r9cF&$u_TasAF2A%-NyWA#ayu%2=L%Y;7OszF7uoCA${qv@jQ@m$t2KMCOj@xlYX zX0WCcJ~tR+M?RHOAirh^bFm`{ze3;~vr{J#cQ6V-{s4@V8s*JcQaOB{*`f1DbsN|A z4XYQ59>b7YV8al9C*e&GGH8x(DxA$vpr!o6e(A8}wCxf5w8a60ep?W4V2PG(BYdf5 zI2N}@DrRe705|5l(#+tk z4qwBUTER6e&6Hf+!k(_WB8}h9(N#4Y0JpHG(S)-|FG=iwGfw+GI3@%d>vNPb>7GL* zDt@q{8uFAL8D$kLRs!+f;Cp|c`JZ+aP=e~6lQy+mZ;qT?Lu++}6+lrft`k~D6hee( zD%>PD?ow+@#_i!i;Eb@h#x+*TBBF+f zB1eyXeP5|#JYOq~gCLUVZ^4W!qmn{!&A-kEm;TGmhyRQdeokt6SJ)-iQ9CR~aBC#q zK?bjiqL%ut_KjQW=suS(OCt}YZKX(!+)8x-Bq?Wq3C5eWH2vgWbh@m^%{tq}8$(W< zYpOJYlPR|EMmDtS$j#K%<@$O3Xq+6XOALCw)Dl&vBC=#`&b+WdT9KmT@5N)tu(~f5 zUnQIy6{lnD8cnAvE*TkD9|V!Z`yytqas*Yn!zsTIr44&j@12Z&@d9O_c1MKSh?Uiv zJ8Ch1ET=vPb2>)a!_#Is&@tXwSlj9rIK8!WA&Q?6V&i2kaaq1x_M{||%p`N?zjGu# zM?I@;mt<6!MfJun-{Q*>VFo>#BvlK!4PfagPSDAw5AD=o4RTTzyg$wUmB5eWiFy3a z0qy5xEi{NQ_{O@HQGGWR3F0;!|B$j0BbwOjuj(N{75yWY zN4SqJnZY1hm%D`VqIuoSkC7HDyVsmpc6K5rlWN7+Q!2vDJ7~GpKDND1jLWN|y1+^$ z%Sl<0;moXt4nc!bOdhxV*#u8oB6unpJD1kkYF;zNcjxIr#VPW$MEl079tHhmp-*Oi zWSy!=kSW>z5m`;Nmj!Tv-Mc*d1$b)JgW_gbHcS14Nha@WA2lzB!zv71(%5}1Ie>}l z(uxsI1JYG8CG<)y@SIeeB?McO7`8vkl5Jr{M^WJFgF|<>+ zkjXZ+=yrK(Zy?uVTLtLt0aMcz>$Db zr=f27NU&z>*3HvSWJm+~Fh?-<-a#xoYv_aooou#2gf zQQLgMHgk5|Kz%?pH^*lk5$ZvzqofEH*(@X)WWpM(lv#mMkdTB!T-=tiBSulwhnk0D zDw=PG?8_uwzH&N+HFQm83xWoJrt6x~oI{w*61qb!^k1K`u?T2BTirne{Q*j(4OO%G z93YHOL{{9Q951x{Lm}xNo1ji%(q4&QP~yt3f^7xB_t-MGtEUF7pyeK8B%KODocqEe zn|GVl?n1o|{acN%%NSyM%K5;RBO=n;4}?Qi3Ey|8idf`DYbz%)-^uRQ zLpELXT)*^RwvssD;W6Wk1F#_`v_oYvF%sptbmhg#jf+!n%=cwj%7}&LtX=x4M!0#I zsAFXEqzdy_;Nc)fn>eF?hG7W8Gf?=0=?d%1o$dhlIUadS)`8yyA{zZ`+IhP7y!vIj z$Y4GVH9KJdr4+lh6&*w()7arOob^rkED|B##xltB9>n})!uh;XJ?4OAyp;9^jdy2? z#p7W({7gs%hgVFHvdzhLk1-A|O zW0GTBpN3FM=Yg0BCAhXGEy<~Tc-H<>Kb%@z=T)O?7J?YO2U<3RlC6A{7!M?P z+)dP=+MEYP;k^=nwidF!Hj*`Ev07X}eO!3L<}5?sTpc%oH+9M&{c^RMs71(v>MugR z0n#oSyJTsCY-bMzB?iio^eTxl;3|rgZwc_=S#SuPX&HEok5R*V1U3%5uH;Ghzpd?E zapA^8_f^clS&)en9}P)K%82Z)%qk)6CJRi!AAwqj4ItNl_l0bh#O@yKNnDmt$720z zr)tHI@Tt#<%@~(?_+*gmt@(D+@F8q_lv)m@7LKy@+^XR#N(JiXKxq?GdZv~s zVj#*MOY#y&zGotL0}&H)+X9?s+fGgC&2s6N{;R;CTy$CkNnb+JcS6X@MEh~A0Ss_Y z=YDB~cKv>T))y%`NpB?Gh&6`*q>*wLON{97AE1hf`^5))p)XZ zD|wE}r^9F_ahsk0JZ+5-Y`+06Aer;f$CQ?2Mo0H3PeA z55cVKwIBPe7Mu#XreVVNg1qNc~$OSq!XxWBcWg#^@ve=Xv$@tfy;>C6>(cOb9i zv%ahqfqAS#m@raP{m`rfgIdQpuRq40xD*f(=nj3Xek*fjVhPJ_f zB!l-B$%5}NnOVV{(0eKAmn0hrLUL@dn!7Z}!B@PF`3(N?&4qa9f;x|10 zAN($hNj!>K%e`Y8wldNr1#8Z^{Q~FCK(yMi?J*d&eJn9a*!tn+e!DB_Q!c-ko|Br!&*TxbF+udo^5Tw|sviv+b%VDvd^U z3fXWGhc~FHRe=*jrp-AA%+hYZX7cxSzV{r@%{rrA_2prSJnLlc*>zrj&WIR*`{@cB zxqpLqQ0qKgEQR73@!=z$*p)0q0Zky~Mvt9BBn1)7PQh3=eAWjTk?!89u`4bIvCjp? z@}-z1vZ7y@Z|^W}vsL{bitS!G`GVuB5ZsivX|SYfo_6+>@hQ;i&Gjkbm0SY-PPWwVyuy}WYhhC!l+nPxdze@ZsLhI5_(fNU z_kJXSb>GS`vs^US%MIq-h*)3jXjtEr?l2&5I;Jh85tcT1^r5MGPl1T}OGntx!o?5c zUti$the%hiFf3BQd>QvLbe50@KGcfJSoawcxr4XfdAW)l-41EoMB7$5a44$#ce#m|qhdBmQiS8zHw~1axJx=HHC6@SnJmjK{UiBDJ|Pn`M_x*sLb5(-KL9&Pj@hDiRF~N zQI@W^5R{#NZ$%)(-lN9^#m-SY#_^bbP(~(~q9$KQ9^9^Yc)o24+d73E>FLEzok552 z3WXt#$xo*vPu>k6YQKR#1A0_mK< z(C?rY16SEA)=*#I$cq>R&BNmXG=RJ3%&}n=$rjwBBn~#HUppjF^_mti$A~;iqq(=R7FkQC@(4E(RW{?V*(ouYiKCw- zL+dYeo8PlrLXss*tfS?xu47WGhx*zFC7>|I)4-_?$toT{I;stGinM(BgVTc6qlZ4L?irv%dh?sd53q6@gSBxO8^?kYkC!^n!6eB z4)kERi@mN?3-z)bhVS0zuH;IqIDC(41L0vBm7DphSv=Rv^I5vjk-L_41Jn9Fxh7g0g=9sF>m?4$IL7@yn3K%oJ8a{B z*Ff#Fh!Wzl$c+y0hhk2=m$la<7<+T4D(El*#k&xRhuGU=xmry`(74>*ZxijrG?rTU zT2x$Kh<0-Is-tu_Dljpuhq4-dbf8t(Nx$xk@#E+MCzpQU+3)T>iibL1FK|OnN>@JS zuELBe+(@S%ez_<(V1qczv_5aI@(JyKci_GVT@WCBb;J;w=?KMY5s;8T1x`T=Zgb|z z1^Sw^Ub-76>Kh9RT1$?!)P=qvrst(sJUe%UHcvscULiy!eTDCO(oBfvNQUbC_3h&T zA1!FyI0yZqM;=33Z#zFF)Q2Tv$1;_Qa4nQRgzDoCDDyxT!RMBfdQ9 zM#?jDac9copbS$-q=YLhlUMX6rw6skTWd}Ck(8cJ^Ea0I zM9YqoLdA-Bcv<@edOe?85+7lI!>)8>L?Evqi#IoQ&L2)$4MT8@N-S)tW3_-KH;!brM`^A*ZWP6ZjE zs9h@OHa4Hha2emxS_>+(>%1zNy?Ud(^s~Nk;M6-;zDX)~Q_e>m1Uc8Q)2MF)OK3C^NBQM*Kc%hN;OIp!2rafh*nY8+suT=(eHt}3@&cpIzDQ8%bJNX;t{ zzuD$9F4Y-^@AUnmPAIgh(#Pz$FOOyd{svWB=IUw)*S`l@>c&l%b;$sNpA#DvoxJN% z;f4PTa2Hr(=?)YrkVnm^aO0SCFArqZ@kK2IS?pt<~O-e}X zbSRy$kL#ClJ>h;(GG9}-(Kq}h4gpLY!K?P~#EogugIp&LvC%@n;8{hHiCkT%*(E*X zcW%RX_6(^=-BHCUJZg;R1==7q(D?fL$e!aI=Y>afQDEqQIR_V60&_)g#$-IkbG}%A zU5pcLQRwP;M4VX2%NI32ES$9HD;izA)YtFQ9Qz*u{a7=3AJOqEe6wH-Yj`iL!ZF= z%=E3v^GG;ev|zW=o~(n zuSal-cTj`Y+c0bU;$pYZg7=Om?|@3*H8kH7nS0`3~Q}gx)!HuH}zA{`9wyAUER!~O7IY;QH^6?@n zf^gXkUNYz{pCQNErSnXGl^0~K2~(rMS{2y`{J{=VqBayKn)m7RMNR_Zudh^`eRjp0 z1B35>CrvX7dMY3|&NZKMGC8w!ipy8dhI`a;QfGAFQ8*8)eDfqU(AF1C9@`Xs>e_^f zR^oXlu1Qw{IuEE%}YLEaOYrGjMNFf@Nwt{2esCtlrt{kVHp;-|$V5lTX&YmJFYLqdKmVFUhP?!9QC5-DRPd33aP z0WB>>PRVM=O&wc0jLL^^tEs|_k;t7#O_B4VtZ+I@u8xrP`B_-UuW*rJ6=R&V7UWca znDs4Y5GgrPCw4>!=m^PiP3D*PtGF>|*YIPCuJ&s6v*BY2$I{dxFefLKm*!kKMAS3cHr4eeU*AbA<3x5x z^L&Zj=KD4~muSigHO)i9dtr2>-Ia5HwPbu;%5Cdg#OJ;EwsTyE=tR~0BfnT9W84D! zGNZqH>nGW6p*7pjeZ~;?KHr?~ojPq;jr=utt3N#_kd55EHJxoX9x^}YSRp0ew#_zi zuAI;2cq_8{$z>Lxw{Q)+b+ler^f>yL6N|CZ(h7jKc5UiId&d!Bb92bt^E1m{p&E4lVm3 z5JL`jG#lHz-6^ztnsY~o#KG@>vOdAWu4}~+oDL$8M5H&_6&?wipD#oS`DoxA~amH@nzLJlJ}-nML8T(q4JTNzcU9Ae)^e0{Pwkr)jr6b!<7IXf_wSM7|6n z`>AumD~=RK@h9q8C@XJ&ku2DBR~I+#5s@!9Ob=Gc89vjEn+ns$<{ijBM2y*8q){2O zxjWxNwiT6VX;5k6d9Dw{WrZ$y)DJ3Pv(k)oepG*A@8SMA)nc zp?2=E6u{dvml(fGA2o_EeQ-jjF>)@*aSuKl*Crb4JJ6dqgbA29x;o#Upcq;fN(p*r z2$y_1qh!dIt%Gk9ACC(#(@{u-jJK@!g0 zjaJT)@czwi8na{K81oZGGdN-*poQC4v&DonK)klI6o_IqK|J16J4J?uiUhTl*QZssz zP1Ol6Qr90)$;Zt7yt0ecC z5BPC9;~VLHN%tk4)hMN-XF=CDQ*fvU3xVxL@2>2B#Xrg_&+dK>!rDb!$tRDJ_b84( zD;2wVmmOQpx?8mU?u5}3sUc@cFNr`2$df{|VH{uUl4CBx?VV6D*&@hYd!k!SG%?`N z!T{OvZf2~{MmXDP3UbBroU)o}*Rm&Hdo`t0p#?)PsOZj^H6=)rI^Q=S(%=&tYdy}Z z$P#9MnEEiu2DZo^hkp&-b2p(a(j-Dz!xqy@#V11;tLJ0n56Q{l^t*Opx=NzK6+U+u z7^R`JE5bQ;^s-?FB$Sb>`=ij2=jNvGM71}(VYO6kM?$T?9eK7u|U zSC=WoHz7Ahf2D+Q zE8bO3Z`KzlJD07a#(3eM*F}e&t`iKZPk#%H?17W)x)1zR{lm@VoM-zUQpR}evVaOk zpPxm|X;}We=ER$Wm>7BE?YmD6gGE_I(JWX^ovU$y%E}kxhQ3T;Wi1cbikhk7jux4L zN%i7%(xQ>E^m)Zb!`#^bc|eB0LuK80PzuGQf98?BkJe!tP%odMDLgmzv$^5joGH-k zJ{MZkpMCOsSY?Sm`4Kdmc2(SP)}Zt*KUd6;Z*HPmf|AD4GOusX$xbBXS@b7;XP1^P zLZlsnon8^_+G*`~dcjAPJwe;^uU^7d^8(0s7yjb5xqWLr&#L@!++2MXUAFMxP4W!` ze@f2W9YmNoTxvfx6Fk*L_nAndHbz9A*Kh=W=Z~JYFe)d4vbMxqNe{P7On^#|yn^)w86hkEm(iE+OZ-IWdF940atL4kd z^XOZRXmwx|T*xT*MCI1LoJFJWE~ihge-$7Nr?sz&e0~I2QrypuxEU2su39xL-n0+W zdf5}AzFL2=A7xMsBIIt`NMr9pM9aGCU^(%E#fNG%u|Bb+24ugY`EtobO(Vx*27Zx- zx}o{C@x@m51@)o*8a*bx>m&848#*20<|Jj$*EG&+^PJgysqcuN$lPH+*5(h|e_I!G zF)F!H=ViS=j1zLhnfJp8>2SB6c@E!H#Fm{dn})0G$rxpi3DwivN}&D(jkW&+-wWzcTU$(zet!9v zH}xUCQm+Afh<7W!*4FG6Ix2(i&+?T4lC1Yl@FH+$;oKi5B7brvk{%7Bh9iFaw1pyn0}dKWjXMS`3GaX zp?LU(2!9n#&Hm$Ot_hNW%fccDK1Z^|IDd0jyQHUnS1-PUzBgHze_*d|y|(C5%64Z~ zC2IS`%zX%H$^P+*+l?4enh%YN|D@zfH}%_yAQkNi!IJ0Z*~NuJ1f*3k&tRY=U3>{t>6eBkOvo z_Z!)s>6w+k+FJva-4TD>U`Z5D%uwkM=qlxIhD*xqgWu82e?xiTReBxKjgD$)T1SUq zePyJPHmx)=ed9OjK4ciG&;BGx=|BJmuq0X=epAy`3tyVSGY_pJ^oXdI4--?icqP&K)nmOcV!h=S4{2tP|ci`1Msk|b7UmUrE_rU=F_VAh;yYgRjnrj zkB5Rsp-!+5e?#9+$UQ zL$dxyy<$s%;Soeurzy1ZSuzS#q6gz+)y5qkeS+&Ze{Q`uhj{dmveVz+DpJwErs*>- z=hl{thPQnhX^4DBI*`ImW&-mG?PCi!1{c7jd#0F?O_Yk^N_HnDPMoC++1zgKR8TbrXIhcxXcLEuU8*9rXh?zI=vSiVr~bFg!5U zr(TDyk+UNRiJ6O-Ila(B=K7$if0Mp$ZD5X}Qc)n3-b$k%f{ut@ygW3p zO4N4vY9UU_WbcpZwK*Fjh3UZ5JNRLOanOrZf%2pv;?g7nWE}BC)c8LDdo9f*%Jiueeph%^A#J3sr#2uSlN-LEOwMGWn&m8$qOK#9_EzF&FmH%r<&wl(Lx%ty}ABfY49!iG56a zyAhC$=su)4kIRuU$NH&lDY5dX0`B9xf25ymx0ZXCpIR30kA)eBD^K5gDc=n`>e9^Y zhT}GPLzZuPjtOY!DezWY<4kF zAw3}*QZ4O0Xs_NS+R5QVvI%PX=m6oW9TTpkF~T&aWLrtOZc9~;cUt2RGh!q{W?@SB*C+P19cn53@q9H$i1Hh}NVho5us_S(;_$NXGFjan^7crw$#GJ=TZZFX>UttY{J+ zhGd*cB^Z6MVQa&h-eTW$=aLobu>vYYl^QUvE;~Lu2*g{Ut)GQCe^Fa?lpbuZ`v)Yr z4weO9=bW(!8|bKzH&ZXOS0QU1Nnl8uZ3~FDWLVe=7FV*E#32WHwgdn}%`khYsGs+?crPofP(ijfk`a5#=c^oE=$| z)nOjdOXa=Z8IP#)zt`B){OH60jG8>!qtTM&Lx;e6oH<2a4QjNdYRn1n4!$lznx=ST z8qG@=R^hLBq35U2Ygr&>vNtXXYQV|Bh@7JF+MQQxbF1upe-cIUQMY!P*~*moGF(cs zLvWl`T6GS>oeXo=bn7ODw~G696$hzF?G4&DMTCb{g`FtDMel7IKp|Z%j9@X*kg^?< zv*+aDa=Hxe;YZ9oI8O~4PS2s)DH65`h^jjEaSFXjSGUw)odAzY_Qhz8zoRV<6fe$ z*F+CDd0X+fdt0EeBlIz^37vz7*~h)qD28Z67veKn-68=vOPhN3c&<+!6dy+DVk{h4 zz8RB#3kAWw#%S`o|9U>cZrP|m%aA0kQ1%pwrtvJYe?7iBY*nI0C8$9tC)_Mpf}V)#(s1KYvxdXukgcKBWg5Gw?t&Y#5!xV|YSc8_1%eBI+{AR*fA zTscBCcA$IO*s$Ds!KKu9`6ixxZ))+_?vKl3+M+zeFKJtf&nIvrDKHjUS)?azt|F%9 zup{h*e+j4%;jnk?SjpJc-;4V9fs7MJTa-7^)1ZT zR6Tj}=tSBxVweTXX-~90xQlRWniKAKw9br8e~w!Z!p3uuxd8x{P{%6)K9 zb3M-qHyP-yk(7qUgS^*N3b0r%8SWX_*{W0V?5i0+m`$uo=TF^X>>L1tx%!G9x*e~uogcIh*+$>tNk$zGZ>{~3>__}1zY;nxE1`P7+3(ASuL zCf;S>PmU5B>0`S0wG}0SupnQnpOhef5vsFLa#oc!R%$HA~mmP<(Fy(lyb1`@i=#? z+1~4B40I@69C*3xZ4%j#aCm{zqWSd+n|jE35G0lC8JM;Sp0lB(XY5tBK4jh)9NFlI z1+*Mxh2J)#uP+i&t}kndTktJdA(}%l!hIL+_a>_&G@d`iimAATb zb+SYy7BpAY2@@G@sVna=>kBKf-Ucgo_FNoW%@YpEiKnG6#zj`VjhF5aex_3r(@XBRa`bB>7NuEQ@L&n+i8 zSXWeI%}<;J76g-+C_~Iqe>F6oOkLT&VBlVrn!`A&ki@-1CyCI0aNd~GmK<>JUeZ-D zpToKDc~qnd??z+$0{d#3M{PMuD2;Lf`p!@P0h!Hl5fk6pnZd@6e!yR&ewueSMZGZe ztA@(YB}dA~HMs%UO<70)y-aT!e=%}zY9A?$b#vvE2#(~GgN|3ue^Ld5{T=r{>eRd7 z)NffxVLx6+)$Kp>wRyNqn2=+!8t9dj`#g%0*Ec<`d$d@-nVHKxuZH-yR^AdV8`9@aD zb7a4WJ|l63p7)V(koqovGRcGTQPrLrU&E=dU(+zNx^AEvf6^m>uHK^iy zy~G$y$)O-`VOMHNV=3>?ggsjoP=X#^0y?C^cO)iXPGe)j(L~d=$sids`>@w8p>S;u z+6W(~cea!?R^NuK6=4^dh1j6~Z-6Ok}3cNSe~`rJh&qNTpURoCN9 zX#~nL7?AIk7*&`j>4;!Je9&$LKZ9<`hRZJuT{{GO^ir;k-cGDKRN`BT15)ZuhvRd| z9{dOAf8PG!mt2aE?`;%Dvys`P1u;0XEDp3JK}9pNVmy4rRiEI{NFT~qIB6fqNFD0c z654u%+Z8X3QA0pgBiS#L*QB13(5AIz_)HOV$GFRa#iq4GoOiKzs>5omX9Z2=X~Q>) z_Nd))PF}8Byx7aCnN)u}_p@bZ_|r$6I?EIGe`!pb41zGp3I~%}t?dy&*UzYrei~xA zpy@deR)lEks=+mem@Wv~dxfQMI8*xX=4GQ7HY&z=tD{5?(2K^6A(U)B*Qtm&c}`yG z{vvV3d7|Mjyzpg3N-o*buM}vAm~-SrsfBY!AjOqSei>JaSL-L&kl+eelj;qjm8)r8 zf1rV+OApP@O=VG8thKpFn;H!m4gjSkQpsa|)=Al88qnIkGv6kgENg5k6lPB8Q6JJy z5{snkARJm(FKhj4J2YIImCv*L@c zZ{tG`6UKnN~dxlF|G1=csMoKW16n-$=J@I zgtpfCD21MUn!7@lYEdaU2d21}Gj7H{>~%#SA=g9v9a?yD%9xa2HF&}Mg-bSuf3-#A z4#JXUl;qEp4M2>=oU^v*A1~p=Jl03Ckv`tjH|UJrg`0ICrcdsj7!)guq#-bl)LanK z9QXjMtv5N|qK3B^eQ5)3?Ay1HomDilu2%v}SxvID!VVYaeY382xhz{I0v;%hiOFM? zZ3|CdO?hM@FK{RbKgv}*T-k6NqN7K zEaxpXrU8bV%np)slSir!Jc!EaArTf?3<`749CUYDY9q7j#SF3hiV2f*F`^bap%D0G z>jU`KtQvIEl~_-88RZ*WEBm4$YSbsCvJ7N=RO3IVDpp<3h;@aEOSwOt>uxAdN5)Y zMQ@XJp+V6`xM?4yr6mO0R`UV+l{7J&hEF3gEU^QkL7L zB;)*xTZ@zSXc=+CWcH;-e|Ax8ZyifL^Zka)JZt;V3%a|B zLdvJs7-nvPx~Hy+I?jU3H1he?Ln&6HUSE^W;fx-8ss%3trO7Dyjq>g~mJ}OkM*LHc z%(iANw1W`pl0H^Qfcv5CzyX(WwP~f7=pMS~3#zF{{AJ zFS4V|(LYdD-lSoXfm;g5H_7@8HdI>Hp>%Hj{k^i{8CF!-7n;B=aE z;WO!3E|t~Ek^Hj(y6y2nLCwab0OGnpV|nn`DS7?uj;~CRK7mS(LDM4~ zpu*GmaQhsd_QA(h{SDhuPu~x<{qNQ%1s~+dET@bHe_{NE(^RQD1Zq7FAO~7{15mk! z)-xphJ1PgX^#BBZqU=GVA=*wS7Om2y=2{q^Uhpz+1mH8^;Wu_--s{Lu&T2T--%tV3 z-+aQIR#)N){jAC7WUyB&Bq!JX!o!FBRvEtrCwt_mk_56%vEkd7@b9hcr~!KZ!n@Yp z)Z4hK7R2tJ3e7KrNe_eyd`XFpbPE{7GL4vp0l!ow(N!oU#qPeK1CA(Iqy1L5 zJ_PI$wJU#i=4zcnq53|1(D{D?=?)h0enC;whW~>yX}vnl$!C(I8F)=?Hj)w4Ed{UK+~nghe=$*utj?T>=`96y=h~(lF<@qE<~{+p zVd>Hv*HTHyVmk^oUB?FWV;Osz+q_R^x?wKZb8Cg8{~SxM%~5kazC?vK5*v0p`lova zo~*X6DFG0gxsiT?^e4TegR>F0>T%`zt0U0F$fiT(eBt^uU-e{EpcZ@^#gZaHN@TNX<#=4^JZ6tzq(zRdr%2u8I^T{4B$`3Fx(WgkI z!6BolUwd6%8d zclT|rZHurTGMlkUog?qqPh@~LJS4RrF}g%H^A1FY(~2|3hp+Bh#u(jwEXxH7gmD#e zHNPRaU7y({BF+ol;DHhI+IepMepaH58I7i#!;_e=a#I-1fdK<7iH{E&ff*E(0fw44WU1Ha?VIkSN&w?XBCxf)75H|kT4m+cvt1h)83)MO%!) z>+jd==gY~)l)j&2%?h)Re^d5d$3u^$ZE zgWwPLqNRFU-NO(+#*V^WD9paIRZ>FgY%m$OHPzS&nM7VKSwZpk!8$YyBk%b>axPhC zqRBmBW*FJZg-U1x)1ZQE5fw_l;T>DIl$EB_0)wXa(9x*QSBw5}e-uF!9CiW%@Iz(` zKOp!O+LMv3yL+(94vmB>lqo>V;cAr&psQV6J)A!!r-eHp3ekfGN;&Z!qP_VpOozcK zmL`dAtv;}^jBfa2ilRddD{Q{&5Di+tB~UaDy<*73@^ZwJc3PG&T;yf3&RoK@0K^jY zV^SgWx6Mn0N7$X{iQU>Sjy6MKv6qLbXB>N*GUsE0Vx2|^qX&`XV*dJlXbK1loq zp8FFNqw3my#955Qy`gzLu4_E)L59b)kW}5|NM&kUfV@y1d!fHRsoPB|m(RS`ZO~(U zuIc7X^3J}Ue=EznF=?QQ$1se9ISs2LxfWkup*nAw^!Wv>?j?W8>cGAVns<#S_u=?_ z=ROi%=K33-v!?X;#=i;34`H)gu-l@L`qJ*w}@(;R5=Vp&EEH(~<{IYbs?9&r1)JSdO;tVss7gOiWROI!OlAL5$JP#u%C4D76 z>9H$UN1-fIf8b4F9|tSG>0f=J-vV*N5n}#me`c>~Lvg=4sc&S#3dYIi>x&H4qoex< zSSG2m;w)}6+ocuk@tlrIXWizVm#M02rOL5WZ`336xM9TSOEdxE&K<%agQtP6od%YG z)Mp%s5p(IHf?p6c+ zf1hpG48vfrpzR5`;ucGGTCzR`F<`^$G@ZTB=CTdmq8;4aBrgH$gr7;pd~; zg~H--#5F8CR(Y5wANEIoT0N4PgHmY14t0u~1@gtihjxb8zQfF_YMvT+t+Z2W z{CxUn0a<=MYkp(*HB!5@z)VQ}-nYcce;-G}8$((tMgOsugK))sH}HR2<|XQzPj4{RoC$@|SEkYRIG3O_L$&F!N!tKA$6<|>f5c+V zkjpo`@7YDWfMPSHCC^kHR(209f6xO@7+uMD?tp+ZT%wI@#0pUyM(Y)_HwgehNunt- zPHQdwr)pQzt-IOtFu~=%=HfI(s!!e#6<)D^dd1~QPC%*lcG|NTlPE5INy{At-|~oB z3yejMysjKW@wi{eP<0h%v!C2xe-f;SJQ}+d(roQqkZ?g5Ib5cmB#WI*AOti(HKulB zy>Tl4q@IMz>{*MTk=!il{P}G>C{*oSO_s%%vghbZ_SlRBd^;FL1Ses_`mB7^+{eax z8R$2*(?{pEitX-<>1`m;?} zlD;w5lOcj+3)KU^_<82@ioE?FW{l{V+r*Imac9I{gGcL+Qc z+q0b$od7*eR9lg(eEu;*ZdgD#%S==Rpz9i@PJ-rZX0h#SNhGA3e& z*egD(j~lt%@Ze#rxSKzKlAJbLFqOMzk4G&uOPCY?kry{xoy7rL;$pyuHKPOT)MXM( zhX}?+oYTMp0j7u-u3_^`Bkc=|aqxU7-A-(Es_F|3hdmiUfBvNtA&YuD8RXrm4Cb_1 z<8!3i`?K(t)2(zg{30*ZyZCf=v!k<;9E_zc6pbKFsPOO_7C5GWnTnxGQJc*C|HI+G zxl&tqtbgASK2p9U2pg18!UX1CBs+0OFH4CE@09JP-N}J#3)8); z(tA4PUk}aGqgZy_Cx76Gx_!Gn5%TCzLspUU8D)tR=AoP)pRIflUNt1^OV0_klCI9 zWYSjUORp*I;i}iy6&A;DnVA15x#P}4*N-%)EYZ_{0BjYQkR-OgriB;Rf6Wwi`Invs zH#iznf7VjEo!F3HR*P(pUi0F#h@8KL*bE~lq)uZwq11|vmPLZSE17DTzL_31?IIBr zkGA}&_nzNa#RP0_0NN0E3+*emb9(tfjQJ+zmZRXhtH6orjUa)0#sjjyMk&*Byh6 z@9nCdw?5{+LgDiRuVR2A8tCPml$e?(uoy>w4)&-dfvJ^XhAbBkigxs@5|;E06w2Sf zf6h%|J*l?xH3|ABT%am354JaQ2$)6#Idd$tXRbSZ>D$rxtjE}Ow4TF!0sj3nhwtkL zKW{Ny``3%=9quE1f@{AaBpNkMHFG<=TmK-B!Jsmbehy+gzKSA$k_fJXp4ZT|nM0L6 z4sQvQZ6bM4prRq*Gb1}+!@DAEfeXkLe=3g?F6jlvcP&A06G1k|h)$Jxi@_dfpaykH ziYB)5b4Re90Q6)W1!UiKsRsh0cYcC~fd?T9Wo~41baG{3Z3<;>WN%_>3N$j80nq^| zw~#9Vb|IG00V=mJO#vq!0yQz0@O=R-mxgNrDStFEI3PYg3UhRFWnpa!c-rke%XZ_& zvHST79q^G6BdfV9FT7VtM!Or(eWk1^@f&LX;Z1 zK7Z1acMIc1DYSw5dhz4Cf4=+n{kyC0q+du`Mr+mL{q@3y(!v|wo6-fhc)wcwRQz^f zO;NQ?_2EJm>-yr-Iw6WxeO(>a-Ni5O|N8EK-%sEJgGsAj2p=2EU=-tXx7>Ht{_((4 z=rZ8L4!|0DZe(3rsm_fng)afbXxv@Z-G5$OYHvhw_04X#ZkAQoY&ZL>zb}6Tgf3NS z%WAi~`qOrEp?uNRP=un}U;V4zZx8LV-d{25SMcN&;=j1mp$ve@r8K26uBWd(Y^KPQ z@T^~WV}U0&lRR5$6$zG(ZbV;{wzz_s{^sIR7CWdsk5bQ+!t;B4aSN44G=FF|J%8P< z^jePTULug&s;!n?-A>J~lBICK04+hX^5|Elv>xc!0{Rm97nd-8-A)W_fb-72$iT>O z??wZ!n++(H6rfa5pVlYkKq7snKIsU04U`C1N}c5T{VfcyqECvxKGb_|S8e*ofqAp4 zx_Xs*_RZ#ot6l#(NW;%Unwvvgb${EI`C#h8rGw_y{?vNs9i;%ekFu&>hj{!C|i7A1Hvd?Vk}sI;U^Gm<(ML^9#Vw=>b6`C znLw}XcI|ct)~~C%;~Hs07}bV5{{7*=@_*p={?opz?@F3Un&tjSE!vyKgMXfX4NUtp zo*hX>noI}N?gd$X?6)$M-lR!iwDsZ|L}AVt_s?P<|Ivf@O?ZlgOT%zw^dQhETcDm6 zd=x3t`8lZIX>9PD<4@wmYtO2lRFjvnK;sQXE;=q6 zF1DjbQ0{~-K&Dl&#h(zg;SmfYXc$4m2pUGvFoK2=G>o8O1kC_JgiX&{a?*|#j)1If^E-5J0HN@F~PEZz|{)No#^Li7J#ey ztQm7NvH0_vF9U1V_S0XU9S^+ZV&9`dMb&psSTWed*_Xg6;turzPP@_Y2^lnEdY%!ppT&q-He%)v z8!bOO*4%2VAKn>+UMP-pX z?{(@ykoW347=KIpQb}tN4KN!XbW|=b4KO%L#>3KD)fRuo2nKkf!(F|(K)X*tI|TeN z3M3Y=4=iDO*$04{6ztg7OL~Xm8>@Q1Y?}`p7E2FMum>v?*x_D`gshJLZd$J1)!pru zgDm^v_C^+0WF|pE>CWM7Gs(%#n>>j|BLfi4gjz@eT z7Y5a^x8fo(fa-)4&TYqSjJ2)nQ`0+O=wCKX*YvPu;JB3x1hCp*NKM1$W_!)OJi|~) z^MKX1{(sM*Y3tOgxY$&8=}8KmL77B_8#m2w7`Cg^VAcKsctpS5cj>?F4M{CV(HI>T zDSQDtKjKdsWxGQWt=3bKzF+aV`crxwc9RGM)+9std+u5u+O{827VA&kyFctWGPrHK zdi6DSx}sXIFEFBwh%grgP6tfkU6s@YI{GrjLw{jSaez5*69WB1ZFAG~_3H;OEKy$q z=pDr~9ZcMbXeORQSkUhe>s0+fFV^cVviu|Vx%=l5LHj20jXEE4gt}^ev*L*)V830Y zDIG#wZ99&eLY<@6^gc})J$E7dckX8dX0A;Sz~Fd1Fd83val*y{++?7VV6Axy%1O-} z8Gi_`admBsf#Q6~+=NnslRpzO_Yv%aUl>@6sD2Kb&F%n#YJ6}kpr3ZV?1T1WDU08C z>uPf}!IStYaBfn+5Po2Jj7SFTUb!gfJyb3_X8=n=f=rF1$nYddBtF(pAk>d$hl21Y zNrCAK?yMySjH5mhG5`ShyXOGV;G^vX0Dtt&&g4MA&6x8!5b*5L=0SidwO;3e09N`e zUP|TZU@QlO25y2U%>iM6n<0-73+xPeguvR<#ymotr?c7|5Z+SsH3vk{r4up>M3ex+ zBoJUYM$Ih|!K6u2R0^5zu$kTY4=!o*>6#Y=pc_1R?wq<}Y z=!fza7Y6-M%p$~~ABuT|pdX5Pgnxh|@*>Mz7;r>hWSI*Cj>zXNE(~}gpSQR$;EBA< zBgEsLFpm)ML|)|)0-ngLEOTMO6M2RCk@4Bv(=+>Q!9fMuXZIlId~Lq|uL$8anK$S}V0>r}w#R6eOxrH5zGu48s%R)1Qfbfp4s zO+Lbn@=29258@3e&-9pchdF>0Jy}w43S-BFF;y{iPGKJoM71B=rt5>zeF`$CP{_(fJJSN;oNy*tTYo#!Gvybjx zgFzip-V^dwqU5$&CvrI?Jmdn)E~*#E(8yw-rAfyx_3zc)Zk_DTZGSH>6}KO90s98; zg1~gimNdQer8oCG4lgeol#~7iwqc(y%@wycM%lM=7_4CpD5QEi%~gt0h~sJS3X?Gc zr>g``%{aD}qs}cCm{e*aC6#(dXP#g!@UYQw))y2V7bz{75=UL}cRX8kd<<-hAGy_W ztK!yv`pDF3Pt++Xvwx0E!O#N7Mto{`{7pap5GmAWEnhjw&e-CIi_7SWf6(vW;MW!t zx=(?P@B(a5xOW44KVrj*2Cr%G?pUYEio_4--%@>UE{t(gX&d(Qrfn$Lq#6HK6cwW? zqF=C`&-2Celcc9GA>J3i({Dw;cl5iXU+_4d)YgVDQcad^=YL*9HN68z9El!fU6yJJ z%48gIrs07%jK=3zO(l3Z+n=Hl4%VeJrx|ekV->)x_pdK5gWyar!3oBKbK?Z%#$mDL z0yAMWOzU$<)p0JNmIQ#M3N3+~mFo5EVLa?ezC}VTyBEu3u}I!`uDRHcI_IYJ2K!X9 z*vT}CaWV#elz&i4sbQ%jN|z+_R2E2p4JK?4l{0i$l#>JkJLVt)fzrVblRzjBCFQb! z3c!2?32UF#YAUDGvx2?=LQ2TeMl;4}SGBNS>*|@QDH3)ZQN(d>$~TmZvO4CL(0Mji zca(`jNhxVC>ZXmzC=2Cl?l^E35N5KZgpo-gkGQ2_BY$RKij}dHQgwcH4J;UOYfPdx zu*R~6V5yY#@*91zx~`v*EP$uKZlUm#Jf+U>a7-!9*$?aj%$otBRDw>bhS>s9TRWXC za5hySVFx>G;lm4ICv53^^*WO)aNJ&|lpE6Li421KFNFKe$C%8Cpv1n0?b>Q;P-CEc zDwdKy4}Zk^SSzM@M@!KV{z!5HFbr1T&w+3p4cuE=sA zC{+sOvOs`>f_u&b!6Awq5C%hCDhq@Kqpo}w2&ZVZnghZMSf%GlmJi_ZbQTDB6?1cQ zKtxk|k)>ivC|FBm>A8Y^ez191z)mSh{H>q@LnkAeV0`WEr3oXHw=`1DFO4DjM z2ZV;@Lde4cSFA1%0=P1rrRo^dS6ND?VSA!N9vxnl+T~#pz?11bEJC0Veh!G}XrGb+ z0)NjIoy)?);HjR@QZfU3mmqZ>h){-*hXw2pqsvkE~}OPjAUFx(kyuym4!N zz*7OE>82SKichc|j#>;)bm`6>n;ykxx__Kz@S)add;D-0zTDp3Z@j&?5BBw=e>2qT zcu2TThxPYg{os*&v)`>N+WgaLblTzfM~eO)FGhS2qnX^fTMrVG8}&%X5>n$~PCA02 zyMoevK8LnHSpQi_UAO(W4x{h_o~ri;s{O0gYBjz-Xh7f8aclZyi|XkHrO`V>1b>b% zRqOtIe8A8LpVjO?-!UwudT8@jPIvH|2mB)PGaSR>Ct7%dW9bk98hDHsiq&-9h`^OD zcv7KqPHKR=0(ZwlDt9z2qtFiOcT}&b-VN$4CE>jG!76=s7MV5p*%;Pqs;>w24b^X` z-ckK_{y<;;!*mG?HRa=*Q3BXmVSftOlSiCiLrd4#~8dp057(wV5D%mh3FPMI4w+po*|AX%0aKtPq(gjDD4^zxWM(lnBBrfnuvDcLILz27kXb{ch;D zyKv^!PIu8heSZ`?k9>pr4b^Xx*?Wc4-T<`I6wSMj>G|-3E`FNF34^?!_l7BcnS1Mr zd;{JfD$4D9BhDZ~k9_)Cs4w9PqAT-q%90}(koXqe0H(4WlUJy~)CUE8U^!0iln12 z?IWU~VFKUA78FfK;AKzW$v341zFHAl4HsK3HvGT2cVB7w2C^Ol2!F48Gh2e7Y2YWX zs`?UcAea&_G|Kk_Ln8m*5xk-!kg)tC+2H%ZG^;PQ9;Z&bSXv?TXIXg-_I)hM*F0>) zNUXV4b89m|Q1iWv^Y>an=*jF+rFo0uc#C33TNK(UDgQc_{pveuMoQ~T*f;fBo9_4; z@(w>Fcm4lo`;b67On(U!lrLs){jqKWZz7-P&Z6RPAAtsoFy_ z2aZHrsz{V0QFdm(e)|DZq)dCPq2lo&2dU8@2y_FDMmNx)oZL+0;(3H-;qH*ddF zVWN~s&gsd!>xoIiM>h$<2yG!}G5KZsZduNMu5_@|dZxql9{;wS@vBsJx33X#)4Q2- z(_*(OKCH_WmMANM^i8g`x5CCWxl#bFXTpA{pm37Yf6sre=|xC0Z83Fd!`zeR zAZxYfas{J{?Eywa%&x39G?s(C=Y_P->%RcR=5jFPmWF($rqBkrM*`9i-E!L}smlS& z&H9jE$MNL^gE`c_-E5!+sHbi_O^RrLOuy3}D6e3?tnt`x|+n(kKB&7KR8q|h77Txwm^b-Clr zRt)h$M-1uBEJZ2_3EcLisFh8leHL(#&951+wspy=x)CDpkvTHK@)+3avW( zDpy>V3+ezA@-64Bs(rbukIm74!`~0vy17|@avHNY`yfN#%zptsYXv(xY|Lu1= zb&0uBFh3Fq>6JFZD8p1`z4Jh@q7kq(OoH?xB=wYBSs{(<%T>SO2qG#YRpp>6Y8E)I zVfZXe`%PIdkqEV{)O<8k=MSie<#r2RU#Gm=$`rv+M(O7lhwne8`qq5$F~iR3jES5ipXuIC_s0Lnzvxd`eWHt%I_ z8SHS4PE#;0wAZAhrJgPkC@LcL(1cZ5f*J`#q}ET(R}HEu_2+AkdeB`>MGd#N+5|gxPP(Fh^bMtJ`d_|WFT;Z2w0SkX3~P?cOO1J=lYw~ayHgdUcFR(GVC(~9 zYsOHpE$B#`kJ=H6HUeWe43?aUBOr~ReuF58zryLQa9%4Tr!W(ogAsZ=yYe3YgLl*K z;gygFb4BT!JdAlrqe|SE!NHEvOn(6dZgCP?H+}zNqwSJ^7S6}lGTJVApU04u{C2QV{^u8##RiroH^taS+J~hB-)L$ zV>Gr?P~7)>;krXcWJ+7|E5-`OHpgcYoD!1AKoS}J^k>XXtk#(u06PXH1GFWRqRhye zAHX#OY&YtECUef9X0YOCTgEB|`cU9L^Pw%z&?zKeb5pE%kD6Dnh zq_a@4Nw=(7vNop9q-GSK=?A~v1ob_6C5D+}zz_bhG7mFwxifxJuMLG4(`A3De)^R{#&Pn0+ zft%-_@cXlTQxG;K&3v+Ms;%mq%`-O7_a|%&uW^)7RKLX;EXE6arn6f%{dWZJBv9tE z`9q#x03R@HJk*d`GKz1%*hIjW?`!+oVP0Xio|%pYDq`D`vbRBzz+rv(cHh((fWD4B z^wmZm#tcLWT5fZ?ki0n#1^zgz#&Qfh-4!t~ zZ25EVFU7BiTvd)4ytJ@Ok}p=@*%P(SJr?Vm0YIsQzs)d(6-!JZ-6?3EV?fgHu+^~^ zCLAhYbU3~`Xq-Gsl+~>ieaTI$m>OupoMW}%16H{t@M_Ln@JJbgf%)T+@52Zs!FsNi zJ7|h92E&xq$*7OG9u<_ul&nar7M5bnBp(ZZ7297it6PzpVU0s&kW7s@s}F!sjWdJ5 z0-9eP)X?Xki^rLd;8StOrId!coMS`DjDQK%!L|GxcJLM_p&cceO^o0XT~g238ulUz z#?_O=*oxUG={Ajm;!Q^aAvqO3abRC-3C5u|dPyNiLd*}w9uEgul#10T=`Kxn)HpBd zww(RQnBY#R1Zq-;;%k6!Kv-?S8(|$I|qPhTn00%Mbxc=Q_8TLW-79b0$7I z0f|s&)ia8pTN+?D*QB67-3G+7uFUBSrW6tHkp{OJc~ zL3upIKxkkg;*eBn7IX9zvtBAfX!v2b0}^nRO6CBt8^kC$g(LhC z#D;t}cLPzv{M8q#aPiw4JC`Z1O@h+R`g1z<-A|Q-CyhrE537qQ#ONXx-_IX&2wXy0 zGDGdkjN-QAFnBO{uu5|KpWhk5<$N{N+#No6pi&Hw(+nCXIF^BnGK#5~kgx1}I~VeH zOHoVV^YoPnY8YJoxIhy?#tSnao$L+VjaUhDSNx`!AwPXF?AY4Y%{aZS-|g`HTBJuo z%DEK}!Il~g;dzAK)D{9fggYd8FkIH6#zcv;HAjBzSVy+G%fwL88LrYr{!9{PMzq#^ zhHcDZki#qeh z>otz0J}h{WC18Lp{NHl~?D!-O3T8EKBJ2FFzRZWTZp}qybA%4O-?}4J#@a$_Sp6S| zVf}KwwgbQQ;N|!tKl344c$r0bXs}>bep3YLjDT$e)LSU$1~gvM>mSjSph4h8W|$Cz!d|?NFT<_`tDM=!ZnqQThXYDW&-fOk*~QvBw(mo22+ZT{ShQK_ z(s)Ychl_^tVaf@Hg!E|O?s>8xLFF}fii%|y-+6yT(DN3+$vurx(rbz1KCgrGF6>I3 zXF7p$*Y*unPELIkiRO#THs2k~R%)7C97cj?)u3#NSC~)!alo`-^enwU*TCcg5^c8D zB}G~XATmt*%`Y&*e(%g_&1BtPo;|%>5iu=`$*!+g?>D?Z&oXb6iN6=r7-WGL)a$dm zWe@oE1<)mc`|%!YoqSas6)%RXLG~@ao6E4{yMEh>v9HZH1wW3 zVtzvX4HPtxF2<&jq7s6Pun?!TX+(JMU=(b}S&14T*D@l+_!)&rPxW`jxG6qKWUYZ= z-_QDRF&kRqxSgC~sR3C0F6D|dhmzx|Z&1{CYVlojP~TUxTsvk@LEM(fHI@oh1WS+dG}8rt!A|mF{Y_N$dlzEbMm5Xk_F_`(W-yOzqQs#I}zzHV}BtAl~`9lhCHM_4y z**7xb%tZcPvD*fp>D8Z+V;XU`P1UEu}shDUM zWuA49e=CQ&8 zh>PNHP}RTRe(49Xz#9L7?l(<8(A_-l2fDMcar`%Q=hsi!=5o3JhhD{}{0kRrpYT^# z#BP`C9cyQeejnt1nM@j2@)cWh+L0IE=k+onk$AjWocWxMx->z!yb#d>P#5lQ9E3#t z87cS2n`ToGNvHDDLa~j2Px8~Sw>iM4w4esBGU-1M9)_U6wHR=@OFQF96Ky0ZGbrhx z_N#bX^ZO-k!ieBodC(t4#{c_n^_mkR3zZs7(8rUPMMkPzf*7l?mY_E~P5{m3>$qF6 zmAx+jRZ^O)zOpA-WC~1BX>#*jB2z0B?#jSsYkG&NVvLigR3z3h)?*ZmrI)^qUx`JF zH3ONUAFz%sYz_!c+(VgLqrn?O6r5Uw3;05HTPfl4DJb$JrB@L%(=2Xh%3Jv~u&fE5 zeE7S^=zDvvwkvDiquD!?ulwApI4W3@!WTOvJ|Z!~=lV$|H*ql>=hF9{z847?rHl`k z<`GeCtBfAR3;H?JTeFJU&wm|b{o8%<>s0tW-EC` zq@Kl=f2Q1mwNz7G-UqT&{d&~%lYjh}QM3zH?gVy$^pS3S7rQ6#t>?M7^~qoMmA{W^ z=Gnq+MG7o>iGj;PMKN%Z2N3A~D9!0V{_9bGD13*PYl?Yb2Red#x&6y(Ack&O0gz}r zc?qZyc?4h(`qY>_e!7-#VSIb+QR-Au+U1)M9=`Jh)$d=VYQn_*?O+xTCR%wg33U$V zeO|xZ_G#ix&0B;*@+>wIP8|1=@zVK0&#?0W!_1LX$5aE!7{W76&wBSZi6R`6M|Cxr zL^!cS<|M&xo5Cn6h!IlO*5WFc;tfkIL*2K{@ojVHw8MBF_-@8almQUJ}(p6DT*nlHou+KU04*M(#MJ-Q9uSF8-Z02 zcO_0QBp{7N?uOq^Z_A2K!LRaW(`=Ejaj>F4%Rt}YiB=@SuHc7f{YS~IUGDB(D)$d0 z%K%zydN!TMBG;!aHvmCK*QCj;7`um0#doS|#p&O~=X+=K81Tt@a2VAdL`;X+i7~WdCxz&4OWtI zi8P(+=|5#UX<`b+*=AuJe}zY-S+?#gk!gIE%BB2=2tD3Z?W_j#ot%wK3(Bpdq)ans z+YA(*7*~L4SUR`sWb)QP_pTH(+C+d|_N0+p__>YOLU=3{6*JLbx^9HywajsnS^%TU z?ZiG>hQOzicl1|s4DUr>J^J!%DL$Rrgv1pPg2yA)gKh{uThQmG&EeF#w^w|@_)S8q zQd1yWXwNUG?6O#ww&oXD~eTz`?xqWcnxzS&qLwbj!n(> zXC$#dL<%O^olv%UvY0Ki0~j*$9rbieW!v}nY75aE4(ZsvJ>CZg8w=DsZ z^Y)aM^7Bnk2Fs{Snv35{7#SrVC1j>Z1Nb5IA?QDz-QCyJyc#^?AUZ-#1)!iVoR)7w z1vBqF8VpBm7!`oE55}^1sNH%WMTyL|5)Hg%uA)kTv{VJYNLwPU#Tp0_GRz%uo|cC@ zWw`7str$>G4TzWpb3wO~U#Y^E^$Ot&2ZF{P;8p`~wK_7lzW@bdZ&z}$nX7~^r%~W9 zVrm}+Kdo#Xq6M(0niemx0DOI)sl8!j`|Ry61%DG24U2DEtZ?S&I8~jft;*JJM=>MM zO!ouZFG5E3DX0}Z1yGq5lf=L;wz(vB)AAgq+#(LdZ|S2Tcs}=)zM=P;5~4heBPN>k zJ&Yn3tMERrc3=)D`(}{YBRD^wh(m`KQ{qLDqh2~w_<*kQYFW>i0)W=w&fq50Bk;L| z@Z&6VP7f=x4?_KUdQ=_yO&%tU#tST%td)AO1aauUUK)xYMYicCX01Ksd?VnSiVwxH z2Ev7B3$A{mK6Kb}h|)yhg@al`Vhaj514b&q;GqHOdoJCA%w9s_Amre=iJ^s}qcHib zK540ji`~KHut_#X0DD~E$rP_t*k0rTD8>ck28ltX%Qw^USx4+2vVde&^pG5q7_5f? z$=-Lxt3_O&@1Q+dpMCse@e3d#fgVr_Fynz7?=4U(PZ6%2#m}@oP3-EJ$9xD~O@rCJ z1W;7Xa=Q8(YlxL9^MU?&N4_`;pU4Y;`FZ$LJnadmm&TPWfV}95oty~nw&W)%JAY}} zp*3G~hKS*6+?<^x1+w=p`*ft*7i3dL%Y;eNYw9Gg-Qd!T#6w8W zpQ=S;_nWt?c%6Nv>t+m8$!hGCaJcYKzPH}m0(Q$Y{6h2)^ZWKc$ZIjcQd9jxigF+# z3W{fzFE7)Q`?h&tL6+F z92XiY0!jqsCn4C_vlY5-NS;E%jN$Ld z@uJ~4Wanq;iz_Dz0h>i^>?~MHbpCppo*S_@C>-_c@%s=bL*z(+53~u8E)_s zZ54_>dA}PvrwI=^AP|<#My-j0x~27-Ly(tZPW>8#1&8`({k7RP5+ zHBS}a0MjtL_o=;k_}k_}-|QrT&$vR9I`$RVgt(!?>;NOeQpc~XhvOPCO{yi%@=fgi zE=JEB2r{rb`T}rzE1?AzZP)LNBW6-e1N((2UQ)S62O*!SZ7HRTwyhn0YroNM;^oOJ ztpo)9x{D1~F^p=IPipl&+rS-Ybm4rU3}00-z=_f8CFS!v$q7Hy`vY+Qw%YfJ-2k=# zc*|r^47WEbs9@%oYfih^LQhRvwvBdsZPuR0PhF`5T_Oz;Po+i9huEqbFV?`cH=|Rb z^q5{uo5cdW=cEw+Egy#T$+OJQ)#5>^B9Fq|i&9B3dHP0bo8!{Z1}^^&`72yYn`i@| z4j{t7htr4)5dzK3KL+!#hR{Hs znC2*faTMbJ>4qZnpI2wC!qt(DjUPd)A4tlK)dMG@h`=D#k*ys8Lg*4YfarPx74VD3 z4o|KMn1zI!2AUQOjt*n>gMUj6G_mMoaMd8a2mwau1{G{IFie%H1X`m;{!@VygMqce z>VZv#KVv(kduyS$i1IZ=69uz{R7pvAu{OXo#C;Xe1dfKv4_5){4qXMQgSp5cR*K*j z4x-_ziKFPiR}Tf&+DE7Zj0crqK&zodri|4SF)fYIjRd^eD_|VOrG~4Zu&6%a)xVA; zw_=Bg604(VnQ+)39rF;Mf;iU+5Q-Ln5&nWOnKqaOe%ghTw2)xM5{_}M6+v6;Kaz%< zj2^wbkNNsR$bRk(9&iT5CxAC6@Ww0&?juDQ`AidV>+hV2qUGiSWcCPmIDCV>0ZOmO zGh412Jm~r3oI28QORE%1QLR>+*{>(jCO*X!aA-qs-1N)iDPy+s6=M9ZQ<1R#s#! zjK@!p)KTxu%g7QR6=KFH(fqZEIxHD)0mB8WR8cur5ym% z^RaZ55HyOGnN*+w3?y5?R=AUk-XF8hZV|`$=C9zU7Q3`fhbtc@VnxE+O6#a2B`J`m zlYE4tNn%QE#3)o355y8O+I17uu3E6 zIy~583X7m)+fGbiFzURJ2edgxDLL^)4AikSW<{%wkBy{xvqEE zIh5-RjYl|(fvU3ElYw$8u0RFn8N6V2P!ol;a+*esjei=34l?)|E5ChCa?*(gT#T%_ zm`jaVdDi7FCH0&p+?0}5*k&d9Oww=*Su2x40dKBsm$Qbu3V6ZM!g(v~A>0Zy<9)V$ zBqof2^`_Wb?$(YSwxjT{-mDExd(uvDE03cnYp~_D7ZF2p`C6gtN zQTE78rT(U>w*Dh&pxL+l+1BKrs2Vv_ZQCv9&=uHx9(=&jGrZDf$Wn0=4iG9#!IPS2 zdZ9`!C~IFIGqLSt1vur8Q^^z@GIXJX9z{OUQNZFiZ|0NViuI}iI%?BlLLX^t>Zp2NEf(L) zylud2C49)0ix^SRm1DAZgsZGUMnR0=@>8H|ZK(+xc2J22 zQNDJz>f&c;o|!I+VR#OJ8xcn$hRYwo???ShiDsX=Kq0S#%?(;C4^_qay^Vfa0>0!7 zP6k2}1b(oLRV)o_jp-r>+R97jrSThX1c>&xqqDfi37yi%0_u+Xag#3lw%nhMj+8iJ z^*5DHs4R8Ancl~NyV^V1v;B)1IR`~{TFpD<(Ms$P@}IB|bV$}9 zxHkpQ;ZSQsY_t(f7v4hcjJXyBF1sJ)Aye9=@%MXwjyYSiTyo92wg9Bbro97q-Bwfn zE=1euyQ{3NFWe(mO2xHVvQa2N^VOz<3=H^)+ck=RmOOVhv#VIJaenquA3DBs1pgeR z0XVKm;ueWOd1!NG{IBH-<0oH{f&-I5u%udowS*9j`&BW3ImrV^P6P?!TLaS8G~PZT#iT-KiHwmpZ} zhu$rYtEW}l+V9Nrn*0a>sE^h}c}!Es0sD%GZ{B)g0RSJvUX>&g?pGyUs={#3kQL zk;U*rqk(|t_ypWx=@jb2|BSLVx|V}Y^5M)nQ!TKS-?<5yns^0ABO!QEUwTlZPUMEds-zc7)?DER0%SF`hnrl?bvIJ9kGwfj> zHzf-$9D~?3!lK*g>56zJZSNgG7tAHiHg5bkvY+;e8|QWeXx`{qHRIn7SII3n_mehe z80wkpZ+)J@kuwA54G#y%P|V+L9;9il=SbAT8%-VL4LS?wD)ouj8Xz{R4Q`Bk?GbEgizF4aMJV9I>-?#4 zg*?h>MwnR#NZ6IndArKtN8b(AC7n)2KnTJa6H$BqJuQiqw3ZcYZju&+(_$Ih6z2vj%`wlg(tG zsqtz>&rH(9uxSG@gm~v2;MD6*vQJ%AXO+uU^`-|%CM1!o>&v2_8CmCH;?3C^1QX|J zMacE`CB)sg#dKTO9l{x3)`FViS`aX!>VxbJrD-NZr@zEWWAK^&vm({-$8i1~^*eG* z`8{|l-FfFi0+&_Z?>KERID~+ZyYlsL)ZlZLl=2E>Zd+Wr~Uf2|4WFIwv4&-a?ic&rHkNn2yc*Sblm8QG0^f2 znp4T`k&agUe{oEUp`SQrX7PVYkXTv&D~@@}r|(GGnRNd|8w!e$7>FFPPl))|Al#F! zeM8ZSP04N4glJ!B@2R2k*`<4(`SqdJxRI>mFzIoDjWrQ6;*hMbPKQzb1N!`2SPxSO z_a2I$J<}cc{27PEpfF;SQl_t?U}k(+ofVjWBp0~t!d4|oWE4&$pwxoHV^snj6vl{yqRK9w0oc)b2dX4|IgSe=X z-DYdyivRAW@6rBZS2yCuo$YH}KI-x(kpLNwm7)hqI2qO=m_VhaV%;+-+DFyFBGDrW zDj>M`z7N28gmk8-<#h;50HVsl%*iq9WS1Fy(&cagoTX*&u*6E9{X35U;~f|!1bSgf z*+aAZxveB(V(8XK^YC8pLOn{X|I?sDbnD%Wf&Pg?`2~L^z3|@K>$UQ6N%@%gwqnkO zqRhP8s*0BCaYGAMw6P2A(%>yY!&|HNR0!;iGSyhGV~@+p~H4Ojh?t!Wd-@lY0*#sZ8}^Q`p|Qe zBolxKD%L5s_yA@yN01W&ja39;d_ajJ_GHEdR~Q?>1qJ~p{BN%HoKA|_%oV3i33l6Y zw}rafzS;UR3=14_bXQ+>pIv>iG&U5>41(u8@KH$(G$J}$JhZ*Qk;h~H3$CY}WLl3Ja%7g(RSvB0Hw{#yMKG{rzdYYoz7&=)U;$Z)Ib za-Lm=R0Z^JLmlTpm6Utqv|j~eL5GYyaHW_A;ZMyik4)4Ga7z`gj5M|+^LYs|(I_Bb zBoz%Tav&)FpclnAhB3Sg!Bx6;V7OkZ^~)tewAKOTqNsDzIxFpYUx`!JQiz=Nm_%N) zLR)raG$Wo`u2c)DupSXzG7zQ$Rm`xw<8I0VF7r)7d3HaFxzBE!g`J!QeW@GW zin9V`sPFc(kC+?0Gy!8A4m*IU=m2mW3bCcrM~Y(VAv~$C`cGqZ8zT&8KfxX4lwcB! ziYJxadNDqd+U8lE1c|^iq`N-bs3y8i{2IBDv(kE+u|T3)yzvUUgPPMERq`p)pr0mE zJ}@&j2pf4ljYh3<2y>>U9sab=N)JTDXJ1zc^%NOuQyXU+mnbE0bFV{t0TTdpD(e|@ zD{uaWto%gVOHWHBBCp2TOTz=)XfvLLQ;3cXtKJjG*grebLPe)v`%$(xY8>o_4xd4O zamukOy%V{kNalu*^<=NvX6NR^sw9W=GCT5nAei<1Ir%V8+H}sELJ0vUH5-}h5(@x{dzB2SlM=}~$W%B2i+s-hL}D$E2O^)%N zC*7wr{PoA0qk*vkUlS215IazP43#Jl;>7|i*m(x$7btL_8w(^*4IBVZW~3i+Fox@R zE(qvY!J-j(P0p&Ag$T+4n^QX$iD*;A!WkqS>*oYLx`;D{Jpp5?WdqnGNFn{o^l=!l zxbc&hvGH8}Z?8ixx!0f8$j0o+>yX}6#xe-1;K>_9 z!Zhqhu!&DYYp`P~1c)^xaUAA6qrto8Azb>`dSZbV2GB6L>e_h_lw5VsX|2=DiF;*I z_-UMLF<_>)$l=#GV7TlZls>Nt?C*+qL-PmaOd8F5A+0lq5c{L-APd8Wm2U&R1h3$Y)9* zDue=(EksN~C3BfI8_Qzytz))PP_|^N0y2t$VhAhUJ z+&~#|H-wtbXE^};jwO@I1*BFywt+f z>~n>HJTA^A?_|A(D6UViqa9*rkN#D+8}@(Ogbe>8kmxG~FuYqy!q(1$T zd>e+tKe4A(MX!&(85sXTk#0Eqj)e665Dz$#+(x9CQtdvL?NO%+E;#+0&Ihh0mxm1Q zOOFk48ELwYLH7FxE&uh%C5zZydMlto%| zWGyZqwb8XG)QKHI#Zq#BSz{=8Gjh&DS3Ed2APYueczy))?-zt)3|5y|U<}^WrAS~# zOpR%Pkvjvj#q zaN;#v@{IC8;GBu`fD0AM``DEC0G;)zA}~|7T9=}a?;ggxj~IIf9(IH$?d38@ApWuS zB&PTEKR43mZlUmh3^KU0BzaTsANE;|cwSg@@NJjTZO+K1>Z$MAF5czDX_Z&kt5tAl zE<_#6-059KTQ6stknPq_Ooy}J8>6-YL^}unHb^*lDx*ukY%I{J5H+O>&)D17fc^US zpFgO{4jAL5ce^PLF`k|7m=|!aNw$(}`R%Mfe@^2~#V`zQG;r{_?@bc3`>R-S-*x9- zyUVW1b$`$F^V)~1E}LkIxqpr51yTW;bv8GDKFPA=gBR9%d#MF6ZIwW8o$6Kq8rQiF zKq^bGyw8Uv-zh0)7A~nzheW?0pxq%!(ndgf+b?Lru!sE`EN3ps1X9X!^g@*QA;fRA9`op22J_yj7r0kU}5sd`b>pbCxM~9x31xJNi))% zW`muDwus?%f6_$PFDINDDkqq&%XEEgskD_;1PE>B7Tm`K`-we1kfT~xkYwQ-|F>CA zx=aCK#~p%o>q-um24oZ>@br@Rpp)Cm+)-)cFFnVm#b1fX6$Y(MTt;A1^~GRM3@N_9 z;s4V=+V}nXr2PeBZzRWG%Btqo$NjKBg$HHY*BBk99(ho2331{CpzCy6wao?wb{3dO z&j7~fcygZ$Jj#S4j*N2?0ZVz2itQV~BK!uqN%9I8#c!lM1boX$OG>j6*)UU8Q&m!L z^7S85rY^28Kf8Q@+9*iV7$m#=Qm!J#R(*uQJ~0S9m9fTnN1k?sau$^qo^%A=;*sg& z>#wxDz2H>x8e=jZsaE!ac&Ikhec=u(hff)L#kud+9+1b?@;Fvgp<@3V8kOh5*KWG# zA>fyy_Jql^1qeAqm%E2-DZ;c8SIp4Fovrq-@_y-5<>1d~%1qB`g4bk1jHgG?mmHvl zH8S66PZ4-oB%Hcf9Wb?-4JMfAj)n9nauq))6XVGbj5wgWM3fl8=QWOi>}n8ksXsjI zCi(C~DcO?;-LFY8Oq(m1IjUTEx6T!aHK;IgRedG$1*lxxhe(15>zzFRWj6;QH_4*e z(Y&>Pp28C%6+FJ6m@k7^cjsU}t4 zM}QX{4A5qKo9DJJJ*FOcqO2{5cTLD^$+{-WT=3b53ztYbn(MVNGb(@cHHEH8|(-{Yk zc46DwdCp4CLO~-8tAkSVH(X_AYLam=ttNxd60PtPUMv_iUl0}cHn%NtG!n>(Yh0`! z_3IemYgc@L>mQ&q_$r@2N`Y}=N(ZlC$)dxK+qmnG{my>hpRM_@p*awD+f8W%*Fh$m z1$c;DcmA9Qne6C2Q}%TV!`%&@t`C*4`duAOC6uU^S^$sndlSTL)YM=trF{d=acq+j z5`8QeNt$s;UXg}nKyx9%>R|;a;{ZArU_03Zwl8iApe{8pS zYh^Zz;WDz5xelHmXBzDho)*q(gDJYbKcy&Puy$P?(kwvXO*<9d+h*q31rwUr&gS`d zNwWOk2ZqpMSh}M5lwmNi$;V#OX&AUGAp%HPP6aiI|8~h!|DOT^-$B zOwC=1*g4aQ$v|+^v73Qu0Zji7g^QkS3T``c-?e6gAC5*8(q4kvDG_DUG&QfxNt|n< zJ62M2w<<-%b7D)&pO;GsQz?Y>6PLKvaOqPblZOn6;%;C!z%s2s2lm5YJENColM%#j z0$vMeNN<{F0`BKEEU@VxAviUowd|l~B^*|)d4PdYH*y{~KN5%mOGq1zUjO^&y&1&z zg&|%??NCL1y+O~1#Go4;mnEd;Iw(07r^!K%iOTfgs@X#y(lDYXU{lHOC5{jbqbBzF zXJ>-Eh$N*PPEzWtsL*<`IW{=XiT2=1CPssUDUSwcg9(ZgnJ6kNDjZWcJDOdMzX(m0 z19VPQuYria{R1VGE4XKD5JLYtP{rfMmBQd-;l}@ha*3_JqZiRB%e|@hkz1a({=iE_a3E z|7z(J)4%AjFVK>l726fDmjkyW(V~D%5?x(Vk`$$fZ)IBnXjm61`I%+ z9W=Htkjv|-G8dZ&kG7cFko8P8^Vi3CiiWI#3+^A!Ul%$H!RPf2=jT^=n$>bSM(}0- zq8Ziez#>&gV1SVAS}u2FY;9Fht5{Ypn!{^i;Tq@CLP_SFGsDVcpOM`?e+suST)tsn zrI7T7&Z9QX55ycqKQ?&D)LwdC1`x2)_LRm&>8?C&K#R+d!YG;&60`u8n*p$MqoA*j zi~n{@xBJm%X#JUSg@&A|mJiJp@|Se)Z%Ji-Bz>u5Xe=PxgpIPYxuSkyr$O$eH5Sg> zWqq-t)6#4aNFEy)%8%y2JV2AJ_q=1kD=obU=aHeI(jXWR9uyupOzEri03vSkKpd?0 z(xQ{2_kC(=D>`D*BM0P15FJQ7y-+82<;|Q>J3+Ipe51Iw#PS$8mb)`vdSkrT{a&Xv z_a_o>^ooE25g#-Muq0)IrTC=}A|4Z}UAztN2pr(c2MW+sHFA@Gl31C2JD;e&kYzWd z)W9W2E$+>FgC=ZHt{Sxt0OMaox(y(Vc8xU%;%LG{eejAyiBM_W^`Cfg=gs0LCVOhL zO89WLCBK-;m6KV3)!_1yn53JP>kit3w9wJk zpVA0~`l`D+3#ULNQ|-UvSQ#t*1LV!6N3kFaLK}d9Yb(5acaUU20hBLZ>hsx6y~E@` zE3HFcf&0NG^Ds-Rr>oYP$8Bc7iE^o) z5r~J$Jl{t$3J9GPpeyKC*5qABRrV-OnvsYeOoO-N^lS$Ac9@nm5fu&a*eKNa>o&J{9nNR#~-yKB9V-2sgU2l!BT)K>mUNbd?EXMo= zcdF24nwp)?M;EpS69_wHCc z+N)Ir=Boktz_i5hbaZ5N(0K?0VHGU=x@*e1^`gtu|!?O;2 z4z459^?I@~0s#U}fv$4_2n2zTi-mwsui&?|yFu4)P$gK7A;GBwj3E&vVr$V}KE>HN zL7iDNankpnj}TvTN+;obVftbWrF|UUR()whkIt#K!=HDh={s(+4*?qbWa7%SmzepA zgf|ujxctaR-{Oo;%$M!7Wt*v49X|L6xTsr94$^!F^PIio=^xQgnYZe)^}zo7t?xSM z83&L2fK0%EPL_d+P#&k~6X z|G*?4f!hv*X%vnIH@*ms9DRV{J)^bB|5eSr)KO~V9jmhYd=`#siy&&kb?HkLxDivZ zx%X!S()QIU22zL>K5LPN58Nuege=hqiA`6?${()vC>$CJJwKQp`cWV+jK42l$kK8c zpb27Zdps9f?^LS$Rpn4%Dv>yjpt4#sg=4aOd+mO8hg6hX_qnmQIf1?tfbVij%H4xE zZ5W;lZOX1w1e2R|-0S_bs_`KY5pLpz+hCC2L|#nRf4n^PhI{wz*S#%dC_Lh=sH6Ny zL-*ln3V9q)REhh?%k+4=&Z{6QX>448l|^GjKX9j2aCe1hZfekebp3L}^1z&Z=7fLA ztXApz_Enj|klAX9FChl6f&6{=!LuM?ctIFQ!l_ALq0J$dUiN$xv6ke&=-ZypEE{-q zNtQsa_sfZzHVRhoNZn1t*9?lh|J_-7W_^3qdD%skO1|zz)){V7x7_&@Xq!9VTPJtNcrDw){mox$M@MA zvh$k5Nsn!o2WK1SlS%4r@1z)Y>HKE%^8~?8hS^B#7O`{O5(B2rPX2EtZW^x(uDA53 z1Lvq$CNq;E7laBcNlrv|r~vmnDzdKKNzDsMd1GAmxEeS!e6TiY7$34Ad!>|vt>DUD zNKOh1BpX#fF9CZaip0*G**F20^Z3l=j|HPMX~KL`fe-4V;?KxRG4+fBDadd)p+HKg zZxS~nG}tc}k5FL4vGRiPyd_}EH9NOJXnZO?Bf)5$8(wnBz~!WNWx#`0wy}j&n4q9> zNPq&l*vgd)M=-}sg&R|6N;_WYkuu+Dw{Zue*FmGlbRi}{d7Vj_V zUh7`qyFK{FIxk#6{n7n(uH}O)8RNg$aZEwp;`9^)dBgfUA%?a4g=^4_ETf@qeWN%h zFl&*;U&z0s;n9dSX8~ZthIUa%Py(^%F_HRl7^leviMg0(YO+}BSK4(tQ+^M~B8eEN z9%4xZrd|o4>7HyQUvl_w88XORB(O*l{<`ey-O`+!^F2fv!){t(yQU#qNO4izFieR= z=x|TYLNbbxje=|n)96fi&H}%ZQ9Z0F51e|4`-O#SK&Z>H*8uYJP|?&=ZC4iA3dYiG z3DkAlf9w)o?bQ{i$ZY{pxObe`swBPP9ZSS5rm(`RQNqKAWYYI#WL0e+?)uA9$PZhS z0zu4RX+pd~#Sc!H9x#ZGqL08tMX%20m7j~1mz`$Bp zYbZiuv02*jRRGPC6(SceLMrR3L)9vxl{=~f)lySb`I#y2XmIY_QT*`)DLgdxpGN%)92(>BDgSsj-HA0CEfvQxx zITvVHNdk%F5(}XT(8p|#+}~xNPM>;#k~-ggY(19H$gtn@jK}9e>EByG#gOE*kBWE- zG8kZ3D-w0QXnJ2bP7vUc2EE)ugV`BciNeGHs-ub@e=zILoZ=pQk|Ae9cZ-*eT_zjM(8J++-jTA^eKv zgOYZvA)zN}-VYTnQUi_HVrdGcBd|O%AQF!nr%6z96?C~Ww;3neW7KiROP0CXOGg0A zP`=zD`V#Xz1$`rJ%dqDQjFU<>EDLuG%xKXKk|wpPfmLVWlO(8_ZMt8?=>t5 zp_XeF)atO)Ia4ZCX<4Vay*k1|C(Qu2D)yl*js!6yy|YU+5%Iw%Hye0VhUKep>U(6{Eb2i6%!<@MZ%+0X}}@S5QqBVW;~&zi*t7 z-zy4{sLJD4u-$?>OT)Ap< zoDzcg`@R66XG9kL86%WCZaRFHFa;V=#6Drihi^!DbHXZozthqyK_O!PoOj#ejZ2?1 z+Zto!V?KHl6pj0;8rA4grg!aWMUVc$Vw`@NCKuFb#l{YXJYEw zP_L(nl~*G&N2%j^*0i#}jzQ@gyVaFd`O!|z1OE0v2BJ`_+D|HZs&PjG0VBOXH1vQY z7KK~`dV-EcszxJHXo4O_w%HiP66uLd**#Evu0Oly0_wvZDFp?w z74yE{phFTa1L13kl;+ZZCBv7sEAI7_hG3ukedtWuXF!KmXn0(Ka6n=yI%_&H=R_8X-Ng>iX7|Bfn zY>j2AXe^#I01{knj!tsTo1eA*^qZ$dEu*1^*jzh2^;8||2}#aBNcWpqrRr{Uy)esI z%!Vk7Nv!cRs*DSH$YXL$t~+83==5d4Nt8qN(m{V%jYVTP!#Tx27~mXQ05q_*S@Z7I zJ~6#eJTK8QIL5uWl>>zvk}L!122i4?Mn6E+v-EcF?F-ukzaR=zmSNR`2zrlgu9Xt zstt7z(5;u=yl_LP23Sl`6ojXr&-;gHuwgJ|LmA2Rrh)-=F%n)^i(}MBS4MNv6WIp+hBG92RK5Sh^_UG8D*Ms#ZvK zNE3%Kg)(Tbg5K~gn^-Bf(H}Q`R+N8GBH!cjO!4rpu z;FT#y5>_xUN7d8(mX|(D&L)vyNEznW5l|8}96Nx_tG9iq zeyRCZqV0|F7vn(I<~l~9&}NU=Ur@=ys&}1CVIn!#aac$Us@x9}vL&!(`@w&^n~Shp z5`^JDf@gqc)Z#cY;X-==FoWrFZcWx#(?*)F?;wF~b?NhTjQPB~G4uXNpxGj3Iq=4M z948HNN;lcW=l!Jow+FZnRGN4)gWiUNy99&zm)-LGk&`I>U^_EA42BBkJgS2_a9(*m z=}O`pl8%;b?JKUZ?+cxm+9&x?t4Q26?%ZX)4<*1&Zv>B;6z5>Z;WyMm3A~Y9*O30B zkPRSigzVNU{a21B0(N%$_~_>g0}7UWkkc*QUk;iEr&3!3BQS)`n2d!r;ZE~CX8%IQ zTAb0rZLx&#?bcZ-WMhJRj$ahI!6YR=(kU7~;z`TJ0d6Al{9bn`4B`NytsABq5>!XC z`VUR=CT>6#7w$+RN=Af(00hri3z8Sx{tJ+M%BSn4|2y0hL7Z)LEV_V=WfUcQdyiMh zAF)HO@_Zxsr)K-!*vd8oxD|840z_rzdFP!vk-?e8@X%UYgXWd6#tG4K437rHs4AU3k%IuP%FNR^K*=VtfnTULX(*p1<*oX{N z!g^dQs>UO?@y-eIpUi}!&t=RHC*Z(cZS@8*fm*zW38QJ;<7FG@)j*NqOsL=}BlfHMGId{g4l;ASnXP z2Z}cVacND+QZ@Hp2wp0bR$i&-ukv=#rnk(4_7e^1d!V}2hP*Yps*|j@01#-+mJG{vd+&ieAkmCG`K-<^Mv{Q*uehN4)DGDgM21xLTjMqU#+@r+LJ92 z@geS$2LUQvYlnqFzIL3Tg!_Leru8d0KA{cRIB$?9=rOUx4h)#bbm}?Nn$|z@5;L}h zQ^L4|BfGH9_a{-RKl+~wLffoh;F^iSEP%0fd>EVs$gLgl;x`a0#KE z<`Dll$umY{SQfGf3(kZ`hf`U+o?mRm7C;pvvJ=`3nz1)3e6TfbThh0N1a25$E4k&U zrUYsNBqo_=$jy)~dcsZluzo^D>=eSA$De}|sL=M=Gd^UZOo;;ldq{Twu%Ap?nm{yd zgg5&@e|mtzC`MGvuuMCB?@{Xv~+_J@|qcRM4aE` zG<{t`ai}8=wHXJVn~?b<8eNXFtgPL5KQPjUYFIDQl2h7h=F?v&AL6)8?%wi@ut>Yw zKpo^G9-_FNRjFTVT+;MsXRuf_73EKYq{maNz=J1e3_$oDxN+F-n4Mt!tvl03qXQsMXrG!RoU89mw}6rlnCU9|A)bP#Xz+9{GgwefqG zZz~eJS`&5q5L1AzNu~sZEQQ=Pt<^!qu)b0YCcu#pP^Lt>V&(_mov8-6GQ`5of!?Lk z1(=z7DHK0?;=fq;?(T}It>H{67hc6 zn<$D%TJfN&`YVi)w*n+68+I{@D$9c_=sGRq=4l^arai&?cxN1->eMw|;M#DjrSa2_ zxm>^mVprs#=UDaGsr%=6rd?Uy9~Ykw#Q7#cjM{+yY`qQ3jJM9q&K_2SoA8Hky85=0 zN8i$jIFA9=Q&Pj?$4?fVv*)4b?_n)u(d&8tC`!%89dn|%VdKqd=bnf>yZ1DmEd}xV z@5J@89WYof*t0W;4|Gcu!woBr5TS2tcGL-;55Ql-y;uSz$=vRexS@zwdPqMZ*H8#i>O zI{r-t5odmEfpFI?)3tY=BqGdM#57*wF`y{s_|f?^ThAM&P00UfPnMYZqv@LVKtDhm zWT?JO1g2VT?w8Z^blY3<7|Y{Lx+mR8oHH;-3Hg+VJWx8oG*tnFiF0OO;p^+spBz_TRhfn=G1loI71M@ky5hQxgSK|%oc#ZNNYrwANn zj{oQ)hBR!C7|i$xVo94d$Jb)`{55N=|Fh5Z3b%OIk3I&2_^i-LR3B4w>%JWb$@jw& zU73S0ygei=>n92LbuCvz4LV!5;vR5w7*D{R0gGm-m!O{g z7Y_{k?-OG|dSiPHsWT_(xP?^)-D==98=n5!&98gdY!0|(P5utmg z+GA9`(JFfgt%9iLU^-v7vyGj{pIVr`kKh#DlT5)opeJ=uJIn~e`t)%6YdTk~GE$~W?n2k~_2C5F3TMVJkIjm0=1DPJ$=lCm6I4KvT~c&QX5hoEihzay zF#W{4wEL>6e6_jTm_dg)WR`E1$(*~_G2Db$Xu(hSIANNFaN-(8_Pf3g55@{UT zzoJuJjU9`6b~?mk`udOsFtui5T?*RR$z!Vr0fTEZ1maL-gS0ibvME5?9olkJbPUo4 zIEOow6w-E~4ln?8NrktTCKLChi6cNU4Z;yG+Z}(FmFfar#8PhE4n{ca z3-EEUMQd*76QhN%y-)VL?bu*1&xhb`r6OA7JqR9*DShSqTe!{1$@_mg=L20?mkl1Y-Xo3jR_n^+O4eZR{vo2qH7`@^ z#$@@N9@E4A@#Y%B$omLYg0Hs=Xc}0wiy!3cXX}C)vDovmKZ|ZSVYK9!sEu!j*ilcm zW^x6;^j{-Wyo_qHa`fa}6T1wlH_vo&X?XK|$7gCQfypYEVvj=`=m$*(n|(XyR~c3I z4hpK{SqHq>Gup)xt=3hV3!HM;2Un|&yRS*`HVoQ~^=0t@un)$L!VW_|JFJzA-&vh} ziL09ydXsJ|2aP$iRbKnLlKwsIOGnn7r{?k>jQjBEdYsRGF178t(=%0R^bVRc&(8eh@->HMD^JS$u4?-mdY~)4W=+}(RSv8s zO^rgtcm`?;4Q=$6#RRkjv@}H{3f^j*^v9{A!1hdX`$)JkF=ZaC<^!@)ru6AkKFQKq zh}Gp{VEM$YbEC?wyGeq<;$v5n1yCS)PFHS!T{rc2a9Z-oE^e9*uCqg-mSWn{{_dJE z@@|7wwAs5PBKKOG(~G5HI`$^Nwjdj}dJqp2cYUqYWKs)?kME~n28P!TMoT&wc3}V< z&>EI6Eei`KiD^PUc`yt%%R$N1FiIw*S|WP*5vnvKgQ_x#Y`^iEA_sg&M1$BLJ=vuk zVshLKm5Te1E31+hDxmUZpO7XlEK>?G%5Ax9CaDkHv}SKwb(J!gsoM_` zLsD?Z%h&v4kT~K>CutvBrmu|JlikV<_*hj>hF6U^PK7+r$EB5VKLKrN*VISR^m?G7 z+uuS?sYsKMG+}Ij_&eainmq_FCDaUb8lCgUXI`eOTv{YxvDkjJ*hraJ=vq|+P@Xf< z`@yH@gO9Y_!o5ZbQ)Sy~97GNXTgKj}n`sGuw0?pns}b*#PJd?d`|P1>ZCh0VQX09W zdOKIT)%F}%c?tThq+axLLi`#s7jS}f7=OY6XCSguF_FTB&VxoRr=P#NXzIK$yp<iO04IpdksXTyR$Wf%{VqHHZR=mcMSVZr~i2;p7C3|5jMZ zKeLdA&}_;!k_+IMvbKdpy9DD|-Ajc=d}cf^tr2SbU@)1L- z-Q({AGQe_M-`J*ygCh<9d_)JvUY^4hgC`5d0GI=>-MFN?-Poq_Y|}`cdc`IqZsFAL zD3RPcLk(D{ruqYEUuD-$qtHpAJD!i?-I)oh+vOq!Q)*xICy)0l5#Y$_0AS>X5pJ3G zH?TdJ( z9oXW7x_3b(b&-1s{IG!9~Uw-<#nB(OTr1f*3EH)D(_gKqu!G^wnUFsIUE@ozy_R&XC z8E53xxcnm+0wZJoDiRCJ3gL2*7uYd)1XsU8%Ca&Tq`?*g>e4_@8cl9=i39e)!ku`G zlEEK_A~+=<;`szTJkqd;4|B=HrxZ@TQ*#p-N8Er;8LipDEhXocyChZ>+d=$wY*g8k zJIklw?x#43w$*VkWhQRYZwjG=cqBu06SHuq%Qk+BAO3F?!d4JeXG;042OKbT}m+*0iI5QXZVl z*LC`Ka#C5tq~0K&>)IFV(ojSnbe%xgvDOUwC*mQGS8+T^r@4(WL^!y-eV=!jok=1a zJ;`g)3Czt*RTRD9H2(`N-mjxNd#8Y+C$t?Cox@bFSqUI#kjmJ1-MM2`#q-t}@|ku= z<=kIcWzGexxrSK9&+Lg}o7z1)$T_zav{7BjGh*&?_KOgV`J@elqf?Ltbd5^*u%>eUvniG&0ZqFk8NSoCxns(5{1>y1pI2n4$hj%-zJr z_5M^Dt9*Yn0xtefaPl!X7>$?*X5`&VSD}e^gE9n2V5YZNFX#`*PyFYMbd)(pny)f0 z+J}+ZuXB^{qwZ&H5i zj{PDU4!pMJg(_sX5 z;pmQ^XKM+L#9vh1MZv#bfu6}CUn7YRPjCEn7KVtNW=@+9%1&_`%D3PRF|<^x!#aB& zk&?EilwpWf^^u(TPF+E?(sIeJ$ps5VLi&3OZ{PGu7Ld6=N3@l*YZrI7>O7u|)6abj z)xxzMdBth{OQ%A)NWo%>CY8Qk{9G0Y-FG3KBxV1d|8<-Hk4Fq5)dt-?1ZNvpthSmc z+=3Jo`2sPA+PFVi)5^tW>^q}bf;mUlYfLK4HZpiaWe>hQ-6}?Q2O5|LM*hlk)#uCc zL5--7l(C5rE^IukY4uh${HZETWUC`1_*+pmQYaD&ZA)|g_Pp8y2%He(!Cj3G-S z7sdma%6XK&OB!>YkVK5Z2vl)kM%_Ep9`c`Zmo;wa-oTW9OND z(cY5hph0tLmXOk;PbxdpT0^S%JZBR*qW3ub=fvmAX8|cc6e05$qq@1cCrSg*GR*Co4s1I8N*-KLFR)<$HfkDO%E|hb1=;s1r zdg?>Jyfp_V-9Z6my2bOPDCe&ay5a%)>zmtYAZ8yN=-a1CV4aNRby~dlzx4!u1lP>_ zICeb&w^2?iLs&15{fZ_arx4*`N;~(xZUVxJ4&{S3m(N#4)6XZT?vQ62R2Yk1k{x47 zx=mS-R)K4`?18Ek|Le|Ja16ZB42}as=JeOM21xiL6 zs&r&$)KP0BZbD|qbUzvANoa_;0hFKVL01LvooUpNdLbi!eXHVt%(d`gx`U5bYP#6) zUEoK<>&*X-y+R1Z!xC&n&=gH4`^(z^H^B+sDU3t&;i9yw>#w*LUD!iN+O(aO!5K<) zUNON?nv^**;euwPh{=%2Hfc4|rd6%Z`^~AUipNiEaJn^Y_93g(*7E#}puEff5GsB$}f#39dpkWOsEb;C@?lJ|;HG`Ydp3yvkL8?LF zV3l`vo{{fI@K^`beeDB`xXS3E%$uua`jqEHvFR;sVvULOn<^M|P&~n3 zJuBNimlq!+upt1$VWjI<=(#-F>s(k*vCd#H9q7a2VuIlsxa{$BZcoyT^9$G?s#`mI z7QWs6V{5?3hc$Y+k7yf3K}{?&aEF)2PTWSKzrbIP957}VN?Q~H0TQW|dr7!;nlZRX zGrZiUll5}J?Br5K*IgD3?7WP3dDII6g+*M3G7AE@U7S?uWK1p|b^q|1HVd|LrL^*O zMz=r~?ncz{beqxEw&oKfLA#J7942_ttKn@A0v*2dkRwuyIP+)2P>CO02r{HZv?>mf zIGvbXm#k4g)=AEdtBN`EwWj5eKafMUYW z5h^UgDDPYuIWo%)ckZ=+Rv}N_2oqW!Gw`wi*K}u(i6an*Tvb>ri>k|fG3oT`PH=gi zXLM0Xz=P|l*s! zJh$lY;Q$y+QtT+QNKw~7*yP&3>YR_WDz=g@=eyH~r-j*KjCpO&u8vHXWu+2jbf8&$9bv z_YaX-2kr-`$&DX<+MI4JQi_bHeQ67}r=jhgNb6V*I{xJ*REet>X;fhfhS3_Ozckd+nKOF2FVe;+Of~m~GSU(;bh!qcO~tkUj6GPuz8% zZ>bP?2XZsT?1d@zhju8e>ubIrr)7DQYhdByCwAFH3o0-XeU= z)we$;$A&jdhBIoa#S?noIxG5ie26d8U3~9_^q5fLrwCu8*6*(CwU?v+{JxO3;RZfH zGkHw~kl@H{`z(KyYq@aq(|UOj*w1=#1-IbG@WE(!|G=EAfiRQ{vR(euqyuuB!xuMe zjQgE~I5z2Fe{h%1M+l0aJp1$ZNF&}uN4&b@nd0On}fv|L)8!ikR6=Fq7jUYYTW7*R) zB3Ij7s2>4xaH5Z04Divs>e`M9Om z-wA;7hm|Xdj;dRZ-%(H>2u~pYlqQMs)^jOTdA^^K6y~nrV(FL7;-9f(I7| z8qaWK$xfge&ycgkM*t~*H$JC1hXYsT?tC*TnUOmC4qqssh1c){3{0DMM}$p3Dqwl8 zhtJWXybPi_bkO63K*h3!;95rH&&f}rwMa_{?!1!$jNfTUr_Z*RwR9jtu zEyv*h6PBocE*)wdAAX-$@fKzh-!ae@|6(j=R9S4u52>HO`tj-c4*U}Y8>&6vug?1m z{8p;Acy=B;x7&Ny%v8i3ja;CFs~CT($;|@$qHu0z`|v>h;xVu%`Ao+k&-Ii&B)z_#ln7L zh-?|TE}!sC98b0q;p|en{=81EFBYj`lQ|HW4#)Cg#)vwkJym6Ch?zS3ab~J^)jOA{ zZca!WjIqo&1#^`Y_yCj)nok=6yFik1XhXC>nLRj+V?NAreOQ3BI=>&aRw_&9TI!^- z_VvcmZ0ZO2i zusDh<`Oax9qi*pktuph>w$*rv*(u;pl^eQ*q==y0qG-iZ|rrzj>+6w6@twxVS%$2h3Pv@Q+u?s}pJbTVkuyv{78k z$6Fg64i{jh-77*HgiHp=ICKu0Tz{iGIQ(Z4Lwy*xNsu4r3FZ`*0+03*_p3|Lky}%( z&#Sd>m~@lnhy5z8DREP|u6NQEd-89$p2?Dar`wVX4+KbT=e4Uw3&kEcRZrJZH*v7L zoONU9Xdr~Zhf(rNyE*_T3YnSOzGiVyH;&fy7xW2nFN3|{c%H(lzX#?#RY0CYoe1DP zpo9DQF3zDFC(ST7^Z0vSz(xZ1K7IN(2vy8^|GVCTmmHM41yen2M6~E|r8Lkgg8!n};RNRqeVwQQ-bbmtkIL(uebU5xR=?*lTE!8G4c+ zHN3*9bY+MdwmPhqHk%l!RU^IYNNOCGZM!vZMH970@^yh=n{1)~$pvFT=T)dI|spPOqy)>RyF$YY+% zc;p0Xcq;gE7jl=ie&riBpjh;RE!g;*YgAoZdiMnMC#&=L@t)>EAS#rajVY7><+plr zxb&=dx_fYVWSLcu6y2GH+T~J$%3de~j6`0K*Ya=l{=px`PR>PrRK8N*AfUA)R@jau0^WMj(J~JDh)5beh z2Oh1)q0S4v1}a>yC1I@3-=S*2*#V%Z-^P3nSei&BAVrFk&K8)m$U$uGIg7Epm^Emx ztb#LEZT9t7N`(ji<0xwoy*^QHCnk0)j@GssbKvuenZYp8qzo4xuTPqPtkKsx9>o^S z49Gsp0=Bmr$iILyL((f^qM2%opd)MC-^gk!Y=XcqBB2-%H#j?>J2el~avb4wS$wQr z#S_A^=f!OfE2=jos`_fE+FshpyYb(+b+rL@@Qdv{qsiXO4GM)+7%H05tKnDJ->!u`+$l&zY zwYMY55VN~zi~E{B+JP4M6_n-}xy7M3)1LHPBhOtswKkd!QQ&YOJg#3#fjOwdrfYeH z<}cdxz?5ox+$OY7$fWkI^N@4c-Etsj)lziMc_^04UkfRsin)!^q2xdqwtW^{@l+Ot zb+~}gg@7IvpXzwNSXFq=^g3bwS!y%K@k`dgLHg~hRmFmzlw|<825Vb}uq*plsyVS( z1XmhPf)9;2q=p+aC zo@agsb=9)XKKSRXLOGa+FUMy%*Aqw!gYwM6ghmzQj|GfKfj}$}&f&>|7I*GEM1mZ( z1Y8pwLxBgf1~+_3b=NA>e1#)z`tu0;Hxfp;JBB6 zV3z$H%_;wDpY689)Rvw8Hm6Old~4jA)6zUR{G8;($Oh1jerTo(qMAPE^W5xw6d(#%2d0PGYcep&{TaxZ~2u$4f|_36d@W3l8%C zSwIZ?x_>00#eh}JMlGw7copVRXroJeIrMf1aJ~hyLsMvSV5uk2;($%cX`;Kt2{rlC zYM%b)k#B)B(VPN7G3W|VVlkP*uJ_RRjrBIoqyto<>C>rwqE8C9y6EsT_WG^C6D2T= zAYr?F(R)Hyj)%1Sp0c>_-B-0vm)iG*KcCkYJfC(jXI)r$UPo0?T+mvPK}OI3gBRBL zHOIpsYxCpruXmhybmQHHH)5;|N1}~fJcjT<<0G{y+<#FbD)mb6Lr@z~#S?U`W9*O4Z+WMtEcKJZb;B^yh<{|a;2%UA<@Lg=CD z_n-^GSh)~8UP3js-KiM{LePT;sm0^C;J`W7gFlJ$Fv5sj6R$Cxk+A*vlk54UaQT2n z&jH|c0hzGmP)DQUE3THP#l*zwOJNo-MfMjN@NlYz{D>}w*5yNB^Jhf(m@tv81)|K8 zXw7~xbb8cgDa9m2f0jb~(1+E&)3IFkG3Bsg`fd3?Qj0EjXp>0t>}v1wjf6V9;HRTr z=hn#~EsHf?c`-Qp&7f%ll#YrB#7TitsJ1u~p!ZDYm33txMYy1NqM|`|dYwubhJ`Ym za4n_ObZTq2R1wL4F9Z@f)B;Fc3S2p#4O)Hfo08@+ngL-bq&GtlL1?JDb_k0M?c9Cf z3=hNiaC}}I8R~J$5GzGB`a;~$;127Ly?PNwu9zXReiwHFEYg5^mhS^w<#0-HGZyAV zHB6+WAV&viFvn=-5JqWdegYwP#;j(3@}vIYVL&*B+HnDW!3M`Z16RKg?Ib`$UyUCgvOFlL=rv<^PAve3 zrJB1>#rGWOuCc-u0$@mU;mg*X*ySJpt__thDZWsiqxcu!v*%bH(!e?HxiZn-U-Gv^ z%})<(FUbBKgTZC$K0?Qre?r?b9iILrN^i;v5YgIo(PGNo?D@xXCzp{anSO;a&jsQ} zDR!xv-7+WgFDLW25>+~V)OU9xp~ion(g~?cggaL{DyQzHw;LU2{XL)#{`Tz6Tr3{@ zaf|h9Naf#5qGmY z)`PDHkJ9NimfPKK{q&k>Le55pp4yxISIooyx%mnS6s9QpEm0=&Wyi1xvEyDk`DpC0 zXyE5|LdqGPU%8`z4!&L7K=xDDh4q&ETc?^&-qS-tL9Y9d=LRtSy;>gV(cv@yq;Q<& zz}>#&v?5GUy&;*cXTyqxxEhYUJ`)*$BMH% zLF4zO{3&$qZMR@R*}Swy)~;PvoL$oq_=g{IVZx_)pkg*r8PnYKfM^tx4bCaG{uzkz z@<=zh`&)Q;>88;|*r8Q1`Hp~nM*NSUUbj(kt&=mAO3y9_t>3SPxud&>bla_}Psm7I z8yu_!fe&N*cY*+)duC*@#9nJ2BFraVgE|*6TDLHZx5%&Zf$7;lcg~ctNK4243pm!RUZo9RJr^ZCdC5GxW|$Ra6K!P^H$$P016z*5(%6 z9cD)&vMJNrGWW`=wqI`_cpz5F=BD)5atDTB`TakO=KEKWc?@(JZ$}LD5BxHDTaJl+ z=k*!mHs9a6d%t`}=C}>&Lme|)t&KQjO0cRf=)Hk;8PhSkEMf6~3K_ApHNIYD%#Zb+ z?+A&rjvtQV>o$9_ahP02k4MI)#p)R}Y>i^Z+xMg6&qm59yPhxhwxFXNwl+d1a}Im^ zCNVk>3ie)iV@)Opg}ZudT^ioe;ZBY{sLmS^BqT#&8QXN_^|=a`^t(~LdZ)@A{}|^x z!;AoDTpkw35*acVG7lD9m?_DP{9hRjs&DqTSj~3Mcb7f>F?k+Vi`VG;2AK8`j4m2y znf;xpAmA#xxoAYH@eV_bHbdW~T&?Fz?#O6VdboSCJr}Qnm*6*Y!vAi@z_*g=JKhy* zo&RLqFaEB<_97}x4KMjUqYa3;xaMTtPuuulmrO@`BA9!s372#Q54JD{O9z5!T)#o!KUI&DS ze5yMN7vpTI5iKV3=JfFx(u`0Z@b`ce7oen8=`f-eEnE=5a+j~+4j)&0!c>PX7wnSJ zNWq+WzR41C2@8gJlIy!uagB3glXy(req$q^d}vn%k@zX+g3>v5!qu#)!{y}NXG+6a z`z<44*>vVMGY`ZUn4d>YBWasOk;@k*rJhXeV}GL^M_i&ibBxaF89jzYotMJwIZrAi||SKXcRq~m~Mo?vs&3o%LL?N=D7r3pm_=wgMgyK6%H~@JcZ5*58<`4S&AIg z=(IV~QEHJw2_>OadI4z5gG!P(8XCmGC`%4%wcZ?QDYZy-p=3^?kY2o5|0GIgmCgq3 z)XDMTUT=6;9C`gW;75|bOQ{H%6&bv;++ZzB-~ss)a?Xma8+0Ww(oEJ-dzk@34xRe zvx@kWq~2iS-s* zM%%5WUI>LLE-yu~q3ixW;8(3O*Jysic7T9P@_m+a6dX1L5TfU|B6liXU3ONlUtivZ zCQTL!rMz{Jtd&}|K~ip3AIK7m0?op@4$gGoE>qGSYEM_3%28%tb!#Sha7OCN?@?Ls zQpgPNjWJ$dnYz9FbS{>6%qX~jEIoeQGp#mWxd@mLNft`2eNH-2=7VdT$KPRB&Eunep~bB{c#VY+3R?i{Vwl&2!F5A z2U>+1A|NZ?U5@f>zHHy`9_764nW7nK-%K;5CTCtL8(wVP)8KOjDFXYb_$PV4*3YY9 zE29@9R}X&EqiJgtxDiHO0(C3Bf2PdUT@{e8@_DW5Y0;ePj()2#Mw?YyZ_9{1vT8hT-t~fsQy$G7Gm*0OAAunAZrW(SbM0#NgNUmJNEGB= zyM`+J2eHc4-Ej3BAzaXTzH)IsJ2lq>Z)+k~ z!AN{&8c ze$6IXZEO36w>UHd?VXsSVQfA>)+bEfk>&9iCFbGEY4!>e^GgR&6GMQSo+>6&_2{yB zC2e7kX7fe9BvRQ4bNGe)me4Eiv>Lif?UKD_zBOBn-sUVWFjcsvX3JPT>nO${eSQ>C z7+GGpmoOgLOLC#Ow2L=wN%6+MG?#S?2~^EZfxnSxJx#QnT449N-gsyG zwx#tyeo~=mBwl?q)2cpp<8X7R>}t&2DD@cmwWX~P-5@uuS~@B?;4>?$7>BbaaDMx2 zz9ri(3{q(aly=!nmQTimjF8?oA^rLE%ll!-{nQS&$4?f#oUKBE05@VZ=Y=&)@ zOyaC6;MFK~Y8h%v)jItr%xj(L#mm=BqF#WB_ik$pGkhdM3AP)ib8!54TTub)r}@zM zj_mEK6A)}rzv7e(jo@G0S~xeQLcBeY&?GU zpI*YzkfqNuGwH|x%7q=4%c-Qe)r2WR{2 zgRHPS0a_|$0lVK(2j+ZTT`Z1-QDlxTxY`HT_&{#oeR<&%7Fxg7qfuW^u{Zvc^=OGV z{$o$B&kn)h?Ym#53=q;HP_X0MU`6c+5^GGRnD>P_JU5TQjdg1RIi@ zOe&}Jf0YADgPDb0NFS;isKO5hR-*$Dr3Rq*%!VDIOkJ4SXrMJ=YDDDsibFLVP)D_dF+q4*htY zUOt3xBMnOMiD0V7NoHEZiUKt7%R1LX-=(->ejNIJ`803DEr1E(q5%Ewh>>fM3Hr?{ufhfTvHdQ13Xuvzw@<@%B&w&~e zfA0$(uzy{r?3@l5 zv4n12Tk1W5*h7{Z`ZH%4Z{F9oH#fDXNN2a>sNZbpqF8TzSW!eE6fU|wo#mFD&fhsV zCqBx~_Ia1HLYX*mQ{g~E}*W%JSeiFX-O#z}~$;l2UXvbP=Ca2GH2t_uYvw@xWSEdy% zR2qcY5LBMc)i&oyG%d}N$#K+QBPhuWe_BpU(TNSCN=^HxOl9oc+z83c;}1uEWlcqY4j>-;x&0ekBbt_uKQjH0Sf9v|TCvcO?te2no*Yx0X3^PVo{eiRa0ERAH=Uq@|Ne`EvtjHY4Rn#1SjO zK6x>_@&2c~+-riE1wrkc=XeJBX=QdN-G(KXT+9B^{4BX|H0nQ3YeX~V$u46b6-f#> zr$b|pC318}wg{bZxdHjSh_}zlU9OHV$+mP99x2?CT=MI59F8bo0n4cID?j5}?6>h{ z&$LwwdG#7UwpWB`H#DzbGuUGq=G#MHY(<4DUn~@7xmtb#3(>+lfqQGTSW&3byU_gVg@Engv6g77`t5Mhc zAqw6_=6%&zrB-T2T0Pah63Rx`rETuu;&pR*I_5O&0EE$EC{+0)goTv_Yv1189>d0b z(nfr%z50GJQj)}nozp!uybt-uE87D*ec_~g@P{b({zG~dIimDV6p1E~%7miw_<}!? zvEWuRBO;EptE4nr4wLoAcuf;`K6BQ;hI+JntB~v&`>~jn91e!*9GrD5o*CR>mO{Ym zj|s%PEktV))>HBV)!qXLj8ffkAQsj`1z}_@Wy=CtUvE1H-Ph&d_&Z!9sl(37kd&S$lEq0FVkk(CL&Hf@%Pl0XF2ll2qnbtQkYa|lDV z>$D0!5yuDivIY4OM5;l;>{U9}4qyN0aRNy^Bs@*e%fPc> zrXZLE{@@(AsQx*z*s<6Djfz?l?+Fxx;k)jCD?u9^l`zSU(~TK)A!rWCn8W$%8u}Z+ zV?K0ESQBqVO$tmY1ga7CjNFKc)Jw0|b3~OZ`W4T3QXl3$SFOdcEKr8R#Q4}T_u>bK za<3hqg^4~1h|(O}W8+ms-b*)`02*{)FlRnN;hI1aKoJIw>A!n9Yj>DoJ|-5lp}#Pk z4FKoC{EClZ@#^){m5+!BPnt`JW9+aH31un-Kja8xS-0Ib8~pPxou2Bn3O#U?Zo*>1 zjZ`}W=Et)}N>ysK99b;?-%n>oY|z+4F!j$R8Cu|ckvm3mRFEx-?(R?*$FS>4E|!w) z>+`@6_aO4Z#{CNre1~?`X{{km&He_O>gXL_a~OMOqI<#2$2iLDYbN*CI>w0EZ`}Pn?;OBTtO7il46_0v3lc z%T)sI`=hwNth_yWW7ROeKo{XX_btcg;3qKbf*2-(P+s7cJMmp!>Lu+K8VLS)3Ks5L zz(hUMLGXr=j!sUJwTLr?Mc6jOEx+PouhbU(QFhEf=N?m2yJb4eMXyIx7z~Mwmz@Gh-)N~hy8t+8 z_iu|r2`e4lAW00IW;I(v=gK>3Hsk#xH%J!5oJNgyoC9IYRqw-Jk2Nw_wtfgNiVCD; zp8}F8-+HM!od9*vBHK`s!k)`^L@EAH@F3+J zb!cY5f)NMgsNNqlWV{TgUo<$HjzvH_xS0SmJ{sIT5@}b2WY?TD-G?^X`QRmjUZcQBBz5%R zr0YrN0Hxv#cP7^$Mf6t!F|T^K%OB+zKe*8WPY{G%)UVk?Hvp$ykCd=%*SUm9$HC++ zt!mkry=AcKuF2CjuCG za%1*nIbH#zdqx-n1&(ba2|_?E_i@E@x|HmvK2>bbuM3rqgOprY7CW74CgGA(%(884 zzJ>qC);R@d7Ij-Ywr$($*zVZ2laB2-w$ZU|+qP|^V;d*mcX!VJ-^|*(R@JWBS8I(m z<{ZydnFwS~t_-n@qkoNN0oJ(A+-%$)2O2v86}dijU5I$7Gf5#6WMvxn31 zOrwzugmDfKvt?$jUDO-<}SF_e!ZfxRRRqyROD?KUyTtI2YY=m_^Yy9!L9Aq?O z3Dha3H0SY9ZO7RLoA;a%?~u?06>8UOPI%vo&+Jy;86i)+>dEC9MDycv$!me_T`#-- zlHt^nA9t@1b?W^tVl@T@=rqh@m$mQ=Dh)%j-4U&p{0vgtEB2Z2_glN3J5G#ev^9_; zS1}N@=JN^(7a$7J1u0+pS&ct=_Fy02DupEmO3JP$P$ZloYJ|JeEaK^1_(?*RXl=8y zdh-PuzjT(7B}HVNeCGpOZ0AGT>!Z;E97H8SqvAX z`{lC6Ak`H3`8UD=H0e3&yqV}l#1STqg+sPbhh5SYB6rQPB>C-GAdxE}e~G61wai39 z<=uU%p!1k@9)k^GqUkC37b$Rdqwwv&p4J&aySnBX=zDW%%rhY#Oa~;}Qyrm{U;L*M#ua4!#wAD)ca%SXos2*b zcbQ1OkRVd-0rcTCHQ)(b8^yhEl0Jm6SsFyCB`mg3suv+6wif{w(m;Y#M{o+NE3Us6 zK|6m&aGbd|L&y&Ln3}`i11~T&N{-_~|YDpIGO0Z9Lg@rgH8_i5G9E|F?>V{6jlkY?PR~Z;CPQhGQ%6%nCF&lG&+8ow= z2K?B77JdCC1^5`P&_a9$p-)2Q&cDx#OVnZnPNaXgu+m0K37MU^;eC=J z>;8GJqXOGYa0clP#(eUu>mX0@uH|VV*e#iKTxAr4w&JCJSdVnV{`A6dJd}%8!*If^ zCj;03EZn_bg;MH+e^$FNxP7#h9>Ghs5si(1Q`C;mN(-F^2Hi4wKXLN2Ldl9#F9 zpfr4b6AUA7(L>uZ0pBzcKc^l^Rn@F+OH31g#K3!}e?ePYT?i}GsAxW4$k&Ly0{urk ze()i~cZP5b{hJyg2QQY6@7=TehXtN`v@R@=Ho%QYS|Ed6M;HgB70CmM^a|&fMqT;< z6qx#f4BGft*y1UB_1eT0U12FE1ltHtuM);8`Sv(G){*Ozy=)h7(j672xotz%R zd|Ud#g)u|YcHkT#3LnO6vVq)#a)$#>k6AzIu-P(FCOFYeH>!e|S9y*H%`Tn~Q1EDO z$t9n&H>*Uli&%2CS6Lq)P}ZRLl}T_wSrx_xKk-~`kVdvtQbxWSo6 zG)S5h)w5N5sc(|`%ME{TR+Ce!$Ukv7+pq0F;gpa;5WR`X?QurTD;HkvG=^V)odcEd zzd#Mm${$&>W;_*(ad)e&4F|ie&uf5RF6w7*pGnR#Fhv z|4;4|`>+4xPKo}=BbNW`%gH8gv?6!?WKKEem%G-!K)8<@Dx*_wj~AnCsB&392});T zoBc{q%U^!#nK_4`ipTkF92_wbij73HdTPstQ!^Kr$t!bs$XIijcGsc~Q%r{te3n!5_3*XyT%(#wMJ@%2 za(zunLxb$h1>FZj_<8v0edjbsx6zAs!BdgGqFIx^ zq^I-yb}45kXP;3rFS89DP>nWsHn`JMR3GW7$>#!RvjLwyTk~T1R9)4)zym1Y8x(xM zD$`4Vvave%@yvEQ35q}Zl_|}{`|s=D*s-DG;$1UGk^by+ZxS^#qb*7!rq->sa)+`a zSO)s9wZ%j)qx}eA1fMecPlpi^^e%T{xDZrRsO;kbD&i~YW?^UhRirV_XBD-KE# z^M9`NVL-1;&t6q@2uYXlUqMb~v=o@(UQj z%+%iYDcQ8Nf1Jdj4wXO3RZ>ltWn73P{a1nU!ctxi(_+{Yc~wv3s*11$n+m_4Eq5vE z>LkHeSLFK9vSiXx8RoHm?jpEVm?0B$u9KXG2qC0=Ur|#(a7%w-00scxe%~{qE8>y6 zQ}CiI!>}c>mHY6q?`~h$)y8@mC=H%Vl%3mode;%;=md#VP3-6yv|I{bk_R3*OqL=} z0t`I>c)KMh1Gn-A5*&dxR`JxhBCC}i{f6gSamdoAV(cfukQ|XL zw3|keW0xUH5669aD3kiD7AVUM@gfdoR;mO9|m&hJ`!;_Nz=M#cNlN1w{1X575>n*w6l%~zO= zi-X5jm}S~|4)lC&a7h1Lw)yz5!(waML=uKj1cb)7ZP0f1-8<<)Y(fen^y1FTlLgHXeyj$YXMnF7MN=Z25@<7=SX)L*E%a z*+LL}hz~&0juHW9vwSh-@Xn!x5d|u&27dU`64VbNUDA7Y@rIuEg@1R2FsS@6yVw9e zbe14^Gh?n~w;r)Kw62hIS{xs8N(5hA;;zdtz%_0FY8N7eUMlvNH?R)o(@EaL00q^5 zk+Br8PlPBQ+DBu=SY+WSB*C0F5(?yc!di6pNdkbMFw`OHpqg;mh?dzR8zUFZ8dgRM zEsw}9WUr4=^ZJ|a_>t2aK3m}2G-d|`&+Hz7RW9@rE}v#Z*$_hzO;Y>lpxapzr30P( z3TyciYo9P&;D)~E4f3pXT>Mqj(ja^9FOvK*CvxxA#S6yb&6etQ-8^-dM`+$PFmnE+ z5(OZ2vPXUEgWu0Kv=@OV#5D+i7+jc+Ri#;0#=noU??Mg8PDFZGgzm%g+31?uQp*TE z&eK%$h}yO^r@MRBr1QLp1b;SZlByIDM)^&A+`M&0?xQIpctxOL(IUAN0zx>U7hMi_ zmP!AmJhQ%d7f%8c6Fdu>Yqh`b~hh!o6iJTP!fT1Drx00$`k z-MT$O!1(Z9MR~G&lnrUJSD#zkt1T=tw>qP*VGJ+&M>a45y-#AchZ1|EHJ*f7pbA<7 zgIkwdUgXIvonNKO2)2L^xUt_J(Y~ehSJi1vB4?%-q|MQp5Ya_5J z8xtyyLN8=zw}ZD(&Xep1G9ST6K_bE#3ogjzj3L=Wet2~t3&5}t#LUvz; z=?uovUJC_no6;O~l-}?}0hGBtT8m38p^(=likKO?F`^moLdPf8L~;AZFbht-_F;1# zNg_dVLe|>)VZky%D{x1n8dQYrxVid}n49t@!Kp*gM?~?#Pd+5DGu~hR3|#SI`c+D4 zGY+Sw$yyLvLOwOmwQ$+1*M*#QioBcYTz%0*v`)*IdzyO5UFSaR9>XWep&wku;}v9a(u zF1!fJ+g&DmK26$<-su$)H7Sy;Xb%9MaJF#_TCejCN8N0piG9+n^b~JX1n`qJ6K-3^ zNaehC7H@LD7nYyMB~yjUa6_V9ZuoaDbesJn<|VZ<&La?@BWh%pY;rqMs!zY7_dq=b zIuz+c_^!_gt`7G{dQR+`F7T4QVP@cv2f$Kjop(0j;x_t@>@|tAYtB4Ng%3n%gr-&H zzix^n_h@Q8Wq!7!u0|u-f@WE8>dfoW%-@%VCLlNQkFWFSfM#%T)~<$Cec7i&IjXpV z!gIv?oe~0L`UORF4DgS~Hc&4?g&u+06CGe3wS!K4$usMqr)1d`>7kqdXuTpqhBk{~J9if4`TNaR7 z38>eBv^axL6s#iH;kw6smof%TUr95%9I{!_z%}>7Q9hKHQxS}5Hub4o@_vzcdn(A9u2>t5!*r7GnO_k?K`#(indVv07kbSJr&a!ORm~>Lvs*Jlezfh zDSD#@^BxJ!PZ-oPB;=PjR~ut+$0A$VuNpq7M5=K?vT?&S?7!R+ET!KV^*;L=%T^&#M=ie#~oHkP~Wg8&YQ4!v55h9FAcGG%)|2bVp{v18cQZ{RhK(kOCwZ5R(C zUoWMb0pCNRpSUPlD>1q}PSF9RYtBsr+Frjtn~XwtB!wKUh?yU{owBZ-9bBAlH^4<` zr!>sq$C43@icHpwd~O#Q*|hh!p0UaM(=Ui0bj$;&5)aD8`E@^NN$_HZsVIdbhzEys z=GM%*;KeS_820g|WwHCMw+}kETpW}hhf`iFEv{VusLy!tOWTdJKiUIq|NX678Q^OV zS{`=kC}ueC(73!hvHts@f^LIScazINJYT?#)TJrru;ues=+bkk(`8Ra6$|3L{C%M5 zl!D*n?cKOf?E^V{YE#K+IO%Ep;yPqNn)ZH#h9kjpi4KdL1(;|jlz8559-S# zy(BGqIEceTwoe?PgGwKg+X4#5fD!2tcLnB2DWgBwv~)0*BAkc**)9vq=}XJGsv0_0-+8VGoo5NqshduLtVpUzl4Sg*k-iw)dUfCoNPmngtHJGlKj#Jn8d((TF2WM&N=+&3M zQE;IbFA(K`Myk=@79Q~3T=w@T17maCv&nKG zu2Udha@p7>VSl(x2^xzilp9+%ahnIIeEi6=L7o}IdPxAi(8yKJ2#g)P0OWGIR(0FjYH$w$$2M~YeAhaj|1k5JX1lx)#yaZ4AzURf_^oxlbTPC{P8ilbxbptER8x!aMgOlj1ojw7Y(BUO6|^j3(> z6qEJmNAv)U-Iee2e1&!hDy%ThCIOMdeVBi*bJ434Sa`25*QJ4G|bc) z>Na;pSBw{3BP_*OMN7SPTj+RepmlV3F_uI=%HqIW%{~O$x%vAEPx-Dk`t+zGQbYH1 z&hB^3{E2dV7+5P~>yT}YT9QYTnUu|)q8)xMP)AAPaE&6cWd#uT^NbecorJxrou{;2Da ze89r}!NPD?QS`!^U=5N#h|?6QBLR#_CMe{Eh~oqpGob|IchND-kGDLhKUF^7C-l)M z$ZLt)pt*uKeCnyZi`D6mi*q1Kpf05=)G7chrb%WbbB}j zzI{a$AnBPP&?%#}oP@&AzPAiTKn`VnsGK)(cL8EyN5q<8@Inq^s9&*I=fCd;o@BV~yx=!~Yb;A8hYh1-VZBd*BNKsBh+FU&$Q5}g{d6elKIb5+qJ!47!NsSt>m?k5UVwu0e?tzj&hF1{y2Ldk-}3h?EN z?(&sCtV@SW$i;|zL7M+9+AR9eHq>~lNhRB=lE}0+k^kBJSmCCDPNz zJ;$d$!YocESL__hachy|PEPD;l>Tv}ydj2NE2HOZ#iP_OWMQ1HZ#XOvVRHF(L>L}Z zYs?;pyijt`YL4*r7WeFLMn!&%Z<8ZuU{*_<&qtG6-6auhR+5{4dK>{Esi<<+L~NJ0 z2iTPy`6}bYMDk27|fSvV^NQGVcZicGgjPK#T4AjWzMc5Tw86_k8wu5u1%*6dIVd$mS!#^0r3eR06h$(Qi^s|Tw!-Zaa^ zE~To-aB0c`w?(nZ05M}l3w-U@l?r{H&E?5*<+^5LH=qy;wS1&$BJ*8 zeYw-+JF$yiii;wCa4qq_)^8Wo{#5c|vJ?ZO8}P z%t2{j$rHSuu1UPDe6x1(?}q^Ga#aY4m4z!lc!1g`Ybin4HC0ySL1%7D_TLOLrFnR@ zI@jvIF%R)-b$pq&IBH^nY{#Q;#YQ3Rxakp`PkQS7)D=>y=SNb7nh&cF_;tJmK1tlc zm{oM~cQO-Kg65%mn(5#^6vG+RNyF!@NCmgz_n-ON_%a7Rzz4sz)@VvDo;6PDEZfP$ zoB`rl0iv8v_|Z~N?QOfAK#QCt>>qT~x0-mAGjB~C_}Sbvpee)g&Jj>|UkDM!h%i^8qAuGqa^$&tKo<*~nBXIZ6SGRAl~ba=YckpS#F z5c~Y@{MIc5YmEG8;UwXERVMd=^Ufxc(&r)d+SFUA$W72~WF|;a2FkvfU;98+K$VOG z(D=R%5qn^a6@32w-7})r*X>3~!)58I9vw;t|hhSXpJRxpJ#5+=BTh5G%g8cFvJ1eN%}#eCBE3IKknsy>j} zL`p~_^r!Kvw(p{HpfU+bmhG{vu7qoXZH?S{pfEIQ*nCI)SC4txfVyZlfe^B@!C!mo zB56jphVqLT@oz8I-4VTk-VGgzHa$!z@^mHxwPw9@#TC61CrYqkr=59VYVl z<5-dzUnY4kBme`osUHkEK&)yxX5|i+#B`LTo2Yhdwo@jfltDAIc^X?g zrvxvJVsmoQbZrjQR92{TJI!->6Yh-HQ*h|jjPz`>E8=0vD&{%6wR}_cmz&11sq8-A zMB=;iN#b^FnQW`@hKYyjFGMkr;I-iepVo=Y9-5wIv?RjUy<>1gB7g`{i+5;$#F8D0 zj=VQg0`@sl=7(7;b|LW{mzX1?Ws^!<>hlU3<0?tYqEaL<1|p+u>gr#0H~+w}wazG! z+(l3RqBYAI1mx<;lhxokdJHVi>MH(L^2YR7;lCemNzh}8 zWhI(w*IngYS$BJRd=II?adh|5duItDZb&pSxvMl;JtGNVHc zXZsbSI22M<_08{j%ty!vlD@#-V6~;EudUUp(t!ut=#A zKDgn0!Sre<&>#00hT49FXS{G0cI+B|OZ3VW^;F)*dc~W}vK!tbZUKgchmD5s7p|@Z zx{yfI{=1EU|92lr5p)MZPl1~Q#z$pg;$kCWlrgn6ceY?5VrJ)HV@=7U1x5ofb8vC} zZwPDDGq{58#(W6u!POPr=GGQ*tCziQYez?ih#yhk)>c4=2vJ|wZgommtVz!G_Ya`7 z+<=_Rh28CP|0$JJ1nDw_84<^J<`?#K8YG*ndEUjN!T6BC`8hT8CF#M^J z@e?5rUT{bnAdz);JLZ`X*+|YzoPm(tfixvn(8G(zFRB9GFBrbJe{71l~HhW6y5?R&KzuXbt8>yKrw8M$DJFPo=%tl?&E~iZ~ez}?H?Er`+j!x3#&>) zogExSAhJ6&vNU^-pBo&7$hEQqVRO3u$e}NNrPtK~;JK%z{`@3%v~?EtWfmQnK!^aC+(*7l6*8 ziS?Hgh_?x3sni588vf+P7dqW@4UlJV4CbKkB=(z291{`K(=R^jpT561`}7mxdGuzKAG`Q4AuvFi14J@{3N(tJ=EKcr znnF$x64PAVJahXmY(NjCVX8`bz@0Vz6fA;L}m>0mQj(SQgbzIALDtN~?Zn@=C&0I1ED|q|*mwruS zR8cUmUp2zIzedjsZ7}AYTLT#5?P@J!GFqv0N|(I|L1W6a9fa=rn7nZ zz4xVX`S$aT%cq~R{}sFNrg3@upZC|F^6!!3YbGwWm7B|F6AREY#ZPf6@bUa;Vs>n3 z2GY`QV%Lvpq)Isdsz4iXJzdK&G#I zCFPY5l)ZLuYe{t?8+UnWdM# z@+Rkf?7eBs{M2PqVGEn7yRVJ$f_*?0}(kLyl-T8Ldn0-wIS0940$ zQ3N;Z3s3Y|i(~A2yfcVx>jJV{RtXdbimycpoSxYXQ_&2z!oSsiV%VT-;=wu&ujW2c zjD|H0{8w4k@3IO7d1-fvxTRA#;2rCDT;Y|bLihoQnm@O6l8#OsFiYGbaP121QZ90% zECbji4J7oB%r~=+XQz;a)6MpzL{Bym+|B~u$az8|2wA$X*PQPLne3MAX5T&GUfpi zooWSw#Q}WP`I>U#5hZ@``PN-`rj>En+ml4m_1hy*kTxa{D&E43Pp95oz=R9NekjA7 z{w%dVk6tQNFauw2!g^8LngBi*et?g5PWzK1k;o))%V%X4obZdMnX5|y>V0qlbHjoi`4f1x=UwG*zl@>O)nvg0jeVXBpb7{;d zGd4N%i$bSEE)5Dy1Lovk=&BV3Y!|8|^E}U_Ty-Y`xZkV{ATW0ptB-OjwP`!bLZtDo!#ACl zJecVFl!%*4;CDAD`(78hZ?tvU z=OP>Avo1w-Oy}E@_Ky*3JjNGG0r&u3hWPXqgYneXZd?*Gb;p8!{7H!8&Y1(S=(7z@ zICR6Wi1mNH804E7i=YGWp@F|BMC(v3gpgu(q4IYYe0~js zJ#xIQhaJv60{n=mjC~Y3Bn)rLRL-QbvEq$F`K${ZP!X@hdBxYtMZIjYO$BpHxz9D& zN!%+B6XhH}h!#cJ{X6z0?ejQAkEgAmC~2&UHCUkC8n+!9z`LMhMy&*dVm^x%KGt+> zC0bN>3Xt>-3Y^JZyTep0`2tc~?ZT#l8K@I=-SqGu0G;Jy21wFI}4Dc)>*ipSzvn2$~ zWGMP^I5rKd%ad{OAD)&KN#Tdx5Fz)UITecLrK)Iq%R^Z+~vXK+}13eXA z%lH$Db*utpWlhqjf^ufk-C=KDgW0@J^S205tFx0R=>W+2pu);Y6`R`HBfmszf7?kC zEjdtoFMq8B))H+D}12ix%v4hlDj`C6L zES&D5cw-%w?t9;nj84bOS5zv!&|pYnQi22&05M(c0#+LjArs1qS^QTk^&R`j&Zt6m z?LyCR?J?F=tr2gf(+;vCHFT2Ww{*xBB!CdAGBoc!d0%NtxaOdmki7P_5HO{CKm_Iv zeT|w`y%$o()`A{+p+bM@8h=!jByW+QwO5yAmzDn}-r#0Lxk56aAy#fQyr{q2mv27zp1;J9FCZOTRbI+Iamd7K@VE2J?WP7p$+hkF%v{9M zBN=0e)U*|iOLYVZ!Jf;~egSxCH0vJF%inEQDvTwcL#2i=_HlR$^{Cd*UJ18*;QYQ(UpZJ^ zPHs-hP<#ib&*x$8e+5=vSW8TjPG1Ojm$|rEe~Xxz1Eu1_gbHyr*b)oiaiy_Dfv988 zGzg+fD0yCYg?FWwLjxe_+$*S;op!R%=Cx-JVm z)(o+RL=MqUgl^2CZP{e{Lpu2{(K^MahU%yAM4M?aX6U7&(voG;XTfc90J>WU%_R>u zFXIVlyNHz?zGdJj*fV`PFWtXHt=nC0y$Qw7C6x2rs!{b}`vHlYxqsO-y6*z7|75#= znf>k2G*GA&L`xf2An!PS&Ogtl?h|ff>Pp!q4CGiDTCiu$DM(L<38N!Gh#Avly&qH0 z?z2X$^V$pC-N(O|mj>!m-vtN=hqaVrdD6c+t_SQQk(jOH&} zaQL@*U00%ssS4^0&#oycovkvTseEUrsE-<@RBGLm2(SP3ml~ z(t511{~CZ(2;JqrO7&X2iFUI{q9}3VhagG|6*HkR?d)AyNK3&-x;_=KwyN?AhL>tu zKZIU^5>whNlFcOaNl?UaE};tUZC^+T0+NitcQ8Mw+T^gLJ+6giYKG7lE@$jhQj5vV zUmU^WYP5^iULhsF(2w`etgC#*M$Ooxkd=)=g(x6yLDxrpH9hGfA!C^}5$cm^rL#FB z+}%HPcN~+By~4(L@_T;ogdU4LpV9n7$~V{ZpChqCxfOYvksr?i5paFi^{>wf>d_Xh zhi%^%tvqx~tN?;J<((U=;J-E!{6zzBFZ8I6y`(*}!fYn%z^ZV>LaP|a1P6J49O%Ph z87%>rlaCfP5oy2$xGA~HYw=YgGGWf{ox_@z3XAk;pN=*Ibd1{?-~ZSL?aBfuSn1_Q ztS_0PeR;=vv^fZ-6PqEFEZ)pT5(af_Q4{-0WBP>}Eblm=QRh!HNw4dl=$X{nk+3`N z*X{$@;&5ZIW_|yVtZeMKJBoR?`=%AgEfxY0?%ZD%>Wg+vl&citNm=Vrb?kod0a2!$ zk>%C6BU{rBI#|AZ67%URY#rN51d5GU6jphqyAGn`*>g>o#))K1$g9?^E}#ZvoBgtH?1ZV@RhS{E1Q)DAvbT*CG9Cn^Tm*K; z__ZZ?v~}Ai{zlLW;E+MbrlJNelw%esn2L>H*FcHFt1oZ?Rc}hQJDbHC>%1#poJrB& z98CyOCw)>MqI274LYV@rQntZg8kWJG(}Mq{42E-BpPy*2Jd+PYFpa|QtOW+Z?`bP^ zKdO22Wjp$~ysYn-q=j+t|n`<#L zll zVH*(P42Y#Z7M2W#+A!Or0$ByDr^t*v6JMFrqMHoRpWHVvU6niodpis{s8bDqrRsxR z=5Zz4kY#ddfU@AbI(v1Kq-G}O;E4Pkp^;^W6UVG`;SspY{4&yfxs>)jl58(x!{l-a zOR&k5Gm&peWqPH+M!mimX6hmJ{z&t=?2_tJ3x^OtCwi*JusbjpiUj~dd#($CaXN~+ zipUs9hMsW8*%)EC|P%C{I!KOJcPLA#0cj&e%tT^YV` zgC@Ck_fHR@t7-kpiKI3HtwOe(Y{RS<2t%)k=RMBYcg2TKD#g>}5T*^_SWHhY)xsmz z=8N^znf{$D-C>HVEma4|Ns4fwMQ$O+G){-=-4=&WM=J(b&y3Og>&01q_>Mk(k#Y9h znqQ{qBaAq?Q*C0D_%DdprA!{K$?V1mzH~4@Wr^fM9KGwC56+@KUPN)~2yTu%j;uJ) zX@`A>LWxlh>FXlOV~E~V^i=)D^J+?Ad%B|tb>9f9w1#lYuUA$;T6diCv64$}Uk3We z9sL>V_#L7wS&geDp@G*}_$_K$7ajGCn4}7x?c7 zS_K<2zEQDLEy4}p$S2t!zp!_J?|Q@y{OrsUFJkPLTMGpu@6mVH61ayO(pZ1s5e_Wr z5Q2k+`O_;MQ^HuEDR+J*XaAtZ>)Iw5j3h7fNgi(Eb9Gl7J61oL6vf0&AWjE^3cB`WZA-uJj2``mNRmMyK#h)fJEX|JaC0q=!iApWb(aKY4 zqyO2Wga?uy8$5RbIfI<^)JBfH|2}krva&|NzwvB9!6uh}pej4!;eRM=7o=c~!YeFy z+WJIMBqDJDrcTzBkNX2T(|v+%gxwx5@ax}1w}C1EY%@bM=0%v4#%SUDT`N`kA@4Af zJl?#KFYGk8?se96S=em)zi#{OOvJ*vQ!Unp~y2^`zQ&x z{yBU=dR|aU;v-6N%%x{8&dxl&YB|=FEMR$PO`EgMV|TrBs8e)DplL9R+lUL1-L5(j z+k?Qrm_Hd5P*XdwxYj-q4ymeW6(~nn3wvER2%p)pfI!n-HS-83ya3y{;F4eI))50< zUSLcQr`_ zdhi`QZJH4lF~?JRhr%5Rg6wZDro3q8!y(ANvDehg-M{lzrK4eMlzG6U)*mWCXHkVp z8})?{5P39>J*YrxE$%(LaT2QfXK*<-7xjE7}SC`Y-N6|u*uE?pkI^8 zxQb;=79e4#crXp^DsrB&Yj~KmkflsVeia!7u;YyKF06BJJ{?9&dwKl3l~?Rhek+}d z1x%L`GqTdbk^z^r>8gd8KZQ-0sAU4`3Iz4#3*ihRAm7<-73O8$%V&y~$Ex}nbR|Uy zOt4V_VM}FvAJcBvxI$<6XF<9xz^b$RLF)UlY{}ZOkV13`z~?6zd8* zyR;33H+SV}X;uPtRQs&lPs;OI?P{-HO^AF^r#+g+!I7#L$!El6in%6sLuTV!`y6)R z3A!eJo*MKu56va!t#OwqnbLf3TDt4|3l_3@$%1n!>eAwln+J~4fjW{utnXt~M>)Q} zh?^L7OabpL*zgWiLAeP8$JGNUZ^M9xj%9r=rFia>Gx?M2LCjGvW)~Jp&){OD?+qZx zG&o^QWul*M#+v`-i+D7%`a6fh%_F@^KBs@x=VIFKx?ycXpDwGU9OE{w#uz7F{4>mZ z#v87^fcGoNpB91O7%}#hpR6P}7C#?6V~xD}N~Ix*|2W zF4bTWGj}UHN7hC@#Vg;Zt=$rjinhs)si<19QkCT~hnb`(kZfc7fw<6IxPl9ZMQ zoz1C-4e&uYIn1#QJ6AZerR&oh6ST>`MJBAK0op7~~8HL@AwaFraYBh8Zpck^-@jInW83 zkr(97R#U(MQfO}1~4BeLT+WXslrIv^#u+C5>e(65?X--zfiRb#%kLapp; zikw@R5(hozl--Lq2@pJ%T%8OIze%k{PoymvXw;#ZDtz~MFE9iwXLE_fvQcC3R_?WC z^}@sxe3se@^}T_!NhC)wg7t1hGyjTI{6p$z4whI{<{!Jtpo01!ZN_f0ze}aU`phcC zZI)onbC-cy0$3_Co1mmCurv_@iVHRN6K2>D)Y!c1@7JqIp^ zaz2dVF}5*Y?Ft6uK1tmj-O*l%QV&Vjjog+7JuW-ys1)R2&m7?_kD)!g-p**`9gNc~ zi1FB{pLmP_4{|E4a0QjrQ_x{8X^A+x?grJ8T59k=l0?ytmaxm8tNUx3RZTGIdP(_v z>qMFy?5ufK8WXaxe7NLcJHt^KRa zvPW$}Ii&|s*E0b_hDijurVl@47`fGF4n3yvHskA%ltlFd-(i|Y$^VnN`kBt|_GNp+ zyuUz@`V2%}@Dj~ljS`kb^|$$i8hu_}rGsv|knh{XhPPQ|rHqgivvr(frnRc^NYniDwDk-^I#P(pZS7!XN~0Y5pyE%n4J0(*|S75ig~$=1>lAjgtf|LUfH6ZSKR(7~y_`$|HY7Cnw4)uVa* z9lf}1VHMv8e-W9CnOpSnsH${1Hid->pM;vx1hagCutD(!H!?ZS$M?s`L^(*Lb}sGx z9+9brNE_H(S3AFSg2<$E{&Vniviz72!V3X@pUd%)T@I0eriow$r`p~ra-HsmF+W(> zG>sw_2-dNaut_$?>@*7ZxKOYxr+84*Ui^&_%reFpf7%KBb+ALMecRd4sl*qL5OG=~ z)dCW!nI;Wn24|9b^p}v8T^)UOMiAuWWH z*|OGFe}uysYCdJ;7cBb4-{GMwn5lJ1HHM*X4e${pTcqu!z*cy}Suf7`kPzx|%2DF_ z%=WNmr35!Q%rT9zbv8$FF3>I(ybye|Dl2jtB!gPqA^c28AhNAB;!%+*ICwt0>$i&^ zWQ3NgpK>230$->q#=IspzW0_)pZ~+o+eYdbf4wN@300$zCXX&X!i|Gk)QJjx*PrQZ z6b>!ru7sL78?*)I4Z~$TvPx4X+1ne~TzjxEri$y%Xv0BF9)FX4c17~m6O+Ck*#?Ey z>m0aqk@nn~KQg%+WTal8hhhTv`DCvjruUa__2!rL^JuhK%Xxzt+e5v~m_0WpSe4bU zf4cp`2CVfo948^F;6=_uDMRB!ju~$<t zF@snurp#^a&dyR0S1Y_ITJ26*e~v#`2qm)9J^}$FRYxwX+tgcRnwgI^20<#z@Y1lR zYi^lf0gJ`nj+4@fDU%drLb>mv%EVCw+f5u-Zxwbga#k$kl|MV?12!CGT-b6C+_Ro~ z*?u!|F6C#jawa^@ZtX2G$i%hG2>DLAG{HPm17>&1xwvTyusQ;9gfMR!e}xVkFpX}K zwfi(17*eDP4qUR+4cgy_V?ru+F&rYkBa(#2{Vo`GwdumiR$PPSNy+Fq#Cp6Z$$35* zSU?kgd4t!K@5>~|E$}Nh`0_Oq&dvk}ia z(E=6O_MGE|8j1k*t)3tHRwco;e^k42Eqgu`D+W6id9&NM z5P=0EJk|-B^4IFk)djMcTFlL?@>1OA4kkhhMiArVM5-P7b#r;a!XiE9F9!V1*K*Ze z87L3B-Z{in%DD@1+7z~45Kzr)L=jXWcW=Qd`ME9h5I&-+t`!YfE^1#99rTg!Vunq)KD{1^R$ zD<<{UMwxpBagFIhUDvc$PMpZ7XK6!q8GF~QE1Gp37<-5`C$gGO__*(u%B6WC#c4i6 zQr?MJA*ycI8B;v*KZ}?pqv7@7Bkc7Hf)s$o8g}kDfA8AOiBoANKO-YGVm*jCZ$tI) zI+%?ML~W>f1%6Mx2Hc{v_I)3rv!#p9-@~r)N4)McUlAu@8$m?k_zvcQH~jcLbOLg2 z`*)cu6^uk2*6GC_L7a;`t~eJ>(uKM&@~=Dh{ZA$cILcJI?p;};%H9K=l{)orWJ-@b zQLkGgf4Z89Fs&J3UHb~VGyMDw8c;$svuUCWWJ$Qc69O>Xmkm6ER z+Wk^JH&&;xM0@V^DUmmgdI-O73ysb$UNPb|e{fmTe>Oi>J*?0_CJ>$*Hk8;Ha&!^F z&Zn%?(7*#iK6%rK8wyEvzoQNFS8e*cp&y|Mfv>=>tWvrlc&X(Js)He@SOn-GOhNMy zn%I^fUwW0sG7leY+?rh{7+5GtdbL{iUQsTs=ENzj>(7`8++>ED|K>=$s#Gg4R>E7Y zf1oH&2zANVf02^)D$)rN1dFE8N%R>j3&`|nae;ojHNR4$m%NtwcCUJuPvNJLk7PHI{S|p^8 zjqgZI01)(MgH7>ux+~Pl^+$xWrva&FGbPXMr^c-e$;8k)+?<_YvDkWXAexpK_uuan zeVoXU{e?4_0GC0G02gF4(rQJn;`v&*S)+1dT17^L8R2ONJ-j@%=E%mCc^OQ*e-1~W zmQ5Zu3oG?TR_rFJM;L+a-H61OnDa*GlWXF^Tb%P zaW#?1>DKD4hTnQGrA2`46}qh_sz@tMO4Eu;bv48bJ;^>XL9!)6mNQ{UeWMcyY3gB# zY-D=VZgj$^*Lyz=_l#`3hp|Q?JEi0JaU%I{kO|o0IkP7gWaVn`{JU(=e<*OGXpU!f zilDCT#Vd<1_@$-seW6ECQO*qg;C8&__2*%9WtZhf44%VPB6QYC9cKA)*~ozj8%{hJ zkX}USj2^RVI4cYgAl?4WVnZ6+*l>^~Ce*P+(ojFY$xWxyFQrStcYqC6s_#jsJk{)z zFBMF8oK|2ezHVVSB>$wB9p9-78|-CORz6_70f_d5(umy#e1a zNsWYeV1?Yip*iXpxQQufo@u?Z)7uD8kvgo|IRfh(v=7hCXm!0a1Q4C#6B zQv)oo<|>4^uVSYofZkl$JD;B=qxkRBj47*30+QLVSn3BkaOElX1oXFP=AgP9EyS82 zmyC9a0e7zr0nwE^7U*9&=AHmOSy zm2@()e~QYg9Y&WlzLot^Hw?GI)gvCT?+9QzYuv_ zhcpn#B2Rg}fwih+2s`NSLMIw7KUKlUitw(j<~C^sjau8_3Pkti{80&4q1b@mN^$^y z_7bUllXD)tPDeUqYNv+zP7bQts?x-H5qw^Ff3S_y3fcTP($&T^O+qdbjAn?tu6b}e zFW%X;iMpRO#gOI}(lVUi2X2K?_Ku4l5N@~lIo6TGDwYO94x-X@SNC=o0Bcd8fvoZ@ zm2h++9rzHemy|19TUI==gnKW{3rTJV`HjB>btNH!v728~**T>ZB`+>gP1t5})_6;A ze^O(J1U*N5(&EZ?kPE*JmL@iEFwE2zK_oSF0el8(+K|Ka)?ptOv2cyrQG$I1&xPcj z^lQnK(9ET{PsxY0Pu>N#>#;MW$(AWTOWE zvg)pQOjn8}Jc`_qB2+43en6ke@52kOGqF$6* zzUI$j^GS~<9lNj^1DWxzXe*+$H64OS6tf6+TaNO`FDSAU&XwF#uf7XHk$%s2zev1h znodFl(%2SLdVQh}qFm(}c#fx+Ea2kFy1&5R!2YzOBzKp0B&XCNI2zf%5b}8?)_&T_ z=pw<#H} zy>+kAT0Loer;gR%pK*v(=^`!Q!h*r4S*iImK9$aD>P`*q>Pdz9Ut+aNCXEdAyeedw zC{cG^+QZe-uXsUED4= zed*5EY}InAoVwQIBIbyp(kpURW#b2bS~djH*%%fAc|G1KAChM<>%#!!KM6z@jQA}Q z1;NLUWO^Z*rkaT4VLPXvuhO{u7R4x!NQ-EO4mpEk@G?j}-nPr6@e{0Tf8f5T%L|ox zN>zMuFUj_VD-r?(PV9s)f3n$2grl^lm-Z{FEO4kmy^ECnwa$!yE>c}h$zC*mIdbZo zFXw~_W%I;^anJ5u0jld!!_6_Qiy<#{jI0ux$R(`Oaw0b@Spv(1;-}ze*5D(Nd=EDO zM7x{>RKtR5Bif+Rjs13CF3@(c-x+!ZdM+U2{r&=kl6@=W&3bfFe{+zPRxsB#prTX5 zo%@#;@`MI-4nJbmfDv;x?1(i+GEQXqWNe)T2x~(;j)H7njRRHBfvQl;a!k4eQ^c2* z9fcfxtIMgOEY69lMHo@6iyC+h5SU|T&5TTShvZ0?*jLinJ~6X_n3kW?PI9O+B&!qC za>QTc0@Ad~PW*yne-7-$B4g%0!(YX{Hg{7c!w%BZTDK@dCP@0n6Z+2#h70ygFmv*IV0NK|gGTBb1H=0wJc0xZ zS|-AmZj5_8f2Xk_6}x8fN6vo%;mcOiBGfZ#ZB$+HO&<_zj!pfD2>gJQM-Tuj0b6e}lGaHwGpfA@GeG%zY@pUzLeq3owF5Tq?M zMNpy1{s|lOBA$WTX);leIq6v4OX6|Fp4F*pYfnmwvL^-8PiIpXk%kXA)#o z2H?Fef4mXywv?$1hyk>$`)377tFDc~oCCL7b7z3Pg6PhoTJdgG}7PL~LC;d_N zUUQn@?U{w&-5d$A5-ndKHY-xj_9sq>ZciL$sdwyqFt5HBxH?oGC=2bT6rK#(7M)Vb z73N9lzp?kd*(;-H;E1GnPB<#93xQ0+YDh0Y~Mj&W!V#?>`QTltoclz^B=&`)jw)$@dxP(2R zWQ>lE?`fslbHi@L_!FO(zo2xtYlUhr9cvl$szcc|xEiP?ys!VJxeNLSC$h7tLR zcVvp19MZg*zNWm``K{3{wjA za*dk1y`UJ0@SG+pT(i*IZ&H9_&`}r=rA!LG*h(W80hPnNM&@QSCqS{q(TiiWfBC8D z;l4bbtn2sHrecp-?t9shGp(eK&}ns{j+&21*k%>Jr#mBl%CURDtuwPJzpAW9hUyC; zDC{YSO>@qmPMCN%s#&EE2jaa(pYkdQAc2R9q*G3WDun13pQlca{;Zg|dZu%SFD5Z$ z+M);FKE!F(#o*AoN>40p3AmA4f2;?^YGK@(D`K^zb^z&Ze{<5xS@#_aO^N?=WJNj9 zd{@O-x$08I=kmS-im$zQj_p?O=$(#q%UQ_`;Cy;^w359P(CGX%fo!gZh}LIgL)q(4 zsxm~sSRpH^a1PiVB}eB!+@g)6f|N^tUQ;v8Rx|icakSFOJI_A}D!SK?e_8D99ta0) z-vgxx7kf(-EQ8Nlhbld+J2q5BxI2l;urLvqFeYW>@VyyGEuQv?ha(1qe-F3b*hURl z&l9fg_Ar!r<00Lr7JVCtj!*xd%~SR}(q11Nw0#+-2EN@_NC{PcRlRN&`h`I)J$5LG z4*lB(Yt<(IF4M$uuNP7@f7A)!ZYQ_9)IP=mi_fL;^m?%vZf%`c@OMOl#1b*f?>gQ( z&`Cw-k+$%-#^Q4H{$E@_xo4>@4~tN--9~y%)?6pX!kf*_3&+*XYr;X9#-3_e&}Sl- zM~+c1>CxGrGG{oMhNlSOmn~Zu4Z)klVCHpOB?#Rc!IBlN9bpBHgzB?`J)7jc6?!c8Ro&0}-l;|bO-gR``wjPmVC~W}u29B3 z=+!Qr?Av0h{lH`Vf5T2k{>CrgAF1C8cy!BDB~WJ~f`27U_&R~jtX-eMdY22kW~~1@ z7Bv!Me6dSCh4gKCRaoejCM|nrR^+r6H@gv{kDNn5NIj0@UN_d6vn|z(UWqDiS$3Ux zyq?O*q-~y1PQRy=e}&QGU~~~-DhZf8D}i`Rc;~g; zDn&Ym$k-zzVs1X=0b~^%hh`F$wwEslX9x}K{n!3Oyfb*($w-g+UandN&~1!GBt~h+ zpS>v0V}I~0jMwgO*;Gn&sh#z;0JMI!vBE8fe0z{scsvdB@#+&+QJCtgp#08$aer_tzLah!meL_3rq&r69aA8of1+Z;5le$dtt1dCy3-uHivXuiD4LQG zd*XAg#<|_1k34JNF8_Nwt2M|_7)Z{l304Om!ZbX+T)c-~dpfq5w`fDpphj_Vkc@IU zvcvRqrR}+5o;2PTT(CH ze|i~vpd0&3OKsDD5{;$X0-^MAvX*7Jd&@?!afsby=mYaeIqE zi>9?yjGHUZRihZNB9+Qilrq66u5@Yq|c1%*Xt=yqWYsosb?w8EGW*@e_fC^ zYZS`�!BV&%RthEc9It27A~8Nna8OwT^>_mrlItiD>#A5RBQ~DVV+x(m)!bhi%hb~HJ+Z(kPChv#a z_vV0*V5V{NM8mM0-7oZVJyIHhe+3loEt8&%UEm-q7;Iemr1G_eS++VRUesTGbVoXr z?>Oi>;@2iJ+jN;3wMJL1UH3p5##O{ga_c8ZYBCpQ^F7K5&F=G^I=F3HX#FbNZnycV zp%ysXOzjnsN?$Ay>x=N)Fy5}*7VKU|vP7QCi zAyuxfYsXGrhb&%6t)MUgHHdpokUz~uhgHRJ7a5fEoz$z8$dBC9m7;p>Ix)W6e!#@& z=~UXJ24*phC2TbO+EphAarJaLkX6@$J?Nro6C<2*uy*|cinO#;W)ZqXlwvSgjH>9Ou z&@->t(|l8>Y23I3#XU-I>E9r8DI%vFwPTL?GE2DVwE`!?rsM_e-fZ~=&q ziBA2_nb|%Wjg6O9e?<|IpANIOO;EU=@O+`>_x_p)_nIk8(97Ds()&$JUnlfk)w9$91^xGrnl|^)i&l z8IxdoPmf||fA_#hpHz2HBL0fPgXDdn=Fa7)KkRKFe<{b&6iz+cd!Jo7YF7^wg^5@9 z^yh@fe#W}{6aQmlqbU)S!Htj+RQ>TEjC!9svI1t3R&K{csWiIY;D;j+ZqysOQU zZt9#E*1$zuD7RnEm*2K=>&aqRUbyi>l7oUmug*Jee=bJV@Ji@-73C;P(Q!LPUuuWB zu{MQG+za1EyVx&eT0XNdH{y#y+R(~SP?3%8`GZw0MG81TtEKnwvmJ%Bz8#C|lO%5E zgbPt}->8k`EABNT5jV1dK@#Y3ScHqtA87kjlRG$1EY=I@Ficez^7%tu;B51;02o;h zjVe+=f2x*ky8?tLg!3+zad_4b(HuK%Qda3xK1FiGtlLRD1z=X*l>1;l*V#2N_uPfj zk*Sa=K3Y`Ba2_=i_GQeiT~kX@3$o@yGMu3bgq3b-70R{)NG^#m%hJP|==8Z9Wsu3* zJZW{hJ8G#!A?gURMFjs5S|3~b60cBB@U2qw>7fuKa7YrV& z%ZOl61CKa)cce@e)9LRV@-B3d7i8|e2V6*yF>F~zSo!LdYG#OShj0~3%+yr8A6ZJ> zf7vj}bZis;>=o5G)hf(Ekiw2F*O$~p!D&Z@q#$4~Z8_#&W&|Qd4>(1(V&j#D;*pcS zV5&g^NhJiOj3hJ6W4~PdM)>6}E|Q6s2eqbf6u*+x;O86KuvJ~lD5F2yMW^@8C;&Ek z>&F>AsnYe1;3o{ZGd6wA`Ce7DSW~Eqf2rgDC)NZh`#TEG`)VSOoztsT^MYLQzGx4q zn7mng#3}5hP5vE^!vTIgtiL@Zy2_RwNRxt-{VZ|BES6Wdpv4Pi=5RVCHr&GNI|u?U zQ-Ysq=uv5OpsY0Y+&JVWfg9**gOz$SoU&qOoJ44NX>M9SN)LgZqEJGentpoKe;xeE(&(Z2sUPv zG^dIqCo)=H4UNlbxzylz75gZ(gIjtb;0nstFXLfu#E_<|qsC805(%1ktt?hs3^7yx z0azXC`~wV`(q9x6?3=VsKZLH~8Mg{!ba$dIbpu@9o4Kb|*2r5% z87Gu6H+hD^oT<}V)Uh*N6GKC&^vuhwPDQAp(p~Nv13ioX3!>!IGTORmHiJ@A{=iu6 zFYe=9;YpoEm;7{hH#tz+_t6+$yf{%XMt%|p-YtErO()$0IGH#+wdfSl<_X6a8p!i-^^J3_-jG%1!N2~6{ zs!OI5J)xW)R2*bF+9ifd3X_?HQ~*VFE2O7NQ}vYm=U?X(|MS&N-0X=+P5GoGl3LPR zmv8@W0$Xur+bsFifAK&xteDu-%ul-2&;F>-wlF^q6y|M!SQ42^j!p=aqY-%T_tAPy zF*&nUx!x7Uf88fMdvG|pR{(fdtkUvfkWES##4*(LX?{;5sYp@*U&{$l=utU;&6B^v5L4MdTmgw3!q@SHdHwtMd%s!dxEIft76mKd?Y9@-^80cN19m zm6nS7($1Ju8TE)j7W{y)o!(rqiLB^1v&{D)h0zHOrmD_i-j3pa?F0Ygc!N#DQsPyw z^CRdT(!2&Ze~drS`uD+10Vww2#uu2vM}x){GZ1)lT`UBG#6`ACU?43&w$XNU{Er!O zXn!BNZ!rT5v!RZT5Z=P9=Y)L2_-r9X|FkOZ^Z23hb}~QC8w03`dWZ+&4ku+x?NX65 ze*%v3&sKk4zG2)oqA26W6oE>vQg2I7ZpE){=y?&ie>vavRYV@%sY@nixLCk}#|SOE z)5GjmvaIVFH<-E4YgA|c=g?t<=R6_(pYsMVfKDrlZdl`5tbs&uRaL{O5r#{bF6rD) zwWV5nV>Wm5h{zY>w&CrCTFS9ZjlJbj*F^!2zf)mtjyN0~3T19&b98cLVQmU!Ze(v_ zY6>zrmr!>CAPG1zGBGhUI59Psd3ORM2{lWo9-xGBIUhFf%hbG&Ny4HZwV9W;J1EWMMaCF+MysWnyG7 zHD+ZnIAb|DH8(XkHZU|}H#cH9H8L<`H#j*yT_8R_3UhRFWnpa!c${Nm00AaO#`I?l zObiT+#UN6!8^IQM3?do8Y|-Ngw!kv5ni3E>$#)FQE(MYN4j@uG2_eE~2-XE+GYVC~ x*$n)x2sWP_g3bF7!R8b|n8T(8BHa&yMSd{=07XX;1D9}l0)3Hy1()r40u`_R!j}L5 delta 104833 zcmZ6yV{qV2@GTtM*mz^x_Qp;&8{4)w`Ng(v+qP}n*w{|)^S}4LRkz;x)Lm24b-L%n zoH;%7o&o3o0EdNxQQ5LO>E7a&HuBRhy(=SoSYp^3~b=sGmZ51^$qp) z1^Rm@dwYLO5RHOB>T|Gy!^e)@`T7O;83cf^>J?b`?|>3@}!<6vc2*1`Iat|GP~l zPIfMiM*k(q#*#wZ1B#b00Zx)K9S#Z&u&}c*|G#OiPvNY^Zw%jh_kgK-FsYMI8#3T~ zG^o0c%dbflJ|m>dHI-~?< z0Vg-7_bge`q);|hj`j`lajLj-Div`IX$iNCQ=Jc^$K{lPjdGwS#^>>T3t1>ZY#zo2 z1l^n^&Jwe#3A0$yuW%EgqUn#tN7Q+j71RoeNg^DrT;rcM$w-4m!r^27g7SS#qSbjbJYc7~G17Yn6dlKIczi|2YhEq9Uvr)l zRJ=^F&E&1aI|^uDC))<04y_pmFNFu6+3kDm*;_8uGK@cz{Nso_IBHyLj{y139<#R&f(ZM4}Qpx(;t55R13-2AiBjHX>qqMFv8Ta-=j|Cg%W*US_AbDU>3F=OY? zG7)_2xj~SU1iEw3wGTBwb)g`N3WkQTY+4F#@n_D0phhn_^;XeCh(N5613L<3&qL0I03dc zYQPDrah0jZi^quX3H>&q2nt&ZG#~*}Xy3Aa_9B3 zh)QA4n)wyGMW7$YVf-!!_9mfHkne+~Beb0f8D+NX{X9uskqDwv7CW_vLW8t-Evs-5XCNwo2f55%k6usKB!~{;HuA5pPn%$rif5W{Bbu!p zrNC(2;!se^mhEM9fNtpA)gV^Fbp?0J?f~LDOt0=pVt`+cs}2|SFZ6ENe&jR34R)-i zGY#oxBVku%9xO>BxNWrx@r2!`RIMN`B0q&C43RFQHBmB*xO#7cHCtA576j;PwlxiS zh~e#7f@-B&{dT@|MRtXe?GUv2JKt*`@ok9UdP{A`-zj{VMTmZGkwRSDSo$&IUjrW7 z9n=(y-RC-sR>pfY7*N~%IxO+O+B%ta zm{=KXFe8Umc6VOaB28G2W_Fe!NgPLvou0JeehxFmO`qSi!-_&LR(%8GGEtLzZ_yzW z6ahn0V_^*0b3m4n{tPPsB}=WC4Fgu|-Gt)zT#24rvQkSM?S9~z7naxm`qXuA(ul@fl3M>->&_Y@=cE~|8W zV^p$g-ALo!H0Sv1*>5MV3Tr97+e57>dGQPLcvMB)!3K5?{)$zFp$*7cSa^pbZA`|` zyWNXjizVp=Va1EOQ;~~FHR}d`o9?y=`vK_1sj*bMp~&OoG5p1R01P8|=i!-$yvY58 z8U`5QbG4i7v6+J$H-fFVXL=AXmM4na9O8$$qTKkPr8_( zRv)cDpw61&5fhS9Kq}uDpH#0I)lIi%T&`trMMDaks?)UI`Mo31Em16;B)Ql16jX>t zBNsFo@y(vKaPMUgZ-)?GnU*(F9EPmG$|W_2(y2AH)thxvtqoE(K{1)#k=}72TM`cD zgn<|h+9RB6)poyW&@0QmKVUtfGuCS!0cH+rJul1rCiyf;uC?Ll-nDW zj4%G?g=pjfB=MiNR;}F;7|^F>E#u4by#8WVY_D+Fi1os=6VbF*t3=Y z_%Hl3v^d3E@x&qitw&p(vZq!ZxfcpQ%_o3NE9r*%N7q1uf6t9A|9*g3I-jS8V78f z_T}4_OET=&=K!-)$tF;;GaL{JGD-e5PmL(OOyNFwESf9q%NFt>xNLs|h7*?go)P;C?OaRV>z7{+wu_*1 z0~oZ7e4`}G29YW(@#CSHMq3?v3FhECLO@;wpC{R*sB!%-vi089ux*jk1Hrc+(_~XY zkZ@stu;QzZz5kux{roMGVVzFan9-V4x})k1poQvie6zh_pv;uWas39rdPi?#nY&S> z+{CvRBvA{d?oyL8Y(AOrK6eRr!UdHuFqZTxr6j6Q#cYjwo<$``fOU88{qCr*dkbDhrbG6 z?PaY05LHaBw?!&!AB5|JS7fg%kgWE$i*mR#q;4YcA@6Zuz6D^x#)}u}I@hEChm4Dg zL8xhoaY|r!5msqbr8j!qe=;rphd(AnL*S)^O@sbys7JCR2IWW~VIl!zXZhb306?CI zjhTp1+``f6e@H&(|4S1yw{Waf@LHbUKQZ6juQx%fw&!I_ScOESVW?p((B}67{198~ zm~TnRKOgy#tJHKihRDv0cm{q>OG}(oITbc7<)bab6h+qlF-H${>31iu#Ny~j53C`{ zCBde*Mw|24qlwc8wyE=IQUVuh1vK}3W8{UoXcJYF?B%IS5`8hptx}OiAoch16`8R? zWmNA_Az*aG$c4)PjKS3eEsw$43FRFIK@VB`I#4z?B;Dwm>-BwudIVvpRxjexJ$CgOhaDR5PflCJR`-4%7Z0CWoWCh(Br(!A2`^MevWTb^mE2W-z zU8Y`Ct$8_PY`Mau$D{N4>I`Xg+j|4GIwfd>5wrRa{Epz?yM-}k+$)(mlvnb(GE&@m zfOKrha!esw?=q{KG)1k*+$crtow0Gfgq;DXYw-d+Vd@p+v4YfO>W!KbEtgE|ji|ls z*aEn3ZVkR2!L<79NgRJ;pF|C=4SDADMW01ksbh1y)n^`TtMXfL)vVRwT_~5j$$L*l zdp|$Cyr8f?FZFe$;Vq>MGbQ?bOjLdHLVod9DXVkW_xA7@>EZMFJYjfE&h_mNKhs)P zof`v{J4^tuV!BIpzYO zCA^OiUFq*P z`Qg5fY2ST0Du(dL=d!tZ%Rq^T2@(K!Hmaxjk`t;81|Nrd#=TR-Ft{gL*n&ev8X)1> z=sY1u^)C%+xUeq3(48rbUUX zpe5p25h>V3MIR^C13H4*7kIF3)~7#d)OWE}7be_wRpB@bm3wKQTPL*&TbGCs>axRG#UFO5DxAfo+ zad^b;AQIFuFDrc}MWm>Vg}NPZjL={b@x)}b;kc17H}gNajX$iY5r)D5gX67fVa7Vh zm>Rz*ju+!Dey9xMnA{|RG!I=!8Av2e$OozcDWlMFu7K@9yR@I5;k=E&inEgxDgW4Wo#Sb}-vz`Uh?!&+p{9J#TXqn{dL4xP57XN%zC zXN8q}l)cfg4Cl7)7p>c2_Fpo>3GdfmUqr}4fJm~a*ar9T|FEYIe&bunU zBz_MD#>1k@Bd^zPWFQ9wZ)*5XT6d!Rg9zG@%I;7y+Sby8*6!Q^aHbXKbdx96x((tv-5KiOU>QxKs0>6r9-kq9pSn7K&=QS?Jy*e5j@%0qQrm2)6q8Ehlj5 zif&gROkM_o;d|iyQy7t5P;W_p*TYVo(Hle{^$F@TA}fQIXjma?!Se<8jwgu_FMI~$ z&gKcHapBmsWxA}``QK9OmE8HQDFsdx#a`dQFnL1aS^DDZv~qf5k+l(qb>6!*%Rga` z%h9c(-`v_6bk|fG(<5CG$dAs7JvkgN*dC%kbRI^q8uoy9VQ)%C@qjtR-o09hF|mD< zPlshZ#r&%2`i!-k&YuczYGVC+Tj_zQ!}&z;bL|v(cF+y5g@+?+=9+rh$f?2G*hSh^ zA>My1m4R}*s~MeFE&iW2KWwzv=c@mZ*^^yT<75aTksO?V(CU%%MV9b zN6`biyP$xQ=Oad&%6F8VkY8n^KoH|4Z+_A>EOlIDkraGYWTH(b~??uS*C1Vm}qH+~GIlp0HlEdv!nax%(i;H$lq&M)KBux|?aoZ+jy{AKy9 zzYo2g@+j1l$GYs0KmVv~8MgQ$rcMxK&vr@o7H*9pHgB!t%)!LcG3wvqNCU@7Z$@=HQA=oOKXw?q3Qp zmOk)USkSr@6o8wXn|N*&Ye82+8xbOZ@7DYfST2|&6nC4SEGW=~pa`<=|Fwln$_FVl z)j$8L2dC=AishDz4s*j$TgL{v#@*A=x}N5r339y#T0ZXxA_g71)f0L2Wg>+9^1KJ4 zj;-;9ceS$(K-M?DZ{V048rq$MG~PEhvO=e7towq5189zs3_lqjKytIr^n!)(%--FA zT)f$NDDw~78@Dqd-@sZHkeBVfo_8k>hk9pw2UF+f#@7mo;-3Ca!iLtYveK?9`qAkj zoUfXmisT{G>!GN^v|W>vI_8o_N<};T1m}|9gb^~7eN-M zSa{z6AT2E|A^{r25yF>GmM-;6I`{YtE%clY(7 zUcT(`$#ai-&h@_zXl=|)k#}F!+OAI?a^knX_`w&yby0A8zlW7;fgEiV-?y3Eb7m)| zjLvVv*KfWnpyT5^`M@zRxV-}HnQI}^6QW<-SGXc#~k1M;xcBiGRU!I@kJ3~Lp{SsdXA4hKckSjb IpPaEC)!gT!*PX0Hl&U?Oq z15Wun_JOc>{*HM<&zX|DknQ`jue|5KmcVJ3)}!Dx|N%|^4PJWio`hIw=cJ=|@J~_9&_NF<6PJqVYyX^j>m;o;r zh9B~|0REEKE5p^(x4nDJ-hc4ywl4`^wqxG~ulBY!4hUaldhIUy-s{=%CW?g~h48Ui+YV$LEN3o!@7BfM$pQ@QH1+)q6<7m;`@E*gMjlad zIFgF5oMw?rwDuP3gcl!m9R6h}?1bud#_*&Y4Dco-b!7j|MnqRVern%UGpp;K#vp{{ z^d|lg>dk$!*f|-RlOUbNtq1Q^2qxK?OTyDAL;2kHR-Z38lR0`Gt3BdB`s9(<2s|10 z2v&c@?gD!2#lpc3GRg6kv9X{;xHKD`kQ0Y8HXs{2(>M*&e(|{P9H=*=*=5l$w}z0{ zL|L-`Iq}hU)F!|e8O3WHahbo$X#*zrjC8?bH`C)?(2VN3bLvIb_kZ|&_8)L6EM-0%e^WaoEw%QFx%J|m`Z>?T z_qhOjysV@a&?yyORmI*Ur5y0$OyW@ZW_3hk2La4HV@vp-nh{T?^f1wSsJzg`R_tpx zqCoKs{Hu*5@$)E|`e_E}_tyaBuh1$?i6;J)Sk(n-omp+|WXzgLUxLNJ3l$8U3QL17 z+wr*+d{iU0yfI6U8>07E@#=O*qFOHc`dGLc{>_i}3;D2Ew|0+eLjkb86pO4-i};yL z=c5aY(nLS6Kt5@kC4^8}*^5Z>l5jcJHlS26-of#yTp<`W!l}qLE>=(!QO)NfwNZ>| z5He3MFt1XRh?_~BOdb_z8tiT+$ zX}EJct^Z3v*k?wccSFMXRLmex22b?&i67i6Q&Dq=bl^6Z0;}rG-Q|(MK~;>3C?L*P z9f;(hXP4wEj{Xl*J1g1Z5JH=tW9EHBNwpjMcb9na;P=i`82AG8B(8s4HjpMQ%eD|O z#3HV1Khf3~FhZ!>t$d!B7~(8nfF*)hGxco3pTL`0K$$QZk5;XB%QjRB0@3Qs;7uz~ zLwUMD;Nd6Yz^3oQIwH8+x7y6~F#olBxnsyU^xug!hq7Q$DuY)#rM>t;k#Rh$9OACI zx~;iea_p(**j?$qIOw0I4#?f1NbW*U79SciA_@3LzcvZ%JVPey<|f$YD~p0{80TEV zYkfjo!L&SLK|~mdo}y!CFie6Q@U{jL_EvT!=Qe8veW4Z(32fi{vuw%UmGP-;YsjEa z9?4c<%~5(R=ZGiZ%QrdRs&$HS31);#5Vlx)mV7kp%H7TVIgAoW1nk7}6H;%n;b=aq z?}HMks#~j219i7%gcNM1e76FO6s{-^pTLAm2j<3hGlc|qHGx5~L#)D-y9)MFTu3#n z%KP`w<}(TKp@1xkv=LteY!S`|Y@~!~&z&s&43oBRrmO+5j;)iuVvt|~s zUu&;j&4v!yIvy^aYLW8LXb`=+)>yLg1Ck8_BM5y-apTW9qC0e(};o1A2&Vpv6kPpjt)s*v~Dnf7})%4&Q$TX_7=t9>#-QuljUECV6c zy^gtgY!5y%^;KeywMxY^UBl$dZm0rf}GvUel@!yC<@6v{dskb;>c(Mnl!5I>sV>j>3zVY_^dwx5Dt?2l zRQG~oRNFYUs{%asyTWUh0G{pWUw2f*_#gWxKr5A>xT5HTBZHN|txFQCbb=mY=>_@G zc+#bgkS|{s?`iu7PIKR78BFL?cc(1X)0i7;J~6H_20ST|KCSwOLK3;c&=3{RN9-D6 zuGziaq;$rP{m*gKfva^*MUMzs2AtobmWZir7QR)6{PGCJFn^yg782~fO2g z4@-$3?B1l9eZ4_a==AnWPQ^1lcGx8dSLNwlIvUFvrgHjlbiY+9H-6Vn{6v0u&ya5( z(4@&WfdPj(N>Gm9%y8&bc%)AQXQMXD0j%lj@$2H32ay?#4(Iu@m=a!jcUpSUapA1n zR5e(|{v<}N_h!+9H1!)cc#05+vYu9rj0rLx&tobTl@G9rPpw1A)FxO~DE%`Abx1H{ z2qg|W&buCK0`1;OLK-MudpM@_ny7KDfkWp$xiPNvV#mSO(LJ?nvFJRR{lq4o0wjap z%{^q-h`N4WSfBoz z!oVz+rF_~i7$Bv49l2wxB(J@|gmwF#V?}{h&HO3?8svNCG2#ZO+&9Oit;$rgW=oa9 zn2ZrjG#S#uLD9b9KO$j|N5)Sd0bUNN9W-|PP4MzcJIGttPvZh8f0Wz%*NNY+2y2&$ zpc$a&XwO|&cj1<>E{4-AIOyXqSyM6KecQE!*n^;0GrrwD^^*gX zle~&-Z-VTD!7015CAb~;#sA$c-yEH{`F?$4tmZd#s9=3#wR5%}Rot?y9b+vrNYH0M zXZ>i)2<`Mu0bG!hLiSC;<^@5iK`~Ta&T0 z&Ov_<82?fO5kyV%{#Wyk!GGi2`n5jkbyxmoHjq8bdP+LVS_O-y$bnTe;HPo1BKb)& z4hApxocATU_DKcrJVTMSg`o!A!FRmXgG$cjK_?MCy!ET?FZTdj$#Ns5Q+VX#Bo; zZ0@x(n&)3*<{d`fa@WaPc}z)o-e?1m(^}_{p=B34$+PSw)6YZ@5!do|?{vockEMS; zOxIFRhUt$`%v=sXf~EKPz6KbzkkKAcJbH2!2;80!v)!%%w9$19I<}DR?kj@yo)+4) zmQ48Pvbbj}Ke@*PEVEsK=RM6DSGCJ*MM5%+p5Jb8s%vT%6 z+r>B?g?+|NE@(~9eX|(XJbc=w6X(SO;F85QOW2Gq{bcr1Fb%}l9`lA5(`iUH?X!aa zZYvBToLsNemc%bIMMXSwW!g%}-3Nv?3m2@Q#qNs$2)wHXZc8cMF;g~^yw2-?&v#1A ze9Y%c@CE8!e3WV`eS}zl-I59VUxK?z;!2eBu+bh#UkaJ$kbH_|*t57MuS`wQiLXTA`6VK(1!?tGElDr*ksqX9sFJyd~v^ zk{jIO-dr9N8ZE&ebX?ooEY_%BxM53{rpp7=sPON=!Xe-VzR|^WAjJJ6v#= zy@*>=>tN$b>ZVijnv%-Dd2o zIO+>s%5g?;G{RSOf8k?cTD%r=gxFwm&sS zdUEzwn2AMN-DlC?hmSW=lsv;0oEORtD75dJ?PBBK)5M2<0s9dPcP}gixwte87q0%} zG|Pk&JK4pFGcN$db(*4DsBGg`C29Oh#gCx#6wr!(0x{SAyPuIwx(87$UHj4M_9g{U^DfnpU5>$c{z*F9|%QZf8x z94ijim2zq+8+5SEhD(Cb9MrY0Ddvs7zP$u$4Q*~KZu!y2w4sFtS6@5Be?24&n&W3exK)|KaL`4U>kn8a+IUr=|xr1 zrtVUheU0e~>!XFuUmc77$6baIF%>dP(}&Bq7S-BYpmdF6jUMhiq}Zq)Kpo4uAMkyE z>oQuMkvLWL{i+NLtG1Xw!Vrx3qGdzl6(0o@1Gd>fv|}=B8rOq_?TI z|1ivGZ15^qrbQC$38+uvsppvut%%#I`CIa2OR%$((?+L?AH{Ztz-SY->u_Rxh9XYa zTZcz}@O>d*U`gnjQC`vlM=PKFe=gytFnh)7*3&#t^rr@Cwk!#xR8@|VEG7l1%oZ5;x-_L?Jl;Ke0-=9qh3hh{9*5>ij?CSvbfNwsLkc!`{-ow-p}gYE zk#X4^5Z76bgS&oz8td}Dwi=-DFMZx?9y?pUEa@Io$Ew*zlzWi{*63vVM=$OoirdLR zmo7d`EpEeUF)5}^rx|3ny%i$9S^a0Qm3O>_-(QP)k!UqmxN2qwtvOFj``|hjMZL%J zn-+p{oMBSkwZkqS_r;R63Ie|BXuzWma&|E+yRC+CBuwj$*w6f!sIk?S95S3KnQql=lBZKAxu%hmalr*KejfNa!;-6-yog{fa0&o)L$Lq z=$FL`3hF%G?OQAxmA;9$Q@jkC+d4;3_EUR+e6x6x#Y+PZe3s=d>9hV0=qq{TSMbX> zuVie_goRng#4Py5R7&Oq8d=~ z`46+?sCCf?w9M&2gu*_8fH*NCJd%*Q zzL&PuT?4>h7pz8YNOfzs;qouulFL#4{m1L2Mu~MzdpxT2w~G*AM{G_Z=7PT|8q;Bd zO)+hdhDF2A;U|83?PrPB6}3Y~S&-EF2K~#F`f9c}(S# z>sUD=m4AfeZg(aN%?=dXeAn2c$kSc|Qt5!}<|t~SLp+-@%9t&WHTk^R2J~6t^c`j!o|m=@p#fw9UkHLF%UUr~^t1Pn0@ltyQwM;1 zpdV$(bs@woB3X~8gmt%5E32(x^mATjzVaVq7kSCDZaBfi=s%o6eb5jjtv2R^kw1ZV=c%!iNml6v*4~jN zl4gaC=FtdL_87R_Mj5?y9^g87lTUzeS>Y`4u0o|Qm0@bWfnM?FwdQKA(G@aBhioB9 zTvPWf%p!GFxh=zcS&AM4Tc8asvY!`5li8aK0RqAsTwVe8gjp4=WI7+xvFKZ~<7*=0 z(iEjWxf5tlR5-$2>tdPXFH(Yja`4ZqpL8E<>OKnAjF~FsFGL9 zGOuA^@4v-Zcv^_$DX%@AFarvFCGDE7GjpNS8i^DLOq2wxBbCB2iHx8#W|KX#rCE-$ z!PgM9)^ryrL#YGxU#}tNIhjN6s2&eSSD50f8*Xj{FJ>Zk%Y7c zs~F&jW1!|(#*AKqyRp&{KWM>;ZE(4v*VO4fxw0Vfo_6 z1x2rB3L5^f=zeN3T#Eoa29o~Ne8n@9lYyf9CUF?WANn%>E>VHbIW#{3g>b9H#Vp+A zZYI8~MwNJOZFj3|8>P}mNbYpTSofHNRs{vxQfz*YfW={!s%Tf^Y*&X)XcnrB4W9DV zCP(S9c`;Wia=I{11)*uflhCn9%%7_5;PSa}Td-GqvDJ00_PYWRo!=%WDq@Tm6F;lC zslP3w>XKN0Ne6V3I>&b@FC_;VMaU}01&v#~${>x=SM%jpmu*x2*3XM66nlh1rMeV@ z3a7B!m}PKye&}2Be;J&Jfn2ik4_}T+nMnE=bVG>@Z?Vc%6Ex+fq}5r=Y-Q3R#4LAz zpYUSbb@PY`k`)0Q^3=~ETjsW3il#rwl)P{m1xh-8*8TUwE%%{`Iz9T-vGEs`%p$Dy z@7dUTm4le800Fzq*(#12ov)f^tExsK($f!+U=1{|zy6;0 zsqV|fm&~8A75pmq=cb5?k-k+3WiD8K7erVP9A2#g8jqahh~a)fuBq<@wKiGAVVQ-h zp|G`k(4p{oXrQ)RPF~d}CyBVeGs#DnIGRinPq}g^pT2Y~|M!tYnmnV~j^WaUYX0E? zJAK45!okO$HQ5Ti!s(Jxh`%AUMUv7Kq+=z2M~C$5cNP0Q&tHUKTuL)@0T-)9W8Bu| zHt_gk;AVR3etA@daKR%W%#g^Pq@we#zcXY^um`F66IX2?N8+bbm|giSH8d9kn=c+O1R3bcyQEzOw;B0DoD}4DKOv6 z?`nlO4q`id4JEq8$j5FV=e@LW&s*$Um&Xy80d^yB(Onf%Z!LV59eDcU39fpjVACFO z>Y!9hmQYq}?CDC-T1SgQk(Z*|A)E2hn2C;-1G?ssXVpfSfq^GiqU>j$OgXT z5p3V8GpJ~1(urz$glL|zE^H1#>IH^o^Xe0Bme=jAy_L06Ic&jWxIn+3+t{AJZvUVA zN0R6?0oc&4%S|Icn#2$@4M#JbERSudaTK{eK}g`L$w+E-;U|n+3xoOmwyf0*IDi~> zJWnkcvQT|lxU6W6uE}H#H-piYhOr#Z ztMYq3_Z>YURB-f{Q*Y97?8#;H=$?up~i%ahsGz{?~|0(UG!CC@}PWSCEDG z*iTqo{FV22jNmG|8rrLhXOb8thO0CHd%F$qyk*gnVbz&3@qt4SwD(e4AK=*XV~BWz zy1z%K|0kQMCCK4W^-MkW%9TchjPRb$z6kQ2y|_lXF+t(Y5Yi|(8}7FG4rG`fT_$TH8XITzT!*yVO0wjx(6U-mc`yGsdSVEdY5$pl zH2!*_HRQZxcqbq6zuz-~y!N>Zlkqc({{U+vR}Zy)_iz)&gv$dAoI*pt*2 zKp(%blz}Xr7P5buRO-92WFT-(#OJ z2-!cXHy!E?kA1=Dr%LZ!=$Ej{j zRbwE7rWB___%6)E`CeGu){oik1gwp;AtvC1lZfK~h}B4h0=L$W14D4xu&ce!yPJ^% zrPrNOi2wDbSU==DUKE=NMqgtO@D}!4B$z2LUQz??N$zs7N<lMFp-rg0Z2c#33tLa@w4(d@DnlxIEog0Lxv!uX(WP9rk{-Vym)(zmL5s)=XmfZ z{mVb;O}bh7Z9gnaFYqg*yix8W1ZtF=4U;)O2U%N~_8=6S>zbR*14NR-l{F0Jg;I*7 zN5<_#f96bcydAR4AK{-!jeaRBU#@8eggMW4*iqCv1CuhiS4))9kDB92_>)DgnyPLY z{g)5*|4!I!P4$JQpEuktn^)-SWk|xEcjiX65;bY(e#7ZWXoYC$Wc0Y6**>7O3;#_q z(a~CM>Urk1K1US}9N*_4viW{O@Eq0F#{Eg~^-vf;zuKT$+uUYTYy0DzJpzN>yd*4Y zc7F3!0*FK0i~So=-1ehIj<7gs4olz*CEdCd9p3IJE-r>BVRvl-Ns%I{2F$e0ByBGL zquGvx)nxj!lD#~xOZi`h;C?Su7tzamOAu2EvITM?Q`$6xdI66hY(4>8^eqMNYowPT zmTdfKi1WXdY&xL1?unfy^hAh+e`xh^pa+>H2AF0%y8qA#9+)v4$H(KGK{G-DF`$6A zbf>NU(ifSwGF({^z!0UZwgBMPP!z9&G0L>0LgZ)7sH>H@eOrHb^GVIo@Q_wM29XGd z{Jb_s?vY?q1W%*l*9o~Vi0T6CAavEFfKceuZ9t_#Cl%e%Qw^oJX(O8?sg<;8+gbM1lkZTC?>|D+61ipsY`wDJ)ikU7s6(A-I^$OzH zJsF})%fS108M(F1IqckWJGB+APD_mO{=~q_72X;4zV|^r9rb0(okbyM4SzscLHjqEF3c{QH6*hmE6do(4>qX19;)4+kgN3Jf9G#McvsQwUw7bERl4M57 zzBh?;B{IzR$m)$!x2SD)1QyzUMZn~$^@qI6E~Aj!vt!OpnA0uk?nLHBs(r%;$s}7Qbg>}Kv}a+y@}GLLVPIjj`6Mv4 ztu%o8iLhf#>*Haol%luKf@vTDeJ=c;04Dox#&2*jQsZM@l2$PiMQ8EwUu4y<2dsFQ z2yXT#Yq{bA;goU`iADk+x}4%Nb6-dQk_yZ`^JNIKy&(+7V={5@n15auDu2Zly=zQp zGgb_{VRdRUogL>+kqNr7Dgcx!{twh-1l!BSz0N-_*`{e#nD)?P$eps+W{;8j5!od< zcwUX0g9Hfsh>flW9#YZGgACa#-{PT4e^quE#tK*H?xl|FrV>A^PYE!U`R?>CcJq*#d=OjYMUw6vAhBv_HER~iiGv#jwida~n($p}ODIEBIhO&xQ0!a)He$ZySh zpCJG7r5;&%!^HNM4tU`FwGgaxf%pvvgXMzCtgFovf!{byZ{Q+d(c*b1G-X-j$oFIf z+p90drw9^Ue%V!7dnzBtw;0{7H$No%E=6*Tu#2LLHOZ77!)Y4Z^GZ-1+=TWLS?U*p7UMc`Pi*{_~=oe#Z-*LLq z<;S7$ZOi@@xuwYUzW`=HnZJRDHxK+k8Bprtap%$kF zo{eg-iVn%f>Ok`3XdD^60>*Egp9TzpFf~BOE`=;0x-Gl9?pfq4wRkM@w4iT} zXoZSGg=lMOEOeJX1*HhtM{vKKQ^~iT>l?x*FU$9Md|#JrkyEMW+XY@5Bcx0S%xc&9 zP*!6p%*0NbfMh^|f1=da5|FuY=Fg^&zCLyhAya0EqPqIjt#2;(&9>iz&TIQ5)ynk% z4CJ3Y)}@4{@8A=tR|+f=!@K0F+otpuZ3HCa2{XD6GM_J6atLA-MLe3|VKM4f@BBh| zN?FuC3ftyUv`i9T_UbVb#?XtyoLCE*rFR6~I5B1sM&*=xe>MJ;sc?s82-Z?_ioBkj zuCT@$SXt3j+7)3wE1-RP=xQSGZ?{sq5m#sRx;&uI7Y^d%vLmrIQ`!8?C20k}(4Gr& z$degeDcx}8Eu6zVBII3twK-zXUY7tv-}s&>0^#8;W)t{IEOjQkGAt=jwdQvG!ppVk zJa2)~w)#lQe--$XGsTrm9|*2lOAEz18klm@0Gn1&K6yg#?+;rwfhIlE2qe|l$0wnN}Hq>}A4?em3WOY*Eu z@Y*^#dfbiey4SGS#pMU(_Jh#Q0n$h2u|&${=N;q+#JLu%P4~yD<+00hmO#Tu&I^;r zhl46yWII?gGi{Ylenh-b6c`y4Rdj|BNWpaYW8k5eib6{bhj|AS^nDZbA`kNd>D5bP z9;#xOf5@}Z{#mY_r@o5$29Bi54fs42mv^+%)>tqy2%ep}Q!S6gW8EiApfLbd{K^8ND7TX8$=DF!HYMMbnFH5>6Q-Di9anzHfSMV95y&7z+A5k=Gy&zs;yhiel^ zkaN{&;_3csUZ-NVM*aQa$-q}f&%Daf#mG@lQ9V$nWSu2ooYSu9yPHp4PX3CP1S~;h zf28tCp?JJFzSD4~E1T_<1nk-8P8o5d-87v@&3skFHLnxNp1{{!ocuS@5ClT5;w!~+ zBAp<;>q`t_?KjDdR6TSc=YWek57N1kAy^xpJ^#>d2k*uh$M>*DecFRh z;gnT5u3C<%v?F`Lv!4%NL$m??w!agYe-N$PLawCBf`5_AXNLLt>sApI3!LF9R0FH- zQK%9i?fD9YN;bLj+ha!o_QCsD1dq_%+UtOokGf z$O%=5Ul&$7b^222Zb7DZhCQ6O(4m8gE~=g)tJ!~?ik`Q|4z6Pu)V_@B=oT*Bf8>qc zn~5fC71x8_XlhfnB7YJ&J~BHv6NFrMI_vAnqvvJdkJUvWHf9_?FvmoY^ z`S{n~bSqIp@Yrwq8BqtwujzylA|k(InBbq`lDt1YyXxGM;u3UBCSw|AH!gqtk`>iU zlVt?0g9&slS+k!04w*)GO#6FHt$L+&k39h)9;&<;r-yp*vudD)Q%ukjW-Mk*GCA^G zdKcQ1@hb&E)Mqv;*ubrre+oDw59Veh60)5$#KRnEo*31uNS0450o?kiiX%#SBa|f3 znYZIgEUjlkGt#vw`Vlx!PS&4b6MKiElhYtp?~2TO>tjc)B>ESBMc+OKJIqd`j+SSI z_0ofh%~BZH@m&N@$ysirtM$wHZ}mi%VeqozL^-Qqk6d5}a1t4}e;>>7JIJ-@JxBij z->A%>a7a7|Ct;z1e!aRg!Os>{$J6hdn;-oQW+r>98c0c|v;&rgeHNh=X^YlJ&C@*ofiYsH#>_@Goez&wgmkl`I0@CWmb~=?`$4XsfR7r%u z)E_VoHxM~&JRc$E=W7If1dsj{aeGe(c5Qec-`v| zcixK6n_t;Cv}$DT?>5n>2t?Y{jHP?uCN7uui=c78b(fbJ8_@U^DC$<-H385k5P~vz zS(OHe4d6-%Ft6tpy&xj_E&V&wyb9O+(N(*H7z8+uG0AYtB)-Uxey!14_XD>l z`P`q^k@I#)f33`)KQ})uVD7$sVUM^xsv|z$NJonMTP=Nm+a1LqIf8bhzltqTESmDp z3VX!*#}=!994`l)&8%0qFCt%;Lx=z*dA%8Z_`@(U+hL)D22@!3qg$IsC;4~f!h&co zS^mjpgrkPWk9LpCi>L)N9~e&2@z1#0LfuJSDT+5Qe+zr`7ns=W9QSHvdg)cEXNF6_ z0A~}eDOs(w0)&Um>M@lXCs8g^htCC3nn_k2aq-q_j?ZxZ{YDtf74F*5CO;srDe{ky zt#j4lK4%AfQVd9djmV50x8Zl9HrGUQ3;Fv$A+s)m{po$*UfF*=H=s!{x;c)bh?7NqSY7CNFLfj6+9iSv0{eVpR^os_u2joM{~z&UPu?K!{px?M#4 z+ifwqorLV*IVWwpc)rdMv2(-WNHMm@595`A3N1=$5*7-ReqW)zcmrDUmqvK({|V$`z!qgATRwa055B{{@;i zHYb4Iy-I0Mw7&F$`_)3%_SBU8F^5RJwLoagT+`QK4sq7#Z4|;V7H-XGr>558K6ve3 ze>V_s7-#`-;7@VoloUB?X}o}l98^aUSX{FnXrMDrCmGYu;UOT|QYjN1s{7>117opG z{(DEERmJ#uOx<@~Y*Y*AMsnKsi$Q;9t{xdE>52-l;DIv^xVm`?de+Na-!fn@pp`D$ zfL9+YCtW~0E1Ra40y`iU7XkAqf+)Jdf0Z1_ay?r|UO!Z=8OqGkpc2OZdBaYineW0# z8e@z*8^N$<^N4HG0h{#`o1O040yU(d8K{Hu`PmZdwZZc=kp}`145KHfwlz1NCrQUh zyKijb5iBp+c7+R0qS-}>Wm?r*cS*dOLb=Yd-iFxKAfK%M^BTCoF9~GG*t^ryf01S% zN765$-7O)fPS%Cb`oc=kw}^$i3(Y;Bj9r2q53J10=Pb*1(dvHvw(&(r;N@Ad+#jpM zMtn{AMk|N+R>(VKvdB@pgzW3*QyS)we$r<$4IdzlU-YB&g<{KM7o_$Zbu8#@Aj^^t z%3#?(ywYfY*_v;9(10#p|4uN@f0F~d7%raMpQ>~p$nfhBKiA8#ffMGgs|+?iTneT! zc3Ijr>yrBTWBu%v4h(Im{9!KJq)rcXJ4=b4Ua4xezF=Au&d5;af+)wc&Ui=3jK2j# zp68kN!{skpmY-DhEu$-=K0^HurKzIil z0?+2Fy|g(_AhA0_vI^IvR?s}OaDm0a2G6UCi~s8jZc!67mcrZzop}+<8`rA4qwB+vM2N;r5Vv-v(+(M zu-<)eye3*x`Q@jh!lxIRcAFn$+D(uw1r68lDSy>+S{|yPVr?i^2ycA&!&~KN&7gxC zHhaMFmR1w8cTLOrf1L7`V_DlJHk3Pt^4PULU+-k7P6X@TBV{^e-;+z?ZR_#&P}nojSm{W z*Ja;7`eko;3QoPn`J1;&97x!+EBX)+K0}QtpWSCmhv~q&7*VNe2~sHDnfkoGHt^!J z_HFv;gyy=-{Cv(zZ-q=t4zObvp^;q5^(hS)3rEx8A8V80K<^7&;_Qk5c4{1%n@Nhhf0hh*26oDYQZ`d^pJ9(W2ql4I)-O|@i<`9|Y!jLj4U~ejY&W8=`8uFK z(5)?4;f7aKp5XlkOqVvov|Y)8HE-}uB-7OW!^UI9bNTxRH` zjNsF+3Cp^Wm)X~|j%Ruv=;|}hYrEToBDsS5TTED^e|MhC?4Bjo$M+OwC%ShEu6rk- zGKa?xa{DEXYl9e}V16p)?7xu+G5E7GEH65u{?B!9;Sf=RU$P3M$)D9w4iKD=9Net zTAcHme^Fn_XGJwS?ZjSo^i2r863-~|SAdIpiOHsK1GGk8yg{S<45gX=%6(V0E%><% zoFr88n%bRSL_NJE%rF^6XV*}#BW0~(U|I^!VL^2hr<^fDZ^_*WnWtWIj(SbX1_vab zWHM_unVyKMJ4F&+6>)uwfe&~$jInM(^>nUxe{Dr&YhdM_QdbGmXWti`aAfcugQ8(~ zuc6W)Pk?uVic^f_{nn0cZ(`6kNz>0{rW3BVezXe$C!JHrHqD|21F&V!l}uU(qm0m# zF7;`?&6ddS0*gHj-p}L(Q?s60ilwEL(7qa6Zz7u|7>77lYm`&L5}tu1`cl4Py~9LP ze zk8uz6xOWz4;i!Dr$YLg@v`s5C1j7VTe~temx|=+n7EEF^B$CK|Xv@(94mR*8l_{f0 zv9zq)JfnXs6-WQzRK%hI!cmv@mh2JPWWYe8!N%WHHIx3;8?}%!A(dVo$1>A`q~^n| zYENPz8B3?pe8$2zlCH!K*+h!qb1$$xr&E}EyfqDq&%V-3V2ZX_{E83c-KIvmf5b%% z9=yGqvGaZvb5vBH%!O6Qvnv;Dvf1RS5Q6PIzxJ6>#%0wa=sIV8MGt2V7S~Y|ws%s+ zDOR0IM=w4rX>3#WdW1l#xYRK_TiThqFxPvaj?(ni$$Lr!eniiYL zOke8!O!_!FJa;m*RgJ$mJuyIrf7uxXg={#>lG2E`-9}%wwVJ?0wT~e5&?|c8jd<@* zt4<3$UjFf}EpMKSxR{ZtS5>OqG*EdT>Z>`58U&Ps<^}6IVI8y2pk7iX@|u8jG`CT% zG>Ts;ksyqH{uFL?DRLsAiHnKM^&p(D6_ZN}dHEf_mcLP1n|6g-L*9xlf8|?ZJGWJb zKi(t!HcQeF9J*1Qd~u8X?4D9g7E;W~Inn)`@(02hbWe)Ma(Z>fhLJ~3q8lQd@w$*p zDR<=1?n#%MjMs|o0w|O^hV2(C$t}%lZ81}KFFr5+dE(wN{5BW%Xk!*DEQH`a4l=-+ zNkVe`>EKr{Lp4bR9JNd@f1YssHD;IVA-sFKYCRcLPm?R1dZ?1AqY9236fGZ!8eYR& zvg>}xdCF8z;iiVBlh`ILjn|*eTcZ5F?7u-*YOGM+7e1I#O}p(T;u^>GKt)<>(*17L zbGA;Y;jg|tQnDXHP~@n^b?DO^4nJRkXB=RcZFS*rrX0?CyuBtfe+&-Vz7FqRt$w8Si`Q-zT3&v|vLRERB&$nZ>{Pi;bW2C2WGWY&sQB!?M0M-q@$HXbF zzhh@XJP+ee&rWyJg=2hn z!P9~9*X}H}P3~G>Jrw+7nN=i@hlN6D`nG5PtD57r}%@xa^w zmYN@6Zed9)qnKx8uK?lR9N~e0D_a9`xz)?z<)_dO{l;E!e_6yPkv8oa$W{>sQp_*4 zqwB5ZE8G^xpzT+JBc@ge+cB`0(h&`BPZY%xpD|+YxmwZN4T7lDOMSW5ueSwu=_DA) zznX0Zs@F1LAgn%Y>T0GSlnp0hpCfGN+=Huk<^KX+@!yJaNMkd7e7kz}f{YSf3A%>P z@!Ef=i93bie~#D8FU}dvaP4aUF2S9HKDuP99z#kTcH(Osk8oY!ugucX0@gm}yVLJq z1ee%4!Poku@jO7dO8C&Qyy73)4b=^e?7?Qvomg%D;4Nd|S# zzF7Ol&zD)=i!R&q(pz$^;;(*mr0@+2!QVxGdOV_ef3Il;vM_lZYj{1<>vRe?iw`un z3fyzKpweT%$@CyIh8i5ZodyIN+lu+t3&^6|ayL}x9kG#%J@rH&Z6tKf^PUc0@tV=A zpEWS_2se$+>&7R zs|+as(g8ql@MZ3zg6?~3oz4{d>l3F`Sb~kZp0~Nr%OA)h&(ywVhaklm#cCDJ$|wG3 z#+^rQ|I@HblLw23JnOct0|-~A4)m0BmoviN?)2#YlpAGQc7NQm=|7pjXGXa;f0-{` ze`r8R2KlWta5Wu8@EXUPeW|x?Vn;kUn ztW#c8=)-(&*2X9>3=Y0Wbzc~rtgM(nDW2?5`eOaw^Xl~bzF~kSlF%ee2`&Lpl~2&* z$k5zM49x}+9>Rv%4PWCleIluMn5pRhFK47+e>BMQ z@B<1Lk8%WbD+(KqADzU1Hj#WHg%T9Y?+{1xPn_*|FX|A2fT3aSLj zM*zP7Aei}T>(Q=jElvIz3fxo9DGwz33&ZCzHd%1IcZR??4&wph2h6qmKnK3tI-lJ^ zD@|$@RGd`cE)7r~*p9=fST;jBf1Ox5O0ZiptK~TIbA(7Suh&%mgzstpdW_?}g_Iza zF6i<0CqGPq_@&eDg;!KZThdgrKP5Nbtg*(zj*K7<0oekobcdk67}8(pPQY1{e9t~H zlPGax=b3UhRFWnpa!c-oA%1yEewwy28}+}#@2;O_43 z?v1;Y)u)vev^fd7i&DK&vEuGWqYf4qMfh`9hw+(0sM z6E~2Zf};aK*4+-k!UkaBDtHG_eQ%(-|W? zB|zQE+Vvl~nxloAr-=&?020_)n*kkMK_2c7=0Fz!C^1vyxiJ7t9L)bRG_iAa z1o@kIm{{AHn1T%cuG|D5DWU=}0X6t04@$@ zfd79-Q8uyuw+iOpt}+f5jsTv2iUm#Se+u^a_xx%8y&JTE|Bj{T2wGYofadp(>oapO zn}PnY{6BB{-!A`u3;tJ>|J#oL?}8-V?d<+m)BLUf|ENvut?j)3H303byBlc#6&yjg zz~O(Je`*2$xw8sDb8C0||E-mAGXdQL5eG}V|BTVvRnpoEXs&GSW@h!zviu|0`0J9{ zSvvrg9bK*eda3~4voJINFCFM+nc0G#9Il{^{96SCU7Y_;DdAw|X#Up?W98rkn7Fu@ zc*8S;7KxRE1K`U7x{BsNufKN~z{Kd_=mv5De}LNa2Us||!2flkoE!iqk-tR$5GR01 z^fz$qEO%m60I-^2o7lKM@o04C|*#0FZ^-^31JlKoAfTI7Bc zs22I(1gb^hH-TzV{7s-*l>S59pjwoF6DYgtZvtgk`%R$i>c0t;UE?=_vTOb(P!O`y4$x|o>R0zoet3%B2Lw*Scgxh?-ufI^%7hd4mN z%pC1NoAN&rcJ{v{_V&LM{fqyBjf4j5& zg&x1-vHT^l`>p@W+|k|TkLVx+%RdlQf3MZ=>Oljy@^-QUI{aY)l3D+Opn`4wK+te) z|3J_{?EXN|wCw+A1vH7@kvTxF4xk(LhaS|cb?(8oDdi*g(4v@Jk=;iUB+@N|~?Mz&){s;jo=XV0oW0}d#$_4nxrhxi&^K|^f z0Tjdi4+M?g;|~N)&-0J90eO49%e>8@5J=BX3c)s7C5m=zy*UF-O@4MpC?f!%en@(Hz zA!O6#P9%MN0Cjy=g639umE^_uM|(4DWJjt>=P$o!qh!^&{Z9DhFW4iqr9VWPhKb+^ z->VBB_`Nv$X$IRuwuAS|QWiS9b0aGkV?1~cNqIF5SFTM(EbXft)N#roe>_*tzmM05 z(+@6Rq%1Pc`-)2j>G(}GCjQiX*^q*ukIFW!sAz;jcRpP z*FHQ7JY8HO$XoQOIVxY#qYPP`Z@v{}n=VtCU$MKVx9!td?2c%B_7znhT#l~{sVHZ8 zY4C8FATecP<2E~_Q|!x0e^X%C^Dfq9H@#%8xY|u!8I)42-<0gQnmAMuc=r3B3YvV5 zU}>-#wdo>Nt+3LYNE`+^B8k8Yny8SYO7<;BpW|`9>yMgkOl)AbeC9zmmLO{H4%)H& z(C8U_yrE7yzV0<9vv?`%Gauz~yh~??d2wTw>p0STFzsq?k7o#;e@@xb5+ZO^-;rJ* zjzCWki`|q*sG!J6F@|MeW&_VnCl!Olnd-ENP2CPN~RW3;| zY~tnra_)k_5$v{MHq7+;kzbVsCpX3Bq^zJ*im= zU4yR;6~#SDTI2FjKQKxSHLE#vdFh`2EKR}oS;+mxn5Pz-s&GR>8?nYe-WK=M<3)MF zDu|q)MTT6-e`w!zqqK8qO!D5+y?$`_4BK?eW{utrCgR~OHKpj{7gB+}auux?_0w)5 z6)UH&v6ID;6-qSD{p>R;Y`itpi{&MeLe;E(ry^|iHS#5KgOFxU#XOGJe6BX|rx}5h z^~VW0#QtoQ<4msg0U?zvD(qZ#h#}pfMcT~QQhNMoe|wc7Y78FE?PVD*m|_#|eQNO! z5OZWC+RP=F6Q6S)=}%_OHw;9NGcf0ogho>=%T2sn&qY2q&Kd5tRT{%2-tu7Qa4;TQ zr_+bV^~ged)gkismmI9mp6mFl9?n{h?(+oHeK~eJw$pgR@*%A>ppJAA`XxkXL9+Sa zm-O{+e~zYD;zp`}q*oZa6A{h9HaEcM2za&{GhCu{Cph?hS2jPcNu+=_e^aaVuq^^ zai!uuwR+B`2GR<(LzaoX+bqn`G{xjH+_BBg|8y(MS8av_uh^GHca5|XFGbk*v2<(2 zFE?dzkT^=C^v!I#cC+{hdA!1IF>pJTbKWY46Iu_Bb!D^VOFw0#scl@Q2mdH?j$Xu32G5L?u&=DcR8834ts4e!i+9#qpd& z&G{3VqM3DTG~&0^mOZ z(kDG4#`g8C zdmracme^7(CH}CE`YpBUP24EHf6Y8tf#VVjkwT?|zx-<=J=jGmuhMG^)0FYOaOmMe z!9v1578uqz`{#t_Dp`2sFj2(VsWFNw9h0y1(pYdJ$$^&4*fJ_j`Cu}CdHC_4 zal$T2t?UWA#XD<9#0hSXCpyXC)KJ#b5NqFfq)!}h`Li_hfZJ7x)XA;Ze+Ge*aF(IH z%g8WD?MJ20dD?2QOTIDU#JZ-=!29uqZQarno|*3 zQZ`p!XdsH$(>Jw9W{6Ys7^I3?is2RMr%P%$jMC#NVe-wQVgBcMo3;Jhhj?~&0w&X1#kW&x z{OmhOxwQed{cg0&tK){?DkZB~S&`A~oTe^8!*X;UkAj6HZ#n{4Y8iXC&kMD@=8EL! znIR=<@(Tn9CaPYAe}kmq&*r4vstDj|xq(qREp(TKFu}chJO_n1YPG}S<`}ligZL?? z6!lMI-vCCn32eZ?@|Lpb5j#t&@daQ- zW(~?whAD?Rf5sf0k^~$_5>kVPy44fjhMh+*PbYy9E%@Ui-V}wCSZ>b94L7+v%ufs@N z5SVZfl5k2$*fw!SD~{2xdpx10oit)!A?op$(e{V5g5;QdXt{KZYg3c_VJL1ML z_JWClM_X-u2MG)WD3LVPEEI4!pnW8;<`(66r8^i2%k+b(r1F8Qz?k`P*iM7zE$ff)bBL7-TXG4I{32f){=)!wAM#z!~*DA7&3Qh z^euZfe@9H&Wk{VDzA~U+ZcXlv5nDs?X}@(q^MyKQRz20I?UlQXBV?fZ8oYW;KvJ)d zKT?ylzW1e=MP9VNY8IVbcCQh<<)ZKUb@1{tkrNIMGuAW!6KqC1ToxTIS&mCrUYyLN zB>l$XK!&A)P-xM{ZIF7Lo0o|uP9|Tfs9+Tqe+F!#g)?Rp3NJDXi9eLSsPU7_9pK@E zSN^h1@T5Rgb6{O3Pw&3ZpiB=b)W?xl7c`)hVz0KMlSp(1JB)^_fhnJ5GB|PkdwJf& zxO*n7>ebpQCk&J2jCUx!yI)wm9!Jxz#`cVpVKn>FFR3IXAPRzoTFp>#k(VAY5yjRr ze@C;qxEkLZkFHQa)zv6?Y{H%ponZSlg;Ti>#mykra%z(fS&}=L&qnH{dZO)x1v}7$ znXe>dIxaer+?N}LpQbsoBJc8VbXLMaL^TkOBK4y{5J!3`B+2v|!gt@)=uw!9tDopD zp*|wc584d1ZH1&-`zbLVO7M7^szG$Pe-4Yn`Xp^H<%~6xw&bu{UO<#CJ!5iKpl+>A zo5Gs8WRbLAttD&WvmghGkZn3>7f)TXw19WAhdU$(%MtY}iM_{G6#29*z=LDSA#kQ; z=ruh>1ML;uJoL7jFA+#w-@od{jf3j1Sa7o>lOR43mX?wg-CLDYM$$_foP;|LfAJkU zh|Itryj2pjcepQkMM52eb%lJ=B!#tk{e`Mg>4+hv=qnRA-|+S;t_bbr_t6t-4z4&eiOUblUk~e`9Y49}$zo zRzSLbfyd*L67~Z>-Wu*0)!2QAo3xRG0>8-&s^U>YBl}rtf-k^-tpepU+Jm`ZSj-sy zy9wl}j7KCA%Z?scXmC4?XGf2+mzV;2v?ekYN*{qCiV6)daCiPTELl!fsm!~H=Jlya z5Bu+XO*oXdkAs~BP4k!rf7JrYV*X*z>qe~Wql>mLx0o1IKSm%Bj`@HMQe59spvz=3 z9^$&0RV@0MI+E|;Vt$d}ZJy`m14-3({8$rGCBN{+FC{r(1+nqoO4%eu-qQxyrsqtp zC{T;UmanM_iV=2fDj51d8AO=Ni@JZN@yr?;ug+}SVOYyzBfiy zz;}0P@?#oqFf(5?sa>_4BHX^vx_)s-ZX$L2N@doBI z*ry*i-nV-u7Nwy<6(2;{ge2|~7*$aVM3KQaq4$F`q0MGB{FJUL=-V}jD4Jd71Xd!W zlWGYZl3tn*IgF>$OBlAcnHDb$UHCYJ@OdVdFHi(kJ}7>Zf6}#v4Xxh1|B!5%8Q~=0 z8?j)7GM3G}C_ODmGuiB})xA*Wt$p{T$(z}&5NN`| z3kfWT1G?b3e|z39C44&x@1DjKexUI`&Bc9=KEPK00Hcnekoh4@xuzk+_}pnRs>s+U z&i9o%_d}EyV)Qu{eNGDeBo6;iez$KaJc>Ch{ZpHEGSWna8?JeS0_Uzkl=`WiDJYz~ zz)}|3naWRe@!#ruKgsK5w++R+(wSM_3NHuP+gf;3e~58!OpIcLMIa&Zs5|KjCmN!K zPK`j8hZS0LIki=>wx)-u$X7LSHI_Q{A+=$f3m?*|8uY(e39ahchdT+8pL&&KGBZGV z9tb)5G+pJkt-q7maaRdN1F_>#12g)gpy0W-Lk!p^COT@qG% ze^%ON1n3JHkKK$~<{7AiJ`O0;u3mpB&v&6)K-*^53U~TOQHVgO;Y;*BuC-z=L^PV< z8c+}yf$zLpm|YBSVyraf=e!$jo&{a>eS3!O7$0(Bu!Cazgz4IEUP1M#?Y(gv!B!pO zCqB*tg(tt^f5OPZ7=S2k)uor2Q~C`eO0U? zm_qMNiG^*H;M@Vo?14}Mo7rb|9v0kl<}X@ zoyy0T+m?v!Q|R%&e$4cFR4|`#D8jgcOnS1^y&!_mn5&;dD>ZkdW3p3jSMgfnS)^7A z?xnqAc63m>j@28d=c~rSU6bAqI;q9MRP~EBH5NMa!iPZe@OS~uU<_0je|&w!8XzM( zguInH)Rq_z=(p6#jh~IlmI1+VBeuyOY*|He1^1~4Lk$}@j__1{<^(LzqK`9ZA1rM| zHd3j*B27h=&H3wg%M9le7#2uT28%qt?%OXT$dV>E(DBzcFsU^{j152tC`|GAYZK|M zsj_W9iLlZuhMNB%+wlOCf8>OdxJ}VJXGAHQS9UkrXFuyC+L%gm;;Cc>tD!J1sjy@pUf_a(6VzU$Mk(dkbW&Je~+Wz9H3M!O9$sSnp z5$4WRo>mJ1BsRA%ak9Ob#&R29n~K{j!ET;jZH(?_B|4hTNKUh#4x|b@$=HDyKb9_V zcKIicld)k zS8y>YW3WBXnn|%7sSw@2CQFC-=p3d^DX!FNJi^W+a;@#jKKYdJX@~ z0AV6GU_Yr2A^DR)N>8VClBF@(s_RFQVr3$%tm6`cf1ckhk)N>9*rR~y-li+JVYRYL zj#^TU1~P%t&#)eWoDOqm(V?a*u=iLTG(6{Uc632h>gJf>rf1u&7pG909P2WkzF(Ih z1L{k1*!&#j1YK}^hDZorzS=-58Dfj=f=M2^shA5)^JQ(R)I`I+;$Fw=tO$Oe_OG1v zOHlI%e=CzO8-}HfZ-WZAs-d=IqY#u*sfY@GF);M&a6_<>RTuFdZtH=ETq<-}i3W#S zrPDGjHN;+JBw526gD{s?Gv54Wu&ZmL++Y0%>HcRGrDY*lz4h>hE9vuU4Ur3T_yqlAG=CjTbmTQ$g zUhN0PA`KbtjgARFGYZ>bcd7IghxJ^fe;Xfq3Ao9?#SQtm@V`y4Kh-=gB8DId`Zn76 ziNS8)^W~J#&q`Zq=tPLLz!6 zr15aSLac-n_Op49h>EYqsb2vK%lGWV!Gi#Z48oL&u5iJ%XT_hlW z5u{P;75#eGz_up$3d^ob%w@URfAMfV=|<#vaMVtRR_l9RKq|=m+-<1wUbRU?Y?`sb z-Pq2#3pp=1F71um{xa1=@{#*#&57&%3uAen(%J$ltnS2^uE6+9q>P^CJV8`cwv<(N z`n6_4xMvl6LEL!X?J8H?C&Yt~{xHpP0HbX16p{-n8R;idBpfNb9gPz*#_8)EDJ(4aKgx&Y|O@hO7=ISw7emRsJw3 zo{4SqZ5hByjy^Kl$3>fAWFw-P><6z7*d?qepst{iCElgD)uzke-Mbx2@|rgt?|bFz zqf2ggS$1Mkj5YI^|qH*z{{;_~u6WsnBb9jkL*BYD(`j<86Vw^hx|qV?CxS!nZs`(LK4T=memsF54sp|} zBjwwMu6x!>WP4617yBVcy}#f}WRg8qixijo@@2;q25&a8Ix*n2)Vjc<4_Tx`FHo@} z6Kd0aLR>a%Z6U4R0I>SWx%cXG;&jp`+)uwFNRA?C(eJ%`f4K)!Wqn?K{N!AFf(f2* zVq3~A&9)x<9FeM%UWbi%=rFmYZdB)nM<2NGux3qj=nB^D{Hor?EC{Gb*=feCeu5$z zO59SgOhEvf#(^q3x7spC6{hWENYWiC3u6>89SD$$h^w{WnSh$A@dZC7RSY2K7-vfZ z$4T-;f{ra{e|$7%BB}6vSw2IzG98|n+O4k`4Jwy?r2X}N=j=$?hT5yf&*TvD5P*dH z!*qX=KGCg?M72;#Yuf%}5hUgb4=K@ZgvOf0bHFS^Rs!4DX!HJDEnT%Sy|rlM2$S}} z&9nblh9H&Q&6lif*IkTbpX`Tzlq;^?*s*Pwtx}FFe|34Cw1@(vQuI)MfUHwm#+rTy zdkyaQf=8FKxeE&Pq7A-aXKE!5;iu20Fw{HGn0DD=q_8X%Rl{RJ74K}? z!6cxtCw@WCFF9<$*pFVfS80)Gfm{DNipYNV!=Xj(JbK@!ePV<~;lW0iYTlOo2N9D9 z>Q~!-e=oyUPL+WD)FPomM4;DK_4~*(30=Efg^T-_k0Lyfv~wS7-iStP zLSx11o^l2^?TAFEE*jw%u6FfVkoRvKgnzwo8DztHm=;a;_q0>5X`k-2q$#MWuzSIY zp$o}eVknK?PRz$lq{$5DRC3-y$21RhGIM5Dg%jB^I(;2{2(IW@=G*5MG%06K zcMHmw^>v0#0@eSm;}!d&H&ytED_!b84Q6ngXHjb0^)4y;2rkSz}f4aY~cLY z8iFq|85dSMVC=y~FFdG{Wg?6RA(14Ae=8y?ul+oO?W@AKZz_*gB}QVK7KJbYw)8g3Gg190<$4{Xh(LTIRhS z%Uxs$NZnzHlD|*#2D%+T`f2(yy(dzP=#jJdhUBjRjnlv1dLIPYXO}$i{DVW{e}jVw z-mYb~US<4YU}F?S@CED<&aZ}5#FT{n^yk4`_w=45xki=&U#kikAh*ye-2@3WFG}+x z=6mUQx+j)RFGDQiGZf6upO-?&#o}_6#wLC1Vj2A1MBj0s#T19rBjPd;I~XWrv#Z0Unw6`e(;J1ZnM}v z{v^a(bqOm@QGv2Z=QlMBNA7J10B}H$zoqL+5F8o}82+9e(5Zov%S$OKN_5~+6~C2U zsy5ATf&7;LWuWNssTX6lmBj6NQfNIQZQq-^WkI~-Nwv5z>>-1}^AXX#{mYTdxqnYA z!tT-TuYRMSb=@D8znAt==d3ZvZG1@*)g)FKOeSqYj{h+C*qqpD-sKd2c+;z0Y=M9x zAB{CS1I>SL&6Nkge)JAZDQ%LI(Uw*Mw+?aBV6j9Qif*{Y6c3kyy}kO zW36Kaq<06L2)@C+6ys`O&mM-P)_+6a&-qKurqZmYf!v3Wkff8dLK^P~DJP3Zrvr_` zaiJqnl3aIDsw-fFsnDx1stXSxq>H{-o|QGgWanXN)z~Ats~6Ugcskng#FST+JTH zI>>bN6t|mKN)S=(MRDgKK)aZ!Y?(WyvvP1nI+i@g^I|exA}Vo}>}E+gaeI~SN^@A# zib|@`h-77!k5rP~SHV3I+J9h1u~qe zov0lbJ)jG{oCiH>Lo4(R76G4}Cs@<}wiYFZjL9T@Dt0<(X%2(+C3CFUr{4!in7JzU zF7o>@t-NL^|MRWoxi#}pF(rm|Uj1F)z@F$iNkBdRsCFBr--v*X^}x%}3QH~#PfqPwSc z*6={MaONTfBirWtA%9}AgssHH*dtUD1RjB4aeoxG)7n;Pge9SyNLp_&793qtFbtU5 zLA|}a0(^P(d_*6!ov>T%lP;>#o_PJA-dgEI3X7QiTj>qtgFi!T zg34!RtA@7p0-+@tQX?olJ)7r-2NA3l$pE{uZFUSuYA3FgynjMtpR7*QNTohz6=)&Wz_h=BsB5M$&@^rbXB_Y1Y(-{GPg7NO>esp5O zg9=8O{Y=)}YZLTVtFO`I)q>+S$}4X^z<@z(;COq}IKx<0@blc~yG9q=J2`#GTv4$8 z3WnkKH33tYACo+Y0TdHOCnnWblq*B(Ry5bzmSWaHt$&L?b1|MbvxKGufk&|6&sb?F zlfv5Y(X}{>U)J8Oe?M+C9qa0nYM_;knwX#n9^g$kB9sO^f!(iblx*L+d$)rXtx2{@ zRco?&E#aR?S+~kVhh{VrA`7M{GZm7&BHU_BfV-17iV-dT>Ms{Z$G_S)`BB$)rsJ_P z!|75$mVa_eIMQrzq^@SX#@KGA9)eBo$m11qU?qe0O1c!UU zqpx3$ws`6I`SwW1Mnhi8E@N4owg{x(Dx(*WfTdW|SDq^XIQgqRVWYt+t)w&3_x#=MLP~ z_SOkZhQ=#%v@I8+f1M!?^_aPE5%fWt>4IlccCZGZ+}vZaGqGxethXKz54w2X2DB1vfSu7pIBhw z*)NkvW)Ohe;>Vr^s5PiPbg~jUw#2cpigVS$nVHgd4ktz!}jmcs(z8ZEy3AA_z9aQqqTyf`6eh zdBxu>&vc!`WC>45aLJjo^$rsrTrwtoVG<Th_ zwl5`bVAI`eJg#zse7+blnV9(Lb5Qbo>n!aDhZ%PL{1TU)Uz23;VC_|e4zYe~UaW|t z&u82{{0sq3fxx%9i;^MvQ)08Is((!qz4W_L+VDG=I|+dlovDJcEJ75ZhL>=-#Tm`l zk{jHup@<**^;^q)D=X8RbO~TZ+lHlAt>&ip3Et#{XIj@Th!)`#2QrV(k#72_2#e#* zxV-S?Kfh*?R}C`k6E<`0wW}r7@#1vd97;tcT-mg+P{F5kpQe@{)DZ_l^nbi2NLb5v z+}M=GVK~F$?w#DUol-`Ixo&zgxU=rK`^zx4XBPL$Ibp~J`g+_LwPQiKI(t?|6vBUU zr4-ma532dzLP=JdH+_O6=NVZsC5cphwU(OrIiwe%l=3-Wel(4x0?(^rKhuDV)LfL3 zBdd1fcuZh%tXkfqAW@AN-G4T5U?{UNwvXQ0y63!!?nOuY3Wtd#He$(Xk@e@@zImiZ zvT#!Qoq3gL=PHpdxd-Gyu!U9bxnkYiDu5bb9!iD0oU8R}zaExSg1R_G{G`4kSP^{U z3svw_?&VXKdZtnCF0q#DhV-G8`Ulq^L=<1=tw<|!-6<`3P+0k z{rYOWb*GT25{~RR!Dzhj9=l<5esuQ%Ozbvxow6M+FMYbHVU7sQ9TKw0M*J>sGHpiM z&UzPqB@(tOPT(1Q%!(JQCAns@Tzyu~qUstU4>tdV()sCF>^74sx)cc$|5$;)bsA6%~e#Lekzja4b7Qh(6fhag3~GW87T8fzdJ z5JJ+N*a%{dS68eWSMg~Pd7XDnbjf=kH#8WZIQp5rxhD79}qLw;@m{m})fK0)T5 zt394&>2PAAiHLN^zCnNTXz}Z>T*wF4fXsMsz|3dMtRgA^Z~Jt{=hpEgBIS}j+c6zx zZnRxIUu&u5_HO1SpEFohXzHGo8MliEZ`Aysm}Y;C!aukatktT1Kd5>L7%nO)UfORAhm&}lAno= zqRw5COp+9ZU1Selvk24E#ojlS{DIe_(AD)h2=7s@?SI0~g({W;ZqC28cAqI zgfn+Y%NEygWF9|fs7-$G#r2fw)8MsaP{naXt%E#50-sz-w*1V@8#aBvtQlVENwQSf z`=yXooPP^$!U-iF#eM~utkRGM%_vB`R37sND>ysK42Vxe+jp!`{r6aD!DFk=bWUN! z@c`eFQue?&G~PkJ?W%%?sX%74SyKAFVe=?dg{#mw&DM4@qb&waIrqh*Up_fTqAU=dkP0e1oMgT z!)7pp7^?2|WbL|?E99;9*cIq;+8+1rO3shy1Q{~CT?XaKQ;PbVc(bES8T&Vthx$0t zyP?Yk{Bm{&;WH(UWU1rr)icpv(gC}r&e60)odM>s$lc}YS)Z7xtkO^9$m&!JX?d93 zmVZ_5(jzgYZhS7RS4|;Trs9toz zPjh&8oxhmEz9jKyiv>xAaGnyMySAT@52(?foTKzTD8HFB#I_l@>yfKTbFsZO^(2rR zu|MuFv;97B$zn{(su69jOD}k&_}dI_T0$>L9}JDN_y<)OX=c z;1$wQp?;<0lD;p@RL%YHtLCR8b#h5t((7)l2tB3v4z_Kx<#npu4YUYwE^a2IKN8bp zdyUy(yt%GJ?PKDEq2zd~k{ias$(vrm^Qr&sBc=~hL3(lNE9L@3oh58 zAfNpv7VN=-heYAeSLpnrXck>!Qm`HbcMO*#PY+O7Gc!O3|cZuGJpW0K_y zn7@Q$JVJntT5J;c#*Qo^wc?)N(ZJmjucaQ6CU}@;j~RP-ScTOjjaLUQ#3A3;dfk$8 z5~97A2!CE7G}a%x#>k>r_Z8cA(Rk)+#Fzl4eHo;j)L+sHaxuP%bCvx3XMgR%G3YEh zH7q?0-xZV&7JOV4|elPsjKkrh;`D56jD?FbGijWLfHbc~h&Uu`JQ4`@pw88L5BWxV0! ze`%07QhDe#qgBM4Uv3=wd4KnrpUnL{`k=iY)5w5h*%%=FZQU;&^O68L^yv(}%8a1E ztadpHxpCsD_w1W#L6vqk1)-mS&yqYKS<5N}Le-0bbiH^LMVzJS@#nikocj!)SC{GN zpscN8YRHc%SQ^X|KiBPpILVoHhK+C0$xKl*RhJAaoS$ofKx)~k>VWgIl> z8KEjrE%(s+9A421FE-ns;C8;B+MC+SUKblQs+uWTFnXV|ADUr2d>{&-R%XgTo=l_u zfbVsmYW`i#DEh85TO@6@Abr+&jtymHyG2H5w99Z8jyon{w}POsWMTGoiaFeLLnv~_ zQ+!~z|2a4zMSmPqpB{MG8w^`1}t<9(=k1%EXHuoHHlYN#r9(X-+ptsWmo zFVEEZ=_6cQ0*5!V3t8N0+$&hhmwPJd2K7bw5+lbUbZ}gLIDfR(-vLuNZ$vH-k3Iep z*a6J1s0a-X3h>;|^_Aq;P|1V2Pev*@zk-PEQX6979DfuU{#c#Xq|>!amMJm7j9o`D zi?Th5C4XGJai2!oh2pnnHk@ud0@fFIxnWgR>R5sPgND#J^)Q{0F0x_qHfv~UVbjmTr$+&qu56XwKFveh7B*2oF&5mWck9oq;ndyCO7eN2F(W8l9J` z$d|7yl7?9}+Ua4|iDcJhlC;f6T7TPo)uDCg@{zy%v{vW#<$6$Ft))mk zHtPxBV+2aWYC)!l5j=PEY?G_6JXpFbO|D42rI)q#2G?IDo4RR>zCnrm7t9CS0DX(C z8I0h?4NO-?%MP`I?@2)TXq~shPO#L~}qF9{4+ zvv`Y9`g9+oC|~W%eCaq+MQelvrDCJG-nY>~ZBbxUw>U}GainP$nW=I!VcFNp%qQ?@ z(I6HI+$F>Y_CE5sJ3WB~WU^&fVM-X~telFBxxDbEx>9D<;?`TSf6Xla96< zhSdbt?EG5`A!t>T?@(jKb8{KHEJY)Lkxl^nTK7kh3QHjRq?wy9`O9pD#Mqv;wAJG+ZMr%T zG9psq0j3Zy0uddtP4A2tLmyU?c})?PI}j(3Agysf(fZ1jhPVrAHYMW&+JEgm?s;sC zypBsOBK`{9V%L7%lTDcmQn9)btd9Sxcw-FQ$UuJ+`@6{2tDr+%8qbpog}Nxf_GF;+ zr07q>vm}QtWYmfFRGZwn#gC>kYcNzWCq^s=+R`7xwd!CfDe~&zQ<{*%F6R}xWQ>gQ z6_Vt6%;)OU3v5^r{dw|CFn^9Rf9y*ptSU5rmI~Li$!kX1xJ}AbjhHK*Z9G#zbv>_^ zS#i`?#4$~C0=h(wkO@7t6aHd85lHLLh-?+MknrcGlyi}1Lb0~S zg0o1jv+~~d5*ZGxG+5f4*m-xDx^N<+zqfe=7lGNRRT%BI_H(!GEIZ>-SMFJ-R$D4= z;1Y_6%Fl8$=KfKVy4fc-dNIs-u=%k)NljX-S>A^B_J zSL-qYOVim_eOD!1V58cm?_BUj7!PhD6a-6>k0nwP*ohdb?|(M>5L8~tmb;Aj<@|;l zgXIE@7MXVJacK$$&r43P-gJa&o@^xqqaNfs-?f52ACbt&)S;bqx{#L9z@*B<17)SS zsi7;nhHE>WW(C4=K}RY2?7@j@t^?)6i|5Rr{JhTa=+2JN zRU*tRz=#LsR@sft@Cr9q-6Sx&#`&F(;azH>uHN0@hvX)RdLmE$OH=`Up?D(~Wv z!t8~knLB8ic~OX>0PyY*BtVB@8a>6hhcZmwXV}_qDa?3@%;Ju$QU$9^@0B1SxcLiO zMJdA;?alMF-+$YMQw|B0njfs#Tf6WNj3SO8aTQFB7FCWrqbY(swXdT8>Jj`iRa{Dxbm-^>REQ>e@dPBC$7c6xKJ^-|sPFVDX zcz>X(>jOxrkGl{Fq3|5cAb*h{uWu=AnKQ-BUJc942W;IuaHCH+mkJ!XV6rui!uze} z+2H%v7-h4|;M!thv*TqdOH$ZTMs+D+F0FOtC%lGj<+5ZPW#QYRqKkgc?&e&`a+?#c z+bMyj6575_H|2sOQ}GlY#@3PWC~Q2xZ+}h|MZ*Iw&2^9HKh@5x^=V@qC7==s!#o@m z8q5Gk+aqiS-!G-L>8q!22sE!R^{3fQ$O$eB5;;((4GFq^`tBlX;Oc5#d4FWg1z_wA z53FYG+(6*#Ycgs!Hv!mK#M_&HXU%lxASBdcmSC?$YTKD9ja$rZC>D?D#&h8FpMML@ zB(x!*!-TEPi(t#*1Z29wSET!VJ=g{jC` zTy(#SxC^(}+5U@OTF-<_15~EB?tj@k@fQn^XkNYvyGv2SP`_SRe=s80$q(;Zm8im@ zg8dc|w9*Dqp|S_xzlMMOImrW*qm*|$^igM=3ZGv=%E`U&Sd0>#X2<7Dvr+VeY>*p; zeZn!fntGQVV9+Jmk{rOtup-i)0;7IuoZ*Hem{JGMu~5uS+17#HDqEio*MB(_*)a#P zlSUeZ*pXZkX|YDcpbh+f4kP7+iVt~Wophv z@7>J8hih@bK-_Y{&)9=wX~}t3?6w>t+Jht}yyt~Qgyty*R=2O={3|ioEo0Td8%QQo z=xUoKRDHb(#>O)p4wU5BsDF1%$8Sh`+$WRIiJTt`_h)%8Z>Tl(l9$4Daz>{h{a`x>3=7@4{{!ak)4+`*r=i1p}c@PdY5yK4GOtvd=_!0W^ ztKz1LWBhCho0^23{yG_DG!M$!!XmR!D~Eoz<-4AWZ=rf__Q?m15Px1*L|_mpe2uA= zD)AQ(NrJ<)s=Zm7!Yirq1VI=!@D~A=oHye9fy@c5t{kL#Qvqf4Dxc5RN^m*q;h#}sBG08XVo*F2!Oa$FlxU+4A0pXS z#AEn;!06?J>#4 z2WX|nn_Qd(Z^M0POhTBmXY=rZdyBD9v#XACz~X~6k*LA^7olN+Ps#bQ0FqhKqh*q? zR=|ZRx8_N3doD9VQ^#PH9ACvLRTf-OQ%X+5Ub z|q%7eqYEc@7b5FA;nfz6N3D)*bF1p zY;>#e_>zk2~W`Kf@WZE>PV z8lua8(wH_68bKYwW_IK-gkJ2sA^3P{enawa^?x#&fh5i^;L%>uy9*Eota3=~Gl)DH zdv#6G4zbht)#u>xf#-r6PJR=_zEITb_sWG04!kfw8WP|d;;JSN>;EK5)>TJ1s@GXgGvZ*)-3r~gywV0Ry0uDXSk61-fTl9%m9GpG)*GZXu8&bqCtnkCbV z@Oc7DS94FacyPry698DLHl}6``=QIVoU9QQ;gHHUv2JDcdqb8!=#VUJ?U)2@6^gV;aDa5WDhSpzoTf7-sR(J&lacJf@$k0lNEdeVl%ODDv zq7nz{vXSi(&m^0U$-Rn?83opVJ`h+_*kz@NkDIOFF|S<6gRg6()LE zD8_)L&p|Fu zX>1dLxJT8Z8HYv}YQUMc1SMYE028&xEm_*|i5+WPj5otLyXB3z3Qa zmFiO$9g4}kdfsUHKGqR4b1yOQt6e~N$gIJXzi`GGAwKg}W*K+LL=J9F_&JS!JRdd@a+I~%c>+ISo7{MdUSv2_{+M4eToXxt`(_O(u`Dcvex{E`J!W+yc8^h?ndl%z47x zN@^-=I{7ZB*nJxE0G2Ps(a*PT;zv^hRZmTtEm4~$vOVOwy-&1lW*Gg7D?gI#%{WFg z6ktoSKT02==h}yrz898}Th>FA;^dM-bbd{w=#YXugSD)s7*S7_Ed}9a@)o}dB%Pq| zFFW*78LA~eRe#JlP$Q{F3CX~t8O-)#T4nfNZJi@AI?vjlCWKSTNekdX+K)ClYP9P| zfnQciv*;TZE~GaThjo|z6!R}MoaB5{8bGOV0Fz68aswmx9bBIM-`chPQIxM*P2t_X z`wg%F11UY=@hJlS)Cu%ZR^HQMYTvM{9xvq(7$5H03x8Q_@6UIHyMYI56wapqA)K>6 zh)bd-3~FG@*(>Nbl%Coa@(fBAsWo+?!YQs4SO$zkIhOQX?9ubi=vdQYt4}DDc}q0$ zW*1m}3*kXTTr;N~c&!;rVA2HhF2|Ynv@I!5<)>ARlwkgrJxwCH`A-DlM!$_vrzbMV z@uSmmmVdV+qX+h<8P=zm?%D!oOQpuM(X>(z@r`0?htD3oSXRLKfD`fFNANRkCCb00_e75aoa5LXqn$QOzoSi%zNp~`3FkU)Gq2QY zFH19BPi2*!s`A-8F{`=S#bawDg)2q|caz#fb zAqF&oD}Ba66^*ztZ-kuc%GnZ9(l_lqgMY5s`=eXnBMtuzTE)DD>H`FF=7qWAt&ap$ z+`L2a=p1k+!SOh@*0=SnC`ZCfteF9jpkL025_`0YC+`}66y?u~1xJq%#SJ@L$746( zJGQSB94VFBYdpZL})IOoElz%t5z03;eW3coALPH7SURSMstZOJ*Ot1yu`-W7f zXE`>J-hEf)@6Gry|3B9E??HQM{RZO%P|*XkG@Xy?Yp-%iozALOu{#KZo1U~HM zkLjZJo(n|~rBEKj1U&nn%?_ihH&n;h?*+|D@+65$F6dY4%S}FhD0?BO<$u;#1@h}j@@KwR zCucckR>^Zj1F@EbI+x3L)S5%X)jXQ6C}4B|e_jy}{%(VD@G6|N5X99YT_-6PhY~HYxIU;%ebn;^P{_>MSp}8o=VN9t1`i;R{$UQ zo%Ktg`oQ`@9xp^=_SKHeS%_L@b{6bU`l#P&Y>B(f=EO*>T=zXe3<2Ldz-R2ZrdPDq zvkVCwg4}*M+4?%Eu|Da6`Vqk4t#JRiup)69N_54PzEYOK@!R0*kUmd=N;}3>AC~3U zc$+z-L>t#+N`Gs{K~_ru-|^b7G<9#xb|{tSR-Y~+EwDx3@0#c0?SXi6+)tGg_8GgV zUhn!E5xoje7wF>q!d0Xwa3Q|*!ud3eSCyM4A4JY452hE8?z8Sq+=Iu>*>GC3_>p4h z-!lXPmy0wLQ@ED_SohD3oz!m6eA#^&5X)BvK9Rw9GJn*?kGQ3muh_y!&3yf~SS)`w zl}G-IyfSV&P<(JDLfpjmEqN@wJG(FYO~93tH<2$ycx-m+y~PLH)r$Of!ms|2OQLP? zZ}a{2=jZHC5J&%)_CTX-~ z)+9TPUt0Qq^F`TzeoDq|AlRe=_mKy0)P(n2Ft}%)W&56{44oUH&wlC1m5O2}Dv9<+ zyATZkuKf`~KQ(0?W^jzsGHySfgvs4n%#j*>^{a`X&-Tan!S2nBy?)wZlfZmDw_+#( zcOjD|*D1FGN&zSy6f`*?Fd$MOFH&W5Z*_8GWpf}kFqa{}0UMWDXaOmIH8(LJK0XR_ zbaG{3Z3=kW?LEtq<2I7_{tAUps)#N$-T)7KSkJ82-kFJs9rvDWAJ`JBiebG>QQhvp zpL~E4sb)QBsMC;pdxwTcbTwWb`>j_*1*( zw9f>3Ww&d#yQYSgTyclAA&hdv7613)ut99v1DE%o_ieQnh{+oXoS$_MJ!|e~XEpyi z4cANB{@43Azr9h=T+Y;SFijA~y4hm=2J4-QBG@$Ov!4X?F$iI0rk`n#$9PM|4i)%RJtIX zDgdk!3cv!DKm8(SOZW{2T9_ivK2gi{Op78Sz}4(WAej*C_ve)e#tiXWaJO4dHk{mX zQgd?8$$^uGlaiBm@H+hFjh+7oB#xn2P48I-4W$JqEhja9C)+_2oOja9VNUDl=6^xZ zmV2;_pk)LtBWM{x%LrOV&@zIS5wtx7wRiKMrIXl~!kqeg^He(+uB(}*Izm;F5c+b{ zR2M=8cY$fz$M4e9R7Xn_EYNgQO3y1y6tw(;Fy*vxfPOw@%6Z|7FeGiw{V%xxhLZzV zZbq;vU|{WkCHSlgE4+{%+zco)^7xJctgsHyOaxK0&a3fX*b(JK2rVBmnQGvu4Q6#Nw|jy_6Bw*sBp= zDhR2Q7BiO>7nERTngnxSMS?k&VD=A7FgLx=f;%gaE0~m=G@Mk^ z!A->gHhC~{3Q~GJhYQj*@GMi!B!F6>Ooi1UVIxC{z(ma*m!{$uu0q~QC2Y8!?V@x- z`m{@bu$Pm!02a377ZA98{9Z}m8pG=}SQ5Cwj0;>uBwTn!`3WDXm+cPc zXt^45^ZknLs?Vu8*pdhYHYI)dd#+j>nx^Yf%~zkfc7NEhTX5U7)$%P?`gyrpL6a>Z z!d#R%9596IGOZV==+fj2g-yi)#=J=gbd8$&zV7mOXD=*p!9-Yi zmWPbm-Kg%J(}=*xHK_q~4lRcLLoE*2sP{HatQ8M|7+skI2@wqLt{sYN`=r0n+9(ug z`GJHOuBK3cfCw{NSP}G5KG*sL2s$REWHdEg%r%41%#E zqz3@-_b&lpKuNn10H~b3&4GZ%m=8G+lms^9L4YB3!Q_DeR)#EIDo`AM4z}DmAPjI5 zEQuTt7PuMn2ywv9m`4a~K3$PVhzE8SE(-*_ioVwz5YY%PRThXs0SKE10<1cjMTnL` zc$Gy6?4G?b)JTTMbfe64%lSc zx3@5$hY@23V@| zqVCET9pKWQ`5U-@{uFSB0f6K^S&(xIoyUYRWzly|ZXb3;HJ_Tg?Yz;;>aIMjl9z)6 z2NBvL1tE3-&`sL;*k`wZVKC~PL;FV@%~nJla}A_Qoynpo3~n(2R*0r+kK@=*vr@!s|dN2nx zd#5oyd8e@iQ)5LTqU0ZKiF_`7s#mMjX3IXVvfg|Ns_D7F&H;Y&_kaHFhcD^2fOv#K z1sVm+gsjm=b#FkR4k+&k`6f~FP_GiX>=N#Cf#)u6!C(&YG?^a3f zJap5gcatLdxTD@DigjB1fx4j?Flh7K6$yCm2y`3yLTWo(?@hSm0@+=a?@@T24|-GDVI0 z`9JV*(epX5oBznAmP;j<_Ty)!&IF<^f|SZRGX+6^3mhBpspkGSUH^Tga6KFK${}{v z&HsLLTlo1u>G?N!y7|c3C&xy-02?&gZdwo7u%yl_>byPXX|M|72h?vVKQ$P}`mwkT z_jThojDsof_0_CYhdzTaRJh=efzot`B<*Yw=c6I4#1b?agrtWBQW-oM7$ z3?3AJaY6LNr#EcRu1zTdG#_xL=8iXv#@An)T5@-;J4PcMoKJ^N6X1j|*8s-6zs1cc z$9hSQFP0n~Cn-7(lPxD03u9ndUqY%WrV{FC0`ROtQQ#*9d%d`u04B+|NQh(o;+QO+ zlBdcQC;LI=)QH~bo(mUyG>&2zj)9*fz-G&Tz+T4)X_CBrED$7ui3tXx(SXa-8?cl0CI+V{ zkM>J3j86Ga3P)KUqf6*S8?!r#MWL{i)EQNiB{GOZdCL_C4g|tjmJ~8F3gioJ88F3v ztcSe@hWTmr%>FutA-9Gk8Vf4NS%Rf?`l{_?+0+yx@qD}h9sv89j$qsCr^n4&uyE~D zd;JIlXU$9pD}vI4fPum|Hy$wXWVArSE=aJiiVI-}`;zG6v*7|q12aY4(25=jBH(Z4 z62IA?7?3&Qm)KWeu`S0swHDIn+$rgQ^FYiGm&GXWV1C3{{E_$sU>NGi7eIJ4K%pRK zS_TA=D>3JNh0$%nWr0uz_hdN`G#GH&XMr%V1f8@&P(jvZEp-hWU1##Jpa7n{L8XJ! ztjTF)5W!_(VHBt`leNf) z@p)K8&}1eLix|m^p97-sWT<3+fUwdE@3XM5c(7-(7MUdj*5rYR@M<0wU?3JgYmr$C zs?209b?Xcr|KxxG`&;E9;S2hPDF;NrJ3_J`fO%|H)*`co5w^%$>JA+v-sgcRC{`~A zgaS>b!gRy(36mU*8yAvEe!PR`=C-hgZko|?{u#{S!pQ!aF5TJVQd2B{rpsx1A8QTF z<8v!~v0a}G?-1OXT|fAlp_a#U!c{u2KYjRvr}FiFw<^i_r}OA!;diHs;e;0>-t*Cn zTJ9JZU*vi{(#eDZQ{3wA^Q@{l-sf{@x})`w|jq zjh(orueKvlqJ^Qj||MgB{F{-@?S989j0?ZH>zs5-{ex-$H zIF61HpnxZNalRZ69g%<(A{Si9IjjNpN*#w}?xh?_VNt{;=K0ZDt&ua zFmLeFG0az#U-j}E%HLDIrToM6j{f|w)A1@Bsr=Qf0z7E$;)?WtwXFj5HcNepRnRB% zDp!G{Ga|efXWKhz)O=@-qVqPXC*LvQ^w^=Moxgo4A#pMx!O^j(rsxDb1y0c$_gwkF zrFJS*{}>^+QCk!mcnJty$l-}ukfbY)FeXZAJZ>)>eo7BdK~MaUzEB7vXo=HSQ~U%x z*S%*&&ka4>8*g8K?SL2M)Az?|7m#m|zo+~|5__+3;2VK<8lq`8GQAvrH1nUPal#_+ zr@dk4zf8UQL|ub6fIX=6>T0wBe%oc^^LIo2DcS(9v9K4}6ZOfwMs0vWEypkxN-zk+ zu`G2QZ3D^ubf}MnxV(^%Fqx2aJ(8zgobr(_lY!ETOBI)Y7F=q%RC8&|rIC|uU3dXM zU0_BS$ro@8X2jh9jnx4C4VOwTt-IeQG9^A5Y7~sQ0!;*q62r@6!GTT%?@4$lCG$eb zv{o;zE(%HAM82CXY8sBnJD{$TFHVbm&mxp+PPUwE__wKdVHtG=L6FL5q2%?L2Zp~l zd-n3GKSd#b0CKUohAd}o;9B}}C+#k@DdX>);b#`D-{%y69V zxZ|49SaGT1WW$vum)2aWrjz=Zn2*}9&EnZ+aRZx$OeY;)N4~%NPT9f24FU|QZsn$% zzxvF>ugiV+`(#ZLX&uwGk_E-hQhwSr1uIreeMM4#$R){=SWL2<&KTq@-5&llf7~DC zj|xw01@skc1*Dw+6@yukkr>XI@|U=W*FANI-Ov$#YiXlqXCSkLalZfm2k7Fw-fdr4 zaSTn=!3_=!_WXPLj*G@}7!nFrxQOAn9zK;Ht5vnRZy(04Omo<_Yl;_HjR4f3(2w9A zs`~zap&bKdtnl(UjrboZ0HPSTh%~evsmC*%Bi*N%P@V4dg2JLa?9&^Y?W2w96rkL5 zfv#SIpEiO&8w05zY&`pH><654r%U!I&$z)VJK=`4XWc;+{pSW=lUQ7C4=^HhYnh?3 z9OWKf*7q|0g?QY69OFuF)SN;~u|Jw19nwdCYKJKGDd?S$VUaE>qYNhtyxr}1%ynd% zBuz6oEPISLkSzK*psp#V7|%ZU+<-5%!#5sMt5w-@JUmn$Cn5gOn}qacnnS9f&G%pq4Zg=c9`n9U zA7pO3|1r{bQ%%|7hyzGARXV5)$8U=3&Aw{dvoFbiJ8at$8F9P_ zbX_*T?z=Z`dhhc=@!9pB6r(Fm1nLV73IG{7kbtT5Z%>RWb(hk40agMuIhQPG0WFtT zdI2eaH!?IJK0XR_baG{3Z3=kW?HtQ;<2Ld>U!ls0s){jqKWZz7q&BnJY^7>9GnG9| z=D?9?o3*s$m1KJ+U%&kTWm2YPX{h!1kb~W95CXb^Mxz_upqyMxnNQvqzs%l$Zp!ua!@Hkf{rK+He_tv1v7D$$Gy>{T zU2D~3cJ=E02RWI;yPqdgm=q^>RP$vB~BJ=KawL_RXMuirS;ZR<>b z`6RSY@Q{Snfg5{!xx8BgV@?*co7HLxuv%=I&s;RGewWHFDlDFJ(KSAoRI#Ok%IgKg z&1KaV!06pvL2F3n>o+QNsgaX2ZH1MI$#{2JLpxT6cBFN{4zYk=#NuXMo!>NEc6V7V z_-S>sSk#LPMyPLmSl3rmXyK+QH}x`q*W4@_UQ`=yu*@%(Qyq(2tY58e>*_9-o^!2j znwOX+cACI*Tpjaql)+FuX#Be=uV^%JZyb)a3){SZfx7OZQJ(7 z*>K}z(JG_ zEKMC;-r^msnnu6Wmnj4-AE~%juvZ)jpq-@ZrkVtp303dUs@yhz(_VN~de@bI1n;#q z`!#WdZ>};m-IaX^w;rRW>ob+B3Uyk2RilNnP8oH9Xhw|t3rBn`v^p%c*e%$`XffJ= zrR_j08_e40hOm(23r@SOzoa^v!I+i@TK(S3>!08!@)o8rP+2T@Dl?b)R^T5mAcoG# z63UWaO1%r3(%uPEPus_%=LG7+71*7A@+e1>hn=!no1+4(>ebpb7Ll*=&QFx{|4v>i?*ERSP(&3^Lh}Fa4z()Y4l$uDrHG+>GBQdTT_M{s zv(Ecu6rrsju4My(8D^v5sp&Jo1yPs8VHZxJ5`lnr!I7Z^usxSXyBVGT zh4wK|vyJK~@(JgqV=5^BU^{Mh+onG6?l=twgT&%)5zUg1itO~%b-TlzGq`y-9$|&# z_%#0FV_X9q4>CBWfcTEqncH(6b9a`w_hG$pjpFo*}cS$_)iCPK#r*ikf>G|_ABZwf<(S* zV$MIPv&Ld#$fw-XrhereOy8s?0*Q-L`40Y})$exS>}NKN^%V|KrT7i?v`P~P2lDQ> z2s+e#1HMfl7qV~-tUi&o2KpL&(PTMQG^9CyENUgN7jGmy$iN`hY*2Fdokyw*+m8Sh z2$wg^iP{Xq6m3HWkVPGdaE~OD;xC0|?3QuEAjWeetynClYC>g;HiI~qGv8~Ynzh9r zfjOUC>r_?bp^hdR35Q-_h%uv}G1=siGJb+$Hq$^izHfK>B|&}dbxtFNV7n(8JD&~3 z^^S7iMumpsUBp3c``0)q)(pZgbJ*I*4A{4{kK<&_94o~-F8OQyn#Z-Y8jUjWbGb!X+ee(ou4q*R|MALkMp$x!*E-((h@J8(QkYU4c zb8qt*&FcOO0VnLFBs=0q5MRHb<)ombkT22(TwnmWGc-QEs-;O3k&6)0jB(Zd^W=vX zf&~H|R7R8LH|nuA9_Fo862-sNtULE=+PqAxM?7l`=8Kk($DV2Ik~B%BzM{puQT%GU zJIS+(9k*{Jwg=$6jp{7?!zb9Z$wQ%m5N>{cWRVJlA7SqYnvOZ)X0VRbb086dKl}Jp zBI5u}{FV{mD=~A3yD^$UE&OAZsdan^s{^>?WXfjo2)UGtIEIs!>0*$qjYKUeVCZ3s(I%#m$*@;%j-4*Ati~b%Ws+ zX2^Y+cc!)98%FZ?d#8ia)@L_^hstV6DH`+8H@9BaJU^tJCey58d{@ZuEN_UW1$zhB zFG1)Do?@GoW~2veUgl$r9<3Cxyg>{Bb4Eh_^$9CNEko$5Ov+pkw$N{XNGOwE;Z1Q%^~+We&3n^KvWd?s4)?fD-X zUjB9d%W_LTphq{fQHi{iAwkhU#&wYqyD{rYwCofkU?`ay<+4_ht63s!qq+a6#_OeI z2H>0`%Aj;1dqBn7AUs%zGJ4!m=6KEu8OQbWAT?K#TMtmLJ=Cn!&u1bccv2|%s*SE@HK$jcbz{yw}l^1M7?(w?2{t?K@o zBq=M~ldL$MCYew0@bmE2z>sfopP{}BVgYT zifbzbF~6r@^yEq^z&VLp7BEs8C_wQ+2#q*v!&*1=Yc->U578vK(~?+4%i*-4;;THi z>l%UFLS*b*R?6X25{oobQ9)tkX@Zve&lB1l|IfNbXEN`sB|+DLcJ|7b(8jY($7#w# zpSMB(vHtId>3kT}I3LPc(G2WelYr)qV$zc{7csK`TM;2< zm!a<@GZ`TYZ}yM8-eN}&OSTqb*7#8IiB2LIB^MaN{Y`>7NkF0CX4wqm2f7v4&~{wO z3Px?*dqj-UeMP{cpUsYlly?ypm`szNlfLzyo4V&uXcaLZm_;iD#n#gS=H^LdI|6iw3JJ-2)uqRLpbtRPp?>9 zi24Qf-;JXv?{XWf3l*#TP@Z6DG#kmDCUE{RteGdx%(ny<@G=jIs1uCAU+nN<;!Imyv!yh`+o5@wU^ z-qkyfH!hJBtbFY)bD&VIg|BHih$H^plOR!Y^kSLDn1I}y5Ih8aA4z%@@b1}tMr3vU z?@*qn=)-Gf0tXA`n2_f;-i*Kf1%NmnYwa z8!a=#*`INpu*p~xafB|Y1iRiu&c@NOxL(?!Q*-Jg=aO1ATPj?B!8)XcS5QEhOLh~? zyv*H53&;y;Xk2+&1wXLXBAs)+bn33Kd{O+n^=7cpKB*_*ONbAx4eB%o-wEibf;OAJ z%wwU&U?J#M5mJ6+GFwOa=rgzN{bF;I*Ow?8$qDDXW>fT*YCB?jTu3Wn9V~#$y`AAb z^vf6#CN3~vv5>KN3IEdzYI4v&1Y-l8oHH*jE5su71rEEb!k$JG399w~V>7V-Up7N^ z4u0O`yT4fzHVJexJd3FBrtqs;*+f{UmWr7GR8J0{`;vA9+e3Vx zMc8peR|}a|R!mV_{Ca2^u=EA|Tnlu!i88q%!8er-0~8i>v|dJ$3gIxw$5TV+N;Wzi zP*eFF#2ViqMyCv?3>T!Rl;uNIN!zvh_*Fy^nMz?i-SezG3abN#{qYi;Rkv@T7ue>C zkOb}Zn_X2GVYLfbJN&Rc%M3O4HYZ{1Q-g81!jr@jlY}^20n|G`r|{-zRWeA zL-Y%Lu--2mAw~9cEhE#dw;KkHEZnzt3j3NbFUe~QTy+3pAaq448nCWSmm-d6vh(~D zA`VVtyB$TpBp-fsFdvUUAue6j;|eo^rl?6&MH0ytBn+XD5Q2Nas)AxkR#kC)fQSq* zV(9BRSL~@xl}INaT6jr1(V5)*Y{Tsb%`gu!k5ow;te65j4~}sA98YSKG+xuKZEM<7 z1D1HHthoW;i-PVK0MKiN#1gN+i?O|)%E-9-EFf&dHXr+=QR{&gOqsh7=M|fYuXP1) zgqyV|L?b8x!aZSVcOmlqwzJaazEoYlAwqP}QN{Px#Dr=*b+e(D?yd&vh;(?slN01w z?GXVe;|b$25Z;kp5T%Zq?tD$6?cW!67P(4S+3SE>TmiOKb}O6%JM7xwI5F`u2kCft zWPV}gw4TXW)n_4oo2?*FjqkAXA>Vl<|0jzuWxz2zCFjFHmMUMgKO^lcFx+p)0$_IS z{|-S1Cj%-^*i^2y`&)D+@bp(lnq#vN3e<8lYCI3DWyb6Y!t)O1aDo14F&={1O!XB` zRT}^uGR+360>Xjr{P73gVDFrNPs!WWNl*UU2d`4_=RmAb&)3?U!r8Se$gHiB!RqWs z?Bz;@`iiL#HYUvpcOz~GOe8-HVBx_`paKIo zp}VZSA25F@kooOm3u=i1s$lHmh9hqNH*B)s5a|GB*0A^|A)9&b?CmTiRRS|PjO+

TK@Q!W-B&*5(c!NL=!#;QATR9{HEd2@$ZYF6-5Hm_yBW{p#H~uk9tFs_~a- zO%#U9TfRACF+J+@-#6<8RZ)_FKTu$UPA~+r7J9v+&HG3sA6_c;%b1+|V(TWe6U3{+ zCwh5Q0{R%oP?E3zZo@JlZ(4*fyqUzQ**1QN!0OEf=j%2c-mngtNqTu2fHwGu3QBIw zo_IF;9i&~J+1wT1{FXf6npruLay_+|EX$>8(81vb?sFHUukTg(~D_0^#^2De*xW=um^4I5c7Lj-^CVZNjQ5- z&MOuwK3Q_{TANdu6b%DFX(~rnb(Sq|#}ul(40KvQK_P=b(Xi`$>)}^%ZvVwYBf~Tm zzFq8my0&U3U=-b;7l=Fo8SPonXFOdDc|?4J?5*fkE_!gm;Sjz-aML+Retuq8%-UO$_*3K!C>@WzN z{5x_SMgOXt5J`?rcZ;CvC5QlH;9!RfL1V%7qlko&+u^}LQ&12@3IW^v8{$MGFc!~B zqw@YIfu^sgVP6FYUYIZpti^&+y71cg&$B8`HWZ`@MP#}xD^f_Sv1yz*saCMZ?coF@UYq8=5uBCk#_#tE#a^E&^4Z!v7H%s!n42BT8DFGY`uj=>2 ze@RJ2Dm+OqJV=nMhK9bNkt;1z$_Os#V*l)^ZRY*qiq}NMezS@&=>6>&r*ZWc?*(D_ z#-P{gS*0-5AW-|?|3FqNF+BbcNb&mq`^vvLE*=k|JwDzsy`b`K1#e833@}eV;sgOF z2yX{~#rs@g+6!-D`WN)wnh%C_A=F5dY+Yk!9F4(~k-s^KU}mlGp@G4ZeunaEXfSy>W~rx(I^nb<#AJjgc{S3j8u77vnR4 zH(^;$|@)6F9h5<6l#ab7q)dZfvXrkzvMCJx3xClo1m8Ot&bk`;t zBr@iym7KA9qDg*!-Y_*4_<$=~&!P%QElTB8f#@~KGl9TqcvwvRZPruJr-Z(HAzCJH z?>6BJM27(i&%gxYist+QQ|%EucDzog5EwIx43(Tk0Ew_#hdXb;9EWi1M7bs4Z)ZRM zNk)$T9<*vn9jkx7DvOjZ#;*P>oJxz}H{6l42~3|1@4G)_VuQ5ZW>nu9MvMfk@JHIe zd4+O3a&8KzG=nyUd+TEx8pvCMiD@hVfSRU+3o?d42%RO42!dx6#F1H9q%83|bCJoh zTMemYxK7Kdhg6M%hu{3pN|lrTAmYin+@+xwy7r9lYArL;nOsEHfb-IACD zFW&k^K6QSIt&T7@P}Zug2&sU!a)P%ShKXdQ8cN)CN9*6+=E)?^hZl~e{X3n58N2;# zULL+EA9Pl@nCr4IZ2Hn{&lobo2s!b#IQ@G>?%?UR#-{Q%y(J#-@^r-d@*R6GWU_fw zx}!f5M_L5koKiT^Li%wr&qJE`jRz9plkSpPvv=2IbJaduBlng#=i^!>6)y>;hg zHCEF<(Nm?}fn-L$@OZDN^f-8>F39f;5?+?y+JvsP{)`uTMS2zN!vr{X!VNiEb>b#d zB|p2Splkd?fo3z9Bx61364<%-;Rlu^hyz6rZj5rGd9^6F$YmIZvS$mZ82#~Wx{(t% zsyHNBspm87uw3`bqX2*cD{z;M>^TH6lpK7Z>kGFC@?{lO&Q;NZT~Z@QO&NoQ{2$xP zGXsJ9N8V`e(YMA!!*!>+Qi8&b|6D`cR3k1piQOw=8XeTbLpTXY9-ce91PX$0m@!!! z4n-JiTS3lqYg^kv*p1EWjH{rDf!Q&q9-^}IdeTZ&WyOh589hKZZ7^ME$!I1ll(M5~kP}8SlLM z7AJyGNBsqUIhMEqsh0B^_!g<}Tt!t$n}gq4$XSvpO4}V6ikau)@Zs5`{&E{IF5O6~ zCy1gbnWTiZ;08byQQN%ZQfJNo7`o5-Yg1=v4av_YC;nLCE{>T3k7@DeYBGV88C^ z6w{-0`)%awP@pK?ve0;H`q~6#AlGF8xD;w|0rC&Q*$)sp?Lj>46w#%~#LAVl>*j_9 ze$nY>$(q(){N!7DVy$xS)|kx%WJ_DU(+9K2PhGTfwMR&kVX@w;d+IHU?wc~Nn7KhC#^XQ#nsz^&@w2EP)`)h{)`LaqUlldT!DmV^uk zg^h0^U<0h62RAPS9R|Yu)U=|M77v;`mURSt+b8vRQ~!M zwY656C$>q_NFIpjr-?_rR}e@2+-f_JUr@Z@*`PBGOO1R34uu2V2aOd6+fR!rk5<(q zHNlTv2)GAAXy7~z`@0>adHprojU~V4Hh)bc?gQ3pjeK+2f^w*Dl6SKe2Fr3i#N@+> z@0{X2EadJI2xYsneAIwYk*!a(-XkNI-t|Yw_O$$n;i0{Gv@1j=ZBWRx8MFX)hGGRQ z+s=eGORhvSy>#!-4mCufX#$+{8NY#{a;Iursw(`a6S$&3P@6Rgrym)F2T1{tRHj;? zA^mq&QF1nA zlJ&sr8vA+@)@dfcf4D2uKdn)1uCt7db5?3cwk-qp@SC4`DRg+LFIS zBx@nDoeOo?=I7{?P=0VSbH3?)NR8JKHo&Y>l|pmRy%t-RpT9g*|4YjD=3QTW=xds;m0G2H zJrAui1`Y4vaM)!t_;K{+ngdpdQ45odlsB2P&q5$7{);WiB3XwkqseCVLfYOp1mNxG z6X6Qo@=Ecs@yYQ}OneiZv7l6j44)yDwM#Ts=aFY6&Ll1Y zPB!+^+^$Js`WTO##;;k9jkWvkJYPuHK3zP5$r(f$Bz*~zC!E+edaE%Yc)y$GZ-n znXeJD?%cZt14C|opzgKl+ctfFy^G+_L$@9%pD+&Bs@*SZ)Ut{j-;DV#6a3^?l;3TC z#^RRVx0&}`dnb-0-2hBU>&o<#LFE+reU~o3G=7SpR~HNC-70!1twAy0LVSP}ZI@7I zn;<%=dLbHwN;7?nhQOMm#V4e zrnBz&k5Cv!I;sKx1u*HYw0x#OEr5)E9p=pKnGn}(w~l#U#Y*iaPrFKV&`Atve?HP| z!Us7P_ZF*&p6k(;*U#26)u$6x+ZLsf!@jyS6xP6Zz7nUuC7d9q{}xOovO&s7D{YBc zMzg$90SI#Zks}`p%d`CA7xx3E*|4mDkw`Q>_0DJ0%~;nqDzohcfxKtNGn3_x?gHYw z*+6n|3%ZcNqW-!(xZL4BmsJE&0r{re{+huk)z8c4uM9Vet1Qe|Zb5#kr@?u!uOs!G zMDGTgSBPO}fPHx|qcX1W&5&lUnqT6I|7Xmi7waZciu0LT?`wp?O%4Y>$6EzFqU~{5 z>8j-bMaX#IW)+Jzqu0YgyLdZE<0t+c#fd_iY2N>39MO4wGmeh({$m_*^Zu_K?jgZM z;`;wEj@HmM&4C`mNZyWg`-8Mc^^X*tnz6`D-+`r6p@l51+0j`mJ_x0%csJH<@}EZ% zFo*)FqPb)2%;KOjBlP5tA*4dNw~=0a;HKlO6ifOBEpE znI)z4D;(4Mz*R&kS3(JiZg`%;*;z$;ID!Ku7AHwUX&RALk17BqvN!^s36fQeIzUB4 zae6@ngtI~stN?M2DJD}Y0GJE`gaZ`*#^WR;*DFy)$4J1EMMupK=TI&z1(8fH4TCr) zJxna86+xz*SPeOD)GYA(2 z#@q~Z4@o{Y00=-li&`0U${kc|B2NYme*;$Si!v0tdcg&D0*;c~e4Lnpo=!h}DZjh* z2SEDOefrM1Oiyx_8J)`TGK#^6SzfeP3m4N=os_|Hpyec#^41MNkT*&66 z1_cBZ6b%m@0^^6Oq`b9&G$t4=aP-OMA;UvIMo(S#<;2(m#BOQ?xqbxyJ3#=qMq z?Jvzn9=j|zk^QUc2apy_3C`l$$Uf-3lhc1xZ|DIwmhW^sH-`M$IT(ePJTERtvmsf| zxrbb1>A!GFdS6XdUM zIt?aO)rx(E$Q$hCQ9#D)MOw3}H`DKmmDsZ%$A|42eU5{;MS@9ebvkqO ztb=k`SP77H65-57>jC6SF5ASD7;=OH*McS|>DRv^h6-J{FFB^gRmtCY^f|xjUjPI< z46vIOqAZw49BI8>QM~n5!ggVkQ`=#rW#f9ism=w0H>aadzPpvMnACA2_~hIASoZqG ziLOy9xF=x`L?^}NR*_R+7^*to+mEo+u&+WjWVEYj95$ z{Ug*AD>6()f!m4Cq_kU270k(`($R5K^xObB0DEii5Yy29`WA}0H>6B~ZdHARA=I&q z9{f#z+@JPg5^Pz87_|oj^%sN_86MQ${5df>Ecy`(fXmV|<6oTQ69@slvLwx|%4Duu z7&}r@!^z_ABnn+iIeOR^K_ozu<`hY3f4Y$k<4#4RY{ol`=GDtN*K)gH<3P0Ujzq8h z$oe}15b$VN%W#c^Cygljfzb=Uzg#dXeq#yUEJ@RoEws=rcaK|~(;%Va&N{C&FiJ(I z)vmlIE6KA^-R8~diUWj-!@rQBl6VA#&rprG)GONa@fs1IiCeYmvIjtRzaeQJbN-nn z?9lYy{1dlS&9!8hMCh%UvtW3}$NZyWdR>$}Kjkq4_Y);(War~41lh{J!Qs@YJQ!!) zd6bP<+XScJ;fC30M*LQJ?pJg zHX?x{8g^*c2aNf14jPbuds<^9+EPB9_Rw|>ikI8nju_()J7F3&($M|{nt^C#zJ&2m z$b6lt?E(@L;MYu^U8ALHlQ(ujtAU~Efi?@qdomX((`R=X=dui#deevjpU{HMLnkR$ z;>$+GKrSl|8!C@j`*&A3J#v!{>qxurI_!yAr!T!-@Ea@%sTqK?6O6>(3E7XrX4dDkB8^0h7j;YJvo4Q&zed;Q zv=Cuv&y|NCVK^aW-kYXBn9;IfU1d@{0D*!919bkX5(>&|gJR)`N*0C4xT?%05`uO* z=iGTbq+NCIkb&{BG_BfO@?s&U<8POJ&wA+1L>QmU zJZU;K!#MuZ`0N!IRPV2;xB9G%D^EtaF()&RfkOi*U4r|B^=~Pr%w8up)h)_t~gxt zf&xG^GSv`5x84RN@8q1cu+^ho&*;D%N`&=FR`W}Vc#GE_FVuLBS*y6_omZ-InUU!) z&RiyHoR#!J3Y}{jN>f91=sf|a2PO+!sOz`$ zs%1mu1HiUTg&ADj>W6V^kfOg{?jQm>t{~YDv9)lQAXTaEL5f%_$K<7Cfd+RrR=)v{ zQ?qm|@&%9V%Uh-w+Etsz7q2hNi9eV>n9Laqn)(Ta3`3haav*XUYo!FosBv*Ctf|0uRBpcfF zrW@irj!;$Q2gy231A))mx-sQnD!oRu>y)U}cK%V>b?M6^J! z;9ai5?)A}o2lAfwm_;XAKwXUOtlb~xy*B!lJL6>OKvKkW54mLML3q};UI91TWN6Xd zRvaWL&&UPT0%MIQ5dm#Z*AcWD~jFZ(z zko@H0_kV$1;Cp;d?IiUcwcgMIr&m5K5`K-ZGne_A%@zf0Ly4teWMO|9_@N0nZ`hp^gV z5L&H)+t6PLE#9yPB8#yE4s&N33;iW~cj$0l}4$F``K$5Fjo&PSbv5PtgacZRnO)j!rm z&&o85gpMNI2yg@)07<{^0mMB5<=d0VFIDL&FV}gr**DzJhRbh5C@`jh=>n;N0q(;K z^vPtmNHZLpFQa;4&4Sx>fAvA5AHSn67Y7piM2cI2j|ED10ZN1N0$iO61iL~krtepH zOFfT*hoWtsx`#t;G;3RsRjEO{1Rx8i*=k?Isj}tz3pW?@(=TQnJ3|+-N}p5kb0O9} z2EizpVMjXP`oAlt(1tOL9@@U%>8B-xyh9V9+1dpX{u?rjLDCQ zx)s?XFj8|=09#$g)xMegZr7VQfDjGOSP@38rh zKO8q?p;}R}0^wxwPp2kU&)?^4xmrB<3EBgRKi1HHd7>8b-0S%DC9A$8+G#H=>CxF& zc<>ONYV+IFGY5g*x9iXk|3F)?BW;X^Uw9Zu#i(^(28f*G@MSeh(U&Tch>hOy{{j(& zKR(RkTt9m!pU(7=SkP^ZIsTf-WEc8n3o-<$@#I)8k`PR}QxG&{SL@&@a9uV-sCX1x z>LNYYUS#!l8Bc@be}QBp*8F!FU$Jf9?3@pW+07ZO=Eft%>lEJxdLfU<{+BZs-f1s0@Rv*vNHd2@K><3L7NgpTkL*RGGp`hm zy9Q%kpayq$yQt-q$tZ#WSzM0-d$MYP$qE{%P<*RKJs~3P0GB3D{6L@#F4>6keqP$) zUj6iSWPl}C9jKMV6lqEUu6AiH+bg@*h`dOeiOuD<0&l zI;2GWcN|sH1`BXgb~aIf1vJ(Yx%P$t79mL*tTtg4vl-DT<~V}j9CkJui3m)cNq1j( z2oo3Z47%e z1o)#{y7})>Rz&ai!Qj4S_gy|4q&`z+pyAzaHG)N}h~m#IEN^Z$w?^us=mEJ=Cr~@B zg1_T095PG%ZDt47Vsd_WhJfoS}CD1_0X!P%Q0YG~|dEn4~|g<3@(HRSf_tJoYG>H9A!**GFBoIyv3 z_aFK>zr8u&uUV#t(ol4ycfZ}%K=s-mT>S!!TfnfNSlEeX4#7k~wSMlD){YhA3&2-t z`j^T8#Hz_!Edmljp zTnBG7`$yTf;cCki#vWilrmz{goi2@*Mw3Q#Mfu|~>h<&7ul{CFN|$>WoypiUp%g3* zC&m99qWeBz=#J#!o$)}iBv_*dp~r3sNJsrmoybXz7GW$qwnwvIc);Hp^|9T&M3 zMdg;wjVlhvU!>4!C9%B%CeDo#*+nAPjv&KJ)$rwAAX+pe$vRG%_*tRc55~=~%DmD- z$+{1eqUnO-2YMKXLt{KZ?BzisM_csg&E&EePp>vnpOX?fT1;g^I|OtAWb{RZ6ZOv5 zD3v9YrMIN|&Fr{1jPdqom{;?Sl3?}NXlE?Rtp>Ve{wlj)XM;Nk)bBXsK;#-MKg*~R z#*?x=?;*zjmH3+`Hke6eR}4Ap@w1z$CX|&8Sr{;sC;#3qrS>}SPp8dYRvU{Pl1TeSe0@)I}p0Sp& zw@0)$_bbVJocAhE?v|=wY+RmS75o+b`5Hft@gUKQVI{SP+q7*-xZ7>0j=|03ql0z^ zJp72kb&B4cMQ`G(vHxkv2mD!V)M=^Ig$pn#I)sFpoj1F`aoX7f1cWB%RqUgxjUkR) zgFUNlYb!3PfmrZ6$AeK~oUs`6^^JFy^|P*) z%@c;$tVV-erg5l#Qqf zuRi6_$ZV<74Xd_-60X@&x?%x2E%$I_ezEJ!hz|BrkBD?UAYWrZ76lE+cJ!OLh`O-y z1En^Fb@1nXIPpYcU$eR_}cGwFw5jR35{VS%e zi})h2*3yM$%uCM`0Xx4F(=Eg^yT2QyOxZBrEy3=hg2jFXza+i?h~vC@)gQx@o+#ES zV@pWb@Abrz08;OzHnvymFj0pdnS2Bz#re{j39MqmCeS=Ud{Jn>sGL`481C8zBe5+{lbMaTQXo;M;;&h`yUsOUvp z*j@9uZ5U__B-wThd#W<78d_iMo`SM(etf=ViiK$$`cm8ZkN*2A{84E@e5>lw`VSu1{7?m7mPWX33Y)kJe;YF z7m}osY26~P+XP7e+}#l^`{I*vDjbL&WlvmSM0zvQDgb)SsaH#3iw`s_JBcKN9yDL? zRHZOmfOl^~f=zinSo;_u8NGaCm0$h#qK=at*rF;79*xj}+&5mLP!Q4KvPs~gjzEFv z2{2F#{x%$5l0L>=J@Wt%Oy=MzumYCZ_#w3b`-Z8#3KkZnL)ImaQc>_je~^&!yTN{I z3k4$O8x>a~Y@O7ac%q9yfmEo0s_A|)r|T05EP2dTKBjO1 zlmO4HAvG3p9Ti;$&2cGZCg@-&;u*^d21u+D7Egs{0);7oQoR|B8M8m&3qs0$Dbz`v z0BDK$ox7i`nl4COm6PDR8O^#1OZ{wR4e5VMEId23>BqWe_9~WfR$4qs!1meV%7$5i zcOEu~;6Lc$CEimRWl>u4p8a-^T`69;mDo`VJ6DYT(;4Hd@wgd%t zp3IWu?4Op_dkqWSeLe=59e_DVkFeSRfQxS}-MY0wbJ)k{QehN~d+W>EX{k-6h5p50 z-0SpP(iShYpYv~po&81LW@%W?6NI~ewrDn1U)G0)cU1XWI1=}8BLi1G{yflnPGZwU zNcw_rAz_i)bKVmKBc4Y$xBU!4+apJwKK6Sq%@1A3;_!d6veb=_cWBT`<95xn0UvlW zM<2w#3n~kUR4zNE1wx;t1)it!F$wN;7P^e)qXm7PWXrCc0b^_tbGWEHFhXi5o`Vk(;}{6^Une2_v0iB|XpX3i32eFYP!cKePY zcRiiM5~$`;TYgzd%=6MmQETbY0KL?a!>HUT6f1ZRaDf|_Fw1GOl3e)yB63n-^3!lO zm8Ab_frNj(Bi?!Nh%(LBIxbjJ4yhG)BFc77ZO511bpwPbMb+;*^aE@vnCLm?07nv0 z5}K++a4{Y%S1j5+X$Z17EVxC}(V~#lo$3k(07@vk^{thO zKskIKBp5n`KpYm*WBW`|NZRD8fSz%v$l)9qI|Nx2RywI8>3`R2rYI~{@%%Nz_#VwPFHMsPJ_1c-`VY zlJFUD|F2zAWC#lw1tI_?i+KJmO#vsm?i)E3j1Lhli>UFPOaLrcjx-!Jb;e|%|4YD5 zgNU(TpLqh<9r*I707~v5E_FK5wLlaGtKiO^OaTRyRfC8X&xk7#1kbR<_Y(wBZe>h% zaa=r$9n(*y19xcWav;fA2JY%$9HU)n=opqYvN@c^Jz*}5|OAt-ml0AP*hVIy`e$>HDb4;SY6ps zYuW}haDlDHV@4MO%e;|o-N9YI$`ajusTpMoD3-jRN&%!ahL~?nqgn6%&c8$ok z^NE!`$OZ{viffD!;{ag+1VQyxQaSETPE#zH<;;unlcp*v>}c>i3aPCfT~@?}9&giJ z{0npY9Q*n8hHhqx0YA-kE&1qoj)?GrtX(5ml4b%2hMqRs11br|$&=QR_YHmpdO_&` zT&z6*>o|B*|A)&u7na{l?d*9H2YO>0xX)^iEIzj)wPHs^!-c{cv{a#;BIUfiYWw?J zE<8;_1Hli}YMWbzwr$(V#I`fBaprx$ zU*9?BZ+CT7SKU>2*V=opYa!g?10`eWA`I`XlOk{b9gFMzP<{_gmbR|JiD87`k=LyU z{p(f;H!KJFH|(%#-P!e@_`_wmf3L*Lp%%<`9v)lwo$Yll9=sibO1!Vkly~{Tbr#pM0t!;WYLz8Fm6k{-g#XB9P<*UB3Zl|5Jkdfs5+I>=7MQ2PW^nodVx)SW_nNAWz8KM9E$_uZw5pVf^uCOFv+-TT|GwxE;jX-7G2 zN=%FU76L{_8z(Uo3HI}5j7ci#5A`I2IEfexbTaA@ja&b3(XyKmik$Jp9GEbnOoW1$ zWHr$GY4SRK5U1ImHnI+zh0+>Y`Mz|H&ZMpG9cSrit{um1iUN_^QH7=5IPxAuUzI3Lb(w))JGCYvhmNUqs(jQG! zmy3`CV}$dj{b7Ti@qULXqnb;~IQ5!JVz3t>@~IO7&W(u)jJXY9KFV=HN?JT1LYL$I z+s}TkwC9a$Sjz*uq9i2)gB?d~b#yzokO7?!ttinS-%AJ#>=WFpdFB(?+jfRq^!L-# z58D?|7?_hIWzdNRvzW;%?bpHBW9^Mf$&fxN>#p&K^-mj8W~clj=swPCOj$fa71@Y}d}3WDyOFouo;Y+hLR+Vu?1{8`ia>xNU$s{tgmE3&g< zd8t7#;3BN>{7VF>Rh)R7cBEUvXi)?L#@jmp7@>(TAE7qlbhye~cG8P#RuR0OgYZ2i zD?B$L5siZA`_#0)!{`k=W7BetY;RIC9XBFv-wPxhzlBi-hhDbNVjS8P*rj(rNhkzP zZI_|_K4HE2FWD$uF!CT)ld@56o??&Lad%l@QyYn1JzzeX0A3?-M;_*P*Ax3w)Pe(m zdDz?iR!@WNUz>||v}#Y;6e_oIxU0aPj^^lRLs`i7O5`C6E)euOny4}t@eQ!qS#@y= znC0_5j)nK5*3P{|+S;{=wYT{Jji!eT49rMtGWW`a-5QC?8VQW$@!i(n@i;~o8EIA) ziN-08oa4;q(LsHlIt+AVT8usr=D{$TPL`5@= zz=Zr9UX-p?0*QtYEB1s zcuC$gbEyU@T-nj2faWFy+5ufTFUQ{p!jdOF7Jq#b@*U++$O2b7A5BLA^`1atx~Ulizs~bld3{W#Giv4km3OWgeAGWPnBDo zqY!R<`UA?k25pUAugf0NJY1>dnywMlCkMQ95M~WimTS+IQK%e^yBmOK#kCtC!F1-L zWD%6ijFUQTwJHvS?Kwir0ng}RrYoXTJyhqb@;st|J^pb; zhVaXYW=iI#Fum%31*(n%Fo)y$cW2%?X~}ibXg<8+?8Z&-{#97ZNK0#i*7qF{`abWR zOp~=HDH;MfCz0d+5i%Y)LnO^7(Pp38nR|e;%={rProKO~)nT0B-eJp|ZlcNEzq`(Q zPB?Cyy-4@WQ77e|&j0d4kAs|wuDKHLt*mO~+Udvxesca+OAi4Cz^kv|KTyE08O~!v zoVuk`ICM#qvKz66E1SeuJ#}tQLaXbbgn+-*O&BEh)}XW_bOEG<%?n|%`N+2a`LV`x3ArWuG?7m|BPh+a8RH{t zbmQW-d|#stg@_mPc7d@FTgVk;x(W{0JVv9>T|E-Ya+0fBR5t*2`0elELz?1Cu`z~* zQVA*gl7~`*Esq{+Lrl(F_4vA^N6>sv6!Kdc4`V5Od+sv*HB!y9fN+PR%6dlUtV$NW&_;Py9n8>93{^&gho>9Z9y4Swo6Tn$O+ z5!2qx6Xuqw`Hkdh37md4IN9Y)=u8debTnWSK+Bq8fEbzQL;9>|f0I9GeB7Bi?M^Vo zEz=lfJJJS#ikB)VN{9Xyo7!r`LG{P7vz)fTBjA0x|FivtnESMAEz8CvK83jn?MY$c z+ORMQZWm>S2$jp0#Zwuf!VJk@k$ybmk*<5>!yDshzS;Uht3 zLLSK}`vBI#-;)KT2*4)*@cT|)`W7)-z;}-G7*_^Z_dAT?{bpK4fuaKrQ9AD0XxHtj ztFl!&O)vlrlP+Gq`;ut1!w{J3s9`P{X=2p$og+{&BAVK-bn`)kiD-Lm)LJiIcF{V7 zw8rgo=BunVDr|T+b^mI1i&T>=zF=Xm#wt(9r&~Ruq{mC#f%B-=QSq{5C|bVH*EyND zFYyDEZKGDU7M~V^*VqPHgKmlMfL4nZAo_a3<#ZzSx>P=Sc>g~4Qh3!*B=mT4^%h~< z8IrNKMQl{sSiKe?$;`OfYAW8X^FIRpL2ABwk}paEkTfeeLs()S7%gElJTZ z%7J=GC=yY$p?X2sR2CDSqIhGXU{%j$dp49gnCQyo$k+wRHKXs2J13yC&M#!y+PI07 z+cWBI(DU^ae{I_{=g#q`oNifa0HoZy?gV))TP^&QhspEsK`N$L?RO;d30obvQMJEp5#{cTt*5=g((~1BEca3n)s6q8=Jv6W@)msgV0HG>A*6xWkAjcyqz-Z_e%^`nlkXt#$VVw-1W~cRVSQ zXw*1}8y*y!mX7aYANDbcB|dfZMm^cJqjqmb$RK248uM2!>#rvkIUE6~&i6njFs8Mp z5{r!UWOssc#}Wl*FRJv!T!sn+B>&`b;c-@wHaB)~xBv?A!2!;ytku(F4BYOtgrw{ow6YA0S%<;ujBdIes!H z;d?6I|H(-s{o4IsjoIcm3tWba#?JNsq9&%%M#=`zu8hk8t!zDl_DW>d5i2`^rI34S-W@>%6duWv z4JXzh28c2I(cHZ*iCtmA6Y*MGnz1r+GdOP0hzL1SLp5fUYcT5 zUn>*-UE7Q)&iVO-|5#E(2w?vzrC-ffEHZlDMa3Uo{s@m`7@e^m9S`>wINf^p*Kf&n$2|32Zzw8zZ^HNPZ3*bI{ekOxyQ`ha_qrC)f&Mh}g)J@JxQOo&_eX&b)tKPlI= zgS<6LN@p$)=`~6GCW1{yU-32<-fSk98v|qa&%e3c>=J`MxL_Z;5X7}FjieJ>NUoS^ zw7>jT7(SW=hxWaBKi@Og+qP8+?>^%iM?608&-M0eAIdPUJu+W1FC5hZ{D7u8{2Lx^ z(d#p4TQ2nQCa)ugvk5FA5B6GehVU|TD-K<2o(HV2%p^M5^^`BxrLxY>Co?xGgcyI< z>OLU$T6?b3F!*bT0IIx_B>F46N^>=A3}x!AKY13E%JR}&5}U3omGLJaVGN>s$g$V+ z%48q9X`M!3a#Bm?!w1y?F{;7$rQ*sH8x+!`bn=j_K1%}!7UVOb-V!XH41J(-V#uN5 zTvtuH#ar%*hJkH}Cyx9DPZtIHWnn)X)u`yw#UH7zdP(yRCuTYY8&JS6utK`!YPluX zYKqznL!QbEX>4|u5MJ5qJ`DRj4}4^BLyt(={#CZ-JqcVx6VG<_FpXGAdM@u(ep8oFbrM5ZCkCCV7pKhgj-QQ|u zp*>3^!war=APWlUBx}V~l2z8O4+jpC@C`Q6T;D}uT?d=4R9ILF!$^EN&@xh7FF%4iEV)^)}4EF$17AsLdNIur;418dexNZ$R_1E7q}@E}C&{DW zgD`^nO5eHn@W*M%b56J;`Ac@CQ~I+QDjq2hlDfTf6}L4O&Cd z>Gg)v0a+YhVJ`|th4hQpw_`fs;%9rfsB$G|+ki2ZI5UWV!?zQz5XQbgPP!s2>-{ouOYAfhMqx z@3k?5;PlCoHg%Gnq~%n)v%pX)3(-nz*(3r)fiOHoz|TkpJruF5V8|Oj#MdSy7#~Fd zPb(K2oKy_cC2=kVlKunI=f|+C1MLph%D3!)g;H1mTgH05ey*)nk)27ig$trWt8=eC zR+3!eQ|EUsU5_c6i8^;y3EUy7P2zFmZoF{blU(q2KDlH#fAWPG40fsMrjU`wmnuzH zwfVtb{e)(9R*Lt^tP=tUS9Tug72Xw0@?0dZ1yoRHPLi_g^elEzg#9TV%AM>6_r+<4 z%d8=w>ere<;@pEQlZM@X=*vm2vV;Sb9uoYE zPx^5x$4hgAwNL__5b+L?)fY1iCZrno0b{y#-iqTBI8U9--2qLfixQ0QfB-u5MKzZ3 zLUUWbsr+mr+czTIFNiAsLakeOH}>GLf%{iLHi@on%@a@Z7Wxz!x`1>zC9B zFI)2hWi>P83y-h60?T}Sb}fqocYYeX(|R%tkSnh6HRu%0H=J=?PEDX+asM-;=W?a^ z?pB}?4CYs; zu!w3t%k-ZXsA@fcoIM;r@wd9RbmLDL#e{-w6InYj>N_uWAN{_Yg^%>AH%#Sbd{gyB*Io0hR@JNO<%H^?nDztGfE$>0)S$ zm8$L%aD!MmO^2zFJ51Q@Y32ak3sm#9vd}hArJ`7L1_HX-%&|O+KiSHvHuLzHq%EFC z8pV1ydC9+Q+8`e{BUO-FSc+GZdpD+n!&aO>xi6U4Ntea1jpDw?*^Lp2N zhPZr-dOThR%X%N3KKuJm=HsUQy~?`5e9%tuZyr92-H!dS3k4?e^x36&B-O{>t5CK# z4FbhC;2WU@?bR6fazg?jl)=5m%~N^;z@=;xGtPZkP0aBH&~&XVD^djEj1FIkx1lo- z4zWqO7Q>v$?2~g?)>t56nf6@Sl@H&24u}g?icweOPme1>_${cJVnuo`2vzN(VuGHl zoHHFSt)uFo+?wRJUE-JZ^MBkO;q=C^J@|87;OTQG^%Qxg5 zVLGhzo>+5UHv|IUleRHeD-CSoVk`&Y&(Z|>r&V^H$quJn+V9mq=N3K*WfUt@A)teq z=SoQnYO!Heho_&EUPpxGT6`ImQWroEKJ->d1ClOH|k?0yDv(EeF z{0|};*VEk@10IDLvs0ac9%H)Y(A3%mbleX-8PToHUJnhFVsfa#?Ft5NK^ej(d-CrOQfzC@xAS249LV0&aM zuMobsMKKrPeN7b-wQ1A5OOZ8ZJ`KSr>fZTgdj&?jGCqYY@9TKxOXlKuAQcEVxTErX z-NaBKxHGZT@;XoThB2cQK(iyR_>Y)ri#6@N%L6!wcf8oK@Yt-XZeH^dJXrnS-hQs^ z!XXSoK=ss*lBbiV|ir_Ugb9pKyjW$5Dpv3Zz7>Q z6gV8EF`0BRg)<=y!j87!NI|o;HTF>bN@|`{{1b-4=jg*74%=?EaCX|gu$J!;4!d?c zR#gRv8?8ng8-om_4cwf*A8ia92UcQs9{KN||EeQF>9+}X3kyi|G&Mp(+7Xl)T$fsMvKB^S3wS4@{qj7_cK`DW{X!_Zv>N4CX|VW286X#m8Efau+SkZ52EQM57RxsnpaY$zk%{f zU=P}7zlJ-5b0d)ME&aiKbVx%^woB7k(lgu^>yc;B(0s4!JQ57YDpU@224n6HlYZ8% zL`;PyMVE6fUXbNp>U6E#px&h#9}oD>*fk#_y4EK|{lW@gOUozlyMcvd95BVL#)L!X z9v&so=PNCK=aV*wa1OSn7>R#k^|sjcadHX$-S@jKxi?5{UlSx=Fb`8#4EbOrLLF?W z$w#+M(#OuT?t1Qpz)E40t$5_z zhY=NoeMtmyGGzwMFRb`Me!#jmfp*^O%tFsnd?8(ipGp2oS<1WM3E;6w$MWCo2d$Lkx=_BXs}s56E|4Z_NL+QA1yW z#s5DFm*c<5k9cYCufS9QR!(lF|0Qu}bY)#g+mL(z))`($RyWpr3hJf=Cp}R((bPuu zsB^Cg#Ed7fad4}dhspl!n_C46J5Wk){xx39Z+VMUy0C4TkGnmy-*kzc_w|J?Nd5Ev zy`1I2G96+#fW_?tU|0P&SZw~E!D4TXro59MeZV)D+Sfta%Wlv6^HN>Au{*upi7ml-HMI&pgt`-hLvx`A#haPm7DYU=}5+w$K?L666E<0yv+noEA}N}xbJGdTU}+L3D8PD zop$0(eP1-d^IZKTCe(ykYS_z;t)jyk>*T%3c=k#eG4<*8I<@%kFtx4KEa*3~WKgik zn^#Vh(c&)!p0{g9kgF=TI|lU2hW5BHWI0Q~2Z|*YQpi3k8w>7++9PVIt0a{%WNbE%zY!6Fk1goX zLIL>lFzV^{<7YS0;K8HP+CUVwg@AOZwnci7VRrxwsgej^%|NG~kGWHj83g67>>eq1 zYb*k42!WCTO6KqIvw?kFIn8Mmj-!9S#lH}H1uK9EpzE0^s1?AbI?K-xxvgy-Uz~idX5SLt2ov;S3>xdvulsb z0__Oy6HqI$=zO=aDSUjHU-)Y^ZV<7(rF!meYWobb&#r6kz6nAn(CKWarMN(tA?6 zFfKwPYAtCiQHRKK7f9%8Nosv_V>}rIh$GX3Y03IM&cdGW_A=wm8kJMKWuty256VxO z*PWj37}{v$G^a@Czc(E8TI_$S9{*Z%+D?pXOJwA$lei7EyQ@m$wf?J8sk{&u{;8J0 ztvp{}AF>$a28ERb1Wz&bZ68V!D{!$98fBA*I+#PimgNx64eBIP*0JG-HnZDHP6{JU z?mDchXK}pssN*}a=7L9@MiZ48L6k?bl`Jz0AH-mFQauE@XuYrfOsrA1>XX-+15e}C zHezRSP(I5^;6k_ zNFzeYLbpL)htWj+CsDFb>qtS-a5Mo#j!h@6P$170@!~N^DlEuRT*9qQ&1Tg~xfLu> z8>3F-M2?axtug2tETX60z))k_8A@Dug2hCzLY^v$X4z2fv-czlQVbc4g~6Zl!stOz z?YkHaB7+iun9@ENaU!;9O#M;VEtirdGa|#=GZuX<%sLHnqWsAg+C%W#4$mGa zF{J4z7X5zz=Gq9%DBcrSWX5Es>1Yyts*3a%afv_`CT&-2Mz$M_!PLOpm=6|xtf>&{ z!_Z|oN=;-a%8W;|?prL2NzZ-$rN$V{b{i`LQ*28>Z3eS=_q@n~vy$n7CG=GOwByPm ztEM@(jaf#TS@-aU{D4X-)GNjY6 z=E5V&rEP=6I99_!TBSFbWh=p~0vPBGpS4r!CLd~V6TQdLl~ePrEskhd!l2)( z9p`ES3df42jprp|SY8xkxBKof5G#}lNu&U>#TD22b%F zVVDjRNmM#J=k9k4201tR=-QA>?}YDGqA~UY^on)5kE3o#;qbNtmO2FD*#z+QHu+_@ z7MnD&FL`SV1CM(+Yl1_SC3Njv_;#>4J~)$Wx*Ocqcw`iakl1>zwnGS_NDhj0YD_?H z$5q?qHj{)~)xLS>2BeB!OlV2IgKM+Nbt1PA(`wJb&>GNc+c%OW9CZHGB(J0_)>?^;cWRmXlKF~b z@9(*8`fz(q0DGW3-&Bog%rGeK``#?OpzU02jP zU0q^YM`Z*uK_8KkXi!nER;!*u?f4{9T3TPAuE_vAl^t_f=_1558cZ{shCyds)4Yu{ zlug6NX+8+_m85V=Bgmor7PU!=;z1uOMwi^6YUGfHV~Y^T9D}Cl#sQRdyn|(A9!R6T z-#uB#{*vp0A(p|+5L2r&@$*x2F!|zH3D@fL`WAaRM&doUiCTK^kOnUzAtM$vLN(Ki z0?k>q8fGTsL%pc~1<3WJMReQi!y+$r%);cz%e;WTYxQsrM}JO5OXPH=DeR4&`y;6I ziL(eRD@y0M`iXJfF$6H?2G%g((w!dvwbCq`T)4EsqY_X)_3G=tkx|^til3X}UTSz5 zLS#U49V66n3!SlK>Q&Gpn8sJ5jkGUbpSV?2JD2~|;bq9dWTklD@87+CGe;JfW9}Xs z*<5aKeDJsO++lTjY^_acD3tR0z&Z6e!}- z4h*4wWSJ>lAmVf^XX*eVE-kC5aipMb+)6mGbgL<-0l=M=E;1OneJ9DpC_4zzWIYqf zKZiWg_#Yb5;h?Nu%QzTF_b`$>jATKiDEA5|Lkp@The^Uc@ervSphBtM5+)#Jv4~_C zkKn>s8uSvAb`~T<3vAAUplZ5A2kAcI1T$AH7$bB$HE4P<<$4mNJ@X8flzCB&v>GV1 z1bWpn7(mo`>bWYoxM?g6D6o5~l^VFXTInR(e>Tfuq9X2bWrc*0Q$+HIs|x)p^TVrY zQ5@umpA2SZq#xU~5z-qpQDT2TK~1W6MdwU zS|wHrIX*#UDZy;2WPfQzCu_#jg;1JoxQErdHoK?ek*9aJTpI4?GmBR*7H31ih%K;l zV2N%Z-gEDR-*NierQcGmiUov+W7QL>*Q4qb-$}A@h6RbH_D{Wuv($B4VB_ zRDj|-tbxc;AcJ#eG$W-igB?tlljye*O>4zk-iJ{|OrKU{+d?5$r&(?-{n)hSVzV91 zyL2)WB#H;M3>Q3EYj}dz1zI;iL04YuhXdEM5v0H zhx@j~!&Iv%z}29u>6a(sDB0%@P#BL^G|~H6tJOSwff{wdZ(coo@%%kxP&I@J{qCLa zA6^!QQSm_OIJ|kc$yX7g@AX~8EKd)|wSR(*1rx=|rj~qf*fBH?Dj1o%)aHu zAk+Ys|2sWEN7m(#1EqKFKZ3Xxhx8wMiu>xMAw`XxH|x%h1M*j)t-W%ghzj;x-|h_r zRRYVGQgKG+5CI(@R6Z_z{>LT6bW>N1#gFe$p45*gDbaDpc(sW{__WuI$nCoE*U8Xd zKApj~Jl0t>HNWE2OMsltY=}#IUDH2^|JMm2r$g_Xa=RQ9Mohx`42??^_BqQbThop? z=hT(x_i4(4*Mi1K%DBVj{lzcu*@thL&d((b8HR8ko9fxAa69Cvaj#g=NGeSxW=4il@;1i#l^DVf4%N; zrrZdad_^OI`5_wQ)4QnyKLgj@C5VN#dtCczyPN4Vl5F9~9af_-7(RX(%aivgFQ6$~rM`2z1Z5jT{HM1X(1rbPyh$d=xV1z+Q5ljU7X;}M=^ zx4c9ZPebKLrc>M31Z|%*{N+!MU#XhSIkrX3#Pad=S$OuO)trN@Wl8N#t z(1j`>LGk7?ZbC?9*j$KZT7qV~5>TMB^ch@2q{;Re$;G7$DxcswFE>JNQe9E%?5@Z+^cL2D6^cCEyF`CbTWDR zIQ?aJbI#c?aGVLZiQ0aBGP`-!23yW;=XhyKc1Y!sZ9BoCO39H$Tf+ z`Qwv|bb~<7gLdXfHFY01?fN39%ueMBzeu;_`aJ;Td&yuA? zI>6>|s`u%nO4iO7R%Bru!8&q9Vod|1(#Xw`vFl*guQm&jFO<2=`bqI7Le+&4P0VK^ z=%Cs-yx^k4bRje^Oh+-ey8z4~ov5JXiW=E1-s4e-YX7jMvRNb1=OfyM@SxB;qxub- z^QKVJOt&%9F4hvTspu*G^L=k*TLr{W$|d8DcJxe(b(rT;!nTY;MZ14SM&8WX?Q&k; zWtR2_kME8qVnK>;*_`U8Rjo@yGHoLGA_)nf&SB@c;mNEY4Xrrx7y?vn0BonluXWGL z)Y0-){ycwsQUvh4Yg3x!pj=83f)MJpfqNT>rakpp(kHq_ z{1KqBgD;Ax4HiHwM_^NAZ^smTBGrit)YeP#@K#j352rI%Q&qAr9Ty#Kbn+fxO zP_J7aU-WLQpxZkPA})R1Pn|uC&zJ1kFY13x-WO;&T$&~tj{`c^w%{pX;LOpw7N-Ls zaw5K#SdAg+5rAG;jKdp*YU@xw$j1?k36uCGukz~u>OYe1-O((}4Qi4b;t*$p7%<}V z`k-+o5wu18`~tC9^cf9)`wV171+}0VEk9BXWSt{bWI1C6wZKtYFm>OQYX2>b+L2)* ziXC>S8vs9(p$3o?u_yVuCW0_7!eJ(Vke9n%9DBza?MkJQ=$;=L4LS9&TzYV*YaVwX zx_rO@#tl0pifgMGC4qVfGs&M-)tdFeGtG0L?kn95vToh&r7?zbKmX%NydN9rDitJH z(3J=4yj~WpI|g&PacJEU!3kOPff~x>8B&JUb9P?IAP(T7QRB0-6`6%D9syz8QrRY^ z0qF_rAFq`yi1h;%XcwT_)`|J3#ho{jFI>d<`pP9a>nJj+oN4s+%nD+CQSba9TO!3{ zrNHYzU<-I4jhh4(isMXD;&+5umjdanb;pg0AGSXDaLSGa2@wEogEI9ZFb<84MW90< zH{&7I(*`s<+2`}ZU8QDu-3VwLDR4c~GWmwO8QQbyWyesa6ly4mzqA}GuJtl3y&DEI zOt1pYADTybjw#c1h7yn%kO~?SvixGZ#Bv7qiu*g2u#(nQQIKB#Wqk#oEg&fLc6uFq zWK_@j*AesRFLP!JK+xrm2HMSNJXMfT)<@V#ryJ0aaleLq9wb#q-B+@kY0cDc4obCe zW8>O8I0YGrgOwyNhrui?URPAOs=Pp$>H1g+a$U>@Obe^QrIuJ8f(;03)5Y1|0m=GAKVW@xw4XH?S(d7jX zsj!wkf^(s>1oUB+cK6~S1RF^hIstRQwMS_vuD|L!t|8++|AY@I4j9D{*zWTLj z=U1C@@dXcn7~xR+bp{VqejVdtkRT0h5df@=3nHY4Nzes;$D=y=a(^D9A23QffZ_F?%XpEaWyB!Okn#LoILfa<9xF(*v?;s+ zg=i>3Ak{$~UwKV-_{SDv&#$U=90%0>*$P3;!{X=QBnHalM(EqaFH(E!JbzEuQM)#7 zyLl%O7#*oJ5IP}}NQm1Z2KKk^UksRg+I3zi3tNCPV(3|o32nXdxQ4g}OVzMz`rW~> z9l9#cVyeZh6{5aW8_sZt4%g7wp6e4H6w_nSyquZ~pvl=?B(DG=60MNCD*+h2mR{1l zheK6IIgzg!$@_{FS)K~BbT=owKAU0(i@*enSWS;S(!b6tpInX<5(CpQr;Z?52H_yL zuh*-?c@`6(Q3nc84;B;jfMzmhjca)`yRZ)PAc*7w;0)k2W40II4`02o^|InppQf}; z9n#qhVs{U}_61dEqbGFgn*nIqN^@Y8f2yuqqA3<7T#g``da`|{9Wo&Hy&Q2KwH1O7 zkB;KZ8e>dRpZw>d)ecxU#Vr2iv}rwSbf(88$k5KE1*rYDvJ^<|w+>Q6vDZd8iyU5@ z1(&-O5YY=DhrH-l(B6Hzhsj(+mZjHjgH0Cult8_`Ht$>hu60&)$Fb+ zCI{{UNuBt%Ql#jmYpy@vA3>9$v@;v{qikrxm4ksI{DHQ=*tx`?8E6~(4A3PX896l> z^($GDRFYRJuTB`2N*o8wcWesa9;+KU-<O~g{yLT^tI=(of(BpL|D+8q zG%b3@v}u8OeAo_~g!$CWa#ovoYtTSmlgJs1>0hf03f97Tj9-^mPs@Ue(8REeLDZ_$ zt(W#>ts~fW`rXaWy^}4lB0NcYQz}%PI^eDgt>fXPer>fKUvbBm4LIMwV$lUX+WJ;t z0r^wR0xxn^9E-hU`xhp7y(T<6tDx&ABeLhGjcDsF&V{$RC9i?>m9R;>3ybqunKP-w z)NIn+L7sdfRiN@A!{3`DE$nY~PtJH?S8*_JeVI?0X#vchzb}^wTh+TNHSc;t@81Yt zRbTi7II=RwMt`3-+BgkrvC}KAyZYrI0G_sS)Wx@p1NqykHy17z^VRE(9(oDfFUv6> zm-O@Z91H!m#(h^`*cp4i#~EGe+stj)>{vOLJKq%9IrOH2XZlU5YGa$iZctYaYaJ#) zSbohW9=9L%M#(ngFX4}a>Y>n4J#^_+R+z|hK6xT83GbnoJ6%|o5*Wi0@9SZL0J7~L z;={`qBUsY^NG_t1*PyDLPrngWuh1zk*?Z(C+zlL){<=R*Jpv_dR|#Yx6w12pv|jhj z`V7l5EY`(=L+yu6rhRl`}eWS3%^R zurZ9Dt1^=X4&qmC!6M0_4j3)E1(?Y15S!^IfQpd9z|uPt=if0+cIZp8LY5{`@cDFH zy{kXsOjOQkZazQZ*E^)S`TAfDXlhz`{vEP3CPw9>GLfnPn&dYmrmt2*TpvqT8NVMF z+Qv}SMTpVrjzv@ z-5Mra;=t5EOTEW_*1-njf~?AVa&w22cts%y?^qiHu-)Ch(wLjWUx}Uf6sb~5!)b!; zyBdm4kezjVVmGQJD=he0g3C2#KlKMT&#X$}iCL2Dxy`nJ&I#$}Q?D$cO{voHmb%G} z&%`UKy>Nrs9}_X=I}8$=0q${=RA2kOnM9>wz^(}&g^_yX6xVcF&*xtS*hf;a>oW3R zLq$5&_ld67KzL*#mZC2cO+$B`tPg?Y65;})(F%2COG55xKy{$%rZtJkFMHxu48W+h z|B6u;p$*+UgK46RX|GK=F4v1wn7tq0R)aZ03Ovs2W6!0xU)g7z0zmU;$n)g`MUgB) z_h0hic@gvBCF3cdXT{6DK_9W&Aw}6{$!>#UU*Jv8-Nl72_zy@cNa}~qeGJ19Aq^#I z=?qN~d+Ngj@n?sd1NmJHJz$pp1)(tndi_bLRnUGFn9Tw0N{_%^TmKA?xDXL@YggiJ zd4}~3`iG^D2+UK)2Q))1m-xPvBdqf8?W2f?HbxQt>I*uDM?x|Aok?2~vhFwa};bAQ0y zWdr}&OYvv$L@@4}zt8CBu7jGL2r^7C<$_eC+}A~tNO*0f0_269Fa=S#W2L|S&iIF9 z7lr}VW$fqIGBSM6{z`qT)sFg|ha@w}p9}|6Q0!qzsR(i0n#%KI?}RTSQJ874D*ija zAA1Y0LjD^fGVCi%A&zlRHGxl>!r>)nKx%X&u)%#?(AOGEi0wo5iEYTz28iNc)dK(F zI-@%MkMyad2%t0o>4}6zm`DW5N2Ih1mAGCh{$&vSHFHonMhSY?mDbTmeqgi8%V)Vc zw7D+zMg7?Nx!7eW#~~w|UIYsu`pEvfpec+_R|wh_p1d_%hKM%4NR8vi|7mQHT4+dC z26u<#4|lj@N<4$U?2eL30}_8_u2Fm38uxGrXsq?7Bfx|kGGrKv$DxcbV&B}`Y-HTJ zV+;~?GFUp~+;CQJ*(KQdB(NY3E6WhVwQmf(5<5-0f4iUBjp6d8@ADCVu5&wQI7GB9 z5;J7kdO2ThIWzAxz_HUy>;l0f3eG`*-)j@%?s|ul9z-K75%<0Al$J9-J84E=Cx2qhrds~uy?8Ev9BP+9kSFz|K;GXZ# za?s6+#i%Yjzd^D3dwk>?eIr>G#p1XnoyJby1xr2ujuKq4Ny^kTk6_xAxID4qDZy`2%LJK3Z#6okLaY z`ppVju?aH3MG*Z^rqdYM#I_3jV6amA5%QKmV1($GI1GfMZ5nI;$8R-$5nXsuzVw@- zuDJ%Ga1VD06h@UX$BW@PAW5-(eH3sB4E<*|T}24UNfk#X0$Xy>bodC&^EKg7Mxp!e z;qEdqF`TRbHM1=eiaq)GXI!gJQC8}}Y9u}jW$MZ*)74$}?kkNPou&b%LU$qQ&WGX( z!j7?k6hbc^*thIBY0dqqt8n+araU(?%x(~KKB*c~U=0X1pbP3A4WD4&(G=i7M78;) zV1);GLJvQK1tQW>V&MXB;to`lhBP`uS(z6j?v|}ZT?ZJlu$-f2rj2V3mY6K~ckEPF z7Jc`A$s2Gx3fnF4eoF*|!Fe*fBNqe?TUKtN29A(}Wd(?nAe+9S+M@r1Sc{f%RFjSd zDredMF!eO&O^6G5eY~ zV~s-s8^U&*-W4%i`TXoW*8frbM`!_u5doVi!Fz9SbV;@s?EjHsLIN1*k1H(Wuk6E@ zPIUBj(-Oc;2_h7nJYW3z#VM17f_>Qkm3pJgNP_ydbCfQqCLSl!T8QL9ZXgswjoZ;u zGvUYUdF*vK@X(xM#8>%}Z>x*ndOFJ+4{8>o2{aWLw#wYVmY)Owr$$X$rQcBe{~@yr z282G{jq<-ClbMT~_5Tc+!`hS1n;dA{pS0~M<|HAWpp&i_t{dm9PMczz;Pgryyl9mV zN}TT>1bk-^EZ36ki?(1$V2lVe{Oz99a`s7V?-wMo=a?Fpj0P&XiqbVHbR8QMTPS9x zMeLNa1*XYgt?ixD>9h=I#(K9eljwlO=+231@&$&pbgj)WTja&wX-uJ2Kzw;Gs;9ll=HdaIkKmMY+~Y4@lx zx8^eIp!0UXh37Bt0r>D|&A7W)`e^zy2Zw96VA#>HszftP4D^Md?PG$Th1!@dqNiV_ z17Ed0-Y7{+wA}pBWu0#un=3F!s*(_SuQPNNzuQe^#CdDw?&-XH>+{<8Wz|_!4c*RY zJU$~sZ5Uf$^e&zvE3|7-@Fjp^w$t|!q=pH*^O8jjec@)M8oh&ewa<2Z>OhZb4gGrW zuxaYhBmD1S~!x)*SNNBq|N z?GO4Y*UWHFCoi}ARdDbHw!#SVASy9bIdY{1vdisZ2SCX<1misRK&{k`@3P)NWC>gc ziiCSirlyQtW58cM4EdLwj){M%B;Dm>MXA*01IHq&)HKPBgIUt%PBR$rd90uE-x_ zhiQ?MepVFHRMl-4N$CtV&uGBvGX~1`?{7JS^*^t*VW3l^8{tFgwWaYI}V@+DKP|{o;Lj46V_ffO#OL)m1shq>ZXwWRZKr9EO-&?XY#z zxQ+4g5dzpG%u;+bc#po5i3;Ax^b}O($^El`74^zmijE{lnmsW}&;iO)hRk9ILxW`D z^N+YvXhw&~NnHR&Sa@&j_uV7mg2ry&_lM)3^ykqK$wq)NyYTO7Lxuu4j7X%E9EqGX z5?danFez|6C5o*Uy2Xu#3@wI+g}BHNoaoSE(Y|Y2!SIrh67~F+!0bERJ!3`^6S|}z zF<3U!;0#E=p{EPa$end1c?Lf{Oc&xhpP}wq!4s6MW*#5DI5w2gMPJxF@j+!w8!NOYC{Ju<2BX|*#?$59F5z*tPuHJ;AGWkn zG*@H>BwCM^j&CO65f7>;O9F|nOMW$uk|*3xxjp~*I{3Ew$ZB|gNEef+q(0b zRsAP%%5ZMGpyz8E!Y$cNv4QQXURQ`pi3$LL{uyq@cm+lL8gItAY=Nq~H)~o)aBxYh z*E_}fHnTr@^%wG5U}cwGEL{PAIusl`8BRRkNAW7+v8+NZ{($$fdkw`7(qib}UG?Q; zBP7Ad&b;s5%@YB4IWFoz2ANB-*TO$|WS zvN-M*Ih5(?&e(Xs2voopD)fkTzc>wr=73~FX*ooOE_BRs@%Dx>%Q9<6<=g->`)$S` ztFv?wT20p~*&^F>y{UHFPj!qp6JvS$@Vjhnr*bK0@pgXtO|$9VJf}06z-ksx`Lm2G z;c31BF4NC$ixB}kkIT9 zbt7BXQ>oHRR@Q$$W*o!3x#Sx#UARiP>KzDn>f)-eFVa19^a0+!9E8dAOE4=j58 z1nTSlDmPJTYG&DNkn+tRtTdcb-SSC)BmASA0c01oY6`V6t6FNJRlL~(GYeZ#a6+&w&2vT3d7kjIAKHvxQQe=W%S}l@z-rmcrI*^N_2Is zjsCZfgnc~H@bMJLe-g0{;LI*;(Na(lNsp-g2;Q7%|AK5)-8GDIqe$ymgaMuE{Q0)Y zJ|a%QJeEJQwUV73E=pdBD)z0;2DrFCTAa)4lCQ0&`1aBIh zN(HK*SD+$n$hd4Y{v~p@y-ZIY3b>_(!WrKorQv1`Z2j(6vP7N<>wsMJkQ54dL$%^5 z6_epTwygaG)_;&{&QG^vlqZ1by=gWwNW>&sG&nflnPxLc_rms5A4MIW0~nyGep)!& zhq$NkO!k{`zEgzq#$S1XqwLcD(del6aV{zJlOZp_P|>ILQ-h#uCDxlQWM_8{QSYUm zYzz`vk1+XyO#~gZtv<6H%pY>2( zPq^fZg2Z)a=`MUz+kVtPT-POC5tVT*4DPM~66s|sIXa>3Ypmw+zYbf;&jY<<$^X|liHKCOq_F? zU*Kahc4US ze@tQzMXK5Z2c`Cob)NNFk*E%m+NsW08;^y;z@*+yL^cDz9gtDzJ%$Wrr-1a9(B0%N z@lCmVQ{>ZWh#otwFY&u-Ws4b2Y~nYmxvPe4qsCz)rZxj0Zi2d$Wq%%;NJs6So97Gs zM=J1JA5_fRPLyF0c^o^a!zKmeR{{(&ku;#c$JjE!V;r|rNZ$hRhjDsPTL~61t!u_d zsQ8yD#(F zA1BkB8-gw3equ>S2<)xx{|>t+l)NJ}&K7xl7r~1^`RDgf-$hOq zjd|UTe)X-s!fP`OO;dc8Y!OAPc$so55hcZc_6+}k_M$90T;71x)Zon2RQ$jwY4|f! zyAMKMkkqjMXoaM67(>7DP)?94BIO?0A%%-R1x55wM5ng!hKE26PLIv^cg;;8Yg$_G zKd6?M{}2ShnJUA*XKqO*H`*=Gvbi< zU|gGkDl&Moc-k|vfPQGO3rsCdK5iE>kSlo8Laq2DrdN07ecrj@Fh&RRh__btA;F>I6jFY3=Lsrh{3=bMr~ zAZ34-{CAa_!u&rPqUpgN1XH6+Bk9DdF8mg0<0!rP=vs62UbEq%$+i7mNp6=d0T0$4ukbW~U~QXfeJu?qA;y(`~h; z)^Gf+-&joT&MryZZS8y8_3u^^mBtDSi{6O5nmvT@m~}~+5oW& z#71Dvl3yg=0I?H9Cm>DJUnI%^u^U7uP))QSB*Xx*d&C|KjSrFA_0(UP?%Q?2pTbvP z8o(KU{sp1;Z23$0&ZWxle_z=FKXX3r)4wRYyx2d59`xdXGrj10K;$F;;HS>aiNceC zLfr5X;hR5C+3!D(4s*aABgoI-C&TU+;ahLlu;5)!005#-!|)x^H{I$R(RbDA5psP; zE$}Dsw#xQb^`79e=YO*QKe_*(ocF!$0BY#u>so&u`|@ia1@H7) zCjXPjOToBPzn0Da-9P`6($U>FK^McTtGzpa>aXtsZ^ESCyIszN%F66Y=79r79g{$! z$&Z4UPaY*fSv`?cP9+o&BE!JR_q=M<`9B-JoKFP*Q2gZ*Ivf}*(s+PZM87ndcmo=eU=S_ zs~IzVNm%8!l`S=$oc;wiLRL~CSy73BgZl?(A|Wuh2y?fk2tV}P%PSM&ZVJ>X1)VF?_o{;zK#R zGoA{%t(sD#nY!c?`@8?yMKdWbrXl5E|0L2g?=#8%kIPQyNvkcmuPMeXEpC9LvjJF>um;$JC3)B*zOxbn3tb)>+q3vDAR3)x;S-^eeXZmRa63yk zM1pCL1Z~&Uox=i&@QFlDi;9^^Yp=X7+iSQtztdhtQh!pWqm4oDu_+#&%qGot{$DV) z)qft0a_sWHBhb29C@u8J140oNEH+}s4UenJEPvA3-G zRq8DUM6aExo~TIG&uK-`uLbTW0pxN&aTGVk5ekYkrx$GqQO+p>p6u}q268#{`!y|`bcfW{ge2ji&HodL5>Qkr;CNq~`A!J`%zyeYD*MHFaA z&#LU6@C`lky~9J_m@QC!^;IvKEode0Z9-+3tsmUj-|+L-R7T8+kPDDw1QtYhp(zoY zKcI~9-;q?}6k?c={%EoW*lylZMu@{8gBXiK2pb<>BMO<%Qz3PEGC%HZM{UPa-PhQdC#F!K00|oq5|8+z-aJi3k$CN9 z2ak$KLg~uc`>2`K&1nD+49TH?88$oI6l)?27V=)6j|J)A$tU#zEM!Hizna=5T=36h zS_q=byS~L~Zsx--Og;tkf01xj52vxZ`+o-IXbnfl-T6!iUfMx08fxxt*cU+g&>Mg9 z)?wY>v=e~&Q-O3NGvi2BaHCW9GM!v+aRyEDGC8LeVw{U$X#gGGoMMvNIvNaqiKDf} z`H&fLSMR!YsY0*-%oft4O2$+-bBHfvalxQgQIzuOWLnZK);>a_tXU9_2SFsH&0M2Q zK8;3LB6U;4L14)X7TPd_+vn#Ohf&8pNuLq2r?F%2MKOIMn`}8njTOpWdOfsX_#&X* zI49KiPa>t$hwZEYS4ruk1Ppqbhn%J3tK>KUZQ6bY+7AD(A}`wdl+V;W zP%7zTG^7CKIH*v~_uBaN6?m)Wc;g5h-Ii%#keIKkq)ApRQ6?lW9SnK$y>YrB!d}hG zTFNXeT-Uobq=~glOqn z?St69Iu#+nmU}?ObDNVZP}z`kTwtR$dDiH-oyafQofQPYTP9liKt!-UsS>fgI)UI& z5%qiAh>protP^_9k75>&%i(cYyn^x+c04=y1EG|9L}kCS_7IP3tAvv%#kO$^Z!RU) zKxV#$WjBS%yG+%cpNg$N+QI($T3HQXU_oNI1;!7k->JpFXd~2(nL!`t-XKOXR_JBQ zS%ZTe<11Dw%SnnAhlz@kohu!jHAfq0{V7i_`Z*V6kYHl&yE3j5YHZmlng@0-M)Z}V z-ib4C$fdE$rWdM#9`A|vDl*t__COT=tWT|5M!_QNWi%lT_j*)E6&k&ZrShql*eCSv zJEZ_X8?z^pRMpjlRpCfw2R`NgF7v zc#vJG88a-rWR=s+j{b>H$dZ77J>~u^ArFY1vtrBU=e{iuY)sa8;_I0V0DA|XE(xaS z%rzOjbf4Fo<1=j%G2**k_faK=i6Uu2XhImxDCLPtTuzaIi>mtQqaU>O7XTE3a zG)f2iKtrRi-6nT%^6?xNpr?_sTPW=*jtm_Ca`Zz{FrGe7*{RLw`5p9|g$KHuU26k! zAfVccB(_`yzuLq^AozI}Hh!McOpv4Y&6!N8{gvYr$?wqnN1dE)WM~YYM?37Z?Q5SRj;pEAxc6%Rh z_SbuwjK5oT7t@%GM`rA&r07WzZ%1qN?l{PNyHyVH6(cRV5;w~y4Q%51HH3iFxHP9& zyaA;a(8f)mlk?<`R^^}OV6Eat+Wt5NYd47k%}}TuO@C}S_LfD}dl1RK78cG0`;Yqy z3gsq3R@<$b99jydd{lrij?u#z1X!u86iCpqXe1HU<(V^@>RF+8Mi0ZhAAQemD?^*@p z{Gmrsb?0McN*|})!B++7Z(pFy^NJ}*A@I1+LB^yC`Jv58liMO~(z5hSHck~DFh52W z5_J}BKC6uVA&B@;;4?KZ)IdiVv{HYhI5jVkb}H|S`?$$+yS0_bRBrd^G?kdBqgK^* zlll+j$cor@HA^5R$1$6KBYfs}M)N%5YJB=(qzjYL4HG#R@>O z*^Tj0Uxew{WAvB)xHJ#t3B zz2firL=u83t&Icl;l-~>{dRcqM4_sGrp-Uz?l0h7C5o`65eE>tSU;AgBP?bcO!lQG)9o zMw&b$CkUX|O)XF&(K5wvpA4v2Kt`ahR4)D2-~~AGaD0TDpvNwFgUR5+)Xr@}Xc;34 zAXo=NW0C_vS{$GDtqSnRL6W}t;z)ymc;ADZRukNt9Vr;(YEcNYOkN7OKi+iDRTIO$ z{xNtm@rf6e3MtTWX#(<(zLnXu?}WAWn^4VYC#R-}SN19glm}{%ap|fI9$#}dL3rJ) ztZB{`A?#LD>U~daS+w5XwPz*Ir+`E>L%M$X(6&-OAQt*dfNE z?yJAf9e-vUYcrm<(KM3~wolVEEEzDK77_IDsBePdSx8p=Mz@>;0{#pjggo}!v(uug zQwji-J}G_TZVyO~f{R{$tMQfmHTQ%`ZfW`d8|FP&2t`~&mt-k@jR5C)eb8rvGY(D zH&nQKwCtK6;h%xkF6Fy1vS5HU+Q05MY`M>I>EaY1ojgPfdNhS(F*KKa-At4afosVG zm4Kc}gPb47rYC0)-}p}`;cJHwCr0|x`i{_3ltvM;BKlQPx%f{-X-2cEyMqog8Dan^ zc!=j%*kSyy%XVpBRttZ~4_x zxQ$90$AS308-t6ya}@_xAB$N6$GZbytkx0D10#H7@Gxj!!c`HU)UdWnw;q?5IXi{| z3?dAY#6G2EfX7j56tGwajo~pwMLu(|a{r0ZuUyt+O`#EVEMHhW&N84u2S*$EL?2*m zGHc$O%d|o>fOc`w1b+~I)1m}Hbl71X=VCmM4nZu4!{u=Y7$E7)Nq5pdB2of!4Dd|L z4E&d+7E}I`>HAI;m3h|PB)si!9aC|s#XpxURCL(+flI9ASnC2mUQs~!m68?#`R*XL zU3e<42=hS$UldqRUj4(D6l5_YL=A22;V7t2|Ga5jbVK8B^t-QkcM{{|3ZVQ-Fr^4m zj`(Ya6GahH?bq+@iFxGRsVD_tUUTMP1wZxnJ*7la!E=e^kPOMac7UDy9@kz-jNWG4 zw*Pd|5J^)>}T}O48knwq#j$hnI{j|&!uOw@Qb8$MX zS5|6_V~}OtBt&rIPT#FcwG~+CxB8CjttHhopg()~zPaSL59qftvLOb9#!sbF)s>5( znxBrIi!rfvIznsoJ5Y^?5YM7AYsVvO0Qd3AQV1T{{ntrqHaWeHsAm*(Kc%uE&^IJi ziR{QCWM9BZ7SHqe=NY`&lv8!cUv1|@8j`f^&wS)k)Dd*EEp-`&$duA-IYF|U>h+TO z{7|Cm6=|*UlJvlT04i>P7@DC?ErblhY7k@pKdMb{+$1#y8qM4( z;{Iu397LQYtl#3S8@FgQFk~Lf<_ydSBYQ*As|r|hm{2-8$GbR11}Gs-Eh$PyIN-vi zgf^O7-+Wj+uz*!9{hSn5;^2*#UCkXrUyi7Q9}+e$T#+Cq`@z}!2DJKI5{2*+d!rRY zeLnj}UEkOLI(FF&-PSY8^ioyv)1hg0Xw^Ck!#$|xqs;Ra*kx=Ir zYywx@avobr(Ga)O7-G(?;ccDXTT}DMBHyZOQ#!Was`l?2g$Q zUS{9y7~wJ6SN)~2MvxFzP=B_xO)+?@UC>UB#4stQBt8xQWBu%W@*u=vYjcqkkN*%c z*;ggtwK28G7ml+l0={(Mpv=vS!nJ4Y{A*iW(M2*iLl2dq;vr-xVEBRbuE(13X56j6 zFw`ptK-4WJTNWK4h=^YE0A1op0j#WAgc0~p!rH9sFoa^5N$-f5gJm>~k*aKT%$C?a*f`(mD@?{a5B{)KpA!#}rqr;x#Qyrs}NMWTnqg#S(z zz#6!=>9TvePgP^UYp+RJ>40= zBH5Y!t`JdU&wO4pkxWE0mFj6Nn5G#4NKy)3F#o{xBWQ8gN0(n0=9vJBu2}QSalh{8 z4CK9qGPklb3N_W_pxD9+p^HiTR@gDukuaDdukEcc(pLJ8t2(VHR~UoYt%!+DA6!XZ z&b8XlG>)~SV@~;4e*7lq*kZ}ApdoGy-q_eCod!%n1#djJvGwQZYfh_|Z+DUc{)4;g zWCD|S`HMR({3H0fS&checwEDrRJd+&T|)aLTfcOCaS&=Va@EW15jSXy+zq)&`!2@lu-Z3f{84vpV!K_HjWD*<9Td{@dOs zmdFU(>9;T}mw>&yZ_~=-54ZmWlDoZS=B&=A!zHgei(H^D#$E*XncxY?o@E9NfZ(=| ztHXWkRf1|6c#9=J@M04CV0vZt-@PzU4RJ)QIIIclk+H(0E%VnIVu%?5gca~Z-ny=` zH*)9QMm?RJmoyjGE%c70^$IsDORWM1VAAF0rZNNSyG`zE0YXhM_0}2-Q{(pjzk(Se zhJSIZq~hC}PdF)ItWQnrIW>vrzlXhOGV`=01PV*X)?SpVEwh7@AP!sKi_lG9HOzX_ zk@D{&mD{MWsz&Q=yj&mvXI>}LXMU1Y)DMcy%4wX#j(GNKz768CaiwEJKbhF=@A2W= zWPt|7ZC#tH!g8B|UtU9rVBSJgh+uEuoup|twTT-#6THW1N)Fa0SAlLWiGtbipHp{P z!no8Sfi?Sg=Y6BX#ljddjPS22&X#PbHy_6Ekn3G#eeI=^&B%KIxDne=jVSkX30D}{ z)mh`UYE^SoV22fnrK#{*IN%#2It&U3{R3VmxrW*E%(?sTL8j?$1<}ei=oh<+dW5as zWlS7qZu-yu?_ouY746f+pO};BnHk8fg~LCZYqw60-W_|I0nM|TsZksOP zL@VV_s^%Ya4H`mb9cv7Bif8W9x&2~vmwQ0jZzk=|F^=tklbo0rfz=k%ZimZ&=lZJl zkbk>yhGC!;!W@wHRLmZ2&pkX!jODrP`g-%P*sL^tE;4+cUt#D^+pn!jCtZcFL)F(n zf;3DubSEh@ihmfdBN3VxJwnTb%B#>C9{U0@WFphj2dophgZtCZ8_CH%-pPVC_}t*k z6ZW|9SL6)=-e$*dM@h44rlA@*m5&0+;Gc7ToI33&*+}2RTPmuhN({x4%*-Vq$mUCp z<8z7x=L zd^VM`+f`QwSl`ZLGSk59irmeDQ}v(mkyP;jLMv z%f0Qu&HRk*MnSjyf`5i{Z4`U1?@%=1V#Irl)SKW>( zu53+EgZwadXKoOR3=mVPrw@k0gcz@0uDy5AylfEO!0sQsJnU{w8lygWYdwB+a!sSu zjIb$yIk1YX5G?^;D4GHZBpWw`E=+p|VVRPpbJ8aXB}tATJ;bp0+I~Dl*IqMHa%I7z zn+Hm+7#BU7ngf)#jsXJxXuY>2a70{%m772=cF&$A4)MbAbj7rwvb@ zF>fn>@hE9BuHmDSPk}pxKLAICT?wbx^ zUGUZc`UOh+Kb%g)?9OQYvcdeOJovSM-1u?T@9dHf9k&oNyicP0EV-(tz#+TRtW-I< zQqzMakH5%0G|RNZulm!<>E8ZNk#YoSrA<&lstj*0{K7Q70jmcPimnB%8IFHMHQ+3e z6HZ|X&K|mgFp~^KvR{9A??2A6t(pi%{UO)D$+ z-m&&85O=-Pz4sJje%XD68E2SD?m*6Z_SU|gE-q?VB8v>;gKEo67BpJsFb5d_+|)b23Fp!7Wqg` zl{cm^Hju=M%4}*jrmjMO+!ELMyiq=j3|WC`2ra(G)6zj%eALQ`L3N5OGjXc!BAH`( z!tJI`_A^kRRyNr=dA@RS@z~V5LLHI9m!#Lm;&Z|Zp}o@~&c&c`ja2O%oxAaC<#wnV z+npC)LwZu@>;%a&;lPX@U@V+=F0gd8PBsl*Tta5ta@+d=L)*ji}BF(*t#>}^yt{wh;tgg1%YL4_jIfJ8bdFbY zsuj0vauT7>i)nmtq8R*4qpo>sW8F`TZ5dYz5tp$u#_3uS2BuIr=@)RYU=klew)Yu= z9HE%$j%0#X794AZ`@zLD&F8f_?Ly_Whab}%g@F#7I5t(bGCGAr1rA^!@!1uHIi{qS7u$5aK3DE}`55sPTpGJ zswplY7S58MGc3*?+{PSRA!h25k+JnmK~-Z5+WpH9PREZwV2$VRUUQi!#EOXTG8%|#%(O=2pqT#fA^OuSrG4J&0zi7k%+?Jvc=$zU^ zO*athFQ>HBWOJXSb@eJ58}qZ{O2ADf9XV4t?P0u6Qcf}{7-bI5(FiTMzrV;#$h*S< z$by*qluydK&GzvH<47Q1T3ssxCyi*L?uBf{^R6W3KM+3<$(RV7T?n(4gDB9|ogy45 z*Q)p8NO^}i#ysVI$aTFtKlpwMhc!eXbSC+K}5VjK(?+{UcPWNw)=!hmi?) z{IznDae6P{TS{|TdfZIR$k)|-RWV$?8v>c>Po_lx3>j~C z=!_0@8O_3F)&*`mxCLwEqO^(5`Xpp4b%Fz4?^-UR<(~omF6cLxybQx;Ol93hI3Ys1 zR6C_Tqc)~-c!n;d)HUey=b_MBh^$IfrC=6AssqE^#wG_&PG3vaS)^I<(xtn_m--y1 zf3F`Cj%g#vXKNgNdu=E%|B65Xukmv5i2F$s&|je0@T3Bd!lQIK4TkJn2Mzmm&2sx> zlQJ)no}aF7&t9ksct!ElZOAxj8<8HAI=o9zhz(ZpO*!X0#;FPJf%zGmn>D%C z^jv8+0&r-qgtk$G6XH6N`J2`2opIz04%(;Nj0)V8aK0m34BC1(5PsEN#bUF-Ve}U` zf+x<#Mu{n{qO$$Fi}zExI6-z*zwuNjqbhPvvb>R2>3|%xY?lWnt}1HM-4z<}e9;UH zE5(9ax0bZR;;Fmw2NW4#m$wPz{u|S5TFU~xV*|+7aBo0tZu-=NsiD6lygvhS3q@Yc z6MNaN)JXDP3gk?_X|m*U->AJ0$Ga2E2Jd#g{sz)X)(<7Oyphuod;nA;7>>K69t+AF zs-{=*hSv-RJ*A>Bx{L6q#{aejVg2PPkQ`hbw?%!)}v! z^^8KyYq;Zfl-8~#%W|pjzBw%)Jb=1K*XSG$4>^9T9gRK=5&h#KUHzVRGBR&~&~G-N z9ZyBpqu*dBB2NH-j@O{~&u7!2P*UHUzpr`;(SX^kbYBsxvad1<_s$*!!mDyYthy zdB(Tv3;*VkKjPul8a3R1A)IT0B%Un2?UiD#@L50o?!^wk`ShqLp2v(P!`-12lDl%7 z?P&6uOVujp*{agnG2wE~Rsqz)iM4H9YK_(}M^2hchecKG@io?MAkWb4Hw`G41#`N6 zdW=ce@GblwY{t!snO1&N0jMvw+=?VFb)*sj8+n{@_TI`58m!KhU^9z#pK& zm+VjqIsz>KQWNc@dSegM=yak0Y~1AL}v5G)pUfyaeqlH0t<{ff*fxbdw|N3RP zSwscYiH7ZPTv%e!h&wPIEadfE2oeF2?i*YCfReUGST*1LFti+$-ZqFf8C)OaPjioUiu->)IBJis`(-Kw)G2y^h!E+I{JwC)pas>W+gMUj?kw$0 zE1dW6;_-8Ssb&cCRe#v+xakzx75LGMOlN3vjeIZK9H2Z}>EG@afp91u3{C&s7}B_? zCOxUpT}a@4VFn11ralZbbt6=l(ep#mY80*zASe9|ZaOq>sM2!jr=wIPAL{YRtmj~U zDxDml6=GHDx8?#?Kech(PoG<|L!JB5+6TF)r3(8kwRAVL>8FY_5rAHp#M>^?oI>@V zYx7{Pp1?}R3i(JxfX~93+>8uP%3%1f^f7&m1-`m;6f6VH>xF6usJPS_?e8^$jk5Vd z_rfj(G)U-p-UvAqf|3UANfD{fZiW4Yh29sSA$)L9hBdjfichLa@$L?c5afxGZsp{Z zdj~5~#`>5qti#%EnpeVl&@mh0J}}i?V=z{&TcZBK7k0givF4=lku$n|jvwZ-Vxs#t76Y2hWzb`(3}#TpVHHBs;Pvv#5ef~U z#|}238+~z%dmi%~#CcZkKeczVZcl=xQ)No2Uh=L*LvVuh;j3Fu2yd8d)J%~KiwA1th=Cc9&7rMc;dH{G&<7vV3#+KMjPZ)GcDvre8_96 z9&3BzVZ_#%^d?j$XU5}D33u%e-4g~#9scj1cJ;Rj#ym?isQJ@7OvI=DI8nt(m7U=X zebm>sk{sR?#HzMAw>!b`qx@Lbb*M;}7pF*{LR#Ku!)8y!4bvlkM}i|`vcR4djr z%fVq-dklh8U;(fcD`W?Xg1W7bR2!?pT)A2j{esFWilB?o$Pi?c%?DHU8WRn0-0xLe z3%i%p9|g2NSz&OwMzd)+LzQ4@P;r#FCS%!n+S&rqj(e z|FeHfy;)cC^VUM`!(~V-U6lgd8<6O(#3UqLM<&;~aOn`!jFSum`t3=!aeK6K#64&u zU!u2wH9w~=tG8p^N&`d?r-&vDMzcSNVN{%#6}^uY3V?^N*T%p;&*!|b?+YUGszmfN zG0AK}m!Y$=s|8%TFs;Wxy=i1uP(RU|@VVWnd4g+atXCv-XdV8}HmLxrRB>hhR&v({zJ)*?2r|X-C!WGf$d866I+QSt%-iuO2%+ZkXxm#B(Wg(<-*ed}acy3xv zLS(c9R6LFDy2T8fw@?5ALI$%7eKpW>kPerq5m#W<@gy6lGf)5c^~NsE2wQeDp`X-7 zViNk)a&jQiwD!g~E~df{{IoPEo8uWU6c0vZ%3x=}_GY-aAGcpYDT8Bie!!x?L&kNv`+K(*^?=-D;*NLm*$qW> z*vkqLyA=-fwkb7*YxVyE;}sn0$Uh9ymyG%3mp7|xsZKHh&ux2={Y8Y%1*>3|xP;D+ z$EMaU{jSbuB6@x*`Z^!w$tZDsXQXp2%I$TlV|Z-ZrBPc5lQ)h#_I zdY?vMPi#IDMJN~06;n~FIB06t;=#2)=G{lkEmzK!ROe3tDs zqZKE5!yQFN%gu6qKgJ_GXE^3^8#uHtnI0wnYd=!aOP0um^1~4En}09+4f^fsmd|;> zrvT`j1)fZlay)kP@cLVjCdvdpd0XC53xh8k?1gWeFEA?lt&L<#5DRS;EM!Z8`F?DiAp#5{l>f- z3|R=81H!p><`YJ18GjKqtM}BSQr)Rznp;e$v-$-{_KH|tg(%!NEe?x*m-RRo0-Gv% zE+zP~>Hu+*JS>YqDdncG;DNi*RMnm*Juu(W`Sr61jYQ3r2H7X{sJ%0kig88b3`lr{ro6{dt zfeiEYAAXSW#K{lcI(}bhIJYvccIH?=hM&5%FZ>bP?Mr`cKP`9g0b-ju7y4^JHi-T~EcyXoO?Tv(au3>n?^O1D zeVmK}t1x)IGTu&5qj{G}k;pUO{dYSE_h12e|4aN=^Xgf+8=C|grNWH_EMsK#lOzcy zRnCTSMf3g1Q;?QE4-S$u#%F6DoZ%!Vrcc`5Ex*^DAAcsj8_!K&P~5#rO1Yo5D->&A zr8vvMCeCjf%DGFda6eo(BJ*T86CHJidKiJ{AYE8(aE0tJqi_1irlvR&WzI)Q)M;-H zHAQ+7A+{jc9F)Cji{5Hc^5Qe2Kh9$Ry0xMev%XtFIkoRB_b*iK z0m?z|)qg87CuXJu>$W+0i%nehFEHd*+zeta#?N4ip{*?$8hW!ek5Bgo09K6I?1pKr zX;C=i44RJ%qoDyuuB5^thKmNhQcUJSa!9goq(!1%Uu9ajrkhyMVhpl*PjdTD$vtI; zRjaIR;>uJAv4>)tymm%2Kn7^>J~t=HpR^^Uoqw5@l+0gSJRJ}j;Azd+P@;;pBMhcv zq+}407mf4xr=s#10uJ6##|>WR_LWuRco8r*8QqrlCU(=j2F)RceYNFT0lKfX5BY41 z%jrC~@xS%AqG~|ShcBUo=}AmtI~tqgV>H%DFoMS4EC|qIA*Tyhp4d2F&x}6c^@%{2 z&VLyd_q(4CRx4u_?CxzjieG$1ErOow1Dm^oAB=)o-yrYpJ-1#6hXe=A7V|=7-nP+y z>}08Q{zk!H5Je`3+bMC?a!u04P;JKjl5*tV5~}D3PIQX=sujyb@`6Pat))5O*R!BF z;R$j(cJFP)h#%a{+4aUdfe5zlKOW)7c7I^9Sf8r?BsbLOE@k;hCU0&PYH~Yul;>Jo z=t?i?VS?Iw6}dpaMJF)yVWw`TYI$k(M{%C1Od>qiIQ)lDS2*ZH_FWWq2#x4IPt?$t z&C6P28Z}wg3Krr7Q&x(cdrt1|h=6;lH|lVfdb?9?DzDJS*kINq9V#7;-x#DLbAPZZ z#iKBOL1>pqV^G&cTt^G9t3eK9vlUOcf>gL)zx`%U0X^A_RY)aM#uzL+Gx&xFm5)Aq zAc@5jA%!-VdShLnLlM|d_*!7fOYq>hQQG0|ZMITlJrd^A^_fq1U-deRDuo19=t_T@ zgn)!7SWjHg>Hey{ia+@UYHLrt+kZPr*hnf9MBJfc6ILxGQ1Tcp_-dUrvv;CkEQM(a zGf#EI_yxYkD(j2wO|`lqFc0n5LrSDwP6AFgJG9~*fmOyhr%8LmyCG-!-=dtqga++``|#5>%Z)h<2!GdEM|PH?^m**) z>{T0cQFUB${ru+H2Cwk6)9}lU(hOTVNN^><0j9&fLu$15j)Z8awej|fsK8qj`qj=0 zVOU3Y>N_=BT9#v#DC&|A{x?GNPYIe>Tk=u~1Bhns2#=EfzV!G^XQUX@_;AV?T;L6+ zv5AYQiciUuDy7g$H-D>+Zi08hLIm_X~rNaRjkw~c*Z8u9|>ft5hrIEW3i zlb1j*f0UXQ?erzIUs`A~hVWGzb{O5lFEWn!-`NlSkk$#`ki54j>5H>gT30T%T1ttXZWM?5k=A#a= zwBVeTd|Y1O4-juONyg6*e$qWOZn>rh`L;XuQp1bea>ltkEpc2-0N3GNO&C&`9o@FP z1Rf5omMrz2Pk$a-$9+T36a9jXYoL=LdMcn%NqJ7yhJ;K4zLke;&I^&DJ6C%4Y_Y90 zYJCtHcB_Ux56-7w>&$I3(xSJHohC;1sjkl$rN(bu7ynG$k_qE{SD~-;$XWl}7dncG zZ`R`05e_oqt!?BSZ`eDcLUBbwT*JOj)NxInaK?k&1AlMhSR1fQZ6IQDC7keU&zpw{ z?g1osHOpTT&@-Lwu{#&2rsDyHSsw4Qrd6VarFWnw0AJE!DqBo%$vytW)f^Hu0B${y zgso6Pk@aLelz$yHX{||A`=1gSS!hFvmwYJ*9|N6?LoARd7n^!vB63Ma_`VGKBDX1jr{d_5 z`nEax3%v{#eE9jHfQ$i!|!>vVO9jXV&5p)gP<^*Dn7vqHCw{JB~Gt>y=C zXY``e--#ubVZIoY-w4^P4kJdpn97Q~O(*-hgLK7(oOn+|LNiRy zF!GCQA4tY z5);`1;neJtbk=5RXo75RJm)sCn3Dtb%^F1z*E-rpb&#NcZTgr~eB~?r6nLs{5d@Rt zlC1cECQfA^+gTCbv}{O8A@*e5@i57)Yg>o~Yea4)E^-31csc5G^F*S_RDaD_PzZLp z&ji5t3(aur(I(v}R8k!EKA}EFcvHF6x<)?FG+F(u^E8`LCojl05xHGc)$Z`shoUhQ zjncEnrb+4qM>uvZYZydK_3%@WjypM^D!?#vDH_NYf>?e}5hx=x%fOwR zmzG5R@jDNqix^F(t_I1Wzkk_PY)4$*ryR9AU3?@S$cc6bo=AtU`9 z;L=w@Uj5h41_jPUKqQ@1OH34U83OSisSLvjqft*_HX${;-8fw4Cxj>D%%5QM8yD3L zku&bnPt&}SF4Bw*!;&*_Pt3W!yv7dp_3ES#a-qz^5m9aL^W&;CqJP;vjTCfyE*gg2 zWX^sw?3g}ju&)YQw%Ige1(vqqTPIAE6suNxM{qG%saAGuGZ^ml|bX zEs~=G99#8y%2L<-qDRWw2F7(uIz6Y>y^ zMMHSm+=pxy6@sCx7+dnis4SLPHO01_4zQ0Qs`{qbvI4IC z@$nH+95pHF8K=~HnTNyuc@jeqOR2l7OeIx?cD|3^D%8IxHW^1@vWI+6z8O;1=qP&w zGdhZ0iraHPCIy8#OJ5%o#ckU5KI{t{Q3c_TL`$q?EPr3~UtvYYp6qqa07GV6eP^f@ zTtd3;xiyzjI;pNVCF7g^&0fV=bG}~`ZSvLd%HQdU!PPcT^fXO77C?pMNZckMbl#de z!C4XG-3w>V!XR1~!orl}B9S55%W@7;JS<06qnZh|Jo^HR7};Uwp;cB|*bM0zCj+k% z;wg9KO@HmJ7@PNX9L;6?(Yi%6*@_sf01lFKD1+=Shcu+G69(#l~N>=xdeZW{4-sS_sO50@J# zj(*#Tb%Uct>%5u|%s=DZ)U)%T!K}G1P|VB8kqDICl}&-2(otJME-UlqF=K(!C#NN%v&!A7ne0K@!MHN@>X z;jfzYLSeP!%q@=bHk&zG8&+ca^VY>@55llZwN*niM_|6aDL%&T6=lef9LDVB90e~K zVx8J?>AQm@#j;6gFFPtkttm!V>;DrU1ApNBkQ569InSq^S_wosVcREn;ZR&$`FSk> zN>lnBLwpv`KYy9EZ+gO0W z0-h$31t*1a{(O2~x9$LW#uBia8xw)`FRn`ISl391>&nq(zm;CamvL{Q?HB9m#ec?@ zLu{;XC$hoJjIbDpYlX94kvZBrTfn`}kp)3sVQjTE!#{dH3vFV=awi?e(`htEcsFM1 zN(C!i(iHCGI?I|7@BaXJcUr3qQc2q|keNTt)P)G|9yW1~7&vroGFPlU<85;>Nr-?e z;qf0q%qwa2j&^moV^Hd6V-yy04u3~5SJ=++tw0AjzKcRpTD3^Y)H56DbIJNCy(JiC z*OF26_R9HpFvx|VW9g64_p-uQ!NJ1z6Tr?9F=2!)C1-|j?$}Hnof%hxqZ@5%b`8-s zMTw2kUX%>|CLCIm!n@oLeD@|+{4f){`a6#tZe4!8sgFmH-G(H3)p-Cax_`R;`j;(_C!>#LUK(fbfn9+x=CHiEtK_Sa#Dm<#isu_Ffh3+N;&K|n>YR?m zHebyvtgs+Bo$H7}%lDa3UVl{cJp-NUM?;Jlba8-!V5l_<%g{bRtwG>zT0?2lvakz9 z6=w#%QdBE;*Wob*t*sXQnX@HY`POnPwBy@hQRefC=qOHH>l(V;JkRO2z6vbjSW{kQ z_Q8s9F>|yln53n|lh7uvw61E9GR`$kQF9w}+GixUnD5x+FjsPAVSf@}__HzvUuaIQ z=V2%0Ujrfs-2gnHGY88yRtoS+oNeF6kE*3?E&Cm*99}1}#DjH%s#z0O<^WY{(Q8t4 zQ6G6nE9#{OrNW8zcjj{(fq!BM=b8JSr#WgrmXx3M4xQYzMYGlMW4iR@PILvO(0#MO zwriJ%ztj7!4h|$r>_72cMbTqg3i5vR+W2K{c>)6$AsZBdxpA%GlK;V-S5H((EGPnG zx)75V_6lWgWOHG?GC3eGNkkx9JYi-yWiT{3Wn^VHGc+(a zVq!C7IASz3FgZ0aH#j#rH$FUOWHeT^J(OcFwb|2kMDh|S0^fe`1_f{Qb7RU+8z>k(|W7a-D=4J`7D0RT>`4gQlf K0)3a}jRF-z$Otw7 diff --git a/mcstasscript/data/data.py b/mcstasscript/data/data.py index 84633cb8..5f116f8a 100644 --- a/mcstasscript/data/data.py +++ b/mcstasscript/data/data.py @@ -87,8 +87,12 @@ def extract_info(self): if "filename" in self.info: self.filename = self.info["filename"].rstrip() else: - raise NameError( - "No filename found in mccode data section!") + # Monitors without output files does exist + #raise NameError( + # "No filename found in mccode data section!") + print("The component named \"" + self.component_name + + "\" had no data file and will not be loaded.") + self.filename = "" # Extract limits self.limits = [] diff --git a/mcstasscript/helper/component_reader.py b/mcstasscript/helper/component_reader.py index 62e9fdea..7018c564 100644 --- a/mcstasscript/helper/component_reader.py +++ b/mcstasscript/helper/component_reader.py @@ -278,6 +278,8 @@ def read_component_file(self, absolute_path): parts = line.split("(") parameter_parts = parts[1].split(",") + + parameter_parts = self.correct_for_brackets(parameter_parts) parameter_parts = list(filter(("\n").__ne__, parameter_parts)) @@ -347,6 +349,7 @@ def read_component_file(self, absolute_path): break parameter_parts = fo.readline().split(",") + parameter_parts = self.correct_for_brackets(parameter_parts) if self.line_starts_with(line, "DECLARE"): break @@ -369,6 +372,31 @@ def read_component_file(self, absolute_path): """ return result + + def correct_for_brackets(self, parameter_parts): + corrected_parts = [] + current_part = "" + index = 0 + while True: + + current_part = parameter_parts[index] + inner_index = 0 + while True: + if (current_part.count("{") == current_part.count("}")): + corrected_parts.append(current_part) + index += inner_index + break + else: + inner_index +=1 + current_part += "," + parameter_parts[index+inner_index] + + index += 1 + + if index >= len(parameter_parts): + break + + return corrected_parts + def line_starts_with(self, line, string): """ diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index 1ca3126a..5091cc20 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -206,7 +206,8 @@ def load_results(self, *args): # Extract the information current_object.extract_info() # Add to metadata list - metadata_list.append(current_object) + if current_object.filename != "": + metadata_list.append(current_object) # Stop reading data in_data = False diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index 94e69e2b..fab57f4e 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -124,7 +124,8 @@ class declare_variable: Writes a line to text file fo declaring the parameter in c """ def __init__(self, *args, **kwargs): - """Initializing mcstas parameter object + """ + Initializing mcstas parameter object Parameters ---------- @@ -148,7 +149,16 @@ def __init__(self, *args, **kwargs): self.type = args[0] self.name = str(args[1]) - if not is_legal_parameter(self.name): + + par_name = self.name + if "*" in par_name[0]: + # Remove any number of prefixed *, indicating variable is a pointer + par_name = par_name.split("*")[-1] + elif "&" in par_name[0]: + # Remove the first & indicating the variable is an address + par_name = par_name[1:] + + if not is_legal_parameter(par_name): raise NameError("The given parameter name: \"" + self.name + "\" is not a legal c variable name, " @@ -167,7 +177,8 @@ def __init__(self, *args, **kwargs): self.comment = " // " + kwargs["comment"] def write_line(self, fo): - """Writes line declaring variable to file fo + """ + Writes line declaring variable to file fo Parameters ---------- @@ -181,16 +192,29 @@ def write_line(self, fo): fo.write("%s %s = %d;%s" % (self.type, self.name, self.value, self.comment)) else: - fo.write("%s %s = %G;%s" % (self.type, self.name, - self.value, self.comment)) + try: + fo.write("%s %s = %G;%s" % (self.type, self.name, + self.value, self.comment)) + except: + fo.write("%s %s = %s;%s" % (self.type, self.name, + self.value, self.comment)) if self.value is "" and self.vector != 0: fo.write("%s %s[%d];%s" % (self.type, self.name, self.vector, self.comment)) if self.value is not "" and self.vector != 0: - fo.write("%s %s[%d] = {" % (self.type, self.name, self.vector)) - for i in range(0, len(self.value) - 1): - fo.write("%G," % self.value[i]) - fo.write("%G};%s" % (self.value[-1], self.comment)) + if isinstance(self.value, str): + # value is a string + string = self.value + #string = string.replace('"',"\\\"") + fo.write("%s %s[%d] = %s;" % (self.type, self.name, self.vector, string)) + else: + # list of values + fo.write("%s %s[%d] = {" % (self.type, self.name, self.vector)) + for i in range(0, len(self.value) - 1): + fo.write("%G," % self.value[i]) + fo.write("%G};%s" % (self.value[-1], self.comment)) + + class component: @@ -355,69 +379,84 @@ def __init__(self, instance_name, component_name, **kwargs): self.name = instance_name self.component_name = component_name + # initialize McStas information + self.AT_data = [0, 0, 0] + self.AT_relative = "ABSOLUTE" + self.ROTATED_specified = False + self.ROTATED_data = [0, 0, 0] + self.ROTATED_relative = "ABSOLUTE" + self.WHEN = "" + self.EXTEND = "" + self.GROUP = "" + self.JUMP = "" + self.SPLIT = 0 + self.comment = "" + self.c_code_before = "" + self.c_code_after = "" + + # If any keywords are set in kwargs, update these + self.set_keyword_input(**kwargs) + + """ + Could store an option for whether this component should be + printed in instrument file or in a seperate file which would + then be included. + """ + + # Do not allow addition of attributes after init + self._freeze() + + def set_keyword_input(self, **kwargs): + # Allow addition of attributes in init + self._unfreeze() + if "AT" in kwargs: self.AT_data = kwargs["AT"] - else: - self.AT_data = [0, 0, 0] + # Could check if AT_RELATIVE is a string if "AT_RELATIVE" in kwargs: self.AT_relative = "RELATIVE " + kwargs["AT_RELATIVE"] - else: - self.AT_relative = "ABSOLUTE" + self.ROTATED_specified = False if "ROTATED" in kwargs: self.ROTATED_data = kwargs["ROTATED"] - else: - self.ROTATED_data = [0, 0, 0] + self.ROTATED_specified = True + # Could check if ROTATED_RELATIVE is a string if "ROTATED_RELATIVE" in kwargs: self.ROTATED_relative = "RELATIVE " + kwargs["ROTATED_RELATIVE"] - else: - self.ROTATED_relative = "ABSOLUTE" + self.ROTATED_specified = True # Could check if RELATIVE is a string if "RELATIVE" in kwargs: self.AT_relative = "RELATIVE " + kwargs["RELATIVE"] self.ROTATED_relative = "RELATIVE " + kwargs["RELATIVE"] + self.ROTATED_specified = True if "WHEN" in kwargs: self.WHEN = "WHEN (" + kwargs["WHEN"] + ")" - else: - self.WHEN = "" if "EXTEND" in kwargs: self.EXTEND = kwargs["EXTEND"] + "\n" - else: - self.EXTEND = "" if "GROUP" in kwargs: self.GROUP = kwargs["GROUP"] - else: - self.GROUP = "" if "JUMP" in kwargs: self.JUMP = kwargs["JUMP"] - else: - self.JUMP = "" if "SPLIT" in kwargs: self.SPLIT = kwargs["SPLIT"] - else: - self.SPLIT = 0 if "comment" in kwargs: self.comment = kwargs["comment"] - else: - self.comment = "" - - """ - Could store an option for whether this component should be - printed in instrument file or in a seperate file which would - then be included. - """ - - # Do not allow addition of attributes after init - self._freeze() + + if "c_code_before" in kwargs: + self.c_code_before = kwargs["c_code_before"] + + if "c_code_after" in kwargs: + self.c_code_after = kwargs["c_code_after"] + def __setattr__(self, key, value): if self.__isfrozen and not hasattr(self, key): @@ -449,6 +488,7 @@ def set_AT(self, at_list, **kwargs): def set_ROTATED(self, rotated_list, **kwargs): """Sets ROTATED data, List of 3 floats""" self.ROTATED_data = rotated_list + self.ROTATED_specified = True if "RELATIVE" in kwargs: relative_name = kwargs["RELATIVE"] if relative_name == "ABSOLUTE": @@ -509,6 +549,14 @@ def append_EXTEND(self, string): def set_comment(self, string): """Method that sets a comment to be written to instrument file""" self.comment = string + + def set_c_code_before(self, string): + """Method that sets c code to be written before the component""" + self.c_code_before = string + + def set_c_code_after(self, string): + """Method that sets c code to be written after the component""" + self.c_code_after = string def write_component(self, fo): """ @@ -522,6 +570,12 @@ def write_component(self, fo): # Could use character limit on lines instead parameters_written = 0 # internal parameter + + if len(self.c_code_before) > 0: + explanation = "From component named " + self.name + fo.write("%s // %s\n" % (str(self.c_code_before), explanation)) + fo.write("\n") + # Write comment if present if len(self.comment) > 1: fo.write("// %s\n" % (str(self.comment))) @@ -577,10 +631,12 @@ def write_component(self, fo): str(self.AT_data[1]), str(self.AT_data[2]))) fo.write(" %s\n" % self.AT_relative) - fo.write("ROTATED (%s,%s,%s)" % (str(self.ROTATED_data[0]), - str(self.ROTATED_data[1]), - str(self.ROTATED_data[2]))) - fo.write(" %s\n" % self.ROTATED_relative) + + if self.ROTATED_specified: + fo.write("ROTATED (%s,%s,%s)" % (str(self.ROTATED_data[0]), + str(self.ROTATED_data[1]), + str(self.ROTATED_data[2]))) + fo.write(" %s\n" % self.ROTATED_relative) if not self.GROUP == "": fo.write("GROUP %s\n" % self.GROUP) @@ -593,6 +649,11 @@ def write_component(self, fo): if not self.JUMP == "": fo.write("JUMP %s\n" % self.JUMP) + + if len(self.c_code_after) > 0: + fo.write("\n") + explanation = "From component named " + self.name + fo.write("%s // %s\n" % (str(self.c_code_after), explanation)) # Leave a new line between components for readability fo.write("\n") @@ -606,6 +667,8 @@ def print_long(self): class is used as a superclass for classes describing each McStas component. """ + if len(self.c_code_before) > 1: + print(self.c_code_before) if len(self.comment) > 1: print("// " + self.comment) if self.SPLIT is not 0: @@ -636,7 +699,8 @@ class is used as a superclass for classes describing each if not self.WHEN == "": print(self.WHEN) print("AT", self.AT_data, self.AT_relative) - print("ROTATED", self.ROTATED_data, self.ROTATED_relative) + if self.ROTATED_specified: + print("ROTATED", self.ROTATED_data, self.ROTATED_relative) if not self.GROUP == "": print("GROUP " + self.GROUP) if not self.EXTEND == "": @@ -644,19 +708,26 @@ class is used as a superclass for classes describing each print(self.EXTEND + "%}") if not self.JUMP == "": print("JUMP " + self.JUMP) + if len(self.c_code_after) > 1: + print(self.c_code_after) def print_short(self, **kwargs): """Prints short description of component to list print""" + if self.ROTATED_specified: + print_rotate_rel = self.ROTATED_relative + else: + print_rotate_rel = self.AT_relative + if "longest_name" in kwargs: number_of_spaces = 3+kwargs["longest_name"]-len(self.name) print(str(self.name) + " "*number_of_spaces, end='') print(str(self.component_name), "\tAT", self.AT_data, self.AT_relative, - "ROTATED", self.ROTATED_data, self.ROTATED_relative) + "ROTATED", self.ROTATED_data, print_rotate_rel) else: print(str(self.name), "=", str(self.component_name), "\tAT", self.AT_data, self.AT_relative, - "ROTATED", self.ROTATED_data, self.ROTATED_relative) + "ROTATED", self.ROTATED_data, print_rotate_rel) def show_parameters(self, **kwargs): """ diff --git a/mcstasscript/instr_reader/__init__.py b/mcstasscript/instr_reader/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/mcstasscript/instr_reader/control.py b/mcstasscript/instr_reader/control.py new file mode 100644 index 00000000..9dc7824d --- /dev/null +++ b/mcstasscript/instr_reader/control.py @@ -0,0 +1,226 @@ +import io +import os +from decimal import Decimal + +from mcstasscript.interface.instr import McStas_instr +from mcstasscript.instr_reader.read_definition import DefinitionReader +from mcstasscript.instr_reader.read_declare import DeclareReader +from mcstasscript.instr_reader.read_initialize import InitializeReader +from mcstasscript.instr_reader.read_trace import TraceReader +from mcstasscript.instr_reader.read_finally import FinallyReader + +class InstrumentReader: + """ + This class controls loading of a McStas file as a McStasScript object. + + This is done by reading the McStas file line by line while using the + McStasScript API to load the information into the Instr object. + + Optionally a Python file with the McStasScript commands required to + replicate the McStas instrument can be written to disk. + + + + Methods + ------- + __init__(filename) + Initializes reading of McStas instrument with given filename + + generate_py_version(product_filename) + Generates a file named product_filename.py that recreates instr + + add_to_instr(Instr) + Inserts information from instr file into McStasScript Instr instance + + """ + + def __init__(self, filename): + """ + Initialize the InstrumentReader with a target McStas instrument + file. Use generate_py_version method for writing an eqvivalent + McStasScript python file or the add_to_instr method to load this + instrument file onto a Instr McStasScript object. + """ + + self.filename = filename + self.Instr = None # could set it up to create Instr + self.write_file = False + self.product_filename = "mc_script.py" + self.instr_name = "" + self.file_data = None + self.line_index = 0 + self.file_length = 0 + + def generate_py_version(self, product_filename): + """ + Generate a McStasScript version of the instrument file used for + initialize of the InstrumentReader object. The filename given is + for the generated file. + + One should use this feature with some caution. Look through the + generated McStasScript file and compare some output with the + original insturment file to ensure everything was loaded correctly. + """ + + # Generate dummy instr object + self.Instr = McStas_instr("dummy_object_for_generating_file") + + self.product_filename = product_filename + self.write_file = True + + if os.path.isfile(self.product_filename): + os.remove(self.product_filename) + + self._read_file() + + def add_to_instr(self, Instr): + """ + Add contents of McStas instrument file selected in initialize + to an McStasScript instrument object. + """ + + self.Instr = Instr + self.write_file = False + + self._read_file() + + def _open_file(self): + """ + Internal method that opens the instrument file to be read + """ + + with open(self.filename) as file: + self.file_data = file.readlines() + + self.file_length = len(self.file_data) + self.line_index = 0 + + def _get_next_line(self): + """ + Internalmethod that gets the next line to be read + """ + + line = self.file_data[self.line_index] + self.line_index += 1 + return line + + def _return_line(self): + """ + Internal method that puts line back into stack + """ + + self.line_index -= 1 + + def _read_file(self): + """ + Master method for reading the instrument file. It goes through + the file line by line, and checks which part of the instrument + file it is currently reading. There are separate methods for + reading the individual parts of the instrument file to reduce + clutter. + """ + + # Initialize readers of the different McStas instrument sections + args = [self.Instr, self.write_file, self.product_filename, self._get_next_line, self._return_line] + self.Definition_reader = DefinitionReader(*args) + self.Declare_reader = DeclareReader(*args) + self.Initialize_reader = InitializeReader(*args) + self.Trace_reader = TraceReader(*args) + self.Finally_reader = TraceReader(*args) + + # A mode for each type that activates the correct reader function + definition_mode = False + declare_mode = False + initialize_mode = False + trace_mode = False + finally_mode = False + comment_mode = False + any_mode = False + + # check if insturment name has be read from file yet + instr_name_read = False + + self._open_file() + + #for line in self.file_data: + while self.line_index < self.file_length: + + line = self._get_next_line() + + # Find appropriate mode + if line.strip().startswith("DEFINE INSTRUMENT") and not any_mode: + definition_mode = True + any_mode = True + + if line.strip().startswith("DECLARE") and not any_mode: + declare_mode = True + any_mode = True + + if (line.strip().startswith("INITIALIZE") or + line.strip().startswith("INITIALISE")) and not any_mode: + initialize_mode = True + any_mode = True + + if line.strip().startswith("TRACE") and not any_mode: + trace_mode = True + any_mode = True + + if line.strip().startswith("FINALLY") and not any_mode: + finally_mode = True + any_mode = True + + if line.strip().startswith("/*"): + comment_mode = True + + # Read with appropriate reader + if definition_mode and not comment_mode: + # Get instrument name + if not instr_name_read: + self.instr_name = line.split("(")[0].split(" ")[-1] + instr_name_read = True + self.update_file_name() + + # Read line from definition + definition_mode = self.Definition_reader.read_definition_line(line) + # When read_definition finds the end, it will return False + any_mode = definition_mode + + if declare_mode and not comment_mode: + # Read line from definition + declare_mode = self.Declare_reader.read_declare_line(line) + # When read_declare finds the end, it will return False + any_mode = declare_mode + + if initialize_mode and not comment_mode: + # Read line from initialize + initialize_mode = self.Initialize_reader.read_initialize_line(line) + # When read_initialize finds the end, it will return False + any_mode = initialize_mode + + if trace_mode and not comment_mode: + # Read line from initialize + trace_mode = self.Trace_reader.read_trace_line(line) + # When read_initialize finds the end, it will return False + any_mode = trace_mode + + if finally_mode and not comment_mode: + # Read line from finally + finally_mode = self.Finally_reader.read_finally_line(line) + # When read_finallyfinds the end, it will return False + any_mode = finally_mode + + # Stop comment mode when end of comment block reached + if "*/" in line.strip(): + comment_mode = False + + def update_file_name(self): + """ + Updates filename for reader subclasses + """ + + self.Definition_reader.set_instr_name(self.instr_name) + self.Declare_reader.set_instr_name(self.instr_name) + self.Initialize_reader.set_instr_name(self.instr_name) + self.Trace_reader.set_instr_name(self.instr_name) + self.Finally_reader.set_instr_name(self.instr_name) + diff --git a/mcstasscript/instr_reader/read_declare.py b/mcstasscript/instr_reader/read_declare.py new file mode 100644 index 00000000..c5fd4f1f --- /dev/null +++ b/mcstasscript/instr_reader/read_declare.py @@ -0,0 +1,280 @@ +from mcstasscript.instr_reader.util import SectionReader + +class DeclareReader(SectionReader): + """ + Reads the declare section of a McStas instrument file and adds + the found parameters / functions / structs to the McStasScript + Instr instance. The information can also be written to a python + file for reproduction of a McStas instrument. + """ + + def __init__(self, Instr, write_file, product_filename, get_next_line, return_line): + + super().__init__(Instr, write_file, product_filename, get_next_line, return_line) + + self.in_declare_function = False + self.in_struct_definition = False + self.bracket_counter = 0 + + def read_declare_line(self, line): + """ + Reads line of instrument declare, returns bolean. If it encounters + the end of the declare section, it returns False, otherwise True. + + The contents of the declare section is written to the McStasScript + Instr object. + """ + + continue_declare = True + + # Remove comments + if "//" in line: + line = line.split("//", 1)[0] + + # Remove %} and signify end if this is found + if "%}" in line: + continue_declare = False + line = line.split("%}", 1)[0] + + if "/*" in line: + line = line.split("/*", 1)[0].strip() + + if self.in_declare_function: + if "{" in line: + self.bracket_counter += 1 + + if "}" in line: + self.bracket_counter -= 1 + + if self.bracket_counter == 0: + self.in_declare_function = False + + self.Instr.append_declare(line) + self._write_declare_line(line) + + # Check for functions + if ("(" in line and not ";" in line and " " in line.strip() + and not self.in_declare_function): + + # If in function, it will define a block + n_curly_brackets = line.count("{") + n_curly_brackets -= line.count("}") + + while n_curly_brackets != 0 or ("{" not in line): + next_line = self.get_next_line() + line += next_line + + n_curly_brackets = line.count("{") + n_curly_brackets -= line.count("}") + + after_curly_bracket = line.split("}")[-1] + + declare_lines = line.split("\n") + for declare_line in declare_lines: + declare_line = declare_line.rstrip() + declare_line = declare_line.replace('\\n',"\\\\n") + declare_line = declare_line.replace('"',"\\\"") + self.Instr.append_declare(declare_line) + self._write_declare_line(declare_line) + + line = after_curly_bracket + + # Check for struct / function that returns struct + if line.strip().startswith("struct "): + # Can be a function returning struct or struct definition + + # If struct definition, no parenthesis and ; after ) + n_curly_brackets = line.count("{") + n_curly_brackets -= line.count("}") + + # Add lines until end of block found + while n_curly_brackets != 0 or ("{" not in line): + + next_line = self.get_next_line() + line += next_line + + n_curly_brackets = line.count("{") + n_curly_brackets -= line.count("}") + + if "{" in line: + before_curly_bracket = line.split("{", 1)[0] + if "(" in before_curly_bracket and ")" in before_curly_bracket: + # This is a function that returns a struct! + self.in_declare_function = True + + after_curly_bracket = line.split("}")[-1] + + # if not in function, add until ; is found + while ";" not in after_curly_bracket and not self.in_declare_function: + # It is surely a struct, find ; + line += self.get_next_line() + after_curly_bracket = line.split("}")[-1] + + declare_lines = line.split("\n") + for declare_line in declare_lines: + declare_line = declare_line.rstrip() + declare_line = declare_line.replace('\\n',"\\\\n") + declare_line = declare_line.replace('"',"\\\"") + self.Instr.append_declare(declare_line) + self._write_declare_line(declare_line) + + if self.in_declare_function: + line = line.split("}")[-1].strip() + else: + line = line.split(";")[-1].strip() + + # if in function, stop now + self.in_declare_function = False + + # Grab defines + if line.strip().startswith("#define"): + # Include define statements as declare append + line = line.rstrip() + line = line.replace('\\n',"\\\\n") + line = line.replace('"',"\\\"") + self.Instr.append_declare(line) + self._write_declare_line(line) + + if "\n" in line: + line = line.strip("\n") + + # Read single line parameter definitions + if ";" in line and not self.in_declare_function: + # This line contains c statements + statements = line.split(";") + + for statement in statements: + statement = statement.strip() + if statement != "\n" and statement != " " and len(statement) > 1: + self._read_declare_statement(statement) + + return continue_declare + + def _read_declare_statement(self, statement): + """ + Reads single declare statements, which can have multiple + variables. + """ + + statement = statement.strip() + + # Find type (same for all parameters in one statement) + this_type = statement.split(" ", 1)[0] + statement = statement.split(" ", 1)[1].strip() + + if this_type == "const": # other c keywords to consider? + this_type += " " + statement.split(" ", 1)[0] + statement = statement.split(" ", 1)[1].strip() + + # Check for bracket initialization of arrays + if "," in statement: + variables = statement.split(",") + fixed_variables = [] + array_mode = False + for variable in variables: + + if "{" not in variable and array_mode is False: + fixed_variables.append(variable) + elif "{" in variable: + temp_variable = variable + "," + array_mode = True + elif "}" not in variable: + temp_variable += variable + "," + else: + temp_variable += variable + fixed_variables.append(temp_variable) + array_mode = False + + variables = fixed_variables + + else: + # No commas means just one parameter + variables = [statement] + + # Treat each variable independently + for variable in variables: + variable = variable.strip() + + dynamic_size = False + kw_args = {} + + if "=" in variable: + value = variable.split("=")[1].strip() + # remove the value part before proceeding + variable = variable.split("=")[0].strip() + + if "{" in value: + # handle array as value + value = value.split("{")[1] + if "{" in value: + raise ValueError("Can not load arrays with larger" + + "than 1 dimension yet.") + value = value.split("}")[0] + values = value.split(",") + return_value = [] + for val in values: + return_value.append(float(val)) + else: + try: + return_value = float(value) + except: + value = value.replace('"',"\\\"") + return_value = '"' + value + '"' + + kw_args["value"] = return_value + + # Handle array + if "[" in variable: + array_sizes = [] + array_size_strings = variable.split("[") + # remove the array size part before proceeding + variable = variable.split("[",1)[0].strip() + for array_size_string in array_size_strings: + if "]" in array_size_string: + this_size = array_size_string.split("]")[0] + try: + # Size declared normally + array_sizes.append(int(this_size)) + except: + # No size declared means the size is automatic + dynamic_size = True + + if len(array_sizes) > 1: + raise ValueError("Can not handle arrays with larger" + + " than 1 dimension yet") + if not dynamic_size: + kw_args["array"] = array_sizes[0] + + if dynamic_size: + # McStasScript needs size of array, so it is found manually + kw_args["array"] = len(kw_args["value"]) + + # value, array and typeremoved, all that remians is the name + variable_name = variable + self.Instr.add_declare_var(this_type, variable_name, **kw_args) + + # Also write it to a file? + write_string = [] + write_string.append(self.instr_name) + write_string.append(".add_declare_var(") + write_string.append("\"" + this_type + "\"") + write_string.append(", ") + write_string.append("\"" + variable_name + "\"") + write_string.append(self._kw_to_string(kw_args)) + write_string.append(")\n") + + # Write declare parameter to python file + self._write_to_file(write_string) + + def _write_declare_line(self, string): + + string = string.rstrip() + + write_string = [] + write_string.append(self.instr_name) + write_string.append(".append_declare(") + write_string.append("\"" + string + "\"") + write_string.append(")\n") + + self._write_to_file(write_string) + \ No newline at end of file diff --git a/mcstasscript/instr_reader/read_definition.py b/mcstasscript/instr_reader/read_definition.py new file mode 100644 index 00000000..7270cff4 --- /dev/null +++ b/mcstasscript/instr_reader/read_definition.py @@ -0,0 +1,143 @@ +from mcstasscript.instr_reader.util import SectionReader + +class DefinitionReader(SectionReader): + """ + Responsible for reading the defintion section of McStas instrument + file. Contains instrument name and instrument parameters. + """ + + def __init__(self, Instr, write_file, product_filename, get_next_line, return_line): + + super().__init__(Instr, write_file, product_filename, get_next_line, return_line) + + def read_definition_line(self, line): + """ + Reads line of instrument definition, returns bolean. If it encounters + the end of the definition section, it returns False, otherwise True. + + The contents of the definition section is written to the McStasScript + Instr object. + """ + + continue_definition = True + + # Remove comments + if "//" in line: + line = line.split("//")[0] + + if "(" in line: + # Start of instrument definition, get name + self.instr_name = line.split("(")[0].split(" ")[-1] + self._start_py_file() + # Remove the parameters from the paranthesis + parameters = line.split("(")[1] + if ")" in line: + # Found end of definition + continue_definition = False + # these parameters are to be analyzed + parameters = parameters.split(")")[0] + + elif ")" in line: + # Found end of definition + continue_definition = False + # these parameters are to be analyzed + parameters = line.split(")")[0] + else: + # Neither start or end on this line, analyze everything + parameters = line + + # Separate into individual parameters + parameters = parameters.split(",") + if "\n" in parameters: + parameters.remove("\n") + + for parameter in parameters: + # Analyze individual parameter + parameter = parameter.strip() + + if parameter == "": + # If the parameter is empty, skip it. + continue + + # Ready for keyword arguments + kw_args = {} + + # Default to double type if nothing else is set + parameter_type = "double" + if " " and "=" in parameter: + # Read parameter type + type_and_name = parameter.split("=", 1)[0].strip() + + if " " in type_and_name: + parameter_type = type_and_name.split(" ", 1)[0].strip() + parameter = parameter.split(" ", 1)[1].strip() + elif " " in parameter: + # Read parameter type + parameter_type = parameter.split(" ", 1)[0].strip() + parameter = parameter.split(" ", 1)[1].strip() + + if "=" in parameter: + # Read default value + parameter_name = parameter.split("=")[0].strip() + value = parameter.split("=")[1].strip() + + if parameter_type == "string": + if '"' in value: + value = value.replace('"', "\\\"") + value = "\"" + value + "\"" + else: + if parameter_type == "int": + value = int(value) + else: + value = float(value) + + # Add defualt value to keyword arguments + kw_args["value"] = value + + else: + # No default value, just return the striped name + parameter_name = parameter.strip() + + # Add this parameter to the object + self.Instr.add_parameter(parameter_type, parameter_name, **kw_args) + + # Also write it to a file? + write_string = [] + write_string.append(self.instr_name) + write_string.append(".add_parameter(") + write_string.append("\"" + parameter_type + "\"") + write_string.append(", ") + write_string.append("\"" + parameter_name + "\"") + write_string.append(self._kw_to_string(kw_args)) + write_string.append(")\n") + + self._write_to_file(write_string) + + + return continue_definition + + def _start_py_file(self): + write_string = [] + + # Write warning about robustness of this feature + write_string.append("\"\"\"\n") + write_string.append("This McStasScript file was generated from a McStas\n") + write_string.append("instrument file. It is advised to check the content\n") + write_string.append("to ensure it is as expected.\n\"\"\"\n") + + # import McStasScript + write_string.append("from mcstasscript.interface ") + write_string.append("import ") + write_string.append("instr, plotter, functions") + write_string.append("\n\n") + + write_string.append(self.instr_name) + write_string.append(" = instr.McStas_instr(") + write_string.append("\"" + self.instr_name + "_generated\"") + write_string.append(")\n") + + self._write_to_file(write_string) + + + + \ No newline at end of file diff --git a/mcstasscript/instr_reader/read_finally.py b/mcstasscript/instr_reader/read_finally.py new file mode 100644 index 00000000..0dae1be6 --- /dev/null +++ b/mcstasscript/instr_reader/read_finally.py @@ -0,0 +1,55 @@ +from mcstasscript.instr_reader.util import SectionReader + +class FinallyReader(SectionReader): + + def __init__(self, Instr, write_file, product_filename, get_next_line, return_line): + + super().__init__(Instr, write_file, product_filename, get_next_line, return_line) + + def read_finally_line(self, line): + + continue_finally = True + + # Remove comments + if "//" in line: + line = line.split("//", 1)[0].strip() + + if line.startswith("FINALLY"): + line = line.split("FINALLY", 1)[1].strip() + + # Remove block opening + if "%{" in line: + line = line.split("%{", 1)[1].strip() + + if "%}" in line: + line = line.split("%}", 1)[0].strip() + continue_finally = False + + # If the line is just a new line quit + if line is "\n" or line is "": + return continue_finally + + # Remove newline at the end of the line + if line.endswith("\n"): + line = line[:-1] + + self.Instr.append_finally(line) + + if self.write_file: + # Cant get both \n and " to work in written string + write_line = line.replace("\\n","\\\\n") + #write_line = line.replace("\\n","test") + write_line = write_line.replace("\\t","\\\\t") + # May need to expand to more cases + + write_line = write_line.replace('"', '\\\"') + + write_string = [] + write_string.append(self.instr_name) + write_string.append(".append_finally(") + write_string.append("\"" + write_line + "\"") + write_string.append(")\n") + + self._write_to_file(write_string) + + return continue_finally \ No newline at end of file diff --git a/mcstasscript/instr_reader/read_initialize.py b/mcstasscript/instr_reader/read_initialize.py new file mode 100644 index 00000000..c704e231 --- /dev/null +++ b/mcstasscript/instr_reader/read_initialize.py @@ -0,0 +1,65 @@ +from mcstasscript.instr_reader.util import SectionReader + +class InitializeReader(SectionReader): + """ + Reads the initialize section of a McStas instrument file. + The initialize lines are added to the McStasScript instrument, and + are sent to the function writing the lines to the python file. + """ + + def __init__(self, Instr, write_file, product_filename, get_next_line, return_line): + super().__init__(Instr, write_file, product_filename, get_next_line, return_line) + + def read_initialize_line(self, line): + """ + Reads lines from INITIALIZE file and returns True as long as + the stop characters has not been encountered. Comments are + ignored with typical c syntax. + """ + + continue_initialize = True + + # Remove comments + if "//" in line: + line = line.split("//", 1)[0].strip() + + if line.startswith("INITIALIZE"): + line = line.split("INITIALIZE", 1)[1].strip() + + if line.startswith("INITIALISE"): + line = line.split("INITIALISE", 1)[1].strip() + + # Remove block opening + if "%{" in line: + line = line.split("%{", 1)[1].strip() + + if "%}" in line: + line = line.split("%}", 1)[0].strip() + continue_initialize = False + + # If the line is just a new line quit + if line is "\n" or line is "": + return continue_initialize + + # Remove newline at the end of the line + if line.endswith("\n"): + line = line[:-1] + + self.Instr.append_initialize(line) + + # Need to prepare string for being written again + write_line = line.replace("\\n","\\\\n") + write_line = write_line.replace("\\t","\\\\t") + write_line = write_line.replace('"', '\\\"') + # May need to expand to more cases + + # Write line to Python file + write_string = [] + write_string.append(self.instr_name) + write_string.append(".append_initialize(") + write_string.append("\"" + write_line + " \"") + write_string.append(")\n") + + self._write_to_file(write_string) + + return continue_initialize \ No newline at end of file diff --git a/mcstasscript/instr_reader/read_trace.py b/mcstasscript/instr_reader/read_trace.py new file mode 100644 index 00000000..fd61e4c1 --- /dev/null +++ b/mcstasscript/instr_reader/read_trace.py @@ -0,0 +1,560 @@ +from mcstasscript.instr_reader.util import SectionReader +from mcstasscript.helper import mcstas_objects + +class TraceReader(SectionReader): + """ + Reads the trace section of a McStas instrument file. For each + component a McStasScript component instance is created and the + parameters/keywords are applied to this instance. When the next + component is found, the previous component is written to the + python file for reproduction of the McStas instrument. + """ + + def __init__(self, Instr, write_file, product_filename, get_next_line, return_line): + + super().__init__(Instr, write_file, product_filename, get_next_line, return_line) + + self.current_component = None + self.in_component_mode = False + self.EXTEND_mode = False + self.component_copy_target = None + self.SPLIT = 0 + self.stored_include = None + + def sanitize_line(self, line): + """ + Removes comments, the starting blok and newline characters + """ + + line = line.strip() + + # Remove comments + if "//" in line: + line = line.split("//", 1)[0].strip() + + if line.startswith("TRACE"): + line = line.split("TRACE", 1)[1].strip() + + if "/*" in line: + if "*/" in line: + line = line.split("/*", 1)[0] + line.split("*/", 1)[1] + else: + line = line.split("/*", 1)[0] + + # Remove newline at the end of the line + if line.endswith("\n"): + line = line[:-1] + + return line + + def read_trace_line(self, line): + """ + Reads line of McStas file from TRACE section. Has the responsibility + of setting continue_trace to false when finding the end of the TRACE + section. May take extra lines through get_new_line if statements are + spaced out over several lines. + """ + + continue_trace = True + + # Find stop characeters + if line.startswith("FINALLY"): + continue_trace = False + + if line.startswith("END"): + continue_trace = False + + if line.strip().startswith("%include") or line.strip().startswith("#include"): + # Handle include statement and attatch it to a component + if self.current_component != None: + self.current_component.set_c_code_after(line) + else: + # If the include statement is before the first component, + # it is saved and attatched to the next component + line = line.replace('"',"\\\"") + self.stored_include = line.strip() + + # If the line is just a new line quit + if line is "\n" or line is "": + return continue_trace + + line = self.sanitize_line(line) + + # Handle keywords that appear before components + if line.startswith("SPLIT"): + # Read split and save for the next component + line = line.split("SPLIT", 1)[1].strip() + if line.startswith("COMPONENT"): + # Default split without indicating amount + self.SPLIT = "\"\"" + else: + try: + self.SPLIT = int(line.split(" ", 1)[0].strip()) + except: + self.SPLIT = "\"" + line.split(" ", 1)[0].strip() + "\"" + + if " " in line: + # If the line continues, remove the SPLIT number + line = line.split(" ", 1)[1].strip() + + # Read component definition (can be over several lines) + if line.startswith("COMPONENT") or line.startswith("REMOVABLE COMPONENT"): + # Start ned component, but write the previous component to file first + if self.stored_include != None and self.current_component != None: + # In case an include statement was stored, include that statement + self.current_component.set_c_code_before(self.stored_include) + self.stored_include = None + # write previous component + self._write_component_to_py() + + # start new component + self.in_component_mode = True + # Assume this is not a copy + self.component_copy_target = None + + # Remove COMPONENT from line + if line.startswith("COMPONENT"): + line = line[9:].strip() + elif line.startswith("REMOVABLE COMPONENT"): + line = line[19:].strip() + + # Add new lines until the entire component definition is found + full_component_line = False + while not full_component_line: + + expected_end_parenthesis = 1 + line.count("COPY") + + if line.count("(") >= expected_end_parenthesis: + full_component_line = True + + if not full_component_line: + new_line = self.get_next_line() + new_line = self.sanitize_line(new_line) + if new_line.startswith("AT") or new_line.startswith("WHEN"): + full_component_line = True + self.return_line() + else: + line += new_line + + # Retrieve information from component definition + instance_name = line.split("=", 1)[0].strip() + component_name = line.split("=", 1)[1].split("(", 1)[0].strip() + line = line.split("=", 1)[1].split("(", 1)[1].strip() + if component_name == "COPY": + # Copy instance + self.component_copy_target = line.split(")", 1)[0].strip() + if "(" in line: + line = line.split("(", 1)[1].strip() + if self.component_copy_target == "PREVIOUS": + # Get the previous component name + last_component = self.Instr.get_last_component() + self.component_copy_target = last_component.name + + self.current_component = self.Instr.copy_component(instance_name, + self.component_copy_target) + + else: + # Normal component instance + self.current_component = self.Instr.add_component(instance_name, + component_name) + + # In case there are no parameters, stop in_component_mode + if line.startswith(")"): + self.in_component_mode = False + line = line.split(")", 1)[1] + + if self.SPLIT != 0: + self.current_component.set_SPLIT(self.SPLIT) + self.SPLIT = 0 + + # In case of COPY, there can be empty parameter lists + if self.in_component_mode: # and self.component_copy_target != None: + # Check if this line starts WHEN or AT + if line.strip().startswith("AT"): + self.in_component_mode = False + if line.strip().startswith("WHEN"): + self.in_component_mode = False + # If none of these occur, read the parameters + + # In component mode reads parameters of each new line read + if self.in_component_mode: + + par_line = line + # check for parameters + if par_line.strip().startswith("("): + par_line = line.split("(", 1)[1] + + # _in_func like python in, but does not look inside parenthesis + if self._in_func(line, ")"): + self.in_component_mode = False + par_line = self._split_func(line, ")", 1)[0] + line = self._split_func(line, ")", 1)[1] + + # All parameters found saved in dictionary + par_dict = {} + + """ + A parameter line can contain a comma for separating parameters or + inside of a string. This piece of code finds the next comma and + checks if there is an equal number of quotation marks in the first + part, if not it increases the read part of the line to the next + comma. In this way commas in strings do not separate parameters + in the component input. + """ + while len(par_line) > 0: + # find the next parameter expression + if self._in_func_brack(par_line, ","): + # start of expression to evaluate + par_exp = par_line.split(",", 1)[0].strip() + par_exp = self._split_func_brack(par_line, ",", 1)[0] + # remove the part already taken from the par_line + par_line = self._split_func_brack(par_line, ",", 1)[1] + # The length of quotation_split will be one more than + # the number of quotation marks in par_exp + quotation_split = par_exp.split('"') + while (len(quotation_split) - 1) % 2 != 0: + # There is an uneven number of quotation marks + par_exp += "," # Add the comma taken by split back + if "," in par_line: + # include the up to the next comma in par_exp + par_exp += "," + par_line.split(",",1)[0] + # remove the part of the par_line added to par_exp + par_line = par_line.split(",",1)[1] + else: + # no commas left, must be end of par_line + par_exp += par_line.strip() + par_line = "" + + quotation_split = par_exp.split('"') + else: + # last parameter + par_exp = par_line + par_line = "" + + if "=" in par_exp: + par_name = par_exp.split("=", 1)[0].strip() + par_value = par_exp.split("=", 1)[1].strip() + + try: + # No problems if the value is a number + float(par_value) + except: + # If the value is a string, it needs quotes + if '"' in par_value: + # If it already has quotes, these need escapes + par_value = par_value.replace('"','\\\"') + par_value = '"' + par_value + '"' + + par_dict[par_name] = par_value + + # Set all found parameters in the component + self.current_component.set_parameters(par_dict) + + # Read keywords given after parameters but before position (WHEN) + if line.strip().startswith("WHEN"): + if "(" in line: + line = line.split("(", 1)[1].strip() + # need to find the closing parenthesis + parenthesis_counter = 1 + character_index = -1 + for character in line: + character_index += 1 + if character == "(": + parenthesis_counter += 1 + if character == ")": + parenthesis_counter -= 1 + if parenthesis_counter == 0: + end_index = character_index + break + + WHEN_statement = line[:character_index] + WHEN_statement = WHEN_statement.replace('"',"\\\"") + line = line[character_index+1:].strip() + else: + # WHEN statement that does not use parenthesis + if "AT" in line: + WHEN_statement = line.split("AT", 1)[0] + line = "AT" + line.split("AT", 1)[1] + else: + WHEN_statement = line.split("WHEN ", 1)[1] + line = "" + + self.current_component.set_WHEN(WHEN_statement) + + + # Read component position + if line.strip().startswith("AT"): + # read AT statement + line = line.split("(",1)[1].strip() + AT_data = [] + AT_data.append(self._split_func(line, ",", 1)[0]) + line = self._split_func(line, ",", 1)[1] + AT_data.append(self._split_func(line, ",", 1)[0]) + line = self._split_func(line, ",", 1)[1] + AT_data.append(self._split_func(line, ")", 1)[0]) + line = self._split_func(line, ")", 1)[1] + + if line.strip().startswith("ABSOLUTE"): + line = line.split(" ",1)[1].strip() + relative_name = "ABSOLUTE" + # The line can continue, remove the used part + if " " in line.strip(): + line = line.strip().split(" ", 1)[1].strip() + else: + line = "" + elif line.strip().startswith("RELATIVE"): + line = line.strip().split(" ", 1)[1].strip() + if " " in line: + relative_name = line.split(" ", 1)[0].strip() + else: + relative_name = line.strip() + # The line can continue, remove the used part + if " " in line: + line = line.split(" ", 1)[1].strip() + else: + line = "" + else: + raise ValueError("Could not read: " + line) + + self.current_component.set_AT(AT_data, RELATIVE=relative_name) + + # Read component rotation + if line.strip().startswith("ROTATED"): + # read ROTATED statement + line = line.split("(",1)[1].strip() + ROTATED_data = [] + + ROTATED_data.append(self._split_func(line, ",", 1)[0]) + line = self._split_func(line, ",", 1)[1] + ROTATED_data.append(self._split_func(line, ",", 1)[0]) + line = self._split_func(line, ",", 1)[1] + ROTATED_data.append(self._split_func(line, ")", 1)[0]) + line = self._split_func(line, ")", 1)[1] + + if line.strip().startswith("ABSOLUTE"): + relative_name = "ABSOLUTE" + if " " in line.strip(): + line = line.strip().split(" ", 1)[1].strip() + else: + line = "" + elif line.strip().startswith("RELATIVE"): + line = line.strip().split(" ",1)[1].strip() + relative_name = line.split(" ", 1)[0].strip() + # The line can continue, remove the used part + if " " in line: + line = line.split(" ", 1)[1].strip() + else: + line = "" + else: + raise ValueError("Could not read: " + line) + + self.current_component.set_ROTATED(ROTATED_data, + RELATIVE=relative_name) + + # Read keywords after component position (GROUP, EXTEND, JUMP) + if line.strip().startswith("GROUP"): + line = line.strip() + + group_name = line.split(" ", 1)[1].strip() + group_name = "\"" + group_name + "\"" + + line = "" + + self.current_component.set_GROUP(group_name) + + if line.strip().startswith("EXTEND"): + line = line.split("EXTEND", 1)[1].strip() + self.EXTEND_mode = True + + if self.EXTEND_mode: + if "%{" in line: + line = line.strip().split("%{", 1)[1].strip() + + if "%}" in line: + line = line.strip().split("%}", 1)[0].strip() + self.EXTEND_mode = False + + if len(line) > 0 and line != "\n": + line = line.replace('\\n',"\\\\n") + line = line.replace('"',"\\\"") + self.current_component.append_EXTEND(line) + + if line.strip().startswith("JUMP "): + line = line.strip().split(" ", 1)[1] + self.current_component.set_JUMP(line) + + if not continue_trace: + # write last component + self._write_component_to_py() + + return continue_trace + + def _write_component_to_py(self): + # code for writing McStasScript python file + if self.current_component is not None: + + # Write the add_component statement + write_string = ["\n"] + write_string.append(self.current_component.name) + write_string.append(" = ") + write_string.append(self.instr_name) + if self.component_copy_target == None: + write_string.append(".add_component(") + write_string.append("\"" + self.current_component.name + "\"") + write_string.append(", ") + write_string.append("\"" + self.current_component.component_name + "\"") + else: + write_string.append(".copy_component(") + write_string.append("\"" + self.current_component.name + "\"") + write_string.append(", ") + write_string.append("\"" + self.component_copy_target + "\"") + write_string.append(")\n") + + self._write_to_file(write_string) + + # Write all parameters as attribute updates + for key in self.current_component.parameter_names: + val = getattr(self.current_component, key) + if val != None: + write_string = [] + write_string.append(self.current_component.name) + write_string.append(".") + write_string.append(key) + write_string.append(" = ") + + write_string.append(val) + write_string.append("\n") + + self._write_to_file(write_string) + + # Write EXTEND block if present + if self.current_component.EXTEND != "": + EXTEND = self.current_component.EXTEND + EXTEND_lines = EXTEND.split("\n") + EXTEND_lines = EXTEND_lines[:-1] + + for EXTEND_line in EXTEND_lines: + write_string = [] + write_string.append(self.current_component.name) + write_string.append(".append_EXTEND(") + write_string.append("\"" + EXTEND_line + "\"") + write_string.append(")\n") + + self._write_to_file(write_string) + + # Write WHEN statement if present + if self.current_component.WHEN != "": + write_string = [] + write_string.append(self.current_component.name) + write_string.append(".set_WHEN(") + WHEN = self.current_component.WHEN + WHEN = WHEN.split("(", 1)[1].strip() + WHEN = WHEN[:-1] + write_string.append("\"" + WHEN + "\"") + write_string.append(")\n") + + self._write_to_file(write_string) + + # Write SPLIT if present + if self.current_component.SPLIT != 0: + write_string = [] + write_string.append(self.current_component.name) + write_string.append(".set_SPLIT(") + write_string.append(str(self.current_component.SPLIT)) + write_string.append(")\n") + + self._write_to_file(write_string) + + # Write GROUP if present + if self.current_component.GROUP != "": + write_string = [] + write_string.append(self.current_component.name) + write_string.append(".set_GROUP(") + write_string.append(str(self.current_component.GROUP)) + write_string.append(")\n") + + self._write_to_file(write_string) + + # Write JUMP if present + if self.current_component.JUMP != "": + write_string = [] + write_string.append(self.current_component.name) + write_string.append(".set_JUMP(") + write_string.append("\"" + str(self.current_component.JUMP) + "\"") + write_string.append(")\n") + + self._write_to_file(write_string) + + # Write c_code_before if present + if self.current_component.c_code_before != "": + write_string = [] + write_string.append(self.current_component.name) + write_string.append(".set_c_code_before(") + write_string.append("\"" + str(self.current_component.c_code_before) + "\"") + write_string.append(")\n") + + self._write_to_file(write_string) + + # Write c_code_after if present + if self.current_component.c_code_after != "": + write_string = [] + write_string.append(self.current_component.name) + write_string.append(".set_c_code_after(") + write_string.append("\"" + str(self.current_component.c_code_after) + "\"") + write_string.append(")\n") + + self._write_to_file(write_string) + + # Write AT + write_string = [] + write_string.append(self.current_component.name) + write_string.append(".set_AT(") + write_string.append(str(self.current_component.AT_data)) + write_string.append(", RELATIVE=") + if self.current_component.AT_relative == "ABSOLUTE": + write_string.append("\"" + "ABSOLUTE" + "\"") + else: + relative = self.current_component.AT_relative.split(" ")[1] + write_string.append("\"" + relative + "\"") + write_string.append(")\n") + + self._write_to_file(write_string) + + # Write ROTATED + write_string = [] + write_string.append(self.current_component.name) + write_string.append(".set_ROTATED(") + write_string.append(str(self.current_component.ROTATED_data)) + write_string.append(", RELATIVE=") + if self.current_component.ROTATED_relative == "ABSOLUTE": + write_string.append("\"" + "ABSOLUTE" + "\"") + else: + relative = self.current_component.ROTATED_relative.split(" ")[1] + write_string.append("\"" + relative + "\"") + write_string.append(")\n") + + if self.current_component.ROTATED_specified: + self._write_to_file(write_string) + + + + + + + + + + + + + + + + + + + + + + + \ No newline at end of file diff --git a/mcstasscript/instr_reader/util.py b/mcstasscript/instr_reader/util.py new file mode 100644 index 00000000..38135579 --- /dev/null +++ b/mcstasscript/instr_reader/util.py @@ -0,0 +1,149 @@ + +class SectionReader: + """ + Super class for the many necessary readers + """ + + def __init__(self, Instr, write_file, product_filename, get_next_line, return_line): + self.Instr = Instr + self.write_file = write_file + self.product_filename = product_filename + self.instr_name = "" + self.get_next_line = get_next_line + self.return_line = return_line + + def set_instr_name(self, name): + self.instr_name = name + + def _write_to_file(self, string_array): + """ + In case a py file is being written, this function writes to the + appropriate file. + """ + + if self.write_file: + with open(self.product_filename, "a") as product_file: + for string in string_array: + product_file.write(string) + + def _kw_to_string(self, kwargs): + """ + Used when a dict containing keyword arguments need to be written + to a string. This string can be used as argument in method call. + """ + + output_string = "" + for kwarg in kwargs: + output_string += ", " + output_string += kwarg + "=" + str(kwargs[kwarg]) + + return output_string + + def _split_func(self, *args): + """ + Returns list of strings seperated by commas that are not + within open parenthesis. + """ + + string = args[0] + split_character = args[1] + + if len(args) == 3: + limit = args[2] + else: + limit = -1 + + split_positions = [] + parenthesis = 0 + for index in range(0,len(string)): + character = string[index] + if character == split_character and parenthesis == 0 and limit != 0: + split_positions.append(index) + limit -= 1 + else: + if character == "(": + parenthesis += 1 + if character == ")": + parenthesis -= 1 + + split_positions.append(len(string)+1) # virtual comma at the end + + result = [] + last_position = 0 + for position in split_positions: + result.append(string[last_position:position]) + last_position = position + 1 + + return result + + def _split_func_brack(self, *args): + """ + Returns list of strings seperated by commas that are not + within open parenthesis / brackets + """ + + string = args[0] + split_character = args[1] + + if len(args) == 3: + limit = args[2] + else: + limit = -1 + + split_positions = [] + parenthesis = 0 + brackets = 0 + for index in range(0,len(string)): + character = string[index] + if (character == split_character and parenthesis == 0 + and brackets == 0and limit != 0): + split_positions.append(index) + limit -= 1 + else: + if character == "(": + parenthesis += 1 + if character == ")": + parenthesis -= 1 + if character == "{": + brackets += 1 + if character == "}": + brackets -= 1 + + split_positions.append(len(string)+1) # virtual comma at the end + + result = [] + last_position = 0 + for position in split_positions: + result.append(string[last_position:position]) + last_position = position + 1 + + return result + + def _in_func(self, string, character): + """ + Returns true of character is in string when excluding occurances + within parenthesis. + """ + + if len(self._split_func(string, character, 1)) == 2: + return True + else: + return False + + def _in_func_brack(self, string, character): + """ + Returns true of character is in string when excluding occurances + within parenthesis and brackets. + """ + + if len(self._split_func_brack(string, character, 1)) == 2: + return True + else: + return False + + + + + + + \ No newline at end of file diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index bf9ba1c2..95473f50 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -4,6 +4,7 @@ import datetime import yaml import subprocess +import copy from mcstasscript.data.data import McStasData from mcstasscript.helper.mcstas_objects import declare_variable @@ -61,7 +62,7 @@ class McStas_instr: Methods ------- - add_parameter(*args,**kwargs) + add_parameter(*args, **kwargs) Adds input parameter to the define section add_declare_var() @@ -85,7 +86,7 @@ class McStas_instr: show_components(string) Shows available components in given category - add_component(instance_name,component_name,**kwargs) + add_component(instance_name, component_name, **kwargs) Add a component to the instrument file get_component(instance_name) @@ -94,34 +95,40 @@ class McStas_instr: get_last_component() Returns component instance of last component - set_component_parameter(instance_name,dict) + set_component_parameter(instance_name, dict) Adds parameters as dict to component with instance_name - set_component_AT(instance_name,AT_data,**kwargs) + set_component_AT(instance_name, AT_data, **kwargs) Sets position of component named instance_name - set_component_ROTATED(instance_name,ROTATED_data,**kwargs) + set_component_ROTATED(instance_name, ROTATED_data, **kwargs) Sets rotation of component named instance_name - set_component_RELATIVE(instane_name,string) + set_component_RELATIVE(instane_name, string) Sets position and rotation reference for named component - set_component_WHEN(instance_name,string) + set_component_WHEN(instance_name, string) Sets WHEN condition of named component, is logical c expression - set_component_GROUP(instance_name,string) + set_component_GROUP(instance_name, string) Sets GROUP name of component named instance_name - append_component_EXTEND(instance_name,string) + append_component_EXTEND(instance_name, string) Appends a line to EXTEND section of named component - set_component_JUMP(instance_name,string) + set_component_JUMP(instance_name, string) Sets JUMP code for named component - set_component_SPLIT(instance_name,string) + set_component_SPLIT(instance_name, string) Sets SPLIT value for named component - - set_component_comment(instance_name,string) + + set_component_c_code_before(instance_name, string) + Sets c code before the component + + set_component_c_code_after(instance_name, string) + Sets c code after the component + + set_component_comment(instance_name, string) Sets comment to be written before named component print_component(instance_name) @@ -213,6 +220,7 @@ def __init__(self, name, **kwargs): self.parameter_list = [] self.declare_list = [] + #self.declare_section = "" self.initialize_section = ("// Start of initialize for generated " + name + "\n") self.trace_section = ("// Start of trace section for generated " @@ -361,6 +369,24 @@ def add_declare_var(self, *args, **kwargs): """ # declare_variable class documented independently self.declare_list.append(declare_variable(*args, **kwargs)) + + def append_declare(self, string): + """ + Method for appending code to the declare section directly + + This method is not meant for declaring simple variables which + should be done using add_declare_var. This method can be used + to declare functions, structures and unions directly. + + Parameters + ---------- + string : str + code to be added to declare section + """ + + #self.declare_section = self.declare_section + string + "\n" + self.declare_list.append(string) + def append_initialize(self, string): """ @@ -375,6 +401,7 @@ def append_initialize(self, string): string : str code to be added to initialize section """ + self.initialize_section = self.initialize_section + string + "\n" def append_initialize_no_new_line(self, string): @@ -649,6 +676,142 @@ def add_component(self, *args, **kwargs): self.component_name_list.append(args[0]) return new_component + + def copy_component(self, *args, **kwargs): + """ + Method for adding a copy of a component instance to the instrument + + Creates a copy of component instance in the instrument. This + requires a unique instance name of the component to be used for + future reference and the name of the McStas component to be + used. The component is placed at the end of the instrument file + unless otherwise specified with the after and before keywords. + The component may be initialized using other keyword arguments, + but all attributes can be set with approrpiate methods. + + Parameters + ---------- + First positional argument : str + Unique name of component instance + + Second positional argument : str + Name of component instance to create copy of + + Keyword arguments: + after : str + Place this component after component with given name + + before : str + Place this component before component with given name + + AT : List of 3 floats + Sets AT_data, position relative to reference + + AT_RELATIVE : str + Sets reference component for postion + + ROTATED : List of 3 floats + Sets ROTATED_data, rotation relative to reference + + ROTATED_RELATIVE : str + Sets reference component for rotation + + RELATIVE : str + Sets reference component for both position and rotation + + WHEN : str + Sets when condition which must be a logical c expression + + EXTEND : str + Initialize the extend section with a line of c code + + GROUP : str + Name of the group this component should belong to + + JUMP : str + Set code for McStas JUMP statement + + comment : str + Comment that will be displayed before the component + """ + + # could also allow input of a component object + + instance_name = args[0] + """ + If the name starts with COPY, use unique naming as described in the + McStas manual. + """ + if instance_name.startswith("COPY("): + target_name = instance_name.split("(", 1)[1] + target_name = target_name.split(")", 1)[0] + instance_name = target_name + + label = 0 + instance_name = target_name + "_" + str(label) + while instance_name in self.component_name_list: + instance_name = target_name + "_" + str(label) + label += 1 + + if instance_name in self.component_name_list: + raise NameError(("Component name \"" + str(args[0]) + + "\" used twice, McStas does not allow this." + + " Rename or remove one instance of this" + + " name.")) + + if not args[1] in self.component_name_list: + raise NameError("Component name \"" + str(args[1]) + + "\" was not found in the McStas instrument." + + " and thus can not be copied.") + else: + component_to_copy = self.get_component(args[1]) + + # Insert component after component with this name + if "after" in kwargs: + if kwargs["after"] not in self.component_name_list: + raise NameError("Trying to add a component after a component" + + " named \"" + str(kwargs["after"]) + + "\", but a component with that name was" + + " not found.") + + new_index = self.component_name_list.index(kwargs["after"]) + + new_component = copy.deepcopy(component_to_copy) + new_component.name = instance_name + self.component_list.insert(new_index+1, new_component) + + self.component_name_list.insert(new_index+1, instance_name) + + # Insert component after component with this name + elif "before" in kwargs: + if kwargs["before"] not in self.component_name_list: + raise NameError(("Trying to add a component before a " + + "component named \"" + + str(kwargs["before"]) + + "\", but a component with that " + + "name was not found.")) + + new_index = self.component_name_list.index(kwargs["before"]) + + new_component = copy.deepcopy(component_to_copy) + new_component.name = instance_name + self.component_list.insert(new_index, new_component) + + self.component_name_list.insert(new_index, instance_name) + + # If after or before keywords absent, place component at the end + else: + new_component = copy.deepcopy(component_to_copy) + new_component.name = instance_name + self.component_list.append(new_component) + self.component_name_list.append(instance_name) + + # Set the new name of the instance + new_component.name = instance_name + # Run set_keyword_input again for keyword arguments to take effect + new_component.set_keyword_input(**kwargs) + + return new_component def get_component(self, name): """ @@ -838,6 +1001,38 @@ def set_component_SPLIT(self, name, SPLIT): component = self.get_component(name) component.set_SPLIT(SPLIT) + + def set_component_c_code_before(self, name, code): + """ + Method for setting c code before component + + Parameters + ---------- + name : str + Unique name of component to modify + + code : str + Code to be pasted before component + """ + + component = self.get_component(name) + component.set_c_code_before(code) + + def set_component_c_code_after(self, name, code): + """ + Method for setting c code before component + + Parameters + ---------- + name : str + Unique name of component to modify + + code : str + Code to be pasted after component + """ + + component = self.get_component(name) + component.set_c_code_after(code) def set_component_comment(self, name, string): """ @@ -1081,8 +1276,13 @@ def write_c_files(self): fo.write("// declare section for %s \n" % self.name) fo.close() fo = open("./generated_includes/" + self.name + "_declare.c", "a") + #fo.write(self.declare_section) for dec_line in self.declare_list: - dec_line.write_line(fo) + if isinstance(dec_line, str): + # append declare section parts written here + fo.write(dec_line) + else: + dec_line.write_line(fo) fo.write("\n") fo.close() @@ -1154,8 +1354,13 @@ def write_full_instrument(self): # Write declare fo.write("DECLARE \n%{\n") + #fo.write(self.declare_section) for dec_line in self.declare_list: - dec_line.write_line(fo) + if isinstance(dec_line, str): + # append declare section parts written here + fo.write(dec_line) + else: + dec_line.write_line(fo) fo.write("\n") fo.write("%}\n\n") diff --git a/mcstasscript/interface/plotter.py b/mcstasscript/interface/plotter.py index 048c96c7..40c9cc32 100644 --- a/mcstasscript/interface/plotter.py +++ b/mcstasscript/interface/plotter.py @@ -6,9 +6,6 @@ from matplotlib.colors import BoundaryNorm from matplotlib.ticker import MaxNLocator -from openpyxl.worksheet import dimensions -from boto.ec2.autoscale import limits - from mcstasscript.data.data import McStasMetaData from mcstasscript.data.data import McStasPlotOptions from mcstasscript.data.data import McStasData diff --git a/mcstasscript/interface/reader.py b/mcstasscript/interface/reader.py new file mode 100644 index 00000000..2c8d4465 --- /dev/null +++ b/mcstasscript/interface/reader.py @@ -0,0 +1,81 @@ +import os +from mcstasscript.instr_reader.control import InstrumentReader +from mcstasscript.interface.instr import McStas_instr + +class McStas_file: + """ + Reader of McStas files, can add to an existing McStasScript + instrument instance or create a corresponding McStasScript python + file. + + + Methods + ------- + + add_to_instr(Instr) + Add information from McStas file to McStasScript Instr instance + + write_python_file(filename) + Write python file named filename that reproduce the McStas instr + + """ + + def __init__(self, filename): + """ + Initialization of McStas_file class, needs McStas instr filename + + Parameters + ---------- + filename (str) + Name of McStas instrument file to be read + """ + + # Check filename + if not os.path.isfile(filename): + raise ValueError("Given filename, \"" + filename + + "\" could not be found.") + + self.Reader = InstrumentReader(filename) + + def add_to_instr(self, Instr): + """ + Adds information from the McStas file to McStasScript instr + + Parameters + ---------- + Instr (McStasScript McStas_instr instance) + McStas_instr instance to add instrument information to + """ + + # Check Instr + if not isinstance(Instr, McStas_instr): + raise TypeError("Given object is not of type McStas_instr!") + + self.Reader.add_to_instr(Instr) + + def write_python_file(self, filename, **kwargs): + """ + Writes python file that reproduces McStas instrument file + + Parameters + ---------- + filename (str) + Filename of python file to be written + """ + + if "force" in kwargs: + force = kwargs["force"] + else: + force = False + + # Check product_filename is available + if os.path.isfile(filename): + if force: + os.remove(filename) + else: + raise ValueError("Filename \"" + filename + + "\" already exists, you can overwrite with " + + "force=True") + + self.Reader.generate_py_version(filename) + diff --git a/mcstasscript/tests/Union_demonstration_test.instr b/mcstasscript/tests/Union_demonstration_test.instr new file mode 100644 index 00000000..765ad512 --- /dev/null +++ b/mcstasscript/tests/Union_demonstration_test.instr @@ -0,0 +1,422 @@ +/******************************************************************************* +* +* McStas, neutron ray-tracing package +* Copyright (C) 1997-2008, All rights reserved +* Risoe National Laboratory, Roskilde, Denmark +* Institut Laue Langevin, Grenoble, France +* +* Instrument: Union_demonstration +* +* %Identification +* Written by: Mads Bertelsen +* Date: September 2015 +* Origin: University of Copenhagen +* %INSTRUMENT_SITE: Union_demos +* +* %Description +* Demonstration of Union components. Here four different powder samples are +* placed in a can each connected to a weird sample holder and contained in +* a cryostat. This unrealistic example is meant to show the syntax and the +* new possibilities when using the Union components. +* With the standard source only two of the samples are illuminated, yet +* multiple scattering occur and events are thus taking place in the last +* two samples. +* +* Example: Detector: m4pi_two_or_more_samples_I=0.0945567 +* +* %Parameters +* stick_displacement [m] height displacement of sample stick +* +* %End +*******************************************************************************/ + +DEFINE INSTRUMENT Union_demonstration(stick_displacement=0, +int test_int = 3, +string test_str = "hurray") + +DECLARE +%{ +int sample_1_index=27,sample_2_index=30,sample_3_index=33,sample_4_index=36; // Indexes of four samples +int scattered_1,scattered_2,scattered_3,scattered_4; +double array[3] = {0.1,0.2,0.3}; +int I_array[4]; +int T_array[5] = {1,2,3,4,5}; +char home[20] = "test_string"; +int necessary = 1; +%} + +INITIALIZE +%{ +// Start of initialize for generated Union_demonstration_copy +/* A=B */ +// A=8 +I_array[2] = 8; +printf("Hello world\n"); +%} + +TRACE + + + +COMPONENT Vanadium_incoherent = Incoherent_process(sigma=5.08,packing_factor=1,unit_cell_volume=13.827) +AT (0,0,0) ABSOLUTE + +// Here manual linking is used, the process string is writte explicitly +COMPONENT Vanadium = Union_make_material(my_absorption=2.1,process_string="Vanadium_incoherent") +AT (0,0,0) ABSOLUTE + +// P0 +COMPONENT Al_incoherent = Incoherent_process(sigma=4*0.0082,packing_factor=1,unit_cell_volume=66.4) //,interact_fraction=0.8) +AT (0,0,0) ABSOLUTE + +// P1 +COMPONENT Al_powder = Powder_process(reflections="Al.laz") +AT (0,0,0) ABSOLUTE + +COMPONENT Al = Union_make_material(my_absorption=100*4*0.231/66.4,process_string="Al_incoherent,Al_powder") +AT (0,0,0) ABSOLUTE + + +// Cu definition +// P0 +COMPONENT Cu_incoherent = Incoherent_process(sigma=4*0.55,packing_factor=1,unit_cell_volume=47.22) +AT (0,0,0) ABSOLUTE + +// P1 +COMPONENT Cu_powder = Powder_process(reflections="Cu.laz") +AT (0,0,0) ABSOLUTE + +COMPONENT Cu = Union_make_material(my_absorption=100*4*3.78/47.22,process_string="Cu_incoherent,Cu_powder") +AT (0,0,0) ABSOLUTE + +// Ag Au mix definition +// P0 +COMPONENT Ag_incoherent = Incoherent_process(sigma=4*0.58,packing_factor=1,unit_cell_volume=68.22,packing_factor=0.5) +AT (0,0,0) ABSOLUTE + +// P1 +COMPONENT Ag_powder = Powder_process(reflections="Ag.laz",packing_factor=0.5) +AT (0,0,0) ABSOLUTE + +// P2 +COMPONENT Au_incoherent = Incoherent_process(sigma=4*0.43,packing_factor=1,unit_cell_volume=67.87,packing_factor=0.5) +AT (0,0,0) ABSOLUTE + +// P3 +COMPONENT Au_powder = Powder_process(reflections="Au.laz",packing_factor=0.5) +AT (0,0,0) ABSOLUTE + +// Here automatic linking is used, all process defined after the last make_material component +// is automatically collected in this next make_material component as the process string +// is not specified. +COMPONENT Au_Ag_mix = Union_make_material(my_absorption=0.5*100*4*3.78/68.22+0.5*100*4*98.65/67.87) +AT (0,0,0) ABSOLUTE + +// Cd definition +// P0 +COMPONENT Cd_incoherent = Incoherent_process(sigma=2*3.46,packing_factor=1,unit_cell_volume=43.11) +AT (0,0,0) ABSOLUTE + +// P1 +COMPONENT Cd_powder = Powder_process(reflections="Cd.laz") +AT (0,0,0) ABSOLUTE + +COMPONENT Cd = Union_make_material(my_absorption=100*2*2520/43.11) +AT (0,0,0) ABSOLUTE + +// Cs definition +// P0 +COMPONENT Cs_incoherent = Incoherent_process(sigma=2*0.55,packing_factor=1,unit_cell_volume=47.22) +AT (0,0,0) ABSOLUTE + +// P1 +COMPONENT Cs_powder = Powder_process(reflections="Cs.laz") +AT (0,0,0) ABSOLUTE + +COMPONENT Cs = Union_make_material(my_absorption=100*2*3.78/47.22) +AT (0,0,0) ABSOLUTE + + + +COMPONENT a1 = Progress_bar() + AT (0,0,0) ABSOLUTE + +// Source for transmission picture +//COMPONENT source = Source_div( +// xwidth=0.12, yheight=0.12,focus_aw=0.5, focus_ah=0.5, +// E0 = 50, +// dE = 0, flux = 1E9) +// AT (0,-0.02,0) RELATIVE a1 ROTATED (0,0,0) RELATIVE a1 + +COMPONENT source = Source_div( + xwidth=0.04, yheight=0.08,focus_aw=0.05, focus_ah=0.05, + E0 = 50, + dE = 0, flux = 1E9) + AT (0.013,-0.02,0) RELATIVE a1 ROTATED (0,0,0) RELATIVE a1 + + +// Sample position +COMPONENT beam_center = Arm() +AT (0,0,3) RELATIVE a1 +ROTATED (0,0,0) RELATIVE a1 + +COMPONENT drum_center = Arm() +AT (0,0.38,0) RELATIVE beam_center +ROTATED (0,0,0) RELATIVE beam_center + + +// V1 +COMPONENT cryostat_mountin_plate = Union_cylinder(radius=0.12,yheight=0.01,priority=7,material_string="Al") +AT (0,-0.103,0) RELATIVE beam_center +ROTATED (0,0,0) RELATIVE beam_center + +// V2 +COMPONENT cryostat_drum_walls = Union_cylinder(radius=0.2,yheight=0.57,priority=8,material_string="Al") +AT (0,0,0) RELATIVE drum_center +ROTATED (0,0,0) RELATIVE drum_center + +// V3 +COMPONENT cryostat_drum_vacuum = Union_cylinder(radius=0.19,yheight=0.55,priority=9,material_string="Vacuum") +AT (0,0,0) RELATIVE drum_center +ROTATED (0,0,0) RELATIVE drum_center + +// V4 +COMPONENT outer_cryostat_wall = Union_cylinder(radius=0.1,yheight=0.2,priority=10,material_string="Al",p_interact=0.2) +AT (0,0,0) RELATIVE beam_center +ROTATED (0,0,0) RELATIVE beam_center + +// V5 +COMPONENT outer_cryostat_vacuum = Union_cylinder(radius=0.09,yheight=0.2,priority=11,material_string="Vacuum") +WHEN ( necessary == 1 ) +AT (0,0.01,0) RELATIVE beam_center +ROTATED (0,0,0) RELATIVE beam_center + +// V6 +COMPONENT inner_cryostat_wall = Union_cylinder(radius=0.06,yheight=0.16,priority=12,material_string="Al",p_interact=0.2) +AT (0,0.01,0) RELATIVE beam_center +ROTATED (0,0,0) RELATIVE beam_center + +// V7 +COMPONENT inner_cryostat_vacuum = Union_cylinder(radius=0.05,yheight=0.15,priority=13,material_string="Vacuum") +AT (0,0.01,0) RELATIVE beam_center +ROTATED (0,0,0) RELATIVE beam_center + +// V8 +COMPONENT sample_stick_walls = Union_cylinder(radius=0.04,yheight=0.605,priority=14,material_string="Al") +AT (0,0.39,0) RELATIVE beam_center +ROTATED (0,0,0) RELATIVE beam_center + +// V9 +COMPONENT sample_stick_vacuum = Union_cylinder(radius=0.035,yheight=0.64,priority=15,material_string="Vacuum") +AT (0,0.4,0) RELATIVE beam_center +ROTATED (0,0,0) RELATIVE beam_center + + +COMPONENT sample_rod_bottom = Arm() +AT (0,0.05+stick_displacement,0) RELATIVE beam_center +ROTATED (0,85,0) RELATIVE beam_center + +// V10 +COMPONENT sample_rod = Union_cylinder(radius=0.0075,yheight=0.7,priority=25,material_string="Al") +AT (0,0.35,0) RELATIVE sample_rod_bottom +ROTATED (0,0,0) RELATIVE sample_rod_bottom + +// V11 +COMPONENT sample_rod_collar_1 = Union_cylinder(radius=0.034,yheight=0.02,priority=17,material_string="Al") +AT (0,0.048,0) RELATIVE sample_rod_bottom +ROTATED (0,0,0) RELATIVE sample_rod_bottom + +// V12 +COMPONENT sample_rod_collar_2 = Union_cylinder(radius=0.034,yheight=0.02,priority=18,material_string="Al") +AT (0,0.14,0) RELATIVE sample_rod_bottom +ROTATED (0,0,0) RELATIVE sample_rod_bottom + +// V13 +COMPONENT sample_rod_collar_3 = Union_cylinder(radius=0.034,yheight=0.02,priority=19,material_string="Al") +AT (0,0.34,0) RELATIVE sample_rod_bottom +ROTATED (0,0,0) RELATIVE sample_rod_bottom + +// V14 +COMPONENT sample_rod_collar_4 = Union_cylinder(radius=0.034,yheight=0.02,priority=20,material_string="Al") +AT (0,0.635,0) RELATIVE sample_rod_bottom +ROTATED (0,0,0) RELATIVE sample_rod_bottom + +// V15 +COMPONENT sample_rod_collar_1_vacuum = Union_cylinder(radius=0.03,yheight=0.016,priority=21,material_string="Vacuum") +AT (0,0.048-0.005,0) RELATIVE sample_rod_bottom +ROTATED (0,0,0) RELATIVE sample_rod_bottom + +// V16 +COMPONENT sample_rod_collar_2_vacuum = Union_cylinder(radius=0.03,yheight=0.016,priority=22,material_string="Vacuum") +AT (0,0.14-0.005,0) RELATIVE sample_rod_bottom +ROTATED (0,0,0) RELATIVE sample_rod_bottom + +// V17 +COMPONENT sample_rod_collar_3_vacuum = Union_cylinder(radius=0.03,yheight=0.016,priority=23,material_string="Vacuum") +AT (0,0.34-0.005,0) RELATIVE sample_rod_bottom +ROTATED (0,0,0) RELATIVE sample_rod_bottom + +// V18 +COMPONENT sample_rod_collar_4_vacuum = Union_cylinder(radius=0.03,yheight=0.016,priority=24,material_string="Vacuum") +AT (0,0.635-0.005,0) RELATIVE sample_rod_bottom +ROTATED (0,0,0) RELATIVE sample_rod_bottom + +// V19 +COMPONENT sample_holder1 = Union_box(xwidth=0.01,yheight=0.05,zdepth=0.004,priority=35,material_string="Al",p_interact=0.3) +AT (0,0,0) RELATIVE sample_rod_bottom +ROTATED (0,0,0) RELATIVE sample_rod_bottom + +// V20 +COMPONENT sample_holder2 = Union_box(xwidth=0.0099,yheight=0.004,zdepth=0.03/0.85,priority=51,material_string="Al",p_interact=0.3) +AT (0,-0.03,0.03*0.35+0.004) RELATIVE sample_rod_bottom +ROTATED (25,0,0) RELATIVE sample_rod_bottom + +// V21 +COMPONENT sample_holder3 = Union_box(xwidth=0.0098,yheight=0.004,zdepth=0.03/0.85,priority=52,material_string="Al",p_interact=0.3) +AT (0,-0.03,-0.03*0.35-0.004) RELATIVE sample_rod_bottom +ROTATED (-25,0,0) RELATIVE sample_rod_bottom + +// V22 +COMPONENT sample_holder4 = Union_box(xwidth=0.01,yheight=0.07,zdepth=0.004,priority=53,material_string="Al",p_interact=0.3) +AT (0,-0.03-0.035-0.005,0.03) RELATIVE sample_rod_bottom +ROTATED (0,0,0) RELATIVE sample_rod_bottom + +// V23 +COMPONENT sample_holder5 = Union_box(xwidth=0.01,yheight=0.07,zdepth=0.004,priority=54,material_string="Al",p_interact=0.3) +AT (0,-0.03-0.035-0.005,-0.03) RELATIVE sample_rod_bottom +ROTATED (0,0,0) RELATIVE sample_rod_bottom + +// V24 +COMPONENT sample_holder_bottom = Union_box(xwidth=0.0098,yheight=0.004,zdepth=0.058,priority=42,material_string="Al",p_interact=0.3) +AT (0,-0.03-0.067-0.007,0) RELATIVE sample_rod_bottom +ROTATED (0,0,0) RELATIVE sample_rod_bottom + +// V25 +COMPONENT sample_holder_top_shelf = Union_box(xwidth=0.0098,yheight=0.004,zdepth=0.058,priority=43,material_string="Al",p_interact=0.3) +AT (0,-0.045+0.003,0) RELATIVE sample_rod_bottom +ROTATED (0,0,0) RELATIVE sample_rod_bottom + +// V26 +COMPONENT sample_holder_middle_shelf = Union_box(xwidth=0.0098,yheight=0.004,zdepth=0.058,priority=44,material_string="Al",p_interact=0.3) +AT (0,-0.072,0) RELATIVE sample_rod_bottom +ROTATED (0,0,0) RELATIVE sample_rod_bottom + +// V27 +COMPONENT sample_1 = Union_cylinder(radius=0.0045,yheight=0.02,priority=63,material_string="Cu",p_interact=0.6) +AT (0,-0.002-0.01-0.003,0.015) RELATIVE sample_holder_top_shelf +ROTATED (0,0,0) RELATIVE sample_holder_top_shelf + +// V28 +COMPONENT sample_1_container = Union_cylinder(radius=0.0052,yheight=0.023,priority=62,material_string="Al",p_interact=0.3) +AT (0,0,0) RELATIVE sample_1 +ROTATED (0,0,0) RELATIVE sample_1 + +// V29 +COMPONENT sample_1_container_rim = Union_cylinder(radius=0.007,yheight=0.002,priority=61,material_string="Al",p_interact=0.3) +AT (0,0.023*0.5,0) RELATIVE sample_1 +ROTATED (0,0,0) RELATIVE sample_1 + +// V30 +COMPONENT sample_2 = Union_cylinder(radius=0.0045,yheight=0.02,priority=73,material_string="Au_Ag_mix",p_interact=0.6) +AT (0,-0.002-0.01-0.003,-0.015) RELATIVE sample_holder_top_shelf +ROTATED (0,0,0) RELATIVE sample_holder_top_shelf + +// V31 +COMPONENT sample_2_container = Union_cylinder(radius=0.0052,yheight=0.023,priority=72,material_string="Al",p_interact=0.3) +AT (0,0,0) RELATIVE sample_2 +ROTATED (0,0,0) RELATIVE sample_2 + +// V32 +COMPONENT sample_2_container_rim = Union_cylinder(radius=0.007,yheight=0.002,priority=71,material_string="Al",p_interact=0.3) +AT (0,0.023*0.5,0) RELATIVE sample_2 +ROTATED (0,0,0) RELATIVE sample_2 + +// V33 +COMPONENT sample_3 = Union_cylinder(radius=0.0045,yheight=0.02,priority=83,material_string="Cd",p_interact=0.6) +AT (0,-0.002-0.01-0.003,0.015) RELATIVE sample_holder_middle_shelf +ROTATED (0,0,0) RELATIVE sample_holder_middle_shelf + +// V34 +COMPONENT sample_3_container = Union_cylinder(radius=0.0052,yheight=0.023,priority=82,material_string="Al",p_interact=0.3) +AT (0,0,0) RELATIVE sample_3 +ROTATED (0,0,0) RELATIVE sample_3 + +// V35 +COMPONENT sample_3_container_rim = Union_cylinder(radius=0.007,yheight=0.002,priority=81,material_string="Al",p_interact=0.3) +AT (0,0.023*0.5,0) RELATIVE sample_3 +ROTATED (0,0,0) RELATIVE sample_3 + +// V36 +COMPONENT sample_4 = Union_cylinder(radius=0.0045,yheight=0.02,priority=93,material_string="Cs",p_interact=0.6) +AT (0,-0.002-0.01-0.003,-0.015) RELATIVE sample_holder_middle_shelf +ROTATED (0,0,0) RELATIVE sample_holder_middle_shelf + +// V37 +SPLIT 2 COMPONENT sample_4_container = Union_cylinder(radius=0.0052,yheight=0.023,priority=92,material_string="Al",p_interact=0.3) +AT (0,0,0) RELATIVE sample_4 +ROTATED (0,0,0) RELATIVE sample_4 + +// V38 +COMPONENT sample_4_container_rim = Union_cylinder(radius=0.007,yheight=0.002,priority=91,material_string="Al",p_interact=0.3) +AT (0,0.023*0.5,0) RELATIVE sample_4 +ROTATED (0,0,0) RELATIVE sample_4 + + +COMPONENT test_sample = Union_master(history_limit=1000000) +AT(0,0,0) RELATIVE beam_center +ROTATED(0,0,0) RELATIVE beam_center +EXTEND +%{ +if (scattered_flag[sample_1_index] > 0) scattered_1 = 1; else scattered_1 = 0; +if (scattered_flag[sample_2_index] > 0) scattered_2 = 1; else scattered_2 = 0; +if (scattered_flag[sample_3_index] > 0) scattered_3 = 1; else scattered_3 = 0; +if (scattered_flag[sample_4_index] > 0) scattered_4 = 1; else scattered_4 = 0; +%} + + + +COMPONENT detector_position = Arm() +AT (0,0,0.03) RELATIVE beam_center +ROTATED(0,0,0) RELATIVE beam_center + +COMPONENT m4pi = PSD_monitor_4PI(radius=1, nx=180, ny=180, filename="Events.dat", restore_neutron=1) +AT (0, 0, 0) RELATIVE beam_center +ROTATED (0,0,0) RELATIVE beam_center + +COMPONENT Banana_monitor = Monitor_nD(radius=1, yheight=0.1, options="banana, theta limits=[20,170], bins=500",filename="banana.dat",restore_neutron=1) +AT (0,0,0) RELATIVE beam_center +ROTATED (0,0,0) RELATIVE beam_center + +COMPONENT detector = PSD_monitor(xwidth=0.1, yheight=0.08, nx=200, ny=200, filename="PSD.dat", restore_neutron=1) +AT (0,-0.02,0.4) RELATIVE beam_center +ROTATED (0,0,0) RELATIVE beam_center + +// Removes events not scattering in at least two of the samples +// mcdisplay --inspect=m4pi_two_samples shows only rays that scatters on all three +// since all others were removed before that component with this arm. +COMPONENT arm_1 = Arm() + AT (0, 0, 0) RELATIVE beam_center +EXTEND +%{ + if (scattered_1 + scattered_2 + scattered_3 + scattered_4 < 2) ABSORB; +%} + +// Using mcdisplay and -inspect m4pi_two_or_more_samples one can show only +// trajectories where the ray scatters from two or more of the samples +COMPONENT m4pi_two_or_more_samples = PSD_monitor_4PI(radius=1, nx=180, ny=180, filename="Events.dat", restore_neutron=1) +WHEN (scattered_1 + scattered_2 + scattered_3 + scattered_4 > 1) +AT (0, 0, 0) RELATIVE beam_center +ROTATED (0,0,0) RELATIVE beam_center + + +COMPONENT armA = Arm() +AT (0,0,0) ABSOLUTE +GROUP arms + +COMPONENT armB = Arm() +AT (0,0,0) ABSOLUTE +GROUP arms +JUMP myself 2 + + +END diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index 84f5b717..530b16f3 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -57,6 +57,29 @@ def setup_populated_instr(): return instr +def setup_populated_with_some_options_instr(): + """ + Sets up a instrument with some features used and two components + """ + instr = setup_instr_root_path() + + instr.add_parameter("double", "theta") + instr.add_parameter("double", "has_default", value=37) + instr.add_declare_var("double", "two_theta") + instr.append_initialize("two_theta = 2.0*theta;") + + comp1 = instr.add_component("first_component", "test_for_reading") + comp1.set_AT([0,0,1]) + comp1.set_GROUP("Starters") + comp2 = instr.add_component("second_component", "test_for_reading") + comp2.set_AT([0,0,2], RELATIVE="first_component") + comp2.set_ROTATED([0,30,0]) + comp2.set_WHEN("1==1") + comp2.yheight=1.23 + comp3 = instr.add_component("third_component", "test_for_reading") + + return instr + class TestMcStas_instr(unittest.TestCase): """ @@ -106,11 +129,11 @@ def test_load_config_file(self): line = line.strip() if line.startswith("mcrun_path:"): parts = line.split(" ") - correct_mcrun_path = parts[1][1:-1] + correct_mcrun_path = parts[1] if line.startswith("mcstas_path:"): parts = line.split(" ") - correct_mcstas_path = parts[1][1:-1] + correct_mcstas_path = parts[1] if line.startswith("characters_per_line:"): parts = line.split(" ") @@ -220,6 +243,42 @@ def test_simple_add_declare_parameter(self): self.assertEqual(instr.declare_list[0].name, "two_theta") self.assertEqual(instr.declare_list[0].comment, " // test par") + + def test_simple_append_declare(self): + """ + The declare lines are held as a string. This method + appends that string. + """ + instr = setup_instr_root_path() + + instr.append_declare("First line of declare") + instr.append_declare("Second line of declare") + instr.append_declare("Third line of declare") + + self.assertEqual(instr.declare_list[0], + "First line of declare") + self.assertEqual(instr.declare_list[1], + "Second line of declare") + self.assertEqual(instr.declare_list[2], + "Third line of declare") + + def test_simple_append_declare_var_mix(self): + """ + The declare lines are held as a string. This method + appends that string. + """ + instr = setup_instr_root_path() + + instr.append_declare("First line of declare") + instr.add_declare_var("double", "two_theta", comment="test par") + instr.append_declare("Third line of declare") + + self.assertEqual(instr.declare_list[0], + "First line of declare") + self.assertEqual(instr.declare_list[1].name, "two_theta") + self.assertEqual(instr.declare_list[1].comment, " // test par") + self.assertEqual(instr.declare_list[2], + "Third line of declare") def test_simple_append_initialize(self): """ @@ -633,18 +692,61 @@ def test_add_component_simple_before_error(self, mock_stdout): @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_add_component_simple_double_naming_error(self, mock_stdout): """ - The add_component method adds a new component object to the - instrument and keeps track of its location within the - sequence of components. Normally a new component is added to - the end of the sequence, but the before and after keywords can - be used to select another location. Here keyword passing is - tested. + This tests checks that an error occurs when giving the new + component a name which has already been used. """ instr = setup_populated_instr() with self.assertRaises(NameError): comp = instr.add_component("first_component", "test_for_reading") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_copy_component_simple(self, mock_stdout): + """ + Checks that a component can be copied + """ + + instr = setup_populated_with_some_options_instr() + + comp = instr.copy_component("copy_of_second_comp", "second_component") + + self.assertEqual(comp.name, "copy_of_second_comp") + self.assertEqual(comp.yheight, 1.23) + self.assertEqual(comp.AT_data[0], 0) + self.assertEqual(comp.AT_data[1], 0) + self.assertEqual(comp.AT_data[2], 2) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_copy_component_keywords(self, mock_stdout): + """ + Checks that a component can be copied and that keyword + arguments given under copy operation is sucessfully + applied to the new component. A check is also made to + ensure that the original component was not modified. + """ + + instr = setup_populated_with_some_options_instr() + + comp = instr.copy_component("copy_of_second_comp", "second_component", + AT=[1,2,3], SPLIT=10) + + self.assertEqual(comp.name, "copy_of_second_comp") + self.assertEqual(comp.yheight, 1.23) + self.assertEqual(comp.AT_data[0], 1) + self.assertEqual(comp.AT_data[1], 2) + self.assertEqual(comp.AT_data[2], 3) + self.assertEqual(comp.SPLIT, 10) + + # ensure original component was not changed + original = instr.get_component("second_component") + self.assertEqual(original.name, "second_component") + self.assertEqual(original.yheight, 1.23) + self.assertEqual(original.AT_data[0], 0) + self.assertEqual(original.AT_data[1], 0) + self.assertEqual(original.AT_data[2], 2) + self.assertEqual(original.SPLIT, 0) + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_get_component_simple(self, mock_stdout): @@ -864,6 +966,36 @@ def test_set_component_comment(self, mock_stdout): comp = instr.get_component("second_component") self.assertEqual(comp.comment, "test comment") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_set_c_code_before(self, mock_stdout): + """ + set_component_c_code_before passes the argument to the similar + method in the component class. + """ + + instr = setup_populated_instr() + + instr.set_component_c_code_before("second_component", "%include before.instr") + + comp = instr.get_component("second_component") + + self.assertEqual(comp.c_code_before, "%include before.instr") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_set_c_code_after(self, mock_stdout): + """ + set_component_c_code_after passes the argument to the similar + method in the component class. + """ + + instr = setup_populated_instr() + + instr.set_component_c_code_after("second_component", "%include after.instr") + + comp = instr.get_component("second_component") + + self.assertEqual(comp.c_code_after, "%include after.instr") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_print_component(self, mock_stdout): @@ -901,7 +1033,8 @@ def test_print_component(self, mock_stdout): self.assertEqual(output[3], " " + par_name + warning) self.assertEqual(output[4], "AT [0, 0, 0] ABSOLUTE") - self.assertEqual(output[5], "ROTATED [0, 0, 0] ABSOLUTE") + # Rotation not printed since it was never specified + #self.assertEqual(output[5], "ROTATED [0, 0, 0] ABSOLUTE") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_print_component_short(self, mock_stdout): @@ -920,7 +1053,7 @@ def test_print_component_short(self, mock_stdout): expected = ("second_component = test_for_reading " + "\tAT [-1, 2, 3.4] RELATIVE home " - + "ROTATED [0, 0, 0] ABSOLUTE") + + "ROTATED [0, 0, 0] RELATIVE home") self.assertEqual(output[0], expected) @@ -1147,6 +1280,7 @@ def test_write_c_files_simple(self, mock_f, mock_stdout): call = unittest.mock.call wrts = [ call("// declare section for test_instrument \n"), + #call(""), call("double two_theta;"), call("\n"), call("// Start of initialize for generated test_instrument\n" @@ -1156,22 +1290,16 @@ def test_write_c_files_simple(self, mock_f, mock_stdout): call(")\n"), call("AT (0,0,0)"), call(" ABSOLUTE\n"), - call("ROTATED (0,0,0)"), - call(" ABSOLUTE\n"), call("\n"), call("COMPONENT second_component = test_for_reading("), call(")\n"), call("AT (0,0,0)"), call(" ABSOLUTE\n"), - call("ROTATED (0,0,0)"), - call(" ABSOLUTE\n"), call("\n"), call("COMPONENT third_component = test_for_reading("), call(")\n"), call("AT (0,0,0)"), call(" ABSOLUTE\n"), - call("ROTATED (0,0,0)"), - call(" ABSOLUTE\n"), call("\n")] handle.write.assert_has_calls(wrts, any_order=False) @@ -1238,6 +1366,7 @@ def test_write_full_instrument_simple(self, mock_f, mock_stdout): my_call(")\n"), my_call("\n"), my_call("DECLARE \n%{\n"), + #my_call(""), my_call("double two_theta;"), my_call("\n"), my_call("%}\n\n"), @@ -1250,22 +1379,16 @@ def test_write_full_instrument_simple(self, mock_f, mock_stdout): my_call(")\n"), my_call("AT (0,0,0)"), my_call(" ABSOLUTE\n"), - my_call("ROTATED (0,0,0)"), - my_call(" ABSOLUTE\n"), my_call("\n"), my_call("COMPONENT second_component = test_for_reading("), my_call(")\n"), my_call("AT (0,0,0)"), my_call(" ABSOLUTE\n"), - my_call("ROTATED (0,0,0)"), - my_call(" ABSOLUTE\n"), my_call("\n"), my_call("COMPONENT third_component = test_for_reading("), my_call(")\n"), my_call("AT (0,0,0)"), my_call(" ABSOLUTE\n"), - my_call("ROTATED (0,0,0)"), - my_call(" ABSOLUTE\n"), my_call("\n"), my_call("FINALLY \n%{\n"), my_call("// Start of finally for generated test_instrument\n"), diff --git a/mcstasscript/tests/test_Instr_reader.py b/mcstasscript/tests/test_Instr_reader.py new file mode 100644 index 00000000..10a7ef7d --- /dev/null +++ b/mcstasscript/tests/test_Instr_reader.py @@ -0,0 +1,342 @@ +import os +import unittest + +from mcstasscript.interface import instr +from mcstasscript.instr_reader import control +from mcstasscript.instr_reader import util + + +def setup_standard(Instr): + filename = "Union_demonstration_test.instr" + + InstrReader = control.InstrumentReader(filename) + InstrReader.add_to_instr(Instr) + return InstrReader + +class TestInstrReader(unittest.TestCase): + + def test_read_instrument_name(self): + """ + Check if the instrument name is read correctly + """ + + filename = "Union_demonstration_test.instr" + Instr = instr.McStas_instr("test_instrument") + + InstrReader = control.InstrumentReader(filename) + InstrReader.add_to_instr(Instr) + + self.assertEqual(InstrReader.instr_name, "Union_demonstration") + + def test_read_input_parameter(self): + + Instr = instr.McStas_instr("test_instrument") + InstrReader = setup_standard(Instr) + + self.assertEqual(Instr.parameter_list[0].name, "stick_displacement") + # space in type inserted for easier writing by McStas_Instr class + self.assertEqual(Instr.parameter_list[0].type, "double ") + self.assertEqual(Instr.parameter_list[0].value, 0) + + self.assertEqual(Instr.parameter_list[1].name, "test_int") + # space in type inserted for easier writing by McStas_Instr class + self.assertEqual(Instr.parameter_list[1].type, "int ") + self.assertEqual(Instr.parameter_list[1].value, 3) + + self.assertEqual(Instr.parameter_list[2].name, "test_str") + # space in type inserted for easier writing by McStas_Instr class + self.assertEqual(Instr.parameter_list[2].type, "string ") + self.assertEqual(Instr.parameter_list[2].value, "\"\\\"hurray\\\"\"") + + def test_read_declare_parameter(self): + + Instr = instr.McStas_instr("test_instrument") + InstrReader = setup_standard(Instr) + + self.assertEqual(Instr.declare_list[0].name, "sample_1_index") + self.assertEqual(Instr.declare_list[0].type, "int") + self.assertEqual(Instr.declare_list[0].value, 27) + + self.assertEqual(Instr.declare_list[8].name, "array") + self.assertEqual(Instr.declare_list[8].type, "double") + self.assertEqual(Instr.declare_list[8].vector, 3) + self.assertEqual(Instr.declare_list[8].value, [0.1, 0.2, 0.3]) + + self.assertEqual(Instr.declare_list[9].name, "I_array") + self.assertEqual(Instr.declare_list[9].type, "int") + self.assertEqual(Instr.declare_list[9].vector, 4) + + self.assertEqual(Instr.declare_list[10].name, "T_array") + self.assertEqual(Instr.declare_list[10].type, "int") + self.assertEqual(Instr.declare_list[10].vector, 5) + self.assertEqual(Instr.declare_list[10].value, [1, 2, 3, 4, 5]) + + self.assertEqual(Instr.declare_list[11].name, "home") + self.assertEqual(Instr.declare_list[11].type, "char") + self.assertEqual(Instr.declare_list[11].vector, 20) + self.assertEqual(Instr.declare_list[11].value, "\"\\\"test_string\\\"\"") + + def test_read_initialize_line(self): + + Instr = instr.McStas_instr("test_instrument") + InstrReader = setup_standard(Instr) + + self.assertEqual(Instr.initialize_section, + "// Start of initialize for generated test_instrument\n" + + "I_array[2] = 8;\n" + + "printf(\"Hello world\\n\");\n") + + # Check a few components are read correctly + def test_read_component_1(self): + + Instr = instr.McStas_instr("test_instrument") + InstrReader = setup_standard(Instr) + + components = Instr.component_list + + test_component = None + + for component in components: + if component.name == "Al": + test_component = component + + self.assertEqual(test_component.component_name, "Union_make_material") + + val = getattr(test_component, "my_absorption") + self.assertEqual(val, "\"100*4*0.231/66.4\"") + + val = getattr(test_component, "process_string") + self.assertEqual(val, '"\\\"Al_incoherent,Al_powder\\\""') + + self.assertEqual(test_component.AT_data, ["0", "0", "0"]) + self.assertEqual(test_component.AT_relative, "ABSOLUTE") + + self.assertEqual(test_component.ROTATED_data, [0, 0, 0]) + self.assertEqual(test_component.ROTATED_relative, "ABSOLUTE") + + def test_read_component_2(self): + + Instr = instr.McStas_instr("test_instrument") + InstrReader = setup_standard(Instr) + + components = Instr.component_list + + test_component = None + + for component in components: + if component.name == "sample_holder3": + test_component = component + + self.assertEqual(test_component.component_name, "Union_box") + + val = getattr(test_component, "xwidth") + self.assertEqual(val, "0.0098") + + val = getattr(test_component, "priority") + self.assertEqual(val, "52") + + self.assertEqual(test_component.AT_data, ["0", "-0.03", "-0.03*0.35-0.004"]) + self.assertEqual(test_component.AT_relative, "RELATIVE sample_rod_bottom") + + self.assertEqual(test_component.ROTATED_data, ["-25", "0", "0"]) + self.assertEqual(test_component.ROTATED_relative, "RELATIVE sample_rod_bottom") + + def test_read_component_WHEN(self): + + Instr = instr.McStas_instr("test_instrument") + InstrReader = setup_standard(Instr) + + components = Instr.component_list + + test_component = None + + for component in components: + if component.name == "outer_cryostat_vacuum": + test_component = component + + self.assertEqual(test_component.component_name, "Union_cylinder") + + val = getattr(test_component, "radius") + self.assertEqual(val, "0.09") + + val = getattr(test_component, "priority") + self.assertEqual(val, "11") + + self.assertEqual(test_component.WHEN, "WHEN (necessary == 1 )") + + self.assertEqual(test_component.AT_data, ["0", "0.01", "0"]) + self.assertEqual(test_component.AT_relative, "RELATIVE beam_center") + + self.assertEqual(test_component.ROTATED_data, ["0", "0", "0"]) + self.assertEqual(test_component.ROTATED_relative, "RELATIVE beam_center") + + def test_read_component_EXTEND(self): + + Instr = instr.McStas_instr("test_instrument") + InstrReader = setup_standard(Instr) + + components = Instr.component_list + + test_component = None + + for component in components: + if component.name == "test_sample": + test_component = component + + self.assertEqual(test_component.component_name, "Union_master") + + val = getattr(test_component, "history_limit") + self.assertEqual(val, "1000000") + + lines = test_component.EXTEND.split("\n") + line0 = ("if (scattered_flag[sample_1_index] > 0) scattered_1 = 1;" + +" else scattered_1 = 0;") + line1 = ("if (scattered_flag[sample_2_index] > 0) scattered_2 = 1;" + +" else scattered_2 = 0;") + line2 = ("if (scattered_flag[sample_3_index] > 0) scattered_3 = 1;" + +" else scattered_3 = 0;") + line3 = ("if (scattered_flag[sample_4_index] > 0) scattered_4 = 1;" + +" else scattered_4 = 0;") + + self.assertEqual(lines[0], line0) + self.assertEqual(lines[1], line1) + self.assertEqual(lines[2], line2) + self.assertEqual(lines[3], line3) + + self.assertEqual(test_component.AT_data, ["0", "0", "0"]) + self.assertEqual(test_component.AT_relative, "RELATIVE beam_center") + + self.assertEqual(test_component.ROTATED_data, ["0", "0", "0"]) + self.assertEqual(test_component.ROTATED_relative, "RELATIVE beam_center") + + def test_read_component_GROUP(self): + + Instr = instr.McStas_instr("test_instrument") + InstrReader = setup_standard(Instr) + + components = Instr.component_list + + test_component = None + + for component in components: + if component.name == "armA": + test_component = component + + self.assertEqual(test_component.component_name, "Arm") + + self.assertEqual(test_component.GROUP, "\"arms\"") + + self.assertEqual(test_component.AT_data, ["0", "0", "0"]) + self.assertEqual(test_component.AT_relative, "ABSOLUTE") + + def test_read_component_SPLIT(self): + + Instr = instr.McStas_instr("test_instrument") + InstrReader = setup_standard(Instr) + + components = Instr.component_list + + test_component = None + + for component in components: + if component.name == "sample_4_container": + test_component = component + + self.assertEqual(test_component.component_name, "Union_cylinder") + + self.assertEqual(test_component.AT_data, ["0", "0", "0"]) + self.assertEqual(test_component.AT_relative, "RELATIVE sample_4") + + def test_read_component_JUMP(self): + + Instr = instr.McStas_instr("test_instrument") + InstrReader = setup_standard(Instr) + + components = Instr.component_list + + test_component = None + + for component in components: + if component.name == "armB": + test_component = component + + self.assertEqual(test_component.component_name, "Arm") + + self.assertEqual(test_component.GROUP, "\"arms\"") + self.assertEqual(test_component.JUMP, "myself 2") + + self.assertEqual(test_component.AT_data, ["0", "0", "0"]) + self.assertEqual(test_component.AT_relative, "ABSOLUTE") + + + def test_comma_split(self): + """ + Check if the instrument name is read correctly + """ + + Instr = instr.McStas_instr("test_instrument") + InstrReader = setup_standard(Instr) + + test_string = "A,B,C,D(a,b),E" + + result = InstrReader.Trace_reader._split_func(test_string, ",") + + self.assertEqual(result[0],"A") + self.assertEqual(result[1],"B") + self.assertEqual(result[2],"C") + self.assertEqual(result[3],"D(a,b)") + self.assertEqual(result[4],"E") + + def test_comma_split_limited(self): + """ + Check if the instrument name is read correctly + """ + + Instr = instr.McStas_instr("test_instrument") + InstrReader = setup_standard(Instr) + + test_string = "A,B,C,D(a,b),E" + + result = InstrReader.Trace_reader._split_func(test_string, ",", 2) + + self.assertEqual(result[0],"A") + self.assertEqual(result[1],"B") + self.assertEqual(result[2],"C,D(a,b),E") + + def test_parenthesis_split(self): + """ + Check if the instrument name is read correctly + """ + + Instr = instr.McStas_instr("test_instrument") + InstrReader = setup_standard(Instr) + + test_string = "A)B)C)D(a,b))E" + + result = InstrReader.Trace_reader._split_func(test_string, ")") + + self.assertEqual(result[0],"A") + self.assertEqual(result[1],"B") + self.assertEqual(result[2],"C") + self.assertEqual(result[3],"D(a,b)") + self.assertEqual(result[4],"E") + + def test_comma_split_brack(self): + """ + Check if the instrument name is read correctly + """ + + Instr = instr.McStas_instr("test_instrument") + InstrReader = setup_standard(Instr) + + test_string = "A,B{C,D(a,b)},E" + + result = InstrReader.Trace_reader._split_func_brack(test_string, ",") + + self.assertEqual(result[0],"A") + self.assertEqual(result[1],"B{C,D(a,b)}") + self.assertEqual(result[2],"E") + + +if __name__ == '__main__': + unittest.main() \ No newline at end of file diff --git a/mcstasscript/tests/test_component.py b/mcstasscript/tests/test_component.py index 462fe2a2..1beaf489 100644 --- a/mcstasscript/tests/test_component.py +++ b/mcstasscript/tests/test_component.py @@ -353,14 +353,53 @@ def test_component_write_to_file_simple(self, mock_f): expected_writes = [my_call("COMPONENT test_component = Arm("), my_call(")\n"), my_call("AT (0,0,0)"), - my_call(" ABSOLUTE\n"), - my_call("ROTATED (0,0,0)"), my_call(" ABSOLUTE\n")] mock_f.assert_called_with('test.txt', 'w') handle = mock_f() handle.write.assert_has_calls(expected_writes, any_order=False) + @unittest.mock.patch('__main__.__builtins__.open', + new_callable=unittest.mock.mock_open) + def test_component_write_to_file_include(self, mock_f): + """ + Testing that a component can be written to file with the + expected output. Here with simple input. + """ + + comp = component("test_component", "Arm", + c_code_before="%include \"test.instr\"") + + comp.set_c_code_after("%include \"after.instr\"") + + comp._unfreeze() + # Need to set up attribute parameters + # Also need to categorize them as when created + comp.parameter_names = [] + comp.parameter_defaults = {} + comp.parameter_types = {} + comp._freeze() + + with mock_f('test.txt', 'w') as m_fo: + comp.write_component(m_fo) + + my_call = unittest.mock.call + expected_writes = [my_call("%include \"test.instr\" // From" + + " component named test_component\n"), + my_call("\n"), + my_call("COMPONENT test_component = Arm("), + my_call(")\n"), + my_call("AT (0,0,0)"), + my_call(" ABSOLUTE\n"), + my_call("\n"), + my_call("%include \"after.instr\" // From" + + " component named test_component\n"), + my_call("\n")] + + mock_f.assert_called_with('test.txt', 'w') + handle = mock_f() + handle.write.assert_has_calls(expected_writes, any_order=False) + @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) def test_component_write_to_file_complex(self, mock_f): diff --git a/setup.py b/setup.py new file mode 100644 index 00000000..cb02928c --- /dev/null +++ b/setup.py @@ -0,0 +1,23 @@ +import setuptools + +with open("README.md", "r") as fh: + long_description = fh.read() + +setuptools.setup( + name='McStasScript', + version='0.0.8', + author="Mads Bertelsen", + author_email="Mads.Bertelsen@esss.se", + description="A python scripting interface for McStas", + include_package_data=True, + long_description=long_description, + long_description_content_type="text/markdown", + url="https://github.com/PaNOSC-ViNYL/McStasScript", + install_requires=['numpy', 'matplotlib'], + packages=setuptools.find_packages(), + classifiers=[ + "Programming Language :: Python :: 3", + "License :: OSI Approved :: GNU General Public License (GPL)", + "Operating System :: OS Independent", + ], + ) From ae6c1d1b9228930f6b2277d81739ae3f8f7f05a0 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Mon, 12 Aug 2019 14:39:55 +0200 Subject: [PATCH 051/403] Updated README.md Added section on the instrument reader as this is especially relevant for new users. --- README.md | 16 +++++++++++++++- 1 file changed, 15 insertions(+), 1 deletion(-) diff --git a/README.md b/README.md index bfbd6711..592c9b49 100644 --- a/README.md +++ b/README.md @@ -19,7 +19,7 @@ It is necessary to configure the package so the McStas installation can be found ## Instructions for basic use: Import the interface - from mcstasscript.interface import instr, plotter, functions + from mcstasscript.interface import instr, plotter, functions, reader Now the package can be used. Start with creating a new instrument, just needs a name @@ -60,6 +60,13 @@ Plotting is usually done in a subplot of all monitors recorded. plot = plotter.make_sub_plot(data) +## Use in existing project +If one wish to work on existing projects using McStasScript, there is a reader included that will read a McStas Instrument file and write the corresponding McStasScript python instrument to disk. Here is an example where the PSI_DMC.instr example is converted: + + Reader = reader.McStas_file("PSI_DMC.instr") + reader.write_python_file("PSI_DMC_generated.py") + +It is highly advised to run a check between the output of the generated file and the original to ensure the process was sucessful. ## Method overview Here is a quick overview of the available methods of the main classes in the project. Most have more options from keyword arguments that are explained in the manual, but also in python help, for example help(instr.McStas_instr.show_components). @@ -96,3 +103,10 @@ Here is a quick overview of the available methods of the main classes in the pro plotter ├── make_plot(list McStasData) # Plots each data set individually └── make_sub_plot(list McStasData) # Plots data as subplot + + reader + └── McStas_file(str filename) # Returns a reader that can extract information from given instr file + + InstrumentReader # returned by McStas_file + ├── generate_python_file(str filename) # Writes python file with information contaiend in isntrument + └── add_to_instr(McStas_instr Instr) # Adds information from instrument to McStasScirpt instrument From 58d172e68e4ad371fae7b1ce38a9f2ee0238fde7 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Tue, 13 Aug 2019 08:49:29 +0200 Subject: [PATCH 052/403] Fixed important typo in README --- README.md | 2 +- setup.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 592c9b49..19828975 100644 --- a/README.md +++ b/README.md @@ -64,7 +64,7 @@ Plotting is usually done in a subplot of all monitors recorded. If one wish to work on existing projects using McStasScript, there is a reader included that will read a McStas Instrument file and write the corresponding McStasScript python instrument to disk. Here is an example where the PSI_DMC.instr example is converted: Reader = reader.McStas_file("PSI_DMC.instr") - reader.write_python_file("PSI_DMC_generated.py") + Reader.write_python_file("PSI_DMC_generated.py") It is highly advised to run a check between the output of the generated file and the original to ensure the process was sucessful. diff --git a/setup.py b/setup.py index cb02928c..23d237ac 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ setuptools.setup( name='McStasScript', - version='0.0.8', + version='0.0.10', author="Mads Bertelsen", author_email="Mads.Bertelsen@esss.se", description="A python scripting interface for McStas", From ad27a41e33e9f2e6648f0add73886557444d4beb Mon Sep 17 00:00:00 2001 From: "Granroth, Garrett E" Date: Fri, 18 Oct 2019 18:24:08 -0400 Subject: [PATCH 053/403] fix spelling error --- mcstasscript/helper/managed_mcrun.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index 5091cc20..5308ce5f 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -157,7 +157,7 @@ def run_simulation(self, **kwargs): + self.custom_flags + " " + self.name_of_instrumentfile + parameter_string) - + #os.system(full_command) process = subprocess.run(full_command, shell=True, stdout=subprocess.PIPE, @@ -180,7 +180,7 @@ def load_results(self, *args): elif len(args) == 1: data_folder_name = args[0] else: - raise InputError("load_results can be caled with 0 or 1 arguments") + raise InputError("load_results can be called with 0 or 1 arguments") if not os.path.isdir(data_folder_name): raise NameError("Given data directory does not exist.") From cfa209a9ea2979bf114e139f87c80cd25ccf9d03 Mon Sep 17 00:00:00 2001 From: "Granroth, Garrett E" Date: Fri, 18 Oct 2019 18:26:05 -0400 Subject: [PATCH 054/403] add git ignore file for pyc files --- .gitignore | 1 + 1 file changed, 1 insertion(+) create mode 100644 .gitignore diff --git a/.gitignore b/.gitignore new file mode 100644 index 00000000..0d20b648 --- /dev/null +++ b/.gitignore @@ -0,0 +1 @@ +*.pyc From 52ad7ae45c4fcd179c609b147021c17aaeb44d39 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Thu, 12 Dec 2019 11:41:07 -0500 Subject: [PATCH 055/403] Bug fixes: Fixed bug where multiple include statements between components were not read correctly by instrument reader. Fixed bug where rotation would be printed in print_components() even if not specified, the print would be (0,0,0) ABSOLUTE which was never actually used. Unit tests were updaed to account for removal of the print statement. --- mcstasscript/instr_reader/read_trace.py | 3 +- mcstasscript/interface/instr.py | 33 ++++++++++----- mcstasscript/tests/test_Instr.py | 53 ++++++++----------------- 3 files changed, 41 insertions(+), 48 deletions(-) diff --git a/mcstasscript/instr_reader/read_trace.py b/mcstasscript/instr_reader/read_trace.py index fd61e4c1..93a37be8 100644 --- a/mcstasscript/instr_reader/read_trace.py +++ b/mcstasscript/instr_reader/read_trace.py @@ -67,7 +67,8 @@ def read_trace_line(self, line): if line.strip().startswith("%include") or line.strip().startswith("#include"): # Handle include statement and attatch it to a component if self.current_component != None: - self.current_component.set_c_code_after(line) + c_code_after = self.current_component.c_code_after + line + "\n" + self.current_component.set_c_code_after(c_code_after) else: # If the include statement is before the first component, # it is saved and attatched to the next component diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 95473f50..187edb1f 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -1198,9 +1198,12 @@ def coordinates_to_string(data): p_ROTATED_RELATIVE = str(component.ROTATED_relative) - print(p_name, p_comp_name, - "AT", p_AT, p_AT_RELATIVE, - "ROTATED", p_ROTATED, p_ROTATED_RELATIVE) + if component.ROTATED_specified: + print(p_name, p_comp_name, + "AT", p_AT, p_AT_RELATIVE, + "ROTATED", p_ROTATED, p_ROTATED_RELATIVE) + else: + print(p_name, p_comp_name, "AT", p_AT, p_AT_RELATIVE) elif n_lines == 2: for component in self.component_list: @@ -1228,11 +1231,15 @@ def coordinates_to_string(data): + ROTATED_pad) p_ROTATED_RELATIVE = str(component.ROTATED_relative) - - print(p_name, p_comp_name, - "AT ", p_AT, p_AT_RELATIVE, "\n", - p_ROTATED_align, "ROTATED", - p_ROTATED, p_ROTATED_RELATIVE) + + if component.ROTATED_specified: + print(p_name, p_comp_name, + "AT ", p_AT, p_AT_RELATIVE, "\n", + p_ROTATED_align, "ROTATED", + p_ROTATED, p_ROTATED_RELATIVE) + else: + print(p_name, p_comp_name, + "AT ", p_AT, p_AT_RELATIVE) elif n_lines == 3: for component in self.component_list: @@ -1250,9 +1257,13 @@ def coordinates_to_string(data): p_ROTATED_RELATIVE = str(component.ROTATED_relative) - print(p_name + " ", p_comp_name, "\n", - " AT ", p_AT, p_AT_RELATIVE, "\n", - " ROTATED", p_ROTATED, p_ROTATED_RELATIVE) + if component.ROTATED_specified: + print(p_name + " ", p_comp_name, "\n", + " AT ", p_AT, p_AT_RELATIVE, "\n", + " ROTATED", p_ROTATED, p_ROTATED_RELATIVE) + else: + print(p_name + " ", p_comp_name, "\n", + " AT ", p_AT, p_AT_RELATIVE) def write_c_files(self): """ diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index 530b16f3..c3310c86 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -1071,18 +1071,15 @@ class for each component and aligns the data for display output = mock_stdout.getvalue().split("\n") expected = ("first_component test_for_reading" - + " AT (0, 0, 0) ABSOLUTE" - + " ROTATED (0, 0, 0) ABSOLUTE") + + " AT (0, 0, 0) ABSOLUTE") self.assertEqual(output[0], expected) expected = ("second_component test_for_reading" - + " AT (0, 0, 0) ABSOLUTE" - + " ROTATED (0, 0, 0) ABSOLUTE") + + " AT (0, 0, 0) ABSOLUTE") self.assertEqual(output[1], expected) expected = ("third_component test_for_reading" - + " AT (0, 0, 0) ABSOLUTE" - + " ROTATED (0, 0, 0) ABSOLUTE") + + " AT (0, 0, 0) ABSOLUTE") self.assertEqual(output[2], expected) @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) @@ -1108,8 +1105,7 @@ class for each component and aligns the data for display output = mock_stdout.getvalue().split("\n") expected = ("first_component test_for_reading" - + " AT (-0.1, 12, dist) RELATIVE home" - + " ROTATED (0, 0, 0) ABSOLUTE") + + " AT (-0.1, 12, dist) RELATIVE home") self.assertEqual(output[0], expected) expected = ("second_component test_for_reading" @@ -1118,8 +1114,7 @@ class for each component and aligns the data for display self.assertEqual(output[1], expected) expected = ("third_component test_name" - + " AT (0, 0, 0) ABSOLUTE" - + " ROTATED (0, 0, 0) ABSOLUTE") + + " AT (0, 0, 0) ABSOLUTE ") self.assertEqual(output[2], expected) @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) @@ -1147,28 +1142,20 @@ class for each component and aligns the data for display output = mock_stdout.getvalue().split("\n") expected = ("first_component test_for_reading" - + " AT (-0.1, 12, dist) RELATIVE home ") + + " AT (-0.1, 12, dist) RELATIVE home") self.assertEqual(output[0], expected) - expected = (" " - + " ROTATED (0, 0, 0) ABSOLUTE") - self.assertEqual(output[1], expected) - expected = ("second_component test_for_reading" + " AT (0, 0, 0) ABSOLUTE ") - self.assertEqual(output[2], expected) + self.assertEqual(output[1], expected) expected = (" " + " ROTATED (-4, 0.001, theta) RELATIVE etc") - self.assertEqual(output[3], expected) + self.assertEqual(output[2], expected) expected = ("third_component test_name " - + " AT (0, 0, 0) ABSOLUTE ") - self.assertEqual(output[4], expected) - - expected = (" " - + " ROTATED (0, 0, 0) ABSOLUTE") - self.assertEqual(output[5], expected) + + " AT (0, 0, 0) ABSOLUTE ") + self.assertEqual(output[3], expected) @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_print_components_complex_3lines(self, mock_stdout): @@ -1204,12 +1191,9 @@ class for each component and aligns the data for display + " ") self.assertEqual(output[0], expected) - expected = (" AT (-0.1, 12, dist) RELATIVE home ") + expected = (" AT (-0.1, 12, dist) RELATIVE home") self.assertEqual(output[1], expected) - expected = (" ROTATED (0, 0, 0) ABSOLUTE") - self.assertEqual(output[2], expected) - expected = (bcolors.BOLD + "second_component" + bcolors.ENDC @@ -1218,13 +1202,13 @@ class for each component and aligns the data for display + "test_for_reading" + bcolors.ENDC + " ") - self.assertEqual(output[3], expected) + self.assertEqual(output[2], expected) expected = (" AT (0, 0, 0) ABSOLUTE ") - self.assertEqual(output[4], expected) + self.assertEqual(output[3], expected) expected = (" ROTATED (-4, 0.001, theta) RELATIVE etc") - self.assertEqual(output[5], expected) + self.assertEqual(output[4], expected) expected = (bcolors.BOLD + "third_component" @@ -1234,13 +1218,10 @@ class for each component and aligns the data for display + "test_name" + bcolors.ENDC + " ") - self.assertEqual(output[6], expected) - - expected = (" AT (0, 0, 0) ABSOLUTE ") - self.assertEqual(output[7], expected) + self.assertEqual(output[5], expected) - expected = (" ROTATED (0, 0, 0) ABSOLUTE") - self.assertEqual(output[8], expected) + expected = (" AT (0, 0, 0) ABSOLUTE") + self.assertEqual(output[6], expected) @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) @unittest.mock.patch('__main__.__builtins__.open', From d6a42cfbcc67f175dbff1486ee5d6857812ae96c Mon Sep 17 00:00:00 2001 From: "Granroth, Garrett E" Date: Tue, 17 Dec 2019 18:16:22 -0500 Subject: [PATCH 056/403] updated to read parameters from mccode.sim file --- mcstasscript/helper/managed_mcrun.py | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index 5308ce5f..0c096def 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -223,6 +223,11 @@ def load_results(self, *args): current_object = McStasMetaData() # Start recording data to metadata object in_data = True + + if "Param" in lines: + parm_lst=lines.split(':')[1].split('=') + self.parameters[parm_lst[0]]=parm_lst[1] + # Close mccode.sim f.close() From 9b442a78159075ede9f22d9a18914fce32d4447a Mon Sep 17 00:00:00 2001 From: "Granroth, Garrett E" Date: Wed, 18 Dec 2019 17:43:37 -0500 Subject: [PATCH 057/403] fixed so it only reads the parameters if it is in the simulation section --- mcstasscript/helper/managed_mcrun.py | 17 +++++++++++++---- 1 file changed, 13 insertions(+), 4 deletions(-) diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index 0c096def..5e5dbffa 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -198,6 +198,7 @@ def load_results(self, *args): # Loop that reads mccode.sim sections metadata_list = [] in_data = False + in_sim = False for lines in f: # Could read other details about run @@ -210,6 +211,12 @@ def load_results(self, *args): metadata_list.append(current_object) # Stop reading data in_data = False + if in_sim: + if "Param" in lines: + print(lines) + parm_lst=lines.split(':')[1].split('=') + #print(parm_lst) + self.parameters[parm_lst[0]]=parm_lst[1] if in_data: # This line contains info to be added to metadata @@ -223,10 +230,12 @@ def load_results(self, *args): current_object = McStasMetaData() # Start recording data to metadata object in_data = True - - if "Param" in lines: - parm_lst=lines.split(':')[1].split('=') - self.parameters[parm_lst[0]]=parm_lst[1] + + if 'begin simulation:' in lines: + in_sim = True + if 'end simulation:' in lines: + in_sim = False + # Close mccode.sim From 7e69e57d72675e3e6e60ec1d511b965ab32a58b6 Mon Sep 17 00:00:00 2001 From: "Granroth, Garrett E" Date: Wed, 18 Dec 2019 17:45:39 -0500 Subject: [PATCH 058/403] remove debug print --- mcstasscript/helper/managed_mcrun.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index 5e5dbffa..78888223 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -213,7 +213,7 @@ def load_results(self, *args): in_data = False if in_sim: if "Param" in lines: - print(lines) + #print(lines) parm_lst=lines.split(':')[1].split('=') #print(parm_lst) self.parameters[parm_lst[0]]=parm_lst[1] From 4b93a51b6b3450d1ca5f120efeaa7e1b61f41490 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Wed, 22 Jan 2020 12:57:36 +0100 Subject: [PATCH 059/403] Added developer documentation as pdf document. The purpose is to bring new developers up to speed on where to locate different parts of the code, and how it fits together. --- McStasScript_developer_documentation.pdf | Bin 0 -> 186372 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 McStasScript_developer_documentation.pdf diff --git a/McStasScript_developer_documentation.pdf b/McStasScript_developer_documentation.pdf new file mode 100644 index 0000000000000000000000000000000000000000..177725cf2dc7946e1d7ca1f1c0525e581b28ab3f GIT binary patch literal 186372 zcmeFYRd6Itm!>IZW-O(cnVFeYDls!NGee1)nVCw=%*@PGVrFUd_21pwGds36SGyP6 zVU`x=9>*iXpOa?qo1Vu>6-2~n8R=MINV}i%KVg_S01NDgSm&X z5rFZ#1z_Z0V`gUp&`SU`0Zfd{EC5DMW`H(;ULL^w-75;&G44_w2GB)|1hOv#QlNo^X`$fgft(=S|4jm!<5Y#jiMOyBbY(5rrfU<5FK zf4(V5+87zT{X>T18xF(2dQ5BqObp*Iq6DB*wx<6@>i_K~|MB$yt<3%eu(SN*92lAYu@?W*WJU(| z|5>T@^uA?k2g*=SUk^#j1j)z`gdqc)WUPm&PEfDYtvTaa7y?492tMFTCA~V51-c^j zJblZLWXca{Lt&zaA;Le$U+}O3!F66LMz#o8+c7~lMSZKz3P{?5iGl2f$qygkf(u0b ziaq*&SFUeE^MCmuK^q%eC&z!Zp7US&&G_ve{=vq``A?YAKUyzrYvW{W^Bu*^{4aj8 z-(Epq$o3yc@XsJtPF6Z5b~XS93nSe(^zRYh7UO%sf1*?}cC>YNF#IP4->&N4lJYOQ z{}BJLX#ctR|A_YAX)>{}{G0pw58>CDR9|;k7en!0R^36a)DTMT-L##$B(qdKH&b1c zrkVnk5JDLP^z5KW`sO&cK@w5SH_9bZCqdfVM5Se4&NnNbY`W(?ZHhjpJ!WJ?jN8io zU1gB?nc>FXoGsZ8U|$-y!b4-bwQ<>!|7^c_P(xT=@8XNBa7NScRsCqIFVkh+)NeE? zS$^qit9mWpRH?|Z-7>hEV75mZEIZtCM;@qaj*bV=F%WX6v;*rJgxZ$-RHo-yyc9JL zor)e+Sz{bV2&-Rs{;*u9F9n=Z@1MXt$8 zUq{3!3Sg`fJ9|Pi(&(Q_XA1aZU3h|q1p_%fU5|XN+4~We1bs$?HwBe&B-VFO;v-A4 zn?5|`N|u2PP0Z+Qfl4hGZn{EY=hoa~Qs7NYK8V9aY3GM<>*8Q zTU6|D6!(w}5bO~jifw{2(&QCjbIeKv)kR!kM}F#gFQ0%FwcwZd@a2{9$M?7=kI=}n zjP3sHGZmP%n8K7ayP~B9*0(Xzk!I=@8#4e=V zm{+jRV0mzL*0mN_#1oS{J4uo%9a|o(`}^dqd3%I4dn8F1RQBb<6?P&}i0UU$WZH)7 z71V`dCi)Oe&)*9;0wS@`Q4VRqiNCd|Kl6%U&Mo~>altayX~nY*#`}wnD=-LRku*eh zbxXDAsNXQc@%E7#_cxl_&ZTs7u_VSVZx;ABjwnyX8LrWD($hsx!(ME&}=`&ICr z6VtROVMBKDqAAVA;pc=+Ue?d-aveJJOqXEux~eP=g4X*q+$lk^16a%a>GRr`1!4|E zm}{j@AlvApc8~YrKkh}vjuv`k(18?_rt7T)!~NHPZ*QxAT$RYyUOc9#9=;J&f3-nW z41LLed=6jH%k!LJJN`+7o?uh~GbMJjl8q&SP!~obvq9BvuJtPOoiZ05y=6?Whgc*ya^?R8W}}6isK}Vu-0*%)s7nAj%2vA zkcZa%X`j@CwnMM0D3VvxI`IQX@l5A%NSvgWv-3j2i~V6pR*UzeWvuG!b@Pdcq?kie zDU&O2IaVa`ZK}+AFhyk06qIav0rq(KB)IGK#tY-O+kjRduTT@h0PhXOis|&qBoIUu z_m?`JFx6(4Q6xuY6_w<}bsiSnTEV0tkhIZxYheHOr2W&p=2%HAnk0A^QiKPg3`oe- zwPs4}jer7$Y3_>cTe#jZUIUE1C8^f;-0YedR?SUJ9uuEIO!oE|Af6`vwiG!SVW#xz zEjLD&Aha?Z{+!vt@27`bGDch6&l61jl>$j3+X;J*C2?=u^DA_`hq4!lcXSTGXN0FW z9c(NMco{rKVZ|L3{6X5yugGm%%qAJgBV0^t^7|lTRrg@x9!A3dZ0pPCE>fnq;&%bK z&B0?TSKCV8wk6z#?BA0{Fg21wQDn6@y!%jdM?37VCY&jz#62>5Mp&^d&s`#^#k(I| z1<@j$p3zkxm}xXUHrukU@l%I5crd~;J#*dbulBTQC>?0_p)@u-=(UgezxyE&orT%`S?w*gzZAtm zepG(hRqcPBDgd9$*=N|2t+8VeF3Gkk!m5W5huR#_{9eXR{i@Owz#Q?$ni7H$9Yc}6 zIlo0tf5R#9F|QLF);fTthZ8n3>60A2pN%JPQk7S2d|YVYPcV{^{PS!@VNngBM%`hQ z)(;xm{Id}|4+ukT{@N30ZCT+OWv62`(G`Y%S{8!iJ+S^u6ZerXQ5>mAPCvz?xezr^ zXqN{*6QKn!gw@6)d7EZLQe z;2JfLc2~a8_$z(MesYV5F>al7)I*c#AtoYU7+pg!FQff9dR|*q-aIW)OB5 zbLR8oXfFj86cmwnAJ~wR%5%xhKGkEL_lL9)yJTX0jJ?iMg3 z?XRGleI%{%H`w@e5{h~_gq@`b89zT57p4y17OUY>v<=*;!{$~J!}X9b zLe(H{dzechx*P;1^tZ5wdzgHjr2&n*)Tlz|Mbucy?>NeM`tK8yp$w67 zB2Fv=^QJ-_sG`@TZaV{x7Cih}7Lw5`*ZFWWl2xi{+wjCh5l22Ucd?v3tWvjrH+jYA z0hhoJ$&XrOsgvlCec{yIigOij@1ULJKO%%VPWdCA1}f~+aR;ANAG38~w}HU&B6BO? z#W)$p6?<89a01ZbX@TJtCLsh|WurHC@cG55M#%2sYU+^Z<3h=zTgE#cWx^K%NF2C; z*nFQ(A7p-0@tU-t+4te~C52bH1bLZ{xDhpq8?2bpW$a@r{^;hwn1zhYlYcvCSY>MK ze3u^_Z+0_dgHtrw>7?A@o`{SWijlfM>KQcz|P0|ddKL1 zVwIP6cED>J9P8>E9Es*<%>1=3{CzXx%$@wE=m1b^JG#K}Qv#05m>G$!XVRHWU~md{ z4Ul$rz#LmpcGobq4WJyWt1r5#pI}0n;6O@8mjG!$CTam-5QsLwyo3;5XQtp1TQ&Xq z`;|CQCpf5IU`|fT%d~@E3+N2Ckv;+hMMnD?5WbGfABJW~Ga(uQ0o9tX{9Md>duL}f zJ;S@}Yduz1JN;k|%?JhtP#%G5HX!(1*qK#)Gw5e+27$p1;Ahp|$`KYITHM%iT^HG~ zq>9j1W~6I_T1a)EUOIZ}jh?e63XaR|EZUadFY{`2jQo z4RrsfR{u@5=I{^-?A^uTovmAW=j;N?9!#wh4fq~h9az^Vwo`jz(;rCHls&iRsT=<* zDwdN2C>a2&+M}7v3KjW|_!fa}_JHZb>17&A-V^&Fnu!PWxSjLGgWWwcjsnv3^h*9d z{Zc>r`|LM01=Gi`Pv24!5MWY72{;`N6u2CL)DHf#M?gYpk6 zaNz5&q;u(%PuIRn-$@9+&#PU1pm+8Zm;=#20ze=9IP3<;`ps@Hd(U4gTsu$kUl~2V z4e#A7pZuut_6^Nn^F*)woiF?wM+gAVnr=`Xmb0VRd|%^{aWua#(^9(Yr)Q9pB>!Xp zd+66`k}Iok8mN8kLqzhI4e^L5!~yglWzbfQm3PwQ?zM^!&yjOMyUr%ax9FAT1!dn>;e%7`|s?b#((a?L#y_lZWTqlcgyB z0rU8rW$=qahqL$I1?osVhOG_YApYW0)X@RTxV4=p7#IfEn}0{#^Sw#?3Va5(!uS&G zb~J8y$2Zc@-Y-odVSZ{eZm%UOE5r$D>!?@$JQ=8tLAFP1^4Uu=`EE z=w1h}9_n7h`%OORUKG*$~M^!1|>WE!}maMUVW5EP%voguJ~f)__+LC7;^HuDP|71TW|6z z(Dydn?ngbAo>F{q;WM^>eSMxr5seAIut-I79lg*?pLcu+=9T(v~PC2QlW0-&~Ae&gNBEa(5I^tFEQ&ReVjwP#_W*h z7c*?Cjkd$!qdLGM5F?_eQkcm&hq(7xkEV7ZmcZAs7Mb+`>E{yb(uI8PBhKzhFi)`( zi2SU^EvG+QrQP_OD+eO^@_W$Y24;TeZ^ZOu=6YP8vLwcj6KkL~3eV%U`q3Nc&e zkG18ssc?RA1l%tqc>0^U_P=qm8{B(h2V^qD_a_+aRiQ4Lt~Ous+;&&LXC22)+Pt&4 zJK~hLh$oS)IV34mf7^a4=SV~PPV-vYmA@)xM?MhV12eVaq4lC9`T%j{l$NzrHB12Tfv((nr94dPi4mj{4pOk@S4kt0i z5Svn`qU`?_BdSKpKYjBcU+Auk?J2}+gI~{}-^?`0pHr?IatfEmo5ib^kh<=?X_B@Y)6F&8blDfuhR18`HIe+?FVBlfCrPLtYH`_IGiYt?P|=DO8&et%J3*a02$^;f#5!!Gf!IfYjCa5@7+@+V zqM$g|a2jfy9G*WnCmtV6-JA_~tlz^|9X`Pd7bWOwDoXZ9Jo#(+Pzeua z3yIgR^nRO$-;8Y_q-T`vp>;4k({Qs_cHO*_|Kewy;4IQHWI0~>mlJi%t2I9F5M#D} zqim(3I{UA*Yc+Yz2QbyvEMhkrEx??wvHjd$uMK_9<*KqF%2HnlJ|5q2N8O4lDfZAHy#l;r$bjhE2dX`m!T`@bo&hVxYG4a z8SGJ+;v$u1Kpuver_`KOdQ9UFS)G(kPispBm&bj3v#}pa#L*%b&I@X#V9^kH#7VO2 zR6H23pDDDW^AFeK^kbN+(tK-5ik4~Uj{RA-i!<}#6d3huyZ7%lqNfUpLbb1L_`3^BLqSG2M%y4Q=bWhY zSFc!?S%1z1;lheTqj)J!5-uigiN$UGI}@MAbJ@w=uj+NvPJ4a$k(Ww!=)Rc7OpB~_ z&U{3Z1r95stMsi~x;b2W-zUm{sGEe% z!9okBQWAvHR)UML$FQ*%=2GAyDuXX@v5r|)^QLSedDphj$ahIsE6%1o82Lc3fmRhV zb3LQ2NU``Em`Q^@3lPF`3aj!bXUla>&fZRg;32(+_0u>TVVRTsgNktMSH=WriiM+r zZiw#1mHBUgpY$l2KA{iqF$Bo`>!5L=l9f_AP8J?Jz_8=*iqC=OUea zPG6@5J27UTd4@f>}IrK`A2u(APg{iI_n>jmh68;`%JPa2#w{_Dw)ka2R26J@v5(kXk2*P8%y1#VfO12lkq8`5?ch7>X$rVrjH)j&L+ln z1C9HXDn9OSmv2$-8b!ixv?r=LWlHp46~jJx621vw^HiWPSu4j}GDv~IHprAYh;Dc> z>%FKxTeFQnFEZCU>Rw*wgw-~ZiM*nAz(qr8@Sd3j8yoUzsjXci_G8J~4zRFd?^}A1 z_{~11B?x|s7iQ3TJ<9rR+HI4NW6#Z3@lXJDsBMxyPBDM2$Y2xtzp-D~u?n8&7NEc1 zual$EFKu3`rZ%XEaEUsKT+`y>k&ZC<3kFNGWEi=(g-0W=Y@J7sBs(q`s3+QkM1GXt zob#jmjTenh3i57JasC}}!9{=5_izsbeymb`{r;BV77k*U7-mwH%ng7akRhQjp z(lSzylnTBZZ|;=>Orh!E)=QG0t1a@Q zn2+4^xc(kJ`N<5)^Tb#)n$en9U*or2nC{`TQ%ct%Ox|xTDMz4qZjF$3s1K1OHab~g zHdINeCz}}kuN34ivof$`?OL`_tDo5@W9kb73TYE#1;0-|cT~Ax6_tLblJ#@C{?UX* zr0uP9Z8G#gmIYXfsq@_K?<`Mx?wqJRLn&CknTKd6xdf&PIs!P)0c;fD4M`2Grxce7 zhMJBIhWk>+N0sU>M5{`R{tV}ddygg&V2|!f=vdjht+q#=OE-|xg)d#~WTCbA$@2FKpH3*$miB6~c!4V{?B(t{DUhmz zTSR23dH3tU5NX5^z#R2&f3)g~C}gJ7W0lh*Yd(Is7#8yXWzb2fGAv09DpBiEQDyDb z?E(B|54)c%BDUnh~{P?6(Ol8pR~4A zU(~T3efss=Xj#G`23v61UKhEq%&0_ICQ?PyAs)m+8qwt&T?De+wz%tAg;2T|&%g&mc6 zp6<@RMKQP#%Yy)x0ZQS#V&Ox)8PF*&rvXY_{Wye!yy>(ux}*F=7Pb|>psj|kU zScWdWdtDIwTORR)bdI{-=$7<3A!SN4_PCkv?yD2nLvLOw*4(BlRf6)A2#nY z#9hgIJdsa{rj6-a+!kq03C7`Qp`4I;TCWc;iu{aIeiALwU|g}2)6~4K*Sdg*oO?XZ zrx1D~!0n&hpoBWeicYloeGjFFdnEukGRBzFd=Y9$0FfLcjPvWe$l!^~WU<=2V4SSD zbNJDw)NwOUBOnjzE|)Bau?)juI8<$N4mZ1Y-nUe==eA)InkpvwYm*f?PC=O9kZK>d zr4Bfmq{OX1Y5+$kYF&a@G_5>r$Ts4ysV~c31?b{@K`v2vy$)#pQVUH&Zv>q%T7xrE z+JM6z`higfJ5{PoM5PnJoHu*TTmr{g59c$RGiA3b_XTc~lu%FxUzgl%fDnhhtugK9 z>~8wPo60DZRj7U(Jwv3W88J=woCQ&>!F6j?n70ACq%kd(yW5hAO<11T(=M2X(3YW6v7$8S5k*C7R{U32c0IHIoM6d zw+({0xr_OBaxNB#*88Uj_;PNqYcv~ak@iBFd3 z%SK#UDZX6EV7|pjwA?a!q@M?nTolO-Su^1m4@52h9>kI7PM1WHW(d`Eowz@ihd|lmx7Q;nN6nTE^+^syIv11 z5K{4pD8MH2@xrGS?iu!Iz!4tTC&Up;ijqfeBqD^<^}J!JZ8VDfYC)o7fFmD=?6Qn? zkXq&P^Hrehqs;lmuk04Vnf=Q;KZ$ofY|Ya0!4jpVSl(NGPH@=1QUshKgvx5FNgkQL z#;`R#9B+Iw?Z>Ae&VjmJ4E?g?0G#TgFw&sHhDdjgX=ybsh3>29MxKAw)_b<23f1WB zIX1n%oAsY7)@P5ml`DrRLEi#@+c_y<{Q??+@>$tnnZn#O(`M)-N_$4S$y15m& z!cI7Ee-+w-9{<=~|5>luTXkQ#Ui6N(y7zu-=`dJJevnXGa8n4ASj*NC7n^N>gs3qW zJXdDpRLuZ6mA#h%eBp#0SBjzb2^+t(Miz7PMOvgz-0gTv3+q z$O;hu`NN{}*zD!F1g%(}RbkpAl!~j}uoZpUY-a%s0#zb-jIm+NiUmjJMEuH(&qpXE}O-eMnY_GCSlL6p-;Kr3fM)(bM~;#%WnV@#_z{bq02 z6NNZULbTNXsbr{eI!GIra_j_d3^DV~A<57q zLYC6gAlq@U4kPMyu$G#iM!v_Dt`H1W%Uad_?G5(guAoh{3zi1r8u7!2Z>Bxf5h}DG zC@k}jio|_kubFhav3qNI$OB03d{<-h{__;BPi zWTTGTIr4TZ=SAsTX1Uh7h;W*=Wr??$RU+8@G-wMuLTt8toWzoMQP{RMofDG-OfKS`~2=fVj0rfj@@O1TA zOO}~oG|v9wK_FtR6Y#T|EE_5B%ZU<|yi0G!DyNC=89pbN-31e`k7+bZ8Zk4c6Et_c zGNN<=A6a7pNzD*v$zBx-j#;SO>50(+uMd8UR0b-t>kVW1Ve31u)?tssO8Tn)iLqql zwQ7!zJ%&zx2HS+g^aJoi5r>eHMM-nuK}L4B5$k7_!#iM;Tp=vrHjo=)8Gj_Q#l zH*1iWIqhpOYC^EtcCgPK(rVLE)@^lpX$0`;*L-R-fzqZ|lf>1eroz*dp$rK)Zq6Vt{yDlThbLBh&aZsx&(xspho5GJ^tZe%Xoxcha z!9d{Lac&V+HN0nr!O#zJ`PCe!z4!NX8J6?nhGz4t(ee&Kaw|&*uNaghoCvfUc#(@& zSTr8e_H7CJx$<+7hS~nokv=wE&8yze@zPGMqcpt46gH>t`V0VZvpf+Jjw!q94Gz5F zI0YfCBuhfJm_>tiZ`}^Vpyc%S!|>qR7OA4Kz+)ZAyP!?n#+u%cA@FNPHagD8n=PVm zW*m&CjgELYP2?O&L=IZ-n^-gBvCl1yCtE{AE*USt9La|{7`c-YowJKhL1(YR$Qi8e z3)F3@9p*LO1Sw)MtuxN~If2{d zd?30PXGo~-iS>4YiC1^}QIS*p^ZA}z1=i>MCcwFXPGP;Z!ea#sU6V40e-j7Uu4I8E z_m2lVhEl>-e*)Q3=t$&7A>SmmuUKP@@*%t zl<_2WpVjD@HaOkuvtwf^{e?T7;#3ZQp5K8L)x#pT%(3YYMRH9J5Q(I&1n-j&vbwl} z-S{ZjC21R|Q|U=ki=$mhV0^pJ#DXZ_FB8@98bY&TPv$zV@Elrs|bt--qWA#>fa4hT=XrVRb;eP4GK8P>;xtSxZ2OV%q7iCuAVU{8{bKqv@5(HgDX} z{0rEkY;vVJJzs0KZmg?ILtqyRyXq6%4++%fd+>)W3d2Tu`Ke-G1qf#uOl9UEcw1#= z$oi%xHpwuS4(jMs*FHM(h=?PSu^l)r0_j>dkA^g+$7Qe~j2ltEl9&xuQak<*D^#xi zkpUV~x}lvEj|);9j$t+T{*mDfIyEHoOFGi^a~7XxM{NCeI4{&q=7sKRB;jD4JYo!= zxTHFFMo{`OJpbX|DP(8jRgtUPFV;-3wDFghj#TUP2ZR{k2}3J$?(Ie1BhKc5W7p3H z={eU_s6q0V!QDoP6rPcQ9)G*W{~9*~@kY%UT=P`|`aV@^zB9DuzlKpU~TkteTIC zXkt#=v$>Vi)U!Y3+p$~wd*^8oZSl!F=U>l?uC@$RQXNU8Y@~U9C+m^Nn#J+~&MfhC zyQ_X{(o5%7rddgTn!LS4*$1{Cvz zUCKD7#g$0^^n>Tm4x~V^H>Ec}t72>w80VxdH*D0EV6a|{Le4LM7gw+}P~sa`_3=2K zc}-N~I^oD^6Kgs@fzt3!H-HVVj1q*wbY2x`)isK$td*00QvD2zz1$2Dpe>k*L3K+T zP0xYzMb2s+rl`A&%Q z^0-_2E6CUE7<;47Jz87yhd})Mnv<>6pzl4On6RB0yvg(98#JH1$6>n3NQ#=CmXAkJ zki=S1LeKKqn64YK*Y-|y?BXd)a|96vi*sP{6cAa4n^A^}B1SnRDvNlBHCF0_rN7Fj zlcB`Yc7XZ#k93tP-v4)-p$ktKTnAzwBFG@}a~Cep6eNw(CZy80Wj zVV95g|Dce6jFpW9rB`yZ-<20=aOl{+9+30Ykd^s7yrjLnvP1r9O1-i)jP?<_{n^zk zigPgueb8lRR8k?`WpCELpvgbe^!hm8H|uL1-#INZ^cB)IrKTieH*_sh#u_yCdLf(e z5UCSjUmxclSkL&eT-C){A)W6Rc;#w!a(hQUr$zqQ%=9{6V0b((|3ogGg1(J`Ev3L!<|j2_3`XzZ&*opFu9v*7qnt~7HW{Wz zXo4G2B6};$U*__gVIbT6J1BNz$&(cuA7CXt^9c7ijTE&;2^q%9r2`QspqT8>6^me3 z_dMD=S75e73~-IS=^NcMio|xWy#Pu0c*aG_Mgk>N>YDpCUI*7wfOG3ICvSEOZ?MU0 zy(xbnj0r3m>%f1OhJA14VEf*+_^(Q_|5_Wy$il+-Kkc;8iShtf&@!K=Ll6Y% zg+_vazr2*QgU0ak>)qTWHH#Jar&tWk_4{b{t#9AH^!e)i^|YisnR$HS)Bbka+%CV! zDJ)lcohCOjqd`DoV|^$vEHXU;j}(WlVrl@vz*IlO%)~?-pFo|#rRMk95G_#+Q{TYe z*tGYV5)y_FbpoV=3eM$+Zd_Fbq!f(-M1}!`%FT`n$xck{mlhWXYxNgV)RNoAk78zY z0SO?D7+c>2vPv8up|;+#mWGqT;rH==j3Qtz0Is*Ux0m~2$Sp8}Vq|Io^ao@F1YbrV zSuX}c0Jg`}67*+m;F)h)?g6X4UG1)ko}G(JF{H-YyyiOg-OpK&Oj Sr-nY!>PW z(sc%t0D>9xYXlQ75vRcFz{00|uc;+5q-icb6p&6W11pgFYG5;m26n(XklvNwbUYJ~ zJ8tY^&KQ#~)eOj|6oOxP_NlF-@5QI}$im;4NdZt$OKIHPq>8d6#-5P{5U^Oxlss2E z`&@9KDmY(i5Zd#q-d&(9zhVpl@7g|sJW$|0q2E9N4oTme2KHL!M*G^5X7WLZq3#&NbEEXY@Cl`{S&kPTmxf^ zGpKkp@b@xM9ieyANvs1PJwqd-1HEGqKPzAWCMasiHbSDdwSeEYQ1SM-9zymd+Y%cP zF#~*TNf|QKd*F!;q7w)(-Z`FN_T?AGJG+pP0SHz)4hPV^;83wj*q0h4ePHD0z|LJW zvoo+6QvhrtbkFnK-BS`f&t3Ng1(58Q!RT|0z9coVCD3xtZou7rPHfhv6%x>)F0Baov#qAX z(#{w-FvS<86RjAV80a95h@58$)j_k#tthPW1 zOfdoknQ!uV&grk0O*4#Q6#%%U=lpg7xWF*j58^LcQ1%LcPB*WWK+9W1WT*|EuPjSO zYEaAmZSA3nAq1ecRbXvo>|W8ai6IC(Q;_BY!jZ!mDhP&|?=1OQ1N9v60E;cTgmud& zW`XtqZaq)s2cY$kK5*@8fv`xv1odQBeUUKz1V3#DMxpc+o*@}Qu@XN8^{8{c1S@xh zzT^C@LB7MTUcUgfkb&K^R~rmipRi28SOUJn49+3^F^BvzsaU;&@4XL*20QlCdPc7? zd>mxNKkXVm#it%MZ7$57YCiPP_k9KJHpspLtbjs%Cm0z6zJKmW!xS5T(nB2?-_S#m znYYO^Y5xHJs)&TgyEyOZe~%Fat+pTNz9w)*KpFuz^5ft)wC+LGQ$e3`P$dkyl4<7c zW0&lzN)`}3=CfV?`+SYT7hTRXXuEhRMp4}jYi<5B@>avn|77)}whn@?g;J&NWp-bZ zUBld~9oyapuHBU7SfR8n;~E|~t9~bXxS=YvyoS?>*r*-NJ*0~GSTmR=lKWT}g>G?E zG(uRAdHpx{;rX0|yeO&@GS#j|*UQg?wAZrv77{xIry!_>6H~g>_64`$(AY zqSg851smq^PXZh^AO`JSFFCoW^n+uI-HYB2Q+3_p0&;WEIC_kPGN(XGTr-Q8mVbtP zT1+8^>tZn?kXo}Tw^A)$K0ZE_XszY>clQJ!TupTXm=@M5t8SYNdouOo$jo?{Mk6)L z=V43~UKtY;UmR6}kDmH3mG!-y{PR%MCHT+$sG@H{01V`OBxn0?A$t22@0#F3mvQMg zec?3{Zy|?$A&fuv<3$b0{d1f$yT|gA(PIK6L`CJ(lp@p@3>vtFPC|$1){9Q+R!zr? zq1;guZ;akzBrIM)&+RC0qz>La>gM+1*xw}+Ud~u2xNK$WUoFj1lyx%4b*I^pb1X*k zn|z|J&8jL!XCn@j%H_Qpa+8wS>E}h5Y^zh?7Ap8^1}$KmTHLQT z>UkGy`(A8b%k$ES3uTOC;|51{mBMg}w_{Ub^NA<)jhJ_b^UcP+Occunmoa2{$#1+u z5UoT z>HAQ;&t@7$%u)?xPxPh>m-VoxD#LMzAG$cr60syBCixZGyqOZeqHwwDFyRwOBVnbV z*e8P^xoEy^x{`JQ*SI`nL~5P5hE}axi-R*7l>7sNV+pu7NwMq0Ctf32&;dzMMbvVNMfkSc=c)Pu z%0}>0w~RH1gM`YEHW_;3;q{FM?3aEEvdR;bJx^T_dOap^NXzIiI;-c;IT25G9$H=0 zNxisoj_6(lX?E#BfDV0$JA3?S9Njr%rYQ4Lbu7Bj0u_UK`%=xPSakuWae3Ao4YMwD zoE67rtmni6kR{pdx%z=(vb(fx*krZL(K@Ls+og)L+;+c)`Fid0T7)3PYh~qDMnEGH zoB=VNwoh=NgFM(xW?zPq&q`|+SY%5Z*t0d*(h7!<96M4X3`i8(CF417_6s+Uk&e%r zypA!~pm!|Q`=QR&jA}=zUW?rx>D(!UGpLzZNx-fT!*-*HI$7G~Mob}-;L5Kd^dH*J zca~^5a8*!|VhD~l6lMY%m!iFK8UZ5c)k6s|UG?m{;=bL-V~%^w$Y(RZO3v-0VB*`Q z{Ynlza=If7N7(u^8uO<#z}6>11m7><)U`>ltA)-37i5j>HF?vQHWHgW$jEGdzK5pQ zAC$Pm{tYQ3^tz-6Yjk=CWBb5kw})qvjbZI{#4+zA(pl`pSbkb2%{!S4376sQ-+=2v z1Tr+xn9vzmBApJKX#P#iVtTDbQ-0~!#4!jJktQ5ozt#qih5%*ogNQ;xRWtn|YtJze zx-6Z;Hcwcsg`Hcj*#yqTa2}TO6DJ79Ot}(WjG5(@?Qfedeg}}%P5O2s%ZQsSlZZ+t zsz&$}fjW8+Ll<|(NwcSKn<*pu9o%)rqR3<;k3)OZ&%QQd;!LlACA4up=V7RKzx-St!IS>MKYzc*Q4ft|Vn!*iWvF04P@&`})c)nc;7rV!zklp46 zp@g01((+o{?q}_TXxIi7E4J=c;o~AUsgdW2@#FMs-C}tSaV^;&CTN9SSAJ@-dz=aR zv-Ki)gha7@o<_s?CrrcrVVQOJheZAf!Vo9na!wXa*}#u7D_NVt3h-_(Dr1>E384z; z01*dOWU^9W-t%A+Up#Edrx~pzCgitdv4dfsrnc$Rt$U)V>m_e-{6g7Ol?r1Iu}Ein zR;zR-J?>OJO7Pff2&_gEFXy69FT|InJF)>~p`=Z0HN@}+ITLmCgMo;n;=HgLV&=|q z3fEkt3@70ZiOJb33gT_1zLG26bLZQ_cAAGH^#OS$zmy9eObkiv)k(hYqm_9@F?t=B zsglyDAY$1zYZU0$1DEC(18TFh`CmVfj(qHqllJ3w3&kJuB6L{7{QO8AeaPj~X%G;Z zJ+EX9VEvK@+o>ph3|2o)%PHjU)(Yn=C9G^xn543%V+BdQ81EGS@V8ziRFo!LO}0;K zpitdSb9@$Aw!eoUGph1 zE*UooEON?7;`vgC7h1UAlN)l$eay9Xx%mmpPOw`a)F`O9mSvG`i$$a$`)4q=d-av~ zL{E@-)r9Y|(;NsN>X!nc*wL@A4DnI;GI$zj&vvH)O>83Yhu&Z8AI?0L!~z3JK6BUsuv;qr_JumEFWIPYdLT8{7lQ-V|ZO*&!0y=&p~K+~9TIkqced)w3rGSf6_Hkl38unklBL zbTcJL;BY76_;KMM5|B~bQ5+V257iV_r^%vy%&OQZwoit0LPzZXgRygl5=M!(blbLV z+qP}nwr$(CyZ^Rr+qP}KJHZ6A)(fVB3Mx8L)j@rGSHmsx;rdnBBV#h-GoL468~CXC zqz&I~=9r$O7Eg-alp=wlK4e?rasBKZ?D2fIQq?!F=rg8Q9*U+IN|Nawrq;zfmzCp19D=5tH6v3z!FwHnBRv|Urv1B&1 ze|#6M1WXP(c3S?V?GX(-L@Ckia zayh{?d83%5i3(wETsV>N{8Ci+TIm8p^^6GM>{xB( zJDT$pc%7G%0usVF63%BM7a`(d*J6YkkNHE(qrWuGx>FSDQ-p=anK`!)fTx ze$l!AOdXcNZPnbt`_x>${n-xG@SIV+Y@SA*zk(yo)(HL->pa(f65G>NfpIKDE?bOyfZ4yl6_^7iqol%YC{Hp}uG` zT%=Z6+qXo(>iFreQg1|KIp;gJQ_5y~bOB8C{sJ1`P9bK9``3Jom+`NMGLbJij6h># zC)rZ*ao!ew`(QiUKG`Bm0hZOOH_2-)sbkqKgPR0$qI%5(Ns`>bsdh%#-7^A~{NN+= z8h9S~!)*u4vvqd+;i%G?Y18=wUR@vJAvh!eH9Mbm8lM5%*xyr1seXAMB0A==3yNgo z>Q#8Kwc%I5|8O^=dKrCdMqvfcpekE|w`;BZg&Z=i70sMwIUcCjo@>w>S4yAJD0Lo_ ziZQ;>W$%Y`x+f$eLF22jNESS)D*wM6kKJOQn>Ii-^OwbB(cfA=m@nxB_jA5j+d4mI z^{E4j+%-M{?Ob8s3QE(HkI&?7Q9{p|a5m`8Bql98uM0^mk@SkQO=Es6iOy=*ya>H8 z)$YtKO4)5k$P~u# zb1}k0P!625bTPTmQl+qFmT^Sjk8hp;gL@iX5cHJ#rWSIHvfKvk>Kt$YyN#FbcBb&s zwFzCCyZp)|v|2(5$F=iGat5ZF;OQvILhdUx=w6EVJsB{b2}Ce zRdkj&8Wx-j;nU2%`;_gb>Me4rP%}G!X{@*|dngvAvGyw7chi*I(uHr4tee+x%~V6h znLQKxmjA{a0#lv~gK4Yw_nPy;i3asLjKvNgg-f>$wUf^{?5WJ4baRSUb96^d0$Rv& zFeHX5W=r_uQU_gxYp1!nNS8Ia1&KLHq*a7UA&G!SJ&>~Y!LHyd3tQzs)Mr%*)NsUog(vJzZU#&ui-g?zc80EZJd%12x>{^|=LYYlUBPz#B~ zj%1udIA`wOymUnO+LUT`?UBT&DSkJ^*c?6F=Wx&O@fE?eAkI1oq?5r&sC&ytOsad; z!Tl}z-LpkV1V13!XPR^U>z~|_tn66>UBdP{!btT7x0JuLyq0a%y8`JD?K#jR8MTc7 z9V^9Em>LoT7#E{&6SV1o{#&zlr(HuP?lPeCkO5&1<83J94Vs5^TXNts8F+S4SZJZy zyv>^}j4?k02)RywmvrjtJh)PH40-)UA{+!O$4tp=@OECXF|BoVCUZ^x9ra_m%&lB+Nicy3(Nirw*<5nY z)UcGRB{xg54wR3Ny0=1KNR%3RjV9uRfy%r0cY$H1@!E9iVZz55>0B{)@L1!1sJ;-W?;)cu`lB&VRi{GK3)kcHBacxC z1a#j!)n!VVu)ap|nTfU=J-!;*%2)>VOPc*%QNdo{-_?FEf`i^S}3j62p|gdN)wo%74vr0DlI!?jC|t$+b66ORn~H>RF8aTO`D=~uda zmTTXYkMn$fgeC`)#Qt3+5qM%>rOMdk(dq4QQz2Fm_e;bZ5>Lo#i6cq~Q$=?Hr&bNx zb6a*`06M>wf9Yr6ryiTULk|YEQ*Lfo5g|v9l^t>Z_YCMmQ-%M4OaX9p2s*{?R^|j#Q9=_|>dtdV6NN+|!1>=Gh?2Gr975Kff%6 z#o4TdTos2H9<{&-@^L$&et=(~X17>umdH|P%U#1W=~)%A;JpHeSs`7Us@BQee~x6_ zU)D4%B6X;i^vQ9Ix@(qQTsJJt7imh?D2Rm|meQRqJRBUZMmBhy_Ym|&O34eu(P@5J z9>+eIa9?%lwBi_jA@hT}R5EIey23WU?f)TYTN^rYjEtfTI4+8rKqlw%6)za}a(cI>BBy$YWGb~#Fe||(jHei6;Iq~qxdcL zeyd5@7L#gCtrJRj(vrsV5Hc$bsCoz-UZbuUHnN=>NAODdU}yuukWi(@^oH6e)x?#7 zss+zE$n4ASqq$+jAnLr*%ZKHPy5hY1oq0#gf*~CwFv)9>Oy0TX=i;~>(sjD3gwjO6 z25cRhmT#WKy0~mQ1^Q+%m%A!bSn05h^0&~MGEwA7Tg4GNjrqboH@Yrzs_>OXg{*@} zzkBWMW_vU-;KJ0&=P6Qnc9RC4Uij=hV32doxs!aFMq>ihD@u`(oMrPLgqf2^p}I== zvHn#RLY4NQq+O*;ij?IE;?ZOOS6`1LgkUR6>DHoL;7aUUEFVYHMp`3X;@+RUKWCRa zVL8Gn0P#xk_tBJ{9C!rfLd!tkeu$mi_?icBe{3Wc)9E2($*!=(kP%`T*+Qdf zx2EGw5hC}^Tr%D_EMG6oYk8Ku5hNPPdDr3!N;Tb;8fiMui8r+62C3vMxjeBQz8`D_N{g7@0qQe^ z?|F zWQXBIXcpuDkKnedmvCm^-ZDbbLLRG)3z5#6P+CCEw}n~Y)5C&sRe(`&Y3bhkw+BB% zQ{uNFtju*L#ukIY{}<|1V-2&If*jm_z=7VPvutJF~N(y_?!ar{nYqZF}6b z&F4{J&Pfv=eq5SORpk%-#fD;t=rp&i*n5Qj7~+7w6z2$i01UvHNpaUEyKZXBx#POf z-Q|WL0&g->m$I=j^II;ce$5lq8x0l8)>}W{A7WeC1j;9HJh?I^qeB!6rV4w3Ti;+9 zE>cDD<h3fj*t&1}396 zdBPg?XnH$owE?k7DyhDi0`NR}^w`zrI?PuUt@kud9($eHC8y^;)KtstRDBDo6RP>}Y8S^xz`MyYd#niSLGsXs!{YT8t32J7HucO1a+oju*oeBTOb>;_1fFaP zhkoQGcPSUgPRf!pmQ%p8pRBZ{lN?CocTN0BCD***@ z^?eT))Y$O^MQM+BeVN-Ipzm2oYDz4fBHf)K?92XQ)BVoH1f}uA4tdztzuywX@d!mE zJ3N(Gl&Z}q<`k`;9e0i*7#EY|rOb&@Rgmo@Lazeutzs(J<%}f_UNG|?3iLInF=i@L zmiSrDWDZLbG^hNsNIZ-DJ z!7FT-2WqKEF0VZ-joVtp^V zl1w^7P0Bl&ArfyM=UcojmnnITvl=w1ZKg)6g#H#&1%_90s=n>Ej`63)Lc+{z5?Ib# zln>SpvHVfZ%mT^j9PpET2(g3we}3*{+wKu+8#K%*oQK9fQ6pqxiMhh4tU4}*zY|ix z^^0dOBe{e!(gR~eb1yg&Yld;2MYwK~ zmTkLB@JQwRcGz_C_`D`F`?0z?mLnJNl$*EC_qvK97{1zUcIsTalzW3AxmI?+QS3E$ z$#B7K_rzE(Np>}zkq59-<^i|5>Cd&#Tz}5R186Ybb+`~en=*h5t@SD$SShkUVmKPJ z`^$6gp@36Zv@I(Bx*<32m8>n)Zrir2NA|1OuBXk-}%MY8p zVuMau!x}?&1BDndCTkQ;GdLMjJ5-a;z<0FkQdzJN+ODKAKgwI$EWS+HDI7l`2u!CdR}-{>WMb3Nv#hP zW$GA${%`e&zZzh{Ie22_30+|h6iP`HEfn%3kTLRij))R$-=TTPMbjXSGmKUg!-qO9 zpw?w7lXDjLi*=Fl<60V^+rpNRB$d=aP`x3-Lk0Cz3VW0a?&{&gmczYg0a}{%Iers7 zviGVA)B(Pw2XX5oe{5BD-sMuVu4}YmlxlhRpN1<3543*FZu~fFB~@w)FP9lf4*boi z&%lDOyK|F7dyPn-t2s>@{VSA60~}`*zrM7ySZ^A3=qpv{)$o|Q{m$DI+%A?>V@$~x zOT40DKEc*}R-UXFh&G)|9<-SDI_g6@dmn(9;=A(3v8=xD`~H-vEnL?p*}@XvHdF!N zw=uceN`1HD!&Ef0zF5cl>E^K{{J{)+6)8)2)V@1%GuzCDNf*|a3oW$hR&5%}736zE zQ;C%YJ|UqVL%83&*Gs~yBgO~HF^oHHcPNlhtiM!-tto79)?r7cXA9elf~SXYj^gMG z%gauLDRZC5eJQHo8Uq= ztS^J-D~7a@Tqh?O%hh_#t-Z>iPTxFu;*Ro+CYG(oC9>SyXn4%(%?n#w7uz@orjk#a zpaFiSkU@pNy+7^oKKzKsl-mjAY(!-+)gEQGFOsZqXS%7+0ZVW5W79>l7to zBm*X)$sYcb){6)k3(ihCIE{Z8LkW4@mU(1WSo>D3tAHiS)0H7dJ98H~A?T>&*?4gf z^CiB6^C2$jF{I#nn8YvcEpy+ZSAwD$>N4hP;_2LYcL^u!6;?QLl2S#^w&1fvUnt55 zz2d%a+kxY4|Bt$#;(nQg;N}WtUzQxsb$+g-e$(x)q(GqnVmxwf1F+T

6Sbk`QiIj>YvsxzzgIdM4j>?v zHtt0s1|wbQ)u^45cpuh$2aHGdZGq3!OE)O``zgTY?+tV~wMw(=bOmjs2d48DxaryC zu%%A#djZhHie+SoCLocb<{Tm$+BqAyB!18`Fh z*|ymsv%DJ_kaec+ZZe2fE5SB(v7q2x5MWtl{bf{-O8b| zi~{qo8d>D4p%e>VybbaPMm&wO7LkpySlkhr!D6^I+GCf_b!}OyZ$V{orAVWI<m`~d7a1-Lp}*8D45ZaE%9ESQmtOjN$dh%zNvbY@}6tHNai>F zMQ(?Kify6n&LhVE!fp(X$|Bt!>rEEc-7rge;Ng}~$f~nWN+Pv#0%y38WQH|G0n#gX z9+!m1yv7s}VyZ{NN0HSdrMq#odF6AX8&q6 zGT0m@9$awddVda~n6(~Mr`;s{JG-GtNQw4J9s^x!F4o8x#gjFqO7XT@ZXeD!(IrZ+ zG2)&X+JRSs`kJp5fB1oLaC_f&EJN#1nAl64 za61I8zb&LQ_wt|L!i#1}QwM_jLRd`$M2qyobd^w-x4k$^Ym`E))LcCwTtJ2fF!dqI zIWWfd0#wlr3%2k$_Buw5H`D10RXyrjm?nP=FY88e4{(fV6tpd>xgth%MhEybNV*^RJ-KZ&8lt4)_ZFifoMh+aBd(v(t&gGwnOh zccPsBzQbs;&Wq`@_kBLd>8P`aJ4Ry8XuJKc>XvbC7vfMZd@p}py(`{?jQvhVI_ZR8 z;0z(f^Gb2OnSoqkm*@MaT@P<5!+Ja$7FIf!K|msGjs~a!LbPqzzH5j6he!c;9MSqp zFI`Gxt+{DT=4MJ2PiDLy<5FYDqlN}M3ay^uyT^(|Yw!~&rSS7nH9(s2g-N>V^d5exIT^R43mNUEb%e!`%5513Aq zh8)FVYVSeOr#c%m^M5~tKdp|S{ez_$%F4%im!zAuTiD;{;}aMw6=5D0Pq9HM%e;Gs z#G!&6=T&C<;W$FXGaKWh<8VRg&*cX5 zmJO#{$aZK&*Qr)MtrpKSy@slkWs{L9nDo_kMC>Ps8+(>elC$Lzx+ViNRwvB!C5Xjt zu@0WD^Jj2-`@24Ne2@*i=GN;6?yY=RAndc&jncnk4G~PIKT=xjOHXVnsT;W^G}?Yl z6WWt^zCJBTy~%d*m0%|{{Yi7HY2Xb^4M7J;g8?4zt4dUby zAn}5q=#oR=!Io3S#@=C~mG)#v`8uR_L4U>tpP$*OrB>k|Twd%R)nQMR?6qyrZb6V> z#6tLu@9>BkfMsdYxW&3G)W55Mu*08($Z*$3zJarzy9zh#??k<-`a{Y6m$hu6$26rN#211^@s!=7%BRDqmV_|i)TC?JD8@6xaodizm^6`S zQ$daKqY@{8jKP?ErXbAW=0<~~XZX3|x2qUQeifO_Pa8{iQ4t;H1x%$-vqJ`duPowz zrhBBHKJ3Ty0%c2h0}*vkVPE|yj^E;eGr9?A_yU;<+AekwMS@dz$UxTOk-A( zZ|mLY;5u^4ClkK2M&Xswx7}^--^eo-O!U{UO>ib_W7c_j+mgC;waPM2?I8Eugq`8s z_AzWJ!P1Y49$Ag{sTR`Cju$v{5MxT-ZME$$i_22lyhUZ9=@5r6pj;}EcG5+wF#_F; z$=9x~-c`ewqB9fSJeACvM@VL$zKn%$C40p~otrYrb^d}v!Mnn45D1|8}T)9=A z7MI#hNa6qNk8YRH1dZL)jUDz)X;R4wL*JclO6?K$c6i_B1qS@%@Luou1@UHAK9Y#$3c25 zxZun;Y{JsQR*EaH@unP|o3i3A3jUem_K%e&@>71cZ6HpkwIJu*-6AoU)^d!`DI-%oDNls7SCkv2FKPQ1-3T)hM*%aaxSOJftqW*-(MW3-H!MVP#N-LYQ2!t{1F2Mi*zaJ2B5;6@snAHKE!r(4oE zl6vkY09xgR7m1w$eU!7#cAeR;0ZA1u1~~Wn)3p zwtV9aQCWQQJZScqVq4J!DNdakQt^i_+RcqP#an?+*nP@|b|;_v9C2|;Xms*TQV)%- zM9dmZH}$U36)4F~%`C6-ooU98QzVV)MhS{`u-VYlNOAYexo_ZqZwfc`D@_)x5KBn2 z$kKFrsmt+I;B^P&Y-`xyg11UpgyRX~kID@o%C%o!r7YLy9fNkkSMK~95Ft2i%MVch zIIE%fPX4SPmB3YMJLy239&)z&Lymy&;=e5G*@;Q#i_6o|50f7ay>K9_Qig)%d(Qcx z{aO?}R<{GI{+I%eRkOK1*XBk0$szP>*S0^OuG9yPa9b*TK zA0o{Ub1?2u#~4BAI7}i8tk;BYkc}y43`Zt<-UMfk4e~DBqTMc`_J?U0^cJl?q!nSH z9=e|^Y%`}-W;cI34lw_gh~DL9O#YG%U?J|7ZjEzz@18F$>Z#Sc{8R0gKF*OLk&*yf z%yt^C^a|Wd6=uIy_Sn*LBwY0IJ&T3t%{DJ;(x@5WGxMQWT=U%KtW_ZT3guR4V!anZ zle(fqve?N$;nOlQR|M-f*y?q1zKGp1!#B`t;OXVvMl`uyH%`=rGrAaLlXpfQ?NN+M{+h8M5YTz9OTe0j`hatsA67Me2J_gQR<7k;g7 zdvgt`d!ny798g(hyEA zLRCj|J`B2DD>ds$zVW=#;nT}uuV*^%>YvIH)N~5{4!(QhVKLW^vak)sPJNt6AVeEM z3p*+|!g;fCg9qCzuA2AD=0W#+z-o`wp_|`h>2(zb3p3wo#F36)u*(RbVD;iIDRamy zASa4m#u+#^`))ifwl^o*YocQIE?-d7c$``&y)>YA0NEW|QUOXgvJC(%mgS)fW} zO)r`8Do7wzC&oR4G2@z5G!NK2>mf~InVHTY^<<94SXC>rl0&xT9qo-ddXD6Zk^ei@ zv6b|iS{uWiAgT~7+)89J0(nXWd(pw^(Q9CNc`GJI-#6*;frT$%t=}W=Pk%Rhh&dkC z9<~w>^`h6ZV4Gos@Lx7mi&BzIB(*!C9-34=C}q2zo-@wp%e zj$jQH(QBLBiA<3!d1?e=pD<&L0(#XNvv{6PRW=&RwfGW@EP}Y1#=E@yB>HI0@y(*y zyzn?MpeLE+81^G|C7(N|4Uz+Zmil8?6m4X5ZG8M1SR&m^Oo!LobZrRy(tDrtsAF3Q zUsb+r;NKYXuf%N6mO8l ziIT+H4@ZFkE_tAaP9yq>f-O{Nkv65#8`l4PhI7KVyk%_= zy(@TbyH7el?{|na%Vc1FyA|8fwHrhfp0gtS ztYBwh8T4$|GgWAp$4n#RJDzhkvrbp@pguZTAXyNcW; z5kl5Eg3v0gkN^`|j4YxeikE)pU?iw}Y?miQbsKlguuTr)lM}Um-u& zP3}b|W`+kq(IeIL|6$YA!2aXYJe-_ZrOmDP{fF<5u>{1)rMb29{3#>2fMRn5nHY)9 z6Y{!qX$3|{u==N=3{LkAPmc|afEpMW9fLD|)ta4;0V6Oww6cJXF#(v|S_Q~GoD{je z;l-t$q0JLA|2#nyG8KR`IyyKnes|#zS^>GVvM@G)j$?CZ1K0?n$;4IxRJoC*3!29K z6%`&dIk>l;7??UcIv6oFI2hMCv!E500Jmv!X#uDN$P0?8=TYv}`vE|SvG@4_nfsH0 zmuYBne-o=WGda63Ie`EP0$WNU=T{+{helRW&LIFW!7HSu08wrNTmLAgeu@Ra-{tK9 zreUW4q~G#){1G)be|t8@hlgiJcgI(U7FTf$%q(F+D5S<2Il8!)0Ap-q|CCr7-5P;A zjE}8MENx9-l-{?Ti336!nED}7ivL2+Ob#t9@2-dUO)P)ZBVzm)0vc)Ttf{Qbje(n8 z-Gct6_!*_e3m_?O@M8W{Rwq|yXI8KH`==LIm#^yyWOT1FS8Qo3}0Rddt{~3Ho>&*<|LA+Zhe$X>g0O8Ynb9)D1Qa}{MmtrD3gWjE( z97BO{aCZXucK`O=??L2cVj5Uk9>OqyWod5?{uzQt2AcgDC_LcO?f`bm6r7rX1#F_+ zpGm?m>y^2+uHyMG|JBhKH`io!{&(T=AN0jl_CeKR9-CqteG zfBZRD1OIM5{?!lt8GZO$KmJ`MghaQz>~R)-a&!LiPl>Umt>XPD0r$hUnfW4-j1 zO>ZuuRhXQae60NgDgaMC{i_KiTN#FOap4Hmdb}eguyFe2UOQ|hb1Uuqz_hu^5ySyd@ZbYr<`#eNqnaFmGeG&3euh5;VTk$_ z)BzCt#~*>+Px0Fqk&M|-@d5rXsPhi~5P)IwN0317gCAnJ@*X^p1N9Hxkr5Ch^_Kt* zpm-7=q_N-={2w63$}fQe%%wlVc<1PUXLTQa5!fLyzXS>Nqy7jKM8@L8$kYVqcnr?J z#Ne90@!xk%Uvog?p2>fr*91(++|~-Xf8?1q1muF^1vB`;{-_xX&;ME<%i(Kae0L(4GCirLay@zjI6$^}Odu|9R~rv17vt_!UE1K)9Q^IzlQviaGYoSrTq9rND+6+M3*qoWWYwq>n?ADT;St0X(6hcdh57fv zKkz?aVxYiV0p#~mPj2Mh0(w`$8+g{i{Oxmh|A)DRJ1f89vNtWKYX?uEAjz`2Sr`rX zZe%&U3sKD-wDL|=Ei$hcF1yNbNLyJIJMULN#t8MyP1|7ooMEgS3J$biMgf3u`FgVE zv!BcT+5>yg1)yD0;k>K;!O)VF_}~3i`io!V0vl5r6F+s&`Yd6zgHoF;J}utMCjSQ- z&pgLf95~2kW?n!V*v(Mx$LpIN7_Hf1?nD_L+U_|?7VEFX{ukQx952Geww1z zk$?Km@oUaKL!0Asf}dXr%d6puW%*mYd|4wwz(Mb)cGE0}Xq|}F)I69Vl?tY_NBEtr zfr}UvE>m?AI`j%+13r3y=|u7#)7qdiGF&5P1-u;@^^*i9ACt9BM% zfp>v8PB1(VHj7EVUC^q;i21-gy*y6-<{V2ED)!OFe|0k5&PbB{e)IeMG)NfRbH3(Y4X)~X zbVc!=7Ud5fiWg{POh`?YqnIh^yOoFOOE)DMWRy4`h39_Wb?~zp&nmLRsq1BwXqw8g zf0o|eUFRdQbuwBpIgJjIegdxv^vm9o_KGzP@NJ{=5Y*qT6Y-^W!ViH^*T!U%S}>lc zyHFsNf@2cNqbJyT;XX=punoPT7Z0|F3zfD^^jDK}BQ`%X0D7+#ED%>7P=}$m zea}~}epM9_>`f7;dzW^DFH`R=m`%a`FUbdt5{OC}aB5^Qf%@c10YOTW(|b;#%@}u2 zksJE0JWU~a5k}b`)j51?Kcnp@&~#^i+qJNAt#o7adU2pIU25#yxG!d1_tdP8DVhyx05ubURwOj*YoF*>&ZqtbgDz+-PLBP0A8)J&Ap&tn^oVvOwFq2HU)q0a1jdoU}XS2ZJ4!<*NAqn44 zokJaaXRE8cY@%%HMmsRU-WRLiSx@*Y^clh4WQiU!S0E?qk4*88oSQPJ#{cT{aIQEc zpYriP0q}90al{rSH5@3QD}_MB*#?q z3g4NIIxL;*T>G3*YkWHL_;-<%oP^Cf&6l(-pb)}66Q#-bIJ^H)X`)~M(Pf923dJ&W zIre>g4DyV1BndURaGMqVoo=9M-K^IVJJ#pYtf?F{SvZRg)SHfUeLxlp$)dRz0n>pS zaV}j{-N?I*^>R;R#V8IDeG9d)%a;$!K=N*Sy5+^2l*cE(3Hu%Yr0OaYXV_);v1>kG zPkycfs)E%AEus~V(}8;uv6&;yuk*l8OEg4NmNk?P;o-ai?o9Oof*?hZ3UWBLURSBx zp_D$4F|)30B;~=AZi{n#52ZkIs~FecEYhPv$-g}5aYtDIl-N%rIMtCkvt=lx!HVvn z43RvNi?jU*$!0kdrgDI$vQ>{B%Si7PSmePh#T$M;A*~@}&e(l5)^Lxf4r@MoK(K~X zs)`j!heIjOpOj3A}c-EIH5KXgE0sWGb=if4;FBZz2*E1?YuhT|NkgLwRILUW7It@}`}Ls#lSHJMN)&A58dkc~jjry|bFe?TH^JZu=XdTKTZjY+ zTfPwq-pX@yZtswr_1n1SKYzGtug0|4a_Zu>h-~=DQ>9Zee*0cNtbdfu#%nPjK$9J9 zI4n@v(PL16kaC}D&>p7`Cyl(0FGdRVlQ@V(P)}1px~Rik z#3!Vj9TO!dG^QDxeG|MPL`XXvmDs<>L_{E6?@7WRStCF zs5ra92U6^7J*L((nVRdRjWk!qJ@+8NbX)E#qG-l#BwEM;&Xxn2KnU<-K>9W{cCdy4 zB(WLu?&Ue@X-mJ(f!W-2S+8j%-M?5}9xLycf<$CkesKd<(orTuKc^#w_^5^V;#XwP zmCR;Cs&wdK*65o}H>64B)_}Xvo%MOdFUrUFZni5|9k&QWGJ82d3TNSt3oMzW+vKxm z@Jefdr}k_Q3$V9Xcx|v#70Q|(6W0} zUitC^$W)4YtCpL@?_kl7Np0Zs!ShoDIi1n%A6O*Dh@vB~!K`pkv}{~rpA(F!$o`Tj zo0P84_OgXwex%gVR|J_xrnY_RhkE;b3z2SzaG>QZ+jS%&JdQf6KF5j@R6Lk&Ssl1i zRzyfaY|!5smGT80XfgwXr(tSVH<1nEY*R&^ae8O1XgnT800znC@j;;7nv`jgT zs|_tx7fSYJPOhUA?TfYc zNK4a>);3;P#I%98Odv2jcxXU0s!#~uJAbwpCS2Yp!9aoNH6z1bQlWjTVUG5CTE%-c z%EO#i_FfFsW1yCw`nAEj^#L z3nZOHy-M#1m#v&5VLs`cho7eGTa=SsN5yNOx(3zYFx?c< ztH;j4Ae<$_nyIvt+F?w+NXP+oscvl_MJCM!%lh$*P#JH3;b5Q`%(LOCs-VSoAl4Cw z>wDg{OcR-Wss7Kkry>GF(;c_#k6~PQe)h1^IGw&OOlOZ;K9GUL_$r#Ch#FI-O2_H` zV5Hj0y0a_^14ykv;wkQ!w%4fZrkn$;`hkeM%f8gneX&F(N>uDFT4q%nIz=nKonW7D zUv^RjjLU$^!^M=F6XfCs@xx8~iw#YiU8KyM?TyFaWTA&EGvpz2nBPRw#*1G0-ztTf zcYq~p%(WG062_gAgidIto6lW51}{%Ilr zzh}0wn@p>L*2PkWM)2{kws}*SS}``rhj+K=3Y37O$dC3<2iY-Zd^J~;m}AAF!doOs zrIZz^Unypfa>@)%B3fCO^?da1u(C6oKd=j*5PnV2$NHn;5v5#n#HgjahT@~f5ioez z#Gdd%SAM#_v3p6DZZpDFPixwwq2$^@l)`$2C@l!j=JH3-N+X`67TmbC7ab^4HNz7@ z((F|gZ^dI0$iG%dh)x!^<&b*+In<*<-$1OY$aEUDGgwyNyqJz8tZaP-QwydVQkOQn z-d?T6Y8~!;rgv{)mhR@0>q&mhAFk}pe)w--)*L%M zXplO0OKEn=xdpO6F*=?Xo8CR#llti{Wlwp1KF|9GmB^_>?q1|b_n1!*yQXecVr=&b zshR?)JoA$z%%A%>XM~I*RXA|2pO>c}LvD3nzrjqy%_b~<$lz7`U3RX+ibZf-bkxQ- zF;XGj2;P<#w61KAPsS^kx^@$;+XWLQ-v@~D4`I2;8+7y#kTzqT*|Qx#>NNp9IVp2KyPelt6a{nt)9U4M-{8vI zJU3Dj#z+wkV-YB>W4;_Q`fB3fg1x9!D{2l%RFABJwB6eLo8qpydUgJ zO#IJ*H~T}vsMx6Bb`|_>Tpmt1aF3Uuv{GqztFNG83N>BQJ)7m-LmR;@dBi))wy;|M zd9tp1FI*sA5ehMCz8YNP>MG*D;*+PlfatVBAcN1JiP%6MEVoG6hGTka`Y_F z#oA`KZ`g@eqJSt}O4Tr{m+VefK1MvY^@s?kinOsD$%6}_70-KhE842`&s*WeZ-dp( z>l_*RD3Ln0*cxF*P_W5~b;TV8YY@Dt z))&mKYM;yRfO9y4+aj>|Yu~+=3#sp65UZY3KPEikhNtExIN|q_6W@kp$}JAqi}mnG z@A?q<9d5ZHwL4T2kTRX*tglywTr#OppQAHG^OUnvb9?*ihd#XTZM*~%li=x=LnLOn zu61E7=-pX%$cQ7p$mPA<>E1k}3 z&piWNK+%<|vzSUWdY~>@!=cCA&3@on8d1UONg|g}gZpqTa7*u%@=A}v{jIjVbk#vl@_k^l+iP9W|DMlgZ)2in%Ixgcvo1p$RuOx^Fs^y#1K`is zwiA*yA^!*!2qX%Qoj;IcFF@o)ECfEQ-GJ!2i!#IH@PxqqtWTcqVbnOGd>V(&Zg>fO}t zrt}mhh|AMh%a-wSsH4B|xcm&E1d`(8v;F*g4Yyc2JcO1pHCx434?%TTS1&D_>hP(H zo6ub#mc!LcFZah3;)bh7L|@fKPNjPpe@ZTPzA3k5S)4WG?tQ*1HJxTDibRMK~pg>yV)S1l-+OgH>Y3+wU0e0k~!Gxdq4P zKyeyS{S>8=6O)lY8OwQi5Rk=GSb5*Io;MVz!N?@9)r>&T00Okth_bG}qWP3eXoTJm z&;6Yaz#evXw&`4}W=Lh1WWs^UfJtI@Uq+|bbh+T%i)$UvLp*j(Qut;X0}vet8}_X|GtBO7EJ z+^DQ&k1rmf4(>f8O`}^D6d^#9cOy4pW6+VSG`8AH;}iDNp8Rsxu^Qtl@9;gGojh2WM6SBnY4A1% z!K;b|Rx4P{i~TS72B;{KmU(T1C587p7oDV;^j?6QwOPg>VVUK^^>=SvseLNfEWoAj zwy9Quv6npdG=Y8=tDFOKnb(u-%yJVHn$SfXq@x)kF+F4=5)zw`o*d1_3O@RQVaZ;p z4#sU4LN12Nxmal7Gb5vh1gr_QY-xfMdwOkviknAK}na3Or6!>;gy;dKE zyb4i^@E=x8t5B3^DvX_n_rghY|syC4t`Y#Eif%E~ug?%JB7i4~eG{;SJd@yGi+A5_H!ytfW!h!q2H45(p*fn>fM zbytD~3vZ3ucElyCVg+VeYK<&=l(bs6SliN}HiXp52B+h!6%`vRXHg=$2AZ_4RHwb_ zSo!$a~W~B5X9ANVsu|xHPjZs^le;=}C3U!lrb75+eoF zfWacd&u}Uwkqzn78e0SHZuDwVw-T4ILSA$_!tnR(vG+lf4dRR>I@*leq_$+D9W0cp z+5LpTfvxjze~lI(L2BACbMBCnu6kAr_i7cq?D^@Y2VZshShQ$?h!TMpL9E9O?X)?M z(rTXU*F&~2xcRE}cypUNv#GIZAsIuV!_z1c0zyc!?HQ2;Q>*BO{sfhWZmy?P1Nn7^AqOvJzkj{|>J}tC^KRkDTC`DxNMFkM zqg?;teMW<~9}YF$&m*Ui7eQ)nVgiMmXSB zVPBk@cB-rqMbg_r2_&qMQ+4_Ld7R(QH==ItE_rcMNjC*FCR#frUX-O z!|=aFoC}~J>**yuTwe~|V+XsuB4d(F(x2AgoA)}TBFuM0 zp&smA`T5^4o}FQzc08LjH4)eFXkb%MybZSt;1Q@NmVm;hO=*5Uw>;ghH_Rer&XH|2 zABeGIfvDK!Kl(2|h;5|tm*B!>$`(6A`+>DJyS?#h0*USKZ-52S^46%d2*|xAT$#=L zRAQ7O=e<$0%NE=hSz9(U14NGm>y3=|lq27NrHuVK> zWQTwC#`lZ}mA9p>BIeIS&Iv|75*n`9DD3Rs?@YMgT6KH48GB3IsO){3Nle<#C| z4aSeuB9-H93%6obDA=VoQ4{+F zu&qh^=Vl!Q7JkG1unhLFJ#ACI7@3$Ghh^Oq92%=l6jcxTlJ#y7!lTZ*Nf$8M_n#=- zR1?_fK9lS;TiMzh;PO8?Ssj+&AT7&-sy;jpWm~tldkw#CA8hi^lq}O+scdLINb6ev ze(>6!3g;;J+QUuI;wbfG;SUwRCwge#M>M;e6o0mrCNA}_h9C{OxOaoxd}s1?Wpue$ z4eNWY0gw6#WdKj&vY*cjHoZ2hftc;L1s1eN^AIS3!O_cUo(S$`HO}m)Sy~upCyAt^ z%Mr%7G@OC%a-+a#n9F~#sR!I`kPuF5e2x-A(;OoaOMMx6%{*eg8tfgVq&wy39dP1&Q zX&F3BZpgJoBup=8={B9LAYKAtH?lPl;>>&&gHIUsaB*r>0}%{0E?`Nc zb2TiQY}Z-U(3x7VPXj|`Ei(&B&@!%_rUvpO(`^j?1qVhv#)5+4P_p^cLGmYjyU(U%LJk_E;gIZs+)+FX`@P3#i&}dC^ z`JJDsxUhQKWu2yEsZcb$?>IUL7V7zOyf<-Fdoe~UMe57q4l+q+(w{xN$0w?gEH%O} zD)R+?d4M-QwMECWCLC%0t~r{A(dkUwx7NfmQF}6uy5)lG9efro^8EMRo}1?D%W{C6 z6p&a%H2bNU^!a08Dj*fOM5jCHNO^}maJ;NwMd=!v_2)J&u=q)*%?l;P=8d)22EtHe?MXiA z-DXQC3mxdihA=X}VI~E2yrdFb#T3_9e=Yfni1TT(i_N*eM*5CRj3&zi6{V>e+SD{J zE1u7=t_Q!jpF7Z{%n)1e+%kf1VE$c+y6A3x9AU%}_(&N;cdQH0S}*dZul=9qnp3tc*5UL z6wO)tg+e-i{07$PPMfCHOG{>mWP+DaVjWnjUvhk?H+*8$tc3uBFCv9nl3K^JQMkuSbGu)IY6S0AY`EYqn@`f87~ zBjJ^M%XX>^^A*#Ow6G=GcY&A7clJhWE+}l4CS3d^ON{@H8)~$hmj;aCW$PF*mVAvS z0EZDn4ccS9JNb6%9QlZ5SmfZ5nJ4T7Os_;?4eZ!G1tpf`yF1N!+KT{Ore}l+pO0fN zdeiN7$I*fp#@QAPq5|;mK$<&JXM@hWZjBzWtx76j+S)@$w|Bj_T=?>k4Y+jDY_!3d zr$mm$6N=b&Q4V{6{z#Qp%Up(>v&AZ!cm`bs^ku|=OBUVGp_~63*4HNiRhiB1Dcn5w zv0MmsTDi5B9VUrZ(yd3xq3e>y(=;?aqsft0-uONvu;$6^zX_B_Pa??Y_PD}YcrPpK zsx}Sxc%ev)mcNo>K4qMl#48&?5N|q8yA*&b`>R|RRZv!JNFmsecgkf=ah2PVK~>8W z+UrCF`!K#7ujnipJ)YuR``4C0&ZF;W`YT)g%-)5aQz1-vXQx*B2)q&afB8zmxpZGT z4w`RZ&X?qf)6KV_^a$jQRL1%#6|KQ&BwQMOZ1!aN7}x5LNj>?F`qkgo%o6yEp_p%r5Vfg331aKRS3#ZXtpS-yxZR~?iKCfeTjzLQ=R>=~71m%FmdKWikGyPQI*tw};| z_E{qs*qv;3IgsBn<9lemL&OZys0#b)xD;tj8B=D!aVNrPD0CS5-4jd?qF4^C^*_{; zNt+xWVlsM1#~&0No>AH?=-2VO%$yZeN(T{5Se`3ujP&9lxrQg&9i8eAJs-?%B>}p< ztZC;>%!E;iKpdCodsQI{XcfEl(Ad7Q3bsz1c~o0d^#@usjkO`!VIms& zOIfI)rpWa&$+QJ{r*pu9;=Pm{VUvp-Ox`JrGFV}x=gE^IK7;~)V^1#buOt%)&xH1I z2w)>V`Hzh^5Wqs6NATKi9x=A4qMnXTkqG~6`n$S)}H?mR5x6^=kI;qV%LW!JsJ_cv*;Pv@n2S1K<;~%s=rPm}RM#`y% z#ft>C+n;Mf%dMT}w(~U|8Ne=VE>b%f z0z)cyC-M+X=s7HR?yxRLr)o9cw3mj>Say2Q7E1%huR;6Zsi#EKp z&sxQrXujWnKHQG~PpGRG)53y{VDZp1Nj3hzG4YQT5^-84%P+#d`7ol!52?BsTbO8WwZp~9ke1M$JXAfrt&{ICL^82FTx zq=x#6*4Irt6_1jkaHP39es>R1p=(Tma>SnVwD zKT5*#JdD*(xeB2OdICv@41MOo}9xUi`6(6WiYXy zJMc=QCg6F#e1QyaD$OH|pd7uD8%oB1ILRjWDRJS z`h-)5Mm8MlZ>Bc}qM-#x#q5>%m}xU-KVfdeVoc<8TOkeD1J-3i$( zv|k$t3g*+GmrZ;%yoYLIF{3>fpe<@SnFyhX+-^4r{T^%BiVrZ^?V65e517Xsr{i}5 ze4F;Xb4Nizj}`j2Z@6;nGaRj@5U5nSnU-{kQvNJc5a-qc{?!Rr(uM3aa8FE^R$^#S z3Xvw2#x(v2wh2($W75Mf8N47?W=7^_LtKfddV8sUd`XF~sGobz6ETi#c2`~+f*xZ8ahqVF+7%8~KdJg#qbp+tl|IWf@f#7QJ)ae8{Y z`GL?${!f>q3!ZIpN@hs7{@Aw3YwYPcx!A%# z>rnvw+jmWg?Xh(_Tt?MiE+6DW-d$k%(SJkFC!_==V~lh5eVX}RwqMRZ4$LtGs@gmq z43DhDeAUn(sT-FRFBnQBrfw_~rcM&~Tf#9iNH;UsoNYa^dpsa}j^-hUX9urloLBiRUGwDG#Fx3LM7grZ5W|yKfo;IAP{bdNjgGf6{zGcfj=PZ zi{~7u*|nUHVLNPGUxZ#!Dk{=0=q1>qpI{}$X3#IV2Tgq5#;NlrQq~@)9vgy@Hwi>= z2*jFaXU%d4x3aA^!ygkHyGIJvNG6la)r?0LPZfj6+ z#7lL=E{zL$Pq(b0Nktcj(&y{O*w@ygcnWvMZ%n!daESRLM$9@bl3uvW-p+{;$Vg>X zbX0ozS)_;G2(yqo4kohJ{5&c()*#BT0-gHg5n~($-U_ZCvYKarv!tY5{dXBF)^YSq zjiRRMEkAJl5GWcV_+WLV?nIo!UsCSl*{TyBU~@^L3-&vs4EBm%69$Y-jUuLH&^pv1 zxO;5(JWihxY`z|(hiZhB6Qiif5boH(`?X)3+qd<>1dezZtl`LgDv6CY6wbJQgVe|O zsP*`T17xFT?1xzXdM3=4BMvTEEKj2Ey1xQr%YX$JWhwqBocY|2I9lAGof-FLzPWb* z0Rfw0s*|so);bj$;i1jc2z*!W`X;;n`5BjJe`sHFj|O`bR}VRLILdn^QVv+fXyfd> zSu7|QxJxFwT~7|Li0fMaL>vTQNuEHsE=*#@U5lap7ti3eBRi>$A59zRI9Qxj@`Z9Y zDQDBAaq#S6s2vg1MyZ{v44S9_aryn-on_m@uhz^MInGgKB9fL9fRl5JXL%b-Gnk1o9Vc0RZ$m< z^OS(f-o8`mQ>rlQKslV>H2bkeSu!X7tuv%(Bx>bUQyh{V2Ps?ya23+$Q%RXKO~uQ) zVwBy6X?!Y?IcfS`oBkf0oOK{nIyVyLmEbpTCIg~%PMF~8tNV|wd18rFD?dyOdw7O+ zte9w;GxYWuQe7Z*lQd^%5JppUEW+C@N2qg2h|_7FF9DaTQq-^~ATl!Ji^K-RqF5ft z^gcwfpZ_;gXWIJLE?Ceh;dHa1N0Zs){rZOj0l|Qem_|L*@z!78pC2x6* z0v{_Yr82F}aB$UYw!S?EkOJ6}cVTnbz5bIR{6?zuu{g=5TW^&V=XjH@5-Z%!wnoIf za9$fosBqz(wl^ZqpY~eF;;dWx8u`S)DInkcrVu+j<4b7);Nk+^iV!?&L86j;L|}~8B zy0a7xx2cpL$h2rS8Yeg3Sw};1|FKz4g(v6+x+Vyz@y4#gHEcZd2ynHId8W)P$42k) z&>Hhy(@~qA`9Vg9-pburH31ySU?T&|1BtqCA_j1cGV;g5aW2rYpZ9?HM zL)%#8`i{r;Y)7hz7|5sF+92J%@PrB|@ek`GiD$}u-vw)c;##+y_W5%OGGZ++cAbk! zqxKMMv2`d?Y-4$HLoh9qzoNq(i_X_#jX#jQC^*%1ZtId{3c+-RM<=iA0$>VU4{~7| zwC+M_&ob>Q!hk9J_24Yd()|JFAP6a1TT1b-5?{u%V+po}^r?nL0d3zZ3u!8(*#K@g z%^BA~4B`yrq-Mbve4h6D7?R^KI!lTNo|eqAl*rlhV27!02GbEL!kP}qF zq*>#e8vWQ>z)$V9nCisBFHJ zLEsRB4V2kGz}oTPJV;3g=GAT#vVVpBgW%!Cb!GY`j3D@_{MY9~o7CXp7(2w=V6HNw zutMKC`XyFs?ckvfuk}f@xikxxiY+z-kZ6N4 zN^rk=@8-=I`2|5X)3%;KZLt*cAExFX&^0S%E3Vjt4|*GBIWF8b2cqRUMb4X=us|EP zjLMIVFQby@ZDm*yaOIg(5RwxZFBcskJnxniCKjpwUi;yJez~UiUADZMF`whUs@H%$ z53k@Q-8Y(Y_c6rqUbV5P9Fult9p)y(ddJ{nGsf+AubvypMlDy3sXf()98Fn zO)Zb*)v8^0jHiQ-Bm8w}e)TzP(Cvm^%q6J3-`u`QP|kZKtiK_~Pj9VqIv;{8(%c(Pr*%_1Oc!ctvhSVi(~XF=HXltm^O1C!c;t#2GD6ttwTfrdQad=yO&Eo4q78) zW~_0O=((d}d?TlG>*UAS3j91)@}Ax=#b1TgJw{iueVeDMxOyKEz&G+W6K0L$uV8(T z`YL|^mpAs0r7mkP4t&gT_G)9W#m)bGlOcog}6VRNR)*`Gm|@`70pzB z^_hP1Q^<0*cW;5%D-%*i?!>-N%On1EOrG{v8sq#Y&uToS&TMcF3JK{l1)U%Vsg>99 zsn~6q!D3r4N5-L{-l?>;ILJ6G*fqFEixk^17wMJUo8^mwjp@8OnkZ5n(xCx3r{rsW z;u%9ZY_Y)+z-sj4#2g8r$(heyz6s#CYcjqh(4@e}F%swUueuw+NqtMc_LvhplAX!a z%e-u}m^0wFPugm+IO5=VtofNM*lsq3i?x$CT1I2#Uhp)(>3v(jO(D}xQ>no==n$&h zlMFP*QK<+bl<(&sC43MSCW03N(~09AdC&BF^7hO!ND{EE*w%(98QkK#$^zOr=1jV`vR;1IDgwxoRWg(CVzw3-KVnvvku z&PZ}&UIm;wBAyozL>7A9`zUD|t?|N<$U|m;c0~xaS?~uM8U{#Sw2p!AfL%Ps)YcK7 z*3AyoTxrB=>V*ZL(S19th=TL(sN74{!+)%X^kM@^N=O~3?j&`S<1n(s8di*6_F$9F zSn_C&863__tvwN-up5PhQ<_WZZUqp)*7s|A(bIyJ>pF-GY9~Y7LMidSoU3 zxNm?D`Zxe3jMxO#E@sqQB~r%w2CpX98c5oRw!KfsUrp&_BC`1SsPII>nO^Z;f0Q?&oO>4xv4btqW~qDVC8Pzb4{4j;d~p22yf9mE+5b@b)Yeclu5{ z`Tw|!_?kki+NlU!On!`#TAilxn48&&EvoJ`(B2UiQ-#X@17Rm(_iEu#jR1l!;wa_N zBoPsh(~&c!xutQ|D8-*3bSIrb@Cfy3Q6JZuJ{FwG>5Ri8<=o3dXf^g&R6SesJ7SYr zD1#e$*ud~RUqdr6$l^>A=V;MqWKo-upm6Rx%E@$tf{JoYcacAF#E_t|EK(Fm4}o_V zBeW~KPD;jp->W0wC??S?#BWkDOM3oikj@qkS8(va=kx-wv z$|u3SJQx;xRfy$@*bt*x)L^3C+oSkXzhmIeLVafk=x$wKkRtaF&9%k5 zP4;;AkeH8u^xDa)(*;4&yX4UK| ztBSo{7RK+>3L1dhurE`fZKOgop1`bXQlo#sf1ak4+}WRbo~q};zD@P&gO5W?c#jTT zGzcIC%3~&?P=GETZHg6|nj}iT>+IOrQI?_aD2-B$Z8XN`qO+ge5rY581L%PeczF}z ziL-y`zpcW)wN}+$gj^>VSp!uUeM$|`;)Z_&z_RZdvt@f3eRrSk5;%v9$Nh6P=>_D) zI#nTG{C2kvX%kxLo=UZzq3gF`x&F9dTsT=p3Q{aj0U`F7H%;P|vzhd6t^>$-u>rqn zbd-cvb8*I zyo0%ZL$8u}P)Gvj0W<}yt15HfLM2i~xg4tK-yp<#ailH2@+OyE*oRyC^+cj=N_x*7 zQMqjjmnMUqBao!|y)o zrX?_RyW9N6aRdSZR<5BWyh~CH=j@tZ;&JYk*X~^U}8dZa6jaFb8xRHUk}DF z3?ts_F(D^8f7O`Px2`+D!073l0J~ndePwW$3y?pmHc%MNSaGXaM2`C;%nY~15IrZ?hIe~)>qnyV9dJ_rM{R4Yee9XVfyHNwIui#KG9>p+? zRKu9AQTLnzF?igPb%}GRO}DVt=RAhgcm9?6;LG<0)v2Q3fg=m36noie0S>{k$VP{u z2H>xCMqyhCXGJrPR&B~juLz1weQTy^rW*+}D>Va%{Gv4$6)vEO5vvuoqo(Nu;raM4>g- zx+=TA!=O#t#IL$9hFR)c5~Zh}qb$*Z>Wg-Tk;iIBA$<3fb)&H=XsW<#fx86w&_gvV#OW?g&!1Am#zAFt%uM9%hsasXq!cR0$KV_uC5fb{8LYl zcFlYti~6U_8n>#448uMu)tKYjQpyk^GK)*6aTJmoTVj4Avkao@1T#m6b!2}wx|Hvc zYfu#;V@25~J+xV$@HQywMEeTOI-M_xI(1165XxpbWBE}(k(V=MU6H!W4VpQ`)2n?z z05QJRX9&>TwoUNT>!VR#jbtBiFR-xKlQ%GiV2stQuZe{f#0Pf?d%RTZ%` zp||Q~+&(M_9XPLTuY5tx&P&cOKBU9&cFvG6(wB__U%sv^Y@FoyLeRJaKCM9080m78 zK}z7qF+bDH*ah!#THv8yk+dkrNl*j(4wtHWLCbb#VK4a zG^-lW8(mT&4I%{XU(Q82)qm8Mz%}hXSQ^opJ9xfmY_>_*F=;68NmvNwoBFNG6!3m! z4Qw^>MV-&{kpw0bsJ#>-AQ922M3q}I9S;*3tucZTWMgvldOy6Xc6C{y2l6nc<9`o! z&yS?ZK&k}jcq5s_!Xx$5z)27d8MV`BkD3^P95l9RgI+)|`%i!dL*VsU0ED%Dnqhv4 zDUB38Jb5PK^t~x+kw_NobKUW~21G+}@2eh`4d`+rz-|miggsWxM5QcuF5@`g=pCtB zR?CZF+aH4M9e5i1-?%mE&CPcW&3;15Mo|}Ygzbl1|@4gu?$F_ zHD@FAJOE&H+w8W?IwKsjl*P{CH5o1-+^Zjr9=b$mRGa0Uz-T)k0};I+pO40})g~S7 z-+S#w>XdJsStx;@X49U5;KjLmwla!oq?54+=Hc=Kl$PRbaFPST!OUy|(^~O*u2<3y z*_#gvYv`@xU-mM^aLSK}4jhF|93<+dWdhYIRK4kCt)wPnH%kWViS_2(?~Ny~{uP3R zTR|Y5AY##noog%{3Rn^FF^8IOy|}V*l(P++P#1?fU~!w!g2E;Q(#zQCrRs5oVZ{_y zex%C?9#S`B!D8pb)+%9#0NgKIV|K@+>A|-l)l0TmPP_+(IVcBl0y4(MCl_G-Z2sfteW&x~tLYTbIfDHY!Qjhxdc{wZ?m``>u^&0iCRxMZ>ThxfAhwBq9^JvO zNM*b7muGM-of$peB+e_7=Q17dQ@oUSiSm>WuPqPh&6?pUT~aI-7iXI{XSf~GlG!|N z-mu{wGvNQhTe1Cr^Hxj@4F5N8#lp<;e@>ZxuR$kmVr%AXj?ci(!Ay_O%M0b?>}X17YyNzmTaC1mfm^Lqea*~Q)5`Zccn@%y)EUVF`sy~!TFUR1ZV zl>2=LPn_F5M0QEOLI=-y; z&sB~)fT5^uYAFB*n16IP&KyR7_R@C$;`qYm04VaYA1_e3bUEPE=4Q6DA09Zw22c*Q zO!OsyqbMyZzm~i(5)qbvWOoF~-0*{6NB(}3y@SK9fw8ljn;Cthi)pL3T12#82VeuWtr?}IofUMmlY{6h)vs3DmUV1`)_?_du!(7Kf2Y-uWm&s zt%HNUd`XR?6Y#5BF#txufB))MwEwGHu>#B?06fzF>QY%lo*lRs zxIacYM1I|WbSvQgjkU2q5cUp^pzoePT6et&Kuk=1OAAAw`Y_CG%|fpSIK;mr#6bdS zH^ygxa|S>xWK8~Nb#*_!3&1UD72P>8CwLFNH)#r@5?Yc{8P9pY{FJ2d&^GX{%}3pD8f^Q{G+y*r%P| z{d0aPC{X$LV>|7C16NoNKR2@ApDu?#HT^&L_dm-AKW>7EwXCduO2SWUY(H=<2{k1# zCw?&eJQwFc=YAYsbI7Y-JEfR?y(4J+B;d>~&MjZPEeo`w`5f@AOyE!Ve&)^2sr8Ql znUtEH>FS@0)IW1o&nxk3>g#|gS2;94>y!YVrgLC#JDhX*nd(8TVNB&jKdOKNK@Yth zsBKIQY+qIb>Z=?8qO!80xe(I%s3rzx;OfFQwiKP7j4=AMiM05Dv|1P*s{4V7F+EGXb0T6`D2j&CmGP3X8oJvXQhTI z^Lxb~gZVnT&rd*}!*6G82MuH$JKFRo(2s)VCm0yT$`o>)|Ho+NJ8gS=`AqMcpY-@A zFyEQ_n;4vMXkf7)sQLB>D;|>g11TT_(pgOPXCbh>{u>Qs+3JA~f^hIzuOkTREA6D$ zvf&2_%NW{I{Cg5JxoZ%Q<+K|3RKUaxnAz!#2(;r>>-|OODGoik82FUJ@`q0Ick*0x z)XxJP<(p13T|kBNhXby1Vr^vX4UTDQ3O~&c$p0C=C@KW$R!=(U-pS!d36_azEbO9p zKOo)V0}Vvw;v2ltU)JjrI&jnL8#*xk_B{!EED3GyEKmN&3N5{zGoal5%}Xl?6?DMw zb|+33e-79@u)fjQZUDFV|b{fQqI2B~mHv0*TQY%0)(Xu5_{6 ze!?8@d_9(ZIcJXYuIfcXi^$sDD^YQ@X*NnA@cvR4eBd7DdCqx0!hR5+fE%#8a;|5# zswmDgpT!uM8!b(o}t!;6>g%|XV8E#ojTU1>7 zjBY;bN-?69ggAoUdM(Y0F$;HLCEI3X#u+Li^#+PH`_JV>_@-C4T*n{XuzF?nr%dL( z2~>58KSQoxmwUmx9ez>o7NFG_b)67w#kiPR)6?2WGoFREK9XiiTk)RymBz9%17G2+Hk2HP;VtfZ_1TP( zI=7wL_Jj_Gy(Pyd#;lBN6os)_=c;zN1d3;>f4k+J#a?k3-2Vn?)T(~dYAdCTri7@1 z(1Bv1eXIf@^st;o(r`2l6SW55_K+YUe2Ai`+7~G-yD`0e9ShdQ=SIX8Y-)>ufJ$tW zV*K{W66ih~^75tP=;d`a;622Y9XfISX`bx>5tJY6a`PkBXW`EGmdLh!Fq&yHA_Ix# zPeV!a%^a1m>|WT#Dlz?;&-hU=H!eF8D^}Q!%Uv&ubfc}2=K_Ua1-fyWw1Nc}o(iBm zZ`ti}806mZWSxkymCm3B^L79Dcvu^tZfwt!IV|N3F$l?Qf_oDHD~Z+iC*TG{+I5lw z(*P0vkjdMkmVaodoZ9z=V7aRGk3R#~8b}~e2L-`;XRi!R)CGggaB-TH$XLG9GY8-$V z@j(9-2!&+?`DE!ULaxS8vq1o-Ub%>gxfmCU4S>0-c z=<2TdtTXqwr|WnVynj#l0g-6-7<$j{sp-9o<|vfj!EJLDFYRBJrm@B%fhj zpatCU3)VEu-aT-DW>t&8pi!N?y?!A815vOB_>&v4!?-$$(AE&jHL3ua%lUoD=z4^s$T^ z$Tv-OD?1rT%f4G(Ol8+{VC+i9!9m_~jWe_0s2CDKcy=OvYhH~>X&;e9%2B$rq*d)u zu?gc+*QsCaNF1g#jP3a^`kJb(S*H(2kPxhX9F@AJS6k1N9|_7-@oYs}yRCl|5@f<- zXXNHBg6-uae5jB%Za!It{Oj!tc^Polng02K&W>tvl;ejQRtg8og8AM$^$|B1%w&U>2pw(0)`&%J z6qnkmckiY_GLMs}GBXI~HsgOCx0imtZMtJdvbIu%nUvYYrKi!j;u9qf~XcWEapB|?(EloFyY+rs9t zsDWGmv6JLDsYf@?;b|eQ#&bpl;Z0(;>YpcwM^8}@9rA)r z7;Epprxa)6Bt}-5L%##@3NrrYje=`Ega@kBS^U?cWiKXMThO8@=;*3IQ>%m-dKldcAZ##91LjpHz&Mwn7+n})#&*)$=!y!PF%uLi_NW;2YW+LB&{d@;E!d+wgTmj zDBOX@bimO%9Rt!t%EsG7&+vSp4(T2FUls;gbY2Khys49!(QAVMgP6va5mwbPeEhI* ze4h+-f~q-2&FYkaKs4D~HnV|LRmpGn!M1+rr02`yLAMdWF8q#0szbzs|6=T(dWGwP z1&waowr$(CZQHhO+qP}nwr#xII^Rtvr<1WZm1#}5V0?bOsOSC8tkO4$$-NzEM3f*{sm@KNg!1gYg!`y-;mx%j`Wg>CVq z%m*s)@Vq!+$wObn$2ARL>77Fq+xLoL{8evqBpZEq{lqS!;aX8?t63b@KWfVQL7ce6 z*9I1STno&**;<>H=bQ){ormKx5KT{wC|$KWH6F?b(k02Ak2~B*`hv&3G< z={67Mkj$IB802cuT`-20lX45wr7$-u1~5*FrwKXc{NoP<-oKKzw%Ir$HL|bnkw6a8j=X8I@tKPyKpCjGMN|U#brqoP5(&*z}>@42Hr|d_tB3R8n0SbA_O3 zz)$Os;d13|*#!*z94_4kTxGS_IOtQ3E`n|2}hTKz= zE>=B$G>|_B7jP6_BSJ^~&>-1l@zY7jwkPZkT8LWRRZcDNRFsA#PFxg_LcA>aG>awj z{*3}FSbFW`ZXGAK6MS1aF}=Ii_;U3hh)%oYQiX((pSSzQR2qs11~%*@7dc9}VD#!L z3cV}FLaP+*m6sh&5Mnz=EqWSQYN1XURxx%{j?u&haqxJ5hjX#2MwiE5v)S$L;J$;c z9K=K8lTYA?Ff)hAK`2_1S7@CY9inrqqvo&nlTdM-#KU%HL}0bipV=~-j=`;ft2j5R zTR|$rD&dieF-)5fC=nm78j#FC$8SPLagU7IVR9Csid?So;3+G`V>i?y_`Utqr0NTA zn{<&B*f$mah8jcUO6qt|gxZ~;A|DgGmY(vGEZ`Ri>?pA2PuqpR!tN(Yhy28v`BRY0 z9;fT3BRJN-GlygxbqjdoCBP_u-kn$aRqsm0BNnN30<7JC16|AaSM7p&<9@bd?UN^e z>bL7;H8n!|zb0TX0CSy#%j915M(fKYBDr5AorToBSfpnocNK~F7kRYqZWek9<1$j_ zSE;)D_eGHv6l=if@D7pJt&U<>Md@$nQW~V8R@P>S{gE_l!|%ClIzO-ZuS#761P_O> zLJojrFTtb=ic7!GRMJw5S*c_=S+~*8>PQiE7@RK2b54y8OQ6!`5@+UjLqP+xt&JeE z!n`nkUxW7 zbcE0u7&J>((J>+2&zLCUUj|$5?6kIw4OgEaxT-SQX*-06jA#7C5~9QbFCtH<>THn& zli}aQoC~)u=_I}l3)xZ(#i$!8+pOO}?nl80!7JNlF1UB7eNPb{9#KJz@w*TWB#3fH zh)%y-8^7SHT`FuwRpwRG8}b>!vTo11@I*~9xg;KVD3G(gs{vZH>!|>;M(t-!X=zzkv+h@A#{rb#E<++ z6|rPI4V`ZL=zN^f{G4xj;VmPlAm|Ok2G>)67V(9=`dZiJa9Hp;b-qU@IUW@oNx)A_Ju=)&YpEhuVcO$8Rs6J|d*{Irf68yJzK4KN}pRK_pA!O2) z%i#mDi&*+!Cp7T1Hm)B;4fc8Y;76GAsXj1?Y^=ov7CB@9-g`!J`ld4vQU~@uM&eeQ z;p&!~m9(9j)b?jRP;j$?=3g>Cxuvr-m-M8R?K@2Vx~0 zU?ef0J{?oR(3P?k>Mq>KzBRbWiO~pxm^jVnb+MDupt%byk$onIL$NIjIECxyM(YBw z=_XO?!rMHCOA$dAq=QRR5D;prZU89mlgn8kY=gbP@sN z2$8-)F6mjE$feQc>i&X`jI>#A>@~#uy~6w`J{vugQvfN|7C&u+BocEkqtt`D20$&3 zTeAB70o;oJIwd9&l~d}Fo|HcoR0ML1{q&!2{=Xp^Q&Ao5%ANi=7$pESQd0{BI<&s( z5rz)~yeKc2O?PzdDRFQgv?TOTEZ?Aym%$n{1NR@s4AbJaig~9=%6w-uu9%zxfMH@Q zx1`#P=V{D!k7-Q_0o`{A!0y(4qIqrgwv29IOVIjN)mnxXWz_GK!l)*@W;7Hh+~J(= zZ~7ed#V(L*UilcPepvNNd2tn;iRGspSOE4ESusl-A`$1kVG=Sq(-j>=lLy(0-T@YiWJ^~3&}*eF zHddh~v2xAd)Q5?8E1&N7^)X<#;m8!BE`9A7==4vyo|_<#9pmYA3Lq)XCw`JvTEk#! zcKjx!ndKpz_uk<%SOu}AOtca*(26l^UDmF%=w2TtRdOu%mC{o;s~HP6Xkm`e1_N># zxGMFRkEN!RP4eA~-D=C%6NR*6B0PJg%-|L1K0?hf=sPr!$%u^5Gv66LLX}@IKX*vIS)fEJ6dw3}pM`qlz-#UwrJMNUg*r)@!hMy#^2`qU#IKDiO@^unCreGjC{tLmi%J7aIY_0XT8o1kdZ&wzg&IsC>MW6DW5A5UO~>Jj`|Iy* zXD06Bn5%MncIOjKbmjTF=c)AwzzlHpi-{lYoM5f8*QwT^hgu$PC;D^q>D&A*z3#%JTQ5g!->%X%eXkE1MPgGm#bMB$vEU$o-MR&v5H~%CLR$WR(qk(i?gLo zf<%dLYymqLjJ#tjJukqZ#KNJF_+z<}OZAKI*jmapVxEbQU$>@O<1y@fPR`SEG_PTc zZ+%t?(;l2JCwac$&Yv^CbwGG6fOV%_u54?nuentBj8FmR9v5uK6y>*)w6(obgslJz z|8VW)RWMoX84gBSb)%Ue9LW(jB4ad82!qw|UJ0y&c>I2L+EjllFNao0{IbaH%7XF> zD&y1P6VI~9dHX^Tvsb~gH_&5k+5QSA=3_kyvQ&;$minEm%1@Y?E~ZlNpQVIoCC-ET zSoxry#$j;%ap=6}IiDFH?1(^Mx{(FkF&LU(GBi4!qzSz?I}?_*-fhkr_hdc)4g63G z!H^ksp?!h=Nig(kZH_+Aw%^+vEd#=Z97Bw(1Zx!KG7afdbJ02t+%+yHs(_#cl1js5 zB5V$7h{QbHzHOI}_gg$G-olt7_Nk#4xR|172@IYX7*;L{v%qi4v~3Y}#7LE-C>LN$ zhwkskmpV$DYZR}Ra&%@>IMf+xlqdo&_SiHQOLl;MROeRK4jo@@Dk|PbyBA|+nC26! zyWkY@l{Pe~^F*tk6P;0t4rd{E83C|;@3A6q+; zo_x_i2zE3@mecA@%C-FH(rj|U%XxS0on~FJ6hg_0;=}4XW0lHqjLYDI^z4JzRg#sD z%9*Ygk{Katd>b#Ju3Ip&K|p%H^a|&}fFyp_dRlsXk}&y>Wp@Faz-Uz63*i{Qj}L(W z-#chv?$z^J@)}P-t&Ii)tv0xM(L$vf*o&JD%*0V=T-u|xxfAYpDIu?6^p=a1iIb4( zNsy!?B(MA?Zc|rIaySoVCYI`qaHuyc0zEr#)fr4w&S1jfpBM1-JQ5J$ood9th@9cC zF%IrCUTA=*-1Qsz0;kvidfjgEZQU8zP^}2|)P@~*zIRY{EKkGziM4|~GDS_x`>W9C zUY*pXpE#XXnqtvqiyHM%Wp(xb@APJSXduiWRVD)qaR(5J1umkb7jQFIFDBU5HfPBw z6ZR1gu;Gcu`!BI;(pKMYps$RE0v1=yyS+I7W8z zCe|#6!bZ-X$fO%lRkZC7Z4{k7hxaDeD&m&*X~o5wu%;}Z7J^ibi19bkPllHNX(IEE zH|}qFBSN|MX&nRQrBr!M{z9>nyHcgNZMtW;4MDl3+PW?(A0e;Y4!U7G;868RS_o+ov2GsdnGLeZkqp1sWH3m$$#hXV6GQh z>GzWHOLF6WD*LI?OI;-rZdzHJjXoQfY|o0mCu6>m7JZOgv_MLM157-=rt;G3hhl%T ze5~kCDtq=f03Q?k5~w^@HX!G^9_oCC4$L>UBobJhX6IaN`WiXXPlumKFLJTtw)$Uk z-zopT&#s`PnOy5Kd|-82TD?r~SM3%j>adUTTGxAAkwR!=`f8#7T2rvU6~&$Y#brv<^B9aU@Hn*qTlyw*VC? z5YXSSzNYgT*x45!h*{#9Ej8+q?fm+ym5qbIUPUhEw>GvvzW!xFHXiA_NOnHvUm=~=7jF|CE8k(<$BTJYT^fAMa_8C#+t;WMtmWTjb!P9dFQQC^M z6wYT)WQ!odq{vG;?T)SKc#0l%A;hDL5A1oc^mkJYY#k4F%Z67> zNl^vHJ>Ay#CS!Iioe4P))e;y!u8nJzEv0=Xf~hg#gIx4|yd|Q!%Y`yN4T$5^mZhU2 z?=#s1tVKR@KHoRxD2t@ig5t=x{Ixn`0#}B*vTP=6oEZ%_n58TH4pp3sFrXY(Cd!bi z5NJwUsaso7cnTdg;BDN9e&(m7U4C#3t%aY0`OAMJNgawXx79hSXj6dH+LqBC4|(YU zNs!p^D!_3+Nn-_D1?#FT6<|6{*qNwoTJ-~zup^j)B_?gb@x4p8ZH0O&tz1pwev`DF z(PNi{(KB3HtdO0Ut=#0{e;1 z>e7D;;%Mpj_pE#4Uw$IpzORr3?odB{=-$_*&R$Jw?ge;LBpTK?Z!S#KcLthkN(=}A z9FEt=9|FyUg7LKA9pa}@Gbrb;HT5c0z~1q>WpGDlS~x+Z=uwr2ZUF(%B-u4`8RgFv z;i4=uoVl%&7H}bR>JVIJ@8^Ur*S=_DiEZ4A^?Tt87D~+wVbifhpo#kma6#9^5c`aV z-Gk-_*oa95XAx{q2d!*P2|JO#E~*urY%);nVLVoRIeYb9Jx8XnvbH!)(5f(0gz1KJ zN)Fb7KKp;#y8l%o`REQvg=luNt<`RLbUg?|aOco)lpQ~VeFdkXNo|^v{f~pbKHotGuSwO`cJs`w2VR ze!1!W+>i!scy~olHQUQg+)3Z{2_At%LSfd`ST{h(Gb`sAI4b`XV*1)5AZSYyFaZ20DkakgTLXgpvjG-9nP$i3>y+ z);7h9oy?Uepv!0_IK5`OaJER7ou3h7HQ7Br77!i zG$POE@Syy)M+LKR2GNo$8RZ?iG#@*>;AdQtMk%rq_4LG}(1(6~Vu_Drhml&DRnTKb zbX=2NcFjchNYO+K(F6zOSq3IkY0QE5wiNpU20oy(suqvadpZf>Yp+$pmm+_u6HS-y zl&%8Ghd-oKAbkhr$WM>&nZaH6g?24SHUc9XIcR?kW>b&*2Ie5JX0pIrH4V>OHA#C! z$0y5vsdQ0J3pv5qwny$@ZX2=#RCR4X)pF5;1<>F;xa%=))plJoJ$nj|@t}5k4^(T7 zd=ueqG`iKp-E#jEL5p$I6DO?oH_(3oZ`8{WxSy6^U(TFhCQUuI3_^E2>32D$QZ1{r zJ~fU4PoX9B9l>*i*j4^>r|vBdd%EYzp5wQPsn-nE=V)}r33USN z2Lk?WomwxRff$u$mNTH`wQPUXPJd4eQNm^ayjJgSf0d~-?4CD5ETKZGNXi;y&%T@M z2pR@js}(`U?8R&G!h`4~>^iD7lOE#_c&&`CoGdVDs5Gw6EIuLY(E^w2Y6e2{{G`vC z#NtKaBRa9lCR=d!*C^!F;v3uv#o6FUMQ1LH;CG>fVWdBoE{oQO`vyGInbF)NlMryD zeGxFEQqnnr>4sUMzjg%H4(cW{eoE_#UIcw=R|tEB6Xt|xk_DVXLFsY4lMSJpPkwB` zStAEkBYx;*_Vs_`0bR>2Umy}gNuC=d05!P?UIwiHvVDO{W>0hW#L$+Hx6EH@@v6o) z=jzoi6t#v}cJuM5UL|S|DJax_q&DpdbouU_%98(0 z((;58+E>_7dXMF5_fFTmuc$3V23?-{&6V>>7AHYXM9?pYZg3~FTtr{s__)#G_jw@9 zkPYN`xGV9^3dG!ynh3`Eo228U%gRcBq5jY>_w z!jNFhY77bc8Y9WUVR&#s#w8U+o?>LV3Pm5l{lizhu(F!GpbG#t>vLy4<04!?6&}1e zmQtQ?FvHh}GpZg(Tfc|6ew%jjc@(;ThW$HwSE+X%)LoB=(8w=jDFgPYdSUWi_-*{4 zr4{8K%5t;X#aA0WbMbLVUZI?Q%uopr_xEiTbO>{PCgL!alTe6Zhc{G$|3bR3cTq70 z(HFGFcgAQ%%s*Tg(O;jptTPiW_Th8sIq4r#%aZ00WBxk$83dQzzLpIhxvHZ=f>KJs zrJ*H}7NStZ?VVOGqkmm#gTkrvNBT|>MYVtWaZ`Mwg+A-8oFb%rs_X?3_tn}Xe5#JR zHuK9=Bpo950T8Bly8P!C?M3vyNm}kph3G4oFJ{qP0)8zs^U0;SI$!NIp3F9s?^wsU zQ4HJG&RwfK+q7{dd$V(DaJbPok?cfRuX=y+&A0KLA4AF24*I0f>@K+hdXx=UyDOBl zk~}2>=h_B^?O&4XpC9c9z%Y)1C3(3W3{U&_rREc}o4)C}M2$@2hFEZ$^XPXOa^ zcf^&%$vD2icC=R#bFbl1{J57`NgJVI)%H=jlt$Bm#R{eGJ8VVusD9p$xZh}$P|B(8 z>N(J81NEjx!joitHa!D-q){VMFU8%hjQ)3Q@F%I~s~dx_a47 zF3oPo1Qyv4i#WTUt<>Z4vO$drQO5I<6_s#8 znQ=4UZ|3u|PgpxOw=UL(BTdHw0tu>KSp`wLPny&3w-(XK5wL&7LJbMyB^fi!q|%3T zwbegB&Epy*iXf1uM~4RFXW}*U_YM#SzdXt?Smn~!@2SO>!ku=k+PrMrdt#Z+%6`IP5-(+XJNsZxNdxvCJ@$^&*3?e9 z(;3&j!QPJEB2(eFHr8v$$ff3qZ2Adxeo`*7YsT~l`Rhj^;o2y9Q3g7PBRSlj4I@%p zuAO}C&*n|NtEnCWOK`7?5gIiV#A^C^SAsWmZ-THK0xq@86K#`mExj%LD-t4}=>d;o z@vvc4^qev|yL4}qmhE&ESk_K%?FNi8vF2o0?GAz$Y&mDq3bYoJPwo?u5?-~+_!}C+ zSK<6+3?Xd8g{EojLh0GgjOdc%+SVUjIgOY0rgVC`X`d$2O7noB53i(?h|2HTXDDCj zm2V%^UwBfbmjG8Hh4zZD(Y5UN{h(a<`MZ%2z|Rih0U?&27cY`;x%QI#jV~V%UCE%B z%ZlRa{OhG<^JJ9Kqed*2KC6o3tNKNu#!=d&zpEPibYb?AX5sLl$u1Kn0#%GN;*VH- zu^b&q>{l`REU8)PC`;Lv!Rs#s7H7}OC8HS*@rkQ9rEmttFrt@H|4!G*J|mCTY{xw< z-KeC6HoV(aH&ML5F%re;sq>7+7Q~yPmL4ka-Qn zF6Ye6(nNLtQzDbluvOJ}9e-I7=6GgH8~tW@8wq{9z=8>g7$SNT9f zWc6yU{!FsWCCXtORu|rTvGVLMk?Cw%sLHr2zCje35cO}BKHIH#fKLMH$`b};#k@7D znu2g(z1Bf~umerqtKKAsvM%2jMzaQ+*OsbJO=y7_(j}h5BYdO-aoHaRLxjA-2L+g# zMWZ81FmDh-Jyz|4U&Q0b(eKswqEHNMXr;>Fdze00-lW)l1M1?;zw`3t^18F5&^Q(@*9ohsNqi_5VCwvL;5YY3%a>%m z>R!HHRr|$rGIM?Lo1>O2h!5L-`g6-$|8RRoJ(KF%k<+oVCWY(}Js$bk*^Lv%Xz0wQ z7PkvTL1VN)Xt0$2xyIfTQUqJEn6YTAPCJ-7+WU8!RLyB^Zm6*j)#&Y!ZhBvAxPOn* zS2D3k|1cPPh8&q8LPhy1-WpQNG!=OKKi9rwJR8(vF>C0lbiz-R8DTA98~MhQ1|CpJ zIsK&TjAe^O$OvyV1WBnKgP^>jJ&`^-4^TqJHIngI!VDw1mTs@Vxyke3W#eSU!`Q^Q2iv$kK zVX9A|ehkO2KD*v{dohuE1)ZXSk$uE*GS*}jC28X~UYogZ%5k_mthoB^-N8TLgFDNN zyK}N)d-s1tnMH;Bpx`Q7HBy&bdwV?@ounQ|N!I+SDvo#Owx-QX&R=cc>K&aDsy6(> z5As%&4{fC>tIN05l`UFs4Y#LkOR$nSv;!>I7 z67N*2k=dZ&{G$_BGWjnbZ(--G+GsnTD-B8^QED zK}%bWV{)6cO7#tmtPx3N)@&a?9KP4er>Tw|U{Wy{wnNm}N)d|gP2+|55mLidot!y} zw@4aQDgWGZ|9a@@DIg%f_R21nRls$P3x*h#E={?QqrYgAgGH|MY;+HVmDXVYmD4&R z{vLVl;5LPsX^}eReL)e7zg_p?qa!sFyVyzeKvn0f5*6qfk3q{vlL7Y}hOa>ErJBtV zS3SESf|t0I9x^2j4X;d(d)}FNH0`noZ|CxSU^g}@x4leM<(B^7%;Rl@v8hTitqC)= zapSQ3@b$L4{!l&XHEma9)21;CznAS%J8WpO*^Hm~4x8-c@YB^j8i)J|6oE5}NftTS zZVpATP4BD)rasXIuEmn~0&v3X=BxjeM?O95u1<@^h@e$%FJ!*Qn`>=_f(ZAF3*XZ= zf=!TSK0ORNYe)&*-Be5<4Mskcd>m?lkeihe1a1sR$Nlk39(<8??=k_-BHd zOwS@rHlj*(y!)>6$9|er$e-sfo>3iM%qro(+OZ|QA*>bn9MXjqPG%YpAB&2jfmOTq zN{G@sFK(cW5>@1;jKa)tvKj;)XO#b4hAwWAHJioinjt=0;tfmtt0&XMy6pS(epY=0TD9~_M?wRWI2Y_7tGnmpuHkk^WI zFh3ibBu`f%b&t92HYmIqD%c0U%S4+B_BkoT3tAO_WBc2yIwN+P|JdSO3wjcAxH{y7 z43;F*3hAhVR7=ZTsk)6B(2?-|cem)ijsbee2oRaef0$yB=D+D9GT(#i1o;vWCgLkl z+OT&{q0+Ony;-mMOQlC!dnPl{Me8l-Ikr`@d8qx4XQTW;6*PaN%SkkNs?=|+5M}mb zL!j0B!i6+y47$>$T4Yt*#cFbL*pA~o&%>`KhX3z=HTRUynVq$qYRkcGZ5Ld@v zjRX@sMk1*p&`4NjksM^^D>+x-;8!0NYWP0>6HV1b0iH=mYnkva!v-qK@=o|}Kw5`` zUj~j5jF3fS>znkCMj4vT3!gKegPUHl_o)iqSASa+Bc)m)pj7KCTsaom0lrFv zG6lW8ne_ZcfZ@V$JU(#&kDUZULZzn~s_JgZbo2y~!B1~`G;pZxuv zvx5ATQYekwI?nStG4~lZ{C2F(&$Zk|zVTp_!qA4r61**Wpp^I1gCw&w77eXaC*d%# zd0X;JW1~Q(!b?NKcRVv87Ai59jn0H=fSlrH4ZS=kV>! zo!xN8#t>%MFlvs#gx_Wj`x<`o__+3>-_Jq<;OaeLUkwO(`RO0DZ;QdMZJ5RQKk?)S z6i;awm)=X*n1EQvPZCvt@1+T@zypD+iAQ^0&-13{*cF#+_|!+HFDjsDE}KJ#nSY}d z`$e>~S?#41@<{ePbbT;alDw%hfRTwx||PWsML?!IW@UsSKCsI{u$ zQ7BaP=MAJOj=wl{TKf{rcw|@w=Z;rK@3Q)q(0vjM8bKMQFWL`M%D6~>EUN>C6Qu=O zVbtnNw7l*oMwb;=%$D}j`Nks{ATBrcOX z{oLAH8ha~fVIOr?W^|!tVF|@!l4RY)GbwkchH`smGFaC^xZYa`hSW-wdVHa-^{TG3 z)=;mae=aBjBX|`Bhn|jFXJXrMgZbh_E!!=I|N_*&5fENC%bo zyS&3j_z5JEn}evF7G>$4TXv4oMRrcqYPiumDtbi)i(B4P|A<} z3d(=pI~2AaK|5?3~o$KF*_azqc6C zlx+DBQNRQ!V6kG)U2S@aALfzV{T`51pH>^K-g4J*eq1-7t3u^Sb=dGcjl-+ee_6?u zYqo1fO_Hzm zh8Exr6P6iKTGTHWv02GBQ}gF2s1-9gN>9tV)j@7pGfp)*FuFiS#5u#OJ%SG(OyePK z?ff9_7d=UgoPO-=u7j^}WTgE0=)WL-YXN1^KrMJJPt zi;g*3F=kXJ?js!+X};o6oTtkCclQw5Hka{fl_MM8&CB=Rvy*;w5(f^ZyVd2L-$)s# zuXvPcPWG?f+!my}(t<131mcq*;{b6AN72Ap8J#FHWRKLV&DY4h3vqN0bBX;Pcw07p z7wLAru_~$|&~ZCsaF5d*6mKG}TR#{3?*=jr zTqBmTA#ij_q*^jT@v>~OkPUu#r}H+ICmTvaLXQ*7Z<}I&h-20APCvfZ3-D>+n47w3 zdNqd6_Q9XKfI9V9=n9?ts*ChBL6<#={08n$#b6!0*Q5RUu}O^~%nnA_!GZO3A>IC6 zPa@4Q5a(HaCVY6V8|8N9v_8SU?d48EMeWj?_aFl&{u;RF6nTX8tH0a# zRv0bU@>MhG14S-&HF%21P3mf+Gk!oaNn0i^Qd`N7y^CDHF2v_Q!scYQhtTstzUbw? z5v?u)KzmY0?Hut5pvxG8@qvZArL~)n8R>2W_2mFq+j&uyp3hB?qbJC8ngYV*OV`@c zf)3B>FJ^fc&9e-OF9zRT2H&tYZ1u0rGKSKwVYLhq`j@ndmNmBx@T3VdCXgG#6ESedwflUKjo!)!lzFq31>N#97Q1b>&WM6PdM>^( zs6{O<21P0m(@uEZYOW76$R6HKX3vx`u23$pkj7a?POD~a;3PucmZ+G68EMWpyL#9jjd3c; zCgDVFUm6v=1 z<1|@iZ>H|CF2>7Sf{q+CpO2pAX=ceLzJxo;;W-;rXVtumOCQ|nxrEr(Io5&u4WF#p zXyYga2-kk{B(Lvz{20bC2EU6Mw+JT*nXSC4RFu!4><*`!l%rhBcUcOzqbLm)7M%Mo zvc)F7P%xjx7uT9QX{t+r$v}$TYONs0EoFP8! zib{*@i?p5U)feJQ_Yz2e(CjNFrP9UB#}n!`N2#+u5F2TEDp5kA^_(zcM_+zFZG)~~ zn+tVs)27c%MTFDi0m`mj?UABeL4knjdLeX3&C*o>?b-!uk{!q^)m6T*J2I?AYAyfP zU0c5R{eKLd$hFT|-MjOQd9=$AR0=_{SvWJt?)#ijz6^e*biv1Cbp3Kh-rJoKGv#m3 zJ93&J5{uH6vpeMFvG3eGHSQj)YW4flA?7FVuF<#Em+eFFO;{=td&KgPxbR+Ruap^=4p}=00^1)Q-8Ue^ z%i(#)nFfMHmq~at#V&9swGFBBNh?VB}&F=oi?P?9)c|Et}gQQ z99Vg}UVttU!sbPq{)1~ypw(s`S6$1%;XzIBeLakMY!wXVNmt^0Mw*8yVT0x-*=c}V z5&kO=APCX-b})1{r7yM0t^7Oe>r|CuW4^W-e__dV^=XdNxU z-P_mRF!7*b%zn8i{(MwR&Y1d?XxMA%WMil>rU{&uZW^v)nwp4Bp8&IaT$g@J8a1=j zc3#0`-ia@zjS6RP20%6~i3}RMcXOxaqnspXRu*%Pi0x))0cs9>0bOV@X*lXVEQgp4 z7lY0Gky=+>P|AIDb2v$Gabd0hu1m$iaKz5im!>PDLJMpu5BI7?*WxeD3R8NA=n+Np z0m2}8KEhkzE4K9mZY90PRJMg}*SxOObBt+7ja?ps>#|F}8dfs@)-6`sf67pQ1kG*a ziW(<6Tt->xlsi^?`(aNk=t zy62%`YnQJ@@Ek_N>V1M0nxwCK|1T?eMV{_lmJOAxssl+ypCyi(>6Si7kg$?;vgP3J z_zCsU@Ybl;Xx@Y9C3WB7l~UuSQ=hmAzl%vHwnyrU2?g?Zf*OTtLr76!@7U z?gWXhPh&qYSz&VkE=^{@-JL9z>H< zDqyI~QM(G=%$U5&;+elT1GidpR;;v^7Ve6Io>lCc(kX3a@a1EzeHY<1c{R&~auK!! zBXWV1Fq)F<3Y3*7#FdO1#?lps7jyea#cFRmKP?U)oIiys^)h$>Q?nNMBf&R?}8>NLvw4BZPa3?F>}hY+5ir@pQ{Q z6vtUD4W&_X-(4ICJ%+VZxQp0-g?IO>_ZHLn_q9lx_#?R?9!QakS2iA|t)kxsW6*Vi z<4O!&wngQK(U|Yx6O6{K9S#6>vBhd83cqE&sAcvq{Gs@suJUQIz&6rXP)v&c(B@2E z2UGABG#|6Qp9U-(;KNsP^oP13cf;j!#WV$GmKk_gMIFJwxEtZ$ywS1{GpVI_R7mT* zID1j}IYn^}l)2Nl52Z6W={n+qE{|Epd!EYq3-iJ`2f6#skW57)n);&9CIaJ0Ld9*7 z9^=td80gu1un1P$&JiRE^BK}u=q~jPUnU8Md@fq!R;F}*Ue-iX!g^{RE^NX@x3w_` zz&nAw6&n8{TO3$22NsgO=LG8e`x!INvZ;SZzt^WQRu_B7N5lu`r(=<{94;PpOt7<1 z1%wj;;&8UPf@Yg8hGzeS z3+@LPZVIEn%=}L6*q5R%KEz01E+z=h^$kkOQ>p*LN0HcXIX}5`vcV;jFun_W!tt^+ z|CTBUU%6?(c_JAT*YruZ?(|4__Y1c^M8wHlUNq+bAFke%XT^7 z|D(*zA{qJqOAdTaUXJCjDH5J4tEKeY5E5Qm`s~Zm2Knz79Apt-1B5cbs>5Fh9HOA+ zXisq8Na8)7@d@Xz<0V}LB5mwjL@R6dq_7QRk|}EbDzdcYzm)H|9gu?-yZCd_Fs|BU z?{O7r{ka@P>arBFQwZ_Bv~+sNL&JAgoE}sr=;fD3Ig-Vmt4rd3t=ix;{St;FSbZEm zR)KAg2Vl)oe1b(`KgM2JD$T|8eBrZt$?=0$h?5fDu%Y0zUwZ~FT-{;xL0f;={`+JV zQa7R)8%iub=uF3?Dn*z%KZ55qNaZ*`T#KG#86 zyq`UVOqm8-b2=-?U_a<3Xu|vT7vo#TbS@RgBK~K##ojOC(G7gQ`-wQvro5bm|5N?0 zPiMG{HjNEi=~oY4-6U`^5}MqF8*%@ z$GFW6>H9?f+HbEWNX%<8U!!$4QulUliE~QGY;hg(=rbpC7L4`32BF=w%z5&W6CrC< z3Fz9+(U#rrwuKvqjHhtFlFufb0-XlpaUboWnIn9@ZkSj$Ggfs8ZLhppqD}eXRvf1^ zv*f>9LG`mbk03`*(>_b4*RUR|lZ61WnOa+Q&;oHF=FU$Pe2E`5K2er8 zW0oS!FNKnP1;YIFM&auVF68jiS)yBv1vRB3d6maTjb}IIy`RrI*Y#V4K!IJWREipb zZjid1h-saX+F$q+FH05z0$sxl0bvl}SZ#&bS(L1Kut`W$Ev!+sUsPqj_bU+b{$909 z%iit8xAhbI3{dQyn`)IUEPH0^ZvSi8Jvnz2*0_wZhujO38L zGYl|I!C@;qMtmKA6>ZjiPc0|!Tjr^0 z|I1A=vi@&wik*d>^ZyW2|67~lU}gNjv8h;3P=##mb-Fs*6e3V90*R<@Z%21(H3$R( z2_V7_>&GKC3b@f$jYp-H4sKKmx>3rf^4pL3k2&}Incn0~lY8^pmmcfdpBmm|5Q*x_ zVLDULW`OD80th!dI6B0Dn5;H{favJ-;OJ;@c!-ry0-OPV1)c&vj60w}LDAn~I$-c% z1PK|m5P`1B!2$qNb#MT7`T%W#5N(B!Xy}3AQPLQa&s&J#XaEyII|S+gEN}r#FwpJ; zKvM&`Jco!_TA+`VKV6^13{sGo zhi`Py>Hr4?!a1r{wdIkV4T5z=;Hxk zAQxLgI)4M)4AvoB5OCmx0N@cM7*|2C4x!os2Y{zd09;blfG}i?&vDI{cwp><`Za(K z&W^vbFX~TpM37Hz3=>O8XBQwrUP1-z0M-#en1uxOQvnZx4FH0QReJG+U}%_3xCvMg zM*vL%Tt9L+pb2S9K!FLgAJyDwQka?_?jYaZ zzvYK}Ts(I60VtzL0F3}!0)?LcVeB2kbK#;c+t{{k+qP}z#I|kQwr$(Cb>id%Z*1JJ zQ}_AnscKYXw|95#J;s_dU^9tn^J9U)>%lP+axfE?TFxG5qhaHKR<*Rf)<_9*Az(Lv zkfEYCIygU`;tCM_Yo44Q?giAl<<$vv&G)4TWN&Y55J=>F`00Qlk95+2)AbXj9;`D0 zG#rpD?tU47>i)@!1ynu&5rKW@z~F|Z(qsg*A_&5Hcy!(@*6;KiFoSnTd-7X;Ye@Ht z81(BQ@KBF{Fu*(dRKxxofqnwzboVtAzgj~JQsu{vJ@{$!`{@oG!atbq`N+y7yM)xUowy!jT{UrgeMNedGUyhf(smATSI_;N+B8=hbN> zRew!_d4=w|ZGkVqwIKW!@_8~}MKCjpZ>d2FGAFnX^GOJn+?!Y)Q#5A1(!o^+p?TXV zL%nA9UZMyZQytWcskL(Ep#$SZN0=EAMI5eLX_<=HD)C^OzOVJ{?_ur@+n2E6Ysy$L zm^tm{W5`2;Lz6gByQn}Ej1zoL-%IL1aIesO%*>Oq+AWhWz3P_~g_7dW5eM1-oEAv`jRqKnMeV$7Pd9we$L1I+KrGskw` zW+x_TPC9hnY0a3d^E6&eqPaXcgnka^C(hQiP_JhFx#okdaoAa|F{EOe|&6-Ixn zcmH&0_yK+EL+Q?FgL3Rbloa^H#MpzOtcTKCT|}Om#hlk3Mrd#mo3l2N8$aHXlzz?yZ#3j_uy}!BMMn z)$@|)YAN5Sq;cvpB$~YWQw{%Lz+@pGQAL~6U$1XJ@=U<3r%dtaRLVUryMxYM9=>Uo z$-Q@SbHfGqcw(dB$wrbfEQ9Yx938Cky9zOdyq73jfi{XZzEN<+o85oOWg4`LRHvs} z+d2PK;3s$P8e8I`JDj3zjSqx_&nl>yam^+ENRD!7OG@B#@{WukUdgTuYSnCQ{rs$K z3C~X*=K5>7$BsMi&U7X~?%HjBsMCNXD?k~=v!YmwJQuIsp$L`Ex}dmLL;UN^_z-(3 zCF5|p&Luvj+}U2Busrj_i>FgE1>x3}>x2)|1PNv#a`r%^G8zD^~&ZUsx&!7bdDTtnPO#uATN%RRs#tvpb$dr+>v|9LJBpU z;yS79Gr(pFTY;>q3W#<<(z-LrN<+=N?8HsEESszW>H912dctUMYt(A@(mGz_MC{!- zNQ}m%GiSJE1x>7C^p~*tkVk3BtyA2iJKv9k(OAaG;@ga1&gjTzvbb=a7W_M}w9VOa z2y~#x)=71izJ%-1vbgtqlqnsaO;GqtzMC_Yo2vn%n4a@&ey^%C+j%LP)ZwWYzNHW^ z#GF6|KbsqUEL>ctJoOB4B+KNzwrVxeh%%+nBOvH;fWp07xq<;Ns%AQyWI@rKy*;Yw zfQl=h1Q)u$KM>T_nL%N1eF@HD!2u(#{t`kmAk_!-+$HV#H2wrf4bhe@40-;o1hP`% zOO0T8oBmbeii8~kqn#9d`bwduGX*~4wO!XjW4b>p+=(WI-=$9;5=gD8cgs#yGaBtL_^Tg0{(MEFF0$i1Z2@bxha zA(tSt%H52q!iY0c_9A}@-j%S+dIHdBUR$nLxYt#DR>>NWZUS&!CMGH~fUoGxJ@eW^i<<%gHD@F)20sf>&W0_K`h&sJjO0)~TihK9x`BSa{E1msb3PkswMn}M&RnocIl9K)NGjQw`GlE%m$%T|oX-?!8 zr_+@~6hie)mqgU7>zoG6!q&w_O* zct@9}cpN@Vp#Xzf)5Z4Wi7W zWT(v-HsUeMmU+6JtiTskJHU^9fYgLO1A8)n+yRFh<1`DT?b+*L3g#S{V;zf9HR51p z2auP&7PdSLFummiDGs}5&}?@y1fCKsXo0pcDM5*|{#$via9fpJL2um2PpoVjLy?pj z3C|zpKTM%i5GpZ2v$Nw0*P)KiI+p$ieN*XH!=LiY&##HpzF@WBd{-eheI=-ZPO$BB z#~o78%)wc{VlGd>T7>Yn#0^6)IZckZjFYA$oq{r}2ZwD#d(1e+slUIQdgr`!MldR@ zC4W+Z$qrt-SRRJ(q`WK8f?A|y_qEj!2AW}IJzj0(NFOD8iXKV&^{e!86_(A4p&J3c zVCMF$IE>-HE@@)J=9KIdcg1=;7)$^y8TlA28T7uuUj_7)@|-B+)^Lr+ zN7H}7S-77Z4`p!Pejr|B^YB~yWSn}_I=h{k5^o6*ccIREmjK2&5Sv&U*1NGPsu_p0 z57AHOn+DVRSA@{&kbG&&cNN{x>2n+tTU5dfPkdIMQ@%ATQRAf=i^BRG*`j&LD0q-8 zn*`b@#et@67g?5)EY>0ewn-Z93+1`&& z8rh8`gtwv{(K0nvzp{>+G-C>$&resGrZg>Fd$6A^hE6T$`EZ3St&;3=k1qj_3jxQt zFsM}^HQ5<@D~9D`EOftut=v4O{zr5M?8Lm4jAHx@VB)I%xmWF~1L%GPhk>3McCllV zgS=hkI>TT82K&zHb0qlSfW}_N2E$|c>t~?=x(F-x29lI9Upe*Tko{X`1H)t)$*|$S zKxr`v0aYc={+x*gf4XRlp9&{srsK3?hwbZ{`71F}_JEG(@+WDCbGWKn58dDEOzbap zwiz-J<`al2iE3wIu{L`?wDe-`O*Mn<=KS_Wr{El6>RqBN$v(cU_DRKYgOW83E5YL} z$6C?*KpSyY&1tk$$>l=}S+dTX^$48&?bNHE-33oVO05Df{P+JWO3g&FXkZ8J+hWvm zX_%b}O&1hI{Wda7y$TT9QjB}?JZ+MEX#ysF-!6(nv;M*X?bfY$#6pVWQqH~B#ugA- zNg18(^R%t$ip4!X^=`)!JYG|y~!gC@hu?EW{S%v^$s0;CO?N zES2zDM*TIB{lA^X693h?XdBB>_H*WBg|&gW`{m6^2MVgHxBvddkU}V@CjU6q12F6Ei28=O2rUXzV1x6&e>*qA#TAPt~jVcQu$h>=m)V& zs=UECvN=gFkENMK6G(g^-R08N3XMtAI2TF2-EsL3mLf$+9?$aS9=1{#h1pMu-HNC8 zAgVJLl(dOpuWJfmF|Q>{la~@)Lb}KsnPZErZDBU}%bG*r&4ayOwbWWHf4Nr(4o@WP z3~PJttTZ%p(BG7i%zkkq%H5+lip_&|KZ*_Vk^Y+lo5PdKwy?)Yt3b(KtQvtd0{Z%- z=XTTsqA$>sh%#2N*wi!xl*W5$rI@1S>Grx)G)ybR?;maR3LUe5(72W3KiDbBeC^7o ztpNf_nCI?8Ycvi++4xqzz_OI6X)M)eR|#;j>fq=q2d<1bIE094-iz$Md`(ivkH@Tj z3QT*=NsImpX%u?YwY2LTY5Z?GX1M%y>YUIcQ$*?V6}yg%YxxCSjXM{KTEN@;lIFd!ZwmBAF~+6ob%M`? zw;YRo-^FcmbW5juB(EUa)-{MT;^_XGspE`#X|8#&(*Pu~%odr2oShVdq6w1ADc6;b zp9zmK$IzS6T%hCyWq;@RBT6tAFu8b+b>=SI@k}qbW!>2LF#&2sv|=@Md%7j>21YJe z8BPDo&Ifh}ZF6TmHyFrMZH(^8Fq7@e zE6J@Sr?XjK3y)hgOQW%7Tnp8#JI}B5p;hxm*qCXFK3!l7gun&vC7ouJmq*QArIeml zf<>3-u?v&7ev90*Jo2;CZY#-821BMQUGBXzu&9BBMc{M4!Oq|!%80n=ffOt=xPMFC z1>bEZigi7q`(G&;;Y28QxtC(YhPq(A`fHW`DO8H-Hb-0`H>$2?uBMAhZVF*(PO*cG zT_1J70y2#Z!>shMhv9(lrLy^w|6WMA!A~NJ7VcXy(Tpy9phcSe!ws4W45*ZExHae^ z)~=f66%Zm%-%W}HM|l}#w@o;Os~1?R*0#J4$>TOWI^woX$Z1U!mte6;9(!nnm$zr( zTZW$b0*e?XgOvC`?RbHoS?36$kFH0xQFOeH3cX6^H0RfaA1xn~e#R_A5Fg9ijQ$~g z*2)zXS+d>idCAYq2Bm`LZ4(hWE)T6z)_v15=JJFnJz{D9Zt?QvtOZu!q$vmC)r|nU zz?QHzZeX=O>a~QBwXBaQ<7U@2ZTZHSG#b4_FP^)86$_DhN|Qrumnweb-5e(^*5PGE zIsD%cpYQXbjofV@=97Ik5b`1KAdQE@cS}c|oo#rI)j}c3B&8OVx5`~fiZr)llC9eJ#(&Lm zse-@QE+C=eYD*+Z5GC;bq-P4%^R2Q(tnq_n^n9b5hd+yiSGvKXPz zvKR!^CJm7s`Dz91AfYEXF@Eqg*lb78FUa@44|>qjrAScpvaznL=nW)

eOGIeNF03*;6$Qccv)8o?lw~ z7ulZ=C@z}S3VhRXM~q$UVXuW#_0`=ZNB{NkCRn1$It}kFEMVt*-7_QTua1tZ$SJ*K zuYXOYSG~0;A#A?`#52J_Z&)CMc_P)7SNWp)p`!DqpKzaGB+}6pj@F7r%n0Egu+F`| zJme{TQqu)Vvo5Im^wi{2X(>`3A983g{tDD3TK?ieMBEWVE2W}3p@`iXR#b2op=L7bT1&>rW7t8 zWHe0_t_1Qm?(nJSa>y3Q%SE_V(&r0M@K0lF7&SxQM*ylj`>%*gh*J6-7CU@yA&>u5 z#{MaIH|)3FCtJ5N?&Fzev5$^M-^7N>P2V;jVH_0IZzk6(NvuAopdvyb$M_jUINB0+ z)2c+PDaJFk9^Fl{fOG7lMP;a8XUMD63{JOPV>f>gVt6!0N>nDmQ-WN;pWGMxNm5GB zT~Yk1-6129JdYv1n|ln#l}6yhDHJU4;NzL|@?`tSE+=e^hyG8ajdbUEjd7mkx{nU% zs2Nt1Wq=d_4%c3|s_oI$?|v_(>97Fbrv)C6BkNxeoN|T4(`#|EB0eIbf?Mim6?PSH z<>1F@NTa#uvN4D*+nBaWZ(f|O7udUN-kYSfolUe;M=+!~jpW6JYcDNKy|BRLYDOxV;S<4(q;A{ec+J`g6gQrO3~Cs#5V6b7 zE65GoHlTVJkiD70q52x4#&{09`k;j0Sd=-0iVn+l(AC{A6SU_H8}Cs6#xl9aSipFE zaqwX_kVWIV+Qa01JtU(p!(X&PxUm894eiMpt7`Dj zua;63X0sltv-iCwfG?{`g?EwwghOf)K#csyZKBTXqm<9U_Kdol#ihqWqg1AfJAXw8e^skjdI z_S<6QzOs@pEQQjAWN~5e2A}}r+|DbUT(i9Q?qlh`=}+DFj_fVyv(g~?WhmglwP{qTgB0NHGMZI_cbe z%0t%jayUB1Sl#Fxz~8$pUlN~I=G*z1GiCFN$wX zyg{3w@HY1XOAk9jevCL55<^Y6)D2l%fWB}1t{>4o&Req_H@$HaPI3)%2`~7YpPZ&vI&}s$Co# zRR@`leYD&kXt9fP`&$Tib(fNHxyQiT(t6PX^*YQYZSl*AZ(q}JSWhGG9HFAxOYY1g z*)JORXQn&((mY)d1c?2k&rz9+Kntb#SBoF*#9IU?4lMwi${A|a8(=TE$; zjmP*JlwinMuKy@aC_~xS6>*XGH7QT)jteTIGno*<*>i7IRd>jGLs5sve?F%U(eeP< zdH8}Mecei%xDN(YrFP2XJ*lNdCYp7`1vWD%aVz}B-(`isDhJ+r)hG1L)pWfT^y2=P zj#*hLdiXDo<-*M4xQH0!N#091G#v8nsW@2y`X*=N?VoFsPN#2lXotUd1*omN1BcS? zMrOX$fDfchqOw-gmSEVD(?{3vy%Oju(ipn9k44XMC1?n%Rf;9ODbNbT zZ#KBrLkY>Em$%;i#7V=+_RgaQ;`so5WV{cjm zM7|b%?k+Xfmi~sW_u&3{FJNZzHxzl^AtrHEk19!K$k6O%9+CQE*##y@mq>xUhecEWU2+Ka5>(2XrxBD_? zN3Rg(Bx{^OHUE43hTV)4_W5;n7s~tGfM~W0@WYU4a>F7MbX9N#@4QfUf*P6b zt~FvG8DlRVYjG`VN>?HAEzav1b5cNy)Op85<%BhBLXV;E*bzh^nijV@x)oSC*gH@(uF1iop(r*d}nAY~(1nBD4uSgYp%rV=c$3C!H*hjE==y@qS;D~=qJEG2} zf>m&3*9dPY1dDHi0jXB_yepu7p2$?(TYM=O7QW(JHho?9I54Km&)#ub>FHE#Uya+A z|Ma#=-f&1PvA<4tDnczbov2>KdHv9BltvH&~pf2UqUidVeBO zaZKb7QXiu5(|++QhFRYix{Bzl|hVAIQ0UBJ(7SPy0`;M7>W3uV#;UUXaDh2 zf8+I=_3_%L&JEDE-oN30hU1RGFX|8OQ;M&K9wqb`0v1XJOl~LYl88h^Mn>}AksF=2 z2NNAB`W=qilrOxc!a^Z_CnS)$Rbs-4p$=KnlC&cO=>z~n3XuRw$)S)jP?Lc{!9q(L zRr&Lh?2!YTHB!zJEMfrNk|HaiA@`sx!yhBKxQdv(zHg8Yf*(Q%p`aZ3{wHmKYgY2Y zfk*&t8?~aYqW6%3!9l_$Az`7#y+eX$w4&nNP*77{oSu>cxr;*+?ctksy#p~~{rAcY zEH1pwSMvF*ITeVoiTCr`g!op&4I~BhdA3HdR6dwo*hXC%X-Uha~ zZz%v2+xUA56<(6K={lHigoS4t;r5otgQcXt2syY(@vTk>bA;d`S^}oT^wxj_9&!~}l{1+nx%tSkTo;QVxvfCK^gV1dDJ3ga6?6%TARF|8gh;Q0L9GC2&YK+!58 z1*Xy5y{4dR7{5q?;XQVI0!T5~R#rNcHqO6mfPc?a)Wp0&`@e=!fCfS{k$^ygMuD81 zlm`I?eBMTzhUzfi^0h&ZLLevs%VRH>hSWYk*hqm_4ai3jKT~BPqcoT>j^Ff8kRrt* zNY{`TzjPjdH79=+PY1MqG>d*cB&rD<-vA6w-&PC1CXhYDe=`U88mFIyOe%zMqw>H< z1A4MW0_2$o%i!B0ygGk6)Is6L6+%FUk!vjd7xjUQdIGwkMXQE;i(b5$*hViCtbhKF z51hdxhzdO?Qf)TiLg0q=$^Tf5%+rm6`@|GBE`Qkt|FO6zpw|=@N_-gzm)BB*1M2As zVHVqL8Lt-uHbio#xhdKo7=wd?AxgBQgAA-&LUa`BM*Zf|LKZ@b9bShM?J{b>uP_`x z;F6MpLuv)>`Gq8k1>YS)qQd(Z_=AWwbBFumH}Q>&2?C~X428Jr@RtxG)Gu zXVW?IN9VVnwou7|D%8>+0y+uC&7WY~U!z6{Fg73%JkYv}oo2L;NgaKb>34KhDxO%z z@vgMA-v9C9*uAgk^)@<7>Ycw}QL>L{a0*6WUUgpLr1qhKj`#)(F@WFa9LlmqdWknN zx>BM+{et?8J!MPZpyN!DGp`pKOLEPYi`P#${ zyTjr=`33BSSJq<|9+4D&ze#>;qP1J~#|Q3)bGF({?`&~+_$v3O-!*AOWG)}4>7OIb zc8y`}4_GE8^T z)o=M!2>~?^Y05^Q=cG|fy4{m};)%P9N-C(42E{xlrax9QvB;>2O`yGq+ChaI9;~F*Wx4xhRMf9?+C-lv$o;cOMTFL(9ng z-ZG{`Wn|F}t9g zs!+Kklx5EEdh>7B`e~avlq^GYELE={VP6LcgnG*Bzi5gE9p0h?pF8YVV7#xO!p0&t zb6*OulshW;^Pd+z(2eDLp)vI0k5h%9_gQ1UV}#?t9BO7ih!6OG1}6OW`0RHVI8`eX zS_37^T;(BZxB2`=HjS4EClc?Szf=_=E&i2vcptw{t%1_?5VKDKuP^@bG*j)htXUQj zbW3eA6V$5t?#x>3`-~G^x##?ocv`i(*G9y7RVR_>*8xCBL{9^jVVUn@f=*hqz7axz zKByT@q5z&IGXy9n2TtIIgjpbga48_ji`h7G&v|sfc+hVVa7wDK7Swd%=RPsfDYdOL zL+umZ1?3*0L)Pqn-d0gQ9F`Pj)o`v~ogvaP@5STN1VrOV2CJ%e!S_!#As` zAjrP3=pI!#CJeZg)|wAysR!(PBNd7V+583b9xu(dcr7dSo=xBcQ7Cpb2Tw&C0GyG) znccZ&N`&9>#O}>6?eCe?zw(C7FbjENkZKER>Ox|v*=ebFhBqV)gr$XBYg`~Gj5k^C zMtTW6e|?_aG(eyU+AgY=t7Pdr^qazYPP*(>2|e~wmt}Vwf00eRF8$kR`0zJMa$95J zGO#{h;s?~IKY@v-T#&h`hBe>*L$C5q_n?S57L-cWiLejPB)VET@M%BulS#g+S2RwS znW{>`{vn#d+#b-;*?JFbd(c(2#+VBo+Gke;EnDq6s^R{aRuF3~Rej*_^#bh(cbVkT zqjDJA<{sokXPbYjb)x;p+IQAcDRa#ZvF4}ONmM~Xynle2SqvE>fQ^8CWwpxtW*wiN zPA5E@-a3_}~{`r5&T+A>_}g%1_3ZrQ)rezPCLZ&Z zWP}FV>))z-8%8C1yrQB8FjNhV+O8I@*mWP!Au`F%8TEqmiK`3;a5t=G45=}PG6PSo zV=M_|>PQ0fXzFRDUdAV}-UT)t^4j^>23#8p_#7_!ie{8i!b8Nn$GF@J!qkNVnPb1% zL~znRXKe)Fgl=Mpg9Z*czucEPq9tm?@hy)(l72Ot0+XPQI_4Q}(e~gCb(&edy14jI zmmnDy+V~Dr@{h>JxA@yduz#np6;A#{3A&N;_t?qY!?z!-%93G$tb2O<(0$lfY#5R+ z7PNQ9_|MWG`eT4ra0Uw{oj@I^&nI8tv-dhPE(*EN;TDC zw!DPwDqoR@$~6jOuMa%xs`SDQEvRTy`Ni zk6nu^NG*Y%fry#BKE?PqTiKxE6qXqg`kdc=k;#!gu&bJvvaj+~qqyT<6>uQhXxcdO zZ0|j*;~Af)2c>y<^pIj>iK{S6wZ-w3WCP{=@44ckr}g8iZgs5)JX5b)a_Szymqq>R z^^F?+kmaqahC}S+P_S@JZuJV7htVit+TRvm2s_lT6m1zke@?||=XVouXs(WWN6zpi zd6!Epuvq(VN3l@a6FX)2)3PPqrf$siV@9P_M;l#_PirM;|EYYT*r$Ikf7XLt!*D*j zXXMa)TL@Zn<0gN#`_4~?a0u~P{!t)BhaaOTL8myif$90+l=8EkuC)1l9ZlZC*mK{v zl&KL{J~RXJ4DM+F#o!$^`8s4rh(Q6mBKv$jTEWEPWz_E7kSL zv#U3zbI!FK;Ru70E+(RBJpT0>vIUxX{u|1=@|rm*#7$X6;vLU!{|exS@yiH;!llz=Jh?B`FJ~X zaZ;~*5?!bAdTz;q(~Wn6R!$W@l{mg$%!7){GC(KNRr&~Mb2$k-MrKs}EdI@Y9qBqt z)Ptb^_v6uQ+6e_7pUj^z|Hl*{nJ_=L$%TOL2$%&8d{Ws2>S+dYTvQ zBN|wVnUZ7?G-+-eu;>rm88)}P8U_Fh*<`G~~)z|&0)_OSNQm+W<-M@=VF z#D+ze|LvB|WhGcw&g>T-#3y8=tJD^o@84*qRmlWzm)Nq46GuBZ{TH0vy}0CtWDV9A zL_f#LjrYq}5M+zUP`4u)<7ws0NYa=^sMJ-wz`I8_Y3gLN;6_NKtnpbRxCL&>gqFL| znRa92N+%9Jt8&t+>7T_!RsBa#S9F%H%~k>0G!1nIFM$9dFBXM~fp-^|Q%4d}Hgz%8 zfAN$TS@|P39UC?AZ{~2H4`cC~I}OZyPK-2da(bSpR-Z|oeNDGMbaPIcfv;6KI}5%a zi${6PzyrbQOSldy2B}NFSXXNJQ*uG8>t^H-GrRTvr-LFcVObWPB_cqEjw`SOoYQ{| zXfwXPzK-b#QKVcVd=n5N!fm|whgG#%(>Lm?78yk!O73(^%LTP5Xc=x#(5X*=<6<|QXdlwU;f1LjeKfXOl1{7Eg-MWXI9N{q?20*3 zoXcR7`+L^o3hrso+G8w86mCYM2QE|E4n{5mIDupXoEush!5h=;!kwD3uP#=@p&St6 zIt1HfhPw&JZhsMJ3mgYX>CUE2*Q4}*9Rr`;Cba-j99|a&?e%vbKHUUfNJ+hECK8Luv8OZWdHsf6DACVA6sX#&_HZgDQ0pMTrYA_2{Ab^ zF*#~_de~Pr5s47yz|YxF>|`|MS56Qk68d9K@=JS|N1ko+$*vqsCG^{L8A>o*dApZA zpF)SI-i<5%jrP@W2$rK$C3hqBsC_s<`(t!lkH0&=Nl7buoE}1U5!CApj~>MCS#QpH zeT1c)ub+yx2$j%Aing+SyT;BG5f$lmHPX_1?B8XMILXc#{CkiCmVu#ThubSuXycii}B`B}yKv}k6Jc`i-8C8$5&$#HSJF02dNed(LkAR{cf zj}8qj%3Q4ay2_=fnMzRF*6n0icP23On`APQE3Q1L&pEf|oUgy@DXQC(R@o$wdSX04 zDXBWQShc*|9f_cjk`7+IKO?m;!g-HT-RD;OBF6||W(=@*^9s5@e&Shc7`O1QwaYF! zJnT)oNjb|?a-!iblBr)s70Kl1_e<9ZNiBg58l{zCaDo2`#p=9iX(%YOt*GMUL>q@* zBgf6>*XGc)XayzbtZ%JCeBX@vjS;5%lUu?h%3SbFPDJWX-eR><;i5x>@>Ke=@K{~`+^1iz!`-s^e zszoBLwW6wNs4P9ghDtjzKE(TzpBghQ=yVRf45O}?U|$61;Klz1SBOy~z{qQa&s=%c zP(>T6sSorTp(WIFN`PDN=THMCZ0ix9DNwOaC#a$fD!X{=v5sGpWBQF_5~LCiJ=Jgz zHqqrT3c3q5nm9Zd8T}$k3n2`5T>PSDvLN(vn!CXgeX(i9e79!WaoYZ^O!%32^U8TJ zBrz>9V=%qN}~V9VN{CMtW# z;${dGta$|}!dd~o2-sz5L{^^w$6j3XTNCD-M(*cU6#SWdi1#YvJ6N?@)V-gb$J9>~J0`sI zo+rsP5Nfnr47n+2CCJVo5-lAOV{XUMh>`G29TegyZ8U2Q)v4)S$%X@Z9ErnJRrW=;xn*Bxq$XKdoT z>JRMN?^LyJA*bha;Ywef_sRS~&n@aJ+i<6=VoLiA{FUsg_eJh;FP6AF;(+chb(%*N zB=h|M){iON`zN+g)E-6ioS1mAplpB{=Vq)5tsTKO@PG;Q{-*7)(gej*T=igK6XYW9 zDZN0tz8oHRya3HA_6{17zN)ITr10M9be6jMyz3&R?1cHRjBv_h6BKGSh2Zate# zkHlJG?`!nhW2rhjwZ;a?S$*6!ciO&X6B6zKe)#cp2iKwLq=U6Ewqi7=_b~YnC?L2K=_#%J4|&++?Tk>k z-1?-I-i;^k=yzDZ0dlA^Iul`%QF9%=tiAOC*L22ks&)pm{o}$%3pm~7$#lFZKb6wc zFErYOP3ImjtY;qV66rpP*uFL2MpX7}H9FnQc`nx~@3cQ}BA+&=~pHGj+((k6RS*|S`sEe*xFOkKFAeYCk#GffdZ zbZ^1l0ONsb19q(1Db$gk8v2A-(9!4#2W(uvE9|Lnhg`9!Im~W4|O07BG%aU4{<= zsGllj;e~ux5K5V&-H%QkF%ST6>mfD|r^pVks?hH@u=V|bJFOkBz!m=Bo}p}H$LY&^ zuM1@Mm}{RTfCzjO8~=@BT}46J?pgl)$*W%x?tx0pe^Y{-z0&%g(Al@QO-3TO%0R;1 zrtFdvpHtcQ@?A4MV~$%pNWPti;}PkaN=8vomVY6O&&}GMLTZjrRt(2Ite5Y*J=Mev zB}o*1vYBd^IK!E1V9&d}i2(bo*j`p$41ffzQ;BH0q_{{Fj;TGbdaCH~=D zclvSzHX-K?$#cO9KH)0PF!f{Jr$Qi@4i6!Sq7L4}*dTgT9&9;wL!1 zgDU_h1GV7ckNwM>eNOW&y<#!)EG9(tDV*;9jh8C-iMmhK;IsvtJf0U<11-8UySJ@A z)xY_8WGqI2?e+q(-%YW8UlY0NmjmTrHP5!pT|(^hQH$`@4NLldJ4*Va6BC}VjZ}i@ z?kvW0m|Pg*u0jvB5qSP7a-%4@6EV-oh7*n+ik{ti6jzU`>)UQ0k8MBIlq`7->6^(_ zEbfhN^|kL@a~frP>+~FkhT;xe;So=b{8U(S%X=b|6O&A|p8^Fmy=9|G;CUHqYyyeQPT>-ef zo8yJW2DT>g_)D6YCw4AB8`OH{jd${Gj8ccjc#0kdTw9e!wY9#_=E#k|#J;(4a_@Jw z&}uQ5Ixt5&1oOWxRkM8wglSdj4+uiA5epPEP3eEG{Nxon9Qo2!`77L^RE;QoqAT#; zW%wKbU%BB4uUv&4$G@IOmJtG`esa&Ti7KAPOkZ1P4ox4F*eY2qCo-(}&gzay%%Q@#;hdDZ>#Gu$JRMszk`9`24oHutc6yFh%(meS~hu^mxPF< zr1(5DSp=?pUd|wWIlGdH2Pkz5H+OsH2i`a5EpX+7V}#mSL$Et@QRg18Hv42Z{*L-e z3uFSf`N-*qFh-?6>gNnVi?(b1vF9)FuJOxPFkKc4)wQOqePf`?%w`VilJu$~Il z&9O3YeHG7e0mnZQyJsJNxqSdOC_m3)u)aH`%Mh!VE81LoT`~lHv%3jdd9~k5mL{(s zigE><1;_QUk@o(_f?Mr%>+Sfy==K_ax~?q2vF>4wCTDEpthYb=3mBg*1oD$iy~KR; z8dJ-A96P8!0)WQwtEvA__{+xh{|tY**#8IoW#?pP`(G&df5Kl5ZYHk(9sYWNtEGJJ z2nL6SrWO-9tq?cHsUV4~bmO9rV=)E6w=WSblNSXBg2+TH!zZh#phOex!Gn~D-QoWO zES?gqAQvp{e|1g!N*>iyoUnE7a;Of`EapPRzsQm+5Ob5%$dL>Ja1`4bTmtOt zE~F@qzvvuF8h~B%%Yp>vp8_frO8gu8dEqW9pN;^YYU&0=m0x=BZER#2N{T@mE4*3o0>uL# zQlX7(MV{d77)aWL^|11RhGfYFx6s3T@p`yTtXwa(@JnO^wmkjO3QubxnFx$>cmk)X z4CKG{SNtTvl*5sZ2mvCbAtoBckrL<@q6IvUV$s7R6tqHSvI^@Uq@#j#8o6=21Nc=! zYvf+=Bp<617H_aP?{Ggqfc7VDk{D?a26zM{-4Pco`AgBY7t8(|_IQCX&JlEW@C`T& z=1#+e)JVf}w!nYN9&jz>|hQ_jKPCMj3`zz<1vUME-vdn%I=zy23zx1IE7?wD90Y z0)&4SMi6qlzkbcX*rtDZ&VKcil3V(|731IhlOBIBiV&cDUJo$dy4=Q(JcK~Q4!}+V za&U$eJ+S_+1nLs!;{WK@1cx1Y2xC}<6r3N3kub?XadxJ0fWWqVbK?%Yv2*RQ`hcO- z#|;xHIA91t1rLb-)QtdWW)T8>jP6L^Rlz3!^8-^FV#7)r6|xj048TH5mX*BRSb`-a zM@NB_U;}X)jvWP}aDkyoRCEFmfq;43Mv0;+#RRn@9H3-D^lz~ZGN8l{!q5$?FX0W~ z#4|!N=)l$=;f*06sn7q9uy=|TC2ZP6mu=g&ZQHhO+qP}*#l39Xwr$(9zx*>N|72!z zE;^mOT~+CHUsOGXr{Ix51-$$b_{#S2LtdHR!6grv1%3sMh&)32mE-%?z8U+=o4?v%%-a8=522slfeYQ0ejP{edLdlU)Apc@@{iwLch^P0GL3y$5m@&%a4OokksoM}M*Zcp4Ax+c{vo zk0C(05$_2~_H70ety9+uJ$4frsn~8BaxfKhii)L+;_`c*58}>0-5IWr#6$0gE4x$? zaq?4L$6)rky^?n$4VGevP3$0PYtKM=Juh-$4f*r=VmwH?^O zKjM4~B>iP4%6WQtzAQ=!0d#GUbOm)9ZV1M|RBdC} zZ1r9>)<{W%N7n8X88YAKIfBd+lp)vC)GTyT86>UQlG3nBGf-+g0|sk9%|fNe7kzx+ z-vN7j&@}33E@mFisD5sxR%gy_<^b}USG^>4p1{}ZMa;xa=s&-#)rCg*%jnHSFY_&` z8&_Rm21ctSh*mTGs+@B#gP`x_ z*y*}0&(MM(^07#}C8mYwICgk`Z9k~DtAuM$UbRD6lW|?L)8Bj7;@--M&0VgKD|-jq zHjSX2MG{cMzFrjby0|c+Bv=L{YOOh9>JAPMTxvPEMMwS2RClj2ObY+bNm;-Ng4CpA z&&QSyN4?YyU|Fc}bFslgik@CDsM^d-=Mb`iS<;a#j=%B7v#xqIezrn>yUO8`{_deV z_st%>rTVV2jA!h~QKV#JZ2q>uX>yb|Bix@ITN8HG24*-xFEhMcNzIY^om(UtD2N;0hP|Q! zlD=V1M8yU#@Rf4>!}Z9Iq%$3-Pfsxb+#m>!$ZvR za=Ix-LRwh z)_gm?p6Z#-Pf^;nVg3Dww2Qa%CReP!5{EP+a)8kS^l)+$Y5Fh+BlMla${@ox+WRZ? ztI<}Qb&EN(?2Z|VJyo^}*w@v(cfP(GgI~KHNlYPWJ*8Yw#2c8UORBEZTy=o~oG6|e z_9rTahuLs*dB~NGG_``&34DQ40<79tqRel!c7|LjRhBQtx| zCbqhI3ZXTOp`OQI`K0G}dUxCWBrZbzS10d}y2KcUa!lX*s=MTSsc+DwkiCf6C#V#y zK4GLmDmns-S~+e@c}cZq0W94X#wT5n_edd~T=_n#BN@zsT;A7og|r6~Wlm=CZCdS) zS32JV74#pdC6n%wpdm$8DCQ>J>Bcjbibl_K#V#e2)Nbcq)VjGM826#&Au6=^z#A~g zyHDofm{G(+mqpZfAioaj?>fh=;PvJ7i}lrzlj{ni#t!Q1%1!d0ATDO?ll+|ucJ6F9YyBZ} z!U&jx1K$fRTx*jLtjnni<1H^S)<&zXP)9qOD3|bz>to%z3Z{P_x)EB!*HhD{t1B(N z5p~bmxszmd1SS3r6$yhOe5f2GZB|HSfkVf7ar5HYY&EFEM{8zV?n=Vih`R|U`$t@(^xe)yy8Q6!a>MV(y=1ykAaX{M;CEuY zMM0PXZ#>T#jiP_H&c$!8Nj;`jqPqG%*7RJmE9b<&7h_R=lI%Uk96Ld7GEd_*F;~fpFpvipZo3h!Ne5&3q}^UPsp zEbch~{QCMW_X>RajTMu&MmRYg-;mBdh8Vps+cIUb#^D`>`<<8AeD`_ZzF+%Y4j{H+ z`dk7_;~OvGo*-@SG}vW)Nuy4CNU(^6<=~<5nmQUaSAapkQV1PyXVs`h4`>*b8l&eu zz{$kv>SuO36HkbuS~KdjcNEdttG3zo|f2gdD|o$ZF@UEwJI51PDZO=1 zZi4P#RNS`i6bcFJ;n(i^M)p*mQ6K1T_9aw;j72M~B%n>LEhX7h&xCfG44=F++EcR? zMN*oP~(W6=>SI8wJ zZ>yCv?`si_`-OL{BggchaXN2sdKzA8YYMhe=3L3ujvY7iSr4C7=63nV&{=p;ivD1^ zAmQ$M^)BIAiUqNWZ!k1;Aoi{FZ)eP1g{^QOveS>%o>GHM_$L;YN|YW^V2rr+G%?HY zoc)n$K*wr+Pmlo5aP?e+apG!-i-A4WK)-=qjLnEWF~OM%9-y}ls=%uvGt*ajXp)5F zb6ieez~NTwLeR;d>wna{-ERyapznBu?qqUlV7vKfA3t4}BDvYb@Y_G^?HES7Jn|Pb z+6=-~m}4>%t1|91rBkWC!r(2kbjk5-V=4{q@v5ZpEpEr~76f7kGo-ASS~ve`B! z_mBKXl2~!hYG?6qb;)glCkQxlSTEGS?)ngl9Y|^YE%il-Pn@5I62fPFk{wc|%h*f( zE_C`&w}$$>U>Kot>gun$ixH?V!q! z7VR?qeWOEUY5V4A?cl89YegJ-7UF%gt2k|+qHzvThfS*ersZ^4nOE6hRxdksfsrf zsJGk0sVlY1`U*DCdD+o}J1ZTWy}%>+p7A2_@b3L_qSYASH4>8npUWk`xGjipLN90@b5Ap}>kq8PeRqts;S`GZ0*LZJv> zw-k8Qb(iO$7+h?GZ`PtBQ?6-vdC?BPt?;e9>@51)sO{ejsT8ND9V^h3$!2@JU*2` zTboIry5HNf&ttxcGq3zzH+C)*c5d7pJQnrQ$qoi94LEMM^I8mlqH5klVmuiGm6~Cv zXWT^=I@>LFFE5XUn?y+8#r0Zvib%BK`T6w&tuUS`8popY@%|{X6rDVIaB6!;ogYt- z(`Yn#Gpc+VNv+mIg{@SkNcF&@yKVVy`Sw}k+F#7J+_7;wz_!-WUbMJOFY>?dRFYMl zrS>3((~Vtnaz$Z0S;yX?7a>9s{UFo&3SkpTH zU~j>_%;KJDcBSX~AH6fEbJbHQb~e}E_8%soBc~MlVzQJFv-!E6=GnKS&qV*zr4fxZ zO$uQ+qkMo>qRCB$fReT>A!K`-r{y3P{33XZ^p^;*5Ovsg6YJTHmA%b*)dR=3E1`ez z^PBWq6uFP=dC!ZxL$7Cg&x)P^WFELL2C=(GS3U?~(eT~v%KuQIwbL?qrD}TuMc~ZD zVUs4#>@f0uO*;!xT>7`dC{Vj2emXCElrGFZ98U?Q-3xuH!VmA_a+=mkw zycaBZXlCpuW!p*^HbS@XSfPNpV=kRN*jG_zWN|D)V|*Z?Op$wFUD?V7HS2i5rHMQD zNB3B=`~GQl)C_Y0|EfZOaED!pEILVmdP=7uW%{<)DGoD1OQzJ?fiy+7S>9bc*WWyg zAKgkB!N9wi#DPAh4($&w!9;h}r(=$p%VUA}`IM9j2z_-_`FMn`YLNbi4I-SialtI5 zK)S#aEFVMvDB{>(%Ho)mW8ZI`U(UzC9G}GISGO-J&sw{$>U^J+azfXuaPl3HRYx!i#f+}&G+)>U=hx%p)a1+CE|CO4a(xwu`NzzjHXi=Om+Jl$ za3Pt=5#_q(B_@!=)she|$+aSkmQ9X^?@Fp9xYMFmSV=caF?%U&Ubu@t&F?p!7T-r| zy{0*XZXx?4cmXT;EE#a-a{C>B@&7y)oH%bIb)-qV{o)B$)e1;Gm(?T(EC9AUrSXMY^$JIUM&Z_d%(nav^OC-s@$LtFyzbB#GGdc*qdQ`H9B?HMzLh_X_wG9 zqm{(KD_tM&Aw%45MuNhgA<+QbAFtM?r&eP-VOhtSIYq%zRAoAt7_-28!!ADk8`K7q z!DH|m3dPFF(flT)_>_1D-^3NJf%$a4b+I0yvuoCnxE-xcfnQ_dwa8J1XLgtxhlZo& zq_8B6F+FBZF(eS>ji|&F$(-8eJ~xTBnvqtsXOeMDOp>#cSyW?BES1x#>!K2NhG%)F zs7#w4qsTi+6;$SgwvzAWCBEJg@tcExv0rz-MqNJ|Nu8RkVaFI6r?wKxYwm%$IrmV~ zdR}773*ML%*EyOpMv+f^_ipH9<$Mt=GHv9&R(|xoegYLH?W(5OH7ZAa{$S^*NbIi&73DMj z249G|FUeH|9B+=^evs-^urY_R;Bl0Gq_EHin}u20R1DXjC!~jA6Od;db)8uo?A%z{ znPvYs(uM#WBKiEiJG8VKWzK7|oeUy|*+k7c8*(#m3v`NIQX*E%b(0nl;e314(!K{B zU;P~f8>&6+0Y9hkwOp0U#FLL4SYFL@l0mUDlna7oH-46- zL1pgRGV(ZLCM8|bR0XS@>BV=N`&aXaZVS;|sR1~Ag`Ae9vJI6EtnMGjInY(#y!EsE9|UpFq(kH{70y zd}GKOIuBXMat21qLDC^<6QdA$m7YB_i6VW3fn64%)P0l|=ck>O(R>%lct3(tQBCG@ zG*V;xb>_=&rZn~FJ{IfH(;l=z zDl$i5Y{KwLo@nA|X$d|!D}|t`(ew6dM6loZX^<)g*Es~&k{!nh1d|=<=nzYTeTPhiUpzd#t@wP&@q_ayHWwlr9Gu4{1 zoF2;wX55aNr!o?Z^5*lE`q|*zFztY?b8sxUFPtx(?D=gQ_sAxbT@I9Js1lmGcAD|K zh2V1X@@EiyKX~&=-p3{y)enDPD52V|mgjGtn!eCtIbmiaSCU)+E)71qrbA`Dg#?G&iKg*3>n>3*w7PAucoI8eg|Z?z+L_xTOq^ zN$9oScnx?=9ql}(V=J~hC79Z@>67{z2C5^Be&!w}4Rg(f1mdGwk}HX7x_gz_ua1F2 z5zkC<#Fl_b>*S&|73UEBBFWYAMR<0{<<}(rBo5(sc!`9AR%ZAf=l4NLKs;0U>&g61 zwP#kPc8Kgrs03E-oU&7r^8OfCjPRwY6|(!BY}Y($y- z7kM@E-R+!XxuSepm33Jowh=Z3BpI%qi46y87`~E{_v4zOo4V<*dxSykQfaL#>?M{n zyJq#IpMO7U#&Vih#L01;SZ|!_=OkNJ@7u)uWoJcsH%OgUVyfxvbnD0t&5iZ?+zwc4 zX29kH=@oO%m7wfDy55+xA|hMNz21x=y?CcySeiiaz%U$NbShhWy-wJqZMWNAJ_;_% z9drVL)h=p>sQ2m4jx;v}Xv@_-&#O~7ekwTp%NSd=+hDj_fY3HXuzG%=Odr3UJLTly zZpU*$O+Rj(SDE?z^)NRSJb5?H`j@SH4oVs$m~>(^2y&MFZHI7|0`4zOja=wnsp6V;H8y{upu`<;(7A~?9T+x~MCbD+>3`NkP z$a*b8_oXuZVDnNcxm!45 zc}Ig~u`Juo^GhjU9lJK^L%e2UIV>Xd91kN5Wx340!X79}%49@P8?`G5)t=n~JA{ zDFMB_k(IKG?fm>S!g{F9U;;QYsqEoSND>_Wi7 z%=F)jY&qB3n(^4|NPfHe{o>fr?Ah#)Ab>t52h@>=jt9hd!8~@}O?jA{Nh6$o-+roB zY5$N)OLF<}0NOBFv}Z<LPnq7n)nRB6BxsSohns*vTdO6o|#Dnab<&fcc+ z7L;i-G9C?Q(Mjk7VL*;T{Rqz;Y4AOWo*?6rP*sJ9f>1VBM8Q375rF%~az?9=cc^)| zJpyC`f5ynUJu z2JE!KpZPg+nK!xSK7Zqa&5}FVBS~oC2hzPp13WA?xqZwxoRs8%+2C6cA3P~=>k(rn zK>fc8coqVD7Uf_g78W2B#s!FbGFf53#EKflmLOnkdm$zD zXw?*;@qbMyN)10H(t^1?fJ6S~EXHxcy?`}Jd9E=b!o(aA%Zh4DCT$~61)@Ungj%dW zC=>)zva(zvzXt?H^+hkBbvS|m8+HQn#{>&23nMfjdfAhm|I-HSxFN3aM_WoNB5M*XFJt*h%n zdSK(EZkbmm?6vpXU2r=HCy#b@ZZ-{jdtZ0*o(Eu)_y2yjtEWcqJRg={nI_Muh^K^M z97am!4;z1B5G>;(E0>bl#~@oBH3`eml5$sH)$pc<@NCerZz(!_z6XNGMM!oQSKa$O z`byBDz?A2e$;H{;V9~g|Op5k$vNa=mLGa`iF_99vfGAoLKMITRiIl(>TXNhaj1m_4 zBVrOqaKUY@04!4YLzCbCmE_VV&^tbBf656&K2%(_446>=Tnv)`!i_ zS$lq;r`yh5URB+_cJCey<%4t($GY{LnsofuDpvEXTvW^mrwpEMzsB!FV_+!@)t?FL zP@f*3PTpMyq3n{MyHWL5eLmBRj*_?~uCkl3r9|9Q#k%r8{Ga>Fukkm*AGzqj4_-lC zKS~c&xC-CwuRXp$P)GT^m&vWjN3!3g9qQmT{tsuH`EvOQH@@*6ISITl5rgd~^Kgqz z_&i=Oi}3DiH?ER6&7&D@-$uiqmKXGSeb;^<&x`5456>Xa93^pBj(E>{l@o~bkna}n zZo$5G4cy1RiKI5cnv>6$aF@x$pJvQx2if7}<*(zO`Mek&@!1JPzV)w9LWHx9;D?2- zq4XtQ0;-klk__1_JNxInCJQTMVQ17d3j zbjVzEhrQ?yxQYTYz^#+(jIy9{Y*X*}nBY0iqV()f0KHY0z39xcE4ikIZG=Q6jqn(x z=#Nj0)G9*n^4Q_q)Kc+KUBjvRG89awhirr@VsfL`J12%RGZY0>5l#1H_CmI~lxHda z)N7kxVAheY)%<%0<@rBzJO)*Nb;CE>XdjZWH;1#M%aqs=Cl%$Z^J+Lsb~I~t*{lhw z-|?Bobq98Mx5R%?A1s~41Xn3kDd9NEqyptE_u3)0=-#5>==9Jn5AGi>gwsjw^mS`m zer>e&9+93yIg4nriL2`w@x0=ScU55GHD#9E5tIi&!6O2!nQ^f<{`_Z+!Cn$3m@yEaKLKC z%N@sLTx?RQxUL4{f=DSxg-F3SO^8>N@)jHzm^#3dw#*<@t##)qvqe8p5$SC`#AR6Q z5qS2Z#8>QY|-Qn%S$a;tmhDW-PVGwco$v)F6|^i%!+9N#g>= zf{Ok6w2RRsa`rgM28@A?AS(%1fRQTY15uR07v#YrT~u&932|2%D9=1tk2F;n>Pf54 zXey2aHWiXdV>T~YUPqOhlm1R`v|!Y`*y+W*s6BYJ=(Qj*t}YttX(pGTZAf1U*X>(_ zC4@QnkBp+^@4Xx@!Ds#b#8?l$x2ZTq6q|SIZ3K2ktZ<#UYb#3Kis#8Qgs|3|ee>K= zth=c=W=pkZLVwm{W8TaCSUHwoWq7mgz0Vp^Y1-|M3#75jPzGQ ziY)(iwq7CE&x65ZTPRLn0RpZS1M~eANF*GVi3-XW4`4A^xe4J}L!)Z!QXRdv%dU@d z%GQn4i8d?RPw2c%y-}-m3MKW3D}0`TJ@s=5EOxQ-Ql7Kj#EN7$TLFt#`UY`T-g}ID zLL;(_+>1G#D}g9trTg|8>@er?j9G12gAJE+OGWFQGz34l5#MpmYe#okqgF|9R#o$v zXJ5bKj!+BqRJnC*Ds%8XgE2%J)=tLIXOm#e1|9p}GMg|tT9D;yH6>R(s{OV9W!HLv z_)yLEe=jXa(H?vUuS-C==6Qy1Mx@`N`y{uLPNC^a@_U(ntW-;^Lf@M>#I=*v5m{E6 znrrV3Z}_r-jsP00bu*awBMc$}xqdoWGfJGHSM@PE>Hl3?~qoi@aPK zLONlZDOM|~+yqxb23CL)3^^d;cqP_jMad=>nFehzZA+mR*miTiJls(eDPIz!Ol;I? zJhLJHIXP0=NEh=~lMg$H+0YJMy*7C4avch9-r5zu*I7}xX|>I@#t4t8q`bcer%dF} zs+ACEh4@Ttb}xVhJD+O9)miZt7`r7fBC(=O#C_yAgxiKHYPr28gxREQrM>yau>#cI zd*ikph4t0y;l<=`^$aO_8o&CY(vZ`Xc&=cSal;x^7{RRVgRNV_sXBiSQqP3b*IPe0 zX$4*Ijm|DOLle^d+zytmCwJ&=^(SIk$NAK=6vNuiUZI?Ylxw{39EPKsbrmCUbN1&? zU!VT>54?_45|f+{vP4N|-V#M7eYqe}(^G4PzR=jMDU%uJMx0^-qZ_r!l|D&XZ9e zZVnE=&E9`-;^zhRRHNA<;i}IH- zVPBb&Ru=!A*=D!e(>)M;ZVwwd_dK>=+4oNJALT#HnssNHLut2`Ra`=jJ_;*8`HSX0 zasRH`nJ<}R?aNvJTeEV&Cv)#GfH8Xv{ob%WEnG8bNZ#`Nj*mZE??~?c$|x*D;orN@ zzX~A1()FkuWBeUn`19F{UiN(ZWBKh54tv|mcl~ZOIw|kVxlPC^>(*p)&cgkC+$7BT z=`KQcEHd^b&3QSS)EN8Ajo+>{fIfyF1<>30;sbqY7yZX%gbYu#bB8oia{LfxJRFUz zBb-#I(%~YMW;uznlp;E(__Wtw^v6`*ZxHOZ3tcUPtQ=cu>1*2il+nbfq;*A z^+!0bw+8H$HDKJFuFo5TjC0efxt;wk>5JFEn=mhood(Wa@GsD(cgL>ESs*?%@73Ws z8%8r?TlqrIU75MSiSn`LC&dE2M@uU5cP}jWqh@YedlSDeY z`aPB_ed>QY=!XC@YRO%fIz%gtS_X$e9&yEyxu^^9WHItA=&|B3p?@M|Kr65$kHwXq z`v)_;Wdgn#PVkWDyd{*86?}3~pgW?IjRG5A4$k$XP{WKYU1ewjTGN%lk?+eQ+^mSU zQLe8S0CAb3^0ERH57vm8%Sa{1>ENM{C1FhhiUWg#7#Xl4Hq-n``$4kc=_ho) zl8h5J<5dehOwf!sb;^9hDa5IFK0G||bsjp#i1=BHfMjG4chrWNYpIiE6yRGW1;8Un zx1#sIfmq1r#x-zS%&|?cqAqH>geP(aEZR8g!X{pB^7m`NCa!7nAF9VD9^dHoTZ=_B zzV`i1YJv(C`-S#TP!~3}GjVotGBvdQ4>YznvVvk^`u_vOj2xT{|8GFd_WuE5Cf5HA z5Kn8^+HZ;>{oLp??#_rAI_YN0ifs3ynJG^ABZs!)VM1e>aOFkNmX~U!;`8koG#^;q7I}u>MaT1a;Y6(sR*^yF$ z<5fwJ@&Lj7UBFsM%cni>D<&=`6_XERv?V~!peL*%n1pOl5aE(s5l&M+LfPS#jcaxe z!?_I1M~4&>*L&cCuL-;adJowpM*$I|r@*LwOcG+iK%D~WSxvFn^A?7j3?G*qnC(N# z!Ys(y`_+I>WPl!$TnW844`dQ3fH5!wA@vN(H|o?#Gja+*%3_5TSaGN|VLx-@Okm}v z-fKq8Xu@L`kkwMY8wvuZPPO3B0it0nLCFSTPBnTPN?f?YF`%684|72j7TwO+A8F!Rsk9V1f$}R1NBgY{6ZQ;CLo7o1}BN!mlVqC9@Z?-MlB(! zA;Bme2vP4R*7BS|F$px(H3&eg#x*i4F@Zt~Y!s3-0ScE5wBkAhk?*S}$yC#)0Dl$e zSTM;sQU^mGrmN@acQQ$I%%aRAp8_^9&j2zR#e_D;93@JK8foOj8slRC9TQ{*9qa#h zMH)dRAiI^ln1rH$@A^sKW8$u?w~bE{C5fZxD}M=lDlfS2*6jQMp&Ph&m%qIn&Xy#P z2}UXNJw$lb=S-ieoAGr~WL4(SXqOb*ny_N5b0BJ(>|;G>wv0tds>M83?+C60CpM!Z ze%ipkTcxq(PgwoirUy1ig-sN#+g9tK$FAzvd*vE>EuO~R7hyKUZ3OGVB7K=f=E+sF z@Xq}3@B`_i597TT+E1~%e|p#{@&qd01Da7`DM~5HnhHon;-*6&zd<8=bN>5%+yg@8Sjfq4f@@He`<$ zS_`_VYcl#`ajx<)kNsYR?Q1T=FZ_Z0Ej>lgyKiFP3XyxsV0fA4Qr&?^7CZdpCj?$Z z-9qbat@tSZLn}W0p!RcJ(KpmJA=RAYhdIB$Q!TQqgy? zSMdwrD>r{v8HQAMcqz`2hzKMU%B4$6!Ows#CgfJv$|uF%kNIZWtE_dusovM=cvcZb zcJI*EZ+}>VNKiEQ*_DIopoMfa=A}Obwf>~qdw92Xn3qh5S3z|-@RCCQj<_K=wSCSXoSTBJ+Kc>rWthD={g;#7QUu8Kq zwe41uKh;*=MQKjS?2Xmesa&dX1=qtCE?FyW`rH}%>=sJZ5!H8RAd1?iqp$i|_zru5 z|Cp1zP!QQ~KQS==!YcT9eSchMH`Jlsg~)K zQIoM8&SH8i(>BWO$-XNm#w*$uIO}O{E^uf5PLNLvPoGvE+yYko&OumDyBY-b;9X<0 z`<+q1ZU{w##e1gs`LxJi!hC$Yb^o31_iwo#JidM&b>EGdFijnNynh8%5t0qOD>-~6 zh3Ye($l9(PwQDwIXJ6|Md(Au#Dd7J!&U@aK_UYW}tO{5DB!NqQU|OAf{_XXz-mS#m zPkXS-qr35&tR%xPZ!8WLCPD1(EYr4`k~rWg_orK|d=GXwib(+ASnYFB^_!`zVxoWB zze+`tf}qU3ThV%LMELFF@8TSgyJdTk(E1i5W!9aJ`K~z4?Cg zNt3h2iL`CW%}diyupCvh;96<;<_pylqZlp6cg{I&jOo>PjhsqpJ?Giv1)#&48X+G> z2~Xb3eJGta&Uv6BIL@~D2|S;T>}iod*i7w!%YMH%xpsM}fLgt(@2}e&TycHjx#;oGnrZL@u~=4FRVJIFB#0>mBL^}Sf9ko$NS#v%51t-!DE@mu@qbOD%b41kyI2q~voJIM_lQBSMoZSYSOTg0 zQ~fN0Sd2wg!AHlPkIjsj%gk-Fb)9n#sbxJa1Wn=fsdx9437W)$gnPxezK|m6W6bCM zA+>0EkxJ|Po9^NF_r>A$23@;a22JZQX?gIFif(|#y^1DUID2h*(Ct}#?`CyG1O2Ow zy7R^l*PL!`+4QuKXnNV``68Cq_wo$ zbLq6(jYV*k=jD|Ry5~-Q{bTjgn`b_6+nIP4-b;JZANh-$X?)T0%zogrS$gXIbJS_D zm2aCHJw<-UO8fdkYAUPX{zZzllUn=Q^bNFYUH#g)J#z|d@zh5aiA=KcaXY0`w|UrG z6s2p|=WH@A+U50eaNGYDhD)3}c$vvC?WBsP#n4PG`+FPTU#yBYuU`iP{rw{PX{+vF z4l}xH`(kjL|JJ0ptjacKP%E0$JO-|i&&9Wj_$+@CPu&wS#aI72p7(U(MeNsD=(+Z0 zGH-Ff_xXM2L~z;fI{$Joxy6z9?siFahk}g^K5KDi_F=BcTjrz6ZPRN~|Kexe-?Im! z%JoD@z3qHpyh8p{Y8C5tO{K*}-H<$a&5+zW4sTkw`P_P)&V{$-E{x|*$KI6qoVf>G zyfpoQK0_<)k8f=ieNSrMXnf>pVRl=EmSpfl-}^peH*GjOoG+&$KO6s4k7uPp2`nof zhN2_}`8fu>rv{2JL+D8OqTeE|cev~T&h}y#gsqu0tJi@!om#|F|PckMQp4~Ml{S(-^9nkn$b$8hwrlp{)x zs>53?2R3_{Ow{#Uux8e_8ArqJnF*jyVi{wvP*^68bBMSuO-o7Kzh4s)^hl7c-ag=#xjBM(jdibju9+I)pmpM7C<2_s_sjL z1TL&dff((u7+Z>R8Dcv3rnrv6PkYzo=i2wjB=ZWUjV2LwJ0)z4iD$&fFxw1CCTvLd zM38V9B|U`9N1$qDCvuam7lXu!u@c0AyhPukW}Qfg5k9wk*j}=Y>3tS(%Z2(*(&{0S zIdOGwBIgMdqr4y#$mw%r*%m>tu@h4L7XX=SvJo*jw}a=o;YUC;Q`pPeK=Kr#@fH5O6xKyK&2WD7LEE)lM=+Y zhTC)R->Ig`3LWuk6Hs}ltk`tOsGI||N9$oNFhZq<_Cg2iDs}XIp%rQ1Xy1Z$o ztr2Oay&*9>jW1a&%E;a(!ewt;R)GMWu=Ez;-kUkF7eLH$Fx87A;;R_IJ4Dd(O{BltOB57E?(86D zJs>p{;U?h4XA_3^x*b3x-;FZ6 z#9#MiF2cu#hCyu#+=U4UZYjS|XvVXjd)4kb4{;U)J~hFQpJ=0T$CaeJ^0B$e-(C61A(^*7SK-}-|NIX4E6^ATGZuhm-Sf932~F9-3i&@)YeYH=PzoekOop- z%rPxpGl-5rG)CqQ+As^@m;!nqr)VNX&t-q+T$VT=V==|OzAap?5c+5UZMsd41__GF zVKRc+PV$Lh`?);n*1`d-rmU^)rcwrw&3Ly1k&ezD!S0;>)FgoNk-^@ffotimy053L zQ>dU97V~T;Y4(_`IbJE6|1Rsdy*N|D@Brvc`hfFS6k~`i6;R)TngM`=*Y4{vpt0g3 zL;X5?NqUk*QqWM2??5X7nY69}pE$7wrenlp%(rygM9(GY>e5cN-Fxp>6&bm+B2Erm z^ASahlk-polG-kCwQYrWS*VhcQw2zMDTthYbA|?wujRzUY-5Nw3g^V_MLp1bvIyjE zTH<3bx@8mk5y0U%R>HUW-=yf;2mt|J zHZqXh%VmsUCDW0s@2#sb9v3t}h7`9#HAtP4aG9= z@4h4bdw@v$Vh&wGsAhpV z@rN)}b1KEU!B;111;Yz>PQ~sv((}_y0#ht$^oQG_q2DI8J@TeyEDVBMn3j-{hPKZS zgD?__%@%JT6$M=KOcvvvdefa!aiNfF*xQOVrhOL~4-c(^Eo@&tPY6iy`(aW^l(D4z zDM^W!lzVOoZoP;p436(J3YPku@PGgZkRsh&3&(rVORuTG1Vn=gj_Vbz`6;VB6Qxaq z=an^I9C=}>9Bz5=l4nrOBN(v8ni$!b0w;UMF^h0alaaMoQ1v`Id+3KV?QKkG898SS z9G_zp&}bo;mr-W~0o#}*QG8Gk0p)v^28`$NACZ0T-JW(sAL6)c9vv0`9LQA$bxPX| zy`WI|7pTg;oJ&=Pjd=8fq^V;hnWhcg3*u=i_m~DkOJuDbtd$zVDfh6{szPd|*eh7& zS5*c=DAgrAqXh1YE^FD)kb+X1(^i=2H`d~B0!*F&afPC0A=ki z1?#JI3fAEY1+^%hQd84>yK#0Ns8m5b#I#wI z6-La~+yPWYDVKt-HsnZ){BE;P7Hhad)k6- zM6-qT06ViIU@uBcmk{SE9|ShI>!X7&FnFDtpCiyoQ8C$IixTV2vc9KJ2tq&1 zJK=#+bvpE~p3Nw!u-{q2FnJo3wuN*W#K8lLT(GXKFeP*uNq9Jy7FvTIDv)*=Y(eXA zjH-9+ic+lFvYeeMUkNw%at{H^u8xW8VWAgO@Jtnpa}4(e0cX!*?15Aw!Xk7ADXowz z8V#~TYfScL;zfs`*Sw5Sno&bXCB1htd-@e-pPLTOE*#@5GGH7LIN^JzkhTin)o&0A z@oo&^HizPk!Z$?uPI=L5OBEL z>C;r?V^Z81>Pg_4Y0?HW1UPkSo34fcU6n0+?!QNfxKbz^4HD1?EuXU9T2o!t$c7K= zRq<5k?80R!>j=%Qw{@A~0qE-)^x?e2_Yn4_1rev5JS%#uE$QSU&>_vZhmU(}8{ zQ;xxL49Vn9o`lmr;`4|Q`n?1kCSc@w0k7!E-ADWoDQbiDko`Ck4=bmGA!nGs#Vzy7 z;fuE&#OCQA4CIp$Bn#>uDmFAh)h&t|Z2x`i%EPZ|m@c<5>jsLHU}3}R zFT@QM(R;P^Jo7MNTpJ>Wap%nc!{SMrJH1pB+80X@B*@K9ka&NskJaUIN0JC37~A4O z_UqIW2*S6bbEqgi<*dZ%5w-&9x-Bk%@)eg~GA7S=w>QI(98PBfQ=ywV7 zoE)gZFZgZwB-B?NLfA!dnD}->k*@f+?*5Q=h1e#&6w^pAyTa|U*Xt4dD<+^lf_Cgo zL-6c;p+*!(g03hlCJZ_rU8t`GIzHT4T9ooO3QIP6Ec7TkqC1rN#VJ_mr?!2tZJIbVFb8cu=bmN z$QHp5V;>U#9hL=Zd*a;SJ-P=6=jc7E-+g`AQ1XY>j@-vyx$!Ts6vZ#}|Jf4tAMSwv zWP*8k{vTQ1|H5mG1dQzLtpBS`iiv=ck(u>hUiiNr{&)TXMkW?c_Wupo#d?7%y87W9+0fwlq=wpj;(!T0O>HFWOY`2BXPzOJZDcgefw zmmj<2yPI8m{SCc<7mi2< z5SUnkH33vG1Edh>6EG*Sl8gv0M;@ElI3Aw$rvr33c>-|r^V2KiPXivh4wNHsR%Q@b zUmC`;_&u24T7oM8WCRD)<@t>ck{jC?9u^EpUEbc#9bVeW1U)bz6`BQc0B_d-UJ9HM zAZITC-E*G+KvnkM)2D1CPy}YF5uEX-Vj)PQyD5_s=!@=yGl2u)?xk@A)dt7~px*(+ zdXNH81t)luH!kIe%>eL61@D^~_+j7HukuF@?DMB#V`UFtEt=0&(Vh;rzv!z3 z1>@`hIxYq9-{^`+_({|R)CJhGv9a;N`2r{)1~@acoBr4gEGq{_xYHj0(f&#bu4@Gz z0yKC}0-HlOf%JJ7cyMEL1qRZ|(FyF?`BnR37cw#j*9e%>1uzq!M!-17e?e!QdyxNX z_?07o4*=Yh4sHNm^XvWTVe&a=fQDF`dBlI@Z^=;A5)>Aei@UD_`kE#s1iT0EV0L~0 z$lz>S2fVtn$pO%_V+*+Tf9zrf{Z1v_2*w!Z&fq%27 zLmiVo1p;*WW%=M{vtxTqZ$puEjIquc`$&dZ%B~Ef|Zu~5ka`8_){hiC+ z2)^R^ZSXkPQBO~&R0!*u0($e$z5wu-XAF?Tv;cH!{@vB`L|;s|L;%kW?$&IUKQI5N429C}%(!r9sauzyMa(*)r4H9rNQhQ=^-9147w zR7~H8bP)37ZS3g*Se?`>>QBT6P_?uhk&fI)^$YJ+ukr(a53Hg3E9PSZu+sWV00&U@ z!G9JidT2lNJ7Dwy?{#nf0`IlY@{9dl3syDUOTZm~`bPhDa1^ie1M%f<->CHs+ujCP zy^;sFLLa`yk4Dcl*SjZ8(DEBZpSbo7-4kN;3vc2Nd91HOA3O#1p8i6L67DZZ2T--x zyBDp0>Mw`~P&N5a1EcnzhGE+`;IDQ1v~F&WUR)Rd$bBhj!q0$zPMtsj_#BRE1oPW81cE+qRP(+je$r+qP}&*tTukN$2~{|8$=* zy6^g`)?D@0Z_Ju&T~yVm=Xo=WR#6kCiHmPG^BUr*hNBH!Te>00R{9{Hm&qRKuFwpa z9^9m(OZblJpN)gecvW=OG`QMPe=DrUoz73Zu$}eUxoV-wfj__>9vwz+$nZ&bGKB9mplsvF-WJjAzqBJ5 z;PsA>I8W2&)5)!o_OZ)0b_P@_W7oBW$w}LEXg%$m{-Nq7@LN78go8>5E0_+_Rf--v zPWoIs=o)STyGr(^tG9icR<7r}WVge)cg}74Sn2+D#lMyH3c;cLCIWICTeglx0z9Co z^_b_;c}wf$KlA=;^WX{O$K2Xhy@J9n!&Ur&XNFi8Ey8%du7KW*5f2`8r-C`3zl1SW zo0eo=*5c>6wEsTtUjv27a>yB@jL_JYui9mLF*qWH3WXwA20H+7gM3CvujtREHN)ju z(+DqB9RJCXLB2ylZwWFIaE&k#w!lk?#05D6LMc}6aw@umD6_CX*c_WwUJ#S8U|`!ECuGL>j+}2g$jFCMWbT3fWp_x#`el>_RV5A(%1R zZwd?%O7ih)Lc>6(ey$VT$|&jHG*17uK?0S3x4!`z;~c{1ug`-V^mL#c#L8`^ zGVz{o(Rvg|)xIetOkq9|1DTUkoD6z{KcQrBQ971`tVJ)ZS6E?=tudR5uC_I4D znBcaLfF4_{fX5~%4QeRCl*0~Z08eqw*8%CcHi z<8uhNf{z*zold&Lk&9an5u(mJd zP>FFxMLu={Sam#hjs(cSNcK(as3}p_D5D9mLFlT3tdK{iSi;XH%xK>0aV=tH&qM0z zEclq$58oEYZiEB)Y`>hjORHSC zA>#22gXw{H#cL+TXL|c4Pg}!+?5D}T6gIkhXB#3}$PExS1f=<(aVPC^KV|rs^F5rl zazn{iu9m)XS(B*}c$7#zg}Me&nwMH-L!Agv3QUyBTNwMd=(LqTzxWvlUo6Wqee6Ge zeVC!vb)2Q_2vV#}R29MFLPtuE8aZ^E^#_qf1K5Yis0KhZf(L`Ei=I}M#}3E!@jsct;;EUn#42g=&=)$e(p2s z?uk@!-X$YR%j9-7Ad%B#TOxY}^ZumwjLipW%{ zSMeO>aHxFI$XL5@AZU{X@I*u(`v!q#T(E!3JtdC_@LI&ZZ@|@0(%_vb+Oxb^^s)}% z-Gpgm4d3SmHHXDkap2nrw*9*>`gQTjmgL6ggS0>w?hegrSSb28TmBU{j%fH}({T~F zL9wOtGH>rntUf!do&z{c+2joB!Q*$@HxPVCR5~c#JA|-$I5~#9&ML zQ41Hvy&|QkGkpvM#~*8K{TES3=N*#ee1bJ$i=6=k^%mzCI*s}6yP=&mCObYloGlns z3KuW6rwzAjuQUmxpou~@ACBsm(25QK5q9@xJu?smKKo~>z+^m7jzs4Z2Mi*eFuc2& zKd|)GQUf0VpECYK-M_WY>wQGj^B#CykpEPqR6#-7LSOWOAfvOys|3xWgt+umuY^fD zMnh${1REQpp6ggOacB59jkvx&Tl6+GfrbSmJJ)n?6i}1qc54Ky(I!EYl4h)6if`&* zKuNV(y@-@MJ6-cX(feSqN1t)B`)`=6Gac&yK;a5StSGsQSO!^IUqX{Vst`y^b=P_5 zx%FAtosMX^sf}UU2n{&z%wS8bD@AY(%{r$&`w9(dR$lWkwVX{_YiW0|e9~NBaVJ)8 z?Cv-4`K;`>Y_u$p=f@`$sIg-V)V%h*K8IWCvb!B-*+P#SJdK0NpP#3zQQ_mLa>Tho z8{lkfotAmI+0|PyyOM1@N!6S|CzryDB)-Ul$_ec=s&s<0zA2}nUDA8Iu7s)(g9JU1 z3lZ^gc^ol_0(N@Jc^gGDf%dJw1vO%5j`DzDWjYW#Wv!xV;g6DrsW?i!^Ijq&FjbOO zy=>M>AAW$nRF_!SJP8CCKaNGQQEA%+=N0xX_UeOIJb2ELf|TtO8MbxQ8GGCvKrRm^ z>j8LW3HG=7Ij!5*avSS5!VLN(3a18Y<*v^;d>e&SOf*%7<1>-IRc@Bl~eE!fpJrvCnte$@1fq z(s{frd^(+t58tG1m$RSCG2ApQhdwO{RHD!iS=CHB*9tR*NQu;vhXtEQ)2YJgfjkN- zQ`;wLf#$2R!y@9oh|6X@+zNIVO`Yjfg7%W{p0 zK&A}B;030G)6PVb!95xUvYF&jCW`=|EUD6iR|DR(fci-?Xd=YJo8mqS;QYct5&8-wK52Ewyqv z+V>cg1D&FoQTj4+w8G#pk4Zc{2>lYYL;?k`%dgY)xd8q>Rr8=D5HY;5=xZ+%!58{> zY`dgK>5t0nLleDa=r!vRAR3El6(t7E_@nm-Ct8)1tCJkQUPbm8f^eLVtuqIe4vjcD zUmNdQrkL8tMn)Hdde9i!=}rWq0^e;@PhP@SXy0kB)!XrM2L&38A+@!v2)pH%a`**N zd3-4xL@`C<6Gu@Nb&pqw(5u9C^TS#AliD1q-Unl<03w{L0!0dRWC*Gb7Jy&7+Zh4T zz@6;_!nD7EWRJtxNMiW~4+pU1Tm#bvZkc7u64C04(pj)B%SeLTt>YYcbVnJyg{T3v zTmZH>ngTYOT^0ri2RZ6wN6!gMgwgKoQt3?r*DE0 z%V3X6K*wUpBmqUHNl^@GvPBR=xlSh$tw(h*g~s2J=miArmJ zx$)AiJ~1DHRAI3YV9*kYzzpwfBP(oKj#L8v{u1l-)$e@eE2(uI;GtX#*c|I5A{4=* z7Ma_y;;lgjS=E&Q_j{9(SF}POM^vXw^LGz^R4wMxL=s;*pts`L&@6WONZXk4g(Z#| z>QNz&DlQo`@lu786!{I$UE}MldfFU$$bWl^eNYMobnJ%tpI77Ce}54xQzA0oj5qog z6xhj=5~s^kQz=L{_3}qdj7Zvbp}$hv6#rFHcHUy&dxF{ydVTjM4ltH!I47CpeJr^Y z)^Tzcyb>QQxNbN!ng(z6$s*=a=#54Mv0s&EfKrJP=?Zk30~`=wb`>w5)TP5Ci$-)+ zziM($7*w7-R+GMi8Z$!#iz3;n0N25FC{Wq2TFChuHc?_CF$MM@9ofI-srfYS*NCx$ zDDfu#r^C5;nuYlVFDd`dA+`zrP!Cd8dzWz^KB>{e9Oc4I8@O^E+LJSXK;(B?c?+gA z$nI^FlWS$U+qWd5BGd%kpx{M;Mj)nXz(lnh#qmorZ~mWX`)$^Q^nw9(4xK?|9*^z6 zn|I`$p>k|N^*`P3#3vdk!hCVQHHy)$xB+jacXvNJRR}oDa94>{I(r(CV>zc>VmO$n zXZ2)0jANi0pc)IuT@*q_1y7UIiXJU@d!rc5%_s~^CFVS+V7X=;FyaqbUx3uSM^3Eu zL=;EhV|Wts$Kz*92lR&2_Q7OhAsnDQB;*c50_>N?$l6YaUo|z>;*$@QnyfI#Lds>! zrmHun1eG3Fp3kB2r4}Ed`vzKkpAp zj^!omGAV^#i7f;8+Yj2Co(K)FbNImno7zPCN{7${T)~ka^^`_W>`)qPN3%c+ zquIM~Y~SH|o929;N;w~i*WJ2sI(WhHj8kVJ_pztYKM^A#U0)1wH;}m8L|Y!VNe+I| z@Z?|FT&U3OuC@5ve7pSFW-yedwG3^7?#22tk`U5a0}uH{i`Pd-6k!^Q0$7aLnHb)w zK=g>dV|{WSpd2pL9qda-bm89Sxmz)Dv-L`;MP}M+zUWVjYKw_3O<~~Up7$!WYL`m6 z&s}D-G}|vluHcgAC3qXGTNgJINwiyeyc|BxTj^llV6!Jp@syy#_AWeT+BY6g3hTRK zPAHGx3@^^W_+wZRN%GL!r7JGlpL>_O)CX6Rvy%jGWiryp^Ba%h&tiKlT~MtlrZnG6~3-f>;eD6C6#5Fnx% z;S*6DYh`$%Nh^yL+f^>;>CM<*JXK1>e(S4;EmzCv44A@=prS*yIw=JDgB7A_anus- zaWc@NmHKFoEiwZ_Y*vdSy0;&4C2MFHM2RQ6HT@e=Vi@{Q%yVX!hBo^n!Rm$vM}vbj zP5tsLCWVc&tSNupfxd!bAelddS3d>~Vmb6|yLOPH&48OwZtdVW*UN$_=>4SwU_jXm zw=o!M`kBX*&EpCavZv3cEgn+Z?VgOfygHD+1GiG#qp+r_nt#FahTk{@Xr;2jnJb3! zx-PApMXBild;fq%2%?Lb6OL|M{GU)SH1KBFk0aGXw`EV7Z|~SrvG83#wGu1i46d09 zh1*xKJuaQ!Z0~~aYUU4=&F*IMO%7mzDPSj^C$$BDuIbmbnnrq|41ci( zy=rWZL6?bOI}{A%M~VDHs>6^4V}+Gf9`1=^VYqrA+K)kgWN-k&c=lcwU zWga9_tWOT#<1hL-#Rb;33Z(PZQ7qS~;Cv-Ui7)H{F+il<*JC9hypf#1Ev#TKpFQdk z@QS4$$g5DeSMJL=1qztMuyd;%H>bkL;Zu115+*Cjra*`sKX0JxV0Fgv@a_-On1Yi&fnc>hp6n8(hX(KFkt-R(diqoH>|u{9Ap26q|jFQC6A{qWazLU;vvDi z7u|J@3Z|6JW`s&nr;1i&7I}r@3`dhbTbB^tjeUr**uI0Th1lI=t>j|*!&s=93X*YC zXNR$ltvNbmcKYXX(6A9Fdz;jqxMa!4&)0dFLk+VEnO(*^Sw2#tN=4W@+rv|l$-)74 zB&CL&oOdL*5{YRa`yD;1NGeTxpDc7h&P z5<#hRC*aS&D;wc@jAkUkY|!UXsOgS)hN?9L$Yn`&$7WNGaFY7KwFudsXxyx^g^Q@l2~(i>Wns|4QeZV0%S|pj+|LY1 zt}O{8jVF7s6=yeO6HstDbTRTO01V52ZAwF3BWrmXhLuft*}fZk6;6Wf#Yl{1F}q~{ z#_%gJNoBt3s1I}uMp(?yfwi2{)@xZ}G^B(rcpjt(;Hvqv;5?L^J;1kC>bx*BFMkzx zR7t?e8=@^T<7)btwrCy49iq*a@QQOS5OTwZc!kH(vt3rD3foM|x@)O4V?$KcL97i$ z6T5}W6HEWTgA~E0xmCWHYQ)K7asiaJ2&K+>0HjCtsv^^3Cgq9UA;!`M=ajqZPYv}t zQ|TedeF1TT=(+!X7c0!!O%!~3*El3!3GQCn)i3qKo*vmY^Rz?l-vNBLcTVkv<<%_}+{>6xaB>iuoPrZ( z%`eaj$r)JBRBlXbu1vPleOxHRwzTp?b&14C;OB@f}f|tlvepP)tten)bHF= z+j`M#3YFx`O4~1!YU&GozL30e(fz!npAJJnq1eHnt=&bVe@5nCNC*UnGQMyLekWwJ__#B|mP63VE<5- zb{QL^9P3eY=_!WWzjq3aW85VvF9TlkZnXK9tJ@*;M~*;Cg!83}^wm)>QA*A|Uas!< zw}}|1&3r#LnNRTIIi3vOKv|Z|_P%S~ZF(kOCk@y#ODrevnIG+~zcTrUbH zjT;0Z8SXIdbDcJldwj0|0Ce5u_@TfP#P(S0V=Kw$cONGorV@0rNBo!KR1(?Lcl zS#hisCR|KG18KnmqwV=Y>CXLw(aOSMqHZ6h)^S=spKf!3GF{U7>2K0@ot8HN{e~zf z_!xTKrxe;m5Ht<6TjoezC&90d_b*>M!4x|OG--}-h>57a*Xx-(kfkRz;<8%sB0YGd zTZ5o6zNee~CnB+4#upo}C{1TaY%@z_X6|RM_bof8`9vnr-4LAu3-v+Vph?1DDGoSS zMz{Kx zO9L3%)-&!V_VX`N1E`C9+Vvm1~Tm?WN?>K&oI5|r0859UZBX%@OdI$}mfFvqUOKCKCuI01MNOv^N?fpH=G|)wO%WJOnw)R*i67vT-Y3l!v$s% zd7lEut{aAPJp5D!i<_;OUZa%i#?n~J%k$Kt>!DF$3b%1k{kx62lRencD>^O&wkd_m zZb{44EmrWl5P}<;9uIXcSg^KydyIAO1|94kmq;5erXge-pnGS5{n>&B47k}T{+VU8 z)e%#5{$H-&{>}7ba`7y|`?NLj83w1z+e)*d7|!|;MWy;88>*IQS9BJSkAB%vDRFZLT0uCMCS^QnPisEu~pYe1CFM znc?mO$_D&qT-c!xuB@jwC()xitpj3<8QJ~y`%fyI<)+~7UlU2t>vcLsH3rmu(c_rx zF|PDzKD+aQOd1T^%asuqiaB*sNvgI>U5yTouXeP=;?V}oG`Nu)cATIq56j)xEwt4* z@u#h3F>QFE&Q8%7>C z!30uro#O;k-EZ^Th1b^SR;q~TiEI9y4ogI9t*{ejz{Szi726A!B>jO5niW`5icxKV^HgF3dCKW&pN@*7m}5^8GYTJ$|eHh-@UvIB!o zgUb|=UV~zet!FkGKEb){KZ8nCmj4E=nz)J9jax(yCa1)Hq-&8z1>59XznPq!%>^4ue3RVv;llL-iiLd~{ft0=!NV|x~z7M7y zP}jU(sz*z1cH7^<3k|9+d{gY578bXrRisOMHy!d0!TbX)(gX_`rL;#V{D}=_PP^y3 zuWz$Jq}(k|N1lpi$N;6~0P{O*LB3I|&Fgh_YBJnyqikQt3tmk*($Zd3Mf3Aqy$&FQ z>*8bI+|vCNX4r_UtABvw7S!gwe5cKf!)x)$M0_t+Hfzp3+43*so5&sAyhFtn+ZLfs zUfPO`zFh^XJN3nZ>D>@#JkOXtmAL{y4UdoFM^SL-sG*Yx?sZq~o@}eiUAbC;i~;H# zGopxwTf*xX9Z;}(*_M5~Un5%XkGVs(+H;}W0>zKwciz>l`LyXmd zXHPuvtO+9K?XbK+l7X@NLr7=x&fT?&k@}KeUOD&`cq~7l$!#o<*|ViY)U;E}GNz%z0|<|sc;3^b#%6A*yWuOVqM8Xv-oinR5@Jg*sJ75pt9+7$Mr54=&ny$ z_@%s_lX5Ju<_Woxj#R~f9ExT=W0-QwZeI~4bN&ozw5#CaMhtzBLAbi3cQ{V-NeV(C zPe=lsNjkXou$c2$paPCWM&-dr7`*wM9U?Ui&2EF|YfC$GEto}n#dK}=DK1{gTL*q`MK6@+XYb1MOtyfQW)Bhp9Uh;MO~VV;X}*nT?Fg| z_e!U-434lEWd@2@9~=rPuNEX!46{X@gd{>|*fP*1$w5oOnw?+F>Wl$5l@QgFwnLA{ z`MT4x#sJre+_StsjpE|n;{z0p_B_xn;40R5%rrG@5at@r`Fh zffVQj^wMYh=3Rl1odTfSXbL!59X?gy2M0>tHq3tok>W6rl+|I@;$=KxK^W&qAP)ofuuDmrRl3QKA%ah`Rt$`H4URVgzE8Xpi)0&M8K#X?>+XU_d80=_Zj z6g@nV^7vL)DmUqskQQmDN?tv*ddB;_c}MH;emGpM@b}Y>l6K(BY+W+g?8IX{U%^C! zFVPMC=)y9Nno$C?$(&@=@FggOY+Li`aQV|9^RHMK%@pKJXuP}K7AbfNurH6r<#v!W zoL6Mk1(90@Z zFrULMrccw7|I*Ibd01yn&T4M0sVQ_WC+&TZ(-^pydh+SjQoQ+~uK$Z6MVuYg^u_oF zV=Y>4^B8F}fOYJukaFxgE5j9m$1Jlc5eHiQ-V2SYBNL$d_Z`tVf=A9&pTP{ei=gnw z)gZ(=r|b<@1;#cp-uGk*3Ys=*iM6-B)|;Dl1)Y?8f`5yXr}vt{sRhJ^*I*>Mx@gVS zM3%B^$549gTt8L?p8)^d%YEUlrG|*rTP!qt1y{=1Wet>kb+a!_A!cm(mfb*QK^bk` zf+1E|_DM=<%>Pl&d~WRDskl2zXJ<>|-L%7m0@aEY9Bq6o;mYL@w7dxC6;;NVz<2BB zX}uANDBDR^iB6L#9jw1{-Aa;Z5(0TUZj~nSIdRp%m8h=Kcspi)0y+0%v_A1SpF_!2 zy1R>XjzEsL&KkiPer;dwqc3(~`hD=M$w#O2fTywd9#zAU_v_uthpOm?2AOEIF8)p_Y2)pKXOBLC4MPChE z1OTt6(n$~2@Uox@o+a(eoY1=wk$jgk=Eq@%xQLn5QqfL-uT8X}TULrV6DAs{D@?}7 za4M2@nK1U?iCT)_1E0?J_Dgq_OpD*HX3;C&=G(H!n?0&^l&gz+4iP!2P=U&}5+-ZT8c?(G|^ z9YE!FiN7=Uy90KD19q^t%**;1lj4=PVzq6tCeAmfu*#oMZChz%Vo*hN&jMi-N6vY% z&pGMi%I`_QI#){|zB|WJsTZ8>J3T~se_S}e(Sh%QyueaOSjKMjolG!(+9C;Oc+Yw> zw)|vr-oIJmYKm?CDg+)9GFl58Zv|4evhEVb5GP=E*w`q~>?Ny)%n(;5LueM*B{f4j zn&Z;i#w80}^ZsEMQoQvSm7>1b*0}**1N#?l0hxsNfr~;ev3j2ND$kfk9?d!*Z9qmT z40r;!nkkG&8*@UN$A&4`dMI=@QVwbEOmeIU7byp#|sM{jH{B;oPah2Vk zsZfI-J`(R*k089S_2uNjlZ&n%YaP4Hbw(FAGXHrGk=Y@eJ#l3#~LN{JJp z%i%+RFd4$s7Jjy5$hZtx*?V2dRP|E72JZ1Nc0)?_evh5g7GjX9$Iq~#PsdMWw+Q`O z-8~ws90+$u!L$7)j6P4yyuqqG_`2Xnz#S%eax6!4IW6X)CR46h?clmK43yLwN{E&} zv+o$gU|qu;?FQmY@~3-qkGk!Z2S+~c(0a3@pSyzBXc9b2*yEjO%@YNrL8_}#znm9= zk{l3kO*#G+X{L7ZkWqCtz{ts+AS=E}y#EN$SbsTL(-yv_C(PFEl59mc0`%2dkuUMR zE+4XNJPD(ojhy8QQQ%if0jYVNk%;U$@|sJcC{ve#s{y-pWzna(x>?1v&Y?ashkhj{ z#chC}bGJPTgbhG8;$R4k#6<)N1Pk%ERuX<;eGGz1n)h*lpn}MTN1^FIrqy)9oz^M~ zzc_H-JAzasvhnEgNd{u|p6 z{2v(qPdiCAcKUz#{r@L?FKX*x{cj$_58$sXqE7o$Wh|?2ZH!M&XJ~6}_cNk1w9P({(X+a56X4x1zN(GNJg-0TMPQw!-FyPCps|_WzpSzd8R{0A!u54SuY-Khgh3 z7Vr;NB4lf2>!4((Z)lAF@6eF}pON7o>A=tW2stwTBys#Z;N``q6LE7AQ*!#T?*3aU z_HXHbbOU1llrsF6j^LkC(I2D1zg5c0{{;T?EBpj1D>MBJ{vlEne<+lnNjumYDj7Td zXb$M)g++h%8@oB-(@9wW%vbO~TcQ7KCH`49bvXkI!) z_;9_kIrcF&S4hbCZY6nKKSM~t<|5Wn)t!*DtBUjelGzj|XPpOm{Y;P`0QnBw0-rx0 z*f)3|e&&#QY>~b^@?zsiz$W91r5&Ev*Bb*QYK(x>_n2rf^u}}71$)BRpzkyLK5sCW0fL%coBP5qcCXl!UDk+ z95o96KI96c^aBCR<9WjJ@?Pb0h49qDDVpBW2?zD$+b@YTaMDF)nSjE;4hW=(d^62E zS45e4c4plUq}i_4(noflbVlLdjDEF{NJOHHqv-lV$oIrq$@+s%am|e6_vVQ~^y}d3 zzv3t9b>bnQ(hv3FgH#}6w7OZhWh&et;Vk?WFy%CYMB77+YNnfz=oxWk^KW%Fx{Jp&aLf5U~)sw?FrTQH6zB#^g zG`uqjV`U>9TC;jsmA`YYN;2GgejVjUPuceEVwy&LO(q>4n;{cxlAm@rx<+0^n;}mt z5>4A^HCAq}c-WL=wrVsW&|gfLW}p-4aZz7p;-dUrF<$)sYI3?VpL10=I1*uwD=JC| zs^p$}o!g*$Wpci_|677iv_vFHd`HitWqi=1TPr#@n1iOTRbD~MiVbf4{qWNVn#U`M zdQ@~SVeuR(t5t*v%EySWh&()&#w)A{$(FB8qHk?jthD>*&Jd;0Ql zZl0d--pL_0m-~>A!>&zY&SVpZ721hggW8_C8OJ9v3B*m+M9z5+eg~JHtWCOY!A#Zh_d*$Z<-z{JsfeW-*2eLhEHK6+19}))rL5w zmWp0Bb8Na>-S3M?ECJ2Yrjj)hrK$FC%0({YyzfKkY`WjB*^;kfnXFOsA;*gKM~hK7>zD~*d$pRmmTSK6CR@te zBoiqKZ}QVEQ;x2C-sg3_@_(D{1qO?UAs!m%IYze&_k2IW>Aqqe-<21Wh>a9><|cbo ztdVd|JxfD9=xdx(>!i>tHtlX$skw|qlW?<=w0lQcXzuiE(3;w&xUOf>zQrNB&{W7D z(?1?*Bjs!(z{Z8aEsYNBh87`cadvona=O=TUfFOMT&2V`e7cCzTRDGE-FeO&P0qw7 z&5?P3=)Z4qgmL1r%ScJv=Qnr;=R!R3I1^jUKr1~E=Gi1ITZ6Af6=doQLPwdG|Fj(b z=y&+c)#?K_R*!?@q~a(A=ktB@Ep(G@aR`pLk#Nj%KUY|gVGxB<4U#qU05+{Wl`V@L zxlAGkrDa&+)9&1^IJQGzF_yc% z$i6Zy3C)J=XY<3c+6p2T_kTt%F8ngM6C{aq9K92H87st)nu|0tm4URn=k)t7pwuVfH+#lMtzo<#)&7k* z{GRmHzB5+r*A;!AseuWp_f`BhZwjeTb?KkCj?^!DZ9=qmi15NxWbQWboGip_pJ*6o zD?+|(lq_YREU1Rtu7uyQI0+4k5@YY3p--9kB?@RO!>;R_!vvJW@sXpVYGeCpM6dMQ z-#a6ZcZ%_?eDNvmgbx;|pr{!^0Gx4n8ma6t?EXcvJ`%yg_BKE@q$%w5?xt-6uaq!I zSuMq39h!pr3{~Pi6;_$Te@%sy^r8{}!rGyFNZLG#Ja;UD#W@hZ%*+im#;uP#-RW@Y zH<{H0r(ufG5ss&vPngTpEb_#AX1!va#}`Q^|uUxqt6q#TXnAl1veKu}z8Tt&BYvyNW|3cHIFXxF0n&wxZ3y&jm z8=7na79jYAGTUZ!PJ0Yfk>($z2{LybXuGShyU1Ti(v?&PlpZ9z-OV=(st@7X?^#pJNs% z3%&&!(6Fy=RvkGCX%9S(sI*+V1@RGL^2+5H?Sa+3gRmc^(y9=fT`yUG7u+Erd%T`~ za@Jv;N}Qwu2Ki>9 z+byPJVmgQ~Ikg)4aPiKIAOk|Vt>0$HiE*@tBWawnBoGK{UUGlvpjB#IlFT`Y}20)m&qq2P4( z+6>$WF5Tz^P-T@;iW3Ulf`@BmM~~W&;=65twv5-z?7I+vlH7aNS12AN&!sZ^RE@|0 zej@KF*Ys6_P`j$K%_=^0}3H2Ju zD{gX>iM%Ux^t!>lDm_z2mWY!mQ$o1#9q!nCN;$-bE-DbwW-5#pEQ(&BWehdWFV3Tl zGDGvWdl;Ic9Q?9BQIV(H4()q0QaB))sL@)}u@Vg+Ej253prWkR3Rj6PNSYTaa;$~R zZYYE-;xCvVEXjhy64+aXFsgS3>5N)PU@8D5R$;EWee`!K-8XA#3X-d~K?8%uMKzmS zuEAM^m{}G_`IuXxPE}fE1_c3#@}t-t_ZvwNlmeB9)Uiy{$1m}t@#6*84ov?kge;{A zcTZT}L-aFF)^WO2er5XkeUqNO6NzoY6On>osG(!i;Wc6kSkaw>#*w7e?a7HRT$$Pr zWfL`?1S>eKu~Q1%Uj;d{T%;f-5StJg;)$Cmq?)YwFJF6^{&bl7Sz|@*OzYJiIz6!4g2T1g=K+4lwCPy7L*BDcLI#(2&bq-M>H(+_3IBQ0fg}1-(*xU z(c%OoYKJZ{CeshH}{rOXZJYm_;P12OLdQwhzntwNZy!~sul<%Oqn zhVbQZjSBOKG!cYnZUyynr+}#?Q(}|}8GH?aL9^yQcF8v^^@_)$DARuaz}Us*Q-OcG z)3&F#X>5BmeziMt9RqKBZoQ&3T?I=KC$I{L*!zGI4z(S-2=4VGBWU1`7aNum@`c%( zn64=7vO!cSn@-6zJv>bX2zbzEHn8yH>L3Uh+i3dZ>B+ zjRq{j?U8GQ0<#B)PaWwW9$Yq>+a(Bi&V`7Um8~BE1aR}lpdy^sFNBTko!a+oPFyYB zyGmLpe+DPgp0AK$q3ZBJS09+5BH9#UM20V&WtXcTe=*J22}|B%Uql4ZDmFmo$Y$o_hjWPnfY63uxCN zvx`G#(;yG9k#I<$$5&Dg%oj~hJ0ABF_XgDUb_401k_;G7locqzl9Si-90(1Hg$a5E z8}3~DZSh-)6-9{1MyemeblPN{)LdOR%ksdjyQ#GT1hQ5E8LJ6-_|G;-G@W|^Tj8+qSd(pf!DkcF zIb&|UeGHAF8+Bs~OsF9)dS`|*z>A8vMbOv(wR^Q052JLKx60FwCJMix+n@@*0q z37}dpIQhAV)pFdtGt2EYUlNx^3=_waq+y)av>>o!g7_IBlb1z=22tl5oiTSwvj+~@x@B}-0Z=f9rM6%t0J`_qcvisN#j zbSyzd-r9yEGbUG<0Dtj@Qu2JUxWFWY8r2xEkj@G9t>5FzrOkzQ6`!-t+^{@-dKkgU zY@Tw&8zt-0!WPIIW@5Pl%-p%A2Cy0kHyko|q+S)^=rk1)-w~=COs-QUDPEUMbGe+D z!@`WkSQNo45e>~NDI1i%QC0|5+k%qZUx6mj>0$01i!jX$cvDrwCzh1+9bthyx+qqq zMW1+j4ym4iy6~2kCd@gHnt;XR52R6?hvA|FMAaAWxT)e!Xs~qP z#BCOz2rT5{W3h}UZ71z+9oy$W9eTATp2O}r3o3z+ywc!rd{hA#@GiCS3|LD zYUfCrEQ-yW=3MIvj*xebr~{8a>V9uY(9KW6OC5p(P$GzF9Clx*Ui+X6L4qq4UzpZy z^OhbbLNt>r1M+OyJR=G%-Nn$3&oe6d^YDUWXeuKvuGio$QT1dUpAxm|Fu}45S2HkRkVD@vN z)fxosj(Gf%f~nKCQr*%qsm;N4dZu9N9)kCne&;dLg|pPSCJd$M>oW1NE=U`SP{5Z+X{5xjNlu~&{y%D8I z4Ol9L<6p7pa~l!sMZrrc=Z}f)rCZS737c#vd!ZGN#3m#-5D~Q!#5`kbZ^{s`iGa!3 zh{{FD?O}W3^SQ#t6NszkX!+1Kc}Y}(mbS`Z1OpC7?}{ z>j*#2LA|b>t%YY8A-AK1)kl*VIux?h(T_a|T=?Yv+3 z(gk#V)#nP;j4$d+;{AO;)MpOQT1>xP&Dyb5AE**D6?Tq_B0dqi48tyAxT^t&jS6bn zf50HyNOMV-dM@GSI6NW^rYy0BRoSGZ^UoD_;@oo7PoMhpUNNK{yO>U&hF*4P#b}%s z3+VqxB_5hwA{wU6=)(At&1A$2jg%pUB2bHeisG}sX7coWf z-VgJSFexf(T^xXk5*{2d=P4ixBHzjTWI9H&ImY=dp?(sB=*QE`ug&wNIm_)G=+S$J zRdPp(Ol^-5CQUpdqAn|Nikye(hBR0$)1lbe8Z&RnB`7dE{1~=a3Y@a<=4{Y00zbzh z@jQrB?l8g&ri-xF0$tQ?IMjffo9A-BUvcn_ zCQ{jrG<${qEAC+?pE}h9^_9A|MPBz?h=h4&Y`OX9pii+_o5=Y(g}@O|kj7v1KJ#_} z)Y|@6_3L7QB?xU0yazi0J$)u{)FloIyPQN^iD6ZqWhpZs)@^g~(6tSw{1?=a{Ob6qEql_G{6Yd5i7X4pAoeaLGM1%q21>G!1OGq8lYcg22g1*k-HsKd!b z+8R%?v!sqwC(Cqbuy;w~b9XLw8|R0}KSan3f&gA^upAfFCh-O_|~@3wb)Z2Xf;|44YeYN zOTNPR852J`T-s7l^aueahN<+za3m|?_E0=O84}4efCR>gJEKVvhdxB;SDq>#TjoKM9+hVqSsyZI{Ppk#=NZV(@ zb}N)Dz*rOsfan91K@1$cqcE=wOC|H&ypEXVp07{O#uMN(ch=%~#?8D=iVr$Vm*nXEv%=lNUJ0si+aKo$>?dyX6!ar}B6St6za|kcce( z4oe>%!4d(~&prQTI)(n)CU7SUd730}A)m@=+j?EPgY`#cYSpo{bVPx)Os~sRvB6O> zIJTr+L8Lq~z}o^H8OAlXXG-tJI8c<*U>e+JzUSL^^7Ww6bl~iTAV36Tx3DjyJT}YxUw# z*HnSRz2rP*&VxOD$s1HbNHSPEaUXb@?Fn43*{fH$BCNb_>6gw(?NYWXoPHDTR3NJ4 zbST|o*#u|cCijUH;q;46`Y;-@ut|&3VY$k4-t{TCe^FvgG4gJ0#5f$*3Xw7Guem6+ z8YgOBzt<~l_9zBnCF8g)?3WPArP#XsNYpyBw5(~bdR4JryKXqeBwvw3Mw283EHlK= zu$r3?iLu#zw@Uq=q@X;JTIh^P2LAOV?IClOF3;@8;5b&Ex;safxNdEcbrkUj6t{tt z2*9cFS3VD^{R6Ur{OdArPF7$LOUNa^bs$#?=3j}W$=S0*Lu0Y1MA@b2v$0LdXJ}cz z540;gGObWW>fB9ebSLd_s|;w&B}x1PfnVF*X{Lp4NP_@cdnMZMlYmT|b1WCom$|lofXJ zOoJu%3N>o@;ZY*=(#o>c`_w+`#XT{dH_( z4gjvp#R)BjovBgE6((#Hjgg9X=M5Kv%lp#a z%Q2G61(NKCIQ19Nmbm&ou?**&&E*D&r$R%-_FWNZnGQ<{Q#!@6i@83W4q^N#ZuUit z5Ny1c2cenxjYY(ND#s1VlapQzm^Ag9eKo|MU=e|07n=vvHqD&2a?~4Zfp{CVt}>cp zc=fNhX{tmtLmblp3mQS{n4=}ijIP(AusNCM1DE<@$m6El>QFFR1y~+J=wMG^;B9|a}FdL&QFk?1f+QS zKGdBm;?K+hEwl6+^+eB1iPaFNo+?x2mieL%DhVJu=ku^oh(=s^cgXKc=JAgCx=NHu z=~m_1g1QmJ;Fwj!_40>Y?w$JD1)O%ZVr&R%)a zQMX>X|LYhgXf&QXLl;w>RudqUH!{EQ?QHtfV@A^;&?V{bH@QWA)GEJaP$-3vV%iAR z6GiF+zSo(Qv7yq9wIXH| zu$>+}bq|xa&mZYSv>8R$u6_q9wP{P|*QIxE2a%=Nv{hyQJG?S&i#A+nM_E5y65*bo z00=xxrtoLt@eOS9S^fM~mhJ0WW213XPuxc-H3i0`bM58bej;nW-Mhx;@sc8zXOvik z43^E2@#!z?jAYp*vJ4(Q*WpzZNJ?Z`wuvC) zYcTBE|E`nZipHvPQmaQRpGJ0Ld}=Bj;Li-<=uOzKrM%;%0q(hLD^D**5mesYebQ>v z4eE&vC&l0aBH&9rNz3d`dM#7nCifDh`?8#r^%sGqL^BQZ^kC{e3%4-wgxKp;Hgy)9 z%VFG$7sbLDh=+s)egcF#vW)P0*gTEOo^`uhb=J zhfPbY^@u^a)=>h;WfG+qEsO6YWMSGdUEz%hg03T@*S(sWUNdt9%azQ_Srp-VdXTL1 zez{w6BHs}z9Sk*8`pF>Be6h9WL5fU~2*YPE2I<^Foj5W>TO>W}8vYWz1SieAL1;2H zbUSo)(w-kx=bKS7W4mj2&5yjuspxUG2Q%Q6m-yEqHQRV%LAyR&F5kTTL&e|EVXg9p zvnyXNGFXocZ9prI6`ST#Du2rjx_S@GS+39r#q50pkl6v6cK7pwMz?y#iGy%R)VMB5 zWiUH?!wn)LugYamX%`P&F)90@{6S?U#WE*uN8ufd`AR}IeEsi;Rt4it6xGI=b zO;pFR^GsHagI*43*6?&~Aj#UpJ!3CYm~(_I3^NrG#Y|!}ELXXtR3rxpilCKRZJNM>x7MO1E671`y^fb^lqq-QejWV4 zYGpl*dr6>y>u(5bLj^AHDh80Mn7~mRs6E$icer>EmSNPyEi!-h25j$ovURb`1uS%K z9b-WQYPp^kGZ0Y|>VR))X?ca27_LT zVK+Gb2$c-8lu34RC=F>PdBiX@w$CK>;?~C#Sj{aZ<{J5Eh6>!DKcmnqnkDcVsn5V&bsM{WjNR(_-f*nVst8wx-IU%DUd{jYzip|Qt zs*`)Nyx|Sm88NPua?YFcUk}qij)ZWlAb+qZ-shG-fttQ_LK%Xx`&ItS<>$!y(ojti z&l50LZfgVWYo=j`Kaf#~-VhNAvHGp!VjoT&o4x)>jPilr{ z$yKz#Xh?ja;s&pfMa33zic;Vn*kyU8TR~WvjV(Zj$`AFle!p&_ix9h8AC#3=_%U;> z^tRgP`d55r4J;b~yTf0VnwG;a#@!0x^7#}dxJpJ23M_JAwmC3~jG1*E_+dE_<89EK z`0G6_qrbu#f%?LmH7A_YY`bXfQTF0Lp@1akI?(bi_MsTOHc$# z@gGag+KhdfV+md+xzt>Z0C>DdJHYeeJwE~;FMCW*sk9Wf-Wcr~^sj2#o<^0e13 zc6geGvvER3I=MwQhhf{alp@OI?bw*4pyrapGF5iAB`Eag<6( znrNMxnj$kViV`|20182XJ?mDH=ikU9^G>3p_i(dOb69>%#{lJ$)ZYm<6>l+NH zwIH|O(WOb>ed9G+X4=>1*0F7a_d4Iq+JJ4yGbrfD0J;wGKHWR(LSSN(FpzJuYVB+C zaC?An`mZFl3}Al*Tt|_iNgmE?8aR-bi0B zOyxwB-(eiF`(0HUI~AK=*JY&7eLgRuIn!w?Mo2*nSP1Jmm?j2Ga}QszYtoBDv)>n% zR2M`r>)jBVpPxb>Fx?~N@m$(dUSG}6)6FLpwC?BF)I=4#`(5RCJw_;?Y+uVZo4?h( zhuzJWI@`-h7#-DB$J-q{-;pD9rSp_2&v0+x6$>}Px8BCo0DE_D5vxTDt>f42 zP9fKFkB!U>QRmAUnBADx1h<->A}=-B^kuSq(&EZg(%EE&`uRfXBk8EXqey|hOlN#a z3P#X&d|#L{aN=MRb6zAiq#UUa9Bx@nw8i)i{HiHJ2|Le-#jL!{I)sioL~U@c>|g+V z3IkJH5TLRV4l!OL8F42DL&rc0@e-d-F(6je(XKK9qzr)1tY@zi6=S4A@}4_ifTeWe zY1Da+&HzuP4)`!7k_hI|L4+DUB)sH#;FvvjtYc@aIl*8_UZd&A_{bj~54%A?Tkbd9 zYJ{HQnK*CmV7}!2%wo37PTT{&8VWug#C!6eA)Q! z4T1+e9EewBEZ)Gz?XPcR039u{k#ic4MK|VuvQLsAFR1n6su+4IB3uB$SXkMETKs7(DZe zdtT0t=A3<9~U{TpIbsAz4mU0fK zen~cSI?87eYkzBQl_hPS-Q#iAPUZdJtvuX1{%>fQ^_NinKLNZ<9JCx99Qds4jI@mO zO#fFPuZ)4Sqs4!Oy#B++(*M`{7iInbC|pMR|H6^~uK-r2|GB@N>WER99zYPj!pgeB z%+#PVK6|RoA;md{@c9&BZ>T9GGHvM{{xlPby1$M-J*x@ z`Ji$y_SZzI;2Fc02>{|iUZ|M~NHC8GM@>skc)#HqDljaQG3d`do|(=HkyW2Ve0E9u ze4^^lq#s!1q^-=3s19$UHo0#8Xo(Jua^2l;>UbtN{-!*& z0hU)_Bsk!lBe8VBxTS;YCYv&`EPk^7o!w%(O z?nkawM9Npn9V%ad~zoKJmdm)R2U`csCxd(Z?>KzZ&Bn!wz zS|mr>H^xhhG8nC==W9|01=KA9u{txGeNTJTGbnd2C>Av)&?6?@(k*|ivZSD(`+}TY z{q9^GZEAl5{xvR0IdYJGm7yj6z)f7_YjA1bSbgj(#|v=AcP!!kMG$^c6Fqy4W)XIX zCa`Y8X04Q%gaJN38tD^{?D4?seVeFgUH*62_mYh-z=UH)-~a7>|ADsu+xrA9oSo!N z9EE=Ac01euDB7|A4-p;LaP0j291f4yJKy2U!otD=5)x9aR=dOV>Eh{fO-WJl-)`R=HGIFGucWlJG0w)uh8@l= zlLf#-Q)A<7Hb;~1*SpD7>Q|*hwR(f$R;!Iz9Bzo0-3fZo{NC;UP?c(pW~~D~e$drM z6F7T%i9i3+*Jg_qnOtu0=-A3Dz&WBPLGdGEG;X`%3gk!$N0YQ;(oqg`p%|8pwaBT>$F48d~f#z^z`(E18K1fxqPIO z$pZxX(dY$xb(oa4d%WE44o1ce&KFA%aG{~2WOF!YGMG+ZcKyc6@&}2;Vyks~I(vJ0 zlL*Vv3)eKPMTPz*E{hH1j8l2sGw2QX4q(uW5PiSR`2`}of1UFEyj@h)J>Tr+WoLg% z9vC3^%u{d<8nBEbPX4^F^&vxr^z`t&7P8b`Wu-;=2l^Y_;^5!}pnJw=|GJ9J-);;v ze9`{I-A)&1wwMhH)#~(=l$Cae!&}A8H7X>OtZ~4 z#@I1e3-M?)?+8*-%sg`C>mZ8GI9Xt3dOA8iHJIe3Qbe1_cT*B~a%dSsg!XFSgeBNJOsq=MGUaQU4 z#lc}3!>k#8tohYZ+vThJwL#t zBN{a;Q8XT3E=ZaGWMF)Lv8=4@Ueu92Iu;fZ@aNlUUM9XER;0((I)jtbgG3T30;Ku( zBnK(z+`-AoYN-s?YB*9Jn;kAHf0ITmsIRBq0HLFWaofM0WXY0(0)k$+^k757NP(Zl z5-ARJAhn{RA{!f<1!&@c*v64kIwETA_S?_5hdL!x(L=K42t;rZ7}#!N2L;#)0Ep3F zCyxt1!1P(?R8)CyORvW`x z?4^Y$hV#VCOv*~CYA?2%bnZrd&w!IjpB2Y?2%@Hr6&MCxc+fjNjji@AXOC$poz# zZ5hPt07L*zKv6Geog5cpENFnk!?*u?dO1edo9ng)Y7N(M}>Wlf$xDbmy zLj9Rkl&2Y@veG62O! zh{FwiU$^Zxat1O}(rarp8bcD`X%LX$8RIgalbpmvL=bS2Oc6OI zI(ihNHR0EN0q5pdf=C6^E?1DsBhJ>I*_17K5_h;l_Sv4JxCn(3=v6$8y2JWuMLT4_e((C1B zjZuVyP+S@sW`G5P$s8CMXf{J#ZFD#k9ds!K9Ub;S*l)_NRH-5i1F6;Ku;25y)?(IB z7(bPdlCk>R&2i%PTP>)uB}_ShOzzQ|v9?Is0Wan84)7jvqJ>K`K~SUTkrzN`;ZaUe z^+^Y33V4CRVTq~4eEX4687Klc0sZOA_e1b&m*9H|~r;&3b=Dr&T6R96?5 ztACWCi#VE3!}GMDnBZ@~W(`t-_^T}8B7mv}W9Ji~pNqgc%rmOs9f6nvVY?7FH~vNf zyo3Pc$rL%!oA3g=h5?v^u{k0AO0@=3Rw#*>pg+J1&1=8jFs{W|<*7OX(tZ;?S~X59 zKKi<}D40^A`7$^JJY}_{vNCdvh?{Kv5R=&~v2{M6enEQv=s@v&^tmaBcOEr*A(7r) zfxCKn2xR~x#4me1D=7hYx9J}OSE3!a#*c@9yNpdCB7q=2jGo*f?grZ)fHJtn2pYT( z3$fNAj&&iJAJ-+|WFgd%&b~T28me(C&!Mg`u1AoPVz}xL1}RJ-kBtp)3_TLu&`ysE zjb#9l7%>fu1RKTDNM1-ZIaN$Xk7o*mkZDm1I^VFL-plE7k&lq9NADB-&-~?Y zk5>cO-mG>slk=H;CsW!s4&eq%(YS=3^6wVAU+ozG(apUxClC>5aC2isMNpe)xYM;7 zEwZvLLB#Mj1&Mv+aOQa*g=G>?Vc+&xxv{+<($oz0fEotQ#(oB)(ck99C=DNYKY&0T ztdl6!9&&ZxCm16+P3e^kzF*Ux=j=XTAV?qi^N30ciM$Dfo&PnUpp>CYa9C5F^%>t> zLQfhmKB5xTx|oQC97t9seGd|la(Y+`k~zb6v)O`wIz63zbQrGCoSgk5!gHBDo+27}lt>AyvPOgMz5v9!Td*toCg1HC}Q>=b3aIZc;V`WFJs?li6Ys z4WdbqUQMf)sKEWXph*g8~`^ z;T1o1sFFbgxjJ3M9xM6-bbUxaBB(&Z1bl)V2>Jno zb~}Op30*374J{#+e=oQ%JFDk&)n3!rg2=psNCKQ9S!Fc^%WO8nF0)EGW|UK5CK zU;{bm<)ne`(J}G~WGkp2xGOmj`+*hxU^VCzX%UQ5{Ty)wIRzNh={QFsjQ3G@yPBqB zI0$&aTtgViG^i**2|P_emIMQ=AjKHjg5xKz!qzoGQA?Yn?wL-L~7Dx-jWFc`3Y-5t}|J5i|z=lYWn5_rNPa zBu+m91g3fD*ns6iD2l)Y)dc;Hbnn>z$YVF5SSb%I<9c74za@N+Oh zK|N;7-Qe}{{)NyEh_Zc{CTLQ96?&gx>u~r#j&)VHb^W3TTJeJw4ne4|jjo0k`~*Ix z7C^{|sMDCGkhO?E;qFwx#5-MQ-cR3)1cr-?FzRE8z#R_X-VL^KBMltC5VPCIah z;{x>=(#b(Of&dUH636v$_gBN>>M%g!{`t^QB8-1KoXh|j^brpCb3vrTp*D~J6YJX^ zN9vXSjaCV=`e1-Viw20d>l8{3nkENsm=vdjUJg*RJ7?$w8;C>m6UlOrr*Wa4K-%va zL{LJ4Mhw&|%Y)h!(i2wUJ`RB-LJZR1Lu~&ME}R9a8rF17fngvGHVVj;@-G2lT9hX>}7QQj32*h~n^bRB;P!!Y$NJz-Q!LD%E=TwIXLeglU3NXH> zdW6=Jw5DK}`@NRaL~dXmfNm9Z1zA~-l5Qo)!pMb54@8@#m?gf79zd~&iwJ>H{C6C2 zR!4qN`<0y$qM2XSJL77QFCgF+uS_~JGFgy`nID}2g@aByX$1t=u&M*XDHt|UK3}HY zf&fNPg2Gn+m>Df_8a@mTmmA%Syhyqf4AqcxW;FBE+Mu7@I-FnTfy@CmN7$+uc%Gse z`ptQ(r+*5W({hErWu4soC^+}0lXIyBxH(? zG)vD5K8lnVUL;llsOcpAmYrAMIZY)GCQ0a#42?|APe4YvAIOc2Q8NaQpjMPP{2ekR+wBPRz<%7sK#BmyVfub{-6aEy*FA+wu{SXS8fQl?#pd4hr9+bEoCKnv^K8oR zEo#T|W7H%lprUH6nt%l>AS02=W{WfYNkqrq4v1R^D8UyEY{)d4JbeWU)E!V~#%v)8 zMUF0c7gmVZMvYVu zs2R^kBOxLNy5VPwa^-^;kjxY>Mtz7L#j`DknL2KgENPpQ(WkcHucMPdAr}(|YndZm zp)l8@Qciz@Lx1(X|Q?EeYYh2M+=?4hP zhp36jQ>-Fb3o#{dNdB3GfK$O7Me_xTl5sUTtY(ao|D$P$y8+uzd7xgQsXuq;PYyl5cViEA zmR#OPU_?wBEI~}l!5+$je+G&f8UnK}H5nHGWC&|W_AF{rCbS)8!ta4V&lZ7O|0_D}R!m4iY6y8{ssz$AmUTX3eh=?_nBTRo`s0)e1jk z-W(QV7t6yO^1PD^jG795OkzROC4g|t8&2-PLLxRFrb*3I9~d=WupSstLJg9+(SAx+ znLv)oovaXw^~&o?%wX=E)=-L88~+)S9kLJ%I4p|@9RO|mN3_8Kc*vp1{m*6)DU@sl zJVOw-Kfa@X)qJ$;9(F{qgU8iV(YHB9;3O+;=Wp4A>p~A+5T>1u9!Ftf#B@r4Yy=S} z92bi(KO`XD8yBVqACpu8pD3Wypl=L-aoRJ92XtjnXRitZpa#Aa0i8z{^f^kxn2u) z-=_z1#cB~j4Cfbrvk0vogf|AT6v*hC23@*Ea5m#uw`AaIv1+B>hdgFS23ItoPK6p6 zeHwop-zLvSQiQoe=^l(cD7I(AcE?zTKZNAWk0#b9(4dYQloP0ApO=?M^-%!v7i#4| z4{#C~RHUEj8@jtwq=+?)_k z7zq-v4xb)(?+DvYj`KN;V`P>to|{Y(FAyIE2(Ad?5$q}qq))s#kKV^$9|nYIZ6sF@ zbCg04ZWDrAZm6>yRZlF=5`qJUOpBg8kbsYkCvz1e5=h*Po-BY}y6 z&k)3vOowaj=L3aej3pb;FnE4~+A4>dL-nL?0FgD682@=JfyUX7U}raDrUrc4FS*6#Y9wGh#ZJ=K-K_) zNdyBEs}ZUx9>Pk?n05kz_roFOj$;NT$Zf>P*nNC+Ia=`N5Bm|AHUio{W%kiHkw;+> z_bip1`H(p_hwm{IGd&SmbAsQBHQlHh5><_OQ^t1hS#db92sZfvKLU6pyZmqfAuO^( zemHQ*6rkZ+-;i1sAtBvD#lQzX)u&P!XvuI=7?CORvNg)v)h_dT zd1Pg9L|pEmnp(jk!}BuB^HE)FLt5>l!a2p~BTD6gBwb0$WT}Jt1MGvC?D`SP?bvJ& z!v#rL!J?*GZ&PZHt&!ODhBL@(Gat`-oxV)R6G?rS zd3Z~ad|aBid?&8?>Siz3KB3h$CU^zqxaD>SWmUH;45}7bUcXN{UwM7pdli|VOLR{Q ziuaSMUPA9Z6`syKn*v33P}M5j&7#@cToRl0jw>kzg-p}x*T&sT5G^`Y4AgF49)cT} z&1^TYE6u6qD%1+w-HL*L&L^M}PPBC)t$#66JGUxS$lUU(~vE-R|;W|Y63l6*cT zb{0%|s5mDvnf2dSZ(8~?%A?D9I9+`6fsjFSKORc&g%t`tr3JRxPVf`e*O zjnmmj;8rvhT`)byqY>NGR$-ehnWt#oUTeKlaJcu4y@biTTo>hwJs;<2v^%-%K1D`l z9wjsk3+>7`hN82YqPCk*DXoKayW~=(-*$d9*qw2(4($1zusU5fry`5Zgf70j z^hpSM5ivhDQ|Fy^b+Z!0DfK0%F-15HxoM*Ro`h8>P6 zrYd&u`{#XB@53$C)rI{ZJO|N;BRjG0-mG=7yMH=&dwC2~*i1vs5_oLPc^uP@N+z(Tm zU~ABntC1>=qHCVjfT76$az^sogw%0*J5m8mlGE)h7$$3m)U2j*VY%sFDHKHZ zxdhdFK))b-pp>ZH0Gls|EjCB3sg}41OEl@Tpb}03A;VCI-=dBoetupH0){{g`yf8BI9qBaQ1P$R0rMKDc?lke0ruz8jB6fGTAP*0% zpMDN6{^U){ij#Ku(iCNQPWmH~HqrD#<#yfn4-lzE4c5Dnqthda#PWJD5g+(hxcIj& zNCVN(u-iqG(SRhExJyrsqa?ea_>QC)m{14#VfNVWFBYB06~82P52g6d3IX0-zk2l! zd}OuhS?lAL+C<+uCtNihu`OJ_KsO)dl!)sx;4!=+`14{-cTJwp?QGwid~D^ylmqtT9GOmAgmO>nZ$`@P@_x6xCQpo<5&5 zYTGH9;_#F|LAw=~+pf`Ur(&Pbubsz%b#u|P)EufO!PH15sdcNdmx!fT8xCh5j=v!_ zHLmnU5O_~vdZsch|6XZ(QZup!l{+%o^^oQibAPfsc*_m0=3aqBwNJ!7Ui63h^Mk`? zyZ%kk^aR|uMr#HTe;#x#{NM`3YUWNcn%YhGyAJv6}3GDMO|GOH6=Z7~`!<%*YrJgg4 z&dN$$8kjf2L?5w&^7{HgwF%!(SU}YwQnAlOAoT;&O;&EM!tza z&pkS+b)T~%HvMXPa#XY->UFF;nM($v3}~V&pH^JK+1x%{B*#Usc?ds6i;1bvdxIlc zE!cunY9lyCG!KD{HpFvPb#cP=31_H&xpv9!UFQcQz}ceFc313{ zpToLgaBbmncFAw;3W|ykIa_@;OTLO0N^^!D{2Dg>Jd&9nJj97}v<8ASJo@S*P zv6U4+RgmpbwY6^Xv73rwkU>PW$ur&HooVfJXt^#|D3Yn{I2K7Ou}n{%^hlw9frH?x zcR4L_1EoC_Ul=FS7593XgLYW6yM=HCbK^k>=^dirtt_b3>1(nX1C81w07JbZL;UR4 zNwX-T)wAEqtrQelt86I^7H-~Xt(s`+vwqu-Zqe%MmQkN?OQ7QP{P1gIZ~VGTf|bh^ zC)ev+G#wsSn5;xz{cGDm;zUqTO=*it?=gBarHV6mcO@#Y4v~L4yQ_=lGCA_#);G`7 z^`g^>lQ)TTm_MfwpTIZUTQ<9`*?uG+LRmaP*zQ9$Nht1WCZ@i&uGZBp=0GI(!(r3< z&+73iBM0PoMKlbqc^!SlpufLB1}99;^`GmlIg{v`Z8>jCH&pYi&QpG+q9nJ?c+v!mO}*whMgbV zpqHQ$jmgdTTtbmrkl8h@)p=bOnG=nNG4D2Jv6QpTQIXY=VsGNuVtMM=>;|8gos4%^rSh4!LD!p*z1xvne%w-oAYr9zXamQe4f4UV~dY@A$#c5k0gn+L27 z>Y5#bVxI_np65)^!(GKLVY*xos=*)4U^a7H)e%t>^$nT457UR@@i`NK-1?eZ6OT4Z zR;13SF9L!J1=rT=B{IZGEWeM{h9P9&ki26xB~j_K4>RedYU-{l>nZM2PdnVL$Z1ky&Uh+^_$SHz)v?2N_BV2cf{FtpI`9A zIh0jHcY?ZN#9~|-E3RskX8Sa{0`?zzCAz{0w@geqgF~M$H@u7+7>gC8i8)@-^49Qc zMKSUhOn{sG?@@fH*6ynfkrX>@`FquLKx0>)tK>Jj+7X#M#v-^-zFbnsSx!tm8HOsX zI|?_iyi)0()YL)!mYg!WEa#rEKAAEH`8i0Q{>JKhe|ZMdh`=+T1r~Jcp>A1LabhLbA{9TH& z_wa%*tjF^)!$uE1ZS@E$D*CV7KUIMr1A1*Csdv|}T0<38cH{Zv>7>fTHYrOA1`l8Sq+(V6k|1}{PuF3w2YQ#a(_{9N1MVE{|9SAj#rKS(`Luf z+FANkw=Hc|{0%*bIpy=V(c8fuiwWpkxIv>@P0T+&V<8#i;i56?fLt>;I} zPJ8Q|&$OISu4KD`j7s7H3B`KtaOx{MP%j_Q`x`Z zaY$YmJk#nfY;5qjP47!L9^i7>U4r~(r<1w~-Mr)~91LK)j9!i@XtyM@9v&GeC>6gn zj}iGQ@U&fqbbK{rRc1^F1IJhIBos@tQ!LuN%(e!Cz%a>qBC)(wn=%@2%$M4QKg|3# zczmzwoqgvTj5xhMoO9T1)N!`X7q#b-D%NJsBDh31HZm639w1@(+I`ffy9}X4;Bp%u z@3;OI{nU}J0t6z3DhZYy8;4 zLw&*NjI3PCXj(%=QYsGP<{N=J4UvkdTFYTReAw+gB(>b5j-mxDVbkhmqDI2_#F-QC?G zareaS;O_2;d*bfy?pFDCbanTQx(^*u^|GJ#+gdUAoO_P(jm_4DZ=`jfWf%;hD8$-L z&9E&WnCk6n)qKoW(sOCcX7cq~CVW%S8XhDQ)(KAQgLYJfom$;*(ylvgPsaX7` zw6B6|bxE9wmz^g9e-9vWn#Asibw5oPr0w^oh80NsaX7Z^Hl$q7e{R)t2ubL<5ieZf z{dlA`Jhj{VVfMF{zkm4s=kC!aBn)z;@t)Eq&;*xV20G2KoWz{*2E+ zP~h&gC%MUCj-!zARSe57kpG3=9ZI#5=ycf;EmG$`OH{}N-Z;gLsp~0EwTY1I_E$X= znL89-+cDlWz4@h$C3}%k4Bl_Gq=^bS8v9)};7(b|b{E-faiOQHIzd=O)oQH8f>Wz# zks~)&D_=CHoJ7Li8Wvt97TaT$rNC2Ip!F_>p4Ww^(Bj+5px`#%s;a;WCa` zrdDvN?mkQ5EM0&^`l#nd;g99z7F6wUxe9#G`~>(9{Ye-n+L=3OS-;sjL7dE zl9;*bR(1D{v25QK_0U-@rxV02lLKuC9`NezZ09XGLJ`_Wrn?0k;h?rumxjs1yPQOul*ChY09p`hm= zVC$rY5j|8^`1h~+mlte2KHOy{&qdcgg{YeElD&|_b2aSKT-3xvN1p~CLQ~hAx&5Se zqrRr_$0uy`(c0ug2U-9QwK8#PPRU>OS7)a5Fst!JB6ETCk6-TLD&S$D=(vqf%Zc(^ zRWc9zXgE-z#&HoGEeZcq)t_%%rVPXx966(BJyPkg?&sK!G?e@gmq8HKrKR3>D0x4@ zx(rTsxMi_vtIQ=YmD&x3$0EMxt?sT1^LL|@%5y5XN2%VW4$I$5thY$a1D?pWo&uK)S)wp-|ajj#NnmcsI6`#AY$CW%w8Cr1g6bG{4G?_(OJ z@A7?gZi!r7)y^%NGq>w@V&B>90)-_b zf-k2Qf7^%o_qmREL)9bVH|w%Q{+h+k)5+r=y~EXR7v;zcF4OmvZkggcq}TAdzMiQ- zB{uo7A&rUYOGA%hARt*2E2^Kl(|r*ZNLS%Yq*4vK{}K<-E;r+a)t$9FiM&^hoeWl0 z-&(h$-{2e3OSxC{AkcWFvx0IzZ*w_MMqYEvI=IxdE2XQ1#+tmdLIEHa33zp0^&V(C zKe~VVDQ*n)4XJ$|(7|4#knmwVzD9s3*4u;y+al+;>qLOnJFQ25hPX1kOp3xgGQ{A2w)<=u+2}w`N+cPe+LV`Qk6XNBsS7)qZP-kn=jVKT z_h;5r6#HLQ>;Ivk|4-Grkj+1_x!r%H=1d}{ZkEQTO5*=;<^QddLhc*u|0^*6!O8Vs z^yML{+TjGMxSvT}qX->SbE^vsg~DAfG#%2-SQ|x+8QMvW*7)@+3)n&pNl7LX=ijGf zW)Xd9f9*z9bV~|#b}_*Hn)T{ignd&gQ&4k1BctYT^bn%H7j3!WNiw0-w8}J{_PP7m zda*ys#RCO40lTW-us{_39L}Sqx9c;;W4+ujC#3j=ium-UYJ7>4Q|Nv`y6TS}ZGm|C zAL>+>HdpHQZ3OgA(iFEFu-$5n^Ay_{B7qH78;ub#p?&fsEoTr>grTzE;od>L2OOa> zp*U;L?BYq&gLzzt^c5*UG!JMGpSm!nr)@VBga`idYh#hm?3hy@ zC=X7Daueb#*ie!lP0N3YgW1X{?+x26fnP%!6ND${y2@3!UXnb0Th-T%$M)e8N^CsY z|K2?b&>V;7bBdP|C6)(^gY40(BEshCExAu$$inCxF~3lupuEL=KS)IgtM4u7?Q!Cx zxeurK&~9nSCe#@D%Sy&*RQIzb%WEerH&l&l^%*JgxKnXsBk?LrktP-`jWaO?E6~=FL z%fg_YTBjd`?z)q~4bvc6kC=?u$v+vc$rstWRY22P7+v>9+CdtJh z@$eC%4G62AaC}=@gAeFPe9h{x?rQotjv?N0ygO*wuG^t4zOLEYhErO~S8lI;JwDWT z>{eop!FJ+h2Vd&ITnK_^ZE^cfEvuZaIa5a^e7VNOk~J@ET~(-*)2S&67a`%v&XU6j zJ(5&8|Cc-*+mvkY&(ps}a}>s&^Twh$&lTy~c-*X)bvq>e{-NsqS0MsOUyNN0zO=p+ z*{S@gj7em=@r+XX(pyp_()z8h9h33ikKb8voGEUx=N77JTb9x^xM=NDNq+C$qP!@2 zE~?VphVxRC?CaLrxKB@J+84Dr-5*ecT;H6JGM+Rc%Q&7y zzT2UFr9I#fAnm5YtXPoG&}uWH^Zv6#l>*1_t0PHpy5Fkw*L9FtGjf!{j>FS2all>q zoV-2VxjU@eR-JdsFVx~o-{Z;m%5fN9gbsUVWRI9L)cpYR3O(B!Xqz_KEO7hMO%UapVo|5}>9Ery9kqh_Mg z3oaf;W-N+{81&0%3H}zKFx00gB6_e9Z4G}_#eTP$@iDBqwQ|(5v|@hcyVMS*@cs+x zkBbI)09(EW=H*$R4m!s8z!L;6031aFym!aU3`+c21Y-WZi!VLBRAQ*%@scsXq+^Y~ zM}g9L@ykDfj8phK3>bpw0tc@jCC&jvvU0;99?KWh*nJ8OODHo7c0N3)l5B6F#^$l) zkgj7iEtPUVA766{uahk&xrI35 zixD$ja=+|OxQER2eIrur51fD+``@DA6q>f_76}(sgclc@i-#63Ju6$pe##$wBVKQ+ zHj~w0N*}*`Q{ySd5eOug#9}oSJt!_ImKK?qKtf5K zHu-o0eC_peSx%1j(`V)O;@pHBt12ER!v{xLbcFB*YQ!^|AO!m_?D*qyP{HE)Wm{uf zxax!XhHxpgO2UrV^MMJILw>gt@PhC?(*`gjjC6NeR3+3n$FX>Q9=(zv>O|V@$Ow@s zA3h?*nK)5^=S^0ek`OJr>V){9CDZeSOZ^v6&Wqm6>Csc3b?^@pk>A|45%5z8EDt0)I`|Y0?`5RV1y*bSe2LyGWBpxlP2Ka5V+>bnsg&SoUMHmI`vJWa!bS4HSwxG+G z37-6;au$)|1Lul7XImR(8@X3aSAP(Ra~8hMC7lf3lN@*5!<$l=Y9CM^5FX$kG>j?1 z{P|(<%&LU<&lwus5gm8OcGxz(H@(JDW2yJmNt5zIYe(yoLY88d0-h3AE~9F{fVq%e zZd)!t|HF#X%Ft@X>TQ9sB4)Z|+C67FTc7P~|2^!qwmrhD_0{U3|CH}E2|okB8y^o} z6+e}2h#fD(E@L#~AmfN_xY0rju?b4+KW8BvO7>-nn{C6zee#YpI>b0P+I3CMO0mT}u72JTp90U!7dk|~D2=FW>`t!&LHnknR|0z@R7Yn*uoT&Eew zomN7p1V$6aXnhZd{CU;2ls&Dp*9qCBm?O6V+kuT`zLk&GH#$^l)CBRU;pCE}Bm8MZ zz3|i;^#t{rmc%EcE32y#es2B<{uq9YZny3VU#4fn4~P%9*NwZS>!a7DH+iU^P?hk< z2!&8$P-?LJh%E5v(5_JZec*i^zet#7^}p-PV?zMnh227U;n|UNv0j~V8R^+7DbGDy zRXzMX+@TnZL`8%LIwayoW=F)MVz8yL-Ni=52SpdeWktP3Q$?jyHRv@P_Qj&LqQ4dM zVUrMGd4G3vDtnsUkPh2B-$mHFWMtL(-Eh9@)O1ibK3yHJ->2zFOH4pQv<3Kz!1z;k zAX9y>-{yV*wUpEm_Lg`wM0XT(qx)?7o&c2^T>np_mpY&uVJulKi6yxQAurUl?OLyY z8@OMV9G_f3!&){|Hfb5$_}n-Lq%e%ErPF2Qqv~SnXDj$2+&*TxaH)y`5}Zkpp?20Z z>qv|JlzEVd{+>w@q>0#IRljL2Zkju$IDvL}zn`&hH%>HqH~QwsZpQBJYToVk8T#JG zerb(T6|z{Zv(_f(uG`nX^U!@3XZy`oV&!^VY&^!4V9PFYb6zn|v9{a5qT%Xr2-pTx z-05PN(nhfvw865u*f49TvRX?e)0=rP8sClFm8V!wJloRrRe#x-cnrSiDtat>bKiD@ zb6?*$X}{A*H`3Hw`CGlMTXisT3%YITQ2$3dG}Lx9K(&lBiECsjt?!bmu@YY>IW0U5 z#E;83>^k*sxyW7}UR&zfvh|+>kAWP7K}MJ_DV$_n7WjwySlb|b38D$M(?K0scfz5?Oips z!n~SGm&Z5Tx9cMGBW97fBj>mNxu4}p)0J)4i9^H3@4c$nZfM`5SKT+J&Bu1%gV?WZ z0>~(s*GtB3?=QV|z7yZgj~Uo9R6T(Sub&?lAI9fFAf}4X?WU!Rztp)VaNo9-7bQr<9qB zTtD}>E_0*NfotoTvvdKe&C+hJ*TqNMBa`F(Id{ve;*!YCif)0&z>oYlI5Z23T2{|I1*kn>cRO{{tZU z^oqc+CR%HA1V5yp1fh2?wBZ*(9}|@KJLH`H{i&;xOPtq#ZyUE#fJQo07jmF#`(Q=93s63K^EzviXpPgL(`D*p6F?c_<<;e z1pQnSF=^$$p`b@|^b{pmSMG&hogX-3PfL;2Jw@1_y3A6xs7Q5uqiTD|x5`iud_21)XDw^90Ler_1xfW(tWg1?MJV5b`pT7%&AnE1{r0LX9r+ z!4x4GW_TfW8$etz?Z%?cNLDZ9=*TSLc5|J6u>A#lSX=5wjLb#^CnSZUHxOARZ|d;I z+ksSmV7N#n<^Ro@{3o#O|Hqm9C$){^Uy9uS6P(7(%)$C!4r#<_bbp<*h#IZbN<|Vr6jj_S^si*$Ip#hGI{kh?C!ht&*6R6J?%W@>9Tn=@q}fwTI(5rxAIN7?!9|~ z?=0<>b_1IBYOQ`$^yHp)hz*rdyTymSs6ohV`nLDcG?~#iw{GAP3zF|6*=#E?O1)Rm zvJ5V(-RPm%Hkt7NMGM0E?axaQDjA=t>vZ$=Q3GeZTh)mspWwlowWrrcXrM#)Jh(fF zBC+uXon4!s4U_Q;WZYxs6QK{8{g7P>^4@zVOSr6rFOQk_vBv^x zydkVuk$8(0W-X)gV{r}Whsn8ccbSzUelafx>U}iW&U z2w$fb&JL`^Ci^zv39LjnDgw|2YcLM5kirBX&fkFkx)0Mfz7=tgybs9+6h zkrDtAkRD*v4e%pf4Y9y5$^ldX8{uZ?2Xsg?f-NvXLg8Mdr@^IIMzH{PpbDZQg-8(q z3pj!OhbmY-+=g*YHGYldTz>HvR+NMMsmhD!o}21{U)359!*?gocr{b3Y| z2Fw6O;0-bU&<2Z!OOQ?g(}I5>7y^Jy!E$g_05qUQumWN}IuIL({wpMejdB2wR1Wbb z8?c3N69dpkyh#Ckq3=qQb^~^E|Fsq2J%~4LfL!>SGC(dIGwr}I(C7O=7|`e2z#FiW zYG5n)xdL#7aDzkoNk6~?>|_|o4fc=@=M3=>4qpoKkPTN4c`g9dz}?gXnBZ?f0Dr(P zG^rocz#Wj6YM=qgOFnQF{9FZ)N4!Y}$RpeY1L6>G(f}pF&oO{Fgd1y8IfR>V04m~5 zJOCBpCIIk+=$H#22WA0w^++$#c3T0%!Eo@*^#6Pv9U-mK;XEO&!r=wLcd2lFgd0Rs zJDgn(Qah|&Y*IhQfl1)IOgK4k{rf-+aQ)lB1MpoX{4Dq<{eXOMt6I2qaI02$MR2Q9 zI0>R-2p|>FF&!X)z8eonMR1G&2m^KK2SkB{n7cqyM!;?W;4NgCYTyNkgixm*&Idfl zHcAEXge;Q|xREx)*Qtgx0Bx|1k^lrD%isPF-Y^Cr8zQrMxELvZa48N*E?kTB5KfU? zqzRx3R3Y9gIY4_6q;6Y}V0ETmL0J_qyAvK|jmIyX*8}n8n_xtD&@@F^P|cu#F7gXk zsOuS$Rp3{p8bd5t4{Sm6VjyG_9TKT>!4Ovw>xe~#gar|B&>b+TT+s<@Mhb)_G9K|e zgij)Dm+Kwp3%@cw$;tRmbPU8#ER76!IRfIen%5vgHq#wp2%+OL4 zN7F@EOTB0m;b&YxMj*@m%J9jr%0O$Qy6vTh%j3Sbrf|Hb&yU8Mp44F z3K{2&iBmRkALJzmG68)DNs6F=1{8L6py&dr`IDEURR|U7@h(J|O`<6y$?6qzQbvG7 z5@f6i5x3DIFl2lOC*h4EX!*g|KJApre-V^0%0{S_rO1pBB#lMPlgVZ+rF_Nj8D=<> zpV*7K$zE}0QbqKGch|DXX9a|BZ1emTPOn6AF?_{5bCpgpK#HI^nk#Y;>gY50%$vv+ z+DA;}dy3MP(kWB&E9(r8h`sV=ZulnIUZ#jWpiAx^AImdE$^W|-1!fCa>a7#C9se-} z2xs&e7K9V-Cx6e2*=aUu9A@fR%mIv_3-Q&*CfVLDy#c3X_K}jNU z3Y+~Rs0lYhAlUFrs`faGV5ywE`7V(s01*{8cI3k@NH~94G|v$9ZDvEn9c@F>1$IUe zq#t5bcPicUovG(rd-kmzd3(w+HYgWkL*||pL@vUa&_FOcjx4gIyeS`1P0lTIk5TTx zP*hFYo^eb&){)rxo_35d){%A00wO^pB5O~U(gT)}f}$cA$+#t43`aJDtb4whTtO3k zTP3My61F0lc_Hl}DeH?T%8Y5`G+~0dAYGMRa98Zg7U2Ot`eClfEwrH7Qmg_S(=9M& z#GJYU%WJ5#aO$7>#O57L5K>U3He)Jf!DNLihZ9{0FvEBW z?-V)6r_Mqw)J&#DT;Wd0kYpn_*}E%EF8ywj88m+%Uj?Z`SkC|@ThK`c`V-GUFa$x% z#cr~P^P8mp2AU?0I<@@hFO>;~=g0~sh~DY9WU^4QTrzh34RsNE+vt(WZ8~sDXMa#K zS>_=zoDz*I96bUZxXAb%jjEX%unSx)%F`g@QAAQ?Q^ZuQRfML)V-QIYF(boBVN;TX z#Cs6oCSy>9N|{%XWXDq#VM!1f@G<_aM>UKmoqN|q0=iPQL#sgRBFs z1OJZuP#w@Sj_jPBikFcsz(Vg%%(8ykIq%SM2cepA7f?RXrcdj5d58KsEx>)eb+&b} zM>2_|n+~xcpfH<@W+?mg(+QKiqP1 zY0&TDGP^6DEcdtj9c%ZyoJ0C0lOo-=+0M;YEuG_q^O=))W80iSiv!6H&Q4(($F9qf48=reu%*wna}* zP2tj(^6Z7a*6e}4Q{#9~t4Y59%uLAVR3ge3L~^eF?Bx@Q?NduiNQUwYly(LeI-U*yozvj*Y`(kMX4z(xjI3Znf>R0mTI^!bK50__xF(+epBULPRy4N?Mj zHbA8pSq4T43}+iEG4Q(q`ZgGPAk;VFa7ZI?9sr~Wq+$SaEd=&A^dFFvy>Pf-e0h+K zf>3$j^9{q-)et6v5V&Wl21!$3C4pA~_JQ^RHGwq&{^0r$`e0vBpWyFA&xFrN&zR5u zjQ{*F{1E(5{9v1~n~k|zvlR*#f)R!h0tEsG0;l$KC1@7B z^rM%5+s6Q~jCc<22H6pi-HT$tQ;WQeU<1wpnHdn%3uC}ni=u&839beSzRhcZRg10x zP7nJV98yr=FYG-8pCD%~rUrxycvPThFE9_|7z`Wi4qV_bN+bAP0CpZ;8X_A6vLK%V z>^y{X0Dc~RDFm(Nm;VdP$JS=&)Yl`-XKG8_jq%EJUo4QieS zqV^z1z0kYP2udB@3i-L~;`pO5k(v0i?RhHwh~H$6QB9We*%ynWS%(=rYnfav9QNe$ zGN*BYxgDe!TLK2XIvG}#TXs{l<}m+D&P5WddaUMjw1^0EkkS%;519Q|yj+}b5CiA0 z^x;TPEq*v#Mg9}#ix~4ue&;tXoWFmxR)Edn3}(8OnGf5qZz~AR=m}hL(92fMVv- zmOO6LFL{3k58(;&sh-CMEuocAUF`MT^%nQWy7fHk43qtnldi{zxa16t2@Q|9!P=nX za;p+UT4sK!mf#1Zf2cdLYPDS`rE3z1YSo^Q$y;RfjjJPMBeJ_S+mRxTzNOEN=MDPs zv1VD(4c2e!G$PXJ%E+DeANQc2ejv7P?|9UE1)c-6{8iG~QRn8X^-)A-Eh2@nx{W{ z+0hE(IqEsqDAI%XBlxC#!x8&cy#xn=Kb^OL*Pd51l)x9Neujvdx%f~w{u=jVO8IYw zq*cd&PRK5oEZs;d4C^Vs#(fi*hg?l09{$H7E9Ref_tqI$=61wy^DWnZ5IO#Nr~Ecn z*()HAs{SpmU+M!tH;bg(v6-}%S9a{}GnZCpd0Wcr^1G|u5WGnQ&~-uy*5%A$=Xv&x2UN)iJy0dmUa7`U(;2LT5z zX^cXj%u~A|O@oe7aF!;Yv4$Bp>(_D~ZB=`T!1C;>qV9o&*w5Gic4=9IkX&2Sy zC|>Ip8vUI&sPVrt*ecf8@1ceFHVQ}z7BJ}f45dXf9uS9EUnpY3Xs93HCjW9Y0+vz} z|ExKUhQ~dSp%L0#Lw_dwyGXGrLR;=^Gu>|TTSmvIEl~&+(Jx&bCZ%CKc8!j@->UZ20!HxdCW-_ zRYlffn@cW10U!7AF?WsTP9r!dkn-5Weeu?MWb}8w?#LpvsZNQ}ZWrzqLOr&6n0N2S z$q?>slgstgPMz9oOa9~}Neyim5i!NZQ6Y6t@a-@9qWmu5@6Smk1~K9%>YG(kUa^V9 z@{4{<9dahd8-@(R!XN!IDMMlP#u`e&#kYx51`Q>1MCT8!${sw<^h+fOgCSbs2uuDgB+UpB|GxK!5z&fU(pZ6l13m4v;a zbw(?VmKk*CxzCdrt+baNb5od?L@$U)@uo96=(xj_6P6rvqnLAzQrc1oJkfCE9pvxg z|I!=~J-y%(s5mV|3Q0c2NXXPFk}iK=`d}+Qcaea+yTa3d8e~-t;pDlmII%%cF0LHayRl0`b!@Oc2M zH@c=U?16vSH*z?xv-}c~HTfN}o@Ieu&nuC~u$9Txdl%7F#^+7tE8O=-=b&Z8xSC?@{8u z3oUn1g~*h@E94q3VeK0l;mjr6*RJAJp*<<`_FR+fEF6oQ3AfS4jjYhle$2JCc=}$auiVTlA;Oqth^IS3B#!~;>{3MhTMA{U#>kLL zWdh+M4z;YyCp#pob%`w_2lX(TRo-Gh$g+K`W?x_rTv0^Z5T7SRXYxodzESb54y|&J z>Uc zix~ENu$uPox!^`d{l1$r-{%1C)68xm5;aQ|%%TH6Bcw)TkLZUAy6HTwY0F$h>wfWpKv6hq&*{i?Ivvt3i#3k!8Q{L%^BEn9bGe%ZcZm(BJJme&4_w;JN=m2OB@bk9X$N=R&-5XV-h9T5?|Y4PkcSXMnmsYWWQ_?q}gP{xlaOGt>8f!2e)z z(x1z_ro5->$-nWe&H*p7L(ZrW z32T{Fycp6U7PR(Uchr5pVp<&EdJSE_UR<~k`fekvC|o^DO5dlu%r}4Hd)HB?dP6i? z*9%2&4J)~>OX-RF;mkvo9(mqS1sU5EL$Mf_ zL$Yoy+}ENGlKDf3M_HVu*eilT4X3WZT(23hUiJFhb@WU#;}kP9bod=df+V&Jil1<1 z8s*OE6uoHO@Wpao(y;1Qmmd1DLS-w)HzuOWM-z!-hf9h7C-iic146Gq?drA8Xt@7v zk^!^v)yy8r6InWVMec9We6}v)gz9*@19=tBQk)8bxOg%YtAFi4dx}@mXQ^TSj_#hl ztge~aVGg?o@Sk-FBFC(3J3pDduI+qv8#*Tzwk~zjxXvcjWt#7?oK`pX(Xb4ivDnkPs@+ZIs0rsj;nj^0>vWF0;SE&tImhm zhdXoIBF~Vk&gUr=A3BmG3w|`g1A60D*QD)F(%s!|WHw({CD*33$X=XIpDr#xkC8`z0C|J6zPMlyR z5kM>?>Cdeup4Uk#a_g!nRq~A%^L?~a-e&e#ll4@oz;<^@VKF<`ajHIG1j(t1i$s4P zrjkidSK{14w^b!5sA|^8<`^>@tJLy&1-^a1G)~-*>z3mr&59ZpQ`K9Ts{|mvr1D1(y=>&DQsY;1&x7+F%$xhNScV!l5?r*&jwGfA^`AC=N!R5Hboy`apwP{?|+ zpd~)|ZYs)$(^RtMR9fEiXJv)O`=Zh#iH7WtiPmwIWQ8V2hoi2qmaO79n|LCRq`7SE z_wN+#NuY)g?^XH11CIu)Roe2u;$bu5OqPocG&a~BsZTR}dNn2zG{kssiQ+`>cyZj% zAI9O_@^p$!#Q%^WT<1B|n76G8fBL;=Fzg2jt~jT|ZLUw!HxzgoM5{(g64;)Kmw2oy zV~XPYGblstu0iCxQbnCODe>M@V%_78zfOzpBGZ1VsP>{ZWA=#Vn@ieVnD66!p*iYCfxRd0nhSpAc%u-sb zoS$Gh)vwNSvDk}1+Y>v@(5AjTFJ3JGX1B5&qq*fI-aq|GxL?i$A_(ssag5I&dvGM< z+lFE=&ke@mWX~9z$dN?Qy(G5?c;xjn=2KD0WEh*yuSkbl=BMG`N#d&2ec4jJG-Ee) zc-Xx~B5@bV|CZ?AN7LFX>EVdJVv2c#>sQE31wTRTf6MUxi56a+TmDMjo4wwjecYC+ z0A>epQc>Pab|mt2x|hFS!-dk87h;Dl!0cf9k$8o9F5@Q`KMOZMZGU=V zy3=ko^cxRv8F33EH#~U@fnpc&mT#f4slS4zZq{ac;*8?hQnC^xNX<%=TKdI;{vfE~ z9^6N0N`rWimx<7-7TqdDQL?VUg_xu_^f(#c*fLa@D59+fesIY+P>CeUW|oZwNze4z ztG^7R_^;*G8^uZ~_22$z zD<|b=P0f>PLE;sIb1GyGb>J_aQt=K$xbYtpPJI2+U?7@s%oM=I7A;-i+s~3Hc`KT$!a-(#Q z*fk7lqIWCA7eJMQ0_FNDI8BZ?I}TLu=K4tE2_Ikilq2l8b0LSToeH4@Zr=I6v2eB7 zQkY^>oyooI#Kez*yjQ0tA0-C9n&0!MlAiX3OT+%lL~V>pvGe{vCGnQss84dwnvc;4i?feLR)4$jNO89_vrIwm#votRRaH2w63f2 z^`XEMpFxR!cRL)b<~kNPv^Zbt#j#Wb(+G#_n@9y`H8mqR(=r%3=|;#I)B|}*0zB_c z9MdMr7|YO^U9O0ef|sUhF>3~xYWK$8s1Z*&EI+w7y&alv+~r8*0`TMsc@pH{aic6R zK4`s2qzm;iMpJb)^?@;40)6MY$%qZv^be~SV3Qb5eiM~B*KDLtg8WIemu&I@4UyWa zhkB!3&BB=aRM+L|!oy{xN|Ibroyf4L)xDUnkKtLgUKIl~_rk-5I5)YzQ4Dv=Mhbqm z#he=h*H3|Q8)i`+2R75WDV?%*jfd}a!z*@Wm=)0~-YQds{AWkUKYkvyR?aBxWdW~7 zmeqY|py}?2-XFVo$17|@@6#C+m5dvNZAaCyteSipjcx>GtOx68BAUa3lr|VguI<& zZN~SetFOEv)7L@bI+nzG#90KpQdQF)*Jo(v?+5XCy&pFp5Wmnl!|yC56=9)+ekuahdGkFauyk!Wc)03+UQ&d-PvjP zygJx7vzwM%Tj>d9ur^uTyu@faXC*F}@i?31(fP~it@nb;nmiqCrL_edOb5?UZ7gxA z-Ag&zvda)}5ACeSQk@ zuy%O;!Ep_HcQA}m={jb1b6ZN)sTlkOZ<>NHw;gf`uRt@=Jp7^}O^~a+ONcSqqP{6` zj9aFIb0F1=G#kk(?eaK*M;sgcPj&`Yg5mdLM(TyN*dzr)hS>XLB1K8SC?WE#y2Fz` zmK{ezgDROE`uWPoFTheL^f{X3W%k)$+e-%bS&FOH>A;}f2#x{@=`40SKE4;h>1E+) z_fM=T_nA@c8M1ZqOdReq0^*=$=5FuO>0W8l==c_fAT)AKpfYjH;jkyxfQT@&VwiY| zlR8_sP!2}UqKW<&p}JhB9z$89mu)Z)BLx$eQYAO9nldk|xm?}-mCe&Jl9_fg7wt^> z!odFgVp;5`_i`;h$q+8>Fy6|PmL=36`*2l^@(oh7DF2~U&X5^(gChHamwbLMF6=onuD0IZX$6?>DuPz!p!ybqzvEO|J{)CbMT8}a z2Y;xt{V!fi*+;1 zpf%l##*sM~%l_$~Rvp_?;t3_Fba3MRt016#gN^rdiD;_{(_aH=8kxE0BJyv}Mnm%3 zFJ~kdho-eC=7q$ApY8s&);Ysj{VTLuI7zxG+U<22s3on*7PdBSrgkUAw9Mq>Aj-i( zO3kL2)P)omwF7NuErP>B#$}}=!Ykm4ZhIkZQ@{T!Ikt?%IQ+%Kp(n$=H z?vN5mL$_duuj7ZV=bVswq+@p+W7ay&!|*jY5OTe^0KgdP^7W8CdDyw5UrXJg!LpyYeT z6}!vZ>`YZ7`#Z|p+*DJfU(Yh$7;Q?IoqZr%i90Lo^zAKYW_@KJ-n^uuexL8n@c10k zE=Y$H`YMgE5zI*F-@+6Q5(XSr=wDVGyQ9L@jQlOUNQ_l78K<12^N+^_&$6D z?YekK;-hyhAiyX%`E}vg7i=ns)Is8>bG=8AuG-*RhC%5Sy@6IVX=P(Ic|x=shlr3e z4E=AR%|koRQ$i(0V&m!XMR>MP_LS~)lPvfFe%L4#veM-%<@vkorgtN=V)}|HYN|ZT z>yX>0X{9I1tks7Hq&>p8U&q&Nmyv7-ABI^ef-aMP@aswln|PJ_upd11W-$H6a2Or! zhAnqfIoGbPw5$N{&$NeP6)wf|tqy?e@Yc zSg#~XTB?a^Up{ju2S8&gDU-=pz&4tdm|>z+@mCDK9pd=S1vgrC;XG32n z#Zd7C3C6b&lG&1oASG8+=Jb07i?*yM@@D8^Xcw|Or-fOVFqm3scH+)QXfWk)NQ4DwoDF*%rWA7Xt>DsORc6T~S#~s_Y zZQHhOJL%ZAJGSkPZQHE4VxFw`UFYn*zxD1jzA^4G>w11wPyJCfYSfK6=T*RwZ*S+& zf+c^k+i;sFbz~&_^jc@m?YvS%*1ljA*0_pLvAP_%Z07o25NV!PHKI7W`m|v^x?Fr? zahGKU)~<%WqdtB(xzib{M;WQ}m9i5;Wl<++28P}1cgF5Gd;Y~L5ztKQT*;?vo?;47 zG-oG60bjUjJ56zvkfsF(=C@TQ?IagQX!*hoWbPLWGFHj3MbrMG0u`L;)h=IL$~Dr> zbBYI^S2MioMRjfUR(s~Rt^)34vZ%?5HEP)X%WKgF`Q(S9sW8bbr2M&K=2Kzugvz+* z(1zeB#{;ppIB)d`1&dDc7lw_~Y;6C8#zTD2RJEMz83t&ep zrPs%_JQCnd8ts9k;@F?`ArrVqg~2tsWre+TxK%Ox=rohds)ZNFU|tDPQjFlF7)6-1 ziL6XF(%;77(Nwc^dzmt4TkS-XO7M0~+1^c2Yx>w%bE#)0%6!zjn;UC{=x$O`p_v=% z=CmqI4DMcAD>T)~(pT<)Fn6QI-DK~uE{d4cVC=Ic^?+M;uwJ8&Q#5Gp%K9DqK)Lo< zm^6B`j-enME4~d{a02VrlFqWZR)R#sj*H2DbrW1kBbS?%XRRq6l%7FUoNd(He0+gW zV>0^>NxzK$*Ga!jENuTR>6ej>@qbvreVxd3_tIQQd$>$88mPmjjqez(YrJf-a*s>t zH?mhDJ^P+fM?{66d!`xBfIUpdhk(IBO-+Qv0bPiH4*l37K^*3mlUNUiCKDTi;z$kCDKMVynLc*(&L>DZZJXtrUzWWzLB={t6vL)*Fg4R{xiYv*%fY{`psA|gmIM9nzDyl)$vRKeB)Ru-zYqJJ)h|=U~iZ*Cq9*$ z8)cfvQ#V|%uJUl38dL#H0?Q7)N?4Q2cDia;*xqmJQ*fVdSMm`HGbD5NLEG8CHIIs$ zN3*V6KHsj$cI&paUWGq*cmZ09h#MiEE7OTfWzAUfuaTnQt@$J^zg9*+B$4Foj!w=c zTRJu>^0S_xzfJWNP9(02*v=x))CvywENuY#TP zoZGznWH|a>P)OHrmNT#5OuwcNYAO=$rN8aZ3^~0;*V?}=Q}3x+=ZhKYV^dTOF>x681twcSXEdRXo~9fm@+#*}=y zH!F^+I=Vc`f9D1cas?d<8ybQ{8Yb93{;=I*8T^rwN@%B~eImZ86pwLzUMnJl!)@#| zCEb_J4GbRQ^69pn$u5?~*#O?w4DqrIwx0!29)urUL|JAJFs~tY=vYKLtR82(XLGME zH(4_rn&WM?#41FiOW#)0*1X-$heX3qtm35W8lzNg0hojW?k&qwa- zs~$TVXux&^-zG1r(l;ozfmBhpO)#U(1-?z%tq*KFsFt5+-vECC-C<^VpoW=;T^+1X z9VOWZ-KRXUWI-LMX@9kP$4o!yzV)%!uEc*_S-a?@6(;S@8Edc` zPAyWLl+KnlVoa2_nzc7-aFyyMOuB<4$)~RM!Mj@zzAI-6ySEcAGA?&2~G!R_?vk zd5(D>?mEDQa{_k_N)8_DwH4(FXYRMY#wEVz&$e`QU0F=#3e7e#m$b`gf`yPM--%ZB z%T&EQI*5m3%Mao(S9jm|{Mr3dgi^JV#Mw6UQ?(k2mQjuBCONCVu5L6Jt*-Tm?n-L6 zR5=*x?q0=7X`ge(#JV#VC+E=Q@XO0!rYu+-4|VC9nPgqO;^vvS|N32J@WkpjH3s$) z#%%VRT5m;e?VFd(5r@W8;N?QJOs4|eXX5Hc=gL*=W>RT+WgM@K=XA9P_#K9K-`NUr z<;*YHn3SdD_R|YoKJDUV#5?{bBG3oHn7XHr;62Ki=+Mx?2TA+{xU{QqLLbBr0FS! zmDLpx(fz!l*``=n6;zrVyT#maw%y4)jLlZ~_H3j{VNh9DWd%clIdhNg+4oG(a5)cx z$Yx8((o38|j$$@Xr8@C|cP&D+8QPB-=SGNNE3_LW)&U>JO7J&qbnPM4yJts?+$t%w z%zQ(Xi=4q&$}}&OC4F`}ygM;+BF*PS-xxWT5piW`OPI-uy!aP_FLn#X_AW>|kdWjm zDE}?memrAyOdo_3AQ9uTshzZ>gS=WU;Hhj@4SBAd+ey)&8gySa{Wo;~7b@iL6h_rl zEsEZ7HTL*y5d6Wtv9fs(swTGd+(qQ8T$WjI6erWT2 z(R8QzvqX3;A_j}R^!GyXhVz%QMoI>>C5~3nAK$_f3E{CRm)Mf+&-RZMk6!T2{lH|>`55Ki^^nAtHdq!Q^kZ^~WeMI6e5n>$d&h}H`qf6|M zNic8qE*+iWqiIOAb(bgz0vSDER!jV4<2@=z@RP&VsXdfM@z6S1mKK-KsB2H#DYBIB zDKf0Bjipt!1(VuW45+gXuCqUzW|SY(YPv{gCjl&?LSEawsUr+ZXA#C?Fes_pbgZxE zrIW!lPqCB>ujS@07RAI2k`L5i(K|&JO=dWpUc2Tx?BnFKiF>OJZ#&uE4Qe1OK$ikE zd$jdXmp`+|zV;?Ib_upH$yWa6QP~#L~=~KGzIPCS`3h9H&AH zCZbXt2EiA^*yhS@w1N)>A8N8$HzelnGj32nC4YRW4TP=z(#>q1%9p~cs9ODPAQ27z zZYmvx`4;U1=qRV2#8k7&cKM_37OF02{Lf$F_mtGg=G$Q_WpgtL8dMnu*h?{TXUq63(= z#P+BZtad(bgza3+UE=r~X6<~~&OH89n;aQ}oMR0~utN1~l!Z5!_Xp!u?uZ6u8*az& ztNX=+A=yKw2F~J7t@oMHIM@@h{nHKH3p!8{`}p^_i5Sasvz{Oxv?pzhoG-|@FJ@Gr z`FhyPKbn4F>#?GN)A|eY?HWef>v^o zTPdG*3>{IyvP_X)sWYd&OUaB}OJMyM^N_*PJHI+PymbTM0BVcrik5HlVQoOj1FRL+ zRVKhjy67nDeYn+k+*?-nbqG|`I)mFew+o0%Bl|LCU4_9;%lcHGb3pR;J{okLoNPt4 zR+*Ep3aGz>^3L;&aCxuIZvtFhLsA#gqQ2K5auPX1rdfrJ`v?LR^$w9-UT30tSFc4m z-_3?_&mZ%#eH->-{tc7HiD*j{wEz`3OI&K+p@yD4LmK^f8bxS{32}{RT1bJD?lJCe{ASKyXgQbYgZB=&3`~yM^zdZZ zP=C2=vSVW(Qs*wF#*+4VJIXn(Wt2g8Ki7Y7U#nbP@^#&>8F(%x%#~{x@Q9#Afj!I~ zeFIQ;YdG&B#H(KKfnGWDwq=&*5YJ2w5{WRO2bsQ=1>p=^5pzILolVe)Ufs@ory1j5gAyo@CNRyRL{}?7 z{C?Zr?0dFtU_yGN3*yUOC`M?qaqO#(yi-?R+tJ~8S92z7JPoYpb9aU{9Uu~hMGN<= z=Ygvf?Y@Z$!WX{O&%CW1cgfPS^R)$Bl1DY?zoc5Y&veG^+~uZO9KBUC9(3DDLy^ z0mNnq`QxW7+U`U0O7(|RywZo{k?Q#`_#0d*H+V)Mk~RhVfYT%CG`<8DoQuaoLux7k zO)~pogQlcmp^+R$BC^aBwV0+ubc0W2mc);?8QHWwk>Yc!nC->Dk`rOb5$LMr|uNfj!^gE#U zjL~TSg~*ao1OW;5Mu#ilgtt9Eyy*mRBd7l%gDWUs%sjj zB8ToM#4ve$ydIl)9_=HV$ty0+EpACoRM}p9U5qaR)_J^liu*KEQb052D*c39z0Jkl z)|U6cw_f-^ifpm3p9m*>d|TKb*1%+~)qe}>7PdcjH#Ihvc3tLCXU(`*)g`DLkm!CG zUw|;MXmjG~c7NB^t#HMJZx?WPV@)RRqNzvk>nmg+Kp}>g@LC^~Z(-ymJUR5nH+IK9 z_3nK&um`e*2Zyk`IBIFsWT10R6S)WuY7d7d%=&3SVO!76uoUKtVVfYF$GWl=^#j>w z>4)%A@K`&31?ZpyGUj6&_Q&W*@-=Tp?~nSN za)Xj_!F2G6>Q(9J*EcsMwVRC$XXy!3Ot5iqu`>P^8wHufTnE6J9d1_=xw%i^8%a_LEtQY%TvltjBzYZE2 zzW+#zas6Fw;*oI@R+9b2^y?<#P7>QWn>GIXq`!3fy;6t$Ty{8iqr+a~U=$}LD-9P3 zmnMkCi8MS9l4F5hG}3sSKf3~*DCD774;FbUA?V+5l<^a7&&98l=P6(QzMu^i1I1+U zI=qiZn{Ph83dSPhZ`gO}#uW$6w@z+yB1_fidU^?&^xnVK%VM4XN!GY>cHh>`?zyJB zk{J&c`h}FW`>xL@gL3_8ZGb#IAX_z^> ze|^0;BfI1@ZkWHEvVkT} z5Y)j9jD39RovDiYk4}M6{V&N82Xgh*_^n$pUR15BR9hDA`Zb%URZ_A>jLZ13;ci_csvG1_BZ2ragtD>l4sF5b-!=~EV{}6TC#~ybGNNM> zBPKhbsyd8nWyTwpNm=J`&#%{3&W>-dNai!u;0S5NBdbT{3Z+72H^jv?+jf~z6R6mGh zM!d=;cja{?=e{YZf^!iN=k~tV{)~Z^nYmNe9`jsF7~>g`-wmi5oC9xvHoS0L>x+6G znj!AY3JdyJg@+`0q2$WSy2~DU82>^PIsQ6hTPlsyIiw+aLBVv+sj*i{Y1{0Rq*-e= z7Sn0oo|f6DRlYPu$5k>~BC0A66^lTtv?6PWjs^ngA*n$=`wkcIwoPn@CdQq9`i&u8 z{8yG|bDwbIEu9=~)PNqc8dMc{vw!;^ni@DRIM{EEGFK>3aDGNj@e@oa4ZH!b5eMqx zH52bZ?Na`Jge2?whrB`3{W_o+vkM^l75aGu+#_CRfpYX8CX>Il1cV!tt1rzw z20uH?=c@3*47)g9ENs28JcMuh?7Mml?bEvQ0>>{xay$kdEH1<@aBmkXFk0^%9Uf#= zj-P3Lasfj=cMkE=ZB1X3(>1F3 zqexC0Kxk0$M-ZFUe*avM4{(d6bLRHklU)7MSvFsL`=M~N~ zkuMq+>%589(I*n@CnbY_fg+$$F%s$sHiMyOwZD+x^7c28-`W^0~DJsO3en5Vk(*)e{&1z78{@1@&5 zml;g7;x>x-?-aUZ;9vm;i@My-NSkQZ99IRPYQ53Kl5A2rM@$pd_bZo4pw^7^GpMW* zf~@Omq*0nidRf%}hE~~sp+!B+0s_iu^}!_f(2?-Q$Asw_FZ}_H*HRSUvVk0n>*D`Y zA}}yIOyO5q2|&gA!;nAGB6Mm#r9bh3{zk_^Msco>C3t%GN~~ZLC+U)DnSf|!-(ewL zKMY*Uw97!WaqPAJ7leT60kxfb{Gm3_uQ+a^xY+M*`ymd6wYfJY*jso6rf5h9a z=h&_nV9;?8qGb~jO2p}~=?+@a4<)abR6s&Lpe`j%gz?k2hldu5L@J4o0w*Y{qe}3B zzzLRM3vdArg~*HTWe8wD)sVCy*sgpUup2tv|gyUG+ z^RUb#9M8TcY<5$pv9A=xR%G(<_~K(~mxw09s6miA@jw!19Od=w{opnzsdwEeRS<%j zKS)(M@>!B&oU_4Vri;Qtns-l1#W)X@L*4-UEsyo)e@LK{931vMWmWlMThvL2zNWZ* zC_6vdVV=8dnmn_-%}jmF0(99oT1j{!^|ha`ui>y8Gp20c@p0z31cP5g4WA2c%* z7a0ri7@nSyQHc*>eF5f@P0Tj?g$XeqJ8-^_q_=YJXCP}2(}GetrsK9jTYFmhFov}= zDuD}7M^s?tf7w~LAg_bE_<3);+x_f-;rVuG;nYgUAjQDnWuaKl`=dN^lH@l<<{MM8 zAAJpu)i=!^nJcjx$U^fyZ3bR6&*flI91@$6XQE zWx;N!U&S0vZ~Wq6sDg1QPST5QM-EBh7U>+6@z-%$in#EY(WY$!2)lM3SD|j)<+cAe zI02|ab+7yK+XbPZQRhPAqzYj}`OsN4?1ExOo4Bo9$TjKsFO=6V;q>33glm$PF?E}x zoz7SbLhx)Eb7P(kA&xrZfGOi_T-xkT5^VKOJw*YkyS&90oytKuG?Ot0@!x)T7*F@9bZf_SX4pHk?~nG{{6dLZOhziu*Xc`1Wn3Tph2 zSYms@6qflQF~#&hpTYYtSOU4-O+E-q`H@xbQX2YE#8j=2+Ch?#%+b}{cb0`mcC?j7 zUp=6vNU0Jv{%l1rGfAc;wSk#SRirCbvPG9`0P4!3tK;NOLJ^ETLrHV_O<^Xu-!16|$pQh#SX54sXP#p`OZ!Qp*yptYubejl8XQElZ$@fV z`F`wS)PmCkF*n~&k1NYlgqJfZ6x0FNDMSIdJJgVG9l^2OdLxgQY_=rZ$WHBZ z@_M%9xn*GK(zB(Skk6(@c`kz}ppW}6aspZh@+$&7db51)xpusUCQIZN zmq?9c?^um~X(RRYIgGCPY@s)>c^v^{mw2O`|EIJvl@spMh|uZ1@#nuQ!8`nCV#=QV^p{=zL&{u~ppCwiASNPK@7(&43lrsFN+RMx>5{ z88sKl^TjzsY4M#gOBzD3A!xEehTk7R?9GpsS;Y8G#3MfK+|*zsXv#m0Bq*i@x2{4}i2z_fMUJGbfB zh-z-Xc46JT7+l+MYyUSC^!V2nGNk9mxbm+&*a-&5T0@JbWWHVI`AGXgS97m#Qo7~* zyUb!8U|~ym*BC@P0sWS-ZZHVd|AHdoTBg>$VpvwgY0zqm`(tSck_6?SkN@jjDGeco zkvQ2&ZPC{lR=;k{*Av$71GgDh$2a_6;@fP1HMZyQ$;HO5FGu9?H= zO2Y>p&+W;e3=i$Dr=3N!i{f^;qs?jW5S6ors-`DRP7#vcoyAE-8O)Cx)ox5!Ri=9( zP1)xnorlwMkIvOOS#Bilt$^;3s|P=j$E;e(_b-TYoQve3Vx=?nYjN(Ccgo}~!;VT% z9b92t-jEhQ{M-Dge(s%Dj(F1?&ipaJ~!q3wnpSjbLqoc!qG8OeH7cDw-@0nG-3d z6SB2Nt~6zXc@RtGbP@7ugFuFg*&O7*AvsozYv<=VBHk&IMFK?KbPX@97jN&wQP32S zC^ORES&wk}o6D~aJ*-aVEB+-lokwfU7CzBYJCH-Tgxt z-Dm${rKPR_JTOU(5el0mp&F^mx{ic?DJXik=5F-7(15pTuHB9d#QrldsH+ zp1UJ%PB#`$FT(-XO+sgYkK6mC9BVlCW)~gjE*~GRwD5fwZ~FdT_fXzsD1wIIj|Wx; z?#kL=Ak8HyeW=W4i1$W(`>0FA9pI;~O84`Z2mLI~r=gOFC3IehortV@HK9}1r> zk`BHjs53>%3ve}0iyD%nfdc-B;K50peQEDubA!kF7C*s;4qk~Nv)d!i#TEumdc94A zli44T;AV#a_ctWH{0sG=j=h17XX1?n=BFawc3IFUjn$=$;GE?%xeQ=fgeX9t$~QtR z3Pb>73vASVfK}S89}|LbC)g8yT_5##r+3=?Q%RfEuM6wd6+BlvGhs=t(QX~CLk4NW zGL|PG8Md#3tTr9jJtIxDS}7V`3=1>qRjW4>(vm1%H}i7|Zy=JE8$EjCLs^C$sJob~ zKUtse+CYTBIY&_~W375h9>kfpxsT-zVTjj5xN=CY^Zc96x+D-OiRz0s%a|y~p3b@o z1eWF0&e5sNR;3;z!tca-FVhq#=prCS=OkJ`ODmm3v_lf*jA?#Om?FwM;Yk=WEq9S&RW?c_*Gy(z!#f?vRKkN74)d*7rjhJz zf3We9I$2;)yDn<(+rjHLB8=)w%|^N-d&CniGS{~j)lfN^go%~?k)_?rf8Q5O_S56; zrMg{zZFSvZg^ltAJ8wCNMutW`>O-V4g7mRZM&}i;tbmYma@Js~kgL5oPe`sGb3XjW zMLc9IRZrcXC*#g#ZI-XKi+yr7GF}kc!eKZdkY_RhL z%zH_j4GuWT#~m^V3*3CN;u=w8*Ox6n=S;aT6jdD{6g7QW*#S`orOHrGhhDrM_Gc@z z25({$<$e0K96kDlL{DRv_kqmvgu%CRM{V@8uUDcrbuV3i8N=q{_wm(`l$FT;pMknd zSLAzx6$JgWmxM&`Xa0bV{tA?wh$teR=%wK;kI4TPq#9%o(z2A4!JzhF!(>}pAqq)> z^1t%3$B{5u>9%I5!vQQ<#NF;D0*lJb&20u{S7igeaI@wi*5DI3O2aZlX;u_6?2~zY zgJm%al(N_=r^;=0_7I$>Z|d4xd$y~e=M$hGsRrgZChLE635DM%NVNeudm}N zx0ouQ4Wh5Q3k_z>E|}j2*LT!H=n3PDiYJ*@?p{Xuyd@>^=!(Y;$WO#KQrqQJI5c0g z&4PF;T0%#EThly0n2i~`C|5V=_yxnfm-1aUeT$J|Hq?jM42Y6qHN41FqxeqAs>V3s zM%^R2=roxB>~LZBD>Ng!e~xZhW6fo+j98d)9H~laD)cRV{fy|15j@p@HBA{xb#&@m zi;^XN<*qYYd!^A7-+4Jj**hp@ZQVCY8S!&zmhNmD8y=b7PBM zf)2ZmhgQpl(D9Pr`|68(5;oXRO?|kZ>4=g^>!A<73EeU9aaDXBUi)7o3YU-d6`DO^&OUkpTR#|;=F&2fb{?n7-ng_<2|5wQ2| zyVZQ0Il=1f4T!YprD#O1qUdLl9kg{WaZ_%$YHr^1hP(rbs$3}gB-)%*!x?sH@4tU%>l1#{O{*@@0|ZHtM7gKYgbolZeLw%ZzX(}r}o3B z$m|%|V>EA@cw5Sje))?Hh-*N|pM-7DD~wcmg-;KyF-eP|lyN8WWb{UaiMspjqwK9# zU@NW~&S>ZR1!wEh-8ARr@s4G7=gY-WcDv`$!(Bb>;pWn(kI{U&!=6gpG!Y_PKU=b)I1d;i@r87|Z%TR`(4T+iT2Ib++HSo( zHd%Y(a2H*x`O)@w462Y9oKm0HsTdDpT6F;vu z#;?;lK<+9yiGQZ+P_fiLR9JSuBl?*(Pj%=;wT!yZLx^Hm~&(Cvyvjo!T zWeV)!-_UR?CCXdZ>KCd&>^c3-@6xlE(>;Y!K};Or(Ip{c>-=&CzQ5&8*<@67`k);wwG51KJwVK;eSGvW_p? zrW`lt^)_hAy3_ShJuk=O-epzCmI}{2!qtmEb*YN$)S%*I=i#%duJ?0J&hbYtagP+t z8umjGfwy1!=2JNeZJOhdweQP;5mQ2I73l`DlM9J#hO0nz<$lw7Gq>EDn(kIuR7~BW zbC)zqQ8y*;BC=8!wUg=DVLX?5Am$O7Y~b*$9r+OKQy~;Hct$Prrjyq|Mtu5;?$i-~ zZ`y&o&nr}ewW*R}emFk|{Kzk$GOsc@gMv=JLIF-CxzyHpu~kQ#v!JOaLEOt3I;t

QXi9la-9F9~ahbQYfZUnkRNyne<|K^C)IPCt;%-#3 zuuMY>NO_UKSPU6tXHaYR4U`iGpq9wU>#0pJK|46@Mru!Ow{CdKNb zH_N)BLntIr-JpAlt{airFd(s_hi5QFh{((l-M7Y zu_yXk>S)I*H5i=fzGLm!a5WePMGjU}qDJY9{K?_~Wa^lw*cxtiE96z^kGxl-OotO_ z4~%pp@nI>Jf1TCm!En0tmw{A*d5atGt+APVb5yw(dA`e5t8nyVY_6_l%#vc&P}Z5j zFy7iE8MA)P6DwDeC(T#yu9iJHU-mpcA3CKjyqTOR- zh$j5sLrZ*ZMXf8I;S)WZp$S(hl;>?p~=#3$}pIg}~chU^h6wV_2l$7%7+$uz@eS|p@L3KL9 z{NUl{LRQj`WCv1rtAUA06RsnI!uohPlyE2~R^JlT9A6h{)fh`XBf|(^25;!c#5zsV zaBC|zwNN603>IwJ5q8XkXfLDY7v>wDz`7b+xlmvR%6UH~g7@>H<(hS7Rxw69*f}v^ zh$-&!Tj?~r8It?n&G6)u$d=MD58&VKXy>@0O$gO1IT-)G{q90{8-qtD1;B@#06-=TZ*%oV^yeM*^Q9+I;C z=`F7g!?NN^M$V6J(K~4gF83<8Ll{;+PEc+CCklJu|0c;J5``!tgu&RRD2OFutQtmZ zMmv5_Qz}z6uIa+RMsm^6-2co`@Jg>0vRW)xicMvYi8H9VUW0lHO{YC{wIk2sL)mU) za|w9T`kcTMukkFw==6nbgO%aVkKW^_E|0#2dq>xTb!9F`__405`lmSe);TQv>1Q_g_rR??y%5 z#H65wRE&ycWwk{rJ8Fd4aM`5tQ;n~QQk)epFC;?pXZqmwy9&OEdFMdlDYtR9m2l2} z47o8axJnsvpxo3lOY-*Iga^7K3&3g`#o*$9_m54LH6Kv%)5&iO84i_kR)&k0q6}t= zG({wdRjyy{PX5Tk$6ccJJa^h8eAwG2n4S?ih>jC!n0-?=WAR>`2ncK}md5ba~Gwq!6QSz)+IBpRIj1s!022 zc9okIKTK0N$m4y*Q{ET#eZI%Kyqxh=U}|r{A5|LPQZ9J{uEa#irI#CA|<(7 zqCePAkb=x-1v`ieNXPFjdm2bgk-?-n6bt+CC$$EbDnjh8ee%iI7N^|OR zoqLTm01M|PQ$8$&p)yQ0n(-T7VA+$5_s=g0c>QCDc@2X9+n z8vlQ&GGqF0Rc3;=HcrMiPL6o=%%4;Nk5<~)$Xs8*)(ubd^O_EinVp%2ft3Z1jftLy zjU7)Lk5*3K;qwMO*1t?cK3}h3>}c!kU})@!$NE?G+9y$RxBGP5l+!mg{>z8L*v9BD z8;gIv{r`oZ1s)SK{r@Os)0xPWble++AG&-YS7YZ_MuFD5a!P`W);&CyJF5oL92k{H$H6E|>MO-jr2UUn?v zo`B-694#{`nkxxt!eEvbi>O1(%8b$>zMHYnMpeEUcs*v@A32#=FmmaiaOlXKG!^B| zdOhE(zA;HWGFMgZaFih&63#+VGD6POl8TNVYm@lQI!fEhl2@JSZ)=g)7IhbJzJIt~ zookMGg8z8u;LgZ&A7OiEjD}NVHa*IIp&uI?8xb{XqjC4HznwMSdM#!3K=GVoW$5ZS zgyVLnNB4A0x$N9_@+s^=v93Ggys~NQm`-IL?vNU*yXU_rY}27Bs%KpyN2W7nxy>t2 z0Q&s7)pcjCQX*9G0NlM73VWsV(1|AuJUz}+6j-M00RSV+0Wj)fI*jfZ)yf;ZT$s8Z z;$Dl4d%|b4lNe^9wcjLDlq5bb(a!E3!zBddNtYz=&fX4$Kw$0v_~ikgh^uv1pF0gj zZru#~7A*~fE1hoE9#78;7Z!*db@Ygx%b6K_A)iR}`4h~uUB^48o&w|Ov9i6c4@M$B zx`v-fF%R;B*D_U*@r+qbxkTIY6j=OEv zm~1gjF$S`4d7=Bv!W%x*nCVWzc;tkF^#k9Lg5`~^yKQ+=koGufY@>u@5rg6h%>fKM zk7JUPM6$QIVQP}AazC7i2p zcY>Nu5a?s-YDL8=Ru(ZekTn2N$|3?#)_bpoWC+i*a%0V+L(1hUtEu-1_h6#K$R!o7gl`w_c5Vwg;B(|T@dFIf?N z*|uGPLhQ}5`g+EV3ZB}Huki%u3K%DI$8J%e!*Gr1d*R+FSQv|$D!jR2F{vg<7y@~c zYs)O816ltV_xFh;Z@!TgJ0Z11^9)>ALh99qafcL=jA8}-;5Ib$QX`ZM?JA8>4RBsn zl~~I19_9ETy06-WQZ;`nTK7rzkob}Egrp!voIilQ`AxaXpS`#lcNN@N>Nr_GK{1W8#7lMBCx7y& zVfR{olgwfcP|)812`hP(0#s;>cKHK(=7t7fYt+(5+e{^)2^m$&CAQaj z-a}CG1@nQISBX(J7-ZC}%cXhVP19JbBAjfrD8sbiu%DZ9phw}cA}D@;8z+I+B!cIz z&SBzK`1VH*Nh>$h6_0yLy64TmfiK$bi*9U4T>m*}T%PWaiP30>Tcd7%oi=A+`#Xje z{VC+HOFI|QjUuqMRRb<)OYSaC$iA&g8gf!KM51Ylw*Adz_Y5zB%7OmD4hDQ8(H>3c zX7oRL_4jrxg386*U*dS7Uz25>bKn|U0eVLI9 z`6jWg9+KVD4NbX`R5X&!0~Ge!AN0RihIj?TgVD9-GUAK}1`#AFj~xQ^Ur*_6Lin_* zTQ)RQS+v1|B-)@YLhLyM3RTx-R#)_HEnvS+#WdfG`r?x;%mMng#|VKjo`T?*F~t+E zqIE*J`bFKdS>*A-OrhL*pMHSydV8QDp>sZdYd2T{_!j5(* zj8SL*=)2-swe%}&?Luu^9q8XZ(l^Z(c$y7K8=6u-hT1s@LbrC|Ms`js*LUHLa_G@t z#8!G^#wLIsQxMo0`yL^^i?x$-Z(7uOTM(*^trcpuv~1*>XNup`?GG>r?p+>i2_@&9 z_3ZW4Ey45}zaSPR;>9*bv-ll4K`;mli+87~Q`hM^E3_y&=u|Nx>->;u55bN^yhva~volk^RHU6$53&C1b|)+-YNk_#LjOQD|0; z^(k0meg`jJdG$>HobTL!oH3y>uCd068djLbw8-t_Gu`b(NI_iT{w(oH{wg7-RX}hQ zwQDDX{gUC*V(qt}ZS-eji3gGzOxxmXnIigGO7lo4EoLyPp5bn+H4(&-?v?FIl6a(> zhG8?28z>n)&9PV*FM)}f)hap_c+jwyJaQk)QMvb9jvB=r>F9WwY>w3DBt!b+O}=m zw%w;~+qP|6r)}G|-F@0NPTR)xZ|>ZA|H-@a@-oR(sw%14yH>5*Sv#ryWv%aqM%{OV=xHfL>WP-Qwwb=y(c%IitI1|9(9tk#^0!h3pl+K zBVv!w09Zva(-5w z{dO&&=NxVIDJoGlKDRG09RlP^p6uBfyBeG0huv2mRWB!A4TK8MQU6h9ne??inwzBf znZL~gk=6EW=~)&LBv#m{tmjWv_8(Cl1HZfBuBWsU>O52V6`;uM)b>hm{j}tA)Se$U zXW4`6J;$R3REdRbf{^O-uZS~*BTjLHF#1qcwe%T#J&Ydub+Z^2n8|_Agkz!m(ck$7 zM)c>n9lZ-#jdN^L*Q!5-wB=CEEd4Ct9#+WG-}q$<-)7ZP3UsidQR(Ro)2e^@Wl3r+ zB=UxpG-Jhl`CVH1ip$fT5LO(Wg?~Lg93{%MAv!UIO1IH0f+1K}R z8oG-&O*vUbF{1tEkSMAf8?iHb%M@&GXs8|=SN3XTqC}h-?>8b42$qD6DO1?tSDEt7 z@%B?baz}JP@GI=RZc;#P3uIV+Pnq1&GOgO`+ePB1*Qa)AwwT7b^8y`7yg>~&cA9du zVNZ#!t_AYuSz9`%59X&M7TzAcL4xg zpXOZ7OxcppVZUI}W?>e;$&aDz7bd$)KxL*&3kd6t4I#*C*gRV<%&J824hCvHdXwjV zT{JMu8^kEJ+!&}i$w(7q*EnrOz3AYdB=b*xh442SgBXj0Fyhz^dY9Kuy4=5x1<;P- zNgo^EDZbx-!ErsMXL`)o>*IH#8a}xJ6$Z%}9o>9#dG&M6*I!O2jf6m&ud=o{HP7ox zq4DF1+8*^~(Sv<~pncpnTLwQFJB9lxnM5#soldp|0FSg-Fr*&mv&hFvtQ)}Sja8bk z7FH}@!JA=3J(6wj;OFID$tQD%R5HZFqF%ypk0*BT$T=I2JP>ZVKFYsi*9r${Po9X2 zyw8)&TUFS53IaByrk|%8nrQaldb4I8P-~Fr_IJ<@$cTg{2&}k1fVY9O3jICB{U0{5 z0QceT0jaxgW@9mv_ec*&a}f`qO@$1S`LpTKlFspzxR?b7*H_Xe&41(}TMs~Yj`yVu zzW5nZe2Axdf?Tgpy4ZA~s=~TK*bko;`4)#+YV`3^V(n7zjbQH*Q-fXQOXxc(yZ2$m z!;&+zWYX?KdO}srbcUdfpuhYH?G~@+GN9NPtKU2A*^Z3t3>r@Nnz{3e?}u?LHuQ-q zvvftR2cWKpPD#puiK8|2-#tAJ~cg zU!c+dIqby9@DHB#zr~&YvHx#R{y(*CSy1o@Y3L$YgU3ElLYKnnVH!7%*n^AZ~lCEpdy7 zB^9ii+#T(1&+18uwV_pMadx)^%A_iLg`7+gt>jIy>jR$oMyukcC_B9MrKc|gR~tw4 z-t68D<@2>Tc0Ik%gX6Ok>X4QN3DFAY2x>=*K~2;j1%>VJ-(s!quP(`CB{T(bijRy9 zk^!=R%n`dg-%gf-Ik;qyp&`ZZSSBA!OnPf|D|r;DD6^6GYE@Fn+MDN_mm?+|>Ay0k zFEq7K*{%Gl(auwPy#`3*)XrV*4HVuBWZai%%-oyHH!Sh^zE`ao?91=vYlR<|!q%D_ zZ+p*Q$(nlpDx+9>a>6b)Bq^nt7&-<8METEB{yEf0EEP@WPC4DgQ!0{dNPNSmaNI1W zEc2j1vMFxA$BiONa_Q#G60vF+DrN|Vez390C}YBY=GEint4@7%thi>9lCGd%U{}^j zHQjvHD~&FdRy69Q^r&KoZwlt=(eWc&mozY`)BP?iM9X2Jd-Xk0D_z8Gmp*ankj`?- zGJgwG0A!$IU9b-%@&8T`FGuk^|Y{6|!{THX=$(_Q-*R=o8C|bTmR*3h=+v zgc!R$b3qiWPfvXlE$}q@ay?f5IGQTH#oqQ2K9qL=(#fFtQON;_-MI1c#}Q38H!0S0 z!r^dML_1pD4g*SY@8$Pze~6SEzApS2_ARP-InoDPObbdpVEd_bP9LA1_O_sf3k~$w`FOuKn=O75 zHJ2}*##h{cnLmCCp5z{Q{6nB@Cx~+eZW4OxT*Y${ULVVply3i(uMC(qmqeA1NI|)eUm#379a> zs{@E3`I3J6(kFUTKYu6gT$@K6KR=Ba0Vcfn+B`kAGSgpcLh~aWxK+0ys75CNpvb}G z-VUu|$mJ07_#Dw+EIv_T=MCXSd5i&-fN|Hs&=8CZpQFEIg1>>_6q!9;Rd`UGadP*7 zcb-u5iBDSCc02wy&j})%AGP2teR`Q@G%6>}Xf>ynf-(bZ%1YZ?PLgNs#)_LnB@*9m zdYs)TfeqwKtk|4+jgpA2_0z0*d2mqJ*$(?v$^C6PrVbP%STlm(lD|}8g{TFw{5b~^ z=&wdw*9_(bp$}dRJrjoIqg~$tSi#?{f9IYFshYWjQYE|W7uBZ zLl+SI#jshMAo&pYMLBkbKR!J<(>L%1HP~p)hIxmj(q!q2ZO}0?AHzf;frehsO>Oq+ z*R@fL8kOXCJQk8;-e31%V4Zxt!#9(Xfa*)EPcptd5-(Yx!TzbM7v8ciB;yS8GJOc? zb#K+cAq~3>6A0l^G5=a;Fm<@9DmC=f8S&`k!@G)Mo;~;Y*f~1%w?2|rnIjB1n_z%VcG0k zt*9pHe+s-omBtom-1C75Nx-0d3>!9nMJwm4U{UVSRXl1&7&82i@B zaIvy7D0l*QUFzJwh;VAy>3J!xT42Iaz>PQP57XQY^wU+C?unD)&yPjuGQm)Klnv+r zFnP$WZ@mMyxv`NVPoU4;&4C6oK7Ea;+tyduo@;ezTAqe>h;+>Z_(r;S-rUnO=1yVg z{rpFNE?;g{_!L#wn>NF+>uUNsY1tJ0?Me6Ej7Aqq#=MAdfoB;X$dlX#>q{Os-ZSAuC9tRQBJ>|CU6JEda*tk2Z>L5 zKE_efsB54@t%9Z@MAmVPQG%4$aXbf227OUiJc}^v4qF48xKdd8-jxr% z3x`C5#syPK2Eu*%BB82_v74Awmb=RqnSu67jXasJ)+fniA4pm?ZUb;UA2m``Iww(& zq;51!JTXgq(-J*wa+rcjzq4^jiY}RnX>#f>ZX@ zMf=3={)+CMPjdM%Xl)4z%k@EqP13NG4_n0c$u(>wh{v2*J7&Ks3PJUmwgUB5v#aQ> zW*fi49Y0^rVU6?%D{7@O*iw7Z@+?M?Yd8&)jDQ;i(n-U4K883kkkfa7wMDKyW7lyK zg_i?!K!v&031n7DqbxejFcqO7*>nhKb^3;BjS(vaAd{<)2faUN^_IifCvbp}l7~wH z@bsLTY3_&RxAjgj!FpSH*U?0s*u>z18J-K*jRQP|w1?A>fhQG=RNOZ(SZ_uQwj~L+ z@9|;$NY4NTfp>+D)Q7^H7>d0#pwG!AS&j$|dKmlrVT!q>3KG0Y>rmRP*}`H5;V{Lh z3-xfUT6Ae_SCbhDvzXY=6^pO?*m%=pa8)A%#0a}{nUYnIwj{TPEkHwQ%Qj)uMPo_$ zq!O_RAR_d)C?X5oI&9mfiF*U#X{$k7Y(YEa84~Cua zZdMP_ONV0f7YDl)mS<*b`pLUaX>xSjLcmz3?o_v;4TboG>yA2H&OwbUrE#(xuD%Xy{Q-dhnSO{1B1#p7 zlSAKqUy@e^dLuFxcP}o)^sa+9BKYRT3ek;QEP;xNXk)B3*Y*&&aJ(ONW>Ad4yDi>C z(K=xJ7;By(3&JhVr>+XMl9xoh@azKN6DatrfOmr&YiH#$n-5)~ew%Xac@lqM%{`NC z(@&q`*?$I9#TOQk;LmaVPIoqp2f-6-di3`C1s^8slajdDp}8 zFv?=RWI;`AfPMG$J%szg@ZQ_bF+2U%0Sj#YSaoPTaL!|?QnEV@yq`PjXxC#yDM-q% zm1(|va9Wv4M8u&qV8i^wsx;JOY{tcg>CIu1n3WO5A13rM*^{Qmov!fVFCv(xe~a3B z<0oeVO)r}-|8@(Ad~F8|FWZ1qPHsBtEfiF`8v>FhJ;9=eYXNR48I5A5^M@|cp4brE zZ2KD;s5?;aKP)Oa{{JoI7zr5Jm^caOrA=(joXwdCIDanxef7@*^nWz`EJvA`{?}B4 z7!MQmWUCE2QlLO*Vi?ltxoYRuU}t!SAs86pG?rgs{=xpvZf-%z&Ju1?P>I+&=UywG zz1@Bn{LD_eK041HTch_l!gAFm{baU)tia;}g!XK*u5g6@MGe8RB|PNd{y{;R*+D_j zK{>j}Fs;C!h5dOeVEtKr^5Jv6)+7c5N-u@d6DVKi6)+(HC|Q>PS(^Z|e1x*Tgm7>G z=-^?yMs@t5^1l%TCKf@h0p(4>DFg@!$YDGs%YwLJtW9A3rXKkD0i%zl0b~UQeV6&K z035s!V61JS04XvDss*3oFsEfM0kGtq7$B~`^awFTtM=@{2?^$wmQuDBw$yyp&4BqMzJ=td@{c&byxC_ZsY2EaFF(MJ2i#_ z=I+a0&F*vU?F9LPyXP>s2oE7y+{Ob5;5PWEk%NK(PUn~1#(l{pZV3_4A#2%OTqc;q~!@x>hcEs_-P z-vP+8)&>G-t=)wKAWP?q2f$Ac-}l~2T%I2IeU)^OJ9md5MImrg8;DQ-$S>OY(M$m_ z(wi0md9zcmoEHZJ28i)Z*aZkqANG0xe)7$J3D~RirDy$(d-NT2^W8~?X~x~jpJe!v zi}OMlHxM`!q zU7gd-2di9N63i;BaXwgRrq=gxR_~!^@AC{C3}Crnc3x@3qnAwp?Vp4!0Ap|g1NcS& zc-#+Q>Ouw>y>Y7X_y8=Qv~SRmK>o+yg1zT}njg@PK>m4tf^+~ka!vd-S-pradYZNX zb7y+--~dfu=!c*H-!?P=0PCMp@9LqS{5Q96U_xJ@_>=x$(0pXBFX-OVAn!k?!w32? zaDajDzVD2Jc4n9-_vR16kArZ=uMxj1Muag~<5)&^SXOknrg9kT9x8NlHx=lUg|gArYsgX*rtd zWsUBhz3z@}H$}(ebwz8d1?Ig_b#=tgGQWjuPdc`Kk*PEH2F{cYYU;a&o`;5^w^60g zbzoQNqJ;3eQW7Ab&EFCMwEN|>#Ym|8$Vt_A&a$P3#96O$+1VCFXaq41&G$lroOU)2DvhIH#lL$1Fup^&$@B9#18+*{9A= zNdxiL)97{w`fYg?n0%!ZEez5nUk)DzUB-KZ@$Yf>=*owcavf9A9CxYGth ztejdnd3D=E%xFkJodHdjX}R#eu2-JGkG=s?)<@B zTxCDCqJ(M1awzO=RBp@*NAzLAGA!RhM2l)s#2L*aaumf`P>fK($>>Z;pHco|LtM@Y zEVIY#crHY#49m7$MqlvxTZ7?uEku8~CCBD;+;+^N7FgzMnAAQw%clfS!oa3hab{3| zpqGh+WwPeCwr zs=H0JTe3i1RDSD-b|G%P&US?DHc|U6>)MezT9QxruuYi*$Gl*;GKD}mm)97Wc-;fw z;dKgLUo-`@Y(mhU)B_Kcdno^zc!DHqF^z|=dO;}enhg)0+8obLaRR~cSRahU$-U_| zCZE)I9)UmvR8>~z@tStnBfZhM*h(6eYt||MHUZ0lqN-l6@qTMMx}D%$t0`B7pQYj{ zqP}|xwl7(D>q^R93Y)b2fsiRESIvbOyDA=eKe`0$i7vdRxb}7(j~Fhwe!*_9G<@G9 zXYMS~4o1|<95Pqp>>&}|e$P*D#CNzl19(Q2#j1a%2|?`}$*(0X3l7O{=wlT;mt>5O zWN{LR5`&Hmm(v~zT-eBmM44<*botn;D?*NM-)v}RF~>3`7jB+w(M064_K{4Flj@$t z2DQs0TpC$nQ~U7jI3bb*~bAf4B+?L+#aGok$j6Cf0T|DF$|MJaIY5gH0> zD6hxF{+iDMkzWuEdep{f@p8XKb7XNLbme})sCXm>8#fiR>voZ-zgbhW%9%p`N**LG zpM$U2nlhlWx11eN@GjFiUgU-P1{Yj3s`n$A>lJbjUnqCBfmFeAewU?FYFdKtT=%&l zeQJEO#ZI=r6(AtpkkxcvfH3IKd04_$A0hKdOf~CY7H4rB!)m=5gVR-uh@#!HdW>_0 zOVielt6 z7kT_f1W8Jx_`G0b^b{N-kE}m+1+E)rVVF{KMX*1IebNe4kWNOt(An_F zOni{uK;uZ$E`;_XDO%zolsCY;6-S8t7l+$fixvYbnLKZi=8j{-?O+f*s4%Bg zPb|o<75^f7`szenRGIxqpr*eOE+ZAK8|!ja9HPU#1Fg31ZC^t?+SrNNT?-&v)eaa{ z=C^(4o?HG_LN>`w?zg$8n$Nfn%eawKn!-_#g=RSrJ@n^SQ{%VJG%d<2$K+m*4qGlm zzlJlGZco-iZ|rakX;b0ugfSkln@D%eP|{$K{P0Mc^dd8jM*m8oM9p~%ZSItJzLTC6 zQm947p4QLwo4e&vmf7Ngf1~GoT`;zyHbO%>w&XV&W*FFUjdm)W=%hF+9msVjgy9pZ zco2s(EaI>>rO-bYXSG0Rmgc3c;mkf(HIeraGL55w^%(Pz+5+;|B?zm!SGU8;9jzO-=1NFBu!eV<~dRgN_vk`GsE z@xII7q#&XlE6|3;jN1qMrL7^e_DT<~RfnDOzUBL>-djW5K>cz9hXs*azluHVsqvQUFa zNV~|uo0UU1VAPBOcxmOH3mUqdc^@?OSSOV9C+SWF`34s{9XAea9tKLV{$4TlL&B=X?Px7fq#v{y`! zOt<`##l3wh#q|v0&-;a>Uj4-*KQ54grE(u_%F8(K25Yzehqu-pKP*-C*NAkG@7CGs z!}#{C^IyZ_Yo7c;)h_)O`vwr%d%1MRYgmIeU~IoItsT|#c?iwbQA$1!y=V~Dx~NIV zMoW)o2&}h{B?TYW()4}Pzis_|NMrLGJC}K72d|smmx;l-Coqlrhw5QHAZ>;n55Y2r zKF%5RX=wnnY4W_XbXS2nmzdqVaO7DvwB`Ad*#rlH^xG{TOwcetY~q4Di&W6>_%DG7 z3s%K#o;(P@qXZ&vua(e@j*vUp-=_zNdncVCw_#yYWX4|+wxIT=rYhY zQ9*C{HVNcpcH27_p}h9@Z9!_uJQua=qA-bw_|&kPas(okye~zoNB)tS6r*^ByrE*a zq=$Q!HF*NYjM|RNWu6Rss@Dul-dJ6aa&i=i2r|``n982E;-L4yw$&?_<=x;4^vXct zMU7S{_WH{9Xsx3<%@K=h^?D^|ti0rzj@w3jYo>{-))0^K$JwPOxpZ{ue2RqD=wm6A z8mK$`k4kBrQ6nUG8+{1$;qJSyscU*(j}IOcE@onbYsTa0KGY%;2i?=eJbR!#hZq+9 zN2Qkbhc{ybSXbAm?6QCWNo-C$rvyXJ9iYpJbIrgmFYxG*iZ#WJ2}$>!=@4;>B4wDr zIE&P~DV`nstC!+ghsUbUQ?en}b|Hm=qhBX<>Sp>`PK+qQx7Z46_Z==D_Uu;Orzl)R zfD9+6*@wMPS46EhODCaHyrscVO7j@*X5S4B$&=_Gdu6Jmt((5Qlh_Ut$JjwNE+3im z;SB3ukhnB6X%xGjR>ql8B6GWrLu`AEM0^k#%m%H9y3zY;G8SJ0A%z5t34E_YQKuh8 zz{ur3EWPbp5Hm_H*~w;)`$w7PtAc7!A?rfZoyQuPHxDR$QE9vkS?_49 zM{49OGa*mC#2i`)7K_uFS*OHb6S?p{dNEc84UxJjgm9Pu9OKAM+tJ$nx(lVy6c4F( z9CA{xXZK!3$JyScv9V6luT`z8U;AC_#1H3+HBI8PVeGD%4Ya7>up<*eVvJR#Yas!4 zwqysidi4oVxZcDZqdEcAY%1t7ZJ4=&d)ARlM(0&AQDXxDt%r(=kmsNs`Xg0kgkHZk zRnJbE1@ELIQT>Oju`=*=%2O-wae{J?8=Q?teaYbLKriqYE2H4wBuK8LvYgIWg8G>x zcea=_PLd{Lrh?Yzi+mh!!fy`>hy>0d?RvV$+{Pl#NC&#lAa3S}**5*!$M}ykVx>(8 zds^?S-?C=k3L&UsmF{Ww?X#)1Ms6>vEG`m5c2<8GH$%kg0D4)ZLnIXQ`&J?$a|=^y zC#^jir{fwn;a662od6!FXOy6X_Lz{d!>DOnka-ep*L|F3m(yucI7BN?;!mS`VEzr% zS17+Yai)C#d&>(Z{du^61~upuIC3=I<`6QBOizM#9h3VOyndUH-AO&zQ8D0hi&>!k zI1!P$UHTr1Ll;d&AAE)WNTl!HJ}v2)ZVpU{q)SKf>B?iv!>RkSjI590s2R@6!%S*< zNhG_g&edjeDU#VQI4CwSxSSZr!GCl08Y4P>?)>3-2+msj_BqWdd+WBpGh)%%NKDFG zy{0Gqg3P>(T%j@+(cN^#mk69;*ka^|EYuKEFpme>$`?6l{Wot zb096O{rzvNze(|C?Vc+kGf2s6cuaXpkG}1O z4VCT3m`42t8=54w-Ne$+{jT?FgIMq5eqY|?{TryX+($hNJ6ECCNf&A8W|Q~z_;Kk? zs~jhvIgw1^_q3$jB?3#pD43tEotd1i#jjxC3q#N_+I}&mQIK7tLfdQura5xTkt(&y zrYMP+Ec6+ox$fAp62q$IX~)RMY(;h3!F2UQk{}Qo@Uow02S8d?9VuJRlBt7!cA?~{ zGZh22KNRS#Si~w5TIo3=UC7Anq<`{mK9>4dJ^*#Nf{{wtL3BZkAX)&^=rzQ!JfWY9 z<#dob9NM2=9fUnCqIRZc9bg&9V>CY!C5^9zt;s~?k9{)e!%>|Pt94(Aq=1Y9gZIjg zG~Pac!+VwGw4n8liM2&YOha3QB-^X0buo88BU^UjmLQ4| z3npoErgl*7D#?GIvRZCJ*CO@Kh?4EqJT_tthz7F9LV7~0o^2BS^z};9=8c6z=!(`E+DON{)oHHpNz17RA zXhyXQ#y1naLlwk1tnDhP*P0IY&l37B4Ok2g{2|SIagB zbAyPUXRnvcJx9&Ag=TA3w*!v1H{Tw8WIBqvZicG$<2ZB{upr98c7_E#m$&0?^Q-n& z^;&nYtys6GtdkF2=nPZP1(3&<2Skk86F8_a;-PI=cG`8T8+c{~SOVB9@doc8xJ5C6 zM{90bn1u%4f;wlqn%a0-Trt)k?`wsGq^W=3+HkDI$3Ghh9&aJ7<=7fl;C*aqda=q zxT{GG8?q8Ak)C>8jI}-9#;^{KjBiV=$~?v7xGRLK{&M!oXLS4Hpt+EAq>(XAB}{)$ zb;!oQ%$dR_NM*1$D?{-b0E?>0*FY2hS)*HWUd~ezfTle|pkKHo;e75q zeY-(AzvM;pzL;}n;Hnv9UuL}L z(nytykky9J+Lj^z2U)h)j*8mZOMNXt=*V1HiOTIz6L^x5eZRkMC}guYyER_DFChta zk0@u_E$WUqcmypAy7F!B1U}lFKAp}30P8LaQ#DogmxBa!`NCF?7$}`l8}5Xzjr*bX zom>5p=u_YuN=DJ-^J5l!`O`;ZhS+Efy=eW_gwLrwyLZTbR4mN%5)K^C!5ktDO?;n? z2D*Igd%6aU!`4=qt>|{YjqSIbYwqwV zWH4%pjnyAixGLr3l<8`);t$*+g8ABzdlFc3phw4=Myn%(ggZpUUDD94-4V=RGm_DZ7}6HTke?*kS8l0n zndK>qy3HHyUC8HbeMk0^05GY7Cc5SfZ5AbHx+J`hywo~sl<4Vo>8Yq9V-N2lR6jvY zMK~RxEv;ht%UwdP zr=klsv{w+d9cH{+y~Q@%BK!GtkI`r{m`@6}%e^fL>8R^Z;mdwQM=_dgtdv33U#?4O z`PPh)FFDQr0&Og4Yw0TnuDzCVOdT05+ssI}L4+l9-1_}UjI}ZE<^t-fGE+>nUX;t1 zgj7O|$2$~t;Ky4eZ0@Lyzd%l<>f$li=_~%I1gz<~)5u=TBULYKBjxodTWXnWKem(o zhUDiM@|)xXf|5h;Awb=66&t;Go3AtJua6Y0cY%x6CC(^_Ny06vl}+dED%x9{2*3pE z_0)=M?nmExGvkvG{`pPyz^!Y5ug^e4AdO~^ZSKnv_;%NmLslEOTf%6xCWIW{gFvbLE)K8 zLmMAVRy*Q))2-uhl`U}6K7yVBkDeF23T2q@T~5?bP8H9PFy zW^U@y17_@RO188yhzDskRjDq%%wuN@o_R>@gazm^!-}zAEi25=`cpJ{&54#|4Kac& z>T9>e#3Hn)9EgdY9VXAfqt}gQ!sgvl_?*6Yek06Wyh5W}{hIR=!V$6`f|_zj@N&~m zjxv(lX{^)aII!#|<^waA5Tl%PUdbcGmO2f@JKiXSSoIt8+LEF~{XF+)#l*STA0vQI zlzxFwN@8SwuV4{$t!7H&z4E0It|DDipE!h|Zm%B}CY<}BDAC?VGO9H%PyH)YmWU)P zoiF_Y72FeyjQF;_UW=%Efk~z#l%XwH)=aZjfLEu zjvsD=dNQ>&&$m%br-kUQRs<_5Pj%*(V=ks}Qzja_-IY7WA?I!`fWtCsf_))gI(|`A zzAo)zhY@4XIxU1pBj$_+7B4e9@q58^DXlzul3wm|4UCqm)}8w3zHAbbmRD zb>EOU9D~9y>qmr9(5=9~ozJ&KbFLxz9(j*kCb)>F;}F#^8=rp7r>9v5dsL!d{DsO` z2tw+<%CavH|9I4*1h+s6EvC4MF8N+qy!pJJ6_|iaAy~1-Dq-$O31bO61Qk^e1g@Qm zFg3#39V2wbr8^w_x;JG!x|S84FY(}{A8ySxUHe2$(zYx_Bv>)Ob*>qgvS^-6KaWc3 zL;Z!b@+wV-z>v26Vnt`tk}$N?d3f^dkiXxW0=Nb>vZxceq0B0Q=zHpe!qe6pDV-So zVUZi8CLX-F^uuu3{-f^BjXY-Zh!@y)exuS0zsgNY^}g7SW7-J5+y<6#4`4^VEViH59AB1SE5C#l#jN`2xEz4t8I0H$gf88S1&vDtO6nR;#JGRWVt(pg}xssY%#>rWiYEDY& zIJ6~={fjLm)+7xz9;6wcR;=JnHZQi0f+Y~!VS7(CIE&{9y#CeXjTZ0oCK-ed>aUbm zfC)|rPQMNQffzc)H0Cq-M&REO6310YLS{g@GB5yL!j&=Et?sAs^-?8#`XjZ`(Foe> zr&Mkj1wu{oxFxGLjxA~JG8y%QioCiDF;DRem#XnTcJHE10lZrCqD+eCjhaMM z3M1-E(K8)nIj>@;echfgj}?{Yjq8qGMU_s61X@<00gk?`#lIz&Kd*SZ4;U>>v3w+i zBtQC1Wg#0RH+TJqDnZ@{sk*Q{$~SLlBN>!QD}M`^^vTVDF7_R0EdI?-N03BCV^|Up-yj78?OyRo3RfzPvUNmq~~e??XQv zCHL>OLZmk9&LeA|U<4lK0OXuM-g2{jdHL;Dm^JX%$uT`eper@AF!E$eeLz=-S^az6O)mf+Ng%v}GawHc78)A7g zmwNp5<(Jn5)9eTc#fg(hYRSS{h*Xso2qTa7iq0`va&bCsoDE_ncz7gW0$hh}I zE3-j=sb@2=I_9H8#zJ@$r~{hht7QrsNmFy&NNp7WHau~y=+EO{b~NoDC+6(o;aJX( z?)|b7_lz$D)bNY%P6<6y^~kyhUGc5qHKlgvA$`Wn<5S8TeuDzu_aP1{gP)d*_eN+e z326#UJR_c2?Qk{qFl8C7V0t!fc1f)E^Js@6?nIkwp)gz8muJ12edcv+klU;n=(0(& z+x@$dM3XbDN`^+5 zb_2q>O7r(G9YasXheo)BMdD_~j=<}X*jUKR4as94yx*yyO7owXTbldA+sbaJOe?z3 zTbi!FIkC6*{@}*1h^lju6n^)8K2nlh@5RS8e;R<5!!_n?gh-9lV6n=#T$@r+z9*&C zj&@pu_94e7MjBmI`5R<4J-RllhlR_jQ8xPK8&%6!<7rlIr#oEwLnjp1o zhz|1AKt*$1b0;?rq&!6aE=(UX+wN%N3-1Ae!zC0;VtAAQ(^Wj}<5e)m{jJ^zw3i@P z$Ec232VTE0I2-VQqlgOa6PU>8{bnG&Xrl1if)I7G-s}CNL zUqY~E)_l-WN^C6(9}^R0k4SeaEi$)*J>WpymB ziHM940Ev)dPw&iyo$-J-asVcKr`Sr3Vo!)U}vA^n1N8+iC+t~Swfi0ox zC3?c=Abfim>0Ujxo_2uvKI}3Z;F9~0H4z?rW~n{)BZS&3pdTVt47Q05k@D2~^^h)* zAHB#0#gokNcrV$~qONib|LLVVWOmo-URxW|LJB_eXw5aZ{CtmuBpRS3i)l2o@0UWy zP1<=BV+23ch4)N24s8UK3`$0{%g1Ztlnp1<(1FXunaKnAj!qb!)U=9rJsNewvJnhzWeWvz_i0uA7=jEl&hvVi+ z{jXK_AuL|-H867eYi(-5n`%Q9uqP6 z)%q(aNb9=phM5{s+;e8Ji8AW?>u97WeX_lnjKhbNmeV}njsC)9l{@Vhv7w>-bYFJfr9>AKJb7U_n&#umDverv4 z8kE2vefeXK^%Yx+#PpI*L{bYK8#jBrR&K%pS+T56#LAF1d98k>ki+4=+k_>Z%JMD`(WOYMDwVul{Q%)Jv!Fzg z0}+#_N9Y$BaJKXO92dCjKlDt$HH|KtY<#u45|?;Pke<(pm6Aadrb-UBHU^>ahaU%dWalL$8a2a9@1+a-)@vPiWMYIrGTVUi+=7{Kb*~UFv z?aavVy!mU1`j1Bwe!VDHfobjQz5Pu%;c;Yv3zamUb`xrwbi_M6BxrVP1`vyidH%E#t4?7 z1P9^A)j*C&B$Hd_8BspIb==5@wvbq-+Vms0Ghsd`At=K4%w&oz%%o0zBh5RKhnG^r z8g*ijf9HQrE`P@Qot?!=osw>JyYRTyp|l2^IL2+*z5Ob2D48L5pAE)UHllrENV4Us zn_9VQ<5W%pA>fFsouWdF^bovsQBXZKV<0bHQmbbZrcCC>)wtQ5pP0S{+DN4NoE$Lg z29Ih*JN*RHLVf6%PI-|Yj85~15z2-$5De3TreVU$xgG>eqrg$G{%|_tji0M4x!N<& zoE+oT_gpS6H}NehW~lXLJ7~2j^X~jhMke<#H4VmLC?QojFL3?9%X1%H3z6}6^w?F? z%x9Y1@EU49>n67HwIwq506DAk-)x}H%kcV$2MKYFB(TI3E5M&Mw+B40jdnYM1+Rgi35v=j3CWs^!@UA?R+FQVf? zcyW=$goY(Lf*;#z_wj39QL|Mzc&ZDn7Hp({z{g`T9Zw0{@Am5(Ky>Np`#o*R1X3oDfga0? z23+iumg~f|)(dm6NA@1LH(OmcfGU0Xnb2|XKC-6_+f%_a&|N^u=!`$ z|0&61`iEfZ-?e#yF3#q5jsz5xKgEGRot!P~Y()&5O$aDNxR@B27#J9t7#TQNIG9*8 z|J~!C-qHrjCh7!k7S84b=0CJkj*cd#Kh07m9&UDy#!mm;nv9+C|K5?Oz?kZb2TmO9Z&s}9l1ABWDdTv|;3P;dQv-2N4$>WU_&|1(4x z8Ge#n|6_=Xm>Ag^oBS|%**FpK@cdJTY3*WT>qNl%k9$AFUq;S9gUZPC6TAdJYKlJ< zn*_{1$4|Ycl7;8b7jh8LONtO^@fdKJvT!mO8ZfgmFd1MFf*7K zF!1p(GcuWQGBL0jF&VP58L=2}ns691ak3e+FdK3*vl<)o>HIGf#K;f;kW6f3A_Ybo z1|}MpAkhstoW&6=0fv-7@q|GAi7(u^0yr`HZ9~9%d5s{^icH-bO8rO;!6Fq*RS${? zbSGdRZ*5Rc&IXRo?mwXj Q#l*-4MM^3vCkFN301*L@X8-^I literal 0 HcmV?d00001 From c902920e2d1e879b5ea940454bd71465f081b6a9 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Thu, 13 Feb 2020 09:02:33 +0100 Subject: [PATCH 060/403] Small changes. Added colorbar option in plotter. Changed default configuration to fit better with notebooks Fixed typo --- mcstasscript/configuration.yaml | 2 +- mcstasscript/data/data.py | 4 ++++ mcstasscript/helper/mcstas_objects.py | 2 +- mcstasscript/interface/plotter.py | 10 ++++++---- 4 files changed, 12 insertions(+), 6 deletions(-) diff --git a/mcstasscript/configuration.yaml b/mcstasscript/configuration.yaml index 7941b8ef..438e7ebe 100644 --- a/mcstasscript/configuration.yaml +++ b/mcstasscript/configuration.yaml @@ -1,5 +1,5 @@ other: - characters_per_line: 93 + characters_per_line: 85 paths: mcrun_path: /Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin/ mcstas_path: /Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/ diff --git a/mcstasscript/data/data.py b/mcstasscript/data/data.py index 5f116f8a..113091a7 100644 --- a/mcstasscript/data/data.py +++ b/mcstasscript/data/data.py @@ -159,6 +159,7 @@ def __init__(self, *args, **kwargs): self.log = False self.orders_of_mag = 300 self.colormap = "jet" + self.show_colorbar = True self.cut_max = 1 self.cut_min = 0 self.x_limit_multiplier = 1 @@ -190,6 +191,9 @@ def set_options(self, **kwargs): if "colormap" in kwargs: self.colormap = kwargs["colormap"] + if "show_colorbar" in kwargs: + self.show_colorbar = kwargs["show_colorbar"] + if "cut_max" in kwargs: self.cut_max = kwargs["cut_max"] diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index fab57f4e..20abe9bb 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -116,7 +116,7 @@ class declare_variable: Comment displayed next to the declaration, could contain units vector : int - 0 if a single value is given, ortherwise contains the length + 0 if a single value is given, otherwise contains the length Methods ------- diff --git a/mcstasscript/interface/plotter.py b/mcstasscript/interface/plotter.py index 40c9cc32..96c7cce6 100644 --- a/mcstasscript/interface/plotter.py +++ b/mcstasscript/interface/plotter.py @@ -359,8 +359,9 @@ def fmt(x, pos): return r'${} \times 10^{{{}}}$'.format(a, b) # Add the colorbar - fig.colorbar(im, ax=ax0, - format=matplotlib.ticker.FuncFormatter(fmt)) + if data.plot_options.colormap: + fig.colorbar(im, ax=ax0, + format=matplotlib.ticker.FuncFormatter(fmt)) # Add a title ax0.set_title(data.metadata.title) @@ -582,8 +583,9 @@ def fmt(x, pos): return r'${} \times 10^{{{}}}$'.format(a, b) # Add the colorbar - fig.colorbar(im, ax=ax, - format=matplotlib.ticker.FuncFormatter(fmt)) + if data.plot_options.colormap: + fig.colorbar(im, ax=ax, + format=matplotlib.ticker.FuncFormatter(fmt)) # Add a title ax.set_title(data.metadata.title) From c051f792abbc7ac947c1f33a955e75bdb6d2cc77 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Thu, 13 Feb 2020 09:47:48 +0100 Subject: [PATCH 061/403] Moved from hardcoding "/" in paths to using os.path.join in order to support windows. --- mcstasscript/helper/component_reader.py | 34 +++++++++++++++---------- mcstasscript/helper/managed_mcrun.py | 9 +++---- mcstasscript/interface/functions.py | 5 ++-- mcstasscript/interface/instr.py | 28 +++++++++++++------- mcstasscript/tests/test_Configurator.py | 4 +-- 5 files changed, 48 insertions(+), 32 deletions(-) diff --git a/mcstasscript/helper/component_reader.py b/mcstasscript/helper/component_reader.py index 7018c564..81f74123 100644 --- a/mcstasscript/helper/component_reader.py +++ b/mcstasscript/helper/component_reader.py @@ -39,8 +39,9 @@ def __init__(self, mcstas_path): """ - if mcstas_path[-1] is not "/": - mcstas_path = mcstas_path + "/" + # add trailing / or \ depending on operating system + if mcstas_path[-1] is not "/" and mcstas_path[-1] is not "\\": + mcstas_path = os.path.join(mcstas_path, "") # Hardcoded whitelist of foldernames folder_list = ["sources", @@ -56,17 +57,19 @@ def __init__(self, mcstas_path): self.component_category = {} for folder in folder_list: - absolute_path = mcstas_path + folder - # self.component_info_dict.update(self._read(absolute_path)) - self._find_components(absolute_path) + abs_path = os.path.join(mcstas_path, folder) + self._find_components(abs_path) # McStas component in current directory should overwrite current_directory = os.getcwd() for file in os.listdir(current_directory): if file.endswith(".comp"): - absolute_path = current_directory + "/" + file - component_name = absolute_path.split("/")[-1].split(".")[-2] + abs_path = os.path.join(current_directory, file) + if "/" in abs_path: + component_name = abs_path.split("/")[-1].split(".")[-2] + else: + component_name = abs_path.split("\\")[-1].split(".")[-2] if component_name in self.component_path: print("Overwriting McStasScript info on component named " @@ -74,7 +77,7 @@ def __init__(self, mcstas_path): + " because the component is in the" + " work directory.") - self.component_path[component_name] = absolute_path + self.component_path[component_name] = abs_path self.component_category[component_name] = "Work directory" def show_categories(self): @@ -196,14 +199,15 @@ def _find_components(self, absolute_path): if not os.path.isdir(absolute_path): if absolute_path.endswith(".comp"): # read this file - component_name = absolute_path.split("/")[-1].split(".")[-2] + component_name = os.path.split(absolute_path)[1].split(".")[-2] self.component_path[component_name] = absolute_path - component_category = absolute_path.split("/")[-2] + head = os.path.split(absolute_path)[0] + component_category = os.path.split(head)[1] self.component_category[component_name] = component_category else: for file in os.listdir(absolute_path): - absolute_file_path = absolute_path + "/" + file + absolute_file_path = os.path.join(absolute_path, file) self._find_components(absolute_file_path) def read_component_file(self, absolute_path): @@ -362,9 +366,11 @@ def read_component_file(self, absolute_path): fo.close() - result.name = absolute_path.split("/")[-1].split(".")[-2] - foldernames = absolute_path.split("/") - result.category = foldernames[-2] + result.name = os.path.split(absolute_path)[1].split(".")[-2] + + tail = os.path.split(absolute_path)[0] + result.category = os.path.split(tail)[1] + """ To lower memory use one could remove all comments and units that diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index 5308ce5f..c5135f5d 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -149,7 +149,7 @@ def run_simulation(self, **kwargs): if len(self.mcrun_path) > 1: if not (self.mcrun_path[-1] == "\\" or self.mcrun_path[-1] == "/"): - mcrun_full_path = self.mcrun_path + "/mcrun" + mcrun_full_path = os.path.join(self.mcrun_path, "mcrun") # Run the mcrun command on the system full_command = (mcrun_full_path + " " @@ -193,7 +193,7 @@ def load_results(self, *args): raise NameError("No mccode.sim in data folder.") # Open mccode to read metadata for all datasets written to disk - f = open(data_folder_name + "/mccode.sim", "r") + f = open(os.path.join(data_folder_name, "mccode.sim"), "r") # Loop that reads mccode.sim sections metadata_list = [] @@ -233,9 +233,8 @@ def load_results(self, *args): # Load datasets described in metadata list individually for metadata in metadata_list: # Load data with numpy - data = np.loadtxt(data_folder_name - + "/" - + metadata.filename.rstrip()) + data = np.loadtxt(os.path.join(data_folder_name, + metadata.filename.rstrip())) # Split data into intensity, error and ncount if type(metadata.dimension) == int: diff --git a/mcstasscript/interface/functions.py b/mcstasscript/interface/functions.py index bee77418..d69ed44b 100644 --- a/mcstasscript/interface/functions.py +++ b/mcstasscript/interface/functions.py @@ -146,7 +146,8 @@ def __init__(self, *args): # check configuration file exists THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - self.configuration_file_name = THIS_DIR + "/../" + name + ".yaml" + conf_file = os.path.join(THIS_DIR, ".." , name + ".yaml") + self.configuration_file_name = conf_file if not os.path.isfile(self.configuration_file_name): # no config file found, write default config file self._create_new_config_file() @@ -175,7 +176,7 @@ def _create_new_config_file(self): default_paths = {"mcrun_path" : run, "mcstas_path" : mcstas} - default_other = {"characters_per_line" : 93} + default_other = {"characters_per_line" : 85} default_config = {"paths" : default_paths, "other" : default_other} diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 187edb1f..14d97b37 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -191,7 +191,7 @@ def __init__(self, name, **kwargs): self.origin = "ESS DMSC" THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - configuration_file_name = THIS_DIR + "/../configuration.yaml" + configuration_file_name = os.path.join(THIS_DIR, "..", "configuration.yaml") if not os.path.isfile(configuration_file_name): raise NameError("Could not find configuration file!") with open(configuration_file_name, 'r') as ymlfile: @@ -1276,17 +1276,22 @@ def write_c_files(self): trace_section that can be set using the append_trace method. """ path = os.getcwd() - path = path + "/generated_includes" + path = os.path.join(path, "generated_includes") if not os.path.isdir(path): try: os.mkdir(path) except OSError: print("Creation of the directory %s failed" % path) - fo = open("./generated_includes/" + self.name + "_declare.c", "w") + file_path = os.path.join(".", "generated_includes", + self.name + "_declare.c") + fo = open(file_path, "w") fo.write("// declare section for %s \n" % self.name) fo.close() - fo = open("./generated_includes/" + self.name + "_declare.c", "a") + + file_path = os.path.join(".", "generated_includes", + self.name + "_declare.c") + fo = open(file_path, "a") #fo.write(self.declare_section) for dec_line in self.declare_list: if isinstance(dec_line, str): @@ -1297,16 +1302,21 @@ def write_c_files(self): fo.write("\n") fo.close() - fo = open("./generated_includes/" + self.name + "_initialize.c", "w") + file_path = os.path.join(".", "generated_includes", + self.name + "_initialize.c") + fo = open(file_path, "w") fo.write(self.initialize_section) fo.close() - fo = open("./generated_includes/" + self.name + "_trace.c", "w") + file_path = os.path.join(".", "generated_includes", + self.name + "_trace.c") + fo = open(file_path, "w") fo.write(self.trace_section) fo.close() - fo = open("./generated_includes/" + self.name - + "_component_trace.c", "w") + file_path = os.path.join(".", "generated_includes", + self.name + "_component_trace.c") + fo = open(file_path, "w") for component in self.component_list: component.write_component(fo) fo.close() @@ -1516,7 +1526,7 @@ def show_instrument(self, *args, **kwargs): + "=" + str(val)) # parameter value - bin_path = self.mcstas_path + "/bin/" + bin_path = os.path.join(self.mcstas_path, "bin", "") executable = "mcdisplay-webgl" if "format" in kwargs: if kwargs["format"] is "webgl": diff --git a/mcstasscript/tests/test_Configurator.py b/mcstasscript/tests/test_Configurator.py index a543ba2b..73847568 100644 --- a/mcstasscript/tests/test_Configurator.py +++ b/mcstasscript/tests/test_Configurator.py @@ -65,7 +65,7 @@ def test_default_config(self): self.assertEqual(default_config["paths"]["mcrun_path"], run) self.assertEqual(default_config["paths"]["mcstas_path"], mcstas) - self.assertEqual(default_config["other"]["characters_per_line"], 93) + self.assertEqual(default_config["other"]["characters_per_line"], 85) # remove the testing configuration file if os.path.isfile(expected_file): @@ -87,7 +87,7 @@ def test_yaml_write(self): new_config = my_configurator._read_yaml() - self.assertEqual(new_config["other"]["characters_per_line"], 93) + self.assertEqual(new_config["other"]["characters_per_line"], 85) self.assertEqual(new_config["new_field"], 123) self.assertEqual(new_config["paths"]["new_path"], "/test/path/") From 5d374729298ac7ae5d90574d09a4fb8593f76efd Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Thu, 13 Feb 2020 12:51:30 +0100 Subject: [PATCH 062/403] Updated text to use os.path.join rather than manual string manipulation. --- mcstasscript/tests/test_ComponentReader.py | 6 +++--- mcstasscript/tests/test_Configurator.py | 2 +- mcstasscript/tests/test_Instr.py | 5 +++-- mcstasscript/tests/test_ManagedMcrun.py | 6 +++--- 4 files changed, 10 insertions(+), 9 deletions(-) diff --git a/mcstasscript/tests/test_ComponentReader.py b/mcstasscript/tests/test_ComponentReader.py index 712ecdb4..3f5a7d44 100644 --- a/mcstasscript/tests/test_ComponentReader.py +++ b/mcstasscript/tests/test_ComponentReader.py @@ -9,7 +9,7 @@ def setup_component_reader(): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - dummy_path = THIS_DIR + "/dummy_mcstas" + dummy_path = os.path.join(THIS_DIR, "dummy_mcstas") current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder @@ -245,7 +245,7 @@ def test_ComponentReader_find_components_names(self, mock_stdout): component_reader.component_category = {} THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - dummy_path = THIS_DIR + "/dummy_mcstas/misc" + dummy_path = os.path.join(THIS_DIR, "dummy_mcstas", "misc") current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder component_reader._find_components(dummy_path) @@ -268,7 +268,7 @@ def test_ComponentReader_find_components_categories(self, mock_stdout): component_reader.component_category = {} THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - dummy_path = THIS_DIR + "/dummy_mcstas/misc" + dummy_path = os.path.join(THIS_DIR, "dummy_mcstas", "misc") current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder component_reader._find_components(dummy_path) diff --git a/mcstasscript/tests/test_Configurator.py b/mcstasscript/tests/test_Configurator.py index 73847568..6dd1abad 100644 --- a/mcstasscript/tests/test_Configurator.py +++ b/mcstasscript/tests/test_Configurator.py @@ -5,7 +5,7 @@ def setup_expected_file(test_name): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - expected_file = THIS_DIR + "/../" + test_name + ".yaml" + expected_file = os.path.join(THIS_DIR, "..", test_name + ".yaml") if os.path.isfile(expected_file): os.remove(expected_file) diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index c3310c86..9b04dd21 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -30,7 +30,7 @@ def setup_instr_with_path(): """ THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - dummy_path = THIS_DIR + "/dummy_mcstas" + dummy_path = os.path.join(THIS_DIR, "dummy_mcstas") current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder @@ -117,7 +117,8 @@ def test_load_config_file(self): """ # Load configuration file and read manually THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - configuration_file_name = THIS_DIR + "/../configuration.yaml" + configuration_file_name = os.path.join(THIS_DIR, + "..", "configuration.yaml") if not os.path.isfile(configuration_file_name): raise NameError("Could not find configuration file!") diff --git a/mcstasscript/tests/test_ManagedMcrun.py b/mcstasscript/tests/test_ManagedMcrun.py index ebad42e8..2c9b0126 100644 --- a/mcstasscript/tests/test_ManagedMcrun.py +++ b/mcstasscript/tests/test_ManagedMcrun.py @@ -329,7 +329,7 @@ def test_ManagedMcrun_load_data_L_mon_direct(self): current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder - load_path = THIS_DIR + "/test_data_set" + load_path = os.path.join(THIS_DIR, "test_data_set") results = mcrun_obj.load_results(load_path) os.chdir(current_work_dir) # Reset work directory @@ -363,7 +363,7 @@ def test_ManagedMcrun_load_data_L_mon_direct_error(self): current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder - load_path = THIS_DIR + "/non_exsistent_dataset" + load_path = os.path.join(THIS_DIR, "non_exsistent_dataset") with self.assertRaises(NameError): results = mcrun_obj.load_results(load_path) @@ -383,7 +383,7 @@ def test_ManagedMcrun_load_data_L_mon_empty_error(self): current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder - load_path = THIS_DIR + "/dummy_mcstas" + load_path = os.path.join(THIS_DIR, "/dummy_mcstas") with self.assertRaises(NameError): results = mcrun_obj.load_results(load_path) From 458230720544352347de69083afbd90288458183 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Fri, 14 Feb 2020 09:28:33 +0100 Subject: [PATCH 063/403] Fixed a few issues with unittests. Unit tests on windows did not account for forward slash / backward slash. MANIFEST did not include a file needed for testing. --- MANIFEST.in | 2 ++ mcstasscript/tests/test_Instr.py | 12 +++++++++--- setup.py | 6 +++--- 3 files changed, 14 insertions(+), 6 deletions(-) diff --git a/MANIFEST.in b/MANIFEST.in index e71699ac..b8abf181 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -1,5 +1,7 @@ include McStasScript_documentation.pdf include mcstasscript/configuration.yaml include mcstasscript/tests/test_for_reading.comp +include mcstasscript/tests/test_instrument.instr +include mcstasscript/tests/Union_demonstration_test.instr graft mcstasscript/tests/dummy_mcstas graft mcstasscript/tests/test_data_set diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index 9b04dd21..35e136a1 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -1413,8 +1413,10 @@ def test_run_full_instrument_basic(self, mock_sub, mcrun_path="path", parameters={"theta": 1}) + expected_path = os.path.join("path","mcrun") + # a double space because of a missing option - expected_call = ("path/mcrun -c -n 1000000 --mpi=1 " + expected_call = (expected_path + " -c -n 1000000 --mpi=1 " + "-d test_data_set test_instrument.instr" + " has_default=37 theta=1") @@ -1446,8 +1448,10 @@ def test_run_full_instrument_complex(self, mock_sub, "BC": "car", "theta": "\"toy\""}) + expected_path = os.path.join("path","mcrun") + # a double space because of a missing option - expected_call = ("path/mcrun -c -n 48 --mpi=7 " + expected_call = (expected_path + " -c -n 48 --mpi=7 " + "-d test_data_set -fo test_instrument.instr " + "has_default=37 A=2 BC=car theta=\"toy\"") @@ -1478,9 +1482,11 @@ def test_run_full_instrument_overwrite_default(self, mock_sub, "BC": "car", "theta": "\"toy\"", "has_default": 10}) + + expected_path = os.path.join("path","mcrun") # a double space because of a missing option - expected_call = ("path/mcrun -c -n 48 --mpi=7 " + expected_call = (expected_path + " -c -n 48 --mpi=7 " + "-d test_data_set -fo test_instrument.instr " + "has_default=10 A=2 BC=car theta=\"toy\"") diff --git a/setup.py b/setup.py index 23d237ac..88427a64 100644 --- a/setup.py +++ b/setup.py @@ -5,15 +5,15 @@ setuptools.setup( name='McStasScript', - version='0.0.10', + version='0.0.12', author="Mads Bertelsen", - author_email="Mads.Bertelsen@esss.se", + author_email="Mads.Bertelsen@ess.eu", description="A python scripting interface for McStas", include_package_data=True, long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/PaNOSC-ViNYL/McStasScript", - install_requires=['numpy', 'matplotlib'], + install_requires=['numpy', 'matplotlib', 'PyYAML'], packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", From e28f9ca1a1131d4a39b1bb14de32f1840998dff6 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Fri, 14 Feb 2020 09:48:19 +0100 Subject: [PATCH 064/403] Update README.md --- README.md | 18 +++++++++++++++--- 1 file changed, 15 insertions(+), 3 deletions(-) diff --git a/README.md b/README.md index 19828975..ff039d39 100644 --- a/README.md +++ b/README.md @@ -4,19 +4,31 @@ McStas API for creating and running McStas instruments from python scripting Prototype for an API that allow interaction with McStas through an interface like Jupyter Notebooks created under WP5 of PaNOSC. ## Installation -The package can be installed using pip +McStasScript does not include the McStas installation, so McStas should be installed separately. +McStasScript can be installed using pip, python3 -m pip install McStasScript --upgrade -It is necessary to configure the package so the McStas installation can be found, here we show how the appropriate code for an Ubuntu system. The configuration is saved permanently, and only needs to be updated when McStas is updated. +After installation it is necessary to configure the package so the McStas installation can be found, here we show how the appropriate code for an Ubuntu system. The configuration is saved permanently, and only needs to be updated when McStas or McStasScript is updated. from mcstasscript.interface import functions my_configurator = functions.Configurator() my_configurator.set_mcrun_path("/usr/bin/") my_configurator.set_mcstas_path("/usr/share/mcstas/2.5/") + +### Notes on windows installation +McStasScript was tested on Windows 10 installed using this [guide](https://github.com/McStasMcXtrace/McCode/blob/master/INSTALL-McStas/Windows/README.md), it is necessary to include MPI using MSMpiSetup.exe and msmpisdk.msi located in the extras folder. + +Open the McStas-shell cmd (shortcut should be available on desktop) and install McStasScript / jupyter notebook with these commands: + + python -m pip install notebook + python -m pip install McStasScript --upgrade + +Using the McStas-shell one can start a jupyter notebook server with this command: + jupyter notebook -## Instructions for basic use: +## Instructions for basic use Import the interface from mcstasscript.interface import instr, plotter, functions, reader From 8e64a4f51730c4e7c52633e9941498af2cbe6f67 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Fri, 14 Feb 2020 09:50:32 +0100 Subject: [PATCH 065/403] Update README.md --- README.md | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/README.md b/README.md index ff039d39..4e12fc96 100644 --- a/README.md +++ b/README.md @@ -28,6 +28,13 @@ Using the McStas-shell one can start a jupyter notebook server with this command jupyter notebook +For a standard McStas installation on Windows, the appropriate configuration can be set with these commands in a notebook: + + from mcstasscript.interface import functions + my_configurator = functions.Configurator() + my_configurator.set_mcrun_path("\\mcstas-2.6\\bin\\") + my_configurator.set_mcstas_path("\\mcstas-2.6\\lib\\") + ## Instructions for basic use Import the interface From 610c93a2aa16a623b43b0f0c3e4df1748333683a Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Fri, 14 Feb 2020 13:55:54 +0100 Subject: [PATCH 066/403] Updated use of "is" and "is not" to == and != to check value instead of reference. --- mcstasscript/helper/mcstas_objects.py | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index 20abe9bb..eb35f161 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -80,7 +80,7 @@ def __init__(self, *args, **kwargs): def write_parameter(self, fo, stop_character): """Writes input parameter to file""" fo.write("%s%s" % (self.type, self.name)) - if self.value is not "": + if self.value != "": if isinstance(self.value, int): fo.write(" = %d" % self.value) elif isinstance(self.value, float): @@ -185,9 +185,9 @@ def write_line(self, fo): fo : file object File the line will be written to """ - if self.value is "" and self.vector == 0: + if self.value == "" and self.vector == 0: fo.write("%s %s;%s" % (self.type, self.name, self.comment)) - if self.value is not "" and self.vector == 0: + if self.value != "" and self.vector == 0: if self.type == "int": fo.write("%s %s = %d;%s" % (self.type, self.name, self.value, self.comment)) @@ -198,10 +198,10 @@ def write_line(self, fo): except: fo.write("%s %s = %s;%s" % (self.type, self.name, self.value, self.comment)) - if self.value is "" and self.vector != 0: + if self.value == "" and self.vector != 0: fo.write("%s %s[%d];%s" % (self.type, self.name, self.vector, self.comment)) - if self.value is not "" and self.vector != 0: + if self.value != "" and self.vector != 0: if isinstance(self.value, str): # value is a string string = self.value @@ -580,7 +580,7 @@ def write_component(self, fo): if len(self.comment) > 1: fo.write("// %s\n" % (str(self.comment))) - if self.SPLIT is not 0: + if self.SPLIT != 0: fo.write("SPLIT " + str(self.SPLIT) + " ") # Write component name and component type @@ -671,7 +671,7 @@ class is used as a superclass for classes describing each print(self.c_code_before) if len(self.comment) > 1: print("// " + self.comment) - if self.SPLIT is not 0: + if self.SPLIT != 0: print("SPLIT " + str(self.SPLIT) + " ", end="") print("COMPONENT", str(self.name), "=", str(self.component_name)) @@ -872,7 +872,7 @@ def show_parameters_simple(self): comment = "" if parameter in self.parameter_comments: - if self.parameter_comments[parameter] is not "": + if self.parameter_comments[parameter] != "": comment = " // " + self.parameter_comments[parameter] print(parameter + value + unit + comment) From ffae572cbed6e168e177572f0a144b04db220f07 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Thu, 20 Feb 2020 11:56:53 +0100 Subject: [PATCH 067/403] Fixed a few bugs in read_trace for instrument reader. First bug produced double ,, when only one was needed. Second bug added "\" to the instrument file writen, when it was only supposed to be part of the python file. Third bug included quotation marks around all group names, which again was only supposed to be included in the python file. Test were updated to take this into account. --- mcstasscript/instr_reader/read_trace.py | 33 ++++++++++++++----------- mcstasscript/tests/test_Instr_reader.py | 9 ++++--- setup.py | 2 +- 3 files changed, 24 insertions(+), 20 deletions(-) diff --git a/mcstasscript/instr_reader/read_trace.py b/mcstasscript/instr_reader/read_trace.py index 93a37be8..d69d5053 100644 --- a/mcstasscript/instr_reader/read_trace.py +++ b/mcstasscript/instr_reader/read_trace.py @@ -215,10 +215,11 @@ def read_trace_line(self, line): quotation_split = par_exp.split('"') while (len(quotation_split) - 1) % 2 != 0: # There is an uneven number of quotation marks - par_exp += "," # Add the comma taken by split back + par_exp += "," if "," in par_line: # include the up to the next comma in par_exp - par_exp += "," + par_line.split(",",1)[0] + #par_exp += "," + par_line.split(",",1)[0] + par_exp += par_line.split(",",1)[0] # remove the part of the par_line added to par_exp par_line = par_line.split(",",1)[1] else: @@ -236,17 +237,8 @@ def read_trace_line(self, line): par_name = par_exp.split("=", 1)[0].strip() par_value = par_exp.split("=", 1)[1].strip() - try: - # No problems if the value is a number - float(par_value) - except: - # If the value is a string, it needs quotes - if '"' in par_value: - # If it already has quotes, these need escapes - par_value = par_value.replace('"','\\\"') - par_value = '"' + par_value + '"' - par_dict[par_name] = par_value + # Set all found parameters in the component self.current_component.set_parameters(par_dict) @@ -357,7 +349,8 @@ def read_trace_line(self, line): line = line.strip() group_name = line.split(" ", 1)[1].strip() - group_name = "\"" + group_name + "\"" + #group_name = "\"" + group_name + "\"" + group_name = group_name line = "" @@ -423,6 +416,16 @@ def _write_component_to_py(self): write_string.append(key) write_string.append(" = ") + try: + # No problems if the value is a number + float(val) + except: + # If the value is a string, it needs quotes + if '"' in val: + # If it already has quotes, these need escapes + val = val.replace('"','\\\"') + val = '"' + val + '"' + write_string.append(val) write_string.append("\n") @@ -470,9 +473,9 @@ def _write_component_to_py(self): if self.current_component.GROUP != "": write_string = [] write_string.append(self.current_component.name) - write_string.append(".set_GROUP(") + write_string.append(".set_GROUP(\"") write_string.append(str(self.current_component.GROUP)) - write_string.append(")\n") + write_string.append("\")\n") self._write_to_file(write_string) diff --git a/mcstasscript/tests/test_Instr_reader.py b/mcstasscript/tests/test_Instr_reader.py index 10a7ef7d..8cc9bcee 100644 --- a/mcstasscript/tests/test_Instr_reader.py +++ b/mcstasscript/tests/test_Instr_reader.py @@ -103,10 +103,11 @@ def test_read_component_1(self): self.assertEqual(test_component.component_name, "Union_make_material") val = getattr(test_component, "my_absorption") - self.assertEqual(val, "\"100*4*0.231/66.4\"") + #self.assertEqual(val, "\"100*4*0.231/66.4\"") + self.assertEqual(val, "100*4*0.231/66.4") val = getattr(test_component, "process_string") - self.assertEqual(val, '"\\\"Al_incoherent,Al_powder\\\""') + self.assertEqual(val, "\"Al_incoherent,Al_powder\"") self.assertEqual(test_component.AT_data, ["0", "0", "0"]) self.assertEqual(test_component.AT_relative, "ABSOLUTE") @@ -224,7 +225,7 @@ def test_read_component_GROUP(self): self.assertEqual(test_component.component_name, "Arm") - self.assertEqual(test_component.GROUP, "\"arms\"") + self.assertEqual(test_component.GROUP, "arms") self.assertEqual(test_component.AT_data, ["0", "0", "0"]) self.assertEqual(test_component.AT_relative, "ABSOLUTE") @@ -262,7 +263,7 @@ def test_read_component_JUMP(self): self.assertEqual(test_component.component_name, "Arm") - self.assertEqual(test_component.GROUP, "\"arms\"") + self.assertEqual(test_component.GROUP, "arms") self.assertEqual(test_component.JUMP, "myself 2") self.assertEqual(test_component.AT_data, ["0", "0", "0"]) diff --git a/setup.py b/setup.py index 88427a64..caa845c1 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ setuptools.setup( name='McStasScript', - version='0.0.12', + version='0.0.14', author="Mads Bertelsen", author_email="Mads.Bertelsen@ess.eu", description="A python scripting interface for McStas", From c4701e720233c4113923d9a3b7607c8ab413f976 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Mon, 30 Mar 2020 13:35:52 +0200 Subject: [PATCH 068/403] Testing travis continous integration. Added .travis and requirements.txt. --- .travis.yml | 10 ++++++++++ requirements.txt | 3 +++ 2 files changed, 13 insertions(+) create mode 100644 .travis.yml create mode 100644 requirements.txt diff --git a/.travis.yml b/.travis.yml new file mode 100644 index 00000000..69c74062 --- /dev/null +++ b/.travis.yml @@ -0,0 +1,10 @@ +language: python +python: + - "3.6" + - "3.7" + +install: + - pip install -r requirements.txt + +script: + - cd mcstasscript/tests && python3 -m unittest diff --git a/requirements.txt b/requirements.txt new file mode 100644 index 00000000..79e87c1e --- /dev/null +++ b/requirements.txt @@ -0,0 +1,3 @@ +numpy +matplotlib +PyYAML From 5001d75e505d5adb079310b39c823668408dea57 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 31 Mar 2020 09:23:32 +0200 Subject: [PATCH 069/403] Fixed travis build script. --- .travis.yml | 1 + 1 file changed, 1 insertion(+) diff --git a/.travis.yml b/.travis.yml index 69c74062..9b502cf1 100644 --- a/.travis.yml +++ b/.travis.yml @@ -5,6 +5,7 @@ python: install: - pip install -r requirements.txt + - pip install mcstasscript script: - cd mcstasscript/tests && python3 -m unittest From e6cd1a941fc939d7a0641bac113725b3549729d5 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 31 Mar 2020 10:12:17 +0200 Subject: [PATCH 070/403] Providing test components for instrument reader. Updated manifest to download these with pip. --- MANIFEST.in | 1 + .../tests/dummy_instrument_folder/Arm.comp | 48 + .../Incoherent_process.comp | 176 ++ .../Powder_process.comp | 773 ++++++ .../dummy_instrument_folder/Progress_bar.comp | 151 ++ .../dummy_instrument_folder/Source_div.comp | 182 ++ .../dummy_instrument_folder/Union_box.comp | 438 ++++ .../Union_cylinder.comp | 349 +++ .../Union_demonstration_test.instr | 422 ++++ .../Union_make_material.comp | 299 +++ .../dummy_instrument_folder/Union_master.comp | 2139 +++++++++++++++++ mcstasscript/tests/test_Instr_reader.py | 50 +- 12 files changed, 5025 insertions(+), 3 deletions(-) create mode 100644 mcstasscript/tests/dummy_instrument_folder/Arm.comp create mode 100644 mcstasscript/tests/dummy_instrument_folder/Incoherent_process.comp create mode 100644 mcstasscript/tests/dummy_instrument_folder/Powder_process.comp create mode 100644 mcstasscript/tests/dummy_instrument_folder/Progress_bar.comp create mode 100644 mcstasscript/tests/dummy_instrument_folder/Source_div.comp create mode 100644 mcstasscript/tests/dummy_instrument_folder/Union_box.comp create mode 100644 mcstasscript/tests/dummy_instrument_folder/Union_cylinder.comp create mode 100644 mcstasscript/tests/dummy_instrument_folder/Union_demonstration_test.instr create mode 100644 mcstasscript/tests/dummy_instrument_folder/Union_make_material.comp create mode 100644 mcstasscript/tests/dummy_instrument_folder/Union_master.comp diff --git a/MANIFEST.in b/MANIFEST.in index b8abf181..f45d6378 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -4,4 +4,5 @@ include mcstasscript/tests/test_for_reading.comp include mcstasscript/tests/test_instrument.instr include mcstasscript/tests/Union_demonstration_test.instr graft mcstasscript/tests/dummy_mcstas +graft mcstasscript/tests/dummy_instrument_folder graft mcstasscript/tests/test_data_set diff --git a/mcstasscript/tests/dummy_instrument_folder/Arm.comp b/mcstasscript/tests/dummy_instrument_folder/Arm.comp new file mode 100644 index 00000000..e7d28c6c --- /dev/null +++ b/mcstasscript/tests/dummy_instrument_folder/Arm.comp @@ -0,0 +1,48 @@ +/******************************************************************************* +* +* McStas, neutron ray-tracing package +* Copyright 1997-2002, All rights reserved +* Risoe National Laboratory, Roskilde, Denmark +* Institut Laue Langevin, Grenoble, France +* +* Component: Arm +* +* %I +* +* Written by: Kim Lefmann and Kristian Nielsen +* Date: September 1997 +* Version: $Revision$ +* Release: McStas 1.6 +* Origin: Risoe +* +* Arm/optical bench +* +* %D +* An arm does not actually do anything, it is just there to set +* up a new coordinate system. +* +* %P +* Input parameters: +* +* %E +*******************************************************************************/ + +DEFINE COMPONENT Arm +DEFINITION PARAMETERS () +SETTING PARAMETERS () +OUTPUT PARAMETERS () +/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */ +TRACE +%{ +%} + +MCDISPLAY +%{ + /* A bit ugly; hard-coded dimensions. */ + + line(0,0,0,0.2,0,0); + line(0,0,0,0,0.2,0); + line(0,0,0,0,0,0.2); +%} + +END diff --git a/mcstasscript/tests/dummy_instrument_folder/Incoherent_process.comp b/mcstasscript/tests/dummy_instrument_folder/Incoherent_process.comp new file mode 100644 index 00000000..f442ab05 --- /dev/null +++ b/mcstasscript/tests/dummy_instrument_folder/Incoherent_process.comp @@ -0,0 +1,176 @@ +/******************************************************************************* +* +* McStas, neutron ray-tracing package +* Copyright(C) 2007 Risoe National Laboratory. +* +* %I +* Written by: Mads Bertelsen +* Date: 20.08.15 +* Version: $Revision: 0.1 $ +* Origin: Svanevej 19 +* +* A sample component to separate geometry and phsysics +* +* %D +* +* This Union_process is based on the Incoherent.comp component originally written +* by Kim Lefmann and Kristian Nielsen +* +* Part of the Union components, a set of components that work together and thus +* sperates geometry and physics within McStas. +* The use of this component requires other components to be used. +* +* 1) One specifies a number of processes using process components like this one +* 2) These are gathered into material definitions using Union_make_material +* 3) Geometries are placed using Union_box / Union_cylinder, assigned a material +* 4) A Union_master component placed after all of the above +* +* Only in step 4 will any simulation happen, and per default all geometries +* defined before the master, but after the previous will be simulated here. +* +* There is a dedicated manual available for the Union_components +* +* Algorithm: +* Described elsewhere +* +* %P +* INPUT PARAMETERS: +* sigma: [barns]  Incoherent scattering cross section +* f_QE: Fraction of quasielastic scattering (rest is elastic) [1] +* gamma: Lorentzian width of quasielastic broadening (HWHM) [1] +* packing_factor [1] How dense is the material compared to optimal 0-1 +* Unit_cell_volume [AA^3] Unit_cell_volume +* Interact_fraction [1] How large a part of the scattering events should use this process 0-1 (sum of all processes in material = 1) +* +* OUTPUT PARAMETERS: +* +* %L +* The test/example instrument Test_Phonon.instr. +* +* %E +******************************************************************************/ + +DEFINE COMPONENT Incoherent_process +DEFINITION PARAMETERS () +SETTING PARAMETERS(sigma=5.08,f_QE=0,gamma=0,packing_factor=1,unit_cell_volume=13.8,interact_fraction=-1) +OUTPUT PARAMETERS (This_process,Incoherent_storage,effective_my_scattering) + +/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */ + +SHARE +%{ +#ifndef Union +#define Union $Revision: 0.8 $ + +#include "Union_functions.c" +#include "Union_initialization.c" + +#endif + + +struct Incoherent_physics_storage_struct{ + // Variables that needs to be transfered between any of the following places: + // The initialize in this component + // The function for calculating my + // The function for calculating scattering + + double my_scattering; + double QE_sampling_frequency; + double lorentzian_width; + +}; + +// Function for calculating my in Incoherent case +int Incoherent_physics_my(double *my,double *k_initial, union data_transfer_union data_transfer, struct focus_data_struct *focus_data) { + *my = data_transfer.pointer_to_a_Incoherent_physics_storage_struct->my_scattering; + return 1; +}; + +// Function for basic incoherent scattering event +int Incoherent_physics_scattering(double *k_final, double *k_initial, double *weight, union data_transfer_union data_transfer, struct focus_data_struct *focus_data) { + + //New version of incoherent scattering + double k_length = sqrt(k_initial[0]*k_initial[0]+k_initial[1]*k_initial[1]+k_initial[2]*k_initial[2]); + + Coords k_out; + // Here is the focusing system in action, get a vector + double solid_angle; + focus_data->focusing_function(&k_out,&solid_angle,focus_data); + NORM(k_out.x,k_out.y,k_out.z); + *weight *= solid_angle*0.25/PI; + + double v_i,v_f,E_i,dE,E_f; + + if (rand01() < data_transfer.pointer_to_a_Incoherent_physics_storage_struct->QE_sampling_frequency) { + v_i = k_length * K2V; + E_i = VS2E*v_i*v_i; + dE = data_transfer.pointer_to_a_Incoherent_physics_storage_struct->lorentzian_width*tan(PI/2*randpm1()); + E_f = E_i + dE; + if (E_f <= 0) + return 0; + v_f = SE2V*sqrt(E_f); + k_length = v_f*V2K; + } + + k_final[0] = k_out.x*k_length; k_final[1] = k_out.y*k_length; k_final[2] = k_out.z*k_length; + return 1; +}; + +%} + +DECLARE +%{ +// Needed for transport to the main component +struct global_process_element_struct global_process_element; +struct scattering_process_struct This_process; + +#ifndef PROCESS_DETECTOR + //struct pointer_to_global_process_list global_process_list = {0,NULL}; + #define PROCESS_DETECTOR dummy +#endif + +// Declare for this component, to do calculations on the input / store in the transported data +struct Incoherent_physics_storage_struct Incoherent_storage; +double effective_my_scattering; + +%} + +INITIALIZE +%{ + // Initialize done in the component + effective_my_scattering = ((packing_factor/unit_cell_volume) * 100 * sigma); + Incoherent_storage.my_scattering = effective_my_scattering; + + Incoherent_storage.QE_sampling_frequency = f_QE; + Incoherent_storage.lorentzian_width = gamma; + + // Need to specify if this process is isotropic + This_process.non_isotropic_rot_index = -1; // Yes (powder) + //This_process.non_isotropic_rot_index = 1; // No (single crystal) + + // Packing the data into a structure that is transported to the main component + sprintf(This_process.name,NAME_CURRENT_COMP); + This_process.process_p_interact = interact_fraction; + This_process.data_transfer.pointer_to_a_Incoherent_physics_storage_struct = &Incoherent_storage; + //This_process.data_transfer.pointer_to_a_Incoherent_physics_storage_struct->my_scattering = effective_my_scattering; + This_process.probability_for_scattering_function = &Incoherent_physics_my; + This_process.scattering_function = &Incoherent_physics_scattering; + + // This will be the same for all process's, and can thus be moved to an include. + sprintf(global_process_element.name,NAME_CURRENT_COMP); + global_process_element.component_index = INDEX_CURRENT_COMP; + global_process_element.p_scattering_process = &This_process; + add_element_to_process_list(&global_process_list,global_process_element); + %} + +TRACE +%{ +%} + +FINALLY +%{ +// Since the process and it's storage is a static allocation, there is nothing to deallocate + +%} + +END diff --git a/mcstasscript/tests/dummy_instrument_folder/Powder_process.comp b/mcstasscript/tests/dummy_instrument_folder/Powder_process.comp new file mode 100644 index 00000000..16b73b09 --- /dev/null +++ b/mcstasscript/tests/dummy_instrument_folder/Powder_process.comp @@ -0,0 +1,773 @@ +/******************************************************************************* +* +* McStas, neutron ray-tracing package +* Copyright(C) 2007 Risoe National Laboratory. +* +* %I +* Written by: Mads Bertelsen +* Date: 20.08.15 +* Version: $Revision: 0.1 $ +* Origin: Svanevej 19 +* +* +* %D +* +* This Union_process is based on the PowderN.comp component originally written +* by P. Willendrup, L. Chapon, K. Lefmann, A.B.Abrahamsen, N.B.Christensen, +* E.M.Lauridsen. +* +* Part of the Union components, a set of components that work together and thus +* sperates geometry and physics within McStas. +* The use of this component requires other components to be used. +* +* 1) One specifies a number of processes using process components like this one +* 2) These are gathered into material definitions using Union_make_material +* 3) Geometries are placed using Union_box / Union_cylinder, assigned a material +* 4) A Union_master component placed after all of the above +* +* Only in step 4 will any simulation happen, and per default all geometries +* defined before the master, but after the previous will be simulated here. +* +* There is a dedicated manual available for the Union_components* +* Algorithm: +* Described elsewhere +* +* %P +* INPUT PARAMETERS: +* Interact_fraction [1] How large a part of the scattering events should use this process 0-1 (sum of all processes in material = 1) +* packing_factor [1] How dense is the material compared to optimal 0-1 +* For rest, see PowderN component which this is based on +* +* OUTPUT PARAMETERS: +* V_rho: [AA^-3] Atomic density +* +* +* %E +******************************************************************************/ + +DEFINE COMPONENT Powder_process +DEFINITION PARAMETERS (format=Undefined) +SETTING PARAMETERS(string reflections="NULL",packing_factor=1, Vc=0, delta_d_d=0, DW=0, nb_atoms=1, d_phi=0, density=0, weight=0, barns=1, Strain=0, interact_fraction=-1) +OUTPUT PARAMETERS (This_process,Powder_storage,effective_my_scattering,d_phi,line_info,columns) + +/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */ + +SHARE +%{ +#ifndef Union +#define Union $Revision: 0.8 $ + +#include "Union_functions.c" +#include "Union_initialization.c" + +#endif + + + +// Share section of PowderN 8/3 2016 from McStas.org + + /* used for reading data table from file */ + %include "read_table-lib" + %include "interoff-lib" +/* Declare structures and functions only once in each instrument. */ +#ifndef POWDERN_DECL_UNION +#define POWDERN_DECL_UNION +/* format definitions in the order {j d F2 DW Dd inv2d q F strain} */ +#ifndef Crystallographica +#define Crystallographica { 4,5,7,0,0,0,0,0,0 } +#define Fullprof { 4,0,8,0,0,5,0,0,0 } +#define Lazy {17,6,0,0,0,0,0,13,0 } +#define Undefined { 0,0,0,0,0,0,0,0,0 } +#endif + + struct line_data_union + { + double F2; /* Value of structure factor */ + double q; /* Qvector */ + int j; /* Multiplicity */ + double DWfactor; /* Debye-Waller factor */ + double w; /* Intrinsic line width */ + double Epsilon; /* Strain=delta_d_d/d shift in ppm */ + }; + + struct line_info_struct_union + { + struct line_data_union *list; /* Reflection array */ + int count; /* Number of reflections */ + double Dd; + double DWfactor; + double V_0; + double rho; + double at_weight; + double at_nb; + double sigma_a; // should not be used + double sigma_i; // should not be used + char compname[256]; + double flag_barns; + int shape; /* 0 cylinder, 1 box, 2 sphere, 3 OFF file */ + int column_order[9]; /* column signification */ + int flag_warning; + char type; /* interaction type of event t=Transmit, i=Incoherent, c=Coherent */ + double dq; /* wavevector transfer [Angs-1] */ + double Epsilon; /* global strain in ppm */ + double XsectionFactor; + double my_s_v2_sum; + double my_a_v; + double my_inc; + double *w_v,*q_v, *my_s_v2; + double radius_i,xwidth_i,yheight_i,zdepth_i; // not to be used, but still here + double v; /* last velocity (cached) */ + double Nq; + int nb_reuses, nb_refl, nb_refl_count; + double v_min, v_max; + double xs_Nq[CHAR_BUF_LENGTH]; + double xs_sum[CHAR_BUF_LENGTH]; + double neutron_passed; + long xs_compute, xs_reuse, xs_calls; + }; + + off_struct offdata_union; + + // PN_list_compare ***************************************************************** + + int PN_list_compare_union (void const *a, void const *b) + { + struct line_data_union const *pa = a; + struct line_data_union const *pb = b; + double s = pa->q - pb->q; + + if (!s) return 0; + else return (s < 0 ? -1 : 1); + } /* PN_list_compare */ + + int read_line_data_union(char *SC_file, struct line_info_struct_union *info) + { + struct line_data_union *list = NULL; + int size = 0; + t_Table sTable; /* sample data table structure from SC_file */ + int i=0; + int mult_count =0; + char flag=0; + double q_count=0, j_count=0, F2_count=0; + char **parsing; + int list_count=0; + + if (!SC_file || !strlen(SC_file) || !strcmp(SC_file, "NULL")) { + printf("PowderN: %s: Using incoherent elastic scattering only\n",info->compname); + info->count = 0; + return(0); + } + Table_Read(&sTable, SC_file, 1); /* read 1st block data from SC_file into sTable*/ + + /* parsing of header */ + parsing = Table_ParseHeader(sTable.header, + "Vc","V_0", + "sigma_abs","sigma_a ", + "sigma_inc","sigma_i ", + "column_j", + "column_d", + "column_F2", + "column_DW", + "column_Dd", + "column_inv2d", "column_1/2d", "column_sintheta/lambda", + "column_q", /* 14 */ + "DW", "Debye_Waller", + "delta_d_d/d", + "column_F ", + "V_rho", + "density", + "weight", + "nb_atoms","multiplicity", /* 23 */ + "column_ppm","column_strain", + NULL); + + if (parsing) { + if (parsing[0] && !info->V_0) info->V_0 =atof(parsing[0]); + if (parsing[1] && !info->V_0) info->V_0 =atof(parsing[1]); + if (parsing[2] && !info->sigma_a) info->sigma_a=atof(parsing[2]); + if (parsing[3] && !info->sigma_a) info->sigma_a=atof(parsing[3]); + if (parsing[4] && !info->sigma_i) info->sigma_i=atof(parsing[4]); + if (parsing[5] && !info->sigma_i) info->sigma_i=atof(parsing[5]); + if (parsing[6]) info->column_order[0]=atoi(parsing[6]); + if (parsing[7]) info->column_order[1]=atoi(parsing[7]); + if (parsing[8]) info->column_order[2]=atoi(parsing[8]); + if (parsing[9]) info->column_order[3]=atoi(parsing[9]); + if (parsing[10]) info->column_order[4]=atoi(parsing[10]); + if (parsing[11]) info->column_order[5]=atoi(parsing[11]); + if (parsing[12]) info->column_order[5]=atoi(parsing[12]); + if (parsing[13]) info->column_order[5]=atoi(parsing[13]); + if (parsing[14]) info->column_order[6]=atoi(parsing[14]); + if (parsing[15] && info->DWfactor<=0) info->DWfactor=atof(parsing[15]); + if (parsing[16] && info->DWfactor<=0) info->DWfactor=atof(parsing[16]); + if (parsing[17] && info->Dd <0) info->Dd =atof(parsing[17]); + if (parsing[18]) info->column_order[7]=atoi(parsing[18]); + if (parsing[19] && !info->V_0) info->V_0 =1/atof(parsing[19]); + if (parsing[20] && !info->rho) info->rho =atof(parsing[20]); + if (parsing[21] && !info->at_weight) info->at_weight =atof(parsing[21]); + if (parsing[22] && info->at_nb <= 1) info->at_nb =atof(parsing[22]); + if (parsing[23] && info->at_nb <= 1) info->at_nb =atof(parsing[23]); + if (parsing[24]) info->column_order[8]=atoi(parsing[24]); + if (parsing[25]) info->column_order[8]=atoi(parsing[25]); + for (i=0; i<=25; i++) if (parsing[i]) free(parsing[i]); + free(parsing); + } + + if (!sTable.rows) + exit(fprintf(stderr, "PowderN: %s: Error: The number of rows in %s " + "should be at least %d\n", info->compname, SC_file, 1)); + else size = sTable.rows; + Table_Info(sTable); + printf("PowderN: %s: Reading %d rows from %s\n", + info->compname, size, SC_file); + + if (info->column_order[0] == 4 && info->flag_barns !=0) + printf("PowderN: %s: Powder file probably of type Crystallographica/Fullprof (lau)\n" + "WARNING: but F2 unit is set to barns=1 (barns). Intensity might be 100 times too high.\n", + info->compname); + if (info->column_order[0] == 17 && info->flag_barns == 0) + printf("PowderN: %s: Powder file probably of type Lazy Pulver (laz)\n" + "WARNING: but F2 unit is set to barns=0 (fm^2). Intensity might be 100 times too low.\n", + info->compname); + /* allocate line_data array */ + list = (struct line_data_union*)malloc(size*sizeof(struct line_data_union)); + + for (i=0; iDd >= 0) w = info->Dd; + if (info->DWfactor > 0) DWfactor = info->DWfactor; + if (info->Epsilon) Epsilon = info->Epsilon*1e-6; + + /* get data from table using columns {j d F2 DW Dd inv2d q F} */ + /* column indexes start at 1, thus need to substract 1 */ + if (info->column_order[0] >0) + j = Table_Index(sTable, i, info->column_order[0]-1); + if (info->column_order[1] >0) + d = Table_Index(sTable, i, info->column_order[1]-1); + if (info->column_order[2] >0) + F2 = Table_Index(sTable, i, info->column_order[2]-1); + if (info->column_order[3] >0) + DWfactor = Table_Index(sTable, i, info->column_order[3]-1); + if (info->column_order[4] >0) + w = Table_Index(sTable, i, info->column_order[4]-1); + if (info->column_order[5] >0) + { d = Table_Index(sTable, i, info->column_order[5]-1); + d = (d > 0? 1/d/2 : 0); } + if (info->column_order[6] >0) + { q = Table_Index(sTable, i, info->column_order[6]-1); + d = (q > 0 ? 2*PI/q : 0); } + if (info->column_order[7] >0 && !F2) + { F2 = Table_Index(sTable, i, info->column_order[7]-1); F2 *= F2; } + if (info->column_order[8] >0 && !Epsilon) + { Epsilon = Table_Index(sTable, i, info->column_order[8]-1)*1e-6; } + + /* assign and check values */ + j = (j > 0 ? j : 0); + q = (d > 0 ? 2*PI/d : 0); /* this is q */ + if (Epsilon && fabs(Epsilon) < 1e6) { + q -= Epsilon*q; /* dq/q = -delta_d_d/d = -Epsilon */ + } + DWfactor = (DWfactor > 0 ? DWfactor : 1); + w = (w>0 ? w : 0); /* this is q and d relative spreading */ + F2 = (F2 >= 0 ? F2 : 0); + if (j == 0 || q == 0) { + printf("PowderN: %s: line %i has invalid definition\n" + " (mult=0 or q=0 or d=0)\n", info->compname, i); + continue; + } + list[list_count].j = j; + list[list_count].q = q; + list[list_count].DWfactor = DWfactor; + list[list_count].w = w; + list[list_count].F2= F2; + list[list_count].Epsilon = Epsilon; + + /* adjust multiplicity if j-column + multiple d-spacing lines */ + /* if d = previous d, increase line duplication index */ + if (!q_count) q_count = q; + if (!j_count) j_count = j; + if (!F2_count) F2_count = F2; + if (fabs(q_count-q) < 0.0001*fabs(q) + && fabs(F2_count-F2) < 0.0001*fabs(F2) && j_count == j) { + mult_count++; flag=0; } + else flag=1; + if (i == size-1) flag=1; + /* else if d != previous d : just passed equivalent lines */ + if (flag) { + if (i == size-1) list_count++; + /* if duplication index == previous multiplicity */ + /* set back multiplicity of previous lines to 1 */ + if ((mult_count && list_count>0) + && (mult_count == list[list_count-1].j + || ((list_count < size) && (i == size - 1) + && (mult_count == list[list_count].j))) ) { + printf("PowderN: %s: Set multiplicity to 1 for lines [%i:%i]\n" + " (d-spacing %g is duplicated %i times)\n", + info->compname, list_count-mult_count, list_count-1, list[list_count-1].q, mult_count); + for (index=list_count-mult_count; indexcompname, list_count, SC_file); + + info->list = list; + info->count = list_count; + + return(list_count); + } /* read_line_data_union */ + + +/* computes the number of possible reflections (return value), and the total xsection 'sum' */ +/* this routine looks for a pre-computed value in the Nq and sum cache tables */ +/* when found, the earch starts from the corresponding lower element in the table */ +int calc_xsect_union(double v, double *qv, double *my_sv2, int count, double *sum, + struct line_info_struct_union *line_info) { + int Nq = 0, line=0, line0=0; + *sum=0; + + //printf("Line_info when entering cross_section calculation\n"); + //printf("v = %f, qv = %f, my_sv2 = %f, count = %d, sum = %f\n",v,*qv,*my_sv2,count,*sum); + //printf("v = %f\n",v); + //printf("line_info->v = %f, line_info->v_min = %f, line_info->v_max = %f, line_info->neutron_passed = %f\n",line_info->v,line_info->v_min,line_info->v_max,line_info->neutron_passed); + //printf("line_info->xs_reuses = %d, line_info->xs_compute = %d\n",line_info->xs_reuse,line_info->xs_compute); + + + /* check if a line_info element has been recorded already */ + if (v >= line_info->v_min && v <= line_info->v_max && line_info->neutron_passed >= CHAR_BUF_LENGTH) { + line = (int)floor(v - line_info->v_min)*CHAR_BUF_LENGTH/(line_info->v_max - line_info->v_min); + Nq = line_info->xs_Nq[line]; + *sum = line_info->xs_sum[line]; + if (!Nq && *sum == 0) { + /* not yet set: we compute the sum up to the corresponding speed in the table cache */ + //printf("Nq and sum not yet set, have to do this calculation now\n"); + double line_v = line_info->v_min + line*(line_info->v_max - line_info->v_min)/CHAR_BUF_LENGTH; + for(line0=0; line0xs_Nq[line] = Nq; + line_info->xs_sum[line]= *sum; + line_info->xs_compute++; + //printf("line_info->xs_Nq[line] = %f, line_info->xs_sum[line] = %f, line_info->xs_compute = %d\n",line_info->xs_Nq[line],line_info->xs_sum[line],line_info->xs_compute); + } else line_info->xs_reuse++; + line0 = Nq; + } + + line_info->xs_calls++; + + for(line=line0; linemy_scattering; + + + int method_switch = 1; + // For test + int line_v,line0,line,count; + + // Should not interfer with the global variables + double vx = k_initial[0]*K2V; + double vy = k_initial[1]*K2V; + double vz = k_initial[2]*K2V; + + // Not sure one can do this, but I do not see why not + struct line_info_struct_union *line_info = data_transfer.pointer_to_a_Powder_physics_storage_struct->line_info_storage; + + double v = sqrt(vx*vx + vy*vy + vz*vz); + //printf("Velocity = %f \n",v); + + //printf("line_info->v = %f, line_info->v_min = %f, line_info->v_max = %f, line_info->neutron_passed = %f\n",line_info->v,line_info->v_min,line_info->v_max,line_info->neutron_passed); + // Here the maximum and minimum v is recorded, should this be for scattering events or cross section calculations? + if (line_info->neutron_passed < CHAR_BUF_LENGTH) { + if (v < line_info->v_min) line_info->v_min = v; + if (v > line_info->v_max) line_info->v_max = v; + line_info->neutron_passed++; + } + + if (method_switch == 1) { + // Here the cross section is calculated and stored + if ( fabs(v - line_info->v) < 1e-6) { + line_info->nb_reuses++; + } else { + //printf("calling crosssection calculation \n"); + // int calc_xsect_union(double v, double *qv, double *my_sv2, int count, double *sum, struct line_info_struct *line_info) + line_info->Nq = calc_xsect_union(v, line_info->q_v, line_info->my_s_v2, line_info->count, &line_info->my_s_v2_sum, line_info); + line_info->v = v; + line_info->nb_refl += line_info->Nq; + line_info->nb_refl_count++; + } + } else { + if ( fabs(v - line_info->v) < 1e-6) { + line_info->nb_reuses++; + } else { + //printf("calling crosssection calculation \n"); + if (v >= line_info->v_min && v <= line_info->v_max && line_info->neutron_passed >= CHAR_BUF_LENGTH) { + line = (int)floor(v - line_info->v_min)*CHAR_BUF_LENGTH/(line_info->v_max - line_info->v_min); + line_info->Nq = line_info->xs_Nq[line]; + line_info->my_s_v2_sum = line_info->xs_sum[line]; + if (!line_info->Nq && line_info->my_s_v2_sum == 0) { + /* not yet set: we compute the sum up to the corresponding speed in the table cache */ + //printf("Nq and sum not yet set, have to do this calculation now\n"); + double line_v = line_info->v_min + line*(line_info->v_max - line_info->v_min)/CHAR_BUF_LENGTH; + for(line0=0; line0q_v[line0] <= 2*line_v) { /* q < 2*kf: restrict structural range */ + line_info->my_s_v2_sum += line_info->my_s_v2[line0]; + if (line_info->Nq < line0+1) line_info->Nq=line0+1; /* determine maximum line index which can scatter */ + } else break; + } + line_info->xs_Nq[line] = line_info->Nq; + line_info->xs_sum[line]= line_info->my_s_v2_sum; + line_info->xs_compute++; + //printf("line_info->xs_Nq[line] = %f, line_info->xs_sum[line] = %f, line_info->xs_compute = %d\n",line_info->xs_Nq[line],line_info->xs_sum[line],line_info->xs_compute); + } else line_info->xs_reuse++; + line0 = line_info->Nq; + } + + line_info->xs_calls++; + + for(line=line0; lineq_v[line] <= 2*v) { /* q < 2*kf: restrict structural range */ + line_info->my_s_v2_sum += line_info->my_s_v2[line]; + if (line_info->Nq < line+1) line_info->Nq=line+1; /* determine maximum line index which can scatter */ + } else break; + } + line_info->v = v; + line_info->nb_refl += line_info->Nq; + line_info->nb_refl_count++; + } + } + + *my = line_info->my_s_v2_sum/(v*v); + //printf("Returned my scattering of %f \n",*my); + //printf("compute = %d and reuse = %d \n",line_info->xs_compute,line_info->xs_reuse); + + return 1; +}; + +// Function that provides a basic nonuniform elastic scattering. Unphysical for testing purposes. +int Powder_physics_scattering(double *k_final, double *k_initial, double *weight, union data_transfer_union data_transfer, struct focus_data_struct *focus_data) { + + // This component need to write to its storage transfer for each event, is that possible with this structure? + struct line_info_struct_union *line_info = data_transfer.pointer_to_a_Powder_physics_storage_struct->line_info_storage; + double vertical_angular_limit = data_transfer.pointer_to_a_Powder_physics_storage_struct->vertical_angular_limit; + + + // Should not interfer with the global variables + double vx = k_initial[0]*K2V; + double vy = k_initial[1]*K2V; + double vz = k_initial[2]*K2V; + + double v = sqrt(vx*vx + vy*vy + vz*vz); + + int line; + double arg; + double theta; + double alpha,alpha0; + + double vout_x,vout_y,vout_z; + double tmp_vx,tmp_vy,tmp_vz; + double nx,ny,nz; + double my_s_n; + + // copy from PowderN component + if (line_info->count > 0) { + /* choose line */ + if (line_info->Nq > 1) line=floor(line_info->Nq*rand01()); /* Select between Nq powder lines */ + else line = 0; + if (line_info->w_v[line]) + arg = line_info->q_v[line]*(1+line_info->w_v[line]*randnorm())/(2.0*v); + else + arg = line_info->q_v[line]/(2.0*v); + my_s_n = line_info->my_s_v2[line]/(v*v); + if(fabs(arg) > 1) { + //printf("Powder scattering function returned 0, should not happen\n"); + return 0; /* No bragg scattering possible (was absorb)*/ + } + theta = asin(arg); /* Bragg scattering law */ + + /* Choose point on Debye-Scherrer cone */ + if (vertical_angular_limit) + { /* relate height of detector to the height on DS cone */ + arg = sin(vertical_angular_limit*DEG2RAD/2)/sin(2*theta); + /* If full Debye-Scherrer cone is within d_phi, don't focus */ + if (arg < -1 || arg > 1) vertical_angular_limit = 0; + /* Otherwise, determine alpha to rotate from scattering plane + into vertical_angular_limit focusing area*/ + else alpha = 2*asin(arg); + } + if (vertical_angular_limit) { + /* Focusing */ + alpha = fabs(alpha); + /* Trick to get scattering for pos/neg theta's */ + alpha0= 2*rand01()*alpha; + if (alpha0 > alpha) { + alpha0=PI+(alpha0-1.5*alpha); + } else { + alpha0=alpha0-0.5*alpha; + } + } + else + alpha0 = PI*randpm1(); + + /* now find a nearly vertical rotation axis: + * Either + * (v along Z) x (X axis) -> nearly Y axis + * Or + * (v along X) x (Z axis) -> nearly Y axis + */ + if (fabs(scalar_prod(1,0,0,vx/v,vy/v,vz/v)) < fabs(scalar_prod(0,0,1,vx/v,vy/v,vz/v))) { + nx = 1; ny = 0; nz = 0; + } else { + nx = 0; ny = 0; nz = 1; + } + vec_prod(tmp_vx,tmp_vy,tmp_vz, vx,vy,vz, nx,ny,nz); + + /* v_out = rotate 'v' by 2*theta around tmp_v: Bragg angle */ + rotate(vout_x,vout_y,vout_z, vx,vy,vz, 2*theta, tmp_vx,tmp_vy,tmp_vz); + + /* tmp_v = rotate v_out by alpha0 around 'v' (Debye-Scherrer cone) */ + rotate(tmp_vx,tmp_vy,tmp_vz, vout_x,vout_y,vout_z, alpha0, vx, vy, vz); + vx = tmp_vx; + vy = tmp_vy; + vz = tmp_vz; + + k_final[0] = V2K*vx; k_final[1] = V2K*vy; k_final[2] = V2K*vz; + + //*weight *= line_info->Nq*my_s_n; I believe my_s_n is part of the correction for sampling posistion, not to be done here + *weight *= line_info->Nq*my_s_n/line_info->my_s_v2_sum*v*v; + + //printf("my_s_n = %f \n",my_s_n); + + // What to do with my_s_n ? + /* + pmul = line_info->Nq*l_full*my_s_n*exp(-(line_info->my_a_v/v+my_s)*(l+l_1)) + /(1-(p_inc+p_transmit)); + */ + // Correction in case of vertical_angular_limit focusing - BUT only when d_phi != 0 + if (vertical_angular_limit) *weight *= alpha/PI; + + + line_info->type = 'c'; + line_info->dq = line_info->q_v[line]*V2K; + + + } else { + /* else transmit <-- No powder lines in file */ + printf("Error, need lines in the PowderN input file\n"); + } + + + //printf("Powder scattering function returned 1\n"); + return 1; +}; + +%} + +DECLARE +%{ +// Needed for transport to the main component +struct global_process_element_struct global_process_element; +struct scattering_process_struct This_process; + +#ifndef PROCESS_DETECTOR + //struct pointer_to_global_process_list global_process_list = {0,NULL}; + #define PROCESS_DETECTOR dummy +#endif + +// Declare for this component, to do calculations on the input / store in the transported data +struct Powder_physics_storage_struct Powder_storage; +struct line_info_struct_union line_info; +double effective_my_scattering; + +int columns[9] = format; + + +%} + +INITIALIZE +%{ + + // Initialize done in the component + + // Copy from PowderN component + int i=0; + struct line_data_union *L; + line_info.Dd = delta_d_d; + line_info.DWfactor = DW; + line_info.V_0 = Vc; + line_info.rho = density; + line_info.at_weight= weight; + line_info.at_nb = nb_atoms; + line_info.sigma_a = 0; // This inputs are not needed, as absorption is handled elsewhere + line_info.sigma_i = 0; // This input is not needed, as incoherent scattering is handled elsewhere + line_info.flag_barns=barns; + //line_info.shape = 0; + line_info.flag_warning=0; + line_info.Epsilon = Strain; + line_info.radius_i =line_info.xwidth_i=line_info.yheight_i=line_info.zdepth_i=0; + line_info.v = 0; + line_info.Nq = 0; + //line_info.v_min = FLT_MAX; line_info.v_max = 0; + line_info.v_min = 10000000000; line_info.v_max = 0; + line_info.neutron_passed=0; + line_info.nb_reuses = line_info.nb_refl = line_info.nb_refl_count = 0; + line_info.xs_compute= line_info.xs_reuse= line_info.xs_calls =0; + for (i=0; i< 9; i++) line_info.column_order[i] = columns[i]; + strncpy(line_info.compname, NAME_CURRENT_COMP, 256); + + // p_interact handled elsewhere + //if (p_interact) { + // if (p_interact < p_inc) { double tmp=p_interact; p_interact=p_inc; p_inc=tmp; } + // p_transmit = 1-p_interact-p_inc; + //} + + if (reflections && strlen(reflections) && strcmp(reflections, "NULL") && strcmp(reflections, "0")) { + i = read_line_data_union(reflections, &line_info); + if (i == 0) + exit(fprintf(stderr,"PowderN: %s: reflection file %s is not valid.\n" + "ERROR Please check file format (laz or lau).\n", NAME_CURRENT_COMP, reflections)); + } + + /* compute the scattering unit density from material weight and density */ + /* the weight of the scattering element is the chemical formula molecular weight + * times the nb of chemical formulae in the scattering element (nb_atoms) */ + if (!line_info.V_0 && line_info.at_nb > 0 + && line_info.at_weight > 0 && line_info.rho > 0) { + /* molar volume [cm^3/mol] = weight [g/mol] / density [g/cm^3] */ + /* atom density per Angs^3 = [mol/cm^3] * N_Avogadro *(1e-8)^3 */ + line_info.V_0 = line_info.at_nb + /(line_info.rho/line_info.at_weight/1e24*6.02214199e23); + } + + /* the scattering unit cross sections are the chemical formula onces + * times the nb of chemical formulae in the scattering element */ + if (line_info.at_nb > 0) { + line_info.sigma_a *= line_info.at_nb; line_info.sigma_i *= line_info.at_nb; + } + + if (line_info.V_0 <= 0) + fprintf(stderr,"PowderN: %s: density/unit cell volume is NULL (Vc). Unactivating component.\n", NAME_CURRENT_COMP); + + + if (line_info.flag_barns) { /* Factor 100 to convert from barns to fm^2 */ + line_info.XsectionFactor = 100; + } else { + line_info.XsectionFactor = 1; + } + + if (line_info.V_0 && i) { + L = line_info.list; + + line_info.q_v = malloc(line_info.count*sizeof(double)); + line_info.w_v = malloc(line_info.count*sizeof(double)); + line_info.my_s_v2 = malloc(line_info.count*sizeof(double)); + if (!line_info.q_v || !line_info.w_v || !line_info.my_s_v2) + exit(fprintf(stderr,"PowderN: %s: ERROR allocating memory (init)\n", NAME_CURRENT_COMP)); + for(i=0; imy_scattering = effective_my_scattering; + This_process.probability_for_scattering_function = &Powder_physics_my; + This_process.scattering_function = &Powder_physics_scattering; + + // This will be the same for all process's, and can thus be moved to an include. + This_process.process_p_interact = interact_fraction; + sprintf(This_process.name,NAME_CURRENT_COMP); + rot_copy(This_process.rotation_matrix,ROT_A_CURRENT_COMP); + sprintf(global_process_element.name,NAME_CURRENT_COMP); + global_process_element.component_index = INDEX_CURRENT_COMP; + global_process_element.p_scattering_process = &This_process; + add_element_to_process_list(&global_process_list,global_process_element); + %} + +TRACE +%{ +%} + +FINALLY +%{ + free(line_info.list); + free(line_info.q_v); + free(line_info.w_v); + free(line_info.my_s_v2); +%} + +END diff --git a/mcstasscript/tests/dummy_instrument_folder/Progress_bar.comp b/mcstasscript/tests/dummy_instrument_folder/Progress_bar.comp new file mode 100644 index 00000000..e57d4567 --- /dev/null +++ b/mcstasscript/tests/dummy_instrument_folder/Progress_bar.comp @@ -0,0 +1,151 @@ +/******************************************************************************* +* +* McStas, neutron ray-tracing package +* Copyright 1997-2002, All rights reserved +* Risoe National Laboratory, Roskilde, Denmark +* Institut Laue Langevin, Grenoble, France +* +* Component: Progress_bar +* +* %I +* Written by: Emmanuel Farhi +* Date: 2002 +* Origin: ILL +* +* A simulation progress bar +* +* %D +* An indicator of the progress of the simulation, monitoring +* the Init, Trace with the achieved percentage, and the Finally section. +* Intermediate savings (e.g. triggered by USR2 signal) are also shown. +* This component should be positioned at the very begining of the instrument +* The profile option will save the intensity and number of events for each +* component It may be used to evaluate the simulation efficiency. +* +* Example: Progress_bar(percent=10,flag_save=1) AT (0,0,0) +* +* %P +* INPUT PARAMETERS: +* percent: [0-100] percentage interval between updates. Default is 10%. +* minutes: [min] time in minutes between updates (Overrides percent flag). +* flag_save: [0|1] flag to enable intermediate saving for all monitors +* profile: [str] file name to save the simulation profile if set to "", it is set to the name of the instrument. +* +* %E +*******************************************************************************/ + +DEFINE COMPONENT Progress_bar +DEFINITION PARAMETERS () +SETTING PARAMETERS (string profile="NULL", percent=10,flag_save=0,minutes=0) +OUTPUT PARAMETERS (IntermediateCnts,StartTime,EndTime,CurrentTime) +/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */ +DECLARE +%{ +#ifndef PROGRESS_BAR +#define PROGRESS_BAR +#else +#error Only one Progress_bar component may be used in an instrument definition. +#endif + +double IntermediateCnts; +time_t StartTime; +time_t EndTime; +time_t CurrentTime; +%} + +INITIALIZE +%{ +IntermediateCnts=0; +StartTime=0; +EndTime=0; +CurrentTime=0; + +fprintf(stdout, "[%s] Initialize\n", mcinstrument_name); + if (percent*mcget_ncount()/100 < 1e5) { + percent=1e5*100.0/mcget_ncount(); + } +%} + +TRACE +%{ + double ncount; + ncount = mcget_run_num(); + if (!StartTime) { + time(&StartTime); /* compute starting time */ + IntermediateCnts = 1e3; + } + time_t NowTime; + time(&NowTime); + /* compute initial estimate of computation duration */ + if (!EndTime && ncount >= IntermediateCnts) { + CurrentTime = NowTime; + if (difftime(NowTime,StartTime) > 10 && ncount) { /* wait 10 sec before writing ETA */ + EndTime = StartTime + (time_t)(difftime(NowTime,StartTime) + *(double)mcget_ncount()/ncount); + IntermediateCnts = 0; + fprintf(stdout, "\nTrace ETA "); + if (difftime(EndTime,StartTime) < 60.0) + fprintf(stdout, "%g [s] %% ", difftime(EndTime,StartTime)); + else if (difftime(EndTime,StartTime) > 3600.0) + fprintf(stdout, "%g [h] %% ", difftime(EndTime,StartTime)/3600.0); + else + fprintf(stdout, "%g [min] %% ", difftime(EndTime,StartTime)/60.0); + } else IntermediateCnts += 1e3; + fflush(stdout); + } + + /* display percentage when percent or minutes have reached step */ + if (EndTime && mcget_ncount() && + ( (minutes && difftime(NowTime,CurrentTime) > minutes*60) + || (percent && !minutes && ncount >= IntermediateCnts)) ) + { + fprintf(stdout, "%d ", (int)(ncount*100.0/mcget_ncount())); fflush(stdout); + CurrentTime = NowTime; + + IntermediateCnts = ncount + percent*mcget_ncount()/100; + /* check that next intermediate ncount check is a multiple of the desired percentage */ + IntermediateCnts = floor(IntermediateCnts*100/percent/mcget_ncount())*percent*mcget_ncount()/100; + /* raise flag to indicate that we did something */ + SCATTER; + if (flag_save) mcsave(NULL); + } +%} + +SAVE +%{ + MPI_MASTER(fprintf(stdout, "\nSave [%s]\n", mcinstrument_name);); + if (profile && strlen(profile) && strcmp(profile,"NULL") && strcmp(profile,"0")) { + char filename[256]; + if (!strlen(profile) || !strcmp(profile,"NULL") || !strcmp(profile,"0")) strcpy(filename, mcinstrument_name); + else strcpy(filename, profile); + DETECTOR_OUT_1D( + "Intensity profiler", + "Component index [1]", + "Intensity", + "prof", 1, mcNUMCOMP, mcNUMCOMP-1, + &mcNCounter[1],&mcPCounter[1],&mcP2Counter[1], + filename); + + } +%} + +FINALLY +%{ + time_t NowTime; + time(&NowTime); + fprintf(stdout, "\nFinally [%s: %s]. Time: ", mcinstrument_name, mcdirname ? mcdirname : "."); + if (difftime(NowTime,StartTime) < 60.0) + fprintf(stdout, "%g [s] ", difftime(NowTime,StartTime)); + else if (difftime(NowTime,StartTime) > 3600.0) + fprintf(stdout, "%g [h] ", difftime(NowTime,StartTime)/3660.0); + else + fprintf(stdout, "%g [min] ", difftime(NowTime,StartTime)/60.0); + fprintf(stdout, "\n"); +%} + +MCDISPLAY +%{ + +%} + +END diff --git a/mcstasscript/tests/dummy_instrument_folder/Source_div.comp b/mcstasscript/tests/dummy_instrument_folder/Source_div.comp new file mode 100644 index 00000000..356742d4 --- /dev/null +++ b/mcstasscript/tests/dummy_instrument_folder/Source_div.comp @@ -0,0 +1,182 @@ +/******************************************************************************* +* +* McStas, neutron ray-tracing package +* Copyright 1997-2002, All rights reserved +* Risoe National Laboratory, Roskilde, Denmark +* Institut Laue Langevin, Grenoble, France +* +* Component: Source_div +* +* %I +* Written by: KL +* Date: November 20, 1998 +* Modified by: KL, 8 October 2001 +* Origin: Risoe +* +* Neutron source with Gaussian or uniform divergence +* +* %D +* The routine is a rectangular neutron source, which has a gaussian or uniform +* divergent output in the forward direction. +* The neutron energy is distributed between lambda0-dlambda and +* lambda0+dlambda or between E0-dE and E0+dE. The flux unit is specified +* in n/cm2/s/st/energy unit (meV or Angs). +* In the case of uniform distribution (gauss=0), angles are uniformly distributed +* between -focus_aw and +focus_aw as well as -focus_ah and +focus_ah. +* For Gaussian distribution (gauss=1), 'focus_aw' and 'focus_ah' define the +* FWHM of a Gaussian distribution. Energy/wavelength distribution is also +* Gaussian. +* +* Example: Source_div(xwidth=0.1, yheight=0.1, focus_aw=2, focus_ah=2, E0=14, dE=2, gauss=0) +* +* %VALIDATION +* Feb 2005: tested by Kim Lefmann (o.k.) +* Apr 2005: energy distribution used in external tests of Fermi choppers (o.k.) +* Jun 2005: wavelength distribution used in external tests of velocity selectors (o.k.) +* Validated by: K. Lieutenant +* +* %BUGS +* distribution is uniform in (hor. and vert.) angle (relative to moderator normal), +* therefore not suited for large angles +* +* %P +* xwidth: [m] Width of source +* yheight: [m] Height of source +* focus_aw: [deg] FWHM (Gaussian) or maximal (uniform) horz. width divergence +* focus_ah: [deg] FWHM (Gaussian) or maximal (uniform) vert. height divergence +* E0: [meV] Mean energy of neutrons. +* dE: [meV] Energy half spread of neutrons. +* lambda0: [Ang] Mean wavelength of neutrons (only relevant for E0=0) +* dlambda: [Ang] Wavelength half spread of neutrons. +* gauss: [0|1] Criterion: 0: uniform, 1: Gaussian distributions +* flux: [1/(s cm 2 st energy_unit)] flux per energy unit, Angs or meV +* +* OUTPUT PARAMETERS: +* sigmah: [rad] parameter 'sigma' of the Gaussian distribution for horizontal divergence +* sigmav: [rad] parameter 'sigma' of the Gaussian distribution for vertical divergence +* p_init: [1] normalisation factor 1/'neutron_count' +* +* %E +*******************************************************************************/ + +DEFINE COMPONENT Source_div +DEFINITION PARAMETERS () +SETTING PARAMETERS (xwidth, yheight, focus_aw, focus_ah, E0=0.0, dE=0.0, lambda0=0.0, dlambda=0.0, gauss=0, flux=1) +OUTPUT PARAMETERS (thetah, thetav, sigmah, sigmav, tan_h, tan_v, p_init, dist, focus_xw, focus_yh) +/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */ +DECLARE +%{ +double thetah, thetav, sigmah, sigmav, tan_h, tan_v, p_init, dist, focus_xw, focus_yh; +%} +INITIALIZE +%{ +sigmah = DEG2RAD*focus_aw/(sqrt(8.0*log(2.0))); + sigmav = DEG2RAD*focus_ah/(sqrt(8.0*log(2.0))); + + if (xwidth < 0 || yheight < 0 || focus_aw < 0 || focus_ah < 0) { + printf("Source_div: %s: Error in input parameter values!\n" + "ERROR Exiting\n", + NAME_CURRENT_COMP); + exit(0); + } + if ((!lambda0 && !E0 && !dE && !dlambda)) { + printf("Source_div: %s: You must specify either a wavelength or energy range!\n ERROR - Exiting\n", + NAME_CURRENT_COMP); + exit(0); + } + if ((!lambda0 && !dlambda && (E0 <= 0 || dE < 0 || E0-dE <= 0)) + || (!E0 && !dE && (lambda0 <= 0 || dlambda < 0 || lambda0-dlambda <= 0))) { + printf("Source_div: %s: Unmeaningful definition of wavelength or energy range!\n ERROR - Exiting\n", + NAME_CURRENT_COMP); + exit(0); + } + /* compute distance to next component */ + Coords ToTarget; + double tx,ty,tz; + ToTarget = coords_sub(POS_A_COMP_INDEX(INDEX_CURRENT_COMP+1),POS_A_CURRENT_COMP); + ToTarget = rot_apply(ROT_A_CURRENT_COMP, ToTarget); + coords_get(ToTarget, &tx, &ty, &tz); + dist=sqrt(tx*tx+ty*ty+tz*tz); + /* compute target area */ + if (dist) { + focus_xw=dist*tan(focus_aw*DEG2RAD); + focus_yh=dist*tan(focus_ah*DEG2RAD); + } + + p_init = flux*1e4*xwidth*yheight/mcget_ncount(); + if (!focus_aw || !focus_ah) + exit(printf("Source_div: %s: Zero divergence defined. \n" + "ERROR Use non zero values for focus_aw and focus_ah.\n", + NAME_CURRENT_COMP)); + p_init *= 2*fabs(DEG2RAD*focus_aw*sin(DEG2RAD*focus_ah/2)); /* solid angle */ + if (dlambda) + p_init *= 2*dlambda; + else if (dE) + p_init *= 2*dE; +%} +TRACE +%{ + double E,lambda,v; + + p=p_init; + z=0; + t=0; + + x=randpm1()*xwidth/2.0; + y=randpm1()*yheight/2.0; + if(lambda0==0) { + if (!gauss) { + E=E0+dE*randpm1(); /* Choose from uniform distribution */ + } else { + E=E0+randnorm()*dE; + } + v=sqrt(E)*SE2V; + } else { + if (!gauss) { + lambda=lambda0+dlambda*randpm1(); + } else { + lambda=lambda0+randnorm()*dlambda; + } + v = K2V*(2*PI/lambda); + } + + if (gauss==1) { + thetah = randnorm()*sigmah; + thetav = randnorm()*sigmav; + } else { + /*find limits of uniform sampling scheme for vertical divergence. + thetav should be acos(1-2*U) for U\in[0,1]. for theta measured from vertical axis + we only use a sub-interval for U and measure from horizontal plane.*/ + double sample_lim1,u2; + sample_lim1=(1-cos(M_PI_2 - focus_ah/2.0*DEG2RAD))*0.5; + u2=randpm1()*(sample_lim1-0.5) + 0.5; + thetav = acos(1-2*u2) - M_PI_2; + thetah = randpm1()*focus_aw*DEG2RAD/2; + } + + tan_h = tan(thetah); + tan_v = tan(thetav); + + /* Perform the correct treatment - no small angle approx. here! */ + vz = v / sqrt(1 + tan_v*tan_v + tan_h*tan_h); + vy = tan_v * vz; + vx = tan_h * vz; +%} + +MCDISPLAY +%{ + + multiline(5, -xwidth/2.0, -yheight/2.0, 0.0, + xwidth/2.0, -yheight/2.0, 0.0, + xwidth/2.0, yheight/2.0, 0.0, + -xwidth/2.0, yheight/2.0, 0.0, + -xwidth/2.0, -yheight/2.0, 0.0); + if (dist) { + dashed_line(0,0,0, -focus_xw/2,-focus_yh/2,dist, 4); + dashed_line(0,0,0, focus_xw/2,-focus_yh/2,dist, 4); + dashed_line(0,0,0, focus_xw/2, focus_yh/2,dist, 4); + dashed_line(0,0,0, -focus_xw/2, focus_yh/2,dist, 4); + } +%} + +END diff --git a/mcstasscript/tests/dummy_instrument_folder/Union_box.comp b/mcstasscript/tests/dummy_instrument_folder/Union_box.comp new file mode 100644 index 00000000..d8a5df41 --- /dev/null +++ b/mcstasscript/tests/dummy_instrument_folder/Union_box.comp @@ -0,0 +1,438 @@ +/******************************************************************************* +* +* McStas, neutron ray-tracing package +* Copyright(C) 2007 Risoe National Laboratory. +* +* %I +* Written by: Mads Bertelsen +* Date: 20.08.15 +* Origin: Svanevej 19 +* +* A sample component to separate geometry and phsysics +* +* %D +* Part of the Union components, a set of components that work together and thus +* sperates geometry and physics within McStas. +* The use of this component requires other components to be used. +* +* 1) One specifies a number of processes using process components +* 2) These are gathered into material definitions using Union_make_material +* 3) Geometries are placed using Union_box/cylinder/sphere, assigned a material +* 4) A Union_master component placed after all of the above +* +* Only in step 4 will any simulation happen, and per default all geometries +* defined before this master, but after the previous will be simulated here. +* +* There is a dedicated manual available for the Union components +* +* The position of this component is the center of the box, zdepth/2 in each direction. +* +* It is allowed to overlap components, but it is not allowed to have two +* parallel planes that coincides. This will crash the code on run time. +* +* +* Algorithm: +* Described elsewhere +* +* %P +* INPUT PARAMETERS: +* xwidth: [m] width of the box volume +* yheight: [m] height of the box volume +* zdepth: [m] depth of the box volume +* xwidth2: [m] optional different width at the +z box face +* yheight2: [m] optional different height at the +z box face +* material_string: [] material name of this volume, defined using Union_make_material +* priority: [1] priotiry of the volume (can not be the same as another volume) A high priority is on top of low. +* p_interact [1] probability to interact with this geometry [0-1] +* visualize [1] set to 0 if you wish to hide this geometry in mcdisplay +* number_of_activations [1] Number of subsequent Union_master components that will simulate this geometry +* mask_string: [] Comma seperated list of geometry names which this geometry should mask +* mask_setting: [] "All" or "Any", should the masked volume be simulated when the ray is in just one mask, or all. +* +* Focusing options, if left blank, there will be no focusing. +* target_x [m]: +* target_y [m]: Position of target to focus at +* target_z [m]: +* focus_aw [deg] horiz. angular dimension of a rectangular area +* focus_ah [deg] vert. angular dimension of a rectangular area +* focus_xw [m] horiz. dimension of a rectangular area +* focus_xh [m] vert. dimension of a rectangular area +* focus_r [m] focusing on circle with this radius +* OUTPUT PARAMETERS: +* +* %L +* +* %E +******************************************************************************/ + +DEFINE COMPONENT Union_box +DEFINITION PARAMETERS () +SETTING PARAMETERS(string material_string=0, priority, xwidth, yheight, zdepth, xwidth2=-1, yheight2=-1, visualize=1, int target_index=0, target_x=0, target_y=0, target_z=0, focus_aw=0, focus_ah=0, focus_xw=0, focus_xh=0, focus_r=0, p_interact = 0, string mask_string=0, string mask_setting=0,number_of_activations=1) +OUTPUT PARAMETERS (loop_index,this_box_volume,global_geometry_element,this_box_storage) + +/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */ + +SHARE +%{ +#ifndef Union +#define Union $Revision: 0.8 $ + +#include "Union_functions.c" +#include "Union_initialization.c" + +#endif + + +void mcdisplay_box_function(struct lines_to_draw *lines_to_draw_output,int index, struct geometry_struct **Geometries,int number_of_volumes) { + // Function to call in mcdisplay section of the sample component for this volume + // One can assume that Volumes[index] refers to a volume with the geometry described in this file + + double depth = Geometries[index]->geometry_parameters.p_box_storage->z_depth; + double width1 = Geometries[index]->geometry_parameters.p_box_storage->x_width1; + double width2 = Geometries[index]->geometry_parameters.p_box_storage->x_width2; + double height1 = Geometries[index]->geometry_parameters.p_box_storage->y_height1; + double height2 = Geometries[index]->geometry_parameters.p_box_storage->y_height2; + + Coords x_vector = Geometries[index]->geometry_parameters.p_box_storage->x_vector; + Coords y_vector = Geometries[index]->geometry_parameters.p_box_storage->y_vector; + Coords z_vector = Geometries[index]->geometry_parameters.p_box_storage->z_vector; + + Coords center = Geometries[index]->center; + + Coords square1[4],square2[4]; + + square1[0] = coords_add(coords_add(coords_add(center,coords_scalar_mult(z_vector,-0.5*depth)),coords_scalar_mult(x_vector,-0.5*width1)),coords_scalar_mult(y_vector,-0.5*height1)); + + square1[1] = coords_add(square1[0],coords_scalar_mult(x_vector,width1)); + square1[2] = coords_add(square1[1],coords_scalar_mult(y_vector,height1)); + square1[3] = coords_add(square1[0],coords_scalar_mult(y_vector,height1)); + + square2[0] = coords_add(coords_add(coords_add(center,coords_scalar_mult(z_vector,0.5*depth)),coords_scalar_mult(x_vector,-0.5*width2)),coords_scalar_mult(y_vector,-0.5*height2)); + + square2[1] = coords_add(square2[0],coords_scalar_mult(x_vector,width2)); + square2[2] = coords_add(square2[1],coords_scalar_mult(y_vector,height2)); + square2[3] = coords_add(square2[0],coords_scalar_mult(y_vector,height2)); + + struct lines_to_draw lines_to_draw_temp; + lines_to_draw_temp.number_of_lines = 0; + + int iterate; + for (iterate=0;iterate<3;iterate++) { + lines_to_draw_temp = draw_line_with_highest_priority(square1[iterate],square1[iterate+1],index,Geometries,number_of_volumes,2); + merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp); + } + lines_to_draw_temp = draw_line_with_highest_priority(square1[3],square1[0],index,Geometries,number_of_volumes,2); + merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp); + + for (iterate=0;iterate<3;iterate++) { + lines_to_draw_temp = draw_line_with_highest_priority(square2[iterate],square2[iterate+1],index,Geometries,number_of_volumes,2); + merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp); + } + lines_to_draw_temp = draw_line_with_highest_priority(square2[3],square2[0],index,Geometries,number_of_volumes,2); + merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp); + + for (iterate=0;iterate<4;iterate++) { + lines_to_draw_temp = draw_line_with_highest_priority(square1[iterate],square2[iterate],index,Geometries,number_of_volumes,2); + merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp); + } +}; + +void initialize_box_geometry_from_main_component(struct geometry_struct *box) { + // Function to be called in initialize of the main component + // This is done as the rotation matrix needs to be relative to the main component instead of global + // Everything done in initialize in this component file has the rotation matrix relative to global + Coords simple_vector = coords_set(1,0,0); + Coords rotated_vector; + + rotated_vector = rot_apply(box->rotation_matrix,simple_vector); + NORM(rotated_vector.x,rotated_vector.y,rotated_vector.z); + box->geometry_parameters.p_box_storage->x_vector = rotated_vector; + + simple_vector = coords_set(0,1,0); + rotated_vector = rot_apply(box->rotation_matrix,simple_vector); + NORM(rotated_vector.x,rotated_vector.y,rotated_vector.z); + box->geometry_parameters.p_box_storage->y_vector = rotated_vector; + + simple_vector = coords_set(0,0,1); + rotated_vector = rot_apply(box->rotation_matrix,simple_vector); + NORM(rotated_vector.x,rotated_vector.y,rotated_vector.z); + box->geometry_parameters.p_box_storage->z_vector = rotated_vector; +}; + +struct pointer_to_1d_coords_list box_shell_points(struct geometry_struct *geometry,int max_number_of_points) { + // This function returns an array of corner positions for the box in the main coordinate system. + // Normally one would limit it to a maximum number of points, but as there are only 8 for the box, + // it is hardcoded to 8. Other geometries can be approximated with a variable number of points. + + struct pointer_to_1d_coords_list corner_points; + corner_points.elements = malloc(8*sizeof(Coords)); + corner_points.num_elements = 8; + + double depth = geometry->geometry_parameters.p_box_storage->z_depth; + double width1 = geometry->geometry_parameters.p_box_storage->x_width1; + double width2 = geometry->geometry_parameters.p_box_storage->x_width2; + double height1 = geometry->geometry_parameters.p_box_storage->y_height1; + double height2 = geometry->geometry_parameters.p_box_storage->y_height2; + + Coords x_vector = geometry->geometry_parameters.p_box_storage->x_vector; + Coords y_vector = geometry->geometry_parameters.p_box_storage->y_vector; + Coords z_vector = geometry->geometry_parameters.p_box_storage->z_vector; + + Coords center = geometry->center; + + corner_points.elements[0] = coords_add(coords_add(coords_add(center,coords_scalar_mult(z_vector,-0.5*depth)),coords_scalar_mult(x_vector,-0.5*width1)),coords_scalar_mult(y_vector,-0.5*height1)); + + corner_points.elements[1] = coords_add(corner_points.elements[0],coords_scalar_mult(x_vector,width1)); + corner_points.elements[2] = coords_add(corner_points.elements[1],coords_scalar_mult(y_vector,height1)); + corner_points.elements[3] = coords_add(corner_points.elements[0],coords_scalar_mult(y_vector,height1)); + + corner_points.elements[4] = coords_add(coords_add(coords_add(center,coords_scalar_mult(z_vector,0.5*depth)),coords_scalar_mult(x_vector,-0.5*width2)),coords_scalar_mult(y_vector,-0.5*height2)); + + corner_points.elements[5] = coords_add(corner_points.elements[4],coords_scalar_mult(x_vector,width2)); + corner_points.elements[6] = coords_add(corner_points.elements[5],coords_scalar_mult(y_vector,height2)); + corner_points.elements[7] = coords_add(corner_points.elements[4],coords_scalar_mult(y_vector,height2)); + + return corner_points; + +} + +%} + +DECLARE +%{ +// Needed for transport to the main component +struct global_geometry_element_struct global_geometry_element; + +#ifndef ANY_GEOMETRY_DETECTOR_DECLARE + #define ANY_GEOMETRY_DETECTOR_DECLARE dummy + //struct pointer_to_global_geometry_list global_geometry_list = {0,NULL}; +#endif + +int loop_index,found_geometries; + +double x_component; +double y_component; +double z_component; + +struct Volume_struct this_box_volume; +struct box_storage this_box_storage; + +%} + +INITIALIZE +%{ +// Initializes the focusing system for this volume including input sanitation. +focus_initialize(&this_box_volume.geometry, POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index), POS_A_CURRENT_COMP, ROT_A_CURRENT_COMP, target_index, target_x, target_y, target_z, focus_aw, focus_ah, focus_xw, focus_xh, focus_r, NAME_CURRENT_COMP); + +// Input sanitation for this geometry +if (xwidth <= 0) { + printf("\nERROR in Union_box named %s, the xwidth is <= 0. \n",NAME_CURRENT_COMP); + exit(1); +} +if (yheight <= 0) { + printf("\nERROR in Union_box named %s, yheight is <= 0. \n",NAME_CURRENT_COMP); + exit(1); +} +if (zdepth <= 0) { + printf("\nERROR in Union_box named %s, zdepth is <= 0. \n",NAME_CURRENT_COMP); + exit(1); +} +if (xwidth2 <= 0 && xwidth2 != -1) { + printf("\nERROR in Union_box named %s, the xwidth2 is <= 0. \n",NAME_CURRENT_COMP); + exit(1); +} +if (yheight2 <= 0 && yheight2 != -1) { + printf("\nERROR in Union_box named %s, yheight2 is <= 0. \n",NAME_CURRENT_COMP); + exit(1); +} + +// Use sanitation +if (global_material_list.num_elements == 0) { + printf("\nERROR: Need to define a material using Union_make_material before using a Union geometry component. \n"); + printf(" %s was defined before first use of Union_make_material.\n",NAME_CURRENT_COMP); + exit(1); +} + +this_box_volume.geometry.is_masked_volume = 0; +this_box_volume.geometry.is_exit_volume = 0; +this_box_volume.geometry.is_mask_volume = 0; +// check if the volume is a mask, if it is the material string is irelevant. +if (mask_string && strlen(mask_string) && strcmp(mask_string, "NULL") && strcmp(mask_string, "0")) { + // A mask volume is used to limit the extend of other volumes, called the masked volumes. These are specified in the mask_string. + // In order for a ray to enter a masked volume, it needs to be both in the region covered by that volume AND the mask volume. + // When more than + this_box_volume.geometry.mask_mode = 1; // Default is mask mode is ALL + if (mask_setting && strlen(mask_setting) && strcmp(mask_setting, "NULL") && strcmp(mask_setting, "0")) { + if (strcmp(mask_setting,"ALL") == 0 || strcmp(mask_setting,"All") == 0) this_box_volume.geometry.mask_mode = 1; + else if (strcmp(mask_setting,"ANY") == 0 || strcmp(mask_setting,"Any") == 0) this_box_volume.geometry.mask_mode = 2; + else { + printf("The mask_mode of component %s is set to %s, but must be either ALL or ANY.\n",NAME_CURRENT_COMP,mask_setting); + exit(1); + } + } + + for (loop_index=0;loop_indexgeometry.masked_by_list,INDEX_CURRENT_COMP); + global_geometry_list.elements[loop_index].Volume->geometry.is_masked_volume = 1; + if (this_box_volume.geometry.mask_mode == 2) + global_geometry_list.elements[loop_index].Volume->geometry.mask_mode = 2; + if (this_box_volume.geometry.mask_mode == 1) { + if (global_geometry_list.elements[loop_index].Volume->geometry.is_masked_volume == 1 && global_geometry_list.elements[loop_index].Volume->geometry.mask_mode != 2) + // If more than one mask is added to one volume, the ANY mode overwrites the (default) ALL mode. + global_geometry_list.elements[loop_index].Volume->geometry.mask_mode = 1; + } + + found_geometries = 1; + } + } + if (found_geometries == 0) { + printf("The mask_string in geometry: %s did not find any of the specified volumes in the mask_string %s \n",NAME_CURRENT_COMP,mask_string); + exit(1); + } + this_box_volume.p_physics = malloc(sizeof(struct physics_struct)); + this_box_volume.p_physics->is_vacuum = 0; // Makes this volume a vacuum + this_box_volume.p_physics->number_of_processes = (int) 0; // Should not be used. + this_box_volume.p_physics->my_a = 0; // Should not be used. + sprintf(this_box_volume.p_physics->name,"Mask"); + this_box_volume.geometry.is_mask_volume = 1; + + +// Read the material input, or if it lacks, use automatic linking. +} else if (material_string && strlen(material_string) && strcmp(material_string, "NULL") && strcmp(material_string, "0")) { + // A geometry string was given, use it to determine which material + if (0 == strcmp(material_string,"vacuum") || 0 == strcmp(material_string,"Vacuum")) { + // One could have a global physics struct for vacuum instead of creating one for each + this_box_volume.p_physics = malloc(sizeof(struct physics_struct)); + this_box_volume.p_physics->is_vacuum = 1; // Makes this volume a vacuum + this_box_volume.p_physics->number_of_processes = (int) 0; // Should not be used. + this_box_volume.p_physics->my_a = 0; // Should not be used. + sprintf(this_box_volume.p_physics->name,"Vacuum"); + } else if (0 == strcmp(material_string,"exit") || 0 == strcmp(material_string,"Exit")) { + // One could have a global physics struct for vacuum instead of creating one for each + this_box_volume.p_physics = malloc(sizeof(struct physics_struct)); + this_box_volume.p_physics->is_vacuum = 1; // Makes this volume a vacuum + this_box_volume.p_physics->number_of_processes = (int) 0; // Should not be used. + this_box_volume.p_physics->my_a = 0; // Should not be used. + this_box_volume.geometry.is_exit_volume = 1; + sprintf(this_box_volume.p_physics->name,"Exit"); + } else { + #ifndef MATERIAL_DETECTOR + printf("Need to define a material before refering to it in a geometry %s.\n",NAME_CURRENT_COMP); + exit(1); + #endif + for (loop_index=0;loop_indexgeometry_parameters.p_cylinder_storage->height; + double radius = Geometries[index]->geometry_parameters.p_cylinder_storage->cyl_radius; + Coords direction = Geometries[index]->geometry_parameters.p_cylinder_storage->direction_vector; + Coords center = Geometries[index]->center; + + Coords bottom_point = coords_add(center,coords_scalar_mult(direction,0.5*height)); + Coords top_point = coords_add(center,coords_scalar_mult(direction,-0.5*height)); + + struct lines_to_draw lines_to_draw_temp; + lines_to_draw_temp.number_of_lines = 0; + + lines_to_draw_temp = draw_circle_with_highest_priority(top_point,direction,radius,index,Geometries,number_of_volumes,2); + merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp); + + lines_to_draw_temp = draw_circle_with_highest_priority(bottom_point,direction,radius,index,Geometries,number_of_volumes,2); + merge_lines_to_draw(lines_to_draw_output,&lines_to_draw_temp); + + Coords point1,point2; + int iterate,number_of_points=4; + + for (iterate=0;iteraterotation_matrix,simple_vector); + NORM(cyl_vector.x,cyl_vector.y,cyl_vector.z); + cylinder->geometry_parameters.p_cylinder_storage->direction_vector.x = cyl_vector.x; + cylinder->geometry_parameters.p_cylinder_storage->direction_vector.y = cyl_vector.y; + cylinder->geometry_parameters.p_cylinder_storage->direction_vector.z = cyl_vector.z; + // if (verbal == 1) printf("Cords vector1 = (%f,%f,%f)\n",cyl_vector.x,cyl_vector.y, +} + +struct pointer_to_1d_coords_list cylinder_shell_points(struct geometry_struct *geometry,int max_number_of_points) { + // Function that returns a number (less than max) of points on the geometry surface + // If used, remember to free the space allocated. + int points_per_circle = floor(max_number_of_points/2.0); + + struct pointer_to_1d_coords_list cylinder_shell_array; + cylinder_shell_array.elements = malloc(2*points_per_circle*sizeof(Coords)); + cylinder_shell_array.num_elements = 2*points_per_circle; + + Coords cyl_direction = geometry->geometry_parameters.p_cylinder_storage->direction_vector; + Coords center = geometry->center; + double radius = geometry->geometry_parameters.p_cylinder_storage->cyl_radius; + double height = geometry->geometry_parameters.p_cylinder_storage->height; + + Coords cyl_top_point = coords_add(center,coords_scalar_mult(cyl_direction,0.5*height)); + Coords cyl_bottom_point = coords_add(center,coords_scalar_mult(cyl_direction,-0.5*height)); + + points_on_circle(cylinder_shell_array.elements,cyl_top_point,cyl_direction,radius,points_per_circle); + // Need to verify this pointer arithimatic works as intended + points_on_circle(cylinder_shell_array.elements+points_per_circle,cyl_bottom_point,cyl_direction,radius,points_per_circle); + + return cylinder_shell_array; +} + +%} + +DECLARE +%{ +// Needed for transport to the main component +struct global_geometry_element_struct global_geometry_element; + +#ifndef ANY_GEOMETRY_DETECTOR_DECLARE + #define ANY_GEOMETRY_DETECTOR_DECLARE dummy + //struct pointer_to_global_geometry_list global_geometry_list = {0,NULL}; +#endif + +int dummy; +int loop_index,found_geometries; +int loop_2_index; +int material_index; + +struct Volume_struct this_cylinder_volume; +struct cylinder_storage this_cylinder_storage; +%} + +INITIALIZE +%{ +// Initializes the focusing system for this volume including input sanitation. +focus_initialize(&this_cylinder_volume.geometry, POS_A_COMP_INDEX(INDEX_CURRENT_COMP+target_index), POS_A_CURRENT_COMP, ROT_A_CURRENT_COMP, target_index, target_x, target_y, target_z, focus_aw, focus_ah, focus_xw, focus_xh, focus_r, NAME_CURRENT_COMP); + +// Input sanitation for this geometry +if (radius <= 0) { + printf("\nERROR in Union_cylinder named %s, the radius is <= 0. \n",NAME_CURRENT_COMP); + exit(1); +} + +if (yheight <= 0) { + printf("\nERROR in Union_cylinder named %s, yheight is <= 0. \n",NAME_CURRENT_COMP); + exit(1); +} + +// Use sanitation +#ifdef MATERIAL_DETECTOR +if (global_material_list.num_elements == 0) { + // Here if the user have defined a material, but only after this material + printf("\nERROR: Need to define a material using Union_make_material before using a Union geometry component. \n"); + printf(" %s was defined before first use of Union_make_material.\n",NAME_CURRENT_COMP); + exit(1); +} +#endif +#ifndef MATERIAL_DETECTOR + printf("\nERROR: Need to define a material using Union_make_material before using a Union geometry component. \n"); + exit(1); +#endif + + +this_cylinder_volume.geometry.is_masked_volume = 0; +this_cylinder_volume.geometry.is_exit_volume = 0; +this_cylinder_volume.geometry.is_mask_volume = 0; + +// Read the material input, or if it lacks, use automatic linking. +if (mask_string && strlen(mask_string) && strcmp(mask_string, "NULL") && strcmp(mask_string, "0")) { + // A mask volume is used to limit the extend of other volumes, called the masked volumes. These are specified in the mask_string. + // In order for a ray to enter a masked volume, it needs to be both in the region covered by that volume AND the mask volume. + // When more than + this_cylinder_volume.geometry.mask_mode = 1; // Default is mask mode is ALL + if (mask_setting && strlen(mask_setting) && strcmp(mask_setting, "NULL") && strcmp(mask_setting, "0")) { + if (strcmp(mask_setting,"ALL") == 0 || strcmp(mask_setting,"All") == 0) this_cylinder_volume.geometry.mask_mode = 1; + else if (strcmp(mask_setting,"ANY") == 0 || strcmp(mask_setting,"Any") == 0) this_cylinder_volume.geometry.mask_mode = 2; + else { + printf("The mask_mode of component %s is set to %s, but must be either ALL or ANY.\n",NAME_CURRENT_COMP,mask_setting); + exit(1); + } + } + + for (loop_index=0;loop_indexgeometry.masked_by_list,INDEX_CURRENT_COMP); + global_geometry_list.elements[loop_index].Volume->geometry.is_masked_volume = 1; + if (this_cylinder_volume.geometry.mask_mode == 2) + global_geometry_list.elements[loop_index].Volume->geometry.mask_mode = 2; + if (this_cylinder_volume.geometry.mask_mode == 1) { + if (global_geometry_list.elements[loop_index].Volume->geometry.is_masked_volume == 1 && global_geometry_list.elements[loop_index].Volume->geometry.mask_mode != 2) + // If more than one mask is added to one volume, the ANY mode overwrites the (default) ALL mode. + global_geometry_list.elements[loop_index].Volume->geometry.mask_mode = 1; + } + + found_geometries = 1; + } + } + if (found_geometries == 0) { + printf("The mask_string in geometry: %s did not find any of the specified volumes in the mask_string %s \n",NAME_CURRENT_COMP,mask_string); + exit(1); + } + this_cylinder_volume.p_physics = malloc(sizeof(struct physics_struct)); + this_cylinder_volume.p_physics->is_vacuum = 0; // Makes this volume a vacuum + this_cylinder_volume.p_physics->number_of_processes = (int) 0; // Should not be used. + this_cylinder_volume.p_physics->my_a = 0; // Should not be used. + sprintf(this_cylinder_volume.p_physics->name,"Mask"); + this_cylinder_volume.geometry.is_mask_volume = 1; + + +// Read the material input, or if it lacks, use automatic linking. +} else if (material_string && strlen(material_string) && strcmp(material_string, "NULL") && strcmp(material_string, "0")) { + // A geometry string was given, use it to determine which material + if (0 == strcmp(material_string,"vacuum") || 0 == strcmp(material_string,"Vacuum")) { + // One could have a global physics struct for vacuum instead of creating one for each + this_cylinder_volume.p_physics = malloc(sizeof(struct physics_struct)); + this_cylinder_volume.p_physics->is_vacuum = 1; // Makes this volume a vacuum + this_cylinder_volume.p_physics->number_of_processes = (int) 0; + this_cylinder_volume.p_physics->my_a = 0; // Should not be used. + sprintf(this_cylinder_volume.p_physics->name,"Vacuum"); + } else if (0 == strcmp(material_string,"exit") || 0 == strcmp(material_string,"Exit")) { + // One could have a global physics struct for exit instead of creating one for each + this_cylinder_volume.p_physics = malloc(sizeof(struct physics_struct)); + this_cylinder_volume.p_physics->is_vacuum = 1; // Makes this volume a vacuum + this_cylinder_volume.p_physics->number_of_processes = (int) 0; + this_cylinder_volume.p_physics->my_a = 0; // Should not be used. + this_cylinder_volume.geometry.is_exit_volume = 1; + sprintf(this_cylinder_volume.p_physics->name,"Exit"); + } else { + for (loop_index=0;loop_index 0) scattered_1 = 1; else scattered_1 = 0; +if (scattered_flag[sample_2_index] > 0) scattered_2 = 1; else scattered_2 = 0; +if (scattered_flag[sample_3_index] > 0) scattered_3 = 1; else scattered_3 = 0; +if (scattered_flag[sample_4_index] > 0) scattered_4 = 1; else scattered_4 = 0; +%} + + + +COMPONENT detector_position = Arm() +AT (0,0,0.03) RELATIVE beam_center +ROTATED(0,0,0) RELATIVE beam_center + +COMPONENT m4pi = PSD_monitor_4PI(radius=1, nx=180, ny=180, filename="Events.dat", restore_neutron=1) +AT (0, 0, 0) RELATIVE beam_center +ROTATED (0,0,0) RELATIVE beam_center + +COMPONENT Banana_monitor = Monitor_nD(radius=1, yheight=0.1, options="banana, theta limits=[20,170], bins=500",filename="banana.dat",restore_neutron=1) +AT (0,0,0) RELATIVE beam_center +ROTATED (0,0,0) RELATIVE beam_center + +COMPONENT detector = PSD_monitor(xwidth=0.1, yheight=0.08, nx=200, ny=200, filename="PSD.dat", restore_neutron=1) +AT (0,-0.02,0.4) RELATIVE beam_center +ROTATED (0,0,0) RELATIVE beam_center + +// Removes events not scattering in at least two of the samples +// mcdisplay --inspect=m4pi_two_samples shows only rays that scatters on all three +// since all others were removed before that component with this arm. +COMPONENT arm_1 = Arm() + AT (0, 0, 0) RELATIVE beam_center +EXTEND +%{ + if (scattered_1 + scattered_2 + scattered_3 + scattered_4 < 2) ABSORB; +%} + +// Using mcdisplay and -inspect m4pi_two_or_more_samples one can show only +// trajectories where the ray scatters from two or more of the samples +COMPONENT m4pi_two_or_more_samples = PSD_monitor_4PI(radius=1, nx=180, ny=180, filename="Events.dat", restore_neutron=1) +WHEN (scattered_1 + scattered_2 + scattered_3 + scattered_4 > 1) +AT (0, 0, 0) RELATIVE beam_center +ROTATED (0,0,0) RELATIVE beam_center + + +COMPONENT armA = Arm() +AT (0,0,0) ABSOLUTE +GROUP arms + +COMPONENT armB = Arm() +AT (0,0,0) ABSOLUTE +GROUP arms +JUMP myself 2 + + +END diff --git a/mcstasscript/tests/dummy_instrument_folder/Union_make_material.comp b/mcstasscript/tests/dummy_instrument_folder/Union_make_material.comp new file mode 100644 index 00000000..b591f018 --- /dev/null +++ b/mcstasscript/tests/dummy_instrument_folder/Union_make_material.comp @@ -0,0 +1,299 @@ +/******************************************************************************* +* +* McStas, neutron ray-tracing package +* Copyright(C) 2007 Risoe National Laboratory. +* +* %I +* Written by: Mads Bertelsen +* Date: 20.08.15 +* Version: $Revision: 0.1 $ +* Origin: Svanevej 19 +* +* %D +* Part of the Union components, a set of components that work together and thus +* sperates geometry and physics within McStas. +* The use of this component requires other components to be used. +* +* 1) One specifies a number of processes using process components +* 2) These are gathered into material definitions using this component +* 3) Geometries are placed using Union_box/cylinder/sphere, assigned a material +* 4) A Union_master component placed after all of the above +* +* Only in step 4 will any simulation happen, and per default all geometries +* defined before the master, but after the previous will be simulated here. +* +* There is a dedicated manual available for the Union_components +* +* Algorithm: +* Described elsewhere +* +* %P +* INPUT PARAMETERS: +* process_string: [string] Comma seperated names of physical processes +* my_absorption: [1/m] Inverse penetration depth from absorption at standard energy +* absorber: [0/1] Control parameter, if set to 1 the material will have no scattering processes +* +* OUTPUT PARAMETERS: +* this_material: Structure that contains information on this material +* global_material_element: Element of global_material_list which is a global variable +* +* GLOBAL PARAMETERS: +* global_material_list: List of all defined materials, available in the global scope +* +* %L +* +* %E +******************************************************************************/ + +DEFINE COMPONENT Union_make_material +DEFINITION PARAMETERS () +SETTING PARAMETERS(string process_string="NULL",my_absorption,absorber=0) +OUTPUT PARAMETERS (loop_index,this_material,accepted_processes,global_material_element) + +/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */ + +SHARE +%{ +#ifndef Union +#define Union $Revision: 0.8 $ + +#include "Union_functions.c" +#include "Union_initialization.c" + +#endif + +// This function checks if global_process_element should be included in this material when using automatic linking, returns 1 if yes, 0 if no. +int automatic_linking_materials_function(struct global_process_element_struct global_process_element, struct pointer_to_global_material_list global_material_list,int current_index) { + // Remember this function is used before the current material is added to global_material_list + // debug info + //MPI_MASTER( + //printf("Checking if process with index %d should be automatically linked to material with index %d\n",global_process_element.component_index,current_index); + //) + + // Check if this is the first make_material, which makes the problem simpler. + if (global_material_list.num_elements == 0) { + if (global_process_element.component_index < current_index) return 1; + else return 0; + } + // In case there are more than 1 make_material, global_material_list.elements[global_material_list.num_elements-1].component_index makes sense. + if (global_process_element.component_index < current_index && global_process_element.component_index > global_material_list.elements[global_material_list.num_elements-1].component_index) return 1; + else return 0; +} + +void manual_linking_function_material(char *input_string, struct pointer_to_global_process_list *global_process_list, struct pointer_to_1d_int_list *accepted_processes, char *component_name) { + // Need to check a input_string of text for an occurance of name. If it is in the inputstring, yes return 1, otherwise 0. + char *token; + int loop_index; + char local_string[256]; + + strcpy(local_string,input_string); + // get the first token + token = strtok(local_string,","); + + // walk through other tokens + while( token != NULL ) + { + //printf( " %s\n", token ); + for (loop_index=0;loop_indexnum_elements;loop_index++) { + if (strcmp(token,global_process_list->elements[loop_index].name) == 0) { + add_element_to_int_list(accepted_processes,loop_index); + break; + } + + if (loop_index == global_process_list->num_elements - 1) { + // All possible process names have been looked through, and the break was not executed. + // Alert the user to this problem by showing the process name that was not found and the currently available processes + printf("\n"); + printf("ERROR: The process string \"%s\" in Union material \"%s\" had an entry that did not match a specified process. \n",input_string,component_name); + printf(" The unrecoignized process name was: \"%s\" \n",token); + printf(" The processes available at this point (need to be defined before the material): \n"); + for (loop_index=0;loop_indexnum_elements;loop_index++) + printf(" %s\n",global_process_list->elements[loop_index].name); + exit(1); + } + } + + // Updates the token + token = strtok(NULL,","); + } +} + +// This function is needed in initialize of all geometry components +// Possible to insert these functions in make material, as they are only compiled once instead of many times +int manual_linking_function(char *name, char *input_string) { + // Need to check a input_string of text for an occurance of name. If it is in the inputstring, yes return 1, otherwise 0. + char *token; + int return_integer=0; + char local_string[124]; + + strcpy(local_string,input_string); + /* get the first token */ + token = strtok(local_string,","); + + /* walk through other tokens */ + while( token != NULL ) + { + //printf( " %s\n", token ); + if (strcmp(token,name) == 0) return_integer=1; + + token = strtok(NULL,","); + } + + return return_integer; +} + + + +/* +int count_commas(char *string) { + int return_value = 0; + + int index; + for (index=0;index 0) this_material.p_scattering_array = malloc(this_material.number_of_processes * sizeof(struct scattering_process_struct)); + for (loop_index=0;loop_index 0) free(this_material.p_scattering_array); +if (accepted_processes.num_elements > 0) free(accepted_processes.elements); + +// Checking if any Union volumes are defined after the master component +#ifdef MASTER_DETECTOR + #ifdef ANY_GEOMETRY_DETECTOR_DECLARE + #ifndef MASTER_DETECTOR_WARNING + for (loop_index=0;loop_index global_master_list.elements[global_master_list.num_elements-1].component_index) { + printf("WARNING: No Union_master component defined after Union volume named %s, this components did not affect the simulation in any way.\n",global_geometry_list.elements[loop_index].name); + } + } + // Decided to have this as a warning without exiting the simulation + // In order to only show this warning once, the MASTER_DETECTOR_WARNING is defined + #define MASTER_DETECTOR_WARNING dummy + #endif + #endif +#endif + +// Checking if the user remembered to put in a Union_master +#ifndef MASTER_DETECTOR + #ifdef ANY_GEOMETRY_DETECTOR_DECLARE + #ifndef MASTER_DETECTOR_WARNING + printf("\nWARNING: No Union_master component used, these components did not affect the simulation in any way:\n"); + for (loop_index=0;loop_index component index + struct pointer_to_1d_int_list geometry_component_index_list; + + // Masks + struct pointer_to_1d_int_list mask_volume_index_list; + int number_of_masks=0; + int number_of_masked_volumes=0; + struct pointer_to_1d_int_list mask_status_list; + struct pointer_to_1d_int_list current_mask_intersect_list_status; + int mask_index_main,mask_iterate; + int *mask_start,*mask_check; + int need_to_run_within_which_volume; + + // Loggers + //struct logger_with_data_struct loggers_with_data_array; + int *number_of_processes_array; + double p_old; + int log_index,conditional_status; + struct logger_struct *this_logger; + // union detector_pointer_union detector_pointer; + + // Conditionals + struct conditional_list_struct *tagging_conditional_list; + int *logger_conditional_extend_array; + int max_conditional_extend_index; + int tagging_conditional_extend; + int free_tagging_conditioanl_list; + + // Reliability control + // Safty distance is needed to avoid having ray positions closer to a wall than the precision of intersection functions + double safty_distance,safty_distance2; + + // Focusing + struct focus_data_struct temporary_focus_data; + int focus_data_index; + +%} + +INITIALIZE +%{ + // Use sanitation + #ifndef ANY_GEOMETRY_DETECTOR_DECLARE + printf("\nERROR: Need to define at least one Volume using Union_cylinder or Union_box before using the Union_master component. \n"); + exit(1); + #endif + #ifdef ANY_GEOMETRY_DETECTOR_DECLARE + if (global_geometry_list.num_elements == 0) { + printf("\nERROR: Need to define at least one Volume using Union_cylinder or Union_box before using the Union_master component. \n"); + printf(" Union_master component named \"%s\" is before any Volumes in the instrument file. At least one Volume need to be defined before\n",NAME_CURRENT_COMP); + + exit(1); + } + #endif + + // Parameters describing the safety distances close to surfaces, as scattering should not occur closer to a surface than the + // accuracy of the intersection calculation. + safty_distance = 1E-11; + safty_distance2 = safty_distance*2; + + // Write information to the global_master_list about the current Union_master + sprintf(global_master_element.name,NAME_CURRENT_COMP); + global_master_element.component_index = INDEX_CURRENT_COMP; + add_element_to_master_list(&global_master_list,global_master_element); + if (inherit_number_of_scattering_events == 1 && global_master_list.num_elements == 1) { + printf("ERROR in Union_master with name %s. Inherit_number_of_scattering_events set to 1 for first Union_master component, but there is no preceeding Union_master component. Aborting.\n",NAME_CURRENT_COMP); + exit(1); + } + this_global_master_index = global_master_list.num_elements - 1; // Save the index for this master in global master list + + // Set the component index of the previous Union_master component if one exists + if (global_master_list.num_elements == 1) previous_master_index = 0; // no previous index + else previous_master_index = global_master_list.elements[global_master_list.num_elements-2].component_index; // -2 because of zero indexing and needing the previous index. + //printf("Assigned previous_master_index = %d \n",previous_master_index); + + // All volumes in the global_geometry_list is being check for activity using the number_of_activations input made for each geometry (default is 1) + // In addition it is counted how many volumes, mask volumes and masked volumes are active in this Union_master. + number_of_volumes = 1; // Starting with 1 as the surrounding vacuum is considered a volume + number_of_masks = 0; // Starting with 0 mask volumes + number_of_masked_volumes = 0; // Starting with 0 masked volumes + for (iterate=0;iterate 0) { + global_geometry_list.elements[iterate].active = 1; + global_geometry_list.elements[iterate].activation_counter--; + number_of_volumes++; + if (global_geometry_list.elements[iterate].Volume->geometry.is_mask_volume == 1) number_of_masks++; + if (global_geometry_list.elements[iterate].Volume->geometry.is_masked_volume == 1) number_of_masked_volumes++; + } else global_geometry_list.elements[iterate].active = 0; + } + //printf("Found number of volumes to be %d \n",number_of_volumes); + + // Allocation of global lists + geometry_component_index_list.num_elements = number_of_volumes; + geometry_component_index_list.elements = malloc( geometry_component_index_list.num_elements * sizeof(int)); + mask_volume_index_list.num_elements = number_of_masks; + if (number_of_masks >0) mask_volume_index_list.elements = malloc( number_of_masks * sizeof(int)); + mask_status_list.num_elements = number_of_masks; + if (number_of_masks >0) mask_status_list.elements = malloc( number_of_masks * sizeof(int)); + current_mask_intersect_list_status.num_elements = number_of_masked_volumes; + if (number_of_masked_volumes >0) current_mask_intersect_list_status.elements = malloc( number_of_masked_volumes * sizeof(int)); + + // Make a list of component index from each volume index + volume_index = 0; + for (iterate=0;iteratemy_a); + printf("number of processes [%d]: %d \n",iterate,global_material_list.elements[iterate].physics->number_of_processes); + } + + printf("---------------------------------------------------------------------\n"); + printf("global_geometry_list.num_elements: %d\n",global_material_list.num_elements); + for (iterate=0;iteratename); + if (global_geometry_list.elements[iterate].Volume->geometry.is_mask_volume == 0) { + printf("Volume.p_physics.is_vacuum [%d]: %d \n",iterate,global_geometry_list.elements[iterate].Volume->p_physics->is_vacuum); + printf("Volume.p_physics.my_absorption [%d]: %f \n",iterate,global_geometry_list.elements[iterate].Volume->p_physics->my_a); + printf("Volume.p_physics.number of processes [%d]: %d \n",iterate,global_geometry_list.elements[iterate].Volume->p_physics->number_of_processes); + } + printf("Volume.geometry.shape [%d]: %s \n",iterate,global_geometry_list.elements[iterate].Volume->geometry.shape); + printf("Volume.geometry.center.x [%d]: %f \n",iterate,global_geometry_list.elements[iterate].Volume->geometry.center.x); + printf("Volume.geometry.center.y [%d]: %f \n",iterate,global_geometry_list.elements[iterate].Volume->geometry.center.y); + printf("Volume.geometry.center.z [%d]: %f \n",iterate,global_geometry_list.elements[iterate].Volume->geometry.center.z); + printf("Volume.geometry.rotation_matrix[0] [%d]: [%f %f %f] \n",iterate,global_geometry_list.elements[iterate].Volume->geometry.rotation_matrix[0][0],global_geometry_list.elements[iterate].Volume->geometry.rotation_matrix[0][1],global_geometry_list.elements[iterate].Volume->geometry.rotation_matrix[0][2]); + printf("Volume.geometry.rotation_matrix[1] [%d]: [%f %f %f] \n",iterate,global_geometry_list.elements[iterate].Volume->geometry.rotation_matrix[1][0],global_geometry_list.elements[iterate].Volume->geometry.rotation_matrix[1][1],global_geometry_list.elements[iterate].Volume->geometry.rotation_matrix[1][2]); + printf("Volume.geometry.rotation_matrix[2] [%d]: [%f %f %f] \n",iterate,global_geometry_list.elements[iterate].Volume->geometry.rotation_matrix[2][0],global_geometry_list.elements[iterate].Volume->geometry.rotation_matrix[2][1],global_geometry_list.elements[iterate].Volume->geometry.rotation_matrix[2][2]); + if (strcmp(global_geometry_list.elements[iterate].Volume->geometry.shape,"cylinder") == 0) { + printf("Volume.geometry.geometry_parameters.cyl_radius [%d]: %f \n",iterate,global_geometry_list.elements[iterate].Volume->geometry.geometry_parameters.p_cylinder_storage->cyl_radius); + printf("Volume.geometry.geometry_parameters.height [%d]: %f \n",iterate,global_geometry_list.elements[iterate].Volume->geometry.geometry_parameters.p_cylinder_storage->height); + } + printf("Volume.geometry.focus_data_array.elements[0].Aim [%d]: [%f %f %f] \n",iterate,global_geometry_list.elements[iterate].Volume->geometry.focus_data_array.elements[0].Aim.x,global_geometry_list.elements[iterate].Volume->geometry.focus_data_array.elements[0].Aim.y,global_geometry_list.elements[iterate].Volume->geometry.focus_data_array.elements[0].Aim.z); + } + } + printf("---------------------------------------------------------------------\n"); + printf("number_of_volumes = %d\n",number_of_volumes); + printf("number_of_masks = %d\n",number_of_masks); + printf("number_of_masked_volumes = %d\n",number_of_masked_volumes); + } + ); // End MPI_MASTER + + + // --- Initialization tasks independent of volume stucture ----------------------- + + // Store a pointer to the conditional list and update the current index in that structure + // If no tagging_conditionals were defined between this and the previous master, a dummy is allocated instead + if (global_tagging_conditional_list.num_elements == global_tagging_conditional_list.current_index + 1) { + tagging_conditional_list = &global_tagging_conditional_list.elements[global_tagging_conditional_list.current_index++].conditional_list; + free_tagging_conditioanl_list = 0; + } else { + tagging_conditional_list = malloc(sizeof(struct conditional_list_struct)); + tagging_conditional_list->num_elements = 0; + free_tagging_conditioanl_list = 1; + } + + // Find the maximum logger extend index so that the correct memory allocation can be performed later + // Here the loggers applied to all volumes are searched, later this result is compared to volume specific loggers and updated + max_conditional_extend_index = -1; + for (iterate=0;iteratelogger_extend_index > max_conditional_extend_index) { + max_conditional_extend_index = global_all_volume_logger_list.elements[iterate].logger->logger_extend_index; + } + } + + // The absolute rotation of this component is saved for use in initialization + rot_transpose(ROT_A_CURRENT_COMP,master_transposed_rotation_matrix); + + // Preceeding componnets can add coordinates and rotations to global_positions_to_transform and global_rotations_to_transform + // in order to have these transformed into the coordinate system of the next master compoent in the instrument file. + // Here these transformations are performed, and the lists are cleared so no transformed information is further altered by + // next master components. + + // Position transformation + for (iterate=0;iterate 0) { + global_positions_to_transform_list.num_elements = 0; + free(global_positions_to_transform_list.positions); + } + // Rotation transformation + for (iterate=0;iterate 0) { + global_rotations_to_transform_list.num_elements = 0; + free(global_rotations_to_transform_list.rotations); + } + + + // --- Definition of volumes and loading of appropriate data ----------------------- + + // The information stored in global lists is to be stored in one array of structures that is allocated here + Volumes = malloc(number_of_volumes * sizeof(struct Volume_struct*)); + scattered_flag = malloc(number_of_volumes*sizeof(int)); + scattered_flag_VP = (int**) malloc(number_of_volumes * sizeof(int*)); + number_of_processes_array = malloc(number_of_volumes*sizeof(int)); + + // The mcdisplay functions need access to the other geomtries, but can not use the Volumes struct because of order of definition. + // A separate list of pointers to the geometry structures is thus allocated + Geometries = malloc(number_of_volumes * sizeof(struct geometry_struct *)); + + // When activation counter is used to have several copies of one volume, it can become necessary to have soft copies of volumes + // Not all of these will necessarily be allocated or used. + Volume_copies = malloc(number_of_volumes * sizeof(struct Volume_struct *)); + Volume_copies_allocated.num_elements = 0; + + // The central structure is called a "Volume", it describes a region in space with certain scattering processes and absorption cross section + + // --- Volume 0 ------------------------------------------------------------------------------------------------ + // Volume 0 is the vacuum surrounding the experiment (infinite, everywhere) and its properties are hardcoded here + Volumes[0] = malloc(sizeof(struct Volume_struct)); + strcpy(Volumes[0]->name,"Surrounding vacuum"); + // Assign geometry + + // This information is meaningless for volume 0, and is never be acsessed in the logic. + Volumes[0]->geometry.priority_value = 0.0; + Volumes[0]->geometry.center.x = 0; + Volumes[0]->geometry.center.y = 0; + Volumes[0]->geometry.center.z = 0; + strcpy(Volumes[0]->geometry.shape,"vacuum"); + Volumes[0]->geometry.within_function = &r_within_surroundings; // Always returns 1 + // No physics struct allocated + Volumes[0]->p_physics = NULL; + number_of_processes_array[volume_index] = 0; + + // These are never used for volume 0, but by setting the length to 0 it is automatically skipped in many forloops without the need for an if statement + Volumes[0]->geometry.children.num_elements=0; + Volumes[0]->geometry.direct_children.num_elements=0; + Volumes[0]->geometry.destinations_list.num_elements=0; + Volumes[0]->geometry.reduced_destinations_list.num_elements=0; + + Volumes[0]->geometry.masked_by_list.num_elements = 0; + Volumes[0]->geometry.mask_list.num_elements = 0; + Volumes[0]->geometry.masked_by_mask_index_list.num_elements = 0; + Volumes[0]->geometry.mask_mode=0; + Volumes[0]->geometry.is_mask_volume=0; + Volumes[0]->geometry.is_masked_volume=0; + + // A pointer to the geometry structure + Geometries[0] = &Volumes[0]->geometry; + + // Logging initialization + Volumes[0]->loggers.num_elements = 0; + + + // --- Loop over user defined volumes ------------------------------------------------------------------------ + // Here the user defined volumes are loaded into the volume structure that is used in the ray-tracing + // algorithm. Not all user defined volumes are used, some could be used by a previous master, some + // could be used by the previous master, this one, and perhaps more. This is controlled by the + // activation counter input for geometries, and is here condensed to the active variable. + // Volumes that were used before + + + max_number_of_processes = 0; // The maximum number of processes in a volume is assumed 0 and updated during the following loop + + volume_index = 0; + mask_index_main = 0; + for (geometry_list_index=0;geometry_list_indexgeometry.geometry_parameters = Volumes[volume_index]->geometry.copy_geometry_parameters(&global_geometry_list.elements[geometry_list_index].Volume->geometry.geometry_parameters); + + } + + // This section identifies the different non isotropic processes in the current volume and give them appropriate transformation matrices + // Identify the number of non isotropic processes in a material (this code can be safely executed for the same material many times) + // A setting of -1 means no transformation necessary, other settings are assigned a unique identifier instead + non_isotropic_found = 0; + for (iterate=0;iteratep_physics->number_of_processes;iterate++) { + if (Volumes[volume_index]->p_physics->p_scattering_array[iterate].non_isotropic_rot_index != -1) { + Volumes[volume_index]->p_physics->p_scattering_array[iterate].non_isotropic_rot_index = non_isotropic_found; + non_isotropic_found++; + } + } + + Volumes[volume_index]->geometry.focus_array_indices.num_elements=0; + // For the non_isotropic volumes found, rotation matrices need to be allocated and calculated + if (non_isotropic_found > 0) { + // Allocation of rotation and transpose rotation matrices + if (Volumes[volume_index]->geometry.process_rot_allocated == 0) { + Volumes[volume_index]->geometry.process_rot_matrix_array = malloc(non_isotropic_found * sizeof(Rotation)); + Volumes[volume_index]->geometry.transpose_process_rot_matrix_array = malloc(non_isotropic_found * sizeof(Rotation)); + Volumes[volume_index]->geometry.process_rot_allocated = 1; + } + + // Calculation of the appropriate rotation matrices for transformation between Union_master and the process in a given volume. + non_isotropic_found = 0; + for (iterate=0;iteratep_physics->number_of_processes;iterate++) { + if (Volumes[volume_index]->p_physics->p_scattering_array[iterate].non_isotropic_rot_index != -1) { + // Transformation for each process / geometry combination + + // The focus vector is given in relation to the geometry and needs to be transformed to the process + // Work on temporary_focus_data_element which is added to the focus_data_array_at the end + temporary_focus_data = Volumes[volume_index]->geometry.focus_data_array.elements[0]; + + // Correct for process rotation + temporary_focus_data.Aim = rot_apply(Volumes[volume_index]->p_physics->p_scattering_array[iterate].rotation_matrix,temporary_focus_data.Aim); + + // Add element to focus_array_indices + // focus_array_indices refers to the correct element in focus_data_array for this volume/process combination + // focus_data_array[0] is the isotropic version in all cases, so the first non_isotropic goes to focus_data_array[1] + // and so forth. When a process is isotropic, this array is appended with a zero. + // The focus_array_indices maps process numbers to the correct focus_data_array index. + add_element_to_int_list(&Volumes[volume_index]->geometry.focus_array_indices,non_isotropic_found+1); + + // Add the new focus_data element to this volumes focus_data_array. + add_element_to_focus_data_array(&Volumes[volume_index]->geometry.focus_data_array,temporary_focus_data); + + // Quick error check to see the length is correct which indirectly confirms the indices are correct + if (Volumes[volume_index]->geometry.focus_data_array.num_elements != non_isotropic_found + 2) { + printf("ERROR, focus_data_array length for volume %s inconsistent with number of non isotropic processes found!\n",Volumes[volume_index]->name); + exit(1); + } + + // Create rotation matrix for this specific volume / process combination to transform from master coordinate system to the non-isotropics process coordinate system + // This is done by multipling the transpose master component roration matrix, the volume rotation, and then the process rotation matrix onto the velocity / wavevector + rot_mul(Volumes[volume_index]->geometry.rotation_matrix,master_transposed_rotation_matrix,temp_rotation_matrix); + rot_mul(Volumes[volume_index]->p_physics->p_scattering_array[iterate].rotation_matrix,temp_rotation_matrix,Volumes[volume_index]->geometry.process_rot_matrix_array[non_isotropic_found]); + + // Need to transpose as well to transform back to the master coordinate system + rot_transpose(Volumes[volume_index]->geometry.process_rot_matrix_array[non_isotropic_found],Volumes[volume_index]->geometry.transpose_process_rot_matrix_array[non_isotropic_found]); + + // Debug print + //print_rotation(Volumes[volume_index]->geometry.process_rot_matrix_array[non_isotropic_found],"Process rotation matrix"); + //print_rotation(Volumes[volume_index]->geometry.transpose_process_rot_matrix_array[non_isotropic_found],"Transpose process rotation matrix"); + + non_isotropic_found++; + } else { + // This process can use the standard isotropic focus_data_array which is indexed zero. + add_element_to_int_list(&Volumes[volume_index]->geometry.focus_array_indices,0); + } + } + } else { + // No non isotropic volumes found, focus_array_indices should just be a list of 0's of same length as the number of processes. + // In this way all processes use the isotropic focus_data structure + Volumes[volume_index]->geometry.focus_array_indices.elements = malloc(Volumes[volume_index]->p_physics->number_of_processes * sizeof(int)); + for (iterate=0;iteratep_physics->number_of_processes;iterate++) + Volumes[volume_index]->geometry.focus_array_indices.elements[iterate] = 0; + + } + //print_1d_int_list(Volumes[volume_index]->geometry.focus_array_indices,"focus_array_indices"); + + + // This component works in its local coordinate system, and thus all information from the input components should be transformed to its coordinate system. + // All the input components saved their absolute rotation/position into their Volume structure, and the absolute rotation of the current component is known. + // The next section finds the relative rotation and translation of all the volumes and the master component. + + // Transform the rotation matrices for each volume + rot_mul(ROT_A_CURRENT_COMP,Volumes[volume_index]->geometry.transpose_rotation_matrix,temp_rotation_matrix); + // Copy the result back to the volumes structure + rot_copy(Volumes[volume_index]->geometry.rotation_matrix,temp_rotation_matrix); + // Now update the transpose as well + rot_transpose(Volumes[volume_index]->geometry.rotation_matrix,temp_rotation_matrix); + rot_copy(Volumes[volume_index]->geometry.transpose_rotation_matrix,temp_rotation_matrix); + + // Transform the position for each volume + non_rotated_position.x = Volumes[volume_index]->geometry.center.x - POS_A_CURRENT_COMP.x; + non_rotated_position.y = Volumes[volume_index]->geometry.center.y - POS_A_CURRENT_COMP.y; + non_rotated_position.z = Volumes[volume_index]->geometry.center.z - POS_A_CURRENT_COMP.z; + + rot_transpose(ROT_A_CURRENT_COMP,temp_rotation_matrix); // REVIEW LINE + rotated_position = rot_apply(ROT_A_CURRENT_COMP,non_rotated_position); + + Volumes[volume_index]->geometry.center.x = rotated_position.x; + Volumes[volume_index]->geometry.center.y = rotated_position.y; + Volumes[volume_index]->geometry.center.z = rotated_position.z; + + // The focus_data information need to be updated as well + rot_mul(ROT_A_CURRENT_COMP,Volumes[volume_index]->geometry.focus_data_array.elements[0].absolute_rotation,temp_rotation_matrix); + // Copy the result back to the volumes structure + rot_copy(Volumes[volume_index]->geometry.focus_data_array.elements[0].absolute_rotation,temp_rotation_matrix); + + // Use same rotation on the aim vector of the isotropic focus_data element + Volumes[volume_index]->geometry.focus_data_array.elements[0].Aim = rot_apply(Volumes[volume_index]->geometry.rotation_matrix,Volumes[volume_index]->geometry.focus_data_array.elements[0].Aim); + + // To allocate enough memory to hold information on all processes, the maximum of these is updated if this volume has more + if (Volumes[volume_index]->p_physics->number_of_processes > max_number_of_processes) + max_number_of_processes = Volumes[volume_index]->p_physics->number_of_processes; + + // Allocate memory to scattered_flag_VP (holds statistics for scatterings in each process of the volume) + scattered_flag_VP[volume_index] = malloc(Volumes[volume_index]->p_physics->number_of_processes * sizeof(int)); + number_of_processes_array[volume_index] = Volumes[volume_index]->p_physics->number_of_processes; + + // Normalizing and error checking process interact fraction + number_of_process_interacts_set = 0; total_process_interact=0; + for (process_index=0;process_indexp_physics->number_of_processes;process_index++) { + if (Volumes[volume_index]->p_physics->p_scattering_array[process_index].process_p_interact != -1) { + number_of_process_interacts_set++; + total_process_interact += Volumes[volume_index]->p_physics->p_scattering_array[process_index].process_p_interact; + } else { + index_of_lacking_process = process_index; + } + } + + if (number_of_process_interacts_set == 0) Volumes[volume_index]->p_physics->interact_control = 0; + else Volumes[volume_index]->p_physics->interact_control = 1; + + // If all are set, check if they need renormalization so that the sum is one. + if (number_of_process_interacts_set == Volumes[volume_index]->p_physics->number_of_processes) { + if (total_process_interact > 1.001 || total_process_interact < 0.999) { + for (process_index=0;process_indexp_physics->number_of_processes;process_index++) { + Volumes[volume_index]->p_physics->p_scattering_array[process_index].process_p_interact = Volumes[volume_index]->p_physics->p_scattering_array[process_index].process_p_interact/total_process_interact; + } + } + } else if ( number_of_process_interacts_set != 0) { + if (number_of_process_interacts_set == Volumes[volume_index]->p_physics->number_of_processes - 1) {// If all but one is set, it is an easy fix + Volumes[volume_index]->p_physics->p_scattering_array[index_of_lacking_process].process_p_interact = 1 - total_process_interact; + if (total_process_interact >= 1) { + printf("ERROR, material %s has a total interact_fraction above 1 and a process without an interact_fraction. Either set all so they can be renormalized, or have a sum below 1, so that the last can have 1 - sum.\n",Volumes[volume_index]->p_physics->name); + exit(1); + } + } else { + printf("ERROR, material %s needs to have all, all minus one or none of its processes with an interact_fraction \n",Volumes[volume_index]->p_physics->name); + exit(1); + } + } + + // Some initialization can only happen after the rotation matrix relative to the master is known + // Such initialization is placed in the geometry component, and executed here through a function pointer + Volumes[volume_index]->geometry.initialize_from_main_function(&Volumes[volume_index]->geometry); + + // Add pointer to geometry to Geometries + Geometries[volume_index] = &Volumes[volume_index]->geometry; + + // Initialize mask intersect list + Volumes[volume_index]->geometry.mask_intersect_list.num_elements = 0; + + // Here the mask_list and masked_by_list for the volume is updated from component index values to volume indexes + for (iterate=0;iterategeometry.mask_list.num_elements;iterate++) + Volumes[volume_index]->geometry.mask_list.elements[iterate] = find_on_int_list(geometry_component_index_list,Volumes[volume_index]->geometry.mask_list.elements[iterate]); + + for (iterate=0;iterategeometry.masked_by_list.num_elements;iterate++) + Volumes[volume_index]->geometry.masked_by_list.elements[iterate] = find_on_int_list(geometry_component_index_list,Volumes[volume_index]->geometry.masked_by_list.elements[iterate]); + + // If the volume is a mask, its volume number is added to the mask_volume_index list so volume index can be converted to mask_index. + if (Volumes[volume_index]->geometry.is_mask_volume == 1) Volumes[volume_index]->geometry.mask_index = mask_index_main; + if (Volumes[volume_index]->geometry.is_mask_volume == 1) mask_volume_index_list.elements[mask_index_main++] = volume_index; + + // Check all loggers assosiated with this volume and update the max_conditional_extend_index if necessary + //printf("reached max_test for volume %d \n",volume_index); + for (iterate=0;iterateloggers.num_elements;iterate++) { + //printf("iterate = %d \n",iterate); + for (process_index=0;process_indexloggers.p_logger_volume[iterate].num_elements;process_index++) { + //printf("process_index = %d \n",process_index); + if (Volumes[volume_index]->loggers.p_logger_volume[iterate].p_logger_process[process_index] != NULL) { + if (Volumes[volume_index]->loggers.p_logger_volume[iterate].p_logger_process[process_index]->logger_extend_index > max_conditional_extend_index) + max_conditional_extend_index = Volumes[volume_index]->loggers.p_logger_volume[iterate].p_logger_process[process_index]->logger_extend_index; + } + } + } + //printf("did max_test for volume %d\n",volume_index); + + + } + } // Initialization for each volume done + + // ------- Initialization of ray-tracing algorithm ------------------------------------ + + my_trace = malloc(max_number_of_processes*sizeof(double)); + my_trace_fraction_control = malloc(max_number_of_processes*sizeof(double)); + + // All geometries can have 2 intersections currently, when this changes the maximum number of solutions need to be reported to the Union_master. + number_of_solutions = &number_of_solutions_static; + component_error_msg = 0; + + // Pre allocated memory for destination list search + pre_allocated1 = malloc(number_of_volumes * sizeof(int)); + pre_allocated2 = malloc(number_of_volumes * sizeof(int)); + pre_allocated3 = malloc(number_of_volumes * sizeof(int)); + + // Allocate memory for logger_conditional_extend_array used in the extend section of the master component, if it is needed. + if (max_conditional_extend_index > -1) { + logger_conditional_extend_array = malloc((max_conditional_extend_index + 1)*sizeof(int)); + } + + // In this function different lists of volume indecies are generated. They are the key to the speed of the component and central for the logic. + // They use simple set algebra to generate these lists for each volume: + // Children list for volume n: Indicies of volumes that are entirely within the set described by volume n + // Overlap list for volume n: Indicies of volume that contains some of the set described by volume n (excluding volume n) + // Intersect check list for volume n: Indicies of volumes to check for intersection if a ray originates from volume n (is generated from the children and overlap lists) + // Parents list for volume n: Indicies of volumes that contain the entire set of volume n + // Grandparents lists for volume n: Indicies of volumes that contain the entire set of at least one parent of volume n + // Destination list for volume n: Indicies of volumes that could be the destination volume when a ray leaves volume n + // The overlap, parents and grandparents lists are local variables in the function, and not in the main scope. + + generate_lists(Volumes, &starting_lists, number_of_volumes, list_verbal); + + // Generate "safe starting list", which contains all volumes that the ray may enter from other components + // These are all volumes without scattering or absorption + + // Updating mask lists from volume index to global_mask_indices + // Filling out the masked_by list that uses mask indices + for (volume_index=0;volume_indexgeometry.masked_by_mask_index_list.num_elements = Volumes[volume_index]->geometry.masked_by_list.num_elements; + Volumes[volume_index]->geometry.masked_by_mask_index_list.elements = malloc(Volumes[volume_index]->geometry.masked_by_mask_index_list.num_elements * sizeof(int)); + for (iterate=0;iterategeometry.masked_by_list.num_elements;iterate++) + Volumes[volume_index]->geometry.masked_by_mask_index_list.elements[iterate] = find_on_int_list(mask_volume_index_list,Volumes[volume_index]->geometry.masked_by_list.elements[iterate]); + } + + // Optimizing speed of the within_which_volume search algorithm + int volume_index_main; // REVIEW_LINE + /* + for (volume_index_main=0;volume_index_maingeometry.destinations_logic_list.elements[0] = 0; + } + */ + + // Checking for equal priorities in order to alert the user to a potential input error + for (volume_index_main=0;volume_index_maingeometry.priority_value == Volumes[volume_index]->geometry.priority_value && volume_index_main != volume_index) { + if (Volumes[volume_index_main]->geometry.is_mask_volume == 0 && Volumes[volume_index]->geometry.is_mask_volume == 0) { + // Priority of masks do not matter + printf("ERROR in Union_master with name %s. The volumes named %s and %s have the same priority. Change the priorities so the one present in case of overlap has highest priority.\n",NAME_CURRENT_COMP,Volumes[volume_index_main]->name,Volumes[volume_index]->name); + exit(1); + } + } + } + + + // Printing the generated lists for all volumes. + MPI_MASTER( + if (verbal) printf("\n ---- Overview of the lists generated for each volume ---- \n"); + + + printf("List overview for surrounding vacuum\n"); + for (volume_index_main=0;volume_index_maingeometry.is_mask_volume == 0 || + volume_index_main,Volumes[volume_index_main]->geometry.is_masked_volume == 0 || + volume_index_main,Volumes[volume_index_main]->geometry.is_exit_volume == 0) { + printf("List overview for %s with %s shape made of %s\n", + Volumes[volume_index_main]->name, + Volumes[volume_index_main]->geometry.shape, + Volumes[volume_index_main]->p_physics->name); + } else { + printf("List overview for %s with shape %s\n", + Volumes[volume_index_main]->name, + Volumes[volume_index_main]->geometry.shape); + } + } + } + + if (verbal) sprintf(string_output,"Children for Volume %d",volume_index_main); + if (verbal) print_1d_int_list(Volumes[volume_index_main]->geometry.children,string_output); + + if (verbal) sprintf(string_output,"Direct_children for Volume %d",volume_index_main); + if (verbal) print_1d_int_list(Volumes[volume_index_main]->geometry.direct_children,string_output); + + if (verbal) sprintf(string_output,"Intersect_check_list for Volume %d",volume_index_main); + if (verbal) print_1d_int_list(Volumes[volume_index_main]->geometry.intersect_check_list,string_output); + + if (verbal) sprintf(string_output,"Mask_intersect_list for Volume %d",volume_index_main); + if (verbal) print_1d_int_list(Volumes[volume_index_main]->geometry.mask_intersect_list,string_output); + + if (verbal) sprintf(string_output,"Destinations_list for Volume %d",volume_index_main); + if (verbal) print_1d_int_list(Volumes[volume_index_main]->geometry.destinations_list,string_output); + + //if (verbal) sprintf(string_output,"Destinations_logic_list for Volume %d",volume_index_main); + //if (verbal) print_1d_int_list(Volumes[volume_index_main]->geometry.destinations_logic_list,string_output); + + if (verbal) sprintf(string_output,"Reduced_destinations_list for Volume %d",volume_index_main); + if (verbal) print_1d_int_list(Volumes[volume_index_main]->geometry.reduced_destinations_list,string_output); + + if (verbal) sprintf(string_output,"Next_volume_list for Volume %d",volume_index_main); + if (verbal) print_1d_int_list(Volumes[volume_index_main]->geometry.next_volume_list,string_output); + + if (verbal) { + if (volume_index_main != 0) + printf(" Is_vacuum for Volume %d = %d\n",volume_index_main,Volumes[volume_index_main]->p_physics->is_vacuum); + } + if (verbal) { + if (volume_index_main != 0) + printf(" is_mask_volume for Volume %d = %d\n",volume_index_main,Volumes[volume_index_main]->geometry.is_mask_volume); + } + if (verbal) { + if (volume_index_main != 0) + printf(" is_masked_volume for Volume %d = %d\n",volume_index_main,Volumes[volume_index_main]->geometry.is_masked_volume); + } + if (verbal) { + if (volume_index_main != 0) + printf(" is_exit_volume for Volume %d = %d\n",volume_index_main,Volumes[volume_index_main]->geometry.is_exit_volume); + } + + if (verbal) sprintf(string_output,"mask_list for Volume %d",volume_index_main); + if (verbal) print_1d_int_list(Volumes[volume_index_main]->geometry.mask_list,string_output); + + if (verbal) sprintf(string_output,"masked_by_list for Volume %d",volume_index_main); + if (verbal) print_1d_int_list(Volumes[volume_index_main]->geometry.masked_by_list,string_output); + + if (verbal) sprintf(string_output,"masked_by_mask_index_list for Volume %d",volume_index_main); + if (verbal) print_1d_int_list(Volumes[volume_index_main]->geometry.masked_by_mask_index_list,string_output); + + if (verbal) printf(" mask_mode for Volume %d = %d\n",volume_index_main,Volumes[volume_index_main]->geometry.mask_mode); + if (verbal) printf("\n"); + } + ) // End of MPI_MASTER + + + // Initializing intersection_time_table + // The intersection time table contains all information on intersection times for the current position/direction, and is cleared everytime a ray changes direction. + // Not all entries needs to be calculated, so there is a variable that keeps track of which intersection times have been calculated in order to avoid redoing that. + // When the intersections times are calculated for a volume, all future intersections are kept in the time table. + // Thus the memory allocation have to take into account how many intersections there can be with each volume, but it is currently set to 2, but can easily be changed. This may need to be reported by individual geometry components in the future. + + intersection_time_table.num_volumes = number_of_volumes; + + intersection_time_table.n_elements = (int*) malloc(intersection_time_table.num_volumes * sizeof(int)); + intersection_time_table.calculated = (int*) malloc(intersection_time_table.num_volumes * sizeof(int)); + intersection_time_table.intersection_times = (double**) malloc(intersection_time_table.num_volumes * sizeof(double)); + for (iterate = 0;iterate < intersection_time_table.num_volumes;iterate++){ + if (strcmp(Volumes[iterate]->geometry.shape, "mesh") == 0) { + intersection_time_table.n_elements[iterate] = (int) 100; // Meshes can have any number of intersections, here we allocate room for 100 + } else { + intersection_time_table.n_elements[iterate] = (int) 2; // number of intersection for all other geometries + } + if (iterate == 0) intersection_time_table.n_elements[iterate] = (int) 0; // number of intersection solutions + intersection_time_table.calculated[iterate] = (int) 0; // Initializing calculated logic + + if (iterate == 0) { + intersection_time_table.intersection_times[0] = NULL; + } + else { + intersection_time_table.intersection_times[iterate] = (double*) malloc(intersection_time_table.n_elements[iterate]*sizeof(double)); + for (solutions = 0;solutions < intersection_time_table.n_elements[iterate];solutions++) { + intersection_time_table.intersection_times[iterate][solutions] = -1.0; + } + } + } + + // If enabled, the tagging system tracks all different histories sampled by the program. + + // Initialize the tagging tree + // Allocate a list of host nodes with the same length as the number of volumes + + stop_creating_nodes = 0; stop_tagging_ray = 0; tagging_leaf_counter = 0; + if (enable_tagging) { + master_tagging_node_list.num_elements = number_of_volumes; + master_tagging_node_list.elements = malloc(master_tagging_node_list.num_elements * sizeof(struct tagging_tree_node_struct*)); + + // Initialize + for (volume_index=0;volume_index-1;log_index--) { + loggers_with_data_array.logger_pointers[log_index]->function_pointers.clear_temp(&loggers_with_data_array.logger_pointers[log_index]->data_union); + } + loggers_with_data_array.used_elements = 0; + } + + tagging_conditional_extend = 0; + for (iterate=0;iterategeometry.within_function(ray_position,&Volumes[mask_volume_index_list.elements[iterate]]->geometry) == 1) { + mask_status_list.elements[iterate] = 1; + } else { + mask_status_list.elements[iterate] = 0; + } + } + + #ifdef Union_trace_verbal_setting + print_1d_int_list(mask_status_list,"Initial mask status list"); + #endif + + // Now the initial current_volume can be found, which requires the up to date mask_status_list + current_volume = within_which_volume(ray_position,starting_lists.reduced_start_list,starting_lists.starting_destinations_list,Volumes,&mask_status_list,number_of_volumes,pre_allocated1,pre_allocated2,pre_allocated3); + + // Using the mask_status_list and the current volume, the current_mask_intersect_list_status can be made + // it contains the effective mask status of all volumes on the current volumes mask intersect list, which needs to be calculated, + // but only when the current volume or mask status changes, not under for example scattering inside the current volume + update_current_mask_intersect_status(¤t_mask_intersect_list_status, &mask_status_list, Volumes, ¤t_volume); + + #ifdef Union_trace_verbal_setting + printf("Starting current_volume = %d\n",current_volume); + #endif + + // Check if the ray appeared in an allowed starting volume, unless this check is disabled by the user for advanced cases + if (allow_inside_start == 0 && starting_lists.allowed_starting_volume_logic_list.elements[current_volume] == 0) { + printf("ERROR, ray ''teleported'' into Union component %s, if intentional, set allow_inside_start=1\n",NAME_CURRENT_COMP); + exit(1); + } + // Warn the user that rays have appeared inside a volume instead of outside as expected + if (starting_volume_warning == 0 && current_volume != 0) { + printf("WARNING: Ray started in volume ''%s'' rather than the surrounding vacuum in component %s. This warning is only shown once.\n",Volumes[current_volume]->name,NAME_CURRENT_COMP); + starting_volume_warning = 1; + } + + // Placing the new ray at the start of the tagging tree corresponding to current volume + // A history limit can be imposed so that no new nodes are created after this limit (may be necessary to fit in memory) + // Rays can still follow the nodes created before even when no additional nodes are created, but if a situation that + // requires a new node is encountered, stop_tagging_ray is set to 1, stopping further tagging and preventing the data + // for that ray to be used further. + if (enable_tagging) { + current_tagging_node = master_tagging_node_list.elements[current_volume]; + stop_tagging_ray = 0; // Allow this ray to be tracked + if (tagging_leaf_counter > history_limit) stop_creating_nodes = 1; + } + + #ifdef Union_trace_verbal_setting + if (enable_tagging) printf("current_tagging_node->intensity = %f\n",current_tagging_node->intensity); + if (enable_tagging) printf("current_tagging_node->number_of_rays = %d \n",current_tagging_node->number_of_rays); + #endif + + // Propagation loop including scattering + // This while loop continues until the ray leaves the ensamble of user defined volumes either through volume 0 + // or a dedicated exit volume. The loop is cancelled after a large number of iterations as a failsafe for errors. + // A single run of the loop will either be a propagation to the next volume along the path of the ray, or a + // scattering event at some point along the path of the ray in the current volume. + limit = 100000; + while (done == 0) { + limit--; + + #ifdef Union_trace_verbal_setting + printf("----------- START OF WHILE LOOP --------------------------------------\n"); + print_intersection_table(intersection_time_table); + printf("current_volume = %d \n",current_volume); + #endif + + // Calculating intersections with the necessary volumes. The relevant set of volumes depend on the current volume and the mask status array. + // First the volumes on the current volumes intersect list is checked, then its mask interset list. Before checking the volume itself, it is + // checked if any children of the current volume is intersected, in which case the intersection calculation with the current volume can be + // skipped. + + // Checking intersections for all volumes in the intersect list. + for (start=check=Volumes[current_volume]->geometry.intersect_check_list.elements;check-startgeometry.intersect_check_list.num_elements;check++) { + // This will leave check as a pointer to the intergers in the intersect_check_list and iccrement nicely + #ifdef Union_trace_verbal_setting + printf("Intersect_list = %d being checked \n",*check); + #endif + + if (intersection_time_table.calculated[*check] == 0) { + #ifdef Union_trace_verbal_setting + printf("running intersection for intersect_list with *check = %d \n",*check); + // if (trace_verbal) printf("r = (%f,%f,%f) v = (%f,%f,%f) \n",r[0],r[1],r[2],v[0],v[1],v[2]); + #endif + // Calculate intersections using intersect function imbedded in the relevant volume structure using parameters + // that are also imbedded in the structure. + geometry_output = Volumes[*check]->geometry.intersect_function(intersection_time_table.intersection_times[*check],number_of_solutions,r_start,v,&Volumes[*check]->geometry); + intersection_time_table.calculated[*check] = 1; + // if (trace_verbal) printf("succesfully calculated intersection times for volume *check = %d \n",*check); + } + } + + // Mask update: add additional loop for checking intersections with masked volumes depending on mask statuses + for (mask_iterate=0;mask_iterategeometry.mask_intersect_list.num_elements;mask_iterate++) { + if (current_mask_intersect_list_status.elements[mask_iterate] == 1) { // Only check if the mask is active + #ifdef Union_trace_verbal_setting + printf("Mask Intersect_list = %d being checked \n",Volumes[current_volume]->geometry.mask_intersect_list.elements[mask_iterate]); + #endif + if (intersection_time_table.calculated[Volumes[current_volume]->geometry.mask_intersect_list.elements[mask_iterate]] == 0) { + #ifdef Union_trace_verbal_setting + printf("running intersection for mask_intersect_list element = %d \n",Volumes[current_volume]->geometry.mask_intersect_list.elements[mask_iterate]); + // printf("r = (%f,%f,%f) v = (%f,%f,%f) \n",r[0],r[1],r[2],v[0],v[1],v[2]); + #endif + // Calculate intersections using intersect function imbedded in the relevant volume structure using parameters + // that are also imbedded in the structure. + geometry_output = Volumes[Volumes[current_volume]->geometry.mask_intersect_list.elements[mask_iterate]]->geometry.intersect_function(intersection_time_table.intersection_times[Volumes[current_volume]->geometry.mask_intersect_list.elements[mask_iterate]],number_of_solutions,r_start,v,&Volumes[Volumes[current_volume]->geometry.mask_intersect_list.elements[mask_iterate]]->geometry); + intersection_time_table.calculated[Volumes[current_volume]->geometry.mask_intersect_list.elements[mask_iterate]] = 1; + // if (trace_verbal) printf("succesfully calculated intersection times for volume *check = %d \n",*check); + } + } + } + + // Checking if there are intersections with children of current volume, which means there is an intersection before current_volume, and thus can be skipped. But only if they have not been overwritten. In case current_volume is 0, there is no need to do this regardless. + if (current_volume != 0 && intersection_time_table.calculated[current_volume] == 0) { + #ifdef Union_trace_verbal_setting + printf("Checking if children of current_volume = %d have intersections. \n",current_volume); + #endif + intersection_with_children = 0; + //for (start = check = Volumes[current_volume]->geometry.direct_children.elements;check - start < Volumes[current_volume]->geometry.children.num_elements;check++) { // REVIEW LINE. Caused bug with masks. + for (start = check = Volumes[current_volume]->geometry.children.elements;check - start < Volumes[current_volume]->geometry.children.num_elements;check++) { + #ifdef Union_trace_verbal_setting + printf("Checking if child %d of current_volume = %d have intersections. \n",*check,current_volume); + #endif + // Only check the first of the two results in the intersection table, as they are ordered, and the second is of no interest + if (intersection_time_table.calculated[*check] == 1 && intersection_time_table.intersection_times[*check][0] > time_propagated_without_scattering) { + // If this child is masked, its mask status need to be 1 in order to be taken into account + if (Volumes[*check]->geometry.is_masked_volume == 0) { + #ifdef Union_trace_verbal_setting + printf("Found an child of current_volume with an intersection. Skips calculating for current_volume \n"); + #endif + intersection_with_children = 1; + break; // No need to check more, if there is just one it is not necessary to calculate intersection with current_volume yet + } else { + #ifdef Union_trace_verbal_setting + printf("Found an child of current_volume with an intersection, but it is masked. Check to see if it can skip calculating for current_volume \n"); + #endif + + if (Volumes[*check]->geometry.mask_mode == 2) { // ANY mask mode + tree_next_volume = 0; + for (mask_start=mask_check=Volumes[*check]->geometry.masked_by_mask_index_list.elements;mask_check-mask_startgeometry.masked_by_mask_index_list.num_elements;mask_check++) { + if (mask_status_list.elements[*mask_check] == 1) { + intersection_with_children = 1; + break; + } + } + } else { // ALL mask mode + intersection_with_children = 1; + for (mask_start=mask_check=Volumes[*check]->geometry.masked_by_mask_index_list.elements;mask_check-mask_startgeometry.masked_by_mask_index_list.num_elements;mask_check++) { + if (mask_status_list.elements[*mask_check] == 0) { + intersection_with_children = 0; + break; + } + } + } + #ifdef Union_trace_verbal_setting + printf("The mask status was 1, can actually skip intersection calculation for current volume \n"); + #endif + if (intersection_with_children == 1) break; + } + } + } + #ifdef Union_trace_verbal_setting + printf("intersection_with_children = %d \n",intersection_with_children); + #endif + if (intersection_with_children == 0) { + geometry_output = Volumes[current_volume]->geometry.intersect_function(intersection_time_table.intersection_times[current_volume],number_of_solutions,r_start,v,&Volumes[current_volume]->geometry); + intersection_time_table.calculated[current_volume] = 1; + } + } + + // At this point, intersection_time_table is updated with intersection times of all possible intersections. + #ifdef Union_trace_verbal_setting + print_intersection_table(intersection_time_table); + #endif + + // Next task is to find the next intersection time. The next intersection must be greater than the time_propagated_without_scattering (0 at start of loop) + // Loops are eqvialent to the 3 intersection calculation loops already completed + + // First loop for checking intersect_check_list + time_found = 0; + for (start=check=Volumes[current_volume]->geometry.intersect_check_list.elements;check-startgeometry.intersect_check_list.num_elements;check++) { + for (solution = 0;solution time_propagated_without_scattering && intersection_time < min_intersection_time) { + min_intersection_time = intersection_time;min_solution = solution;min_volume = *check; + } + } else { + if ((intersection_time = intersection_time_table.intersection_times[*check][solution]) > time_propagated_without_scattering) { + min_intersection_time = intersection_time;min_solution = solution;min_volume = *check; + time_found = 1; + } + } + } + } + + // Now check the masked_intersect_list, but only the ones that are currently active + for (mask_iterate=0;mask_iterategeometry.mask_intersect_list.num_elements;mask_iterate++) { + if (current_mask_intersect_list_status.elements[mask_iterate] == 1) { + for (solution = 0;solutiongeometry.mask_intersect_list.elements[mask_iterate]];solution++) { + if (time_found) { + if ((intersection_time = intersection_time_table.intersection_times[Volumes[current_volume]->geometry.mask_intersect_list.elements[mask_iterate]][solution]) > time_propagated_without_scattering && intersection_time < min_intersection_time) { + min_intersection_time = intersection_time;min_solution = solution;min_volume = Volumes[current_volume]->geometry.mask_intersect_list.elements[mask_iterate]; + } + } else { + if ((intersection_time = intersection_time_table.intersection_times[Volumes[current_volume]->geometry.mask_intersect_list.elements[mask_iterate]][solution]) > time_propagated_without_scattering) { + min_intersection_time = intersection_time;min_solution = solution;min_volume = Volumes[current_volume]->geometry.mask_intersect_list.elements[mask_iterate]; + time_found = 1; + } + } + } + } + } + + // And check the current_volume + for (solution = 0;solution time_propagated_without_scattering && intersection_time < min_intersection_time) { + min_intersection_time = intersection_time;min_solution = solution;min_volume = current_volume; + } + } else { + if ((intersection_time = intersection_time_table.intersection_times[current_volume][solution]) > time_propagated_without_scattering) { + min_intersection_time = intersection_time;min_solution = solution;min_volume = current_volume; + time_found = 1; + } + } + } + + #ifdef Union_trace_verbal_setting + printf("min_intersection_time = %f \n",min_intersection_time); + printf("min_solution = %d \n",min_solution); + printf("min_volume = %d \n",min_volume); + printf("time_found = %d \n",time_found); + #endif + + // If a time is found, propagation continues, and it will be checked if a scattering occurs before the next intersection. + // If a time is not found, the ray must be leaving the ensamble of volumes and the loop will be concluded + if (time_found) { + time_to_boundery = min_intersection_time - time_propagated_without_scattering; // calculate the time remaining before the next intersection + scattering_event = 0; // Assume a scattering event will not occur + + // Check if a scattering event should occur + if (current_volume != 0) { // Volume 0 is always vacuum, and if this is the current volume, an event will not occur + if (Volumes[current_volume]->p_physics->number_of_processes == 0) { // If there are no processes, the volume could be vacuum or an absorber + if (Volumes[current_volume]->p_physics->is_vacuum == 0) + // This volume does not have physical processes but does have an absorption cross section, so the ray weight is reduced accordingly + p *= exp(-Volumes[current_volume]->p_physics->my_a*2200*time_to_boundery); + + + //#ifdef Union_trace_verbal_setting + //printf("name of material: %s \n",Volumes[current_volume]->name); + //printf("length to boundery = %f\n",length_to_boundery); + //printf("absorption cross section = %f\n",Volumes[current_volume]->p_physics->my_a); + //printf("chance to get through this length of absorber: %f \%\n",100*exp(-Volumes[current_volume]->p_physics->my_a*length_to_boundery)); + //#endif + + } else { + // Since there is a non-zero number of processes in this material, all the scattering cross section for these are calculated + my_sum = 0; k[0] = V2K*vx; k[1] = V2K*vy; k[2] = V2K*vz; p_my_trace = my_trace; wavevector = coords_set(k[0],k[1],k[2]); + for (process_start = process = Volumes[current_volume]->p_physics->p_scattering_array;process - process_start < Volumes[current_volume]->p_physics->number_of_processes;process++) { + + if (Volumes[current_volume]->p_physics->p_scattering_array[process - process_start].non_isotropic_rot_index != -1) { + // If the process is not isotropic, the wavevector is transformed into the local coordinate system of the process + wavevector_rotated = rot_apply(Volumes[current_volume]->geometry.process_rot_matrix_array[Volumes[current_volume]->p_physics->p_scattering_array[process - process_start].non_isotropic_rot_index],wavevector); + + coords_get(wavevector_rotated,&k_rotated[0],&k_rotated[1],&k_rotated[2]); + + } else { + k_rotated[0] = k[0]; k_rotated[1] = k[1]; k_rotated[2] = k[2]; + } + + // Find correct focus_data_array index for this volume/process + focus_data_index = Volumes[current_volume]->geometry.focus_array_indices.elements[process - process_start]; + + // Call the probability for scattering function assighed to this specific procress (the process pointer is updated in the for loop) + process->probability_for_scattering_function(p_my_trace,k_rotated,process->data_transfer,&Volumes[current_volume]->geometry.focus_data_array.elements[focus_data_index]); + + my_sum += *p_my_trace; + #ifdef Union_trace_verbal_setting + printf("my_trace = %f, my_sum = %f\n",*p_my_trace,my_sum); + #endif + p_my_trace++; // increment the pointer so that it point to the next element (max number of process in any material is allocated) + } + + #ifdef Union_trace_verbal_setting + printf("time_propagated_without_scattering = %f.\n",time_propagated_without_scattering); + printf("v_length = %f.\n",v_length); + #endif + + length_to_boundery = time_to_boundery * v_length; + + #ifdef Union_trace_verbal_setting + printf("exp(- length_to_boundery*my_sum) = %f. length_to_boundery = %f. my_sum = %f.\n",exp(-length_to_boundery*my_sum),length_to_boundery,my_sum); + #endif + + // Selecting if a scattering takes place, and what scattering process. + // This section have too many if statements, and unessecary calculations + // Could make seperate functions for p_interact on/off and interact_fraction on/off, + // and set function pointers to these in initialize, thus avoiding many unessecary if statements and calculations of x/x. + + my_sum_plus_abs = my_sum + Volumes[current_volume]->p_physics->my_a*(2200/v_length); + + if (my_sum < 1E-18) { + // The scattering cross section is basicly zero, no scattering should occur. + scattering_event = 0; + p *= exp(-length_to_boundery*my_sum_plus_abs); // Correct for absorption and the almost zero scattering + } else if (length_to_boundery < safty_distance2) { + // Too close to boundery to safly make another scattering, attenuate + p *= exp(-length_to_boundery*my_sum_plus_abs); // Attentuate the beam for the small distance + scattering_event = 0; + } else { + // The scattering cross section is above zero and the distance to the boundery is sufficient for a scattering + if (Volumes[current_volume]->geometry.geometry_p_interact != 0) { + // a fraction of the beam (geometry_p_interact) is forced to scatter + real_transmission_probability = exp(-length_to_boundery*my_sum_plus_abs); + mc_transmission_probability = (1.0 - Volumes[current_volume]->geometry.geometry_p_interact); + if ((scattering_event = (rand01() > mc_transmission_probability))) { + // Scattering event happens, this is the correction for the weight + p *= (1.0-real_transmission_probability)/(1.0-mc_transmission_probability); // Absorption simulated in weight + // Find length to next scattering knowing the ray will scatter. + length_to_scattering = safty_distance -log(1.0 - rand0max((1.0 - exp(-my_sum_plus_abs*(length_to_boundery-safty_distance2))))) / my_sum_plus_abs; + } else { + // Scattering event does not happen, this is the appropriate correction + p *= real_transmission_probability/mc_transmission_probability; // Absorption simulated in weight + } + } else { + // probability to scatter is the natural value + if(my_sum*length_to_boundery < 1e-6) { // Scattering probability very small, linear method is used as exponential is unreliable + if (length_to_boundery > safty_distance2) { + if (rand01() < exp(-length_to_boundery*my_sum_plus_abs)) { + // Scattering happens, use linear description to select scattering position + length_to_scattering = safty_distance + rand0max(length_to_boundery - safty_distance2); + // Weight factor necessary to correct for using the linear scattering position distribution + p *= length_to_boundery*my_sum*exp(-length_to_scattering*my_sum_plus_abs); // Absorption simulated in weight + scattering_event = 1; + } else scattering_event = 0; + } else { + // The distance is too short to reliably make a scattering event (in comparison to accuraccy of intersect functions) + p *= exp(-length_to_boundery*my_sum_plus_abs); // Attentuate the beam for the small distance + scattering_event = 0; + } + } else { + // Strong scattering, use exponential description to select scattering position between safetydistance and infinity + length_to_scattering = safty_distance -log(1 - rand01() ) / my_sum_plus_abs; + // Scattering happens if the scattering position is before the boundery (and safty distance) + if (length_to_scattering < length_to_boundery - safty_distance) scattering_event = 1; + else scattering_event = 0; + } + } + + if (scattering_event == 1) { + // Adjust weight for absorption + p *= my_sum/my_sum_plus_abs; + // Safety feature, alert in case of nonsense my results / negative absorption + if (my_sum/my_sum_plus_abs > 1.0) printf("WARNING: Absorption weight factor above 1! Should not happen! \n"); + // Select process + if (Volumes[current_volume]->p_physics->number_of_processes == 1) { // trivial case + // Select the only available process, which will always have index 0 + selected_process = 0; + } else { + if (Volumes[current_volume]->p_physics->interact_control == 1) { + // Interact_fraction is used to influence the choice of process in this material + mc_prop = rand01();culmative_probability=0;total_process_interact=1.0; + + // If any of the processes have probability 0, they are excluded from the selection + for (iterate = 0;iterate < Volumes[current_volume]->p_physics->number_of_processes;iterate++) { + if (my_trace[iterate] < 1E-18) { + // When this happens, the total force probability is corrected and the probability for this particular instance is set to 0 + total_process_interact -= Volumes[current_volume]->p_physics->p_scattering_array[iterate].process_p_interact; + my_trace_fraction_control[iterate] = 0; + // In cases where my_trace is not zero, the forced fraction is still used. + } else my_trace_fraction_control[iterate] = Volumes[current_volume]->p_physics->p_scattering_array[iterate].process_p_interact; + } + // Randomly select a process using the weights stored in my_trace_fraction_control divided by total_process_interact + for (iterate = 0;iterate < Volumes[current_volume]->p_physics->number_of_processes;iterate++) { + culmative_probability += my_trace_fraction_control[iterate]/total_process_interact; + if (culmative_probability > mc_prop) { + selected_process = iterate; + p *= (my_trace[iterate]/my_sum)*(total_process_interact/my_trace_fraction_control[iterate]); + break; + } + } + + } else { + // Select a process based on their relative attenuations factors + mc_prop = rand01();culmative_probability=0; + for (iterate = 0;iterate < Volumes[current_volume]->p_physics->number_of_processes;iterate++) { + culmative_probability += my_trace[iterate]/my_sum; + if (culmative_probability > mc_prop) { + selected_process = iterate; + break; + } + } + } + } + } // end of select process + } + + } + } // Done checking for scttering event and in case of scattering selecting a process + + if (scattering_event == 1) { + #ifdef Union_trace_verbal_setting + printf("SCATTERING EVENT \n"); + printf("current_volume = %d \n",current_volume); + printf("r = (%f,%f,%f) v = (%f,%f,%f) \n",r[0],r[1],r[2],v[0],v[1],v[2]); + // printf("did scatter: my_trace = %E = %f \n",my_trace[selected_process],my_trace[selected_process]); + #endif + + // Calculate the time to scattering + time_to_scattering = length_to_scattering/v_length; + + #ifdef Union_trace_verbal_setting + printf("time to scattering = %2.20f \n",time_to_scattering); + #endif + + //#ifdef Union_trace_verbal_setting + //printf("length to boundery = %f, length to scattering = %f \n",length_to_boundery,length_to_scattering); + //#endif + + //PROP_DT(time_to_scattering); // May be replace by version without gravity + + // Reduce the double book keeping done here // REVIEW LINE + x += time_to_scattering*vx; y += time_to_scattering*vy; z += time_to_scattering*vz; t += time_to_scattering; + r_start[0] = x; r_start[1] = y; r_start[2] = z; + r[0] = x; r[1] = y; r[2] = z; + ray_position = coords_set(x,y,z); + ray_velocity = coords_set(vx,vy,vz); + + // Safe check that should be unecessary. Used to fine tune how close to the edge of a volume a scattering event is allowed to take place (1E-14 m away currently). + if (Volumes[current_volume]->geometry.within_function(ray_position,&Volumes[current_volume]->geometry) == 0) { + printf("\nERROR, propagated out of current volume instead of to a point within!\n"); + printf("length_to_scattering_specified = %2.20f\n length propagated = %2.20f\n length_to_boundery = %2.20f \n current_position = (%lf,%lf,%lf) \n",length_to_scattering,sqrt(time_to_scattering*time_to_scattering*vx*vx+time_to_scattering*time_to_scattering*vy*vy+time_to_scattering*time_to_scattering*vz*vz),length_to_boundery,x,y,z); + + volume_index = within_which_volume(ray_position,starting_lists.reduced_start_list,starting_lists.starting_destinations_list,Volumes,&mask_status_list,number_of_volumes,pre_allocated1,pre_allocated2,pre_allocated3); + + printf("Debug info: Volumes[current_volume]->name = %s, but now inside volume number %d named %s.\n",Volumes[current_volume]->name,volume_index,Volumes[volume_index]->name); + printf("Ray absorbed \n"); + ABSORB; + } + + // Save information before scattering event needed in logging section + p_old = p; + k_old[0] = k[0];k_old[1] = k[1];k_old[2] = k[2]; + + // Find correct focus_data_array index for this volume/process + focus_data_index = Volumes[current_volume]->geometry.focus_array_indices.elements[selected_process]; + + // Rotation to local process coordinate system (for non isotropic processes) + if (Volumes[current_volume]->p_physics->p_scattering_array[selected_process].non_isotropic_rot_index != -1) { + ray_velocity_rotated = rot_apply(Volumes[current_volume]->geometry.process_rot_matrix_array[Volumes[current_volume]->p_physics->p_scattering_array[selected_process].non_isotropic_rot_index],ray_velocity); + } else { + ray_velocity_rotated = ray_velocity; + } + + // test_physics_scattering(double *k_final, double *k_initial, union data_transfer_union data_transfer) { + //k[0] = V2K*ray_velocity.x; k[1] = V2K*ray_velocity.y; k[2] = V2K*ray_velocity.z; + coords_get(coords_scalar_mult(ray_velocity_rotated,V2K),&k[0],&k[1],&k[2]); + + // I may replace a intial and final k with one instance that serves as both input and output + if (0 == Volumes[current_volume]->p_physics->p_scattering_array[selected_process].scattering_function(k_new,k,&p,Volumes[current_volume]->p_physics->p_scattering_array[selected_process].data_transfer,&Volumes[current_volume]->geometry.focus_data_array.elements[0])) { + /* + // PowderN and Single_crystal requires the option of absorbing the neutron, which is weird. If there is a scattering probability, there should be a new direction. + // It can arise from need to simplify sampling process and end up in cases where weight factor is 0, and the ray should be absorbed in these cases + printf("ERROR: Union_master: %s.Absorbed ray because scattering function returned 0 (error/absorb)\n",NAME_CURRENT_COMP); + component_error_msg++; + if (component_error_msg > 100) { + printf("To many errors encountered, exiting. \n"); + exit(1); + } + */ + ABSORB; + } + + // Update velocity using k + ray_velocity_rotated = coords_set(K2V*k_new[0],K2V*k_new[1],K2V*k_new[2]); + + // Transformation back to main coordinate system (maybe one should only do this when multiple scattering in that volume was over, especially if there is only one non isotropic frame) + if (Volumes[current_volume]->p_physics->p_scattering_array[selected_process].non_isotropic_rot_index != -1) { + ray_velocity_final = rot_apply(Volumes[current_volume]->geometry.transpose_process_rot_matrix_array[Volumes[current_volume]->p_physics->p_scattering_array[selected_process].non_isotropic_rot_index],ray_velocity_rotated); + } else { + ray_velocity_final = ray_velocity_rotated; + } + + // Write velocity to global variable (temp, only really necessary at final) + //vx = ray_velocity.x; vy = ray_velocity.y; vz = ray_velocity.z; + coords_get(ray_velocity_final,&vx,&vy,&vz); + + // Write velocity in array format as it is still used by intersect functions (temp, they need to be updated to ray_position / ray_velocity) + v[0] = vx; v[1] = vy; v[2] = vz; + v_length = sqrt(vx*vx+vy*vy+vz*vz); + k_new[0] = V2K*vx; k_new[1] = V2K*vy; k_new[2] = V2K*vz; + if (verbal) if (v_length < 1) printf("velocity set to less than 1\n"); + + #ifdef Union_trace_verbal_setting + printf("Running logger system for specific volumes \n"); + #endif + // Logging for detector components assosiated with this volume + for (log_index=0;log_indexloggers.num_elements;log_index++) { + //printf("logging time! Volume specific version. Volume name = %s \n",Volumes[current_volume]->name); + //printf(" log_index = %d \n",log_index); + if (Volumes[current_volume]->loggers.p_logger_volume[log_index].p_logger_process[selected_process] != NULL) { + // Technically the scattering function could edit k, the wavevector before the scattering, even though there would be little point to doing that. + // Could save a secure copy and pass that instead to be certain that no scattering process accidently tampers with the logging. + // printf(" the logging function pointer was not NULL \n"); + // PV (number of time scattered in this volume/process combination is not recorded. Need to expand scattering_flag to contain 2D, volume and process + + // This function calls a logger function which in turn stores some data among the passed, and possibly performs some basic data analysis + Volumes[current_volume]->loggers.p_logger_volume[log_index].p_logger_process[selected_process]->function_pointers.active_record_function(&ray_position,k_new,k_old,p,p_old,t,scattered_flag[current_volume],scattered_flag_VP[current_volume][selected_process],number_of_scattering_events,Volumes[current_volume]->loggers.p_logger_volume[log_index].p_logger_process[selected_process],&loggers_with_data_array); + // If the logging component have a conditional attatched, the collected data will be written to a temporary place + // At the end of the rays life, it will be checked if the condition is met + // if it is met, the temporary data is transfered to permanent, and temp is cleared. + // if it is not met, the temporary data is cleared. + } + } + + #ifdef Union_trace_verbal_setting + printf("Running logger system for all volumes \n"); + #endif + for (log_index=0;log_indexfunction_pointers.active_record_function(&ray_position,k_new,k_old,p,p_old,t,scattered_flag[current_volume],scattered_flag_VP[current_volume][selected_process],number_of_scattering_events,global_all_volume_logger_list.elements[log_index].logger,&loggers_with_data_array); + } + + + SCATTER; + ++number_of_scattering_events; + ++scattered_flag[current_volume]; + ++scattered_flag_VP[current_volume][selected_process]; + + + // Empty intersection time lists + clear_intersection_table(&intersection_time_table); + time_propagated_without_scattering = 0.0; + #ifdef Union_trace_verbal_setting + printf("SCATTERED SUCSSESFULLY \n"); + printf("r = (%f,%f,%f) v = (%f,%f,%f) \n",x,y,z,vx,vy,vz); + + if (enable_tagging && stop_tagging_ray == 0) printf("Before new process node: current_tagging_node->intensity = %f\n",current_tagging_node->intensity); + if (enable_tagging && stop_tagging_ray == 0) printf("Before new process node: current_tagging_node->number_of_rays = %d\n",current_tagging_node->number_of_rays); + #endif + + if (enable_tagging && stop_tagging_ray == 0) + current_tagging_node = goto_process_node(current_tagging_node,selected_process,Volumes[current_volume],&stop_tagging_ray,stop_creating_nodes); + + #ifdef Union_trace_verbal_setting + if (enable_tagging && stop_tagging_ray == 0) printf("After new process node: current_tagging_node->intensity = %f\n",current_tagging_node->intensity); + if (enable_tagging && stop_tagging_ray == 0) printf("After new process node: current_tagging_node->number_of_rays = %d\n",current_tagging_node->number_of_rays); + #endif + + } else { + #ifdef Union_trace_verbal_setting + printf("Propagate out of volume %d\n", current_volume); + printf("r = (%f,%f,%f) v = (%f,%f,%f) \n",x,y,z,vx,vy,vz); + #endif + // Propagate neutron to found minimum time + // PROP_DT(min_intersection_time - time_propagated_without_scattering); + //time_to_boundery = min_intersection_time - time_propagated_without_scattering; + x += time_to_boundery*vx; + y += time_to_boundery*vy; + z += time_to_boundery*vz; + t += time_to_boundery; + r[0] = x; r[1] = y; r[2] = z; + ray_position = coords_set(x,y,z); + ray_velocity = coords_set(vx,vy,vz); + + /* + // Absorption moved to before testing if scattering occurs + if (current_volume != 0) { + if (Volumes[current_volume]->p_physics->is_vacuum == 0) { + // Absorption is done explicitly when propagating out of a volume, but between all scattering events is done implicitly + + // Old version + //length_to_boundery = (min_intersection_time - time_propagated_without_scattering) * v_length; + //p *= exp(-Volumes[current_volume]->p_physics->my_a*(2200/v_length)*length_to_boundery); + + if (Volumes[current_volume]->p_physics->number_of_processes == 0) { + // Optimized version + //p *= exp(-Volumes[current_volume]->p_physics->my_a*2200*time_to_boundery); + + //printf("name of material: %s \n",Volumes[current_volume]->name); + //printf("length to boundery = %f\n",length_to_boundery); + //printf("absorption cross section = %f\n",Volumes[current_volume]->p_physics->my_a); + //printf("chance to get through this length of absorber: %f \%\n",100*exp(-Volumes[current_volume]->p_physics->my_a*length_to_boundery)); + } + } + } + */ + + time_propagated_without_scattering = min_intersection_time; + SCATTER; // For debugging purposes + #ifdef Union_trace_verbal_setting + printf("r = (%f,%f,%f) v = (%f,%f,%f) \n",x,y,z,vx,vy,vz); + #endif + // Remove this entry from the intersection_time_table + intersection_time_table.intersection_times[min_volume][min_solution] = -1; + + // Use destination list for corresponding intersection entry n,i) to find next volume + #ifdef Union_trace_verbal_setting + printf("PROPAGATION FROM VOLUME %d \n",current_volume); + #endif + if (min_volume == current_volume) { + #ifdef Union_trace_verbal_setting + printf("min_volume == current_volume \n"); + #endif + // List approach to finding the next volume. + // When the ray intersects the current volume, the next volume must be on the destination list of the current volume + // However, the reduced_destination_list can be investigated first, and depending on the results, the + // direct children of the volumes on the reduced destination list are investigated. + // In the worst case, all direct children are investigated, which is eqvivalent to the entire destination list. + // There is however a certain overhead in the logic needed to set up this tree, avoid duplicates of direct children, and so on. + // This method is only faster than just checking the destination list when there are direct children (nested structures), + // but in general the tree method scales better with complexity, and is only slightly slower in simple cases. + + if (Volumes[current_volume]->geometry.destinations_list.num_elements == 1) + tree_next_volume = Volumes[current_volume]->geometry.destinations_list.elements[0]; + else { + ray_position = coords_set(x,y,z); + ray_velocity = coords_set(vx,vy,vz); + tree_next_volume = within_which_volume(ray_position,Volumes[current_volume]->geometry.reduced_destinations_list,Volumes[current_volume]->geometry.destinations_list,Volumes,&mask_status_list,number_of_volumes,pre_allocated1,pre_allocated2,pre_allocated3); + } + + #ifdef Union_trace_verbal_setting + if (trace_verbal) printf("tree method moves from %d to %d\n",current_volume,tree_next_volume); + + if (enable_tagging && stop_tagging_ray == 0) printf("Before new tree volume node: current_tagging_node->intensity = %f\n",current_tagging_node->intensity); + if (enable_tagging && stop_tagging_ray == 0) printf("Before new tree volume node: current_tagging_node->number_of_rays = %d\n",current_tagging_node->number_of_rays); + #endif + + if (enable_tagging && stop_tagging_ray == 0) + current_tagging_node = goto_volume_node(current_tagging_node, current_volume, tree_next_volume, Volumes,&stop_tagging_ray,stop_creating_nodes); + + #ifdef Union_trace_verbal_setting + if (enable_tagging && stop_tagging_ray == 0) printf("After new tree volume node: current_tagging_node->intensity = %f\n",current_tagging_node->intensity); + if (enable_tagging && stop_tagging_ray == 0) printf("After new tree volume node: current_tagging_node->number_of_rays = %d\n",current_tagging_node->number_of_rays); + #endif + + // Set next volume to the solution found in the tree method + current_volume = tree_next_volume; + update_current_mask_intersect_status(¤t_mask_intersect_list_status, &mask_status_list, Volumes, ¤t_volume); + #ifdef Union_trace_verbal_setting + print_1d_int_list(current_mask_intersect_list_status,"Updated current_mask_intersect_list_status"); + #endif + + + // Debugging phase + /* + if (tree_next_volume == 0) { + volume_0_found=0; + for (start = check = Volumes[current_volume]->geometry.destinations_list.elements;check - start < Volumes[current_volume]->geometry.destinations_list.num_elements;check++) { + if (*check == 0) { + volume_0_found = 1; + } + } + if (volume_0_found==0) printf("ERROR The within_which_volume function returned 0 for a volume where volume 0 is not on the destination list!\n"); + } + */ + + } else { + #ifdef Union_trace_verbal_setting + if (enable_tagging && stop_tagging_ray == 0) printf("Before new intersection volume node: current_tagging_node->intensity = %f\n",current_tagging_node->intensity); + if (enable_tagging && stop_tagging_ray == 0) printf("Before new intersection volume node: current_tagging_node->number_of_rays = %d\n",current_tagging_node->number_of_rays); + #endif + + //if (enable_tagging) current_tagging_node = goto_volume_node(current_tagging_node, current_volume, min_volume, Volumes); + + + + // Mask update: If the min_volume is not a mask, things are simple, current_volume = min_volume. + // however, if it is a mask, the mask status will switch. + // if the mask status becomes one, the masked volumes inside may be the next volume (unless they are children of the mask) + // if the mask status becomes zero (and the current volume is masked by min_volume), the destinations list of the mask is searched + // if the mask status becomes zero (and the current volume is NOT masked by min volume), the current volume doesn't change + + + if (Volumes[min_volume]->geometry.is_mask_volume == 0) { + #ifdef Union_trace_verbal_setting + printf("Min volume is not a mask, next volume = min volume\n"); + #endif + if (enable_tagging && stop_tagging_ray == 0) current_tagging_node = goto_volume_node(current_tagging_node, current_volume, min_volume, Volumes,&stop_tagging_ray,stop_creating_nodes); + current_volume = min_volume; + //update_current_mask_intersect_status(¤t_mask_intersect_list_status, &mask_status_list, Volumes, ¤t_volume); + } else { + #ifdef Union_trace_verbal_setting + printf("Current volume is not a mask, complex decision tree\n"); + #endif + if (mask_status_list.elements[Volumes[min_volume]->geometry.mask_index] == 1) { + // We are leaving the mask, change the status + #ifdef Union_trace_verbal_setting + printf("mask status changed from 1 to 0 as a mask is left\n"); + #endif + mask_status_list.elements[Volumes[min_volume]->geometry.mask_index] = 0; + // If the current volume is masked by this mask, run within_which_volume using the masks destination list, otherwise keep the current volume + //if (on_int_list(Volumes[min_volume]->geometry.mask_list,current_volume)) + if (on_int_list(Volumes[current_volume]->geometry.masked_by_list,min_volume) == 1) { + #ifdef Union_trace_verbal_setting + printf("The current volume was masked by this mask, and my need updating\n"); + #endif + // In case of ANY mode, need to see if another mask on the masked_by list of the current volume is active, and if so, nothing happens + need_to_run_within_which_volume = 1; + if (Volumes[current_volume]->geometry.mask_mode == 2) { + for (mask_start=mask_check=Volumes[current_volume]->geometry.masked_by_mask_index_list.elements;mask_check-mask_startgeometry.masked_by_mask_index_list.num_elements;mask_check++) { + if (mask_status_list.elements[*mask_check] == 1) { + // Nothing needs to be done, the effective mask status of the current volume is still 1 + need_to_run_within_which_volume = 0; + break; + } + } + } + if (need_to_run_within_which_volume == 1) { + #ifdef Union_trace_verbal_setting + printf("The current volume was masked by this mask, and does need updating\n"); + #endif + if (Volumes[min_volume]->geometry.destinations_list.num_elements == 1) { + #ifdef Union_trace_verbal_setting + printf("Only one element in the destination tree of the mask\n"); + #endif + // If there is only one element on the destinations list (quite common) there is no reason to run within_which_volume + // Instead the mask status is calculated here + if (Volumes[Volumes[min_volume]->geometry.destinations_list.elements[0]]->geometry.is_masked_volume == 1) { + #ifdef Union_trace_verbal_setting + printf("The one element is however masked, so the mask status need to be calculated\n"); + #endif + // figure out the effective mask status of this volume + if (Volumes[Volumes[min_volume]->geometry.destinations_list.elements[0]]->geometry.mask_mode == 2) { // ANY mask mode + tree_next_volume = 0; + for (mask_start=mask_check=Volumes[Volumes[min_volume]->geometry.destinations_list.elements[0]]->geometry.masked_by_mask_index_list.elements;mask_check-mask_startgeometry.destinations_list.elements[0]]->geometry.masked_by_mask_index_list.num_elements;mask_check++) { + if (mask_status_list.elements[*mask_check] == 1) { + tree_next_volume = Volumes[min_volume]->geometry.destinations_list.elements[0]; + break; + } + } + } else { // ALL mask mode + tree_next_volume = Volumes[min_volume]->geometry.destinations_list.elements[0]; + for (mask_start=mask_check=Volumes[Volumes[min_volume]->geometry.destinations_list.elements[0]]->geometry.masked_by_mask_index_list.elements;mask_check-mask_startgeometry.destinations_list.elements[0]]->geometry.masked_by_mask_index_list.num_elements;mask_check++) { + if (mask_status_list.elements[*mask_check] == 0) { + tree_next_volume = 0; + break; + } + } + } + } else tree_next_volume = Volumes[min_volume]->geometry.destinations_list.elements[0]; + #ifdef Union_trace_verbal_setting + printf("The method found the next tree volume to be %d\n",tree_next_volume); + #endif + if (enable_tagging && stop_tagging_ray == 0) current_tagging_node = goto_volume_node(current_tagging_node, current_volume, tree_next_volume, Volumes,&stop_tagging_ray,stop_creating_nodes); + current_volume = tree_next_volume; + //update_current_mask_intersect_status(¤t_mask_intersect_list_status, &mask_status_list, Volumes, ¤t_volume); + } else { + #ifdef Union_trace_verbal_setting + printf("Many elements in destinations list, use within_which_volume\n"); + #endif + ray_position = coords_set(x,y,z); + ray_velocity = coords_set(vx,vy,vz); + tree_next_volume = within_which_volume(ray_position,Volumes[min_volume]->geometry.reduced_destinations_list,Volumes[min_volume]->geometry.destinations_list,Volumes,&mask_status_list,number_of_volumes,pre_allocated1,pre_allocated2,pre_allocated3); + // } Bug fixed on 27/11/2016 + if (enable_tagging && stop_tagging_ray == 0) current_tagging_node = goto_volume_node(current_tagging_node, current_volume, tree_next_volume, Volumes,&stop_tagging_ray,stop_creating_nodes); + current_volume = tree_next_volume; + #ifdef Union_trace_verbal_setting + printf("Set new new volume to %d\n",tree_next_volume); + #endif + } // Moved here on 27/11/2016, problem was two calls to current_tagging_node when only one element in destinations list + //update_current_mask_intersect_status(¤t_mask_intersect_list_status, &mask_status_list, Volumes, ¤t_volume); + } else { + #ifdef Union_trace_verbal_setting + printf("Did not need updating, as another mask was covering the volume\n"); + #endif + } + } + + } else { + // Here beccause the mask status of the mask that is intersected was 0, and it is thus switched to 1 + mask_status_list.elements[Volumes[min_volume]->geometry.mask_index] = 1; + // When entering a mask, the new highest priority volume may be one of the masked volumes, if not we keep the current volume + ray_position = coords_set(x,y,z); + ray_velocity = coords_set(vx,vy,vz); + //tree_next_volume = within_which_volume(ray_position,Volumes[min_volume]->geometry.mask_list,Volumes[min_volume]->geometry.destinations_list,Volumes,&mask_status_list,number_of_volumes,pre_allocated1,pre_allocated2,pre_allocated3); + // Bug found on the 2/9 2016, the destinations_list of a mask does not contain the volumes inside it. Could make an additional list for this. + // The temporary fix will be to use the mask list for both reduced destinations list and destinations list. + tree_next_volume = within_which_volume(ray_position,Volumes[min_volume]->geometry.mask_list,Volumes[min_volume]->geometry.mask_list,Volumes,&mask_status_list,number_of_volumes,pre_allocated1,pre_allocated2,pre_allocated3); + // if within_which_volume returns 0, no result was found (volume 0 can not be masked, so it could not be on the mask list) + if (tree_next_volume != 0) { + if (Volumes[tree_next_volume]->geometry.priority_value > Volumes[current_volume]->geometry.priority_value) { + // In case the current volume has a higher priority, nothing happens, otherwise change current volume + if (enable_tagging && stop_tagging_ray == 0) current_tagging_node = goto_volume_node(current_tagging_node, current_volume, tree_next_volume, Volumes,&stop_tagging_ray,stop_creating_nodes); + current_volume = tree_next_volume; + } + } + //update_current_mask_intersect_status(¤t_mask_intersect_list_status, &mask_status_list, Volumes, ¤t_volume); + } + } + + // Regardless of the outcome of the above code, either the mask status or current volume have changed, and thus a effective mask update is needed. + update_current_mask_intersect_status(¤t_mask_intersect_list_status, &mask_status_list, Volumes, ¤t_volume); + #ifdef Union_trace_verbal_setting + print_1d_int_list(mask_status_list,"Updated mask status list"); + print_1d_int_list(current_mask_intersect_list_status,"Updated current_mask_intersect_list_status"); + + if (enable_tagging) printf("After new intersection volume node: current_tagging_node->intensity = %f\n",current_tagging_node->intensity); + if (enable_tagging) printf("After new intersection volume node: current_tagging_node->number_of_rays = %d\n",current_tagging_node->number_of_rays); + #endif + + } + if (Volumes[current_volume]->geometry.is_exit_volume==1) { + done = 1; // Exit volumes allow the ray to escape the component + ray_sucseeded = 1; // Allows the ray to + /* + // Moved to after while loop to collect code + if (enable_tagging && stop_tagging_ray == 0) + add_statistics_to_node(current_tagging_node,&ray_position, &ray_velocity, &p, &tagging_leaf_counter); + + x += vx*1E-9; y += vy*1E-9; z += vz*1E-9; t += 1E-9; + */ + } + #ifdef Union_trace_verbal_setting + printf(" TO VOLUME %d \n",current_volume); + #endif + } + } else { // Here because a shortest time is not found + if (current_volume == 0) { + done = 1; + ray_sucseeded = 1; + + } else { // Check for errors (debugging phase) + if (error_msg == 0) { + component_error_msg++; + ray_sucseeded = 0; + done = 1; // stop the loop + printf("\n----------------------------------------------------------------------------------------------------\n"); + printf("Union_master %s: Somehow reached a situation with no intersection time found, but still inside volume %d instead of 0\n",NAME_CURRENT_COMP,current_volume); + for (volume_index = 1; volume_index < number_of_volumes; volume_index++) { + if (Volumes[volume_index]->geometry.within_function(ray_position,&Volumes[volume_index]->geometry) == 1) + printf("The ray is in volume %d\n",volume_index); + } + + print_1d_int_list(mask_status_list,"mask status list"); + for (iterate=0;iterate 100) { + printf("To many errors encountered, exiting. \n"); + exit(1); + } + } + } + /* + */ + if (limit == 0) {done = 1; ray_sucseeded = 0; printf("Reached limit on number of interactions, and discarded the neutron, was in volume %d\n",current_volume);ABSORB;} + #ifdef Union_trace_verbal_setting + printf("----------- END OF WHILE LOOP --------------------------------------\n"); + #endif + //printf("This ray did %d iterations in the while loop\n",1000-limit); + + } + // Could move all add_statistics and similar to this point, but need to filter for failed rays + if (ray_sucseeded == 1) { + + /* + // Instead of keeping global and specific loggers apart, lets do them in one loop using the loggers_with_data_array + // Only needed for conditionals + // Loop over global loggers, may or may not have a conditional, only necessary to do anything here when they do. + for (log_index=0;log_indexhas_conditional == 1) { + if (1 == conditional_return = global_all_volume_logger_list.elements[log_index].logger->conditional(scattered_flag,scattered_flag_VP,global_loggers.elements[log_index].conditional_data_union,k_final,current_volume,x,y,z)) { + global_all_volume_logger_list.elements[log_index].logger->function_pointers->temp_to_perm(global_loggers.elements[log_index].logger_data_union); + + } + if (global_all_volume_logger_list.elements[log_index].logger->conditional_extend_index != -1) + // The user can set a condtional_extend_index, so that the evaluation of this specific conditional can be taken easily from extend + conditional_extend_array.elements[global_all_volume_logger_list.elements[log_index].logger->conditional_extend_index] = conditional_return; + // Do not need to reset these to 0, as they will be manually set to 0 if not fulfilled + } + } + */ + #ifdef Union_trace_verbal_setting + printf("----------- logger loop --------------------------------------\n"); + #endif + // Loggers attatched to specific volumes need to be handled with care to avoid looping over all loggers for every ray + //for (log_index=0;log_index-1;log_index--) { + // Check all conditionals attatched to the current logger + this_logger = loggers_with_data_array.logger_pointers[log_index]; + conditional_status = 1; + for (iterate=0;iterateconditional_list.num_elements;iterate++) { + // Call this particular conditional. If it fails, report the status and break + //printf("checking conditional! \n"); + #ifdef Union_trace_verbal_setting + printf("Checking conditional number %d for logger named %s \n",iterate,loggers_with_data_array.logger_pointers[log_index]->name); + #endif + if (0 == this_logger->conditional_list.conditional_functions[iterate]( + this_logger->conditional_list.p_data_unions[iterate], + &ray_position,&ray_velocity,&p,&t,¤t_volume, + &number_of_scattering_events,scattered_flag,scattered_flag_VP)) { + conditional_status = 0; + break; + } + } + if (conditional_status == 1) { + // If a logger does not have a conditional, it will write directly to perm, and not even add it to the loggers_with_data_array, thus we know the temp_to_perm function needs to be called + // The input for the temp_to_perm function is a pointer to the logger_data_union for the appropriate logger + + if (loggers_with_data_array.logger_pointers[log_index]->function_pointers.select_t_to_p == 1) { + loggers_with_data_array.logger_pointers[log_index]->function_pointers.temp_to_perm(&loggers_with_data_array.logger_pointers[log_index]->data_union); + } + else if (loggers_with_data_array.logger_pointers[log_index]->function_pointers.select_t_to_p == 2) { + loggers_with_data_array.logger_pointers[log_index]->function_pointers.temp_to_perm_final_p(&loggers_with_data_array.logger_pointers[log_index]->data_union,p); + } + + // Luxury feature to be added later + if (loggers_with_data_array.logger_pointers[log_index]->logger_extend_index != -1) { + #ifdef Union_trace_verbal_setting + printf("Updating logger_conditional_extend_array[%d] to 1 (max length = %d)\n",loggers_with_data_array.logger_pointers[log_index]->logger_extend_index,max_conditional_extend_index); + #endif + // The user can set a condtional_extend_index, so that the evaluation of this specific conditional can be taken easily from extend + logger_conditional_extend_array[loggers_with_data_array.logger_pointers[log_index]->logger_extend_index] = 1; + // Are all reset to 0 for each new ray + #ifdef Union_trace_verbal_setting + printf("Updated extend index sucessfully\n"); + #endif + + //printf("extend_array[%d] = 1 \n",loggers_with_data_array.logger_pointers[log_index]->logger_extend_index); + } + + // Need to remove the current element from logger_with_data as it has been cleared and written to disk + // The remaining elements is passed on to the next Union_master as it may fulfill the conditional after that master + if (global_master_list.elements[global_master_list.num_elements-1].component_index != INDEX_CURRENT_COMP) { + // Move current logger pointer in logger_with_data to end position + loggers_with_data_array.logger_pointers[log_index] = loggers_with_data_array.logger_pointers[loggers_with_data_array.used_elements-1]; + // Decrease logger_with_data.used_elements with 1 + loggers_with_data_array.used_elements--; + + } + + + } else { + // Conditional status was 0, clear temp data for this logger, but only if this is the last Union_master, + // as the logger data can be written if one of the ray fulfills the conditional afer one of the + // subsequent Union masters. + // The job of cleaning was moved to the start of trace on 15/5/2017 + //if (global_master_list.elements[global_master_list.num_elements-1].component_index == INDEX_CURRENT_COMP) + // loggers_with_data_array.logger_pointers[log_index]->function_pointers.clear_temp(&loggers_with_data_array.logger_pointers[log_index]->data_union); + } + } + } + + if (enable_tagging && stop_tagging_ray == 0) { + conditional_status = 1; + for (iterate=0;iteratenum_elements;iterate++) { + // Call this particular conditional. If it fails, report the status and break + // Since a conditional can work for a logger and master_tagging at the same time, it may be evaluated twice + //printf("checking conditional! \n"); + #ifdef Union_trace_verbal_setting + printf("Checking tagging conditional number %d\n",iterate); + #endif + if (0 == tagging_conditional_list->conditional_functions[iterate]( + tagging_conditional_list->p_data_unions[iterate], + &ray_position,&ray_velocity,&p,&t,¤t_volume, + &number_of_scattering_events,scattered_flag,scattered_flag_VP)) { + conditional_status = 0; + break; + } + } + if (conditional_status == 1) { + tagging_conditional_extend = 1; + #ifdef Union_trace_verbal_setting + printf("Before adding statistics to node: current_tagging_nodbe->intensity = %f\n",current_tagging_node->intensity); + printf("Before adding statistics to node: current_tagging_node->number_of_rays = %d\n",current_tagging_node->number_of_rays); + #endif + + add_statistics_to_node(current_tagging_node,&ray_position, &ray_velocity, &p, &tagging_leaf_counter); + + #ifdef Union_trace_verbal_setting + printf("After adding statistics to node: current_tagging_node->intensity = %f\n",current_tagging_node->intensity); + printf("After adding statistics to node: current_tagging_node->number_of_rays = %d\n",current_tagging_node->number_of_rays); + #endif + } + } + + // Move the rays a nano meter away from the surface it left, in case activation counter > 1, this will prevent the ray from starting on a volume boundery + x += vx*1E-9; y += vy*1E-9; z += vz*1E-9; t += 1E-9; + + } else { + ABSORB; // Absorb rays that didn't exit correctly for whatever reason + // Could error log here + } + + // TEST + // Stores nubmer of scattering events in global master list so that another master with inherit_number_of_scattering_events can continue + global_master_list.elements[this_global_master_index].stored_number_of_scattering_events = number_of_scattering_events; + + +%} + + +SAVE +%{ +%} + + +FINALLY +%{ +// write out histories from tagging system if enabled +if (enable_tagging) { + if (finally_verbal) printf("Writing tagging tree to disk \n"); + if (finally_verbal) printf("Number of leafs = %d \n",tagging_leaf_counter); + // While writing the tagging tree to disk, all the leafs are deallocated + write_tagging_tree(&master_tagging_node_list, Volumes, tagging_leaf_counter, number_of_volumes); +} +if (master_tagging_node_list.num_elements > 0) free(master_tagging_node_list.elements); + + + + +if (finally_verbal) printf("Freeing variables which are always allocated \n"); +// free allocated arrays specific to this master union component +free(scattered_flag); +free(my_trace); +free(pre_allocated1); +free(pre_allocated2); +free(pre_allocated3); +free(number_of_processes_array); + +if (finally_verbal) printf("Freeing intersection_time_table \n"); +for (iterate = 1;iterate < intersection_time_table.num_volumes;iterate++){ + free(intersection_time_table.intersection_times[iterate]); +} + +free(intersection_time_table.n_elements); +free(intersection_time_table.calculated); +free(intersection_time_table.intersection_times); + +if (free_tagging_conditioanl_list == 1) free(tagging_conditional_list); + +/* +if (tagging_conditional_list->num_elements > 0) { + free(tagging_conditional_list.conditional_functions); + free(tagging_conditional_list.p_data_unions); +} +*/ + +if (finally_verbal) printf("Freeing lists for individual volumes \n"); +for (volume_index=0;volume_indexgeometry.intersect_check_list.num_elements > 0) free(Volumes[volume_index]->geometry.intersect_check_list.elements); + if (Volumes[volume_index]->geometry.destinations_list.num_elements > 0) free(Volumes[volume_index]->geometry.destinations_list.elements); + if (Volumes[volume_index]->geometry.reduced_destinations_list.num_elements > 0) free(Volumes[volume_index]->geometry.reduced_destinations_list.elements); + if (Volumes[volume_index]->geometry.children.num_elements > 0) free(Volumes[volume_index]->geometry.children.elements); + if (Volumes[volume_index]->geometry.direct_children.num_elements > 0) free(Volumes[volume_index]->geometry.direct_children.elements); + if (Volumes[volume_index]->geometry.masked_by_list.num_elements > 0) free(Volumes[volume_index]->geometry.masked_by_list.elements); + if (Volumes[volume_index]->geometry.masked_by_mask_index_list.num_elements > 0) free(Volumes[volume_index]->geometry.masked_by_mask_index_list.elements); + if (Volumes[volume_index]->geometry.mask_list.num_elements > 0) free(Volumes[volume_index]->geometry.mask_list.elements); + if (Volumes[volume_index]->geometry.mask_intersect_list.num_elements > 0) free(Volumes[volume_index]->geometry.mask_intersect_list.elements); + if (enable_tagging) + if (Volumes[volume_index]->geometry.next_volume_list.num_elements > 0) free(Volumes[volume_index]->geometry.next_volume_list.elements); + // Add dealocation of logging + + + if (volume_index > 0) { // Volume 0 does not have physical properties allocated + free(scattered_flag_VP[volume_index]); + if (Volumes[volume_index]->geometry.process_rot_allocated == 1) { + free(Volumes[volume_index]->geometry.process_rot_matrix_array); + free(Volumes[volume_index]->geometry.transpose_process_rot_matrix_array); + Volumes[volume_index]->geometry.process_rot_allocated = 0; + } + if (on_int_list(Volume_copies_allocated,volume_index)) + // This is a local copy of a volume, deallocate that local copy (all the allocated memory attachted to it was just deallocated, so this should not leave any leaks) + free(Volumes[volume_index]); + else + // Only free p_physics for vacuum volumes for the original at the end (there is a p_physics allocated for each vacuum volume) + if (Volumes[volume_index]->p_physics->is_vacuum == 1 ) free(Volumes[volume_index]->p_physics); + } + + if (Volumes[volume_index]->loggers.num_elements >0) { + for (iterate=0;iterateloggers.num_elements;iterate++) { + free(Volumes[volume_index]->loggers.p_logger_volume[iterate].p_logger_process); + } + free(Volumes[volume_index]->loggers.p_logger_volume); + } + +} + +free(scattered_flag_VP); + +if (finally_verbal) printf("Freeing starting lists \n"); +if (starting_lists.allowed_starting_volume_logic_list.num_elements > 0) free(starting_lists.allowed_starting_volume_logic_list.elements); +if (starting_lists.reduced_start_list.num_elements > 0) free(starting_lists.reduced_start_list.elements); +if (starting_lists.start_logic_list.num_elements > 0) free(starting_lists.start_logic_list.elements); + +if (finally_verbal) printf("Freeing mask lists \n"); +if (mask_status_list.num_elements>0) free(mask_status_list.elements); +if (current_mask_intersect_list_status.num_elements>0) free(current_mask_intersect_list_status.elements); +if (mask_volume_index_list.num_elements>0) free(mask_volume_index_list.elements); + +if (finally_verbal) printf("Freeing component index list \n"); +if (geometry_component_index_list.num_elements>0) free(geometry_component_index_list.elements); + + +if (finally_verbal) printf("Freeing Volumes \n"); +free(Volumes); + +// Free global allocated arrays if this is the last master union component in the instrument file + +if (global_master_list.elements[global_master_list.num_elements-1].component_index == INDEX_CURRENT_COMP) { + if (finally_verbal) printf("Freeing global arrays because this is the last Union master component\n"); + + // Freeing lists allocated in Union_initialization + //#ifdef PROCESS_DETECTOR + if (finally_verbal) printf("Freeing global process list \n"); + if (global_process_list.num_elements > 0) free(global_process_list.elements); + //#endif + + //#ifdef MATERIAL_DETECTOR + if (finally_verbal) printf("Freeing global material list \n"); + if (global_material_list.num_elements > 0) free(global_material_list.elements); + //#endif + + //#ifdef ANY_GEOMETRY_DETECTOR_DECLARE + if (finally_verbal) printf("Freeing global geometry list \n"); + if (global_geometry_list.num_elements > 0) free(global_geometry_list.elements); + //#endif + + //#ifdef MASTER_DETECTOR + if (finally_verbal) printf("Freeing global master list \n"); + if (global_master_list.num_elements > 0) free(global_master_list.elements); + //#endif + + + //#ifdef UNION_LOGGER_DECLARE + if (finally_verbal) printf("Freeing global logger lists \n"); + for (iterate=0;iterateconditional_list.num_elements > 0) { + free(global_all_volume_logger_list.elements[iterate].logger->conditional_list.conditional_functions); + free(global_all_volume_logger_list.elements[iterate].logger->conditional_list.p_data_unions); + } + } + if (global_all_volume_logger_list.num_elements > 0) free(global_all_volume_logger_list.elements); + + + for (iterate=0;iterateconditional_list.num_elements > 0) { + free(global_specific_volumes_logger_list.elements[iterate].logger->conditional_list.conditional_functions); + free(global_specific_volumes_logger_list.elements[iterate].logger->conditional_list.p_data_unions); + } + } + if (global_specific_volumes_logger_list.num_elements > 0) free(global_specific_volumes_logger_list.elements); + //#endif + + for (iterate=0;iterate 0) { + free(global_tagging_conditional_list.elements[iterate].conditional_list.conditional_functions); + free(global_tagging_conditional_list.elements[iterate].conditional_list.p_data_unions); + } + } + if (global_tagging_conditional_list.num_elements>0) free(global_tagging_conditional_list.elements); + + /* + if (finally_verbal) printf("Freeing global tagging conditional list \n"); + if (global_tagging_conditional_list.num_elements > 0) free(global_tagging_conditional_list.elements); + */ +} + +%} + + +MCDISPLAY +%{ + // mcdisplay is handled in the component files for each geometry and called here. The line function is only available in this section, and not through functions, + // so all the lines to be drawn for each volume are collected in a structure that is then drawn here. + magnify("xyz"); + struct lines_to_draw lines_to_draw_master; + for (volume_index = 1; volume_index < number_of_volumes; volume_index++) { + if (Volumes[volume_index]->geometry.visualization_on == 1) { + lines_to_draw_master.number_of_lines = 0; + + Volumes[volume_index]->geometry.mcdisplay_function(&lines_to_draw_master,volume_index,Geometries,number_of_volumes); + + for (iterate = 0;iterate0) free(lines_to_draw_master.lines); + } + } + +%} + +END diff --git a/mcstasscript/tests/test_Instr_reader.py b/mcstasscript/tests/test_Instr_reader.py index 8cc9bcee..c0feb350 100644 --- a/mcstasscript/tests/test_Instr_reader.py +++ b/mcstasscript/tests/test_Instr_reader.py @@ -1,4 +1,5 @@ import os +import sys import unittest from mcstasscript.interface import instr @@ -6,11 +7,22 @@ from mcstasscript.instr_reader import util +# Disable print +def blockPrint(): + sys.stdout = open(os.devnull, 'w') + +# Restore print +def enablePrint(): + sys.stdout = sys.__stdout__ + def setup_standard(Instr): - filename = "Union_demonstration_test.instr" + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + os.chdir(os.path.join(THIS_DIR, "dummy_instrument_folder")) + filename = "Union_demonstration_test.instr" InstrReader = control.InstrumentReader(filename) InstrReader.add_to_instr(Instr) + return InstrReader class TestInstrReader(unittest.TestCase): @@ -21,7 +33,10 @@ def test_read_instrument_name(self): """ filename = "Union_demonstration_test.instr" + + blockPrint() Instr = instr.McStas_instr("test_instrument") + enablePrint() InstrReader = control.InstrumentReader(filename) InstrReader.add_to_instr(Instr) @@ -30,9 +45,12 @@ def test_read_instrument_name(self): def test_read_input_parameter(self): + blockPrint() Instr = instr.McStas_instr("test_instrument") + enablePrint() InstrReader = setup_standard(Instr) + self.assertEqual(Instr.parameter_list[0].name, "stick_displacement") # space in type inserted for easier writing by McStas_Instr class self.assertEqual(Instr.parameter_list[0].type, "double ") @@ -50,7 +68,9 @@ def test_read_input_parameter(self): def test_read_declare_parameter(self): + blockPrint() Instr = instr.McStas_instr("test_instrument") + enablePrint() InstrReader = setup_standard(Instr) self.assertEqual(Instr.declare_list[0].name, "sample_1_index") @@ -78,7 +98,9 @@ def test_read_declare_parameter(self): def test_read_initialize_line(self): + blockPrint() Instr = instr.McStas_instr("test_instrument") + enablePrint() InstrReader = setup_standard(Instr) self.assertEqual(Instr.initialize_section, @@ -89,7 +111,9 @@ def test_read_initialize_line(self): # Check a few components are read correctly def test_read_component_1(self): + blockPrint() Instr = instr.McStas_instr("test_instrument") + enablePrint() InstrReader = setup_standard(Instr) components = Instr.component_list @@ -117,7 +141,9 @@ def test_read_component_1(self): def test_read_component_2(self): + blockPrint() Instr = instr.McStas_instr("test_instrument") + enablePrint() InstrReader = setup_standard(Instr) components = Instr.component_list @@ -144,7 +170,9 @@ def test_read_component_2(self): def test_read_component_WHEN(self): + blockPrint() Instr = instr.McStas_instr("test_instrument") + enablePrint() InstrReader = setup_standard(Instr) components = Instr.component_list @@ -173,7 +201,9 @@ def test_read_component_WHEN(self): def test_read_component_EXTEND(self): + blockPrint() Instr = instr.McStas_instr("test_instrument") + enablePrint() InstrReader = setup_standard(Instr) components = Instr.component_list @@ -212,7 +242,9 @@ def test_read_component_EXTEND(self): def test_read_component_GROUP(self): + blockPrint() Instr = instr.McStas_instr("test_instrument") + enablePrint() InstrReader = setup_standard(Instr) components = Instr.component_list @@ -232,7 +264,9 @@ def test_read_component_GROUP(self): def test_read_component_SPLIT(self): + blockPrint() Instr = instr.McStas_instr("test_instrument") + enablePrint() InstrReader = setup_standard(Instr) components = Instr.component_list @@ -250,7 +284,9 @@ def test_read_component_SPLIT(self): def test_read_component_JUMP(self): + blockPrint() Instr = instr.McStas_instr("test_instrument") + enablePrint() InstrReader = setup_standard(Instr) components = Instr.component_list @@ -275,7 +311,9 @@ def test_comma_split(self): Check if the instrument name is read correctly """ + blockPrint() Instr = instr.McStas_instr("test_instrument") + enablePrint() InstrReader = setup_standard(Instr) test_string = "A,B,C,D(a,b),E" @@ -293,7 +331,9 @@ def test_comma_split_limited(self): Check if the instrument name is read correctly """ + blockPrint() Instr = instr.McStas_instr("test_instrument") + enablePrint() InstrReader = setup_standard(Instr) test_string = "A,B,C,D(a,b),E" @@ -308,8 +348,10 @@ def test_parenthesis_split(self): """ Check if the instrument name is read correctly """ - + + blockPrint() Instr = instr.McStas_instr("test_instrument") + enablePrint() InstrReader = setup_standard(Instr) test_string = "A)B)C)D(a,b))E" @@ -327,7 +369,9 @@ def test_comma_split_brack(self): Check if the instrument name is read correctly """ + blockPrint() Instr = instr.McStas_instr("test_instrument") + enablePrint() InstrReader = setup_standard(Instr) test_string = "A,B{C,D(a,b)},E" @@ -340,4 +384,4 @@ def test_comma_split_brack(self): if __name__ == '__main__': - unittest.main() \ No newline at end of file + unittest.main() From c6350ac0176c42316d74fd7615eb3c80e86e8ec1 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 31 Mar 2020 12:27:49 +0200 Subject: [PATCH 071/403] test of travis unittest --- .travis.yml | 3 +- .../PSD_monitor_4PI.comp | 128 ++++++++++++++++++ setup.py | 2 +- 3 files changed, 130 insertions(+), 3 deletions(-) create mode 100644 mcstasscript/tests/dummy_instrument_folder/PSD_monitor_4PI.comp diff --git a/.travis.yml b/.travis.yml index 9b502cf1..524412b9 100644 --- a/.travis.yml +++ b/.travis.yml @@ -5,7 +5,6 @@ python: install: - pip install -r requirements.txt - - pip install mcstasscript script: - - cd mcstasscript/tests && python3 -m unittest + - python3 -m unittest diff --git a/mcstasscript/tests/dummy_instrument_folder/PSD_monitor_4PI.comp b/mcstasscript/tests/dummy_instrument_folder/PSD_monitor_4PI.comp new file mode 100644 index 00000000..e4ed8756 --- /dev/null +++ b/mcstasscript/tests/dummy_instrument_folder/PSD_monitor_4PI.comp @@ -0,0 +1,128 @@ +/******************************************************************************* +* +* McStas, neutron ray-tracing package +* Copyright (C) 1997-2006, All rights reserved +* Risoe National Laboratory, Roskilde, Denmark +* Institut Laue Langevin, Grenoble, France +* +* Component: PSD_monitor_4PI +* +* %I +* Written by: Kim Lefmann and Kristian Nielsen +* Date: April 17, 1998 +* Origin: Risoe +* +* Spherical position-sensitive detector. +* +* %D +* An (n times m) pixel spherical PSD monitor using a cylindrical projection. +* Mostly for test and debugging purposes. +* +* Example: PSD_monitor_4PI(radius=0.1, nx=90, ny=90, filename="Output.psd") +* +* %P +* INPUT PARAMETERS: +* +* radius: [m] Radius of detector +* nx: [1] Number of pixel columns +* ny: [1] Number of pixel rows +* filename: [string] Name of file in which to store the detector image +* restore_neutron: [1] If set, the monitor does not influence the neutron state +* nowritefile: [1] If set, monitor will skip writing to disk +* +* OUTPUT PARAMETERS: +* +* PSD_N: [] Array of neutron counts +* PSD_p: [] Array of neutron weight counts +* PSD_p2: [] Array of second moments +* +* %L +* Test +* results (not up-to-date). +* +* %E +*******************************************************************************/ + + +DEFINE COMPONENT PSD_monitor_4PI +DEFINITION PARAMETERS (nx=90, ny=90) +SETTING PARAMETERS (string filename=0, radius=1, restore_neutron=0, int nowritefile=0) +OUTPUT PARAMETERS (PSD_N, PSD_p, PSD_p2) +/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */ + +DECLARE +%{ +double PSD_N[nx][ny]; +double PSD_p[nx][ny]; +double PSD_p2[nx][ny]; +%} + +INITIALIZE +%{ +int i,j; + +for (i=0; i 0) + { + if(t0 < 0) + t0 = t1; + /* t0 is now time of intersection with the sphere. */ + PROP_DT(t0); + phi = atan2(x,z); + i = floor(nx*(phi/(2*PI)+0.5)); + if(i >= nx) + i = nx-1; /* Special case for phi = PI. */ + else if(i < 0) + i = 0; + theta=asin(y/radius); + j = floor(ny*(theta+PI/2)/PI+0.5); + if(j >= ny) + j = ny-1; /* Special case for y = radius. */ + else if(j < 0) + j = 0; + PSD_N[i][j]++; + PSD_p[i][j] += p; + PSD_p2[i][j] += p*p; + SCATTER; + } + if (restore_neutron) { + RESTORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p); + } +%} + +SAVE +%{ + if (!nowritefile) { + DETECTOR_OUT_2D( + "4PI PSD monitor", + "Longitude [deg]", + "Lattitude [deg]", + -180, 180, -90, 90, + nx, ny, + &PSD_N[0][0],&PSD_p[0][0],&PSD_p2[0][0], + filename); + } +%} + +MCDISPLAY +%{ + + circle("xy",0,0,0,radius); + circle("xz",0,0,0,radius); + circle("yz",0,0,0,radius); +%} + +END diff --git a/setup.py b/setup.py index caa845c1..92ba8d7f 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ setuptools.setup( name='McStasScript', - version='0.0.14', + version='0.0.15', author="Mads Bertelsen", author_email="Mads.Bertelsen@ess.eu", description="A python scripting interface for McStas", From 20a6deed45bbe32d70bb39ef2c634902b4f75dc4 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 31 Mar 2020 12:36:08 +0200 Subject: [PATCH 072/403] Avoid running integration tests on travis as McStas is not installed. --- .travis.yml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.travis.yml b/.travis.yml index 524412b9..c315b201 100644 --- a/.travis.yml +++ b/.travis.yml @@ -7,4 +7,4 @@ install: - pip install -r requirements.txt script: - - python3 -m unittest + - python3 -m unittest discover mcstasscript/tests From e647556dc123278949dd9e1c6453baf83bc9e9dc Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 31 Mar 2020 12:38:48 +0200 Subject: [PATCH 073/403] Lacked Monitor_nD in dummy_instrument_folder --- .../dummy_instrument_folder/Monitor_nD.comp | 501 ++++++++++++++++++ 1 file changed, 501 insertions(+) create mode 100644 mcstasscript/tests/dummy_instrument_folder/Monitor_nD.comp diff --git a/mcstasscript/tests/dummy_instrument_folder/Monitor_nD.comp b/mcstasscript/tests/dummy_instrument_folder/Monitor_nD.comp new file mode 100644 index 00000000..3d3d50ee --- /dev/null +++ b/mcstasscript/tests/dummy_instrument_folder/Monitor_nD.comp @@ -0,0 +1,501 @@ +/******************************************************************************* +* +* McStas, neutron ray-tracing package +* Copyright 1997-2002, All rights reserved +* Risoe National Laboratory, Roskilde, Denmark +* Institut Laue Langevin, Grenoble, France +* +* Component: Monitor_nD +* +* %Identification +* Written by: Emmanuel Farhi +* Date: 14th Feb 2000. +* Origin: ILL +* Release: McStas 1.6 +* Version: $Revision$ +* Modified by: EF, 29th Feb 2000 : added more options, monitor shape, theta, phi +* Modified by: EF, 01st Feb 2001 : PreMonitor for correlation studies (0.13.6) +* Modified by: EF, 5th Apr 2001 : use global functions (0.14) compile faster +* Modified by: EF, 23th Jul 2001 : log of signal, init arrays to 0, box (0.15) +* Modified by: EF, 04th Sep 2001 : log/abs of variables (0.16) +* Modified by: EF, 24th Oct 2001 : capture flux [p*lambda/1.7985] (0.16.3) +* Modified by: EF, 27th Aug 2002 : monitor a variable in place of I (0.16.5) +* Modified by: EF, 25th Oct 2002 : banana, and auto for each variable (0.16.5) +* +* This component is a general Monitor that can output 0/1/2D signals +* (Intensity or signal vs. [something] and vs. [something] ...) +* +* %Description +* This component is a general Monitor that can output 0/1/2D signals +* It can produce many 1D signals (one for any variable specified in +* option list), or a single 2D output (two variables correlation). +* Also, an additional 'list' of neutron events can be produced. +* By default, monitor is square (in x/y plane). A disk shape is also possible +* The 'cylinder' and 'banana' option will change that for a banana shape +* The 'sphere' option simulates spherical detector. The 'box' is a box. +* The cylinder, sphere and banana should be centered on the scattering point. +* The monitored flux may be per monitor unit area, and weighted by +* a lambda/lambda(2200m/s) factor to obtain standard integrated capture flux. +* In normal configuration, the Monitor_nD measures the current parameters +* of the neutron that is beeing detected. But a PreMonitor_nD component can +* be used in order to study correlations between a neutron being detected in +* a Monitor_nD place, and given parameters that are monitored elsewhere +* (at PreMonitor_nD). +* The monitor can also act as a 3He gas detector, taking into account the +* detection efficiency. +* +* The 'bins' and 'limits' modifiers are to be used after each variable, +* and 'auto','log' and 'abs' come before it. (eg: auto abs log hdiv bins=10 +* limits=[-5 5]) When placed after all variables, these two latter modifiers +* apply to the signal (e.g. intensity). Unknown keywords are ignored. +* +* In the case of multiple components at the same position, the 'parallel' +* keyword must be used in each instance instead of defining a GROUP. +* +* Possible options are +* Variables to record: +* kx ky kz k wavevector [Angs-1] Wavevector on x,y,z and norm +* vx vy vz v [m/s] Velocity on x,y,z and norm +* x y z radius [m] Distance, Position and norm +* xy, yz, xz [m] Radial position in xy, yz and xz plane +* kxy kyz kxz [Angs-1] Radial wavevector in xy, yz and xz plane +* vxy vyz vxz [m/s] Radial velocity in xy, yz and xz plane +* t time [s] Time of Flight +* energy omega [meV] energy of neutron +* lambda wavelength [Angs] wavelength of neutron +* sx sy sz [1] Spin +* vdiv ydiv dy [deg] vertical divergence (y) +* hdiv divergence xdiv [deg] horizontal divergence (x) +* angle [deg] divergence from direction +* theta longitude [deg] longitude (x/z) for sphere and cylinder +* phi lattitude [deg] lattitude (y/z) for sphere and cylinder +* +* user user1 will monitor the [Mon_Name]_Vars.UserVariable{1|2|3} +* user2 user3 to be assigned in an other component (see below) +* +* p intensity flux [n/s or n/cm^2/s] +* ncounts n neutron [1] neutron ID, i.e current event index +* pixel id [1] pixelID in histogram made of preceeding vars, e.g. 'theta y'. To set an offset PixelID use the 'min=value' keyword. Sets event mode. +* +* Other options keywords are: +* abs Will monitor the abs of the following variable or of the signal (if used after all variables) +* auto Automatically set detector limits for one/all +* all {limits|bins|auto} To set all limits or bins values or auto mode +* binary {float|double} with 'source' option, saves in compact files +* bins=[bins=20] Number of bins in the detector along dimension +* borders To also count off-limits neutrons (X < min or X > max) +* capture weight by lambda/lambda(2200m/s) capture flux +* file=string Detector image file name. default is component name, plus date and variable extension. +* incoming Monitor incoming beam in non flat det +* limits=[min max] Lower/Upper limits for axes (see up for the variable unit) +* list=[counts=1000] or all For a long file of neutron characteristics with [counts] or all events +* log Will monitor the log of the following variable or of the signal (if used after all variables) +* min=[min_value] Same as limits, but only sets the min or max +* max=[max_value] +* multiple Create multiple independant 1D monitors files +* no or not Revert next option +* outgoing Monitor outgoing beam (default) +* parallel Use this option when the next component is at the same position (parallel components) +* per cm2 Intensity will be per cm^2 (detector area). Displays beam section. +* per steradian Displays beam solid angle in steradian +* premonitor Will monitor neutron parameters stored previously with PreMonitor_nD. +* signal=[var] Will monitor [var] instead of usual intensity +* slit or absorb Absorb neutrons that are out detector +* source The monitor will save neutron states +* unactivate To unactivate detector (0D detector) +* verbose To display additional informations +* 3He_pressure=[3 in bars] The 3He gas pressure in detector. 3He_pressure=0 is perfect detector (default) +* +* Detector shape options (specified as xwidth,yheight,zdepth or x/y/z/min/max) +* box Box of size xwidth, yheight, zdepth. +* cylinder To get a cylindrical monitor (diameter is xwidth or set radius, height is yheight). +* banana Same as cylinder, without top/bottom, on restricted angular area; use theta variable with limits to define arc. (diameter is xwidth or set radius, height is yheight). +* disk Disk flat xy monitor. diameter is xwidth. +* sphere To get a spherical monitor (e.g. a 4PI) (diameter is xwidth or set radius). +* square Square flat xy monitor (xwidth, yheight). +* previous The monitor uses PREVIOUS component as detector surface. Or use 'geometry' parameter to specify any PLY/OFF geometry file. +* +* EXAMPLES: +* MyMon = Monitor_nD( +* xwidth = 0.1, yheight = 0.1, zdepth = 0, +* options = "intensity per cm2 angle,limits=[-5 5] bins=10,with +* borders, file = mon1"); +* will monitor neutron angle from [z] axis, between -5 +* and 5 degrees, in 10 bins, into "mon1.A" output 1D file +* options = "sphere theta phi outgoing" for a sphere PSD detector (out +* beam) and saves into file "MyMon_[Date_ID].th_ph" +* options = "banana, theta limits=[10,130], bins=120, y" a theta/height + banana detector +* options = "angle radius all auto" is a 2D monitor with automatic limits +* options = "list=1000 kx ky kz energy" records 1000 neutron event in a file +* options = "multiple kx ky kz, auto abs log t, and list all neutrons" +* makes 4 output 1D files and produces a complete list for all neutrons +* and monitor log(abs(tof)) within automatic limits (for t) +* options = "theta y, sphere, pixel min=100" +* a 4pi detector which outputs an event list with pixelID from the actual +* detector surface, starting from index 100. +* +* To dynamically define a number of bins, or limits: +* Use in DECLARE: char op[256]; +* Use in INITIALIZE: sprintf(op, "lambda limits=[%g %g], bins=%i", lmin, lmax, lbin); +* Use in TRACE: Monitor_nD(... options=op ...) +* +* How to monitor any instrument/component variable into a Monitor_nD +* Suppose you want to monitor a variable 'age' which you assign somwhere in +* the instrument: +* COMPONENT MyMonitor = Monitor_nD( +* xwidth = 0.1, yheight = 0.1, +* user1=age, username1="Age of the Captain [years]", +* options="user1, auto") +* AT ... +* +* See also the example in PreMonitor_nD to +* monitor neutron parameters cross-correlations. +* +* %BUGS +* The 'auto' option for guessing optimal variable bounds should NOT be used with MPI +* as each process may use different limits. +* +* %Parameters +* INPUT PARAMETERS: +* +* xwidth: [m] Width of detector. +* yheight: [m] Height of detector. +* zdepth: [m] Thickness of detector (z). +* radius: [m] Radius of sphere/banana shape monitor +* options: [str] String that specifies the configuration of the monitor. The general syntax is "[x] options..." (see Descr.). +* +* Optional input parameters (override xwidth yheight zdepth): +* xmin: [m] Lower x bound of opening +* xmax: [m] Upper x bound of opening +* ymin: [m] Lower y bound of opening +* ymax: [m] Upper y bound of opening +* zmin: [m] Lower z bound of opening +* zmax: [m] Upper z bound of opening +* filename: [str] Output file name (overrides file=XX option). +* bins: [1] Number of bins to force for all variables. Use 'bins' keyword in 'options' for heterogeneous bins +* min: [u] Minimum range value to force for all variables. Use 'min' or 'limits' keyword in 'options' for other limits +* max: [u] Maximum range value to force for all variables. Use 'max' or 'limits' keyword in 'options' for other limits +* user1: [variable] Variable assigned to User1 +* user2: [variable] Variable assigned to User2 +* user3: [variable] Variable assigned to User3 +* username1: [str] Name assigned to User1 +* username2: [str] Name assigned to User2 +* username3: [str] Name assigned to User3 +* restore_neutron: [0|1] If set, the monitor does not influence the neutron state. Equivalent to setting the 'parallel' option. +* geometry: [str] Name of an OFF file to specify a complex geometry detector +* nowritefile: [1] If set, monitor will skip writing to disk +* +* OUTPUT PARAMETERS: +* +* DEFS: structure containing Monitor_nD Defines [struct] +* Vars: structure containing Monitor_nD variables [struct] +* +* %Link +* PreMonitor_nD +* +* %End +******************************************************************************/ +DEFINE COMPONENT Monitor_nD +DEFINITION PARAMETERS (user1=FLT_MAX, user2=FLT_MAX, user3=FLT_MAX) +SETTING PARAMETERS (xwidth=0, yheight=0, zdepth=0, + xmin=0, xmax=0, ymin=0, ymax=0, zmin=0, zmax=0, + bins=0, min=-1e40, max=1e40, restore_neutron=0, radius=0, + string options="NULL", string filename="NULL",string geometry="NULL", + string username1="NULL", string username2="NULL", string username3="NULL", + int nowritefile=0 + ) +/* these are protected C variables */ +OUTPUT PARAMETERS (DEFS, Vars, detector,offdata) +/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */ + +SHARE +%{ + %include "monitor_nd-lib" + %include "read_table-lib" + %include "interoff-lib" +%} + +DECLARE +%{ + MonitornD_Defines_type DEFS; + MonitornD_Variables_type Vars; + MCDETECTOR detector; + off_struct offdata; +%} + +INITIALIZE +%{ + char tmp[CHAR_BUF_LENGTH]; + strcpy(Vars.compcurname, NAME_CURRENT_COMP); + if (options != NULL) + strncpy(Vars.option, options, CHAR_BUF_LENGTH); + else { + strcpy(Vars.option, "x y"); + printf("Monitor_nD: %s has no option specified. Setting to PSD ('x y') monitor.\n", NAME_CURRENT_COMP); + } + Vars.compcurpos = POS_A_CURRENT_COMP; + + if (strstr(Vars.option, "source")) + strcat(Vars.option, " list, x y z vx vy vz t sx sy sz "); + + if (bins) { sprintf(tmp, " all bins=%ld ", (long)bins); strcat(Vars.option, tmp); } + if (min > -FLT_MAX && max < FLT_MAX) { sprintf(tmp, " all limits=[%g %g]", min, max); strcat(Vars.option, tmp); } + else if (min > -FLT_MAX) { sprintf(tmp, " all min=%g", min); strcat(Vars.option, tmp); } + else if (max < FLT_MAX) { sprintf(tmp, " all max=%g", max); strcat(Vars.option, tmp); } + + strncpy(Vars.UserName1, + username1 && strlen(username1) && strcmp(username1, "0") && strcmp(username1, "NULL") ? + username1 : "", 128); + strncpy(Vars.UserName2, + username2 && strlen(username2) && strcmp(username2, "0") && strcmp(username2, "NULL") ? + username2 : "", 128); + strncpy(Vars.UserName3, + username3 && strlen(username3) && strcmp(username3, "0") && strcmp(username3, "NULL") ? + username3 : "", 128); + if (radius) { + xwidth = zdepth = 2*radius; + if (yheight && !strstr(Vars.option, "cylinder") && !strstr(Vars.option, "banana") && !strstr(Vars.option, "sphere")) + strcat(Vars.option, " banana"); + else if (!yheight && !strstr(Vars.option ,"sphere")) { + strcat(Vars.option, " sphere"); + yheight=2*radius; + } + } + int offflag=0; + if (geometry && strlen(geometry) && strcmp(geometry,"0") && strcmp(geometry, "NULL")) + if (!off_init( geometry, xwidth, yheight, zdepth, 1, &offdata )) { + printf("Monitor_nD: %s could not initiate the OFF geometry %s. \n" + " Defaulting to normal Monitor dimensions.\n", + NAME_CURRENT_COMP, geometry); + strcpy(geometry, ""); + } else { + offflag=1; + } + + if (!radius && !xwidth && !yheight && !zdepth && !xmin && !xmax && !ymin && !ymax && + !strstr(Vars.option, "previous") && (!geometry || !strlen(geometry))) + exit(printf("Monitor_nD: %s has no dimension specified. Aborting (radius, xwidth, yheight, zdepth, previous, geometry).\n", NAME_CURRENT_COMP)); + + Monitor_nD_Init(&DEFS, &Vars, xwidth, yheight, zdepth, xmin,xmax,ymin,ymax,zmin,zmax,offflag); + + if (Vars.Flag_OFF) { + offdata.mantidflag=Vars.Flag_mantid; + offdata.mantidoffset=Vars.Coord_Min[Vars.Coord_Number-1]; + } + + + if (filename && strlen(filename) && strcmp(filename,"NULL") && strcmp(filename,"0")) + strncpy(Vars.Mon_File, filename, 128); + + /* check if user given filename with ext will be used more than once */ + if ( ((Vars.Flag_Multiple && Vars.Coord_Number > 1) || Vars.Flag_List) && strchr(Vars.Mon_File,'.') ) + { char *XY; XY = strrchr(Vars.Mon_File,'.'); *XY='_'; } + + if (restore_neutron) Vars.Flag_parallel=1; + detector.m = 0; + +#ifdef USE_MPI +MPI_MASTER( + if (strstr(Vars.option, "auto") && mpi_node_count > 1) + printf("Monitor_nD: %s is using automatic limits option 'auto' together with MPI.\n" + "WARNING this may create incorrect distributions (but integrated flux will be right).\n", NAME_CURRENT_COMP); +); +#endif +%} + +TRACE +%{ + double XY=0; + double t0 = 0; + double t1 = 0; + double pp; + int intersect = 0; + char Flag_Restore = 0; + + if (user1 != FLT_MAX) Vars.UserVariable1 = user1; + if (user2 != FLT_MAX) Vars.UserVariable2 = user2; + if (user3 != FLT_MAX) Vars.UserVariable3 = user3; + + /* this is done automatically + STORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p); + */ + + if (geometry && strlen(geometry) && strcmp(geometry,"0") && strcmp(geometry, "NULL")) + { + /* determine intersections with object */ + intersect = off_intersect_all(&t0, &t1, NULL, NULL, + x,y,z, vx, vy, vz, &offdata ); + if (Vars.Flag_mantid) { + if(intersect) { + Vars.OFF_polyidx=(offdata.intersects[offdata.nextintersect]).index; + } else { + Vars.OFF_polyidx=-1; + } + } + } + else if ( (abs(Vars.Flag_Shape) == DEFS.SHAPE_SQUARE) + || (abs(Vars.Flag_Shape) == DEFS.SHAPE_DISK) ) /* square xy or disk xy */ + { + // propagate to xy plane and find intersection + // make sure the event is recoverable afterwards + t0 = t; + ALLOW_BACKPROP; + PROP_Z0; + if ( (t>=t0) && (z==0.0) ) // forward propagation to xy plane was successful + { + if (abs(Vars.Flag_Shape) == DEFS.SHAPE_SQUARE) + { + // square xy + intersect = (x>=Vars.mxmin && x<=Vars.mxmax && y>=Vars.mymin && y<=Vars.mymax); + } + else + { + // disk xy + intersect = (SQR(x) + SQR(y)) <= SQR(Vars.Sphere_Radius); + } + } + else + { + intersect=0; + } + } + else if (abs(Vars.Flag_Shape) == DEFS.SHAPE_SPHERE) /* sphere */ + { + intersect = sphere_intersect(&t0, &t1, x, y, z, vx, vy, vz, Vars.Sphere_Radius); + /* intersect = (intersect && t0 > 0); */ + } + else if ((abs(Vars.Flag_Shape) == DEFS.SHAPE_CYLIND) || (abs(Vars.Flag_Shape) == DEFS.SHAPE_BANANA)) /* cylinder */ + { + intersect = cylinder_intersect(&t0, &t1, x, y, z, vx, vy, vz, Vars.Sphere_Radius, Vars.Cylinder_Height); + } + else if (abs(Vars.Flag_Shape) == DEFS.SHAPE_BOX) /* box */ + { + intersect = box_intersect(&t0, &t1, x, y, z, vx, vy, vz, + fabs(Vars.mxmax-Vars.mxmin), fabs(Vars.mymax-Vars.mymin), fabs(Vars.mzmax-Vars.mzmin)); + } + else if (abs(Vars.Flag_Shape) == DEFS.SHAPE_PREVIOUS) /* previous comp */ + { intersect = 1; } + + if (intersect) + { + if ((abs(Vars.Flag_Shape) == DEFS.SHAPE_SPHERE) || (abs(Vars.Flag_Shape) == DEFS.SHAPE_CYLIND) + || (abs(Vars.Flag_Shape) == DEFS.SHAPE_BOX) || (abs(Vars.Flag_Shape) == DEFS.SHAPE_BANANA) + || (geometry && strlen(geometry) && strcmp(geometry,"0") && strcmp(geometry, "NULL")) ) + { + /* check if we have to remove the top/bottom with BANANA shape */ + if ((abs(Vars.Flag_Shape) == DEFS.SHAPE_BANANA) && (intersect != 1)) { + double y0,y1; + /* propagate to intersection point as temporary variable to check top/bottom */ + y0 = y+t0*vy; + y1 = y+t1*vy; + if (fabs(y0) >= Vars.Cylinder_Height/2*0.99) t0 = t1; + if (fabs(y1) >= Vars.Cylinder_Height/2*0.99) t1 = t0; + } + if (t0 < 0 && t1 > 0) + t0 = t; /* neutron was already inside ! */ + if (t1 < 0 && t0 > 0) /* neutron exit before entering !! */ + t1 = t; + /* t0 is now time of incoming intersection with the detection area */ + if ((Vars.Flag_Shape < 0) && (t1 > 0)) + PROP_DT(t1); /* t1 outgoing beam */ + else + PROP_DT(t0); /* t0 incoming beam */ + /* Final test if we are on lid / bottom of banana/sphere */ + if (abs(Vars.Flag_Shape) == DEFS.SHAPE_BANANA || abs(Vars.Flag_Shape) == DEFS.SHAPE_SPHERE) { + if (fabs(y) >= Vars.Cylinder_Height/2*0.99) { + intersect=0; + Flag_Restore=1; + } + } + } + } + + if (intersect) + { + /* Now get the data to monitor: current or keep from PreMonitor */ + if (Vars.Flag_UsePreMonitor != 1) + { + Vars.cp = p; + Vars.cx = x; + Vars.cvx = vx; + Vars.csx = sx; + Vars.cy = y; + Vars.cvy = vy; + Vars.csy = sy; + Vars.cz = z; + Vars.cvz = vz; + Vars.csz = sz; + Vars.ct = t; + } + + if ((Vars.He3_pressure > 0) && (t1 != t0) && ((abs(Vars.Flag_Shape) == DEFS.SHAPE_SPHERE) || (abs(Vars.Flag_Shape) == DEFS.SHAPE_CYLIND) || (abs(Vars.Flag_Shape) == DEFS.SHAPE_BOX))) + { + XY = exp(-7.417*Vars.He3_pressure*fabs(t1-t0)*2*PI*K2V); + /* will monitor the absorbed part */ + Vars.cp *= 1-XY; + /* and modify the neutron weight after monitor, only remains 1-p_detect */ + p *= XY; + } + + if (Vars.Flag_capture) + { + XY = sqrt(Vars.cvx*Vars.cvx+Vars.cvy*Vars.cvy+Vars.cvz*Vars.cvz); + XY *= V2K; + if (XY != 0) XY = 2*PI/XY; /* lambda. lambda(2200 m/2) = 1.7985 Angs */ + Vars.cp *= XY/1.7985; + } + + pp = Monitor_nD_Trace(&DEFS, &Vars); + if (pp==0.0) + { ABSORB; + } + else if(pp==1) + { + SCATTER; + } + + if (Vars.Flag_parallel) /* back to neutron state before detection */ + Flag_Restore = 1; + } /* end if intersection */ + else { + if (Vars.Flag_Absorb && !Vars.Flag_parallel) + { + // restore neutron ray before absorbing for correct mcdisplay + RESTORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p); + ABSORB; + } + else Flag_Restore = 1; /* no intersection, back to previous state */ + } + + if (Flag_Restore) + { + RESTORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p); + } +%} + +SAVE +%{ + /* save results, but do not free pointers */ + detector = Monitor_nD_Save(&DEFS, &Vars); +%} + +FINALLY +%{ + /* free pointers */ + if (!nowritefile) { + Monitor_nD_Finally(&DEFS, &Vars); + } +%} + +MCDISPLAY +%{ + if (geometry && strlen(geometry) && strcmp(geometry,"0") && strcmp(geometry, "NULL")) + { + off_display(offdata); + } else { + Monitor_nD_McDisplay(&DEFS, &Vars); + } +%} + +END From d668c7c273cab3c745aff557ece3459459f458c9 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 31 Mar 2020 12:41:46 +0200 Subject: [PATCH 074/403] Forgot PSD_monitor in dummy_instrument_folder --- .../dummy_instrument_folder/PSD_monitor.comp | 124 ++++++++++++++++++ 1 file changed, 124 insertions(+) create mode 100644 mcstasscript/tests/dummy_instrument_folder/PSD_monitor.comp diff --git a/mcstasscript/tests/dummy_instrument_folder/PSD_monitor.comp b/mcstasscript/tests/dummy_instrument_folder/PSD_monitor.comp new file mode 100644 index 00000000..f1536e7b --- /dev/null +++ b/mcstasscript/tests/dummy_instrument_folder/PSD_monitor.comp @@ -0,0 +1,124 @@ +/******************************************************************************* +* +* McStas, neutron ray-tracing package +* Copyright 1997-2002, All rights reserved +* Risoe National Laboratory, Roskilde, Denmark +* Institut Laue Langevin, Grenoble, France +* +* Component: PSD_monitor +* +* %I +* Written by: Kim Lefmann +* Date: Feb 3, 1998 +* Origin: Risoe +* +* Position-sensitive monitor. +* +* %D +* An (n times m) pixel PSD monitor. This component may also be used as a beam +* detector. +* +* Example: PSD_monitor(xmin=-0.1, xmax=0.1, ymin=-0.1, ymax=0.1, nx=90, ny=90, filename="Output.psd") +* +* %P +* INPUT PARAMETERS: +* +* xmin: [m] Lower x bound of detector opening +* xmax: [m] Upper x bound of detector opening +* ymin: [m] Lower y bound of detector opening +* ymax: [m] Upper y bound of detector opening +* xwidth: [m] Width of detector. Overrides xmin, xmax +* yheight: [m] Height of detector. Overrides ymin, ymax +* nx: [1] Number of pixel columns +* ny: [1] Number of pixel rows +* filename: [string] Name of file in which to store the detector image +* restore_neutron: [1] If set, the monitor does not influence the neutron state +* nowritefile: [1] If set, monitor will skip writing to disk +* +* OUTPUT PARAMETERS: +* +* PSD_N: [] Array of neutron counts +* PSD_p: [] Array of neutron weight counts +* PSD_p2: [] Array of second moments +* +* %E +*******************************************************************************/ + + +DEFINE COMPONENT PSD_monitor +DEFINITION PARAMETERS (nx=90, ny=90) +SETTING PARAMETERS (string filename=0, xmin=-0.05, xmax=0.05, ymin=-0.05, ymax=0.05, xwidth=0, yheight=0, restore_neutron=0, int nowritefile=0) +OUTPUT PARAMETERS (PSD_N, PSD_p, PSD_p2) +/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */ + +DECLARE +%{ +double PSD_N[nx][ny]; +double PSD_p[nx][ny]; +double PSD_p2[nx][ny]; +%} +INITIALIZE +%{ +int i,j; + +if (xwidth > 0) { xmax = xwidth/2; xmin = -xmax; } + if (yheight > 0) { ymax = yheight/2; ymin = -ymax; } + + if ((xmin >= xmax) || (ymin >= ymax)) { + printf("PSD_monitor: %s: Null detection area !\n" + "ERROR (xwidth,yheight,xmin,xmax,ymin,ymax). Exiting", + NAME_CURRENT_COMP); + exit(0); + } + + for (i=0; ixmin && xymin && y Date: Tue, 31 Mar 2020 13:16:43 +0200 Subject: [PATCH 075/403] Testing a run without troublesome test_comma_split test. --- mcstasscript/tests/test_Instr_reader.py | 15 ++++++++++----- 1 file changed, 10 insertions(+), 5 deletions(-) diff --git a/mcstasscript/tests/test_Instr_reader.py b/mcstasscript/tests/test_Instr_reader.py index c0feb350..45f250cd 100644 --- a/mcstasscript/tests/test_Instr_reader.py +++ b/mcstasscript/tests/test_Instr_reader.py @@ -283,6 +283,9 @@ def test_read_component_SPLIT(self): self.assertEqual(test_component.AT_relative, "RELATIVE sample_4") def test_read_component_JUMP(self): + """ + Check a JUMP and GROUP statement is read correctly + """ blockPrint() Instr = instr.McStas_instr("test_instrument") @@ -308,7 +311,7 @@ def test_read_component_JUMP(self): def test_comma_split(self): """ - Check if the instrument name is read correctly + Test the Tracer_reader._split_func """ blockPrint() @@ -325,10 +328,11 @@ def test_comma_split(self): self.assertEqual(result[2],"C") self.assertEqual(result[3],"D(a,b)") self.assertEqual(result[4],"E") - + + """ def test_comma_split_limited(self): """ - Check if the instrument name is read correctly + Test the Tracer_reader._split_func """ blockPrint() @@ -343,10 +347,11 @@ def test_comma_split_limited(self): self.assertEqual(result[0],"A") self.assertEqual(result[1],"B") self.assertEqual(result[2],"C,D(a,b),E") + """ def test_parenthesis_split(self): """ - Check if the instrument name is read correctly + Test the Tracer_reader._split_func """ blockPrint() @@ -366,7 +371,7 @@ def test_parenthesis_split(self): def test_comma_split_brack(self): """ - Check if the instrument name is read correctly + Test the Tracer_reader._split_func """ blockPrint() From 095265748fc97ea08e765a8ea2e95a8cdc36df85 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 31 Mar 2020 13:18:52 +0200 Subject: [PATCH 076/403] New test of travis without troublesome test_comma_split test. --- mcstasscript/tests/test_Instr_reader.py | 3 --- 1 file changed, 3 deletions(-) diff --git a/mcstasscript/tests/test_Instr_reader.py b/mcstasscript/tests/test_Instr_reader.py index 45f250cd..1e0f76e3 100644 --- a/mcstasscript/tests/test_Instr_reader.py +++ b/mcstasscript/tests/test_Instr_reader.py @@ -331,9 +331,6 @@ def test_comma_split(self): """ def test_comma_split_limited(self): - """ - Test the Tracer_reader._split_func - """ blockPrint() Instr = instr.McStas_instr("test_instrument") From ab748221c49ba6c241f3a33452d9b606652832b9 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 31 Mar 2020 13:28:06 +0200 Subject: [PATCH 077/403] Continued test of removing troublesome test_comma_split test. --- mcstasscript/tests/test_Instr_reader.py | 17 ++++++++++------- 1 file changed, 10 insertions(+), 7 deletions(-) diff --git a/mcstasscript/tests/test_Instr_reader.py b/mcstasscript/tests/test_Instr_reader.py index 1e0f76e3..b85e163c 100644 --- a/mcstasscript/tests/test_Instr_reader.py +++ b/mcstasscript/tests/test_Instr_reader.py @@ -308,11 +308,11 @@ def test_read_component_JUMP(self): self.assertEqual(test_component.AT_data, ["0", "0", "0"]) self.assertEqual(test_component.AT_relative, "ABSOLUTE") - + """ def test_comma_split(self): - """ - Test the Tracer_reader._split_func - """ + + #Test the Tracer_reader._split_func + blockPrint() Instr = instr.McStas_instr("test_instrument") @@ -328,10 +328,13 @@ def test_comma_split(self): self.assertEqual(result[2],"C") self.assertEqual(result[3],"D(a,b)") self.assertEqual(result[4],"E") - """ + def test_comma_split_limited(self): - + """ + Test the Tracer_reader._split_func + """ + blockPrint() Instr = instr.McStas_instr("test_instrument") enablePrint() @@ -344,7 +347,7 @@ def test_comma_split_limited(self): self.assertEqual(result[0],"A") self.assertEqual(result[1],"B") self.assertEqual(result[2],"C,D(a,b),E") - """ + def test_parenthesis_split(self): """ From f1a41dd933ed880fc6ebf8acc1bd23ecc55784b4 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 31 Mar 2020 13:42:07 +0200 Subject: [PATCH 078/403] Updated Instr_reader tests to set the correct dictionary. --- mcstasscript/tests/test_Instr_reader.py | 68 ++++++++++++++++--------- 1 file changed, 43 insertions(+), 25 deletions(-) diff --git a/mcstasscript/tests/test_Instr_reader.py b/mcstasscript/tests/test_Instr_reader.py index b85e163c..f429434c 100644 --- a/mcstasscript/tests/test_Instr_reader.py +++ b/mcstasscript/tests/test_Instr_reader.py @@ -15,15 +15,27 @@ def blockPrint(): def enablePrint(): sys.stdout = sys.__stdout__ -def setup_standard(Instr): + +def set_dummy_dir(): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) os.chdir(os.path.join(THIS_DIR, "dummy_instrument_folder")) +def setup_standard(Instr): + set_dummy_dir() filename = "Union_demonstration_test.instr" InstrReader = control.InstrumentReader(filename) InstrReader.add_to_instr(Instr) - return InstrReader + return InstrReader + +def setup_standard_auto_instr(): + set_dummy_dir() + + blockPrint() + Instr = instr.McStas_instr("test_instrument") + enablePrint() + + return setup_standard(Instr) class TestInstrReader(unittest.TestCase): @@ -32,25 +44,27 @@ def test_read_instrument_name(self): Check if the instrument name is read correctly """ - filename = "Union_demonstration_test.instr" + set_dummy_dir() blockPrint() Instr = instr.McStas_instr("test_instrument") enablePrint() + filename = "Union_demonstration_test.instr" InstrReader = control.InstrumentReader(filename) InstrReader.add_to_instr(Instr) self.assertEqual(InstrReader.instr_name, "Union_demonstration") def test_read_input_parameter(self): + + set_dummy_dir() blockPrint() Instr = instr.McStas_instr("test_instrument") enablePrint() InstrReader = setup_standard(Instr) - self.assertEqual(Instr.parameter_list[0].name, "stick_displacement") # space in type inserted for easier writing by McStas_Instr class self.assertEqual(Instr.parameter_list[0].type, "double ") @@ -68,6 +82,8 @@ def test_read_input_parameter(self): def test_read_declare_parameter(self): + set_dummy_dir() + blockPrint() Instr = instr.McStas_instr("test_instrument") enablePrint() @@ -97,6 +113,8 @@ def test_read_declare_parameter(self): self.assertEqual(Instr.declare_list[11].value, "\"\\\"test_string\\\"\"") def test_read_initialize_line(self): + + set_dummy_dir() blockPrint() Instr = instr.McStas_instr("test_instrument") @@ -111,6 +129,8 @@ def test_read_initialize_line(self): # Check a few components are read correctly def test_read_component_1(self): + set_dummy_dir() + blockPrint() Instr = instr.McStas_instr("test_instrument") enablePrint() @@ -141,6 +161,8 @@ def test_read_component_1(self): def test_read_component_2(self): + set_dummy_dir() + blockPrint() Instr = instr.McStas_instr("test_instrument") enablePrint() @@ -169,6 +191,8 @@ def test_read_component_2(self): self.assertEqual(test_component.ROTATED_relative, "RELATIVE sample_rod_bottom") def test_read_component_WHEN(self): + + set_dummy_dir() blockPrint() Instr = instr.McStas_instr("test_instrument") @@ -201,6 +225,8 @@ def test_read_component_WHEN(self): def test_read_component_EXTEND(self): + set_dummy_dir() + blockPrint() Instr = instr.McStas_instr("test_instrument") enablePrint() @@ -242,6 +268,8 @@ def test_read_component_EXTEND(self): def test_read_component_GROUP(self): + set_dummy_dir() + blockPrint() Instr = instr.McStas_instr("test_instrument") enablePrint() @@ -264,6 +292,8 @@ def test_read_component_GROUP(self): def test_read_component_SPLIT(self): + set_dummy_dir() + blockPrint() Instr = instr.McStas_instr("test_instrument") enablePrint() @@ -287,6 +317,8 @@ def test_read_component_JUMP(self): Check a JUMP and GROUP statement is read correctly """ + set_dummy_dir() + blockPrint() Instr = instr.McStas_instr("test_instrument") enablePrint() @@ -308,16 +340,12 @@ def test_read_component_JUMP(self): self.assertEqual(test_component.AT_data, ["0", "0", "0"]) self.assertEqual(test_component.AT_relative, "ABSOLUTE") - """ def test_comma_split(self): + """ + Test the Tracer_reader._split_func + """ - #Test the Tracer_reader._split_func - - - blockPrint() - Instr = instr.McStas_instr("test_instrument") - enablePrint() - InstrReader = setup_standard(Instr) + InstrReader = setup_standard_auto_instr() test_string = "A,B,C,D(a,b),E" @@ -328,17 +356,13 @@ def test_comma_split(self): self.assertEqual(result[2],"C") self.assertEqual(result[3],"D(a,b)") self.assertEqual(result[4],"E") - """ def test_comma_split_limited(self): """ Test the Tracer_reader._split_func """ - blockPrint() - Instr = instr.McStas_instr("test_instrument") - enablePrint() - InstrReader = setup_standard(Instr) + InstrReader = setup_standard_auto_instr() test_string = "A,B,C,D(a,b),E" @@ -354,10 +378,7 @@ def test_parenthesis_split(self): Test the Tracer_reader._split_func """ - blockPrint() - Instr = instr.McStas_instr("test_instrument") - enablePrint() - InstrReader = setup_standard(Instr) + InstrReader = setup_standard_auto_instr() test_string = "A)B)C)D(a,b))E" @@ -374,10 +395,7 @@ def test_comma_split_brack(self): Test the Tracer_reader._split_func """ - blockPrint() - Instr = instr.McStas_instr("test_instrument") - enablePrint() - InstrReader = setup_standard(Instr) + InstrReader = setup_standard_auto_instr() test_string = "A,B{C,D(a,b)},E" From 600ec725620e4c0c08c0672af137404854d9eaef Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 31 Mar 2020 14:43:26 +0200 Subject: [PATCH 079/403] Add codecov to project. --- .travis.yml | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/.travis.yml b/.travis.yml index c315b201..69aa1f3a 100644 --- a/.travis.yml +++ b/.travis.yml @@ -5,6 +5,10 @@ python: install: - pip install -r requirements.txt + - pip install coverage script: - - python3 -m unittest discover mcstasscript/tests + - coverage run -m unittest discover mcstasscript/tests + +after_success: + - bash <(curl -s https://codecov.io/bash) From 1bbec43c8f57ef9032971dee0c9f6591d7a303f2 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 31 Mar 2020 15:02:29 +0200 Subject: [PATCH 080/403] Fix for extra commas when reading trace with InstrReader. --- mcstasscript/instr_reader/read_trace.py | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/mcstasscript/instr_reader/read_trace.py b/mcstasscript/instr_reader/read_trace.py index d69d5053..62ca6733 100644 --- a/mcstasscript/instr_reader/read_trace.py +++ b/mcstasscript/instr_reader/read_trace.py @@ -217,8 +217,7 @@ def read_trace_line(self, line): # There is an uneven number of quotation marks par_exp += "," if "," in par_line: - # include the up to the next comma in par_exp - #par_exp += "," + par_line.split(",",1)[0] + # include up to the next comma in par_exp par_exp += par_line.split(",",1)[0] # remove the part of the par_line added to par_exp par_line = par_line.split(",",1)[1] From c227e55647aaa7c89c7e67be8648abd0212998b0 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Sun, 26 Apr 2020 11:48:14 +0200 Subject: [PATCH 081/403] Added options for selecting input_path for instrument where components are located and the mcrun command is executed. The folder has to exist. The mcrun command now specifies the absolute path of the data folder, as the command may be run from somewhere other than the current dir. Unit tests modified to account for this, new tests for the feature are not written yet. --- mcstasscript/helper/component_reader.py | 24 ++++++++++++-- mcstasscript/helper/managed_mcrun.py | 44 +++++++++++++++++++++---- mcstasscript/interface/instr.py | 11 ++++++- mcstasscript/tests/test_Instr.py | 18 ++++++++-- mcstasscript/tests/test_ManagedMcrun.py | 24 +++++++++++--- 5 files changed, 103 insertions(+), 18 deletions(-) diff --git a/mcstasscript/helper/component_reader.py b/mcstasscript/helper/component_reader.py index 81f74123..11f36594 100644 --- a/mcstasscript/helper/component_reader.py +++ b/mcstasscript/helper/component_reader.py @@ -32,11 +32,20 @@ class ComponentReader: """ - def __init__(self, mcstas_path): + def __init__(self, mcstas_path, input_path="."): """ Reads all component files in standard folders. Recursive, so subfolders of these folders are included. + Parameters + ---------- + mcstas_path : str + Path to McStas folder, used to find the installed components + + keyword arguments: + input_path : str + Path to work directory, most often current directory + """ # add trailing / or \ depending on operating system @@ -60,10 +69,19 @@ def __init__(self, mcstas_path): abs_path = os.path.join(mcstas_path, folder) self._find_components(abs_path) - # McStas component in current directory should overwrite + # Will overwrite McStas components with definitions in input_folder current_directory = os.getcwd() - for file in os.listdir(current_directory): + if os.path.isabs(input_path): + input_directory = input_path + else: + input_directory = os.path.join(current_directory, input_path) + + if not os.path.isdir(input_directory): + raise ValueError("Can't find given input_path," + + " directory must exist.") + + for file in os.listdir(input_directory): if file.endswith(".comp"): abs_path = os.path.join(current_directory, file) if "/" in abs_path: diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index c5135f5d..663aea50 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -66,6 +66,13 @@ def __init__(self, instr_name, **kwargs): Sets custom_flags passed to mcrun mcrun_path : str Path to mcrun command, "" if already in path + increment_folder_name : bool + If True, automaticaly appends foldername to make it unique + force_compile : bool + If True, forces compile, default is True + run_folder : str + Path to folder in which to run McStas + """ self.name_of_instrumentfile = instr_name @@ -78,6 +85,7 @@ def __init__(self, instr_name, **kwargs): self.mcrun_path = "" self.increment_folder_name = False self.compile = True + self.run_path = "." # mcrun_path always in kwargs if "mcrun_path" in kwargs: self.mcrun_path = kwargs["mcrun_path"] @@ -107,13 +115,28 @@ def __init__(self, instr_name, **kwargs): if "force_compile" in kwargs: self.compile = kwargs["force_compile"] + if "run_path" in kwargs: + self.run_path = kwargs["run_path"] + def run_simulation(self, **kwargs): """ Runs McStas simulation described by initializing the object """ - # construct command to run + # get relevant paths + current_directory = os.getcwd() + + if not os.path.isabs(self.data_folder_name): + self.data_folder_name = os.path.join(current_directory, + self.data_folder_name) + + if not os.path.isabs(self.run_path): + self.run_path = os.path.join(current_directory, self.run_path) + if not os.path.isdir(self.run_path): + raise ValueError("Given run_path for McStas not a directory!") + + # construct command to run options_string = "" if self.compile: options_string = "-c " @@ -158,11 +181,20 @@ def run_simulation(self, **kwargs): + self.name_of_instrumentfile + parameter_string) - #os.system(full_command) - process = subprocess.run(full_command, shell=True, - stdout=subprocess.PIPE, - stderr=subprocess.PIPE, - universal_newlines=True) + try: + os.chdir(self.run_path) + + #os.system(full_command) + process = subprocess.run(full_command, shell=True, + stdout=subprocess.PIPE, + stderr=subprocess.PIPE, + universal_newlines=True) + + os.chdir(current_directory) + + except: + os.chdir(current_directory) + raise RuntimeError("Could not run McStas command") if "suppress_output" in kwargs: if kwargs["suppress_output"] is False: diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 14d97b37..a1ea7554 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -169,6 +169,9 @@ def __init__(self, name, **kwargs): mcrun_path : str Absolute path of mcrun or empty if already in path + + input_path : str + Work directory, will load components from this folder """ self.name = name @@ -190,6 +193,11 @@ def __init__(self, name, **kwargs): else: self.origin = "ESS DMSC" + if "input_path" in kwargs: + self.input_path = kwargs["input_path"] + else: + self.input_path = "." + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) configuration_file_name = os.path.join(THIS_DIR, "..", "configuration.yaml") if not os.path.isfile(configuration_file_name): @@ -232,7 +240,8 @@ def __init__(self, name, **kwargs): self.component_name_list = [] # List of component names # Read info on active McStas components - self.component_reader = ComponentReader(self.mcstas_path) + self.component_reader = ComponentReader(self.mcstas_path, + input_path=self.input_path) self.component_class_lib = {} def add_parameter(self, *args, **kwargs): diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index 35e136a1..10676bf6 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -1415,9 +1415,13 @@ def test_run_full_instrument_basic(self, mock_sub, expected_path = os.path.join("path","mcrun") + current_directory = os.getcwd() + expected_folder_path = os.path.join(current_directory, "test_data_set") + # a double space because of a missing option expected_call = (expected_path + " -c -n 1000000 --mpi=1 " - + "-d test_data_set test_instrument.instr" + + "-d " + expected_folder_path + + " test_instrument.instr" + " has_default=37 theta=1") mock_sub.assert_called_once_with(expected_call, @@ -1450,9 +1454,13 @@ def test_run_full_instrument_complex(self, mock_sub, expected_path = os.path.join("path","mcrun") + current_directory = os.getcwd() + expected_folder_path = os.path.join(current_directory, "test_data_set") + # a double space because of a missing option expected_call = (expected_path + " -c -n 48 --mpi=7 " - + "-d test_data_set -fo test_instrument.instr " + + "-d " + expected_folder_path + + " -fo test_instrument.instr " + "has_default=37 A=2 BC=car theta=\"toy\"") mock_sub.assert_called_once_with(expected_call, @@ -1485,9 +1493,13 @@ def test_run_full_instrument_overwrite_default(self, mock_sub, expected_path = os.path.join("path","mcrun") + current_directory = os.getcwd() + expected_folder_path = os.path.join(current_directory, "test_data_set") + # a double space because of a missing option expected_call = (expected_path + " -c -n 48 --mpi=7 " - + "-d test_data_set -fo test_instrument.instr " + + "-d " + expected_folder_path + + " -fo test_instrument.instr " + "has_default=10 A=2 BC=car theta=\"toy\"") mock_sub.assert_called_once_with(expected_call, diff --git a/mcstasscript/tests/test_ManagedMcrun.py b/mcstasscript/tests/test_ManagedMcrun.py index 2c9b0126..5fd493e9 100644 --- a/mcstasscript/tests/test_ManagedMcrun.py +++ b/mcstasscript/tests/test_ManagedMcrun.py @@ -107,9 +107,12 @@ def test_ManagedMcrun_run_simulation_basic(self, mock_sub): mcrun_obj.run_simulation() + current_directory = os.getcwd() + expected_folder_path = os.path.join(current_directory, "test_folder") + # a double space because of a missing option expected_call = ("path/mcrun -c -n 1000000 --mpi=1 " - + "-d test_folder test.instr") + + "-d " + expected_folder_path + " test.instr") mock_sub.assert_called_once_with(expected_call, shell=True, @@ -128,9 +131,12 @@ def test_ManagedMcrun_run_simulation_basic_path(self, mock_sub): mcrun_obj.run_simulation() + current_directory = os.getcwd() + expected_folder_path = os.path.join(current_directory, "test_folder") + # a double space because of a missing option expected_call = ("path/mcrun -c -n 1000000 --mpi=1 " - + "-d test_folder test.instr") + + "-d " + expected_folder_path + " test.instr") mock_sub.assert_called_once_with(expected_call, shell=True, @@ -152,9 +158,12 @@ def test_ManagedMcrun_run_simulation_no_standard(self, mock_sub): mcrun_obj.run_simulation() + current_directory = os.getcwd() + expected_folder_path = os.path.join(current_directory, "test_folder") + # a double space because of a missing option expected_call = ("path/mcrun -c -n 48 --mpi=7 " - + "-d test_folder -fo test.instr") + + "-d " + expected_folder_path + " -fo test.instr") mock_sub.assert_called_once_with(expected_call, shell=True, @@ -179,9 +188,11 @@ def test_ManagedMcrun_run_simulation_parameters(self, mock_sub): mcrun_obj.run_simulation() + current_directory = os.getcwd() + expected_folder_path = os.path.join(current_directory, "test_folder") # a double space because of a missing option expected_call = ("path/mcrun -c -n 48 --mpi=7 " - + "-d test_folder -fo test.instr " + + "-d " + expected_folder_path + " -fo test.instr " + "A=2 BC=car th=\"toy\"") mock_sub.assert_called_once_with(expected_call, @@ -208,9 +219,12 @@ def test_ManagedMcrun_run_simulation_compile(self, mock_sub): mcrun_obj.run_simulation() + current_directory = os.getcwd() + expected_folder_path = os.path.join(current_directory, "test_folder") + # a double space because of a missing option expected_call = ("path/mcrun -n 48 --mpi=7 " - + "-d test_folder -fo test.instr " + + "-d " + expected_folder_path + " -fo test.instr " + "A=2 BC=car th=\"toy\"") mock_sub.assert_called_once_with(expected_call, From ba1a833b1cf6e36c92977cb75a2059adec8b765a Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Sun, 26 Apr 2020 14:36:34 +0200 Subject: [PATCH 082/403] Updated output of overwritten components and updated unit tests accordingly. --- mcstasscript/helper/component_reader.py | 15 ++++++--- mcstasscript/tests/test_ComponentReader.py | 18 ++++++----- mcstasscript/tests/test_Instr.py | 36 ++++++++++++---------- 3 files changed, 41 insertions(+), 28 deletions(-) diff --git a/mcstasscript/helper/component_reader.py b/mcstasscript/helper/component_reader.py index 11f36594..633612a8 100644 --- a/mcstasscript/helper/component_reader.py +++ b/mcstasscript/helper/component_reader.py @@ -81,6 +81,7 @@ def __init__(self, mcstas_path, input_path="."): raise ValueError("Can't find given input_path," + " directory must exist.") + overwritten_components = [] for file in os.listdir(input_directory): if file.endswith(".comp"): abs_path = os.path.join(current_directory, file) @@ -90,14 +91,20 @@ def __init__(self, mcstas_path, input_path="."): component_name = abs_path.split("\\")[-1].split(".")[-2] if component_name in self.component_path: - print("Overwriting McStasScript info on component named " - + file - + " because the component is in the" - + " work directory.") + overwritten_components.append(file) self.component_path[component_name] = abs_path self.component_category[component_name] = "Work directory" + if len(overwritten_components) > 0: + print("The following components are found in the work_directory" + + " / input_path:") + for name in overwritten_components: + print(" ", name) + + print("These definitions will be used instead of the installed " + + "versions.") + def show_categories(self): """ Method that will show all component categories available diff --git a/mcstasscript/tests/test_ComponentReader.py b/mcstasscript/tests/test_ComponentReader.py index 3f5a7d44..c8db32d1 100644 --- a/mcstasscript/tests/test_ComponentReader.py +++ b/mcstasscript/tests/test_ComponentReader.py @@ -36,9 +36,10 @@ def test_ComponentReader_init_overwrite_message(self, mock_stdout): component_reader = setup_component_reader() - message = ("Overwriting McStasScript info on component named " - + "test_for_reading.comp because the component is in " - + "the work directory.\n") + message = ("The following components are found in the work_directory " + + "/ input_path:\n test_for_reading.comp\n" + + "These definitions will be used instead of the " + + "installed versions.\n") self.assertEqual(mock_stdout.getvalue(), message) @@ -92,7 +93,7 @@ def test_ComponentReader_show_categories(self, mock_stdout): output = mock_stdout.getvalue() output = output.split("\n") - self.assertEqual(len(output), 5) + self.assertEqual(len(output), 7) self.assertIn(" sources", output) self.assertIn(" Work directory", output) self.assertIn(" misc", output) @@ -113,9 +114,10 @@ def test_ComponentReader_show_categories_ordered(self, mock_stdout): output = mock_stdout.getvalue() output = output.split("\n") - self.assertEqual(output[1], " sources") - self.assertEqual(output[2], " Work directory") - self.assertEqual(output[3], " misc") + # Ignoring message about overwritten components, starting from 3 + self.assertEqual(output[3], " sources") + self.assertEqual(output[4], " Work directory") + self.assertEqual(output[5], " misc") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_show_components_short(self, mock_stdout): @@ -134,7 +136,7 @@ def test_ComponentReader_show_components_short(self, mock_stdout): output = mock_stdout.getvalue() output = output.split("\n") - self.assertEqual(len(output), 3) + self.assertEqual(len(output), 5) self.assertIn(" test_for_structure", output) # Check overwritten component is not in the output self.assertNotIn(" test_for_reading", output) diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index 10676bf6..b5d512ac 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -420,14 +420,16 @@ def test_show_components_simple(self, mock_stdout): output = output.split("\n") self.assertEqual(output[0], - "Overwriting McStasScript info on component " - + "named test_for_reading.comp because the " - + "component is in the work directory.") - self.assertEqual(output[1], + "The following components are found in the " + + "work_directory / input_path:") + self.assertEqual(output[1], " test_for_reading.comp") + self.assertEqual(output[2], "These definitions will be used " + +"instead of the installed versions.") + self.assertEqual(output[3], "Here are the available component categories:") - self.assertEqual(output[2], " sources") - self.assertEqual(output[3], " Work directory") - self.assertEqual(output[4], " misc") + self.assertEqual(output[4], " sources") + self.assertEqual(output[5], " Work directory") + self.assertEqual(output[6], " misc") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_show_components_folder(self, mock_stdout): @@ -442,14 +444,16 @@ def test_show_components_folder(self, mock_stdout): output = output.split("\n") self.assertEqual(output[0], - "Overwriting McStasScript info on component " - + "named test_for_reading.comp because the " - + "component is in the work directory.") - self.assertEqual(output[1], + "The following components are found in the " + + "work_directory / input_path:") + self.assertEqual(output[1], " test_for_reading.comp") + self.assertEqual(output[2], "These definitions will be used " + + "instead of the installed versions.") + self.assertEqual(output[3], "Here are all components in the Work directory " + "category.") - self.assertEqual(output[2], " test_for_reading") - self.assertEqual(output[3], "") + self.assertEqual(output[4], " test_for_reading") + self.assertEqual(output[5], "") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_component_help(self, mock_stdout): @@ -467,7 +471,7 @@ def test_component_help(self, mock_stdout): output = mock_stdout.getvalue() output = output.split("\n") - self.assertEqual(output[1], " ___ Help test_for_reading " + "_"*63) + self.assertEqual(output[3], " ___ Help test_for_reading " + "_"*63) legend = ("|" + bcolors.BOLD + "optional parameter" + bcolors.ENDC @@ -485,14 +489,14 @@ def test_component_help(self, mock_stdout): + bcolors.ENDC + bcolors.ENDC + "|") - self.assertEqual(output[2], legend) + self.assertEqual(output[4], legend) par_name = bcolors.BOLD + "radius" + bcolors.ENDC value = (bcolors.BOLD + bcolors.OKBLUE + "0.1" + bcolors.ENDC + bcolors.ENDC) comment = ("// Radius of circle in (x,y,0) plane where " + "neutrons are generated.") - self.assertEqual(output[3], + self.assertEqual(output[5], par_name + " = " + value + " [m] " + comment) @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) From a9456d1c351ea0590e61ff2a1b3eb6747bce2af5 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Mon, 27 Apr 2020 11:18:21 +0200 Subject: [PATCH 083/403] Fix on input_path implementation, now McStas mcrun is actually executed from the input_path folder so it will load the components in that path. Integration test that uses input_folder with modified component runs successfully. --- MANIFEST.in | 3 + mcstasscript/helper/component_reader.py | 4 +- mcstasscript/helper/managed_mcrun.py | 5 +- .../test_input_folder/PSDlin_monitor.comp | 125 ++++++++++++++++++ .../test_simple_instrument.py | 54 ++++++++ mcstasscript/interface/instr.py | 7 +- 6 files changed, 193 insertions(+), 5 deletions(-) create mode 100644 mcstasscript/integration_tests/test_input_folder/PSDlin_monitor.comp diff --git a/MANIFEST.in b/MANIFEST.in index f45d6378..0288d07d 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -3,6 +3,9 @@ include mcstasscript/configuration.yaml include mcstasscript/tests/test_for_reading.comp include mcstasscript/tests/test_instrument.instr include mcstasscript/tests/Union_demonstration_test.instr +include mcstasscript/integration_tests/test_input_folder +include mcstasscript/integration_tests/test_input_folder/PSDlin_monitor.comp graft mcstasscript/tests/dummy_mcstas graft mcstasscript/tests/dummy_instrument_folder graft mcstasscript/tests/test_data_set + diff --git a/mcstasscript/helper/component_reader.py b/mcstasscript/helper/component_reader.py index 633612a8..c025d6d0 100644 --- a/mcstasscript/helper/component_reader.py +++ b/mcstasscript/helper/component_reader.py @@ -78,13 +78,14 @@ def __init__(self, mcstas_path, input_path="."): input_directory = os.path.join(current_directory, input_path) if not os.path.isdir(input_directory): + print("input_path: ", input_directory) raise ValueError("Can't find given input_path," + " directory must exist.") overwritten_components = [] for file in os.listdir(input_directory): if file.endswith(".comp"): - abs_path = os.path.join(current_directory, file) + abs_path = os.path.join(input_directory, file) if "/" in abs_path: component_name = abs_path.split("/")[-1].split(".")[-2] else: @@ -105,6 +106,7 @@ def __init__(self, mcstas_path, input_path="."): print("These definitions will be used instead of the installed " + "versions.") + def show_categories(self): """ Method that will show all component categories available diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index 663aea50..270ac148 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -183,8 +183,7 @@ def run_simulation(self, **kwargs): try: os.chdir(self.run_path) - - #os.system(full_command) + print("running mcrun from: ", os.getcwd()) process = subprocess.run(full_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, @@ -194,7 +193,7 @@ def run_simulation(self, **kwargs): except: os.chdir(current_directory) - raise RuntimeError("Could not run McStas command") + raise RuntimeError("Could not run McStas command.") if "suppress_output" in kwargs: if kwargs["suppress_output"] is False: diff --git a/mcstasscript/integration_tests/test_input_folder/PSDlin_monitor.comp b/mcstasscript/integration_tests/test_input_folder/PSDlin_monitor.comp new file mode 100644 index 00000000..9ebc4a33 --- /dev/null +++ b/mcstasscript/integration_tests/test_input_folder/PSDlin_monitor.comp @@ -0,0 +1,125 @@ +/******************************************************************************* +* +* McStas, neutron ray-tracing package +* Copyright 1997-2002, All rights reserved +* Risoe National Laboratory, Roskilde, Denmark +* Institut Laue Langevin, Grenoble, France +* +* %I +* Written by: Kim Lefmann +* Date: May 7, 2001 +* Version: $Revision$ + Origin: Risoe +* Release: McStas 1.6 +* +* Rectangular 1D PSD, measuring intensity vs. vertical position, x +* +* %D +* +* Example: PSDlin_monitor(nx=20, filename="Output.x", xmin=-0.1, xmax=0.1, ymin=-0.1, ymax=0.1) +* +* %P +* INPUT PARAMETERS: +* +* xmin: Lower x bound of detector opening [m] +* xmax: Upper x bound of detector opening [m] +* ymin: Lower y bound of detector opening [m] +* ymax: Upper y bound of detector opening [m] +* xwidth: Width of detector. Overrides xmin, xmax [m] +* yheight: Height of detector. Overrides ymin, ymax [m] +* nx: Number of x bins [1] +* filename: Name of file in which to store the detector image [string] +* restore_neutron: If set, the monitor does not influence the neutron state [1] +* nowritefile: [1] If set, monitor will skip writing to disk +* +* OUTPUT PARAMETERS: +* +* PSDlin_N: Array of neutron counts +* PSDlin_p: Array of neutron weight counts +* PSDlin_p2: Array of second moments +* +* %E +******************************************************************************/ + +DEFINE COMPONENT PSDlin_monitor +DEFINITION PARAMETERS (nx=20) +SETTING PARAMETERS (string filename=0, xmin=-0.05, xmax=0.05, ymin=-0.05, ymax=0.05, + xwidth=0, yheight=0, restore_neutron=0, int nowritefile=0) +OUTPUT PARAMETERS (PSDlin_N, PSDlin_p, PSDlin_p2) +/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */ + +DECLARE + %{ + double PSDlin_N[nx]; + double PSDlin_p[nx]; + double PSDlin_p2[nx]; + %} + +INITIALIZE + %{ + int i; + + if (xwidth > 0) { xmax = xwidth/2; xmin = -xmax; } + if (yheight > 0) { ymax = yheight/2; ymin = -ymax; } + + if ((xmin >= xmax) || (ymin >= ymax)) { + printf("PSDlin_monitor: %s: Null detection area !\n" + "ERROR (xwidth,yheight,xmin,xmax,ymin,ymax). Exiting", + NAME_CURRENT_COMP); + exit(0); + } + + for (i=0; ixmin && xymin && y= nx) || (i<0)) + { + printf("FATAL ERROR: wrong positioning in linear PSD. i= %i \n",i); + exit(1); + } + PSDlin_N[i]++; + PSDlin_p[i] += p; + PSDlin_p2[i] += p*p; + } + if (restore_neutron) { + RESTORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p); + } + %} + +SAVE + %{ + if (!nowritefile) { + DETECTOR_OUT_1D( + "Linear PSD monitor", + "Test", + "TEST I", + "x", xmin, xmax, nx, + &PSDlin_N[0],&PSDlin_p[0],&PSDlin_p2[0], + filename); + } + %} + +MCDISPLAY +%{ + + multiline(5, (double)xmin, (double)ymin, 0.0, + (double)xmax, (double)ymin, 0.0, + (double)xmax, (double)ymax, 0.0, + (double)xmin, (double)ymax, 0.0, + (double)xmin, (double)ymin, 0.0); +%} + +END diff --git a/mcstasscript/integration_tests/test_simple_instrument.py b/mcstasscript/integration_tests/test_simple_instrument.py index 952b62cf..18215819 100644 --- a/mcstasscript/integration_tests/test_simple_instrument.py +++ b/mcstasscript/integration_tests/test_simple_instrument.py @@ -1,4 +1,5 @@ import io +import os import unittest import unittest.mock @@ -29,6 +30,34 @@ def setup_simple_instrument(): return Instr +def setup_simple_instrument_input_path(): + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + input_path = os.path.join(THIS_DIR, "test_input_folder") + + Instr = instr.McStas_instr("integration_test_simple_input", + input_path=input_path) + + source = Instr.add_component("source", "Source_div") + + source.xwidth = 0.03 + source.yheight = 0.01 + source.focus_aw = 0.01 + source.focus_ah = 0.01 + source.E0 = 81.81 + source.dE = 1.0 + source.flux = 1E10 + + PSD = Instr.add_component("PSD_1D", "PSDlin_monitor") + + PSD.set_AT([0, 0, 1], RELATIVE="source") + PSD.xwidth = 0.1 + PSD.nx = 100 + PSD.yheight = 0.03 + PSD.filename = "\"PSD.dat\"" + PSD.restore_neutron = 1 + + return Instr + def setup_simple_slit_instrument(): Instr = instr.McStas_instr("integration_test_simple") @@ -89,6 +118,31 @@ def test_simple_instrument(self, mock_stdout): self.assertTrue(1000*sum_outside_beam < sum_inside_beam) + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_simple_instrument_input(self, mock_stdout): + """ + Test that an instrument can run and that the results matches + expectations. Here beam in small area in the middle of the + detector. + """ + Instr = setup_simple_instrument_input_path() + + data = Instr.run_full_instrument(foldername="integration_test_simple_input", + ncount=1E6, mpi=1, + increment_folder_name=True) + + intensity_data = data[0].Intensity + # beam should be on pixel 35 to 65 + + sum_outside_beam = (sum(intensity_data[0:34]) + + sum(intensity_data[66:99])) + sum_inside_beam = sum(intensity_data[35:65]) + + self.assertTrue(1000*sum_outside_beam < sum_inside_beam) + + # Check component from input_folder read + self.assertEqual(data[0].metadata.xlabel, "Test") + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_simple_instrument_mpi(self, mock_stdout): """ diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index a1ea7554..57e2d31d 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -1340,7 +1340,7 @@ def write_full_instrument(self): """ # Create file identifier - fo = open(self.name + ".instr", "w") + fo = open(os.path.join(self.input_path, self.name + ".instr"), "w") # Write quick doc start fo.write("/" + 80*"*" + "\n") @@ -1497,6 +1497,11 @@ def run_full_instrument(self, *args, **kwargs): # Make sure mcrun path is in kwargs if "mcrun_path" not in kwargs: kwargs["mcrun_path"] = self.mcrun_path + + if "run_path" not in kwargs: + # path where mcrun is executed, will load components there + # if not set, use input_folder given + kwargs["run_path"] = self.input_path if "parameters" in kwargs: given_parameters = kwargs["parameters"] From 6da13d1ed4ff48a2371db1ef2b6a997be88e71dc Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Mon, 27 Apr 2020 13:49:59 +0200 Subject: [PATCH 084/403] Updated documentation to mention that configuration with the configuration class happens from within a python file as a user mistakenly used the terminal instead. --- McStasScript_documentation.pdf | Bin 167419 -> 167921 bytes 1 file changed, 0 insertions(+), 0 deletions(-) diff --git a/McStasScript_documentation.pdf b/McStasScript_documentation.pdf index deb1fb8ea4d8ffb14681dacb475de2e9bc0bf311..a442cda3c984120a976b29b61f5dafd7580d916f 100644 GIT binary patch delta 53458 zcmZ5`V~{31u=UusZQHhO+qR$4Gxp4mZQC|?v^%zKzTT}W` zIdJy{a7oOpylku_%rYeUB)r_LBy6l4B!(o+$|UTZB+QZ||8yMeB+N=A|HRB1B&=NA z99&$-F}!SH1G5B8 zO$XOQ;$$IVRr!2FC;3CyOS5!VNlDL1B@k9)p5IC+XF!`b?|(3@JgL zVv9k}&Fkc|S8xg0W*(zV3=$6xl6?Jq{1`x`Hp-E#OKTR%`-9`ya$10mQvV9U}1a$ z8{yH0M43|PhvA+3f9hW=nunWyHh?*&$J>tq5M?47bV?|i5bDHc3Fu9Vc!erp*+zVh zV{yx!K0nW9Lc91JNpy@Dq`sj<6RX1etgnq;`SKh6)lpG`=Wq6NHWlAeO*@zJx(M5N z+EB-8QMGBbC99e=r4iyD#bPn;ClU!@PnDPAE+bq`rGmN|50t2Gso>976F}7RFV7Yz zy@Iha^#V3u!eR;G&i(>g792gPxAX^We@uC~^GA>gllNBTg4@qPUqCGswO@>a^3fxf889;f9pB%Po5#A*lpm#k85<0<2JdU zj8|ddR&r$_iPx#Ne)#-1qGJ3iMy)vL8ImDep-l_)Ap12}w1f|LjFcCN+e zBYsx=FV~#Cjf8mc-^oo#!?i-knaD!n*wX4v-{fC3t1z`+a70mKegI!DZ~LwutHw5R zaI2;cp(i?s3paF->nj(#?&>l0lp{0n!4W2s{e>S7jgD! zL8$RJGti7R6lCEX)jJQ$kajbdrUDkLRra`e>HplJ&*W4TwLAVM#37YP%3Fj#qHMdB z7kaBnS&{|m%o}-lXwpX>@y`8?+0cxC6#R3|2h;ol$0RL*018lF+rEr;>^q#5v#E#- z;v3P8U@w031M#JIdz-$dUbT3JY}XbyZp{{i@8Xdn#9e^CEpUnRg0;C&Hvpxo$wxvGDX0<$m&7q3UP6B*jHRenf=>rQwL=LEl~xHh$lCWO%HQ{5DRI?#RPb!(}h zc!wl^nxr8|K^w3-Th2o!!k)hyT)*yI!A&u~EN~w+rFUj(=5!I8o8_e_H=3-M4suNw zgn8mdVgO=@Wa*O;2FhkYAB`0hveglKSE|%UCuIQ|YnLMzDgS+%2hBN(!|9I{b4r7& zkjJ)+X_8C#I6>EDmXMiuAJGX^AO>&rB9zBh%Gix*Sz0G4qw}BDf>~TjUD>P$?1Olc z<=6v?zTcWAw40* zqd1Un@cJ8^g>*naq%B}DaBmav(KIN&g8dI=^5qIn!H_sh9oA=xv?9uNoLzn5re;|SNpfiuO3Kx;yAO4`43 zM3MOR*Skrg?Xr421_(qGzGyO5j>XYtCqJ;X{qFi5+@PEk*s>)y?=i(urDg(Mu%K9} zB6ykWzlduwyR5XcUO?HlAd8CY18@l>t%6LCKWzQ1J2zw#hJU?VDwN5=_jAv_d*Ucj z#~>WqTt@hxC*>JJk>o!eB091s@Oa)lnoBuEw-5nlJTb^R2$Jmz1yUjy7L(jYZ7Nt$ zkL9Tpi%ne*duc{vC>AWw`iT;;IG9MqlWke+LrVz^1Q7%;j$3DUFf{G-S`7DndAbp5NU z!RBq6E{T)v(C4bcYa;Lt(B(48hW;@?5QQG_2#a&yw6^^uZF7mRQ*uX85$R6V@L${? zJc1SN@*-ygSZlB<#Z@&7V1t3`NdAv8*vDmOc!0L+Ip+5{%Hs$A)Z0)&UBO#$AH&5x zhPdz$Lu85e$2i~WN9_LeQH;5CI3-#ut_+F!(YxE21K;qYHzlV506zWtB%AY~t2nnN ztMRt-v(aqmi)8G+0m*k5{|(s!M{+LQ66ye3aev99L+r#1;jLxx=PhiXo%zcc110vV zzj(Oqko8A#QRx#Jn6d{+_{~14Qk*uZJKV}Gv68(wvgE1l?i+n6#zx|i7DMq}LuN!3 zVlJ;OMsqJG(ZS^?%k)OXzp>&>6tCX3h~P^VzI0fGl3-Y8`-Jnfx5*LX`U2}o8^DA(Nseg0>Cxi zx)Z+iL*PI$v3C>7M}II$Fr{RI*-R7Tgmxjc9Fcq+ttu7m#N28{0+Eutj8vN0?FdaB-lQF>o+M zpF!TGRRqf@$Qn7uV`1oc7MN*G98+ZQbbwnJg1D^gnyt(bx!J$^(cv1d=a zctU8=I{9-sDKv<#h5g?wUI+Z8=S9N>a1^Z{`(pPoX35)La@N;9JOm3A7Rk__d~|F$ zY-kdll}?T8@smJQ9;KUP`T=--ImW*iENiutUussJk@E#f*UQrpRgIJD-kamsmD-J& z{co2S7jN{F`aZg;w`yS$@B4?h{q~^~iN4)FF%Xg4Y@&{0w#%vU+Q+m~uKlKv3;Ngm zAJYx$?G{(+^zv@)+tyKTto?hOi9)Upxo3u#tJl3KmzTVnJsJI--2mY3dxz2`-t22| z>8T;MIuMC2!RveIYpf%-;PC3}fefeTcfDC{xiy46V{_rtr`NmdWgn3r!om}V?+14) z4vIJZuIg>KTuY_S*4M&d17#xdh)+52S8Olq`^bra;W$A)gPki=#X!ZrIK)j#he^-j z7w(=D$9i9Wn|7TR8o%Se{v@T!A;o)e&Mp}~bN zCX7M}=jV-I8x&BD5eZ zJ}puduO?%L!8QpRKUFF9r?fJ*QzqGO5XAX!z6J}3yP2w&iRd-QU{8}iP8X^cll$P` zx{z2$X(lrptg1uogjdS-N)Vl;l93CD+PDAcxHzPjW&m3qz6xU{O77UKCJ6FtHkZu+ z8;o`?ECk^9)7ez!g0n^;*m_xVaX3DgZn+H#F;PhyuxG5&^#S8MA3jyfigc%g=@Q}E z{1<$bF03R_Unv|?(v>7JJ3$&2Xk2aum&2K9#(sYotkL2Ca)_YI2GymM+asojoIqi% zr(hS64!Fqj#PWvstWad>5}^5_Eh z)m*C&V@u>!=doJUyj6=l;q~&piJn~&?h;~7*2Lqm*U~8~C!ye}1y$6}Sr=iz`+;Q1 zlm7T7tw_5pOlNDisBjYU$!KyjxQCO6qx|jkDteKg80iP2jdwREg&CbO6T2aGT>oM8 z0l=YhND~Wxk#0&FNlHT^=|Mix%*dKYPy5C0Xryc5ZLIHoDbzU3Bx+;rNVy)``I2J_ zEF_H_#LnAJ?OE1-L^$ve5NbuDO7|@I5mpl5xe3HuyeY&-I!4p+`b4LzOx^v?r>%iQZx3N~+ zqtDmq-sFO#+lQ7{^In+06*Ix`uIDV@F($~?bF^fP^jYHjR1 za`7&$APE+5jrg)}&r#SfPzZQ*wwk512d4Tp0PIq|TJ7UQuibMLwRWe zi5wMvb)+#={M}!Vv=VaKnb!}9=_QSwllt3|GxK_Q(jt%(N39LQ%p93!0H849B6f~2 zmur32_40K0-B7SDd8FIFOII3(F;`6j+8E}=w&j&IjfG^u!BH2T&wb^MOl{QH^{@!l@d5YIH)R!w@yG>C0n z&pdcc{-%$8jwl4fTw1N9Vgy4xGNbT`> z3U4NS4k@MaSduo)WFH#Ir0KiuZpGlo?M)>vLBrT=2kTY{QH_37sEzTXxqFW=7N z+gvWp?mw3w;HqyEa5VK5E~oKsIUd1HuU?Ow+5Z&FAJ#ey7&lyHaC|YQwaO@|$yrZN zw{A+k7Y4bjIEB&9qMXt0R=LHVKs1E8Sl4D&{2FfUXSi1_tKrjd=nVO6cT?F%pZ*M@ zM#JAgkJeMfO?^+e{MzXpa@}XL9dT}Ob@dIr?s|u~p(1T}Zt`!a`+;z(R#pvD;q6f2 z1!ZLhu=BEW{9jUuV8-o`>p{r4Xgaz&#-x`xQjnr2XV#p!ZR(149bCHDab+?^Of~Dj z+YaJFhUwM`Jsx#;7EuwAlAgtQDemm_mYl5Iuj}}L;?L*!P_?<5lpm6H2$Y1CSUjTQDD4Z=rZ-cdP-`i_W!)|}qyA&`>jf}U#+PT462o9QD ztZ`Uc*uN+H%ixR4yS=)nJ&0R-xjTzFH=|jPbM@JDd;aI+<%1g#$RC2NP@d~c8DN06 zXg7Z9)OCCLbr}7NgUrkt*`&_T$%;Jp&-`qS1qz56$8G(M^C>)fEugl(f8%=Py7^}F z+6wTTc&r?}AO=r;v3+wfzd36VS?ydHr8zM0-n8zFyxqKR%zB}{@c54aWmLdGWznUf zuYCp&+%{#G%n$81#i|9*?-YB;W#L0*Nd1iJFE#Llr2kqDD5@sx?T!00m?rikh_p34 zL!Q0cmJ{N{9I9&G4ak5wYQMR#-1ShutofBhgkypsqlNqRFOLikA}?Z06*eCHRODuD zf}Hbzr9&ql2_shQb>c46kPB6#d~6l6MMlGgd!C|LurGwrpnRKr9Owg{$1mwFu0~qT zKX;c9D|njh)L!)K-YZ82_H^wNf0**fj4-RM=ZI^+ZYFG|11|jrPJ@V@HYw>w8MQYB zru_69aH^~7d#(vPh(g+Rhr2KRvU0pQWvBgzU&>J*fxwH+&2$T>N@97+*f8eDqB_r!~^Mk8iJ@eXCO2JbrTBwU;l_S3AD%{esQ@ec1NT0A-u?3w;f! zr5L6#km;K@K-~=+oB4}c1>=ufHyH=Svg@j&cO(8QIOwL6gm*d}#iot%*XeeMuFu~4 zchD}kcj!@^g^SObt~Wcs{oDQMU2oy7j8jXcFSOjgj8oHg6;0?Y8SiEGIw#BprMtk> z7}s}609qK?n21viH6ou7n-RO`kS9-#(uI=n z>%_2azxWi)8%^2A^g25>8$UxFd;F2LEvltNHdXYuD46$Cf0?!P{5NV=glki_O9+^3 zQ;bR|01u&MMay{DrYbW{qpoYsO;nKbkrEYAWsir(CYMqTWX+TVRn20SMODhoKVpVD z)q@4y=we>#&(Kn3rjFjT&Ei}cUpGe-=X4F%@|QV3M9iTEStFH@|J)MU7)QHU#iK7| z`)=I5{zI!i6PJO3`=Xoc$XG~hLTq+y5C=gJ;Bj0F5IUTdyqB50cSbwJN-Y-01)HWQ zt^I{7s-Hi^7Rr#S(rU2f;<{ISSbS0}jH?7=r!s0>np#VHS1y#7Ye#c^+Cq*`&M^r- z72+$%3)#4msh#v!{nJQa$+MNhG=y8R%=S^eI@_f-?e7u7FZJ?VY#|`4t+&8W%IR$< zfXC%9jX%Z2^xFPTm(qpHk-)s=@XbDd;1rL5unn%3yOxpZfPln6N5nDruYMb;NWiUA1aUb!rkajh=xk}-a%P#EZ+363 z=vPY=lmkAfhsG?{-UwA0lN!mtq7Q5omw`^J%>}{9H$zz z3uovg=x&qMB6um#(K!ajyPlZvqJj7`aWR&<9s&vHk>Ev!LmI`5*1Z5Nw>?vszJ)_o z>NK%1In-Ag@V~;Bvr?QpE-~FEr+y>);NsQOsv$DZAm!i(4Em|M;2U>MA{2Uy!L7ER z`XwL>H}z5@d^!DnxdzdfOjr<$2DwC(>=^1=H*%+MVCh95_3*jQHb!<_J<^*UEAO8X z{9w$Okm1&H+Sp~e*f|1BU3}sCNDOSgzOCLwlwuu@#UaIFAPtTqyC=Aqk9b9r=`~b@ z-rP1ByBG9?am#`R@rDkZmLC^gM&N3;^`EYMnNEn_JFarqFgGn~Kl=$zlzlC(nO0PWUN5zJTj59cwB7cc=-$n;WtVIMi+WxjJyIGUDP?)pu@nwf;#3J zZf#6jcF1OgO>zKd8L%52SsR{sy?Hw`T96s5( zwLu-FgVAL%*vbH=fHgu9rTwEDU7=g=u(Pm4l(U`V*X`~d0`EQACxy`A5A9)QyduMX zW1j`a>v@mZ`VSLwQr>d874tJ$u;}fG=djnqdU5Y*k8?B>s7}}*30N5T ztvJhY9usQ@a)^X{reCNB;AIMF!7vG-4U{A%_IGNSAu>K=7BeEj%G9wii)=6rF)$&i z9KkeX680t)bZTCRNM);*D8V`1Ha!b_@`e8DU|^pD#u4GrR@rPQpqaMQXCUN9ii=J~ zLkPb5?d1TI$X><`Muaue-aj;;pb?Y&hEQN@=hHBt;zx$Kq$W|l%>T4FWX4|YEGAI_ z>-)pOqz^@LDD%meXej>#G~^J7s_WUsgfZm^62%yQ!BDWSRsQWNCX|y5*J%~6ibMI| ziA6#b%Mlw3K{ZKo69_4eF^zf#aZ zi!iR{gHS?$TOlI!Yq_o!W?=#ctF!pX>=-Czj@XzRQ=z-9x6$GvKKCN^)DicU4Hy}f zhf_2?%48|mM#xoPh#XPbj;z0qRC&511<`baVh){J9|Q+MNI?R9Y58=1P3{dk!*HEy zL+3ja!;&<;3x{nyLb0;asyzF8WOx9NAxL-bv08WT`JmPbS8WZEH_et08ZC1fFPj2E zmYQ-jt)$z%z^w{~=1qHfMp*{O1uPKcj6aZa#dD&>bC%Jld$dwNbiEWAHn$Vo{y98L%a*=}Q!Uq19vNA0(%o~}y+h#p`7XgaUG1v@K z{-8*N)I~hMVt;^bP{Xa)W$*14(t(=$S1$aT7aP`5*}T6jKa4R^*RHFJFJQem69L=@ z`NQLUYl9yY?ybuJ(w+rew7SaUrX@$5wp3sTvVo_d8@J4yyF}x9t5dMt+&_n=jKgQH z_eK2VIVdf7`~E?7qq5;UggZ8$ImGZ8{a*}THrP})&g4Un>elcugxh4evmY%>x86l) zDJTx#a9ASFHL*5)etjc*16&wCeS+rKXD8Vsz_BWD}&s65F{lPck%#jpz zNvaS5vvg4E-+nxnGW2Pj#Jsu_EGH|O66X5>kO|S_$nuUafSRC^#PQWx_y-7r?Ll+D zjKH0dmX$xR{`0vHd!|EZRXu+1r2!wKY2B{jkSN9hzmdDV+0^_F-7OJF#Y z>nQ#%kSut2m;Alw8#k33C3A&;x2&a}s`pv=VjhBV=N#ENp~Fb!Yb_e9@E-sTJ=oOc zDF`;4njIZY60itIGT4qLKYsZ7!rDoOGQAgF3lX{^W@ijBECYJdg#a-@EhnNA=YCFx zG6$EmMTSy1s(ZGAKV9SO+1|yr+*@m6?v0fF|izKQxtCj{tv{ zriRMhhV+jIl3X5#)omr(DE`qdwb-BqC6dOCqKIP{0SrT%nkA>$vWTu=R&__1*Rxyd zsGKOR7ypU3O?JVN!GSFQjX|3gLe5DPDKCP?m0h6wPNt>l8wWd*efdo#z zlMy15R;mpq7DB1M?>6y(o3VxSkf`*1zWpA&3bwN6&EnGmK)!KddwAl)W)8@kF>IPP z#>fjQ;dDzR{sL5AZ-*TchVnmNN(-|uz54*fJLkBck%>R|0t0$>>+IdW&#CzQ{~HN3 z^BIgq6^>q1@Vg1FZ7pKCNWP^^DWH*5U6gjhG zYSX7j*r3#5eWYmEhV=6remC;R)Qj%~Bjm8qPjD-~;O_A%EW5?|^6UW)Xlt6G**j44mT1_~Q#&2jF05;rc&_{9522BIikYeTN&%Esf&ByOnl$GUc}Nv!*gb z?lDC5Kf3{!FLoT8Opz|0R{wa;K~5sG+`v-QEfXiEKp}y#0E?EOVncUx<4#Wf`J}ki zpy00hd9v{5=B0ZpF!lU-lNB}ORYgw?Pjo^PD4hc+o*)-AZv6vNc{Gs3T~qD3TS4!) z-e6&tpCvJo3`_5c^94bl>muG{z&+{$XKE?f^Cb!h^48_l`Piujb`E$&hmp66ugkZ>Wn{|Bt3*8;PR1Y`s|9~jgq(I**y}xGzOG1Z z8Vul)9NeO{uk-cZlgqGoybDU6dTE%Pw&@HyrYWUj=)lwar*OHz7W9P_Dts@8eXFdZUjpRjvm?H&IvNOem36( zwP9m)jOP*qrD=!9T2<~p7r4I_<9@uL_3R$Hx}yZ(K}_B|Fp&riv-B-#rS@BJ>OMM3 zfWPI{Ms!>r2%l73!qSaULpoKZRStuk%7+I z5rIpS;2GlNM@H{n3l^!gsWc#Er)316@m3!e2lRYC@rizMubE zn)8785NE2-(`B>m{60!Pmw?OHFzytYOPxhLwN@vM{L8;n7->4JPv~2DCd@-Y=6Iz% zgosHkVp;!cGcb2BAo?5R=#HP}Tkz!%Va)Z8Plw_^&z}&VJXsI=HmkMB@IK!A`MOX4 zN)%dOP08=~LE+>z^34=N7ag7@5lymN3~~k`7!Y_n%872AGzjmaLj#&vOb4a&@0>>< z2V^Zfdf?cRbWj{f$Gmg{bbs*&2{UWexD8p{X!MX!aZn@3v%h)|{P0P@1@$sR1L$FwK{MSwPj9xR2FZ z@DG8>$e)s%LYuBbKS*or9Kqi(GU8Y-u(>lki;rR(f5(|er8vT9J2;NnIe|i*!emK! zXHc6=GL8tDPFf$IymQRLE^LwQ+{nlaV6Ez$VNjQYnKy-f;Q;(QgKdR3FR0v#UPkRl zyDr_=sW3Pi3FUyh;l64FJe{N>dMbj&PB*bJ8O1CsN;>#(BZ0KQ5_{2NpPacv&>TtC z=PABMMCqKlkgy1A`z;ZI(u-Oaa}OgHe4V`{&A)_d3^08>J@O7HYY@vdT-WcG^@yPe zD&5&m8J9hT+5i&1BIXg{ za=N#wYFWkgn>g`QIYP%f>ECfU4lQHuBbHr-pdx6yF6(Z6^c~AZ{C;oqU*&WzBuQRX zM@4Jj=Gp*O`@n%3o5s=P{4({(U3witSQ`ustpyB1alo&xIri=t73$1rZq(A=|L_b$ zlq?N0>bnW03srEdXwM&oz;U$o(_oLDifV6Ak=e{8l1#mmfLrRsP2ft)C5V7(6@I_x6K-aFoz6U6J_HD=SxRvD#d~8NJ1Gr1K zaWrZyLBN5#D5gD4WkAeTL3p<55}%hmH@- z48iTgjiHL`pgySP1BB;zjlpP{15>%?bEf+s+tu2#eV+R-RBgn3=ZiWK4bH-J> z4TeUjTf`Yn(H{5^?Go8mC3;=2j62i*(J>^wT!8%GMZ-AKWpBhUJLdD)Jx*8Kswpb! zxBnC_`Y~%nIuQoJQKun3Ek={!T^hQ}pmwEi2KK%?^0vTF<>oZ=4CY(IK%qkNvJroFa1B6&8`8i(W+cZXD)&>nC&@d*P9W|OF~3E zQ-DEaj9PI=D&}>Y9j+qo6VF^QTLHXw%s&IenDs8U^yG`3hzv|hfZT1L#GfI4Hs(ly z9C^R~na9ji44O!OcAia#ZplNsTCqzz^h?Te{C1&|25Z%j=3f?k=L7`LkpjDd((T{t z$&7rqYuCMz7hW4_f7;u%8QvK@ zX<^pF=fD!u|&X5VF!O;nheS)izLzMf%igMQ|2+CUg zNEsQhr&v|R;Lg+WI@G)cY%>fpC?P~Qj8l%r{m8-z&SVLW5*})Yb&`+-@zG!;?t~9K z_=7s4$SCkETLL1Zlx*&5*d&A{niW|6Zk&!KMTnungc0%(6B6lt(=q^tmjyftcBU$S zuqKg5ldFmi3c@GNxU5{rzXN`ejq=q0v)$s6AdrEw!#Hf+iNP2rMH69bEWxRWC&8U` zjT)s$BOY^cFbn%_0zAX~wMenVWVjg_v1Qzw20L3?31P;Om3-Y%IkfH6zAnEfltG}u zJ6*hPXH?7k2n=Mf19-a1Q!P8U30~@SIM5aP5qe%LfjFMoRIKyYlqpAiN`^E0W#?I+E%4&L4y2#GmiJ>H8hY@f0**PA-UX%Z1#Pq;R#i@fD}kf8T{&ZPvEIQ6F?Qu=?An zd;_phG9mgwNp*r2A8(tLJK7KqY0DtG=6*+Mkw$#v<)5;_dVeti$SsrJQ%cI$% z3xA%A&nF+~myD&a9CqsKGwicwm%k8kjjU=W;Zbg0?H(Rd zREVqa?r>Fj*@H6263aJStR_uwJ41+_%fO@SWwMDVeY52AI{+AGKVeRn)sU2Y=Zvg9 zImm8I2QWW-Ywlg}H~srODGlmlAd`WBO*{+_%C{ykHw3@wlOKtl5LtHubX@!11Kyqj zanxk;+pbXTr!bNJ8zn#0%Eie2%}dMcyO+(|aZ*~XkBcxqV<5k}e<))b(uj-;P(NlT|{zTe>1r)NsGo z<)pw!dEQd~XB;EPF=w@F$mWaF`f+rSE(zbV-nUGcA>3iKihoH(&vfW@H{wYl}DXR$erTV z!Dy32RUNPIeQCucnny?z#K+G}Elu!6Wow}2Zed$h)vnjj?^WwL_K0fSsL{`Bw04NzL zJPqz`n!8;~<2-?Q^(J7SOux)0%pYD^_5~sT5%h=9-9-Ijt|b{F(%`s;L`R>w|HM9fZO~xC?Rq5 zl`#qpg8AasXrqo($WLwmteLyz666yBWf{yW`gvKYAOxJ@cqgGQ%2G_*Ar&pJuKS;g zPaOGGE|T9)1`IfcRHof)%zP%ld39Y=KzFz_IZzf*u164s)e7~?MU_iPA#}}Vy9lX? zJ^CKkHS<9OBhPnrE)4(0pBm?%a*G+ZyL@-#x}?*SuA4S0fZ8wi^X9hF2+8N%A%lr zu=#>D+U*>O8sj#hiJsPsS=;Bp14S7<&Hld_0*PjR#V!lB_k%17j=WTsK@$U74`AV9 z|35s)w%|V=WHR~n8*V&*Qm3YSCvol0l?-?8EPJmIBC5I>}x1l1JnC`qM;(|F*G zCOCMqJUb%Y>PmF7+Klw_SJuA{IW_eqq4fP2{|Wc`{gu-p%)_ZFM{)Xe^tC-ov0suC zZW7+E;>Q2R^967^IeL2W;_hKh($Vsqs(L0I;r;F}mwU^wnr*DEDW^+cX6_2mHmmbh zue)4VzWuqpMy7kh&q&3;mQ;w?3>>H|RJ7mr(By&_sTz6W%E0I_gbSJ79tOL@8ukq$ z$2Kp3VR8fYa4Ii1{Ask&cH4#W>Bj!%0IXv0JKfx>tphBXm@o8|7-F_6_&S~wvl9M3 zoV!AO={P&P{^pUf1h(Zv>pI*LYgxu~X6I#Y^BkKDo3{V<(5|btY&uqOhU+vjV#u&m z!p=eb(pXs<&)MwDo#ab+YkdagV5rzARR&BN_DMFh^#!ah{@qy#Pp~e-e z;NT(&I2?LHM7GP2MGiiBT74KhWu`TZr&+ddWgDFQO1pLJKoEJ2XTgdrP{hAXi)u~N zw8Np{KIW|$v}>e-LRzz6baujqq>4feId);;2>?nNH<1z^H=nsY!2SOj_STRu9VO_BK=Snh3 zDMF$h1oJ5evXd~o-ze0w6b)6~DPq$Q!YYb;DwZNJEH+SGZ-p+iAX@4b9GE=E6x(SX ze*v=~X$W>u(mF<2BJ7cd5zzvo(R!ts5otU)v6_t-K`bwJ3x0E)VFowPZYuxDulio2 z!>CZRQ+7q=p|Ub>3c=T~zWJ2o7JP4-^bhP~N~cl~da8SMF^2g=1igDuX$gNl>pDw> z(Vw_jem&j)9=AB+4Nc3s=r!E<-q<6HTmYbL?3Qs@bFdm%Gv}%@mJf&&%s#!IzN{+j z=D)?nv(R&kT!}E#DhaE1mp(OT)YAqkpGW+OZGqy;Y(ohye6CT*Mn^-#{Yz}MGQu`g z{s7w_pyo&Lshs=gb|KD1UGYelkk_2ZV&md%^u6H+X6Y9X!s)$ zCrFCpf~QBQZuBi}SA#K{W!vfUR6AuQl9>1>#craUipnr$%e2pbrKA4wTC02WYb&a+ zwO5e><{&;sUSs|GX?99iHqZ!Q5*hev{XH&P zV|1$scZLRbhWdH}>A(Mh=0Un)WKn@&YeGYWU%ls9W8+S_l!8)E+-{JHRiQos05WIU zF1s*tNHwY%&d%(Ayjs?)Eg4wG-vY*^yS@xUnkUP=-`XTMW$U4GG`UfA0sy502bt%0 z`F8>xh^;LWGJHhj6qdo5B1KPszzHf!>CA&^2>1WgrT7IjPZ?G5-ot`aiF8|!nc!*8 zKZ}oKg&2m@?~~)}8Mt=^aH&mmUdIvS=-SoM-mY#|Z#6;X)-G7_R9P&A)^DnkllXC! z%a{)ndm+0!(9r)jAY8*avjrHLRW!}{{ndE{FSEyhLZ9(!p3XX$!zS^ZlVZYH7p!gI4B+jVF>8p=UA#@*DZhl`t}tc zzWMcj8rMkMnv>bQX_#8kD2-i-FUt#=Pia)4FdKoiboB549h|;k^$QRUKgsil!HM)E zGd{;WJXTo4lL~8(0A2J5r%3Z=<5d}VIU?FGfeF|{-97>$y@;pO^;KDs#jwWaU$kw| zVv}FAzpGF7n?c2Rj?KLhIEqt0#sClMHG26QQm(Xcr^5f3n?_*}KWC8GTNs{g!9y&p-jmY6l$@pNf!Q6B#vw2Jr)OP}1fMW}lPS*!RaA1DO=LvDjt)Xh&x^zl z$N`%JrDEdJd2+Y4;I4SgStjr2)?M^K$b~+sUC60glZM3KM zpKOJ?Q=Ybm8En_ZMw=LYL(0S&$vk-#!}UECMa9Q3aN#eUb4m?^{k&U1kL;?}U_P5j zo+FlJq>ZCem;e%pNhcKcE2I_Vt{2n~$6rWg^)Z@f){> z#LQp7RME6CJIeeS_yk`$cG{DJq5|O z!q%Bvc9(NcMq6K(NvQF5g5oWXC7bEUZM$EA_)wT(ZvaxrQjlpTlw5ByS^kKwQnL6U zmQwGnn|TDH6)MqZc= z|0uhVBFg#S^*7A!7|86qHcphR$e3*>AHP%o-idbZ=9Ax=)6DM8CDav^!lfl2K^B%R1cO5fAqODjbz^;jRl96aGd_7)1ew)opD78Ah=?oIz9aWa=JuE80*yQ!&YSN^XIC(ldun3IIRTp5f#?G~YB; znIT?hJ=eFU`t;E+{z0G0dAtfW7E0rv6Q^bwpBf|B0y1lJCMLoX!MhzF;|X>EI+oN& z5%cmN_fa*vH|w?M@r)mECwp~}q>lQ%SVDFLQpvkqa@CH}p=cN@;rPG?f9IG>BViQ; ziBU8DOAmsv-D_8cJ8|9-8pJxL>|-h4&cKXmc?9Cza~#`tv=mpXaS6y=Wt~RB%EY8& zuNhB;(6g_RsP5dD;1T^JU9}GZ%?pdMOGGvX99VtMiQ&o5T`{rt3 zB4{GqEDypN4fm-zPobcSAwr4~;L1Od@7{#u4}7Cx-tAfVFQtY>MG_MPcmj_{eV(JN zP0Xb{4yz5#KVsF%G=qFCB`P+ssi;!LGKHWC;zhYIRs?W$;jgX)F(6_-1aKGweiShj z|EQ&5KGOpp3?#!La#a8Xi^ebw#$7cWxhh4`5f8>th$0t~WO)2oqD07$(VVhyspT121ye zw&+O)qvV+uyumDUg$AS0q0*HGjEE^wToihQTonSf6cgM-R;4OOL3=oai=)EKyioS z?(SB6`|a%h*qzBF`IF?%WG1;MIrm&`=>i$CN*7vW{MCPJA%&~qM^V7j4Hba<;W;p2 zGn5VE#I~#9Z9XB^b%ngssC52v2(-@Vr-!Yq8Dy32(i%!H@*~@C7ZAnf216P_I1*?e zUu8_F=xf1*UQ-$dNMg;l9|OwxK{!91tavtdu}UGQIzxNCpw3?NxCO*=Q$FDgI!U+Smx6j?PJb2_Kq1jQ|lV;MCJ;~v5g!eWZ6DwzLFym zCA#>qB1!|8bOFLeGB>eK5>P^KtLU4nJ>t^fOOXrmt!k7Q6}F!qIiStfO8OdJP@#&+ zHxmt|dOu8u&IgI}8ej7*75hv>HH#&hsSGCZh%;UzBxdOxqA70gNbv1|x1s+!nEfTB zzK%dc*R7`eQzG~Qf8rjVh&aq4bpKqIqBncJ!Ha&;#X9b^r`Ls$=bQ_^0up9tuU z0kL(C!zU4ll2$;;c8UFVMvf{M95X@;lbl9|h_YTpJgdMNg>mlqeu6LXM0sY8MVb66 zcG8FiV)8sI2H+G-GU)nxQs}VplVpuhlw~M$#$6YF>>(_5ea!<05Z%=zU@tzbBg>u% z$O+>$W28h1=;IpdOXESB&dv$%P}E1;;IJ6ORoSd4p!j=)7ad}Q#>vYF(4881HKS7d zE?N#;8KSps-fe&9$VD^L&B%Sjl1HR2ayw57?0XAm1VA{l@^k*Rl$P}vzA^NC2VOl= z1IBMzj@#(=1bdRz1Z%s6u75fX(8SLM^lN!)!#CXzltF|W2TJV2a0Scg68_>`DmwNjs%w}!(~j=fID4P& zou;!dXjl#N3GtN3$pb=piuj$!Qv!kgZCs(}`!Zm;f~qb;iaIHnIjNysKgc zOTfit1cY^Whju4utZ!FNSS>|XPCRV3kZMn7FrCaOZ#wpUjO9>RogWcrZoVq2cdk5* zP1&$9Y+#PK=X-enkEI6tS&@r8(UC2g4Dus9xPK%z8oWV&3`RM~lgGM8qab`^>36P+ z;b?tWInw9g7d?H?3d=uA(eaW!U?Y^ zo5o18@(b@|U5@$&=qR)G74bDgz%= zx>6itR3o;z`|@OIxd&-Q6-<814#w*7MlDTkL+A-?QSD09iCX`@(1>DS_RC*XN`xk; zx{5MOe~Q!(OeBy`_n4~g>4zVmS$DU1C(MfUUM)CVVs>l#$R;5A1XX*WH3;z57 zlU}DhmyzB|Rr*`Ipko#8D;#WSbT1$jDyhwJgNr@Ay6Q%SJ%~F)4{NoG9qCpADQYx^t@tvGQ zkgCvMc|kx>drx-hPR`ah&0yt9+t}Z4XWoihV9Ax8L-+j^lg*mUl67uw1bdH^WG8C`aX(8QOXzr4eh{qkv=(p6uiO^7lH>$pIjY`2|2~`!JhUG~fQRUp%2B*p|r7LS3aoklUU3GK> z9jahHuxV$)ZT9gZ=<21iJAb{nc%j zwJpkM2@kma!ZEj*j=~JRb#exj9x@@Bq`_RBzHPen3_Loa{XRH$Lh7)4w?Fk?VCMQ5bj;D9et^U2-%-iH>Vi zug3aRMTlBbsXdvjFl|ejvC+k!6_pV=1+;Q&X*iH0(93f}8rs^6^U^4!`Y3<5I(sG#lVNi#h)UY~@)05tgv%?uI*YZT>}SF6pLKG0<2OChKa@6udx6*AAoa2r5)}yv zN7Jz<5ujlUT5tl6Gzb&pk{MTt!^E8Q{Oie^FXu0Mbah{!docOz!Cg!M5^p)G79~e7~njwj!6ZAGjk5aCTXP zNLFAy{Gem$JrW8&vo~qr`pgpK*#7M)EJXGD`uez*uK+J;im0!yUQ@W%BW(sdj;Mc; zTLOGhH0Lj%oD+2vABj!+1CyzwlZ5zgU5-wL(@BGqR4n#gg9?UN7S;x5xZ01gCw~oR zpF1V{9)?B^)~Q@4*;%kh!x}o|$`!i{Re??vnfeJjn#AyEct9yik+!8^4e}p?aFOpK zNG(4~T^H}j-%y>gd&=G~)O?9v!nq4jYy-+3_{!geqFB-7!;Y5`lrYH+zvmvw{|5S% zXb1GY*`Nx@29jvecQQm|4niGZp^of}`a(W%>hk4tXa$%fwg?Y4^Ql97jLNp+UwYTC zh@2HDSc!3p;wRw*jU2|zX!4~a6B*gmMkOcv_o9=&ifw5-Lf|a(o6~ngk3?fOAppi& zj&zGEYO3r7?IErlAy8MpZ`q=-#~I#CTO|lfEh@S9Nz#K}rcJPdKDYSZYEM4N@GgE? z+SItYC;aHC{UC2}Z}SumxUEK(?KU?zJ5a!nO*Pi~4BQQkM0mJ>m;9y=m3nuSf|<03 zV!JH$GrQ|AA5VyH*Q8Y@?M{B_aRPQK&V=?io%%+h0UD~pg^#)lKfSIodfA|dg<-{# zkeox^NsC5YyQ6g&@%Bw&j-MfC31`0X;co4NQ2*cr%O(fC;}5|d5QLYKwdpV1L6}wH zY9D7NN&1MRVfjPW_riSFRloMloIOnP~F(vQ$mj7hC!DopQBU!N3>rk@o50k#p&_B-ub`@dAc2qh10;*D4N1^vMCd$6Qr; zujCn{Cf6SizH;Y{QM%Sr`mk-E)m~9L);_lQoJ!8*N#bOvtGjP!@}fWJV)w>fiA-D$ z+tsEi5!Ae^ga{21;T_6clJu>=VM9#)WM0hnolyywfkhjz)nw83&;+W~MNeQ_;Yxps z`qT zDC!&Lij{ZyKxb@Sm@+`=9We|4skEB#y;UMm!rqwVU<~#t_ zf|E$bt8KFtSGJv&@j0?f6~vq)TWlXC(ww@le5Uiq)8yF{+z-LxoX9^_~j77#*hVfE`8Re zB%ZwyLQzdUP$da$Rp_U9q#Qtpc&nmk=3B9Y4j?+X|K!V|IMzG2m6y9qxgrp&1zJHX z?n#T7+u7OMg(yH-e!aC6HG)W4z2}POnP2}Me*&mE>WSjm7Fw)V6#9{AO%xPJSxcUM zBQzWuKg1xw`_|m3EAU4X8|!yvSublZBTukRAe3~GJblL^=GQcU5 zMc-gI!wzSlaG6*3XZk`#7k!%GLv+b+MPMuqaG9{Zt&}<#(fe3g8mtS7O*gD&#OR!J z-AMo@P7n)!0`3aO#jUl8eP?4bbe}C;76VdP@^y$LDm>bG><)va{UE6!dbz`xLWcDq}Q?==8RZhC<|t4pV+BN_9bn zcgoQ4fkue7fMnJG-9e*E1~o_Tr|PZ;)AKX{^u%G=A)O5C=X&j5@R&T}=+8FSfuR-S?~_ zVZFR~l>g{RM-VM4y0i#hVmCiO3q=R5DMP3biVQez{&*7+>Ur5mX6XwDJ%*1K<^h@( z0rtS~uhp4cl;7>0jHj4hm8NN^>?Ny3M7dDTI(h%1au@ty-Vfa*?wK4T@)CYuoh5iL zk7b$7%?iEr=hp3)uH&puM)R^WJi7Zmx)XT8&v-JRjE!`Uau?nFJj5&eo4Gn$Z<_C0 zN~ZyDgI)JUcXl=D*}8>W7lKmlB&Z-21rVJmokxZklj{X|S#~8vad=sp?67@!d0lqy zz2bcHx{X%do%#7f~3tGco0$B(x=X`u7O^3i&F z;rC37c=7J^jY_)Xhr(qya}TA<`{~qlufiH@Jk zaTidMo0DUBpy@xii@Y!oT5g5mGa_XR_bRt*dDQh>nY1~6`Bhwf0a))ZptY5+?9RtL zNTKDPa#!l|rw`1AZ7Vi+ZwUBNW>#13n0j84XS;_W+P^&;>WQVn3-_CU73FX0ATTrQf@5D0%s;!A(`fw3iiKCKN$% z-6-;X-5KAcTByPbvs~88zL94GeV)D(Dk;r!;)2fa%R66amZ%u{c(1nmj4z!Q@!lqL z_#s_;0L^oIj*??Tqtn;oBED{1=&;R9hIpCGiik~T`e&H)4cNT@_+~1W6`3=R;DFJ` z?qmU^Brlz_zfbLcRH!#Bg*PwV#X?`_Ts&i?<9GT^W-6;Uj6s!vNQe5CwlAO4`AGZ+ zLVkv+Qea1fw2;uXo$TZO6hEhg`i7b2T}vu}?sX#asf@qc1f6h~UCDQTV*rQlsfrE5 z+r7-en{Adr8F*P8&IA?D*;4?nTxl zZbh|!L5Pp4IghOIQJV3{67%C6uvXv8`h&ewwJP%C#=VTM@HAF9fXwqRWMVTXx;%9K ze^>p`8_7^yM15Ea?MWfBB`?VvDn0)|f}B>$csszG%Q_qCtGe4PVz+lCG?XtOO|tS+Z;Ju7CP_$PVhuIMl3%S|F3^#0SA&W>XD`bg@2yRMnNY z-rU3gvIqRYk0FOi{7xaxnn~K4nSfEaV3jOox)*+uNPYkIEs5*12U>w_ZB3!M?8wfY z=q6AU(w!HW-hZiLq^7|~h4Wcm4wcUH8_f`N_L`gxu6M$k_8%KXS<#V05<@#VM`h9j z)v+gJ`pGAJ;zu=&oOFdIBK_x#q&c{Sud9DgTZ)3LIO`^*4pnJ!plebGuk37?^u{{) zWSN9j$#NX8a| zrMnKXuRlgx@WIK-ttTz2*JCM0`Z&ytA-yh~!mue!j z1rgLbSfDS*=eQXqb7D>Lt^GYR4P#f826ig!MSqns^KgYjKy?gncgWMjDEwySYApw{ zPFqptf~AOJKvV9x@({$k9G85o?5l1W_?75%8m3j`3&nK`%GRH$6o>{}{hE2r&7oQw zrGj~RGwf2EuPb;-dQRZSpcvV?j21lDWI^TOP}@7KW~@oaVbrF_*l>!kyDnxJI7AZWzFBj zo72-uZKo!Dgx<~tS9c*&x~bSXN;{lnzNT?0(gxD82f&kSK`=Xx1~K}nq9DRUecnNH zQ^ld(f$)>&0uvWwg`&US#4h@o5z}HpnaNi8%Bm)#)7W1X?y(AH+}(slz~^3SNgVUZ znu1Av1H)s{jE2KoI34pKox6ic{2Ga?xkYkSDAfg94Z;lu)0s9Yn7HxAiutBJN42@a zk7ZJ88)!cEB-mtFvBd#7P$1kE7DN=%B`Bx|7VMANtTHv*T3X!V2p&?$hC1wik(|8I zpZk)yY@&MB`TX#Fvd92w_E#o0*0K$zfUcLb&Z52Z`6@BNavIbKqZEKjnNB&-^!=&{ zzpLk2U_{uW#$}v=s8nrZZZz~&EyQXpAAgCX2neV593S1cWo+=B>b3O>ZV%> zc}}#^N$T7#&?RTtPOYJ_Moy7lyhy9io@mfvyfC#BGO)K|MPtSF;Z4kwT_SLqoeuos zpvqKIz~_8nF%Ok#RCfQ%epIA>vc}0K^4I~VxhhiVK64)Js~1rRCd=W%2Ai zlmDp=Ypn?S2~E1;!wZv9+rZFOb`YfzXRCTY{ zF@FiJ7iLDxK@L_YabkP$ilj0;T#wM!x~!mpngOIA41IYV$v^O84=KkAmjvyxt-ynU zK24*lT*sYLF-%=~PB7i-a*)si2?z`X|5!A0FyZ!oCIJEqH=@{f1Yf+_i0AWc-1y!H zX{p`sc%F{u_vbLJrS&QRwL?Nc>iPL1PFw00nH=4!M^` z;KHY*heX|O*YoAPTE4Wb`vMA{!>lJb(t z-#HbZ>FKpJz_}tfIaZthc8Xv4h(5}N6esjBBIs|QV1Hhpthp~mYr!`ndPMp_d274! zR;0s75ssZuOY?{c8Ir6-K#HRQ+OkPlnlUr6s8Nwd+AZ+X`in+>;L}OmT|^?ybOAxd zu0*h1!%V>|Z@{Klu}8wSvuZPL4jMjkI?cMyWa}*5=G?dKq+?!hE69@AF)jRdG2|mJ zQRXY$KVXDphtYzJKKVNR4@MXSrwk7tISkl7ITf-hIA|gp^T>)kAQavPdDkZ)(qjf2 zoY3GS(m+?rnTSq9cP{#S3$oY`LKEu!LbL<|2M1ESFqMa{P~#J1TA9y3k`Fd$vVzW( zThh%7QLh0*j}Y;L(h@>r@Cy`MzKsyB?od9eZicjTP&9N9f}h`(l(XW}M&f!`q`LSe z@wAFM@h`|24*?enz$_F~Rx>43>nL#{&1UI=E@jx48jPvDB_S3BCo3@P93<<=U#Uyk zR2Z;?_}vFDnE48{q6gEBE2)^j9Do$Px1U5%nHM7nThJX^8q4b-tAOnOsdJs$KVw>UAt4Gqe(E~j25*96^4cs~uc z)XJk_f{v+!f+FpIj)!7y2^#ph5CTEyTvq6e9rE17;*dz|2QJz)Aykru?~7tsg)(~8 z7>v8l719$+nxY(1q+rd{Gqhuun=JZ^^s-*wfd+P7uepsX3zV)?lb-mw^_?tGr1oruT^>TLjpd3F?3<6T5 zp!>vB$VYOz`IW~Pg!IO-B`E*iEiJ~M?K6tG9GUGGAn5L9RcU%Phes39Uyul&lKLvK z0rR3P8CU`>-r}}d5WKNS>-RmhO+ScG)8k`;S6sz0hC`>{fumx`o8r+Q+r@lqhdsMx zKKupOWqee3A665vKez@#P13x)8u^iFc2B8OZbUSRIGv?J_z$2-N0n1qU6D1M(qSaGscWV)1!g=FQY;- z{7kXD2*eChzV4KGsg5GrFK-Brv2T#L6^Gz)XL|Tt(!p`Dn^BDEXgliG09>GfD&j9^ zI-P;^_r}H^3x?Z z4b&4@^zy7_&cX(rZT{#=NdTlX?8G9!T z>_O?e^B2mqw!%bN9C{bvV;eOG`ueDk#SdQZ$l?FGo%e72QSXG;PiLA^C&^6}x>GCt z+-0F>6mR1KiPy!!?g0iUmjX&BiD4yMKnO@SYkQ9_bH8PjS45q&i|eE@*WkDiw7;q} zqh&P5?TmOlT<`B~b8@_z#(w2*_5P8_6M{-u7Qgcs6JmA>lI&c(6!UXI7X^kjCM0lbak|4nbEkWT_jOTktE`cBUuglc*9vGYKQ_wfpDT72IO}W8!93wmp|suarn9WoI`j5aN5Wo7joV*owhFDe!WQ2 zUz2Sk4<~_rbd04LSiSNi4m2Va?5~!%IU~9=d_9XbRC1j!*FP7bSh)Ot3cW;_Q#M%) zCftTsd#Pf8-opV1X~mdN3Br4pFv-yUGinwfJF==`P(;Z=ELCN=Y!yq5Hbip%&X8i? z;ch)7a7o3z6QFs#IE(*^5kE#oWAIWSp-Ts7FIY5=asMOkNU}y;)FIAMhOVH;A=46h>?cuj=FZXr(X%ye~cOQS&2HP3ntEsDI5L4j{5R$57!o3z} zv;VGPXP<%T5RhUb;gI1|eR#jw zFo`qrM# z`T&bn&!^HbRdC)mD1XdWmD2`p9d*NiYhLj$y?6Q)PGhUq#Ftt-71%BwO86>*#{=0P zLxqU8O$w8lw+Bm)^)}&zBo;BmGuf`m?L_c-8GE*zGt5g%U|5oeTNW3WO11w@Zeo&d ziwK37KHLqN2k`tqB((m?AbCaVX1yn*okrDy`u6SGS$kiDJ4(H~b&`5SlP{1gf4u}1 z2BZh9)%IMF*x=RIAvtz#UqDXC5H|a^TRndr-q2Kj2=u0YZ2AZ+%}*7YN0Mtz@g>(w zR6C11oZ9G0??PC6DW~}sEKh2)2XtEH;<8H|P5C9^YSuN70KOU#+;+O}YU z*$#;qL?jJx;yvzSD4oA4y+E^%>@IuZ$NrK22FYmw82d*{KH2aQX%_jmmpxxb2n%)K zUx1lq3Uc@`Jei}cJq9nl%Fk?3{t}$W%$%H98fryS>8q-Zni|xW&f~0U0eU#|*6}+1 z=K~gjrkxpw%ZwGPhgZH`!@CConj+dmrtDp>vA57LpixA-HxqbpKnp(Cqt%?p+hnJc zBbSq*a+K#?w@oVOojLdQ?$u5BWakOkk~pWSPNjGT$s%DZ9Hi9|p@&>;lfg?BA9;#I zD#2`_K#Q?c*bW8f7h_@ogY_a*i6N%JDylMeI%G|Faz425X5XS2)95R|Juv3cgLaV< z%9#-vppn8J`)<-;BSjCr1>^L*Cw6U;`e;a$)v?LzyempT1$Me*BKFh+JLL;{S26{0 zn6pGAkyI%r*BYy2P3BBW=Q-1fpBtNa`glo{MUiy>4VMY|%-{}4bOa5}?uE55GRAUJ z(BjIYEb)`mk-*o*3C5Hdhew+0Fmeqd(doYY(P1z*k79(zEpZhr^`&b%V4IgVp-L$4 zMe6^$MQxd!3Qb|NjU7|2C0D1*g(iW$(U@VIiq~70VcU!&xNH}P%hup+yFIffh$exl zcI$l-qLMVEehC9C=`o`B!mCs;qN^hGXG<%v#t+S5hut&g@gIkA{Hra(w5#sVn=rqu z?5@v&UIU?L`?&%?vSYMarUgj4U+q=DQE_HKfhpa&<;Z9_CQRt3ug$*<7UNLicV`)4??Ze=9x+P zbZAW;cpGpQY!#1+9jl!bi6;TGlbZYGu}Sjead<7#ov=Ca~1FB z+kxM74N)PoRw3kJJ&3Hg*e!DbAnmCZU0XAAfk}WG|8mLHYJ(PyP9As4-uj|<^_`+M z8(y|I&2FcijP(UN+nkN%)DGF3eoa&L$<*LN&*dNL%2oq=Hcj3Vk5UI>$wIy6UQpcr!Nvfla)x*C}5;D*BC3pf+1!VwLvrt>CZ%awTpE zts5|dCnu6>;!mnt^LzS`VtoIEgloK`xN{2y|8Wm<79Xz`iJnVvl8fiJ?EW)`!1qy@g&G2rjBV6O^huWr! zq#$9^hw)-+5HSuHxv|DD{vl1mRERryYaL7n)n5c#3XdIwn?V5|C5fbf@f%zSz?Q%> z#^9zl2ir34AxKl6Qx!N|e;i4;N9bBypAWDqf# z&`?+~!IFpy=-xkl$V3wBBY~)=U|QYc{8y2^#6IiT={gaeX|psCwUwSLJ$AhG?=Dcvt(|-9}^xKIHW=$MH<^|+TS}yfNtO93l-4D`4KYPbW zwddNIUnIXrzcSMQTdDfhjjy@Guai>iAE zcUn#xdaLx#`n=jVa1?ZFMm_qI4l`$&w3dFPq!(rDu3u3{SPS-EUWHw7yG_|a@wMys zL1jcz&jze8DpZMG(99dzLLq#$Nq5=V&JT6R6JV{1UnWlAv9wKhuarM< zM}S?H+bYR^lImLyH9MaoHexPOeWF-HF18vNTkTdv1#t!bIyi z=ooF^sRg+#74JR~Ij06Ur^^zs&x^Ut^Hs)2_$GL_KF3ex*qp;$?Uel?AapQp%q8;( z|8BljI;j+-3}o}4lDR9KoWbxml{ccIn!A{cA~V&{Ok~bvhuYb9tuhi4TK>^W;b3Ul zdQIeTSbSnUoO2W&0Q-OCT24#~jdI8~HqJkSfI+Ul=aS6D4d~zo4`=KlEkpHhKvkEb zSr4RC&bzA}R4!AD@D5aCCad1=RpdZYKdE-^5K8Rk0zQp)v@#U63fB#jEj7|8@#ci0 zFD!)jPn0{&I$RKJ+FVN(Va*6t_j3gDbt2^(PYSW0V~lcxIDPvna7t!$ToH!^npbtA zw^+cq>2>n~#su=LLS`LvpXU7V+;iqIv}i9-PPBg4+gMT{kzV`i=|;9p)ItyEYaKm12Ny2WWi%y* zCRlL;Rj3*-sQEz}b~yd6MFR?>eY{O`&eA9Qq$y8hGYiZu$Xp1bN@TfaRQA)?XI)U{ zvrb{V!9w<`Q2*t+1dI1`$Oq;%Aa?N( znb33|h34KlkdD{2EcwNCX)nFN`iY+z2oke6K=|gNFyvxRa%t5EW~7R?jO!n|PEDw( zc-3ONqca{ow0NJ~PJfSh7W{Kq5SYFMXwD!w>%(_#2@b(T$-*3YQnydCa=B`Y8_I3Q(*p}j?apy_H%3TOxGQ&d8qKOZP0?cQl%f9y^ZgCBNj~H6bAnQ*y~=O zT4@=7#g@j5liWgUl)5#!6cuMrE4Zl_MaCbi2A}=n4q8DUe&G>0f|;FkhPFnM+FGsx zh{5)@IRP(qN8N6YX!joem|Fb42&~`hZ=jYCzj)MJ`0*Q;>*>A*A*ooE6gF}$Hf1(# zRBNP6w`MQ7QQYsf=s2eub&gH|v^=Ezt@CY93hk2H%t-=Xs!LrlcL&U_tucLHxWqc( zFHu9}h%;N}jvE%fTaD4gHIp@fP1>ci%yMcXzwTkjHt4J%lZb(`#XDBjYr(G~H*bSkpi!!af906b}GAN20LkWtcpDZnTW z#e4SeRv4(*T?$0^@nsPSrBAA2;UQwl4?Rrxf%Mnc`_~)C^My2AKSyIqSRoZC;_i3= z@gbOOzFX(OEH9H@PXV5ob%bI=w~5yz_GMQdxiE1ydEiG3ZkIPV1DJO3A(t8A*CSQ!C%r)k^978#q$t!kg(7hq%hCiWE5hS zt^!t4gk@Vg#r{2gbudWF($XEoH8$y8Hn#u(I_ ze1oNhRBIDWAOOI~z_P_GgD8*;-={%#=1p1g?-{8mV#%15sg=y4KI*l&^K%yO*wiAEGzVo@W&`GV4TW&8 ztW}m?8W5L{nty1;TbGM7VY&X&e9P61KW;`6Gx?8y3H);~k921Li9dyGL>}$XvBK%%*%UOjOw52QDVw$0x&A|Fg|E-dDiN z&G`7nn!T-gAgkv#Q?as?HS;7y|F#*&b5z-5d4a4}K8)wR4}fhqn%O%-Lxm%O)}}Kf z=1+h){y;*U2%t+hL4?Bk888X?3E<%Re|iUBzdEf-;Ra6CqT|wvKwqbDUDW>Q;sKDt$46(`PDY9xX+ivjTu8ueA4vcE2j~z)gch2R2XA)h$r0hyEXn_{+EAu zc!+(ybxS?wZ6nUl+vhX=CuK^M+rwZQa4`%oUY|{GoM7nw7B9qctdn zw^?@KN@Mg!4!DxE0f41K3YUdvTS%4gfpAF0p&C*(Q)MIVjphROl3hp~n}({ioSM`s zSN1(BG&b-~BHx9$9}A*b#SMB@km4z(4SiIlnVjT;Fj*DF`?GEt*OQLiy}fXcqYd$w zeYBvc>NL8vs-~^gJ3$dDE3J~<@|P*QZ5u}OE%Mg^7k5pbPjp|*r&Xki35r={p=HWA z<5rOUOt+DkfA)r=3-r+sfFMRGQQCNPldEHD;Bx^dJuS#pCh;FmM*eOG7MwqfI@`QQ zEP%rL=#H-`>O4qISq(EebC3rMP)^L}Hb@rFmk~nNnJzeij(nrCdfV7^>~LZ`3H(QVk%8;Z-UK!lSDS52L1pTPI6J zW4A*k%rj*THm~rp*h&hUcNKTh3&&vkbo2=@L5`(Kg$}@|!NlAOxet7y%wx(&x6G7L z6YeOfIL*W?m(HnN{>u89?#nbZwssT|eO~ffR^X!F(ut793w#Ggm|<_L667?IiMjxc zx2P#lvdQ;mhz|Zi_m1h1)5mSS!33#9;rLB=Y0qgUI*rt)sCqG42YRxPRo0Cl%du z#>3{G=@RkSiw?qi--!M`xC6&2D2Cc!+oO5>C0A$>HC~u6R8fJ-85uJR%zvo}{D9x; z;)qc+#_>0Qu*0CS7?Fuy*P}ipRU`&hre3i`^A4J3Ca+>Zv>4UIVfWHb{tHVlr z@gtCB>TP$DP?+w((?;@&@j{8|N*>-|lch9MEP%+m{X&xfpT}n>INa9X?_hchNmI2g zpnQ5XBJp!a7XCz5M&5}S%-Jd%TPTc-MmUvP1JueWTj376<)^(RtSorwI&|H`X%i?o z#6RT6&E(y+oiya}-;8gRcj|y)H=!H-Nye|p>RY3d!^gI$iv(C^%u~F{_-6%3!LX4; z{af(g@u2KI)vVzWa+x-a$)u@iEDu-mlQl3vFg0o0=uhtna&gU2P76KiOD)<>y=ftj}kk zn|k?-y(~hz|Ae@C`idytEIKp#_7v{ZMUY6TJ2~b}^0695{~l!-_}9j0ywJF#YMdoT zSXb1p)6T$w8zZ2X;oL9-u~e*O5nQw+o)Z$RFM;BK%bIhnT4SD4??7 z*`{tXP3H=sU)mfvKI&kKZI(KoTiLS-e1w9mkS-H#xOTy~EQ_%uy-s4c(>tU0Q=5VpfFv$f~3KJV;Ika@w{r-3XLeACclb@nx3 zn!}Pr>cI^U8=!0wNlpt+6*V#Buo#c56Oo$wb@%Eb{K}m6#q!L( zCrqJ+*6()XRa?7B#8BoZQ(qk4cBYQ~etPoEcBC?4XMTONT3gOBCfBLo5}O<>=9mk2 zos9ZhT3mSFzTUa|-S_M}qK7Q#wsftPOon>&Ib3a|UIVwzZ2GX=k=S^}H5a_gaGvWV z`aGAMKKxQ;ak#QOJ=juZC>#AJKh49OXM06-+Wi}z$)%1=#%AF%3gnbb!{n@&hC#Lm zR4t{OTyK36O|rw~4|SSo6k%PuLym}HsL0u6b58lj2@mnFz zD}(~UkU+{W-c-=@$8C9jGw*$|`wTIN2~^w`r(*ub!fRm-W4U3y4+L~0}hxB4o#}MbW@3?JGy^{cjs=p?6gx8 zvl7Z^Oq9ol*7J}ASO7YikxT)tKlhHH5gGGWr-+mC=g%8R0^VlkiPwqy;`>^%_wO5i z`hAy9LGRnCMbTCtA2OJ7s8`bT-1nxD`D2ot#qtvP>^z67ojpyC*1me!wltGOEBKqe z29RPwt$T(3`7#8rQq*PF`$nM2vdi{cfLSsE3$C(#7k)*qG6l|bZpIAD_jjm|K~#Fu zA4DGpDH)5{CP>=Be~<>naDH16md40@+NiN26oyf6!NPFszIKlNncSFG{MKIb)?UC? zW5LLn$KY32FNxL1p7_%{^CYOz8?`ayupA!!vDySF2^a~wzW945o_`YfJlTj9eJrV? zWHEV*sUKfeA>$BXgeB7`ptQ}~NW$ihNOzPjh-HoQFKrBkV0iC|yt^SUiAGqoA}}NN zb@DS>+_weAdMx&5F`CXb-xF;%#L0<2%Pa#Es?HCD*@7k6MNxA;h3@acF_#*=V_P|z zG;MrQbvGgtIeSp7%KCH3Jt)^%J2(R|U4P56lf?i_#4u(Iy%qAl7OF=slfO|r!Ycmp z3DJKj1qAq|{J>c-e#PE3#{Qx`u)sbiWhW>HJD>Jvwzw|B9}eQIqR-m|2uA8TkTtYF zc@29oehvnyL+`P}J)@-PNnVrvMP{xpt}Fi%Ezi&ib?u1A9A_YVsk}F<4sp_U2QkB@ z?~8~oluiXK57^#*s*^#-J4NIX5U875c3RiVwo#Al26jtp9d6OilI%m zW1}YydC{M`V?>%m(R#hc{{C5<{uOeaU0M}%clNv|cIKmfeA|iQyOrNEM@kyvHux*w zaRfGq0D-Z3XZ-3@AwVs1U-`?reM^7%sIs9iefIB3HplZNX&o=)m3seTa z{)*Yyrys72ViWbb63{)p4l1Ql-*1YN`7xv_wu?#PE41WjGa_0AN?hxbKXvm7Lu_|m zMdiZ5bO+AAL;Q|ZxctUG!pW|VFmxg`;6od+qP}n>awja8-05J7boJoTalTOcPnF# z%sHO1tWMXDn2yK?KkiAPg36a(LW%6TfQ@h%RKyKi$F1e+#5z#}fm9ulICK!JJ9#0* zuh#y7bUsn-T_EfNK#6L=9U}xpS7DBA#Tn|r%lK;pRJD;-DG3-N z^uv-CkdqUL-F`GaWG1ADijykI8DN8ctA`B7_B1BzWV#P!n4t_vcb3#y**vc%WiET7 zCvWV5qMuiiBy=KbJun&^EcTOirtX~Okig6exFuZDfdMB4cz-0=)`odPZVkMWX@>0` z{Vi`AdJRJqu6ZpLTv{uIf47gZJ0lK{;L#m-xTRNjf3Pg`yxHwnNjvB# zk6?`d0A#xfKQY$Zh5anTpP8>t$lB!4q)b=A6U^VGhmbJd_q*SJe-{0npM`w0?e9xr zc52eqqTJ_w`YW>!>29R)MW} zk@t+4dk!{!Kdpq|7&Wo;uyb69N=W%Rzve?9#KlV{Rg&pk#Y+hCCy`(v#I{WM1s);t zUorBAB@7MR#K^sj5O4sZr!5#%)tvozi)b+YVFZ=?lAiaAqf$-#iPi7tl1O^j7GteS zGgj%It|+>OqfW@)9T&%RoIT1t`J!0jC(lTDB$g@yV+V%>niNx9nNFibwK6tVO_DRFm4fW|&A*c&JuJtA@x$ZI~Ns1`glzes>^vIeW88bi{`kE0k4 ziF*XKN{{_U>_qg0%imvTO~G>e)o)+cO&(*njJCR8kuy3b{J*%9bWz@ORLB!4d|jlE zZQ?QVXE0;I<}?fGRud5PGK(8soBxHF`vAGGBrHL*5rJ<3{ zoXs;enGt0lkjntLPii6b7?`P6>9fR|{xQRVqs@5wMN!H(6>N-;V>Kwfws}ucd-i>* zEi)z_Ib-99$UMKq;$Xge1I^w;(nRDU+EdH2TctpgWk-E%K(Pg9*5qG5nPy~FN+2Ys z;^Q@NV!{KQ?ElqS1ur+hys>M&UQQ)^ROm7Dd%*1O#>^ieAP~Y0S@>u(o@Ms=o9xv{ zJ{Vohf;Q5352mU0m8bcYqWLwusjhb|vzPPr`kNWT;9nNqWNf#KoG}7I`7ZOHU(&Rj z&VOBE(_SN(5f)#Wf7axGG5(+or#Ge?Vji&`y(iDcB?Lh$&R|<2G)@uOmCEnVhRn`p zrWU?|M5>GeI1{MNS6qo$NmNPH0+T|W-mWoDp|lmWHL_=%zQ z4-ob+%#8z87?|AQgkWOn#m3PZ7++J;@Vgf1bg(-CC=l|O{Vz#_&C<5kq1Wy3n3zGV z;*vVq>MC}04^1R0sY^fHu*)jjKb$N|mS#eIMVre`&#+k~*_QEmJViWofVA4I)3$PT zs-G?V1qfl07idJikcTmIxwNb%W9k=v-4oQl6t0>|fKBsVbfjl|aPj=w45YyIvAYq* zKnYg?1fsES+*BVaFpYmBZF5btWemn<>&pcE9dKsdW+CHG(Yno4!%$<5opY)UAt%@P z`aT{n(-XXokC=tbV87zNKJs{$7-lhl*gd}S8Rvt7ustN6-Pmy185p=6h!J1a8xF1n zgIOE?acJto7QNJukL8X;7_$Z{Bl8SA6PsHFn6-99<fnZ?Rk;5Hk zLK)?uSiHNqvsN3ur5rTq1_I#(wH&6E;voF>FLN5_TO|c zqr{(5$X1e@B2Vp!>qIAaSW~BQ)JO?o34idsFl^jQ`1K93S@JRMt)II5w9@jC3ENu( zC}W!LWf`pwC$PzsRA2l%L1fQ|WRqLy%cfiyQ z5Na4T@6}PN>8xWqjCSF<;gtgiM=GFVLh?HcF3vz^(M-{M;VOd|TME{HWl>G38;Gp7 z<4fqis;UzxZ|c6<03+;Gn8c0-G0iRnMDKKVX3kexUmjl?Sf;PypYWLl;@c0hc98BL zs$uX=12_2sR$k$0^2)2d@)(Y^`>&fdfj}}IjKsJbE_Z|@B$5Wx7;dl0+Pb52=y-CJ z=2*t6u~hIrkG>@Z_B>gN+M#R$D=>7Q@G%aqTSOxzWk!vF=SEePhx?InXGI49sFIB# zZWbw>MJr7a#(H!;1i{Aj#^BwYc~Nn;CdE@&24+J!w}Mpsw*)iGd;A^o-c}V(+-ojC zjWkHr5G#*DhzjTY^T=>5oO0H_G!UC!^T8^LTzi}#u{nK+rNFL!K{kvePYK8dM8;xZ z$Wb2J5;MTl#*pT?@=#<%AkqndQD^v7ThLX(oZ~@OSUoJn0wMfh4dcXENXAT{xyFru zUZF9dj)ej65d-5p)Kr+#f_cTvY#P6nOl+r(d(jCJtumlb%OR9KN@Hv27yF*!DLa|)ODtE%BA-JCbw8EymHwn z6loaV*-#3nt3HY&r{F72h>iY)qfkb6Sw>qYRb^09u5CRwgL-84-OR|I*Y|{v)~P=& zbeQTjaY>r1C^AGU9Mqo&Eufh+z~Oj6yfdjgci>~psOr0-3=rnYZM z!4Q{R653XdfYdq_`7l#y(MFQX^a)H}JvD2sOJiUeCtOu{FGgnMTfdrLcO8S{S&C-e zR``|*PaueCl8!K7nOfNRG%EEeV$^0wY3{PgI`bE#4u5mj%&o_zDh%DUdh~B}{A@LI z+i`Vg)nKE`a1<-?J7F}mrELWz16TdB^%DQsV_WcwH0<{o405pssx_>0>v>%}lc+ylEKK7_&w_qPoRgT%g%r>u>KZ4|kihPsb zp;onR7Vn2i^Dk=Sm3F$Y;0GgIRv3kOX{GhkSKN7q)Z7Fr&KuYd`-DRsoZ}DKG!PDG z!efZ5Jo0jCz?|vGxZUkl*b|eamecsfr1V(+NZG3c8X)nPfS6n;@`36r4+tauB#+e* zaicjRK^qE%<$%mtIUHE5S2C6IicGy8&eaC<-l*bl@6@dH0|b`9(+o_#bUd}xUh@VV zEIEPPwpzj4?mn}tB^CF+e;kd0r1#mD*&5yaa6?OqX0raTU}?H_uM&PjDf(A*WSe-0 z_5(5lE%7lXr>uj;v$ju2RP|rhK4p*I`yA!m*g#aoNr~LqK!gmQy)Oq-&_$&riyUj` z!dOc^s^@fTQkI@RWK=DD9K$%e&!o15!a|&|K&-wP5Kt9eNzA8JeM(!`h@`aW*7E?s zSL_?E6(_?n?2=4gZZ$&;g7$ zU4-}$Jr3=3G5v9sVI9(nb zBEsT?Li;2023FW`3>Fp_r7?hn#&H`ol%`#afcZ;IlL^=5K(2BpI>VZWI(TSn20hV$ z3a>!KlPeR=# z02T^-w>|vr-l>5t2f9u{B0=IH#x<#U7qKcgnxQjy12XFC8jtgLl9L^`Q*w}vhG2IywNb@JG!jeQw>UfO5!#R-yhOF z9jtKgd<%6-evq>Qu%t;1|ERQ5?0gY&wst^+qoxo5aha0{jCw{=h|vy+wtxurkuJgJ zutf^N5#hJkc-bXMTgt#|0>rZD&>gkzIR5DbOm1ol$O9%Wh&GxtrzG}%B9~-yhNwlG z>}Y>)FEn$w5d2l3oZvo|Qt>(KWf`g@7upf3rSF9d)K5?@L7+h22Y$>T2W*deUxp;# zK$#Ff7NBaCmwj6XQKuCH*NY}MZ{GY@|J2|RpJ`(qbt8;WU#iG+z@JZGLMo^%ZSuz} z27u&6>#JrFD3gJa@VI@!;|(T^NwNIvl57_mt8E=Gr@l$ew}#N!E^Md3qlx-_oy9bZ z`j>#Y3c>GNAlSDf&Uu1AV$0pHgI8cPm&f7qT>kqiwrARuKE2vUnWK62 z!HeOy$m3gW7^=4?q%2>v9{!_5%-y|2jI*;c(^D_c(fR)T^PbfpB5~M6%^9SB9&`=GT&WG?HYZG-9frC5?|L*J0&~$T&b73qHv$0qNZpmBi{<{w(#9=nt z`s0%>I(`gP6d42QN2GeHwb|R< zw}iBppJzS2X>wQoXqu~*eYO9MeOAnR=BG`mXFw@K7>|b-9K-MT*g0|oI(j6GzWmDn zPc%0G*qB)VH*{`RPuBISBXxJru<#OHeO2Nvpu`44x{Ebgy404!-;=+$fPB+JB#I!> zX6vuO9+8Z3fZ;$420Jz}dX^mq zGvm|j^iS?CHXD4Y`S;mI08UcjiZDYS(x#?nXr| z*TCAin($+%>`&L1QLnst^VV~>n!i;ygCM?jyUxucqkSHEVf>VQnM1pS$CgjB@0G*a z$`zmR<2u68-A(7H{;g!};-!#7Evwa2>(*-B2Ai(Vv6Ld<+^0_juxT@Ip@zuo`+@qlW^BhV+!Wu} zSL^P}M(y(atM7Hkfw$@jyGv3ZK^47j`2^}P3`expP-1Ti-Klha4ZoSfGvv3*Gdhr))ZXA`j z4UH>t#VVjufNc$%y{Gp{FMywQCx_E^*3XhlBi(|j&J8OV-IDY(1{BOOizU(in1^u6 ze?*a^7@|PTBaLqxs6lZMbRneeLlWBHzz`ZUWa7{ixlj@rs4z);Z0Z!tD!AY_XFX`B z5Zn2*#330Ar~33jr<_#gu*Vq@fwaIovb-s(AlU`LBZ-U@Lnfn61R7s-4hd3_vw;{4 zHL-^Nzdeja!bp&CE@2sq!;s~8^dU%?N~f)i@t1pIF_2C+Qx}IsCzs9tV~HqB!~l8! ziMA^2Fjc@@6oDS@p(+YXiuN`vL8Ags6;EFj8E!#pgA29XPG20-qL9O;ud(Rpj27aW zECKx6e4I;F0`@jD&AcVBw$wk-qJUdYKvfKuo-8(m1YJ_r3c@_PIW4b~WmcPZx`(b9 zyvD$=jMtV_yTQDrA^4uP1`^HAk0Gd(!8NbTDzt&T6 z!@2=Yop-lX;w3r3bstN@?T=mar%{jX=C#n9xwV|S=cfhN+2B^)hyTlhJ~t&@K{8|N zw$IYlWyE)Qz)W2<95XkUp7@WfAwRtL)U{Fct`=r*<7_83=j+YGR7Am%nu9=UJV5n5 zxzf&uiawSv*}HQ&<+G6cJ`0aHaYr1Itts1~m2fP;b&Ox?cl1D9=;vaX$SY9>dL}gQ6&)jb{1Px?M-jmY438 zxx7Ee*ehh-Uy}hNmWB(&UZ>KGX#kWaL-eE|qjf0QvG@YfO6#oUc+0*{+@xaG-=U(>S;$|+Kf;Ka{2L1kUGK%!)u3jwsu<+HX7 zc0vD;j6$yn+o{OXOYEq^+{bpvL4Bo2a-qmuJk|48zDP|GZMo&#F+Gy#+2 zF55TRj^(=6BWZu!@d`xk$=4aaG#%_`mAtgbGDHYn?f(b z=v2kvDcwL40MqNHt$bs*a4k&G?kH5s{m27K zmYWP7vxngcUgKc%rj?BThXZG)d#-%S#ytP-Fqw0p%#k?KgAR_vWO%788sql9HyDY+ zP1g?~*o&hmRcai(#ew_Z_!Zoz)t?Ee+zR%>qCdsJp>0!#P-)bvwE>p-IwSX7qOs9J z^f}u$`O&Ofv~U;4IP19U^$$xw!OH#_j}P}vVD^#=t~}d#v$xd@tzE2EUUs->9f(51 z!xl$2za)5T1&f$VerH7Qz>Uh=uuCG2BrctMy%$rs>0!hdD$rPI^Vy>->W&@>D4lV% zUaHxtP{Kp6A54(WEC4bO*28A(BPcrT?@?dgv%L$hQy~KzqwUB^bt@+{XnvnS8}>o3 z_<6X=*j72R{vq@ov7}?pb%7$d7}0c{GUitSqHapdI#w7U1)>lLI(4{#PX+b;hKSRB<-$ z;;*(h2H;+q*6j5Hiqicelb?KHRz9Xmf|Zd`lJgU&tt>{3bK9*)nDO~gFB^3KO1xDJwN_YWYb#c7yQX8glAkGa)#7eSq~ zn!IoA#%XU=@qJ;g#T08H2?T7MTSuq+2(NZUxXbT{zN}p+2J#7v+mdh8c!MP_F5=(C zX4$a5gT!iv4I@D{>cCdn_y{ixp32`kVp!rW8*bECh$L8Jk&{^7!_0>#y_p6WExeO0 zE-Ok>rW%0h9|WD|R24~u7LnTdPMVaKqeFDL-mOz&^|22g^-X)4$G|K7rRRtYL^R^0 z9Um-YnrD5RpCyF`ld_C#mkyGdcNBx!?3A#CMlTv@7^iMdBqXQXhJ=TF6iq~>w2bb|5epSaH9QoU zWsnjC#O}W#LRWDSGgsk6WJzV>D0~50c%BjsRM5(3lK9@$$`nyIkEPb1M1heRI>fD1 z0`=c#p3MZYCWRvVaYC{=Y!IG{If%L_f^tI}7+4s^G+0&meVNBr{%;nklcjq`2#NbMAbk|vGdf{$%qNi=?VA$7ts43B^Gu>zk&8mH zn@>^FpF`m$3g9l8$bM~#CQv&ttLTgRYj0au@6he|pf*|fEZd#O!aNa#?g~Bup2h<1 zvhca_no4@Q$JesuemS#`;LvKUL-4)G63?yQIK!G)ZTD7WDh-YvSK98|8}PW_*_3vl zV*A8Cf}cX(a=ixl_g2UOzSBYcmkHgUhG6cyR&7kMW`TsyN*6`6eP-C{pDSM;)lrps zrYMv(9~aFz-Q_tFfK@ASI)kwiAa#)R`q9q*+D!1rPLxeNdbFq#k~* zYox0q7fRongtX8-TgS5!YY%ockC^=J>UAF(4?j-)>5gsa@6CRt!KvV}K66y6F_j6z{}VXq=$YetD1BQ9RSrcvN-D z@fUqy=nvS&gQP8`(*jAmf;y!J$n%Trp^6^3bB1ZVoVz&iHQL$GGVK0*2Q4E> z)!_y3y&~|=eX?3sVB5`ar^K5*rm1-5($KG1U!!Eu-9B?$U2|NPk2uTKFPOI{?>HQ3 z*To-^#4Akg`i?01eiwaJO!kc0W0ZIq<3`*grOi(qS54By_;{Ibh?fuq2ian}u`+JG z^Lk^toU1!v`i&K@(Quhj=AfX8X)x$NWDWw5jNHz#cvk3t+PVO-;)JjDCQ3f0^I;Ob z{E|T<9#UpyQR(6>P3ZYpW>r1WZiClX-dJk9UnC8kn{nTJwoGaZv4F85G?%9`kA4Wd z*a6lPQ!?@SmIMfv>GJB>oGBNqr$(%PAag;b|1`J~M3GiW`2AR}ZL=ldR8R6u|IGk6 zAur!M`5}7VzON}B>&j?-XHmQR$j6Df!^ez31ef;`#Hpguv09 z7un(a=*A|wmJoDXO-0k>4tSbfW;~@AWxhO^vRd4bA>*fV0bh{m{}y$y*qqgi@z!U3 z-*VoJM&Wbpikv^=k64P-mi8-Edtv~T6gn+=JeM``7CXP zD4hCVUiv+|TmLyu9AGr%l~9LXwOd~{yC4Kr^POrRBK>SP2T%HS-Jg}C$%s`KAKx&G zUQ?QX-lmSOI66;Vn6hKt(O*rY|Dcm^Oc=c?(qTs)?_t2(v#>*Cw+X^U{=mWUmQ?!^osauQ;;7hJB)xX{2 z^DPl3HbtjZos=zKBzo$S?N!feUSOWvBinD-djp91vsJ`cS0|5j(RO{CU2RLh{JiSU zpud^=y*kgi*ZXlbTfJu>jip1zlIT65hBt+kS<_a(`%Ra`-t)zPoQdH5kk{panhb4U zs6pvy`0W}+i|tmnnp5q+L#L#^WO;W(9!WzUbRNZ!Ke_GFC zP6&X_QtO@5ZoU@;Q%l7CVdIIJze)Q>&q?X)OwGty;S2?yo(fm<6BS z&Zfn!(pw$SKNPNyce?PaeykBv->hLlP73f>Z*ANI4fP}m!s7Rw<&h38COI&Q7`3I$ zofh0}rF3V){y0$v*GyK46a|h^<|eZ^e*e3WHcAsKcBO? zypEc?vu^svAxLKJiV^Fr{GrH1FtcKvS|Mxw!@ExId^;M;W5Xq$9S>(sqkbd!PYuA6 z=O%Fw(Kioee}g+a4e_&U9lauU{L^Zmp*^z)&2iUEU_P_G3mBh=&`*!D=P4`eS^6sH zH2n1NQU_*`H*6~#|20H88YAtzO~+ZZo#xV|O+`$*r;wXyW(mN(* zkRrj0!uMS^uEIpEJ#Bx2Val2CT>8Z(em#gdEVjM3Zm+8&Kc zg5kH@?{RKjr1+#slo{S9AE&G9na!tkGH}L-K;CT#IEw@cPtId(W(k>UKyfX~4s!9-NKbgdm#g@8~LNXRj47U5x>LV~?j{z$*pH34OK zw(*qD$Sjm2J233zL9gkt&CH_UZd!27fv+=>sD6k|!Y}V3+7NM6L95d2I0M6gewZB= zmf<)4g0!O(^8rLK@PB_yO*}zVd2f;!$s(#j($iicg`Q{()OA8U!S9`LBe49|t#Z6* zFG%}d>w#d2@dZ)9aNfWtG-fBi9iaWT{udlF0y)4u6c^+c84VabdxsXcYdHowIs9jr zH_$)h`j=ah8U1oeh}Mr3t3d6xm<|+W5?WNf@TX-v>=%GS38Pwl!@cna3ni#Nykep- z#yPGr1Pehx>F9joc*`D?q9#ghv#6htIyjRTyKJ*|I-=gh?6l9sbRqzT?9|K_xz_zsE_buZr3&dDOYJ<6G(`GBtn<_agio+||*{Qb{V zk@?1en-)Nej&pjuxBi^%;9e`Jk=72>(bVG#wa{b&CaY?8lJ?p#-8rB^6!RJT&dB`i zmmkj1kmxMdOI8lZnAc*}hD#6lQ?Kc<;*At-cm%_>okcR+8?Mtl7Q~mxR~)ck$w>1T zyhqH>siYpng>I~Q>7IZ=yaMv+P-7g|xY004>=7WA&qJ(>Xi2x~_M*KE1FpUkNaAf% zJ9!9ZAY(cx1|O4_VPOH6<0%~eyAd`ERX9LpBQP$AYUnmCAib@ip~0Skm{kg9ob6l6 zrpWiWq;wDcI~ZScfRVfG%nO!jj!X4>Ls^pNktPzZ&; z1rcD3tsDfO_0~RbOgF&8CC~&w9s>bY<=_E#H#P+}#jT#_#84#=w5Cge`-f0A=BmjH z9)|hVyr~zcT6woiJ>%`qf!CImFbclj;7yU6*?ccKXsqbO^;Zz@2Mccus_EW1JYr9y z8@);fyl3kOR@9G3u2_x0(Wt??$9otO!UUj&n@AymrpIJ4bj5*ZvYghBFCjD{dM`<@ zFFuGzos76g08A*Lp19jr8hCxXigQa{X$T6{gWrMwiEeLLi{QS1rk8v z#x)Lg;7?fLOY@v}@mr5gk1k7u>sHDWnjxovc99x0@lODeqB#43wHjuf1HD0L|MuVL zem?IdKV*RQK*0-2auHkj%BmcGK4QQL&Ov%P81UOoL|0lCpM()(RD|aX*SXEH^>LU! z{FZ>LiclYZy$V2!_W=9MVLZ9Dp6->61T>Q)W_TB_eBrj`#=oYa z-pymz-3P?E;=KG?;IdF8M@cOen1|!U=5+W`s`uPT`bkt%h)9wik7&O^xQX8d?YG%7 zn`W!u163b$KHlK$1eIO3gOKk80oT~nW#B?OvA(6Qd*d5Dlkt>RC&fO1MFUWWV}u{( z)Ysfm;ls`1ssV$oIe5aBheeDgo|Z7)oy;;7!7&wao>3oWXsPhnITlTI(5wzeYZz0~ z2xmgAi5zJS@8#M>?k^C6_Cp1g`%p$$7;5EZ!Du#j2v-_co;(7-JO0gSvAh3m;_1@M zHA`14`#9MWAP`YwY%Zgq;C>kmNcwE)J0@;Gbns)O_>I8U0R_+(QvxK8V zMtYQDkCK%mK4waWTwOn9qqs||1q8;?RJw2nno8xC4@LcY4^Z?(GzC(%aZro;jKfU6 zk{s;{hcGGaxF|Mi?*QQv5iVmTOq3pkJ@$D&F(IEOhx7M^e(NDyB$^?6&bucG>7cit z(IoG8zw~HRP!%Wj+vIiU3|r-UGg!F@^|Q{YO2OmT4#YVo!Ee|wkI~gX;JLOkBrZ*H zsQnh4lE&O(Z8V?Nl{NoTAErX|ki|pa9+JbaoST>`__(#P*Z}5|PCE|zB1Nxp7!U^# z3xP&JvxkdHnE#QsJzry2)MvO;?rKM_m9FwyNCyLhm=rCUcw|NsjZ`0i)s;0EKrXj) zDe8ITzNrc8nCRb%->XSu8g5(E(oK-(>_tXOnS5@!L$bLQn`#_aVAlQYgQO z`veck=6s(XdjOJ~+$SH^tx8yfS)TVuTc+Gv}6uz$5m?b$= z?n})_E(xK&paS-5&Sz2>{ydv~qsOmFia_fN&kcragoV9dia->vL@C6DegOt~G0-f@ z2V%nGJ+Avf{xFpK+R#V2T8WYF({Qyds7z7<{U$Q}6DjCI&0XSFT z+Xz~iqGVah@fJ)~&=5RFP=9!$(WR!nR$VZsahF+)j-B{0%r^Le^~#}Jq5AxS4mBCl zh=QLB!i7LO${!sCv0+3`K09e%o3>eg_E1T2Zl4Z?>kv%$b+7ki}2x| zXyfJmvoG1Np5q2xbo-Qy*IGNmj@fy_zt7*g7ZEUJ&Az2!h&7vtS3O}eQ(b0JH`KPm z$WN zE4qh3sC)*?_nyW!y3GK)x|C3F-ei6Ll4hZzsk46=ZnKVtsrI;HR90FY_W+ryx}NgW z|6%-ROpW%YkAP)?8v|^9RO~oxsjd4b#gws|ZK~?)o+ulMoA@=^$DD9@{HZ+Gup-W< z6LPKaXAAoKb3g0oNG7(7J!6s$10CF}CPKrTE!g}1#GOmOPufE3hG8+U_GDegLfT|R z)R*V)^+;#{b>vM^3rg*Cs!AQqR^y;;-^SD(hqz$e@{taI0SVCe%uHf>Vv^;!>M=TN_BiPOZl?`6so7my^aJT$I~BG${?9T(W!a)p3{(HB(iMz@)$*CtgZRprNsjc|boCM9X!q<9HsaLrA=) zoFpwq%OLHyvrr5i==Nl(A{YZ-DxYv!XfrZs=GRo^;R*~Kh=Se9-o#@!p;cbo*;<3? z61B5cWEwzs&*ch{QU_5bgRNWqaS#S{RPx5L*wi7$TB%Ryy~7sMCAk#A!(EBHzYJ1DOxrTlOZEXJvn%$Z^4ulP6^M(hxFxa zhYiHm9mPJ&vWY`nimzLC8jg#AfrnN+^Af7kfC~tEX;*@IDWc=AU3nPc$e=m!>kuBM zaBonqa2`Hd96;uvj&C?c*7&AcTF@cTNv#l;p$umgbOm~p%@ZU1^apOMAAIqv&y65{ z4O9z((rC8nq1?-^5e!wNBe@8LHp*Fnxmw{q!b-H^<(Sigt~4rFjW)9`e>peO*E^rd zKmu$>sDW`U7zYh%SW7nGHhwfkywAHo(h?SCP<5k^M+;81ZJmtgsph0|Lq7QPZ3)!f zt!rri##IJY$t0~G=qa1P#Jh6!s1<5#vgx+?1naPa3}xcgA<>9==9CZ3-tzuZ6B2~d zE^h(74FhCwo|NITd-AQZ!VgzkFr|=`1ON^b|An}*l1-NuMieh_{x%je{&3xcg~xq( z+b?faf%IR%5P~fvAJ{@qKfejt>r&r!cF>+(+X62nl43qAyf%l2aLDs11M&t{5S4;H z-Y=o5F79FzNc;td8}W!3o8$*JS$&A+eNGt?(||CX*Q}JS@PfMd{02v&{)1*38UhH< z_dta_%LRVBCcBp8S(KtDR@qxO& z5<|>3F%S&0&yeSVhX66%w=yC*3uM+49<0wOmEsEUnZgvW(Q?%yinDK*&+ok?6|-}O zGZ8jg%xKj=L)J7o9Rwi;?r1VWX93WSUD`{EK_AVV;jUaZnw9w^9jC=~2uynuyzfys z3YloK)tdlzVGwOcfx4w`-a|(BcZ=p#XaiXZIMh%JDzKXcOP%CnHwc|6iGD0A4D0jf z_dAl>m*xkdlg)>Ba?3fX#kxa6T|T4adji@Iy?E6ew4TjpbAysc^o!qX-vPtO-b^^3 z_5J7%MsN*#KPxCxZPo*yapl$l_PTIDF(gC*#?>ut<$!hCT(iC3uGHp z4)~H4aU0-~4~=e;nIM`K2LP#d59RlBPK_{f@191#6TWbNeBS^o?xm@B3VQ`tGQ5FC zkj;nqt)Hmh?Q7Ka`z6S0>V?k;r{H$F#`}?z!c|8FohqOOx~4JX#vKHtvOsLY-I0l; z0{+m_;JX^JD+Mvxp)rYXKmj7k3h&5t6m|rR_(2pyRWJ*Ce$JO&umDHboc<^Y6s#1* z6D@MC`gltVn6pw=PHVN&Agz}Q<*{VVM$jn8gcVbtJItOlL%Pi!a6!q_41G;~Wp_!2 z!1QxrIwjW*VnmT|-av306Sb?1V-WBuJqXLNAZiN6{oDQV7oNKqD$*Kvvgzk#_Cv=N z;9_raemVtaoQ%_gP(V8AE%;+rNVP*>@Rgw5)(=IlGg?3lW(%V`?j7{CtZ^AXo{WJ) z5x$JM)3G(8Z=m40n;6Q%MeypSBl`H|V)>31f*zFo{Z^Y@^k{X1KGMLMpV#DX9|n+A>)^FLs3}b#{TzgP;dhpu!Y|KrPO*JUq_-X2Y~-@n zbRe8eU8XWgrg#UVu}?y-RrroTUg%SLB5hQuTc<%zPv9Bd1f-#L5b}1z=NrUS5r(1@ z^^9Hpm+4qzvCj7A<6`-Lg1CJm1R4{u(3 zpi8EahPZ;-6(gZe6EgR*;{cUNm*%PVLzk^)f%j@0K7E^s0fW}Mao?N@@=0Li^@pw+ zu^n!vE6)m?QiTgjqAwDbPj-++QQZSJue1i;e{X)N=B(^m0so|787pI>T}it19A#31 z$NrBHIH2!UKtgR|tF=ph3*rMf^gfio?obz|*MNy$((lT$MZZKodx!i7I4nB-Z6GV! zV>bm+Ox>h({Nc4|6BWA)KeqG}_6C1G+8`uGvAJlOB7?beFxE1FD~uV(J^B>S?hb+H z1$dcP5`Lr;5$ozx2&?y|f6T=FQA;3AonVXW3BY7zaE&ez(L402EYoyZ{-zEVnV1T^pz0uPQZcV5k$@_*#h29V=&9P*{YP36+Ugvwu8;UtOE#7+VD_<=^%7vL%R(I zZhGh;K>_slD&{xY6qa|8-0Q~%QB8lU4}b!RRq%*najCpm@yW+|^3i@`nIsICTkbXa z`Q)d-_V}w>Y=L*{QvrhHJS@dG4ho-;96tug0AYL-4cW+{hDSV_1O33g-jQ*Ts zS`HPsygrK}n802EHSwN)77UpN+yXw*F&awC@eRg33Cd^+wN;7WZHNtd6Xs-<41lbp zUTsZMgXU9&!GUV=kE#cIbV7!_oAhcM4Yg0|QG}5h+UuGHwtpTF4VLS}Y%kW@(%`I+ z1T?`nVV49&FYbgY4#b~V5q5vPl1T#co&%RG#%1K^kOfsAno|KTq{^)v12iF}kgX%M zxY~klq5?Ft+`^;+&94j__6LMh9v}vkB`6Qphm%neCOpF}54MXvEzLE}6H?{JH$_*qxkS`9UA-w66l^Wd#F3=DtENq zG|`{w&Z}2<$GkN`ce>>+>DkHh4)6(JyM?|6kQ#&sZVlJwPdy7jq*Ba#ndU9Va6?T@rah?p zdOWeU;>C=()`PPm_!RHyRF5-TvjPyS z7JIARA29d}ukTg9P|2iP@d^enyl2GA=LWSQ>@X$23?R9deH5S8RUuU`{wg7zJ*A7W z{Zo+aTwMS2<~FM%>$)|8+;^o};6hSu=d}xjz|Dou>r9g!Q9Cu-4T%*hMn*IME;PMs zm>&Q~1qVNw0?o^<^*A8ssW{L1T_o;?8+ERzIn)m5=<~VPF;8S`!Cd@wQ^Op_(C%+-*ykoeT8 z(diGN)wPq;wO`oedy2;In62*KtuO^lzoL6ad(&W%I-N*ScQZ$7H{2JGZ(yj!bh2))RO>41o*FR=S_S(5IW}F zS0P3KqX$w#u;U!PjreyDmoC*k%$A8%K4gt|yR0{@XXjbcq-gOd;!_0B?81A;o7EfW z8-Dwc2X#f7fpMagt4Kz9I9DxItn2sw6&J&Og8~`hkuB!c>56f)D-AZl@9qAeG<5S4 zo$An{m2JT@3M{G10tB4*tmk4vIJ}+ioA+DuVzhp>l#{0DtNSnwobg*bYE7@UJzECv zAw4FPMAz1xx#uZS`*BmGCV_|5>RF8g`PNVmt!7(3D_MG*;0BX9%qYEO+=|A zgH?BAVI~oqMn7ik z@?)@vA(|;j9@UYe`0%hFt-?dl7p+&0Rg|fL`3k0M1pXD0KSq1ZPz5E2sJxFIQ1p*q z#O|-1{?>|B0odRZdjk$(2Oh-Tud5->4x%saz4^QZZ784yBW&~HUcpw5{zfic4s%nv zZZJtSIGRnf96O`^JZjiXq4XsbDPN>$`z<~FoCF~WwGJ2q4*CM$!w?@B`%KS3ck zr&y2m7R2KI7VGJ)dV|QmagJ3`N6!V(H1($T7*6=i0D%0wCuI5gNsX`X{(BwwMd=9B z@va2l)3DdJqvXLSD}m10NG!paxR(vWWy|)Xtn7)KJJXZ9{~6mlsP2V%d3P>yAiv*} zYMp~se_BCXjH~pc>a|@z%Kak=dmG`{E4wzpFqbrvD4E_En0{e~Vp$2;d>A1rQ^v4V zSoEPb0VJB;1!)8mr$XcaaiVkLI!rMdX9O?LxAo zY@>}QHak4~TFFT~T%@E~xiBXyBg?gI69qThp_3-y=W&xJ-Ms=2XWMiS5HDU+SPhkr z(?vSU0z98Q1v9NFnvC}n?vY%cn;V8qx5_3603=}X@kdB^$i0x=cAEXL^6#4MTyO(K z5N7Nm$*#@W&?+pDX;#qBR>X&5c@^W2e@A8q*vw3`CVZm@YTA8=U%p1p09%38E)QIlxS@qDt5S&nDnbc** z0n~vmQ%{F)6yT*~c)Nb{`=?T&El>Y1?hX<07&-EJXRz%lJo@!ej{F`8h%6uNU5;*4 z8F*wpFAue00I=fTYs`TNjU7ZN*5KXQuS6(m5?*J>O$r4Wt0r19v!mfWBhG`E6djb8 z6O%VORD&^^fuy9nJ?4`9g(5&)QI;Fbb8yw&7M6d|Y)7|E`34S$EyONfPkdY0n~nEi z9xoWlac~C{eMxsx{B9ZCHN(&Wa!YnMMu|qp??um&+_NC-W(kTWL&#rp$lzYkOV(q^Yg~1 z!|d@fJ@y2-r~{n??b+l**`MsW>#D&Q!30-bp#51$Q=j8IxcUb=o->3r@7*ADE8iY^ zDk>R;{)T39Zu-Mmd7A9vBS5Fj3#7Y!oZo*ybt+HCQ{QZuq2%*n%VH}ImkwarN6&!C zYbxkmbEUt-2d+wb`Sd8C<~xFM?|By$DzV_nS!rR(uc^AJ5e-Fs*p!}6J`7z2 zPL0Ro)#^YmFul(^aOa#VBR+3Dqiy++B+r6_`g+xL`!KNWA2*_TPuzf8Arvb;Glp3Z(E?O%wFEraT}6f+e#_kcO!Vv7o!M;iaB@%wd1!wI5K>7jM0!~Q<1qdPQjU^y5^Y=7`!J7t_;(;sHE41P zNtA&IOQ}#4dKk}q5Wv0$)5dLk=OcrHjQOO%2EerSZ4)hWFU z8iAHkW)_X%y*Lx=L@vTyIWQ^^?FP*G7t5zT1EnCR!!Y$en&f1DHkg0R`}@0|(QX1M z8@PX!N_blOvL}#avDJ!b$)k3^fRRTbW$F})R)B?ZfWJNmwUU>Ad-rDgpzHQ)K$MUP zrzQy_*7JclTP=eV;Zsu9kgvH2gIKUKnrJ1X-+H;u%spTgy;}m+QoWUeB|^PQ+F%BMjONDNlsq z;N)>5sz4!-9Dfh&iYx}qErVU4C9D~1q#(iHuMxov<5z$D-vC*r;P|Xw0?0@z84vgb zATJ_<2XY|8+cl&Bpk#nEV;Yov7OEjmB8ireObZ)>K!ITAfZBgqD%F2uWbhcMr30be zG6orGY5(7w-oE-PWBJX$UR?m@uf?d3!`YY^VunTF45Wm6x?NsGgb~hD8A!hfW7O}N zIJS$4q|tmqpc0657LegiP4ZoUER#4*m$A-B%Z<+Cn{%zja11fGef(tS!kGRG%F~VV z5(0P-PbK&wvOPXC%*ZU&Ef$bU(GPH0Ak{fAwgCUcd=D7Y4>8M_<3t?=+dWooKdlQ% zffU z&#&N-0wS9Ga&++QhZr%C!1LfkUJfm?C3S`(WiBI+e|>6eiX3SMGsqwpb+fy=x|Xk& zmhbEw-}|HSz7?ajN7N#F#5S0qX3+-{wy@X|bSvMln#7*;Ch5BI~j(cG(AH^YBw z9VNayv^@5DSp9kX>E^@j&9|EXIQkCo3RBOIBjOOpfm0rC{`k{(D%kww_+C`x&WT75 zPUIzd2D94va`XE&VS*5(iI&2YE4aBm9BF7!rb`j>7_LsAMDN$JXo?nD-B2idGUYg}giA;af4;|fWef#cXSj>;D!zA*GB7#Xq7qTX3$#oQv zDOWIpLUG}{2R-at+NiGBH%+`C0{h13>i9WrVlZB^)MhDGkQQE$0jtEzffWh0?X>=( z7uq}?9~)(jP>BJ!>j1_uV@4lWS>kr+EKNT@bT0_rYo4^5zi6u*e&Pisp45LGoohS( zJehj6hOw4obcTLLp)gw>8+{T^!_b+{IM_Rt2*Mv#MfXwm!NRla)C)Z`iK$<4oE_H`bl?x{0_zT$x*p>&icAuvt;nFk6q9I*oLM z;KfPwM)D;^;02KTNj@}H*Q5Qy6f(nZgj#}P!b;%#lPPK2RI+DqRd;_cBEi*8tLg!# znY(RQf!pyMVQQM)(|RX)>ZN}E8od`C#S*g8Q6woaPl{KD)Uh)&NIwcIlr|;CQIh|| zu*$t~DPrA#q{wbv)kET<%kcX~T!`NxjZrFdTDMTgG`oYw-sA51G z00|Q`l@RRPv96e6V{;BsK<%kKzXUF~=)2z?T zcngIhNHSS68E-P*ujXK^X~-8a9#y9x;&k^C>%6b)7E{a#b+QuSY-oAZsyFom&NF%$ z&|)pu;vBEVadv+#eUs_%)J`|RG=Orhc|je)!;k{N3xO+ZlG*WKuNpH*IN|rU6_KbL zKBrVr4z&sRRWRjWn>1)N#2i^B-r(bI3P|W=KoWR7`BoreNun!yejG3kV z=a9W$r6B;$C_wsh=Q3@+#B*Qw8XaC_;55FwKxnf`ao&Ho+kssRKa6x(-FEE(XW$?? zVv`PinSsZ$9f1=ezL+DPuG8C5$SH-vNLB!V->=SetQNw(5tjkH*J+%(pUrMBWf2J# zht2Gsxof5LPq&7Q&C5XCSkK$-10nmKLXlS#6I@ERJgAzM4JoCy=ImD59FL{BvAM)% z5RBlad|`k3v%vZ^9?{_sgBCc!&3eON;NLr5ht3A?0g(*e@*F8)n=)ps!%%7}Y%n_+J1Z4L6Hh5O_BHP*6pb=?)a3XI&_zl$k#8tkY$?Ys`GNFRVu-m z`(;+A5wXxK%h7Y8qqvn&A6c1-iW4_O*Yv}Kd%R{D_LE^mOu1K1fElZwuBpaY4kx&W zWHf2bl+7oMPurn%roYlX$mtG6gQrg^jZ1&VQ5$0U?rLMZjHmM6!cdld3Ga;I+z5%1 z`a}s1JJSSu>V;bGF>O-+5KqA6DUW0{oYdG2VUt8(cp;8k4X_E^&0~RYA@F!zT2k0L;)~9lk(Y^bNJWO(t7gXy1f(T{wSb6fMej~n zoUFs2T>ga>;^ez7#{rSKj^G)6!a`@5Gt->V0#>tlt{KXI1Jz~kdm1~=$5YG71t53iZp*mVuBa;R<*p0aj~Mr+K`$d)X)Bb8L01P*0q)< z6TT}hNm_WZce^|JqE?awBb>p~qT7Xy)80^rzrTVQ`{xBE%6OUjOQUK;WnOT>hW(0> zp@n=eX$z&3l)xKPo{pzf5DWHVXetp$n$sG54tSomlGES_Il{dxOlGdSj2}@3)O5of z7&h(@QgOjxlX$-Zm#4B&qjmL6e`nxT0LFr9v3!PY+vyQE^RZ2L*2nZB5U27hYkKiJ zA^z>=KyCH1K>o-H;swcv+nc`u1{`ZIw`fEH@l9{mtlGV7ng2~0!M#jV`O4BIbkz0I5uKqIbu0uWnyG8Ib=6D zGB-6fWHL8CJTNgbGBRRiHZw9bF*#&7HDzXGGc#f^VlpsfIb}FDFg{%%K0XR_baG{3 zZ3=jtV`2aSCPv2e_Y6!742;DfQeZiVWB{`Tr4iyH0!ZS&!R!(c$tMYBmx4%sUJx!R zodnhe7U4~Xvl;o_5#j=T2wl8>2ywm`1e+@jp@y>tM7kdY%l={j05Jj%`;#;RgqP-x F0u}VebK(F1 delta 52923 zcmZ6xV{qq9&@LR?wr$(Cv$1U(zc?G)+1S>`_{TPOV{dG4lFhlFx84uuIa5 z-Sc6lukP!v5aB%!A(@q(i=Cg0RgTPnjGvdCjDwAz%!rItm5h^{j8&S9pM#x~i;Pu; zjQzh=i;SIzho6Tl#WWj&mo1GP8aK-_5rRKW0bJ1VKRGwq|1((SrN|6~c-VNYta<)3 zWM$6A$;r>fZN|^T$!~4VZDwt0#%swgBE)TFZpp@NZNu9tzigu_;+O+j!cNv2*aJ{evU`cnZan!4W`?)-X6^X~*D@u*v$k z8=jv<>)~01y{vS{zJYtDHb#R~-h0N9-l3h~kl`P@z?TO~c7(Q)xAIMd8lNuNQPeIQ zS+bd_yD@wje`q!$lg1Qi9#k|mRlVRr5v>1)07yGISjZQdgB|(u5h7SQTY7l9TbVii zw@b^1ssQ-NL_`q&f06ITEdF%rQTvsMNpTHPUBkv&EY{Q1toJ$#?J?C3ap5HqA4ZP> z$LxBwd2257XZV{>)jUsvOoxpK>x|eNiPb)J`x~;C1Nh`DvZSfCc`b-^6xamEUl? z?T_O!(ClZsG3Jk)v5dCIb?+^X%VWEH4}Z$4l6q~=sv&qx0LwTK25Zi43=~wmI9YEa zRkT=wn4Z_73uMUJ^T2E!qCA$*a8%_|1qs1Oyus-!*9w(Dt1$CFmP@StP(8;wU4$Pn zH6asqz<*d_gUokw>|2;->;f#5sdNVujD7?Vv7C^|T1r4Wo6$7>T-_>NZ|0m&jIi0} z#^p2aR5;8g2ERn7t055fC#zJUw;}fa^B=F zZd;h^L+3GDUXjgbDr_NNTGA~mozep|f5 zv>oUfc%T0PcF%_fp3NRES3(8T!BI8m^IcUM{dg*e1y9Mf^ZiZFgQ@NNAt^e`untQU zEt`?nAHOKU^zU>k&_ESr6~_a3YTX`H|3^QZ=>@0!Beg9v_{xyFat$l#K zpgpD!%ZkExg;I*b@(-MGcFcNOi6D1X2o)yg+qN5Nr0Xp3_}En0a?mh0-as!sZd$uB$k4kvwJBTisBLLARugLwmvdUG#T*@N+8wM zHfd$34O&L{^4Ci4>_4XWw!VM>`ZzcY%9${VH}mgXUy7Sbzgsa|F-PU$rJvWO7g8Ue_JVmYo}Z+^IK0zx+i0UQOIbd&2|#}qY=r9fpc8*|vqn(Rl0kR# zLLHuLhGXr>xkeA93xm1Pq%FbzONxx5pzrN#On@EFH-zjIxOYxZk#MLMzJvW>!Td;7 zSGm%6$6vUqf_5QmfylQb=wX(3TjOKc`kS@SxG^m?wy(3<`Y@m?r60jsI9)Pi!bWpD z2yTjp1dzNbxt+CgPiP43Nx0%chE!nCpHWVHlCi}T`C95s#6uhp?ImwNtoj!Gv3q5W z75e=FnFm}iA%(F%_6JoI*|_Ncqb-9h6agT74r?8DDW$_IH+y>cruGn9dRSU3r1Ae9 zPf_kre7@>nrDK_X2|IzcXKpN$k_)IRwwFP;0PnIB9&>pZg0_tIq&nG@KRYnXMjec_ zV?YC=48JA6=_3qYGv1*R#V^F{!6mRp3whB)c(S$1yZ&P;)|shHPel3yhOk43_3FSo z5+M~P75Jd-O~7_6-s|lK+wXbWZiUAPDE|MDNhFs=hslB65EPX}(N_kE<70 z8lX1h!+y2jG|dF$!+gd(eb)L1!1vgLeyHKZQTjiF2VQoTMU<{zHNd+Xcb}C%6n)Q+ z3$!|SFz6pcuuRBv6ME7#@E{EYScqDbM*kJU9zg8|!pNw_;d&XpR6tl|ip!nR=U2@L zpKvNTxau0^MD@EV=ffLjbh{s`zfS$+zH~Dyc)#e32-I;qgZ}r4_8>_#`F31bzxy7t zo%!M$TU>an7kF>Kd)ssIIqF*OKG;k-qz}J=M3v0$-ets|mw5YO)M?)UfKPjSJQ3U( z8qAF<{r1s{)@|MkPCj_8gpDQXOnN{rP2)7{3w`}j;cDM)P^%xm|Bnalde8KAM)AuA zdW6DbL2Ia8=#MDVM$A_Y8jG)Zv;#scMmf|RMnxZa%eQ!viiV!tX+^`Vba3+075M{E z<^wAXzIIP)B5LE9)3y6Q3KFiHo(;}Rx!0$RO#LE<_Vl%3a;t@?+4O3Wu@{@x2HS5z z?v;ytnGGFLsJZX+$8PcM#+ns&Sdwb%CvH@h!Hh)WY@e(bdyf;Xekk+g5Io%fla8jD zu@M2=`0LJuviCs)C8R#hZ14RcWFgejiRRNONv{ZxVv`mz?9@|2MEoWLUXQN1k{l(( zE;tS$nssLl4Lvmh*7=wUe5`HlL(pc9SS$#HZLaXa;+;%k3PX(O_2|ZNN8z_JmPOCs zY>!)SQPyZ_g>KpT5sDU6823vTj2-sV76t)OAdUcrWU*!&MA<1(Dx3@+w&@l^X&U+< zyhRJ{V7LVTcd%IgJ;D+;5y&768W0r|`=UKM_J`o>uOWgD-XR)O1d4oUj}pweP?E)P zVpB7y)o?G0uo`%0iW)GK??qvp##GRCUTE-{x~32e(uISbWbzVEye@!wemI6N5l7k1py^dhkNc8p{+X8&Y45cu@xcG4o%$$owBihI3=bu)Y0 z@_n}D#e{_PrVo5QpwWM5Hun~9K&x|;>Em`k+@#<~(S9)wa*AQ==A)FP-X+z#bLPk1 z(c8ZZ-XnMIxTpx@Rso=T)mpK$@bacF7_OzT<O5ZMNN^y23lH-eLVc4H}pUO(IR) znJdC#qJ>;;f+N`nYaOgqV;{DIMAWPn$@JjpwY6qGVaD!}%#gr+d~Vdb99$fnS8X;g zB;C&Gnhdf-(!LrW*xvXm2e~XWBoNx7zxvo*rj?SCd`9301h(nFnn^Y)_r)XkP&-a| z4Lu{8cuYF5z|P`0;8^{}9RmW@pMbpedncUjuP!td`&K3U;dRHMUy56zItMy@@T1}w zl_7pfvYvdyFq~j;+1dyy3%&~99CVgY*7yw}vCw7A1u-u{F-mMhy`j_X9&#t2Agp*B z!>&MX>ssv|V!RrsGn>~Xqe%#izw(c(;=JQR<)PQXHE>aEnFQn=yp z(v;l8spNsPK(}F|8MBs6-ql$mpa1F`N=HqP%bDRF)89p%_9guUbWf+py`e?5&h811 z%IQ@F75P;4yReqRN;Yj2otFg5dNI+7=^7@|4D9n{GKZRN zDOM_8B$B(B1xHN^7yUT}i$)m<8`x7kEjAJ;UpJi?gy}5@R_dlm*)cR_h2qik^pNVC3d)++5<2Jd0nj1Gnj#VuvOXnC)i!>! zVf|e$rQJ6pC4|DUB0-CD$~*|VXqj6O`PLPZ zouQ`Hc`T)?fdzYCb>^F{_Nr}P(WDnn&x0w7BF8=bUy_qdZIOI2@@6P^F_?0s6emBs zpds2iXZ~~H8fZhN$%3^Sh(+O}*}k?CYRni5TOshx5N^2Tu{BzfrqJZvQRnaW!ImC1 zi}~z|>H!TkFU2!85gbaR-K?)=bB?86MXa`8I;u-=S&>_%2v~TZD&f$`Day^AlGo@* zes`vTa1>9TCr_cQreBXA97Gnu-})Cu*{viJ@o$7~STng>w>W=;@Tc_7B8l!C_M_@- zbs}qGgOsqrjKa2b4g0vZK0>G5j4LfN7!oca4!5FN!wM591&&d?qCBN>ik-^03yJfeuTb}@ekRw`kZ<9EWI(#?J?)zu z$@KWWjUPqfl+AtD2O!;_%zDhopKfz+*q@OQNV}V`_k!LuY0kiUR8BPc;?C4~^fP~A z(u>mNNSTvZd1ngMox#SPr#qwd&efa##66hbiGcqrhywS%^uuUpO7%VofRACNQ`-z6 zSQREhWwkEpW#8V++Zt+J680_WvDuqcahR_B)GQDsN+A4A2uzpaAPJEeb35D=CjA+{ zJN@|g1dVo>H|OW^1mQ05>qelagX&)U4%e~#s&$(udSjy)ciEcHrJ^Ut5;->_8YOE@ zX{p^szqBaux@GcwzU8cci_y-#Qz<>#K=T-xdV1Z{_g{ZbQl8HPP9cTM zM9IVAW1!oUGqANa^)Tt{j(mG=FE=TDVD(_ePNZ4lG}m%5x~j+dBY~wRVwlzgLk2G{ zj7jQZ!?72i)jBzq6erE^;n{J9%X6IW*xrNNyxe+r{LkO(tqg!`dD3~&yC$JsU)8ko z@1pT%Y7;v!ynXg=g8XC@x`Su*-C6QP4Y`JV&qJst#i1YSJI?KI-8#ws|^D$|2Ykk7Kacf-PBw`J8O zkB~XMA*j;oyp@Sjuk8{!pVHOK?fRf6KuOu)hrs4jQEvYkqX{0bet~yWFR5mF&-VR3 zlELcbC$Q=oOg~?=!dKXQo@@1)VeQS`Z9L=MCKMNdKk)bPjrpY{>ijD`!f)_vroj-TNOg=&9HyeXQCg;T1Y(%GwTI(K|VnG+EU(|A6{ z2ynA>)(U!5_qM4J62iD{`UoR^8bYBlD67)Fk`&wt|hOeemc*Ev?FV~eOBj(Uw?-vs31l@qh zQkoCqp)`G4=wJW4!ycgj{rR(}_NL54PEW>R_2BbqC~|3ta3^mGy2E!s|3mA;+e}&g zr}ERj1kT0ZgCzm-SnVJq;TJ^zaai%yy0fC1#hb$IfgvU^-q8%TyJC` z8}pFqGO&uY)C<>WkHsj0Dn!oU{E^e)bQFFZ{rzM{YAjKW?H5@IaMp49J09xSTGQ>H z;r~4QC#u%yOF(XTULrS7(g5(<%zV$hurDkM>UHvs>RK8wJ7(0A!_i&H`e2 znOr5<xO8Q`B=wW$IP>bXC+tS zw+j_x@Zkv`fn$;&b$+G;`ZSph9Bp134s)8979<62u@ANcfmRWwf1IA!;)K+`)!}<^ zHordPvO+qn0k7U$b8oF+JLjV7Q#d zGZW#`M+i9B|6TA?psNRaNF<4z3e~{42GQg;$R)!cum;z{m}NMP4*7|MO^wsiw3QoI z2w>9a5F!lpVyD$g+G*+2WoL1Afvr{FLeThp-(}1(tk+ZRBTu_{YMcCtRXtg$w4v+I z=0Lf$CgeJ7>)5HST7-_(`+~c z{BkY`;3@vqkas{sW+No=)M8;lX5&*B8(z|1#R10PV0=r4jrzL8dQ`;)p+49UsBoH4 znal##VMB7UE`R@0^p8Futo0vo%tIx@QAAa1f@Q?|y>A>JQJ47TtlzM+x_y-y&h&mC z+CZjl;pkW`7NY0MZ)sUV$G64D-n^7S6A{S`)L`9Tl7P}BHt$9fWuxKg>NUU=OWr84 za%cM;Xl;%PU>Kv-SRnCKugs#%;isWs9zMPMBvABHI>9sg!%OAV^xA(L9iqXjo1DA!M~3 z_%~l{cd=5_`CH59OdjEfc#c#gA@8gUUVH7b>FPglU#Wp@pR<80WO-(pMLc30`ap0& z(F0Wis~$=8`Zdjzev`YdzncC;-f3`9YgCf20oVE@8||d(I2Wp0J))O<9Gy-*{!iTA z-6i^stZXF--`Q}XRbZ9&jWSlC1^#l30+MFRZXx_Gm=K?mP9DpTPZzMPOzI{Or^KV2 z#7bK+wloD2x(hd`7h0cUtZNs{EgzK6UGFCt;_ozf2?C_<5#9E|tp_nwrUOQ0^u!W| zPJ)Sf5VSvM%7g7$oc*a%4d-G;`%w=9cNP3!#-rsQXd0DQPc zH!r97(1XBo+vXvz3=&)N_`Oq_j z>pE(f_)-xJ4luCSo)fTzz0xZv0PJyg?nn$YoBhC#c6+(_M?8f7r}0TB*tfq-#tO%0 zrcAIAFwSALv*2bSdE`lGh?huy5ulCbF(HZk%GM1cv>lB{Zdj>>a!d|HsdTWRqtFoL z9}^T(@FoH|(r`@W;8Hl`|8>-?GFupbs|#enf_GN8%tVIGLS4JKi-Bb3fn)OhkQ@Qj z2w3ZLApsCP{|_r>tWI*9`#)G8$((v?65*snoC!o|d*Ac5{m4Ro@FbzRO3nR2he(|0 zVsa=RMDObT83`kMbdQ5eK$P;}7r}>ObP@t4dlX1Qe)|1CE1zl$eqd9j#`;D4&jLh*P~KBa8{)Z28C&KcLMBd}FtZ@}QWSP{vhBt6&QOjV7O*9u z-AWlBqeB!-)G~RP4PyFbSh3WNbb6CS$few^Z!UAbI}VCNZ`iz$la#W#oxJ6pKki6X zm7=2I>ux2GlSsVMdh8;E!_f`4mVtj3*!7D;u!(IK7`iMYF}P zaZajoP9|g@kpgUX44_hWFWRHArKPTdu{N8uMD_lwLw_>J*wSU)9ofoe=#u6NCiU1P zZz<6Z5uOV#e;O-Fo!LL^Ro-Y20dTjqr2p)ps!O zwM&lL^=RGssf3OordeumCl)5mi^}E4S)XoJx1E1n&H+xWtk@l-?%?k*H(?;p$xN=k z$8z2mK@?V2!t}I%(Cuc0th3l1JTmJY?s#=($aH1?0<+q&8s87?ZV}ShAu4O3RA%|w zGfU@~akI7TDX262Wo-&fnQxmG-PUlih;iweb1-C$?tFv{JOhy&<4C(!-D(fkg8xpe z*sHG4(*v!EN`ng!<1&Hvz8}h>|Ip}HY?w{>C+B`2M8{2^#sUjByL-QIFuPSl6K)|K z)jEA314PY-V__QYZm)GKCu2uYPj@wfoLS=CH0=nVA1a*aewX2YeZ#^oWhgOe`Z517 z`jA#u$wt0|JFx5`J>c`$Q)+U{SFo}c#ipU0=>(h@OLF%?$`ZwpSQ%y7BTQKmxmE0k z^2U#y=qOYB@@*EDprfpnb5`QJepq0G>RuXIS;F^}SO?+9!aNS4j>pWJk0ChCxRfqD zXobCkdQXJi@$dwfvssign|F z2?o;D6spatDHXD)9<*@eLXc@3Q8PF_b<@+JAO!!AL4+<1qNa(_p;8~Wgdl(dq2V10 zSM3=pms`X7!6XzWmSi}`Y;}G%8DE^|RMTU46RD55IZyGX$F~Ul$z1T``R0=zBOy<3 z$97(kFhPfS>~PKJii2j|QWlXSPnOhKZU#_Vo5p4|r)zixdm%I7xj876@HCCJM448n zKiv}sHFq}@rZ9z64mcOzrU{kL-MA{z&#t3hLd@iW7i)#7)I_aAs2d3WV0PuvCNqN- zble|CG^2Gq3wRPpV|3jzu1F_bI*CCFduNS!pB>Mhi76WCkGk5hw^y?$3S`Jk6#-C3 z{^~MT_{u6SqWzO|hhRhcwmTo{${|RuLB$LSk)4tJAQF5@*gFeB&fPHKPDZDVaNHsm z5*8LP2RTR{ON0g^X~cjS0bSY}nqCd4FBgcgkQ{nWNF6&!$=$N4cm zG_+S;FsH!*8IVQhMe>se>p*>eDg`)K&VA)NRid9> zOg{Hg0$X?M88<$b?L0U3Uu0wdk+8}HqLt=sbs3;yq!B*JjbmsWnyCnc759WK1&Ktr zi|T&q$r*KgcA%8rLKM`zz}9@$uG(|=i`a_ouDCh;wTwGIgDGDWlmws>S+y_z1qOl^ zU<+3-MR(bm%KdF0zNz@!=D~hY+;b8QAJFRihFP4UffM+~^h9 z%4S4vP+x?$CT(uT>)-!A;DP`i@|~res*)KfAqbTmLf$RE>3U}tEuYxr=^`WojT#jCb}hP*=$s5?1G=NaVCqyF7gAf$U*6FLyV#3wRAoZ!8ZWR0QaZ!X-ALipH&r~ zMUfx?OE4)g{O^DMrmY7=F7JS~Eo060B%Qt8hO-3cj>Cud7QRH$2j>J_!~{a_kTFbM z1yIhBNhAgS)vsdRM<`)@aGy%0#7lm~*#@gqg&M>+p z>btK0z1&7$135_Wv}tj@71Q~*>3^C(!Qd08WFjBD+1>#+ttv&Scpb ztXxwskdhQ%yXd_ol*vsWleZ^R8bB?omXkd_KQy z-jl@y03}>GnW>cWze41Z$`1T5*y3*)ma-E0Kh^y~WQZ-5CUL?`qFperEe2}jv7#0S z4EN}oyqcd$J6-QYHeSKdce0HDQhAE%7H)y??E{WzQllZ3r^ZDRF3XSJA(ud$;smA z|E^ZcyQ2}^ZMi4MW7)ieL8NY4ShNuL!mBI04|qA;yvaXrFLlIX*Ch+j?PR^4^3vO0 zQDoVooibamuvJI?R`pZO$!pr(tF*+#c_PU{u-gBoug%hbg|Q-fe2&?{}J z?>>kcKNB}BGN2APkuoD0;Z%+mq~xsrtEa)IXa6RfjNctYh4ZiUZ95jhR8=|)D#rr0N(0LzhqDOfo8-H*`T3c@ zj{S`r+p#l&hpQgmfdO?jF_l|sXp9otLH&Kl+!px8W}!} z>8GO;-mm>hPl}@{cx=j5E254hO&F@a-|3Ru4&iKtIFG)THtH**k~D2d6cBe=rV^4H z5KkxU@Gk0RHz-l;tUO=2`Q2%^m;Iu5 zps~8ucB)O_>&i#KE2c|>O%wy}EQ4o=Zdl8z??J4o1igt%DeRGg>M7k&k38XGT6I;2++C$6YtTm5@qdp;WI3X`V&oDTUuib9Mwt3XcjZD2Mp?UWV2M6 zNIV`YxzC{BVFOu+r>3v zb$G???9C=lYL6&vkn(J2`YAP@yfN{&i?B6Z zibk_E%OBP)m#X`RzEumh@?BW`RR4Y~D(6MzhC zN@}GG?wo|@#>yH0(ltRvlZ~bAS6Nwk0Sh`E1I5!qgtmSd0lZY%n(C|$at-~{i9?eA zf|0T`a!1FO|6u)%|L>^g)aLH!<5b%YU1Y}mv}7~vij`^kl>4EmNBc537=^#Rrx&y% z6VPbEyZR5UwNmZILw1R0sY@3s-9X7Ba=F7_lYT?i;jsNSKkhyxhr}tx1izBBP~VFl zP3$u7X^jBWOGpccF|{VCE|_atB8KFc@z8Og97(r0->@qTip3R~HOgNchu064U>8-_k_(3g4X6_AQEH~x!b zgT=4dut4+KZZ&>RlEh`DJ`o0CFmW(ed=xBt#ZD1bc$V|{@G-ZU+k)D{W6XZ+8&Z2d z{}Gm6Q=KQ(MnbCvSG%U#)=R*Cx1@}vg26rG7{VCOxD7@=M(TtZ2L8vR&5Uy0S`HzY zAPhBR8+BUA%tS6Jh#S(87dWT!m@BewI#~(LcG@n7{yjEf z{k@nSRt!h>d0i#QtLdba#$QRnVg$o~g=+iwGS|Sw?ZRP9VXTHElyFY!fh#OnlDMW< zVjkrR)|AFhA4xtJ1D|rkjwAQ?)Ja0hM2Q1NpI!Qm952}y6tz+w1&}$lo*r=I=5jQ$ zh)Bl8p#&-~5e_|h^}DSByXy(bi{|!wLE>%HWrBebfCgt=pgvv1_^sNmx=@ne=vH`8 z>|mDw7U`A}MaTU)Cz5=&AWrd%bnW{_*CBi{&|iHiqtAn#Fp&xOY0Q zZ9Qm9Af85qSEGz$HKro2#JulEEbby?j&O-+}OqsQbuv0IG^_Ps!VaM1w~3 z7utT&VgdU&^fuBOy&W@_Bx$?K??&_E*%x_p(~RdCcDpJ6y-j4a!iemxyOTKRB{y|A zN1p_lV`>xy)4LJGzq^$9EBw5A%=oE|Tb6pU_S%W;=iFVX5nu^PC;nxLE3R5*0qaG> z@E8Y?b&ao$w=m&cg`m&#(aGTIU8b&Ws~SLUQNz~65a|}LiyXYlCqq>C$DN3hB@A3R z5&b5TR2HiDe7TdM1ZOZ(U7L#jfbUL4T}sWCvSwi^&QkWSIHT0*oL$?N(h_eRE}LR% z#7!FnK{w700U)+MJ8NOj!IzG+A0Vd_j?1YHb-Tq!P?>_0YD4P=I&TpzPQts$vYVSC zqq?X6;cD86E*jTPk>V=lqGeh)4NbHd34!HRc_%=8t|u9X``t$gI}&cSH+Hu_$e~uM zMay(%zNN)`+OXjkNX3S9L?=?0K9pDoehI;858Z^21gwv#7Z0-CmSRiO&wvJrU@xtWS883$|Ax` zq|5mgNxI*c9X2*y8#8OJ@HNYou_uN=MR~|Mu9D8KoW&LNo6qzMR_C!NO@8|0=-3Ke@)dZ>QZXn5f4`pm$)gG>IQgP1z?7SICC9$PnZ4iE$l) zmwZ9}0Fk7va)NL^)IprBiSydji259Y)HC>bjIV6)+u2>tCNusFejUE$lDBe7bXh1i zaMIfi<7$N zK94QD)!_;gB4@8cWgwV@axn4%e_zsk5|)F*B5{7qCm0rTNLUAbK%khI$cPf$3?TGz+hjKifbwlw{e_`YZS_xC_e0?l_!K6ZbpBE z%IUoy{tvc-b{SevyZ7nz*Fa4QflL8eBD`+4aMROx;=mx>A!r$O*=((IOPZ@rU_Wdy zY_LXl^IzZ}lC$|*xVdX$=n%CyFxMF@UT8dHcXbR4DX{>>*A71P&9;)Z;>YQ83Cu{O z#&MAr1z+4kY^oP%PjWTfZRyKWmcp#X$U{2^PqVD{0nh!D3yEG8Ik%rgC=T>kD32q| z77j4b;r!vLgHejsb>?ckKl7ExfJ1%7)^2kXRX3z+cjZ5_2s4uPRx@0nFGUC1D`?w! zozfqk7~;7$(qh5jS5Pa|e&~wz(qh~tw47`U~B$(-}sMhbuB4eCy-Tch=n1An>DWv?y#jBI>!9yY2p1lsoke}ye4 zmIPW2F(NB0BEv(4aSB_Y$Y%#{8e?9;xiw)4QszyF(|2ig9F{DMGjjJ+v*Ot!%c1q6 z_`)PAApNv%rh2ZpLHH!j~t~s^6YARSwfm zuq0*0g7?f*g^H@LdC^oYy9dk%p+cUt9o;aPraYIq>xoX zQ0P3lZwg&=Y@}y;Cg3Fb)C?+?`9}H|9tKZ~#?CSa@qs26&=~V{fis%SPT+f_-b-Le zwA0QX*EREBPRiU_m8z(jxonR8eTMhQK?2KyG3G(OaAUAVzHrZvUN*hZ7pGun{C78a zzo=KGA@+W@?rs0IfdW}ng6n^SR216Q)yX1{hj_h&x7wC_J=yh$y5`ty#)c%yDRUngE~iBl(&qC@9d32ZMmt@E47V?vA)NkGShvon6)IPNUSxn>;~HHFXq9^9ClE% zEH!~kU#Fe(=F{>#^bbl}^iz{mB7WdN)K!zBbj9&=fX6xc08Tb{@2mMeTFPgF^slx+ z_WY>^1rSCaCZ-5rBqod6fEmplf*rec&tE`tiTQZS(;tDNFC?Yio99XG#Pl{_p2mbs zT>m2u_OZnfnWLSOjFo&M44eOiL~i@X7w4;eQZ7W?f)pRXT#$$$?)zEtGC`Rarr!)~ zg{6v*nofKI>>^R%9&nF(N$=80@%-W3;Yzm+%q8L>b9bU!Z+Qr*wrYWk z=yfr%&BEaxbEyT}bk3NDzt8wfuh>3AuXbVw3&dwl$G_c%HY=Y@dAv&qmr3g#CuHGU z#D5ogwz3wM8dFZXJ}z9;D`;^4!p9Df_Zemujv^la7_58BP>YDFW=nPhC&HMiD(n-!Ia6bxI=35-T?ch4r zT?7x(oM6TAM1rha*up9H!Mv3qr08enc+9+$!45zqwr9h2Yt(0J%l!+1wa9r6hj+;k zy=~Dzj8%$Vjl02s8I;vw;5E*0O3rv(@DVQqEHO%-)oq$!EqB1TiZ681nTf)kQqPNM zWQ4q=p|Cen;q5Lwt3epKi|^V$k@COmo4hk5yV$WTa_zLiO+DvEIS2oyit>-1=CZq` z2)W?ZLkYYd>m*A@#N!_x=7F!! z`^7RTnRKFMg4LY8wmeCcvKZL{SU2Hz0*p-JA4>keFFGxu6kX~M3#IlV{;3bcepY~g zc~Kovb;|#MdIXXpk5b@ln{md6A=Xq@VNljtE2DH%=j$n9!j$AoeJ}_^A?WLR^@0~B z7n2@J)Za&tLqV=mh8(ZBo}@1?K?KYG^I7m(0wuZ|rg3S}jkuUo|(5Wa}Bb)6%c zt7j#db5xQcp#*$6Bgc|V2GrXH`T1taxyqhV>1XkkA89ubZL~C(cfo8lKkf_zmGAz} zs5(ZdcY(XZ`pY-JO5ITRH45A~_!lk*DBr}j3jD`6}U43#IOJSQ-0W$4JPr-E(cK{Blf1UZ=yGP{)&X@NNt$sDF zW1-dH{;N=Eub8A1Gz6-Aimx;TagYP6i4owUZ8bkh>Y zP|sBN_3+E_RYl1$^m)N-rUM#2 z0bcBT1>_4d*@{f$Ir8vq&?vQ?`}K``_3oZ*1)#fTXy0`xadF&s35c?Kq)g_K~6P9!m0HpV|$0|hv-TA)W)G(_W*X)g~@6-$;Bt}t#v7=h?CG$ zIY0I#BQ(2JQ4;fUR!CyM_D{E0KMJ$^v6?+Q;0WnR zKQ|n@`3$l$af$g~lc9}%C^}?R*CGg4-74lGyLN*^Sv70n_Z4MvxU#bQw(`3=fSbec zU8B%}H!FWdwPt^pkYI+WX>R0kC`!+zrPb*VMZEOFFY~-EIEMm7+_qT|4uf~6HRZ*y zhvdA)0nWGKJ)z<%BO>!y@@?>}M*+dBwqV(LCt4fj`IZOcWlT1m#jhot>@x2%Dho6a zaX520_J7IT^~cn_7BcG~HcDL;P}C5`C^VsgTW}H!MW8i|3E=HQaV+lZ{k(~xMdwdmJ(4;|Is)1f)ER)ye41owA=8rzfEFhdRSq_j_4Q`|dqGzGpv2B%CYKRqm!-b;2 z;PFBHTF^gj53HO{A;Gvi)ZFdos*x)hRD?^|I!2+7tA7qL0^I2qr3)NDK)@rtAA(}P zlhc{#Jz2@H^rrO+Z@#{3&5_osV*O?eJNnG@0Jzg4Y)rq3R?$N+okb}{9P(njdvXt> zz<$~lDkyQo2m{6EvA_HUyU&6Y<8~Z1*}VUD6uneK@Nu;h7o;ALP345*_IM->A5lt6 z6hn=9=0@WWxhAMSts(tEn$V6W<`W}Mu*pB(ugcqt2omVkbRICjoiH6QvSzbW z>%|i#VE%Y&D!r4~WSW?@^HvIoMs6wHm&OA{iO&|D|5pcM!dF6-Cxb2?)D@FjP$2-B zYJfvW1ZVBI_lUClibX+CL;pyQD3%;WDCG3dOgCBV39Cd*u{Q;r2*D@QeA5y8&_Qsl z3+PQUgKB3l7UQ!n_)K_lshZf~`4n+@x52V~ud3&Zg#KTlJBt3h#D~(SU}Pe_kTg(c zpnSg#NLwEXzOBXg%pD#4+PJ$y7y}*S*_|XvOr1)m#!EYxl^QG1K%$FK0*(Lo(;($} z9Qm0Uns^2kw1f^bvzoswI)ykg%@s5M){WHn*VQI-bXZ<~AiyVeJ6OLp6Y zdCGI?UW|VR^Um^nY60~z(St!)`DyY#tPcVghnd&q%Xy;yuG&Q_4yJ4^{z?>5)Vt72 zUwsj`%^%`o>~O1_jyLqRIB>bC0Wno22niL{KQ`l6|8aXi1y!5`>3AF-ehK#dz=5gT z_Q>B^U@unkhp+5V1_k|L%-@MFIH9zRxMnat%>t>0w_GWa4oG)x6r5bkL&tm3Wu^}VRu0i^8;Df19MZGlbST%0<=JxsPZHX7k8dY_a((cc%&KfH8oKzvOn7iow5m>FftO|Hli<w>3QyfloOUq;$#Pvl6S$crmktyeI6K;Wy?`Jvd|uRqtK>sxQDa!uCyiUjgx^mDm?IMaUze*rdKw z6+S6pgg7@~N?Pvnk$ZbsC#6HT#9O(JKhVwUlMh1$)xcZ?&1@^Sz@g{ym3_cYiEHe% z5F<#b)a)$gKeZ{RcG|wNC2SWs+C#oPd9Is;V$^W@n^Ov>7UP{>d&ePU3m#j%5G*@D zQwlgTeLkao{6%pj4EK5qKCr3vb>s-b7lCe@42|RW!-N#g`S8f^kXq=i%gnRa>!{D& z@&1ooD#Mh_KqgRao&Q&ARZ9>LH0{UgS}Z?i7}svSfb26VMtmiNBY*U$@ZW6nrqxi! z;P1nzrkOl`p>)W1Z)%5Deud45($ypT4QK;oIK)Wb62iqGa|#ckyln(S>#2QEx^6>+ zcpv+(`$!v}$f}8}WQWJa3Actk`$B!^@;t1+X0ZPjBO?`Y>9h)3Eaa3Nut!~*xlm$t zXbFk5UcOWWnS^r=<(hFzy)NaO41=FR(X`?Ib|RtYTTQ2!MxT zI>6)_h>|RLHR%Hr7cl*;y(Cc+svY8I4Xa&DjU!9=(TfvsVyiJ=aY2Bj7P$GQ~e8~VgFPZ@%XnDBqcFckhrb=EdY8{N$84zl)^ zqQXo&WFm$P3RWB4&IJ&|meB`d8%Z>vPn$b^_^J>Vk}jJV+HiO}&9wLaEj2O3V~-)# zLiC{on_?SRan&KPRi~5aj+zEdg-i^F)Qf9}v=skm+cnEi7rRYTs412#j4QlGPR5tB z385+Bqlh77G(vf}2FzgSJX9OXT>-UPg0OfHi%?4%Lm#v z(@w^v(IFQ|lA0kVxjbUUX;DU82Kz#`1{Y8ROvH*_q z3BhL3WEt}A7)8-Wffr9Y#=BMmZ)bEz8D&0t@bo$s5D26AzB9PT8=9B|-I^pAwMRnMoNMz(BGEY>7L$==Cw{OG~mqvJnn0s!U1WP z9~o**8e@YMNGMDwZt@8uhE^In)#1S&QJ4oF*>qw8gHh)N-=iH!>ySW@;xUXt6@1ya zu`i(^9fE zhZ2FCXALrySO~8YQf5Tr!4oy6nSV?#GD2SA7b4kW2l3g2G6U(*m2!*8{X%wcilj~c z625Fgg=A>EF7cK#%Ag*qpGNc4Ue=qx1Omg&{sjM$E(aRgyFML!KSU!BVd$#uQM&Y@gos6W7&4^)-S9uJgTas?bEvQ{R60^VHM zE@lmO6!3zgg!5L|gSi!G#`|pgNQ@Z)>rFAW+^rpd*$%@(d$Tq)>_|JoE!__zt-zMo zUPKJY<%`XEp#ulJ$buDvpN9vaN5hEaZvEK<1|cZiOI~@S+8j$B2VJBU`3y=dZIVKJ zNWHGJOfWGsN#QExG+4#QOfceod8qkr1opwn3y8rn(0jWZhwu43dk9HAxHn+{s+#FP zxaQ+6g(Qj$Irr+CtDO!c=@-o%k#@*TrG6$VHhv>%pxHP4*;eGAsOmXWZQCtp&=uHx z?tH*eGrZEK$WpNr_7KWUL6aJ%x*2)=K95MC{e*RyW0mNoG>XJX9z{OUq5tA9Z|0Nl ziq)z?5{%BWgiEf(L)yp8{CC4BIuvlvm}!{O>e0E@`Sspk145I4E6r9+Ze zxQncQMnSaT@>76IZK*LEc3_D+QNC8T%Hn6pKOilNL0Are8xcn$n#&Ks?@OJkM6*X- zppe(W<_ayAhpO!K-bOzy0bg>E8K_ zoV_ADt;X%2(Ms%K@_&vV=-{kDa4!m;gQ3=jm?%S-F1&@>88b}?Ty|f|1E#bKqu=-b z95c3NxulwPEdfa5O*?z;x~-=C9f-D*cNbY3AGims>LbuyL18{7S#0?U`pP|i_@o$S2#!tQ?1$!p_AW7AD$!ll= zqx>@F`3EVv$avBAa(EgDR0vrJ7l`OK(_?U|g!Y!+fnb+=%LpgTo>>tuB|N<@9D;j= z^V9Qq=lL46sW){1%qj3RpP{@%DU*RV^?eU9oAu2=D#^yexc}sA9d;yk`D2xMRJs|$ z;s~)}M}FJt!q2!rcv}l_4VE0%J``A5O`sb#LuB78dA>CHx_}<knSlP@6v^}&iLk7?>iK)@YkUItsB zx;Vn4nU{vAPnYdDnpdD*XEg9_>v5Eg2TK%*Qk_b0jB(B(8E4%LKajw2C-v^MYqw@75+@x-aCLUm`j>%)c7;9m-dMp z>v{-i-so91<=+ld&Mi3el{R7+>Y3|reV)OQGX>`j3j@ed%-?SAr)jR|Oj&>Mm#gz9 z)pIc!Edy*o^m>8ZTFLO(l&Dnl=DKh__z;j=gRqd(>5RmbqM2Z@Pda zLK3;UzAXBgk#!y>-kiUKVB$Qj2)SN9gt&V)n6B$OLpbBhnov_*3j(H8eUQB&G|gn_ z^cOg34BpfKtw=TeXE6Vc`WrF!=RIgD-RbYS1TL$*?@`)dP%r@@ck9335!1=uBY8V* zof!ar6x@;wETg;{IrCg>t}NNVt8k0`mysvQ7hwko3|-{uu%G%Yo%ZY3?wb%NZ5eav z<&JyVQwPEE0A4@S@Tk!RW1!_1G^di=Jsm0!xb|Nn5-aQf@m-$q={b;gCf+^KhJYd@ z1R#g+5hA`d2=`=bT~l;oQ*s+NA=*{id8jLYcIjMYetoDmZX{{jPr9FDV@(8)*eB_! z(P32oGxU6&Sr3v4ckhdzJ<=U^{TPSEpfF+*lc%pDVP?EpofMcWi7mMQ1F(I2Jv7p8 zZ8D|{_H}mnKK(j?`OZ)pAEF0)H`c8gH);0&_Y9j)S9m=RZ9(%s=~vU4XE~M{SiX9E zl>Lh@dWHY=7jaQNyUoVj1^?Yu&%OP{wr<3gJKM*oeAM~B1Oj9{R*D`d;Urk|AOhu< zigk~~C~p;e^91)qDF2||J3t@jA=0U?rsn}L0f-6*GbhKaqitr;ahLr$aF(W>{SqsA z_G2Ca#yc=dF!aLGA9s!N=eCmYiJ=>Bje|SgbG1mZ{!jf5(XDq=2Kpz8KQH(z>4kS* zp0AY;OMi}tZz|@TDay>cEvsm$UhbtB%Z?5ufC zUG0LzCbp}pFXe|CwUo6~JVph&x0LLCH0Wf)YDZ6@;YAX&-r98rc+x?Hi2e(q?^8y> zrVqunV>{Kja4}wxwEWh4!)Q{qHULwuk*&hN7^$&`IQHu#mH4xXQ)s^(N24olT3JE9 za#A$pPn!;xg+BD$Bne>Rfr@dADc*;f%n{^-Kw}j_7#~ogh&i5d#udf}aDhR<3IEKs zp3zA$o4Vk%DZy?#?6gpK+cjHVgkpgsj_&BG?6IpYmd1pDnL_ZK1w1IJf`-Rr{uJxF z@~4pS(?`McUuQxwUKy+G*l7UqE;iKQynDWwosOb)&xBsAasUD=KG+g9YqqlTyf3m5 zM<$hcw=b#IKMWIV-KE84Dz;#Tzf7 zJE%F$P$i!t^!sTdu2Id6^w~90+1PdrmsYlQx;N zqEJG>Ny&z0f^6-|2a{L=)qtrjC%uv$9)hsEv;bg1;$9{}Y9~jq4l)&vz#^ZqKap6; zmiPnOjkAkik zhi~B*3lz>WS61RZ&q?=b4}bk<#nHf6fvUX!ydW+8&I$L7?EK_c1|F?Rw9!$KvFMi+6Sup?kh zv1kCB1SzCnnLY{y7B_nGG%}j2fAl=yl6(Cp4XsU|JP+tyWGn)q3ZA?$7|GISwiCcb z24G}2`H%vg@<$s30xkC!v9!d9w!*r|}$jEg~>qnkLUevbv>a&q6f0Tvq}{HVfV32N9n!KLW-W zv!UaMA!~>%TG)_exeq>l&k74U0;u_xnIrKAIz>9R^_dJhbxY#RRIQqYb8P?|3u1_c zm$f48bkB@QXjrB2gh^;3-3Fh!=3vKEFc52S!Z^%XMuS()eVBCWdP0FF2GB6L%Gy~V zlw5VsNv-3|v0G(g*h#EQF*R#=wEZ+w(f%%)Nvpi)ARPOo*ezTQ{s#O z0(=$B$?vABt=r@eGY(9=?^?k4r=tB?@h30m*V8s5)cK9zfp`q}HA)`j92zVR{+a#& zbw;>Z=c^GCDG-)NEi8xHw>OmIV){V`eUKNQ<4 ze)+zl<~~2YA&YS;H&9004WX(%xucO@#?1NaKW)tM7AJUV#UIMavp)Y=-&@;WJu>(m z7UK$vBOxWnOD#;zJ_jhwzkC z90Zke1&o6y_34M?(=Z(Ni9M|%dUg2A!1x12y5ZzA65L1D*5^QS6P{*5wewK6OPwOP z;P^A04_r+y4;j>#9uw?5(sUP%?E3>P|MkEq2ukHJg3L>uzX8Z>`t=j=|9Voq8x-)8 z{~Vc|tna*#MOt%UEiNCm)-f;Cju}D4QnH6xV<>ntbjm|l+&|JM3qoOdegO097ldOB zQj=I<4BFJ8h-XGjiD(?qh2dP16uIya(X!iWx|k~DD7c%CHMx$?jiMKoQm^+3l++HTbK6$o%X39FjKZ#m7mMnFvbh7b`u<8JX@VHPvBhRY$ccSn^`~poW|>lVHnyd;Gi>~ z>qKU^SFz&0tIluRi>}IbKacdY+WV?5>nMu3pGNcoDSwSR>+AnM$+F~w7S?)usRc1@ zlt6DB>i{e2SGo2;%1f`j&j%&H$;qeY&M8j^M348-ZjdBtBOtx)=d@th!@dm`GZ$n6 z$z?gZ!Aks)<9!ULi;U`j`~9U3%3&57_j6*EVN9`}!EDUEl%b80Lhf&U1phGyM!tYs zly`9(@|dg{Qj*vKeXzzz@aM}yqJfdC?Z5jB8Bn2F`d=AN3X6o-^K;3SU% ztbv0Uri@rIksa`V*B^dwi7ZfmWpma_ENmms7CXq8nF$tI^FK^~VQTVxvtUiif7#*A zJ)cowlgS52@tRIcl;y9PQTWvsLCIiVD&2vzu+dS>a#;ZyMznx&A{D(%+(S^gbF_xFq}w3&y~V=BZt z4hZqNaS5wSoRQ`<9qcT$K@6+=FHLm)V#2YZa)Q~aOvl@XN=r#ufY5qw!EH>ipV<8a zIkI&HNfy5Gf5md*MKTCG?hveNS5go_I-?MQr#QpRn@bP`+jc<56YykF)CCoV!z%3;@A;D z*Xg)wlMM{)BruVl0gTV_H)c_zQBK=ou!8-$)5K_?45E zlx8KeW~Qp9`p3w^*MC5nvbetd?EC?0tsqUKpX8kSr-~R`R(gAdfN2ZUjztZC7oKwkjjLB%E`j02XeYL613wLNaeDcsM&Rw_GfIP0I`;n?L z75jHcWS%o$yUC)vfN!$u6DAK}EBF*$?hdl02-8wrF+&4)w%V`C>!nkLgFmAwGd-sX zUV{lSjvhfza)1`r(Clw}vcStC;nex+fQj{N5Wz%u45WLJi}-$-7*Bpc_&(JIqQnS3 zuTeN;SA&Ri{lP&u$%ijW$*w%;UQMz=+FZfRVdcWRRjxpceuc4%$}17TNBPPwSQ127 z_xSmn-3)}>IE&`5#*N+c6rK>N;L$n7d>O>TL(gd>K3Vg2Mr1f9Nw^H3PXzfzMj2%j z3UZm?TE}k-7AprZMZ1K2$%@<~pJdHp2VpfS-R>vp)V!Vw-O^lDVX;$V=7VPvH&<0e zr>rF#KRF|%s#JL&0bUd!NQ>=lp4+PQhxw9I!FwY%covy2wfW0E zkMn>(nD|3`r2#64n^wR43_cR}6}&7rSiNt|iZW)TBMr>8;wzUR`%5b3xS1rMJ}JCn z9n!XwxJRd`sHmO1Hx{`VJSkr>8bSvY)I~^Ec0&VHyX&lJ#rFyTU8~C1#UP}uo}!xK zIv?(0+{X2$Jq{k_%(naYIV&j(1&uJY4ob<-V3nDvNygcvnhZWmw8B?-v0%__K~&hw z%%;S_P#`C^aj|~Xw_|{>UGW~Se}GQ^t9<@28OD(*9lU}iiw-+>n?KD`41H`+0lFY$Hy@gcPD7NK19Ouu{w%MC_y!)03PFU6U21X zM1L*0eFM&6Y?BcZeJm)1atE2L#U$!)b*BdyG1c>mfVbp=o(jJ1k_(#~3-Xw3LTEE( z;YmVWI45}Pd@l_ZlO3KOy6F(92e^?+_l})#w4G>m<bI(BC^02~X2{23yc`5vA04+J5@GCh3v zeIgo2jF}zDL6_w@ahO3&5Vhc2yOt||RhL%UtWFGXQ@4$5oci~lx{rjSVom#DHagWF zGxh8qCHr|mkTcYU9Gk4G>iq#bZ^oa}AhXUm&hr7RL0s0NyXT zn}>P?8DmiX*iP}*%4`<~Y_R!3`_1xm$%I{5hee<-eB;2@@%V z^ke7P)iCK3BIElEiQ;ZxSHLo@KnM2yU^}CyMw21LPCQ-K*U6y-Y?=81HZ}ow_iqSh3X1z*K+}IXEj;-}I10N1S ze@_kl7-?5YnLL*hV{&U8GYLb{OWHVvI);{UM|VLlvzSQD#R9JJ_t~1rfijmtAF(wo z@E%mg8L*~p30>3?^k?b)kUvTg4Uc{nlQEps!L=r^uAxjXk?q-tOZhLB=g#)wRUzkS z{QEOTe&2XGV1F51pw~-4-WqhOJ11BevMhy&ymGlK1V6Q&M6a#n0d#7+*} zmPC^RGEsDONl8+a9=?@rWoY43GLTcw$9TS?2GBeJdAi@&zCbRotHNAtEIis`VolaF z)y!WX?I9Yx1}?aFG=Ej-Bm|$=H=Lhe;bB_KzGMv;i$HKMJF0LP*d8SZ)Tu&W(b;IxPO|ly3K<&CvQW;|dKqQ7s>s zDdaEd+})7M#D1|;$SqSMlB5l9~C8_195z}!QV zt@pfRz$-1i2TH_Wk`t^?@wACZz^0Ic#xj)*UovgK|-?1=t&< z66rL6FxocOAc&(05B0$-4kbXPao2z1#hx{b9~+jry#mh;2{%=1LH|i&0ak^}OJtI6{!_Q#9;k_qw*HhxAkE|zRCOwJ;SrF0y1YBF;)%zDo1^`O=;;A;D-PAiw{_mu9=qYgDTW20*Y4&v0I`O#v zoq!ss&l$l8*DdQ?wG)?*E~MfCF8z}zkENo_TVy)V!mSO^YJU$2Mi2qpvfYd_mS-SzkO^7z^y8?eU|` zp2wLi$|ugTp#NZ*ZoKY#1UOfGx#Z9qH`f_MFy-Gg-y~D{w1biaaO-JI7bkH7k6yEo z=l{hy0&C_Izuj{K(RN?MD{a?ZBP^FLBcsM5w4SDBr}Nf8)jbrQ~B z98rSJDA7pEl>Z5Uh=$UmyJ92_phGIphqk`@;x#E13FbwBUn%ih*4&C z-|A5$VZR644sX^izW7^Q(M>mHkzqg^uNO+yP1|l>$lF4Qe*m-c8WTLj6O?K~Uq|1V zrjTLFf&>~c0OPkZPoXmLu>Qd_*Zb1Oy4(|?a4$|;$7o0)R`{$%8a{B# zuoAKaZzMJyAxl5F*26GpDD?awdgup%yioqWI3WuQz_130kUi$POah2ZToe13mFQJcq{TSKf=Imc$z{U#{*U3?%^Um&bIS1 zkV+aGfNN>q7~T)uX&KaAA)1>KxEEEw+^{?_XO}tQS2C+vy1so`raxr5TH-^9!K*KS z7q0afgF@@X1Y)JP=iC7lE= z)SxuRiwhX)E%7`qR1n^&zCYAJ;|nSOx6SHd)ZpkYdqZ|!V>t1l&0_y_<7_fft?iu@ zqb{A_bbg*7$k8AhY27?#j$2~D#L3a`t;ALRb;0F^{$$_`_0o7|GWeWOVI|R#$QFR= zc1uOpwKJ)4E-7z>%N|<;XNnKjCJp0F7HFrGyuTGx*$c@@VUA?2;_E43XGoFInKK(J z;CvRBx%{zUcq&bpPb%<1eOUY%Q7NXDQ6L2w<|-6G3H3|jYKR8=C6$tF;n5n)S29l z7jh^Ku6LQu&-i4Q{h!sZ59(eDm=>59v$u+4aCeK>mvpaHFYxUy{6n25E};JK?kd;f zUY3mUCuST|kheHJSzq3u{#J-#?QY=;bR)}fXj{)P))CA~WHA-_F$x}ySOYK%Hf&%U zi3BAOa~2(;7mIO{RFII1d8#UlrFN-Rr#|CS+x z%tZo=B;lvSuGTHhxjElMlrik88M`dK9D~i$jt@|7o~#f#e-Tn% zR~f2S7OniNGEglwMU|hK{Ei0a#vREYN09tam2>^4QtaQZI5PMThK#s{=u@8Ps~=)W z^HCB$;LWrR@iXR@&ob(L?T5Xz+1e{(DunQV$B11Q9$|K^wUqOOHP%ClO0vj11c_P* zn;!GrUP&2?JB)k-V&QoWsoETzagPpg4-4I?_HN?NkC6Ljp^F3X8EF5^Tv~0us+@D& z-}clxT!yg>Q5DjbI?Zm|8LtbY!VMyT*(%*Al#K@IL3`2k!pkoV%!z3)y*Rrdl7qS5 zH&K=0mZh&g#@NbJW#5>>IEAk5gfRKo&>U}1&w!FIYYoG^n z1aoUPogh_wNb@3i=`$A*%dE#*CK%LIps5i`tO-=4(#^O)LrdaGB$rqSje$O9d*r^C zy*s_@1xo6C_ONwXLLx#R=NXUA0@HuDfQli>X&)5v6l5^KuvR4Mc+qsfa2z4PBlLT@ zg$A=TG!ujY#8juHlZ8Yb5s?mBWCJ!HB++1E#D2`*WM$J-G@Nr&gGEOdo+!^8^ zDr#zZ%CQz%-T!)luK1cAv#^uPRT#0ug1N~+!h`u0%LgTGS%X84)4c90oTUaDvBlC9 zN=IOMqCq4c)K3zjc+Pp;PRs0>#NOAr04lRPagm~tnz!;o0%<;wwD5?Va$ zc>T0y7b}K&852zoq~Oi^f&zT}$giLpEW(a=yS~3T!AI41{@$RAt__kT-*%_^YHiD1 zpTpxOM!(*h#6x-{20D5gcBwz=E|7wkC019LM-T{=P2&=qZtTf5r&qUsr8D z3z!0RC}Qu>qk}gjyg6ZIzQ?rmN>GUC|IWH?@W!Rjm~D(O@-ZL02=cSvb^p=p8_y3F z&dLk;Ak+~Vd0+R&sT=`d55ChC7*_g^`op*=%^oK5&0~609=5AW?+%p=!y?%A#DM^hhKJx4?|T`z@>J=dy}*qCE>@=h6FlD0 zl}_H~!07wbs5li<(}H?ENvOOWkvU8m&$FVHO+5moZ|qk4qr#7NV&?zd0~vrqtztK+ z)iIPd?B03Dg60EJ7s;kwOFXAfnCMFosB1WXkrQ z;&c7kEf-K9=0GVZh^?6S^#&are-Qv*L!>m9o|*(-)~>kQQyPqY{LNP&#>M--FT0CC zRwyED%k24mEa*3@ElStAV}5p0RToBjVd<{3!a02))nLnkr&ZRh_6HCb&aDvRN(nrY zLoqhRP;~M5I#;ZjCe9tw01399qvVZ)q-!H`f&hq+wS8YTJvVg^jGuhZloWo0d*l?P zTB~y%>7)?p9E{*50k*<2Q8W@y8~_QbHbW=5;?2)me|qF8QO#(mAvV(rOF2=4dP0)( z3)J}~R<61oT`$Zs60;`CViIfoj4b0q9&(=?lj{y213Gyba1`ZGxvTl>zSyM(Zy(wcrosWdo z)#4cTQF%$h2XR$=;7KaAd zEtW2dI1dFdm#P+09ni#LOrZ?gDWf<1%4SKxf?oYCTO4vOa>b#?3sp;#fVGG;k_NQw zqj`487J-M`EoYHwJMNPzP%H+)N>C{lgF|`8lr4(j4B6t)rv#b(8vvglgq5lc{z&{! z2W?Va>KhjZQ|F0AL-5R$BMB`SnDIoR29x6Ds0A@Jqo{>J`W8BrsS*LAMYT#vNNOl~ zAr>ky<%mVY;mTAX4TVskSe7yZ1SCI{;LtI#SR_>eeJf>>DNDh`$UU^s1SFCptFXXt zIipaMK?;~JOA!aeU$7}l?VGUFLKvFR#iGG%WXS%ThQoYG3Yf+p2QwL?151%K)J<%W z4Gm!Z^h9D7;5b6i^tf=*;rpVcOa>^2PCSYL=ZPT6`v)6uaX|3yE21L z*#PL2ySWgnC0-crD`*CAMje(T12&|G5_&K#)}zVRM%rl0{S!E#y*_=BhQ5INFlNyo z0XSR8EC<$DkL{u{?$1Lu;q?G9@8b#f3xy_*%#gR?&>`MX!EKK`Z{#%60La1I0iB_O zIhX2?4vbfRZ~7lmHc3az_KtN|=&z-&TkVSihz$hJT6fO!zL!$Kt~Z=VZHjX+{m3VB zkvPt1o@>a!S;#g3J3@BvgZ4Ma6Am-GV`A**KRP4~`5>o9n!jvRjZS5@21X!oyD=F{ zn}S{DM~wbO^mSNcL;E5L;rng#Qi#TQ&uqD5y1_)HV(Da!-|@s1qDpQ;^1NP8NOYn~ z1bYt*wM58{W)0t(q|Ka4)g0KPiAWg{4t!u-$xw*bZ3&?72Mkq3wn^OQT;^w^yxEI09 z%Pd@YsR%a*^qCbGb+mI!h;Gh=mkP4cx?g%>#%2N9O%(g>1cyV8GCkMyf$QTh7 z?^|WC#R73iwwb%J@(RsmgoY4>7}-V!E&HIEMpb3aMaojgoeX#yqP zQ*BR z_>ay=7^p2bmA)emQ7rIA$wwP{jK2?)z+(r!91#XeBV-E-pf_($SK7Ou=XHKVprd4m z$EPvcoEb&-&tcl`P>EL3l)8iOm)dz>=P?PkL*o^{o;m?PTPcw-=ei*j|Ik9q(8KUT zNW83oXWNjnU`x9c{Fo4j^|}vgSh<5?G}^e8)CdlHy4n81*c-8$Y>*4YgK44}7J^DxbE6fPn%G7#dN5YYdftf20hs zM(6n05c)mgsSOIgMroTL6-b`s^6=%@(;MRAT7tpZQ_~G+khAgiOIf^1%{c{QeYB)$ zl``)J-F2s<8rzCYUEhovu-mXQqOy)e7_RF@5(>-^sCmL-L2Tf_WhdxS!$|=HCB8Ml z@~>9?KJ~?(kmxYy#S0$=wzb335KjkIP{Q*Ll4-*_mQQFSCe|mo32IC%p#vTIIgNVG ztfsXDPGZKMU`iNgaAY^e_3<=P&G*22VQ9M*6if>thy@_Fo(GM+umVBcjjHOCL(d#N zk)vRFs}zc84HoE8lONE< zi|=N`1CtQiWe&E(PMR?m!?cuzUw9=rHj>KZ_5Po&$P%z(M0P@lK?~+~r4Od2ZEO18 zFy8|mbQPx@#SC98f-?E6|Hyyipt1)>tY`l8!VA;NSO*;$N!`bp$+rjtZkFvZ!UREY_?B)^ z0$y`Nj_`}S?4}>vpRBC2^Q6_0u8;Fwv_){det7`Roja#aL>JWds*q9Y!5ubsf3u#T{oHd75cTSs zE->xbHPX0g=Nv8|e6j0tkPFQEtds)_T(hoBU$4vWC!##lKt}BVf0n++HTp;AHD?d2 zp9c={4RIcW%$LN5C9gkBSXb}E@BiRch{E@a{!!$buLtG?aU;gNv(CK{ z`F3AvI(rJD4VwD%<>$XajH8mznEL-QK)7lazJ+Ts?D{krK7JBUka@As@6ks=S*jQG zJ8RAG%rRDFPQ-Qt9$XVO9`G2s4q6cDHQe;aXS#cEn&`rRFjuR527Og}=+@j?=?L$x z=N0XII9NC#Gu3e)G6>iUVhaVk9~thw^CjV-#v^8N63>;2W6oclFSGT$q1pxf&yHjX z8NZwFsZaC+w1I{j%7vh6)E07`-e=oClgF7}AJRQ(M&q0TIe!o@xkv-0158sDfEd{4 zjun1?U;SATdXXeix;@`L!c#%=2DhpL!thl&reE_B7j!K+V2eh}*u9Url)P#B%?1tC z1`(WNzDB{{aG#;Um}+FSU(A5%`eBQd{>*u=VMX9rl5&AF&4Eh^^G+Znjnsgnzl#y! z!TjnSSf?(G`Du;qHKeYbq~n%0=yYoU_bfR2n-96q(Al^)z@VlaoNG*i z`+*auutEaQ40Y$odSli0U|NMyEx|OtZdcm}uM%45eXpQoJ<|-q2f!Eg5C@EKg8H;D z`kOj;%v3l`kTg;HQ!h}(%Xs}ovvkE=4$kihW_=cHe;=P>&_?sr`j7+pD=l+8(Y|*? zk#jr%YFJiM;EU`NwFhp!FnR?}MTd~}{ry-$kAj&ojN|hnyZKUdck=cN*?5%@B)4Qe zk{P%#8$!S#O6Y!~-P--t)xO%C?To;~Y%*&PpJ7dQ!oGh(`t0l8?Zp1MI`2Eebu%XD zblP*?<<|aE%$S%guT2<5-}&tgQN~l&vLYA*Sa>mwa-F18mg9YO78v0GlJ%XH8ZGvh zFH8(!0JT9--J_(xvxP^x8TR8IcZeJtA9sjR`v2{KP&SnVMT9RYi9#B75WRoSr3%N1 z__{bP{1UgB8QWk{H90-eyp-~TB79y`d-!T(A>axbMmKiu3Ef5R; zOwQ$j4HKy~cm4=d`>EDO{hDc~vb_V$B&pTnkmYZvU1=(;NG}1c@}FRiIN9#F^UM@C zs6v)CwtW9c0Ms$xZ1}gQ|;#lNBKT@pX-(Rd!I@_fPEn#;Z$8FNw79_+Vllss7T|9{!yB2!W zZtEvaIrG(C$GVdKy&bD()?Jt8^568wu<3g2?~m}(-;rWk_Pg&l*OUvBm292NapM4Z zlOc?)iJBYpCvFOKxZNHvh&AE4HUQ+qmQ?vCqWqnt*<83|Q^**y^ZG~zFW|QV70YV%D zHHF4@TFVkVYCLMH;!y=}HFnzb)GnoNf|@>>?Mz6**w_BS_z+-Z=z)+1p+9P}O9j~Ugc~vi z=ZY)yA1`F3s{fAhsp7&irQoC7*2;%-Q1-%1HI+WR^$v|T?MJWNS{cuikd}7M{bbD_CmOl~t)%3N zR0&Cw#s=_H0Wa39K{zR)X27$k>|#IpnXYnakxI)Y_G2YR%7g;LfMZ;&LlqTSNz?+kuFy)`^mc6=xb6AFx6D00uQ5EmpQW{)~ zDa&Y{60elCEjY?82-n6@DkS_n{dHNb7Hi{Y13WBpn^AMqsjt`11(-BHc>ypxrrKsL zRD=+>thsk}Y13`hbw|q`-2RlUK7)xHD!1cn(*@2(M-3eZOAvrsqEzTRhFH7T-v?-r z>9L`yT@MRO8utB+286XDha(0@7KBb|0km%WmgaGLpUSgcBX#BjlZ3F9UB9zba_;1>C;cu7gUUi%fT-0Li;66Ii#~MGC6SzIY{{`!`X^k=;Rwo)b#2b=Ke1a)QWq z^QbA!YR7Svof=S<=>*u`fTxP-iYbeTZFs7{XP_o65S9C&FGp5T#xK&{=jlJO#RYcn zhDhor_2Lt=goT}(6GRuYj0RaN@sbmR;>DK(yKX_}zY_`p*2RFafb~NoQSAhl%!6~0 z@x}FKIEM~9ccrUr|DU~x8*kev%X4c!P(Z2(PUh*p{JglR zs%21b6wPz(k9BD*rVYAJpy}Lf0bYrC$>&y_NYZI(rw~{8x;E(yC4uhdlkX7m)6Zc_Gd;3@1bK7z< zqvXKQ*oG^^PislD!h+|!w2`QZaY4*%?e=vtyemPw9(v~faS&~eQi71PnSYott*3!!)lkd8aBCa=owYi5s!I_WhNa#iEknVMcm;g9azZp7qMN(0l5%xZ7_qp0NbEE|Jm;gx^VGUS8c)@;9oln=#A3| zcSb3&NUSO*KP6{2P|5<&QIU3ge}@Rdffa@ikOjWSC2E}#6Zrv4Q)lr&YGY30FbFMW zCkWIOgh(5!%Ym0PzF-EsY;+}A1Q2U_!x4Ma<-#xzEYmimFd-=3J?=l>4ru+iD&Rm5 zx9`de<3JD6lhE`dl~WD-7Y7lR2=DsO&=?R29*U4$yC|47z6q3o4hB&Qd3(^s)kzJ+ zLi0s3ZR44Iv7kqZf(PEr))#Paj>}+Ikrg!(SgSmZ2Y+H6pEira931$T&{rCL44)%&QFv^BX5 zU975)V=?WER%#rmPmkP6u4Bl2bf~`omijh5l1f+qGesJCO`?7sg!s{bs z?81c$8jomNeO8bBs0tF;YKQ~vmFL0Ot_Qu1Nrv2n78YyP{s+zv6%BaEi)16qLph+@ zM=%+S_4FxFG5^b?#nh<)b0s$NVJ~guBB9~jQvjUB+e~{dFbu>b6*q+36WC$Ee%6ce z3LNLkz3~WTOhs;3r$#e2F7}NXsWk1DyEF=Fup7x7Q-UR-1V`F#jKz#LY-!{|e*#st zh}3^e_5Zl~#@Jq>ZtvQ*ZR^ywZQHj0wNLH#)V6Kg?rD2!+rEA7P2S{rzs&4pc6KK7 zVP)3($(%DJ0c{`xSp<+?`@yh}xK!q{&H*{0IoFDI>50tUqNqUVNYrZVJaZt_Q~VM% zU{1*tQgZx7VP{%nND-IoY$8kW5sUkh@KW)@E9r;CZ~kgjI~N;eAVOb`S5kGTJ8J5c z2j<*#t^%Q+3U-Nqrw1JzoA-!S&*XmC#KnR^Ad<(AAy39lh5;ZDiQvcBMmMgX{tWD4 zsHU>#VdOwI?ka0UxM;ajUY6J?_TCxsVTmAlP5iyn?p1_mkba8|;anB^wE&-%^4KS5 z&4x~Mm`|Q&@iHm&>(3`mQ9td??cFp0y%z@f{YxdVR@(9=HO_l$Bc2D&HRB0Q z5o-hvd`8DKKWXPlNU+#`B=NMM>wMUbR7!BYkm0|+m9YTE8rU%1fv0OVT};?c(Bq*E z#;p^t5PXracpE_!1=GpCvR1|0;CSz3`oW(pRO+>jH*AYe%s~Wg>W+%wbR`3%VB37YbqZ>A5$_VL8H|DHik-tp%l*zw7);+-lP;U`3I ze~IR7ejcu7A>ZcCgo-gU!`)=w3EF+&u=-P`IClU?sXY3+!EH(RNG|UH#ehJt$_Fdw z@XsxHv>oE1<`GInW#mZu-PJN}%5%KP^o}~A+Qj+Y6T?BxK4)rHl&A|Bhwo4K>c8%* z%g$yV zbwK3fI<4$yw2cCvCI$(p!|PKAb_2m*z#m68D6>nY9Wvekv6PDaMC@A480_O2E)LVl zI@w@WQpv)bPK$b0F8cdi$_3tnLUu#x1zzmVUleI13@#qETR4r|`8zq1T6sDnJ3tHf z!|FJ?O(^R-^9hl_od{wM<6Nj!u(pSR4ghVwh?K%#d9z{2gpV$G>5_t4YbdOnJYP`fO?+X*}BmMu(llmtTZZ z-n}+*WRxB1*l+u)M4Y-6z_&c1<6;7=>&~7KM!*rcsxVg+R+ajq)9BTnVspOC=pqw= z2G>!tK#kMp)qewFw))qm^*;WPec9NU{u@BO)Z22|=X3_-_6ny|R2EdOVC~_0jt!bV zv;S)EmfOlcS5E2n`zP5{9nFsywUM#j%l`>19Wr&RDUwt8_oyEPD)ILSqF`ZXf7s;u zR#o=rc_mBnxAXnk;Ar&PLitk=zo5YhmQ#@wi^_rt5RjkX5O)yvPP zGwoMnU~qPfd+R}uZ569&%y+#%SFJh>84iRs|Gr8eR@^@YXB{{mAtpCPd$oVLHA^bc zpY^6L*q(*9bs%hDIOzD7nNTFGU8Y|D%%kv`=8$!7|9lTvpD7SBt+Pj0<~n@A6Sbv^ zW9_$PsJQ@I4G3T7C(v7`-KX21dPZUxE5N%y&Yn4Hzur^8a1Lc>idYMh?T_q`m^apa zKhH{YC)Yvjg?|Z;GQA7N)mUh2mJ_vRe!ec}hItEeGgjS+PL2+3nhd2^SBb=Tzju`P z?)ng3rMdV%@ar)k!%pG9MQz;Q)M>9oFHKxZ*>C_JAsM`;0*J7r|M{$ZmT9?g@KAes z;Mvc5u?IKf#&APvc#EP>R)ZPJ2HCDGHR=G}Wpl^Q8e{)t6OK-LSUFpk$%|g&Ps3A7 z(^_m(5f>iCCd3FAyu7_LMU!xg%}y#On}y&$kO|Vc39d0)HCB45w;dJ%cbU)`KF}84 zCgcHb)fGAKcAppfIKeDk=Y|TxM);W#QX+_t_L=tej7ZhC*SMBD$>mr0)<*)(nY&cr17T)M#eEClpq&Z7VmNS}AK`nv%T{?M|;(NVQ4al1+^Q44aw zamqx5pW~Wk?R#-k;*%Qil<1f5fp69a!kPLI2@x0|k<($}9kT{0J%XYj~IEKH9eRvV__TsXe zve~dz?k~0zljte4?s548nz;-=K|r**b_H4VqXJguy15-K%1XhSQs!(*lI9$03g`g# zhTXK$fDt3c=v+=}F63-Ud9(>LaH`;<`s;B3dd(bZ+Oo+CCzd9eUusbQ*B3Zet9Bv<-GgA@wRI-6$ zuEIPiCbtW$ivl?rZA1M*>F4mJr{{ocwTttR)r|qTdw&R29Z$3NUx4iI_G%HI=qf@4p0KFfW}f-&2vs=8hK}@q#?; zX!s2Qs_yUaCAU_v;cv06O5^5Frm?wx+STZciYwVv+K1U8swO+55-XY>`CQu^dehHaZQS9v3)N779`U#m=mb#dEiRMrf?>@3q-ufNz@U1ilRge*5uo)I>?M%)%R~OFZ+sJ&y$SSv zUba6BINf$^-E(Ztl0`9xb!6`G#Em%T)l#a{le?rlrZ$P+fEr$Cv~|}R15>hC;S1>g zK-jK}n}H$ECzr9N=fofJ*kLe$I&g97W{9N;KSXLe6y88ByJ zX}n+S$N9qnmsSsZyO%{boxMiU9Py>88fZhs5sNhDrIb^ax0Nos;7AaD>RdQT|2GQ&g{+4d+?Iy{ZGJR>NS&rCvP+w%4)%#@9rs z8ep~`;OVzHpAC{KSfQ9K`HRLDki5u7Xzn?Swz8NxV6Uu#HCko%{Z~?j6Zi8ta{#q2 zL3TIh_f9OeZ54X|*EJ)ZVS-61HY`rB6whdbuXP-fEr=O_b%Y6Ie=U$_0c(b+N6=jz>^TAs}{OwqJK@9-!qo{L5wWsb&p_AH$vtyD6-&&hR|OLMcr= zxx8KrQg|5mh(eFNWI=8CSzT+lR@bxSch#Xl&2QTnj9cS_yxW10D;4P1COo(i-JIXH zg6+Ti){22Ds_Qy*G?ymh7_hC}4Pfx3Vb42ni*pGK&Q4r=+7k`Yy9#$WZfK(&r~%(W zsg995YyBHmEHn<_%7rs?bWg%#XOE6t9$PtmL_Ls{w`Iii@ zQ%3O;n>n^WG6oJ(@82yd7CgjE{eX37+fukanZJ@v2}Od~QZRydkn#|Al%Pms&~rjR z&WMxq|M^0ccJ5+M7-kx6ho*Dx3&L^(Mh_q%YBRgMmHyM?BI<2M;^+J5&4=|o6WaON ze*#pnYK3t#TsGXHl$7y>$RuZ3N4t1;f?!cK9cN?RfyLI1;=#l^(=Eh00hYC)Y${-# zmWZD&b=AH6Yi1y^9hzw|#hahjzZ7XlxWIo&RpS%|J%9?%N%R5<`k2qjunkzHKz4sX z7OaZZ&sp?gjRfWX%v$y)MT+eN9>_yS=r-T=yI>DHNI|{l89#tswQREvx13eT2Xb*` zxee#K1F4~qUYHnAD1!Vk01?Sx@c9DSoSBd!&K*Yx;3JlbH+Uxypn=T6_1}_RHOf@q z;RxIQoC5w0_)+dZ=2aXEX@3KI51zUi+kFhIpDlUW9^@VwWxhtT%l_JDxh*raW~IH) zX_G478MkCNHw_HEBs$TvDC$N(Hc<&S926azGSv(R#S%nnVGfqH0aBI692YKhYCLDh zD`X&CS?2hDX9dAeqOq`}z~RcfV^hh+iAkLE5ibMs5A(Jxz=nL?KNC@6K+0#MR#b_+ z3UbM`QKh^bdb$FBy$7;Fl4-JGsK--dflSJ3qPoQLH~Ld+o=tGdHN%)_P5~hqbOtCf znM`5Ud1y>vyiYUe0FrCTdcSe!b6bPwQxE5?3koi3DawoTTguZ(@amy(!WzEkIO$|;M4$e8$BINZ++TXb z|CVM;u#t^J6X?%uKH_cuV|}%;<%4FD=KikM*_AkaWKV@*0}#TZ!sL9KRFdQ%ms2TT z48KYA3}}kOOX&@7UPA*^0&~MKy9~#*)l{pWiba_PH`(LF%ns9y7A$OrZ29&mc%+tN zm=m(JLhHpWn*9#7bf+Xh-i@2o>wGsabGm+}&jnrVx05BYqdKcBe|OR?Ek*6m+~>sy zfW*b|{(<^40tk##W~RoX04GF@K&jhG&Mq-Vk|A&%tJ(`86}+J`hJz)nfFQ7>POOW= z{E1M{09m<-G_fTinNIM5jXEjbT<+N_$YCvI4(tx0g{a$yEC69@_eQgUhYyS66M;}+~*nbw|l`(N4?E$kb+wlX}ocvvGtijQUxd- z7vhN!10<1cvBZEM7%nPmOMwcpfpLU{g6#AGav;FqhY(2g zb9&puK{MI^#)S+8Wd;fIgM*IS1TKUE+cgZu6CwHc#)c4SDF`484WUVaD%=QUC@qsn z3?T2o0}oZMt9o-%w4^PHEtJHXGnjDF)RcnV1W=)zAP|IucSVgXW1-X~;|d_aGPzY_ zhl?e^H(*@y$hN^3aFiBI-Jp|5h(*5Yxb7M)6Pm%|j$*NEn zVh0CynML>O1nJph21)u{-0?7o1Lm224s4OdD#lJ8C;;rJ92qp`H;3 zfbWi4&4}|LFLBbroj~lnT9~9n*yCZyM>%KT+2Rpkupz)Are1I!u7lBv$I?C6#i-=i zQHK(g@@}%gu+G5LEkrx?nm!RkJ(B1fG>7o)&@%r_Z{s z4g}=5uQM8cb+K^g3PAYQc(2@*Q)r;(2Q9uf-t`WK&kPUBbR$g6{E7u%op z+<9reWbHxxRN`A%(?603n-nJ(#YJi z%Z#;aJO=&rLoA5@5(!kuA}D2;o9-8iVz9wFqtrhKGF}<(0(E~64=>p^x(qwADk9zG zwNH-|4eD_l5z#t5SE=yqbkLf3Gt3#;JEHm5qWX-8z`n`GoFDi&dT`ID=<~pcD4ft^ z%}Id%%w< z3+MY*5jhQX>FOvheTC9!Oq>C{sFKGeZ zwdvC_x=dklO9k|pSsLGO(&i_6FZcL_nJ16Oakbk$m{<%hBPYY7)53Lh8n#9;V{He~ zap%LOtF$k*z)liJf8lpgP& zZ7)PBVa0fioN#}7FVLMN+V&5H8t0|-hsB9%OfQ0xlHYKqdOKHF=jdw8622_bZ+9;{0u*P4frC z-B*K-Zvo0Dg9Zib&J+P9ek%nPx@M?{m{aI(XX3e*`vq*@cd7$ zL9W1@3H=cN8-cTud%19e(r!=`VdVI@Y@<<*M*gTK0=tQ^X0?D~dvOpyfCq^}j{*!< z8A+k6)qjqss%{xfLVZ3X;;mm`(5I@sU@_LF3f^KecTOLNF4YL>5f`veb_q;ul?Ekb z(aa78D0BH9YWH!q$4_zCaltGeiR8JpU?lU&x%!725 z7mS;7&M%o`#b3*uI$BBEdm%TRwcjx!lu2W3HS>Ufg%Uq*98TRXj9j@iDe+`r9sL{a zIP4PLk!^HdNAEEt_zVc~%*QpkWzp2v73rGOxFqRET%D#zpvk|}U+CeFSqyzLGPtY} zcI)iubJ4qWINRgD(q<)~DovS6jwJQ%su5I`UW84=MIr0fM0djnoY%-ySjHn3G0t7` zyW6yE8e{ghch{(6{@r7PnXaf2xtzBUBl1*Z$7-u)()8R(hsI7H z1)|GFAN7-6;P}ybzafmKhWxroSUZAPk%B~scE{IF%2Xe4D#D=I!hq9%q(P$@%2DMh!GJs4>%xHJ zEhQHzE|tuQz;*3tkPH@ojTY)-RlhRiz09S28bs5yOao$Sdrj~Czwm&rVRS7 zOcf;ra4r@>LoM)1^>Q&u-Zyyxg)~WSl;Keog-ZXNTM|g!^&vaigbs{!%EpNfMDi!B z6hyEn1t3W(6u46Kn+8bKN|6Fclp9_VJV5fC>=Og1Kothb948OvUp%|i8GV4re;zqT z7-LbB{oi_55hqW2fH_F;`K2U_>f7fK?;2-*ml39?BV@12=UT8megRV_l57&PVLjoV0?TN-^^{BgFol)nC>B)Ri9;UMN^^~-XG{k$@I>Di zNk_gRLq&YlycWa`rR%GXs*Rhg`_RP60{-OpcB1tXt5$IG?W#i=LV%E2Sm)un4$M_@ znnTUms#6)#?3-@&Bq!EzZP^1d6HYRT;e#>S+Z#idm!Hn%%B~q1hv@Rt=L5r9!?g>q z34ug`U9o}hM>O1-_}G=MYP8Gv(528F8B@h?FBbX=yFu%!jH1| zQv>KFQdsm!$|u~7Hvk=qy|RJ6PQ?pKtATVW-VnB3wxl*(Z|4!=EAFvhH=jFV2JaG* zrA`ypJh@BmVO0C=kF!7JeIM@cby|N5e|-da`G?DKuFbdY$NiJ6w>?8NJ@vb3hUDbT z8+rY!t$QkL4j)-yF9pve*Z0On6?8@PV&vN41TBiTM!p+<6yQp?!dpCfuJ$^gbdB3< zO;3yJLU-hcSvef3S~U}*{&{^|`bB02&eTWt*jf?&$$#)q*#1m!9^K-w%Q^QVD&xDC z{gJz*HA+!Yxsrj$Pna&5TrotMN!8+7czuZ7@$l4j4RLAp$)(VGHRKM* z5x1=#6wYkB6 z*?NgL$h?a>+V4WUO8qe6x*i+}vB$2y(msMQSL1%IE3!}Cib~ix6Yp>~1m?BTFtqAy zutPUoJ)0jJc%HjVgxgNd_0Zdzz?CmjPGuGNMx@4>3821F(N-1Q?aaL;mSCKoK~oyB zF@8`z!)iW7{XPYyi9C{ZOVTRD4$7n1D5Gs{U;iG9VxYYnQ#gdl?Z^C#&NaL;7Nf*C zR58t3Zeo7rAY@{wsHUfi&QLY7VqQUA(5=~YnJ0lzdde7nDYwJ_hCQu@s#3FTubF4f z5~H_03&2hhXs+HdR?j?+aY&mVffqoO6X?N@L-dkZC@SgXN}b}B>8;BAq1igGtuD`H z-hl&DbCO|i#ahl1EToy_oOFv7*+?(OeyHz^0br1?0rUJ^MWk?lVCgg>*b z4`{hBMH?o*YeZQ3^2}++MD-&!l1s&9?;$&w4rbI{r#?Qg(HkM9woha@XQE{3FO}U| z-cB-`tOK2GD=Q3{Esn8GLo~y*OCoYs<@IWiJhKe7rD&O63iH}vc=hr%6RYE8;JV)# zMGqg2P=fA)>KGV1`KKU{A#Of6wkvbD25IR3`JUZKF9cG5z^HNhN^V&^B9h!4@b}~8QN0B(XU~3=V0B|{c z599<+nW+6*jz@ewh2MEjH=@Pfc}_gpzuNhN|K0yFr2~@^gn%CV2U6GuC$|3m#1nJr z3_r~&Bdwf64)G=|v@`P-gtsZN&7g8d`&T)jB$!dah4`_uo+A9Pe=RxyUa}v8+ib`Y z!qkP4g$hy=s-~py31Z0W#=JiI5Ww5 zB3_?a#dSDuAEw_WX8}Tf=)W_N``u&y{Q_!mqrfy>VcKTC@-kCdXP%%{Ij;1XIrXdcN1hRkj%92%~H+mAi^iajN>`hW`!F+QJ+cB|FoLoZ)h=-tLx-f-dqx6Dam#}`Av0y9_L zFmqPcGB#|w$TVzKVCcWDQ+7^=^cehiuFZ9x0L($lP5qhk^mp$Y+uPfkGlcWIG2|cc zb5XdbF03#j5CR+3p2l*=PUr8On-e#AN87y1d4Y7Sh$&+Cr@f6a2*7qul?}lMPlA=U zgL^6;;ZHph7Au~Aq;wM9F?RS<5~bBN(q-^1vC%Sqr2BFyTIZ2DjRH5b2~M1xh_9HQ z!XGKTO)rYy>EaCX3aayd+|Mki;Plwf$EgFf3kL@2$8~m{HS4iyY~uJIy;F+Oze!1s z#;He}t0$)~vhf8sUjSJh57(yUE)*L0Szr{NO;t7*2vp5Y5=pU?-@`~r3ro#sC8&gk zQ6;8*Q>M~(Zf^J_=5fd1Hj~mc^(6yjIYKXj&qiIq}6g}kKrR+$wb7>b!yxTTO@2_W!Uy!~2mca4k zI4(CgSSCevWQoujlkJzwjd=f>++%P5mS{~w;*`WL z&LO=?!(xl_<+Y3&yY@4#!F(TE@l0K_kW;VrV|jy%c0=*{GlMy*Vg7FrgjDkyxWU)> zZ*cfGD8=Q}X<9!i2x=NK21pKog_G^S=-!t)GD({w|1t5(a~@Fl+Vv7Z=n;)gYNJt; zYEt7L;}#@qgN-J$1bUGEdORHkB5RxDZ)$2tnK0sF<%_#I%{cukfuwCXmo)|Wk%u)! zu;coxuIO7(CIbYjFKcVbn$R<*T;tBO*kO0|*yo3(o#OV&ftl7Hljwguh z$^3=zwwgEDF^Hzxc~%J<2^&ycvwg9mHYxWOw&+}6*1<4uPh;Osm#<;qY_zkyc`gMC zNN|{xoA_0k)RSed^DMWwkSa*Xxt+Y3WOR1f@b&`#+}T}@i8&FhZuG`PZ=i`w{Hx9e zU%^2L^d-JG{PLfZiskjaSz~oNuOy6?IdF63r~CY>+?k~F4i|~^IfykYqPSeJ{52Oz zN1d`<+?cDLp$VpAgd-L9LW8T?`rY3?fV<`zy~h2**2?*>#UHvp)1?LRw7VBextUZn zXpy&@a_Hr%nl_>B9J!yk0hLiHOm_`Hq@L!W7LQJ1RpT%bwy92WoD|e(-qyXyW9}KF z^HEkpUyR%Q_>nzH323xoE zG>#w=5}vB(W#E}VlOIe3dw8)3Q2!cVY~SzunSELk?(-Ib;JP0CusiD=mC#8}(v0bJ z!KjW%7{j@1>-*|KV?K3Fm=kV=O!7_1c&p&{job(c)JtwQvW1k(`xMSOQy%9%*Q|vx zERY7ngt=MK_u~czb8Z}81PH$H2vQx}e#fZ@ew1u8C~DAvK%M&pg=-Q46bsR)Ot&6n zt=*x9xEYvG2LD3+s#kO#$SeOG5~cTI=-%PPHV0=1nAXlYC$(F(JpLjkuVu8dQgsOWfPS*nEj@&hpr2ubM zaCe8eJb~U&a0MBvt8jCb1J>4TvCp71`3crCMXsTI0gqV`@lfB7)15+dMz?V_p^C|`^1_l zIdaA*tN8iy!C|l&GhN4He>{ok%gEW2HdGGb@^<1saNMzd4Sanbso?)wVS8IT=cqy1V9i- zxLC;$^o^FAvhpVZc3V4SN*HOV28qI;RBKscI@jJ&v*{n7IYBZ&=2U9bV{C9cu6m#T zdd!i*GIfJEQ4~PM2V~$3dDhESX?WNRSlH4g3^-4PX5E*u+!el!nruY@9CH67WAsWhcC zd7#C7UL%nJ1a;J*#G6Uy0HvaIcLvuW1=Ke@VXr!vE77t`Q4UnaXE6Lu%D1e+TSccm zkL0i{*SYve$AP3Btty$A{Vb|Gxz}CcO06YoSLCAcsz|m0KJNjh%0FjTG+{$bDUocc zq4iiEdwyqM;{o)XIWhY(Y;TIh`$lNI`Hro_@%&l<_c4VFn&hnKUR6xb?@N{T!{i)j zCOe%f27%%;^wNKr+zZp?B9OUxvczuAfwfwNSQEPQbMd41w2&y3AUk@U01|ABs4+Ax{can-uIF-hqZS`$YY-das>v_ zg7`f0I$%fl%kES%oI3KOo>ihQeW_wr6Hr}1;{tYhE6o)gdmmRhA}Lr>ZX=N*@eENj(w$}r zPyZr760%f#o0ZjX3-;-~>%5^Qn+GXH^O? z8M|mi@fU~5x>FWX;%+HUVzYS}X6>FH2wD$u)a?~}yO8{k*=VTzyH8bg9`mjvuwhIzeU*V?Ma~`+zP;CzdP8V;_k2SGUoOoBCdB=j zpcF@{LzIe(pC)53C_iE#C$u~aoJA!^VblWoUr%$)?9ytm#b4up4S-qRYhXKoJIKb3 zTZka;7=I8u8G#_~3Xwt)LA3k>=)*~R&=a-}if8{6eHdYj42W`TL|l<{A3|1K9|A0- zp#-U};51Zs{6HUqPQk3;1an=MkOTA)HAkQqUT}JhJi`mpEGJOsL1-u1z2_fAJ;^cz z$PI*crvRR^D=Mr+Mf?M(Ww}=X!5-BW7UHbjZ)Sp#P*mqN4|Ecq0zcwZ6=1k{MGIkR z&(&n59Lz~-3s{R;@FPQ7^o^G^;3KpmOYvEdBc`{1CLcQ>E}Z39`&xZ}MTO!(T%N## zxUfO-!qb8dlYyX^MZv$$HD_oCoRyI%5@QbY*rE@GjnKv&2-@WNzz$UbP8AWc?bjLa zc*)Q&>(0E8?}pUMoV&dyBQ_X?yC@`5TqNUp1fF0?9s(VTGym=+?QZTJ%70aHBAwpC z$`~srW_RI6_DhCs1m?Ss32ZOJ8D=_}@F}ovfIKC*S7d}?w`S9El~WAai&60U2i%0D4Kmbyh_O#v znKGC}uXuiG+--mYfN2=aqD^>(Etz)Is7qSa6P9K|u#fWgDP^oy=!nN-9lbu@&2a-K z-BER!-!@`x13PEJx2GRk95*8E0L~Sn@MF9t8_e6UaN6henhTJLm@6k`f)oAgK~)(0 zs=)D})y?w(3jUj0a@p_f%{qzfB92`BRnE^3lr`jibqc&3P>nGS;X3#%^)`Z>99S6` znur?ah)zxzKQ#M@21%2qcDCjy{Y|oPxf$roYICqk^a z=u3OMzHgUvcXIa_CG)e}(E&AR^Jhaly~PdD-dcQaaCV#UIdioyR!=q6EsH#b0KOr? z_p5UKL?}D!b3gAKm*bFx!(Z7lOuVOGr{hOP&P#VK9K{B6&wa_%%#8LZO_5hDcy(-17=F(IJ@t|Y@}T*XlQ8Y+;%v$&k70| z!OYd)_9)r3b$(#N;Z9W>m1^nc%W^J6l7Xw>1Yv0(rx`Kq$^7akay2E`!oP~Yo~`~- z)YnUbudT`tp#71}L}ggO`WZBEt1?3-5f8dt=!T=0@0|LHhMOVe6 z|4qY-u8zQ###QaX$Gv-eUDufCXQ4EDFH?4H=j&fbk)snNO*gZnXVG#geo5|o;V@Z= zxCs12%fmY?yBK;@JdofBw6lt*$EPH1Ej4mQj#qp7?mvnlnufC3bCM4RlEUeTQ<%x^ zILKeyQb(6|_~{xQQfaFq1NPMKUn38JX|}_&n2My^oXa8bnk!M=sjKU@w@qc~3+oOQ zVY}$Nn8F>Mg1H`)M9nN&LYIl>UyY)~cykxcgTtTd35Ml~ zS(W)~MnB`#J!YNX+h4(&xxu#;xsZypI>fHJE0-wdysNAMX_n z<6nv?QE4|gmP#9l1LOn17YrceHSyNG`IgX9aDaG5WF`7$I`Rxa+%x#9LlADoFQ^-~ zy9&0+{+KujI9zSe=Exx$JKpb?Z1E5`SAa*P~B;0bXJBOitqXX4aoR#fosV;s9tgL0CP9+sf{vHUi>r?=Fz z!jJN`)V*T1tt{y7p0((_FQUPpO`D~wM1)bKh>u#f&dB|=Lnvcw1%Yn2eF0W|oy)0-)1|M673>mbqpxL*EIuV09EIK^G2caryV0IV#w=6= zErr3Y&#Nf*W|k?aR$~NP#0T6sZjb8RQU0<()nx# zH|JnN#Z%~q?fmQHEt2;p`^j&QVk8Qz2GDdQks+mcR=eL!E>n`JzI= zr&jhQIl+tg6T$KaoydHV*vpj2g7yzqu}~r;|4K4QgYR&~g18qjg#{%D#bhZJ0`TyT zsbHY^3TPw}n50Do62U+Y5_FM>aK=Lm^EhKkc99=moydYPtjRF@N`5ZPFx4X&7(uRl z_Mvm7=6IOuRz~8^`Nee;aiqw|r*Wi0X%OPhM$j&?q(b2%)@U;g1a-@CWXNJKEDT}) zUWMrlC(vGt1nrwMoOG4n@I)yAdA-_8%PirL*QH9BS$eUeS?@we$F@ZAdnPc8E`5#> z^Ipj!A@V}DItCG;vLUN*hhv&lgzUI^29TJ46--0ZhoKLN5<;K+NML7uzXBP!62uIu zl{03YPRvrYA+&}3YSDRTE8HIQD;*<3ui4!g$D|X!0;@e;1&K;LYE*{-S?qp3Z&SuP zjAvS#!#0y@S%`?vcXlapRK__$44|Xol({O!UrV-|z8C)>t!%O6bN0@95aCf; z)>WrH6o;O_sr6O(*$%s#jO7YjVPcuA!KAcJ~X&&2a*-r!Y4vqS*LcBIhj=qQ=0{Z=O3P#Tnzdi5u z&csHKO4%dObML7E5*{Bodr{61s@H$Y?NwlNmnvt%3wJO0@G4)W@wP@2m}5J`gY~v7 zA+-}xuY+lEhMp)`MX)3Fj`%KR4V%A`XZ1Mb{`>~6y&sA3qr9AsV$85>Nas=rDJ?o< zuoB+NQO9j5Ob)wqFPrjel!8X=0AbHs-n?||+}bbRLJ2Si+o^S0LoiL{ z;ghH7j~Om_CAK_aP|K2#U*248j>8>^Y~@TC7?+c1c7uylh!#;?#uu)iSxxI!rE2Ph zA^ffF>^mhX>=zQgrKg14+%oriL!b;hsLXz+BUadr%!&`T$x)+$N}1OoYTPEDISw(H zVM2LZoN1T^DIh`^<229q)aJ65q9Y>v}_Na{duOq8@mruJY!Q=y^Ai-&>G)Fn0|;ST_po)1aI7n~ihq3WBqw$u_tS zWB1|$cI8K5rSv)af)R(ZZ`)|UzK6b7yHm~LIJ}PxHZ9A)W(90-LwbRLlW>$&%RRXR zm820RTwx!vsKpc|&c^ov(qdUr(*fn{|MZfg)M!#yVf_npi)}oB4&pam+}$K51*hJn1JO_2Mcpl_*OGt(d&r&D`IQfS)Rw#ZJaV z{<0qeIOuoy)#`5uqRcHbw)b;zxx-ushHZmJUXvKjVo&$Ri4gLQGP+stT@?Dsi_-N{ zAJDs z?II(a&feBDHu*s21@VKfMG#fee)$By-UlrSUhD`JrEnDS(6H|Ox_LLe*yS0+9^Q-` z_JHm7e%F?plk($8+G~~NmAj3`tQWtG!vy=Iqdnj>wSIMwuOnn-#I3W0;k;Ax^6J<& z^+6Tg4yFDkkAZlhkQ=F6OU!A@@2$wK_fogpk&G%1#C7F+U&|#8zuDKfX^+|ua^%FW ziqmMy+vLT4*pM{iA>|i?j?njU%u~SfZT%awle{6P@x3nO1hcTwo-XyAq{Mz* zStx+)_Op4Mu0Hcz5=i)7qGOsdL$y(lZbFmJWH$$e`8W{NpGjs}M)Y6^hlgyBI7%0l zJ}j>l6pjHS+E0#_?;RD!3Y6bS7!z$PuLXytG_ORx0US0AEGkZ>Xs9;MB zxrXb7W(EkcM$@zXnK5ql^>|iFKCwr41XwFOhmq74A@rwd5V5>YgLuhfW1E8g2{}sC zTtcDT+_H=RyN}Apk1QABoi(DLtPco}UgM0y*ug6lTP?8WxHZ#atl0XW0K5!C^U|ep zimq!)tZK2|TUHG8g63_}U_I|#dg&LUFwnhw4#~T*i3WB^7CvlUd|VWDe7NoLhSo56 zQQvtTON!`MHg3^XpXY}8h^CE>ED4<}s5-h4YGo={&E|_svWr!~9$wcVW>J-2(#Kve zf4;2y(mkYa4pcJ=bYy~y#=#es@1PZ~k~83;tYg{T2e#trVIE>3H?z;NVO_SpjjPI~ z?+(?DYK=%`%NOL|gGn%Eh~*(!hz&t;MHBvy80$&$#F4>su;p8kQ9wi1 zPD4h>V%Cn5acCATiOAU`gL93Lf+Tk^cw4TwG2c4f3y?sP+-IqW$z{Bxlz@7fhRImJeLAL5Vqw^+heWgl8T!huP16X=AIcB^`1IYO zLsy&Eh{&)LHu7tUICjp#5WEaEnY7p!=(kbO0F)F#6w?Xahq;xrn=@k}A_n5&X|Zs8 zRvgjKL-D(3nC(rb=hknWe`Ss)@zUwdv0`KLG6@6&=N4>;;ln&v(Cle3SW}|-G+=z- zVC)D?%uQYnq8tjr<~VS-kKGfI*Do=gPs3hMJ}x4>j~>#GH=e_h$X9>)!>G*ju%J&t zWr#F=R(TGUr-0B?`4Gd$IrachGYB174K<&{YeBu_X_Oc==pQ}HL&cYyrQ)&u23$HJw&ZhGu5E7jS7=nI1jlF(Pf}RO{VN+QJU}Jt-t2zeL^yG zWbQUMQ;^w<%5!rznJ0me$UKH&z1PU=G^WTY_#}upcKRAJ28d3gu^<+C&Dk+|I7=lIQQku-M*)aG-^oPYrk@af0z?aY#=o4@#7h+H{$KD z;nkw+4}Fp)T@$|R?}r}BYJQ2bN}tX9jrL;KN3ygL56A97(&3H7KKP|^{iRDhM4I-< z@_AcvY^1rJ#8#YQvlcP!>dB1tZ-_d}RL^QU7^XMm?bmAk?6k$-6uPmKxtNc!+@GSd zH=fLS#f8Hte`EQx_|7~nwj{Sl#`v$F%drKXxn6yGDf(p4p+bZVXF5#!0QT}BE*2Au zjnoU*8%$CV96AwvEaig&R|!IGxbNw>GX=rkj@4#$QIoWas`u`}uh@Y#h!q%it$fL&m0` z+hDEQbL(V>+BW3@p^u!(W7S@+pJgkq`Y7@VnQ3xp1m;?fW5h zUYB)I9fhzV>A3%O6T+A!#w3?uV({H833lyk<9@-vgiMH5CluJ=@++W`r&QO*% zPP!M791h8OeDl!5;<$KN{CxMo;}5&L`=?~Ph>LX+XJWBCEYj^d-(-uTNY{x-7Q1Tk zN0cvDahzn)kGg*^hrZXHS^l;Aa{m+;i#T3yvn;`r4~tcjuM;@z5AAB*FIQ=jN4+W? zo`FRXl`u&*k(1i=M5(T~diF57S`otu4_sUwu4udE3eOFVT9Y8Cf>@^_4}zp(o##RN zb?W{WGW@i0>$!tmC|(x1N@p zBvR51RlagEZ#I45ng+x*M8`IQCvwJ}Ik8RqN$Sq*?UX^c}H0 zqkWV*g%_F8to*(6W521MFMy_J0Kv?q^KNf11J+BCvEWNMu&yE8l^S&!|)ik|Nk3IkBeNDhy}bVH=Fe z7nr;SVC!tPW0Ev{&pi74-WYGN&%nYHMEHLjbOTn_Egf~kH{rV>-GCnOn___p;!^&J zy5U}#tK`Boyn@CGPG!|c+O%GZAl z#jUb~F=R?XScjohzOcdUti!C75KT1oxv{4?%QV>~bi<^FjK*i*Mm4`@nZs8^o*qFF zbYPZnDWyvUdU^q z^Kr|eK9Dk%FHY19-O>*a*7(dk>_>mYu$cTVp8zvfpJu9YX(22pBis{jG;Ymg$R~u) z(4kn}-{>Crv_;WQjV!rwDJW_aEZ?@#q04wL@68Mqt}iV#P1i<d7 zfe)wOXuF~MBOW%yc_Kt|7b!bWDpRYokysC0= zh|E>GflQBuPSefAb4CjU&BT9HGnD^Eq#A6lCD&$UzQK`_7dNJsA@=rckg_hw3< zTe^i;q$6IX*BqHWys)=w0I}7Dh?P&Q#;ch?{p>GvfqcDQ-6(D{VO>#4QhXPA*FN*g zw~}5kk24_6x?R{f*V=dZ_4|nNp?-xlrT$XO22r`$Qo)A(ijbk0z2<+kh0<|Kpp7w4 zi!l`l#-4zt5^ Date: Mon, 27 Apr 2020 19:18:25 +0200 Subject: [PATCH 085/403] Update to unittest for using default input_path. --- mcstasscript/tests/test_Instr.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index b5d512ac..236fa67d 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -1381,7 +1381,7 @@ def test_write_full_instrument_simple(self, mock_f, mock_stdout): my_call("%}\n"), my_call("\nEND\n")] - mock_f.assert_called_with("test_instrument.instr", "w") + mock_f.assert_called_with("./test_instrument.instr", "w") handle = mock_f() handle.write.assert_has_calls(wrts, any_order=False) From bd5375aca92f5e24cc296be313d73510048f6b80 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Mon, 27 Apr 2020 20:06:21 +0200 Subject: [PATCH 086/403] Work on unittests for input_path. --- mcstasscript/helper/managed_mcrun.py | 2 +- mcstasscript/tests/test_Instr.py | 43 ++++++ .../test_input_folder/PSDlin_monitor.comp | 125 ++++++++++++++++++ .../test_input_folder/test_for_reading.comp | 125 ++++++++++++++++++ 4 files changed, 294 insertions(+), 1 deletion(-) create mode 100644 mcstasscript/tests/test_input_folder/PSDlin_monitor.comp create mode 100644 mcstasscript/tests/test_input_folder/test_for_reading.comp diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index 270ac148..90cf4546 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -183,7 +183,7 @@ def run_simulation(self, **kwargs): try: os.chdir(self.run_path) - print("running mcrun from: ", os.getcwd()) + process = subprocess.run(full_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index 236fa67d..b3202ea1 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -39,6 +39,25 @@ def setup_instr_with_path(): os.chdir(current_work_dir) # Return to previous workdir +def setup_instr_with_input_path(): + """ + Sets up a instrument with a valid mcstas_path, but it points to + the dummy installation in the test folder. + """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + dummy_path = os.path.join(THIS_DIR, "dummy_mcstas") + input_path = os.path.join(THIS_DIR, "test_input_folder") + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + return McStas_instr("test_instrument", + mcstas_path=dummy_path, + input_path=input_path) + + os.chdir(current_work_dir) # Return to previous workdir + def setup_populated_instr(): """ @@ -455,6 +474,30 @@ def test_show_components_folder(self, mock_stdout): self.assertEqual(output[4], " test_for_reading") self.assertEqual(output[5], "") + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_show_components_input_path_simple(self, mock_stdout): + """ + Simple test of show components to show categories + """ + instr = setup_instr_with_input_path() + + instr.show_components() + + output = mock_stdout.getvalue() + output = output.split("\n") + + self.assertEqual(output[0], + "The following components are found in the " + + "work_directory / input_path:") + self.assertEqual(output[1], " test_for_reading.comp") + self.assertEqual(output[2], "These definitions will be used " + +"instead of the installed versions.") + self.assertEqual(output[3], + "Here are the available component categories:") + self.assertEqual(output[4], " sources") + self.assertEqual(output[5], " Work directory") + self.assertEqual(output[6], " misc") + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_component_help(self, mock_stdout): """ diff --git a/mcstasscript/tests/test_input_folder/PSDlin_monitor.comp b/mcstasscript/tests/test_input_folder/PSDlin_monitor.comp new file mode 100644 index 00000000..9ebc4a33 --- /dev/null +++ b/mcstasscript/tests/test_input_folder/PSDlin_monitor.comp @@ -0,0 +1,125 @@ +/******************************************************************************* +* +* McStas, neutron ray-tracing package +* Copyright 1997-2002, All rights reserved +* Risoe National Laboratory, Roskilde, Denmark +* Institut Laue Langevin, Grenoble, France +* +* %I +* Written by: Kim Lefmann +* Date: May 7, 2001 +* Version: $Revision$ + Origin: Risoe +* Release: McStas 1.6 +* +* Rectangular 1D PSD, measuring intensity vs. vertical position, x +* +* %D +* +* Example: PSDlin_monitor(nx=20, filename="Output.x", xmin=-0.1, xmax=0.1, ymin=-0.1, ymax=0.1) +* +* %P +* INPUT PARAMETERS: +* +* xmin: Lower x bound of detector opening [m] +* xmax: Upper x bound of detector opening [m] +* ymin: Lower y bound of detector opening [m] +* ymax: Upper y bound of detector opening [m] +* xwidth: Width of detector. Overrides xmin, xmax [m] +* yheight: Height of detector. Overrides ymin, ymax [m] +* nx: Number of x bins [1] +* filename: Name of file in which to store the detector image [string] +* restore_neutron: If set, the monitor does not influence the neutron state [1] +* nowritefile: [1] If set, monitor will skip writing to disk +* +* OUTPUT PARAMETERS: +* +* PSDlin_N: Array of neutron counts +* PSDlin_p: Array of neutron weight counts +* PSDlin_p2: Array of second moments +* +* %E +******************************************************************************/ + +DEFINE COMPONENT PSDlin_monitor +DEFINITION PARAMETERS (nx=20) +SETTING PARAMETERS (string filename=0, xmin=-0.05, xmax=0.05, ymin=-0.05, ymax=0.05, + xwidth=0, yheight=0, restore_neutron=0, int nowritefile=0) +OUTPUT PARAMETERS (PSDlin_N, PSDlin_p, PSDlin_p2) +/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */ + +DECLARE + %{ + double PSDlin_N[nx]; + double PSDlin_p[nx]; + double PSDlin_p2[nx]; + %} + +INITIALIZE + %{ + int i; + + if (xwidth > 0) { xmax = xwidth/2; xmin = -xmax; } + if (yheight > 0) { ymax = yheight/2; ymin = -ymax; } + + if ((xmin >= xmax) || (ymin >= ymax)) { + printf("PSDlin_monitor: %s: Null detection area !\n" + "ERROR (xwidth,yheight,xmin,xmax,ymin,ymax). Exiting", + NAME_CURRENT_COMP); + exit(0); + } + + for (i=0; ixmin && xymin && y= nx) || (i<0)) + { + printf("FATAL ERROR: wrong positioning in linear PSD. i= %i \n",i); + exit(1); + } + PSDlin_N[i]++; + PSDlin_p[i] += p; + PSDlin_p2[i] += p*p; + } + if (restore_neutron) { + RESTORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p); + } + %} + +SAVE + %{ + if (!nowritefile) { + DETECTOR_OUT_1D( + "Linear PSD monitor", + "Test", + "TEST I", + "x", xmin, xmax, nx, + &PSDlin_N[0],&PSDlin_p[0],&PSDlin_p2[0], + filename); + } + %} + +MCDISPLAY +%{ + + multiline(5, (double)xmin, (double)ymin, 0.0, + (double)xmax, (double)ymin, 0.0, + (double)xmax, (double)ymax, 0.0, + (double)xmin, (double)ymax, 0.0, + (double)xmin, (double)ymin, 0.0); +%} + +END diff --git a/mcstasscript/tests/test_input_folder/test_for_reading.comp b/mcstasscript/tests/test_input_folder/test_for_reading.comp new file mode 100644 index 00000000..9ebc4a33 --- /dev/null +++ b/mcstasscript/tests/test_input_folder/test_for_reading.comp @@ -0,0 +1,125 @@ +/******************************************************************************* +* +* McStas, neutron ray-tracing package +* Copyright 1997-2002, All rights reserved +* Risoe National Laboratory, Roskilde, Denmark +* Institut Laue Langevin, Grenoble, France +* +* %I +* Written by: Kim Lefmann +* Date: May 7, 2001 +* Version: $Revision$ + Origin: Risoe +* Release: McStas 1.6 +* +* Rectangular 1D PSD, measuring intensity vs. vertical position, x +* +* %D +* +* Example: PSDlin_monitor(nx=20, filename="Output.x", xmin=-0.1, xmax=0.1, ymin=-0.1, ymax=0.1) +* +* %P +* INPUT PARAMETERS: +* +* xmin: Lower x bound of detector opening [m] +* xmax: Upper x bound of detector opening [m] +* ymin: Lower y bound of detector opening [m] +* ymax: Upper y bound of detector opening [m] +* xwidth: Width of detector. Overrides xmin, xmax [m] +* yheight: Height of detector. Overrides ymin, ymax [m] +* nx: Number of x bins [1] +* filename: Name of file in which to store the detector image [string] +* restore_neutron: If set, the monitor does not influence the neutron state [1] +* nowritefile: [1] If set, monitor will skip writing to disk +* +* OUTPUT PARAMETERS: +* +* PSDlin_N: Array of neutron counts +* PSDlin_p: Array of neutron weight counts +* PSDlin_p2: Array of second moments +* +* %E +******************************************************************************/ + +DEFINE COMPONENT PSDlin_monitor +DEFINITION PARAMETERS (nx=20) +SETTING PARAMETERS (string filename=0, xmin=-0.05, xmax=0.05, ymin=-0.05, ymax=0.05, + xwidth=0, yheight=0, restore_neutron=0, int nowritefile=0) +OUTPUT PARAMETERS (PSDlin_N, PSDlin_p, PSDlin_p2) +/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */ + +DECLARE + %{ + double PSDlin_N[nx]; + double PSDlin_p[nx]; + double PSDlin_p2[nx]; + %} + +INITIALIZE + %{ + int i; + + if (xwidth > 0) { xmax = xwidth/2; xmin = -xmax; } + if (yheight > 0) { ymax = yheight/2; ymin = -ymax; } + + if ((xmin >= xmax) || (ymin >= ymax)) { + printf("PSDlin_monitor: %s: Null detection area !\n" + "ERROR (xwidth,yheight,xmin,xmax,ymin,ymax). Exiting", + NAME_CURRENT_COMP); + exit(0); + } + + for (i=0; ixmin && xymin && y= nx) || (i<0)) + { + printf("FATAL ERROR: wrong positioning in linear PSD. i= %i \n",i); + exit(1); + } + PSDlin_N[i]++; + PSDlin_p[i] += p; + PSDlin_p2[i] += p*p; + } + if (restore_neutron) { + RESTORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p); + } + %} + +SAVE + %{ + if (!nowritefile) { + DETECTOR_OUT_1D( + "Linear PSD monitor", + "Test", + "TEST I", + "x", xmin, xmax, nx, + &PSDlin_N[0],&PSDlin_p[0],&PSDlin_p2[0], + filename); + } + %} + +MCDISPLAY +%{ + + multiline(5, (double)xmin, (double)ymin, 0.0, + (double)xmax, (double)ymin, 0.0, + (double)xmax, (double)ymax, 0.0, + (double)xmin, (double)ymax, 0.0, + (double)xmin, (double)ymin, 0.0); +%} + +END From 665c8100dd5f897315d2f4387127687cc6c861c1 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 28 Apr 2020 09:21:48 +0200 Subject: [PATCH 087/403] Added unittest and changed component name in test_input_folder. The test_input_folder did contain a component that was also in the test folder, making it impossible to check which of these were used for loading the component. --- mcstasscript/tests/test_ComponentReader.py | 30 +++++ mcstasscript/tests/test_Instr.py | 9 +- .../test_input_folder/test_for_structure.comp | 125 ++++++++++++++++++ 3 files changed, 160 insertions(+), 4 deletions(-) create mode 100644 mcstasscript/tests/test_input_folder/test_for_structure.comp diff --git a/mcstasscript/tests/test_ComponentReader.py b/mcstasscript/tests/test_ComponentReader.py index c8db32d1..9b65a4b3 100644 --- a/mcstasscript/tests/test_ComponentReader.py +++ b/mcstasscript/tests/test_ComponentReader.py @@ -20,6 +20,21 @@ def setup_component_reader(): return component_reader +def setup_component_reader_input_path(): + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + dummy_path = os.path.join(THIS_DIR, "dummy_mcstas") + input_path = os.path.join(THIS_DIR, "test_input_folder") + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + component_reader = ComponentReader(mcstas_path=dummy_path, + input_path=input_path) + + os.chdir(current_work_dir) # Reset work directory + + return component_reader + class TestComponentReader(unittest.TestCase): """ @@ -43,6 +58,21 @@ def test_ComponentReader_init_overwrite_message(self, mock_stdout): self.assertEqual(mock_stdout.getvalue(), message) + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_ComponentReader_init_overwrite_message_input(self, mock_stdout): + """ + Test that ComponentReader reports overwritten components + """ + + component_reader = setup_component_reader_input_path() + + message = ("The following components are found in the work_directory " + + "/ input_path:\n test_for_structure.comp\n" + + "These definitions will be used instead of the " + + "installed versions.\n") + + self.assertEqual(mock_stdout.getvalue(), message) + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_init_filenames(self, mock_stdout): """ diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index b3202ea1..b9cdf86b 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -477,7 +477,8 @@ def test_show_components_folder(self, mock_stdout): @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_show_components_input_path_simple(self, mock_stdout): """ - Simple test of show components to show categories + Simple test of input_path being recoignized and passed + to component_reader so PSDlin_monitor is overwritten """ instr = setup_instr_with_input_path() @@ -489,14 +490,14 @@ def test_show_components_input_path_simple(self, mock_stdout): self.assertEqual(output[0], "The following components are found in the " + "work_directory / input_path:") - self.assertEqual(output[1], " test_for_reading.comp") + self.assertEqual(output[1], " test_for_structure.comp") self.assertEqual(output[2], "These definitions will be used " +"instead of the installed versions.") self.assertEqual(output[3], "Here are the available component categories:") self.assertEqual(output[4], " sources") - self.assertEqual(output[5], " Work directory") - self.assertEqual(output[6], " misc") + self.assertEqual(output[5], " misc") + self.assertEqual(output[6], " Work directory") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_component_help(self, mock_stdout): diff --git a/mcstasscript/tests/test_input_folder/test_for_structure.comp b/mcstasscript/tests/test_input_folder/test_for_structure.comp new file mode 100644 index 00000000..9ebc4a33 --- /dev/null +++ b/mcstasscript/tests/test_input_folder/test_for_structure.comp @@ -0,0 +1,125 @@ +/******************************************************************************* +* +* McStas, neutron ray-tracing package +* Copyright 1997-2002, All rights reserved +* Risoe National Laboratory, Roskilde, Denmark +* Institut Laue Langevin, Grenoble, France +* +* %I +* Written by: Kim Lefmann +* Date: May 7, 2001 +* Version: $Revision$ + Origin: Risoe +* Release: McStas 1.6 +* +* Rectangular 1D PSD, measuring intensity vs. vertical position, x +* +* %D +* +* Example: PSDlin_monitor(nx=20, filename="Output.x", xmin=-0.1, xmax=0.1, ymin=-0.1, ymax=0.1) +* +* %P +* INPUT PARAMETERS: +* +* xmin: Lower x bound of detector opening [m] +* xmax: Upper x bound of detector opening [m] +* ymin: Lower y bound of detector opening [m] +* ymax: Upper y bound of detector opening [m] +* xwidth: Width of detector. Overrides xmin, xmax [m] +* yheight: Height of detector. Overrides ymin, ymax [m] +* nx: Number of x bins [1] +* filename: Name of file in which to store the detector image [string] +* restore_neutron: If set, the monitor does not influence the neutron state [1] +* nowritefile: [1] If set, monitor will skip writing to disk +* +* OUTPUT PARAMETERS: +* +* PSDlin_N: Array of neutron counts +* PSDlin_p: Array of neutron weight counts +* PSDlin_p2: Array of second moments +* +* %E +******************************************************************************/ + +DEFINE COMPONENT PSDlin_monitor +DEFINITION PARAMETERS (nx=20) +SETTING PARAMETERS (string filename=0, xmin=-0.05, xmax=0.05, ymin=-0.05, ymax=0.05, + xwidth=0, yheight=0, restore_neutron=0, int nowritefile=0) +OUTPUT PARAMETERS (PSDlin_N, PSDlin_p, PSDlin_p2) +/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */ + +DECLARE + %{ + double PSDlin_N[nx]; + double PSDlin_p[nx]; + double PSDlin_p2[nx]; + %} + +INITIALIZE + %{ + int i; + + if (xwidth > 0) { xmax = xwidth/2; xmin = -xmax; } + if (yheight > 0) { ymax = yheight/2; ymin = -ymax; } + + if ((xmin >= xmax) || (ymin >= ymax)) { + printf("PSDlin_monitor: %s: Null detection area !\n" + "ERROR (xwidth,yheight,xmin,xmax,ymin,ymax). Exiting", + NAME_CURRENT_COMP); + exit(0); + } + + for (i=0; ixmin && xymin && y= nx) || (i<0)) + { + printf("FATAL ERROR: wrong positioning in linear PSD. i= %i \n",i); + exit(1); + } + PSDlin_N[i]++; + PSDlin_p[i] += p; + PSDlin_p2[i] += p*p; + } + if (restore_neutron) { + RESTORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p); + } + %} + +SAVE + %{ + if (!nowritefile) { + DETECTOR_OUT_1D( + "Linear PSD monitor", + "Test", + "TEST I", + "x", xmin, xmax, nx, + &PSDlin_N[0],&PSDlin_p[0],&PSDlin_p2[0], + filename); + } + %} + +MCDISPLAY +%{ + + multiline(5, (double)xmin, (double)ymin, 0.0, + (double)xmax, (double)ymin, 0.0, + (double)xmax, (double)ymax, 0.0, + (double)xmin, (double)ymax, 0.0, + (double)xmin, (double)ymin, 0.0); +%} + +END From e820fbebce92c571bd8935c9accc245791016967 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 28 Apr 2020 11:19:43 +0200 Subject: [PATCH 088/403] Added more unittests to check input_path behavior. Update to readme file. --- README.md | 2 +- mcstasscript/helper/component_reader.py | 7 +- mcstasscript/tests/test_ComponentReader.py | 79 ++++++++++++++++++++++ mcstasscript/tests/test_Instr.py | 44 ++++++++++++ 4 files changed, 130 insertions(+), 2 deletions(-) diff --git a/README.md b/README.md index 4e12fc96..3aaa0fa1 100644 --- a/README.md +++ b/README.md @@ -9,7 +9,7 @@ McStasScript can be installed using pip, python3 -m pip install McStasScript --upgrade -After installation it is necessary to configure the package so the McStas installation can be found, here we show how the appropriate code for an Ubuntu system. The configuration is saved permanently, and only needs to be updated when McStas or McStasScript is updated. +After installation it is necessary to configure the package so the McStas installation can be found, here we show how the appropriate code for an Ubuntu system. The configuration is saved permanently, and only needs to be updated when McStas or McStasScript is updated. This has to be done from within python. from mcstasscript.interface import functions my_configurator = functions.Configurator() diff --git a/mcstasscript/helper/component_reader.py b/mcstasscript/helper/component_reader.py index c025d6d0..15858d6a 100644 --- a/mcstasscript/helper/component_reader.py +++ b/mcstasscript/helper/component_reader.py @@ -72,10 +72,15 @@ def __init__(self, mcstas_path, input_path="."): # Will overwrite McStas components with definitions in input_folder current_directory = os.getcwd() + # Set up absolute input_path if os.path.isabs(input_path): input_directory = input_path else: - input_directory = os.path.join(current_directory, input_path) + if input_path == ".": + # Default case, avoid having /./ in absolute path + input_directory = current_directory + else: + input_directory = os.path.join(current_directory, input_path) if not os.path.isdir(input_directory): print("input_path: ", input_directory) diff --git a/mcstasscript/tests/test_ComponentReader.py b/mcstasscript/tests/test_ComponentReader.py index 9b65a4b3..21eccc5c 100644 --- a/mcstasscript/tests/test_ComponentReader.py +++ b/mcstasscript/tests/test_ComponentReader.py @@ -87,6 +87,85 @@ def test_ComponentReader_init_filenames(self, mock_stdout): self.assertIn("test_for_structure", component_reader.component_path) self.assertIn("test_for_structure2", component_reader.component_path) + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_ComponentReader_init_component_paths(self, mock_stdout): + """ + Test that ComponentReader stores correct absolute paths to + the components found in the McStas installation + """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + dummy_path = os.path.join(THIS_DIR, "dummy_mcstas") + + component_reader = setup_component_reader() + + n_components_found = len(component_reader.component_path) + self.assertEqual(n_components_found, 3) + + expected_path = os.path.join(THIS_DIR, "test_for_reading.comp") + self.assertIn("test_for_reading", component_reader.component_path) + self.assertEqual(component_reader.component_path["test_for_reading"], + expected_path) + self.assertEqual(component_reader.component_category["test_for_reading"], + "Work directory") + + expected_path = os.path.join(dummy_path, "misc", + "test_for_structure.comp") + self.assertIn("test_for_structure", component_reader.component_path) + self.assertEqual(component_reader.component_path["test_for_structure"], + expected_path) + self.assertEqual(component_reader.component_category["test_for_structure"], + "misc") + + expected_path = os.path.join(dummy_path, "sources", + "test_for_structure2.comp") + self.assertIn("test_for_structure2", component_reader.component_path) + self.assertEqual(component_reader.component_path["test_for_structure2"], + expected_path) + self.assertEqual(component_reader.component_category["test_for_structure2"], + "sources") + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_ComponentReader_init_component_paths_input(self, mock_stdout): + """ + Test that ComponentReader stores correct absolute paths to + the components found in the McStas installation. + This version uses custom input_path + """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + dummy_path = os.path.join(THIS_DIR, "dummy_mcstas") + input_path = os.path.join(THIS_DIR, "test_input_folder") + + component_reader = setup_component_reader_input_path() + + n_components_found = len(component_reader.component_path) + self.assertEqual(n_components_found, 3) + + expected_path = os.path.join(dummy_path, "misc", + "test_for_reading.comp") + self.assertIn("test_for_reading", component_reader.component_path) + self.assertEqual(component_reader.component_path["test_for_reading"], + expected_path) + self.assertEqual(component_reader.component_category["test_for_reading"], + "misc") + + expected_path = os.path.join(input_path, "test_for_structure.comp") + self.assertIn("test_for_structure", component_reader.component_path) + self.assertEqual(component_reader.component_path["test_for_structure"], + expected_path) + self.assertEqual(component_reader.component_category["test_for_structure"], + "Work directory") + + + expected_path = os.path.join(dummy_path, "sources", + "test_for_structure2.comp") + self.assertIn("test_for_structure2", component_reader.component_path) + self.assertEqual(component_reader.component_path["test_for_structure2"], + expected_path) + self.assertEqual(component_reader.component_category["test_for_structure2"], + "sources") + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_init_categories(self, mock_stdout): """ diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index b9cdf86b..446ab288 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -58,6 +58,23 @@ def setup_instr_with_input_path(): os.chdir(current_work_dir) # Return to previous workdir +def setup_instr_with_input_path_relative(): + """ + Sets up a instrument with a valid mcstas_path, but it points to + the dummy installation in the test folder. + """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + return McStas_instr("test_instrument", + mcstas_path="dummy_mcstas", + input_path="test_input_folder") + + os.chdir(current_work_dir) # Return to previous workdir + def setup_populated_instr(): """ @@ -499,6 +516,33 @@ def test_show_components_input_path_simple(self, mock_stdout): self.assertEqual(output[5], " misc") self.assertEqual(output[6], " Work directory") + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_show_components_input_path_simple(self, mock_stdout): + """ + Simple test of input_path being recoignized and passed + to component_reader so PSDlin_monitor is overwritten + Here dummy_mcstas and input_path is set using relative + paths instead of absolute paths. + """ + instr = setup_instr_with_input_path_relative() + + instr.show_components() + + output = mock_stdout.getvalue() + output = output.split("\n") + + self.assertEqual(output[0], + "The following components are found in the " + + "work_directory / input_path:") + self.assertEqual(output[1], " test_for_structure.comp") + self.assertEqual(output[2], "These definitions will be used " + +"instead of the installed versions.") + self.assertEqual(output[3], + "Here are the available component categories:") + self.assertEqual(output[4], " sources") + self.assertEqual(output[5], " misc") + self.assertEqual(output[6], " Work directory") + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_component_help(self, mock_stdout): """ From 6b2c5e686909abbaa94eca6bed36d7a4ae014dad Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 28 Apr 2020 15:20:11 +0200 Subject: [PATCH 089/403] Clean up of text and update of documentation. Added a few extra tests for input_path. Removed old test files. --- McStasScript_documentation.pdf | Bin 167921 -> 168185 bytes examples/McStasScript_demo.ipynb | 32 ++--- mcstasscript/tests/test_ManagedMcrun.py | 3 + .../test_input_folder/PSDlin_monitor.comp | 125 ------------------ .../test_input_folder/test_for_reading.comp | 125 ------------------ 5 files changed, 19 insertions(+), 266 deletions(-) delete mode 100644 mcstasscript/tests/test_input_folder/PSDlin_monitor.comp delete mode 100644 mcstasscript/tests/test_input_folder/test_for_reading.comp diff --git a/McStasScript_documentation.pdf b/McStasScript_documentation.pdf index a442cda3c984120a976b29b61f5dafd7580d916f..af10867ed1820567c9cc066a8c7f962ba350f69a 100644 GIT binary patch delta 21828 zcmZ5`Wl$wNu;s3xyX?2`$5y>frIJdz z(%t!ys*}^_rV#O^7%`aznvb22JB5Q0ikFkE(S!y)A0U=6Ih`^& zoe_(bdnLXI27r_k)^#o{GzYSRQ(Q0?ExLP%lsv&R0lo%4KaL;uUd4}wYwg80o(wJ% z69B-on6srh3EBw)Vx;*K#v2|wj{KG`%op{SFDe9v9*B#bpN~vL1kv5Y&C=8n(PwR1 zXwq$8I`!!jF;ZD2T(kOV9}MU3Wj*>hrBu5~=zl#0p(u{oMxP25>h!ejEP_Y{6tipm zet8n60&GnFk^LiSqBi_s&xsuG>qS~*{_`v$REuSC(0;d7FWg2--nB8n=k84O&L2wH*r_5ucrA=)x+G~o4hzg+Qd_XWD&S>xc!#~kDtb@v!P(-C!JgyM+2j;t^3 zt(^X1w65v2Kl9eE*5lP)nfb0;m$Uu~zHIn>c^u{ay77V~%~IgMlYeffDp`u39dg@V zc^k!Iw3QqlAnDh8*qD;$D=W;^9w!3~TWlF_g0_tfb4@Hg?>3!&Ic0ioJMq5d_A!GX z!s}aIO13VXK3g^o{;52ma5bJj@rv@kT@>r{yb(%&z)EkCea6{iNkJ>r|G-&(4e7lE zXHzNrQi@dy6(DL0vv++xQU4Mab>~;2tY&9DWkj=1 z`@40Q0-N^=QQy4WM@1ip&d5-{k|(x^L7ko3UK_s*R^Eh@-dwg>RLL)28mH50e?7z& z=bW~!i@022*yK{zcGYEe*lVYicGEgseRK76+`YL7{LTTj*sNiBn(+XetX%ImdKQP) zrsv3u;(eF5s_j0C8Ui}M`bBstowMxAmKqT#N^)CSzEApTzs@T(kkN33z^wlP1Ns5c zS~5u%+>{ic?M;wP?{7Po0U~IC?+HC^KWh^N|Na2>x8=^|w<3)5tZ9GUUG_5xUEh7~ z_d1h6j}wgVxXj00I=L?2-HqLJo19BJHCOt=Wne3yj4?k7;z)sYsqhS&+hN3dED{%V z&i6&X`S^vaQoX{KW6=k979WJ&fLw|cN%VeLO0eT4*8fli_2FLzL6W(qNZ#g{P|X>h zlzTfj)Q8mxbUOWeWeaJ0eh^@Q$zPd}1UoLCcl_(9qRn3nH?Nn%Y)?%L zx~pGvS#S@_7{)Ss_Lx+h&Yv`e-+#%{8~!_AI!<;(79!ZW{ipS({a3WY5U5>8u^kvz zsv|`=fYohPSJxZytISMIt@X%i5+xyhDpQgR7nB-Yl4EB6b*K?td)p!RQvicBVKm9*QmZo0&^f#FHRs zD9UJmAc*M~3~+=prOdT#Y`D7bl<$`xm6P@;!P}_}fn;fQm3Nc^`RTda*erusrR_d;F7d4K-Mg^pz;D%>e!ro$J&GA}Gu-Kg{n>-8;JMS> zs<^KMMleEO$2HEZ9-8SwLGGm+Aae#Gb;ajAZ-I#=|KYg|z!*4jioMKCXdZ1SzQ4$!)eq9h&&% zZcZCX6xKf2FwO9?P#;&+1gp^B#G()H9->q?bgPiu8k9JinwLWV7XPwOP8WLWRg$&1 z;m!k^F@Q2ld!RKvof|e;ic59FhbyqoNi-_j^bz8PNZB;TwJ(Vl3mGgnx*jUMj(n7v zU%l=h!E5wt&1PdSMao(rePhFat|rwn2*UZ0Sql2V>6w=@FaQ#e+=!|W_S z>-+E?$={cu@{4tdrr5m92;6}s!Ug&{HrU4ez5i%VHE_U}_CV7^_X)tBAayS3HE&0?SBvySvT zf1;IusUh;%(w5%5{%!Y_+d0pn_-Z}S!PbZAXw|jj3U7^bAL zOh9FGHE?teGa`$s4h_6#C~bnj*y?@Z0`h+x1Yvqoht8-TZ4C`h&yNuyqk6n;3T*fO z#LIoa)%}Ecd$%>9vDvojRXygH5f?$}=RMmcf(ZWb`jP2@?Am(qLIivHavr@^LH*NJ z+s@~>g#zqmNCHUP-`%hXQkFq7tD7$?s~$OXk>r*RES&gPi*^JP<#Qv!nfKnMV+ z%fHhA;IDH>1Zd=;0J@N1xUYI-NTw<%(6Kr+qz*x>PnAcJ`aeu`*meYVNd$PLjd;s& zJ`-yuO6azHmLC{|bu^G^0#0fYT|3dog)p|6DmV^srAaG6LEZmn9h_+d}$0gwj|pg?;e=2*p>w zt$Zh{o4E-W_8pzXGCdd|bCAyh1##|S86He|TOW_^BDsa9iv*Q8mU+R9%tv9|*1@(D z9Y9Ap>^{>84b4YEIsq>xqtRA=5>-MEl~M_A0YE!#1pYl5EFqPb3fH-psESAbpTR{^ z3^yAIDUoiB!rgQLBcf?K0tBOsJ;8&AE2OIOUpQLC>Ui{PNwG`}$O5_(3isW9EEq!z zmb}4qFM@DMxtqA51?#!aiA%5e7?exyX>wSt{k)Xh( zJXrOzjD>rM)aoH6+_W>9>EIy)0aJxvV}$Y%u5R^jbFClAd4<&(vK*YdZ{&Xw#EbYXlP>5jla$E_?WxOzV3(22kX@C|3h8hK~AB_o!RV%P~_Vd@|WwL zG?{k?<}Bdrz2Dg3HWWQJ!FRqIcm5w>eQWms(XsFObrS@5VCQ=lc!fem2SHimAosrg zytgJPegY$th0jB~b#8}qsN>|m$OYH<5mWACyY*RAburh28=ruYk;Cayo}TQ*y5pIP zMxM=eNu0I;kUK#q>BQVqn%#Y3W>U3H-~+Fa!$SbeWwr5h)p12m;p3h4*bH>ZjGUoI zpxyISR}^v3{B)Uqb1r&Fo-RnQO=T2o`?QTRvr24}U1y#(e-z;q~< z#@Xif(?>b(M>Og41Jb6k9+Aa|0dd@0lPA+y_s)_w=w}re`gdd|_OX5yoKyr3Lh);U zJ+~q0N#{?-_B^29nOWY6)u-g}7e*(6kk6jvJ>OZJhk7hvh&IpGcMs*~&7r6I_ktOe zsJQU3JL~QKZh(?cEz~ng|1a$oRkw@W12_BerO?!Bn8v?u65CJ%O}*h7X)M%>DFCoW zG5s|j2&b>dCkK$S_9P1rs<0qR8=>$$HE?e(^f1!fA=<2%I403dS9p?nwvAMoP?3uv zMJ@b#DzIbNyWXVSI50$(&KgZX_Hf<~VOTr;G7#tP}s}P#w`Pi0h;;Elh6@oFs;0VH@V?Fi7G-I>2a%zZneOGu`~6#o}jI@a3kS z(}CB@qgGL~Hu{kMN;KQ-F2Y5q`Tj1xD>4^UvNnonS@_{6GT5Y>EQ{igy-%|Qk{##! z50KqE(5wAMO(z%WtLOs=YOI!u=*D>{EFQ#)xW#kg$X9^A*u!tsIjrBudUc(mLKpv) z;)*VPX*A(79VYANGmH>jfdga%wJxx(kv3l|AcS<^(&?1HUI6_i!=WoTeLllG@?>;j zs)`T*6kLTjOn7O;)g4^19V%lG1oYW>1s>34XU2mrWQTji4+cFHn+F>~BYI~~0U`V( zVnvFNiZPUFo`IR$fk+-(pD~)s00WgFR%1}ME-bl8lDpMaJfk+eO&U0?0XaYqA?Akx z?b6x=4@U|eu1bv#DUC+mS!c?KbR&TP%>coqr&!%hhapE9244>i_p={lnvL1Ru{P)Q z3lJLe0c0A4@Gk9z2k`7Q&c?W8 zohNvRp@clNPmS6SWSLfsetSpGH|64E3{9>o=L`WIQPI4+2Y>T#?i+qh*|#t4sRxLp z@!A39Bf2C6RYwjtgS}u)^qIrrJhHPHk;6R6j^lxQw>OvALJ1e^-Is%7Tbjf(bnw-^ zBN@)WbMLbpGoK0N#3o;fRt=Kz=p;2}cZl|Ih=b#QF%uU;ld1ddDgQAO5z1=A*l<@ed`Doy$J&c%;o1tyN45ee zeKSpZCRNMSQ@5|4I|#MXSWRl~B|GB(zFYt?GAvmtj+AWl=BVtfk6E~sKVP5EyQ76= zg>u-P>mGAg!oz-4}UjB;KKTgzr#< zvhNS)xN@B_Url$_t)QF+t&v#LT;e`^l7%i$UEZajI7eTn$?0O>X1S}Uht2@L*K#!A zlWOnZbGEm5kfZlk=~SjQw1;-xsl(0sXkQ?D@NMmfdh@BNm&WbW5MRF9(=4gz`xz)K z{M3x5OSOgLPGl-$9Zko{a;#hKr*KW|-;by-!I~rqL#BOFO(Bb~0xL}kZ{7Q?`O*mm z9fX}#1;NQQ248HoIMGicEA}`g)j)a2 zmpxRDIa%cEq`N4s#dFA_k7Dkx2$2!~)zet1;GaKMA7l`{OkEn@lvDx^l)bmah`SzF5xamG=zhsx)0>OE=!{e~wmA^I1X>59sM zOBQuvW+hL^WtZ|e$6epEf!qx*T`YsVY{WPH&%B9P)3G=}LXP_j;ph)!?&w$iCroz| zX705-*%G9I;Oq9|C(p1p?8ph&$?J)hT$H)P z^@gI}Ai{=yZ`vELo!kXIs^arO+4SzGXi0`X9!!YT-)?v^6m`GaO0`Ltb}#ycY2 z?Po6dw0le8nKft<`T$ZkyG>*l$rP6zU!G`xP~TJC`H$N!x;WveyLr&OjTqNrHoP}u zOjJKZA>mX-XatoQlw6ofW$hpStV>}pDkd)~s&Em9P#3kSV2<>6{pVfDD=+=MUc_DN z{v^_*p_^RRWa8E<9Rx+diAC9f2rqPc9BRXL&5a4*(=V;WIHsP zYIb997B?~}__5M|lr;8IAZWyiPdI~<$LLRHXLk1*aEPQ5m@pmoIV%unofvc9E z{>AhD@!#VkU@|BSp;)RnSaXaDv*xrmc>6rhrWu`{}D<5LRK#(eG-s6xLJWxhmCpp3UoE0}dUK&!Yaa-PI6?rK0p z(cDsPp?M0(LB09rJ&v>pXhX)Ff3^Y-|^3>;!_i+v9!Br2Jf z9czvbZNd=Cp4(>38-site&_t5aUb+@)I@0B6yBd}sjQEE3+S`;^8xu%@aVaWDCg-O zy$J-WUK-UYET?oIO%1(r{#B6Q6Xz82nLs}0^(KqP2kE>+uNu4ZhhD$-O&WiDMK2)W z*%5_X1>aW+(&?=jupXb={fZ)hupR3c332Ba@MFO`YPq>9#+o*nKv8@VpAmIbdy*t$ zo+ECPNPfj<+jMyR=bmRAv}1wbc-2<-QBBCD1E+@ucfq|8d|d4`Q3K;ru-CiFl>1Om zlm;h;0>ZXC3O-TrQ72vmQ+%i>@lm)X_gTU(W+1j1#@YBY-Z`@K^!~Pf4U|WN3()fA zq`BxnMWZo-MuM4@UUzRqcLPtfXxYx6o1{o+&DfXfp$E7|&hOZaRYt3A)EoE7wu)sz z*k#_?8Hy|#gxEy%`Y5#W_%2}M;CY2dv-*Y0f{bYdAPG=4(;$dF7h_c8Z-Po zS`s~bjFY;0>nt9aNc3RFffF(wM2rEJdnZ@7m{a|}3k8SHbgyv2$-d%ml`yK*v=IMU z0)e*yR1A>Zmip{D@k?~L(JyT_Bp4_hmeASb?(Dw`86Gi zi*7x~>D6IzsMNpc&Twr*Ehm{>3)u#LfhZFa;SBm&2Z`({}lxz>mkSLohO2g!kblrC%A#`E38$xGUCqAbF62W%fGyHVcIip8%BN| zNrKXzJmLaFdUWRZ3BL?)LjB8a*=&Bb>Vta|BaecF89VzBy08d=yUm0;I+KKt3?xp_ zlIwN?NwwLwxcfHzal8TI9&_Z^cBv;gP*cP}QOUY7LAL+9Y~!uGX;qYzZ+sXHx;DU`j&;>xi?_rZ)+-O9 zm^i16I<;>YhQ-zLJM&z(BlFZ;5-3ja_LKT~Q-g$NAO5{Ld5L)PQJGDAf{dN3ZMDT`VwZU-{KNrkFO z{-zUQVUN=Z36opNQMOm70*>K<%Fd&mHOdK9gb#BMoEDGzCb&ZTrlG&k3+lXAP^ss@U!hoEuTbl3i6o@0?H;&Ap2&^hQQ{}Vxl%%cT&(BLNDC|{{ zOH3C=3#WWXPB%&AP*Q!2R|m;*SCe$32j$OvK|m zMpVPQ@Av9w38IoVlC5=dhxG;t+{(4$Uxec`TL{ z2M77*rYpF16p!{wad*Buf28A5=x&vBp*NvVh2y5XTpwanrMGzS2p7YY#WX0}KuF3~ z4VB`W!4f{F<08M(uhKJ{5XI+&M=Yo~W8xNkAXl`YbE;66w}1et`S~p@8j=-J^g1@H z)je5*)UCrh9NbkAvb5P)dcdm-J_IBbzcni98Wec29VRZWMTwj&-|FiH6%~=ghZ|yU zxT0WgOPgnK{f?f}?X>9YxOA5myqUyF4OjBw4msx2{G0bQ-u|Lfy96t2&>$bX!zib;g zD$KU2BfE9;&@mJXD(6i-vT#3s5#1UROBs>gH(^&gj&QK@-^FZF>uokr+?`}D^Lf_N zdEuyNqEi$94i@6D-sDz1Cc-6aJ=S{nDGH64PA@|8TI1&x3UlG; z=X}t2X*#eNl7p6|cpiK4g5S$FAIc$bopQ6hsg6-N=l2$a<3qZ$%$72z>=uW)5V&V@>8Y z`ERr~|DZd9SIUv2z5>rh{myAbMp z6Su^~oxDd-KbhdnW67ia8DkJ{m!{!!*`cQ4EN}J_oZoX`SJd$-Dbkn&i5>*np^I2) zxHErI)OB0N!3e{;W}q05`yG+!jw_b+)e-l6j?u__fJvzb2P8K#I!EX5gimxO_Ayd- zj&;Hq4(xX|tNN|u4D0N+WW10KbqNJYAHT2Dh3{!`=zp=7?a*Mz|CR8m+-KZBoaM{B z00R}0`wEI>UR>FdXfX5M!jel=#1)$Ij1rx@|Lm<~tXj-~t!}kZNrV3-mL0iXT9TaRq+kPRtebo$XL1S@<>z;(cXiDxD2gKfDe&q+9%&j`R0^C$8g4KN|NZ5$AG< z7w(KEhQa6c%XT}-DUlAkHfbA8mvGl0(#7R6A8ZzqyS=F&ujwBJ@^2O~Sz7-5P=rA;xsuDTB1Vc^AD` zruNN@dEO8knv{9}UZwU8ee_aQS1vdr$=W_7+cT+G`rRVq`^ZquLMjhn*IWujEOkPD zHor8%Z*D5Dv~xr;n)4@(dZEr@ZyY!Hh1n9Cld5@2EUu_Dlf}`@irRWCm8Z zOH66$I@iH&P%(pZ^vgbEw0tl79TWNiv-CTf7zeU)09Xu$x(aN{2pJ|Dwzn^c z%!n9>IuI8>&;OQeZ2muDWTc={2k+Z|#7F>slB9;MdW`lYnA6<~YBwFNl|2 z?)ij<9KV=3eM3nE7X-@gv7em2AAJJ(-Mu|I2l@TnvE)}xvw>dx*|}Uj?r?LopXBC- z^z~s&5h3S#E6I(A#aQZ^oTI$e^RixSWsa`;+qBuU*>+`tFxR57axLoc{&(e`mmk&- z)`_LqCQbJ)(DWqvyjYV)N+mK-#~! zd(UfIbaAe{wVu$BICkAYZR?R9nkOv+MizHaH;59CQW2We4Fa84Q%ac>*O8&zF}MOm z?oPn{gjRJf1j@{08%g(}<5X01IxAEsjyrv^Mf6}=8HQh#vou{6_HHuR7GqF(tO&VknMVNp;PU0ZcQ1Kgc7$W!s z@kaoYWgm@my~y=v_uQYnGFK=Cf^=dYREeJL%6X=zW01`v5YDBCfJ;x9*k%c)*nv;E z#t8B14|qxGRzWqeiuWRN!FzIwoD9>`ebyEiIMn^UTZ6?d7EDIDh0iR7=rxw4?D+=3 zX=TM7OG~rht( zv*M4k%Zz(10g$*V{_}HDU)~fJF&|;%HDn|D#{>7jjz0 zM>P(6AsG)YzY&pU2+iLZZEd#0D|ymm7A^uL`gCAlXoBL&!I>5(n-J}L)TW!2JU&Wz z7;xh}lz;x9O@xx>Az6OzZV&qeA8->up=JDjRLWa2!0*oYtJg=Mk)6Odp3D+4-&>(e zke_dw+@tmpjeZ(I5t()k$yy`oUjwk2{?mt{r`*SXkCA7vas$u>)mN$$Q0^i1??nmJ zS$r>CrY|p=w>UpgIncECQ)IG;pPW2}{lnKzSOM$&jZ}#chBVfAfT|1L8H#LNrLP+V zHkZPgT@f%96_&AhcVZ}!_(wNYn?ltj8`dr?qXWXyK+$lyfKAOSU zpQbR0z9YUfm0D8^oE{7t!p+pMd=oPs6Bjau7WF3U=RdsMr<(#pBEPPD*uDeZ`PZjt zbO;@~asQjaJqbNUAjk4L7M^zNpC?1^ao zg48I&HTfRjm5U6dzCey4a&|KE9Iy~f__g>`1RBUZ6_lc?+}+_C!5LLzfO;v0P>lJY zuu%$x1^X9J))q9!{BFnPLJTbi*CIDm%VcS}xJjumT8Z`;C=F~2fP;;4N1eqH&eYga z=`5kG&}Y~-;S4c=(Zl*>H_F&8Mj#O!kGz9j56P5cp-boo0i0yk$m=@ZNd1q>6y7&; zibJZeU_o@}4%i=%jn(Cy8`V;mdH=zGoFo)};xykzct?Fq!l&)(Bs|9b(UJxK`_MR~ z`6NQpnYJ1XO4~9v{Yl|J9U4USleBqInl_+m2x3*Gi+dhibRYZ2UEZ7&Q+5JKpbtWs__-^* zD!Xh#b;g+*>95~zrox$ZaR;y=(u0`gSD8upMrn#k{Ks^)%zNWf8M#2E1Slg$N~LGYtgbh(5Fv}N^H&;(Bril4N#Z35N=)3T`nLKzEXbk#1t$!yyku`9M{FiV z4B4X(RAKba`*7kf{{{RP`zKdoFj~J;R02)`7|3<`09a#=iG(TBPA{;oW}ylGEpA*d z{n?MJNWNb3*#2(2G`VeD&RYPB^&ye&bkb3p3Pnh8DFPPwwo}Vym7gGIV;*GzDk-;K zJS9#rBMXSe$wW&dD_T^;G?KP~jZDc?aCX3T$c_>nWw| zvp9Stp;)`0!+bUx9AsW&Lq%2Pxs&*qsJ1b`;gNr-Y>Q6q$}B#WDWiE_WkjA=8(7m! z$*vH*b-w;K9}vV|sp#c=sC59)lH-<90Pc9*wJ<(=cQWWbxr^hI=8xv>z0d5C1WYbcCEc z_azc>?R94S!u*W+4@r@R|J!rDDK@E6W*JkQQVofe z=TPcys1k=_8^lS7?O<<`fvAa(rw>sSWSK;QBu2jq!cP?+ zsM7&iY&kl9R4JFDvjhnYQ}Y{2RUeE6K5X!Tqz<%9akNK^C}c!R#$e585kPpkCWWrs z#fu2BE&|1gD3-4FKW`tu{|m<$@%Z1l;y--YN=RigCHQq9Wda>HHY0m%L=~PzK5U4j z?9t*P%Doi2Yo1tw2nvGTX<2L&!WUIK;BdI&zDh8&>4Pk`7(Op*1dn(aJrAN3re1=C zY5#KDzKRZ8`rv;yS$Y1Zw zUfwLeo+pK+R%&u9j}TdD5R1R;L{fLeXU{T9)sMz*poosu$?b3)-YSy~&FVXu zZw_*`LLzwiV|B3L+Rf2^9D`VNG!UEQ=qpMi0IM;RJeYivs{b`yx9}$|nZ9+!AWK3G zXPf;8kpggFd94PDDfhZu^ml8J8Q3&9kAj<$oe0XL6S$i5rSFES&6*p%&D4;YF+-MK zMusvquQtV>$f))LGumj90k_g*0RZMDnu9E6Z?GrHv z?#`gxilkgZ)+TsQKvhIODRW5e-#w{M2_-Jo|h zE~Zc~fK7zgrk|m=JqN@FbEyE8;%6||-{CQ;zGSbmn0;J-TQ#U`HYTiHV@53e>4OF< zcNMw$CEPt$kOrN}(`7j1ljB^Mh?>p1xB5Zj72SthRYH;E#%}lZxj-iddK$|omUWD# zLX8hBr-|Z%mDi3S7ZI?6&k9v+2oxNimZ|XVJ`$X|oP9IvM z;qoo!y4&ThTQmG)Lw5nA0ZfWKhjazsei2uyLLjbVhO$M`!6Je6X5ap%X| z#bS(TdNiJ)H!1iz5oP@`V4tm5V|H1RtRR#I>azz(7#Xi5!Me&@H5K;F$*#3n& z1pP9DQGXn%U=>@oc3ePZDtYeuh(O`=>%A|Hc@{7K=)>AfyzO<~6%_8;)IQpb5XSrI zJL=5;%L3d>gmprvp`bkk4XZ4E>sFi?IZD4P@kNmR#Mf~UhS2%UDf}e4qE{{5jA65c zdcc16eL0=wpIintg4Nhz=3OEEJ41d4$$*B***_(=B%^j{gyo*@ z$PO@zyfP;8Sq+i@2sCM;ia6IBH4K6<3PyS1Z6{~E#ir}Ig56r$Yf|RcS9qCdPs=A* zLUrpv{H7T&(&K&@VYJN%_ez2id7cjB!gB0YSLl)ok2p>A&ZdT1Gdiy)%|&TFM~c}h zKEgC59H^m=?cs`LhA-3oN2?4UIt#z5wYfa?HJ^~ZQE=*258C+2ee6WAi2MzfIxJ%V zMoL<*c<6!29J39kaH!))NAlPh9Tnj;rKMHo>+#ny$4_0WREv?BTW0i0CHG0yrHr0) z9x(H0gZ|ovd302%q+wY)6-w;F(m5l7e5c_E30_LRd$yO1zZocZzk!Mm7sFdevL67w z$>EDEL`qI358})9qW>cBoGkXK{7D;^iH^pNj^-~Zw3=%>Wxt1^zUM#pA8O?eOBI{m zDHxD2=Da<^8dF{awTFGbR*H7Tdyj=-a{g^R{a-1Qd+Pnl=r2V&sRPE;SH{bB&H%1y zZ=2K!SBzG0aQr%XC<@e?y;F-RrW1cAFQZyJ)AuNve;`2EM|(n~m*^t{I0D6FrpO}r z1FgFVcGMp>D20cNzOjo~LfS`m_`Sfv+lOT=3A{#cd!qYbJ5(5Y zvuV3hFZ6f7EA4RnmN!dQ8frXDl?3goG0jJ8;u?ln$}P7?W&Q?EO5)RCH1jin?;1k? z6CZ^M3G^kh)Z5kM62nTepV>LxI;MjN$LkB_cKJ%WPi#G==tLsVJBEPAn>MtXX`J(%GR#a4Xb~**p-wZ4TqXqel{2WgL*LMGSP;CFjhSTd`M;NVW9DMoHoMU>;)+D9ZJs1$$`U~zCddBRcTP; zelKEAuOR5*$RFlJ$7Kd}h86A)JI;GQ|43;@*xkRKeULU zL!9ntLsl7c@@E&hk?>e%oHO{t^KNb*q@U2;(TesVVPDTNXywpcsGt=Qy=navXQ@piSGBI_8}KG_G)D!41{+>o)+V0wby#gP zdtDlwV179g-HM~&mpQyvh-+_ds9$RtoknddUes2mSEvJbBu0y#`^Y0x%Z(-NHQq~o zPF9R7dADnJ5lS3X?)=l_h7MB&Y9LjtNC*j~sGO>N6ecGPSiw?ye(yv(2MUGOO9ggG zhsdYS{+AN5t)a?Atet-Kv;YSwj9xNuG7(sFjBVoxj5JOxTMnV8PL+*Xps0(u)UlJw z&`T-PvZz|Z_)a|656SbhiK*3$NHHk)+@hqUY?(MEgYJ)-Zo0g+OVjRCY>pnJlb}~F zwkEaUH^1|?=I{l{Ml69?5b73{jK*LQdt%ft28rq`fBJc z^^0%@iHJ?r$X2Xk<$rfh(&L+Hr*`Fm0%=`9}Ctz z+6dd{nr>25S;Qfh#QBPR&=t|lbjE`3@SJ;p!XrNrugZJMos|40*}<(<$GN}P_Imuz z%^l@aRq8H!z?waOi&_RcS|Iq5wn)YeLN)mklS_9-J0drLT=?M~XqiDGn1PE?H22jh5*Z|0JT8Bn?DT@~DdhfYaqq5l;F;bKJnrZuZ-i2q1 zWHTeRD_L3|M`_^JMJ&G5)e*dB*Op3DTr^XU9@Z(yO>MXPhkCSvCj8JHtXKmk{w~l= z%uQ^pU8oEi{TS)5W@xFB3>>$k6ya+aDrq{|@_s1pVhD7~K+<&=3n+C?KN} zJ_>F&w7Ww{9h@o_uLN%ti0=A7DnO=`B}XgJj)Dw*O1m+nboo#ZM>RW3G)vX6?{F#; zbTn{M_WE~h&+pjcsv)f=#_Mb4bG@ytqI%{t=+4RpuW~CzSg?J587FuzUGdo~q`Xzq zJl?W!1R9P&(&klSl%xnd82YUoU zS*bM@ef-!+&I?_VDKzgycDBV1$eZiendFr;b6}~|Svown>oEL@Zt^ilr+OBm5L_mq zn~F;ugI^+7NDaB`TCt(H4Q;MfyK*8z@hE`e=!fLhl7rnG8C>J0x~!VJ9-Bq+BQA6m zI%}LTi^SDXJ&M7zedPCHTlq4FX9u4qXy(Y-VZoH&izC6wlUlXb*tySFSyg zv!6E>#?n{mT1%+5O-zQTd2AxEb~%uTR-BOn_tb}&u~6nfAGR{DX_U>jg?Gmjxml^O>3gIAq_Bc(<2L1KcJ;{KYP^)?P{S089^{D>%T>LM{p5H@m$CEC6Xs!z$p)Trf+4u^n_H=|5Hb_yGKc@9i#i`SL?W^X zXR?_iaF$srx&Z(gN?%-3viBb>acDGbWzEkf#0x@kXkecC|29Yr+Gh47(5DcyVaS2; zSwnCm#O`Z{z+k?mI3f|cs;npe02RbNiu@6{X#zamfVl$K!Vx(0eZxFtcr8w_IzM_| z{8KOona_!}0xtAy3utOj0?hQCh-+mki-^aDJo^W~!(6*IzQupWCWkz&4BzY#Sd?B- zi^c(2A+)Iw6PSGlBtZLT@(Ap47FgHeI#TWjcWjZ)%u{5XPY4wpWbL!&GJ__cRnyTQ z*`X%vb-Iz-39~TVsT(GqemBx21kx^J7c(r_D-e(1inELn2z6FwA06396WvO;^de2S zbt^!laL}GDTNe_EdD7V42FC0rz2Lvw+ zApOqv>+IvNa`?+;gSAf*_eR$*b=-$qhBNgy!M49jPL6=(LrdMv_I2zU4^;Y1h;19Z z!XdK-@4t5>ppdTzBDui0_3UFxcA+;cqot;!#g>+&OBY)E4o9z6uVxCRsR@i0@7YM# zD74L%;C@<*>D1uk_TT@fl(T$_`j7fP9U==zE-fJ;-7O6QOGtN!NJ}@rFU^X`A`Q~r z9ZN~)(#_J~lF}d|bvgHgd**t4&3xv}=llid%$e8wg?0UVeA&%6V|(~y`N0X2*zTL* zobf8P7#}w9%3*z0V_Ew34ogpf1x9My>Y=s+tM7(cTEK3l_hyK%)@>(E(a_mo)p;Ut zZ)(Zg($L@Y;QkK}p$?cJnGsjjR=f5reK~PW8(c^?r=n0UOo|HTXRIywFh!5#lD_SX*Tm0|ol z&nsHRV@Uf^7I}YTiB`d?fE)HBHFg0A?61%HLLc;qu5f>T`sV4y=@dh4BJy)q+3o8; zX^IDZyl*-&Z+;4AT@*_Pj6*JQtb^&n(p+{c0#2i^q!-bjQ;A|90epcxr>jeU{1VvD ztK$g9T|(^EPc1-UtV&Z_Vaukki1>YDp>^G6ZQO-K5i_R|^(K{w09~Id^k4u`gSqqg zylTD|;5BH#I)nL{evst$o#l@rhmxN3ByRJGC29$9r12Neg|ngX`9u?E1~bQslMQG! zqa_(9r8og%+9kkt{!-KY!ET0(0MOe zD~tMV-r{^LoXnJ-Dm%4vW#BenK==!;p&WRnDtHd_<9go2VLTu4MFGyA1%X7x22J7x z#NbAfWsG=QsJEzriQ#3I3);J-hP8Bx9)ZU@%SyvA_l~EqyAFZzt&zZM+6aH&a66=$ z_ZehHOOn)n5k6_xd&d|%BNdZ&$q(uB-2w8_;$OYk`=ANRCrpY*bP>CEMAEhX*C-l~Tf*qu)iuhS(@a z689^Qo_5=;d-l*bNL2wCzg5S&wQ+yF{nMpgmzRG+EPT*WQEK$A&hNe(Mpf|X;{oan zw=pw`9;Bo+kQ5_BT5~qGB#n+pp5Z#fOtB={1~Ov8VkYU3B6_Pb|CO>m>!%Pcsh#UH^W-^0~ z2F`^jk}Lyu75-XUqEaE|8Z)isc^%DSV`-+gCZD60BqHTzb&)?KKpY>AG?f!mYtw=? zGLquNBT8lqb77u0#c#iQhwy0~oe23%DDxHB{SBh|B&!vFQejet(^KCBu#8fZ_>J}xcAsK)#YTuGue5U>? z2XLdrs9YCaBi%P}*m(Hn` zC<}s%wN&olKso$^p5VbK@OqV)8SuePwZ!@F&|LLSxh}AE;2RSPD|9xrzd{?@b;@;gtvueK{cR{L5?+;8JfKaTC*Q5+!#e+goYBpJzXc zIh$l@f9o;hqt5-^VL6C!^4*<#t;;G~YA##G?}O`Sl)VoK5#Q!8d5a!6X7yfNy^9+e_V=5EQ3BAh zm1oSvs}i)bBaAZ|?&PaJkFe7j+q=nY${rKdO~a-7B1KD(ioXPQe>eS~jH@R5o!X}pd+3P^c~d2x^mW2$e(T!dfCO^`X7j5xm}cN*ngYVe?{PXv?-X}{K&wM+5B#= zkZ_IGOsa9_y~~Rxh}mxA*^W47J)PH|Z{2#?D~*NuUmX)m-QQwUrMvNrYqR)2w{gWq`9 z!rHH=maYtosf1MHwC+6)3yV^Bno1Kz(kH@8C{^Z0J~Yo3i4LnMj9RIJH3DenLw1y@ z(tl9D#mC&j?YC`QnA#Sj<#^AN1lcG+GaJ=jbbfZS%z5C%$X)q15eFQM#?YMpQSo6yU#DMuf$!vvGMD38*Uaz~i&Q>F#-zl&VsdzK zt*^&b7GfG|l~A-%fb&d3c3YkA3BewnnMF5^r8;MCOpro4_V?> zLM3%4GBJPllzDul$Ms)8X&Y@}8C6RX$gLiX8G&`Lh}Xg0X^m&0^WsoqY8&-sW*dDW z?6U&r>?kgLykrlQreaD+m!#E5pHk#diap9ZmXjQ}o7Hi>vV}AqmOK4HrWY>uc&0oL2;#4$OzRm{*=`Pg7PP6ZKut}uw zt=j|*J)aWQ`o<6I@#rrN@h9#H#t3bEYBNO?v!^GY&G!6`jkyue^G;P92y?6`tt&PG z&qv`2yAhx%h+*a_e%;l2)l*PleMpFB4Cr8f&X^nsb{V=UI7TacqP!Mf{SJRz_0#syR}L$ za@wBEtbSQ{w%0xSxCU=pJ&@BOPqSsV!mCW-@F#pbPb8*nt2}9MnC{Er+#fQKu|XN* zF@Q{&`TlBd5%deiBJaMhi^{_@eIGNX@7)v?W6F7wBXeXZ-9mMgyOWMG9r9Cmq?Qu{ z@01^Pv3KyYiut<>TYXOwnEi$2_w>eV0nI-pT`*Jl?(W_46{ftb`m{!gtu6xYI^6qMcC`U2@n4o*Rr>Xhx?XJB4rpwnNeu#gWWqc~Ng~|64 z#5X8zC*=nECV?o7zxw++M2c3drerX_m47)R+fn)WC1y`y3pqB8@O8~I zD7DW^^89cz!rrNPoNY|5Uq;PyKiEywWb+)|?TgFf7I1PRM_$O}Hj+H=4&?U&7B1uY zO=dB9=;g*eN_v?0J#+0^hswu{-xW;A8KhE^PkWhMf zvT%R2Juea#jx?_N=Q3GGzQ?lzkW|@^r0A8demc=g99aZ*CjxEu$o#KXNof4eJ?Z*H zA>jvpsm-%nAbnz-$1XpLD7t7L`CeEL;LUh6dKRF&Zs258ndx)dXUBGYPk%YX6V3Ef zYLa%VbJ48<^9iTg(&B~ERFo@MTlnHDT2y@ILc=3qsD4ZZKeiaM(M>^af))Of)+nu$dWg{sRF@ni zMKEkDe>uT>{~==V5$8Y1-v;1urFozjxbE7xwFvkD{+c}hEviD{DVO%htOOYBRpe0o zdqu_s{Zr)e-=_sB1Pti@y37amJSZf~R|lu^iR|3YQ>E5Q39iayS2OQh9?IpMaPYLP zAWWbNY%K&?gH|1d3=werm>{f|uG*w-?bsgzVFxSh^kp+dsfp1GV9~|*>uwMcI-{yM zghE(8u7A)u2c9(-boCQYz}o&R);@+E1M<`m^<*ecX%s}Of-k2L}aPU_U#W|O4>_X1h7Jb6w zhd|Ng7@;wty!fY4dgaCU!Mf8EB-coF`B46dGsG%)X#l z@{+^t&^MWBexQK1{{G;w?0-Nyh`Oz#KbU%RKWUR9=UbvZLywmzeNYxfXMaCkil3U= zHV1w*E45U=vF&Z|AE3>;ljCq@Dw4ojD>DfSNdFAXb5g*WCy5OvAwDiCE5MGT4P~?4 z{fg9@o}pQX*I5&R27bE)6x?)71UBYnw%nazAE!Qa@Wm|Y-V=N2jDLBhS+Ii9fhcaf zw#5CE*e1`pSij8bOX!&EDG>_Qak{CjvDHB*H)7RbZIZl7cFrt}Dp?9rzi2ZX%En;!AAG zRNFWV75V?Wbu{%j4uet6O&V$&Qrkqb-AnUrZa-{3DMVF9kguIg@!~Q}HJv2_?~{NL zCG=l>4D?YD@9bsSxdQZZfN{yp0Z%wnm~rNT(daiNCYp>d5mu@Z3?m|S1%^TKKU^%H A5&!@I delta 21572 zcmZ5{V{j$D_jhlNTidp6+qP|Y>-N^&+P3X(ZChKrTf19+>;KO4?)M~_yvWHp`D7+@ z<|wa4@P7;76PX~ndD&Q#*ytfRxVV~3r~vvLT-+r8Ut^Y)Aki1FFt;${;x%PwS={Iz94ScAoil4r{A==xb^}7X*l~3tSxhzSzuR`=LWZf2g+|TPc|Kg9QxDd6uEHyIT3Tx*EYaw_Ta`#MFF0Z!g?zTW~ z?Uk-9=G=^CJz5k8V8w~HL^*a zuagyd?$Z2hjRgvr8OLq?jq@o2dM&87zHjq-^}6|H>)HzRlyIyZv>=8+eX({2-q=Ym&_08GsUWf$nOxl z&t>65Wk~t>*;i`t1B(80#lNVUu%{<>X&_bXTM%h`Xqr5G?^jN+6LW~Fc^4=H_NeXV z!g9|;{jw%4kqE~GLq-eta}yprD3H8}F-6#T;6ss{wFzp@?}ZMXd^nU?vB!zKP(v<6 zjq;&Y$QBt57yfCIV!^%;QiJk!;-SAc{5)=1cX2J!YW}IKgjnH+$!_gMpYC7f$bjz7 z1LAj69+_cgwT&Ec?U$|it#r_(Z~ti^vC|eM-3X)hmcXR1egjT*Rekq0VLMT9o9O*+=#nx831#~5`yk;-pD5Yli@0;1ER?T(!fmJ^GmYvf&>D~L6 zXZL|sscjxVx$gS&C+UkF-`7FGR^I_!+lRlh&Blek2J~_?Qz+Qf%`2$xhKw)eWvTh&Ts$v zcjT_8@K(mDrP2pR?m)(=X{U-NWR{HgGJAs)_JYz~;Bl1et0W#-^GveX*@Q0%yb@nd z$bkr{brPzm){=aeotENXkUTSG@xiV8n@5yFy zu8gmX<0t1-4cE%2IX`6dp$1tam5|@uGTA6cn^?tz4^-P;>|g!+R(&Qe0|WO(H`n3O z;F$QB?3h3fffc94}?ES3u{RZ&{|6IWC}e~>MNAw{LtVB5uY zzxc5Dq*xeN3D!ivWe-n{hcnQ3zs8- zdCTFeeSZHb9s%Jm_*(8-My5XmWLAs*m0vRDaIkfKIQXv#NWtd+t%QpU*bDL~`7w1( z0}S}6uN-a{>`gjThVcv`_b=R5{au|tlST_X-_-zNFAuCO`)L=6hP3a#Ti8Lr4mfA7 zXahmZ&uJjul$Z*z9bdXrpZU)^L{dc+!ouH*bqx;uf97>))e8d>rmyVratG1u; z`ZxdJEu`B6FKruJkD=LnkNKiA)78rj&`38~ZSC_rEIGIg?5P%h;z9RAhiZnEB?qF# zS%r-uuKCvQAQcI?b%-FYL`7HAaSNR-Z&*&RaP!UXuNS4Y{DgME2Y6`AV(kx8l|jpn zfLf|+zQAL`)6ZPi98NlJ)$a%Z1=8lnzz-3?%`wW)vO*f@^K8nvV7W@I*}#ooy#87I zF8&xsGy_w0Mb+Fjhx3l(4PJ_%Y1YXVqug_NHO?`r0lP4U4uY;1f zCcJ21eoS19rLKqJg!4!UB16HAVn!RDpqAV2Nlc%@!76o{7}y-@D-DFSu$8Q2=k`lX zw~5IaL~mTYdRjF^=4qrHeE$JoRTq5Y&Iw?lml*t7+o^9nvT#!mHSp8v_wzNFzGVD@ zSQOYLqGbDE=Z29xeFIAmkkrHbI@=i8aqUQNcC@^2TJW7QV_b$?%V~3un+j0_42xQ6H$tFI2wx-gMldvKP^8l zx{Scp{MC25`e`~Y`qy!dyN0=GQTxePa6E@ng2GsM-)#VGcSYB*(3B=h44APBqw~N- z&f;;gnd9l*FNEJH5fD}Ag)#gBYIITOV1o&T_zY~HYq+&BY1t*47B`M`~oTE%ny3~Kt$N>dd85!*Xrz&m`fb87<}rGwCAG1$sLrl55~5v7Bp z8(pDWuh6s51eCMg`It+DCeX1pT9K4b3%#_M^HnEH1Ua#G%MxmEKs zS@5Wxh^Nq(!+LSADdl9eeT(t}OHPyAnWRK?u%Lbr92f-ErXrZg?<+?*$j8zBRy8ny zI+y`2q>dWQa|JA9BO37>|iH136@TK2sX%ABZxA z)F9aSkOoQ;6Z<a9L(IC)AzpWf(64}GJ$p~C0?OCD$ z03s&%4WYr;&!=Dk;zx$Kq$WRmnEz36$c#PPSWJHUZyXE-k=_@@qRb~I%W?gziD(b_!cQoyvLRijaH}cZuOGJ2-z>T|B~kfMaUjz!Lh~3K5~SmAY2gg>f9L zj^ZP;<8Uc+#Kzp{3f&#O%@!B&xo4@z_SnyC(C~;nyrSt*CQG?CFjsvca#&?2vi>?! zIpoy}<3x$$ETd8PXr;dId@eFKOMYcu%&FA$%p>4OT)tuev9GGexxkjdJouAP#m`DuuPn5Vr}^J@=Ep!x-fqH z0OZ$aFZf5>jhIo{cx<&2v71V&b94Lv`B#L?jUaxkhwd`ZhBO7znGOeRh9O?ZsxSp` z>0O8*!LWb(({-i!s;KECp;Ygk>;8U-&*%3I>4Yn7VH!&^I$8Qjw9@cjq?S;-5SqftGXp;9BrFT+PWq$ z{b~GXlN9t1H1~yRq%ct~CxJC;9BAz`Pu=_eYF^uz2#Yo;4xz3ITE_>T@ zIeQRKqx-Rin&n0Y?~wTG$VJ&i^G-l2 z@N!D#0L-ALXm}){niUN`YZEBOap_^)MM{1t8*MKat;-yQ6t&dIXa!z+N`5P2RlKQ- zOieNEjsLnz2r%TNCsS0}Ur9z@lj*Q@{Z4-n!u8Tv9(!*dq{$v0dwDsfZgGi)uk7|`P_SQ27UX>cNtFO*nxgFr3bH6n_&)61=-h`r7x2oy`3ybA^Am zqNSdq_fhz49*lA49N96h!${?0EgGZn9|#RS$kgRA5H5_G9UV;)vIcKGtl z+ChdgwI5Xr8L}#7XAC(c132jfLXK0*iRi?-pOc}?!6$B$p%e~!>oEdQDFQrIAjv{T z*(FH^qN|uyT@mK>?3OwzCrTT|OL4YIE_k>SE|NMpP~|fi zv{}LAoJ5iGA~-xuBWw(J6BpAYLA30W)lLK7Ym#zSJ(zsyivSq?!|BGKCX))dSgdLv zeUK9ON0k^sjr%|!`8uuN*HHn>b@6?cRL9A#)a+vkqevIKX2NwY04NQFR+BuErIwGRDHb@dPo?;|8OZS z%)b2Q4HEB|<9`+JyO*Jz`Ptey=-dJt4G+N)NXyGX!r~1dj?@I^4rvt z?*t?Gu+Ud0S~h3``r zI8#f(oi9^BlDDp;%*RYNsB^x5KJ4XSfj)SZl4Xq411Q5&;fz#fN3W!^co=!B_&R+m zT!tq-JxkQH;bjc6v0CsaM967}ggxIf=Ie^orodg2KtU~92Rff`-MI|=$9n+sls`vN z)j|rbGN?s*ih;qwoCL3bLS;lA`(EO=nL5i zFRz7ZC3XKU&1nVbBKCNzV4WwRco+WSm0mF8vByrZ;rul|pWe5Rcvls>4aicMar!+Y zU&#Io^hD<(8djqVVFX7Afgah{#tAmCaW>xsy=h}~jOP*!t!anHT2<~h7jUp0?S8zV z_2eG1wyOlN zghdLA6l)I0S{pu?%UrG`nO%ubTz7DKU{}s!1}3$>LS}}T)9mEVot9r_C4T@nY$z&7 zmBVBz1z6#qyX)pO+L`R`KBt+h@8&ez`Q#qWqK05Oj7u{l!(8lU7~OIFmBA>3f47!P z&-0?vkIzH%x6G#lPU^SPQU9e9WXwG_2G7rX)(w~DW5{u_$sVowUPB7m9SO-D3B}*2 zy5Q9an5w{@8lLtei{Z)ay=&;X=<^*A%62$6q`8EQb_;PP2{3)XxpA$H7|eyK!~F`z zk>h(ES;$3Lg#?K91IMf=LYw6{f41d$V5f|4Sm4qmXqq_bfzhkSf<-Hrp10j8*yiVS z&OsM;;Tu{;!e-;tA6-jV!nAM>YC@ri-tYffn)AZ(A7Y1}j(Y0)>!$Gs3Nvff zxD8s|XmpcXmi#O_z)&7tbJMK9t@f+m4xcjJ>9T9Oaa1WmF<$Fr&hUECG*%yjXEyx3 z%4OcxX-QCxw<77If2FO7aO<2fA|+q{UpV`NS^u{d1#$`95HVGf7i2267PE%F$I2{3> zYy_K;tdyA@u}Z>DHZlTlildN&-3P+*YvA>%obI)%T2^u6CRRK}j?nQ=dL|afp=H#4 z*s`+_AcD5%vff94J@BpA^-?q=huC83*V>8Mbz+bwJp;2QA{&5G1V%pPG`gfkB%7((5JU$Ol z`@Oc!ux~fYZBx_&pJX5o7&?NCM`#@!+TSrV1a}TM2P>`vd!d{E0H5NJyN@A~cZsw} zP^o&iU3|5*woQ_Z9bCANpgKRh7z*6Z8Q1JK85*H)5vMgpyAgu5OJrM>=yg3a?o9he zMv?S#Z3wpR{X&sJj$5-%uY?-m!*smNqG}n>;(5YL;Da&s5r7O z{XUq@u0gI*s$5EEE`rmTZ8>MxTM^C6LPR{11IQqZT5(4z<_()&t|IP}AGzSR0(fnh zOZ`Kb^)9ybU2+OjB9eQch5sMJ-Uno)d|Lw1>=nCAd}JvpA@K2D3knC6rxDQl17M{i z;3|I(Ez9&3-EP1xY08~0yfo5&x3y_AyfOTsg#*3mW0-n{SEkRW&s>Ey z!96|49_fZWTD^F=oFO+Qk;f}FDz2}tyQt3iR?0p!)2>O$lx&rmcd$(}e&BUnCFKS& zUnZxXq8Awb$0wd9;0lAF8e>9^VQOeClIvU@RO!J(M4A(%+I~Yo&PjJaZ4L=>7tz81l;n$5vCk_OMwHQ~ z<}eK+@9v|r*}6N-9ym^t;w<_*^E=jVNT(S!!FC8dAj|b<5Z37tkAwlnT!Q$B-@!Nl zwf4@|0DWS_5NAb#41c>4OJpy`QvqEs8a5a30^0%;}-1R3UWi5WBj12f=jH+T#$LUxdYTg3283q}&5TYB# zDM#Z$WZ^hxk_1Ny54FPvNpQUQNDvZt{5u}PpE{z*pAcEL1Vl#3+1%A|iNIx=RXF`F zoc3i!$iad5Ve()T66pieG7L|U1p*0nrYe7sCXq*ztBMT@@PlSdRxbFTfHblZp89{h z+dL8kGSGGyhpoHO7-OVpB5aK%I2CauxD&2FM<`N>M_nAuLT60E&oI*#DVCWGw<069 zjeAnzW=ks}%{a1>uG=dIcbwWb~swddGwW8aLCt9O;{xqy{c_1a0 z)LZ#0?+`W>Zd>jw!NH}mK}{vO`4DOB09Ws9KkJ>5H_N^G4+SW+t*%A@2Cg!?|lNm8Zn;Q!MXy&1_`5E+si6<2l}R3O@fnI)9%q2dquHVpf1ZoaJ3rhp7tl7t#n%`B)0V`Lg~d2( zOk)qTXOXyF)&R0tm}>0YZO+R_EKCH(VXHsGlTrNmNwRDZXJ{zBfD+qlG4X+t54K?I zj-*-~dg|jnrTQQ*T43|Z%@N<)MWC1U7^@dVj}%FLVl{1i;+9SOUvuC zpUvBTQd+H#3mls^kY77ElrfF&mASNUB*>H5{AndOU2vg=CNGt(q+X46A9U{nkP{ld>hG-;U!2M69l(93`dIq zB@tRSdRGWDgxf7$IOA<8oRunnut*Hne8xK{s~8Z8#gM+Fih>6e*H!~nYEG$E17Ofk zTaQ59n2mDgXIoEM`aH3lKmMGv%A?N3=T7qKU^G?Va6esg75{LQ9c;DP)qRObHY0gr z;{QtjrXwOczXzihN35+4D6_ZzQ;&)elfNDq86afkwQ9C?qqsu4JZ?3-iI`)aDIdQ? zowA#Red$h)vn9L;`|P{GJ~rfgL{`DmUos3TJPqn;n!8<3#?~vU>#PBu&s_-_gab^3cQydE z6+YURTM&}-)|%=ojdTA&Gsz5(wmx46!+(+e!9O>h?Fte}VU>;^KL@`R4 z@)JhL?eCmPqfExjL8Wb%ZgDQ$YCDLuKs*kV=Ry7Ke?v7za2ii-Ph&<_p$nw{u`>j5~xTdRo(Fzdri!Daz<+ z4*uy7C^Yjcc3JTKZ)8#AWk6X*UNoQ%#L2?N{y%|`9l?Krkcp(1FZi+i37wj*-Guc! zQ>rUnKgWja^Z4f?LHyuy5>!*PqePV&PUHSpnxLSG^6ZFot1HooYBSQyw5)#}YI5>Z zLh0)v?gReg>occan1@qUj^gz3=yPX;;-Dla%p|N$#f|@!2lVN5a`gD@$=%JGsH62` zvg(O&nD?u%T<$f)YPPYurkpN)g}KvT+pNw%9NWAAmdOp^;Z$C3_}yru?Y0N)-G%+d z0b0Z0ce=S%18rC`F<tYsO; znVpxp!*gshWZE|4ptSn4Bug5#E@aBgq?%yo-c5_1z7IO}hb-kC-)JFeTC6TD71lsL=rB4}m3HJzUjSoU7oVi@q zKMoy>yB8B5U9;J)qzGvq9y6^*#t$D03Nfxwg@6!=$KlWuBC=h9Dsu47)9S_8EiFe3xTT(#3%rWTajxXgmBkVh@*(XVjT&*QC=S}aXHaZA zK0-RV$>ne#`A6v894i_+JG2un|6EBXFR4HuuUntT|W>teJCF8O!@c3T7W)PM_Bl_VQn&<5=jqMXp4cX_bW4yGkFMGwNvr zl+PoUVp^d2GJl~26+YD{WTT^@;r=GJS{-H^EdM^}(Y-T$qt~&(K5zsZ!M!LTCU($P z9o5DwNFwwJ$gE-sh(s1tcYWJ(&)8J@J_Pk>x2nyr3r&X%zxqJ$eHE&M*n3$;hoCE5 z$3qE6?t_}Syh!*oM`wX5ywf2V}quKsc!TwZP$V@nq}MQ@>Dxy zB@&tVC&X@kIu(^+%9d%Lr=_DVd9K&J`u-}aueDc^0&sO>pLpAF2e~MKAMsHnvw(!= z|8|eQvF0E?L|$X1eK$L$D;sF|Gl}$nw$6-+))?I?!k?jmpP{~-K=~cKqj`{S8d+2T zZB1y1@T>QK)Y!OFE+?bZ6Soeg-d`;1)s_t`<8DD? z(w(0M!Oat8Ua!9-w`A*~b2Pb8bwK{5{eLpg@AB^i+7Vk@BxLxA$SEv?FhzXLo^nltIRf%+2kDB0V&OeC{X9XLE(I1fG>lwIr`g5sGabCv~ z|kORb$XERO=hQ;W{H?E9f`UeT;;|;$`x7nqcAZZT^<03J)RWZ-k4}tdrT? zuiZisylPlDu5eKN6Nn+8gP&umie0zzmGv-zTo zyAl!Q8_yKpP2DyOCcTKK)cILik;Smi=2x_1&|;Hcbg-vSHp8G|JjdqV7(RkiKgtHd zOX<*v%`w}$@|)0UbK?EZ;P*pjk7Pmk!?Gmt430YR45`zCW!V zv`5zb_1FN@`$0tzAeYOB>S!(hoqvi#$h6s((s!~Q;!b(m7HY6l7ZYV-^aUjoVkoa0%mwmwFdLaMDiT5EF*Ocl>%fEPfR+la8MzwAa}i> zemM4`;-^F6h~#@V8H!dJneQvJohcK^zKGwrJt$`W46ef7VJ+gsclA{yj}NpqI9Md) z9t;-Z&fVl~@3XucF&Qs3RcR&c!66@l#Qz~kwjH{`+_JZldot4cvO+?Qw;LE|aV*(P zM{e8o5{?gz847wOg(?M`VnWIF5|ibR=qx3R3uGzv+P;|w5+&t`2#S7_KP?o=h0p8z zrfc+-wT4hgF^}ayo$%5!hd$ z`jI8|2vG(q^^iT^Vbux)1m$rCfb66hs3aq&Esn7$&Q|r$=%ah6VahwE52nNqIx#Dy-GsCz%7cP~T?{oDc zD*n!xz~^aj^RW|Vi5)quF_11j_9qRNN*p#OITw;5AhQ@f-c=>#|q zR?{B@AfTOOTtn60t$Ol!Pd1T=?eJ56cacbYfdJx6?MF}^M-O#vxjl@x(UF!ZdnOr$ z=6kF|eeH4Z_WKCwZ2--JS^Y zrfcG}+@&6^7lMe`Qtdl(&-kv67w{Hi6@aBA39Ud37}9$82_mqQwx1)H%*$}ykI;S& zbmEQhVcI*zd~g7zq}FsKpfXTxgZE4)7O1+zoPH;rcPmGXt$7+3aaF!gzZ=-R5+p2su3$DQcWL6SP^ z^JEF$6-XiPbjejaMu( zU(djeX?X-<-E$m&?P@8mRpSznxym|?fR~9$$6Pa>3ZZ9TBT?PCF(DxOMY?K(4x1Mi zW0r|*491|Y1hiz2F691=Rxj!$1+>mCG+V04tLuncka)OZ653Rd4r-C z-C?cMlzzMj$WVNX5!MKT$6b(ArBhW`+}qY#Kms5EewGJ#M#Ft-&QmC;VhBt&0$uqf z@clI*Swd(u%)31cOH*oCR3tG0A`o~y=<^(9ZDB6waae6?E{Rnq(G2jll&ILirJza` z%M=3Q#fx%btq9=j!d_enqQS(x3E(mMeJP?T{>7Gt_)P!sU?3R|l7mzsSu}=dFz%}1 z$yF(ej(9KzgB7`uB*WrH6C{EMjSf|UCZb3nrHg)g6bplgC#4rxj~9XouGS>c^tgBu zz{fSgIuS(6^yRVA#A1%cikp@#1X92=Yv4r=*%m#@V3a)3LNu6VuF_x>I#jySfDOAuldD3amg0t!;erlkWiX<09mrL{V&HPdioo=TE|O?MSeyvpf&HP{(nT_2HLf&3 zoUMOnAw;O*M3KSLju#CK!?L46WhxuRi5=9z+7iGw_J({>tMs%v2HIo}(?QkLkFiMi zYK>=<_>mlU@rz<`4FHV6oNzUOcbT&)23nAzf60vkB+-|;K?=;eU< zp3p%r@Etq^D`H2iGEgTeQqN<$pqsC6#;wxh9PO*O%WopMlS5J7SfD^p>pzII?Z`qlM5^a1~3ArI;20z{!iMv=25lq5hhv=u91N{2fdxe)aM5@i&LHrR>RIQ4}yBH0w`ZPg{!VAFsh_4S%!?@B=&1Q~ftb|NDt5eSkTmd&Gy4RKPZ;JHdVDQQHkh;1>_sqmcZSHCHfG%Q?v@wa7 zU_Iq2mpR5J7!TIXH<-=^fVuJ^C8aT>i-Or5g?*%6qd%(Xz+;_GHL*CEWARj{OQVV; z{<($$DF^3yP?)g{9hk*}aS(@g<4LI$g5DVzcWiBO0}4<%5YT7a(>bN1_5shRQVV1q zB91-{V=N)qa63VtO4{2FvjKxKFswZ@u*tZh#MR)ky<#ISz^E#LX=C^>$ps)-l+7Ca zRW;@mq)T_=1rGl!`IQAadCG^_MGHC%qvsW<6k5SFlXj>-l@9_D7vZiQTOlA}4TH8$p zME@TVC8roLGo+QcD9+71no(&(H|-~G^w9^lUv?w8a?wn*i*n)U^6*q8?$^nIL!S{K z1{h3P`QQEx@q{JOMK7!wKxb8RN7~H)hImT&(f>m@G zUuhl%E!!)_U&uzY?!J#W2cNz_tye)nE|fqfNTofJtG;e`2WnggxjLJEVt z*>vJG^Qo{pA3WyomD;Gm-&N_X%0?|=qrVCJ6C;KT)|(xcL~im$C--GCNzbsM|JATj zV~_cxGROfgUK(GFgK$iwzc_Cuq79(rh~I+W^$a|#tzu}6F}<2OOR_~lOxmI)(G6|w zeLV~3exo9LB^!x#Xg{rrXT73qTYi#M-FTQbUg()yP}!;gVHu6kD~6P%^!Ey*gc5NR5p{riGSz#hdvM_~dHVpU{;v6Qf>lj_2S z==Y6Kohi+!l(xQ`NXjliQS7h0$}gaOB)k47XXl%4xOt~-;_vro#hQwL-HnZ1 z_v-_V)rQ21W$F+hgoNfSi`!RP^3%43nvU-)(`KUJ;=iRlR2U(P>AfOA*4-`p^_D#X zwh57r-(iClOjHD()y-dK2af$hJ+Q@$=l4+AD%kLy?vpwSY{sSVdiO&sZ!+ea)} zA%YF=K0H|y^uQoev|DMuvjhpWtL|8a?iG@=5vkP+!SP6MBmmss|h!**0$$H9EK|{kQzC??AWTL;YB`{dCQKcJ6`r`;F3i!=3hNa+##Nd#q*1M?57C@zK7 ze(lZC@wOuyoN4NMS$DeL#!8|Rx17y($>D5g1M7&?UFvUWS%RUwEnu8&e&k+_(yx2( zA~~G>+0YYuFM!lLa4g4yN z#-fn0BH&itw}+(2MiSkB&AeKg(iFiOh^3BXvct5kWTvOqDynNDbBk!?w$m{IlMoxf z$2GLI*H)wvi473{+wa!yQPgD#eO5-gs2MbxeE+@qb(t2_=1&4m$8tG4peqxHt8mf) zYTSmM&n1EdFlUJxA~6|%9&?k0T0X`gdg#> z@)RHmA%znM@O=j&+|RZLqUbcT^^st(uZl`K`10Z*;6}(Re7J~pA|7YM9$)pad*ige z&^?#`8W;q9jKHW@z7wfPNI02Izlt=2_8|mjp^1agP;Z&Al-Nxzh_Cf8K7Bdb=z!lW zc=+@Y{v6L@K;ihYP2lNWLu5fA?1CS}HNjW6No2wK4jS5MB>IaleVxCr!X*g%BbxncAoDbR`nsa_$XiHy!B zMwOxzY1)gn0ss65SNUGtw5qeT9r5nMUDZYV*PP>G&G+ba%*O!5&PvcTZ`G$@6brI^ z*!c#W5*n#dV&0kj2xwS|X4Jr&6}*UKG?@nFPo{{>NvI9K|18Wq<4E?8BhXh`^WewLcQAW`F zf+>0sWxMZ#_S~xs&zjKsp2qzX-gke)H)*p+r>AhhLmg1I&%(m|L;)u@%|we5^f*2l z`NMT!-EZMkY4DFyFr)T(Y_F9;R$tTY%LU=XwzSHe{Y9G|hdoHe1<&EW$G|u=Ktoly z_(fNt!s{>UAS=X#FqBv_f=j3eaml1xU$hPb_OTh{`5RyfZ!w$~YyTJqX&EzEHYMl_ zXB_$jH=>-R(_r-x%)Ay$`#dXI(nlN_-5=022$`s>{?|8a=`xv!43Yc6G1Rzop#`l8 z`uezQ;_sl2-WbRy`=Nb-$ODw^>-}u|xU_g?`8d-w>jCMc#9mc{PzhyB$;n*lskv-V zr(>iBM+yU_f5bOXJ!%1c$7Oq_)9i#sanVz?y5g4frlU|*Z&V*+==!U0$x2f}E}~@g z0B*Kb3HsZ4ZQ)V}9xV7w-I-NhmZBBoX1}nhN3H=qSO_$5rhU0~=2HGwl4P`}bQM*Z zK`#NUcMB6W`r-uk$M4#zLCGryP0r;Xyj3o{Q?woBbYTZRTZ5vsEJLjExiuUqbA&12 zcaPy$@}dQ_u}3p*_@=I>U1|&DaBAMQf_R2Wu#T0k$p$vz7+~`iOlvv5iz*Q^P{^Zp zn#|fiG;2ZXq8E@I(B&24zLk35ak02xCAqcwG?KpA7zn=WNvLcOW~y~u>_K@hnOdAZ z0^NjzOX$?I;RmBs!IhgFMLILtl!CuLxP?Yk6o0Uaw?#lnV~APu?UdhN`gV49DW&mu zacB@`VJ*G4);%^BdO%Dgs_$AT);t!1dSV;Hl*vKfkxQ@y<#l*p9TI^O4kkn=(@=?Y zW`+(3w|3x_^-C&2%t_0JX8Q`#Oi3LazgMyp z9T-SOM=_FQlWX+2s}?ypnP{fYE=O_mzhN9xddq z1M{ZMF@%*q8~R%Ms#i%oXE%hbj%u`4avxM}koqI_1R}&+6(y_CnhoXzteb1OP!7?l z$)&TZ%0tQxj!-So8ba|%TExQM-oZXZ0o+Re!AjH^EOqONGoE{8XC(dtq~@e2ifLDD zxl>*2N1`=bR3v31c@>UlG(K~Rii;iot3{W8SrY?&q^5F^WsrfpO0ig~G*Ha67aHW= zr<;Mue|GSQks=kq&LYP~nc(z_b2E6&I?jPk19L67PB__NvorA1XJ4-9)x$zamd+t4 zDG22>Z%D==DnZ6AA!BQrq+w} z6}D+ygMrb5X8hs`8>R;Amt)3><6@oQm9q_?WklK)Q4_Pk_}>aj4>= zKt`s8PLhRz&0(>{pplpSjP0 zVqtE!DJnJFwO$mXb;w4^``*+FO1BZQ^=4Ut5GMZS)m zggD4b|0gW{xGDT38#hG~o{^%3Ed~Rx9V>JO;y^cl^Y;`R^Mg#$ASbL(DGQo1YKw@@ zV8>J_Sia~4d3Z^hD-x`8riKp$T(l*C#bBhHT9*X;H=VN&JpsFqI>@fn)W^*!)lBO+ zNetn{n~2uqCrli*Gxv6XRA}u*p6z^B4?%vy7%5KAHOWk~%ocM?wJu1b;Li`jz!$J7 z$M&G5Nq9rA_mci?67S~syC@|Z~U@CYbqfUDTpCW?& z@5eyqp$M3lh^gXyO^{`P18AacYcUUTq^pPF63wf|EFFohY^wx658Op3|KFF~RX@nD zQ+J6cMyJU9gps?e1n-UMZ1dksg73q5jmPCXm|JtvJZ$tY9)2$#xL&Y}p7e;*lRfU7 zfO%J0_(tHwTCh*FxSz>;BfIj=pii@HzCkv%fObx4l(M>|7pOJ1#bVGJob73HWq3*M zrjL)CaPxRCPiOyA^J`z}GT?Kp_o?L3zCI&Iw|M_XK&p!f2}VT$hE|mJN2VB~+s(j+ z>}H7K#D+A&^m>=FI}Rdn}nh3a{zoIYlU0% zx|aTeg3m|k9?*r=i_OC7$YQ&A>EXh?N`}+7!fhW@Ke_AI<@`bor6Nph-(jqh;B#|M z48-TFH1O|x|JQ%+J>mV*N_5n2<$v~+#*u};?~txi);tt)xn4QB9TA7#1lW9aX1FZ1 zv{N9k;ej;VQ1tfySIT(@!vQ#Z+?{fVh!W)xJ<4g(4yQyX2u?52qMu%)J1u&b9-Nk1{qN3rBu> zRDTk35l)V(6bcVX%WbvwY~ReK5TuS#r%5_x)V=1@HHa^%oVK-~AHC^ahiqC^SPeWq zv4W}Nppq}lL?=8Y8LW*`#aFI{0`H6Zu$kT~P!4=KkNX+8e_YZ;wzs6F+JqXt=S=G~Oxb?2M9~W0Wn&Cm+P>1GKyt69mj!h+F z%?WF{Dnvw2JjBY+%S_|&uahI9IO+(mrD$`{9~n6cuTMbZdpFNU21qiv?$2V{Yr7xP z52Ch!WKv7Z36FK`l0~-XGUu+;&}W{Dn!f(?1S93~&83A0$%QzuV-5Jr)xo7FQnG)E<(zEZv3DuFU?)K)nECZ3Ahkh+Oda?0e^M9jVmc5;-}&f8 zb6U7+@lE<7qW#~Ipl0xPuvr|HBQPEjpuN^0>$H9--IJD+7)ld@ZEw8vO+psVob%(?l{6rc56X8u6x9 z$6;6#K7b1d&3R=&D#)OER+TJMMKv$99N3?{pzmo4Y!J7x0XEeshlz`4IK68)Di>#L z{{tQX@(RH$rhEidL1j_El~n<2fwb*N4y$cS0u3$X%SUuYkWZ2<2(P~? zCT@qd`3MhvYX%fzXzMN{;D8s;+P!3?agqaTygc6qf$=^NmTMcV5>*@qcxo-XypF!2 z_^Uw}$B0f&diH1Klx0L^b^9HamMl%bAn@nKwx<$<8#pn}Q}+i$r!w*Pd%~14OIO+M z^Au$1jWKEFS(zeiWN$>Rdo2Y2a3CQqF70gFecuDpYyPi)QKZbfjV&IHBpbe95%2|* z>`n0GLMSfr6JLk0A~}EX8D4gQT>L=(P4;o;)bkNbdGX}to8keov|sTRM|Y3_G& zgT?_5Z;eB_3n$aYl3eZwF56@7cT)8&G(b|ZwSnGlVFviB4GV?m^Qwv=-b?1a2VH=Q z-UEA&t5@%uk?pNqTk2k?W#V#6%v8rV|2TI{>!eBul|$nbsg*9-hiigexW(6 zPr0#hb+N4+k%q;H(2dv>6nR3z{Ky_Ycge~J&rTdomg zGPFjvYr!{-DSfpZH9M!z>o#zS5FIGzr(R2*M){v9&nQq_Ik58SE|U99TXPEg$)G8I zqeZ{*DI5{Q8XA@6q~Cc^>fm_cQMhxZg)!6}+w&hcXKOc<2RV(@5?13Mrkc87-N>FEAOf~ z9Ui<@ncjb2Za7qH#Jg|hByHwwFF-0l?Ju61t2#sLF+Ljd%tf287z20Tx19uLT9lrB zasDCudAQmQ8MEy|)leBDeHQnl;OnpL?kIc~56hj>o7BSJc0W;0{=Sy!_6Zu1jC_-R zWNkWJ-pJgI{jzpn!&78p!Bd81T4eM z;gk?Y{d8G26I^C?4!~a)PAdN`)q-420R`Z2(vs_{!`CYwHx_WPJ6w>HGhVn18+>;MGfC5b!esM zkg*~v%7o6*p%jDR-~pM2;T~+qNOb3|6KC5~Gm>6>#rW`Wzt^iQGx8SEh}6}ZkV4xZ z^w9Ybqe4QkdDGS|uSET>8Brkxi?M>MQa65r43oJ?FZf*#7l-$$*wyxg`d$MiyWXS)>-PqqN<}5r;(cW!{0U6(3=<^ZQPg2JXb1)Q za>q?Tk9?%O<+ZiP3WQ(Z$>EO10w7JMQkFObC=#rBGhqEatp{AwgqWk*sr}hr@kL{! zRv)bSlbkl<^J4+r5zp!_R>;fSkjaQ;J^DNydc%8pC3U6r6cLSUZf*lTY>w=4w*At- zNlD0TamRWvQAKP()d+61sRVcyVl6LE*AJ2;g!5pTxG3a>`k*+dULXUs}P zDGS%)+SSXb@MfkK)@g96c!eA|Jk!e$x%!iM8lB2HilHrEQw(#e9mCv;2QSGN`6M5? zYd275lR_S#ITwtEo5rC_6K_`1w#EJI0mTUe29Rd?2V1^!{D;&(v4rU^KQI}c>NTeK zym*9e89x4MNwp|Ij!?#XU3*HnzfjPq_ zxc(r6suG(8GvPVsX6%foreHMdiJjOm-F>L~OJ1 zPwmMN`iPyU)N`I**(bo;>Ok(zwQi0JqUtAc=a<2xZt?ST&gEM1eY&gfhvJOayGw3K zt`MT#;dE26$V{9HZVGuy_0L8@lXIe{vAbUNqFVHXs)`9lU$L&AzeG(&vRap*~@Ia$1kz>sU3pyePd;P|3B-YNK}y% zJP}SSg_|RQo3YB0lUfuW<8Th+dN2KuaVlk6{!zhmlPYrFHTQCrp&5NSVPz(){?0Dx zw#V@@57{n>B@DIw266E;l5`~N0vx7{6qz^M-W`6#OHJDn-@j?U3$umKc0N=J+P!=C zy{`-3Vy$yw{!LBC8)Aw2rDq|XfiHdCUGCWie`|!I-YVmE$|G3%v)d%J2B)M=1}PQU zE>CBslXf?Fj zF0Pj!^JA58^cc@}|9ZApE97>*fBU~f+k2l&Xo)etCF<**s#fW_UF${UMSi46a|YL- z4;gS3n16T81){?W;-t zNJd|TAdBk3OCd9R)mvVCZab#)hfqJ>T3FwwR`inhMLKw_NL?0Zj5yzTM4`k;gY=6Z zj_|-60Co8$cF>(0oWs;JD1ZEed^FC9qbZmgRr@6RQUnb(Q%R|-8{-LUYWPClTATdO z|LqU__eVt5C}U~)TtWD#_k94>H_6bg{GDg@KBDgUn-(C`uL2B=$=y%aG~axt6VblX z>_1x1)-^`-GS7xBu=E%_!Wj6Mt`)rP!x#4b ziZT^(8GHDOOVY+}A!5l=VvK#)J70n7P1rqeZtts)9yu9*tdE!&`kIB>7T=0Z5>WHl zFWl7pLVj!NN~lLikiFIEpfc|p(u5MDO^?zb;h(*&1sDFd6_{vrr&2OM6!Upv5XV`9 z;xsgf#10$Dfi2T^B)YsEB)9&agm#qO+l)FW>F#Ztvl3qgnjG9bHH}N$Y8lbgqLv1<7>pog`fF zhYhN;lVe-q_w6YQ_|j{yYw@RU3)mFRH=@g!^G^Cyr-Z%L*2E$S=>ec=6&CWrqS$7F zONJTnl^Q{W#K`&e3y+EK&$VXd+&>i6s8Gxkzz7XrA{t0D8WLCgea??I)>lM?Z>oX1{j z1lhE$>3|Y1X0NbYtm9bw+sAVMwDw`V9&49ae-`$;+enftb)pWi-EH^n{R_IGW;{^f zaYBTwlv@5kknkpZ+n%t@5Xx=w!=SYLvel?V*~;yHn(4giSC%M7{0r9v&hELxK!y+t zCaJC}#p7N2Q}f&11anQ#$uiSDS=On8lpWj|y6n>7A}rksSm&ma2X~zcMaL!2ze5|< zK10Dw7L-vv1^AX#8BZd|0(x3mN-bDEQ-`Ei3vvg@rx2X@C{i;i_$A|t`HB=>$}?QV z#F2}$5|gO}8&28Q4Tx@|w3Gy*_iKnI*dk`h5(%M10x8T?4^BK}2Q|T;WkmSnsM{qR zo67>cK3XJwz1)C|BPrcc@amc>9(jaFu(WaoAN7%fpmUyBg{|BETy2K7vH=s#FYR{q z42m1AU4pSBX*_);APi(dv6Kkc)41CCQjo*8?2{4%veL@#F!imB@&G z2l!ZY>Nh#SyKYGqif6ITa~iZB4dAW)kC0h+U49;&z7%G!ITjS`TO@a+Imoj)_mMdj zfo{^E7q&wDoxpi4GdlPc_G^xTJ&~+WJg1L={vtEIB+~tahK(S*z9F(S(4?hy5*LDMh>sQ zIx&#t#B%yo+4*xVIR{(z&l2$Epo z;i4IAQsa`_4?RLv*JLpC?2{7$zg3J4TuFQJTQ#q@fXK1_#c<}y@0p9w$S68S+jxet z51#4G^x)i#bw`mg{+SspKI8exQxA^{9U@y-oB!BOHd3|$R7XK#f`TG&K|!=l5|I6W ziJ^QsI@+rR@>O6E*sLW4?9m3n`@lnjiK-(|Y-Yk6xU<5+5d=QGL0hB% LBhl+AK&t-&@rV?u diff --git a/examples/McStasScript_demo.ipynb b/examples/McStasScript_demo.ipynb index 305ad40c..d4be9e59 100644 --- a/examples/McStasScript_demo.ipynb +++ b/examples/McStasScript_demo.ipynb @@ -435,7 +435,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "double wavelength = 3 // Wavelength emmited from source\n" + "double wavelength = 3 // [AA] Wavelength emmited from source\n" ] } ], @@ -460,20 +460,20 @@ "name": "stdout", "output_type": "stream", "text": [ - "INFO: Using directory: \"jupyter_demo_12\"\n", + "INFO: Using directory: \"jupyter_demo_13\"\n", "INFO: Regenerating c-file: jupyter_demo.c\n", "CFLAGS=\n", "INFO: Recompiling: ./jupyter_demo.out\n", "INFO: ===\n", - "Warning: 509245 events were removed in Component[5] PSD=PSD_monitor()\n", + "Warning: 509477 events were removed in Component[5] PSD=PSD_monitor()\n", " (negative time, miss next components, rounding errors, Nan, Inf).\n", - "Warning: 510508 events were removed in Component[5] PSD=PSD_monitor()\n", + "Warning: 509083 events were removed in Component[5] PSD=PSD_monitor()\n", " (negative time, miss next components, rounding errors, Nan, Inf).\n", - "Warning: 509629 events were removed in Component[5] PSD=PSD_monitor()\n", + "Warning: 510047 events were removed in Component[5] PSD=PSD_monitor()\n", " (negative time, miss next components, rounding errors, Nan, Inf).\n", - "Warning: 510551 events were removed in Component[5] PSD=PSD_monitor()\n", + "Warning: 509125 events were removed in Component[5] PSD=PSD_monitor()\n", " (negative time, miss next components, rounding errors, Nan, Inf).\n", - "INFO: Placing instr file copy jupyter_demo.instr in dataset jupyter_demo_12\n", + "INFO: Placing instr file copy jupyter_demo.instr in dataset jupyter_demo_13\n", "\n", "Simulation 'jupyter_demo' (jupyter_demo.instr): running on 4 nodes (master is 'CI0020872', MPI version 2.1).\n", "Opening input file '/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../data/Cu.laz' (Table_Read_Offset)\n", @@ -482,9 +482,9 @@ "PowderN: sample: Reading 19 rows from Cu.laz\n", "PowderN: sample: Read 19 reflections from file 'Cu.laz'\n", "PowderN: sample: Vc=47.24 [Angs] sigma_abs=15.12 [barn] sigma_inc=2.2 [barn] reflections=Cu.laz\n", - "Detector: PSD_4PI_I=42485.8 PSD_4PI_ERR=25.7979 PSD_4PI_N=8.59994e+06 \"PSD_4PI.dat\"\n", - "Detector: PSD_I=35503.4 PSD_ERR=24.9716 PSD_N=4.49414e+06 \"PSD.dat\"\n", - "Detector: L_mon_I=35503.4 L_mon_ERR=24.9716 L_mon_N=4.49414e+06 \"wave.dat\"\n", + "Detector: PSD_4PI_I=42440.9 PSD_4PI_ERR=25.8046 PSD_4PI_N=8.59445e+06 \"PSD_4PI.dat\"\n", + "Detector: PSD_I=35456.6 PSD_ERR=24.9783 PSD_N=4.48913e+06 \"PSD.dat\"\n", + "Detector: L_mon_I=35456.6 L_mon_ERR=24.9783 L_mon_N=4.48913e+06 \"wave.dat\"\n", "PowderN: sample: Info: you may highly improve the computation efficiency by using\n", " SPLIT 8 COMPONENT sample=PowderN(...)\n", " in the instrument description jupyter_demo.instr.\n", @@ -518,11 +518,11 @@ "name": "stdout", "output_type": "stream", "text": [ - "[1.494, 470.3132617]\n", - "[1.495333333, 472.9846513]\n", - "[1.496666667, 481.5639576]\n", - "[1.498, 474.1251374]\n", - "[1.499333333, 475.2808707]\n" + "[1.494, 474.8222215]\n", + "[1.495333333, 474.7230047]\n", + "[1.496666667, 465.981932]\n", + "[1.498, 476.3501473]\n", + "[1.499333333, 470.3317335]\n" ] } ], @@ -560,7 +560,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG5CAYAAACUWkuzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9e3RWx333+xkhIQkhIW6RQJKRuQSb4NgmOHYcxya3xnZudpo2SdtzmrZp2rxN+55z3vQ07Zv1Jr2utm/POW1P0va4bZpmJU3cZsVpc7GdK3WI4wt2cEywsQUWFhfJIJAAIYFAc/74zVczz9ajCyBAwHzXetZ+9m327Nl7z/y+87s57z0ZGRkZGRkZGRkZGRkXGhUXugIZGRkZGRkZGRkZGRmQyUlGRkZGRkZGRkZGxgxBJicZGRkZGRkZGRkZGTMCmZxkZGRkZGRkZGRkZMwIZHKSkZGRkZGRkZGRkTEjkMlJRkZGRkZGRkZGRsaMQCYnGRnTAOfc7znn/uFC1yMjIyMj4/wjjwEZGdOHTE4yJoRzbpVzbsg597lk2/udc6ecc0edc4edc1ucc28L+zY453ZPUF6nc24wnNvjnPsn59zcsO8VzrlvOucOOef6nHNPOOfuTModCecddc7tds79q3PuhnPdBlOB9/5PvPcfAHDOtTvnvHOu8kLXKyMjI2MmIY8BGRkZkyGTk4zJ8Cng8TLbf+i9nws0Av8I/KtzbsEUy3x7OHcdcAPwsbD9q8C3gCbgZcBvAYeT8/aG8+qBm4Bnge875954erc0s5EHtIyMjEsceQyYAHkMyLjckclJxrhwzr0X6AO+M94x3vsR4NNALbD8dMr33u8B7gfWOucWAVcCf++9PxF+P/Debypznvfe7/be/w/gH4A/G6f+mr36JedcV5iN+3Xn3A3OuR+HmblPJsdXOOc+5pzb5Zx7yTn3WefcvEJZv+ice9E5d8A599+Tcz+RaJceCsu+MMP3mimW/SvOuReB755OO2ZkZGRcjMhjQB4DMjLKIZOTjLJwzjUAfwD8t0mOqwQ+ABwFnj/Na7QBdwI/AnqBDuBzzrm7nHNNUyzmy8A651zdBMfcCKwC3gP8JfDfgTcBrwB+1jl3Wzju/eH3eoxozQU+WSjrFmA18Ebgfzjnri5zvVvDstF7P9d7/8Mpln0bcDXwlgnuJSMjI+OSQB4D8hiQkVEOmZxkjIc/BP7Re981zv6bnHN9QDfwPuBu733/FMv+Sjh3E/CfwJ947z3WaXcC/xewzzn3kHNu1SRl7QUcZl427r1474e8998EBoAveO9fCrN23weuD8f9PPB/e+93eu+PAr8LvLegYv997/2g9/4p4Cng2ine81TK/oT3fsB7PzjFMjMyMjIuRuQxII8BGRnjIts1ZoyBc+46bFbp+gkOe8R7f8sZXuIu7/23ixu997uBD4c6tAH3AJ8FXjNBWS2Ax8zPxkNP8n+wzPrc8H8psCvZtwv7RtIZvO7k/7Hk3MkwlbLHI4IZGRkZlxLyGJDHgIyMcZE1JxnlsAFoB150znUDHwF+2jn35PmqQNDYfApYO8mhdwNPeu8HpuGye4FlyfoVwElKB7KpwJ9h2eXOy8jIyLjskMeAjIzLF5mcZJTDPcAK4Lrw+zvg65xDO1jn3Hzn3O8751YGx8FFwC8Dj5Q51jnnWpxzH8f8XX5vmqrxBeB/d85d6Sy05Z8A93rvT55mOfuBEUoDBExX2RkZGRmXHPIYkJGRIWSzrowx8N4fw9TVADjnjgJD3vv95/CyJzBtzbeBRZiD/feA30yOWRrq4oB+4GFgg/d+zOB1hvg0pnp/CKgBHixcf0rw3h9zzv0x8APnXBVw+3SVnZGRkXGJIo8BGRkZADjzQcvIyMjIyMjIyMjIyLiwyGZdGRkZGRkZGRkZGRkzApmcZGRkZGRkZGRkZGTMCGRykpGRkZGRkZGRkZExI5DJSUZGRkZGRkZGRkbGjMAlEa3LOeczy8rIOH9wXDwB+UfggPd+8dmUcfvtt/sDBw6Mu/+JJ5540Ht/+9lcI+P8wLk5fuJk4hkZGZcv9p3VeLHSOX9skmP2QR4vJsElQU4qgNoLXYkZiHrgCNY+I1M8ZwFwcIrHLgd2nkG9iliMBYWfTswBhpj6fc8ELMdSD0/WsZ0N1NbzsDicFP5fihgozcp8RjhwYD+bNz867n7nqhad7TUyzhcagV+70JXIyMiYkfjEWY0Xx5i8d/mEhcrOmABZ4XAJYF6ZbSImEAX0qTzsg5hgn6J6nGOnSkwWTLJ/PyY0j4eq5L/uYbw6Ccew+9a9lDu+XLudb9Qn/3dyZsTk2tM4ViQwJSOXMjGZXpyc4Mc859w9zrm3X7j6ZWRkZGRcSGiyfKJfxuTI5OQixxygjijArwxLaUwgkoOiFkHbW5NtTYwVkIfDskggloalBOzxSMjBZF+R+AgTaU6Gk/+6h+NMjVzoXoaxe0vJwKwJzquilBRNBa3jbK8itlVxuwik7qW+zHHp/nIk66ky264vc27G2WAE08WN96Pfe/9B7/1XL1gVMzIyMjIuKDI5mR5kcnIRIn1ox4C9ybbZyb4RYDVGDpaFbfXJf5lv7cYE63qgp3CtKiIhSAlEBSbsVxAF7CEi+ZhHqbCuaxWJz3hkBSLRUnlFIb8FIz3VSTlFgqT1NuzeRNpaKW++JnIwDKzB7nE8iKzdGJY9oS5FIjKMPaP0Xpcmxy3A0gVDKSGSRmQOpt1YRinBXIq1i+pcj93bcuyZCtKMjKdtmugZZAieSTQnGRkZGRmXOTI5mR5kcjJFzISGkhA6C7gFE14lIF8HvAboC+tLMeF+LyaU7iLO1FeF81JNyO6wT8L88rBMtRbVRMJxFSb0SsCuwIiHyMdCSgXkKkyIbwrnVITfqWR/isUYeagI9z2EWYrvTY7ZFo45nlw3JRxLidqRXcT2a8S0TboOhXNUl52hvKXAWmLbiIDsD8fKE2Ex8Oakjq8hEkEoJWbDREeIU5SSjgWh/KeI7doajk+fRw32DESg1oZ73ImRFj1j3c8sSgmK7mc8bU1GikxOMjIyMjIyzgdmgsx9UeBcOVafzgOQhmIVkRRIm7EH+CEmGFdhAm89sB4T3sHIzPpQzuFw7pqkHgvCuXOSa4kcaBZ/N0ZctmFC8Bqiw32qZegOSwm+bZgQ3xOu0RjOOR7uJRW6dV8S2o+E407XaX5v4Rzd00Fge3KdlKB0Y+0gnx1pPbYSiU9N2HZ92C8Tqr3A15KyfogRiuuxdkqJwX7svhdjRKkXa5dm4Brs3qUVaaKU6IGRnp3A24gmazsx0rg2lL88ub+lGMm5KilD91PUlk0Fp2vydvHDM4lZV0ZGRkbGZY7LXXPinKtzzv2zc+7vnXM/f6blZHJygXG6pKcC6AIexARaMDLRgAmjqR/IEUw4/qmwvgt4HhNGrwrbng/nNGLCahUmfO/HCMm1mJC8EzMZk0ZFGpRvYgI1RIKxmqglkNjWldzDLko1HKk2JMX5ctROCUw/0fxrPOiZ/ShZiniU87tpxgjC8WRbqtUCuAFr623AIxhBacG0HUPYc5mHEY+1WBsuB57F2r0Ge4Y1of4tGNFajL0ne7HnPNF9TYSiSViRTF768BhlHO+XkZGRkXG5YzrJiXNulnPuR865r42z/3bn3HbnXIdz7qPJ9k7n3NPOuS3Ouc1nfDNW1qedcy8557ZO5drAu4Avee9/FXjHmV43k5PzgLNt5FQwlCZhGCMk6TWWYjPqazChtjFs+yGwDhNuWzDzqj6M1EhzIqG6PZyr9d1EYX0dRjL2UCrQy19ChGN7sm+4sLwUUE7APz7OvpXA/RjhuB5r89VEorcfIxFPY0Tieuy5fpfoyD4cfnWYBmdWOG4IM59rw551d7hOXyhrFiY234SRyb2ceejnlFhNFint0sSkDvEZGRkZGZc5HDGgzni/08B/BZ4pex3nZgGfAu7ARLn3OefWJIe83nt/nfd+/Tjnv8w5V1/YtrLMoZ8Bbi8cN9G1W4nz0Wc8c5fJyTg46qcvxdzpakeKPgDHC+tLMRKxGBN+a8I5B4nhc9uIs+nXYoRCZKWbaEJ0CjMTG8aEzoeJBKcGMwNT+c+GZVuhTtOR6+RSQZGEdYTlYowcNGLaqsXAAPa8lmLP4vmwfi3Wzv1he3sooxF7HquxZ7IGe65DobyFwJ1hu0zCmrHnLbOw1IxvOnF5EJbz53PinLvaOfd3zrkvOec+NO0XyMjIyMiYdjimpDlZ5JzbnPw+OKYc51qBtwL/MM6lXg10eO93eu9PAF8E3nkaVb0N+HfnXE243q8Cf108yHv/EGPjB010bcVYgrMQNTI5GQdznTtnZavRx4sENZnpjfxKTmAz8NdigmsrZsJTjwnJVWF9iOjLANF0qw+buR/AZuXfgBGVLswZuwszH1ob6tSDvaESuDOmDmmghoCbgR1hfTWm4ViMtWsTRhivwchKL2bq9SaMcNRhBPIg9tx2Y89sACMe27FnejAs6zGyuhwjENvC/8kIc7kIXnpvi2R5vG2XFs5ec3I66nHv/TPe+18HfhbjpBkZGRkZlwYOeO/XJ797yhzzl8D/yfjDdQulFvO7wzYwO+RvOueeKEd8ALz3/wY8AHwx+Ib8MjbeTAUTXfvLwE875/4WOOPQ+pmcXADIAbuHGLlqopC1gtSBC4g+IAovWxXWWzDB9BQm9B7DBNROTPPRhxGN/aGcRoyI1BNJT18odzUmzKbhiTPODgeBTdiXXBXWd2HP403E6GLdGMFsxky49oZjFxNDKNdhUus3MPH4BDEIwv6wPIVpXvqIBEKaLr1P8iOCaM6XRhZTxK9zFRTi4sC0ROv6DKehHnfOvQN7Xb5z1tXPyJgSKifYXjnOenF7ueMnKrPcOeX2lTtPv/oJzi9Xl/HOn+gak+2f6J6mep9n0i7j3eO5wvm6zsWJ6fA5cc69DXjJe//ERIeV2SaTn9d679dh48pvOOduLVeA9/7PMfHhb4F3eO+PTqF6E17bez/gvf8l7/2HvPefn2J5Y3DB3jLn3Grg3mTTcuB/YPLyrxLdGn7Pe/+N81y9cwpFR1J+jhFMKE2zuqeox4TGXeH4gxiZqcIETZlwrcH8GxaHc54iko0GrGGHMcLxhrC9jhi29hpKw+iCfWj/edZ3nFEOigQG1t4D2DOqx/StC4lEtAojGweJZn+d2HN/C5GM7gz7G4mO9N2Uz+kyTAw9LJwK56TmaacbJY0yZVz8ULSusyjB+4ecc+2FzaPqcQDnnNTj27z3/wH8h3Pu68C/nNXFMy4iaFg+Gf6fLOwrkuHiMH5ynO3ljgHrBQYnKK822V9ZWFdvNJgcW8Qg1pMNFtaFtFcrXi8tI033W65HE14Wjk/L0flp/QaT9UHK1z3dVqxneh8HiW3TgunBywVpT+9L7V5b2Jeul3sW6f7Bwr4jlD7PYltN1nblUHzf9F5OdlzlBPsuXYicnCVeC7zDOXcnNsw3OOc+573/heSY3Zj4J8i1FO+9li855+7DxpmHihdxzr0OM465D/g48OEp1m/ca08XLhg58d5vx9JzaPZwD9ZAvwT8P977v7hQdTtfOE7Ui6WRm4TqcMwRImnRjHYPRizmYN3NNmIY4GZM0F0fjpOJl3KgyNRHIYOHMNOgaoykKPpWie3JDIX8Ls5XZK/pxjyMVBzEntVyTFO1CXs+e7FnI20XRMLRTEx8qVDL14SyVoblsXCu3qVlYbveJw1lWi+245mSjEuLmEDUnIyLRYWoKPeMo6ovopx6/Ebn3AYs6kk1phzLuOghYjFVMlFOa5AK3OWEeBgrQJc7r9z+FEWhvbawb7Cwf0Fh/8FkfwulQngxpqH0/QuSc8pdU1NnPYVr6tyDybEiQ8UyVe8GbHpnsHCO0FHmnq7GgvBrXdeG0pTBVWE9baP0XrV+sLC+oHB88flqvXac/elxKmsPY59tShSngiJxK55brEdKrovbyqHc+59+JxcXsZkOcuK9/13gdwHCWPCRAjEBeBxY5Zy7EnvQ7wV+zjlXB1R474+E/z8F/EHxGs6564G/x/xaXgA+55z7I+/9x6ZQxbLXPv07HR8zRT/3RmCH936XO4e+HjMRqa1+I9at7cYkkhpMUB3PB2UBMdTsqnCsqGwNFm74ddhseHc4tgbzeXgQi9ol4XU5JhCDmX/NdB+CZZgmqQ+7/5XYcKJ2a8E6iSos1O9qTEOwlJj8UPlZLiSKZKAHM8+6Cbu37xId3Hdiz+nz2FTHTuwdUO6ZKqKd5kLsefdhfivt4fhdmNbtCPH+9X4txdpSw+2lp/04G8jnZFwMA08CX/Xen46dbVn1uPd+I7DxNMq5rBEmuDYDe7z3b7twNZlotrhITCYTutKZ8HTbZMJrUWjXtlR4L54jc/GiQC1BV7EhO8cpQ2ggCvBgPc9wOCaNL9mZnNcUfqng35TU93BYl82B6qP19lDfpuT4qrCu+xCx0fowRjbUVs8UjluXlKX7SoX0KkrbheT49BhloUqvrWs0FJbDhfuASMQgkr60/LTc9nAfaVutIz4zlUFhPX1mKamc6Jz0/SgS2VTLRmE/lH/vy30XFxcpERznVrB2zn0D+ID3fq9z7sOYODcL+LT3/ifOueXAfUGWrgT+xXv/QJmi5gA/473fEcr9ReD9Za73BWADNgG3G/i49/4fy117Ou9zppCT9wJfSNY/7Jz7X7HB5r957w8VTwhOPh+E8qP7xYY5WHcyBzPLOoUNS3OIgvhSxmZIX4fNoHdhXdUA0edEiROPYAJ7MyY99WHCawOmfdlPFNyfOkf3Nx6uDdfUvUlgXhbqNg/rspXZvi38P5X8X4fVfz12jxWYGLkfI1/avjMsm8N52zDzqT3hGqvDOUewNjxd5fd0QCZWndgzexf2TI9hJKUHMyIdwoai/USy0RuOW0YMUTw7lLM4lLkmnDsPI0ZVxISOEP1a9pOJSSkm1Zz0e+/LOh5OgnOuHr9MoJCbRWnxAmEy06t0W1H4SwXDlyX/RTbS48tpDEjWRUwakm0yDJZA2k5pKtZ0XcemAnCKWqzZ0+s2JMdpf1PYdhjriZTyF8YK7SJUK5P9B5N70LVEqKTlKGoLaonC+UHGamTSXr6d0rZUWbWFZXqPtdiIquNV75ZQhyLhK5KLPZS2m9o6XW9P1vUcdX5P2J8+/6vDf5XTSenzHySSRV0j/WTKZeoqEpVUM5bu130XNTwwlrScpNQksJz25WSZ/zMfFZQPKHOmKE5Uee/vTP5/g4JmPZgIX8sk8N7/oLA+jGlSise9b5zzx1x7OuH8NIbMPaMKODcbG4xf4b3vcc41AQcwaeAPgSXe+1+eqIxZzvlaxgrvFyOWEvNUaIa/GhPU+zDBei9wC3GoWh72nwjH12FkZQEmgCqekOaing/lyN9lTjheSQXPNRTqeDWl5mpPA3djQ41MzkQkqjGBWTk9ukLdFVxgIOyXJkkEphnrAmuwTuMIUVsyJ+yTs3hvKH8Ya7suoslTf6jD+WojgNdjw4/Ix2oiedC7UU8kGr3Y8NBEvKcdoc7SsvVi97+AGN54HtZOm7F3aU/Yt/sc39/5wgA8MV6s96li/frlfvPmPxx3v3O/0AF8j0k0J8Hn5Gve+7VhvRJ4DtMe78HU5T833bNQlzJCyM1/Bv4Y+D8m05w4t9TDr53jWpUjIxJex/NzKEc+ioKgyhGKmopBorC5krEagWFKBVrVKRUMU2G2h/Jal/Qe2pNze5JrpahlrKYjFZCvJs7wS4DWNZuwni3V3hwGXpncUwrdTxPx/lMzq3IQEVBZe8LxVxeOO1w4p2judJhSMlIU/J9MzmkI29J20bVTdIalevd0e1GLoTrpOJXdUFhX27YU1ovvpK7dnuxP21vHF83yyi2FI0S/oLSMokaw2Lbni6B84qzGi2udm9RJunUaxqRLHTNBc3IH8KT3vgdASwDn3N8DZTNjlkNKTMYzSZnppioSFuXMfAoTJmswbcdw2L8XEyBvxLqFIaxLayPmvXgKmxWvwIT3Hoz8rCJG4dofjk/nzc4F5mFzWE9i3eFizIxsPTEhYQ3WbSlkbg8xW31FOE7BA5Tx/FmiI/8sSofgxeG8LkxDsj/sP5Ysh4lkpx0jLAo0IKfyOixE76pQz52UKs7PBSqIUdOUq2Rv2NZGqaapmdhOazBCIm2atEtdGFlZHc4bJmpn+sNvHvYOHefiJibS/Ewvzl5zcqHU45cBFHKznAfyecZ4Q+pEs8mpwJ+SkdTsCUoFdqGHKHgeppSspCY+RcFxPB+R14bz2pP9MqvSeakg2lko95XYJO9rw3pKgmqT/6kAHnw5XLim7wzbwkhdWwWD6ahda/WbH1YPQSkhEjHpIQrfVbbdhbbyBSlgfrt19qNydLjGKIZhURUcSIX8FsYSsWGrr6rBjyklUSJaMFZTsifcd5FsrEuOp7D/aiIBS83HDif/U21RUTNSJLcyd0tN7NJ3Tu+CrqnrtxNHxCJZ0fMuEtty5mLp/Q0Wtl8cDvYOqJ1Msp651Z8xmAnk5H0kJl3OuSXe+31h9W7O0C+7ApvpbqM0L0cNUeCfidCs95qwXIDVVQn7FNK1BhNYH8UEVTA/BZl19YVjpF1oJArlEuy7w3ldnFuN05pw3Tqsm5W2RKZrdVhEsOuIAvlWTC/ZTXQal2N/d6j/0nD+TkwjsI6Yzb6KqFhfjRGh1cTcIkqEODvUoz6cIwIDkSAeI+pIl4f6rMLInwThU0xv/pcaoq/M09gQci3x+e3H/E6U9b0be1c6iRqReowMDmGEYwFGslpDeduI34cc5eu4cP5G5XyA5lAa1riIctrSlJhUY9/E2WOESVpmnnPuHibQnFwo9filjDTkZnAcHe+4UTNg+4LPBco5rksKGW/Wvhg9qZw2JRXWWpJ9EhIlMEuwTc1+BjHhWIKjnM9TMtJDJBOdlAqa7WXqk9ahaKo0DLUbYDAVVBuCU2DqE5I4gtcCg6mGoT06Eeq2V1bFiC4DTbbtULiGa4oBVMEIiAfmNwXiIjTE1HAHqqyT1f5DoR4u9P6NTXBII07YfiAparTsnsL6YCJTVwGvjOuLquBAbUKQRAxS4peilrFtXTR/6iCSnx7sHdhDJBfSgukckbaUFKX7oXT6thhsQBqu9rB+mGg6lz7fVBNWvI+ipq5IoMppTYqYuaZeFRVQO1lW4plZ9RmFC0pOnHNzgDdTqmP/c+fcdVj30skZ6t/rMIFW/Vsa+SpFqkmpwIS1XVw49GBC5fawvhQTi57C6teO3cNh4nxYIyYcdxIjdinnxS6iJmYORmauwQS4RqJT+XSgKpRZDVyF9f1gAv3zYV1+I4Q6tWDEYjGxO91JtNkcwoTTvuQ+DxJDJYO1xwLMLGkl0SRrYbiuEhB2EvO6LMCE2uXY818TtjdhbdNCzB0ibZRMzRqJ/kHLMS3F4xhZmK4IZxLItwNvwwTsBUTztBOYtqMutMkqrA0PYu95TShjFUZuFIJ6MbACa/M52DeyAGvPbiZPAHouUW7CYCJiom93Im3o9BKtc+JzknF2mErITULktHtAZl3nAqnDuwSq1K6+qHUozigX98vpOiUKqeBZnHlO/RzAejOV1Z6cU5Vsl3ZF9V2XbFOZEP0/qigVTtspmX2vrQpFpf4fDfYhjsqeDdapHg2C/6GgbUjjTezBCAlYZ9VLJBaDhAGhKe6XiltV+gnWuclwRrpIZXGoC/XR4LcwlLMwqcOiKutctb8juYeF4ZotoQ61wKHDsKjBBogOIsGShqcR6G2PA2MdcKohEqT5VVbnA+nzT1EVuImeSTummVHvl5oNpkERUpM6GOtwrxvQvvTYlkJ5OjfV7km7I22KzNX0Tql+g8m58k9RGeU0hiTrE5nkzSxUOKitmeSg6Zkxu6RxQcmJ9/4Ypd0B3vv/5UzKKs66DmPPXzPbqZBSnawPF7YVzUE0o34+naPlCD8bmz1vwmbNnw77T2FC29Lk2L0YIZBQPoIJsMpAXhfKkR/Fs+FckaCzhcy2ZPa0INRxCBPcm7E2Xhiu3RCOVbStemKejhZs+BsK9ZMm6VlME1BOEBWhTHN2dBA1DUUod8xW7Jk/TUyAWE30u2ghamIUOa0GG3f2Y9qHpcANSbkifAo2cLbQuNuHkcs2ot+IzPvUzYs8tYVrd4b1fmycfhprx6FwjDRtqSP8+Ub6PQrlcv5Ii6Ljh7Hvfpj43gnTfy+TRuuaVHOSMf2YYsjN84DiTG6RaKSzwxK0Usft9Jj2ZP8gUUjVKJRqGa6mlMz0lFlPr6vZ9c5wjMyMtL6A0khZK60cRZ0ZNYcKx7t262AOhTpJ5nxFqPNP2u2yXcQyHPYRa3b5UJV1cOJVezAzAHUAjeFyIhJHsYFE62ux5ldA7h4i+dBMmGa3ih2NZO16rHNMycjxcI7q0Jhcsy/UtzFZb2uwR9eJNZvsP1oLS9XhKDA32T46SxjaTqRGElLHcHh12uP+Q1dHbY8fpjTwgY5VFDAYG51MpDk0hGsP5aQG0lBKSlLNR+qz1J4c00mpuWFKgKW9S9/7onljEUVtyoWcRpsEjihMZJwxZoJZ11mjEnsXUnKiV7ecgKK+IZ0j0LbiTO25+gQmC2O7AKuTZu37iLP8mourwkyhOrB76cVIgsLJjoTjh4lO8fJbgRg6eDpwAzH7vKJKaX7uFFFrpaFT9anDhMoaIonYQ0wceCLcx5lqJMabUVfumHnJtYdDXa7H2ukYkQRC9DUZIb4n14bzDxKJy3qMRMD0+KY8jiVarCP65sh0SwT1KkxLtI7oi1JN9D1ZTIxWRqi/kj7KP+lCEBMw0leUGTSxlJp1KRBAI/G7lAZrZ+H4mehzknEpYryEiRL6UpOs4jYK6xLmnimsqxe7mmiqpf2DxKmJFsaGjn1t2N9OdKA+SDQFkgN3KnwuYNQRvJbo8AjQEXr12lC3GkzAFm/fgQnbqsIgpqrfipEIbesjypptmDD/SFhfhJlQSWjfT6ml2UKsE9CMENiAsST87yTKyQdC/dqIznvCkaQOa8OxIhvPhHrfEtbvD2Wkav/GpDzNpgyGczaF82uIbfM4Fttf67vDT02vpczH1ri/rmUAACAASURBVGLmAKrT+qrSx3+ARFMF0QQtIa8+bF/UnpQ9zFg/lvT4ohmYSK2Q+g9JCzJIKclItXNQGmK53HdQRHHfZGZeMwgVRO1YxhnjkiAnJ4kTHkI9UcNQtOqFUmX5AuxznUM0d+rDhNDijKyIQTF53eliMp8X9VnbMGG3CiMhh7E+T9ftxJy91UfWhHNqQv2OEU13DmICazfT8+0sJvpfKAbMMNaGh4njmULWHgx130MUmB/EBOzvlSn/fPg+lEveqIhcMkHTWJJ62ypymEzM9DuFCdt3Yu28k0jAzqaOMm0TMZIDez32Dgxjz0FhgjUJNwt7Lgo+cIyxfjw7OXc+WIokVkQF9n5UUJ68abIhnSyQdkzHa24vPSaNZDa9OPsM8RnnFhcmN0xqylX0MykXfUvTFQ3EGW39h+gPoPVa4szzcNh/I9G0ax0xhWvqe6LrS1h8NDmvIVQ1aFVcUxwQJEyX+GP0wNom60TmA0MNUcuxIxwngqFkU/r/+nDc7aFMaTckuD+OdVy7sQ6qFSMyrdhAvDtUfy6l6tBrwjGbiI/g3djTl8bijlCH3eHYa5N6dYfrqqO8PxxfjZmA3YV15q2hTHWu64Fvh7rVYZ3r06FuJ8PxfRhBEcmqwwY93fPC0G77MA1Rc1LGfuADoQ22hPouDuvVRKfUtrCfUKdO7FFLeBkgam8GiKTEVcHCKpvJ9DAqGbgm8IEUu3bwIhOyT4P4fqeEu53SnDUyARMJ1jewIClvkBihrYdSopOad6X+Uek3lGofs/PGpYoLHkp4OlDtnJegUk4YWoN9i0Wry3Rdmgydn2o2dGyRqBTPnW4ohLB8LeqI9vWa9V5O9DsRYeoK683YbHobZsrTiPV9muXfdpb1uyWU3Yf13crHkWp3TmGCpsYUmRSBzfDP1MAE5dBEnJCTcK37H8Lau48YKUwmdMoZ8jSRYJzJtRcCrwllKkjCMEbuZhM1bEPEhIrfxJ6zzBNVnwXhnD7OvcnieN+HtBzar3DH+4lBC+Q7Q9iftp/8gzSJ0Ivd3+7CvukJJbzUb978gXH3O/eHUwolnHHhcW5CCVdSaqJVdBTXNs0aQxT0rk7W0zKK4V4biLktIEZJkqblTUSfEF1vgQmk6WyUZv0h8XcIyxXhtGcohS4pUyfxsacxbcDTyf5biEJ/C1HIlzy5g9g5ArwqXP+FZL+2gRGTLZgWAYxjLQFeEdZ/QKkDve6tBiMIYMJ9c3K/12CCu7QUEujV1BL+NcO2iNKoJ61hm+5pO0Y0HiFqfHRdrTdjZKo52b+Q6A+jAaQvWe/GnglYuzQm5W3FZHORMcn+64lmEa8K5x2ST1BDIJ6B/M6vsvLVtrp3kcjRCHF6Fw9jD0DoxBpNU6cQSUtPsp4uU0Ki7dK2pOWm30lxlDqXpOTsQgmvr3F+8xUTH+Oez6GEJ8MloTkRvVLyvXqiA/MQJpzpe64mhqTV+vFkXRqJVJhSxKsuykMaiukOUSyzrnpi2N8BrG9ZjZEomXt1YyTsIHFGvwuLwiQtxWxM+DuGkYQzgSJErcMEQDm5d2Pd0S6i9n5/uOYerO++kIEGpgM94afABGDPYwgzq+rDSEFXOGYekRAqy3sXZkJ1ugTlINbOSi7ZiL0X7cRxvpuo6akh5rtZSvwm6rAuf1v4f66ISepHonutx8z0bsKisyl6nL4bEY/Fyf9TSXn1SX1bQ/n14T6GsHdtN/bOH8PaaA7T5Vc1qc9JNuu67JHaxReJhjQkqQ9JVdimtzpNjgdRwEv9CFJ/k3WUkpswA67eyR82p+4BorP4gR6obYqv8nyivS9EwnBNWG7EhNcnwvqrMLIgLME+tNeFdanwJYCLaOwmTsAvJJpm6bZmEc2yTmGzMBqkDoRzN4T1oVBeKtQfTfYPA/cCHybOiq0N5+i+dodyVoX1r2AmCGr+A6GOEh83h326h0NY06vOS0IZN1Lq7Lye6H9wCiNUukYdJtOLOKrjbg/rspPuDes1GAnUs5IfjIjkEqxzPUA0R5uLdZSt6XsDzE2IQCeRxA1QGkd+fhUcaqI0nPVGollYSjT0Hj5DaXhiKCXqTYXzGogaQrDvougEX/RDSffNMO3JZW7W5ZyrA/4GG+43eu8/fyblVEx+yMyHBBgF+1QI2H6igLSbyPePYK0m4VqoZqzQuJTY15wK6ym/13WmMyNoCtXnFFZXJWjUcCaB9Rqs26gJP5nHKjzs7HAfnWFZztRmMjSFstYT204CrjQITZhgqCG1FxOEL3ZiUoQIl4Tp57FnIb+T58O+I5iwrIhkI8Tx8HQwjMkIR4gEvItIVI4RI9RpOUTUrFWFep0IyzVEOeRcBFbVUJiWXRXq9Uj4Lx+qOcRvT5Hm9I0dT5Zp4klFaIP43u/H3j8FJKhhOvO1yOdkvF/G5YlKSrUmmmVOyYlMXVLj13QqS+uvZKymJXU4riU6wCtErMhIu52yEHtVPRY5SrMnS8Kvtsk68BailkAT3x3Yq9yBCbgHgPdivh23h98G7MM6Gn6LQvnd4Xcb1gHNDb+1BOEYm8G5CuuwVobtx4l+KXXEzutrGAEQCZgFfD/8WsP5On4F0UZVavtWYtSPtlAPmTntw0zAwDqoeVibSFNDuK9VGLnaEcpoTdrhDmwQkGP/IuKs3C+EX2tog1PhJ63NhvA7RfTpqaGUfA1h5l1tRDJ3S3JeKhDcFX4riX4zK8NPmhv9ijiAvToqc30od374KVyyIwQ0qKI0/8uNRO3JnvArvv8LiC9cC9HES6RHsUeFnuS8VHtCmf8zEGnAh/F+kxXhXI1z7jHn3FPOuZ84535/nOManXNfcs4965x7xjn3mrD9dufcdudch3Puo2d1O8592jn3knNua2H7eNd4F/Al7/2vAu840+teEpqTaqLJRz32+ndjAtsaovnSo8SJD4iaEBELRT+SdrUd+9SkFVlFNJmahwlDMgFL7d7PxheliD6i2YsmuLaHa6/H+nYRFMXYkGO5khJKUFXm9FSDezpYE66/jGi+pKzq2zHi1oCNh93YxNc2LlzejHMFkeDjmAagnpipvhl7j9ZQmvSxGWuv9dg7dDqz+dIuyDRPk2JrMEFcUc9kskU4rgKTFb6BjeHNmFni/nCsxKOJiGo5M8eJoOP2Y9+akjxWY0PWHOwdUThktc9S7F3S/72UWmqIvCwN91yNtaEmB4RjROt89QnTE7VxUp+THK3rskZqrgXRXj51LJaPSXvYtodSkqIp8KLj8Mpk/RlKs5b3wDVhVvvpJtOMaJb7FCY0t1MaUaSPOBuv+Od3hHUNftIYiHgUB7Tbk/9zieZRqW8F2OyAnOb/Mmz73zBi8+aw3olpBEQO7g7l3RTWZSqlD3mIEmG74hW2Y2RPUA91W/2W3fksu758FQAL79pDLy2j9zWvvZv+1uZoAfeBk7C5srTerSQaiJMwVMnLX/5jAJ7761cy7y+66f9MUBHVY1qRKqIPzIZQ99SUoJP4LFrDMRvD+gHgI5QO0CJi2t+LaYTULluJ2pvWcG4fRuLAIqnsIYZQFmfQa7k+/Bdx2Yy9ujvC+uuATQWfpEPtSQWV5ySNaXoHpe/po+GiCtxwNWO/l1SHr28l3VZ0wj/CjBVfHdNRtePAG7z3R51zVcAm59z93vtHCsf9FfCA9/7dzrnZwBzn3CzgU9gXtht43Dn3H977Ekt+59zLgEHv/ZFk20rvfTFl22eATwKfTY6b6BqtlAaXPSPM0Kd7ejhOfI37MS2B1rdhJlD12HenyFZLicK8Mqorcd1eop9KP9FP7SBRK7MXE4TmEIVzYTpDWMudrCbUeRMmcD5PJB2zifkujoX6VoU6K4KiTFzOlJisxtpEAupIKFORwNSefVjbbGPqJkOTJdqb6VDkr52Y/6fC20oIFxFQ/JJZWO6Sbdi7Mlk0r9RVVmZbmmBsJDrlyzdpMdGB/unk+nuJGpTdTGkCZ1Twn4yYiJSkxw0RtR0ywToS6thI9DlqIhLqecRoY0NJue3YO6/yFoayBojvOsRnAdNtspajdWWUQ0okimZdqQCmWeSi/XwVUfrcgwluT4b1q4lqDYjZu4fj8Yvak+yvh0sTD87CPvLvY4ShDxOUn6E0ctYKosA8REwKBfbhnQQU4P8B7OOVqdLrgH8CrgzrK8MxtyfrrVinIzMuMLKiawwDb0/Wh4ANJ+FoEE82nITdlbGZrgIqjWAA9H/NCMLCu0z47X22BTbDrr++arQevf8W1ETBn6P/K81Wh7frmpVWv1QIV4x5gB2VVPzKAM+9uMbW10PT7JfoH2qO9/kjqHjtACP9ddZmT2MES89nBxZeU2WuDPcqM7kmrJPTHIgy1otYgD2rNKrZBqJ6eCP2XGuSthzASJP8WK4LZYqcHsBeSx1fE9ZFVjrDNTvCOzcIJaGlGxvg0DPhZqSKOxzWZabVTqlZl7aneU6UuFEXhfFNuWoL6xclFjnnUnHsnpCLCQBvzuB68lXhV+Ig7pxrAG4F3h/OOQGcCNqTDu/9znDcF4F3MtbN+DbgQ865O733Q865X8WmBu5MD/LeP+Scay+c++oJriFqv4WzsM66JMhJEcUwonuJAks90XegiphQrwoTghQFSfRvOSZMrcUEvtSS8lpipCRBTvPlcjecKTQ7PoyRhP0YGTiBjRGnsH4szesijckqzEtXZlh9nD6qQ7nqr6sxQqHALsqzcTCUv43TMxu7mIlJEQeJeTdOYG0jU69Z2KSeonrB6YdDP0Z8r7rD+QPYeK3nP0C0VnicKPi3hzqBDR3TleMGIilJM7ZL47gUey/kA7YYez9GiPltlhPbRfv6k3K7iE7zes/03pyfoAqeS08HmHH2KApMafK7dLY3ze2gXkJhWkVW2olJMrTek5QpE5jauL+WJHN5gwm68know17Za7BOuxEzaUod2GuJZkBgHdUK4gybZu4lYN8erqcMuIrMMpQcfxtRuN1NtPddFMpZhIktEsobsQhYcmtYDGxNtRiVdo7qOARshX45tgTH8WNHzQaitvUQg5XzjSB8CRZ+dA+9R1uiY6TKSIT4V9/5EI89cutonZa961m6etoY+UHQxrwbRp6oGyUCFe8c4LnPvnL0PmubDzF4/XxG7q2zuASVULFhgJF766h4T9Ds7K6zwUB1kNmVXqFOWPjbe+j9n0HI34I9O4moraHtrwrrB7AOXkRjA0YM9Qy3E03bxAPk9K/n24dZZklM/nmMRElQ6CJotBJj9lFzL6zzdleHXDd6N+XcXiTZQqpFEW6kdJpOPlowNoljGjFsBkJmXRPjwGQO8UE78QT2pnzKe/9o4ZDlmEj2T865a8Ox/xVr7NRFOvVqGIX3/t+cc1cCX3TO/Rvwy0R95mSY6BpfBj7pnHsrcMZWBJckOSniyDj/FZhxLXEomYO1soTxvUQnclkNK//TTkyY2okJYHNIJrGYPo2APk2Z7cjJWrPyuidFNpJmvhEjNrcRSZX8DKY6qzwPMzluC9dZTNSWSLjsJCZHvNR8S04XTyX/5ZgtM6c2TONxHNNC1WGmWk3E8MWToRvrqfR8K4jvqkhqD9EZXsELFMVL26VxmU4ohPHypK4iZ23EfDazku3SpNQRNSFp+jq925J9VOfzT2gn1ZxkXJYovhMaAYoZtbVN5i9VyT71zp1Ekxdh0EK7CgsbIhlxmOCaZkFP84UoTO1WYqxzOarfFZZPhP8KS9uBmQml5GIFMWLUt4mRrkL1RsPsgpGIfUl5csRXfpD1WMdwFzGiVAdGelJRpzFZD2GF560NmpJNzVGwh1Et0ODuxGmkMyyvgt6vtFjHIz8asPO7GHWQf+zFm2ElVKwwqb2rp42Rn9RFbc9RrDMK1xr5SV30awFm1xyH5kMMNs4f3TbyozqogZG/CI3wPqyD1DOoOQnPVsZn0Qm9W1qiNmczpjX6XBDTFH1MZGURJue/J6z3hLI3EJ/jvnC8noP8XEQ+NmDPWHXYgnXOEq5fh2naUuWenFwhOuSfwnychAGS1/gg9o63xxsd9b0iVFY+KEJKQA4WlkU/lGIC1AuMaXKI996fAq5zzjUC9znn1nrvUwPNSmx4/03v/aPOub8CPgr8uFxx41zjz4PW42+BFd77o+WOKwNXZpsPZQ4AvzTFcsbFJUFOirPPaQSg8dBK1IbqaSvxIdi3Kw3MMqJJl6iqhCPNJxzB+tyUkEyXADUnXL+ZmGRRfh+3EUOp7sf6CAX5kJa6F+ubBjg98jAHeANGvI5RmuOlijgT3kUpKcuwcXeAmPtrFnE8kOP8YuydK06HTISDmK/oh4gRuMCe/Rys228O/5uw92MzMarVTowY1VBKpM4EMrlqJRL4fqKp2vUYOZKv0yliuOvFRM2P3lVpkzQEpe/qZNoRxX9J39HpDfGdyUlGEZWMFZSK/iKdhfWO5Bj5oKTRjjqTMoNA5wN5cYGYjGZrD0tNOLdgL75MqvqwmfS1lJpUbSVOZK/FOnB1TouIfgtgQmk/cbC8A6uDonNtxGbaJSCDCa7SzLyOGHo4FXs2EzuvX0jqq+Va4qASBuP+ziDVrz8JD1RGAvX3mDGKonvJbnVtco0OSsgEfUS/CoDrK2EzjAwFKT4leOnxci6UE2e4p/7faKbijwasvUS6bsE6OZnQLTK/ldFXYmUl8z7STf994b6OA1vg1b/3EACPbboVflgZNUzVoT4SWBqxZz2UrLdiZnx3h20HKE14CaXZ6wcxYvL/hvXXEHPLaP/riM9iQ7i+ntVoOOYkq7wjvJuaSO8hJmqkzJJwQb3IafQ6MCJTjqzMUExNczJleO/7nHMbsaedkpPdwO5Eo/IljJx8gzgdAPZW7KUMnHOvw97Q+4CPEz2aJsPuqV7jTHFJkJMqTBCSdgOiY+wuok3+TqKmoVwUn/SVT8mNvn2ZlswjGgEOY34GT2HC3xysj+hNzpfDfZrT4XRwjGhe1oaNFQpO8iPM1OsIMfRqPdFBWrPPvWdw3XbijH9TOF9kTOFe9wM/ZHrN2C4V/Ah7/1Zhz6gOe/7SHEiTsJbTIwoy8XuaqOHfQ8wg30D0/9iOva/yj1pADMyS4nS1fHL4P4x9S0vDdZaHujQRQyYrYEUv5h91CjP9k/ZN/l7jYRnWjum3o22rMTJ0DfAwsT3awjWuB+5hOjBpKOHsEH/Z4SRjZ3ObCsekYYBFUJqSbXsKx64rrBMzfvtwimbBe4k+JGAD1OuJguNJoomX0I0JmDpGEZo0Ey5zp6+E9ZWYkN0Z1r8XrvuWsN6Jucqmb/zdlGpStmIfpsIMXxVMrz4TNB2KDiYh/PmwXJusV2EDDQDBzEuE625MtNJc7ReJyROvC9tqsIFQ4Yc3YB2xxCtpbzaG9dsxAqUZ8C+G60k0lJysLPXvC9qUPljyW5awZd/DV9pMkdpid2XpjPqXoH9WcyQSPwLeDY/de6utKwKYhJUa7JlKK3Ud1L7pEINfDO04j5gzUeRqECo+MhDN0w5g5EXkYyXRJwmi+Z/aVgRXmpONmA+LBnuFee6rikKPp5ArReGziwReeC2liXVaiElbwEYZ6dKhNNAEzLhJowrOmpw45xYDw4GY1GLGgn+WHuO973bOdTnnVnvvtwNvxIa9x4FVwWRrDxZz7+fKXON6jNq/Fcsy9Dnn3B957z82hSpO6Rpng0uCnCiaoEhA6rS+hqjVeA1J/8bkUbUqiInrRohRuWaHX3U4v4sYvncvceyoJ/ppqG7lCEK5DPZFqE98EyaMbcOEXmX6bg7XkR9IHVHgk8/Dtya5RhG3JHVLw+QuCHU4iAmgaeLejFIorojaR1qUIawdh8K29Uw9WIGyut9MzGGzBhsvpEWsxuSOZeHaddg7I1+hYs6e09XybcO+B5mp6V1TLp0j2HinSKYKoKBQyk9Rmr9nvEzyEDUoI1g7KZmySPi6UH8t9Q10M51TOdkhPqOIekpnc1NNSQsxfwNEDUkTUW2xh7G2+KkmpTNk6w6ri7APSjMLawmRsoJmZX1Dqf+HzIc2EGfz27HOQVqM1cRM5oRzFxEnvZ+mNPHffOwD/nZY/whGZFItyG5GZwlqmw9BMwzePx/+3bYt/Nwec1CXOZqEYUWYWhXOF+FpD8v3hWU39pFLdt0d6vUXYV0JEhUpDEyolnO+7rM9KWMlJqbVJmXUYKRE+5uIceCfxzohlXeAUaf/ffdcGYnVF4iR0LaGMkSIWrFn8SVbrfiVAaprTzD7bpP8+7c2lwYX2Bju6wOhHzpayeAn50ftTivWiR4ict7bYeRjiXnaHcRM92ADwQHia3wcI7QikpXYu6DyWikd7FeGe9iTtMUg0FXwjRpNYQ8mTbQQCYn8qtqTAjqJ38YzlGaOL0pM0xUbdZrgmA6zriXAPwe/kwrgX733XwNwzn0D+ID3fi/wm8DnQ6SuncAvee9POuc+DDyIDcef9t7/pMw15gA/473fEcr9RYJzfcntOPcFrBdZ5JzbDXzce/+PU7zGGeOSICdHMW6tqFF9WGvVY61/imgWexvRBGQHNtM73qy1QsZ2YEJeBfbtLyUK5cqjpHKWYm/ItZRmk68hhnItYqpKymuJ0ZhWEbUo12HCYhvm8NyL9S8nMOFsNdbXrGJq5lcVmOArQVf+Jor0JMHv38nakqlgG9adrsKen6J5pX4i12LkZCoaKIUCVq6QOURiKnMpkQ1pC+WkP0A0ozqbkNdyfF+LEYxu7LvrDPfaTEwACXFSbQCbcpkd6iNfm/GIiTQ912HfeD2WoqCHSLT2Y8OaZBaF334302kAMGko4YzLDuns7YLCsgjlgYBIYFINCpgQVvBbvYUotKuz0OzXVkxYfX3QrLQT7WwJ/6/DTG8asQ/jJoxMyMdAvhiaGVc0LuFDGAHSTPyGUL7MutqBDqj9sHlID/bVA5WjZl2vWrOZTfe8GQ4YKYHgA1IfrgUmbHdXxjI3YyZaErplFyqNyvVhqcHsJkxw/4Xk+AewzvSTYdvaUK5IA+G+NetXg3UY0lLsDvs3hPWNGIl4d3KuQiTDqF8MYORga6jHcUpDB2+EhX8Z2qGvxdov2KKO7KhjsKOOQXUzIkQ1gYzMC5qXA0FsW3QSVlSW1rkGc2nuTO7zDqLJ2+5QpshHT6iXSNgtWLuK2CqDfdr1bcBEUrD2rCM674I9p1MNMQv9qLlW6rjSSXz/tV+VVmLSnmT9MKUmlDPYIX4a4L3/MfFNL+67M/m/hUg102O+gZl3TXSNHxTWhzGKXjzufcVtU73G2eCSICe12Ou7BRPGlmHf0iyiM/JBTFBKnWyvC8f9FNaHdDN+BKNdRO1HN1FoknCoqET1GBlIzatEmE5w5lhKdIAfwj7rU8TZ9wXYJ78Y6yMVjGM43O8wcUybDLdhgrRmtruwe1yIdRHPYhqoTEymjk3Ys1lKzP0xjL2bMssbjywU54nk/9NL7Mal3dsflstC+SKWNUSr4IXYuzKZ1nA8M8BWYshq+dqewoYSabOHkm0yg1RkvFbs3SkXBEBmbwqdfRv2TVdgmpEniYlRK7D3UxMCVcn97qXUB+XskX1OMlJo6NQ7oZldmWV1UipEDWIEpYcohCk/hMjJjUF5cjie832gLZCPLkwMSUMupsRiFjGaC9gHN4jNwV6DCdgHMLMcCbSKQS9swGYPVKUhSoX6YrjHTTDv17vp7zBpdt7Kbguvu9LaZdNn3zyqyejdEmbCd2PaAAnzmyujORWY1ft9xNnnx8NS/u67sY5nbbJ/kChAbwlt8jSWyFBIycTzobx3hvUfYCZrbUkZc4l2ou9lrImVYrmDDYjzMaFCCRfbk3qozLXQ+0lrh9r3HzKN0mvCO3TAwiXfcfOXAbj/u+8yDVV9eNcUDrpTdai0jlSiaafV69XrHuKxvmAath8TcUVORNKUHXc99o4pn0sfUeuk9RbiO7KQqIUCE4aUn2E39hyUCbtWRuBNMJiabaWkA8zXKs358yTRtItQaJr3ROaRWp9hDvGO0w/DmTEGlwQ5OYl9Izdgr7Acb4eIyRQXYv1JNzHL+xAmxPUQZ5aXY4KkZmRTHMO+aUUD3Ib1N6uI5iOK6CWtL0TyoO/9TMyg9oY6aYJiGHv/FVa1hqgdOkb0SVlKzDdRNOUph1ZizhKFpF1K7E52Y/3wDFOkXhR4FBsLFhI1H4ryWINZLXyBsW2rLjglDD3YM12HkV5pD0Ry1M0rk7pMy2qImesnwkT+Sf2h7kuJE3CNRG3QEYw0KGLl7HCOJhDL+Xvp/m7G3uc27B3eTiRa/cT8JrreEEacZRamb03WLWcSOrs8JvU5ybisoEx7GkJljpX6kKS5G2Qn3xR+Crkqk5YwizyYJFGU8CYTrFpM8NsQ1ovRWJVHQ0L7I0Sn6dZQ39REa24oe4gobErYVhX6YMkHX2DfNyyRScWrBiykrlh/B/Rvbh4dXPqfbYa1UNtoPczg3Pl2zk/qolB9OyFtW1h/XdgmMqLEgveF9TuwzkuDkPwgUg1PW3J8IzaIvyK0wQZME/ClcO/SatRQ6rz+AtEn5TZMAyHfG4XxVSemcIny6bnbrjXvTYGoHSXO3skh9Q5MMGi3zYOb5lu9Hwjv0Eor88Get8RrvI8oLDwbfqHTrXjtANV3nbBIYYTQypXw2HO3xrwyzRh52BDWu8O9SOt0PUaqlMhxH9EPCew5vUDUYn0Fq7POHwzHHgj3Kz7xCux5j4a5vprSvCcQR7Y9xFwnYD4oPZT6qKRhhos+KzMM0xSt63LHBScnzrlOYjCfk9779c65BcC9RGPFn/XeHxqvjFqsbzmGCfGLidGRlBvhFNEqWI7zijC0ExNumkNFbgzllCMQ/Vi/LRMylaO+ugsTyhrDUg7AXZhfwJ6k3DQnxFRwBOu/jmMCqUyt6rHvQfebRuiStkcz7RPh9ZjAtwZrK7XNVeE6fUTiN9PQhI0TyjKUhoWeKdiLjW2LiTP+R4jJc/XJMQAAIABJREFUGuVHMUB5cpBu68be+V5iKOE52HOSdkKaiSNEsqqobqmYPRVn+AqiwJ/6UQ1h77mc2uXvdSK5pyNhPY2QV8RKYpvMwb7FznBO6sCfagXnYO3VHepQR9TQSGOoCYLpwQyancuYAThJaXD21KRLIVNSnWcDccY39VV5Zfg/zBjByxFn+1eEy30+rN+OzXqnRhfVjM0G3w302az8qDOYZtI3nKS28YjN4APz1nfTf0Nz/FBfc5J9L8agPCM76njjnV/nOy8GAfpAJXTDsvdYgbu+exV0JGF9n4eR9dUlka1GtR4iJ5spnTnrxdTJvcnxD2DaC7CZ+xaitmUlNksoovAoJozfjzXnRkzSqSGayLVhndhHwvq3iY7mYGZLaRjFNHEhWCejsMgw6rfR/97mUtL07aTeu7EZxOD4WvGRAUb+vY7a9waTuA5rs5F7g41DE/b8QidW8YoBRg7UjZLLkR11DDbWMSjfnDdjjqVvT+7zfSfhvkr47bAuXx2RT70rG0Lf1lFphE4DxCGMPOp9GMKIR9rWfYyVJEVU2ogEeDC8264BfA+RET8Z/qfmje2UhhCWfQyUEheYcf3yNEfrulxxwclJwOu99weS9Y8C3/He/6lz7qNh/XcmK0TCF5jgspKYpO4YpTkT9H8As/cfIvqRiHSsBf61zHVSDi/TkhpKne/lm9GH9bNdWF8o4XA3p++suz9cIxW4DmOCm64nZ2cdM0ycKZ9MUN+FOdxrwmcpkYxUhP2byp96XtCEEaUKbDy7jUjMFCr5xrBsxu69GuuLlab00bBPDtlnQrTOJkTtTuzdaiOaAfYSkxO+CfjsFMpRgkNF5arH3qc27N0/Hsp7Emu32diYtj2sdxTKEuTzUiTOIr2N2P03hfMWEsmOtIotxHDWfaG8I4zvV/L6UHYN0XxyT7iXpzASto3oUzMPG66Wh+UqoimYQlxLY3QeNSc5Wtdlh3T4lPOudJYHsdni9rAuYewZSsnIYAwNXFMFg1WloYIbiYJ7NSajLdLxjJ1ETnOOyGfiEUr9N/4J++gAOioZXFk/yrH6uxex9g2Ps2/EvMVWVOzgsYdvZe2dxiR2HF5pxGSz/B6szF3Pmf3TG9/wdb5zz1upeGdIPPh4nWkGFhFJFpgWQxFAPhZ+tyX38DilkbbSCGIS/qUB0qAk8ylC2W3EmfvmUEYai+AI8MdhXeZvrUkZfUQ/lzTClY4/kNTx+5jm6lVEjdYm4NeI/hnSVAWuN/JgHTwCg7JX+yKs/e7jbO28Id73EVi4IfiobGnh5R/8ccxSH3xPaj9k5GZFQwdb594AJ+O21Q3b2fLbN0W/la12zsKfCWX+Q4u9I0fD89xPjNgipIJ2OzHXCZSa1um5LLJ6j7Z9S2ibRcHM64AaUKOQkjaKMXViI9eCZH8RMmSHsSaWFxhZczItmCnkpIh3EpXX/4zNfYxLTjzRnv4IJpzUEc0+6ogBQSTIP40JbG3YsDFAzKLeTTSNeQf2vW6mfO6Ug6H86nDc/mS7ZpF/iAlUSqK4kJgAcqqoJ5qJdmGfpfJiNYTrKFTtYqLAqT55Kt/KPKztqol9j6IftWATduc7KtdPEc3TdJ+LsXGskTg7Lh+jE6HOjRhxm0U0oxrGxpITwNuwLrAfE3zLBSoYD2ebO+N5InkaIEZbAxsP34blMhkPIhB6RiJLCu+s90BtJX+j4bBerP9y4v2LmBaJ8+pwPSUcHcbaWdqf/UTtlcj5rLC9aMaokMbSIMkMcQH2bESeFBp5byi3NbTTdmLQnGVhKQf5Y6GeCggxfZqTHK0roxxSn5I0THADpT4nTURi0llahKJxDQ5DW1U8ZQATaPWhN2KCn0btbsyxXcLjWqxzSd1jt4YyJAfegg1IYUCoXX/ItBzhGhXVx9k3spSFFaYmeOy5W1l40x6OBPZyTcPTPLb5VmrfFGb7d89nyZoXRrUr33n4rXAoCN5gcuXtJ5nXfID+r4VebjjUSw7szwO/SCQrr8OIiDQXirKl+1SUmjSaV+pcVkvUkijU7/PhvNRSaF9yzhLs8awO61uwxyQn/adDWSnxU8Z7iH4ytURCcx2RkxLOPUTMrt4Fyz79LLv+LDi2vBe2fvaGOKNSg/moyFdnCJ578pUsWWehio8119LfvWjUrKuSU9ZFzT3JYLcRnu2stuz1YZ1brJzZFcEDdn24BwkIcjYV0esL95BGY7ufWMcBoomboHNVZh/2jkv9PR84VEy80kPUlNxIqdqqmB8oDctN+D8T7TkyzgYzgZx44JvOOQ/8f977e4Am7/0+AO/9Pufcy4onOec+CHwQ7LtQ2OCnsD5aQsoQNkzIKVwRklZhwlsXkThICV8Tzh8gEptlxBn4VLiTU3oX9nmtImZvl3mJ+rvUKbme0yMnyqbdgPXT84i+jArFKid8mQ7NIYb8nYozfnO4tx5ivyLH416mcxZ6cjRhGq03E30y9KvChNoTjI2NU4fdwwBRMNWzP4G1k/xyZI60EusKpVWZ1kxCZTBMbMsjRA3VcWJ+jokgArET8zlpJ2rmROSqiASlj0heOzHBfTUx+EM5YlZMZLoda6elRB8Q5U5Zj+UYkbV8H2Y5ovOL5SvQgr7b1aFOsmCQdiZNar2fGJxBJmzD2PcuorOX0vDd0xvi2pNDQGSUQn4nEAWmzrAukqKv4DAmdD1DlFYPEjUrgKuCriSZ3fxQjMyhjmMCvJyXh8IlpRJfiwnMSi54FSZkbyBqHTYAd8dM6IMd82Euo2Rjds1xXl3xKBsPm2qlYt4Avbub6A33c+KKauiDuxvMwWPzmvWsoIOeahuiR/oqqf3QIQa/YsLw2t96nK1fvoH+55tHZxQqNgww0l8XzaheEeqsz+svMGFf5OXnga8TQ+reh3Uw8pOQCZFmLDZhncnVxA7gCUyrITKh2RO5BO3DBjlpOcDIiLRWe8J1qpN9W4nB1b6Hzd79HUZKliTXkukXYZsE/Q/DroevivUGe110n0HzMG+tFdDf0Qx9sO/JK+M9dMLNVzwMwP33vouKDQOM7Khjyc1GYOo5wnPPvdJCOoORlLmw77uhjEAq5t0SrvHtZvMRUvicJcQZL4gR4mTpF8Ig00Yc1NopJYLHwzkyi1sL9CX5gDzYi94ZNsj3RGZcCiWcSkypGeUMi9yVzbqmBTOBnLzWe783EJBvOeeenfQMIJCYewCanfNtRD8QhVpVFCGI2oRurF/rxL43acGVs2MtMa+HnH7lAC8BqIYo2B0PZV0Vyq4gRucSuSHUaVkoU0Lk6Sa+E2TGMxTKmUccAhWxqzrUR+ZOUwmpKsKWpjpqD/XdSXnN0XTjTaEO7URNlvpuacJmE/0d9hNJZR1GQGZjz6GHaHZXlfwUZEW5a4axbvBm7Pk+yLnNQStfnsWYYK/ojjJPuzHU8dvjFRCwBnvGaguZASvASgv2Toto6L4riJN7KVJTruKzrsbGaZlarSOS4vsxgiF/r2aMrJTTMGksV4SyRqwtlod70T3cTDS768TaZSiUfYpI8pvDNQeIwShqQjm9lKawPTvkaF0ZRVQyNiN8Q+EYrVcRhS6Zo7SHZdje2GDJ7PQRyLlKpkaLsA9R3GYQm1FReNsmLOqUcjxvxQTdLljy1y+w76+vtFn0H81npDVIT4tOct0Vm9nynNl9XfPyh7j/xXdYwkDgupsthvALJ1RXWPKuF0b/P/fZV9J1Vxsjx6M0Nrhp/mgde2WDdoNpaYBR4jKKB7F7lsnVFoygyBRtFdZhSNh/glLzNk2afyG048qGeO8SmFsZjWYFYfsKSv1z/DAcDcRwKOwrmjTJhKw27NMEvzrdj2Gdmjq6LcTnpxDOXwjrR8N5aWe7ilHH/mW/8ywvHW6icbbdRP/cRVy3ZjNbvmENU3vLIdrWdI060C97z7PMp48te24a1WTtA5a9/Fnq1UgNsPXLN1Dx2mB2d7waairp7wxarWbzZSlJormI0lDTHcSkjW8F/hN7ftKe9IVj1Pa1WKe9Iax/TzerG1dUL0W6e4YYNEIFpPl/qpjR4YQdM0OyvshxwZswJJLBe/+Sc+4+4NVAj3NuSdCaLAFemqgMmUjWUKrdVSZuEYI6oqOtiL5s4puJs8x9mAApoVf26xBDlaYaFIUhXhXKbiCavMjvYRYmvF1DzP8gEywlmZsKFhM1JHPCtRShTKZrmixqwYR1Je2bStlVoSwl0+vG2vbxCc47G6zE2ng9Vl/5CcnMpwozvZLf0Ilw/J5QR2lVRCYkuMqET89gGGszBUsQURRJPIV1h+1Es6ItnLlD/WT+LHuxNq3H3huFBVaekjnjnJeW+zBG5vQeKj+bhHWZukEMCKEcP+WIg4hJMdeK8qOIGCg7vDSPrcm+vcTM7cWw3CJjO0O95BsiszJpukSQU5M9mU4qTHBjOF/vrPxh+sL+1ExuepCjdWUUUSSreyi1G2pP1hUKNU1OJ11jgdBohnkFpim5JlnfQjR/ug2bpZdQuBibbZetv/7ffpJ9D1/Jkt96gb7DjdTecWjUYf3la35M10gb73/53wHwmed+nYUr94wK1LM5QRtdzJ1tvc4Th9ezoqGDbQS/h1aYM/cYbQ2mYnjZFT1seu7NLHt5cJB/8iqb8dsIg0OBlChU7V2hnn+EeZX+aVh/a2hKkZFfw5y8hdsxwV73qTwuK0M7NmJzCY8TZyeHsM5HZMQTNUxgxISqaHK1COvcxKPqsHaXLbX8fzT78X3sPm8jOtNXY89Ez+st2Oug5zmE+QOpHYIJ3qt/5yEAHvvyrSx51wumXQFeffNDPHbvrSx5j5HDJnrY8t2bWPIGWz9BNdsPr6aiZYC3Nln6ia++eDdr2DZKYF7ftJHGd32LTS+aZqy28QiDW+fD2ugQX3vLIQYXhRt/gKi5E64kPpsDWLjmjWH9aGi3fcl9ahbqe4GMuEBGZM6opIWD+lYasG8j/S4U3Q7iNzSDyUnWnJw1Lig5cc7VARXe+yPh/08BfwD8B2aF+qdh+e8TlTOCCaFS9IlcNGF9ivJAgAlVbdj3IyfaZqJDciMxjGkqBA6F7b2YuZGEX02k9ITfcqI5jUyx5mH91i4sSIo0GYspP4M9ERSFS4J6f7imTJ4UUUtRynaFbeMJu0IrceYeom9ONTbR0T3OeWeLO7FnI2FUBFPRlvqwtu/A2m0vJsieiYWpolldhc3RyG9tcbj+CNH/oxl7zk9hz2i8/DfjYSr12x/KXYoRM2lAFH1rE2M1OEcK/xWM4VSoexVGLCSwy7xtL/Y9yM9lIqTEZA4x2WEn1i76vhqJGo3niaS5gvLERPlRtifnKYDQCJFMHsO+T/lmnSL6dMlXR/cniITp/dH7XsF0ImtOMlKkmhMJTxKo1jFWgFpAqXblMGNQQ+yEa7EQtbLhH6DUBOgA1nGIM0tbsDGsvxt4BBa29tC7sYV9HVdSe9ch5sw9xpyrTGf/MnporOjjYW4G4Kdf/nlW0kFHmCpvoof7uJuFgQm0NXTxVr7Bnz33ccCctf9Lxd/wNyP/BYAjFfVQc5K+E8aYbln3LTbd+2arj0yAPmr1Uj0r/nbAspjrPuVk/khYfg4bhO4N64r+lLZTBzGQAADPwIFaojpmEL6fzr7Xgtd0DaGAlYzO4h+A2NNgbT9InO3Q9aTlej9GqB4kmoLtw56fCNGj4d60fzfwgZOsvcLiKm7degM8AI/9KOQo6YF9z10ZwkDDCWZTsWFgVAvSQxOsPElbKHDHyAquaXiaYw21fPW5nwFg4co97GAlbU12TC8L+XHPNfz0FdaY3z7xRlbc+ThdJ4xlXXlFJ1u23RQtrNZiHa+exSuwjlzaoCEiCa7DOmLlY9Fg1UkQrEJbdoWm3pNoqQYPE7+VBZR+O+2UmnQVo3XNMFzmDvFBlv8bTETd6L3//CSnlMWF1pw0Afc551SXf/HeP+Ccexz4V+fcrwAvAj8zUSGOqOnQrP8QJmTJBEjERT4hCuio2Vs5JksolpCl/0uJM/oj4VpFYqHkiyPEsKuKoiShSSZimrEX0SgidVJOsR2bLR8K9VtA1A6cIvqZLMCIi+zuJ5rzrcaGy9nE4fI4RoRqkvXpRj0xq71McZQEWb+DGDHqxuJ3FDUSEkSHMW3IYoxQvIGoPRfUzo8StWEidhLu68JP2chXE83mTsdpfiqQU3sXcaZfWochzLT8PyY4fwH2Dioj+zxi4sE5oaxjyTaRv9SSIdWSlNP2yHRQ/hx92PsrgqOw3HuJQQs0qZaaLc4h5si+Nhz7IPb8ZYolkzuwCUppSo5h74HeD5kqLsbe8VnYtyBCrcSkQ0xOyqeOrDnJKAdNHyhpXBoOtYVouiUdd5qcpMEGLx9mlOdWmfCqj1DRpjQ7X4d1ynJ4n4sJ9NKcvA/7uCU4PgAV7xmgt6Nl1ARqRUMHvSwaFXB3sJLZHGfXi0ZGuhrbuLnhYbrCRR/mZk6MzDbSAbx0uImvN9zJLS//FgBHqedhbqZ3YyABzVDbeogTQzZ1vKnjzTHPdTANmtfeTf+i5tE6jXyqznwb5Ly+kTh7AUayFPJX9w1JDo1ngKvjfXdBzKshk6Fvg7sDfJLgcgxxrErWe4BaOKTnVQs0Jdek1Ek/9VX5QLJtK1H9PhjbAML/T1Sy9cPhxtfDwqv2cGh/9C4f2VjHkvcYsVjBDroWt9F12J7Nqxo2wxUwO/Tgb6/4qj2LkYWjmquV7OAI9ZxgNgDXsYUt/TfR12TXuHn2wzzY8xaqa80rdfvQaqi0fDYAI3vqbHAJWpAla15g38NXmrYLjKzIp0ToIJqYQDQXUdutpKC10p/wPGqbwl8REj2D1MdETvLCDErEOA2aE+dcDfBQKKkS+JL3/uNljvs0FkPnJe/92mR7J4UUHWdRl/GucTvwV9gQ/A/ee+k+3xXq+1Xn3L3E4OenhQtKTrz3OzFZpbi9F3jjVMuRw7YiEVUTycEQcUZXZlqaXa4nEg6ZRe3Fvh1FEDqOEZqucHwjcSLgWkqdpzVb3IQJvbquSMp+7G1pwoQrOS8XnXbXEzXBRShPi0xgukL9JGArIpOilh0M2yYyTxrBTGSPEE3QtNxODJkOY01+zhS3EcMiHyGOu8rJ0YsFlXm0cN4w8FtEIVR+BkewPrQX+LmwfnNYbySaqD0djr8/lLcJe94KUrIUE4xbiIJwGzFK1ERRtCaDEgWmeIr4fjVi74beh/FC7wod2HOT/4YIhMiahlsRaznGp87u6bMsp+25iqjREInqIzqcV4V6iMClDmPHiKG9rw31UmRUhcU+hbWvvpUeYpCJTuI3LZLUiYl7Clqh715GM0uJmqIBLt4M8c65uzADl5cBn/Lef/O8XTxjCtDQmQpMitCV4smwvBpcE/gWIqGpBV8VM2kfJSYNhJg/4lVhXfk7JAg+jnVeMj2aS4lQtOS3XmDfl6+0DyaY7VRyioUcoClYSn/nybfy6nUP0XaFCcAv0cQR6lkRBL8r6eTv9v/a6Mx7dcMJVvMcx5Lwrh2s4KffYPLHDlbw455reEuTSev3z30Hy67oYNefXRXNlb57q3UEEnM+gvnJqHOtwczXpPRYBfwtFh1F993VCW3ttt51NTCc5EqpwnqKdPZ9XcitIWhkVOby4BmfhnF2DeCl5RouLKusXTU4XoPd029gfidgAvyH+P/ZO/f4uuoq7X930pw0SZOcNmlOb6cNJLQ0pNjSOGAKmgJSKFMGHBR1QHHeegPldZSR8TaO4+UdHEcdRlCxOAzoSMWxSMdqGbBR2giSXiA15ZJIyuktbdOeNG0up032+8daa//2Oc2tbZDKdH0++eTsc/b98tvr8jzPcjqjT+txWdDViwQ4Br+YAR17pgdB1rtnf5//jP81VSGJlJKsjiA4yyWV9tvqgWV0H87nhqKV3N/wIQAW1TYQoz2ohDVQy9TZL5OvaaMEca6OreE5jT72HopRXL4nCC572grcoA/sRon079SN7sBVsSxWmIK8aG3wHY8EI3a9m9CgXKc9hG9lCl49h5CAxILFcMAPjjxvN4iB719X1gdc6vv+Yc/zcoD1nuf9wvf9pzLmux/4FoN3IMhs0ZFmyvPu8X2/K/Rdpe/7LRmzHrcNz/OygbuRp3IH8IzneY/6vt+M3MFWB+3nJO21rpyMiXk4J9eUfUzRyZxTCxKKcZ3VwQ01pnxViDhD4WrLEVxPCuOx2LregFyFMIbfJFftO0siGAm7CxlvjRsR5j5kM3RgAuK8xXFOeU7of0Q/9+EkgPsZGTq2BFexyEJesR36+QjpDuypBiaLEYe3Epepz0H7hCHX7tf6vxPB+Zn8fQHpvISo7l8Jjtg+R9djnJJu0kURTDmtCnEbGnVb9jRW45oB2n1j138acl3bODkhg6GCjU1IlcSaL1owtQDJ/W0eYjkz45ZMw/U9Me6UCUFYUDIYvylTmcvMmhwmkWM+h/RnwioWF+jvptYZtknItbUkQCOuQaZV/KyKaVCxHCS4MOW1YpxqnD2n+ThhCEs6WKXTII/GQRkz6z/pcRY4sQyU7/uPAI94njcRoQefCU5OKwsrdYFzoDJJvgYbOgB+D+LRakCTl5OewC9A/C1zP6oRf8zKqsbFCNNaXsDBoEymsVICkd2vxGEKVF/wDHN4EZDgIU5CZGeBD1zwrxymkFe0UlJBC2fRRlLLMUmiVMWa05zgMvbSqBFTDRu5jkf4xIt3AzB19svUxDbSkBKYGL3j2N58LlwCL6RmA6IM1fmNKW7QXUg6DGaPHpsN9ltxUCHQzHy5KpupleakVzWYDuSE9AqOkn6y56qD/JxOa0UlCEaQKkueTlfmCEzLAsnEUXgyxwWGO5DA8LNIANkKfBch9dtxXkt6J1pVwSr+kCplbZ0CbXDxpVKVaqaK4po9QcPLi2euI3EoTrQoqaehgsXUB5WTaFaSwqIuUkSorhWWaB+5FNJFTKsQEfq4nMeDYKSbfBqpITUglZWKohbm8CJNEfm9ZVGE3LyUiByADPS9uAA5ibzQw1kpe8m26X+DAVggVwrsPwQ1em4bj8LBHNIrJHNDKyjHsXlBrpW9NeC0g3hlMZrKSanneWFX714VeQLA930fx/ax17dPhvm+/xvP88pPck/fAnzY87ylvu/3ep73fgSIuHQU2/gzoEULDHie9xDSAqQZucNnIKH4SSOrXxfByTEcSdYqHDm47tW9OOWqo4jjbZnwOE52tQ+H07eqspGoTe3oBcTxsYxyTP/CnoNJ19r2rG/KPhxR3qoopoy/g9E7vOYwH0UctA6cHHK+7qNVWCzQGs5eAm7AybCix7qDkLBGxvZPJk/xDiSTPkX3KYI47PsQXk8bbhx/E/I+uhTHLyjGVbzMkS/CZdWN9F2Ik4S2Y89HgphwJe0tuOvwLNKbbKuu9w3IdTEFs0LkfP45sIZ0aNSp2h9wXChTJDPYVDnDBye/Re7FGHLM4UDMghRwEspWvQiLxAylwhZHRpds5Dx0IedlD1JdSuF6xBhc0u6NLAR+aEGTQbYqccIUh3BcsaOhZZM40n2/Lms8MOMHJXGNIftwlVIbxffgKjtjYmGd/pO3+zmxDBSIu3P3KW/5jL0Kdoz0SMF0/8yM2AtOfeiQm6cXRwYG51xb2JpE4E72ez/p/vXl+r89tNxmmHWpjKLbG86FqChmrWoXAnttrIHdTCMxIMHIkqy1lLGXvpA3lSQa8BhWcR1xEkHmvZIWkkSZqb8/zmXM4UXmz5aIqpt8WgcqiEWkMtN5eAr0wqza59m+Rvt5RKH6jmfYeqfCmXYDK3AqY0nkpfQswfy8E/ieTl8F/KIdrou589YGbiTrkaAiDbmVg0iZ1en0Nhg/F3rCfWkyrQd69PumozAxx62vNCdAegHy+UnSxQv6Sc+OfAypEhmBs06Os/NxiT5nLX2ew/MLWf9TKRHlXX6QsqJ23jxTvPrfpC5hXlFTEGhMZRcdlJLUwHLLwPygP02ZzhMnwV7Kguu5hLW0UBlUzg5TSJQkrcr076CUdpJ0DAiZpnBiF9FIktylsvyLDedTXKPBJTi4xkGcNLR1FQ6rkrwUOjc7gNKijHY/bQQQyKCqEq6M2EkGl44NByU9nFawrpE96/0jQa303bAReW3e7ft+JpBkOBusRUf6DL7/sOd5ZwEPeZ73MPDXuPrkSDadUK0SuaqmUfdT4Fue512N60Z0wva6CE4sNOvH9Ud4CXk2XsJl2AdwTg+4xEwW4iRbgT6KI5ebo3suUiGZpvM8jzhLccRBDMOdjNxrJOBOHPzqJRy52LgrhrMfrbRwLy7DPB6Xbc/SY7N+KkbMH6mfysU4zL71VDJo1WAwrpMtoJ6N3NEm8ZzCVSGeR+7uWbimj1W4apL9t320oMxeR1b5seDSJOitMmMwN5MVNu6e/V2o+/XviMN9CAmMduEc+gKd51IcSf9EbbAqhVUijN9kzSNNrGE4U82cIBgrIGgsHPCfJiP3gIkOjKb3h3V7Nwj8FF2XpXrsObgAx93qx0G5epGA/c9xFT07nm6c2l04kGzT/yYrnMQpVJpq3OTQ9gpwVVILtiz4NGDHYC7HSZl1eh3ahs2EwYlloDzP24YIgvzC9/1NnLHT0MZxfKelcFfrsPM0PTQd6uNgRCpwUsETQtOEph9HnHTLvLfjlKtAuoAXjmP7rzQISEpQkExFmTg5ydysZjYeqmFhUSO1WQ3BnoWDkSqaaaaKRiW23MQD7GYaEe2UNZ/N/I4LAw7D+TTxHPOCSkyEPuqy6lmsaa0vX/AZ4bTce64LuhqV/P0udSbrx6Xjjuv1PFhQ1oKoRhlPoQ8ojTni/0GkJJ9Q2E/e+QqdCj+wPeDVgd+m03nQo1yVwEKBoxdTBanQOkpC+2CwhLBSWiVyjEZgtOZNioTiI/r9zTp9PxKg6LFvf6WSkhnt3Pw2UU5rp4xfvHINE2dKhBONJClhf8AXaqCWGjb+MZjdAAAgAElEQVQGu/fprK+QJEozVVyogOh8ummgllrkej/HPA6HwK7LWE0jCynJksg4QZwEceEpAdWzn6G5vUr60sgM0m/FXNg2xKlJ4iSt7X42x2Yn6fCNgwBHXRUqaB5g1asDyLNi5z5zFM/h+K7xp0lgAukJh1Mw3/f7gfme50URbna17/ujzYse16LD9/3fDLKNr+o759tAhe/7mdpsQ5k3yHe+rvMI8L5RrmdIe10EJ724BMUuJBgYj2R0w9yTOOIEG9F6FuIoJXG4fHNu9iCvmT/ocpbFNdiX4dtBsvzTSO9LYYFRDJfR3YLrqxLufL0PGYuH932cRXHyuDm4zvHgFKkMzmSBylA2Wf9MdMTO07P6d7IwrnCgVY2MW+W4viOHEKf3AVzTvDcgdcEwUd0CiX24DHsCCWzakXN4SD9X6W/Gu0ngZGlNlcukhC24K8Y57VHE2f4o8r54AElOWpUa5PpFEQm5Bhx3ZbQ22LWw4zIn2/hOcYYPLPOR+9kqFEYEP4ILyC1wt2pC2yj30+BgCeRa7NP1Fet0i27fKpUJ3L1i6ZR3kA4rM8iVPXe2v8bFmaL7bcHKubouOyfTcMFzPvA/ui9WMSrR4wtXAE2V9ZRt5MrJiJmwIWyoDNRHkUtbrDjg75zEus/Yq2b26gwrDMHxBHljQFtND3mwdyA3aR7p/SHsZQNyIy/BEe/MuTeVKpPTtbundxyzlj4fkNuXzVzF6leu489mNlBJC2sHlrCwqJGNh2qoK1qnu5KgjL28wOzgyArpCjgn9SwmSpImTXuniIg0LQI1ekFHxy4NVpazgi0s4OeKDGlvL6My1sqsDzzP4YFCKrJa+V3pm+GfgUo5h3nXHiRalGT3+9WLtx4m9lL/PFJZMcndRqSiZOdtNxqonC/TPW2QVy6XpiZHMyrmCFs2PgfHYYAgMAnDwHpDUKO8cmgJyUD3AFfmOKhSNXAnUhc1Tf8OvTZGkN+BZAInqCN98zgZsK6U6YtnyjW5f5PwRbKmH2H+zEa6tf6/iAbWDixhapYwXa9mDRPoCsQLCumigVoWsy6Qer6EJ6mkJeAI5dNDPj1pggdhTkqUJK2HKqmeLbCwFLkSmBjU8CLks12bw8iL/RwkS7sRGciNRApyn8/DNQKNA7EcgrjKKiUGobNqVfC2DD9T4LCN4YrKaUSIHx2sa9Tm+37S87x6JBUxquBkiBYdxwUnnuddgty9q5An7SOZ8wxhO0hvIzaDMe5f/boITqyCYMTdAwiO35j2f0DuF3tmLFsehpP0k14RiODgJ73Ic1aOk0ktx1VerNnbG5CxphOH7TeIFzieicGSDF5jDnhYNnZSxnTYEgjZ2yBqRpDv1f3uQpz3bOS9NpzGUArXjNA4BAaTOpVGhOEK0F8g18Wu0R7kLn5J93UWIjSzGMmRpHAQrDZcRvwlBOLUweBP6LODfBe2QpwM9GJcUGZCBxbIfg+5fxqQgPMlJGi5APc+zEfugSsYmgwwFJdjMDuKg0WZ8z6e4ZsIduOCyjCCIK6/2baNkwJyzKOp+FjFwtTm2pBgoRcXbBgfxQQXrIdKLRJwlOMQDCa2MANXCQv7+uNx0DTb1124aoxBK7fjuDPlOr8JgvbimoZaFW3MbOTKSbHnefcCq33fP5FS9qAZKN/37wLuOoH1/K80z/PiSB7Binv3+r7/r6/+lo1zEibEx3DBSgvSnEOnvRzNKx6CRJFbJJyn3E+6auo8hIBnzq1J8Ro0PwqsgqzbVVmps4Dtr1RSPEWy4I3UBA7vK8SZm9VMkigLixpZrGWHJ7mEPnKZqKNHPXXMDfFLGlMLeV/kfq7XjT/NhVTRzDqkT0YFwlEIc1A+3/4FYjGBDcVjCSL0UUY763cspoMYl83+OY13L6Tzdq0L10iQtPtdGpz8iHQllCN6DgzrGuae2PS1wCp9QOPlkNBasdUyJwIHVYELkFEkJJ3lFWmlxKpaeTqdURmzHh0lyLptdXuQAOpYaL/qkMHYpqOyTNYSSeMMtI2TbbSIG7a+961S/So9Fjp3KSaoZxIhRV1WPe2UASIl3E6MFoVk7WZawCGx4DKfbibQFVROAFZzTfA5n266KAx4K1U0kyyK0nooLCsmASRoh/kaHMfEPv8WcXDOQSoj1tEaPU87SCfEQ/oAbVAVCBUdLaBs0y/sxu8hvV/Q644Mj+d5k4GjGpjkIYmqO0e57FAtOjLnW4C4O1cDLwM/8DzvS77vfzZz3kHsGeAchYXtRGq67x7N/o3WXhfBiTl2U3CSssY/2Ic8L1nArxCYSi7uWUnhsOkGAeoknaexD8fd6MRxTQyWZRAqQst2kw43KyCd/B3F9anI0n0OBwOZgUG46WOYc2Fk+5dwTRdBHLwjOElik8HNhGktwclyh/tVnQiOJLxvmbYYB9WyAND27Q9I7c8I7wa5Ch/f48j7uhkZA3dx8kFTF04Y5RlESKUXec9MxvX0mIFc81m4Pl5NOs8snDsSYXiI1GgDE5Dj/D84EvgR3LkYzppJhwZm4WB52bqPhci5jpFOyh/uuo1HRpxu5BwZXNgqduNxIi3Wh8R8KhMTMGhWNq6aMUX32So7xhmxYMLksa0aYvtvkssGtbR7qB9339r6jLvSglyvMbPhKyedvu9/4CTW+qpnoF7ndgz4hO/7mzzPKwQ2ep73PyHOzqts4extO67L9QGE47BIJo3Kmlfk4FrWdsMClEr9s9//HHF4f6DTdfr/Zv2/FaiBgQ4ppUytcp3bAW5gJQnidJNHl44kNWwkQl9Q+YiToJu8ANbVRy5bWBBAh66LPMJeypijWpTrqKOdGJXq/LYTYz6bg0x8IwupjTUEwY9l5lcduo6pM20bESF/63H0rJ/I78a/2ZWhOxDOhvU1uRlxdn+p03cgLCzLFJWjbUrUmW0BaBNoVoXOsxNgkoMS9SJKaVZL9stlMOux6zkJenJcY8edqHqX/hxFIF51pFtpxnfWlBAk+LwWBn6mpa8aPSa93lMvfZk4iQAyZyIEBqlbRx2Lqed2vgZAE/NIEg2R3VOkiLCEtcH1XckNfLv/w6zMvgGQ6xEnwXxlMrZSSYI4Lyvfo4FaWg9VMqdIrvdUdtFcVBVwVF4YP5vOrVOY+ja510R0YZwci71cdgI3kk78P4wLPuYh18ju8x3IubfrebANvPJ0CF4awec50jvGn0Z8ExirJoxTgf9Q3kkW8GPf9/8bwPO8NcByhW39CNXw8zxvB1L9WMcgLToG2UY+8Hbf91t1ve/FjS7ucAbZhu/793me9xFEMDsb+L7v+78/5aMO2ZDBied5mWDawWzA9/0xFcQ5GTPlJnOyrcFhP458vR4Zw6x3hxHUc/S/YdhNEcgkh62qUYxTKroABwezqoRlbytxiZIBxEGbgngbR/X3Ad3mUd2nfEbOZmc6keYktuu+Wdbf8PbmDB4Fwm/pTJiWVQX6kbElpfMYRDQsLjLafTObhYxD1m3eIFlNuP4dn9T/cRyMax9y3hLIO2kwjbxTtXbgq7rdixGJ/ULkWmUhges05Pp8A7neLaTzYHKQwMq4KqOxoaSYe3Fju8HPDOo1XBBhUKlJuMoXOEhfGAaVuV2DFIbNAmvjNEZx8MaY7r/ls0zOt2uQdeciua1OXLUknBwDx6exnkJWNenV5UuQe8CqL3Ysxjsxorz1O7GAZx8SlNszMSb26lVOXvUM1OvZfN/fjQB70EyhNRj5IwQn1iwOXO+FsM0lTZIhD/dQ2SKHSSfAG7kKJBvzFlxQbAqqVjauxpWXgYqqlqCDO8A3m/+Od1d9nwRxWgfES5+ZlSBGOzeo599KBRFSQXBhwcr5mt7uJp8OSgKY1kSSbGF+ABv6M55mCwsCda9cUiyiIWjqGKOdhWxkQ1FtcBqSRKm+4Bm2rlRCfCNc9c8/5Rf1b5Pp5chLwnqbHEZewjfq9ArE0bci1RHEObaXaB7Qe6EMIFP1uxYltFsWp8dYeCGS9f4ecYrD1qIpFwt0bH3bcAOUbXOJft6t/1txogUg7t234eLviRrX+ua3SjlaKwi7N51FzQWNQaD4nfYPsiS2NrgW7+FBqmimR/d5LUu4kKc5qOc+RS4x2omS5FrFUL3AbOqz64JqSy0NtFPGg7xHd2kdFbSwFOko/xU+zU1FD5BS7zpBnER7nO2dwmOaPfs5OpNTaG+X9bF/nEDqrsQFjx9CaNDWW2ECEogYd+oZ0qsmM5BrbL/3livXJ/w8FeFAyeEK5WloY9CE0ff953AdgjJ/Wxr6/K4hVnFci45B1rMhY/ooTnYi/P2g2/B9fw3ojfMq2HCVk136NxjswCwbmDmme3QSZo6YEdFNzQekKm649zgu82oZ/GzEmSnGyZZaBt/I5bNwhcNeXDM747IY/MWgX+DGSUuL1uj625AAwGRUTS0qCwetCvtAg5HkrRO98fPCPVVsWetOv4/hfaqLdDmr+KSQ96Ntc6TAZDgzOJdJvLYhQaJVL96ivxfotu3dvB2BVP2Kkcn8cPLqYdat3PqX3IALVizbb7K3P0S8nVWIWIwFMv1IcHcE+PEotjkUh6cfuX/sXrZ3qDngg0kAg1z7mP5uqljGxzTujVU/UqSjJYar+hhHx5Y9B8fnMDihKd2Fr9Ec/a4ZxxE9gFxje9WU677YfW8cIIM6GnTLgntwFS7reWIVEyPH2/qMr2R9X0YcoUdrI3NORqycvFYZqNfSPM8bpA16+izAbt/3Z48w32i2VY680I9TtfE87wOAXp/izJ9PwsZxfBO/MLnaHKg2ndbM7/jQYnORQMMQNHuQAdemD5JOqG5FnDz73bTX1YXZS4yeZCHjiuRGvbjqf2ihkkpaqMySN9IVrOUxlgSVlEK6qKI5gAaVsJ+/Z2XAMVnNMiKk0gjVuaS4hXsAeJCbaKaKJdqFcAXLWcqaoNLyGy6hkRq2v1LJZTNlngRxXvzp+eRdpVChyRP5xaa3kXe7Tj80UQYJa2w4Qc/BQzptfBMr5z6u5zEsnOZvg465LpAzONb+kHpaXP+DBjs56TjZg/UQr0N3WgKccFfzKK5x5HpkfTMQiNNO5AXRiNMwSgLvgvW/Ujb5DKDmGPNnNuph7aKbfB7XiGZxrJ5fvPg2Fs+uBwRSV0ELm/WCx0nwbv6Tx7UlXD2LKaGDBmqp08rVIhp4iBsCEvx1PMLXuD0ITitpYS1LaFPPJUKKiSSD4LOLQq6OreE3Ey/BLK/moJMWrkQgdb244OIR/WwS10/hpFNB7tlG3EvuCNLM0TgomU0ZgwAynAjI49SA56+yZY88yxkb3oYLTrb5vj9o5Gbmed5ILRj+KJaFI9VaUGFKRWcj44r1SjgHycZXIu+B8HLh7LP1UehFnK9pOJjJFBwhfhcOMhVBxp/pBPBS0OVLkPHKiNrmTBpuPwtHNA6b4fvDAcYkXBdzI9ibdHFS/wwiMxwhvhAZmk3yOFuPeTR6dSM1Y7wKCeosINyDQMXWI2P1BUjAZuT+A4hD+yzwff1+NIEJjA3itB0B+Fv/lck4eNJ85Dw3AN9E7pk3IuctBzmH8xhdcDLc9l9Azhu44LeboQMTcDLExteI4QIrdB1W+YgiydbhGHUWlO5BclWFOBiiBU1ZyPkJy2Ef0HVbtaIEJ2RQg6uc9OOeR5N6NkhXErkHpiDP6iYcV8kC+SiuIWQSJ2SAfm/+mokgjNnrawwqJ69VBuo1ttY/xnvE87wJwH8BH/N9/7iASJXT7pV5px3XL+DEzWSEww5TC2mEa688HZpiGEgbOLchDqpF4FOQAcggIR06bU7flaSTka1h1niBtLz4ShWzZrYEMsFTs3ZxNWtYx2KWs4IHuIn/4noqaA1gPbmkiJMImvJV0BpAf0CgRRPoCvpiWMdxk54tYy9f4POs4joALldZGFP7eh/3s4al3DTzgaA6004ZeZcfpGeHOLjFF++h8/Ep9CTV4bWs35/rcdaHzhE4hSs7Dz06f5qA01zpU3JQRwCvXCtSGoyU6jqCWyUP2AYdSqofj6h7WWWkFOjPcdeiB+nV8ZLCvi5GFG+2IPNMR3guNx6jZIa8yTrumA5vguI/l4PpOljIQEcBz7XLuX15YjnxSCI4h93kc/Ps7wTXYg4v8Bm+xGf4CiDXpol5vDchb55UPJcqmnmaC/lbvqrX4wkWU8/TGiE1MY8aGgMoWDsx6qhnNcsAWMaj7GYaUxVZeizDy25PlVFb1MATlVfLF9rRorh6D51JrYVboGjS2Enk3jals3aEZGoE+enA73HNRluBZA74sdACdo1g8P4mJ5uifBVsDConZ2z44ORNo1h+NPP8UWyf/hnENBvXt2QertqRwEFcLLgwjoFliK2KYI6PcSCKkICgGKdSVIgDjJvztRMH0bHeIxYwFCLQoG4cfKkcV6UZzDIrKS/pMrm63kho2xbIWFVoOFhLXH/fh2tiOFoi8XCByTTkPBqca5/us2XqdyLqXVOQc2zIhAQiftLH6AOTsbYWHNzPlL2mIdcpjlQGmpHjMxK2VViuwcHVwFW9RjtsWvBrQgkmtfsOpGJzlMG7zNu6rTM8uOteEvrNZLZHYyW4KowpaBnM0Z6LfbjrNAkJos7BQeMGcD197J7vwgXEe3DqbXbfGcTrD7gqjUkK5+CqS+F9Sej2d+l/g3OawtiY2VDYOrGT5Zy83u0vx2ieIU07KP8X8EPf9396KusavY0jXS7YIEJFbtpvIwhWSnPczWgPZa7+2cPaRnrn9BIE9mO2GXlZ6fxZdUcYWFvA1PeI8xqhT4KNLEG07SVGM1UU0kWSKO/hQZqpIkE8CE6iJFnBcuYpdChOgtoQLGsZq2mlIpj+bOJf6CuBdfl1us0UefQQ1UihkC6aqUrrIL+EtXzyxbsoqRRCc8dT02E8LLvgYQBW3/t2cf6NKH0EFzyABCMrcDCv3cC/H4W4VjGs/4tVlPrQSkieg2lFEUJ8acxtwwfmWR+TNvDOB19H0J4cGfDt8nagjQQ1mCktgsVFbp/PQV4WecjgY8HUb8fRUSj3QMmdO+l4eDqd31EnfgZwruMMnRVrIk4iCOJu4kHe2f4jlsSkhLSWJUEzTZAKVDNVNMTl2hjHaBq7AijYEtYGjTcBNrKQWhqCbZSxl9UsC4KRDkp5N//Jx/l6sJ0S9gcd4yuKWuiikKxiuZknVibp2BGjc/0Up45icEM7N1HkxWqB3X4E2mXXyzgnYfECv42g1u7FpBKWVkkJE+LhtIJ5jQ3n5H+9DRmc+L7fC0NyT7p83z9q87zWdgxxjLKRxEUhkoWeh+NfGAykEAcj2oVk93chTo5BSK3Pgik5mQNtDtoOnANmWd1C5FksQSTA25AqwC5c5d5UInuRV5ipjLXh5HRHsm7EQTboWiFS6bgcl0iajCMiD5fstSaDR/XctOvxPz/MMqOxJYgzampmA0hV4SgiG3EJUjmJIY5+O3LdfsCpd6AfC/scktjpRo5jEnK9I8i5fxQJFq7DwZgmc7yyllUhRpvP+S1yXqwyZk54I+46DtZl3ioHxgGxB9aqDei+DzA6HUKTtbZtmmBDQtdvvJPww28QMpNDtv0HV5mz+7MX13/Fpu2ZSOKqittxAWKvfmdVwgHkWYvgJKN3Ikm3fch9NVzF6YRtZFjXyXJOXtdm/VvMPM8rIvTe8X3/QOY8J2KesD7vQyr9Xx9p/rG3cOWkCPfUtCMjnMGJ9PvSHIElTcA9nAlk8DASlpXPp5NOJLaypM430FFA1pIj7P6V4L7mX/oU7cSCQGM5K/gKn6GPCEsQrkeSKJW0EGNvIAv874kP80pcOAT5dPNlPuOCl/4k0exkAOv6fbyCNSylPCRKvpIbgr4mrVTwswPv4MuTPgFIk8aJJFk2+2ESxGknRlbFEQondnEJT/IN/gYuhsuqfs4TzZqNn3AMfjnOZd536Hn4Wug8vCsnXQqwsR2mauDRhnAWgq7xR+Fgjzi5+5V7UoBAiSy7MrFc/pcYqb4NEuU4ueHpkCyCqzSY2YrLhIIjd2/V/bMApQLZhyfh4MKoYxF8D+647QusGFhOxw7Z7zrq04K6u/gotbEGnuSS4Hqu4jr6lDDfRSG1NAQy0K1UUEsDf8s/cztfYw1LWcW1VNJKnARbmM9cmjlINIB9NbIwIN6DQMP2UhZc70YWkk8PtUUybfC/qpgs00EpxVP209k4xZXln0EG42okANuP3Lcmu3we6VaC9q7R6f1HSesL5BsBfmdooXDV8jSGd52xk7bRqHVtQobOg0hMGAV2e563F3i/7/sbh1v4j2FJHI/BbA6Sfd2JSJtaIznD5YODrFgfEqtumDJTCqeahP5mhPGUThupOB/Bt+/AOZVhyR2TQbXMsCXRjE8QTsqOlGm3jtzm3JXjVMmswza6jTaGhmAV6D6ORxzaYsQRHMwBHq1NQ869qUZ1Az/DZf3/AnH4S3Rff6D70DjYyl5D+xHi4L4Dt7+TkMDzUeQa/AI5d6a4Ng9tXnwS2zMZ3l26nnxcIHsNAiczG+z+sHsuX/dpPE4dLgcXVHRlLD/Yukp03l046OwfkMApX/dzO/I82b3ShZRRreEjuIBisv5u0vcmfGD3/FFkUDGIWlgxz6S4rW+RfY7h5It7EdGEaTiuVVjaeExsZFjXmcrJMOZ53gcROcseHKrcR3JBp2KLgJuAJs/ztuh3n1ao3KtombCuzKaLOemzx9VRnotz0mp0MStnFuj0b3XaIF0zdDoJlMP8Kmk60U5MiMkarHSTH8B1QLp/38BKIvQFHII61nE+TQGvoZ0Y8+JNAefgSS7hen5C3QHZCW8bPLdoHu85INChn0xaFgQ/skvRoOEfQDNVrJ50BYvUuZ3Di/w7N3Mb/xZAwe6K3UY+3axlCVU0E6nq44k7r+ayO34OwBMPXO0aGoJwTWYAf6fTK/S/ZWVagPfF3HndT6i/CUBOKFDJ0SaAyAsy6PiOU9wACVZ6gfOUR9RHOh+oErlW1v8jiuCVo4ikBUgwtVK/r1SVrjooLt8DX4Y7N30eSh3sK5c+9lIWkNkv5wm+xu0Bn+fzfIEIKTq09Pb17k/w+fx/CH5vJ0bp7sPcNvUukkSppYEoSc5LtPJUfD4L2UicBCu5Iaic1LCRu/goVyuqNEY7H+XfAh5LLinaKQukpuMkSBJl6yYl25Qe4+KZ61hfrjdhNa7/gmWvkggk0a7HVfrZfm/UQNL6ouTlZEgJl5MemJiFB+TTSK3rDKxrTGw0wckvgVW+768F8DzvCuRW+zFwD47u9ZpaGO4yCycUAeIsLkAcdVMOMgy8ZYizcb1CTOb2Ql1nL85xNwlg65OSE1puK+LA7UEc1stxjRknIePbESQgCcNkTArWMPOZzqLBz8zskTyCvM+qdf0p0uE8BpXJDEwswTEHeS8aFKyT0fFNhrKzkapJOS54SyLj0GTgi4ijb+TnAzhC+lhaJkfnZO1ZZD/fh3BM8pF74suIOtdLCA9lPA4OeAGjC04y+9jYNT+AjNEduDE+M62ceX9YMrUbd39alXASDq63i+Md9sGCYIPFmypWIe4hTyDH+zzp99WFOC5W2NuchFMQMwii3Zd2v0aR+9FksCM4uW+QfLSJTezRfX5cj+snON8uU393TKGBI1dOztjwdjtwnu/7+0ec8wTM9/31DC/a8ipaGFaSQzpJdy4OfgIk2oDzZTC0DHFSZ7EzYpURyzoVICVlyzSrr7al+SL5ME7Uk7pi8gSU0R5AuEB4H10UMp/NAawnQZxKWoPs+3Wsool5XKKe/TsTj/BUfD6ePtwti2awiAY6JgkmZy9lVNHMg9wEwEI2EiXJKu2QeAd30kIF3+GDgHSQb6WSZqqCeebRRP1AHceyJPWxnBV8rv9rNBxSRS9Tu7IKklWUwmKoYanMmE4bp6EaIVdfh3OITZnGZJtNi9zuHHu2w4WwGlypeb7uj21zik6bTOPvEQL/l3Av/Rkw//tPseUBuV4lN+6k+3A+nV/TA7rxGNUzN3OWVqESxHmOeUFfk3x6uIW7g8rGLdzDWpYEVa3N+VIJWbxbAskNUxeyYepCWqjgvV+VYPLRT15BY3xhEHw0UsPy/hUUbZDR9m/e/P94Dw8GnKMIKR7hWspUOtgqKKb29TLlREky9YKX9dS3y/02AXcf78GV0kHEDJ4hvdnoS7jrFc+RYM/4PS2ZXdbydIUWSR7ImD7N7Aysa0xsNMFJje/7H7IJ3/cf8zzvK77vf9zzvNPmEhip3SoUmbYZCRZMvcpkg01lK4qTUC3AyZMWhuZB57Mmcjk47klEl3kJ10Qv7Cxt1+9NMnWSLmvqYiYb28/xvILBmh7EcXCwLpwMq8HXdiKZ6YJBlrXx1vgwAziHdhKjd+4zKzIJJJA6hMuW2xBj0q42PplwwekamJi1IBWUIhyxuwoJVlpwkEBTYEshQd9wx2XBZmYFI3z/2fWA41PLmcGqvQPsnrQKSTau344Ry0cDdcrW4yjHwcT+EDpOU80Km6ludSHvJoPCGQzLgmB7fuzYDMpl5yKqxzYZ96xMR95jVuW0itBWnBJcvq7jVeMqvXpSwv9brJXjhQf/hC3z1ZmJg9c711MYkH++/DSe9JhmN5LZQH/bj8vO70cG+jBRLAnFNYJn6lw1hfbyMs6KtAGS5e6ikBqVPVrDUi7ncbawIHBo8+mhg5LAWZU97wkqJ9P3dlAY72LdVKGTRkmSJBr02ljefR+5m6FuUT3gOCYmPRslyRYWBH0x5tIc9N34W8VlzWcLs7a0U3GBeKefe+WfoA4+WPRdAL75rtuZOjPhOsZfjrSIs7pYH8JDMe9jLQKfst7WK3BNEs3hhYC8HdhUXAakBNePA2SQWo/LgK9DnM56nS5FgiJTFLOg5SFcxacUtjRcFFR0Ohqnw5Uw9dPi2EfoI06CEvUu1lHH3/K1oCP8daxiA7WBOtcCNiuhXa5v1YFWLmQLPCHr73G6RZMAACAASURBVLqxkNr+BnZlT8NfbofVwUI2UnJADuzKXfW8Ul3Gg28WAvzXD3yKb0y6Jaik3MZdvMAcgdshlZI4CSo1kvgdF3KYwrRgN0a7vAwtiDys59mydDVI8BIOTqaSDld8KnSuJ+bAQfNEwEHrzI7qybfvrWp5mlRPPF4nHQRfWxvNKTzged4dOCG/G4CD2hxmeIroH9lG4lc8jlQUjeth8sEmCXsEGZMsO2v9Q0ye1HqV9OII5Canup102eFi/WxoziO4JpHWn8QqLkYuNlGLkd7gxqE0bonth8FjzNlrx2WtM+0qPXbjAtg+PMvIzr01dsysyNyKa3iJ7uOvkarVrYjTnou8tp9F5IkyKwinamMZmJj9EKeaVouc9xokOPwtcowxXIA6j+GDEwsswlULc6pN2MHulRKd32CKRzk+WLUmnzt1HyzAMbU5ax5qjv1wZsR5U9oy8rqR3XeSfl+j85yL3PO2LwPIObMmp0mcfPYBHLTLVPVMmCFX5x+P3NPNuCaQm/TPAvdMme3eIb4fM3t1mjD+b7FPAQ2e5z1NaOjwff+2126XTtUy1bpySId5Ab4+2RNjAieaHprFOpfajVuABCZGmAcXsIA4xFHo3COll7yrDnJ55ImArL6cFbRQGfAWammgglYipGjViMf6WfSF+1gQ5+2rNZ7eBtGFSc7brWntI8iAo1muRxdeQcWi1iCbv4tpLGAzezWzbttdiTT9m0mCFiqpo553pn4EQCyyFybA716R/b545jpSM3P5ZoPitlog8p4+MPXax6H47j10fkm93x2kcz7eiZAA7a6yBk/9OPlDq7qYAFRSthN0hD9YJANOWCnNx1W5cklHFl2MI3aCBCQFOt8MxNmegQRH1htlPlQvfYZESlXLDpaxva+Sf5n5fwGooIUVLA9gWvspZSLJ4Fx2k0cLFVR2y7XpmDSB0sRhvnejVLFu6F9Jbl+Kt29bzf6FUula1LKRr1fewsdfFunnVxaW0UFJcP0+Nekf+Cj/xhrtY9NOjF1MC+CBtTSQSx/rWAxIZSVOgsZAWgu2vFJD1kLhEQF09k4RJ2pi6HyZvCJ6HntwfRfqSBN6CKBygVlHOKuUDAbYPU0CEwAP/NMmbf+na6MJTt6NdJ004bf1+l02Ask/KfM8L45Axacg/sm9vu//q+d5/wC8H0cXPGH8cDh7bp/bEafFgvnJyPiSj7wLOhDnazsyRpmDc0CnrTKTgzhv3bgu8sY5KUac7ir9vjy0T324amcOkmObpNsOd8M2InC4mWOmWUdtUyYy5SNDBYSPfyhnvRkJMmbpubDqiQUWprY0WCViMPbqZNy7wgKjrYgzeTvyTrYqTwLpYfLo8at51Wwk6eOR7HHkRjVY8SXIdduKnMutyH1SoPNsYvDzNJKZ7PLZOKECcBUIs/Dx7MNV+6xnjxHS7TpmMbqGhAXIPWmBs4kqxJBAI4rcp+F9qdLfinAVHyOvG//FBCWiuIanFhhboD8NeQ6P4GC75TjVrXUZ+9o9yOfMqtKY2ciVkzM2vH0XeeybOM2SWidv1rka3MhuDpQSeEuVs2BVkDiuAlCNVAVsoO/H9YYAeQmEO5dOgVlVz7P9lcpglgRx17SPD1KjvAKADkroJo/5bGYiSRqpoYpmoiGHN05CAhPd7qGlEaYd6Aicq66yCKnKCKUJybyX0EEufUT7Zadasyso69/LwmzJ5sf7E+zNLmOZju7/zO1cxyOs5AYujzwR7HfF7Bby9Vz915q/gupjVNc+A8DW+jeSTEWhTh3OlnF0fmeK64PyyEQ5Z0Y0NVhDEmfTdTrs6PqkK0KdB2zUylYUeTFZQNRKunPdiiN3g6u4WDXgO0jzwQqESHkjcu1+AXmf0/2+fyJRkjQfFA9hoC+Xy2auDYLLC3mab/ERHlDIXCFdXLRxC/GFCT28KDNZyUP579BdquS6+Kog0Ch6OcW6yjcRXZhkwW6pKviT4OMt99CyUEpGlV/cQcfnSqjQSshH+TfaKA94RC8wmyqag0pKP9kcJEqhprWW8SiruSaYHkeS3b1nMdAyjs4WjWCvPCbnqlrdy80Z18aaaFmVqkM/2/WMAuS4SsrB85FUoEWWVjEx6ZcWxJU9PQIUPwtS/4s5J57nFSCUjxRQ7/v+D09mPSMGJ4oR/qjneRN83z+c8fNIjc2Hs2PAJ3zf3+R5XiGw0fO8/9HfvuH7/teGWXZYMx8is6dD2JnZh8Ag5yMOWAHiQJljCK6LvDlpIE6TyZSCvE9KcHj5uG7nCOkQqWLEaapCnDSTVk3g4E6GpByNc2Xr7tTtW4WnU/fNFMrC68oMWsJNGy1gsqy0Ef1H648txokIdOq2X9JjXIDreN6rx/xSaNmxJC4P1U39VFXAuoBvI4m4OK4vTTi7b/dIMXJ9TyY46cMFiiaVOxmpnGzPmM8sXIUweBO4SokR9q06Nhqz7R9BrltY8tdEcsIB7AHdT4NnGTE/QTqsy/b3CC5w2YQL9E1OeB8S7JgoxX+H9i3zfglX3zKfnQxa8snbGbWuU7Vjvu9//LXeibGzY6ST4ItI7zg+F9gmvTAA4kXp0rhJXUUjaEsQGUASOJhXS+g3IGv6EbY3n8vsqucA6Bgo4Xe/ejN/eam8+1upCJxKkD4YbZQzkSTbqKKWBpJESRFheb+wypPZ6l1rwJRbkiI1HprzJagqpIvKx3aw/wrNxD+2kZYrZvBgtjjQt+6+D47BghJZwYr8/8OtLffxcKWUHBZTTz11LGQj31UeSj7d6f0zemHWzBa2fkVJ1tdDNJKk84taKfmwnKeez4aihVxcX4y16eeJSiQEtopFDxI0hHkpScTfNWmGCbIfQfBSh2RDwopch0PbGUd6o8jLEYc8jjgeP9D/i3ENC3tg/Ytv5S9ny/VqZCFbBuZzQ5Y0RNzCfO4cuIOfZf0FIGpcf7/w0wHvo5IWKnfvYPNU8fTf2f1jGvMXUtOtmkQPwuKS3/LobVcwP1cc+OZJFRRO6qJytdx8Oz9XwoIN2wJFHr8G+idls446Pa0pUkQCkYMoSQrpCgLJJFFK2E9E3zJJolTPfoZEeZzOylKycvsYqNcgxQbfyQjvxF4clkU156xUr0e4z0nP0dAKjhL0oQFk9C/itWs48OrbUMn7jHnmgHbTFDsb+Hvf97/ped6VwL8io8oK3/f/6RT25ftI16G9vu9Xh74fahtvA37i+/5qz/NWIuCTE7YRgxPP82oRFOcEYKbneW8APuj7/i0ns0Ez3/d3o9Q33/e7PM/bhutgNSZm975llMPBiqkhNSOO38X6uRxXSbE+KdZoLtxR3px2q6D0Z6w33P+hHXHYw43kLICxV4l13E4weNXEHDDjp5gzZg3panBdwC1zvoV05ywcaMRwvBALKsIO72idWLPJuO7mSYRY/2tcltx6vWxGnrhnQ8uO5RDzaqdkLcC1rP57EIL8WuT9FEWGzTcg91MXJ34um3ENDVPINTeZ3sGCxS5cJ/cYjhiP/rfljGeVeY7CHJnJuCDaOFn9us5+5AE1aJhVZCbj1CCL9X8Bcl++AYd+MFlvU+B6AReoH9Ll7BmxfbV+QOfioGSZ98sBXKUlnIDIxcEcT9nOqHWdqq3TLu2rSYd1/YnqgGa+Oo2ga9ncdv2smfkwIsWy7z2kN2EcjzjU1sBeMzlZdeJJDnQWQC8Bmb02q4HnLp0XVCn+i+tJEA/kXpeyhmz6uXXrfWyoXqibb+dRrqEsWzghse699F0GXfkSfPSRy7QDHSz4kDiCDz1wLfuvKA0y5Ykr4rzAnCBb//DUZVTSEhCob916H/urJwTOrXUx/wqfDrrGx0lwT8PHeXft92X6bQmBnV2px30Ytm8610Gy9kDJ8p10PK/uwUOI5xAmwJtSl1k/8lJswkG1+nDBRivupYtek+m4gbMJ8Ydt8IiR/mK+FamstIW2afOWgvr6un+a0W8aB8cIYHf/xKf4Sdb1QY+RRmq4JeueYLGNLCRGe1rA2TK1MrgWzflzyaafXMWVvPKFMmYm9nLNVx8T9xCoohXvbmB5aH8sMwSsnVRHgngA9+snmwRxDuqJaKeMQroo0Zv2u3yQPiIB76WVSipooSNSSmfLOAYYR1bdEReggMvchZsy7sM9E416fi2rNgHSVNXIQQKTcOC/k6GV8l5bG8jy6MsdKS2WGuH3wZP3vu8HiGrf919Aa55Ks9gJrNLPdyPiojuAZzzPezS8rC5TBvT4vt8V+q7S9/1M9/N+4FuI62bzDbeNGbguNyctIzMaWNc3EBGmRwF833/W87w3n+wGBzPP88qRBPvTiDTkRzzPew9y237C9/2DgyzzAeADIPwjc8AGw5ubcxiuokxCzugf9K88tPwhnOxpJml5H86BS+J6l4SJ5xFkvOxDwt6wtKpBa3bhssUmr2oKV4Nl3A9k/Lc+EwaVsSqiqZAlkHH4AQa3+bjGdrbOpiHmHY29EZfB70SOoRsJ+oxrsEu38ewQ6xisweDpZj9D5JBNIe1sRKHr17jO5FY5maPfD1XNGc6MHG4kc6s8DWbZyL1oinA5yL1k8r0mk70Juc8z768wPyaFa0raj8D+wkH6EdLhYdbPpkuPcScyWllAb4HJeOQ+P4rjdk1Dno+U/n8WOZ8WwK9B7s2hKngWsBvELfO5H/NmnmfUuk7F3q3/PxX6biykhF9DC8O6DNJlTskBYK6DBnXgMsNz9P8W5MEwh3iGTpva0zzgHBholbdLVsURCsu7Auf0Za2KPMYSQBombmF+QLA2Za111W8KOCbW26S0W+bJ7QB+BLlnCyhi//XgPQpa5GAeTZy3tVUI6cD+ZRNYsHqbqyBsgL6lrtLyYvVsythLvF+gSE9nX0gb5RTSxS2I4/0p/h9ZFUcCkv1Ekry48nwuvkGAE+tXvlVetuW6ja3Q8YPpLsg4DwkADB5nkpR2HtuR4OB+5AUE4tv246pXFRyvTmvqaei2w9PtyD6F5YvXhpa9WPcjrChWCXRBXlSuV8UdLbQeqgxgd6tZRi59fHNAyOe3ZN1DnESgnNVNPu/j32lCOshHSBElSZd68YV0sWD3Nn55fR0AV363HgrglU9KkALgNULfJ0ALKUxv6mDzFXNZsFW+iNFOnAT9WslayQ28m/9kF9N0H4TnskKjmziJQODAbP2LbxV5ZD03A78vcERDEGhdAZKpQs+7lchBgpbJpEPl9uOU1PxtiFu4Qb8IK0rY9OkTnPh4pLIjI8w1fHAyTPK+eYhFLgNafd/f7nnem4AW6x/led5DiNuSuexbgA97nrfU9/1ez/Pej2jcLc3Yl9+ojx62PxtmGyY9sYWhac8j2qg0BXzfT0ivq8DG7DXted4EpLvvx3zfP+R53rcR1Vlf//8L8NeD7NO9wL0A2Z5nfV0pZ/Crl9nPYUfo8yREGvVsnMTvFJxD1aWfjX9iOHl7tqYgDpc5oGHloWk4Z/wNOBWlfJw0sTlt1j/FnL2hzIIak+TtD23PgpvJSEKuivQeMAaJMSXGLFzlJ8rwNhR53eRiDYYU5gdcj2sw2YyTqB/MTrfAZLCg4qdIMDILOV9nI0/zrxGo2tm6zHjk2p8MMduCXYNTWcA33H6aelu48aXB6Ey9q5h0qejBKjEtyIjVoevq088WTFhDUrNzkKDzHOS6z8JBwO34bTsG5DA+zCYcpPEP+p1xa/4bSRIYTGuwaqJByTIrU2Gi/ZjZGc7JKZnv+2e91vsw9raT9GJ/OYF0MHOBdkjG3M+tSFbYMv6FOFwviH9l1RNwpGu9wSdelKQkq4MOZWnHSVAT6hDVTBURUkFDxGaqaKeMBPGgT0UFrVTSwuZ8IZkk8uMs+ORmKh+TN2KkP8WhmyIUvSzOU64VuZSTUrr6MH2XaVAD0ASJ62fwgkZctTSwjro0Nafr+Qn5dHMPt+iqtnBH7M7A4e2gBOYRkPbpA950DHrVPanGqY+ABEb7cZWV9biu5OBgQxfjkECXyL4G89j+W8DTiwxM4UoJOJ83LPcMEjgaptvmO4gETTZQXQRsdrCuxOVxerZO5N7S/4vZstkP87GsbwCwjSoWs475B2SnFzRuw6+BskkSaKxlSVpPmcrVO2CSKHAB+G+H1ZOu4JoPP8ZT35YLdtFntpA7zR3nzitKWPDYtiCbumCDbKtPm0MuzV/D9N0dNE2VgGgJa+mikFx1pito4UkuCXqtVNBC4ewuOgZKKK62EiDSlLFcJ6pJD9rsnJuTU4e4sXauk6Rne3uMY6X8Ldo4Xkr49OCbgAQnfcFBDmWHSz3PC7d3u1d92uMsI3k/lL0Tac8GMihl6tQd1/LD9/2HPc87C3jI87yHET/7rSPsuNlw2/gp8C3P865GKuUnZaMJThIK7fI9z4sAt3G8tttJmed5OUhg8kPf938K4Pt+e+j375EONx/WJiMOsPXl3YFzMIdz9s3hNqfJlLkMLmJ4+XwkeLCgJIJremhViPE4CfVendcqApt13SbHao0KQcY8kwaPMDRfIRdx+IwEb93ELdAwvH8+jt8RNju5plBmgdcADl1glum8DoW/MCexV9fZrPt1Dk516gDivJ8uTNjMYxvMUR+Ku9KE6+Runc5Npt0U15LItZ5BeiA8GjuCE1kwKx5iXpDr14a7BhHkHjMolTXofBoXiBZxvFOfhUDTmnVdh3DBuD0DR3DPklWPCnGiPqar0o+reBgnqxBHkt+DnCerINp6bJkYrroJ8r4fLFgcDDKXeV3HxPxBNp5uZzgnw5jnebci43xSpycC7/J9/57hlzydLdzXZDpO+BokcJnkZvURJ2w/6epbeSiMBQlaqnEvBXOklYNy7Fg2+ZHuILP+u01vpuoCl4pLEKeEDjYowXoRDWyglkU0BNn2eTQxfWsHiWqBCr1992ohv2tMlduXIvdBgmxI2Sf2pvNiiqElv4LzdmmEdQ1U7t5BRa48qc2TKnjv53/MU18Q53gau9jCfKpoZr6WOtZRx+00sVxTVStYztSql+lOaUZcjz+rWOFsOwrkobZg5BFkYLDzdAypppjrNg552dThMnNP4tRjQF6483CBxHj9Pcyq7cEFinXIYPN7nf4Jct1sHz6LawC1nyAw4U3HoEXcrM71Uyip2xl0hK+euTmNAA+qljVJHP9HrpB+I9M0RfPxu+7hl7fVceXGekDEC4r2pgICZ2o8XLPhMbgMLmrRstKXIbR6kvVRps/r4FCZZPYLO1NBDxs5LUkenros4LlsYT4RUgHsK0GcS3gy4KgYF6UiS6BdAL/71ZvdSxD934NLaffhBCJAIC0mGUros3Wq9nLAP4TD0FnJKyzbfRoR4vGCStQwtt/3/ZqRZspM3g8xTwTp1WxV6cH6PvmDfIfv+1/Vqse3gYpBeOVD7tpQ2/B939rDnZKNJjj5EEJ6mY4MCY8hiMtTMk9KMfcB23zf/3ro+6la0gJJSm8dbPmwTdAZ23BKSebUDHB81cQcL4PAGOSoBHmdtOCce5v/AM7xN6nUYlxAYh26p+OUs0w2OFzg24M4spZR7kIcxSO6bAfD18EMrH0EyUwb+d0y5WEZV6sChc0gMNMQ59Uy8yaHbDZaknouaNFZttup2z2AYAEN0tWMXJfTxTIDkRNJiq9FYGzFyP0yB7hUv+9E7pcC5Pyey9DByWDd2cFJQFtzTvs/lFnjw17kHraKiym3mbgBuEpO2Kk3hStTbbMqYSFS9bNWCya7HX6f27qsH4oF+KbyZdMm3GAKXd3Is5Cr87bjOCmm8pZ5bsKxgVVMTNYaXJNMkxuuQZ7Dnw1+2k7MfEaqxJ/hnAxv7/d9/26b8H3/oMII/kSDE+sQb8GIyQiX6/RO8GLpizyCPARzQ9+F38AVyENVp9P25lNoUmfbFCbMbmLjIfVpSo/RThnnKyA3SpIqmtmiZY5GasglRQuVgbPZxDyml9Sz+DdahpimXoYqAed+C3Gstc5VtCYlL4xVui8b4LzeVlcxUKUXzzDBN8P+L0zgEW24eAMrSRCnnRgVodrnV/g0mRaLSIUgfluCrQ+8kYEaPTl3QNZ/H2FgrUQWU+96md23neX4IzWIE26u3uNIkPc06STrg0elE7mcLBnIzIG2gSos45yLuxY7kMDEPJ8+pOeJOdRtSPb/RmSQ/CUqjxu6wFNgQlYXx6bIaH4+TXyZTwdVreWsoILW4Nxcz0+YzYvBuVy0dKNwffRcNyys5cqH64MYOHcF8Ek5jqcqtXKyegv8I1hbm/N+0woFUJgrg5l3AJomzQvUuuSw+wLY1g2s5HEuC4KQFBGaqQruuUZqiLGXFJGg+SdRKDl3Jwf3yfTAxgJxWKzHTKmeO4uJuhCnyIL2I7jqF6gcdwxXKZlEetXk9IF0jaUNlrwfwq4CNoUS+9Zy1GwGQ+gseZ53CfK0rEJUeT8y2HyD2Ki3cbI2WrWuvxrLjaotQmL6Js/zDD36aeBdnufNR9yBNgL069AWQe7tDlwG+0JkbLLMbJhbYY6ZOeozENz9SwgMydSF+nGd001C2JzFfFy37H04lS4Ldqxan49Aq3YiY2GBrq8YJyFszqdVLkYDb7LEgpHrJ+FgnCbnOp7joTBGWj6qyxgP5ijpzvJosfp9ONnbLCRx9DQCDZqFOL4v6PebR7nOTDtVGeChbCiC+UjWjjjA1bgGnJciGMM2XG+QaTh0wGA2XDWvHXdeu0nvw5ZpUcRZT+D4Kf049TcLUobyrS1B1Y7cM3NwwUoJDl51tq7fJKcLcAqc1u/HmoB2I8dv8EGrmoCT1bYgbk9oupPBA5NwBcqqQSZwcTZOva4AAb7uwvUcGjM7Xcp+f5qW5Xme5/u+DwGhciRg9mluebgsrjlPbTpdJG8we33n4rLw9tbdT/qNPYPBsxD6Ysg67wgJ4swpEpbYsaJsxtEfVEpq2EiEPpYpkiJKko0sJEWEeH+CtdlLqKKZR6dewTWNj8lKTaTf3sBTEfT6/Tp9Fulw/wuBvQSVls3Xz2XB/dvo06YCUZL8nKX809Z/AGBndQkLEtv4j/g7+F0IWVJLQyCha1Wd9pRESPFIguJ37iHVK9CYnv+YKLwbabTO7lficj4NHlePBBGZOd8kDkJ0EfBSjlNCA9dkDNKJ7basBTAgzsHy0DbHA9cS7BNbcNWSPoTcPx4Yf4ys8+TtVRVrZmvzG5lfJfrGG6jlVu4hqsHJ3dzK1/k4f4PAvFqoZPrqDpZfdh8A+ysnMHPjXpQOwpID9bBIepcAzLxob9CA7KLH9ILuQnAuFrg9AbwCnu73oeURFm/4bVCa/311jGsSj1EVl4rcWpaQT09Qveknm2z6g0AkQh8vMBuAxCG52ade8LJcIwvMKpGA7X7dh/16bu2+NzUfM4PXBXK8MY0/LKrfhtyAFpSchpyTUxzahkreD2HvwkG6QIRoz1HI1k4E8vXuzIU8z1sAfA+4GmGV/cDzvC/5vv/ZUeziqLZxKjZkcOJ53r8xRCkITr15lu/76xm8NHRCPU1AfIZGZFw3/HsKcZBNyvR5jpcW7kOcpnCVpRlH1DUuiT0j5sSbRKtlxy0jXIjD//fjID4HcGPcPl3/LFzQc0TXcQTXj2UWQ3fzLsYFP0dxULIcPf5Jup0Ugzv25aH9i+jy7Zy8I1eFnIs2XCfxPch1OKrf3TfM8iMFCa9GYMII2xzJ1iDQrsnIOZ6l35tCVRQ5J29EEABDHcNQgZcR2i3A3cnxvAvjAPXrdi04MGEFCzbt/A51vOFgeDISWJj6lwU6EeT+bNP5BnT72/V/FLnmJg8cwfGYjJB/RLe1M7SdbP1crvu9g/T70I5xB3KfNYeOoxAB4to6bF/tOUyQ3mvolGyAUQisnLFhbC3wY8/zvoO8Vz5EOhL9T8wsXWDQrTxkFC3Xaf1vPtMO5GHoQzLHRmoMy8kZEdhI9JXyXV6l6MHEixJE6KNO25Q3sjDgdpj9jgsp16c0SpJmqriEJ0llR1jSv5bW7ArhhSyTDvCRZSkWrd4Ib9cVPIG4Ouq8+rdKdj0IXqYBb4E+rTAs+Ng2nvrmfKr6xZlto5z3fvHHAaW2n2weil/Le+/6MR23ldJKBS/ruTGFrzgJ7jp0Gz1b5cDPqm2jc+sUN9hUIwGIVUrax0mu+Fs6PU/3z4QGypFA5TCO2P5LXd407HciA5zliZOkB4pxvR5hVsB+3AD8V0gWLiwPvQJpUV2Dg8K1jIPz+pg4OcnugWksq3qY36SkmUosspe1LOGDfBcQgvvn+QJ1yhlaTD2/XFbHlRvqAfjyotv4x6avBFAFbwOQC9mGl7Ls0svIdcrVc/cyQXn50N9HKPrHVADML9qWEodCr+/e6jKi8WSgEGaVr8e5HBBI3vk0BQFlB6XM4UVaqaBnx0SmVr1MhD44PC4dJ/4U7lmoRu5tw8eYUIE1vMzTfbdKigdyM4Ql7/I4PqI8PWyArFFwTka0QZP3vu+v8TxvDbDc9/1dnuflIzyRIInv+/4xz/M+goy52cD3fd//PcdbPvB23/dbATzPey9wc+ZMnuf9CLnDSz3P2wF83vf9+0a5jZO24Son9lguQvwC01N+O6iO3GliHrKDz+MgKRZQGEm8jfTAZBriNO3BQZhM9jdb19eFVFBrdRlzFrtIrzIYrMtkUK2Du81TwPHjnpHqB3AV5QGCpEiwr4PBqzpxKmHhvhbWc2KX7pPJu2aa/X4iTn+mkpapohnc5xDOqc1Hstem3hV+fQ4WiPwp8ozbkXvHqlbZoe/BHafxLIc610N9vw85rwaPKiE9MAk3G+xC3ss7kPvIkrUWrFhVYbjqi1k38j63CkkUF1Dbb3aM43HwR1OLjOPI70bktx4pIM+GVUvCgi4vIO/yl3BVT0jnORnk0QoYBqEr1GPsRu7TZpwgQZi3c8p2pnJyKnYHoq74YWTIfozh9TFOc7O3QLhDfAwH82oDyl21BJ3VVIn2Izd8Gw561IM4+jmIHAAAIABJREFUntZJIClZ6OQhyVK3p8qYF2kKHMeZJCinLVDnitDHYQoDyd5CuoiToJIWGqmBbOmVEelPsXiVwroakQfSKiNvRx6cmTLp/SNSSblRf48B90PudTq9FC7avSVYft51TTAXfrmwDoArv1pP6pON/PNtHyVKkvlsoY56GqgNKifX8xP6eiLkVUsQ1k6Mqy74Kb94SfVwfwCUhiSVOwrgvbgqiGXdraphdiUy0JTiNO6tUlKKDGbWlXkq6VjXFsRNs0F3t67LoElrkRfbl3R6MhQ/tIfO/54i+1ONOA9xgTV1UMDHlv4TjSxkTuRFgKAhpvETrmMV3eQHwUYHJSJ4oNdiMetoudl2ACqP7IBzYPpjyu4/Gwk6thCoq/GUfv4XmSy6OiUQvkX6+y7pddJcLZFfHj1MT3TQEJdIoZEaCumiTEf9L/NZXmBOIGZQQyO/4RLOoo2SKtmPPiJQBdsnKJH9l+OkymT8HxMOMCenF4F4WTBiFbBArQvkYrXpF4eQ6PL0VCEfi8rJMMl7fN9fGvrcTToY0b5fwwiJft/3N2RMH0UqKZnzvWuI5UfcxqnYkMGJ7/v/AeB53s3AYt1xNPP12Ku1QydjA0hgYh2qrcmbQZtakQy2MetzcY7dZJyzZbf6G/S7uH7uQMa0KaQrDh3A9ZUo1P+mjBQWYslH3kfm0O/UfbbqiJGXjdAfFqrIDEyKEUdvH+L8DeDI8Kb0ldTPQ0mqGU+lOHS+wo6r8R3CjrMFJuZ0G3fB5GZtP1r1N4M8HcUl3eDUA5HRQLxOFq51ovZrxJEuxjnBO5FzZUGxQY5OdBi15p/jkaE4C6kE/lp/zwR3bkd8CgvOrR+OBTf7GLnfh1V8tiCj3TRd1zk4UryJ3MRwvJY+5F43wYjpyHkwHkm4v0k3TmQiDEmcjPBbdmUcW35omW5cb5ULcIF8dmj9Xfp9H3IdwjLJp2Rn1LpOyXzfH0D6aH/ntd6XsbOwlHBPxrSaQflLdZZxYKJUZCM+l0Xi8xFn2PzPfQph2i+v6fgFz3GYQmZqumcCXdzNLVyt/kGEFFU0B1LDXRTSTT7x7h205MtGKzfukEFUM+n+J0VuVosYsr8TcC7HXGSA+4FO9+p02K15ngA+1ZVdSNP15dT2C8eFYtjMAi7n8SCo6iafQrr4DF8GJBipjTVQqdFFCxV0UMrUG8TD3r3pLOiFgQ36ZjwMfBS0gOQ4JlNCx5DEBSUgg9JUXPK9DwnM7Fr0IIOQdZSvQ5xpy+7n6frNoU4iDrfJI7ZA5zOiUGWVrp5vT5RgUwOiBwduojarIah2HSObJubRqNHpIg3ZzOIkaGIeZXG5OItX/xbOgpZqvUEmIWxgc1W3IZ0nwgHxfOQaamBw6OdaObHg5TKRjj7vMjn3foFUxZb0i07ymuylREkGCnF/zfe5gzuDak8DtczhRZqYFwg1HCOb82li+45zAcj6C+17Yg0h9iPXzoJLg41YcDhDz3NJaH624aqUbcgFNX746QPpgtGqdZ2xkWw0hPhpyLvf/KsJOL/gtDBzRs8mvXu1KXbFEafmCsTxCVdQrG9JOGnyOMI9sXVbR/gcxPk2fH2YuB6WSjU4mLbfYhIipfBoxvxbcZnncxAH72xdTz+DO1aWLbZtG+zMYGUJHMzstwzuGF+B47lYUBJ2XAcYOgDI9M+ux6mTmRDBFcg71+A8Q8HTTsZGU+35Y/mQm3BBwWSk0v9DgoRZUBELi8KciOXjeoJk44biTEsilb4wP8WCTuMVTeZ4HcLMIO5ZBCZVoMu14e5pg4UZTOtcXEA6BffaMPRTCa73iolJgOOA2fvIKoNW5cm0sBSzCVLU6rHtQoKUPboOU7vbpevag6BTwu0ITtrOdIg/KfM8796RhAJGM8/pY+FXZjgQMS/XOCiHjs97FuLgXCAPQDK06CKcGhSklyiBMm3I95zielLksoS1/Jk+2VtYwDxcZSWXPpb2ryGRP4Mrt9bLSophZ2UJpWdrn5M7kQHb9mkX+NeAZ5n1FQia3fjrq2SeAAa2FXnIlUA//R0dTPtOB56+ZPtuEic7Qiqo8CxkI09ySSA/3EwVe4kFcrXSpdw5dyXzd9LxyHSoETWmqTMT7L7zLPg7neFG3Uc7j1ZJSeJgXHn6+0M6fRESeNiLrxxB0VvV6kkELPNU6PetoW1YBcaQ/lfpOXzTMXoeV1zeJZB37UEuL5LGNY3UECEVVIyOkc3VrAnOy9NcSB31AWSqhUpm82LQk4aX5VxX/kAxGPORwMSyf7v0u22w+WfCz1jwxW0SnCgErmhuCv4ed73XIIGq3ta7bixh+k86WHe97GMtDXycrwfy1B/jG0RJ0q4KCq1U0E0+17GKVUg57cXm89k67o3BuR1YWeDkoEEyXGHujz0y5oz0IdVEuzb70RNvIrH2VjEP6/+z9/bxVVVn3vd3J3BOCCSEnJBAwolgIkgkNphYEawNSoXS0lsdHbWjjk7p1Bk77dyjnenLtE7ty3T62Hk6fZnWjh191LbaWvGWRyyOSmoLQg2aNjEIJhg5SSCRQF4gyTmQ7PuPa117rXNIIEBQbLk+n3xy9jn7Ze21117revldv2sfpwtTF4yZreuMHEPGYpx8A3jF8zwtXfF+4F9OWYtOQIaxVd0VK6+Vq1uxEKd6ZG1oJBmhMRIdaR2iCM1G3imNLrhMTCEsfAUs1l+TkTOxiqpStGuOy3uQtWkGMjcozEtrqaQaJq4i+RZW+YtgdSb9/aDphygje+zbscn8WizvROpxYI7VqUK96kVY6tnhEe7lj0WUEhfEaFTHnT7LBLawpytjiezkIH2qldKVWGEkUgE1MnUcqIGiUQiNUqRe09W1Z2HHtTK9KZxMDeAsZC3T3KxZWINAaayjyHuhBUx7sGMBLBmDGisuY54aEaWmHduxcEh9X2cjBs0+BMrWZ643iBiJB7HFH8uwusVJy5kK8ScqV3qeN3iU3z1g6dvVmJMXVYImIKNwttkeMH+qMM0H/xBEJyYfOhnr2d5NMpWfGiYKNboBaJjA1GUyy3RSQBmNgRd7HjtYSk1ARfspvksn+UEF8jBxutNz2MhichZIKCTv4QMUDXYlec5pwIbGvwXeSiwE53VEkVfPRmq1hDXAFwnO1/uzENkPJYK8iHAtcKl42DUq8CyXcw2P8Vm+AQg0qGs4QsdhUXirQluF/cnA2QaeniaTRK2oK7tfnCPd/i+mDXvAqQkoRsZqZEJR+1GphxWWUEcybXMLySxqF6bs/0GErlgJUu9CJijDOLXq6l+wdtO18rw+vIeehhlMXbCHntoZrB00llw3NF/dERiT0+imlqqAKUthXitiNQBsjFZStLXLRrHyoXdRiOxik/ymuSQaOfka4l3KhYUrjCJ/FWI4Vph9FiHPW20/9diaYZ011EfTNbNY2i9tCA3C8tz1QdJ+Fn10kB8YkgrRe5CbAza2aNlT1CYqScwwhAZ7jbGmFTS2kwwPUV55nSWaTPuSQv0TsfQyarWru24S40x9ckZOAxkLW9f9nuc9jZ2WPuv7fmpJjHdUtNaEKlu5yPv2OqIYqSKvtL/DiGKTqjRfjMzBw8j7sRhb6yGGGBiZWEVJK7G7OY1aa0Jpfi807XgPYqh0kFwlXqE7YA0Efc1cfL3WftDX8jXnWhOx3nH1XOci85aew1WICxEDQvNDQpx4PQhVDLVaPUj0RyNC75Yp40SgYPuwOUlnYdUUrX2jzjXXSaQwpbGcW/ObFH63YZR9JyLPWqMkCj8sMO3S385B3hEdQ66BrjrSJdhiiMpEp7kle5BIRS02zyaKNdD0PrtIjubpNTX64t6/5jKlIf24geQo0zBH9pnmMmk9oCwsG9gh5287UnvNLUJ6UjJupWf/pOQzY9jnN6e8FeMuCuHSWUPBlA7Ma1K2xc9HEGPETT78DTJAW8x2BbZIl5G0yoMBaxUhSUAuNW9IiATtFAZUtM2UEKEr2A6RoJEy/vKFn/PqpSVS6b2YZE9SHFFyFUtZjCTFK8xrMuz6Rj7FXzFfaF6DwrpWA2th7zdES8/qP2C56oFdM/MppJ1C2vkc/wrAw/s+xidzv0WFcbVE6GJV2loyQ/KWP8sy8ukgJ1vuo+S6Jho2XRjkpAw8Mc0me2sbbsEyUkWREPZu7KSsFY91Us4huU5JGFHabckPOxli9vtnMKy+oig0ETBQPdWxUpSBiw/Ts2YGU6/aQ0/LDNJKDjLcI5r4ey97gQI6gmKTIeKU0CT0wEiU4nP8K/8e/QcAyofqIR9+8cVVAFy7cS3Z30pYY2Qzkj+idUwqkAlxo/PdOvMsFJZ3D2JQ/qPZ3mh+N8Zk9rYEWYWtNOZKDkp9ZjlV1AZQtEe5jghdQXRO291MCQdM6GNr7zzyszuI7Y/avsvDyjzTr2ogZ5jfNQKk2G3t+2kIDXQA38omeZU4/WBdJ5tzckaOztY1Q40Q8/+IcgHuPu+kpCHzu9IFH0LmLVXCupF5Qz24Sh3sShY2ugEBfXuQW6IRR1Xw+hFjQKMOavir4bEPUexyEAPlf5z2HCI5cRksVj7dHOcaJi5eH2T9KkfmoRxzjEKIlKmoB8vgpDVQVHKwTEppWCrZVBlLfodC3AYRpXWW+U4Nrnd8cBxDtJ9PFAqmz7kUWyjxZYRaeDr22Sh0cKwRqteQaHcFopz3IQaumyultXo0egE2cqdRHY1cxIFNjHyf2gdKj12OJaZyqYgnYiGR7zFt2ocYQPuc/fsRw0GT6XOx9YEw12rBEuJMRvpspMKjbv7JAmxeTRa2eGM7Nq8lw5znbJLpi09azuScnJBo7uIfn2iOiaswDWChJ9UwcIjA0piJKMtu5OQGc4jmpcQQY0YV5KrDDDdPZt5i2aFuVxULil9hinH5HCCLNVzJ3dwFCAyoj6wAFhQiLobKHKlP8eqCEqlzsZNAGW2rjFBU32XhT3OQF0oVxTskMbv4PmOcHERexLizfzbkPWassCXAR+DVmaLcJgixcOs2flVZzU92fwyAz878F77/zB3cfoVkaT/KdSzjWV5AWKzipmbG7h2CFdvdOgdyTAQFc32l55QblwlYc3VqTb/egExYs51H1WL20cnJrUpego1eTUa8GsoQVocYkqoTlyIKtYF1DV81WaIWtRMgCj1rZsB0GG5wQgRzxWDUyMkvuYZGygLFv4ZqVnMfpc+I9Rq/BOiEi6Kyvz8fvC8Q1KSJfxLCdyNYFhCj8ocI5O5e891q4CFkQdL7qMLm0tyEQPaU4KBTijk2mxuvopY4Ye7hTgCu5Ame4EpL/0wBMaJMoY8DZDGFPvKzO5hGN2/WSM4Jy0z/qiF40PS7GsitiALVYrZdby/Afo2QKNmEOgJUNGp5ekC7zuScjI8crd7fWLLwT1mm/vGKwlbOwdZpyEKUKPWsKjvX+xHlxZVUD7/WcujCeo+LkDlcFT4lANHkc6VQBRudeAuriM3DOsU0aT4LmWO1Fot+P+y0Udum8KAOklmiNDdBqYl3mja9B1kyU3UqhXQpzbvWRXEljaPT34Kt4g12LmlH5m1NTnaNkxONzqTK0aqlH6+cLAHTbxEjQsdeIfIc1ODLQPqplOO7/zjy7BKmjWpQ6jm6sM+nAEvhC3a86DEh5Pko6xwpbZlt/uuYUtjgK8gY0cKaUWzf9yNrnLJ4FWAZ6tRoBxvNyEHeg0FzT2VmnwZz7lqSc5NGYtoqxzLd7cOO3wuw72IL1pgbN8MEbM7JaH9n5E9U3CT41KpGE63e1IAot6r0z0LgW82IYnixOc25zqkaJjBz8RvUvbyIupcXweAE5tDCbgrZTSGrWEuYBOtZznqWkyBEKU1JBkqELvZGp7CwaRsJQuy6NF8gULVAOxSt6JKJ61xE6e1Etm83f1+HhfdukxeyEDEMXsd64lTBzDZ/tUA9lPY3U9rfTFn/NuLzoYAOvjrzDn41s5paqrj9im8FuRYlNNFPJpfyGzIZYBrdNLx8IbfM/SG3zP2h9FXeYam2fvFhuW6N0817kQmgzvwdQAyTF5HchRZkcpiETCIarWo238eRCXs6MlEbCmcWmL44B1HmXU6keiSyor93mzYtICj8dNZlr8EC+LOrfwIZknuznbmsZzkPcTNlNHI9jxImwRI2UclWOijglSvm88oVBmNWCMV/00nx33TSnhuh97kQ8T+H+J9D+BYsixrmeT2HQM/SkdyS7yMGyuXmfwWiw6sNfZ8Za7+Wv/h8CK8To6ODAkr2tZJFH5VspZKtbGIxX+7/F/rJpJ9MFrOJUhP9mUk7B8jifOp5IzGbyLVtTL1qD2mRgzIuuhHI3XkkGx9Vzv8qrME4xfwFUMmXzV+L2amDsVdke/tkmDQShI76d0aOLUeDdb3H87zRcnBBsMJH+/1tFVWyXWVoEJlztFjhHsRgOIQo7jtJpmR1KUyHEYP+XGwORzoyB7ZhjRE3YdhVhnS/LKxnWKM1WqRvCJkXc7Fe6MlYxVE9yerZTn0NVSHDOWYIMWriWFhXqmjxvASiEGY696FyNKVdleILSFZ+AT6M9FURsm65OS/j5XgeS5HKt1M0YX0IWZvasW1MIP3h1ucYqygsTiFS2djn6T4fjRbqmFQiAo12aC2bZ51j3LZopEH3BVvk0K110oG8E1NNO3Q8noXNc+ky59DE9xzk/clCDIuXkTV+0OxThkwiqYab3o/KAiRh//3Y3Bh1EryG6BwxZNxlYHNgkqtAnISciZyckWNKLzIrgrwdBTaBOo543cuRAboXeSGqsB4cZerKAHrgrOte483Gc4lUSMZwV6t4qUMmrllHBeXUU2JYrjQZXpOXo8TYxGLyYgegBxZu3cbmygqKn+sM3IrxxyF8G/JC5Zp2vg58wbRpNQL9Ue+8m8wPNoSvIdUFwD6Ih2Umyb4kAXfAs9csI0qMDvJZzCYaKWMm7cyknRAJmimhg3wi7GV9x3Imle4PEsc5ALQ6qop6CrUezGZsJASkdskTpm9rzHdVJItbR0OT6g5gIyO6vy5szUgOS7XZ1mrP6q3pk2MWzH2JhtYLYRDefPBcqD7MUjawdOUG4oSppTJgV8unk+3M5W/5T0Ce5839D1GbKexd4c8jEC5D5FoU62JD9GKimTKrlZ7dKpOoRkXWmPu6CYlobQbaYeBqmPRPWKheOWIsaC2WMEFOSrhLjl1uMgC9uERRtAhjHnvZkFkd5KAMkU4HBWxgKSU0MYU+Xki8j56mGcG4jlS30XXJZOnLCxGjfCZ2gi81bVHIXRQZh/p8gCOdAG70pI3TSc5ETsZHjkYl/K6hG1B60VKs8tSBKFXPIPOqKlla/G0nMsRd2MgWkvHtjYiyjTn/TuccqrCpweJGNxQmFDHfv4Y4V94y19NaSYuR+U3rlajoWlVl2jASFEgdtulYmlezptGLKLKTsUUd3SJ8OWYfhYRpjsFo4hpwqRJBFHD3d51jNLH6WHKsfI+3ixr4REULT2o+E1hyhhzk2byfZLa20cQdfwlE0Q9hlX81DF2GOTVEQPppMtZgnGzako4YIC75gwvb24noRcp2pUnlquhre8Am/2sB0C3m/nTCCGPhVmrAt2KNFI00Tjft7iB5/KSy5xUg78kHTFsUIaCED5r3ojkug1jY5LHok8csx2brOiN/kpKKd3erVmOVXa3rMI9krH0DFu94I6JQrpDNNx89F8ph/1syo763eBMxokGieEF2ByESQQJ8B/kspSZg84oTZnn/M+yNTgkwxIsa6th74xTyigWGFf4e8kKrnjcHUWJvN9vtSNL092Vz7zemkPetAzbvoRyr4AL8DF6tKQm8w9EXY+R95wAf5aeS3A1srKzkOh7lO/wdIPC0LPoChTdaEOPNdecSWmnzCmZe9oZQCoO87G3Y5PRWROH9oNnuRoykJiweuwmJFrgEa1XYhLS/QCoFK4wrj+Qq5RHk0So719eQiVW9UPvlc8OUC4lUi7JcktbM756/lAeLb3YuuZWnTOf1kcX1PBpEudZwFasGn2HJTikjt/fbU+iggPO+Ywq45EJ5tF6MTUyfb8R6VK8y932r0+4KmDQZiaiAJP2vwybIDyKTv+lavxAS821hx10z8wmRCHJM0hminvJgzLVTSB9ZRIkFOSeLQ5uIlUXZfa4kHnXVFCVj3qOI4aGRqGdNv6vBexhZOHVMtQEDriYxCVuVTrdPr7yTM3LyMha2rtNeDmEjC5p3ou/CUkSxCSGK31vYInAXIp5cVzFKNQTaEGWpCFH4lf1RHU3pWHiJXlsNB6VHzTHnVTgWiLHSgsxtU7HrkyqhIFGNfo6sDD7VXFMjLgonU0MjFd4zSLKnXeuPaNL1vhHu25XRDBPNv5nsnP8ikrH+IzGhpcqxDI9TaZiMh+GzExknJch69yzSp8rGphGEoyXDa3TM/b0HmZ9HKqCoBm0/8ry7kLlea41o5EHvbSJiJINV/lNhexlYo0OjkBplc5X8MPL+LMYSrbyJRCN1/OmYUcO4wPSTXlPfj9exxo8mz6eOGc1lnY442M5yrqmGmRZN3YON1mgkclzkTOTkpMTzvLlIcvxZOOuO7/uXjXrQaS+adwKyOuSSVMXaVYQ1+bCOIN+DVgS2olD6vYjSqC/bxYeZOmMvc0It5owdNA+XcF221kOWfBCl3Y0So46KoIJ8J/nEMm3RPoA8DpC38UCgjLIZW9EcRHl1izKGEa/Kv5njbzWGiYmk7P3iFPKaDvBKqaGubdjGeV9pttXb1wGVsJVKqNwa3EcfWfzOcOxEibGfHBopA+DNr5/Lqs//grUvG5arBtg9OCdoY9p1BxlmsjUsfovA4tyifiCPQvtSHe8ayVK2D+2eIeB67DlLkEiJJt3PNJ+VzKDG/H/J/L/BXGsz7J8qxuPvHriUyGfapGI6wrb2ux2Xcsnc/wEkkTyfzqCg4Vf5Z27L/Tb3xv8ekHow573QbKFzEci764CFZH2doLgiAHHYdgnM/yH2+d6FGAOXm+1O85tb7XknQR6Ld7n0TVHMXHQC5OR3k54uxko3OZTRSIExDJooZXtiLtFQLDCyDpNOc28pA60mtNVq+l37TD26OuZmI89GjZM8kgvCD4C8Wwqb3IKsuPqCnV7FGM9QCY+P/FEYJ5mI4hUhgHsGooaKFnkrQ971SzjSMBlJngQ+hvXMKgRqCFGQtBCjwsmGsEnySicMMm+50RX18mp0ZQ9WkUonmdQltUZGD9aJm44od5p4rIaBKsdwJERLWb0U/hPG4vNGipK4nmxXmVfjawibT6lJ9sqk9BKnt6Tqm+79uaQER5PfY8lFFBal8CYtsDmD5Bokruh1UgkINBKjOUGpBor7HDKQ562J7RHkmYVNOw5hnXyzGNloPISNSkzHkjzo2NQlQEs1vGnanmGuowaSjnuN1mnRTzWmNeqo7dKyY6Mxu7UDf44sR25Ry+nIu/cmEmGcjX3vcsx+2Uee7sTlbawQ73ne2Qi4Zqrv+9cca/93gfwCSdf9L/4oYlCafJtahFHlEAw4s0nXxGT4FohhkoNNwm5DCkfNNmfO6WPChCEOG0WnlirmpzUGNSaqEGX/Zh4EJE8g4dTR6CCfJWxiLjvIGjJv1z5ouzRC0WeN8unCggDmw8ZrYYmpSs7XzK0qJKgA4ndA2ERO8n52AAahrN9ozHFgDvS2y0yYSA/xKNdx+8Yf88oSMWCy6GM784JE8H4y2TZcxpQ0aePcz/+BGFFmXiAhpkRFiK7XigJDYbhnMpEVbXTdZ6y6GQgbVbVp4+uI58xVBLKwkDmwhmCN2dacCJUHzD66CKdjDRvMeeqx0ZrN5vqDcH5BPXUPLoKZcPhwOrGQNOQqnqBkblNw382UMo8dAYTqHu7kVh4IDMPiwU4xKoxi0DRzFqXntFrIWbtp95fM9idhvlIq32n+rzb76OTfhUTu1DiZY/7MwuNPhvBOaFsgYY0wcfodXMcarmQxm9hg2L8vYgtfCn2F+7mFAjNItifmMrBnGpeXPQXAcy0fEiNI86leNNdzufenYJWIbgRil1SEsQ0b3stGZvnTJqsgSQTW9aebV+J53mTgPxH1p8b3/Z+cyHn+KIyTOPL+NiPjX+l9VZlT9qpzsBSpgyTnt8HIimkfVvFUr24OolhpjRBNmFdITZ85ViFXRdhckJ1mvxiW5UiLNqoSqnj8o1UWV+gOWLpZhdlosbpuko0clW5kntXikpr7AtYwcZVoV5F1lXmF7Kiho/uq8ZbG2CInMHaK3VMt7v2NVRediEyTqoCDPGeF3SllMyQr4DrG9DojERAoTHCII1nVDpnrZZhraGFNNaIzkWdfiH3mTYxcKwVsFCJqztGIZX3MxI6NN829Xmb+qzGj74D6jNRw1shLu7O/RkOasUx17RxpEBZijaMc06Yu7DvVh41KdWOT8jXnJINxknGAdXme998IUrTT9/0FzvcrkFrP6cB9vu9/w/f9ncDHPM977OSuetrIYd/3f/BON2L8ZAJHVINPkn3gFcAsMzOWIkp+OZaVqAh5AWabbZdtChgYnMZAXhYVxZJFv3u4kKy0viBSEiNKlBgbjTFyFU/wHf6OZQbDcxVraKKUFmYTS49y/TNPQERqWQTK6bUks3O1w5JbsLkUdyMKssl7oA7CjyOJ1OZ3/2sQ/rnZjsCuG/Mp/qaxZm5KUDJTYEkLXxAD5quX3kGYBH+GDO1MBngi7coAp7+JxezYVWbzTBQnrBGRGuiiyFYc1+Q4LXaQgUx8Rc4xrebvY2Z7L8nvcx6S9H6hc44mktFCVVhI3vuwkyMQ+WwbXX9fBEug7sFFVNy8WZLKO/K5quAJAL79/Gf53mWrWW+Kssxju0SUjKzmPsLE2XyNYK7qKefj33koMB5L722VZ6F9XwV8G8vMpRC957CIp1wELrjGbB9EPEk6mS8x331ENr11wCIYMGN7B3PpoCCo/j6NbhKEA/rjdgrpJJ9Mp6P+WeYCAAAgAElEQVTKQ/U0zx3guU0fsn2nmHtIrs0A8k60ItEvEINR6z8EUkSyNqTgdbAP6fQoXCBUwieXc+J5XhR4EFHThoEf+b7/H2Pdx/O8FqxKedj3/dSsq+Npy5jXLfPT1cBjvu+v9TzvUYTY+7hlTMaJ53mXAOeYmifTgSm+779xrOPeLlHIVjm21oPmU4SxFcwVpqJVt8/GKkWj0ebOwtYtUQphN/lcYVyqkCvOP2Ha1IU4WLKw870qj1rJ/SASqNR5MRdxIuirqN7pfqyxMYTN9Sg0+xYio1GT6kOMrGBnmd+0cncuRyq+Y3nNNWfgEJZpaXbKObQg5rEU/aMZJicCvTraNd16MeMh7VijQNd8zd1QWNdIbdHohkpqmzUSctA5b6ooJE9rkfRjjeh+bGFCNZJccQ3QqUhUUQ2pbpLZ5TT6qPsvNu1Vg3wnsl7HsIbKHmSMag4IyLg+2xyn/ZNa1wTTBn2f0rGRKI0M7iHZCGnD5hornbIaUeMi4wPregBRIR7ULzzPS0cQ/R9AXu2XPM970vf9xpO+2uklaz3P+1tETQqmWt/3Ty9MxnGLNn8S8raoolQki5DWOXEpaC8x23NItm8mm/0XOd8NTghgQV2tBXQV5xExmcK1VAZUr7oNBPkATZRKjsmCKZQP1fPIFVdy/cYnyG5PBDkHvRUhsu9LBLAeamHfzyBXq5fWwbM/hGVqnCxBvOBasHAdeFPN98j3xY91suEfRdNc+syLLM7fxN4lU4J2NlNKB/mcbziU59NInHCQp7J7VxQaJthIxWGInNsm0RMQpbwVCVmbrmYWdhHbg0QxGpAJR5XcdEARcZpsrSMxhkxgSuusRZsUghchuUL8d7H0u0DXN4rgNpg0az8Dz06TyEmrRIEe2HGb7NQKn9z1Q75ZLHVMtnAR/8Gn+a7JvVnDlSylhg0mBHSALNo+FaFobZft+29hczFqkTGkkZNFiLFZANxhvvsmssB/zWw/g0TB1JB73fSBJkQWwoZStRIkGpdDd5APdCf3sIGlQfSukxJCJIgSo55ycuiWvXtzSJImrAJ0wFxTJ2f1KiksL8c5Bkydk4nYl0Uput3IyemTc6JsXScph4E7fN9/2fO8LGCr53n/k7IuHGufpb7v7009sYrnefnAgO/7fc53pb7vp4J1HuD41q1Z2DfphF16xzROPM+7C5kO5gH3I6PiYex09I6LOkc050OVLlWolPVI4V/l2PdBey7unENzWEB6Xes/DGFhWOpN1grtSgMccc6j0JVyBLriKsQTkblUr78MUfAU/uMaSm4uQisyN2mdFVUYXQ9xGAtnGwm2lu70hxaLHE35PZoMYSNEqmRr3gDYCNLJyonohKnXdRX/U0E+qLVp9Fr7zH+97kisaalRpdQ2azK6EtGkTnd67i5kLGWa75SkQGvYaJHSVEXdNUCVTCGMpbfWfCQ1CNx7UHY8jepoUrpWi1eShmFsjlcaYgBtR96Jt1LOOdXco1sPpsB8jmIjL32IEdyNHRtZ2P7MRd6vBSTTE5+0HH2azfM8r9bZ/pHv+z9yd/B9/wXP82anHPdeoMlESvA87xHgfwF/bMbJX5r/blFGnyNZ3d8lchh5O1RLz0VG42zZnDTRhq5BFLI/QyIlCu/KQ3IcFN6yF3kxaswprhdFt3Gu5GKcVdxEglBQZDFBmPUsZ6aZ5ZcR40OsC7zaMaKQIR74xfEXuYonZAx/nwAalL0mIZO/3sYWyL0c9hkDKfdGWHYfRxYcUh/ut4CnsAtWHZAPc9kh24WwKX0xBXQE0K+bMx8kTjiopXG+YRmrMVChDxY/SXNxKTcZXejbw/9bIFyXyCnTIgcZbpksSW6YLr8Xq9TWm79JyITmKru3Op9LsYbLLKf/wdJ96rEKaVC1bRIySarqZ2AbA89OC9pJHux48Hw+ePPjADTOLeNmHgqiEKU0cQ938gVjOWxgKZn0s9QMgD6yxDAxi3Pv/BDZ8xNStwTEKNmGze9ZhRgrmkcCtNVD0d3Y57Ua0d70Ps8296EwvjgsbXoR30AAvDdgc6Vmz8MP+QTz2BFUiI8SYz3LWcXawCiGPHKyu8lZLJ27++U5orgotKwEiXrNwEoEm1tTiyU0APOMWkiGdRU5B58+NU5gzGxdR10vfN/fjalG4/t+n+d525CbbjyefY4h7wf+xvO8lb7vD3qe93HE5F7p7nQC61Yr8kbVcfRyJUeVsUROrkLKC71sGtpurLTTRjyscTAZ6Q0XZqTJsWdhK5qrcq/ea7cSu4pGUxSKEkHWlXNIpo9VyMvZ2HyPDMSgScNi5d1E4VasJ7gbm8yvychuGxSupQpbHMseloGdP1UZbDNtO2uU/mpDlMSDWFpWSFbgUxmTRpJDiBKcgYWVqcEC41xn4iRF2zSWwpInIv1YeJtLbqAwwrGIVktXUQN6MjKPp2pxek8R7BhIxz6TYWRMaDtGEoUOdiBrYAgZB24ekULS3JdeiWyykHdCjfKDzn4u5G8yliXvPeazRj00ktWDrEnuuMtAyFnVwVCIjOtM53e9N3VGvGz640QM7lHl2JGTQ+bSa33fX3scZy4imfG4FbjI87wI4u9c6Hne53zf/9fja/DpJb7vzzn2Xu8mUViXDgp9k8zKM4BUiNcnm4eEx3eDqTVooUeu1BEUYYwPhGABSVj+2P4oFQWCwSqggwrqAq92mDi1VAXGSZwwvXNCLN39Ir7qSs8hL4YquFWIXqewrH8Aep0SdwWIAaWawlTEy64gkW8hzF4aefkZsNJJqN4HS/traMosYU3mlYAotPexOkigjhE1FMkyM/eRRaw3yhe7BSVSUVxL14KiAA43zGSBBKku3IIYKGr0afHFPqzxEefIyEgL1uF+AFH0tUBmjtnWxTgLMRqrzfaNyPPTvJYo4vkcJGhnxdUSftJE/1Ka+cquLzOzWAZFBa9wKw+wxCSZXMejxIgGOSizaYGpUnsEkOrwN2AnvArEqNQoVz6WjctMyEXzkUVPx6FCwtSgWWT2VeNkM7x6YwnnbTUMYQhd8GxzUwV00kk+7WZ27WcSy1lPB/lBLs0EhiiliZ82/pWcYJBkVp9m5F3QKJT+pvc1m+RFIAfY75JNtHCkTOB0MlDGIHvHCrUyhsFCLC/bWPbxgWc8z/OBe1MdZQC+7//C87w5wCOe5/0C+CskEjIWGXHdMp8fB77ned6HgONZC5NkLMZJwvd939ykJruccjkKnu0ImYB4SKcjilk2MrYVUtOAVbzOQhSvqVhFSc1MNQ5USYyb/dU4UPiTQlIKscUfz0aWpnRs1GSG2S+EOAVcNu6JWMrjg0iujLIr5Zh2aaI1WGXOVUjduhbq7VbjIMLIEYI0ZFRNxNIq63lcz/3xsGxpNfAsrJKsydCpxsBYk8xPVkYzQk6FYaKi8LupyJuajoXWTeboOUSQbJhMxeZwaGRM2bbcPCIt3plJUFmByci4GzLnTDj7porbHo3waCHQ6VjoXybJkRtlxHodGecaKenBGrtDyHPQJPshZJzrNbPM8e44bcDmZoG81/ruabQm0/le2fQ0Qf510x9dSB+OGwr52DknPb7v//UJnNkb6Wq+73cBt53A+U5L8TxvIvA3wKXmqxpk0TxpsNzxrBXjJ4cR7Vhn9QKzraPZaJRai2MSMoDzsEt6CaIMK5xlJvJyV4uSNRwPM2nGfpqHTbX1wTBlBY0BZGQKfWygmnkapUAU/73kAWIUhLuATqirlPaU/dM2wj0I/AfkRdFCfSCTTDbwRbO9FTGWttn94w9AWOueVCGKrWoF+fCrVdWseLgGgKYbZ5E/1JlUGDJKjHw6+TxfBwSO1kRpoNwmCBPOTvBcg+QsbM+Zl0xFO4gYF9pvIE9eIXR7zV8eyVTCLdgFqgExFFeZbaXv1HOGEWNGPUtFWIYQkIkmDxsZexoohQ/e/ThPP341AHXPL+K9l71ArEMsmDe7zmVV2S/IMrNSCc1spZJ8M2Y+xXeI7DvA2twrTFd20nlpPgu/Yjp/DvIc1MN5H7LQP262P48Yi1VOO1XDU+O03Byv7F3nIsaMGpfAebHm4Bq/WiU1TZ7gyqDNjZQFdU8e4xqixKgZrqYiTYzmPrJ4tneZvbZGoXTRykPUWH113kCejdI4r0eiT/oqxcAmwYN9706/AowwvmxdnudNAX4J/L3v+yMyAIyyzxITSMgH/sfzvNd833/hiLb6/jdN1OMHQInv+wdS9xmtaSN855tzHsTGKE9YxmKc/NzzvHuBHBP2+SuEceWUyfHisGdXVvKr2i/yUe9KmhDFXuFcmouhOHT17E5HhrayCbZilW1VEsOIEqTK/yFEmZ+BLEVKH6wRX8XZR51ra5JxDslKucJU1GhSqFgGgqT8PUeKe/wgNhF5DxZ+AzYBOZcjZRibNKyJxkqH7MpIeR6q8Ov/NOfYdqwTKQ1byyLVGDiVhsmB/we483PABKZ4XzmFVzpSlJVLa3qA9JMbSUg1TFJJAHR7IjIG1SjpQ3QIPY9LcNCPPKcmbDHEdGR8atRCDVhXUXefr9uOkPO7jkltuzsehpD3Jwtb7FFr7YCNaGikMgdZz9V4HzT3mIJMBqxhooQR6vyciCWT1HaGzXm05om25wLgy/4TwP/C80aaR49Tjh05mep53o84/siJ638FmY6ORSL4bpQfII/mP832Tea71aMeMQZ5Z3N29pFM4TSAda23QMZsq7zuRgZyDrbGxFZECVtgz0AYqLWJ4PHzQuRkyxvQ1VREwQWdAWRkPznMY0dgrPSZeiGazLwp82ImZQ5w0eS6AFIV/i2iDKqxUYeAO/7dbFeYNmjYtBb4NAGV8K6X8im+sNPmOSgTlNgZ9D4VYsVdNcHEX0sVfelZfHzjQ9y75BNBO2/n+zxpsrD7mUQZjUEE6J97v8pN2Q/y3Cwx0kqym2iYcaGd+PaY9rkTYRdWmxlEHoUbVi1FDBZV0rvNMfr7ZgR2p1656VilGgR1/wHsBPdBBB6lcqHs+/SXrmbu3X8g1htl4JFp/G7wUs5aKW6l8wvq2TS8mC+n3QXAU6xkGc8FML0NLGVx7iYWG/7CesppYTYLb5GH1VsYIvuhhDUsC5BI2CfN9hvI23QnPCvBF5YtQgw5zfeoRZ6xGiPPI9EYMx5euXE+Zf3bCJsxumJ3DX4YYrkyRYWJU0ZjwAh3DY9JnZO0GGuMAVNKMznZ3USzxdjc8fj5ojRVO32vFXPBkkJosGY28oz1+U7DkB+4CVoKo4TTKd8Exo+tyzh0fgn8xPf9x49nH9/3283/Ts/z1iAwrCOME8/z3ofMQGsQ4ulPpu4zipzydeuYxonv+/d4nvcBRGeeB3zJ9/3/Gc9GjCDHicOW2MYw4jTQaG4W8g4sM/+13kc/1kO7hSO9q6qsqWLdg4XXaJ6cQm5KEGVclUQ1ghSzf9CcR5Oaf49N5I2Y9mhtBhh79lA38r5PNG2Y6tybwta6Rzk21/SHGiYurE2V1lQ9zE0ij5NcVT7N3JMqlaqkn8qyECNGYKaDDNG3X9QocKFPcY5kMwNRurWGTeo5wPabJrG7LFgjRYQ0GV7hUwlslEFTBxXCpwQQqWAUzdPQBHaNRkzFwhTd5+myYk3GstipQaVFl9Vo18iGW/9Hc2Fcce9PqYrfb879W9N3agT1mN8VvqVGkrJ6WXfBOMmpiZy8BJxjwuttSLWFj57AeU53udD3/fc42897njeSD+Z45R3K2VFYlypGaqjoLFmU7PGZjV2Q1GBRRqhqs52HeP/1pZgltLlZBbJCdZfup4P8IGehjyye5XI+xXeD7RqqA8/8bFpoYTZlUxvJ3pxg15J8iuOdgihXVHknoo4oImYnMhko3c2NSPzOeNqLd3eKd17v7QpEwTU0sdmdCfnOKPHX3/sEez8xBYoJ4Gbd5PAp/oPbDM3Uo1zHKtZywzqllIIf9X2aBdcJEX3Dyxdy1gWv8WbLubYvb8VCtGqxOSMgC+JFwK+d+5qA5c3H6XM1wgYRQ63FbMeRiUe58jTCooveWwh/kYazLzHJ8E9PY8eO85k79w/s2D+NyOq2wPg4TDoVaXUBDW8BnWTRxy/6/xyA9ZlX0E0O0SFR6ivZKuQFRrLXJJKxvcrko5kLC5BncTssU9refYjSonVrLkImTl2sl2ArNwMLH9gGy4VSGKArdwo/5BMBecFe8o4YYw9xE4dJD/ZRlrLdbXNsH+dgaZu1/ozmmKh3WHNQNJzum+1uTAPVNbWPZIPExaS88zJObF0eUhZ0m+/7/348+xh0U5rJQ5mMvJF3j3D8QiTQ8CHkjX/Y87yv+r7/z2No4ilft8bE1mWMkVNtkLhyNDwbAJ7n/TXw1wDFxWKC69xfgYC/DwHLsQm2Wt9hmGQFyoXTwMisRhodAav0LcB6mF2vsSqqqkD3Ip5ezU/RRGJ10szCeqbPQt7L1PwDV1KLNr6JLIuucqwe85Ek4vwWxiZSg2USS+2D1DZpdEiVb40K6HkHSVbIx1tGjMAcgvEGbo0FhpaJNUrBGgATU/ZROVaStl5zD5b8IMscN9Ld6fiLY+GMIHN/NzYfqJ0j4Xr7nP9nYetjDSPr4EFshDATGcsKWRt09inEGh063pUxrst83oJlc1NDxX3JGeH+tO9jWAezFhzNxOZsvYWswdvNfYw79nQcIiee5/0MUYvyPM9rBe7yff/Hnud9EgEzpAP/7fv+qyMd/y6XIc/zSnzfb4agjst41Ds55lphrhesF9aNfLKilf1UXLauARh0ZoAWxLt+IdZrpKxTqiCrNe94lSLVbXQNSwJBTnY3DS9fyPkXiBIYJcZ25gWRk25yuJN7gmreUWIB/IYMKN7YKdfswnr9OxDPuRYfjCMv8zfN9kXATfD6p2XzHK0urmj5bRB3CgGGNSJjLrv5ExXksZfuaA6f2SpG1ObKCmJEuYsvA/BnPMZ6lgcRBoVBNexaCMDcC/7Ajk3n28XlCcSo0wjUNKTyrcoW0+63sLaiev/0cW1HVCr9vgp5dJoo3ofAprSOycPACuzEci8S9VJmtUdg4PppUA6R0jZ27DiftFsO0vVwEctvljDGIx3XsbSghm5z0VKaqKGaUKbMevPYQS2V1KRXA3D71h/DQdh4qbCwLdmyVYwKrTmzDYFkab88hEzGd2Ar2W9DJvd/MNufRAxNpY6OIVTFSm9UD+yExiUl5ucoVWwN2hwjSoSuwNDcxGI6KCDCXtbuuJbL50ptk+UF63m6R+BtfADxBms7FeOriYoDiBKk1MJRkhFbGcBANtZy1OrwLszr9KARBjVOTjpysgSJLtd7nqdP6/O+76/zPG8dEiM7e6R9EJN5jUEMTAB+6vv+r0a4RiZwrTMn/yVwS+pO79S6Napx4nleH9Z2PUJ83x/X+maplx/pkinX/xHwI4CZnudf6a0I6o+8hCgqCodJQxQ9HdJZiALXgiwnLsbd/aySWgBvCFGA1MjpM+fpx8J4FPf+FmLvH8IWozvHXKMKq+8o9EYrxqe6/VzDQPMIhsw9uLE1xfkrxEWL/6qHPA0x3D6MzEsKx3EhR6PR+rrG0nZkXtccH3V+aDL125KYlCo/AFZ/ivEs3zMWGJrm7Sj1rcY2tQ6JJnMfTdyIgV6zDGtwat7FSNLLkXV2JmPhiyDj0jVMUmF7apDq/mosKxucZtrpODmEjGtlzGrH5takYQ15HR+vIVCrbkT30fwYhbGNBiFUg0fzefaZ66h62Wf6KI6MyXlYw/AT3oojahmdsIxDzonv+zeM8v06RM34Y5bPABs8z9uJzO9nMQ64ZMawVkDyeuF5haOua2MXzTlRmYS8iQrz2gd+dnIRv9cRZXcP4t1vQixuNQzOQaIneswMmJnWHnhhd7x8Ppdf8BQdxoM8hT6ixGgy14ywlzVcFcCjQiQopYn69HKWFG6VF+Mw8iItQNJiCpGn4BZizEegXCCK8EE4R3NMFiFqk0ZWBk3dE6OkP1J5Je/jNxS9IG7xRVtFZ/LnwH9V3sRVpuBGNRuC4pFf4wvk0B1440sLmpnH9qD433O7lkOO0AkDdLUWSbFKVbeakMVIcxa6EZUpB5lIqpHJAazZ+mOS4XQtSNRKv+tAPCmaxF2NPBdDVkAJyd4/Q56aVn2Qrs1FRBa10X8gk4FZk9nIYt7ccS4z574RQO9AIG8rWUcdYoRto4y/47sUNUnfPVl5BR/55jNcsHIrABsPVLKkaauN/sSd54Fpz5cQY1OjKs8gY0+NxiXmd1Vy3kAWhyed36cS5AcBSYr2+/gN93NLAD3Loo8Ie2mmlFvm/pAHdtzG1Nl7mBMKMXfuHwDY0Xg+acsPMvyo0QoWmL582rmPi7CLj+YMqQFcqw9ELZYBjix6evoYJ8OkjYWt66ji+/5vGXluw/d9jXu2j7YPlsvuaNfYmLJ9iBFSNt6pdWtULc73/SwAz/PuRqbTh5CO+AvGsXzAKHJceLYBrHd3IvJOtiCGudag0LyTXOQd+C3WiHBrfKQaJmCVdYW+KCxGA67KXKQJ7f1YxW06Fn4yA3EgdCBL2O9Nu7SQ3kEs5MqV6dhlr8m0IW6uczbWs56BVRYzzHU04qtK5bBpmxpR6qQ7EQiWQnM0goJplxpsY2WpGi+Z8jLgxTm1ae8ibn7IIZLhcPpbGOmbkWByrriGiQufU6NGFfTRUuxcOmm9fi/WmFRImEuYoj7dTLOf1jepRbTGKHZcTcVGH8sRI2UilkYaLD13FzLONbqhf5oDphXcFQaYIJmEQusS6TuXhtBwf9gcr4VDdyKGkL5z87AGmFai7+BI+uUTllOXc/InIb7vP+d53jnIo/KA13zfH48X9R3K2ZnAkVj32SR7c0l+acuxCdfNQCWyEKk9s9/8KXY4QwovHj4sJ0krOkgTJQFMqMDMFGEze4RJ0ExpoDiu2FrD3sopdFDAqzNLYCZEh2Jkb05IO7Rq9/ewC18vEiUwk0fv4ybP4fvm958B9eDfKJvefYhxY6Ins3/QIkUezT28OrOE825tJvF9iezcz618Zvd36Z6ZQ63RPhezifUsD9q9icW8kHgfBSETIqiZAN3Q1W2SFBYhCHlduKuRyeElp+vVG/8+ZJJQJaHG7KNF/jT9dxE2yR2s/psqajjmkJwXkQGTPrifge9NY8HnpSHNlBKpFoPqrLmvkUUfv3v5Uv72AkHg/BP/xuf418CY/H9jn2NvdErg2Vve/wzMh4MHxCJa0rBVVEE1DO9AJkxVDxsQv3kv1oDZZe7t12b7IfPX45wjTgBP8wshkQGLYmJUvhKdT8lQMw+l3wQIjKuKrQENdIIQMaJcx6M0U8JH5/43fWTxBrPZseN8OelrMHyu465slf4KolR7kGT/OruLy3qGh3E3XGC+2Ig8HPWP7+NdyNZ1Ro4hY3ExL/d93w2T/8DzvC3YwO+pkOPCs6lRkoYoJr832zEso9ZBbGE8LTyoEQw3gpgKp1JIVx/yviu+X+tK7MEqhOnO5xeRNWcflulQjZpCLCxMVelBc+3UKA1Yj7cqlrmmLep5VqiYRqjVOIhiFeVMrJLs1nFRGc0r74oLccpNufYg4unvMu3K4B2KnrxNkpofovk/hxCXxYtY6JML+RpJXA2tg2Q2rgzs8yxgZFFDwDUKldskHRul0HE+D+tIdMe6ss650ReNTCjhgfIUdmEdXZnIezQd+8x7kf5QY1lhhmqsaE7YDMRpp36vuGmf0mvHEfRGT8r15iG6hBu9BGtQYe553NDIPscKo51ozskftXied5nv+897nnd1yk8lnucxWqLnccg7lLOjGrB6byeSvJIUCdxor5kh3jdRPP0rsHCWacCVWINF6eyqjJJVO4GuvAIWFL8CwO7phUSJBRCbkHGPTTGjv4XZgaIPsCJcQz+ZJAgFeQzZzyWSq5Rdjij66sX6NZJrYbzWHRMSZP8CW8TPQMI8hQ3dD2yUKvEAi/6mjt7vhdg7UxTqPrJgoSTnV+lF6qF2ZiX3GS6EA8NZLE7bFFQZjxKjoeXCAAO64OaXmEMLaxtNJngDycxaU5C+1XCt9mkOdtGsQCYvpQpW9jQ1QDaTXDpuJqIdaR7LRYhBudts5yHwMjVuKmDgnmlMunN/EOka6M5iYM80QnPfMPfVyIQLhgKj7D5WM4W+IBLWFo1IAcOZBvb1cCtshNBK4wZ9HsiHuElZDv8botSrKT4Hvrwc7roNa5wsQsaU7vMQMv70+fcAd0Lbr2RQFsW6CK+DX91YDUAO3WxNr6TaWHWbWEwfWdyLkBtUUcscWljP8iDC8oeOcsKTEnYRmw1TS/fQ020Ax/eTDOuqJxmm14ZEpjQnxQd5YOroL0Ae3OnL1jUOsK4/eRmLcTLked5fAI8gw+QGxgcrPKr4vn/4ePBsbr6EJrqrYqb5HwcRI6EAmcNmm/1jJHuuU/M8zkaUoVwsc1c6lro4F1GwYlhyj1zEMFG4TxGibGneQTu21kMf4qluw8Kh3ICgUgq70oEonwoj03t04ViqEOt3+l+9+WCjLYcYW9qwq5sp7EcTozMQKNpkZ7+RqGv/GCQ1J0cjGyHkebyIrHOTsfVpjoelrNWccwa2lshI0DDXWNyDTQ7X5zKERCY0aqHRku0kG+EKZexD1jGF+yXM/fRwpMGsSfBF2Poj2hcHkfGpETWttfK6+ay5XiDr0gJsoWJtn8p0s38Ztiq8RqOU+lhZRguR9cxN3h9XWFfimHudkSPl/YhatWqE33wsEeoJyfGuFeMnA8hMr95bNVKUyXO+YRgy2m/3RAtT0dXzWSR6ogquRllqzLKcBwxOoLlXQivV2Ruo6V3KymxxlZfQxO+4iBKjgXeTQxZ9fMRgdDYuqKSADsqppztdFN6+K4YoWtNlldWvI5OBKqtfQyBAd8rmOcoMpZPFw8C/QdzgKsMPAWEp1gdAPhKZyZCXJTKnjn//1N+ykFd4xcCXmq4oZTeF/HA65MoAACAASURBVAQJv/w07aNE6OI7ib+TSzXNYNKs/fSsEWV23nU7WPv8tVBqjLanJ0h3K9tTDTIhaf7HfYjB8hLWGKlDElCVEaoU+A225oyOGNebEcVGtbYghqULB1jgXHMBMOswA63T2FFv+KOzgFbYnSGBvd1Eiczq4L1p4uJRxqtyYxH9lI/ymdh36S0Uxbbtxgj1N5azYneNnO9aoB7CWpPmCnOvmpT/ebhLWdR0Mg0jb1+hc8y92Do3XwNuhKKHjSWQL9ddsVau6S+B9txI0NaQqfz2VSRneoh0HuMaFrOJehMKKSgwES8z3gdap9HzyAxr2E2SfglgGx/EQhvB4vGToAKTsO65DpLzvU6/nJPD40Ql/KcsYzFOPopwyP8Hsphs5G3wTB0Pnu0QVrHXvA1NmN2OLCG52JwPVRqVYWg0bIHWmtAK1xmIspSJZRrMQOZ5zb8owCYCa1KzRj5c8pbfI/l0aeZzudlvD8mFU13DxC2M6J4rE6t8arRaE/VTFWllkFKYUDe2LsqJSAQbtXkTmdvPwhaHdKMAp1pGSuQ/Gcli5Ckv9Rqam+GWQtXcC6XOHQkRdDTSg+nIs0lDnvl07BqkooZJG7KGqpGo0+JkbCRDaarBviPaX4romGGuEUWepRrW0822Rv3ascVI3zLfaaRF77PNnMeFfukYzcYaKMoYN9I7qEn2eqwy4mm+10Ess5je32Rk6eoy1x9XaOHRLcwzsK4RxPf9u8zHu33ff8P9zUQ7xuMa72DOjst751QymgbsPwTTjPGiFcmrsUralSRDWaYhVrrRuebe/Ad27CoLqIQ3JRYTzY4FCe8R9vJetgSe+nw6iREN6oXk0E2IBHlrD0CusYDORowPrXOhoV01VtaYz5pA/XVEydQXdBWwHmpNttCSXyOTiXq54xBfCLFMoSQrfbiVi27cwjy2s7RBMp53Lcing/wgwjOTdr646R7mLpYchWVlz1EzXM1AuSj5v3v+UllMDhh15TMwacZ+BhqMEXC/ubb2ZSmWAnOF+a4WMWJUIY6b3+udY7qxE2YUiZroYlyNPEMlL7gRgcNp8lsNMMW078rDlg56xWFoks8fvey/iRMmYsIxpTSznuXBdj4dfD/6MfJNxnsh7axoqqF3jhgr2T9LiDGkcKh2JC1akYTbYOPdsOQmAupn7pbv/W/LprcOGaaataCJfAY64VdB0e4uoSgGYqvyKejvpDTTGsB1LAza3EkBF7GF+1gdEDdE02Js753HQKt5Pi3Y5FcVfR9AFIRLsJA7EONSo1YBrKvI2aGFZMqZ0wfWNR5sXWdkbFTCLQg142krWmldqYLVMZWOzMVvYXMhtKbIQWwkJBdR1FSJVoW6B2urq9Ifw8JLOrBzmTJeuRTESt+qkRfXRaj5LqpA6tw+AwsZdRU2F5YDVilUlialBHZrSLiRE1diwFJkblPlbSxJRKnKdK+5ZgZWMdc8DPVu67w5WgL2eMp4nk+LEY5lP1WwlXIa5DlqlADs83VFc5EUPuVKO7YP4eihSnfK3ollsdJjJ5rv9Vnr9yP1VxmS41GEJWlIbZdeUx0AOs7V6B1G1nY3yqEUv2CjfVnIGH5+lPtyEwdygMWI0aPGTgjrZND72YmtMj+Doxe9PC45duTkDKzr6PJLLGhc5TEkdvAuFTcpwSXlBvb3QjTb7qIh8VrsC1tv/q5yTjMJJt2yH0AYqvJsbsn+UA7l1NNhilQcMLO25iw0U8JFbAkgJc2UUEYjbasibKWSj8SekRfkDmzewrXgh8FbaLZXIhAmNSm1HoZm9UwFLoclRqnvnR8i++4EpmQJ8S9BuB1K7zOr6QJY0rQVPxeaFojB0kRpUPUe4Dv8HTMXv0FHQi4WD1USTYsxs0xmgIYpC+G+CXCeOWAihGbHGfhLs11NclLedmy//9Dp21Js5GQWyUl4OdgCYWA9brrdhMAyVKH+nvmsi3S1+d+NGCNVh5mU08fAnmksuExyUH6662YuL14fMF11ESFKjOt5FIBHuI5Smlk+JOxe2esSbFxVGTzf897fLBqbopvmAL/AehbfD0v+A4mKqNEVBpaApwvRHcgzNpTE8SoI1xEYq97z4F9GUMemoL+TTZkXBwZTLVUsZQNPGetmHjvoZxJV1NKUVmq6IIdQRpwB1S5LEYVK83nqpa1J9c4HsVUA6kzfq3Hi6woyGkh3gNPFMIEzsK7xkmMaJ57n3c/I7Cd/dUpadALi5lJoJXWXNUgV72FsNCEHgd+ox1UNk6kkGwWHsDh+TaZXr28BNqKinl1Xye/DFrJrxxZ+BFECcxD7P2TOo2xGbgK11sRI9bxHsRESNYw0D0SV0NEQmVogUiE3CotxJdUYApuwnOrlTkOcOa8g886HsTU1ypD1OLX9422YjIeMxJh1LBlGntsMRHdVlrXpWPaqkfrXPX40I0jzgDSnYrQInxrlmng+hIwt7fM9yLPYZLZdIzOM6Eo7sUQMM7A5ShphV3iZm7juQhW7kTHpUlirgaWwMtXPOrDG6RBidNgKBxZm5sLW+hCDI4QlmujAwt/U0Nc8rHNNe8eSSzUmOXbOyRkZQTzPOxdRK6em5J1k8/ZzZoyzuHVO2jgC5pVKKKRsXHqIKsr7zf9BoBoGao3HeYbQ0v6hQ1zlZQWNlNIUJCP/gXJ2EWU5osxewXoWs4kthpJq+dB6YulRSh9rpfCyZ3gyegUfmfCM9Lri+w+C92mChHYqkBjUl812DIF8KVYi32yb0pnZzyUkEmMmp/AS+Rw3ym24B9gI3rnwZK5YMOp11/tYxnNsYjGhkJxka28VV2U/QY3R+Cfl9DGwaBpsMG0oh54vzBCAOcgCU4qFx3Wbfp6BTEo5CIQrA8voNcl8p7AvLZKpUYkaxMuhUa6oOed1zjXLsQo3MLVqDz2/nWES8ycwMGsatELXXNnprOIm+sgK4Gu3hh6QLh0Sxf9AehZ9ZNGXbrSIlX2UD9WTvU68Ik2rZlHa0GqHWBgxKhQuuBOZrJdgCQxuQsaViYSwHGFpM+Hy8C3An9vtvddMoZ9MuozFs3DrNnIquwMDaR7b6aCAq3gCgIe4Kch9qu2opKpgK5n0Ux6q57cZct+RWR3CsKYGU7fpf+3LR01fK/uaLnTq+R0AWY1m287mD85nfclOH2jXGTl5GQus6/93Pmcgfp7TqoJxGtYwGcIqUG8hyn2M5IJvmjwMln1L5RDJ0YEcRMlpNJ9V8dM8Ai22qEZPGrZ6uu4XNW1QJ8xELBHFIWS+TGApUIexepDWxEj1AGuhPaUwBpmD1EEyjDjAHuNI0TpOymqkhoQroxk2roKseSeHnHZqRXD19Ofw7pETpQ4qRdYJNUZAnoPL4HW8fpSzsUxoSuSgxkAWyc9HySA0yVwpjdWoVeOmCmGWzMKO8TgW1hVF1rZzsMxv3dgk9p1YI0sjkW+Z40qwTFn6/PV9UeKEN7HvSRdiFB0yfTXV9NFb2Pck1RbIQlAVZyNOzDQsdEshY7PNObuxEZ1xkWOzdZ2RkWUe4q/IITnvpA/4+DvSopMWXTY17wTn/2zzvxeGJiazQakXLILoU5XIQG1DBvbFiIc+A5lUphwOmLpKC5rpI4s1XBWwWmXSz2HSaTbu/ARhptFNv1HW6tPLSWcIZoLXDqt4Bg5DW2WEor/vshNCIYL5jwA/RzzrW8z/RxCl8gZEgfwmMhmp9z6MRE10EV0n+4ZNDsGuK/LhGije2slFbKGqfyuxzFk0UsZK1tFJPg9yM8tZz6NcRw7dlGfXc3/iFjJDA+z+0hw+ePfjPF16NTNXSrhn97o5MnK0bweArWBytKVP67GsMN3IhPU6MgoVHz0fMS7UuGkyz2Q9QqvwM0TbUZrAKWCCHCJuhflroOeeGaR97CDDpWH42QR51sZwiBIjwl5+N3wRl4Z+w/v4jTwjyqlJr6aDAlaxlnSG2EolTZRyc/qD5G09QO9KWT2i/a3ixTGGRu9zISnMqJP5RnNPPYiRWWj66GxzzDPmeV1mfjuIwKnUaOiCyPwDhKYmKF4jBlPbNREidAUkDACNlNFIGSBRu5m08xA3c33BozzScR3TpncTSeuCvROouGAzdTsWyYQ9zfTHQeR9uMf0dwQZfxOc/m/AGpJDEwUimQQaTo3pnz5V4seDSviMjA3W9Ut32xRkeXaU3d8RSWDrdXRjE3WVWjSCzCOZyPxTBvyUZCNEPbmuR/9iLFXpDGyi+iFzTr1eAku3CrZwXZf5vsmcJ+4cPxtb5X0z8h66hR5dGSlvQz3ycXN9N89ADZTUgnsaDWlH5iuNhKfBmNO3XHiW9pXS5v8aicj2Y6FyCzj2YDkWxGsshRBPlTgo8lElC8vM1WK+UyIFhYcdHPHI0UXH0HSsco/5rIq4GsLaPo1O6P/pSE0bsEYGJI8lN6+mCxnX+8x3Z5v/vYiz7gLEU1GGOH2LsO5vNUwUtn0Q0QuUCtl1Duhvw+a3xaZNjSTnVbl9/zo2MqMFVXWfJmz+iXs97ZNxk6PTgJzJORlBfN//P8D/8TzvYt/3XzzmAe8KOcyRS2cLohm2mO3ZlmMexBNfjQxIraXRhCjHQ4gXPowoyeaYqTMkwhCelCDWGyU/W5LbtQZFiDhRYoSN57qOCkpoCvDuMaIs41niC6EpUzS9mtxqbm/4sfW2X4ssUrucW+lFYF/fN+39B8RYeQPJ77gbCwsLw64v51P8HQPTWo1kp5r8j+KnOqFHapxEibEhs5p6yrmKNVxouH8j7OV86smknwQh3ssWukM5dCTymfrPe3j641fDFw+z+3mTojQD+BcsxCqKTIQaLWgAPoYYEhohwvRxLbIILiO5GGaN+b8FSxN8A2KcgeQHSWOtlGIT6rtln+FXJ3PWZa/BP8Gbz58Lg/AFQ3W2gaVE02JBpKufTG7iQfrJJIs+uoiwvP8ZNmRWU0Yj3eSQ9+QBEpUm5+TxBHu/OIX6L0p4Z+kzL8r96X1fhsAXGoDbnXbej510PwJ8AaEcBpgJ8ZUmyd4oONmbE+y6RiB2XUQIkQjGXIwoi9lEp8H7xQmznbnECRElxmcK7uEpVkoBzbzD1O2qslEo9SJVY7+LY+ErOYjd0Y0Yh5okv19XoBrzhUZKWpybPAPr+mOTE6lWdw5QPN4NORmZgChZw1gFqRuLf1fvria0K+bdlZGU42HEiFColipxWlV9CAsjCZFsGBzC5mMo1TFYyMoQwsTVjTWkNA9lBslFGF1lUo2D1xDoiiqdbt0KVxl2FX+3fsYwycaSHu8aH2q0uCmfrqL+GtZL7hoPXYhjJpvkfIjR5FgQr3cSTTOWnIUibG5lE7ZujUaRElhIVaqMliyvUUAlLNDilqq8a59MNdfTvKs0bHV2hSIqtHGk3A4d0xpt1Bym6c73CZKjYRqx0MhIN8lRxX1Y6GAGsp7vwY5LNeT6sFEh5ThyDepu57My2yltca65lsK/ZpjPhaYdpch4HzcyhmNHTs7knIwgnuf9o+/73wQ+6nneEcW8fN//1DvQrHEQLcKoHtsCZMRrluIhyJloB/ElWF5wTQwuRQaxJl3vR/Qvk1vRV5LFcNtkpi7YY67QybOJy1kWEtf5AbJIEKbLYIuqqQnoeEEgOE2UspA6zosJhuw8xZJppKMdKIR9JsE9dzXy0msptjeQ/Iqvy6afC95VWOMkAsUrOombhMrw7QgDlPn9leh8ItEulrOe4t1iwGiNE1XaY0SZTyO7TGLLWj7CKp5kU0gYohLfCjPw7DRr1H0Ppj6wRxigQCbeh5Hq5yCeizzE2NBJ6zYsBhvE6DgPy9JVbf5rXkszohxfb7YHkeeW4+z/e2ygTCfMWbbC/VmXvUZnbwGf3CWJL2nhOB8qWBdQCScI8bf8JxvMxZewiTWZVyYRGmz48sVBvyy5cROlTa0s7TA2fi8CS1NDY7Pp9whWs2tHhqUyZ90Gk1ZjI1/bILwPDDcB3kboXRkKlOtucsink4eQOicV1NFNDpVIYchHuY5MBlhKTVAMFKCiuJa6xxfZvmrARrq0HzWnpNS0WRWSHMQbFQQfsjly8nXp2vZxOuWd/KmzdXmeNxn4T0R1qPF9/ycncp6x5Jz0kZxzsgf4pxO52KkShXFozYN9WOYqLfY2iIWSvG6OOZpHPovk+g1TzZ/mjqhSqfknfaYNBViDSNm8NKcErOKuNMZvYat5a27LSIUg3XsFG/EE65BQxVVzbkZLiFel1c2HUCX1ENYIcQ0TSFYWMfscNPc7z9zDi9i6J9qHKiPlq4wm72S05HikAOkvVbq3IPepBm0Gcs9NIx49ur47hPSdjp9ekqMKKmpQJJDnk2uO3YNljNM8rLOP0o4eJCKi749GTdoQ3SnHuXaDacsFyLKxB1vNfdjsq2MwhjVKNNKo+SFNJNdUUdFnn/r8Y4iOp8x8+0zb1EFdhsC934e8p5OxEZaTlmNXiD8jI4vWpq496l7vOtEijC6F8HySijDuH7BsXS1YK76UZNnvfFbaPWC4ZjJMh5yQSXgfLiEaigUJ8UvYRCNlAcxLoTfq5a7Yt40tuRWEu6SGBkBRQxc8DHu/IXVI8nYfgI2Qe4e5fg+ilOvTSkdeJGPMeKuRiILigE3CdVgXrYOwOVrBoh4JnZT1b6Mps4Tznmnmv64QBbeOCv69/w6+liladZQYv+QaOo1hV0AHCcJBnsNAdxYVV2+m7lGj7F4JPc86nJZRkuvFZABPIfkiGtl4xPyuEZBFiC6rxshLyKPcbLYrkMer+m8btrI5pn+qsLCAC81174Ph6slMvX4Pb246V665IllpDplVsJx6HuOaIJLyIDeTQzfLzEkj+w6wdN+LEDbGSCeysD5sTnQ7YmSooVmI5A7dhyUyaJB2Dhj2rknfQ9zLyjo2xZzDBKVeXVXCeQ83032jROP2GsNXYWgxonQRYY3pyAI6JeLDeh4xSSSxRJTEYJjIlZLA3lVTJNfT4qKYvnXrF5SSnO/uJugGsfv5ZlvfsdMHyuXKeLF1eZ733wgkttP3/QWj7PO/kXilj5jpt/q+P+h53gokhpkO3Of7/jfGux1HucbVwGO+76/1PO9R4NQYJ1op/nQWLTqXwBaN0wKLWiyuC1Gc1TAACzVJVfgw5xlG3pke5zsVrd2gicJqjCitcBo2GqFeb4WkKDGFwsN030wszbEbOSlE3mNXWevFRmvUS66Uth3m96M5ejWypF5sF8Gpr75bLwJGNhZcdjStVN6BrZA+29n3eHI63g2GCdjIWhZimMxC1jNlaXsL6R+F5o3VQNO8IKXMHUZyNkY6/i3TjgxkrKrhqXO9EkDo2j3amNdaKfPMsTmIwh/DQteUSthl51JK6lnYca45NznIe6lRxVzTxonY6EuLuc5207aE2ScVzqg5J7rGaaFHZYjrQZAbzebcDnfSycuZnJMTEoW4+b7//+l3nuelAVN83+8d9cB3hbiRk/nIiHRLpWbbjwPIYP4Y9sWcgXiVXbDbb5CK6xAsOJ29cs7ybEkOqE8IrGdaqJv95ATUwhW8QphEUDejPTci1eN7oHCy8AXGz4bwSsiLGTf2OkQxVROyCptoDfICNWBfpBsQ77ySQJ8j5/ANjMj7Oiy6uY62B40xtLuL87Y1QyF8/LOmuMbqh2gqnRVQCS81me6qtEeJ8UDjbdZAWgR1n1lkX/wOhCL402b7QmQC0smiFPgQYqC0mO8WINEU9bDlIOdfZrZfRQwZZQUBiUo84ewfxTJKlSOqoCbQq7K/Wq7T88gMIje2EVncxSe4F4D7uYUOCsgyD/Ye7uQ6Hg1qiJTRyErWsd1cpCm3hL98/ucBxKq4sxPWYp9NBJlYFaK3zbSpAss7vwBoN9ESkCF6Kzba0mWON/uf195M/GrJEQLoq2wkTDx4VqtYSxMlQXTnQW5mMZt4ipWBcZwT6ia2P2qphEEWKG2TRp/UZtOK8Sp5iLEYOIM0cqKOAOUBPT2nDx+P+PjAuh5A4pYPjvSj53lFwKeAMt/3BzzP+zlwved5DyFgvw8gvfuS53lP+r7fmHJ8PjDg+36f812p7/upPswj2uF5XvpRruGWMz1hl95YIifP+b5/+bG+e6clhq1MropcBqIQpSEKozqstHbIRKySptXf1RCZZ47bh/Su1ppQhecQFsOv8C1lS+ojmUFsovMdpp0xZC583RynyfV7ODL/Q6no3ShIBBsx0XpFOu+qcpeaMuaeT5XNDGwBwVTpwxpOIynU7cg6W4DMNxdgDUK9xrgph+Mgo0GojkdSoW3K1DWM9EUrtjaI5l+8hV03x2qgDWKNDoXopTLJaXI8yHNKc45Vw1fHrgv9+7/snXt8VeWV979PQhKSkHBIAoHAwUAiSEw0SCwY1IZqxcHB0RktvWntvE5tO1Nn7Dhv63Sm1pnOtJ36qa1tbe3Q1mIvUq04pUXxUuKFDGrQaGIETDRwuAUTOEkglxOS/f6xnrWffQ65CbHGvq7PJ5+Tfc6+Pre9br/fGsow0eM00qMGjGJXtD/1XiL2+ilIFG8qDvivKcSH7fGpOPxNIw6LosD4M5BxX4ozoMC1mfbbS8h79DWkvUuR8RbGRYq0/opiT8YNczJ65OQ9zMkIYoz5JZJcM4DAl6caY77led4339k7OxUJutYhnurEsibrojwHCfvtRLzV2M/f4V5Mc5Bwoh4zHSg+Tl+PpQaeUkRlUg1ZqaJLhIkwi/1igABpxGgn108T+iT3kEcbTaVzCHfvJe1VSKtF2Jx0IelDjA1l67oeUX73B7Y/Gdi+CPqusSxPwNYblrB8/nb251hjZG07lNpaGcB9s67gw+0PyQJhDZifhT9EO3lca3Wd37OKfA7RbePsEcIsKHmZ1mJRyjtaZpJ08zEG2218tQXBVqjCPYBEe1RJB1ks5mCZs3BRDzXClDpYiyhGkTQjbZdWpHs/aLd1IVH9uM7ehyra0+z17kNSwZZB99EMjk9O5u5UQeqXUU/1YBW5SW22addSRBN1tjhlmAiNlDBgNYBrD/+abVeV+/iOuW88Kn23Vi7pfQDMVFwUa6v9/1uurZX6+bBNxM/5MsLgpcfUIYu0NRReuaqIM7c2s2+59Gc9Zawa2MTqZFnSaqgkmQHfoAwToZYKnhtcypQkGZf5HCIrv4uG5nNd29XijO47EMMvGEHUujRyUenTYEQRcFZ9D/FRk4kZQRlF8owxwWjyjzzP+1FwB8/znjLGFI5ynklAujGmH3ml7gfeBzR5nvc6gDHmPqQcSGPCse8HPmOMWWWjLX+DUECsCu40zH2MdI29yGyoI77821uSYY0TY8xk5GHzjDHTkFI4IGZsIrnTOy4xZD2aj/Mua6RZvcmpiGKjSn5QUe3DrUuKJzkDp9D14yItqvxl2O/UCFH2q8MIS1iXvdZh4hXCAvu9MngV4JTYXnufc+z9vMnQuAf1TCvOoN8+dwdO8dMOTEztSrb7aC0MVVyH2jeITRlKGhBHTRYu7fYOZNRrEcvhihn+seVkDJNEg+Zwwm9n4/pA8Xvn4AoidhBfSHMoGYq2+XRE6T6GGBkR5H2sojV1uu3valiAS21XQ3c2Doc1kiiwXceyRl8UO5OFGEsv4caNGmUasSu196RGOsjcTMLVNVEQu7atOgk0WrYQ0eF03ATbvx4Zjx+y15uO86NNt+3Wi6yQGWA5ZcZB3sOcnKqUeJ7XaYz5GOKv/wJipLyLjRNwb4jDxFetTpE3puYVqv6Uh0zYOkQZ6w3so4XpVBHugqnnt/lpXUcHs2gl36978ntWsZLNHAmkcx0hxFnWaXmIGfSQLqD5/dC3CNJmSIrX7Ads5aUCRFG0Ci+riPe8fxJZCLTY4FpI24Yf2l3+F9vh/0LeVDnftv9bzrKGOjpniEG15vBD8rz1+GldIaLE6PIjJc0U8/Cey/noXDFWnmi8jPNLHiMjVd5GL0/NYrAvzdl9DyD4EsWLzCEey/NhHH4nHVn4GpDjZwWOCeFGXxSJwOg5KpC0MPWQ5Nljquz2DcBncGlhrfisXqWVz9NQcy49G6bRsxo6pkhqVGhulPKkOj/lJ0yEalb46Wtl1JNFl9+/zTlzKBloZNlaSZHbdkM5y5rq6HzQAuS3xk5MlpyHAOCVUS0NeAJyvmd/z7XPaPvPqxAmN/XKntnUDI9Cy/JCAC7mcf4z+Z+5xpaU/yQ/5XZu5j/4EiC4mVbyqUyqYScLWcUm7u68gcrsGhrmWIsnOkkiTJrGNQ95eei9lyJ4FB33s+x912pkJBvSU6An+JZMJ/6tOXGqxA+SNJa0rjbP8ypG22kk8TxvnzHmdoTOogd41PO8R40xVxEfA9wLll88/vj7bSHc+4wx9wN/jTPHR5PZI1zjQeB7xpjLkFjfSclIkZMbgH9Alq8XAt934vghJoR4yLBciGPnmorz/qon903c/BiJISqMEF+k4CpNdyBKlqZeKbNWv92OBa4NosCl4BwCQY9wIxI1iSIGUDuidL2JrI+aivYiDuA/VJqTYmt6kU7Rwn8KrFfFLjE9phEpwqhYGWXsSmyPsaQgxXAOZZ2O6hlXutlzECaviSBvFcsykj4awuFq+nDKfw6uxs5YvPdD0TbvxkXTUpB2DuZXBp9BDVwlR9AlOhcZF924gp0jSRRR5vWeFatyEIdlUTeIGhyZOONAK8VPJp4BLkjdrUQR6jTrwFEgq3GrTgV9jhQc6YKOxwjS/lrAdD4Ot6LPocVIx03ew5yciqQYY1KQrP/veZ7Xb4w5oX7Wu0s0hg4uxUtTuTrBS4c2a7xMRrz2usBrUcMiHAnRMkQh1lShmZCR2uOzceUnCZg915Z0XUE17eTF1Q1JJean3NRSQRFNvMhiPt9xl9QcmSFRDT9VKHJIDBP1lT6IKI1B92MrdK61CvGrsfh8SQt8b8uQN9+yu+vovD6VWLLsX5dTRIQwl7c/6t+Xgq3XW4xCEU0UzW2i1abElZdsg2axUgAAIABJREFUI0LYf+7BVzLlJaZYi2VIkokurLXSVr6R91Pgc0h+Zy7uxZQW+P9NXC42OBC2Ghs99js950FcdAXkBV6NW3RmIX388eNMYoDyym1EloVpf2Q2zBQ1KzI3zIE9Ya6bK5bgOq7hSh7y07zu5gZCRLnKFgDIoJviV/f6RADLnqqj6cI5FG+0b/NFxNM4gyg+dbaNFiFjTqNlIExdD+Ibo+YS4IAwdqmkXY1QUCOMYpXU+DVpmimiiWKKLXqxiWIihP0+3cQqUif38UTNZf6in37+EXq+N83VjElGPFpB1XwK7iXRZtta8VpHWqEnB2cZtiKWZkvgBBMnevLHYuuyQYO/QMy9KHC/MebjDK22DbnWep73Xzbq8QOgyPO8o0PtN9Tlh7uG53nHcHGyk5ZhjRPP874DfMcY8znP8757qhd6O2UQWfOfRZSUdsTxcw6OCrgRUWjKEMNBFfHEqufYfdQfppESpSVW5T8Xl+KiaVGKD9hn9wmmgAWlCKfE1SPvgUJkfdX0McXZqUc4MRUnyHikEQrFAASB9f2cmLf/ut1XGZ4SAcnDtUswiqSiiqQyOBUga7zWo9DowkQxTsYTy3IVjgWuw/4V46J0vbhU5JORDKSf9B063LmUtlmpedUYV8NTMSej1fxQZjkF0YdxqWXBSA24VMYu3HhLRsbNbFz0RA2bIL2xVqs/jNMNNCrzJDK+zkbm6XAG8v8iWTJh5N18Oi69UZ/1NUaPFo1Z3sOcnKrcjWgTLwFPGWNOY6ImjY9ZhkI1Zcd/qsLViyvYpwpuHvLSUkt9L3D9cah1r+UDjfOgRCyA1tgMwqkRalkCwGVsAqRKN0ikpIRGPz0qRJSjZFFCI53lTlnK6ogx91bBFDTdNofQbVHyNlqdpAOXfgCiQJbjGxtsjcmE1PQoy782+1YxmLy/l8rm21aX2Eds42XKKClt9BW2IppZzxqfZWw1v6WaFTzReJmc7BnEKNAiXV+EpKnHGPw7u4Kph1GhudXEy0xE+Q4WUWyyz/J0wr4a6OpBXvzBivFpuJdnA9KH/2K3a+096vH6Mm6bRN13ba7YeciaYft3JZuJzA37GKHl1HA3N/gA+HxaaaKYheyUttt4FOpg37/alLmN7VLwUNt+kb1HNU6eQFLdtuIA8W8gdNH32+1V0jZtt2luoeCPtC4NBbC1dAmFVvHfzhJayfcNy0ZKyKWNIsv6toUVFCXQrIRSo+RXHmJXzVnStA9Pk/u40u5Qh0RK9Ba0jUOBk+wDeoKG/6u4uaU5d8HOmxhMXSCvij8SW9fFwBue570JYIx5EGHmvxfn/gAZqUPWJjTGXIDMlA3ArTjOu9Fk71ivcbIyUlrXBzzP+wOwL6GyLwCe5z04njdyKpKEKEsViMd5OqIgTUYMkhyw0/3EFJsSJCwUwtGfT0XWmgxcSthMZL4oiFe9ulplPYIo5qpIHsbVPklEF0Xtb0qlqp7niL1O4j0GDRNNAdLrT7ff9ePy7LVoniqtwYiIHjeAGFJB+tegqGESjDQMpZs12ftdau/lbOBhpJjvOYjCuXCI494uGUtdkqFkpCjRcFiVhbhK6urECyNjT9OgYPg6L8MB0wEW49jnFGCeKGpAHsYB85UmGpxhroZq1xDHBkVTELV44Q573v0441MZ6VqRvi/FYYsG7Tk1oqRRQwWsq3GvRk8/MqcKccx3WgstMTk2UTSNbr+9znRcpGYAMUxO4xQSXhPlPbauUxLP8+4E7gx8tdsYs+Kdup9Tl0Rl6CxOoCExuLz5CtwEUmNEB6wukG3AI5OcEdMESSuPcWCdoM9Pu3YHzZ3FhLNFUdxKJSuo9iupX8O9RAn5aUEF7KePVCoHatieLAZNEc1kv3rIx2sUb98Lv0U88OD4vzVB41UgDfIOBRyq2dD5PTE0upKzmP1UO51flu365DKWV2z3owG/5XLOop7NrGQGYhA1U0QfaazmtwD8hqs4QojcMwRTUFTSzM7YAjJWiTf8Ju7gDm7iwD3z/Hbx9VIQAySE80QUIfpqA1g7Thb3R3AQoT5EQQ5GTjTiALKA5OG6uReJquhirrmzdXa7HD+XdtY3bbHIB+dBGZy/4DEA7nnh00wtPcjCVDEmfxi7gY+l/tJX9JfyLF1kUW9DZ0tWbSdreYyCwzYF7wmY23eIzn90hmb22pgjsbLP1faDKeQ9avvrA4hhomQCW4Hr8X/fc8kM2sKQlSvbGzKuIJ9WemwDCxX1i/49bmYlGfSwzlILh4mQRRd1lPsGzBuxQtdmIIvzTbhUwYOId3e73e6y96dRqhZE9fWDIdm4+aXyLG4Q5DCRDBRvbGld4yF7gGXGmAykAS5CzObngdNtytY+JNHxo4kHG2MWI6ThlyHm48+NMV/1PO9fEvcdQsZ0jVORkdK63o+URlg9xG8eEhycEKJK2H4cImgQGcov4hSUEk5UepQoRQ2T0xAFKhVJXdG6KOqdTUPeKVr4UIHqakJmI9EQTY1RmmAVZXNSD69KDs7IGKlgnxoaXbh3naaxaLrZMXueMMOnrqmi2Ec8WDpRxhJpUE89OHau3yEDKBdJXfsU8KMTjhx/ORnDBEZOXxvKMPkQLpUoGCFZigOnHyQ+HzJRhjNMQMbRVKRvk5D3sUbjVNS40JQrpdTNCfyvKWGKP0o8NihpOCzSdBzgXvFPOt61r+tw0bFuZI6chhtPSkihqV9ZyHunFZd6qNUhNC1xun1WZZ7TNko0sgsRg+t1206K80pB5q6mFo4WLXpL8m6hkJuAYoyZinjmLrRfPYmU8xvXzLs/nkxClKOgNxfiZqhXGE8lnFg7ThVqXfCjOC5sgDwY7Mj0FeZoLERRdpNPFTyXCHcNfpZrkgQP8DgXUcF2P3KSTytbWEH2/hh9YYtzOHxIqpTpm38rcBH0vF820++RquAKaPfB8FYBfuWGIs7c2Ez2Jkm5yi5oFwPGpg0t376d+5ZcwYcbhOYqq/QBMuimnjK/vseVbCBMhOesBTSFLlrJZ1GSvJ2faZS09w6r3H6j/Au0f3O2w4sore9X7fZ1CKuWGieTkX2DBkyatKefGbTZnkMjBlWIkaNUwlOQRUbZuiqI5yUvtvvbsjHkIgvXp220axIwE/6h5Ot8e/0XZZ8+6OidSWqlYILWpX6CdVzLLOtwrqGSPlL9dLay5Hpuz7mBG7slcSXtC9A3FdYmi2X5+afucsxdAB3QtnqKRFxUN96KRISUXe01+93Vsjl346G44N+Vix+iLy2VrmQZYyvZzFqup9wiHrtJ9yM/IPTVO1lAPof87ztaZjJrwRt0BF9wDThjIw3BC6m3TDnmf2W3ZyEvEWO1Eg9kfukc0/RJNVaCHMR/OmILnlchuO+9wK2e5/3YGLMJuN7zvGeNMQ8gasZxRN39ked5x40xf4eM8mTgJ57nvTLEJTKAqz3Pa7bX+wQym8Z6H2O5xknLSGldt9p//83zvDeCv1lracJIMs7Lq4H21xBDJOghbgkcE1R8lB61HXFiafrKAK4+VgjpyWxEGdVPdX5pPZQue75WHBWvXuc0XF2RYzi6Yy3at9tecygHrSqcqjyGcSB2vYeuwLm0joqmxwTltMBzKeOSAvxHK4g4lLyO1HCKIcqqetYVl6P3+W6oXTLWNgjjUvY05W8h8diKVEY2QBIlOCbTcJgPXcN3D3OcKuEKildChC6cERrEoiRKGjKe30TmSzYuCvda4Ph25Jlfst+djmN7U4NGI4mtyDg7jMytFPunFe+15tCbuEhTF2LIJiM6Q7DtEvtE0wmzkPl9DFklP4C0/WvEF0U9ZRk9res9tq6R5SeIivIhu30Ngg44ISr/7pEenILUibyB1I2dDunZ8dSLzyAUuJrG0oUot6XuEKEXth7g6klMvfggHbWyWocWRGnYs5jSuaIo7iFMblI7JdblFiFMlJBP6dpHKivZzCvhIkJESaMP04eYhXqbHeCVQrotskgazL673YEnlRGrXD7O3NqMt9yCqAF2wLdu+KzP3rS4/VVCRGkrlZydOsrpJoNCWnzg9zquJUYq5Tbs0EyRf+8A15X8kHt2fdr3vLfXzYaPBLzia63a8ojdrkcMhWftdtRuR3EGjbb5Zvecft0ZgC398JEUBw49gKSAaSRlG664I7ioiXoeNSLWYu9nNUytOMi3X/ii2+c8eYbtnWKk/UXDZs6vfIyjdodi6ugiy09/a6KYK9nArRlfAeBzGd+lh3T+tvsuOV+HvQfFi7RD3nYxTNousXVsHj3KnktmMPffJWrFPMRYsWD0zlWpZG+N0Xah7F9LBWEifl91kcVSniXDrsAX8wTrWcMkq6Vk0UUfqb7BDHDagh3sbjzDeTx3IPNAsVR1OKYcuYiM+3NxUksCSiLoCEix/7/MRJTxohL2PO+EorX2+1WB/29FnD6J+2wCm/c5/Pm3Jmz348qvjuU+Rr3GqchYKsT/Bp8X0ZcHcAHTd1y6Eb3hdRxLj+a8x+w+6t1VCSo+mrdejjM4FEdyEJk3ivFIwxke6pVOtfsoy30DLuqyD0dpoCBjBQ4fxCmzih1JVGY13SjoMdcih5241J9uXKqYPsNknGFyGk65VY/+uThDQpXhk5GXECVQDbjT7TlfstfIQdr2bOIZpyaijKUNLkaeS5fKw0h7ViB9qyQ8L+AiKmMxerTv83E1dEDW8JGMuvm4IpAKFO9HxnChPf7JwPkSRVnhgv8r8xw4/Az2U4151a2mB86tKVYZuEKeBTjDqdc+XxQXWWzB6XAF9lkuxmVQLEbmdSonGli63WDPuwGXEvcMUjlqXGT0tK732LpGliLP8/4qsH2bMaZu2L3fFZI+xHYAmNvTSlzdkzlIKpF64F9D6AFUcVZlWTEneyHWm0ZppfDhNjx4LrlX7POxGgcGCwgnRVhrLYiVbOZpLuCj/BIQ46SdXJooIoMewkS4f9ZqCj6+n+U/l5yazn9OlSiIes/nAWnC4gRgaqHzolTS+uRNmvaM0NduKT0PgMr5/8vnN95Fn/Xgb7uknEubqtlXLNaNpnLVUEm3ba9U+rietdzIdwB4puaDfKryOxywKPx1rdcI+F3ZnG4Gpkxy7aQ0ubcH2g1cgcUfINGnWuIBl6U4vIZGUvTYKSli7ARBaotwC1sVEtVSY0a7vtB+ao70A4hBsxE6HpgJtwkgHGBGditnUe9HkP658j+oodIvoplFF8kM+O2URh+NlFBlQTX1lHHpndX0WYOx7yJIa4fOAktWUBeTBbQW8r5o07o+LuB2H7dyd7sk8Nifs/eLYZJ7WL649Fg1nQWpbE6WuiaaqqV1To6TTBZdNAXKQGfRRTtpdJNB+2Au7Ttmkz7nCH25cl+DoUy34INEmHID2yHgMXz8kp/OomVSjrQgGoU2+j7iU7wS5t07LONVhPH/dxkJc3IGkmU5NQFzks3wes6YxBjzTSRdLIboN5/0PC9quZRfxUFEtnme9+nRzqfRCFW+g6BdlfmBk4JT1qciDpcVuOru2Bs7jMvj77K/a+RCjRX1UGfiqIM1YrADURa11korojipVzrHXvsMnJJViHMAwYlKaRD/oPn86i2fikthU5CyYjAOBs6htaQ0BU4pYRMV6LMRpTCf+DU+UV63xynWpQxRDJ9EUrv+HGnvNUx842QssgJxkml7vQ78Gvg6Lg1QvffabmM1/DTqoHV2+hGDoWWEYxRXov09E2cYaLqXFvIMit6/GhvYe59s773Efq81V8L2+aYjaeoKaFdjTKMnSuqgLHDKHNeCS/nWYqgRHO4qJfAbyNh5Ehkzixl97KgqGNzvd6McM2Z5DxB/qtJjjDnf87xnAIwxy5lIGsVbluPE336h/dQR3gPkB3bphNJsUQonI/iSMsQ7/2d2l1JkYXnYbn8Sepqm0dBrXcqT4X1Jz/pe69ykdvJp9dNpWi0gXqWdPM6y9LRt5BEhzADJ1FDJ8mXb6SuAQ8kz6Frdw+ynbBrXBmAeGAVQXyQK7J6wZfeafwimwortVoM8hksZQtiaFhfUMXu7nC+6JESzLdoXIUwJjWxkNeu4lmYLvvmzygf50a6/p3yB5FQNVmeKMfBxe9IXkQVGU66akMWsKLAdIp5WVwHwtYjR8jCyAGnJOE1D0AW6yvZJb2AbnCFZh4R71bvfa88bpGJsQ152qh3dJvfRM3Ma/ACO3t3Nxqar/ee8l2tJpY8m2w4DJLOZldxsra4aKqmi2o9i/Cf/zKXZ1aTZAoo3fftr3NF+i48nKruqni2s4OrcjQ5D9B3g6/hRqdml7XiLwKiR9gbkvXGUn10oAc0VOdW0k0uBfSM8zkXkc8jHnDRTRCNFPl11lBCt5PPcrgs5bcEOcpPaOZIboueZadIO22w/TUcY1kAMkxDO2XMQGUea1gUyjdp1o5B44onDxOdJTiwZJInY4NvP1vWnLiNFThYiUy1EPO6kC/ibU7zuY8AtNjfuG8AtCO89QLPneeVv9YTDpbyoBD2uBXZ/jRooU5BmNAYjGMp4dBrx9SSCJCw6z0JIRHc67lWlURbFNChD10wkwpCFGEJ6jijxXutEfWgg8Nlt9xuw9wcOa6BeZvVgBzEVCjjWgjV6zDm4FFxwUZeRDBMVVVRPQxRaZWp6DWe8hRg6zezdJFci66a2bxcOx6RKNsi4GEvBxcRUNzV+1bhU7NJQNMDzEcNIo3sZiD8pioyJjMB5ZhJfOyT4GaTY2I28j88OfJ9hrxXBsXZlIHPkPFy1eOw+JciYDlISg4w3jWSqQdMf2E/TERUn8mTgPocyTNJw9YdUhqJlHjd5DxB/KvIZ4GcWe2KQJeMT7+wtnYoo5kQVpHRcSVrwjROfUChdPO/pCJ5hCi5SogvsbESZ1vQXkDelYlAK4eEX/pKLzvk9gA861zoni2gkRhp1NgdrBod4mTKqWcEqm32xnwIu4GnaiiWNp7hhr6Rg2Qm8519nMPfAIb++85bi8wgToXirvclMaAtPIW+SeNo7ZwhtsCq//7b1P+lclkrtEnmIhezkzKZm7i9ezU2HJR2pMaeEn3IdN3EHAHdwE+9b8BS1raJkL1jzMrvuPIvyD4gSX/f1ZaKJqKF3NmI8KB7kCuKLVyrNbxMSHdH99iJFEkFe5u1Imh04WmBdfN5EANtVdrsBUbL1+PORNnolsF2O9GceYmQ22M+84/CvUpTxzxY86Ee+UomRRRePW+DIP3E7jZT4RTVzaaeZIj+y8rWBW9h63RIabfWmm7iDbeFy+qyXPnUgxtX7N8KrOKro1YeYfXc70Rukf362/ENce/jX+DJPIi8VFp3eSAn5tNJu8/rSiBEh7JMsdJNBPod82ucYqdQNlpM+8wjTbAcMvpIpClCvbd97EMNNSRZ2IlNFDbu9SB+q90wLwB3R1TyITAQZCAqCV5kYYHgAPDh+/I/C1vUnLSNhTv4H+B9jzIWe5z0V/M16vU5aPM97NLC5DWFlHXcJRhn244wRVbp06J+Gq83Qj6RyZuLqVwQNAlXmtCYDuErqyYgCNoiLnrQTz3yVhRgBms9fgjMyptvvEj3c4NK7VBGLIvN/AFdZXr3VQUaukH22RMawBlxFd027GWo6jaXWid6P4ksWIo6bHyPOkE/Ye5iPJJy3cHIo2ImAWVH6WqXsjSAcqSBjZhBRwCP47/cRZajImK2P5RvByoyVKIpXUiIWTR9UMPphZDyr4VuKgw52JXyqpCHv7VZcREaZtjQio/VzQAyzq3DYkgzECaY1SZTFS6OMwTRGTfnSe9Dnfc3e86cQAyUY8QyK0mEPh6UZV3kvcnJK4nleHXC2MSbbbr/LaYQhns5U0Y6qMOWICRbUn9oQb36QOlUZIHQb4nMk2yC9VNKCMqZ0c+TNkJ/PfoQQW1jh1znZyOXESPUL5tVTRgW1rGKTH1HJo40BktlpKcLycreT1X0Uz2JQ5h44BMeExQlgxQP/yyNXVZG+XB4kjT7yqo7ySHUVABXU0k2G7/0vHthL9hsxn5Es9/BRvl/8f1jNRm7P+RwgBlLQiOqOpfNcy4V+u+xqPwsuhrpdFvCxzLaJetI/giizagceQF5oGuXYgFy/GbcoGtu+iqVpJ74AWQ/Q04nfn8dSZM4r7TP2fJo6VgSsD9xDE3ApJM0+xuBmsXDSrzhCTzSLWXPlJg78YR7PVS2lKqkagE2dq6jK3uKns22lkiKa/LasoJZ1XOvXtWlPzqWJYq4fkCIl2U/EmLvokH97j4SruHRtNffftpqrmyzs7RjwBpzZIJGPtNI+IjkzmPuaPW4yUIBv8HSTTg2VvjGbRRcvstg3RjLoJkLYpw/eyOVUJVXzm70fo26H7a+ZSNqIrpfFtn3VK1mKo2aGeKY1CNST0WhJJ/Fupxz7XXByTWKiGCiDg0nEet9L6zpVGQvm5NuciDn57hDfnaz8NTLNVeYZY15ERt+/eJ6XyEwOgDHmU4j+MmQ1GIjXJaZyolc1C3HChBHF6SAuNUnpgVXxU4eKsg4FIxS9dl81SsCBgIO1KabjvNenI3PydbufVohXxU7vTxWvPuKVcwUR26K0vte+195DNuIF72VoxVY98cqk1IczuILpXX2MzUBpt9dKsscX4gw5pVkuQJyCn0QG1VuVd9owyUeMSTXm9iPK8yDiFFJjuBtp8+GU6pFEWaoUn5Fjt6PD7H+YeMMwFelTzVqYGthXDW+Vofo1aIxrjR99Jq2Lk4MDpDch75lSe/3duLmix+9HDC4le0hFxojes+JOcnFFU9VQvhiXVqn03Ho/ialyicarYnFeZ3zkvcDJyYsxJhcBbp4PeMaYZxCylfaRj5yoomldqiCpkaI2V78UYVRkWnqKTGqtWA4O96B6TC9OcQPxOl8JPVFZrXuaJFUmli8H1MTKmJfaIrUvgBVsIZd2H7OgwOosuvzUrxipXL71UfYtFy29zy4QMWsQbcmpooJa5j4lyusrVwmYfvY90k1t102hqXqOf74wEYq7m9mYYZMrTq/mlVlFPkahLqec1WzkFr7m40+ihNhVcxZdlfJclak1NC8opm9Bqm2WGLsePMsZBtsQA0UXhRZOrImhAHikzejFhZCxx84KtK3XL2xQWmsjHejNdiDsPOTFpfufb6+rxk4bgn3RHOyFsu/gQ5n+AtjzzDSohwOa93auRE9+c/BjAJQueJ6aWKVPLfztwZv4SdJfc/l28d02LZnD9azlXkvb+/Wmr7CnuE4qwwNbL1nC8qe2s/VCiThd2lDNK7fZSIvClHPgxa8vYvGjksc1Y9Ehsg/FaLvO1TnJPXyU7hwZMxr92MkCAB5lJXsIc601eGtZQiU1bLBWWhFN/KbxY0wtPkjHQUuz04vkqquXtcO2r1JoP4t47lS5arHtqxGuXu0PZetqQt6+OtcS65zARKkO/56Mn4yEOTkPKegy3Rjz+cBP2QztZE88/nEcKVRQvmSjMhhjvoSs8r+wvx0A5nqe126MWQI8ZIw5cygvm+d5P8Ky0yaPodJwB/GRlIWIoqw4Eo2wv4Yo/gM4HIl6sltxmAJLaU4WLho8gHPIJCNKWVD5m4zMRy2UGEEcaYoJycRVo1dDI6hABo2WGE6505z+XnvvCsJPI34ND0oLDpOgxpg6gRKVvtEMkwxgHQ6TEEIU+A8h0ZMaRMksQAaEGig/HeW8E00uQO4/CWnfN5EBWIpY6kqdG8XR35+M5OOM5N32s594bEhQNEpSYO9NsVKa1pWFw8AERft1IfGGVDdubCmeSbFXQeNZJYoYKQM4ZjYVjd5FEeNDI4qaHhZC2lHJJdJwzGOa5rgUlz530N73UAQDwfvKZ/yMEngvcDIOch/wFKCg+I8hTqmL37E7OmUJ5sFnI28IpcFKQVZia5xkIsqxVh4H0a2CHrDnEYNEIwB+2ot9TT8Np31hB8/9wbIxz4HWBT0c2COGQurcPkslLErbDEvvWkSzX+G7nDqYKvgGgBczylm2tY7OZS5HPq/hqI8jOfOeZsiFF6+T54oSoo80/uZRUVYfuaSKrIwu/vbAjwH45qzPkcwA19sS5HfxWSKEWRTAwtw7eI0P8gdhhNr1wlksOEfYl3b901nkfmMf7dtm+/uwF0e9twOpqqAcos8iEQ01c5sQTSIdZ/iFkBQsVSWKsyUSovpuJhI5Cdv+6kGUaQ01H0AWeq0g34xEAjQS8xKS/L4X6ef7cPiUD9pPjYjZHNWGyYuZNTfip+etTNrM71kVRzVUNVDN13/1FQC+/PF/poRG1l0ofbmCal65sIjlDbZgSAeEByI0Jxcxe4ltjLnCwLW4TIyT7CdiUIafCpbX3c7+nFwu5gkAZkfaKQo3+wbRDA5xDff6kZXL2MSd3Oizc82jhfQ5R5g0aYCkM6WDBn+cKcadjt85iKKjxgfEs7AU4xQvkP6bHDieRcRXhFfDRDvvMBMpcuINGvp63sOcnKqMFDlJRfwKk4hPee9kDGlYnueN+NKxnMp/DlzkeZ6Wve/D6kye5203xjQDC4iHup0gwYcYrmAege9XIIrcbFwF62TioyPqQdbohHq0OxFFKRVnhGjhw8mIgtSPKF9aaFc92VqkUdmX8nEpYuroUYUyeL+JHu4gI5feH7g02hDyStRUr6CoUqd1K1QBhOENmdFEvdgKmta6JyEcg1KZvT8bRWY+QxcCPFkZqd9HkiCz20i0vwXIu2ky7p7/YD97cREKjYC9jmOlGktaXFByceBwVd6bGf75enH1RdQIOIabtIPI852OcwQGJTHCk4Ebk732fFrMtBtnyGokMorLVlEDVzEkSbiUriDzXQzHkhe196ggfiWmeN3un2L3ieC8ImqYaNFGFR1T4409+WPXYDTGZAJ3IU1V7XneL0Y5ZKJLjud5/x7Y/qox5oph935XiOa+gyhO5+B4Fc9B6IQDux9AFkL1vocRD7wqrecik+hI4Jhp+PS1s77wBtOIstsaL6ULnufAYAHn9c1UAAAgAElEQVTXzRVDoJUZ7GSBnyYE8Fc8QC1LiJFGJTWEiPJKaZGvEGfRxZ7lM5gbkajGpZOq+W3pJX405tKKavrmw+KnLIK6QHAo+y4RrbyYJrZQRfUsqad5A3dzL9fwgFURtPjicyzlB3wGgOakYjYOrmZ1kqQeNVFE+TnbiAyKkZV08zHad8x2b/16hDRA8SG3E+95D7KdabckYqW3IwtZj1VoZ2XHR1ZygbZs1zcrkL5R6uAwEsFRD08TjsgABJvyDI4B7MPIYrsaZpW8YS/RRsP6c/2XclJaHyU0+ilUNVSSSsxPuVvFJm5J/holHxfDrpIaWpnBQiTS0k4uyw9s918+ffMh+99iLL7oVd+49DLh2u57fb296ZI5pBLzjYvtGUuoGqimOrkKgJZwO5tZGWdMptHHdmsxhYjGVYTvJoPUyX20N832GcBIRgwS9dDVIS9GNeT2IcZktd1uQV50+qK8wLalp2+8FGRFLwwckI6ba+lMqMiJZxjsey+t61RlJMzJk8CTxph7PM8bDW/+lsQYcykCgH+/53ndge+nA4c9zxswxszHlQIZUY4jSspuRldQL8cZEFFEOcrCVaxW7+4xJDKJ3U/tYE1tUZyJ0raCrGsZOKzKa/azD1FuI/ac6gBSYPFBXJXvofAmicptAbK+DeJy99VbPhmX+5/Mid5l3dbIiyrlWrX7VADrjYjBNx2HPfkLJLpQhyidufZa/UjR2K/YY4NUxycjJ+vVHorZLVFKkDTnChzr1Gu4cN9SXN+pkdnByRle5yP9q6mDSch4OUx8XwZT/jLt7xn22CA2STEd3cT7eYeTYqQtlVFO54VSZU9GxlVQ+d9tr1eMY25TgoZMXEHTmTgSAY2o9CLp2/uQsRFF3ukZuBQukHGlFZ+igesnpiwG2/xk6/YMJeMROTHG/ARxyBzyPK808P2lCK9OMrDW87yvI/U/HvA8b6MxZj1uuL1bZYsx5sMIsR2Ig+v37+D9jIMENeD8hO9aiCvd3dYPeSmiVKsX6BFkQmmGzfm4BQRESUvDdxgf2DSPklWNpM8U66WLLMJJEbZY1PbuxjP4q5JfsBpR+hsp4VVKCBGlnDpqqASkCOJ+a8AMkMyZTc28WCz3WkMlK9nMiywG4L7SK7iAp3n6QkHlf3jjQ6QWx/wK4m3ksYJqrhwQt/jm5JVcxQM+BW0lNdRTxte4hQ9Yd84qNpGb1M76zjWynb2JZ/asIHeOzOri/GZap82go94mXlTYNlPq4CqcRwTEOFlJvLIrNyftOQeZwCGgzfZTA3CkH8qsG6i+BZgNYd22x2u9wS0tQDqU2uPTkb7TOijPIwv12bh0NDvDD9wplsKB0nmQBVPPl7d8ODXCE+suo/FaiUqsZDNNFFFm0YrrWUMNldxmy1isZw1VVFNrDYWrGzayrzSXu7kBgH878J90flkKKCpBQRdZLNteR2e5aDBFh/eyP0etBImMVCdX+fTGldTYiu+L/e0HuMqPtLSSTyMlLLcg/S2soCJ1O08cvQyAqaUHCZ0TZfe6MxybWottE50as4lPLQjZdlaQZi1ybJO66PqRt6zWNdFEGp1zrzKRIicMGugdC2LiPRlJkkbfhW5jzDeNMZuMMX/Qv1O87vcQ/eoxY0ydMeaH9vsLgZeNMS8hjOGf9jxvTEW/R1Jsi5E01MWIsrQQmQvKHpWCM+pjOPYhpWbV6IOmrWQGjtH0LU156cABgIPKTAky33oRZS0ZUdYUrD4dZ9wEC9EOJfsRKvCDONzZQhy1sDohtAL3UNKBKJIDdp9OpENONnoCQi/bjEt7SwYbDBaa3WeRyM4gojSfDVxrfx9X63cc5TxEizobaZtjSD/9h/39zxGSFjUMdyOpbCcrGUif9OMwIq2cqGQrgQK42iNqmCpYvx2JiqQixlQD8RiUoUSxMvpaCIL/g+M5OEYnI+8fPU5TyyA+2qDGWwEuGhK235UgbTiA6BzqTNbovj7r2UihxT9j9HkyXoYJuMjJcH9jlHtw/l8AjDHJwPeRRyoBPmKMKUEeT/24fwpwlxuAX+L8NfcBnzfGdBlj3oXg+Ek4zIlPyYUrFpcNpEBPi3wdTpHFQ0m99iEDPRfxOPciE7QaSQu6AIm0AFNvOijfdcETjZcRyo4yI7uV3Y1nULengt0PnkEJjXy05Cc+01MrM8inlT1Wu+4iizARVrCFx7mYCGFaKKSLLB4priJKiJLuVymnjhBRVrCFSmr48FMP8S98lQy6WchO7lt9Be3kMmPgEKnEKBlo5AGuoj65jK7kLH7KdfSRxhZWsIEreYgrqGUJt/A1FrKTGbRSwH7aB3OZkd1KVfYWfvPCx+D2SbQ/MpvcpHZ2PXgWHS0zYSuk/9kRCb1HkYX475BF4XzbXkq73G73aUZswr1IFGOJ/X8arlCiK3AuC159J0wrlP6K9Et/aCpWKeJ5Ki6E4nwxJBvsOYuQaEodMkOvQlwIFUAEP82JiN1vJlB6XJ4NiULMuvYNimjiwK551LKEs6innjLu5Rq6yKKKav6DL/F7VjGFLjaxigx6WMguvlX6Wb7L5yihkRu4my2zzqM6ucqncW6miGUH6mhbMoXsuhg1yZWszbmGKCHyaaWZInpIp4hmwkQooZENXEEhLUQJUUwTj3MR3WSwofUKdrKAMBHOop7Ngyt94H7dYLmk5E2BjoaZ7L7zDDHamu3fPlxKB/ZzCo7SWftBC2ai33fi3jotyFslMLdOAMpPIDk+yt+fsBhjMo0xPzPG/Lcx5mMne56xmHe/QHKD/xz4NEK+9FYKX58gnucVD/P9b5Cij6ckGcj4L0GUGgVlr8J5oPcha456nxVQfhhR5lSB0tQWVc401WsQmW+TcTnzmk6jIHcN+RTY/6fiIjDgMAphXArMbk6sap2BU1b1Xpfi0mSm2uebiQMPa3rYSJZdNLCvUgGPpvCNJg8j4S6lDx7ARWMexhmHM5HnPh15zzyTcJ6JwMxVgbyjliL3moQUVvw+MoZWIM+SgyjWuzn1cqlqYKpxNx1X1DhRdBJqFEVTrqI4vNRCHGYkibFFc0qQMZiLjIuw3c5ExlpiFOdNxNml+KlgVEeNeSVpUAY7fb5jdp9B++yHA/eYj3MERHF4l35k7obsM72Oq9sFMobHQn/9VmQMkZM8Y0ww/fRHFhfnzuF5T9laTkF5H9Dked7rAMaY+5CA415ccsRYnEgTWjzPG4oN+10uQUrTbHz6YAAOW6aWQtmMtILJl0hIsBRKFFHKjiPe9zDS83vxJ0hHs40gFMHU4oN+StaskjekAN6cXJ4bXMqspP0sZJcfScmii7Oop4RGpthjNGVHcSldZJFHG3sIsycjzKuWSrb4qb3AUV65sIgqtnB5k4C0I8VhUomRXRcjm0N8cclXAKkEX0c5YSLUsoTnLG/scZKZxADHSfZB9Ou4hvbq2XRXHOEQ+eSW7yN8Z4S6byxjV/1Z0h4bgAroechW4rsdiZg0IR72dBzNbzWyAIVxL1OvE45mS/OfDzxtAfAqUaA4xaYlWJxJMrDI7vOrFjFYHrZ2c162LGLN9vigF68XWah+jqQr9QFlMLg9U6JjNnmxvGQbdTXLOK1yBwDPrP8g5695jCghShc8T3NnMQ1N53LaOfJ7LUuYS4RKajhKFi9TxmVsIpWYHxm5mduppYJ6ylh5uJrqnPPYtyTXDpdm2mZNoZYKupbI9Lu2+162ZFQRIsoStpPX3U5TRhFRQkQJkUEPO1lAIyU0UkIrM/gS/0lXvhzfTTqz2M+spP10k04WXezadhbtvbOdRynf9onm4KYRb4joKhm1f7pgFyMG5XGk/k8c4QRIp2sxxleRiaTYkwmU1qXe6VOU4SLtgd8nIzi+NESXf8BWjMcY04JLUjjueVpWdfzuY5iIP4xT1H8sxkmu53k/Nsb8fSDV68mTudjbKZoHPxlR6HJx1KUFOAUf5E2vdSF2IOuXVnRX/IgqZkrPqwB1rcVQgGNKysKB4weRlJbDuFoT+xEFV9PDNH//JVwxOvXKJ9YkgXhFMAVx5ryJi8LsR9LFBgLnUwOngHjRYnyD9tmX4sgCtMp4ULl8q7ITAcCvstshe78v2es24woFJiOZ2fuR93Lwud9pwyQDubezEYVcDdUXcEanpqipd/9pTt2Pk4VjkYgi4zKoFGtRTZBxXIirJTIdN46TcXVQunD1bIaSRExTI2Kg5CDPrvgkcJGZ+YH7yMCRMpyOw77kIAZbCQ6bpWxu/TiclwLw1VAO4eZhvT1PKtLeuo8SA+g1B5HxtRvpj8X2/zGFXccoo4Qv2k7yBTAbFyEBeU0vBe4EvmeMuQxsns57MoHkODJbg3nv2biconzwrEGi20qHq5OpD0l30YmpAGr1EGnakHohUqDjmZmibAMdj88kduk+jrwpiuqs/P00U+RXiL+Dm8jnEEcI+exZubRTRLPP5NVMMSvY4hfVW8gufsvlXH7hbwHBG0wj6tdF+SY3cz1r+eqSfwTgGu6lmSK2sMI/PkqIWXaGNlPMQurZxCpm2NVxGlEaouf6LGRV2Vt4+KN/KVEREANkGi7drcz+qVI7D/FmaWqQfq8eiSMAPTAn23m9winS1vpi9ICmVgjb/jmKi4oApBdKZCTdGi5a50QX+BCSCqC1O/qQWZwbuI9lyOL6c9ms+9UyuAB2Tz7Df64IYXY/aLcrjpNbvs9nzIoSIo2YTyWczyF+zyo/5SpMhGKaWH1YDMe7cv4Pfxv5Ma+Ei/y6JHdyIyvZ7BMirMu4hhipfurY9zM+SxZdFNpxezGPs541rLEEqvWUsYErfJzLT2PXEU6NEImJodnRNBMmw6zKNzjQKOlrSUXHpJCmprcpDkcNulziaZ5BlATtz157jKbg0cKJFeGDtN1dTKi0rvGTe5Aso3XD/N4HfMDzvKPGmBTgGWPMw57nbbO/r/A8r22YYzHGzAB6PM/rCnxX7HleYrb0CfcRiPhrWdPnjTG/9TyvEVnBNEnvpKP+YzFOVDc6YF+U+zl1B/u4Si6yRih2Alz6iFL/6neaIqI1IgqJT0FRNq0ku189oqRm2u+67HHKZtSKKISDiAKlFecP49aohfZTlcaQPU+x3acAeWc1cKJ3NlFxzLD7FdjrqeMhhiu41xh4rkQjI8j2pOtsFm7NVkD7cDKWPP69uGrgGYhy+iHgcYRC+EakDaba612CK4z8OuPLsnQycjYSoS/FAbIVF/RjxAgus7/r2DqM9PtoIcWgcZEoBTjwudJbd+OcdXodFQWN63k1IhEcQ2o8a7HCYFRBo1NDAfZzcOmKajBEA+eZigPFdyOGQBgZe/PtuRuR8f4mjmlsur2f15GxPYhjAivARQG1OGoBYjzrWNf0Lk1TbsYZYiU4ggeN3IWI5yk/WRlD5GSqMeZHwEbP896KMTEUE7rned4xhNTuPRlGjDHfRDiSYshQ+KTnecPZ4G+TaEpXCifO7mwIWQWrF0nxyiuMT29Jw+lYBxHDw6ZzcQHOo6wSha4jdtUpPc6RN0NMmy6P3PDCufzVOb9gLdcDQi2cSh/VrKDCavBNFBMm4iurJTSygF1+VOMhrmAN6/26FluoIoMeNnAlAH/LXWTQzQoL8FA2sBv5DgB38vfUUkGxXbUOUMAKtohn38aA7+AmVv/l/XRbXr+H/+kvmfXLNziwaZ5rK3Dh0AqczQdC83g9jsljCpI2pccZYHK+vLxt4IVIp0Q/jgX2CeW7xdCz5WCVjKCCeHAbCKheNR8dZdX201aDByTPtw55QQTSAtI/fEQiQfbYf/3Al1jPGv/0H527ji6yeJ/lJ87nEHfxWW7lNkDIBuoop9heaDUbKaeOO3I+Cwg5gZcpEZdPNAi0q7V0BvspEJY2pE7JThb6bG1RQkQI+/1fTBO/Z5XP3tVICSvY4hufkyYNMI8WJqWKllA3SYyTA+vn+YvzYEumKFIaAp+KTBNl62rDjmm7ohamxNc9ybT7+AaJFjvVuVWNaDj6+wzA1Xt5x2VskZOTjbQHf/dwNARK3Doqc21A3g98xhizyvO8XmPM3yAIiFXBnd5ixL+RcYr6j8U4+aqt6vuPSH2TbOAfTvaCb4ckIcbJYft/JhIV2I9TsjTXPgtJ6VqIy4Gfgyg/+ch8SsJVYD8dUa6SECUuy+4brNegzEZJ9lq5OKVRCy8qgF4Zq7R2hVIZ6++Jkqg4dthjU5GpnWH/179eZNq+ac89Egh6Py7ig223LETpU/xAokI2ljz+J3F0uNMRBV8Zyx5FXMLHkHfvQhz9sDqjfjrEdf9YkoXQ15+Oi4j0I221GYmKlSGzOgvXdgOMDTczkie/FNGyiuz5Bu096BgYqj80WqcMacG0LgLnaMWN1b2B34YTje6FkTGikQ6NaPTbcwbLMjyDzMNM5LUxExdx1OKU9Ugb6pzR51IDWVPaFiJRKjVc5iP6yX5c/ZZmXCplEmKc6TzIxGHGxkM8Ro3mdXie96mTOPVe4rPg5zA0Y/S7Uowxm4DPep7X8jac/jHgFs/zjhtjvgHcghCt/BFEMSdqnLTi8rVAXpOLBHQNyChPFyX5qPXGR5HeD1DH0oADQN6HpATpRGkCKmDwHju7CyG8xjk52/OOEyFMhl2lFbxcSY0PUO8jjQhhV9iPXB7nIt9bv8RWCk8OuKgW86JfxHEDV3AZm3xldgtVxEjzU802s5LjJPugbRAg90J2+gxe5bzIxk1XO8/6545z4MF5gjIFSdeqCrTJ47aZ1Vi5HqFSUO2lDpk1aji8idAGTyPAfJYNbdZAUVFqQ4C2lHiWtBbiAfHK3KG4iDlIX+kLYK29bsjeTznwReDnx+E+udGe56ex4L9fZtcLZwFwZ+xzdNTOJGm5WExT6GJD55XclH0HoEUZHQ10JTWsZw1HrHW7mZXUUe4zax0hRHPOHCrYzjdLpeDlJ7mHHtLjCBCeZanff5XUsJmVrGALIMbrxTzhXzOVPrrI8g2i/KRWNu65kvfNFUA8xyW98EDvPMfmoz7z6kDbVeHSvvJs216Q4tp6Cq7/DoC8ObSvDiMDQOfSImS+Kc9zMPVrAojHWIyTk420x4mNYGxHzL3ve56nlXc84FEjZTbuTjR8ADzPu98YMw+4zxhzP1Jz8IOJ+w0jw0X8AR5kHKL+oxonnuf9zv7bgaTZY4yZUMaJ0pC2IAqRgsKVyaoU5wXWJLzXcKkog4i3XEUdWxp1UK+uprTswwX0B5G5OBMXUWkhvvgp9jgFvU+3+3TjmKuSkakYw7FvDSdBumFNdTmGKGyKiVEfXirDF1EsQMzcchzTUibigd7JyRkIyv5VizNMQNphtj13IxKBmG7vuRAH8J6Pq4HyThgof468g7TOiGKKXkdimh/CkShoRELr5JyqTLd/B3HjYhAXjRmqPWL29/nI+NF91YAeQPpS07rGSniQgowZpaPWsXEQLOePjKtEamJ9V7fixnEOrhZQkBpYx/h0pA313pRJT3Ez4Oaytrs+H8jCNB+ZW+o+GrD3Nw6pv4Cs9LGRdznZyMnzwOn2JbEPISH96Ene5kSUe5CX5M+A//I8b9ymted5jwY2tzEGivvxlyAYPjFHvgUfc5IO9OZbylr7sy4wKkpfNxDYrkKeDEj6i2Pk5x/iwGs2wnDecXY3nkFpidQMSQ9JsUU1JLrI4o1YIe9LfZaXKSOfQ9RTRoxUH7Mwg0OU86IPbh4gmSghn2pWPehtllN3BdV8ia9ymUXXTaGLfFqpsEbNcZI5ShYxy+6UTytNFHMt61g/KFGC7qR0BxoDaJgk3sTr7fZeZGHRtkknnu3pAWSBUbbWI/2wLAUetkMr3Sq9RbiIyyygIdvVQvEQL5MPTrOREzVGIsSTsYEr6ATywpyF68smYI3dpx0xUC4FPj3JVfI5Arv+cJa/KHX0zmRqxUE6Dkrb/mjP37JgbqMfpVjPGopo4h8QY+VxLvKNTIBrWUeYiB9ZCRPhN1xFFdX02bS9x7mIGwe+y9pkadwSGqllCT+0dWiaKaKA/X4dkwt4mqe5gCIb+drJAlrJ94syzqOF0+Y28Vzjhf59HGicJ32lET41MnU7D8HeaH9HkVVPZYD4lLl2iHfFaeRE51YLznBRmUBpXeOEORmLeJ43AJQbY0LABmNMqed5DcByz/P229Stx4wxOzzPe2qI4//LRj1+ABR5nnc0cZ9hZMiIvz3nuET9T5bv7POcXJHvt0WOI+Ndac+PEV/sTQvUafXpyTglRhUeNRBycMB39Zjrd6qIqtKl10jGUfe22uvoPJuJKIfzEcVO6VmVVlXfRcFiqiNJFuJV1nQbnQNh2wbd9lz6jNMZvs6GRnnmEF9oTz3sJ8N6oMe8jjMYtYilVhGfijjBHrD3qXU9QojpfTqSSrcZwUW+3VKAGCWn42h8k5D+bkT67zt2X63erhihfuSZf8epyXxkTUtGIgutSPRpqEhVsD5Mtt1OQjTbEC61S42TfNxY3zKGe9EChmfj5oDiQPoRTNFkpI9aiU/De9wer+lbWtOkBdEFgvTWmbh504sztHQ8ZONSuQ7iagTpM6nhmG+/ywqcaybjT6pwqpETY8yvEHUzzxizF7jV4vmUJTkZ+Innea+Myw1PAPE879fGmN8DXwZqjTH3EmhKz/O+NU6X+mtGyOAzxnwKsP0zGmfdWEQVoWCF+MO46IkF7ppC2dSCQeCK+6UTX2jqdETJ1UJ/6QhewQZKBqszOXD6POcBaJPXd2OrKJb5+ZLa0m4vVEIjWaldbORywkQo50ULWK+IU3IPke+nfYWJ0Eq+j1F5iCu4nrU8jVAJN1LCD/kMdyGpRFJ7I983ZpbSSCMlfgpXHeVUUsOd3Ej7I7N536qnJJJTEvEV4t3rz4gr2ld+7TZebi2TYn4qefjUvPQiXnnlvfthiii/2heTU+SlVmvpm48B9Yk2cRPUL3J1TDgsfxHVqFOgpx8i9pzF2dDUgt+/4RRZFPX4esR/XWT/mhGv3+OQ/ncSkulpmCYvtI/IIUmzj9Hxu5lQIWMpPdQVl3K3kJ1k0UW1NVZamcEa1vuG329tv2pfzuCQz8oGYlhMI0p1cpVvXGTRxUo2+/07QDKNlPgYpHW2+KL2ZwXbeZyLmGQt5o2brua0VTviNUctmliNjNWbgR/ijJOI/V+nyl6cwYlt0tbAtkdC1Eu1qSC+q594x8AEkrFFTsb3kp4XNcZUI7OiwfO8/fb7Q8aYDUga1gnGiTHmAmRmbQBuxSG/RpO3PeJ/ssbJUFbTOyaDOArWbhwYV1OycnA4jMl2n2P2d63wrpGQqXafHTiAfAHO0FGDIGI/Q/b8GhF5jfgemmp/V8/wm8QbAtPtfWsq1WjShUzLsH2OdlykI4worSX2fsZSozRmnzsFZygoluGUKNmAXyHA5C/gFNsypB0yEUV2nb1uIS6qqwbCRxAFuAaJxCjmYTxE8SIXIO2mpAm5SJsokPx3OLbKpQjxgKZzaTrek4xSJXQMko8YJXpejfzpGhc0SIIGbDuiiB/EKebKjgWuvTrs72NR2FuRcal002fb60zHzQUtNhlLuDe9ZjCqdBDpR8We7MMZJordUmeTGh8Kptdq8wV2H83sb8SRVqQEftP6KB24uT8eomlpI8iokRPP8z4yzPebOHWit4ksytGRhstEHJMYYx7HBWCD8iXP8/7H7vMlxFoYlhXGpjX8SPYveCt52SNIkIBMU7yCChTg2eKFFEvqkHroM5FFLxh6fE12Q03TXgSzoJM5C0lkUyk9Dm2T/IJvra0zGGzPJKtE4o0bOq9kVfYmwkToJp0aKgkTIZ9Wym2Z8nbyaKGQhfbtcwc3iVFjY5aNlLCVSj/NaxWbWMc1fvpXNxmk0sdSi5NopIQr2eBjUNKIESJKH6ksWPUyUUI0U8TDL/yli4xsRdLXrDe9rn6ZjBY12ioQtpGf2u2QbQv1XGkEpdh602cltGsm0JMCvAq2ngtNi0QB9uHCPYiWrIxe1rAZsNtNAOmuDsoWpK80EqPpd3U4YNwXgQ9Dzz9a4Eu6bIshBYN5mXDpcabOlJvoaJlJfnarn7a1kF0s5Vm+YTMVU4lxL9f6YPdFNJJGn48POkKIL/PvfJfPUUmNT3KwLnBMFl00U+QbOLUsiTNUpxFlCl1+TZx7B6+hfdtsmCMGVO6l+9j9whmu7x637fAQru7MD5EZqxiTmXYf7ZMGJI1Lz1GGGDY9gRTIXgJ9oehGXc0Va6JGyQSJmPyRxdYF7LeGSToSo/uGLeCb5Hlel/3/EuDfhjh+MfDfwGXAG8DPjTFf9TzvX8Zw+bc94n+yxsk4Le7jI6qcKAh2Jo7NKgkZ1iWIwpKDK0ynCiC4tCj1WBciykgS8s7IRdZDVdjUCdZrj9WUsSA1sSr3UWQeRnAg3W6c8qkKWlDxHg54Ph1R2tQwKsQBzzXqodGdThy1exMuJSaYMvYLxKU5x553Oi5ycqqFEQFeRBTJOTh28jSkXScja/l/IYCmKGIoZOEYoJKR/qrEKeA/xym+b0UW4kgSrkLGgkZBdAy12/vtQNKI1dC8ElGw9b0TRdrmMeJpbE9W9LxKrKDjQt99w0XUpiP9qZgezQzRtCxwRuqbyOr1KKNLGjIPdA5oxGgv0m4xnGGfaa+p13sJiQSpoTEdV98mBeljBcoH1Tt1HFgfpm9s9Nt7SMNFs2baT8VsKRV3LzKHuxADdDxrnbxNmJM/abF0k99CyiCdEyy6OxbxPO/ikX43xnwCCXxeZAGif0QJrkDKHhQsxlhInHmcDpAiBRkBWlJESVMlfB/ibVdjRNO+3rDbmquvKQK/miSKeJ68xtPO76KHTJpaxfM+2JxJfWUZIaJU2qJ504iymZV+2s4hZhAm4gOz+0jjOMl+lfkSGokQ9hXdGirZzEofs3At9/I0F/jg9lqWsIUqHxCvHvgwEV8hzqIrLuONm8XI8tnKNPVAlcTwEeUAACAASURBVNliZGFTvEc58hLQyMlrCDPaPtv2URzWJ46rqNhGPwBy4EgwNahHOiBsv4ukQFsLrv/2AYukDopKKEBNvNE+zy24tKZe5KV1bmB7A25RnwP87yQ6Tp/p//77wlV+HZSawoNEUsN+X1VSw04W+Cl1t3IbldQE2jjK3/Md1rCelykDpL+X8iwhO8gy6GYGh9hkMc+p9HGULFKt66WPNEJEybCKfzgpQvucfN+AOvJmiKTZxxjcZ6Nal9rnvQJnjDQhi7XCjqqJNxYvRfpMbQs/PcJ+MS3F9p/ukI8MmMQISXrgcwIB4sejYi8jRto3IUmQecDPLO4kCfi153m/swXMNxhjQHT8X3qe98gQl8gArvY8r9le7xPAdW/hPt7WiP+wxokxpouhjRDDidmY76h4uGrv5yBzPwcxGtRLr0xB4GhJNWXrIKLgB9PANN1EgbWqKGtNkwEcgFcphbfgxqQaJpoSA7J2vUa8N1ejLYmK9nBvcMUXhO3/UZx3WxU9xcb04RjCwNVxCUoKomj24aqAdwfaZzzkacQY6MQVoMxFjB+NPGxAIhNK05yDKINBeucc+7wfQd5dLYginMKJ7fUhe95WxKEzgDA7alRG2bAUv6A00YqFeA2XhnexvdcMXF0ONRyCiLC3KkHmLMVJKXWwUjon1rxJlFZcfauggq64o+7A7yHGTq2rhsJkZHyV2e+TcBTFIGNkPvGpgzuR9tKUrEEcXbCmRGqfJuNSsvT8wahihj2fGjm7kT6cifQRuMgnuKhiUuD+x0PeRrauP3X5EvICHPdUNWv4fAF4/1s1esZHgqZ1IpVwNrLiK2i3E3oECE2eVWr3Es/OFULSgXTQnomwTGialxommu4yCzFubPpMz8PT4LzjDHaI4vi+yqdoHiyiLynVNybqWMws9vuYkzARUokxI6DcpdHnp/Hcxxpu41bW2XK5afSxgmo/DWgjq1nCdn5qdZrL2EQXWdy150YAPjX3+9SxmKNkUbdHXOv1oTLhGNIo0AcnSTRBX1SzEIVXtZMHENVI04SqEc+DHr8IID8+lWZaChzpxHnfO2FaNhwplE1Nret51f1OulvQDZBb6Iwbky0LthokIUThrrK/z7H39fPAPSgbmy7yUXvMzbKZe+k+2nfMdkOmGBam7uK5yZIrlpHaQzNFPobodm6miCbfyHMUw612u431rPFT+ED6O5c2P4WuiyzqKfOphHeygK1U+uxrrcygliX+NQ7smsfqBfez8c6rsReTl8Gv7D1fiaQTbMNFsP4OHycFyJidjSvY1YADzWPPV9/vaJt7QTpHUyRfthfWvtI+7Ql8TjDMyXC59G9BRoi0K5vWfrC80vG/q0o42vm3Jmz3I5GUsd7H2xrxH9Y4eTcVzdKIgLL/aRRCweKZiEKjHl4FxJ+BI9hQli81EvoRb7XWebDBePqQETEZUSS1YF0KMgd34BQ7NRi6cGuepmN12mNfQhStEMJONJ/R07vCuAhPMrImKP2xgrOzEGVOvcw7GTqlpx8XCVIwvtaM0ft7q6L4ETXQtth70OKLqmhqmyfZfWqRmVaGo4adbvdRY+WY/V2jTooj6rPn0f7sR/o3B6cIZxDP4qQ4og5Ege+27XWnve98xDA5HWckgSjI9cCvT6JtghIsFKhjV6MROo5Ha//343JeJuPGewouGpiKMwh2jPHeNEU+A2lT/dMUstPs/WvETokOdIw1IPqD6huK7dph9wWXJnUQR4qgeJlBXMRRQfT9SF/EkD5YiozdQhwmpRs31/MZvzonWiF+BHkvcjKEeJ53wdt4+u8hy99j1ku4zfO8T7+N1wuIsnUFPev7cOGAIIAX+32/gLXV4zAZxwoFjmJPIyOKYdgX+P4Ijh53Do7xC6mm3teTyrQ5oqw+98KFvO+cp6htXcLudqmlcV3JD2mkxDdWbuS7RAn5nvWdLCCNPt9bX8F2qllB9WAVAFOSulhBNX1WEy2miQhhPzWoiGbu5HOkh+RN2kwxMVKp27XMv8+eydNIv+KIGFPg6lqo0RUFPo5jezobYefSuidLA22CbWYDKCHcmYU2ehL0oWbHs3E19YsB02PTvAyWTtiKh7B7VViFubZfXuIR+xa4ABcJ0eOvs98tQwyqA8jCrj7rS4Hl+KD69rWzoRhKV0k+W0PjuTxXcyELKl8GJKoB+GQFWXRRwXa+veuLAJQueJ4QUVqZAcDLlBEmQhp9vGpX2RoqWc1vqbZWVCoxcmmjyqIPI4RZyWYf16IYljS7Omct6KKVfE67Ud4chzrz6blnmvNW1SLjsBxnVDfYZ/x/7L17fF1Xlef53bJlW1b0sGVHjm3Fii3n4TgPgkMgJJWEDkUIpAgpqoAammYooKiumqpPzzDT9ZqBrnfVVE3TPVXFTIqi8mHoJjSPpAmPpEiBKUIIxHkbJ05kR0Z+SLFkS7ZlyZKtM3+s/btrn6Orp2Vbtu/6fO7n3nPueey9zz57r99ea/2WJrjVEL0ATfRaKDhgH5Ygs/S6jGDvldgHZDlJLSVPM+diTSSnMSD+XJaZunXNOanFFKANmKKqFeiVuDKqLOhDuJIjn3blT5LIOqIEhWDjnXKh7MH64DZMIUpjDrSEtwhX3lbGcolZqxVPmrgYdw0qAhO5ZElkEVqNZ8vujtcTyFB9BWC0iDGeW8oIptwtJb+SvYa8cizFUx6g44mCxFP5IvZsbsHmGmUgr8PBzNOYG9gzGBi4DXgb3o6LcHpixQ21xvIWqZjTeButxMsCplX8/Vif6MQcKEewcXUtZoFbgynGDdg66EA89hVOHpikolWARXg+j+pYp8mU68W4Eq9YplT3OYoDa2V772dyl7jduDVnbbzGGnxBaCdOYTyAgYWUVliWSq19yeWwDk+UKHa7WjwoQfWpJ58MVMBlGE84qfdYCxGN8VyRTewkH7F3MjJLlvqKzKJkWdY2+VGnSpSEUQrSUqzXLk22O3A3L7Ag62RT+EWgRK5LGjzXk89xsggbkLWvB1PYo2l+8P4lcCscX2JvzaXXPc/24Utpae5k17E2brr4ezzLtaWcF2AxItfyTCmj+7t5kE5aSjEnj3MjH+Gz/GKV+Sq10MllvExHBGE/4GaOM4/maHn5ePdn2NC8jRvrzY3s8UM3clX9C7DoOLSbulH1rgErq+qhCS6Nb34CD4D/LG4yB5ss0xd7CwZuWlt9Wy50pZkqagDL4vPoGcyDldIIqULU22eL3vpBW9lXAPwPyEsT8I+H4LZ6myTeE+vwKP7M78eA1dvj9rNAD2xdbX5fF214lWa66Ry1yv1i1Vf4CTewYzTS+lYN8+mXf4dfufRzgDGlbWNDybIiUHGMBSVq6O3Dl3LXAvjF6GsmFy5ZRoxWuqcELg9Tx5bu1/OOZlsQf3nb1Wzc8GTp+MH2JWbt00C/GrOCfTtpuoW4GwK4UUMWwpSNDgwELqn3lazeasiqsWAkcLaujrgtDkjNjnMMpJyBgPhzUc4JcKJEbnJ1AgcmI9jYvwtXYltwRp8+8gxB85Lj5F7Th1O6CmhIkezCmbYkDXhMiXJFPB2v25hcU6v/E/kjFFN1ypLQnZRlPa7sqX57cGV8MnkA431bixMKKJ4ldT0SuJlpFvQd8fNrsYzVWBuuwZXf5zDlfz8GAPZii0/LsWfUG8slsHIi/lasjRR9uQwpDqgamzMG4v5dcfv78b/t8dyN2Pyh+6n9hmLZZFU5GSkGkOuZCmCcwMP/lo85Oy8b8HlATHDNOEBUn9N9XmFyVzHwoP9mrG10jZVxexhzpd4W77+esckz5a6oPvoS1vY3YflsLsddt1RnxVKJ+U65gVS/2niO4rzS8vbhYFWxZcV382RkEstJxa3rvJN0xEnznWj7OlyBqqe0TKBDF5HvyArkTgMat5PvxGlmBMWkaIBusN+HG2IMQnMnly2wBIvXXryFx352G/TM59rrnuVZrgUspuSrvIfHRy0A+mjVYu772Uf4o4ttdf6DfJ6HuKvkQtTGDj46fC+/teD/tnvQyQa2lRI/tjRbbIksM4Nbl9B5Ywt3XfwAD91hiRxHH6m1eijs9n0YUNALthVzZ7s1bu/Bkk9pZWQ9tprU02HbS1qtTbdsjgdcAYNF+tlq284FwCd5ahYJOBYpauPzE6jpjPekBjY1e4bcAeAT9WYheARbVXsFi0F5BZeEparqNwYYPbaQqoVWsX0fvoR9v3MJDa32wHsXLOPZbW/k324wQru/+9lvsebSl0pUw+toZwl97Igo73Fu5BI6uIuHeIi7SrdcQl/J0rWQYR7hbaVcOC108tXR93BBlYHRXS9fDsdhS7N1tGs3ROY0xZhcgK0eSjG5EgNsjd6U7Mb6cMpkBtH9DvPOCiT8+/XRBU9tLwf0lPkO8kA/zTE0yJxx6QJTlOYYXjob5ZwAJ9V40K0sHmITasLGtjRPiZSYPnxeUKK5DXHfK7jSKGYu5V9I/d8fYywAmIcHcO/Exi2xH2nFdyX2Di9nLNPTeHlJwFeD6zAFLM0NodXlATzORkrkTsYPqn4n+az3cm8TXexeZoeSVXX6LmYVX4PHC6yM5b4GA407MQX2MYyt651YvVMSA3AAIoYoJdGUcj+CkxYswOa9qnjdA/E+6j8bMDCmpJCyeolgYLak+Bw24m2frrvuYmKK4jrs2bTi8VGqp/qaLAkCMI2MfZZF6xw4qFPMkvpsF9Y/V2Ntp2B5xW9pgeAADrrVl1pw4opGzLVxGPdiUZyKyqr4GfXJqli/gVh3EcLK8jaCP7MF8T5FVWOmMgXLScWt67yS4tQpbUQ9rgZb+U0D4lthsDsqzvWJO1I8vB1TyDUpaeLRitubkmPAV/7l698B9MNooymSW/dcz0XXvcqNPM4LXMW1F2+h++JmnuVaOkdbeFvVI2xjAwsY5m1Vj8RbtvBvL/7PHImgawubeAM/Lq3Ef5aPsHjBYC6z+QO8uxT3oISMWmm/6cbvsIM2tqSoajXUtB1k8G5z62p4Xxf971vheU5exa0nYDrqT3FdVcxQe1ptuy9+StpvM+YTdp1ROWfd1r61aZ4T+RVEBbfEFKW4hqXxv/j8SnlW9DzrYUs3tESF+QIso08NNqA+gj0XJVyYjzkh/rHXY/SvaqEFRhtjX/rUcZpWd1scCrD58lthC3RuiGaioflczQsl8oFuLmSYhaW2n88JLmJvKe7kMHU8sOAePs8HaWcdCxlmMUdpprsURN9ED/+66v/j0z+zQJhLL32eC+nmsW1vBWBfnyVXbLrb/OgO7m9ktK7WgcejWNyJAONF2CSh1VetnB5JmraU/T0dneUWCfYca8gnYUyBCYw1QU6XHqcic13OCXAi1xKtHKtL1+FhVVp5VbK2TtwNaB7uSz+CJ0eUgqYg3Z14TMAufE4oKi3L8QWVFckxvXjuCc035eJLJoulkqWgG09AeQuemfsYvjpeF4+bKH/KN3Aq4RFM6VuJAbRVmNJeTLZ3MrIVa1+tcK/CA7YVRtqC1en72DP8euEaazAg04o9o2Y8zkUWlUXY2Hki3uMl7Hk8Gq9RF+u2BqeebsKea2p16cSe97bZqf6YeqzAYzhU9sNMTkgwjOsxAqVygZPirtiel8iH56bSzth4JLlUbcHaRv2/EafwFSueLIByrexLriPwtwF3x1IM0Ty8TUV+oOSKAiNaKFCeIllRDpB3QezDnls7zvY2gOfYOVmZQsxJRc4rOY7HnYCvxGupag953phDMNgBtLqvfUaMc4ir9puwTq7JQz6susy3MV9/Ke0dGCOS/P8vwhRjvYD7Yd/QJTx+oymhx5nHvs9fQvfbLqRuyWG+yZ28d8GX2MxtpYDp4zHvRVNc3l/MIJ208BC/ABD313FhVIhfo7lEVQwwPLqArV+4nks/aHETj/3MVvn50Xxq3h7zfbTVMfjYEjZ+LMZafOl6izFRbMYAlqdaK+5XYS+2EvetUtPHFfUlzQUXLbAZYQ9QD0GuXIfIW7Jq8BGxJp4j8DFIXnk+ZKBSGebF5JWygUnROI4NlFswq5Cexx9jA5tuuSzeRhz6D8+nd9MqqlYltu1N8OghI6y76dLvcJx5/PPj7wDgohtfpZlt3Bx9zD556D/w/OBVfKT5syW2tS1sopsLSzEkDmyaS9tbhl8PQ6YKdh5qoXvRhaXbb7zxSbZ+63p6H15V2sf3gI/G30diXb+C9ccd+KrWrapXUseS1FOiBA71kF2Ba1KHYiMdSo5/MfldNEvMMWBSmSxmRc4JcLIAU3y0gjqKvSOteFD8CVzh1JCjAHJZH2RlWYArc49gY6NWZZWfoQEis7uLlFwxSw3hgKYOU+YWYwqZFLnpil5f0bIOY9YNJZ5U0ju9G3I8mCypYmcsfxPukiba43IyHtXxVEW5Q16HWZnWYoq1AJ+USlkHVL9ubKx/genTHDdg7XMLpiwP47S2cosDjwsSWcC3OfmcL+VkKda3ZHlQbIySe052zw14tvb9ON2vnovA9l6ckex67LmWiyVKn2k63MvytxKPW3kullOsWU1YO3ZRHuR8EVtgk1vZIgykKm9KY7JfVMJrcTdFBcmnAf99WBsKzGtbVpeVzC6gnMR6WHHrOq9EU2cKQGpwhaqm8F9UhluAzkPJvsTNawe2An8w/v8/1Zvyp4liPhYgr1XrW3FqPjAF/dbjlnFd1+u21e99Q5ZVvukDxhA1XGPK6kMLfoG7+Hopr8XVvMD93e/lxmaLGXmBq7iN7/Htnxk44WLLCN60wbTy23mUx7mRy3gZgK27XwdtpuQCsHs+TW/cQ++WVQyujwHwHXDvPR/kY//r521b9ZF7Wif2Eos6eAvWDqrnCQys1CTUwaUIS7DR4gpyDsiDkY1LhAVK8heiNpCRP74U46BndbVdt6R0rrIgbsXNyHpzPQ4er4yX0GD69lgXrVjuxpitxI/0UTt3tMssX72ttfASHGuyCMrH+m6DoflUrXPwsq1EL4LF9tTDZm4rgcfP8hEuYzuPDxuv7/DQQm6vf7QUbL+NDfR3LeMNl1p+vp9s+zkWtHXR0GauZVufvt7y6Xwx9qn12PN6JmmqhzG2m1Sh2YFTC1+LgbhUYa8BBlPwp8hIsNF/hLzbVhpjovOE8tLoxDkglZiTWZFzApyMYoqnYjz2Y+9QLWat0Gqr5ETyrWBwuRctx+LtRHO7FnflqscDdn/M2NiLWjw2pR/PwaAA3Q5MSWyJ95wsG3w5dq3b4vU1DihmZSWuZO+N9xMw62RyRbcu1u8EebYtMTHtJA9GxgMm6RAyFVHwe0qFq2Doofh9GXkrwnIcVAxhlp8UfFVjbmDgMRGQJ0dYg7fhcjyHykC8VxfWFt+eZn2mI0r6uRhTsAUwTmAxSt+f5Py9GIgWsBNT21o8xnY0bsu1XaxuKR2w+th4z3QBTumr3DSycoAHzKuvi13rOfJTRiceEC/wKaY8uYXpmV4Tyyc3SPXtNJZSVN6L8SST4NbNncyu5WSSJIwVt67zSmQ5SRmEwNm6lPckXeUdjMCk4GwoRaYWU8KVa+NH5FklDmMxDa9Pzr0o+d0OPDjfgrrA2KHEBBLjVnq/sCoXt9J3qJF7H/ttLr3TLB0HaaSteQdfffl/AKChtYu/2PpJGjbaBZrooWVDJ9uHLeP4vyy4mc7hFo4viG/fF+Zz0e+9yr7vGhhiETRV9dL70VUlhbbq1gE+9rXPOyhZjw20H4jbL+G5XSRb8XLfSt6SsgOg2YPke6qNMau92fOSLKu3AUOP4+CLQFsMvCaClYTqZUm95UERM9oFwMJqY/kCoNoGIWWeb6k2PLQCD+S/LJZNXaPWblliv/lPGFHAu6Ma9jcYWFkU4yfa57PmnpfY9SVjWmv6pT0c3N9YAo6dtPDaoeZSd+rmQna9fDkbL32yRBXdSB+dtNDfZY3dtLqbh372btZcbI68R4drzN0vMn7RYWVcvCDmObnuSbZ+7Xrv1iPkrUWPYat97eTzt7TiIO0iPA4FvE/qWWSpEzb4MuHT8XsVHgQPZkWR2x3MKWAClZiTWZIzAk5CCJ/C1gmkT/5e5EwmhPC7wK9ieshvZVn2SNmLFETKq5RarXqvxN43+biLpjVVdOSr34spOM34Kq0yXSs49/t4ordUlifn1+EK8Vp8JXwDHmcylZX4cnkpRnFK5DT3h/YLhDXhuTiuYmySx6J8D4sDESg5jCfAq8aCxL83hTLPRJH/J2zueXsss2JLRFBQjYMJkRzIlegw8Ov4c9+PM5XVAe+K91BCQLG1iVpY8ShLsf5yCAc7s5FccSK5De8nsrQdxqxHC8Y7KUod1rfkWlWLzfFyX5TVpBrr/yIfSOl6izKeNWwYB+qK5epL9g/E72txUJdSFqcuYq/DFw7rMAvYBjyWSN8K5hfDnuoyhL2HXXgeE1nQZGlpisdM1uenIxmzE3dVkXNJium+6vERsBvrgW3Jdj35QN7IDpXF7d6oKK9LTqnDTfQyY2vBuC9e6kjy/+1YQkAwxfqOfBwDG4/DkfkMbjWtu2rdQAmYgLE1HWMBf3SpxSB8evTfsfE6Z2va+rXr+ff3/AeGF9gI9epwK/0dK7jxUlOY5//eCTpHW3jDW2wlfkv367mRx3n5+NUlE+foI7VuxpVcgg+4mkhV30HseIGX34EYzx/rhAEdTVBLsBWUPmBTtbdlT3fC1nWFTTRSIgcwd7vXx/+3RNpnJXNcV23XUIZ4sIF6KG63YYOPfIaVPf4mfFJWvpZb4/bq4/Cj+bk8Jxb8Z2pZw+1d7Pru5SV3uAuqDnNj8+M8tM1yjmzc8CRL6vtK5ANL6INLX2Lry9fzry79JmCWkaPDNSW3rd7Nq6jZdJBd2wzwXLThVV4dbmX+/KgNNUJ/1zL6e+z4fR2XwKbjsCWqirtj+6oLt+FuDZrMesjn5+nDrFQpHeoFeNvSjM28aghFXwqMHMAelKxYS8m7Tc6xgPiMWclzcr7LmbSc/Mcsy/4q3RFC2IB5aV6J6aGPhhAuzbJsQg++Uey9qMMUlgWYcpImUdTilIYWuWnp9RC4kUKkbOI/xla3q7FV+HKuRBtwK0xnPG9LPE90uQdiGRYydQW+XMLE/bFsGgtErwuusPdi465W0Xdhin8xbqMoL2EMSnV49u4hbK6sZWrgZKayF/iHZPs34ncTNhSpvmLhWkxeWZSVaSUeW6RVeLGW6ZmDWxqUufwwtsj1o/i7GCA+2/Lz2HqQno8sBGBD8JPjnCcZwq0C9Vi/UgyiEkuqfUaw+u7H5vERygOvIjARMcMxvA/Pw9psBR70vhRnUtOiwFqs/z+DuyAPxO2N+DsmEHo4XutRbKoawmmz5U7WiLtvClSm70FqSd+Fk2PMhkzBclKR807S5VHR0Mq1qBtzuNUxV9gxoTnJp5Gm48U6seIWwClZ5et6QXIceGyK5BLgH3HK3YeBzfPpbVtVSjxU1XSM0a3zS4r/6I5aupdcWFJOb6x6nMe7b+Tvmm0E7t3dzF0XP0R7REw33vP/8Bff/WTJBavpA3toaO3i2y/fYzu2wkX3vMpPHv85214G9/V+nJrVBxl8IZoh1se6aAX+B9hqe+oWlAbHfRTzB1WCw3VWlxJ4acdWOWJ4C8/iq3NaRewEaLZYFjDlGTw4c9DKWtKPl1XbgHZz1Bg6YnmL5NV3xO9FsUy74/d9WNb0+/DJ7O14DhSAnvlOFQlU/dkAoztqS0nR+u9bYdeLFqNmXuOb3XfCBaaIb338ejbe+GTJRev57qtoae6kobWL3ogE3sYjPMDdbLzUZpTGS/t4jWYWb7Cbbj90GYNdS1y3X4QBJrGUtAKb5zsN8F1YWyulahvGPZACj9pY5s1x+yAG/GRZGTwEPdGlsSR7MNc5MK1rBLcwpoBe29P10ajI2SZzza3rXcD9WZYdA14NIbQDb2AKi9hKqKfAXLknga8WS7HdiwOP9bjP+05saklduxZj1pLxgPBy8ni/Md67GVPolFVemehH8RXs6coIHsSv1fLt2GLZiVgv+edvx1xjdiX1n8wzU+BH7m0jePLBQ+RdgU61/C1WfgXOr8eBhdpVSqrc14j7U6uDQONQ8q0M8Fq5T91nT4c0YGN+IzZ3ihFL8RbKbD+RKJZEeUhkbZALIbgVRSB8KZ7TZSpeuurzcpVUvE8j1udXYGBhFA9eH8Cs/Ptxy6VY7qSSbcX0rf3YM1agu0CU8p48jT3LBdjzeks8f2fcpxgxBc9rQUKAVM9+tqQSc1IRF02dAh+ire2I29fh7idgvbkGstQ9pcaOCTf4ZftwJU7bSmP5MK4Mgw0ivbiSLjYKUdcuw14G0UFujUxez5Jbvb9swcts6TZfsc7mFuqWHC7lOdkH3Lft4zRdbmjhqSObWPMWt4vu+tbl1Nx0kJoVtrp/rGEBLXSyr8vcut5+49f49v9xD4NtS9zdqY88w8oANhBL//wxZiURGGkEvgQxCb0Bi904uBGVrdpBVpljsY32QSlDvFZ93oYpz3ItSzEl2ECpFT6wSbaJ/AratXjQ/s1Y/X6EgaUP4YOlLF8b4/EKDv8McAk0fdbatrc9WreU8/sJWPOHL7HrW2bl+MmQAb6L7jGft327L2HHoTbW1dtSWt2SwyxkmPnzT3BBfH73vfxxOAL9y6yiGy9+hpe/drVZQ8CBiFZ2+gr1bo//6dl8AgMe8hvejA22F2HPpTF+L8StW+3k8cXBGmNHC1FDy0YwVC4L3hXYe6Qg+FXkXSRTYoM5KBW3rrISQlgL/D7QkGXZeyY7/kyCk98MIXwQGzr/lyzLDmK98InkmN24x21OQggfAz4GpuwNYcq//N3BXVoW4CvHfZgyuB13G+qLx1Rj/Uo5EuTeJCWtGAOyGHtNWjFFaCf2nu/GM3P34WCoNpZxMZ5tfjqyEs/pIkuMrAry2lR8TCPOSCYmrsmU0e8Bv4y7oUlGmL1kduNJMfcHWMzC4priZAAAIABJREFUc9hYLtfWZgxwCaStp7TQVLL0DODtISX8EJ6srxOPJ5nIvW423YIkC7F5TIZrPUe5rA1gdZwokFvscZqPBT4VKK7nP4CnSFA+mT5MbZosniWVA7jrILjyX4vHT+2O+5uxhdCrsOfZGPcV21kApwH3YlHizzrsed8Ur9GHE0lsTOqld0z9ex4OQKuZ3TBJJTydQCoxJ+eVaKk5nUJT4CHbayHmJEeJGhP9ZR22OdRqnTeLGvKy5nyioiux/xVorJiSeHrJFUrbrdiLcATnzR/CYzYA+ubzky0/V7LG/HPbO+A49G8x58uauw8yuHkJb9hgGva3P3MPu966pGTFuenO7xgjV0ywSB/8hJ/jDfeYW9e3P3+Pra5fQEnhbbipy6wCAgZ3Y2BFbF2XYS+6LA79wMdxa0djvJYw3Y8xACKl/30YCFiIPZ6W2Na95MkHGvE0NcQ2UbzO1vi/rFW3YprK3XG7K7almNIuwywEV2HWEcknkmuswK0JSRkO7o8P+O+h4U+6GB4yU9nrP7iFx770Vi59ryntx1hA33Aj+z5vwG/NBw0kbv1u9I/bD5e8t4OXH76ax9pMbWpo7aK/Y0WJJGHrw9fDHZ4Qk+WxfJrwRVuadt9HknaRReSyuN2HgUR992D9bRAH2ddigLiUIya+E5kaoo18HFYH+femHluGShJi5nLYzCGXLpg1tq4Qwm9jdsMA/H2WZZ8uc8wdWPTSPOCzWZb9+UT7Z1iOz2FhvK9lWbYx2T+te2RZthP41RDCVyY6TnLKwEkI4VHcvTyV38fWDP4Ie4x/BPw18GGcZDGVrMw+siy7F7gXoDmErCXe7BCmCHXiilE/Bhz24nEGjbjnIuQt6TruFfKuLsWV06PYeLg9Ht+KKU7KYi0XlJvitaQ0zWNmLom9uIvLMO4KtB/PISFlVf77Sm64E3M/m0jp3Ysp/mti2RU70xW/18Z7PjvD8k8kE5EDiMSlmPPjTRigugxnZDsWt8Xm1IGNs6vj9wBTjx2YbWACzq4lRjTFUAhc72Jy9zm5Ma7F+p2y11dh/X5FvN4x8uClE0P6h7A+KIuHaHwnAmoC7Yr9EHVxL565XYBeAfrq6wJGh8l75C/ErFYidFBfuw4nQejCAKWu/QoO0J/DiRS6sSluP9ZfVsffsxknUmGHrMhYSQPi09wM4IG8YIrUFeRdubrj51bbLAUGN/slB/Fs5C2Y4pcGFoPPsicwdxu5fV2EpVpZhXPWr8ZeInXmjZjSLXclxflH4DDYvsQAx2hEAu8/bvELUR986tAmGlb00L/bCnHRPa+y708v4Sfbfs6v/x3MkhF18P77VpgiX2Q0is3AViwzsFyLnojluyWpVzuu6N+BDTSiIOzCQELx+lclv3swpVlWjdWxrFIEUhYuMEBYZNbR4AM2+fdjwESWq5YI7rZEd7aH43VVrruBQRj979EMsR4OH6xj9JiBkxcWXUXN2w/y8stXe5kXUQJhu7ZdbuVpiw+jbz7PPv1GGm7vKgXA93cto6phgNGN0TdwhYNIgKo3D3iCRbC2X4aDk0YsWaasWG3AO5J2W4QTFSj2qc/qVeqnPdjzbmu17R1Ea4m0r2hVLL0rzYwNgBfbWjlRCvo5IrPA1hVC2IgBkzdg0+vDIYRvZln2SnLMPMzJ5K3YtPdkCOHr2Ns+Zn+WZdsK97gQGMyy7HCyry3LsqJX+30YXcPnJ7t3lmXbQghXAX9WuMaHsyx7bTptcMrASZZlt0/luBDC3+N6527yi/SrmTzdA8exd0VBzStw5Wk7Pg6LPWsl7qICvtq6Pu5/kvGV5dW4RVNK+zWYkrcfU8TEZLQ/HrMfZxgcZeauUanlWpYg4jXnYUpeFc5QJhYkubuk4+p40hnLf4y8W5ziOORKNJnb0ekQ+foVO0g5AHYqqICnKxux59KMz3Pr8SH6ABMnXUxlZXIO2PM6hGeUlxuXXMa6sGcoqmzRF0t5n0r7HMA8DkSPvRsHsgLKIhx4CQPDHfFcxWqtxsGmAO72+GnAaYrnYe9VbbyGLDX9GCDrxXQuxbkMYaBZi6HteK6X2ZApJGGsyHkp6QpvyjhUjb0xrXH7UHJ8R/x9BTYaJKNpTbVfsgdTFDVA7InbWrtswhR0Kd1ig5K70wvYZNhOPiZgCW61WHYcNs33yaEPnwSAqlUDjA7W0vtgdGB4Cap+dYC6JabPbFrwFP/89DtKblr7Fl1iSr80i63JdaWwLYtllBFp03H4wnzPVSJgoHq8ERs0NPFegFmRdO32uE8+FoswwLWaPHhow13cPoBN9L8Zt/8eeyz/Lm6/iikVss5chLtpqUxDuBLfgVMc3xr3/QAGH1zi91yBr5yA1fcuLE4IYBMGFKL62f/TFTT8QReD8iVZhpuo4/Wa3riHo0fM4Xnw8iXwKPQvWlFq/6qGGMeidhiCqoXHGI0B76M/rTXgpTIvxAZSteUeDJiofzyKKVyyBh3BV//0PNZhdS7F80QXrna9Ax1Y39d2K3kwUmS+UxJGvSdaVp6jlpNRpgJOloUQ0vzb98YFd8kVwBNZlh0FCCF8H2Pj/8vkmDcA7dEiQQjhfiw0YvM4+4uq0S3Ar4cQ7syybCiE8NF4jzvTg7Is+5cQQmvh3PHuvS3LshdwwtQZy5li67ooyzKFWL0b79ZfB/5rCOH/wvSv9cBPJrveMO7SNII9gdXYeKwVWsWVHcV925VocDE2ju/F+lQKTFLXkKp4nTfF666K5zeST+goRXAFnrxuBzbeH2Vib8nxXImqcNClIGAxKCnOYGW8fmNsE+XwqsIUeYGLiWRLPObtsZyKu9FqfVus03eZGwBlrkvqCrgy2RZgfgHPT6KEhVNRgp/D5kdZ0BpwKwbk+60Cxvuwd2IA6yOTov4y8gw2TWgBby8em7QAe/eW45TILTjT3SKclrgcK9gonvukGWsPWRtfwXSwZhwMdeKB8AJGYiITqcNsWU4qebUqMlbmk2cUUlA8uOPmoeT/NMkfjA3srYn6VpIHpROns23CEL3QfWPcToHFOnwQeAqLrUhjWDZjE1eS+I+DuJVCptH4/+ixhbY2msSxjD5VS/9uQwr/vOwd0AoNH5IDKfT3rcivtC/BAJV0yJcwa4dO+dF8u59cph4lvxK3L9ZNGsNz2MqFVuzXFdrhp0m95X4EeQrcRdijkuJ/LbZOrbatieVJ15AHcaX8IKYftyX/XY7VQ8Dv+ni+FP0BnHEMLDD+saQe1REMboko7EqzpFS9zbT80T21XHrn86Xs7vs+fwm9Xav8ecvClgDB0fZanwAAuuI+tUUD8OakTB3kV5CKJADtWNs+FbeXJfcVocEO7JkLELen+UuAcDVkz+PoVPmBBDaUIDPVMDqS37JS6vg5ZjmZGjjpybJs0wT/bwX+JITQhFX0ThzmSlbhXu1gT+2GCfbnJMuyL4cQLgHuDyF8GfNeemvxuHFkSvdIJdblT4DXhRB+N8uyonUlJ2cq5uQvQwjXYnN+B/BrAFmW/TSE8N8wHec48BuTMXVJvoEHUPfhU0Ur9q7I770La9UTWMs2YWNlP+WtJVLwFMQsd8xmbLxeg+dKGY33VxD5dgzIKEfIAJO7Q42nmAocKPeIKFTFdiQ3mMbkGvWxLeQ208XU5CbcFVfucbJESQm8nAo4mYqkyrEsFgIOIikAe3bbmHpiy7UY6B7A2a5acLa6AZy9S+QBYCBBbHblpFxunaLU4SnPluMLA/NiuYbxOV0UyZfjbmByd4R8f9e7thcHTindci+utimIfgh7l0exgeT6uG8rY4l1TkYqlpOK5EUK0XhLTYfwXCfE3x2YUiWAsgdfRYYxOVOWYXk6LohvSzt5QjB1cgVtPYgNztq+AAsuuwlXlgRKFMitgUJyEbYKIF1vyKhuq26NCvIjtbYalgaf4zEqVesG7B5p3MWzsaxyPxuJZXsgqe4gzkr2BLYGq8FRg4l8MWS2laWln3yG+LsxF6pN+IrCOmxCTtvmCB60LaaQdNCQuVZluAMHSDfjwXaqA7g1Re5bV+KT/pZoydjsblQNH+qi/4HYMK3RcnKTX2t0Ty13XfdlAL7Jnbz8patdUVGwraQVZ9HS/t34AArW9gpQBxvIX0jqvQfvM2B98EHgI3G7i3z2aYHIjmTfuritfhWIYCT28+xFTDtJ34PWZFt8Ito+hCEo5T0RtfC5K1mWvRhC+AvMKfIIBsmLCGy8MIjphEf8ZbR6fAZYl2XZkXLHlZEp3yO5Vy8WPTYlOSPgJMuyfz3Bf3+CoaspSzXmQiI6UlkNrsFiua7DxpinsQWiHzBxjEMxOHspHmAuRqs+TBF7BVMKFevQFe+1K17n6Vi2PZxcnMY1uB8/2Orzm2KZbsAT28n60xDvqZXkYpD7RPLfMKWwJZ4v67aA316cxr2bueEyNRWZiuJ9KmQp9myuwS3di3HgIKA5VfriOvJkNPvxGFH9L2vCK1h/bMTJAy7HALuoglOZSvuonGJPE/hui/VRwL6+T8T7rcf7SgvOMDaRKP5GrnBKgipQ9Ao2Fw4k9wLTSx5lkqWcaUrFclIRl+OFb9GUaJlcVhTRo76Y7E9dvwpuXaVVY+K65FJf5W7DOr9e2oXx9oonuZk8s1JN3D6IKZnbMeX6/RgbiOQOXMneiOmGrXF7B/Ce6P4jWYS5g4FlDh+gZPUY/WGtZ2IFLrruVfatuISatoMM7o4moGWYBSfmaeSNsV6657ti06jeg7FcqcO34lCIdVQciup9N6Z0yyJUh634awJ9Np4vVWxJ/Cip5T58sMbawOodt7dgg6rAXiseW/NELItc1wQE747tKDau9dD/+wkxQB3Wbh1xu9Hutz2af0Z/mDwDgB3Q8Iku+h+Ljf2m49Ay3+6tNfmHyZMJCHCp7VJKZ7B2XoiDvd1YUP99cVsrSAKO9+GAT22Xxj2BDdw9ciqGvLUR7AF3J9tprBbYA03zmpCcB3PKagKzliE+y7J/IPLDhRD+FH9LJeOFQUw5PCKEIJ65B4BP4o6Ok8mMQjCmI3ONSnhGIspQKeD7MQVsG05pOg/r7i/hVLOp9TIVARMF4R7AFMvUitKEvX+y4IneVlTGG/BM8RMFoRdlPAX6OXxMa4z30FR4IJZ1L6a07cDDMlX+FZiiljI4TiQ/juW4BgNdUnRF27sUG/cvx8be7eUvM6fkTACTy7B2EilBVdzeibXhUaxtO8e7AGNdvRRwrmShAiadOEgH7ydrcO+BtXgm+nJ9fzqSuo0p1kX9YGEsi2I/lAOoOm6LmGID9k5O9mwUOky8xk4M0K3HvCNuw9n5FmFTWcrkdrIyBctJhUr4vBRNoamVBExbPYTTowqEdGCjtt5qxaaALaOVkcFoL+yrt8vqRZDLjSwO8vuXItoaj9HqklycNuOuXkPYCyRLh9y3pHzOw+IxNiXHv5DU+/3HYfd8V0aV60MxKB2XcOk9z/Pyb11tSvIFMfFgG67YP4lZa6LLVMO7u+j/4xVepnfj5lBiWa7EY206sMEoDWYfisd1YKDjcGw3DQh98Tjpy3fEdpBSvgMDOO+L2w8CHzhuuUnAAMgmXAl9EFf4xU51JaYASIVrxJR5uVEtj3UTS5mYbFSvh4AeePn9BnCb7t5D7xOrHHAtwqwuOv5H862OjdigeiT+/kf8+bVgYOjZuL0Va2dti/FNOXSGgM/i7myHMYwgK1hTPDYjD3J0LYAe2bsFLpSgVLI02U/hWMr8V7RWzjG3roxZKU4I4cIsy14LIVwM3IOtR6fyJLA+umbtwXrrr2DTcLn9xeu/Dnu734FFWX0hhPDHWZb9wRSKN969Z03OCXAygi1ydGLvzihju7IgXbpSO5lypmBysHdYfvBH8WzckjWYIrg83u9EvFe51emJZDwl7RqczvRA8pt4nzV4AkaxHhHLtBdvl6nKUcy6uxoPcpa7moDX0njdDZwd4OR0iggE1GZHcYAygrWZkhg+zcQkCUWleCeeTFEqjjKj9+Ogeii55yYMsB6Kn8ky0E9FjmL9ex7u/icr4048f8ww9g7IC6EF04FWYfPaW7B3qehQO57IjUsU3YvJM5xp8SANsTxZmULMSYVK+LyTdPrUyq6UKrELSQl7EdNKD+DuKbKSyK3rAO4wCfaG7KFkjeklKoBR2VtWb5NY6ta1kLzSfgNmodiCvWzrcB9M8CDvzXFbwWTp5HgMX81PTZPE4Op/nO+B5H+OvXwJM9bLP9vgWd6H5tsA8DCeQXwJDqSA/odXmIKfrj7vx4O2vwBNn9pD72djuwzFMn8o/v8K7rZ1V9z3Atasclfaginpqs8KqPn0QQYf9USRVW8bYPSpaK14IwbCNOlfG+sgUBZpnde85SV2/efL7f4tsd0EJvq83SBSKn9jBWv+0CiBd33+8ry152bs2dxvm71dq0plLdVhH74yJBrFfUm93of1i0f9vpzAwcYQeUzdi/UF5dZRPElah2O4IbBnxBNW5lizO3BT2CCEK5wym1aMRi6VEfwBbyYPQATgi4AlzRA/h2T28px8NcZpjGAhDgcBQgjfAj6SZdneEMJvYg5C84DPZVn203hM2f0FWQz8UpZlO+I5/wZ/i0oSQvgi9nCWhRB2A5/MsuwfpniPGUvIsgndxM4KmRdCNh7J3HRFLl3KIfQSNhZsL/y/PB4jK0sbtpJ7gLw/fbn8HTORy/DM6Ar8XxGvfzk27iqfSye28CWgoiR4K5imv1y874044xexDLW4leooZ4/15HTIQmxeug4bp1Zjash+8u0oa8c88nPHZLIJAzdLcZDRgCnrIk3ow/rh9+N3P9Yn+uJnFdPLdTKeKJx3OQZCxKalZKACXSJmEDiRu3w7HpeyIn5P1TY81RzBA/DUJMGHk8rKELKPTvD/H87CPSpyeiSElVkMczxJScGJgEkS3M4q3Iat/1K4HLPGlzR/BZRoNpM1Jm4vqfeVajDE3IJbA2owJVoK8278JZN1pRt4L2456cI4exRHIH/I1rgtJVbKVhum3MrC0BKLrDJdjq2cpCb6VzALgVbWFaAdVyOq3jbgdLpA1bsGGL2vlppft5sMProkx3LV8M4u+reu8LI9A3TAmn8flfw/vdzKJ4sLULPpIIsvOOqsY7pOjJXhAaj53w9ybNBG1NGnontamlsldYESCJAsieUbgprbY7kfNBrmErvag9g1b43bXRiAUj2+grmPpS52K/C8NmIIk5tYT6yj4n/+Cg+43xy/2+N15PImTn01w1XxfloZasQAibpgH/nUPKJCVJ9bgjOtlCwnWjbrIC+66Q+xvi1NqRsnhwBDPsWM8EVtPx35Z9tq8qmTGsvD4k0ZbZMstb0QKvPFJHJOWE5mIsrrIAalbkwR34or31K8B7CxfRRTvlIv4SpsfH4m/m7Gs9DPpqQB1Kuw1344lmMdYy0jA7Ech7G54fJ4/nQtOdvjeRvidjXedtV4sPwmPDB719jLnBciPeCNmNWkDncAXY7NRS041bNcnaYaawJmQVuP6QeKV+nFk292YXqF3Az3xm8BgBPYfDdbcUIC4+n1ZEmZh/U33U9xKXo3luMLAUNYn06N/Wtxcovx7n26pMLWVZHyIsVITo4pHeoBHJykieNS95aUbliSBgonStrBejgYM52DJ75TaGot5p4jZVcDUrpifwyLCRB4aMYGeSmW7cDrcfAyiFletKIC9rLKwaQHAya650vxWwp2W6zC1mSfzPFRfxu9dWEuMeToU7Xw/uOm3IMp162U3AGaF7xmGc+HovpSB9wc836AXSsyVtVsikChfQmDy+pKwAEwgKPB9+0w+NgSt0rI/aCUci6WT/EhG8m5MTVssmSHDa1JgPtCLIi/Ix50Bw4swIkB5Er358fhyHzvDoswwFFivcJAxx1xew/WhpuTMn0Be1Y1yTUuwF3olmHPIl3j3pPUpQeLHRHw2hivr3r/FOtLjUwgaSwJWH+uwc0tAuFpHNaq5PhWytPtCCV1xGtOK21GRc4yOW/AyWJcWQdXpkQPrKzcy3FWql5M4a/HxhG5z4ispAtTrqRsyZ8/dcOZLavJXjwgfSk2D43iQcng1pLDuMtwUzxPCexmkqPkOaydrsODmJVXpQHPUn891obzmHkul7NZWjEQuBgDjiew56DgcAWBi266j+kBE+I1e/HYki4MnIpyV89nGOsjK7F+0osnRTwcy7iG6QPJYvgueH9XosUT+HsmljwRq6rvLI/XqcPmRgGYDdh8q1wm/dj82I05s1yO6T9FgJ3Gao1HVXwyUmHrqshYSVds63AlDPLpRsGsJHvIW050TBognCanE7NXmtixBg5KqWuDwWqnGu45BG31DiwWkY/TAM9OKuVyOTZJSGkewhw1VifXaEyKtIz8QvZ6PG8J2GD0I9yt61ksVmNLEpci1zFRBx+Zb/fXykQP0D6fjb/1JABb770e2qDpDivEy/debfWRi9UKcj7WVesGLPB8Nwy21ZXu2bS623OCdC2h6do99PbF1fz9xkhWsuDE+JGqKyNL2VO1ZtERMUA71Nx0kMGt1vj9W1dAFxxuqLOBXr7QHcDG2E8enG+TpBR9JTxUIPnmGIsjV6q7cJYRMGvQKhw4NMa2klufaIyfwIP5r4nbAlkv4CZ7XeMV8iQLy9MyYe536sa12AAtl7smEqa0NJePW6j85MHk+2nGgpe03xcjLVNqYXVAqa9zKN4EZtOt67yWcw6crMFpfdW1iwqVrAdysVmMvY8jcd/SeLyUnS58JVrKoSwZ/fFbLitDmJI6Wy5OC+O1LsNdZxrxaW0IT/0ldx0pb9Xxfw0Z1djYONVEf6k8h883mkOUkX0/Nn3KqtKAe4meLUxesyErcbaqNJ9OL85IWYUNwc8xMyrmlZiCPi/+7sP6RAPW3nVYf+7Hnr3mbOXFIf5fHc+fLjiZqMzptWS07ybv2lgd768FACX4FNvcFmw+fQ6ba+uwObwO61vbyE9ZAljpOyELx2yzs50JQoWKzHXRMtAgeVueqEoELOQz383YGBNpMjXY7CHwod/NyTaUwIwSNuolX1ZvA7KU2SdwQJDSx16EB2n3YQpoEe0ruPsI+QSKbeSV3zTdBJgyflVyfh+mlB/B3ZnasRf/WHJMP660x4D2rV+73ra3AquxYHAo+a023GSmlP72FbkEiaOP1Prq/pao4jwLvXevomqVU3D1bl7l9aqLTFop5XIPlsAwSvqbFQZwZM2puf0gg31LWFgzzGBfPE7KwOb5uXqVVqTkcy2L0t245UlteQHevgNYews4PIyZ6duT7WIW++dwxjbwpJ3S57VKpnN6sL7RGrevjOUQmD2CJVWUFtCjgraStxKmVr/WeEwKstN3ZRB38NV2ekzRgVedTpWYYwHxo5wcNWtFgHMMnFRhispC7J0XKOnG2azEDqQFJAW9y31kKT5mLMWTuYkRK82Hou/D8RoHsHlhNmMvjiVlEttTJ27FkRuZaIb3Y0PBXhxIrcLGoJTAcrqrwKPA54FfxjPR61rposoJbHxchzErrmHqgc5no6zB+sgIVv9D8XcL9rzEZCWLwhBjCRumKivjPbZhirwsJdtwt70BPOeJQPoJrD+sx/pKL27d0nsxW5LmcBnA30EBhRH8vVmUnCMQJ2YvUS2P4CBsN754cAD3WlFbaHFBaRCqsb6felLMVDIMBFakInkpcqsWLScaabVEdAX5LED1uDK2CltRXpVsQ37FWMAGGIz7swheekYsE3dK46rs3C9gSqmYmrTaLqVUylQEAiWK3S3YqrtcizZjCqk0h2vw2Bbif9uTKrZh934TntdkGU65SyzLQezl1z2uTcrwZsz68GC8abOVsf8b0X3qSCxjRzz+gvg7efGrfsOsHqMdtX7OZizGA2zSvOA47I/3eBhzn0pzsdyOx6AANe87yGC7WU4G718Cr8DgiiWe52R38gGzeKwnH7eyAwdlD8bfarseLNmhGMMSbgTA40+0angEG3RvAb4Z98nv+r64rcSQsoztx569ulVHvG8aU5K69PVhoFggLoN8stEOPNmo3oWnGRtDkqLaQ9honR7TTR6sNJOPzTqcHDuHgAlYm1QsJyct5xQ4acLftaW46wj4Cq1ofcsRRmu1/wCmHOm3VmcFZEbJY/lqnJFpNqUKU7zE2SJA0ohbJzSdNcffw7Gc1XiG7v2xPosxhfQabEybLrivwnKgbMJZKeUqJmAiq0of7uLUh7WZQNW5IErKuRhPuHwYUzWG8D4k4oA9cd/JALWVuPOIqLGlM3wFo/EXO9jT2PMaSI4RQF2L9VUB7/EsDNONT4J8IkXw3CQjyT0Us6R4k2LsiILq+3ErClibywK0Bp/Dd5K31gn8HGP23Asz5oblJISwFvh9oCHLsvdMdnxFTrVoClVAb+qqAr5aLPi8B1PG6vHlsEFMm5XStic5V4H1YMpZOoIewLTKZF+qGNUAV1W7+5CS7Q1hSrEUzGXk3fnBJ8hl8bcUaDDlX6xX/wWbEOQ+1oettqcTrADRHmxAFCOGVvO7MWuACJzejC+2E889Nt8V5mZswJOCDbYSJoYpmYx1jbtg9G9rnXb5WDwmZQTrA+Yn6tAiDLyIpeobcZ+OfwEGG5Y4EcAbMaX+BQwkaHBqwAMRwfLLNOJK/8GkHXrxLMfggEhtuzXeIw1uX4i3i/j+F2ET9GYMTL0+Xqst7ntjcs3WeA1tb4zXk6vgwUNQU+90wC310CkmOoCnIdwA2SE8mWIHYwHIIP4udJPL5wPkNSq9HyPJucXEi6nqOgfBSSVA8aTlnGDrWhBC1oIDkZRRS4p5LT5OKLg9HeZFiSqAUfTH14rwTKwOJyMbsH6ulWiBjVrcKvImPEv9PHwFX0xO8vvfiVvztzC9/CtFacZiUIYwBbQKt9zIUrMCazPFPwzguWekXJ9N0oxbvMXaCPZ8ZJ1oiseJTlo014uAr5/EvW+I19gEXqlPAAAgAElEQVSIx40MYIDlMA6C1E/Bma9ewl2LlS1ez+gyzEX8dMrCpLwpoJ+MfSutG7g+NYS973o301wuw8D2WWDSWh5Cds8E/987hXuEED4HvBN4Lcuyjcn+O4D/hD2ez2ZZ9ueTlSeE8JUKOJmZzB5bVyrqnRfGbfndq5emFpGUzzGlgLgCc+NKV4wH8dToAi2a6VoZuyK9yiwlEBXGA7CkNck5kRKQY8dm5KljlwAH4/9L4rUEBKRzylKi1RblfW7HBpbNcXsZNvjcjeuWx7DJQRSFsuKoKrvjOVLolbldCt9BzFqg2AyZpPVGCVCtjueCAwLJUCz7Lcm9U+asI5hiL6uFiAVSi1AaFD4Yr99OHvT14BOF/MI74raC6nW8Au7T2JwXkvscw83FqlMfDhwPY2AqJR94Ix5wr3sEvK3S8oL1hdRacgIDKHmeYPI0vmmsCTiwUN/uwPp0moTxRfLujYdwX7IOyjN0pfeHUwdKTpKtq2pTxqJJliEHK2xdk8k5YTlRbIVEK6eH8ODYETzvyApMaUsDZzUeaJ9yh3TiiRYhD0xOB1AR4JCvvjLPE8tVhY1FN+CZwbXCO4zTvCrUUgAiba+ZSHcs27UY6LkMm35TC4oAVSMeFN6KxwpqCp5uUPjpljpscXBX/D2MlV/AYAhr2+VY2x/FyV7qsDaZDVc/0QWL1l7grwkbzlfEey/G5jEF4Cu1wfJYFj0bJSmsI58K7lTLMTwmKpXDsYxDmEonL2SVS+qf3tHu5Ldy7oBbS3S92ZJZsJzcB/wN5iEJQAhhHvC3wFsxleLJEMLXsdf+zwrnfzjLsgpFzZwU0ZDo8YjqoRj0Pki+53fjit6L2Egi8HF1/K0YFGUqak7OrSeflf5pELH+kqstcSN4kDzV+Mo0roz+IM5kctkRKGmK1UjjGMAnkGbsZf7HuF2DW0/A2Z3uw5XsfRi40Ir/CjwxFzhYkVLdiLkpiaXqGKa0q9l6YhPIAvEqNgntTq4rMCX+9E0Y8JDr1454HynlezDrkCanx+K22LwWMtYMruD1tC6rcKDWgpvYwawoFyVlW43zwIPndlGCxEbytNBbMTCVPptjWBc7GAHD5nob9C9KjmlM6r0Ed/0DYCS2Y9pHi1YLyIMTWUX2FP4rBrBLWyqSRVDYLpehqlyekzkaEF+RWZFzApwcpzwr1gJ8HNBrUYsvMMhyoDwQ4MxTonmVq1g5EHK6LChSsE6QD4RXORvw1fl+3J0HbKzcg+e4aMSVuZN1eXkGGwsH8OR7K7H2rMNciq/HY3GUuFEKpRjUFmAKfztOUnAm3b9W4hnYD2D1GsUAoCzv8zCwojWjWqw+J7B2VrxEH55CYKYiooFFeCxJE9buR+MnnUoU87E3Hrsf78tyP9yFu0Vv4OSsaDMVPWPlfNMCAvh7m1pKirExC3H3tCKwkqvabFnXp8DWtSyEkKor92ZZdm/uGln2LyGE1sJ5bwDasyzbCRBCuB94V5Zlf4ZZWSoyp2W8KbTo5iV3rVTpkp99TXLMSHKOrCjq3WkOFX0fSq4papQoBzvsWs6ei61Wp4HJ5JVR3VqrdWLz2J3sT1e29mCgQXEUHdjAIoW6Fs/QmjLF9mCTAxgISQLa6Y3naOJTokC9XeuwiUdlkrUm1VFfxOC+yrqdfILDx+J5AkBKmKgyXInFmyieYwXuVkW8llwzwNwXROOsazyGGb1S8oEXcJayR2I5U3CRGiUasckjBXUXJe0wSP7ZilK6ByNHAJskep6HHlkp9sDBVre2yJKWCQAvxWY+9aN2DDS82c8v3Rw8aagSHOi/NJYqdQMDZ6ErjtqpS2QKRtJG0flpQPwck4yTX/2tyLkDToqrsJBXbCSKBUiBSdEakvrZnym2qTRxXyeuyIMp8oswULIcL2/6PgyRH9vBlNMfY+OzgqOf5eSIJdSOK7BhawizOPXHe7yCA7x6PFfLNpwGuTnuuxxr/wEcFDyJu4DNJkVsMzYn1MbyKl9HS7zHylinJ3FwIHcoBZ0vjuVWLEc1Ngf2xus8zuyArOsw16y3Yn1Bz3MeDlLVVjfgAGk91u678Lxnsrw04xTRJ3AGr9mgvp5urEox/gu875Z7/4ruayfw6awKZ+5SbM5syBTciHtmaKZfha8hgzXHDeMdHDMG/wnwuhDC70YQU5EzJiljUEpvKin61YMvaUiBK0YvVheOk4gBbE+y7zryK85vJs92JMUyvWZ6/ipymezl0nWw4HomxVcxEaU8KN2wuTmfrPEJXPmV6xHJbY9hAEXJBUWCJbCiAUEuWXdhCrmAgXj8FTA/GP9bnfwvi4KsMIoNSfOvdOFNdwx3qwCPN7k/KeNbycdmHMH18Tfhza4YnZswMCKuhM5Ypr+O24uw5k/zv+zAXa6EF0QdPIBTcoK3q1YiB0dgdyREyA1WV+B9rBUYgR49X1nSBF6exxpF/+tmMiEV6dnAid51jaeTY8Fmm7SflwMb6beAyUSuZMeZ05aTsz9aYtZluvGS5wQ4gbxCVM7dajXu4pTGkug4xUzMhEXpVMh+nKJYQcCtWD33xn2KKVmJ1U3MUN8nn2Rydzxfn048uPoY+QWgmYqsA/V4ThbFNBzFFeZisr15+MKScoDsx+aUxcBbcLcpJS8cwJ7hdfFaYrBS/pchPO5IAOIA7uYkxXc4nteEzWdi3NJcomB/4r2H8QSDrbiF5DDu1rYr3mu2XNVEobsylmc5FiNyC05J3xXrvgqzFizHyQ8EANfH8o5gAGphrLcSBq9l9qwns8GiqP5Y7l0eJb/wIOuR/hN4O8xY54CZyhQsJw0hhHuBh7Ise2galw5l9o07tWVZ1ot7+FcECCF8Avg/geVZlvVMdvzpk9RvXuxF6YrwgWQ/mIJ3ABvZYGyPk39/c7It1y6wN/mH5KmXwLXcqxlrfdkD4YoYn4IleiyVJTkuSzb7yDOCHTwEFyTuY2kshgbCVXhTHIlFEoDR5C0g0IRZCHqTayigX9VaiE8c0mP14n8Hs3j04IxgTeRTZeyL9Uh15D4cMF2JgSOVcZBclnoGY5nfGrc34zEmqvMTGAjqiNsDeGyKpJ28zq04E5LraYRYhAWm9yYueTkdPgKTQSLdb7xoTX1yzAjW+K1xew/WX9QwV2AzmWboYn95kTxlWBr4LlBS6Ds510Ww/lrcVwyeT88/UNifApNzW6Lb7xZgT5ZlYyzpIYQOnAz0uBbIZhLHOEEZZiVWMnoH/GoI4StTue8584QX4AkGyykRezHFZby8Dik19WSBuadDjmFlqsbqJuVYCvN+bFz7ZaxnrsRdXdfE7Xbge/H30ni9RfH3dgz4vJPZoVqVSMHdCbwulqEBp19XrMbRWJ4GnN1KCqZYx/pw2vzDmGVFIGcDzkQ1jLE6Kb5Fc6cSFcoKk8aByPqxASdPGI77U1YpATfF77TgpAQLseexDovtPBXAdgCPN5L1Qzlv9sT6t8cyX4ZT1ivORwD1KD5nrsVpqZX4sCNeeyVzIwZI7+BMLE9yXUy992dDThEBy25czQJTf2aT3fmclhBCC6Yi/uxMlyW/gitLSppgEbxny2KRghUxc72YbKdLZqnLF7iCl1ITUzhfMS4dcV875mskM0YHZOnKejmWJSgBosF4zmBrUo4at2JkmKuRTJaDAFGhlpJ9EIv5UJF6knPBJrsUYsqdKV0pAgceCnTUfq0aKUZD5zTh5QTTz5Up/QjRfSyOOH3VY0Mc0oD4WsZafwSi0t9bk3oFgEMOAGswoFIKiNdoF4FBD/lHIeCRXi8FOwdHYLDoQ1ITKafVhzoY63L1vN8zx6ql45figPcQ+dw7g3g+HvkPNCfHkhxXtBym78QevMFTd8hUUitluj3XZFZT9v421rj1ExxzW7ooM14cY5ZlufXHEMKFwGCWZYeTfW1ZlhVVgPuYYqxklmXbQghXMQvxkucMONEK9niyiKm7BJ1pYCKpwnO0KFdGI55tXNnHn8ZW85txH/x+bLyWgr4Tmy8UGK1kffNwetrZrvcz8bs51uP2eM+98X59ePD8PAyo7MTzSezEAIle88cxxVrxFwfisXWYci7igHV4Lg/tr8PaSEkSW3HrlPpOA+5CtgabM/ZjLlWtOCPa92J53kSexv5UiKw9I3g+HsVMjsQybsJznkA+UF8K/rZ4jCh4q3DlfRE2n3YzN4AJTNwXFU+SJndM5VRo9kV2vzLSn2XZx2Zw6SeB9SGES7AZ+n3Ar8zgOuer/EfgfwP++5kuyNhkcMcpnzwuBSU15JW09LsYYKzjOpJrphC+mzwHb6qE6npLyduuazC7d8qklMYcVEfLimzjUjx1D1lc0nq2QU8KmAbj/61x34uwZQTXt6SMxmtnHfl6tNdAe6LchvoYaxHLOJSyk8X/tzwP4WrI4jGl+Ix47MERmxAUCF7yiY7b8lEWIDpInmK35xD0iKAgXr+mPjpoxnJ3Ko9NBAZZNzkrxVAzDKasVbpxq28OgoEH4OAg5vGp68WYpFLcSWs8vwO3vum5pCQKzyf3aMUtHrmbFrYFeK8oHKP+I8CtWaWGfALSFJzIxatoQdQ1U7dDSdFaMpfduqaUIn7SGMUQwmrgHZgb7/88jQKUjWNkrHPELcCvhxDuzLJsKITwUeDdwJ3pQdOJlQS2ZVn2ArMQL3lGwEkI4Ut4qoxGoC/LsmtjA7yIkxs9kWXZrLgwzHYOktmW1C1NsRX9uAK6H2d+Amug2zEF/kY8rq8ZU7CfxtxnT+AuqVeRpxTeiQOc1Eo/26I1GzFH3o4Bl5W40j0Sy7seUy7ldjaKaW+tWN1XYG/YcgyACLTNw4DLUPx/PR6D0Ie7RymeZSR+ZIUSYcBirC3bsPYRkHsy1mNDUq9TScG7NNahC094uQKLsVS8zCKsHzTjLG5NsZzL43+yuogFSy5c+/F+ITVC3u5z/V2RZet0kyZMYjmZ1K0rhPBFjH9nWQhhN/DJLMv+IYTwm1h47Dzgc1mW/bTc+RXJSwjhFzB3h+dCKOcdlzv2Y0AEjw0THjszKa7qFn8Xl+FhbE4U7StaLVJJwcwVmCKa+vYreg48uV0KHA7hIEb3TrNzQ97euBSy55OydJCnMNaqfAqkBIDA/bl0X0lzcs8fxu3Uv+lF8mVqpfTGl8oTFfDsx5jSHuspy0LWASHWMxNDmcoQ652lli1Zs4igoRkOSimPcTul7bSOsXyDzzN2gVuueqpXopRnHdhMk15zKW5Z2EPe+tCKtzd4X0itGB1xf0eyrzXZFvjR89yMtV0KUFJzjeqpZ6Pj0jq1Jr8lCXArgY+0H64iD0LKAZJUyuU1mWugZFoylRjFT2MLL3UTHJMB/xRCyID/NwKcKcUxZln25bgodn8I4cvAh3FHxclkWrGSMP14yTMCTrIse69+hxD+mvwC6I4sy649/aU6syJg0oCv4h/CFFO5QIEp7nXYcKRgc2UEH8GCnJfH/b3YENGIKex9OFtWLR7kfQIDA4s5PSvnjya/FUCf5u4QaCKW7fqk7EV3JFkIqnFKY9HJd2LArT9edx5Onyv2ylewtr0Ki9WRwrsVa0sxSa2M+08Xq9UA5m733lhG0ezLPU8Wsj24O5cW/36AtZmC3XfG/1Kq3ZW4F4Rc1wQUZyMG6XTI6QRRU0jCOKnlJMuy94+z/1vAt2ZatnNZQgiP4mHKqfw+8HvAz0/lOnHSvteuufIUhqtKYSpm5SkG9OrYOsaCkVQp34XnTinSqXZQPtN2CtsVaCEFVq5hqTLYTT7RI+TdfAbJ0xX/GFfCa3BQlNYhVWb1W9duJQ8+mnF3ITCFvZqx7mmS1JVI56fAR2U5FIEM5BMApsek1+3A6y0mtda43U6OgpkO8oHmuk4az3GAfD4P3T+1WqUApAZrr/T5p4BqvHYo1v0KStaWMflCila4+ljGmsLxxeNSy1rRFfFQ4R4U9hXdF6F8mdLjxwPmMLGPzFyQKVlOJpQQgmI8ngoh3DrBoW/OsmxvdNH6TgjhJaYRx5hl2V9Gq8dngHVZlh0pd1y5Ik71Hsm9phUveUbduoItd/0yFvd83ksVjtJEsZvmg+jHlMq9mDtTKz5UDGPDjIDMMHlq1jV4gHQLRgoitq4WbApUwsrTpfSpbFvL/CcnAmUXX47VW1PvUsyKIJcwWRcGMNBRHb+fxSwc78RAidiutmFD+iasXXoxS4RikjQky2XrdAUBKJh9EVavlzD15Qas7Acw4LoAd3veHvd1x/1vSc5dj7t16frVWH2qcNrpKkwD3I9TPo8w96eB0yUZ7m5YkdMnWZbdXm5/9Gu+BJDVZDXwdAjhDVmWdZU759RL6tY1WNiuwd6mouvXIGOtLhp9xM6VKm1FBS9V5HRsGrCcKtQ6RgqlrgGu6BfvI2DTkRxftA50FMq1GQdDqeKpa6icRXe2tuTY1CLwPPncF/ovjbZPRQp2K17P9sJxsiCkin25dikypqX/P5rUT25JqUVlELduqdyyjoCNsGm9isBEwFJlfDGWe1Xyf/rc9Gw7yLNzHUjKrWeZ1i91uZKkFibdS3VKn3Xqnljcl/bbpYX/9S6Uu6ZmnaK1JJ2Niu/RXJKMkwUnmKnuF0IId2LqQH0I4QtZln0gd6cs2xu/XwshPIC5W/2QKcYxhhBuxvjhHgA+CfzmFMt3ymMlz3TMyc1Ad5ZlryT7LgkhPIO9NX+QZdkPyp2YmuknNujPfRHg0MrsUvIZ1NN1MM266hXLsRX+NTgVrkDGcmyIGcaUz6XxXt/AA6ZvxJTzWzDltwNTUk82B8rJSjHPRTEGoZzSLAcF8KFV398Y5z5y+uxndmh0ZyorMZBwA24FSXP0KMZEVi+xy4ng4DnyHD8d8fsVzIVOQe/LMaCSJhoGZ7kaoXzekIpMajmZKVtXRWYg0a9ZJgWx1mw6s2xdxXiTVFJlLPWVL/rSlwMbqRQVuTSQWEpmMVZFSm7x+uDxJek5xeM7CuVLZ6RifEGqSBPLk1pZ0nNSqSE/IqVlKNcGT1OeFQo8MWVHckw1+bZSvYpxDyr3ddgSWWtyz7TtimVK43kGcTe1YhkOMLY909H2QFIPXUPtl5AYlKScRS4FG6pjeo968s87taRpuTPtg+VAMcnxg8knvWZ6/GTKehGkH2csaC++N3NVTt5ykmXZ7wK/CxAtJ58oApMQQi1QlWXZ4fj754E/ZIpxjCGE1wF/j8W1vAp8IYTwx1mW/cEUinjKYyVPGTiZyByfZZmCF98PfDH5bx9wcZZlvSGE1wMPhhCuzLKsuHyRM9Nv2rQpe+mpp2a3AqdRtIo9isHPfvJrSgp2VoLC0fj/2njMYjwupQlTQA/hiSQVIL0fAzc3Yz4kV2FD/OWYJaU13uMwxn7Vy5lN0jddOVsVarnU7cWD3+dhz+cJ7LndgtMCN2J9YhsGToZxCxBYH9iO5wPZiFmn1mLWlCIjVy1mLVP7CRSpX81CZvSzXqZgOZlpQHxFzhsRECmyeqVKWDlXsNQNDMauLBf/L8queGyRFQnG8tlJMS3napNuF5XZPcn/KW+wrlcOYKT3TAOii8fWkGccKwKbDsq7Aok9ChwgCFgJ/BTbQtt7yFt7UrCUlmskOV6WkPHc9IrnF6X4bBSnU3wGRSvGgWR/cZ/aNgVhxeebgpnis1oKvFY4vxxIK4KXqdD9jtdfi/vPthiTWWXrGiMhhG8BH8Gm/wei5Xg+8F+zLHs4HjOVOMbFwC9lWbYjnvNvgA+Vud8ZiZUMWXZmssWEEOZjb+PrsywrS3gUQtiMIcYt5f6XzAshKw5XZ4tchimVaVdejgXIq1HWYg2V5o9owFx2RIerfEyi1pVrl6h0L8Pcm9bGc7fFY9bGe6/FYy6uweIdWuNxAkYVJXX2RcBhDYbke7F23ok9ByVKXIuBCOXX2oA9r5vwwP5t+LPsw4EpmPWkCgMbshAVveJhfNa20+nuN9syAE/NMEFiSS4IIbtmgv8fd+buiuVkjovFnPzamS7GDKT4xpZzbSkXOKzj5pNXYGEssCmnUNYUfr/G+Nae4jlSfAfL/C6enyrI5UT75e42keiaRUU7vVZRsS93/nhlGM+asBQDg3Vljj9M/hkKMBavX7RAjOdSVc5CUXSnKpZPUmzr4vMYr5+lfQnGAu75E+w7W+RTJzVfhHBlll9zLyfXnPScdK7LmXTruh14KQUmIYTlwIEsy07EbJLrOfMeRqdUtpfZVwxG7iQPXpTjQ5S8HZjCqaDwtZjCewOmtHbG+2yI1+7AjdWLMeO16Il/nFzjML7uJKawSgKG2ZHF2LPZicXDfBcHmCswAFmNgcpF2HNTrpeueN4GzOt5BHPPkzVtPwZy6rB1tz6cn6joSSxpjv+NN+UfZWzY6fkkU1gLq1hOKnKKpbiUUE7hm2hf6rc/XjRZufMPl/l9fJz/y+17bZzfxWOnmgZhvGxl491/vHuXq9dE5xf/n6je410v3X+8TJkmO2eiMk/lf8lU7isp5644ngvjZP+fD3Lybl0VObPg5H2MhZc/B/xhCOE4tkD88SzLzlZvnVmTVCm6CQMI+7EGWoSHBt6Ax5y0xe8+DIg8h6+ib8AASwvwT3isRjWWu2MrpvxKoW3AgMlhzH1oL6b8zkYm8PNJlJ6qFo8LWo+7Wi3HE0Jux55vHWYz7cW8oOU8sR9nbhNF8mLsuW6Ivx/F3MF6carhpbg1TSIQk0pKba3f5yswkZyiJIwVqUhFKlKRc0Yq4GQ25IyBkyzLPlRm31eBr87G9cu5rJxpkWtUqvhNR9Zilg0xboml6WnMnUs5TJSfYyGmqCreQArvYozVaUs8rjkeI7efw8BtmJtQUzx+BRZUvgVzQarFjOtS2A7gK/xnUo5kGRdMkvPgdEga5zFM/nkLHBwgn8RYFL5q02cwsLgXa1u5ZDVgoLMbeA9mSVEm+AUY2NmFPftvJ/eVO1cxh3C59+TYOL9TKZKWng45U8/31HoRV6QiFalIRc4NqYCT2ZCqyQ85O+VMAZNitpzFyW/FbBxjrFvNVETB0v0YC9NqTIEV3bCsHW3xW3EIWlnfgLn/nMBC7a6L5dsa/1sev2/DlNtWbNV9CxbfUBWvvQtTrBUro/wk+znzHepMApPLsOewEmvTjVgbdeNxI+BJJtdibduAgZDtWBvOwwDjGgx47gWuxdr6BOZitQgDn8MYUFmPWcG2YbFKSsB5Q7znm+K3El/OhpwJZf1MPd8Ma8/xPkS2rhDCXWekgBWpSEUqUpE5IKISnuhTkcnkTOuS55wUQdF4QcTT9VWrxhRXMb83YeBDsQl7MWuKWNGPJmV5Jf73HBZv8gymwG7DvXdPxOs9FvfvjOd3Y4BlCEvsp+B4iRimbsCASzFoXmBtKaasF1ft56qsnubxaUZ5xY6IH3slnlNGAVYCLktxdjZltN+GWab6MNLHESyx4lac2asWAyTt8dpPxjLU4UBRMURgZAjvphIzNFOR5WS8DzHmpBIMX5GKVKQi57NMNltUbPBTkQo4mcOSPpwiGaEC4vvJMzSBAYkTGPBYjgGVzni9rThA2I+tzoOt2iuHyiJMOR/C41RGMEV3BANGkpvidXfiiq/Kupp8nhJZfgSwLivUtw6zBqTb41mYBB4Wj/O/9k+3gy+N9909zrWrsHJvIA+02rG67cUBqXLR7MLa9hieZux7STmrsfZvw9tWQGc/8LrkWgfivbZhz/Il/Ll1YgD0snjet/F2Wo5lWSq2R/EZVKS8TMFyUpGKVKQiFalIRWZBzllwcrZXrBqzZIBn/5YoqLoaU243Ysrt3vgZwSwYN8XzFmPKahojsBDPaSIA0h/378KU850Y4NmGB8cfIB9X8hgeLH1NvNd4ViHdW3UpMpUpNkMApRi4nYIBWSBSy9Trkt+L4vGtmGI+maT1Ez3z0eSeG+O3aH5F2wve15T4EpxkoCo5Dzy+RACtO7nHUHJ8XawDGGCRhUs5cQRyZC2bh9V1DWYZI5ZvN/Zc9PyLlq1ybHEVGStTsJxUpCIVqUhFzntRzEnFretk5GzX4ceVmebkOJNuR+lKvdI5wdjM5d2Ysin3ra3Jf1LsD2HAYSQe048p/lVxXz0Gfg6Qr7OCn1djirZWhVWG1LJRlB+RBwv1yW+xfKXyusK2rAa1yb6VyW+t8svaU3S9ei75fQCr504cTJWzhMgyo/ptiN9KOinFM23jNLUXeF87ioM+uWiNxu+0HmCgoZl8/hC55IEBJN3zpfi9HAMaozjI2YXTB2+PZdMz0sutdimnRBefQUXGl0rMSUUqUpGKVGRiqYCT2ZAzSSU8J+VMroKeTJK7tZgiLnCh79TKMd7vImu83InKsTSV27cQAyKix1U9tuGsaeWyaD5T2BZ4Sa0lfclvKesqbxGATgZIj+IsWpKilWcbUxO5pwkESdJsoqOF71TehIG54jVhLJtbes0UgEmUCEixR8X7TyR6BlXYsyoC4YqYVPKcVKQiFalIRSaX85utK4RQC/wd5gyzOcuy/zKT65yzlpNzRSayVKQym5kqxwMm48kxHOwUAdZMWNNSC8dEgK1ccPdklq+tk/w/kRTdw7qZOpjdi1t8YCwwSWW8thf4G0+mC6xTa84o5YHJ2UJgcKqlEnNSkYpUpCIVmVxmx3ISQrgjhLA9hNAeQvid6RwzlXOnKiGEz4UQXgshbC3sH+8e9wBfybLso8AvzPS+FXAyx+V8THR4MhakmVi+pqqAl8vhUqSOBo9fKcpU8hpPJifTNkWZCnPXmbAkbpj8kNMulZiTilSkIhWpyOmQEMI84G+Bt2NT4vtDCBumcsxUzo3nXxhCqCvsayseB9wH3DGN8q3G+HngJNbuzgm3rlHoGZgd3a8oy4CeU3Ddk5FKmSaX01aegSnu4zxuo2nIMqDnydm/7prJD5lYRuGRw1a+8WSutWVFxpV9PfCpUzFfFGUuvmMnK5U6nR1yrtXpdNbnJOeLvfxEbmsAACAASURBVI/AH0w0VwAsCiGk3u73Zll2b7L9BqA9y7KdACGE+4F3kfc8H++YzVM4F+AW4NdDCHdmWTYUQvgolnHgzvSgLMv+JYTQWjh3ovLtxgDKs5yEAeScACdZlk2FkGnaEkLYkmXZplNx7ZlKpUyTy1wrD8y9Ms218sDcLJMky7I7Jj+qImeDnKr5oihzuT/PVCp1OjvkXKvT2VSfWZorVuHWBzCF/4YpHjOVc8my7MshhEuA+0MIXwY+DLx1Fsr3NeBvQgjvAGac9+ucACcVqUhFKlKRilSkIhWpyDkgocy+bIrHTOVc25llfxmtHp8B1mVZduRky5dl2QDwP07xOuNKJeakIhWpSEUqUpGKVKQiFZkbshvPvQzmJlUMEx3vmKmcC0AI4WaMxPQB4JOzXL6Tkgo4mVjunfyQ0y6VMk0uc608MPfKNNfKA3OzTBWpyEzlXOzPlTqdHXKu1elcq89k8iSwPoRwSQhhAfA+4OtTPGYq5xJCeB38/+3daZhcVbn28f/dYwJkAhIIJCGAQQiCDBGZRAZFQARUVOKECqJHURRQQc9RDuB5HY4iOCEqAh4UEEUiooDMIlOAQAgIhEEIxIQhZCBJp4fn/bBXdSqdHqqT6qrdXffvuvrqqr1X7XpqdXXVfvaa+DnZWJGPAxtLOruM8a0XRXTb2mNmZmZmZhUm6TDgB0A9cGFEfDNtvxY4PiJe6KVMt9u7HH8fYElEzE73G4GPRcTPu5T7LbA/2aQEC4BvRMQvS3mO9Xr9Tk7MzMzMzCwP3K3LzMzMzMxywclJIul9kuZI6pA0rWj7ZEkrJM1KP+cX7dtd0uy0QuZ5krqbwaCs8aR9p6fnfEzSO4q2l21V0BLiO0PS80X1cljRvm7jq4RK1kEvMTyT3hezCnOZS9pY0g2Snki/xwxwDGut6tpTDMqcl+rsIUm7VTCmXL6PzMpJ0qmSQlJf6x/knqTvSvpn+qy4StLoase0LvLwXVFOkiZKulnSo+nc4aRqx1QukuolPSDpmmrHYpXh5GS1h4H3ALd1s+/JiNgl/Xy6aPtPgROAKemnnGshdBuPslU4jwF2TM/3k/SPW9KqoGV2TlG9XNtbfAMcB+m5q1EHPTkg1UshsTwNuDEipgA3pvsD6SLWfj/2FMOhrH4Pn0D2vq5UTJCz95FZOUmaSLZ+wLPVjqVMbgDeEBE7A48Dp1c5nn7L2XdFubQBp0TEDsCewGeHwGsqOAl4tNpBWOU4OUki4tGIeKzU8pLGAyMj4s7IBu5cAhxVgXiOBC6LiJaIeBqYS7ZaZ+eKnRGxCiis2FlpPcVXCXmpg+4cCVycbl9MGd8r3YmI24BXSozhSOCSyNwFjE7v70rE1JNqvo/Myukc4Mv0sNbAYBMR10dEW7p7F9k0ooNNnr8r1klEzI+I+9PtpWQn81tWN6r1J2kC8E7gF9WOxSrHyUlptk5Nircqmxcasn/6eUVl5lGZD4LuVubcspftA+nE1LR/YVE3pWrEUVDN5y4WwPWS7pN0Qtq2WUTMh+xLBBhXhbh6iqHa9Za395FZWUg6Ang+Ih6sdiwD5BPAX6odxDoY0p8vkiYDuwJ3VzeSsvgBWXLfUe1ArHJqaoV4SX8DNu9m19ci4uoeHjYfmBQRL0vaHfijpB3pxyqcZY6np+ftLtFcryt1vcVH1vXnrPQcZwHfI/uiWu96WQ/VfO5i+6Rp/sYBN0j6ZxVi6I9q1lse30dmJevjc/KrwMGVjWj9lfLdJOlrZF2JLq1kbGUyZD9fJG0E/B74QkQsqXY860PS4cDCiLhP0v7Vjscqp6aSk4h42zo8pgVoSbfvk/QksB3ZlZbi5ux+r5C5LvHQ+8qcZV2xs9T4JP0cKAxUG/CVQ3tRzefuFBEvpN8LJV1F1oVggaTxETE/dZlaWOm4eomhavUWEQsKt3P0PjIrWU+fk5J2ArYGHlQ2V8oE4H5Je0TEvysYYr/19dkv6VjgcOCgGJzrEQzJzxdla1X8Hrg0Iv5Q7XjKYB/giDRRyjBgpKT/i4gPVzkuG2Du1tUHSWMLA3ElbUM2aPip1C1mqaQ9lX3zfBToqbWjnGYAx0hqlrR1iuceKrBiZ7EuYxLeTTaAv7f4KqGiddAdSRtKGlG4TXbV9OEUx7Gp2LFU5r3SVU8xzAA+mmbt2hNYXOj+NdBy+j4yW28RMTsixkXE5IiYTHZCvFveE5O+SDoE+ApwREQsr3Y866jq3xXlls5Dfgk8GhHfr3Y85RARp0fEhPT/cwxwkxOT2lBTLSe9kfRu4IfAWODPkmZFxDuA/YAzJbUB7cCnI6IwqPc/yGYgGk7W77ZsfW97iici5ki6AniErEn9sxHRnh5zInAdq1fsnFOueLrxHUm7kDWFPwN8CqC3+AZaRLRVuA66sxlwVbpS2gD8JiL+Kule4ApJx5HN2vO+gQxCRau6SpoHfAP4Vg8xXAscRjbofDnw8QrGtH/e3kdm1qsfAc1kXVYB7uoyi2Xu5eS7otz2AT4CzJY0K237amEGRLPBxCvEm5mZmZlZLrhbl5mZmZmZ5YKTEzMzMzMzywUnJ2ZmZmZmlgtOTqymSApJr6vC8+6fBoHniqRJkpYVZqQzMzMzqyYnJzbgJJ0u6dou257oYdsxlY1uYFQrCeqviHg2IjYqmvHtFknHVzsuMzMzq01OTmydSFrWj+K3AfsUrRezOdAI7NZl2+tSWST9QtLUdPur6xDfZEkP911yjfIriqZg7Lr/DEmn9jeO9NhtgV8AW6zL4weLtE6KP1PMbC2SJkp6WtLG6f6YdH+rAXq+T0v6aLr9MUlbFO3r/H5Zz+c4Q9Lzks4sw7HeIumR/nxvmQ1VPpGwSriXLBnZJd3fD7gZeKzLticLq6sDrwHXSVoCnCXpLQCStkhJxMaFg0vaVdJLaXVcJH0C+Buwg6TrevrySwv8/a+kZ1OMK4C90r79Jc2TdIqkhcApwJuKHruJpD9JWiLpXklnS/p72ndbKvZgSuKmAcenfadIWihpvqQe1xNJLRhnS/pH6nb1p/SclxY95+Si8nunbYvT7727HOssSXdIWirpekmbpn2TUytPg6RvAm8BfpSe80clHvubku4gWyNlm55ek5nVroh4Dvgp2XpLpN8XRMS/Buj5zo+IS9Ldj1F0cSgijo+IR8r0VOdExNfX9yARcTvZelNmNc/JiZWNpK0k3SjpofR7Utp1AfAKcKWkp8gW+bsd+DtwrqQ5wLeBZklHp8ccTPaF8lNAwE3KFvFrIlsM873pOU8lWxTsSmBnSU8DPwZuBR5Nz/NbSd9VthAiZCvNkp5zO7IEaX+yRROLv2TGA6cDs4H7gHenq33bkq1kvk/adwbZiuvDJN1FtignAKnL1OWFKgJGAVsCxwE/ljSmlyo9hmxRrS2BbYE7gV8BG6fX9o1UBxsDfwbOAzYBvk+2cOcmRcf6IFm9j0t1uFYrUER8LdXXiSnuE0s89keAE4ARwICcaJjZkHAOsKekLwD7At/rWiBdMPmnpIvTd8mVkjZI+w6S9ICk2ZIulNSctn8rtTo8JOl/07YzJJ2avlOmAZdKmiVpeLqoMi2Vm56O97CkbxfFsSxdeHlQ0l2SNuvrxUnaSNKv0vEekvTeomN9W9J9kv4maY8Uw1OSjljvWjUbYpycWDn9CLgkInYGLiU7oS1YDMwCDgcOJDsJDrKuXDuRXXXfuKj8AmBxRHwl7VvG6itui4HpRWXfAPyG7MR9AXAiWTIE8D/A7gARUWj5+ICkrYFPAl+MiFfIWmpeZHXish1ZMrE18G5gAtACvJ4s2dqUrJXlZLJWlYvJWg3OLXqe7pwZEa1p1d5l6Xg9+VVEPBkRi4G/kLUs/S0i2oDfAbumcu8EnoiIX0dEW0T8Fvgn8K4ux3o8IlYAV7C6xaovpRz7ooiYk/a3lnhcM6sx6fPhS2RJyhciYlUPRV9P1qqyM7AE+IykYcBFwAciYieyi0n/kS6gvBvYMZU/u8tzXgnMBD4UEbukz0Aga4knu0h1INln4pskHZV2bwjcFRFvJOtu/MkSXuJ/kX1v7ZRiuanoWLdExO7A0hTj21Pc690lzGyocXJi5bQXWZIA8GuyK2MFf0z35wONEfEEWTIynKw1YXuyhKVgAvA7SYvJPthHkSUEkCUne6UvlkI3ogeB0cBI4FzgU8AOZElKA1lCUhhPMprsStoGwH2SXgUeAiYDY1OZnYFlEbE0IpYAM4DWFMPe6ZhXAD8ja2F5jqzl4He91E+kxKJgObBRL+UXFN1e0c39wmO3YO0Wi3+RtbgU/Lsfz1uslGM/V+KxzMwOJfseeEMvZZ6LiDvS7f8j++54PfB0RDyetl9M1h14CbAS+IWk95B9vpXqTWRJw4vps/nSdEyAVcA16fZ9ZN8PfXkbWcs9ABGxqOhYf023ZwO3pkRtdonHNaspTk5sIEXR7TlkCcYJQEfa1gq8mra9QPpSUTa+ZBJwGjCGrFVjMVlLRuHk/nrg/WRJxuy0L8hOlD9F9mX2aESMJkuMPhkRhdaCA4Dfk53g75jK7JzK93XSXpdibgPel67E7QBMLLlWyu8FoOu4mknA8+twrOhyv5Rjd32MmdlaJO1C1mKwJ/BFSeN7KNr1MyXIPuPXLpglFXuQfaYfxeokoKSQetnXGhGFONrJLkiVcrzuPg+Lj9VB1gpPRHSUeFyzmuLkxMrpH6zuFvUhsjElBavImtZPJvugJ+3vSNvuIRv3AVkLRJAlAQ1APVmLCGStB+PIWjKOJevaNDsiXiVLYG4lGyfyeQBJo4CXyJr/G9MxJpO12PwcOEfSuLS9QdI70u0HycaQDJc0gtXdmJYDT6d4z5C0gaQjgY+SNde/N5VbQuX+v64FtpP0wTSw/QPAVFZf9euPBaw5qL2cxzazGiVJZGMIvxARzwLfBf63h+KTJO2Vbk8n+674JzBZq6do/whwq6SNgFGpq+wX6L7L6lKy75Wu7gbeKmlTZTNHTif7DllX15N1KwayGcnW41hmNcvJia2rDZTNZlX4OZksIfi4pIfIvjhO6vKYW8kSi0Jy8nvgibRtW7IvisXAdWTdsX5P1oXorvSY01NT+JnAV8nGqixjdXenjwMfAJrJkokdyAauNwKPAPencmeTJT1fAeam4xea1wtjQJ4ga1mZleIo7nL2IbJuBIeTfen9BCiMxThZ0j1kfZSbJL0q6f2lVOi6ioiXUyynAC8DXwYOj4iX1uFw5wJHS1ok6bwyH9vMatcngWcj4oZ0/yfA9pLe2k3ZR4Fj03fJxsBPI2Il2Wf87yTNJruwdT5Z0nFNKnsr8MVujncRcH5hQHxhY0TMJ7uYdTPZBan7I+Lq9XiNZwNj0uD6B8la6c2sn7S6pdGs8iRtFBHL0uxP9wD7RMS/+3rcAMQxGbgmInrrB93b479NNg7jIxERyhaTnB4RRxaVWVZCtzEzs5q1vp/FlSTpDLKxiT21APX3eJMZJK/dbCC5r6NV2zWSRpNNb3tWNRKTpB0YJWlW0diUHknanizm2WSDKo8jmxZzVuq+8CrwiVR2W7LWlwXdH83MzAahZcAJkkau71onaazlT8i6IZvVNLecmK0DSW8i68q1BbCQbNaub4X/oczKQtKFZF0KF3Z3JTldBDiXbOG65cDHIuL+ruXMzGxwcXJiZma5I2k/sivTl/SQnBwGfI4sOXkz2RpDb65slGZmVm4eEG9mZrkTEbexejHV7hxJlrhERNwFjO5lalozMxskhsSYk0033TQmT55c7TDMzHLrvvvueykixvZdctDYkjUXAJ2Xts3vWlDSCWTrKbHhhhvuvv3221ckQDOzwaja3xdDIjmZPHkyM2fOrHYYZma5Jelf1Y6hzLpbQK/bfsoRcQFwAcC0adPC3xdmZj2r9veFu3WZmdlgNA+YWHR/AvBClWIxM7MycXJiZmaD0Qzgo8rsCSxOi+qZmdkgNiS6dZmZ2dAi6bfA/sCmkuYB3wAaASLifOBaspm65pJNJfzx6kRqZmblVJHkRNIzwFKyhe7aImKapI2By4HJwDPA+yNikeeuNzOziJjex/4APluhcMzMrEIq2a3rgIjYJSKmpfunATdGxBTgxnQf4FBgSvo5AfhpBWM0MzMzM7MqqeaYkyOBi9Pti4GjirZ77nqzIW7FqnYWLl3JytZ2vBismZmZQeXGnARwvaQAfpamddysMHgxIuZLGpfKljR3ffG89ZMmTRrg8M2sICJYvKKVUcMbyXph9t9j/17KO8+7nbaOLCkRUF8nhjfW84fP7M2UzUaUMWIzMzMbLCqVnOwTES+kBOQGSf/spWxJc9d3nbe+PGGaWbGOjuDA791CU30d131xP5asaGO/797M4hWt1AmGN9bz6+PfzG6TxnQ+pr0jeHT+Eu5++hV+dNMTtLR1UF8nmurr+J/37MTrxm3Eh395NxJstckGtHdE588rr63iXT/6O994145M38MXHczMzGpNRZKTiHgh/V4o6SpgD2CBpPGp1WQ8sDAV99z1ZjmwdGUrX7z8QZ55eTkA039+FwuWtLBkRSvjRw0jIli0vJUP/OxOvnbYDgxrrOdbf/0nS1e00Z66aTU31DG8sZ72CJasbOVTv74PgIY68ZeT3rJWC8nCJSt52/dv5fQ/zGbf123KxI03qOyLNjMzs6oa8ORE0oZAXUQsTbcPBs4km6P+WOBb6ffV6SEzgBMlXQa8Gc9db1ayF15dwfvO/wer2oPP7r8tb5w4ml0mjgbg6lkv8KUrH2TsRs3c/pUDqa8TLy9r4aHnF3Pmnx6hpa2dFavaaWnrYPImG/LEwqW0tgdfP3wqjfXiv//0CAC/+/ReTJu8MQCvLl/F5y+bxRlpX3NDHZts1MTX3rkDe2y9MeNHDe+Mra29g5sfe5HT//AQm48c1m3XrXEjh/H99+/C8ZfMZNHyVU5OzMzMakwlWk42A65KfdMbgN9ExF8l3QtcIek44Fngfam85663QeNfL7/GFqOH01i/5twS7/3JHSxraePqE/dlWGN9r8fY/7s388prq/jDZ/bmdeNG8Nwry3nvT//B8KZ6rvvCfgxrrO8cMN51jEdbewcHfu9Wlq9qo6Wtg6Ur24Bs/EZxwjCssZ7FK1ppqq/jhcUr+eQlM9li9DAuvftZiseiD2usY1hDPVuMHsYLi1ew+chhfGLfrQF4z24TaI9g5LDGzvKjN2jiVx97E4f+4DaaGur40+f27XEcSkN9HW+fuhlvn/r2XuujqSGry1VtHb2WMzMzs6FnwJOTiHgKeGM3218GDupmu+eut0HhxkcXcNzFMxk1vJF7v/a2zpPqBUtW8sj8paxobWfHb1zHmA0aef3mI7j3mUVsNqKZ2758AJJo7wjOuuYRnnl5OQLe9cM7+NCbJ/Hbe55l+ap2AtjpjOtoqq9jRWs7DXV1nHzwdkzfYxKjhjfS3hF86cqHePaV5TTWi+aGerYYNYzLP7UXE8YMZ8GSFv4+9yXO/NMclq5s5UvveD2ffuu2/Obuf/FfV89BwAfeNJH37DaB8aOGMW5kM80NPSdSGzZ3/3FRXyeuP/mtZatXJydmZma1yyvEm62DJxYs5aTLZrHFqGG8sHglX7x8Fv/vvTvx+L+XcvIVD1InOOvIHfnB357g1eWtLF3ZRnN9Hc8tWsFZ1zzKHluP4ZQrHuS1Ve0cv+/WHPeWrTn4nNv4xd+fZs9tNuZ779+F515Zzqf/7z46OoKxI5pZsaqdb/3ln3znr//ksJ3GEwF/nj2fL73j9Xz2gNetFePmo4Zx9O4TOHr3CWts/8hek9lr200YMayRzUYOq1SVlaw5JSct7U5OzMzMao2TE7M+vPmbf2PJyjZ+OH1XDtphHIedeztPvfQaI4Y1cuV/7M21s+dz9p8f5c+zs6FR9XXiyk/vxa6TxvCRvSZ3HqejIzjzmke48I6nufCOp2luqGPbsRvyn4dPBeCB/3o7D857lV0njqGuTmw5ejizvn7wGrEcft7tLFzawl8f/jdtHcFJB03pNjHpy+vG5Xeq3kLLSUurkxMzM7Na4+TEhoy3fudmXlzWQkcEdRJH7bolO4wfyTMvvcYVM59jVVsHre0dbNjcwBWf2ovtNx/BO8/7O6+1tPHlQ7ZnyzHDef1mIxjetLpr022Pv8iCpS3U14njL5lJQ51o6wjq68T5H96NLUYP5/i3bMNv73mWltYO/vPwqey+1RjGjmheK766OvGNd03ltsdfpE7w1y/sR0PRWJWG+jp232rjXl/jNZ9/CwCt7R386+XX2HbsRmWqvfwotJyscsuJmZlZzXFyYoPW0pWtbNDUQH2duPDvT/OvV5azYXM9GzRkU9f+adYL/ObuZ5Fgw6Z6NmpuoKFevLxsFYeeezvNDXW0pHENn/3N/Z3H3aCpnrEbNTPjxH356lWz2WbshvzpxH057NzbWbKylf86fCqHvmH8GknMjafsX1LMkrjp1NLK9qaxvi7XrR/rozDuxWNOzMzMao+TExuU7nn6FY654E7qJEYMa2DR8lYO2XFzfvTBXTtbI9o7gvlpxqniFopXl6/iHT+4jZWtHZx15Bt4y3ab8uryVp59ZTlznl/MhXc8w79eWc6uZ11PR8AVn9qLDZsbuPXLB1Tr5daUzm5dbe1VjsTMzMwqzcmJDQoLl6zkyRdfY+r4kTzz8mt84qJ7aWqoY8OmBl5d0cqo4Y2cO32XNZKQ+joxYcza62SM3qCJu7/6tjW2jR81nB3Gj+QdO27OF9++Hbc+/iKf/c39jBzWyB5b997Vysqrqd6zdZmZmdUqJye23uYuXMqxF95DBFz3xf0YUbQOxrp6eVkL9z6ziP/+0xyWrGjltVWrr6KL7Or6LV/an/Gjhve4Bsi6ksT+rx/HnP8+pCzHs/7xVMJmZma1y8mJrbOOjmD3s29g0fLWzm2Hnns7Xz5kexavaOWnN89l7Ihmrj5xXwDmLVrO84tW0NhQR1t78LWrZtMRwY8+uBvbjt2IBUtWMueFJfzxgee5bs6/CbJEZMPmek49eDt23GIUc15YzCV3/ovxo4Z1rj5erqTE8qHZyYmZmVnNcnJiJWtt7+DR+UvYfvORNDXUcf5tT7JoeStbjBrGH0/ch+deWc4Hf343n//tA52Pmb9kJefd+ATPvPwaf7j/+W6Pe+i5t69xv6FOHP+WrTnkDePZcYuRa6ywfsD24zjxwCkD8wItFxrq66gTnZMVmJmZWe1wcmJrae8IVrV1dM5G9fKyFq5/ZAE/uWUuz72yguGN9XzjXVP5/vWP886dx/Oj6bsiiXEjhvHA19/OrOdeZfImG1JfJ75+9cN8/4bHqRMcv+/WHLD9OFa1d9BQJzbZsJmGevHo/CV856//pKmhju8e/UZ2njC6s2uP1aamhjpPJWxmZlaDnJzYWnY/+wZeXd5KY70Q6jxJfOOEURy712R+fvtTnPaH2TQ11PE/795pjW5VGzQ1sPe2m3be/9lHpvHw84vZfNQwNt1o7bU/ALbbbARH7rLlwL4oG1SaG+rdrcvMzKwGOTmxtbS0djCssY4RzQ10BHz6rduy66TR7L7VGCTx/jdN5NAf3M6YDRoZNbzvwe9v2HJUBaK2oaSpoc5TCZuZmdUgJye2ls1GNrPzhNGcN33XbvePHNbIHacdWOGorJY01dd5zImZmVkNcsd+W0tLW9ZyYlYtzQ117tZlZmZWg3wGamtpaeuguaG+74JmA6TJyYmZmVlNcnJia2lpbe9ca8KsGpob3K3LzMysFvkM1NbS0tZBs7t1WRW55cTMzKw2+QzU1tDW3kFbR7hbl1VVc0O91zkxJB0i6TFJcyWd1s3+SZJulvSApIckHVaNOM3MrHycnNgaCieE7tZl1eSWE5NUD/wYOBSYCkyXNLVLsf8EroiIXYFjgJ9UNkozMys3n4HaGlpanZxY9WVTCXudkxq3BzA3Ip6KiFXAZcCRXcoEMDLdHgW8UMH4zMxsAPgM1NZQGITc3OhuXVY9bjkxYEvguaL789K2YmcAH5Y0D7gW+Fx3B5J0gqSZkma++OKLAxGrmZmViZMTW0PharVbTqyavM6JAepmW3S5Px24KCImAIcBv5a01odXRFwQEdMiYtrYsWMHIFQzMyuXip2BSqpPgxavSfe3lnS3pCckXS6pKW1vTvfnpv2TKxWjFbWceEC8VVGTpxK2rKVkYtH9Cazdbes44AqAiLgTGAZsWpHozMxsQFTy8vhJwKNF978NnBMRU4BFZF8ypN+LIuJ1wDmpnFWIx5xYHrhblwH3AlPShawmsgHvM7qUeRY4CEDSDmTJifttmZkNYhU5A5U0AXgn8It0X8CBwJWpyMXAUen2kek+af9BqbxVQGe3Lq9zYlXU3FBPi6cSrmkR0QacCFxHdmHrioiYI+lMSUekYqcAn5T0IPBb4GMR0bXrl5mZDSINFXqeHwBfBkak+5sAr6YvH1hzoGPnIMiIaJO0OJV/qfiAkk4ATgCYNGnSgAZfS9yty/Kg0HISEfjaRO2KiGvJBroXb/t60e1HgH0qHZeZmQ2cAb88LulwYGFE3Fe8uZuiUcK+1Rs8wHFAeEC85UHh/eeFGM3MzGpLJVpO9gGOSCv3DiObk/4HwGhJDan1pHigY2EQ5DxJDWRz179SgTiNojEn7tZlVdRUn5KTtg634pmZmdWQAT8DjYjTI2JCREwmG9B4U0R8CLgZODoVOxa4Ot2eke6T9t/kPsSV425dlgeF5NiD4s3MzGpLNS+PfwU4WdJcsjElv0zbfwlskrafDJxWpfhqkrt1WR4UWk48nbCZmVltqdSAeAAi4hbglnT7KWCPbsqsBN5XybhstdUtJ05OrHqaGtxyYmZmVot8BmprWD3mxN26rHoK3Qo9IN7MzKy2ODmxNbhbl+WBW07MzMxqk89AbQ0tbR3UCRrqvLaEVU8hOSkky2ZmZlYbe1HiuQAAIABJREFUnJzYGlrS1K1e+M6qyQPizczMapOTE1tDS2u71zixqvNUwmZmZrXJZ6G2hqzlxG8Lqy63nJiZmdUmn4XaGlq8IrflQLMHxJuZmdUkJye2hpa2drecWNV1TiXs5MTMzKym+CzU1tDS2uExJ1Z1nVMJe50TMzOzmuKzUFuDu3VZHnROJdzqqYTNzMxqiZMTW4O7dVkeuOXEzMysNvks1Nbg2bosDzwg3szMrDb5LNTW0NLqbl1WfQ11QvJUwmZmZrXGyYmtoaXNizBa9Umiqb7OLSdmZmY1xmehtgZ367K8aG6oc8uJmZlZjfFZqK3Bs3VZXjQ11HtAvJmZWY1xcmJraGn1bF2WD80NdbS0OjkxMzOrJT4LtTW0tHkRRsuHpoY6t5yYmZnVGJ+FWqe29g7aOsLduiwXmhvqWNXmRRjNzMxqiZMT61QYfOxuXZYHTR4Qb2ZmVnN8FmqdnJxYnngqYTMzs9rjs1Dr1JK60DQ3uluXVV9zo5OTWifpEEmPSZor6bQeyrxf0iOS5kj6TaVjNDOz8mroT2FJG0fEKwMVjFVXYWYkt5xYHjTV17F0ZVu1w7AqkVQP/Bh4OzAPuFfSjIh4pKjMFOB0YJ+IWCRpXHWiNTOzcunvWejdkn4n6TBJKuUBkoZJukfSg+nK1n+n7VtLulvSE5Iul9SUtjen+3PT/sn9jNHW0epuXW45sepr8lTCtW4PYG5EPBURq4DLgCO7lPkk8OOIWAQQEQsrHKOZmZVZf5OT7YALgI8AcyX9j6Tt+nhMC3BgRLwR2AU4RNKewLeBcyJiCrAIOC6VPw5YFBGvA85J5awCCt26hnkqYcsBL8JY87YEniu6Py9tK7YdsJ2kOyTdJemQ7g4k6QRJMyXNfPHFFwcoXDMzK4d+nYVG5oaImA4cDxwL3CPpVkl79fKYZeluY/oJ4EDgyrT9YuCodPvIdJ+0/6BSW2ls/bjlxPIkm0rYyUkN6+5zP7rcbwCmAPsD04FfSBq91oMiLoiIaRExbezYsWUP1MzMyqdfyYmkTSSdJGkmcCrwOWBT4BSgx4GIkuolzQIWAjcATwKvRkShQ3nxFbHOq2Vp/2Jgk26O6SthZdY55sQtJ5YD2VTCXuekhs0DJhbdnwC80E2ZqyOiNSKeBh4jS1bMzGyQ6u9Z6J3ASOCoiHhnRPwhItoiYiZwfk8Pioj2iNiF7MtlD2CH7oql36VcLfOVsAHQOVuXB8RbDjTVe52TGncvMCWNT2wCjgFmdCnzR+AAAEmbknXzeqqiUZqZWVn19yz0PyPirIiYV9gg6X0AEdHn2JCIeBW4BdgTGC2pMFtY8RWxzqtlaf8owDOEVYC7dVmeeCrh2pZazk8ErgMeBa6IiDmSzpR0RCp2HfCypEeAm4EvRcTL1YnYzMzKob/JSXfzzJ/e2wMkjS30AZY0HHgb2RfNzcDRqdixwNXp9ox0n7T/pohYq+XEys8tJ5YnzfV1rGrvwP/+tSsiro2I7SJi24j4Ztr29YiYkW5HRJwcEVMjYqeIuKy6EZuZ2foqaZ0TSYcChwFbSjqvaNdIoK+FCMYDF6c56+vIrn5dk650XSbpbOAB4Jep/C+BX0uaS9ZickzJr8bWi8ecWJ40NdQRAa3tQVOD58QwMzOrBaUuwvgCMBM4ArivaPtS4Iu9PTAiHgJ27Wb7U2TjT7puXwm8r8S4rIzcrcvypCm14K1q7+i8bWZmZkNbSclJRDwIPCjp0qIZtmyIcbcuy5NCkryqrQOaqxyMmZmZVUSp3bquiIj3Aw9IKu4ALrJuvzsPSHRWUZ3dupycWA4UWks8nbCZmVntKLVb10np9+EDFYhVX0tbB/V1oqHeyYlVX1N6H3rGLjMzs9pR0lloRMxPN18CnouIf5F1tHgjay+KZYNUS1u7W00sNwoTMzg5MTMzqx39PRO9DRgmaUvgRuDjwEXlDsqqo6Wtw8mJ5Uah5cQLMZqZmdWO/p6JKiKWA+8BfhgR7wamlj8sq4aW1g7P1GW5sXrMiZMTMzOzWtHv5ETSXsCHgD+nbaWOW7Gca2lr9xonlhudUwk7OTEzM6sZ/T0TPYlsRfirImKOpG3IVnq3IcDduixPOqcSbndyYmZmViv61eoREbeRjTsp3H8K+Hy5g7LqyJITd+uyfCgkyi2tnkrYzMysVvQrOZG0HXAqMLn4sRFxYHnDsmrwbF2WJ8UrxJuZmVlt6O94kd8B5wO/AHw5c4hpae3wmBPLjUKi/P3rH+fwnbeocjRmZmZWCf1NTtoi4qcDEolVXUtbByOHN1Y7DDNgdcvJCfttU+VIzMzMrFL6e5n8T5I+I2m8pI0LPwMSmVWcu3VZnnidEzMzs9rT35aTY9PvLxVtC8CXNocAz9ZledLcmGbrcnJiZmZWM/o7W9fWAxWIVZ8XYbQ8KbSceEC8mZlZ7ejXZXJJG0j6T0kXpPtTJB0+MKFZpXkRRsuTxnoBnkrYzMyslvT3TPRXwCpg73R/HnB2WSOyqnG3LssTSTQ11NHilhMzM7Oa0d8z0W0j4jtAK0BErABU9qisKpavaufPD82vdhhmnZob6jzmxMzMrIb0NzlZJWk42SB4JG0LtJQ9Kqu4tnR1evoek6ocidlqTk7MzMxqS39n6zoD+CswUdKlwD7Ax8sdlFVeYbpWjzmxPGmqr/NUwmZmZjWkv7N1XS/pPmBPsu5cJ0XESwMSmVVUZ3Li2bosR5ob691yYmZmVkP6O1vXjRHxckT8OSKuiYiXJN04UMFZ5bS0ZTMieUC85UlTvbt1mZmZ1ZKSzkQlDUsrwW8qaUzR6vCTgS36eOxESTdLelTSHEknpe0bS7pB0hPp95i0XZLOkzRX0kOSdlu/l2ilaGl1ty7Ln6aGus7E2czMzIa+Us9EPwXcB2yffhd+rgZ+3Mdj24BTImIHsu5gn5U0FTgNuDEipgA3pvsAhwJT0s8JwE9LfjW2ztyty/KoqaHOizCamZnVkJKSk4g4N60Of2pEbBMRW6efN0bEj/p47PyIuD/dXgo8CmwJHAlcnIpdDByVbh8JXBKZu4DRksb3/6VZf7hbl+WRZ+uqbZIOkfRYakk/rZdyR0sKSdMqGZ+ZmZVffwfE/1DS3sDk4sdGxCWlPD51A9sVuBvYLCLmp8fPlzQuFdsSeK7oYfPStjUW4JB0AlnLCpMmefrb9eWWE8ujpoY6Xmtpq3YYVgWS6sla5t9O9j1wr6QZEfFIl3IjgM+Tfa+Ymdkg198B8b8G/hfYF3hT+inpSpWkjYDfA1+IiCW9Fe1mW6y1IeKCiJgWEdPGjh1bSgjWC485sTzyVMI1bQ9gbkQ8FRGrgMvIWta7Ogv4DrCyksGZmdnA6O86J9OAqRGxVrLQG0mNZInJpRHxh7R5gaTxqdVkPLAwbZ8HTCx6+ATghX7Gaf20stXduix/PJVwTeuuFf3NxQUk7QpMjIhrJJ3a04Hc0m5mNnj090z0YWDz/jxAkoBfAo9GxPeLds0Ajk23jyUbXF/Y/tE0a9eewOJC9y8bOO7WZXnklpOa1msruqQ64BzglL4O5JZ2M7PBo78tJ5sCj0i6B2gpbIyII3p5zD7AR4DZkmalbV8FvgVcIek44FngfWnftcBhwFxgOV6BviI8IN7yKJtK2MlJjeqrFX0E8AbgluwaGJsDMyQdEREzKxalmZmVVX+TkzP6+wQR8Xe6vwIGcFA35QP4bH+fx9ZPZ8uJx5xYjmSzdXmdkxp1LzBF0tbA88AxwAcLOyNiMdkFMwAk3UI2o6QTEzOzQay/s3XdOlCBWHW1dI45cbcuy49mr3NSsyKiTdKJwHVAPXBhRMyRdCYwMyJmVDdCMzMbCCUlJ5KW0s2MWWQtIhERI8salVXc6jEnbjmx/GhK65xEBKnrjtWQiLiWrKtv8bav91B2/0rEZGZmA6uk5CQiRgx0IFZdTk4sj5rq6+gIaOsIGuudnJiZmQ11PhM1IBsQ31AnGur9lrD8KIyB8nTCZmZmtcFnogZkizC61cTypqneyYmZmVkt8dmoAVm3ruZGD4a3fGlKEzR4OmEzM7Pa4OTEgKxbl1tOLG+aGtxyYmZmVkt8NmpAajlxcmI5U3hPrmr3WidmZma1wGejBhTGnLhbl+VLoeXE3brMzMxqg5MTA1K3Lq8Obznj5MTMzKy2+GzUAHfrsnxq9pgTMzOzmuKzUQMKyYm7dVm+ODkxMzOrLU5ODPBsXZZPTfWeStjMzKyW+GzUgDQg3mNOLGc8lbCZmVlt8dmoAe7WZfnkqYTNzMxqi5MTA9yty/LJLSdmZma1xWejBni2LssnTyVsZmZWW3w2akBhzIm7dVm+eLYuMzOz2uLkxIgId+uyXHLLiZmZWW3x2ajR1hF0BE5OLHea6p2cmJmZ1RKfjVrniZ9n67K8kURTfZ27dZmZmdUIJydGS2s2TavXObE8am5wcmJmZlYrKnI2KulCSQslPVy0bWNJN0h6Iv0ek7ZL0nmS5kp6SNJulYixlq1uOXFyYvnT1FDndU7MzMxqRKXORi8CDumy7TTgxoiYAtyY7gMcCkxJPycAP61QjDXL3bosz5oa6mhpdcuJmZlZLahIchIRtwGvdNl8JHBxun0xcFTR9ksicxcwWtL4SsRZq1raUrcut5xYDjU31LGq3cmJmZlZLajm2ehmETEfIP0el7ZvCTxXVG5e2rYGSSdImilp5osvvjjgwQ5lhavSHnNiedTkMSdmZmY1I49no+pmW6y1IeKCiJgWEdPGjh1bgbCGLnfrsjxraqjzVMJmZmY1oprJyYJCd630e2HaPg+YWFRuAvBChWOrKe7WZXnmqYRrl6RDJD2WJkg5rZv9J0t6JE2ecqOkraoRp5mZlU81z0ZnAMem28cCVxdt/2iatWtPYHGh+5cNjM5uXW45sRxqbqh3clKDJNUDPyabJGUqMF3S1C7FHgCmRcTOwJXAdyobpZmZlVulphL+LXAn8HpJ8yQdB3wLeLukJ4C3p/sA1wJPAXOBnwOfqUSMtayzW5fHnFgONTXU0eIB8bVoD2BuRDwVEauAy8gmTOkUETdHxPJ09y6ylnYzMxvEGirxJBExvYddB3VTNoDPDmxEVszduizPsqmEvc5JDepucpQ391L+OOAv3e2QdALZ1PRMmjSpXPGZmdkA8NmoeUC85ZqnEq5ZJU2OAiDpw8A04Lvd7fcEKmZmg0dFWk4s3wpXpd1yYnnkqYRrVkmTo0h6G/A14K0R0VKh2MzMbID4bNQ85sRyrdlTCdeqe4EpkraW1AQcQzZhSidJuwI/A46IiIXdHMPMzAYZn41a54lfU73fDpY/nkq4NkVEG3AicB3wKHBFRMyRdKakI1Kx7wIbAb+TNEvSjB4OZ2Zmg4S7dRktbe001IkGJyeWQ82Nnkq4VkXEtWQzOBZv+3rR7bdVPCgzMxtQPhs1VrZ2eLyJ5VZTvQfEm5mZ1QqfkRotbe00N3qmLsunpoY62juCNicoZmZmQ56TE6PFLSeWY4X3pltPzMzMhj6fkRotbU5OLL+aCsmJx52YmZkNeT4jtaxblxdgtJwqJCeeTtjMzGzoc3JiWcuJ1zixnCpMce2WEzMzs6HPZ6TmMSeWa4XJGtxyYmZmNvT5jNTcrctyzS0nZmZmtcPJidHS1sEwd+uynGruHHPSXuVIzMzMbKD5jNTSbF1uObF8avZsXWZmZjXDyYmlbl1+K1g+NXmdEzMzs5rhM1LLBsS7W5flVOdUwq1OTszMzIY6n5Gau3VZrrnlxMzMrHY4OTF367JcKyTOHnNiZmY29PmMtMZFRGo58VvB8qnJA+LNzMxqhs9Ia1xrexCxeqE7s7wprHPiqYTNzMyGPicnNa5wwueWE8urwmQNXiHezMxs6PMZaY0rnPA5ObG86lwh3gPizczMhrzcnpFKOkTSY5LmSjqt2vEMVauTE3frsnzq7NblqYTNzMyGvFwmJ5LqgR8DhwJTgemSplY3qqGppTV16/I6J5ZTdXWisV5uOTEzM6sBDdUOoAd7AHMj4ikASZcBRwKPdFd4WUsbh557ewXDGzoKY04KV6fN8qi5oZ7L732OWx57sdqhDEp7TB5T7RDMzMxKktfkZEvguaL784A3FxeQdAJwAsD4iZOZMGZ45aIbYt6wxSimTd642mGY9ejTb92GB+ctrnYYg9amGzVXOwQzM7OS5DU5UTfbYo07ERcAFwBMmzYtfv7RaZWIy8yq4MQDp1Q7hEHv89UOwMzMrAR57cszD5hYdH8C8EKVYjEzMzMzswrIa3JyLzBF0taSmoBjgBlVjsnMzMzMzAZQLrt1RUSbpBOB64B64MKImFPlsMzMzMzMbADlteWEiLg2IraLiG0j4pvVjsfMzCqrr/WuJDVLujztv1vS5MpHaWZm5ZTb5MTMzGpXietdHQcsiojXAecA365slGZmVm5OTszMLI8617uKiFVAYb2rYkcCF6fbVwIHSeputkczMxskcjnmpL/uu+++ZZIeq3YcJdgUeKnaQfTBMZaHYyyfwRDnYIjx9dUOoJ/6XO+quEwaq7gY2IQuf4vidbGAFkkPD0jEg8tgeM9Wgush43rIuB4yVf2+GBLJCfBYROR+oRNJM/Mep2MsD8dYPoMhzsESY7Vj6Kc+17sqscwa62INhr9VJbgeMq6HjOsh43rIVPv7wt26zMwsj0pZ76qzjKQGYBTwSkWiMzOzAeHkxMzM8qiU9a5mAMem20cDN0XEWi0nZmY2eAyVbl0XVDuAEg2GOB1jeTjG8hkMcTrGMutpvStJZwIzI2IG8Evg15LmkrWYHFPCoQdVPQwg10PG9ZBxPWRcD5mq1oN8kcnMzMzMzPLA3brMzMzMzCwXnJyYmZmZmVku5C45kXShpIV9zUMv6U2S2iUdXbTtWElPpJ9ji7bvLmm2pLmSzlvfRbrWNUZJu0i6U9IcSQ9J+kBR2YskPS1pVvrZZX1iXJ8407b2olhmFG3fWtLdqY4vTwNVKx6jpAOK4pslaaWko9K+stZlXzFK2l/S4qLn+3rRvkMkPZbee6cVba9oPfYUo6SJkm6W9Gh6X55U9JgzJD1f9JjDqhFj2vdM+h+eVTzFoaSNJd2Q6vEGSWPWJ8b1iVPS67u8J5dI+kLaV9G6LIpzVvq73lq0vSLvyWrr6XUW7W9Or3Nuet2TKx/lwCuhHk6W9Iiy76QbJW1VjTgHWl/1UFTuaEkhaUhOJ1tKPUh6f3pPzJH0m0rHWAkl/F9MSt+ND6T/jfX6zM6jEr7rpOyceW6qg90qFlxE5OoH2A/YDXi4lzL1wE3AtcDRadvGwFPp95h0e0zadw+wF9mc+H8BDq1SjNsBU9LtLYD5wOh0/6JCuWrXZdq+rIfyVwDHpNvnA/9RrRiL9m9MNhh2g4Goy75iBPYHrukh7ieBbYAm4EFgajXqsZcYxwO7pdsjgMeLYjwDOLXa9Zj2PQNs2s327wCnpdunAd+uZpxd/vb/BraqUl2OBh4BJqX74yr9nqzmT2+vs6jMZ4Dz0+1jgMurHXeV6uGAos/O/6jVekjlRgC3AXcB06odd5XeD1OAB1h9/jSu2nFXqR4uKHwGAlOBZ6od9wDUQ1/fI4eRnTML2BO4u1Kx5a7lJCJuo+956j8H/B5YWLTtHcANEfFKRCwCbgAOkTQeGBkRd0ZW25cAR1Ujxoh4PCKeSLdfSPvGrk8sAxFnTyQJOBC4Mm26mCrVZRdHA3+JiOXrE0tPSoyxO3sAcyPiqYhYBVwGHFnFeuzucfMj4v50eynwKNmq22W3HvXYmyPJ6g/KUI9QtjgPAp6MiH+tbzzdKSHGDwJ/iIhnU/nC/07F3pNV1u3r7FKm+L1zJXBQqoehpM96iIibiz477yJbT2aoKeX9AHAW2QWPlZUMroJKqYdPAj9O51HFnx1DSSn1EMDIdHsUa6+xNOiV8D1yJHBJZO4CRqdz6gGXu+SkL5K2BN5NdmWv2JbAc0X356VtW6bbXbdXI8biMnuQZexPFm3+Zmo6O0dS80DGmGLoLc5hkmZKukupuxSwCfBqRLSl+7moS7Krnr/tsq2idQnsJelBSX+RtGPa1tN7suL12EuMnVK3ll2Bu4s2n5jq8cJydJlajxgDuF7SfZJOKNq+WUTMhyzRAsZVIMbe4izo7j1ZybrcDhgj6ZZUZx9N2/P2nhwoPb3Obsuk172YrB6GklLqodhxZFdKh5o+60HSrsDEiLimkoFVWCnvh+2A7STdkb7/D6lYdJVTSj2cAXxY0jyyXhufq0xoudLfz4+yGXTJCfAD4CsR0d5le3dXvKKX7QOppxgBSJnnr4GPR0RH2nw6sD3wJrJuSl8Z4Bj7inNSREwjuwL7A0nbkt+63IlsLYSCStfl/WTdd94I/BD4YyG8bspW6z3ZU4wASNqIrHXqCxGxJG3+KbAtsAtZF8TvVTHGfSJiN+BQ4LOS9hvgWHrTV102AUcAvyvaXOm6bAB2B95J1qr8X5K2I1/vyYFUyusZaq+5OyW/RkkfBqYB3x3QiKqj13qQVAecA5xSsYiqo5T3QwNZ1679genALySNHuC4Kq2UepgOXBQRE8i6N/06vU9qSdU+IwdjRU8DLpP0DFl3np+kK/vzgIlF5SaQNcPNY81m6sL2asSIpJHAn4H/TM1kQGf3moiIFuBXZM2OA63HOFO3MyLiKeAWsivqL5E16xUW76xqXSbvB66KiNbChkrXZUQsiYhl6fa1QKOkTen5PVnxeuwlRiQ1kiUml0bEH4oesyAi2lMC/XOqV4/F78eFwFVFsSwoNDOn3wPeBaG3OJNDgfsjYkHRYypal2Tvvb9GxGsR8RJZP/o3kqP35ADr6XV2Wya97lGUv9thtZVSD0h6G/A14Ij0uTnU9FUPI4A3ALek75o9gRlDcFB8qf8XV0dEa0Q8DTxGlqwMJaXUw3Fk4/CIiDuBYcCm1JaSPj8GwqBLTiJi64iYHBGTyfoJfyYi/kh25fxgSWNSl4mDgetSV4+lkvZM/Yk/ClxdjRjTFdWryPrwFV9VpegES2R9vXudvWqA4xxT6AqVTrr2AR5JY3ZuJksSAI6lSnVZVGQ6XbrPVLouJW1e6KueuuvVAS8D9wJTlM2C1ETW1WdGNeqxpxjTtl8Cj0bE97s8prhv6bupUj1K2lDSiLR9Q7L/7UIsM8jqDypQj73FWVSkx/dkMuB1SVYPb5HUIGkD4M1k44ly854cYN2+zi5lit87RwM3pXoYSvqsh9Sd6WdkiclQHF8AfdRDRCyOiE2LvmvuIquPmd0fbtAq5f/ij2STJBS+/7cjm2BoKCmlHp4lGzuIpB3IkpMXKxpl9c0APqrMnsDiQjfqARc5mDGg+IfsS30+0EqWtR0HfBr4dDdlL2LNGaY+AcxNPx8v2j6N7GTgSeBHgKoRI/Dh9JhZRT+7pH03AbNTnP8HbFStugT2TrE8mH4fV1RuG7LZz+aSdVtpruLfezLwPFDXpVxZ67KvGIETgTmpvu4C9i567GFkM2A9CXytWvXYU4zAvmTNtA8VvScPS/t+nerxIbIPqfFVinGbtO3BtL+4HjcBbgSeSL83Huj/mz7+3huQJSqjuhyzonWZynyJbMauh8m661X0PVntn+5eJ3Am2UknZCcbv0uv9x5gm2rHXKV6+BuwoOj/f0a1Y65GPXQpewtDcLauEt8PAr6fPjtmk2bwG2o/JdTDVOCO9Dk/Czi42jEPQB309V0n4MepjmZX8n9CKQAzMzMzM7OqGnTduszMzMzMbGhycmJmZmZmZrng5MTMzMzMzHLByYmZmZmZmeWCkxMzMzMzM8sFJyc2qEg6R9IXiu5fJ+kXRfe/J+nkMj/nsnIeLx1zF0mHFd0/Q9KpJTyuXdIsSVsUbdtVUkh6Rzfl3532bV+0bdt0jLK/LjMzM7P14eTEBpt/kK3DgqQ6shVbdyzavzfZ3OR5twvZPOv9tSIidom0YnoyHfh7+t1VYd8xhQ0R8WRE7LIOz21mZmY2oJyc2GBzByk5IUtKHgaWFq1qvwPwgKSNJN0o6X5JsyUdCSDp25I+UzhYarE4Jd3+kqR7JT0k6b+7e/LuykiaLOlRST+XNEfS9ZKGp31vSmXvlPRdSQ+nFWnPBD6QWjA+kA4/VdItkp6S9PlSKiOtVH408DHgYEnDivZtBOxDtrDSMd0ewMzMzCxHnJzYoJJaDNokTSJLUu4E7gb2AqYBD0XEKmAl8O6I2A04APheOpG/DPhA0SHfD/xO0sHAFGAPslaN3SXtV/zcfZSZAvw4InYEXgXem7b/imy11b2A9vQaVgFfBy5PrSCXp7LbA+9Ix/+GpMYSqmQf4OmIeJJsVePi1pijgL9GxOPAK5J2K+F4ZmZmZlXj5MQGo0LrSSE5ubPo/j9SGQH/I+kh4G/AlsBmEfEAME7SFpLeCCyKiGeBg9PPA8D9ZInClC7P21uZpyNiVrp9HzBZ0mhgREQUYvpNH6/rzxHREhEvAQuBzUqoi+lkCRfp9/QS95mZmZnlTkO1AzBbB4VxJzuRdet6DjgFWAJcmMp8CBgL7B4RrZKeAQpdnq4k6wq1OatP3gX8v4j4WS/P220ZSZOBlqJN7cDwVL4/uh6j1/9PSfVkLTRHSPpaer5NJI0AmoADgTdICqAeCElfjojoZ1xmZmZmFeGWExuM7gAOB16JiPaIeAUYTda1685UZhSwMCUmBwBbFT3+MrIxGEeTJSoA1wGfSOM0kLSlpHFdnreUMp0iYhHZeJg906bicR9LgRH9edHdeBvwYERMjIjJEbEV8Huy7lxHA5dExFZp30TgaWDf9XxOMzMzswHj5MQGo9lks3Td1WXb4tQlCuBSYJqkmWStKP8sFIyIOWSJwfMRMT9tu56s29WdkmaTJS1rJA+llOnGccAFku4ka9lYnLbfTDYAvnhAfH9NB67qsu33wAf72GdmZmaWS3IPD7NNaXtrAAAAgklEQVSBI2mjiFiWbp8GjI+Ik9bjeMsiYqMyxVa2Y5mZmZmVg1tOzAbWO1PryMPAW4Cz1/N4S7ouwthfhUUYgQXrGYuZmZlZWbnlxMzMzMzMcsEtJ2ZmZmZmlgtOTszMzMzMLBecnJiZmZmZWS44OTEzMzMzs1xwcmJmZmZmZrnw/wH4xBeFiBxAWAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG5CAYAAACUWkuzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9e3xeV3nn+12yLOm1LEuWL1Js2RaOHF/i3IzTkAslgKGZkFCgYbgMPaUMpZdDaTvTc6CdTqHTy4E5nWk7B1pKKaUt5V7oIZRyCTQlJpDGcRziOHEsu7ItC8mWbCmy/EqyrTV/PM+jtfbW++piKbZir9/no4/evffaa6+99tprP7/13Jz3noSEhISEhISEhISEhEuNikvdgISEhISEhISEhISEBEjkJCEhISEhISEhISFhniCRk4SEhISEhISEhISEeYFEThISEhISEhISEhIS5gUSOUlISEhISEhISEhImBdI5CQhISEhISEhISEhYV4gkZOEhDmAc+43nXMfv9TtSEhISEi4+EjfgISEuUMiJwmTwjm3wTk37Jz7VLTv7c658865086555xze5xz9+ixO51znZPU1+GcK+q5Pc65v3LOLdZj1zrnvumcO+Wc63fOPeacuzuqd0zPO+2c63TOfd45d/Pz3QfTgff+D7z37wRwzrU657xzrvJStyshISFhPiF9AxISEqZCIicJU+EjwKMl9n/fe78YaAD+Evi8c65xmnXeq+duA24Gfkv33w98C2gCVgLvAZ6LzuvS8+qAlwDPAA855145s1ua30gftISEhMsc6RswCdI3IOFKRyInCWXhnHsz0A98u1wZ7/0Y8AmgAKyfSf3e+2PAPwFbnXPLgRcBf+G9H9W/73nvd5Y4z3vvO733vw18HPhQmfbb6tXPOueO6mrcLzjnbnbO/VBX5j4cla9wzv2Wc+6wc+64c+5vnHP1ubp+xjl3xDnX65z7L9G5H4i0S9/V//26wnfrNOv+j865I8B3ZtKPCQkJCS9EpG9A+gYkJJRCIicJJeGcWwL8N+A/T1GuEngncBo4MMNrrAHuBh4H+oB24FPOudc555qmWc2XgG3OudpJytwCbADeBPwx8F+AHcC1wL93zr1My71d/16OEK3FwIdzdd0BbAReCfy2c25ziev9uP5v8N4v9t5/f5p1vwzYDPzEJPeSkJCQcFkgfQPSNyAhoRQSOUkoh98F/tJ7f7TM8Zc45/qBbuAtwOu99wPTrPsf9NydwL8Af+C998ik3QH8D+BHzrnvOuc2TFFXF+AQ87Ky9+K9H/befxMYAj7jvT+uq3YPATdpuf8A/E/v/SHv/WngN4A351Tsv+O9L3rvnwCeAG6Y5j1Pp+4PeO+HvPfFadaZkJCQ8EJE+gakb0BCQlkku8aECXDO3YisKt00SbEfeO/vuMBLvM57/0B+p/e+E3i3tmEN8DHgb4BbJ6lrNeAR87Ny6Il+F0tsL9bfq4DD0bHDyDsSr+B1R7/PROdOhenUXY4IJiQkJFxOSN+A9A1ISCiLpDlJKIU7gVbgiHOuG/h14Kecc7svVgNUY/MRYOsURV8P7PbeD83BZbuAddH2WuAc2Q/ZdOAvsO5S5yUkJCRccUjfgISEKxeJnCSUwseAq4Eb9e+jwD/yPNrBOueWOud+xznXpo6Dy4F3AD8oUdY551Y7596P+Lv85hw14zPArznnXuQktOUfAJ/z3p+bYT0ngDGyAQLmqu6EhISEyw7pG5CQkGBIZl0JE+C9P4OoqwFwzp0Ghr33J57Hy44i2poHgOWIg/0/A78clVmlbXHAAPAwcKf3fsLH6wLxCUT1/l2gBvhG7vrTgvf+jHPu94HvOecWAnfNVd0JCQkJlynSNyAhIQEAJz5oCQkJCQkJCQkJCQkJlxbJrCshISEhISEhISEhYV4gkZOEhISEhISEhISEhHmBRE4SEhISEhISEhISEuYFEjlJSEhISEhISEhISJgXuCyidTnnfGJZE1GJBFG/krEQOPs81u944QSmXwCcv9SNuAQYg17v/YrZ1HHXXXf53t7esscfe+yxb3jv75rNNRIuDpxb5CdPJp6QkHDl4kez+l60OefPTFHmR5C+F1PgsiAnFUBhDusam6O65gMWlti3iChO8DRR7pw6YHCGdZXq4wupJ4/1wCEmttUG+UyJynwbC/VI7MzpYCuwd5bXqwZGZlnHfMBQNivzBaG39wS7dj1S9rhzC5fP9hoJFwsNwM9f6kYkJCTMS3xgVt+LM0w9u3xAQmUnTIKkcMhhPgmjF4IKsiloS2GmxGSycwYpTYAmQ6k+noqYTOcag8j9l2vrdImJLZk8n2PB7mfjNMo26f8Bshm9JkMpYnJrmbLlxsvlQEzmFucm+aPeOfcx59y9l659CQkJCQmXErZYPtlfwtRI5GQeo77Evgr9qwNaov0LEY1BHTAc7d9SotyFINZx5gdNuTrryuxfNMl14rrbot9nCYL51jLnnicQisZJrtE0yTGQ1L4weTtnAmtLNZKBCwJR2l+i/EL9q9BzeqJjhya5zlSk9Ptl9tsy0YWOjSsDY8ibVe6PAe/9u7z391+yJiYkJCQkXFIkcjI3SORkHmOAiQL+GCJErgI6dd86RNitBaoIwuw6YB9BK7EKWEOWrBgBqiYQkBVMFO5jQT2vUTBNRf4cu67dg10rr8Foi47Fdcfp6BcCR7Xte3P7DSdL/K5mInqYfODbsVgDU537vwghfqXOzddtbRkBuqe49nqkHxcifbEE6Z88cchrUBqBrqhtLUxE3Bel2vB8+ua88OGZQnOSkJCQkJCQMAe4YsjJC/VGB8kSgxsQIbeDsFI+jAj3KwhmQm0EYbNG//cjK++dBOF1GLgFEYL7ESF3CCExJmi3EFbXjYDU67ViQmJC+CqywrORHmuHtcsISTtZwdiE6Ni/4qz+GeFZEe0vh4UE06S8tmSM7JhYmDsWb6/Xeur0/zqEuBzLteXW6NxY62No0uN2bSNtdQjRWYE8nxpgQ9SuE4T7bAO2E/rSnuMQMk4atW1GXO26qxDiathUon1z8Y5cvtqXRE4SEhISEiZH0pzMDV6oMvuMMR3/gfnaGWcIguwT+n8E0ZRsRITaGmRVficiwLYTiMMyPT/WwowgwvQIIvyuQgTgBj1vEHgZ2X6rIJiM1SImSVYeRAi26xwlkI9DiNDan7uvmHzEWooaSpu0xeecKHM8Rkxcekocj+/NyjbmttcT+uc8QpyGkT5fjZCDE9E5i5A+PRTVZ+RjGOmjLYRYQVuQvu4DRvU6JwnP2c43wtaudQ/pvjH9vxp5zoNaZyNCOm8AmhGtSkzQ9un/2Odltj42z3dktEsLzxRmXQkJCQkJVzgSOZkbXBbRuuYKz5cDdCNZk6MLgWkMFhJ8K/oRYbgbWWk/i2g8ziLE4ySyyt+BCKxPah1bgIMIITDtyBNa9yFE8G5GzKdWAK16vS6tfw1B+O4g9NsKPWc/QRA+G/1NF9ONSPV8IP+c7D5jh30jOifI+nns0v+NCMFahGicziLPyO5rX3SO/V6o1zDTrBUIYdmLPMtO5LntQwhFnbZ1GNF6rQF263nDes0+hMzcipCoLv1v93iG0j4vM0Ec0ezyJSYg5ORKDMSckJCQkDBdzGX02CsZiZxcBMyWmDQRBOKzBJOhBQRfk7OIIL0FEVxtFb9bt08ghGOF/q5CyMoaRICt1/qGERGsUc+1627U+hoQUjSErPKbMA1ZX5BSmorLEaViDp5E+m8YIY1Hkf6CLPHaoscGEQJoz7MCITc3EEhINUJMKoBHkGdeQyCdTyLP7WXAN/SYkYZDyPNoQkhOPJ7ysPExXbzQo9tNH+YQn5CQkJCQUBqORE7mAvPVkmlOcdpf+jR5selTOZSz188Lku2I0LoREUgrkFXyGxDB9Twi8B4GbkYIxaDuP4EIwiAmS6ZlWQ3chqymLyAQqvUIGdmr7diNkJYzZIlJQhYn9c8CEpjviznR34H048sQsmlalhVIv65GCMeXEWJjQQrGEFK4Uc87qOeuB7YBBxBtziIts5Hgt9SAkNDJiGOemJQKKFBq35WBi+dz4pzb7Jz7qHPui865X5zzCyQkJCQkJMxTXBGak8XOXeomjAv7kwmGMzGLGUNW3WujfQuBexCycpSg/egA7gUeQvwSDiIkaZm25wwicD6ECM0LEfJzHjEZOo8IzG16vZ0zaGdCQEw+9yN9/C1EowVCVP4FuAl5bpsQwnFG/9Yhmq4mgpnZaoSYdCMakrqovsMI0TTn+n2UHmNmCmZ1xkksF+j/2HzrytGWxJi95sQ59wnkFT3uvd8a7b8L+BOkuz/uvf+g9/5p4BeccxXAX8zqwgkJCQkJFwVXulmXc64W+FPEjfZB7/3fXUg9V4TmZL4in0cjH5p2I+W1KcPIanwTIRRvq5YfAH6CIHDejYwSIx03IkLqKCLwnkfI0xZklb4WEWxrEMLyBCIUP45oZhIuDGcRgrAK0VB0AS9B+tvCG9+EPNc1iObkAPAcQlJqEC3WIEJuqsgGKahBCE0FQkia9Nw6Pa8c+TV/FxCSGgdOsGAMpYIHXFmYk2hdnwTuinc45xYAHwH+HfIKvsU5t0WPvRZZC/j2rJufcAViJmuPlbny+e1ydZY7L95fWebYVOeWKjNVuZlcazr3PZ068/dZrq58manaNFU/lMJU93Uh69GzOffKw1w4xDvnapxz/+qce8I595Rz7ndKlNnonNsT/T3nnPtVPfZret5e59xnnHM1E68yPTjnPuGcO+6c25vbf5dzbr9zrt05977o0BuAL3rvfw547YVe95KNNufcRuBz0a71wG8j1ic/R7Aw+U3v/dcucvMuCs4QkicOIIKooYLJnZWNaPQjgu0ten4NIVrWFq33CYSE3IYIxMMEgbOWkFfjK4iEdBRZhTeBdZAQPerKFEznFmYOdxbRlNQjZGQ/8iz2EfLOmF/PGPIcGhETu+2E6GodBGL6XFTWQil3EUIP1xP8Xiy6VmyeN0I2clpc/sqGReuaRQ3ef9c515rb/WNAu/f+EIBz7rPATwL7vPdfAb7inPtH4NOzunjCCwCVZImubdtnOv5NVDb/GZ+MLOfLFoDiJMcro3KGYq5MPuRLXGcdMhtV5soTnbNSf+evUYh+VzIxk1axTPlSsDblr12qzfn99v9kVGaya20gfM2LhOUeu8ZkfVmqjYXc/3xf5+sqRXjyKPVcS7Wn3Ln5MVZq35UJx5yE1B8BXuG9P+2cWwjsdM79k/f+B1bAe78fWWu2Ra5jwJedc6uB9wBbvPdF59zngTcji2Ohnc6tBIre+8FoX5v3vj3Xlk8CHwb+Jipni2qvQlxZH3XOfcV7vw+Ju2Pxly44iswlIyflOhb4WeCPvPd/eKnadrFQjYzABQh5OEpwVo5Xqk2ItE9ABSKgvh4RZJsJEbtGtWyTlj2hv5sRgjGEaGRWERywzZH+JoL4FUenSnh+MaB/tyDP8SZEK3ISIQrm9G6+JguQ5/koQmw3EMIFL0LGSzsyptYjBKOTic7u5nxvfixdum3Pvp40DgJMc1IWy51zu6Ltj3nvPzaNilcjr76hE7jFOXcnsgJVDVyWizNXJsoREBBBMX7j8mSEqByIIHmOiQJqKcGzkZCZqZGphez4GrHgHp8bl4v/FwlhW+Lz4zKFEufEbVlNEMIbSxwnOn49Qgby97uIbMan1ZO020hB3C/LCEs1x0rUX4oYFPWcDYgnaHwNqyNPeGLSsZqJzybfxnw/Fktsn8ztK9XOeF9jiTJ2frxdR3aMxYjHXakvR0yyS21fHpimWdek3wvvvQdO6+ZC/ZvMefqVwEHv/WElJ5VAwTlnsZFKuQi/DPhF59zd3vth59zPIWLl3XGhmS6qEVLp7WEW1lnzRU8Xd+ylbstFgzlJnySEBzZtCIhW4yRBW7EqOnYDQirWIISjXo/t13KmlVmBjJRuhKQs1GOWq6NO93URVtn3k/UxmI8wonYL4qS/COkLy0kygBC1TkQb9A3kfqYK62yE8VLgEYRMnEHa2IV84oYRzYeZ7PXrsVZkbJj/0QGCtsUitR1DPpGDSH9AIMBxX3QhY8GiikHSmGQxpc/JWWQo3u+9v38GFZea8Lz3/kHgwRnUc0VDF7h2Ace89/dc6vYISmk58sdjAhJrG8jts/L5GayOiUQi3jYhv0AQzvNEIYaldTWhvjH3v5jbtrrNsw1kxlkUlbc2LcuVsWuVWr0vRsfz5Y0A3BIdi4lHfJ18u+2YedZZO+Pf+bZAIA12TSMadrxFf1s7O5E+KRL60rJR2Tl9BBKF1reIQGrsWPw8+wh93UeWWBgZi8dAY66MaX/i558nJnkyGvcDTCQsdjwmd5Np6CrJEpgrUhPT673fPlkBndMeQ5j+R7z3k1nVvxn4DID3/phz7g+BI0inf9N7/838Cd77LzjnXgR81jn3BeAdiCZkOii5qKa/vwR82Dn3GmAm38IM5gs5Ge9Yxbudc/8H8rH5z977U/kTnHPvAt4Fpb/uLzTUIsLgUUTKWUgw0VpFyEGyDBHAn0BGwkI9dxhZbd+BCKXLCL4kqxDB/SFkRC1ChNAFBPXjQrL5Ny4WMbkBuZcKbU+FtnUF0vb1SJ9Yssd9wHW6/SQicJskYuZqZxCytgTpkxpkCXofwYxuNcGHw6JhnUGm+2ZE0L8Uwvkh5NO2BTHD6yOMAXNwX4+0vRV51icQsmGkZAAZE4sIIrWJ1QMEzVqP1nUIIWVDBA2M7b8QXJ6mYFNqTga89++6gIo7kSFvsJQ0CTPDrwBPI6/9PEEpDck5wurzVJqSQcTkKV7tzps7ldNk5H/nt5eRXdm3Y2f0WCyUbiBLiFpK1EWu/IHo2Bndb1mhjjNRYI7rLGX6ZIvBhuNRfSvJCr+D0fkro3PseRih2hSVi7U05Mqh1yrqdW07b3K3To/bNVcCzyAeg9amvKbMtCfk9oHM4DEZbUT60sjOLYQxAYHQxWQtT8Ly2hnIPr+TZLU+Nk7ymrNy2phYCxbfW57QlNO+GMqR+XLH5g/myiHee38euNE514CYa2313u/Nl3POVSG+Hb+h20sRLcaLEBHnC865t3nvP1XiGv9dtR5/BlztvT+dL1MGJRfVtM4hxAJqVrjk5CTfsUgn/S5yo78L/A+E0WWgKrCPASxwblzdFUcaeiHBpJFmRAhdhoyqVsSnwLQgFm72BEHorEWkmz3IZ28ZImiuQQhKFeKL0IoItYcQKj6o5RuYfS6WmWArwW/Cwhk3IYJ3jbarm+Ckv0r3DWh7hwn5W04SSEaN1mX19yH3eV739yMC/1nEPMqypjcQtEVXI329DAnDPKzbR3XfHp5/zUqn3tcrCD4hjQiRM1O8IUJENnNaX6FtfRLptwPIeBrWtpvfkIkCIOt/67QOc9IHGXMXisuPmMA0fE7qnXMfY+aak0eBDbqCdQxZqHnrBTfzCoRzrgV4DfD7wH+6dC3Ja0omc4aOhWebfdeRFejyWhIz6cmvapfTWhTIahzsnB8iAupqZMidydUR+3fEgjxMJEQryRKdQUQYNwF9GcErzr7MLdG9xnXE6Iv22T0b4bled0V94xrBxxoJu7Zdo1PqcHqfvpOspqSobY81Icug7nq9rZNa747onAOhvvE6K/Vc057s0HabNuwcIZh/K9In23LtjoX44wSisVL/jNDWaR1P67aRo1gbcozss4VAQCGrWbPtAmHM9OXq20DWVA6C1JU3R4vHSp5AlyIu5Xxx7F2KzcHmL0GZ6zwn3vt+59yDSDCVCeQEMQ7Z7b3v0e0dwL95708AOOe+hIg+E8iJc+6liMj0ZeD9wLun2aznfVHtkpMTch0bdTDOub8AvjqTyvLEJJ8ocC6ytT+fMJ8S8zPpRoTO84SEf/0EJ/aa6Ph6RDA0Af9fEIG2FgkfXIOIVzfoORZ+1pzrLxZqCZHJ+pEp1Z6LmbWtIkypgwiBOKpttShkq6I60GMLkHsyLQCEzPbrCZqILj3PNDSNiCahmhAkwCJhmUjaj3yiTciH5288nUE0Xa9Cpn4jmY8StEPrEVK1juDwvhuZmUzrNIJ8Gi0EsSXRHNHzDutfHULkzBNuPpv0mcmhudpeHMxec+Kc+wxwJ2Jv3Am833v/l865dyOWhwuAT3jvn5qbNl8x+GPg/+biTmMlEI8P044YYgGsmNsXaylOkl29zzuB23kQVsnj+vJmQKXquIWs/wkEUeA4IiyboBybjdk18s7rZwhvYqv+V+HXNco1fAnh1KkA7A8gArYJ6TqjuugavoD4lujxYiMs17Yb/zpq5ZfB8gL0xpdsySmllkFdIZLzG+XxxZZ1g8WQ1Gkwb7pGdtufhLoWGIwJTwsy+8ZmVybsx1Bh320o0U8xzCQsb962Wbc7kFn9GcLN3ot8FWy7kaw/j5FIu65peeLycSCAA2TJ6LLo/Dy5yG9bP5QaQ/nfeXPGFw4qHBSmSgY2RWwV59wK4KwSkwLyWf9QmeJvIWt5dAR4iXNuEdKRr0SskPLXuAkJU/8a4N+ATznnfs97/1tTtB4uwqLafHjqmY51zl3lvf+Rbr6e0kyxJGJ/ARNg8lRuLoSZ59MvwdpXg0x9x3SfZQlfgwjRw4iwbpnfz+rfKi07qOcPIqPyFqQvhvTcQ1r2gP7NlZBnpCp2vt6BTJm2om5C/1m9h/UEx/5+/V9N8Kk5q+Xz92n3f5u2/wTyTelDyI+ZxZ1EiFir9sFGQmSz2J+nWetZgAjxZwlC/wrdN4zkgjGfn0OUX+ecC5gWBIJTe63eVw3SP0uQflsEvJSgJTqDfK569J4G9c/MBquRvqhB+icfomM+Iu7jPDmpJuRlmXvt6RhTvPVTak68928ps/9rJKf3C4JzzvLGPKZBBMqVGzcDFsPDuUI5v5IiwYQLygti8Yi2Feo8qTAB8AAimNroLpIVFONrgyylmAmVXbNO64hnqnXR721kzc1agU4oKDEoFkXQH9daGDOIBWaUlKDEw1bio/sutEQCWgsUClGdSmhs8i0iE50t2C9uzL74PneLlQV5VZcDvdqe5QWZFJu0zOmCTOi23Y+4H1sdTQghyT+2yuh4O8FF2ciN/Qe5P78hDIHT2nYTXIeAomm3rK5Y0/VDAiGDicTV/EsMlob3dkJnHUDIS+xDdJLwzBcx0ccpdv6PNSroeRY30spb58cau07CuDX/m87oePw/r40rReLNzgOukDAtVwF/rX4nFcDnvfdfBXDOfQ14p/e+SwnIq4CftxO99484576IsNJzSBaIUsFZFgFv9N4f1Hp/Bnh7vtClWlRz/hJmT9eOPQqs994P6L6/RaJ4eUS2+vmIrJTEAud8/Iq2IAJZHI0oRt4m3spcSpOwfJtMuF9H0AZsROazJYTIXjcj7TYfA1sFH0Je4TFkRbwL6Y8TiLB7Qus4j0wZ+czg5TAdR/l1BKd8My0bROZqM9EyZf912g7Lr9Kk97CBENLYTNCMLBihsCnKHMbzyQSHCNoVtIw5ftcQghA06X/TSPUg5GMnQkQOId+xIT1vCNFixP2xT4/FfjtzhXui624kkJRRwr3egDjUb0KIxwOEyF2H9R626rnxeDmA9Nlqrc/em4uJfBSxGBYxbKxE2fwxgxFk+z8Ej03lfDgVtm9f53ftem/Z4879n7O+RsLM4Zz7f4CfRj7CNcj0+CXv/dvKn7PKR9/yOUK5db68eRQEQc+E8VgIi8kHZB2kW8iuKEN25dyEuNjkCmQl/abctWzV39oVC45xW+2a8X00BovzxYjJU50eN+1DbMVURCZ6W/0Y1vOIylQShPYCQR1uaIp+H0Q+IK26/Zg2s0G3f6R1VEe3sVfP2RyVMVU5iCgYX9PISmxtVoiuUdS6no7KNyCkqBqR7+2+TXoZ0TJ56zPrC7ueaXzMdK2gfVuJaHPsphxKaGKhvpEsMTiAdLCNBRtzcTCC2EzLnr8972fIRnqLgyqAPOhz0XErE2+btigfGtmQ16LE9Vv5vGlY3t9nLvGBWc3lL650/geLJy9TNTD7b9LljkuqOfHex8aPtu+nZ1rPAoLQUkcQsGxlNS9QL8idb8fsk3BxzUUEeTt9W88wTYFlD79Bj69C7nkR4X7M7MlMgEwTcJJgDmWr5JZZ/vEZtnMyYlKBaEnMDGs98kxshd9MqmyKOo9MYQ16bg0yfxuJGtYy7Yhg3hNdZz3TW+k/XGb/IkIELLvWVkJfxRqWBsRnZwnBx8fu0dqznWCO1o/0cd4yd6YwDZ091waEZKxABPOd+rsZGT/XEWIG3qrtfFjratT77NNzn0GexWqEUF2o8/uFwEiDoVSMHEP+veif5BiEPpv7d3jKaF0X6nOSMAt473+D4Ah6J/DrkxGT5w+mJYn9AWCiHX4pa/RY4IvNfuzc2PcCguBYh8xw56Ly8Qx7XLfvRWajZwi+Hua/YaZh6uhdd3vONMmup+WXb8iaSw0ixMRu2yGT/VFte0EFy2IhvD6vRFamYi1FD0GILyKTrx3fhUx+tr1Zy14VdU9DdP5VyETQT+jCO/S3kZFWArmJEZOgmLz0k5W3NyIOiFZ+s9b/PWQ1bXWuzUR1xQrYEcLjMzcVi8LcD9RGmpI+VMOk24uRfjfzN1+Q/q9pCWXc9WoqpkyocD0U4y/TAUQ7EzOmllCedWRFNBvXNsbMBPCHZE28YphWJW/OaNuxmRm5MvG1XhghiJ2DhVOZdSVMiflg1jVrnEcEr0WEOdJ8TfKCEAShtNwK8XB0vFTSuouBw4R574ReeyvBiRtEYD+BiE236L5+QkQny/Ju0ajQ/buQe5xghHiBuJUQutdMuswK2fw39unvEcKaXSsixJufzGGC9ueEHiulyRpj9iZIFsksRhcyFTfr8fPaRiMi5jhvPjp9hHwxJ5Ap9klCbJvZRLyC8A07Ssj4voBgrriC4Mxumikjq2cJeVLMvG0wOmYmcuf12DpmYD9ZAjPROto7ZAYGeQJZ7j2riPabNq2HECThLNJnFhBhbsNhP2/RuhIuG8S2+nlTldh8Ky+8LYr+H2Cib4MJqHkn7sNMJBoW4cva0xKdZ07ty5Q0AEUzFbNTctcfX/nXfb3afrNVMI2IaakZEwQAACAASURBVFKuRshBrx5vAxqisiATWiui6tXqMkGqmgjEA+BagiYEgqbByMhmshqJVi3zLQJB6ND9sWVQASEYILYasb12TGSszgaCC/A5wkcB5MPbhlhUrUE+rj2I2nunlrHrxdqaDoIhzU69d2tDP1kicwdZEtaRa+MIolkZLoTn4fXChZZwX3Xx87YxGgUbGPcrAfnKxWaDppmzMbmbENDAvBiNIMeawmNMjIgWvwexXV4pclNk6jwq8wS20powK1wW5ATkHY2FIxM084LPCuRVayCYh5gTNMh8YD4Nlk3dBC8TjC5GDpBFyNzWgnwWOqK2nkDa/7i24w6CkFmBaE32EnKYWPSpHoJ52GEmBguYKaqRb9FhhBxZth+bmuxzbDlV7Hg38u7uJ5hB5Ve6n++gBeW8B4zQHULGwlYtu4qw8NeEaFFMGLYUqCcQQmLma2sQE7oZRXQogZMIST6hdZ7U/wv0+rGZWSthDI9G92JaqyZCdLMV+nsRsyMmEPLqTEbe7dtv71OsBWkifIvPligLMtbNZNPIaTUyzg4TFhL2RuUtbPbsMfsM8QnPLy5Nbpg4V0ksXOXNo4qEEK7xsQIh1OsZQhStR5CZfyWi1WhEpPDBqI6Veu0NhE/5BsTWaCXBX6ExmmA1qlKxoIL6Bm1itNq+nGBaZeZQhegYBRHmH0EE8g7kI9QRlTF51ITpViTCh5lP3axNfZQQltIUP2YKtoGQXXgYeBtir2pxgm7U449qOyxDwwFElW2hCr+l7YPgONir9W5HiMRirdP427e0rZVaj5kc2BSwPHoMi7VNvYgH7S6t18reo/1YBH6doFp/lBD7/6get4kwXsF7Wq/zNOJUeK/2Q9787RziW2N9HCsqerU9jqCpypiIXR9M9AobVLsSa1CM1VloaBuvFlp5NdkQNkYobCAUECnhAIHcXK/123GTGPL+JtZOkxCMqMxPzQmOLGlMuCBcFuTEkRU2F5LNdG0wR2wLtQvBdn+B/jfS0RUd78zVYWY9MSazm78QnCGr5a3RP1uoMZe0RuSe+rVdcdvqCP4eo8j7sgh5/fuYHTHZgsxxtXqNNdoGSxRoK/q2Un+CEAq5Q8vGBG8+rYPsj36b2ds+pP9eRUh0CXK/NtdbEM8GhADaqv6rkX74p1m0aRfSp0b6BvW6RlRrCQEOziB9XYUI7PEYN2d6I79jzJ02cKp6mrUNHbo9Rshv04Pcl7XH3ud4wWEhwWTTiMgIMqbsXbH9q5DnMXeazik1J8ms64rEudx/mGh+ZTDTFlt6MWd2IyiWX8RyTRhiTcg6gqZjN9loWicJxCRGJ5xuESf1FnXIPoj4OFgYv3i13gQrU9E3EEygOgjqbyMPOwhOkK9CBPvN+reYIGyb+t4Iw6sQkmJysAnadxBix9sHrx6ZQN6m51tQ1GatJ16prkEs2JqR1aWthI/nTv1tEYGHo+PLo3r6EYJhqyAdwEu0XrtuDYHMPKi/TxOUEDfrec1al9VjqeveqNcZ1rbdGG2j+7oJGqcm3fcQIZrJiuh6G5APwn7Cs+vQcr3RvZl5WkFN7RYXQrQUzkgktHFJwcZkHiZ9WHS4vqghtyP2bdY5xwhO8ZYDJw7kkPfBMt8rIzK2L69RSbiccVmQE3Ppt1CoJrxYaNpBPdZD8CewLOKxAzWIsFSnx7YQ5glLBmgr0rFWxkL5ToWZalxszrZM7j3I3NRHMDXqQb4bY4S5x8IRH0WEUVvRNkf688zO3Oi1+r+KoJnpIJhANQHfR/xjqrWNJ3XfCxkjiBakCem/6whaiPPIdGtO+YcJY+Vq5JtxH/DFC7y2JVS8Dnnug4QIZ+ZXNKTHTEtlJn+W8+YMwal/ETKG7dlcaJvKmXLFYYlB3kfTbtg7YP5Ra7StcTtWaVvNpHIFQSOE7o9NLm0BIQ6GsBp5V/K+tReGKX1OklnXFY3YnAuyYVPtv4X9jfOOmD2+nRObWRWYEPHLtWg+DQgJGmOfgGKob7lecnGLCM0gH4A6sg7pHQTyYSpLIwV3InzHyIsJynb8QG7/TmSiM5OtVkSofzC6Rg2yiG786wDhYwwycewgrGLYQrzZIZvqfbluW5hH0448QFAh20dxGJkkjCTYxG39shXRZFh5Ix9t0fZ2su4O3VEb7tG6+hHtSXwf8X3FxMicKC3m/YN6r/fqtkVkiacd879B2zIcbe8lmJ/Z8zDlnN1HB1m/GtO+WD8sbpExsLkxlD9KzuIqn/gzPwbvR4iJSUgFsok8jWjYAHgEGfP2HnQiX5ZyWe1hfi1n5uC4TCTrS4vLogsrkMWBBYjAMkwQWgb1mDkSdyGvgflGjObqGiMIXPu07mrCKqyZSh0mBNXrIyRJnEx7ciGmYGsIeS0qkPlwAUFT0UjW4dyyvjcQ3CXP6/nmYH6UC0+U16R1mf+D5RZZRljFtxwURwlrey+EMLXThX1TLMoYBKLSQ1jgsohRh5A+akGI3Vcu4JqdWsfDwE/ovmUEjVqFllmIjIXDyNjYTciHE4/fYWb/TCbzMbG667XdcaQ2CGtu5hd2npDPZRlZrV49EpDgbLQ9EF3f7vkQ4R0bYK6TQU6pOUm4IlHOOTfvSAEh8lVsw7+NYBoDE5MhthCk9NZc8sBczgwLz1sTHfZFqC6UNzOxcLom4I4gpkNGBPrJRqmy/ebkaLypNfq/H9FwgBCPSkQrYALyUbLRuwxGLm5EVnGMo72UrEkVeo936u9uaV+h+RQAxU1LpcuWE7QUJqxbHZqTcZx0PYp0vRGFTYiGIjavijUlz+hvK9+h7d+jZVt0Ow4e8BKEcNiQsXDHNinu0PK2mvIasjBTs9fp9j+QDQxwH2Go2H236DU3RvW0EqKMFQkmdSAftGqCL06eAxTQMWY+SxrOeHkj9BpBsRDWNjZtidjIhi3t5nPt2IweR/aKjx+LjiezrssdlwU58YgwY+9RPTIX2Txq76m98xYx2/JngAx/c2w2YW8E0TyMEgSdUYJW5jAyBlcxs3C8M8H3tW3bCMK/+R1sQhyw15M15TITLzMBGiP4HzRy4eZFtyJzteVSsVC8PcjcdxL5bB4imJP1E4T52SIfbvlSw/KcmKiwhuAveYYQ4asG+f6fRZ6LRV6bqSbtBDKuzTfDzLsqEIG+nqBVWYSQ5UOEsWNaLpMN9jL3AR7qkfs17V38vIxg1yPfQPOlGdRzVmmbhgmmco1RXfa7OTrH9h3S3+f1mtUEzd5F8jlJZl1XNOxTmg+1Gq8w95F14ICwjABhxrZkhAf0nJXR+RF5cY1qNqDqi+Iy2WfDdDETc3VsRMiDCU/tiMO5TdINZCOlNGjZxdH5INoJkFX+boK5k01S3dHtbUKE5lhh1B7KFN53iuIDS8fbXbF6iLHttYEIWF1GkDYhZU2A7gfuhOJXl4ZyDVruRi1TiXykjUxY4iwTCjZFZYCVrzjC8ZZVsFeea2H7KYq7lmY1Sj+I2lSjfXRaf3dCyyva6dzVFu6jRq/RGm0PEwhebFJm97GdoG7/DeDPCFqO1yH9/T3dfoBgYmfDZK/2gQ3DDv1vbejXfZujbTN3sDZkNCv6f3xYq9lXr4VfgUDKYwf2c9FJ55hophUHbi2SzTifj3hnElxc3zxCcoifE1w25MQEsjOIcBLPr6YgNG0JWsYSGhqPt/naTMC6CCQFRNAxR+hVBGdjU7KbP8p5QrTxucAaZN5pQ+ayLoJDv9nxVyDzjZnJWGZ5M20bQj5h+TDKM0Gr1jlACMHbiAiYFt1qJzLXLWB2Pi2lMJ+ISYwzyHjbhRCPJmR8WC4RizJlhHgVokHZycxMqkwTM0JIzGh+Prp4SAPS/6uRMbweIbBmbnYGeY5nkXE/lxotM4c0rZGFZjZTsgVkTbXsHFsLtrW1k4gcY0EFHkFI3KDuM5+gcTNpRdyXI8x1otQUrSshj7wTfOxP0kiWFSyKysU5RvJ29McIZMQEuDjB4QFxWIZAQup0+xwy6cQRpOy3hdYdIRtCd4SQbApCrjzTcjQQiAfIC2uO6CAfpiLBVCk21bLzW7S+tnBO/Tu7GWgXplDcu1QmCxWAxx6rlTYa+WglCPhAy5Z2Op9tG9+uuHqIsb7acSJSaDlFVc0IA3ubYbm8syvXdnG8cy31W6XhddtO07mvDdr0nd5bCR2w8peOAHD802tpeWs7naflOsWdS1l59xFGRiX0yEB7s2hC9Blc/dan6B1dxkBbs7TnYC2dR1rlA2330UyW/G0nhHcEeT7LCaZn/fr3bt3uAH6R0PcmANvwWK7XqouOWRSzjtB/bEW0MBDsX808zchKq24/RXZNpgl5TuOJJRtDSOOMeeIywti2eJJxNvo44pdJS3F5mEhKbLuSie/NPELSnMwJLgtyYihnZmKrsJAVZk4g7/UJxD9iCBGoDyECVCPBft8ybJtJzDJE6DRUI/NBHHZ4rjLJDyLCqM05RgosrLCF8LWM6vZ5HNY2nkCEug2EvBczxa16TfO7MdOxWmSF+iwyZ5r521xpS15o6CM4qptWYiEy55/UYxb29xbkGT4xzbrPatl+gkO+hcWu1TpPIgQ6ds4/j4xfI6a2fmsJKefCejcOlIq2yaJm2T036HWNaKD/LV/PQt2uJ4RAPkrwuTpEyGV08S2OPXNNdxJe6IhXgwu5YycJWhTIZv4+hkjbRbLO6yawma3+Zj3HFHHqjFDUay4vZC9tkZ5s5T2fWNBWwS0bq6EmqqMbkQps1WIrIlSbn4I1zc5/M7LKYsKqRcKyyFkWyapD69wK3AkDHzcVBiLkfzls1v9aNwN7m6l4peg8xx6rFYH/27V66baM5DL27VoqXjnEjzc9BMCD++6iOKxtGa6kvrWbKkYzq9mdf9rGyl86wvHda2VHKxTuODW+vfmtj/P07pvGyU3Fi0c4/om1QWh/FFa+9wiDz8mNH3z4WgpbT0ENjB2rDYQpht2yDYNu4PXAB3X7Hu2rmHxsirb3RucZ1gHvjLY/hZCbjwLv033Deh0QMtkA/LJuP4Ss9nxdt2vJJpe8VsubD9Exsr7sLajpmmpL6ojCURejQnGQhwcIRvF2buyTUgqxz4l9beax38kVDOdcLfCniGj6oPf+7y6knsuKnJRDXlA2c5rYDKsLIRNbCPN5MzKnmuAH4Z2MrYZN8zKGCFKNyPwxwtyZIp3Xujq1LWaqcgZZHTdtjf1/GPk0mqbIBOKZJl2sR6aNbcg9mq/LOkRwNL+Bw8iizXzVblws7CWYUq0j+Fs0I/21gGzyRjMlnK6WyfwfTTN2iBC1cgFBS7YaGbu237QZdt063Tdb7Zb5s9hnpQm5T4vieRZ5LxYi78wIol16BnkvqwhaNwvqsw9ZZD3JxM+VJSW9+Eg+JwmlYKu/x8kSDdtvq8kW7tf0g3FIYBPiNhEEORgXxgpGSpAkiMaRewlqfpAXbznio2HbIBOEDd2tyMtnmo5qslGxOhCyYCvpZmdpPhs3I7KlHe+FwgdPUWxXk6oarcO0BZsQf444TO8w2chXy8/BzZXjbTCNytj3asfbPHasNpCVv68NpmIAnbDxrc/y4MN3AbDytiMcf3gt9EP9dpHk+55bBg/B6FZd0r4TenuWUbFa6xyppqpmhKKaLT195DqZZDtERKreMQj3jYr5GcC9cPzIKgoNQUAu7tJj3TDWrW1vJWv6tfUc9FeGY+0EX5tWOXd8++uESRzkme3JbT8T9XUnIQjAfQSC2UAww9uh5eycOoTcWJ0W+tNW/r+t7WnVbdO6GME6ijzbYkE+POfQUMTxzG3misZo1zFR8xHn1znGxKXm2A/FNC/l/L0uMebArMs5VwN8F3kSlcAXvffvn24Z51wD8HHkiXngHd77C4pJ5Jz7BEKdj3vvt0b77wL+BBExPu69N5r9Bm3L/c65zwFXLjlZQFY7ApOvrpay8z+BPOHY3XAUXXyJzllAWNW1hahhAkE5QdBUDCCLDMPMbs31EEISzGF4I0FAM0fnZdF2N/J9GtK29kTtmemq8zZk7qlFvoO1BP+JMYKz9w9I68qGM8hiokVTM+1bLSGC1wZEWF+CjKHpkoRYa9Wsf5aDZwHy7OsI/klm/ncC+c41IAR83wyuWQ4WRtk+GZY3x0zIzKTaEqTWIOP0ST3H/JQsF84GRDO0kInmZuX8uaZK/riOkEtndkjkJKEUbPTHJl62PzbtslwOfQSfkmNkTVSKwG4obAub8X/09Kv1d3VUBQiB2BqVLWiZeNhapCsTPuvIRiy5Q39bndsRudGSNRmpuS/UV/yzpVkfBwvNi5CDgYZm+UCYOVMRWt7bTudOMZlqWdtB51fbghAPQj5slXCX1FfdJuFrivdUw87KIADeo2RCt4/vXjtuWjXwR6queBWwgkCidsJYS1azMVATaXP6lSyZO0/z0jChgYYIrqTYq/Utl3ZWvFKuO97uVsa1LwxXUmgYpHijnqM+IoU71JH/U0vl42z+HXeQ1XztQQjpPbptTvlWxlauLDwyhOdtAQy+jjxT88XZo/W02n3rf9OEvZns5NtJUL1Lq6GzINPjuKkXZMMPWwS6WF0XH7dcPbEWMj5uJl/x+xX/jgNKzAPMjVnXCPAK7/1p59xCYKdz7p+89z+YZpk/Ab7uvb/POVdFNnurNNO5lUDRez8Y7Wvz3uc/v58EPgz8TVRuAfAR5M3qBB51zn3Fe78PedhPatHpBLIticuCnFQjAvQNBDORBcgrYdGk1gOf1/J5ImOIcyvY2pblYqgmLGxYZLAO5JXqJ/is1BAypK9DCIKZ2RjBuZAkjlVa5ypksaIBEXItf4WZDkHWxOcGQn4Xc1KfLl5N0ARZ/WcIK/cg972PRExK4asIqbwZGTOWFNAIyjKk77YQkghPBwcIY3w98u0wjZllfX8OGQfHCNHdbHaqJeScuVAYUT5DNifPCuQ9WEDIUI+2zchxE0H7Vx/VaeZtU2lGLCreekIYb/MBrUP61Jz+TRMze0wZSjg5xF+RiEMFHyM4VhhpMYHMzFZuJ+ivLapRrHFZGQ0zCyYf+bFYCFwQ85sOAmF4iJDnAkQIXY4Ioqbp+Lo2wV620wQfB21S4W2nKHYvHS9f+MVIM7JHr2dEoh2Z4KxN6kfx6vdKTMJvfue1sBMKv3oqaB1aofNrbePX7fxEG9xzTggHkf+G2UENA1/UKFzWhu0EIf6LQEtlJmLY2FO10lemRaqBwn2ngnZjq96DiXp3ErQLdh97CBFOHtLfvdFxJU3Wb9wYaXsgJKZUolBRPyR9YO28C9gJxZcErVNsalaxeoixjqi+Ttj6B4+y9zs3y/ZevQcz97qPECjAxpAlurK++lWykc+6c/97tb0mnr4G+EeCWV+d3pcJ3yMFucdewn1ZBmjDuQ1Q/CFB3WJfBZNGbGn3ZG7bkJer46hd8xAmME6O5c652DX6Y977j9mG994TnprFsvFR+bJlnHNLgB8H3q7lTFTM42XALzrn7vbeDzvnfg4xALw7d53vOudac+f+GNDuvT8E4Jz7LPCTyOfWJq49ZL0fZoTLgpyADPMTyCeghyD0rEAEZ8uMfpJg6jSZX8QQQeBu0O2FiLnMc4jwVUXIIg/Bjn+AkOehWq9npi2mcZgpTFth5MtebwsR3EUwIzpPCFW/HxmVDczM+Xm73s/VyL2fIJAgo8I1iKCcLD/LYwwxsWtESEE9QjArCOGo4+hU5RAT2gV6bish94eRadNQmG+Sfdr6yPpxlLPunUoTYWgmaAhPIuNvPTLWuhDCZf4hZo64Ve/RrESOkQ3/a+9MOTQi47iGsEBgJnMNhCSVrfq3iLnKcQLJIT6hNOK8JrHnlakSbIk5duq9XX9b6u8N0bEC+N26rSGUCrqKbF/rW/X/HuQDY+ZbI4SPG8iEYFV/Pdq/JmpOJSJMmslVBxRZGoTuNih+cmmQK3Wl3hzLB77VLGVNQL4H6IZvPqvZsLoJK/3mJN+NmHXZy1kDDFeOv/wHv3Nt1izmISh84JQ4zoO88OcIH963EcyUQAjHMNnXdTkU9ywNfbUG0Rjcqdt7CGF3IQQTMDJiYRINH9Vr7Ij2PaP7LC/IAcRNaJc8uLHmynAtkL58CWJ8o/fR27Ns/Dpje9TJX03NCjtOsfdPbw6+Kzu0TW/W481CvipeM8TYMZ35dyJjwshpB9LPJiDdgayi2fM3zYuRzyfIRu+yvvmR/jZXqvzkPRhdcxCou14z0lsjKpEZG2TcG9O2E2zJC4LmxN6t1bo9zzQmM0Ov9377ZAVUO/EY0rsf8d4/Mp0yzrkbkc/vXznnbtDjv+K9zwSu9N5/wTn3IuCzzrkvAO8geItNhdWEtwnkIZl+7kvAh51zryE4zM0YlwU5MafvjQS7fpujlyFDfj3yzh0iaBYseEkpxPtPIsLWYQJJGEGEdIuGtQqZc9fp/5OIMHaIkLHbypfDZP4p+wnkw/KI2EizuaqOsFptzvMnCaZfCye5dh6rojYv0GvYanw30t9mnpNQHkbcdiP5ScwPw6JljRCE9VrKJ8eMCa0FHz1K0N6fR565+XAsJITHNsJissFkZHI6xAStsw4Zl+t13xCBfFtIbmv7Rt23Qss9QjYhI4Rvm5F4wy3ImNtA+GZaujprh2mNGvU6w4ip+w3TvJ+pMWUo4YQrDvHnMxacIGTENgFsNyKAWUZB9P9msgTnAMHs64dQuD5c5jSSt6RDz29ChGwTwlsJHzYQjYY5f91OdtXMJo5+REC9I4pa1U0wwdoKV7/nKf6tpxVATJbaYGCnfnVWQGHrKYrLlTh8FhGWTWG0CVZuU8fxt+g1esUkq+Ja9fd4plaEaBWyx03DPqnb9WQ1Dub0HzuOmz8HwAOV0KSO9eZ4b2TDRC+z1461JZVQ8V5t0z+q5iU2f+olPKoGRPjWSbX+nm4GPtUsa9U22V5HCO8L8CBU/NQQY59T4vAQ8ozMRG4x1C0dZKCmdrzvCm2nxkMkF9uXBkIC1O/oprpqNEQQ62iGBvHPGSdZ96hpXbcyheFKISI2OX9L+8EUfu0IybIxZ/a2Rk4soaONsTu0T/YTyAjaV0PROYNEnbeZrG3YAbLRuiypo20vIhvdy6Lc1UXl55HJrWNOQgl7788DN6r/yJedc1u993unKoM8vW3ALytZ+RMkPMJ/LXGN/65ajz8Drvben86XKQNXqsla5xDws9OspywuC3KyACEP6xBBycK2diPDfg2SV2Ib8k5tIqxk34LMH3XIIkG5leOjhHwnFimrBuH2ceLD84i24TmymoZBRFCyT1jeAhMmdya3jN/mbGz+LpZd28K2GgkxUx+L3mVZxKeD+5DFEougtCD63UGIDDZXoZKvBLQjY9SIZCOBtA4RzLOmixWEpKIWoti+0RYyuplgajiETPfn9VrdlCdC5RC/G8vIhjG2/S3RPQ0TCNNCQjb6OkIOlHyUL/RethD01I0EzdIGRONylBCe+Kzeszn9mwniDuYynHXyOUkoBRsT5th+LLdtWpANyErvOsKKbz5Ro4YJNg7ccr0I5LHN545CiJx0I1mu8yPkhTdtSSchyZJFZ+kkK0SeQEyfNJ8HTyKGHSaU90Pv6LJxP4rxKFSWe+M+KPbXhZUFjTj14ldI8o3Hnr2d419aG/KIEOod61ch/E4kO7p1ZTPwWaj4lRCti36C8/oztdJHJqbtQj5MqqGgCahDyEJnVGe8tvCMnmcag0qgV53tre86CBO2hdg1Z/VupO/VwmqgvVmzyp+DTdoOc3Y3EvUSGPtk7XhwgYoXawQyI4b/UEn1e0bHNSv175QTi/YsmsmY9Q18UbRW9ffoBXqRc88RTPWegYH+5qzDOwTheYX2gfZl4X2nxPfF8GW9z1/Q7Z1ax9tCkXF/pCIyCV9Fdk29gAgiR2MjXwjLZSCD9kB0QpHw8OLs8/HxOO/JPML0zLqmDe99v3PuQcQQcO80ynwK6Iw0LV8kxG7LwDn3UkR8/DLwfkLg6qnQSTB6BPn0z2n2iMuCnFQggn8XYYU/TtLWjaxan0SM6Q4h7/cJZJ5vQ4Saf4e8U6ZhsVVds3gcIazKWqZt8085ipCdBfp7lda5hkCQuggLVxci2LfqvW4i+J3EmektxL2FGo7JzHeQhI5T4Ra9xgaCU/MBQsja/Ug/7i9XwRxhun450zVDmi3m4jpPIPfURCCu9qxqEdKwiOk9p0e0jo3Ic9qCjKmzyDgxgd98r1YABwmRKXcxc8QE5CDyjp0nLAYMI0TkqJbdStD47SWM/XwcF5D7fhnSHzcjCwGWgPQs8r7Wa90nkPFhAQEsYIzlfztB0JjGs+fsMKXPScIVh3NkV28hG+40TiwHsjzWSfAxOU4Qsg6EsmZZ3ou84LFlWB3BTOpRhLHbyvtmhHjYqvZy5CUwR+4GRGhq1jLNhOhbVkczsBNa3iFso/NLbQyeqhu3uBkzQ9HmUL6ieoSxVhEl7tzydR58+C4ee/b28S7a/IbHefrZm0Tzs/xcIELx6vKdBP+P00iErqf0Wl+Vex77c91uI5P3hBptj1kB7dR+aiWQjHrEwMQmop0EJ1IIJl5GkPYiAv6Ho/Y1IevLIBOL9SNazx5geaVMSPcC28/BP1SGHC+79DwlcmNbqyWXytdUbbED0TApGRn4o+Zx8gNyvYplQ+EZ1Ei7B/bqw2g5J9HF2gkq5h3nhLQ1E5JhxX5LEMI9Ejnlm+nIvchz+axut2j7jYzuIEQdg6CheilitdiHfNyq7WQIYVDiSHd9hHfnsP6O86b0Rdt9lF7WmidwzFqyds6tAM4q6SggPf2h6ZTx3nc754465zZ67/cDr6SE66Vz7ibgLxDPon8DPuWc+z3v/W9No4mPAhvULOwYovd86wXfcAlccnLinOsgyDnnvPfbnXONwOeQYd8B/Hvv/alydVQj79Z6RBhagwhPzYSwqv16kScJkY7M1GuYkOV8A8ERfkj354XSQb3GcagFeAAAIABJREFU+eh8M+0aQ4SpIcKil/kZxFm6LyQcqiWzO4u8puZPcILg94a2x+zzTxDCDR8iazpaigCc1/PMP2EQ6T/zJWgmhGF4PjFdv5z8s5mr3DJTXedCYFNplf63cWDCdx3ZXFmTwaJ/NSMEZAAh5RB8W4aR57eMkIB0PTJL3UJYgM0jPy7y2xYdzjK425hagYwT8wnZR/Dz2krW7yqPGuSTZGP4JCHL/VltwxJCniELwzxE+P7dgjyn88j71sJcJ+pNmpOEGHGkrUYmRhSKs8GbNxQEIasOGb2qSRnXmkRE59vAi3XzOsQUyKq5SvfFq/u9BPMoCFoXMy0ykmIvRjNs/u3HJdoVwHAlL37H93jsiJqPt8JYXy2FezSiVH+dmE1ZfYvPiSZFhdsHj+yABvF/AEleuH/ZNWy+5nEGlch19rYFzYu2gUrC63UXYtJlpmfmF2FtrgF+L7qnf0DM1uI15Z26bauA8bpCO+OC/bhPSZx7BK1vJDrej/S9cdGHgJ8mLPab2YOZie0HbqwUwf+r2p5mZNvuo7dSIpaZYN8splsVV6uGqL+Wza94nP0918j2Y7WMVdaycpsmivzSWja/4XEW6ddphCqKb13EwWevDX25q5Ktb3iUvc/eLGS1Xe6l5Q1y0a6eq8SErVXLfxH4LcKHaBhZ+TUy2KL77tTtv0WEph1ko8rZx2Wx9mPGodL8s0yruFIrjgl+nnjEyVXIXSwePPMAcxOt6yrgr9WnpAL4vPf+qwDOua8hAaCXlyuDZLL5O43UdYjSZlaLgDd67w9qvT+DOtFnbse5zyBPfLlzrhN4v/f+L51z7wa+gXyKP+G9f2rWdx3hkpMTxcu9973R9vuAb3vvP+ice59uv7fcyWcRoesksjbVQXjX1hEEFnNMN7t/0yrE2hBzmF9EyEHxCGF12BSIRkNbCML/KMGu3uq/CZkju5F5wcy/zJF5JmhHMoubzwd6XSMmY9p+I2U12h9deiwvYOcJwDpEmDSzG/NdGEamhr3aF5cql4nl57DvsT2zCoIfn4VuNlhyyEbdP0DQQl9sDCImvtsQTcdqwnNaRyCe08lFc4Yw3mqRfrAki/2EHL0LCd/TBuRzUIMse5RDflzE2wt1exRZwH2Y4PxuZl5Gapdo27oITvN5tBBCVRsJOoqMvRpCLpYure+oXq8BkQ/uQZ7rGu2TCuRdsPrmLidKitaVUAqxo7s56kIw3N0WHe8EridIzGaeEoUOdkBdRHCWEVZbbFXIVr1fhUworbrdSkiCaNhOWDWH8dX+ittVAH6qlq62q+C0igLPwL62LePb9277AvvYQu+oqG+Ke5ey9R2PUlSCdfDZa2FxlLujtxIWw6ol8rYfbF/KWGstTz91U2j3VkSYtezspytFI2BO3B/VezQN0R7khTey0oloV4x4LUcmgL+KurVF6zAJZ6/W94WoTBNZn2sTtEEmtDXRNR+K+tj60fZBVvSzaaIbEfbtvusJviuGTYyTy6u3PUWBMyEaVxvs77mGHU3fBqD67hHu/9AbGfk1Wd6quH2IUaroGr1KjldpQKbT4qsCEtxg77M3U1Gvz7tZE1kekRupb+5l9L7REMXsg1Df2h18ipZrnxiZNEHmnbp9s+57GhGn5aIinJt/z2eRcZyxvjrAeMCHcYbXQhb25TLNih3/IVnNyTwz65oDeO9/iIiPpY5ZNK2uScpYTLvJrvG93PZZRJOSL/eWMud/DfjaZNeYDeYLOcnjJwnc/K8Ri9Sy5KQCGabnEWHPVm1bCaF9LdqUhdW1TNS2kGQO72aiZcLeKsQk7BFKB2zu1HrM98uIzzG9bqe2xwjMMULo45na/EMwVzMnYEvgtxohVLaSbE7zRoI6KB1LLsYWQiZxW9wZJgiMD3PxFamvJZvc0pTB5uxt5kS1SN/YyvxCginWOoLW6kZkIagf6f+FSP9diJnThWAEIUgnkfnatF9jhLFayh+pHBqQMV1P0ORBMMlbQxjPlkl+CCF4081MH8PGXh2ySFhB8AvpI2hoFhCCnZfTOrUh47Ze67McKeaXYj41ixCtyArk2XXrPdyNPPNtBJ8TsyowX6nZhEvOIkXrSsjjHBM1J2aDZb/NvySOrapCljnOFjvD/jg4qMlitgp7M0JGDHsR8xlzZjZTJWuSmfEPE4TqBsT8R7HyFbIKX98m7GW0pZotS/bxmEYUu3/fG3n1lq9QpYLv6B3VLKcPW8W++pqDDFJH9VphUO20MTi6eNyBvvD2U+xY8gDfbXspdVVyY109VzHWWxt8RLpFaB4nTDW14tPwqehe7yB8lPYAHyCYXNUghMaymt+IkJDNBGJwD/DHwOt0+7SWtxX9OwjJqayfasjkZuEqQuyhN5KN4GXl4pXDOlj5pSMcf6tmoX8CMZ/7uh7vRyZ6FSEP7rtW7s3qbIGxgVr2NW0BoPPTbfCWc4wOy4BY3tTHwWevHddSDXQ0U1E/RMu2dgZHJcRXVVs3W6qepl9vrKPQykixirGBEKK42F8XghOMVDPwweYg1u6SdoxrTpZrmz+o21uR16CVoPbuRJ7Bt6IyZhoAUQb52APXTBsNx8kGjlhE9qs4jzUnc5CEMWF+kBMPfNM554E/11jPTd77HwF473+kyWIycM69C3gXiHBjQtMZRPhbrfss8zsEwcmyY/fovg2IMNNJICcW/cv8CbcQwoPnhS0Thk27Uk8gTEOIhtcEONNwTsiIM010aXsXaD1bdHtU79OEddN4DCNCa7wAVw4bkf6JHY1N03OYuQzLOjWa9Lq3EQhSBSF8Ltq2k4Ts4w3R/jMEvw4LrxxbBdQh/bYIGS+36O9/fv5uaRz7CNG1mgmk0gT8tyLf3alMyY4i/XMA0SrY+OpD7nmQoE1ZgSx4GWEtR0wmMzm0EMjm7D6IRDW1RJz2/tk70sjEfCpNyLM0Py+Tv3q0vmY9p4+QS9tMKM38rZasP9Uhvbblb9mv55lGam7gSdl8ErKoJCtAFXPbJwn+Jba0EgtYLZpJW98CSwJkAnMvIgyag1+BbMSpfmRCNHOmTVqVOVAbmqPf3UB/JXU7ZPn++O61VKweYmPTswB0DLdyHU9ydIt4a+3gAT69+x3cuk1mxmL7Utq3tXGT6nfv3/1GCm2nxjUlXT1Xia+IrpLcePe/cv8n3kj927ppQIToLq7K5tpQrchYnwrMz+h9mNbiHLJybwRgI/DzBD+ZBxBh2uRV669Yfu1AzN36o2MNUdl2RGgwzcqNemyjbu9CXn/TDuzVOo0Y2mqQxU9XWfn4a9eKmZqd88dRu0270yGb9fd1M9DfTGFrMImjHequUc1AK9y79svc//AbAVh2Wx9XX/MUB//XtQBsfY/ow4/TxJqqo3qbi3ik58eIsbypj5GlUufAR5u59T3/zPePaEKY9sowriBo68xU8MvIc7FQxAN6D1sJmqw4ohmIYNJLWIkbtISL9oUz4mHE3pYU82Zedjy/RDqPiAnMlVnXFY/5QE5u9953KQH5lnPumemcpCTmYwAvcs5bUjiDRcgaJoRSheCvYeF2q/W3CUxdhIR1NtdYtCPLdZJHAzJv7SPY1q8i+H4cQOa4xxHhrpELy3WC1ltPEMie0bbeTFBumlBnpi0DTC8SlIUpNhOwCsL08cws2jwTvAyZlsxB3ByfTSMFwYRrQI+bOZBpx4YIYXmtr81kyrQTFib5LJJscgB5tuuROfb5dvjfjxDLNdrmfoK2awz5NkyVPNDG5xYCCV1ACMzQhzy3WuTbux4Zi02EPss7+ueJiZkythFy7FhIbCMWpu0wZ/8lhGheec3FMr3mBr2uabzs3bJnt0TLWQQuCyJgz7SRoN00E7ZRROZp0rqNWM8NUrSuhBj26TQB6iRZs644CpeVOwcsg0Ih7LIcJiCr+U2EiXw78mGJBZ0NBH+Al+jv2B+ghmC3Wo04NN8PvF78QFbd1kUVo+KgDty57eusoot/HBVLkaqaET733JtoXSIX+WzPm9i67dFx4bXQdooGTvHdUdl+8bbv8dju26naJuXrlg7y46/4Gvc/KwL0cVbS8o52qhkZNwUb+/NaaatpiJYjmhB7WS1bggm75tRuRGG/9o35NYzoPcaJyXq1nBG1zyCPwwTkq7Sc9fV1SLQza8MeLW/XWI1MynHo4eUE4X0z0vev1zKVWrc55oPYgvwW2WhpzYz7nAzsbYaWc9y9RCxl/n7rm6C7kgZlVPXbu2mnjZbb5ITB0cVUV41w63uEOH7/2Zdz5zVfZzl91OmN7WMLdUsHM2Tl4MPXsvI20Zi9+D3f4/vPvjwQ3AbgnVBoEYJU9WsjDHygOUQpG0AEECPQTxKcJe2DUENw7gX5yPUjjsBov1YW4JyeUCwiA9t8UOyrY8T+cYJm0iqALPucR0iakznBJScn3vsu/X/cOfdlJPNkj3PuKtWaXMUU2XbOEQSs88jYGEWEmnqCRiPO0D2EOCYv0XPtm2BCjdnMWyb4VQSn9jE9bsKjJUBcQVjN3klY+GnV/7cS5sIegrnZdGGr2l0EAezq6Jj5mpgPgJGNIabnaG1ZvI2YGdl7gskTBM4GK5C230NYIa/V65sJnq3UQ8hjY+Zqg4SM6yOIU3gDIipsIKQnrSX4EVnGe1uHWUHWP8M0Ns8wvchZ00EpR/0va5uuI2hz+vX3diYnJ/XIt3cDIcKkha02x/QVyBi3RT3TqJkPEpTWzsTaExuvljvIHOCt/2u1HS2EMN7Wtvz6Vp2Wq9L6Rglkw4JUDBG0K0ZILRKq+ZMsIDxjonszky4z4TN/nLlBitaVEOMcEzUnln/BthsJhHZQy3dCMQq/NVwI0bks67iZ1PQjQq8m4aOTrIlWNzKxmxBoUajs/K1a3+s1O3n3Ug7uXSqCaY20q4pRPtvzpnHNCYhmo00l5qdHruN6nuT8WhEVFnGG9tGrx4Xdx569HTpgdJv4QSyv6uNxbhqv/+D/ujaYZNnrY45i5rOxiTBJgUzynyUI8Q0IMbGu3q7dujg6vifqlyc7gRY5fw+S/K+uIOeY/XUHMHgS6hrD9rmojh5kdceeTStiXG5pbCxitE3qlXoPf6RlTWBvIJDFZsTXxnxjPgT8IUHw3wn1v9DL33/nPwBQ2H6K4h1Lx02ytlQ9zfd3v3zcIb66apRB6rhapf7/es1/4Yvcx9PP3kTLNfL86hBicgv/CsA3+Al+6bb/ySPKAHto4qeu+TseaH0lIM/v4JGN1C2Rmf/419aKi3Ss8HuEoP0ZJuvTtBeZ5K+Kyg8ixMTIiyWpHOcWtmF2X1bw6eh4gYnGzjFJmUcLR0lzMie4pOTEOVcLVHjvB/X3q4H/BnwF+BnEsvFngP9/snoqECFvhOCMa6ZJcRI6E2BMO2BpgMxpfhgR9sy5txsR9syM6kn9bQ7FFhoVRJDcpHUOE/xMbJXZ8jPU6v91TDStmSo4ngmMdQRy008Qus3kxRzA2xFC1UUw7ykHSzq8ikBK7Fuyv0Rb5wIVyDR0L+EZ2XOsR56DBR08j8xpuwnrKpMRphUl2txGSE7ZipAhE+KX6DVsRd6ObdF6ZuuTUsogqA6ZyxuQsWORrizAgz27UhhAhHbI+gctJPgWHUXu2Qhwn+6bimjmtSdGeiCYkLUiz8ryplikzC3IuzFC0Mqs0LbdqnUbMbEFtQbCwoHBNCWD2ub1iBbGTPQ2IHJGc9ReM+GzMN6WkHLuMI8+gAmXGHnNiZERQ6fu05C6cahgF5XzRXCRhiVWtpgTlV1iO9nkgxZFqTs6Z3vk7H6sVqNDnWNspBpqzlG/vZfenmVsXitL/lvYx2hTFe1qn9RGO/9v1f/FpzUq6KvXfo0fch0vV4PXf+blrKk6Sp2qPe695gs8cs0tdD23ChDNy6qqH3HrWmEej7xJTIrGBmrHTcO+/2ldqf8FfZ8+UCkThGVY2IRMuq263UGWhJlJlmUpt0nEtBiFFvHj6Y30woMaOc1Sxy1GnsOgfXH167sryuS0vBDIzJOdcuHT6jF/NfKBtVjlD2kb4uhpT+bavQmZJM15/uMIWbHjW5FkiSqbV9WMUNXazajGd/z+sy9n67YQjGCEarawj2r9uvwVP8uP8122XLNvnHzcxsMcZQ0PcxsATfSwjy2MaJ1b2Mc+trClSojAcVaK6dh3RPNFM9koaPcQnHUhCFVGrM2/BALHeBQJZvtt3S6Vvo9OcBvCpjfPQxAJwFLuQlZbmXC54lJrTpqQrJbWlk9777/unHsU+Lxz7j8CRxD3s7IwYey8/l5EsF83ge0QIrQ0IHO5rQLHviLnkZX3fkQYMtOvJ7ShCxFBaSEi+MSvxgCyoLCIoK1YQ/Cd6EOE/GHEgXdQ2xObvUznVTuv116vda5ChNM+QpSwZt020zbL3D2ZpsaEdtNEWDb4LuZawAvYgCzAVBGmnSqk/3oI0ags90xP9BfDrBkOIX3bgFgG/H6unBFJM2kyHz0L52vhcc2h2gKRrGd6Qv1MYfGza/W/JSXsQAiAOYSXQ4+eO0owXYvN3+y7Yv4ha7TMVmamETIiMIaIXJZ13Rzt7fqNyBg3Imaf+eeie6lFZI5jBD8iS2hqddjzABnf5lu0Su/D+guCz5AtKKzRaz2JPLclM7jPyZE0JwkxjKiaAGWEwyQyYxk/1P9mZ98Y1N3tSkxsdf4xss6BbYh5kslslp/ChF+bkExToqtnY4+JvnDl3UdYRh9PH7mOq9eKoerBZ6+lon6IjudaATi6ZA2r6BoP8/vr/CF/zs8zoku/fSzjPfx/nNflrT/d/Z949baviN8I8EjPjzE2Us2da8XeaRVdfHrfO8Z76Ve3fJA//tD74FUE34ftUPHKKFP6uxHnd1sBaiHrG23RLuw+/5Zs8CbL3D6+kP5DKFwv/63zCgUoHgCv25a8shgTyg6CKVEn9C6LiKSGuvW6et/eEj7wELQ3RxGVOIiJl02SIPlCWgnTSD/yUXq7bteco9AwyLIlEmygiR4eO3ILbWtFM3LnNeJJ3xOJbVvYN27C1cty9rORfc9t4U+W/AoAn+atvInP8Yf8OiCar6OsGde2jFLFAs5xVFmWkZeWV2iemyOtQOV4AsxVTT+i85m2cA/bCcKWrZI16J+FhOxBxrSFxO4gkD6D2xDeg3HfrPjZtBDeJQjGvSAPfx5F7EqakznBJSUn3vtDBFkn3t+HcO1pwfJGmNOzcW6zXzciYH4UZjI0RJg3TEA6iwi4Q4R8H3XR/qOEHAwvI8xDhjOIQGuaTnNMP0PQypjpGIT8I5Mh9pE8hAhfZq5m2xu1H0xLMqp123mTmY/VEczALKkjBD+bvVx4bpZSWISEY7M8VlZvBSK0Duh1jyLmuybk1iEa8AZE8zSG3LeZHB2L6hsC/hLpDyOkIN+Dfyab46MOWcBqRLT2FkJ5TOtr1b89wDdnf/sZ7NO230bIbN6KzN8btP2TPbtnkHF4jGwI4fN6bj2BuEK4j1KIx5nByIG9G40EUmWBB4z815U4f73+mZ/QIqTvtxB8msxxfoxs33cRzLZtf6v2x/not0Uss+hkphE9SzBznj0urs+Jc+51SHKslcBHvPdzPfQSZo3YrOsY2QhEpoM1i2SNb+sIqyRrCtmM7X3IxBWb0lteCQiJAm0y24FMkCYUvkrC0R7c97/Ze/f4qKqr//99EpjcmBAzISEhCcGEW4w2AWq8EK2KtWL1K9ZWpbaVVqutrb3Zp9evtj71eWxrb/bpU7W2+G2VamvFX1WsFq1ysUbApIIBNJFAQiAhAyEDuQyQ8/tj7XX2mXFyAWKllvV65TU5M+ec2bP3Pnuvy2d9liRIdzQU0xmKra79oWkPEibkKaNtFHAFD9FpGnEnN9NCEUWmxHeAKF1ksZQF8ivK9rCIxdzGLdKEvGdJoZ8GhFGqtruaivI1NHVLJOae7uup+NoaNjz3XgbGGWNklaG0bTaN0rBro+9Yq6qCeIk0OgLCUNaIr+DWG7Fed6ZC72pkxza1MXpDWCsPYDX0zsRChaYij5qO30GpO6NjkQN0pkGOsYg6kQVznfl8LgLB6zXtM7fgS9jq6t9DlHldgK9FNte7zXHJGEpvajRsaPD86x9g9rTVtBsLqIRmwoQ8Q7KKOh7hcg+Cl0MndVQxL3M5P+FLACRzkDu5mQt4GoAWxBhtQyJdIcJseP29LJz2GwCejM4nJxD22L5KizfT1HmSRN6A1tfLbIQEbOh/LXaeTkTGVokb1iDjp1UwMnhrusg4rH0RzIaIv4DpmchE94/fG76bHGO5J8dzTkZF3unIyahIP6Lk7EbWNE2EVbYqzdOYjE0anoAowa9gva2qCIWxRkkqolwdItaIUNav9yPKrl9x9xtBfViGrS7Ttm5sPos/wV4pZOPhXX6FT73gmtyt9L8TsIxPmpy8m5HVeihDmBv7sPCwdESxe8GcM1qGSTZwFTI+BeY9pcBtQSJJa7BbxnREcU9CouKqZGuuisJ8QBRxf4FDsEU185A1sQuJvO9EvPxvIOvqUsTZodEcpS9ON/cswEbRNDdpNERpmrWmh+ZyKLR5uJykEmSP1vmbjhimGoUB2wddWBKARJIoMqS1ZRTyVoDMs1asYV+AZSwdT6wPqwj7LKoRotGeVN8xWKhaBpbiW2sPZWIjehpdAdkH9bepQyDDtKkLO19GRQ4dXQzRcZzfIMCIDtd1K3zvfwD4GTKd73Nd9w7XdR8DHnMc5wQEmX7cODkmRVdqpW3y47IOYp/CNJsIr6c2Izav1pYLIQqdJopHzJ/qZB9ElEHF+2vOhipCO6FpyUlehCFt4h76ewMUFjd7kZAGyokS8IyPflJoZooHHQoQ5Wd8wTNGXuQMgkQoNxlwwcwIT3OBx9ZVw0ru41rv/oHUfqp5mZZUMX7KAk3iqT/3Ne+c1s4yUdBNPyTN3k/OijAdnyy2/VKNwJ5AHuLTsDS+/cD6Xqgx/dk1Va7RfiOMWApp4PhqZ7h+JVbhdjo+ryI1aIyUFUpkSwen08C8tEaJg4yLGic5yEZSgsDNSsx7q7DRlTEI61gJ9ncWYtm8Ug+y4ZX3UjHLhBz2wbpt1SSlSCjtTw9/lKQr9pOTFzbdkMI8X4b+ek7mEv4MwMWms7rIIosuzxjVY5UIQSqmrZE8IWS8ekgXeBkQzUohadJ+BlbLKl14WSOtXy+B+43qOBdb4drvAXwDSx6gMDzt/jMRiJc/B0UjWWCgdv6ijG+YD/VBUerhY8woUUni3zpyYlI0/hfZ5p93XffBI7nPu8I4cbDKqJ8+VQ15hZ6oqJGRjii+quyr0qNJ1BotmIg8P6rwqMGi3BKzeGu1bX+0ZgLiIddCe5r4jLn/ZEQpV4V8KHjXXt+9lSHsXGzyO1jlT+8/VME9TBsVcqNQt10khlAdjVyO7JvJiBKrxAJvIsvPLmJzO76C9LN6zFXB9RPYxBeE9EeL1fhLN399SL8NmPuWY4s0tiHIgg3I2FQiziFVnicg6+vVyH4zWHX1I5FGLPxOx06Zsa5CiGYGk11I6FHzVDQaoZA+JThQIgCl7B2JxNNdv4L0fRmW4lcNHoW++So2EDC/4RVk3DWCqDTdOg+UDlpZvw5goyEKR9RnWeF4+lw1I89nCAvt0nHXCMyoiMto4BvvR1iif6tvmOq+v0DU0lZgjeM4f3ZdV/kQvm0+Py7HtGg83W+czMTik3YbXapQFGsQZTfFd0kXslibGnz0Ig+ZPlQTkYfPz2dZ4fu/BHlQ9tm3UtKitLXnEzTUsa07S6gorvO88dXUet50gCJauIubCBuv9Rm8yDLme5GVRSxmCQtZyBJA8hwCRMkzO0VVoI4OcmNzGHicXz93IzPPNeVlc2DmZ+vYuEwU4oEvZdAxI8NuilcDv8QmVZcgim6zOa4BdqTZTaCXWEpl0qEoWxYkzyCJy2kIAZ1+7JgWxzTe+njIHcYwUY/MQSRpX5PyG5H2XIPNnTkZWcguNsdrEQWg0HfsT1xtHAMVeDklX5x1Bw2UexC6jpvy6GwPeQZJgCjJHGJJt+QHVWfWEiDKSmpi2LrKaSDfBxBuoYhcE9FrpIxkDnrjDQLlqyiWsWrqLiN4QoTgZZLg07qsjLS5e+i90hRt7EQ20FXYoplrgc8gtMkgi30XNkLYbPrNn9/ur3ANxBoeaUhUyzeWsTg+3m3iOE4Rsk9MRLaxe13X/VmC874AXIeowb9yXfenvs+SkdHY7rruB+OvPYy2jNipZj66DHjEdd3HHcd5GPj3Nk40+V2hLUofnoU1CNTBlIdsIwqx0rwU9cK3YxmDFNKlERjFxu/EJt1HeGvhPIWW9SEQY6W+nYDNeYDhE9XjRWtj9GApj8O+79Pf0GM+U5hPY6KbGXkPVmkHa+BtQpTHI60Ir78zBYl6KDV6umlTGJs8XUusD/KDyH6jdS+U9EAha2AJC1T8xRh3mu9UqJ/mAoFNGp+A9NN+RLlehCjSz2CrrkewxTx1blVj4W6jJX3Y/KRdWEVdCyyqkREfsdGx9xsSh5Dx3G1+p7/GCwnukUjSkd89HkNsg2XljCAGtTp2MffX+Z+N7MvKaDcXMb4VHqaFG8E+U/r8qVHRgmXQU0THfmTeKBxzF2IA7USe2aA57sbmT2l07qjFZbjwYY7jOH7b+l5Dd25v4borHMcpibvuVKDRQFxxHOch4P84jrMRIQR5ynXdVzgux6j4cxLCxOLk/XTCPshXjnlP2aD0lDORiMIu3yX+ZPcuYmtQBIG5B2G52cY3YWnvgN61J5B0klReL8prIIUoLcVRvsV/sdJgj/pJIUrAi5yECHMHX+dhrvC+djqbPeW1hzSCRHjcaNwLWEot1SzrFirilswicmn3EubT6OFpLogt/t0JGw/6Ksa/BzE41NjoQgy0Nb7ja7ALzPPmVT1E05FFysvlyYYWjXooCYHmNBhFtvMNYulpif3fSQPXl+OQZmrSHMy2p5acIxEMAAAgAElEQVRhDaiNCOPHL5FxXI01PH5nzvmu+Q36u9cANxz0IiMpc6P09wa8yMbjXEwpTbREJeoRDOyjPK/Bi0Dl0kED5SzMFEOxg1y6yKLGV7q+iBZm0kDUXNNMkGQOeUn0l/BnIgR5xITjymgkSoCLTOHvxZmLKKLFi7zQB707T4ileS5EIls6b/X3qZr8HWSB1oLwzYhxV+g7/6C///UZUo1gK2Kc+CMn8UUZjzE5es36IPAV13VfcRwnCKxzHOevPqcVjuNUIIbJqchW/xfHcZ50XVet7i8gMzNh6qUp39Hrum7E916Z67rx6uL9HJ5TrRALujxil967wjjZj30uNAqilKkTff+rIpSMnfa7sF58VXq0RokaHmoQaGLvm1gDRhmBlP5WR1WT7LVGisJL/JCvFCzV60hyOlKw7EVzkL3IDw/T+6ril2zak6g2i19KsHh/ZWB6AxulOVJRY+BkRKGfiq1UHkH63m9Sz0XyJxRmp4xNanTqmrcL2w9qKCYjMLRd5vvUZaAFOrUSecC0QevApJrzlRHxRORJa0DmjCZEJWH3faUlzsKu0Ucrajz1mDYp5GkXtp5LIqNit/ktmpOhuYlKt5uFpevNRPpgKBYwv/QhSHr1qWlER+FjDb77hn3X7UbGJIRlzlLihjxEl+jHsocqrEujMEGs8ZFnXjXqokaiRpbasAbNLmzxRTXYRi1NcvjISafrunOGPCOxTAKDsRFpRR6XzyNZBePNhnF3oouPyzspB7GWRSuxUZMg4uooMccmGd5BvM1FyAOShoUK1SIeAF3otJC2HucR62EOAhvGeFS0udO2EfBhBFLK+8mii5K8ZqIE2EIJRbTwVX5oYVpEKKWJDpMIHiHIk8z37tFIGfm0UWLCFmuZQyNlnMGL9nvo55uZQj9STxUrqfFyTq7PvAeAgmlt3B79JgWBHVB4kNziNjq+Z2Bc15rfqN1XiURKlBhgDbLQKhyuk1gjTV0Cen4NsLIVzyAMZvsWAlWATc0ZPS4CWn2RlVSAU0wNDiNp2cICBmKs1GDHbiYC59LNRNMkItjciwiimKtX60vAvjEM7BM1rLy8nsbUUtZtE6atzxbfRT5tzAtIpOQerieFKHebJBZl5AqZRqTQzwpqKGAHVdR5cyFKimd8LDBZsmqcVlJPE6XefKijinks9/JaAOraKz0oGTshbd4eektM5KQSGZtChDJ5OjaCohTKWchYac6Q/q/9oL749fF1gdT4yEUmxyxzvJrYZy2NYyohfhRgXaYIuRYijxhn1SRiKwzMBF5yXbcHwHGcFxAahh84jlOI5CzeDnx5kK85G/iM4zjzXdftcxznOnP9fP9Jh+NUM+1Tk7UeC0Q6bHlXGCepiKJehBgC05Hd3g8HAVHYNA9FPzuArGmHsHh8pbXNwhZy1HNVQdIcPoW3qHGhydw9SOmgMmw9DsXrZ2GjO/1YZq/t2PU1UV0MPc7GeqIVDrMfmQVahPCQee0iFuoUHz1Nx9YT0d+tNMupHNkjH6/8noFAqDQvQhP53zTtfw+ihRUhxoGyd/X42q+1Nf5h2uqvhRUvg/lTxiLrYBGi/ZUi/ayKvbK5fQV4DjGcVpnv/CCy1VVgoW8XmPuOhoGyCgzZox1HsD6koeBJquT7lXed30EsEYNG1EZimEzFGrtRZFXUuiHKMjcXa+T7E8+rsFTDe31t0sgQWDY4Ncx1zDU6dghbgFGpuDV3JRNbK0XzdFIRgygdiZilIqqhP4XyqGT4yMl4x3HuBR53XffxIc+MlUTEmq7runcBdx3Gff4tZaTwh7dHxhCbAO/HwedirQ/kVSvANyGLlEKCdJMqRCazKuERLB4SbPKxKnPKiW5qinS8WEzpGTa3AySJuo0CcuhkCs2U0kQJWwgbjE0ldSzjIs/bnks7zzKPkHE3XM4jtJPLek4GxJj5GncwxRgr93A9EYLkGZhQkAjV1PKhzEcA+A9+yHe5lVqqKQvIKjGzeD1RAnQY+FPuGdsk30ThUA9ga4Jg+ioLC2frxHpeQIyEtVg4Wz0QnGpyF14xm1gaBM+EiI5HruQAjUmz93TV1YMZxt1449drGKSCJi/lILFwhGZskUj1aD2CREvUrTAVWTivNsfLkY3F5NYEl0QoD2yko1gMxUbK6CGdah+I+Gbu5AMIa9fnuYv5PEkzUwBIIco0NlNPFZUm6/4ubqKHdBYaN+AUmlnGfC/nqIss+knxjM8gkRiIVzkNFOS1eTkpRZ9tYd1zZ9pQ/EvmNQsbWm/EUFib43nImOimnYI8A/o1vYjyo7CvTjUodfXeaE7Suica8TpGE+IdRpIQP2yk3budGAZVvBVNvgG43XEctbLnY031nwL/AT4rM05c1/2j4zhTgIccx/kj8EmsKT2cDOZUA3gU+B/HcS7CZoodtrwrjBMQhUUrYUeQZ2UvthL3fkQhUmNjK7LGB811mlOShe1xTa7dbd5Px9YR0fso9a2yFcUnMGvxR40A6PO4G6uw9SHKmN8YGUoZ1fyBVETRPBFbPFAVVO2DdmKrnccbG3NNP00093gDm4R8OAUi/eJXfvOwSrd+t9YvWYP4Qj6OjWipUajRkv8PSz37ANLfEWKhcZAAsppADiAGYx1SSOfrWEIBNQbSkXlwMhYq244YKGpQhrDJ29kkNiQPVw5hC2vqb88a8gr7m1SZTzdtVWMEbI0Y7d+uBPdIJP9AVkONyuxGxkHZ4TRfpw9ZIf2wMq16rzVH0pFnRq/VXBRMO0vM//52KoFFFzK2SYixodEjhWrqPE8ybRpA9ISgue+o0mC/PZzardhqCSAq6kjsx+MiMiz84e0R3Tr9HtwQMmvBxhgVy9ILKWkyof3FA7uwxkYWsdVyg8Bj2NztOcQuyqbGRFqhrHyh4nBM5ERuKU+8sjNdw2Je9nQI8aqfzKukmSergzxKaCZgVrQusgiT4923hC1ESfHYubLoYjnzvM9T6OcaFnO/KebxXW5lJTUEiNLjWyU6oyHGzxHMWsejxRT+ppHWZcYqS0VCvOplqjD/q6f9SuBWJOIC4hsuw9Y90aTElGzoNxaOh0HV8SqU/nN9kRCyrSoXQRRkTWZvNHVs1O5TWNJfzXElstFejB3fIgTcYhLeCy9rJHpZgI4XTcRoHtAMX1vyXQDujl5PZE+Qr+bd6fVTgKhnGF7M49RS7Rke3+Z2fsZN3rn9BOgnQCmNVBrCguuNZdRkLN5e0qmlmuuRiNad3EyIsBc5qaSOx1jg5ayEYmLi0p6kk/Yz8KyJd58mDG69jSdYquc+xDCb6LuwD2u8gGzoJV7DRfSr0jTSpW/0Is9Rh+84nWPWOBlZ5GREkXbHccYBfwK+6Lput/8z13U3Oo7zfWQW7kO27YOO42h+yDrHcd431P1d1/2BiXr8Eih1XXffUOf7m5boduae+7HVfI5YBjVOHMdfKWpQGXBdd6T6ztsmA9jIxXhsuasJiHK0HnFmtCJzRpV7jWjsxtYIeRM7rxRWox5crRdyornmbMTIUbrWsea9F7BJ7gHzWZZ5LcFWeFeY1nYsXFahR0MZBs3EVvzWSuFgjSaNXijdayJRL7UmJ0dMv+1k5Eps/P164o7fg/WSR02b/oG4ANoQ096fdK7sZppL8SY+oCN2HYs33o4kwnMHooC/F9lHJiPraRYyjiciTGwvIQZNM/AtbCJ3MuKqmISsxSM15uIhfEnIXHkTMYr8bHElw9xLGbJUqVfyB83R0HOykD4eaY6TFuVUiuksZDzysNT9Gabd/nFXdi81kCdgqbWzsWxqakjrfNPK7/qdSmDQbq6rxeZFvYGMVYNpg9J1+yvC95jz/ZD9o5LhIyd7Xdf99BHceQ0w1XiwtiOq18IjuM+/pYwQ/vA2iFaIV1F2IV2JxvCW/JNO5AFXJVrBD34p8d2iCOuNB/G8FRLjtUir2OP9n8UeOsjzmJoeiX6IQ4FkUuj3vO8rOYsIQU/5nM5mnuYCz7MeIcgNG+6ne6Y8qU3JpfyCG7mZHwLwPOewhIWcZ9zgIcJ8k9s97301tTzOJZ4xdBc3ESFINbVsfEW87x+a9SCb90xjSl4zAHsnTqT1+2WkfUZ+S2/ZCeJlV0NhAxI10X77CVL5TD3x70M2LP38IKL4L22FoOlgBzEaVPVyzV+a+bzPnKNs4ScjioPHHt4bW5TxJKxyALI5zDWvXzQXZY2JCfG3/q/Q8Ob+Riq8d7xSTOH8RhYbPS6yJ8hFecs8soKl0UtZFLg/pkBmgCg5BsZ1C7cx79CzfDJZaIDnsZyV1HAxj1NvIh1V1FNHpWesVPMyafR4xsjN3EkjpaQY4/Ln3EQRLZ4BtJIaogQ8woO6aCUD2zNIOs/iMUoym9m48wQbLWhGIkLrfccTfccgT6j6+ItM/6tRtw/jeQr5LojHQ/QQE5U8lmBdoySO44xFDJMHXdd9NNE5ruv+GqmagOM4/4V01JnAJY7jzEdGJdNxnAdc1706/nrHcWoQ838pYvJ/Lv6cQeRtd6oNFTlpM38J63kaSQaKR7NBRyJjsN7TLMTBWYYolqnIc6EGSD22foRCtYJYJq1Uc71i/YPmXM1F2Y2t7RBBvLX+CKUmfWtxxQbznnp5w4hRokpfyHymyt1Iks8nYRm/VOmLYgtQKgwtPnchXrT2isJuMrDe8COhyo2/5oNInE8LVu5E+kNpez+FjVykElts8UVkXT/S6M1IRSMpBQhg8j3YqHwRcIn5DX9FYF4vIOxommg9AZk7H2HklErxOq7W9FDIVQE2EhhmaNGChRpxUQKHABaiqMnmOkfiJX5+pGBhg6r8K3QwlVgqX4UYqmiksQRL3KA5UZoPdQBLRqGRQ52DSl4ANhl+JzYSqsaPkgaoY0INIM3NmYg862oMHbUMn3MyLKzLcZzfI6pUjuM4rcCtruv+2nGczwFPI131G9d1X0t0/b+iOI7TPdwpwA7XdaeNwneVkBj+gOM4nwaM8Tg+/uMjEH+NE7BUtOrFDRLr3U2T09djPcw1wF+IzSkpQSj6QDD7m7EeihsOCqOTnj8DehtPIHeWKLu9pFNKE03G1ZUTCFNLNXm0exGUHtK5mD97xsla5pBHu5e/ECTCkxXneZGTW7mN+TzJ85wDQCchqqn1anEkm4fCzw4lyq0ow2FyWM48UuincJbgoNooYCCcQdNeqcdCs/RF7waTx3Cf+c3qJUzBQthAHvwZSChd+60Jy6xVhmweaYWxOmuM/robcrJjaZw7sRpRIwal5+POLEmz1MEa2m40n5dlWy/QY2PEmJph/kTPJ/ez2+hYUkxHg6hMaWV7aGvP92qIVBTXUUm9lx9yeeBPTGcz9Sbk0EUWEYKcaqb3det+x/dmf8UzNNYyh0rqCdHpwfYAcgh7FeGVyUvHVw0T/Y5SmggTYrOxijUZXg2myJ4gubO20fG6/IbcadvY+HqV9Jc/AqgYbD2eiH1cxiFP6MnmeId576Dv84gWYgRL8aw30AiKjs0xFjkZhSKMjlQm/zWw0XXdHw9xXq7ruh2O4xQjLFmnu667B/iG+fx9wM2DGCZVwK+Q3JQtwAOO43zPdd1vj6CJb7tTbSjjZKPrulVDXew4Tt1oNuZIRetkaN5IFqIwnYilBs5CFL8axEOt25PmbbyCrV2iCpImu2t9lL3YCu2qGDVjc1YU2lWFKLzvwSpRm3333oWFUSnT0HTzmT7PiUThQy8iWUtZiLKplKlaj0KVQC2imEghBVnDpyLrcwY29+QNjt4EvhCBbCmMp8G0W/MzrkccTeph7zLfuwGJQvyz/SBtSFzzdCQeqfmqGknRPv49MqcuwCZ7T+XwWdcSyXZiHaWagD6U7MKywmliuhq8u5D5osZEF7GGhP8eftHolBruSViK3lRkvmpV+Pj7nY3MwRSsATMWG9nbhc0NU6IGZU07YO7bgzxXWnF+OjaHSgkJNiHRRs0Tm4g8f0o9vYtYfeaoZRQiJ67rXjXI+8vA0OO8+6Tpn7GPDAV/ADB47nvl3AI3/vMjEz+dqeabTPYd9+CFRjxK4N3QbCIqm5EtXT3K5yMKty6SM8yr6pmrxsTkWqQV7iGYGfGgN1ECBImwiMUA1FPJCs6ihGZOZr2XBB0mx/Osa8TkZNOINvIJEvEiH9/lFu5nEf+X2wBYwkfJp80zSh7hcuax3FN2U4hSToMXDSijkXIa6CXNq8Fxd/v1nF7+N8+I6hwfYqApw0YZLkcWHM3VuNIcKyXvSwiSXaMW1yKVgJQ5S+tqpGBqlZjx0OgJwL5sWejUq7hfTvEiK4WItyzNjNUYZLw0OpCPgeCZ8a9BxlGTv2dg2dNK5JRIdxAq4eLyPwKwvHseA+sySJotUYguTmApl3rGRglbWEkNl5ok9mVcRBV13th9ffZ3OJVa73gey+kii2VcxBU8DGCqwTfSxQlmfPopPdTEw8nCxpZHByE6PeNSxz3gAyrXUeVFTsgTqmGtVt9AOeNLdrL3AxNtJKQLMfRO8x33YefxesRFoy6cMnOOKvSdANm273uVNc2/G/pdodlYg+UYkNEpwngm8DFgveM4xrzlm67rLnMcZxlwreu6bcCfTM7JAeBGY5iMVNKBD7uu2wTgOM4nEF68GHmnnGpDGSenD/HZ4ZzztstYbEXsCqwXPoBsFcmIoa4U8UXINNfIgiZ/78UWflPYiX6WYY4DWDiWYuIN9JdqREGaiDjH9FndhSjiqgSqkqfKo0ZksngrJbFfdLlQSBfI2tqOLdqXjIXZaF2WwaIxWoxwsvldmnx+tAUGJyDKqCr0Tea+6ueYa9qmkRrNMWhBDJh3MkD7d2Qcta8nIP1dgCAFfo9ET96DtF8pdceTmOp3JKL5MxuQSFIQa4hORCJQT8Rdo4VGlU5XoYBa5FMjfUnIs9FiPhusho6yXmpkQ39XFJljygynlL3p2HpB/nyfJKTPWpE+UUrmPqyRoxEVfT+AXcsPYAMUPYixswnLKKeiOS/KyNVsvncT1oBRtrFRk1ErmvJvJR8apXMGlZHAH0ZfDiIzWI2TEG9VkkxVeLAlNPKzbeQjH1HQNC1lDbaoHciC04LF7vfB+Hk7ieyxOa4dLxYTOEPcT2exglqqPSOkh3SmsIVkDtFJiBpWkkYPp7DeMwyaKKOdXOabTMsyGllBDVfsfgyA9dnT+AH/4Z1fEOe2uoOv8yTz+dbuHwGwOXsyj3MJtxhjpod0zu1+joLMNtq6RfG9I+8b/Mfrd/Gf024GIJyXw09Xf520LxpY19oT5IG/yHxJI7H5C1lIKFtzGH5BbPErzZVuBeaY8VnbC6E0SbYGm0/ih2X5mdO0pol+3mrGRqFj+qqFNTU5UQ0oDQOvwUPf35R5F9/fdCuPN39Y3iiBmfPrvArvdVQxh3We4RclhYUsYYlxSGsUQ6Ng5xlWrVJzfYSgB8dKNztRCv3M2LCVj1bcAgiMK5xsa6Xcyc3UsNKLrIghk8VKzvKu98vGbSczs3i9F0nRCMrF0/7I43xY+k2Vk0fMqyaS6rzOQqJJCgrKJ3b8OnshmAYRvyaUhg2tKBfjuzdy4rruKgZBLbmuO9/3f80w93keS74d/9nquOMDSCQl/rx3xKk2qHHium4fDJp7EnFd94Ce805LJ5KXcA6ixM3A1il5E1F81ROuMBOQZ0WVZLBwKMXRq9Kkxo9WJR/AVmr3JwJrIUelOAVR8hSuk43sNerZVopXhbT0YR83ZfZKZFioMZGHTdDWxGWtgq75KEMNUDOiZA8gSqhSMh8t+9Q5WNpgXUKeQPr1QoSsJAtLy7wTSXx/haFhbfFJ8G+X/BQxCNKxOUYh893nIHDBZ4D3Y39jJgLWXMLhs6/rb/JDu3TdDuOhAmJEoVFg6X7HYmHaOp5q+KqhOpjx66fABhvJCJo2TMUaIAp7VINC36/CGskKmezDRjAPYeHF2Vi4lx6rsaP1a/S50PyZQ773lY1LdZaAafMk89lzWOKFUZFRgHX9O4pSTao4jpOJb99xXXd3/DmHIyOFP7w9El8ozsfuRC6knWJPqTCnK5NRsznOx1bP1gRqP1pMObcBZsDe5RM9Nq/yvHraz8jzlNsVnEU5DV6yejkN5NFOPm2U0UQdlUQpoIkyQoQ9ythv7f4Rm7Ml4lPLqQSJeMdaoFE96jfsuJ+/5s+lyqxKOTv2UZmyEcfosC0U0U9AapsgSdrVmbVcw2Ku6XqQ3OI2NjOdpPH7eZlqGiinnxRmX7aada9I5n/huY20fr/M9kMZssjoU3UysWwhvchmqJGTdUhYNQ2JdugClYZAuToR5bGdWJpBf82ZHOQ8NVbiFexmJGKjbcpCQrwViGH1hGnTPLzIyfefuxVSoXB+I61LyqBP2NAUxjWP5SxiMZ9EckiuYTErqeHz/ByAh7mCDnJ5P0+bJoYNZEs04TzaaaGIRT33syJ9Lmf1rOLu9E+zoqKGB5/6FK9eOI12csmii4Iesa6uTb+P0kNNfCP5vwHJIfIboGn0ejkuIExrbdF8qgIy/m0lO9nbOJHHty2w/XYQGwWbiMzfTViZYPpRmXqasQxeADVp+Eq1YGsI+aJgb9nFxuBLEHpnZXQiJ//2MhK2rleQZXMPYsllATscx+kArnNdd91QF/8z5CCi5PzNHDci60I7EiHWgovjsQrORPOqWPVdWNrSCKJQRbFKj3qqVdlJRTzUISxFcRJWYZxu/t9q2lKEhdwoI5gmMquipzAviIVVxbNBaRuUBlkVP63VognMB4hVzuKV+0os/GvA/FY/N9yRSAXi1R6PpWJejvRDNeIJz8bS9z+NKKUvjODeiQyT0WDKSiRPION/PpZ1ajwCB08FnkKWzIlYiN50ZE88mtJQzdiclyAyNmczeInVbGL36d2mnf1IfylBghodAWRuD6UNag0Xnf97sfTEGuEbQCCI2v/KdNeHLZao5A76fOi+HsKybGkUsRkb/dQ6J1vNe+VIVElZ5NSg6UF0OWUhU2NksByro5K3LyH+30Icx7keuA3RMBRW5SLT8WhkUPjDUd53BKIGCVjaYB/Mq/dVcAxevhnL/NRsXrMQBa0CgRv1IQujWtyN5j1dlOceJHdWG53tgkUKEqGhu5yUTFkBy2gkhX6vongP6UxjM2FyuICnKaWRKCn8mYvJpZ1XOZkoKVSnvsyMdQLQnDJzK4E+iZgAXPTcs/zs3E97UKMV+afSRJlXZLElv580eryclSk0U0YT7aZuiuaepBDFHTsWdsAt+d8kJy9MJznk0kFt+6m0bi/zckjmzVrOsq8F6PimSWfVaJLmKDQjEQo/HO4h7AKjhqBKEMhKk34swy6YjdgT09Kkr1Uj6kU8HTqcWQiTrW42lUhxRY16dQLfR0rVTUcWxr2mjcaYTDppPwNNGeTRTt7Cdta9eCa3t3+TK/MEgrWceVRT6/V1ClH2ActM2YlFLKadXMqMFl9LNSU0e2xeVT31NKSXU5t+KkH2UZdeyRca76WzbBybLpxMgH6KaGHKAztQ33tVeCP/r+gjfMxUiqzeXc9d2Z/2IiYLWMpy5nl1TwJEae4r4fmdwoI2u7iW9vJ9kjujxUArzZiZ+jusItZLqga4YpizEGjLeea41nzeZ6KOrt8oAQGAH5d3u4zEOPkLsNR13acBHMd5P0KO9wfgf8HHS3gMSTuiZD2C7H47EaVmItYjq/+/ga1VojS1LcizM4CFxmikNop4q5UBCXP+ZnOfA8j6WY0o3e1Y/PshrJEUQRQ5TQjeYK6Pjx7EK99hrFc/BZvw7K8bocrbTixzl1+5LzDnKeRWFcOjVfTnYxXVXcTmxS1AmLGykd/eZj4fiWEymLwdhonKM0iuzCewRSRLEGrkVebzZCT/RCFKcxnZ7xkMAqYFQnV8g1jaXb+kYJPPdV5q3tAEZA7pvALLZhVleOMpGZnP/norB7DJ+mrAg+1/LUnQhy20mYGl8B7ARne0YGg7lvUsE9mzNA9FKbHDiCHlL8ao/bKLxJRMbwt94PCRk+MytNwMnOS6buewZx6GDAV/eHtlDFaDBZmx8dXhC03tDCCSLYvHSVjleDWST+GvY/JBLIOXsnmVmOPOMXQ0FkOZeIiff+UDzJxV58F8NG9Aq3vXUWUMkgBL+CgA81lGNbUeO1M/AerSK6maKXZdbfqpdKaHuGzpUwCsWHAqX2i8F9f8tHD2OIpo8TzvkfRxNFLmJciftfpl/nrmXI8d7Nt8jyJaeJoLuCf/evkZhKikPqaeRu6sbQRnSfuXRi9l708mWuVWE9wrsJJKbP3LK7Eh//W9UJZmsdZgN2cNEQeRPJF6c5N9xBo1/eZPDSL1pmh0Zo75+4k5/hKy6Vditap++Z7xJeJy3PvERAova/Rqisw/YxkNlNNpkjEi0XEQwIuEbGY61dR6+UAvcgZp9HD+Dvmhi/PLaaCc+Wa8O9NDXPTrZ3noU5dy5Q6B5W0py6edPLIQyNyM1VthJkTGC4wrnB0ihzDlh2QlvS/7YxTR4hlAjZTSRKlnfJbSxPzMZWzOFON1Pss82Jk3Xj9FlCtdiOciwCIdiyxkPE0aC2lYKmYQb3Mf1oVBGvjminUEqJHSwTFVFWMUYF3HZWQjOsd13Rv0wHXdZxzH+S/Xdb/sOM4xOwT+itotWJrgCDaqkYpMc42aKKxrIqLUb8Vi91sQJUorqWdgjRtlE8pGlMKdiLe3AetX0wiNGiURrCNWFVslHYmX+Boes7AsYsoapdET/c0TkZBXJomT29uwcBmtUq90yUcqhYiyGTL3y/B99weRvUHhPPuRPlk6wnvH0+/+sySC5MFMxuaiFiFj8IL5fCd2nijL1WBtVeKZweBrmjei8KxEBozOBzUMlKVLI3J6jc7nZCyJw0hgTn4q6gAyZjp/e7DkD35pM78rCauiKRFFn+9V2eRA5nsAMZi6scUwlXhC+6DA/N4i7Hx6YYjf4u/794CvlvVRyNtXhBVMrdgAACAASURBVPHfRZo4+nS2Y1Di8e7BuPf1adgNvdm2ei+IcrsSqwBrIrjW87gWUXg1nD4RKBRWJ4Apxc0s755HZaYYFgGizGO550lfZGBBNaz0EpzzaGclNVx/SOpcLE8+jzw62JIuMK6zlr7MQwsu5aUFktBx1nMvs+XcfK+OSZgQPaQTTJcdKWfdPhbPruGrqwV69OiZFxImx6urcTN3spQFMRXlS2gmQtBjiBpYl0FHSQaRQpNz8sgJlo4SSBq/n4GHMmyC/BNYeASmj8qwMsewaoWwUapOc456ZiJIJEQ1mCxiiyqOiXuvF/GsqQH0dyRi8w1zvMbcfww28lUJPAB7r5E3KpasYUPDe2mtl8auXLiNAFGiJt9jXuBZVlLjRU4iBCmgjce4FIB82ljUcz8v5SuzViNX9vyBSLpk+Yd276PzU+O4cvVjXt9M2bGDKY/ukPA70H1agHByiNAhMSaDRCinwUuQn85mFrPIa0MWXRTR4h23UEQdVV5OSz2VtHUXMLA9wyMbGP/TnexdNdH2lZbn87N3+XOr1pp+U+Ollzg8uhbH3Oh7rxX7jB1DhgmIcXKMNelfUUbShbsdx/kaEjgFuALY4ziO6urHpPgblmRe/4EYDcrG1YVl+vF7qrXeh0JilAlPoy2qQGoVei3MqMXwUrH5JypaCV5hq0WI3a9sQ5o4rMxWKpp875e/I8oxvntpTYlUbCL/BAavpD6ZWENC+2jtIOePRM7H1osZizhGXkBYEy7HRpUOIE6SZw7j3kdqmCTKUzkcQ2cvAhdUmNwFyB70FUTbWoWMwWfM+eWITvHLQe6nDjlV3OMV7H8glMbKvtZDLJk4vNWBr3NoJzanIx0Z4xexdMDhBNcmknRkruZhIyYaDdGojl/KzGdq9AeRebXftEfhWWqYJmOfoV3Y8VHYVgQLo1QWvj7TN0rNPdJckqHY7w5bhu6847CuoeUbwIuO49TiC3i6rnvT4Jf8K0g8W5fvOC0Nev1F/rCMTiCL+0zfcT3CiaPGSB9iqFzu+7aJe7yoxxZKCGWGPQhOlAB3cRPnGIDzEhYSIEqEIHOMW7qLLIJEyGyTe1wUeoqUu6H7C6Ig91+AKLcacs2FKet20G/gS5OeDrNiwankPGdorcbDV5/6OT+88PMAXMyfeZxLPGW2jQIKaOPjPb+jPV2gXv932x0sLP6t5/HfPH86Lb5VrnWuqXNi4GwD38iAL2INjWrE26WL7HTEyLvZHD8PvIaNcoAsgkpZq1KC9d63Ig4INXKasIxf4KMWNscfxuJRQcLqqxCl+wnT9qlY1i6gob2cheW/YXO54Jkausvp3XACHzpDQLuLWMw9XO9RBb9MNW0UcDNSlHEpC3go/SNc2fMHAE4L18Na2LJAogo5y/bB1bDlzHym/EIiWytuPJWiG1uYss5EupKD9BMg8yUZ/5fOLCfCOHrMvO0nwPv4GxtN3lI1tbzIGZ5xGiBKFXUezOvJ9vkMhDMg5yDsE3Vy7xMTZe5qpEu9d2q0dRHL8DKHWKM9i1hygt5sJMyonZ+LLSsP9pk7RmqdOOAes277fx0ZiXGyECnO8pg5XmXeS0bKOxyROI5ThOSxT0T0k3td1/2Z4zjfAa7DwsaPGj+cgeyGE5DpvAtRDjMQZVMLFaq3X6Ma/iR4NSD2m/fCWOreAqxCuNV3HJ8Tpdj7LGSPKkcUPy1Cp9CxFNMhmlOSSLqwhRP9gAI1DBQyVkQC0n/zuXqtFbY2XE2NoWQ6ogyHzP12I4yPKxHFfTIWErQGydmIZ6B6OySR9Xwkhs5SLEogE+n7a4HvIGNei8DWxiNjqTlPQ7UrUTsOIPuaVqPXIoZXIUxh8Fb3sxrTasxo/pFCv3Yhfa/QPxgaDjcDm7s01rRlN5ZWON4wmIrMM/0erRWUgWXf1G1DnwlN0NfnzR99DGKflUOI3nAIO4/9zGD+Aqwq6lAdqv8PW4aPnByXoeUehKdgPcewU+vwxJ9zkm2OLZMWvb14GK1JWM+Uf4KWYHNK3ossmpp0thMxTJrNcRkEMyNepfWNDVWUlr9GqYm3HzIgTGVSChJhIUs8JqZaqsmlnRsa76ezTLT0nJZ9NvwOpNQhOGhdbK6CTfmTmdFiSMPHS3Tl1QUC6zllw+tsunAyX10qkZPOBXJfVV5XUsN8lvFk+oWcZbKcLy5eSiX13NotldFDmWHC3SFKMs0PXYssQga+RucYyUfR+jBBxAj4b18/KlQIRKvpQ4wRZc9aTiyeVWkuWwxNbdEpogzrwjjb9Ps63/FrSIYT2FJ3psn8Eck5metry9cPwhNjPMzrwLoMOufnsG6Z3OSa+XcTOSPoRU76CfA9vk2jYUZT0oHl5gbXNf4O2uFXZ35Mjtt+B/vxaIK3X72PnJ4wOb/fR92NYk2ete5lVsw+lfbZMieqeuqZ1Bb2aimU0Ug/KV4RzSgppBD1DCQQummFdVVSx53cTDUvA1Cd9zIdebkekxhAZ1lIiBs0+lGJbPZ6vJ5YO17f0+dCM8d6458tNU42Is+V/wbHEJXwcRkVGdY4MRjhzzuOMy5BafvGRNeMUA4CX3Fd9xXHcYLAOsdx/mo++4nrunce7g3jlRRlJtIpHp8k+x5EOc/GYtoDWGjTLkQpSkd202ws+5R60hXmpZAaf1G8XViK1vFYw0SZkNrM/WZgYTOqbG1l8GRvreyebs7x4/A1/0DzWsYmuB5fP/m1hKOhXrsQ2dOSsDU1FHp0MbIXaK2KHt728s1viyibmlLVnojMoX+Y93UuFCCOvV8Pc7/B/Dy7sdEO/1xKJGMR/UbrhmhOlEbQkrDRFI1IxM8phbi3Y4lUJmB1KZ37mo/lN7rViCry3UPztwLmHqlYRjGlEFZGvCwEIlZi2v0PpF8j5t7Npg8S5d3o3I23GdQoiYdDHpUcZ+s6Wjnouu6X3+lGjL74Iyf+StWF4KTZh0XxurOxD6DSLapsQBRefZhKEGNlnijpSSn9dLxeTH+JKLNJof10RkOUBLYAYoys5xS6TCim1DB0AV6V9tJDTd4xQKAgStuV+cx4yhgfufKdv/qyUYCX/o4ZP9vKiudPBeCsjpfpPjvgJby/VJFOHu30CzkXLRRxgWGTAqmX0UgpN+2+l4ezBZ5URxX9pFCQKSDNampZkXkWG78v9TrSPrOH3sYToNWoJ80w/o6d7L3PuN47EeXfMPLShXi8lN73NYSZZDvWYOky72X5ztkP1JxiP2/B6r9rkYOTzfimIflCqrNfiyS0nm+OS8y9lyKL1TxgwxholOKLAB1Limkjn9PnS2SrkjoeY4FH/xslxTCqidu9inoiBNliko4eLbuQsrImPt4jyetkACHYjBiKpzXWs6LsVAKfilKkFm8KnPXjlzHDRefV4whk78ORKUM/KUQYx3U7zD0Pwt1F19BsvlNheZpTdD+LmMezHl11F1kEiNJIGa2vl1E67TX2rp1oFREQw2Qn1rh8A/FoqbY3BxlTfRb6MfVm/ElFM7E5JuouU5fsdo4lti43CaLH2bqOWoY1ThzHOQOp2ToOKHYc5z3A9a7rfvZovth13R2Y5cR13YjjOBux2YWHLYkoUlsZnJmoAFGEupAIxlgEKvWGacSbyB6h0C9Vjvp5a6SiFVHa8hCDYzxvrca91/xpnoo6CVRp1CR9pQTW7/KLKlua9L4XW6BuQtx9lGFsE4mhTdVYD7dSsyYq0DdSyTT3SDbtfhO8LUo97nuRPv+fuO/SpeZYl78j80Phc1MRI+QfiEtY82rgyIv/jUf2zC4s1FCZ3BKJP09IjUKFCGq0TyMQQRJHE/zPTQT5XbuQuayV4cdiDfP4HKZZ5ruysMZwCNky9PvV6M9G5qYSArxirlG0ixYFTTXf86Zpwx8QlIDC8RNJ/DwfVZ7z42xdRyt/M1XaHycW1vWv8OgnkHhFSJ8O3RlagalW2XWwyrEqYb3m//ea4z5ksiuc5QlEcWuUbXogawyzZ632Iifn5C2hhSKvCF8RLV70BET57SCPC3iaBsppo4DKvRvpnhJgygbR5F+tmMYpja/T/X4xeDI3RqENrnvOKKtzgNvFA69tzPxjlPIrBf8/aUMYHoAVd4jxkkUXPaR7yms1tbxMNQ9nX+oZNEW0UECbFzGQ6/bQavqhMrOehoqZlAfkO1rOKKL1N2UCeQP4NrY6LlgmL3WV+mFCeb5zurCRjhygpRV6jWsmz1yjSZAXA3/3eeaVqUshdn0IUPGL5vhaZNF/BJJ+IivywGsZUIZXJDOwMEpDeznz8p4FpBhmgKhHHgDC0DXFNLJk9w7qs7PoNeN9CuulQGa64NWmfHMHnT8dxyc2CMxre0WIUproIJdJ68J6Q7q/ECDzBauNOL/Hy0EJHooIkYLZRJ4sO49K6sk1O0UdlQTo99pwDYt5mWqvzY2UUUAbD3dfQeE0icKQY/rZD+uah617osQEWqFjPQLB0yKNmtzZooZhIfS+ggWztyK7i3/p8DsG3lkZSHLoTxnMLawyWGns46IyEljXTxD0058BXNf9h+M4Z41mIxzHKUHKJNQivqPPOY7zcWR5+Uqiqpdmo/s0yI8YjIFosOmqnuit5u8j2MrtukeEsXkSClNJwhZfVCrUCUhCr/7fY15DiFIWQZSmXYixMANbNK8M67HW2hW6d40nNnFaf8uAuSbPvKeUs/qqhsJebBJ/vOi6rt5+sMrjSLUFvzKoBt5YZC1qQNbyamyOwk5kHYo3gv7Z2snReNRfxNbRSUX2wXmIg06Z0Q6YV42aHY7omClxAtjK6IO1uw8xqPU8rcujc0nVlUQ00fHjnWTuk4KMWzYyD5UwIh0770CM493IszLJfKYRPIWF6fdgzlUdPx15pqJY9jg1xjQfZwJiFEKsYeKPkqpjIn6eK2PcqMlxtq6jEUPp46UQw+hQCb9DMoZYWEkYmYm6paYZtiHzdFVke297opuIYvFLkMlfaY6bkUVFWZD2QWO0lOqAGAp/4xyqqfVYr2qp5nru9iInLRSxnlOoptarXeHsh6bsUqpCoviHCMPTkFlglKX9sP3GEJO+bpVbbga0tOWb0H+JMUqATRWTmXLLVs+7/4kNfxBvfr5487PoYiYNMRXHz2IFIGxUIN77i1gG5+K1O7InyN+3nyNvrEIMOcVSvA9ZXDVB/lIEdK7K8BqsYaKRkyCxtVA2AEWF1lujm67mnNQjY6Pe/kbznuZFfNRco2O10hx/EAZWG/BsKpR+9jU2LhHjcebCOgbWlRGZH/R+Zw6dniFXRxV3cwOntLwOwKNFF7KMizgZgZ6VHmoiuDdKfbZAttxbdpDz9X1sv0PGf9Kvw1AAk/rCtt0/gshPg2TulfHK2bBPIHIm0qW5R5vKhBChmlqvpo38rLNM98mKv5npdJHlRd7m8yQ/5ybmZS7n8QYJZaUV7qF3zglWKWvFVq0G6fNerBJyEHlsGn3n+3ODPM6JV8zrGKybC44OwDP64uIQTQ4Mc9a71zhxHCcDYfKNAs+7rjtYJYQhZUScAq7rtkitK09GbZt2HGccUt33i67rdjuO80vgP5Gl/T+BHwGfTNCme4F7AZIdxyOdi1e24pWTwaBSydi6IEVYmJVSlmoeimL4U4hV/AJYxa0deb7UwPF7q5VZSVmNDviO95v7p5rr9zJ47kK5aWPYtGeqed+fVLyT2KR8v5RhWZmU0QkGNxQS1Y7wK4Oq0A4ge6rS6S4wv6cFsTz/GXkmw8nR+FceRIyTeUifTELyQZ5DvPwnI2OQjRSb/A6WktefezGUPIHoI9nIXC1BDLqhYGATsGxcasSoUaFQL/9cON20N35uTcUSOozFRk8GfO/726FEQ5ORMdYoj35vF2Isp8S1DWwRUs0rOdH83mRkG1K4nMocRDeIn4uDOSZG1TA5nnNyVOK67pR3ug2jKwcRnPvkBO8bKQJazVO3A7vxlPhOD2K9+UoVqbrWBxFvloKpu2DvzhyCxUZRbJ9Gct5BFph00BCdPMMFMUX7vsutdJBLeY8YI68WTZMK5C/JLSedHJZwsCJmroVJLWEPBhRTBBKgHgIz8TwdM+q3wtlQlS7QpEcrLqSalz0Y0Ck7Xqcuv5J5h57l6uQHTLe0UMNKL0ehlmpS6KehXZKw5+U9S+veMnJnCRwqOCtCU8NJNizdghgdHzDHajCssf3kvaqS3o4Yhmp8NCPjoPkNIEM3yXdtFrbIYiWy6GtxwNWIp1+V6GYkudJf0GkiNC05STYM8IzIv79ujK5pcDc38BO+BMCP+TIFtPFqkRh2ZTRxE3dxyjoxVjpnj8Npi1L1goxl9yUBmu8o8SJp0U8FmNKyg86iceQsNZPmEpj0kTCcZtq0BUjBo4Z22sTA1Jyi/hC0pBd5pAuV1DGFZh7mCtMtWeTSwZNRUyglIEnyWyiBcTL3g5kRgeXpvNG8KWXvmoMlfdDjlVjygRBiRCpMr7MXmZDq5vSzdkFsPso7Ly6ORwc9uMRnSMTKYDnZCc5rRrbUQwh0ds5Irx2pOI7zG2Q16nBdt8L3/geAnyFb9n2u695hProMeMR13ccdx3mYwcu0DSkjMU5aDLTLdRwnANzEW2fHEYnjOGMRw+RB13UfBXBdt933+a8YgT6bZP6UTWgoCSEKV3x+ShhL4ToWUZRasJ5fTZZXVistLqe5H+ql1ihLhflfI5iqKKUiStl433drm1WB9SMrExkmJyJBzUzfedp2LVKHefUnw6tSpxGZEl8/7AdTLiuxDKfoaS6NJuiD7AMl2PyTlkF+Dwxe9+OfIYcbSVmJRIQUxpSBLXjYhYVg6TgMMHgCfCLRPCKNPIzFohMSiS7ZSsag1yjsVw0Fvy/n7yQWP6W2nr8L66dSY0LrCGkiu0YbNSFfYWT6/2ZkLiQjz5/OpzbkGSnHMsw9h0Vh+EV1EP9c1OfU37fl5lrNfzri8uN+cRkujft4zskQ4jjOjcg632WOTwCucl33f9/Zlh2NBLGhkBCiQBXaj1ta7XE/8hD7YV0KY1EK1QnYCvJgoyhGgZ69cDX9BDyv9Q1599BFlud5DyHMXfdxLQBX8BD3cD2V1NGZLorxWT1GQzTerC1l+UxJ3WGjDp9DNoj/Mcc/QkDdypayATZnT2Z6tSizzv3gZuAp0Kfc9zqbfjmZix4Q6FLn1eO4sucPdKaHWMgSABoo5xEu9zz0RbSQRReL8u4H4Nd33UjSFfvp2Cafh4rXizHlZ3sCG7VolXZ5nvi1vXBxmuiranz0IwurLiIpca/9yHgo1OgRRB0zhSG5CmEH08/VBv2cec2SHKCB7RmyKFYcJLe4jY7nij0lvWNJMacv/Bt/3yY3mc5mvs/XSDOK9WNcynd7vkNXuvyQ5cxjIQ+yfbaMXcHuMKRC3YKZXr+d8tTrbL/QRE4+HoZrIOeZfbimYLvzNQTCpX01Hng/OKrBdUNORZh+U0ZEIWOaB1PLqWyhhEuNAbyZaTRRxuWBP6ESJEIRLTSkiHEZ6Q7GLuD6v47PE1jPFdiok36uz4jnRTY1gzxL8UwkYeXYMUjeBkmYk+26bqJ03XPi6keN6FrHcXKBXtd1I773ylzXjQ9F3Y+sCL/1nZcM/ALJumoF1jiO82fzHYXYEqlHHMgYiXFyA2IdTTKNeAa48Ui/UMWRUMyvgY2u6/7Y936+yUcBcbwPBTMHREk6BVF0Qrw12Xo6tr6P4uXjFeFnEEXnAizlr+aHaJK7Mlspo5DKTqwCqNEXVSw1sXcX4mNTSlV/rod6tHX913trTlW84v4m4vnuRgwUf22SLNPOLPNbpyLGzl6sUrcXWaOUpazFfEei3BQYnnr3dCxxQDsCfUpFzOfJiJL7BkMXJ3wnCyAcbiTlH0jfZiOGSQFwO/KkakRFIX5a7+ZwRJ2V6njSZPtqEjOvBbCRO01mx7StC5kDO0n8O/1jrkauFnRUY1YN9h7Tlq2+88uRMd+KjHWz+exEbLV6zY3qwdZ50c+zsQn9Wum9COkzLYAaNL+hAZlnWpFec1Igdo52I/rdZuQZHjXjZOhI/PGck6HlOtd1f6EHruvucRznOiT8/y8qfraudN97IP67WdZTvx15UK7FPsSpyATVY+WrV6VtBtAHSefJCq8sXIfMth0mRAFt1Bh3fpgQ+bR5NL4gnu8oKRT53kvZixf5mJK6QxRXVba/hgC4daQukTb3rzbXngkz3reVuudFQa66aiPODeY6c/4SPsrlVz9i2pxLUXoLOYQ9aFAD5TF5FotZxPOvf8A7TrpiP/PynqXB0NlufKWKpIv2M3CPgUsVQtKH9jNwvzneBFyElQlpAvPqxYZ2u7D9D1Ld3a8QlyDj0OI7XoPNc1lrzn/NHN+KbASGJphWGCjMsPfbMIaO3xdDDRSeYXS9M6CDXK4pvg8QmuWoz9hcs3sud2Z/3ktGP5n1BNknRgmSZJ2CFLEEqNqwEbcaJv1YPt/y23ymPLUD3gBHc2euQpjEdPO9BFk81Tg5W+qjtGXLPfsJUE4DwUMyVlXJ9dzFTd6caqKUBso9hrgmSlnePY/SzEam5DXLew0nUXhuo+QJgWhwFVgDOMX0nYkosYZY2ud+ZMPwpshuZPcwtGceW9dgMfN3VgZIismnGkRyHMfxV26416CBgCFzsodVJw7j2rOBzziOM9913T6zHi9Aamn777fCpF745VSg0XXdNwEcx3kIqYLQgC0fW4/15x+2jJSt66NH+gVDyJnAx4D1juOof+ObwFWO41Qi6kAzcP1wN0pBFJoJiJKm9RlSkWdADZN4JT9eGU/CGiAqfs9wO/Jcq9KnBohCsZQdK4hdsxQmthlR4BSvrwaJ5hdokTzNIQFrrCRS3NUT7jdMNJITxsJwEtUtUQVUGZVONPeJN0xUsRzO41+ELST5Jrao5enIfvsGEoU/moT7Y0FUAW5HnD06F9KRJ1+V5RCWUrgMuyLE5xD5JX4uKqEBWCM1kWECtg6IQhqVMEGN0S5znChB3P+du5E9QY3xQ8g8LkLmSDa2GCnI3tKOrQrfb84LmfOysAQOCm3Tyu/N2Dm4xtwrCekrf/2bAXP9ZmKfg/ik/ApEn1DmunYsk9qoybuEAPcdkiTHcRzXdV3wPG/D7uDHroxBnhh/hfiNWC2/ROyUdt/p70PgQM3mvQpi4S1ZyIOgwZdm+XxgkyjhbeflMyWvmWTzHUEiNFLm0b62UEQNK708gY/zW4IGPjJj3Va2zw7RkD6TqraNXti9e0qAzB9FZecFUWSLsYvFC8DZkKLsJnuBD0PVc6Lddp47jpzx+7wIxKYLJ3Nby3/hGruhJzudGTu28lJ+pUdH20wJt3AbZ0Wtuyp32jYvcbycBjYzjdYGo9yatpTeIpZB03MnMfBwhrUDS4AnsYbBHIRZKx7tMx3rzz0dGRM1RmrN5/W+z3f4xqIPyw4GsqGtRqIrAF2QdP1+BtZlWOPyZHk/3C2Kf3VmLeU0eEZXO3mU0+DlA30j+ztczz2sMOGZT7T8gVeLphEcL4ZC5g+idH5jHOdXmejXaeBMte2a8twOyQ26wfc77gYuwEZSbkC8N4vN523g1MMk1TZmhuEgrCgSgoMV1DCfJwmbMF8NK2knj0XmBjdwN9WZtVRSz0+3SaGZwvJGWpeVWfhiKkLyoEimePhEEJt3AtASxzPsZBscmjoCNMvx2OTSEFjXsEtbp+u6c4Y7Cd6Sk/3Wr4NnHEltuMdv4Ax3reu6f3QcZwrwkOM4f0TSJ86PP28QmURsGquW2gSZhf/jOM5F2HDXYcugxonjOD/HpPQlkqMtnuW67iqEwyRejqimiXqqI9jobwsyKhFEUfPHquJzT7LN528iHv8DvnsqVEo9ywoN3o+s1eqxVppUkLW/GzFNNZcQ5LnUXJY286cGymTzuRbg07yBRAqt1rQYS2xtCT13qPwGhSP1YUkAEuXhDKZIq6iyPtX8hr0IJKcd+Di2wONmRllJfJtkOGiZ30j7LRI1OBEZC4VDrzXva/5NJYZJgqH7M17v3WTuPRznh7YrHWtI6rhMwNIIDzA0NExFYXkada82x43Ib/JHEDXqp/V2usx3aG0gTcovQXSwkPldGjFRIgitHxTCol/8+5fmoaj4DbkJiC6iRACbkf5vMe2ZjE2jPCoZ4N2cw/jPkKeBPziOczeyr9wA/OWdbdLRil/7nUoszCtNdlddhMuwnvoSBELUiCSXqYFSQSysq898buydqrx6D7oFkEsHpTTxstEJrmExHb6nvGrHRp7MP0+U/hSYtC7MpPFhWZAMrjjzxKg0Xb1YbyDRhRd8x7lIrgLIgnY//PVGydI/v3GVeOc1B+UXW+EWcMyGUn6ogZ/lf5pLeJwgEZop4fPcxW3cwt0BKV37VX5INbWe8bKSGvqjAXLLDQXvXcUE50Ro+s1JctPTELiVGiOpvv9BDId+ZPFrQbzy+eZ9jWRpMrsOl3bbx8zrTnONYqwx39Fs/m9GZrAqFSUw8GyGjN0GPCWh9IzXKKKFUppY3H4N7Xl5ZBnr5UE+ysNcwRU8DMDtfItHuNz7nG1wypjXbej3Tci5bp+NYl0FnA1bigx717YdMhb3YRP0ZgIF4Nzj66uZwCJz/H7kGqOk9J8mtW4qC8S6CSRHaaaEEvPDowTIo52v8kNpA/2U0MxKasgtbiNAlLb2fCiTgqEAvatOkP7WvBdth3pwS0x/q0FcliaGna4OLmYgdLCykedOo5VvcKzQCINJiB8252RkEp+TneCUM13XbTMQrb86jrPJdd0VI7wW13V/YKIevwRKE5QLGbRpiW5n7rkfO8OOWIaKnOhydSay3z9sjj+MLU10TIgq85sRZeQA4vDQRPE3kWdB1xG/YaKKnNrgSmU6Hlu7JDPunInYfBQ1HjKwCcyaHD7JtOF8ZI9SxS8JUb60IJ4ygTViHzfd0wYzTPZiIzyatDwVG4XZb9qWiH71dCwETdnE9jO4apNR1AAAIABJREFUDAb3UmV9srle83LARlM09yHe030sSiLDZLB8lANYqJwSGoD0v+Zm9MGIl6j4Pm4nNm+ji8FpsQ8h83EiFjKo+UepyLo/wPB+phRkzmsUTPNeDiDzaACJGO0135OKHfPtyCKRiq0PNBZroKqxAjYSNN3Xbs3bUp1ICRs0cK/X+p/dKiyhhNIWF5rryhBXkRJFjIocj5wcjXwNYVf8DLKxPYOoUf/C4qfe6jV/M3zHadZrATJ5m7E4hJVI2FChR6nYiQ+QBbOnrWbdK1K0b92LZzLzjDovsbqSegpo4xrjxa6nimpqPa/tX/PnUkojM1q28mjFhQBc9txToozqgtyG7OjqQclFRuXDvuMXsA+twZye/9Aqe/3vgFvM518xr5p+ezt8lCU0UkYldVRSR5gcqqnl23wPgEv4M7VUe7Cvjc9VUXquLS75zNxi6e3LjbL7xAnCNqLZqHOIhQnswCbDa/2MeiSBXiMnXVgqZz3OwrJ7pfjeBzFUmomFfVVgC0HWIEbdQTxjM/eMbTRtm055cQMd5FKVJ+Ol+Ry38l0qqWetsUa/xe1k0eXVpuk+LcCS5IWU5ovmcv6WVRLFmmm+8wtAGKbsUBQ8MlYVsOVT+fApmNK4Q9wCOqeqTV+ojzsFGTtDLZzSBpvOtAny6UU9NFDusa11kEcEWzgyRNiDpXW8bsZp4h5K8xrY0CDc0Emz9zNAhq1rogu4bqxrEWNdj/ORcVLtNAfonIp1BHTID495/uBYqXXi4sRQeh+pJMrJfst3uW6bee1wHGcpArdaMZJrzXfUIDN5KQJW/Nxg58ZJK7GrWyGjrOYNapy4rvv/ABzHuQZJuDlgju8mFnnxjksSothoBCMLUaAqEI+9GgQnIs5PP1IxHrK0GVtfIowo78p6lIFAkzTyoTh8ZdrS4nfqyNGaKc2IXqPK726sIeGvNTIWi7uHWMXYr5TpOhPAKsWaM5Ic145Es2WraU/I/EY1jgaToXSy92NzHsLI2qi5FhoROqJQ2DEiQ+WjvIis8RqpOxGZP+qiSEXGX6mGh5L4PtZomBoIQRJTAYPMlxnYeaO1STDXa/REiWYGixD1Ywkb8rDjp3CuA8ierIbTWF+7A9hnSSMWyho3FZvjqH3kj0AGkWfFn8fVFtfGfmKjiBWITrfbtGe8+a50xFDRCOpIIk8jkuNsXUclrusOICCTu4c7919LThnk/TSBsWTFvZ2CrfeQL6d58JdWRP9SQyDL5JkYRqj3zfoLtd3VhDIt/KmDXJpMOKDUuN8uMUiKfgLUU8UMtnoVvRmPLNR+lqrvA7eZ/x9AlF6VfgSBfoM5vgHxgOvGooaJRlbawL0KHJOVmlkf5dXZJaTQT7p5ooPso4Fyr1jjpSwlRNgzusrPbWAlNTzz4iXS5Dk7SQlE2fuEWWl1IdRoxypEmdVk9V5kEVyP1V/VO6iGYAnivVBYVgqxFeDB1tVUUcYuvV8JGKItyYF5NoOk8/Yz8EGxbEKEKSpu8WiWg+zj8W0L6C+Wz+eZXUEV2Vc5mQLaKDNGWeaiKDdcdb9Xg4YpyPgIrwDdpwXIvDtq80fuRsamHqb8nx3eNc//DN5X7OurFuw1HUgkxYibLRBAZWsL0M/Nh+5kefJ5gFBDl9AcA8FbzCJChHn/NLFwV3bXCJzQbEgDmzJkTmsy5C5k8dexWIks1rpBnY48N43GGDmYhjwc6rrtRXThsO/42DBMRksGy8mOOycDSDJ5JRmIOnbbSK4111cBv0IytrYADziO8z3Xdb89giauAaYaWNh24EosXfyoyEgS4guwjliQpbJg8NPfGVFK3F1YrHsqtvJ0K5apyi+JFLU6bM0GNUC0MF4BVglSeIrCYPT7tRievqevKv5kauWA6/O9pxXi/eKHXR3C1mBRhiyleNUaE4fM9yTylmthgTDWs63tO9yCiFnY6uHq1a9A1iGFAf0rVoMfidQiSnUB0gdzEbjXm4hxppS68XTOwxEMgC3OmWH+wogj8O9Iv2YSy1qlUQ+l7E3BRhs0B0OT13t818TD+RS+GF80cYBYNjydZwr/imKjPFrrJehrexAxdpqxxr+iciPIfFF0i+aKaNK7Spa5R7Y5RyNU+4llz5uFRCH3Y7ezo5bjFeKPSBzHuXc4ooCRnHPsyUFEKdInQp9yX5KDv2bJDuThq8Bi71WfajbHJeYcVbLHQeuLZaRVSMSggXIWZC71WK5qqaaKOs9zra9T1oli+qXZ/80iFvNo0YX/P3vvHp5Vdeb9fzYhBwIJgYQkBBKChFMMNigaq4KHolYcnepoq1antmOnTm1r39p5e/y10/l1enrbvtOzTm11Wmu1WunIiNWirSDWeCKjGE4BAoFAQhJzAHKAsN8/7vXdaz8PCQSIQi33deXKs897r732Wvfp+725+vHH7ZyV2AAlb9QezOBw1MK02rofmC7Kx7di0ZBfu+3NmBojE/MqoMRobcEKNAaN0OsmmXRMSW+gOKpkbtiY5Xybfwbgc3yDvWRGVc2r+84iPa0vYjPr2JnHO0tW0LzTNOwRN+/hwGOjvbILNnhIue3FBuaL8WkD17vfUoiXYZ4leSonYgOM8knPwxR5gbh3Y4PyA7HtsWjNgVLDmhzoTYcWU6vW7J7LP5T/iJ894iy1CvjojO9yT6dlvORlt/BxfhAZZbm0UkATuf2mdG//RS7LeFdUlHFBxgtmVDi8UHZzn3nCZBheDTyFGZpKqlkKF9yCN+g2kOjvfgZafjKGvJ9Zpwz2QO9sWJc5I7qn+pTSKHVQ62RYPcj7yKOFFvKi/te9bRwby6cxdp6N6B3LCi0iqJQ6eerkTRPKQaD4Me4+A2cZ9kAiAD4f64iSE6uM89CohA8rA2KywzBcGgTBUixOlwEsdmU+RgL3h2H4+yAIzhvs2KRrZALXhmG4ESAIgg8ANyffSBAEv8YQc3lBEGwDvhyG4c+CIPgYFpdLAX4ehuHrycceiwzFOPkGsCoIgj+65fOx8g0njPTiIwFNmGc2Cxt3N2GeWxkvE/BdfAReUYsb9ZCYSz8e+44E/JViNgGfXiXvtgC8Oe76u7B5oAxP1atq2vqcijDlqgefHgXe65usRB5w55QCmInPyU8lUVkbqD5JPVG9qyjSJMWwDfN6yzga6Pi4TMfasA+fNqcK5WDtdzjsChxbYcTB0s7ebJEzTgUTpZ7UYs7GFHdvuUnHDcUBL6VcEbFcbCQagfWF+DtJw8+pwoGICrgLzzCXHHkZCGe0F5+GlYG9O9Uu2YDvZ0pjBDMUavGG/D7MERYnlkiJ3VM/nolrV2x7NZ7IJd4Gki1YKtgpbpvDm5LjzrkHz5yX6tYP9IxHJScrxB+tvCcIgoG4GCQBcOFbdTPDL5pBRnEQlfBI4E/u90ysQ+6O7aKQZ71bzsPnJWLpMbkzWsnBjJMsdrOKuRS4r30qmymlPlIUH2MRl7OUV88wxXI+y+knhSJ2+LolNdhHJifzeGwC0iD9Tfv3cVcgnne57d9yy1cAvwH+3S3nAw9B9zwDZGV/CcJLYgD6OTBpcSuT8lspO9dmiLzVu/lqxR3UOMvt97ybD/PTSLn9RNoPqKGS5aVm8HS9kWW1QVxE6cDK0cbe9WFnYZ3r2tVVmKfeLa/F0zWvwAYDTVLC+yjVSIXLpFO+iBmUcfzPsyS8Xj7r/sAU7gpg2UjP9HX9fmqoZPLVdtEy6miigKpswyZfwhOsYH5klLWQy9kra6LnzN7aygem/yYy9F49YwYz71xPunJfizHDRG1dhEW9ajD6SKDzPMhuwKIuYO/rVsxYA7gNM0xcU24unsjUHTsoyrTRt4ss+kmJSBc2UkYXWSxzIaRS6lnGQrrIitLyZpevsrSvNKcF5Fhf7m53yxkjbYJQBDEH+3yuccsP42ucgLVHN3hXUzOJGJRuTqSoiWFOjo3r4xCYbMIwjLNpveNIjk3ab2XS8j4skpK83/XJ69z6pbyJiTFDYeu6JwiCx/FZip8Nw3DnoY55q2UUphxNwKIdu/ARX3l2lWoS9+LHFVopSVJ078NKGQv4LmVsF6YoKnIij3C8qjZ4rIUoXuNpU+/AMyjp2tn4KvFaL+NFClame542vFKm/ZUWJv2pL7aOpG29eJyEKtfHncLxqM3h6puIQrgdn0o0D2+cDKbPJfs6jqUwot7jUCISwy3PYXNcLj47Q8U3R2DvKPMo7q0+9jsNU4FUDBESDVYZJPG+AD4ipj5wOE4/3bfS1GR0jcX6wRx8mncjnh2rFnvO0di3oGfe4v7r/jOwfnnArd/kztGPZWAcqs5vJjb37sEb92vd8SIEyMDeg6JVYq4bNjlZIf5o5J+HsM+Kw+9yookqxGsUkwvC5csEp4v31WQdFrVoJ1HBFbc22AeQ5zd1rx5H1jn10XJ101ksKFgRpdSk0Uct5RHGpI90fsUNLHDNuYAV5L2823S5YotmpK/BRxbAPpBKPNirBksNUhGts/HhSdxxH4O7r7bFW34JNEKBUsF+bYX9ImrhHqvLMfdHa8g7xbzzP624iVu5izWOtSqFfopoZBVWSX0pi9hLpkVPgI7XR3PFRQ+xvFQhJej4l0JvOFS7dpMJ/A6MCllMGWCpS/GKaddhXkoZNLuwKIjOGacZBntH8Xe1NrYfeHxLHlxx0UMs4Vq4cyR8DbZtLQUgvaSX+awg13WKqdTTTk70/pop4D/PfW9EavDpqT+genwlZzeY8/u0R9bbPV4ae+5KfBChFYsOFRO93+wr3DoZXTdhaXjCBv0ai4J9xxaL9u4gTIe8lfaues9NZzOlUVHGYhrIpYX7HXCqmAaqqKaW8oioYSPTSKOP5ldcLtnk/XTfN85PkLtc2yuKVefuOV6DRgYL+G8oykVTYrwIqERMcWIYKAcYMRS2rpNyGDkUW1ehjBD3/78Otc/xlD4sMrEXT1cK5imehC+GuBPzur4DM84H8qoeiP2/DzPmRYXaiB+vxDCkvHtFMoQZScGmKzFjSYFsw5SymW7dHvy4V+v+K4pTDmyM3efe2LOdgs/9L3LXlIKa6551D977rChLFx5zqeunMzhLVXJqTbKIUaodH32ZjsfPrB3kOE3pA6UWHa0cD0jAOjzjmdLlGjBHpLAexUdxb+XYuyrG+nd/7PyQ2GZx1jVF31QUUu98LwczOI7A3u82zAApcNfrx/flfvd/NOYMVFTtMned+H0Il6UUQ/VjnWMXiXWDit09aHvy82/HO3SVUrbQXb/cHbcJz1yne0gnsc7QsMhJzMlRibCLbz9JBiRo2fW4sA1ax/tUllL8x6JUo4X4VC+wD7ELz2o0BtZsnUNFicXcywtqyaIrUgKLaaCRoshj3Uo6ZWxklPsaVlFJ8RkNFPXvIPshxx/UgdW6kGgicJGVziXOLlH+8wYSc6HPB16D90pJzwVmQ68zTmq+B1XXY1gUt/86ZlJ8WwN5j5vCu3DiMr7MV5jtXIX3u1R11T6ppoo+0mi+3ym35+1nySPXMu1qyxpp6cuFDBj1SQeQrxuHw9ab/BJLjcvAIiOvY8bIzXhiU7FxKOnlPBIMQy7GJjWFm6djA5gU5Xdj70vL9TDtu6+z8blTWXL/tVxxw0MsKbyWXtK4oMQiW9PYSC3lUR2TAppJp4+7HKDnC/wblz/9FLddZJZC8CSUXVfna87kYwq9dPTZwPXQ2ehS6r7QB89D0/VQIIKCU7AUr3h0RUXdcOfKJTJO03MhrILN5zoGsB07yJrYRZ4ziNcxkz7So3eVQzv3uByy365/P2fMWMnGn5/KZz70FRor7Bwd/11ofVp9JgNTwKRMXY4N6jLaldb1kkuRzNJ3JnBMK8bBmAyIPylvJzlU5GQplr59KBnKPm+6jMRXpm7DlDRRqQooL+9uFjamVJJI/DwXS7uKK8tK5RIuQ9GXvXi8Rkbs2srBL3bbd+ExIeAVcgHg9W2KEUmgZ+lAtVi46jUONh6Ef4nfh5RFKZ3rko7RfSjdSBEh3Q8cnCJ1KMNkIb6ieBs2752HNxBTGLwivGTY0m6Ok+zC44zGY4i0J7E5vBxfB2UoNTfifW8VNr/KUOgh8V3oPWXiqXsVVZBirlQqGSjJ+IvR+BTHDmz+VZ8XnkNsV/1YBspr2LxWiL1b1T8BM6JEHiGDvRYzekQgEceupMZ+J7OQ1ZIIkO/ASI72uWu8hid8mElihGgvFq0ZHjJHJ4fHnJyUvyoR3kR1ThSKkAI13vqMBsAcLKd+B5YaJepUgcuqsQG1BevYyzBluXIkq9ebe79ixosH3cVM1pHpcC637v0ajZkTI8wCKTCzbQtdY9PMqbwaUxJX471OYzFlvhEYCdt7YNQzkKo0IHnplRa2FaiBbFd97JVFcPrtRKlGVVcCJbG6Gr1w3X2/o/dqWH7ZWayikhzamcNrrGMmlawiiy4aKCaHdpooYFttGVeUP8SSDMf+lNNF6dX1rHnFIiuMsfbsvnecLT/v2lcT6rX4CVs4hlL3nO9065e599CEDRR/wJQCGSs6VgD4FdjErvCuBk7tX2jFB2efs4o1k+ew5P5roRJWb51LfokVyqzmLPIc/iaNPv6Nz/MJfsBc1wbFNPCfF72XW0Ri9wykXdtHyzeMESHvgd0+LQ/3/0rIfsZxnN8IPAkFN+FZ1zLcO26z83EzlgpWae8pCviN9ucM9sDUXsur2jxxIgv2PsudmZaxqkiJarM8xiLKqKOXdC6Y8Xv+tP7d/N2HfsVyFlCc1kBtU7lXLtrxjGcyisEUFaXNgQ3ovXijZD8uOKJGn04iQfyJVSl+OKmE/5rlUMbJO4IgGJAb2UmAJyY6rhLi00ekoO3FvknhRuZh32c/pswlVysXHkTK4QT3JzatHmwaisMfpcgJXzIJrySlYYrYHrzyKInjMZQSNhpT7orc/nKuDVZ4Tx7o3Ng1ujBFUGxIGYMcm4Nn2FLkRukvR4LdmIBP59HzKGshE2vLt4s+NxjDlYgAlPMoJXsfZkB04rEih5O4oTYWn0aYhb3n+PWF2diLKfKX4aMnmVg/VDphH55sIY4hSo4qbHH7TcEbQl1Y39Bxbe6vGjO+2jA9q9ztvwufNtiJGS+iV+7H40xyYvuLRnigVL84/kntI9KIFOx72YSPJOq6u7A5Lo6ZPSY5GTk5KQOKemwVpiS5kTRwJvtMt7kJ06mmk6DQsgHr5FV4HMRI4N0uT/+lcYw41XKqTuM1usgiLVZwJ58mTnP8uOsyZ9BEPu0p9nVF9TLAU9iswewn3UMHlhbkPOmzKzDPimb2VW5/2V77MYPFeeJP/wxmDEgXOxuYBa3jTaHuIoveG9OYdd8WFox+gQW8wPKrzmLBjhdYNdEMuZeYx+LOq1iUbenr08pfp4ssPnP1VwD45qe+zJp546IUrfzTt9LcUuJD9bswI0Ifu4DrZdjgOxmLmMx328a4/w/jo1ZN2ADzTt9kdOMjQGdiCr3SxFSfRlGlOcCtsOazc6FiP5y3nxHpNmLd4Oi1frv1fXyr5FNR1OFRrmQRSyPMUC9pXM7SKBIx90tryH5XH9ze59u+Ap/+VIMNhmJay8fe0x2wL0YIm6p3ej72rl9y52klMnA2X+YiJU/vsD7hBtuisTtYnnlehIt5gSoWsCKqSVNAM8U0sIIFLG+az4ixe6hxBmg3mUwtqGdj2anWl7/hjMnJmLGotIoMzLASC/cSzIhXn+qCxFom0lbimJMTR4ZYhPGkHEYORSV87ETNb5GoGvr/YGP8FnxEQ9gQpWRJIRPd97akc8VrPGzAlKCZ+Lodjdg4LwUrFR+9EHZjAh6E3OqOyXLXrHb3Kw933L5WGs3hcB4z8RgEPZfSuqRgiuJ4IEC7lNc4JiXZkBmo+KNYuaSjieZWRgnAOe7/aGx8+x+OH2B9OOVQxRkbsefLweavOjwRgKIK5XgDeCjtMQFPuqBIV7LoHONj1x+BT73eh089VATvUH1LuI1t7rpi1dJAUIQ5vvZiuoy263c2ZgjFjXTdi2qWqE+muX1TMGN6MK4VGSaZeGzTBPz76MD0hXWx7SmYDjgUIoYhy8nIyUlJELlz9YW3YdqhU5hCLPKhgTEd+wAW4pXqyW5ZHbWUxHodfwP5F20l34VfWsjjya2LuKTElPhM9lLJKn7B3wNQySr+vu03NI43d/hGpjF1zw6ye/tYdZEZAnPr1tjgLMzB+fjCXmBKejORd6JpAxRcSRQQCv83BO/Cp4blYzVN4uRJVRjWBcid6qjJconCsMuZT9XYF3gMw/Vm0UV5di2/XWo4hgsW/Z5VfZVUpZkSf8Z3V1JEI0seseIrLU25NqCI9ekKjHhAumsZpnw/i0+rq8ciITLK0rGBOgYM5zESIycz/XOzzW2TV+U+bOARFXEh5C/fSvNScfbCgY7R5M/YGlWEv7nEIiJNDlNSTi0/4ONMdI19KU+wisrImOEpCB+BQGlcDdi7EgT5HhK9rMrNLYJUh/mp/jzMvg+yBX3+pTtOxuYpwFSY+l6LlPTeC73pacYEhv3uI52rdzi2t4mwjIVRrZalLHJMbDO5rsBK4W1mqlFcP2dFMyefU8e22jLyv+aKaj5SYhHC+OTwLP5bmY/1Q9kcWUBXnK1rC74QwoknBxhxMnIyDDIUtq4TXvqx7voOrB+L7rcLU5AmY0pUPZ55qBMzONTdBaSX8VLhtqkGiKIu4JVy8PUUhCOpx1MMq/aDWLtEt9qOKWmi2hXbl6IfUv6FC0tOjVqHn9NS8SlaYhLDPafy/CGRDUug5fbY+mQv+kCKXTuJSrXqSKTiIwaFmJLag2EGXuPQinhyNfBjkeNlBG3C9I1izPH2MN7A1bvMju0/lHtswBvdit5NGWTf0XgKYUV45CgVEF9Ri8FEQ6kMnU63rgHPJreTRGxHFp6yV2mU4A2EPfjvIwsPuN+L9Usx243AjLdO/PeYTCBQhDf8GzA9bo9btxNPoy/gvaSAYZKTkZNjkiAIZmDg+CnE5p0wDC8a9KATWkaS6LEdhWnHSp7cBq2TvTKbg3mD6/FKWB32cSgkWIEBu9wgnptt1eDbMY9zHq3cXHJ3xGr1Ry6klPoIg1JEI0vHvyvyzC9oeIHtxbm0kuujKE9A561pZF/rvPEPYQrq/3b38C3M8HDK6/YNUJBPNMAH38IMGung6dhH7CiTt38jl0lfb7X8VpxifR9wB/yhzKrKf3HHd/jqxDtYwQIAGplIO+O4YtFDgKUO1aWVcWef5Y517Mzj5W0joyjHgd5087pLue3GwKFfdssyTnb6+2IWBogvjb2PUnyKwi53nhvdslh0RPs8GZvMBKBP9uYtg+adJUxb9HpCUcKuziyysm12NbxGGq86JHgVL1BJDVft/R0AmzOnUEwDk35kSnd4PQT34qM3d2CDpGidfwmPPwqXfS12H6dgaVu/scWqW/G5xmAG1mx8LZsaoBHW/sZml1krt5Be0BdNCNmNfTQUF9My0SJhfaSTRi93cwtgfa6cWl5jThTR+/NWR1zgjPDWzlzYCc3trtO8lNR+ccY6sL7Xgq85c1CRsHwORrOeGGB4OBk5GS55Wxgn6dh4LtpeAW9liOx1/5W+lIspi10kVt2W0piJeblT8bUbRse2S0cRYLkHm3GllI1w2+rxleV1PzICJsTO04YHCOuaYHPWYIr7vti+GXiKVrGTqWq4JJ5W1oUf10WFK4lHTJJTmZKV6hH4MUbXmoy9D3nNDxcFOpRhMlgq1WByvKIzSvtTOh/YO9W6VI48vagXr8jjztGIzbvJrFadeEVfIsNI2A8ZT4oiSoRzUSqWwPMF+O9GfToeSu3DU0hPxkfoerFvYZ+7L9U8EVBf6Za5+O9nV+wvfk+48+oecPefHXuGsfh6KqptNAGbumTIDJu8hR0sCIJTgC8AY8MwvOZw+/8FyEMYL9BPeVvEoJRSEmfryvebg8mJHOICVMcZoMAUL3n3d2J1Q5wy1kcaObwRKbsNFFualBtlvsoXWMrlESC+jI20k0Neg2nUm4snMrVhB5NojaIxnbemkf18n6/gfiumrErhPR+q74Aqx950+k1YVEQfZCumNWiw+aY7hzNmJu1oNYPAefsfufEyrh77OI+UXcZVbeZ9f3XiDKqopsaxc/2Kf2YVlXybTwPQSzrbasu8/vmsu0aGU0BF1ysw+hbXZqVuud0d04WPQsnY0D71JKYtiJhAxsqSbige5d9XKcZ0JXt0DmasOBjQqH96g+66cWzcOpMzSqppJ4eFM37O/Y98iMXnvgeAuQU1PND0Pi4vsNBHN6NoIp9PZVpj59JKObXMutTixUG1tX2vi3qk34Hlpytl60a47BH8u5yNGSbnu3sFey9L8ZGt0W6/NbHt6TDryy5GfQlwt0XIJJXUUOc6aRGNrGMm73MFXx7kOmayjpmsi/rpJSVLaWQi3SVmqG9cf6r1FwHe5wE/IdGbtQuvDFS43/VuOQBCaW7ENsSdA8dSjOCknIjytjBO5MVVbr9SjVLxCo9y90XtK4VxkzsmriSPxtdrKMIMGI3FHfgohWoZjcC+r1z3X3n+cghscNvigOhNeMByvE5DDwcXYEyWd+DTbdrc9Ua4Z9sVa4N48b942swuPI5ABpP0rnjE5HAaRHFsHymPB0hkTTsW/8GRGCbHU1QbpAeibHBFx9QPj7QYYJwCWmlZGRxsmKjuSQMe3xGncVa0RFG0ZGMxjnPR8C5DQ4a5+ntcZuG/IRWLHI/1H11D/SsF6xfCpmifDKzNXsH3z+Q0RBVSjGNKxuJZPdPcsQXYdyOa7Ql4g2VYZBjSuoIg+DmWCNIchmFFbP27MRUjBbg7DMNvhGG4CfiHIAgeHvhsf3GyPwzDnxzvmxg+6SaRsWu8W+eAuuFCU56l3ErpVXEesKjJPLySLI+y8/Y3P1dCV0UW5dnGapVFFy3k8j4sfWYJV1LJqqjSOljKTXWx4QEqqWFqxw7zY109AAAgAElEQVRaKsaQO3o3wfeg9apcspt3WP0SMEX2DnwkRBOd0n6aMUVWnvbrMRNTrFejMZC80sLuhT987jwuftzQzVe1PU5YBFevfjwabE5rW8/zZZmUO7auJ7iUZSyM6GpbyeWM8pWklTtPfOmF1pY7R/p2q9gPL7nleSRiMRqwCIeIBcCMixw8xgS37VT3ez4GeheLTNkoSwO73C03Ad/G0r/AojBTiJSA7ofHWe2VjtGsaqpkbkEN99d+CCrgwMuGyly4aBk3FfyC32FsAR/hLmop513uJpspMEPT9YfnL6vk7Ok1tGSaUj5pequlcSkadKV75lvc8qNYRfjPwwUiMugBemGfM0ZSZTjKI3sr5gLRc7n3Gjjq6FeLZ1BGHctdZdAidpBGL085pgBRIc+mNqFQYzvjooge+2HUeW/Q/azDnBTiaYTBlKQ5+E9pN9YGWg7BLBsZI/r24sbJiYM7OQmIHx4ZknHiKk5OdzVPJgBjwjDcfLjj3ioRfW8OppyINUiUuoqeyPZ+DlOSxKiVXCcjrhytw7AiO/EYkxwsZUmgeSnRm/BF8/bhvbvT3fLpeEKKXXjweyH2fRZiBkwxB7MXgVcQN2FzSk/S9cFHM5QWNJCoHpgK7ImxK1kOx6Ql3IoUc/CMaMI49A18aBQVOR61SYZbarFnySERk7kXj58cqpKs9tCfIlPJVeYlB7B3XYFvRxXghIMZ6wZr69Sk/VXfJw2Pp0rOZNiJGSmb8KmOxfiyCAfwqWaK3DTi+1sqpsrFzyujSO0lQ1dGWoo7phgfLToldn9iN5MzYNimiOFJ67oX+CHwC60IgiAFIwu9GMtqezEIgkfDMKwd8Ax/ubIkCIKPAouJDS1hGJ44pZ2PSuKg3ClJy9ugabrftRQb6Gfh2aTkndJ2UT4CI87YQ/fOcVFOaBZdVFHNRufFPofneI5zIrauBooppoFFDpTQTD5rK6aQRyvBryG8HaYu3mGK4GJ3ze9hSq6Mi+eh6lJ81fFKd49xrEYjvo50MZa21ev3v/jpZyN8SfAk8Ays/cmUyDv/06/cRBGNVDoUXg1z6SKLn/MhAM7ufJ7K7JqIEYo8A5cfyHPUK7uBb4z0AOrfYZqM2jELi89JidcgUIaVlAYDxZ9LotdlDj5tayc2CMlT2MPBOci9+EjMMjjw2Ghmf2gVa56byyoqYcx+6BnJJYseBYzZ6jRei/AaooFWBOkGfsUTXApPPgVA+c219BbBpE86bMW1mDIisoIrMQICvZvzgdvhgvOJimkyDxgNqWoDGTfCHH3MPdujbvl6EqijT3t8PVRAerHN5F2MoYjGyBCpZBVrKGcU3VEhxlrKyeGNqF4L7dDdMw7H22DtthMjFQD7JlYAKmPzknsXBxW+kgGib0yhmG2caMZJ/0Hk+H89EgTBaODHmPr3pzAMf3U05zmscRIEwZexLj4Tg1KlYsPRuYc67q2WUhILEIL191l45UYRjjPxit+ZGEg9mSlIosKxhXiP7HZ8xGECpoilYJ+KziFg/V68kaRITKO7n2y3PhWfejMBn1uf7OWWwiblT9TDhXiK1jj9/GApU1L4NAYJNH0kopQypZfJuFGNiRGY8TcYKDmOXXg7iMgQxCQlR6nebXI2R1w05w1kqHXh+2YRA0sZPk0qPtdm4GuCbMD6+jMkYnPixtAkfEq8AujxYqbxtLE+7JsTlkr9VulnAsvvwxvBa/EkDCKSGO/2j7Ny6ftVetcEfJRuL/77fZHEKvFd+HbeiQ1Yqh03LHLoyEleEAQvxZb/IwzD/4jvEIbh8iAISpOOOwuoc5ESgiB4APhbEuvFvh3kA+5/vChjSGL5nr8wSXYZtCWuK5tukwWYh14KvDxUeZiiKB0rydNzoDedM2asjNK46igj37EjAdzDB8mii1K8n3Am66jmLMCiFa9WzCDv5d2svc1hCkq22AcpquA17k8D1o1QfzeU/tAtj8W8D0oLMlgI1Y7ttuoRYDrsc4xRqWMxT8m9trz2F1PgOvOkc7Z94Vl0RelBADVUchWL+T6fAKB75zj+vPNCJs9w2um2kRxgpP+4n8cXIAMzNL6OT2VqxxRb4SskpfjISQ72PhTF6sJS6qQQt2D67s7Y8vfwVc1FBa3yoel2/jWvzOWSc0zTf/L7VzL5E3VRtfDVT5/Jwoueiti5VjCfm7mHWXXWLsvLzrICmq4LdaVkkf1Eq49qlQAPQeftrq5Jep9fD/Ye90DnB2GUM0ZS34u9b2UcZmD4EykK57t20PY5sL0sl0kPOIPoXGgpHkOa67xLuZxSNkfRu1rKmU1tZGDFK8VLRlW8QfeycT7VZDWW/vH72H3PibW1ipeqSnwe0BJjwmMk9q1JizhxDBMYHsxJEATFmBNL6t1/hGH4vQH2G3I0/hju5UivcTXwcBiGS4IgeBB4c4wT7JOdi4tXh2HYGARBcpbHcRWlccWxJgew/q6CcFJspLCIflSfkdJwkqMN2/AKXxqmSMkbnoNPI96JjSmaW0ZjCp7AxTKGZJiUYgqcvtc2dx7VpUgn0WCKY0GEZziA99Rn4ClZZSxpXoyL8DnxApKKPB2JCAcgb7baUbTC8XWDyYkaNTlaYH0anjELrE3TSHCGRhKPDui/2mICiRTE/e68g3GT6F77SMQi1eKjFVvwSn/82eLFOZ9xxxbg09DUv9vdvmXYtyNDQIa0GOpE76s+qMKgMqK78Ox1E7C+LCNbIoNEKYr12HebhY/G9OPr7IDH98hflYGPwgyLHD5ysg8bI5eEYbjkkHsmyiQSH38bUBUEQS7wb8DcIAg+F4bh14/shk8sCcNw6uH3+kuTNhK9uF2x5VGJg2oOBzt8MzAFem3SfmKA6hlJOzkRmD2N3XQzilbnOlBtDMlznEMV1bS47Z2z06yafAeRAhzVyXCTya8egvf/kKgHVn8MqvJh3xdsOfVK21b/vC2XzgZugSoZWm1AL6Qq7esWTPl1mIVZ390CldByUWsUTWmgmPu5IYrwACzmKv5eAcUZP+JnT99GwQxzrzVOm8iB1tFcUu6U/j9daW346Vh7XosvorgCG8Ry8GlZvyKx8F+Z26/ULRcD/xeLX4K9u+7Y/pPxhgjABZj2JKPub2yf/BlbWdbkcubWOjC4i3zNvmgVy6J8OihlMytYwMNlZhlUUc2CT66JinBOuq/VRxGA3lxIvxOy17iRXPnm17oTZgPPw8oeuOynbt1KaLoTxjtPZOr1GK5ELF+VmGGiiXsDTHqpNVJM1hZPYVbdFurLpkb3mOtLttNLGr/jKr7LpyLjspd0suhi9VYzWPJLGunOGOe/B9Ew632pYKZEgZBSt/w6HFz0FBIjKSeOgTJMbF37gTvCMHzF6dsvB0HwhwEi6vdylNH4IAjyge4wDLti68rCMEyOWR3pNUQfAceQDD0U46QvDMMwCILQ3dTowx0wHHIkll+IKUyT8SkpUuzHY+NuCuad7cHGZRU+TGVg2lxJvF6H2KnAvrNUbLxtxYN0czElMA5+V2FIpfHuix2viIf+ety1kimOk+9PVKyiBQZPndxPopdbojYZ4e6zE1/dPVkUVRmsXVREL55+pGtLDhfYPBENEzg6w6QVP76WY8aA3qVwG3GJG24DYWt68VGGDhIJFJIlA28M9OMxIBOwESLL3ZMjqIxS6tTvdS9jsbmqz62PG9wyRIWbUu04RWs2uPOWxrbp/SvKtwuPUxFjXHJbSOIsc/Oxb0sYsXkk4smUdjbaXbvU3c+wQiQPjznpCMPwH4/izMFAVwvDsBVc6ei3gQRBkAr8EziKJiN/vSsMw2MeBobTS3hkEqcS3oa56Z2SFOALL4INsqOwD/KK2Clmxn7LU1XoVwlgDZZSs4q5EVYjjxYWsiwhLSgLX827NSWXqT/awdrbpjDrPmecpGMKtaMCfv8cEiIpVdOBsyE1HqZ9Akofcb/XkhjCvRvCxxyLF8BD0HsrdGW6woEZu+EhyDp7d6QAX8oTVLKKpc5ykKddlMgzWccZF62k1AGfV1HJ7PJVPFnrbno1Nuhd566Zg+FHZChkYYbEKHyhsFJMQdAkHAfHgxkBs/GDeBmmHta7ZenGdbHti/FpYIV2/a5C7w6Z/OM6tr1SxjWn3wXA/dxAFl0RcDydPp7jnCi9rZw1PPDv7+G6OmPv2l6Wy8M3/h23P20B2PTvYYaL7JsvwSsb4HRnzNBpz7twLN746IBRGZCqfSowRjZ12/1Y5MVxDYRVEGyGR864DDDM0PayXPY6w0CpdjKA1zOTSmpYzFXRc3UxhmbyGZVj77W5tsTaNdavWY1XUt5h9x29D+n1ijCGJEkXvvgpHKwt/UXIISPtYRjuwMWOwjDsCoJgDfbQCQbGMUbjzwf+KQiCRWEY9gRB8GEsGLHoGK+xDfvaahhaibcBZSjGyW+CILgLyHE3/yEso/NNkyPNwy4+4wwee+n/48PBeyjGGx+NmFImxqIDmH6RjjlWZKAU4pVwKTRx5iJ5h5U3vwmfZhL3io/HlEopZaIgltGhm8/ERxb2uXspxLAw0zm8QhU3AhrcvfThK8QrclOYdJyiMPHUr52uXZKDkEOpESHA9V6sreOVwuN4ibdKdn8N+NznABgTvPWO5h5sflA9kxT3l8aRpc1J6e7HV4EXliJZBLpvI7HYpwovZmF9YhfWt17C3lecNV6iSKCwRKqnk4mlndUm7avvpxHDU41118rER0lktG7CRzFk7DTh56d0rB/vI5EQogPPyNWDx3+l4Nn49mHzmrICdmKOiK+GvwP+lv8MBtL/j1AOHzkZGwTBf3DkkZNteLUU7NU0DrLvX7L8BOueP3bLN7l1twx6xBDk+GJ24t5aJVaeboshpsgqj34H5gGfSCJArxrzwoMvMiTZDfkzGi36gUUcyqml3mlxt3A31VRF1MF9pHMPH4wiElNX7+CR2y6jihd8etPdwJeI0q6ie1FYdjbsezRWIX46VDdDlYukMNbte75bXgnBYjz7022Q/k1Iv9Jx8HZA+BGozZxNdabhFG5deS93nntOlBp0N7fQRVbEAHU3t7C69syosuuB1tEUFDRRP/kNa/XzXEHGf3HX/BfXlsJezMKz0ZS6dTuxPFDlOqdjhoUG2xzsdao9WvDFAsHTQOuV12Ffbb1bdvih+dkreLJ9EaweCYvgitMf4t8f+SwAFVe/yOUs5VFnGXYzimIauL3OdNL/U/ZxPsg9SBoo5vaVsczQWcAv4RFHLXz1rXD6rRhBAVhEpNmB3lf7ddkNePxNLzYxzIsuYlqgSw0LngT2wOWzjVmtcXwuk15u5cIz/gRAaX89NSmVpLsO8x4WU8NcaqikwQ1jF/JH6ihjY51jG8jbDzkxVfNZfIoLGLC3EO+tmo71T+UW57j2jhp/JDZLnJiUOUNM62oJw3De4XYCcIbBXAavyZ0sA0bjk3cKw/ChIAimAg8EQfAQpttfnLzfUVzjEeCHQRBcjqfOOGI5rHEShuG3gyC4GNO7ZgJfCsPwD0d7wSHKEeZhmyosoLpqbEzClDpFAUbgFRhRnBaSqAzFU20EfpeClYWNy5mYA6YIryTtxX/3wpGI0ldMSXMwh4aK2Z3urtPkjpvJ0JT6vfh0GQHQBYKOF1UdyMhR8kGfexYxhh1pWpdA/7jrF+Cr1oM9d2Ns37eEhXUyJLoij1yOJaVLmBOdJwczGNWHkkUMogfh/pz8D76opYztZFHkTTpDAfYO9sb+K80rzhaXbJhMxvqAqLHVLzOx76PI/b2I6QwN2BwyFk9NvQfP3iWc7wZ8dfpnsYi+oiqZ2Heg4qR1+HSy+HuowzIYCtwzTMdjuDa5e8iInVOMcbZWX/wwyJsTOXkRmO4mie2YP/iGozjPiS5nhmH4jtjy00EQ/M+gew9djiNmJ55mso3IMAGgzarES2mfjSm86RheAnzdDSnVI92f0rzO208afdQ4zbKSGsqppdGFLqqpojXG3pXJXjNg+u3Rt1fkcvXjj/PqZTOYVNRqA8h+7L8mijV4xRXY94wZJq+4e2qqgctuwXurOo35KVXHnIINDDe75UexD9RhUxgLQT7kj2+OFLa1504hn6boPvtTUmghz9cHoYDJ5XXR/rPLV/GnV97tW/1v3qD778b5duxxbSZv3GpMj23HK+nXkDgctAB/wEex4uwuuOM34I2ZG932/+WW67B3VRo7/rz9NDIRdo+Eiv3k8AZLll5L/tVbo+d6jEVc6dDnvaQzhi7WlhkeKI1e8h7fTecl9txnv1xjSoUMy0bgDrha/vYKzNiMM9dc4ZbVp6rdvQsztAGLmqlfXoJFzeS5TIe1101h1s9MK5pU2cqrZ8yIolvfT/k45dRG0blqqiKWNck9nR8kLaPXt+VLI32NA7DJph5vIC3GjHj1+9XY5Kj968C+L2k0pe63LOoTJ6ULhpetKwiCMcBvgU+GYdh5uP112IC3NdDKMPyWGzN/AkwLw3D3QPsdyTXCMNwDfHCI5xlUhsTW5YyRN9sgicthLb8gCP4R+EeAkhIL8XXiazNkY9+AKmer7oPoTpW33oZ18YFSQBSP6nH7KS0FbEzOwdegkqimSTs+5Uq0v4oo1wEXuvNJmRNrVnyMzcJXpU+WJjx7mBTDyZiypjF2oLQqYWjULkoBG4wNajBRgUCN6RrDhYGRwqx9hyLHbMQcABuZj54he6DrHyrtTyJck/pCqfvfj43DyZETFSg+lJyCB3ur4KAkjtdpwD4OGTBirRLFsdIby/EGSjLeR5EVsWsJU5KCN0bWYe3wCuZiUWqYQPMT3PXSsD62iSjNnLWYoaWUs3jUMe4O0jPqPYzH+sUGdz+j8U4F4bNUALLO/ZexMqwyDJGTIAh+jfnJ84Ig2AZ8OQzDnwVB8DHgCay5fx6G4evDeesniPQHQTAtDMONENVxGY56J0PyEsbniwQ6oqOW/RyMOdlPZPYH0w2orc1rsEFhFPBJt+4aTIm8wC3nAOfttzoewKicLratL2PaDOsOT25dRF9JGnNdbDaLLvpI4zUHSpjJOq6JENsmnZekcdrX19vCzRB+E4K4cXI+7LsDUh1uIfWHUH8TnL7VbX8G+A4J1K+p1+LThoowmpzPxPafQxQPe7VsBqf9aD19FWkR5XEt5WTRxV0pVmSxjzSmsjlK8/o8/8aDXBcByV9ef6aB4I29lu7V40z10VtXtfY4G9RkfH0BsJDxGryiX+baW+dYR4KRxkRsgFJRxv92xwgnUeO2K+5XCtw5ko2fLTOWrt0jWb30TG5edCf3rvfZmfkzmqLISRXVpNMbpeXl0A4VkP09U/ZXfWo2c1ev8RXhn0+6x2osgqV38yiwGjrvheyb3bps1z7q8j2uHUR4cF/SOYGZbVt86l4+nPbAelZdZw33if4fUJ1ylrGRAQU0004Oo+iOsFG52a2WXniOGQ8bnz6V/Iu20vxcib9IBT5t6wr3bHHXxR+IGV3dePcwHOxaG8/ACNvjI2acHHsRRpcK+1vgV2EYPnK4/WMy5Gh8EATzsbexGCtj+rGB9juWaxytDKrFBUHQxSDWFkAYhtmDbRsGOazl5/Lz/gNgchCEHw7ezdPYrKTia72YYrMFn8aV4dZ34hWweJ0PySlYd9+FT1lSagn4ituq0p6CT2ea4M67BTN85E2Pg3O7MMVtDz79S9TAKbF9uhi4GKE88gICi3xEBkcag9Oo6ll17ThuZaiiQouqYSEsgaI5jRweczLYfR213A184BMMd/meoaS4qe7GPiw68CyeqSsDT58vORxNM1g7puGxUQLIHyBRT1asSJgTGeEp+FQvsYmluv2T3coq+LkLyx6Q4X0A68NKY1ShRfXVBmz+a8f6UzHeoBLFr+qdiAxin9u3lINHs3i7qOBkYex598TOqSijcDkzsb6slPQvB+8evtFyGDAnYRheP8j6pRBDB7895Z+BPwZBsAkb36cwDN41hugljM8XQVA06Lw2dBmJr20CZnWMJLJGxgBdbZDj3D6zselbtI8tmBf/Gnx9jgqgZWTkner+73FMvsG7MC4psS6yyimzU9nM3/Fw5NVeyiLWMZPSFGPvyqOV9JReNn8ul6kNO+BeCK7Ap9R0ABsg9WYiJbvzTCj9Dlb7wi5ionv8EqaYK61rJIlF/hqxFCHniesvS4kMghUsYB4vcfnex2nMnEity9tqIY88WrjK8Rvfxa20kkvzVqch78YME6eTjpr3hlEsyyNWink/NMHK474fXzem3t2rmnMJ9qpkN2SRaKxMxwwRRYBuAR7DM0x9EsO5uEjM2IU76bimkO72LPJLGmneWsS0Reu497lbGTtvJx078zijpJpFLGWau4m51PB/+V+scLl/t3A324tzmVRpSv3cn62xCUSUyeMxFVKm99VYAo0m72aLfGXfiBkjY4Gn3PPPju3za0jV+7qWqBAjWHv1ZUDjZQaW6iKL0+atp7LNQi0Pjn8PafTG8CVZ1DOVPFooopFGiugjjfrOUoueADdc9HMWd17FiGmGvDzw4Gj7bGQUrXVtv9ItT8aMQ7F1pY+Clji+ayWJjoG/cDbyASQIggD4GbAmDMPvHuHhQ4rGB0EwF4NoXI6Rh98XBMFXwzD84nBd41hkUC0uDMMsgCAI/hX7BH+JTQTvZxhJcAaRI7LK9mMKykXYje3EDH/VdxAmowvPylWKV3QGUorjdUbEdSnQupRv4UPkqZaxoDSpZHrV5BwGebWz8OD2FMxwilfJHs/Bxsk+t58Mrn3uHLpWPJohkWIYj5bsjZ3jSEQsjFPw2AN53GUwjefIq7wfC4PXmGeBQPXOTYYVFH0IUdQgFes7imjJsNA9HMnz9eD7hCJhA/VVvTvRZasAocgKduGjKCJjiJ+nHDNWivCV4YUJycQMJEXk4gx3St2SMZSNN1o0XYi5S0Z7Bv7b6iHxI4fE99XkrteAZQDEK8gL+K9z9uMjNadjo+UmfLTymOXNw5z8VUgYhk8FQTAdsyEDYG0YhkOx0Q8nxwmzI4S0EuM1Jbqe3wXkTfZO3krMY3Ej9tGI4rEBH3pciwGenXI99pqdZNFFY58pivPTVtBKbgSIr6WcVvK4n/cD8BHu5OIdzxI6RbNxfC55K3eTNXc3m4snwudg6o92sPm2iUx9bYd9tI6FS6xW2VIYZZSMxQwRRUrSMW/FfW75dszIEcForwHiN2daqlIO7Wy/KJcusiJsTPomWFaxkFYXhvgE32cF8yMj6+d8iK/xebpKrE1bSnKpbSonb4Yp7c1Pl9gELs97Bd4jAjYgKLVrO/AAVvhgFD6Xdh42ACnaouPidM8F+LSvZe4aYloT85czHDq+UQjpMOLmXoppoLikgZefPpePXvRdmiiAEkuBWsZCvt/3cQDmptXwXT7Fq7Gw1KS61ugeNv/DRJYznw98/Te2ognj73uv29lVkOcStzzdRejjxsgsjD1NxuQXIDUf9l1ti6mfwVLyfu22V0F6I5SON8ugcXwfj5W9K0olXMRSvshXucGxw9Ywl1rKWcBy0ullKpspp5ba7HKqm4zS+gHex4HedMPhgI+axMkK4hiUl7B+pvcZBUVedf/1rZ2YaV0HGEHvsad1nYvh8l4LgkBJep8Pw3BpEARLgVscc+6xROMzgWtj0ewP4BM0IzleEf+huJgvDcMwHib/SRAE1Rjnw5slR2SV7cNT64qRSoqilLPXMCUsA1+bpIODZ7G4chSn8u3CF3ZUscV4mlg6Ns/oe1J9B+X9C6AeB6WLMKQBnwrT5X7HZ+1tSfdSRGLql7zHArhrOSvpOOlWqSQWQezj6KIWUpZTsPEmrgjqvvYytHQt1UcZbojbkRomR2vMKELSg+9To7Fnl5EBA+u3Mk7j71yREpEw5LhzpCftp/SpcndMG9aODXiHmiJ+igBtI7GeWC0eq9KLT1ErxBvwRe6cMixS3bYeLK9GxrEcw/oOwNNbp7nnkYHT47ZNwRcNVdtPcf/1bI34CvHgQfI7SXQCpOOJLGT8DBVFeEgJOVwnPlrMydtagiC4KAzDp4MguDpp07QgCDjCdIWB5DhhdqT5SlvdgmmC8uZm+nA2WCrNPA6mF46zFI3ClDanQHfUFZJX3kpxmrnzF/e9h7lpNZHXej7LqaYqUhTzaGX5xLOi009jI6+eO4M5bespkhv6Upj69R1eoe3FBgYpr4swb5+K8pVgH388P3M2UcSh8zzIFg0gdp7Fme/hurnGOMUP7RqTZrealx/gFCit2BzVZ/nbzkfJyu5iGhvtOR3zU7sbRdY1zeDA9tE0u0rrlGLV2hUyXo1NPtLxN7h9ZIiAL3ipjHoxySikPZPEwmICcyrSImYRDWw9wE9hxO0uGtAzGnIga1wXq5rMwrvgot/z4/Wf4owZFhLoI42FLCMvzah4P8/X+Daf5gqHGZ67cg0/PfcmFpZZHZSivTv4wKO/4dXPzQDgtL9fb0ahqrk3A0XQ60jM0q93z3QKEeZk3786+mBhTKbbvad+yS2vwd636IhXQ+9cSHesLg3nFrOo7SmWjvcUyJWsigziApr4CHfyAz4RPXfWuC7K0jZSVLAjOqarbwwdqwuja5BHImNPIcbfBzaIx+2NkZg7I4zRdDMKr9l0cyIZKMOR1hWG4bMMHBUmDMNFsd9HHY0Pw3Bl0vI+BiC7Ol4R/6EYJ/1BELwf8z+EWA3R4cgVHlTCMNx/JFaZ6kvswqaIPfjCcHuxCEMVPkVKSpVSkeIi5Sgd3/WVKnXAHduFKXPteGVJ6UyFwEZ301IK0zElK86ptgEbQ/rdvSq1azwejB9XZOOBy0Z3XAa+DgWxa2TiIzIDBTw1P8YxMQOxSQ1WmFIiT30P1u69+MrgMhaJ/T9U1GA4XKjHKmK+OhrRsx3A19LRO5KhOph0kdg3ZDgqCiFDdicHt5MMiX1YH9I7V3FDRfAKsT67i4MLHeOWM9xxArAr7VHGfudBg5sAACAASURBVLxf7sLmQRlWGdh3qGil7k3pW0orE9027jxz3Lo2Ets+TlIhoH2mu7cNrr1ETyxaYuG9FDksGuA5j1pCSMJ9npShyfnA0yQS6EpCvMp6VHKkc8Xwyni8N/c0zFBp9dvq8BOE8odL8ZGSxzA/ZZxQ9DwiBqixZZYztHq98dVOm/E6afRF1adbyaOdnCiSksVu1jGTRf2mL9SmlFNAE8Ee6Bpv1L7pPbthAajqTHA9FhU5113/EbcsjMKl7r+A5V/CPPFO2c1+FsupEJj5Erjugd/540uAO6Dz12mkf9A+oF9kWoX4apef9Ins77OKuVH9llrKKaOONestfW32jFWs+crcCP9xRvlK+Dm8/CndNKaryhtzpmvv+li7no2lcmkA7cYGB72L6ZiH7Z7YMVV446UFSy3Tc+YAN7kUJYB2mPal1ymnlvICex/fXPrlBANpGhtJo5eznLvk23yaj3AnBcqJWwvvO/tBX8ek1+6rtN8epOUXY8j7+m4fFckFnrBIB2ARk7HYO3TUwak327pOVxMm+9tYt30odsxKfLe9FNJVRR44e3UNvacQRb2+zyfIpSXqc+XUUks5M1lHboGvxNUajfImHS8VekVlLd5YVNtKedJy3IjfD4RxA6SbREC8djoxxNi6hgcQ/9csQzFObsA45L+HTSYreQs8U0dilcUVXjFHidtBiprSXArwbEH9JCpBqrweTwxSXv14t38HHreVEtsm2YgpaRnut9J7BC6WCNDbjqXDKE2ly51vCoMDptXtVUgxXkeiE6+kKgqdDB+Lk5LIMBmIretwmZxKD0rBFNVad94+THkcT2Kl+xO1rolkqNGjgYws4UBUPHEX9vzy9mdx6AjSBLwireiRojFq58EKDKn/bMf6lVjDBCCXASqJK+zxSJHIGeLROBnxqVif1DxYjPX90/EEOIqc1GPzZgfW//a4ZaV2bce+L6VeyuBPTmVsw+badre9EB/51P2KpEJ4l014R8Euhrn8+KE7yMm0rgEkDMMvu5//Gobh5vg2F+0YjmscR8yORv9RGFWEY+wKMNxJPITYjg3q9W75cixdSJgCpScpVWhZIR1lhYwttS+sl3TSY/n+BTSRQztLHMB6GnUJ1bnPXlwDcyAcjym1uHPPc/S/YB/pZnwhprOxQUwTxFSMqlbGhmpkKM0rH/u4VWH8eeyjc2lCnflpZDf0kd7bx//JvAOwCE8jRVExv99xFXWURZXTX95aBSVwxQzToJesv9aKHLpJ6uVaZ5SI7Wm1azv5fD+OpV2VYkB2u4gZF5roet32MW75RTx7GrH9ZDiqaKOMTUGI9aU/CBtvOJWNC09lidKTKuGjM77LE87Cy6eZF6jiZmcBLeQpPsYPeY/D2qT9w8MU9e+gc7Z53etTSpm5dz3pvWasZN/Tx/bP5TJpsVPK12LeHaXmiRK4CP/+GoGxsXS9TkwJ0vKVRNgjwIzRuF6dYSl61TGOiQWsiGrSAFF/lAGzlEXUdpYzLds0mNVPu2Iwuiex6MgYqXRtq+TMZL2+BwhGWUeOZA0+SnnigOHBjJP+I0bcnpRkGQqVcD1GzXjCygF8dfgebJw5H89oJY+qmH3AphGlxEj68UqTlLACbKxtddcZ4bYl5+crlKRxaazbX+z360j0DHdh36LwCLnY/DALGyekoA7k5VbdinISo0FK2xR712i8YRJX/JSOpcBjBiT5OQaWuKGB+y3PvDz/bXgv/rAzJsVkKAxaMDSMR7LRcLhjkreV443XLgxbJMrcYuxd1DI4ZgQG9vCPxadaxWuYJEsWnqVOIHHhPGQsab9k6cIbsIr0qAI8bjnH/W/AfxsNmLGyCW/Uy9BJwdp0Mt45sA/r1wKy78QbELMw/SIeFVK0ZJfbNgnfxrnu/EqHVLRO9ypjah+JNE7HJIePnJxM6zq0/JZErl0wFfKM43AvwyTdeOOkG/si3IgbTj84DFuKRSjudsuzSCwE+CymcNfb4tiFO+moK6Sj3rS4uTN+z2ZKyXK5STm0MyeK3Bh71/28P/KCLTr/KVrHjyHvcWeY3IilBS0l8qxTiaVwxamFN8E+58xPFdhdjulvY6locTOzmMhzsvYfpjCrYUtURyV7ax/80hTcL+74jq1shbUVU1jh6nEuYilp9PKUo+P6u5IHKaaBf//xZwH4zEe/wj0zPmjF/IDJ5XVse6QssWDiv2NGCfjK7xXAEudtP3WUvSLpszmY9qMJTYOP2LjaMTesIivgw9hgBttCeOcf/gjAn795oZEblMKosjfo/u9x5Jdv5Y9cyOamUgAaRxWRld0V1aHZSBkf4a6oPkgzBcx6ckukpM8pWk/1+ErOrrMcrT/cdh4Xf/dZbxiejRkmt8eeYSuwIRYpqYSmh6DApX6xFYus3OmWn8fjioDeIugqG0PeDl+nZmbbFma1mRv3gbL3kEM781kOwFMsJI0+VjE3ImroI42i7Eaa1Xg9MOKMPRzocJ1kHn6ijMsK9/8mbEKUdzaKmiiFcgOJFTVVIf7EiZ6clGOXwxonQRDcw8DsJx96U+7oKGQkvr6B0pz+iDkBNuBrjbTjQcLKe4+nLknZjSvVuXijpQ9fU6QR7xHWMZ1um4rW9eBz/4uxb08K1xRMgdqLr3AdrxEh42ggpTUVz4qkZ9jnzqNoqViWJMnpQIqsyKhKrmA+kOxKWpYyCF7B1Hw8wm2fknTcsQDe4zIUw4QhXivZYDjS++vk4GrniloorUsYpYFEht1A96HaHTsZ3Dhpx/qAjleamMDxB9zxg2Ev4pG1dhKNXhUu7cEX2wTrf4oKiSRCDjFi20S6MMGdu9X9LnfnVe0gtYOeYTSJEbft+HS3Auw72xL7LUdnKv7by8KnmB2zHB5zclIGkCAIZgGnYpGlOO4km7e+Tuswyyh8D+vGRuAYai6PRGW4DPNSCRtRiGEDRN75MAmFAzuWFTLqvDfobje3QhMFEXgcjDo4Lq3kMY06FrU9BcCK8WdRTAN5HbsJPwLBXVgkpBJrfTBj5Wy8l64GGOlwClqeh6eWbcYUXE0ot2MD//dscda8LdBBhJPIpZVJP2olvayPP0w8D4CNE8sopoE0d5KlLGIRSyP2ro1bZ/JkyYWs+Kg95z18kOb1JUwrfz3azjZ8itUs17byzE/AqGi7gTmjrD13uPVKT0vHBg014QXY+9JAIn3Y0RdTjeFVNCi5Ohx/vvhCW3ZsYhVXv0g/I6n/G7iCJWxkGuuwtuhePY7uvHEsm2EnLaaBGiq5AQPtLFj9As9fVsnZ95kx0ncKlPfXsr3MtIyLX37WDAlFShTN0sA+GtgDTd+EAgHcH4GCSqIJvulOKPgMlpoH9m5/SEQtnL4G0pt3e4xREawbP4WpGWacpNFLLeWRQZVGH+n0kkM7XYwhnT4KaKKBYppfKYna6sBvk+L+vfh+/21sQlHkZKdre6XEvaaPSDOVZtk4BuXthTk5KUNL6/rv2O8MrLz9CVXBOMD0Bnnw2/A0pv2YIrTL/Y3Gxp8iTLmRZ1f1HfaSGE0pwMYvGQOiTVWqjsC4yvsX85UqdoNFaVLxEQ/cOSbhAeOqoi0nlJT4gSIESsWScidCABlPqnExWDREOAUplTs5uJr8UFi2GvFpQHIqyzjKxWMEwLfxkUYx3io5FlYvV8iYNrwxOZZEg+RQrFGD1VZpiJ27kMGjAIX4vr3RLRdi7yRevPFM/DxW5o6J960ubJ7f6c4lY1803AWxczXgUxMb3XlENJGFZ3DTNyFDOBubYvowHU1FUw+FsZK/TBGcOiy1UoZ1P4mGfTvmND3AkRcXHVROsnUdrczEknJySMSddAEfPi53NKwi0zoXCztM8Zta8PpTN/bRCOcwH89ech8+536Wo8qtGwc7IS2jl/KSWpooIIX93M0tzHcu5nXMZCbrqHR1TwpopobKCLxcSQ2TXm6l89o0sp/pI/wI1I+fyNSndxjmQDiLXMwIWeV+34Jtv8XVzMiH+l9C6e1YROQ7GM4EzCipxNfNcHSVp610tVWWw+bPTaRo7w7aM3NIoZ9y1nAXH6GRItKdsltFNdfwMA0UU1zSwIe4h23PlTHtnNfp6sxi2ozX2ficVRyfds7rbHz3qYn1VeNmbo9r3wbMMKl363djg8epGFXtyNj7WIPVxp6FGT292ED2K3z1+By8Yfka1qsFsB9p91DbVE5VwQuUZtfTTg7Lm+azoGAF1Z1VTDunltv4MYu5iiy6WMgycmmlizG0ksfyirNIczNpy41jaCGXmW1byF7q+pjStZ5y1/xXjJggTrrQAQVnA2OhaREUXIopQ5thzROuOz6BGSWLsCja+a6tngfuwIxP1bmZDe2MoyvT7iGPVqqpilK4Wslz1MJjOI3XeJU51PVZztjYip0sSFtBLeVsbDnV+tgszAjvwYySUventC5RMIoOFLe+YRRkuZmgqxmbReKA+BNHhomt669ehpLW9dv4sqMVW/am3dFRSIDPkU/BcGzP4NOVlNZVjincAs1qbFMXT1bGC/DFCvdgymYn3igQHiATr7QJ+zEBS+URKUiycroX7yRTKk4pZqBU4PWgZMNEynubu69OEtOohFtR6sxAxk2cWlbP0pO0z+EMExWfVL0XGUJPY2M22PuoxJw0g+FXkpXSozVMhprmNZgcC93wJLxxI84/YYwEsj9SwH8XpoCnYG3USaLRLBmBqUfvwN73LBLxIuBr2QhflUkinikO5m/F3mknnv1OTF+Krundt2PfSC++DpCIIya464ngQdsaMGOjjkQge5xhI9lAbcRTNae447uw77wWi5wopa4ITwih73PY5M2pEP+2ljAM/wv4ryAI3hmG4Z+P9/0Mr7SRSAmVj4+ktEHxeN8BJ2KaYQXeI7Qay/+UN38e8Cx0Z4yz5Z2QntYXean7GUltZxkLs236baDYKHr7XwDgQyk/p5JVtLjROJ1ewxs82QfZEKyBqeywAVnsTDXY4JmPpRo8jymmPcAPIbsK6IBSGSMZmHEivEcJpiQLw3C7O6c7f8vnxlDatoNgM8zNNxT99uLchIjB+3iQXtL4FN+NnhPginMMc7Jx26lszk2L0uFa5uUyYuweDhTGvPGFsVfRgym7E117V2DGVjfG5abnWI1n/GrCJmlRI16DvTs9ZyU2Yde75V5MP5bnxKVsHOhNj1jGfvvc+6k450UDyWfXUkcZjRRR3WeMauVptSxkGV1kkUYv09jIjdzHH8+/jLyG3eQ9s5veqyFdbduMvTsB4p8hkeZZ768K+J4zTK7FjJFNMHs6Zqg0YQP6r4G52ICu+jRgfcFFZcJ0S9NK6zejqTGliEpWRdTCRTTSSxozWU8O7SxgBX9Mu5Ac2mkm3wyTp0/1Oef1rk1/Ai4A6FNLWtzyNvd7dGwZoEspjG1Yhugrbnk7J1JK18nIyfDI0VSrm47vxieEKJ/9FPd7Gb6yeiYeICzq0tF4inRJEV6xl0zAe/4VYUnBg3vB1xMpxuYbGQ2t+PSxdndMHLORiXmR+7BxQo4fKZmDiZQ2sYDFU4ek5MlAKsYr7DPxEWzR1CpNKP57qNKLta884/IXajzpwQPzDyXDBZI/FsPkWOUUTElvxb9fGQQyGOuP4rwHsP6xE+ufLw6wj/qjDOJ2PO5CfVkRHPWruOEZxyIV4IkjZBTJMNd5xMqmbYpWiGhCKdqqkSJMVtxQ2ov1R5E35GDz1CscXBB1BNa+q/AV7HWttW6b3v1494xqD9VVGxY5fOTkpAwgQRD87zAMvwXcEATBQZSUYRh+4jjc1jDJJBK9tlv8cnCaWeIiA40VuYs6pRilpFSXxfYBmAUtTbksLDBXeR9pFGc3sMzlGt3C3eTQTm2KxVc/yD3k0koObwCYQtlhVeKzOky5DKox5VMpUc1YOPUJt3ypu75YujRAKA0ITCFWfZAMLFVMRf2mYxgWByRfVVzJ3PE15K3ZzR+KLa3r4rpn+VbZP9PtDLnP8g1WdM6nMttcO9VNZ7Gw4KkoipBfvpWWplwwCAod9YXkz9hK8zw329yOhYXlMu3BG4Ia9EqxqIdimjn4KvBgA1IviVXmF+IH7iXuGno3Dlw/9rN2gY5bC20QaxnJmmcNezHthtfZ2FlGQ4YZl+lpfZRTy/vTzCi7nxuYz3LmOpdWVn8X30u5na8WG3HAFyu/Q/omWFVh1sjcxY4iTdrX1zDFR+ldWzGA+0pocu+zoNi2NznvaP0GqLodjxl6HqOVVkh9Kmy/Kpe8vRYpacycSDENLE1Z5B57GY+xKMKT1FDJWVRTQyX5rhMU00At5RE5w4hTHd4kju+5GG+Ul2EGlSaib7j/mngEpA1lCY7COnAy3/CJYaCcZOsaHhkK5qSLRMzJTuAzb9odHYWkYEqKWLGUTpTi/ktRB1+EUMq6PO4yZOJyCp5hSxiNeOpKGqaQ5uBTS8AUJ9W4kAdblMGSHHwV9QJ8vr6Yi+DgmhbxVCt5nMfjMQtxRTKZ2WkdHszcg8ckgE+rAQ+8Hkre3q7YM2m+XefWF+IxB28nSU53Eztcm1uviEQG1q+EQTrSqqXCcICn4o37YtQ3VF9E5x9PIgC+3d3XFLctzk4Hvn8JYL4Pi77E+6xosRWtqMZjYUT8IONIhRMFjE91953u9pGhFf/esjAH5DMcTAAhWmrcMXoG9S8ZxlvcNXLxFe3XcnC64lHL4SvEn5SBRRUWXjrkXn+RohEYTCvfTpSsH+JqM7jNAmDHqRIn43MQwbzFk4kwBe/86B9pJp8aF5aYzwp+u/V9/KTEsuGWsihSBIGI/arMjULLUt5F2RkbOa1hvU/TabUiienCJDyKebJlNq519+eMk313QOq1eKV9DmbIyHjpwLSBW91ys9vmQsgXL36WzivToJlICd9cNpEVLKDJUXwtZBmN2RP5iENp5xW0sKT22ghjUk4tf3rw3R7/8SdoXlZiOBGAD2KV26Wrzo89h7zxqlmixMIlru0n4qUeT1BQ7/aX8ZKHDXYaXHts345vuBHG0RyPKnuD7rXjOOOGlby8/lxumPFz1rnwzC3czbf5NM9ERWUMUK6aIVekPMoCVnANDwPQewqkfx7m9rpP6A7MMFQaxufdPQnJ9ShmsOxxuBKwQfMJKHCRrAIZmlIUbscmAdW9GQuTHmil5boxrtm6WB6FOIyZayr19Dnl+wbuZxWVdJHFBa5QSQ2VNDZN5EBrLKo4Zj+c6dRNRVDq/eYofQ6MNKKeRKUi7ManUDa73ycm5uSkDI8MJa3rSPWqt1xCTDFah69dIhzGTjwd8ARsjLoPU3rS8V5XgdMlYvKag41P6XhvtDzTUkx3Yd+32I5G440AgddfwXuEVfBO357uVVgVKWfJqUDx+xNgWV5uKZM9+BSq5GhIY+xY8NENMR2Bp2YFr0QOBmLfhLX5NHcPMvi2YE4mSFTK4+k6R1o5/khluID3kGgkJt/zPEwBzsFHNubi+1on9j5Wc2Si96p3m4kZBqplE48uqJ6I0ptEkKCoRo477lDU0KKEno7HVvXhnV2TSKzurn5SjKf33YenGM7E5lDRboMv5JgRu04OhpPRdbI4mARCUX1hoybg30lq7Jxp+PpGwlQNG+L6ZOTkqET4mzAM/1PrgiAYAYwJw7DzuN3YsIkUpDbMTO726zMwfAMkFsWS5LhDhFvII6FS9p/XX0jFjBcjj/Rv17+fK2Y8FEVOyqllFXOZGHMlraKSOqYBRvk6c+96+xDlKd/qDJNZbvlsPCgazCs/lihVKHUs1N8Npc4Yqf4lVF2Jx5zchJmfzqBqmTiGtP6+qFZHeD5kb+6D6UR0tEU0Mp/l3OUsmoUs4xbu5v/HKgNeyhP8uvwq3t9kZeg3dpyawGIG2OD2Rfe7EJ9epbbWwCfjYjIGkl/iRpOFk+18el3p2MQsE/o6PHsU2Lu5Gz+xvYgZOrqnduBG6N45jrHX7OTl+89l1N+8wTQ2styxkt3W9EOuK3iQd/M4YOlsc6kh1ynd65hBXt1u8ra6DrEGwi9BIEPiGWwSEPjwa9h7EFtXB/YeYjnaTb+E8WMhVXnX12KGoxSfX/L/2Hv78KqqM+//s0jIIcETQhIICQSCCW8xaCLUWCWoGEdF7UhLq7W2VetTbW1rp4/P03baqW1/7bSdOm316Yu2tlrHMlqp2qpYFa0StERQUsUgmkAgEAgkmHAgIQfC+v1xr3uvfQ5JCCEq7XhfF1fY5+y9z9prrb3W/fb93gJMd6TePRUQWUXA8Lb2wllU9z4tY4gYlgCznbVay2nsJcpilgbRgiKaeKn9TK9d7oX0STG6d7h0xZXIYq7pavuR6IkqJh3uX5ghuDAdmkPvVgL5xPFlmBxixP/otC5jzGjg58h2/Ky19ndDuc9gIidPW2vPPdJn77ZsxANuO/BRk5fxdUeaSWSOCiv/B0isCXIKnvdSaVp1bxmNZ8bSAopKjaqA/Ij7XaWC3Yx/95T1SFOhlEq4F+91TmbGCotGS9QYOYAH1Stz0248ZiBZKQ0bQ6rEHkj6HryjuC+dbAy+wvwepG+mIMZJHF9zY2bomkN4o0GXlSMVehyqDKceORBeZBoy/r34yLhG78IscUcSVbZLEIddHn6+qXGie5TioLTfcpB5n4HHt6hxrbS7irfdzOGU0Cqb8ZjELnxdETUAFNeBe64CfCQyBZ8SNtJdq/NMo4/7kf7aQyIL2SjEwNVnD/eJ1o/BfbcfcR6Owtcv0iKRvcgc7EKwKNMYZuNk4MjJe4D4AcQYswTxr/cCLyH99SNr7Q/f3ZYdi6T3cayRlFdg9Mk+l1ZB8B34VKMYouzqOVmh8wDWwLpRFXxo8v0AlE1fTQ7tZLjVM0aUCtZS4iqrV1LLUhYHrSmkmcgq6DkdIp3Qc74onmwSJRQg8iQSVVFsRU5wscg/QZFiG4DKs5AcS03juhOISDQGIPcre+Vcp/wuz55HabZ4/tVouujxp3nwwgsDLE0NVcSIBkD/6WxgCVewKO9hAOJ5aTRML2H9EtfoIuTFDpOVLcYbWApyW4M3WvYDPwDudh+04sfD9XWAM5HGCrZDU8Xehyj2Te54GqI9XRu6PvcgrEylc+sExizeQeytKPWZpcTiEoUoyNvOJqYyAyEL2EuUFgq4g+sAuLf3Sh4rOZeLFPH+HJhZYF3gxMyCZ+fC2RrFuhV5o7Ta+yx8cUVnXObdiWCEdPN4gATjk39HImFuo46sgk0LfDip4qH1vL5oCneViHWaQTcFtLAMSfOSlK4KMuii270PtVQypmRHQIEN0P3oWK8M6DvQRKJo6omyD6kERRl1MNe7BocLnB8fKV0wfGldxpjfIBDendbasn7OyULewjJkl7rGWvtXY8y/ILPTInHPq621ydDiY2qHMeYCZBamAHdaazUh74PAUmvtI8aY+5G42FFLv8aJMWYUoj/kGmPG4rNnM/HEgseFKKBclZ0MZG3MQNYUrda9BlGM9B0Ie2hPRJQ5VRJVeU9BlO2NeAyBpnapr0wVLFXGdAZoSlcHiUpSHrIPZeExeBrh6UKA+4kkkbLlKU2q4lrUw61pYVotGxKV42RR5rIcvKHT16vUX3XtcOpNA+LMGYXfz/6EdzDpvVXBTzYajsYw6Ssakpz69k5KARJZ01QqHXc1WJQVrS+WreRn6UGeRZVzpegldO+w4q79lodnblPGOJ1rhYgRrPgPnfd9GSbhYoWKTxyJBM978ClYo/D0v114bIdiujSlUlMWFUyveJYNeHppNWhBjIlkx3LyuI5BnAcb8VTNTe6Zi5D3QQ0VTUPrjz75qOXIkZP3APEDS6m1do8x5mMIR9CXESPl79Q4UWVI30RFZKn5nupTilSWIxb4QUTP0ijJPPf9BHeO4kGqD8L+1KDI3botFcyfXBN42jWvX5X8GFFKqQ++X041VQtqmPizdljn1nhn1Ucc9S9PIilJmnynpGMPuuNvu8+eC52/BM+z1gJ2rWATANK+H2fize2BMXPeSyuhAH6V/3HmO+PjqQvnsZM88twuUk4dS1lMk8upqqGKtngOnY865bYDxly5wyus8w7C3akezD4OYYDShe9sRF3bjiwUPa6PH8bXMdnu+lrHaC4SRdB0hiYkjewqd/wovrAXiCET1oc7gL2plF2xmnUvvI/OlROYtWAty+PnsijNGVmk0UJBkIanRSc/5NK4MlviVOc8zZ6p4nXPnByH/4TYGHfcGefslbCpTPp6as52WRTVTVyGjN0aZEGfhiyGN+CNzh+4vhkfugZwZUvgSpi6bnvQl/YsmNm8me5CGbvx7GQpHwrwQM0UkkcrObTz3fi/Upkm5AwFaduJTxCtonvpWJnLdzt1M4I3MEHm+yj8xjQOMbSUXYZuiIXTuqIk4LuCz46F1mb4ZBgB8XcjJvc9A5xzK/Bna+1iY0wakGGMmQh8AVlzu40xv0digXeHLzTGjAe6rbWx0Gcl1trk+t+HtcMYkwL8DEEPbQVWG2P+ZK2tR1Y3NaGHnAw9UOTkOuCLiA72cujzPa5Rx42oEaC5/arEq0J2AFk7tDCd1m4Iy0Z8GlMEea+10FwxvqihYkwOhO6tLGGK5ZiAKFv6G8nFHke7f1rULoa8m8qW1BdjVbISr2xQ+huF7lijNuDxNsmiLGaayrYf71jpL5Khn2vfquxAIkQ97r4RfDqRPmsV/dO7HY1x0ZduONyGSX/pZn31Sx7eODiAOBSz8YakVi7fzOHGyJGeJfz/XkTB7ysCo/M+BVkhypA5rGxy4eKcA0Xj1DDPRua7ZkZAYgFIpQ5ehxhmWfhUKn2uWOh8LRA5Cp9y9jK+/opGVjKR1LG19E8nrZkISmE9DV+8tJHEOa1RzFL6JhIYkryHOTkWGWmMGQlcCvzUWnvAGHNY/ay/LwlX9ct2xxpvf1OOo+77IuQFCwPiixClWo+vcp+5F29EpIeCyU0B5mTO5Fpub72O6/Pu4rTa4AAAIABJREFUAKQI4yzqA3aoHNpoIycwZspZy8QGMRRW3SD3OH1dHbYAjIKqO/EbEcgG9A18LY1lJBYwehBRgF3EwF4l9VOmsh0Qdi56YNsCT2Q/8Zl2qvJXMMMV8qvLnkUhzTzEIkCMrAJaKHDpaT2k0bljBsw9GDx3Q7zY655tqWJkqCf+ddfdumiegCyEYY/bSvecGpVKR/AmGjF6FXg/3kgDSetS6uC5eAIDEAX//lA/5cp33aUZjD9DAD7rX6iALLgn5+MALMp7mCKagiKMPaSxnYLAy15TOJ9KaoOUKT4Fp2+vI57iFN3JcbaV5FC0W/qaD7vnPtO1YQsynv+ONybr3P9vd8cfQMZOizI+7/ppvjteA/ctujQYixhRirMbeMV1RJQYbzAjALtHiBMnzj18nMVpf3Cf9bAiXhXU56EcWJfqCR9uJ5GsQEU3ka146m1ABqs96eTk4+MrtWsQkmuMCePwfmmt/WX4BGvtCmNMUX83MMZkIiN3lTs/DsRdWlUqkG6M0TJrfcGIzwI+Y4xZaK3db4z5X0ipkIWDaMdpQIO1dqNry31IsfZ6PI9dHR7afNTSr3Firb0VuNUY83lr7f8b6g+8E6K1RXKQtUPX/0LEU5uNzHNVOrUIYljZDFeFL3J/C/HK2AF3nwl4o0AVWVWwtPCgvjYpiCK/D0+piruuHVGcwlWz2xElTROxB/IFbMOnSe3C15RQXEyz+6sg4RZktvS4PgrXSekIPXu4T8IKtX6erFSvdM9QgPRbDzI7NyPOmyz3nP0ZJ+9W1KM/6Q8H05fBdhbSt2q0gsyPifi50IyM1dGkmc1AxkrTppVYQaUMj2HpQvajKDLWXXi8ikZSlNZ6IOMEPLHDHryuohkSG919VI/KwIPgw/O2HB+tU4MonIIGvtDyRmSOqCHSXzHKsKh/eiTS92rU6zuvTrm/ufZk9nmXIch7mJNjlTuQpedvwApjzBT8Uvd3KKkkGidaLV79eKdKrkGyd/3N0CW5iHdDlbI1iLfevWSHXhrN1qISARMDPRPSONQTCSpxR+ihm/TAi11KPTvJC5iUZrCBtpITWEFVAEbnOTAFkuIFEPkwgjlQQPRu10bFA9Qii5imL9UhinxSvuSmrzpvfvN2fvv9j/DJht8D0FZyAtsW5DC1azPGLfbj2clyzqXQaZ9zWcOdwQ/AybxKfaSUQ+1C69JKHp0NE4J+G3/qFnZeNRm+6S4oR8LKGoFajhguu/ChU02X2x5q9HY8Le82PN0zyFhV43En6XiGL5Cx+zJ+7KqB/dBDhJ3PiOVXtmA16+rfx4w8SeOKk0YTRUERzfHsZCfjOd9RpX2Lm4mTxtSXpJF2KmzKz2dqs2v0fph4dntgWGz7Ug4TV7X7zUCJDDbijabvIkk2utGWI9EWjUpci6Q6uEhKz/mwsHcZ7SliXKYhVNZa12QJH2MhyyilHoBbuInpLs/jCceSECVGblo7nW0S+RpTtoPO3Fx42KmbZSR6vybgFSEQA3Ef3nBcA7LahwsyKGH88SeHMPQcOXLSZq2de6STjiBazu8uY8wpSCT6RmvtNmPMLYi52g08aa19Mvlia+0DxpipwH3GmAeAa5BIyGBkIolJIVvBgcrEhfFTY8xFeH68o5aB0roWWGufAbYlVfYFwFr7YB+XvStyEFGqWvAKkUYhoshu+LfQ+WHWohF4ADvIGpONKGcaaVEMwW582thud102nlK1132uBoUWsPtb6PciJBZ81DVesSlaJ0KNB/ApZ2FRsLR6yFVR1BQgBeH3uH5QKvNDeGxKmHq2l0QDTdsUjmz0F1XYgRh7GcCFyN7wBL5Ox4mIst3J8RJ47VuOpgBkAbL/jUEiB9ovM/BMboodSo6RDnTPFsSgnkYi09kufLpUGFyvRq2u90rnuwsZO43oFSLzThm5VHT+xxBDehzeKAePmcl2z9qBx2YV4NMpe/E4rGn4VEdl7GrHk0ik4GuS6HyYgMyTMG1/X1E1NdIOIA5T1W5Pdb+p6WIxZE72ldY4JHmPreuYxFp7G3Bb6KPNxphz3q32DI9kk2ic7Mbny+wGmy1bOMiL0Y3kuyoAPguxpMMeZDVgAM6D9Em+QjxINEXTuKpZThNFAVajnlLmUxN4uSua13Nf4aWuyKGk2/ABsKMhohuKGiaqpJ+F4BLUG78ISerwBFPy4jrjpSb7NOavfZGpF4gCvfbPs7iIZQE7WO6qvVC+F3Lg9XxJ4owQp4AWqcMCfGbLr/ji5Fv4yZabAGidnCeGifZLKRSXvkbj68IusPPlyZIBX+S+/yLilb/XHf8Z6fdL8Lmiza5v9RqtFq+RkpOQ8fmYO16Or5UCYshUh65XlUshPutg/DVb2PpGCelzhcq5OV4IHZDiLNRHXvgw7z/jL8F4pdDLfFZwrnPd1XIaEeLE5kij11JOhDhpLqVq4pp2mV5uik38dbuMgz53CxL12gn3PXspAJf/88Myvprr8itEsVH2tufglRumB0UzI9+GyIfjNLk2dJDlonGCmylnLUu4gtOcsRIlRg3z6SU1iKaczxPcsec6VDrXTPCgd/Ba50Pubxs+vQxk3O4DXgt9loDvykYGTnfIMHL+eBAT1Op5myUV2fo+b62tNcbcCnzFGPMjJIoxFZn1DxhjrrTW3pt8A2vtf7ioxy+AYmvt3uRz+hHTx2fW3XMfwqF3TDJQD56F1NS7pI/vLD4r9V0X9bjuwytj+5EUkVJwNr6XcL6+5sSDrLkzQudpFEL/KlPQCOS1CBv/IEqeKl4KUtcUFFW0NP1pFL7+iSpyERJB7hqP66v4noLwNdc/C1HMVGEMg6H7Yv3SdiplbdhAC0tP0nV9STNiMucgUfDHkRTdD7i2zAYWMHDiZF9yJGOhP2D3UOVoCkCW4o1BrfkSQRTiMfhUw3D7jvQ82v/KMqURASX66Y/xq8j91VSpVny0UCN2IRKgw9oTNhgPIeMcx4PhlQZYsVtKU/0qsjdq3ZE38UZCCr6KPO5eE/BzOcP9U5KK0Ui/Vbj7anpYsnTiI3q73LMqzb/6qqbhMS/DZpzA0CuEvicYY8YAN+MTSJ5DEA3vZomiY5RwEcZ0RGtU0G67FGHUHNgYspOuxiu8JRzuQd6LTyV6Cro7xjLiJEm6jaTFqc57mGV7JOuiKbOIUuqDCvFxIrRQwMkuLWhF4WkU0UQ5awNDoK3wBJZTTWW2KJdTb9wO4+GAcz+O/AZimLiCh3wYecm1DsoHEO+FO3/+jS/CR2HVIrFWIvSQ+8zeQIH+7YKPMJ8a7uJqvt387/JZ4UdYwseocO2eNflVruYuftImhUyik2NilDUJu9PWZSVMWtjgF8CVyMal0YESPOgsfNwQGo5RiEdFgZF37Ya52T5C1IosdK2h49l4TMo2JO4XNiSr8GO3A3a+MRnaoHvlWIqveY1NrUXQBOtGCQKz7IzV/PXlc4idqjS9e6l0gHKQFKoWCvhZ1+cAqM2o5JO//j2vf8oh80a1y3OoIbkTMS6VCOAR1yfNcHmn4Fz2PAmZU/HG5U1IZXZl+BoDRb1NbDtTIiUTaadtzgkBs1oHWVzXewd3pIixkUYP6XTzhtOUOsiSQqDUcvcbwopQOr2eaGaM7hMcO5cqZOG+WxcaizXuWMPy6xFDMVB/kyMkm/Gk8SDv3vHj9nwHizBuBbZaazU+uBSpBlQNbLLW7gIwxjwInIE3YwMxxlQhpuFDyPr8uaP47cLQ8SQGV4Fi0DJQWtfN7r/fttZuCn/nQkHHjaTiIwDrSATcJhsm4UriyYBvjbFpYcOXESU0jrweWktlJL4Kthov6sHW4ntahX0CnmoYPNWxKoavIyOsUYxdJNZb6c8g2IGv3l3gfjvMkFSCvPNhfUrbWUIiW5dico4mchAWzS4eifSvRlg2IP03hqExKBypLcdimBwLfC6KZBAU4I28HYhiro5STa1qCl032L5V5rgDSGQgmdggOaLQjvSxstKpYZSCzP8id46SH+g499cenYP7kTmVHE3TYyWd0K2jwF2TjX8/9uDxJrtcO5UkYj8yd5SYQfExpwB/SWpTBThVxou2v9N993732cvu9wrpn9ThqOXIaV3vsXUNLL9BluePuOOPA3fhqzT8nclBfJQEREHaiffmTkoswpiLKF2zQpcsR17OcJH5brySdp7UzYhmykqVRpwmikgb5d/+LjIC5TZKjCpq2OTcFdW9T9OYUkwtla6C91vMbN7M5Vse9oX8DgI9MNIRRPEA4mlS5fVJJPUnjN9Yh3jgAe4F+3+hcrfkCRllj3KekGqeJk4aC1nGrYWeL6Ka5QGWJo9W5sefY0yZaK/n8wQ/WfcV0udJBKJ761i2/mtJAE5Pn/AW3WvGQonLmVuTKguKZvBvd/36bKjN5chirM9xSbZ40NRjcwGykCtFcpXrG00DOwkxdorc8TRkE/iiOy4DlsOYa3fQuXwCjb85SUDgEBgwUfYy6dQGcp1SXU4dzRQGwPgCWlhONZFvy/kd38+i56Mw83uSd/EvX/0ePy78qkCggad+NY/z1q9kj6v/kvkrxEN0I0H4OVPHKewC+A/E6ASYC5l1cTK3OEV/MjRQEmBOZrCBxpRixruVtI4KcmmjzTELvMJsCthOOzmMny7hmBqqaGvNYdJ0yRnYerAkcXy2yu8mFMQsQ6ieQaKL6fjNM5ZNYj5kDHlRFGdyfOFNDjHiHSnCaK3dYYxpNsbMsNZuQKgR6pG42OnGmAykc86ljzpTxpgK5E2+CCEbv9cY8x1r7deTz+1DVgPTnC2wDQHcXzEcz6UymNjTH/AoP5WlwJzhbMixSAeihCxHFJ1kgyQs4Xc0jKlQelKQPSWKKFIbkb0jBY/p0JSrFLxCBZLfvt9dswuJwrSQWI1eDYFRyLuX4+6zDlHkJiJpsmpEJRelU1HDQsH4mSRmnSj98QzXHjVCQNZYPTdOoqd+KPIyYpZnIOvMAmTd1xRqjahU0z/25J2WoRomY5C9exo+Y+AAnrpWvfj7kLEPrwhHaxBF8el6GnFIjoQpg5ymCKrRqRGxImSM09w9BoPx0dSpmXg80UjkGSe4Z1AsyubQ95redQh5/nF4+uKIa7tGFCciK5r2lzoTtP3h9C5ITMvsD2FX6377FDwQf9gia0dO63qPrWtgKbbWfih0/C1jTF2/Zx/3kkpiEUb9vybw5rgX3ilObekSMWnCK7hlyGQNL/CbCSIn6fPEMFFMSSW1LNuzkIJMBY5HaKKIYpc42kQRMaKBYnl/ymUsZBmf3P57Hst3lE49m7GzwDiPQs8HIXJ78OvY/4tgQ5SN68PIy6s+11UI1kKzzSshPgoi6sT+qLBJac79TvICzMvVvXcDcHPKt2ikOFBwI/RQkLY9APLf1vp5RhTvo6fbeZ/VS+I20u6ssbLBtIXUl7uRVC8QL0UHwtqlaVvbETVNoytNiMqmPmc1PBQwPwqJYoWNyUfxHswdwE8IqtbzYxjx4310/niCGC0rJQUvcnGM7gaJIMQ4gSixII3r3565hS8v+FZAJXwatXz9pf+kx1EDF9JM2n4Co6yctawtm8X4XwmP83mPr+T1L01hZrmbc52I0bmKRKB/WEm5Ehl/XVzXwSsXTidnjgxgOzmc/ngdT10oAJ75973IqsvLWdQrkZg/pCzmXJYHc3IqTRTTSCPFXMIjPMvZ9BAhkh5n6zPO6lYee8UErUQ2xhBlNlvxFJ+P4g30QKbh3WA78W5A8IbK8UMnPBxijPlvZBbnGmO2Ajdba39tjFkGXGutbQE+D/zOMXVtRCiD3zLGLEVUs4OI7+6XffxEBvBha22j+71P4vnpBtOOzyEx1RTgN9ba15KvPRYZCHMyE/EXjEnCnGRyjOUDjDE/RILccYRo52prbYdjBFiPZ9JdZa29/kj3i+OVl6NRRsLGSbhgnNKx7scbB1PwAOPRiOKThoxKJ6KgdeCjH0X46EE4/WgusoV1klibQilYY/hihtC/MqtA9v3IPjEDrxRqPn8viZTE4chIzP2+KoRaUHIonuaVSCwwBVlTKhHF8jkkJbcIWVqqkUjR1j7v8vchKQjmUIsP7kZWgLsQkpTRoXOTCx8ejWEyGhnLPGTMdE9NNiDVKFE6Y8UU6Vzdg0837M8wD0s7QY1rmvA4q5n4d0Ije2qQqaG+FZmHymynRngeHvwOsq1ohD/mzgsHwZVSO/zehJ9bDSw19pQESZ9vMIbMUct7gPhjlW5jzDxr7UoAY8yZHG8uz6MSjZzoI+QgM1K9u+0QmyTF43CnNeCLMp6AvDBP4SGoO5CiiO5l7350LN1zx8IoUbq2UsSsya8GGIY4aZRSH3jiQfAc6uWuoI56ZlGbH+WDzY/zWOG5vF4yhaldm4mVnEDuz/YSOR3vIQBMLeJV+U/3QTnC2HWDO74WeblVuR3jDJM/yaH9KOT0trMsRVLPekjjau7mDq6jIaWY+dQEKS+5LmcqjThXsITrW38BQGXei/x1SxWzJkt62vrHXH2TsHIblkmI31az5ZvcuTtcn38G2eBb3Xf5iGckC2/QPAq82g25IWzDPrwOPBtZAzSNayYSZdKF+Wo49NhoGcsd8vuHfjCa7qzRnP2NP1NACyuYTwkNPOxYyr684FvUU0qxq1OznQIenHNhUH29iCY2ZE8JgOY3Pu/0S10AN8LM5zd7A6sSNi3KZ+rN22lbdAK5N+9lzzfSyLw97jW2e8GU4Y2uWXDy828EdW8mtrSz7cIcmlxVxrWXt9NODktSxCn+IZbyCB+gJISkrKGKIpp4hEu4hEf49ZbrGD+5hYIFLTQ+4yZ8HYlYK0jMia/DG1Qz3DjFVFOYhLxAepwOvEJi5OT4MUyGK63LWvvRfj5fGPp/uOfC59yMpGkNdP/nk44P4GOig2nHMnDUc2+DDBQ5mYG8ulkk4k5ieL/KUOUp4KvW2oPGmB8AX0X8MQCN1try/i89XJSPUuleB0pPUqVMz81D1pd/xheUU1YrpSVVmt5xiAKk3t04nh61w52jqVwdJLJUqaKlqU7qaT6ANxAUgxKmQAindYUVSk3n6sTXuMjAe6c1ejQF78sL90kzHpOikZOB0mDCv92XYquFGBWfo0ZXk/tshGtvMe+8cTKc1eIVh6nRMwW9q0Gr0ZQYON/S0Uk2nhJb8VMgynt/kRc1PJTiGvy8wt1jN14HmcTh46ypeFoEVN+hMmQuHcCnNWra10jE2ByHRM6UIU5rpCiVcRSPPRmNLxgadffV/V9B/5oGNhcBvSVHe7QfNJDR08c5OubDChN5DxB/LPIZ4LcOe2KQKfnJd7dJQ5H+tszxiIIUrmLdDc1O2b0EcbvpRN2LvLDn4ZW2VDwORWXUQcZPlkhIIc20kkf7HkmkLcps4gXOCADyFawlj8YAmLyWckpopImpvFI4nUKamdq1mZaMfKLEaLvhBKJde4mMQepfQFDQr+1CwUXkPrOXTZ/KD+iKx7OT3K72IGml5ywxTlbccBoghkacNGY4t1jF9vV8Jf+b3MQt1FNKjCg9REgjzh/qBX1+dumf+fTP7+FDn5VabfWUwqOprG8QjXnEl/dx6LXRnp2rGg/GI6nLVR5FDKtqxDDRxTDP/W1yY6GGTjlQl+7HZwYCyNZ71iALkpIVFAH/gmc7yXLfP0oAkp/1o7VsaJ3Os7ddIB+UQOHCZr7nwi3XcBe/42N8he8D8ML2BTyWfy5TXT5TOl3UUxowrd135qUs6nqYiDMEt92QI2OhBTHHw9THt8O1kHuzTKrMz8Ul+qUZiOXAFinMCbApYwozN25mU4bgWnaWSAcpO1cHWdRSGcypSmpppITlSC7ZX7dUMWdyLTGijKeVWk5j/OQWdtZPZqfW61HAo278D7h+VRD8JMTDpPieHu13dYNpjZMw+YR7v4LjVI4XA8VaQ0/8f26F+OGSgTAnfwT+aIyZb61dEf7Oeb2GLEm0ZqsgVNb2GESNjf4U7EnunAN4xqxW4Bx8upYqd8pQpIxcMTxlazveiFADQ7Eou5D3cBriwQ2n5IDsPZo2owUetQr2IRILp6rCqCleYQVbmcFGumceha9I34tPmxlInxqDB+gng/uT5Ug1OnYjCughxPg6HwHAPwp8FOnHaQhxyAv49J/hlP6U9+F0eBfia5l0IeO11H2nGCCdX48P4f6KbYLE9MFG+o+86BiHFXZNFxyFrwqfDfwVv0eE8VcaqdiAj8IV4muYjHRt60CMTDV4T8RjnQrdX03p6gq1eT8eV9WLzFVNg4wicz6Kf4ezkbl5HjKHwqL37A+PRVIbh0Xei5wckzgP3ymOmx9r7d8pjXCyApQe+jysIO2G9En+NJ3E8/CpRvnukiZ3XI0sJqqkXQ/sTxWgNbCTyZRNX01JpmjEreRRSHMQgdDifvq3iE1U9z5NfUppUJgx0g6xjChTf+RrZeyZmkbkVnGlbMiYzoycN4IUq9wn9zJ12nY2OejrxIZ2z68PRFqAVVB6pbjDVlDFB+97nBWXi7HysfxfcwVLWEt54I3vIItCmvls6Y+C4zmffT6g2N25bDIUwWc/K9///I0vkT73LbpXhwDWqxFzF6S4YhOhIo2IEVGHT6HbgCwsOlwXI4xQxe64CRk6h9/gWWQTVSssy107L3T+A/io1+WI8TSTAOuy/pEKMUrdPeeUPs9OxnMNdwFwNXcFlda1r7Lo4FrHRtDBWBbtfpzabPHVLuxdRqQTrKN9nrjO0Qi7NtoCMGNgbeEsKsa4SVaHoAlUOiW6osbGzHWb2XZmDo0O+HTR9qe5Nf/TAb3xcqqpp5SrXZtv4wuk0BtQCedObqOFAhopDnAWsT3OEtS+byIxTes8fN4xyCbag8f3KGGEGvakI9qQog6z8UwHkIg/effl0KERxPe//ZiTf3QZDObkJxyOOfl/fXw2VLkGKWekMtUYsxZxxn/dWlvT10XGmE8Dn4ZETrPd9M/i1EViukgXMsVnIwbEFDyQWZWxKL4eyD5k/Zvo/mbg029GIuufUvt2uPuF8+YVkwGytitlqwblFawcJdEY6YvORqmHNe8/XC9iFGJ0pbln6ytSsdXdI+7uv8ed2x8j1JFEFeAJSH/NQJ5/A2LEFSHPXo44nP5jiL8zkISV96GC+48kWniwC5kfy5BnVJyDShMeOD4Q1qQveuZx+KiJUmIn40zC18Twc1aVfdUfNOVwFGIUgjfCdV7pHNc53YzHm2ThmeGUcWsfvtbKWtcn7fiUR61tokaKphnq/dSgj+ON4jR3D/U31eOLKp6DB8ir8yF5fJNJAjaTaHwNh7wXOBm6GGNykDSDeYA1xqxEyFaSq6n9nYjWOdHEzVcQmquQ+777TYIkSYNsNsrcAgKSfxWfe1+D0ARoFfPliGfeHY9ZvIPmeCHr1khy/qfO+BnNFCbUOcmhPTBOMujmlpSbKKAlUIJbC8dTSS2bviQrUowoObST+d8yDCdPfQNqoei6cEEQmPq8HAesTj1y/uslU5i5f3NgzFzU9TibLs9n/r1CXbzhyhksZTFX8Lsg+nI1d1FDVZD68gqziRAPFN60hXHO5wl+nvEl+fE7ofiKBtZNc6CENciic7drXCT0D3z0oinUl9rX6rlsQmZiOEoVBmlXuXM0Z+TOpPtdiSyGmi71FYIqD2OulaTVzpUTxDhwYeOXms5k0sIGbuKHAPwXn6CcusBQOJtnWcIVQSRlEQ9Rkt0QjF08JY3C/GZfhPFrsO2PvthlOzl0ZWdwekMd274knxdc1Y75Ir5g5SYXXdG6JrOkSGbjAmlDW/4JVPJikFpWTAPFNATROWUU08hKN+k0xIspSWukfo/Mu+6OKCNy9nFom0ty3o+MWTj5qC7UptWIghCmbe4AjHuX7G5kxwuT64ffvXAU5d0Xe8h4vNR7MmQZCHPyfiRbY5wx5kuhrzIZBEOnMWY5PpsjLF9zURmMMV9D/BW/c99tByZba9uNMXOAh40xJ/XlZXPVNH8JkGKMDSsifRkmY/ApXxnglm95X9Srq4bJNuS9accrQOrt7cVHTpTKV69TT3U9nv5V2xJ1vzEa7yjrDV2jf5V1KzlSEhaN8uh1I5D9LlzFW4HSI/u6gWuDgq0P4PEnQ1Xqf4FYsVr3RdN5f4YoyTmuTXlIn38U+O8B7nesqVhvh2FyNWJwRZFnegKfFVCJZ+5qJNHbPxDWJNkwKUPUGaX/zUaU+H0DXKNGdQvSx+GihtqPo5E5vY7DlewYvnaJzocmvIGkKXspyJwpRCIwIEbxq67NhXi81QF8pfZxyLtXGPocd6wYnXp85GkX4gDQOZ7tfv9PeN0ieXz7qsUznIbJe4GTY5b7gBWAguI/hjilqvu94riU8JYZVpZykDdJjROXkqKHqciLUYenr21AFgs1TrIQLIouKtXATKl1AlCRVkeMKC9NEg3518tuYNbCtYGS30QRN3ELTc5l/Sxn8088QS7tpLk3ZC5raCOHBhcyqN69ErMeelxWeU8kjczOOMbVoHjq+/M4796VARVtu7s2MkcMooteepqn5sxjfpc0em1GOe3kcNuVXwDga3yXekqpYX5gwDRRRCt5XOKAKjm0s4QreOkFl5DxKNx1Yz7pOxxbV0eUdT9/nw9KzXN9pxGmuYhhp0ZfI7Io5ePTrrqRRSISOmcuvhihVm81oeMInr1rKxIZ0eOlbpwUEK8pXaOg8ysCii/+4Gs01p8UFNFkfypb3yjhiyvvAOCqa26nltOkLoyTKmoCgoMOsmihgEWuIEgPEWJEqckWQyHtj3Ey6ArG9uR1b7CtLAc6XQ0UgC3w4D0X8sEGieM/9aV5nHfzSjGCgZaMfKaO8WQEy6mmnLU8i5QgGk8rJTRyvSsxX8FasugIDOBGilmU9jBrmOPr8exN5dDy1MRoySQ8qUIWiYU805ENZHXo+4bQWJCOp/gBAcSHfRq7OV5Sut6T4ZOBIidpyFKZSqIXUJuXAAAgAElEQVRTeA+DSMOy1g646ThmgIuBc621WrwlSB+31r5kjGkEptMHDVqyqCKSrECciC/EqNGPHcj+cCoeo6HF5MKsR7vxQOBDJNLvbsMXrwsDhTXXPxuvSCn+ohRv8Kh1ty/0N+6uVcWvP1Gvdw/eKx4W9UBrjZW+JJbUjpGIUTSSoVVtz0b6Vel1xyHb9RQEW/kTZM1RXMYpCJ6gvxS840kRHIEo0iX41KQW93cz8oxTkDmgxUCHSvi9DtFJNLWrr/skR2L+hngRepH5qymJmuqrERU1VPsy3LYie3EDUkhTjWoFnIcLhr4auk4B58pSNxt5N8LMZTqW7fgUMTWQtG2FyHui2Rd6Tbb7vRykHtxy1yZ1RiRHkZSla6jkDv3JO12D0RgzGvg5siw8a6393REuOd4l21r7/4WOv2OMufRda82QRZUgZesKp57sxntwxwM53tPejCizl+IV5iL3N+y934pX6t4EdkD3TElnepYLGDNvB3Mmi9e6a3IGcdJY0SrWzaK8h3mIRYFXO40eIsRpoYACWiinjhgn0MRcrt0tWnZ79glEK/ZKehawqSSfzFGbgyjAefetFJC+0xROfv4Nes9MobRL0oZenzOF855fyYozJY2rlkoqqQ3aAIJTmMGGgOL4aaqppJZrWn8DQHRsjMVpf6CxQ8DTs/59LevfqKD7aXFdjFm8QyrEq+d9Jb7qLEhUI4L3vM9D3Jzb8KlDOcgmG3awK5UzCBi+Ix1Xa1BA5hrqx907OYejHG+cfA4f5fo+cDs0TjhJFs1V0nnpi4V9radIjMmz+Qv377mMtkyZJM0Ukk53YIy0kcNayvlk8+8B2FOQRmZLHByMue3yE6inlLWukdGyP7CUD3FjwS95fY5gSKZ2beaDLz3u+6EEXv/WlMC4+GDz42ya49O8imngCc6nxpUjitBDFh0+qkWcfFq8cVJ/Eo2pJzFizD7Y6iZJFkKjvMYdz0SMQH119iMbheJ3GpDxVMVDPbt6frdGSdQZsBlfKQv33fGDOcEaDvW8l9Z1rDIQ5uQ54DljzN3W2mFN3zbGXIAA4M+y1naFPh8H7LbW9hpjTkR0nL5qEPYpir8IpzFtJDFaooqP1mQYg6ccnYKsX8rEVIhP2VKjQzElGjEZ4e7zJr7OhL4yqrh14eubKK1rL94zrMZRf1GOsGhkY5y7xw5EkdXfGIlPxdGISl+iAVEFsGtEKIuhKXW7ESX5xNBvTkFohe9CGK1GI32oAOirwQWw33k5GlrfQ0ikpxwPPl+N5+abh39mJT0YCA8xkKixqfVzFBy+Bj8Pk9s9G09RramD+vv7kXmgRsZAonuDkiXswRsBU/AYpyg+0tLgzilF5vUOd+1+1wYtEqpU3Gvd+Zrupe9SF9LPiuXRNLAD7r5qXJ2CzKUwVkZlDP1HVo5VhiNyYoz5DeKQ2WmtLQt9fgFSvSAFuNNa+32k/sdSa+0jxpj78dHlv1f5izHmcuD37ngx8Ni72J5jlIOIQaLGyVbkrQhRYqRP8979dGSiv8rhxQL1nCzkRddd+XMI40STOy6SVKEGh3uYn1ZDG7lU5tW6y+XGmoKjxkkltTzkGKLS6GEua2jKFk2+gWLms5I9U0Vhntq1GTbCigvF2Cgsa2bqvdvpcXydm86cQsUz69m2QNKGaphP/MxaqnZLGtf8nhf5l/zv8QVuc/cv4bLdD/Ph7HvJc29nPaW0Bsh0uCntFv7thVsYv1DqZKy/rYL0q96iGzHKOu+dkFgLRnNM1WV5Eonl4NYgi3WrG5J5yPCsxym6SMpQHt5QJD1xs9RFVseiA4/DBtkAegiMOFYihslMpEL99TCmaAedd05g1mcFK9ESz6etNYdP5IlhuISPBaQGAItZSjlruZNrAaEWbqSEFYUyFmsp5/zCJ3j2colqnM1fqOx6kfkbpe/byk5gMX/g9fwpFPRK6lekBV8IDaEf7jkLZraISndfyaX0kJZAohAjGhgjBbQQIxpE4wDWU8pOlxdWVrqaKHv56wvnQG6oBk1TqvdwKd2jjqF6uTSvZjZiKOqU6EY2q8M2aNWsNI3rOM0IPWRg/ztSIf4fWgbDtNlljPmhMWaZMeYZ/XeMv/tTZBV/yhhTZ4xRpvX5wCvGmL8hgdPrrbXJ5UH7lQMkGib6cIeQ96DA/Z2G2N5K06qsQln4YnExRIHS4oFKz6r5/CPdNYo90HP24NOkVHGagqydOxBPuEZInnT30WrcSgs8kJESVrq0wnsKopipZ3cHnkp2IIUqjvdCZyGGxewBzj+S/A1fa0IV6xnuu28iaVDadzmIt3/RMfzeschgDZMTkTpblch8eBXJCNAI9fuRfVCNnRjHVstF06M0JasXUcaTowlh0Tk1DtkvU1x7NE3vAH6tz6NvCc85Tf3SVEPw0RJNJVQjIA8xFFqQ92GXa0sz3sjCfZaBzAeN1imWZQQ+dU0xM2ogRfCpZlmub+Yh46Hvt0ZolLCiAF83ZbhEIyf9/Ruk3I2UewvEGJOCZD9eiNh4HzXGlCJqlRL3/SPAXa4DluDJ1e4DvmSMiRlj/g7B8Ro50WiJGirZ7u8sh9Ptln+5iBGSJV9Rjrwgf0WU5lx8LY6ZiNGyEolanI4PO0+AzoYJRNLirIhX0UgxG9wqW08pDZRwy56bglSqDcxgOdVEibGcahop4U6u5S6uppZKCmkm0g7tKTnEUqKsyJhHz9Uw/94Xmf/4izRQzIorT6M+YxaRVY66dpYYQEu4grms4eTtb3BB9h8xdUC7FFi8kVtpoJjlnMvN2f9KFSu4jPuZzatUUks7OUTHxjjUE6GdXJh0kJ3LJgtw/9KDdH9zLMVXvOZTfBTIOcr1YxPyJl2ALxD+KlLnusj16QzXnyvdtW3A3HQoSRcgfAOy4FyAeMqeB2K75fpL8It5DbLQ5bt7d7v/R5CIQB2yKM1EjMkO4M/QefsEmADrf1BB054iOnfkcugzo7n75esDZV8peSsc2DtOhGYKmc4GmilkMUu5gZ9yD5+gkGae5RzS6aKHNBop4Z6Mj7Oi7DR6ToQWCpi4vZ2Zz2+Wwoqb4qwoEcPmqbJ5vF42hQcvvJDHMi7k9pKr6CkQY/WTz/yeCurIpZ351FBIM3WUEyVGE0X0kEYO7USJESPKK8ymlHpa9hTQSyqNFMv8PQjdO8bK8xch6YrT8DVq8hDDsQMx7jqQVLhmN79fc5+lIyuEwRk06XJz1iMaXrZMtATMyXEmB4/w7z05ogzGvPsdkht8McIf8kmOsbaZtbakn8//gBR9PCoxScdKU6o57SXu70Zk7itzlNYF6UL2ig3IO6JRlQJk+u9DFCUF72ru/ajQcRri6Q1XjVfNQgHrylAVdW2Z4e67G5++k8nhBlayF1hB90rFqoqxRksy8ZHR/pRRrWJfiE/FVYamoUoLYpyUuvsote2JyPPWufaUI/1UhCiZuzicuv54kHl4jVFJXd4E/rf7fyUSGcpDxr8eMSQGKwUcnraldL0pyHhqNCwczUq21jPc7+9DxlEZwxRorlGT0QwujW4MYjRoHR+NkmQgc7nQtXND6H5/AT6AN0iUia4XD6TfjMzPCfgUryJ3fhGe8VPfUaVpVsNb/+Ug4zEOX8n+OXf+FMS40ojgcMkgIie5xphw+ukvHS7O38PaFa6WU1hOAxqstRsBjDH3Iczm6oqvYxjLtbxbYq0dTlvxOJJkkK7yur4JnEygODX7/wY4h0q8t/5VpAhdET4FJ4IsjCX4zcbRs+58fTJlH1xNL6m8tKWSl6ikbPJaCtjOwkzBMJRSTw1VfIJ7AtB8Ozmk08UndmsACzYV5jO1WTztBaNX0pKdw0TaoV3StP5P139KLZNp8HrhFGau20xJfgMlNJD7s71844Z/5Qp+x28XfISpNNFMIb9wVFr1lLKdKCU0chuCQ4kRpYgmetIiMBmWcAW0pZI+7y2a9hTBylQogcb5rkbGYsRImIkYGNWIMqwpVdciIfhcZHFqcuc1AtZFSjrS5fs1LpcoOk3Obe4Wg4ZuMI6H8VV3D4MPN0eRxU6xKR0I69Td7vsOREPSAoMAtwB/hhFXuYKSK1Ol7fvh2RcugFyYNX0t5zi6j3ZyeIRLKKeOdnKpZjl3cTU38HMZc/LIooMOsogQ56LtT9OWfwIrqOKxjAsppZ5V+eWc/mAd226QyFYWHbySP53znpEd9tkF53A2f6GERjZkTGcnefxwweeDNLyfcQMReljocDB1lDOenWKAAFFidDCWBlIpymzyUZbpsPMaYZVjnusjpRJuxhuW8xCDJOL6MwvP1JXqPgsW7t0uspWOtzhjJObm7eZ4AsO/J8MngzFOclw1yBtDqV7PHfGqd1DCO7eyCE3DRxQ6EUXrFETZ0YKpyry1B1/xemToe/XyK32wFqrVdJR29xs78FEMTfdqxSueBa4dWsV9Az7tspnEFC9Nw9Q6En2BemOuzZmuDa/iaY/V0FD2o/7Si7rwuJrw9no0tTn6Mpxa8ExLWhCwElnrN7t/0/Dg51PxRuNQmcLeDtFsgELkWUDaqP0ZQRT0bKSvRyApzvsYvPSFJ9G0v/CcVmO3P+U4rLTrnFVw/puIcbWPwWm4GkXrxJNFNCAGWAzRk5I9E+GaIqqBNuErx8dD7RqHzEvFmmgqpBrc+v4cwBsmSrCA+40ReHyTpl1muedUvNYBDq8yf6xyhPBFm7X2sGJYg5CJJJY22oq8MrcBPzXGXITnEHpPjjtRiyMHT90AXoly3xtEOW7F4xxq3f911oRrZoAs5uP88ZwznqeDLNrisiKte/B9jP/gFv5psgdUF4RWFTUC7ucypru6I+3kUs5aNmQLJqGOChZ1PYx1zBSmBSbua5fq6fgq5bcXXgUIJqGmbH4Awv7kWb8nRjQAdT/EIopp4N/5VwC+1/tVvpryPRoopt2tpPWUsrz1XCLpjmUss562iTl0L3dUwROAeQch5tSTVMRACXPdL8fjQW4hsfotrk/XACe5/m9Coh09jj0t1g2RUFqeMkOFTWiLX9BrkLF62h0XI4uQImu3ItiXxXil/HagBI8/aIM5X3iel+oF+P9P0/9EC/k0uHynXNrYxNQgPe9+LgN8ut4jXMKHWBocg6TNKZi9g7FUdNXx1A3zgs9KaOTk7W+waoF0VqFbajT173yeIEaUH7gyc1XUkE4XdVQEv7GUxQkYovmsoDbIZ4MVrVUceno06T9xBAbrxoqRpmy/YY56aVRiSaANSDRRjfYoUvvHqmayFXm/wviurSRGTI4jA0UByv9DZbjwkoMxTlQn2u42yhYSSabfdRmLeG3fRJRd9T7PJlGZbEYeZob7vAlROKfh2YRa8KDaVrzRoIqf4kw0FUu9vJCIH2nCUxZrakyHu7YUUdJ3IPNYq3iHsQL6ty9a5LPwlK1j8O+BKomZ7p7qWe5PWhBnHcg+mIesv4MFE/eV178bUQiLEOUxildyH0LWoQ5kDdfaG2oEjIbQEvjuSSXSvgJkLqmC3QH8mzvnEvedUuHvRuq6HCsuoQhRgiP4jNraI9y3CJkLWjRUdZsRSP9qytU4joy12Y/MzRnudzXFTGUzMp+z3DkbQm17051bi0SUlM63yLVLGcVG4Fm9RuCLWRbitXQ1ZjT6pg4B/UzxX2nuufSdKEf6Td/Nj4KrGnBsMojIyRhjzC+BR6y1R2NMJAd+Aay1dh+SbPKe9CPGmB8ir2Ic8ZNfba3tGPiq4ZKD+Mo8ICvtNrzCNB6Jo2op7mzRp7QyPMAc91dzJvNJxD10IJuEO/+lUWfKxqIUrHMPkkN7oGiu3zKb90+uYT6+LFk9pcRdWg6IchonQrfbGapZTn3GLGozRNlcnL00oWp5BXXcmf3xgEGq3SH8tVDgprJ8CmhhqePI6SGNOJHAGLo/5bIAY1LutM96SomkxynIbPFtSC+lO0t20uIFr0llcd2cfoI3UECiIvvxdTEuxmNAQBYRrcunw9HWDW3pIX02XXJyNQdX7ciYcw+WTJOxaAtdvy9dCA1ADKhfIEgx8LigR5AFqRq/cStQvAzq95RSXPoaAE/Wf4BJpQ2se0YedNICiUZ1ubE5nyeoCywwSKebKDFu5v8A0JBfHFD+Alze9XvaMnKop5TruyRoW5txGr/N/0hgPJ6+vY4H8y8MMCWt5JFHa2Dw9JBGD2kUueIoUWI8Fl9INC3mHrOINOI0bhFL458mLyOel0bs4rhgTXB9OgnvbdyPLPYb3HEMGSs1Ropc/+nGVOL+ryujnYRQdW9zH3ThCSjgeKsQP1zGSX8YxdD3hYjaoSXmfmmtvdV9l4VsfWXI9nWNtfZIXEtH1Y5+sJIwTHjJwRgn33FVff83Ut8kE0nDP24kFQ9g1+rshXigu24bKUjaRyt+7kTxoPJRiEKqaTIj8HUXVPkb4c7TyEMK3vBR7+/fCOHs8MUaFR+iRoqChdUAeZnD6zXs4nADZR+i0GkaTxY+fQe8EZXMtB1U9XV/W5E1YaJr30b39wxcpHuI0oBET3qR8ZiIGI29CB3sPa7NpyIKbik+na4UMW4GzYIwzJIN3ID31quHvwHvEJuL7Gvab4o1GcfRs3SFIyKVyBzKcPcZ6X4jmY0tWTrwTF2a5jQKT10dVqrDhklf0Rg1Ugvc9U34eXoAMfjr8fissGxw113r/q9OgiZ3fgce56VGz37XpgmIhpmCT/vS9qrhorgYfZez3PWvIvubEjpkIeM4ksMdqkMVyxFB9p3W2k8P4dZbScymnMTQyd6OOzHGLAM+a61tehtu/xTwVWvtQWPMD4CvgnMBv+2iW6dqu114NxdJ3+HSi9IT82ybkIVEizJWIZuRygT3Tz97ikSQXlsqGyLTKcgTLb1s8lp2Mp61Ia93Lm0U0xh40muppJrlrHHhmhjRIOULhCHqDq7jNOcmKqSZekr5RJeAuOszZrGBGYHnfDytLA7K0Mr9l7GQfDeFY0Q5l+UU0sxO9/A7txTw/sk11MfFcPvBypvlRXabcuM1JwkZwHfcTS9FeOfV7HwEeWNcEIR1JNaPmY3oqw14BZh0j/tRCbsQcpEFJNfdVFO4XGYZr6V75jWQ1KRL8Kll1yPGU4f7txz4unuGs905rwsmozJTdtfGE2awdVkJI+ZIeKaEBmJEg7F6gvMD9iyAcodLuYz7AGE9+xY3k+JW4hUZ84gT4Qu7f4lxm3x9Rikp9Abj1ZxfSCn1AdvW01Tzcf6L2c5C3sAMIvTQ5h62ltOYn1bj58+eSnIy25k0uQmQVLS21hwOPT/aj89iJHLS5I4V+F5Eouj3WSQGPhrdX6sfJOd3HERcYeGK8ceRWIYrcnI3gs++p5/vDwL/21r7sjEmCrxkjHnKWluPGA1/ttYuNsak0Yef2hgzHui21sZCn5VYaxuSTj2sHSGs5HnIHrbaGPMn99uT8C6XIeMlj2icWGu1ZEMnUg8NY8xxZZwo7kI93Iod7MB7WnXt6wr9P8Udn+jOVZrTTDwLYdiRpSDzUaF7aHX3AuRdyyQRXFzi2qbFGrUqdhFSFC9co6IU72wIGynJkRNNe9HXtcO1twhR5HSd3oZnQOrgcIpgVfK077IQQ2rQDAT0n260EekTJRSYhvTPDPfdy8jbot58pb4tdX9f5p2PopQiqX9FeC99BzI2ryNpzYvdeSn4VKleRGFXg+Jooifhc/Pwhq8yX3bgHU5hUSyKsrSBj0iciMyzXaHP85BIxsfwbgz97XCkTCmwFVCfhsyLKch28Bw+jSyMR1E5hN9z/oaM7xh8xFKxUBsRl85m95yvkwjgV8dCFJk7HcjcVOeCRrQ0nbIdz7K3y52j7+twiOWIKY9DjZysBqYZY6Yir+TlwBVDbObxKHcDTxpjfgv8h7V22FjCrbVPhg5XMQiK++ETzUsJK0jbks4pcjgGpJBcbrq30HGXNoVuoQWDdNPZgbwkF7vj/cBKoaRV6d46lq3tkha0tQ7KrlgdpHbl0UoreUTooZlCTqM2AFyrp1yNFY1q1FHBb7o+RUuGsHl9ne9wHXdwc8Y3AbiM+1nU9TArMoQyLJd2HmJREL1ZyDJ6SAsMkXZyaCWPdnIDRigeTaXuyvIgchJZEGfnG5OFNQXg+wfh9lQfIXoUCYGG837b8NrLdiRApZGUbryiHHOKa66LmqiBsQ/x/OjC14Z46sMEUDOANW51S58kC52OXR5i+GgkRYHeWXhcxY2IMfls6J5rYMmV18j/l0L6F9/iukype7Kcc+klNTAEAJqYGhxn0E2cCOe4G7aTSxs5Ae1vPaV8gdu4I/sqepxr8gM8EvwfJO0vhd6A1rmKGl5ldpDuVUMVVdQEBm6EeEJ7yjPrKKWeZ53F9dLLZ0IHjDhzH4f+4FxBq/CePBBv3i/wkbA2ZIw0zUs3+nBK3V5CXrls6A7vMtsQ7eFoNJV3UAYXORkqRjH8/XbcrLfWxowx64GJxpitCLnUVe67OH1vX2cBnzHGLLTW7jfG/C9kxi4cRDv6w0rWM0x4yaHynX0JCbYeF5KKB3hriki49ohiRbIRxij1b2Xj8+Inhs5txwN0FWSuzEU78KkzmpYFMvJFiDKkpqLiKgpdmzrx+IVdyLu5y7WllES6+4FqjTQjUQfwSnSR+91svHc8C1EMC+n7Ne5EDKQJeCayCYhB1YQojirJER2V/jSNWjzD2enus3JE2c1AHCsKgl/g2p2CRA/y8DVFnhjgN4ZLKpAU4mrXDp0H+xCDYzXiIgCZL5PwrFVdyDzQ+lFDbaum+2nalc6nJvquIh9mYutExlmjCTFkvPW4Hb/u1/fxu4r1BD9PclwbtAjky3hGN8VbHXBtDG8bq5CYrhpE2k/K3qURPU3LiiLjrMVENc0exBDRCvfb8AQCasCqKqgMXzuQ91WfoQA/LsMhxxo5Mcb8N+JHzXUbyM0Oz/c5ZKqnAL+x1r42LA0+DsRa+3tjzGPAN4A1xpj/ItSV1tofDdNPXYMQt/QpxphPA258xvR32hBEZ9s0Ej2464GTwb4Z+h4fQlS4w3YSizA+QFAgLwjZqswE1uDTZz4HY0p2UJgmimVH6VjWbang5MnitFRv+UPxS6lIq+NFKgMjRKu1F9NAGznkOq28hzTWZpQTcwU/ruMO2sgJoivf5WvclHEL93M5IJGRqPP3gyjYdVQE0ZR6SjmfJ7iNL/DX+nMYU7KD4s++RuO3T6LxYnmOT536M5ZMuILuavdcF6eKF0XjiZMQE/dyd7wDMWS+6Y7bSKyEVoIYK93A8m4oyYYGNzbpzhLUyIoahlE82B2EOWpNN0EG+2hEydZN61ISN8RuvFHiDMr0xW8Je5Ve0yCfB5Gwi6XA5M5MoeVtjhdSmraeKpeWV0Edy1gYGAfPcjazqA8MwThpNDE1MEarHBbkEv5EDfOJEmMt5TRTSIkLRzRQTIQ4bU4TiRKjkOYgLe80alnD3MBYiRJjA9ODx4wQ5xEuYeczDvxechA6Ujl0x2hPCKBGtcq9SDTrAXdchI8wgRiQ6aHIVBviDQoMks1ugDTEmINn7YLj1kgZWIaKUexTnPFQgaheJyLb613GmFOAl4AbXapwINbaB5xT7D5jzAPIGnreIH+yP6wkwIMMA15yqMZJX3nS75oo/W8HopCoIqfKkMpGxHhXb3c5osg1I+u+eqE19aowdH0MUYyU0lWVvB34yEgT4uVWpX43nvFrFL6gnFKj7nfXKV4s+RXrr1r7BHdti7t2BKJIK0VrNr5uibIeQd8GRhbe266FIDXaos+R3UfbBiO1SN/ORp5f62EoyHklEo3IQtarSe5ZTkT6vhAx4OrducPJvjQCOD/0u6VItEGNg93IfGnCGybVyJqrxAZKrrAcXMB96HIqvhbIPmSMm/BRhP6wIqfgU6U0nUvJHRRU3uueJ4tEhxbuOtV/wkaQFvJUim3Ffijroxqzq93v70cMiXHIO3GG+80O93khYuzPwDuVDiFGkW4xWXisjdY50az+LHd+ODqlc3eca2c4hS3i2ngqx0btrHKIY4+cWGs/2s/nyyBUJvofT3RaR5AhHXQZGmPMcnxiSFi+Zq39ozvna0goo9/cZueV/KWcX2D7O2/okpxaMg2ZwSF4Zhuy4LQiC3EH0mrd4puRNC9NiLgEWQR0AjcgCrD2Rgd0Lp0QxIsq015k6/4SNjEVgNrW05ia10RJWmNAA7uBGeTSFtQZKaWep6mmylUYLKCFFvIpcGGIh7mUy7g/8M6r0jrXWQP1lHIRywImrq/x3UCBBXiF2UF9k0mlstK0xXN4/zf+Qm2r0Nz++uc3yGa81z2Xgsx/7P5e7bpXc417gJvw2ksVorcqPKPW9eFcgGzP+JSLYEcAoukyGzXNS1lv2kJGjJ4DYuysx9M2LnftVNszHYkOfAYxUIDulWNlvJWbdDHivdF2joIrJt/DknoXSdkPsVObedp1QB0V1FHO+TwBCD5EDRY9rqWSW7kREIOzihp+wFeCa2qYzxe4LTBGl7KYM3ghMCbz2MkjfCAgK2hyc+fXW64DJFUwl/YgDawnnkZhWjM7S1xOxMpUIS/ISiXI7pvk+lX77mJEddUimR3IOxB4tdJlrGpUy8h2G566cnciL4rm8W1DJoSef5Djqwgj7ygg3hhzAsJy+0Vr7R5jTCqy9X3eWltrjLkVSUD8t+RrrbX/4aIevwCKrbV7k8/p72f7+EyLqQ8LXnKoxsnbsLgPXeLIXB+HNwj+hig96klW4Kx6cRUDoc6SDOSdacLXSVCmrhREAVP2q2b3mwqeD4N2w9EG9Var0gheydLoygjX9hQOl/52cDUkxrhnnIBnPYrgE9ZHI4qhpv30FfnQ6uIxfIX7U0j0VA9kmPQXUQHpqwakX3OQZ87AR+uzkP3mcfw6r66EHDx702z3fTOynmn/D8UgmIHs7xql0Er2WuxQCx42A3eEnq3aXZeGTx/cgYz3X4bQjom79H8AACAASURBVGSZho/YZLp7azQBEg2TcCpVM5LtUIgvuKg0xJoupVG2CLK3hiMdYQlHZ5QgYhwyfimufTl4kogMfFRQ5+pWfJRRmcx0/qmxpHNV76PRkJh7hl58+lcBMoc73Pen4LMntI2aoqkGeh7eMTecUbe3CXPyDy0ONPkjBG52arjo7mDEWls90PfGmE8i6s+51tp3eF8KF2FUxFdYdoa+nyST9TX8rrsXj0UBUd5S8R7lpYhCq6lEGxBFN5z2NRc6d7gK45MLKZ7+WqD0V+a9SIQen06FVGuvo5wM97bXUkkacRqc1p1BNz/mXwJ620t5iHS6Au98D2n8Fx+nx2meUWLUUslCV0+zjRzu5zL+yD8D8M/8kT/xAda/XMGYMg+oqY/P4tA2SQNKv9KxPN0yVhvpK7SDbCJVeIUvC/HGq5Lf5D5TfMleRHVaE+r+7q2wbxJB3lZsktQ00dUwlg1mEgEZ/OgzZfFX46UbOdYQc7lrl7axDhkrVThAFIs1eOPkKWQOaDtPhyUvXBP0SXrZWxSwnVz3o1l0kEVHYEiW0MASrmC8o6vWejFaxLGYBrLooJy1iWxaVAXsWy0UUEktd4V0xzN4ITAma6hiNq8GmJJc2nn2mQt4/wKZD3999Bx527TI4EwE8K+58yA2QjgN5HnXB5p2p+ldapRXue9KnJuq4U0ZnyDHTg0P1ajC753KcLouj1HeQbYuY8xIxDD5nbX2QffxVmCrtVYT5pbi0VHJ11chPteHgJsRtNdg5G3HSvZrnBhjYvRthBiOs6o3qfi0FqUW1V5Tml7wEXUF6irgfSSeVWsmnu1ngrvfAUQRGo2n6wYPDu5A5mOy8hJz12rNB92VNcLTi6x3Gzly9W6lYD2EOIVOweNe9rv7a7V7rcnS5dqvNSn6khY8IcABvFI7DSkSeSQZKP1M5VFEuc/Be90nut+rRpxQWs0+Dxk7HUeNAmkULMe1dRs+pUqL74WXp3MQo+EUd6zECGqYzMQrx0ofPRIfMXnBPZtGe+biFfP9+EKdTwzi+QcSNe40g1bB56PxinuyhI2LkUj6k9be0XQwnRfhFMZOBkcVrf0QZrYbhY8AjkD2FU1bLMLXJNnlvjsFb7xH8Qb6LsRY2u2uUeA6ePpsjf6AT3Gbhoy1pmh24JnINIqj47UBeV+mMHx7xNvI1vWPLl8DPvx2pKo5w+fLwFlHa/Qcu6Tiqiy643Q8KB5kRs7Cu9Yn+VonsdAlJemJilwTXumehiiyRe44C1G8Nfw5wVXkXidK/fo2MQAOtYvS/9f2cxhfukXogN2bX0c5XWQEIOoaqjiX5eQ5hbeV8aRwkHNduKaREh5mUcC+lUUHFdQFym8jxfxky018efJ3AXiRSrrIYNoeee6CzBba4jnMOfX5APuw7uX3kV7yFi5zTFKf1oSeMx3vwQJ58SeEvv8vxGhQJV9rZsRCRflK0p2DXccnw6UJuUhWIdCWDd1OAY5OcpEbofmlHWmf6sPKFKJjtd59psZJHmKs3I3XjooQpTxEET3i3H2SAgWy0D0FZV+W5NMZvMEf6j8WaGVzpj/PS2+cScF0Ty5QTl3A4FVKPS0UBGlfd3A9hTRzGfcHn1XzNLdwE2FpZTwz3HhKkcVIwM4GsIyFAZtXEU2ULVgd1DmhDDofnRAoQSPm7ONQ52hRbee5G6zEb+S4538EHzlRLLv63mvcccBeomlbKuqOez70Pfh37zgDxL9DxokxxgC/BtaH02OttTuMMc3GmBnW2g0IMXhyRjfGmArgV8BFwCbgXmPMd6y1Xx/Ez7/tWMl+jZO/p6JZBl8/QxWdcSRWzVZQ+AS8otqFKGyqIO12n8WR6R+m+G0isXbENGS0RyCe6yYSPc+quKkyrmxOuxClSWsL57ljTQ/TfSsZWB0GxRe6dk9y56hxocZQB97IKCAxHbcvUep9VYpH46MKx1Rt08lf3L3eh8cwaDraKNdOjT68ilT51IoBE93/s/HpO1of5XQ8c5k+u+KCTkTStlLweJaRoX96L8036cSzGd7r/la4NmtfRJC+3ey+/y3915EZrPTgyQim4aMHajC/cITrT8GvhQoo18TSHDwWI4Yo7oetUH3IAXwf4dr1Oj5CONJ99gIyv/Q7jfIcQhyf45BxSEPeJT1nV+g+avhoRFONDwXGqyF4yP3WIfc8WXhms0PIuCiS4ER3Ly2eOhyiFeIHkPciJ32ItbbqyGcNWX6KvJZPyT7NKmvt/8/e+4dXdV53vp8tBELIQkICpIAABYRxZBwDwbFj40nSkN5e18k4v27SNG3T9EfSNNN2On2apu20nc50mtt2mrS3t+1N0zRP6+bHxInTOON0Uuq6MXbiGmNssDBGOAIEFkLCEkIcSYD2/WO937PevTn6AQgjw1nPo0dnn7N/vPvde797fd+1vt/1kct4vMg0kxs7SI14nFn/NaJ3mwMM7rRV4bPJ4AOxZnz0wuoKy+uwh21VWG4O/JPgILds6qT7UCuva5cTBzexm32sK6b1dNLGCg5TCB70PdzPl3lfUX74VRzlj/nlIvho4wB38gjbQqrRnXyHTtYUHeTX8zj/eeVvF9OCTrOAW3mcsYXzwtnX8ofzfpVP8R+twCLACNQuHKLwzUXFZcDTueZjwOOnw/If4Woa6pc7cHDShCk8LQ4z7/1EXB1dn1BFUsuH90LtJlfn6idEsTRb3+L5sWDXaRgP7e/C+l3Lj2DO98MYHH8Um3XbjM88Pgzj62tctmEX8DbY8+cWStjTegvvuuvv+eqf/6h1x/XbuPX6x4vX4i1s4xH+HUeLMjPajV2L9/JltrGV3dxUTM/qp5EVHKYq3FSvoYOv847i/bCUXnpZyjPcBMCt/Btb2VY8xv1j91A7zzN96lp7GDzVXOTNjB+pMRCnLEawe7gHv4/3hr7Rva5ibGui5T48SlXdAIVYnasbe96UIqlrFItRXH1pXZNwFB/Eno7VGENtd5Ikehp+PaQJ/wfg74NS1wuUTrNagE0cHQjH+wkCiX6a7bisXMmLTeuaVTYHc1w0UyruSB2eciJ5VqVUHcOj5YqaKIUFvFaJoiVy1E/gaVXik1SQdVJVX2I+Xg9FKS2EY6/CZVJHsOczjkJMNkurlJnusO0WXLVoDh7B0ez7VFpuY/g4rAKU88N+L0VSOLb/iT0hb8TGrlo8EnEr9g7eib1T/nP4bgHwgbCOHG2l7lVg/T+E97+SKkbISkHrGoBzGHqidfdgzvMe7H2yHouWNGPvRKVXzQnncBz4m5nolGCKDAloNeAqcCsm2Q4sBUwRB9XgOY0D6dM4d2QOHpWaTh0bnes5rD8UxVmAgZxb8WibAJXsGAYgB8kqcO3HAJ/OS/LcJ3FRB6Vk6T5UXxzGBRXAI0JKOVNk5xx2bzQyc8H+aUROyvYyW5qmbVOvdTktVusCu8P1JpAjnJvjGzoB64Lj9STmb+mlsw4bxLXLPdggL6LwQczZjQtnzacYSenuaqPijmGefN5m/yvqhjnctMKkXgdreM31T1HLUBGYgHESfpy/pSuEJYaopZ/FxTSgfhbTQXsxretX+cOMdPAuNtJPY/H3x7mVN/FwkZsyjzF+9vm/Zen1h4rqXAe2LaK3fqX3SWs4Bw3Kt4W+0GH6sIFf3JtjGB9HSSsDQNoN/cF5VarcYiw6AsHhPeHqaS2b4PAJGNL1agkdH0aXFCC6VkoR00yfZh7lUCuC8knspbkVqzJRiaut/QpZAtx64CPwmu9YgvLe5zfy4Mm7eNdHjTr1l2MfZnBbM2vuMp/vv/Mb1DJULIh4lGU00p8pkFjFKA/wNv4DfwrY9ZNaG8AaDjBKFa8J01QCMa8NRKcDrKGD9mIq4LJ5L7L30E1eq0WDcmt0HjvCd8ppX4WHsMEG/Cfw+zrv7ORr0iwGDj+DsxEPhp0+E5arOT9aMkuAyQzaJBxFqWkdZQL+d5qmu3DoPNH+H80tn8EiKdNtx2XlSl4V4GQuFgXWmC3CuZx/KQNJQUj1GDQzuyxaVyki4pvU4yRg8TLGw/JjmHOYr2y+Ovwfxx2m+WF/crxqcXnXCw1RyQFVathxLMWsKne+SgNVsbwhShdY/CY21oxhTqP4NsvwQrszYTtwp1QiAnXYtVsSzuE57J0jtS8pOt2FA0ilCRHaKS5LnBK1ABv/ROgW/0DCCd3AP2Ccm9iWYe8SCRXoeldgzvq9TMzZuFjbFI4l4rrsHNOr9yJwLRAsrscBPP1JTvsSplc1/Qw+4bcEj/zpfluF3VNN2DXUvV2HARIwLtESjONbj4NMARBVtdd9q/eVagDV4mIAVWF7ARNFQwnfDePpbYdxzrAmmWfCpgD55bSua9IiTgkF/K6Ut6XY3ekQbGnIDqganLQr5eeDF6NrjtbtxiMMGuDl1B+GcWpgszlqqsBeVT3GmqYO9jx/CyuuP8wY84ppPI30sYPNxbSdO3mEXWwoSg1/gffzYf6/YkX4/8Jvs4FdfIw/AywyM0RtcX/zGGMZR/nr53/e2jT/LK+5/im6TrbSuNBmvFt+q5PunW3uOu3B9f/BHPjPAu+JznMHnqN7CksTag3LBWBxiwOFpNr2NQpFDkmh1Tr4OvVVt8kDF2JwecKuD/isRnytClHfj4Zl/d4W/v4SAx3bsLlrKBLkuY3s9aqC133nUZ783B3F8xytm1eMOg12GjA50GHFVj7Y/pcMUVuMakgpzWuS3MoyjrKBXcVimZ2sobUYerN1drGheL2XcZR5jBX32Ucjvc+vZKjZeEB3LnyEvdxE3WZr9GDPYiqqRj01rQebxRwI5y2Z1O34bOworkyn5bhCfN4O51muSzFPSZGTBmyaKy/dPUss5WrESi+7XRXg5CxOJh7BHdG1mLMip6IGV7iS07uAbC5+I84nmIcrKD2BO8Zzw34Wcr6jJyCwEXsGJeMrR7sJTzE6Gn7PO8iTmVJbVINDKU/P4WO16q6IcxKT4kvNmMeF6lS7RbPODSXWvxR7LBxDhPRRPHIwH+sPFel7GntvKd1NKl434xyLefj1VarQPCwCI5AqGVtd13MYMHF6pq3bFvYvSWVVNRcZ+wzTAyYXWutEc3eSvq7HQMkwk0vhKu1qCLveqt4uYYPleJRwLFp/uul6qoFTi0VK1ob9rw1tlXKd0rRUQHEQT7Uew+7/xtCOlrCtUsFGwm8CzQI5DThIHsbljpeEbRRdOowDmaNhX824nxNHcy7FphE5Kad1XdMmZS45Vt24xBP2uVAwx1llAKqxAe467CHuwh5azcL34brlYDd2AeecSL1LHJUeqN4S5GuBQuciajcN0biwn3NUsv76J4pKXB20c5RXUWAB7XQU1bo6aOdWHi/OtL+NB9jFhiIHZZR5fJ17orooxmEZC3ySxqDsVNcanNltzeyrup7FTf3s/d2NtPxWJxt5iu7FrfD14H7sCuemwe5OrG80A/VdfIYDzGvp7A4EdqyGDFh0BIxbUtC1CJWSqrHIyVAh9P9aWy6OvifsoMVQq96skXrXCI5FH8f2VRu+GMD4Jo1YbvKPYMpcirDch83CbcFox+F6PvnrdxRBWss7O6nnpSLYAEu7am9XlKOVRvqLBPl6BhilqhgJa6SffaxjHmPcyuNsYyu72EAfjazjebayjafYyDr2FY/xFBuLamoABRaw9PpDxcjXAdZAdyW1K08V2zz4zeYsgBZfaACP8ul6KqlzN5zHVNacv4p6FflBDWFlPTtLyU7b7ad4vYo2ywjxs4wG80q0qwKcqMSQOAdx6scCzAkVoAd3dsbxtBMw52oEc3hU+E2ppVpHfBVJpuZtPzZbq1x6RTYVwRgMx+/BHOF+nHMgwBQ/ZvFMNGHfcn5rwjnMx55vgbPacA7LcOWkyRS3hjBneCse1VH6aD0zxz0BczC/hY1Vm7DxehXubCpifADrrz3Ye2APHqGqxYDK5qhdd+KCASNY/7RgDvs+LG1oXjhunIJ3azi2amfo2soBPo45vQ8xfXWwCwEmdcD/SZYArjREpWVNZMexa6xIUn3YTild4NLYJ8N3ArWryCrLwfnS1UpSEZgU8OvCZYOVLiblLu2zE4t2DGKTaALnROstjM6vH+eDCYhURMcUwBd3Rup2SsVswGsSKVV/jCzX+FJsGpyTsl1Tln91alZXDtMqPFUIzCGutpQj8Rz6AqH+VIM5anGdDZnURGQDeIixC5+tBuq29jC4vdmbMgK9HSupa+uhe4d5k0tvP8QAi2ijk8X0M8opjrKsSJjvDxXiDxyyCnlvWPkIB1iTKcR3J48UOQsdJ9tZtvBoEazcx7up5yUGOy3cs/SuQ/Qda6T3ayvhfdD9fBv9zY0GTBQ50UOq81T6miSV34opXanLD4f+FgH7xQYDKyOaSpNQwenw/5kAVsAdXnWgtAxbsoCokRCJCW/Cytfa/4fD70PAndW+uwHbRRFA/RMGqMBeZL+BDWqdeB2bh7E0sJDq1f3nbXRvgNfdbtk2S9sP8d3H3uwO/yn4wU3f4OiYMcv3dm7k/e2f4ztB5rmWIRZwmh28jhUcppYhOmmjiWN00E4H7byfvy/WQAGKEbKHD1nnV1SNsrjJAVD3820svf0Q/SctAli4d5GxDxQbHsRTC5tDnwk81+OFRcFn9uZjIFxUlmFyzry4P7rgvXgiO5wfMZllSCBlekpBZZvUrgpwchZPnxrCnBTNrMs5E4VKNSpExl0Q/R/B01eGcWdqBza+iGNyNKynsVO2AH+3iLjdEva/L+xPRHkBFT1uOlYe/w/mlqWiJGCjCMcNmDMm+V9JrSo9ayrbjTnqS7CxfwU+66xikTNp3eGvA3v3iNuhY4orJxByFOs31c7oIhtx+gbe13kgFkcyBITW4lGB5Tg/SJM4c7E+6cSA5KXWMZnI4gKUOv9aDCx+b4ptG6L/p7H7WvwOAa2F2Pm04mIASifMm4CJwKiUxPS+Vb2ReeGYTdj1U6RJKWWHw2eNz3OxCKOyGg7jxP3VOPBQFERRtAVY/zdhz+DmqI0x6FA6XMwtUhRqOtya6doUUsLltK5rylRbQdZPdia3N/wtDcuvpXinFx2XkAamVKMj4W95WG7FHEHd1I+QrSA/gkVNumxx8N5mc3Tf7dsvbT9kwCA8MHfebmlbT41ZuOVH532Bb/B2TofpvHdzn0VPVhqPoY/FtNNRBCfzGONv+EmOHjMH+dVNXbTTUSRtN3GM0yygotFkOXq/tpKWd3ZS+84h4y4QHNxK3Oluw9qntKzN4dweCcvV2EsirimS4GlCnVgURRl0fUFqNmlxvdHqBijsxMFIDBqDFSRqAPTpegZQMhQAz5A8ibXWPs3+vwVLyWvC09H2YOAlZG2xm2xaVyuWBiaQdgOs2fQsHSetpkhhoBZazhZle+vW97CLDYyNWMLt+nYLNSny0XGynfaFHbyW3fzesV8HTE56gPriOv/MVt7CtmItFUlNL11pfCCBlgPPWypZXWsPvc+vdPKpFOQkB/wEDj40e6jiUzF3asC7ln7sPte1KZLHIzECWiAoyHmURFPOa8nmMMwycFK2GbGrApxoVlO1SlSZfC6erqvZ6B7MudqHjQ01OGiQypUiCcvCd+14le1zmCNYioexDnsmn8aetyXYc7kAS0USd2U+5jQNl9iHTCAjb9qXQJiiBOKZHMRrp0gVrB+bYMtzY2KTTKsiJ3LwB0Kbla4209aJvYvF/VmGy85KtlaKaZLabcLBxTmMbC9C9GnsWm4K330Lq+NyEhsbK7B74may0TQ57sOYwy2FqOeYvN8uxVaTBU5z8MjEEqYGRFI0O4iDg2PYtZJUr5St5MxLqreUCYzEqcLLwjb7wzH2YyB2X/hTpFJqcwujtuke0vntx/pdXB5w/pdSyI5jkZEl2P1fh6uzDZCNiirtbm441/6wHynkHYvWvVRLmVKGuZzWdc3ZctwxkjyDPLB8bLLb1q1eG30XcueHwncJrgMPXqhRy3diD7esGUsXUorNdox0LSL5CPTuWgm3GUgBuP/YPby6qYtl88yz/xfeXAQUYGlanbQxJyTN73n+Ft5w/b8UIyMqxrexyZZVCLD3a0Zwf9M7/5EnO+6gri2kdbXWUMUo/TTyhpWGNr7Lmw10xeTwzug8mrEXrNS6tpENQmm9XdFyZyQTzAKbXTtcMF4JhMskYBJs6yafvVA/D0XS0DG4WRwAjwj2N2FgQ4PpPkzn6Ab8enVjQOWzvsviTA5YpGg7VN8d6rx0L+LAzhuLYHXp9YfoPbSsqDw2VFdLe9O/FQfZAerZxtZi1Gvrwm100M6Xjr2XH24ynvIQtTRxrAg6/texu+hoaqfvmN2n40/W8Ka7/tGOA2xY+SDfPnSXp+X1LLbz0CxpzCkhdPm92KCr81oR/QYeEXwYt+UQqReHztKzIzASu6exMp5AzCwFJS9jnZOr2a4IOEmS5HeAn8H9IMmfkSTJJ4CfwvyLX0jTdMpSEnPw4ojLMGDRjD0Tz+EE6Zg4rMhADx4tqMFnguVcaaJjYfh9O+bg5osPrsI5DcuwR01k5ptwrksPrjw1Gdk5BibKx1ctENV2EPdkBHP85EiewUnMw9h4OVWVbL0HlVYmcvVqnKtwOcAJ2Kz6E9irYzPW13HdGAGXBuw9NI4NT5JL/nmcOC2Rg4ZwHj+PV7wfx67bOObkjod9nAvbSbVsHzNTVXwqW4X3rdLvCO14pOQWbhV4SlMrThZX5EQFJVVrRD6PuFid5+2xdCRa92EsxyzRhSV4xEn1YVaH8zp83p68LZAl2KtejYClQGZco6gKj3oqsqfxfwEuXtGA1zmpm+CcLsZSLqCsedmuETvC+Yn0scxpXCyuF9gUeA7RNslad4DT/QZeFBkZwG58ZbH0Rd+DSRnuwB9mOY4fCMv3YuoeA9C7M6hjjcBoU1VxZvwHr/8GB1jD0ZPmnDYtPMYczrKZJwHoqGvnuzvfzIFNFsuexxj1vFR0djvH1vCOeV/n/rvvKf6+pv1Zvn+s1Y63+CxD1NL74Ep6O0MbFmMPvEjDu7AULT3Qn8T7QF1J9J3+q85gF3BnSwRWGky6tjWqIaM+isvSuMiVgZLF1VAVDjbcYu2JdYqO4y/B3digE06TJqz/K3HnoCscT8T472GzMxqUtgN3GyiBsO18eNf1ptb11Y4fhQfgbR//CgAPPP8exprmFVPqDjx2I6+5PTuF1TfWSFX1WBFEvo0HQuFGQ2HjR2q4s+nrjDVZMvwD699BJ228a+WX7ZiH3gtQTMuraBxmfH6lA8IR7D5cH5Y1+wXOGVqBDdKxw3AYj5QNUeIFFPO1qvHnSHY2990sBSZQBiczZFcycvKpNE3/KP4iSZJ2rJjLjZg/ui1JkuvTNJ003XsMc1JFhG3G6yM04Spbcl7B1ZwEKIaxcV58A21/GJO//S72aJQCFOtx+WJJnyp9aBh75I5g49ix8PuFpEmJsK56DipgKKdabR4P5yKQIQnkxzGAMlWKizgGSj3TPubjssuXy05jY/V2TEygFZ+HrMOvm2pi6HMTTvyvwftFZOs4bU/RpnP4NZ6HvdPmY+PlI1x+J7QCA6w1ZLR8iul4x5lapUvyuhJ1GAnbK1qolC+9U3Qdwd6r4jKtnsaxxOMg7PsFvM6IhBj0bKmae3tYT5wu9aneVzdjgLoe56ZU4NdIUROp5IkHth9PBRMwnxP9fwEXrRhkZoswTqeAZdmuFcu/OiPyNGDTUwtwz3opnoqSlxnR9y32MMUzE5uxtyFYnv9WHOF/GnPqu8KyIg6hadW/9hKFTy4yv28rcBaq216iiWMcrbO0rG8//3bL/Q85pH0fbaTjWDsDTeYwV1WP0bjpRboftJFk/V1P0HGsnWVNFnlpm3eAHbyOoZesUf1NjXz/WCvj/yu8tW4LwGg3PhNDaLNm1gu2HvIG9mIPvsjU67Dow2vCcj1BbjYsvyrsQ05yJzbAfh0f9JQ6JglC1drQPrdVW98/GZZTrO//KVr/TXjK3O7wnVLLVmDXpxp7KW0N27dG59mMpacJRI2Efgigs+K9w7Q3dbBt7C32xcPQ8vFOHngs5IkttjoyUu+i3qrEf/55K+3Tf30jy+a9yK3zHmcHrwPgb8Y+yNhIFb09BgyXbjrEVzt+tBjZWrNyHwceupH+zeFNNFJpt2ObIcfxZ2ugBSp+2PI8xh+t8ZcK2Av7BjzcTzgf9S9Yv6/AXyICKX3hvk9agqhBnNaVBx/7ySLL/PM2iwjxM1Tn5Fq32ZbW9e+BL6VpOgp8P0mSTuD1GDaY0KTuNIQ5JMqXhywHQQT1Kjy3XU6bZHYbsejJCmwsUTQl78Bphld8jmUYCNB74xyuFDYPSw3eidd12MjkaTtyqskdux5PB1O0QCk1Sj3TzHMPLh87HTAkArFm3SU/qxTSNzDFhZghewrvmy3Ye2YMT4mbjxcprML6tx4HMAIgEgJQGl0s1XsCP7chXp5IiawGVx5TVKgHLwj5TSYGknG6lDIExONYgV+z02SFHuaEYyh1Tgkn05EqlpSyCPWKNL6A+Q3nsFeHuCjiBglEqL6QTClh67BrW4sDEdWgWYIXxnwBe8crcUaiFEplU0RU9z94JGYmC2GUOSdlc8tzTnR3yhbklg9i5INunDyhqEnwXmsxcCHnrRVz8nQTP4v5ZUqfUaTk18JyJ/bAhIhE4S8W2czZDZjDuBgK2xbxZM8d1P10SNsZrKG67SVaN3UBcI5KFjf1szGMwJ0LLcWrf4ulHg2wiHVNzxf5I20rO+kc21AEI0/edgd0QcuHbGq8+6E2Wn6gk+6RtuwMx3U4JhvE3vxvDcv/hayv+ThZJ//vsDonWudR4B48ItGHDVBvCf2htIB6HMC0YI61LuFiDJgoItAUtlWbNMhq/TtxkEG0/7eFffwFdq0GcI5JM/Bx4BO57X7IPi5repE9f3qLCwPcgKmghTZXN7/E7TxGXZH8cQAAIABJREFUU7u9HUapYh/rqKgL/J7/eyXzPj5GP43sOWR1atavfIoDI2284Xorc9zLUtrb/5GHO+ygg5XNUB/4LeEYBRZ5XZO2s7CjkvH7aoptYjGe63wKv2efwMBeCwba9BJT9eLY+uG8pFulPBZ2ki2wUAjrav39ZG2WRVHKkZOSliTJakwaoi5N03dPtf6VBCcfS5Lkx7Fb+z+lafoSFhSIecDdOD0wY0mS/Czws+C1SFZgEQopTB3GnoE6zIHqwMaH5zDHSSmjgxgnYQPmCPXgTlgHpbkfMel6T1i3CR//RK4/gVfmXoHPvsaVumMgIiul0qR6EKpbIQd9Nc4rqA3HqMN5GR0T7C9vT2PjohxcOWM63nQc2Zm27Xh6kngkC7G+OIg5uCoyOI6fr6qYi0cD3v6jmFP7OOcrVL0ctjq0TUUXj2PtrAj/fwD44gTbxvfdOPb+vAFP96vHrrWeBRU/nItdx4N4HZ4LMVVon4MDi304j2o5njqpVKyD4ZiS686bQOHN2DV9GrvGUux6HHtel2F91UQ2GnYGf+8LvCp1LQbWM2GKVE1iZc7JNWdxsYZqzCubKvXkxMS/DxVgRYNHBORIS3nlRuwG1wzRj2EPxKfD8gg2sx+rQmwL+2kNze2G6g++VCRV02e1NfZ2mzO7tP0Qvc+v5AFspr2ibphXN3UVa5R0P99mDmlwvg6vDASDrYaI1q98ioH2RXR3BETVDN1fa7MHWQOxclHFjflA+E4OXTfm4H8pLN8TzklEz38+Cz9V6TP1m+04RdC2BfNfb/KuZRS7PDGPeivex4fDdlKQWoyT4MAI4BvwqJYUOgQc9+BpavUYAPk0llYnfsaWsN8QlWBHJeyHpe80PlB3Rxvcc5bqekNdte1DRkYP/TJv/ih//dDPU73ZgOKyhUc5enIZP970dwB8/k6LoDzw/HuKgKXAAgo7FvH4ja8HYHywhr7WRqpbAs9lR0gpC65goW+RpQMqVWKw0tqtfhI5Vf0oID2AR6FUt0YzxH1k6yYOQeY5kBR0QaBDwERRx+XY20xejKboZhkomWFLkuQ/YsyrFBsFfjJN0/NgT5Ikc7A78kiapneH734I+BPslf3ZNE0/eQnt+Bx2J/emabo++v6CjpGm6QvATyVJct9k68kuGzhJkmQbPlzE9hvYvMJ/xTr9vwL/A/gQpatdpiW+I03TzwCfAXhVkqQ12PgiXsdpzHFbho1LJ/E0FNVcULV4pdkcCb+/EXOsNLsemzgLmiFegI2jQ9g4pme2AnMQV4X2NITvBIbiXPjpAIeKsM0S/NGcF85FEYKWsO+4orZkZtuwiZ7JcvD3YP11G+bsCeio1sv/gb3rSoG1y2l6F+cVpjZidVM2YeeqFCmlbX0Nr6CuCMkCsu+nlxuYrMfFTVZg71ABFSnMTQRM8taCnV8PXjRSvI4jOI9FETzdPz1Yuvbj5+8yY3ngpno54jVJKVN9q/RjSf2vwFO9ShX/VOrWt7D7cwNeQPEglhomXk0NFk2rw56XJkzeeQ4GlJTSNx+PHsbRtJmwspRw2c43eaQF7GmONfRO4Gpd1eH3s5AEYnYq/olGpCGoiqItnYEHIXsVlvLUGpYfwF5cchybcTACNtisxyUHAVqgsGdR0clu+Xgn3Q+1UbfFVuj93EpaPtRZVOMaP1LDgUdvLO6z4sZhqprHbB/Agc/dCKeg7iO2/YGTbRS6FxUJ+KNj8xh8zmbn2RL6qq/SHPbgHVSvf4nC1kVFJ733Qyut3VKxEj9BQODzlQYsRLz+S2xA0IB2OPRLXKhxMT6LAx7pUL/cEj4LQKnfFK35ZmiPjjmCOQMCTFvxOjSKKoSISKZO9xCwPbhde6DiF4fp/VMDgnUf6WHwm83Fvi28bxF1rT1UzbMpzd7HVkIXFOpD389fBA/D57caKHnN7U9xdOxVRqR/3vbZ3tTBgfobGf/nEPmYD4OnmqlYHsnxSApY/bIV7/O34jVaCH3UgyvMKXpXH/VFE+ZsiCMVSzRD8PIaHJQANqrrzbgTe24EPsTtitIfM8BkloGUGUjrSpJkOfALQHuapoUkSf4nRnn4fInVfxEbGRaGbecA/y929bqBJ5Ik+UaapvGcOEmSLAUKaZoORd+1pWmaZwR9Hvgz4G+j9SY8RpIkNwG/n9vHh9I07eUC7LKBkzRNt069FiRJ8ld4DdVu/PEHuwun9IXH8JTWHtwh00y5aiVU4RMhSv1Zjo9pc7FZ3H/FHpPHON+5GQ3rHcMceY1vg+Gz0rwGyaaUiReyDyfPl4qYTGTjYR/7Q5uXYWOw0jnn4jK7UrFags9e7wzrlSJCx9aJjUNn8HQe8Nowd2MFDGdSovViTalf37qAbSar93K57WbsvmrHgLM4NRIgGGf6BTkVMZKamRTawNMN9d6diwsInCSryDWZCZhIJGEIr7PzAh7RkmpYDObFFT2Avatqw/ElMyxbgT0rnWEdSQgrVUz9InlnpXC9QDY6chCP2MRjwExViJ9GEcayXXMWvz7jqWHwoox6HxcoenipnKy8wlejAZLqAEhqwn/NKL2IzU5rtroacwDlWoTUrUyldcJh4xoTIxQHi+6H2qAHBncYUmj5UCfdD7ZRtzWkffXXmKMecEXtoiErwtdqy2s+9CwHHrqx6EAP7mimYs0wQydt9rvQs8gBwo7QX63AFpPGBRj8ZDNshd4HA2E+JseDOfcDufOpxiNMP4y5SBo8bwnn+wk8anEYc7I17zuCz6BoOY6+yEmP26G0CzD+yX14rZXtOHjSbbAv7EcJLD14ATWAD8L4aFUR2A1+qtna/r7wezfQaoCxeN5bTMULMIWtDZVFZa29D22k4sZhBr9aw5qPPgvAtpNbqVvfw+BIOLGWs9BXyfhoCGtI5vfucMyu8CfwcW/oM90/e7DbXsBjPw7sxL/ZSlaOdHFYvxDevqmEIgTExc+KE5Z7o45URfgS8s/ArCvHPnNpXZVAdZIkZ7AOOs8XTpKkBXsCfg/45fD164HOEKkgSZIvYYmTHbnN3wj8XJIkd6VpOpIkyc8A7wDuildK0/Q7SZK05rad8Bhpmu7G76iLtiul1vWqNE11K78Dn2v4BvCFJEn+GPOv1gL/NuX+8KrYJzDnrwMDCyuizx1kid0ap5dgjs23o98mcr7rwnY1YZuduEpQAy5fKi5LC/ZukUrXWjzwP11gIluPOWJjZCt294TfVN9FBH8pXA3g8sNT2QvA/8buLPFYJMOs/d+MAYOZrn1ytdsSfCIujvApiL2P80ePiUxgcQBzzJXypjopsbzwMO7Ir8Aetiamf/3i++YEBowUodB9IWAxF+f7nMRfO43YO09FIvUa0oM/F7unKrBI2To8+qcCizH5PQYfZ8L5Kg0zBkMzlYpYLsJYtqktZoRJ+1YO1QnsLo3hcj7PqBHoh5owSgjvaLZfHAbZixj3QWlfks+LijBSj73lNXu/GwtRyqnuwZze4HR3L26Dehj8y+DMbg6/hfUHO5thszuDfWONLP2BQ0UHuuKHhxnvr4GWkMDcGarWb1/kbe+y8xgMSKDiw8OM/3MNFW8JpOvP12QJ1dtCt8ndOUyW73E3RlwXsNiNOcw7or6DbDFLsMuhNklFS32n1KTrouX8PrbggKSVbF9uwdLSeqJ2PQHcFPFxHmsDKovAkFuwa7bH9znY1ezr72yDHdB7NpDb2w/R27mSwW0BWN7VSfehVthKsYgmI5UUzkb9Nb/S2hdqp1AZzllyx2p/nPOyHZ/VXIy9ENSvXaEP4wrw94Xv5F32hc+1AYwMFchWeNdzoM7XMxE/O7Gpzsksi5jIUqaDlxYnSRJXpPhMyAayXaTpkSRJ/gg4hJ3ot9M0/XZ+J1jy4K+SJeksJyuY2Y1r23kz0/QrSZK8GvhSkiRfwbKX3ppfbwKb1jFiS5KkEQNRG5Mk+USapvnoSsauFOfkD5Ik2YBdxi7gwwBpmj4bwlcd2OX9+amUusDGFJGLz2Fj0gIst74HT+dpwcajWszhrsOclwGmlsldjYMKVcSWfK9M1d/rcb5DnOb1XGhr3VQnNIH9C5ZKMw93TM+Fz6dxVa8lGICRHGsNFu/La8RMZEqlUfqMZJrnYP28BrtAFxL5udZNNXDmkVV9EtA9iU/KTcduw0G1AKqWB/GUPEU8JAU8gl3DiwWWQ9jzpWKLK7B7fgh7RoYxsDCAAXWlGp7En5VOsvVdiD5L7lmRvxfweTNNCNSHzwNhX1Ll08SBlOskdDETVo6clG1qO4FTJKV7KB3gamwK4TQeKckTe/dD7Wt9xjkWL5IVyM6wRVEQ6jEnW46RnPS4UJNC+HLKFWXR8in7XJzN/6Vmqj/5UjHVyNJ6KotO+mBXs20T9jM+WgXPQeG64Ctth8L8RQZQ7g37aCXDLB1/toa6d/cU5Wupxl6UyuNdhSt3gQ08mzGQBZaiNopHKDTTfzcePpailGa0d2AAQtnv+8hK5HZi5yjgt96WxfconosG0u0Yd+bPwv/t2PVow9XU1uIcHMLvT/i51W22tK6KO+wGWNb0ImPMo/sLtv6a9z/L0KZaeh8ycLKm/QC9rCwChe7nw367cdDUGT7rOu/CXh5qkzgkwsyKvKmfdgM/iUdKzuIyoGCD9RPYffbFaB9VZNXTanGwOdSPeQ9xvRIxdMGiJtXRcgNZIN/P+cCkklkTQRlnOripL03TzRP9mCTJIiwS8Wqsx7+SJMkH0jS9N1pHPJAnkyR5U7x5iV1ORI/4gxD1+AtgTZqmp0qtV6qJ0z1GdKx+4CPT3P+VASdpmv7YJL/9Hoaupm2V2PisqMJqzLkZwl4NcsqP4RXTH8frNUzlwDRgTtKqaBvlt3dj74pRzAHVTK2it1W47OnC0MZS5OC85fP9l+CFc4/jEsLtoR0iA4M5gjXYIzwPr+cyXduOz1bX4alDUoZaghU2PIaNXVcyVepC7EqQ38EAZTOefjeAAYUKvFp7D9mUu8naWhv+urB37gh2bw1g12Jt2P5g2L+qr7dj7+R1TB+oTmRDmIulmYPh6JhL8PRHsOexC+e8aOJAhR3zXKJRrC/UH5ouUrt1n0s9TO9VpbMJsD3CzEb3ppglKat1XXMWK3YpTUXAQ6pccdHFRzHFrhiUxE9iCwztxJnFWIqXbvgCxjtRHvIGLGIgx121JeRYaiZ+FZ6+04o9FGqWOARyJOfbn2bjeTcW9Yi5Gs2m6gRQ+PwiezEF5/VdK7/Mg/V3FdWf+KB1U2F7lN4FrnmP8VgG72vOEtp7cGDwVlsuppppRfXLCqh4yzDjXw3Tc63AbaFGx+fDd/XeRsAGzqjd9GBgRPtUhET9NIABrW0BlIxQLKKofmIEKj41bPK7ceRBffdIWF8u6WfDuYZZqbbbD9D4zn/j24+9HYDuI222fgCnR08us/4OL/PvPvdm1nz0WepDoztOtlPYtoi6u3sY3BMa0IZVd49lnJWqBQYsn8M5JX3YPSBAW0tW1WwIU41TOtwxrL/343P3fd2wuMXTERcDfQU4FUdCQpSwaLErmvfs5WHEJebz68wSYDJzthX4fpqmxwGSJPka5nbdG61zB/D2JEnuwq7awiRJ7sW4INOiRyRJcid2N9wP/DbwsWm276IoGBdiV1Kta8ZMxdpU3XsJ9sz0Y+PCPtyh34hxFDQLOtHMv+ooLcHz6QVIRDquwYDGEPZ8bseco37MCazFHLbTeKrZdC3vmI5gKbXK+R8PbdqHOb9KdZFcrgo2qvieit5N176Bxegkibwan4nXd03Y+e7m8lVRn0m7EsBEfAy9n8SdOI1LHA9h/R3bZG1dgPknW/H7+hyuZjUXJ5ufxmuHSDBiHK8Vc7E2P+y/MzrOC9j9MIAnuAxio9jqcPwWvJ5OLMOnqM9ko5uim3HE7g1YHwzgcebNuMTwG5m+wMBkNo3ISVmt65q0uAhjAZ/dLZAFHkpbiVNWCphnqO8+SDbNq9re0JrLrMIGWjmWO7BBIHa6Y0L88fD7QXwGqwd7YHWY9WQcYP4IqzKvNKAtZ+FUpc9ubYG61h7jiYRlnqM4U//VnT9qgCk4qhXvGjaZYSlh9RjXZHCguUjCH+xqtgdYDnIX2dm0xWehq9JTzVrC728Kvw/A+JdrnItTb+0f/2aN7VPdvh4HH/diKVs6z3eH47ZGfdtsdUEAev98pe1fPnAXNtgq1SzMDo4/WWNRoh0G6Fo2ddL9u23e7phz8puh78Lyk4/dkeUq1JuyWuHTgSDfvMja/JHQiK9XWjFNzeL0WB8PfrbZJUO3noXqyM3bgK2v43SR4RQVi37FInRKVyNsN4rzf1rDPqqi5d0Fe9EV78v9QCOk8U77ceT3DBYticUjFC+XLYiW9czN4rSuS6/+ewi4LUmSBdiJvgWXHLDDpOknCMLUIXLyK2mafiBJkkpgbUjZOoKxmN6fP0CSJBuBv8I4K98H7k2S5L+lafqb02jfE9M5xqXYVQNOXsDG7RZ8prUKG5NqMXDwNBPXFlmGO0ZS064If8fxoooHsedT0rUqJqfkO0VhVLfhIC4lfCmWz7sXTNX/GAhJiEQqSrXYMHDyAo85gPWbiMjgxQxXhWOVeScT28bwfy1+PRThUoqTZIQvxFqx66LaIyKFq1DhMHatm6N1zmAAYSCsJ+L5xablDeEqcHo3qt7McQwUxylkR8iqyr2AF4JcH9bVfqaKcMVtHsRI9zU40OsK26/jfNB3sVbmnJRtaivgjpPAh1BAY1gu4LG+3vBZ64hEHzlxQ5ED1leA6gZ/UGrIFp5qxR5AOczfxF560uaWDeJIX4RF7bMZe4CUMvXpSgMWcou2mNpTcfa/JzoumHN7jKLfOf5ojaURnaIIBAZ/pxnuhsGegCY6oe6nexjcHsCHohJymHdUUr31JZe9bTsL2yrh4fD7fOCes86jCERymvEISABmLe8MJ/rOIAYg4NeG80aAlt/qpPtrbfR+L5DR34R5S5qFC0Bn6e0ROV1yvNtDOwewlCylm42QJc7fi11uOf4D9psI7oN7minc51Gr6vUvwXqvKF/x3mHGj9Q42BnBwMsNuORxd6WBKoGJ7aG/dH13hL/50T7m47hhD3Y/1Ee/r8fJ7xByh8O9vxvbuBADh7AzJQKl/RgqU0TkLFkgX8DeGBOlP+rZikHKLIqcTC+ta1JL0/TxILm7Ezu5pwjqtEmSPAj8dJqmJefy0jQ9myTJxzD68Bzgc2maPlti1QXAe9I0PRD2+xPYDEnGkiT5IvYELE6SpBv47TRN/3qax7hoS9J00jSxV4TNSZK0eurVprT1eKFGgQ8wACJ1ornYs3gTXvzwIOb8VYXtWzHAEBf9u1iTA7cZe3xVy2IYm23W7PNqvFK4okejeARF7fwcFwbqW4D34kR7cV00lMhJ/ReuTB2U2WqrsWtwK3YNpMuj6ucNOLjrwbMDprImLFujHYtkLcRJ6PsxPtBIOKau+f0YGJoftlkRvp+uMthEpugi2LPTgWXVi5MCdt/EamGScl5GNq1yCLvX54Rtp1KVuxAbhicny++dji1LkvRnJvn9d2fgGGV7eSxJlqWB5niJFue51+Z+UwVreXlxSovgdUvp7apDGKMQ1q8OT1OhO1TT1rpBaliO5jFssO8Ky8r7j3N+qzHnWLPaAzg5Xk06izuzbfiLUbaNYoRh6W8dsqiCumFx2OebwrK6qMsI2wD9JxtNxStsU93ykqVLBWCw5qPPcuD5G91Jvzeog8U8iBXRciuexwmWBrb4LHXNfVkZ3l14X0mxRn01H3vJ6jzk6Kvbml+yNgucKIKl9K3FIaIUp6fpOLGIwSkc2NWH1DOlozWT6eeldwWhAYEXpV8p2iM+iWx+2P/3cFDWSjElDcL63VGbNJMpfKzimDE3Xfnpoc1U48BQfKNCCUJ7EpZTDJikj+rMcB1R8DdVDNqj/RQ9/djjj4ueXpBC7TTsdy5pLE8WbE5p2zH5SruT8vtiCrsqIifTtdiZAru1hzEHvwvP2Z+DvVLkeHdhztQ+3MHU7PNpPJqwPOxDTp9y7vPHvRATP2U+TnQGe5THcS6IoihSK+vGHMIVZKvVX2g7uoFPAT8XlkX4H8EA2VDYdzs27u3h5a+DMl2bDr/oUmwJFrG4E7teTXiNjoZwbBVIPIzNDe3jfM7FZKaUPUnqnsR8khEsIXUAc/LHsWs9hL0LdbzlOD9r1QUeO2+6l5RtUocBJAk+qK/PROvHk3xLcKlq8Mjg/LDPRnySYIjStVJeLitHTsp2vsWck7zlp6W68Zi8OCVnsSdQMdbgZBV9sP2QxLPQC0JtCDll1faAyFmtD9sqcvIE9tDFD80o5tyLpzJANnT7j9iAURn93o2nTEFGEaz3/SszvAnqyWanbadYb6VYmPG6s7DHoxj9JxthBJZ+1KIQB3beCCMw+I9BheoXTIVq6Up7s/SuX2ZRkjiXuB6WfvxQcbH3oZUMfr3Za42AVzfXOcT/W8mqe4kUHgBToXORyw2H9avbXnJuzZ5KBu9vhrfa9xAKHMag7jasX79ki9W/9BKFby7y3zdnU+h6/3Rltt/VRl0bkVC3R8tKj9PsznYshCwQo4JU+v2XMCq0Clb+HXaPaP0XcUIt2L32qqhNwiN9LX4fpcETKYLoE0E+WPe9uCbyZhRRjEGJNB61fqzudSL3fxaR4WFGIidlu8rAyUTpIEvwVBMV5DuNp0+Cq/tI1Wgf5iAtwR6VGrxwnWpIjGNO+TkMOCjnPj4mXHr64To8VUVpO6tDe89gj/hwOJ7kYytCW86Fde/Hxq6bufAZ8xqcSA3WbxpWdHwpfCkDYDZGUS4nMAHjPygasAzrpwbsuo1jwOAANtQq++FCgdytYV9SjxsNnyUGIZleOfn92LVoDH+P4cVBDzMzNoqd8yAO+JtDO5bgEUTdM2Ohff1hm1VhWX2n9uq5UpRIqmPtTB5puhwqcmW1rrJdmOVrMhSwO7MBd8IkNawZZaV0KY2lMdRE0fq1ZOpDVGPARfVQjmDOrKqGgQ3K63Dn8xHsxdYVljXTJCe6JXwXRxhG8LSud2OREzm3t5FNJevEQIPa8LFwrPuJ6LOVsAEv9PiocUN6vxBSqDZgYEdZWkHdqnckFCts7TH53dawu+uA+WeLhQfXXP8svduh7tdM/QrIKGABdP9pm4EmFYYcqXTp5fi8JSC2PqSVxWABDEwQ5JLbFsEpiqT0glSsNuS2+aAds7AnB3g6K7P8ji3YQCcQdnf4Tn17A55WB9b3XRj4fE/4bh02QEtEoZWsKpn2pev7M+E7Rc7yIgxDQF8EkE8RQEicZkX4XTtRROS56Ld4Wfd0zLc6Ha2nabXY449lu2cRMCnbjNlVBU5qON8BbcALHirtKS58J8fuZiwtRQ6IOCijuPOkR0kOpWpFxLwL/RbrUFyqxZWvNTmhKuhy9FQhfD8OjDRjvy+cT5xucyE2hI1N4pkIwAmYKMK0LBz3DeH7S00beqWYwOE87N5qwmf7BSBVa2QcI2jfzoWLCEgqtw6bFG3FQOgc7J0qBS1dkzEMAK3A7oEmnCw+D7uWM6VgFj93ozjwGcbujdVhuQJ7hzbhUSCpiqkuSVV0DuvxftLrSClgg/g9J66LxAYkVSywNBN2JQQVyjabrZTCUMw5iWd7G/Bcea0rSVXNEOdTvAi/xzPOESelphoK1f6yEeldKldtmN9WHb47hodzNfutaIGc7j7sgdUDLAK3nPb7MGdbM+adWBpRa9TkSjxV7JucTwS/AdgG49d51fJMbY3vYUTuvtC/A7D+B55gz2O3AEGtqx5/IbcCpypZs8lS3o+eXEbFh4cZ3NHMD77TWGff/sLbqXjLsNUKAbjnLGtW7uPA1270fbRAy/WGurq/1mbtlDaSyPRP2GLFB4eNWxLaXNi2yKMpPYsMFL0j9GeQTa7+QCC311d6P8UpYD1QfXck27w49J2iGF2hvyUWsAd4AANAYNe2h2zxSV07+e9KfdOtO5/s9f0KBmQFVkbDb5qZPAYcjryIFOw+j9O6RGYXyloQGi+QMoTf++DPhJb7OV9KWOvJ4sjkLIycXDoh/pq3qwacaOZeBdgGMWflBF4oTrn+h/FnURySOBVLgKYOn8lVqgx4esmxaFkpO7KZcmRU0LEW531U4eBgCHPwevDIj2au5biK0C4gFpP/L8QGcKBUj/WjeDhKyZFAYBM2y9/DpaUOzXZrwPqzBlfLGsD6V9wO1YrpwSNZj3DhM/Gt4b/SB2Ohglas30WAP4ldo1UYMFmB3UvHMNByInyn52OmIg16ZczB6wmNY8+QAIMU7VSHRGBXal7dYT/HcdUxqc6pTK7SHfuxZ1/38yrs/d0efovn4i7FUrL1acpWNrM85yQm6eZJvnLI8qR5oQvxVGSxshdkSfVAX3XI5Q8/L8drSoBNON+I8x6aMBlY8ULABxWdhojOekGuwl6OcojnY2Ff+aEDZIjkrMNVxPS79iXTDNvWcNDtleZMy5dtw4jcUUrUno5bPNqD1QRZ3G79duD5G+EsHPhCABrB4a/b0sO3d5osLzeEauyhKv2yeS+y99BNxQjCa65/ir0dG71WSGtop+g/9wUg8iPW5vHRqkzal9YvdC9yjo/km98U9rEjyC7HSmRx//SF48T9tIds1fotZPkid0b9ORrW7cQ5RYuxftsbtXMABx+tYbuuaFkABpzDpNtSMz1Fcjt4CWqB8W5sZI/v5VgcogW7l6XOtZPzlewgG3WMIyWKOF7uXIiLtJRyWtcM2FUBTirJOt0CDbqdJdsqCVPw2/wMPpmk9BTVQ9FM7gKytUniNFK4vHnwNdhYLcliMId3BZ6z34kRkSXKImAkjorSvESo13YX6rh9G8uOPoqNh5rzG8ElbPsxR/MmnNewDJup38X0arzMZpMq2hLsPdAQ/itCIC7FHKyfVC9N3KUX8KjKhVgd1p8inq8OfHjEAAAgAElEQVQiW9ejiywwWBiOMY4XM1yFAdsx7H6XqMLlUFyrwM55XliuxdXulBI5LzoPAZf4nlR0ROlpipSI+1GBPbNxZER98HTYvoWpC6xOx1JmR+QkSZLVwG8AdWmavnuq9ct2OS3mnOS9kVISLSo814hHUsBQhD6fxSMlcsr0VHTjgEYWOW2deYnVBr/567EX1WLceVZYsh53Xt8QPsth3hYOKXL4AOb4/kVYvpNsCFjE8j3R+g/jaleaqe/ClMC24rOFarZI20o5yhHFGbE6LMXK6or8yInfA9xz1oj03aE984HnKhkcaIbbYPC5ZgNDYb97H9pIxY3DlmKmffb47zRjjvu2yGWKhQaUHtcVLYtwvw3v7/lhX9txoKG+qiJ7aQ+GdQVmtpOtOC9Sv8BJHRYhW4tdr9bw/Vewa78htKcaBy9K29J5dGGDql5celHkb/M03HNJg39mJ+aJnCBb/0elrxUhBLtvd4bPEo3Q76fJikns53x1LqJjzKKoCZQjJzNkVwU40cSRZlbzKVBEn5WKNRdzjqQUVCxeGv6fwcYBFSAUqJGuBOG3uVy++1D8GDnEyuEXuKjAVRtPhnMQYX0Yd2iVWrQj7LMd4x5cjD0VjnMUcxQ34/VgjuPk+4N4PRbN0N+CO6Zw6fLKV8JuxoViJMc7jPM8GrF7ZQmeeXAsrDeRjPV0bBADfCKGn8HTDZXS1YBHI+rxaM1BDJCcDm2twa7BgvB/jJkHjaO5/3rOwJ8ZpXRVcL4JMGnuWYIQ4M/yOFmS/BKy6ZQCNjNhMxE5SZLkc1jmeG+apuuj738I+BPs0flsmqafnLAdafoC8FNBZrJss87ys8Wy5ZhzpdiyQIpqPoADjb257eWUVYbP4qD0h5dfeDvVNsDQCfsPJu96qtoQupxRpWwtxqMkserTNqy0m+gCSvdqDf93YQ9dzGGRHCS4MlQs0SsVLKUa3Yyncn2WYuHHot2Pa/YT/ZcD3Re6Ri/t5/BwPuH77ZVeACmuyVGJpVkpAhTNzIw/V+PtiAGDbAfZivPxejvC/h/AuTV9BD5MWO4iq6bWg0WalJ6mftAxmqPfZPtxSlKpqFSsDrYfu11G8YjJAUzSUde1G1d0A7sXNgM78oIO+XTFcM+m1eGE5EruxCOAcd2SWFGrgNU20ej+OPDa3O/V0YmWCkPkQXrZrja7KsDJODb+KrpwmmxGYuz8nMaB7Sg+Oxt/lrqWOCxKl9GMtz7PJEAulft/DnMgVWBSM/UncEf3Znz8VGrVSDhPcRHOYK/BFdi4968ljnUhpr6bj9WReDMeSTkX2jGA9ds4TqA/g42RY7njz3aQUoWd02bcyZakMjinUX0wH3v/z8El45/j4tOnarFrp30dxFP0xMEQ2ND1Pxra3YpNprXjaYBK5ToX1nu5iN6rsQjOwtB2gY1xnGMyF59YGCEbVQEvOgkuRwwO5OfiRVhhZqOaMxA5+TzwZ8Df6oskSeZgFX3firkKTyRJ8g3s9vn93PYfStN0pnUzy3bRFue651+lBbIkXqVjKZ8enEOiGeIjZEeIVZxfwyG+/AfDtiGyMlSAFWvhcJT+kpJVvqjFAEx/cAy3YE56V/hdIOWO8P/R8F2sCDaKpwVVhSbsyW2v/RWwAWgUd4gPYoOnTus42dn8SjwSQVj3e7iveguu2Q82+FbhA4ryoLfhIKoel7/VNlqX6Fjzo/VjPsh2spGS58jOfmpfa6N9SOlM0xA9ufXF79H6Ao5yKhQViS+/KrKDjRjbcZApQYQn8SCEQvq6Da8DOiN5am0X1yXZUQ1t4ffOPEDOV2uvxqdsBUbAon9xWpbkgyFLdgfrtDjtqxpDSXmGbB74z7KIiSxl1jbtlWRXBThJyaaDiCQrKd84nSuurQA2nsXOD3jNknMlfoNLd1LWcX6qSal9akJjGBuvVCO1Ga843445e424Q/oC5ghKSlbAYACf1V8Y1i91ftO1p7F30Tew6LwcaEIba8N5xly6JrKz9EPYVPK/YtetiysbEa3CXArV3JDalNKjVKsjFilQIcS52HtAQ/BzYV+Pc2m2BE/fOoy5NCLHSznuKPbOEpg9jUUGvxfacBzrV3FkxOdYF/b5cqTbScGtVBqZUrXOcL4Ia/7ZFEAfxqMZp6PfY0Ayl5mxaah1LU6SJBa3/0yapp/J7CNNv5MkSWtuu9cDnSEiQpIkXwL+fZqmv49rIJVtVtrZEp/jdJY4XQvOl0QVcTgm/MapL8rFj20p/oSswmagBW4KAZh0heVWssRi/MWnVJxdDdb0QljefRp2t7hTP4KBCwGLASwqomZuwbkV4ECkNSx34UUaRdQ/TLaw32uwYJFI+lXYCyQGVfH63QQnO/r9Onxg0exGDBS2YS+rGFAo5QsMfLXiACLmk8jm46lmH8j9JkUz7Ydo3/8U/t8U2qxLGhMGtd6xaDtJQatv12F9oFFGMr+ymqidMvnzfdF3NPj1rm4wYFIb7smhgvFJOnXP9IedqNF7yQo3dHF+elUtnrIli6W0Ve1K972iiHGdlDb8Ap/NHXOWW8qFV1Yu23l2VYCTvIkcGzsTikwswUnwmsnVejFQuZwO8nRy4CVH+1T4XIdX+h7AHOe2sHwEO79hzMmTwqDUtKReBB79riX7+F+sdWKvyK7QXkX56zEgsg4DUXrXKb24MbRbw9XbsXfc28L3KjY5gvVXTJe7GNP1V3SM8FnvO4kJqG7N6rBeE3aP1GKveHGXzuCTXufw1KlG7J2zOxxvJgjZw+F4S/DITAf27hWvQ1kGun/nYPfJ2zDBmQbsOu3Awa74VUvCthfDhblYUxRJtVaOUboeUKzWJYsnFmpx4H4aT5UWQJmpqNA06pycwd7ID6Rp+sAF7Ho5WTesG9OSKGlJkjQCvwdsTJLkEwHElG1WWgxM4hnofFG5mOh7OrdNDNXF2orBTJz+MoSBl1KOXB4kaRORi7XPBtt8d7RZJU7sKmDOq5a/GNqguil7sQdS4fxjnA8+XsQjMNpG2UFgzvo/4fvsDJ9jtS+pSoE73trfrrA/zYqp3SN4upnSmf6fsCyajxz7R0J7FZUQL+Pd0fZqD3ihws14kUrpo8cpU/X45VIURAPcPrIgrpWMCAArot+0/Tp8sJOPr8/gt5tuiaH4XiNETAowFN0T6QIcXCzF3jR7o+1iOWyi9TQy12Ije5yTphRG8Hyz+DmII4pwPrB/haVxvfJrm8+4XShf8qoEJ3mLU6biiEqpWhyKmlxpPtMCbJyqwB7z+Vh7T2BtVArPc1j0RFKxc/HZ5LhwnQpFPo2nJ63AnNhhLs2JVqRAk0JzsPF5S2jPCmyMnY+9VzRxVotNkCkVT4Rt8TZW4ET+Wiyafzjs8yBeU+ZcaH88YbY/nPM8XMFKkZ3joV/EOarCZXhb8dShYSzqcQPG6RnHnd0FuPqWov0vhPbNlEKU7I04N0MqW8vx9Kw52NC+HHdtlOY0jqX+vYABE6nO6R5Zjb0GIHp/zXD7S5naGSu5lQISem9LOa87t57aqv3FUZMmZi6taxqRk8E0TX/2InadlPhuwldbmqb9wEcu4jhXrSVJ8ivAHwJL0jTtm2r9y2NTyZkKSOgPslGU2GJVo+poWSR6OZhyCGOHszfaZyNGgngbTipW3DGetY7kidkJp+7INmsokonV3SrPIam2QVWz+YUTcFNExFe1eRUIhKA1XoCt4SC7cNUvQlPqKRYr5MawD4ENpVjFACoGCsM42NAAUBW202m24uRw/d6HR4gEKGIO9iPRfl/EeRxgg432J15JE1klLO1HzsVA2I/UsRJcuEC/Ky0LrEDm4ugcEmBHAdpCI1OystI6Ht1QFa7f2QYo7CebltWPg407bP3idFcvdu/oLaFUxXi5l6zSnOr2xAT307ljnojW17Z50P4KAiOXyULa7w7gSJqmd+d+W4GlCDdjr/XPpGn6J+G3afMYp9GGS+ZKwoXzJa86cBLPkMe1JuL5qFJOhgDJbAAmYHfbftzRrsGcckUQxjBQ0o7XYjmN5+3XYOfZiY3pcqKVUjYXc+7HMY7cTFk3rtCk2h/j4diazVdbBEqkxnQGL+QHnjIl538e5phLZWoZBgZuwIZI1RJRupOiCCqg2YEBihq81s1cLMVNfCWBoflhvRrMyT8Z1qsNv41h7yYVvzzB5VFtq8OAhYo5ijcicLQEA6grsNdFLdZP3eG3XVi/KxpE2F9L2Ne5sL/BsN4yZkbd6mJsonRJSYMPcmF1WWb6ekwROalLkuQzXHjkpJuoPB12aS5G6fuatPCCfitwaKp1X36LFYbyMsH53+B8ZywmzYODEL3NlmJPfbz9Khyyd+HF8DTFcwJDDPmCeIphL4X0GSgoVSyk9eSFkoozGCdgpMGd4eoG2F2A6rCBwstx1dTrsHPaFkBXdYuBF62TBvCk2RKlOgl27sLSjxaHYwgMqI33YC/NXeFU2/CohPahz/KAHicLNgbIAgnNbsluAb6Op1INYyDqRZyoPoBJN8vicyT0S5y68LrQTkV3hqJ+hMh/D/dBmuOFVFc7d6TIIemCxZugLwa84PdQLPWjfTeSFWWoxmuU9JK9dyXSoFoncXqW2tCCdfCJ6PvlueX43leURGB/Kec/G7FS3lVN8PhF7GIsLPHbWeA/pWm6M0mSWuDJJEn+CbuLzuMxpmmaofcmSbIUKKRpOhR915amaT6h5vNMkyuZpmlHkiQ3MQN8yasOnEghahBz7GByErIc4Ly60JW2w3jtFvAq203YTPgAXgAydqJbsddJTNwewjgdK3DOgbZX9CKfq38pppoWIu0/jg1tUrnSuTWH9U7igEbKYpKFjoHKOTx1aiH2PlDNj5hHpHS2RlzSdl/4TiDpHPZaH8Wc/JtwtaftmCM/H697UxGOcxKvMdPD5ZORbghtXE62yKbkiSXdrAKEceqeVOQqMHArfonuC/C0ucN4ChtcHlnhS7U4kiNgMhFXKhYdmMnISRw1m8AuNnLyBLA2SZJXY7fk+4D3X8R+rlX7FPCrwD9c2WbkHaSh3H9FLWInSxGMI9E6cYoVeApMvI2W92J3fDzTvJMsbyU+rkjHMeABAypaXkq2av0qWy48Gv0OznOphnRndFqbwvpRmwpyNsVrCNvF7Xyk28+jeq1tf0rrnwiF/5QPFY4toKGIh16WX+yGxSpQgkVYVmDRGllnv4EipTktboDd3VAbthvqtt/jy9UHHA5tqF1rg3Jf2L4tRIuGAJ6x/4cb7ByT6ugcowTlQszlAHYETlIi5ar9UIjvmUarbXNeetSCaH8CFQITldC3E79uUsmSnxiDW7D7Jya2QxY8VOeWe/18itfzGbL3sfglR6J96HP+OGCdV0lWvzi+EGdz/2ebjTONqM+UHMUkSVqAH8bSeH85v4M0TV8kJB6maTqUJMlenDJ7Ho+R87WH3gj8XJIkd6VpOpIkyc9gpUPvyh1n2lxJoCNN093MAF/yioCTJEm+jAdp64GBNE03hA7Yi0/efi9N0wtKYYjBxSBT8ypmYxmfClyJaARXx9KM/mHsFfVGzFEWd/AGPAJxHC/KexQDNHI8X8Ac+9XYsFYb1p1JRzvvyB3EU7GOhb9xPDVZUsTLcSK53jUifSvVS5GCE5gDr9QwKTOewIbmbgxMKAqiPlRQO64w3oX33a1YH+3HSe9PkS0DdblMkYGRcC6qZ3Mc82JrsBFGvB7N5kvZ7TjWHwuwFL4lWL9IVlo8q3FcmlrKWVIAEw9kNttEQCGeiJhtkZMkSb6IVXxYnCRJN/DbaZr+dZIkHwP+N/Y4fy5N02dLbV+2rCVJ8nYs3eHpJCmVHZdZ92eBAB7rJl334kxpXbHDVMv5YATOL8Ioy0dQ8jPM+W3y4YzTJb7PAyJJGStSsjy3j97c+gfJAhmpMj0TlkVW1jpyTLUs8nOeP7Afr3D4jDnk6TO+nJGWjbcDH8Gj8+wTcTus15dLmTusfKdG/58BHiFPQVELClCIABNrQzpUAEanyDoPnQVc3OC1vg/6IQ2jafUdYXdxZGG/g5E0HCcVCNO1jonicT+WmoiW4y/A8FYMcMT3VJz6l4/KKU0r6gfA7604ahJ/n7++cfphPp1R+8hHS2SVue+GyLqqsz1iMi1w0pem6eYp1vk0NvEypRpA8J03YnPBP8g0eIxpmn4lTIp9KUmSrwAfwm6Y6dgFcSVDGy+IL3lFwEmapu/V5yRJ/gdZsaADaZpumKljXSrh++U21VqNScCKIigFR06lhEHmY16NakaNYOlecUqbSNJzcQde0ZYh7C4T2fpyOuBxvopgfBPmMLdjDvgmXOZ+Ew7GRJCfhz2BA9iT1IU51qvCb1LXknIVuByziOWSNz6M9ceZ0J5W7BWzLxy7Fngo7ONyAxPwyEA7fj31cEiaWKZrPY47zvVY360LfzuxqNA/kE3ZasD65BheR6cD75NYOKBs0yrCOGXkJE3TH5ng+weBBy+2bVezJUmyjayoq+w3gF/HXsRTWpiV/Iztc9lloKuWkhQuNdsbA5Y836RUrn086mi2uSFajqdMGnLbxHySifIHjmB+hsBGY7Rd3JY4rWco11aljIHH7EXO2IvPxHdFx63EHeheSB+N1guz8cXifmfJkWCi89P6tWSd+Oew6bq4r2Oeg0CWHPFN4ZhE68cz9mpLaHMq0KBzUPHM/dG6LWH/m2yxsDOct44Z+i7VPk6Ev/j35Tg5XZyi+P6Iz0HryIsAUxZoLNEPsWxvgWzUIwYg6gOBWMhGWxT9U9vjbWJOSam3Zym+Vbz+ZFPHsxWYgL0pLqZogFuSJOJ4PJkkyZumWPc64KvAL6VpejIpPVNTcsxL0/QPQtTjL4A1aZqeKrVeqcNO9xjRsS6IL3lF07pCJ/5fwA9cyXbMBtOMuR5xFX+UPgu4s9iCOeG1mFN/OzZcrMamX2/FHo0dWORI5OcVmEM/ggt/tOKpXQ+F/y+HEx6bZri/G/5/K/yfG9pUi4G1djxCPxdzuo9g5yOxgFr8FdiIDevNOCl+X1hWROUoBgKkXhWnBMefXy6La8U0Y+2VIIIKLtZjPCG1983YNVYBRtVgGcdeKQexe+LbGDCrwwCIPL5hDLhIHllpkWVzm4kijGW7cEvTdGup70Ne86sBRU1agJ1Jkrw+TdO8COzLaDFIKeVA5XkneZnUatwpkyNbG60fz0jH3+lzfjZaaVwTzeQq1Uv7OE1WAawany6CrFML1u2xY6rf9kbLO7GIQ5zWk7f4vAsYuIid23j2X6lnsRMfCwfE4En71LpxClNvtLwXlyaDoK+M930X2b6OQQRhvf1kORlDoU0CXdpfDMIKZM8jbuOREscUgT22eP2Y7A4eudJ3eWDcGH7vj37PX5+olg4tZFOy4ghIHH2ZLGII50dDYg7JCUpzSuLnaSoBiitpKdOInExldwBvT5LkLuy1vDBJknvTNM2IWCdJMhcDJn+fpunXwtfT5jEmSXInJop5P/DbwMem2b7LzpW80pyTO4FjaVqMYwK8OkmSpzD/8TfTNH2k1IZxmH7ygP7stwo89eg4nuq0ABeO1Cw32F1RgSG6CsxRPY1FUiSKMoKTnsGGngE8OtKFDWNzomPV4gqRM5mvf7F2hmx6kSItuTmskvZdDJgphSy2icDXlUzxk9JYA3bej2Bg7Cb8fjiOARelboGNKh0YMD0dfte+FE1rxemvx3Ep4R7sOs/B+rIJr30yB3sFlUGK2xSRk4slxJftIizkNReT45Mk6QI2Xzm1rryVcpzyr1s5YHnAEq+XTw2DrIMZgxXNOMcRlnw0ZqKUGjmOmhWP035ioAHu0IKzvCZK0ZFT/DDOUxH/QLPLR6Lf9HtcF0NgSesoSVgO9VrOB0cNZKVsJS7wXLS8gPOBHrnlPJ8iPm/tR3YitCXW9NVbXPvLS0PHwEDyNxHHJAM28qlpp8N3inrFoCB+O7bgYBOy11vAJR9JEWBamttWaXt5gBJf8zyfRPd5DLrzVgpslKojNNHy1WVpmn4C+ARAiJz8SglgkgB/DexN0/SPo5+mxWNMkmQj8FcYr+X7wL1Jkvy3NE1/cxpNvOxcycsGTiYLx6dpKvLijwBfjH57EViZpml/kiSvA76eJMmNaZqezO8kDtPPSZJXnKp0TOhVWo6GHtVtkFN9AndQBWRO4+BChRWXhHXnYMPh3LDOrXiUpTUcT5EHVZOvwyMScpAJvw0zI9WxX3Z7JaT06Xo2Ya+IWuwaPIb1eT/2yhoCNmCgZQU2i68IyU3h/xLsuivKMoCBln/FlclEqge7z6Tw1oDfb4fxKI04KVOdwyvx/rgQm0bk5GIJ8WW7ZqyUQzUViMmnhuWBTJz+kp+NjtftJUswljMpABM7zTFfo5TccczF0Oc4IhFHcFTpO45sCJTEM+oxZySexddyKRCh/7FDr/3luRQCAvltG6JtFpAFG9V4qtiJcBylN+WjF1o/bouAY6l1431o/WfInofOO8/ViKNasSy0Puf7Iz8dlwdhpSIhsXpXnucUX+98tC62UqmO8fdXK8CYFufkoi1JkgeBn8Ze7z8G7E6SZFf4+dfTNH1wmjzGBcB70jQ9EPb7E8AHSxzvinAlkzS9Mn59kiSV2FPxujRNS06CJ0nyMIYYd5T6XTYnSVINLZeW6ffyWV5tSDn+E5GR67BUruPYcDmIzZqLJL4fi5qIDH8aC8bvx2bCVcT3DE703ow5oq147ZGF2JC4DJcjFi+lbDNrUtSqx5Qpn8DVtSSZfBpXKjuNSyTvxMn6Ai8CGHF6l6ItO8gCWx0fsvdhQzjuQhyUvNLBxzA8OQ3y4aR2XZKkN0/y+2Pmhf0L5cjJrDfjnHz4SjdjBmyiSEwpp3AiRzFPqs8pa5V0smKwUioSM9m6sjxXJp9OFDvdE3F08uvmo0PghSnz+yhw/jHzEaSJ0s/iY5SKtuRT9eLj5InicT+UamOpY0x1bfLXEqYGCrHF65Q6fn6biQjqk30/m4HJ71zS+yJJ2lMrfTyZve6S30lXu13JtK6twHMxMEmSZAlwIk3Tc6Ga5FpK10osaa8UYAJZh7AKT58pBUw0fFWE5W6s81SlfAhT4xKpewmW0vQY5sxuJ1uvdQvOT5ETew4vUtiCqVP9IC5dK+e4bBdveSe/HQOMPdhNfhMGOqS61YVFS0TwX4KBSIHGO3EezSpc7rYWA67/GrZ5Aa9vE19DVT2IFe2G8NQxAWi1+ZUOUi7FLmMRxrKV7SJtqkjMdCI1+WmnvARyKZtom+msK+st8Tm/bl6NarLjTLZu7wTf55enc16TrT/ZtqX6dajEetM5xnSPW2q96YCCeJ3pTEtOtM8L/f5qscsbOblWrGLqVS6bvY9sShfAvwOeSZLkaeA+4CNpmuZjkq84mzvF71PVVjmB129ZEr7bjTmfxzAn9jFcOlapOrXhuyGsDNedGNrbgSUqqhhhK+ac1mMRlqN4BGcIL+S4MXzfEp2TqrSXbWJTX40Db8DAXgMGLA9i12Ad9jDKAZaa2DkMVKjuyZ7wmySBn8Cu+TgWETuJ68XUYPdFc9jXxly79GDF6W8xGDmDZ1bDtQtMZOcm+Stb2cpWtrKVrWwzY1cscpKm6QdLfPdVTHngstipNOW6KfTwL4ed4dJrZMhpVe2P1RioWIAX1BvCnNHbMcf0u2E9RUy+hzmqdZhD9QIWKRnAnOYOnHhfhc3k9wBvB75BttDhm7EclrJjNrk14UWSl2CpeWeweyGmVN4f1q3AEjhVNFKKXbuxvt+MXe9l2DVfjQHPHwnHORd+l/T0QpzYfjHVHaa6vtdKNGUakZOyla1sZSvbNW/lyMlM2JVW63pZ7UoAE9lMhX9UPf1xbMZ9OPr+CJaadQwDGk04cVoO5AnMUb4FU/kaxEDGEgzsqCr7AJZCNA/4ZthWCmCjGLBZhYGgtXgF8mtZ3akBAxyNeBRLsryDGPCrx1XoO7F0vI7w/+mwH1V/l0iCpH5b8er1O/Br0Y7dD0NY5GQ5Fj25GbvWkkRW7Ru1ZTrO9lRRvWsBmICBk0stwli2spWtbGW72m1GpISvebuSaV1lCxZfhIlSwOL0miGcOC3C9AvYjPs4rtI0hDm+CzHwUIOBl0FM9WlhWKctbPN0aMs+DOA0kp0ZV9X1KsyxXYellG0Px58ImDTh9MAlud+24OW9Xqmm8l8nsGvyNE7lFHcDrH+2Y6BEqVRHsT55Gu+HUax/T+Plt3qwa9mO9bV4SgvC9+ew69iIq0p9Cwcmd2PRl5qwXH9JZ3ztmSInE/0ROCdlYFK2spWtbNeyqQjjZH9lm8rK4GQKa5h6lUu2ePZ5otlsOZVV2Gz4PmxmXHVN6nA1p+NYSlcPBkD2Y+exD5tZBwMpmgnuDMe9mWxNkI7wfXuubd2YU/3tsLw+/H87zkFpCv9r8SrkkHXWa7EZ/1IiANOxCia/gWOgV0GWHxNf16rocwvZ9KdVZMFTHkiqaGJ32KfA14no85moLTFfB+zaqW3noja2hf834MOZBA+qMBAyH68GP4Jd86NYtEvS0mDXb2fYh2qbTCUPXLasKXJS5pyUrWxlK1vZJjaldU32V7aprAxOprArycZfgjvRcvZH8Znxw9hs+Ciuvt6FzYo34fyS+dh5NGEqXKqHIe6C9q20Ih1bhOzDmFM9B1cCA3fqVTfjG+FzFU7oXh3tTyaQMxx9biILCiaTbZWNh79lUZtkb8C5Plp3OPpdxSdXk01d6iYrAqlyXzKdh9Kiasiq9guk1OFFI2vDukNYalbcrhVhm4GwL/VlJ9aPu8O6Tdh1VHuVRncrBjrVthbsHngaAyC12PXTfse58sU1X4k2jchJ2cpWtrKVrWxlmwErg5NZalVkK4HvCf+bMIcWzBluxGbGO7AIhtKujmFOdSdOYh/HnPgOzHkew5zWY1gEIAYHcmwH8fJVY+GvE3OEVcQvD+BGw3bncFoZp9AAACAASURBVMDzNB4VUCQijhgdI5sWFgOl2GrxSI7saGhTHJH4bjifuG3a/xLsxl9A6cjYZJXnJUigaEg+ArEqHHMQBzmxGKPSrNSuuPzVcTx9T3wSRUw6w+9K6QIDWAJA/z97dx4mV1nm///96TUrWUhAyGIAg6yyhQAGZRUBGQIzKOACKIqOgCgwA4x+lQH1p6KCKKKoCDjIqkhElH0RZAs7CUtCUIjEhLBkIaTTy/374zzVqXR6qU6qq6q7Pq/r6qurznnq1F1PV9c5dz1bbj2aV1ldryNSDGPTY3Lx5HcRzFeKVsL+rIeWkxGSLpH0b+WKz8zMys0tJ8VQVQPi+5Pct/lvddi+kDW/+a4nu0AdzuoEpquZyV9jdbeqjuNDOvsGOPdte67lIJf45BKn7tSzds/Kjsfr6nEd48if6Sw3jqYzHR/X1RiY/Nhnkr2engZ+5+SXq2HtFdT/kbcv93fIrTHS3fFyXbdyiUN+grQxa/5Nc4/J/5vlErPcAPtcgphfB7kxRvl/l/z67vhes9W8zomZmfWsumfrkjQU+CnZd9l3R8SV63Ict5wUIL9FodQVlhsw3ZXcxXD+xWtPM2Z1dpFVaPeUJgq7kF/Xri6dPa6vu9YV8no6m4a3ia6TtPxWofzEZHjHgh10NlRubifbOsolrI/T9evpLNZmVr+2apl5a114zImZmfWsOC0nkg6U9LykuZLO7E2ZQh5bKEmXSlok6ZkO27t6jn8Hro+Iz5ENRV4nTk4KkH+x35sLuJ4WXyyUBy+vbeOei3Srt3+bYk2RXMh6u8Xy3gLLlXP650I/gBp7LtKnPObEzMx6FkBLDz/dk1QLXAQcRNaT/WhJ2xRSppDHpsdvJGl4h20dh+8CXAYc2Iv4xpMNdYX1+O5uQHTraoPFb6/7pE/dGQMs7oPjrg/HRDb2ohuuI1ZPQ9yFflVHb3e2sXDrPVt1G9yyLIuvK5VWl9alBYvh7L44X3RUif9j68uvqX8YaK+plK9nPc8XC26Bs7s7VwAMkjQz7/4lEXFJ3v2pwNyImAcg6WpgOmv2au+qzN0FPBZgL+A/JR0cESslfQ44HDg4v1BE3CtpUofHdhfffLIE5QnWowFkQCQnEdFdz6d1JmlmREzpi2OvK8fUs0qLByovpkqLByozppyIOLDnUtYf9NX5oqNKfj+vK7+m/mGgvab+9HqKdK4Yx+rWB8gu+HcrsEwhjyUirpO0GXC1pOuAzwAfKkJ8vwd+IukjwDqv+zUgkhMzMzMzswFAnWyLAssU8thsY8T3UqvHxcAWEbF8feOLiLeBTxd4nC55zImZmZmZWWWYz+pVIyDrJvVqgWUKeSwAkj5AtgrFDcA3ihzfenFy0r1Lei5Sco6pZ5UWD1ReTJUWD1RmTGbraiC+n/2a+oeB9poG2uvpySPAZEmbSWoAjiJb57qQMoU8Fkk7Ab8gGyvyaWC0pG8WMb71oohOW3vMzMzMzKzEJB0MXEC23vKlEfGttP1m4LMR8Wo3ZTrd3uH404ClEfF0ul8PHBcRv+hQ7ipgb7JJCRYC34iIXxXyHOv1+p2cmJmZmZlZJXC3LjMzMzMzqwhOThJJH5U0S1KbpCl52ydJekfSE+nnZ3n7dpH0dFoh80JJnc1gUNR40r6z0nM+L+nDeduLtipoAfGdLemfefVycN6+TuMrhVLWQTcx/D29L57IzWUuabSk2yTNSb9H9XEMa63q2lUMylyY6uwpSTuXMKaKfB+ZFZOk0yWFpJ7WP6h4ks6T9Fz6rLhB0shyx7QuKuFcUUySJki6S9Kz6drhlHLHVCySaiU9LummcsdipeHkZLVngH8H7u1k34sRsWP6+ULe9ouBE4DJ6aeYayF0Go+yVTiPArZNz/fT9I9b0KqgRXZ+Xr3c3F18fRwH6bnLUQdd2SfVSy6xPBO4IyImA3ek+33pMtZ+P3YVw0Gsfg+fQPa+LlVMUGHvI7NikjSBbP2Al8sdS5HcBmwXEe8DXgDOKnM8vVZh54piaQFOi4itgd2BEwfAa8o5BXi23EFY6Tg5SSLi2Yh4vtDykjYBNoiIByIbuHMFcFgJ4pkOXB0RTRHxEjCXbLXO9hU7I2IVkFuxs9S6iq8UKqUOOjMduDzdvpwivlc6ExH3Am8UGMN04IrIPAiMTO/vUsTUlXK+j8yK6Xzgv+lirYH+JiJujYiWdPdBsmlE+5tKPlesk4hYEBGPpdvLyC7mx5U3qvUnaTzwEeCX5Y7FSsfJSWE2S02K9yibFxqyf/r5eWXmU5oPgs5W5hzXzfa+dFJq2r80r5tSOeLIKedz5wvgVkmPSjohbds4IhZAdhIBNipDXF3FUO56q7T3kVlRSDoU+GdEPFnuWPrIZ4A/lzuIdTCgP18kTQJ2Ah4qbyRFcQFZct9W7kCsdKpqhXhJtwPv6mTXVyPixi4etgCYGBGvS9oF+IOkbenFKpxFjqer5+0s0Vyvb+q6i4+s68+56TnOBX5AdqJa73pZD+V87nzT0jR/GwG3SXquDDH0RjnrrRLfR2YF6+Fz8n+AA0ob0for5Nwk6atkXYmuLGVsRTJgP18kDQN+B3w5IpaWO571IekQYFFEPCpp73LHY6VTVclJROy/Do9pAprS7UclvQhsSfZNS35zdq9XyFyXeOh+Zc6irthZaHySfgHkBqr1+cqh3Sjnc7eLiFfT70WSbiDrQrBQ0iYRsSB1mVpU6ri6iaFs9RYRC3O3K+h9ZFawrj4nJW0PbAY8qWyulPHAY5KmRsS/Shhir/X02S/pWOAQYL/on+sRDMjPF2VrVfwOuDIifl/ueIpgGnBomihlELCBpP+LiE+WOS7rY+7W1QNJY3MDcSVtTjZoeF7qFrNM0u7KzjzHAF21dhTTDOAoSY2SNkvxPEwJVuzM12FMwuFkA/i7i68USloHnZE0VNLw3G2yb02fSXEcm4odS2neKx11FcMM4Jg0a9fuwJJc96++VqHvI7P1FhFPR8RGETEpIiaRXRDvXOmJSU8kHQicARwaESvKHc86Kvu5otjSdcivgGcj4ofljqcYIuKsiBif/n+OAu50YlIdqqrlpDuSDgd+DIwF/iTpiYj4MPBB4BxJLUAr8IWIyA3q/U+yGYgGk/W7LVrf267iiYhZkq4FZpM1qZ8YEa3pMScBt7B6xc5ZxYqnE9+TtCNZU/jfgc8DdBdfX4uIlhLXQWc2Bm5I35TWAb+NiL9IegS4VtLxZLP2fLQvg1Deqq6S5gPfAL7TRQw3AweTDTpfAXy6hDHtXWnvIzPr1k+ARrIuqwAPdpjFsuJVyLmi2KYBnwKelvRE2vY/uRkQzfoTrxBvZmZmZmYVwd26zMzMzMysIjg5MTMzMzOziuDkxMzMzMzMKoKTE6sqkkLSe8rwvHunQeAVRdJESctzM9KZmZmZlZOTE+tzks6SdHOHbXO62HZUaaPrG+VKgnorIl6OiGF5M77dLemz5Y7LzMzMqpOTE1snkpb3ovi9wLS89WLeBdQDO3fY9p5UFkm/lLRNuv0/6xDfJEnP9FxyjfLv5E3B2HH/2ZJO720c6bFbAL8ENl2Xx/cXaZ0Uf6aY2VokTZD0kqTR6f6odP/dffR8X5B0TLp9nKRN8/a1n1/W8znOlvRPSecU4VgfkDS7N+cts4HKFxJWCo+QJSM7pvsfBO4Cnu+w7cXc6urA28AtkpYC50r6AICkTVMSMTp3cEk7SVqcVsdF0meA24GtJd3S1ckvLfD3fUkvpxjfAfZI+/aWNF/SaZIWAacBu+Y9dkNJf5S0VNIjkr4p6b60795U7MmUxE0BPpv2nSZpkaQFkrpcTyS1YHxT0t9St6s/pue8Mu85J+WVf3/atiT9fn+HY50r6X5JyyTdKmlM2jcptfLUSfoW8AHgJ+k5f1Lgsb8l6X6yNVI27+o1mVn1iohXgIvJ1lsi/b4kIv7RR8/3s4i4It09jrwvhyLisxExu0hPdX5EfH19DxIRfyVbb8qs6jk5saKR9G5Jd0h6Kv2emHZdArwBXC9pHtkif38F7gN+JGkW8F2gUdIR6TEHkJ1QLgYE3KlsEb8GssUw/yM95+lki4JdD7xP0kvARcA9wLPpea6SdJ6yhRAhW2mW9JxbkiVIe5Mtmph/ktkEOAt4GngUODx927cF2Urm09K+s8lWXB8k6UGyRTkBSF2mrslVETACGAccD1wkaVQ3VXoU2aJa44AtgAeAXwOj02v7RqqD0cCfgAuBDYEfki3cuWHesT5OVu8bpTpcqxUoIr6a6uukFPdJBR77U8AJwHCgTy40zGxAOB/YXdKXgT2BH3QskL4weU7S5elccr2kIWnffpIel/S0pEslNabt30mtDk9J+n7adrak09M5ZQpwpaQnJA1OX6pMSeWOTsd7RtJ38+JYnr54eVLSg5I27unFSRom6dfpeE9J+o+8Y31X0qOSbpc0NcUwT9Kh612rZgOMkxMrpp8AV0TE+4AryS5oc5YATwCHAPuSXQQHWVeu7cm+dR+dV34hsCQizkj7lrP6G7clwNF5ZbcDfkt24b4QOIksGQL4NrALQETkWj6OlLQZ8DngKxHxBllLzWusTly2JEsmNgMOB8YDTcB7yZKtMWStLKeStapcTtZq8KO85+nMORHRnFbtXZ6O15VfR8SLEbEE+DNZy9LtEdECXAfslMp9BJgTEb+JiJaIuAp4Dvi3Dsd6ISLeAa5ldYtVTwo59mURMSvtby7wuGZWZdLnw3+RJSlfjohVXRR9L1mryvuApcAXJQ0CLgOOjIjtyb5M+s/0BcrhwLap/Dc7POf1wEzgExGxY/oMBLKWeLIvqfYl+0zcVdJhafdQ4MGI2IGsu/HnCniJ/4/svLV9iuXOvGPdHRG7AMtSjB9Kca93lzCzgcbJiRXTHmRJAsBvyL4Zy/lDur8AqI+IOWTJyGCy1oStyBKWnPHAdZKWkH2wjyBLCCBLTvZIJ5ZcN6IngZHABsCPgM8DW5MlKXVkCUluPMlIsm/ShgCPSnoLeAqYBIxNZd4HLI+IZRGxFJgBNKcY3p+OeS3wc7IWllfIWg6u66Z+IiUWOSuAYd2UX5h3+51O7uceuylrt1j8g6zFJedfvXjefIUc+5UCj2VmdhDZeWC7bsq8EhH3p9v/R3bueC/wUkS8kLZfTtYdeCmwEvilpH8n+3wr1K5kScNr6bP5ynRMgFXATen2o2Tnh57sT9ZyD0BEvJl3rL+k208D96RE7ekCj2tWVZycWF+KvNuzyBKME4C2tK0ZeCtte5V0UlE2vmQicCYwiqxVYwlZS0bu4v5W4GNkScbTaV+QXSh/nuxk9mxEjCRLjD4XEbnWgn2A35Fd4G+byrwvle/por0mxdwCfDR9E7c1MKHgWim+V4GO42omAv9ch2NFh/uFHLvjY8zM1iJpR7IWg92Br0japIuiHT9Tguwzfu2CWVIxlewz/TBWJwEFhdTNvuaIyMXRSvaFVCHH6+zzMP9YbWSt8EREW4HHNasqTk6smP7G6m5RnyAbU5Kziqxp/VSyD3rS/ra07WGycR+QtUAEWRJQB9SStYhA1nqwEVlLxrFkXZuejoi3yBKYe8jGiXwJQNIIYDFZ8399OsYkshabXwDnS9ooba+T9OF0+0myMSSDJQ1ndTemFcBLKd6zJQ2RNB04hqy5/j9SuaWU7v/rZmBLSR9PA9uPBLZh9bd+vbGQNQe1F/PYZlalJIlsDOGXI+Jl4Dzg+10Unyhpj3T7aLJzxXPAJK2eov1TwD2ShgEjUlfZL9N5l9VlZOeVjh4C9pI0RtnMkUeTnUPW1a1k3YqBbEay9TiWWdVycmLraoiy2axyP6eSJQSflvQU2YnjlA6PuYcsscglJ78D5qRtW5CdKJYAt5B1x/odWReiB9NjzkpN4ecA/0M2VmU5q7s7fRo4EmgkSya2Jhu4Xg/MBh5L5b5JlvScAcxNx881r+fGgMwha1l5IsWR3+XsE2TdCA4hO+n9FMiNxThV0sNkfZQbJL0l6WOFVOi6iojXUyynAa8D/w0cEhGL1+FwPwKOkPSmpAuLfGwzq16fA16OiNvS/Z8CW0naq5OyzwLHpnPJaODiiFhJ9hl/naSnyb7Y+hlZ0nFTKnsP8JVOjncZ8LPcgPjcxohYQPZl1l1kX0g9FhE3rsdr/CYwKg2uf5Ksld7MekmrWxrNSk/SsIhYnmZ/ehiYFhH/6ulxfRDHJOCmiOiuH3R3j/8u2TiMT0VEKFtM8uiImJ5XZnkB3cbMzKrW+n4Wl5Kks8nGJnbVAtTb402in7x2s77kvo5WbjdJGkk2ve255UhMklZghKQn8samdEnSVmQxP002qPJ4smkxn0jdF94CPpPKbkHW+rKw86OZmVk/tBw4QdIG67vWSRpr+VOybshmVc0tJ2brQNKuZF25NgUWkc3a9Z3wP5RZUUi6lKxL4aLOvklOXwL8iGzhuhXAcRHxWMdyZmbWvzg5MTOziiPpg2TfTF/RRXJyMHAyWXKyG9kaQ7uVNkozMys2D4g3M7OKExH3snox1c5MJ0tcIiIeBEZ2MzWtmZn1EwNizMmYMWNi0qRJ5Q7DzKxiPfroo4sjYmzPJfuNcay5AOj8tG1Bx4KSTiBbT4mhQ4fustVWW5UkQDOz/qjc54sBkZxMmjSJmTNnljsMM7OKJekf5Y6hyDpbQK/TfsoRcQlwCcCUKVPC5wszs66V+3zhbl1mZtYfzQcm5N0fD7xapljMzKxInJyYmVl/NAM4RpndgSVpUT0zM+vHStKtS9LfyVbSbgVaImKKpNHANWSrcv8d+FhEvOnpIc3MTNJVwN7AGEnzgW8A9QAR8TPgZrLzxFyyc8WnyxOpmZkVUynHnOwTEfmLC50J3BER35F0Zrp/BnAQMDn97AZcnH6bmVmViIije9gfwIklCsfMzEqknN26pgOXp9uXA4flbff0kGZmZmZmVaZUyUkAt0p6NE3pCLBxrn9w+r1R2t7V9JBrkHSCpJmSZr722mt9GLqZlUJbW9Da5kVhzczMqlmpunVNi4hXJW0E3CbpuW7KFjQ9ZMepIYsTppmti4ggGy6Wmf6T+1je1MIp+29JjUCI2hoxemgDG2/QyMTRQ9rLt7YFNz31Kmf87ilWtbRx7mHb8fGpE9c4npmZmVWHkiQnEfFq+r1I0g3AVGChpE0iYkHqtrUoFff0kGb9yOxXlzL9ovsYNaSBu07fm7+9+DpP/3MJbQFfuurxTh8zckg9t31lLxYseYejLnmQFataGVxfy7DGOr56wzN8/5bnmfm1D1Fb4wTFzMysmvR5ciJpKFATEcvS7QOAc8imgTwW+E76fWN6yAzgJElXkw2E9/SQZr3w4fPv4e2mVn545I7sOGEkDXVd99486IJ7aYvglq/stU7P9daKVXz+/2bSFrBoWRM7nnMrza3BDuNH8K3Dt2dQfQ0RWdPnqpY23lyxirN+/zT/fOsddv//7qC1LaivFVuMHcptKYZp372TBUtW8sLCZWy9yQbrFJeZmZn1T6VoOdkYuCF10agDfhsRf5H0CHCtpOOBl4GPpvKeHtKsB4dc+FcWLFnJ0VMnMmXSKKa9Zwz1tTU8OO91Xli4nAA+9vMHqBF85H2bcuC272KniSPZZMSg9u5St876F8/9axkB3PXcIvbZaiMO+OE9zH/rHXYYP5I5i5axqqWNlc1tbDC4jrtO35vhg+r5yIV/Zek7zZyy/5b84fF/snBJE9d/YQ9WtbRx7K8fZoNB9Vzz+T0YVF/baez3nbEvcxYu4z8u/huD6mu57dS9GDG4vn3/tw7fjs9cNpOmlrYS1KSZmZlVkj5PTiJiHrBDJ9tfB/brZLunh7SqdMTFf+OtFav4/YnT2GBQ/Rr7lq5s5q23mxk/ajD3zHmN2QuWIsTF97xI611BY10NX/3I1vzg1hfYfOxQfn3cVI6//BHeWtHMn59ewB+fzHpG1tWI4YPqOHrqRH7x13nsMGEkza1tnPTbxzjm/ZN4YdFyBtXX0NTSypJ3mmmorWFoYy2Ll6/ikB/fx5YbD2fWq0sBOP26JwH4zr9vz04TRwHw3LkHFfRaJ288nKfO/nCn+xpqs6RmlZMTMzOzqlPKdU7MqtqSFc001NUwuGHtFoWXX1/B7AVLWbGqlT2/cyef2XMzth83ghqJW2cv5JpHXqYtoEbQFrDtphtw6XG7Mqyxjr/OeY3zb5vD12+cRV2N+ONJezJxwyHcdmrWTaqltY0n5y9h1qtL+PEdc1i6soWf3v0iQxtrueL4qaxoauUD37uTi+9+kf233ogLj96JIQ1rfjQ88vc3+MQvHuKVN1Zw6oe25BO7TWTZyhYC2GzM0KLWU2N91g3NyYmZmVn1cXJiA9ri5U2MGdbYq8csWrqSMcMaqUmDsdvagnmLl3PCFY/S1NIKQF1NDbd85YMMqq+lqaWVKefeTl2tuO+MfRnaWMeBF9zL68ubiPT4oYPqeOWNd4AswaivraG+toa6bCorlq1sYWhDLd8+fHvuen4RF9w+pz0eCY6cMoEdJ4zkgttfAMQ1n9+DYY3Zv++B223Ch7Z5Fx++4F4G19cyccMha7yeutoadnn3KHZ59yiO2WNSe72MHtJATY3YYFA9W79rA5asbObnn5rS6SD0XSeN5slvHEBLWxvDU6vOhr2s10I11GbJSa6uzczMrHo4ObEB67L7X+LsP87mXRs08rcz92tPNiKCfb9/N6tag7tO37t9wPiiZSs57y/Pc92j89lwaAMzv7Y/za3B1G/dzlvvNK91/DN/9xTnH7kjF94xh2VNLQB89GcPMHWz0Tz3r2XU1ihLPoDdt9iwfULs5tY2mlsj/W4jgGGNtcw4aU/eveFQPr7bRF55YwVvvL2KlrY2thg7jJFDGgA4aurETl9rbY24/dTCB7V3TNhmnLxnj4/JWnw6H0dSTLm/h1tOzMzMqo+TExuQbp31L/73ptlMGD2YV954h1OueYLPf3BzWtqCH9z6PC+9vgKAIy95gDMP3Iq/zPoXl//t70TAByaP4a9zFvPD217gH6+v4K13mhk/cjC//vSubD52GDWCi+6ay/dvfYHBDbVc88grfHSX8Rz8vk04/rJHmL1gKcfs8W7OOmjrTrtwFWLC6CFMGD2k54IDUHty0urkxMzMrNo4ObF+67VlTdwy6198/5bnaayv4c+nfJCRg+s54Px7mLf4bd43bgRXn7AHlz/wd77z5+faB4XXCL552HaMGtLAyVc9xpGXPEh9rRg1pIFxowZzxWem8t/XP8WP75wLwBkHbsV/7r3FGs/9xb3fw9P/XMJVD79CQ20NXztkG0YMrme7cSNoaW3jnOnblbo6BozGuly3LicnZmZm1cbJifVLcxct44Dz76UtsovZt95pZtdv3U5DbQ3vNLcypKGWXx67K4MbavnCXluw53vGsGDJSppb29hhwkjGjRwMwCX3jmDpO81c84U92Gj4oPbjfyuN/Wisq+ULe22+1vPX1IgffGxHHj3vLjYa3tg+Fe6Mk3ruHmXda3ByYmZmVrWcnFhBWlrbqKvtejG/t5taeHPFKsaP6n1XpIhg/pvvsOnIwQWtCL6yuZWTr3qCGoltNhnOH0/ek7mLlnPEzx6gubWNC47ckX/bYdM1jrXduBFsN27EWse6sYtkoqGuhplf+1C3cQxrrOuxjPVeo6cSNjMzq1pOTqxHe513F6+8sYKLPr4zB22/CQBvvr2KEYPrqakRrW3Bbt++g7dXtfCbz+zGnpPH8Mbbqzj8p/ezwaA6/njyB9Y43gHn38PbTS1c/MldGNpYxzdunMV9cxczqL6G/z10W1Y2t3H+7S+wqqWN1rZsFHltjaivreFL+01mzsJlPLtgKZceN4V9t9oYyNbNePIbB5S2YqxPeEC8mZlZ9XJyYms55MK/EgF/OuUDPPevpbz8+gok+OJvH+Pkfd7DvMVvc9NTCxg1pJ6Hv7o///fgP1je1MKYYY189opHOHnfyfz6/pdYvHwVADv+761sOKyBS4/blV/8dR4vLFwOwKE/uR+A4YPqOGmf93DHc4s443dPA1lXrcENtdSm1cxb24KVLa2ce9NsAN61QWN7YmIDi5MTMzOz6uXkxNby0utv83ZTK+f8cTZ/e3ExGw5r5MaTpnHuH2dz4Z1zqZX4yPab8KenF/C5K2by0Lw32Pu9Y/n+R3fgA9+9i/NueZ5tN92An35iFx6c9zoX3jGHt95pZq/z7gbg8x/cnM9+YHOO/PkDNLW0csOJ09ho+CBOO2BLHnv5TTYc2sikLhb2e/n1FXzmsocZNbShhDVipZSbgtnrnJiZmVUfJye2lk1HDGbh0pVcev9LAFx63BTGjRzMRZ/YmfvmLmbniSMZPqiene97iXNvmk2N4NuHb8+YYY1svclwlrzTzB9OnEZ9bQ1TNxvNifu8h2cXLOXEKx9jSEMtZx28NQB3nr73Gs8riV3ePbrb2CZuOITbT9u72zLW/zXU1bjlxMzMrAo5ObG1NLW0sf/WGzN7wVJWtbS1d5+qrRF7bTm2vdzxe27GVQ/9g7raGjZNs1/9/ovT1jpebY3YbtwI7vnvfUrzAqzfa6yr8TonZmZmVcjJia2lqaWVxvoa/vLlD/ZY1q0Y1hca6mpoanZyYmZmVm26nhvWqlZTSxuNdeu2srlZMTS45cTMzKwqOTmxtTQ1t7XPmGRWDg21HnNiZmZWjXwFamuIiKxbl5MTK6PGulqvEG9mZlaFfAVqa2hpC9oCJydWVg11NZ5K2MzMrAr5CtTWkPu22mNOrJw8lbCZmVl1cnJia8hdEDbW+61h5eOphA1A0oGSnpc0V9KZneyfKOkuSY9LekrSweWI08zMisdXoLaGXFcad+uycmp0y0nVk1QLXAQcBGwDHC1pmw7FvgZcGxE7AUcBPy1tlGZmVmy+ArU15NaWcLcuK6dszImTkyo3FZgbEfMiYhVwrj1/tQAAIABJREFUNTC9Q5kANki3RwCvljA+MzPrA05ObA2rx5z4rWHl46mEDRgHvJJ3f37alu9s4JOS5gM3Ayd3diBJJ0iaKWnma6+91hexmplZkfgK1NbQ3q3LY06sjBrrap2cmDrZFh3uHw1cFhHjgYOB30ha68MrIi6JiCkRMWXs2LF9EKqZmRVLya5AJdWmQYs3pfubSXpI0hxJ10hqSNsb0/25af+kUsVoq1tOGmrdrcvKx1MJG1lLyYS8++NZu9vW8cC1ABHxADAIGFOS6MzMrE+U8uvxU4Bn8+5/Fzg/IiYDb5KdZEi/34yI9wDnp3JWIu1jTtxyYmXkqYQNeASYnL7IaiAb8D6jQ5mXgf0AJG1Nlpy435aZWT9WkitQSeOBjwC/TPcF7Atcn4pcDhyWbk9P90n790vlrQQ8W5dVggZPJVz1IqIFOAm4heyLrWsjYpakcyQdmoqdBnxO0pPAVcBxEdGx65eZmfUjdSV6nguA/waGp/sbAm+lkw+sOdCxfRBkRLRIWpLKL84/oKQTgBMAJk6c2KfBVxMvwmiVoLGuhubWoK0tqKnxdxPVKiJuJhvonr/t63m3ZwPTSh2XmZn1nT7/elzSIcCiiHg0f3MnRaOAfas3eIBjn1jl2bqsAjSk959bT8zMzKpLKVpOpgGHppV7B5HNSX8BMFJSXWo9yR/omBsEOV9SHdnc9W+UIE7Ds3VZZWiozd5/TS1tDKp3K56ZmVm16PMr0Ig4KyLGR8QksgGNd0bEJ4C7gCNSsWOBG9PtGek+af+d7kNcOu7WZZUg13LnQfFmZmbVpZxfj58BnCppLtmYkl+l7b8CNkzbTwXOLFN8VWn1CvFuObHyySXH7tZlZmZWXUo1IB6AiLgbuDvdngdM7aTMSuCjpYzLVvNsXVYJcmNOmpq91omZmVk18RWoraGppY0aQV2t3xpWPh4Qb2ZmVp18BWpraGpp83gTKzuPOTEzM6tOTk5sDU3NrZ6py8quvVuXkxMzM7Oq4qtQW0PWcuK3hZVXbipht5yYmZlVF1+F2hrcrcsqQYO7dZmZmVUlJye2hlVuObEKkEuQ3a3LzMysuvgq1NbQ1OIxJ1Z+q8eceCphMzOzauKrUFuDu3VZJfBsXWZmZtXJyYmtoanZ3bqs/LzOiZmZWXXyVaitoamltf3C0Kxc3HJiZmZWnXwVamvwVMJWCbzOiZmZWXXyVaitwWNOrBJ4nRMzM7Pq5OTE1tDU3OqWEyu7utoaamvk5MTMzKzK+CrU1tDU0uaphK0iNNTWeEC8mZlZlfFVqK1hlbt1WYVoqKuhqdnrnJiZmVUTJye2Bg+It0rRUOeWEzMzs2rjq1Br19YWrGp1y4lVhsa6Gs/WZWZmVmWcnFi73LfUXufEKkGDkxMzM7Oq46tQa9fUnF0IuluXVYKG2hrP1mVmZlZlfBVq7ZpassHHnq3LKkFjnZMTMzOzauOrUGuX60LjMSdWCRrrap2cmJmZVRknJ9auveXE3bqsAmRjTjyVcDWTdKCk5yXNlXRmF2U+Jmm2pFmSflvqGM3MrLh6dRUqaXRvn0DSIEkPS3oynTz+N23fTNJDkuZIukZSQ9remO7PTfsn9fY5bd2s9JgTqyCeSri6SaoFLgIOArYBjpa0TYcyk4GzgGkRsS3w5ZIHamZmRdXbq9CHJF0n6WBJKvAxTcC+EbEDsCNwoKTdge8C50fEZOBN4PhU/njgzYh4D3B+KmclkLsQbKx3ty4rP485qXpTgbkRMS8iVgFXA9M7lPkccFFEvAkQEYtKHKOZmRVZb5OTLYFLgE8BcyV9W9KW3T0gMsvT3fr0E8C+wPVp++XAYen29HSftH+/XiRCth48W5dVkgYnJ9VuHPBK3v35aVu+LYEtJd0v6UFJB3Z2IEknSJopaeZrr73WR+GamVkx9OoqNCUat0XE0cBngWOBhyXdI2mPrh4nqVbSE8Ai4DbgReCtiGhJRfJPOu0npLR/CbBhJ8f0yabIPObEKklDrdc5qXKdfSkVHe7XAZOBvYGjgV9KGrnWgyIuiYgpETFl7NixRQ/UzMyKp7djTjaUdIqkmcDpwMnAGOA0oMuBiBHRGhE7AuPJmuq37qxY7mm62Zd/TJ9siix3IehFGK0SuOWk6s0HJuTdHw+82kmZGyOiOSJeAp4nS1bMzKyf6u1V6APABsBhEfGRiPh9RLRExEzgZz09OCLeAu4GdgdGSqpLu/JPOu0npLR/BPBGL+O0deCphK2SeCrhqvcIMDlNntIAHAXM6FDmD8A+AJLGkHXzmlfSKM3MrKh6m5x8LSLOjYj5uQ2SPgoQEZ0OXJc0NtfMLmkwsD/wLHAXcEQqdixwY7o9I90n7b8zItZqObHia2p2ty6rHNlUwk5OqlXq1nsScAvZOePaiJgl6RxJh6ZitwCvS5pNdk75r4h4vTwRm5lZMdT1XGQNZwLXdth2FnBdN4/ZBLg8TQtZQ3aCuSmdTK6W9E3gceBXqfyvgN9ImkvWYnJUL2O0ddTecuIV4q0C5KYSjgg8J0Z1ioibgZs7bPt63u0ATk0/ZmY2ABSUnEg6CDgYGCfpwrxdGwAtnT8qExFPATt1sn0e2fiTjttXAh8tJC4rLnfrskqSa8Fb1drm96SZmVmVKLTl5FVgJnAo8Gje9mXAV4odlJWHZ+uyStKenLQ4OTEzM6sWBSUnEfEk8KSkK/Om/7UBZlWL1zmxypGbNa6ppY3hZY7FzMzMSqPQbl3XRsTHgMcl5Q9OF1m33/f1SXRWUk0tbTTU1bh/v1WEhtrVLSdmZmZWHQrt1nVK+n1IXwVi5dfU3OZWE6sYuYkZnJyYmZlVj4KuRCNiQbq5GHglIv4BNAI7sPaiWNZPNbW0OjmxitFQm40zWdXq5MTMzKxa9PZK9F5gkKRxwB3Ap4HLih2UlUeTBx5bBWkfc9Ls5MTMzKxa9DY5UUSsAP4d+HFEHA5sU/ywrByy5MQtJ1YZGtqnEm4tcyRmZmZWKr1OTiTtAXwC+FPa1tuFHK1CNTW3tl8QmpVbY95sXWZmZlYdenslegrZivA3RMQsSZsDdxU/LCuHppY2GuvdrcsqQ4OTEzMzs6rTq1aPiLiXbNxJ7v484EvFDsrKwwPirZJ4KmEzM7Pq06vkRNKWwOnApPzHRsS+xQ3LymFVSxtDG91LzypDLlE+7y/P8eFt31XmaMzMzKwUensleh3wM+CXgEepDjBNLW2MHupuXVYZcjPHtUUPBc3MzGzA6G1y0hIRF/dJJFZ2nq3LKkluzMlnP7B5mSMxMzOzUuntlegfJX1R0iaSRud++iQyKzmPObFK0j6VcIsbac3MzKpFb1tOjk2//ytvWwD+anMAaGpuo7HeyYlVhsb2dU48IN7MzKxa9Ha2rs36KhArP68Qb5VkdcuJkxMzM7Nq0auvySUNkfQ1SZek+5MlHdI3oVmpuVuXVZK6GiF5nRMzM7Nq0tsr0V8Dq4D3p/vzgW8WNSIri4hgZXMbNz31arlDMQNAEg21NW45MTMzqyK9TU62iIjvAc0AEfEOoKJHZSXX3JrN1yr5z2mVo7Guxi0nZmZmVaS3yckqSYPJBsEjaQugqehRWck1pRmRjnv/pPIGYpanoa7WA+LNzMyqSG9n6zob+AswQdKVwDTg08UOykov13XGY06skjTW1dDU7OTEzMysWvR2tq5bJT0K7E7WneuUiFjcJ5FZSeW6zjQ4ObEK0lBX45YTMzOzKtLb2bruiIjXI+JPEXFTRCyWdEdfBWel09TecuKphK1yNNbVeBFGMzOzKlJQciJpUFoJfoykUXmrw08CNu3hsRMk3SXpWUmzJJ2Sto+WdJukOen3qLRdki6UNFfSU5J2Xr+XaIXIjTlxty6rJA0eEG9mZlZVCr0S/TzwKLBV+p37uRG4qIfHtgCnRcTWZN3BTpS0DXAmcEdETAbuSPcBDgImp58TgIsLfjW2znL9+r1CvFUSTyVsZmZWXQq6Eo2IH6XV4U+PiM0jYrP0s0NE/KSHxy6IiMfS7WXAs8A4YDpweSp2OXBYuj0duCIyDwIjJW3S+5dmveFuXVaJGuudnFQzSQdKej61pJ/ZTbkjJIWkKaWMz8zMiq+3A+J/LOn9wKT8x0bEFYU8PnUD2wl4CNg4Ihakxy+QtFEqNg54Je9h89O2BR2OdQJZywoTJ07szcuwTrhbl1Wihtoalq1sKXcYVgaSasla5j9Edh54RNKMiJjdodxw4Etk5xUzM+vnejsg/jfA94E9gV3TT0HfVEkaBvwO+HJELO2uaCfbYq0NEZdExJSImDJ27NhCQrButHfrcsuJVZAGTyVczaYCcyNiXkSsAq4ma1nv6Fzge8DKUgZnZmZ9o7frnEwBtomItZKF7kiqJ0tMroyI36fNCyVtklpNNgEWpe3zgQl5Dx8PvNrLOK2X2rt1ecyJVRAvwljVOmtF3y2/gKSdgAkRcZOk07s6kFvazcz6j95eiT4DvKs3D5Ak4FfAsxHxw7xdM4Bj0+1jyQbX57Yfk2bt2h1Ykuv+ZX1nVau7dVnlyaYSdnJSpbptRZdUA5wPnNbTgdzSbmbWf/S25WQMMFvSw0BTbmNEHNrNY6YBnwKelvRE2vY/wHeAayUdD7wMfDTtuxk4GJgLrMAr0JdEruuMF2G0SuKphKtaT63ow4HtgLuz78B4FzBD0qERMbNkUZqZWVH1Njk5u7dPEBH30fk3YAD7dVI+gBN7+zy2fjxbl1Wihtqa9skarOo8AkyWtBnwT+Ao4OO5nRGxhOwLMwAk3U02o6QTEzOzfqy3s3Xd01eBWHl5ti6rRO7WVb0iokXSScAtQC1waUTMknQOMDMiZpQ3QjMz6wsFJSeSltHJjFlkLSIRERsUNSorudWzdTk5scrRWFfDqtY2IoLUdceqSETcTNbVN3/b17sou3cpYjIzs75VUHISEcP7OhArr6aWNmprRF2tkxOrHA11NURAc2vQUOfkxMzMbKDzlagBWbcut5pYpclN0ODphM3MzKqDr0YNyFpOnJxYpclN0OBxJ2ZmZtXBV6MGZGNOPFOXVZr2lhMnJ2ZmZlXByYkBWbcZrw5vlaYhjYHydMJmZmbVwVejBmQXfw0eDG8Vxi0nZmZm1cVXowakbl1uObEKkxsH5VXizczMqoOvRg3IDYj3mBOrLJ6ty8zMrLo4OTHAUwlbZcolJ7lFQs3MzGxg89WoAZ5K2CpTo1tOzMzMqoqvRg3wVMJWmbzOiZmZWXVxcmJA6tblAfFWYdq7dXkqYTMzs6rgq1ED3K3LKlNuemu3nJiZmVUHX40akF38NTg5sQqTa81zcmJmZlYdfDVqgKcStsrU3nLiAfFmZmZVwcmJAZ5K2CqTpxI2MzOrLr4aNVrbgubWcMuJVRwvwmhmZlZdnJxYe39+z9ZllSbXravJY07MzMyqgq9GrX2aVnfrskojiYa6Gg+INzMzqxK+GrX2b6XdrcsqUWNtjdc5MTMzqxIlSU4kXSppkaRn8raNlnSbpDnp96i0XZIulDRX0lOSdi5FjNUsN9jYLSdWiRrr3XJiZmZWLUp1NXoZcGCHbWcCd0TEZOCOdB/gIGBy+jkBuLhEMVat9m5dHnNiFaih1smJmZlZtSjJ1WhE3Au80WHzdODydPty4LC87VdE5kFgpKRNShFntcp168oNPjarJA11NZ6ty8zMrEqU82p044hYAJB+b5S2jwNeySs3P21bg6QTJM2UNPO1117r82AHsvYxJ/Uec2KVp6GuxuucmJmZVYlK/KpcnWyLtTZEXBIRUyJiytixY0sQ1sDl2bqskjXW1brlxMzMrEqU82p0Ya67Vvq9KG2fD0zIKzceeLXEsVWV1bN1OTmxyuOphKuXpAMlPZ8mSDmzk/2nSpqdJk+5Q9K7yxGnmZkVTzmvRmcAx6bbxwI35m0/Js3atTuwJNf9y/rG6tm63K3LKk+DpxKuSpJqgYvIJknZBjha0jYdij0OTImI9wHXA98rbZRmZlZspZpK+CrgAeC9kuZLOh74DvAhSXOAD6X7ADcD84C5wC+AL5Yixmrm2bqskrnlpGpNBeZGxLyIWAVcTTZhSruIuCsiVqS7D5K1tJuZWT9WV4oniYiju9i1XydlAzixbyOyfO7WZZWssa6m/T1qVaWzyVF266b88cCfO9sh6QSyqemZOHFiseIzM7M+4KtR8wrxVtE8lXDVKmhyFABJnwSmAOd1tt8TqJiZ9R8laTmxytbU7G5dVrk8lXDVKmhyFEn7A18F9oqIphLFZmZmfcRXo+ZFGK2ieSrhqvUIMFnSZpIagKPIJkxpJ2kn4OfAoRGxqJNjmJlZP+OrUWsfbOwxJ1aJGj0gvipFRAtwEnAL8CxwbUTMknSOpENTsfOAYcB1kp6QNKOLw5mZWT/hbl1GU0sbDXU1SJ118TYrL8/WVb0i4mayGRzzt3097/b+JQ/KzMz6lL8qN5paWt1qYhXL65yYmZlVD1+RGk0tbZ6pyypWY10NbQEtHndiZmY24Dk5MZqa29xyYhWrIb03PSjezMxs4PMVqWXdujyNsFWoXHLi6YTNzMwGPl+Rmrt1WUVzy4mZmVn1cHJiKTnxW8EqUy5x9oxdZmZmA5+vSI2m5tb2b6fNKk17ty4nJ2ZmZgOer0iNVa1uObHK1VCbS048nbCZmdlA5ytSS7N1ecyJVabcZA3u1mVmZjbwOTkxz9ZlFa2x1smJmZlZtfAVqXlAvFU0z9ZlZmZWPXxFap5K2Cqa1zkxMzOrHk5OjKbmVrecWMVqn0rYLSdmZmYDnq9ILWs58ZgTq1Dt3bo85sTMzGzA8xVplYuILDmp9VvBKtPqdU48lbCZmdlA5yvSKpfrKtNY7zEnVpkaPFuXmZlZ1XByUuVyF3wec2KVKtfl0CvEm5mZDXy+Iq1yTU5OrMK1t5x4QLyZmdmAV7FXpJIOlPS8pLmSzix3PAPV6uTE3bqsMuWSE08lbGZmNvBVZHIiqRa4CDgI2AY4WtI25Y1qYGpqzgYZe7Yuq1Q1NaKhtsYtJ2ZmZlWgrtwBdGEqMDci5gFIuhqYDszurPDyphYO+tFfSxjewJGbAanBs3VZBWuoq+GaR17h7udfK3co/dLUSaPKHYKZmVlBKjU5GQe8knd/PrBbfgFJJwAnAGwyYRLjRw0uXXQDzHabjmDKpNHlDsOsS1/Ya3OenL+k3GH0W2OGNZY7BDMzs4JUanKiTrbFGnciLgEuAZgyZUr84pgppYjLzMrgpH0nlzuEfu9L5Q7AzMysAJXal2c+MCHv/njg1TLFYmZmZmZmJVCpyckjwGRJm0lqAI4CZpQ5JjMzMzMz60MV2a0rIloknQTcAtQCl0bErDKHZWZmZmZmfahSW06IiJsjYsuI2CIivlXueMzMrLR6Wu9KUqOka9L+hyRNKn2UZmZWTBWbnJiZWfUqcL2r44E3I+I9wPnAd0sbpZmZFZuTEzMzq0Tt611FxCogt95VvunA5en29cB+kjqb7dHMzPqJihxz0luPPvrocknPlzuOAowBFpc7iB44xuJwjMXTH+LsDzG+t9wB9FKP613ll0ljFZcAG9Lhb5G/LhbQJOmZPom4f+kP79lScD1kXA8Z10OmrOeLAZGcAM9HRMUvdCJpZqXH6RiLwzEWT3+Is7/EWO4YeqnH9a4KLLPGulj94W9VCq6HjOsh43rIuB4y5T5fuFuXmZlVokLWu2ovI6kOGAG8UZLozMysTzg5MTOzSlTIelczgGPT7SOAOyNirZYTMzPrPwZKt65Lyh1AgfpDnI6xOBxj8fSHOB1jkXW13pWkc4CZETED+BXwG0lzyVpMjirg0P2qHvqQ6yHjesi4HjKuh0xZ60H+ksnMzMzMzCqBu3WZmZmZmVlFcHJiZmZmZmYVoeKSE0mXSlrU0zz0knaV1CrpiLxtx0qak36Ozdu+i6SnJc2VdOH6LtK1rjFK2lHSA5JmSXpK0pF5ZS+T9JKkJ9LPjusT4/rEmba15sUyI2/7ZpIeSnV8TRqoWvIYJe2TF98TklZKOiztK2pd9hSjpL0lLcl7vq/n7TtQ0vPpvXdm3vaS1mNXMUqaIOkuSc+m9+UpeY85W9I/8x5zcDliTPv+nv6Hn8if4lDSaEm3pXq8TdKo9YlxfeKU9N4O78mlkr6c9pW0LvPifCL9Xe/J216S92S5dfU68/Y3ptc5N73uSaWPsu8VUA+nSpqt7Jx0h6R3lyPOvtZTPeSVO0JSSBqQ08kWUg+SPpbeE7Mk/bbUMZZCAf8XE9O58fH0v7Fen9mVqIBznZRdM89NdbBzyYKLiIr6AT4I7Aw8002ZWuBO4GbgiLRtNDAv/R6Vbo9K+x4G9iCbE//PwEFlinFLYHK6vSmwABiZ7l+WK1fuukzbl3dR/lrgqHT7Z8B/livGvP2jyQbDDumLuuwpRmBv4KYu4n4R2BxoAJ4EtilHPXYT4ybAzun2cOCFvBjPBk4vdz2mfX8HxnSy/XvAmen2mcB3yxlnh7/9v4B3l6kuRwKzgYnp/kalfk+W86e715lX5ovAz9Lto4Bryh13mephn7zPzv+s1npI5YYD9wIPAlPKHXeZ3g+TgcdZff20UbnjLlM9XJL7DAS2Af5e7rj7oB56Oo8cTHbNLGB34KFSxVZxLScRcS89z1N/MvA7YFHetg8Dt0XEGxHxJnAbcKCkTYANIuKByGr7CuCwcsQYES9ExJx0+9W0b+z6xNIXcXZFkoB9gevTpsspU112cATw54hYsT6xdKXAGDszFZgbEfMiYhVwNTC9jPXY2eMWRMRj6fYy4FmyVbeLbj3qsTvTyeoPilCPULQ49wNejIh/rG88nSkgxo8Dv4+Il1P53P9Oyd6TZdbp6+xQJv+9cz2wX6qHgaTHeoiIu/I+Ox8kW09moCnk/QBwLtkXHitLGVwJFVIPnwMuStdR+Z8dA0kh9RDABun2CNZeY6nfK+A8Mh24IjIPAiPTNXWfq7jkpCeSxgGHk32zl28c8Ere/flp27h0u+P2csSYX2YqWcb+Yt7mb6Wms/MlNfZljCmG7uIcJGmmpAeVuksBGwJvRURLul8RdUn2redVHbaVtC6BPSQ9KenPkrZN27p6T5a8HruJsV3q1rIT8FDe5pNSPV5ajC5T6xFjALdKelTSCXnbN46IBZAlWsBGJYixuzhzOntPlrIutwRGSbo71dkxaXulvSf7Slevs9My6XUvIauHgaSQesh3PNk3pQNNj/UgaSdgQkTcVMrASqyQ98OWwJaS7k/n/wNLFl3pFFIPZwOflDSfrNfGyaUJraL09vOjaPpdcgJcAJwREa0dtnf2jVd0s70vdRUjACnz/A3w6YhoS5vPArYCdiXrpnRGH8fYU5wTI2IK2TewF0jagsqty+3J1kLIKXVdPkbWfWcH4MfAH3LhdVK2XO/JrmIEQNIwstapL0fE0rT5YmALYEeyLog/KGOM0yJiZ+Ag4ERJH+zjWLrTU102AIcC1+VtLnVd1gG7AB8ha1X+f5K2pLLek32pkNcz0F5zZwp+jZI+CUwBzuvTiMqj23qQVAOcD5xWsojKo5D3Qx1Z1669gaOBX0oa2cdxlVoh9XA0cFlEjCfr3vSb9D6pJmX7jOyPFT0FuFrS38m68/w0fbM/H5iQV248WTPcfNZsps5tL0eMSNoA+BPwtdRMBrR3r4mIaAJ+Tdbs2Ne6jDN1OyMi5gF3k32jvpisWS+3eGdZ6zL5GHBDRDTnNpS6LiNiaUQsT7dvBuoljaHr92TJ67GbGJFUT5aYXBkRv897zMKIaE0J9C8oXz3mvx8XATfkxbIw18ycfvd5F4Tu4kwOAh6LiIV5jylpXZK99/4SEW9HxGKyfvQ7UEHvyT7W1evstEx63SMofrfDciukHpC0P/BV4ND0uTnQ9FQPw4HtgLvTuWZ3YMYAHBRf6P/FjRHRHBEvAc+TJSsDSSH1cDzZODwi4gFgEDCG6lLQ50df6HfJSURsFhGTImISWT/hL0bEH8i+OT9A0qjUZeIA4JbU1WOZpN1Tf+JjgBvLEWP6RvUGsj58+d+qkneBJbK+3t3OXtXHcY7KdYVKF13TgNlpzM5dZEkCwLGUqS7zihxNh+4zpa5LSe/K9VVP3fVqgNeBR4DJymZBaiDr6jOjHPXYVYxp26+AZyPihx0ek9+39HDKVI+ShkoanrYPJfvfzsUyg6z+oAT12F2ceUW6fE8mfV6XZPXwAUl1koYAu5GNJ6qY92Qf6/R1diiT/945Argz1cNA0mM9pO5MPydLTAbi+ALooR4iYklEjMk71zxIVh8zOz9cv1XI/8UfyCZJyJ3/tySbYGggKaQeXiYbO4ikrcmSk9dKGmX5zQCOUWZ3YEmuG3WfiwqYMSD/h+ykvgBoJsvajge+AHyhk7KXseYMU58B5qafT+dtn0J2MfAi8BNA5YgR+GR6zBN5PzumfXcCT6c4/w8YVq66BN6fYnky/T4+r9zmZLOfzSXrttJYxr/3JOCfQE2HckWty55iBE4CZqX6ehB4f95jDyabAetF4KvlqseuYgT2JGumfSrvPXlw2vebVI9PkX1IbVKmGDdP255M+/PrcUPgDmBO+j26r/9vevh7DyFLVEZ0OGZJ6zKV+S+yGbueIeuuV9L3ZLl/OnudwDlkF52QXWxcl17vw8Dm5Y65TPVwO7Aw7/9/RrljLkc9dCh7NwNwtq4C3w8Cfpg+O54mzeA30H4KqIdtgPvT5/wTwAHljrkP6qCnc52Ai1IdPV3K/wmlAMzMzMzMzMqq33XrMjMzMzOzgcnJiZmZmZmZVQQnJ2ZmZmZmVhGcnJiZmZmZWUVwcmJmZmZmZhXByYn1K5LOl/TlvPu3SPpl3v0fSDq1yM+5vJjHS8fcUdLBeffPlnR6AY9rlfSEpE3ztu0kKSR9uJPyh6d9W+Vt2yIdo+ivy8zMzGx9ODmx/uZvZOuwIKmzYhTkAAADtklEQVSGbMXWbfP2v59sbvJKtyPZPOu99U5E7BhpxfTkaOC+9Luj3L6jchsi4sWI2HEdntvMzMysTzk5sf7mflJyQpaUPAMsy1vVfmvgcUnDJN0h6TFJT0uaDiDpu5K+mDtYarE4Ld3+L0mPSHpK0v929uSdlZE0SdKzkn4haZakWyUNTvt2TWUfkHSepGfSirTnAEemFowj0+G3kXS3pHmSvlRIZaSVyo8AjgMOkDQob98wYBrZwkpHdXoAMzMzswri5MT6ldRi0CJpIlmS8gDwELAHMAV4KiJWASuBwyNiZ2Af4AfpQv5q4Mi8Q34MuE7SAcBkYCpZq8Yukj6Y/9w9lJkMXBQR2wJvAf+Rtv+abLXVPYDW9BpWAV8HrkmtINekslsBH07H/4ak+gKqZBrwUkS8SLaqcX5rzGHAXyLiBeANSTsXcDwzMzOzsnFyYv1RrvUkl5w8kHf/b6mMgG9Legq4HRgHbBwRjwMbSdpU0g7AmxHxMnBA+nkceIwsUZjc4Xm7K/NSRDyRbj8KTJI0Ehj+/7d3/6xNRlEAxp9DRRBaFMR/SGk/gE46OOiguClOXaqbfgAHQQRXwc+gg4OgOFicHHRxkjp0kSq4KYiIRSqtXYqU43BvNIbQJibRt/D8loT73tx7EwjkcM7Jm5mtMz3c4n09zcz1zPwKLAEHevgsZikBF/VxtsdrkiRJjbPjfx9A+gutvpOjlLKuj8A1YBW4V+dcAvYBxzLzR0R8AFolT48ppVAH+f3jPYDbmXlnk327zomIaWC9bWgD2FXn96NzjU2/nxExRsnQXIiIm3W/vRExAewEzgBHIiKBMSAj4npmZp/nkiRJ+ifMnGg7egmcB5YzcyMzl4E9lNKu+TpnN7BUA5PTwFTb6x9RejBmKIEKwDPgcu3TICIOR8T+jn17mfNLZn6j9MOcqEPtfR/fgYl+3nQXZ4HXmTmZmdOZOQXMUcq5ZoD7mTlVr00C74GTA+4pSZI0MgYn2o4WKf/S9apjbKWWRAE8AI5HxAIli/KuNTEz31ICg0+Z+bmOPaeUXc1HxCIlaPkjeOhlThdXgLsRMU/JbKzU8ReUBvj2hvh+zQJPOsbmgItbXJMkSWqksMJDGp2IGM/Mtfr8BnAoM68OsN5aZo4P6WxDW0uSJGkYzJxIo3WuZkfeAKeAWwOut9p5E8Z+tW7CCHwZ8CySJElDZeZEkiRJUiOYOZEkSZLUCAYnkiRJkhrB4ESSJElSIxicSJIkSWoEgxNJkiRJjfAT1eEK17wsGKgAAAAASUVORK5CYII=\n", "text/plain": [ "

" ] diff --git a/mcstasscript/tests/test_ManagedMcrun.py b/mcstasscript/tests/test_ManagedMcrun.py index 5fd493e9..79afcb7c 100644 --- a/mcstasscript/tests/test_ManagedMcrun.py +++ b/mcstasscript/tests/test_ManagedMcrun.py @@ -40,6 +40,7 @@ def test_ManagedMcrun_init_defaults(self): self.assertEqual(mcrun_obj.mpi, 1) self.assertEqual(mcrun_obj.ncount, 1000000) + self.assertEqual(mcrun_obj.run_path, ".") def test_ManagedMcrun_init_set_values(self): """ @@ -48,11 +49,13 @@ def test_ManagedMcrun_init_set_values(self): mcrun_obj = ManagedMcrun("test.instr", foldername="test_folder", mcrun_path="", + run_path="test", mpi=4, ncount=128) self.assertEqual(mcrun_obj.mpi, 4) self.assertEqual(mcrun_obj.ncount, 128) + self.assertEqual(mcrun_obj.run_path, "test") def test_ManagedMcrun_init_set_parameters(self): """ diff --git a/mcstasscript/tests/test_input_folder/PSDlin_monitor.comp b/mcstasscript/tests/test_input_folder/PSDlin_monitor.comp deleted file mode 100644 index 9ebc4a33..00000000 --- a/mcstasscript/tests/test_input_folder/PSDlin_monitor.comp +++ /dev/null @@ -1,125 +0,0 @@ -/******************************************************************************* -* -* McStas, neutron ray-tracing package -* Copyright 1997-2002, All rights reserved -* Risoe National Laboratory, Roskilde, Denmark -* Institut Laue Langevin, Grenoble, France -* -* %I -* Written by: Kim Lefmann -* Date: May 7, 2001 -* Version: $Revision$ - Origin: Risoe -* Release: McStas 1.6 -* -* Rectangular 1D PSD, measuring intensity vs. vertical position, x -* -* %D -* -* Example: PSDlin_monitor(nx=20, filename="Output.x", xmin=-0.1, xmax=0.1, ymin=-0.1, ymax=0.1) -* -* %P -* INPUT PARAMETERS: -* -* xmin: Lower x bound of detector opening [m] -* xmax: Upper x bound of detector opening [m] -* ymin: Lower y bound of detector opening [m] -* ymax: Upper y bound of detector opening [m] -* xwidth: Width of detector. Overrides xmin, xmax [m] -* yheight: Height of detector. Overrides ymin, ymax [m] -* nx: Number of x bins [1] -* filename: Name of file in which to store the detector image [string] -* restore_neutron: If set, the monitor does not influence the neutron state [1] -* nowritefile: [1] If set, monitor will skip writing to disk -* -* OUTPUT PARAMETERS: -* -* PSDlin_N: Array of neutron counts -* PSDlin_p: Array of neutron weight counts -* PSDlin_p2: Array of second moments -* -* %E -******************************************************************************/ - -DEFINE COMPONENT PSDlin_monitor -DEFINITION PARAMETERS (nx=20) -SETTING PARAMETERS (string filename=0, xmin=-0.05, xmax=0.05, ymin=-0.05, ymax=0.05, - xwidth=0, yheight=0, restore_neutron=0, int nowritefile=0) -OUTPUT PARAMETERS (PSDlin_N, PSDlin_p, PSDlin_p2) -/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */ - -DECLARE - %{ - double PSDlin_N[nx]; - double PSDlin_p[nx]; - double PSDlin_p2[nx]; - %} - -INITIALIZE - %{ - int i; - - if (xwidth > 0) { xmax = xwidth/2; xmin = -xmax; } - if (yheight > 0) { ymax = yheight/2; ymin = -ymax; } - - if ((xmin >= xmax) || (ymin >= ymax)) { - printf("PSDlin_monitor: %s: Null detection area !\n" - "ERROR (xwidth,yheight,xmin,xmax,ymin,ymax). Exiting", - NAME_CURRENT_COMP); - exit(0); - } - - for (i=0; ixmin && xymin && y= nx) || (i<0)) - { - printf("FATAL ERROR: wrong positioning in linear PSD. i= %i \n",i); - exit(1); - } - PSDlin_N[i]++; - PSDlin_p[i] += p; - PSDlin_p2[i] += p*p; - } - if (restore_neutron) { - RESTORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p); - } - %} - -SAVE - %{ - if (!nowritefile) { - DETECTOR_OUT_1D( - "Linear PSD monitor", - "Test", - "TEST I", - "x", xmin, xmax, nx, - &PSDlin_N[0],&PSDlin_p[0],&PSDlin_p2[0], - filename); - } - %} - -MCDISPLAY -%{ - - multiline(5, (double)xmin, (double)ymin, 0.0, - (double)xmax, (double)ymin, 0.0, - (double)xmax, (double)ymax, 0.0, - (double)xmin, (double)ymax, 0.0, - (double)xmin, (double)ymin, 0.0); -%} - -END diff --git a/mcstasscript/tests/test_input_folder/test_for_reading.comp b/mcstasscript/tests/test_input_folder/test_for_reading.comp deleted file mode 100644 index 9ebc4a33..00000000 --- a/mcstasscript/tests/test_input_folder/test_for_reading.comp +++ /dev/null @@ -1,125 +0,0 @@ -/******************************************************************************* -* -* McStas, neutron ray-tracing package -* Copyright 1997-2002, All rights reserved -* Risoe National Laboratory, Roskilde, Denmark -* Institut Laue Langevin, Grenoble, France -* -* %I -* Written by: Kim Lefmann -* Date: May 7, 2001 -* Version: $Revision$ - Origin: Risoe -* Release: McStas 1.6 -* -* Rectangular 1D PSD, measuring intensity vs. vertical position, x -* -* %D -* -* Example: PSDlin_monitor(nx=20, filename="Output.x", xmin=-0.1, xmax=0.1, ymin=-0.1, ymax=0.1) -* -* %P -* INPUT PARAMETERS: -* -* xmin: Lower x bound of detector opening [m] -* xmax: Upper x bound of detector opening [m] -* ymin: Lower y bound of detector opening [m] -* ymax: Upper y bound of detector opening [m] -* xwidth: Width of detector. Overrides xmin, xmax [m] -* yheight: Height of detector. Overrides ymin, ymax [m] -* nx: Number of x bins [1] -* filename: Name of file in which to store the detector image [string] -* restore_neutron: If set, the monitor does not influence the neutron state [1] -* nowritefile: [1] If set, monitor will skip writing to disk -* -* OUTPUT PARAMETERS: -* -* PSDlin_N: Array of neutron counts -* PSDlin_p: Array of neutron weight counts -* PSDlin_p2: Array of second moments -* -* %E -******************************************************************************/ - -DEFINE COMPONENT PSDlin_monitor -DEFINITION PARAMETERS (nx=20) -SETTING PARAMETERS (string filename=0, xmin=-0.05, xmax=0.05, ymin=-0.05, ymax=0.05, - xwidth=0, yheight=0, restore_neutron=0, int nowritefile=0) -OUTPUT PARAMETERS (PSDlin_N, PSDlin_p, PSDlin_p2) -/* Neutron parameters: (x,y,z,vx,vy,vz,t,sx,sy,sz,p) */ - -DECLARE - %{ - double PSDlin_N[nx]; - double PSDlin_p[nx]; - double PSDlin_p2[nx]; - %} - -INITIALIZE - %{ - int i; - - if (xwidth > 0) { xmax = xwidth/2; xmin = -xmax; } - if (yheight > 0) { ymax = yheight/2; ymin = -ymax; } - - if ((xmin >= xmax) || (ymin >= ymax)) { - printf("PSDlin_monitor: %s: Null detection area !\n" - "ERROR (xwidth,yheight,xmin,xmax,ymin,ymax). Exiting", - NAME_CURRENT_COMP); - exit(0); - } - - for (i=0; ixmin && xymin && y= nx) || (i<0)) - { - printf("FATAL ERROR: wrong positioning in linear PSD. i= %i \n",i); - exit(1); - } - PSDlin_N[i]++; - PSDlin_p[i] += p; - PSDlin_p2[i] += p*p; - } - if (restore_neutron) { - RESTORE_NEUTRON(INDEX_CURRENT_COMP, x, y, z, vx, vy, vz, t, sx, sy, sz, p); - } - %} - -SAVE - %{ - if (!nowritefile) { - DETECTOR_OUT_1D( - "Linear PSD monitor", - "Test", - "TEST I", - "x", xmin, xmax, nx, - &PSDlin_N[0],&PSDlin_p[0],&PSDlin_p2[0], - filename); - } - %} - -MCDISPLAY -%{ - - multiline(5, (double)xmin, (double)ymin, 0.0, - (double)xmax, (double)ymin, 0.0, - (double)xmax, (double)ymax, 0.0, - (double)xmin, (double)ymax, 0.0, - (double)xmin, (double)ymin, 0.0); -%} - -END From c4c45157918d34be17039ef7f997e2b61ff7ecaf Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Fri, 1 May 2020 11:19:40 +0200 Subject: [PATCH 090/403] Fixed a bug in instrument reader where the name of the instrument would not be read when a space was inserted between the name and parameters. --- mcstasscript/instr_reader/control.py | 2 +- mcstasscript/instr_reader/read_definition.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/mcstasscript/instr_reader/control.py b/mcstasscript/instr_reader/control.py index 9dc7824d..aacbf5c7 100644 --- a/mcstasscript/instr_reader/control.py +++ b/mcstasscript/instr_reader/control.py @@ -176,7 +176,7 @@ def _read_file(self): if definition_mode and not comment_mode: # Get instrument name if not instr_name_read: - self.instr_name = line.split("(")[0].split(" ")[-1] + self.instr_name = line.split("(")[0].strip().split(" ")[-1] instr_name_read = True self.update_file_name() diff --git a/mcstasscript/instr_reader/read_definition.py b/mcstasscript/instr_reader/read_definition.py index 7270cff4..d4ce1dd5 100644 --- a/mcstasscript/instr_reader/read_definition.py +++ b/mcstasscript/instr_reader/read_definition.py @@ -27,7 +27,7 @@ def read_definition_line(self, line): if "(" in line: # Start of instrument definition, get name - self.instr_name = line.split("(")[0].split(" ")[-1] + self.instr_name = line.split("(")[0].strip().split(" ")[-1] self._start_py_file() # Remove the parameters from the paranthesis parameters = line.split("(")[1] From 9c2e756972bb56ffac612732320c74230576caff Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Fri, 1 May 2020 11:39:34 +0200 Subject: [PATCH 091/403] Updated integration tests to use the integration_test folder as the work directory. --- .../test_complex_instrument.py | 7 +++++ .../test_simple_instrument.py | 30 +++++++++++++++++++ setup.py | 2 +- 3 files changed, 38 insertions(+), 1 deletion(-) diff --git a/mcstasscript/integration_tests/test_complex_instrument.py b/mcstasscript/integration_tests/test_complex_instrument.py index a39bc773..f8238a05 100644 --- a/mcstasscript/integration_tests/test_complex_instrument.py +++ b/mcstasscript/integration_tests/test_complex_instrument.py @@ -1,4 +1,5 @@ import io +import os import time import unittest import unittest.mock @@ -138,6 +139,10 @@ def test_complex_instrument(self, mock_stdout): Test parameters can be controlled through McStasScript. Here a slit is moved to one side and the result is verified. """ + CURRENT_DIR = os.getcwd() + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + os.chdir(THIS_DIR) + Instr = setup_complex_instrument() data = Instr.run_full_instrument(foldername="integration_test_complex", @@ -146,6 +151,8 @@ def test_complex_instrument(self, mock_stdout): parameters={"guide_width": 0.03, "guide_length": 8.0}) + os.chdir(CURRENT_DIR) + intensity_data_pos = functions.name_search("PSD_1D_1", data).Intensity sum_outside_beam = sum(intensity_data_pos[0:50]) sum_inside_beam = sum(intensity_data_pos[51:99]) diff --git a/mcstasscript/integration_tests/test_simple_instrument.py b/mcstasscript/integration_tests/test_simple_instrument.py index 18215819..fc0a919f 100644 --- a/mcstasscript/integration_tests/test_simple_instrument.py +++ b/mcstasscript/integration_tests/test_simple_instrument.py @@ -103,12 +103,18 @@ def test_simple_instrument(self, mock_stdout): expectations. Here beam in small area in the middle of the detector. """ + CURRENT_DIR = os.getcwd() + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + os.chdir(THIS_DIR) + Instr = setup_simple_instrument() data = Instr.run_full_instrument(foldername="integration_test_simple", ncount=1E6, mpi=1, increment_folder_name=True) + os.chdir(CURRENT_DIR) + intensity_data = data[0].Intensity # beam should be on pixel 35 to 65 @@ -125,12 +131,18 @@ def test_simple_instrument_input(self, mock_stdout): expectations. Here beam in small area in the middle of the detector. """ + CURRENT_DIR = os.getcwd() + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + os.chdir(THIS_DIR) + Instr = setup_simple_instrument_input_path() data = Instr.run_full_instrument(foldername="integration_test_simple_input", ncount=1E6, mpi=1, increment_folder_name=True) + os.chdir(CURRENT_DIR) + intensity_data = data[0].Intensity # beam should be on pixel 35 to 65 @@ -150,12 +162,18 @@ def test_simple_instrument_mpi(self, mock_stdout): expectations. Here beam in small area in the middle of the detector. Running with mpi, 2 cores. """ + CURRENT_DIR = os.getcwd() + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + os.chdir(THIS_DIR) + Instr = setup_simple_instrument() data = Instr.run_full_instrument(foldername="integration_test_mpi", ncount=1E6, mpi=2, increment_folder_name=True) + os.chdir(CURRENT_DIR) + intensity_data = data[0].Intensity # beam should be on pixel 35 to 65 @@ -172,12 +190,18 @@ def test_slit_instrument(self, mock_stdout): a slit is can be moved, but the default value of 0 should be used. """ + CURRENT_DIR = os.getcwd() + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + os.chdir(THIS_DIR) + Instr = setup_simple_slit_instrument() data = Instr.run_full_instrument(foldername="integration_test_slit", ncount=2E6, mpi=2, increment_folder_name=True) + os.chdir(CURRENT_DIR) + intensity_data = data[0].Intensity # beam should be on pixel 45 to 55 @@ -192,6 +216,10 @@ def test_slit_moved_instrument(self, mock_stdout): Test parameters can be controlled through McStasScript. Here a slit is moved to one side and the result is verified. """ + CURRENT_DIR = os.getcwd() + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + os.chdir(THIS_DIR) + Instr = setup_simple_slit_instrument() data = Instr.run_full_instrument(foldername="integration_test_slit", @@ -199,6 +227,8 @@ def test_slit_moved_instrument(self, mock_stdout): increment_folder_name=True, parameters={"slit_offset": 0.03}) + os.chdir(CURRENT_DIR) + intensity_data = data[0].Intensity # beam should be on pixel 75 to 85 diff --git a/setup.py b/setup.py index 92ba8d7f..b570e811 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ setuptools.setup( name='McStasScript', - version='0.0.15', + version='0.0.16', author="Mads Bertelsen", author_email="Mads.Bertelsen@ess.eu", description="A python scripting interface for McStas", From 87c59ec2b1f84df227e2086a6c8aab389bfda6c3 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Fri, 1 May 2020 12:46:20 +0200 Subject: [PATCH 092/403] Update that allows relative to take component instances as well as strings. The component name will be taken from the instance, there is no checking done to confirm the object is from the same instrument. ValueErrors are raised if the type is not str or component. Unit tests are added to check this works as intended. --- mcstasscript/helper/mcstas_objects.py | 101 +++++++++++++++++--------- mcstasscript/tests/test_component.py | 74 ++++++++++++++++++- 2 files changed, 139 insertions(+), 36 deletions(-) diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index eb35f161..8fab594f 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -278,12 +278,18 @@ class contains both methods to write the component to a instrument Methods ------- - set_AT(at_list,**kwargs) + set_AT(at_list, RELATIVE) Sets AT_data, can set AT_relative using keyword - set_ROTATED(rotated_list,**kwargs) + set_AT_RELATIVE(relative) + Can set RELATIVE for position + + set_ROTATED(rotated_list, RELATIVE) Sets ROTATED_data, can set ROTATED_relative using keyword + set_ROTATED_RELATIVE(relative) + Can set RELATIVE for rotation + set_RELATIVE(relative_name) Set both AT_relative and ROTATED_relative to relative_name @@ -411,27 +417,20 @@ def set_keyword_input(self, **kwargs): self._unfreeze() if "AT" in kwargs: - self.AT_data = kwargs["AT"] - - # Could check if AT_RELATIVE is a string + self.set_AT(kwargs["AT"]) + if "AT_RELATIVE" in kwargs: - self.AT_relative = "RELATIVE " + kwargs["AT_RELATIVE"] + self.set_AT_RELATIVE(kwargs["AT_RELATIVE"]) self.ROTATED_specified = False if "ROTATED" in kwargs: - self.ROTATED_data = kwargs["ROTATED"] - self.ROTATED_specified = True + self.set_ROTATED(kwargs["ROTATED"]) - # Could check if ROTATED_RELATIVE is a string if "ROTATED_RELATIVE" in kwargs: - self.ROTATED_relative = "RELATIVE " + kwargs["ROTATED_RELATIVE"] - self.ROTATED_specified = True + self.set_ROTATED_RELATIVE(kwargs["ROTATED_RELATIVE"]) - # Could check if RELATIVE is a string if "RELATIVE" in kwargs: - self.AT_relative = "RELATIVE " + kwargs["RELATIVE"] - self.ROTATED_relative = "RELATIVE " + kwargs["RELATIVE"] - self.ROTATED_specified = True + self.set_RELATIVE(kwargs["RELATIVE"]) if "WHEN" in kwargs: self.WHEN = "WHEN (" + kwargs["WHEN"] + ")" @@ -475,35 +474,67 @@ def _freeze(self): def _unfreeze(self): self.__isfrozen = False - def set_AT(self, at_list, **kwargs): + def set_AT(self, at_list, RELATIVE=None): """Sets AT data, List of 3 floats""" self.AT_data = at_list - if "RELATIVE" in kwargs: - relative_name = kwargs["RELATIVE"] - if relative_name == "ABSOLUTE": - self.AT_relative = relative_name - else: - self.AT_relative = "RELATIVE " + relative_name + if RELATIVE is not None: + self.set_AT_RELATIVE(RELATIVE) + + def set_AT_RELATIVE(self, relative): + """Sets AT RELATIVE with string or component instance""" + + # Extract name if component instance is given + if isinstance(relative, component): + relative = relative.name + elif not isinstance(relative, str): + raise ValueError("Relative must be either string or " + + "component object.") + + # Set AT relative + if relative == "ABSOLUTE": + self.AT_relative = "ABSOLUTE" + else: + self.AT_relative = "RELATIVE " + relative - def set_ROTATED(self, rotated_list, **kwargs): + def set_ROTATED(self, rotated_list, RELATIVE=None): """Sets ROTATED data, List of 3 floats""" self.ROTATED_data = rotated_list self.ROTATED_specified = True - if "RELATIVE" in kwargs: - relative_name = kwargs["RELATIVE"] - if relative_name == "ABSOLUTE": - self.ROTATED_relative = relative_name - else: - self.ROTATED_relative = "RELATIVE " + relative_name + if RELATIVE is not None: + self.set_ROTATED_RELATIVE(RELATIVE) + + def set_ROTATED_RELATIVE(self, relative): + """Sets ROTATED RELATIVE with string or component instance""" + + self.ROTATED_specified = True + # Extract name if a component instance is given + if isinstance(relative, component): + relative = relative.name + elif not isinstance(relative, str): + raise ValueError("Relative must be either string or " + + "component object.") + + # Set ROTATED relative + if relative == "ABSOLUTE": + self.ROTATED_relative = "ABSOLUTE" + else: + self.ROTATED_relative = "RELATIVE " + relative - def set_RELATIVE(self, relative_name): + def set_RELATIVE(self, relative): """Sets both AT_relative and ROTATED_relative""" - if relative_name == "ABSOLUTE": - self.AT_relative = relative_name - self.ROTATED_relative = relative_name + # Extract name if a component instance is given + if isinstance(relative, component): + relative = relative.name + elif not isinstance(relative, str): + raise ValueError("Relative must be either string or " + + "component object.") + + if relative == "ABSOLUTE": + self.AT_relative = "ABSOLUTE" + self.ROTATED_relative = "ABSOLUTE" else: - self.AT_relative = "RELATIVE " + relative_name - self.ROTATED_relative = "RELATIVE " + relative_name + self.AT_relative = "RELATIVE " + relative + self.ROTATED_relative = "RELATIVE " + relative def set_parameters(self, dict_input): """ diff --git a/mcstasscript/tests/test_component.py b/mcstasscript/tests/test_component.py index 1beaf489..eceb92f3 100644 --- a/mcstasscript/tests/test_component.py +++ b/mcstasscript/tests/test_component.py @@ -166,7 +166,6 @@ def test_component_basic_init_set_AT(self): """ Testing set_AT method """ - comp = component("test_component", "Arm") comp.set_AT([12.124, 214.0, 2], RELATIVE="monochromator") @@ -176,6 +175,35 @@ def test_component_basic_init_set_AT(self): self.assertEqual(comp.AT_data, [12.124, 214.0, 2]) self.assertEqual(comp.AT_relative, "RELATIVE monochromator") + def test_component_basic_init_set_AT_component(self): + """ + Testing set_AT method using component object + """ + + prev_component = component("relative_base", "Arm") + comp = component("test_component", "Arm") + + comp.set_AT([12.124, 214.0, 2], RELATIVE=prev_component) + + self.assertEqual(comp.name, "test_component") + self.assertEqual(comp.component_name, "Arm") + self.assertEqual(comp.AT_data, [12.124, 214.0, 2]) + self.assertEqual(comp.AT_relative, "RELATIVE relative_base") + + def test_component_basic_init_set_AT_component_keyword(self): + """ + Testing set_AT method using component object + """ + + prev_component = component("relative_base", "Arm") + comp = component("test_component", "Arm", + AT=[1, 2, 3.0], AT_RELATIVE=prev_component) + + self.assertEqual(comp.name, "test_component") + self.assertEqual(comp.component_name, "Arm") + self.assertEqual(comp.AT_data, [1, 2, 3.0]) + self.assertEqual(comp.AT_relative, "RELATIVE relative_base") + def test_component_basic_init_set_ROTATED(self): """ Testing set_ROTATED method @@ -190,6 +218,35 @@ def test_component_basic_init_set_ROTATED(self): self.assertEqual(comp.ROTATED_data, [1204.8, 8490.1, 129]) self.assertEqual(comp.ROTATED_relative, "RELATIVE analyzer") + def test_component_basic_init_set_ROTATED_component(self): + """ + Testing set_ROTATED method + """ + + prev_component = component("relative_base", "Arm") + comp = component("test_component", "Arm") + + comp.set_ROTATED([1204.8, 8490.1, 129], RELATIVE=prev_component) + + self.assertEqual(comp.name, "test_component") + self.assertEqual(comp.component_name, "Arm") + self.assertEqual(comp.ROTATED_data, [1204.8, 8490.1, 129]) + self.assertEqual(comp.ROTATED_relative, "RELATIVE relative_base") + + def test_component_basic_init_set_ROTATED_component_keyword(self): + """ + Testing set_ROTATED method + """ + + prev_component = component("relative_base", "Arm") + comp = component("test_component", "Arm", + ROTATED=[1, 2, 3.0], ROTATED_RELATIVE=prev_component) + + self.assertEqual(comp.name, "test_component") + self.assertEqual(comp.component_name, "Arm") + self.assertEqual(comp.ROTATED_data, [1, 2, 3.0]) + self.assertEqual(comp.ROTATED_relative, "RELATIVE relative_base") + def test_component_basic_init_set_RELATIVE(self): """ Testing set_RELATIVE method @@ -204,6 +261,21 @@ def test_component_basic_init_set_RELATIVE(self): self.assertEqual(comp.AT_relative, "RELATIVE sample") self.assertEqual(comp.ROTATED_relative, "RELATIVE sample") + def test_component_basic_init_set_RELATIVE(self): + """ + Testing set_RELATIVE method + """ + + prev_component = component("relative_base", "Arm") + comp = component("test_component", "Arm") + + comp.set_RELATIVE(prev_component) + + self.assertEqual(comp.name, "test_component") + self.assertEqual(comp.component_name, "Arm") + self.assertEqual(comp.AT_relative, "RELATIVE relative_base") + self.assertEqual(comp.ROTATED_relative, "RELATIVE relative_base") + def test_component_basic_init_set_parameters(self): """ Testing set_parameters method. Need to set some attribute From e0f9dcc118b422cac590d8a5a01bbadeb2bb3346 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Fri, 3 Jul 2020 08:18:33 +0200 Subject: [PATCH 093/403] Update that removes mpi if not set, meaning McStasScript can be run without an MPI working. --- mcstasscript/helper/managed_mcrun.py | 10 +++++++--- mcstasscript/tests/test_Instr.py | 2 +- mcstasscript/tests/test_ManagedMcrun.py | 6 +++--- 3 files changed, 11 insertions(+), 7 deletions(-) diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index 90cf4546..21d25c8a 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -79,7 +79,7 @@ def __init__(self, instr_name, **kwargs): self.data_folder_name = "" self.ncount = int(1E6) - self.mpi = 1 + self.mpi = None self.parameters = {} self.custom_flags = "" self.mcrun_path = "" @@ -141,10 +141,14 @@ def run_simulation(self, **kwargs): if self.compile: options_string = "-c " + if self.mpi is not None: + mpi_string = " --mpi=" + str(self.mpi) + " " # Set mpi + else: + mpi_string = " " + option_string = (options_string + "-n " + str(self.ncount) # Set ncount - + " --mpi=" + str(self.mpi) # Set mpi - + " ") + + mpi_string) if self.increment_folder_name and os.path.isdir(self.data_folder_name): counter = 0 diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index 446ab288..c61cc49a 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -1511,7 +1511,7 @@ def test_run_full_instrument_basic(self, mock_sub, expected_folder_path = os.path.join(current_directory, "test_data_set") # a double space because of a missing option - expected_call = (expected_path + " -c -n 1000000 --mpi=1 " + expected_call = (expected_path + " -c -n 1000000 " + "-d " + expected_folder_path + " test_instrument.instr" + " has_default=37 theta=1") diff --git a/mcstasscript/tests/test_ManagedMcrun.py b/mcstasscript/tests/test_ManagedMcrun.py index 79afcb7c..cc6ed1f3 100644 --- a/mcstasscript/tests/test_ManagedMcrun.py +++ b/mcstasscript/tests/test_ManagedMcrun.py @@ -38,7 +38,7 @@ def test_ManagedMcrun_init_defaults(self): foldername="test_folder", mcrun_path="") - self.assertEqual(mcrun_obj.mpi, 1) + self.assertEqual(mcrun_obj.mpi, None) self.assertEqual(mcrun_obj.ncount, 1000000) self.assertEqual(mcrun_obj.run_path, ".") @@ -114,7 +114,7 @@ def test_ManagedMcrun_run_simulation_basic(self, mock_sub): expected_folder_path = os.path.join(current_directory, "test_folder") # a double space because of a missing option - expected_call = ("path/mcrun -c -n 1000000 --mpi=1 " + expected_call = ("path/mcrun -c -n 1000000 " + "-d " + expected_folder_path + " test.instr") mock_sub.assert_called_once_with(expected_call, @@ -138,7 +138,7 @@ def test_ManagedMcrun_run_simulation_basic_path(self, mock_sub): expected_folder_path = os.path.join(current_directory, "test_folder") # a double space because of a missing option - expected_call = ("path/mcrun -c -n 1000000 --mpi=1 " + expected_call = ("path/mcrun -c -n 1000000 " + "-d " + expected_folder_path + " test.instr") mock_sub.assert_called_once_with(expected_call, From 307e8fae1b94839364e93be7a26531585c5a3b9b Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 22 Jul 2020 15:32:37 +0200 Subject: [PATCH 094/403] Fixed a bug where one row of data was not read correct for 2D monitors. Plotting was also updated to avoid having the data stored in a transposed form. Now it is effectively just transposed for correct plotting. --- mcstasscript/helper/managed_mcrun.py | 7 ++++--- mcstasscript/interface/plotter.py | 18 +++++++++--------- mcstasscript/tests/test_ManagedMcrun.py | 12 ++++++------ mcstasscript/tests/test_functions.py | 6 +++--- setup.py | 2 +- 5 files changed, 23 insertions(+), 22 deletions(-) diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index 21d25c8a..545a247b 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -281,9 +281,10 @@ def load_results(self, *args): elif len(metadata.dimension) == 2: xaxis = [] # Assume evenly binned in 2d data_lines = metadata.dimension[1] - Intensity = data.T[:, 0:data_lines - 1] - Error = data.T[:, data_lines:2*data_lines - 1] - Ncount = data.T[:, 2*data_lines:3*data_lines - 1] + + Intensity = data[0:data_lines, :] + Error = data[data_lines:2*data_lines, :] + Ncount = data[2*data_lines:3*data_lines, :] else: raise NameError( "Dimension not read correctly in data set " diff --git a/mcstasscript/interface/plotter.py b/mcstasscript/interface/plotter.py index 96c7cce6..434caf0b 100644 --- a/mcstasscript/interface/plotter.py +++ b/mcstasscript/interface/plotter.py @@ -139,10 +139,10 @@ def __init__(self, data_list, **kwargs): data.metadata.dimension[0]+1) Y = np.linspace(data.metadata.limits[2]*y_axis_mult, data.metadata.limits[3]*y_axis_mult, - data.metadata.dimension[1]) + data.metadata.dimension[1]+1) # Create a meshgrid for both x and y - y, x = np.meshgrid(Y, X) + x, y = np.meshgrid(X, Y) # Generate information on necessary colorrange levels = MaxNLocator(nbins=150).tick_values(min_value, @@ -159,7 +159,7 @@ def __init__(self, data_list, **kwargs): if data.plot_options.log: color_norm = matplotlib.colors.LogNorm(vmin=min_value, vmax=max_value) - im = ax0.pcolormesh(x, y, to_plot, + im = ax0.pcolormesh(y, x, to_plot, cmap=cmap, norm=color_norm) else: im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) @@ -328,10 +328,10 @@ def __init__(self, data_list, **kwargs): data.metadata.dimension[0]+1) Y = np.linspace(data.metadata.limits[2]*y_axis_mult, data.metadata.limits[3]*y_axis_mult, - data.metadata.dimension[1]) + data.metadata.dimension[1]+1) # Create a meshgrid for both x and y - y, x = np.meshgrid(Y, X) + x, y = np.meshgrid(X, Y) # Generate information on necessary colorrange levels = MaxNLocator(nbins=150).tick_values(min_value, @@ -348,7 +348,7 @@ def __init__(self, data_list, **kwargs): norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) # Create plot - im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) + im = ax0.pcolormesh(y, x, to_plot, cmap=cmap, norm=norm) def fmt(x, pos): a, b = '{:.2e}'.format(x).split('e') @@ -551,10 +551,10 @@ def __init__(self, data_list, **kwargs): data.metadata.dimension[0]+1) Y = np.linspace(data.metadata.limits[2]*y_axis_mult, data.metadata.limits[3]*y_axis_mult, - data.metadata.dimension[1]) + data.metadata.dimension[1]+1) # Create a meshgrid for both x and y - y, x = np.meshgrid(Y, X) + x, y = np.meshgrid(X, Y) # Generate information on necessary colorrange levels = MaxNLocator(nbins=150).tick_values(min_value, @@ -571,7 +571,7 @@ def __init__(self, data_list, **kwargs): norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) # Create plot - im = ax.pcolormesh(x, y, Intensity, + im = ax.pcolormesh(y, x, Intensity, cmap=cmap, norm=norm) def fmt(x, pos): diff --git a/mcstasscript/tests/test_ManagedMcrun.py b/mcstasscript/tests/test_ManagedMcrun.py index cc6ed1f3..a0d003f9 100644 --- a/mcstasscript/tests/test_ManagedMcrun.py +++ b/mcstasscript/tests/test_ManagedMcrun.py @@ -263,9 +263,9 @@ def test_ManagedMcrun_load_data_PSD4PI(self): self.assertEqual(PSD_4PI.metadata.xlabel, "Longitude [deg]") self.assertEqual(PSD_4PI.metadata.ylabel, "Lattitude [deg]") self.assertEqual(PSD_4PI.metadata.title, "4PI PSD monitor") - self.assertEqual(PSD_4PI.Ncount[1][4], 4) - self.assertEqual(PSD_4PI.Intensity[1][4], 1.537334562E-10) - self.assertEqual(PSD_4PI.Error[1][4], 1.139482296E-10) + self.assertEqual(PSD_4PI.Ncount[4][1], 4) + self.assertEqual(PSD_4PI.Intensity[4][1], 1.537334562E-10) + self.assertEqual(PSD_4PI.Error[4][1], 1.139482296E-10) def test_ManagedMcrun_load_data_PSD(self): """ @@ -295,9 +295,9 @@ def test_ManagedMcrun_load_data_PSD(self): self.assertEqual(PSD.metadata.xlabel, "X position [cm]") self.assertEqual(PSD.metadata.ylabel, "Y position [cm]") self.assertEqual(PSD.metadata.title, "PSD monitor") - self.assertEqual(PSD.Ncount[21][27], 9) - self.assertEqual(PSD.Intensity[21][27], 2.623929371e-13) - self.assertEqual(PSD.Error[21][27], 2.765467693e-13) + self.assertEqual(PSD.Ncount[27][21], 9) + self.assertEqual(PSD.Intensity[27][21], 2.623929371e-13) + self.assertEqual(PSD.Error[27][21], 2.765467693e-13) def test_ManagedMcrun_load_data_L_mon(self): """ diff --git a/mcstasscript/tests/test_functions.py b/mcstasscript/tests/test_functions.py index 6e884f7e..40db8f6a 100644 --- a/mcstasscript/tests/test_functions.py +++ b/mcstasscript/tests/test_functions.py @@ -256,9 +256,9 @@ def test_crun_load_data_PSD4PI(self): self.assertEqual(PSD_4PI.metadata.xlabel, "Longitude [deg]") self.assertEqual(PSD_4PI.metadata.ylabel, "Lattitude [deg]") self.assertEqual(PSD_4PI.metadata.title, "4PI PSD monitor") - self.assertEqual(PSD_4PI.Ncount[1][4], 4) - self.assertEqual(PSD_4PI.Intensity[1][4], 1.537334562E-10) - self.assertEqual(PSD_4PI.Error[1][4], 1.139482296E-10) + self.assertEqual(PSD_4PI.Ncount[4][1], 4) + self.assertEqual(PSD_4PI.Intensity[4][1], 1.537334562E-10) + self.assertEqual(PSD_4PI.Error[4][1], 1.139482296E-10) if __name__ == '__main__': diff --git a/setup.py b/setup.py index b570e811..f8bfacd4 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ setuptools.setup( name='McStasScript', - version='0.0.16', + version='0.0.18', author="Mads Bertelsen", author_email="Mads.Bertelsen@ess.eu", description="A python scripting interface for McStas", From dca46e13365e5194b5e77731a9cd538663290c85 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Mon, 27 Jul 2020 09:32:23 +0200 Subject: [PATCH 095/403] Fix of plotting orientation. --- mcstasscript/interface/plotter.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/mcstasscript/interface/plotter.py b/mcstasscript/interface/plotter.py index 434caf0b..f49fdf3d 100644 --- a/mcstasscript/interface/plotter.py +++ b/mcstasscript/interface/plotter.py @@ -159,7 +159,7 @@ def __init__(self, data_list, **kwargs): if data.plot_options.log: color_norm = matplotlib.colors.LogNorm(vmin=min_value, vmax=max_value) - im = ax0.pcolormesh(y, x, to_plot, + im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=color_norm) else: im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) @@ -348,7 +348,7 @@ def __init__(self, data_list, **kwargs): norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) # Create plot - im = ax0.pcolormesh(y, x, to_plot, cmap=cmap, norm=norm) + im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) def fmt(x, pos): a, b = '{:.2e}'.format(x).split('e') @@ -571,7 +571,7 @@ def __init__(self, data_list, **kwargs): norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) # Create plot - im = ax.pcolormesh(y, x, Intensity, + im = ax.pcolormesh(x, y, Intensity, cmap=cmap, norm=norm) def fmt(x, pos): From 272437b6ef17e17e37abe668d5638f5a2ca0a183 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Mon, 3 Aug 2020 15:25:24 +0200 Subject: [PATCH 096/403] Fixed issue with C style // comments in component definition being read wrong. --- mcstasscript/helper/component_reader.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/mcstasscript/helper/component_reader.py b/mcstasscript/helper/component_reader.py index 15858d6a..cb806f9f 100644 --- a/mcstasscript/helper/component_reader.py +++ b/mcstasscript/helper/component_reader.py @@ -312,6 +312,7 @@ def read_component_file(self, absolute_path): or self.line_starts_with(line.strip(), "SETTING PARAMETERS")): + line = line.split("//")[0] # Remove comments parts = line.split("(") parameter_parts = parts[1].split(",") @@ -384,7 +385,8 @@ def read_component_file(self, absolute_path): if break_now: break - parameter_parts = fo.readline().split(",") + new_line = fo.readline().split("//")[0] + parameter_parts = new_line.split(",") parameter_parts = self.correct_for_brackets(parameter_parts) if self.line_starts_with(line, "DECLARE"): From d65cbc5e04c5f04774eaa187796a185204ecec6b Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 5 Aug 2020 15:14:40 +0200 Subject: [PATCH 097/403] Adding McStas / Union tutorial using McStasScript in Jupyter notebooks. 11 Notebooks covering: Basic use of McStas with McStasScript Use of advanced keywords SPLIT, EXTEND, WHEN and JUMP Basic use of Union components Processes and Materials Geometry system including masks Loggers and conditionals Using external components with Union The history system Needs newest version of Union components from McStas master branch. These should be located in the run_folder. --- .../McStasScript_tutorial_1_the_basics.ipynb | 620 ++++++++++++++++++ tutorial/McStasScript_tutorial_2_SPLIT.ipynb | 267 ++++++++ ...tasScript_tutorial_3_EXTEND_and_WHEN.ipynb | 235 +++++++ tutorial/McStasScript_tutorial_4_JUMP.ipynb | 255 +++++++ ...n_tutorial_1_processes_and_materials.ipynb | 436 ++++++++++++ tutorial/Union_tutorial_2_geometry.ipynb | 495 ++++++++++++++ tutorial/Union_tutorial_3_loggers.ipynb | 581 ++++++++++++++++ tutorial/Union_tutorial_4_conditionals.ipynb | 524 +++++++++++++++ tutorial/Union_tutorial_5_masks.ipynb | 358 ++++++++++ ...ial_6_Exit_and_number_of_activations.ipynb | 385 +++++++++++ .../Union_tutorial_7_Tagging_history.ipynb | 303 +++++++++ tutorial/data_folder/note.txt | 1 + tutorial/run_folder/note.txt | 2 + 13 files changed, 4462 insertions(+) create mode 100644 tutorial/McStasScript_tutorial_1_the_basics.ipynb create mode 100644 tutorial/McStasScript_tutorial_2_SPLIT.ipynb create mode 100644 tutorial/McStasScript_tutorial_3_EXTEND_and_WHEN.ipynb create mode 100644 tutorial/McStasScript_tutorial_4_JUMP.ipynb create mode 100644 tutorial/Union_tutorial_1_processes_and_materials.ipynb create mode 100644 tutorial/Union_tutorial_2_geometry.ipynb create mode 100644 tutorial/Union_tutorial_3_loggers.ipynb create mode 100644 tutorial/Union_tutorial_4_conditionals.ipynb create mode 100644 tutorial/Union_tutorial_5_masks.ipynb create mode 100644 tutorial/Union_tutorial_6_Exit_and_number_of_activations.ipynb create mode 100644 tutorial/Union_tutorial_7_Tagging_history.ipynb create mode 100644 tutorial/data_folder/note.txt create mode 100644 tutorial/run_folder/note.txt diff --git a/tutorial/McStasScript_tutorial_1_the_basics.ipynb b/tutorial/McStasScript_tutorial_1_the_basics.ipynb new file mode 100644 index 00000000..c0e80693 --- /dev/null +++ b/tutorial/McStasScript_tutorial_1_the_basics.ipynb @@ -0,0 +1,620 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# McStasScript introduction\n", + "This notebook shows how to use McStas and McStasScript to perform a basic simulation of a neutron diffractometer. The following software is required:\n", + "- McStas (www.mcstas.org)\n", + "- McStasScript (can be installed with python -m pip install McStasScript)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Anatomy of a McStas instrument\n", + "\n", + "In McStas a simulation is described using an instrument file. Such an instrument has five sections where code can be added to define the simulation to be perfomed.\n", + "\n", + "- Instrument definition\n", + "- Declare section\n", + "- Initialize section\n", + "- Trace section\n", + "- Finally section\n", + "\n", + "##### Instrument definition\n", + "In the instrument definition it is possible to define *instrument parameters* which can be specified at run time and used in the remaining sections for either calculations or as direct input to the components.\n", + "\n", + "##### Declare section\n", + "Here internal variables can be declared with C syntax.\n", + "\n", + "##### Initialize section\n", + "The initialize section is used for performing calculations, typically using both instrument parameters and declared variables to calculate for example chopper phases, angles and similar. The calculations are performed using C syntax. These calculations are performed before the raytracing simulation, and thus only performed once in a given simulation.\n", + "\n", + "##### Trace section\n", + "In the trace section McStas *components* are added, these are the building blocks of the simulation and correspond to different c codes that describe parts of neutron instruments or samples. Each component have a set of available parameters, some of which may be required. These will set the behavior of a component, a guide component may for example have parameters describing the physical shape and mirror reflectivity. Components also need to be placed in 3D space, and can be placed either in the absolute coordinate system or relative to a previously defined component.\n", + "\n", + "##### Finally section\n", + "The finally section is very similar to the initialize section, here calculations can be performed after the raytracing has been completed, again using C syntax. This may be some brief data analysis or print of some status.\n", + "\n", + "### McStasScript python package and this tutorial\n", + "The McStasScript python package provides an API to build and run such instruments files, but it is still necessary to have a basic understanding of the structure of the underlying instrument file and its capabilities and limitations. These tutorials will teach basic use of McStas through the McStasScript API without assuming expertise in the underlying McStas software." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import the McStasScript package\n", + "The McStasScript modules intended for normal use is located in the interface submodule, and one usually imports the necessary modules from there." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### McStasScript configuration\n", + "Before the first use of McStasScript it is necessary to configure the package so it can locate the McStas installation and call the binaries. One way to find the path is to open a terminal with the McStas environment and run:\n", + "\n", + "which mcrun\n", + "\n", + "This should return the path for the binary, and the mcstas path is usually just one step back." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "configurator = functions.Configurator()\n", + "configurator.set_mcrun_path(\"/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin/\")\n", + "configurator.set_mcstas_path(\"/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create an instrument object\n", + "A McStas instrument is described with a McStas instrument object which is created using the *McStas_instr* method on the instr class. Creating an instrument object also reads available components, both in the work folder and from the McStas installation. By default, the work folder is the current work directory, but using the input_path keyword argument this can be change to avoid cluttering the folder containing notebooks.\n", + "\n", + "Here our instrument object for this tutorial is created, we give it the name python_tutorial." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Requesting help on source components\n", + "The main building blocks used for creating a McStas simulation are the components. One can ask an instrument object which components are available, and get help for each component. Here we check what sources are available, and ask for help on the Source_div component." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument.show_components()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument.show_components(\"sources\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument.component_help(\"Source_div\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding a component\n", + "Now we are ready to add a component to our simulation which is done with the *add_component* method on our instrument. This method requires two inputs:\n", + "- Nickname for the component used to refer to this component instance\n", + "- Name of the component type to be used\n", + "\n", + "Here we want to make a component nicknamed \"source\" of type \"Source_div\".\n", + "\n", + "We also use the *print_components* method to confirm our component was added successfully. Running this code block multiple times result in an error, as McStas does not allow two components with the same nickname." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "src = instrument.add_component(\"source\", \"Source_div\")\n", + "instrument.print_components()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Working with component objects\n", + "The src object created by *add_component* can be used to modify the component. It also holds the information on the component, which can be shown with the *print_long* method. This will tell us for example if any required parameters are yet to be set and the position of the component." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "src.print_long()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Modifying a component object\n", + "The parameters of a component object can be modified as attributes. From the above print we know there are four required parameters, so we start by setting these and then print the resulting component status." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "src.xwidth = 0.1\n", + "src.yheight = 0.05\n", + "src.focus_aw = 1.2\n", + "src.focus_ah = 2.3\n", + "\n", + "src.print_long()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Getting status of all parameters\n", + "Using *print_long* on a component only show the required parameters and user specified parameters, but it is also possible to see all parameters with the *show_parameters* method. This reminds us to set an energy or wavelength range for the source, as it is necessary to set one of these even though they are technically not required parameters." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "src.show_parameters()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding an instrument parameter to control wavelength\n", + "Controlling the wavelength range emitted by the source is best done with an instrument parameter, then this same parameter can be used to for example rotate a monochromator or set the range for an wavelength sensitive monitor. Adding an instrument parameter is done using the instrument method *add_parameter*, and it is possible to set a default value and comment. The current instrument parameters can be viewed with the *show_parameters* method on the isntrument object.\n", + "\n", + "The default type for instrument parameters is a double (floating point number), but other types can be selected if necessary by providing a type string before, here we also provide an example of an integer." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "instrument.add_parameter(\"int\", \"order\", value=1, comment=\"Monochromator order, integer\")\n", + "instrument.show_parameters()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now our source component can have its parameters assigned to a instrument parameter, or even a mathematical expression using the variable. This allows us to set a reasonable wavelength range for our source component." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "src.lambda0=\"wavelength\"\n", + "src.dlambda=\"0.01*wavelength\"\n", + "src.print_long()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Using keyword arguments when adding a component\n", + "When adding a component, several keyword arguments are available, for example for setting the position of the component.\n", + "- AT set position with list of x,y,z coordinates\n", + "- AT_RELATIVE set reference point for position (name of component instance or object)\n", + "- ROTATED set rotation around x,y,z axis\n", + "- ROTATED_RELATIVE set reference rotation (name of component instance or object)\n", + "- RELATIVE set both reference position and rotation (name of component instance or object)\n", + "\n", + "We use this to set up a guide 2 meters after the source. The McStas coordinate system convention is such that the nominal beam direction is in the Z direction and with Y vertical against gravity. We use the component instance name as a string to refer to our source. The RELATIVE could also have been specified as src, which is our source object." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "guide = instrument.add_component(\"guide\", \"Guide_gravity\", AT=[0,0,2], RELATIVE=\"source\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we set the parameters for our guide component." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "guide.w1 = 0.05\n", + "guide.w2 = 0.05\n", + "guide.h1 = 0.05\n", + "guide.h2 = 0.05\n", + "guide.l = 8.0\n", + "guide.m = 3.5\n", + "guide.G = -9.82\n", + "\n", + "guide.print_long()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding calculations to an instrument file\n", + "One of the advantages of McStas is the ease of adding calculations to the instrument. Here we calculate the rotation of a monochromator so that its scatters the wavelengths from our source. We need to declare variables using *add_declare_var* and append C code to initialize using *append_initialize*.\n", + "\n", + "For *add_declare_var* the first argument is the C type, usually double or int, the next is the variable name. A default value can be specified with the value keyword.\n", + "\n", + "*append_initialize* just adds the given C code to the initialize section of the McStas instrument file. It is necessary to follow C syntax, for example remember semicolon at the end of statements." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument.add_declare_var(\"double\", \"mono_Q\", value=1.714) # Q for Ge 311\n", + "instrument.add_declare_var(\"double\", \"wavevector\")\n", + "instrument.append_initialize(\"wavevector = 2.0*PI/wavelength;\")\n", + "\n", + "instrument.add_declare_var(\"double\", \"mono_rotation\")\n", + "instrument.append_initialize(\"mono_rotation = asin(mono_Q/(2.0*wavevector))*RAD2DEG;\")\n", + "instrument.append_initialize('printf(\"monochromator rotation = %g deg\\\\n\", mono_rotation);')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding the monochromator\n", + "Here the monochromator is added, and we use the declared variables *mono_Q* and *mono_rotation* prepared above. Setting position and rotation can also be done using the *set_AT* and *set_ROTATED* methods on the component objects. Here it is also demonstrated how one can use either component objects or component names for the relative keyword.\n", + "\n", + "Rotation is specified around each axis, so rotation of our monochromator should be around the Y axis in order to keep the beam in the usual X-Z plane." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mono = instrument.add_component(\"mono\", \"Monochromator_flat\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mono.zwidth = 0.05\n", + "mono.yheight = 0.08\n", + "mono.Q = \"mono_Q\"\n", + "mono.set_AT([0, 0, 8.5], RELATIVE=guide)\n", + "mono.set_ROTATED([0, \"mono_rotation\", 0], RELATIVE=\"guide\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mono.print_long()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Using an arm to define the beam direction\n", + "As the beam changes direction at the monochromator, we wish to define the new direction to simplify adding latter components. This can be done with an Arm component, which performs no simulation but can be used as new coordinate reference. The outgoing direction correspond to one more rotation of *mono_rotation*." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "beam_direction = instrument.add_component(\"beam_dir\", \"Arm\", AT_RELATIVE=\"mono\")\n", + "beam_direction.set_ROTATED([0, \"mono_rotation\", 0], RELATIVE=\"mono\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding a sample\n", + "We now add a powder sample using the PowderN component placed relative to our newly defiend beam direction. The chosen powder is Na2Ca3Al2F14 which is a standard sample due to its large number of available reflections." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sample = instrument.add_component(\"sample\", \"PowderN\", AT=[0,0,1.1], RELATIVE=\"beam_dir\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sample.radius = 0.015\n", + "sample.yheight = 0.05\n", + "sample.reflections = '\"Na2Ca3Al2F14.laz\"'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sample.print_long()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding a cylindrical monitor\n", + "The flexible Monitor_nD component can be used to add a banana monitor (part of a cylinder). The component shape is specified using an option string. The restore_neutron parameter is set to 1 to allow other monitors to record each neutron.\n", + "\n", + "We have to specify a filename and option string here, and if we just use a string like \"banana.dat\" it would be interpreted as an instrument parameter called *banana.dat* and fail, so it is necessary to add single quotes around, '\"banana.dat\"'." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "banana = instrument.add_component(\"banana\", \"Monitor_nD\", RELATIVE=sample)\n", + "banana.xwidth = 2.0\n", + "banana.yheight = 0.3\n", + "banana.restore_neutron = 1\n", + "banana.filename = '\"banana.dat\"'\n", + "banana.options = '\"theta limits=[5 175] bins=150, banana\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding a psd monitor\n", + "We also add a simple PSD (position sensitive detector) monitor to see the transmitted beam." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mon = instrument.add_component(\"monitor\", \"PSD_monitor\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mon.nx = 100\n", + "mon.ny = 100\n", + "mon.filename = '\"psd.dat\"'\n", + "mon.xwidth = 0.05\n", + "mon.yheight = 0.08\n", + "mon.restore_neutron = 1\n", + "mon.set_AT([0,0,0.1], RELATIVE=sample)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Print the components contained in an instrument\n", + "Before performing the simulation, it is a good idea to check that the instrument contains the expected components and that they are appropriately placed in space. The *print_components* method is useful for this purpose." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument.print_components()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Running the simulation\n", + "The instrument object has a method called *run_full_instrument* to execute the simulation and return the data. A number of keyword arguments are available to control the execution of the simulation.\n", + "- ncount sets the number of rays\n", + "- mpi sets the number of CPU cores used for execution (requires mpi installed)\n", + "- foldername sets the name of the output folder\n", + "- increment_folder_name if set to True, automatically changes the foldername if it already exists.\n", + "- parameters allows setting instrument parameters using a python dictionary" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = instrument.run_full_instrument(ncount=5E6, foldername=\"data_folder/mcstas_basics\",\n", + " increment_folder_name=True,\n", + " parameters={\"wavelength\" : 2.8})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plotting the data\n", + "The *run_full_instrument* method returned a list of McStasData objects which can be plotted by the McStasScript plotter module. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adjusting plots\n", + "The McStasData objects contain preferences for how the data should be plotted, which can be modified using the functions module and the *name_plot_options* function. The function arguments are the name of the monitor component and a list of McStasData objects, then options are provided with the keyword arguments.\n", + "\n", + "The following plot options are often useful:\n", + "- log [True or False] For plotting on logarithmic axis\n", + "- orders_of_mag [number] When using logarithmic plotting, limits the maximum orders of magnitudes shown\n", + "- left_lim [number] lower limit of plot x axis\n", + "- right_lim [number] upper limit of plot x axis\n", + "- bottom_lim [number] lower limit of plot y axis\n", + "- top_lim [number] upper limit of plot y axis\n", + "- colormap [string] name of matplotlib colormap to use" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "functions.name_plot_options(\"monitor\", data, log=True)\n", + "functions.name_plot_options(\"banana\", data, left_lim=90, right_lim=150)\n", + "plotter.make_sub_plot(data, fontsize=16)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Behind the scenes \n", + "McStasScript writes the instrument file and uses mcrun to compile and run it. The file can be found in the input_path selected when the instrument object were created. We can print it here to see what was done behind the scenes." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "with open(\"run_folder/python_tutorial.instr\") as file:\n", + " data = file.read()\n", + " print(data)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorial/McStasScript_tutorial_2_SPLIT.ipynb b/tutorial/McStasScript_tutorial_2_SPLIT.ipynb new file mode 100644 index 00000000..706f580d --- /dev/null +++ b/tutorial/McStasScript_tutorial_2_SPLIT.ipynb @@ -0,0 +1,267 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Advanced McStas features: SPLIT\n", + "McStas uses the Monte Carlo ray-tracing technique, which allows some tricks in how the physics is sampled as long as the resulting probability distributions matches the physics. This is possible as each ray has a weight, corresponding to how much intensity this ray represent. The SPLIT keyword can be used to split a ray into many equal parts, which can be useful if the remaining instrument has many different simulated and random outcomes. In this tutorial we will use the SPLIT keyword on a powder sample, as there are many powder Bragg peaks each ray could select, and splitting the ray samples this more efficiently." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setting up an example instrument\n", + "First we set up an example instrument, this is taken from the basic tutorial and correspond of source, guide, monochromator, sample and banana detector." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "src = instrument.add_component(\"source\", \"Source_div\")\n", + "src.xwidth = 0.1\n", + "src.yheight = 0.05\n", + "src.focus_aw = 1.2\n", + "src.focus_ah = 2.3\n", + "\n", + "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0=\"wavelength\"\n", + "src.dlambda=\"0.03*wavelength\"\n", + "\n", + "guide = instrument.add_component(\"guide\", \"Guide_gravity\", AT=[0,0,2], RELATIVE=\"source\")\n", + "guide.w1 = 0.05\n", + "guide.w2 = 0.05\n", + "guide.h1 = 0.05\n", + "guide.h2 = 0.05\n", + "guide.l = 8.0\n", + "guide.m = 3.5\n", + "guide.G = -9.82\n", + "\n", + "instrument.add_declare_var(\"double\", \"mono_Q\", value=1.714) # Q for Ge 311\n", + "instrument.add_declare_var(\"double\", \"wavevector\")\n", + "instrument.append_initialize(\"wavevector = 2.0*PI/wavelength;\")\n", + "\n", + "instrument.add_declare_var(\"double\", \"mono_rotation\")\n", + "instrument.append_initialize(\"mono_rotation = asin(mono_Q/(2.0*wavevector))*RAD2DEG;\")\n", + "instrument.append_initialize('printf(\"monochromator rotation = %g deg\\\\n\", mono_rotation);')\n", + "\n", + "mono = instrument.add_component(\"mono\", \"Monochromator_flat\")\n", + "mono.zwidth = 0.05\n", + "mono.yheight = 0.08\n", + "mono.Q = \"mono_Q\"\n", + "mono.set_AT([0, 0, 8.5], RELATIVE=guide)\n", + "mono.set_ROTATED([0, \"mono_rotation\", 0], RELATIVE=\"guide\")\n", + "\n", + "beam_direction = instrument.add_component(\"beam_dir\", \"Arm\", AT_RELATIVE=\"mono\")\n", + "beam_direction.set_ROTATED([0, \"mono_rotation\", 0], RELATIVE=\"mono\")\n", + "\n", + "sample = instrument.add_component(\"sample\", \"PowderN\", AT=[0,0,1.1], RELATIVE=\"beam_dir\")\n", + "sample.radius = 0.015\n", + "sample.yheight = 0.05\n", + "sample.reflections = '\"Na2Ca3Al2F14.laz\"'\n", + "\n", + "banana = instrument.add_component(\"banana\", \"Monitor_nD\", RELATIVE=sample)\n", + "banana.xwidth = 2.0\n", + "banana.yheight = 0.3\n", + "banana.restore_neutron = 1\n", + "banana.filename = '\"banana.dat\"'\n", + "banana.options = '\"theta limits=[5 175] bins=150, banana\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Running the simulation\n", + "Here we run the simulation with very few neutrons to show problematic sampling." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data_low = instrument.run_full_instrument(ncount=1E6, foldername=\"data_folder/mcstas_SPLIT\",\n", + " increment_folder_name=True,\n", + " parameters={\"wavelength\" : 2.8})\n", + "\n", + "plotter.make_sub_plot(data_low)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding the SPLIT keyword\n", + "Here we add the SPLIT keyword to the sample, we choose to split each ray into 30." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sample.set_SPLIT(30)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data_reasonable = instrument.run_full_instrument(ncount=1E6, foldername=\"data_folder/mcstas_SPLIT\",\n", + " increment_folder_name=True,\n", + " parameters={\"wavelength\" : 2.8})\n", + "\n", + "plotter.make_sub_plot(data_reasonable)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding the SPLIT keyword\n", + "It is however possible to mismanage splitting, mainly by simulating a too few rays and splitting too much. Here we do this on purpose to see how such data would look. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sample.set_SPLIT(10000)\n", + "data_unreasonable = instrument.run_full_instrument(ncount=1E3, foldername=\"data_folder/mcstas_SPLIT\",\n", + " increment_folder_name=True,\n", + " parameters={\"wavelength\" : 2.8})\n", + "\n", + "plotter.make_sub_plot(data_unreasonable)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Comparison with high statistics run\n", + "We here compare the different runs to a reference. The reference run is set up to have 50 times more rays than the earlier runs with 5E7 instead of 1E6 rays." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sample.set_SPLIT(1)\n", + "data_ref = instrument.run_full_instrument(ncount=5E7, foldername=\"data_folder/mcstas_SPLIT\",\n", + " increment_folder_name=True,\n", + " parameters={\"wavelength\" : 2.8})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plotting data on same plot\n", + "Here we only have one monitor in each data list, but we still use the *name_search* function to retrieve the correct data object from each. This avoids the code breaking in case additional monitors are added.\n", + "\n", + "Once we have the objects, we use the *xaxis*, *Intensity* and *Error* attributes to plot the data with matplotlib." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "banana_low = functions.name_search(\"banana\", data_low)\n", + "banana_reasonable = functions.name_search(\"banana\", data_reasonable)\n", + "banana_unreasonable = functions.name_search(\"banana\", data_unreasonable)\n", + "banana_ref = functions.name_search(\"banana\", data_ref)\n", + "\n", + "plt.figure(figsize=(14,6))\n", + "plt.errorbar(banana_low.xaxis, banana_low.Intensity, yerr=banana_low.Error, fmt=\"r\")\n", + "plt.errorbar(banana_ref.xaxis, banana_ref.Intensity, yerr=banana_ref.Error, fmt=\"b\")\n", + "plt.xlabel(\"2Theta [deg]\")\n", + "plt.ylabel(\"Intensity [n/s]\")\n", + "plt.legend([\"Low statistics\", \"High statistics reference\"])\n", + "\n", + "plt.figure(figsize=(14,6))\n", + "plt.errorbar(banana_reasonable.xaxis, banana_reasonable.Intensity, yerr=banana_reasonable.Error, fmt=\"r\")\n", + "plt.errorbar(banana_ref.xaxis, banana_ref.Intensity, yerr=banana_ref.Error, fmt=\"b\")\n", + "plt.xlabel(\"2Theta [deg]\")\n", + "plt.ylabel(\"Intensity [n/s]\")\n", + "plt.legend([\"Low statistics with SPLIT\", \"High statistics reference\"])\n", + "\n", + "plt.figure(figsize=(14,6))\n", + "plt.errorbar(banana_unreasonable.xaxis, banana_unreasonable.Intensity, yerr=banana_unreasonable.Error, fmt=\"r\")\n", + "plt.errorbar(banana_ref.xaxis, banana_ref.Intensity, yerr=banana_ref.Error, fmt=\"b\")\n", + "plt.xlabel(\"2Theta [deg]\")\n", + "plt.ylabel(\"Intensity [n/s]\")\n", + "plt.legend([\"Very low statistics with unreasonable SPLIT\", \"High statistics reference\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpretation of the data\n", + "We see that with low statistics, the data quality is so bad that noise can be mistaken for peaks. Using SPLIT improves the situation a lot, and the data is very similar to the high statistics reference which takes longer to compute. The situation with a low number of simulated rays and very high SPLIT have some erratic behavior, showing some very different peak intensities than the reference, and some peaks that shouldn't be there at all." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorial/McStasScript_tutorial_3_EXTEND_and_WHEN.ipynb b/tutorial/McStasScript_tutorial_3_EXTEND_and_WHEN.ipynb new file mode 100644 index 00000000..3938a566 --- /dev/null +++ b/tutorial/McStasScript_tutorial_3_EXTEND_and_WHEN.ipynb @@ -0,0 +1,235 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Advanced McStas features: EXTEND and WHEN\n", + "In this tutorial we will look at two advanced features in McStas, the EXTEND block and WHEN condition. Here we will use them to flag certain neutrons with EXTEND, and only record them in monitors when the flag is set using a WHEN condition." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Set up an example McStas instrument\n", + "First we set up an example instrument conisiting of a source, a guide and a position/divergence monitor. The guide is set up such that it only has mirrors on the left and right side, and absorbs neutrons if they hit the top or bottom. This is done to look at the horizontal behavior independently from the vertical, as this is easier to analyze." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "src = instrument.add_component(\"source\", \"Source_simple\")\n", + "\n", + "src.xwidth = 0.02\n", + "src.yheight = 0.02\n", + "src.focus_xw = guide_opening_w = 0.05\n", + "src.focus_yh = guide_opening_h = 0.06\n", + "src.dist = 1.5\n", + "src.flux = 1E13\n", + "\n", + "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0=\"wavelength\"\n", + "src.dlambda=\"0.001*wavelength\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "guide = instrument.add_component(\"guide\", \"Guide_gravity\", AT=[0,0,1.5], RELATIVE=src)\n", + "guide.w1 = guide_opening_w\n", + "guide.h1 = guide_opening_h\n", + "guide.w2 = guide_opening_w\n", + "guide.h2 = guide_opening_h\n", + "guide.l = guide_length = 15\n", + "guide.mleft = 4.0\n", + "guide.mright = 4.0\n", + "guide.mtop = 0.0\n", + "guide.mbottom = 0.0\n", + "guide.G = -9.82" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "acceptance = instrument.add_component(\"acceptance\", \"DivPos_monitor\")\n", + "acceptance.set_AT([0,0, guide_length + 0.1], RELATIVE=guide)\n", + "acceptance.nh = 200\n", + "acceptance.ndiv = 200\n", + "acceptance.filename = '\"acceptance.dat\"'\n", + "acceptance.xwidth = 0.08\n", + "acceptance.yheight = 0.05\n", + "acceptance.maxdiv_h = 1.5\n", + "acceptance.restore_neutron = 1" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = instrument.run_full_instrument(ncount=5E6, foldername=\"data_folder/mcstas_EXTEND_WHEN\",\n", + " increment_folder_name=True,\n", + " parameters={\"wavelength\" : 2.8})\n", + "\n", + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpreting the data\n", + "Here we see an acceptance monitor, with position along the x-axis and divergence along the y-axis. The guide is under illuminated by the small source, so there are gaps in the acceptance diagram. We see the position and divergence of the beam consist of a large number of stripes, the ones with lowest divergence has the largest intensity.\n", + "\n", + "## Add an flag\n", + "A flag is just a name for a variable that records some information on the neutron during the simulation, and can be used later to make a decision. Here we could check how many times the ray was reflected in the guide.\n", + "\n", + "We use an EXTEND block after a component to access variables internal to the component in the instrument scope. We declare a variable in the instrument scope called *n_reflections*. In the component scope, one can use the SCATTERED variable which contains the number of times the ray has encountered the SCATTER keyword within the component. Usually this is done when entering and leaving, and under each scattering / reflection, so the number of reflections is SCATTERED - 2." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument.add_declare_var(\"int\", \"n_reflections\")\n", + "guide.append_EXTEND(\"n_reflections = SCATTERED - 2;\")\n", + "guide.print_long()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Use the flag to limit what is recorded in a monitor\n", + "A WHEN statement can be used to activate / deactivate a component when some condition is true / false. For example we could require 0 reflection in our guide. We add a few monitors similar to the original, with the only difference being WHEN statements requiring 0, 1 or 2 reflections in the guide for the component to be active. We use a for loop to add the similar components, only changing the component instance name, filename and WHEN statement between each." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "reflection_numbers = [0, 1, 2]\n", + "\n", + "for reflections in reflection_numbers:\n", + " reflections_string = str(reflections)\n", + " \n", + " acceptance = instrument.add_component(\"acceptance_\" + reflections_string, \"DivPos_monitor\")\n", + " acceptance.filename = '\"acceptance_' + reflections_string + '.dat\"'\n", + " acceptance.set_WHEN(\"n_reflections == \" + reflections_string)\n", + " \n", + " acceptance.set_AT([0,0, guide_length + 0.1], RELATIVE=guide)\n", + " acceptance.nh = 200\n", + " acceptance.ndiv = 200\n", + " acceptance.xwidth = 0.08\n", + " acceptance.yheight = 0.05\n", + " acceptance.maxdiv_h = 1.5\n", + " acceptance.restore_neutron = 1\n", + " \n", + " acceptance.print_long()\n", + " print(\"\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Running the simulation\n", + "We now run the simulation with the new monitors to see how they differ from the original version." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = instrument.run_full_instrument(ncount=5E6, foldername=\"data_folder/mcstas_EXTEND_WHEN\",\n", + " increment_folder_name=True,\n", + " parameters={\"wavelength\" : 2.8})\n", + "\n", + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpretation of the data\n", + "The original monitor is unchanged as it was not modified. On the monitors with different numbers of reflections, we see the middle line correspond to zero reflections, the two lines around those are for one reflection and so forth. This explains why the lines further from the center has lower intensity, as they underwent more reflections while also having a larger angle of incidence." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The McStas instrument file\n", + "We here show the generated McStas instrument file in order to clarify how this would be accomplished without the McStasScript API." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "with open(\"run_folder/python_tutorial.instr\") as file:\n", + " instrument_string = file.read()\n", + " print(instrument_string)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorial/McStasScript_tutorial_4_JUMP.ipynb b/tutorial/McStasScript_tutorial_4_JUMP.ipynb new file mode 100644 index 00000000..7f39406e --- /dev/null +++ b/tutorial/McStasScript_tutorial_4_JUMP.ipynb @@ -0,0 +1,255 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Advanced McStas features: JUMP\n", + "In this notebook we will look at JUMP and how it can be used to control the sequence of execution of components. One instance where this is useful is if a guide splits into two. Consider an instrument with the following components:\n", + "\n", + "- source\n", + "- main guide\n", + "- guide1\n", + "- sample1\n", + "- detector1\n", + "- guide2\n", + "- sample2\n", + "- detector2\n", + "\n", + "After the main guide, if the ray hits the opening of guide1 the ray will continue to sample1 and detector1 as expected, but if it misses the opening of guide1, it will just be absorbed and never reach guide2 later in the component sequence. One possible solution is to use a JUMP statement, which jumps to another place in the component sequence. The target component must be an Arm, and no coordinate transformations are done, so the simplest solution is to have the Arm conincide with the component with the JUMP statement.\n", + "\n", + "- source\n", + "- main guide\n", + "- arm A JUMP arm B WHEN ray hits guide2 entrance \n", + "- guide1\n", + "- sample1\n", + "- detector1\n", + "- arm B (same position and rotation of arm A)\n", + "- guide2\n", + "- sample2\n", + "- detector2\n", + "\n", + "Here we build such an instrument with a few notes on the syntax along the way." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "src = instrument.add_component(\"source\", \"Source_simple\")\n", + "\n", + "src.xwidth = 0.12\n", + "src.yheight = 0.12\n", + "src.focus_xw = guide_opening_w = 0.1\n", + "src.focus_yh = guide_opening_h = 0.06\n", + "src.dist = 1.5\n", + "src.flux = 1E13\n", + "\n", + "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0=\"wavelength\"\n", + "src.dlambda=\"0.001*wavelength\"\n", + "\n", + "guide = instrument.add_component(\"guide\", \"Guide_gravity\", AT=[0,0,1.5], RELATIVE=src)\n", + "guide.w1 = guide_opening_w\n", + "guide.h1 = guide_opening_h\n", + "guide.w2 = guide_opening_w\n", + "guide.h2 = guide_opening_h\n", + "guide.l = guide_length = 15\n", + "guide.m = 4.0\n", + "guide.G = -9.82" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding the reference arm\n", + "We here add an arm just after the exit of the main guide which will be the component that performs the JUMP under certain circumstances. The McStas syntax for such a JUMP statement would be:\n", + "\n", + "JUMP *reference* WHEN *condition*\n", + "\n", + "We will call the arm we jump to for *target_arm*, and our condition is that the neutron is on the left side, so x<0. That means our JUMP statement would be:\n", + "\n", + "JUMP target_arm WHEN (x<0)\n", + "\n", + "In McStasScript this is added with the *set_JUMP* method, that takes a string for what to set after JUMP." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "start_arm = instrument.add_component(\"split_arm\", \"Arm\")\n", + "start_arm.set_AT([0,0, guide_length + 3E-3], RELATIVE=guide)\n", + "start_arm.set_JUMP(\"target_arm WHEN (x<0)\")\n", + "start_arm.print_long()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding the first daughter instrument\n", + "We then add the left side, which correspond to x>0, so this is the case where no jump was performed and the sequence of components runs as normal." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "guide1 = instrument.add_component(\"guide1\", \"Guide_gravity\")\n", + "guide1.set_AT([0.25*guide_opening_w,0,0], RELATIVE=start_arm)\n", + "guide1.set_ROTATED([0, 1, 0], RELATIVE=start_arm)\n", + "guide1.w1 = 0.5*guide_opening_w\n", + "guide1.h1 = 0.5*guide_opening_h\n", + "guide1.w2 = 0.5*guide_opening_w\n", + "guide1.h2 = 0.5*guide_opening_h\n", + "guide1.l = guide1_length = 10\n", + "guide1.m = 2.5\n", + "guide1.G = -9.82\n", + "\n", + "sample1 = instrument.add_component(\"sample1\", \"PowderN\")\n", + "sample1.set_AT([0,0,guide1_length+0.5], RELATIVE=guide1)\n", + "sample1.radius = 0.015\n", + "sample1.yheight = 0.05\n", + "sample1.reflections = '\"Na2Ca3Al2F14.laz\"'\n", + "\n", + "banana1 = instrument.add_component(\"banana1\", \"Monitor_nD\", RELATIVE=sample1)\n", + "banana1.xwidth = 2.0\n", + "banana1.yheight = 0.3\n", + "banana1.filename = '\"banana1.dat\"'\n", + "banana1.options = '\"theta limits=[5 175] bins=150, banana\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding the second daughter instrument\n", + "Now we need to add the target_arm that rays jump to when they go to the right side of the guide split. This is in the exact same position of the previous arm, to avoid the need for a coordinate transformation which is not performed automatically when using JUMP statements.\n", + "\n", + "After that we add a second daughter instrument with a different sample." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "target_arm = instrument.add_component(\"target_arm\", \"Arm\")\n", + "target_arm.set_AT([0,0,0], RELATIVE=start_arm)\n", + "\n", + "guide2 = instrument.add_component(\"guide2\", \"Guide_gravity\")\n", + "guide2.set_AT([-0.25*guide_opening_w,0,0], RELATIVE=target_arm)\n", + "guide2.set_ROTATED([0, -1, 0], RELATIVE=target_arm)\n", + "guide2.w1 = 0.5*guide_opening_w\n", + "guide2.h1 = 0.5*guide_opening_h\n", + "guide2.w2 = 0.5*guide_opening_w\n", + "guide2.h2 = 0.5*guide_opening_h\n", + "guide2.l = guide1_length = 15\n", + "guide2.m = 2.5\n", + "guide2.G = -9.82\n", + "\n", + "sample2 = instrument.add_component(\"sample2\", \"PowderN\")\n", + "sample2.set_AT([0,0,guide1_length+0.5], RELATIVE=guide2)\n", + "sample2.radius = 0.015\n", + "sample2.yheight = 0.05\n", + "sample2.reflections = '\"Cu.laz\"'\n", + "\n", + "banana2 = instrument.add_component(\"banana2\", \"Monitor_nD\", RELATIVE=sample2)\n", + "banana2.xwidth = 2.0\n", + "banana2.yheight = 0.3\n", + "banana2.filename = '\"banana2.dat\"'\n", + "banana2.options = '\"theta limits=[5 175] bins=150, banana\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Running the simulation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = instrument.run_full_instrument(ncount=5E6, foldername=\"data_folder/mcstas_JUMP\",\n", + " increment_folder_name=True,\n", + " parameters={\"wavelength\" : 2.8})" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Interpretation of the data\n", + "We see that each daughter instrument have beam and show the different powder patterns as expected." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorial/Union_tutorial_1_processes_and_materials.ipynb b/tutorial/Union_tutorial_1_processes_and_materials.ipynb new file mode 100644 index 00000000..afea0cd4 --- /dev/null +++ b/tutorial/Union_tutorial_1_processes_and_materials.ipynb @@ -0,0 +1,436 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# The Union components\n", + "This tutorial is the first in a series showing how the Union components are used. This notebook focuses on setting up material definitions that are used to provide scattering physics to geometries. There are several kinds of Union components, and they need to be used in conjunction with one another to function.\n", + "- Process components: Describe individual scattering phenomena, such as incoherent, powder, single crystal scattering\n", + "- Make_material component: Joins several processes into a material definition\n", + "- Geometry components: Describe geometry, each is assigned a material definition\n", + "- Union logger components: Records information for each scattering event and plots it\n", + "- Union abs logger components: Records information for each absorption event and plots it\n", + "- Union conditional components: Modifies a logger or abs logger so it only records when certain final condition met\n", + "- Union master component: Performs simulation described by previous Union components\n", + "\n", + "In this notebook we will focus on setting up materials using process components and the *Union_make_material* component, but the Union components can not work individually, so it will also be necessary to add a geometry and the *Union_master*. First we import McStasScript and create a new instrument object.\n", + "\n", + "In case of any issues with running the tutorial notebooks there is troubleshooting at the end of this notebook." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Process components\n", + "In this notebook we will focus on exploring how to build different physical descriptions of materials, and checking that they behave as expected. We start by looking at the process component for incoherent scattering, Incoherent_process." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument.show_components(\"Work directory\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument.component_help(\"Incoherent_process\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The process components in general have few parameters as they just describe a single physical phenomena. The incoherent process here is described adequately by just the cross section *sigma* and volume of the unit cell, *unit_cell_volume*.\n", + "\n", + "Two parameters are available for all processes, *packing_factor* and *interact_fraction*. The packing factor describes how dense the material is, and can make it easier to mix for example different powders. It is implemented as a simple factor on the scattering strength. The interact fraction is used to balance many processes when they are used in one material. Normally processes are sampled according to they natural probability for scattering, but this can be overwritten using the *interact_fraction*, which provides the sampling probability directly, they just have to sum to 1 within a material." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "incoherent = instrument.add_component(\"incoherent\", \"Incoherent_process\")\n", + "incoherent.sigma = 2.5\n", + "incoherent.unit_cell_volume = 13.8" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Making a material\n", + "In order to collect processes into a material, one uses the *Union_make_material* component. Here are the parameters." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument.component_help(\"Union_make_material\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A material definition thus consists of a number of processes given with the *process_string* parameter, and a description of the absorption in the material given with the inverse penetration depth at the standard neutron speed of 2200 m/s. For our first test material, lets just set absorption to zero and set our process_string to incoherent, referring to the process we created above.\n", + "\n", + "The name of the material is now inc_material, which will be used in the future to refer to this material." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "inc_material = instrument.add_component(\"inc_material\", \"Union_make_material\")\n", + "inc_material.my_absorption = 0.0\n", + "inc_material.process_string = '\"incoherent\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If the material contains no physical processes, it is necessary to set the *absorber* parameter to 1, as it will just have an absorption description. Here we make a material called abs_material. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "absorber = instrument.add_component(\"abs_material\", \"Union_make_material\")\n", + "absorber.absorber = 1\n", + "absorber.my_absorption = 3.0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The primary reason for having both process components and a make_material component is that it is possible to add as many processes in one material as necessary. Here we create a powder process, and then make a material using the powder and previously defined incoherent processes." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "powder = instrument.add_component(\"powder\", \"Powder_process\")\n", + "powder.reflections = '\"Cu.laz\"'\n", + "\n", + "inc_material = instrument.add_component(\"powder_material\", \"Union_make_material\")\n", + "inc_material.my_absorption = 1.2\n", + "inc_material.process_string = '\"incoherent,powder\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At this point we have three materials defined\n", + "\n", + "| Material name | Description |\n", + "|-----------------|------------------------------------------------------------------|\n", + "| inc_material | Has one incoherent process and no absorption |\n", + "| abs_material | Only has absorption |\n", + "| powder_material | Has both incoherent and powder process in addition to absorption |\n", + "\n", + "Let us defined a quick test instrument to see these materials are behaving as expected. First we add a source." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "src = instrument.add_component(\"source\", \"Source_div\")\n", + "\n", + "instrument.add_parameter(\"source_width\", value=0.15, comment=\"Width of source in [m]\")\n", + "src.xwidth = \"source_width\"\n", + "src.yheight = 0.03\n", + "src.focus_aw = 0.01\n", + "src.focus_ah = 0.01\n", + "\n", + "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0=\"wavelength\"\n", + "src.dlambda=\"0.001*wavelength\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding geometries that use the material definitions\n", + "Here we add three boxes, each using a different material definition and placed next to one another. The *material_string* parameter is used to specify the material name. The *priority* parameter will be explained later, as it is only important when geometries overlap, here they are spatially separated, yet the priorties must still be unique.\n", + "\n", + "It is important to note that these three boxes will be simulated simultaneously in the McStas simulation flow, so no need for GROUP statements to have these in parallel. Because they are simulated simultaneously, a ray can go from one to another, which would not be possible with a standard GROUP." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "box_inc = instrument.add_component(\"box_inc\", \"Union_box\", AT=[0.04,0,1], RELATIVE=src)\n", + "box_inc.xwidth = 0.03\n", + "box_inc.yheight = 0.03\n", + "box_inc.zdepth = 0.03\n", + "box_inc.material_string = '\"inc_material\"'\n", + "box_inc.priority = 10\n", + "\n", + "box_inc = instrument.add_component(\"box_powder\", \"Union_box\", AT=[0,0,1], RELATIVE=src)\n", + "box_inc.xwidth = 0.03\n", + "box_inc.yheight = 0.03\n", + "box_inc.zdepth = 0.01\n", + "box_inc.material_string = '\"powder_material\"'\n", + "box_inc.priority = 11\n", + "\n", + "box_inc = instrument.add_component(\"box_abs\", \"Union_box\", AT=[-0.04,0,1], RELATIVE=src)\n", + "box_inc.xwidth = 0.03\n", + "box_inc.yheight = 0.03\n", + "box_inc.zdepth = 0.03\n", + "box_inc.material_string = '\"abs_material\"'\n", + "box_inc.priority = 12" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding loggers that show scattering and absorption\n", + "In order to check the three materials behave as expected, we add spatial loggers for scattering and absorption. These are called loggers and abs_loggers, here is the parameters for a logger." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument.component_help(\"Union_logger_2D_space\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The parameters for the abs_logger are very similar, so the two are added here." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "logger = instrument.add_component(\"logger_space\", \"Union_logger_2D_space\", RELATIVE=\"box_powder\")\n", + "logger.D_direction_1 = '\"z\"'\n", + "logger.D1_min = -0.04\n", + "logger.D1_max = 0.04\n", + "logger.n1 = 250\n", + "logger.D_direction_2 = '\"x\"'\n", + "logger.D2_min = -0.075\n", + "logger.D2_max = 0.075\n", + "logger.n2 = 400\n", + "logger.filename = '\"logger.dat\"'\n", + "\n", + "logger = instrument.add_component(\"abs_logger_space\", \"Union_abs_logger_2D_space\", RELATIVE=\"box_powder\")\n", + "logger.D_direction_1 = '\"z\"'\n", + "logger.D1_min = -0.04\n", + "logger.D1_max = 0.04\n", + "logger.n1 = 250\n", + "logger.D_direction_2 = '\"x\"'\n", + "logger.D2_min = -0.075\n", + "logger.D2_max = 0.075\n", + "logger.n2 = 400\n", + "logger.filename = '\"abs_logger.dat\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding the Union master component\n", + "The Union master component is what actually executes the simulation, and so it takes information from all Union components defined before and performs the described simulation. This is the component that matters in terms of order of execution within the sequence of McStas components. As all the previous components have described the what the master component should simulate, it has no required parameters. It also does not matter where it is located in space, as it will grab the locations described by all previous Union components that need a spatial location, such as the geometries and loggers." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument.component_help(\"Union_master\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "master = instrument.add_component(\"master\", \"Union_master\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Running the simulation\n", + "Here the McStas simulation is executed as normal." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = instrument.run_full_instrument(ncount=5E6, foldername=\"data_folder/union_materials\",\n", + " increment_folder_name=True,\n", + " parameters={\"wavelength\" : 8.0})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Interpreting the results\n", + "The first logger shows scattering, and since the top box has incoherent, and the middle both powder and incoherent, we expect those to show up. We can see the beam attenuation, as the beam originates from the left side.\n", + "\n", + "The second logger shows absorption, and here the top box is absent as it has no absorption cross section. The bottom box is however visible now, as it has absorption but no scattering. As the absorber is quite strong, we see the attenuation here as well." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Alternative run to show powder properties\n", + "In order to see the scattering from the powder sample, we restrict the source size to only illuminate the center box with a powder material. A wavelength with powder lines close to 90 deg is selected to ensure the scattering from the center box hits the surrounding boxes.\n", + "\n", + "We choose to show the data with logarithmic colorscale using the *name_plot_options* method on functions." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = instrument.run_full_instrument(ncount=5E6, foldername=\"data_folder/union_materials\",\n", + " increment_folder_name=True,\n", + " parameters={\"wavelength\" : 2.8, \"source_width\" : 0.03})" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "functions.name_plot_options(\"logger_space\", data, log=True)\n", + "functions.name_plot_options(\"abs_logger_space\", data, log=True)\n", + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpretation of the data\n", + "Now that the direct beam only hits the center box, all rays that enter the surrounding boxes are scattered from that center box. Since the center box contains a powder, the scattered beam is not homogeneous and most of it is in the form of Bragg peaks with certain scattering angles, and we can see two of these intersecting the surrounding geometries." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Troubleshooting\n", + "In case of issues with the notebooks concerning the Union components or McStasScript it is recommended to:\n", + "- Update McStasScript with python -m pip install --upgrade mcstasscript\n", + "- Get newest version of Union components (Both library files and components themselves)\n", + "\n", + "Since the Union components need to collaborate, it is important to have the same version of the libraries and components. The newest version of the components can be found here: https://github.com/McStasMcXtrace/McCode/tree/master/mcstas-comps/contrib/union\n", + "All libraries for McStas are found here: https://github.com/McStasMcXtrace/McCode/tree/master/mcstas-comps/share but only three are needed for the Union components:\n", + "- Union_initialization.c\n", + "- Union_functions.c\n", + "- Geometry_functions.c" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorial/Union_tutorial_2_geometry.ipynb b/tutorial/Union_tutorial_2_geometry.ipynb new file mode 100644 index 00000000..abadba76 --- /dev/null +++ b/tutorial/Union_tutorial_2_geometry.ipynb @@ -0,0 +1,495 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Advanced geometry using the Union components\n", + "The Union components allow the user to construct advanced geometry from simple shapes. Each available shape has their own component, here are the currently available geometry components.\n", + "- Union_box\n", + "- Union_sphere\n", + "- Union_cylinder\n", + "- Union_cone\n", + "\n", + "They differ in their parameters describing the geometry, but are otherwise identical. In this notebook we will show how to construct hollow geometries with several layers, and that multiple scattering between these quickly result in complex behavior." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setting up some standard materials\n", + "Before setting up the geometry, we need some material definition, here we set up aluminium and a sample powder." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "Al_inc = instrument.add_component(\"Al_inc\", \"Incoherent_process\")\n", + "Al_inc.sigma = 4*0.0082 # 4 atoms per unit cell\n", + "Al_inc.unit_cell_volume = 66.4\n", + "\n", + "Al_pow = instrument.add_component(\"Al_pow\", \"Powder_process\")\n", + "Al_pow.reflections = '\"Al.laz\"'\n", + "\n", + "Al = instrument.add_component(\"Al\", \"Union_make_material\")\n", + "Al.process_string = '\"Al_inc,Al_pow\"'\n", + "Al.my_absorption = 100*4*0.231/66.4 # barns [m^2 E-28] * Å^3 [m^3 E-30] = [m E-2], correct with factor 100.\n", + "\n", + "Sample_inc = instrument.add_component(\"Sample_inc\", \"Incoherent_process\")\n", + "Sample_inc.sigma = 4*3.4176\n", + "Sample_inc.unit_cell_volume = 1079.1\n", + "\n", + "Sample_pow = instrument.add_component(\"Sample_pow\", \"Powder_process\")\n", + "Sample_pow.reflections = '\"Na2Ca3Al2F14.laz\"'\n", + "\n", + "Sample = instrument.add_component(\"Sample\", \"Union_make_material\")\n", + "Sample.process_string = '\"Sample_inc,Sample_pow\"'\n", + "Sample.my_absorption = 100*4*2.9464/1079.1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Set up source\n", + "We will also need a source, and allow the wavelength to be tuned with a instrument parameter." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "src = instrument.add_component(\"source\", \"Source_div\")\n", + "\n", + "src.xwidth = 0.01\n", + "src.yheight = 0.035\n", + "src.focus_aw = 0.01\n", + "src.focus_ah = 0.01\n", + "\n", + "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0=\"wavelength\"\n", + "src.dlambda=\"0.01*wavelength\"\n", + "src.flux = 1E13" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Describing the geometry of a simple cryostat\n", + "A cryostat is a complex geometry with several layers to consider. The way geometry is described in the Union components aims to make it easy to describe such systems. This is aciheved by allowing the simple geometries to overlap, and having a value called the priority to determine which is active in a given volume. If two geometries overlap, the overlapping region gets the physics from the geometry with the highest priority. In that way a cryostat model can be created by having a high priority for the sample in the center, and decreasing the priority as we move out.\n", + "\n", + "The ray tracing algorithm can however not handle if two geometries overlap perfectly, even with a single side. This could be two boxes sharing a side.\n", + "\n", + "Let us look at the parameters for a Union geometry component." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument.component_help(\"Union_cylinder\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The geometry components have many parameters due to their flexibility, but only a few are needed for basic use.\n", + "- material_string : string for selecting an available material\n", + "- priority : number, in case of overlap the geometry with highest priority decides the material properties\n", + "- geometrical parameters : Here radius and yheight\n", + "\n", + "In addition there is a focusing system where scattering of physical processes that support this can be forced to a certain direction, this is controlled with these parameters, but are rarely used:\n", + "- target_index : relative component index of target\n", + "- target_x : if target_index not set, relative x coordinate of target\n", + "- target_y : if target_index not set, relative y coordinate of target\n", + "- target_z : if target_index not set, relative z coordinate of target\n", + "- focus_aw : angular width of focusing cone (either specify angular, box or circular)\n", + "- focus_ah : angular height of focusing cone \n", + "- focus_xw : spatial width of focusing cone (box type focusing)\n", + "- focus_xh : spatial height of focusing\n", + "- focus_r : spatial radius of focusing cone (circular)\n", + "\n", + "Finally there is p_interact, which is used for controlling Monte Carlo sampling frequency of the geometry, as it controls the probability for scattering occurring for any path before or after scattering.\n", + "\n", + "The remaining parameters including masks and number_of_activations are for advanced rules which will be described in a later tutorial." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### First geometry, a sample in a container\n", + "\n", + "We have defined the following materials that are available to us:\n", + "- Al\n", + "- Sample\n", + "\n", + "Lets start by building a simple powder container with a lid." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sample_geometry = instrument.add_component(\"sample_geometry\", \"Union_cylinder\")\n", + "sample_geometry.yheight = 0.03\n", + "sample_geometry.radius = 0.0075\n", + "sample_geometry.material_string='\"Sample\"' \n", + "sample_geometry.priority = 100\n", + "sample_geometry.set_AT([0,0,1], RELATIVE=src)\n", + "\n", + "container = instrument.add_component(\"sample_container\", \"Union_cylinder\", RELATIVE=sample_geometry)\n", + "container.yheight = 0.03+0.003 # 1.5 mm top and button\n", + "container.radius = 0.0075 + 0.0015 # 1.5 mm sides of container\n", + "container.material_string='\"Al\"' \n", + "container.priority = 99\n", + "\n", + "container_lid = instrument.add_component(\"sample_container_lid\", \"Union_cylinder\")\n", + "container_lid.set_AT([0, 0.0155, 0], RELATIVE=container)\n", + "container_lid.yheight = 0.004\n", + "container_lid.radius = 0.013\n", + "container_lid.material_string='\"Al\"' \n", + "container_lid.priority = 98" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Set up loggers to check what is going on\n", + "In order to view what geometry we have set up, we set up three loggers that view the scattering projected onto three different planes. These record the spatail distribution of scattering events." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\", RELATIVE=sample_geometry)\n", + "logger_zx.D_direction_1 = '\"z\"'\n", + "logger_zx.D1_min = -0.02\n", + "logger_zx.D1_max = 0.02\n", + "logger_zx.n1 = 300\n", + "logger_zx.D_direction_2 = '\"x\"'\n", + "logger_zx.D2_min = -0.02\n", + "logger_zx.D2_max = 0.02\n", + "logger_zx.n2 = 300\n", + "logger_zx.filename = '\"logger_zx.dat\"'\n", + "\n", + "logger_zy = instrument.add_component(\"logger_space_zy\", \"Union_logger_2D_space\", RELATIVE=sample_geometry)\n", + "logger_zy.D_direction_1 = '\"z\"'\n", + "logger_zy.D1_min = -0.02\n", + "logger_zy.D1_max = 0.02\n", + "logger_zy.n1 = 300\n", + "logger_zy.D_direction_2 = '\"y\"'\n", + "logger_zy.D2_min = -0.02\n", + "logger_zy.D2_max = 0.02\n", + "logger_zy.n2 = 300\n", + "logger_zy.filename = '\"logger_zy.dat\"'\n", + "\n", + "logger_xy = instrument.add_component(\"logger_space_xy\", \"Union_logger_2D_space\", RELATIVE=sample_geometry)\n", + "logger_xy.D_direction_1 = '\"x\"'\n", + "logger_xy.D1_min = -0.02\n", + "logger_xy.D1_max = 0.02\n", + "logger_xy.n1 = 300\n", + "logger_xy.D_direction_2 = '\"y\"'\n", + "logger_xy.D2_min = -0.02\n", + "logger_xy.D2_max = 0.02\n", + "logger_xy.n2 = 300\n", + "logger_xy.filename = '\"logger_xy.dat\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add master component\n", + "We need to remember to add a master component to actually perform the simulation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "master = instrument.add_component(\"master\", \"Union_master\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add banana monitor\n", + "We are also interested in viewing some scattering data, here we add a banana monitor using the Monitor_nD component." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "banana = instrument.add_component(\"banana\", \"Monitor_nD\", RELATIVE=sample_geometry)\n", + "banana.xwidth = 1.5\n", + "banana.yheight = 0.4\n", + "banana.restore_neutron = 1\n", + "banana.options = '\"theta limits=[5 175] bins=250, banana\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Run simulation\n", + "Now we need to run the simulation to view the geometry we have built." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_geometry\",\n", + " increment_folder_name=True,\n", + " parameters={\"wavelength\" : 3.0})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plotting the data\n", + "Due to the large differences between the scattered intensity from parts in the direct beam and outside, we use a logarithmic axis to display scattered intensity. We limit it to 4 orders of magnitude below the maximum intensity, otherwise a single very low intensity event can draw the intensity axis out to a large interval making it difficult to see the important nuances." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "functions.name_plot_options(\"logger_space_zx\", data, log=True, orders_of_mag=4)\n", + "functions.name_plot_options(\"logger_space_zy\", data, log=True, orders_of_mag=4)\n", + "functions.name_plot_options(\"logger_space_xy\", data, log=True, orders_of_mag=4)\n", + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpretation of results\n", + "The beam is narrower than the sample, but taller than the can, so some parts of the sample powder are not directly illuminated, and can thus be seen as a intensity area especially on the zx logger image. The aluminum scatters less, and so lower intensity still." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding a cryostat around the sample can\n", + "We can add a crude model of a cryostat around our sample can by adding more Union geometry components. They have to be before the Union_master in the McStas instrument file, so we use the keyword argument *before* in the *add_component* method to specify this when adding the components.\n", + "\n", + "We also need to designate areas as empty, this is done using the default material Vacuum which has no absorption or scattering processes. In this way we can create several layers by decreasing the priority when going out." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "inner_wall = instrument.add_component(\"cryostat_wall\", \"Union_cylinder\", before=\"master\")\n", + "inner_wall.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "inner_wall.yheight = 0.12\n", + "inner_wall.radius = 0.03\n", + "inner_wall.material_string='\"Al\"' \n", + "inner_wall.priority = 80\n", + "\n", + "inner_wall_vac = instrument.add_component(\"cryostat_wall_vacuum\", \"Union_cylinder\", before=\"master\")\n", + "inner_wall_vac.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "inner_wall_vac.yheight = 0.12 - 0.008\n", + "inner_wall_vac.radius = 0.03 - 0.002\n", + "inner_wall_vac.material_string='\"Vacuum\"' \n", + "inner_wall_vac.priority = 81\n", + "\n", + "outer_wall = instrument.add_component(\"outer_cryostat_wall\", \"Union_cylinder\", before=\"master\")\n", + "outer_wall.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "outer_wall.yheight = 0.15\n", + "outer_wall.radius = 0.1\n", + "outer_wall.material_string='\"Al\"' \n", + "outer_wall.priority = 60\n", + "\n", + "outer_wall_vac = instrument.add_component(\"outer_cryostat_wall_vacuum\", \"Union_cylinder\", before=\"master\")\n", + "outer_wall_vac.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "outer_wall_vac.yheight = 0.15 - 0.01\n", + "outer_wall_vac.radius = 0.1 - 0.003\n", + "outer_wall_vac.material_string='\"Vacuum\"' \n", + "outer_wall_vac.priority = 61" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adjusting the logger view to see the larger cryostat area\n", + "The loggers were only viewing a small area around the sample can, but this can be expanded as we still have access to the component objects." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "logger_zx.D1_min = -0.12\n", + "logger_zx.D1_max = 0.12\n", + "logger_zx.D2_min = -0.12\n", + "logger_zx.D2_max = 0.12\n", + "logger_zy.D1_min = -0.12\n", + "logger_zy.D1_max = 0.12\n", + "logger_zy.D2_min = -0.12\n", + "logger_zy.D2_max = 0.12\n", + "logger_xy.D1_min = -0.12\n", + "logger_xy.D1_max = 0.12\n", + "logger_xy.D2_min = -0.12\n", + "logger_xy.D2_max = 0.12" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Run the updated instrument file\n", + "Run the simulation with the added cryostat. If mpi is installed, one can add mpi=N where N is the number of cores available to speed up the simulation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data_cryo = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_geometry\",\n", + " increment_folder_name=True,\n", + " parameters={\"wavelength\" : 3.0})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot the data from the new simulation\n", + "Here we increase the orders of magnitude of intensity plotted. Try to play with these values to see how it changes the plots." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "functions.name_plot_options(\"logger_space_zx\", data_cryo, log=True, orders_of_mag=5)\n", + "functions.name_plot_options(\"logger_space_zy\", data_cryo, log=True, orders_of_mag=5)\n", + "functions.name_plot_options(\"logger_space_xy\", data_cryo, log=True, orders_of_mag=5)\n", + "plotter.make_sub_plot(data_cryo)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpreting the data\n", + "The different layers of the cryostat both result in scattering from the aluminium the beam has to move through, but also some increase intensity where it illuminated by scattering from the sample.\n", + "\n", + "### Comparing situation with and without cryostat\n", + "It could be interesting to see what difference adding the cryostat did to the measured signal in the banana monitor, here we extract the numpy arrays and plot them manually with matplotlib for at direct comparison. Ensure you run the two simulations with the same wavelength in order for a comparison to be meaningful." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "banana_can = functions.name_search(\"banana\", data)\n", + "banana_cryo = functions.name_search(\"banana\", data_cryo)\n", + "\n", + "import copy\n", + "import numpy as np\n", + "banana_diff = copy.deepcopy(banana_cryo)\n", + "banana_diff.Intensity = banana_cryo.Intensity - banana_can.Intensity\n", + "banana_diff.Error = np.sqrt(banana_cryo.Error**2 + banana_can.Error**2)\n", + "\n", + "import matplotlib.pyplot as plt\n", + "plt.figure(figsize=(14,6))\n", + "plt.plot(banana_can.xaxis, banana_can.Intensity, \"r\",\n", + " banana_cryo.xaxis, banana_cryo.Intensity, \"b\",\n", + " banana_diff.xaxis, banana_diff.Intensity-10.0, \"k\")\n", + "plt.xlabel(\"2Theta [deg]\")\n", + "plt.ylabel(\"Intensity [n/s]\")\n", + "plt.legend([\"Sample in can\", \"Sample in can in cryostat\", \"Difference displaced to -10\"])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorial/Union_tutorial_3_loggers.ipynb b/tutorial/Union_tutorial_3_loggers.ipynb new file mode 100644 index 00000000..e1e1035f --- /dev/null +++ b/tutorial/Union_tutorial_3_loggers.ipynb @@ -0,0 +1,581 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Visualizing what happens in Union master\n", + "One disadvantage to collecting all the simulation in the Union_master component, is that it is not possible to insert monitors between the parts to check on the beam. This issue is addressed by adding logger components that can record scattering and absorption events that occurs during the simulation. This notebook will show examples on the usage of loggers and their features." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Set up materials and geometry to investigate\n", + "First we set up the same mock cryostat we created in the advanced geometry tutorial to have an interesting system to investigate using the loggers." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter\n", + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "Al_inc = instrument.add_component(\"Al_inc\", \"Incoherent_process\")\n", + "Al_inc.sigma = 0.0082\n", + "Al_inc.unit_cell_volume = 66.4\n", + "\n", + "Al_pow = instrument.add_component(\"Al_pow\", \"Powder_process\")\n", + "Al_pow.reflections = '\"Al.laz\"'\n", + "\n", + "Al = instrument.add_component(\"Al\", \"Union_make_material\")\n", + "Al.process_string = '\"Al_inc,Al_pow\"'\n", + "Al.my_absorption = 100*0.231/66.4 # barns [m^2 E-28] * Å^3 [m^3 E-30] = [m E-2], correct with factor 100.\n", + "\n", + "Sample_inc = instrument.add_component(\"Sample_inc\", \"Incoherent_process\")\n", + "Sample_inc.sigma = 3.4176\n", + "Sample_inc.unit_cell_volume = 1079.1\n", + "\n", + "Sample_pow = instrument.add_component(\"Sample_pow\", \"Powder_process\")\n", + "Sample_pow.reflections = '\"Na2Ca3Al2F14.laz\"'\n", + "\n", + "Sample = instrument.add_component(\"Sample\", \"Union_make_material\")\n", + "Sample.process_string = '\"Sample_inc,Sample_pow\"'\n", + "Sample.my_absorption = 100*2.9464/1079.1\n", + "\n", + "src = instrument.add_component(\"source\", \"Source_div\")\n", + "src.xwidth = 0.01\n", + "src.yheight = 0.035\n", + "src.focus_aw = 0.01\n", + "src.focus_ah = 0.01\n", + "\n", + "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0=\"wavelength\"\n", + "src.dlambda=\"0.01*wavelength\"\n", + "src.flux = 1E13\n", + "\n", + "sample_geometry = instrument.add_component(\"sample_geometry\", \"Union_cylinder\")\n", + "sample_geometry.yheight = 0.03\n", + "sample_geometry.radius = 0.0075\n", + "sample_geometry.material_string='\"Sample\"' \n", + "sample_geometry.priority = 100\n", + "sample_geometry.set_AT([0,0,1], RELATIVE=src)\n", + "\n", + "container = instrument.add_component(\"sample_container\", \"Union_cylinder\", RELATIVE=sample_geometry)\n", + "container.yheight = 0.03+0.003 # 1.5 mm top and button\n", + "container.radius = 0.0075 + 0.0015 # 1.5 mm sides of container\n", + "container.material_string='\"Al\"' \n", + "container.priority = 99\n", + "\n", + "container_lid = instrument.add_component(\"sample_container_lid\", \"Union_cylinder\")\n", + "container_lid.set_AT([0, 0.0155, 0], RELATIVE=container)\n", + "container_lid.yheight = 0.004\n", + "container_lid.radius = 0.013\n", + "container_lid.material_string='\"Al\"' \n", + "container_lid.priority = 98\n", + "\n", + "inner_wall = instrument.add_component(\"cryostat_wall\", \"Union_cylinder\")\n", + "inner_wall.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "inner_wall.yheight = 0.12\n", + "inner_wall.radius = 0.03\n", + "inner_wall.material_string='\"Al\"' \n", + "inner_wall.priority = 80\n", + "\n", + "inner_wall_vac = instrument.add_component(\"cryostat_wall_vacuum\", \"Union_cylinder\")\n", + "inner_wall_vac.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "inner_wall_vac.yheight = 0.12 - 0.008\n", + "inner_wall_vac.radius = 0.03 - 0.002\n", + "inner_wall_vac.material_string='\"Vacuum\"' \n", + "inner_wall_vac.priority = 81\n", + "\n", + "outer_wall = instrument.add_component(\"outer_cryostat_wall\", \"Union_cylinder\")\n", + "outer_wall.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "outer_wall.yheight = 0.15\n", + "outer_wall.radius = 0.1\n", + "outer_wall.material_string='\"Al\"' \n", + "outer_wall.priority = 60\n", + "\n", + "outer_wall_vac = instrument.add_component(\"outer_cryostat_wall_vacuum\", \"Union_cylinder\")\n", + "outer_wall_vac.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "outer_wall_vac.yheight = 0.15 - 0.01\n", + "outer_wall_vac.radius = 0.1 - 0.003\n", + "outer_wall_vac.material_string='\"Vacuum\"' \n", + "outer_wall_vac.priority = 61\n", + "\n", + "instrument.print_components()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument.show_components(\"Work directory\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Union logger components\n", + "Union logger components need to be added before the *Union_master* component, as the master need to record the necessary information when the simulation is being performed. There are two different kind of Union logger components, the *loggers* that record scattering and the *abs_loggers* that record absorption. They have similar parameters and user interface. Here is a list of the currently available loggers:\n", + "\n", + "- Union_logger_1D\n", + "- Union_logger_2D_space\n", + "- Union_logger_2D_space_time\n", + "- Union_logger_3D_space\n", + "- Union_logger_2D_kf\n", + "- Union_logger_2D_kf_time\n", + "- Union_logger_2DQ\n", + "\n", + "- Union_abs_logger_1D_space\n", + "- Union_abs_logger_1D_space_tof\n", + "- Union_abs_logger_2D_space\n", + "\n", + "The most commonly used logger is probably the *Union_logger_2D_space*, this component records spatial distribution of scattering, here are the available parameters." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument.component_help(\"Union_logger_2D_space\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setting up a 2D_space logger\n", + "One can select which two axis to record using *D_direction_1* and *D_direction_2*, and the range with for example *D1_min* and *D1_max*. When spatial information is recorded it is also important to place the logger at an appropriate position, here we center it on the sample position." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\", RELATIVE=sample_geometry)\n", + "logger_zx.D_direction_1 = '\"z\"'\n", + "logger_zx.D1_min = -0.12\n", + "logger_zx.D1_max = 0.12\n", + "logger_zx.n1 = 300\n", + "logger_zx.D_direction_2 = '\"x\"'\n", + "logger_zx.D2_min = -0.12\n", + "logger_zx.D2_max = 0.12\n", + "logger_zx.n2 = 300\n", + "logger_zx.filename = '\"logger_zx.dat\"'\n", + "\n", + "logger_zy = instrument.add_component(\"logger_space_zy\", \"Union_logger_2D_space\", RELATIVE=sample_geometry)\n", + "logger_zy.D_direction_1 = '\"z\"'\n", + "logger_zy.D1_min = -0.12\n", + "logger_zy.D1_max = 0.12\n", + "logger_zy.n1 = 300\n", + "logger_zy.D_direction_2 = '\"y\"'\n", + "logger_zy.D2_min = -0.12\n", + "logger_zy.D2_max = 0.12\n", + "logger_zy.n2 = 300\n", + "logger_zy.filename = '\"logger_zy.dat\"'\n", + "\n", + "master = instrument.add_component(\"master\", \"Union_master\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Running the simulation\n", + "If mpi is installed, one can add mpi=N where N is the number of cores available to speed up the simulation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_loggers\",\n", + " increment_folder_name=True,\n", + " parameters={\"wavelength\" : 3.0})" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "functions.name_plot_options(\"logger_space_zx\", data, log=True, orders_of_mag=4)\n", + "functions.name_plot_options(\"logger_space_zy\", data, log=True, orders_of_mag=4)\n", + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpreting the data\n", + "The zx logger views the cryostat from the top, while the zy loggers shows it from the side. These are histograms of scattered intensity, and it is clear the majority of the scattering happens in the direct beam. There are however scattering events in all parts of our mock cryostat, as neutrons that scattered in either the sample or cryostat walls could go in any direction due to the incoherent scattering. The aluminium and sample also have powder scattering, so some patterns can be seen from the debye scherrer cones." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Logger targets\n", + "It is possible to attach a logger to a certain geometry, or even a list of geometries using the *target_geometry* parameter. In that way one can for example view the scattering in the sample environment, while ignoring the sample. It is also possible to select a number of specific scattering processes to investigate with the *target_process* parameter. This is especially useful when working with a single crystal process, that only scatters when the Bragg condition is met.\n", + "\n", + "Let us modify our existing loggers to view certain parts of the simulated system, and then rerun the simulation. If mpi is installed, one can add mpi=N where N is the number of cores available to speed up the simulation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "logger_zx.target_geometry = '\"outer_cryostat_wall,cryostat_wall\"'\n", + "logger_zy.target_geometry = '\"sample_geometry\"'\n", + "\n", + "data = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_loggers\",\n", + " increment_folder_name=True,\n", + " parameters={\"wavelength\" : 3.0})\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "functions.name_plot_options(\"logger_space_zx\", data, log=True, orders_of_mag=4)\n", + "functions.name_plot_options(\"logger_space_zy\", data, log=False)\n", + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Scattering order\n", + "All loggers also have the option to only record given scattering orders. For example only record the second scattering.\n", + "- order_total : Match given number of scattering events, counting all scattering events in the system\n", + "- order_volume : Match given number of scattering events, only counting events in the current volume\n", + "- order_volume_process : Match given number of scattering events, only counting events in current volume with current process\n", + "\n", + "We can modify our previous loggers to test out these features. The zx logger viewing from above will keep the target, but we remove the sample target on the zy logger, which is done by setting the *taget_geometry* to NULL. We choose to look at the second scattering event." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "logger_zx.order_total = 2\n", + "\n", + "logger_zy.target_geometry = '\"NULL\"'\n", + "logger_zy.order_total = 2\n", + "\n", + "data = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_loggers\",\n", + " increment_folder_name=True,\n", + " parameters={\"wavelength\" : 3.0})" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "functions.name_plot_options(\"logger_space_zx\", data, log=True, orders_of_mag=3)\n", + "functions.name_plot_options(\"logger_space_zy\", data, log=True, orders_of_mag=3)\n", + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Demonstration of additional logger components\n", + "Here we add a few more loggers to showcase what kind of information that can be displayed.\n", + "- 1D logger that logs scattered intensity as function of time\n", + "- 2D abs_logger that logs absorption projected onto the scattering plane\n", + "- 2DQ logger that logs scattering vector projected onto the scattering plane\n", + "- 2D kf logger that logs final wavevector projected onto the scattering plane" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "logger_1D = instrument.add_component(\"logger_1D\", \"Union_logger_1D\", before=\"master\")\n", + "logger_1D.variable = '\"time\"'\n", + "logger_1D.min_value = 0.0006\n", + "logger_1D.max_value = 0.0012\n", + "logger_1D.n1 = 300\n", + "logger_1D.filename = '\"logger_1D_time.dat\"'\n", + "\n", + "abs_logger_zx = instrument.add_component(\"abs_logger_space_zx\", \"Union_abs_logger_2D_space\",before=\"master\")\n", + "abs_logger_zx.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "abs_logger_zx.D_direction_1 = '\"z\"'\n", + "abs_logger_zx.D1_min = -0.12\n", + "abs_logger_zx.D1_max = 0.12\n", + "abs_logger_zx.n1 = 300\n", + "abs_logger_zx.D_direction_2 = '\"x\"'\n", + "abs_logger_zx.D2_min = -0.12\n", + "abs_logger_zx.D2_max = 0.12\n", + "abs_logger_zx.n2 = 300\n", + "abs_logger_zx.filename = '\"abs_logger_zx.dat\"'\n", + "\n", + "logger_2DQ = instrument.add_component(\"logger_2DQ\", \"Union_logger_2DQ\", before=\"master\")\n", + "logger_2DQ.Q_direction_1 = '\"z\"'\n", + "logger_2DQ.Q1_min = -5.0\n", + "logger_2DQ.Q1_max = 5.0\n", + "logger_2DQ.n1 = 200\n", + "logger_2DQ.Q_direction_2 = '\"x\"'\n", + "logger_2DQ.Q2_min = -5.0\n", + "logger_2DQ.Q2_max = 5.0\n", + "logger_2DQ.n2 = 200\n", + "logger_2DQ.filename = '\"logger_2DQ.dat\"'\n", + "\n", + "logger_2D_kf = instrument.add_component(\"logger_2D_kf\", \"Union_logger_2D_kf\", before=\"master\")\n", + "logger_2D_kf.Q_direction_1 = '\"z\"'\n", + "logger_2D_kf.Q1_min = -2.5\n", + "logger_2D_kf.Q1_max = 2.5\n", + "logger_2D_kf.n1 = 200\n", + "logger_2D_kf.Q_direction_2 = '\"x\"'\n", + "logger_2D_kf.Q2_min = -2.5\n", + "logger_2D_kf.Q2_max = 2.5\n", + "logger_2D_kf.n2 = 200\n", + "logger_2D_kf.filename = '\"logger_2D_kf.dat\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Runnig the simulation\n", + "We now rerun the simulation with the new loggers. If mpi is installed, one can add mpi=N where N is the number of cores available to speed up the simulation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_loggers\",\n", + " increment_folder_name=True,\n", + " parameters={\"wavelength\" : 3.0})" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "functions.name_plot_options(\"logger_space_zx\", data, log=True, orders_of_mag=3)\n", + "functions.name_plot_options(\"logger_space_zy\", data, log=True, orders_of_mag=3)\n", + "functions.name_plot_options(\"abs_logger_space_zx\", data, log=True, orders_of_mag=3)\n", + "functions.name_plot_options(\"logger_1D\", data, log=True, orders_of_mag=3)\n", + "functions.name_plot_options(\"logger_2DQ\", data, log=True, orders_of_mag=3)\n", + "functions.name_plot_options(\"logger_2D_kf\", data, log=True, orders_of_mag=3)\n", + "\n", + "plotter.make_sub_plot(data[0:2])\n", + "plotter.make_sub_plot(data[2:4])\n", + "plotter.make_sub_plot(data[4:6])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Interpreting the data\n", + "We see the scattered intensity as a function of time, here the peaks correspond to the direct beam intersecting the sides of the cryostat and sample. The source used release all neutrons at time 0, so it is a perfect pulse.\n", + "\n", + "The absorption monitor shows an image very similar to the scattered intensity, but this could be very different, for example when using materials meant as shielding.\n", + "\n", + "The 2D scattering vector is interesting, it shows a small sphere made of vertical lines, these are powder Bragg peaks. Since the wavevector is almost identical for all incoming neutrons, the first scattering can only access this smaller region of the space. The larger circle is incoherent scattering from second and later scattering events, where the incoming wavevector could be any direction since a scattering already happened.\n", + "\n", + "The 2D final wavevector plot shows mainly the powder Bragg peaks." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Animations and time series\n", + "Several of the Union loggers sets up more than one McStas monitor, these include:\n", + "- Union_logger_3D_space\n", + "- Union_logger_2D_space_time\n", + "- Union_logger_2D_kf_time\n", + "\n", + "The Union_logger_2D_space_time for example sets up a number of Union_logger_2D_space monitors that are limited to specific time intervals. This can be used to make an animation of the monitor, which we will demonstrate here." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "log_2D_st = instrument.add_component(\"logger_2D_space_time\", \"Union_logger_2D_space_time\", before=\"master\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "log_2D_st.time_bins = 36\n", + "log_2D_st.time_min = 0.0007\n", + "log_2D_st.time_max = 0.0011\n", + "\n", + "log_2D_st.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "log_2D_st.D_direction_1 = '\"z\"'\n", + "log_2D_st.D1_min = -0.12\n", + "log_2D_st.D1_max = 0.12\n", + "log_2D_st.n1 = 300\n", + "log_2D_st.D_direction_2 = '\"x\"'\n", + "log_2D_st.D2_min = -0.12\n", + "log_2D_st.D2_max = 0.12\n", + "log_2D_st.n2 = 300\n", + "log_2D_st.filename = '\"logger_2D_space_time.dat\"'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_loggers\",\n", + " increment_folder_name=True,\n", + " parameters={\"wavelength\" : 3.0})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Creating an animation\n", + "The plotter in McStasScript can create animations when supplied with many McStasData objects. We use name_search to find all the data from the relevant logger, and then a for loop to set plot options for each of them. Then the plotter can make an animation, which is saved as a gif." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ani_data = functions.name_search(\"logger_2D_space_time\", data)\n", + "for frame in ani_data:\n", + " frame.set_plot_options(log=True, colormap=\"jet\")\n", + " \n", + "plotter.make_animation(ani_data, filename=\"animation_demo\", fps=2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Viewing the animation\n", + "Some problem in the jupyter notebook prevents playing the gif directly, but it can be played from markdown. One has to refresh this cell when a new animation is written. It should be visible that the beam enters the cryostat from the left, scatters of the sample and illuminates the entire cryostat. Running this simulation with a larger ncount and more time_bins in the monitor will reveal more details in what happens. This is available below, but commented out as the simulation can take some time.\n", + "\n", + "![SegmentLocal](animation_demo.gif \"Animation\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Optional: Increasing resolution\n", + "Running this simulation with a larger ncount and more time_bins in the monitor will reveal more details in what happens. This is available below, but commented out as the simulation can take some time." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "log_2D_st.time_bins = 128\n", + "#data = instrument.run_full_instrument(ncount=2E8, foldername=\"data_folder/union_loggers\",\n", + "# increment_folder_name=True, mpi=4,\n", + "# parameters={\"wavelength\" : 3.0})" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#ani_data = functions.name_search(\"logger_2D_space_time\", data)\n", + "#for frame in ani_data:\n", + "# frame.set_plot_options(log=True, colormap=\"jet\", orders_of_mag=6)\n", + "# \n", + "#plotter.make_animation(ani_data, filename=\"animation_demo_long\", fps=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Viewing the animation\n", + "In the longer animation it is more evident that scattering from the aluminium hits the top and bottom of the outer cylinder.\n", + "\n", + "![SegmentLocal](animation_demo_long.gif \"Animation\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorial/Union_tutorial_4_conditionals.ipynb b/tutorial/Union_tutorial_4_conditionals.ipynb new file mode 100644 index 00000000..66465ba5 --- /dev/null +++ b/tutorial/Union_tutorial_4_conditionals.ipynb @@ -0,0 +1,524 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Using conditional component to modify loggers\n", + "Even with the results from the loggers, it can still be difficult to explain all the features in the resulting scattering pattern. The conditional components can modify a logger so that it only records events when the final state of the neutron satisfy some condition. The condition could be leaving with a certain energy or in a specified direction. Before demonstrating these conditional components, we will set up an interesting sample and sample environment, including a few loggers and a time of flight 2theta detector. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Set up an example instrument\n", + "First an example instrument is made, again with a cryostat but this time with a box shaped single crystal of YBaCuO. Since the *single_crystal_process* have quite a few parameters, we use the *set_parameters* method that allows setting parameters using a dictionary." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter\n", + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Set up Al material with incoherent and powder\n", + "Al_incoherent = instrument.add_component(\"Al_incoherent\", \"Incoherent_process\")\n", + "Al_incoherent.sigma = \"4*0.0082\"\n", + "Al_incoherent.packing_factor = 1\n", + "Al_incoherent.unit_cell_volume = 66.4\n", + "\n", + "Al_powder = instrument.add_component(\"Al_powder\", \"Powder_process\")\n", + "Al_powder.reflections = \"\\\"Al.laz\\\"\"\n", + "\n", + "Al = instrument.add_component(\"Al\", \"Union_make_material\")\n", + "Al.process_string = '\"Al_incoherent,Al_powder\"'\n", + "Al.my_absorption = \"100*4*0.231/66.4\"\n", + "\n", + "# Set up YBaCuO with incoherent and single crystal\n", + "YBaCuO_incoherent = instrument.add_component(\"YBaCuO_incoherent\", \"Incoherent_process\")\n", + "YBaCuO_incoherent.sigma = 2.105\n", + "YBaCuO_incoherent.unit_cell_volume = 173.28\n", + "\n", + "YBaCuO_crystal = instrument.add_component(\"YBaCuO_crystal\", \"Single_crystal_process\")\n", + "YBaCuO_crystal.set_parameters(\n", + "{\"ax\" : 3.816, \"ay\" : 0, \"az\" : 0,\n", + " \"bx\" : 0, \"by\" : 3.886, \"bz\" : 0,\n", + " \"cx\" : 0, \"cy\" : 0, \"cz\" : 11.677,\n", + " \"delta_d_d\" : 5E-4, \"mosaic\" : 30, \"barns\" : 1,\n", + " \"reflections\" : '\"YBaCuO.lau\"'})\n", + "\n", + "YBaCuO = instrument.add_component(\"YBaCuO\", \"Union_make_material\")\n", + "YBaCuO.process_string = '\"YBaCuO_incoherent,YBaCuO_crystal\"'\n", + "YBaCuO.my_absorption = 100*14.82/173.28\n", + "\n", + "src = instrument.add_component(\"source\", \"Source_div\")\n", + "src.xwidth = 0.01\n", + "src.yheight = 0.035\n", + "src.focus_aw = 0.01\n", + "src.focus_ah = 0.01\n", + "\n", + "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0=\"wavelength\"\n", + "src.dlambda=\"0.01*wavelength\"\n", + "src.flux = 1E13\n", + "\n", + "# At a reference point to build the cryostat around\n", + "cryostat_center = instrument.add_component(\"cryostat_center\", \"Arm\")\n", + "cryostat_center.set_AT([0, 0, 1], RELATIVE=src)\n", + "\n", + "# Parameter for controlling sample rotation\n", + "instrument.add_parameter(\"A3_angle\", value=0)\n", + "\n", + "sample = instrument.add_component(\"sample\", \"Union_box\")\n", + "sample.set_AT([0, 0, 0], RELATIVE=cryostat_center)\n", + "sample.set_ROTATED([0, \"A3_angle\", 0], RELATIVE=cryostat_center)\n", + "sample.xwidth = 0.015\n", + "sample.yheight = 0.032\n", + "sample.zdepth = 0.012\n", + "sample.material_string = '\"YBaCuO\"'\n", + "sample.priority = 200\n", + "\n", + "# Setting up two layers of cryostat\n", + "inner_cryostat_wall = instrument.add_component(\"inner_cryostat_wall\", \"Union_cylinder\")\n", + "inner_cryostat_wall.material_string = \"\\\"Al\\\"\"\n", + "inner_cryostat_wall.priority = 12\n", + "inner_cryostat_wall.radius = 0.0621\n", + "inner_cryostat_wall.yheight = 0.16\n", + "inner_cryostat_wall.p_interact = 0.20\n", + "inner_cryostat_wall.set_AT([0, 0.01, 0], RELATIVE=cryostat_center)\n", + "\n", + "inner_cryostat_vacuum = instrument.add_component(\"inner_cryostat_vacuum\", \"Union_cylinder\")\n", + "inner_cryostat_vacuum.material_string = \"\\\"Vacuum\\\"\"\n", + "inner_cryostat_vacuum.priority = 13\n", + "inner_cryostat_vacuum.radius = 0.06\n", + "inner_cryostat_vacuum.yheight = 0.15\n", + "inner_cryostat_vacuum.set_AT([0, 0.01, 0], RELATIVE=cryostat_center)\n", + "\n", + "outer_cryostat_wall = instrument.add_component(\"outer_cryostat_wall\", \"Union_cylinder\")\n", + "outer_cryostat_wall.material_string = \"\\\"Al\\\"\"\n", + "outer_cryostat_wall.priority = 10\n", + "outer_cryostat_wall.radius = 0.180\n", + "outer_cryostat_wall.yheight = 0.355\n", + "outer_cryostat_wall.p_interact = 0.20\n", + "outer_cryostat_wall.set_AT([0, 0.032, 0], RELATIVE=cryostat_center)\n", + "\n", + "outer_cryostat_vacuum = instrument.add_component(\"outer_cryostat_vacuum\", \"Union_cylinder\")\n", + "outer_cryostat_vacuum.material_string = \"\\\"Vacuum\\\"\"\n", + "outer_cryostat_vacuum.priority = 11\n", + "outer_cryostat_vacuum.radius = 0.178\n", + "outer_cryostat_vacuum.yheight = 0.355\n", + "outer_cryostat_vacuum.set_AT([0, 0.037, 0], RELATIVE=cryostat_center)\n", + "\n", + "# Set up loggers\n", + "logger_space_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\")\n", + "logger_space_zx.n1 = 150\n", + "logger_space_zx.n2 = 150\n", + "logger_space_zx.D1_min = -0.2\n", + "logger_space_zx.D1_max = 0.2\n", + "logger_space_zx.D2_min = -0.2\n", + "logger_space_zx.D2_max = 0.2\n", + "logger_space_zx.D_direction_1 = '\"z\"'\n", + "logger_space_zx.D_direction_2 = '\"x\"'\n", + "logger_space_zx.filename = '\"logger_zx.dat\"'\n", + "logger_space_zx.logger_conditional_extend_index = 1\n", + "logger_space_zx.set_AT([0, 0, 0], RELATIVE=cryostat_center)\n", + "\n", + "logger_space_zy = instrument.add_component(\"logger_space_zy\", \"Union_logger_2D_space\")\n", + "logger_space_zy.n1 = 150\n", + "logger_space_zy.n2 = 150\n", + "logger_space_zy.D1_min = -0.2\n", + "logger_space_zy.D1_max = 0.2\n", + "logger_space_zy.D2_min = -0.15\n", + "logger_space_zy.D2_max = 0.2\n", + "logger_space_zy.D_direction_1 = '\"z\"'\n", + "logger_space_zy.D_direction_2 = '\"y\"'\n", + "logger_space_zy.filename = '\"logger_zy.dat\"'\n", + "logger_space_zy.logger_conditional_extend_index = 1\n", + "logger_space_zy.set_AT([0, 0, 0], RELATIVE=cryostat_center)\n", + "\n", + "logger_2DQ = instrument.add_component(\"logger_2DQ_sample\", \"Union_logger_2DQ\")\n", + "logger_2DQ.Q_direction_1 = '\"z\"'\n", + "logger_2DQ.Q1_min = -4.0\n", + "logger_2DQ.Q1_max = 4.0\n", + "logger_2DQ.n1 = 100\n", + "logger_2DQ.Q_direction_2 = '\"x\"'\n", + "logger_2DQ.Q2_min = -4.0\n", + "logger_2DQ.Q2_max = 4.0\n", + "logger_2DQ.n2 = 100\n", + "logger_2DQ.target_geometry = '\"sample\"'\n", + "logger_2DQ.filename = '\"logger_2DQ_sample.dat\"'\n", + "\n", + "logger_2DQ = instrument.add_component(\"logger_2DQ_environment\", \"Union_logger_2DQ\")\n", + "logger_2DQ.Q_direction_1 = '\"z\"'\n", + "logger_2DQ.Q1_min = -4.0\n", + "logger_2DQ.Q1_max = 4.0\n", + "logger_2DQ.n1 = 100\n", + "logger_2DQ.Q_direction_2 = '\"x\"'\n", + "logger_2DQ.Q2_min = -4.0\n", + "logger_2DQ.Q2_max = 4.0\n", + "logger_2DQ.n2 = 100\n", + "logger_2DQ.target_geometry = '\"inner_cryostat_wall,outer_cryostat_wall\"'\n", + "logger_2DQ.filename = '\"logger_2DQ_all.dat\"'\n", + "\n", + "logger_time_all = instrument.add_component(\"logger_time_all\", \"Union_logger_1D\")\n", + "logger_time_all.n1 = 600\n", + "logger_time_all.min_value = 0.0008\n", + "logger_time_all.max_value = 0.0015\n", + "logger_time_all.filename = '\"scattering_time.dat\"'\n", + "\n", + "master = instrument.add_component(\"master\", \"Union_master\")\n", + "\n", + "# Adding a banana - tof detector\n", + "banana_detector = instrument.add_component(\"banana_detector\", \"Monitor_nD\", RELATIVE=cryostat_center)\n", + "banana_detector.xwidth = 1\n", + "banana_detector.yheight = 0.2\n", + "banana_detector.restore_neutron = 1\n", + "banana_detector.options = '\"banana, theta limits=[-180,180] bins=361, t limits=[0.0011 0.0025] bins=500\"'\n", + "banana_detector.filename = '\"tof_b.dat\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Calculating theta\n", + "Our YBaCuO sample has the 010 axis along the z axis and have 010 allowed with d = 3.8843. Here we calculate the necessary rotation of the crystal for satisfying the Bragg condition. This could also be done within the initialize section of the McStas instrument, but here we wish to preserve control over the A3_angle." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import math\n", + "wavelength = 4\n", + "theta = 180/3.14159*math.asin(wavelength/2.0/3.8843)\n", + "print(theta)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_conditionals\",\n", + " increment_folder_name=True,\n", + " parameters={\"wavelength\" : wavelength, \"A3_angle\" : theta})" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "logger_zx = functions.name_search(\"logger_space_zx\", data)\n", + "logger_zx.set_plot_options(log=True, orders_of_mag=9, colormap=\"jet\")\n", + "\n", + "logger_zy = functions.name_search(\"logger_space_zy\", data)\n", + "logger_zy.set_plot_options(log=True, orders_of_mag=9, colormap=\"jet\")\n", + "\n", + "logger_2DQ_sample = functions.name_search(\"logger_2DQ_sample\", data)\n", + "logger_2DQ_sample.set_plot_options(log=True, orders_of_mag=9, colormap=\"YlOrRd\")\n", + "\n", + "logger_2DQ_env = functions.name_search(\"logger_2DQ_environment\", data)\n", + "logger_2DQ_env.set_plot_options(log=True, orders_of_mag=9, colormap=\"YlOrRd\")\n", + "\n", + "plotter.make_sub_plot([logger_zx, logger_zy, logger_2DQ_sample, logger_2DQ_env], fontsize=10)\n", + "\n", + "time = functions.name_search(\"logger_time_all\", data)\n", + "time.set_plot_options(log=True)\n", + "plotter.make_sub_plot([time], fontsize=18)\n", + "\n", + "banana = functions.name_search(\"banana_detector\", data)\n", + "banana.set_plot_options(log=True, orders_of_mag=7, cut_max=0.001)\n", + "plotter.make_sub_plot([banana], fontsize=18)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpretation of the data\n", + "The data from the two spatial loggers show scattering location within the cryostat, and we see one beam entering the cryostat, yet two beams leaving as we satisfy the Bragg condition for the sample. This also result in scattering from when the scattered beam intersect the sample environment.\n", + "\n", + "We have two 2DQ loggers recording the scattering vector, one just for the sample and one for the sample environment. On the sample monitor we see that many Bragg peaks scatter some intensity, but 010 and 0-10 have the most intensity, they are at [0.9, -1.5] and [1.5, -0.9]. The two circles are incoherent scattering from the two most common wavevectors, the initial beam and the beam scattered from 010. On the 2DQ logger for the sample environment, we mainly see the Debye-Scherrer cones as lines within the circles defined by the two predominant wavevectors. It seems the used wavelength allows two different Bragg conditions to be met in the aluminium.\n", + "\n", + "The time logger show a surprising amount of complexity. The 5 peaks from entering and exiting two layers and intersecting the sample are clear, but all structure after 0.0012 is a surprise. There is also an unexpected peak at 0.00115, this may be the scattered beam intersecting the outer layer of the cryostat, this happens a bit sooner than the direct beam because the path is shorter when scattered from the front of the sample.\n", + "\n", + "The time of flight vs 2theta monitor also has a large amount of complexity that is not simple to explain. The bright spot at [0, 0.00155] is the direct beam, while the spot at [60, 0.00155] is the scattered beam. The horizontal line at t=0.00155 must be incoherent scattering from the sample, as it must have had the same distance to all points on the detector. The curved lower branch could be incoherent scattering from where the beam enters the cryostat, as that is closest to the 180 deg point on the detector. The remaining hot spots are all some Debye Scherrer cones from a beam entering or exiting the sample environment, and the more blurry spots may be of even higher order." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conditional components\n", + "We can use conditional components to investigate peaks in the final scattering pattern, by limiting the loggers to only recording events that for example end in a certain spot. Currently there are two available\n", + "- Union_conditional_standard\n", + "- Union_conditional_PSD\n", + "\n", + "The standard version allows limits for energy, time and number of scattering events for the neutron when it exits the *Union_master* simulation, in this case when it leaves the sample environment.\n", + "\n", + "The PSD version propagates the final neutron states to a given rectangular surface and it is possible to filter the logger events on the neutron state when it reaches this surface, and ignores all events that misses. This is what we will use here to investigate a peak in the scattering pattern. We also set a time limit as our detector is time of flight sensitive.\n", + "\n", + "Here are the important parameters for the Union_conditional_PSD component\n", + "- target_loggers : comma separated string of logger names this conditional should affect\n", + "- xwidth : width of rectangle\n", + "- yheight : height of rectangle\n", + "- time_min : lower time limit for condition\n", + "- time_max : upper time limit for condition\n", + "- overwrite_logger_weight : If set to 1, will weight logger results with the final ray weight" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Set up instrument parameters describing what spot to investigate\n", + "instrument.add_parameter(\"tag_angle\", value=-95)\n", + "instrument.add_parameter(\"tag_time\", value=0.00188)\n", + "instrument.add_parameter(\"tag_interval\", value=9E-5)\n", + "\n", + "# Set up an arm pointing to the relevant spot\n", + "spot_dir = instrument.add_component(\"spot_dir\", \"Arm\", RELATIVE=cryostat_center, before=\"master\")\n", + "spot_dir.set_ROTATED([0, \"tag_angle\", 0], RELATIVE=cryostat_center)\n", + "\n", + "# Set up a conditional component targeting all our loggers\n", + "PSD_conditional = instrument.add_component(\"space_all_PSD_conditional\", \"Union_conditional_PSD\", before=\"master\")\n", + "PSD_conditional.target_loggers = '\"logger_space_zx,logger_space_zy,logger_time_all,logger_2DQ_sample,logger_2DQ_environment\"'\n", + "PSD_conditional.xwidth = 0.2\n", + "PSD_conditional.yheight = 0.2\n", + "PSD_conditional.time_min = \"tag_time-0.5*tag_interval\"\n", + "PSD_conditional.time_max = \"tag_time+0.5*tag_interval\"\n", + "# Ensure the position of the conditional rectangle is on the detector surface\n", + "PSD_conditional.set_AT([0, 0, 0.5], RELATIVE=spot_dir) \n", + "\n", + "# Add a monitor with flag that is only active when the condition in the conditional is true\n", + "instrument.add_declare_var(\"int\", \"flag1\")\n", + "logger_space_zx.logger_conditional_extend_index = 1\n", + "master.append_EXTEND(\"flag1 = logger_conditional_extend_array[1];\")\n", + "\n", + "# Copy of our banana detector, but with WHEN condition to verify we are investigating the right peak\n", + "banana_detector = instrument.add_component(\"banana_detector_limited\", \"Monitor_nD\", RELATIVE=cryostat_center)\n", + "banana_detector.xwidth = 1\n", + "banana_detector.yheight = 0.2\n", + "banana_detector.restore_neutron = 1\n", + "banana_detector.options = '\"banana, theta limits=[-180,180] bins=361, t limits=[0.0011 0.0025] bins=500\"'\n", + "banana_detector.filename = '\"tof_b_limited.dat\"'\n", + "banana_detector.set_WHEN(\"flag1 > 0\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Run the simulation\n", + "We run the simulation again with a larger ncount, as the loggers now only record a small fraction of the scattered neutrons. You can investigate other areas of interest by changing *tag_angle*, *tag_time* and *tag_interval* to another interesting location on the time of flight detector.\n", + "\n", + "If MPI is installed add mpi=N where N is the number of CPU cores available in your computer to speed up the simulation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data_con = instrument.run_full_instrument(ncount=3E7, foldername=\"data_folder/union_conditionals\",\n", + " increment_folder_name=True, #mpi=2,\n", + " parameters={\"wavelength\" : wavelength, \"A3_angle\" : theta,\n", + " \"tag_angle\" : -95, \"tag_time\" : 0.00188, \"tag_interval\" : 9E-5})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Confirm our conditional is on the desired peak\n", + "First we plot our 2theta / time of flight detector and the version limited to what the conditional records to confirm that we selected an appropriate region to investigate." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "banana = functions.name_search(\"banana_detector\", data_con)\n", + "banana.set_plot_options(log=True, orders_of_mag=7, cut_max=0.001)\n", + "\n", + "banana_limited = functions.name_search(\"banana_detector_limited\", data_con)\n", + "banana_limited.set_plot_options(log=False)\n", + "\n", + "plotter.make_sub_plot([banana, banana_limited], fontsize=10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plotting the loggers, now limited by the conditional\n", + "We use a different colormap here instead of the standard jet, because in jet the lowest and highest intensity are both dark colors. By choosing a colormap where zero intensity is white, it blends in with white from lack of data which is beneficial in this situation for clearly seeing the hotspots." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "logger_zx = functions.name_search(\"logger_space_zx\", data_con)\n", + "logger_zx.set_plot_options(log=True, orders_of_mag=9, colormap=\"YlOrRd\")\n", + "\n", + "logger_zy = functions.name_search(\"logger_space_zy\", data_con)\n", + "logger_zy.set_plot_options(log=True, orders_of_mag=9, colormap=\"YlOrRd\")\n", + "\n", + "logger_2DQ_sample = functions.name_search(\"logger_2DQ_sample\", data_con)\n", + "logger_2DQ_sample.set_plot_options(log=True, orders_of_mag=7, colormap=\"YlOrRd\")\n", + "\n", + "logger_2DQ_env = functions.name_search(\"logger_2DQ_environment\", data_con)\n", + "logger_2DQ_env.set_plot_options(log=True, orders_of_mag=7, colormap=\"YlOrRd\")\n", + "\n", + "plotter.make_sub_plot([logger_zx, logger_zy, logger_2DQ_sample, logger_2DQ_env], fontsize=10)\n", + "\n", + "time = functions.name_search(\"logger_time_all\", data_con)\n", + "time.set_plot_options(log=True)\n", + "\n", + "plotter.make_sub_plot([time], fontsize=18)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Interpreting the data from loggers with conditional\n", + "Now that the loggers only show scattering from neutrons that end in our specific peak of interest, we can explain the origin of this peak. The spatial loggers show that scattering primarily happens in the sample, and in the outer part of the cryostat where the scattered beam leaves the sample environment. It is in this case obvious the first scattering is in the sample, as the exit area is not within the direct beam, but one can create individual loggers for each scattering order in order to confirm this.\n", + "\n", + "On the 2DQ logger for the sample it is clear the scattering is from the main Bragg peak (010 and 0-10). We see two peaks as a ray scattered from a Bragg peak will fulfil the Bragg condition of the opposite reciprocal indices. On the 2DQ logger for the sample environment, we see the brightest spot is a small part of a Debye-Scherrer cone. Scattered neutrons from other parts of this cone will not hit our conditional PSD, some may not even hit the detector at all.\n", + "\n", + "That means this specific peak was an uneven number of single crystal scattering events in 010/0-10 in the sample followed by a powder scattering in the outer wall of the sample environment. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Using the final weight option\n", + "Here we rerun the simulation with the overwrite_logger_weight option in the conditional turned on to see the effect. Without it a ray is recorded in the loggers if it satisfy the conditional, but it does not matter how large the final weight is. For this reason, some rays with high sampling probability to reach the condition but low weight are represented more than is appropriate. This is mainly important when shielding is simulated, as ray that pass through the shielding needs can be heavily overrepresented." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "PSD_conditional.overwrite_logger_weight = 1\n", + "\n", + "data_con_f = instrument.run_full_instrument(ncount=3E7, foldername=\"data_folder/union_conditionals\",\n", + " increment_folder_name=True, #mpi=2,\n", + " parameters={\"wavelength\" : wavelength, \"A3_angle\" : theta,\n", + " \"tag_angle\" : -95, \"tag_time\" : 0.00188, \"tag_interval\" : 9E-5})" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "logger_zx = functions.name_search(\"logger_space_zx\", data_con_f)\n", + "logger_zx.set_plot_options(log=True, orders_of_mag=9, colormap=\"YlOrRd\")\n", + "\n", + "logger_zy = functions.name_search(\"logger_space_zy\", data_con_f)\n", + "logger_zy.set_plot_options(log=True, orders_of_mag=9, colormap=\"YlOrRd\")\n", + "\n", + "logger_2DQ_sample = functions.name_search(\"logger_2DQ_sample\", data_con_f)\n", + "logger_2DQ_sample.set_plot_options(log=True, orders_of_mag=7, colormap=\"YlOrRd\")\n", + "\n", + "logger_2DQ_env = functions.name_search(\"logger_2DQ_environment\", data_con_f)\n", + "logger_2DQ_env.set_plot_options(log=True, orders_of_mag=7, colormap=\"YlOrRd\")\n", + "\n", + "plotter.make_sub_plot([logger_zx, logger_zy, logger_2DQ_sample, logger_2DQ_env], fontsize=10)\n", + "\n", + "time = functions.name_search(\"logger_time_all\", data_con_f)\n", + "time.set_plot_options(log=True)\n", + "\n", + "plotter.make_sub_plot([time], fontsize=18)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Comparison between normal and overwrite_logger_weight\n", + "Here we make a direct comparison, and see only a slight difference in this case. No shielding is simulated here which would cause a much more clear difference." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "logger_zx = functions.name_search(\"logger_space_zx\", data_con)\n", + "logger_zx.set_plot_options(log=True, orders_of_mag=9, colormap=\"YlOrRd\")\n", + "\n", + "logger_zy = functions.name_search(\"logger_space_zy\", data_con)\n", + "logger_zy.set_plot_options(log=True, orders_of_mag=9, colormap=\"YlOrRd\")\n", + "\n", + "logger_zx_f = functions.name_search(\"logger_space_zx\", data_con_f)\n", + "logger_zx_f.set_plot_options(log=True, orders_of_mag=9, colormap=\"YlOrRd\")\n", + "\n", + "logger_zy_f = functions.name_search(\"logger_space_zy\", data_con_f)\n", + "logger_zy_f.set_plot_options(log=True, orders_of_mag=9, colormap=\"YlOrRd\")\n", + "\n", + "plotter.make_sub_plot([logger_zx, logger_zy, logger_zx_f, logger_zy_f], fontsize=10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorial/Union_tutorial_5_masks.ipynb b/tutorial/Union_tutorial_5_masks.ipynb new file mode 100644 index 00000000..56e95d4c --- /dev/null +++ b/tutorial/Union_tutorial_5_masks.ipynb @@ -0,0 +1,358 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Union tutorial on masks\n", + "There are some geometries that are impossible to build using only the priority based system geometry system, for example making part of a cylinder thinner, which is needed for a cryostat window. In many such cases, masks can be used to solve the problem." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setting up an example without masks\n", + "First we set up an example with a thick and hollow Al cylinder and a logger to view the spatial distribution of scattering." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "Al_inc = instrument.add_component(\"Al_inc\", \"Incoherent_process\")\n", + "Al_inc.sigma = 0.0082\n", + "Al_inc.unit_cell_volume = 66.4\n", + "\n", + "Al_pow = instrument.add_component(\"Al_pow\", \"Powder_process\")\n", + "Al_pow.reflections = '\"Al.laz\"'\n", + "\n", + "Al = instrument.add_component(\"Al\", \"Union_make_material\")\n", + "Al.process_string = '\"Al_inc,Al_pow\"'\n", + "Al.my_absorption = 100*0.231/66.4 # barns [m^2 E-28] * Å^3 [m^3 E-30] = [m E-2], correct with factor 100.\n", + "\n", + "src = instrument.add_component(\"source\", \"Source_div\")\n", + "\n", + "src.xwidth = 0.2\n", + "src.yheight = 0.035\n", + "src.focus_aw = 0.01\n", + "src.focus_ah = 0.01\n", + "\n", + "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0=\"wavelength\"\n", + "src.dlambda=\"0.01*wavelength\"\n", + "src.flux = 1E13\n", + "\n", + "wall = instrument.add_component(\"wall\", \"Union_cylinder\")\n", + "wall.set_AT([0,0,1], RELATIVE=src)\n", + "wall.yheight = 0.15\n", + "wall.radius = 0.1\n", + "wall.material_string='\"Al\"' \n", + "wall.priority = 10\n", + "\n", + "wall_vac = instrument.add_component(\"wall_vacuum\", \"Union_cylinder\")\n", + "wall_vac.set_AT([0,0,0], RELATIVE=wall)\n", + "wall_vac.yheight = 0.15 + 0.01\n", + "wall_vac.radius = 0.1 - 0.02\n", + "wall_vac.material_string='\"Vacuum\"' \n", + "wall_vac.priority = 50\n", + "\n", + "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\", RELATIVE=wall)\n", + "logger_zx.D_direction_1 = '\"z\"'\n", + "logger_zx.D1_min = -0.12\n", + "logger_zx.D1_max = 0.12\n", + "logger_zx.n1 = 300\n", + "logger_zx.D_direction_2 = '\"x\"'\n", + "logger_zx.D2_min = -0.12\n", + "logger_zx.D2_max = 0.12\n", + "logger_zx.n2 = 300\n", + "logger_zx.filename = '\"logger_zx.dat\"'\n", + "\n", + "master = instrument.add_component(\"master\", \"Union_master\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = instrument.run_full_instrument(ncount=2E6, foldername=\"data_folder/union_masks\",\n", + " increment_folder_name=True, #mpi=2,\n", + " parameters={\"wavelength\" : 3.0})" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Masks\n", + "All Union geometries can act as a mask for a list of other already defined geometries. The geometries affected by a mask will only exist inside the mask, while the parts outside will not have any effect on this simulation. This provides some interesting geometrical capabilities, for example by defining two spheres with some overlap and making one a mask of the other, a classical lens shape can be created.\n", + "\n", + "The relevant parameters of all geometry components are:\n", + "- mask_string : comma separated list of geometry names the mask should be applied to\n", + "- mask_setting : selects between \"ANY\" or \"ALL\" mode. Default mode is \"ALL\".\n", + "\n", + "The mask mode is only important if several masks affect the same geometry, per default just having any of the masks overlap the target geometry allow it to exists, which correspond to the \"ANY\" mode. If the \"ALL\" mode is selected, the target geometry will only exists in regions where all the masks and itself overlap.\n", + "\n", + "Note that a unique priority is still necessary, but it is not used." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding a window using masks\n", + "Here we add a window to one side of the cylinder by inserting a larger vacuum cylinder, but mask it so that it is only active in the area around the window. In this way we get a nice curved window. We chose a box shape for the mask, but we could also have chosen a cylinder to get a round window." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "window = instrument.add_component(\"window\", \"Union_cylinder\", before=\"master\")\n", + "window.set_AT([0,0,0], RELATIVE=wall)\n", + "window.yheight = 0.15 + 0.02\n", + "window.radius = 0.1 - 0.01\n", + "window.material_string='\"Vacuum\"' \n", + "window.priority = 25\n", + "\n", + "mask = instrument.add_component(\"mask\", \"Union_box\", before=\"master\")\n", + "mask.xwidth = 0.1\n", + "mask.yheight = 0.2\n", + "mask.zdepth = 0.09\n", + "mask.priority = 1\n", + "mask.mask_string='\"window\"'\n", + "mask.set_AT([0,0,-0.1], RELATIVE=wall)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = instrument.run_full_instrument(ncount=2E6, foldername=\"data_folder/union_masks\",\n", + " increment_folder_name=True, #mpi=2,\n", + " parameters={\"wavelength\" : 3.0})" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding an external window using a mask\n", + "It is also possible to create a thinner section where the material is reduced from the outside. Here we need to add both a vacuum and an aluminium geometry, both of which need to have a priority lower than the original inner vacuum. One mask can handle several geometries, just include both names in the *mask_string* parameter." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "o_window = instrument.add_component(\"outer_window\", \"Union_cylinder\", before=\"master\")\n", + "o_window.set_AT([0,0,0], RELATIVE=wall)\n", + "o_window.yheight = 0.15 + 0.03\n", + "o_window.radius = 0.1 + 0.01\n", + "o_window.material_string='\"Vacuum\"' \n", + "o_window.priority = 30\n", + "\n", + "o_window_al = instrument.add_component(\"outer_window_Al\", \"Union_cylinder\", before=\"master\")\n", + "o_window_al.set_AT([0,0,0], RELATIVE=wall)\n", + "o_window_al.yheight = 0.15 + 0.04\n", + "o_window_al.radius = 0.1 - 0.01\n", + "o_window_al.material_string='\"Al\"' \n", + "o_window_al.priority = 31\n", + "\n", + "mask = instrument.add_component(\"mask_outer\", \"Union_box\", before=\"master\")\n", + "mask.xwidth = 0.12\n", + "mask.yheight = 0.2\n", + "mask.zdepth = 0.09\n", + "mask.priority = 2\n", + "mask.mask_string='\"outer_window,outer_window_Al\"'\n", + "mask.set_AT([0,0,0.1], RELATIVE=wall)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = instrument.run_full_instrument(ncount=2E6, foldername=\"data_folder/union_masks\",\n", + " increment_folder_name=True, #mpi=2,\n", + " parameters={\"wavelength\" : 3.0})" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Masks are flexible\n", + "Masks can be used to create many interesting shapes with few geometries. Below we create a octagon with rounded corners using just three geometries, two of these being masks. Using masks expands the space of possible geometries greatly, and in many cases can also be a performance advantage when they reduce the number of geometries needed to describe the desired geometry." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")\n", + "\n", + "Al_inc = instrument.add_component(\"Al_inc\", \"Incoherent_process\")\n", + "Al_inc.sigma = 0.0082\n", + "Al_inc.unit_cell_volume = 66.4\n", + "\n", + "Al_pow = instrument.add_component(\"Al_pow\", \"Powder_process\")\n", + "Al_pow.reflections = '\"Al.laz\"'\n", + "\n", + "Al = instrument.add_component(\"Al\", \"Union_make_material\")\n", + "Al.process_string = '\"Al_inc,Al_pow\"'\n", + "Al.my_absorption = 100*0.231/66.4 # barns [m^2 E-28] * Å^3 [m^3 E-30] = [m E-2], correct with factor 100.\n", + "\n", + "src = instrument.add_component(\"source\", \"Source_div\")\n", + "\n", + "src.xwidth = 0.2\n", + "src.yheight = 0.035\n", + "src.focus_aw = 0.01\n", + "src.focus_ah = 0.01\n", + "\n", + "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0=\"wavelength\"\n", + "src.dlambda=\"0.01*wavelength\"\n", + "src.flux = 1E13\n", + "\n", + "box = instrument.add_component(\"box\", \"Union_box\")\n", + "box.set_AT([0,0,1], RELATIVE=src)\n", + "box.xwidth = 0.2\n", + "box.yheight = 0.1\n", + "box.zdepth = 0.2\n", + "box.material_string='\"Al\"' \n", + "box.priority = 10\n", + "\n", + "# Cut the corners by using an identical box rotated 45 deg around y\n", + "box_mask = instrument.add_component(\"box_mask\", \"Union_box\")\n", + "box_mask.set_AT([0,0,0], RELATIVE=box)\n", + "box_mask.set_ROTATED([0,45,0], RELATIVE=box)\n", + "box_mask.xwidth = 0.2\n", + "box_mask.yheight = 0.11 # Have to increase yheight to avoid perfect overlap\n", + "box_mask.zdepth = 0.2\n", + "box_mask.mask_string='\"box\"' \n", + "box_mask.priority = 50\n", + "\n", + "# Round the corners with a cylinder mask\n", + "cyl_mask = instrument.add_component(\"cylinder_mask\", \"Union_cylinder\")\n", + "cyl_mask.set_AT([0,0,0], RELATIVE=box)\n", + "cyl_mask.radius = 0.105\n", + "cyl_mask.yheight = 0.12\n", + "cyl_mask.mask_string='\"box\"' \n", + "cyl_mask.priority = 51\n", + "\n", + "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\", RELATIVE=box)\n", + "logger_zx.D_direction_1 = '\"z\"'\n", + "logger_zx.D1_min = -0.12\n", + "logger_zx.D1_max = 0.12\n", + "logger_zx.n1 = 300\n", + "logger_zx.D_direction_2 = '\"x\"'\n", + "logger_zx.D2_min = -0.12\n", + "logger_zx.D2_max = 0.12\n", + "logger_zx.n2 = 300\n", + "logger_zx.filename = '\"logger_zx.dat\"'\n", + "\n", + "master = instrument.add_component(\"master\", \"Union_master\")\n", + "\n", + "data = instrument.run_full_instrument(ncount=2E6, foldername=\"data_folder/union_masks\",\n", + " increment_folder_name=True, #mpi=2,\n", + " parameters={\"wavelength\" : 3.0})" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorial/Union_tutorial_6_Exit_and_number_of_activations.ipynb b/tutorial/Union_tutorial_6_Exit_and_number_of_activations.ipynb new file mode 100644 index 00000000..9e1b32f5 --- /dev/null +++ b/tutorial/Union_tutorial_6_Exit_and_number_of_activations.ipynb @@ -0,0 +1,385 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Advanced geometry component concepts: Exit geometry and number of activations\n", + "This notebook explains the concept of exit geometry and the activation counter both of which are tied to the geometry components and how they are treated by the *Union_master*.\n", + "\n", + "An exit geometry is created by setting the *material_string* of a geometry to \"Exit\", and if a ray enters such a geometry, it is immediately released from the master component. Normally this only happens when the ray does not intersect any geometries. There are several uses for this, for example inserting a monitor within a Union geometry ensemble." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Set up an example with empty sample container\n", + "First we set up an example with an empty sample container." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "Al_inc = instrument.add_component(\"Al_inc\", \"Incoherent_process\")\n", + "Al_inc.sigma = 0.0082\n", + "Al_inc.unit_cell_volume = 66.4\n", + "\n", + "Al_pow = instrument.add_component(\"Al_pow\", \"Powder_process\")\n", + "Al_pow.reflections = '\"Al.laz\"'\n", + "\n", + "Al = instrument.add_component(\"Al\", \"Union_make_material\")\n", + "Al.process_string = '\"Al_inc,Al_pow\"'\n", + "Al.my_absorption = 100*0.231/66.4 # barns [m^2 E-28] * Å^3 [m^3 E-30] = [m E-2], correct with factor 100.\n", + "\n", + "src = instrument.add_component(\"source\", \"Source_div\")\n", + "src.xwidth = 0.01\n", + "src.yheight = 0.035\n", + "src.focus_aw = 0.01\n", + "src.focus_ah = 0.01\n", + "\n", + "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0=\"wavelength\"\n", + "src.dlambda=\"0.01*wavelength\"\n", + "src.flux = 1E13\n", + "\n", + "sample_volume = instrument.add_component(\"sample_volume\", \"Union_cylinder\")\n", + "sample_volume.yheight = 0.03\n", + "sample_volume.radius = 0.0075\n", + "sample_volume.material_string='\"Vacuum\"' \n", + "sample_volume.priority = 100\n", + "sample_volume.set_AT([0,0,1], RELATIVE=src)\n", + "\n", + "container = instrument.add_component(\"sample_container\", \"Union_cylinder\", RELATIVE=sample_volume)\n", + "container.yheight = 0.03+0.003 # 1.5 mm top and button\n", + "container.radius = 0.0075 + 0.0015 # 1.5 mm sides of container\n", + "container.material_string='\"Al\"' \n", + "container.priority = 99\n", + "\n", + "container_lid = instrument.add_component(\"sample_container_lid\", \"Union_cylinder\")\n", + "container_lid.set_AT([0, 0.0155, 0], RELATIVE=container)\n", + "container_lid.yheight = 0.004\n", + "container_lid.radius = 0.013\n", + "container_lid.material_string='\"Al\"' \n", + "container_lid.priority = 98\n", + "\n", + "inner_wall = instrument.add_component(\"cryostat_wall\", \"Union_cylinder\")\n", + "inner_wall.set_AT([0,0,0], RELATIVE=sample_volume)\n", + "inner_wall.yheight = 0.12\n", + "inner_wall.radius = 0.03\n", + "inner_wall.material_string='\"Al\"' \n", + "inner_wall.priority = 80\n", + "\n", + "inner_wall_vac = instrument.add_component(\"cryostat_wall_vacuum\", \"Union_cylinder\")\n", + "inner_wall_vac.set_AT([0,0,0], RELATIVE=sample_volume)\n", + "inner_wall_vac.yheight = 0.12 - 0.008\n", + "inner_wall_vac.radius = 0.03 - 0.002\n", + "inner_wall_vac.material_string='\"Vacuum\"' \n", + "inner_wall_vac.priority = 81\n", + "\n", + "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\", RELATIVE=sample_volume)\n", + "logger_zx.D_direction_1 = '\"z\"'\n", + "logger_zx.D1_min = -0.04\n", + "logger_zx.D1_max = 0.04\n", + "logger_zx.n1 = 300\n", + "logger_zx.D_direction_2 = '\"x\"'\n", + "logger_zx.D2_min = -0.04\n", + "logger_zx.D2_max = 0.04\n", + "logger_zx.n2 = 300\n", + "logger_zx.filename = '\"logger_zx.dat\"'\n", + "\n", + "logger_zy = instrument.add_component(\"logger_space_zy\", \"Union_logger_2D_space\", RELATIVE=sample_volume)\n", + "logger_zy.D_direction_1 = '\"z\"'\n", + "logger_zy.D1_min = -0.04\n", + "logger_zy.D1_max = 0.04\n", + "logger_zy.n1 = 300\n", + "logger_zy.D_direction_2 = '\"y\"'\n", + "logger_zy.D2_min = -0.06\n", + "logger_zy.D2_max = 0.06\n", + "logger_zy.n2 = 300\n", + "logger_zy.filename = '\"logger_zy.dat\"'\n", + "\n", + "master = instrument.add_component(\"master\", \"Union_master\")\n", + "\n", + "banana = instrument.add_component(\"banana\", \"Monitor_nD\", RELATIVE=sample_volume)\n", + "banana.xwidth = 1.5\n", + "banana.yheight = 0.4\n", + "banana.restore_neutron = 1\n", + "banana.options = '\"theta limits=[5 175] bins=250, banana\"'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data_empty = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_external\",\n", + " increment_folder_name=True, #mpi=2,\n", + " parameters={\"wavelength\" : 3.0})" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "functions.name_plot_options(\"logger_space_zx\", data_empty, log=True, orders_of_mag=4)\n", + "functions.name_plot_options(\"logger_space_zy\", data_empty, log=True, orders_of_mag=4)\n", + "plotter.make_sub_plot(data_empty[0:2])\n", + "plotter.make_sub_plot(data_empty[2])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding an exit volume\n", + "Now we switch the sample_volume material from Vacuum to exit, ejecting rays from the simulation when they encounter it." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sample_volume.material_string='\"Exit\"' " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_external\",\n", + " increment_folder_name=True, #mpi=2,\n", + " parameters={\"wavelength\" : 3.0})" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "functions.name_plot_options(\"logger_space_zx\", data, log=True, orders_of_mag=4)\n", + "functions.name_plot_options(\"logger_space_zy\", data, log=True, orders_of_mag=4)\n", + "plotter.make_sub_plot(data[0:2])\n", + "plotter.make_sub_plot(data[2])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding an external component in the gap\n", + "We can now see any part of the beam that intersected the exit volume is basically removed from the simulation. It is now however possible to insert another component within that exit volume, for example a sample not available as a Union process. Here we just use a PowderN sample in order to demonstrate. We select the same dimensions as the exit volume, but subtract 10 micrometer to avoid a perfect overlap." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sample = instrument.add_component(\"sample\", \"PowderN\", after=\"master\")\n", + "sample.set_AT([0,0,0], RELATIVE=sample_volume)\n", + "sample.radius = sample_volume.radius - 1E-5\n", + "sample.yheight = sample_volume.yheight - 2E-5\n", + "sample.reflections = '\"Na2Ca3Al2F14.laz\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Running the simulation again\n", + "We run the simulation again, but know that the scattering within the sample wont be directly visible in the loggers." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data_wrong = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_external\",\n", + " increment_folder_name=True,\n", + " parameters={\"wavelength\" : 3.0})" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "functions.name_plot_options(\"logger_space_zx\", data_wrong, log=True, orders_of_mag=4)\n", + "functions.name_plot_options(\"logger_space_zy\", data_wrong, log=True, orders_of_mag=4)\n", + "plotter.make_sub_plot(data_wrong[0:2])\n", + "plotter.make_sub_plot(data_wrong[2])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpretation of the data\n", + "Now we have added a sample inside the Union geometry, but when the neutron reaches that sample, it is ignored by the sample environment leading to unphysical behavior. Here the beam does not illuminate the sample environment on the way out, and all rays scattered by the PowderN sample are not attenuated by the " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Allowing the rays to return to the Union_master\n", + "Now we could recreate the entire sample environment with new geometries and insert an additional unit master to grab the neutrons after the external sample, yet this would be error prone as all geometries would need to be exactly the same. Instead it is possible to tell Union geometries that they should be simulated in several of the next *Union_master* components using the *number_of_activation* parameter on each Union geometry, which is 1 per default.\n", + "\n", + "Setting it to 2, we tell the geometries that they should be simulated in the two next *Union_master* components. We do not update the sample_volume which is an exit volume, as this would allow the ray to escape once more. Instead we will replace it with Vacuum, but one could also have placed something closer to the actual sample.\n", + "\n", + "One last necessary detail is to set the *allow_inside_start* parameter on the second *Union_master* component. This disables an error message that would occur if a neutron starts inside a Union geometry, as this is most likely an error. Here we want to do this on purpose, and we need to let the *Union_master* component know this is allowed." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "container.number_of_activations = 2\n", + "container_lid.number_of_activations = 2\n", + "inner_wall.number_of_activations = 2\n", + "inner_wall_vac.number_of_activations = 2\n", + "\n", + "sample_replacement = instrument.add_component(\"sample_volume_replace\", \"Union_cylinder\")\n", + "sample_replacement.yheight = sample_volume.yheight\n", + "sample_replacement.radius = sample_volume.radius\n", + "sample_replacement.material_string='\"Vacuum\"' \n", + "sample_replacement.priority = 101\n", + "sample_replacement.set_AT([0,0,0], RELATIVE=sample_volume)\n", + "\n", + "master_2 = instrument.add_component(\"master_after_sample\", \"Union_master\", after=\"sample\")\n", + "master_2.allow_inside_start=1" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_external\",\n", + " increment_folder_name=True,\n", + " parameters={\"wavelength\" : 3.0})" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "functions.name_plot_options(\"logger_space_zx\", data, log=True, orders_of_mag=4)\n", + "functions.name_plot_options(\"logger_space_zy\", data, log=True, orders_of_mag=4)\n", + "plotter.make_sub_plot(data[0:2])\n", + "plotter.make_sub_plot(data[2])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpretation of the data\n", + "Now we see evidence of the beam leaving the sample environment after interacting with the sample, and also elevated scattering in comparison to the empty can. This is now a reasonable simulation containing an external component inside a Union geometry ensemble, but there is still one problem, if the ray leaves the external component and reenters later, it will find a Vacuum instead of that sample. This can be fixed to some extend by adding a second copy of the external component and a third *Union_master* component, while incrementing the *number_of_activations* on all geometries, then the ray would be able to leave and enter the external component once before the external component effectively disappears. Even with this assumption, it is still a reasonable approximation and a flexible approach to add for example a mirror inside a sample environment." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Comparison of the three datasets\n", + "Here we compare the three datasets, the empty sample environment, the wrong simulation where rays scattered in the sample could not interact with the sample environment, and the full simulation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "banana_empty = functions.name_search(\"banana\", data_empty)\n", + "banana_wrong = functions.name_search(\"banana\", data_wrong)\n", + "banana_sample = functions.name_search(\"banana\", data)\n", + "\n", + "import matplotlib.pyplot as plt\n", + "plt.figure(figsize=(14,6))\n", + "plt.plot(banana_empty.xaxis, banana_empty.Intensity, \"r\",\n", + " banana_wrong.xaxis, banana_wrong.Intensity, \"b\",\n", + " banana_sample.xaxis, banana_sample.Intensity, \"k\")\n", + "plt.xlabel(\"2Theta [deg]\")\n", + "plt.ylabel(\"Intensity [n/s]\")\n", + "plt.legend([\"No sample\", \"Wrong simulation, no exit\", \"Full simulation\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpretation of the data\n", + "We see that the wrong simulation have slightly lower background, and more peak intensity. We also see the peak shape is different near the aluminium Bragg peaks. Since the Union components contain a powder process, one can also recreate this example without using an external PowderN component to check the accuracy of the approach. It is however still not perfect, as the Union powder process will perform multiple scattering where PowderN will not. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorial/Union_tutorial_7_Tagging_history.ipynb b/tutorial/Union_tutorial_7_Tagging_history.ipynb new file mode 100644 index 00000000..644aad52 --- /dev/null +++ b/tutorial/Union_tutorial_7_Tagging_history.ipynb @@ -0,0 +1,303 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Union tagging system\n", + "The *Union_master* is capable of recording histories for each neutron in a tree like fashion and add the total intensities for each unique history together. At the end of the simulation these are sorted by intensity and written to file, and the top 20 are shown in the terminal. This system does not work with MPI, if MPI is used only part of the data is written to disk. The system can take up a large amount of memory when used, so it is disabled per default.\n", + "\n", + "First we set up a simple instrument with sample, container and a layer of cryostat." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "Al_inc = instrument.add_component(\"Al_inc\", \"Incoherent_process\")\n", + "Al_inc.sigma = 0.0082\n", + "Al_inc.unit_cell_volume = 66.4\n", + "\n", + "Al_pow = instrument.add_component(\"Al_pow\", \"Powder_process\")\n", + "Al_pow.reflections = '\"Al.laz\"'\n", + "\n", + "Al = instrument.add_component(\"Al\", \"Union_make_material\")\n", + "Al.process_string = '\"Al_inc,Al_pow\"'\n", + "Al.my_absorption = 100*0.231/66.4 # barns [m^2 E-28] * Å^3 [m^3 E-30] = [m E-2], correct with factor 100.\n", + "\n", + "Sample_inc = instrument.add_component(\"Sample_inc\", \"Incoherent_process\")\n", + "Sample_inc.sigma = 3.4176\n", + "Sample_inc.unit_cell_volume = 1079.1\n", + "\n", + "Sample_pow = instrument.add_component(\"Sample_pow\", \"Powder_process\")\n", + "Sample_pow.reflections = '\"Na2Ca3Al2F14.laz\"'\n", + "\n", + "Sample = instrument.add_component(\"Sample\", \"Union_make_material\")\n", + "Sample.process_string = '\"Sample_inc,Sample_pow\"'\n", + "Sample.my_absorption = 100*2.9464/1079.1\n", + "\n", + "src = instrument.add_component(\"source\", \"Source_div\")\n", + "src.xwidth = 0.01\n", + "src.yheight = 0.035\n", + "src.focus_aw = 0.01\n", + "src.focus_ah = 0.01\n", + "\n", + "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0=\"wavelength\"\n", + "src.dlambda=\"0.01*wavelength\"\n", + "src.flux = 1E13\n", + "\n", + "sample_geometry = instrument.add_component(\"sample_geometry\", \"Union_cylinder\")\n", + "sample_geometry.yheight = 0.03\n", + "sample_geometry.radius = 0.0075\n", + "sample_geometry.material_string='\"Sample\"' \n", + "sample_geometry.priority = 100\n", + "sample_geometry.set_AT([0,0,1], RELATIVE=src)\n", + "\n", + "container = instrument.add_component(\"sample_container\", \"Union_cylinder\", RELATIVE=sample_geometry)\n", + "container.yheight = 0.03+0.003 # 1.5 mm top and button\n", + "container.radius = 0.0075 + 0.0015 # 1.5 mm sides of container\n", + "container.material_string='\"Al\"' \n", + "container.priority = 99\n", + "\n", + "inner_wall = instrument.add_component(\"cryostat_wall\", \"Union_cylinder\")\n", + "inner_wall.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "inner_wall.yheight = 0.12\n", + "inner_wall.radius = 0.03\n", + "inner_wall.material_string='\"Al\"' \n", + "inner_wall.priority = 80\n", + "\n", + "inner_wall_vac = instrument.add_component(\"cryostat_wall_vacuum\", \"Union_cylinder\")\n", + "inner_wall_vac.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "inner_wall_vac.yheight = 0.12 - 0.008\n", + "inner_wall_vac.radius = 0.03 - 0.002\n", + "inner_wall_vac.material_string='\"Vacuum\"' \n", + "inner_wall_vac.priority = 81\n", + "\n", + "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\", RELATIVE=sample_geometry)\n", + "logger_zx.D_direction_1 = '\"z\"'\n", + "logger_zx.D1_min = -0.04\n", + "logger_zx.D1_max = 0.04\n", + "logger_zx.n1 = 300\n", + "logger_zx.D_direction_2 = '\"x\"'\n", + "logger_zx.D2_min = -0.04\n", + "logger_zx.D2_max = 0.04\n", + "logger_zx.n2 = 300\n", + "logger_zx.filename = '\"logger_zx.dat\"'\n", + "\n", + "logger_zy = instrument.add_component(\"logger_space_zy\", \"Union_logger_2D_space\", RELATIVE=sample_geometry)\n", + "logger_zy.D_direction_1 = '\"z\"'\n", + "logger_zy.D1_min = -0.04\n", + "logger_zy.D1_max = 0.04\n", + "logger_zy.n1 = 300\n", + "logger_zy.D_direction_2 = '\"y\"'\n", + "logger_zy.D2_min = -0.06\n", + "logger_zy.D2_max = 0.06\n", + "logger_zy.n2 = 300\n", + "logger_zy.filename = '\"logger_zy.dat\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding the Union_master with tagging\n", + "There are two important parameters to consider when setting a *Union_master* up for tagging:\n", + "- enable_tagging [default 0] 0 for disable, 1 for enable\n", + "- history_limit [default 300000] Limit of unique histories recorded\n", + "\n", + "As the *Union_master* component records each ray in succession, their unique history is added to the history tree. If a ray takes the same path in the tree, the intensity gets added to that unique history. When the history limit is reached, the tree is not built out further, but if already recorded histories occur, their intensity is still added to the existing tree." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "master = instrument.add_component(\"master\", \"Union_master\")\n", + "master.enable_tagging = 1\n", + "master.history_limit = 300000" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_tagging\",\n", + " increment_folder_name=True,\n", + " parameters={\"wavelength\" : 3.0})" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "functions.name_plot_options(\"logger_space_zx\", data, log=True, orders_of_mag=4)\n", + "functions.name_plot_options(\"logger_space_zy\", data, log=True, orders_of_mag=4)\n", + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Finding the history file\n", + "A file called Union_history.dat is written in the run folder with all the unique histories. In some cases a bug happens that causes the file to be unreadable, for now the best fix is to rerun the simulation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "with open(\"run_folder/Union_history.dat\") as file:\n", + " instrument_string = file.read()\n", + " print(instrument_string)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpreting the histories\n", + "The history with highest intensity in my run is: V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> V0, which means:\n", + "- Neutron entered Volume0 (Surrounding vacuum)\n", + "- Neutron entered Volume3 (Cryostat wall)\n", + "- Neutron entered Volume4 (Cryostat vacuum)\n", + "- Neutron entered Volume2 (Container)\n", + "- Neutron entered Volume1 (Sample)\n", + "- Neutron entered Volume2 (Container)\n", + "- Neutron entered Volume4 (Cryostat vacuum)\n", + "- Neutron entered Volume3 (Cryostat wall)\n", + "- Neutron entered Volume0 (Surrounding vacuum)\n", + "\n", + "So the most likely occurrence is that the ray is propagated through all geometries. The next most likely history is:\n", + "\n", + "V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0\n", + "\n", + "- Neutron entered Volume0 (Surrounding vacuum)\n", + "- Neutron entered Volume3 (Cryostat wall)\n", + "- Neutron entered Volume4 (Cryostat vacuum)\n", + "- Neutron entered Volume2 (Container)\n", + "- Neutron entered Volume1 (Sample)\n", + "- Neutron scattered on Process1 (Since we are in Volume1, that would be Sample_pow)\n", + "- Neutron entered Volume2 (Container)\n", + "- Neutron entered Volume4 (Cryostat vacuum)\n", + "- Neutron entered Volume3 (Cryostat wall)\n", + "- Neutron entered Volume0 (Surrounding vacuum)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Use conditional component to filter tagging\n", + "Just like a logger can be modified by a conditional component to only record events that satisfy that condition, the tagging system of the *Union_master* component can also be modified by a conditional component. In that case, the tagging system will only record events that satisfy the condition imposed by the conditional component.\n", + "\n", + "This can be useful to explain an unexpected feature, as the conditional components can filter for energy, time, direction or any combination of these. Here we demonstrate this feature by adding a *Union_conditional_PSD* outside of the direct beam and enabling the *master_tagging* control parameter, which causes the condition to be applied to the tagging system." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Set up an arm pointing to the relevant spot\n", + "spot_dir = instrument.add_component(\"spot_dir\", \"Arm\", RELATIVE=sample_geometry, before=\"master\")\n", + "spot_dir.set_ROTATED([0, 60, 0], RELATIVE=sample_geometry)\n", + "\n", + "# Set up a conditional component targeting all our loggers\n", + "PSD_conditional = instrument.add_component(\"space_all_PSD_conditional\", \"Union_conditional_PSD\", before=\"master\")\n", + "PSD_conditional.xwidth = 0.2\n", + "PSD_conditional.yheight = 0.2\n", + "PSD_conditional.master_tagging = 1\n", + "PSD_conditional.set_AT([0, 0, 0.5], RELATIVE=spot_dir) " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "data = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_tagging\",\n", + " increment_folder_name=True,\n", + " parameters={\"wavelength\" : 3.0})" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "with open(\"run_folder/union_history.dat\") as file:\n", + " instrument_string = file.read()\n", + " print(instrument_string)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpreting the data\n", + "Now all the histories contain a scattering process as this is necessary to reach the rectangle placed by the Union_conditional_PSD component set at 2theta = 60 deg. We also observe the intensities are much lower, simply because only a fraction of the simulated rays satisfy this condition." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorial/data_folder/note.txt b/tutorial/data_folder/note.txt new file mode 100644 index 00000000..fa985a4a --- /dev/null +++ b/tutorial/data_folder/note.txt @@ -0,0 +1 @@ +This folder will contain data files from McStas simulations performed in the notebook. diff --git a/tutorial/run_folder/note.txt b/tutorial/run_folder/note.txt new file mode 100644 index 00000000..1a8cb02d --- /dev/null +++ b/tutorial/run_folder/note.txt @@ -0,0 +1,2 @@ +McStas components, library functions and data files placed here can be used in tutorial notebooks. +This folder will also contain generated instrument files. From c944ca18ccdc8258abe6ea2cdf51f4354f91b7f8 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Wed, 5 Aug 2020 15:31:54 +0200 Subject: [PATCH 098/403] Update README.md Mentions the tutorials available in the tutorial folder. --- README.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/README.md b/README.md index 3aaa0fa1..b1ec9bdf 100644 --- a/README.md +++ b/README.md @@ -36,6 +36,8 @@ For a standard McStas installation on Windows, the appropriate configuration can my_configurator.set_mcstas_path("\\mcstas-2.6\\lib\\") ## Instructions for basic use +This section provides a quick way to get started, a more in depth tutorial using Jupyter Notebooks is available in the tutorial folder. + Import the interface from mcstasscript.interface import instr, plotter, functions, reader From d526df3c02e7af7c5fd3c03e3df313106b011c2c Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Mon, 14 Sep 2020 14:07:26 +0200 Subject: [PATCH 099/403] Update of setup.py version number --- mcstasscript/configuration.yaml | 2 +- setup.py | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/mcstasscript/configuration.yaml b/mcstasscript/configuration.yaml index 438e7ebe..9d9fe059 100644 --- a/mcstasscript/configuration.yaml +++ b/mcstasscript/configuration.yaml @@ -2,4 +2,4 @@ other: characters_per_line: 85 paths: mcrun_path: /Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin/ - mcstas_path: /Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/ + mcstas_path: /Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5 diff --git a/setup.py b/setup.py index f8bfacd4..672adfe5 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ setuptools.setup( name='McStasScript', - version='0.0.18', + version='0.0.20', author="Mads Bertelsen", author_email="Mads.Bertelsen@ess.eu", description="A python scripting interface for McStas", From 3a4b0af7f914c050b1cc427edd1171a8b02c2ded Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Mon, 14 Sep 2020 14:39:12 +0200 Subject: [PATCH 100/403] Fixed bug where show_instrument would not work when the user has set an input path. It simply expected the instrument to be in the work directory. Now it correctly looks in the input_folder. --- mcstasscript/interface/instr.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 57e2d31d..f27c3f1f 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -1549,7 +1549,7 @@ def show_instrument(self, *args, **kwargs): executable = "mcdisplay" full_command = (bin_path + executable + " " - + self.name + ".instr" + + os.path.join(self.input_path, self.name + ".instr") + " " + parameter_string) process = subprocess.run(full_command, shell=True, From 17dba70a997ecf253d1ce781a5963a05e5525d30 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Mon, 14 Sep 2020 16:25:24 +0200 Subject: [PATCH 101/403] Added __str__ and __repr__ methods to McStasData and component. These are used when calling print with these kinds of objects. --- mcstasscript/data/data.py | 29 +++++++++++++++++++++++++++++ 1 file changed, 29 insertions(+) diff --git a/mcstasscript/data/data.py b/mcstasscript/data/data.py index 113091a7..5dc37ad4 100644 --- a/mcstasscript/data/data.py +++ b/mcstasscript/data/data.py @@ -327,3 +327,32 @@ def set_title(self, string): def set_plot_options(self, **kwargs): self.plot_options.set_options(**kwargs) + + def __str__(self): + """ + Returns string with quick summary of data + """ + + string = "McStasData: " + string += self.name + " " + if type(self.metadata.dimension) == int: + string += "type: 1D " + elif len(self.metadata.dimension) == 2: + string += "type: 2D " + else: + string += "type: other " + + if "values" in self.metadata.info: + values = self.metadata.info["values"] + values = values.strip() + values = values.split(" ") + if len(values) == 3: + string += " I:" + str(values[0]) + string += " E:" + str(values[1]) + string += " N:" + str(values[2]) + + return string + + def __repr__(self): + return "\n" + self.__str__() + From 498e205a8698829bad2e555191e973d5af328b5f Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 16 Sep 2020 10:25:55 +0200 Subject: [PATCH 102/403] Missed a file in last commit, here is __str__ and __repr__ changes for the component object. It is print_long that is restructured as returning a string, and now print_long() just calls __str__. --- mcstasscript/helper/mcstas_objects.py | 75 ++++++++++++++++++++++++++- 1 file changed, 74 insertions(+), 1 deletion(-) diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index 8fab594f..2f71e4cc 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -689,7 +689,7 @@ def write_component(self, fo): # Leave a new line between components for readability fo.write("\n") - def print_long(self): + def print_long_depricated(self): """ Prints contained information to Python terminal @@ -742,6 +742,79 @@ class is used as a superclass for classes describing each if len(self.c_code_after) > 1: print(self.c_code_after) + def __str__(self): + """ + Returns string of information about the component + + Includes information on required parameters if they are not yet + specified. Information on the components are added when the + class is used as a superclass for classes describing each + McStas component. + """ + string = "" + + if len(self.c_code_before) > 1: + string += self.c_code_before + "\n" + if len(self.comment) > 1: + string += "// " + self.comment + "\n" + if self.SPLIT != 0: + string += "SPLIT " + str(self.SPLIT) + " " + string += "COMPONENT " + str(self.name) + string += " = " + str(self.component_name) + "\n" + for key in self.parameter_names: + val = getattr(self, key) + parameter_name = bcolors.BOLD + key + bcolors.ENDC + if val is not None: + unit = "" + if key in self.parameter_units: + unit = "[" + self.parameter_units[key] + "]" + value = (bcolors.BOLD + + bcolors.OKGREEN + + str(val) + + bcolors.ENDC + + bcolors.ENDC) + string += " " + parameter_name + string += " = " + value + " " + unit + "\n" + else: + if self.parameter_defaults[key] is None: + string += " " + parameter_name + string += bcolors.FAIL + string += " : Required parameter not yet specified" + string += bcolors.ENDC + "\n" + + if not self.WHEN == "": + string += self.WHEN + "\n" + string += "AT " + str(self.AT_data) + " " + string += str(self.AT_relative) + "\n" + if self.ROTATED_specified: + string += "ROTATED " + str(self.ROTATED_data) + string += " " + self.ROTATED_relative + "\n" + if not self.GROUP == "": + string += "GROUP " + self.GROUP + "\n" + if not self.EXTEND == "": + string += "EXTEND %{" + "\n" + string += self.EXTEND + "%}" + "\n" + if not self.JUMP == "": + string += "JUMP " + self.JUMP + "\n" + if len(self.c_code_after) > 1: + string += self.c_code_after + "\n" + + return string + + def print_long(self): + """ + Prints information about the component + + Includes information on required parameters if they are not yet + specified. Information on the components are added when the + class is used as a superclass for classes describing each + McStas component. + """ + print(self.__str__()) + + def __repr__(self): + return self.__str__() + def print_short(self, **kwargs): """Prints short description of component to list print""" if self.ROTATED_specified: From 547449d7c33ebcfe8c719ca5aa8dbbe2bed431ea Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Mon, 21 Sep 2020 20:58:33 +0200 Subject: [PATCH 103/403] Update version number in setup.py --- setup.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/setup.py b/setup.py index 672adfe5..708b6649 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ setuptools.setup( name='McStasScript', - version='0.0.20', + version='0.0.21', author="Mads Bertelsen", author_email="Mads.Bertelsen@ess.eu", description="A python scripting interface for McStas", From 140fb43eb5323ed5d0f529a8860198d4314fd195 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 22 Sep 2020 10:43:41 +0200 Subject: [PATCH 104/403] First version of McStasScript that supports McXtrace / McStas simultaniously. The old McStas_instr class is now a base class, and McStas_instr / McXtrace_instr inherits 99% of the functionality from this base class. They overwrite the method reading the configuration file, and sets a few attributes on the package name and executable name. These can be used in warning / error messages and help messages, which have yet to be updated. This update does obviously raise an issue with the name of the package, as it now supports more than McStas. Work yet to be done on this branch before merging: Fix unit tests (many are broken) Add unit tests for McXtrace Add integration tests for McXtrace Rename methods / function that include McStas Fix help / error messages that refer to McStas --- mcstasscript/configuration.yaml | 2 + mcstasscript/helper/managed_mcrun.py | 29 +- mcstasscript/interface/functions.py | 48 ++- mcstasscript/interface/instr.py | 421 +++++++++++++++++++++++++-- 4 files changed, 455 insertions(+), 45 deletions(-) diff --git a/mcstasscript/configuration.yaml b/mcstasscript/configuration.yaml index 9d9fe059..457fa45b 100644 --- a/mcstasscript/configuration.yaml +++ b/mcstasscript/configuration.yaml @@ -3,3 +3,5 @@ other: paths: mcrun_path: /Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin/ mcstas_path: /Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5 + mcxtrace_path: /Applications/McXtrace-1.5.app/Contents/Resources/mcxtrace/1.5/ + mxrun_path: /Applications/McXtrace-1.5.app/Contents/Resources/mcxtrace/1.5/bin/ diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index 545a247b..cab5a00d 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -14,7 +14,7 @@ class ManagedMcrun: ManagedMcrun is usually called by the instrument class of McStasScript but can be used independently. It runs the mcrun command using the system command, and if this is not in the path, - the absolute path can be given in a keyword argument mcrun_path. + the absolute path can be given in a keyword argument executable_path. Attributes ---------- @@ -36,7 +36,7 @@ class ManagedMcrun: custom_flags : string Custom flags that are passed to the mcrun command - mcrun_path : string + executable_path : string Path to the mcrun command (can be empty if already in path) Methods @@ -64,7 +64,7 @@ def __init__(self, instr_name, **kwargs): Sets parameters custom_flags : str Sets custom_flags passed to mcrun - mcrun_path : str + executable_path : str Path to mcrun command, "" if already in path increment_folder_name : bool If True, automaticaly appends foldername to make it unique @@ -82,13 +82,17 @@ def __init__(self, instr_name, **kwargs): self.mpi = None self.parameters = {} self.custom_flags = "" - self.mcrun_path = "" + self.executable_path = "" + self.executable = "" self.increment_folder_name = False self.compile = True self.run_path = "." - # mcrun_path always in kwargs - if "mcrun_path" in kwargs: - self.mcrun_path = kwargs["mcrun_path"] + # executable_path always in kwargs + if "executable_path" in kwargs: + self.executable_path = kwargs["executable_path"] + + if "executable" in kwargs: + self.executable = kwargs["executable"] if "foldername" in kwargs: self.data_folder_name = kwargs["foldername"] @@ -172,11 +176,12 @@ def run_simulation(self, **kwargs): + "=" + str(val)) # parameter value - mcrun_full_path = self.mcrun_path + "mcrun" - if len(self.mcrun_path) > 1: - if not (self.mcrun_path[-1] == "\\" - or self.mcrun_path[-1] == "/"): - mcrun_full_path = os.path.join(self.mcrun_path, "mcrun") + mcrun_full_path = self.executable_path + self.executable + if len(self.executable_path) > 1: + if not (self.executable_path[-1] == "\\" + or self.executable_path[-1] == "/"): + mcrun_full_path = os.path.join(self.executable_path, + self.executable) # Run the mcrun command on the system full_command = (mcrun_full_path + " " diff --git a/mcstasscript/interface/functions.py b/mcstasscript/interface/functions.py index d69ed44b..663a4f36 100644 --- a/mcstasscript/interface/functions.py +++ b/mcstasscript/interface/functions.py @@ -174,8 +174,16 @@ def _create_new_config_file(self): run = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin/" mcstas = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/" + mxrun = "/Applications/McXtrace-1.5.app" \ + + "/Contents/Resources/mcxtrace/1.5/mxrun" + mcxtrace = "/Applications/McXtrace-1.5.app" \ + + "/Contents/Resources/mcxtrace/1.5/" + default_paths = {"mcrun_path" : run, - "mcstas_path" : mcstas} + "mcstas_path" : mcstas, + "mxrun_path" : mxrun, + "mcxtrace_path" : mcxtrace} + default_other = {"characters_per_line" : 85} default_config = {"paths" : default_paths, @@ -221,6 +229,44 @@ def set_mcrun_path(self, path): # write new configuration file self._write_yaml(config) + def set_mcxtrace_path(self, path): + """ + Sets the path to McXtrace + + Parameters + ---------- + path : str + Path to the mcxtrace directory containing "sources", "optics", ... + """ + + # read entire configuration file + config = self._read_yaml() + + # update mcxtrace_path + config["paths"]["mcxtrace_path"] = path + + # write new configuration file + self._write_yaml(config) + + def set_mxrun_path(self, path): + """ + Sets the path to mxrun + + Parameters + ---------- + path : str + Path to the mxrun executable + """ + + # read entire configuration file + config = self._read_yaml() + + # update mxrun_path + config["paths"]["mxrun_path"] = path + + # write new configuration file + self._write_yaml(config) + def set_line_length(self, line_length): """ Sets maximum line length for output diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index f27c3f1f..d00f6d0e 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -16,7 +16,7 @@ from mcstasscript.helper.formatting import bcolors -class McStas_instr: +class McCode_instr: """ Main class for writing a McStas instrument using McStasScript @@ -36,7 +36,7 @@ class McStas_instr: origin : str origin of instrument file (affiliation) - mcrun_path : str + executable_path : str absolute path of mcrun command, or empty if it is in path parameter_list : list of parameter_variable instances @@ -167,7 +167,7 @@ def __init__(self, name, **kwargs): origin : str Affiliation of author, written in instrument file - mcrun_path : str + executable_path : str Absolute path of mcrun or empty if already in path input_path : str @@ -198,33 +198,18 @@ def __init__(self, name, **kwargs): else: self.input_path = "." - THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - configuration_file_name = os.path.join(THIS_DIR, "..", "configuration.yaml") - if not os.path.isfile(configuration_file_name): - raise NameError("Could not find configuration file!") - with open(configuration_file_name, 'r') as ymlfile: - config = yaml.safe_load(ymlfile) + self._read_calibration() - if type(config) is dict: - self.mcrun_path = config["paths"]["mcrun_path"] - self.mcstas_path = config["paths"]["mcstas_path"] - self.line_limit = config["other"]["characters_per_line"] - else: - # This happens in unit tests that mocks open - self.mcrun_path = "" - self.mcstas_path = "" - self.line_limit = 180 + if "executable_path" in kwargs: + self.executable_path = kwargs["executable_path"] - if "mcrun_path" in kwargs: - self.mcrun_path = kwargs["mcrun_path"] - - if "mcstas_path" in kwargs: - self.mcstas_path = kwargs["mcstas_path"] - elif self.mcstas_path is "": + if "package_path" in kwargs: + self.package_path = kwargs["package_path"] + elif self.package_path is "": raise NameError("At this stage of development " + "McStasScript need the absolute path " + "for the McStas installation as keyword " - + "named mcstas_path or in configuration.yaml") + + "named package_path or in configuration.yaml") self.parameter_list = [] self.declare_list = [] @@ -240,10 +225,17 @@ def __init__(self, name, **kwargs): self.component_name_list = [] # List of component names # Read info on active McStas components - self.component_reader = ComponentReader(self.mcstas_path, + self.component_reader = ComponentReader(self.package_path, input_path=self.input_path) self.component_class_lib = {} + def _read_calibration(self): + """ + Place holder method that should be overwritten by classes + that inherit from McCode_instr. + """ + pass + def add_parameter(self, *args, **kwargs): """ Method for adding input parameter to instrument @@ -1475,8 +1467,8 @@ def run_full_instrument(self, *args, **kwargs): foldername, which can not already exist, if it does data will be read from this folder. If the mcrun command is not in the path of the system, the absolute path can be given with the - mcrun_path keyword argument. This path could also already have - been set at initialization of the instrument object. + executable_path keyword argument. This path could also already + have been set at initialization of the instrument object. Parameters ---------- @@ -1491,12 +1483,15 @@ def run_full_instrument(self, *args, **kwargs): Sets parameters custom_flags : str Sets custom_flags passed to mcrun - mcrun_path : str + executable_path : str Path to mcrun command, "" if already in path """ # Make sure mcrun path is in kwargs - if "mcrun_path" not in kwargs: - kwargs["mcrun_path"] = self.mcrun_path + if "executable_path" not in kwargs: + kwargs["executable_path"] = self.executable_path + + if "executable" not in kwargs: + kwargs["executable"] = self.executable if "run_path" not in kwargs: # path where mcrun is executed, will load components there @@ -1540,7 +1535,7 @@ def show_instrument(self, *args, **kwargs): + "=" + str(val)) # parameter value - bin_path = os.path.join(self.mcstas_path, "bin", "") + bin_path = os.path.join(self.package_path, "bin", "") executable = "mcdisplay-webgl" if "format" in kwargs: if kwargs["format"] is "webgl": @@ -1559,3 +1554,365 @@ def show_instrument(self, *args, **kwargs): print(process.stderr) print(process.stdout) + +class McStas_instr(McCode_instr): + """ + Main class for writing a McStas instrument using McStasScript + + Initialization of McStas_instr sets the name of the instrument file + and its methods are used to add all aspects of the instrument file. + The class also holds methods for writing the finished instrument + file to disk and to run the simulation. + + Attributes + ---------- + name : str + name of instrument file + + author : str + name of user of McStasScript, written to the file + + origin : str + origin of instrument file (affiliation) + + executable_path : str + absolute path of mcrun command, or empty if it is in path + + parameter_list : list of parameter_variable instances + contains all input parameters to be written to file + + declare_list : list of declare_variable instances + contains all declare parrameters to be written to file + + initialize_section : str + string containing entire initialize section to be written + + trace_section : str + string containing trace section (OBSOLETE) + + finally_section : str + string containing entire finally section to be written + + component_list : list of component instances + list of components in the instrument + + component_name_list : list of strings + list of names of the components in the instrument + + Methods + ------- + add_parameter(*args, **kwargs) + Adds input parameter to the define section + + add_declare_var() + Adds declared variable ot the declare section + + append_initialize(string) + Appends a string to the initialize section, then adds new line + + append_initialize_no_new_line(string) + Appends a string to the initialize section + + append_finally(string) + Appends a string to finally section, then adds new line + + append_finally_no_new_line(string) + Appends a string to finally section + + append_trace(string) + Obsolete method, add components instead (used in write_c_files) + + show_components(string) + Shows available components in given category + + add_component(instance_name, component_name, **kwargs) + Add a component to the instrument file + + get_component(instance_name) + Returns component instance with name instance_name + + get_last_component() + Returns component instance of last component + + set_component_parameter(instance_name, dict) + Adds parameters as dict to component with instance_name + + set_component_AT(instance_name, AT_data, **kwargs) + Sets position of component named instance_name + + set_component_ROTATED(instance_name, ROTATED_data, **kwargs) + Sets rotation of component named instance_name + + set_component_RELATIVE(instane_name, string) + Sets position and rotation reference for named component + + set_component_WHEN(instance_name, string) + Sets WHEN condition of named component, is logical c expression + + set_component_GROUP(instance_name, string) + Sets GROUP name of component named instance_name + + append_component_EXTEND(instance_name, string) + Appends a line to EXTEND section of named component + + set_component_JUMP(instance_name, string) + Sets JUMP code for named component + + set_component_SPLIT(instance_name, string) + Sets SPLIT value for named component + + set_component_c_code_before(instance_name, string) + Sets c code before the component + + set_component_c_code_after(instance_name, string) + Sets c code after the component + + set_component_comment(instance_name, string) + Sets comment to be written before named component + + print_component(instance_name) + Prints an overview of current state of named component + + print_component_short(instance_name) + Prints short overview of current state of named component + + print_components() + Prints overview of postion / rotation of all components + + write_c_files() + Writes c files for %include in generated_includes folder + + write_full_instrument() + Writes full instrument file to current directory + + run_full_instrument(**kwargs) + Writes instrument files and runs simulation. + Returns list of McStasData + """ + def __init__(self, name, **kwargs): + """ + Initialization of McStas Instrument + + Parameters + ---------- + name : str + Name of project, instrument file will be name + ".instr" + + keyword arguments: + author : str + Name of author, written in instrument file + + origin : str + Affiliation of author, written in instrument file + + executable_path : str + Absolute path of mcrun or empty if already in path + + input_path : str + Work directory, will load components from this folder + """ + self.particle = "neutron" + self.executable = "mcrun" + self.package_name = "McStas" + + super().__init__(name, **kwargs) + + def _read_calibration(self): + this_dir = os.path.dirname(os.path.abspath(__file__)) + configuration_file_name = os.path.join(this_dir, "..", + "configuration.yaml") + if not os.path.isfile(configuration_file_name): + raise NameError("Could not find configuration file!") + with open(configuration_file_name, 'r') as ymlfile: + config = yaml.safe_load(ymlfile) + + if type(config) is dict: + self.executable_path = config["paths"]["mcrun_path"] + self.package_path = config["paths"]["mcstas_path"] + self.line_limit = config["other"]["characters_per_line"] + else: + # This happens in unit tests that mocks open + self.executable_path = "" + self.package_path = "" + self.line_limit = 180 + +class McXtrace_instr(McCode_instr): + """ + Main class for writing a McStas instrument using McStasScript + + Initialization of McStas_instr sets the name of the instrument file + and its methods are used to add all aspects of the instrument file. + The class also holds methods for writing the finished instrument + file to disk and to run the simulation. + + Attributes + ---------- + name : str + name of instrument file + + author : str + name of user of McStasScript, written to the file + + origin : str + origin of instrument file (affiliation) + + executable_path : str + absolute path of mcrun command, or empty if it is in path + + parameter_list : list of parameter_variable instances + contains all input parameters to be written to file + + declare_list : list of declare_variable instances + contains all declare parrameters to be written to file + + initialize_section : str + string containing entire initialize section to be written + + trace_section : str + string containing trace section (OBSOLETE) + + finally_section : str + string containing entire finally section to be written + + component_list : list of component instances + list of components in the instrument + + component_name_list : list of strings + list of names of the components in the instrument + + Methods + ------- + add_parameter(*args, **kwargs) + Adds input parameter to the define section + + add_declare_var() + Adds declared variable ot the declare section + + append_initialize(string) + Appends a string to the initialize section, then adds new line + + append_initialize_no_new_line(string) + Appends a string to the initialize section + + append_finally(string) + Appends a string to finally section, then adds new line + + append_finally_no_new_line(string) + Appends a string to finally section + + append_trace(string) + Obsolete method, add components instead (used in write_c_files) + + show_components(string) + Shows available components in given category + + add_component(instance_name, component_name, **kwargs) + Add a component to the instrument file + + get_component(instance_name) + Returns component instance with name instance_name + + get_last_component() + Returns component instance of last component + + set_component_parameter(instance_name, dict) + Adds parameters as dict to component with instance_name + + set_component_AT(instance_name, AT_data, **kwargs) + Sets position of component named instance_name + + set_component_ROTATED(instance_name, ROTATED_data, **kwargs) + Sets rotation of component named instance_name + + set_component_RELATIVE(instane_name, string) + Sets position and rotation reference for named component + + set_component_WHEN(instance_name, string) + Sets WHEN condition of named component, is logical c expression + + set_component_GROUP(instance_name, string) + Sets GROUP name of component named instance_name + + append_component_EXTEND(instance_name, string) + Appends a line to EXTEND section of named component + + set_component_JUMP(instance_name, string) + Sets JUMP code for named component + + set_component_SPLIT(instance_name, string) + Sets SPLIT value for named component + + set_component_c_code_before(instance_name, string) + Sets c code before the component + + set_component_c_code_after(instance_name, string) + Sets c code after the component + + set_component_comment(instance_name, string) + Sets comment to be written before named component + + print_component(instance_name) + Prints an overview of current state of named component + + print_component_short(instance_name) + Prints short overview of current state of named component + + print_components() + Prints overview of postion / rotation of all components + + write_c_files() + Writes c files for %include in generated_includes folder + + write_full_instrument() + Writes full instrument file to current directory + + run_full_instrument(**kwargs) + Writes instrument files and runs simulation. + Returns list of McStasData + """ + def __init__(self, name, **kwargs): + """ + Initialization of McStas Instrument + + Parameters + ---------- + name : str + Name of project, instrument file will be name + ".instr" + + keyword arguments: + author : str + Name of author, written in instrument file + + origin : str + Affiliation of author, written in instrument file + + executable_path : str + Absolute path of mcrun or empty if already in path + + input_path : str + Work directory, will load components from this folder + """ + self.particle = "x-ray" + self.executable = "mxrun" + self.package_name = "McXtrace" + + super().__init__(name, **kwargs) + + def _read_calibration(self): + this_dir = os.path.dirname(os.path.abspath(__file__)) + configuration_file_name = os.path.join(this_dir, "..", + "configuration.yaml") + if not os.path.isfile(configuration_file_name): + raise NameError("Could not find configuration file!") + with open(configuration_file_name, 'r') as ymlfile: + config = yaml.safe_load(ymlfile) + + if type(config) is dict: + self.executable_path = config["paths"]["mxrun_path"] + self.package_path = config["paths"]["mcxtrace_path"] + self.line_limit = config["other"]["characters_per_line"] + else: + # This happens in unit tests that mocks open + self.executable_path = "" + self.package_path = "" + self.line_limit = 180 \ No newline at end of file From a7f529b08b6e56c886d13fb61fa8635f569641b3 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 22 Sep 2020 16:44:05 +0200 Subject: [PATCH 105/403] Updates to existing unit tests to account for changes to McStas_instr and managed_mcrun. This mainly comes down to changes from mcrun_path to executable_path in the base class and mcstas_path to package_path. --- mcstasscript/tests/test_Instr.py | 26 ++++++++++---------- mcstasscript/tests/test_ManagedMcrun.py | 32 ++++++++++++++++--------- 2 files changed, 34 insertions(+), 24 deletions(-) diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index c61cc49a..dbe94090 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -20,7 +20,7 @@ def setup_instr_root_path(): """ Sets up a instrument with root mcstas_path """ - return McStas_instr("test_instrument", mcstas_path="/") + return McStas_instr("test_instrument", package_path="/") def setup_instr_with_path(): @@ -35,7 +35,7 @@ def setup_instr_with_path(): current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder - return McStas_instr("test_instrument", mcstas_path=dummy_path) + return McStas_instr("test_instrument", package_path=dummy_path) os.chdir(current_work_dir) # Return to previous workdir @@ -53,7 +53,7 @@ def setup_instr_with_input_path(): os.chdir(THIS_DIR) # Set work directory to test folder return McStas_instr("test_instrument", - mcstas_path=dummy_path, + package_path=dummy_path, input_path=input_path) os.chdir(current_work_dir) # Return to previous workdir @@ -70,7 +70,7 @@ def setup_instr_with_input_path_relative(): os.chdir(THIS_DIR) # Set work directory to test folder return McStas_instr("test_instrument", - mcstas_path="dummy_mcstas", + package_path="dummy_mcstas", input_path="test_input_folder") os.chdir(current_work_dir) # Return to previous workdir @@ -137,13 +137,13 @@ def test_complex_initialize(self): my_instrument = McStas_instr("test_instrument", author="Mads", origin="DMSC", - mcrun_path="/path/to/mcrun", - mcstas_path="/path/to/mcstas") + executable_path="/path/to/mcrun", + package_path="/path/to/mcstas") self.assertEqual(my_instrument.author, "Mads") self.assertEqual(my_instrument.origin, "DMSC") - self.assertEqual(my_instrument.mcrun_path, "/path/to/mcrun") - self.assertEqual(my_instrument.mcstas_path, "/path/to/mcstas") + self.assertEqual(my_instrument.executable_path, "/path/to/mcrun") + self.assertEqual(my_instrument.package_path, "/path/to/mcstas") def test_load_config_file(self): """ @@ -181,8 +181,8 @@ def test_load_config_file(self): # Check the value matches what is loaded by initialization my_instrument = setup_instr_no_path() - self.assertEqual(my_instrument.mcrun_path, correct_mcrun_path) - self.assertEqual(my_instrument.mcstas_path, correct_mcstas_path) + self.assertEqual(my_instrument.executable_path, correct_mcrun_path) + self.assertEqual(my_instrument.package_path, correct_mcstas_path) self.assertEqual(my_instrument.line_limit, correct_n_of_characters) def test_simple_add_parameter(self): @@ -1502,7 +1502,7 @@ def test_run_full_instrument_basic(self, mock_sub, instr = setup_populated_instr() instr.run_full_instrument("test_instrument.instr", foldername="test_data_set", - mcrun_path="path", + executable_path="path", parameters={"theta": 1}) expected_path = os.path.join("path","mcrun") @@ -1536,7 +1536,7 @@ def test_run_full_instrument_complex(self, mock_sub, instr = setup_populated_instr() instr.run_full_instrument("test_instrument.instr", foldername="test_data_set", - mcrun_path="path", + executable_path="path", mpi=7, ncount=48.4, custom_flags="-fo", @@ -1574,7 +1574,7 @@ def test_run_full_instrument_overwrite_default(self, mock_sub, instr = setup_populated_instr() instr.run_full_instrument("test_instrument.instr", foldername="test_data_set", - mcrun_path="path", + executable_path="path", mpi=7, ncount=48.4, custom_flags="-fo", diff --git a/mcstasscript/tests/test_ManagedMcrun.py b/mcstasscript/tests/test_ManagedMcrun.py index a0d003f9..35db5f85 100644 --- a/mcstasscript/tests/test_ManagedMcrun.py +++ b/mcstasscript/tests/test_ManagedMcrun.py @@ -24,11 +24,12 @@ def test_ManagedMcrun_init_simple(self): """ mcrun_obj = ManagedMcrun("test.instr", foldername="test_folder", - mcrun_path="test_path") + executable_path="test_path", + executable="mcrun") self.assertEqual(mcrun_obj.name_of_instrumentfile, "test.instr") self.assertEqual(mcrun_obj.data_folder_name, "test_folder") - self.assertEqual(mcrun_obj.mcrun_path, "test_path") + self.assertEqual(mcrun_obj.executable_path, "test_path") def test_ManagedMcrun_init_defaults(self): """ @@ -36,7 +37,8 @@ def test_ManagedMcrun_init_defaults(self): """ mcrun_obj = ManagedMcrun("test.instr", foldername="test_folder", - mcrun_path="") + executable_path="", + executable="mcrun",) self.assertEqual(mcrun_obj.mpi, None) self.assertEqual(mcrun_obj.ncount, 1000000) @@ -48,7 +50,8 @@ def test_ManagedMcrun_init_set_values(self): """ mcrun_obj = ManagedMcrun("test.instr", foldername="test_folder", - mcrun_path="", + executable_path="", + executable="mcrun", run_path="test", mpi=4, ncount=128) @@ -69,7 +72,8 @@ def test_ManagedMcrun_init_set_parameters(self): mcrun_obj = ManagedMcrun("test.instr", foldername="test_folder", - mcrun_path="", + executable_path="", + executable="", parameters=par_input) self.assertEqual(mcrun_obj.parameters["A_par"], 5.1) @@ -86,7 +90,8 @@ def test_ManagedMcrun_init_set_custom_flags(self): mcrun_obj = ManagedMcrun("test.instr", foldername="test_folder", - mcrun_path="", + executable_path="", + executable="mcrun", custom_flags=custom_flag_input) self.assertEqual(mcrun_obj.custom_flags, custom_flag_input) @@ -106,7 +111,8 @@ def test_ManagedMcrun_run_simulation_basic(self, mock_sub): mcrun_obj = ManagedMcrun("test.instr", foldername="test_folder", - mcrun_path="path") + executable_path="path", + executable="mcrun",) mcrun_obj.run_simulation() @@ -130,7 +136,8 @@ def test_ManagedMcrun_run_simulation_basic_path(self, mock_sub): mcrun_obj = ManagedMcrun("test.instr", foldername="test_folder", - mcrun_path="path/") + executable_path="path/", + executable="mcrun",) mcrun_obj.run_simulation() @@ -154,7 +161,8 @@ def test_ManagedMcrun_run_simulation_no_standard(self, mock_sub): mcrun_obj = ManagedMcrun("test.instr", foldername="test_folder", - mcrun_path="path", + executable_path="path", + executable="mcrun", mpi=7, ncount=48.4, custom_flags="-fo") @@ -181,7 +189,8 @@ def test_ManagedMcrun_run_simulation_parameters(self, mock_sub): mcrun_obj = ManagedMcrun("test.instr", foldername="test_folder", - mcrun_path="path", + executable_path="path", + executable="mcrun", mpi=7, ncount=48.4, custom_flags="-fo", @@ -211,7 +220,8 @@ def test_ManagedMcrun_run_simulation_compile(self, mock_sub): mcrun_obj = ManagedMcrun("test.instr", foldername="test_folder", - mcrun_path="path", + executable_path="path", + executable="mcrun", mpi=7, ncount=48.4, force_compile=False, From 3b1bacf2c190abc0ea1c7ba06f62c2998adf5d40 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 22 Sep 2020 17:22:31 +0200 Subject: [PATCH 106/403] Added a few unit tests that ensure the McXtrace_instr part works. The correct fields can be read from configuration file. That mxrun is used instead of mcrun. --- mcstasscript/tests/test_Configurator.py | 39 +++++++++ mcstasscript/tests/test_Instr.py | 109 +++++++++++++++++++++++- 2 files changed, 145 insertions(+), 3 deletions(-) diff --git a/mcstasscript/tests/test_Configurator.py b/mcstasscript/tests/test_Configurator.py index 6dd1abad..15f48235 100644 --- a/mcstasscript/tests/test_Configurator.py +++ b/mcstasscript/tests/test_Configurator.py @@ -62,9 +62,15 @@ def test_default_config(self): run = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin/" mcstas = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/" + mxrun = "/Applications/McXtrace-1.5.app" \ + + "/Contents/Resources/mcxtrace/1.5/mxrun" + mcxtrace = "/Applications/McXtrace-1.5.app" \ + + "/Contents/Resources/mcxtrace/1.5/" self.assertEqual(default_config["paths"]["mcrun_path"], run) self.assertEqual(default_config["paths"]["mcstas_path"], mcstas) + self.assertEqual(default_config["paths"]["mxrun_path"], mxrun) + self.assertEqual(default_config["paths"]["mcxtrace_path"], mcxtrace) self.assertEqual(default_config["other"]["characters_per_line"], 85) # remove the testing configuration file @@ -127,6 +133,39 @@ def test_set_mcstas_path(self): # remove the testing configuration file setup_expected_file(test_name) + def test_set_mcrun_path(self): + """ + This test checks that setting the mxrun path works + """ + test_name = "test_configuration" + my_configurator = setup_configurator(test_name) + + my_configurator.set_mxrun_path("/new/mxrun_path/") + + new_config = my_configurator._read_yaml() + + self.assertEqual(new_config["paths"]["mxrun_path"], "/new/mxrun_path/") + + # remove the testing configuration file + setup_expected_file(test_name) + + def test_set_mcstas_path(self): + """ + This test checks that setting the mcxtrace path works + """ + test_name = "test_configuration" + my_configurator = setup_configurator(test_name) + + my_configurator.set_mcxtrace_path("/new/mcxtrace_path/") + + new_config = my_configurator._read_yaml() + + self.assertEqual(new_config["paths"]["mcxtrace_path"], + "/new/mcxtrace_path/") + + # remove the testing configuration file + setup_expected_file(test_name) + def test_set_line_length(self): """ This test checks that setting the line length works diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index dbe94090..d89f31ce 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -6,6 +6,7 @@ import datetime from mcstasscript.interface.instr import McStas_instr +from mcstasscript.interface.instr import McXtrace_instr from mcstasscript.helper.formatting import bcolors @@ -15,6 +16,11 @@ def setup_instr_no_path(): """ return McStas_instr("test_instrument") +def setup_x_ray_instr_no_path(): + """ + Sets up a instrument without a mcstas_path + """ + return McXtrace_instr("test_instrument") def setup_instr_root_path(): """ @@ -22,6 +28,12 @@ def setup_instr_root_path(): """ return McStas_instr("test_instrument", package_path="/") +def setup_x_ray_instr_root_path(): + """ + Sets up a instrument with root mcstas_path + """ + return McXtrace_instr("test_instrument", package_path="/") + def setup_instr_with_path(): """ @@ -93,6 +105,23 @@ def setup_populated_instr(): return instr +def setup_populated_x_ray_instr(): + """ + Sets up a instrument with some features used and two components + """ + instr = setup_x_ray_instr_root_path() + + instr.add_parameter("double", "theta") + instr.add_parameter("double", "has_default", value=37) + instr.add_declare_var("double", "two_theta") + instr.append_initialize("two_theta = 2.0*theta;") + + comp1 = instr.add_component("first_component", "test_for_reading") + comp2 = instr.add_component("second_component", "test_for_reading") + comp3 = instr.add_component("third_component", "test_for_reading") + + return instr + def setup_populated_with_some_options_instr(): """ Sets up a instrument with some features used and two components @@ -185,6 +214,46 @@ def test_load_config_file(self): self.assertEqual(my_instrument.package_path, correct_mcstas_path) self.assertEqual(my_instrument.line_limit, correct_n_of_characters) + def test_load_config_file_x_ray(self): + """ + Test that configuration file is read correctly. In order to have + an independent test, the yaml file is read manually instead of + using the yaml package. + """ + # Load configuration file and read manually + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + configuration_file_name = os.path.join(THIS_DIR, + "..", "configuration.yaml") + + if not os.path.isfile(configuration_file_name): + raise NameError("Could not find configuration file!") + + f = open(configuration_file_name, "r") + + lines = f.readlines() + for line in lines: + line = line.strip() + if line.startswith("mxrun_path:"): + parts = line.split(" ") + correct_mxrun_path = parts[1] + + if line.startswith("mcxtrace_path:"): + parts = line.split(" ") + correct_mcxtrace_path = parts[1] + + if line.startswith("characters_per_line:"): + parts = line.split(" ") + correct_n_of_characters = int(parts[1]) + + f.close() + + # Check the value matches what is loaded by initialization + my_instrument = setup_x_ray_instr_no_path() + + self.assertEqual(my_instrument.executable_path, correct_mxrun_path) + self.assertEqual(my_instrument.package_path, correct_mcxtrace_path) + self.assertEqual(my_instrument.line_limit, correct_n_of_characters) + def test_simple_add_parameter(self): """ This is just an interface to a function that is tested @@ -1485,13 +1554,13 @@ def test_run_full_instrument_required_par_error(self, mock_stdout): with self.assertRaises(NameError): instr.run_full_instrument("test_instrument.instr", foldername="test_data_set", - mcrun_path="path") + executable_path="path") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) @unittest.mock.patch("subprocess.run") - def test_run_full_instrument_basic(self, mock_sub, + def test_x_ray_run_full_instrument_basic(self, mock_sub, mock_f, mock_stdout,): """ Check a simple run performs the correct system call. Here @@ -1499,13 +1568,47 @@ def test_run_full_instrument_basic(self, mock_sub, data is loaded even though the system call is not executed. """ + instr = setup_populated_x_ray_instr() + instr.run_full_instrument("test_instrument.instr", + foldername="test_data_set", + executable_path="path", + parameters={"theta": 1}) + + expected_path = os.path.join("path","mxrun") + + current_directory = os.getcwd() + expected_folder_path = os.path.join(current_directory, "test_data_set") + + # a double space because of a missing option + expected_call = (expected_path + " -c -n 1000000 " + + "-d " + expected_folder_path + + " test_instrument.instr" + + " has_default=37 theta=1") + + mock_sub.assert_called_once_with(expected_call, + shell=True, + stderr=-1, stdout=-1, + universal_newlines=True) + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + @unittest.mock.patch('__main__.__builtins__.open', + new_callable=unittest.mock.mock_open) + @unittest.mock.patch("subprocess.run") + def test_run_full_instrument_basic(self, mock_sub, + mock_f, mock_stdout, ): + """ + Check a simple run performs the correct system call. Here + the target directory is set to the test data set so that some + data is loaded even though the system call is not executed. + """ + instr = setup_populated_instr() instr.run_full_instrument("test_instrument.instr", foldername="test_data_set", executable_path="path", parameters={"theta": 1}) - expected_path = os.path.join("path","mcrun") + expected_path = os.path.join("path", "mcrun") current_directory = os.getcwd() expected_folder_path = os.path.join(current_directory, "test_data_set") From fec2d075761bcf01837b9a49d615f9f2dffe9c31 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Fri, 25 Sep 2020 10:48:30 +0200 Subject: [PATCH 107/403] Updates errors and warnings to use package name instead of hardcoded McStas. --- mcstasscript/interface/instr.py | 31 +++++++++++++++++++++---------- 1 file changed, 21 insertions(+), 10 deletions(-) diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index d00f6d0e..e65f92f0 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -174,6 +174,13 @@ def __init__(self, name, **kwargs): Work directory, will load components from this folder """ + # Check required attributes has been set by class that inherits + if not (hasattr(self, "particle") or + hasattr(self, "executable") or + hasattr(self, "package_name")): + raise AttributeError("McCode_instr is a base class, use " + + "McStas_intr or McXtrace_instr instead.") + self.name = name if not is_legal_filename(self.name + ".instr"): @@ -186,7 +193,8 @@ def __init__(self, name, **kwargs): if "author" in kwargs: self.author = kwargs["author"] else: - self.author = "Python McStas Instrument Generator" + self.author = "Python " + self.package_name + self.author += " Instrument Generator" if "origin" in kwargs: self.origin = kwargs["origin"] @@ -208,8 +216,9 @@ def __init__(self, name, **kwargs): elif self.package_path is "": raise NameError("At this stage of development " + "McStasScript need the absolute path " - + "for the McStas installation as keyword " - + "named package_path or in configuration.yaml") + + "for the " + self.package_name + + + " installation as keyword named " + + "package_path or in configuration.yaml") self.parameter_list = [] self.declare_list = [] @@ -635,7 +644,8 @@ def add_component(self, *args, **kwargs): if args[0] in self.component_name_list: raise NameError(("Component name \"" + str(args[0]) - + "\" used twice, McStas does not allow this." + + "\" used twice, " + self.package_name + + " does not allow this." + " Rename or remove one instance of this" + " name.")) @@ -756,14 +766,15 @@ def copy_component(self, *args, **kwargs): if instance_name in self.component_name_list: raise NameError(("Component name \"" + str(args[0]) - + "\" used twice, McStas does not allow this." + + "\" used twice, " + self.package_name + + " does not allow this." + " Rename or remove one instance of this" + " name.")) if not args[1] in self.component_name_list: raise NameError("Component name \"" + str(args[1]) - + "\" was not found in the McStas instrument." - + " and thus can not be copied.") + + "\" was not found in the " + self.package_name + + " instrument. and thus can not be copied.") else: component_to_copy = self.get_component(args[1]) @@ -1738,9 +1749,9 @@ def _read_calibration(self): class McXtrace_instr(McCode_instr): """ - Main class for writing a McStas instrument using McStasScript + Main class for writing a McXtrace instrument using McStasScript - Initialization of McStas_instr sets the name of the instrument file + Initialization of McXtrace_instr sets the name of the instrument file and its methods are used to add all aspects of the instrument file. The class also holds methods for writing the finished instrument file to disk and to run the simulation. @@ -1872,7 +1883,7 @@ class McXtrace_instr(McCode_instr): """ def __init__(self, name, **kwargs): """ - Initialization of McStas Instrument + Initialization of McXtrace Instrument Parameters ---------- From 04cbfb1be0b4238d5cb63d74a2ffd4c028b69e81 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 20 Oct 2020 11:33:10 +0200 Subject: [PATCH 108/403] Updated manuals after review --- McStasScript_documentation.pdf | Bin 168185 -> 179139 bytes 1 file changed, 0 insertions(+), 0 deletions(-) diff --git a/McStasScript_documentation.pdf b/McStasScript_documentation.pdf index af10867ed1820567c9cc066a8c7f962ba350f69a..fd536d006ac54933bb4e449b4869dfc7b92de67b 100644 GIT binary patch delta 81573 zcmZsC19T-_w{2{9Y}-Cj2OZlsJ0066wr$(&*tTukPCCi!@Ba6W_y6zRGtSs!uf5k; zRW;YDGv=AK>NO9p{}~RALg9xP0}CSu97XqY{wEv@8*>~gJ_i?og$+Q=BtfiA%*ye1 z#>&n`tV_%!Pt3x`PRt}q4B-A}g-MQ>g@c$$g_wnlo0%IBXW#_!HvmiA8X*{fD}e+O zE5#}X3;>k0F)?-f8|iOsVph)o3M6S`W=qV*O3X~GM9idQYwPrP^S>?SpB|>fY=FPf z6&y@m{wp+qnfU+tFiHL(*5>14HZo&nHZn5eYJe1)bUg#18&{-E z{OwFnyI~@}B{_(45i)d&ek@o}g8>*9=>Ik(7=U@3{6*@YE4DSVgyZA;3#Fm8sUtBP zGt0j)k+(Co5i)lAX>0QrCcuBMIXhYXwE64xHzogCQ7|+&m9;f7C1z4}G?o9KZKi*g z|M6l?r~)ShV_{2CqyQrUDigDCvi*}oR+hgxlrgn2ce41KKLD|S0Gy+fgQ=l4oLi=` zfq{XM!H(BtPhU^Z+63_k2&4fgyhNg(DHu37nS|B5SaEaIJU$Q6g4_%ms88KNnxc-HslBuJuvxD(J31DMQ*%bi81OLYCdtq|%G4Ze#(8)w}!R=`1I6WJ(Db z2*FqgL5&~p5%H0s>m8u_%OX%tdg0cg!qzO^!7-;)knO~o7s|ns3_E>2uDFz{d%u?Slj=mFWsc40_5K81&3ixl)#t;;gnEf#g z@E}d2-kVEk7r9S!rwA*yZ8t<%z{7cmrJJuuxB&P2_0DhHR=+)cxHY}f+uU;+IOgRL zk|)opT>z&cBw`jE)cc8@aMvey??yTp4BP5!)Q@Cn&p^}_3#;(xNAo1R9a(e_q-9d( zv;W>2hm|py-OEcNyX@w_$&K&6274*gcK6bsSB2udV~E1rG_3p__HO#!*K}B$?#&lW zT1$YwvbK>pkZ35GAta#Q+^vdoPeZmogQOkxN#nPVoaR@39hBw{KJ(YXZ2^_Dp&aw& zLYHm((x!rCHfGWex)rYgML$g~@Z#4+p%<%^>#tr0t>q*8pkIB_-7MTAf`ZCyZ8pQj z4kkkFsYD(W-?HTq3Ut{B*Sjuykd|_Y`uaJE4>yvW(81j|cWxi@&vRjzQdbB%gr|{) zG#?{XruQEuAJuDLS5z9vmTDPxAF!vfd7SwFZ2ImFZYl&LwvyIJt2@LL0Y#3jxUuoa zyZC!)vEn}ItP)DNodZPN-IUm0Fo!J!YK|Q4+cR8at`%|B!B_o1hEK3py{t-VQy=!s zst{nz9!GjA4tC$9P;Hsdxtl;xB@%x6f7JBxoaHVHQOc&TN@h z49?3{U$or~BK_jK)(x5LduK(u|J-r+UoXTV z(sG5_=0D$@=`AX-?Iqql2-yVmDVF}cL zni-;Oof5{TAajeZ0gjNZysDsj$6@DzOdFauOrD&XI}PXYEAT3;D_4BfF=NRfz>H%u zUI*T=d@7-oYMA&zWcp4jCsGAPYeO-Q!4qP*g~G}p;0MGDHT!mq>=W7ZTyXo-`;7On z)E~?`-CF12yD!|G0MU>5^|NJ6NuzYC;{%4xf6= zZnEd}CkcJkziFcGec1+u>KylOEe{14R~y+u@7#@y!`@keeK0jbfBJ4G4KbAo({9hf zL%i`f?LeEPCuH1e8!47cICOvB-ymKVsgZt~dAoeB1JPkM&(A$eQeSeg@m_X7EU+U% z-Klszo1w}E!5Jw+*dCH#=ugQ;KZq@`0e2(1#L94~$FPK}+ciVp>FY1o=svZtc%0v@ zt>A>PJ+?PTPp)LgKaqd-jvxMN!Q0k(C#2xWzS_C^5#NWEdDYIhcqIBKgf7M{;-R^l zlq@UY1K8XMy24|L+zov`foUZPzV-CHbDYIR;WneTAfRjTw6Gg(T_i$RkeO`$7>WR3>%au@gmp|vN1@G_rURLKgfa`kqEYRW%Y5F*&?0#`jXLq9D63kgj*Se3X4bP`=^xJj>P%Bv#DU|fQOt@3(#+w6e5~I z7gjz@owT*-r!-AV0P`eC{jWD~>gvF7gk^s<$fP1#CB$KZVmOrw;Q>C5^RcOJb0A|s zQN+g%u7JZQQ)&r~=DWP9H7Rk2m2xE8YgG?~;iJ0McSyefjnHxa8=({XnNmFoir?@X z$%f=FCF4qdOZfhcqh$_itvldxp?PoD^z7SM zyW4fE7AcvID(wKbs`p`UcrwTodXiZoy#Q^4xS+nWV93uqLudDZC^Yll z=vwyT)C;(-ggX0~GoY6Ar*P>PegqP6MdF1dXdyNT915sl_6F>hdxGlZrX;f{VIsyw zLa}p+1h8;f4EDJIsyz+EM3QK5)Uf@a*>rAD2t*RGm+}!gw4u2j7W94*QR>L~9rA(R zxJQ$~Tc8QQP{XmEPy^LDY&y86{0#nxhyRhp(l>UhaHb8;FtEtn44L1o?B?}Js79jM zX7K)d&_!x=1C*X9iKK-+bBIG1s z(*r1x*rDa|EuzD@XYdLBo}t;Eprb!QK^}lt8h8sXBp?)|oXm|0F^G)BZ5_HV1hEHV z@vs4cIOVoSzFSEu2L;-V;!wKE00=6uel|DXvppI1W1c5k}6h}0;-Y|{0p6r5bAg$jhVPtg} z2=sc+igg{R5d^24H73#T@Cwpk2OWLp;lSO})0s5eYkK*7*WAYq zM{(T{+LLSN)0AOSzlRJ-U);`d5=IBS0uRn6&*n|(4wM_){?K^`c?o#8^JqJWl^th4 z9y93?@O$(uP0sN2wApT6YC&&_X+qbQFCpg;5fOFxKL%j&9?1@Nd>Y-C*?gXC#dPzz zOH762*-un??;8$t7k_cD*V()ehsY!AckT65^GZ?}9HP4{#B1Uk9h+!0oO2fDXf z>#0@_^UsvUEq%DXL&Rk{mQ)5Mxb?UE;A#1 z!dpmqE0Et{_v5_m+Q7*K<63kK5eUb5$vY;yHz_$Ag~D`1CBKH@KtZ$x=u=pWskrng z`NhG*1vftCV_ymDxoJQ_NE7*mnUQGUN69I-Z0RJc@jet(m!4$Zfm?>dn>6$umtGfS z>E*0j1{<;hQ6diK8S~Yo`kOLRm2<5wy~@T2ze4kvGOaFM)k>+9VH9Kc0+_+4WLq!$ z)Nc8e<7m-hE@2uv#0iIY9R58CF<3FG!bZ2euUK+X@N#^uFkL4HL!S=6R7}NB5A_MP z7rP86BsDl1k1R;nloC1jhRbBT6wd@G-SUExXnSJ8p@gkG7P$}!jv2nktyzH{%%@ZX zsb}o`tn&>@Pn98u!*C+-04QcT^s}{$ky3Saq4cfQSf87!g-eZP5A&J!b30Pd@f$?C zx56yw@bc144TcNu{rqydswy{oSsRLKU|oRaNhZG%w!|vl{dOj~YXbQtQN!2X$Xiq2 zEa#Bwtsdag6K1)@QI?y%t*u-=kRdRk%9^*LuQjjPrXUb8u%R5R0!WH4WBl|aXI#tb zJ1ij)7#I7}@fZg+Y^CA@NnAS;x}4jg?yu)f4gqO>;4G}+gHiNU9k`kuSRfD^x-;;Y zV1P%(+8n1>zgK^5P9CyZby|8i;G9BqbCJ8eGLFPJw-3!z0E^hkEX_{4r29%p%VlCvb>WKW4X*9AX%aju0Jw~l^ow13-JBzM*?73F{>BDf` zHll?8(W8D1cK;g=83CWi=*7jSXwqhke!ngNR`u z%gsVx_U-3r^aXcicAq0&IN`;#$XM(Q6drP@K|cf}AeJpHIF228VX)YW0i3SqrWR@r zr53LrswA~OYOwa(n#IP@=&yC55qzgMsrED%{QS9eM5jNLH(lU(SRm5-CuJlcAs&B- zx&A~JH8;hyP5=dmQI1ybNeqiF=Z2J<2SQp?*HoC%2j`W^jq_XV{opQAD8m>xQ%%wu zdOhG`-d)xhOsjlL=C7p<=f|bLEx7kc-mB6tWQY| z8-nRL8@l3Sd*}BA^Q5)umE%KtT7Qmzph_SWQz)b?IRN<^9`Z%p^s=gdC5+29>+Lp{ zvIs5x(sZv*DuyjPEs|^=a&AL(4{30z(LUf`|D9BR(#Z;m^C^LX#OIR~CEO zOFs`Tr?MT^zl3f5)?Ot=iqS9y)r_ACM9Nz2htL4aoF%K!3X(810;Lt|ag@N9V3b;+ z`Y9(a6AVo5-qB!mL{Q9u(_D*v(}~M6WDh2EAO2;~T(k3~lNtOq1+nV-{|qI*uq&$}s>6!fbqqws{vv8eB8Xdd9bbHll~ z9hV*-osC-@*Wzu-pC$a7Ej-Q7sdTu?1IxZ4{5(Bo2d}$k6eE~anrN=Kd%{5Ln>x}Y zOa;^$?kwiupYhz4t8ZMr$291<)d*wnE-SglL3`~GM+S&CC_}`NMCl^Q$LkfJYrk}~ zVaOFeJDhikWYHV*C#mrywMP3)mPD_Qe|tNmGNC%yJ-91z@$d*6i{p+f%2u$DSQXQXBvu)F}<4cQVxnXI8Vn9Ug~u^hS~I zkY5#j;(?#=;)TB>pD?}siDS$X=8H~zCV071fdimtn9(Q7qk_+T`kK`(@DuBr=aS z3#tkimMN-VBUEe7EsfU++s;3aq3iRcn;W%xgI@0eId&smVe-v~LLmtSh)P$w5lQNi z$y^bmqt};~OI_Mkr;w*mk#fZm3BZbb*M_G8zO?BhEQ{%Bsz^poruAp_1RSy|q=tx! zd#+0(06zh7w9m1Lu?&W?FNu3|@c!Y2C9F(WcY4iQv#ptE@HO11f%SBWslxb^i07^Q z&Di(#K`))(Sz6}Wizu0{^PL}Tt{6SL_b(qgM{ka4)x}t01S)ZwIlB$=DM0hkSC!AD z5|8kQE%MR!R|d(CrLqCsk-^X|$+hu9<@U6VPo=_a$*(Fl_edGp*gzUmaYYU5_M;ld zNz6pE<5Q7hg4kf)<=@|X%i4m+J~WpXqIAyf8flOrDO%oSo^c3sR2#B$9|qTbv>vOk zwYPgzbmhr(wkK(Ey0#uiNLq)ApsLMxI-XMZY=Xi@y*DRWoxQv z+SLbp*`ze_L^N?KNpa=(NCB>}uh94kyZWDaU|;e5v==-6F@NxMLuKGc2dV#DD4}}* z?QvMY)KVOsu{-H1;mKO0WMWQw!08SLci3un7D32?KRC-+M};51xa`$Q_IXDEO112hs4rDN>Ir(vl_+s7})<*@MP97oLHk;!S49 z)wQSg24x2NGcJ&#JH&nLeD{wKQegH4rb>M7aHGRY90|G|88b4*VM!g%5G$|PjiDhd zC6x=(jLf0|;aX)>se2E}K~1b$V{7B-^!oJc=|Y8Rs$(JYRMbf+CuK&nQ`GH>YKhgH zitfH^jH=#Pbwa5tvM-O6p-e^=Lfw{_sbjDX*HNl!=uSf5OI%ytN|KHN6K~pq*Ikat z-N)hwlXqCpH}i+v>YMCu5BK}yhp*+Mi^tvky5IFQxKH+qLzy3J9VwtxR zI{%|4ob)ACPfl0E|H*~l$&E;E+bN9@(?xvfClUbe4qo^0|G7Oqd@L82!1*q4mD4ub z!X74`@RL0)rlOw(Q9H>rv}HA`~I%fDH6_JFa+dKYy>eF3R4{{!O@o^g-0_ zWYxa+y<0c%ZTHS&L7wY_z&&Kf`&C~>=+D_NtCpgHX8o0gP2Fsp(QP@Pv%Js7`p13B z`Ebc`%`c$W+k+EEg00WXpY!%^JtF;T+s%xa8u~{MZ;#KLPl6fky7&40l5uMB1!khd zAVS18bFnEX5jAvnY-)sY2w1YmSQ!bVe8WKH7&|e;as%whzFIy>Tir(H!{)g&a}UEd z4E!hBLpEQ#o`78e!Z0Er&K5}tDc%-|`9A|)J!?p2NOtgOiIQAi7&yLGuHot#;;+mA z%e-BDmGNIwpl)Po8bO9TahFT$>s&XnM7IO)zCW-%BKTRkkwKtTgblGZ!U7Eoqy3p9 zsY8u@j|GcBRc_!FBpPQfTBvNeICQ1-KdV_yHbg>_L3K;k6)xeJ4?!=;6$jH)@91j8e{#LoQL7 z$c;~RFF~E(fZ)pb@LTyl5%gLm#PQ6L%CQ5EWO$kxfX3_yisOrgsIhUmr;2>O z$oISqynAAzNrcfz^uI&mKf@IJH*&mr?u|42s-fO23*6Wu=dHrMw9&YD^P^zpZxai4 zX8v($gVsy9;aS&Bt-0Y!u8sziF=|Dr z$>MjQO7oxYAeuDUA4N8W4VDHUtjFVM-y`izs1^Qf%vbfa*#o&xCbP^00MK#Gr;r>U z)_w}kT*6rNs6B&BN2;L@8_Ao-wNN5i_|6BzabK%SO)7%BSVrU0Oj<{Qwp+(K!RY{J zf7+675(&J4F^9L*4%lV?imZhY=ge1f5{4+)fs-apKCarz3iLATF*3|#KEn8MyLi$y zfvO($G>(7Eo|YY6AZBhBy^)m=r|pa^$6=k!AZ}-<$e6*7Et>&&6EMD#To?MX~X&*)$D#SLzN&(kVM4$v3rfBgR*Z%Or>~TM0J+sHlwgC!nd6_9uXNd>j)E z^$X0y-$sfvlOSt15T>Z4hRIp406dg&_S2)6;eZecM|rV4hRGou1=EXlXGLsjM|&i% zpNvzUvgbTS0FtK8_w;^+^@NT~esk8Qo4l?SS zc2y10gS7{b*T=VqSNBR8yqvSGP%lyGc5|Dlbx$GhB__^y$T`X8{mzCTpI3+$3Gra} zZ-*(DEYV0;2Ns^oowMYa+CR9`1C8l~xQc`$#M5O+wYv!~MOr*JT=IchA&GXmQ9&j; zpzGRg;38TJPkq*EW#eP~)s=`M6>9?i&#Ymcv_|rDTLKo($XCtFf>d3C&C{|0d3um_ zSo{|pNbf3PKi~0*%teTzkcFDnsn>sP&gwzW!DBqN1$xi*>qRpM{Isp{@v4~7Pey?9 zZ0gf9sa;0D=;wK23k3j~5T|TeY@TCg4a67pOAK$>TC1x9u+jeAzd1#R~NS_SqE zzn^IQ{^Fhm-xw#sG%k_Jau%2kXgV`zFrQv3EgvqB4_cwadD29AKL}}dop=5H((KL2 z`u_E{5un*^f3dXY)6#K=cGvtB{GcCgyT$kK#0utL54G9Z|8gQ?h`$7j<$sjUzkL?} zt#q>fCo3A%(6vS9LifI|xiP*|i1GIRP$eOkN=$~c_+g7RE*UOa&11X6R5U{P|DDK<)@@AM=tU{Gws-0oRk!MHOS{?tdk z_ybQMM=;2(AV=7S2E?#4gn)HYUQ}hPR$MieYlB7H2VZ=N1s3|CTut0|7 zf&nQVs*8l2eRM<+*RCN?Nv4#8Bnz5)%1%)=nfz+2>HKe7@Z+ z81yu&%F9(R_#%E;fNVQ{yHC+&9?()w^#XNX&iN#%aH;(MJsv;{V` zrG&P1P4$94n1EY7Zpfz>FAKpHn=(HeRpdye_Ckiey>k<_QoDyGKGx*T#qq-Oxes>x zVh}Eqc9S0cHY4L&8bWo7P%_7`HY?$C1=r@F3-$T+^-ea6C!Uj-oY#=o0+6YB`Ox8Ocw&~i1q;?m5$olZ_4|;3IwiJZwH7~z18ubzc-hAH`|0%2N@$Dui9@!g)aNV64AU4 z?AbD9mmVFyJ4ZB0?%15}IN&d55TzgG<1saxzwyb0_ zhS=~E`m1t$f9eM`dLY(OUy$D4J{Y(nf3JXw*XyCJRHDpM3|rBd1S-jm{uJ&sKW|!K zS9J5_l(Xc&RI~kF*5W_={CoF0tKaFnj#p55DGbgcMyI?uQ&3zJx`MQtbX}FwV~c)N z!tddeBg`l>EL>ja(HP`8n$v#p^cvBMHU3<1?Jt&0$+uH>ENQu5ANRHJ?8(tt7L(@d zq0L+RlrVMzvjCV+0XtHW} z>e8}XXA07?*-b(lwguNxVQut+OBx$;U91#W2`KkRc>dA$+nMdPni+rZCk>*eLn%Em zsbVR;2VIB3Kzbc|g$eu8U$ulju?mZZ-`*Tb``>c;8Lv4s@PLR`bcB;&$&JWK9la+8 zPmdqLH0M`w_0_Rpuz9qtWxl2bfTTXH9wp&YDMJPWd%wH7gHN!fTBt6#aiq63p7oWu zXdQFB>RXuSin5I7g0c2JwO>ypilzdm2kROMk8qN5Ww^p z3zn?83|N)}3ay)e1e?!p@6*4f0cN=$ZnP@Jp_!Tj0h}gIn(D)Nb}_LztmU=Tb;(i; zhS87o=EZ1djT}WfX~qOLc-c|}m4VJY_E|{L{>eEKXSFR*SiG{JzsS1ilE;KVfBAE& z3`?W!X$=30i*KD`hv!nbJ;S<=JGIa5bluAMqQX>%Q*Bcn{DL%{Z}v#pG6z-tUmJ(m z|EqBbKgHMrlp4s&@*izgYm@ln@#`(OS2YTgVdYx(p=yDgaic(+Gj0t@es`#+BG@f?<+38odWe?B^uIFHPf_c z%%;xSr$4ORzs~-u5e*oBp7-gcG0?qpf$7g|m-Xz*xLaHe%{8C5XYH;v)nDWrGNJ5T zVpCh2QxG)!n8HCDki7_!eai^N7s-Z0XnK?h2=b!V%Nf$)b; z$vVLHb?b7|S=Gniojwg-@GuM}mUBkU?Vnv+Q$^BkXlOZ3mygq?+SeJTt9oo_%L@0n zw>b=n^85z%C_Ia6PY)dLm+0Lib=WM+aa2Yw_BX)A|Apkfqo&OmIn5nZCU~4OgFLZUPKE5o9#HK>uukJ6GRS z0dpjWDfg>B?L-6oxT;lRc*M?JoWQo6L54Q2w{UE+gqB;8= z*c^PNO4+bF0MEO>5^GpethEA=>4)SIj(q(M1Y-yy@=FP9tk9~m!CXv_ev+9Ft zOP?-rh$@LsB{beVGU6)|AjnU!oo`4YlIo6d0Y*px{<1FZ#an)yS7WHHLa8=k_j8m# zIDP*dPi8;PWZz$ktS3FwjN*(Me8n~#*|;d(-5cz>i*3ejKq)prQ3jE;4myx|ojIY5 zYAR3J2q{dT?rUI;zldYRXqJlR*W|XdyE1Po+zGj3r^*f$3I8%n1{yHpC##8ld{hG8 zVSQgTk(5QzBJqzH(b)=);Y$>;cQohkeITr##{1wwgW&V{PB^8sME zv7}XR(O_tgu#Eb$bB1ZPX)-MX+^R`|6aUYE%d5GU)%1*;b@5+KtM=NF~oz7*SpHc<#GyH8AgrInhfMVs%|3`@Iz zpJ;8sZ}pe#mF$;v7ie*0@r@$HoDh#KGQUwL+gbRAKbxP|_1TM7n(!rp5Y@;C9ZWOgdj^9OF1(i7Jsv z<#X1HkzBVM#we&e)B*Sfr_8*dAz%^)(>5enB$BaTaWC5=Ioniw2EZ5RVaq7S1@`S{ z@&K#=kNN&=hxd_eK8`;1`*4IeD$qFE=eEe@)8pL2&ANZ zXx2^Z&UFhlnC*taZA|Yc6J4EEuWd&F9^tI5bhC((gmTnd$>a6b5l5h{fsBf#H=#h# zFD();0oi;ngLJB5Lr@}KX2ApDy44v!h!m8MN1uj0E9FmD{l`u)cWc3z)Q`tM*~GLz zt0$yq)1YJoz|nYjpCf0}V3u?RO`~T#VZ~h74LhUw^Dns8R&GZizIg^tTpJq&FfM{m zBtlMDGubjPEoGUGX3x;f(=UUcKAHegUl5?T<}vZN;5}@~VmZsyyRMIx>B;n>6mNSh z7S;Wnhujl|+_b8B!Ke+gpqlIsz!oC*`~ie2e_WV)Y2uj=v)Wb^VAsAuSag38E?c}{ zP0Xj{*EGpRHKjalk!hGuLZUyRbf@g7g_cyh(nU%{IMC^Ul@Y@VEmQwa>3{R zh+;H*u!L)W$%ShdDG|<)wFe`Y5VwXYY;Zp6=_uKMSGWCMUtkhF9*QoOKu`pds^s!} zCKn{=gu!DYHuV5H(ienfWjkdZ0LOFv>W(7zgpExxS3H*?kQ-Eq$EVDcVnwyHpy3xb zuR?-AuAr2`!FK2i;zEDv<+!#C59!^r*<5&Ue}oML zqjRJeZ=xA7>oW?EF*NaTj1o*#?KgckZ9Wo=SGDbkOa++vgKzHn%N>p2Wtn%rK4?h$ z8CYDK0A1KrN_Rl9B3*gCP@3Zh{8p1$2%J9~fvr zD}5^2s#$!b(bt0Oy@5r$`lXl#3{nUP%29KV#t!uy7zp<9k_53X+6xRkdkI(K*ZIx3 zbyl^NhcNJouLw$Eo+jrfK;Ru|jG@Z(5eet+aHJNKsN2;uT#3lSy`uV{ltHAmp8+l4 zQt}$|`9Wh&xU8{0t*?Lh!7-hprThFnLX-)5buX52MM7% zV6XYULwzmDI;%g*+RA_G1iLF2D`!V6YYVI#pS_@&6*Yf=SRnz&3^kZ$7S;T`Rk%&O z*0F-1M2V2ZaEZA!f>G2@m^AH|@ew2@L)Q#DXG_^D60*Hd(!3eJp~sX-Q5_#jeCLkb zNT;b%dQTJ7yA<+UDFH(!X#3odp;@W=Ia?93NjRXw+mkkMzq{k>--%sJ`r5LNz80S4KF`I{oKLnO+A zJ+T7_s%Yp$&lHAYU=I|b;15(%idy9#vMy!5S*%E4cFJO9@MV4(td_}=;2V)5ePC>= z_%P5DD)vr2q$a9~zhi3=GzqwhYmqbwiWtx=$^G79SuNJY- zfR8#?AQTN9a;A81)xj)cWT*eZ7@>rPi%E*r+&WW>*4i=|6r3~?#w~0> z;XwM=D=agT3_^{Rs$e0=FKJ|y+Szc%uwsuGc;Iy8_}l$0Fe|H0+3(_FYq)?yuidRn zkzh@>g~y{iHh6Lq+vsZ=)$9hF#wEtR^wtNCoR^N$=Fs0dpX0)t{f6?&rWC~~)i*a2 zqhGqUc9h+ir_Xd#;T)-3OEx&vv*aLx+|o%{l%aU5e0(Jh2bhsluQ zv$xtJ)agD9MTl?JEl(gbj(j^aH%bk!6Q<6k2Zp2)*7FlbarAd({@%?Cl#ezeB)e7K z=_0>}W6A1*=h%8loFJcN9Oh-}$tYXD0V!qOI}3+Ih_Oz4;D=w7;C6&irmvwGb#{js z?dY-H4lM{JoFcX-u*9goKm{6gl!zB8x|uTSVUVmlI$JIyA|{JuD696o-%sx@tZu3Z4kj)Y2v3Zr^>8f2Gm%G0nJoavg7+@nN;(i|O0gnp& zKH_~5FG6P}FyoyDzX|mtsUB11aGWfO4u76Hqv9{BUe^h{+;&Q@v8oj8b4%3txZOX! zSJ?X7dbXeGTh6Q_nrH8H_mge+yPLk&wQS4gJni%*sZv!wd&Q;4@|*G}K30m;8)`YJ z|B;K*q!^)pOv68i(6Vh*91cQ;09GS*U7H56LFFk$C4Y5#C|7DRzExYbIm{=oSD?rA zTi?}i5F!~?ePd!vy8Q!heJTSct+?!bh?!dc8o296=T*vyS6#=5A_3I%qrir0%jVN` zi}WNa1DIeZll1#P86Y7q>F*dySy#6RzoIf*Rd~EV`g5{Ckbh&Mgpue;2b#0Jzvjxu z6=}Ml++l2EGKr^5j?aodC}a|{8Cp8zGA0i^ljyZfnk-5-^e5D>R z9P>BE9)lKkY+Kj3`j-asDo)1KYEQ3U=)0HVh#W|tA+zA#~{ z-|l4h#IR?hXJLT;TBfPsS|~5VJV+>|Ra(zg8C2?E$nFy*a$d~~aWsgURzjV^Myxpx zJ)mj>1-hJ-*_8&KLB)Ll7d}Au{4JL5%;_embQ<)sI}rm!2AE2XD>HC`t@H{jo}id( z)8QX{QvANLd^r+~PhD*vBlh!8JgUD#*H;^X_*7MiOhM4lJ6SG+c>8A=F-umIah?H6 z)nvjlRk80>aIhq%e^D(vHlr}{ z&i5CdkFwf3W7^gY*Une}C&_CXlXcZu@Ak=ZtD#=y#)NV5;5w<5n71+xw4uAN9|PD2 zDPL}&YX7UC!NK`oZ$hO6x`WaH*}48hbzZyV8@C|?#6Q2m8OqV*PVT+ipY$`Dd6+}5 zK)ST~@;g0~XiKg4{S`iuJb8^tV z=*2D3qkKJ7mbEz2`Mll^xd7>X?cGs@%rw#2Wk>xZa6j?+CdI!4-@5b6j8PPad>R@C zJsNPgSI8?u%pAM%x3N`ahq)AA%d_QTZWU=@j^{*C=9FMltcVJRJygMIC&Sm0nIg}Q zb288T+klFMtgO8vXk)y=k3_~)6{k*!o&F)Kd-mv1-WHe{ zL@fsGHmtFu9eOqTU=HkBLvDuN*pTKyNS{r!tbKzsL{&amQAxr)(zPZq8~r6792LME zu7H3=5en|z4kAe6F5>=*d$THqr6+sEJaH*zdmv`164lFGQ{j*Pj7Y~tvr3W2M|&@D zNwzLUM!~n5VfW5bu7<-sw_L4@MvU2Wc*7F<*m9!_pQN$sCGHPgYES2oh6stHc>SV; zaq)qw?EVI@%%Vh$*j_996gGKd^9q-a(+VH1JZ0ZS#74`iW3}Z;lh#xu4oikY{u_8= zQebs!#~^w|*;&`_@n=0YE^iJoVofvwf+A~s+&ME2MTcyOATy~b7X)aj)H)hWkGj$5 zvlI_%03BG~jw}vDRnS5gOkkX_q$(6C9L88}t)7L3ECsQzJm?{&-;I`rX0T{%Uoh(! z9O_Fb4H#Aqz$+(tfpgs8I>^(W-c+Me&a}GP}KxFgY&ro zld`FX?`PFm?2V*_e&d3*Z&hU_9;yqgYU79%YhQ7G(bbK?z&k5SZNh54=n?vb32kPL zMptFLC$`>YgVfa9gBLumO+BRw2k>O5?hWqDj?O7 zY(qH)x#?!~&alQUWC!WtZR=OC*0D>D`8^=zV=LR#z>G)x`_wO`&)b?&+|PR}#~hAl zOeV1oM=`e2R?n3@qth~R0o8{dBs6-kvse8LRj~t?R$UgG`PCXF951E> zmZRdPkCuFiHS(!%<$Cv~q~|KXF&b45!nSy_h2QYV?`SI0Lal~cu>SDr$@4hB5;A2FaJ*pI8itu z2!=RI&>D)5?@ph1Z~8M|W(cyMZgVSX4}=0Q%LJ>C_*`yX1;_6bk8;p%4h^Vpa>|7j zgIs<@vXA5LWQO(^)9-z1-C55;YG=5d;4_kia_S8@J0$*N^+5mD-;*G*5o5YWTqiE~ zxUS#~-c5w_DR^>fsmx448~zFH_jyRnimq=qC{tIV`Jl?#f!v42&f~3sW85iO?&jT% zNJr@@#FeI~h1}*Kc!j{YY~ly%z2x;AXXeek?j4=U){v*ov;Z{y^pFe#_RAli?N>i) zsexjC0n|hZ6hJCEIXn8qiC>R%>!R@sGAau)3+x1O6uG|@PzQV35s%F>=>eKI?T={< zMo?T3&vkhI5t1Wz96a^XS}#u)qk5~sz9WOur6ZkspLIlD{U3sU%n}2Jp+UHMy@|Z( zW|s+eN=fn!NKmPNKv}jO+S!JTrdop?BaniFQ#%0qk3j$Iu7QIB&dNHsB@G>UW0FD1 z5ZnIE?_Y&hwyRK}mMZNwKWi?Lv%hV+~2PXemcES^?q;HT&`!^po(F{J+m+^azvAIt zkTQ5$vT;l&uc;orwq(*K-lOZs#8CUAmHC$CCp$DZtgl)fi0DF`*UKM`P;$j^x~d$v zC$6rzL~;>ej^-{6svM?gGQPdn{%mh+u)2Kfdie5T$1iI+kaTD`iTnT^A>^WAf!_8}KQonFJzP#2qHPreQz+`Oye=TMN$7MDoI3b=2rWkm;%WP59TB$@ z+!**4@T9aoL))C;-~egsYo{9^pJ1qN4!MnIEj9(B*;$R&b^0y(j-u_A`(aVh=lTo* zBIarUyub>)@sqQ6*t@y-(M;mV?*p4WQTjoc?t$Ru`WjM`R_Jp#sezoXvTl(l;R*sV zIyo|2AtQ=5n+NDOR=@vzJ$Aq= zZ`7t^(y{-k(`6OwHN_lGFJ&06yFN5^W`#=-XTUR$xHJWX^=%&!7@1j0;OHT=2N;OP zly>aQc3i&^tRe8%v_^w-!5W5bj)p&714{uMc+UEf{X35T)^0HNbN6W;nvcUeKe5{6 zx?Iq$Z4Qvl!SCXjyTqLm{eAC+1C1m5czfqm0IL$b>qr&BaLt5e@+~F}T64`MV%s<( zBg_%9H|(JvMj(?NW=_Fx>mS_}-h6sV*sAOJQe$}O|H-^8efl-giVi~Drr63S1a8fxU;vN*_#Ka!SL$aA*lEU8ENg9cvx>IQ??elXnS>U7@b)Dv_L6YX$mRf-Su&u=Jx4)8OYwJwoj_S{L%n@xXpXym4UI5k$d&rG7Hh zyn~8dF3G29p-u|~Wj>eRw;92zHVE%fFc3nEAy-D4z~&nkVJGx*1MH)_k-Y$;0ujWV z^Q41c*8Ss(oL(6xqhvdGTRd@p9c-IZ*UKL*|B)ht#8*EJB)IX15pZflNJjRuPI^${ zF#}3PmNF6KAmioZSrb9c7(}C}`Md%1;7x$6!Q{F2(`rHYr^zzE z7~eDbP-45p#|^#D8CW>MbYcSF@;8p`6LQ+kduv`0Nv7kOV$|x{)h*^d!+n&ukvy+p zA#sIZFf6%lG;b{QilHnGEK8)Z-UBo6F%M!qef4=RN$-==AorMV^jW~@%eHC&Xi+mi z`0$j{zjm)zW~6prWn`$EP^D6+kOsjnGkl>@lS%GFLya^ue5Zs%Luo-z248HH0hqj> zvl(3wtQZjr_CXYpp<*E&a6t*?1jdsH4MnlC7*R9vcOeQAkp{Kls2EXVfLsq$2t3-l zCdeR{k*k(Occ8Z!J~TjDQ)4yZH<%^17?I$)iNbWyI{)oC3d*cfZ*`$Qg)iW)Ak-P zJqi1DkiY6X0n-=AUnXiN`Trc%6#)`MethM9YR(t_35zaKzVcNGY47@qeNT2j&n;&u z0c@8Akj=lsQw2TT<#;nw`IikLcvyts_Xo3|_d6Fw0gSpd#E#$9*HAb9vXJ|)yb&u# z#ozsZZ;$>hl-5-u!hdNHsABrDIl;q_MXjQKn$QAn@g(wP4JnN{>jwsUrN_n8T)7eE zh$>xuGIZ=XGaQ-E$VgkQtMEu6nDM;vQ%u4>(B2K*7=5@!jVcJ}1tB1tHr3!?T0@-_lxBS=gX?5#%rVoLgE{LnoR&{`{Y2N^3CQ(r|5tv{7>2kM5GVf&{bqi)pnO+-} z?3Qx?*unAs5n~R^6-b4=BukFg7y^Ajo9&E`K@tdu1#zF)lyMxe7ho8IoN}^xGsJ8Y z;5_)?A|6Ffl%ew()OHR6<$oCO;G$roK$XXlCuldHrQ_UaR-6?-GOI1wN_Q$|9JvJ) z-K=QD$rIa&)|$zp?|&C{phBoiy0C3Si@+~R)yD4yaw&<9h>14Kb1)2LO)A-VsX(>} zXfAzdsW5A8@wStSz=G41`1Z2CzyCFdEt|k0!Km6I!_4(5O#WNtthr-iHiifPcZF~w za8o=+hZk>+rw-`2C5IxB;!KXJ?A<@3cY0Lx}QgYhLq`LZhS&ZetZRq zp#009IC?h^8>YSFx<+&hoQo>K7N*_gY1iPTU_zjY7*WI+C*tTvCjSbdd*|(__JsSD z=Z_dDCk0mYj*0v!FhY!D(bPt7pcCVstGnG`XvE&t)H(EMvIMSiL@EBb8=?*H8A9#e ztesc|8=2ux$8w&-CZ8wIocTq%Y~_Wy-5VC^qWx$FqiJTbu7kLB*hpc|;fcM|H_?=) zJI=+6=F{@SnW*c+x3iIf$rH1gHD>fwRr}+egYTCGSV4?;)d@%{5L0j6U8wovxMv7r|JsW3%5z3(YQ~gs%Xh!!eN$}pi_yY)L|6fRUEt#JJCFr^ z-{%_w?eCjyT29pe2hQPO`)@dhB>IP+!oteT@qf=&Y_8x=Id6$S-qso3Kvy^JdkI+E zAZAs1a%@c6ud2T#9s?!)j(~w$B%;)Md%qbAAfePmA=RcKjL5}CDD`<~TH0YjN}7sH z|2#_J4A{%*^Zuhg5}EAPtS&dp@QeGDem(MqTLVJ-G|8Yb&-|_nV9fG$^Esxmm)H0H zS9);Dn1n*;Y(D-Shm@k}q{_e_HHqto%OZNr9X7%Cq$@8=-yEvU_rr4OGqDVw3x*PD zR%^Q0yvT?o(MjDgX5(98&Qh2Qa@A_kS81_5^|(-GJ{8UlV=Qr{p9VJje z>G^S5lkx$YBW0KdaL0jR;+Xs+3CPnx+cTB^Yk#{Y)o zMk*EH*j`twf{66_qyFxPGkh%Tl_@ag)^hPXnp&>B|Al>M{@aeC|+*_OU2&-26?5^aYRF-NB&>=EmS&=mUH2ic02^h?hRj?o4@ zeMkz)2HhF+1nFUAITMad(8WMrh)_yFZTz&ZVZoHJEpi02s&}h$hbel`!F*a7npO^A z*V;r??-!^7QUI=Kc_8QpN7-z$4K6LsWy&=L{2n}DYq5iYG;TX27lP5LXN$WSJ!4Z_ zRQsey-)_|kAkj)H1vW(wc-BD&QtY4q!-X8tNBtS^TPU@8SsA<#% z`Xwpt!n5o`E60EQ>m9R+6+9){aGi67qmdPOhWcEER_>z-AS8qOieVnFOEbWf%y-8S zhhquYr2LvkWHE-h&5#@D*v?FAlJQB9Ndf2@e8r}N%)`Z}@+%eN*g~CW=~Tg2}~<*KyqHhWlU&^6IO>dRW3u+8)oF`UtKL$J6RP zwLp`5vi-KhbiHSo8TZBy!C7tUscbA>5t@K1jVN>X?8N&|Wd^{?}-!)N~W#=vrS=Tm0M~eQ~*>2MAfk zNQo>nGvw-}BFOCW)LZ(EMj0&om%fT?X&QK-G^3heLj$^7@WM_9x zm$hCR6(MY8r&n)vWvCcf`X6Oo0$9aO3)xC*v8qDXFx?y-Mdlxo8gE_#UIGy^8`QkR z2Q0>>eTbwwh;x-1++~!Fr+mOeJpR+o9BhS);q^}D1giJ5vqF_)S&1n(A$N_v;_|hL`;LOVPmc0AZX91C=8|*?j<=FJ~O=tVNyB zID7vV&|yQxY4Dp>8YH$ns{oz*<&zP$-!lQBHMPj|S3@DY0r9QBZGFK&36nTJx^4Qo z5hP<76uTqkUQrLj`nn*xHECQp3X;*dCrV{9lp?!Gqj?oMBzF}=w`Rc3>GZWrtzkToSHC!-!fXFuzsCu9ju{Pw z`|fX$;KPoByWPJ8+#bRl&+8nB zm%4kURthsFML~#gf!9REf)mFd)mg ztI!P7Nwq|hKT+ue$C-t0XcUW>gC?+;$CV!WJO;L>3=&co-E|CpKx<-ysZv5?ata^i zy7@7xRJ!p=jB?7XcRo6=sGo%C8FIVI%gTk#8}P4Nk?!(h%~H*0pZkjd=z<*hi*b=~ z=gYJvFmd;D+yELg?_J0DE$Lp1Ua))nf1mqDLWBRL z3nDJ6Ru{TetZY0QK8by6<`0{Ri|YX|0W^1f`lep3pct~J;aMg7NfAkg+9`w zg924MxE|T@eI=FkCRRT(G6+NN?>Ci_gMCQvCP%+INC3yS^g`m{3Fg1u<(yzgjiJ6Y&&t}~S52d+c9*l6` zdo*Uuk*9CMY&FETn71V%);NW!NKY>M0ZcFs8eow&LitztMy{l3^?cq}0ir35hJeN)0OijKBOfczZq$aU^4rV3Xh(tw#AwqgFS*8m8#irv8dbIDmO^^~=-hw56_JVI% z*;3>c zO)Xu!`fZNxo%M`7Be!7p8_PLH57NbrB>wZH$J#m(RftGqinD^2N$`vws|bWGl!F*6 zEuf;i)LG6fTLkRG6OyeJHZ4{(W77C>G&ex}L{L(CuVg_!MGjb8?3GsK%L4X>0vJpy{f41V`{KYn_5V-WM;xP5hHAw+O+>-E0VzlGV?tFm*#iQNq!GKtXN-6oo+7ICd?g}FcHqQCJ_dvHZuV`<4@O-@ zRawd*zV+fX^?^KaNIJ^qL?slDJ&E$*j~KAN6K$^eQ1sLZGQiseDMh=+Ob1e+y?AHZ zTse~g(`~LEDhs66riLOA!TjKUlUTYs5P#_=z5R6m;j;W4SZ6rxqe__}1dO3Go-~$x z=9kzyt~~F}>!EFR$~ZVS&O57PANZ5R;Vfv;r-+^kt-3E$*hJ9Gb zj^qAbFvzZx9IHTkGU*Y0`td z3#tXq7v{L!M1@�Q&pSWDF#!h-`nL*Gw>_7tHEh3f!2Ncgo#SJaDrf61&|5-y}(` zI>}zC<_g}%2`L&E=v>Z4htH(i2Tj=AkpSdqKA1~>k^GR)NdrL~kvF`_gFx@v@@=?D z4-Oyn0Si`&{oqBiVmas^% z^CijgPN=$hS6ODXwiHE&CobOns9eEHCNR^L;o?iQbRm*JA#nrEe&GcqCuK!uf1ZTe z$|P(T_nb?)uy9$v{Tq7!cNH4c>sq9*E?awUl93}(*$6~)DN$5TW<{D~Ih^sY95c1~b#K_9=jA~9#&ueM$>t!K_ z4{kwM$?Yn2_E%Qh50pRG8^|OZmE^JP!nHs$0_G7tf%tO*1cUr$HA5<+HTuDSN%Y?Dqxlq(Bf{G}?b zs78J;%*4fUlV{Of{KDU1IPWFMkozlKiqc$F9I6^h6eQUS6_OedqXcv&029)IBnkxl10!}LQ=C8y#FgLJ5o(0O-P-UTup+r$%RG`!pBf>~O8xS*6zH=cRC~^u^0g@<^P$mh|1e5~+ zMu_ad7a0nP$w&noDuTS49t=6e$&84VvqtF$c@(Z?0#j3D z2qPi!d#Qm9>LCC8D559m9~4p_zz{*-kTauxn+7SbpDB+Z~k* z$)JEq+qW9Y{ionjfrW~Vj6}i4MGLUO!XI9zMiUhV?oHe$$nCpOnIpO+#{+=E=?Hg7 zS5Z!RlcOXts%JXdv3WsvBa~2hki`NkysyzBasps`xp@@8D3QGm{)N@HEe8n(^omuZ z=nh*!?%SD4oLywV4p%Bxb)-8TxzC%;w5=I2* zoJLO^j~q$FtqQj)2jb5~U>Bry}}Kf4zVo`>$)Vq zvU~$u>(tJ4Xu1S4<{YHdt3!O1DIqjCC;Qe?q#VAKCbu)ZN%fhbjI#hB|}Nujbnmq@{z4%W+t2&n&J zl=2fE6$;F|ZOVO;FawG4ph2~49k>Bm1$}yd!+u;pa|M)JlfELYNn)1LpHm-i7MJaj zq^u8tdAM%TtS>ZY;G=bbY5hTwzmrvLO7qc znB**8v{W0n>2~??Gm8tB2w+eAWr99yG#w>1g`4kjxiJ7uAWKkkNe&4WJAhi(NPuubt@|Hi)ts6R2H9{qX2CB4=>X_&eXM}Q8gj^Lp^n9l@j%}& zfl1pej!^3Y1p(c(SAzU`FZ=M?X%|HC^-&-cN*?ad(JbH(e-tSFrkNHAY zCRmh>6M#KuyBV=RzOwtpKy`Pf>HXNir=ebg_(#Cxz7cf048L2GgP^_N30?h&I#!iA zNW_Us@F|T}TUcEU7E(xL5~qG|<3cJbjY z3EqT7XGY&hTAmBx^Wd;LseUFj7$t*j-yK}6sZrKJesw{u6=$?P`S?S*+wH;rD9_B=@FSD55n#cgv?uFjS_(>*|;iGg~I4F92mIlweSxE4xKrwSam)@XVdLEG@c!a ziUveQ(_zk0vfy|$D@ep%kO}fMjHg?mU}Ld3&FfM!_e|`4Go)e7pd^uXxv?`^%4cki zC+*|$ps~<$GCMKq%oUp=8g+~66 zg1NYvv;Oc$6!_I_vowOkB-716#@N|+40_@g2xOs2(z){D%Mj;8OgtEx)`0dlq4KMVIVtjl93>eMI;kr{P-&Aq%!dcGb#DnbH$k2XByCIubZr9Tx_ z>*k@r^|kNUb+?j6#Z%9#RZ2U7Mv(<8qTLyp?m={CtG%=6NpGy24Lf)X)>_5Xpb2TtJ9Tz=w z{!EvP;V}VopEcE5bI-bBxC!6rhs8u3Pe4^~_0GqPWXC!m2Ow+RCo?x?tA!|2=(i&N z-u)wlJV$}`lL#NYxB5|1-nFPN`g9HvTE0MYIYO*ddsG0>5vw)AV)u)Myo+yz^b0jT|xv}+K*s8$^M)%*slj;m(M=>|P z=Pd60uq7E}id#;0F%1utK?MuVw2M>u>p2ASAGs2JVpVzkqI|&v|3bfIs>$DMf$WB_ zhPUKaT|y{VkW)|R^KS+ZXXm(6%^7|*CgF?F2(!7ISD!U_e0Cmcy8~7{bamj`dk=0F7W z3dI#%0OO5sBCcA`3Lzb4%^}BhEw>MAB6^?c2!IIr)+*8wRAyjIzL=X>hUxN?w@MVt zP}ze!bufU#$QehEaAy(>!0i^9gUd~-zJOlHis>p~GpIjy04RX6_S_E~XZ&J${RK9i zXx@D6(Ela3CLatobr!vuELHn}5n_59a+pie??8IKO2Kl&HO514|8{@Gx5lnJ-I4y# z6lDV&CR|3B8!Hn)r^}7sQ$dUqU9-!(t&5K*u9&!p_%#GY9r8R1P@TG4d;1=H7YIq^ zUn5A(^Q%xv1u)3j(gw*SxfBgF&1_NBSqRuxA=?nfLJi2;Cgw{GG1)kTvf5kTgcpqx z6~>_AJ~WYOQO#*&(NS^&3FxhE>F^%Qz9a9Yx{P^-iZ5EN;GcFmDIfvvqJ~~F$1qsh?B_Q)0BG5B_2_f>g4$%)*+24OR=wlz zP2VGO;?f#2>)7wsx_IgQfj@9;yXO9+P0?$Xs1OD?J3H6*)Kkq}x|}0+3M3KSn&|f+ zbbHIyay@r&g9=!%*qo-_qh+UT_Z*gas5PC0J+ZajALkcj=_0QCvgrVI>*;g1+Hzo{ zAogZB0M4$|2u$2Y<}#mJH#z1swmUnj%-K%poV;L2R#Hmx?(FAlzmUqmj@ae7UKP`tu z)|$8$YkEQUmWx??+Go)48q?f}L|dm8W1=Ed00h?=r7x)_yq$9}PJ(bE$k=gb0nxz< zV6bu?{Mg>(>7?E6_M~7ijJ!)^dHgfNwN@gM!AZ-@TY62Kj-d@O94k9|O}#d!E9@Mm zC`Mr@-4}c*`wQ=h@~{6q__kUVD}6bt)P0-AI8{?uto_?`fUbGNtGqw~`rCOz=}~{- z0ao4}Q$(kB8D*Mu>^8kNT2H?HK3+LlZzmw+Kn8n)UTn1-w)TB?t6f=JpN{cq@B+X7 zg*`HjR2PBH@HU`y=NIP@H7<&fAWD@8eIM{VLeVrQtglhF_s6VeU0ks>($7Mi*X!0{ zyzpLC+W3~U?mzG{fVZP5?MRHKZs7h+0LUG~BGhXnjhno>&X6x6%dGzD2jL4P(TROQ zp^1|Uuc;2+Kh0Zj=>>#4ci1zZS9V-1FPh6P-;=VBUVZsMzPjU4+k4B{haAD%le>+T zt<7L5Ms%xO%5!V1ZFORUmXP{^7V<^z(D#{`R9~~Z>BA7CPj-Qq3&%Jv`QP|#0vPjx zLIppL!=Ub@&_1~kL2YUTj;NGfMn?2hzL^c~*vG*%1yl{Uz57w~(G${|%P?`u%Ku?{ z1vzd(du(wGX{u(yXX4=WOvrR~Lgw(~sYSbka6DDoOJ+)dJv17#4vgD!Z9{e0w-51p zw2zHG)gG*ZPm#loKlOCD4#zVl0A^|5R<%3errT1H+CG3Lzn(GHvhsS00y6>5H`WO8 zil{YN>gaqRPQBPo9$+F|YHWr>0h3wV6ehv-d1duG zK_`25SFu=bVPOX6B7Q8ul8jA7-V+m)%`RiCsFaYnN5kbnv-%&-#0q>;fMA}i_RTJN zTHfBBFM?yk5i+lQwm-*2+jGF@6zO>Q<_~s~<+e=|={Hqa^-7yTEs&y#OCojANq2(P zUVMhB_Ys7r83*c3-pi-UO;4BBwwBQu!MpR7xZHRMUlHtM#xrw5cf4U5@C!i+5)Uxv zGUnGlc!m)DeXsCH_ckK-fa|IlAx{fwBG3BrPB6g$Luk%IAYoM!ZUZo2V{E+;2wxe- z3KS@qIra_`QObSWl4!;P#=4{^#R540vnn{uUyEEhC`hX!eayP^82Z@syp(b(VbMfZ zM+Hz|?c%*~mHvRp_Rs$U7>=JSw3eqmjysj8gP$^{b%#VoT+?7s}4&48$*` z7JwK)q?(o2N3xR(aPHiDqDTaDNlvtV7%Lr3by0EgViy3mJ0~yFMtqz6Om-JH2;Ll< zs9m|ZdGj9ro$!HpztI3DK?wV_dhw^WkAVpZguqtfZaoFcOC zkYD%c9V-EOCfa`wW#tU~0wIUHdBk)6xf7c!IbgVD&DySZspTG17JUAlQSmowU*Pha>>*hhum13t?oS>|@@qe!PK*$|4JIA`$?zpkLTuYH&md$5 z{~{O><&7VM{sex2X!@%iwwE(8$`1UDi{pu=&YuAY_p{ZN?jao6J9Y2TF@?KrvvI|m zHZqO!$|J}2eQ|*kxj7yjUzL`hKb?5nW9*pE%iePk#h1S-tJD8V(NBpT(sJS%+yH`I zo*H1JRQb?D+1mmP?Zj0*S8o(p_PmdcRQ34>hM#@{BWzMMzq?0v>uATrV4~Grprw_evA6IwhlHb7G9XSgbSpp#OUcU)@ zKc25(-`&CNtWM~FX!Jh7jJ}*tubZ{6FAEFINy`xNC^=XH$N7ZoP+A~cVK}InAm?M( zl)esx$Rh+3ztE1v8U7BmgMuIO5~aq|ZGZy8V(>*~HL^N4Rz>9czXg5`Nrub!tlp)q z?2v$da`3V>bye~xXNy#$sJ_;K0ZVN9!#L-Q(62aC(>XfvEvMregntbaJCBlXTRI+dQu;^7N_FQuBDJY zWR9pC$zn{agc^0U@%C~d9-Nq8z^YuVmOLf|1{EY&v~VsCu#JGfg|NNfp}|EK#)j$xOUQxefXkMD>oi-=RVewdh27V%{0T+vAiWXZJ6@q zR2DYlSkiRTio<*|Z6aW8EJdK1o^+ZPkdJnMJvc>Vd_~siP!5Aw=U}FiZOx`9Fh`vP z07768CWf-Y&9I{#vPSS+?q^x~w^uf+-`CM*mgXbjB#7mn-MDn%3RWbn3oMOcr$%^B zCly9M{nhC!1`pZ!>*^iFq~lDyM+^}lcf{Z_y9U%Jx}Js!m0xCNssP=GiaGGF(zL}h zJ@_$ab@iGqX*%d77W2u$TN(iV%4jz|0Bw;$d3&!PW{Ik>$9xN$kfhfvE1~9yOAXx& zF~zT8jK23(c;DMts3)!|>_7KJ%OM#@%(CRa?3_8|VK9?fDftK}4k}BesoG z%Ti0L`rC)4%&{6Twx5+tq!{< zpx1=t?Ap6ES$0TPe5vx8inqjNK(6dTACV7|6iS}smaHRr!$($iRImg)xb)9kPJSj~ z{XE1KOzI0h&H{&}sE4KoYIPOYa%ZQChb{F+!-dQ3x-z6WEDvB4A}&A!A`|`hLr2Q+ z%U+rs(Q%an+g>%TZLK2pAwdPUHAF~wlvNdx1Hr0R^=pKsbckvDW`OB_X+Kyju&S4J zS#)L;rXn;uGyo9`38OgzIJEMp@Yc$r7ixW`SQv^rpI5O(Z&(AVCIjP14|}SNsY#cY z^@zEjoA={iDhwbHB6kEPe#IHbFk8(ADw}R945%W3xkH&Gv?R(K7{9+;8mUcR6?#%2 zY_M^pus^S{`T`mm5{DfLQz~!^#OUOA-$oQgS> zrbt*PbF3jHZ?hDuZG{9yXXIeM*m4b7q68I-^@O0xT^fMy=*d?&k~5y6T z{kILcF&k|yavd8yN7_FO-iCSFX1gAy9_c(p*u#>&`f`gMy42b375kMWeJ<36%HX#A z2$H0zunPda^Q2V7xd?zT7F@B`%z|c;x%5v(S|XTI^}Cp<|4o}uK*YczO)b57w6)Q& zgvW(WOO}?JnmuDrrKK1ILWVp7bn~Lc6iR?N_3WhylMI<=@f!_XTh}v1dNPGe6O)k` zq{ER71FSV}HWO6vgvAr+6R-msLESGMSQBN~EDB&Wsj|VYb!%@GAr;7i;f${3Y3G=u zv*K%#xY{U6_jTNpZ^-9OA67Wdj+|SDZzlpyJP`^Ys-P4iogP^LF@2Q*x=DrY&~MK- z@Ya(8zRIxD9$@O;&*=1EZrgXTzH_#JvGM^w6)fB2zgY{kHbT%IjNi`o1}Chsn{RHg z)dvLWMCRf$k2@vpaH#QxY_&Sv6}!w{bCnOyphB)O5=VCno%47GOAbAPW0WDlPp8hM zv<~QmGogkL0Szd?{3D*4w}HXNv(#DfaOLo~9M7uMp-xwuN{0o88Auz$B|=8cuh&!d zy7y%wUqfRyW2w6|UOkgzN(bC`iL!QcU;#KA`tK1{#j*I6!;UejN&0e~&8nZK&GZ+8 zr6OnjVt4s=je%qy4?`FO9;h#ii6qeT=t!a4#6&WXS{Als-y%C1#_ZNs3Nw=7Ema*6 zcp%-;V^B_bCDrcl@}yE0IzS}Ej%LNjld_$UoEe1pooq;#YZ=plG^@!7jgYC!4*|ha zToUmZYm&ewaIcV4y;Pe)xu`HpGaROw;E&GZ8VW(ff}KrwwN>5=)6pB(RH>^+KNbK? zvCsz;`BWjhg9`lo!#_bs=VfTvbwzDMFUICUScs{Bf10wepF!Z{xigf)1$dN-`6@G% z8?uO7d2xN~7sW#y^(O9QnCIUX1Nw>q4rceJ1Ga3Yt<=)i)Yn>Kx)FF{gqA6bIfu8f zNi;NzO7RsR;BEqCT_45ux7Rk(mhD5DoOI(KkVdCI)o0+tGQ{b>>cl#empU$hhW!@7 zxoc2sg84<`s{?lK%&+IhaZJ?ZL9Z+I?lJp^#1IF%_OWapF%2JsvTU0;0cM1Z)5t${ zG5h_b4i_BG_p>V?oGtT3wASJqvkc^dq zs(_H2tb?#s3_DBB2tK3%9BWJ8LG#ubhuHMoOAtK3Kqgf&aQSrB8~}UZ;fbY$OL&6+8aa+&jo9j zQ~rSBd%&!x*uTR8c*6uJBhOP@dSx8Sk0888MiHh~g&B`Xp$jA3tIiStQ73w$9so7L zLu!&S^K0jTXfs({UCRqiK!AlRwCy8GScF|i9X~}&1;{|DVn5ol!HhL^d$21%fQ6%{ zCbPm6y9&ga`pwpCgp)bJMWVYCwM?qLq*PblA^R@y!+}!)dhZUo+FLOS8nl#9tDk+J zL?3^6DtB{Y1e%&R#^bw}o*V40!JCSKn7izOciBuB^0g%{uZKzus#s!tadj=oq}rhv zJN!>M!dG#Pd}UO>0~@2P_3q^w;9E=-;Z*e*Chmcx;)A4=1Qbu!h|9l>pB3pnTnJdh zjBZ6|$LL}KA$|oB4~BaVz|IL?Q)W*MJagjHjap2R)tae&VL+Ls=}$GZsE!&^E=U$7 z=`+3CIBv0LAV*w0zPnB(S0~Q}kqzouy4^&H6xjhg^DEb%V77wywA17Xycn&>*`b)} zcO$p?JSGXe>l7bJ!ft{u7q00hm+nHM(-*h=RMi)NTG`w8^X7Ws05eDKoYmufRdQGH zL>Q7ntvw;;y~F)e{Kw3zB9iF84}@h;x$#R*Eah`P`A}%_(uP{c_mjANe1_Fjb52av zK*J_u4B*`O^pv=m&nNVraP+pb1-{Xr}jBdtJo zLW(l0x8im0;eMuCY`JS8Oi?j<5M9=p768E|z>guz7L06JN1u45r>??9H5+7qzgthE z>|!5)FAnI3p&uw|bL(jph)yrHe0-0(ZsJG)T}9)!@UXjO~ME?Wi4FE&u)O?Kk{N;R!7# z@(S8^M<#JC1SO!=rq08(ds+MCsdH^zQJK^$WM+gX=J-o52>71vn`=+`HsebXG_mlQm_&1(dZ*bXrwy&-hc?W49!@{Ia#YpGB`ve`E}w zxB20mtK3a+8cj&u@QZtVGW2ww6T_9BoS#A{xi`tFIjb!h<8MCZ)$biAlE_ookZx_r zJ3%GemC*Et;~Mxd!~WQl4Flxv%gS&SfZ#e6xHs`Ix=By@#=q}}4d`BUPZXO(V+6Hq zxKBx6+^QQ1x6%>DeToNN0dy#v zld(K<^Tn@q8;Uo4I^GE-#JaOPE1p7l$~K4*c8wj3-8$HPxP|R~_{Nm)@xBiA@GXH9~+W5nRCUVg=056Vw?a0@3$$%iIexlhgT^BmUhf7Jx$O@Wg^v z5i=VYQhQZ*h6Jb$l?Nea#YYa0vrOmgdD=+H@QP9LPaZCqxo&NHcW&Q9Q3j)rg=__S z)RTP##GzgLZphVDEU&Eu*i^4j&Ikg6tr=?(caBom(fvsR%R9(C8LOtdeE34Pi{EsB z)F*{N+7i+KvDiyP?**1e`|-a1G1&W$?e_mRJ?8vxo>5}&e}q05S=j!^C4EL$#^uLJ zulGZv{+YG15viLnoR1To{Hn%Q_lk02;31G$0>y?Zk*E0367c08n_IxiN|gXnblyK; z!Wawj9%#=h$kk3TKHyPztp5IVQdQThW|W^SIeRg1veHj>P=p&|7}8pfjmWPmFs<Hl1+e5}UE@wWcw*;8v~jX0IL7bzyU8pRw%aTx#ePFn~*|nz+ui zxd_&*In{k%J0DxA59ZUU&FtFBByLR^G7A@uUU|&jL;SWp$f>Z#tyt)`x?GUX_Urzn z81=8Mu3!E0+FNDe#-b~C%3@tr^@d&su!Ho5g|GckqvpBUW#Gb}sTjCp&FnlFxU%Nf zU6F$fR|f6xuRs078XA=#g^0HrkBDe;v9WdAFmmL`s@{|jliPV>&oP$N6VRCXbYDC7 zL>o}&cyi2Ug1!azSw1@;vBTxY39Gcn?59!xqZN(OhqLyV{I?OFp5)5b^B-agfZW$! z7c?Tl4d#%!rw-_L<<;A-Bt-ZO*75D7;uSl{zLSmeE9^cU`gY#TpJ}^Swo1|kK_kvC zai6y1iRYEF30LWk`GMoh(%u}`>_~Br4vOwx9cF>T#v?m}oz*Jb(m76-S#9Uucl9#4 z24IX$*ef)Xg-1p|C#Sc|zB)79@4s8}eeW2>TLCV$03rD!lyn+s z(Bt%KFXfzKE;dQcI%1c$@s=U=GU7a%(%y+4MqJNrAWbVbqA_%bUv20?O$4Jo1}Rn>3Wk}m3v3TAA?Q`gly&t{Ij znQ>c#1aKN*?!C^v{69=r4N(sP6MBeaM|{`Nz0Vl5Wu-o;biRPK$Q4va$3X^Z_=L_z+#%Xne<0Am2FU$!t3{cE6x zkY)+@G=|4MC@x94uxqzLbxWOsCg!)MY&gql(_Crikh~T0!jn~fk~Zg_JR6f?lWt4W znyy3jg|xJmkY6iGff`#;3e6lnE|`BC64J*^#|~Y)OK#fC!||m*ri(x*&~DdTy`Ml1 ztp?%r*t6Q!AMKKSzps({}y5t}K3ipr4@?my$Rl1PUrNYus|%wk0KjFczQf><=Fv?LXc+JZtD zfsU3IlM$DN^~`920SAUt>m-^7y4Z3>82V`otWpOm*m5c%fD~;}6}p}X#vy4zLAzgS zqAE2llvyx#$-j4#1M^e5B1-GgLQ=)1D{@e|F)nCt;Asz;GmX(3J7Y?TBT4iMNH@UE z$mHq|ZILm;;1twEl|gkV$bM93BG02GVOT`TR790ce4oFi1vNdx8YIoIHIpY(kXK|1 z+_07WLb|lX0n0#hEinUfrb#VeqCp!qQ4!W9Av2Xzf}#h0$VxSjBzrj2dhZ_xoblc-aOo1`1kE0$BJCJ_w~L0gZCOs12_PB19);i2{iWFYW>SEjaYJA zbtXPO|8<$Q#ZLoAE3!SQ?JPGbebwJ2v-q9;2>2u15bk3TG&~3i^PLlT&+8(#TJJj8 zx)aR1s|24({$>F#?WV{s-=z|6$hi|zL9B&}B<1$BlyUoLHT46>ds@1Vxs?Bl%@3=~*2pYrx zR85hahwYYFdM1s;gg>VXc5I$xOivqa;cTXn&x_tecqjgWSe&oyXP8_9b8lL+Yq)QE zSl;FK7xIBd{mR9)Mk&uM5MhuAF13J&WiZZ&R8hw7LOGhINJ0}(0uRzqU#)k0}0x89oxwU8{4*R8ynlU zCbn&DwAnb>cw?Iz+qQM`zURlOuj)Hh^P{J$yZ_8HQ}f(U_jMacD?pG}(^5yVSz9l2 z9H*D>OEOe>96U%8zsw*w76smN1;C-w90wcAB6Yw_y+Ra{2NhS*AkgQ6fr^#a&f7Eu|qxno1+-co8X(BGq2%xO2E6?HKUV0gxQ5^C7Uqv>@TDz(bSI53vRs{J}T zP=$T~s*TnD4W=$Ej9mz`c%^tEv?>P@m!k%z6DA}VGIdVrPa@32r*o5DiGm9Xalxv?wbNzoQRaa!DuM1VdR)jY0OBSwy5&4>{=<& zTw{jBQ8Vd*0m0S(Z5Pph)dsa9R5IO!fkfzEV_NWWWv=1~3W?B}ayStY;;j*XsBQ{I zE8(N~x_ubHj2fv}AHO>O(t@LgDv0Np;p?8W>;|oAsh0BCO@FOF9~z4m?TlkF@HI82 zA!(>cS4@qvips?zXI3luYcK9o8B1zlgjVvzwZaXl4_Xw5?n3oeXdvnHJU1}#GYG2? zQU8g*CwkhRVS0J+otK3vt12#(m&IE=V6LxYQ@!M%))QT$S>TeMJoWZ z?FT$1652g>0cloWP@sx91Qg87;mOfk~@+!VoJxa+DcphH3r_m8=x{B|^p?NOS{9bkCuMsS|L>S__6AEf@j@hxKN6>G}N+nn&AC zE}@l|ig%B3BgRtT0KU{f3wpK1zq4na<@xdiPMg<({8jk2ubyhAQ=>es5-08}iT|#-IOhIYgnS-m8#|^8zdNDl>T)8w zGT+>9*tYE;HTE2iZSZ}kd8ig~7We5wYvtCK?>hXEBhQMn2USZR*s2^BqhI z6Z~E5MLn40PQ&Ol`@*S!T-+o=Y6!-Vfck)TTO@Dso5Ckq(8poz(nKL`C z1ab_G+3t^`$$GCY9njW2t06GrYP{yNp1)^v z@f0_c;b=8pg1@AdX*j%uZfNq&>(kFPZSB1=eEeid8gOf`D7nYqryLqoWU zq^BvnGvTFM=>dmC2-+{+U~A#TN=|=LWMx3A2~XDME$1#9Yr}u^P9X(z z6t4gMxo^C{f%0yb(DZ^BoCEuG8T+_k(}2nsbCQM!mFEzPH8cN@Wi- zlW`Dr%`WQ(nMjdmugjW!BP>G=Ed~ zW-bmHlTdz>BYWqf556dG-BYd2rZio*pfsHd4wb(q{l?FUxHj*iIwk+k;8s(F&cWiX zzk)VL*&8g{#5qmw!MDAamJCTbhxE%O!8-Yo@0LJI$yo#!lfjLg=LCv@0`tx<><$;f z3NQ@2e`NFpK1p0(u?{zWlXBqX1-lucihUY)!11J;{s_t%%7we_ZiClf%l?}d2JKpl zCH%9R7`KDI9W96Uw&kod$kP(%_*Ja_v4#ig~1q5C<578Cc1y6NC0Oz zk)D^a&!>gH0~CYH=>8}8g{bT2%6?g8T8)D_`6-jtY!D6&!x@ifugrW0jvK6JX<}Zx zJz|l1qZb>Fcl^wcJUKwJR4@|WSy1^R$$851#RmTKc|g}qjpv|!mT}>3@lF%+1*7!y zKnR)reLsIR3;Ogjc)Z{##~dX$61ZWMG?*bCyvV=!fM5jKLflkfxC7(3eiPv=z)t^z zTN^o!^#ZETKOCMWIWjb6M!$5&0>9`N`3&9j z5eT&vKa)`vnc`hbm!)2x`3MR{j_DlP$_i-orc2v<_-*5^sUPr{>jd@za{hy1g@RH_ z?s|0BV*|eQpY}tOIPmd1@JsHfDAowe&oy1VKJ#u2F(9OFkoi-uh|Lif5v?IdQt#Htjzz@mTF~P zM>ctt1FdtaM(JF-;%2%(dCRDo#wI?wWvAa}ELDx1dm6(c3^z(mYLxZk@feyYvEJOy z>quJ@i6l=9SO*EL`4M5E+2HwbuI(%Na=E{}YauZn5}{(UXY0kSYGs<6Ngf$h9G10k zw)h+k6m{8SQsmWO9>OJ!mF~-F-uY=8IBg$ZGWhT5#`$G?t3Q~jx~NOFTK(N75MO8X zHxK~6-epmQ>oZ-7L>c^O1AVM$m#QQ$ZHFd)3s^Aom(%*)wJfFHY?$P>*RYu6Y6s9$ zQYtO}u2zOyNY}p)c8e2DH#L7tn4_*3ws~s-3<^=luXj{*`M<=CyYB(adS+U zhR%g}3>0!N%G8AF968+;X;wV(M3F{-cCQRmBZd);)X}gSiF=|_$b?RC>C642XH!tq zVF8N2Am_Xbf3orkiW<8QqB|+QWI<0gg|Z2~3)(752>U)~iUXCwTth+Di$Z{g_+$$; zip~#}8ZME)`)On1~z$%vX}}hcnG1yMs?``NJW=pbqH~ zhS-yWc!WzEumo8W`Psh&i$L^eAeC=+GrDWP_^=q?XjIaUoDz}p{@6QS9x@f}VOBEV z{G`7{RX&$z337_P;_3L(Pls`-W}v&{S16)-_|$`efzX;Id!Mxuuhn(rEy@t#WH1w^ z=DVi_j~t<3^6^y+k0w|r&5|%MnHr_GGnI_>d@67%pgX1@-VJB|Zy-_bb5Z7>vK-~6 zA$k0M8<}(6&%_X16C9kGsrMdvpvpz++Vr4pt9`ceXV?Pi& z$)=#$#A-Ss{`x8DLlW*-J5w5?pS<0U*JC$3LuG`StIU$z=@Jqey=y^$U!$Br?_T|a zwd5X)LPb3T*CMCD--mAlb_VmmyFr~ge1+~AB>QsupOQd#!5bh4h>^pMP(y^kx6ZlJ zeI^e#i7KfR1?XM|&U|*{L=3W|rF;Z2YsqGzZp|q6^*I2Zi|)?OH+0Aj40;Y(|Q{_BxIZ@SdF_&N}IJXM6QXB7{$PX%Nn(wYGxn zIA>RJ7ROJAgel0;xn`Di5P1#cI_)q`SYHI$R8~c@ik`<6I6JKZ%>Jn3;BGbfz73AX zox1uRZJwicKtjMHX9n9joNa3NLF-=q&@hoZ`ivKbPFG(4me6zzwKIYF8g>eZ_kk+5Vw{+4?+>mZ_i^5b8Y*-FD9+g^JqXtjS!(6&dVK-PSijFfaMOe;MVoN>LYp_j5i zD~Nkdbk}=&c1uBydMA1XVt$SGeAzEP1hezMd#xGTaZgC_Oaz zw0i4~LmThh5x7*#a$%#93NnKRZBr?FsF-~GbcQC82zd>ld>P}6rpc0jL7X&`ll^N$ zAbCG;Wf3Zkh&%L)tv^gbUuQToeq0b>X+2t}`@E2MQ1Y)NyPDoHtla;=8$v!29{J3M zE#hDRHC@-o3)J4} z$KDUuO# zDV+j_l~)sj_l)FiX(txE^(HBs_Y%EPdjPS2me<~NxC&^c9noE-Iqe}bDmbf0He3eb zvTU%s1#8r-BbwTZND{~VNal*@smZ*$Jxg+yLHa1i4tsx`@zZxdGHsl2zjgcw{0A0M z{H_DwK~%A;{eq5Ne-U}fYFinAKZ%!JrnY5-EvPU`ERd^^%VQHWYLa4!r68oABy6c407C(N~{P?9t z^}pzLKXmLvuqR}7GD?5i8U5mQQ)B%WnA{DJ?MD(jB7&1$-79o&IZ~m29DUeAaY7b! zZ%ITb7&)p2z#!N|>^x^S1SAc%~IcOcRxHdDia zx^Vw+>S&#$zJQ@m7ysvQobN}tJTR(Pxk_|7>|Ko*46083yYhY_Hobe`cd5hH77HeI7sbgYVgNWvUlf{O7K)U zdm`%QGmQYX%yS#)yB2|LQrGaO??Cx{l{32Z71D<}#MjzT!5%$n_bd#Kl?`+Xaev$i zWtpwb{R%B03ztL{wm9&baTv zRU#wDw`BJN>PnMG;^p%lw(w8OU5M1dCHFBG@x*z@&g_1AL?%yq!e2Duf3n7Ca3yK7 z%fhSa0Yn43@@Q3T`J(Q-WJ%rK3dHTRRx*@C?OZ9a%Cl1x?W!PfrXC?j81=l65kl^g zMEYHC+pqh{m6VRWnEeDuxmALI^!K5pANxzb26lMB-7hzG7l-o{< zmM0Nu<`^k^v434Y90ktqk_6w4H=`h#=qS0kf-l~cd%wg5%wj_h4%Ngbsa4PI2(on?U8(MEnwK;-9A&SU=u=P#6SvbSO<0U+N z*eR)}tQ&;dqO2X)_qZocs5jiLOlBr0!$oI;_@t?V1r;%l1|C6RJEKR&~Skzxo-lrwt@BKct3l-yS~wm+2rg|=}k7|tRHd$vrrjV-S6 z5Ktl$)@YCp6rG_ZY`ZEaVM&xCV?l>)JmbGJy;Q6*RrtLBSU9awJNl1nL7T^Cr^T0R z!To<+3(9f6q8!)+GAf}wR{B3GwE-<5j=Le<9!3$MNvo>W{Mvtgocp!W`o`iCOZLN_ z#ejY6-t>d%>EmOnrpwtHtLdM_69x!7*z2;XK$bu(?nk589EH(ehc4Z!@KbXrL(n=m z2{(SFcjUepjNtt@OJ<*92D*cN#tlX+)(oJo(shgb=fF zsQKr%D;&fHQSr6HQ!Tk-!(ffR-xrGy(5Eg>rygn=dOmit$ApEE)rA;EEWZw~U&Pc16K~+4qQHmUSbfLn_ zLsi@f!$mWg;i~4%3@IRMjWxTjdn$hfd31}dGD~b=4IYezz zLRE_bt`5)BtG~UPQ`O3Re@wTgnykQ`M~rJ-VknK8SKOt^U-BzG;9;*i)Wv-s_1RtP zrTvELj>IthPI8@^z~m_mjap?)Lt83he|@i6mo9db)v2i>mATRr1Y08{#GX?bJzHL` z3pfVNa+Gv-_djTASv^4$`{JoVhCka;>%6Zq><~frW`qHT7^Bebqg0V$Cp{&#= zexD7jPIB+CNG*rbN13AF?%1-5IWgSaWuKHLAhg<_=UbCwADqu#Enz>%*vA49^@pqA51hCzHI(nOMmN2AHy$Y1OuGy(5_*3=vawiet@dC!ja!TI zE!6?z$>Um2gDlY3wqFn-0U|L2Ks7epae}2`k+HUx;FI<6Jt@;|29#|C@W;(k-{=GS zMgE^yqH=i}Z`1GM>Lm>uiDW>^EIZJcYnyZ7OGx6z>8-M?AqXjfmVJs^`Au$xjqgwB zS0(`y?G9oXp?lXR;{h2x7WM^(3+gO5jB)f_`<3b7xa-RqCIAaQy9mw8F_n)^C)+FaQ(xOr)abJiJ54&AUu;{a??+i?`$3Xhv~tJS zJ^pin*Ak-st^Sb zuK}W236ky6{@-SEGnlT?7QR+Sz+e?Zhirg`3S;y+QRC(rwJ)=f@>?@#+>8O$=Vf-* z(kCr{S8;Pr7vWkfm13G8Tzb>+@PHa=Ni6DMTYdV%4seK+w(&to#9aDGSw5fjgqH+M zX`;~9(QbK&qq@mzmpe_7!tZ0)^5y)T^QKkMbg*}LdhOFFvYd_T$^eBbhv|Ai)df9Q z|CI$~sCD-d+&x|f1aRDwR}iCO00}yAGBV1rXIioOPfJ_3y6s{3IG z#>zT!mLaXTuPP5mUdQHP%SEm{35Y(HtjI2=QRRK`vnZx$`kZ)5hb`N{<*lZ5Ajz|<_VFg_HPcc)hiCQ;6 z%;__((Y8!#30*MB>zZl37&o~)_x)!ai8Tk$9pG=PcQ6V${TuMkK|1WaH)R&YE5_tq zqmp@HSz3lLH|NEg#_7`C*Gk^LF{0dqvxE)n@s`g10<13QBU>zIcX>`7cRWAkVCDB3 znBqLvTT4Vgx4>s`Ft~xk;~GZq?->CsgbMl5-d<_Gm;(`fG6DrEEVw)8a(a@=2$YS6 zLTIgVm`R{@71laREyR$bKNcY9YM7X9vXlZ#jpWf+0`F$k{dcpXEeIWiz%7?=8~0V^!@h362%QDtcR@< zcU8|RK|JdGH_x7E$XvNYXBP}&*8H{FY3kR_dF=GBs0O8P>~(PshB)Bcg8~S|5I~H19c;_R$qiDf2@yc5c(Cc-)WtOqttBrHQR(9TSh&{EC&j*tO62w zbAh?+8r8OvXA+Ec;+SVL3efOWAJRTLlvZyTmw|OJt+63d>DQGiby8uycJ*zRn z0$-8EqFyQP6tS|vo*1I6UTLO>qM=cjcCWCcHKfx6Q;YRGD?;Xp$7WE1$xaX7ri92i zmpk~uv4Yj&C}-H}K+X!6fVt8rL9d5sC+`NLDOkXX7DMWd%e8T{FX zBwyD;Og`rpf18O($tQSeT~nG!QlNgjeb+ui9?-(Gox|PEEIxcz` zhhZH<-EQD)k#ABiUu+I-K^-X}&oinGH*dS9`^V6GZ~fk2LdS9ej7zp1uPdt#sYqLp zZS26sozm}(35U4LZ+JkO7uG{WTNHSD;>u-vUOexq#GCl819UAq_&mT-x?XWMXayj!5`@!a+;VNgtzs;vT%uWAJK$DNy)Ay&w+Ei`I%rfO#)KyikZIWV(b599U zSxa1!U5&MG4`4q1`ZKfcsauN;va=y5W$re7udOV3GD?6|NS!ZHUtYbjzw$0z*HIL; zFJGSvciwq_0>Uuh9n9oNF#_E!ieu~1m?@@z8n@)zxt7gJsz%mhIk9q%Wy(laQ-u-r z8tjx~8fP`Sz3yS|1<^HLr`z<~HijZIY$tzz6#W>gnkEn1{*c=CLBN4WLY}1aTUkXYN9O zS6mMoDpm6d9;%~%iXR(kqa76PH4I?zg-u~ASJOB}D^p&SL8d^7IEe0^k7~+?%dlLK z%U;OD1>RAySDz2#MynnsM~V44hxR(RibKaF4>8XfOLr+gBixglp)U!txI218T~BrW zxXvA)!G4Aza-5GLH2WyMxZnINyMy0|cW}S`?^$}K zV&yQRT6!}`?>c1t(7oG&c@x>aA>3gh41O}&`k%R1H@|Va)Tt@pVuKKIOF0XJk z$x)AAEvr8Z85icm=+#s8tIAaMTTlNe2|PK^G#c-79chgngT%bjAc=ckFrEB!uBWV) zneO4;vjYpY5R{ZzGu^wnzo_{8;C(LT6bSo`>G+za=T0QfilNJTMf1x_g8Y-npnd=B zV1>S%49if`6}^VH?Hd?ky3hmv-dX)fp+UCGM(HOPMDMhjpc0YS&eH{r+@nKJFHh$? zoXgJ#)>6uYCI&i-h`ed8J=yJI`LI69v0apEYYAp>WBA3$TR z5qum{$a}E0?18V%%U*qkApZPGm4U&f0Cr#kO{q;{RrJt&_kj&JuGcraTA)^w=VxwY zmfpf*^1l_X6}b*nt5{{?0}Lztes{0;U7|vI$aqF5B8$$RHC*40T`bL?uAYR?L-5;88HPl^y?%U6Z4P4EYf|EWrv6r|EevYNL{Ol}x3 zXm8v#=w^Dn+AiJ)W4FNB8G!YPIkiYKjdRI!<1}&Y=XT##M+X1d83&?Iu3m;_GDWM9 zYnobvI{JQ=eV8{2c046l3gRhwP@BDMTaU7>w|cXdM#4$Aq?Cns2{?GcTdpBFc-5M( z`q1{x;PPC7m>%Rd7es7@B0TNAy(@emhS?Q{Y|Ou5@z+=&(v}UJGv$EaH^kmYeLmV6 zL5|kcbE1bqR)oP&xB#{<{Hwhq!~Z7u4^4YFF76c~zm4=qe>B}-RpVWpA=&zOTCR3L zXp>lpJWH6j^^yG=a~1S#Hi5|=``-Ie6vlL8%Ys!K41XZFh*Uj9lHCJ|*+t5#CD}Il z)QlOzGhIN95}_vgVeMt>qYPWJemRIH(ObO5UB?L`>|{eP3NYDJL#K{F%p3{w%+9b|^`Hv!fJf55@bJEKbCy0Y$7d-m7(=?hCgys-Z zmOKj^NH@GrFHAGe0)4J5`Mfr_jL)tupPkHT}2h@SN{H^MaN0#|IBMp zd9`YQne%H43%TyVybwnds`Y;75c$)k`p0F)q5p-O+!(T86QM_&! zo0s)?3B0*>OkvjFWM&x{nOmP|{`@HH9p5jqQhN5Ps}rl|cIS^1@;(Pc^$#nM&mGg9 zSG|+RG!Pe-I5blTrHfq`|1_UBO@`#}QttD+2s7r)$bqH8GtrpWjJx&&g5 zNb;w}5$W>o7N*@N3dMC)X%x)R`z>28SI^I3V_)qh{{VKH6Z4l7)vNQO?W^_uSQ&lB zZv zb25dzm^lqjiIBTm?%}y7GcLNM%&YjD??+gHkhCU#^SgXo;acc0aQnY0$otN$xM|l) zAjU~W%dzprI=zJooz$eHvy+I)E#fGIV<1Z1gP^JynVU^}!ns|h%me2no|3ILi{l=t zwc|(TjIe>8kfuv!gkadh7h7zcFguwS9IEvhl)7Mv;y7G{klG;*COk+TC4~;hwTbvC z8)CX$5hG}LJdz!CwDGp?j@e7%o`@9n7c3Iz3}RnME>)1xyf6oX!sMit4rq(oo<>67`pg3(JREdKUJ!Zbkf)_$I zvabNxx(T2g{}jE@!VccQFsrVVHXgU>rLXWcE+Ir(LjYgaz{jlEIH9M{iS zR1-PstlP@bazU59bL6~j)oXaE5aMCKpYs76of)EYZ(&w*wzWYEkNrM68h)$@Rtrvi z0;~d{G{p9E2-hr5uBP{_GOT1YX#*l&2ZP^!=_Ns{F&CH-VXQ?U7dk80Ati{v`0@Np z;wC@97i>n6VL7Mp{E&XF@bWEys6N1yt0M9`|+rsfW8DE)>Z0DC~mwz@&x1PUytwH_k&Q4QlH#JFc%L>JWg1W+p zAQsv$f10%9w52R)5r7UN^_K-cSRNDTAAWrFsmzI&mE84_b0o_JKX!OL_0FE0qa5ds zo7mwwSbL3$Wgz`0pgn1WPNvXN82zf_8296wp#m0d(7m~Ca!Wi*uUjW;v1-g{XH3J- z9dZRM6r926-o}FK96$HA@2{G_WakDNgR;zh3Ie2ge(8$}gEF{;f!TK;*=Py@J@B^v z24bLa4D<_&sxS;-YC^)(UY5~Rh92h>cc3MN5)Bh&~W*`da`e9YQ4~D<#zJq6rns zB3G^?CPGW$g@Xy@VW(>oB?SQm#Fj*axP6_j5dkaGZD*n5b5++16Gs`3Vxa@uYo+ZK zaVpPmgMlY6h>0elOHmttB`Fc2E~jflfS+)3YcL~oe7!Z(!X68u?gKlaQ>Z3EQ(!qB ztGz0>7_Gg^`=U6B*UG(;ObEG5#8CH&z(8@ zGf4=;`4JYPGTy1+mA6^PsD+_cpCcCC>$kp;ZEo52akAoh`CGl6Y%w~$=mm7yy}7D= z$d;`IP2G80g3!1zIl*ZQ$dG6}w{3VfY_VCf6?(cK&8X17%(mR4`2A2fE}5O_ z(wl_L#m!Z6*Y6L+wR~xDT zH4qbnHvb(4*zKKfZak7HZ^b!Q)H-0RcDG z;bPyq@1L??ZAV^m0KRnwkETQ1YWsrj8YLv?B_$8ly=YRvV7 zsfPb3J(wMlFB=0Z$uLVo0hZL3ogJS7!^#dM68Yu+>zxh8_Z-(8x?Csz*#kv^bo|x| z`o#s{Aolrr6rLp?kcnq)c_D>Ah!mfX4W#OyV0CfVg^h0qVh~*z&L1Bi_2wQAn`|TC zB}PL;?@5>nHX(P^rdfD+DcoO)@mrA&=YMQ1UEDAX4BGpTVQxi!56v5|?CBg$xbxr@ zx!U#;ZT>gHt8RKUc}=Vnlqr#6MKNodUl4K>A<3AEhsW5t;`XHqKej3PIh#*2uIe!y zWpASw4oGGJbC{(DLvz$=lw9Rp1jmxQAQYnV<`3%YRg=8WwyuU2>7)6RUV0%xaR>2h zrH|)XPl-G^g9%e2c&QNZ=`IX-el0r54asOU5yC=Q6m#q|phv&+k>dmnBLXF1!+iM$ zrxl9HT6JIVP{3=;{RMWET<49P=SWxyOkNqHKvT$o=Lorms;RCWV+$XVvUc)wzWdX?dC{Z?5^SeJ@2kPzlngyXo)vPfl>;K zH>of)Dn8w)7a#onsidRo_wvrceaCpC=||hX##Q{BM8kOI42OSf9~IwHmdY84EN2YF z9a|+Q{pUx9`d?$BncWUH47uNYJi44G`+#~!P}#w5F^&Ss`9uyTq%2Hg`%#|oGsVH8 zyuzAG6n|NL1+_Eb#eJe%;Bg}RZc+* zF&3L0Xo*!am3a6cH?q%!^y|-6a0_zC$&;(nZf(f-Fy2>!zy`QBHoFfja0_Xh-nqV3 zA&!Y4m`fI#5&oN(@!C#~nAHA8epr+DXZuG-im-b&CO5U^#PxnnEDbxLs~R9Qz&EXs zhe#rsaKF}pp<^#*TTi&1nhHge>1lKd2bslc;|z1(<%?sxcPm~zeS(rk=p^%_R~ge0 zcvmaCSv3!5_Hd0=+}8_!^^QUuIOl{anxSWg?mxlHkd?nR1>w-1spC}?Q7GeNoX%z+JKDIKasX%0=KAe& zSDaaetbJCERP7}E?#YICw#Z97YnMo|?8>+tKQ~ilfJxeHyrjw~gsi3~^hc-rxMLK5 z0vFRA-9MzVLT@yiq22Rik;-*0u47}AGfjy6nFL2o05a5~>J|#a7Z!k&jRTZLK%*ji z*jqwGBA7oRF&y#cSg@2}C|<LZm@HN}KMf>==PI>23Ri=!v51&W~pvY_h0 zSn^^rp*9jT5~)!;C4eptY`1n8g;+wW_#6FkERQw^vaG;CQ7lbvg#8H#8nO42jFb?P zwq6qnidd6e4h;;+4+_O^5Q*#+F%VmH$>nhJV`7;>MD=E1>cS|>AkMI`FhweG#2az{ zou=8p0p~oN2CD|iEq0KAhK6COL!tC-q>v@BLK-QQSP@>ivN`+Me=iXC81%BeV zn1L+_At`f-!NPi%)yWlnhau6VP(p-Aq-{^ffg!Qjw6AY5R6vc(jogd=my9<;`N#kJ z$YLC@E$4u|J2w@6T~ZU3P&GY9^W7vgx$p&hGs&(~ce7gXpgM^=T0lC9m-JR0p@sxp zD~fR(l^S|X6UpNFY1&@%7gKU}jP*MgfBo$~PZ?`kD*4l zyTo4z;%~gZ=_@kk+>Y5emw6SAc1$=)^9i2XQLsMu{Ca2KFps+Wka1{`t(3jIRy8Ie z-9F~vUoSEBq*eEUlDS$W>?U2};X7wYLjxwkkrT@nAQ$UnFA=VoyPvB%<*LAUz29Jz z+$E|`I~4^6e#VD)41^CIZYsUTuX_XR{)Fal4{~v9yw`_SUl!7L6HK2hI^ahC_G*$M z2?uLRN-%cLgMu013k6m51SjL_nF&yi@r(Vx$L33H4K11NA(7qpz$LA1a2_aJgh)h(sL$@UfbADm@u-3|rsp*!NHVpcc$ zP_c(we4?fM`KK}x#h z>HEZuH8NndHs%NXJ&)Jt!KTB9)9pbvVXHjXRL4J(R&7cRbDgDrom3o)q-^yY;`dvb z-)s)Q-=fNz-MrlB@l31$a@!XxX!>lC{27Uo{l4n3^c%Yk&54JT$L##gH^+wV3P^#* z4wT<377CHwCyGDzDj1vfzCD3I6tf-!*o*QT26}+3ks-Am0U?-l+DF^wS=hsji6y3d z25U{z!UMydIx7p3erO3;&7!WEjCkGqbdx;%C9j!*=q6+khX6sg*rxn(aL4XE6AquA z;Rr*+oz2WypAS<6HG7PAe|o(xKP}cCy!(q58wa`hBkoxjV%tm@^aPI_I_0rM(=WPP zuy){5)JBs(<=z&Qhi;1)D0eL8bf!_|P5*VzcqMSfA{QQ0+4oa@o3`+{PLj@SWjy{n{?ty$LUq1;jssFNt9ZXnXs|7&>B4F2TRbhpUL(D zOF^MR?!WP8zs+`xUW$cJms9yUVa}hg^W6`JCfF9MD#eM#gmQVVhht78B%eXdySA(r z3EPMa`Shv8bMtWhv6yI-b?x>Q3VZkX8Qao&f3Px(MEPs*<)GJ-yNawc?HCH}RA_i0HeVZ?BfH5P8 z^3*TD)C4Ng91%iF+@Oe|3b%!Yo3z(l6n1yhT;kMbdMs$ zsApG9?uKN8|6;gHF%)>Yh`69kA_8~kjGqrd1d#=R99Y;{y}jXsgpm5{17VWeLej~ zPk;iu$Kp^`c-zAY1y}NS5|2sf$Cw4&(?mSObtY%f#-pRyjPrCfk^Ynu?l#a&c#?E{ z2cGpKvtH>fE>woq6N&&VHjMbF7cnCwGzSz&fnGm56r&;Z4|88crI+#IB_! zKUK* zB?Faa=H=mUAer#Q5hjViUvAN*YwVnr*av3B?ygf<4}XfFZQm!5;B1us{1>vZs;pR8 zcR7p+D{E<<{8$b^xw+x87qr=JlOe}lc&UDec3;n|+sY$qZ#l<;Kiif=Xr@ zt*6A~A-L#t;FyaoTZ1Tl-3Y_PRpAjwj9Qd$_%bs=D<1>y(Mb}v7Ri^0{5m0WcGyzc zn2)Nqg?hM^E~LO_RCQym=+qYE7p6*>+SqjyAYNZJdocv9(Dywr$(?h8x??#<+QZ_1&uPz4uPlbXQkT^&eB!)AO9? zIp^rX%@DukwIyX;#BWOiv=Nq$^^AS}Z#KFka_LWgY_vx5tPHVi_T}qet`&$sNinyT zNoE>vh;jXsxUkW!>*=Udv*;%T1)LJ~(-~%_lS`N;`BZwsLI_9(n|l3|NE?>2Td0O% z%C`0XN~Fq2FG4Ddgd_X?BQ*;dzeio%Mmy{NyNG$p5fIZ>|Hk48@ZCf*BNJ4utY{1D zXXq2YYmO=$t#$O}1h^xLr1ZjR&8N)@^3%I;6@!E@lDVWt$==Z983x*7yd<4+i+l!~ zO7&bW6kca|$IqqSr4lW254T~25*bWbd{B|(_HVW?y%YiWw%!l?9{rC!s83lhanEIE!Xh4hTaEQ-V zQ#=WKXdM?8U6-g~wx4&AhZnedN;AwFlLNGCXYwLtNW(tcKy-G&Tb47|n3h9XcivW} zm)ll1O%sg3$-*EhLfbd#SE?uU(2gS8R8Jm!H`|(O!pmd;k;~b!RZzJ)2vSStM{M@x zy$MaB$iSaaO{&-c7RGA}h6lp=?@ZRCx#u0J;JAiHqDka?kRvYV#i000Vl;M}TX7hD z(}eP>cA5tRYpFwRHMq9FA~{LSQs!@69;#&?C}} z_AXy)+>;;x{i##4f=oXl3U@%RVPM_mu?nD|B*ir2_|uVrWEb{SMlRxNWm3r>SJ{66_MCOeR$@rzi_OjgE=|&3h?Y$~M2hNT#90&WD^~-bd01 zJj7$wIbl_QCYhYT#|vCvw(5^N7~Rpuxef0YTcrbx^L=A7Fv9L`kRXocA5*JkdkkB( zupls*DW6`tr`xpmP7B>*V9+b*zxnH1;z5)K7{vGQc{!$X8 zr(`|nByoelnbEGJ7Av~6H5h?lg}Xp;?Kv^!ZuA078UkzS)tq>=E35T@(U?}K0>syk zeK?R?=@thq0v;b;$@}p6dDvupFKSrCQIQHTDD~eRa;75M6`@^(Q^N_QpIXhzd@NJ@3(&+ytaMuR~O66~OlMLH2 zJRxoiaURx$N^DAoEDmDjQ4p?Lxpo`(9^T!rb`vGhZXYC%HjZeDjDxPLUf5zo9rOlR zHuaw&dm#&E*h1TnJl;0fMDqJtH@aM~7rY)2<1SkT?Jt{H2s><>^&pIK6)YE|>4Wh8 zgmN21TlocgE(OLrtyBW@t!(>3$LhE2@a&%pl3SWg!4WuNHFM?lMD;7Mjj!!Rg=LqQ zXOj)@Xsl%sXZG#n66#h>4Lw`JDbEd%eMl2DiUgTVpmmJ`kpqKSOj*Gox!FTzMjuHT zFjOG@sK*%BezTxoqDa|i@o`K{b%tSp_C*w&#(^|MxBbQx4*omm2~V+mc*slkUr-IG zu4{;@U(w}o&J*mSsrw#(ZrWbu97k)g{GWe$8ftcRTQ0uc^g;yY*j^>S*qW(<1Pzh| zB>o`qpQ_LhuPP6(ZumYBUPPS_eL7*B@3qFR0zAwrjJHr{#Ty8s{n!G~M4N_;zE-M@ zi?IR;pz`^0I1*k~$GztpikCbCVVrgzB$TA>)%n1exiK|6RNQGO3(jm}7^wx}_FQ|J zrZH52XO+N0uqiaE^9~p8*q()4=C)voRZAR*MvVSc5eLZ+F;Yuvl zWO(0Vw3?u>>um@SSdVs-#4fm#i^#gTN^zc0uoMB<`{JC#fFABEfj<9^B7_hhN>LKS zi$=TaM9L>}-lxmO`7hd?T);Jf7}9CwXdg@DeF=*;Wc@EM!CO-D&q?*zxlDE=iMk%a5H&@yAK(G z8t*qlhP2>p8}r_OgNbZ8pyYRglZDP!dS@7Rll>3@hD1S!fCU{nALC(D0FUsL}f zleeP&C;B=VEQ>Vi1SR?@mC1FZ;Z|XyxJX3s%_@R*ph?VH+InQuFvp&)l!R@8k4}9l z4Ambh+%LD|hMk+QW6a}W2HtP>ARDEepVUlY=86kH!vhv&EVICQj0z#M%ij&aC}|3M5=4gAmFpV3P%Zya;b*Q zT=vh)7k_1*z0S_xhk(Oily&BsD7DCoc0w>+Kd}r=hv?MH`r2&RiiQv>|E}&WNEhYM zBj1hnO4`%URv*En_pOP%LZ{c0lvA|72LQ?lVUs!fTJ^xmtxaZkv0H1^%c)}+QIX#l zfxFC+PgiOrIC8v;5?$8x&Ssw?2K1RjHwig{>H*|-9-&_JRP9vg)1}S-Fa<7^g^P*g zwgsHNt76&av=8s(HZr@k+jhc2y~?V*D>!Y7p=hQemP)iM0u6zlzs?q4k3Gp%6bP1I z8=}}#Tdr0%Ur@Gkgp%cn?dYiOK*O5~Axv~v@6k>4lR^#)hV!rJ>c)7kKBM{T_5Pd4 z3jb98p)|v*bi(!Bn|r}dG|^SjxuQ9u;^hJK%y^mI3Y1)tPAYhf#eS}F;Zlf*7`8Td zw8p(5-M)OM8PUQZ0MA(VaI~jWH)ZT*Q?UuE8_{k9O0ecU&#mAPaxv z+ORgr3T^7_hmvnBtqCQ+`(`Z|R9$XladjevfC@3c0#jYj)sjusA5PyrlE20S7 z1dYH3a;qoj7Ya^FUcr`V9r3&pxcP%p;k>lVbe&s?aGpUAB5p;Qc~9SZ2s{+h5=+J1 zWY{gLn>$0k$!I)7S)jd!31HZnPLK=XHA)Y!9-}D#8G+;?TQCRcZEA`}>lnqy2(p~n z*MpCDjM3jmH$`+wDDI#rleQAh$6QaIlZo?2_}>DJcCM@?r8Z^a6G%U*Fw$1hD!Jsf^ZtNz#o%&O`*<& zxUeJ4=8dB|D}TTv5uJza`3wfpH#oFanf2iTpU*#3>df@-cfbm!3j|TM+uJJqHU9^@ z@Br>23|0SE?RA{KAqgKsqXR@R9!TExshpK8?`X6_Ha3biv}O&>GzDp)0mH^4C=5GH z5xg&vP$}q`R1umGm4wjO)>IUuV zx=wmWr8+M31K{9vJbIyu@{=h$7lTxXAL@+aF@+M?6~Y zWB{R;NjKS{bNo1baUPFARtIPNsL!~ctj{vJxGWh&BVdAT)g>l$M)!9NGDyV`_V?%W z&mH*wfk+}vK1oLtcA{7%o=^Xnz&oh?0cgj;#9z6Gd)dcL#DiC`H?MCKq5~lHk@l|n z#z}KZ<>?Dd^fwo!+RCaFgMJc}aYD}oESRJqC){b(mMZi~aZAsCo~`XkBuA4Ryf8dE z)BoJi@BjwfM8;g2qDM5&+_+_W=r?5SjEo^ku8y0RR@7obMwI>#dfS_paE3bE?mF_M zBxBOB-moCbA4GYT6)B4p*{n5sIw@l3ahL=Dv~1U#HZ0rwos^JU7Am?I-fK%Fr$lpt zJr&AOYgk}bti&KmIuRBTXWPs5P|L{svti>w2!X-n9Pq#dSn`2YtGH_n45WosH@i}5 zjSln7a-j^6Tg>l7q_-YD=cgA;@Vvo+vO{s219j-jD13OA9u$bI5}7c3a-%G*DJp{D$l*6|zD--Tov~-QjtlMM+O>)1X;XtlH9&#7^Ik@7gme z_0Ohn06sWNnTYcGdbY{76pB?hW>ngRS;MD@XO)kS!E;}Po!iC2P>e(Deds>Yk| z)uH7?k{zzn#2hHpGJ4Tye@Wb4j7ZL#I!M&)R(jxNOsv1Q%3Nbvp@#Q)rzj{z=FE^P7IzoI0m57quUXGo{K+B!!4N0HdXv3h* zgD^73u8#B@gA1>69vQrDA3h0t)q)H#0xBYio8f%9L`Glp{FIEz&9tHs`w7ax_wgg} zQluQ}9F^7&1;LbUU_7kkKC&giV*nYvFAVt=&Ka?}U{_3z$ zRsu9T5q$u-o4pcq6Y7zuFp4R{KF71|~bzEFoJKu1Z-|2Id- z=!jB6Nh2vAvZ0(pz>wBI$8XI)IY5W*e+6!OgY^dG-sal3rF-u{b!eSUlg3kBC)P`m z2im;k8H%I@N!<|eQ9R~#XWy=a4;^VjfqmiXYC3ptm_2Nj8t)(I;I7G1_8EEBq0rw* zVt+$9347N%;tN3VlYd zHG5dwO(J_@uTyoq^j7;H*;Xf$qSHK7v$dt*EK!7ijDf67M#MjD%r*Egz+rJ;Pz`@FCXJ=Uzt-5J zRABNvd^D`_mYxkWN(H+1d^R?x`>obNAN*n6)rKAOQT8X6!x;MEHnc1!Vx}N~IwAWe zMtn`}*5uW#i!ZuUx|v{zSrF^G&y5-*`m1&YTB0-dkTqKB7ut@|_Nit~bt(aBjz(728XI@toaYKG10_npVhz=O?zXDS^!|*lmA) z<-iqfjv8l{j#ENrle@q(j_got2so!`VLBltx-4MLeM|uYi8$v4f`ZrU!OB2~=iL-9 z>~X?^4*JG9*%*4Ur&*O;FxuP{!wdCchN1ljx5(RJR@6K>dw-lF`ZNdu;+tQCI>$%K z=VC_H(vP?0sU1!xMGA`IE|CB&9wZs$Ne8Hra>UB?tYcJtZVz?%%TI{CmSY) zJglm#-esoQ0>#k|{dF-MXxWKyOy zM_e7AKxn80Z93J76F!>s*8;FA zA;fwqT^^cQ5=KlYx2%v`705Vz@_Axzu(B1NL?#AOCDI7f%+e+}J4lL&~<)U!e@4hylM}@pg$>$3- z)(9sW5kJqelbyDL;t~0$zNqf!?x0Z&xyI9Kh1W$9czTKMh$(QYF(qov8t5X8ForJz zzdVWMRT`e8qHg{H0ef0kSM}M}9r+V$w*ye+1BKC%U*G_#9Q|3fgJM`dQlf&s_Lj=; z!6W`&t_P`C&a2j}gi(K~#KL)0Cr)?su$B}&4#MgNLf7>abxdo&S6}vm-Bwfv+h_-5 zn?9Z@NSgs26stKz!-3l3E_#Ov9(b-{3X**$K|1(~Kjr~Iwn`xSNv((;nx>B%BKM;tw!M#a-I=~da0AGnzXVa(}EA7ElRV%~ zl$2YxHDO@!KHUD-5;-4>jzGx?1rDN{Un}FacIR+a7)9tnmt>v)o(jDYRMnw>x6QUj z?jpujOLaA~Do4wJ@z7}Ov`|)n5T0|%?CP5Onk=PhCy?47Co2lAQacmY( zPc}b@cv@K*N3|(pg&~2_xJSGMcD~&DS;w}`e( z%C&zPG-F=ktDFG;bS%cUud!s5iI4=HjxnD(2v zcfde8q<*`w20U-B!mUEcA8~k+2StP2hXNBRy7jjjR|-tGLSruh)|o=MiP3y@frt~R z#tjb&Sn_pE1|#1JT54gXCv3 zWA=3j+lpr^_L)x}O2rbE=uc|;&yIZYz)Hl4fbr^H$b}*MF;@57?hyWwXlAGo!PRQ3 z6h3uF7H0A>N+)a~r_)aK5G{Nf(KjhT%9La*szQoZzOmHAaEj#E$ zDuWGCs#I^2JLN|=@;7RYdU4dcJAY|SHStYk1;ek}fuC~_(9DC9dMhKfU1@Rad`bmR zT5i7Ko^nG2x%ZIVV-JvR;{(J~msc|1tlHpz{kErcZ&iLhSNkVWJh`_YMZwDk*p@4w zEGJyf=AQNb1f)5xoaYGxhaPb{73Wmd|>+R-v}oFC*C8AZ`s#wN)sj)C3^q7?;TxD4le z+LSWZ{zXLy6lB+dJH+L>T=V0>T???#j;ZhOZjU3wAl2!C298WZ&VtD-Af`(zB<92z09gCdH>b`;4@jmc-s$81DWp(?;GHnI>#EPw`|B>30AmXj1*WsMnhG^CjfHN7933lPa4_Y=f zg3@O4r$*( zHxpHzvDH>^;9A~yUP?4v!Cq5eP20Y|i zvOIi(WHwQb`yta4bc8@@Ma07Fi<~vfycUs+>j!y;5Vc|IpQGrMk4x2fO9L*8_E3B# z<6v%rJx-L|%Gu2VL%jq|l7&=AN2wNG15-oPU_yjjRdYOS(MHQ~C_tGh6KI-?NKqYa zP=uT0B9IVJJL?Q&MII$7SbP3v((Vx)^hZ9&;1(PTt7M2P8LzOCQ$ zqFjN`ZVfP;vgOel%9U&jPiBCsRXO`b-Fyh>^M-RvPTg_gMKD@{%Zi)PKoq#6tg;7T2oyR&4%Uh5Wx4bAsi_(s%0 zyHRhd1Sovo!eOfyJ;vzC-uYCoO0_a_bFe$H z!09L!FNR; z0F83=?P((|Sa#*r8d|leH8Kn6H_FU_OVg!55}|AknFj&lc3Pr>{fpfJ(UkRwYB<4!@!u4EVY=UDT?Sg;g;YQw zJbX~FYjD+2;n$9~@=e)>Yr-w}__Jg%$%0rHSLTl>VfTg$!{7)j||BmdKx&K3-69bqzSegGTsvFXlcV6Q_ z={nQArkYxS=@yK=96TXUZ2nQ%9L5H%lTXi)R2r{_@wn`c4PvgGY+GiM9wijGzq@lW zV1k`LrZ1A119dO-y617d``ZN8bdY)|@y3pnU`~T#7^a`%UM>-Npkk)tO;*P&%EE;N zz#!x>xB5=@M13T?MR$EOa+A@w=yC1Y+bba7TfY>{vvVOmmN4dXy+bBne0?o165+_9 z{i=BsK|GGvN|SKb=kS`#9JA6sYoT3-V00^P1!U`S{&>fMO-YBz^AheaB8$CaNb*tU zTto&H(^>dc;H6Q0CbdkbziuwI#OC4w?9PvWPB&0ifSoV#G8#Cw@Sj3jCOH~!_j`2u zt-$hZi!faUpf+xkpB$qgOv`+NNHoZiq4{)f?vZ~FXQgBoLj8S9ZB3rnYaEu&AazKW zhfw+}QmgiWncLAgQY0fz-H06mq?Wf*}l zrgA;}IgYl?Y>dj5*i!iDeStMo$g6Me>#3d6-I-u@x2Bl}7M<`~Q0DKU7=vuOBLiYF zZg(aRKjq=kt6w}CUBYM>Zib`kJn^w;^<=wiZ zPpk-osD~9(oW8;6;5rC<07;ufY1UlgsV8ALNaiuh)!=716tr5P5+BQv7t$1aT$zsr zX2-0V4%<_@dRx-t^G>8$=c40QaKVoC$=(4dO`XUCJ_Dn7EXBbh#p}?dNWZ%|nxl@X z2;p~$2L!lDueebH#bL{nW>wrRWI$gbl6uj`LDm?m*Jvg_xa?so%+Pa093JRA}KM5Y}^6&sfc9OIydu`v;H4#oA z)FCL5(ZKmxy%hG&{Z(C$j>i{(>T39e(`eTzQCyC9vWG|d`{OH*!;3JzT?kAmOG#vC|XVL|GzIK}$kOwl>TB9*J^x0XjBw?P29#lPB`+k!QCQ zJOs|62?+NSKnB5>yB>j)!#*0~#O{-}oT#oZ*>@F*L6%LqF5ww#=}E|@W|XEtz!1*sv+Ie=CQn%J8wP>n*eD^$E zyIniqsc2E&0K`jvJ;rmweDohy;$m)sdd)Ipa@N6 zpDq&*1~lby|I$_6?Gn|*)FAj+qJ|CG5MZrU8NYXxAoa9QU>PO#*=L8uy1){JqJS6} z4Xj|3@%m|%M0G|?z+O2_z>HZAAd_HHhBX*#VIGG)twAZi8B)w5N*m&OW?Q;uZ9>M_ zC;Rl@aA8Xo4>t26CT3|8i@n3E(;tifk7QzsjU*Ue%Bv+P94PnymT~{T4=Wbt{~T5X zDLk=Y2q~3Qp!fjsmySEvf1O(~np3fBTnODWs!zutG2fdpdAZ#J+~&aeFF?FkE`&{K z>v&?5e(zhalE}>ob22<*D2oetvR%a-?~VR z`)XV?OY5g-llcFk1d7y?Er+bLj)pkifnpI$%`+B7UF00E45CW1{<1{S;FjCT z@aW3paf@hntl?Q6{_udJA)aM$Ey;68l*vz`UX;*6Kud4lQ_*XUG;ZVjH0x;Q%k-R>V&fK4c{`-|5qryVVyB^C7V&!0 z)7kB+iZ6g&j+Yff`l_DKwC%;xJ4t|b8Wyu)%S3=2KbOG@t~Dt5Cy@*B_2s@a;Z266ll)rnlf z7#93q91+Ls)Z>HmvA=;KRQnZuAj#TZ}Cw~|6Yn6tvy2OATuUN zM(%kKIT?Q6zJngOn&c&oO{duiGNAf_02WY!Ckq1e{(bqvro1Y z#0(uU>*)j^U-4^A!82}4-8LA^_sllk<0J9m$!1h|#a3y8-u3qcMmh*X-7d{VOTJ0s zP*b0H$vdCFx3y3$SamzW9TKkYl@d$4Mu0Pno!NG5F#dT7H%0fwGy!Aybsr-x3I-;A z#n>nk_QX%+FP|;I7#uxzMkBF-c6Z*|Vd^pZ3+6%!L4fH>B+aLFuEX0Nm#opqN+||162^eene_Rsvv;E)^r7#bh#21C4}i z5$}j6I_DxivgC{HxQTY+Cn}Ev$^1YjAHvF(AJaMC`DdsS{p^-^dvdZPXpqW1_WzTT zrHuo_Pvm4mhG1smW=kZ2#0C_IxjBd#C4T&Lb|L2cZ|+CtP|8HP0VhJpkuMy7fa!)$ zK)mv3Ya`*kh$KZrypVKW+}6x@*g|eNC#u5hpsuFn9y-~H`sOf~8;nJI0kNp490K85Dfv$a~$c)k8d34$=IqH^@2n2GF8ACX|#PN4yw`G%Y zt`7th>NJ}JUU`<{VYgh?gB+&6`uULM=y=olFX8!?8IJ8W{B>BYJd+=1@B}+5`1L$w zg|fg2nUBM0xus zjU(Lde<&gn4=p=u*A7n{g{hq#sJarF8a|E`N`IxxvTITFN8Bl`dZo)Bi~^zmsyaSs zK_z<9!H{2Q5l^EJ`9TaS{I+`K@>EIvZU*hv738ai;yQktf*D{JN00G07dh94s zJQ$1Otl1hL*tZ3HcYWUBBj{Usg}%02bw@50XWbOcT_^kFj(lcyVf=BP#`pX&!wCRy zPq$TX!}rhdp0|G{dbY-|I=!?WxF4P`0m08(T3rWl`N_N~skO5ngRU1+4mW3{Wy~c@ z=SJ_4CR^i_&eIEm7FyfoWUmq4CHs<6J>w(Wl+j;yO4Zf1Cy1Vg!lG;UvN~&s@&>}L z&E_eM{A=wloGmReOEtB!YtyoutAOrRN@tr+oa`n}l`3C#Es^~DpQn#FNgrT;*UQl< zt;HbJMNojHOkR^B1@4T1v11^AWwLw{LkolVg@Q4G&}oF1%8>ce1KKIoT$`>odg96h z9kBGYg{vgF(jR+e=9os+U7V|`Z8+$>)@;z(g5LoS3izrl=C;glVA3FZj_>djKIv>hZ*miz+WnGSLw=LwL^pPHV{=?$yH*^?ZTDV z_GoOQ@{3B@J5$Hhxf%ltCaxL-jwnp6Hr=~<%jztSvjJc559qU!aMmx29cP!H=Eipa z`5HNxSi^mx1Wd#ZDMeGD}#Hd?@@Lik^t0Rx5-%;^pNfU1mtf*Ch*6-ACW5>ln6e-^b|vZA@V6Q*%RC z4ODUBxMk!#J26vBI89-8a0v#WvVi}YZ<=qp4+S$(F2%wOj)SXxjEkGLGd8A9msuI` zSvQba0ZK?fZ!5h18IIxxg2&UfCWer;32tsD3_@*b1A-3kACZ+25tQ)@wRduK^k0sU zF0{RWcwSTptWYu$u{k^#Pk$o(+TS)_t<*H$uI1;M9uOK+YY=p7Z0HMM>jXp?KQ}0( zjs%9-=GY9W(X+9? zAqYh-*=!%A71&dSxqoIJ;`LV5+(06@+9W-}=fT$!u0PpbK)^N;m#~I~;`h8GSw|s` zK|E@Zl#-J`N7q1wKjDDnXH5|L?X47WqkPMkE2q!tk27NU*{!kA;o)Wuw@_kt_;}pj zg?>Dkc4qZjHV(oG#3bwH$0-$WOZMBtmjZs76nlJ3X(?Y;Lu+ z&OZy?8*4u*Btv^*J$o#a<0ERTVh~aG_hCL$1W@6jb8lX|I#_|X*BzYzTYcf|PZCx5 z_=pojyHu_<=F&jA^Q?db($82=&c4sOG|(&%+vw=%%t<|vTz-&a3)|^yO;AjC-t8@g z;-1MXeh=@ztA9b|w$?zrbW_2$K6|}+@Y+E@6_BQd9A*HXkCg4SR1iw6VFeJf+%!m- zkC~Gzi`0q<#p-y#ia*pP$8VHL4$m(C?o#XwJ>e zA8U&LYWzRH_2k8bG`;qaZGK-~J@JJ%v)gh9y$3`W13q>1wR0mv8m2z~$?)KII|LDr zp8MvXq-veuYJZxyIASz7f~Qkyap7is+E{;>YrflTRniLyLF!6I^=vX-X-7wYjy!go z4QpIEpaLV0b8l;qK3jR8RkUy{&Fs%MtEsCiprJ@ep_kXuSLj2N!%){|URyHgxocYk z2u8Wkt2|vLAe-LzP^o`;dO!aet*(L~1OjOv;shX2JA#9-MkvpsdLU49pJ>oz{=(;JtzVC32T$$|s{!x2EQk=+(cZ zuNnS>uL;Eiiub(7)6-9iYIl}5(JP(kkJ%2ay-&0=?~q6L?5UjNo@}z9 zF~RG1H~-IG_qJl-nz8;V=;~Cy>J#;C+TyeK(d6)}@%#8S@w6F#Ab8ycT>)%+qXVCO z&t32tf}{7>6F%rtfpTzKGTx<@u~;+xH@4l8q6!0opioT&bpIZ@Nyq=idmD>ra4SB2*Jn9yF|s#6(C` z(o#{TiUOHZ4M(?X)r83#8KYgcUqa{CBwavKnw_^%TPD`J2`%B(G0d343+36d>|bF< z-s;9a45MV97EO#->R6iXV*b&b@lhwaw8xGF6}m3D{2J-CUllXeW_tcv5b#GwrSA(9 z!CQX=XhZwg&^>{yg+*I8&Q3X2gjrNhDRtr&j)WKyNhL5uWuR}9;;Y)lwy5HdH;?rE~_MfcL zG8SHTEvqJ+K?=(hH#d~{u3m&Po8o(DrvRzYEkCnR4tD_V-pBGDt}&9`Zj&fdsnPe> z%Aq|(x_Ua3ZJt@tEkciHI+@x_OVU2{C-_~&fO$4DBq9wO;rH8G>q^v$>;?|7L5ipl zl|D1cKoA_XB1RNaz8<$;fKaHs|F_)tmwe8I-uT>QM|5a`KD<3@jnUmTXVvG4>Cw+Z z`v=mXfqwwW(`l$I0Xx;`4#J)U`-%qjb3TC!`K3B>1b76zdleV9w}3(^uI}bY3V2G? zxOn|4uPLfy+ql?$ho}`H2X)UyT7duOJR)hHdP1W5?(7aozM1PTi}Rv9UFI}40^eVJ z*|g6^gw`tKO`jf97dCNf$+YR|GRrgU81KkN)Eof6v>wY$Tk2;Ga#Q%4|F+)1t#q4Q z2c2b2dXbDG-*^LA2e<-1S_gkS`FY=5rWnH=1dXEycB0gK=-Kz&teiAFHG9PF}_ zc}8I0K24u}6PtiqWsTNat*Sux#h!^}@fL(;fhC5tTWKB3iD#1=mtPXZ_vUng;S;G0 zygZ}>>hio~6M^Cj3)fB8=;)7#gVF5KNs0`<$&{s{=X@^Fpiot`#uqn2C_zgdb=F3w zf{`5iJ0m26pnWHH{H`S%xG2Dd)rH|=NDEAAz%oKHD&@Z4%epcgKE2*oWbF00_8&aE zYVoeOG9pBs2JW%mFr83t7n;b0u}!2a_8%X_V7TrblGYU0P>nQS3JSBu-|nFi`wWvY zZKA@k#7Km$48&@KTqR%FGtCu~Q$h=va>V`Ugpe)k&lR{?&V%Yq{ppJV{&PDqQ5^8o zvXcx-<;jA6k`8B~t&5U8VxZOQ)(l`0 zKi^}fSaE`RQ9L!V6sGs2XGQ?RZncXl+Eg5Tm!}oIGV6e+495G*qVViB;I*Uz{{9)C z7Yw2X;G#S>J}N-&`Fp-#*;BAnTe=WwKK+z|M-fa29c~TaOF~B_X)Q4`NyLaXaFr1r zOY7xOUYE2qmXb3xM!`k2JD&c$VaCGjlg2VNAfnBu_n&5!KI|2*U<4?A2w^p)Hu==> zliE=v+e(U)oo7=dHbA@0?tT~h58Gy1&sQ&o3$t9U6?GJV`5c+WxpftNCD%5*f zqPNlYL98dpw!I83wF9yeVX24$-^yj`+~2)yk|K2MoJ{3mfR0p(7fb=~$KIAty$c=M zfSVl_9DMF^-P&{*p66Nrx3hm-dbut1oDtCc>P;1gnEeS6d~Wp-n$woFAf%-rY_Rqr zHsuzm2|RC+rOLQRta+FVg)xyf@+%(WXSYp80Xxjn>Iun^=m0Y->^GEIcaE~5u#k02 zmQ(@Gn}#pKv%v#p`*<+q{cV8ym6WyefZxzvb5DX(uS;T~%WTspXZIqpZHpx`87tfRhe!-eZCa4y8EX_g^7r9iP^+Q4i?b%I$E%V)hpRvr$Q zW&vT1tO`8$eQ+yISac%-nJx`MxFTEIpPbGf7NP_fT|lAK>()&2p3mt_FyNezDRS0& zk^f2?2@+2dmN!1AknPpX{t|}jU-E#w^qbv-++C#d)k1bhuIf07b;O95*)oR0s{Y-N zuWTO2BY>M2o~Je8?B=(aI91+iVQE4Cc*B!=T%kXd!RR(Rp%V+nP1&%SkB0hbPX-#S1vI+hJF9%#n5rkWG(@7`z$t>rm zi){znKS}}8*qx6jU2~BA(fv4!ElIf4DUQb^8`MKQ114L3hXXF%mtKvCR*ba1Ya%+v zAxnsq`xS5q0s2J(DC|^H**JtVt8ol}lE{IwY}4E%&G;Um8oJyVlLR|( zg`v;6cIQE~Z@V4i=!N_yqeL(hMK5t+H0c?v-~yTgYJiTa4=T9`=Ue4RPuEnFhrh)9 zq-y*i#!B>{JEvY46XpG(Cak+Dh7Gd{Nq|uH)}YxT*O21BF%LZ`4G4Mu=aNx@g=%;) za1=4ixfH^9mB>=RMs{8Z(DIeBF3M7(g>xbM5oUPj-<_u$!k3FxG-zGA_euM?>@$v1 zuk@vH7&_I#uqKx3`R)|S0%}|q!WCpmrR)!O-4VBWdL$) z_lLXIt8VF|O}8Y55Z@NrpM~e4YGdkQFd`mIcUEg3Z@)&(&UQ}(f``LiGA`RRY!PuZ zO}b=6fahHnMZapPO^Z;*SwZ4>#z3_nxq<5Ml5?)hgDE0uC>uw;2Ok+{yV6h8S>eOM zq9P4juaahyC!S_eiYOe=S{pE+*FfEayw;KW7RfRka2Fsj(1RASF;B!@-jt>7Uz6*zSacQ3{&|wwIK(7ZC&u+qnSHy zo8iW;iDbV22p7D_ktEGoOUUB>D2%`0SkukV9_o#eYkxPRKz()!l}_SVEh4->+8pT9 z3y$MWZxRoqrA|Z<_~C*jG6Te+O1H4(#L4rtyuGp4CIw2|Q2c7#t_I7Ok<=O-lsP~$ zxOfXGOS2+UNLr9N+ordZVi&nOrGVvY)uQsC)Z2Gd@1F~`q&tVfM!mom;PyK-rqpJ; z#GAK$Nr({FrXLA8P35-=G_UDP}!q+{|NkKv%WUbF{nph zbq`%#Er<)UWSM|sO?t$9qY_CU89I&EQGF8aD#;VMI^^ z{sDG^>Hz8~#E`}*JLfOSvB`9@zVN*ZPy!}aa;Ygdj2}tWF7=ywQHXqCX}@PBvq`Xm zx{lVA#JLegb)Sp~mLV&D(PYn5)tjogYCXGcTF13>lN7vH2!Kn|Y^eZc=oIVLTsz^J zLwQH@ahhV>_pD48_=jm@rrKl7+#A@F_Y>~C&5oK*DX!D5D-IMKFSD@m+t(Q?$&k>! z57HX4*u@O}#{Lwog8JZrzmd6k|L72>Vcw$*6mBpyu%agN47`W&b<-@{`3*Sp$LL-( zmJYfv!OYHC0+6;UKl|*jhp-trQeUkm*1gM5je0DaZGr;>x)o%CykLKhVT6OOIGPsZ zWxY&9z^q6=X6Y~?p{L8pw|5`nD6$NGlbP%Lt%R$jvQg^O{OdCbXt;%cIo>!QW!HSZ z6)olUnD`=uttMORB0gSGfcsVtGn(A{AlonB6V(Pd0&tDhoYeA)5b-| z8p>BcKIUO&jk2J(wDq5sx~s^Qf>_%rzjHU<4ZZj9kyBGjiMiu>*u&@V1aZ3TSR`G_ zOS!+LfE`nf7cw1K)_pXnvUG{^;FjFe!x4kw0%Lr=Gjn(FSQkx=9hzfX^s;@nm%>|X zN6r=44xde*?$PIYt!caIVaND3)DTy8s==!-&2Gmq39Q<^iFSk#E~#Q}5{b(>q0YTm z$#JsLtY<&bLb-NssQgM7rW{XaUM!7V|_gd(Yo^vJuRrqzZbu)IJX; z0MsoF@X(I5NwhdgRK3XA0q+~P8uf7w*{gc)1B}8*v?#0o(|k%{PwMkfk>oI&jJ&7E zl{ak?JL1lzVrPSHO4g%en_%#Zfd-xi$;zVa50GwFC`i@2WPAZBKlUt^q_Z zJ=nh}9v~pFs+~D|L-mz|Zyx!&KjI@>0Qwxur8}>x&#l|x5Lw2+YXe#h^OtdPj*E)I zVfxr|w(ydxCzb^!59AIhx&(tjGdnd0jeLB(xp>DSH!dzneeW2e6?@8g%c$BUKjDC+ z?OFbsoOUR{SNr+j@YuU|NNO^oA_7k4)Rr+Hmf}LznH`g#v2#!a88QJ+J^1wtz}C4M z%6laCUu=VW%`x1N3g2LMr`t&$_q_K1GGvRtO=i1~K7Q%9LQk`Xd96<{WcEsyd+a}? z9Ig(_ezx*+;UgeoWs2a9p<8oT>Y~@-Mv!i8lBy!AmNDN*Vq|BUGei5Z&8ag}9u0o= znXfrvIis^UY3}Xu=cpooVR>>_1G<tILl9OSWm(;&bCi?dp zmC!pucK3AQiND$qI41|4yUZim*eg2!h01H)x4p~UcLx&5^ld~kn{~1z&|u=Lc4<_2 z_#&Mu7GMqjf-%x*r3-K|Yf_6N`$a;H-@4f^GV8Fhm?#zO9y7|2mrva`3piX>c1&a2 zscs5AJ?pD{01a6p>dI|c@#N&K5>k8u)#mF)6od-y>o_GaCFn}vWWJf^vCuND=WIq! z{XQoW*$MFvq;L_z)7(l*)PEqlwW zFapvph?1aEh$!Sj( zbuJ<$W-(A^c~j=K90}O|&e(nqP2r|8ETCf_K<2X)d4rbg5n=;o^@b-nzNDvjAX=n1dXlWJ{9L!+Fsdr zI!luC^SO9ZmhDh=shUf=E>w*7;QBmMh8FecDT*1oL`hpD=Yl4fRE?;-F%O9(M_&Lr z=DW_E%9{St)XQKhCqbl14iorTum1KqY=4c-!&?0!NrImg3&Q}*4cYO@JG1NXwKb%$ zHp>e%67L}dsEsO1CdFg)ywh{&!>VW~TePH`WH7hn4=G+*C~V5wwwVd|iHjIRg*10c zX8f0i!V_}Y!*$bTuet12x*bYNJ62pQmm96cSjc6yw;I;H5qq`}wT2}-{9&H7Yy-oqWm)Nl zg^vHukIgI1@T@VtM-C9o_Eg6E@#_kBS|wD3H8f4Qsw_O-^U?kzwj*?C{~|mJi~L_O z;Gl{0Rx@fbVoe`S`~5G4W-8c~B;o~B0gbokA!vCm%Egbyq_OTb8){R^Ra7rKmKwqy*FpGb<#u=_qsVe+o2wfcxRjHQFdSWPS z*NiPf?U#Z-!5DCMK{rWBuF4qQ>?|nCYZD-9Tk+LD+IvUeV^@L?1-wVj;x+qA!CM#P zv;&@w&!Z(~q zSDTyUKV$*i+7A$uGgKvr)nwcQl_{8fv$%QhW$$+Mkep+9{j88G%;V7M2tw>&foh?u zL(TEh8y`)(;;q#CpbT^{*YTvuYn`;kE+VUAUdrt4Oe(j1?PyMC?3_vH zd!j_<4mZZrq!L@CWzAY5i0gpFu~HHp?pnED6~_a!nRv-bDfrQ#g`NZI8Ofr8F| z`;jqiR@hrA$-?}yuL_dpf~oY(`F=btK#Xe#ykpSl`yB6PyLWA^FoKc!M($60j;^lbDd zPJU5}`Z>}kuV@i_tWCvF)Z-N*sRCj)*9 z-jcMMhhzQLzRufZ43cI*y`=HOla<=8i?mP90>crhcooKA7lTPJK8LQY`{%V>dEgg@ zI2H4{+I$>RE>_^_R72gYwMwU?u(6GixMqyosO>mxgN}M6Mu9e9C!_KFklF&N-}ykX ziwAzW1Ykl{H}V-D8@2ze)1-{es;XIlUE{Fb4pCH&$wb+U2DZ)lAg?uWRh*3BD7eR` z#o3;Nef6kHpKZ21wFcK3Mb{R;t~LgR5cA)8mPe_;kgy))EsBIc!(TL6VCHmW^VkJv zRSD{gpHjaPvIG!t4;q5;L4Q%Dn}CROjGEdkzF%4f@7Lph_ZR=SOjcR)6Letk8#&7) zLX7BDYK54Wqo@@^$`6YLR9!j{AJdg&;nXNBh~PgNHY&ZHVHd(9eAOjoU&)kjxlM2hI))miF@?%EpA~IE| zzhCXu4gIZNn+Cq%L@w~*b1^V)b+?NT?k$sCB(+k=E{5oKO=K6tE<_k9cn%n-tj{{q z;k224Mn@u)Pk;8&x#vDbLlXGvNOB==wFP}bPLk!7-`p0p-<4`y5T+9K%UIm7jI>s> zNz5(LgI;$!fz#ju zMafo^Y(U&n>Rfx5WWKgc%maHF*v>@gQOVTZ?c5|+qQR>ifwV#w$A$+?m%(PF>*p~)81$g`t4 z3=0-Oc~bH6t-QAX;C4tZ|892vVSQA$*F_j4l~d2cp7pm*Liu52nzWjmXxwU7t93@! zRRZz*H9m8Oz9WCk<^(wK)TDA}EQ&~!`Jb7$r^yNcKO?-0L2`1h3yK^+`mj`3>S2i6hHfQpklFo> ze=jhZl;G+bihY+no2p{3fu`-h9l3%(iS{eUUeGsTu;=yAsoxOhX+vh1oS-ZqdccKz z?^_{q;`#s;VM|tuQAaXoZ$A!LdcH^2CY$xJoCr=OgC zZq|4Z>owz4P=>|xxW@$f|SS`x-^cT${{4evp}whb6V4cB^-}H)^1xPgw#od zfZ>k@Of&pWU@+f${#@QTGVqmvLPRpL>LSsPfNxp^uent?b_2HV$i=67h6Ig_?T~|( zxKz_yHeyDnW+|K36!k)_Gd>RO{ymUhx}i21_^~g)0-(wJa(1U%66;WB|ySrRIeA|0Ghby?=Y zfcgSV0~w_UGb5b=mn=hWa)zyWjMXTiWgoTJ*H1|F5I$#Xz&ra>o|YK!#4H{ARmT)h z{22a;r|au6?5;cV%kE%-ekBj)kNv#u<8o#6?!J93YiWm5*e=foPC7z-$$q>BfqSuE zY4J8OXP}uYV@b1Yi9wwOw&kjOYZC7zz0Z_z+JS(5^tU=6l9Kyb!+(1HK~2Urj*P+; z>S0rzIlk2OU$7;Tb3(`fGqtg3;lnFZ!7vmGupjVx`(oD^JW{nd5p24%8#fvIn;JI?jr?)AUcdnRgqzrd^h z`P}8Y5Ut+xDG}nxg1s3El!-mNRmA-Fhn?SotpcV9(I?PE#Ii^MUd}D$htcc^>dUiR zreaD-#`YtWvrE1Lsi39&YWrBQ6C?iuB)@4*ERDwydna-S&n@kOB&Bg34weeIZ5iZh z&k*KHwv%PGq%+K0sdH0IV(t-)A5A)ts)fol?msO!R+^XZt7bi0D&aAcX*Av5tPW1G zk+x`Zp-}k-%e!&_XTxF8_ij+L5x{Wr-kqPvMx`2xPhuKKL>B9SL>wJ zQ56VQW1+){RxkmOTz=!Qgbb0JS+z8gFc-X zP(N`7-_GAw4%H+H4SV00X_n3|O!Nv$D!0pCC))R%@@Q$_;-Oe*dl6iVgH`jvF?uz8 zG4$Ni)G`1#cq>mc*%>@mC3vLEU++gbc>hE4!gt)68UI9%Nzje{C`ep54dZ#};f^H= zq--d%zG3}>+}x~SQ7YMpazDB7pf59$pnin7S{ zvwgC3MEfSAMCmrlBECOf>KH#vDh=LDZBwkh5~={&ozI2Yq+7qpXiDDK2Ke`-TO0OW zl9A0AIOcY5$kY@{d5(kSa_!uJX3=RHY&wR0pKcDm9WIC4}f-gY)O_3zZ4teoJ&5!# zOJOLFzElwHW$kJTD2=#CDUh+ge*;e$*lYoJP)a;&#YU;G^tZ-4uCs&1wZB$epAEmB zm?CoaXe22%J+9Xf3QvBPN}1iUWCy72JWB}uT9ABV=lID}N_tPq_fyHW>~MKC>1dZ| zk~2I#RkHj_S7`SRcfAiM820PA&AD{#9>E5R5wx+OPCv=@0hc0tE4jI$C_HgxF&6;m z8^pDhm$~S@WjrGv`VYsH3f zAH|ds)Q&*ZKLuD5Ue5K98vY0_%hPS2g5?HG?7X^KhVOB+?RgB#OJqtfrG+^XG z#mGEM4uA8wG) z^&sv3d(I8R&^uE{znx=^nf}r4hWd4{_}w_L_jtU0sHH3~nV|MJW?UiC(xtrgrNn|=NyA5?JOoD5(Xqy_ov z4$qh|o0*Jl=20I0W7IxW~P;$={m>tx&-a_5eR`i4XSTkLyE=lWq zKP;_KP4g)OU!o+dvDd+5-yqz>>xn6^Cg2F~z_-|87RfBEn{p%KVo zi!EP@znu{sgQc$D`Hd>DP^E|J*^c#+5KF|vF|P(Ys07nMxv|!d43{UtW|Eqi%h=^& z^xTB2$CNf{?tm{(JxEjhV(2RR3;FOTBTMrxZ8BmfmYr(WyyGX z-v&1;qlKLHt(|lS`I?Hu`87gTz2p2Vzhf39DNCE6md%=P_U0#uQUG_Fj;krd@G-!) zDw1im6$42XG}?0z7zQZa*i{s_phe&edanGJ0YGP|JIoS**AcAE2>S0YhMbb+HbLp; zcNJnRaL1ZuL1g7dDveO3r(ymA;N57l z=AI1t_58)8u3Etwv>f+q#2qG3i~x-NZB$Fp({JDMMCt|YyAB|9brbfi-oUWuDk6$~ zQfpTV_e+aRGJKp{sTGX9)<9w@|Fu`J42|{n8F_R9)_98SczAzdD#~J=(8TR^W|+mL zn_tXjbvWPSQ=vV#&Ji$z_91p_-(I{S@xcA<&VmLSn%+8{SP@#1pH|YTo!%~$+M+)u zy%uAh;cM__5)1&Rvnu!NXNhOEFx>~qa@;d^Av+kEgujLLvklwV^A;2WOFx|ImQoUt=abt zmTgcxjKmIss=udn^`kH=`N|<`!9mg$QWyVVPHH5UUILVgRQ6g}Se12RitN%)b3Zv@ zNDL@u%J@a57^(5+_IN%^9hMHtEt%#w{7r;38MjxV-iJ%$RR^z$xfYpchv%C;fQEjh zG9V5wY@dZCV}6r zH;AD00suVS=N{zz;jeB+KkL_r&ikctEZG5W<sH2fZt?L?H(3!dh4NDM$m$^OlkbP-h z8B)vq7H)Qgzq=914tF8^$YRq_@KQ>wAZFf1{N2ExE4UW08$#b^CjYXrvvVfIGZ&xp z2mqw%>_fwJqEl$=_LJ!@s!`(791;S5YySg#F+TPa7wX&A=Z z;TfK}p9f-txSvT$7j_t7lQJ|R7N(aLOhA}4oLd@ao^#L5fK?al0tfcs8)`~w9S)1l zcw|rSWhN<}g;ZIn-rqc=O8NY*WbJ1BmW{P8`xVv9j{wfWT0#P-cP8O3_cL`fRh9KU zkVnXAnBdrpFw!?;@Id_**X16V>6jl9HGUNd73%mJ$h>=Giyj<-+Ci|KQIY8XJn1W(Q0aws`;c^k>B+w`MWXia`?s4HzUt z+ZKpP&jI45uV24WqIl)Aa7L>%qFBvL(55-X<9>#P#k1z@O9FUd_hz?=Z#pnusx%V% z1go1-%F>FAb|$H1Ok7Lfps(>*GW6aM@Z^7NGE~(KKWAbeHNZlq)@$V7EdXd$8+KJq z)~`r|PlA?I)4uQ#2*VP-)Z3tJ5s7D{IS1fHH;dYB>$j3lBK7yw?3Oq=a0ak1lj6hJ zUBnW|OW$36cR0s%`vxC8Ix4MBqV;*NpviXC@yX86^3M{2>BDK_9%q7|#aU8R3lV(s z*3}kxCfJCKV%aRKvW)UTO@K~IMXdcxQ3iRKPPwX2qB4S}JHpc95Np50m(zb~_@&78 zJ%1T#h_9_yINNXb?S}umr@(uS>M-Dmt5}(FVb848e+kUef0UrH}nuG%@10^tNUO`*#&_8soDUJVZgoA z=zzDiSPnIoX+#S`GXL{H(7j-*3Q|!?a6v>dl&9Q_JF27tb@gJ^WwS#K!gapS)GM)o)PEdDXpKs+bwJr{#rw=!36n%f&yX zXsRE|`9eAPf+P4g4St39p{j)e@iR85TKI(+ZFuR~fCnPS;&Uzy>u^^=XXEWJt#I!uxHjMHgZ+dH6S&kiZC=Sx;*bBT{0lFTG2u7Cx#-*%gBV3f%baRY+0JknWDdFD_=zb_|pef zKJE6m7Yrj5%T$abAI0D^d*)qlL(i;bdBq1W1GF4c^Jc?hN}q%HjInooAHeL@>R{Mk zfZ7O9-QsE2&J)PG+BpUC^V3206MfwLIo(_!19*T>7gz}13jFrW)kRhQJ^o8c6Qm8> zQ;IZ#0>+@Vj>d&4unOBC^XyMbERz6J;_X}{o|Za%TkA_dKID0+jD5P!&y$UkW*x3P z8vnQQYPRlO_is?e(1|$$iI$PATRkC*)JHU{t4D{biw!~?ddqwG?e#r&F56cDGnKGp zQh*LMigqH9;tMC?*eyYvxybq3KUXWPM)1p{lk&B-{OxjaR#DGINd^N(3~lY@C{Mro zH!Wui?B>nhxSH3}fl$AAAEYNkM5OCVyVrQp(v1?12r$`-D2YNE!e?AL?4f&}o@u4@ z;pBz$w-S!IoYD**T3*A3n(slvXd2AL2jD(wuyOsKAQa{F&bpR9$9`R4G3MR8PPpA+ zS^%v4B5rM(-pplA1}`3Ux!_BsB!A zB0io^WvNZtr+C|`D)hJG@w_ny2(aPlN%_jpCpz&n(RpN%6XhvLjT;d;O4e(Oz%0vh zz5m$&A1P}weh6r)#fwqUyY|^}L_k*@DUdkTE}N!XOIUW7J4@4C`UtiA3_{cq2B~GB zAo9NVmX-g0`$lBL_|U)du!acXRWHbpBOCIxb^qCJ-}PyAU_b{M4_|^?1Tf2HRgMio zuf4Q#y*n@KY$I*|7F=rpn}fi!4Sn@Z3Mjzu>dJ0klg46{Y`b>V8RsLUo>M1jCm@Zn zIJJX!;YiXct@J80-s~Uh`PLpqk>?~E|9C5~k&w@_w_9RNa?6lx#BJsO`H1ANzFlGX z*Q#zmQNCax!6iMlLfIR30w6b`U@1!ppHBS4Mh6QD3aujN6K_|z0y36HUNpM}!hZ|0 zfU%^KqmypxC@yG;T}q!N%5f+$Z0CL>QtDM2^Pfg2YPH?I5Sx*0utn=eOl^lpa&Ukp z_dzQ3EMdRcOvMm>a@$v z0}ZYsqBYDUk|?OHxuL=}*zO6KF1BVrP{pHgwCKGkQRkzBb?Bh!fM&+!Vl7{;9(_@U*#d5lhSK+K;zdIDl%eP@_#R0fCE zUtuR(IGjdNS@&(N&G_Doj85XZi}hZeaG0Edj|E&S;A^ALMufLg2sjX`Wt)t#FdC)x zuI*L$2h9K`i(U|FgKNCFOEqx{*OVrYGc!Y_0o2?s+80`xGA+lSC_|)*M{T#YF-r2= z-@d;`^!a}(0o&0!Ke!7mzlR{S#~+0)nbb}<#joG{62|m5c|`Rx+WH8e`@27KOgvJ? zdiT%A`IVh4{6EtuuxwPO?5q2}(`sf7s@ev_$<*S86<|mBtf2+8K4trRvK1Yz#pypy zNf#)$s4AHPY}e4B8p(U0hT8BN+1ascs>pPBIUHa403)Y~m~-muZV>!&IQe=mR4YJ8 z1m1j2D}3yQ@B>z9Wg?nv^}t~9+yU${6UtUi&vN1$9aNL2EibBcFRX!;J8hdd4HBnG ztPTE3Nq2Ck2xyzV4Wtqe#PptE&5w^v(-MD&BY}&Iw0@WIxNV9%WrS$GNkqQEH zvam($!ps!$EbcYSy6Ic0Rc_SN_3YV5M&&f)JjvV!@-1WJ5 zOIx|F-ym-Eop041?}2CrvorQ?&8w8-t|e~pQY`0BD0BOW$y41i+&89MihBDds@Rjd z5r;U_JUEwvu%_LTJ2SR9VP{a4TMH?-TCxbxVkHPFXmb+N+YNsX(VCgUa4Rj>a&M*V zf3?>AjgIfB9RRCRx$G8&rn~wpjilQf3eY(5>0y0b zXNaNN?&>S`j}NRHzd$=USH7(dcR3v3*o`?BBgPSx^y4kkdoi^^&GsSV@93;*7?4r) zUod~=!a%g$FD$LOej-W%M*ZaI_T(R?7Pd6fH8c!EFjDS=(GxNTU=ixGz{M?fK`PpD<#YW>ku?TQU5TMLiVp@17}E}-pU2QTN{Up@ z9MrW+;1972Pk4u;6p3;;qeu)79Q^zML10IEvPs_Tvg-k^{$p9FXiJ-o!LDQ}gi!PkB^M`fX>Ar}dgJ@+?l?-qa*gAj0qm9+X z=cQYBx=2^FZ$eO~mSNb%Uug0XbZpUOv@RvXdLL(N0)j8KbwlY))N4Wwqx|vqIJZwgWB&`y1-yRp?A+Y{Ce;+|ZMhO5mv4*$?YP`d#kgRS zbcMpb@p_d8yv6nh*k7wdOB2$4lbvzKK=jG;Kx(ACnhL=wnhrr~PSg}w^FsZlK~@hWlt?2zc{HtKaPe1piYv|X0V zHK|GW_@x6&N#K$hJ3xm^{X~VYuDRASC#-yGsx6EmG6`(x(9Tb*>o)eu?A>qW_(I>XenmI+2-7%6{2A5_ z$s7KL-E|rk?ws;pBysCuTUl5a;hbN4>tvK+BOY0G$A3{iO505&KaksOOM3(0Jp|XU z@s^I#%@_Vc_OZw5z1+cfaKze81Ns1Jpfs0(B#oDv3Wb3ScIXt4Oc-6mIqC+1t}7_t zb%ljx5i=yx5ciXTmfRUcJ;16pO(2op3A;q^;FGv<{Qa`DHM?-%`33R&LI36b8DpzR z&F**4L0Ec)c0cY4jo2vL*U?@7g~z|>=^2ox=Fi&54J}PZY`+S3qCL@q87Tlcl{Z*1 zOS8z+6@2BV;Ut`8JDy@UQ3%hTWz_cBSTjVdm+pU#Yjj>E6%70h%j*IeIl>F+k?3P1 zzX^TM{V%`Kvv({&P|dr)H~IxHo}IC-Uh20g1LZNWy);HHChaV4#Mp_BrrY~}Fe`^X zyXLas0%Vztey6$`|7D~@<2V5*0rN;tQ!u3J)M-iw-YHM!&Y)SIPqg%7veq@Gi@W>? znL6ft(;cEl7VtK+y{Kaf_rZeN{J+<2sn%pmkC}O#;EumeWUX2 zt8|*wn;%*B#vO{9yKWzROxCVtI~S8HJf>hq^Rj zKzr&G44F2|`-!8kJF111f3`jk(l z7-O5^)`JoAD|NN4Y^23uvf`VZi!2ElpR;i(GZpkhV?8Z*@5f=v+^W!8>+t8YTG|WsE&T&^myp!U>a)%F+qpCYLBW z%3<&QA1-LPz~wrC}i#E8kbmc?zFf;0*X`1(${^=zt$ z!jZ-&h@9v^=R-T2Lki|q`#V9!iNF34^sge-`?-36tx394FYELSN#IdWlR9E(Ep(b( zZ3E->%+X&-=%x*$dq?9xgvh$|7!x^{$Yo&7O{*(}5qeuotnn*Y?yw}KLiBs$AsBFR ziOD^Ngz>jcRqSwEB)y0QWsWTPFvMor$A6Js{=Fo#3HT4R8feSx&Q{)v=Q9<|(y|3P zjUWra3F2%GE{`Ab_74B|aG&@MM_<5BMUH(YlNx^LBztWek%I?il@*VPJb~d%lQ_om zHMRR9%AAob&GXQv#>W(FimEDEUgWucEgm&t*?+GDO`O^tDcSx!H2+8a_P@1DEdQfj z`sZKb<0E1ec6G6Ia3%s!Q4=wW{*yDgSUK2>8M&AdQHk-eFtIQ({~Ju)tjuie+W&vW zzj7)$BULj^B6lknOCn28M>A(FY|g@DY;4TIWyZ|L#%65FWWvJ4X~N2E#%g9}ZYIF@Z(_`0W@N(2 z!pX|b!p+XbZO+NW%)-vZ&dSBX&TS%~_kUYIvrLSCflx?{d>q2d!NW%v6Di+8hnxOt z3_&DX^Rel>LPe(bLYB|Z0kEX$L6Sgt^jl8|lR2=*nbxvw-}leV z^scVnt9xcwtzOduPl(S2h!)hUQZmf!EZm6HJx_%nh@9*|HlVY)9iosBkX6yv$;!;l z*4N4s$o|g)vh(n<^Kk=N<$wl2eqMGU2Rj$g2*|1eE-6IXTj+enFB#^6;miZ{wx!|AOQfm3OkV^8Od>->%%;{|P1U^wk;2 z!T%3~I*?V}+1VY)$@$-g#y=Q9J{};es+*PPf5&D|i3i|<&3QPv%(%Gt%`Gf>___Ic zEjTSXxwyH%nw#@}W#eS$77^kw9)10xv4210!0Q|(8>@n`G)WZ6HHRJsk$xAj|*6e93*i| zceX@JWNcWRdK^49HujILOGKXFVAtX#2%|HE-d|U(kd^>k#Q#G7|CLkK%-RYBpBY-ngdzUDJF=EmlhoqEUiHBmjGWApC8AUdbjj@?X}K)3r`xCsVM}6 zM*(LOqLq{7|681YPyb1VlRF)d1i*&mLkH<@*dCSrb$7Cuv879y;QXCL0WNg^||&V`<$P`V}6>g z!CJ%q_cEWi_g!guPrrtZa!Wf@8aa3f@kD4bK2%h3;b-90ygvwS{*j$(dW)H zm+LC2n}T0)=1O{TCXwH%s;2*B0!1lq3A@Sy5k=6Rz^{UEr`+?3r(7I^triNYC|<@r z{A#Mv`!#M-a*k)p-bP9?Xl`T;#%MX;aXd0#G^V&>%_r$Q-4cA&J0h6$+n}$Hr1-gCJV{bKOm-9QI4W z>9^nWL3>(a)_O2?%V;gR#7J0fjc0m-;-muS=YP{QGyK6B5P)xZL}UTWN+AO@mN(9#9J}@= z6>Lf)0|khsY0jx#JDt~O!FaQ;-Qh&CTb=dqqfgp=eYVT9t5@bTqStY#5t1(9K8=V8 z)A{coAD2B|h$DMqFs4Ju=Vndu!05$NL8;P;Z*G)nNU%ibS0B%X^tk%JZxZ0scZi~P z5ESvg`{eGxQZs;~HDFeY)spr_q>?eDcF)M7Av{Iqq)cRJ7K4s@0XiYXM#@XXtCY>c z%_PlH#7K>p=B5q)X}4d9zq}c%Kr^JZ(E`ZQaJ`p*F~DApL&!*v7OC$zz{|kKix1}K zh^yi5sEnWr#skr|I9y_@yt!(+CsUyk2uX8jlRI9IZ}s#Ck~j@Y!dZh^~yo#w=xur;Lo{3&jV;ks~L zCDqF*0Kz@spL$uC-+)@&*2a_I;n0VVTG#h$S12>=cT0jhE!oZS$|*gRhK4UP)T{N@ z^Sjw*GooO=*nwyX6pFNw2tyU~aBs~;bc&?`Mpv4YJ0}$(I%}7G7a6}Dx?8O&s=cw- zWD9D;^WeMY^fBNWC|20Dfh~Ca#anzBBOIGQY8KZ0J$dlb>}P5#IkWShrMyW3YCZXk zTfE&k;6ltURo6kBs;%Y?`*l~3$c?IP+TSzibR4iDbZf$&?VllmDi>na9q1%)oy@5P z9kn>V+|YYRYoT0`v}(75=K#KXKGuNN&*pEcRN=p#ns2smWJm!*#QfZ2k_8^~q|Z=+ zO9+9ZbSY_RLNND&c6|tCRS;yELk-mQQ-reNRbYbdf-XgO;y@1{&kwQ~g_!GyFM5i9 zS&_jo{w@%@u%WWus)jG-C=J+Xt?I;G5c%br3NLgDCFr^`s6uXxmNGZ4X6TkrZrsKt zK7=2kkf=Q1fy1jTuFxMyU023*$AejEp8&nyyCaotCx4F%zb1uicRw#YSpt7?&l3)N z{nVYj8lhe0KPI2iA<2;EJwH);7uEdUgr&eowxelW+m2u~pWROSywH}CN7rzERX;&i z{mw-#A313Oo<7{2Qg zEVs1%3)eTGPj`)*H0Bn&`<=f~6v?9&bJ<`leP+@vTk}NQL{P0tVnE}%#I*Y;SGl?= zT;7aQnX2$vw%;s)<>Z3$=1LxQ^9)!XgTUJ*fV>Llo)hdOlw+i^vz0 zd411Sq=8M+x3+-%pCjcFOqJ+27A!unEp&I%@H?Bjk6|VP(qy=oy%!?W6&9jMI5aw` znbu4=uLjpcIR=lm2I0({&PXEY3;P>-#B6T@4PT~Jl{Y8;`|2hiq@;h8Y zkk}KwbhVO^*2XZ~X8zNXkmMbl(V~5uostx3Rnn1puwTAiYxSrsAoS@&m5{*9h-e60L_Ax~k>AVgJEWO6;jO|BT$c9m4HWA1HE%smB1|0Dy`RsaJDjZV zCfMjP=iP<<&3o*hO0&vuaN)_@FeD$GBdUd|y?Xskyi$vqvjg)UIv}5@GYJl$dulY* zM#wPrrYV9 zSw+MPt5<8KbC~I;{)^Oag`tUQ9Ay)CtxrW3#!CU!4E`m-2z)|al>GrCLgNF#Uj3?z z9sa0~loy6Ngpd~=4niI^2Z>9+$u8p4)3$Kiy(gjb7J;sI>-G+Qt$VU1% zf=V$+Ue~;^k%Hkbv{fPQ;&v$pk2D-1lC?Np{uBW|+yXW}w)g|Yi>#{fPb!K!uAvxs z2EG|qda$WuvK*mqkZ`^_@>n!96XvxFY6nLLY25qD5(wk|DK>&PdDO-iOpnGnV7Mv(pGt_TyjRs6((OPNkdUHNveKnh+9!^F=6$)T9}=^G)U}vZKqwY zf={^V?%(j;flDC$aC^f>L2I`8wjaGwLQB{(sGWS_JBpUqz3g|FW>{l4yI8HCb7kMW zf)2j4_Umva4L;xF9q(VLSn;G@nD=b(VD@u%g92^u$rgEWE+eL;1l#IDC%6QyY-266 z57X{-b=9i3cvW;AD4l5`ACg^e9uY_0r!jeHdq9X5K|ysmH_UL6&5huJO`U81t@jJqO4InjCk}v@^&0L*7yk8wCFa{ z4NUPK8Vi1WiW+He=r+zNgTS6~~FH!~IWA4B9Z$?ydOspVIUCtbvV+0U4 zS|;Yb|&j&YP_F$de=mha)k zKT)rgLFmpG4V*$(J^y9k;gX#nU;pK!I9Q|%!eci@{<3Uy)&RD_ZsEa24*$469{n-n zteFqF@-wM0jEG0C#0H&=w5U0}W3bHi7W*R?DMkA$`Q|T{Gvo`4??~VD5TwHml*3@8 zU4aRi@v;cvCM91Hv$%hlbKZdWf;1Z)Aoh^;IAGh9vpXd8(c-DB^%dfGsY3A+iz?68typGv=_%nm3-|ia=YKq!p4b&d0ZlNf0gVt!nw%D2-D;E-^;oF?2qY!K9d&mY6*&so4xh#MqF6)(yFy z)TNMBS8E^$4MhNp;p)ovyJDroc!Cb@ri|;Joew3B&`jdMZp^gp=(bhW zYlH(IF^P60hHS@-FG(3Op__2EuIh~;5wvFdjZ^%BRW|wfK(PW?cZ}16FQ;6TiYx9W zEMVRK`~>i5LYIo%SV}3zy<31~>;E2CaAS+UxcvYR@iZdj91PeA@4R z6BkJp9g}=c@n-@j>|;GQ`ZMH>TRcmAP?(JA+%^-BY534=jmmVVU&&rSA=HgdYUYk3 z@h6k*>l%+S@+YNK${3HIeHF;;Od&haoZ5G|*P9v|SP9P_e;#bI-G6(E>P*Vpzq)OF zqxk%rkob2OvUy{+?6S|>TLkOi;^gvjpL6}Y=QeD!#WoH2XY;|_2f{R2>=4TRklR8? zFzvwj*8`*b9e=)m9ZIVJoVouQzcY)8g!0h~iQL1ZR5!~#}{(z%_L z$gd(!o6`nh|L9Kgm?@dL#;ozDy~9SKtXNtd2v*j}R6{Cb9x~?$3x%c!Jx>pi&#Izz z(H+Cib((TNyoFj~xQ$U(+|phaLGk`@)@Y}Xm%vxTmm#_XI}pG5&##lEho_J0-@#mS zqn@*#6>%;4N~WbRv&J7NrAP2O z8PwxC?W$LJ!zf1Zrz<+FO7Hzm-Ap%XKPv?^9a@9mTHI83u*Tj3X)%dbv7+>q2vT0+ z&)zp%`&@TeYzLfcU0r<8Tpow2iq$86&-k7&Ru#6t>qL(C`79$c`*9W*qRlej zZ@<&5A7&%1;9BqReRn2$U=Gvs-kR7iwgiSFe6Fh#N3>;Huf^->e7@q{>InedS>xa; zMD1rAcXk>5r6cad2*D9~8C+Y~T{`{6XkFQEf99oAq0g(cH1$QVI&fN`rPpCBMq8=heWbnm59<>$d_VKDbVh*?zb!Y7HnzYf zMp>p-9(Nl~zns!Nww!ohvwE1pfUufom%_~pr;nx$!xPm96t4QyCtgwB*NXxJo>wB7 zcUYNC;75!-mNc|t&3Bx|m*DQpx(rH{zU4ajMSzMSxsNh_4t$z?poEEfO?&Y7kIPei zEx}eFf}g?k;WvK%u1LHIHi1h{ugd&r9ZIPLA!TL@^}%|m_l1PzNm4x9l|J`=|_N!r2fTb}E` z43}Po6JA}mSk%ZbpX(=6s(w907i6Bctckc>Vc29*S9MgUx7q8Y6nD}(ToJl@IPTnB z1bpFuns3y!I!$|kO;oAz9X^XeYteV)Me(}JUe*B(qXvV|uYM6-%49D3uqB5Fh?3rx zmF$sy*st*l^`+HbAut=f!+Zw=nhVE)K@AE1I$i`B^nSK8X<&j{_^y!C*0UDDx}kTm z-j=MHoMwbko>iUCyUSiCq3gSky>4ex=uv{vZI{`YODEUGyStH_PSbNKr^YfLxHN1< zlo94fK^*BiJt{n-##R{dF3b2i-Sa(BLT}$NHL4fb5-j?l_JaM;8y9fC5~==oD@k^| z_?qu(;2!+TKuDl#lGJUcDbJ}sEgl6P z0)qwHxBfI2*?)dh9B2jWDz%D*7VApW^t*-74|Mk;cUA_76>o`hW>O{H}msseP zxa5@{1xyeL4HmidA~Kd0Rf~12Kf65Knv-}-53c+#1P39c%G|1zHdWbl*m4=yg_4)Q z%P7Hwg5TjQJWu#}i>0G&Ps4`pf+1loXpWhE7MXd8oSfQh+uHWPhrLR}N|Q>WJ|uy6 zL)xFPahzE7>{#`)Aae^Dida$vO(j{KcLZ^R+&+#Frlgss^>tU!cFA7JVF_86GQ6GY z09cMzPi0##Pbn5Vv= zsQWX!M71oN@Rd;6Gi;O0suPolwa9zx zG3a3AUc8GZ`&t*{Tz;|tUPjx0P8ReR2!_`Pc@7EbHnm67KxAzlmP&l z{0`#hF@0=A`O)D&^*e=nACZTfmxOonV4GzSg2xAcH*wm6KzZM8TmL9G2Es0!2B%4~ z-!qFaIIaRrENT>O@|R(vI!rrIxI@}1jPUmB<-<915cdhUXN<+$2Qbtg`OLP?(j_#5 zw>94F=Rqocy3{vMh1E=2CxSQ>QEpBfDHPTo*ifyopCR6^sBvFIhDbyo-rPm0Zs?XF zxiu+qw6rdTPUctG$0zeV^vi%vZn(1$jTmCG3%jdeecc;2If_dSqlc?H-Q#blXp@JC z7a~6=F|K_`wON3$*y#GG^tuX>=Dsz0e*~}5E3_I-JROw{4*}T(;Y146Zq8+=lc#?{ zYd05?b6X%Dw`M%+_7F{_`ucv$`h(PJrG{Pi&xr;GR)<(iRLhy^!{Tr*r}nD3w&3@E zTa-F*P(AtHjMHNPZwHVTGn+89E#6enOt?l16FmVvwZ~zJaX%p?1J8xieO*0*&?$|? zlh-?Vp|F@|(=CNS>?sVZ#$kGzpY`qcF6qkiK*_}#pdmUtJsh`hfoRNDQnj(`z}VQR zl>qa|WsUn&pvfpD&(4YGL6UUExlQ=+*Ub*N<{brep_E&-nHMa(-w}`pzPOY#Xa6#B zT*tSAwEVmieYd(?zfs`5c-EGB=SRHcKQTZaUEI{2-Ma-^x}EVDh^^2E?{B`F4VPa# zF7Z}6*U#xZ_y&X@$$yg*aqk@rg7GhFtPmTX!3_UFRgG4+Yb0ZeKi}+i;R5!1?8gLq zP=`#Z9c~WvPtJ}IBcr;%ZU}637vW_+;Ocz7K>cB>un%Swo#^zxqV5CekV zJ-?^BBfB!_G4gR4u z9_0fM%e$y;Z}!&M(kD~U+an4x#=!*RN7mITgld=e@tvarOL?TGZ=YRxzllh}1uGi_ zZdIR6&b~|)(#}5hU^lEd;HV;2fXAvFj-KDmY(SQreifD2b)}pN^wmWQ2!7ZhZdI zy>W*1@3?>={5m`RGl?4S0#_ucx?&!z8ac+iT|{b);6iTNsr1yk0Yd>Z#a|;t3gND9 zHLo+x?}^!Y*GxK`ls^m!gduu=-+YtgY`#_r+=B?EU~HSp8?V$W%x1E$T4ic_+02GK%*+H*i)@sS&x7I=0q}2Y#)RwQ#Q+SaPGX4uOLX| z^IIic&|4*_0Ez4?mP(3URqpTRB0amNENi7Rx z7okELv#1j|1i3wf{Q!!5%TnQT&4VWWZr_5X?s|6!JIscn%O>c~NAu3_z0SZI@~eB^AK@FE<$U%+m?r_VfoK|Mo7)d>m6-3}$o@VcZJ6j2TfQ5T#Jo0mFpYF> zFX$A3%j=+rBGR#s49el8!*LJ_UUF)C{fe997F1tDcbH}h3-x>wM4e^<{WTsAxTniI6C!E#Ne&)dYDt_jNa1s82x`o8 zH`d=K-Y6YABGpP&e3JcZ8=*R;Dj!9Ln)msXYsavAy+OIYZ-gxKV>k}k-FYjRVfFOW zRP_7sMVpbQQqDLL<`67eo0KW1Kq773^68w=+%l3td@!wW+|%~;$OE*?0GVz`rk`yk zm`u5KLaI`-y1)D9Dy%*7#bb4S9sBRNMVhC@_3RK)e?s!!gzE@fWjYJmt4D*ly5@UVRV@qW*I31?hbi@z{f-@5cPk+F#sV@ie52H^Z1cSl>%PRfp2d800Rx$^ z!aP0T3RJcXb)QOvghsgN{a@o5HnfNPxhvB9)=0j$sSO(B#Iy} zGfdz?+Q+Dkz3C6xHQV^4#o}jI^x>wS(S_H}rdCzAHh!1+j5put%*REj{PHHTBQg_M zxH^nzmG|x|(%+z$D2L*Qy+^Yk2Oj17N679S=+%c%Q^`eoN_!v#HJ6J;^kUo<=l7#U z++sO#6iUIL>|r+=9M*3m-Fi-uA@e82xS|W6nhm&22Z;tb41>g1b^dYz+80>YNEI{!6@YZ1YDxeI6kNquOn4c@`$ zd&-?Ic$<6B7Y029n+F>~^V{~WB0|`4_>wdq6=Mj~ECVyQ1F-_O0pm9+Lkv`gXw81P z>d?dnDeh)hiL|P)78$YMnvi|;0C8UoXqV;&csMfXFg0p)NEtNh_G&Xmq#H>DXa)e2 zzEVXe9fmw*D0~exTv4wXI0LhbV|B*q7eq+#yBJeHz^k|$9)gcaqi}5~cz|J+aj$x& z{@b@8*&As-scW4Q_(=Sd1xWZ&4T#%kbf7NoX8Lvz885U(p^kQFk9rBb1U5VF4g|T$ zEw!%|^M8fGHJ5@1D*(l~s-sn}k7z)Wlder~;OX5up8l8Q9_e?}43kkEDOf1t$l` z|57e4g#Hcdv?l#iF2YsRe`CX4$?_f65j|F2d=suJrF>+|g)%VLqGwXGN?i^F1JL01SQris7 ztkoWjCd(q}u_vAD@X+I32#j&`aT=d2@M)C4dU|O0=X)tZ6MItYUO8ubjRiY;eHKro zTSL3+RG&KBtPS@BpanYX*$%JIPOFy($>&) zovcPW<%@(XqgUP|KLsljB#oH%$h3qkKXbooNqXtsZ_XBvDe59@FDnX;r!e?ntH+3b z5PxNlQC16}=OCx(%+F+tRgd)Pljj^^h6@)|4wBN0y+g(%I(ptk<(QE}zD~$NjZjd4 z>V<)v5(oubJe)b3w}hmFp<>;U8?7tabIO@u!|XU;VPNBDh{aF_7&Y+=pQYY8khQLS zzD&ai^LAN>8R6%PFk)svILrj#{>dh8V4H6=xhnR!6Ga}neOFP0Kpfn3JALL9#=Gx4 z5l+8<6Prd67R}w7MQ?#-%crgVg$P7Z*qUHq6W|0VmrHJ}Qa~&dyZZ)9&kWqsECqe% zDv_8CLg3#5U1A;aWHU}VYIRY0A56SO&Y|D%WXFB`RmXHi<-jF}IySYGE#$I8d6Wq< z@Tets!%G!UBmX(*llo`YRJ`Fx0zy)r`xD{t4`kNxXY2<|X98x{wE}Pf(opba>+u8W zh4lp7qbHUwn#1KO5Qswb_C?l{bQmRzmZP>>aKb6!khWHtbu&PH}&j z5B1Z+ zkha-r0A3_gT(*6Bp#4F8O9t^DwOn*?!clkfpm`ZHu12kUZA6)>eS|>5sfo}CDl;g% zFcr($Km1vf#-3M7oL5riA_=C>Z&Ae@?Ctm$UD-1`^{qw(qj_SU zBH+ZLtVIIZ6G1{8?MgR=ie&aU!*97rCIV3~J#2OhGSk@(j3*l1*c&B`O>@65^&TdS zJm(4;bK( z%f`DHtb_TtTc8~MPL%l)IgT>cHYIo3X&HzKNI;rM3_H` zzZ60yPtW2GC39zKoxH_~e>9%?@dCev8Ejm^n9@vB;{`}iAWl8OR!xFNhZ(^OUy{p#Oi>+22nq2SSX8C1#EJA4%gP`fm)R$NT#Je(MK z;apKv*p=WE@*YDz=k)@91LNzyK`)!Q@`qf%^o*MjzM$t4@NA31E!W+b3DW5=8L}Ro z+x?0p0N9T7iUfoB1$C8k6j)t{t*%rhh{l8G<)Y#R=bC!lPT zz->ze$E%j=_X;8|T{wL-xC`#}prZ<>u}T=1+}-YFrmTk=;uJV>FbcNaVbHOnw+6|4 z9mTtUelQH+frvWesmc%g0!f{Fo>+sc4FGj@Rv z_uF%e4Jif+hZQush5d-crBCcC06@SB`5hCGJBePk_-MRP)NyQP8OaDY4H6@j*(3!- z&o8qkbXaFIZ%d8`48D~)@R+pPXl*Od#lRrt=-!7-^J_U2LesLq{MSh4wd+?1({S^r#=Pu9c zl`Vpe!uz8XPjDUGM_4;=X%NKFb);{U#lN_HVb(Qj8%lm1L5k9vIOqaHc6jFd0lx@u zO8v`i(R_Bf{GEFPBb$Ph89Utl(<5EMgudak`6uZlb4`lS&kQA(xpxM1Z$0Uu3#8P}&3{9OmsWI6L!O+KxwU2FZ zFJoOF1MUs|Tz@TTSQaJY8~u$2UFC02$GYsW$y?|J>zNHGAjxc@PVV^)!{Tc7g?Xma zk$GYUoDd^;biF0`1@>zm4M=Gk&6aR36?POBUscGoVZ}S^hN?^?)D5?^$7zRz$tvUcxm> z7sUgWkxe^ooEf479|{VXl!zo0T%vtdQiVu@Y93c^+Bz2%lfeaU_1)}tR$J|fkYCrRnEYOg+J+-sQKksvhz;2mV zxe!oHCM+R z)ELHbt1zQxmhSOaL{&U&qnFPmnvhVC1TAl6i}ebS!j}C~o-L9o$I_qaO}fwpBQ-g; z$}?~O`KF<-$}*>}Vk@4d_$sf952LU^#l+-rV2+8)W4Wl*-_JiYS<1DobhulLyZy!a zJr$QiZ?l98y#ak93^&!~`T(0MwaJ}FxB%v7RIQ2)KuWHBpcvO2mgsLPF7gZgGCi{? zacpK-_?)UUCT{LKa%mGfrz&*`xCtUTC#Q);Q>rwQUe{*1qU%RLb@Ojs4({@BIob>? zeX*+xJ_IBb-&HD^N)-4yJ4{?$%R+fMzU7w-Dk@@!cQ?eWFeSmPrWTK&oGnEO$ol}w z5};Yw$V3yY>E4otu5k1Pk8+53-_%tJn|zVl>^}$?8E9teNOccu^18a<<(C6&8r$sA z!o0BX$m%Ucvt*jyMOGR!40D<@Dahj;y)>dnrAPup6KQu8h9h)%t1bPT23vRO0t zAGq(oh;NNZq>ah$8?eh92RT^z@1i!S^*3rM?vB$J`8=xVJaJUDP%9pggLpLA?)DuP zG*AOxD0=ZICz;Vi_+kXXx|+UacBsaUB^jl?57zEl%MN@Xmy>+9J3>tl*akd}k4`7@ zv-yQ?=an-;#?f$%Y2rV@m9U#Q0q1ZhL`$$IMAjxlBNk>R1+~vH*`m#ki6Uu9X6w{m zoJ@SEe}>cl+1)DQFS>?TE#-;l2g|E_A<7LmKG+p|BkxHk!oR^cMIOdewS;4}L9Fm# zM(edYAr9*eZlxn)TwwE&_M3NpNcd!GK9c7uKd(@z3r8>KgMmxKzU6>CWVKyoCp3yB z&)Gh;>41?!Cb>giLf>)K-4;ube!WLC$b9*~_+#~2FEwOYk8N0(RZ*?!YqT8yxC}cF zK=StBO}hsSZe^5lA6cv4VN8VVY(3q8JE}toVlfV}y|3>?p8J8QH_q{r7yy@sfue_i z60R<1G1dJYxN2`wn_v8Oyu&O-aE*hUpZEStCeb%f%|+`!o3T;EM)O^+OUPi+NHPfb zSwpGV<2@gOcs7!jG}?Q!SEJY;=r*<)r%Yz~^dB%OV0H_B_`Ahdq=`aA{BHlIWQI$= zBg?^2UkHN$5x3F^?UFN72hk?=Xm^s>ATX#E6*l)d1Yc=-=^%WlrQ%xYS_0}_)@O3$ z3gk^LhQ~@l{4m>z%$SX=KaTL4|2~D#lZ$2U0Q4DYu&5-@YCTf(blfkPtMvj=H)Mh+FvECFmcE45j2j+II~%@X^Wx^ zW9?Ejy)WC;HJugApM!F`_U-c9KBPqIGa=Ezf!lQ9OSN|v&q{i3i#QmeSl0{`eey%$ z@gQ9BAD?Y8f6p=MdG|3X_2I2~0ISRVLY>}ELB8u5R|eW>)9^#1l3yE2Ti3KCHu3 zFR{65BXm;%D&1+ieb*V%-|Sy+MviBdKHB$jrpWWYY2CHjn>=AS+9M%GNp~po6QW1Y z&Um&md>f8(c8B8EaAh7%dJ{;pI3)76hvP$GR|<(&cIp2b8pE>P zj&sT;K9H=cBX(CpSrj|#M5nC&Cpy23qo5pkgt^%S#iKj>eS_G3~9w~5vY z7Mho1O6;#1fe?s>tv+iYMuZLz>?Ac&G9E)f^jL%9D>nXsT;7pm{$i;fkadWrGeMFT z{C+YGHEe4)o=HB=CYEbdAa|WB-a*|~Qx(A-^J+Bzrr?B*cRAp^Ebq}aXoVb5c~Rk1 z_V?9o6pG=<{Q#l6;%OWP2JaSZga{bXYo!d-@#3BLTAJ81H{p3jtZh)?UAao`8F=re zswkUtM3S?8NVI3tDD%BV#`l(`nub*A!>+s(2w!N2{Ahe`fZy0qS!xYHqZFR6F5~xR zpzY_5TMZr*qt@fSOb$s&PGMh=9T0HA5PvjRFDrnRhu763ds=|_MokMQQpRl6(vb$- zWEc4?-z8uj*VxR=+CYfM)A8$oZsS;NyIb2qGFyQkI%(ctlusW~ofR0;z)#t0kNs&K zXqoJ=h+j~7Mn76P zy19aTek@w}8-kcA1;7$ABMSOpKahg<^G2pSs3+j_@Zw28DHU^+U)TrC%P#--n1&p` zfH`$tSp*jh&gilqpS&M_0{h;*J~;>a7HwPctEJdL&lj~XR*X8_9PTB!xgmYN+fszf zyWUE1<6$utyC!C;Y<4}b6@0ZoR~s^G^k}qQnj^}xtS?)QJh&e!+x7It`p!DG5Z#~! z>QG77mY4G&?Qi0dSQQ>SZDBcjn8x8|>EY;f?(qWK;Vs35U~q1VQ6QjD%8qnr3FxhF zI^~Nd{#a5PEI%L_Ao%DhR(Q_y9Ce9A9&=`>;Jg2_Py+)rrb z=R)B0bhg1%Z#qsTC8x7I4U(ACXIn&frlsHT%koxci^5(FhFhX66|nYAMC@IzV|_sb zHW}s`tfxM0hZ9riE`3$m)0NpYUqgFPIkOV_8AK7r;ExhGh%{AwM;rzS{s8_6V6yC? zajxaN7In`2$^PjIrAUxU!hipYy!unO zpnR*S7EsQ65i#dAK0yw|^Z-rU;))G)e(BU?af_}4Qf}fiOCx%YB&c}2Lf|yB;*O*w z+_e~!7g-=Q5MR?((}|rH`yG$I1l|_zN9HUX5}l&TCZ~Iog~0#W6EknqP=ja|Qb+-N zaJPll3;v9A{4XtP{VRCHAU^oe)FH&W8w+z$p6vS!{d72CRi$%JLJC##lBS6~xmAd0 z8O^scjygm(8@RTWe3wy(5{*(#cw&(LX6mm&I|v3?lu#&+T1E6f28An-ld|4wG1zm7 zcyKxOh%^IeekN$E(`}xKAVvnW?4-;^Duj#uM9f$L^Tb+ zpG5bH^uaaaCi{On-c}`LsdPdoE6CuPM8sz_({J~(sgNwa)s~fen<-0+EpcnTYPVD2d%Nrj~L9A|0pa? zweP^-=W3YOH`riZ0(&%@QS<2)OuDF!*1&lDI+78)FH}i-2?INjS}&_EX0!=>W51rO zk|?a7a$8tzd_(gHsz^mrtrGNj33ouDRWx8@di(8z66(KRS4TR}@8>^OtU6;g5|Zl4 z_y-YgBjVW14<d;EV)ALnlq%prH%Z24u4BTA5>gD&N;Y=w@)+Lfz zl{>isB8gh9RB@mLb$&l8Y!pf`uk<|wX+-Ex=c>dbeHL%zU);~KtO-USA5DLBkr_<9 z&!Ep#nfAmSr#r*Ca3eJ=-`JG<*oCZ-WsT|D`FBsyWJ5r3#OIYa+ZQnq|JnqNE|Ehg z?!S9oS6o*<*s-LVg{RfJ=y(7mKP@@V?8}@@iy6mmp~#M6fvV1NeC|;C03)m;NR1*~ zndAONCErl`6YLl)Zzrq30SjQlufm@o&_w1br4&`;?hMlmN-GzKsF7v}!I%vU9i~8- zvwsHv*o5Yo-D$g=i=xHgn&*aU8ZR!9FfH~$E7TbQr_|X(z`;g>P^WQ((=|6$+Y4z+ z4H&jeIfD&h^s#=~4KsF%6G#TdB5z~YKr&@o>Jj+@#KxI5vpbH~lmF?O!h7aUF-SF~ zEQla(|GhrBXg%JUVQmfBx9|K%2|{7VPO~jUchpCud^)a9!Xw=8O+Vm=4ord@kHe*$ zX)Ef$DVru{MHGIMA%RpyWR3kYwEhhPfMwMV?%BHh`{+L)1q(7vxnZ z)cB3};n+{%Q|u)APnKl=H-mOjNjOEZ0Itgih*jpO2$-Kbskzn_EHptw5+*e=AHBFr zM}EFvwzg(cSWTtacy z|44gz`>fvS2#_MLZ zrK!0;gFFCj!QUgZk!a%vLo=+Fzhl(dD7mL2j77)Z4OYPIebHWdQ`_rcuXED5&U&UE ziD0K@DGu>gO|**U;i%#{I_r(-Es7iwuA>b>!5b^Vjf1VD<)mx?^?)PTKSRQ!Z{j2t_z4vt|X5QA3VY}W_xhuU+SHS?c)K7pgVo=BY zZ+pjai=p>|5W{?J>EK;AhwZzcEE6U|)%*qpNYAO%VjF@F(FzH9^PApno^$`QkwnZ7 zeP_v@o6uk%&NJ{ALq3vei8utUq||09K%TbXVOF#JUg0*IpkJWD^e3GRz7CA@aP%ST z$AD23FYw?7G(4)&E){NFy30Vj?Q)!KN+&7%L9hz2{KMB&m)|f`-r(S#JjamYAyO_J zS8xQCH)+uebJHd%q5?Jlxw1S+H^~!b=o0J`b>)dx4w6;!v@8pLma`9!JIj~u3i4kl zGGFsU;I6!*6V>vq0&E#xTtkAbvVS-S^ z3ncSEV@2|_q0RAOfmJ8L-sq7aQ8(P^t*>VZ)QPqB_^@#8p7>#4#Ue4HD7}g>g^Hfw zXMK|BQq(+%Vvc#|F(N2NCbwito+u04=(Pu;nh+BC;jWE8!9o&J`zuEBKz=M$Bv5xc zy5qxEg&^4DM^aaQzwKlA`*U<5Pv7(M=eg14;ff^+u&aOyIGWDP`ZnmWikyGB(Lv)f zM)LE>_7bRXI3saFNO5+jB+(7=UX-W>2ZQDI75y2E9wpI*u(=RJIE8~~IAO(5wPQq# zdY78_6*ZZY`@hE|c@QD#c|4K1VIk8M^kal~tDvp$VQaerKOw27?Xs@%j(X`x^rvDt z|5nS*)&NId1jipef~Z~n$$CIGSW9tsgtGEMs-U6vB|0IaD2v>N;;ZDiITIKw#U{40@!;kA(RhkaMCEA^BMMFQAb@Fngd=?0bGmUs09!H58G|?l&~;BA z{@8p0TBY=0V+FbcYpCa-FJ^NNX=AEPCBt$8ci2JsUPxfxxe-PP|6=kHoC%U@prkAA z2yLGjIUk4v86U607fg^^=kpN_9HEKmH_9=WDQPVLmCIrfFF>T|^mU zn!#%AaMLg2S|k5#QVuc}d~m~d!IjJ}9cM%hrmXO7`kJ)VY2xH! zVuZ;#4cI^`G0kvhXvz;eAQh+uZC3DAs!X`&XyIyv|~c@ynHF&$QaI%R*T6;6BS zM*B+4KLou-$P@Oqhzuo&1ThU20+N?)JD?kuCtjR8153ukw=VjZ1|oY6MJ5xIO)P5P z{W-XEo|t36+BnwlT`}AjD9ULX^iFYrK*vIs-QU=dprbpW~phLr+I;b&s zQIwin#N1;7s!|(1Uj>6b+s$?eC|j<3s2tQ?Q-3&@#pH=@>~`K<@V28MCoz7aSwyJG zR(L|O8Okk~yYKL^;|u=bHb)d10Qv_frKzN7(p-GmFmV+VSKL{<3S*!`e$I)8kg>sH z7P@Rk|LVUCg$H0rNiF#HkR6$kT}+l8)NWs*rv#naym^V#n#UhE8ac+fjOSlx_8`^i zE#0B6J74WOH$Xqtbmr2Djste>y7dU+WKI0ff<`r@7D`v8g^3*r$2Jyff&YwFf{h!H zDLp!HEMMOf$cnd>DnrOZka9VG+&U)|1WD=d6EKWaceptv@CYAYEKbI|xCRP>|BhwM zamTw1JpWB{iP6+K^w-FikY7MnsWtl|O=TtJ6F@og;6%zKzzKR`y*S-M>70`voVB6> z%D3hL)wBeF=V4wEsEtvt1F{)Sx7oH%LD~DK_T9(g2`1Q4MbLrKpsbDvo{2HPxbR@@ zqS1xaKN(EZ80Hp^hgp2|nQE!ud738AeQ>^Yl!3jyTvPi^vdrzXlm1JH390(m-};3( z0P!-7QhgjMYaUs=cAQIYBzocW1Vd`y^4^ogFoTtI^kHEv-26J{1PpenZyjlX3F7+n z8gbxhF|F;!M?0ZbmDL!4fKm{?bIy+q9iiD3`NGL~=59L(f@%N9_TyP}S-V`k0mX6= z@qp!AW+|ERR4SDM#(eZJ?fy5-J8e!IVV|nu`Kdf}oPH|=%u-ipeB{9IwR+nH!K+-M zp&h|=lG2FKf6A~tN5Ba~CD_^Sut6ZGzCXeXS1SqK9XfT_HPqJPUcCZ`j_k{LYf=u* zBBFB}EUudGP?yVLi2gPm;FS;|^dec19nG#=MYcmMIOHtWBZC5bP5+{rC<~$K0xn`J z{|MCxudjk4vWq>E0lHZ0lu7|Qa0YrseRFB@Yc3{ZBlpa`8n{u&acqzC7akXiA}F;F zQcPSsf8dec1hpCR_dr`pTm0xKH96iCnVEUo>+#nyYoV5TqUq4|9Ru=&yvu~rVrtg~ zXD!1>jn3MJNqAV1s9te0IYQ*Z;sqUybi3XVAyz_;ONP6Ik1;T7zlNL}6U9SQv=;+BF)h6Rk(9f!~3* zn^w!!{HuNLNrz*1Tv->k2-9^$^HyUWl~S z1`Worf*V9l!s0*x!+ymaIOlE{7O9k9(ZGjfW$)+s=tMIvMCQt9dFOFD@=PBrJp%28 zFC~l(B1XFTh}Ysd?P}p7zOuzt2A9s#r2c9gVf5b+PZkrV?mfilL%GZiOMa8+u-F5m z%ug(9(;etE(YpVCo)hPP!9;1}b^kfSV`Keayrs2E{&jo2vAXL|SW-a{ROWTR9{y|q zQ^BTZU6!q_nF~k_k@$gRCfXJ&IRl-+@A7Iw=TKbbM4ctrQ7>el_CJ5h+uQB^Xm0x! z{gHlo4rL`mvRVE*$m_<%Z|nr>ZUeheXVZ`d1tHD5aJb=$S%5)f?-KiKgQ;;xrRro(1E*muILbHR%3yXJ4^(?$14u z2l2M=H6Q?zZXY1ba){9xuE!){Lh{d1YA8680plF{@S>B$6Rr@VGhEIlAn5B~1X9V( zl>{*gOk2c{V<7lgAkqyxo-c^JX#2V<_gE)}UVRVpTGrf(G|T(%xfM;8gTgv2<9|-< zOXl2R20z{*Fh_W1^>1X%?PDVI`c`T&(?D6L2I% zg`D-oDN)IRChk7gO>se-k12Y;YkV0<@TCU z0W=hel3@#^RUucJ)?%sJ3B~HBWs4{>1hc(hoQ3uDO~&|gzp^e&3kr&t2oh4M=asdR zr7axmcb_9OwZZK9+_TWtDEM%_FPa;I7ewpOc!7}wf16b&OC|LbFM_+aXFVSGo;e=w zJZ9mF)8UxJ8PJng0`DkZexwo#Se6ZKMaq?a|8tx+_jD_T?QjOaOw9%8Dx{HwOwFN2 zg_y}RhE#>@E<9Do%-9tXb#R*jiR_4yqcZeuAikKx!F?qx3FN(W4|Ys^s8t4iHToZR zFks-RAzloK__}57jt3;`Nh0;Q`YcH+6ezRh*v_$rbt{^`BiB2ka1ykv#6YP@E9i_y z$5S}OJDpS_g_Lv?wYR3Ol9LR?`!GU0X;!@KkVBrPQh)&H#yG>`lB%kz?1`RG6OIt5 z=iW!TJD3fq~bk7^=iJuArwvmJm*ChQ;u*OEyrrd`Y9Q)(0Ieu7W9+NIa zB)9Rl&P|#Qz1>zfWB1N32%kz~_u+jOEIC^g5)k3M{!dhS63(DX@mHwqTGJW{;lRTJ z-RQiHjR8%vHRchp)T#h*2QiSDq|}<9Bl!Uyp$Rn9jARx51B&UG+Ujl)N4^m2K(yS zl^>GsYRaDKb#0)(9a#%iovX3X;KX8vQL!)Z;@kms!I$dLLBPhSZ0n@OOdHXwJ!V(* zi)SK)hzuVprfj0Q7XFdO8|y1yOHy&#i3@IBMq-OyA3?iyY$=9Ch0}LwqXEyHm3KQ+ zRKjJ|pa<@uglbT+cLj}woP|bP`HLZtkKtC;0;^@Q$1)Bv1-*{UBw%>)g`nb^B;x4W zedWF3y5d2RpZ*@2>o6^;lF0Xo)M+nHsOe#3{f&>`2_+jG@tGc|pr{>9-~CESk^?W6 zR7f%wLh@l0Hq)msUv!76MFS!%l!wMyw2*0f>}9txcdk$(tEo_;My+~FDa8DXc{{Mu z)0t8IQm550Yfn6Z=n*wat>CcATHiU_KtzqMEV$BI-!%EN*JwM>(KCFbIB6UDFu+Y=yeM+lR8dtbb4`R z7(4@Fl5=Y+unUB`CCdii!P^53W$~+Mtuau;G9uN@Br;a8a>HIg>0|6-pTmSrDpg%NclQ-%zBeP! z*=_jq&)tk|*ZcjW5^?dlZ&-#|gvZelMaMcXMkD!9wY3skhKerScn(e5(x38|S}|sY z8Qe=ZNzTZI@uMiZ01YnDRck`gzRu$TK0=r2Yp;aaAoRe;YXHd6LKY#&FpG^U6bRgw zs=4pA;bGAH%_2yr;noU1$VsP*CP);;gPZ}9pyNdAm{A}|048e~T%M+EFg_vF*l(CqBF4|v1!A<9R?TaV?pRluiOE^*zKLz zXaKPxLov`66GHRj7GFRT=3Fvu2w;}3sO1YHLFR=?MEst@7==X1T-@-_kYIs73aOTJ z?)w3uZu9h>2=XLs1|*4Kbou~bh`?p-P|%-yF$!ORx-9*f$5#<{k2GfpFolDq^!V#ILIsF_O zLbob>?6bLt09|f636PGqaiH zZ`j3BAIPD5;{{;MYXjwi1WCTP`a1tuRS16Btg-NndX zIyBQtYh6dLa7Coq1l_j8`aNL0;IVoSBnL_%yZZ=#jZMdbRptBbU_Sk!hPr znN|W5H$-W*wII9tgKnR^&s!fXt$pK6(Tc)jTQ}YNsM2l6-$UW03$J+OX1MAWnDnk= zz|_((*!SV|olAo2J&iKYBdI9;=u%2D{fO^ZMDSNM+YiL4S}uE&2z`^M<@0{k;07%C zUa!2AV7F2TV%!UWa5ndeKF~Zpa>H)yE!!~t`TTyt1njr5e)0!QWpTfnhr4EKJ>|QG zNjQ%vehRL=KO2BlP>28myVIh9OFo13zoQ6!KS4#_Z?AuTpf7pA zxG6h-^Q~)r#6SwMS%tt=9ZDn?kLd8aUfp(vBBbE?>)?9r$_Z~3_bO07AW%BaiP4?1 z`JI(Xy#eAT&Qr&XkHKSsB@`nZ?W!+nkC{73ft4nmrQ~lA)gcTsSJM1&_GC$lI=*}u zUn9!pDaeQuOlCLFE@Irh2ha98-=E@Z@1!HQ2}Z7fQMtwJIDK|5=MzKsuFT>fHCs9K zE!C{^paHh|wRT!Ya|wkpAog<$+el=o1a2!v z;#{6PFHjamGuc08%dXAsi5T>jCcYUWhgMAd6^v&Ev3);d!QjU{fQPmbY``SZ26^PA ziQ(;JgGiqA05>jmZH@aJI}qiShRqDjKGx4SgG!A+r_Qgyw@%in-7%j>{9rGSAoDe8 zw;Q>61wJ&(<<=SV{x{<2dH%@sdltDKk9}Z%dORiSv6(z#0dlGrUB^JSXy?Q~zPO$W z^$Fv&6ypW9*g=;173VMA@7rX6P6#jJVgoTg4bWFO@h5{Wim0UMy!YO37|= zTN6LdtlY8om=#1-Qp;k!NSCN(ed~DnL(bOF$}9Xj%ZQEt0n?IfXrfK!+Zo~H%c||l zs=eeF-7-;K*bg;T_A>q^7gT1k=iJ>Yx~MMWeEkbp*#(d<%?r{a4F0!4^eLc%H0KPa zN_VAzOp^AX@{{wVqdiisEKP5+@*b4*xhxp=@mm_*^_hg=!waB)5B}+JdyEg<+MTI+ zP`3oF* zSUd!IP<;Hl*LcgNkFbHi3JCTjIoYcSxRCnSqga<;aD~iq+F4Pmsa)sz-W!Kq=wNYr zcmrt6P9{VY6B|m76hN!FnOyk+I*~F@e*>OsfCAjhj0}vNAz0&7-4OUyO7(HVhRr{b z;mBk$W`W_t`J(POzGF2|v~sB2LjcKNAE3q+nkZbB&R@k|qAX)G=do2Kb@mc*=RDgL zc^YMpQ*T=xTiX#!~t$V2?EHnz0Op8fD<`Zi%+Rh+GCH`imyZf{_bFulWFP?*-Li|;+rV%nN**E*j0}j~g z!t|T?#1`p}VmKQ$nxB!J;KK#+&l@RG1lLpL=yBvh`ot-pZX0Q%4rxKbTC%lYqh-L~ z34G_PS$jsIVT7}tMKPEtoeX@P9a|2y^RQfD)1y%`1gY|uA` z#(_2m51c^-QG68q!UKmU=i%`TJv3jFc^v&NGwhTL0b8 zQp<*Q!nV^^t!CYvJvFvCs=iAnc9=)uPhs65uO5fmk3j3Uc-lVI;S3%)t-!Wu@E<68 zNr%RVR$5CGC_CfGR5|03&Mcx&YZjhYZJ_BLvv7-(0o z75p68tQ{(JF4$jbd6I8A4!)3VVEN)a?=HiTWwq*yFr)nDRBN|Em6k`9`E>dSi{)3U zp&d}$%i22H%2TfHRni*1NNZl*oG~FJQU_DAwop#kk+-{*iD53=!)S)4Fenmm5aZ_1tIQb`A3NAcss zrNOM=I4RHl60lcf2r1!lyb@ak%P=T?thSX_sFQZMvJAhn!)U66{_&VNUeLCAHpENT z0NzZw87G;!UbKAYK0~g6jR*6iRm9G9I9)v7q+^ehja8D}YTOhE<@{?Lx1;X+pzPO9 z^($xVF@7pI1IwC^MJ|gYF-+422dlbr5R5)>Gl=<0y*d$DY891 z1RwRWV!7^5Z!UbWn0**RoYV< zVunhoBq$s|5Tf4Xz~w6W9vrQd?twpC{~pi;KEQw5-<);;C&rW`qT9}$5Trr1`Xul6 z>)8vEj&RLLx^@NYZWC|oL)L;}naRj@=Wh@zGDC53%dJXF@_88m*#RL73#eX80uy+e zH&i#+cCK=88mjcAno2C!;kYhYKNX%UWw&F|t+C#}x62yw@m|}T2k_5#;VzS^7b{F> z7KRjf#`WIFxIKB&gMSdG8d{WQ< zK-rk@N5Fu@_)WT|O?&mh(?1uzl82LF#D@B2UNjp$>5p?cjUr-hdTOgOw@OcxJvDM0 zhW!@=$g3K9#y#zFQ+-ArFA>0}GMx>6&{yVcK?v|#I#kr$h0v_#gA>{~oz%opc|hL6 z=}m9E30UL_N5(alStT=8V~4ycw9O5rhk;IUK9mefkgx%3-%)TkIzZ~1)QaVVOU5zzp@7lxG#f>?~=i97hL{@YB+vsg^>R<(+9> zdw~U(uYt?Q$&8v0R+qHMxHt$e-<$Dxpi3Ngr4TOq zD<9AXc~!N%IO4TK<1|q;#C~I}_e&TkkSxdYCsfT;YmKae2ZkiPIDMw)$`0?<^OXl1 z@4>_NR6WBE7ujaPWFHcRAI7MiO~d6YNqS)FtR9;1UIS+O9c~iA*u6HJQ#5yO26mzE zDLV3*C*LhibSTieqO`6=8)q>Tn!^zeM1&hWU)%y&S1cGR6SkmWbumx#!Lt=;AY$(# zR!U0KEZiF{M30kfq62v-xfRr+eyVXBaCbt7e1*`guTbbhr20G5o+FSi8;@*bS=EX>I+2F?U%5 z7i<$o>km{R8O`e!keeJ9(3%9Ii<7-S{9Q)8I3yQ#I#D^yht@HPoK$mb3XRmEz4|S1 zuJNM<`#f(y<4|YBQ^p!sh#P0W{Je*{lZk@c%ZbAbm_r|S}kS84`ZHpkoB zyGJ(13>Eu#H~90bvTd(HoG3;M2-wN*=L9BcpTMPUdj&EaG z4bHU|za#VxzSoDv6}WUC&!W8m&PXUU<@~3Q?8GI{yltd>QcJmTT1Y(&7h}#1gs(%= zTvcs`StcYg#9dKs6B9%9Pseh_?52>Yj~-HA6&h@V0@f1Q`3S=?m1!#0k*=kp*d6N2pMOLsta<4Ty ziU>_pw36U!rg!0v5bGk=rTFs0jhYJIPcyxn1rL8h{gQia0Di7F50wBPd$wQny}NN@ zQWg_JD@4BX@XvMs0EhcUX+&Qi&`HDp6+8cOSmK|E1NO$OGUK?M7NHl&;G{8g?!PQz zr`7VaZ3yI6lbslx3H`pJVQgQY&<+=&YJtlcHtZ}S3T}mo^o1a?S44B{fHd=oJ6)$H zESpD4OA1@U;aWD?a+KpF(5#A`5D6>*c=_HEpIRU#J{f((Zxk7+aHtbO^K*OOE8+tZ zGg=8%fpXN56Z{sBEI75Y6;<%eW#Acb2R`cepIrwa-n`9gY=ky&lZZ68$5^)UY3PCI zj>fuEJ#)dT8ESpVlXEVJ^3lYBjG*$rQ@@&JKo-BcP8~?Y&=L*eZVwzoJy05d&~nkV zoNTV6%=y(Nq50s90o8__Ilx~ufr8a>AhsJ+EAiOgVi;LtW4CTk+Lb{$lh|M+%S^E*{D)Lqdcz32nVnPr&D7h zD|@y+XTzq%5yq3^L#lMQ$L-PTHf9?W0>jRf?G2l!+TnM!1>HPU;Kv$iurO$f6q4J{ zcQWntG4^V}%k+*1HQNUNl6fFTWBfVW3;3Cx?uqE#J~-$XnERd1j)>ddIp~MGbCSG+ z`8y%WlBmy>i_kX*vukjWAk|Y^dXEMsi~^T`P|NhC{~xg3sEg)oeKrKnNFh5p9QfnF zC*MW{Y7r&c4+Z)1Pgx;kD1HEy=~2v@!rVOGR%@LR65`O4op<4L=d@2_es;^-4di9o zM<;XSipo2(tI|{yrF`K!Sm#7Z`=bHCA*o%McDa6)!UMrN&xJQ2T*>CSvc^;i6ho6j zmZFL8A;mVkDD=;YugqP$?no{aDf+5xEkDjc6Sao<$sJ#(0cI~Eotf*ae?wiAl*f(rYDyL{Hh}8d z7>ky%ngf?ZX1|O((~no_%h!)@yt_vCkNngGHAakCyWXSk!65+Sur?n?(7k>w*c{Im z3vM6NoeuUK4*Cia?hoBoDS%JLocD)!m!D^QFTfqqORB0A(pP{K9J=gLYAqge;LR>E zw0O~pyI{CH#0~xDiX*3lrKTB$7Urwj$(- zK9?4-4?2ulYJ7yR6RmkJp!bnM9=qwP7hZHPEzYxUJS^$(IOVKr5xHT zThhLf%#T5x$0H0UPd2($T_|=1MdvC1LGg(7x2Dv<{=viO zM95Xf0~Q{6K|bW2XV@M?5Twrs_w`b^>PffBlLybZbFBSsjw&7_0d~FXEr< zw(~}V(ZejVll=pt9~=kF0UZFQNhd^!2r-G=JAV)`>V$z9Za(5D$i74l2nOv-_iU`i z-QXAi+a(YGrYGn^crerp8ioqqS)v&JmLOy(z?{Cf44?rUD1gOf!W z>;)D;7DLlVVJ4H!@@pH$e$OxpQcRG5n?&IzWMGy62}K7$oRJI_ihj?RXVg zCPKg?CzH?8D;p*f-+}nk!to=glRENC8%FltP#fJUVScYtl#u3o`Cdi6@BxPjr2do( z^w8zv+7k zVE5n=60k_t^f!_y%!^Zj$Sx&WkfbnFUYdr{jP;TMFQC_&uMB_y*DqYU zpCs`9^i2?HEVMJem6zV}h;utCZuZ-NrMM>bhw&r|CAfEn2E=NyxqD}Tyw@4jPNez~Y<^x3{up9WMNP=#7$-;)Y zs8Gnts*BmCSi1a#MtF8>H(Hf9_fp?{P+8J@T>kVTKV(bkM0<)j0OdwVc5n8Y9U|d) zf2G0r$Yu@`<&@l_c)*WZ8#A&OZcKWJo%TfsW!y;>{J>V8c9oj%{8F(8o^4d}O2+U# zm$Ydel<@xA<71WLv`Dm_CJ)J`WaW`Vht0vOOAxNlL09fYSH2figk6EBZ|fbX=!WYx zIYGF+K}G60>KJd|s{uHz6z#v@Ii>_OrAgtiE($v>@>IlzdB=ISzQ)dETU|oj?3Mn- z!L>7N$RTzMjW^vXnU?nlDrE7V6T8ZuT|jU*mNg(EnmQSc!!uMDR&8JDPp~ zw+c3}1y)spWI2>vvFNINRIy4r#ywPpnxu4pP@WA+`J&Xhhby`d%<*clp_U}Ak-e>- zZmE_)h&9C(dSk+Ud?DLw(&PYP(coAy3vPm`d|behsTC~SdXbH$h%(6WXZP+e$0(lD zbcP+_Yg*Tg++pg)Osie=GsKZ${$bLwfWP2_<(j>KqE3B`l%{H)PAQree-fC*w z*g0_+uOi9QHA0H$DS=gcfGrMFu|nx~E$fjQ9Aa&ovX{KrCeFAUnwX*PfaZYURlrL( zA+nyoziI(8UNsBa^_H^M9lGq!hXY{LEs0+QWo9o+Xc#+ymFt2seh62-Pa_WX-QZLD z)ea7vESXuEw6cyXht@0((##qQl$=cdlIPbf24zWS?;>s)TXdY=N84q9kTxKhV zEq?KrYb1pOtCW9?+TlPD)Rs;d8C#wvgY*%((BmgyvIFtXMWD+;o#s%l`<0#| z)H11i>^w82tmsjL?utx*^3>vac0U^*_R9bFIR94~a7Aqn#!(l#YlnXXB0>t{#GSHz znko0lJU7eC-kd=h9AoNe{@&}f4>q~2uQx#E5(l%WpL7`Gq~me9S%@s-7iDZ_Se1`Ui+h^ZMDB25W={V#HeBB+`3ao%zotY1>VVSnpyFZ+w zMR7p``*LGO<5rbw@@#9?iVNxEL5rqiib3Z%aEh9Xh_`jI?M1d-Y?m>S&qHaYE9&8h z(YZCMUw}in1Ns^XTKnPF{6Vk= z{3NskhBg1R$2$24>>_!}oqk&WHY;{zHLK8;HY!{=K2f^Dz8KC0*L&DzMC^bsY8pp< zdvC;K)B^b^ML}4vzTL7z<@+nYkiEQ_1cPW3E19_PnDT;-)4V`^b+x~HlUUxM`kR+X z3~_5je1)7HPXHbmqwP=2Y>3rWqFdmMJ8CVi@W_3_Eun4cjav>xj8$&$GYY5Ehl?J> zQ}j3K+eKP}7kZw*$lq|{M{{4Vf&)KP0$wN9y?fMaZ{FWj1w#MkxDv<8k)J`~zO-w3 zAqh`}7;*7A^4cgHBb8S@Jv3br-P-32KDE(xF_r% zr@!nXW1~T!Nt$A>yc{IU$~pSr?9I_IHCLPP8&9m_(8#%!d^pE*H5OOHQQdm^VT{E{ zTLwdQi3z=bU(y|#I$VuaBo2@dLK2cCY85~Vr~f$%urY1SjQvbcK@d(ttw^bGuCI74 zo;r{lzqM_&uJ>$%wP3SqtCnzcapBQ^RAUKzNvm*szQ0@FRr6A*!CYK0`$VS{oTfS| zy)hXw&8;thdS|XQ_fQ47epdTSEz-JLlmW@{k18ZbEB3SrPT1(%z6Acqz&z2MPqAhS z+zLP0qhW?P3<9by_uX)LU&jRxKt2M8lapV^fiNzzyU~lu!~1B0I&pMuY+qk*?HR#l z;owm!{O@f8;sMi&S^E9}80&Srx0afl_GxR*{;c(uF|rrp!?N*y*^+IZ!NB2%17V=>(>cLz3GvIS>)S!(W)FSYP=1 z@4gq?AKdRi3m3!FJ4@EKrlHK9`wY2?66TDvK;8Q$4EJ#bx78)$8ku0O&we0eyTRPS z2@)a{A-D#O2?1{$$mtgx?35qPe|%yz(EriRV0{4P!TXQW#($J!SvdZy9Ea5k*>L+W1L_-2fA4aU3CE5M^+T^|NQNHTGK{=zHf6w5_vjsYAVQ z!1#0jdZGJbiQ;{7rWnKLmC|!r-(1ty9nj8LUQxgsR12q80Vy$FjZko(X%i|xL2F=# zDMsxFG?z{0FmrDUto(WOGqC(v8Lo<k$zMj{Zp~ z(*=7N4Io{|^naHX=PIHOdRC&Ep5_2CS{K6lyJ;TNlLp_tyYz^m0rHP^JioB=JhG&+ zx~4=tpf$Q15UgDh=!QVS8BH%* z&2>oH7#2ZaIAxDr8jLxm&)=@} zpKs?G!DqL!_G$JPVqiwyzd~Qcy?0$T_Zmvl^?tlvE3vw}vBZ6q?lHbl+ET!Tqm{X& zx}(w?kfj&p<7c z$gWt`VWyxFm<31Ih`^)GP1?x(wd}KU_Cxgzx&tLxzpqsubQaG@g%840$QW3>&GVs; z-20p66V)!epVM-WIW9)Rs6R}qL8f0f{llHn==^Qju=cAv;;|JRC^fbZFErfu+Rc!x z(r?Wcz>?h1KhTJWO*Z<~D>Nd+29km_E{$l7SiX-zvQ_EtQp#VOQ|f<1=?GkkJ_m~&W~lp*q=N>aTqshZZKgjvEw^*;^ZdMB>-`^Pf#Mz>-p6I3bS?avzOLP%vgB`ST;KzmO#;w zi9MB>o_i(?ak0+A5(FWs8cMEQ54JYWQm}_?j(@O%mI)1Bi>!4#YXk=M4PZEJBI&N_ zq#}t8F}za%?$wUE{J7Jdrq_X2*%=obJ+($$#z8Y-oZ(KwzQ~6QfDFeQ*ny760<(3K zQLlqPeX&-n3_PG6J>SJ7iu4VNU3WQ9;sj$8HYwN*7~$-|B%8!@B|WM!`|Exf+4&RF znwZQ!VG;ZqsN|pyS3Lj@&M^xRI*#x~mNdA+=fk)F20l*EOY;m4_W^Iv=6zdV@)dC3=#Q4t3a0Hp!*jorj*j^#g^ zHP|q`RC-BwnQFQ2r7othVe&HryNooT+WCPoU2>qM77pN|Beg9wf)5vVAbTSoHS(nP zSJ->v{oEZvDt{=c!sFZGINLYU654!F#-tI|pu?i;j*s8CT5xs_^0gclA9M7dmmXZ03aGPcA?# zbh1Xlq||^EAtQY@v&ryULGhX9t9G;a7BZ#TX0DXzS16&_wFQl<)wxG^hyqph!FI!S zYny4^twCh99SVb z56(W1J%{$lflFE~T^q&IL2mtaH(S7z+j~bAT}aMwbgZK4EACY&_f0}wu4{HLUh&cx zOsTydbn#Mzt%0*YrooQ$eS(_pzV)vp;wMHE^HAye((=Z^(v~Zu0P7?2mXd9bkABfc zsnN2hS~Von;4ZBZd)Qz^_^eWrej=$WzE?l7o>9n4C$9b{PsWqjoj}JmTs~j`XmT@m z3gGqYzAUea`?1J%jsU;_C~AvQ&u;gQ&QiW6Se=ln&yA9zF2a>J1DM5u3XM@`9K_E1 zB2LBRDE4;6=C^5E8KRyZsYW$hopaFSg_wYZ#&g6p(&pkpE?DYFsK)R>eZ=;VX zxNcZ9KUFw96;{v8e)+`B9`}%R)%3LBf{~(aHTAT^7_8t7s z+X%E`VV6zc2aX!kKFc5LGW`XsU#E@F#-d611md{#s$-t0Hueqy_ z(BkVr(h6y|qV z%sAL=1BTY=%N)8Nu{C118XEbv-UuoNG~joB^Yu))#OI@!Za|AX71NYAo4!ZYjjb$~ zvS}ZP~VM+qP}nw*Rti+qP}Hy3}Q>%SPWmXP)N9 zyk+dn$hV#GtrZK5V{^(*FE}}TWjQ5LE8fL!KS43KYFsn>x$2Z%+)<4WLUXytAWVvS zD=7o;_t}T&V=;Yil{qOQ01KE<24tNr;^7XmS9asKs6#;|zxagcRZ?DF9tq#UY%t$a zuX-atVZZ?R2^(oIWG-4ERYi`dHuNehes&4@0XDRuYA$d+RRx#90CL56pepDw3&aO} zs*dks_4+}%j9@T6^`WqDO1EF*pYFi=v+2g51_Xu?_3IMd=MKwcgBVE-X9~>7J@kB zIrFx^k0F=r9Eyhz(6wcQ|{8R}7#K zdah}=>fYCzJg;dU&RBlC%whew1>VL)QgO{=ZWdSWw$JH7Mo z1f(a=$`D7bs_gX0jH{U0V_BfDZ(c@%mGlFDd>1~nWkz)Jmbo;h;PrD00{!!LN993)^#`o|0F6e<-G;GD zv9YK^Ph9ekc@s%^ppeEfS>Tl5YCScz0Yo>4Qi{4p=Wn_^sIPTgxWq?R{J-eHQ_fx1 z0PmHbia5P^O#P}6f+k>w)_-e8zl#ERwh+W%s>uvt>@zTI$SzcuU({CA=>`xp5c%LI zJSkLA`7%l=kv$i&5e|cjxnb+MwOpN8Cu<>)Y9f+`4`OwvE`<2iIzEujCu_V50m3dQ zQH{8xgq(B59mD>?q;*PF1wi2{%&~1a!<~4Ue{F!OH`A*m0mFoTSkeM=assixAB_*0 z2`QrDq)KxK*`VJVAj7dejmf&0?n4=7DFZT`C3RM}&TB}S%b)1Un|h(>7nCFkoru~F zjE06v{A8V}yXH6~FtY=0372(X0N|wFABnbgVV;oNgRf+oVS7hE%py}#cDApIEXzG_b_Z0_4+h917!y7KqB(9)j16{S zKTGgu=4+F(Hn}vZGu7|}3wIeIB#ie1?)TrH#eWy(Am3~U`cs*mnsv1(_j#ZG%IrhB z8)R>Db{)@meY!N}k|4*#-udNV2;}8*q3c$+6%K5*b){WkdD{jYsHJul77V)ge zv9}2ke4SA#&WCJu#nP6S#|LuxWbI!{2^CcHhI{&S@qAL2GHeTUxUWH4et1D+CQXBg z9b5w4IQL7O3tqC?OeGwNB_B3!jAwoWmVdwH23!2dBxsnf<|efZ#{sbvF_xK*p_U2> zp@D)~%KC8(1>ZNISwnmuV~`!vUY84)3;BS$LT-%QmXes6B$QZOW)}tKs*`gQ9v{`n zdq&JX2OGbiHbQWW+Smoyc`igHq=MY|h0q6a@zN=k6gpS&Qi6ghBp3*>Z4-WhM~H$~ zjQkM^LjyN4axWtU9DwL)D+W~!=fK?(8q7c#LDjyb=l#-{RP%mP&HK3|lHRq&c$?C! zRfeZ4imu_96S8;b#W5XcuX1mJD3y=to;z6=SF_nZ8)=L|Awh_Bdan3AvqNv zufY=&9^e%JudZr%xrLR@UF(esD&eCdkJ(>?W_LGc{r~}i5N^n#N1KUkv(H~-uSW90 z=wcSMk-mE{&26tdEw22ed}3$oUhm4%n%0Dr^8dRJuY&_2nZFs%zxsgX}6sJ zy2PfxMld5Ry)yr-%f~bRpp0ZRr5<7)u^zpr%*7=JK`YK;TOu?~6WNu?@6LtH&1Iz( zy@5oki~%?ksm)hiiC9TgNz@a_*N8mJAkMSFKuOYOdOXD8*TrN=1}u8n#dh%(56X-T zE>f1ftTWT6mb3D3Zq;h;7{>z(g<|OK*7pK|+^M+!@bXO|S?C_YFL9F7E zyV&Y0cXSU;B&w*(KHRX&t2#cMEJ~MWLw!YC%1_U*StZ$4@OV5$JamAx+O5;K^K@#S zE&K%tVUZVUM7@wlF!Q*ytfpcb7US;;>RyW0OeMf(_%1p#GC#O@;V;=Vrec$OGpF@M-SzVVshgMzR3_KH?Ujvx6bw=gZrmvxRd&vzl?RA4-VAzqv9cDop z<)c`$)H0lNd;R=J;v!%u@Q)M(U+5CEJ2)ojlHNGx9O|y7I|CwEv^r*YIs4Pgm?@Vqc=+DnZ8hS)0onDN$6TX|Y-{m6pts|A!Z z&GfO1)r1q+WJ#;nuD5hN(l{buS<&XIP7O3>UGCr~tMiW;m~w*8TIH$r*ETp{>IMik zj+yuADAjh=GaW{|@Z9jqfrBFzQZXUb-E4LyRv6>%X$7rq&Ne*4XhS z_FPrh3sf}sTy28=D|(#5js`K!DFQ_AbaiDdR9jyjUm93utl^*VnFZq853zQV?jNdQ z@XY`>`vO*9;c4=D6}uWJDm+iGVR@_%&P5HNo8DAy!yDEW|<~{9p~^q*zGCETH+O%?zyG zaiGq{LGV!n<2%$en6knJ#jG3}ztt>kr_FoONfNDcpij$Yu9sOi|B3f@*WABqWM#4D zzqa}snnrkRBL@FHAp9ig=Sv0`mctE_fX*+k|~P-#Fv zzyP9C7lBXywDg%(4b_a4)Q)-zc#U?Q@=MK(*UQ*o2;$e^87^Cny9cj*Y2K;a=ZaS>z$qR*m09B}vig0*gHzLby+hfOPom^Py3qmhtnDUBH7Bn&+=80$p;a#$bYC z;kqnz7RP&*tJmHePq`v|hL~{tjMbB+Ec`s&5qLiWwUiwJfsePOZM!o$E7L^-HdwlFLeAIHFMhu zb!XLJqswpX43Q7j9`sEv?{;|hVO*hsEtKko!)6%7>N!5;ZQ?Ar2*ar<_o)mwJ}-SEu9+VObV-L zwpwKS7d_@4Nkp-J z_A7)4<^&MZR(AfLlIu^#&NHm$CQy0a$bQ%_9O~elaLA^Ca6l6t zLtO2VpIZy&Oh?A;Zm+_glq|K9&MzjV$MQ$YULDW~iN6fQh*B0HkAKHm2i8fW~Cn>uneAVVCtpgsipRsKj>h| z3FNlj2Ht-6nNuUFxcB|zXbdF1&$hzW-_Vg`;vG5w z$O^Q?$C#S74i?Y;eL|wD|FZrmd-UG#DCfooq9RU8e-1IUA{%A>i z8Vm`5eUC7gzKK)*fQUrAc&9ujU=bk07NplSUw({y{1vA2(-CN`zVgNvFlWL;b6lv( z5VLU8+i_EAO@eDZcVq=r%r?9B4!nO>*SSJ9y>+6(fY`#{D~KbFxb11L2oKu;w8-ot z#D^h2@f{PLG(TS@h9g>*NDdfq3lLD!hlDQx0P`qEfd7**Gf5p?@U4$1Rc7Mp%Fr+o z7AF+iADK6>qQ+yeu(&9VK_oPe+o0ie?K%X^cri^TT$cm6s-5UeYaZ(0;q6)UBm*kE zLJ?1{h-lk!Rn3+I)+cKq(=9c?A$6GyO^#*Ofa+=fn^u${g8;-eVlhI62}Bv-^@q@}uum=tZzQrBAa3ch|1?G3i9l_dt-LA!PXE}IUIshgn3F)bi6u7m?v zDDd5m@V9%XMz&n&dIgC@iGvu|1Fxi?tYh;;+PCUR6*sFD@)0`_g`g>h8f?{W%ZtFP|8y>w`utPums#oJ3&EGm=7#c2KkxM5v#188(+K zQV5O+ztzUeE?L@A23`{&mQ9E5sCCEj4<}%9Q&T`5FmXY&)0{aavkwrtq?j{AE!pHm z`+Iw#nZt$PuL0!-_p_9V&s(p^P$j$2j#4duFJ_{Cf^rE01^PblV+J{3do=hmB>M)+ zg!r)l)u_De+cJncts1yqG`o587QFhW1&8>|80)ATVTAfpMVv=i#O=`b2gwA$hy96Fh)EDY4W?0m} z1k66 z48KGk-|E6py*(ji`C9bwA0=Y$?j>TJot2rM`go4c_ZOb`tcDPY!zOFbApP^9YvBWc z>91bM+5KeAc9Zk@v9I~t@PpyCTz z{U8qo-%<0eGbGXZ5dLFrqOKxvkZklj0Ivg9*e*&d8<8e_kn~s!bW@l z68#5xG=jm%08|Iz9mGQ*y}VPuz6G6pe7$AthHq=6^+oTGR{jGz!!GxzRBw$odx!hB zkoL;+oToQU-s&GsbJg;%j=!tQ`LfQqSqhx?Xjr?d};CU81Y6N!$gL+F(d`v!+Ow z*;4p>^7j>zZ&`>$5hU4c{}tE+7Sc|2H}5%6*a-`b7z_ys0nM$L#O#3We_K%G%K&_R zU3da89EibS$0x_ma>8I{eOjFUA>ySLgD*Aze%pu>KpI@}7TeK(#3;YIEIanbvunqD zDBR(1EU5k4ZZDf|I;tE6Ter7UoO93#6xP%SHdnWyEdVLgmXV4h8+I!ABM-B4oqP5X zn@Ul;#(Qx$Dr%XxXA6Jh+zp`TTHCGZuY78mmp`frT(V+z>J3bc6|1nFh2A^X5={C1 zJiV#`0|o}z`rjqmaiF>e*2Xo2A3NoLy1$J2_ZXOx!^T~@6 zrsc~WIvhNj*4i_ce=w?u(R^eY2+vhe$Qe8Y`-GCGhqVmks=&0qOpmUuP_7yKK5MY z$mqhk2#u*zoO&*-5! zL|)$y)PHNncE;nT`o6we_gpqH+ z+OAgF4?CNrr~+IJEJInjs&Lpag1}E0mgIRy7JG%bY%|lip7EH>#~XKcQF*<~oO=(a zIt$X{(Tn_gZ!hh6ju<`MMdESCLq3p>?G|UfooD5(edQ86Nyhcfyob0O+PQx2DaGCT zq|N5wGNttrF4o;Rs%{&bR^v)kK&Aevt!?(6-lx0(e%4(aPQSB%mR*|Y7EN_-Si$I) zrJpgNV2)WViT1}mgj0p?g1wJohypQ>G`?-1hQvY8g^+$9lF$YRhR~QH6NjeCg_6iX zg-P0DQ>R*1!v(iH>p??>*e;|e4a-6paczO*~^sWTX|T9WK=J zcgE7N7KI!(eXT`jSF{k3PC!)*mYys&galnu z)(XNrx+Oioi)BumcBYrE1iaS3u$o4K`|y62|_ z*V)i^{fGa{qCPhzU117i+HarbtILS*@POI+XgFqWEa ziU!3|K$|V{YxTR1nyoKAtMmDPjvx8Pib!&4%d7K}H);u;cHe zKcfrdV5}9xg!K{q+X>#HE0srm0(5IZG~utKtV?;D*90Cn8*nRAnej7o49cleP2j}O zH$mmywm_m}TZ;j-%oTIC40b`5Qcps!2*1;irI*=Jg}MJ2IvZaB(d!1x_DUQCr9`C^ zu>O(c`Jk3r^gM3`=xG9`CR~2s0h+ZcJ1$y7}IvCg0-70S^0Lghu~~ z3E)0IKlNGR&gN|+BesNIgwd%=z*BpGB*?XvPmRPoJmwC=6TK$D7EG%c{SODvPWN2-l#O}*(VWb=Q07P+ z89@ifVKTf_7EN(`-BZBHQJVd0-e!&F45R%A^P0kHU-hF+q7^O$2c3f8x0T3Kf%iWnU4?m&0zMDi>^Gs z@#b!87}~m7t-S1T(K-=@Mn)`-Y~m$&>jaCLOMhiX@4$`8+ptR_jwUUid%c%Xxanae z6e-YHY4h2mE9#CN2`HU$v|Xy%sZhd0ZyZdL&MsyF4mQGO?IS2U?e9@v-gCSQuhSp{ zo1*Q=Np-6xHE4dFKpXZ$uljko$=Fsqvi>3T9krxm&U1kxxER%Roi^rI0iteB>vftg z1N(chGzH*Znbz+00g5yHB2%7xVOBq;OM{h>QBn#LsjV!= zjPp9IN15^YP%j&G|4O`Q#8cltLorug1zEC-^$qX7WZgE7>?R96ggc0@zTWdbC!h^N zyo#(K$!=utmFRQZrK1u(r-c|xd^DG<7NhL|e*H=U64M{Ql{ODZqQ8s9b4wv@gXw5B z*Ap!p8CH{$D(B0{7@nX#&5c$7^VEK^8c)lb$$#%vBI9S%0TGWj{B>?@PuJkKuj-J5 z;wJ2ygvQuPU_e6NWg#4jI3(ke&@B-1D}U9Jyt(Y&{1S(`q`t8;wPZL}<#hXQqUR?F z(CRcoDKqh5oX_0mx{ILBSwr5xe&e*arue=%-)f4rm<$3o!L6gybA(s7D%|b&Ltow@ z6a)DL#%;+rX1vJ~7Z>r5`z#;PcaT`iv|%KuK^@#KpBUw3!BhELPYg@EZNrTk3y}#p%5f=9fw-B9$?E+NDVX^t4p6j(DXDzWBlVvHK3N0z zWr>tTvN6b!3T3f2+Q^Ya&194N^yMRQPm=9Hegq;$X(db134dc|!iG<{I+mY~) zkD`gFlvdE4Ibxv#sYZqavkg*%fY|*vMd&IoV&*HIh%Bj09EC4Hi_TM{fn35_e#)PK z4O)?=@P*LsJJ2AAqA^Iyg3XlxZc1gvc5s>y!Obc$L_%QN+M|2RO0$)A_~|5C;*jX$ z0dT?S|1O>htqR3!?zWR8inPn(Qb!VNm&>PtBC%D&hDvOaE2e=eW>GHx&z{h~z0_ST z5Rl+XG>{X0^gLB?ZZmykU)o7xT?!@iVV$ zI4+a-BtO3rMeF4XZNzuONud6-%(s~&)}&BmKTb?BhYiAWF$Yl>MNn>R2LlVEm;tK} z|Ie2-Ap~yq(LD&4$uwv+Q0`+lWB{%-bSF1c6++_v49FM*_l!=saz4&+j}i2}GwCv#q#qY2aw%qsh%{@UBtH#qb-KB!F< zJkxb|u_SQoH_fsp)!4li zn@WSD$CY*X_60odcQvQqr`kTTkK(72w_dNK0{AjGz;`-{|1zQb(-6#m*Qt#Q)-ICp zS?QvPcFc}AWhIr!qdKZG&lZPrCw3|-4|@|i`(jatNex|zt%tq}VyfOWP-jz6*W#O~ z@p1*n-pYT~AH90v1b*I#YzT~_Hxb)^?T+8NfBiXn9pOC)b2YY;AEIPb({|!;h&rr?~VO44Qdbc8ez0o`BG z!5??)XVQXLlt`TZ>*P@d!D*28=Ig)K^;NVOAbTe@;lxp0z-R`?&g)L(xICprU16Ah zi{Q*0x4uHUHCnE>t}P$E<%Raw4v|Y1F@ChXWfU8tmM^s#3qq;ObANN+zA#3a7Am(L zJ$*o*s75;*T87=9@1SKSt2(@V16Bpzxlh*03vGM&?UZG$JLND zGd^Ax7~&-c!9li~Zmv#P@4ViauH@+snto#?Xf$4CmOCh@Vj2wj51WHX0wRCsT0AQZ zJZ)cqSaHJFc@w1^)A=xoUVh1-5f3Y~vZ!?PmL>Lntgxz{Xt%@bD{n40-7k@b&d<8< zJzFNXhgiVa5Sq(VnMXf_UF-nsi7A=*d`kiZ%XN8mY|fMmH_{^3K9ISfGJYCe38F}= zCH#IY*MGAm;?zv>%>2!C0wAy4JNY4c-oCFZ9_z|zeP>g<`^e7ig0X30G&74K%T$ax zrz`p3&cEm8o#OfPw}!ycoEO{S`{>3dyOt94SWQRMHiXSu-KZ@i}BWHecyK8ibmmc?2cSGSNU_F@%w9;d zY&k=Um|FMnfaVS~MENXlhbWx-Utan>yIcP`P8wu1<&{u}UbEX+F}olHRr8(h7$*Jf zFb7YLzaGfW)nvq~Pe^E-L$56>IB!=+R~%cQF3MhBBPKG*wq;qWS2hrt|BEAF`wvHemvPJX zk0W4Z`Ck;ljjpWgaXWJVZG+K?n7X!JuP~mU)U_RoX4kcsdfLc1q)j;K(ka{o*+k7; zgQDQSr}@yPY}U&bk=qI=nCJtz@KdyeJh?}V4B$(yFg@_Q*XLUzOl+D?t0p-|zF73s zCC96Q)x6L=uUB@!u7xDmHmAmxe&u=1ok4#q?R#y3bFc5?YOZF_ zKpIPjj3vo?QVnk!E33A>VfULZnZ5Um0XYl7`ys#E0W}5MzDR@8(eT?fiWb|gd@Z-e ze}_&M$bu}(SwfObX9KM)m+{+sH66M#ks5~9eu3RHCr|LoFIwAWE%qaq||C& z>xM5^{curD^WicVcU$w5Z~N_kjcF|kZ>?Ik;+Cg*a(ypSXM}5<6*8@&l76fPnosXIwrT~bjHE3jo4 zI;)S1^KX=N3wRiZ(IjCv7?MzS^BOadQpJ*s<&M+a_1PYcNrK^b*za*}U!?k^OOzYl zryOUf>zOU2b}?|qh(O+L3OI`d2~RCxY-J0XYU7eN+qPQU0z zmFm#g0+@&@m#(#=>c2pK1rl-$nB%REYVR!)BUwZ>NP5~Uq|g(M!TK(UC-}V+ZUmNJy48*s9fj%N>%9;xF}@%Q7|xsc zgvRXTw}Z6b)&axcqmYBl!*M}wkhYNE9Rbu{(3LM<|xgvqX+o1(oo%y1596vceTzB4jEi}%AB9u}R$ddbcO8TVSM z-gM~&f9f+mR=km-4Ub^BwzEiKd&6~Fz=HS^`HBPfD;;h5g7=8|IhE9dxX_I?FWVC^ zNKimN9d3%_nlKt6i9L!1@Og-J6D{jj-(GZ-W56|Z0ZF`VX{QXs3}(&*#o%MoGAu6Q zay*5@e>cHqqY4M8YzD>!Q4Qaw2V}GtHa6Nb5VK0bOt5`R*%bR8mzM3Je+T1h4l;6= zpLxMDt-g%?h#VJWdz|>69!U8B;~$@2-ppA1j2-el7z&~Aw;~z?u$6=0v)?)vjOhk> zxCEO2B}9OLs&epvyBnJVo8s0iaAK$u2wKyn!huDk8FSU<2amwSw`}PJs#e|YQqOw( zbKtdSCys${Gx&QJQKum85daeks3-0A zmjzzmuHoELR~dpr_2PHpf1=wP)*-krF&GjkTm%S6mE%h&JY|@ew~ch3Rv>4gt@7(^ zg4dQXC8d}x ze05C@zW_1d1m_^50u1==CZan%n@_@sF)G6Ih3nkr*!nn3AAVcF2uYC5_|OKVE1U1% zFGZ*izfnyKz{yQ19Wf>*)vLTyu)*d`z z%fli@6VFH(?@nc#ir|=vIM1q&Ftk>B>>P`xIcU~|qcx5zX@oPO)<%xDh4*poA`cV_ zLHnVC%6%v!EDpEvvS75BJA^AuC{G=M-yQ$rwAkJMHt}@n!@k$s$M4G@T^HF7q& zyO4DTOoGgvkc&JZ@X?P^JfSv0f7=0WHpO{7Bm1ll%l(N?N}{@`^j;_(al|HCMyN?y6$g-e09@ z#8{!OrpSt3J}4S00C-&0y#m>S#+!HZOX~%ALssvXyt9R)Lq>a*VvkakBR*zJhh1Gi zWuv%DYXk%)&{Vo{2b;^}Rt`n|`VLU^L^K7`v~f_2`;Eg)zLFj7iiR;M?YJm5>+Zq< z5)m%rrA(9_guV9pKQSSnCWj06MSdG0+a#JHd(OKji5Z}`pV1`mckz0(si=xm`t9<% z^M-BmeVMFWg!j&Z-Q{Xpjn8)bqAMjk;nG%<#IMjZNPRZkLu{N5|>dKmb zsSnd2ddU)?Zx6}gSIzU}^O5STo zV;XN;)iO+w=j}yC%Mz5T@sZ@0cJbRywL(w`Pxm2uT2m>%i2DT($>x2Z9(yGLTihof z&`Y)CxPJLo$e_kN5p$;JpSR>UNYtkN`FJh;zMum3>&|CV z82&t4{bR?k$%;T5i_eXQ>x4ypUy48!uSBWDMScMW`7zKeDFjaO4*2_K3fBlpIm>2||?O(D%-71+SjsZAV;lB~IFh$9-l@lzOs-Yox zj-dYVM59a1c&)i$&fu=F7#%zDVVG_51M5{lw?Xy$1s!TKq!R@{7lsRgbXGh%3Sz^E zoP2iCyvTK)f^1@dlE0Im=;i z-bVvib0SOT&s4i#?tt~(9orlVdu{%D*!aI(e-}?~_8u6{+`jK*ogoi;V=lr+dZUe3 z_Rqd#zj}`wb(8R>s~~_l(+bng(22%Azt-{$xL^fMcq)_3QttP zUq)t8m4oKJ!*WD*iOx~~J@`WqY#8mm?xLXWJk=c?oIk^xr3Q%kPnWE?( z0-^F5EZ=t;+vGM2?CMfVy>*lQ886L3MN@D8Fw$-v4O8QB#i*>bHsJv>U41?6r~kwF z&lnr+O&PH``Lx*F8}-5;yT{wvRdC@c2`8u3<%7Kqur{ z>CYDQ_ve1j(UDAS1$)*c2L?L0Pfdh|H%GAV{fRq|exJ0J)(yjALG8)9oQ1U6h^Rl` z-|Lak0P4t_q7IbW=TwzCn61`9+rFKtCk}DZxb-6g{sI80@0pd%^u#2~an);*QZ!Ae z?v{l~Gl^Su9*ml03I8`oW~CJ$m&uW!LlImttH(F195N<7nvL6?EWq%(-_2Q!;Dg|$ zr81<+zsph>y5xH_e@uUpn^tce|I<=9MrfLBLOmj>l6KUo%VaVIY391eU8(t`@fIp0 zf8okvNEQHIwhFn-A>R~wTH}pu+ksCvH3n;6a&8KmwO^zd{(&aqF)yT}RW+YAVWu)^ zXIJ18qRMc|Sz(X7zTMY^G8(6eZ{Nq1EiNEQT6dToFM6BOetzf^LSgwW$Zktu3CVp6 z88J;e9Z$E6*sKtyYKAo1!2;!I;%F()tQ!npZw)Xt#CUv5fccYhd$d$h#I41>yOf(k z0xrsJADWyFPcGRr|LQnGhnl6TMqpCtkCPy!CD7PZ&pfD~1)}9T-+8=%)F~uhTS1Z@ zqh*l(%ULJ}4)pg_nIaeiUmBlqd1wnVXx7(s)!`}(9EgJ5>fYpI5200l+}V1g=`yvm zRU{x?chBVtkx~ayC6ld3{BZ~dbWHNbvGahvM%fjnw!AciexW=OSq+4CnfKpQnBt-* zo9E~0NysuaGV(9{oruZ_B0|z8#cx<>BvQ0|0wz;Nl6q?BOy7bjIh+!njSuO|*$x|s zttX0oj%5pnxC~#n{4^XF0Rs=MWcDRgr4fJ|^wOaO^HNO5U$^=&%8^NP;MXZULgC)1 zT3T3Ujr}eT0={!^<(R1zlxSp&D&wUGZ{mq_1~An+ZVr z9iaxswP+kPq+u=Dh}-nh9Pz&3{zyw$lu6ZtJ`pWA-M)P?k*}JY#tr%4&$lg5f48Bb z{R>waR3(eFVX(J+5)<#r)uT?RsoAE-;uEaX4l@9L_WBUo^gH?ve&J?>+GOCx4sQtL?p$0SafX;58;sSQx4<}svs%_eY{^v zRa4Td^!x@#qW*(s8VU#rFYrKx zJmiJ#jD*U=F*2SU^^V}VqLhg7Ja6z7j*s zF)WP2{_bH3oEf(1k0S{V>bz%DT#h8D-9b87WO-n zJC+xQpi|68cJeAXsl|FiLR~(ij3W~$lgpipA7@( z4@Pi}dq1l@iUd#je7%sBHqIF0cQ&Mn^i&9*__%2&dq7y2ksFQ^M6pg{QY*jUG!K@qdwB$ndMd)QvS(Uqh$1I zUW7s;*Z$oa1*$*_sg-2q1<)37l1fIQzS@FTkH(-p5tiD*fUu| z)mE1CJ|%odJBfx>g9PDgFwV(j3YfsP5&yRcwEafHzm)r>YhQ06H=0fP`4!P)k zeB&K33jsdP0H4>CZyyGbH0$8?J*a6-ApKl~2H|&>ouV(#b55~+OQg3Q-5lid*9;(> zEM2B@Nu~q`qw!Bdt~L11KwjumdLnI9savNZPEX)j-9)6}4G{7U!{-~sG!cg46ZOnp z{g?|@fYJ7qO@wUZi>;hf;iL6we-<=?Wg_hTEs$lw}XBBF2jRavI_vf@wWlAgp0Dfytt zlLB-yISQd@4h{wM>a$}$)fqN6xHB;ocwzNH2BpOP5pqdaHBWyw`@bG|Ub)U=V_es5 z^*(XF_Wk2sW?*QSzU%z3vGxt{z&Jb)u0;vbF8&96xE_KEt^QMmyAqtOuJbY}KY%T# z9}}CTA<}c62&JU=cz~g$rX|?TyDA7l;@M5 zLfhl78nH#*?N0>=lJl@s-#93ILUQ~VAOnPnF*IZ&hgu%-Q1(E^@+cw04>9_4ju|;r z;EIN9ieLhJ1=OT_`Z+LU8gL8vNXKX>Eyp()_hcxeY1B3)g12Ed!#lI{-*rO9N~+i0kLQjcPctk6E!Y_R?FfM~EhA7*>8w$?^xg=C;f zzDc`eD0*=xRB<5w{K~NV>=|jU8Lq%OhvG=0ud7z9 zkTX|3A=Z0i0!_}R)_+#Rq7#m>|Zl zYVO!|t~chh+$43Pz809#vv&%>IjUF_U;iO~A|1ttZ`<(DH;_Qjtl2~TQFn!-?UsrD zY)^iJx;y4A!sU+Q*?Bn0DDgSIlbh#57;4DGOi5DQ07ohDe1`b?-&Lvm2IPFrle-A^ zz6sxbTD{Y4cS+AK7Qnkt0NX9}HGtG0JaBuYu3-9E03wZI!OJv%DTW(raw`2n-Phyc zmGxXDtyH5i#h^Dx-~Ddn$G&ro5zno5I$D(-k`h3lnS^N8ErHO!FbmJF^QR7ED4U(; z4U^e$K^L<=03;*awqTHYV|eHXXYOAXb0WSk#8HBn5!Xg=Hh+ZTJ)P=tR$F!eV)asA zjr#)zf6?{5$`>k`R2yF5(1rJ`c*XpXHiR9f?*NTtg(}pUf>cw9rq_d}tF8Ti; zOwRv5!6g1w!EFLg#g+$%&|& z9_xX`3Kb(G8Uz=b*)=Q(fTMzgpGt-1<<@!}l=Dz(H`|0tvP3IKlGD)c? z0SrL&U;CXu`SC#Ln15f57y*nPND0A?bM!Xq-!oFST>mgvE>iW7J<;Q`(Y%q9Z%LD? z#iNK%5kRvG@10=QV4!dK?L!{a9cc!}iBh2=8Rg+zyuQhaNfI-hY8{EcDipqV9krs_SITJnyRnv z!!&rtZ|$fxv)2A>8N8Dxc-lAz`KPHGxA!C{<7O+~39J#BC;>XHtE#(sFm1Z-p_t0I zG;)3C0go1eC&EJ2|z^?t3Gw;i24@WXtkUXR-P5J6!KU7J8WFS_n5~Czr4fh^IUk@4= zoIgx=z*q?*kF2tb>tFQGUx~v{C;hn@2l%FSQF~jp&G`Y)$hWH9{@(^ zw;N*C&(GBO+K#XD*mo*NxYieC#Ll{%-&@Ka{Bn|*T=k@qOo=<$VBFu?KUGwI;O9wDvQnJ$rU6V7&94JBgGf`MazMB+x$qsvnM^VQ7G}_l(}r37 z7Aa|xD24y1M?rK3Acby2v!-lfj3hQXJos44OWvNOq*=SLB&(px|K21CYP7>7Paw?W zAy2w~0v*Vo?md8wH5SAmZcq zQLa(DpgZiedf*jav|6|kdP$(nIYg6P8?#|mS)tRcVIQnX_r&vlj@*3>PW38a!)QS4 z&^qWkWR(;1FQ#gd{M7RwA`D~1+Jxs9M@)4 zsUKD+xxQi3$Amy~LYHIKkOf9)0$j%L_ns*sOTQ6p`_AkhNryDuFTt!g$1O|+DWx2yg(s^ zGYm2sD*5WIX2(7m6EWe8IXgk4`^o%J{cI(HEKZWQ_+k=?(trz6dol~cFi(^AaZW&k z`7jGgVJ~HKjiHBCVdLBg%vXUYPzxkpUJil&mC4esAJagLAx0zfrx(nWx^AmK)D&Z~ z_0V!;{ycarjA~*mA|EJ_OF#kK-B_XxqT?nA6&DMx0;ftB#2-DsTe!5zjP|h#N0K*=X9JyOD^chUu^%9@NFh2_|=EP6GsN0w4{Ks z^k(&id0eh>kRNb#P#KXl@77cX49n3Fv*ZYiL$Fo~Z2cveD}8+yntM|7Jp9EP7LK73 zGFO%y{n<_-H!STY_ZjChC(VZ8m^jMaF?#L$e&mG zckZ_{esou?o2>TsULBj#xkbG@br7BvF*^v*(HF-}J^|rsW>R10^MBhw=UtJg zRt+aLhXDoi!kVboPe-$TxPB~^?@hILVRny=W@E2x>80;me4X?-Xes0I)DTySn(j-; zF{Ik+aT720#kqZYNmY0WODP`R;aEyfCl_UCFTffKMOEhC+p!MVKJzD(YFv^ln!Vog z8*{wR^A8eb4r>=!nUp{nxe8?rZ=4xll-_Qrg<*T2WAfmjn3s}K#i$9sS3XxABTX@q zAT8b(f9sHpC7Lb-yudUSORU&GUEJtr;*9#6(NK$T!#zZ7LXR_xIekSIlJaf%V884&6m&?5-loRkju zJXyXLoIQRQPDy|*r-UV6z6<2mV+cn7qo%r?P}>F*tX;>NWld4M zpQ{bQMx|+Sk)I(*n8<>lT}TEtI7&bY%mdiW@KSuSDoGW|BGVG&;qilo1C5UZfOQ?( zCBV%58s}#zc;OZ+6t0cU*G~3!_bZ**%T$k{0mxD9(9igRwG157Fo|7+k`SME14Ho; z)M+(b=^hxf#j8y2-_emJbG{-4Xc2B$34at7ZVdwHlerbr>!+nBVyE}BU4IQZA+WUg zy_+BRXMDnsFT~!Wfq9}RQ9P412nn!Fj?ynNU?s@TAv@`iEb%b^2KgHFMaEe`W|_#? z7bk?=5YV(2`UNi&h#MQUAcDvI$x82Dhi(4FbP$9An+~D>|L-yXcTNOBdYt}$Jti~H z|Liflv}NKqhS9obYIhUC$guukr)~%+{4H$7|G)SKilt71U67? zqa@hwjUDanX|-u-SLXyfFaLr}2A}UPraIzfb|C__zRCREbjbaAJ;B zU41`zHdH^Dj+91LJfQG`YFvMDxqIU<2|_7}OzTgfYi$!Cu(4JylS945sZrdP4B>xz zr*5SkFlmUe@qE|!$5jVtRJ5P-j6xjARJ6qnvkv7V<$(oc!maOqZzTHNV z1<6QaH&9xSxnm^IXfX$gI{)c_7C6^i|5>xjrO-(N_BQ3}l$uOp;hjXV2p=y@HUC8xzd-_q?X;9_uOs z|2;^GyhVU8_dDMwf2MbHSbdtATbRFOA+sJ4z8{+6z-;Ce_bOj1Oh2)P#FOUC>m;_7 zh2w5@6Llvu^>)9`=s5On>{Pbb8PI#G(d|9Icz}C0Hq~SD=uT8}S-}?Ey%$JU=$1lB z%B=922@S_iP!AV%FY{t}98+@L(9bJ|HlVe5SPwumx?U9#z3(9Jz4D@^K}DJ}NrO`% zsxm>)38f$7Orly|f@i=$DSwN*>s{K3 zZ?;`DUO$Q&sP^^W9g?}1yrq!Xg-m#p5oFg`DgNlkU>$G>(G4=~m)(6!rm@*jZ?JOG z_yI7H^(`q@or0EUcGznLZrl)<*k)}lcvE?umim94B z7J{Qo;iMQ=N%|V78}D+WG2M!aG(?qZONWS0T6Zkyo!wwG+3etlG>utO8Xu z;uQ0*eT&UMO@;A5VA0uAQO-B&YcfpDT#;0SFDm$Zy;54Q&blp<_?qIErF_iFW%b+k zXFMjXMm`A^s%IuW;X}!!S#?-(9a(p3kBqBrMzNWRG|EZ#+@8?RI&06c)Fxrw8_@pP zS$i#3ay@`gvw7prnlh~H5!4PjdjJf6$tTx~id?G{Vok5;gv#_BuN)y^AtqBsaQ#;l=pz~?hc<}_%zfNXd=S)ErH;m zaZiCNs&tfb@PWBrq@o%3e%z|DY`3sDR)pP*oZO<56!x5yk6LG6Hwe7ab-z&o{%`AQ zJ@%8ZAN`Kg?S1V-jv|gV1nInK^4t?j#uTT_5vl;ixqVbUTQbQxs@2c(IfO zB#f-RvloWb#29<>*6MjIhva&?V2@*!3l>v2WN~Yj-^@2sm_sRGwP@xAr#7zcw^;7pS z<-M_0oCv-M4cflUHw(>j)cRSvi8f}L($=garu=rh zUpdVW_A2JjCQM|~t2itY-vWg9X{hcMi@oX>ic;?(O}sgK&f+SfNwT<+Cuy7>Vjb+} zl&Ko?OC4DSongr_I0YL9vKEGDHYI{!j^I4!@hkdU+gl#2w>8IiI&$}1wKi>b+_TVz zc_L*E%xa6dY7D@FB^VxyWybtCD?^1>1k4MC^xD%vS9O(lFM2vBF+I{nS|V(%%5nq| zqJ$#2IUvGT;!06Fr+Oe?|1%VG@1TQm1T?WNZWq_DU(_mtZ6RkCOtaCm26r5QoJQna zk+p4fAo?R+70FWsH$S%k^9os*kd!IGN-w@zUR=343jCv~H7%-C)&ia{l4o9X(!wqbPk$G^ zyk$*$46!-XqT2ug4(BC`s&k)lvS$xidU=C#vHOEOV703OG8|-E?;B>nae~TqSFiA6 zdE}l9rTmueyY~$r>F33fu>C`W@aHJ(9^^kMe|8Tj6v20<|H({uG_{3eO%@jYCsF5N zCt;GeaIkW-W+h?acsMi)4JcGKA2T*U z#)l6Z3QN+`Fd(BdiyfXWATu*IF*6f0E=UydA4}(vn2#VdEHjyHc02Bg7}ZqKQj(FF z)0sRyUf9crFCeB0F(4GNw|{J+e`sP7!Pvs`=tZfZ3!O=La}?1UF2M@oALT2PXFw%l zjn9)8l!4wr@b>+fJYYQps<(e&K;jE{atVm|m5Dw(IEqB#cwlN{`Ib00I0{u@>j=i~ zdh?#o@biViK%c-fGvnV+;>OzL;$Gy^L)iQUy%ffl3y8{W%uLSCq}i=a0)>7Qyr zynB0)p?mvBZ+9*}yIyN!13UmGPF9xs7I)@`JBW21kjX$!OArYe9!YFuZ0~@?+!Lcf zNzUm<;^VA57+-hdj z+Qxd;S{wJkN2wCQUvtY_=Sv_@{>#60+2irjWBZHLwIH|R#mFL~otL>{1C-EUs$}Sk z@XjRY&8(5x71W8Djm@?37G#nD)RKrYO&*|7zH?)K+Zek|e<_ACa)kDQ4tSBmwd@vl zZHyOk+Mbqlumr)T(qc2Z0(d{uceS-a%7oFe1L`v&XOS*vE{QGK?f~Fs0OK-gt9_t5YG7ZK718KejbP* z?EQ8Z&J8LLxB!32JKl+3M{BOb1smu-(_4ia=spVLeQEy{@=yO2${)i8D>c5vh}Sqi zXQe!*zR+f%aX$)?8HRzsV$owj2SI?hh+^Oj1^;K9Khfc98 zwqVL@w>|pf@ph(-g<`W&ODo$z_w7p7J%4h3rC^0C&$gBf*Kb2gYr1|$7G6jSOTOa~ zAe@-^h_M4xQ(+)jz&u6Lf(C;w6>HBdgTkdR1^)wIrtI9C88b` z%V@N0<%i}QFA;(X-5HMy@yjTX)3@g}2|kpezl}sEdh8^z_PpL0CAJNKyp~lWm4UJ= zaU$0zc9RSYZ$Z9pk`NHm%#-5@CM2T@qfobS^}fdOiz$I%WV|ZY>o^?6>3r%b%QoLSXqb6aE z`1sTP%1h5A$&oIUweVns41`)0Q-s;M`-5=yL(J))6s2+O(^{cKxx~7;^IPA{Eamff z>McZE=VIWkYm^*2gWv(Pr+@v-0W$p>WunCafKX$;wvu#2RSY!`ULjm{Q^g)4Gwwh=)5A_#qUpHEcJ%0m?=%=4$K7iZgk0yw zBK!#LUYo)il$iBy$*;t)%>eOJOCOi@jSde3$lcc)HvBi-z9q3uQT;_0=+wzc1N8~X z<7Wk8cJn$}GmDgo4mYa???_Z7BnO%McFbVkA@&CY>V3&STQ(7=`;3dWN}({*{p5b3 zozj`QIP)7;6#wHl*&^rLX*NF0vK$H1CXsWEL_8sVV<8GLozfxRxuI)FR`URnvEyh+ zpb#`TD{U~!A>%!O5x*RN=1>JzKp6~65UcCkrrZ5m9hTRG4fV%+eUV`&f62on$I|m- zuvMKTD=ELIC$Fz)GT|STJMC|E0y(V~vxYC*l4=IDXmE|#lWDNOR+MqwsZ*>9y;BOb zT!|25*cid!Zmm}z6xHi8chp446Fr8nfleDfY|K3>+iSEvpYwv(NhX5xS;)TU zbB4H~(quk~dGP^KZ;kp`UoYPFIX~Pf38AM_d(_h|6)kMHoAUPe5jz5=XB#2JAb!Tg ztQF(&jMi>^GD|I&;(o$OsH4uAeTdl84Q>QXlh3I2lU^)}&Fn?+0mSfN4odNQ0Nq+~ zM3z3rr{_9;?;0`Au%Jo=C2kj{XlKEXV;JIr>vcWiVD2G+gxbtcxkJk2xn9;3w~yHYb^9^+B?t^E=6+IA>tTp0raTxA@VtEesW{ zZJ9PJ?2o2x=SIjb*tk(!A(6NbpiKFFP2WMPMPsKJ#mKnWjl!clLfxkS_ixqsYWgGV zu~VOo-on4BjeQQi)s#x{(w?#0RZWA#Csjwe)uM)k4EV|+{S?$N6$nIN-9`2RbKBr1 z-vjJI(A1l^R0%@v+k*!97LgpOUu)Qtf@ZQ+0=Qh7|H*K_@dzILttgcx1R}0UQ2d{C z2S@Q+yACd)ygsL4k%x(KB5j^pga1&Kun37^JMrV8CL6v4^WBtbLi&%uR#VO{ufb+u z%?N__SEt$~k~D(z{39SDyuRn5Cie$>tGrYQCY9;i1}P|*XHA9V&t!SRU%!O1`}{51 zB1W&tOQE6%P>aAt)l#Z90X@AD4)Hn}M`@BJmtQ!G|K)^`UG(IN!#({tD7`K$t$JGQ4%Dev9#rDG zqkFc83=G9sRS4GI&-@NDFfX-((o~7|Ugjp6<*ssV7m?+E*O7`z&n8g%Q*NQrgv`7g z1tbV+y38G-E)hyT9ALvPOViDG!##8~tx{M!H#Av$h_}#eB3S8kgs#d6pX8E}3)_Mw zhN%uOd`sO^of56xuOX(Wdno~?4E9MNJYlcUb8G&DRj{{UMxU!QTzDiNmZm6K7v=t` z&vnc#dX;SaVM?_^HlQt0X*&Ez_xF?hFJ09@pW+7M({`iu7=Q=@9*fVP(a+J>qkC$w zC7^sIuRS-(Z)koUtS`Gwce$}ntIg?24kDEZk~hV}wjRHCD>BDv-WQqqr=0i(_y>)w zjb3e`zg`a|iCR)9>d?ZG#YIprCV0IsxM?`XSc&j)luWY)!MS+N?@^>7je*wR0iQg- zb+dGaRj;uX(g2rh(SO7YA{)ZzQMP_rFtj~n>KC+nW3auG+`h%&=CQhzjj(?KVhdK# zd+8M$y)@re3Z0)l&bB44Twpq64kE-LooM0d<>ah{BWuA7b#H@*;4kpKgXOHYZ;#Q+ zoalTX&BBkQE4Ov4WtJ~DIrHOYLj%WH*+N8VXyw1wnd%e0x#~Qq-Ux;H0(#bTzJAWE zj_l4O8xL}|r*K#d*g>ctx^NOQC#-s%rsX@jiP#s+Pj2%OhTo8a-f3lMx|p30S!Apq zQzV>ig8&}b!A+j<4WwVY8KE$WZM!`)=kW|EW>{jiZKdO~9U&s{X9{$m{Iojt_n4J$ z_A6Cp(of;CLs)xwd?kj|iNfwqIQP6$g&`&)r;E?#mm+o*zu6-v{p#BYnc^%9xA%jJsnTlFtJ~WVmPyl-hWH#(tMSwa<^Id1GV;@z8rBB)x z3r}s=A11*L>`FJH;RF%BY0oB0yO*F&^od=Z7Z&OyIB5g1#M2?jDU;dXPKZ}695|-x zt>rl0OlQR@cPn9;Du1#>t_SdBuC-S7SC>3p%4+DzGo8R&H1au{+EHo1WA7Gf*uePHtkCQ!+fl_Z(!|f_Dw2?U*H)W#W{&SPdkqmtL5+;0&vC*{}9e_0ZT%A#1t}8Gg*V{#k#OC#%Q(urc2XWs00sg}w5Q#Ct4ru81<2Q@g4R~mIpFyJdEtjKC{tm}Sw^#)hd&C7nam~qLU`R15rKmK zM&v(O6jEb;P~M)P0v|nZ#MZg|L2$ihoXqd>Rr~q z!2867RJqcYqRljbZ=VFTq3ep{V}fS1MfZN&|5>*X(*`GqXijbC+7<{+vzHPq9YA+>X1oyCC)i{5YIh|L8qoC}heyO?EV!d9Yw$<5rk(Y1`~{@uvsTzUwpEE#nl34A z3xDo9i;w4h>Qa;YhY#PLk)6lFd0;R^On^q})Y#IW4iu;DQosO3zCmhsL>+#)f(n~f zzRR<+SeooQx@?n7)TQzStSF(C{jOePv6?Y0%3h6f=B@0CE`nu+<@gVR>Mb9r(y1m- z3Ne)PJC@0xK8O^GrTXgI*q-hgO2&}bH3^x{%r2*X>a3hOjGbv0-d(vWWI?-M$w&C_hPOt(a)v71Bdu3>(M(B&H3l`sG&bWZKB(Jt^hh!Nf-5@S`Ok8Rj&=N%!q2j6d zC{As(7=ngkcW|xd49C-1oUzW^%Eg&5;;^7y?iz-ie(s^m6 z+qF-G_A?a~_|G3W%FsG*3yhPA zi|7OCYC*vDV++(`EbEt_W>!s+)xT@!^lF8DK#V&mp5{nYIuvHZ@((rG>Uz5T$P?+M z6&97VufsU?H?g%TJ2>U@~Fhurr))9<27 zwofw>O7e{4u?EX=-%2DN2=BQn0mbVm?JE7oNT$?~k%y%bA_mfdygm9njw#Pmn@EkF zNw2l&DNwn^`1iw^_5}8aSnnveoZ+R(GcS0`kM92IAxuqOj{ImEQ}AD?Hj{1G4MGu^ zRfz!qQTCn(A!5o;0v#?n1f+Tb@!tB=GO2PM7U+7i_4z4L&UC0Pq}XOz zFumK7h*=nAkXku$hG{shye=qoiqIJ{R(Z_~x@4BZP9H zf>hQP*hV!S@^pf^0 z7crW?5jHt((H4#uw#@DXwIfycg1&6b_gjWj^zmC{g>SVUHqcXIl3I*z5wp0^c^;aF zi<9|>4+W93eAW*()e;4eA)_d{uViXemx{^Bp>Re_4Ok906sD5EkPjn&HNDX*iUV*} zYoNnjhP7r}8IRqh&S&W-R5RYtuFPUwy{1(77oYzV99L=@LdR?xUy05m=bze*RZs@#@%{VpR zY!D}0i&oK3tTk;xmmYWJ!<^sTx@iY*-?w0mQGJ&nVk<kVV1}b&sUO2BNF0&yK|h1kBENoTF2s*2Db1MTH0=H#T_Y4t5GX>8*zvefM?X3S(=B zM0oAph=xlccTZh$$R~JT(GCbxvc(XTRJv|`psA3MIfK%q>L?|Aho0#^#x=!lPZZ)f zndmmwfY{8|iF+0$r!`&pdehC2yDvP5rbx7E5{UR)Q2#RPv2pyd58-g`Mx$|{|GT6+ zr}E}GBVd#-)JUOB_da&}`Mkd`<!m z9!AZyr{e10oP`VX=9O<5UXUWurw&drQV9KXgjt0l>B$dhWpNkY1$aC23>uXZk?lbwa_r#eZRzI9XK}_o~h#3dbpfKyW!p0>1whI&G015jDqGeT&8$4Tc(MC84%x>Bl9^ zx$&pDm$!fC^_RZ3gK5q_vu1y|6utE?bh?;Nq@d^v>Xp`0$!MS@6sMl)GHDiswm6wmE(V|c?{+0vwF0mzxW_3C)n%p%ki+DNOyM@lk zJP4VI1-EhPaWSL?W7yW}NO_Z!4`5i6&%TUjN);mGq`bEX?<#ehacsPwvsR$WLVXb% z1vv3W`4`rCH-X24SUDfBlN%+K9<|q>Q}Mv`Pf{i}diZakRa8vyOgwW~1 z%Pv39zjynYT9caC{|s|ba7Iy^(NxM#L2uJR&8H5opaMR;x4i08mwf`K>6GY-IK6NPN3`ActLBcU2oPp8Z)W{bg$}v7>%3x-g{*5!w;g5VcvnrEM`NJ#gmr{QJ zs^9sv<5lC@gb{sic_r3OLaiBIqU1+}??#&I6e!>^VAn#$g~)Gj4)#kK6n%`_5MjSwVIrc50l-shaGq)o*d@dhMy}L*)s6!jSJZnSh#{$ zl?JYzyb=|Q%Krt(?#No39+zm8Y{`fO`;V9|;dQnss$6kQI=WO2l0!x9Ra|O)7J=G! zhk~7gfT?ED4+fPi*|Q*ILsKF*u>`xql9?ELU_Gvs?;95Fwy)-Hd!#xwDv~$~ny}~n zlkAccUG5&UR2lu6Ti=N4u+U_=vPG}%YX+j{7N#V@kGK{7#F_^QA4#uH21j0J)L|ym z6%RD&(@vGV1$q{nEa&lv#k133@mK$8&FzItB>MR2Aky~=$u5-|#RSp25zE36t@52b zzzQO{v?4Hml~Eo2Ue1!!d~cUpo$ZNDgx503jPEuZy&PC7wVa@$FSaok0Z9lq3jjnJ zH-xo!Z!K7~9sc&wE`~(2{O)zzvM@LUErW48h~qP}H(TurEqIi@J-nqm7pEDLs~@@f z8S=2~qOV?@k2`aSw>*aN*#Pj74fNHIHs9Y_i5Rx-d;Gyy_J&QX8qyrQ3YCi{KLL}3Nx*wwLk>_h97s&O zHqB?jLMZ>FFcUVslN!(s1}&Ge-d$Qdsm^smZ$bOZK-0hs3LPO8;*m9cpKbc1A!q0z zlm9oNK3RE8KjMA{K z^SM&rCN84=DjQXlw1k7p91B2aTkDg04EgVw`1bRpwEDx=!K-Io9%9wkqYHXBK1zSY zNTZm}4_C40==t8kH&th#nCA%x{jZf`t)zW^Ol6k$G!3_W-jC?Z;-)$l>WykDo)(Ee z@VF~8fe8f@vL-mpZ?EFZQPk;H1*mR}ph7(T3=e~JU_No}m~UoLW6QuiD#=Ka&ev%f zfd0r9G22(s^(HHti6sz6wp8r(PT19IZ-Ti4jhY#gsds<#v(k-+Gc*(~KO}1oqR}^~ zPUHrXibY0z<3Fq(n4_vP$y4PftiSAVQze#$;FyB;``OI2Bl& zQA%N$6!~B;c0O8a*WU?!QBv1nj3AFTKhGMt5&fOJ^`yz>%?O;vmyn$IM%ll$dHk}q z=>9e3!uiA1jy3E>Y_S$Thm;{Cd97htGh_hQR?y-AoBnlZ=T9MhMuoc!M_8c);x+0w zy^@R4UQN#d9j58$1e8;2uSwxkhon&PwpmKg9=?fBWQI^eB8_wVr|1WF98e-!cD=RUd(HW|LGwe9*)u< z?yQ@%C%l4jH^jOoGX%IOwNsaBJ0Rx#y^bDVs>DXG)G4nhgfBmq(;yZ#v+buXqGCK^ z7l$bSG_N*JI>IZfLD$>ebiD@w!v3;?)f6TLkSccR` zGC&8v{%?WT@gJ9GTb6di67dk{E)q&fDo5EJFCbN~2x9;K+TCBEB{djoq88k!gEVNo zCBTj%0HSwL$e@3CLarL=zZIp-60A*EHfet`J*|qOMb}BKd!eWkC!`HS(Xb#021>3W z#aOkmsAry)8P5SFLOXFiUsv|sA=4N%dT2W?c|MXR8N*z(?W$;ePz7Q`fk4X<(}T%H zlYT!{i0=rTlfXiM)dhL8G0%I=pUs)^5U{Fuq2!-(xL{xz9c-S2c~NX*@8eekxBM~Q z)@lP^#|!2h!t96_iiFP`>yXs^#*UApS^|fp->`tVz7uXHO6$QwK-Nv36f*L`h~v?G z(m$rDAABe?_LqCmyOV0nOAuFE7~S71cqQd(;@b$rH67RUEeHDaH26mzZcY)|KG4;` zpv6%3M)mP@phr5*_!A`S(4(*p2f`QEt}ZVe&LGzgvK;ps77jr(-|u@zJbp4$<_k=P zk*k|(^yNc?bY8K~AG$r?Kiesx^@V*D1A3vBF8L?LLP?nS5!2Y@Ol%QWR3{G^|3ow? zgmJ2=mer5y1@9%B!J!IRX4VUfhPq7(w%{>J?mov@r zn-&T8uqLy;4_*vJX+8{t+`bx!g&EEou%-gM`0|dzv!WyY-LJNky*U=r7u@Y2@*k<@ zflhf{+(avlw6UM6ChiE;BY9QPlh#3hoBYb9VY!V2dQ8$Xo#z0TGL`x26ku)UO(Hdh z4W>TQ5=yA0UTV@JHI3mY@p#j74h(bcF=sy%KLy6X6Si1r{$2uZ(%B#X8?hC)H$Gcp zbxP>3x!$pg?y(tY2+v_B-9g?URP)65h0>m0w~C*#j@&@?k7*6(qZ(UvOnp z1!rKO;NYf)z{wES|2v1V3oz8mLH!vS|0lL%Zs{lQ=ClYUxS7;I*IjfzOWko*3EITI zCPiPfdWQ>xk01se6d$Hn<3gF*Lr6`;v%Km|P zCE=^Pt5;t?nZOYf)cf>`%aQ>uHFEpE*b(*dHhAZCjNip}FSfEVoxp`2LqRoBEX$Z9 zNYSs}gt`4I{r<6^W-qQ(UF0r};?UyZAEE;4Y#*&X0~4jO{NxeGoR*1nf3;L*-qgbS z>7?x;zwdGBP520BnX|3GV}AtGQ9dk7X8J%n$DW89tTbsV=8XQdvJrE~^;!8vm*q}~ z;}gM7)sUt5+95oUwOQ2o=to@GSQ@BPuX*gfC+w+etbeEqaA}s;iThmM(whd8ZDuA`{zfW&s9NINH=Q-p#s?hAND|js|Id zoy}yxZkmT>eH}@6RI1Z4Y4+>=Dxg+^aUWX&5|bWi=V4JHqRZxF?r}UX=GyIgsa(GD zltn{BSymp+RMwgIUvz1Gd&Vn+NG!CH>Itud-)TrYa2gi`Jg3-ShrD z(3|T)z5p*$s*20{R}hi(*9DGjS!=rH9CP^|-9ivl(uJD7YaT}vv&ydqgdlFxvF^MR z_i+y=@!Qxq(U0YK`X4-C}u9ohkqfA z4bJjz=HwdJuX;O^WToLe?Ob8_<%}kLgtBFTqyr)`AlT+?^R^N-doQ}JI>j!gx)PEh zxPNS51UmVfk4A@6y>R6_kfaLI6o@$C=^i9C&nYXUZ~`y3A_mhl?j(zs zFF@BP=G~++vM#j9*C8PsH`??Kc$pMfrvC6}`Qt1BGZBn~AhvF*=ORsY#@rx%YyD8_@rA#YYJ7DaNidyk3%wuXO*}ne4?O0d{qd zr;!TF{LuFLy~A#X+NsDo&dNQipypzTE}H4NwDiWWP)b>48sTHtqx10L*u>2u{ZJAi zZ$N|0ZCQrU^2K>=G!PbFksl|)Q2cKUQR8=RIs_Dwt5fagJ@BMAz7Ah6zqbM^2lJ+ zt>q6s(}xWNK6I17g{+s%n_f$=Uw}cc^D)G+^64hdbli*H&Y9*w&^Q@o(|R9UF6x@Z zQ7Uw(IR!=DGh0FXAuLAqV;cl98t0!ALQ0lI*V;!{230WIA23P!{YTwu(oVcgO_Mpv z*Da1(%zIm$dm(%_@<@1xyEIzWv#{#*Y>HzwiH+Gf=bSgSh%}3BejJDpxj<9S!oAj$ zy$1(}(+?p85Y``cd@>Z|$fSnOE zVPmKTT}MInXH6{u)^exCi$Hm#fA%ehTJnhovqZU@mnIJI>;3X*s>)NKlw9H=_1q1) zw=wMu`4fDcPL1^?8d`3-_9_XolgPeu1-j&$d1F`eQ~4E>kaei?-qO==gi)a}HhyQs zu)H}Bq5U5%B3su;n}k=5Ka<0;-;uI7GEiPkJ`O&?A!;=insviXQGjG8nPV{a!Ehq+ zfV0^R6CG2Rv0TYI&1*YMC7_|(y!-P>#@@A_-SEZQy-Pc~rI=p@D2HHr%JV;%*r)uk z9=^e7!G6%9^Uy@V(Re^O@w!$6r>{Mt4QZ`4Ehi7y)?eex&!;GUzFLT(sgegvTC3AO zh30WOq9^(-SR)=a5f!2e`ZPOT;d_bI5oQsyEA(|w*XVc*o zT^c>lJ#&(Liib1UKtKiu|2w5panqP+23kVW$E$&T{9UlEiKyGRi&!NqEhf)shjWp* zZzh8`RPpc-j-HC{<5na9-`^`yDm+FZjlPkn>zZFjoHmfL zx*NN2;!lU~Dgdlj;cCE+tP2S6h*sg7>`K(BD8*}TTORhJh*Y^=IX~!y>TBp(7rOwr z_Rc-OG|a9b%7_+Y8PQSW_3ylIuQf-u=d%wb9AV9~=IlT_gsMEoMH8Vov^?`HCl1i2 zL5U(2&AVwmd0>NlS1AarzNJrfaw8>tMyXCuq0`sX1o-Pie3&NTWgMViVtXLmDM*9r zvyD{OcuFxTm>5+RRxO>EJ>?u#%_1NKq)iJ={H%rNT%DZ$|?Uhg^X4$EL;1Djz% zNaNg^7jHw#h7v^>66(WaY#EFfV|4%%HknK1P(u&8cU=elTb=>G~*hR74_C z_T68lipUw}7pw!cN5PqSG1OPXX^p46Rulz)6tI~FPuMiK%5t4g=sU1=IQZb zK!aYiPqPevPXC50Cru*Eo1N8tG-G-v6Hi6hQHKYfc~fIeSJcEo7$k+!2;-p_cRR{N z-GDKjx~W#%4KJGLKl7tUy3;aCQ50f+6-&+AuL!9~{}9(Rt~{N7cWOTdOkSaHu?Y8_wC0)ADnAVNTY!k7Rlwnx>kFldBT>+}=QNztKtcxKpb&RYM zn#d)r(sCjgcCgbEPo!3zg$5#ctQTfVlvi`|$Nwj(q=g^RPYIefn!28acmNfxYZef@{qyYYFN zT1w1Lt+iMitGLg%)n-{R&TKRwAKyx2btgmEy?qL6@DAX2@Uq9BsjP{AItuEl zlEH=x_DnEy@_S%*p@f4*>Kg;Y`yxDo1PfXw!k2E0dpxJHAr-r3@kh>o0pZJ5(jwF| zYHd_q@l78PYmQC*hzR_Elt&cTQd6z%__5zmFDskEQ7u@46J{XA-8u;SQ~L-yv3f+U z1dqSuSkq?+cV0>1|J>`Lz1)0%AVh^Z%{ekUdNXB(W^`xMVA4p|U=?EE>>FH6!VeTH zCsc5#VGj3rI5aRSX`jwdzoG1>E)b+GG(}LM$^Ho&^dg^#nPM{NI?5C=nmi?uw`x3F zJ||pMAaKHl6KnM3!qD`)HlS-j;WI~l7cICsW=EPc$k7`Nr^rx8j^V<8E@2eGx9AnE zJX$e02M(G&sy+2l;TGwrr-Gm8)6r)VWK;&=y)L{F?zWVv42S`=tovsLNvp1n!JGrP zT61TBy@Ke@qFVJP`RdI4^A@yHq9^@P^nE}U)-QigCgl3zjylcPw26{)wcR?2DpShpk$1Wj_+xu+H=Eh#P}0`pO?R&bhm4YAodCJ z(xv>Ys4BtM>L*NSZnkjNL?O~;L+eB;mNF)vUTcElX3IkAiOJs{45h0jf)AsT243)4 zeX|)ES9hrATZ!3-pTZ2yi%3_`(1sEDiFag*njF%+nZBmH*!iu|Ew&@yG1Vq!;y7x$ z#>Mi4`c)r6#FOHGB-EzfcU%bW%Ff;&IrkX+1i_wh;s;uihQu9wGypRMkC3BhSU%ZB zb;v`ckKal8`*Tr$4fJNw=pD(*Q>hD;!5~e3>*mUs5aZP%cSy$|i~xZuIhnMMtxMfT zmxYGnl7<3)GmLGA83`yJ?pjH)5WUfk>vD~nyS<57!ajQ z3clD%BNqXc!@Nf3W-}*1vBlAgW3>6H>EXUSoviEk)uv*PS?+t;ku$BNj?ig!p^lo5 zNZ4i-zNb4Qe#)_XzpXQ~DZi?$M~3PPAt>xAh)r|OpiY>0H>z2s4+rACMxXL32q1xn zilkFcgeru8=oX)+PLBSpn7DeTbB8Y`F=X1J2j4!#Y1YNy(7H-bENuz6kz1?>#cE;P znk!%5ZGUsp%31dv3r>b7Vz1(0o_LSh?y_#pm+A1B$P`caH5=@93S5bjw-E z4B&ivcC?bc6wv7WHGyodhKSZ@V?){NP^vOSzgQuEE2(e}*c~ND=Re${jiZ8;OMhNd zGtE{r_)c-O(#bo|KM5+j*N<83?H&jRY~KT=2p4-x6fA?!T8AnlPHp3PJCJJMbs z9JGCZ8Kwrl-B(BnRex2zZWj85K`lLYD2WdJ+XidZCjTze#Br||QZ&>F;BF_kyVO3$ z0gKP2@$`DJ7;bHySMYa4g2WOr%kMhgI?zc)=aIJXxW?jg^!{I5Ke=bAEf0%OvE4>` zP1al|#=@J;%?roX&1=FznZ}-KSkPx8mq(6&Q7`Gy*`G3JIGKj02;rA4TNn+&o5Wz| zbz3C}-5bG@6|Lj02-CEizJI!ih6GzuK-kERpAN8s>#m~%yg*;2UaTzOPe z5--HYcx+M(E*p7jm^Kr=crVBm4Kjb}q{oej)01C*DnGr*AY1gEGRDNl{XLuHy%l{W(lV}4#y#lOE}iV#VygYXWBkKTNB+hy-yf;p3V3wO zR3%VnB7%P)017B{;Q zqK}+IKuA4~<6bw`nX@g`j9!ThFW(465?4x+jQQ>}Tu4*&*&T~#Fa0ScUaK87ZBV*D-G=D!vnY_|5!Vf@NIX%-4 zi54uXYtPL=(wFpsQ)O>56>5^@?FgTn`Mhh#yQQTH=8coKs;iYqbyrE|x81*g$VykY zoyg~AQ_zmpC_|aX%dLEN-h-R+8(V{fv1-^mW=g#>SxYE}hp_L5w!uJ@%naw%LI8T4 z7^bHu+gIM^CqtwYwgC9Niw*OO<}CGy4bQnPbStN#fuFv$KCd_L#PO{8^am9IF-aA$AC3+0(JIlliZ1Di4GOJkpoz%0VvI5*2(GqK2=>fU2 z;E|yWjAez<<6v|VVJZojJS%~COL*tC+$u#nhRE0>BVukoZ+jp&WFJMDA>O!Bg2;OXU5uNR4}7z1E~x<7cgDXstYms zaN{uA(Q!D$fUfAQ=FJ;lv?aQPRGQDy1Fbzhw1v!~i8+0+G2rQLJ`VHr`QpK7cHw5v zi-7sMkOk|)IwY!QKVfTsnQ6P9JKN0Y(5_E`WIK=-sYG#qa4Wu)ZYP$~AtR>N85$i^ zAfcjS!x2k^N3A3fD!S7gyNdv)PAHm^5PRZtt;V_CqK`al-!A`qJF7LwP#8$gstHyH zAHp;|yyW2Cz zSQ%-*8EJ3nCheN#iOFwTBB<*(TJT#^FW!0?d!QTpOG|CjfD(x>b9Sw*IBbHu2O+ATg`?E?gQj3 zUl=(5nv9X__ME_ooe?C84TMD47w>AR@r$OlRE(P|&sC!sup*VpaW%kaGJyb{-6~HM z7u$~MX=m*5Gpa9J)4!ooQe3`3u^Q?qfJWykXRPx8>&7a7p$pU_QzOIFpA(9uB?c6@ zhR&qVjOy3xDNmyMqeiJ`Da|Y>&eUCyHft2h_rwcEs)?nyU|goAiiKu)b?NS<_p=V()v#R^jzwe}2`&(fHM9dVMp}T<<#)W5i5{+N1_%F^wf`H2mCpWAcWDF@Kj}O`l#u zau5)~5)%{V6S`15ZNIIK8GNg(jBZd7%!Xr-)DMiU5ww~l) zL?{B8biF>tX_;MCDAeHqBesuMIya=HVbC+L*wcJdr)k`{1jRx9Btu*EwqNq~a2@i0 zH+9Taj%Zs5H^>IIS)%(k=W$0|GW~D?h>wX*{mz-$J{gUTmsUj)k)IB;woOpDp74C3 z=J)=Z2=|&POwh~PzS8?pf(K3}PVj?Z`T()Ajbp%4P!D3pUzN&Ha}N&RMcXNFH58WqhAS|49) zgvv4o>toNAD%`r+&IPB#*h@=;P6#fk8D5bWrlYH*1QH)V_zdo{FL`AeEg6b`1%vjT z<2VzFg(%0?mid84;a8&5~~FoEX-?MO!GhU(T1`wsGspVpv|d@j{Y= zfXRgH=Y$JUa^I+pUfk6^~=y6zti_RZt z`&5%VI8Q9r3+XUSRTlF3LtWr(^RWOJSr3gWQb4MfZMy=5D1`GamT`F2578VuZBkb0 zQ$9s<#H`y%I|X1?-jw@bKG)ebF!$Vr(vhiLNc78 z3WSwzX%))014u53Fw4?^!OR@tILRBQ3H=Sd3U5t71QZ|?;P?jbdeWi?!5j->Xd3`h;4^(6-&(2RJGL&iiU2kDb%2Rr7*e@xEvesF=K2d&DX1rA_`FkHZ0eJgmPxB)ZC$9!Qgd zll?4l#4MIqx1hxfW#(`?B{tl`>pKVnE>nV^Y3NaDbfBz%H1*s#~~Cc3PyR9*b;ts%4q{lzl@K8mauW5!8)8K z>ME=eke6;~Mmwge63-yb%US!UT)dW`5!)+d_*1nSgm+ zLP2zaG6^?-)*06^u)RewIpcaLGazi z)-U6KVQ$2brmLgIPeu|6ns}`&R$B})Q~v>29qRl844Kkj6j-_$FQLwyuk)LckL;VY zPCtaM;Tg9IV{~_-E_DN3-kZ6nRo2K`Mj0oRF*kXJ!JMhnTGX*KT@yn?sPxRstWHI! zq0(LM8UsCx{|lnz)H2$-Xf}gVQ~tnM?Jw?s<6PlMokf@Ybayv7P}=v=7+$jgj4`Ubt|NQ zr%F@xl>Fyk=M?|*)lJ;&iAYWPq$HAB(p#5r|84?Xac0{r`PA`1G_07|)67r0)zAK@ z&$ci>4ix5XfLIclN{&tll%o-N@AuJqO))vMRk_|3#edx=JbQ3BxmN&qSFF+!qzfXqgSf-$-3$`ZD zCp;An%9s0Iu5^yio0A@s*2%|+xN;Ix?(Kv%*e zr>pY}-@;rT)Pa?40Y9)nF7h?l{&y2t_m!54`qIvrQyKM$Ko z_aTMR2@R&I&SBn;;(qM||KoUrO~X>+Rj>0S=pE9$1~`mA(E9hmOaUnN;l>x3!bgL~ z6*CZcb6qS1g2Y9(OJE=^Keo|!bo`GQa%g`ax^FQ946~t*ju76$tmlM$!}x3=MgO!a z?(_Je@pdvl&Km=$iF$|!;tnT&WlQZ+ku!e+j`Gh|e_p;}+%=*o~Zy8;yzw59+6 From a21eab11458671f81cf6dbcbc6411f6b26390ceb Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 20 Oct 2020 11:36:09 +0200 Subject: [PATCH 109/403] Updates in documentation after review from Celine. Much appreciated! --- McStasScript_developer_documentation.pdf | Bin 186372 -> 184733 bytes McStasScript_documentation.pdf | Bin 168185 -> 179139 bytes 2 files changed, 0 insertions(+), 0 deletions(-) diff --git a/McStasScript_developer_documentation.pdf b/McStasScript_developer_documentation.pdf index 177725cf2dc7946e1d7ca1f1c0525e581b28ab3f..f5684e6849da6982ce2e2980a4d0443951e4e379 100644 GIT binary patch delta 73228 zcmZ5{1909!_ik+4dDGZdV>W2i*tYHb(%81m#%dbdY;437AXXj@HXe?60}pWaRHX$7()cGWfSu)ELze%vk+w6l2eGk$ zSU^8O%s=eyT|n$?|4k@cdYOXQI9Nc;icY3(|Luko^#3_#X>pJ?zbOm5i6N`0F&m4C znGp*wn<=lc87G$^I}ew!p((Esmmt3pr!k8OD?7U(3(vn&3@$?>UPIo0wYkkWIZTas zjJOha!70SSa4sR@vmih}|Z0b*t0N{odg(2g)gGx3LD$;77^?PjYJF=!%fIk*o+#lyQNf$P*fZf5(-+40YV zOQ(T@|ISbQnIHKx_os;Tk5YDpbI0kqBs2-tO7j%!aa4cGCVad?I~M*3NO!BLR>6#|hOZ!gE}A^+o;6xdy|y60Ylu z<{arh5ck4Z0gDvE>AGz@>AU;ROLjT#xR)YMD?MR5Z7;<5vPe$B zPr!3yewk!qRd9ZlGkwn>^#cizcaB~Z^24>YqM%muH;?a>62JO+K}E_9L<6y3#i*8IChRr^ zPe1BU%N<*S`-?Ti)oJ6hI60L63LJrDwDzx-muG#_m8$4s@y+*Sx|@onifANd>Z?nS zLmnsW2mU5I9DtlwQWyQUUQ0T3&}o@DQa6k}!@J^%1!JtE*h5)fop0|N{qNSk8xr7R!)78RDyWyw>^Z zPG5Mr2}(-6mN<3cJEbQhr*q-)Df|?9mLs% z4=hW`x((E+W65^dAx`EOtA0DaUpTMg<9|l)Y*{F@7i0Sa;bd@PXe9gthCj0sp6*M{ zbb_RH7*0pSe{9z{Y4*mYsEK$?g%GG=Dr5F*k zul2nP-PFG_lBE>@wdjDak|%d-!f6eACPZc#Zkfd#WSV(VwA{WE$}uT4c7@RJ5p_O4wClXzSs(ZW}jA81w{8MIJucM4|!v-OSFA=WyZc8sDLci`Do!PwNbVF27ha=l$bG^vh|t%lEP4D1uWw0qYR|hH+9noIEXsd=P~DlO;;8gcl9o$7o*{ znhr-HMo|k$k)9q?v`@>bQcc}{i$n@duddc4bBsstVMi62koMsG+XJbnF)3Vv%SQif z!<$->SbvhBolo4VUOeeU{l) zsSm9rWX9#dEre1{2!b7z4*9m%y9>jDu(tMoX^2i%)(x)|Gf>Kcs|f?cj*h^kyHuWP zYbK$^XcLQFPU{5a(GK;*vw5kDuRXsjQ8LRx6XCNAI*PDP`I=OJG|u;BWyX4B)iVHd za{J%@6B82ZUiuZlLM3nf`ou4PFP}Y80-x4+sHBol;_|#d&;UV&fto*)W!_CX;G!I@ zOu5NeoAG>!cEfhPt+onubZ-JJ^!c%Oxq#5V(oH)L|i6Yp=!vEU-bZ%_eoKhuhN zrCUs88|pheJ1rZjSpf<%Dq1ZOp)lO)JboZPs6R?BSwxan{En;a1L;;zM+)#V%7T0D zpg&)7=ZW}tqViBeBe_nl5JR)aAv4z{@-YkIm3Wf!SYSh1=vE9)XMj6;Cj_RZxj@sT za&iY?>r7sEH^H#?_1N+F5Xx3k1OuM_`RlnH{IlTE!sEw1bX6Qq)YYy<*J zxQEf=j_Jf11ak>Am%V9rcL&<`Wb zC7ZT7QFVZ9Z?LvG1OdI%d|fa|Ghk%zJpjORdHS}tOUe@fcyND!$7trr%9)4?LN58I zP5g@1P`9xX!w27Ww1{aRu(j-MAtMxrC*%$nLzwQ9MmqVCkVghjkRa|r8^8DclWY8{ zm@K#-OjZgB^6km_$QFbtvj~D95)3bQ%R!E47p}RtGen+QFQ;S3vE=M`HmO5efE#`7Xb+a z-}*157B42eLG8%?fWgL~$0iGc<1l8vMnhFjCSx!cM!0uS{V3+s8{`ao47fHx@HlA9 z7+wE~=<%U42h{*Qr(nAerH|Zr>R2();E;?rg`~%U6VJyr zOutaI#0|Ld5j+32S}UG*7q&4MqUaV)ntVVIX`lY#HxV;@^)qa4ZhmtDmH&InCR}m@TUf~ojgUEeBe>HkK`a2T-ZE1I+-6r>)?zEP$=-B`QVs%J;dAa zl0kin{@5@v;%I=+rvzEag*?bWl?)9doC5N;f6Tzau5_Rn3?pF+MdQmATo!jPG!G3v zOR(n`zf=Y>Y9x&|^6M@vH9U0)_z*F$Jh0#(@@bFh;4n9lEijg^2Bro`X@=-W`h$aA zNJaje6X1Dl)4-9RHz^v~j8L|r1J58PqS)(~89RS^j9>t4{4UxQP7sO~EX0kMB`E(2 zkA*mm8!0@1HxNchITZXw3kM9zX7=*s%7F+&wtH+VzATV{43@(n^M0D?E1rS^REB>k z->?F1xL9{j=c}k6X*Dc?nCRwopLO$-G>Pju?wv2Qa*PbCe?O*25uEqyc$fy&N86@E9`Tag07r zza65BMcGVR6J|(%*mVo(tgPUXcIy)$NR5r;LI7BM^57A42*O)kn&XDUo1CL0vjlm% ztp1}lCOu5=*|m=~_h9{g%yB$d_Dsr1JS}j-XAa}UCfFw1TZDI?0%zSn$3D4sVHrLT z(>~oLU&OIa%wzlgI1hm%!yKukOM65IyKpE6*zYV`RC%APb2yH*eg0|iz0lHkZ}wH- z-~h};0L}_>*5PKf_|AR2ARMkU1^C5>Gne1};(@`Gq7+9jQQ$X{H3okUtagcyDoA(i z3-ApR4+jdM0&VN!t!>%Mf@g5wU}O&q3mgvx_O>_?+FV6m1pF#AVD%{A>Y2A6OdKYf z%%2EMLl?9a(KAC#R9=7qHp7edE-n)R2J}Cn{rs9JR)i${9W@>SjP(_kb_@dTR*V8w z_!kQLu;&NbPe0rb5jq2?B{B$d9?~z<7$2xVz+4@W5N!T#wu+keu-F0J%3%HPq#iQh z;+-1qS1(^(z)XjQKzQA^XaU;rJ#XOqU~ms{C=3vY8xwe`LJZyhzlA`P_B z3&+HwL$5t~)<#>2i|M7w6Gty*ji8gVOS>_lD1sR)F9Fh~*N-RI)^9=;0%uF60z}l1 zKMGWqH`VwHom_L`5svt(>mI@FzXM5`+*UU2M-;Jcj>h^mbvD%JS@>8&Wcy9L+)2$Y zYPv-wN6z`LFX%HB*!VA9UIm3Q4m9**e?PI+YLeCTi*zeEpZ@d+!*#iqm~-Z+1D4#y z_sLnkE~{y ze7vQ_sn28+9vo4f zS!2cZF7Xr5VlKF>Xx3JGEG3fbL40Dzhxu@e&Mctz4%u9~3lATI6&2IK;#Xq~-SR;n z4t31rv(}_kL2oH(evpKCU<2yRXOX8;)F)in>;gB1wMko`GQXCxb;^e!KYdr`)t5?f z)je#pedMLLX25h(Dlnm3tnM{*c>MF#xd=7X4|OUcOxEbdp)8e2Uiiy$RFUIpy_ZQH zC4J-mQ7iI~TkrFJ6U6+CbI0(Sv~!V=1_cc}u60@J>RGM6ed3akFjoXW!RNA-6n{GFgyMi$j=$0X^QKV%{p=gk;i2W84Mh^2mgDqlibnWw^rSaw*+d0XMeR7yVI@`LjGeB+sW!}Ho2_59 zD8Ep%;90kpMVn<3ZvKw5a;GA;6DhkwWJ1I?iB~bnypp!@VB%}yr`n-%sd_DDGfX%J z3lD?5k>7%Q+H?aT)Fg+y0e9z(ax7RheF|8yJrz8pSxPn}xc#S-lxz^>Z<)QjFbcFsADp6pB2*Jm9ne5Xm92a%I%FbK6KaZZXJVT|>0 zPqXe}Uex3uDs4;^9d*7x9fH{#u}VU zs#xdeml3KJnKrzku{(1gtDj-ya+48{a($gxL0^ob==F9qI{VNa@AIx+GObuW^A}Z9 zf0q|3oJdJ6*=h1ZQH(GsZ|XJEanZogl|#2rx9S)ZAz$ki74}Eu@#3b+UHd& zDK!VSC*5k_P3$VG24m!>M7}@s^#*!2Q4>6=7aj8B89B982w1)LI_+pH2(V03dAnp* zwa%VPLfvQXkvwb7-;S7(6VWrqjPoPUxT)S0t1bW?UjMX?F<6i1-)`5>s$po2 zee<%1*5i=7^6oJjS1Nz3HNR4JJ?z(th5p>~ue%;zjX?TfFFFq6=Azf<&0O|8AQ=Cw^ozqh7*Ro z+u$X@?;95vP)8PyXW5>A9|T3uRSC~bTP|)N^k60NOVEp-@EaH3Mv=20G~r+E2N&Ka z`QNmL@q&QNj~b`#j4K|Hw~N)-kV7Sa7sGv9CS#oacpD!x1_vd9r`aeVe!;qU zGbj+-X3O=R`~8RMIs3?LIcu9|eb%EmlPAHi#lFjq!be?38~)Mava?H^Vi-; z+UtZ8$Gxob^2~zU%QX`B4eFgyeU-%|u4|c|SahN`XUN(OG$%>Bmh5u)$o_aa^_hY~ z_?6w(a6Kz21Y>T3mDm2i1X|Hy1^Se)_qD*Tv%B#&Y<~`*=eqrCecLOJWGxA2%VjIRL(VQBrT{rCVx5s zV=QrCzk=4^v>{8X?=6MGL(B=J{>flJ=1clUt4JhZ`ZB^Luz$l~dt&tIX&#cpF`F(+ zSSoa?wPP&DT#@eM^EtjBUwpK+tFwjCyoH0Q5I80tX~i0CwtQ->#oO-h%~tRtGIdv> zn51o@sebiG;yL`Her-?WZ;x)n2YSt-K4jW2*?xH5{cs$Z?+j$W_A^O=MkGP zkx52o50;VI*Eja5i7(>|vtFN&x17(j+dD7ut=rHtPnM(u_JMD}jmkr-Kj+}&upHNN zcv$#B(IoCA@*~?jv!?ekiT-14zwBK-tW`Iz{Va&Esr?-dYc>RHIC)4JySBKAn5y3du0#(vBx9rDPXvxZ3H){vfI z)k-j#!~kb5onLS07n&MVW*%9_VS^E);N*Qjo4N9|7sVtK7yVMwF`Ih0BvI9!fA-## zWgd7qSVhM;6xNJhaLF$j(@Cr+sbSkWIs|LFaBH~=EBCDXiS7h+Ih_`Ugq`%qk4(0I ze-JIYKO)E6PD*V0Va?g!JarJFfm#3hUdXLO@?!(SL{!e+EWt``M)X6|CLkcPa>21$ z+9#TQBIYtCRYB2thohl{lt-P zkY37~tBH<^@6IovIL93EUG1_{cezVdOL&iG#ID0RsBDojx4tInBu-ZQg4ddz1K;;m z23%d;OB^?0w)ecrz>nH~2-!m5)9Kjw+@1ToAQ@wF*&iju8e;zHYsBblD%R$H+$$kn z?IzAbY5TU($?ozV?~mbMlw5URopLFTcDOfpR%R3_Umq-i9k0hn?c0i z{oU>v1r9Z|ImKqzN}h*ihr1&ePU+$VX?pWko(3 zp0~0P@9OUWuNlnBhBf3|uQ!>}>9~6nO9zF4J5i%`jHQ<)qrsR(%!3~e#JN0F>4JDZ zyFN?N=Q`Y(DU_d?rZpIQOc`7X+oU-jLg|KltNW9yBnFD=KiZ#>%t&e9QuL14MO-|k zm7-D#mM~F1Hsox3;`a2cj!e9*2Ni0^a-Ve;g$+G{u?U`isv)a5yMz|Un%mo|j)8b> z-cpMDKV}l5hxq)hLX@`sHz%T-vdsKZT}`}&H>P5KqRMKv@Ni{5k!wJv*Ou0N)0N-M30Hthgpyt(WyaXmuWY_D!Q_ zI%xF`dhR%KSDl+S?bf?bupx;T2VcPGB~0DX2|+W`!%RR()3pkNNOq_9=q+->d=TYQ zz)q>nW=cA&`0AMv#TvB?PQb~Z_3vc=mq7|{z(xEpPfY~=?2s*$9;)E4fUmxbRB0Cr zw|xdjj7!b|O{Qesk^Q&!%49o72*AB?{x&-lmP7eTJOQ4r(4_J8bQb-Q>f>Qj{f z2r~83y9<1e;@MMm&rSEP`U{J@7S(bEUBVTPn|py{!YuTP(?}qT;DcMDmDj3dnWGrP z-eScUS>^p;Hg|0_JaIKSt8VsG&)3GS#%NXJ!%i#PR_!Lrcw;nD^>err&91sI_`JgI zXjh*tCyv(mNgS8dJ<_b*W27>Nb}T&^n0M2<51F$x!_=*Q)f)9!QT}TEjl0u_$dvPC zXR9y4I=m~7TeB~Hcvgf7qmQGbY2edWEKs{L(NCJ@(b6YgmwK%Ug$(|40VM27#b67< z%hM_!1hhVOEiT4q-0pHeMGTw=@4}9=O^$rls&5qkJ@Wq4=)rW(fd_O?4XaS zlfaAcNM$@PUD=dtTU8Ae!us5d#^#t@mpf?NNIVO0HF=jHf}9JJJRZ%s$f z@I1XDO(clYNvnbzkaUi$l4wb;|LMF5v-YSvfg*jb9mP7XHb&HxW%EX|jP&X%uc}k= zp7ed#1GVI)SsUl?c7|HNJ#vMTlQK1Ev1MBv!CXN7ajj{)Khp83l=|@tK&-JN)Dw~L zVN5THyXHuwAh~7EVl8&jQlIW8bP6#Hgp8%VbF5OZNaAHFS!-G^YU_(F#IhVTb3oi= zQ}U$5u#?zb`Yk4=yZQ%Y+-M<%kCB|qJMr#yV~a-S(-rkdR-L06(&i;3?FuR|Mmb5t z-IB_&;$C?lj|qFb$Y zb=vMLBffLzhx>ewbNLo+<6R~kuI{=^nMF6jJ_tHDUQ=JnPG%O z%nvxpYlfX^Ce7p$;?m05R%a){@BAUorHWIu6S1lKVLWn-WsdKFU5Js5{)?EZcq7S^ zzU3N}B9~^>0d0kf;BQWoL(SbnX*tKs*Q&U3>m+1Zq@6FR559%@H@=r9cnG~1( zgC2^l3XyTVM|y>Piy*RvdZLMwYgG%Stkzjkg}384N6an0ss3afxlM{Z2KgixQtdi| z1N8G!=Y~Kvgw|X@K_HVm(tM|?*<}pgbU52pmYne3h1cm>mVxlAZ4=Y5Hyh*jn!aB` zkv~J`9#>hpjud*a+I&NQJ!+GRTg+LUGFc=Zau%AHPg&r}wEuY4;R~qzlowW}$|K<3 zm#*9(bXV`Psuw&$*p@_UJ7!H&W?;{m$XOPLo0q=&bfgdv-N9&G;6$vqgu6%TXq527 ziuOH_7PGh&Q<(su%ZO(Um#QX*pCVPPY>-QaK%1hdj?tO2d_7;ks6d zBrxp9$Bf@@4b)Bl{_#o%$&)_prB@`J+JzreqPSRII`!vg@h|5ZWog+cdMj|XGBGl* zCmM$58+=M#TuD`oQqNCmtdz}akx72msR$yMmiho(xh6RXsP3(q6U5L8`y0PU=Fmx)5iUwb`9CN&4GFkd!L7~tP0hBxb&mV3etEU6HyLc@!a4oJ zz}atcCZPAzb}9wDhK|jvWu=sBY_2Y$4`FyEEcntgX9rpTYjoEqG zM3x3H-T!O1?b4q3e4m(V>9%Hytf@u980_Ki^6CX*G@tri|3*QCk+LVv_lCcfy%R+T z>dqt5Fpi5M)hm5RbsH;kfz-@qxZ z8jjs~U=des9Q-v|bLU*;xR|3w18Hm@L&sh<^mYp9%_uvL5 zflCNR&F!D45SFMP76{or&_f1?d>>jUAPxtDbb;0eQ&|FwcyI$zV`*7>!=l1HWhb+9 zOaX!rc;oosSpflW41f)+)Jg!zz&Vdt82ZQtx<1&919k*gZiL9m5B ztOvf=^!eJGUz#1>lbXOcH`Kn#_4N+?)Ez=OJA(KT2mW>psVfRRo1YU8<9Cns^z=+o z!-4Ta2wxniopoVac=Py!bwy`&rREd)v=f~XgQX}EfJkd8;a);^_Mu#$!L!JiK%_MQ z;Rj*9gA)Wp_rW9>`!ruI@u<*D{upRXi1qG`%)s5B3|1vC3oK@{rb`H44BO1m-hB5u z_LcP8cy(S$aVbzT_@)l|5kpC7dWmvnw7(Bi>vZh|!Nc1M4gS_n1eW_5Q-}ifIgqfM z+l}Cs@&MK&G#31DEJWG%!3zQl>5>dXzuK%*InN)32FLqA|AP+89Ljr#%JKPGx(43W z^0uk+!8iJ;eDvA&g%_7FQ|M3smAUr^D&I7Y&F*z7tP0S|G&xPHSQk1Ou>R>b5BZ*B z1QwXo5k2tPOv?kA-vF|FM5#FJT7h#*fNTq7nCqE5Py*4MKec<}FWrh)g3L0EL?!hAmIH zdr-B3A0dh-X8_39R1jGX4tn`;o`d-w}Lf(#@^Id$qo;6UbYP0|cIntgLBe=YONqXfFaHG>|O-Cy7?qA?a0@i}eM>PhtB@Av>J1GNq4RfS*nn zQL)y>##auE{(yx(BU|Pzar3~BB@qGDb+Sc4D$oS*i~{1W>1FAvJBSR z^;^pJ52N&*nbWdX653ysB8B%Gz-!N4;lZ39{pb$GN4I!Syos(5J{xUibARV!VPT71 zxA$+eC3%SzqHnn1Nca3%ge`)ekAFVulV_%%1)|@r1S#i2>n#^7vS|wacQjXY8pe4= z>BP;|>Qlcjm0qMZq^h$oEn`k$MUbW|`S^)D<9gxSI1Q{#dRD7iIP& zVwN27+|t^+Tcnb>rh8@gEfm5K1tiweo|fbhGS5~C^lr9iPF*E9QGQ}`+@_ISk& zJX%xKIJ~(TZ;PI&pE}R#(Vl1N7ec{J(Rqe+sS2+6(P`8QW}_Z7QJ4aR`R*DI%@K=L zk-1}|Xqbg{bu~{hKtD~{HD|3N7dX%3pZnW?{vdBhXnR~vq>chG4sx}=wPG+_xTG|9>we562S{=IP z6N##`oTpp2oVrO(V)dvJFXP^v2y<*=xG@mTLBzw9DJFoGVl9B_TTcwyCGRe?6ND zzsk4AVkfnL7j<^KeD%u-$b$?jv#x26}v z2!|+(zd(fhKM~Jn2btFVNLhO=({xJzVpBS8X;-&Rol$3lm@i$+yYWVS`t8^oyL!E) zusx1$f5|!Dr+58NKu_DmXbkJ-1obV^8FX^XFlFX8Pf|)iiP6bsrLW#7c9NcI1R29c z=?(>F(U_)Ha7Y zhRrpD@b4qb8xv4{7%50G?V%%eB&tl>zTe}+@b8GK+W&~hg9?vCg=6qIl(<>A_Z&sj z@&p`dj1^|?ivOYujU~|Q4J5g97~wNc5}Y3HU^G)CE~*y`F)XuiPQ)a@b&$RH(n+4M z^aIIrMQcv_pRO~Y)5=Esb@j}#)v*Y;Gqp&CENElVGjMl*_auhj`bsP6z6H*#9E0f! z@ldU<9bm-L1T$Q>-)>a(37Th~4QYaD^?+_K9ya^))KAe|wOE&6LJwUNs5X$1m&YNq@@-IJapk3Q152seHqN<`)bGUX_UbiZ~C~SDF|eyzRT0LS`^hkge)X*tH@ze(hgVjg`G! zAa*m#-ilz$+)sW_okOVVpKLHcD+HL$Vw_~y!rKf|u!9w_)1z&a25F_R!!MrULcKRI zxBJIeVc>p{RTO}4jDB|~Y|e#1sd`##r(m6s5MQj+@tys~I&WBn$gL;OF5$r^%~bSO zt3qJVS+-Y%R2Ib~KV9F(c(i$49P_~LJAh^NJ>`A?&POKPy^;rJ63>lDx(QH)qL~M0 zSalZkV6j~9HG0ws4%~NrUh|Kxh0^9|ZpyFzqLBkbKtVO?3`od%)eT2|D;wB-Nr`U{m7_{ZO5$_36p{|73WwwVM0-{y^bcOG;bQdk znkeU14#{(Mmb~TV&#(PP*wF*bwZoKWoem9wR{UX6@yU~4)U^U?a1}TURu9<7QgCku zs8A)_+YP1X_++a+Ldfi?PVlc$u9DrF5agszea|z5R4dRgT9maahuLvNDCo^aLG^G-`%5tzZUrG7}c@F;Joh25O3= zVVqo#PMOthV5`rez^V9T%go@7Vx7E@6XuxVNi4(UAN*YuoB|(;YJ?h%lu5DDNwZc3 zU(E!AnP2wG{%y73H4QlP^)vIGj6=&cv@es(ymlaWY9PLwouBUFH@fze3onQdu139rvNU z)OZs7lHi@&)lK6o7uRkCgI8+BVec%*TI<|&=K`sWn2k!E500HR{$_5yFTShq+kIVA znQPpwFwMeJ{swSJX`NjD32cvxyM$b6TI3^O{$1e`E~r-i)%N?)TCU-X>$D6sqqanL z)pQ(Ftxa~M>18N-?kb=xqgmpW&8rm68kr7hL3c=y+DkWszgw#Q%g}Sw6XZ?xnq$_Z6_(?wR+wDRmugL4Ck2z9hl%eHUdOBoGY!P+tKiv zKH%87$}Cvn@ZC3;B7^9KJObOGdl`p7cfI*x<*JCzRviUyv0$H$H5>I~Vatu>T;$y% z{^6~_e2)Sva>3H0k9!>s#f8w1-FO_$xjyPkqdUx=6)jqBucq!j!pQP!{8Y}A7p)RK zN1U~?rgg!-up-*$jr)Sx;__?g1S=K{ul2IL=M<&mUT5$31iY^x!uQjAs2{VKMkG6y zRwZJ!aJKxkOQ@o&(wt`Xu)Kc;d$N%K{wZxSWBB)LL*~JW2*=D(cqfHae5!EyGzH+l zp(@0_+{JH4@fr$JQ_}N$xoNZ;NBCi*!$B@jz>1oNIaE2~hu1{#$IWPvWa>8ZHzCXW zPErnMo~mq|r_>;X3)3}N-@;o4K`=k(--X-}M@)hCKDu!xo!Fu=B=4;s}f;9$dqm^rRB2-{NZ_?!?@%dGD{%(1g5TUKb)4dwe!#PUFQkp(@ z$KA3lcIMfxv^_^&PcVtpMx7IHq*d?aZJJ!{{I2CWT=X=?;HlaV=ai>EW2yyBo4^&v zKABE%W3MCHbZa81vr)ag}c1MwU(p0UuH|!UA=yOc&YOGUTQ+)Ll&gl!iZnuic)A$APD8l#U`bzzfLI z4JrsKKVSOYf|gJA?XR zzR*?dzOscqBiQ}D$Ej{}v(MyL?m!YfGO$7Ydnf=xZwgS(MuDm@Vq8d>m301MGu8IR zsk+k{Tj=U=yK)!R!xy+m{|vi1ev3RAFm7?(XeL0_l;*qm5&BQ4>4`XV{Bo{dOCMVH zTi@7c{)1WL%#AE&76>=+#6LuZb#TB4KbJ_X&6k2~jm@Vi3(cWDhau-#Z$VS?`ONAgU50X~f6$a8G`yy2cKwju<_ z!|q_urrWTW<5{44jGpDsqfvGMV;b7IhQS`aZy>mn?_(Nm+(S0>ANxxEtmVo4gbkbL zc=;IfBm6T}y}ep1Gm8!ENC*RrJIpAbt6s@p+uM0gV?NYEjfg+f*Cpx9M{#i{+4nMB zgvZU ze-#gH`giG)?Xb&`e0=C&`hF@!p10FHV#9uB^!vMRa@7)i_*h=0dV$HV!^fb85?-jO zrx!1`_hfDmo-w;=YROJ>DRaWl6M>)&&%{-iKNpg~u*CXThCKnc<-wMmw(i@P2j}fG z?_p;BU<176G||<_Wqr%)<~?pSN&qV|ZC z&&9^R_vvzv%6uH<`|gykuUXOLCJT(yd?&Q=hrDks=@2?xXlne-<8JVRuqA#}ymX=M z>0gzTg#b(Pa}E9tYG^YvAFBU-^{$fThj@^XrsP!YuUTt|HeX5)-|Q(prs zwiq$d2NAEOs*=!UE-r#%9-r7SgV%&De-BO2b~8lRldpVBx9+%HeGVSW*aVq5#Z&v>Sqa& zH|em+IRCst()Dd-+??^wdhKUpXEm>rj2?=<9}CS!C5>?)x8DgD)xVDdHr)+IM9_DD zSE)8Z=OBH9Ci1=>JRa8?+$~Y}kvS{~Cl{*2lfh2TjJGijf&J^{UPG+BKy{Ap*;gB? zlyh|d_+0k>jKQATU(642SBHz-<05?#K@u-!KdZh?EmqKIIxz#~!+rrWyYzB6Vwzp& ziGiKFs5J#Dp>)d@AgK5Hyh6hF-EZCi>Dmk(Z}ggLzEl;>TactHJtM{2^}Fff!4OBb zj|1^9VczW-5_^q;%u-8v6#!P9CXUPb`OSj1>tr z!zW?hC(V(tipejjA-q4ki`E(C>hmp?3=~Yq616RU#~8Lm4D?*bOAeKmx{kd#6pb+3 ziCSCFk>j}xhSD+i9)FMaA!R0QmQ(R65xCfA%wSHIj(n!Ewj4=bAm$RPFFIf1b=gg% ze?1vt@#aI;J{q}Io%eG1lAgQ^d^x@a(Tw0O{CIrd%l*2QV;sC?Z0Ng}UoS?Q`dy7* zzn4nn`$|DKrrB+9bh1)LAhBi>DhEvl)}%YTvyeSsFKU4g+{KJ>i`)tR1rbO(e%)r* zMX+ZmnaY7vayv#PozIkOyG<|ack}4UW!|sF8|5XH1v|PgaP7M{a3)P&KzN`Em-d7j z>}Su?uTktTYn=mxeo77NJNSg(W^d$dxp!q77}Zwy(A}HKAsYzrajixqRIW;c5eExh zjMrWrsPFcqHdH(`zDt_2XZmwsV~P>BQ+?Jw#p!J^`N8r-8~Np;zJ5dqg3rdSR!yMr zC98NOqe9S$83m?P-ulgI0$t(NMYhXi4zbNA{lEXDC(mnenxMIV6p^9mDok(d*3?xw zp{yHAyt97aPWpUod8S%^`+Ao?yNzOa1KzpVqUN`jwfU{tO#YaogSBics4e%gqm;%E zyG`+qcL#)OOVM166hpbENgzWe_;+6m`o~Ij zYv(!2LxI5iwvh~0#J(aQti4o7@J%stEcfOk<0E=$THhe+RoU#zMz5at+v%f%OXOf? zHZwLdY_4DpKFN!$4{%;on1Ts*3Ce^k;SQq^?}2HPBm0@=tQl!buv+ZI$Tq9%DBtf^ zEEB);o2Yphxg73l3ckv`MNM(PxoKzUOtyE>KmBhkdO)kYN>;RUc;e4DxJs1FYQxL8I!Tk zY?NPnl`p-$6)-F$w+dJO+PbSs6qOK6V>s7AXYv4nhcmX((VNMPI~TmFM|^#9o?CL} zC#BjrYhq;0|5d|aCO0$IZ3g-8eIxoMpKs(aqp6o2|DCsbbe-db0DH5aNk7UEGKH;Q z_8$E@Hl=hd#dpO!{!n1GpavQ?7nxqrjqLl2)Q=sL$N zUDsupVq?G37L5e_=Cu<3_l*O|6f$xtQm7PSDg^}`Wt4SJ&J+eyCaJDpL#T_95SqQ(2I zZ}cAxQh=F#2B9`rL9O`wc)C+x%j#};S~I(&Bl}hedqC0);m%J4wV*0$zW*-(UO=J0Vj)ShfX4>sKG%QG zEiY#(r~h4zFFC5%D%TelSQ4GXD2)dms+`ePz1>c8>Q_n}8lUxXEJxsZ^vmA`$B@m? zYSiIn3ttnu2?%!Wk!22Z5fz~JoJ4W^)KVDIPqS#H}HP3>wlB;7u?88sfmEs%Wt~$wIB$jSDZ(>GB+t?jELc;RMG^3xl z(+i$Xi>xcwz>pGuBX02kY)_8MIg!(*eF5WN@ ziU~HbRbrB#uds!mcg;c}iT%Y5Zd@kvkf;xC5OJ}Reo^E)CLhw@%jXl2-!dT3^6TSX ze^vT_>1XIK;M10Ff?222Y;)QfuF`?o1TY`Z4F(uyMVwNuW@JK1>50CnxswaXUjt>3oaqz0LD3gOMkK+);o<`F3p>mGPxg4S|Bs_4z7kvJ#5{ zAC-w99&fEpR7jIppV7;k*$1+WiF0K_OXkd1lP!5?(TUv^eUt9fQvM(L?|k2EIj+Q$SbRweeofLsux2-VmsKdjuc;?h3$LZlJbXVr;g3w zbH02d9>Bg4XTA8X^XC{S(fNC5*CAgkORdB~e=%96;_P|Z$Hr8vSjYPjM8sPFH~Ruu z7*6sY26QI|*4Wr%+oSEoLMcsu;CtrmTcN+~PpGX5HjzD6sR^w{NPs1iQMP{lHebtt z-p6%J?~1yAwpot&qqdG2ai1;ar3;q#Za*@Xm|X%VyDwt9cipRvn=1kqmLDp(bz9eF ztB&WuB(;{I#)0X45(PlDX#NhG{h)Qo?A`*D}kmZQ^3NP>P#A-gc8n#3RXtXRo6shK)%&n}nfDxfZ!M<;q9*UgxxdqT%&a`b{&kLeCU;qKd~-REl+KT#>pK!;z1~ zM|J4eEA(sORh4musb^OFFV=UlZ*TQqfT&*SpRr&&&NT(( zGu2b@M>5_MGz5YfslN~Vn67Ad(9qRLd-bs3<0|I1u5g9ucq2K#w?SR?cdz$iDWp@@ zcBKlO=R{}5GnSR|WnxH9j1y9MnDnT$4bodCBf>h`wpQeS)Fsbk-}4QSZC&6Yld?(+ zU8$fH(WwxiI46@?$mZ}=6}KOCFr)L&E7svx9E4MTck~m3Tu)ERbVA^)=pD#_GYIe;k!RWezTe z^Tuc1bsidWYvNnEOz02MxzK_4l&yhpzflDx+Q~G(xgZRGr$Pt5^BbZsFJ$9tn=PPNTr7U~ zV-qQHK~x-JqEjxLChYS%7#Ks8%+FO0AEM(WE@n9#)ljQ!D@}`P5iFV z#oD^v+*Zg!{&rK$^NRv3L+?id#6WwraoNss1dU-vK>-`$pBGjSBb@N11&fu7>g-HZ zXM&z7Av#=4Gk5+e#l(oe>RnWuDg+6}eVQnL$~-c4RUX@>Qd*P`3la|K)*u_oxm;4t z{4tVCDf=!4{*&bAeX@gmq-w{(3^`q zWu(O~u=f77`6LL_dn}b%&kAdH_r9j51(cv_Vh`4H>i|kl$BQVp;_4z zd##G<_Qcv_A?6b%*bdG*mI0kvqV>CsF;+zhVY{z@y|>@^kXkIOAG^fsr?yqDj5$fX z)O3h@qYppJI9*S~zcqe_g?(USdvG7(IX_H7AUw6>C!z2&R$~jD;dwQ6>Ja>YO@a6% zzl*hAyL9qKqu_iV^<8z2@()|Z1=D6SrZrCu(HEBD!Xb6;I@cvARH$AvvGxYri6koV zcJr?|BU?~li+bGmmH-#g`dH)ahfDWLv9C_I<$9lD29zFW`&z?@6=%$YtC7QcpV^X0Z0TzIlw_L0-ZubmWi3XL1#UhuQQ=1-%q7r! z;k%Ao(N74`{B^`;{v?e~MiF6CwWdqKM|i%1Q1A7@;^n&m)7(|NZn+q6$d=JN-8Ey{ zNvkYpn;2!rnU~1$>4Z$IyYIu5^|xZHzVt_CvZG;4xBf=(%)%tuISmiN0(= zKIguxmdWM2i*58uI1@6*BJsS)UGV3B`Bd#Z{5Y4)(IPaKd`&y|spk7!M!QzWBw~}Q zf$-W}dfX_1)8XSi;;j=EiOJ|gjs|Qrz1I%jBEk~J@CmqjPuO8}I(n?t*og(ZvxBMe zc=s9`yQFH#J7Z~!8Pj5a3yQzGXSAkmE^CDx+m_2zu<<>CK<#6uuqfxA)Sq54-Sw@W zpe`I-wI*IP2Zn3ihyKGIbiKV`>yjbNdfR z(by0wB=~Z=rbpUqxnGr}`INFYRd$|=)$z9MnzT$&n8h-iN}mR|6{DCcrpgPeEuCez z|Mc^-l?(tMsj>RI_R!S8K%$2r%hz2-0V<)A(T%so03L|i$6;eTUn0R z5I5wB%s(r;{E8*A#5(8^hb%*MS6xd8M znMylGtQC@f7b)2+B&TGawh~-)^&hYU^KUQ5Bl0L8MGN_@OtYvFH3NVnJ*H%{QJLTO zHiv-~yVK~J_bBBAZOq}rseo%+om>ZMe{@{wE7Sh(G6>!+CCG>Ks3qgSr|@~t=22v?Q%9Oh^_(eMQW9z^>m&%uOHP>T<~Eu+Kuz7 zpa_8*y^zGDahcTY(BeyB3U;q-nqMOq@o=J#?Y2e|v!@TZcZ3AK> zf+FXC!U4ROYvnBTuAivwqr4VOeriA_9_f}3vz)IIUvk!S; z9!Mkj+#7p4isxo2m$BuLXRPei$*6_ru-VrRyPi7(ZETUOvB`BUwn+x$f~Lz)rsaCe1fu42OHbwN&7@-*Vo96K!d}zfOeD3V~wqv3rx@X=D50y&_aRQZ>8dQu@ zy)kUBjIv-yP_esXXm}3tVVx9j{NL>cS^>Ub3KnIJwNW1Kj*T>72Zr z_w&^+h1on>h0_#$HTxM|fs72!NjsX6dck*-nsxAVqO>4)*7mc(rx6v3QunubClC8G zUb!{sbY8&@qOb)HU4RqbaKhS$S%D^`AZeW&lT<`~f~mer8gL>QZXGyiWHgQ!@!4q>2_h(Yf#sfUrn95TE{1N;>{{t-MZ&Kcw zQE)HAa-XCmv%p$C6?6J|Cy0h*7Rc(IvV6uN`tH$eEJCQUJmjj@qhyXIh2-e|hog#F z)#~O5H{H^3HQ(M3cb!%Dyl+{5d4N|La*tK&6VHx7d3ITB%0+C^x5#R(7J~#5p!T}n z$@Dg5Ky(T!I&j=$Rx>UGA=-n$i9CTt{D%$B-LV&*Jjsd~QzxX`2rvQi;Og1NS$aZI z<^bfZ0`8$a*fyPzaACD75E#HjlX}>CHkSE?%?3!JLux7w5~4e ziRcw~&j&_y!ddwd#F(mo`_Vkxe*L~WMvV_cM9;gI+x`4@GH#oYStOWm}DYNHGR#^WEsOX9u%heeB^G_ z`Y@c+qEx+BB@sL7f$S1k(h)m@giGIisO07s9VA|x`zU>tXM7zwrvAYt!zJ1@R_x@w zdn589y_pgw*;|Hd488g6c!eVekT3}v=g%Fb!|!&u$RZ7Yi#6(>9gXKXrGJx)u@_4b zSW;lF$xi&bICq}%)3sx7+FYJud--V!m}V6V>|*sDJ!ow~LNO3)>}c)m^*;QL7wv1Y zHxTPwMP58i7bkw!b3eqIL2edaP!B?|7zQ)phqQ0byi!HxKPh#$*XBM8HrzBiTqdRj z(W4Z6S7`Hp8<@N%^o#j0eL0+=*DSmna!z;UlsWAuwM;o?#~|;Pow_xz9n=$9NxL$R z((!^o%pxzTf_wGxb&9aZkEslWPH?=QioS{7PesW?A-Wkjn0{p z`iEOakpUP4V5RISFk)Sc&rYk}@P4|PiKRl@+0Fxh0o%m_b}DYNYREw3ISz&`iN>@= z&`g;g`NWB)A1h8cm(ga@%t&S};~`+NpeVW->~8}xo6y3^PRlq8-5#~^4Cxy}Zu8($ z(AHnoMm)3*CGJHJgb3O7F{~9fmlt0iu_1G(%IRkyd3%xSHcQ{>_#4i3vav2OsHTRXA&)LKIW6&K%oizENqD@Q^oEeuis}5em zAfZ=4(Y!zayK{_3D?UUJBPQuKSs~off9b0GWST;yLI435+{Io&Z2RwoLhaSmlG9<9 z$ZP~CSCqXHVSH9LuXD+ z>2ymY9XU((ajAfeM|B_5F3TeaTVHfmjRjT~2k`UPAREDTCl& z21>62;wbr(r*c|RRk;WE@N(pl`IN6@P_1WfaAvZExAcZqN$dO5;QJ#r6xu{*zH_hMnw~4`2z9!PwiGRDrtN?g>KPY0t&67}e8sDm*`kIi{kLgVNn8All@MwvDjZR2{FZ{1KT$KbKvTh)qZDAE)D zKpdCgb-I~=W@zq4^V({49lj@jQN)ouX(rH>gPhdAM9yQZf^bisX|Akas!i@gnAmj0 zMo?`Pz@^uH7)@!V-3b}3xL3>0Wg(3+KppMH8M|il&DJ5;wbUUg;7o1eyvgD^VGh;H z{)pS*#*rn^xc(%|{Y-*xnirKL&J1m>nL-%IsaqQj*!-Fvz)|#BA9+7b14C&~hSl9& z)0;@Szop6JePGk*TjM={8q;$(rFb4jtW~=Md6WSm%7M3n@s{DR+Mgk6hMn?Sn zWZR}Y3^9xkQ8k(K6r{gHS>(;J4(JT|y?F<*2E#}<`zB4f8u`Y5Zg_R7r?-xsIE(Y_ zQ||>K#(2iXSx}~XmM$@zC})Y3@ZLV+d%x5=KR4r3t5%ZMY>-UXrfYYU8;wbgc$ptb zmJCO|hQw^y;fC0xI9?D(V;OnclT_H+zJ_}1@h(5lS--g#Zs4{|IER|0_JZ2Cm@R6m zk8e|<|N2!`JRW=-laVVma%Ev{3V2?Ox&=_2YqKtjThQPZhTuN9ySuvt8=S!%g1fuB1$PJ* z+#v+F;1E0nmmp`>TL1pD_PMv}-l7WTY43i!`~7AHDsmNdCQ)+-Q;?Jc*p-Qu8OR3^ zS5#wV0|0^S%s?O;3Kf-xwW}TIKV%dte=U%+i?suo?_UDq&L9(42u;Go6(XnT00zjp z*#TJD0jykntlWG+Ab<@BlpO{97F$Y7cU@HZuVO6ir;MK=u%iW+rw3bq6zRkgM1KGC?a~f92}x z$j8Fs;o-q-V(-H2;A|;G#|ZGScC`Yifm}e&?jUo(UkL-0Ozc7bB+QIL1<|QMYoUAR_!2|5`A7Eh(Hn;dI33E3`7EQ3VlN(4@;y)q~63QQ%e%)D**V{&wpPTLfXsR z0c_{>NBr;eWl_?S)Kb%6fA}Z;|C$mLbMOTCFtKw0nAkX30lYjs0B%ko!0&%sQ8BUp zPmaJpsc!APTmG^zwhoXze0p?Flkhv351H`lng`DX->VLuO|U z2B|o>SpT(E08Ffq4f4NvkU=%Gg=`KNNJsw70zn4nf7eQ)yKjr@-9*94cKZp&$qV@+t{Hgyz5Puqf5X6J_9|ZBBfAa@HJm~%x@j@g`{);#u z9!y*yU19BF`$q(#Zu$p7)Xn~jI3YYU2Rq2A{!eK+Ab~*kq5U7De;qfA`F{miA#=_G z`WJ-w{QI!}J{ic$V6pfY{EKP*#~mbR3v0;g`5$r4zxWPr&i^t85wZLigoI=DCpbtK zSa~^GK{ow=e;ooLv_BqLfsmuJ`4<;bpFgEw1w!(*`xh5d4Euk@4oUQ1mjBAd;g4^K zEaZ0lmoy}H$3JX{t|R1z0^5NsT>nrZCjO@WeVhIvLxOaKoRY)8$_lxkS)Bf59g_IJ z%EAiC(&djnBr6v?6PG`gVP%Dw{Nn(!z*t5aMSC2pGu(CpIxc$o?q%!XR zf{<)I{y;W}w&%Yf#JtzPAfyuBe}aQp@&-Boj`d@H z-<71je-T+Fd-geLZ$=F7NLKCq?fdj0QEg_w6J_}u-tctEiD=UhDKZI@hR6@!XD45+ zKwH>$=pH$$0w*^fbd@6PdyheB&!(ZuwaKu>ebpazT=H+8DrcEuHDe3{%jc;IO>-9r z-Xpj&ks{H*{pE=;e_bo@BV(~W&M$Fd7*Kt}t^P(F|lD2mT>{#YBdITP=Ymkq9 z_Z*d-zmW5ujc`BOrMJWRb#0dIFx>NF%EjEC&uL&ka3g--m+zp5_x&k_5)|_4GY|<_4G*YXlw{l_%=_)se+7dt z)NKPaO7}cTYg8S2q0t#QI`cmYjqI`}L>=QN^wJwsxpDmrw_5~*C-mB|{N3^39c!Sv zRz0*|{0LuJ??$D`l{wIAaLLEtU%(z=fz9J=GC%Dx3^&x0bNC}{P}=A@6v{&|2{Es9 zkX1m;$LX`Hc{%}h^%(-RQ1hNDe;By|s6~8*cTV)tH$7Cup}PVeG^_fkOUvT=FTzD$gx zbnfr{!m1h6c-b5O4f08WAO}tvqMavpzjP}|pjS=E+c=570nUAbf8G>WJ$iaKo zq4M<=|M)(AuIs0EFl{-q&-=0N+mY*$o#rF1H+iKYO}Ml0Z(({1vdw$ngoWD~+9Jto z>Av9}5%^A2EU<0%NAE+>*=p2KvGT3Zz{ajzUQCl{K3(3|jH+<`e?eq~&T5=2Qq9N# z!Do1{^H>7T8(hbfU!T?THSa!OVpER*yE;B$Cj`-?F>Pg6H1c4l&bZ3Hih9yd7E^AM zf43x4gC&p&P=_L^;#cd_f;!XO3OE%ew=0WPT&bR6v&2?DTw}%w)fnVXCU|W1m`?Vm z6K;ns6-U}ENYgUKf8jRTvCYn_xRK+pHbX;E>P?})LR*QICh09J*;?_<6L)+&n&ULTolWwYg5e!@F4y)Adm>#QBSE)`!YI<1k<==Q%l zma1||-@X;3?lM6+sK&dNiyLss2>C!-JlU9(3GWr>ze42ef1?&u6w5W(oHw2>mLAV- zBYQ`L7>FMpFq*-ZPW0Slf)n{vPKElKA;Qh^M&uO=_n3n=iKL5J5c(%zip)4~){4fl zdUlt=Gu3@c$1ki=IC>IGdXXJVf|M^k$fz~GrEo4kfu6dZr6~ z$O2pv^bRLov!Z*$jtw zQw5iHFHgXhrxUS`Kedv3M201~xQ!!SZB>S#lk-c>TmZu2zGe&V5~CD}?-c#_;Fu6t z?CK~JvVF%$bb??db<}VA*d(Iju|1cnT5)CSY#zttOWZhyu>p={YvIjeraKuG`pM@awe?kjM{g*Y$0vM1si z>!cGFBeXph?)s~s``)DO=PDSO&*NLRbDVNuRRE%hWAIzUFHa>_JmWn6Q_-M*6yE7wtIs! z(0d}nY{fs-TR3Smt)xB&b2&viAkt?zGBDp-+Sut8IKQ)UC650p%+AMF>bi2V;zdm? zf0aq@A#m$Nc8-2l-zmkcIEU^-P_fOQB?<&TnkLl>yANXPDt%>;OCR2?!ye+IE}%Tk z{+%H3#_R1dg(Jq@bUiGXDEQi@o>^lr^$pZbIKd%x6;?RU{(Qc7!%(iYLj-T{sa17ACw1S9$HS-f2mLx$A2(Htd3u*zkyCq zn>b+=MH$pR9MjNEeBf9i{o*IDTUf`?V!kM3WVWFd%{BZMD5*E>$~gLrgH1?RZG8(1 z@&_oBHPy`JbAqwTh^=|Ve>h+0e+-ADdv1ZdMacRjf5S+qyb5&`fGBZfZ`MwYK7&_! zP2T8M3gO-t7THp4)p`i`ISy<$zfL6&Ja4R8^^$*J1$4~~nmaf8ls=iGChamN z&x%|cGAy?yc1MY?VR*OSfU$hwj(}>XnzcRh7cnG^)C+;DN5o|He+ERuH3{GMz7?@5 zh}Bn3zon4dYlLq3)qC|aaPgVc5g#9jI|aaj`l=Hu_ZBNro?A~r;=M_6>b1oWS=LV^ z!t*w+12khid@QsvvU$>l`KyQsP~$CJQ6q4K;TdQG!3>3s70$PS`y9`_Wt+eW!H8!6 zx=!AneeVI;FXV7#f5WZLSRiSo9vvk|(a1Co1Wgx1Q+~@t=y$P93Va7KcPzNotF@Dk z*e1(qNEm#(-&j2#Mp7UU#n;kDGP$`MnT$tP zDBSLg?lO{$o3eabYIu#Q<_U?9P2G&KA_GH*bKI9 z1tnYiDl;EQ@_Lx6!*sX|i6MF?Y%gYwHj}qxv046tDOr5N;rfKRwKipnXy%+j)_%E` zs7=I*?l1a&e-o@zGtnxvbxr-2@Lfaxz5z&SEEN49K5OzaXTDb=PZKcy8#`SnV9`@m&jP%b9Dk(3`18HF&a z3h|G)&jCybPv;-gi0lVG+Wbn%NkWoxC(#-PkVVS>T4u&XG@#Kfx*d+Y)(eWt$Bre9 zj9B#jfAN-=8ZoDP2z|rCnHyufH9)oNBe;zTpuica`gZ?}ML!Crn}k3=IVeC`%?(tJ z|0J|8JvjZQ)Enxt&PHXTj?qT@ATR|_ZMD{oyV(itwDaD^-VP-!DvLdz{QECLUgxBc z6QWpa{_ZPb_aTQ52na?ikre^HSXVS7f+OmUQQN1yRbw4H?nG=z^9aoT=d z;Ct!LmGE$UU&U{8Q7;PjScCl4SY6GaRTmDufqB+LX$${Zydlwc-wV6yv6Tlr~lSLN)-5X2(!(^bM1(DBk(r+ntQsm^=V08}}u%n+u1Mm#-@#Na;e`e3b zq9i!rQ;sORu;gtVvl?c;7&`PO{C;3MyxFv-ukz(5hIUO-%4X*o!IkjHgj!;7!gKQh zr}1QJG2_-Y%lt1RXMRp$BHr=kUl>BFIZ8{?de(@+)th%YiI(YMj)Fd6b0089GlBCm zQ$n;8&2HM=bEV$C*&370yIQh}f4g-S^qa*YT>ZF+lV%6Ct40FpIcl6!?o1xF^!th! z%kdEpS81$4T1923*5Sf?ML}|67NG@%xhJG*WiW`=K6^40%^X&5XhWe3h%JXccA@Zm zVOoq^Iu7lg!V$Tr^*hZbc#8air;&r8@kTK{Cq$*DA;|dLaXzBZ*gMAOe}yJHC&Cjo z@*I~TD+y%+U*M;J>rxW0Qr1e}gSizISu;n2I*4&P5 zRcx)PL8=N>P27zoj=gAYe|Y912XtzNeXmx+tNQk#j=~hDp2g`vMmUcj!Vca|m)ULK zkz{w=l*D8(XilM;6!`+ zzD-_oJBn8q6f2a!EtL~%2j1Lb-DInMd?>bm<>C*Ht3h^G*`dRhu6x?uS0SLnXtXe- zidS|G^p9`f-zBiK=n}O>+$nr3G`5%@y4^zN*D4b6VY;nx_Z7b4N*jmz;1eA@#lzR7 zfcmVM#or8t_>^M_e{4UjKV(*j<$Alrog0%FiXV*_nlT&(1kS{Cgfzp`2ai9r)b1-1 z1KYd8?h2O-rbb^79EQo(uHvrjJG4+L7)v$uyRHz5R~Ah|&S{36<5s_{w0#w1C}2Kv z{m?SYNE1-juR^za^{qV5nSKsyn?pO)af!0v4T+`?DN{`Af2Wxsu}I=8Kz>XZk<)5H zW)X^svGSy^({7}B27KYh_E+{JBG|cs4$AFgmMh;`MYYE^CgT|5tvb{Sey$&ikG@0s z1C}2z1MYMIZk75Cc9*mcT`R8$^MRH`nRb#Gryj{|pZgX=7y@Ga9k0z-n{@1O;w5z4 z$Z(4Cq~El^e=}uMgaOr{?MKpsmX_`}t<~0aJbBth57Q;V>TgpG)Nl(C3cS)K=e98d zv-@E)`-6#Xrk^x;SqaWnlFOazT34IZ`L3CXZmU}ETXqTpHE z?1$`^!B`~Fd@SQ(?BK#ZnP~B%RPM5EGmELg&F*2Nf4l7Z-H$Ptwl}bas&6;mUgbhd zG|V4g{kFY#Nh`7vYRxhZP0Tlmtx&0_{b)m_QXBSpbW8{XrA1oXE>$6LMi?eDH+-+< z*F)JY+$2O4t(1D!rP2C*v8lql?jX zq|rDvTQvsllE5_Js2+n*)hFK6Sm4Bm5(LZ33;7%m!BB0^$6LGsHoQaFOSwaRk@*M1 zmIj6KlkxjyKp^t4ZDNisn`pMsJ~c_OQRDg{f1#T9jGzTpzWwqWIr78?dV$&o7WGD$(S8^~#YtX29a8-@HTLaCQ8osp zVDpprJMK_YT*#6)N&4r^7=>Tw^puo>B#23O`wz&h2ykPHeaYVbl0OjQoQ-DYq?O-( zf5e>=Vn7TFX5i@bS`hh!y8)jY_f2f!r@k)P=dP3+?i>XBN(sCx> ziW@a8MQ1K#b4o0m*t;r^S`blwM@{S*Efupd^X(;?Yi}}&F~P;Ce?;ElZF4-Bb>9kr z0rs9*1F7Y11yFz=?DudslBB8fBHR?-RPA@?$K?bJk6qVGhele=lgi8W%`|X z>e42dZZwFpT1hP-ApQB^nIQ8209xYHt>j7b$I&I1|fN#j+XBYWCHIRplTX{UI)Zs|T81{)z9fxBn;+ z>TMYadytBqPbik44SLmW3*{c(l@N8EocAKE2 zBs%CDtk4cuo_wI61>1#(Nur^Ne~^%k)L2_X=nG1EUV7!TOIK*?H>l5-$Wck7h+m$x z5~4YiVY+`$lnnCIgQrX>FV$<^&#ay%m;!jbrX~^^wpw3)z7zaq?XuPzL*`7I%Yt?e z!hqtT(TZq))QeOAa`R*=;G&JtMx=x*uDq}8OHL2!P_WVZ+S~)4%KV+sf20Lp@A@VA zLDu>BBkdQplJssF^4+#pPF!D3#?3-ZU&RT(cl2e#-~~V$2vk92q~>MqHqz|B*{|tJ zmBwGj2~di>N3G)1$wyVg zkFyQM<=OfdK)(;Jdb)iIf47>~Sd^E|@eg|6ee@GWtxU?+Meoyt6Yl6+b#y-Kig{3e z%MV~BOmXs}E%j~ke1N(alnkRh`BDB2;UnAT#4jktZ!arvK0&=TyjV>PiP0!7VjgP% zj+VpT6i^q>B3fC ziHDV%Oep6d3p(iCao)sXC7n4P$wKC<%j5--A=G$7jL! zn8A)e5VNTGF~|k8N14%VQ#5i8JHAM^c$IbC>a4O_WUXP0f6g;9^I^4hSsU`hJPExi z{^@cnG9JI@I|Clw)oI|xDcI%_p7vvXaURK`>dOD+zH~~pz`A~;^4iZkj2hNjdaaIj ziXP+-XU$Ig#a2vJxZ$KUXCNi<^Pp)Ns+71t=ZQ%eF;i7qf@UbtL)4L*QL7dv%^(u! zB1O;vKnOt8e?TwSuX;{rTwG|Ze4oIEaIub9a_zrc?4sUzh`fO9s_euhoRei0?WHb>HVjTG02V z=0_rM;Ev}uEkabqcUlmp<>{Z=0xh#^8RGD{HhDGKrI^=}z@wAdue;eyS=nS;iz>c$ zWi*}hf7-CUnKhntL!-L2Dfy#4m7eu-+Tl6_z1tL_-Y($wx zWOpL+yO5O2w=;?7XfoN-!IV53D(VYUy&Yq`f(g@Ew3$lhu!9PCPG~`QcTebmVVN7h=8fY~(fA;rs6XYoUmi;xiQjj<9XT zBPX}zK22AI{>=GDAo<$r^8y^%+LB_j=yDYKavr;n=+fEyTe!t9nZEXUsrl&JYBd~= z!i7$s^R8>-i_{|1X&SlO4?AZ+&+CKc8t;O$9YRbwpZbb4mB-Nw|?X z)#hsiI9w**{dVpwa?h!6qmOML`Kp1l|H9if2Zgio*wJ>7^BuY6iP(Jofkm7r9D@zc zc4*m#!CNA%=YrpZ(t_hH|o-on6s)G{N138#8OP z1W8NkuH+y_+x?Pfu*8k_3`0m2FBXjv9^QkcEWE$TJf!a99b5?Z`Sz) zFGQR=pPCEQg~0EZEzMuy`-FS;^E?)Jng3_qL{NC2)OyQ`F36mXg|t9ck*54 zlLgkI$&;CUFtoHsiP|dSHbAJj@8JR79%(Hks4=5@R4>KF zd^{fVb9w$8E zN5CI*&!4hUYV;MyTmxI5em}6kAs-@PbAGzDFXM&|C6ul#XG7K2U?y+UY2&Z4pkO^GKk8k|KkB_*O{s}q%jMeD@o z(LDFfrRm2e0br)cic4TGZ$|RZrzO3>#np4r1DML2vDi5>o_6a?+b!Iw?mCVgoay;8 z=A$sGvy;|we}^3&KAD)(@2r*6H6v4hR~Vcx#E|F2%wc@$ZTlAGMMu3EH1c-NLhjAr z^3}2yZ{I}*vn8|3XHOWm6@Qls&S5blbRh|TEgYMuB|fYCWFd5ZIs_qx)oKQnH{5CY zmb<+3uJ;bPS&;v8z(L*Bf(|x&=T37QZw3hKqMtodf7=)|ZIdwhCI{%T`hcOFQ!~QI zBTU!j0EOv-^6^C7$laDe@M+5JYrd^?(U|Ya&y?|Qr8eI$=r>g1`!y91(v)1TyCr_);hwq{&nkEo5C`;f5q#-^IHIHK$E}UlPjp3twABh9#+JI zZ1g)^?~BXjN00TAiL13z#188(L6qTH=;gDIw~BzLnN!ISH2DaD)5<>2{jcI+eQI=a zm27B#SbCVNeB_4TK6O4d8B^4@GLjVbuK9@%A1-F1BLUZeQP-V_Fq3c4dwxceMuowC zc=1N+7k@+I6AckW!s4mKKrCBp60Xe*l6dvoA^JJMV9NbkXy zJITwkfP+!y4r}BmdMMSoo<2vn?-#*OLy4vwVeHjC4CYmgtCqjGbve1Qj7X3Q?ZCEg z;xF2R!u;F^(G?U7hbtCPbbnJJ5&yQ%QK<;I0)K|*Xuq`7p%kkusEi3QxgukR7aR|# znWddDo<*U!ib@f-pG$|c1zJ$kv*;l>o`(u`#*ChSwkfxk@G;r94&8TBP5+H@FWO5tr7CsA`u{KLEU=;6US|B{Iz+tOw6CHzUF{mH3V(#81M494+&Y;f(3 zWPgGVPqn6%9U~#m<}TLP4`=?(?+EHsUT2Oa&g`ZwNa~{y43dYmh3~PDBv`|KWFA=i z{A!mdzAV?^-Lo$hK{r6$fXXEJUK@Aw#+wlqPm#o2-dywKbjo~|9uA*Ucd&wt8BIBJ z9kf)2xs+Te3S&!D`Yl+z#x!8SX>oK_UVjwEkE_VyJ0nuz1A@o+k%tu+3N|vfUk3HV z2=*5HknYj~>yvECjDJGe z%lo{x$BPo+_r6A+uhVMW?LH`8aZv|0z?Ot|{}8!=wiuy~$eh2AQIrIi5i!Dy2Zfm_ ze4#b6nA6@IxXA8@ifq#o?<49sL zCM{jLU=7+)U2SXaoh!B9y4f|-1ci!omW`%*PjAdxyl1pu+c-*)`LRr>eAVa~dOVVL z^Nh?qg|6*YlkA#fc)LF1@HsKWQaM2y+2XryH*46C!?2t0f(u&MoMr=4N z*BgEcOf>(F@YMh9IkR_DG=Ho~L%*YBe@gIOyR@RtQ!R+M;xS0aK_{mkFArr&dCklI z5ocWSwS-?S?SZ@&Gp0a)%2^Wfeezf^)7Q_Xi^dpVPIyeZIrsLo?i^9yUtcWZz4?AB zG@>GP_ksN|-BDg+NO}sK8f2CIMX3{yrn7!h>21{^5$3ly4Q#8wMSmkv^BDT^D$h!+ zyIT6$+OROTqkDWiuS{?$HD+n{Z1m=84A5z_%2UPP{v3}#jZO^=R?EWVWGPQ1E2$fW z&UL5a(9#vxZNicNdIyN}YnWHRzvN`(f<}1h@Qm(PRdpx#CQz1E#G9#Pnk-)ulHh6n zQoUg$O)|DC^&mUnyMJI>v(3;^WfV!FNaf7a26$T82V#(s7O{MCtj`pa_%-=S!XM#% zn*HxiJ9@J`vPD}M)XeMTqk)DMm&{fbek~-M(Z$sNFew$YDl5mGM|gQ5weZd zStiP0)3L)a`U}3Tq->^x^3tJ|(7`I^M+Sw&k&#_uONWe)VHPV2`UDdlCyubhJfdxYtRTHXh05Fbp+!8NG}?BzlH3Xt_$DOb*HtIk z2;?+6G7=0a536ZEq<#utOtFK!Uv;n;G|^u93%`5enzL;5`N56)8(-)a)Z*)fVnYM) zR+{wDHt&cgit(jTo9K7m&h3hW%aSg1>bF~8fPe9-i|>3}_!&1Ys%S8tK%Xx3=v?cZ z-(l+9yUj9}0)42n3Q3piBGbB{gK6G}|D@Mub}B2?U89iUbr4<$i5W8e7zgMUi@6eC zy-j_DH$rx1E7lu&kJxGLnAVwc_!OI>zT1|uA!9=#hblun8g*)0Bel4yha+?T9#Hrq z34g`5%EW;j0_^#Ts-6zCI0SBgawwCq9|(1S0VJn1BvLn5^EwDvGSRM{`y^AO4JZ*_ zux1iCy^9OOBiPKzEi_ca<-a-2=H@yD^lh({0LrgLvf8&6iqv+RUHEzu`GcWdzhR_) zxSe<~vgLx`n97yjv&hbN^}SZ-TE|<-Mt=_?Oh=LQmsIaKGoMH3iotE{tH2@(=w;UR z=H&zOUmgr4vKH@Y4fYMud^K>}dCe>vbnLXd{mzRp4<|c4RdJC~AY)LHt?02iuyp>V zab|%0$Bl7ZhvPw zw?qs~sLAgAB#dOyYO=lSuyeFkO6UC=CipHxw#G5eOlqr&2Zt}$&u4lyF6@)j=K2ncW`z@J8WLd!8qS{Fn2WK`=aW;=#T{_RKJ>eI zbTDr??mOJRfS|JgoCT?mGnZbslh(obxO9Z?X`r@mCTSSIxa*4{Rf(p*RDT^)=oCo( z5WtY@HPUmmqsNCUP}aT;t3Th-W5!~d9b`Z{UK*O1t|j+NrRUDJz}PiQ?j{owJnmsr zKROSYWwEaluy7W9k1o6)j~7ZFCZ~9TIb^MM>y=oX)`=@tkZ_JJ?7-B@8TVEzT)97Ui1d2_9-05=6a^@oj5Q`QI-hQNNy?ycsIC8Zx`9XG?c^D?G`!X(g^EAEpK3-mW9L9#Y$T zohez@L7923BUJXAy3*DzFD_0HDq6`&WE~--fF+)9U6?u_9NMBhP;&U(8qcy0)rTE` zu$|KLxaCSDOYr1(|_M0SYbHM?T8pqiId0! zLZs+8`EQK$RB>y;6aHvbMvmtWiZdG}44zAgETg5dz8~fMT3DIC(NMN+b0ll@<+jbD zSrj@TFnR&t4vm1;a)1QZcpTnrwy|=fk>M}oHk1O+D|g5IE!C$sYI*ksxpIUdEU8Re zMsl|w%JlofdVdgj;A+A2YY~10lH_q`CjM3;jNtXsifSIWXdafBSvxXLv&4oZyXT2c zt&zO#PJXJ9opjw#;QY;Cgt){r)vj=c9BT@#=M_M;LJB&#?qqD zbvSGYO}8cUkv@4tNx#U_t-tL%jD*v-{^lJ)im8iMynmV^1vd!zB{ug11px8hU-uQO z0gl<3tmj}>VV=DMQM+9;@}Pn9Uu!UduE48Q)W;%Pw+(^`sK8CJiGwlkOck|O3HC`B ztq%C2VKXdE4u?hl$;u6csWY+IS&IeKV#)i+kNt-#g5c>UyGtCr+rzfPijhvQQ|PU* zJVICobAKMzNIG|8)yXg`c9CO(XbOq|hT)J)i$Mi!#Jvs-QJ0+P=!jn`N15e|5y3#- zYk6!KDRn`zwhTD()&^#*kihWXj)8FLEsEl=Nf(2bueWVlX zp~YV@`&8b^r&j4qgqh4w%22Zwj2<18J>IE~A14=JK7wlK<;Fi(#29h|7s-E<6>KN% zZu}rNj(85_DnZjvx^u6#!F#7fFglI}=zr{EsuGQo`3O%f#CQIFjGCma(;Gwm#qDBW z6h(ti9k?>96m_&7^Tq18JA+W%u3gj5Ew&P^3;W1L+PEVnVD1BzMO@`q&y#fA(LsUI zXTM1dB^{s~=7ZGL6y7k#D{M2*Ilu(S;%DGpMjaK< z{2;JjwcC@CnvKw9@9kHK3%vTB+Yr@*Tqr5kLqlUcQ2Y>8d>9IQz47`zo@%Yz_YPok5+4q^Ey0?A0Z^ z#j$HxaYYpfrggNSnMJ|)i+?(G=Rn}W`-TzFZ+~0w`|^jqH2-v0j@=o3q|Bu&CnU^n zp78z4wA@@S4#CK}k9jNyI*GQ%jP}mH-}^W|B7Sx!JmIr|2YLF7J;?7TpCO}ETW_Z1 zrl#zw%ehSea87PfJ8_4wc{xT=qI_X@CP1j!3+m~1!+#Hc-{GW^xA-YF zL&U8F8cMXM-roxHP`K84Syy&FAAB|(P+cC=>SXy_@@=(lZ(Q{UID4(g#Jb)AH&c9b zOO_&nl-C^|FWfetl%Tuet`;k=;`jOq>|?(%iGTBu)R_?~GI5(NUqtI*m&=agXFDX{ z2(BqjL}xHbP^izjcz*yb3FS%~9SU8CE|~B=>%b5uFZ#eVn-=}6l~Wu zo^H!yuH6dWx63~9AL?rJ?B2{3Mp~DjODw<)+_S=a!%+Jae2dVO%gL3A56sPEwEjN9 zsJinsT-ZfQl4>BB{c6)RU_!inVmAy+&(MdGQvUkmxYR`31Ai-6fD^j@=tfb&DGop{ zbaDI1hFDS~BSIV5m2h&j&0IfDiAhdzT!}(^ZObHr-bW#Pd@A$j@YI4uhJ4i+0j3(( zxq{)V*G+$+uJoo^ZlQd@7qR(!lhWsIR*feuBZ>Q80rAoLk5qM;DDRj(4^mwWE|2B( z0jI$MB%Jqm=zl`hJ_d>;l8hy^1x@_!fr{-T9{rZS3eT}o(&R@K*p{~Ry(;mS)!K0u z%Ov9Om{_%>*GDDSciC}MBeGIfsgvn3nwY!U6fo5ke{#-ITvr;tj`)=YczP^-K-X5+ z(UGGuKBu4jWDs;{T<Vs+r55TD?oFmhNIJXpElm) zmj*OIX{Z|Y$CWvX{TYRv$v(jQTGaxl-f^3v+P>olyUQQkCls4HsjflYC;HZp8P}+V zsq%z!u=hDhc{wP%(cU~IyHep}jErOUceb%uK6=WzZkI2`#GZWq9_E&CQ)M zIhr{b_pTr7q(-%ei8ut{mzXOP^tRE$oPVjGRGQ(4DiR00ys0>s%Ve1|Ik--~6?^uL zmh|efG=y=a!3g9TAZ*ol`+qPH)ov_NgCZXzi6&ZNd&NKc8dp##J}$D=?B$2CaIAtT zCqjgSk9H_foAeb+3T^})&{0ck3pRW~EFf0FB4QCP^O>|I_Y2WytjIwI*EsL_w10+g z&m;?-(NA#Y>0ait5|SbbALJlj=Su$Cc}b^weu}3{JowgLWrs(Ze+~Z zPUgU@_2BfqsAxsu3R?;95O%W(h=}aY+mdzdT-bS#GyUbOS?{$QszKheq~{*g3R6pk z2ip7n3O)E>v_Q0#SrIS@?dyrw&3{Dk;O;7s@Ox0e8>414!_)xv3mhcU2B|CeBSv#n z7^7cXDr-fDn;xuQUMWRX3P}YL_xLhPiF8h6I}?j0>DkeO6B7-0*}_{zn;XIvo;J<3?7MiRRqdX<19)HHcEQL&* z3Q8;M<58NK8cbQ9Qr;N8e4QH1-&k5l_ceD95%9S-oVVB9ePH%x3gxV$0tW1>B+$xH zz`tS4=;Wj5Adw%xROmMH;{V#pS#@GkY!B+Q>xOT4TJk zquQ0gsv~Nw2-VDBmT6jrtvp9s4u)P|D!FyrC|CU>G+VZEN=jE7Q$~yo&h}T8>6+uY z(W%rSXUP<}Rz0Hw3V&}@q9PW{XOr#Lk@wIlbC~mHS@#Gz=X|5El)nNT%$-Km_!lrW zHP(;3)rB>*31qJFTEV>Rvqd6J#@4+Z5aY1qxCDpU(5JBKEP zSZ%sO`>}YoeVy$h>Ck_Nk{qJfbYlN)+b_{qUU4T^{qP+_f`6FlyUo&`H{b!ATbkRS?i9)PbWW{ydr&x3R}dFmaK|nkA*LM9ve`V*FNAs3StV_nRA^O z`5Gt01vnnh{)pK)5!**Lv~9{p>c8RNC%v5Z5|N;iiMHgbn)_VYGIono`4cTPp%|** z-5O1nqZ0}28-FE9+6dKpFFye>C&)OTQ*1F|iaX zwLk7{+`(;pHdQ?=XGvv*fp?~h};4f}ej9rw}3LMcw3aL2D z)yKLly)XH0+IN$s6nh+i<)Rfq#Ho)n+6~llhL0Gp)`)CizP-HPl! zKH`p~zkl84Sx>dNHhQrB4AF2&$u#v2kiP|gnCWE zAVV@WohKY^m38kA7FYj)ud5?KKA_>p+bWZp67j+YGo( zm_g&^+vC^q1AZ{*pL=~_rh4oH82+CC0SEs0cZz>cxq9{ft99hKa&cpprroZko;_}# z5KqunLnlNSC}28Re3yJP5kv;ms(CcRfq&N6mDV5PAqmDK-Vc;{wq|EKB4T%;hC4L4 zG=SK=a#=EuqKgG-$LrE1i5E@}ZXpm%yunNcsC4dm;_Tb(@n6gP@N^ieg$`(9!hvbriuV0Us!)054JK#pJ zYYUZbJmrt+}9l{QNMM`LZ$e)qlyZ$(vog62_$N+s#hwR-HiWt$~wEt-vO%i`hVe zcCTg|wfjmf6!SlAehNq_69rIWb2ODS4T|JG^Lso1Fv=>T$sZ@UCSx(lmT6UJ@OBBX zM@0`f_lk-{-8uPT;FE})gkk8_8=xnBjHjAJU~~995CqG)i=Jpl8lsskcz;{#;?TT3 zHZM;0QL&6<7ncN;b(&uLv$6g1G@TrB+U5Ww4X4BU#*Tz{`er_oNi*03$(X5ogoX?=f z{fnFWMO|#QQ)U}$0HpR44|ud8iP$u)6TRn|E)r%VPQ?JdUizn=07mv_U9799R^h{c z2vl0k#9*eRB_(xpT^`@5mqsR;Iy=M!n*VFOHedfNwVU4C;TDwfuYYMmDEA{H0N!Wp z4sx4oL!;1%R%G6XC_n;K#ZW4_d3ze&CRi}*w)@*7M-&(sN>gE0#QS$DoWhN_h<pLeO4-3PU_?+02?Bi zBP3ZwC%Na5zY5mXT_$G)o_4yXG?}MCLj8?h7{kfQ+hY1lG}5m;`y4-O z$00bv2^a5h)mA;v;;c2q2m>ubaoVE&=FM97`tb0WYuz2kcIj0}!2Wb(fK4}ir{2pY z9ama1lTV7{YTi)PT074suUgwr)drXC!|2B+JBjv=-G!dH8H*G2n()l`*--c zutWa9_bKUVy8imKJ(#LF1SwBF?7*jGGo6^J$R(g4wsKC2^{Fj_zn1`muRP)xW{|Sx z!Ti>;rmqox%8sm267`aCM|#b5tKLU93w*X?jrI+nsT^Vljs?4(Pt&@Yg1_5_>>fvM z*wDonA%9^KE5|^)KbwCl(AWTs=gGN6zEa$PA-O~e&|klB%SFRMzuHAZRS0}UW8|RA z6CKuJqRBmBW*FJZvoTIMsW*{r`TEw2t5O-6#V(&K+*#Q5{XAkx&_cx$?XBU?@p!Kb z!rbkTGVg5;%a%vdjOmstgw+;uqJ^U`6IKyqn18!gX1}*aI?|?VYrl(|sTFcyuQ8}q z=CjUz3Itn2*f)xj)g^W#Tdl(`PZk+arH$s5$ced0*c}pghrxEcr1|+|P#Y2a-vuL8 zk<=07y3w^A%q~c&9zQjp33zMloei-RAu!WbBPgBPxF%F>%g;JQGmhpGnWD$WNgGFF z2Y=S(lW?y&c^=ob%0kaYf%k3vQ(lox+P9OQgjD^|$Ylm5=>^3Y<}~(pkQx6QxzQHL zuBbVd&jT?~j|tlDD42}Y#io9LY-Yx0+Ui=K#eagIa6U;OtoxU~j;DbLi{Z#age$J9 zjuL--%r?;#JY}B6)cci5u)-ENH{v?dwP9?7=?LxC8;j$Ud1xV|-;JlLn^rwx^LE{| z#C6(~3r1Q*v2QNQ6VJ(|*ZgJ3u_N(q2WvialLTewM1<8rZMg@5Xho}gGne6U0U!i3H!?MoVF(wO3u6Hee={IHJ_>Vma%Ev{3V59DTUn1AHxho|U%^KY z7VhSK06_pBnH+Xv$Kxvr{2-6p9&Khuj-+vpU%y`!yCwD^x$Wd-frTwLn=IB{#S+D_ zPDo+B@JiSqlySmFp=A;_2_21aQkZ0g!?eRg<9`s&2rs3;fDZt1A^?N)BB~@@e-JU? z5k&%+OCqHRXrUC4f{IeKObewIo(50Acni{4>>ZwX@m?sa9ncHqK-)*5dg9Nzj@$MkIwNh$Sry21GJ= zLKtY&ScP}sv!p8Ea}w{s=U@P!G!DQC_`HGe&^FdVTM`(9rV*eFfkuEcDjEUOM4E-b zRzhS2i7oVuPC$p03f`?&Gy)52m<(nS)=07oOl&NTXkjfhr@)|fnoMWWe<2$wVD`YF z6zr{u4FzwofjVU6NO;JML<=juH_RyN7 z`XJXp1pRoLe|2e`C^~Fk2ELk{w`daN+I0zW74ackpfzM^8lkL-WU$;)!1# zFV@ZVmKoyrr_1eS1K2$M<(Ip~pf~tGdNo+< zb-7kgu4N`V-aABgh{%qkzsGkDV`RtfaRyp=BJ`!44OO7J5>encoFSw*DS zF`+Ptn@YzI*WRd*44%UE;ZS zu~<_jP!q)cW^=w?zTd9aywU8e$UwBI)n_-aw|~BGKnbnNe~-LY)GwBAwig@T&nBt= z@cgUiPo6S$T~fzhJEk6n)Zu~isOxF!-#$8f@#qn#-+ehCuP4ac&nB;?$v=4Z{O)%| z{^`>`d2C`M@8lU@I!j=K*_N!Ortwovcipix@kCg{J2LYhT$gmknhrr{-dox}vW=vw$tOOD|_) z#y6(QySbRXujpITJYZ+5fG;QWfUT}VoQv6@9x!t;t60S_7qj$L(lareWKsVNtA#_r z(Nt0me+#)oz(G}VREHb@R!LX%rF15+L%7b=28v9C>r8E+tVg`g#q1K|buMNb5U}H_ zEHAmWUA(?*Ds_S^iy~|Fbj6A9?rQy}Sp%Wuf5`Fo2z&SP4R%IRKWWY>H5#QV#VH3_ zgbz?sC6UNobd{8W;CBi9;qv;|E`Q&-zFuwre}2Mtd^GTx*}E)aBdaUwSkbx6gl;EF zYnv)(hBf>lV5h3+CO3u&U_6tYi&=*%*}0gNt5O#EvaLT5h`0 zjy<>T=$$VNxsA56e1hpJs;p*-hW+uto-hH6yw(e$U*Kw>3CA)OoljZhUpj(I7&FdQ zHC`Cru;J_n+hp;b4!fSNwD6vs$pcAlGlY^F`G!v7WJOFkv^vqe0ryIHjok-$h?D3e zX4{uWX#psIKDnqC5&4r2R|$_r#tU35IT{x}1yYO*q@N5D=|nj4Li8e=f=_+(Y?K7a zWa%KVB$r8rxb(;HQsai?cW^G%HSUMgrMtduHJXN z;Mw)9%b%`q;bqj!x@q&4l_ZmmMe#o9BPN;}7+EO{V1Yi@I&)(m@dS|#P4==^0f zka9CU+R@vO6u|p;Pn%-fPJ(JWm}f{&HqUL09h-9OWWQbl|hF4Yxky@yJ^-QR3555{Rbo%<<+EvC#%NiV7@} z%pMScJ?)qUiry46DN0ZtNz8y*yA$$YTd2%(IE~v*`-WAN+w4l@S~P>omeS&`SGrrd z$`zL2Ifm9dH=O&?1&-3GZQ%3~3L|k~W^M3)sHcs_M@mlKk={ZiEfJjYoIVsmw8ljU zCDuLT$z!~>#cnvgv8%NB3C@wz=^c63dFEcwVXsg@-cPdPi@wQb-$Aqr%%ggbqcw%= zLuUw+C@0c)0NWX)n9Ty@er_{mGIHrApW3pMD00{TxBpu$Tb_PMrZ6y+d~$1epTU=Z zAb9*XC(hH}4cWv*2meJiI8jz8G?_@n8T0(6V?9$9+_+F-D4 z8MlMWdJjnL9Yl;oEhVyJ9%tO4TS3(Jy*-3sJLR^;y`Q6Fv;xQ9X*+J{)AH?q$=JEg zBP69yX6IMI^45ec9kqnXPGcC#IK$Pj;gyPn&c470@Ru>U)d#-!#j27kG^x zuNR9oo!H!}@74F~Z|m>tNA=_SNqts7trzv{`n-NqH#IM)-_~!J`2V4Qso$<{*7dvk zqF&bjsW0oR`nq1#tLvtIU%zkG%hj8DU2p15^P#z}H_JcjZN0r%H%-0$eO2GoAL`%h zzfMF=hZ@A!ZAFZoUM}8kMEfhx-Mgzl#4qBuGvc;(iZ7sWE%hqTpDr&OxIlXbg@GRy zSIy{WyKlFP%jNl<>vsTumZCn}HdoL2{!Vc^Qk<;RFI&x^^x2)-%~9Q=RTC>HtEE%Q zd)CBup0qlVv~+nU(DzH*lU9wS9i1DM^4?ZBsQhQci3INs=tQIJcQHyP`J&r z`g#3=o#*v>asF$wy=>lYyZ)Lz>AXH)U9PUtUR^D+hy8Z5xP$_Kv-W-+Iu-ql&1krn zk+h!n+s$g*ym@_@2ifl~7n_Tn&t-r6qyDr0tNyE5ujZM;%GMN8PB>l~IbQEq%SpfU zA9p*WKG6twTQi)pA-)@#;zj+k{t2d7Y_?F==2s5rq3Yqa6On!K=lcspF9rA~S!2Qi z`>6j^D`2nT@J}&+j*MXC&Aef^;?r#mF4$=;SMpK$k` z%@5`5U(A@46M6Haa>`GVv)uxAK61T;FOWYJS$=2j`4-k)oT+5SCRRhydp8p%C66;C zA6l5`9+tcdo~y<7qJF(tb1G|gNv+BLf3>{6+00M#iSPA)Qi+K#4?UUnQ0Bp%gab() z;qVW8_OKw>mjjfh%Ou@-`_0hb55~3cwskqSx)~~9aG&9T0{mwf-qUTOLIM0*C}5vY z&#e%OYIg zT)l4Az(<^wG7Mnp+RuoXKjBN@-FSyfRV+=Im|$^#;%Gu=y~xo7v!&bXJJS*spmHRW z8wu414}OXyXofNOm;n1>%snPxj*zA%V2?N{7C4JD#qvY3v^*vjz}s7_gNbk=;@Dc4 zh$kZ2sflzV+H0c&2FNH=G>Eh4XNjfNNGyLuECP>HM$uplmd zYH9+1oFzR^tS}VI9+L{tY04%VHc3-9(XdIHvI%E|DO3hFNmG7qX@#97)gW8giEPmW z)@F)DPZLv|1e%yKZlsAR<0hII8J>fsb z8BcIB9mkI2q$$TrV7}-Nb3QJUBX(}RU%YE;sB=ITmw6rwWN%_>3N$pA;c)>X0x>v~VF(wO9C863e_e0f zwi12!ui#s46sGu1Dkuur>$)-OByQHtby@_5ysNC$?n;KFy-Dw{?-^=s?}ye^-Yy)4 z)M$7(!#NxdR~o|vlg2Vljbq-T@hqjcz@(x!Wzs=x(GPg6WJ*%2n6f0-OgWF%FqKjZ zFr&~qrY*gDrUSKs87ifnMqK_)Sm z7qHC*<|U0wVKwaWg83BRy<|a9t60z&=QRsKqcv~~_;4}R!1s=&0r;3JCA&Q^g(d|I z68IXu6)99mO_D8SFBu{UFun!Mq$G7cNRrZvV@e1-SY{>Y@gzZe6QOuQ>)B%>q3X61YRY*nC&Ax_+( zPaV<$!-zKU5*_eC0m6_i3M*n1xq|>39sLHfwj=?vPDuh}3W37v8xu$ZWJ_ki0%JW% zfb5hw_~8eZoUy|upR`3)a(Tp(F-v}~t}FKAkE^eLU>{(2y=TeIf5+e94|l+HT5}3Q zxt!10CsIDVDBHT4E+f*>HnJLwjQDW@_N*bFPVa;GzaEB8G*9|V3wl40Ly-Q*Hk>w7sPX!O)l7n7#Vf12Cs?oXgK{qTDNxeM=<;gmSn@QV`5(hs{Qio38@2d>?Q+0(4e z`cd};aTgW)g(G3Cqdv^5w$1mLJ2-~gN}lQsHczU>LsjNwdt2w(bl(ha=nOEMn@v_P zvND_H)7!zEf43hmlg_yDq%I!XBcQV6w5kz1%q-#`<{ZTroWS(*nkAU&J&*&K00GkdIJ*WGFtT&N~Tqxs;1Z_f3E6kGS11`f8^@y92VqX+m2Gbc{@b@1r@l* zS^Lbt7n1xgSzkI4gy+_$LzPpW3NuU@B@<80K$}sra^(gqr`)1?+f?qj2QGguX3IL? z+CBS-Bp+Wkh@_?B0actgDW}p!E5RLnL2<}altbT2q&7lmg0>>ZPhZ=gk=-!ef65zt6r2j{eF_8^1C*SOU%!2G_WdZE z7k70*>9=m$(S24k9N004XL%E|CONEDM7hjXN+=he342{H^KQcH>bJ6(;5fp~YUOQ| zcXR%yn6~!~qC>?!-4`{kPFmAl6Zbz9)P}AK$Q=fEB8w{l>BMq9zT2m9#&`Ek+DV^w ze|`IKc{Bd_?)y=-tP8As@>2y1p*9Ogpwhvtx}ryj1i9 zguuo6Q>SrW%yR{CM`V(`%@+A?0=Q_=o1Bz0Bqu>Tf4;U) zlAD#eR2w~J*3M>++x?n9Hu!aa$h*#;$KChnkh7K@8$mzgI88s{h%JZownN*yexE}D zNoJ@&26s64Bc=E1KnkB8C@0l{))F%5^nuhtyZ%D|-_Fy%TY<#2O>fsBdzC%+8+Xi? zl!cA;#~@{wY97o$WEUh4sT`>6Bv9|^zDlxB86_P3x;ISOpdwd8k+tE%4@Fj}a^yPl zKYN@Z=a-my0crs=mjikMSbs4$AU-|{b98cLVQmU{UaeY9lcP8iz1OecNJWepB*fQs z=VN0wqGNWq>ozk7+NP@5wv88X_w>Kt_c8@GF6^q-~VjOz~qrNsS6$+gQSeIA`SAqh)QFEhfVNXnBK39v1$0jwtwpT`&E*s;ijpc zx@vd-$HPCq|Jme$F;SVOmJ;G%WwXdahzx#st}!ID;o6VR%rsis+edvqXh#$F?c;E7 z^YANws?HB@?(sx>_Rp<6-|KB7|0euBHty*-_BYY}Ds|@c{zJ9qsL%Il8dgtUYFBTY zTEv>L_3|neyRACyWq)qXNf5gEC&mb;J$|CqGJ$FG8rN-iF8+^R`*PZOw zT-(N^(6vZ1h0dVa_d}->7@n&ES4A0C!%*)I1DDG7R{yb{W`ElZ)xcHZzW#D=i?Hs# z4bRQ~N!zFn{2lw+3&p+^VSC*AMef^fhc$oGZW}N8Yco9iH(%-^SmkMymZ{g9w-cH5 zaaXIVF~(-HquUxA>5>#1*>Lt~?(6l?$ZnzQp@T6L;g@D3`$&`Vy*Mkq6m!ASaxCpj zQ-AfXG(5gc41W*Z#6nd{7FK(%507bV1&nd*%Z2*6`DqUAQwweidtc!}$23hH%(wSSZxoNeE8-?Y7=2()(5k2<1D_zv;1uQ9t+fAvO11~ zRvIipCX{1BfE#Z^bECTq_cV)kCzjvt>;14~cYkRSrIx0w2%$h|38UwmBy9*h`e;p| zq6#hdA_+Yv;$FtCTHG*c5NjeR+1ydKbB3=jyku}S6u0>l6|w|{|ZiRNS=E^&Yim?U8Nv4wzc=O2onqu09a zrqI#u^}QSgXQcrjw-t#1eKw23Uoc@l)HxEzDPr67WIeo;5Fs6ay!-XogQmN%#SW~v z1Uq{>wxu!fC=F6X?-;gmo7UalY_L86H#R%Zqayay@)op_x5pD|eYdor6@_M?`F}IV zeHGw9)_`$An!!TT@?EQfVv4vFQOO(D1S_&w`^<(7NiB`eAdQev1G^cc4ceaSeckzZ zgT620O)qpZ9_b|e_{0R4)wU;pg`BTlGYAzty$}KZj7KWD#8ZV(Z}|mQc47BRlvYEf zuyFcB(|^{MW3R5ohssKGxE2Eb6Z>c96x) z5V_(=C4sV}k~&#WK^Eiq%BDHe84yd*oU?GA_;9|dhUyK`{6}^}T2_XSU5kLhD<6O5 zdLA1jw<|TGpsLp$W0WZ$tAV=ssE*ZWlL0(Q2Up4)q9;$1LD-DorLZ0uJWCELz9Qoy|#D8wv z;nxGB`C?82!1sW+2 z@Hq)R0N#tlE`tkl{}9K1-Agk)Q32V%2AW(nMK}UdtqBlxtyg^vH7Ha>yk4H$Et!X| z!cWHh=oS0 z^k*zc2xF==8S?&dkqRfM1)P7f)>l*mPT?k#xnM(TfPN+;Sv&DDUkQ`EW8_sHwPcdh zI?j!UPb63`#Fv$gL3M}<=T)>f*|CXHbu8Vu$Da4m?uvvn>FS2u5Ha&wr~oJe%tisb z>hn^9Uw}2CYLGCnm((@zcw)LK1^Xq<_gvlQ@3^k}1b33*(Wn@xWqDVk;+gD0&oStEa@%7y7lSwq1=+xS0< zlv~eFS&|+*j8shfFB`gb2#CO;8KmEUIWY2hj>HnV?7CLk{M_c%@u%i-nWQ@#gA9RT z&Pn=s2BZm9!qXDegzzs>$ma8sdOn*_^1)=<-vNLhD(m z?$N5W*y2Z@>}P-@kNM!1o?b8&QA3<^A6yHTZ?~-I_=MCTVJH)GkuZRaG9KV)>!~78 z${bN~hJZ7+%7#k$TT6P&$e~r(hT%ZEA0(dOa$aSGWKVx;MTle^T4aSBUuSi3sdZLC z89aUQa($47{m^!rc1@>k)2R`ZkQ!ufSN1oa_Gq@jzhIq9@Q3^zS?Y;VC@)>a36}O? z+%qp-I36IW#8ICG;u`?^yO07!o&@z9i^y1x1(d5rP*ebUhA*_n??>atL~e!B7>S+j7s7>%a>{q&j)|T$lf+mRY!7iJZw>N*IMY6Gss!V zB^%Emt38gw#j`F#I83dyNnjCnV;tArFx%HdIFH>jm@QnPz$OX7*{!?de)06t#8`a( z=Ho{)jnM~XHMG3Vhil^D;AKAH<+!J5aTd2z(40T(^>M&1Awbdz&MHjk`m(}=Mt@9( z5)*$0p~|FTA0xf96+8qxZXs0K3tymN4;G@}Z9X8)+33o|EKXe16kkn!&o}{(dwq=# zwa*3XSY?1|aEJ@U&o56|F27-jBYerg??j4sLOl2)54tHUA3qzp0r4zIr`ZdH?-|n^ z4sE7zg&X~R#5pKmzaKGj;=n3Q-|&=JhUkCc6)sMAjhh+;8oyn*n_w2#FHTL-=8>Cz z??!7t^UziMp2rlj?QD3i$C*wA$OT}lam+VToVi6H(3bdk;uYL61~d+3ID>L+eETbc zS5KY{vz-hd`8XC1UOjojE}lH>th$gGeC$I-f&^ zZ!_Ma!j;1rpTXA=GXOYqWT|Qt;R9)*f>8o~xIOsGU4xIaBsqz_V#WZVU8UxYf3@k4 z_)g%U^p1_5b+TKBFa}WJ`Jk{(w7q{YeZ1k!^kWqK$O!pj4SbXc>cQ`_7QU96KIs`G z9VMULqc9<;CLk$*C+&R8zUiO!C>dOmpDj(_2Kg-K@?4iVma%Ev{3V2?Px&=^N zThlHaoZ#* zt9$L5*+WJouS6$cWMg0~YGdt4$3)M_4G@x1mSAEAFfy{xGcq#6kdY|^9W9OjM-D^w zf5q6|0cc~*{fC8+y|KRIyG&T$@!e3y#u^~$WC>tm0Wh(1GjVV;G6I+x8M)r6{xY<& z=LQJtI|GdXGV}mR8*5_+7&0LnTQ_^4shQ)upZ~c8P#RJJn7Ft&X#ZLc5U?_~2O8>I z17!3a&5W(yJsRp;0+ehFfyRz*|3yK`e{1IGXv@vO;Ns#!uW#i*Z)0!DPeluG0Xmui z6pbB>?VXK{0KZcP$m&}e|C2I33>iS#4CwH;LdnL&(M8|h81OEz1R5G!JG?J(vNkfd z2fTX+C`m{IS3@&~-wu@BY>ffG zl}x|I?>TsR*xJ|vOy1Kl_5zw1zkk4ZIOsbY103z0jJ-VmRQxxBVPXOp0Sz4i2F9j9 zYnXr8-^Iozf8+Q4w+FfcG#TF;lnKE2`}LnI?e`8dvaz;w``7%hEoP8bf0C9HR-pN( z0RQ0<6tr;#c+j!11L&C9m;g*nj4S{SHb#KgfAh%e1OLgA@n2#IYZDs)*Wcm3*Xe&k zcK&-n0F?iX5EbCRxnynLJJ%RM`ER3ZF|silzQ4Wu|9@zqJyM z`tQ>qU~T%|(R56#^o*>3R}<(U3UoC#k_S2(n*H51f6G;V&zmLC+F0Jk0r>lbd0+K@ zn*6u!eP#_U-cJ#S_tyMNW&A!v|6OtsYeO5O-^0et#tzW8x7T-re_?#@Rc1CefCtn2 zR2mt({?*I?26}57$9E3EdyZZJ6B~P&-y6%$0bmgNE&3aA0vLq`!zhVBte;uaA#;(SO zFv|-zhCG4hHGyrvsswOd==LUXq+!f&8ecSW$B4;1``e|R6RS@I&51iI$-BOW$U zPMC||8ZFc?7%g;uc&0{hV=ULTL6{iq(0Wdx@I9V5NINm_OLcZ?=&@KEnPQwbDGs^Z ze4eGkq_w-;n@>Ly<0WsZxGy(5hoWdWrH2EZh>C#1;^bt30}X5!NN=wYtQMG^>yRLI zxcWTtGag^`f9N5#f0UVRdtjx676iDJihFzvZ!2|^e$1b8*u#z^r8fnbCEM*0!Fu{i z>3`D}=tpVbFs8)Yq^KA}FCFh=)OzgVy({t6-&UN3lP2;Y`7-X8X27bx(Dp=j2UR7T z?F}!}%mWIATYSw-u7(WJ@pYQ%#fMULbb({^olS@lBIE31Yq@Y867+k~Vt}Q83CbUvzUf9N8j82r5saTxsT$ zS&9RAe`;w`;)CCz*~HNb&&S+4W%2e?IjAqJ;cFhVR-cIqm+~ZoNRI^oki?4opu#-+ zJ0SaqU@Fjs)A2qi^~8|GC{^4<0Z&kdxC&)5cy`>Beljz13sjAsq|i9t_}^V|h$06C zIGi9|DF<82C0>*QkHtK5C9uJ8psy9?V$R12f7D}2digS;vyixmH+yD){+DY^gumJa zH=q)7TAvy4KV7d{s^Cr+>ulAc2^M!Do3MtGtKTWMkB%fB-3q$Hp#W9g(vBr@TjFPsUSt~N6&l95b zV=fC+dSe57$mzb9nXVCB3|=5Y`05sEUCe#z)vaudE$x8L_HDPczj0d}7SRU5e`Dfd z(vHJUMx73Blrfux)X5&n@50GKSW8`1ifK7`0<9zYgo6)DgNtvt^EuEY3ITKvD|!*6 zOQx&NNRxty%=j6-aZK$cNKyq7>FHAqlK+bd7n-Os2Ob$|#K*NZWYDRf6aGVC)&{WL zNjn#%!Y98tD{^IEMTGZQL39|Of7w`}aszN#8|?~;$9M822nGYS%cJUevNSX!x>FkR z*Y_o?;A%XOm*+HbC)#~REbT6Msm1$0JS-5KRH927I=$(^re3&5M4!@Cj%03W%7asf7C+f6C@hyQleL zfDYoLpHqk6+WrfUU(({BYL84;yjbi?h7g`?hc);|-6jsqjc}xbd6D|+EK@IEe#N(A zsnCFtB5{p^n10ByG&~o%p@2ML@YJ2@7ymXt*PcdgR znXMh>-4CC5{OTmiFtY{3e~Q0utIKyvNuduHEx$GQ9tvJL=xEp6_lw{eBr>LnQ>2T^J<6aGMaUCQPWWQ{WraaSBh z#^XWH#~rp@>7^|Y9}{@=*jTOtg!{!8a`%!?&+WIp;NlE%{>Baqf6D6@hHm|^gXaC| z%j^`5@9}VGWOCUGXY5UtBJ7SmXr-T(gFP@QhIQ-%qguS_SIHfSNgVG6kf*nl$OJCr zi!$+=Fsc%r{pf)v=jxsuD6Im=l_}mi9S-J(5 z+RFw<=yl#7D~hmoeS4~u2wQA$VvGoWIh)4&<~@6L!?Z1|e|4@GLV9!Qjg1^=h+x~LK0h3MQqCuDbUw9USP(AX|iN-02GuK#f zzV4s*2~JnBgB2T^3j}t`7k1l8vJy(hR8h`wSkAXjk-Z{V+c4v+5TVV(l+dHG&00Dq zmdz-@JdjxrHC?WYh7SVx3+%Lt-|C(mZc}khVQJMTe{LtFUNF?QKHyAUEoz(EC|UeO%ZS6UM%IT9W;q%0;-volwz$k2sMc2GX3Apt*V(6hP z7=ciXZzAFSY)^-Os(f4EOVQ)74NDR>{b)_uAKzTDWlXI*a% zi=p&N_>yU;8CFQboRr(+yAGh9J(;S@<~-Y*)ETJt;5PckozH<(<9aPFT4IYqi!F!+D ze-o7}#3+PXc}wvv=@J?xxGSkZYgn{&AqTSKb=SRhKyyX0bPIl!6+%0RfUhDT7;25` zP(&{`abk2l^B}5NU4lsRzQDwq8%s4$d%i!}V!~R2q$k3h_$XX3SkT$ed3mLGs?ACC zUQCvU4h3n>a!hK%HxWqbFl*_RD=yYxf5WspBJI96nBlp5p+w_q0O7ymfJ1G}lFiRO zwg`rn9f>3=i_kt0rc#jG5DaAnQ~P#Xi6%sWeTt_2yf#ced##rm9-`_GJNP9I_Ud{R z)1u6Zd^3FCw^48>@^iND#AMny`GV?XEDi%Jth$ceQ$#OP=LMXeHE2gZ|Bkg{f0Br9 zlqEYTK9cC^y}EU+b)!9*Eypb6RpOdgJDF#fig46!{!@az#yrCjZE0XH350AR6X?#G zc+YAKeTY!>qD+W2RsP+NGq3;-&>95}B9oBo68qs4i$$Xg6GGXqXA392_YGS2HluV& z?7N*3BgHo)iY{7&phAOb$J=)2e~*MlTNh9F!PMSVrP}8jF;yS9;%k-T`b(Bpcyh9Y zvp2u_82kAL@P(5o4wSK~_T^u9PVnbR2WvkEtn}Yp7fixTX@%Fv9TAxRIyfd}PR%A= zdIGgN#O#9ghl#Okz&x*L0$a}$urmtCbLu}x9c8N!y!_dZ+;tF|K0a6~f2luBg)!6l z<0Id$CPk15{C7pKjD782!Mvcd+wIvH?lDt-^NUm@KN;;BM=x5##8{XkhA7N~0fDCE zrYkS)#01Nk2%KTIUT~o`lOw&g?NmC% z_Q%CDKSv&?9hG!ZzpzL_m~kZ%r=OA*hUa|MPoS{MC~Bua_Zkl3B6!?Uug*VOO_~Jt zPN4$|K0k&h+)~q=7oY%S*^NDQuTgirYAyEElU}kwC3`g?AEwwyY!^Cu}ILnxbmgN zSil`D5L+g9zCn2#ZFWP0mpgZufVPA_hx9<{((!_?Sjk*;Nf&#{R^-F>zWd~cy}wt5 z;JwY@wQLi@AUG|&n~vVq5;eE??(1hOcv!Sw?enYt zJUnr`piW17<&1P_9oTqn3U(~5LZ65SM=KrV`vskYP%l@17-z*8=seyAdM}hxr6y%* z7_UAg(T>LXbZExFxKUR^e41RZjT4#4tY^?2){s4DFp4h}F(i&iKl1qAvIXkI@B9|Me95BM3@jTNxbONvYyOsYG*R#ITgKuTD3kBLW7J z?D^%_b)(MbSdMfXPhr$1l?_g}OKl`IA4w$Tf`IzD%CR?$bYgQH%d9e`mO`s+XNxOddO+D+pPR1;^xk=ksNsd(}9iEi|s{$=TTmtBMk-9x_gVS>?S zZq;2Tf5WTj1*tF6W!FG>o&?+MUo^X1x7oT}qs1ldBDNGB(GE^im^bLw>9ovuN9Qmj+mvAl-HZAdmOfqZrq zgt*rDBn^B%46|r|kW+*G84T1wR2SccJ`#JR%Q(dgX?d+h{_)*spP8yX|A|S@y`t}$ ze`;_5i~k|PsH%W@iqZ;W_E40YpiZ{CI7DL_SN0!vojp2GiV6FVZVJ;w|}^u!%#Y zG=pRU8=CpAk~(wyCeF1FlW}6L4TFouBL(%lqTtbYl8EDTs0R|e~!jy zso_$IPCqGkY%!~6Nht6ZQ#5EI;MC)wPZ9vwSSmviLpNdz)6hzB4u%)?U13eXDxE}S zLzl@6=~2k2H4YtO$g);V8|| zbGLKViZhxASysNg|Uwp=aD3W=%fB{d+i@;fLsNzC~mx%i0SZ8`!ICocBm z<9V_<7vJV?aYZ7BH)7o8el0Ctdg5>IuU?tjCFWbHs*DyiJ0w%XnXuDKe@j8)f@;IF zMDPd6*r?pDK{(VQ!(&VCaBvK~_85S!-%cXa7F;LngM*OX&poc4xdovuY5?$=9^6>wRe2AbDuwUyg&vQj!oPUMX)$`d{scWB0?X=Q#cW{M5JsRVU6G8 z-{1}~^ILZ=w|nfqm)IDce&$duUfpH$b1xFhTe))hzI18#wg;`H#^G$0X9bo- zC2Ns|_@PSt80YpFi316IjQdep>!wi@6c5>YtAG>iVSZpU^rRCZ5`ic*VDKJSG7yGe zPF5p36b7b9pR+8L_>c|68t_qLb$LqChzNWuc60S`@Yx`eU5{^Ye=eE;X55OKE)v_k-lMfvK#eAYP5A8xU8Q8$W^}6e;;H* zwf-KG{N2e|1fSo|WrAui^|te?<2= zqE$5r|8l%W#K^8i8{|u2vYBEzy@}C!b+nDCJ&P;0*c|KUJ*Md1a~JAA!5*RLf~Lq3JECh z1}cYDEHYZxpyG4TG!l3yjyY9+v&CI6$#kpx9P9J9^!zd9?E+PNbHjH4} zJ8%w`qfCSH8#V4mLiq0JOMG3(lx~7Zd^se~8l<#Vf2}*psa{wKo9cPXUGhBVEGsex zDa30c#v>19BhZ~4M?1z8Wp9jUl@2GKu&KgM*V20g?y&u_o!pimo)HNf)*lCIb3N&yH%P zRFZzzfBWu71V(kcr~u388lB20H)TzRx)w|B%Mb%vII3IJK>eb_q1?u)$SRRXMe1)B z8FPryrat(_bMF;SFQ(2foe0H5hZzl%j?#Fj;AOIXqGu{%p{I;$L3R*X!%{;XmmaoR z8WSstt}UT8+sHA^7*kiMFS^j(`Vtdno`Y8we;40QZt3Qp;x}f1Lhf=PhBL1nTCv?> z`@@0N+PS${my}uOTS3CW{>Q!Q_NbzZm=|+}wn{2;l0$-wAJBGhfp?))ooPJ=)jRla zf%grB-e-p(fm|;*N2d+n_Nyvn0?hFAI9nvYv=CI^;`|88712E`{0Gi}+BARvux>{jV#&*Z_WWn&a zZ9oUBu{TE&ukyMoXko^QkMD9dSe!lvvwB*e-`=OOmOPs|Oq9>#AYMn-Aq;yHcr`C( zngFZ^S#D2mYPp(8_?jSn$KtWv=_0)8e|u?LxBHi6K;8VSSj(aAliCCe$lsRH^PiZ_vfAkt`Hbb)L||B;r&vCq9 zWec#bYB}wfVDIsXBG*Vrvd8L;?0H?}Y*Sg}UO0p#DeyT_^VkH=jE0o74ET`h_s#%)0EZ2Slu?Lhhm9PECr5%Z0v2=#5b-S6g+Z^~oL0af!6 zlMVX4CRp_$btL>i#;}j62V)_Tf5A(JSNexZnG~vV_q{RtgUp>Xdag-gOgI>W(K~*n z0-ZYH9sK+?b0~I-r5Sj@+aDv!ro$Hc0Jl&EGb3G3p4lOZnv%trm~wFM!>|;L3;VZf(28;}P@r>ID4!cDI$3eJv2}e;MS3{p02B zdjk-;5{i3;!pzi*`^xrnMR0TY{|OmyV9TSp3M_DqCws%Ivy_Q1sEi$ci?) zamUEqCgDvcv77rZHYQ0E;EJMy>DXBU9cp~P6ma*zP{l;9GTkGqlt~GefvA&_f=L+Q zG;WEj!bJ;xN&PDP8fQE+e;CTtq98h^W}sy*gRJ8Im_MSPhijBsqs|9<{52;=g)!#! z!wiRCTIeeq$A?E+O3sjz@+s)fv~Korz7N2A-Nolk`SO&isaY58&q??r`%<-6 znjy}nwX6cTxmS|Bh9QU{6UxknDuTSTTa%9TdEln(X?pNnae_{2fB4%?T6z(cI#`ys zWDRYTmw`>>z89_O-$TU%k@*rm?97{G)A$V;X%cKhUno*VpW$gwbV#Td5hu)O9JEpD zl_*OLJO$5$gR8@_&Fwg-@Jsa=qs*1JFK|O8LCt)tDBpVAXtBKi~|ZUzQ^ zAX@W}-P(pexE;52e^VL(0$%}qUPm4Fy0IgXA9uA(KVy@iLk>lso18WX5RVr)D&Qn> zZ99Y#7(*?Bfu!5t22l}b$`1;&-N`*;BhP2kYv3=#6JF~Y4TW^;_>k9Wbc)ywGDz?L zYMzk$_9#iX8Yw{>2cQ$Y*y38L%I7D9jQd`qhV6!aSLA7$Cckc#vJB4a(zP)QBb1WDeN<}S% z+Il_ceV%bOf3t7OWhH>KORYo^2u9$)*vKhwBuN!m-H)Ir3c(TtF7ie0wvJ;I3$ zAQ#H6G?HZ`wcqf##ObhX$C&D#@cNCzNJWW~Ae$9!50@zsY_IuV;)OZO1v5p%hV>is z*6%=M9|kQM;pU~32w$Djx77W_I(H6jCfoHU2@p7Je|0+*_Mj*Hk+BY^eR~5ro?4eI zs0HHZ7cbL@T0;hovNle;D0>M(Af+DsoP0B~d6pJ#Dxf74&ER&_15{;BmJ73a?t@dM zEQs?uq(QIv+(U8ktL$Tr@)tEL>xI#~qR1PkurE2EJ|ea0#qEaX)d?!1-CfmelG+hQ z+9bO3f36x)E#4}$@>8%y+|AD0BONr;r+Wvym{-Vs)V}9T4W3do+9ZX0(ElzS-}x+; zlBv+#8#~!gSjeRwX*mS-;;SCH)$d#uB=}T+D{Am85-xi@wJBHdoMR^jjRd4nNgx7d z5ruMjfBjA}uE&jg3SZ-PL$l$Omo8Bea$FeKe^`dU)@){<=6tX@kFbEnzY7RDYKBW7 zc+})T{5VTO*W!#*0$xt4$ULwQI=o?d7Xt@zzEf`QH+wyGZd}&88%h(^;Iu-Qqj+h5 zu0!9b6Lc2tZq*B#;KR=8j{K6XZrL2-h0pCzbvNNs$UGHh0u{5M?jnA?1$|<%M*Jj! ze;Bzr3m$iRF7!*>Q^o}S>dNW;iD69Elj`B>0(VJlcNt8%b*L7m+bCpJd-|+9T&$OQ zW)jZ)iKc@YE44>844^V3^~0SSSyPkXvrex}Q@+bKw7U54anNPK50PW8;4tmCj;Oxe47tig(|jBeeWkM7e}ibG zP`MYu5YQHMF1PWvB|98I@f)4jsGC>B6MS&oaHgM6?wfQR`3R%M%1hh0)Q-f?`v!r( z!)Go=H_oUPX~%f2yh)=&3GhLPyae+-P|3LG5gniak?T9V2Iu_ReB#P%4=Jy4GG6ek zrWu8o6C-sQg*#GN!S=<7y>)wEe;=g@aU*|VE_b*8OmXS!VIkUHJXhFbeT+H%g;Sw{ zW+*06P+!Nmb!7NNX%%9?vjf;q(&St8sv12V76X!=US1u!8$3j9{TiaSxb8#~qdusv z7v}j>+jNzD6T@rbI=!<5;*opx2(YUCWXng}D!5EkP6DK?BAY8Xy7Fu=e-S%E(|X;r z>R%3xWAP0!IHtS~Xya|1aJ)pGdLE;Nr(a`V03_}#3n)MX2 zDl&Z;>M&p}e#6FqVJkjEj#qM!W%vvOjz_(SDUOX$te)paL=KD5-o;jF_~B94zkb#6 z(SNL*RQNolPwIgm;?+r+m!U9!C|P(si>|G0tBGMUT^K|T&rO*Te>z3WDG8;n?>vVPk4qIA!aL`3Ku94fNyFEz}-& z>irA9mbyjJWsOE9Pwsk^fxBo^ZWiuP%_a7m2F9yxjp)BF7I@8gD-l>CTs$1%QD^kk z9)NA5pQ>bVMTmVmV)yL0nI#hne$A82cc;+TvFS2hVZDih(9(c*IsBmO zW}icgpIeQGfm6toCo^~4wW&Xo6-!sGa#pNkr>8;zJSjc+f9|nqP&1?izelK4@v`Fk z4ZQ_Dvn4!PGqB-MFBfEY%wMnGIS@6&}PVN3i^lbu3>f>qD z!tHT$a4}?=@iu|2L>$X}p0sM_HGiK^b_G2FjGW@d;IZ@dTo>O)e zKp{Kl3}uVhfAg5VN0!8uM-Ip|#F42!y+130qO-A_+fXZ(&v;`WH{Z6Z{$6hOMV>V% z5Tey!kFA+Z4ndoJ_xhQ%PE(CoDLLXebN+!LJZf%+RwDz!Op%JjFDnc_O;<+cTe<4Z zH^`0Vj~{B?3wr2Zcgv@Iu7j$(WfX!RzbM+akMtHqe`C~ueSDSXgjN`qhR+j}jF1k7 zziKTiWEg1Kqn>&mF|n#=o*N`tNSbRTEsZYgiO?cS-~8g%uTv+cjA|bf#ZF+Ei$w`5 zJpsr}uc_-;71f)Sz3s<}l?NLN+H*Ow4=}&LoeLBAp*_1k5IXISLvl(uiqJ#f#x2vC z6mziwe`$>nU8-d@;LXyH&9LrQFU(wBh}cG5&E&?ALv9X>2x(b)?o$6Wlk3263cq;v zjY6A%?4;LuNB4S9tKe~4_J@Oe)=7*NZHX-_u(LjM6|O~ z<)Fu*!Y-P0f);I`!aiGG#|wYArQTE`PYUal2m6(U5M7p#UjIl=7!i1Hgj!D!#{Gfx zf9R-PE$RelE}{Tn(z11zoOe@5{uH!RrVo=qT_u?Sr8*v`t0d39nxlevgZ){st3vmheT-Eui@-ioAhQXazi34E@*os+Q%G z!Cd|9tVgMTgjk*DO^7JD%be`(23e#Ie;}7g69!-=#*k}cubzWj<0v# zDRgH$z9Hxk>!`tRd|vSp_A*mU{b6ESCQ+y>KCQ33XMiJ1RO)M=nj1L+2(gM-e;rE* zF$FFX7eiAC3`R$?B0Th`u3Cn{woBVE@uB3%Xc%cSeVAjSnV`|hrR*eP3AP)r28VmPM+htf>S>Lc- zv%=Q&Mp3BKtk-ID3*)u6h=NAhnkA~JgfaIEkS2l9 zzLqcyZiA%=AW59l+622myTdFe&ehQs#%FQxKjd`%R>-F~=`-d%-JbW0tEHJBH7N(x zg_$gP&GGPn)s%BAY)#`H(J@(baViFPvw2WQH>KlnH&t_4?L^vl}4u%P6FkOL0@3>Y$svfoTC>(1GVqf?4v3zj4M3j#+^Kt_!@Wri@t4+`Tja-f+B4 z$WA?{?Qn)KXjS$|aZp>)Y!}{BVkkVXYWPPO=T8Q_NYYDk3sGcIe}tV21TaFYO-8vB zja4pQS83jLk^-S=(CtPriSbZ9D|Ya<8$ccm6Q>Z;@K^l^1nup!3WL5uvPMgb${$pN zzVIOnM+4%d$IF6-yB!@JFfzfJ!N#4Thv@ zCA>;vH`0Q|{xSyTe^EQtr7;S$jG;Otq>Xxb(m`I4^CPAKjL&IrLG|cNw5y*A4C(X* z)$IuBs<~08?D%%`vA=bHK!#+U9Qm~)NECm5i&;*653PjqB1?Qfu?X3JvoyCu)TECSHxle;A#W8m)3C4*h682tPVI zG+R-bRXtOYp#NZQw7e5^QHPMOuLlDBM14a-c&=(ilpqzG$Tjm8?6eENHVaQ=G8Kg? zIKIct9yf|sIst54*$k3mE(c-I=u;EU*2?Hu_+7JV8Y&9{67D?q!$J_;V;^y#W@BF0 zD1S*h3l1mIfBS#f?mx~$sv5wV@8-`8TSxE!WhKal4F%<#{fA!XxB|Y3h@vUsxrz0~ znr(BN*bpZ3W;G`ImX3FIHCZpOl){lKLY!a6>2-fr+(`Rig zy^6uaf4CR>aztv)Zmc~ewIH;N6;AOs+0qTQAZK&$bw}Ha{l+&QXy}dJJpu4LE4IwuE!c;TsJe zg|>LxK<}JRZ90moVf|bl38Utf;SSB*OHGvue}(RtVcpH7o5(ZMB#CmX!cs!l8Gut2 zYOcPZUY#T7k#9|X40cc*Fe+D=Q*;TKh7eeHT^d_jhfyB-Fgr2q98;i2=9IP+qVVaI z`Y^?F5k-}gpf;cq!ECYHY&#m=%YD3|cHNXG;@D~kWfeT<5vY*PZAfK;1kdd@{hBxn ze^{VpqQPn*oPt#&{+~LI&!Fz4eCx!>)q=>Z?uTyIV{INu!jhN!UI@@(V~aN~mvF~g z$RE>RCVP)A1}az?1{|y7@Fal3FX&J|2RC!*ZT!M&^O_nWC*}BlA}!x(bmH&OAm;kt zuX#+nb)>BCAQ?zG-v-aqn239yDkU~ge@@9eup42pVg3w(bY3zfc7>2AmYmBMo11_% zD$juOL#!2O#8qX_uFTAsbi_%LIfbyRL1)F%DUj8x&7yQg9sex;#FR5lh&;iwfn6x$ zXF^^q1KZ!h30U?i+NPA}2DynIN%t>?jCqQ1n!G$3Jess>iGSVR66w!l&u4>W(lYDKE|o|c`Cd5c+T`3ABAQfPEiSmjbz z(N{RTE=wcV`IH=rW~$_I0>yfQOLDoR(dVVhsNdA+yw;X#GBE}s6LPX z*qST%;nUD*6T;yIqtjt-}i1y zd`;z){w*sCEkk~E_B-B@Mrlu z3XjjMGMI%%I=!=@&9X8VS;LeT49qY&(c_$)yJM*Kq?dwxpk#H|1=GOHlC@iGd5y&8 zy((=uMv8k73(?JwwGQ=eGkG#I&{ZLjp{27P(7YJ8r}dg6YoT4^ZTJ4fJz&v>{|9!J z7Vwu6xdB%JGq-BF0r)I`Hy}Pf3UhRFWnpa!cwTi>$!^;)5WV{=c%*<@6(wrxF=$hu zKn_K8Yja>ES|XywC1s@k`_6Ev*ltq@kY;%^^JcLV*0Y3t-6em01y~a%SXReHl{1m2 zu@D(+r`@kzTxUf_fGg3vwlMU8;p6=z*ym;U9iGj#4=MLoIqw>OfQpg{5!ZR1vgYts zI4$Eck*w+14}Nd@lhx5att&1*MSGbF{-BO%sQGdrM>{I#v?ImLDuwsVR9)`r6qqMgs(kn=npkzt!Mli;@tph`KGGAx4QQ|e}I58<-JviKmR}37M=1-vUj>N z^PsI+)!afCSt@DfD0IpV$PeYw%)#xG5m67)xY>$ph!XIBZqHFAIPN5qv=cI__pUIW1>_8_J3#RD$|>mWTRa?as5BOiPesed49-IZb0^XiN&DBf+`HYw8HsHqTxyD%zbWFND6+1uOVyGOj>{%1smLlgxtQ=~T@0_r)0y9$QCHbg*NCT7SH`|N z`+It=V&(A7Vm_kS+v(Zl%%6sEnuIrfQpoznC^?+Ay)HHePLemVHNz2>Js7lMFN<4EuU!-?@!X}IJ@u^0_ zf2Wt@>+8w21|DM?IJGk0UUD|R+$!jq@glw6w`yx^Z)mJuftAz@ZVoan?e+Lde>Id1 zJ=J^fFDDE*RCO9KkIv^>l1mmcGIO)nDxQYTYh%?39lW!mSA#06 zi;}y`!Hc7R92xm<6K+)&S!^4te=AmLjBiJEV5X+yR~kp^qRsbb)|(u zI_qMDtl~#@(;j@sK3R4;eUDh?Fy->ghnB&}w{^H!Cf88t);WVKy z0M!+BH)N8PunCGLA40jxvE`Mp2fWA*B@}tgs=A_gO_t}yeUwmUUE6I_!d9m=vt_$I z&bK?=pl{Qyhp#-BI?O1_rh+TgdE%0rGgDVt$yBD9`68e`15MW zK2k1mk5BGspsFGFt@@AIf5>+?RFqlXty=nZblk$`xaOL5?rD^J+T@-li?-3Q(#r3F z{+lk(AgBW&|E8<5HbkfC@{#1f7k<%jfLHm!@QbD`vbIa|gwgp^_(h$!Jz0M#*~B+o z(He&!Cjuo$(l%izmJ&E%Jkft7;w+)Iy+lr%m_)mmhbhOwq=(Raf9yD?NT7XHR+Uy6 ziE1HH>m+I&u}F2Ui||4lyPP7RaX_`@sDX)xr{3(LKoX-(6>t`BBUHym13 zlHI~1NpwGZx(-M)e}^++H79qQ_H_No3A-f&G;oKNkRU2I0eFkbZFl!nj%EPS=Cy4o z5<3%DIngya(KU%kf1OJu#T(dH#xNS+7WP8Rw)|at91(H7SKFp`wo^IVaZW+bHh1N0 zpmH`~%%tt?Brj^;jlo495_O)3#wj}FVoTVmZLssXLshaXf91HMmBhy06}M1@c|Jss zDRST5BsLqSJ}LQ45=t@5_P6IlnT4u5m`xv$6eXy-p8LdesVr9#)Cud6YdyGXg^Urm zb?qW;ZG=FgW#EX?N|7V!SXV7}w3Di1F_r6rEniplIj!P4r&`FVPDT-(+yHV%42JBZ+cESM4^naw&tB~D?2v4;us(uGHjZE>b$Z+qTAV3 zR2uF0WN#o*qD=A*S6V?1g?gp++LetU&3AuPSmjx0O;tPuZK|n4mdC_N<5Q_H2Xt)e^H4-l!!~giS7_&Y{4bZBejp`+T>SxlK#SsgZIN*~n3qid^oGUQzdJfVxAW z*Rsqwe>R&^~Y+ZrK@r=p?%>n4bVaj@^UCE zQRG>_5ZxmeVlOgl-G!_vo}Y3{kRgD;x&tdjEq2_>P?--ZqFvTLfLk?S=81B@(8*}@ zxRID9=w~*G*dmF@d0o;JNeKY^BH+3$v!;1|e**3oqy-=B*W-R5aeF^F!@w{CvdUwd1Nm}e0z(hu^S|bz9 ze_0)^ksr9d!f2vd3mWz)tyV`fOWc-W_!SagiPO6hqF!aX{eFleVOh@C!U9|1cZ9*(+9(dG1b>d*gj$RtH%%Vl?Y7r(b_S7 zAAdS+0Z4?D8)V4!{oeRXXfaop<)N%Yz+~LyJ>lN39X}*bfp@fW9I-V;J}EkfL`e*8 zbt?lxQ_2}4YbY;XREC-PstCx~g*AYxj60dri;y?HfR1Qzs~h}#H8NQllQx-5k9NQW zSe?WqP&Q%Aw5K|O$;_^2$XBv)Y+z?*7Jqb035h^r&L_kDT;fZBOD~+erG%V$Js3!) zWPdVOh;^1X2eZ`!R(62^?g#KlIAJd`S7<7ry2II%n0y;#W}mRf==-~VLjvMf01YJ1 zc`w&Fo%-vmGz;6RT!nGtxAM$VSg4B(HTPh+Bu3?kQ0^=8B&8p%vk0rx>dO(X1%LBV z$8vCEmkGI<7{i4N8FTV#wrP zRxB)@8w?D=Z`X`bb#CKz##cGRB(XM~Pm?pY>tHkw4cT+XM`G;S=qkXOjqSRP7jAEC zx9EK=jN5yc!TD4Ki-d}}SBDZ+U4J^aC%0)uc2AAUhN{F`cLq(eKhO}1EwJg~a1o5i z5k;bMDaa&5VX@4%E&8AuQ zN{N%?%!M;~8MuD{&IVcnL`}Jol9)e&8%FT}*tElK3#{%W1M3 zn~eCfp?DRLp5b>ZwwXAqv9a3h%WGC_|JCviSg~6(&88x)T-}v(Cdy%ua6hXoofqD_ z{y#fe+QhnvVVb5uulqdv?j#`2IVgHr$OaaR`+gf&pr|>*>#CqtNw!U4avfT2&&|sUBkT`CJdD4et+UX6+4jA zgCWzZt+E^)$7lU9fQyWXb#F41N4psjKjtRAwJ%JN2pq7|L*WZmRDTpmPv%cTRyYT> zbm{aG*T;sdGaz}sk%$YE+!62533jgs>P}f3IesYc=b>`3%Ojl_;i zJJm|gI}7PJE-Rv&{G^fQNp7z(5ml`KkLULXPBIO4x{Qbv--gvA!H{j{7g&x?;W<{< zzfHq~DA4faOKB?IN`Lc{*SkB>wi!;FgL~_Sb+o^igpC#56vxWkE)l{kByk-QwtouF+79=`w+>CJ92^Hi zy!v?0NJSEVJZuwcUn<)3oh}NJjZ?jXwjm7bM^=gE1H{9J*1q{K}!5WO=?;i7gx zeN?DuM7f=xTR`DET|7*YrxzCf$<6vd>r&f?mU8EBSTJHL>|H{A?t>x6r%Mk+RB;dH zRGmIv9Khet#(!7S)A6Onfb!t=WHwohJtmT@4^4538k&L>{rOxTjrH)C$?1}?&pSdw zf0!BnkRR@S5-eTR*GpjCGb^gzMG3}!>nSVN?hqLkWW}$#r!fl7|E~W}l z)Z6Q7xPwGgcJf>5H<6-VYP!UM7j1;aRv@Y#UHRPk8-H|xOsev9K0Cj;wwY5w3rAI< zo9oGf$kRIpJf3OF%p7OYoCI-BuN5?G4`-9fnU;v#rBM-qt9^U+aQv&f!kE1d|8s6Z zz1;9;JDg13tYS*j|F)i#w`f_){c=NWsy~?#ooYm=Z9p_dX!>|%Y|{-UTw^#fD^^=z zF~50j^nbx#oG{ZfCju5j4h)qq_J;@?vq3KneycTPo^6)dt^Gn=PhZ)J33t~aqK&*k zrv8u9sQ&X+< zPD^hdDTTQq0jqtM!0h}K66L#t$#4s+TuvP{8QV;nwdq!*R8g9=W~Bf zr3Lad!BEdG-lgE)0(rW`E$YtT-pwdkSeGK&phFfxkNRlIGz>uK}4SM+J za2$e8ei#u-|J8^i^;_M2uPvug6a=Z>QCtq(GE417`UZ*o)j(Yhd~@IlqMy8YYO829 zW`Fsrn{K7!&93a$)f4%m+tHhx=N%^iHR6B~%*?IcDk(sl0$ z^hY{}|2%!sE1`iXFk7o`v+D>Yi5z!GWPgnyF_ft9)JE+51IrAB?98s#ey?f*M^F}# z?VcM{>bZ-wwUr6*mIw9|xr;;~F%SX-5a`>|Lf8!r^w3@IWg;?xyCy~oPSg-^g(@c< zjyIL;FQ~mhfs3xVJ}W5QuM7%Y)tdruTUGv`m4QvlmWMheoyWB*#cFHUkrVK`{(q0P zYEa7VSfzZQtHfD@BkaMfQXrIp$OJo`Z<})dpjE;^Dz(}Kf39w(*^Qsz_iJ7Lrpp()oalnw5r_Zse}AQ^fBsR29+UIfBM+m+529?3{7MZ2)bfvN8H)0-+u`3uKjHr@e-bEZW;hq|5r5;&HNoXi za%PnCsNi)xQ~$lO2gOj%?FUHt)~CyE!$^D=gAm$=?~W1K+ncOjOlSH$R)C9`BCMN) z?I?q+=|B$14Zw^{iH_x{+#1W_4>Wvxc;Vj$Gf={xjF)`ni_eS+Pf`AKzF17Idvxf` zpb2ZANmGlfe!Lkk_;eN@=6~}40i5jPUEtaDK%XJI3r^X1sbW3sCAcBCr}iB!rg06R z@N|5$oF8kDm$W3@f@k(YFVZXCaGXcE$=P%{U+80HxJ)MGFSXzW3`3)S2g&qc6P@~S z7tW@9l&zX9dZ6qMkm!6dN7^>P$10~+34*YPccN_))IkfzEU?5Ukcl zb{kRJK(OrNVum^q_dLIHU}(jC2PLwZz6@|2h|TUJ2Dgt}4#fWfDw6Hwm*AWNZ2>cv zPMrc+e>gNTAU-|{b98cLVQmU{Ud>xebK}MlzUx<@aspE!7V`w)TkOrc)>RujUgfm* zflEOWV?Ja)yzBh>d|%H11W1UYO0=^F3BX`5)7{hkbx-#&PwtXD`SvQ0*RQXyUcJ#( zqHJcY*U9y5VyeuSE-8vKtCUKvZ;}sbk?GM`e<|(K>-+U;cXvM;o5H2uFef8^=!q|DD5>>g(l?BGAG7K?YTz&XCPj2w;yCly{RVJUL=OVFLX*KTV$@{B+ zT@6s9^E|U4ut&~px!JBc?W;GcNR-Md=Y;mL@_ANRn~b&2lrIAHZ?_;<`*gP9wMZxP zf6XeiJdDP8UTrqBkMlab+{Rb4<%m!9dNPflf0}K{H$L0m*PGaV^>H+IHvLaM-OA{E z*+_`r-%CILsHjX?X4XJd&S#Z1r(|U^rw(M*=iXG1goUgy7KI?pi>$Iuy**wgYfM%^ zaF>`HJY?G2{@l~mB1(8!2XPJ%QJJi)f1qy{5P+?U%;rIutpNTS7GP0t@3FKX;%1Wx z89CGj>KOj%WDU#cxBR%blXLp^OrWtM<1?cymz4_dR0+bO#wP1JxrNp@ws_7Q`@W<) z{0ZUvM^G(xWOU-Pswlh|waRj*k^*E^c{FMjq!5wd)tfTGORuGWnJEK$MT5Q{e>s)D z9=SYy%e#LP2~?Uvmd2-((HKB*6aOC}L0M%Q>=!oAPU3*hsY;f1eOgr@c%6b{->zE1%DZPv4VR9~kk05g!=wff360 zXvMVy5I}iey5!oc%tG8fl@-|n$ioGz&I^{EmwA_@j-5QUV#R@MWaS<8BpS${0TUYj z*HvE(Oy~lR1VBLZ*Dr>NA{V1jIqgy9)sPz~f!H1ZrGY%wopOUuK?Mxjf4~QJS)jIJ zT52+gpxWSxYO`+yM(~LQqDy=la97Hf60*FUQ02f02kOW=(gaW?6|^Kt6viwi}&( z9*s+te!_oE5W;_WKKzGoe?j~GGhrPA9>IDE*ZS3HT;)2=vEWu5EiVd7j5*GQ{7OBW zKVPN4Q^!g$f=e`pO3)ThcfEJPG|q=v4E{K;x$tT#;T0DF-ov#o9gv}2`@7Jk8zdmo z@(6>%;{Lhttu*4!FDJ@V&~uoH2*SJ=zOBSG&~kudX$HaDWgd{Le|)CIhds92djh%< zEII_IMVEX)H|7L#V}2kY?tziG4=uoHw2-dmeh{)qpf09)QKWq+01e=IjHSe|{c<>e(U&z971JGgr;ZKj!M!MqytzQFbhY)rij)G`3u z!>rIXPypM*J!~(w6tumTGTsl;r?~OM2J7VnDr+(i{O?itt<3wQQ1ZRp|6Bh5Kvgt< zv^k!Nhur^duXnhgd3w`Y21ZQSwBkZsF;3!7JTZF46GLM>e}#14`HsJ|L;EY=fr*2Z zX;*sKHM z0izMO9@eWRXF;^dWT-~cq+YLAYXoOj=g0uZmk*QmNTm}b*6KB9LjUOmNWh!ba*kM% zpMpMe9GaPi3f2#14qpvW6vBDL-C4tMkg9NU0 ziX?=ECoTIFt#F-3cH{o`H;NVh8&;>YUzIe69YG7hW$y7+PU^)5vcDD=?nD<^!S0Q~mnJsJV zIM|bHfAY(agMU9=&mNek<{KuW@n#F^n%?`QG&<~-kUW)vz1d4X0MbKC`C(&Hck2mh z84{X&1%)Vb9~8nWB!xsvqdX_nRI4y5Sd+K&$!0^%XQLeU}vw(xHW;BK{Uu|W5$0i?I z8mOq)M3uguEgqzRfPRP4lg38M@aPlTIoo0xf=z)q=*46<4_wJdEJfgTU_)B&C-E+p zUgZ5jnjIf-LHPnw9?@3Xw(tVe z`6*ZSZWom~)M%v0(;=cM22m9O#|=ADEh0O74-R;l3-mx9NH}&XJE6h^sGrP(*kY04 zz`O0!?Le1K4fgH9Nv2+7ue}!8cA*vq8v^s=Vx=bA0qc`G;T%D+(Ihtk=QZjM@-MJY2ce@;f& zPe%v2&m007i_&U|u|#U5hmlo|Dh8>buRKnwdlY4>%Mei*XqfI3vDtkbm=xti2L-zb z>(oF>@wuEEhlDUnW|ttsprqgt>Gi0XEN6?on*$26blne#8mGKzltygfz<&F-utZoi zAkiF31iQ1|W*$+-NlVbSZwUSQe^6q{P->B(P&O7-LQNV-fv61sr_ABm9I5O>%1R&lZ#Bh7qz^MS;)-%89 zcm#wz1B+QfI5<2IaSeb^vECdrbilz9sIdv^e_`6XhWl(G z?E*+m*HWH#DUv358mTR6%4OWM(GMfG84x(mZA7SMhQBO>J~u+>A1;Y*&uSowzm(g9 zhu}$wcG{k$_jPH|>%Eo$M^OA7t|^0Z1QOgtDS7-Yc&ZN7z z*Kt=S_x1ci;sH_ILCF~8e^E-pnrxUi@9rQ}F&F|_H@``gH4%e|g) z#U+%7R`~R$#{MU4yZeh~EPMf0`4Z$9B&Z9Ve|egmuw^jZsAJ28f2+XtQR)TR191~Q zv^nQg54Ok%-b6hs}C39!N`rlUGh=z~yX6VHK;&48e-einJ<$1%9}UOM4d`^a<928wTj4frw#=`F&HHpUUm*cB6ciN- z%(n$sY`2diTT`NJXA{GNQb-iPBqXv_)-V)v&cZMZ5NLUa&DwBK4Oe=JsS#9{(5K$i zg3}=yi&(@$uHu*?CJaR~ z&0<@@6Pon&@q}i3ptFySDET5Ug~MyCXG(eX@pGi7!)3TcPw`@;0tfyAgoJ&y#CE6L zDdI?tqp_!EKi{1q?r!F9l6vdaoMu&?waI?VWb$qiLHh(uwb4U2wM*1IRz5lDTP2!j za6%RPF)=^sf4@ro0=-HoJmsT@oWOrP}?@>e%<-#Y%b##|1_5cf^F>Z zF2N;+%5iEdM2*40KZ8N(e_7se_O8UP=n}kPD38iOOa#r4)|&nIeD2zyy56ubviwEw)tVGf1=6aiSZ#RDJ7NGe*^W4^vz6O z?Aef_h0(5`|JZG3f>2VeC^W9`QEq}YcRy?sm>{x2xNA-s^4Z$tslve~Kt86O*HWxP z)wZn)utUfk57$p;9x9Iha?w$uaNK+gOgb%>^Z6LQ--m~pt1v^%Q=6x;m_e}Zm*Fwy+PVO=j!p9=L7e8E~Ld!ta( zPldC%<^Y>4t0@?>KunMv&XmL{aniA=nV>P$OmK6%+KC8oD+MriYrYKI(~VTZUd5V; zd;%dTZkXjW5HFPDw*8WY29{Zxf>(GO3uF7~Lv4}o;#A|NiW>OohRlJAeg%U%ee8Wv ze@sN(*(WMTB#hJgF9C0*tIVoW#!`p@MYK(=&OulZGb@gcMPZhm!+rg^p6)`e5K7F7 z53jIZbO|~kHAS?2x@U!scRS?xShNWvNI?aycl?bE%hw;ND>yzBG!{Lie#9_$}dB6T^+Sd%`H7-Dz zykrW{GL^G0SMMvEdU$< zGXn-;$?Uo(4)!;$K3|&^Geeh7%3jTglry}yzhM$Zygv$+qE3-hG%4CNKhk!*U$);x zu6{T#>)N~9vpYABax22sW<)YtM2RURWvFUvq#k=|19~4#b|Ca~V0zC>bFfuSOIWjpkGM7%(0zV2dFfuSOIWjpkGMAUt z0@(sNIFn%r7nh3G0zQ8;Fd#2UL?Bx{WiT^jVKHT6GB9LjVlX)}WjSMJH8x>0I5uNp zWjSItK0IPIV=!bfGc#c@I5K59Heq5pVL32lW;bRvG-YBqVm3ZqAU-|{b98cLVQmU{ zoMU1D0VYPqB7O!YAgcpJ@+|_9hPS{XB_LAgAc$nV4KPb`Apvdu4_T8-0(zJ4 G*8&w(H%L+d delta 74984 zcmZs=V|3t6@b4Mhwr$(CZQJ%Qp4gdK6MH7c#I|kQ6KkLUy?6JV-Lw6wyG}K}RWJHe z-Fe0E;lJTgDODt-7+IM(;V65ae|^ER@g$=XvT?C#b@d0Dw&Dfa%BTjzR1=x80o5}J&lVqK& zoJrVNNLWbJNSM`}ojpj{|Ia|(*3XiJjh%;tS;fuL>wmAqMe_e?%(40Ftb|E=-2g7RA;VLc(tcIwj8Nm850f4~6y_TSD$6R3=Ci zifZ`#)5ruJ2S<8LHHDAj;BScc01YpPEJ*oZB$f=MIWWIQ7cewP0l5Dq#o5dbPC($l zc$hj`x|6VR|8J?vE|yNB<{q}rPX8(6{XaHO4+mSP|D0IaSyRzrC_q_Ld0>b$l8L}b zvDHbqIsPZatZe^9KA+QWu~m4!Ps5e5&CvqG^524l&=r5NvJ`y*=7<5F&b1jpV%`m#A0@YUrM-n4!D<#{op% zj*W%tjxCsw#0wvU{tb5w&eF-k-NVh&)bW3M|D)x7&s&l&Sx-4Ru@laU=W8r7>N!5#t@*M8B;3mr z4g?rn_fB5h%3qyVkAM!+%0{E;Jj^i zGs*6XGE{lA?Tb42r!^skgo%ZeKcf@W*zAXMRZvZKk=<))>+qT6ajhfPAukU3)kcHi z+GN4_m#pxgW9B;abrs~M2ML$dweR}@MW!*{}fv($mMKI@Md^TCh#PjfWJ_WyDU4GYXAGX9dRRg#q$J2n~l)Jc++E6B_ zr(dWLj&~D?0_Meo1-;!*LhbnnvG&CM7NmE@H3$@r4=~cB%Zgh;0@P~uVJt1|m|S6M zZC5_VVo{fl{Nr+vEo?!^xa%~J7g*r`ig-N6%XDuwS~^eYcd!4lT-T}psMId<4$C=n z@;uVW&n@zc$Wkh@VH3ewE)sJ$`CGj%7lD;E>)7873d9bq(o?vJg}M`qp>q#{M?1ee z)eA16i#nKn?{#nAcRY7UF}<9r+#t8viBFpAv=A1G*n>}jpUHoX+MPbAmH3_B$qFuC zZGEI~{2RsJ^MgVdrya_WqU(k++sQ!r`)_=!zM29QAME8`iAi#(P0IyObsxnH$rbsr z%qcu43s6>pFR&>W)s^suA5}LATseg(Z6hoX5-O?`PU-diIm)2OF}|nXZ!I!sH;vOU z7RDoMy;zISxpTd%gZ*)9AxX*%T9(ecslBC!1L>PmfHx~Og5Ep zIR>F{EzpQ;#7nuiYq$uAWiPBCs=neF?{W~>fe_T>;tLChTB3|pT-#RcjZDy}lfO6Q zy?4r-Uzp<^M+pmDTmAvtB1n9uRixc|QgkMjFI_06>|8+|Ktm(JzrokL0%KzICa~Iq z1LPGtJ+XJ`*k5WVKC)~~Uy^uOl4=(kGhnDCb(x^^1uWCQo%g(ne(+*j_oi+tE?u=` zdAX@iIu+%q=T{jq+2(ph*#4=_;~{SUmxVtqDs>2N|7+&*_v<1#k2&0}S{I0O!f~hH z$4HZJX_>p72^DM@&6M>A zu5=vAkQlNCr&?KrKN&fV=zhBkz>4u1H0T!;Ye5`p&fvV;I)+G?9+v>K6 zKhLiLrE0B$}z20ZpOU1^*96=AUJ+=8uV9+CC7$v3U|93j&iFAi`3SNgADm3c#rAj5L!3fibxbj&)8SJlU&m_y zjy=Mr;`wPagbqcCB&yCk!M`82?k>3BEqK#xY5P>JtngBK{(EF{OAkbR#R(F;{t2~U z*jWs{PCJU;Dbq)I1aN>4fH!Pc|I)%kJ9+$fp7MZYGjeWodJVh(?e=i-ElQCE3turQ zT|v-}QFf4GqIbS$kkH}UCiH4zhVZUkUhn@LpWXS4Zl^T!H8>vdWu=4{tSX zCM}Rep|^hTi?p|`@{MsbaatLR!#=NwAqXBio--tW{*oz+Q>A8}7SLaeUm$fUf}D*t zKorC25RkpkGQUQx1Tsv;ioLL2vr$ehW_0KwH3YpXdiRbDjP8j&Gg9hV zZ$w4t4O7DA3^o4ng#@<-Q`$?;9xi}w!c7|!$<|jCjRtMYdbV?PJej_5i{LL12mji9hlEP z_Hv{#53v>VJ^ax=wh-^c-ftTvQhO{e5-WCFazCuAbrq?o?NtusJvou&eM=GiRXBX^ zXhpbLaHhya0D3(M0#Q~+XG~G)(0Kr%UX<1;7aFQwOr=*@_{TPqoX9+pgygkgRMk^H zVoYvO`(0fTV)B+629}ZV4;Ez$Xp8%R(U6me4xIL~*Mr$~J&pWheIkfgTZEz(=(NY7Rxl2E>eO)+90xE|{@o zm7a_^1R+p_um`3k6BObBg4zEC;w~DWq9U|;j~-p@vXma@=Len!f$7KO)DM<8B?%9X z!3Arvzvz;;ls>zI?sfvgd3Lf1tGB-pW@T%&vvv^4$zqR#6dsazdpYIqgYSyUFhj3F zAAdd>092V%n9%*v^gXKc)$bqRUDQOe;yh=T1BHoG#o4bU<(sZL#56Sg^P#2PaP$jfY{C!f0UJRvh;{)LW zp3fc?V(0{|+Av)E3HsBcYrVn)Y)5^_nx)NFC9Iip4zN{;dU&wrpyP^^-wzwt*gCpC zl!qo-eQdZ8RIPTqm}O(#@uWOn5yQynWB-4ckR#(7AC#_f6YZ8VwFs6PVEwNs_^&GX zKcvd`KSay*Uper{9l>4mh$)T+a31L8tezS0b=&pse^624)UV@n11kV5|Y#_e)NlOLeYyjOX z*q0nqaCH8evpaD003?c!Pp2~vvy(1S5v z*7ogzui3I-cCoTd9-4}}iA>ok)?i#s&vp2i`E^p;-ewj+%YsGcR9;!i*tYKsn z)k1oT>N!B?YzDw_gCDNPZ&&uR^>z96+rOc4v-EKBKFdr`Z3YU>EbT5}QZOJtD#4A! zKCGv34na)JEi4XAPQZd4KuNH{(Ia<|(hMC%f_KEqb|y@a@~^p;xj@KS5R=L)QDHv9 zPMwfFz(5Hu2}JX+zp*~J#VpLgaI*1uK>mpimuW?P>j2QqVR2uByAQ4Go}e~tq3~(2 zy)W+%&*@xk{Rp+S3A^jYu<-hwAe(2aIv^gC4hkStR9H+P z(D>xN4?R~jAd25+V=sxOvh?KkAS(rXp%4EGlJdSBP(Y5186_ZJob}z7cgG^Y@9{$$Pw{F<(NH83t_%r^3ivru zaHjdXWrJ0wMFMH>zpzsbDKY{=+JD z4kLlAuYnq(;`T|7PYy%5ScA0|la3xG(m}Dz{+Fm=N08n_0Z^%Buc#j7v^?-$l6(I% z?-=ZdpYXAy%u;`cb;24aF$_q3rI8NG^s0n?+w`k3-*nfT@j$q$_ zsL9RSH_314u%5Y_O%|Llcs5WR5kQ>9Gg3J5NLV2gr%&{w?-AK-*LB9k;w@2#hl*U? zrSVI8`bppE%I3NL(**MX5Ovw4`VMsfi3BEDSwlZ_KIP%cEWemxjxFz)VW_NLkuAW` z8{e=Y&>O$-8$vz%o)dxSzL50~awy=v8FYue<~tpi%BAFczYii|@ryXW2Xz!yVCmZm zNvjolCcB4y2%_axnW&F&V%NkB`c1p4_l}R}8=VXtJ+t0m*@L}p!crx z6ZE?}4w2yMvUlJkQ53w+b+G4_*c%CD6w)G?N7&r47u`e)bJk6pH2g-PRS@XsmhGTSU;jhTVjb#@ZiM^}HVB7M&Qrk+tL}`VkCq{3pg}OiNpmvEria z8!`Mxm-8~plIR|&bbET;uj;^I)?4L58-)v!M>x#lsWnrD`U-dI=~;2TgxVZORK7GS zL;E$J{bcg4DQj0_h&|-^47gy)*9}I$^roUnHBjuean@Q zd1pkrQt9d|{J%_o0(ur`>aVyzFDNdGv>+=j*nhEwCxm`vEGN#yGYm;*K2C;Tg-cNO_Ql?1lY#n^s5%& ztW@4u)6!nuwIYt62d*_t13f~D&~#;lFM{b3?!ib{sD&sl4&Eb84yr%&A;qqfv+w$& z>t)^}kNP87i4IaE&8b5QJaT)+fBnQv43&|TRL)Y1)m=1emATI#KBWy0Vbp6v_ z{hzA;^4Z3a^R&ab(*l{I75!Z4D)HP>hOf@@Bu>t18!PZj(V_3^ER; zY5fXFvP-r*)~i`p2+b?Q7L<-@>lk&$zwz+K!haG$@hpS(rK@&-2Bqlz6m>%pHPVXS zL2gM*c4oW9X}-;mw@6C8GC8&~+1Cp=0=oQ285od>rKvK!3dO`8M4(iV0t{A3??2~k zHO><62a^E%!lwaaj-qGW`e5{VU{|#AhZ=k{NuezSIsEa;hlKw;de#)K6vG`3?A|=3 zwr3k!aH9A@ef9aYUK+CJcK490B21_^DS@Xh4#@-;8v&n>`c zj6P+OT*Z^nha}G}KSW~0T<*)AGM3DA$(k$4zFe1tDYi(*V%xb~|0PvdjBQz!_s+m> z%%1GPvz6pOxd>uUHFv3dsQS}a-Z^TjPT_ci(wpmA%TsA*K+ksL_sV*#DAZd`&2~;` zGYWuUM$Tjy6cOg83~`s+pQ9GE+MWjy*VX~?;s~+4iY2DRjgkfj7LRewdMTLy$}eDH z6tu2vWXU%am_+w+WOOsD{kOuT&1Ii*{*1*F+(xQAbT5cyr&&UmD(iYPv4l-@RdX1V z$k6k_9-{!E7A8&#$=!*@MnvygvM*ULR06=P8%~AmZs6XN26|4$-S^p1FJ?8%FJ0r| zQaa^>%MbkudScB-xdw8Ye@*K_Y)nRqeq15w8dBiaiCu;*Dq6Ve3uZ5GrnUG{Q8}r9 z{K#%NEcb;!kE|pOxMqfE_V|F{`Xu0XMPyS<xcQY@tq{D-7vO2X@WSD2G-@!V*g5XG&O3|=|AIK&W$&bMjQS|D zNoeJw>qSo!>tcqpbo1w&w)z7d)&MK!1Hx_flEhTAfLmw0dVdEwd2T@HGRB07=LpP) zZPKc#)v+6!FmLc}3Lo>Jj+$s&{&KW{72 zf7$paYuS9nvlGH1+HxIG>mgQ2GL&qBO0^a!RXzGMrvO5GGF~oE zrICBBjbf?0FBMh4oqJvk4-?=UwH&y5*2GUrx#UJ)CMQm^Z;i{8^`s3HiL5Y6x^IGY zlJR9tTM|upg5|IJczZ38n)W;=*eC*TY{%rL< z!xM!}DVRN6Cx}U6=u%g0}ug>%Kdx;=#P;)J|Z)<3W z*WSY#UcsKb6e+JS-jpRqlTzAwLl=;>+N&iMKxa!>2o^l^n@2US>< z=_`R#D*{+%9u#X(T5j30n>ydWNLGTTh90^tzA<)5M($&j==Sim>-vR=A(Ab~Hs%Pq z1G=TzGcgSDr5=GI=F0V`jALlvvD#1dZuuiQJ_!s^3DaubqV^qzlx_vHd7RZgV6=OD zV4~H8quO4i!=Fs4ND7p$buk`CxE9Ye;|ww3>_Ed(FOBncAARc6b8G#|j)n0QpVuDz zeDcX{;%M<;k&6bn5q7tn!$01o_deLuz+)r+!=GSlG>-^NkHy=*&MuVL;^Ec^Ob+P6hEuPRAA6WV=f+4>Bu3sm!ZDEgKirEx4;G4kqhS1Wl zXt39zNGU5~=E;Pe1fiXdW1bp1dqkLer}SkS?HKAyU>q>3%0nm;R!K?o>#yZ&>anfv z{7)W~jnpuC6caQd@G(|LN0m0epDy!OxDD(wa=j#HsSC$${5dk@fLf8ZT# zbTf^dCE-ugAyMX^F4|)bJl~e-&AWq2ceZu+S7dEtn7gp>V9cBX z&Piexd~?88POW}%7bZ6Dz7vjO47hj_?{E42B?9bkM^!IkZ%nByA(>R=s0enhls{6# z{%par=2%Pw>vrbr_a~GyW;IKn#ie6SEb`d-UyLNE8zCuD4&+{@yfII1Q=(9!K z&z$^DG^u3D3*J_p*^v|`yKU=V*hT41CpM!!e$(#u>ono@8(wIk5jKo<{P{K}L5vv! zm|oHrr5TUA9I>2=L%A5OnK+G-Qhss$LBiKxZZWqSe>+vR$|egm7pn0=TnPpHHvDc0oEarZ=qQd9R5jc zQOINZt6JC*+Hwc1i&M}({8mAx>#3r1&qi!{{_+cph-w)%jIT@th(O|u*ki@5jpM(f zSp|qa^T`IWVKHW(^mS5eDkJF-xSR1vn3B_iv53%oC~sEIe~-DYs-B}Kiga@d7DkHe zat7it8fq^R1J^C70b38Dd8)sHrYn{@8t&X#_}9W$)-brrd^l_ywO^OKcWw-rmysM! z#29>rt(YA`=8+F&CZ+2WjJm^HS~Borw*BF8ba5Ms*NthD4fG*dO6&DEU992FNveVn z#1&L&BY%fWI13|w6Jg+(_PqAV(wg|I-ut^cs(efux}I;&0=|@@w?7<pvRU~wbS3=7w zc#cY7P%r*2B;X~C36Pdeym$x6Ucnvi*F&Rlq8OzS2Xbd_txJatFD>b&SMDjy8WXp} z&8@M21nlnw-9MpN7ADxIKy#G~*a&agXZ+lx-{JH- zi*ONC9vCno&1JogfW5-?s$L&x70FO*n2J z(mAV+7Q2T(awrXxy?K%p*dv{Hgb)QlhX%Kq{s1XWCwF#4|1x~~-CkUhW;iLY-!j=* zTAKEow^s+4mpo{gKXD=%l_-QOi+9Ij2V$ZK8lRZkLlQ(eDd!=Kj5bCo8qr(TX0z56-qJo)%G${DmxU6El04QkQp}^~O^-~wSn#r?YR7net$QvCgvF>) z)@dY9>Z`nYc@Y_88?DWtA0)k>lFyU!rUr@>qczOrWgauayedv(Nageq?{aXZ3J~p# zM>JO@Tj@U;bK!cz;XVe;I++hfd^O#QFwZ;>GY)))VNkFGZ!{Na6(V~Yq^HJOuZ)Ch z6f5Idw9grKww067JH-T)23 z^IqkQ$|pq?)&pOIs^KL1FSa8d78mG}$nBcW3@6hfov6Mq1Zz7(lwExCX??=Sd`r4J zS@1VYU-1M2e@RrO5nl-JHQ~#0f3^r6TORM9yu=`!7R28I(IRby4My|i+(@ij_I{-8 zn=&1tWXfC#hxrV&{+~i zB=ugZj!zw%(S|e;ZU=L_K)xpPfUcE1q=qu_>n8Zv?zjHTh7%Ns!B^#X#>vOA&${5i zok{J4m)Av9_`!W;dqUUnvzcKo3fe-p4LXiX1aC?c_RV~ue1Bvyy-LDAgE^2N?vv;F3`XkQGxgO?XG6R+5|WMT z%P!9^Dt{R7EQcznAcAU^v;2LtJZ>2yp7I^gmDxN6{r^2KL?$?_gaa4F;id=82%KG0d%a|Arz+k| z`f>2wdwDKx9U2U3%%Q1djQF6b-!nOuQ0|$>cv$6DJa(mz5wy_#p(W>7OsO}qN-E#M zNEt6c%C6R@=_9g#iMeFjz;$dMB`6nwqYs8aL6;ua9pRi(lK_-KYK6_XDC{clVtL^s zpc*_eD@W!@dJ?<@o%qKpLZR&?u_^0NjNf<`lY1#cW$maiYhdw8t7 zg#>1@mwT$x*cosQ3pX=bveD$r+a-{?jRYe7Yw(=s)etI+315YffAQPe&hcqvAw;NC z&R3=J{Yx2gd>6~UEuVf?(v zkd-LQ7bRlG|F8TWN(#qUmou!zI3twVwOKrjWsJ5*J14w7dij@A?uO@zq)wRruLev| zPPm7m>}by?G!I?@{`ytw=qk`UnE!PxxtPfaC0lWcBMzV<#WQn+$I@@fAetaW@0mJh zz5Ts-IXA24Tk=ejY^LO2ODHPWcvEVo>pmm>yEQLVBX_~$As$KFjnLVF$0GQFM<9wS zm1*Z!wed5XAeX3hf3P7!$Zec9Uxk(aQ%0X1g%v8CpeR>cA% z{(x6x^;-snjepg;vnV9j?P>%eF!qnl^1t9^(#l=jh?hIG;f>HW7ow7@25tmilqM_ta#O4czRdO?Uh=Ets+7r*<~_$E_cKbNXBUPMb1XY$uXB;GxDlrE^^ zE%ayp`MLVfH~7vE&b3T9u@~Pb|9X&y@o)+#Wu<@NVhiN$&Zgjbcva*)Fh>Jd5Nb6r z7}fi30Kwcx~QNCjt8ZX7q>L_gcOYdROe*A#7IcnJ&aIZ4s zrb~=GD$k{<@eTdxKr=vgoL5%tKg4_pv&URYaDd$h1>(-8y6uotH?iT~ep%%0aYX_| z5sgP1(l#_?eJF+2ulPdxV`0KM`WqJjFq`TYZ~-Bssg-e=?UHy1RrquK#wLSE(Hg3c z#{pPN+5Ear>5<(uhoMUo3aOfZ(?aXzggKV_WJoSkG)6La9{&m?F=tR*A!OF3j@e@# zOm3zu|3+<;OQ~<70XY4O!r>==+Sx!C5dSnH65kN2m}6Sk+~`V3@=Ko7~JA=m||*6s5Q#!yS-A_JUB^c$g6L= z_~1qk$7o8s{OilSzCi;|!qb7YcqUb*8&kx`-TB7bt+O#&^SdqT$c;Z=C8(oOs%TC` z8u1ua>ksT{dY@a~Jiib;EK(P;#)dT^Hd9Fb3i&sR=@1t)7jy)ntUqb6SKLO}=`1-C zr+HI(Y$>qZ3d$;lpe0ZiPYA-_ap=nvohfK2)m$s9b(^>s=vmX;S&4u#H~qpHNjDtR zni7g=N5;&LoR(q~V~XYv@X-o}L>rey)~JBob2Ft&o~rPcAxW}S?ySf7sxtM8JyhCM zf4Za~1(w_@Gh5TgI9Zfg)8|W1!zjQh4%wvUrJ~HsswH{BhV{~^m)@GOj!jLRy29j= zzg9YAXRQ4qYd!Te5xB*3^0>pe4KM*ASi5}b9yXa1FKLPz9dPFOASr@}K7=`P&w z+)SavkeGJ$4(~DgMNMu z`ZZUBCceYp8*L=7yPW8qEi>-gpivHX&_TI#;~JX@rW$JeI0$USO743{M-F@G^%f9h08qqoNfp>{ZdJjmlhDDnNm-$C9~o8D1cYYgmZy!++>F+)^R$$8?KoCY36Ut@CM z_46l>LwTeM@<886nHtZ+-X~nV$j6z)MJrbEWi7)zfdqsA*TfJ7!LWn}jqW!w+cYvy zNJ1kfas_P&?V5t|gejD@NpW6K2WJXKieyoTwhLuAYSb!~5c0ts^~@uI%!+A(?=M0x zS=-j_1!T1HT_=1dWnw{#soi+PT-%{DWZLy>_gh2NZ~!MzpUX*`Z<}_fKRnOQ=_`i2 z<|Y*>to4>0&m+aDrXzX}al$(I+A!l^?LWS6_u@V*1phihn9p?uP?nZ@jdr{=#ZM^$ zo$1}h8Sel4v>G3i@v3$l9s3%Kzd9=BoFKtZ|{h&YiM`4LrVCp)yH zwA_uAY2%0j&-JKZI#6M`L{jBRosljyYAH0$G|CjPamqKYs4`q15&7u9CLtQ8SnX&A z_YFKC?aMUAXKZfg>!K4!^>iRN#cg3JD(S)Cy2Hf>3hU`qc4$?+wSNrS4tAde>*?0# z0zqQ}inp37^ud9pdkL#U-&|Er{^fFto-2%zv|9PMZ>CFocZ@;oUcv+`B~@A~kLQ^w zF2YTi|G-6`wr9r4b{fzimvbA}dY5R?`gl%gz5*Gi@t$>@u$QV%tC4XHd)+r__&sdt zM%Yr%76c`w0>bQt?0h+KP#roJd>C<^0R!y;gPm7UTrkm=`_X zM{JL17FRiPlhZ`c zu@Q2@p8J&El*-LRUl$w2nJ#g<-xQPG;$v-yyD;2vJkJyMZ8DETtsaSb0Gd=j2KWtJ-zik8 zxF>^r{>Li0jKgJ8UwR0_O+8E7e>|kxBm@`M$K&n&?L6k@>gPbvJBGCEDAbrP(3IQ2 z>4c`wEO>0&;=yfEhITeck}zg*i+nfH@;=Ry#H;#rKK6cXf}M1~+i?sD#z@Xi&66bH zM7Or1pN%~L#DQ+3GisXaS52G#N~&P^L#;TsK{UPyUs%q z)@0jygG+ z^vW@U!6J$&&NLNRzr0yO3I^*MOH`PNE|~yTfYT@KZ^LlY(%af!M2Ub@n#TUmKQbPA z%8EqrxN1v>d`?bh0*j4-!%5ms-9FyoY^%|yt{F5U!mMH`vo9VSB$h94EfWv^cpK>@ zl&)IpvO|pm83g6x$!m(}P&2qhNMTv4y}6`P_C|0WPUFZg+@==cCHhPGEKKQnctayJ zz=J)lM)9UrUJt;AX-2j4+)PSbXtEkEY@cx z-Gci*o?(plh+C4G7Vmb@8&m!pcxf+~T~5hdDm-wdZC$at%-#ncS^n!*W+v+c!c_Bd zA~h6R@}s}Q>Qa(NoIQ1*3N^sv=V8VnfGbEkC-LvcqW9YQvR@gkj$W36!cpA@s)`?T z%>z;(3d8K{pB$C+^R2^U=8w5%ORxi;oLGB)N!lxc zcEUgQ#KYQpHse`Z1|p>%6U5tK7y(CEcmBoipt(oglE!uv?YYRB-!RScbCXqKK&QX6 zG)GH}O1#`mJtqnlD?+B8fGmO@ZWwE@q&*GYOvQ93% zmo!u2CJ&2}@F$|YiIeSvyE_ug*9}9aV~O-a&^=Bs^}-*$$11W2`R~;Cm9>(Ud(C-g z>8+SmG{(ET4H>m6WH*fBFA7f9fSK&&)H?%14kr+Z%;!P1sI9|Uyy^n}O}-8TBj;am zckH2Vo-o@oB%c)b)JF`ZS?jhY#vwQC#~uLrE@vN(!GHW3OD;OAKpWrmB^vPcE7x}m zdWm^SF;4k;hxWe7?a1XH;|sw@vXb$x%W$f}qvb#U+X9H=VRs2{oaEeLpv`$(bHhBZ z6LlaDxm&od-jird!Fek)gK{h=WQvsL-%@eCm5EYOr|-+KQV%W5JQ9$p5YNpLb^ zt`4LLN~~k#u4lXPt3)Ax0@>q0~Ly^any2BVSbi_elw zOV|S>t@yu#YLK7iXBKU80AftYcO*pe|l@VN#gaH@_Va?%dg}GM{ZK za(}P;B!5NidL1x!KZMvBBo+`Y6Cg)>z`VAeqFPElBv8I$kZ`(GEuT$0^5Q|?LQeP- z<$#0z!~NQ|4xz1{Kjf>xLBE^*d!{V>gW0xYMJmB~N^s=U+ zfzv#-H@xQe2*a{TLP&p;@mq5@6=3H4UXJl-7!69_!msq1X%%R)u2iC;aeu6W)8BfK zCZ8T6Wgy=k`VzkbW+0Vp=@!)&^sN?6C!49Z7$sNfmfq~wGAYk z$H*JH7BEtClu-%o)0+(Q%vscYB zKH^PLEGJ*nTIx%W94hG>_+@ljKP{8mQn%jUY$*MywvE<+@*-L9vTX{33d`>ez#2i8Vl+^o-%4%_Ao2fQWg!;e-?+#NPD^R`M|oe;Kw}* zu6>iQneJ5Y%Qcvj+&ug5Kh6QJpCFF}O%VFXkQ#;vv79bG{stGTv@26C&?UVS{w*Qw z^u$Rky^44bI6vDysKXyC*=gOJ-hiRNiH8Xq-4c*Afy&lp@QU}CtAEje;6^?QSKzOY zeum~e^%fn8mIl?>cE>dT@eGC3r(j~^#0h!~zZLVO3BW1+hcO%2agAvxiA7K`0%g~j z${7fnCE+XtH5ob%s)_7K{EoxT7L648bZ{fWnB++S#0Y}LTN=s?VO}gWc4m+#ahryj z?E5c^*-3NRPCByv{NRZ+dT!XTkEMCSw+x?*R!F3PIh8iOCu;hW=aF1pYi}dLS>z2_1L_$C2vXSw=^%{ z4<|$PoAPwYQNIFMv3Pk=v^JJww(m>JMo)Ku)sGnAceAh0f#_Mu&of5X4`$`~_mDVU zevbqh1J#AY5GNvMz3GohG+8BPxk#Onms2LT{7f6T*GAHL7HKtfHwimqZM!-3$5o>r zOqhC%L>4nw1db+Yh_yeiNZRwGXF>}BBnsxiq@Uy6rFI_swf2jCH66FxB%uJZ<)`Yg zd=ulzrcBXG-x!Ocdx-9$6wSCO>ub{2ZPP{6tQ_x)pnT?BnLpp5gB4pwZBJ28|Ca*Z zi=+!0HxU8k$Fu$b(u$i1(tN1jR))IHL?OF5ovVIR9~kAG@|EyUx&?BSXf1J|YTK;L z+X-D*cwc1sk1}WeGP27whrekVbj|0-=#^hvk72H*qe z5C_};3yNf!tj@V+w208;;Lp^Q2oX-^V2Pw z!E&txLqE)F;9;ov@8fA;$ba_>Kl~FzHli3uc$37!WJamS;YG-0JM1*j64^iJuTd7| zdW8C^aRrKT8I)hC$oF=`qF?x)H~S1m3eDL33D!HxX)3){FdalEa*^If*;i+To}+!2 zD-t;WC)<8{Y~20q{CN1);#0@y2bf(cOX1=z@9e;CEd~*%*PdN(T%ljQX3K=)HF=;L zhvhc2gY{5&p>>+Of~YV+SHz9;$fJ=sh_muP( zVr{}5$CZs)Fv*=~jk=TY*LJ5^+ubArcC%g&+LAa}7t`kjzLncDyBFZZ0|hikbuTvI z3YWBli}5%A)j37>?|RpxpIE*rIM#3O;T;-~C<$i7ZDZies2~K+HQ0k%xZ_L9(Fn0e zcWmZj*IWJQDPyLZf=@1PH()7ko96{DG#vZfG)7r|oij1Pb-k_nD_&C)>4iBque^Z`z3L** z1V>Z!i}F<%=c@qR^Grwj#_gX87Q#kix4Xn=m%FUu5>~}EQqhAx&U*~6;d{HLT}HI_ z!bItuAx<-6U}1$)tBWtQtW2}gZprRaj(y(~L}e;i9_ zKQrBs%33||9`7Go6eW%3&&KhmS#SO?0BAs$zn@km19Aq)aLVFv9e*+e3|sgTyF)~} zn)4Z1KfXd%wP0+e#Tz?t0CNm$>x{HFi?hJ^bYHXI=f&fIr{IdTfUw!iE@1kDkdQmJP z%G4hRf|z2~$R?mlAdJ9gV2&ug&~3{9i7u8ieq{u?|K&EgPSp>O%sC3Hi#hSacI;BL zUP<>n_bwkVP8-;nbKYO(P9UthLjJ<|c^(=wt;RGq!;Q=N<$p*Ji((5yaZ|Dmdp0`< zgKW~)XTVLK3&3~{Tg9#yXYd+cyP<!^;{giUa&Ov_oF8l;AFjg4G*9-uYcboz?b-9@r>leTf}Ndg?cYq zXg19@2!GUJR*F(dktJ^BE5piF;iWe0%+F?C+Nq^0+(x48>ND~L6PL|(Vb z-HDV*r1P=@H_2u(iURgp$7uA-l~ZEFooM?(iJ}PY%pU6M`Xc$ZoPC-s+Ua=VU@s)f zIK+M>b$=(%=q-Xy01Hb0H&I2hF?F)?`@z#C-;tLOUfOlAf%{(g&v>pj(TCPk>aaiF zCc1o9ZdRAa?<0Tc=j7W&uNsPy-VF+kpa0ozZs2}=Eb|Hrwb8Wg^l?Y9O&p3z8rnFc zsIYkT5n697eKBVT8ghO2T174~2C|axIWI#zZGYIaF=zA>^4JJW46XGDv@K-|^SEoc z_!1wn3^v-bs-xDqc3l>Ed2OL&z=2c=D~p-F&kROG66NAmPh|++`;)nuD`%TRHbNMS zHy@!m6Io!Jv;fxCaC1KnC>RGx;Z_$cMfwyQLZN7u%UHgK!1U)FySz6HTgt<*G%KC_Nn(KD5ir`k#Jr<}}9PTJ| zC~Ph=9-ZDx--~hIHNbrHXyiE#-oF_gPJa?BjdtgGc=zWS6{C{wTymdIR{lBA5x>m( z9W+`pzW5$5O;)2ruH`gQc|0^%ohU=o=oikQR3jiGw&T!|bgzVjA_HC4v($!`$%H1l z#SpebP>>9XqZ33_MIM*$aAHASp+}(n^Yk(lZ z-7WaPXXbn-^ZoZ$-CI<_e!6?LJgd833SM#&MHPBsQ+t17poG1h3q3Of6AwUCPMMhn zz{JGLz{JFYKu)e|>0$%?j~Ibm9q8n2X>Z5#F9T60ppgqmCT8RUvXis71IW1A0GL?; z%p5$-oIFfS02U@DZjh(H4egzH0AfaNmZktX27rvc9ncwpT-4sd)5+4@!UYuOe?9`J zOsE0O+}wYhbblWQ2-^akEKQ8;0CGky7C>82L=z($fQr3|CD6t5f4QLIvv6^7;9+ER zcXwwnvUO&#cQO~CrUSTJx>x{|fzCiDH=rrtuYv*cMz+9z3T8kc2dG+DI{zbAu{U#Z zH*x|3Kmr>}6QG?l=!C1CDbNW33Jy?_mIWv{0PTPNF_!(ufDZ5-%>Q-wpVNOi zvb6jAu#t(0y{&_hou{RpIl#=)1_)4)kY#Z3aG?Vj*_r-jXk_DT4@$?#&B)Tm$QWes zcjiU_31KCG5s0Jzl;>>XWa;4I%;0Qk^H+(Cf4Kp%EN*8iYHw=`v~zJr_$xm#ODCWS zh<1NZ#(!?s+RonH&ig;W%+k)(?5`qBT^$(J>?|E!fzo3CF#(AX{>aRME&z5WCMHg9 zHUQ8O0Q4}iVEoIys;2`G@RySLFEOYBUvCF{2Y?x<2%xW}84&aX!Q0u$4G3^?as~Q& z|6B3D5dt$az|_*j1z-#`x3oj};~gXhn*D!+L6`4j=>gDT0yQTyfa$NV|9;W~wU?>A zosH)o^S|$xQASByN=upcpYs3fN<_ro1K>^1$_AikVP^(#b8!JU*_i;o|J#eAk>!7C zWcqVd+Rn@#!2M6MAeR0oVYh!~13>kk;h_fnZ(s8Epr!=^sQ&c0E)zSG3FsU1|L=cJ z2mE#9|E9KqUt>wRE-pzqQgXMxZ$mwlfFy@_%Twbe6F60GcXVx|mq}(=7kctM=EB*;v{E z744lZ|Jo`5dS=iD`QJLwpqf~NHiv&Rs3ZSY0YQWFzquB-GqE@QYrKZpasDDnq! z0vJXAAT9u-*dN3VU=;r^;$#9aO8i0007l6_hy}nX^#`#67^VLpHc-?4L7;!=vVRaL zy4)WGiZ1^Lfubw?7jc22EB-;Cc*=heD4xn61d6Bn2Z3r=`-4F7H2xq^Jk37{6i@5F zh#O>S^ap_~jsGB!rOAI0J4k0@Zv(pA|6!O7lmTch+WtBJ*R3;}{?~vRH13SRe?d?= zf8W{P7X;cIjAs9We<>~hgadySYi0@BK>uUT{+Hg~)#+dEKqlt@f}nIP{v-z?#KP0T z0<`e|8;}Vk`xAkg33NwR|I&h}u>KbW)ob%F2qMGwU%7({{g>yzYO((l8)OT5NdC(j zl)J+pHR!AZ=s{&?12l8_BL%tmTl)7y^^X{oqyy+FYX2`<2M$oUU5%*-H{e*%E^7^91Y6YyV5gYt86|5FY#GsuVQzv6+Iar+kpRqOr- zvVcx|{0oBId;SZ8nDF|O9LSRw(CMF0|7#bRxH^HTaQS;%gBAtCfAHUrULeo|Xo9e^ zWN*S7VpSi~`MXva-<^McZ;F4Od{5&mHNE$WQ|O`L@(lLSbkT`$!yq9%0lliwzR#8Ph(h%y|sU_#6B*1tyikDIQM)c`>2ge2ziG-F-zes za+oTE^TWHec++VjZ4tX`a?3WE+2)YSYfoPJx6{$JJ_Y$S57kFpMo3KQFVUOrQi--D zB#AI=*_UfFn;w7C*PLy}&U6ZimhTESoDJ;Ch}?UtpMfO|9I>hT?>6T>;zXS@rILN9(F2qiY@`(hFBI zUULy{M>{k&n3uOEnf627`;*S5wjcGuQ^=c|g7^<>+f#pX#Sm%nzhF0H6T04Wx8XzM z#e7Q1%E)VDZBj%WHqfizJ3*w*tU2r$bVv9dF?hU#S*}+8E?iTU$CZUv1TO^}7yH-( z5xzC)iY+;_#Ur+X9=;_L5&K3JR&b+H)ps-b{pLcike-Q;q1;?W1O-XnCK*FJMpnOT3Zu4W#vtuU&jzE_clYW}V zNou{);2Wi8|IwNMQD|hR7jjbUX+OKHJ|y+kgf71N$!@II_xLkXiN0D+pFTdMZhOMX6a7~27AuyMI8ep z5)XgouC@I;XV}KStbWqEz=ZvNPfE3N5R73ZRlXOWPuWi^DzB_ z3L9ey^=f`aC|5D9+aV8Id4qgKR41sOQ96g?F_)3am8L2lNAIfCQ7Y!#2f^V)^AaP^<_qC(^|SiBE#-zVad+I<8SD&4mMOHs(cfjDJ!+76dJFg0 zrZ2R7l@F%PhxfSsYG#gHj%?JPu)Ijh^(e!g1fK?x-llF{7lx1o@t1nwt+RF_Hv5-->>%_+%z7^b6}_8GR&N#@ zB9E5ZEckCFam-m{a6s$8v#e}3&E&=t5o`Z)Q@hRBw&_&#A*WU!Zbi1eZ2x~zkxht> z&QH;4gm6%aeJc~&@BB5yfUt0)J~18IGuD3v&&OLis33-8pfP7GO(ZRj(@OdQ4>k}d zJYeK2OB&v5gAr!rO9?sB`&S`OHbkL!Fsx%XszicL27d5!z$CF@&YT6ML*?8Ktw)O6 zq^56Jz2KJ#G|44aG%-S+v><=|=D4Q(`P_IKiZ-?@hh?X2kC>M&b|55CUYx!KN~X2Y zm5RYc>>jbGjlMq2gzsuIy(70!`|Kw0eFI*ouH)?+Y+j2`l)GG%Q<4cL_ogBi)ou=- zHCG304R1<0=dcuGQeg{Qn)0d?ZU_7Ks`&tzr9HJKtRHj|1U{2AYr%ifA&?lAQAWgj z4w1;X!SX6dGdd&`RnQpm1bc&I{yvKjw&V~3s$J98wOepUPOhP~T0(MmQ7x`h8iwS8 zcqmF-gtzXJtmcFPZ@is|ro}L=Yc^x{@RN9LEU!pOYFjsVu00&vUqzR`kmC(%soqg4 z-$oDPS&YA zhln73nHV9f&@x)AmBNA-PVhHp!j@J_{&>T;!3&f2?B>IF#sRw^xw0$d662^D7A>$f z8s{L5Q$=1&MWlJ_mNK@_>C4>64Q^8*T=RLgIslxQqZkb?HC2BvsTY+tc^8A)-^+G8daobs_HVmoPHDzcI9Pyon9*Os#9SZ5>{s(XdsPn!SPz*1QN9N zTlt8%bEEuhv~8owO!*Z9!_P+nr0~9o`RgnJrS5QwHvH6KkLtaXi8e30ugKjIVb-Fh zwPubQ^eZW^!5n{%k@m1OUma)}?#-=iwDX*ZEL`y8rUY4eSc+X%u2wuL@Fmho-1+Vu zi7$}PYC9wtFWPwB)B~WzvRrYA^;lDDucoGoR!65Ixb4 zKRKX0OxHr%;RWAX)iS8=rXYgdh2tJlRG@`(?JeYb)eV1UOWH?p_e?C1>f=;B1}LKz zVR(f5Xp`swGnjsr;vlw4lOd*?IhZBV~`gev;4^ zQ<5%aMDTy)O#g_CCYq}}n85B`?)^L*mFht;Qw;0ne!N6uvf3y0tKqP6eV0@=Uki3% z!iJQ5gwudjm2@$kLJKSh<*(w8ThnMZ1r5YunFt~8Ve$&cxT~K$jKJW>6jXEI)c5E+ zs9H#5np(8KdundNca@Up)p-3_6Z*l>98mU%g~We;76~>@AD1L1+sJO5e_Ascgw(RpBLS{2G+sxiAM#w?A3I6Qm& zhdO^XRg0&O>o#uP+#UD^)ZmW`A1BBhL^CsnP6$zHC#YKGV&NA%R~4Vtza%O+Vpl`CF{)K;I2%Sk>d&q@ub;9!Opy|I=#u7yuJwOt zmzxv1qC|h9c(vWxp?O0cF)5#_Rd;{BiYB0=SPWb}!Y8iP#T%-MU)!B2V3rlBt(Zpt zB(qx&-gMb>^VWaWO6Y)t!-O>nzyzDp43$AgOZd#GEh|Q9RG4yWwlB?GN+7sk<j%DI+Wh)5r+dKfERURJtH5#oh(`aK4({$f zuYT$8Bv9Xmnw`*qlJeb}@(#k0scbN6&U(hY<_X|LG4!%L2hk6VSe2{Q6Aln82-?U0znk+Ar~**t&h-kTcty0DyDj@y@dLRG}mu6(DExN$H%DPw=6k)$bu#rzVYXz2x$qZIYm&q-rg6Q{4lZPz~&H1L>_ z{e?+4?KBG}u9%y^JJ>?)5&}OH_9}?dW6KMdZSiyCn6vYrY3O@QPEbL61U3%5ujYvR z6V>*vx^Us3`pW0tE=k9VjfEs9evRy|$S5Z6CJBtk9fjC{4j|R@1#f?r!0aCENmvnA z#b6n+Rkq}V|JLWkYJ|-+d@@KvWVW3+dm?MpD~?K?Fkw<{%W{nvp(*{C%7625rEp9GN<@%Lj} z1L$F1F8osQZ2SGJE|Y(=65%A=2-JrF#F3vbml;rDbt$z9?uTM;wS%H^F=7ZKBbI#j z(YYyLv$_V6H_V(kQMQ@`lsf(FTId0??2$_7duNO~Q4n1OxH?He0Sd~lz!IDnfj!BA zX~beLu%{X;#qk#t{{UI38W^}MUkjEDhq7ea{aEALM7W#n#%==+`Q2lGM{dI$ zrd}n#qNs1k%bI@y%i8dQ_3Irb2F1w`1mY1duuhWmMd-$kl z;*XmbnK?ibm2DrE*d&P=-k7C$JFEa!o;yja`0xj6KkJl?i4{3Y;V&gWl?6lz+BfC& zeV_EgOl3t}TdCZ?jto)&7A0k9P%aj}tHdz*U>=Hk4B3Bo7hB3l2YeQi7y24~g8B8q ztY%<${V|wjqqeBea>*&5a~3*`oS*>1BWiY%t(f!68P|BrSx7)#_(%b}wcjGoTUWN2 zy8~$juhmtpFw|2O{FI@JvTm~$6mlKIoV)xloLAAh1nWIdj0(RESE)}&R9wi@@|+C- zH5lUvWbT_dxi;DFLB zVOBx$`&b5L)Lao{@J;Bwz%*!+X*C~(>r&b_HA1pRr&<1$@W}XTe7pG9#shZ4iIhUR zUt5d|m-nK*(crT-K%N#t1s6g&^#e9*5Gf$KZ{QtXf8 z(5`<;OrhUYzNeYEFOmD$s#!3qh;nIJA&OOXL53F&3laH-UeVrfl$lu(9!QZFShN|5 z2;(?>=X@?d61n9wR(dBkZKS0L^VXfS`}r@Nfhe^T+Y?YY_x?r9GE?PcG%-JFyUS#C z(pv^%oM}wV?}V29Y^}}QN=3QW$A&RN!ajd|;8u0e7K+nH3!WH)ED6c8z*NA@s zmvPLJ9!h`uo=2g!ri?y6W5#$ zqLq1tvL)!nG9qnEclT&_naX~Tg|_b;yuq{}Y7mx*M1xj|hR66lE@4eOcE9tH%?Mz@DFLem6~JvLSE$>B4#b%s6U z|InQrd4sVZBK~<3dt=+Kj!;Hdtg6#_15>!NWE65iIp`F-`hBHkik~)*;mCi*plObd zGT>XEBK7LcOi7Lt%{H)f{~%Z zgpcD+r0G}a{Ee+C)+0Q~`TlmYtz*U;pE)_@rxtp{X#8I_NM*bn`*Ke{gSq|Ye%ApH zS^(E_ojRLqD*MircbJ7hbG(0a8*!9V_oSBA-lY)QfM|b*ThrABO&iQOF-=!u%z_+A z#5N*h7C8uD)rY-E8sLu~zc($Fe`Q?WHi>j+c~UvlU{$=ABAW^gv?h$-$1{~1{bSaIKFwd z{_UJvU?I?)VHlc_YZOzaSWD$+MXp#K);cmOfP&B@sbP~M8#pTnk)9pC+jRN(?H+19 zp^Tz8%EI*yjG~K37(9QB3^h6^W`X=EmfJ*E5s6fiigW{MaJ&5R^{y#w>lAvlrx!D2 z4i(HR6pA1^H;tAwX*U4B6?3&UxLkc(Dk?qkZuMhR4722F?t_#^)V3B%=aFjt!A3 zuwYuY4$noQQmhT=?ARHR#d94k;?~aOJNQaMdczmA=#WtFGbNhE zb=t(O+jW1;BZ!N|AT>I`9*R2gT-DwXqU|l5DxpI07w&>39Aa)yWNS3xLt=Az6D8P+ zsx7zhwkWy0;qPSYR7YuVmZPIt4P`X?XhABm5s&PP@?mKMr2l|?^T)7)1=otwJSV@ew)P=qwq~)ZQzdCn@HqU^yUc*Nvj=+9@QIG$^o&?eL zJYF=wOJg@_Om?kO?RIAIGEN`B?3m^&@7o~bc z+mnBGq%0FBSGp|LhheISM|II!%7xGlzZ|ng1 z$lpj6JZfwN=UsSLK4EY(>}@1S8aZa?IyQe_Se#4p;rbHwPL0QHU;9q{l=S@O>IzFT zb*`9v4P3OfdS&m`ZqdlD8{;0e*SvKSge{D|tqcE73yy!FY1Y(i)e>Ae{+R6O zNmcCA;PD9dn_oPP>}0=W2F8zNbNmuaZsu(Tu@nql?`kz6BwDqwfMK+bX`}@5E{}ig z(6~~>j60$}WlLt%>``@^pHyxDo17i0Cd|kATHv^097&~0HnQbO+5u3g5Eu6v`^%p& zH#gDnBQ%dQX;`llZhpV3Q)7Y#_C)B<+SuFq`}CR#vEp90^}7q*IWOsCcuQ8qNxAW# z>JsIzquU{9J2o;Z8E+w6loaP~$s~X2xII;RTx-&LYGY?A3hVo;7IUOjT*obuLugDH ztI8i#jYram&th1!q04EntJLEVQ_L%%4O^d*%wu}dp`ALR9jW9$!T(Up+qxngEd7bR z4RIx=vo`;G9X~KmhXtw0tZ>3mC~F)j`ju>XuL$A<@D+jQQNMibMQrgjXWf5&_LP0I z0!k*Uv*!RArY^EBGjjMSwJGz{lj2x6B}XGL7J00a{S#_i z?8c|uG2b4H_Epls@tSu!+J@g)uYs*U-8FMJxNoN|4h*RCi)Y>>ZYxrmFI$sZ=ag-r ze8!8r#u17%*j%&x*~WQj(yf0X&6R`Mxz&O=Lj7Jof8VR=ZVdfYSakB3T#4p+dohwI z491T(_n4OWg1Ek2!@Xw&;tZeh#aBys97Z5IR_Zdg;<+3j)mLG~pMeBMOb zAdqCDdP|n>HnQW&FBQ;)c)C6Y^TD*@7KXZF`%!JI8uvy1*;WSE9u0rmY&}L&QB(|f zmu-FQn9atQG83K^X#)?AwmQ`|l()=?GO>{PCq?+jw1~61bSaOP0yyPuG`Ogq`jcb^ zv`>l8pM8|#nk2bsDB^vm_N$o49ZV~!rp%hhGZr0#G`ffG6-PQDfTs;iieW0D0?J!b zyIWC1$`=)Y_s3!{%>93)w@<;w7PLPoGy8wol2-~Lowaj{qS-(tYi%)a9uv~=5VR?Il33ImR2u50l>p0zLvtdg%T@UWA-IDmG>n$earnAjw$v-imZw%o@7X1{F?ii4 z#H;E)n@FFz%!GBlx_8P|bfvh$AV2X{?a?6gMI9=S>dG{z(0)<;N_j`1wll-i z`GvpmR`4+|*>5?Z{|TZA9nRurKpZ&s z@%>WhFxA3sLq9H80mtsJbBLcvs44DcA}(D4ox~t z6`p{W$kNStOpN)Q%lJy$a-`-W3e78o)cmZADw5WX=Rie68Ll3L!3Q{ z^CEyxD7p9y&w`mv*z;7KcA(4LeF@1&jRV0GYkmsU7`{((!rW2b7hn+;wAKfUJ#1g| zST%n-3Ue1j4~~MI-z`|{p5%yRhhkUBA-eKKg-NY`l6=6q!x|E5OZh^RL7#Snl8+;x zL@?IbN279QQYZ_iEl4?f&AJ@gCDQYRdGCaf)SP<71G86{9W|&B;qzQhsLIhS=6g#i zuN+v3=guAqe_O>tnjFCvlc_OJaJpIXxO#sN%yg2)D4LO8UPp=-!v1`XBjQcN616i_ z7mUPQb(3`6W<}m57Db^JLBUTnz{!;?X9M2aQNDn{`3st=(c_oAxgig&>r{u*iT*2* zWzz0a>VT)i`Ad`ueZfvA<>T)&2X)^<-Do7(fr+s=E&gE5mE*p^&IlUJng_L6VdsCf zStYzh$H}JtDqR%ip*aRN+r;h+?Xa7GRb6fRR-G4vKo$;oJFgh+R^4@(dAy{q4`JMz=^_2zO6$z^!jV1?XyFWosx zm1(M4`dH$D)gCi9QmBP-TnSI#W215d?bCD#WII3@~c z;0Dvlm)URWENwfv>=T^xEZX(dGnVrJ1KN7M`@*`K`Om-D65MX!f_fb%Y9 zEbNmcAUhWOATX6FE^-E4hH4k~xPh&~U6C>ROI=0ig8EyiLwbiHoQIhvfaMAbUO4zB z!WU=B`PdF?6N0M|`Cgg6zx*Bo>rT_?5hDso=U|WmvUEY|fY<&u`vreVo69-8j4h|f zw9o2VJyngfonEcbqP2u*d0rE24C^tP{)FmVG0a;SiIf@vUnAo2>XBQ*P*AP;m9pMI zx_#W`O(*}!Ej))IZ>Vl5d&Zqxz00il)K<`mg6Zad&Zj;}qml~9h%eAZ*gKOn=!@ta ze0DA$zIYJKCcvC{cT#^o%|MLoC1gO475Y{taPl!vHsZ~jNa2#;E@KE(-^>nnvNt{* z!SWn4Ip%)J8fV8{eepWm0!un2eqb2sK<7@hDe zFD1)c-t6yREQl@=f2jIcAiTtuVSKKSP%I#hYnCT@d60`49ie}d7_P*9#3ZZj?%k~T;7|mG1Lw#csP7WA&Ith-FqKV}gnsq{p;12X3QRr%F$>=VC17^N= zHRd`Y*X2XO=;KOL&#-16Uk+lc#}?P`2kIYd~lQ0Db4YiRELLueYHVwhI8{GIAu;qP>eSZ zVNwtK66kMqRAU5RL2Dm#7_||f;nzf8*UxFLW<{fXK6Jd~zrt3UOE^X|`{4b-2Tj}S zO@qYht|}4=Qj{GmEhI}qC{Z1~%TuN=_SCit9Ik&7{E&Y|6>swWc2V~&3+BD4${{K8 zsl5b8eOlfj@~evLW`3DbCBh?o07EZw>GXb!dLsDQC8vEV5q&|QMrgC72kT7C`Z`h7 z&#QXJlQzPiajr4gqYbvVJFQdAve@cP?A+yG;n=>&lX4-iRqyEhKG^)9j43*|1@cg{ zcS+a<;+uaCt=&SL)RW3Y4t2H)8-Jvof1itf05HcG5lRa*(6*nYAEi4yLqqg6hpnO*cI%oNO>g3&6k)P#Ib)^iC&a#=-rPy!*QtGPpDx zg6}|*6^qMv+5TwdEk{X*hZHmWC0ezKaXUfn_0;hOI~g`liAk-qb+mW*)r@V|QN|TU z&z?BbT^a%&*@MqZUBpfS=OqAK^zg+7eFsDinv*gFK+KGa=onazvDY`c=Yj#Q@B&_2F%+Wh6`U*FobPe#e zxzuF$R`F63MiZ?<5asB5u?xq`nXm4zKl^_)DwYixOswEKs5D&aqFiS^^?BiT|Eyye zuD>Srn4}x(;5Mv6l3v?RCX$<2TD}RTQC5Ha#K^(g=@I>GS`$@I_d;`+vV?pOTT9xl z@mn=lVi^wHWA>-QtQ^zrugH#cbTGaxCrB8t3s+T4uve$DY##om0Q0L@qYyNe?QMTD zo?Stu^DxJwd`nvu;%yEUmCqS8AKJ#2iGTT?CvvFh5v5;sKs9eNm_Npm;?SA^NCaz%c^%Oct%fb|+=?!E zp3Gik@2Xh>R^8n;kUOuJs3WC*bUv1hz|6vcjF@!9rUX*DF5O@*WPlQ}9>7{^&?Yza2@rLHuhPD+27%U};N zMM7#GFyg~wqeV*_Ujo!rhapVIW_|oK=cf7%ZdP`>HL&7YaiAbbD!olmMK1a*<^1=w zMajel^rJ$skjJE$%rhlR;m)nA{Q|ScSR_#d3FYG9U?=8Btk3Uo2w?s^Qw*B3X>sO- zOV29CQOra^SU=G;8aFri2%3NDb#zeGbzfuGMD=R;m7{4xxo$OEJvQ6kMwxR{enUn` z^`>6j-v)A$z;AfGZ*ePYD{`I7nCrcRdvSY2%7^W2Yu4ivrDu^gUy!bTN_0)uV=oY& z*W!eSTNIv(U|iwEoI822#7f$Axjwh^XR^K3m3TnX4))QASga@`R$qUf>Ot%-_dyLf zKyW4q3FoZV4p=FjgLYJF!F&9b4TWk3`oU!R|WiDP_ zmilB%QqKW}@b)Fi5mSHoo8}bz7peF8EBhWwrRf0bM4@j{4U4Te@4p2)AD`Wc2m|wQ zhk%4>dFb^?_nmJ^-?8=i2)dI68PicmS3lRKrq3oRi^XCzX?)dD$JJk=g=30aCH~b| z-!6u4NoI!+1(S5hWI(Dh%t!GWK8-lIk~iv%Uo@4PmlV>QX@h^)^&n{G^HZe7m~fAg z)$FAXV51C0>5BB_*CzUj;?`})d1-bkOG4Otw^i8`d;A!YM=vX$V#d%%vWn91sqgqQ zPy*83_%2)zVpZEDd{)t>HPy}l?cB~UfXEiFpDff_9!5AyFA!EXGCE)P>87@I@i2_{ zfPx>6Dn|L9)1`kn>(kf{vyA)AARu5qOGEkO7vs$qsUIPBBmJh(X1tf{wdUHC!3Hdt>7CpfhJeTNvBf-ftDtoX*WGio5huCP-LqRbO?-_0&T+@ODX!mm7Dx z1ZTZzq?nv`&)Jq;K9Jd@HSI~i^s59ceeRLANNO7~*3^HRktDzRh;U`Vgc|+kt6nYn zeVa;SX8>&izQMuX;cWYbiHX@aIFSL3YQd~a^?T%5BeyQ*zB5L+$SMwy(Iz>2RhOURb=+yInNSSkKp;a;6 zN7y2Xkc#xxFPnC~z&=P4>Uj(V)MvGdt0*DB*R6kWPrZWwsC*OyD>PWRib0;i2v?0(=s!ew{c(QwedwV^2Ex>; zVEn@`gHL3mchnYibu~_HFI7a3SfQNTSs!D4Qr>MO4In~4ZGn^WUj(jC4r*N<7ud+q z(3gK3ZX+Vv_M_+fn0nd1eAoF67=R|Yc-kgCUKNir|G;6}4FBU`0BvgWmyMaK`_rec z=Hi8pG&*(2YRbtU3UmW2pZEj!cZq5BlU}R6KD||M(dQ;-Uq|fXw3-O{ZND$)Y3+Z9 zZ!unEtF6T4#-_4Rn}l9GPmRskoMLwwau$87+P&|M7 z*85C(uvU#3tS>5DhvZW+4QUOrKF5;4@D(LFeoL-nO`}96A?#Q{6rFrbD#_$)AuWG$ zUGLT&ZyuNT5l~@ki>~;vRcawnv@O3csPjgaBXKw@_xNNAhIgg;;ZWM1Jk3kfcghJl z1GDsvbeI3|QZogrmrZFRx!biO2DiNv+zP!^10$q8A%lYR{TN~|0#cari=f_ub!LKCge;S5r%6y&C&dh#2YT(qE1m3@FyIuq-Gimp+U? zc5*M07#O@uoa*wWwDuV$VvYOff_|R$n?!-bP8nCq75T%D)$?`idwMb@dV=K^1}6EA zIWer7qLN!5vFm1c*-kijaMX2v-tG_Z9|vef+wETB8P0-iy;d#?@{2q< zs*h_-QBZp){5p9py@s71>M(!VV`v?#=~8JODrFrb+^be5@94UeXw6ZtZTr}q(-)Zn z(;Gkk#9^=6XeFJ#vaeEPtRp(@hI;~KhSu|948L*AP!JRLy-m@k zs1CZvL4;zZ(#m(o7xh~w28q`^*t@`nrK}tOr!8?2{^EMv9kPaIS|xIx`wAe(_v^kN z7ZS50bZ$tz3ag)0BA{Ml#tTo2CIh_Thtvq(m1fQ(s`GXc2c&eR;WCoK!_>>idG2I* zvfVU8+nqf58?mudw)KC=s-30%9M2xuhBj47GS)*fwmTd&{XV_7b^R*xUb5S$n=O_z zL-?lND{$CZHf+b_eZyqjoIftE@neMlK%xgRMoFS@ZP~(zHp|@BftB(tf!2*Dy#P56 zU7uI~r-}0L-POxRj6@cy+t8W#k7ruig#<&q$3yQeu?EN`neu<|!E;zjLhkIS$Pq=I z@1Wm;SZpLjsSVt+J`aWoiau09qnpO^LE~Vy%p`xA24u_45XrF>O1Sua*FTN=WT;Q) zozdnh;poj$ANFoGlJ^kSpnTyjhM~!sW5eS`MHU9Db-hSMFLTk@6vZN_os`84%sDk+ zf#aB`|LKL%+9rRqW{q8D5%Xyt!%Kdh8y3U7MXyjp{P%q3&hmYb?s=7g*dwG-9sk-h z`72_|fqU-?`0v7yvqVn}qy>RJD5{@4?voV(pH#|2_&e%iH9dRqven{Rrn!*4u;Yc$ zV3M5~rq)_nx3?Z#a#4=$TuNG%{Zs~(PV#=B`bkpumV|#d$5^#R~x-EM_dB)nL+2LFG9&A(aDuU1KT{$AbN>#Y#>^_^*R#8V+GWnv`BnU`UysHYT?$Tw&QE@U#mCn)UH)AIBSeY9ZRZH8#a^hcAh6nRSwbiL^fjDU@C z`Xp5V{L;uef#5*u$nkGIdFQgTjnsd1>kpOjGW#k5i#lxKaLn|@sNbS3&6>BRC{Ge^ zJTATr>PbD7OeaUYyWT=`7LI`n>Nd#Y|1{OWVaTPRT81lE(k*{IcjRK} zsCk?i`v#qR>*`vlK->$!;qKyqee5PxcFi}S3rp02DFKN@^CBd4$=ts?TiRIO)E0*M zu4-m3g{Fp(qsB=lyCck$?&V=l-eyc1>w+D7+7MwYQYl_Og>|o0bM(^Fr!JeHJezx_XJ{%jmpapk5wN4xzj+Di;Na_+thP{MoqE-v zONpLU`1Jv9*w2?FzGPs?Ex_9!Hla*>SxjOQ8QHx$F`E~IbH-mS5{s3}jz{y|Ur?{J~F z3DQ;ki-L81ZvnAt#UH@%{%;SR&R#0M@%aekPg~%lfnWC`eo{zA6*fkGgmY)C zY^;K1r6#EM*thdPLuIuGoLm^^@$DSPZ#;oFGLc=>MI7AZt{w5u7d!a0Vl1TEd?F|e zfKVDW8_w$4dPjfZo+R%6;3TW%t76sdJFYqT>$B%o3YLa8I5LSuK|~!nkAFVNC)T}%pdP~^ zreY~*uhXJ7YE82%Kb%ljqcU+z%T9K#3D|2f%Cc}VbP0cmj&l!I@dv};%N`Qi-2D;X zqVh<@<@wy**9X=(n3Vr~U-c3ES^}CZ3Ey8QZV@R)usM9a9%5UPpRp-{Us2+j zXD0NoXKe(#sc1T#WC;2onBWo098q9%Qx_tMgx)23wg7QJj=z0kXSxx^-Wk$2?*rRS zkKGdO*RiUKuz_*gn8DsTX9XU}mZwJX$+^7t(CL?aY!Ekp@m2Tc!Ju~yk9~^oUh;nI z36=*~jWMu+#nMEpNsv+LrqQ7`55wHK?Ug*63P?y^IR<{)DBr?3)oJcukF9zE^1$Oe zE3(Vgj6QAfe>jS*`{qD|ld>hjx6T~(9 zzq@_yLl&KB_F0no6i$uRgUTXyO6u6TkHATiTTG6LTT*^Ex+g$xgnUIvkL1m~A$j0W zqV?~w7Osc@TghBj=MnM%x?>nI@H9KLwYxqu67Ix*74_f)TXWG>FFtlbIJ|;o%P0tR z`(0~kXf7UV|BTb!7I~%$K8zoCOdnybhSmSJX^bguu+^p!3;rdhtT^zq?}<)~>-$%0 z`8_O{H@#xJko;uS4KJ#qL@hVouvvu^#JA*}rU*z((p}mr%t;2zo!=L#pyqRWuq!MsQ{&ocuRe zhTbe=l_c3A$gRGXHY^2t$cr)OUBXRRpF|{BCxPmzdX1p`ho#u&pGKXg_*L^&iTZBJE7ihRLM+&OkiaZa@Srj$Ez zMJyT`4tL!XXxT49gFa~cI@Wh7>JDUoOlQ&V~ zhVCXB(JNYiwcTw#kKgn#xf8APn!DZ4F`g~c2r5v5jhYeWbg->|leqa{d?E%RxB8jOaIpX(({U!wLA;6RI|{+EB=x>P z+eY#7$Lyt{(*2<2E1WdW2C4kBJteGr*q)tCSv#G41KP00&}W1OI5F^qImPd zB8$gq-miynsXy3i1oI_F8`@SC=$H)&q^B@ysBRXEw|*j>hEx#J;~6V|Xf}}kLL4P} zXA9{0#H@KQC&r(b@>Cq zU<$k3?u4?kkPix)le7?lYS1r`^w*Og!E;|p9PRgBjl}B*Zqwueiargi-j@oIVGLqAfvrw={HGQfgG(~^td!W9>Un0FscWh90)C9(`NdwaMsgDZH*nu@206EGfr5k; zEI{uAS3X+jOyb?S^`zwG8M;_t#ru57=~;S%G?)V&r#eyPN*^XZ)PPv(H!}x!7B!nq ze!BY4jDz6z;AQ}Sxx8z9X_~gX4xKYk%(I^Hdt)pHzpIZOfxA@iqQzQHC!9uzg1SW} zIct`}T(^W1O?OvB^7DbI<=3DWNQ5?eC71mjXCPX(XO63_FgSQCFMI358RKe$26--| zbLJ(U8Axmvc1gKl9jJ%?PXIv(zW3n5=E`46)jL!E!+mmps+4SJ*4dBfX)@~kZ*xOK zAA;@h4K<-$@|mJMM6)1UXnQ~}bt=5<-l{=ghpL7 ze6+fs23RS7rMd}`Rq9%IduikAS$FqJQv-kS7YMC-0ee=gsly=T>>i*mSy&sN8iTPp zIaE&Ykv0?`l0TJZ0mSdU-rrl;WOynuoAvJ_`teqin9BM{u->$}HZZ7TEP=~Qvcsw} z%E*nE$Odll*Gu=3#b#++bJQ6#+>fO#iibC|025_@q=|yY?{;@9J}Jp3GgC%$h>g29 zGy=1M^##zhWU%7B;im}Ahei#V{YuwW&{Cc8c5vj7baXYZ{H~Q87;zh#UrR2gDi(pX zr-yp27g|51nub#N2)soWd;%CG^Wq-RKBH}Z1GOdZ8B=Wyw^{3{UU7`Dm5tNF4!UlW z>cdihXZ&5GR^RfNSMdd%u{w&!BH=i=f6-m?unQcr`PpoKa&_<-#aL01exhcAi2({w zecX&oyFa&EMeP+f$YAfirp4ZPSZ!{fS|Ia=EH!)N8ikTyRqynggVawh=S?;hCaSm+ zR9`fXD>CgbfYK_)X zG7>^x*_W)t2D?{q8mst6QD{%7E*Q83Tj0N>P%J`(&{*RGq=Q;^M62z(3v#J+~QTC&=! zgtnqQu?TmRZOjUe&6a~7Bg?e!3OMGiEGc4>zV40$FBoe|hjd1@`T=+9__Sru_|}Om zkK#_kJPAbT_BK2++M@ojV+GeB3Hqle?#fD1Os_UW(H< z`yaxOyt=2$MuD~^_5~RzzlF1zeQ;$5)E0bZ-ug|Z-H$stjH+eEx$#pMhO&F=O z@;OFJWi7hyEc&;)H%?h9)$bhHDUYWx2052ta67GZ$b)Eo!B)*pc!mEs1 z`-GrcEnRFl%&uWa4sD%5X4!OMX7od#@4ztZp^N)we&udA(u(N$MkEaA$ROumV5Fy& zEB}YZ5;yHR`a7JP2T76`{Gq&u9-3HB?I936HW!2gD)1(5bW3pd-8aP-k7FElN9`5u zS{6D!TYu-D{-e#3G|=yVoc=O%rrkIX07Wfki7`IvhavjO>BgVdQ6c41R+PVNAtC8$ zeBVwjf`8wj;F=&C0EI9OR}bhw;S?2|TgW@?Ngna$K0}|^9+K#R64>8pi&I&=ls3Z| zCQ(`bQ8c!n^{3o+;3oy6bbmT5G1Y9F-a4XM|8(MsT{NLLC_+Ae^|ZNoPYVyZsO8|P zkY1msig6~5=T}J``_*h5vi>255Ni41@u~*f$AB8mDEbD98}W_mX;RLNy!#(DdQLwD zs7ECs>^2k}x9fR<(CY3Oz6)#lZS?vzLRVra#=?=K;JKF>Dy0z2=i(1NV3j!M;ns`J zG{GTt$04$64GX@1re0K(3TBVV3Ttp3v{CQPTIVh(6 zJLdF36Q}CDMcOo}FJ1-<8wuj=#x9Tl%p7C3b`t#LPwRev-mHQ~ddZ(ywatlL?atCU z%0gz**9qeKoSDrAHRC+DZp%#Plj3qAHHxGK*4*OSZr$5xb~sFVL%&jd*$z-HSP|pC zE#YQy51(CzMw>GltE4TxPiB#9r{UU;IZFxmuHx{0YrFGF^zA`c=B{{xaXDqaX)^YP zylUjofJV%Jt!-BYphp5Tx%w0zNc~nmMKt$gG@=>%P^6zwA)lAAL+j`|6NjbEBJCK^ zR#M_mRPnJ`^LA6-{rawT*X>Y&K;3GUD6Bxc1g@Nj%Ur~*{tx7OX*3`pU169&Lj(hj zTTso-6q?Tl$q8jz8pT%r6;nR=>I6r>y;kXIz1xw0_t)fam<1c$?5kAT8gDZzyMOBq z-cENEHIA6Z@SW&n%to+O#NHdw~9I1j*wy;g;GoX;mBb2Hs3G2wS?-BK21g-VCXUPVKWY)7s`m zO7a-@k29#7RmsGqX17VqwXrKEoBHo{lO<3+w-+1%gdvmLhbp(lJpt4mle^L>e=#^U zHy|%eWo~D5Xfhx*H#IaMFHB`_XLM*YATS^=Ol59obZ8(pIWRaNK0XR_baG{3Z3=i^ zjdul9ll|L2f`o*Wq9Ae8A+U{75JghD8x_VFFo6xW(IC<#p@4t_N{7-7l2TF2Z1?Btf9vzTuJ3)u&91E{Bx{ATge#$tSRsfoSPGEW(AS5E z0AR4FFc>UC&dsflz}mzABPZuJgrhMC6jJIh3wbmgip9$mpjf=21_}wNI@<#fQ2-(# z1-T{#1_L5sup~azPeT-13Q&N$AglllVL%mygk#9LPt&_h{cU7=_=fEU;!U~nV` z@8XQKf};U^c0f->9nf-we=?sOzP!5hzq&os> z16U*M;eeKsx-ixaD+oZ5R;PwgdkhL+4%7vTu!maW4Stpm1(alU04ScM-~C}=XoMpc zBaA`VpY{kk4TGmy5oslla&Uknu^95x`VW`#o9yZaws>zQwRbG ziHM2;;v!;zgrqp&{qHE+P{i*Z!GFT4Agxh=VK zIUB$DH8|Zfdjt}$jlv*KZx%oZg1<%nt;6ps%npBhVDKaPQw7KG&cDf4M8Z&3r%NUx zE&)K%XsA0me;7ZbBI4qJCj`HZR&ckULkxg~kti%a27vF*8?Z*9$xn||;u-*wKNbB% z*CYUt`X7YXY5YOg0g&b&Bng1D{z2El07&}}5(Pkde-J*V;U9$eGx-Ne;xj=1L1H3! zguzpfz}WpU!KbzSgYfRKe~>s{2SeH8x%*E8rxb#$fBu3H00jRF;xqgt;AgiGFuqWm zzn~ZZvi(zyI3Bq>+Tt(3KMr^q;xCBLZ~qs>7w7N?Lhz;h<%{2X5b7^2z7)ql$?zmO z;u}Z(RXYS<4*D+#d~VDi2Rw5adno2ly$}dK2KFy|yoK{$5MQgyPx!C-fjOhm_)GNX zisOfifBZN8d1J%jZg3d+$Pfy4Bj7^SvTsRBhW~I5ML-MMjrJ9Y1;L z!yVD|@L}1;j|<_4Q*^5$IX^1xj2Xao_b0s)!=)HT%H9%NTh0o4_0iq@wu(`A7Fkeh zXfU-9MOxV~Y*y)ZxZ-XP@?R2k+M55Aw0uXJf2XQoKi_tfl(%9{n3AwJBAoQ{_3NUP zgaLK3Np%Hs#j=AR>s7cg+qZkyV_1}y4-;FvM8s#>zT^p>K};uJSy`cSRKq2$+)7w# zmS9q|=mQ41=b9BSA4T)|;ob)L@>ycKwWBk|n5^};D_1j}wKxKN(N*gubIKoHzY&=o ze~`iH>#ki35U??OGA~U1MO}`ppk@XwQb882&G%N?L`X5D@1dMcLC;>M45ta^_A3=n z*50Ad27P?|qTUc+dU3mT-A^#K5JdXZE!;+05pl@l>FsaBUf)t3ZzrqXDXp08 zq~5{5@V0liIU75tUmZ>G4Y&V{tg5Qfy;q_|iFK$0^kWC_Xb=rz=$umVSj0>*>f4Dq)&MEkrt%sB8gG~CDcT44+3kbFP z(`F-=Z7;OlouWm7K^=#<8`e|;cZ)bIZzu3BY{Upp3jP9N{lDL%Su+3 z^e+Vy(nbq!xH+}O?|xHFr`03}$X)H$YGbbo-I?R4kiJ-O7@`#qI&5=nf1P>ddzYlQnh!td^h#Kno7ZfOtgOrsw}vpWJbzQ>zW>eNf8A&1j)+(PT%M^{ zNXQsdjKKNVcS-rBeS+&kZ$xJM1xhVnA&Fp>7Z5a7ryaJZq^wz>4KCam`!0fe#-T1w zr{NWGCJfR}p8Uq`6uh60le|N;y#3~k#f$jzg@cT2xjK>k7bki020)Dzn{jYJ{gW1)W>e<(X z=Iy8=v$`wos`~;mV_L;ts>l)KL|tqyw+RX%`JB)zS}kRmpf!AXt>r!~bA5zyg=lew z{s(zCX?eZ-5@+Z)X#Ey~!9schx261O8qitrXkU2o&V_%LIE%It=M$bkvV120q#gC9 zsQARbW9nUe_ct5xmL2EW_f^G{6+ZAXCF>;CuXW$0;Hn>19k5!2SvO_)MCy+2gC;!0 z15*9DIwjTe_jK+*emm4<+Mq<}B#?gQW85eqln-Oke>sa3U+CF7KWAAh$XcXT*ZIh_ z^`zfUazEgVXs70rb0P#5E`g~D)EOvv)pz!j7V5W;BXL_ffi0xh^GaV_8zR-+Jw9Xi zLRke=>QMe+3!2n50~z0GFw=OCoVq3T=5u2 zFMT%Ee<`C_o2Op|deWrzJO zX*FM7T1MrkxXTVLm%bg}36UswIP?akFKfP?e~?|U6&<*}lqg7R#rM6jvp1DI$9xOD zH`Em%nA2(+k^L^(f-Mpxsh?batriSMjanena>W5Gk;Yl+BS3mm)d9KN#l zuC1Wm6wq}iR^@TqpEcw3RM6i)$QLv`6r!mbbP^rkdcV{jX-0xJN7^v5x)H$E!QGh9 z?1t7m<2NtJuIDQR%72lerAVdZC>X|ef4;OcOg!kROtKdmwfT@p2bgtv*bH(yvW|=m z=U5l+4bzR7jpk$=%!9%&Yl5gAt0rb&RPwY*2|jVvm(mVwtvDw-C#wejiI0USb0s}k}YCv-D4+ziEX*WsOdFsX!7jqJ7gX~0mkF8 zLc!T}@`W3LDQo>o{3#zJpOzGaK5OQigsWXKzbpAo<6chRy*2uGF(qu6rp%Y#CG~q( zQ{CKTnB%n78qA&dsP0KTd||Acf0R|Fl(`CQ{a3vMb5*Rnvbg5Zo&%b401dyha@8NT8}%e6O2Lz4Smv! zy-C&N7~1jwywn>#q_YBs&$l@CzWrlb7JHKqjosPNeT1p6ves_c zn?b*T+>abxJnElHg&ZvNe-h-aznG5wO?P9pOmtRT;eUwEgBn3(&Z&9}#NB4Z^Fip1=vUM0{x-}XmSI3|? zdZPGkVmyw}ZnrG)JJ%)ITH%ABcgGaSRJIF21`i)9K)ASMz*m0wf7N{RpJa1APw>4P zoeCSBj?fPpE9BY5ie?;F28JZN@Eguv?U z*oTxvi(%>M?eZ-{9%U9d(^KW)#}i5}PbY(wxw@}@Jc4q^izl@ePnIOETFR(xN|{8g z!t-}+r{AaD=(E_ce;K%)$jL4NxVOi@7LJ*EC$RY{Nvpf1Zvvyb zDVK%jY=Va$RSvN4_w7K1wc+ZChUaoo({f%?MjMYFYkXv;e_oMn=LZ|UzDkzrE9lOE zx^w~8UP7+bv||-dygO;d`V35RkGo_ZoQ5NlbuU^PHI}=n8{7`|&mHJlyqBGSC@_v5HdecPliN5)sj_?<; zGWnW|$^kRN@uLK8@fTC#gfv)v-@KptR4r~=VD~Dx^aT((nH)AtBbmBlefO5=f>G4{ z?K^>6x|HNjjw+CwhD|;-(Uif>1JHpvhYIGHv<-&BdJDvVre37;HcKj-Nu5SFSpL~?3A$9DBC*B0tab{eTBOFA1Yp4N=xd1bj zm}pefn7r+leGT$+_vMq7lk4xiM34a|UsMRufAg8XxI90R_N>8_2SQBC##67g)G`F) z*QA7cN!X$ow%a(e{i-UG4(Fn`4M}!sMsG?RJr3%rwfXLOX#M0?zh#`mc7)-^9)Q*# zG?)%&PT{(+AF1=8=5yT=x|U0J{~kfBu0Trlrmd5K)AJ1?S7kN@9*w(S?MkYk-BcE7 zf9%zO`FISBc)7F@aa8UX!Z4pqt&HiIKyPLldb4u7u8K67K3k+OwHBm|4^r*r;1dY% z+ld7Y=n^ad@#WX9mzAs=avE!nW^#%RD65%pWMecBdkxd{DZS|iOdc?L#DyB1oLT)L zDEmnH2iqM(tql8f?{sU%E^f70Nbkq4f0Pf{GCgRVQx7w6%*hK5EjcJ@A&h0^Gn8Q< zMLmeB8AO@P-8<=Ii)zkGR&O#)agmZvZcNiwH<6`IT(7(;Lvs%_`6#NE&B!R8=9NKH zISXn}y*(rC+(drR5B6`_bL|z`7CuVzS7bxE)A~k8*WVQrDpKleV!17#uU)~UGD&Skf zesYJ{omA_Q=K7osJz4!%DRMVZMP{_t7uI;^l6tXvp7K~(&Hcv>UxQU{e{v;9SU6M2 z<$u0>}*4uey*-8*)Umo_-U|(co?XbB?qjw@?*;ru@gauA8e zr|-+z@e_ncIjhlU1nQx}X2{^Qn5Mtk0i0;a-D|GVu)2|nn@>>L`na2!l zh90E!ERHQLAo@9~LJKPvUSLZCdkJkG@MX-;uOq*U1Vaoy8A3mf`QQUdcVUY~*p`sd?V*AL>Q zNcaMeWun};y8U~#rouYpS`$neFL^eATO=vO+=~ji!@8^0Bwx}=o~(SiV<&jyjhWSW zQ7kc|UQA&5e`t~lJgF(#WcnNL9b~xBxoJ{k`W4~a$UV0UwwE_ZVw$QWVM*QcM`=VkUS8gdz%e-o-E?B@FBf_E?01X?$8sPiZ9 zZ1L!x3?^6GXrb;YSaI;)uG+|O?ig7x6KDwVeiHfMRrlQX5G;vL?x@q0PkZ$#>lE9& z_gePZfz?kAKMVy1acpbGI2u1>(khyt(}<<3lOIwxZ1Wum4gYbS>_DL=KbA9Qv73{K zQqZtKe~8W|%Y!1_Qu|pg_ZcDiz6gEU4BdXjL^i9I*1*=Ymai`$1-R*yBF3&o8X)ki zNWu1w2IqyRUc-~AlZ|l~8}})x;q2#~grsd{b)UQl{3=k6nS|{hUA|83vUugTrVcVf z_pxKx1ISkv>5RJEjlGnED`m9%EA0#lx`r>#fAJKS8Q63r2>Pr^I+7~Qz1JgtuP`W4 z9%fO-Z6GpQ=IW)D9OD=2l67hJL(krH|74fuju8LF)Fe19OvUjW|MF5mN0~$X^k?u@ zzRy&y#3uAYqzz8#DZ5E2@#P&xA@;Pk{@t{#NLR{&`>8jalgXamn#oCgNENWIxisR^I6Duq$tpWXCRKbtl^%OFf^HHX@ln z>YlAny}3Eaokc!cs;`>HZHR23B$#!(k+R}e7=1}e@yS_*+g+FU;30xHN|v|QH>7FK z-)6BT`>^`0$egv-M<*R}HSTh;&`Gw}fAP3Re@)LtJ=!I5){Lw!Ze6b?<7Z=Dz;@y_ zt<=~4=B`n>ovnuv+EXL|T!33@%u_B6Bv9tIe3_FSsBzk232OKsh__WGde zr*K?>16Jy;#4F)0=;T@2KrN?NdFiZ_IR2j*S3T5;Ce{;J| zP7d$Modsq3?{n8PK7U>r+E95t+UUX6Yrf*7vxqWWj94I?)qn0YOT@>I1hOBFlMfft z3QhS*2+D1-Ju-H>cYKm5D~aXUCFILLspSqmh!W^gg8Ge4FpR=&48Bak$bvWAMlQA{ zJ6vTe&Y?T(wwz@%=;$1uKXWm#iGqH00bT+00-Yj*pE z5L_sl_o5elDrNdMdQzr2(Bw5n;FCmD?t6wGlY#5=Vz!GilZ6NE<}nTTYRF%u#FM^g zC;!A)$9t*T&Qgc1c416Dl&sW)>Ljzy^TR+6U;dNejwlX*ukCg~WeU$QXMx%5+2kQf z-=W57@GKf=)lI!T|0zIgjo8b4BiLkV#Y{$u6PN89 z0SuR#Y5^4lGdDFelVJ!Ke@-AdIUp}aX>xOPAUHEJAU-|{b98cLVQmU{ob6j#j~h1< ze&1igM;i+_n>Psr0eocQD~aQA;v?{bJZ^imo*6lk#yNidepT$2*oTz1lc&YP7R4ru zb+f9P;#ebUVXg2=SSOTm!g`_WBy12m8eyX_$qI`BXN9YU(?K{Te|$|{;e!#*h=4_y zjw%V~L=5=yB4NS>kx~>c3Z;P5C42+W*FtH-r(C~+zMs26CNx%qUMG2 zA%L7vvBo^`C4=z+Pqrq)VCi*GO$oiGqgM2~NlTo?__V5!m2XH57` zwZMO4pxdPI4dh7+L-HlyvtS+?HcsIg_#BjzfX{>P1biM!2W!S-G67$(P#$PNK4_-~ z#%O2+C}W@z;7poEV78hx2}D*U8u7wvLoflINFz~LqiF;Ne>UKRq_GyPC#6U>1X3Ot2q+44}JfhjdK>l68a zfr`M3(iXaL1Os8c0YdFbS^y|G9;Aepm5wA-O}#|IIC2~29pvFi#42Hf<cH)O8i*<9gWrq0q*>Zc)05(s5{q=6KD;K-z#ZT7FCzz;@DGV{i5|clM$@VZo zramU8N=)GxCfCPghL~DPcURX~dn*WevRrSrqT}`Pe*zC35R-F9Rp9&N{E%EI8BaY- zogCfTG+68Fl8btBZDu0&5P3aBWJ*Np2%^+SN{&t z14NOn+&WTrWnb^c;w=kIqGo91MNHS*ir&u>3`^zXah zJyl)cxqH4?Q{tBdaj)5&t(PCSt2JkuofR2~e{z^Sy?(R(<6{F#XjT5oYlVEie7im0 za6+4;{_w|F_g_9`>bj(k)H!Zr_R|k{ zf7tGINgTDun7I97#rtXMFP^~degyT?mwoc}1ob$ijv8?u^@d+pZN;(GUT@|BdsWqXE@qpmI?TmvLPbep9xzHTf92<5 zR;Y#Wo;MG;R+SzVb%!dzm{4WS#B4&SjGc?wyUN6wm{CAg5oO^_;Dp^eQ_m==v0G>A z8LuVSt#dIuQ_-o=JYcJ^U5DDZE%K5Z+r^uUrcyT%%TZ6Po~<~f-dU~RHftcP`5!XL zUBccy+(-Tu@@aEMLDwi%DGoTMe@cN)Y2djC+%EWv4lZ67Y2xwn>O+?$ZeLxkw*PEe z;PVpog*l=un zd0!!X_tTH}U)<*M7Bxbz(3vc7&8SA0Tj}&pG=|*9P|*pdN_LPdf1&fQM~WNl`1;y!;XR_DaS%32is&L)>59*a4<5u2a?=o2vuuc(J7ln`V|o`ZFomaG;a_* z;EKpw9(ah8h^*_nmkeS7D1UyyTcZ|8oZvYo!eaws392F10}`rFffQ2*(oY77bW|L9 zAsyDTDd>1LW(&;P&Ix51O$17}bn-VF+tp&-i)XQLpZ()f= z3IyrN=DCfLc0_I|Cx5!^!`x;F7FCnSwr#;=rWO)KBo9x5K4EL@Gwfpeb%7yO*u}f6S2_-4;yGv&FldI*rNkJut1R^#Y~EVpGSZ+ zVAk%0JlGa0v%FQu?QWZ~igKG>iCl|jqT!Ic>y_?Su5yJXcz=$e_0A3FesqDObZUB2 z&~4iqi8p4}29Hwx1a(v3^N#cuB58@>jOWm#2%*L;5M5ok7DUq{Wv*>Im{^sOT+LuOqR!@fFjM`g;*X>~QymiEfwcOuB z@m$tW?ze57YZ!-&swwgD2Pu(1nyyGdw+Q=@wRfNm2IlqJOsU?I8@?DYq@|{TylmTj2ORZO09LTE0CQJGXg+r1Z(`{3=*ZSxEJ$F-&$E z!%)TcUTH=e z-J8}a&k0Vm>UqTuD$jLBAa-+qKbP6f{oH1HwX| zpKl>^n;e&L#R#3vAjw-cnTsUzs9%m`%(f;MDf_5Wd6Vp6+O>I{>y+@;STDoAu)CL$keT-fg@7nty%i zOrEVSR##{*FBjRze!X5?K!I6%Bd4OD)fo-j}s6LsRsBMV<6J|JQD3)MpyuPHTn}7~(!m@o>Tz&*cmG zvfa%?t;1m_w)OcRAJ4IICwKQTLw`&tf4|{B*8oT~yz^6xWBrGr{`v_m=jcSI)TM9BP0IqT1ovyJ~dAGun>7swxq z0Kc>Ld<*Mti>YMBCLTq*-X)1i$>R*khZZKfhb3QZw(#xEhs(wGT)tVXIe&^ZyLi@Q z|G!*bU2o<`_{0}gslLRULr>;3lzDJH;y`>ytonyNdsq$ZYXOeXU3~a3Omno?XKrub zCH8v4_(MGmZde@9gZ~2id%E9L=z$*#J?!J@DbgCn(atA|fVxx6UNw8glm$^68wXm_ zbc<$EOA3=zace61`_5wPQGaacUt;?EK`>vGiMva%#jjGk%Yqr%57*lZ1clw*n8(Y@ z<(BT&+_<+oyLGxe>1fx(%sBgSmzQ11cPpZ1kfv|@` z5vU)JYZ_1EadVUI+mFY=Neb;fpAq{dpvxj$U0=Rw*1%V(x-Y~4n18M(b=0~=s$#ao z#02vlM-w_LpdL*ao@g%`ju{L7h)e~j8cF3xQuV>Zn0ris{V?Vp6VQ7|Qxi~poD>VX zi<4r3v-aZYUy2omVrg|uEP%I{QU??9rigZGBHa}2?a~1qGK!v>fKlSuBQj_4mt|sbegh>hE39x zO?c~1nb*K3Y04&+R!q@wG~s4R<@-Wea*cyRdBQuzNuY_T9S1FhDGs58Fjj)4XfY99 zn5#Bi9v8@x8p{Dk0|x|RU^Nl7EUA|M5@QaCqe=5% z$Xg7S5`J&f^H=#2Og_PB|HKQu+kdRmY*%@z@sChB}Pw% zF>N4!6PPa{t02n>vQR`iN!CM_Q{)uhJ57$YbA}x2fu9!%Mn_)qIuEUZ>jL?N-zO9V zMlUEBtn-pWFc=lg0>0OjXyAK83CoAcNy5*-5}FyHoZ$ah3z0Aj#7WkL?Pq~9K%fj@ zW&|a9f}di$Se9aPfD)QD4M5g#u4Fgpb~%uLH9ITdwGo)K9ydTuT2t`Ef&(j+XgFK~ zEHR`Mn*=kJV)(?7((D{yDb2xyCCYHv5`@XXS4wc45HKYq2aG9*lxH&Bp**Zq0>}Xd zDmYFBcvcDg62lW9CkZnLB#GfkLYlqBS)f}Lq$I5*7^T95SHUA%dCnAMfni->fDx>J z9b#srWC{|2vqDK^0*6h3YC7WtPr$4snO0vY2lqg_(qx?ER|XTsF0nkpa%7Qlnkk+q z%mZX+m;z+S84G6_$0Cr5#u&M0vBL^cfF_h_T$f_lgL4eQ$F&Dda<0%=vQVwyeOKg zoGe?Uqitk07}+=xS!CfF@>#aXib+h3!X{JHUu$#5-aQcr;7vnkIQVtarDYuaw<8rzqwsw|!Cli-F*P{u|owKF$;mt!v&F7Mqbw=}YlGRjxq9^b6 z=C9x09{{P!<@AB7tXWn?HlY`?-*0FC)9N?lYu-6q3BFnuwijh}lNZyYom1sJZ{Ub+ z_ni>`58_YnFDSnGeUX9IB6p<2ho)K7ui|)`HxJAE2p)*9(zoxfN5>z3^0yx^<4(Ej zag{Hc_gjT1-A2K>>n{%6~k_f2cTWnTQ}$(o`lo4>@||G|ckM1qSu=iSdJkC9#?&#(yVo;iObCfSABv*4($YC`PghGm^Y|m9yj;}M;HoiJLhX&b~raLft zujSC5ExjYNVfQNVujMz@l*LbV0My~PEHa{X%)X-~qSE%WLtGDChv zVysn04Eew30@DxWD<>I7^$X?OmR!Wz}{yE#Y~g>^5Zlrkrf9xoXS)tZI9rmU5Ff zv#jlvI#mv!?Zs$xn%1~qJD6WLXi}_*tnlarQCnrl_g|VHaNt4Q${M^B5jXGq7#Oe( zP<(p*`t6&uZ${}Xzprw>U8}koJ){-kq-leAmeuV+$_A@{Ri<2~D<(AK&l!7DEwfJG zP5D!ik5O%)b6#27(mR>|$|uc3&F8A(?*XX)&vN@-o-Z_5Z(rtlz2|;g<4lo-Xcw%c>?H zr?aDjLnINsyQW)g%t+!qr++Tfs`-O(V6;p~+XN(d>P@YY)Q zvk?ElKfF1@PVYAMNj*lfLWxBhj?%^JET29!6pX`v5tw!Fjur0x_E+xgX{|Yk8`IG;WVCN6t%`DwgPl-Hfyqgc1909ZC zAEb|nQeESjg`_o?qhF9*<_v_? z9|vGdV8&DnM__dTGvohUC+k*g$~qNFAa{SNorRHzv8X6`YrFBWnUZjsx^A|vbIu{R ztfvH_E4)7S?!Gd?keZWnulUsGQzm?jdA~m-7c4JQYkq&zJ^cQ@*uUOjXjRFeYaS*n z4<1s}4Y0UX{*4sQTw5M=eHP!lSshWw_-X^tbl&*lnbEDS94l$v-2QsMjdtqEv@ntX z%@Y0<_tv*roEr%1`nuEJPhNt+`E|7%X)W&dSUT-?Wf5HEd3j}n>A90%|5&~B;+fCc zb|RTY@YI?FpnP#NjW1f9*$sR)OHaLjjyevu@@;ctB+2hsYF%GQO=aZWzeurm(r5v$ zP2Rw}*43_!+S8{X7Eirpk;x@19=DS^b()90L{YnTz0W3NBAs6!2e$#Yuw3Fafy+z= zDJPYGTMSH9GrzY90AiK2IsMw081EO6Pg}JIb6Am;+ZTh|{I|xvC6zW&gPM_KW>N6@ ze9k_VBxkvk_-Ymb(z1H*Gr;l5^%B4DsUB1Nt=0kaC}zO8TDUoKZk*_-TG- zTbZV0;6va0K4Uj+C_B6lry@Ta|5T4hg?;UfeVi%N+sa-oH7qJAz4dZuPy=dBS_*z7R`gh^Gd#~K#9>2P%!%Vw;btGlff4>wH zL!h%9qKwWj4<^k=)s5Don-&50JN zD>;HU{7i-bBN=}LX|O^zhcFhyD%(K>bC94G6}P2)LT6TFf6R6`%q>N^G%@Xa6Fdju zr@d>6bFKSh(s>1wM&q#Bogy~I_%jj|*lmUcV>VLOi$Rk3 zXbBR3UgB?2(@tchFmJ#uAC9MNV``r{{BpjYqqJI(WL8Y=o5*<_L`8ts8?AQ}f!rtzzBv2C~U4EK&fry*pMS4}+aqaUIi{r#>OJffc8x&zAr zk_WD-Q>Y(~Y#(lA`B?jRL~(68CAd_h{-R+YT0)%o)^L0F{X2kqswCe5za|cicgm7Y zo1EIoPiwRu?xmRFkM{HtoM#>v9v*Y-Z`J#;MZ9IJD zwnZfv$O%ht0UqGq)Sf*LYL0`cUL1))Ss%eZjFxXANj@WC2>M|{(|nwSw{!b5lx0#k zvjlIynDfl-9lapE2e9#uscU9|`V|5Em>&}_D2meALBe`KW+1{%$Vk<|NbS|_XWPL3=vV9Vb*;LN_*IU>$6@r zM^e<%8HG^pjL}I4zpbxVU zjVWOCaf-%6^<4I+&t-`7F&0wZ>)F6(3t^1<(WY8wsgt5AA0{HI?j)WFwx7$BZ7m$Y zX~^2xZ2n6Fu^#WXC)U>9Bix;{o0=7F6|t>^*m1kAaO89~tV`*^5#WBoYFKvU~}ds%+nTzbeTooD^}h;G2&qTO6H+%8*reL91-a zyh?)q89J7MRTYED={2XR^Y~ayJj^x*c>z#4CvGq5LFN-hpm$T^AA2z@nlO&Qe%HKk zxdcX#;QVJLKjQbgC9jy;2wxF6UN!|Yu);IqzRl_qB5T3~1bErV!Ll!xF$4dZj9h(h zU5)WLqx&+PQ0x+(6V#(|FU2)Jna@k6(Ykh4eyk!b4UudpmUtx=cq%B-(uSVw>jCre9FNSV`DYCWs)gnb)oqM9_Eec1pIba|3=z55rPr;dSGUOfwXKT0)E{kG*5Gu z96s>Nr(O~Bbg9e!pboznF7ZW@2g5kseTM^jK*;){4xNLjXF)j$hA>sKD#W@WS0`%( zL-Th|#qKszb5o4{lPvz~4Y$LU6JRu|_=!Z=vRl=46P?3==DfQeE-g=Ty z>L1^yBk4Bl)=km{o zOltDhV7(CYs5Li@s82e%>rFKg9!&wpe!l^Djg5#<=vXr>2OJ<7yMU!YJ=IRZT0EhE zmVc)-G=INcIXe%OE1@2v+P_qU+*nEm3Fy(f0p$!b)1MQeebSH4Qy7JTu=A%FnV`?X zI<7S;XS~w?2sTul?(K5F&F1*e-MLqSIBAewhU&ovnvb5gV+LYo%OG5Ykuo*5foflg zZaHZ1H}7+>UH90PLr~o?U21LG4H7QF!iL?Sj~6VW z`)cEH=5EZmHbesJ#+h5r;z5=@y;L3C7fl!-$jwd|e}Aoq-Q|8q8V@BH-QrIE>)7KD z#EkWqhby*wp^-T>sT=_X>&%C25?1 zK{hJM&F@^+X~ru8;dAug->zKv_W@Ji0%_(Pf!A3ZCr`uri&>Qvk;5=Z+d!>1y`U|^ zAI3gp{yS`QwD$P9!FvpM4$jegG~fIBk|Bh|56d07kG)c(Ur;H^Uzk)1KVV(}JL~_W z>X`@`8JSuCKV<(ud3#1C7Ebp6b$N^S1Xsw?SfoSzD`3CczrDRp+XimtCunN#=C+#G zPu2$B3PjXq6##+IujAX$xqIXL+pY4tqCDLt@0MG7?40XndQnUcsO$&)wFPDboe=1w zo4WdI4FV)-BJ1G_4}^n50rTHdADOk8d~6v0jerxmnQd+y3k(?MzrxG{wE4vYaUzq8 z2cvR`AMl?VS0Gn8AnsTo?%Mwb{Q{$-e}gX&gu@bn1SXc?jDZzQfhh(01k6Y+CBp(s zQN|`Vj)!LfbimFhPe1@yUtir4{uI!mYkxUHCnW}f^`&8K^WTH{ttI$8U`9w_9iHFF z0J*V^;bB3)Za4n#0Ao?9(><1|z6-WT#o4ipmKU^9R01dKl zX5fc?Tdxv;;@=1O%f`wcy2hOrz$>Uv<3~0I52cW-Xy|ZnZvc`OKvB4>LBWg zn~y3EW$vr^CI?Uju&JTNJb-`sL1+N;r~L~kHQ2xCs{n`K>;O3~1_Eq!g~k2EYXIv2 zZCP7ed*glq<&glL8Q4yLZ2Fg!f+F5&jsIwUB?Q*Cf(`-ezb8Pe{fH$QB8$j25dw+VE zyw4e6pw?y{2_E@d(o{4Bg@xr}?rTB5rpbta?}6NzogRSFINR2Nudb}KfOKuy{B8k{ zU98~W$z+@SLl64WP=3F&_IejjxpCV+xQIa8dL$wUZ+3KOW74M}z|OxcAKYxVY>%m} z7{9-{*8upp?xWw8<6e!Q+~}WPk_3n5#?L}2XF$s7?_B0a;1$nrgZsI*T52klLP*yX z$QvN@0tg__=qHC|4(!Br-TZYM~0vI20O z&ULKbeKdsx0o@hK66}>vOI4vS9S2aaj*KtDhh7#caksXB>|RpKn}9sO=BI#E(HVx0gF){S3hDch4}zY&j6B?ds}g!e z0mOVjl}o!}sVIHazX+c7%0H0zpz12WV&2w3E3LnT@IaLx{Aal_UP5j^v^V;iG2EL$nV;NcVoLc>8eUC;&G`T-dTJWK zLU}fPhJyZBvC(3Er-z3k{?O;Bvo}>KWhlAn*9oPLd?+}-=`zHPfJ{z?f&OmJHtl{e zxQ#JVE)Ms@Jok7X!i4(OQQ zh)Ow!o)uhf`nF@+dDrZJ%-9rR>lc+sa4B&m^HGLM@pI?dfLkYh<2^`s>A`Hxu5a_& z?P9mwZUoQXrR@M4eP4INM|r<60-7!fsMEx%O&kiy5mlY%BCpOzdKW<8!l%#n$qUq< zrLDbY4UI#VyX1?&9JxM5l<9I)5wis=0V?=G1$(hz1#6}*J=vnX)!%F7@N+Vt76zO3 zm@8Hpsj0m{wcG4!cuX1{22H3OehByu^@5n;UjVn(9Jg0(6QXoU!Z%|kz=!|^*4m;c*E*%q!&hw^3 zgc4(yFBYq1Ve*7^f@20ej^y-gV zVX{QS&5T#X1|$tuv=lXB>4F+JvDh<~B$Zat4P-N_HA&P zvJX47HpQ5vJensNezwS93LXx(AYxrYnF0)WQG;KOl!MuL%vGj73oP4C;%Pdzg+*vh zvVfFC%fUlW{#60iTA>E`l2W9(%XpIn zP}MNa*B~P?1CqYKIBGdVFGk@SQ%bdmXua*`Lf>tb4q*!&aIijV%vOCSmLy(9*35L7 zA6I#QD(oPqa$g)Lb-m!JA;n%ms)#YFoY6&p~5r z`#GFcK zrqf{G+jPD%L?;ylk&Z=)ke+B65~b9aG4S6VqUU)fd12GSnva+JBXH0bcEslY(Y!l* zEqFc?j7bk2KI;qOviyQw8&8x!`r=8z$C>N7yH@^;?(on zI}xFRp*S>ipr=OLpp7TO2V<%Zv;8?a#}RooWx?>-jBgb$e;rZJU?s%9efqULbtfJo zWCwELmN(D{EY!dGuzn!FBq4xU_|J0t@(AlYR~HY+9@Iygc`d7U<$+EhFbZJ++n1=F zmYC}wm_Ba{4|bTP_)*;I>7Q?mVx=@h+7guEhsB?^&-<3;XDRS>-pLE2T)SEM$zw~Q zN#s=`_Y&?NMr&DVlM8buLMt>?s%T{z+@aT2{{9hQB!06h&+>Kn0{SvXukXA_-4mi( zo2mvBBjUqG$&4F2_LvU_n$nOvdEXcF9axWbn19_n+j^zS-d30C>lc2BcX>OkHw4Lc zw{Ay7a10hp&sKkXA)C#NYyvBBeQh7?v;M<&9=O8BkK4j865Uu8VNI{X2 z&FgMNp`^{RLXD7RU#Au{fUymjtHt{G;UpmsCOAAQ)b=6u3BIB%EqMbgZI8>NU55bd zZG(!g>`7+w!~f$22dMwxT60&$fY}AN=JZ&FNhI#)*;hPEIVmW?3&NSaUI-~IjL|1I zL=x>g@PW{5t}w$D@_ygvF~UTBdB(!8Z37K)d^;_mJb|Jf?H~|`Av0I$SH4C&9xGop zG1V;{3E5@?zmPD*eL!QF6dvC5%qRemf!~XH4h^{n$r^pK#Clhki{CbZeVVb2Z4d|C zVHR-ME06pJAa`|(V&0c;?8xqXzsL*q5FRkBM}=c_*$ZxX@WdjXn@@|O3`?wBR{8qZ z>Xb(1SzyZFY{2@1Q2i+KY@lhI1r5#z4B9Q!8?~wc@0eo9gi& zwU`S-EHo#;2G`(C%*kbsY_$MDv>{@-H-x0#>Jm$@vDou4vbVu(&rgrH1BXuK>aF&& z<$mj(E@>P*RmASgS@RZF*$FJl;nAXR4z9@W@G2dYLIA;;Bo<|FH9sCPe3zu?=fyrqN zF)=~E)Uj^n$qZ;7bNhI;>~Cy_2oFJZsqNV+{7atKqYMd54NLi~LL?*IQ}3zoK458o zKBncaHi2y`Jmj)Bhbsx#REp#tnRiKl^%EY^th(i8ZoQbc(bDc@{ieOW;Yq66+COaM z_gy<|-D+K;EJ#Q!RO7%Js(tT$e~qxx<8VLDwu7BCe3^t)xV+3zqanmo<&1ZSHN@N1 zIxqKjw{Ng!aiiFJk*>XfO({bZO?p#+kQY8=Qt5(X`%q5DxMl$OxUGe$kb(!lPzsaq zb9_`FhdNie*`ySX^!)P<77D!J7=$BXc3N+hpRYAe)3(TA~9D{RKIQ4 z$sB({zSWf4)V>G?nmkWLv(sqXhvXLxEcY8gRX%wwkb{>Wk{Gpj)|+@f9Q|1xPSFSU z&K4SM_jlfOsN(^c=rzF&`zDE`1!?7NE;#-ghgMECS49vqlYdlgmmRnZP>0QUjLftO z$hBY%^n9y~Uydro%)W#}6oz7H&!sREfyOcGiRe4;qq+LRc0~QLJk>8!br5vI4B-7Y z_-F#xLQ30@)UrQ#!7x45E@`UVCWrVC=ZgHW{tlIME$#)#crMHKLl3XUtpD=653gd( z@W>7q5mKcy<|SGFJoA0JK|w`fkWq^tLs#dO-QZY>feZoDIXTlr*aEV3C~)1&_UD(@ zdA=@sIiF96*rw}{cUZ_Z+BU0zJueMXqB00w*G#_D3O9pJjnYzphg`(asmAO5a}r#x zc1YF=%U=ty$DXOvspF_8Rg&b$;lJv&^>u^8GLSo5ze)MkbQLVW`H6uQbELe~U%X$% zOCKH?|8~I)B=9NTr~iJ_r2IL8m@e{<7&hrg@c8$BdHe0}FW5hzm~;_H(C*BKk?j^6 ziAo)e#Ro=@pq+&wPbk|HX(_cq(cH1ln|ClaRjLW-3a#HAycC2Nig2?Y`BeEnUv3q0 z5RcpwTJ_(aLb|aGU(5x?|~9_X%U-rd=&O0WQ76&RbNoA>3apHJ5&3lBN#clwe0608_6Hm zH?a#S?NtJ(%s(|VScToPoq%AlnpIO{(M~@5jB#O9OS?JC6Y5vyOdyHG``Wp1(&*4i zQ1Z9)ZDfh7eQjlSGpYwqV4UwoA}jLWH}~cz?t~4T=UIQ8u69ykz#09ukrU;x`caO! zBB@9yLx3)!YI@-;&i>o$9V+}TdE4@I5%B_0TOil}VoDQ4MsQQ4N`;LIMc2Ur_U~}N zAR-xhuzNz94KS4Ib(|PWs<`6i1e025WZuFrw@O_hSzlAS2+?C5OLV_?T7Zh_EJw5y zGlZ27#FfBM#Ko}B#scT0M4#^LJ!6eD-k)D7yDQ{Ah1D>KnogEOv!H?h@q_n?PPYaa zZQ&rmvCh%^G~!0$ccjJVUI;yhyO^E;d7Y_Sa9XTH;Q`a;we!AK^a)C*gkaya3C{9X z+m@2ALOv^jo{FQA1s0nnM>D3&6+;W>IiE$goz%lo-aJzW3AF3iXgHyGopkoZ3G_2i zDS=NyR_H`4rK0RJ!QrHf8U;u~T9g5%@oK|wwxz!*Q-$JW@hooECD0wgyXYCicZ*3#-bp~ASAa5*>0 zM5#i=EVFjuCE9`wvumn=9}lLZZs>%+PH4`V|0|yO)3jR1kVyXMK-^2@z_J4D3s82k z6N*ZmGS#C)pH*BlX%nQ2rl|@VU%Mwa+4QwJ^HKYHOMKCa1a<631zy(^I&^crs#)-t_n4Ru+0LeYTT(#-%|Jr05J}`Y>63#L+YG5 z!^*s#yM5aalwD!+?7El%CgKFQU1$Tu;M9rq55%?hx>i?N2`nr1Aiv-4dHKS}Hn6xdwzj zEWGVDLq6-=Cs`y1cP*t5QO%COc<>)H1zxTwwHLFePr`w3#H~~*1!cjMnSJ)o20YzL zD}k4YuZP1@6Zt86%t~Q5;;X;`4#N&+XTn1qoc@Sl_^jL(X0|bYGNH7AHwcs`y=5^| zd(?)zF|4p67!Cke&fNzBAG6%=b7_|oiTZn2E=O+!-pRk&r~@3S3@@Z8D7RN5JdI?o zcQIDS?NY-(w7dm3wpS{&`x~tRw!f}`T}C4rI;*f|*nXTJV@YA14X98cI)VXul1Q^K zG>{VHuB3=AMUrRCJ)5)3K;;PGo)ABJk}HpPul>rYyB)wgwHAe0o5gYf9l9MhrVN## zuSfp7@Vb2(^&wBW?aKV1G^L_zzPHeQh+cjCTolQE)#+-)Bwv-IMWgM34Ao1b3j3$X zgxSDk0y(_jngy`}VGE)JBh!Cw5z%B{zQJ721&*j`@vpM4;UHCw*5gV1nm=mS#`!qf zbBmL_Dd+$zP08dQBI$>-N3f<|R30D3UiSDro{|8DF}D}T7CF2GTBlXy=OC5o(9xbf zx6RC=`Xom|6526-(SH+dj4!n5<#FQs%7wlCnTN~gN=djM0}b#MYMEVuGx(7-^yt=S zMW6tjP)*B|)(FqDp;oQ5XA4}>IdD?*Iy|w1!%)DDoRLv5HG$mDtS++TC@diMHLF`g zo8y^ieM^J0(NTuBVRasx%GO2BOrZYAK=EG?MF6AsAQmlh1?+r>cCeG}kh^eR-S8y$ z+mac?8Bec00TAYm0o4Nkb)tIgzUoE$>l0Td z9Gq+LXP%#%zzzvRqZ7Nf6CBZCMeYOP$GWh3Y^0(73FyW^?aVUnii)jVzf#vqINf; z5Zp(LvGjV5aB;vWMD|HC)#mK@GvR8GOG0pCr%7O#0zLcrMicEll=u!O8JuZ}5J`czYlm43~R+&}o9fmg=L;h-0O8hYKCC+O13BD0( z|A@1ehaCWCsb(fb!SgpKoNZ#m$uX-dAdi!loixSAwEoOBTOnbw-qQkRlug+DI>FiM znHpU>($2*Jk%mGJ0i-iIE%fZNGo_70T>I4jm=hC2Fq zxvA1Pj%&50@l=HZHx68W$2lw9gwK}{FtZp0_QhCU5Yk7?uvKoD|2A{c4eWH2CY;SB0kx2g%D*LY3}(iU?O?JxbQZ;i%saE$=Wdge}> z60*@-l?D#^p%@@Sc&7oPmu?rw zfJr@ytrzJ}{>O@WmHn*#t^Im7JMrzY2_=i%tIS~`C-VbcVMxVR5l`F~+V^n)HdCg! zHhJa+X&SZ_YdpChD}IUbP+L>_{(P8PW1xJtbWdCk^%xhqFG8!Z-I>PS27834s=Npl zntwJHJv-49qR6mbX!O z`INWar;&HjG~_|7k5+*HGJXgFjXLT zEnvxIBqe8vf1}K0X>L*BCjO*~h>I^&TXfFN>^XheCY~o$n;nq&j&~~2P6OH$oQstrRMw}a0c$MCs_63MQ)Q?Z<8%*AVZ1)9AKqt0~%s!#K- zBHL;%?S+tg-PK2w6B;@>|X+)t4%A>4%Q2IYC z^Te)&w*%(z0T}Sx(KT~W;a=y8Uz{ia0~%-;_g zMSkeTDE?Xh#N2EL|Cege9b(y0g-E;9MFMq^hkhS*%JUxRT!d6hI6`DJ=nWfy6-cprft@pfCj?EYH9vz+PIn<}L zyX-TY%RDmH`mg^?Tu@diC_A}cwr0pa$#cg#;m=iR=a>q_xvBT5%fAHr3}Vk_#ka*V zOyE9Yp(y~IdOtKVa_^i@bK2k$m5bg9sk3|QjYH{qg5rkAAgm;#uE5_4m9gTsqlfMG zB7wz@{Q@%@73m$A8^yC+wojJ~HVKhorpVFFQ7xti@KON5;pj>eQO3^TX9omqST#5n zYD50k>H4j*p4!x=&9RO5LVG-kXbt9#Bje{D+BkrBu1nM6S*wD7u&0>di2fwBx!k%1o?X1UsG`|+r>d#3g3|BO9EMfq4I3m-9xu}T{ytW z^>NWrX)3aw_m~7SH5L-!Mif10#B0n?RP)qT$4t9pPJ=mP7~OB%c(`_#-7qnHVk!2;?Yx!axtOa{4* zIUMFhUX^`&Q7zy>^8M0xDGK^WDd-MIe7l9KO6wQmhJF!X;F=DrGjrn@SpqDT_9y8% zlD46X^+fV$N*jsoV%6pp=8bd_*2O$;DrSv4Bw<;~;NDj{P~Z;A#i7hhJsSX_^!~IR zf2r&EAv1aq7(>AyYah|yxv2QP`4v>NVJ2xg37k}Bd~6{@8KFYs-Nj*i%HB7`=L68mg>X!!PCSc(wqoxOzyc3Z^eE3gJ(-Q{`sm`m?J252k7Dn z%$0@8_`0t_Hc=4udn1Q0Y)Ira5a9;_#WyJtWr2+GUXwy?X!v;jjn#ndvWsXQaysYp zIR3Ui1r9?>BGaTxGyM~cccO~gmf>6}q`dgb?V>`cR$^o!##vnNbAwWBF;C$kH1H(l zS!s<%uZ;rsIhoGp#XTkUfaZUUSOU{5fBD~yFI%Er`6juO$|ge9nwq2%X+TdBxg?^Q zHLaIU;095pP^DK>T=fB$g+Trn>UDS{$E`qr3kDuoi~3|^9Rte7{-v}}w*S$zdM+^! z#gAUmCRTQ~B}f@% zy+U+llKpNvm$H zOtike&Mdnf8yBVWm;^U`+NwJ{K%Tr~;zQ$_QK{^gw%*+1glq~Uxnt<_{>_67(N^e) zwdvoYhdjsx$Mo5|iZe?pl=@-B=6bzuFAF-7$YK>z~AZ)`S(A+C?u= zRobn6M`frEQ*iZ(GPV89iK2X6)(7g(8c(I?&;SwLXrOI#{t#OjcgR(mcUkZq0XT}% z9-macC{n8|)JS7&uc1&UC%*ChW$$udNw<;w{pO-E$3Fys$OY;$E$uOcR5dVIkm=K$ z*MqXhj_m{K0@4tywuSclOr;=hH|hVWF`^%eoyO)&aA(Bu+g}c4(PG(MuZ_7@Y_bYLWvj5lJZBaGc~;051!TJ68@V64YWyzI1yYaePB(6e-xE(LFlwkSltP|V4?nh3Z|~~VO+BrnQHuiZhz)Hi%YsG~g2dW7`BnqZv2ES;VGb~eSt!|J@>>Y(iOsAQ>Y4CWy*DoT ztuaw=W;Qr9Oe3tYdVlL-bjNN@#3u%@N?8lO>izTzGo>e1G3M~ur#^hN3gTgakYji) zPZ&VUkZ(^KXJVuiQhT>23XLE@=XpjLo(v%hC#xePLaW*xEtN;dy((h6w_niC~sC5UdBfa4HSJFvcGvrM0k()@m~lMfa`UF5FB zCp|oVL#tSi?qN3c6Po2eY>+lY*f_N#QV{@%3t>rr)AGcXMtw+Ha@s*dz#9Pd(AnURK5M_gcRVq(JEA=h)uS`xar`imz{YLf{e7 z=DYr+%Zevx_02;5EKxRZ$vfK#DB_>W8{d9F#}(fdrAt}aiHf;j2dzK%!-MPJk^nGW zX3n3>-TobQ}0pr9P`4mME`*z7(L#NyRjDrcxnzOz#ty91ohP`eX_hN?&xqkD!F#uuett1q_2GYCr!5W5!Amfn@x^g; z=)%xBV4!{Xm8@yqMrb=M#RACSJ8TsGSqfZ@DX~jE1W8AdRs@io`_{UMs*bR^w#03$ z=1pduq6b?*&F1Yjp2C96%sWUA9iEF+QryPmn3XR_u^M9dV3Fz4s9FmN7S9X3tJp~L z1%cUKIP<(No&v`uag}Elp-D@Oo12kE_wLZBIRVohpt2tc;d*`<5d(&qIu_0PT{FmK zn3VrX;_TamE_{&cNfntVOq!z0=(L=B*!*<<*6Yh`bt1-I<*FGHIn44IF{zI`a}Wydj7wbtjRYAzLq zrM^Vdu&<-7AkU_Kw-DyFSSwyc8cX}nx1nfFaknN@#K@|8HxUQXqtdw?qZ2${fmFuhJ-NL5{;K_|ETy#zN?1&Fs!R zuzjp!GEon1;7CA6@hnlTz7qY$`a7qa#CSBe&FW+xMTwHB8v+nbxW9^)ZX_|Mvk!jt z=8h5drQ!}(ZQP8xp=>t^fHdX}S_g+Zx&thVdF8ZcqYH-mUU(_yIo~@fq1S?cwc*{j zwD$-@px(wSjw#H)JX0|a}>~9E6Eq-C3P_J*-krz;F4y( zbQm2IJv4(OJ(0A?wp?w5-_53!l?zJ<0wM`Ha@lIBpqjhj@e+yHlzNUCkwkrZuP2?C z{7y`VvRAF39#%8wbJ?<|b^JIQp;n~(vZtgS^fq6g0y#hRoWNf=)#yiZ$1uLMil=6r z$YQ!66%81@hJco9Z#f^Wco}8^ii6WkMa_aGc-U{1Mx=uL@myZ*0KdR{M^#-Cy=U}M zdBC-8CKVPafYfhg&W+WX&SSn9kaKYY$*w6rveu^qswj*e?{G+GG0cK7+j@ zSsgt&9|o1CHsswv2MZtv-Q$|l3K2I}4^{|p1cMATVf}hr8klNM7bI8r*q0!{k9csX zE0tu9O?DWxUk{R@>c5X+`tN)w{ENhmAFDx*Nn1RpRuzbEo6aHC3R&3LWQNd0i3A)B z3BZ^lBl5F-1E5qeIBViI9$HN(bZxWQNckWtOlQ}+ zrbDzuW7x5Aw%?VwY;r0PL14N$YGnK@Kx3@r-Kb2SSy)Bx4jF^u#zS`DxLmDzRcFuS zMFTwpKaH*|Loih&9gFe+i|`7|)GBv90l*n~$Nw~f{tX$*NI{y$2Q6*7<|>Fad35)+ zcss^^^%))sw?H?FDOmw0$Qy;AH02M3NM3c3gk-@~qZ>>_)SA!qmnkg9YmYHKi7kQW zoq6PRso1A>a8_a8)KxIwzXl=s*;qe)2nD@HN__O`u&5siUXQA0tM>Juli6l20hrMC zV;P3uy&!Sfyh@qrg%iEI+dD{p4NXb#&=RP>+tK$vYo z*$1*3l6`7&;Kd9AB7NKn=U{WAKQH|THaYK%@E$K;|2>mS3zVCn(O7DI8DPWROp&^8 z&scWq(lAktn27k=&vWIWrG|{tUm`qzgHXoRZ3CKeb9X30C2nH%k<&2Ti-rkPPr+JSV4W0E-2*Jf(++ zD3?go1e@$JywUfL)d7YQM`qolS51C;ohJf~gU{$%&U~OxYhRk;FP@bn>H18Xr=fK` zfwX-HW%A$vnVE^31X!In(6vj*XOWlVEu*%7SKKT9cw-+~jRznd!T?eKbI^?x22?;? z6im+BAsych^@LSn=~i;H6t?YrSXY4eHpa+38&$k1GcC*wHd9mt z4cVq_I7i4-9aYGYZ&ydhwTDWUrLLQK%$kqIt{m!iuWCK@`m+9$=w!(Ke=QS8+dKON zA)iXZ68_WS z5jjYZE0PJX$RSv9=rvC7%R$uz^VqX_*Rw77 zIF%u9&`t}L$#_$4Sj)sH6?-q0&Q|JC9aWUfVdf6#Beo0;h0w0P?X_y8))*r)!6cCf zxdNK+41f$7#yBs{ZAu68S9EPb#>GB5A&}%di`Ow+O1)eg1D`1CYE;aBhY*6V5Fj*{l{8MmM<%qZPJm}$$9L72p0 z8TPZje=<=u6ybqJVE0QLbD5NNhf{U*b0vU;KT7uERDt1oUc&pALb-Cill$H%NJ?uY z5fGzr;m|pO#kPSx-UG^?96G3O2WAp87LtEsQfjCF6TdEDy7{pI& zO`+89wqnGp=`8&3eAGO5sG@*UDtPVtoVjFF?}_(9GF7>{EJ7{hy&J0m?akdfwoUHe z6ARdPQgZx8#03w#lOXs&RAWxYuqb?F@F2+002?KdH@4?snB+xYM`#-897HtQ!BaX- zXZ%^M@`$S=mxBw$8WEpJ8J|nAPyWO#$=CmDTvY>RY}Kd-e)|hx`(H4Hi}JYbCIe#k zCyjfNpC(#4?=E%z?321vV&sFpgJ_hfeT(C|p*WLZb_7|e#AL>(^ z|IBELOhgAErKnd^HoiEi1Tc4`uBn26#>NK@FZ!U}}{brtE2jk@X_|nM6z85bDFJQ2*`5g0ZQc zOH`}`1ehj1n32}cO!Q9{)xQ2u0No-Y-LQ9<(*9np@~1l^M+(g-*Ev`Jp_TIkeFC<+xiRvp5d57OF;Zmo>I_{(8EO0|e zAFSPZR+DK7(k>HnF8MO+8K(?e_4e&1QBfA#AxE!gZQ*)w7U&9idkQsIGX>-`UZ&fC z8>f?lgYu!Bo?yJ59b7DcVL;bA2~Q{lz*WQ3mrmdTE*MPad7Q|C?cr^Uj9x(c4*I3p z{Q;5XGJdy|-~lqC6EPq#AW|SNQe|^*b#h~6b09Y}mwa*o8<+Hg0xSVGmmz}!7JvIG zSUEve77SqUbd?W|U*%M6Ctf8vtbO20)QYx5ZYav@&8N@r-#y?%)MIJc5D&y)hQK^~ zdbkMRAd#LTuhFR z%eqRg#?zVKol#fO#JadqT}OFBb@uo4+S9j-`4RvAIz5}5dC55bGmZ~fHD~9Z`!UPQ z%gIM%x-NNrv-Hws-~6dJdKP=rH!{Aw<_|r2F&TSvm+!scbbh757HzWZJAd$Qy1dYs zHORb7%d+-C_9MDpE~c|L*C`b+XEyYrtCRD7!1P~vHLg@6R(k98{-s5Hnm#Z|lg0V? z)GDNFm*eZ}$u)xwSx8g}b~)g*IXU?p{{ zH8a8r`6gjOlWCrJ%)QU~gpn~Eo_z7;$&3HK$oVH5<)ctkX`MmGd7Bn>H9Ea|@#?2+ zbjF`7TpGG|^v)i=8ilm(^xEa<<%@s5ur0COW+=L}=o+glqb_Ut*MIS1I(|*Z@1XuF z(8s3lqs{#%*2RnsLhF7hMhkZ1cF7Oxz4;-}ZV%aaZr#;s1x+$yjjy89O&Om{QdxP>zyQk~&Kucje#>O4vL8$PRhrS(An;SnmS8 zdw@KOv};9g8|1OoDRI4`-5%$!JKdmf)2+hSo{JsUhO7hZtI8rlZO#nzR4|os;6G+r z*qxjv&BAJKH2$ox@xvO}dCFIObg zM22C6{uG8$Wo^H2K9>~ZJ1%dHMUWGPk|SyBGU52kOU@)u^dE^>OIg`wBBxzUqU}pz z%yE{f5Tb8%zJHQH{HiPzRvC$EAyMljY8?Seb*>-bg|_JuF^{sbM@X#M)*D(CTI-Ef zMnVg1(PI$=37EeBUEkn!QRLce3)Ar8@j)Ltc}EfhJDj%C$aH+E2Utfg{Y zX{*1kIIwK*`x~ zL|Bw*n;#A%E!woqa+fBXr&3{tx)>R$WEPuUu3Cs%2R~O$Gb5I8Lauu^LMGai(otHN> zD?q6APCEU;rj1*dJ=2bbP*qbKLq~WL-Xwye9VhWJHcj`r*I1(N#-`9XTi<=YTZ_!5 zrQpzrIYBV%9Bt^4%i-u1^{hP{SstB!g@2E=PbJr~UFpE0Ee_+jpeE8A#VRrK^CPW4 zRD)J7Wa2@C!7v~T9RSp!9A6noC0emDj&9GD7(`^PP?Wo}d-e${K!!jEtFA~Zv|^jE z+)$Z&_0TSDR}$&nxK$0f9y#r2IvI^1Hxg3>{mdp2TO<)Zub(tMQUbtG6kMT*cYh!~ z&rQMog0w)6Z~$MBhmpkX1(Bj(2+hila`a@sL0-Cb^Sk~UY%%HzfbVd2N8P3d+uCA0 z3~N2UI|{?!tu84iSQ8}BO1k9U*m;|LBCW;5#=J5iBuBwp47VA;V6*mcHbYgXJphqE z43a%E{irqV8Y6pLpGMx&8kua)>VIgB{K)MUMw882(6GICd zT;YevYn<}j3n@ogFu^lRzL6v*35=_bc+P$OgBktX!rF>Z%IT(7v@T30q*27iT0x(sTE zaXW*hSKLn8*%-v7BlC}YLkAm=r_FaqvP2(YroYmiDUyaX zh&^D4z6XwvYHWn#O+DR$;|E)&tOAD)2eV7EHtjt=@`u5R=iw@47t+9CcOY!I#8Thl z3*cKGvFwn7pEWZjNP&Hz~hc{}WC25WdBK*lbt0a9hm$-HC)yy*p0L_=HM z-rsAH(Z(2+$!K`A^QDB-Nk{@@6U0n=suPsVta?@72{ZMrpffWHx__O7L>Mv0lfiy2 z??u3+7tP&HLe88X3?oxAoWxbuovHDMLSoq1b?&$qz@BKrAQD$u!9vQz*^@QyLrBa% zVf$$NyKY1HLt#gXM?NIaaW7vy9s295^a|UmTm^CCw(`tESXovu_2)N$MIo##yEH>2 z_Z4}P%8$;Omn$Lo^M4~83+6{1%fXFZCgf(i(MlB2mBP(k@IFb!a66fG$(cumTPaCo z!6Y%T%-(A;A4oqmAOXIM8IyY%v9Nb;Ffio4T`NZD+`{XOFF3;_u{NDglQXvKU^ImW z>^b8jF?MZqRl=E#?Ye~*Zf|TCuT4*k+k2OR`Sb_|2|eOI9e+wxb>ZBe+}htmny`U| zHdH0nx-)2!;V?r632JKobkFK{(9>*a%v;oHc2AsS7`9vF#+?pj!f>0#%p50dPh?=n zTeHqX&vqrK6z;7_V$|&(3nWJ5=B?RcRTI}`Gn%2$WfGF%JdMf>H(K1!4rM`dd_PfH zoPwVOJ-~Gv41XH&9LyxN*)+>sDRGjVd2mK219uO=*FZ~vs3|W}5_3mzyC@C-n|8Qu zfz@4Pz}?qA3M~d*Y5}TK8SIz0$%ro-h8JLC;*f153Flw%Z`qYejCfjOw*$x#}WF|v-vVZVRd}}By zFrYADgMT>`#t^VqhPJ2kCt)gzx?uyyb4zR=+pP|P=<-G)HcWCypa&2eVO%41r*d8D zzA&K2;ymDV$kJBRYG8I4`f)~L2c?~71t*=wavT?dK&aJeq}-sv5CNqPTin4=1y)p4 z1mA~YPZ(sI`^lo#t>VD`W4awgfo>-!N;{cXI)9(M-Q9V zg%V~GgS*+1pgAg0#W>cos0Ecte)2k%NR+|z%@*90H-T)MK?UyBN#KBa_qxv5#}>qB z0v9nnnm{hb)}>9Er0H5SyPE#VRip0jK{U9xZdgbAd&$;V&rMhg=5LAkb-Lx$vX08y z4u1&6sV;56G>?HJy55Jop&|)B7Tp-2_NC%M-|3!(SXb=_^AgY`7f7Yco2A}HA->|sF z_^@{gak3Ac9G@;dW>JqT;?wK&@#6UXet$N;nx2j?6)38LHh1w*VS;RKvSNb{1*F7XsJInUE;Z00{5O=Sj;L#SARZt z{svtj6RSL(&(3eIZRYgg`8-y8b3IuQs(QzO$1_ct+2JhklaS8owZe+6a5kBoX^A9j z8x=L{_N;LHi@L&?y$MPmOoJnCT~~ar}2MVPo7uz^xV%kgt2ar7MI)5YfIvt<6 zd-zsxYz44^!Q>BVyTUo4s;cd_HQCzhhE&|sJs8QcPRm^^#e1BBscoA_Bf1|ta zv{4nff-u(mmCN5-W~|-7;C~W7FJLQmwQ0>9@_PlwlJFIXWOK}NZ8w#St32!ZzQIO` zT-WWuj=uJeC4;i`VZkWOkUYR@%6aTD*sClt*rQiwWc$nZvHs{Qu<6Yy=IHjhy*$smQw@3x6PnTPnuW7d_;7 zWDq5^wdyvzj%bp|&xb_T3z8MMwCC*JUgo&=gDMw!O(;0u2ssq)f@W5)Ooq1{wx7sd zBshtI5Kw>`&=wZ)ZrG*=`f@Lml8NaRAysgqn)oafKp~I3sbshqc;W!@Ry`cPkJ?u^ zz1sKZtPE^Ywm+0Gp?|loiz%{OyN;aj+Vy{|RgEfl$0}t*u2SIB00&?!>rZD?YCdt| zqSS5E&mXjZFsMoyH+6xln{~DXHSldA1lWhsHlGaGNQB=Q6|onzdg8E*12p;w$16|B z1!yG3v3?#f3vx%3{M-MPe*ftQ z9ePa8zGpYFkl%~4{W}3s!zVFvcYU8dV4rB(_~^@HLIkz$oZUHE>#(N_ACMxr^Yc_=iWd8&G*c*v@GKKznsqW6|NF4;@=kICL%)0AZt4O1KtCiqkwuxfb`rN0pbsE0V}-l z&yE?C;U(iGpAq8=WVma%Ev{3V2@4TU~eKwh?{z zui)tu)l+kcFMi~$NxC_kb2dq{?$ag@T$#4n$dW@z*`&X|_YOdclxSI7DQO-ok{}2S z1~V6fJ8&A^M``rcRT{3J-(0N zxwX-?)``k;FaDd&>{?qDH*0^b7VCeNzk9+Zk5}t;^I=i@qD^?!EN6JNsoQEEKL6Nk zFmS2!P_IMv)rZ-&v+=*{`6jf!=~NVIdN~c$vXfJnWnyxJfs268DbnOwlBY$KJC*3% z9#f=AvXc5AD01ATDX4iU5^bfq^Bs#KlXbm0oJ4D~#HBEV3-oPmny4}x_dS1KJwC0L z^>V83GD}RVFViBb-GNPbDU`Uhf@WtIT%jV*3liDr1RZV`q&SU@#=qd5kaw;mik4adSm`}=2ZOU%%$-g-hD&lP;mlXnk=qn z*8q;&@Oyw9MVV-2rC)O#ICN4L<=Ebb0+o2bKY+RPib=)qqx{1C`;sN@vlw2D65hKQ zZm)_o{vmZ~FaTE&wvr;u{_YVm&Jb>X$gvc;gj6PzzwA>1tWjLZv9j1FOZp+ z`qNt-3j*nM=HkDdHjvyEpFWT*en(+5Kak81B=ZBw{6MJRgE`j@%L~ls{7KiDN-PvU zGF#DZ7B~KadFKTa&&y&c)WBC>nzMXQJ2Ll zr{WYUr9Y~)gex9G1(tut3=oB$O(BYSF2;BXD&Wut>*8<-v{rOWONJ0M8a&Zxc7?zQ zK2bna2~QJpDqBd5bH1R;VI;nxUe`e;z$&GnuR$h0;X<*8Djdp-np%m)o{Vko(;>l) zu+2_ko4YKwAt1DabxCOkJ&cRQGVe}+zwyGxC6Q<#pMNU08y$cDI=e1Z{1LyJ5QJZ> zefY)Ng7Sw?gmpA{0P6)7*Ux6xWvb&86OQN-xaP_XWP60=>BmWV^o7Le#)au+p}@bA+54NSKve{Tp5;ibgAj3h4; zUhc025?)$h&2{1O_&ourq>Jh@_k~WL09AZKO}a0F%pZSw5gq(-fm2p;ul#3;oU#(p zZyq8id$#MP1zpb;v~UahVj^y`iAJQxel0e8XZT)@y=f*5^#g$Kp;wq1B!KVX9=;b! za{68`8Sf|MQ{)P;!#ZC;WiioM07epiCH;Ocl6))o|B~PDXo=?c_QqoYk^8@G_V%|k zFYj6lKM;T8cdfV(R*aJX6i*DF@x<5|Po5z>edRCg)b=VHpu`@FdB_5$20O3}EFj54 z>lgT&2l@mYq-XZ-s(C2tIXk`wyXPxDN6Tq$y>ggno`WXQ$7wmI_V~>)W2q&Yw`eO% z3TFnioR{I&lTbCi8js5rB1hh|_0QX;4T3(Bs@#9h`HM)5uYX#u`1Em6-`VDfmI3V+I? zx@}i2!ZT}9uX?FhwH27Py2WrP8vQ0d zpd@=v0>i<~?)W{Zyb@%ZXsBQaOxk=_g2Y*Gnq>$>$3}p!bOu-stgKfTmd;0vl;rZN z#XO*Qs;C6Pf|=y&yY13zU@>|#S)@XD2(|bIZnJw=|2nUqL{@p{zb1dx zzor+kKZsTwh(=9GFVm*-v{-Fqey>eBH8n6%dIP-eUGw-vIazOCds5hG84f58$+BR@ zEb_v^E~;kXMWHvv8rzC zTe@0m=!UvPywL!Dig>&5^Di-<%ou-Pj=uK&*6rP@eWb0iX0;4AURr*0TWzH2zL|X7 zj2A+b8SII54>ZZbph?~az?8*k-^~T_4Oz<7@`qH}`)x30DHP2@@EtOF22o5=#r<$t zM~1_Xh*4x13E$K$s75~bGeJrc$(L&3)h1xFTO$t^IH1cQePjx3*OY*U=|F#@SprtE zqRkLbPq3^xl22f{EP~$@Y}B!o91=cE(T#FRW4yw;SE?+sg-&wFF-Rpnd6?>vahLJ} zBak>OnlGfhkTgRz-!`%~M^lHX;qHAebvQ_}S?n^Enh^7u)FD=NWOqhOoOpHJCShFH zu23d^Tm2-k_ltl(J{a3UthZeTtI;+2a?QDh0W z5hEe0W%IaO?}(oWkC1kj@F*Z>w>+;q>k+RQd-9%FED;?|Or&AX36_80EK-!Rb$vdc zj&OJ66XX800ke@6Xv%<<_MVGWHZY@V`8y|*XHyW`lad&u)h%7>d`W7;{RbSYhWcd!}_wCRc#=b*RTb3|xD|;x_`FS-V}irM!YusI@#sRK9)hj*|*o2-9K6x4IhGNcp|ZMr~P zyMBjT$RksM6DL^7gZuPbzo`sxkvIe;Cx}Y`Jih2>TH=SHxWCLY4SZ{Suq=z`ZH*lU zV(UY&$pH3+xri(#2a}@4s`IiiY}|>%xRXJ-;XW8aIj#bO2fT*Hv4#xiVn+C~7tl|W zYQ{ptd1Qcp8AgA1mO&u;OkF8$*=`LPgB&uASVF!y*lE03-mNBMLo{V@(4|M(eQkU% z7&@&J0F6U6LKoJnZwo(&7@p0a6mq&a89$D;8 z8NKy#zU4>LL1_m$L*9k^r%E=PeOzk6KZFg+e6?7CUzvXjHh@P4@k3BEHnfK^BbGdc z(_sdIY>s5}IiW@d`%u0qho%Iv;DEr&du)d$!c|aAIJ$R@#Wy7lZSuV&Fs-(;@nn-P02-u$unR`?}cH? zD*p*1l=>$RE||^nIkfN@eO{74b#sWexP1wPO9T3-`OoRYd&3ErPcAz`0~+XfD)B|K zqaPvKa$P!fgR|GCk4`vtesS5sfr0>=e-YC}Q>vrO#Q(tlN$#Rw#!YGR_;n*McEj*Q zA83E2QH-v%F$`l{i0rJB*+3KlH-1NMLf80+uph(gUXnK@xkb_CCqip%*qP`!1RcJ3_bI1 z&@*$GT?T@+{Md1`<8+`jtW$63g7eVjy18FA6rz)%uT8b`^mEtDk`Wv!VKy1kHB-d2 zWM?`y8GJZplAM~0KZip6%f6RaJDE}ZfJ8x;VDS~V@PAKb3olNgQ2Ox!6Yp;W4^Aqw z9H}Q}$9zJAr{IMImrTkuR~=~wYDtU~XI;`Rl5itp8)x4C3j)1@U$>v60+}cRHZ+rA z2p4}&AT}T`Mrm?$bRaY^AU-|{b98cLVQmU{oPCioZ^IxEh4=o78|xvCxr4(%zekbdl(TKKmuVHPy!hOR3J?Y$e@e?)WA$nyB%y_ zhjDNde8Tf&Pj0wgYF+v7d;d79T2^p`?OT60+GU?&Z}k3GYAaw&rTGL=flzG$pa(1p zfC7*OAOp}p;0XKuGQ+%8`5>7GO(CTYDLFa(?jr=| zAzp^Bu$-V+7eq;AQk9gGJ|1Bf|8PBRK3sQmKKXfam;2b;TfLzWa&6S6K_;qflExzc zfpHI{wM{mf^HaF)}eQI5apiG?&}X z0zV2cF)}eQI5apiG?ygL0@(vGFffy02p5+Y&;mY7GB_YFNkkx9JYhIyG&wM0VKX%_ zGGjSoWid54F*9X1IbmdBGcaXgFg`ppF*0R2GB7q{GGaA0V>DqoWjJIqIW}Z8Gh#V2 zHDqL$pU?spTgsITObiT+9Uzi-1Bf(o29XRUAX4WbSoS`MWU2#_jQZO^Y}VNzl4~Yd zdNO9p{}~RALg9xP0}CSu97XqY{wEv@8*>~gJ_i?og$+Q=BtfiA%*ye1 z#>&n`tV_%!Pt3x`PRt}q4B-A}g-MQ>g@c$$g_wnlo0%IBXW#_!HvmiA8X*{fD}e+O zE5#}X3;>k0F)?-f8|iOsVph)o3M6S`W=qV*O3X~GM9idQYwPrP^S>?SpB|>fY=FPf z6&y@m{wp+qnfU+tFiHL(*5>14HZo&nHZn5eYJe1)bUg#18&{-E z{OwFnyI~@}B{_(45i)d&ek@o}g8>*9=>Ik(7=U@3{6*@YE4DSVgyZA;3#Fm8sUtBP zGt0j)k+(Co5i)lAX>0QrCcuBMIXhYXwE64xHzogCQ7|+&m9;f7C1z4}G?o9KZKi*g z|M6l?r~)ShV_{2CqyQrUDigDCvi*}oR+hgxlrgn2ce41KKLD|S0Gy+fgQ=l4oLi=` zfq{XM!H(BtPhU^Z+63_k2&4fgyhNg(DHu37nS|B5SaEaIJU$Q6g4_%ms88KNnxc-HslBuJuvxD(J31DMQ*%bi81OLYCdtq|%G4Ze#(8)w}!R=`1I6WJ(Db z2*FqgL5&~p5%H0s>m8u_%OX%tdg0cg!qzO^!7-;)knO~o7s|ns3_E>2uDFz{d%u?Slj=mFWsc40_5K81&3ixl)#t;;gnEf#g z@E}d2-kVEk7r9S!rwA*yZ8t<%z{7cmrJJuuxB&P2_0DhHR=+)cxHY}f+uU;+IOgRL zk|)opT>z&cBw`jE)cc8@aMvey??yTp4BP5!)Q@Cn&p^}_3#;(xNAo1R9a(e_q-9d( zv;W>2hm|py-OEcNyX@w_$&K&6274*gcK6bsSB2udV~E1rG_3p__HO#!*K}B$?#&lW zT1$YwvbK>pkZ35GAta#Q+^vdoPeZmogQOkxN#nPVoaR@39hBw{KJ(YXZ2^_Dp&aw& zLYHm((x!rCHfGWex)rYgML$g~@Z#4+p%<%^>#tr0t>q*8pkIB_-7MTAf`ZCyZ8pQj z4kkkFsYD(W-?HTq3Ut{B*Sjuykd|_Y`uaJE4>yvW(81j|cWxi@&vRjzQdbB%gr|{) zG#?{XruQEuAJuDLS5z9vmTDPxAF!vfd7SwFZ2ImFZYl&LwvyIJt2@LL0Y#3jxUuoa zyZC!)vEn}ItP)DNodZPN-IUm0Fo!J!YK|Q4+cR8at`%|B!B_o1hEK3py{t-VQy=!s zst{nz9!GjA4tC$9P;Hsdxtl;xB@%x6f7JBxoaHVHQOc&TN@h z49?3{U$or~BK_jK)(x5LduK(u|J-r+UoXTV z(sG5_=0D$@=`AX-?Iqql2-yVmDVF}cL zni-;Oof5{TAajeZ0gjNZysDsj$6@DzOdFauOrD&XI}PXYEAT3;D_4BfF=NRfz>H%u zUI*T=d@7-oYMA&zWcp4jCsGAPYeO-Q!4qP*g~G}p;0MGDHT!mq>=W7ZTyXo-`;7On z)E~?`-CF12yD!|G0MU>5^|NJ6NuzYC;{%4xf6= zZnEd}CkcJkziFcGec1+u>KylOEe{14R~y+u@7#@y!`@keeK0jbfBJ4G4KbAo({9hf zL%i`f?LeEPCuH1e8!47cICOvB-ymKVsgZt~dAoeB1JPkM&(A$eQeSeg@m_X7EU+U% z-Klszo1w}E!5Jw+*dCH#=ugQ;KZq@`0e2(1#L94~$FPK}+ciVp>FY1o=svZtc%0v@ zt>A>PJ+?PTPp)LgKaqd-jvxMN!Q0k(C#2xWzS_C^5#NWEdDYIhcqIBKgf7M{;-R^l zlq@UY1K8XMy24|L+zov`foUZPzV-CHbDYIR;WneTAfRjTw6Gg(T_i$RkeO`$7>WR3>%au@gmp|vN1@G_rURLKgfa`kqEYRW%Y5F*&?0#`jXLq9D63kgj*Se3X4bP`=^xJj>P%Bv#DU|fQOt@3(#+w6e5~I z7gjz@owT*-r!-AV0P`eC{jWD~>gvF7gk^s<$fP1#CB$KZVmOrw;Q>C5^RcOJb0A|s zQN+g%u7JZQQ)&r~=DWP9H7Rk2m2xE8YgG?~;iJ0McSyefjnHxa8=({XnNmFoir?@X z$%f=FCF4qdOZfhcqh$_itvldxp?PoD^z7SM zyW4fE7AcvID(wKbs`p`UcrwTodXiZoy#Q^4xS+nWV93uqLudDZC^Yll z=vwyT)C;(-ggX0~GoY6Ar*P>PegqP6MdF1dXdyNT915sl_6F>hdxGlZrX;f{VIsyw zLa}p+1h8;f4EDJIsyz+EM3QK5)Uf@a*>rAD2t*RGm+}!gw4u2j7W94*QR>L~9rA(R zxJQ$~Tc8QQP{XmEPy^LDY&y86{0#nxhyRhp(l>UhaHb8;FtEtn44L1o?B?}Js79jM zX7K)d&_!x=1C*X9iKK-+bBIG1s z(*r1x*rDa|EuzD@XYdLBo}t;Eprb!QK^}lt8h8sXBp?)|oXm|0F^G)BZ5_HV1hEHV z@vs4cIOVoSzFSEu2L;-V;!wKE00=6uel|DXvppI1W1c5k}6h}0;-Y|{0p6r5bAg$jhVPtg} z2=sc+igg{R5d^24H73#T@Cwpk2OWLp;lSO})0s5eYkK*7*WAYq zM{(T{+LLSN)0AOSzlRJ-U);`d5=IBS0uRn6&*n|(4wM_){?K^`c?o#8^JqJWl^th4 z9y93?@O$(uP0sN2wApT6YC&&_X+qbQFCpg;5fOFxKL%j&9?1@Nd>Y-C*?gXC#dPzz zOH762*-un??;8$t7k_cD*V()ehsY!AckT65^GZ?}9HP4{#B1Uk9h+!0oO2fDXf z>#0@_^UsvUEq%DXL&Rk{mQ)5Mxb?UE;A#1 z!dpmqE0Et{_v5_m+Q7*K<63kK5eUb5$vY;yHz_$Ag~D`1CBKH@KtZ$x=u=pWskrng z`NhG*1vftCV_ymDxoJQ_NE7*mnUQGUN69I-Z0RJc@jet(m!4$Zfm?>dn>6$umtGfS z>E*0j1{<;hQ6diK8S~Yo`kOLRm2<5wy~@T2ze4kvGOaFM)k>+9VH9Kc0+_+4WLq!$ z)Nc8e<7m-hE@2uv#0iIY9R58CF<3FG!bZ2euUK+X@N#^uFkL4HL!S=6R7}NB5A_MP z7rP86BsDl1k1R;nloC1jhRbBT6wd@G-SUExXnSJ8p@gkG7P$}!jv2nktyzH{%%@ZX zsb}o`tn&>@Pn98u!*C+-04QcT^s}{$ky3Saq4cfQSf87!g-eZP5A&J!b30Pd@f$?C zx56yw@bc144TcNu{rqydswy{oSsRLKU|oRaNhZG%w!|vl{dOj~YXbQtQN!2X$Xiq2 zEa#Bwtsdag6K1)@QI?y%t*u-=kRdRk%9^*LuQjjPrXUb8u%R5R0!WH4WBl|aXI#tb zJ1ij)7#I7}@fZg+Y^CA@NnAS;x}4jg?yu)f4gqO>;4G}+gHiNU9k`kuSRfD^x-;;Y zV1P%(+8n1>zgK^5P9CyZby|8i;G9BqbCJ8eGLFPJw-3!z0E^hkEX_{4r29%p%VlCvb>WKW4X*9AX%aju0Jw~l^ow13-JBzM*?73F{>BDf` zHll?8(W8D1cK;g=83CWi=*7jSXwqhke!ngNR`u z%gsVx_U-3r^aXcicAq0&IN`;#$XM(Q6drP@K|cf}AeJpHIF228VX)YW0i3SqrWR@r zr53LrswA~OYOwa(n#IP@=&yC55qzgMsrED%{QS9eM5jNLH(lU(SRm5-CuJlcAs&B- zx&A~JH8;hyP5=dmQI1ybNeqiF=Z2J<2SQp?*HoC%2j`W^jq_XV{opQAD8m>xQ%%wu zdOhG`-d)xhOsjlL=C7p<=f|bLEx7kc-mB6tWQY| z8-nRL8@l3Sd*}BA^Q5)umE%KtT7Qmzph_SWQz)b?IRN<^9`Z%p^s=gdC5+29>+Lp{ zvIs5x(sZv*DuyjPEs|^=a&AL(4{30z(LUf`|D9BR(#Z;m^C^LX#OIR~CEO zOFs`Tr?MT^zl3f5)?Ot=iqS9y)r_ACM9Nz2htL4aoF%K!3X(810;Lt|ag@N9V3b;+ z`Y9(a6AVo5-qB!mL{Q9u(_D*v(}~M6WDh2EAO2;~T(k3~lNtOq1+nV-{|qI*uq&$}s>6!fbqqws{vv8eB8Xdd9bbHll~ z9hV*-osC-@*Wzu-pC$a7Ej-Q7sdTu?1IxZ4{5(Bo2d}$k6eE~anrN=Kd%{5Ln>x}Y zOa;^$?kwiupYhz4t8ZMr$291<)d*wnE-SglL3`~GM+S&CC_}`NMCl^Q$LkfJYrk}~ zVaOFeJDhikWYHV*C#mrywMP3)mPD_Qe|tNmGNC%yJ-91z@$d*6i{p+f%2u$DSQXQXBvu)F}<4cQVxnXI8Vn9Ug~u^hS~I zkY5#j;(?#=;)TB>pD?}siDS$X=8H~zCV071fdimtn9(Q7qk_+T`kK`(@DuBr=aS z3#tkimMN-VBUEe7EsfU++s;3aq3iRcn;W%xgI@0eId&smVe-v~LLmtSh)P$w5lQNi z$y^bmqt};~OI_Mkr;w*mk#fZm3BZbb*M_G8zO?BhEQ{%Bsz^poruAp_1RSy|q=tx! zd#+0(06zh7w9m1Lu?&W?FNu3|@c!Y2C9F(WcY4iQv#ptE@HO11f%SBWslxb^i07^Q z&Di(#K`))(Sz6}Wizu0{^PL}Tt{6SL_b(qgM{ka4)x}t01S)ZwIlB$=DM0hkSC!AD z5|8kQE%MR!R|d(CrLqCsk-^X|$+hu9<@U6VPo=_a$*(Fl_edGp*gzUmaYYU5_M;ld zNz6pE<5Q7hg4kf)<=@|X%i4m+J~WpXqIAyf8flOrDO%oSo^c3sR2#B$9|qTbv>vOk zwYPgzbmhr(wkK(Ey0#uiNLq)ApsLMxI-XMZY=Xi@y*DRWoxQv z+SLbp*`ze_L^N?KNpa=(NCB>}uh94kyZWDaU|;e5v==-6F@NxMLuKGc2dV#DD4}}* z?QvMY)KVOsu{-H1;mKO0WMWQw!08SLci3un7D32?KRC-+M};51xa`$Q_IXDEO112hs4rDN>Ir(vl_+s7})<*@MP97oLHk;!S49 z)wQSg24x2NGcJ&#JH&nLeD{wKQegH4rb>M7aHGRY90|G|88b4*VM!g%5G$|PjiDhd zC6x=(jLf0|;aX)>se2E}K~1b$V{7B-^!oJc=|Y8Rs$(JYRMbf+CuK&nQ`GH>YKhgH zitfH^jH=#Pbwa5tvM-O6p-e^=Lfw{_sbjDX*HNl!=uSf5OI%ytN|KHN6K~pq*Ikat z-N)hwlXqCpH}i+v>YMCu5BK}yhp*+Mi^tvky5IFQxKH+qLzy3J9VwtxR zI{%|4ob)ACPfl0E|H*~l$&E;E+bN9@(?xvfClUbe4qo^0|G7Oqd@L82!1*q4mD4ub z!X74`@RL0)rlOw(Q9H>rv}HA`~I%fDH6_JFa+dKYy>eF3R4{{!O@o^g-0_ zWYxa+y<0c%ZTHS&L7wY_z&&Kf`&C~>=+D_NtCpgHX8o0gP2Fsp(QP@Pv%Js7`p13B z`Ebc`%`c$W+k+EEg00WXpY!%^JtF;T+s%xa8u~{MZ;#KLPl6fky7&40l5uMB1!khd zAVS18bFnEX5jAvnY-)sY2w1YmSQ!bVe8WKH7&|e;as%whzFIy>Tir(H!{)g&a}UEd z4E!hBLpEQ#o`78e!Z0Er&K5}tDc%-|`9A|)J!?p2NOtgOiIQAi7&yLGuHot#;;+mA z%e-BDmGNIwpl)Po8bO9TahFT$>s&XnM7IO)zCW-%BKTRkkwKtTgblGZ!U7Eoqy3p9 zsY8u@j|GcBRc_!FBpPQfTBvNeICQ1-KdV_yHbg>_L3K;k6)xeJ4?!=;6$jH)@91j8e{#LoQL7 z$c;~RFF~E(fZ)pb@LTyl5%gLm#PQ6L%CQ5EWO$kxfX3_yisOrgsIhUmr;2>O z$oISqynAAzNrcfz^uI&mKf@IJH*&mr?u|42s-fO23*6Wu=dHrMw9&YD^P^zpZxai4 zX8v($gVsy9;aS&Bt-0Y!u8sziF=|Dr z$>MjQO7oxYAeuDUA4N8W4VDHUtjFVM-y`izs1^Qf%vbfa*#o&xCbP^00MK#Gr;r>U z)_w}kT*6rNs6B&BN2;L@8_Ao-wNN5i_|6BzabK%SO)7%BSVrU0Oj<{Qwp+(K!RY{J zf7+675(&J4F^9L*4%lV?imZhY=ge1f5{4+)fs-apKCarz3iLATF*3|#KEn8MyLi$y zfvO($G>(7Eo|YY6AZBhBy^)m=r|pa^$6=k!AZ}-<$e6*7Et>&&6EMD#To?MX~X&*)$D#SLzN&(kVM4$v3rfBgR*Z%Or>~TM0J+sHlwgC!nd6_9uXNd>j)E z^$X0y-$sfvlOSt15T>Z4hRIp406dg&_S2)6;eZecM|rV4hRGou1=EXlXGLsjM|&i% zpNvzUvgbTS0FtK8_w;^+^@NT~esk8Qo4l?SS zc2y10gS7{b*T=VqSNBR8yqvSGP%lyGc5|Dlbx$GhB__^y$T`X8{mzCTpI3+$3Gra} zZ-*(DEYV0;2Ns^oowMYa+CR9`1C8l~xQc`$#M5O+wYv!~MOr*JT=IchA&GXmQ9&j; zpzGRg;38TJPkq*EW#eP~)s=`M6>9?i&#Ymcv_|rDTLKo($XCtFf>d3C&C{|0d3um_ zSo{|pNbf3PKi~0*%teTzkcFDnsn>sP&gwzW!DBqN1$xi*>qRpM{Isp{@v4~7Pey?9 zZ0gf9sa;0D=;wK23k3j~5T|TeY@TCg4a67pOAK$>TC1x9u+jeAzd1#R~NS_SqE zzn^IQ{^Fhm-xw#sG%k_Jau%2kXgV`zFrQv3EgvqB4_cwadD29AKL}}dop=5H((KL2 z`u_E{5un*^f3dXY)6#K=cGvtB{GcCgyT$kK#0utL54G9Z|8gQ?h`$7j<$sjUzkL?} zt#q>fCo3A%(6vS9LifI|xiP*|i1GIRP$eOkN=$~c_+g7RE*UOa&11X6R5U{P|DDK<)@@AM=tU{Gws-0oRk!MHOS{?tdk z_ybQMM=;2(AV=7S2E?#4gn)HYUQ}hPR$MieYlB7H2VZ=N1s3|CTut0|7 zf&nQVs*8l2eRM<+*RCN?Nv4#8Bnz5)%1%)=nfz+2>HKe7@Z+ z81yu&%F9(R_#%E;fNVQ{yHC+&9?()w^#XNX&iN#%aH;(MJsv;{V` zrG&P1P4$94n1EY7Zpfz>FAKpHn=(HeRpdye_Ckiey>k<_QoDyGKGx*T#qq-Oxes>x zVh}Eqc9S0cHY4L&8bWo7P%_7`HY?$C1=r@F3-$T+^-ea6C!Uj-oY#=o0+6YB`Ox8Ocw&~i1q;?m5$olZ_4|;3IwiJZwH7~z18ubzc-hAH`|0%2N@$Dui9@!g)aNV64AU4 z?AbD9mmVFyJ4ZB0?%15}IN&d55TzgG<1saxzwyb0_ zhS=~E`m1t$f9eM`dLY(OUy$D4J{Y(nf3JXw*XyCJRHDpM3|rBd1S-jm{uJ&sKW|!K zS9J5_l(Xc&RI~kF*5W_={CoF0tKaFnj#p55DGbgcMyI?uQ&3zJx`MQtbX}FwV~c)N z!tddeBg`l>EL>ja(HP`8n$v#p^cvBMHU3<1?Jt&0$+uH>ENQu5ANRHJ?8(tt7L(@d zq0L+RlrVMzvjCV+0XtHW} z>e8}XXA07?*-b(lwguNxVQut+OBx$;U91#W2`KkRc>dA$+nMdPni+rZCk>*eLn%Em zsbVR;2VIB3Kzbc|g$eu8U$ulju?mZZ-`*Tb``>c;8Lv4s@PLR`bcB;&$&JWK9la+8 zPmdqLH0M`w_0_Rpuz9qtWxl2bfTTXH9wp&YDMJPWd%wH7gHN!fTBt6#aiq63p7oWu zXdQFB>RXuSin5I7g0c2JwO>ypilzdm2kROMk8qN5Ww^p z3zn?83|N)}3ay)e1e?!p@6*4f0cN=$ZnP@Jp_!Tj0h}gIn(D)Nb}_LztmU=Tb;(i; zhS87o=EZ1djT}WfX~qOLc-c|}m4VJY_E|{L{>eEKXSFR*SiG{JzsS1ilE;KVfBAE& z3`?W!X$=30i*KD`hv!nbJ;S<=JGIa5bluAMqQX>%Q*Bcn{DL%{Z}v#pG6z-tUmJ(m z|EqBbKgHMrlp4s&@*izgYm@ln@#`(OS2YTgVdYx(p=yDgaic(+Gj0t@es`#+BG@f?<+38odWe?B^uIFHPf_c z%%;xSr$4ORzs~-u5e*oBp7-gcG0?qpf$7g|m-Xz*xLaHe%{8C5XYH;v)nDWrGNJ5T zVpCh2QxG)!n8HCDki7_!eai^N7s-Z0XnK?h2=b!V%Nf$)b; z$vVLHb?b7|S=Gniojwg-@GuM}mUBkU?Vnv+Q$^BkXlOZ3mygq?+SeJTt9oo_%L@0n zw>b=n^85z%C_Ia6PY)dLm+0Lib=WM+aa2Yw_BX)A|Apkfqo&OmIn5nZCU~4OgFLZUPKE5o9#HK>uukJ6GRS z0dpjWDfg>B?L-6oxT;lRc*M?JoWQo6L54Q2w{UE+gqB;8= z*c^PNO4+bF0MEO>5^GpethEA=>4)SIj(q(M1Y-yy@=FP9tk9~m!CXv_ev+9Ft zOP?-rh$@LsB{beVGU6)|AjnU!oo`4YlIo6d0Y*px{<1FZ#an)yS7WHHLa8=k_j8m# zIDP*dPi8;PWZz$ktS3FwjN*(Me8n~#*|;d(-5cz>i*3ejKq)prQ3jE;4myx|ojIY5 zYAR3J2q{dT?rUI;zldYRXqJlR*W|XdyE1Po+zGj3r^*f$3I8%n1{yHpC##8ld{hG8 zVSQgTk(5QzBJqzH(b)=);Y$>;cQohkeITr##{1wwgW&V{PB^8sME zv7}XR(O_tgu#Eb$bB1ZPX)-MX+^R`|6aUYE%d5GU)%1*;b@5+KtM=NF~oz7*SpHc<#GyH8AgrInhfMVs%|3`@Iz zpJ;8sZ}pe#mF$;v7ie*0@r@$HoDh#KGQUwL+gbRAKbxP|_1TM7n(!rp5Y@;C9ZWOgdj^9OF1(i7Jsv z<#X1HkzBVM#we&e)B*Sfr_8*dAz%^)(>5enB$BaTaWC5=Ioniw2EZ5RVaq7S1@`S{ z@&K#=kNN&=hxd_eK8`;1`*4IeD$qFE=eEe@)8pL2&ANZ zXx2^Z&UFhlnC*taZA|Yc6J4EEuWd&F9^tI5bhC((gmTnd$>a6b5l5h{fsBf#H=#h# zFD();0oi;ngLJB5Lr@}KX2ApDy44v!h!m8MN1uj0E9FmD{l`u)cWc3z)Q`tM*~GLz zt0$yq)1YJoz|nYjpCf0}V3u?RO`~T#VZ~h74LhUw^Dns8R&GZizIg^tTpJq&FfM{m zBtlMDGubjPEoGUGX3x;f(=UUcKAHegUl5?T<}vZN;5}@~VmZsyyRMIx>B;n>6mNSh z7S;Wnhujl|+_b8B!Ke+gpqlIsz!oC*`~ie2e_WV)Y2uj=v)Wb^VAsAuSag38E?c}{ zP0Xj{*EGpRHKjalk!hGuLZUyRbf@g7g_cyh(nU%{IMC^Ul@Y@VEmQwa>3{R zh+;H*u!L)W$%ShdDG|<)wFe`Y5VwXYY;Zp6=_uKMSGWCMUtkhF9*QoOKu`pds^s!} zCKn{=gu!DYHuV5H(ienfWjkdZ0LOFv>W(7zgpExxS3H*?kQ-Eq$EVDcVnwyHpy3xb zuR?-AuAr2`!FK2i;zEDv<+!#C59!^r*<5&Ue}oML zqjRJeZ=xA7>oW?EF*NaTj1o*#?KgckZ9Wo=SGDbkOa++vgKzHn%N>p2Wtn%rK4?h$ z8CYDK0A1KrN_Rl9B3*gCP@3Zh{8p1$2%J9~fvr zD}5^2s#$!b(bt0Oy@5r$`lXl#3{nUP%29KV#t!uy7zp<9k_53X+6xRkdkI(K*ZIx3 zbyl^NhcNJouLw$Eo+jrfK;Ru|jG@Z(5eet+aHJNKsN2;uT#3lSy`uV{ltHAmp8+l4 zQt}$|`9Wh&xU8{0t*?Lh!7-hprThFnLX-)5buX52MM7% zV6XYULwzmDI;%g*+RA_G1iLF2D`!V6YYVI#pS_@&6*Yf=SRnz&3^kZ$7S;T`Rk%&O z*0F-1M2V2ZaEZA!f>G2@m^AH|@ew2@L)Q#DXG_^D60*Hd(!3eJp~sX-Q5_#jeCLkb zNT;b%dQTJ7yA<+UDFH(!X#3odp;@W=Ia?93NjRXw+mkkMzq{k>--%sJ`r5LNz80S4KF`I{oKLnO+A zJ+T7_s%Yp$&lHAYU=I|b;15(%idy9#vMy!5S*%E4cFJO9@MV4(td_}=;2V)5ePC>= z_%P5DD)vr2q$a9~zhi3=GzqwhYmqbwiWtx=$^G79SuNJY- zfR8#?AQTN9a;A81)xj)cWT*eZ7@>rPi%E*r+&WW>*4i=|6r3~?#w~0> z;XwM=D=agT3_^{Rs$e0=FKJ|y+Szc%uwsuGc;Iy8_}l$0Fe|H0+3(_FYq)?yuidRn zkzh@>g~y{iHh6Lq+vsZ=)$9hF#wEtR^wtNCoR^N$=Fs0dpX0)t{f6?&rWC~~)i*a2 zqhGqUc9h+ir_Xd#;T)-3OEx&vv*aLx+|o%{l%aU5e0(Jh2bhsluQ zv$xtJ)agD9MTl?JEl(gbj(j^aH%bk!6Q<6k2Zp2)*7FlbarAd({@%?Cl#ezeB)e7K z=_0>}W6A1*=h%8loFJcN9Oh-}$tYXD0V!qOI}3+Ih_Oz4;D=w7;C6&irmvwGb#{js z?dY-H4lM{JoFcX-u*9goKm{6gl!zB8x|uTSVUVmlI$JIyA|{JuD696o-%sx@tZu3Z4kj)Y2v3Zr^>8f2Gm%G0nJoavg7+@nN;(i|O0gnp& zKH_~5FG6P}FyoyDzX|mtsUB11aGWfO4u76Hqv9{BUe^h{+;&Q@v8oj8b4%3txZOX! zSJ?X7dbXeGTh6Q_nrH8H_mge+yPLk&wQS4gJni%*sZv!wd&Q;4@|*G}K30m;8)`YJ z|B;K*q!^)pOv68i(6Vh*91cQ;09GS*U7H56LFFk$C4Y5#C|7DRzExYbIm{=oSD?rA zTi?}i5F!~?ePd!vy8Q!heJTSct+?!bh?!dc8o296=T*vyS6#=5A_3I%qrir0%jVN` zi}WNa1DIeZll1#P86Y7q>F*dySy#6RzoIf*Rd~EV`g5{Ckbh&Mgpue;2b#0Jzvjxu z6=}Ml++l2EGKr^5j?aodC}a|{8Cp8zGA0i^ljyZfnk-5-^e5D>R z9P>BE9)lKkY+Kj3`j-asDo)1KYEQ3U=)0HVh#W|tA+zA#~{ z-|l4h#IR?hXJLT;TBfPsS|~5VJV+>|Ra(zg8C2?E$nFy*a$d~~aWsgURzjV^Myxpx zJ)mj>1-hJ-*_8&KLB)Ll7d}Au{4JL5%;_embQ<)sI}rm!2AE2XD>HC`t@H{jo}id( z)8QX{QvANLd^r+~PhD*vBlh!8JgUD#*H;^X_*7MiOhM4lJ6SG+c>8A=F-umIah?H6 z)nvjlRk80>aIhq%e^D(vHlr}{ z&i5CdkFwf3W7^gY*Une}C&_CXlXcZu@Ak=ZtD#=y#)NV5;5w<5n71+xw4uAN9|PD2 zDPL}&YX7UC!NK`oZ$hO6x`WaH*}48hbzZyV8@C|?#6Q2m8OqV*PVT+ipY$`Dd6+}5 zK)ST~@;g0~XiKg4{S`iuJb8^tV z=*2D3qkKJ7mbEz2`Mll^xd7>X?cGs@%rw#2Wk>xZa6j?+CdI!4-@5b6j8PPad>R@C zJsNPgSI8?u%pAM%x3N`ahq)AA%d_QTZWU=@j^{*C=9FMltcVJRJygMIC&Sm0nIg}Q zb288T+klFMtgO8vXk)y=k3_~)6{k*!o&F)Kd-mv1-WHe{ zL@fsGHmtFu9eOqTU=HkBLvDuN*pTKyNS{r!tbKzsL{&amQAxr)(zPZq8~r6792LME zu7H3=5en|z4kAe6F5>=*d$THqr6+sEJaH*zdmv`164lFGQ{j*Pj7Y~tvr3W2M|&@D zNwzLUM!~n5VfW5bu7<-sw_L4@MvU2Wc*7F<*m9!_pQN$sCGHPgYES2oh6stHc>SV; zaq)qw?EVI@%%Vh$*j_996gGKd^9q-a(+VH1JZ0ZS#74`iW3}Z;lh#xu4oikY{u_8= zQebs!#~^w|*;&`_@n=0YE^iJoVofvwf+A~s+&ME2MTcyOATy~b7X)aj)H)hWkGj$5 zvlI_%03BG~jw}vDRnS5gOkkX_q$(6C9L88}t)7L3ECsQzJm?{&-;I`rX0T{%Uoh(! z9O_Fb4H#Aqz$+(tfpgs8I>^(W-c+Me&a}GP}KxFgY&ro zld`FX?`PFm?2V*_e&d3*Z&hU_9;yqgYU79%YhQ7G(bbK?z&k5SZNh54=n?vb32kPL zMptFLC$`>YgVfa9gBLumO+BRw2k>O5?hWqDj?O7 zY(qH)x#?!~&alQUWC!WtZR=OC*0D>D`8^=zV=LR#z>G)x`_wO`&)b?&+|PR}#~hAl zOeV1oM=`e2R?n3@qth~R0o8{dBs6-kvse8LRj~t?R$UgG`PCXF951E> zmZRdPkCuFiHS(!%<$Cv~q~|KXF&b45!nSy_h2QYV?`SI0Lal~cu>SDr$@4hB5;A2FaJ*pI8itu z2!=RI&>D)5?@ph1Z~8M|W(cyMZgVSX4}=0Q%LJ>C_*`yX1;_6bk8;p%4h^Vpa>|7j zgIs<@vXA5LWQO(^)9-z1-C55;YG=5d;4_kia_S8@J0$*N^+5mD-;*G*5o5YWTqiE~ zxUS#~-c5w_DR^>fsmx448~zFH_jyRnimq=qC{tIV`Jl?#f!v42&f~3sW85iO?&jT% zNJr@@#FeI~h1}*Kc!j{YY~ly%z2x;AXXeek?j4=U){v*ov;Z{y^pFe#_RAli?N>i) zsexjC0n|hZ6hJCEIXn8qiC>R%>!R@sGAau)3+x1O6uG|@PzQV35s%F>=>eKI?T={< zMo?T3&vkhI5t1Wz96a^XS}#u)qk5~sz9WOur6ZkspLIlD{U3sU%n}2Jp+UHMy@|Z( zW|s+eN=fn!NKmPNKv}jO+S!JTrdop?BaniFQ#%0qk3j$Iu7QIB&dNHsB@G>UW0FD1 z5ZnIE?_Y&hwyRK}mMZNwKWi?Lv%hV+~2PXemcES^?q;HT&`!^po(F{J+m+^azvAIt zkTQ5$vT;l&uc;orwq(*K-lOZs#8CUAmHC$CCp$DZtgl)fi0DF`*UKM`P;$j^x~d$v zC$6rzL~;>ej^-{6svM?gGQPdn{%mh+u)2Kfdie5T$1iI+kaTD`iTnT^A>^WAf!_8}KQonFJzP#2qHPreQz+`Oye=TMN$7MDoI3b=2rWkm;%WP59TB$@ z+!**4@T9aoL))C;-~egsYo{9^pJ1qN4!MnIEj9(B*;$R&b^0y(j-u_A`(aVh=lTo* zBIarUyub>)@sqQ6*t@y-(M;mV?*p4WQTjoc?t$Ru`WjM`R_Jp#sezoXvTl(l;R*sV zIyo|2AtQ=5n+NDOR=@vzJ$Aq= zZ`7t^(y{-k(`6OwHN_lGFJ&06yFN5^W`#=-XTUR$xHJWX^=%&!7@1j0;OHT=2N;OP zly>aQc3i&^tRe8%v_^w-!5W5bj)p&714{uMc+UEf{X35T)^0HNbN6W;nvcUeKe5{6 zx?Iq$Z4Qvl!SCXjyTqLm{eAC+1C1m5czfqm0IL$b>qr&BaLt5e@+~F}T64`MV%s<( zBg_%9H|(JvMj(?NW=_Fx>mS_}-h6sV*sAOJQe$}O|H-^8efl-giVi~Drr63S1a8fxU;vN*_#Ka!SL$aA*lEU8ENg9cvx>IQ??elXnS>U7@b)Dv_L6YX$mRf-Su&u=Jx4)8OYwJwoj_S{L%n@xXpXym4UI5k$d&rG7Hh zyn~8dF3G29p-u|~Wj>eRw;92zHVE%fFc3nEAy-D4z~&nkVJGx*1MH)_k-Y$;0ujWV z^Q41c*8Ss(oL(6xqhvdGTRd@p9c-IZ*UKL*|B)ht#8*EJB)IX15pZflNJjRuPI^${ zF#}3PmNF6KAmioZSrb9c7(}C}`Md%1;7x$6!Q{F2(`rHYr^zzE z7~eDbP-45p#|^#D8CW>MbYcSF@;8p`6LQ+kduv`0Nv7kOV$|x{)h*^d!+n&ukvy+p zA#sIZFf6%lG;b{QilHnGEK8)Z-UBo6F%M!qef4=RN$-==AorMV^jW~@%eHC&Xi+mi z`0$j{zjm)zW~6prWn`$EP^D6+kOsjnGkl>@lS%GFLya^ue5Zs%Luo-z248HH0hqj> zvl(3wtQZjr_CXYpp<*E&a6t*?1jdsH4MnlC7*R9vcOeQAkp{Kls2EXVfLsq$2t3-l zCdeR{k*k(Occ8Z!J~TjDQ)4yZH<%^17?I$)iNbWyI{)oC3d*cfZ*`$Qg)iW)Ak-P zJqi1DkiY6X0n-=AUnXiN`Trc%6#)`MethM9YR(t_35zaKzVcNGY47@qeNT2j&n;&u z0c@8Akj=lsQw2TT<#;nw`IikLcvyts_Xo3|_d6Fw0gSpd#E#$9*HAb9vXJ|)yb&u# z#ozsZZ;$>hl-5-u!hdNHsABrDIl;q_MXjQKn$QAn@g(wP4JnN{>jwsUrN_n8T)7eE zh$>xuGIZ=XGaQ-E$VgkQtMEu6nDM;vQ%u4>(B2K*7=5@!jVcJ}1tB1tHr3!?T0@-_lxBS=gX?5#%rVoLgE{LnoR&{`{Y2N^3CQ(r|5tv{7>2kM5GVf&{bqi)pnO+-} z?3Qx?*unAs5n~R^6-b4=BukFg7y^Ajo9&E`K@tdu1#zF)lyMxe7ho8IoN}^xGsJ8Y z;5_)?A|6Ffl%ew()OHR6<$oCO;G$roK$XXlCuldHrQ_UaR-6?-GOI1wN_Q$|9JvJ) z-K=QD$rIa&)|$zp?|&C{phBoiy0C3Si@+~R)yD4yaw&<9h>14Kb1)2LO)A-VsX(>} zXfAzdsW5A8@wStSz=G41`1Z2CzyCFdEt|k0!Km6I!_4(5O#WNtthr-iHiifPcZF~w za8o=+hZk>+rw-`2C5IxB;!KXJ?A<@3cY0Lx}QgYhLq`LZhS&ZetZRq zp#009IC?h^8>YSFx<+&hoQo>K7N*_gY1iPTU_zjY7*WI+C*tTvCjSbdd*|(__JsSD z=Z_dDCk0mYj*0v!FhY!D(bPt7pcCVstGnG`XvE&t)H(EMvIMSiL@EBb8=?*H8A9#e ztesc|8=2ux$8w&-CZ8wIocTq%Y~_Wy-5VC^qWx$FqiJTbu7kLB*hpc|;fcM|H_?=) zJI=+6=F{@SnW*c+x3iIf$rH1gHD>fwRr}+egYTCGSV4?;)d@%{5L0j6U8wovxMv7r|JsW3%5z3(YQ~gs%Xh!!eN$}pi_yY)L|6fRUEt#JJCFr^ z-{%_w?eCjyT29pe2hQPO`)@dhB>IP+!oteT@qf=&Y_8x=Id6$S-qso3Kvy^JdkI+E zAZAs1a%@c6ud2T#9s?!)j(~w$B%;)Md%qbAAfePmA=RcKjL5}CDD`<~TH0YjN}7sH z|2#_J4A{%*^Zuhg5}EAPtS&dp@QeGDem(MqTLVJ-G|8Yb&-|_nV9fG$^Esxmm)H0H zS9);Dn1n*;Y(D-Shm@k}q{_e_HHqto%OZNr9X7%Cq$@8=-yEvU_rr4OGqDVw3x*PD zR%^Q0yvT?o(MjDgX5(98&Qh2Qa@A_kS81_5^|(-GJ{8UlV=Qr{p9VJje z>G^S5lkx$YBW0KdaL0jR;+Xs+3CPnx+cTB^Yk#{Y)o zMk*EH*j`twf{66_qyFxPGkh%Tl_@ag)^hPXnp&>B|Al>M{@aeC|+*_OU2&-26?5^aYRF-NB&>=EmS&=mUH2ic02^h?hRj?o4@ zeMkz)2HhF+1nFUAITMad(8WMrh)_yFZTz&ZVZoHJEpi02s&}h$hbel`!F*a7npO^A z*V;r??-!^7QUI=Kc_8QpN7-z$4K6LsWy&=L{2n}DYq5iYG;TX27lP5LXN$WSJ!4Z_ zRQsey-)_|kAkj)H1vW(wc-BD&QtY4q!-X8tNBtS^TPU@8SsA<#% z`Xwpt!n5o`E60EQ>m9R+6+9){aGi67qmdPOhWcEER_>z-AS8qOieVnFOEbWf%y-8S zhhquYr2LvkWHE-h&5#@D*v?FAlJQB9Ndf2@e8r}N%)`Z}@+%eN*g~CW=~Tg2}~<*KyqHhWlU&^6IO>dRW3u+8)oF`UtKL$J6RP zwLp`5vi-KhbiHSo8TZBy!C7tUscbA>5t@K1jVN>X?8N&|Wd^{?}-!)N~W#=vrS=Tm0M~eQ~*>2MAfk zNQo>nGvw-}BFOCW)LZ(EMj0&om%fT?X&QK-G^3heLj$^7@WM_9x zm$hCR6(MY8r&n)vWvCcf`X6Oo0$9aO3)xC*v8qDXFx?y-Mdlxo8gE_#UIGy^8`QkR z2Q0>>eTbwwh;x-1++~!Fr+mOeJpR+o9BhS);q^}D1giJ5vqF_)S&1n(A$N_v;_|hL`;LOVPmc0AZX91C=8|*?j<=FJ~O=tVNyB zID7vV&|yQxY4Dp>8YH$ns{oz*<&zP$-!lQBHMPj|S3@DY0r9QBZGFK&36nTJx^4Qo z5hP<76uTqkUQrLj`nn*xHECQp3X;*dCrV{9lp?!Gqj?oMBzF}=w`Rc3>GZWrtzkToSHC!-!fXFuzsCu9ju{Pw z`|fX$;KPoByWPJ8+#bRl&+8nB zm%4kURthsFML~#gf!9REf)mFd)mg ztI!P7Nwq|hKT+ue$C-t0XcUW>gC?+;$CV!WJO;L>3=&co-E|CpKx<-ysZv5?ata^i zy7@7xRJ!p=jB?7XcRo6=sGo%C8FIVI%gTk#8}P4Nk?!(h%~H*0pZkjd=z<*hi*b=~ z=gYJvFmd;D+yELg?_J0DE$Lp1Ua))nf1mqDLWBRL z3nDJ6Ru{TetZY0QK8by6<`0{Ri|YX|0W^1f`lep3pct~J;aMg7NfAkg+9`w zg924MxE|T@eI=FkCRRT(G6+NN?>Ci_gMCQvCP%+INC3yS^g`m{3Fg1u<(yzgjiJ6Y&&t}~S52d+c9*l6` zdo*Uuk*9CMY&FETn71V%);NW!NKY>M0ZcFs8eow&LitztMy{l3^?cq}0ir35hJeN)0OijKBOfczZq$aU^4rV3Xh(tw#AwqgFS*8m8#irv8dbIDmO^^~=-hw56_JVI% z*;3>c zO)Xu!`fZNxo%M`7Be!7p8_PLH57NbrB>wZH$J#m(RftGqinD^2N$`vws|bWGl!F*6 zEuf;i)LG6fTLkRG6OyeJHZ4{(W77C>G&ex}L{L(CuVg_!MGjb8?3GsK%L4X>0vJpy{f41V`{KYn_5V-WM;xP5hHAw+O+>-E0VzlGV?tFm*#iQNq!GKtXN-6oo+7ICd?g}FcHqQCJ_dvHZuV`<4@O-@ zRawd*zV+fX^?^KaNIJ^qL?slDJ&E$*j~KAN6K$^eQ1sLZGQiseDMh=+Ob1e+y?AHZ zTse~g(`~LEDhs66riLOA!TjKUlUTYs5P#_=z5R6m;j;W4SZ6rxqe__}1dO3Go-~$x z=9kzyt~~F}>!EFR$~ZVS&O57PANZ5R;Vfv;r-+^kt-3E$*hJ9Gb zj^qAbFvzZx9IHTkGU*Y0`td z3#tXq7v{L!M1@�Q&pSWDF#!h-`nL*Gw>_7tHEh3f!2Ncgo#SJaDrf61&|5-y}(` zI>}zC<_g}%2`L&E=v>Z4htH(i2Tj=AkpSdqKA1~>k^GR)NdrL~kvF`_gFx@v@@=?D z4-Oyn0Si`&{oqBiVmas^% z^CijgPN=$hS6ODXwiHE&CobOns9eEHCNR^L;o?iQbRm*JA#nrEe&GcqCuK!uf1ZTe z$|P(T_nb?)uy9$v{Tq7!cNH4c>sq9*E?awUl93}(*$6~)DN$5TW<{D~Ih^sY95c1~b#K_9=jA~9#&ueM$>t!K_ z4{kwM$?Yn2_E%Qh50pRG8^|OZmE^JP!nHs$0_G7tf%tO*1cUr$HA5<+HTuDSN%Y?Dqxlq(Bf{G}?b zs78J;%*4fUlV{Of{KDU1IPWFMkozlKiqc$F9I6^h6eQUS6_OedqXcv&029)IBnkxl10!}LQ=C8y#FgLJ5o(0O-P-UTup+r$%RG`!pBf>~O8xS*6zH=cRC~^u^0g@<^P$mh|1e5~+ zMu_ad7a0nP$w&noDuTS49t=6e$&84VvqtF$c@(Z?0#j3D z2qPi!d#Qm9>LCC8D559m9~4p_zz{*-kTauxn+7SbpDB+Z~k* z$)JEq+qW9Y{ionjfrW~Vj6}i4MGLUO!XI9zMiUhV?oHe$$nCpOnIpO+#{+=E=?Hg7 zS5Z!RlcOXts%JXdv3WsvBa~2hki`NkysyzBasps`xp@@8D3QGm{)N@HEe8n(^omuZ z=nh*!?%SD4oLywV4p%Bxb)-8TxzC%;w5=I2* zoJLO^j~q$FtqQj)2jb5~U>Bry}}Kf4zVo`>$)Vq zvU~$u>(tJ4Xu1S4<{YHdt3!O1DIqjCC;Qe?q#VAKCbu)ZN%fhbjI#hB|}Nujbnmq@{z4%W+t2&n&J zl=2fE6$;F|ZOVO;FawG4ph2~49k>Bm1$}yd!+u;pa|M)JlfELYNn)1LpHm-i7MJaj zq^u8tdAM%TtS>ZY;G=bbY5hTwzmrvLO7qc znB**8v{W0n>2~??Gm8tB2w+eAWr99yG#w>1g`4kjxiJ7uAWKkkNe&4WJAhi(NPuubt@|Hi)ts6R2H9{qX2CB4=>X_&eXM}Q8gj^Lp^n9l@j%}& zfl1pej!^3Y1p(c(SAzU`FZ=M?X%|HC^-&-cN*?ad(JbH(e-tSFrkNHAY zCRmh>6M#KuyBV=RzOwtpKy`Pf>HXNir=ebg_(#Cxz7cf048L2GgP^_N30?h&I#!iA zNW_Us@F|T}TUcEU7E(xL5~qG|<3cJbjY z3EqT7XGY&hTAmBx^Wd;LseUFj7$t*j-yK}6sZrKJesw{u6=$?P`S?S*+wH;rD9_B=@FSD55n#cgv?uFjS_(>*|;iGg~I4F92mIlweSxE4xKrwSam)@XVdLEG@c!a ziUveQ(_zk0vfy|$D@ep%kO}fMjHg?mU}Ld3&FfM!_e|`4Go)e7pd^uXxv?`^%4cki zC+*|$ps~<$GCMKq%oUp=8g+~66 zg1NYvv;Oc$6!_I_vowOkB-716#@N|+40_@g2xOs2(z){D%Mj;8OgtEx)`0dlq4KMVIVtjl93>eMI;kr{P-&Aq%!dcGb#DnbH$k2XByCIubZr9Tx_ z>*k@r^|kNUb+?j6#Z%9#RZ2U7Mv(<8qTLyp?m={CtG%=6NpGy24Lf)X)>_5Xpb2TtJ9Tz=w z{!EvP;V}VopEcE5bI-bBxC!6rhs8u3Pe4^~_0GqPWXC!m2Ow+RCo?x?tA!|2=(i&N z-u)wlJV$}`lL#NYxB5|1-nFPN`g9HvTE0MYIYO*ddsG0>5vw)AV)u)Myo+yz^b0jT|xv}+K*s8$^M)%*slj;m(M=>|P z=Pd60uq7E}id#;0F%1utK?MuVw2M>u>p2ASAGs2JVpVzkqI|&v|3bfIs>$DMf$WB_ zhPUKaT|y{VkW)|R^KS+ZXXm(6%^7|*CgF?F2(!7ISD!U_e0Cmcy8~7{bamj`dk=0F7W z3dI#%0OO5sBCcA`3Lzb4%^}BhEw>MAB6^?c2!IIr)+*8wRAyjIzL=X>hUxN?w@MVt zP}ze!bufU#$QehEaAy(>!0i^9gUd~-zJOlHis>p~GpIjy04RX6_S_E~XZ&J${RK9i zXx@D6(Ela3CLatobr!vuELHn}5n_59a+pie??8IKO2Kl&HO514|8{@Gx5lnJ-I4y# z6lDV&CR|3B8!Hn)r^}7sQ$dUqU9-!(t&5K*u9&!p_%#GY9r8R1P@TG4d;1=H7YIq^ zUn5A(^Q%xv1u)3j(gw*SxfBgF&1_NBSqRuxA=?nfLJi2;Cgw{GG1)kTvf5kTgcpqx z6~>_AJ~WYOQO#*&(NS^&3FxhE>F^%Qz9a9Yx{P^-iZ5EN;GcFmDIfvvqJ~~F$1qsh?B_Q)0BG5B_2_f>g4$%)*+24OR=wlz zP2VGO;?f#2>)7wsx_IgQfj@9;yXO9+P0?$Xs1OD?J3H6*)Kkq}x|}0+3M3KSn&|f+ zbbHIyay@r&g9=!%*qo-_qh+UT_Z*gas5PC0J+ZajALkcj=_0QCvgrVI>*;g1+Hzo{ zAogZB0M4$|2u$2Y<}#mJH#z1swmUnj%-K%poV;L2R#Hmx?(FAlzmUqmj@ae7UKP`tu z)|$8$YkEQUmWx??+Go)48q?f}L|dm8W1=Ed00h?=r7x)_yq$9}PJ(bE$k=gb0nxz< zV6bu?{Mg>(>7?E6_M~7ijJ!)^dHgfNwN@gM!AZ-@TY62Kj-d@O94k9|O}#d!E9@Mm zC`Mr@-4}c*`wQ=h@~{6q__kUVD}6bt)P0-AI8{?uto_?`fUbGNtGqw~`rCOz=}~{- z0ao4}Q$(kB8D*Mu>^8kNT2H?HK3+LlZzmw+Kn8n)UTn1-w)TB?t6f=JpN{cq@B+X7 zg*`HjR2PBH@HU`y=NIP@H7<&fAWD@8eIM{VLeVrQtglhF_s6VeU0ks>($7Mi*X!0{ zyzpLC+W3~U?mzG{fVZP5?MRHKZs7h+0LUG~BGhXnjhno>&X6x6%dGzD2jL4P(TROQ zp^1|Uuc;2+Kh0Zj=>>#4ci1zZS9V-1FPh6P-;=VBUVZsMzPjU4+k4B{haAD%le>+T zt<7L5Ms%xO%5!V1ZFORUmXP{^7V<^z(D#{`R9~~Z>BA7CPj-Qq3&%Jv`QP|#0vPjx zLIppL!=Ub@&_1~kL2YUTj;NGfMn?2hzL^c~*vG*%1yl{Uz57w~(G${|%P?`u%Ku?{ z1vzd(du(wGX{u(yXX4=WOvrR~Lgw(~sYSbka6DDoOJ+)dJv17#4vgD!Z9{e0w-51p zw2zHG)gG*ZPm#loKlOCD4#zVl0A^|5R<%3errT1H+CG3Lzn(GHvhsS00y6>5H`WO8 zil{YN>gaqRPQBPo9$+F|YHWr>0h3wV6ehv-d1duG zK_`25SFu=bVPOX6B7Q8ul8jA7-V+m)%`RiCsFaYnN5kbnv-%&-#0q>;fMA}i_RTJN zTHfBBFM?yk5i+lQwm-*2+jGF@6zO>Q<_~s~<+e=|={Hqa^-7yTEs&y#OCojANq2(P zUVMhB_Ys7r83*c3-pi-UO;4BBwwBQu!MpR7xZHRMUlHtM#xrw5cf4U5@C!i+5)Uxv zGUnGlc!m)DeXsCH_ckK-fa|IlAx{fwBG3BrPB6g$Luk%IAYoM!ZUZo2V{E+;2wxe- z3KS@qIra_`QObSWl4!;P#=4{^#R540vnn{uUyEEhC`hX!eayP^82Z@syp(b(VbMfZ zM+Hz|?c%*~mHvRp_Rs$U7>=JSw3eqmjysj8gP$^{b%#VoT+?7s}4&48$*` z7JwK)q?(o2N3xR(aPHiDqDTaDNlvtV7%Lr3by0EgViy3mJ0~yFMtqz6Om-JH2;Ll< zs9m|ZdGj9ro$!HpztI3DK?wV_dhw^WkAVpZguqtfZaoFcOC zkYD%c9V-EOCfa`wW#tU~0wIUHdBk)6xf7c!IbgVD&DySZspTG17JUAlQSmowU*Pha>>*hhum13t?oS>|@@qe!PK*$|4JIA`$?zpkLTuYH&md$5 z{~{O><&7VM{sex2X!@%iwwE(8$`1UDi{pu=&YuAY_p{ZN?jao6J9Y2TF@?KrvvI|m zHZqO!$|J}2eQ|*kxj7yjUzL`hKb?5nW9*pE%iePk#h1S-tJD8V(NBpT(sJS%+yH`I zo*H1JRQb?D+1mmP?Zj0*S8o(p_PmdcRQ34>hM#@{BWzMMzq?0v>uATrV4~Grprw_evA6IwhlHb7G9XSgbSpp#OUcU)@ zKc25(-`&CNtWM~FX!Jh7jJ}*tubZ{6FAEFINy`xNC^=XH$N7ZoP+A~cVK}InAm?M( zl)esx$Rh+3ztE1v8U7BmgMuIO5~aq|ZGZy8V(>*~HL^N4Rz>9czXg5`Nrub!tlp)q z?2v$da`3V>bye~xXNy#$sJ_;K0ZVN9!#L-Q(62aC(>XfvEvMregntbaJCBlXTRI+dQu;^7N_FQuBDJY zWR9pC$zn{agc^0U@%C~d9-Nq8z^YuVmOLf|1{EY&v~VsCu#JGfg|NNfp}|EK#)j$xOUQxefXkMD>oi-=RVewdh27V%{0T+vAiWXZJ6@q zR2DYlSkiRTio<*|Z6aW8EJdK1o^+ZPkdJnMJvc>Vd_~siP!5Aw=U}FiZOx`9Fh`vP z07768CWf-Y&9I{#vPSS+?q^x~w^uf+-`CM*mgXbjB#7mn-MDn%3RWbn3oMOcr$%^B zCly9M{nhC!1`pZ!>*^iFq~lDyM+^}lcf{Z_y9U%Jx}Js!m0xCNssP=GiaGGF(zL}h zJ@_$ab@iGqX*%d77W2u$TN(iV%4jz|0Bw;$d3&!PW{Ik>$9xN$kfhfvE1~9yOAXx& zF~zT8jK23(c;DMts3)!|>_7KJ%OM#@%(CRa?3_8|VK9?fDftK}4k}BesoG z%Ti0L`rC)4%&{6Twx5+tq!{< zpx1=t?Ap6ES$0TPe5vx8inqjNK(6dTACV7|6iS}smaHRr!$($iRImg)xb)9kPJSj~ z{XE1KOzI0h&H{&}sE4KoYIPOYa%ZQChb{F+!-dQ3x-z6WEDvB4A}&A!A`|`hLr2Q+ z%U+rs(Q%an+g>%TZLK2pAwdPUHAF~wlvNdx1Hr0R^=pKsbckvDW`OB_X+Kyju&S4J zS#)L;rXn;uGyo9`38OgzIJEMp@Yc$r7ixW`SQv^rpI5O(Z&(AVCIjP14|}SNsY#cY z^@zEjoA={iDhwbHB6kEPe#IHbFk8(ADw}R945%W3xkH&Gv?R(K7{9+;8mUcR6?#%2 zY_M^pus^S{`T`mm5{DfLQz~!^#OUOA-$oQgS> zrbt*PbF3jHZ?hDuZG{9yXXIeM*m4b7q68I-^@O0xT^fMy=*d?&k~5y6T z{kILcF&k|yavd8yN7_FO-iCSFX1gAy9_c(p*u#>&`f`gMy42b375kMWeJ<36%HX#A z2$H0zunPda^Q2V7xd?zT7F@B`%z|c;x%5v(S|XTI^}Cp<|4o}uK*YczO)b57w6)Q& zgvW(WOO}?JnmuDrrKK1ILWVp7bn~Lc6iR?N_3WhylMI<=@f!_XTh}v1dNPGe6O)k` zq{ER71FSV}HWO6vgvAr+6R-msLESGMSQBN~EDB&Wsj|VYb!%@GAr;7i;f${3Y3G=u zv*K%#xY{U6_jTNpZ^-9OA67Wdj+|SDZzlpyJP`^Ys-P4iogP^LF@2Q*x=DrY&~MK- z@Ya(8zRIxD9$@O;&*=1EZrgXTzH_#JvGM^w6)fB2zgY{kHbT%IjNi`o1}Chsn{RHg z)dvLWMCRf$k2@vpaH#QxY_&Sv6}!w{bCnOyphB)O5=VCno%47GOAbAPW0WDlPp8hM zv<~QmGogkL0Szd?{3D*4w}HXNv(#DfaOLo~9M7uMp-xwuN{0o88Auz$B|=8cuh&!d zy7y%wUqfRyW2w6|UOkgzN(bC`iL!QcU;#KA`tK1{#j*I6!;UejN&0e~&8nZK&GZ+8 zr6OnjVt4s=je%qy4?`FO9;h#ii6qeT=t!a4#6&WXS{Als-y%C1#_ZNs3Nw=7Ema*6 zcp%-;V^B_bCDrcl@}yE0IzS}Ej%LNjld_$UoEe1pooq;#YZ=plG^@!7jgYC!4*|ha zToUmZYm&ewaIcV4y;Pe)xu`HpGaROw;E&GZ8VW(ff}KrwwN>5=)6pB(RH>^+KNbK? zvCsz;`BWjhg9`lo!#_bs=VfTvbwzDMFUICUScs{Bf10wepF!Z{xigf)1$dN-`6@G% z8?uO7d2xN~7sW#y^(O9QnCIUX1Nw>q4rceJ1Ga3Yt<=)i)Yn>Kx)FF{gqA6bIfu8f zNi;NzO7RsR;BEqCT_45ux7Rk(mhD5DoOI(KkVdCI)o0+tGQ{b>>cl#empU$hhW!@7 zxoc2sg84<`s{?lK%&+IhaZJ?ZL9Z+I?lJp^#1IF%_OWapF%2JsvTU0;0cM1Z)5t${ zG5h_b4i_BG_p>V?oGtT3wASJqvkc^dq zs(_H2tb?#s3_DBB2tK3%9BWJ8LG#ubhuHMoOAtK3Kqgf&aQSrB8~}UZ;fbY$OL&6+8aa+&jo9j zQ~rSBd%&!x*uTR8c*6uJBhOP@dSx8Sk0888MiHh~g&B`Xp$jA3tIiStQ73w$9so7L zLu!&S^K0jTXfs({UCRqiK!AlRwCy8GScF|i9X~}&1;{|DVn5ol!HhL^d$21%fQ6%{ zCbPm6y9&ga`pwpCgp)bJMWVYCwM?qLq*PblA^R@y!+}!)dhZUo+FLOS8nl#9tDk+J zL?3^6DtB{Y1e%&R#^bw}o*V40!JCSKn7izOciBuB^0g%{uZKzus#s!tadj=oq}rhv zJN!>M!dG#Pd}UO>0~@2P_3q^w;9E=-;Z*e*Chmcx;)A4=1Qbu!h|9l>pB3pnTnJdh zjBZ6|$LL}KA$|oB4~BaVz|IL?Q)W*MJagjHjap2R)tae&VL+Ls=}$GZsE!&^E=U$7 z=`+3CIBv0LAV*w0zPnB(S0~Q}kqzouy4^&H6xjhg^DEb%V77wywA17Xycn&>*`b)} zcO$p?JSGXe>l7bJ!ft{u7q00hm+nHM(-*h=RMi)NTG`w8^X7Ws05eDKoYmufRdQGH zL>Q7ntvw;;y~F)e{Kw3zB9iF84}@h;x$#R*Eah`P`A}%_(uP{c_mjANe1_Fjb52av zK*J_u4B*`O^pv=m&nNVraP+pb1-{Xr}jBdtJo zLW(l0x8im0;eMuCY`JS8Oi?j<5M9=p768E|z>guz7L06JN1u45r>??9H5+7qzgthE z>|!5)FAnI3p&uw|bL(jph)yrHe0-0(ZsJG)T}9)!@UXjO~ME?Wi4FE&u)O?Kk{N;R!7# z@(S8^M<#JC1SO!=rq08(ds+MCsdH^zQJK^$WM+gX=J-o52>71vn`=+`HsebXG_mlQm_&1(dZ*bXrwy&-hc?W49!@{Ia#YpGB`ve`E}w zxB20mtK3a+8cj&u@QZtVGW2ww6T_9BoS#A{xi`tFIjb!h<8MCZ)$biAlE_ookZx_r zJ3%GemC*Et;~Mxd!~WQl4Flxv%gS&SfZ#e6xHs`Ix=By@#=q}}4d`BUPZXO(V+6Hq zxKBx6+^QQ1x6%>DeToNN0dy#v zld(K<^Tn@q8;Uo4I^GE-#JaOPE1p7l$~K4*c8wj3-8$HPxP|R~_{Nm)@xBiA@GXH9~+W5nRCUVg=056Vw?a0@3$$%iIexlhgT^BmUhf7Jx$O@Wg^v z5i=VYQhQZ*h6Jb$l?Nea#YYa0vrOmgdD=+H@QP9LPaZCqxo&NHcW&Q9Q3j)rg=__S z)RTP##GzgLZphVDEU&Eu*i^4j&Ikg6tr=?(caBom(fvsR%R9(C8LOtdeE34Pi{EsB z)F*{N+7i+KvDiyP?**1e`|-a1G1&W$?e_mRJ?8vxo>5}&e}q05S=j!^C4EL$#^uLJ zulGZv{+YG15viLnoR1To{Hn%Q_lk02;31G$0>y?Zk*E0367c08n_IxiN|gXnblyK; z!Wawj9%#=h$kk3TKHyPztp5IVQdQThW|W^SIeRg1veHj>P=p&|7}8pfjmWPmFs<Hl1+e5}UE@wWcw*;8v~jX0IL7bzyU8pRw%aTx#ePFn~*|nz+ui zxd_&*In{k%J0DxA59ZUU&FtFBByLR^G7A@uUU|&jL;SWp$f>Z#tyt)`x?GUX_Urzn z81=8Mu3!E0+FNDe#-b~C%3@tr^@d&su!Ho5g|GckqvpBUW#Gb}sTjCp&FnlFxU%Nf zU6F$fR|f6xuRs078XA=#g^0HrkBDe;v9WdAFmmL`s@{|jliPV>&oP$N6VRCXbYDC7 zL>o}&cyi2Ug1!azSw1@;vBTxY39Gcn?59!xqZN(OhqLyV{I?OFp5)5b^B-agfZW$! z7c?Tl4d#%!rw-_L<<;A-Bt-ZO*75D7;uSl{zLSmeE9^cU`gY#TpJ}^Swo1|kK_kvC zai6y1iRYEF30LWk`GMoh(%u}`>_~Br4vOwx9cF>T#v?m}oz*Jb(m76-S#9Uucl9#4 z24IX$*ef)Xg-1p|C#Sc|zB)79@4s8}eeW2>TLCV$03rD!lyn+s z(Bt%KFXfzKE;dQcI%1c$@s=U=GU7a%(%y+4MqJNrAWbVbqA_%bUv20?O$4Jo1}Rn>3Wk}m3v3TAA?Q`gly&t{Ij znQ>c#1aKN*?!C^v{69=r4N(sP6MBeaM|{`Nz0Vl5Wu-o;biRPK$Q4va$3X^Z_=L_z+#%Xne<0Am2FU$!t3{cE6x zkY)+@G=|4MC@x94uxqzLbxWOsCg!)MY&gql(_Crikh~T0!jn~fk~Zg_JR6f?lWt4W znyy3jg|xJmkY6iGff`#;3e6lnE|`BC64J*^#|~Y)OK#fC!||m*ri(x*&~DdTy`Ml1 ztp?%r*t6Q!AMKKSzps({}y5t}K3ipr4@?my$Rl1PUrNYus|%wk0KjFczQf><=Fv?LXc+JZtD zfsU3IlM$DN^~`920SAUt>m-^7y4Z3>82V`otWpOm*m5c%fD~;}6}p}X#vy4zLAzgS zqAE2llvyx#$-j4#1M^e5B1-GgLQ=)1D{@e|F)nCt;Asz;GmX(3J7Y?TBT4iMNH@UE z$mHq|ZILm;;1twEl|gkV$bM93BG02GVOT`TR790ce4oFi1vNdx8YIoIHIpY(kXK|1 z+_07WLb|lX0n0#hEinUfrb#VeqCp!qQ4!W9Av2Xzf}#h0$VxSjBzrj2dhZ_xoblc-aOo1`1kE0$BJCJ_w~L0gZCOs12_PB19);i2{iWFYW>SEjaYJA zbtXPO|8<$Q#ZLoAE3!SQ?JPGbebwJ2v-q9;2>2u15bk3TG&~3i^PLlT&+8(#TJJj8 zx)aR1s|24({$>F#?WV{s-=z|6$hi|zL9B&}B<1$BlyUoLHT46>ds@1Vxs?Bl%@3=~*2pYrx zR85hahwYYFdM1s;gg>VXc5I$xOivqa;cTXn&x_tecqjgWSe&oyXP8_9b8lL+Yq)QE zSl;FK7xIBd{mR9)Mk&uM5MhuAF13J&WiZZ&R8hw7LOGhINJ0}(0uRzqU#)k0}0x89oxwU8{4*R8ynlU zCbn&DwAnb>cw?Iz+qQM`zURlOuj)Hh^P{J$yZ_8HQ}f(U_jMacD?pG}(^5yVSz9l2 z9H*D>OEOe>96U%8zsw*w76smN1;C-w90wcAB6Yw_y+Ra{2NhS*AkgQ6fr^#a&f7Eu|qxno1+-co8X(BGq2%xO2E6?HKUV0gxQ5^C7Uqv>@TDz(bSI53vRs{J}T zP=$T~s*TnD4W=$Ej9mz`c%^tEv?>P@m!k%z6DA}VGIdVrPa@32r*o5DiGm9Xalxv?wbNzoQRaa!DuM1VdR)jY0OBSwy5&4>{=<& zTw{jBQ8Vd*0m0S(Z5Pph)dsa9R5IO!fkfzEV_NWWWv=1~3W?B}ayStY;;j*XsBQ{I zE8(N~x_ubHj2fv}AHO>O(t@LgDv0Np;p?8W>;|oAsh0BCO@FOF9~z4m?TlkF@HI82 zA!(>cS4@qvips?zXI3luYcK9o8B1zlgjVvzwZaXl4_Xw5?n3oeXdvnHJU1}#GYG2? zQU8g*CwkhRVS0J+otK3vt12#(m&IE=V6LxYQ@!M%))QT$S>TeMJoWZ z?FT$1652g>0cloWP@sx91Qg87;mOfk~@+!VoJxa+DcphH3r_m8=x{B|^p?NOS{9bkCuMsS|L>S__6AEf@j@hxKN6>G}N+nn&AC zE}@l|ig%B3BgRtT0KU{f3wpK1zq4na<@xdiPMg<({8jk2ubyhAQ=>es5-08}iT|#-IOhIYgnS-m8#|^8zdNDl>T)8w zGT+>9*tYE;HTE2iZSZ}kd8ig~7We5wYvtCK?>hXEBhQMn2USZR*s2^BqhI z6Z~E5MLn40PQ&Ol`@*S!T-+o=Y6!-Vfck)TTO@Dso5Ckq(8poz(nKL`C z1ab_G+3t^`$$GCY9njW2t06GrYP{yNp1)^v z@f0_c;b=8pg1@AdX*j%uZfNq&>(kFPZSB1=eEeid8gOf`D7nYqryLqoWU zq^BvnGvTFM=>dmC2-+{+U~A#TN=|=LWMx3A2~XDME$1#9Yr}u^P9X(z z6t4gMxo^C{f%0yb(DZ^BoCEuG8T+_k(}2nsbCQM!mFEzPH8cN@Wi- zlW`Dr%`WQ(nMjdmugjW!BP>G=Ed~ zW-bmHlTdz>BYWqf556dG-BYd2rZio*pfsHd4wb(q{l?FUxHj*iIwk+k;8s(F&cWiX zzk)VL*&8g{#5qmw!MDAamJCTbhxE%O!8-Yo@0LJI$yo#!lfjLg=LCv@0`tx<><$;f z3NQ@2e`NFpK1p0(u?{zWlXBqX1-lucihUY)!11J;{s_t%%7we_ZiClf%l?}d2JKpl zCH%9R7`KDI9W96Uw&kod$kP(%_*Ja_v4#ig~1q5C<578Cc1y6NC0Oz zk)D^a&!>gH0~CYH=>8}8g{bT2%6?g8T8)D_`6-jtY!D6&!x@ifugrW0jvK6JX<}Zx zJz|l1qZb>Fcl^wcJUKwJR4@|WSy1^R$$851#RmTKc|g}qjpv|!mT}>3@lF%+1*7!y zKnR)reLsIR3;Ogjc)Z{##~dX$61ZWMG?*bCyvV=!fM5jKLflkfxC7(3eiPv=z)t^z zTN^o!^#ZETKOCMWIWjb6M!$5&0>9`N`3&9j z5eT&vKa)`vnc`hbm!)2x`3MR{j_DlP$_i-orc2v<_-*5^sUPr{>jd@za{hy1g@RH_ z?s|0BV*|eQpY}tOIPmd1@JsHfDAowe&oy1VKJ#u2F(9OFkoi-uh|Lif5v?IdQt#Htjzz@mTF~P zM>ctt1FdtaM(JF-;%2%(dCRDo#wI?wWvAa}ELDx1dm6(c3^z(mYLxZk@feyYvEJOy z>quJ@i6l=9SO*EL`4M5E+2HwbuI(%Na=E{}YauZn5}{(UXY0kSYGs<6Ngf$h9G10k zw)h+k6m{8SQsmWO9>OJ!mF~-F-uY=8IBg$ZGWhT5#`$G?t3Q~jx~NOFTK(N75MO8X zHxK~6-epmQ>oZ-7L>c^O1AVM$m#QQ$ZHFd)3s^Aom(%*)wJfFHY?$P>*RYu6Y6s9$ zQYtO}u2zOyNY}p)c8e2DH#L7tn4_*3ws~s-3<^=luXj{*`M<=CyYB(adS+U zhR%g}3>0!N%G8AF968+;X;wV(M3F{-cCQRmBZd);)X}gSiF=|_$b?RC>C642XH!tq zVF8N2Am_Xbf3orkiW<8QqB|+QWI<0gg|Z2~3)(752>U)~iUXCwTth+Di$Z{g_+$$; zip~#}8ZME)`)On1~z$%vX}}hcnG1yMs?``NJW=pbqH~ zhS-yWc!WzEumo8W`Psh&i$L^eAeC=+GrDWP_^=q?XjIaUoDz}p{@6QS9x@f}VOBEV z{G`7{RX&$z337_P;_3L(Pls`-W}v&{S16)-_|$`efzX;Id!Mxuuhn(rEy@t#WH1w^ z=DVi_j~t<3^6^y+k0w|r&5|%MnHr_GGnI_>d@67%pgX1@-VJB|Zy-_bb5Z7>vK-~6 zA$k0M8<}(6&%_X16C9kGsrMdvpvpz++Vr4pt9`ceXV?Pi& z$)=#$#A-Ss{`x8DLlW*-J5w5?pS<0U*JC$3LuG`StIU$z=@Jqey=y^$U!$Br?_T|a zwd5X)LPb3T*CMCD--mAlb_VmmyFr~ge1+~AB>QsupOQd#!5bh4h>^pMP(y^kx6ZlJ zeI^e#i7KfR1?XM|&U|*{L=3W|rF;Z2YsqGzZp|q6^*I2Zi|)?OH+0Aj40;Y(|Q{_BxIZ@SdF_&N}IJXM6QXB7{$PX%Nn(wYGxn zIA>RJ7ROJAgel0;xn`Di5P1#cI_)q`SYHI$R8~c@ik`<6I6JKZ%>Jn3;BGbfz73AX zox1uRZJwicKtjMHX9n9joNa3NLF-=q&@hoZ`ivKbPFG(4me6zzwKIYF8g>eZ_kk+5Vw{+4?+>mZ_i^5b8Y*-FD9+g^JqXtjS!(6&dVK-PSijFfaMOe;MVoN>LYp_j5i zD~Nkdbk}=&c1uBydMA1XVt$SGeAzEP1hezMd#xGTaZgC_Oaz zw0i4~LmThh5x7*#a$%#93NnKRZBr?FsF-~GbcQC82zd>ld>P}6rpc0jL7X&`ll^N$ zAbCG;Wf3Zkh&%L)tv^gbUuQToeq0b>X+2t}`@E2MQ1Y)NyPDoHtla;=8$v!29{J3M zE#hDRHC@-o3)J4} z$KDUuO# zDV+j_l~)sj_l)FiX(txE^(HBs_Y%EPdjPS2me<~NxC&^c9noE-Iqe}bDmbf0He3eb zvTU%s1#8r-BbwTZND{~VNal*@smZ*$Jxg+yLHa1i4tsx`@zZxdGHsl2zjgcw{0A0M z{H_DwK~%A;{eq5Ne-U}fYFinAKZ%!JrnY5-EvPU`ERd^^%VQHWYLa4!r68oABy6c407C(N~{P?9t z^}pzLKXmLvuqR}7GD?5i8U5mQQ)B%WnA{DJ?MD(jB7&1$-79o&IZ~m29DUeAaY7b! zZ%ITb7&)p2z#!N|>^x^S1SAc%~IcOcRxHdDia zx^Vw+>S&#$zJQ@m7ysvQobN}tJTR(Pxk_|7>|Ko*46083yYhY_Hobe`cd5hH77HeI7sbgYVgNWvUlf{O7K)U zdm`%QGmQYX%yS#)yB2|LQrGaO??Cx{l{32Z71D<}#MjzT!5%$n_bd#Kl?`+Xaev$i zWtpwb{R%B03ztL{wm9&baTv zRU#wDw`BJN>PnMG;^p%lw(w8OU5M1dCHFBG@x*z@&g_1AL?%yq!e2Duf3n7Ca3yK7 z%fhSa0Yn43@@Q3T`J(Q-WJ%rK3dHTRRx*@C?OZ9a%Cl1x?W!PfrXC?j81=l65kl^g zMEYHC+pqh{m6VRWnEeDuxmALI^!K5pANxzb26lMB-7hzG7l-o{< zmM0Nu<`^k^v434Y90ktqk_6w4H=`h#=qS0kf-l~cd%wg5%wj_h4%Ngbsa4PI2(on?U8(MEnwK;-9A&SU=u=P#6SvbSO<0U+N z*eR)}tQ&;dqO2X)_qZocs5jiLOlBr0!$oI;_@t?V1r;%l1|C6RJEKR&~Skzxo-lrwt@BKct3l-yS~wm+2rg|=}k7|tRHd$vrrjV-S6 z5Ktl$)@YCp6rG_ZY`ZEaVM&xCV?l>)JmbGJy;Q6*RrtLBSU9awJNl1nL7T^Cr^T0R z!To<+3(9f6q8!)+GAf}wR{B3GwE-<5j=Le<9!3$MNvo>W{Mvtgocp!W`o`iCOZLN_ z#ejY6-t>d%>EmOnrpwtHtLdM_69x!7*z2;XK$bu(?nk589EH(ehc4Z!@KbXrL(n=m z2{(SFcjUepjNtt@OJ<*92D*cN#tlX+)(oJo(shgb=fF zsQKr%D;&fHQSr6HQ!Tk-!(ffR-xrGy(5Eg>rygn=dOmit$ApEE)rA;EEWZw~U&Pc16K~+4qQHmUSbfLn_ zLsi@f!$mWg;i~4%3@IRMjWxTjdn$hfd31}dGD~b=4IYezz zLRE_bt`5)BtG~UPQ`O3Re@wTgnykQ`M~rJ-VknK8SKOt^U-BzG;9;*i)Wv-s_1RtP zrTvELj>IthPI8@^z~m_mjap?)Lt83he|@i6mo9db)v2i>mATRr1Y08{#GX?bJzHL` z3pfVNa+Gv-_djTASv^4$`{JoVhCka;>%6Zq><~frW`qHT7^Bebqg0V$Cp{&#= zexD7jPIB+CNG*rbN13AF?%1-5IWgSaWuKHLAhg<_=UbCwADqu#Enz>%*vA49^@pqA51hCzHI(nOMmN2AHy$Y1OuGy(5_*3=vawiet@dC!ja!TI zE!6?z$>Um2gDlY3wqFn-0U|L2Ks7epae}2`k+HUx;FI<6Jt@;|29#|C@W;(k-{=GS zMgE^yqH=i}Z`1GM>Lm>uiDW>^EIZJcYnyZ7OGx6z>8-M?AqXjfmVJs^`Au$xjqgwB zS0(`y?G9oXp?lXR;{h2x7WM^(3+gO5jB)f_`<3b7xa-RqCIAaQy9mw8F_n)^C)+FaQ(xOr)abJiJ54&AUu;{a??+i?`$3Xhv~tJS zJ^pin*Ak-st^Sb zuK}W236ky6{@-SEGnlT?7QR+Sz+e?Zhirg`3S;y+QRC(rwJ)=f@>?@#+>8O$=Vf-* z(kCr{S8;Pr7vWkfm13G8Tzb>+@PHa=Ni6DMTYdV%4seK+w(&to#9aDGSw5fjgqH+M zX`;~9(QbK&qq@mzmpe_7!tZ0)^5y)T^QKkMbg*}LdhOFFvYd_T$^eBbhv|Ai)df9Q z|CI$~sCD-d+&x|f1aRDwR}iCO00}yAGBV1rXIioOPfJ_3y6s{3IG z#>zT!mLaXTuPP5mUdQHP%SEm{35Y(HtjI2=QRRK`vnZx$`kZ)5hb`N{<*lZ5Ajz|<_VFg_HPcc)hiCQ;6 z%;__((Y8!#30*MB>zZl37&o~)_x)!ai8Tk$9pG=PcQ6V${TuMkK|1WaH)R&YE5_tq zqmp@HSz3lLH|NEg#_7`C*Gk^LF{0dqvxE)n@s`g10<13QBU>zIcX>`7cRWAkVCDB3 znBqLvTT4Vgx4>s`Ft~xk;~GZq?->CsgbMl5-d<_Gm;(`fG6DrEEVw)8a(a@=2$YS6 zLTIgVm`R{@71laREyR$bKNcY9YM7X9vXlZ#jpWf+0`F$k{dcpXEeIWiz%7?=8~0V^!@h362%QDtcR@< zcU8|RK|JdGH_x7E$XvNYXBP}&*8H{FY3kR_dF=GBs0O8P>~(PshB)Bcg8~S|5I~H19c;_R$qiDf2@yc5c(Cc-)WtOqttBrHQR(9TSh&{EC&j*tO62w zbAh?+8r8OvXA+Ec;+SVL3efOWAJRTLlvZyTmw|OJt+63d>DQGiby8uycJ*zRn z0$-8EqFyQP6tS|vo*1I6UTLO>qM=cjcCWCcHKfx6Q;YRGD?;Xp$7WE1$xaX7ri92i zmpk~uv4Yj&C}-H}K+X!6fVt8rL9d5sC+`NLDOkXX7DMWd%e8T{FX zBwyD;Og`rpf18O($tQSeT~nG!QlNgjeb+ui9?-(Gox|PEEIxcz` zhhZH<-EQD)k#ABiUu+I-K^-X}&oinGH*dS9`^V6GZ~fk2LdS9ej7zp1uPdt#sYqLp zZS26sozm}(35U4LZ+JkO7uG{WTNHSD;>u-vUOexq#GCl819UAq_&mT-x?XWMXayj!5`@!a+;VNgtzs;vT%uWAJK$DNy)Ay&w+Ei`I%rfO#)KyikZIWV(b599U zSxa1!U5&MG4`4q1`ZKfcsauN;va=y5W$re7udOV3GD?6|NS!ZHUtYbjzw$0z*HIL; zFJGSvciwq_0>Uuh9n9oNF#_E!ieu~1m?@@z8n@)zxt7gJsz%mhIk9q%Wy(laQ-u-r z8tjx~8fP`Sz3yS|1<^HLr`z<~HijZIY$tzz6#W>gnkEn1{*c=CLBN4WLY}1aTUkXYN9O zS6mMoDpm6d9;%~%iXR(kqa76PH4I?zg-u~ASJOB}D^p&SL8d^7IEe0^k7~+?%dlLK z%U;OD1>RAySDz2#MynnsM~V44hxR(RibKaF4>8XfOLr+gBixglp)U!txI218T~BrW zxXvA)!G4Aza-5GLH2WyMxZnINyMy0|cW}S`?^$}K zV&yQRT6!}`?>c1t(7oG&c@x>aA>3gh41O}&`k%R1H@|Va)Tt@pVuKKIOF0XJk z$x)AAEvr8Z85icm=+#s8tIAaMTTlNe2|PK^G#c-79chgngT%bjAc=ckFrEB!uBWV) zneO4;vjYpY5R{ZzGu^wnzo_{8;C(LT6bSo`>G+za=T0QfilNJTMf1x_g8Y-npnd=B zV1>S%49if`6}^VH?Hd?ky3hmv-dX)fp+UCGM(HOPMDMhjpc0YS&eH{r+@nKJFHh$? zoXgJ#)>6uYCI&i-h`ed8J=yJI`LI69v0apEYYAp>WBA3$TR z5qum{$a}E0?18V%%U*qkApZPGm4U&f0Cr#kO{q;{RrJt&_kj&JuGcraTA)^w=VxwY zmfpf*^1l_X6}b*nt5{{?0}Lztes{0;U7|vI$aqF5B8$$RHC*40T`bL?uAYR?L-5;88HPl^y?%U6Z4P4EYf|EWrv6r|EevYNL{Ol}x3 zXm8v#=w^Dn+AiJ)W4FNB8G!YPIkiYKjdRI!<1}&Y=XT##M+X1d83&?Iu3m;_GDWM9 zYnobvI{JQ=eV8{2c046l3gRhwP@BDMTaU7>w|cXdM#4$Aq?Cns2{?GcTdpBFc-5M( z`q1{x;PPC7m>%Rd7es7@B0TNAy(@emhS?Q{Y|Ou5@z+=&(v}UJGv$EaH^kmYeLmV6 zL5|kcbE1bqR)oP&xB#{<{Hwhq!~Z7u4^4YFF76c~zm4=qe>B}-RpVWpA=&zOTCR3L zXp>lpJWH6j^^yG=a~1S#Hi5|=``-Ie6vlL8%Ys!K41XZFh*Uj9lHCJ|*+t5#CD}Il z)QlOzGhIN95}_vgVeMt>qYPWJemRIH(ObO5UB?L`>|{eP3NYDJL#K{F%p3{w%+9b|^`Hv!fJf55@bJEKbCy0Y$7d-m7(=?hCgys-Z zmOKj^NH@GrFHAGe0)4J5`Mfr_jL)tupPkHT}2h@SN{H^MaN0#|IBMp zd9`YQne%H43%TyVybwnds`Y;75c$)k`p0F)q5p-O+!(T86QM_&! zo0s)?3B0*>OkvjFWM&x{nOmP|{`@HH9p5jqQhN5Ps}rl|cIS^1@;(Pc^$#nM&mGg9 zSG|+RG!Pe-I5blTrHfq`|1_UBO@`#}QttD+2s7r)$bqH8GtrpWjJx&&g5 zNb;w}5$W>o7N*@N3dMC)X%x)R`z>28SI^I3V_)qh{{VKH6Z4l7)vNQO?W^_uSQ&lB zZv zb25dzm^lqjiIBTm?%}y7GcLNM%&YjD??+gHkhCU#^SgXo;acc0aQnY0$otN$xM|l) zAjU~W%dzprI=zJooz$eHvy+I)E#fGIV<1Z1gP^JynVU^}!ns|h%me2no|3ILi{l=t zwc|(TjIe>8kfuv!gkadh7h7zcFguwS9IEvhl)7Mv;y7G{klG;*COk+TC4~;hwTbvC z8)CX$5hG}LJdz!CwDGp?j@e7%o`@9n7c3Iz3}RnME>)1xyf6oX!sMit4rq(oo<>67`pg3(JREdKUJ!Zbkf)_$I zvabNxx(T2g{}jE@!VccQFsrVVHXgU>rLXWcE+Ir(LjYgaz{jlEIH9M{iS zR1-PstlP@bazU59bL6~j)oXaE5aMCKpYs76of)EYZ(&w*wzWYEkNrM68h)$@Rtrvi z0;~d{G{p9E2-hr5uBP{_GOT1YX#*l&2ZP^!=_Ns{F&CH-VXQ?U7dk80Ati{v`0@Np z;wC@97i>n6VL7Mp{E&XF@bWEys6N1yt0M9`|+rsfW8DE)>Z0DC~mwz@&x1PUytwH_k&Q4QlH#JFc%L>JWg1W+p zAQsv$f10%9w52R)5r7UN^_K-cSRNDTAAWrFsmzI&mE84_b0o_JKX!OL_0FE0qa5ds zo7mwwSbL3$Wgz`0pgn1WPNvXN82zf_8296wp#m0d(7m~Ca!Wi*uUjW;v1-g{XH3J- z9dZRM6r926-o}FK96$HA@2{G_WakDNgR;zh3Ie2ge(8$}gEF{;f!TK;*=Py@J@B^v z24bLa4D<_&sxS;-YC^)(UY5~Rh92h>cc3MN5)Bh&~W*`da`e9YQ4~D<#zJq6rns zB3G^?CPGW$g@Xy@VW(>oB?SQm#Fj*axP6_j5dkaGZD*n5b5++16Gs`3Vxa@uYo+ZK zaVpPmgMlY6h>0elOHmttB`Fc2E~jflfS+)3YcL~oe7!Z(!X68u?gKlaQ>Z3EQ(!qB ztGz0>7_Gg^`=U6B*UG(;ObEG5#8CH&z(8@ zGf4=;`4JYPGTy1+mA6^PsD+_cpCcCC>$kp;ZEo52akAoh`CGl6Y%w~$=mm7yy}7D= z$d;`IP2G80g3!1zIl*ZQ$dG6}w{3VfY_VCf6?(cK&8X17%(mR4`2A2fE}5O_ z(wl_L#m!Z6*Y6L+wR~xDT zH4qbnHvb(4*zKKfZak7HZ^b!Q)H-0RcDG z;bPyq@1L??ZAV^m0KRnwkETQ1YWsrj8YLv?B_$8ly=YRvV7 zsfPb3J(wMlFB=0Z$uLVo0hZL3ogJS7!^#dM68Yu+>zxh8_Z-(8x?Csz*#kv^bo|x| z`o#s{Aolrr6rLp?kcnq)c_D>Ah!mfX4W#OyV0CfVg^h0qVh~*z&L1Bi_2wQAn`|TC zB}PL;?@5>nHX(P^rdfD+DcoO)@mrA&=YMQ1UEDAX4BGpTVQxi!56v5|?CBg$xbxr@ zx!U#;ZT>gHt8RKUc}=Vnlqr#6MKNodUl4K>A<3AEhsW5t;`XHqKej3PIh#*2uIe!y zWpASw4oGGJbC{(DLvz$=lw9Rp1jmxQAQYnV<`3%YRg=8WwyuU2>7)6RUV0%xaR>2h zrH|)XPl-G^g9%e2c&QNZ=`IX-el0r54asOU5yC=Q6m#q|phv&+k>dmnBLXF1!+iM$ zrxl9HT6JIVP{3=;{RMWET<49P=SWxyOkNqHKvT$o=Lorms;RCWV+$XVvUc)wzWdX?dC{Z?5^SeJ@2kPzlngyXo)vPfl>;K zH>of)Dn8w)7a#onsidRo_wvrceaCpC=||hX##Q{BM8kOI42OSf9~IwHmdY84EN2YF z9a|+Q{pUx9`d?$BncWUH47uNYJi44G`+#~!P}#w5F^&Ss`9uyTq%2Hg`%#|oGsVH8 zyuzAG6n|NL1+_Eb#eJe%;Bg}RZc+* zF&3L0Xo*!am3a6cH?q%!^y|-6a0_zC$&;(nZf(f-Fy2>!zy`QBHoFfja0_Xh-nqV3 zA&!Y4m`fI#5&oN(@!C#~nAHA8epr+DXZuG-im-b&CO5U^#PxnnEDbxLs~R9Qz&EXs zhe#rsaKF}pp<^#*TTi&1nhHge>1lKd2bslc;|z1(<%?sxcPm~zeS(rk=p^%_R~ge0 zcvmaCSv3!5_Hd0=+}8_!^^QUuIOl{anxSWg?mxlHkd?nR1>w-1spC}?Q7GeNoX%z+JKDIKasX%0=KAe& zSDaaetbJCERP7}E?#YICw#Z97YnMo|?8>+tKQ~ilfJxeHyrjw~gsi3~^hc-rxMLK5 z0vFRA-9MzVLT@yiq22Rik;-*0u47}AGfjy6nFL2o05a5~>J|#a7Z!k&jRTZLK%*ji z*jqwGBA7oRF&y#cSg@2}C|<LZm@HN}KMf>==PI>23Ri=!v51&W~pvY_h0 zSn^^rp*9jT5~)!;C4eptY`1n8g;+wW_#6FkERQw^vaG;CQ7lbvg#8H#8nO42jFb?P zwq6qnidd6e4h;;+4+_O^5Q*#+F%VmH$>nhJV`7;>MD=E1>cS|>AkMI`FhweG#2az{ zou=8p0p~oN2CD|iEq0KAhK6COL!tC-q>v@BLK-QQSP@>ivN`+Me=iXC81%BeV zn1L+_At`f-!NPi%)yWlnhau6VP(p-Aq-{^ffg!Qjw6AY5R6vc(jogd=my9<;`N#kJ z$YLC@E$4u|J2w@6T~ZU3P&GY9^W7vgx$p&hGs&(~ce7gXpgM^=T0lC9m-JR0p@sxp zD~fR(l^S|X6UpNFY1&@%7gKU}jP*MgfBo$~PZ?`kD*4l zyTo4z;%~gZ=_@kk+>Y5emw6SAc1$=)^9i2XQLsMu{Ca2KFps+Wka1{`t(3jIRy8Ie z-9F~vUoSEBq*eEUlDS$W>?U2};X7wYLjxwkkrT@nAQ$UnFA=VoyPvB%<*LAUz29Jz z+$E|`I~4^6e#VD)41^CIZYsUTuX_XR{)Fal4{~v9yw`_SUl!7L6HK2hI^ahC_G*$M z2?uLRN-%cLgMu013k6m51SjL_nF&yi@r(Vx$L33H4K11NA(7qpz$LA1a2_aJgh)h(sL$@UfbADm@u-3|rsp*!NHVpcc$ zP_c(we4?fM`KK}x#h z>HEZuH8NndHs%NXJ&)Jt!KTB9)9pbvVXHjXRL4J(R&7cRbDgDrom3o)q-^yY;`dvb z-)s)Q-=fNz-MrlB@l31$a@!XxX!>lC{27Uo{l4n3^c%Yk&54JT$L##gH^+wV3P^#* z4wT<377CHwCyGDzDj1vfzCD3I6tf-!*o*QT26}+3ks-Am0U?-l+DF^wS=hsji6y3d z25U{z!UMydIx7p3erO3;&7!WEjCkGqbdx;%C9j!*=q6+khX6sg*rxn(aL4XE6AquA z;Rr*+oz2WypAS<6HG7PAe|o(xKP}cCy!(q58wa`hBkoxjV%tm@^aPI_I_0rM(=WPP zuy){5)JBs(<=z&Qhi;1)D0eL8bf!_|P5*VzcqMSfA{QQ0+4oa@o3`+{PLj@SWjy{n{?ty$LUq1;jssFNt9ZXnXs|7&>B4F2TRbhpUL(D zOF^MR?!WP8zs+`xUW$cJms9yUVa}hg^W6`JCfF9MD#eM#gmQVVhht78B%eXdySA(r z3EPMa`Shv8bMtWhv6yI-b?x>Q3VZkX8Qao&f3Px(MEPs*<)GJ-yNawc?HCH}RA_i0HeVZ?BfH5P8 z^3*TD)C4Ng91%iF+@Oe|3b%!Yo3z(l6n1yhT;kMbdMs$ zsApG9?uKN8|6;gHF%)>Yh`69kA_8~kjGqrd1d#=R99Y;{y}jXsgpm5{17VWeLej~ zPk;iu$Kp^`c-zAY1y}NS5|2sf$Cw4&(?mSObtY%f#-pRyjPrCfk^Ynu?l#a&c#?E{ z2cGpKvtH>fE>woq6N&&VHjMbF7cnCwGzSz&fnGm56r&;Z4|88crI+#IB_! zKUK* zB?Faa=H=mUAer#Q5hjViUvAN*YwVnr*av3B?ygf<4}XfFZQm!5;B1us{1>vZs;pR8 zcR7p+D{E<<{8$b^xw+x87qr=JlOe}lc&UDec3;n|+sY$qZ#l<;Kiif=Xr@ zt*6A~A-L#t;FyaoTZ1Tl-3Y_PRpAjwj9Qd$_%bs=D<1>y(Mb}v7Ri^0{5m0WcGyzc zn2)Nqg?hM^E~LO_RCQym=+qYE7p6*>+SqjyAYNZJdocv9(Dywr$(?h8x??#<+QZ_1&uPz4uPlbXQkT^&eB!)AO9? zIp^rX%@DukwIyX;#BWOiv=Nq$^^AS}Z#KFka_LWgY_vx5tPHVi_T}qet`&$sNinyT zNoE>vh;jXsxUkW!>*=Udv*;%T1)LJ~(-~%_lS`N;`BZwsLI_9(n|l3|NE?>2Td0O% z%C`0XN~Fq2FG4Ddgd_X?BQ*;dzeio%Mmy{NyNG$p5fIZ>|Hk48@ZCf*BNJ4utY{1D zXXq2YYmO=$t#$O}1h^xLr1ZjR&8N)@^3%I;6@!E@lDVWt$==Z983x*7yd<4+i+l!~ zO7&bW6kca|$IqqSr4lW254T~25*bWbd{B|(_HVW?y%YiWw%!l?9{rC!s83lhanEIE!Xh4hTaEQ-V zQ#=WKXdM?8U6-g~wx4&AhZnedN;AwFlLNGCXYwLtNW(tcKy-G&Tb47|n3h9XcivW} zm)ll1O%sg3$-*EhLfbd#SE?uU(2gS8R8Jm!H`|(O!pmd;k;~b!RZzJ)2vSStM{M@x zy$MaB$iSaaO{&-c7RGA}h6lp=?@ZRCx#u0J;JAiHqDka?kRvYV#i000Vl;M}TX7hD z(}eP>cA5tRYpFwRHMq9FA~{LSQs!@69;#&?C}} z_AXy)+>;;x{i##4f=oXl3U@%RVPM_mu?nD|B*ir2_|uVrWEb{SMlRxNWm3r>SJ{66_MCOeR$@rzi_OjgE=|&3h?Y$~M2hNT#90&WD^~-bd01 zJj7$wIbl_QCYhYT#|vCvw(5^N7~Rpuxef0YTcrbx^L=A7Fv9L`kRXocA5*JkdkkB( zupls*DW6`tr`xpmP7B>*V9+b*zxnH1;z5)K7{vGQc{!$X8 zr(`|nByoelnbEGJ7Av~6H5h?lg}Xp;?Kv^!ZuA078UkzS)tq>=E35T@(U?}K0>syk zeK?R?=@thq0v;b;$@}p6dDvupFKSrCQIQHTDD~eRa;75M6`@^(Q^N_QpIXhzd@NJ@3(&+ytaMuR~O66~OlMLH2 zJRxoiaURx$N^DAoEDmDjQ4p?Lxpo`(9^T!rb`vGhZXYC%HjZeDjDxPLUf5zo9rOlR zHuaw&dm#&E*h1TnJl;0fMDqJtH@aM~7rY)2<1SkT?Jt{H2s><>^&pIK6)YE|>4Wh8 zgmN21TlocgE(OLrtyBW@t!(>3$LhE2@a&%pl3SWg!4WuNHFM?lMD;7Mjj!!Rg=LqQ zXOj)@Xsl%sXZG#n66#h>4Lw`JDbEd%eMl2DiUgTVpmmJ`kpqKSOj*Gox!FTzMjuHT zFjOG@sK*%BezTxoqDa|i@o`K{b%tSp_C*w&#(^|MxBbQx4*omm2~V+mc*slkUr-IG zu4{;@U(w}o&J*mSsrw#(ZrWbu97k)g{GWe$8ftcRTQ0uc^g;yY*j^>S*qW(<1Pzh| zB>o`qpQ_LhuPP6(ZumYBUPPS_eL7*B@3qFR0zAwrjJHr{#Ty8s{n!G~M4N_;zE-M@ zi?IR;pz`^0I1*k~$GztpikCbCVVrgzB$TA>)%n1exiK|6RNQGO3(jm}7^wx}_FQ|J zrZH52XO+N0uqiaE^9~p8*q()4=C)voRZAR*MvVSc5eLZ+F;Yuvl zWO(0Vw3?u>>um@SSdVs-#4fm#i^#gTN^zc0uoMB<`{JC#fFABEfj<9^B7_hhN>LKS zi$=TaM9L>}-lxmO`7hd?T);Jf7}9CwXdg@DeF=*;Wc@EM!CO-D&q?*zxlDE=iMk%a5H&@yAK(G z8t*qlhP2>p8}r_OgNbZ8pyYRglZDP!dS@7Rll>3@hD1S!fCU{nALC(D0FUsL}f zleeP&C;B=VEQ>Vi1SR?@mC1FZ;Z|XyxJX3s%_@R*ph?VH+InQuFvp&)l!R@8k4}9l z4Ambh+%LD|hMk+QW6a}W2HtP>ARDEepVUlY=86kH!vhv&EVICQj0z#M%ij&aC}|3M5=4gAmFpV3P%Zya;b*Q zT=vh)7k_1*z0S_xhk(Oily&BsD7DCoc0w>+Kd}r=hv?MH`r2&RiiQv>|E}&WNEhYM zBj1hnO4`%URv*En_pOP%LZ{c0lvA|72LQ?lVUs!fTJ^xmtxaZkv0H1^%c)}+QIX#l zfxFC+PgiOrIC8v;5?$8x&Ssw?2K1RjHwig{>H*|-9-&_JRP9vg)1}S-Fa<7^g^P*g zwgsHNt76&av=8s(HZr@k+jhc2y~?V*D>!Y7p=hQemP)iM0u6zlzs?q4k3Gp%6bP1I z8=}}#Tdr0%Ur@Gkgp%cn?dYiOK*O5~Axv~v@6k>4lR^#)hV!rJ>c)7kKBM{T_5Pd4 z3jb98p)|v*bi(!Bn|r}dG|^SjxuQ9u;^hJK%y^mI3Y1)tPAYhf#eS}F;Zlf*7`8Td zw8p(5-M)OM8PUQZ0MA(VaI~jWH)ZT*Q?UuE8_{k9O0ecU&#mAPaxv z+ORgr3T^7_hmvnBtqCQ+`(`Z|R9$XladjevfC@3c0#jYj)sjusA5PyrlE20S7 z1dYH3a;qoj7Ya^FUcr`V9r3&pxcP%p;k>lVbe&s?aGpUAB5p;Qc~9SZ2s{+h5=+J1 zWY{gLn>$0k$!I)7S)jd!31HZnPLK=XHA)Y!9-}D#8G+;?TQCRcZEA`}>lnqy2(p~n z*MpCDjM3jmH$`+wDDI#rleQAh$6QaIlZo?2_}>DJcCM@?r8Z^a6G%U*Fw$1hD!Jsf^ZtNz#o%&O`*<& zxUeJ4=8dB|D}TTv5uJza`3wfpH#oFanf2iTpU*#3>df@-cfbm!3j|TM+uJJqHU9^@ z@Br>23|0SE?RA{KAqgKsqXR@R9!TExshpK8?`X6_Ha3biv}O&>GzDp)0mH^4C=5GH z5xg&vP$}q`R1umGm4wjO)>IUuV zx=wmWr8+M31K{9vJbIyu@{=h$7lTxXAL@+aF@+M?6~Y zWB{R;NjKS{bNo1baUPFARtIPNsL!~ctj{vJxGWh&BVdAT)g>l$M)!9NGDyV`_V?%W z&mH*wfk+}vK1oLtcA{7%o=^Xnz&oh?0cgj;#9z6Gd)dcL#DiC`H?MCKq5~lHk@l|n z#z}KZ<>?Dd^fwo!+RCaFgMJc}aYD}oESRJqC){b(mMZi~aZAsCo~`XkBuA4Ryf8dE z)BoJi@BjwfM8;g2qDM5&+_+_W=r?5SjEo^ku8y0RR@7obMwI>#dfS_paE3bE?mF_M zBxBOB-moCbA4GYT6)B4p*{n5sIw@l3ahL=Dv~1U#HZ0rwos^JU7Am?I-fK%Fr$lpt zJr&AOYgk}bti&KmIuRBTXWPs5P|L{svti>w2!X-n9Pq#dSn`2YtGH_n45WosH@i}5 zjSln7a-j^6Tg>l7q_-YD=cgA;@Vvo+vO{s219j-jD13OA9u$bI5}7c3a-%G*DJp{D$l*6|zD--Tov~-QjtlMM+O>)1X;XtlH9&#7^Ik@7gme z_0Ohn06sWNnTYcGdbY{76pB?hW>ngRS;MD@XO)kS!E;}Po!iC2P>e(Deds>Yk| z)uH7?k{zzn#2hHpGJ4Tye@Wb4j7ZL#I!M&)R(jxNOsv1Q%3Nbvp@#Q)rzj{z=FE^P7IzoI0m57quUXGo{K+B!!4N0HdXv3h* zgD^73u8#B@gA1>69vQrDA3h0t)q)H#0xBYio8f%9L`Glp{FIEz&9tHs`w7ax_wgg} zQluQ}9F^7&1;LbUU_7kkKC&giV*nYvFAVt=&Ka?}U{_3z$ zRsu9T5q$u-o4pcq6Y7zuFp4R{KF71|~bzEFoJKu1Z-|2Id- z=!jB6Nh2vAvZ0(pz>wBI$8XI)IY5W*e+6!OgY^dG-sal3rF-u{b!eSUlg3kBC)P`m z2im;k8H%I@N!<|eQ9R~#XWy=a4;^VjfqmiXYC3ptm_2Nj8t)(I;I7G1_8EEBq0rw* zVt+$9347N%;tN3VlYd zHG5dwO(J_@uTyoq^j7;H*;Xf$qSHK7v$dt*EK!7ijDf67M#MjD%r*Egz+rJ;Pz`@FCXJ=Uzt-5J zRABNvd^D`_mYxkWN(H+1d^R?x`>obNAN*n6)rKAOQT8X6!x;MEHnc1!Vx}N~IwAWe zMtn`}*5uW#i!ZuUx|v{zSrF^G&y5-*`m1&YTB0-dkTqKB7ut@|_Nit~bt(aBjz(728XI@toaYKG10_npVhz=O?zXDS^!|*lmA) z<-iqfjv8l{j#ENrle@q(j_got2so!`VLBltx-4MLeM|uYi8$v4f`ZrU!OB2~=iL-9 z>~X?^4*JG9*%*4Ur&*O;FxuP{!wdCchN1ljx5(RJR@6K>dw-lF`ZNdu;+tQCI>$%K z=VC_H(vP?0sU1!xMGA`IE|CB&9wZs$Ne8Hra>UB?tYcJtZVz?%%TI{CmSY) zJglm#-esoQ0>#k|{dF-MXxWKyOy zM_e7AKxn80Z93J76F!>s*8;FA zA;fwqT^^cQ5=KlYx2%v`705Vz@_Axzu(B1NL?#AOCDI7f%+e+}J4lL&~<)U!e@4hylM}@pg$>$3- z)(9sW5kJqelbyDL;t~0$zNqf!?x0Z&xyI9Kh1W$9czTKMh$(QYF(qov8t5X8ForJz zzdVWMRT`e8qHg{H0ef0kSM}M}9r+V$w*ye+1BKC%U*G_#9Q|3fgJM`dQlf&s_Lj=; z!6W`&t_P`C&a2j}gi(K~#KL)0Cr)?su$B}&4#MgNLf7>abxdo&S6}vm-Bwfv+h_-5 zn?9Z@NSgs26stKz!-3l3E_#Ov9(b-{3X**$K|1(~Kjr~Iwn`xSNv((;nx>B%BKM;tw!M#a-I=~da0AGnzXVa(}EA7ElRV%~ zl$2YxHDO@!KHUD-5;-4>jzGx?1rDN{Un}FacIR+a7)9tnmt>v)o(jDYRMnw>x6QUj z?jpujOLaA~Do4wJ@z7}Ov`|)n5T0|%?CP5Onk=PhCy?47Co2lAQacmY( zPc}b@cv@K*N3|(pg&~2_xJSGMcD~&DS;w}`e( z%C&zPG-F=ktDFG;bS%cUud!s5iI4=HjxnD(2v zcfde8q<*`w20U-B!mUEcA8~k+2StP2hXNBRy7jjjR|-tGLSruh)|o=MiP3y@frt~R z#tjb&Sn_pE1|#1JT54gXCv3 zWA=3j+lpr^_L)x}O2rbE=uc|;&yIZYz)Hl4fbr^H$b}*MF;@57?hyWwXlAGo!PRQ3 z6h3uF7H0A>N+)a~r_)aK5G{Nf(KjhT%9La*szQoZzOmHAaEj#E$ zDuWGCs#I^2JLN|=@;7RYdU4dcJAY|SHStYk1;ek}fuC~_(9DC9dMhKfU1@Rad`bmR zT5i7Ko^nG2x%ZIVV-JvR;{(J~msc|1tlHpz{kErcZ&iLhSNkVWJh`_YMZwDk*p@4w zEGJyf=AQNb1f)5xoaYGxhaPb{73Wmd|>+R-v}oFC*C8AZ`s#wN)sj)C3^q7?;TxD4le z+LSWZ{zXLy6lB+dJH+L>T=V0>T???#j;ZhOZjU3wAl2!C298WZ&VtD-Af`(zB<92z09gCdH>b`;4@jmc-s$81DWp(?;GHnI>#EPw`|B>30AmXj1*WsMnhG^CjfHN7933lPa4_Y=f zg3@O4r$*( zHxpHzvDH>^;9A~yUP?4v!Cq5eP20Y|i zvOIi(WHwQb`yta4bc8@@Ma07Fi<~vfycUs+>j!y;5Vc|IpQGrMk4x2fO9L*8_E3B# z<6v%rJx-L|%Gu2VL%jq|l7&=AN2wNG15-oPU_yjjRdYOS(MHQ~C_tGh6KI-?NKqYa zP=uT0B9IVJJL?Q&MII$7SbP3v((Vx)^hZ9&;1(PTt7M2P8LzOCQ$ zqFjN`ZVfP;vgOel%9U&jPiBCsRXO`b-Fyh>^M-RvPTg_gMKD@{%Zi)PKoq#6tg;7T2oyR&4%Uh5Wx4bAsi_(s%0 zyHRhd1Sovo!eOfyJ;vzC-uYCoO0_a_bFe$H z!09L!FNR; z0F83=?P((|Sa#*r8d|leH8Kn6H_FU_OVg!55}|AknFj&lc3Pr>{fpfJ(UkRwYB<4!@!u4EVY=UDT?Sg;g;YQw zJbX~FYjD+2;n$9~@=e)>Yr-w}__Jg%$%0rHSLTl>VfTg$!{7)j||BmdKx&K3-69bqzSegGTsvFXlcV6Q_ z={nQArkYxS=@yK=96TXUZ2nQ%9L5H%lTXi)R2r{_@wn`c4PvgGY+GiM9wijGzq@lW zV1k`LrZ1A119dO-y617d``ZN8bdY)|@y3pnU`~T#7^a`%UM>-Npkk)tO;*P&%EE;N zz#!x>xB5=@M13T?MR$EOa+A@w=yC1Y+bba7TfY>{vvVOmmN4dXy+bBne0?o165+_9 z{i=BsK|GGvN|SKb=kS`#9JA6sYoT3-V00^P1!U`S{&>fMO-YBz^AheaB8$CaNb*tU zTto&H(^>dc;H6Q0CbdkbziuwI#OC4w?9PvWPB&0ifSoV#G8#Cw@Sj3jCOH~!_j`2u zt-$hZi!faUpf+xkpB$qgOv`+NNHoZiq4{)f?vZ~FXQgBoLj8S9ZB3rnYaEu&AazKW zhfw+}QmgiWncLAgQY0fz-H06mq?Wf*}l zrgA;}IgYl?Y>dj5*i!iDeStMo$g6Me>#3d6-I-u@x2Bl}7M<`~Q0DKU7=vuOBLiYF zZg(aRKjq=kt6w}CUBYM>Zib`kJn^w;^<=wiZ zPpk-osD~9(oW8;6;5rC<07;ufY1UlgsV8ALNaiuh)!=716tr5P5+BQv7t$1aT$zsr zX2-0V4%<_@dRx-t^G>8$=c40QaKVoC$=(4dO`XUCJ_Dn7EXBbh#p}?dNWZ%|nxl@X z2;p~$2L!lDueebH#bL{nW>wrRWI$gbl6uj`LDm?m*Jvg_xa?so%+Pa093JRA}KM5Y}^6&sfc9OIydu`v;H4#oA z)FCL5(ZKmxy%hG&{Z(C$j>i{(>T39e(`eTzQCyC9vWG|d`{OH*!;3JzT?kAmOG#vC|XVL|GzIK}$kOwl>TB9*J^x0XjBw?P29#lPB`+k!QCQ zJOs|62?+NSKnB5>yB>j)!#*0~#O{-}oT#oZ*>@F*L6%LqF5ww#=}E|@W|XEtz!1*sv+Ie=CQn%J8wP>n*eD^$E zyIniqsc2E&0K`jvJ;rmweDohy;$m)sdd)Ipa@N6 zpDq&*1~lby|I$_6?Gn|*)FAj+qJ|CG5MZrU8NYXxAoa9QU>PO#*=L8uy1){JqJS6} z4Xj|3@%m|%M0G|?z+O2_z>HZAAd_HHhBX*#VIGG)twAZi8B)w5N*m&OW?Q;uZ9>M_ zC;Rl@aA8Xo4>t26CT3|8i@n3E(;tifk7QzsjU*Ue%Bv+P94PnymT~{T4=Wbt{~T5X zDLk=Y2q~3Qp!fjsmySEvf1O(~np3fBTnODWs!zutG2fdpdAZ#J+~&aeFF?FkE`&{K z>v&?5e(zhalE}>ob22<*D2oetvR%a-?~VR z`)XV?OY5g-llcFk1d7y?Er+bLj)pkifnpI$%`+B7UF00E45CW1{<1{S;FjCT z@aW3paf@hntl?Q6{_udJA)aM$Ey;68l*vz`UX;*6Kud4lQ_*XUG;ZVjH0x;Q%k-R>V&fK4c{`-|5qryVVyB^C7V&!0 z)7kB+iZ6g&j+Yff`l_DKwC%;xJ4t|b8Wyu)%S3=2KbOG@t~Dt5Cy@*B_2s@a;Z266ll)rnlf z7#93q91+Ls)Z>HmvA=;KRQnZuAj#TZ}Cw~|6Yn6tvy2OATuUN zM(%kKIT?Q6zJngOn&c&oO{duiGNAf_02WY!Ckq1e{(bqvro1Y z#0(uU>*)j^U-4^A!82}4-8LA^_sllk<0J9m$!1h|#a3y8-u3qcMmh*X-7d{VOTJ0s zP*b0H$vdCFx3y3$SamzW9TKkYl@d$4Mu0Pno!NG5F#dT7H%0fwGy!Aybsr-x3I-;A z#n>nk_QX%+FP|;I7#uxzMkBF-c6Z*|Vd^pZ3+6%!L4fH>B+aLFuEX0Nm#opqN+||162^eene_Rsvv;E)^r7#bh#21C4}i z5$}j6I_DxivgC{HxQTY+Cn}Ev$^1YjAHvF(AJaMC`DdsS{p^-^dvdZPXpqW1_WzTT zrHuo_Pvm4mhG1smW=kZ2#0C_IxjBd#C4T&Lb|L2cZ|+CtP|8HP0VhJpkuMy7fa!)$ zK)mv3Ya`*kh$KZrypVKW+}6x@*g|eNC#u5hpsuFn9y-~H`sOf~8;nJI0kNp490K85Dfv$a~$c)k8d34$=IqH^@2n2GF8ACX|#PN4yw`G%Y zt`7th>NJ}JUU`<{VYgh?gB+&6`uULM=y=olFX8!?8IJ8W{B>BYJd+=1@B}+5`1L$w zg|fg2nUBM0xus zjU(Lde<&gn4=p=u*A7n{g{hq#sJarF8a|E`N`IxxvTITFN8Bl`dZo)Bi~^zmsyaSs zK_z<9!H{2Q5l^EJ`9TaS{I+`K@>EIvZU*hv738ai;yQktf*D{JN00G07dh94s zJQ$1Otl1hL*tZ3HcYWUBBj{Usg}%02bw@50XWbOcT_^kFj(lcyVf=BP#`pX&!wCRy zPq$TX!}rhdp0|G{dbY-|I=!?WxF4P`0m08(T3rWl`N_N~skO5ngRU1+4mW3{Wy~c@ z=SJ_4CR^i_&eIEm7FyfoWUmq4CHs<6J>w(Wl+j;yO4Zf1Cy1Vg!lG;UvN~&s@&>}L z&E_eM{A=wloGmReOEtB!YtyoutAOrRN@tr+oa`n}l`3C#Es^~DpQn#FNgrT;*UQl< zt;HbJMNojHOkR^B1@4T1v11^AWwLw{LkolVg@Q4G&}oF1%8>ce1KKIoT$`>odg96h z9kBGYg{vgF(jR+e=9os+U7V|`Z8+$>)@;z(g5LoS3izrl=C;glVA3FZj_>djKIv>hZ*miz+WnGSLw=LwL^pPHV{=?$yH*^?ZTDV z_GoOQ@{3B@J5$Hhxf%ltCaxL-jwnp6Hr=~<%jztSvjJc559qU!aMmx29cP!H=Eipa z`5HNxSi^mx1Wd#ZDMeGD}#Hd?@@Lik^t0Rx5-%;^pNfU1mtf*Ch*6-ACW5>ln6e-^b|vZA@V6Q*%RC z4ODUBxMk!#J26vBI89-8a0v#WvVi}YZ<=qp4+S$(F2%wOj)SXxjEkGLGd8A9msuI` zSvQba0ZK?fZ!5h18IIxxg2&UfCWer;32tsD3_@*b1A-3kACZ+25tQ)@wRduK^k0sU zF0{RWcwSTptWYu$u{k^#Pk$o(+TS)_t<*H$uI1;M9uOK+YY=p7Z0HMM>jXp?KQ}0( zjs%9-=GY9W(X+9? zAqYh-*=!%A71&dSxqoIJ;`LV5+(06@+9W-}=fT$!u0PpbK)^N;m#~I~;`h8GSw|s` zK|E@Zl#-J`N7q1wKjDDnXH5|L?X47WqkPMkE2q!tk27NU*{!kA;o)Wuw@_kt_;}pj zg?>Dkc4qZjHV(oG#3bwH$0-$WOZMBtmjZs76nlJ3X(?Y;Lu+ z&OZy?8*4u*Btv^*J$o#a<0ERTVh~aG_hCL$1W@6jb8lX|I#_|X*BzYzTYcf|PZCx5 z_=pojyHu_<=F&jA^Q?db($82=&c4sOG|(&%+vw=%%t<|vTz-&a3)|^yO;AjC-t8@g z;-1MXeh=@ztA9b|w$?zrbW_2$K6|}+@Y+E@6_BQd9A*HXkCg4SR1iw6VFeJf+%!m- zkC~Gzi`0q<#p-y#ia*pP$8VHL4$m(C?o#XwJ>e zA8U&LYWzRH_2k8bG`;qaZGK-~J@JJ%v)gh9y$3`W13q>1wR0mv8m2z~$?)KII|LDr zp8MvXq-veuYJZxyIASz7f~Qkyap7is+E{;>YrflTRniLyLF!6I^=vX-X-7wYjy!go z4QpIEpaLV0b8l;qK3jR8RkUy{&Fs%MtEsCiprJ@ep_kXuSLj2N!%){|URyHgxocYk z2u8Wkt2|vLAe-LzP^o`;dO!aet*(L~1OjOv;shX2JA#9-MkvpsdLU49pJ>oz{=(;JtzVC32T$$|s{!x2EQk=+(cZ zuNnS>uL;Eiiub(7)6-9iYIl}5(JP(kkJ%2ay-&0=?~q6L?5UjNo@}z9 zF~RG1H~-IG_qJl-nz8;V=;~Cy>J#;C+TyeK(d6)}@%#8S@w6F#Ab8ycT>)%+qXVCO z&t32tf}{7>6F%rtfpTzKGTx<@u~;+xH@4l8q6!0opioT&bpIZ@Nyq=idmD>ra4SB2*Jn9yF|s#6(C` z(o#{TiUOHZ4M(?X)r83#8KYgcUqa{CBwavKnw_^%TPD`J2`%B(G0d343+36d>|bF< z-s;9a45MV97EO#->R6iXV*b&b@lhwaw8xGF6}m3D{2J-CUllXeW_tcv5b#GwrSA(9 z!CQX=XhZwg&^>{yg+*I8&Q3X2gjrNhDRtr&j)WKyNhL5uWuR}9;;Y)lwy5HdH;?rE~_MfcL zG8SHTEvqJ+K?=(hH#d~{u3m&Po8o(DrvRzYEkCnR4tD_V-pBGDt}&9`Zj&fdsnPe> z%Aq|(x_Ua3ZJt@tEkciHI+@x_OVU2{C-_~&fO$4DBq9wO;rH8G>q^v$>;?|7L5ipl zl|D1cKoA_XB1RNaz8<$;fKaHs|F_)tmwe8I-uT>QM|5a`KD<3@jnUmTXVvG4>Cw+Z z`v=mXfqwwW(`l$I0Xx;`4#J)U`-%qjb3TC!`K3B>1b76zdleV9w}3(^uI}bY3V2G? zxOn|4uPLfy+ql?$ho}`H2X)UyT7duOJR)hHdP1W5?(7aozM1PTi}Rv9UFI}40^eVJ z*|g6^gw`tKO`jf97dCNf$+YR|GRrgU81KkN)Eof6v>wY$Tk2;Ga#Q%4|F+)1t#q4Q z2c2b2dXbDG-*^LA2e<-1S_gkS`FY=5rWnH=1dXEycB0gK=-Kz&teiAFHG9PF}_ zc}8I0K24u}6PtiqWsTNat*Sux#h!^}@fL(;fhC5tTWKB3iD#1=mtPXZ_vUng;S;G0 zygZ}>>hio~6M^Cj3)fB8=;)7#gVF5KNs0`<$&{s{=X@^Fpiot`#uqn2C_zgdb=F3w zf{`5iJ0m26pnWHH{H`S%xG2Dd)rH|=NDEAAz%oKHD&@Z4%epcgKE2*oWbF00_8&aE zYVoeOG9pBs2JW%mFr83t7n;b0u}!2a_8%X_V7TrblGYU0P>nQS3JSBu-|nFi`wWvY zZKA@k#7Km$48&@KTqR%FGtCu~Q$h=va>V`Ugpe)k&lR{?&V%Yq{ppJV{&PDqQ5^8o zvXcx-<;jA6k`8B~t&5U8VxZOQ)(l`0 zKi^}fSaE`RQ9L!V6sGs2XGQ?RZncXl+Eg5Tm!}oIGV6e+495G*qVViB;I*Uz{{9)C z7Yw2X;G#S>J}N-&`Fp-#*;BAnTe=WwKK+z|M-fa29c~TaOF~B_X)Q4`NyLaXaFr1r zOY7xOUYE2qmXb3xM!`k2JD&c$VaCGjlg2VNAfnBu_n&5!KI|2*U<4?A2w^p)Hu==> zliE=v+e(U)oo7=dHbA@0?tT~h58Gy1&sQ&o3$t9U6?GJV`5c+WxpftNCD%5*f zqPNlYL98dpw!I83wF9yeVX24$-^yj`+~2)yk|K2MoJ{3mfR0p(7fb=~$KIAty$c=M zfSVl_9DMF^-P&{*p66Nrx3hm-dbut1oDtCc>P;1gnEeS6d~Wp-n$woFAf%-rY_Rqr zHsuzm2|RC+rOLQRta+FVg)xyf@+%(WXSYp80Xxjn>Iun^=m0Y->^GEIcaE~5u#k02 zmQ(@Gn}#pKv%v#p`*<+q{cV8ym6WyefZxzvb5DX(uS;T~%WTspXZIqpZHpx`87tfRhe!-eZCa4y8EX_g^7r9iP^+Q4i?b%I$E%V)hpRvr$Q zW&vT1tO`8$eQ+yISac%-nJx`MxFTEIpPbGf7NP_fT|lAK>()&2p3mt_FyNezDRS0& zk^f2?2@+2dmN!1AknPpX{t|}jU-E#w^qbv-++C#d)k1bhuIf07b;O95*)oR0s{Y-N zuWTO2BY>M2o~Je8?B=(aI91+iVQE4Cc*B!=T%kXd!RR(Rp%V+nP1&%SkB0hbPX-#S1vI+hJF9%#n5rkWG(@7`z$t>rm zi){znKS}}8*qx6jU2~BA(fv4!ElIf4DUQb^8`MKQ114L3hXXF%mtKvCR*ba1Ya%+v zAxnsq`xS5q0s2J(DC|^H**JtVt8ol}lE{IwY}4E%&G;Um8oJyVlLR|( zg`v;6cIQE~Z@V4i=!N_yqeL(hMK5t+H0c?v-~yTgYJiTa4=T9`=Ue4RPuEnFhrh)9 zq-y*i#!B>{JEvY46XpG(Cak+Dh7Gd{Nq|uH)}YxT*O21BF%LZ`4G4Mu=aNx@g=%;) za1=4ixfH^9mB>=RMs{8Z(DIeBF3M7(g>xbM5oUPj-<_u$!k3FxG-zGA_euM?>@$v1 zuk@vH7&_I#uqKx3`R)|S0%}|q!WCpmrR)!O-4VBWdL$) z_lLXIt8VF|O}8Y55Z@NrpM~e4YGdkQFd`mIcUEg3Z@)&(&UQ}(f``LiGA`RRY!PuZ zO}b=6fahHnMZapPO^Z;*SwZ4>#z3_nxq<5Ml5?)hgDE0uC>uw;2Ok+{yV6h8S>eOM zq9P4juaahyC!S_eiYOe=S{pE+*FfEayw;KW7RfRka2Fsj(1RASF;B!@-jt>7Uz6*zSacQ3{&|wwIK(7ZC&u+qnSHy zo8iW;iDbV22p7D_ktEGoOUUB>D2%`0SkukV9_o#eYkxPRKz()!l}_SVEh4->+8pT9 z3y$MWZxRoqrA|Z<_~C*jG6Te+O1H4(#L4rtyuGp4CIw2|Q2c7#t_I7Ok<=O-lsP~$ zxOfXGOS2+UNLr9N+ordZVi&nOrGVvY)uQsC)Z2Gd@1F~`q&tVfM!mom;PyK-rqpJ; z#GAK$Nr({FrXLA8P35-=G_UDP}!q+{|NkKv%WUbF{nph zbq`%#Er<)UWSM|sO?t$9qY_CU89I&EQGF8aD#;VMI^^ z{sDG^>Hz8~#E`}*JLfOSvB`9@zVN*ZPy!}aa;Ygdj2}tWF7=ywQHXqCX}@PBvq`Xm zx{lVA#JLegb)Sp~mLV&D(PYn5)tjogYCXGcTF13>lN7vH2!Kn|Y^eZc=oIVLTsz^J zLwQH@ahhV>_pD48_=jm@rrKl7+#A@F_Y>~C&5oK*DX!D5D-IMKFSD@m+t(Q?$&k>! z57HX4*u@O}#{Lwog8JZrzmd6k|L72>Vcw$*6mBpyu%agN47`W&b<-@{`3*Sp$LL-( zmJYfv!OYHC0+6;UKl|*jhp-trQeUkm*1gM5je0DaZGr;>x)o%CykLKhVT6OOIGPsZ zWxY&9z^q6=X6Y~?p{L8pw|5`nD6$NGlbP%Lt%R$jvQg^O{OdCbXt;%cIo>!QW!HSZ z6)olUnD`=uttMORB0gSGfcsVtGn(A{AlonB6V(Pd0&tDhoYeA)5b-| z8p>BcKIUO&jk2J(wDq5sx~s^Qf>_%rzjHU<4ZZj9kyBGjiMiu>*u&@V1aZ3TSR`G_ zOS!+LfE`nf7cw1K)_pXnvUG{^;FjFe!x4kw0%Lr=Gjn(FSQkx=9hzfX^s;@nm%>|X zN6r=44xde*?$PIYt!caIVaND3)DTy8s==!-&2Gmq39Q<^iFSk#E~#Q}5{b(>q0YTm z$#JsLtY<&bLb-NssQgM7rW{XaUM!7V|_gd(Yo^vJuRrqzZbu)IJX; z0MsoF@X(I5NwhdgRK3XA0q+~P8uf7w*{gc)1B}8*v?#0o(|k%{PwMkfk>oI&jJ&7E zl{ak?JL1lzVrPSHO4g%en_%#Zfd-xi$;zVa50GwFC`i@2WPAZBKlUt^q_Z zJ=nh}9v~pFs+~D|L-mz|Zyx!&KjI@>0Qwxur8}>x&#l|x5Lw2+YXe#h^OtdPj*E)I zVfxr|w(ydxCzb^!59AIhx&(tjGdnd0jeLB(xp>DSH!dzneeW2e6?@8g%c$BUKjDC+ z?OFbsoOUR{SNr+j@YuU|NNO^oA_7k4)Rr+Hmf}LznH`g#v2#!a88QJ+J^1wtz}C4M z%6laCUu=VW%`x1N3g2LMr`t&$_q_K1GGvRtO=i1~K7Q%9LQk`Xd96<{WcEsyd+a}? z9Ig(_ezx*+;UgeoWs2a9p<8oT>Y~@-Mv!i8lBy!AmNDN*Vq|BUGei5Z&8ag}9u0o= znXfrvIis^UY3}Xu=cpooVR>>_1G<tILl9OSWm(;&bCi?dp zmC!pucK3AQiND$qI41|4yUZim*eg2!h01H)x4p~UcLx&5^ld~kn{~1z&|u=Lc4<_2 z_#&Mu7GMqjf-%x*r3-K|Yf_6N`$a;H-@4f^GV8Fhm?#zO9y7|2mrva`3piX>c1&a2 zscs5AJ?pD{01a6p>dI|c@#N&K5>k8u)#mF)6od-y>o_GaCFn}vWWJf^vCuND=WIq! z{XQoW*$MFvq;L_z)7(l*)PEqlwW zFapvph?1aEh$!Sj( zbuJ<$W-(A^c~j=K90}O|&e(nqP2r|8ETCf_K<2X)d4rbg5n=;o^@b-nzNDvjAX=n1dXlWJ{9L!+Fsdr zI!luC^SO9ZmhDh=shUf=E>w*7;QBmMh8FecDT*1oL`hpD=Yl4fRE?;-F%O9(M_&Lr z=DW_E%9{St)XQKhCqbl14iorTum1KqY=4c-!&?0!NrImg3&Q}*4cYO@JG1NXwKb%$ zHp>e%67L}dsEsO1CdFg)ywh{&!>VW~TePH`WH7hn4=G+*C~V5wwwVd|iHjIRg*10c zX8f0i!V_}Y!*$bTuet12x*bYNJ62pQmm96cSjc6yw;I;H5qq`}wT2}-{9&H7Yy-oqWm)Nl zg^vHukIgI1@T@VtM-C9o_Eg6E@#_kBS|wD3H8f4Qsw_O-^U?kzwj*?C{~|mJi~L_O z;Gl{0Rx@fbVoe`S`~5G4W-8c~B;o~B0gbokA!vCm%Egbyq_OTb8){R^Ra7rKmKwqy*FpGb<#u=_qsVe+o2wfcxRjHQFdSWPS z*NiPf?U#Z-!5DCMK{rWBuF4qQ>?|nCYZD-9Tk+LD+IvUeV^@L?1-wVj;x+qA!CM#P zv;&@w&!Z(~q zSDTyUKV$*i+7A$uGgKvr)nwcQl_{8fv$%QhW$$+Mkep+9{j88G%;V7M2tw>&foh?u zL(TEh8y`)(;;q#CpbT^{*YTvuYn`;kE+VUAUdrt4Oe(j1?PyMC?3_vH zd!j_<4mZZrq!L@CWzAY5i0gpFu~HHp?pnED6~_a!nRv-bDfrQ#g`NZI8Ofr8F| z`;jqiR@hrA$-?}yuL_dpf~oY(`F=btK#Xe#ykpSl`yB6PyLWA^FoKc!M($60j;^lbDd zPJU5}`Z>}kuV@i_tWCvF)Z-N*sRCj)*9 z-jcMMhhzQLzRufZ43cI*y`=HOla<=8i?mP90>crhcooKA7lTPJK8LQY`{%V>dEgg@ zI2H4{+I$>RE>_^_R72gYwMwU?u(6GixMqyosO>mxgN}M6Mu9e9C!_KFklF&N-}ykX ziwAzW1Ykl{H}V-D8@2ze)1-{es;XIlUE{Fb4pCH&$wb+U2DZ)lAg?uWRh*3BD7eR` z#o3;Nef6kHpKZ21wFcK3Mb{R;t~LgR5cA)8mPe_;kgy))EsBIc!(TL6VCHmW^VkJv zRSD{gpHjaPvIG!t4;q5;L4Q%Dn}CROjGEdkzF%4f@7Lph_ZR=SOjcR)6Letk8#&7) zLX7BDYK54Wqo@@^$`6YLR9!j{AJdg&;nXNBh~PgNHY&ZHVHd(9eAOjoU&)kjxlM2hI))miF@?%EpA~IE| zzhCXu4gIZNn+Cq%L@w~*b1^V)b+?NT?k$sCB(+k=E{5oKO=K6tE<_k9cn%n-tj{{q z;k224Mn@u)Pk;8&x#vDbLlXGvNOB==wFP}bPLk!7-`p0p-<4`y5T+9K%UIm7jI>s> zNz5(LgI;$!fz#ju zMafo^Y(U&n>Rfx5WWKgc%maHF*v>@gQOVTZ?c5|+qQR>ifwV#w$A$+?m%(PF>*p~)81$g`t4 z3=0-Oc~bH6t-QAX;C4tZ|892vVSQA$*F_j4l~d2cp7pm*Liu52nzWjmXxwU7t93@! zRRZz*H9m8Oz9WCk<^(wK)TDA}EQ&~!`Jb7$r^yNcKO?-0L2`1h3yK^+`mj`3>S2i6hHfQpklFo> ze=jhZl;G+bihY+no2p{3fu`-h9l3%(iS{eUUeGsTu;=yAsoxOhX+vh1oS-ZqdccKz z?^_{q;`#s;VM|tuQAaXoZ$A!LdcH^2CY$xJoCr=OgC zZq|4Z>owz4P=>|xxW@$f|SS`x-^cT${{4evp}whb6V4cB^-}H)^1xPgw#od zfZ>k@Of&pWU@+f${#@QTGVqmvLPRpL>LSsPfNxp^uent?b_2HV$i=67h6Ig_?T~|( zxKz_yHeyDnW+|K36!k)_Gd>RO{ymUhx}i21_^~g)0-(wJa(1U%66;WB|ySrRIeA|0Ghby?=Y zfcgSV0~w_UGb5b=mn=hWa)zyWjMXTiWgoTJ*H1|F5I$#Xz&ra>o|YK!#4H{ARmT)h z{22a;r|au6?5;cV%kE%-ekBj)kNv#u<8o#6?!J93YiWm5*e=foPC7z-$$q>BfqSuE zY4J8OXP}uYV@b1Yi9wwOw&kjOYZC7zz0Z_z+JS(5^tU=6l9Kyb!+(1HK~2Urj*P+; z>S0rzIlk2OU$7;Tb3(`fGqtg3;lnFZ!7vmGupjVx`(oD^JW{nd5p24%8#fvIn;JI?jr?)AUcdnRgqzrd^h z`P}8Y5Ut+xDG}nxg1s3El!-mNRmA-Fhn?SotpcV9(I?PE#Ii^MUd}D$htcc^>dUiR zreaD-#`YtWvrE1Lsi39&YWrBQ6C?iuB)@4*ERDwydna-S&n@kOB&Bg34weeIZ5iZh z&k*KHwv%PGq%+K0sdH0IV(t-)A5A)ts)fol?msO!R+^XZt7bi0D&aAcX*Av5tPW1G zk+x`Zp-}k-%e!&_XTxF8_ij+L5x{Wr-kqPvMx`2xPhuKKL>B9SL>wJ zQ56VQW1+){RxkmOTz=!Qgbb0JS+z8gFc-X zP(N`7-_GAw4%H+H4SV00X_n3|O!Nv$D!0pCC))R%@@Q$_;-Oe*dl6iVgH`jvF?uz8 zG4$Ni)G`1#cq>mc*%>@mC3vLEU++gbc>hE4!gt)68UI9%Nzje{C`ep54dZ#};f^H= zq--d%zG3}>+}x~SQ7YMpazDB7pf59$pnin7S{ zvwgC3MEfSAMCmrlBECOf>KH#vDh=LDZBwkh5~={&ozI2Yq+7qpXiDDK2Ke`-TO0OW zl9A0AIOcY5$kY@{d5(kSa_!uJX3=RHY&wR0pKcDm9WIC4}f-gY)O_3zZ4teoJ&5!# zOJOLFzElwHW$kJTD2=#CDUh+ge*;e$*lYoJP)a;&#YU;G^tZ-4uCs&1wZB$epAEmB zm?CoaXe22%J+9Xf3QvBPN}1iUWCy72JWB}uT9ABV=lID}N_tPq_fyHW>~MKC>1dZ| zk~2I#RkHj_S7`SRcfAiM820PA&AD{#9>E5R5wx+OPCv=@0hc0tE4jI$C_HgxF&6;m z8^pDhm$~S@WjrGv`VYsH3f zAH|ds)Q&*ZKLuD5Ue5K98vY0_%hPS2g5?HG?7X^KhVOB+?RgB#OJqtfrG+^XG z#mGEM4uA8wG) z^&sv3d(I8R&^uE{znx=^nf}r4hWd4{_}w_L_jtU0sHH3~nV|MJW?UiC(xtrgrNn|=NyA5?JOoD5(Xqy_ov z4$qh|o0*Jl=20I0W7IxW~P;$={m>tx&-a_5eR`i4XSTkLyE=lWq zKP;_KP4g)OU!o+dvDd+5-yqz>>xn6^Cg2F~z_-|87RfBEn{p%KVo zi!EP@znu{sgQc$D`Hd>DP^E|J*^c#+5KF|vF|P(Ys07nMxv|!d43{UtW|Eqi%h=^& z^xTB2$CNf{?tm{(JxEjhV(2RR3;FOTBTMrxZ8BmfmYr(WyyGX z-v&1;qlKLHt(|lS`I?Hu`87gTz2p2Vzhf39DNCE6md%=P_U0#uQUG_Fj;krd@G-!) zDw1im6$42XG}?0z7zQZa*i{s_phe&edanGJ0YGP|JIoS**AcAE2>S0YhMbb+HbLp; zcNJnRaL1ZuL1g7dDveO3r(ymA;N57l z=AI1t_58)8u3Etwv>f+q#2qG3i~x-NZB$Fp({JDMMCt|YyAB|9brbfi-oUWuDk6$~ zQfpTV_e+aRGJKp{sTGX9)<9w@|Fu`J42|{n8F_R9)_98SczAzdD#~J=(8TR^W|+mL zn_tXjbvWPSQ=vV#&Ji$z_91p_-(I{S@xcA<&VmLSn%+8{SP@#1pH|YTo!%~$+M+)u zy%uAh;cM__5)1&Rvnu!NXNhOEFx>~qa@;d^Av+kEgujLLvklwV^A;2WOFx|ImQoUt=abt zmTgcxjKmIss=udn^`kH=`N|<`!9mg$QWyVVPHH5UUILVgRQ6g}Se12RitN%)b3Zv@ zNDL@u%J@a57^(5+_IN%^9hMHtEt%#w{7r;38MjxV-iJ%$RR^z$xfYpchv%C;fQEjh zG9V5wY@dZCV}6r zH;AD00suVS=N{zz;jeB+KkL_r&ikctEZG5W<sH2fZt?L?H(3!dh4NDM$m$^OlkbP-h z8B)vq7H)Qgzq=914tF8^$YRq_@KQ>wAZFf1{N2ExE4UW08$#b^CjYXrvvVfIGZ&xp z2mqw%>_fwJqEl$=_LJ!@s!`(791;S5YySg#F+TPa7wX&A=Z z;TfK}p9f-txSvT$7j_t7lQJ|R7N(aLOhA}4oLd@ao^#L5fK?al0tfcs8)`~w9S)1l zcw|rSWhN<}g;ZIn-rqc=O8NY*WbJ1BmW{P8`xVv9j{wfWT0#P-cP8O3_cL`fRh9KU zkVnXAnBdrpFw!?;@Id_**X16V>6jl9HGUNd73%mJ$h>=Giyj<-+Ci|KQIY8XJn1W(Q0aws`;c^k>B+w`MWXia`?s4HzUt z+ZKpP&jI45uV24WqIl)Aa7L>%qFBvL(55-X<9>#P#k1z@O9FUd_hz?=Z#pnusx%V% z1go1-%F>FAb|$H1Ok7Lfps(>*GW6aM@Z^7NGE~(KKWAbeHNZlq)@$V7EdXd$8+KJq z)~`r|PlA?I)4uQ#2*VP-)Z3tJ5s7D{IS1fHH;dYB>$j3lBK7yw?3Oq=a0ak1lj6hJ zUBnW|OW$36cR0s%`vxC8Ix4MBqV;*NpviXC@yX86^3M{2>BDK_9%q7|#aU8R3lV(s z*3}kxCfJCKV%aRKvW)UTO@K~IMXdcxQ3iRKPPwX2qB4S}JHpc95Np50m(zb~_@&78 zJ%1T#h_9_yINNXb?S}umr@(uS>M-Dmt5}(FVb848e+kUef0UrH}nuG%@10^tNUO`*#&_8soDUJVZgoA z=zzDiSPnIoX+#S`GXL{H(7j-*3Q|!?a6v>dl&9Q_JF27tb@gJ^WwS#K!gapS)GM)o)PEdDXpKs+bwJr{#rw=!36n%f&yX zXsRE|`9eAPf+P4g4St39p{j)e@iR85TKI(+ZFuR~fCnPS;&Uzy>u^^=XXEWJt#I!uxHjMHgZ+dH6S&kiZC=Sx;*bBT{0lFTG2u7Cx#-*%gBV3f%baRY+0JknWDdFD_=zb_|pef zKJE6m7Yrj5%T$abAI0D^d*)qlL(i;bdBq1W1GF4c^Jc?hN}q%HjInooAHeL@>R{Mk zfZ7O9-QsE2&J)PG+BpUC^V3206MfwLIo(_!19*T>7gz}13jFrW)kRhQJ^o8c6Qm8> zQ;IZ#0>+@Vj>d&4unOBC^XyMbERz6J;_X}{o|Za%TkA_dKID0+jD5P!&y$UkW*x3P z8vnQQYPRlO_is?e(1|$$iI$PATRkC*)JHU{t4D{biw!~?ddqwG?e#r&F56cDGnKGp zQh*LMigqH9;tMC?*eyYvxybq3KUXWPM)1p{lk&B-{OxjaR#DGINd^N(3~lY@C{Mro zH!Wui?B>nhxSH3}fl$AAAEYNkM5OCVyVrQp(v1?12r$`-D2YNE!e?AL?4f&}o@u4@ z;pBz$w-S!IoYD**T3*A3n(slvXd2AL2jD(wuyOsKAQa{F&bpR9$9`R4G3MR8PPpA+ zS^%v4B5rM(-pplA1}`3Ux!_BsB!A zB0io^WvNZtr+C|`D)hJG@w_ny2(aPlN%_jpCpz&n(RpN%6XhvLjT;d;O4e(Oz%0vh zz5m$&A1P}weh6r)#fwqUyY|^}L_k*@DUdkTE}N!XOIUW7J4@4C`UtiA3_{cq2B~GB zAo9NVmX-g0`$lBL_|U)du!acXRWHbpBOCIxb^qCJ-}PyAU_b{M4_|^?1Tf2HRgMio zuf4Q#y*n@KY$I*|7F=rpn}fi!4Sn@Z3Mjzu>dJ0klg46{Y`b>V8RsLUo>M1jCm@Zn zIJJX!;YiXct@J80-s~Uh`PLpqk>?~E|9C5~k&w@_w_9RNa?6lx#BJsO`H1ANzFlGX z*Q#zmQNCax!6iMlLfIR30w6b`U@1!ppHBS4Mh6QD3aujN6K_|z0y36HUNpM}!hZ|0 zfU%^KqmypxC@yG;T}q!N%5f+$Z0CL>QtDM2^Pfg2YPH?I5Sx*0utn=eOl^lpa&Ukp z_dzQ3EMdRcOvMm>a@$v z0}ZYsqBYDUk|?OHxuL=}*zO6KF1BVrP{pHgwCKGkQRkzBb?Bh!fM&+!Vl7{;9(_@U*#d5lhSK+K;zdIDl%eP@_#R0fCE zUtuR(IGjdNS@&(N&G_Doj85XZi}hZeaG0Edj|E&S;A^ALMufLg2sjX`Wt)t#FdC)x zuI*L$2h9K`i(U|FgKNCFOEqx{*OVrYGc!Y_0o2?s+80`xGA+lSC_|)*M{T#YF-r2= z-@d;`^!a}(0o&0!Ke!7mzlR{S#~+0)nbb}<#joG{62|m5c|`Rx+WH8e`@27KOgvJ? zdiT%A`IVh4{6EtuuxwPO?5q2}(`sf7s@ev_$<*S86<|mBtf2+8K4trRvK1Yz#pypy zNf#)$s4AHPY}e4B8p(U0hT8BN+1ascs>pPBIUHa403)Y~m~-muZV>!&IQe=mR4YJ8 z1m1j2D}3yQ@B>z9Wg?nv^}t~9+yU${6UtUi&vN1$9aNL2EibBcFRX!;J8hdd4HBnG ztPTE3Nq2Ck2xyzV4Wtqe#PptE&5w^v(-MD&BY}&Iw0@WIxNV9%WrS$GNkqQEH zvam($!ps!$EbcYSy6Ic0Rc_SN_3YV5M&&f)JjvV!@-1WJ5 zOIx|F-ym-Eop041?}2CrvorQ?&8w8-t|e~pQY`0BD0BOW$y41i+&89MihBDds@Rjd z5r;U_JUEwvu%_LTJ2SR9VP{a4TMH?-TCxbxVkHPFXmb+N+YNsX(VCgUa4Rj>a&M*V zf3?>AjgIfB9RRCRx$G8&rn~wpjilQf3eY(5>0y0b zXNaNN?&>S`j}NRHzd$=USH7(dcR3v3*o`?BBgPSx^y4kkdoi^^&GsSV@93;*7?4r) zUod~=!a%g$FD$LOej-W%M*ZaI_T(R?7Pd6fH8c!EFjDS=(GxNTU=ixGz{M?fK`PpD<#YW>ku?TQU5TMLiVp@17}E}-pU2QTN{Up@ z9MrW+;1972Pk4u;6p3;;qeu)79Q^zML10IEvPs_Tvg-k^{$p9FXiJ-o!LDQ}gi!PkB^M`fX>Ar}dgJ@+?l?-qa*gAj0qm9+X z=cQYBx=2^FZ$eO~mSNb%Uug0XbZpUOv@RvXdLL(N0)j8KbwlY))N4Wwqx|vqIJZwgWB&`y1-yRp?A+Y{Ce;+|ZMhO5mv4*$?YP`d#kgRS zbcMpb@p_d8yv6nh*k7wdOB2$4lbvzKK=jG;Kx(ACnhL=wnhrr~PSg}w^FsZlK~@hWlt?2zc{HtKaPe1piYv|X0V zHK|GW_@x6&N#K$hJ3xm^{X~VYuDRASC#-yGsx6EmG6`(x(9Tb*>o)eu?A>qW_(I>XenmI+2-7%6{2A5_ z$s7KL-E|rk?ws;pBysCuTUl5a;hbN4>tvK+BOY0G$A3{iO505&KaksOOM3(0Jp|XU z@s^I#%@_Vc_OZw5z1+cfaKze81Ns1Jpfs0(B#oDv3Wb3ScIXt4Oc-6mIqC+1t}7_t zb%ljx5i=yx5ciXTmfRUcJ;16pO(2op3A;q^;FGv<{Qa`DHM?-%`33R&LI36b8DpzR z&F**4L0Ec)c0cY4jo2vL*U?@7g~z|>=^2ox=Fi&54J}PZY`+S3qCL@q87Tlcl{Z*1 zOS8z+6@2BV;Ut`8JDy@UQ3%hTWz_cBSTjVdm+pU#Yjj>E6%70h%j*IeIl>F+k?3P1 zzX^TM{V%`Kvv({&P|dr)H~IxHo}IC-Uh20g1LZNWy);HHChaV4#Mp_BrrY~}Fe`^X zyXLas0%Vztey6$`|7D~@<2V5*0rN;tQ!u3J)M-iw-YHM!&Y)SIPqg%7veq@Gi@W>? znL6ft(;cEl7VtK+y{Kaf_rZeN{J+<2sn%pmkC}O#;EumeWUX2 zt8|*wn;%*B#vO{9yKWzROxCVtI~S8HJf>hq^Rj zKzr&G44F2|`-!8kJF111f3`jk(l z7-O5^)`JoAD|NN4Y^23uvf`VZi!2ElpR;i(GZpkhV?8Z*@5f=v+^W!8>+t8YTG|WsE&T&^myp!U>a)%F+qpCYLBW z%3<&QA1-LPz~wrC}i#E8kbmc?zFf;0*X`1(${^=zt$ z!jZ-&h@9v^=R-T2Lki|q`#V9!iNF34^sge-`?-36tx394FYELSN#IdWlR9E(Ep(b( zZ3E->%+X&-=%x*$dq?9xgvh$|7!x^{$Yo&7O{*(}5qeuotnn*Y?yw}KLiBs$AsBFR ziOD^Ngz>jcRqSwEB)y0QWsWTPFvMor$A6Js{=Fo#3HT4R8feSx&Q{)v=Q9<|(y|3P zjUWra3F2%GE{`Ab_74B|aG&@MM_<5BMUH(YlNx^LBztWek%I?il@*VPJb~d%lQ_om zHMRR9%AAob&GXQv#>W(FimEDEUgWucEgm&t*?+GDO`O^tDcSx!H2+8a_P@1DEdQfj z`sZKb<0E1ec6G6Ia3%s!Q4=wW{*yDgSUK2>8M&AdQHk-eFtIQ({~Ju)tjuie+W&vW zzj7)$BULj^B6lknOCn28M>A(FY|g@DY;4TIWyZ|L#%65FWWvJ4X~N2E#%g9}ZYIF@Z(_`0W@N(2 z!pX|b!p+XbZO+NW%)-vZ&dSBX&TS%~_kUYIvrLSCflx?{d>q2d!NW%v6Di+8hnxOt z3_&DX^Rel>LPe(bLYB|Z0kEX$L6Sgt^jl8|lR2=*nbxvw-}leV z^scVnt9xcwtzOduPl(S2h!)hUQZmf!EZm6HJx_%nh@9*|HlVY)9iosBkX6yv$;!;l z*4N4s$o|g)vh(n<^Kk=N<$wl2eqMGU2Rj$g2*|1eE-6IXTj+enFB#^6;miZ{wx!|AOQfm3OkV^8Od>->%%;{|P1U^wk;2 z!T%3~I*?V}+1VY)$@$-g#y=Q9J{};es+*PPf5&D|i3i|<&3QPv%(%Gt%`Gf>___Ic zEjTSXxwyH%nw#@}W#eS$77^kw9)10xv4210!0Q|(8>@n`G)WZ6HHRJsk$xAj|*6e93*i| zceX@JWNcWRdK^49HujILOGKXFVAtX#2%|HE-d|U(kd^>k#Q#G7|CLkK%-RYBpBY-ngdzUDJF=EmlhoqEUiHBmjGWApC8AUdbjj@?X}K)3r`xCsVM}6 zM*(LOqLq{7|681YPyb1VlRF)d1i*&mLkH<@*dCSrb$7Cuv879y;QXCL0WNg^||&V`<$P`V}6>g z!CJ%q_cEWi_g!guPrrtZa!Wf@8aa3f@kD4bK2%h3;b-90ygvwS{*j$(dW)H zm+LC2n}T0)=1O{TCXwH%s;2*B0!1lq3A@Sy5k=6Rz^{UEr`+?3r(7I^triNYC|<@r z{A#Mv`!#M-a*k)p-bP9?Xl`T;#%MX;aXd0#G^V&>%_r$Q-4cA&J0h6$+n}$Hr1-gCJV{bKOm-9QI4W z>9^nWL3>(a)_O2?%V;gR#7J0fjc0m-;-muS=YP{QGyK6B5P)xZL}UTWN+AO@mN(9#9J}@= z6>Lf)0|khsY0jx#JDt~O!FaQ;-Qh&CTb=dqqfgp=eYVT9t5@bTqStY#5t1(9K8=V8 z)A{coAD2B|h$DMqFs4Ju=Vndu!05$NL8;P;Z*G)nNU%ibS0B%X^tk%JZxZ0scZi~P z5ESvg`{eGxQZs;~HDFeY)spr_q>?eDcF)M7Av{Iqq)cRJ7K4s@0XiYXM#@XXtCY>c z%_PlH#7K>p=B5q)X}4d9zq}c%Kr^JZ(E`ZQaJ`p*F~DApL&!*v7OC$zz{|kKix1}K zh^yi5sEnWr#skr|I9y_@yt!(+CsUyk2uX8jlRI9IZ}s#Ck~j@Y!dZh^~yo#w=xur;Lo{3&jV;ks~L zCDqF*0Kz@spL$uC-+)@&*2a_I;n0VVTG#h$S12>=cT0jhE!oZS$|*gRhK4UP)T{N@ z^Sjw*GooO=*nwyX6pFNw2tyU~aBs~;bc&?`Mpv4YJ0}$(I%}7G7a6}Dx?8O&s=cw- zWD9D;^WeMY^fBNWC|20Dfh~Ca#anzBBOIGQY8KZ0J$dlb>}P5#IkWShrMyW3YCZXk zTfE&k;6ltURo6kBs;%Y?`*l~3$c?IP+TSzibR4iDbZf$&?VllmDi>na9q1%)oy@5P z9kn>V+|YYRYoT0`v}(75=K#KXKGuNN&*pEcRN=p#ns2smWJm!*#QfZ2k_8^~q|Z=+ zO9+9ZbSY_RLNND&c6|tCRS;yELk-mQQ-reNRbYbdf-XgO;y@1{&kwQ~g_!GyFM5i9 zS&_jo{w@%@u%WWus)jG-C=J+Xt?I;G5c%br3NLgDCFr^`s6uXxmNGZ4X6TkrZrsKt zK7=2kkf=Q1fy1jTuFxMyU023*$AejEp8&nyyCaotCx4F%zb1uicRw#YSpt7?&l3)N z{nVYj8lhe0KPI2iA<2;EJwH);7uEdUgr&eowxelW+m2u~pWROSywH}CN7rzERX;&i z{mw-#A313Oo<7{2Qg zEVs1%3)eTGPj`)*H0Bn&`<=f~6v?9&bJ<`leP+@vTk}NQL{P0tVnE}%#I*Y;SGl?= zT;7aQnX2$vw%;s)<>Z3$=1LxQ^9)!XgTUJ*fV>Llo)hdOlw+i^vz0 zd411Sq=8M+x3+-%pCjcFOqJ+27A!unEp&I%@H?Bjk6|VP(qy=oy%!?W6&9jMI5aw` znbu4=uLjpcIR=lm2I0({&PXEY3;P>-#B6T@4PT~Jl{Y8;`|2hiq@;h8Y zkk}KwbhVO^*2XZ~X8zNXkmMbl(V~5uostx3Rnn1puwTAiYxSrsAoS@&m5{*9h-e60L_Ax~k>AVgJEWO6;jO|BT$c9m4HWA1HE%smB1|0Dy`RsaJDjZV zCfMjP=iP<<&3o*hO0&vuaN)_@FeD$GBdUd|y?Xskyi$vqvjg)UIv}5@GYJl$dulY* zM#wPrrYV9 zSw+MPt5<8KbC~I;{)^Oag`tUQ9Ay)CtxrW3#!CU!4E`m-2z)|al>GrCLgNF#Uj3?z z9sa0~loy6Ngpd~=4niI^2Z>9+$u8p4)3$Kiy(gjb7J;sI>-G+Qt$VU1% zf=V$+Ue~;^k%Hkbv{fPQ;&v$pk2D-1lC?Np{uBW|+yXW}w)g|Yi>#{fPb!K!uAvxs z2EG|qda$WuvK*mqkZ`^_@>n!96XvxFY6nLLY25qD5(wk|DK>&PdDO-iOpnGnV7Mv(pGt_TyjRs6((OPNkdUHNveKnh+9!^F=6$)T9}=^G)U}vZKqwY zf={^V?%(j;flDC$aC^f>L2I`8wjaGwLQB{(sGWS_JBpUqz3g|FW>{l4yI8HCb7kMW zf)2j4_Umva4L;xF9q(VLSn;G@nD=b(VD@u%g92^u$rgEWE+eL;1l#IDC%6QyY-266 z57X{-b=9i3cvW;AD4l5`ACg^e9uY_0r!jeHdq9X5K|ysmH_UL6&5huJO`U81t@jJqO4InjCk}v@^&0L*7yk8wCFa{ z4NUPK8Vi1WiW+He=r+zNgTS6~~FH!~IWA4B9Z$?ydOspVIUCtbvV+0U4 zS|;Yb|&j&YP_F$de=mha)k zKT)rgLFmpG4V*$(J^y9k;gX#nU;pK!I9Q|%!eci@{<3Uy)&RD_ZsEa24*$469{n-n zteFqF@-wM0jEG0C#0H&=w5U0}W3bHi7W*R?DMkA$`Q|T{Gvo`4??~VD5TwHml*3@8 zU4aRi@v;cvCM91Hv$%hlbKZdWf;1Z)Aoh^;IAGh9vpXd8(c-DB^%dfGsY3A+iz?68typGv=_%nm3-|ia=YKq!p4b&d0ZlNf0gVt!nw%D2-D;E-^;oF?2qY!K9d&mY6*&so4xh#MqF6)(yFy z)TNMBS8E^$4MhNp;p)ovyJDroc!Cb@ri|;Joew3B&`jdMZp^gp=(bhW zYlH(IF^P60hHS@-FG(3Op__2EuIh~;5wvFdjZ^%BRW|wfK(PW?cZ}16FQ;6TiYx9W zEMVRK`~>i5LYIo%SV}3zy<31~>;E2CaAS+UxcvYR@iZdj91PeA@4R z6BkJp9g}=c@n-@j>|;GQ`ZMH>TRcmAP?(JA+%^-BY534=jmmVVU&&rSA=HgdYUYk3 z@h6k*>l%+S@+YNK${3HIeHF;;Od&haoZ5G|*P9v|SP9P_e;#bI-G6(E>P*Vpzq)OF zqxk%rkob2OvUy{+?6S|>TLkOi;^gvjpL6}Y=QeD!#WoH2XY;|_2f{R2>=4TRklR8? zFzvwj*8`*b9e=)m9ZIVJoVouQzcY)8g!0h~iQL1ZR5!~#}{(z%_L z$gd(!o6`nh|L9Kgm?@dL#;ozDy~9SKtXNtd2v*j}R6{Cb9x~?$3x%c!Jx>pi&#Izz z(H+Cib((TNyoFj~xQ$U(+|phaLGk`@)@Y}Xm%vxTmm#_XI}pG5&##lEho_J0-@#mS zqn@*#6>%;4N~WbRv&J7NrAP2O z8PwxC?W$LJ!zf1Zrz<+FO7Hzm-Ap%XKPv?^9a@9mTHI83u*Tj3X)%dbv7+>q2vT0+ z&)zp%`&@TeYzLfcU0r<8Tpow2iq$86&-k7&Ru#6t>qL(C`79$c`*9W*qRlej zZ@<&5A7&%1;9BqReRn2$U=Gvs-kR7iwgiSFe6Fh#N3>;Huf^->e7@q{>InedS>xa; zMD1rAcXk>5r6cad2*D9~8C+Y~T{`{6XkFQEf99oAq0g(cH1$QVI&fN`rPpCBMq8=heWbnm59<>$d_VKDbVh*?zb!Y7HnzYf zMp>p-9(Nl~zns!Nww!ohvwE1pfUufom%_~pr;nx$!xPm96t4QyCtgwB*NXxJo>wB7 zcUYNC;75!-mNc|t&3Bx|m*DQpx(rH{zU4ajMSzMSxsNh_4t$z?poEEfO?&Y7kIPei zEx}eFf}g?k;WvK%u1LHIHi1h{ugd&r9ZIPLA!TL@^}%|m_l1PzNm4x9l|J`=|_N!r2fTb}E` z43}Po6JA}mSk%ZbpX(=6s(w907i6Bctckc>Vc29*S9MgUx7q8Y6nD}(ToJl@IPTnB z1bpFuns3y!I!$|kO;oAz9X^XeYteV)Me(}JUe*B(qXvV|uYM6-%49D3uqB5Fh?3rx zmF$sy*st*l^`+HbAut=f!+Zw=nhVE)K@AE1I$i`B^nSK8X<&j{_^y!C*0UDDx}kTm z-j=MHoMwbko>iUCyUSiCq3gSky>4ex=uv{vZI{`YODEUGyStH_PSbNKr^YfLxHN1< zlo94fK^*BiJt{n-##R{dF3b2i-Sa(BLT}$NHL4fb5-j?l_JaM;8y9fC5~==oD@k^| z_?qu(;2!+TKuDl#lGJUcDbJ}sEgl6P z0)qwHxBfI2*?)dh9B2jWDz%D*7VApW^t*-74|Mk;cUA_76>o`hW>O{H}msseP zxa5@{1xyeL4HmidA~Kd0Rf~12Kf65Knv-}-53c+#1P39c%G|1zHdWbl*m4=yg_4)Q z%P7Hwg5TjQJWu#}i>0G&Ps4`pf+1loXpWhE7MXd8oSfQh+uHWPhrLR}N|Q>WJ|uy6 zL)xFPahzE7>{#`)Aae^Dida$vO(j{KcLZ^R+&+#Frlgss^>tU!cFA7JVF_86GQ6GY z09cMzPi0##Pbn5Vv= zsQWX!M71oN@Rd;6Gi;O0suPolwa9zx zG3a3AUc8GZ`&t*{Tz;|tUPjx0P8ReR2!_`Pc@7EbHnm67KxAzlmP&l z{0`#hF@0=A`O)D&^*e=nACZTfmxOonV4GzSg2xAcH*wm6KzZM8TmL9G2Es0!2B%4~ z-!qFaIIaRrENT>O@|R(vI!rrIxI@}1jPUmB<-<915cdhUXN<+$2Qbtg`OLP?(j_#5 zw>94F=Rqocy3{vMh1E=2CxSQ>QEpBfDHPTo*ifyopCR6^sBvFIhDbyo-rPm0Zs?XF zxiu+qw6rdTPUctG$0zeV^vi%vZn(1$jTmCG3%jdeecc;2If_dSqlc?H-Q#blXp@JC z7a~6=F|K_`wON3$*y#GG^tuX>=Dsz0e*~}5E3_I-JROw{4*}T(;Y146Zq8+=lc#?{ zYd05?b6X%Dw`M%+_7F{_`ucv$`h(PJrG{Pi&xr;GR)<(iRLhy^!{Tr*r}nD3w&3@E zTa-F*P(AtHjMHNPZwHVTGn+89E#6enOt?l16FmVvwZ~zJaX%p?1J8xieO*0*&?$|? zlh-?Vp|F@|(=CNS>?sVZ#$kGzpY`qcF6qkiK*_}#pdmUtJsh`hfoRNDQnj(`z}VQR zl>qa|WsUn&pvfpD&(4YGL6UUExlQ=+*Ub*N<{brep_E&-nHMa(-w}`pzPOY#Xa6#B zT*tSAwEVmieYd(?zfs`5c-EGB=SRHcKQTZaUEI{2-Ma-^x}EVDh^^2E?{B`F4VPa# zF7Z}6*U#xZ_y&X@$$yg*aqk@rg7GhFtPmTX!3_UFRgG4+Yb0ZeKi}+i;R5!1?8gLq zP=`#Z9c~WvPtJ}IBcr;%ZU}637vW_+;Ocz7K>cB>un%Swo#^zxqV5CekV zJ-?^BBfB!_G4gR4u z9_0fM%e$y;Z}!&M(kD~U+an4x#=!*RN7mITgld=e@tvarOL?TGZ=YRxzllh}1uGi_ zZdIR6&b~|)(#}5hU^lEd;HV;2fXAvFj-KDmY(SQreifD2b)}pN^wmWQ2!7ZhZdI zy>W*1@3?>={5m`RGl?4S0#_ucx?&!z8ac+iT|{b);6iTNsr1yk0Yd>Z#a|;t3gND9 zHLo+x?}^!Y*GxK`ls^m!gduu=-+YtgY`#_r+=B?EU~HSp8?V$W%x1E$T4ic_+02GK%*+H*i)@sS&x7I=0q}2Y#)RwQ#Q+SaPGX4uOLX| z^IIic&|4*_0Ez4?mP(3URqpTRB0amNENi7Rx z7okELv#1j|1i3wf{Q!!5%TnQT&4VWWZr_5X?s|6!JIscn%O>c~NAu3_z0SZI@~eB^AK@FE<$U%+m?r_VfoK|Mo7)d>m6-3}$o@VcZJ6j2TfQ5T#Jo0mFpYF> zFX$A3%j=+rBGR#s49el8!*LJ_UUF)C{fe997F1tDcbH}h3-x>wM4e^<{WTsAxTniI6C!E#Ne&)dYDt_jNa1s82x`o8 zH`d=K-Y6YABGpP&e3JcZ8=*R;Dj!9Ln)msXYsavAy+OIYZ-gxKV>k}k-FYjRVfFOW zRP_7sMVpbQQqDLL<`67eo0KW1Kq773^68w=+%l3td@!wW+|%~;$OE*?0GVz`rk`yk zm`u5KLaI`-y1)D9Dy%*7#bb4S9sBRNMVhC@_3RK)e?s!!gzE@fWjYJmt4D*ly5@UVRV@qW*I31?hbi@z{f-@5cPk+F#sV@ie52H^Z1cSl>%PRfp2d800Rx$^ z!aP0T3RJcXb)QOvghsgN{a@o5HnfNPxhvB9)=0j$sSO(B#Iy} zGfdz?+Q+Dkz3C6xHQV^4#o}jI^x>wS(S_H}rdCzAHh!1+j5put%*REj{PHHTBQg_M zxH^nzmG|x|(%+z$D2L*Qy+^Yk2Oj17N679S=+%c%Q^`eoN_!v#HJ6J;^kUo<=l7#U z++sO#6iUIL>|r+=9M*3m-Fi-uA@e82xS|W6nhm&22Z;tb41>g1b^dYz+80>YNEI{!6@YZ1YDxeI6kNquOn4c@`$ zd&-?Ic$<6B7Y029n+F>~^V{~WB0|`4_>wdq6=Mj~ECVyQ1F-_O0pm9+Lkv`gXw81P z>d?dnDeh)hiL|P)78$YMnvi|;0C8UoXqV;&csMfXFg0p)NEtNh_G&Xmq#H>DXa)e2 zzEVXe9fmw*D0~exTv4wXI0LhbV|B*q7eq+#yBJeHz^k|$9)gcaqi}5~cz|J+aj$x& z{@b@8*&As-scW4Q_(=Sd1xWZ&4T#%kbf7NoX8Lvz885U(p^kQFk9rBb1U5VF4g|T$ zEw!%|^M8fGHJ5@1D*(l~s-sn}k7z)Wlder~;OX5up8l8Q9_e?}43kkEDOf1t$l` z|57e4g#Hcdv?l#iF2YsRe`CX4$?_f65j|F2d=suJrF>+|g)%VLqGwXGN?i^F1JL01SQris7 ztkoWjCd(q}u_vAD@X+I32#j&`aT=d2@M)C4dU|O0=X)tZ6MItYUO8ubjRiY;eHKro zTSL3+RG&KBtPS@BpanYX*$%JIPOFy($>&) zovcPW<%@(XqgUP|KLsljB#oH%$h3qkKXbooNqXtsZ_XBvDe59@FDnX;r!e?ntH+3b z5PxNlQC16}=OCx(%+F+tRgd)Pljj^^h6@)|4wBN0y+g(%I(ptk<(QE}zD~$NjZjd4 z>V<)v5(oubJe)b3w}hmFp<>;U8?7tabIO@u!|XU;VPNBDh{aF_7&Y+=pQYY8khQLS zzD&ai^LAN>8R6%PFk)svILrj#{>dh8V4H6=xhnR!6Ga}neOFP0Kpfn3JALL9#=Gx4 z5l+8<6Prd67R}w7MQ?#-%crgVg$P7Z*qUHq6W|0VmrHJ}Qa~&dyZZ)9&kWqsECqe% zDv_8CLg3#5U1A;aWHU}VYIRY0A56SO&Y|D%WXFB`RmXHi<-jF}IySYGE#$I8d6Wq< z@Tets!%G!UBmX(*llo`YRJ`Fx0zy)r`xD{t4`kNxXY2<|X98x{wE}Pf(opba>+u8W zh4lp7qbHUwn#1KO5Qswb_C?l{bQmRzmZP>>aKb6!khWHtbu&PH}&j z5B1Z+ zkha-r0A3_gT(*6Bp#4F8O9t^DwOn*?!clkfpm`ZHu12kUZA6)>eS|>5sfo}CDl;g% zFcr($Km1vf#-3M7oL5riA_=C>Z&Ae@?Ctm$UD-1`^{qw(qj_SU zBH+ZLtVIIZ6G1{8?MgR=ie&aU!*97rCIV3~J#2OhGSk@(j3*l1*c&B`O>@65^&TdS zJm(4;bK( z%f`DHtb_TtTc8~MPL%l)IgT>cHYIo3X&HzKNI;rM3_H` zzZ60yPtW2GC39zKoxH_~e>9%?@dCev8Ejm^n9@vB;{`}iAWl8OR!xFNhZ(^OUy{p#Oi>+22nq2SSX8C1#EJA4%gP`fm)R$NT#Je(MK z;apKv*p=WE@*YDz=k)@91LNzyK`)!Q@`qf%^o*MjzM$t4@NA31E!W+b3DW5=8L}Ro z+x?0p0N9T7iUfoB1$C8k6j)t{t*%rhh{l8G<)Y#R=bC!lPT zz->ze$E%j=_X;8|T{wL-xC`#}prZ<>u}T=1+}-YFrmTk=;uJV>FbcNaVbHOnw+6|4 z9mTtUelQH+frvWesmc%g0!f{Fo>+sc4FGj@Rv z_uF%e4Jif+hZQush5d-crBCcC06@SB`5hCGJBePk_-MRP)NyQP8OaDY4H6@j*(3!- z&o8qkbXaFIZ%d8`48D~)@R+pPXl*Od#lRrt=-!7-^J_U2LesLq{MSh4wd+?1({S^r#=Pu9c zl`Vpe!uz8XPjDUGM_4;=X%NKFb);{U#lN_HVb(Qj8%lm1L5k9vIOqaHc6jFd0lx@u zO8v`i(R_Bf{GEFPBb$Ph89Utl(<5EMgudak`6uZlb4`lS&kQA(xpxM1Z$0Uu3#8P}&3{9OmsWI6L!O+KxwU2FZ zFJoOF1MUs|Tz@TTSQaJY8~u$2UFC02$GYsW$y?|J>zNHGAjxc@PVV^)!{Tc7g?Xma zk$GYUoDd^;biF0`1@>zm4M=Gk&6aR36?POBUscGoVZ}S^hN?^?)D5?^$7zRz$tvUcxm> z7sUgWkxe^ooEf479|{VXl!zo0T%vtdQiVu@Y93c^+Bz2%lfeaU_1)}tR$J|fkYCrRnEYOg+J+-sQKksvhz;2mV zxe!oHCM+R z)ELHbt1zQxmhSOaL{&U&qnFPmnvhVC1TAl6i}ebS!j}C~o-L9o$I_qaO}fwpBQ-g; z$}?~O`KF<-$}*>}Vk@4d_$sf952LU^#l+-rV2+8)W4Wl*-_JiYS<1DobhulLyZy!a zJr$QiZ?l98y#ak93^&!~`T(0MwaJ}FxB%v7RIQ2)KuWHBpcvO2mgsLPF7gZgGCi{? zacpK-_?)UUCT{LKa%mGfrz&*`xCtUTC#Q);Q>rwQUe{*1qU%RLb@Ojs4({@BIob>? zeX*+xJ_IBb-&HD^N)-4yJ4{?$%R+fMzU7w-Dk@@!cQ?eWFeSmPrWTK&oGnEO$ol}w z5};Yw$V3yY>E4otu5k1Pk8+53-_%tJn|zVl>^}$?8E9teNOccu^18a<<(C6&8r$sA z!o0BX$m%Ucvt*jyMOGR!40D<@Dahj;y)>dnrAPup6KQu8h9h)%t1bPT23vRO0t zAGq(oh;NNZq>ah$8?eh92RT^z@1i!S^*3rM?vB$J`8=xVJaJUDP%9pggLpLA?)DuP zG*AOxD0=ZICz;Vi_+kXXx|+UacBsaUB^jl?57zEl%MN@Xmy>+9J3>tl*akd}k4`7@ zv-yQ?=an-;#?f$%Y2rV@m9U#Q0q1ZhL`$$IMAjxlBNk>R1+~vH*`m#ki6Uu9X6w{m zoJ@SEe}>cl+1)DQFS>?TE#-;l2g|E_A<7LmKG+p|BkxHk!oR^cMIOdewS;4}L9Fm# zM(edYAr9*eZlxn)TwwE&_M3NpNcd!GK9c7uKd(@z3r8>KgMmxKzU6>CWVKyoCp3yB z&)Gh;>41?!Cb>giLf>)K-4;ube!WLC$b9*~_+#~2FEwOYk8N0(RZ*?!YqT8yxC}cF zK=StBO}hsSZe^5lA6cv4VN8VVY(3q8JE}toVlfV}y|3>?p8J8QH_q{r7yy@sfue_i z60R<1G1dJYxN2`wn_v8Oyu&O-aE*hUpZEStCeb%f%|+`!o3T;EM)O^+OUPi+NHPfb zSwpGV<2@gOcs7!jG}?Q!SEJY;=r*<)r%Yz~^dB%OV0H_B_`Ahdq=`aA{BHlIWQI$= zBg?^2UkHN$5x3F^?UFN72hk?=Xm^s>ATX#E6*l)d1Yc=-=^%WlrQ%xYS_0}_)@O3$ z3gk^LhQ~@l{4m>z%$SX=KaTL4|2~D#lZ$2U0Q4DYu&5-@YCTf(blfkPtMvj=H)Mh+FvECFmcE45j2j+II~%@X^Wx^ zW9?Ejy)WC;HJugApM!F`_U-c9KBPqIGa=Ezf!lQ9OSN|v&q{i3i#QmeSl0{`eey%$ z@gQ9BAD?Y8f6p=MdG|3X_2I2~0ISRVLY>}ELB8u5R|eW>)9^#1l3yE2Ti3KCHu3 zFR{65BXm;%D&1+ieb*V%-|Sy+MviBdKHB$jrpWWYY2CHjn>=AS+9M%GNp~po6QW1Y z&Um&md>f8(c8B8EaAh7%dJ{;pI3)76hvP$GR|<(&cIp2b8pE>P zj&sT;K9H=cBX(CpSrj|#M5nC&Cpy23qo5pkgt^%S#iKj>eS_G3~9w~5vY z7Mho1O6;#1fe?s>tv+iYMuZLz>?Ac&G9E)f^jL%9D>nXsT;7pm{$i;fkadWrGeMFT z{C+YGHEe4)o=HB=CYEbdAa|WB-a*|~Qx(A-^J+Bzrr?B*cRAp^Ebq}aXoVb5c~Rk1 z_V?9o6pG=<{Q#l6;%OWP2JaSZga{bXYo!d-@#3BLTAJ81H{p3jtZh)?UAao`8F=re zswkUtM3S?8NVI3tDD%BV#`l(`nub*A!>+s(2w!N2{Ahe`fZy0qS!xYHqZFR6F5~xR zpzY_5TMZr*qt@fSOb$s&PGMh=9T0HA5PvjRFDrnRhu763ds=|_MokMQQpRl6(vb$- zWEc4?-z8uj*VxR=+CYfM)A8$oZsS;NyIb2qGFyQkI%(ctlusW~ofR0;z)#t0kNs&K zXqoJ=h+j~7Mn76P zy19aTek@w}8-kcA1;7$ABMSOpKahg<^G2pSs3+j_@Zw28DHU^+U)TrC%P#--n1&p` zfH`$tSp*jh&gilqpS&M_0{h;*J~;>a7HwPctEJdL&lj~XR*X8_9PTB!xgmYN+fszf zyWUE1<6$utyC!C;Y<4}b6@0ZoR~s^G^k}qQnj^}xtS?)QJh&e!+x7It`p!DG5Z#~! z>QG77mY4G&?Qi0dSQQ>SZDBcjn8x8|>EY;f?(qWK;Vs35U~q1VQ6QjD%8qnr3FxhF zI^~Nd{#a5PEI%L_Ao%DhR(Q_y9Ce9A9&=`>;Jg2_Py+)rrb z=R)B0bhg1%Z#qsTC8x7I4U(ACXIn&frlsHT%koxci^5(FhFhX66|nYAMC@IzV|_sb zHW}s`tfxM0hZ9riE`3$m)0NpYUqgFPIkOV_8AK7r;ExhGh%{AwM;rzS{s8_6V6yC? zajxaN7In`2$^PjIrAUxU!hipYy!unO zpnR*S7EsQ65i#dAK0yw|^Z-rU;))G)e(BU?af_}4Qf}fiOCx%YB&c}2Lf|yB;*O*w z+_e~!7g-=Q5MR?((}|rH`yG$I1l|_zN9HUX5}l&TCZ~Iog~0#W6EknqP=ja|Qb+-N zaJPll3;v9A{4XtP{VRCHAU^oe)FH&W8w+z$p6vS!{d72CRi$%JLJC##lBS6~xmAd0 z8O^scjygm(8@RTWe3wy(5{*(#cw&(LX6mm&I|v3?lu#&+T1E6f28An-ld|4wG1zm7 zcyKxOh%^IeekN$E(`}xKAVvnW?4-;^Duj#uM9f$L^Tb+ zpG5bH^uaaaCi{On-c}`LsdPdoE6CuPM8sz_({J~(sgNwa)s~fen<-0+EpcnTYPVD2d%Nrj~L9A|0pa? zweP^-=W3YOH`riZ0(&%@QS<2)OuDF!*1&lDI+78)FH}i-2?INjS}&_EX0!=>W51rO zk|?a7a$8tzd_(gHsz^mrtrGNj33ouDRWx8@di(8z66(KRS4TR}@8>^OtU6;g5|Zl4 z_y-YgBjVW14<d;EV)ALnlq%prH%Z24u4BTA5>gD&N;Y=w@)+Lfz zl{>isB8gh9RB@mLb$&l8Y!pf`uk<|wX+-Ex=c>dbeHL%zU);~KtO-USA5DLBkr_<9 z&!Ep#nfAmSr#r*Ca3eJ=-`JG<*oCZ-WsT|D`FBsyWJ5r3#OIYa+ZQnq|JnqNE|Ehg z?!S9oS6o*<*s-LVg{RfJ=y(7mKP@@V?8}@@iy6mmp~#M6fvV1NeC|;C03)m;NR1*~ zndAONCErl`6YLl)Zzrq30SjQlufm@o&_w1br4&`;?hMlmN-GzKsF7v}!I%vU9i~8- zvwsHv*o5Yo-D$g=i=xHgn&*aU8ZR!9FfH~$E7TbQr_|X(z`;g>P^WQ((=|6$+Y4z+ z4H&jeIfD&h^s#=~4KsF%6G#TdB5z~YKr&@o>Jj+@#KxI5vpbH~lmF?O!h7aUF-SF~ zEQla(|GhrBXg%JUVQmfBx9|K%2|{7VPO~jUchpCud^)a9!Xw=8O+Vm=4ord@kHe*$ zX)Ef$DVru{MHGIMA%RpyWR3kYwEhhPfMwMV?%BHh`{+L)1q(7vxnZ z)cB3};n+{%Q|u)APnKl=H-mOjNjOEZ0Itgih*jpO2$-Kbskzn_EHptw5+*e=AHBFr zM}EFvwzg(cSWTtacy z|44gz`>fvS2#_MLZ zrK!0;gFFCj!QUgZk!a%vLo=+Fzhl(dD7mL2j77)Z4OYPIebHWdQ`_rcuXED5&U&UE ziD0K@DGu>gO|**U;i%#{I_r(-Es7iwuA>b>!5b^Vjf1VD<)mx?^?)PTKSRQ!Z{j2t_z4vt|X5QA3VY}W_xhuU+SHS?c)K7pgVo=BY zZ+pjai=p>|5W{?J>EK;AhwZzcEE6U|)%*qpNYAO%VjF@F(FzH9^PApno^$`QkwnZ7 zeP_v@o6uk%&NJ{ALq3vei8utUq||09K%TbXVOF#JUg0*IpkJWD^e3GRz7CA@aP%ST z$AD23FYw?7G(4)&E){NFy30Vj?Q)!KN+&7%L9hz2{KMB&m)|f`-r(S#JjamYAyO_J zS8xQCH)+uebJHd%q5?Jlxw1S+H^~!b=o0J`b>)dx4w6;!v@8pLma`9!JIj~u3i4kl zGGFsU;I6!*6V>vq0&E#xTtkAbvVS-S^ z3ncSEV@2|_q0RAOfmJ8L-sq7aQ8(P^t*>VZ)QPqB_^@#8p7>#4#Ue4HD7}g>g^Hfw zXMK|BQq(+%Vvc#|F(N2NCbwito+u04=(Pu;nh+BC;jWE8!9o&J`zuEBKz=M$Bv5xc zy5qxEg&^4DM^aaQzwKlA`*U<5Pv7(M=eg14;ff^+u&aOyIGWDP`ZnmWikyGB(Lv)f zM)LE>_7bRXI3saFNO5+jB+(7=UX-W>2ZQDI75y2E9wpI*u(=RJIE8~~IAO(5wPQq# zdY78_6*ZZY`@hE|c@QD#c|4K1VIk8M^kal~tDvp$VQaerKOw27?Xs@%j(X`x^rvDt z|5nS*)&NId1jipef~Z~n$$CIGSW9tsgtGEMs-U6vB|0IaD2v>N;;ZDiITIKw#U{40@!;kA(RhkaMCEA^BMMFQAb@Fngd=?0bGmUs09!H58G|?l&~;BA z{@8p0TBY=0V+FbcYpCa-FJ^NNX=AEPCBt$8ci2JsUPxfxxe-PP|6=kHoC%U@prkAA z2yLGjIUk4v86U607fg^^=kpN_9HEKmH_9=WDQPVLmCIrfFF>T|^mU zn!#%AaMLg2S|k5#QVuc}d~m~d!IjJ}9cM%hrmXO7`kJ)VY2xH! zVuZ;#4cI^`G0kvhXvz;eAQh+uZC3DAs!X`&XyIyv|~c@ynHF&$QaI%R*T6;6BS zM*B+4KLou-$P@Oqhzuo&1ThU20+N?)JD?kuCtjR8153ukw=VjZ1|oY6MJ5xIO)P5P z{W-XEo|t36+BnwlT`}AjD9ULX^iFYrK*vIs-QU=dprbpW~phLr+I;b&s zQIwin#N1;7s!|(1Uj>6b+s$?eC|j<3s2tQ?Q-3&@#pH=@>~`K<@V28MCoz7aSwyJG zR(L|O8Okk~yYKL^;|u=bHb)d10Qv_frKzN7(p-GmFmV+VSKL{<3S*!`e$I)8kg>sH z7P@Rk|LVUCg$H0rNiF#HkR6$kT}+l8)NWs*rv#naym^V#n#UhE8ac+fjOSlx_8`^i zE#0B6J74WOH$Xqtbmr2Djste>y7dU+WKI0ff<`r@7D`v8g^3*r$2Jyff&YwFf{h!H zDLp!HEMMOf$cnd>DnrOZka9VG+&U)|1WD=d6EKWaceptv@CYAYEKbI|xCRP>|BhwM zamTw1JpWB{iP6+K^w-FikY7MnsWtl|O=TtJ6F@og;6%zKzzKR`y*S-M>70`voVB6> z%D3hL)wBeF=V4wEsEtvt1F{)Sx7oH%LD~DK_T9(g2`1Q4MbLrKpsbDvo{2HPxbR@@ zqS1xaKN(EZ80Hp^hgp2|nQE!ud738AeQ>^Yl!3jyTvPi^vdrzXlm1JH390(m-};3( z0P!-7QhgjMYaUs=cAQIYBzocW1Vd`y^4^ogFoTtI^kHEv-26J{1PpenZyjlX3F7+n z8gbxhF|F;!M?0ZbmDL!4fKm{?bIy+q9iiD3`NGL~=59L(f@%N9_TyP}S-V`k0mX6= z@qp!AW+|ERR4SDM#(eZJ?fy5-J8e!IVV|nu`Kdf}oPH|=%u-ipeB{9IwR+nH!K+-M zp&h|=lG2FKf6A~tN5Ba~CD_^Sut6ZGzCXeXS1SqK9XfT_HPqJPUcCZ`j_k{LYf=u* zBBFB}EUudGP?yVLi2gPm;FS;|^dec19nG#=MYcmMIOHtWBZC5bP5+{rC<~$K0xn`J z{|MCxudjk4vWq>E0lHZ0lu7|Qa0YrseRFB@Yc3{ZBlpa`8n{u&acqzC7akXiA}F;F zQcPSsf8dec1hpCR_dr`pTm0xKH96iCnVEUo>+#nyYoV5TqUq4|9Ru=&yvu~rVrtg~ zXD!1>jn3MJNqAV1s9te0IYQ*Z;sqUybi3XVAyz_;ONP6Ik1;T7zlNL}6U9SQv=;+BF)h6Rk(9f!~3* zn^w!!{HuNLNrz*1Tv->k2-9^$^HyUWl~S z1`Worf*V9l!s0*x!+ymaIOlE{7O9k9(ZGjfW$)+s=tMIvMCQt9dFOFD@=PBrJp%28 zFC~l(B1XFTh}Ysd?P}p7zOuzt2A9s#r2c9gVf5b+PZkrV?mfilL%GZiOMa8+u-F5m z%ug(9(;etE(YpVCo)hPP!9;1}b^kfSV`Keayrs2E{&jo2vAXL|SW-a{ROWTR9{y|q zQ^BTZU6!q_nF~k_k@$gRCfXJ&IRl-+@A7Iw=TKbbM4ctrQ7>el_CJ5h+uQB^Xm0x! z{gHlo4rL`mvRVE*$m_<%Z|nr>ZUeheXVZ`d1tHD5aJb=$S%5)f?-KiKgQ;;xrRro(1E*muILbHR%3yXJ4^(?$14u z2l2M=H6Q?zZXY1ba){9xuE!){Lh{d1YA8680plF{@S>B$6Rr@VGhEIlAn5B~1X9V( zl>{*gOk2c{V<7lgAkqyxo-c^JX#2V<_gE)}UVRVpTGrf(G|T(%xfM;8gTgv2<9|-< zOXl2R20z{*Fh_W1^>1X%?PDVI`c`T&(?D6L2I% zg`D-oDN)IRChk7gO>se-k12Y;YkV0<@TCU z0W=hel3@#^RUucJ)?%sJ3B~HBWs4{>1hc(hoQ3uDO~&|gzp^e&3kr&t2oh4M=asdR zr7axmcb_9OwZZK9+_TWtDEM%_FPa;I7ewpOc!7}wf16b&OC|LbFM_+aXFVSGo;e=w zJZ9mF)8UxJ8PJng0`DkZexwo#Se6ZKMaq?a|8tx+_jD_T?QjOaOw9%8Dx{HwOwFN2 zg_y}RhE#>@E<9Do%-9tXb#R*jiR_4yqcZeuAikKx!F?qx3FN(W4|Ys^s8t4iHToZR zFks-RAzloK__}57jt3;`Nh0;Q`YcH+6ezRh*v_$rbt{^`BiB2ka1ykv#6YP@E9i_y z$5S}OJDpS_g_Lv?wYR3Ol9LR?`!GU0X;!@KkVBrPQh)&H#yG>`lB%kz?1`RG6OIt5 z=iW!TJD3fq~bk7^=iJuArwvmJm*ChQ;u*OEyrrd`Y9Q)(0Ieu7W9+NIa zB)9Rl&P|#Qz1>zfWB1N32%kz~_u+jOEIC^g5)k3M{!dhS63(DX@mHwqTGJW{;lRTJ z-RQiHjR8%vHRchp)T#h*2QiSDq|}<9Bl!Uyp$Rn9jARx51B&UG+Ujl)N4^m2K(yS zl^>GsYRaDKb#0)(9a#%iovX3X;KX8vQL!)Z;@kms!I$dLLBPhSZ0n@OOdHXwJ!V(* zi)SK)hzuVprfj0Q7XFdO8|y1yOHy&#i3@IBMq-OyA3?iyY$=9Ch0}LwqXEyHm3KQ+ zRKjJ|pa<@uglbT+cLj}woP|bP`HLZtkKtC;0;^@Q$1)Bv1-*{UBw%>)g`nb^B;x4W zedWF3y5d2RpZ*@2>o6^;lF0Xo)M+nHsOe#3{f&>`2_+jG@tGc|pr{>9-~CESk^?W6 zR7f%wLh@l0Hq)msUv!76MFS!%l!wMyw2*0f>}9txcdk$(tEo_;My+~FDa8DXc{{Mu z)0t8IQm550Yfn6Z=n*wat>CcATHiU_KtzqMEV$BI-!%EN*JwM>(KCFbIB6UDFu+Y=yeM+lR8dtbb4`R z7(4@Fl5=Y+unUB`CCdii!P^53W$~+Mtuau;G9uN@Br;a8a>HIg>0|6-pTmSrDpg%NclQ-%zBeP! z*=_jq&)tk|*ZcjW5^?dlZ&-#|gvZelMaMcXMkD!9wY3skhKerScn(e5(x38|S}|sY z8Qe=ZNzTZI@uMiZ01YnDRck`gzRu$TK0=r2Yp;aaAoRe;YXHd6LKY#&FpG^U6bRgw zs=4pA;bGAH%_2yr;noU1$VsP*CP);;gPZ}9pyNdAm{A}|048e~T%M+EFg_vF*l(CqBF4|v1!A<9R?TaV?pRluiOE^*zKLz zXaKPxLov`66GHRj7GFRT=3Fvu2w;}3sO1YHLFR=?MEst@7==X1T-@-_kYIs73aOTJ z?)w3uZu9h>2=XLs1|*4Kbou~bh`?p-P|%-yF$!ORx-9*f$5#<{k2GfpFolDq^!V#ILIsF_O zLbob>?6bLt09|f636PGqaiH zZ`j3BAIPD5;{{;MYXjwi1WCTP`a1tuRS16Btg-NndX zIyBQtYh6dLa7Coq1l_j8`aNL0;IVoSBnL_%yZZ=#jZMdbRptBbU_Sk!hPr znN|W5H$-W*wII9tgKnR^&s!fXt$pK6(Tc)jTQ}YNsM2l6-$UW03$J+OX1MAWnDnk= zz|_((*!SV|olAo2J&iKYBdI9;=u%2D{fO^ZMDSNM+YiL4S}uE&2z`^M<@0{k;07%C zUa!2AV7F2TV%!UWa5ndeKF~Zpa>H)yE!!~t`TTyt1njr5e)0!QWpTfnhr4EKJ>|QG zNjQ%vehRL=KO2BlP>28myVIh9OFo13zoQ6!KS4#_Z?AuTpf7pA zxG6h-^Q~)r#6SwMS%tt=9ZDn?kLd8aUfp(vBBbE?>)?9r$_Z~3_bO07AW%BaiP4?1 z`JI(Xy#eAT&Qr&XkHKSsB@`nZ?W!+nkC{73ft4nmrQ~lA)gcTsSJM1&_GC$lI=*}u zUn9!pDaeQuOlCLFE@Irh2ha98-=E@Z@1!HQ2}Z7fQMtwJIDK|5=MzKsuFT>fHCs9K zE!C{^paHh|wRT!Ya|wkpAog<$+el=o1a2!v z;#{6PFHjamGuc08%dXAsi5T>jCcYUWhgMAd6^v&Ev3);d!QjU{fQPmbY``SZ26^PA ziQ(;JgGiqA05>jmZH@aJI}qiShRqDjKGx4SgG!A+r_Qgyw@%in-7%j>{9rGSAoDe8 zw;Q>61wJ&(<<=SV{x{<2dH%@sdltDKk9}Z%dORiSv6(z#0dlGrUB^JSXy?Q~zPO$W z^$Fv&6ypW9*g=;173VMA@7rX6P6#jJVgoTg4bWFO@h5{Wim0UMy!YO37|= zTN6LdtlY8om=#1-Qp;k!NSCN(ed~DnL(bOF$}9Xj%ZQEt0n?IfXrfK!+Zo~H%c||l zs=eeF-7-;K*bg;T_A>q^7gT1k=iJ>Yx~MMWeEkbp*#(d<%?r{a4F0!4^eLc%H0KPa zN_VAzOp^AX@{{wVqdiisEKP5+@*b4*xhxp=@mm_*^_hg=!waB)5B}+JdyEg<+MTI+ zP`3oF* zSUd!IP<;Hl*LcgNkFbHi3JCTjIoYcSxRCnSqga<;aD~iq+F4Pmsa)sz-W!Kq=wNYr zcmrt6P9{VY6B|m76hN!FnOyk+I*~F@e*>OsfCAjhj0}vNAz0&7-4OUyO7(HVhRr{b z;mBk$W`W_t`J(POzGF2|v~sB2LjcKNAE3q+nkZbB&R@k|qAX)G=do2Kb@mc*=RDgL zc^YMpQ*T=xTiX#!~t$V2?EHnz0Op8fD<`Zi%+Rh+GCH`imyZf{_bFulWFP?*-Li|;+rV%nN**E*j0}j~g z!t|T?#1`p}VmKQ$nxB!J;KK#+&l@RG1lLpL=yBvh`ot-pZX0Q%4rxKbTC%lYqh-L~ z34G_PS$jsIVT7}tMKPEtoeX@P9a|2y^RQfD)1y%`1gY|uA` z#(_2m51c^-QG68q!UKmU=i%`TJv3jFc^v&NGwhTL0b8 zQp<*Q!nV^^t!CYvJvFvCs=iAnc9=)uPhs65uO5fmk3j3Uc-lVI;S3%)t-!Wu@E<68 zNr%RVR$5CGC_CfGR5|03&Mcx&YZjhYZJ_BLvv7-(0o z75p68tQ{(JF4$jbd6I8A4!)3VVEN)a?=HiTWwq*yFr)nDRBN|Em6k`9`E>dSi{)3U zp&d}$%i22H%2TfHRni*1NNZl*oG~FJQU_DAwop#kk+-{*iD53=!)S)4Fenmm5aZ_1tIQb`A3NAcss zrNOM=I4RHl60lcf2r1!lyb@ak%P=T?thSX_sFQZMvJAhn!)U66{_&VNUeLCAHpENT z0NzZw87G;!UbKAYK0~g6jR*6iRm9G9I9)v7q+^ehja8D}YTOhE<@{?Lx1;X+pzPO9 z^($xVF@7pI1IwC^MJ|gYF-+422dlbr5R5)>Gl=<0y*d$DY891 z1RwRWV!7^5Z!UbWn0**RoYV< zVunhoBq$s|5Tf4Xz~w6W9vrQd?twpC{~pi;KEQw5-<);;C&rW`qT9}$5Trr1`Xul6 z>)8vEj&RLLx^@NYZWC|oL)L;}naRj@=Wh@zGDC53%dJXF@_88m*#RL73#eX80uy+e zH&i#+cCK=88mjcAno2C!;kYhYKNX%UWw&F|t+C#}x62yw@m|}T2k_5#;VzS^7b{F> z7KRjf#`WIFxIKB&gMSdG8d{WQ< zK-rk@N5Fu@_)WT|O?&mh(?1uzl82LF#D@B2UNjp$>5p?cjUr-hdTOgOw@OcxJvDM0 zhW!@=$g3K9#y#zFQ+-ArFA>0}GMx>6&{yVcK?v|#I#kr$h0v_#gA>{~oz%opc|hL6 z=}m9E30UL_N5(alStT=8V~4ycw9O5rhk;IUK9mefkgx%3-%)TkIzZ~1)QaVVOU5zzp@7lxG#f>?~=i97hL{@YB+vsg^>R<(+9> zdw~U(uYt?Q$&8v0R+qHMxHt$e-<$Dxpi3Ngr4TOq zD<9AXc~!N%IO4TK<1|q;#C~I}_e&TkkSxdYCsfT;YmKae2ZkiPIDMw)$`0?<^OXl1 z@4>_NR6WBE7ujaPWFHcRAI7MiO~d6YNqS)FtR9;1UIS+O9c~iA*u6HJQ#5yO26mzE zDLV3*C*LhibSTieqO`6=8)q>Tn!^zeM1&hWU)%y&S1cGR6SkmWbumx#!Lt=;AY$(# zR!U0KEZiF{M30kfq62v-xfRr+eyVXBaCbt7e1*`guTbbhr20G5o+FSi8;@*bS=EX>I+2F?U%5 z7i<$o>km{R8O`e!keeJ9(3%9Ii<7-S{9Q)8I3yQ#I#D^yht@HPoK$mb3XRmEz4|S1 zuJNM<`#f(y<4|YBQ^p!sh#P0W{Je*{lZk@c%ZbAbm_r|S}kS84`ZHpkoB zyGJ(13>Eu#H~90bvTd(HoG3;M2-wN*=L9BcpTMPUdj&EaG z4bHU|za#VxzSoDv6}WUC&!W8m&PXUU<@~3Q?8GI{yltd>QcJmTT1Y(&7h}#1gs(%= zTvcs`StcYg#9dKs6B9%9Pseh_?52>Yj~-HA6&h@V0@f1Q`3S=?m1!#0k*=kp*d6N2pMOLsta<4Ty ziU>_pw36U!rg!0v5bGk=rTFs0jhYJIPcyxn1rL8h{gQia0Di7F50wBPd$wQny}NN@ zQWg_JD@4BX@XvMs0EhcUX+&Qi&`HDp6+8cOSmK|E1NO$OGUK?M7NHl&;G{8g?!PQz zr`7VaZ3yI6lbslx3H`pJVQgQY&<+=&YJtlcHtZ}S3T}mo^o1a?S44B{fHd=oJ6)$H zESpD4OA1@U;aWD?a+KpF(5#A`5D6>*c=_HEpIRU#J{f((Zxk7+aHtbO^K*OOE8+tZ zGg=8%fpXN56Z{sBEI75Y6;<%eW#Acb2R`cepIrwa-n`9gY=ky&lZZ68$5^)UY3PCI zj>fuEJ#)dT8ESpVlXEVJ^3lYBjG*$rQ@@&JKo-BcP8~?Y&=L*eZVwzoJy05d&~nkV zoNTV6%=y(Nq50s90o8__Ilx~ufr8a>AhsJ+EAiOgVi;LtW4CTk+Lb{$lh|M+%S^E*{D)Lqdcz32nVnPr&D7h zD|@y+XTzq%5yq3^L#lMQ$L-PTHf9?W0>jRf?G2l!+TnM!1>HPU;Kv$iurO$f6q4J{ zcQWntG4^V}%k+*1HQNUNl6fFTWBfVW3;3Cx?uqE#J~-$XnERd1j)>ddIp~MGbCSG+ z`8y%WlBmy>i_kX*vukjWAk|Y^dXEMsi~^T`P|NhC{~xg3sEg)oeKrKnNFh5p9QfnF zC*MW{Y7r&c4+Z)1Pgx;kD1HEy=~2v@!rVOGR%@LR65`O4op<4L=d@2_es;^-4di9o zM<;XSipo2(tI|{yrF`K!Sm#7Z`=bHCA*o%McDa6)!UMrN&xJQ2T*>CSvc^;i6ho6j zmZFL8A;mVkDD=;YugqP$?no{aDf+5xEkDjc6Sao<$sJ#(0cI~Eotf*ae?wiAl*f(rYDyL{Hh}8d z7>ky%ngf?ZX1|O((~no_%h!)@yt_vCkNngGHAakCyWXSk!65+Sur?n?(7k>w*c{Im z3vM6NoeuUK4*Cia?hoBoDS%JLocD)!m!D^QFTfqqORB0A(pP{K9J=gLYAqge;LR>E zw0O~pyI{CH#0~xDiX*3lrKTB$7Urwj$(- zK9?4-4?2ulYJ7yR6RmkJp!bnM9=qwP7hZHPEzYxUJS^$(IOVKr5xHT zThhLf%#T5x$0H0UPd2($T_|=1MdvC1LGg(7x2Dv<{=viO zM95Xf0~Q{6K|bW2XV@M?5Twrs_w`b^>PffBlLybZbFBSsjw&7_0d~FXEr< zw(~}V(ZejVll=pt9~=kF0UZFQNhd^!2r-G=JAV)`>V$z9Za(5D$i74l2nOv-_iU`i z-QXAi+a(YGrYGn^crerp8ioqqS)v&JmLOy(z?{Cf44?rUD1gOf!W z>;)D;7DLlVVJ4H!@@pH$e$OxpQcRG5n?&IzWMGy62}K7$oRJI_ihj?RXVg zCPKg?CzH?8D;p*f-+}nk!to=glRENC8%FltP#fJUVScYtl#u3o`Cdi6@BxPjr2do( z^w8zv+7k zVE5n=60k_t^f!_y%!^Zj$Sx&WkfbnFUYdr{jP;TMFQC_&uMB_y*DqYU zpCs`9^i2?HEVMJem6zV}h;utCZuZ-NrMM>bhw&r|CAfEn2E=NyxqD}Tyw@4jPNez~Y<^x3{up9WMNP=#7$-;)Y zs8Gnts*BmCSi1a#MtF8>H(Hf9_fp?{P+8J@T>kVTKV(bkM0<)j0OdwVc5n8Y9U|d) zf2G0r$Yu@`<&@l_c)*WZ8#A&OZcKWJo%TfsW!y;>{J>V8c9oj%{8F(8o^4d}O2+U# zm$Ydel<@xA<71WLv`Dm_CJ)J`WaW`Vht0vOOAxNlL09fYSH2figk6EBZ|fbX=!WYx zIYGF+K}G60>KJd|s{uHz6z#v@Ii>_OrAgtiE($v>@>IlzdB=ISzQ)dETU|oj?3Mn- z!L>7N$RTzMjW^vXnU?nlDrE7V6T8ZuT|jU*mNg(EnmQSc!!uMDR&8JDPp~ zw+c3}1y)spWI2>vvFNINRIy4r#ywPpnxu4pP@WA+`J&Xhhby`d%<*clp_U}Ak-e>- zZmE_)h&9C(dSk+Ud?DLw(&PYP(coAy3vPm`d|behsTC~SdXbH$h%(6WXZP+e$0(lD zbcP+_Yg*Tg++pg)Osie=GsKZ${$bLwfWP2_<(j>KqE3B`l%{H)PAQree-fC*w z*g0_+uOi9QHA0H$DS=gcfGrMFu|nx~E$fjQ9Aa&ovX{KrCeFAUnwX*PfaZYURlrL( zA+nyoziI(8UNsBa^_H^M9lGq!hXY{LEs0+QWo9o+Xc#+ymFt2seh62-Pa_WX-QZLD z)ea7vESXuEw6cyXht@0((##qQl$=cdlIPbf24zWS?;>s)TXdY=N84q9kTxKhV zEq?KrYb1pOtCW9?+TlPD)Rs;d8C#wvgY*%((BmgyvIFtXMWD+;o#s%l`<0#| z)H11i>^w82tmsjL?utx*^3>vac0U^*_R9bFIR94~a7Aqn#!(l#YlnXXB0>t{#GSHz znko0lJU7eC-kd=h9AoNe{@&}f4>q~2uQx#E5(l%WpL7`Gq~me9S%@s-7iDZ_Se1`Ui+h^ZMDB25W={V#HeBB+`3ao%zotY1>VVSnpyFZ+w zMR7p``*LGO<5rbw@@#9?iVNxEL5rqiib3Z%aEh9Xh_`jI?M1d-Y?m>S&qHaYE9&8h z(YZCMUw}in1Ns^XTKnPF{6Vk= z{3NskhBg1R$2$24>>_!}oqk&WHY;{zHLK8;HY!{=K2f^Dz8KC0*L&DzMC^bsY8pp< zdvC;K)B^b^ML}4vzTL7z<@+nYkiEQ_1cPW3E19_PnDT;-)4V`^b+x~HlUUxM`kR+X z3~_5je1)7HPXHbmqwP=2Y>3rWqFdmMJ8CVi@W_3_Eun4cjav>xj8$&$GYY5Ehl?J> zQ}j3K+eKP}7kZw*$lq|{M{{4Vf&)KP0$wN9y?fMaZ{FWj1w#MkxDv<8k)J`~zO-w3 zAqh`}7;*7A^4cgHBb8S@Jv3br-P-32KDE(xF_r% zr@!nXW1~T!Nt$A>yc{IU$~pSr?9I_IHCLPP8&9m_(8#%!d^pE*H5OOHQQdm^VT{E{ zTLwdQi3z=bU(y|#I$VuaBo2@dLK2cCY85~Vr~f$%urY1SjQvbcK@d(ttw^bGuCI74 zo;r{lzqM_&uJ>$%wP3SqtCnzcapBQ^RAUKzNvm*szQ0@FRr6A*!CYK0`$VS{oTfS| zy)hXw&8;thdS|XQ_fQ47epdTSEz-JLlmW@{k18ZbEB3SrPT1(%z6Acqz&z2MPqAhS z+zLP0qhW?P3<9by_uX)LU&jRxKt2M8lapV^fiNzzyU~lu!~1B0I&pMuY+qk*?HR#l z;owm!{O@f8;sMi&S^E9}80&Srx0afl_GxR*{;c(uF|rrp!?N*y*^+IZ!NB2%17V=>(>cLz3GvIS>)S!(W)FSYP=1 z@4gq?AKdRi3m3!FJ4@EKrlHK9`wY2?66TDvK;8Q$4EJ#bx78)$8ku0O&we0eyTRPS z2@)a{A-D#O2?1{$$mtgx?35qPe|%yz(EriRV0{4P!TXQW#($J!SvdZy9Ea5k*>L+W1L_-2fA4aU3CE5M^+T^|NQNHTGK{=zHf6w5_vjsYAVQ z!1#0jdZGJbiQ;{7rWnKLmC|!r-(1ty9nj8LUQxgsR12q80Vy$FjZko(X%i|xL2F=# zDMsxFG?z{0FmrDUto(WOGqC(v8Lo<k$zMj{Zp~ z(*=7N4Io{|^naHX=PIHOdRC&Ep5_2CS{K6lyJ;TNlLp_tyYz^m0rHP^JioB=JhG&+ zx~4=tpf$Q15UgDh=!QVS8BH%* z&2>oH7#2ZaIAxDr8jLxm&)=@} zpKs?G!DqL!_G$JPVqiwyzd~Qcy?0$T_Zmvl^?tlvE3vw}vBZ6q?lHbl+ET!Tqm{X& zx}(w?kfj&p<7c z$gWt`VWyxFm<31Ih`^)GP1?x(wd}KU_Cxgzx&tLxzpqsubQaG@g%840$QW3>&GVs; z-20p66V)!epVM-WIW9)Rs6R}qL8f0f{llHn==^Qju=cAv;;|JRC^fbZFErfu+Rc!x z(r?Wcz>?h1KhTJWO*Z<~D>Nd+29km_E{$l7SiX-zvQ_EtQp#VOQ|f<1=?GkkJ_m~&W~lp*q=N>aTqshZZKgjvEw^*;^ZdMB>-`^Pf#Mz>-p6I3bS?avzOLP%vgB`ST;KzmO#;w zi9MB>o_i(?ak0+A5(FWs8cMEQ54JYWQm}_?j(@O%mI)1Bi>!4#YXk=M4PZEJBI&N_ zq#}t8F}za%?$wUE{J7Jdrq_X2*%=obJ+($$#z8Y-oZ(KwzQ~6QfDFeQ*ny760<(3K zQLlqPeX&-n3_PG6J>SJ7iu4VNU3WQ9;sj$8HYwN*7~$-|B%8!@B|WM!`|Exf+4&RF znwZQ!VG;ZqsN|pyS3Lj@&M^xRI*#x~mNdA+=fk)F20l*EOY;m4_W^Iv=6zdV@)dC3=#Q4t3a0Hp!*jorj*j^#g^ zHP|q`RC-BwnQFQ2r7othVe&HryNooT+WCPoU2>qM77pN|Beg9wf)5vVAbTSoHS(nP zSJ->v{oEZvDt{=c!sFZGINLYU654!F#-tI|pu?i;j*s8CT5xs_^0gclA9M7dmmXZ03aGPcA?# zbh1Xlq||^EAtQY@v&ryULGhX9t9G;a7BZ#TX0DXzS16&_wFQl<)wxG^hyqph!FI!S zYny4^twCh99SVb z56(W1J%{$lflFE~T^q&IL2mtaH(S7z+j~bAT}aMwbgZK4EACY&_f0}wu4{HLUh&cx zOsTydbn#Mzt%0*YrooQ$eS(_pzV)vp;wMHE^HAye((=Z^(v~Zu0P7?2mXd9bkABfc zsnN2hS~Von;4ZBZd)Qz^_^eWrej=$WzE?l7o>9n4C$9b{PsWqjoj}JmTs~j`XmT@m z3gGqYzAUea`?1J%jsU;_C~AvQ&u;gQ&QiW6Se=ln&yA9zF2a>J1DM5u3XM@`9K_E1 zB2LBRDE4;6=C^5E8KRyZsYW$hopaFSg_wYZ#&g6p(&pkpE?DYFsK)R>eZ=;VX zxNcZ9KUFw96;{v8e)+`B9`}%R)%3LBf{~(aHTAT^7_8t7s z+X%E`VV6zc2aX!kKFc5LGW`XsU#E@F#-d611md{#s$-t0Hueqy_ z(BkVr(h6y|qV z%sAL=1BTY=%N)8Nu{C118XEbv-UuoNG~joB^Yu))#OI@!Za|AX71NYAo4!ZYjjb$~ zvS}ZP~VM+qP}nw*Rti+qP}Hy3}Q>%SPWmXP)N9 zyk+dn$hV#GtrZK5V{^(*FE}}TWjQ5LE8fL!KS43KYFsn>x$2Z%+)<4WLUXytAWVvS zD=7o;_t}T&V=;Yil{qOQ01KE<24tNr;^7XmS9asKs6#;|zxagcRZ?DF9tq#UY%t$a zuX-atVZZ?R2^(oIWG-4ERYi`dHuNehes&4@0XDRuYA$d+RRx#90CL56pepDw3&aO} zs*dks_4+}%j9@T6^`WqDO1EF*pYFi=v+2g51_Xu?_3IMd=MKwcgBVE-X9~>7J@kB zIrFx^k0F=r9Eyhz(6wcQ|{8R}7#K zdah}=>fYCzJg;dU&RBlC%whew1>VL)QgO{=ZWdSWw$JH7Mo z1f(a=$`D7bs_gX0jH{U0V_BfDZ(c@%mGlFDd>1~nWkz)Jmbo;h;PrD00{!!LN993)^#`o|0F6e<-G;GD zv9YK^Ph9ekc@s%^ppeEfS>Tl5YCScz0Yo>4Qi{4p=Wn_^sIPTgxWq?R{J-eHQ_fx1 z0PmHbia5P^O#P}6f+k>w)_-e8zl#ERwh+W%s>uvt>@zTI$SzcuU({CA=>`xp5c%LI zJSkLA`7%l=kv$i&5e|cjxnb+MwOpN8Cu<>)Y9f+`4`OwvE`<2iIzEujCu_V50m3dQ zQH{8xgq(B59mD>?q;*PF1wi2{%&~1a!<~4Ue{F!OH`A*m0mFoTSkeM=assixAB_*0 z2`QrDq)KxK*`VJVAj7dejmf&0?n4=7DFZT`C3RM}&TB}S%b)1Un|h(>7nCFkoru~F zjE06v{A8V}yXH6~FtY=0372(X0N|wFABnbgVV;oNgRf+oVS7hE%py}#cDApIEXzG_b_Z0_4+h917!y7KqB(9)j16{S zKTGgu=4+F(Hn}vZGu7|}3wIeIB#ie1?)TrH#eWy(Am3~U`cs*mnsv1(_j#ZG%IrhB z8)R>Db{)@meY!N}k|4*#-udNV2;}8*q3c$+6%K5*b){WkdD{jYsHJul77V)ge zv9}2ke4SA#&WCJu#nP6S#|LuxWbI!{2^CcHhI{&S@qAL2GHeTUxUWH4et1D+CQXBg z9b5w4IQL7O3tqC?OeGwNB_B3!jAwoWmVdwH23!2dBxsnf<|efZ#{sbvF_xK*p_U2> zp@D)~%KC8(1>ZNISwnmuV~`!vUY84)3;BS$LT-%QmXes6B$QZOW)}tKs*`gQ9v{`n zdq&JX2OGbiHbQWW+Smoyc`igHq=MY|h0q6a@zN=k6gpS&Qi6ghBp3*>Z4-WhM~H$~ zjQkM^LjyN4axWtU9DwL)D+W~!=fK?(8q7c#LDjyb=l#-{RP%mP&HK3|lHRq&c$?C! zRfeZ4imu_96S8;b#W5XcuX1mJD3y=to;z6=SF_nZ8)=L|Awh_Bdan3AvqNv zufY=&9^e%JudZr%xrLR@UF(esD&eCdkJ(>?W_LGc{r~}i5N^n#N1KUkv(H~-uSW90 z=wcSMk-mE{&26tdEw22ed}3$oUhm4%n%0Dr^8dRJuY&_2nZFs%zxsgX}6sJ zy2PfxMld5Ry)yr-%f~bRpp0ZRr5<7)u^zpr%*7=JK`YK;TOu?~6WNu?@6LtH&1Iz( zy@5oki~%?ksm)hiiC9TgNz@a_*N8mJAkMSFKuOYOdOXD8*TrN=1}u8n#dh%(56X-T zE>f1ftTWT6mb3D3Zq;h;7{>z(g<|OK*7pK|+^M+!@bXO|S?C_YFL9F7E zyV&Y0cXSU;B&w*(KHRX&t2#cMEJ~MWLw!YC%1_U*StZ$4@OV5$JamAx+O5;K^K@#S zE&K%tVUZVUM7@wlF!Q*ytfpcb7US;;>RyW0OeMf(_%1p#GC#O@;V;=Vrec$OGpF@M-SzVVshgMzR3_KH?Ujvx6bw=gZrmvxRd&vzl?RA4-VAzqv9cDop z<)c`$)H0lNd;R=J;v!%u@Q)M(U+5CEJ2)ojlHNGx9O|y7I|CwEv^r*YIs4Pgm?@Vqc=+DnZ8hS)0onDN$6TX|Y-{m6pts|A!Z z&GfO1)r1q+WJ#;nuD5hN(l{buS<&XIP7O3>UGCr~tMiW;m~w*8TIH$r*ETp{>IMik zj+yuADAjh=GaW{|@Z9jqfrBFzQZXUb-E4LyRv6>%X$7rq&Ne*4XhS z_FPrh3sf}sTy28=D|(#5js`K!DFQ_AbaiDdR9jyjUm93utl^*VnFZq853zQV?jNdQ z@XY`>`vO*9;c4=D6}uWJDm+iGVR@_%&P5HNo8DAy!yDEW|<~{9p~^q*zGCETH+O%?zyG zaiGq{LGV!n<2%$en6knJ#jG3}ztt>kr_FoONfNDcpij$Yu9sOi|B3f@*WABqWM#4D zzqa}snnrkRBL@FHAp9ig=Sv0`mctE_fX*+k|~P-#Fv zzyP9C7lBXywDg%(4b_a4)Q)-zc#U?Q@=MK(*UQ*o2;$e^87^Cny9cj*Y2K;a=ZaS>z$qR*m09B}vig0*gHzLby+hfOPom^Py3qmhtnDUBH7Bn&+=80$p;a#$bYC z;kqnz7RP&*tJmHePq`v|hL~{tjMbB+Ec`s&5qLiWwUiwJfsePOZM!o$E7L^-HdwlFLeAIHFMhu zb!XLJqswpX43Q7j9`sEv?{;|hVO*hsEtKko!)6%7>N!5;ZQ?Ar2*ar<_o)mwJ}-SEu9+VObV-L zwpwKS7d_@4Nkp-J z_A7)4<^&MZR(AfLlIu^#&NHm$CQy0a$bQ%_9O~elaLA^Ca6l6t zLtO2VpIZy&Oh?A;Zm+_glq|K9&MzjV$MQ$YULDW~iN6fQh*B0HkAKHm2i8fW~Cn>uneAVVCtpgsipRsKj>h| z3FNlj2Ht-6nNuUFxcB|zXbdF1&$hzW-_Vg`;vG5w z$O^Q?$C#S74i?Y;eL|wD|FZrmd-UG#DCfooq9RU8e-1IUA{%A>i z8Vm`5eUC7gzKK)*fQUrAc&9ujU=bk07NplSUw({y{1vA2(-CN`zVgNvFlWL;b6lv( z5VLU8+i_EAO@eDZcVq=r%r?9B4!nO>*SSJ9y>+6(fY`#{D~KbFxb11L2oKu;w8-ot z#D^h2@f{PLG(TS@h9g>*NDdfq3lLD!hlDQx0P`qEfd7**Gf5p?@U4$1Rc7Mp%Fr+o z7AF+iADK6>qQ+yeu(&9VK_oPe+o0ie?K%X^cri^TT$cm6s-5UeYaZ(0;q6)UBm*kE zLJ?1{h-lk!Rn3+I)+cKq(=9c?A$6GyO^#*Ofa+=fn^u${g8;-eVlhI62}Bv-^@q@}uum=tZzQrBAa3ch|1?G3i9l_dt-LA!PXE}IUIshgn3F)bi6u7m?v zDDd5m@V9%XMz&n&dIgC@iGvu|1Fxi?tYh;;+PCUR6*sFD@)0`_g`g>h8f?{W%ZtFP|8y>w`utPums#oJ3&EGm=7#c2KkxM5v#188(+K zQV5O+ztzUeE?L@A23`{&mQ9E5sCCEj4<}%9Q&T`5FmXY&)0{aavkwrtq?j{AE!pHm z`+Iw#nZt$PuL0!-_p_9V&s(p^P$j$2j#4duFJ_{Cf^rE01^PblV+J{3do=hmB>M)+ zg!r)l)u_De+cJncts1yqG`o587QFhW1&8>|80)ATVTAfpMVv=i#O=`b2gwA$hy96Fh)EDY4W?0m} z1k66 z48KGk-|E6py*(ji`C9bwA0=Y$?j>TJot2rM`go4c_ZOb`tcDPY!zOFbApP^9YvBWc z>91bM+5KeAc9Zk@v9I~t@PpyCTz z{U8qo-%<0eGbGXZ5dLFrqOKxvkZklj0Ivg9*e*&d8<8e_kn~s!bW@l z68#5xG=jm%08|Iz9mGQ*y}VPuz6G6pe7$AthHq=6^+oTGR{jGz!!GxzRBw$odx!hB zkoL;+oToQU-s&GsbJg;%j=!tQ`LfQqSqhx?Xjr?d};CU81Y6N!$gL+F(d`v!+Ow z*;4p>^7j>zZ&`>$5hU4c{}tE+7Sc|2H}5%6*a-`b7z_ys0nM$L#O#3We_K%G%K&_R zU3da89EibS$0x_ma>8I{eOjFUA>ySLgD*Aze%pu>KpI@}7TeK(#3;YIEIanbvunqD zDBR(1EU5k4ZZDf|I;tE6Ter7UoO93#6xP%SHdnWyEdVLgmXV4h8+I!ABM-B4oqP5X zn@Ul;#(Qx$Dr%XxXA6Jh+zp`TTHCGZuY78mmp`frT(V+z>J3bc6|1nFh2A^X5={C1 zJiV#`0|o}z`rjqmaiF>e*2Xo2A3NoLy1$J2_ZXOx!^T~@6 zrsc~WIvhNj*4i_ce=w?u(R^eY2+vhe$Qe8Y`-GCGhqVmks=&0qOpmUuP_7yKK5MY z$mqhk2#u*zoO&*-5! zL|)$y)PHNncE;nT`o6we_gpqH+ z+OAgF4?CNrr~+IJEJInjs&Lpag1}E0mgIRy7JG%bY%|lip7EH>#~XKcQF*<~oO=(a zIt$X{(Tn_gZ!hh6ju<`MMdESCLq3p>?G|UfooD5(edQ86Nyhcfyob0O+PQx2DaGCT zq|N5wGNttrF4o;Rs%{&bR^v)kK&Aevt!?(6-lx0(e%4(aPQSB%mR*|Y7EN_-Si$I) zrJpgNV2)WViT1}mgj0p?g1wJohypQ>G`?-1hQvY8g^+$9lF$YRhR~QH6NjeCg_6iX zg-P0DQ>R*1!v(iH>p??>*e;|e4a-6paczO*~^sWTX|T9WK=J zcgE7N7KI!(eXT`jSF{k3PC!)*mYys&galnu z)(XNrx+Oioi)BumcBYrE1iaS3u$o4K`|y62|_ z*V)i^{fGa{qCPhzU117i+HarbtILS*@POI+XgFqWEa ziU!3|K$|V{YxTR1nyoKAtMmDPjvx8Pib!&4%d7K}H);u;cHe zKcfrdV5}9xg!K{q+X>#HE0srm0(5IZG~utKtV?;D*90Cn8*nRAnej7o49cleP2j}O zH$mmywm_m}TZ;j-%oTIC40b`5Qcps!2*1;irI*=Jg}MJ2IvZaB(d!1x_DUQCr9`C^ zu>O(c`Jk3r^gM3`=xG9`CR~2s0h+ZcJ1$y7}IvCg0-70S^0Lghu~~ z3E)0IKlNGR&gN|+BesNIgwd%=z*BpGB*?XvPmRPoJmwC=6TK$D7EG%c{SODvPWN2-l#O}*(VWb=Q07P+ z89@ifVKTf_7EN(`-BZBHQJVd0-e!&F45R%A^P0kHU-hF+q7^O$2c3f8x0T3Kf%iWnU4?m&0zMDi>^Gs z@#b!87}~m7t-S1T(K-=@Mn)`-Y~m$&>jaCLOMhiX@4$`8+ptR_jwUUid%c%Xxanae z6e-YHY4h2mE9#CN2`HU$v|Xy%sZhd0ZyZdL&MsyF4mQGO?IS2U?e9@v-gCSQuhSp{ zo1*Q=Np-6xHE4dFKpXZ$uljko$=Fsqvi>3T9krxm&U1kxxER%Roi^rI0iteB>vftg z1N(chGzH*Znbz+00g5yHB2%7xVOBq;OM{h>QBn#LsjV!= zjPp9IN15^YP%j&G|4O`Q#8cltLorug1zEC-^$qX7WZgE7>?R96ggc0@zTWdbC!h^N zyo#(K$!=utmFRQZrK1u(r-c|xd^DG<7NhL|e*H=U64M{Ql{ODZqQ8s9b4wv@gXw5B z*Ap!p8CH{$D(B0{7@nX#&5c$7^VEK^8c)lb$$#%vBI9S%0TGWj{B>?@PuJkKuj-J5 z;wJ2ygvQuPU_e6NWg#4jI3(ke&@B-1D}U9Jyt(Y&{1S(`q`t8;wPZL}<#hXQqUR?F z(CRcoDKqh5oX_0mx{ILBSwr5xe&e*arue=%-)f4rm<$3o!L6gybA(s7D%|b&Ltow@ z6a)DL#%;+rX1vJ~7Z>r5`z#;PcaT`iv|%KuK^@#KpBUw3!BhELPYg@EZNrTk3y}#p%5f=9fw-B9$?E+NDVX^t4p6j(DXDzWBlVvHK3N0z zWr>tTvN6b!3T3f2+Q^Ya&194N^yMRQPm=9Hegq;$X(db134dc|!iG<{I+mY~) zkD`gFlvdE4Ibxv#sYZqavkg*%fY|*vMd&IoV&*HIh%Bj09EC4Hi_TM{fn35_e#)PK z4O)?=@P*LsJJ2AAqA^Iyg3XlxZc1gvc5s>y!Obc$L_%QN+M|2RO0$)A_~|5C;*jX$ z0dT?S|1O>htqR3!?zWR8inPn(Qb!VNm&>PtBC%D&hDvOaE2e=eW>GHx&z{h~z0_ST z5Rl+XG>{X0^gLB?ZZmykU)o7xT?!@iVV$ zI4+a-BtO3rMeF4XZNzuONud6-%(s~&)}&BmKTb?BhYiAWF$Yl>MNn>R2LlVEm;tK} z|Ie2-Ap~yq(LD&4$uwv+Q0`+lWB{%-bSF1c6++_v49FM*_l!=saz4&+j}i2}GwCv#q#qY2aw%qsh%{@UBtH#qb-KB!F< zJkxb|u_SQoH_fsp)!4li zn@WSD$CY*X_60odcQvQqr`kTTkK(72w_dNK0{AjGz;`-{|1zQb(-6#m*Qt#Q)-ICp zS?QvPcFc}AWhIr!qdKZG&lZPrCw3|-4|@|i`(jatNex|zt%tq}VyfOWP-jz6*W#O~ z@p1*n-pYT~AH90v1b*I#YzT~_Hxb)^?T+8NfBiXn9pOC)b2YY;AEIPb({|!;h&rr?~VO44Qdbc8ez0o`BG z!5??)XVQXLlt`TZ>*P@d!D*28=Ig)K^;NVOAbTe@;lxp0z-R`?&g)L(xICprU16Ah zi{Q*0x4uHUHCnE>t}P$E<%Raw4v|Y1F@ChXWfU8tmM^s#3qq;ObANN+zA#3a7Am(L zJ$*o*s75;*T87=9@1SKSt2(@V16Bpzxlh*03vGM&?UZG$JLND zGd^Ax7~&-c!9li~Zmv#P@4ViauH@+snto#?Xf$4CmOCh@Vj2wj51WHX0wRCsT0AQZ zJZ)cqSaHJFc@w1^)A=xoUVh1-5f3Y~vZ!?PmL>Lntgxz{Xt%@bD{n40-7k@b&d<8< zJzFNXhgiVa5Sq(VnMXf_UF-nsi7A=*d`kiZ%XN8mY|fMmH_{^3K9ISfGJYCe38F}= zCH#IY*MGAm;?zv>%>2!C0wAy4JNY4c-oCFZ9_z|zeP>g<`^e7ig0X30G&74K%T$ax zrz`p3&cEm8o#OfPw}!ycoEO{S`{>3dyOt94SWQRMHiXSu-KZ@i}BWHecyK8ibmmc?2cSGSNU_F@%w9;d zY&k=Um|FMnfaVS~MENXlhbWx-Utan>yIcP`P8wu1<&{u}UbEX+F}olHRr8(h7$*Jf zFb7YLzaGfW)nvq~Pe^E-L$56>IB!=+R~%cQF3MhBBPKG*wq;qWS2hrt|BEAF`wvHemvPJX zk0W4Z`Ck;ljjpWgaXWJVZG+K?n7X!JuP~mU)U_RoX4kcsdfLc1q)j;K(ka{o*+k7; zgQDQSr}@yPY}U&bk=qI=nCJtz@KdyeJh?}V4B$(yFg@_Q*XLUzOl+D?t0p-|zF73s zCC96Q)x6L=uUB@!u7xDmHmAmxe&u=1ok4#q?R#y3bFc5?YOZF_ zKpIPjj3vo?QVnk!E33A>VfULZnZ5Um0XYl7`ys#E0W}5MzDR@8(eT?fiWb|gd@Z-e ze}_&M$bu}(SwfObX9KM)m+{+sH66M#ks5~9eu3RHCr|LoFIwAWE%qaq||C& z>xM5^{curD^WicVcU$w5Z~N_kjcF|kZ>?Ik;+Cg*a(ypSXM}5<6*8@&l76fPnosXIwrT~bjHE3jo4 zI;)S1^KX=N3wRiZ(IjCv7?MzS^BOadQpJ*s<&M+a_1PYcNrK^b*za*}U!?k^OOzYl zryOUf>zOU2b}?|qh(O+L3OI`d2~RCxY-J0XYU7eN+qPQU0z zmFm#g0+@&@m#(#=>c2pK1rl-$nB%REYVR!)BUwZ>NP5~Uq|g(M!TK(UC-}V+ZUmNJy48*s9fj%N>%9;xF}@%Q7|xsc zgvRXTw}Z6b)&axcqmYBl!*M}wkhYNE9Rbu{(3LM<|xgvqX+o1(oo%y1596vceTzB4jEi}%AB9u}R$ddbcO8TVSM z-gM~&f9f+mR=km-4Ub^BwzEiKd&6~Fz=HS^`HBPfD;;h5g7=8|IhE9dxX_I?FWVC^ zNKimN9d3%_nlKt6i9L!1@Og-J6D{jj-(GZ-W56|Z0ZF`VX{QXs3}(&*#o%MoGAu6Q zay*5@e>cHqqY4M8YzD>!Q4Qaw2V}GtHa6Nb5VK0bOt5`R*%bR8mzM3Je+T1h4l;6= zpLxMDt-g%?h#VJWdz|>69!U8B;~$@2-ppA1j2-el7z&~Aw;~z?u$6=0v)?)vjOhk> zxCEO2B}9OLs&epvyBnJVo8s0iaAK$u2wKyn!huDk8FSU<2amwSw`}PJs#e|YQqOw( zbKtdSCys${Gx&QJQKum85daeks3-0A zmjzzmuHoELR~dpr_2PHpf1=wP)*-krF&GjkTm%S6mE%h&JY|@ew~ch3Rv>4gt@7(^ zg4dQXC8d}x ze05C@zW_1d1m_^50u1==CZan%n@_@sF)G6Ih3nkr*!nn3AAVcF2uYC5_|OKVE1U1% zFGZ*izfnyKz{yQ19Wf>*)vLTyu)*d`z z%fli@6VFH(?@nc#ir|=vIM1q&Ftk>B>>P`xIcU~|qcx5zX@oPO)<%xDh4*poA`cV_ zLHnVC%6%v!EDpEvvS75BJA^AuC{G=M-yQ$rwAkJMHt}@n!@k$s$M4G@T^HF7q& zyO4DTOoGgvkc&JZ@X?P^JfSv0f7=0WHpO{7Bm1ll%l(N?N}{@`^j;_(al|HCMyN?y6$g-e09@ z#8{!OrpSt3J}4S00C-&0y#m>S#+!HZOX~%ALssvXyt9R)Lq>a*VvkakBR*zJhh1Gi zWuv%DYXk%)&{Vo{2b;^}Rt`n|`VLU^L^K7`v~f_2`;Eg)zLFj7iiR;M?YJm5>+Zq< z5)m%rrA(9_guV9pKQSSnCWj06MSdG0+a#JHd(OKji5Z}`pV1`mckz0(si=xm`t9<% z^M-BmeVMFWg!j&Z-Q{Xpjn8)bqAMjk;nG%<#IMjZNPRZkLu{N5|>dKmb zsSnd2ddU)?Zx6}gSIzU}^O5STo zV;XN;)iO+w=j}yC%Mz5T@sZ@0cJbRywL(w`Pxm2uT2m>%i2DT($>x2Z9(yGLTihof z&`Y)CxPJLo$e_kN5p$;JpSR>UNYtkN`FJh;zMum3>&|CV z82&t4{bR?k$%;T5i_eXQ>x4ypUy48!uSBWDMScMW`7zKeDFjaO4*2_K3fBlpIm>2||?O(D%-71+SjsZAV;lB~IFh$9-l@lzOs-Yox zj-dYVM59a1c&)i$&fu=F7#%zDVVG_51M5{lw?Xy$1s!TKq!R@{7lsRgbXGh%3Sz^E zoP2iCyvTK)f^1@dlE0Im=;i z-bVvib0SOT&s4i#?tt~(9orlVdu{%D*!aI(e-}?~_8u6{+`jK*ogoi;V=lr+dZUe3 z_Rqd#zj}`wb(8R>s~~_l(+bng(22%Azt-{$xL^fMcq)_3QttP zUq)t8m4oKJ!*WD*iOx~~J@`WqY#8mm?xLXWJk=c?oIk^xr3Q%kPnWE?( z0-^F5EZ=t;+vGM2?CMfVy>*lQ886L3MN@D8Fw$-v4O8QB#i*>bHsJv>U41?6r~kwF z&lnr+O&PH``Lx*F8}-5;yT{wvRdC@c2`8u3<%7Kqur{ z>CYDQ_ve1j(UDAS1$)*c2L?L0Pfdh|H%GAV{fRq|exJ0J)(yjALG8)9oQ1U6h^Rl` z-|Lak0P4t_q7IbW=TwzCn61`9+rFKtCk}DZxb-6g{sI80@0pd%^u#2~an);*QZ!Ae z?v{l~Gl^Su9*ml03I8`oW~CJ$m&uW!LlImttH(F195N<7nvL6?EWq%(-_2Q!;Dg|$ zr81<+zsph>y5xH_e@uUpn^tce|I<=9MrfLBLOmj>l6KUo%VaVIY391eU8(t`@fIp0 zf8okvNEQHIwhFn-A>R~wTH}pu+ksCvH3n;6a&8KmwO^zd{(&aqF)yT}RW+YAVWu)^ zXIJ18qRMc|Sz(X7zTMY^G8(6eZ{Nq1EiNEQT6dToFM6BOetzf^LSgwW$Zktu3CVp6 z88J;e9Z$E6*sKtyYKAo1!2;!I;%F()tQ!npZw)Xt#CUv5fccYhd$d$h#I41>yOf(k z0xrsJADWyFPcGRr|LQnGhnl6TMqpCtkCPy!CD7PZ&pfD~1)}9T-+8=%)F~uhTS1Z@ zqh*l(%ULJ}4)pg_nIaeiUmBlqd1wnVXx7(s)!`}(9EgJ5>fYpI5200l+}V1g=`yvm zRU{x?chBVtkx~ayC6ld3{BZ~dbWHNbvGahvM%fjnw!AciexW=OSq+4CnfKpQnBt-* zo9E~0NysuaGV(9{oruZ_B0|z8#cx<>BvQ0|0wz;Nl6q?BOy7bjIh+!njSuO|*$x|s zttX0oj%5pnxC~#n{4^XF0Rs=MWcDRgr4fJ|^wOaO^HNO5U$^=&%8^NP;MXZULgC)1 zT3T3Ujr}eT0={!^<(R1zlxSp&D&wUGZ{mq_1~An+ZVr z9iaxswP+kPq+u=Dh}-nh9Pz&3{zyw$lu6ZtJ`pWA-M)P?k*}JY#tr%4&$lg5f48Bb z{R>waR3(eFVX(J+5)<#r)uT?RsoAE-;uEaX4l@9L_WBUo^gH?ve&J?>+GOCx4sQtL?p$0SafX;58;sSQx4<}svs%_eY{^v zRa4Td^!x@#qW*(s8VU#rFYrKx zJmiJ#jD*U=F*2SU^^V}VqLhg7Ja6z7j*s zF)WP2{_bH3oEf(1k0S{V>bz%DT#h8D-9b87WO-n zJC+xQpi|68cJeAXsl|FiLR~(ij3W~$lgpipA7@( z4@Pi}dq1l@iUd#je7%sBHqIF0cQ&Mn^i&9*__%2&dq7y2ksFQ^M6pg{QY*jUG!K@qdwB$ndMd)QvS(Uqh$1I zUW7s;*Z$oa1*$*_sg-2q1<)37l1fIQzS@FTkH(-p5tiD*fUu| z)mE1CJ|%odJBfx>g9PDgFwV(j3YfsP5&yRcwEafHzm)r>YhQ06H=0fP`4!P)k zeB&K33jsdP0H4>CZyyGbH0$8?J*a6-ApKl~2H|&>ouV(#b55~+OQg3Q-5lid*9;(> zEM2B@Nu~q`qw!Bdt~L11KwjumdLnI9savNZPEX)j-9)6}4G{7U!{-~sG!cg46ZOnp z{g?|@fYJ7qO@wUZi>;hf;iL6we-<=?Wg_hTEs$lw}XBBF2jRavI_vf@wWlAgp0Dfytt zlLB-yISQd@4h{wM>a$}$)fqN6xHB;ocwzNH2BpOP5pqdaHBWyw`@bG|Ub)U=V_es5 z^*(XF_Wk2sW?*QSzU%z3vGxt{z&Jb)u0;vbF8&96xE_KEt^QMmyAqtOuJbY}KY%T# z9}}CTA<}c62&JU=cz~g$rX|?TyDA7l;@M5 zLfhl78nH#*?N0>=lJl@s-#93ILUQ~VAOnPnF*IZ&hgu%-Q1(E^@+cw04>9_4ju|;r z;EIN9ieLhJ1=OT_`Z+LU8gL8vNXKX>Eyp()_hcxeY1B3)g12Ed!#lI{-*rO9N~+i0kLQjcPctk6E!Y_R?FfM~EhA7*>8w$?^xg=C;f zzDc`eD0*=xRB<5w{K~NV>=|jU8Lq%OhvG=0ud7z9 zkTX|3A=Z0i0!_}R)_+#Rq7#m>|Zl zYVO!|t~chh+$43Pz809#vv&%>IjUF_U;iO~A|1ttZ`<(DH;_Qjtl2~TQFn!-?UsrD zY)^iJx;y4A!sU+Q*?Bn0DDgSIlbh#57;4DGOi5DQ07ohDe1`b?-&Lvm2IPFrle-A^ zz6sxbTD{Y4cS+AK7Qnkt0NX9}HGtG0JaBuYu3-9E03wZI!OJv%DTW(raw`2n-Phyc zmGxXDtyH5i#h^Dx-~Ddn$G&ro5zno5I$D(-k`h3lnS^N8ErHO!FbmJF^QR7ED4U(; z4U^e$K^L<=03;*awqTHYV|eHXXYOAXb0WSk#8HBn5!Xg=Hh+ZTJ)P=tR$F!eV)asA zjr#)zf6?{5$`>k`R2yF5(1rJ`c*XpXHiR9f?*NTtg(}pUf>cw9rq_d}tF8Ti; zOwRv5!6g1w!EFLg#g+$%&|& z9_xX`3Kb(G8Uz=b*)=Q(fTMzgpGt-1<<@!}l=Dz(H`|0tvP3IKlGD)c? z0SrL&U;CXu`SC#Ln15f57y*nPND0A?bM!Xq-!oFST>mgvE>iW7J<;Q`(Y%q9Z%LD? z#iNK%5kRvG@10=QV4!dK?L!{a9cc!}iBh2=8Rg+zyuQhaNfI-hY8{EcDipqV9krs_SITJnyRnv z!!&rtZ|$fxv)2A>8N8Dxc-lAz`KPHGxA!C{<7O+~39J#BC;>XHtE#(sFm1Z-p_t0I zG;)3C0go1eC&EJ2|z^?t3Gw;i24@WXtkUXR-P5J6!KU7J8WFS_n5~Czr4fh^IUk@4= zoIgx=z*q?*kF2tb>tFQGUx~v{C;hn@2l%FSQF~jp&G`Y)$hWH9{@(^ zw;N*C&(GBO+K#XD*mo*NxYieC#Ll{%-&@Ka{Bn|*T=k@qOo=<$VBFu?KUGwI;O9wDvQnJ$rU6V7&94JBgGf`MazMB+x$qsvnM^VQ7G}_l(}r37 z7Aa|xD24y1M?rK3Acby2v!-lfj3hQXJos44OWvNOq*=SLB&(px|K21CYP7>7Paw?W zAy2w~0v*Vo?md8wH5SAmZcq zQLa(DpgZiedf*jav|6|kdP$(nIYg6P8?#|mS)tRcVIQnX_r&vlj@*3>PW38a!)QS4 z&^qWkWR(;1FQ#gd{M7RwA`D~1+Jxs9M@)4 zsUKD+xxQi3$Amy~LYHIKkOf9)0$j%L_ns*sOTQ6p`_AkhNryDuFTt!g$1O|+DWx2yg(s^ zGYm2sD*5WIX2(7m6EWe8IXgk4`^o%J{cI(HEKZWQ_+k=?(trz6dol~cFi(^AaZW&k z`7jGgVJ~HKjiHBCVdLBg%vXUYPzxkpUJil&mC4esAJagLAx0zfrx(nWx^AmK)D&Z~ z_0V!;{ycarjA~*mA|EJ_OF#kK-B_XxqT?nA6&DMx0;ftB#2-DsTe!5zjP|h#N0K*=X9JyOD^chUu^%9@NFh2_|=EP6GsN0w4{Ks z^k(&id0eh>kRNb#P#KXl@77cX49n3Fv*ZYiL$Fo~Z2cveD}8+yntM|7Jp9EP7LK73 zGFO%y{n<_-H!STY_ZjChC(VZ8m^jMaF?#L$e&mG zckZ_{esou?o2>TsULBj#xkbG@br7BvF*^v*(HF-}J^|rsW>R10^MBhw=UtJg zRt+aLhXDoi!kVboPe-$TxPB~^?@hILVRny=W@E2x>80;me4X?-Xes0I)DTySn(j-; zF{Ik+aT720#kqZYNmY0WODP`R;aEyfCl_UCFTffKMOEhC+p!MVKJzD(YFv^ln!Vog z8*{wR^A8eb4r>=!nUp{nxe8?rZ=4xll-_Qrg<*T2WAfmjn3s}K#i$9sS3XxABTX@q zAT8b(f9sHpC7Lb-yudUSORU&GUEJtr;*9#6(NK$T!#zZ7LXR_xIekSIlJaf%V884&6m&?5-loRkju zJXyXLoIQRQPDy|*r-UV6z6<2mV+cn7qo%r?P}>F*tX;>NWld4M zpQ{bQMx|+Sk)I(*n8<>lT}TEtI7&bY%mdiW@KSuSDoGW|BGVG&;qilo1C5UZfOQ?( zCBV%58s}#zc;OZ+6t0cU*G~3!_bZ**%T$k{0mxD9(9igRwG157Fo|7+k`SME14Ho; z)M+(b=^hxf#j8y2-_emJbG{-4Xc2B$34at7ZVdwHlerbr>!+nBVyE}BU4IQZA+WUg zy_+BRXMDnsFT~!Wfq9}RQ9P412nn!Fj?ynNU?s@TAv@`iEb%b^2KgHFMaEe`W|_#? z7bk?=5YV(2`UNi&h#MQUAcDvI$x82Dhi(4FbP$9An+~D>|L-yXcTNOBdYt}$Jti~H z|Liflv}NKqhS9obYIhUC$guukr)~%+{4H$7|G)SKilt71U67? zqa@hwjUDanX|-u-SLXyfFaLr}2A}UPraIzfb|C__zRCREbjbaAJ;B zU41`zHdH^Dj+91LJfQG`YFvMDxqIU<2|_7}OzTgfYi$!Cu(4JylS945sZrdP4B>xz zr*5SkFlmUe@qE|!$5jVtRJ5P-j6xjARJ6qnvkv7V<$(oc!maOqZzTHNV z1<6QaH&9xSxnm^IXfX$gI{)c_7C6^i|5>xjrO-(N_BQ3}l$uOp;hjXV2p=y@HUC8xzd-_q?X;9_uOs z|2;^GyhVU8_dDMwf2MbHSbdtATbRFOA+sJ4z8{+6z-;Ce_bOj1Oh2)P#FOUC>m;_7 zh2w5@6Llvu^>)9`=s5On>{Pbb8PI#G(d|9Icz}C0Hq~SD=uT8}S-}?Ey%$JU=$1lB z%B=922@S_iP!AV%FY{t}98+@L(9bJ|HlVe5SPwumx?U9#z3(9Jz4D@^K}DJ}NrO`% zsxm>)38f$7Orly|f@i=$DSwN*>s{K3 zZ?;`DUO$Q&sP^^W9g?}1yrq!Xg-m#p5oFg`DgNlkU>$G>(G4=~m)(6!rm@*jZ?JOG z_yI7H^(`q@or0EUcGznLZrl)<*k)}lcvE?umim94B z7J{Qo;iMQ=N%|V78}D+WG2M!aG(?qZONWS0T6Zkyo!wwG+3etlG>utO8Xu z;uQ0*eT&UMO@;A5VA0uAQO-B&YcfpDT#;0SFDm$Zy;54Q&blp<_?qIErF_iFW%b+k zXFMjXMm`A^s%IuW;X}!!S#?-(9a(p3kBqBrMzNWRG|EZ#+@8?RI&06c)Fxrw8_@pP zS$i#3ay@`gvw7prnlh~H5!4PjdjJf6$tTx~id?G{Vok5;gv#_BuN)y^AtqBsaQ#;l=pz~?hc<}_%zfNXd=S)ErH;m zaZiCNs&tfb@PWBrq@o%3e%z|DY`3sDR)pP*oZO<56!x5yk6LG6Hwe7ab-z&o{%`AQ zJ@%8ZAN`Kg?S1V-jv|gV1nInK^4t?j#uTT_5vl;ixqVbUTQbQxs@2c(IfO zB#f-RvloWb#29<>*6MjIhva&?V2@*!3l>v2WN~Yj-^@2sm_sRGwP@xAr#7zcw^;7pS z<-M_0oCv-M4cflUHw(>j)cRSvi8f}L($=garu=rh zUpdVW_A2JjCQM|~t2itY-vWg9X{hcMi@oX>ic;?(O}sgK&f+SfNwT<+Cuy7>Vjb+} zl&Ko?OC4DSongr_I0YL9vKEGDHYI{!j^I4!@hkdU+gl#2w>8IiI&$}1wKi>b+_TVz zc_L*E%xa6dY7D@FB^VxyWybtCD?^1>1k4MC^xD%vS9O(lFM2vBF+I{nS|V(%%5nq| zqJ$#2IUvGT;!06Fr+Oe?|1%VG@1TQm1T?WNZWq_DU(_mtZ6RkCOtaCm26r5QoJQna zk+p4fAo?R+70FWsH$S%k^9os*kd!IGN-w@zUR=343jCv~H7%-C)&ia{l4o9X(!wqbPk$G^ zyk$*$46!-XqT2ug4(BC`s&k)lvS$xidU=C#vHOEOV703OG8|-E?;B>nae~TqSFiA6 zdE}l9rTmueyY~$r>F33fu>C`W@aHJ(9^^kMe|8Tj6v20<|H({uG_{3eO%@jYCsF5N zCt;GeaIkW-W+h?acsMi)4JcGKA2T*U z#)l6Z3QN+`Fd(BdiyfXWATu*IF*6f0E=UydA4}(vn2#VdEHjyHc02Bg7}ZqKQj(FF z)0sRyUf9crFCeB0F(4GNw|{J+e`sP7!Pvs`=tZfZ3!O=La}?1UF2M@oALT2PXFw%l zjn9)8l!4wr@b>+fJYYQps<(e&K;jE{atVm|m5Dw(IEqB#cwlN{`Ib00I0{u@>j=i~ zdh?#o@biViK%c-fGvnV+;>OzL;$Gy^L)iQUy%ffl3y8{W%uLSCq}i=a0)>7Qyr zynB0)p?mvBZ+9*}yIyN!13UmGPF9xs7I)@`JBW21kjX$!OArYe9!YFuZ0~@?+!Lcf zNzUm<;^VA57+-hdj z+Qxd;S{wJkN2wCQUvtY_=Sv_@{>#60+2irjWBZHLwIH|R#mFL~otL>{1C-EUs$}Sk z@XjRY&8(5x71W8Djm@?37G#nD)RKrYO&*|7zH?)K+Zek|e<_ACa)kDQ4tSBmwd@vl zZHyOk+Mbqlumr)T(qc2Z0(d{uceS-a%7oFe1L`v&XOS*vE{QGK?f~Fs0OK-gt9_t5YG7ZK718KejbP* z?EQ8Z&J8LLxB!32JKl+3M{BOb1smu-(_4ia=spVLeQEy{@=yO2${)i8D>c5vh}Sqi zXQe!*zR+f%aX$)?8HRzsV$owj2SI?hh+^Oj1^;K9Khfc98 zwqVL@w>|pf@ph(-g<`W&ODo$z_w7p7J%4h3rC^0C&$gBf*Kb2gYr1|$7G6jSOTOa~ zAe@-^h_M4xQ(+)jz&u6Lf(C;w6>HBdgTkdR1^)wIrtI9C88b` z%V@N0<%i}QFA;(X-5HMy@yjTX)3@g}2|kpezl}sEdh8^z_PpL0CAJNKyp~lWm4UJ= zaU$0zc9RSYZ$Z9pk`NHm%#-5@CM2T@qfobS^}fdOiz$I%WV|ZY>o^?6>3r%b%QoLSXqb6aE z`1sTP%1h5A$&oIUweVns41`)0Q-s;M`-5=yL(J))6s2+O(^{cKxx~7;^IPA{Eamff z>McZE=VIWkYm^*2gWv(Pr+@v-0W$p>WunCafKX$;wvu#2RSY!`ULjm{Q^g)4Gwwh=)5A_#qUpHEcJ%0m?=%=4$K7iZgk0yw zBK!#LUYo)il$iBy$*;t)%>eOJOCOi@jSde3$lcc)HvBi-z9q3uQT;_0=+wzc1N8~X z<7Wk8cJn$}GmDgo4mYa???_Z7BnO%McFbVkA@&CY>V3&STQ(7=`;3dWN}({*{p5b3 zozj`QIP)7;6#wHl*&^rLX*NF0vK$H1CXsWEL_8sVV<8GLozfxRxuI)FR`URnvEyh+ zpb#`TD{U~!A>%!O5x*RN=1>JzKp6~65UcCkrrZ5m9hTRG4fV%+eUV`&f62on$I|m- zuvMKTD=ELIC$Fz)GT|STJMC|E0y(V~vxYC*l4=IDXmE|#lWDNOR+MqwsZ*>9y;BOb zT!|25*cid!Zmm}z6xHi8chp446Fr8nfleDfY|K3>+iSEvpYwv(NhX5xS;)TU zbB4H~(quk~dGP^KZ;kp`UoYPFIX~Pf38AM_d(_h|6)kMHoAUPe5jz5=XB#2JAb!Tg ztQF(&jMi>^GD|I&;(o$OsH4uAeTdl84Q>QXlh3I2lU^)}&Fn?+0mSfN4odNQ0Nq+~ zM3z3rr{_9;?;0`Au%Jo=C2kj{XlKEXV;JIr>vcWiVD2G+gxbtcxkJk2xn9;3w~yHYb^9^+B?t^E=6+IA>tTp0raTxA@VtEesW{ zZJ9PJ?2o2x=SIjb*tk(!A(6NbpiKFFP2WMPMPsKJ#mKnWjl!clLfxkS_ixqsYWgGV zu~VOo-on4BjeQQi)s#x{(w?#0RZWA#Csjwe)uM)k4EV|+{S?$N6$nIN-9`2RbKBr1 z-vjJI(A1l^R0%@v+k*!97LgpOUu)Qtf@ZQ+0=Qh7|H*K_@dzILttgcx1R}0UQ2d{C z2S@Q+yACd)ygsL4k%x(KB5j^pga1&Kun37^JMrV8CL6v4^WBtbLi&%uR#VO{ufb+u z%?N__SEt$~k~D(z{39SDyuRn5Cie$>tGrYQCY9;i1}P|*XHA9V&t!SRU%!O1`}{51 zB1W&tOQE6%P>aAt)l#Z90X@AD4)Hn}M`@BJmtQ!G|K)^`UG(IN!#({tD7`K$t$JGQ4%Dev9#rDG zqkFc83=G9sRS4GI&-@NDFfX-((o~7|Ugjp6<*ssV7m?+E*O7`z&n8g%Q*NQrgv`7g z1tbV+y38G-E)hyT9ALvPOViDG!##8~tx{M!H#Av$h_}#eB3S8kgs#d6pX8E}3)_Mw zhN%uOd`sO^of56xuOX(Wdno~?4E9MNJYlcUb8G&DRj{{UMxU!QTzDiNmZm6K7v=t` z&vnc#dX;SaVM?_^HlQt0X*&Ez_xF?hFJ09@pW+7M({`iu7=Q=@9*fVP(a+J>qkC$w zC7^sIuRS-(Z)koUtS`Gwce$}ntIg?24kDEZk~hV}wjRHCD>BDv-WQqqr=0i(_y>)w zjb3e`zg`a|iCR)9>d?ZG#YIprCV0IsxM?`XSc&j)luWY)!MS+N?@^>7je*wR0iQg- zb+dGaRj;uX(g2rh(SO7YA{)ZzQMP_rFtj~n>KC+nW3auG+`h%&=CQhzjj(?KVhdK# zd+8M$y)@re3Z0)l&bB44Twpq64kE-LooM0d<>ah{BWuA7b#H@*;4kpKgXOHYZ;#Q+ zoalTX&BBkQE4Ov4WtJ~DIrHOYLj%WH*+N8VXyw1wnd%e0x#~Qq-Ux;H0(#bTzJAWE zj_l4O8xL}|r*K#d*g>ctx^NOQC#-s%rsX@jiP#s+Pj2%OhTo8a-f3lMx|p30S!Apq zQzV>ig8&}b!A+j<4WwVY8KE$WZM!`)=kW|EW>{jiZKdO~9U&s{X9{$m{Iojt_n4J$ z_A6Cp(of;CLs)xwd?kj|iNfwqIQP6$g&`&)r;E?#mm+o*zu6-v{p#BYnc^%9xA%jJsnTlFtJ~WVmPyl-hWH#(tMSwa<^Id1GV;@z8rBB)x z3r}s=A11*L>`FJH;RF%BY0oB0yO*F&^od=Z7Z&OyIB5g1#M2?jDU;dXPKZ}695|-x zt>rl0OlQR@cPn9;Du1#>t_SdBuC-S7SC>3p%4+DzGo8R&H1au{+EHo1WA7Gf*uePHtkCQ!+fl_Z(!|f_Dw2?U*H)W#W{&SPdkqmtL5+;0&vC*{}9e_0ZT%A#1t}8Gg*V{#k#OC#%Q(urc2XWs00sg}w5Q#Ct4ru81<2Q@g4R~mIpFyJdEtjKC{tm}Sw^#)hd&C7nam~qLU`R15rKmK zM&v(O6jEb;P~M)P0v|nZ#MZg|L2$ihoXqd>Rr~q z!2867RJqcYqRljbZ=VFTq3ep{V}fS1MfZN&|5>*X(*`GqXijbC+7<{+vzHPq9YA+>X1oyCC)i{5YIh|L8qoC}heyO?EV!d9Yw$<5rk(Y1`~{@uvsTzUwpEE#nl34A z3xDo9i;w4h>Qa;YhY#PLk)6lFd0;R^On^q})Y#IW4iu;DQosO3zCmhsL>+#)f(n~f zzRR<+SeooQx@?n7)TQzStSF(C{jOePv6?Y0%3h6f=B@0CE`nu+<@gVR>Mb9r(y1m- z3Ne)PJC@0xK8O^GrTXgI*q-hgO2&}bH3^x{%r2*X>a3hOjGbv0-d(vWWI?-M$w&C_hPOt(a)v71Bdu3>(M(B&H3l`sG&bWZKB(Jt^hh!Nf-5@S`Ok8Rj&=N%!q2j6d zC{As(7=ngkcW|xd49C-1oUzW^%Eg&5;;^7y?iz-ie(s^m6 z+qF-G_A?a~_|G3W%FsG*3yhPA zi|7OCYC*vDV++(`EbEt_W>!s+)xT@!^lF8DK#V&mp5{nYIuvHZ@((rG>Uz5T$P?+M z6&97VufsU?H?g%TJ2>U@~Fhurr))9<27 zwofw>O7e{4u?EX=-%2DN2=BQn0mbVm?JE7oNT$?~k%y%bA_mfdygm9njw#Pmn@EkF zNw2l&DNwn^`1iw^_5}8aSnnveoZ+R(GcS0`kM92IAxuqOj{ImEQ}AD?Hj{1G4MGu^ zRfz!qQTCn(A!5o;0v#?n1f+Tb@!tB=GO2PM7U+7i_4z4L&UC0Pq}XOz zFumK7h*=nAkXku$hG{shye=qoiqIJ{R(Z_~x@4BZP9H zf>hQP*hV!S@^pf^0 z7crW?5jHt((H4#uw#@DXwIfycg1&6b_gjWj^zmC{g>SVUHqcXIl3I*z5wp0^c^;aF zi<9|>4+W93eAW*()e;4eA)_d{uViXemx{^Bp>Re_4Ok906sD5EkPjn&HNDX*iUV*} zYoNnjhP7r}8IRqh&S&W-R5RYtuFPUwy{1(77oYzV99L=@LdR?xUy05m=bze*RZs@#@%{VpR zY!D}0i&oK3tTk;xmmYWJ!<^sTx@iY*-?w0mQGJ&nVk<kVV1}b&sUO2BNF0&yK|h1kBENoTF2s*2Db1MTH0=H#T_Y4t5GX>8*zvefM?X3S(=B zM0oAph=xlccTZh$$R~JT(GCbxvc(XTRJv|`psA3MIfK%q>L?|Aho0#^#x=!lPZZ)f zndmmwfY{8|iF+0$r!`&pdehC2yDvP5rbx7E5{UR)Q2#RPv2pyd58-g`Mx$|{|GT6+ zr}E}GBVd#-)JUOB_da&}`Mkd`<!m z9!AZyr{e10oP`VX=9O<5UXUWurw&drQV9KXgjt0l>B$dhWpNkY1$aC23>uXZk?lbwa_r#eZRzI9XK}_o~h#3dbpfKyW!p0>1whI&G015jDqGeT&8$4Tc(MC84%x>Bl9^ zx$&pDm$!fC^_RZ3gK5q_vu1y|6utE?bh?;Nq@d^v>Xp`0$!MS@6sMl)GHDiswm6wmE(V|c?{+0vwF0mzxW_3C)n%p%ki+DNOyM@lk zJP4VI1-EhPaWSL?W7yW}NO_Z!4`5i6&%TUjN);mGq`bEX?<#ehacsPwvsR$WLVXb% z1vv3W`4`rCH-X24SUDfBlN%+K9<|q>Q}Mv`Pf{i}diZakRa8vyOgwW~1 z%Pv39zjynYT9caC{|s|ba7Iy^(NxM#L2uJR&8H5opaMR;x4i08mwf`K>6GY-IK6NPN3`ActLBcU2oPp8Z)W{bg$}v7>%3x-g{*5!w;g5VcvnrEM`NJ#gmr{QJ zs^9sv<5lC@gb{sic_r3OLaiBIqU1+}??#&I6e!>^VAn#$g~)Gj4)#kK6n%`_5MjSwVIrc50l-shaGq)o*d@dhMy}L*)s6!jSJZnSh#{$ zl?JYzyb=|Q%Krt(?#No39+zm8Y{`fO`;V9|;dQnss$6kQI=WO2l0!x9Ra|O)7J=G! zhk~7gfT?ED4+fPi*|Q*ILsKF*u>`xql9?ELU_Gvs?;95Fwy)-Hd!#xwDv~$~ny}~n zlkAccUG5&UR2lu6Ti=N4u+U_=vPG}%YX+j{7N#V@kGK{7#F_^QA4#uH21j0J)L|ym z6%RD&(@vGV1$q{nEa&lv#k133@mK$8&FzItB>MR2Aky~=$u5-|#RSp25zE36t@52b zzzQO{v?4Hml~Eo2Ue1!!d~cUpo$ZNDgx503jPEuZy&PC7wVa@$FSaok0Z9lq3jjnJ zH-xo!Z!K7~9sc&wE`~(2{O)zzvM@LUErW48h~qP}H(TurEqIi@J-nqm7pEDLs~@@f z8S=2~qOV?@k2`aSw>*aN*#Pj74fNHIHs9Y_i5Rx-d;Gyy_J&QX8qyrQ3YCi{KLL}3Nx*wwLk>_h97s&O zHqB?jLMZ>FFcUVslN!(s1}&Ge-d$Qdsm^smZ$bOZK-0hs3LPO8;*m9cpKbc1A!q0z zlm9oNK3RE8KjMA{K z^SM&rCN84=DjQXlw1k7p91B2aTkDg04EgVw`1bRpwEDx=!K-Io9%9wkqYHXBK1zSY zNTZm}4_C40==t8kH&th#nCA%x{jZf`t)zW^Ol6k$G!3_W-jC?Z;-)$l>WykDo)(Ee z@VF~8fe8f@vL-mpZ?EFZQPk;H1*mR}ph7(T3=e~JU_No}m~UoLW6QuiD#=Ka&ev%f zfd0r9G22(s^(HHti6sz6wp8r(PT19IZ-Ti4jhY#gsds<#v(k-+Gc*(~KO}1oqR}^~ zPUHrXibY0z<3Fq(n4_vP$y4PftiSAVQze#$;FyB;``OI2Bl& zQA%N$6!~B;c0O8a*WU?!QBv1nj3AFTKhGMt5&fOJ^`yz>%?O;vmyn$IM%ll$dHk}q z=>9e3!uiA1jy3E>Y_S$Thm;{Cd97htGh_hQR?y-AoBnlZ=T9MhMuoc!M_8c);x+0w zy^@R4UQN#d9j58$1e8;2uSwxkhon&PwpmKg9=?fBWQI^eB8_wVr|1WF98e-!cD=RUd(HW|LGwe9*)u< z?yQ@%C%l4jH^jOoGX%IOwNsaBJ0Rx#y^bDVs>DXG)G4nhgfBmq(;yZ#v+buXqGCK^ z7l$bSG_N*JI>IZfLD$>ebiD@w!v3;?)f6TLkSccR` zGC&8v{%?WT@gJ9GTb6di67dk{E)q&fDo5EJFCbN~2x9;K+TCBEB{djoq88k!gEVNo zCBTj%0HSwL$e@3CLarL=zZIp-60A*EHfet`J*|qOMb}BKd!eWkC!`HS(Xb#021>3W z#aOkmsAry)8P5SFLOXFiUsv|sA=4N%dT2W?c|MXR8N*z(?W$;ePz7Q`fk4X<(}T%H zlYT!{i0=rTlfXiM)dhL8G0%I=pUs)^5U{Fuq2!-(xL{xz9c-S2c~NX*@8eekxBM~Q z)@lP^#|!2h!t96_iiFP`>yXs^#*UApS^|fp->`tVz7uXHO6$QwK-Nv36f*L`h~v?G z(m$rDAABe?_LqCmyOV0nOAuFE7~S71cqQd(;@b$rH67RUEeHDaH26mzZcY)|KG4;` zpv6%3M)mP@phr5*_!A`S(4(*p2f`QEt}ZVe&LGzgvK;ps77jr(-|u@zJbp4$<_k=P zk*k|(^yNc?bY8K~AG$r?Kiesx^@V*D1A3vBF8L?LLP?nS5!2Y@Ol%QWR3{G^|3ow? zgmJ2=mer5y1@9%B!J!IRX4VUfhPq7(w%{>J?mov@r zn-&T8uqLy;4_*vJX+8{t+`bx!g&EEou%-gM`0|dzv!WyY-LJNky*U=r7u@Y2@*k<@ zflhf{+(avlw6UM6ChiE;BY9QPlh#3hoBYb9VY!V2dQ8$Xo#z0TGL`x26ku)UO(Hdh z4W>TQ5=yA0UTV@JHI3mY@p#j74h(bcF=sy%KLy6X6Si1r{$2uZ(%B#X8?hC)H$Gcp zbxP>3x!$pg?y(tY2+v_B-9g?URP)65h0>m0w~C*#j@&@?k7*6(qZ(UvOnp z1!rKO;NYf)z{wES|2v1V3oz8mLH!vS|0lL%Zs{lQ=ClYUxS7;I*IjfzOWko*3EITI zCPiPfdWQ>xk01se6d$Hn<3gF*Lr6`;v%Km|P zCE=^Pt5;t?nZOYf)cf>`%aQ>uHFEpE*b(*dHhAZCjNip}FSfEVoxp`2LqRoBEX$Z9 zNYSs}gt`4I{r<6^W-qQ(UF0r};?UyZAEE;4Y#*&X0~4jO{NxeGoR*1nf3;L*-qgbS z>7?x;zwdGBP520BnX|3GV}AtGQ9dk7X8J%n$DW89tTbsV=8XQdvJrE~^;!8vm*q}~ z;}gM7)sUt5+95oUwOQ2o=to@GSQ@BPuX*gfC+w+etbeEqaA}s;iThmM(whd8ZDuA`{zfW&s9NINH=Q-p#s?hAND|js|Id zoy}yxZkmT>eH}@6RI1Z4Y4+>=Dxg+^aUWX&5|bWi=V4JHqRZxF?r}UX=GyIgsa(GD zltn{BSymp+RMwgIUvz1Gd&Vn+NG!CH>Itud-)TrYa2gi`Jg3-ShrD z(3|T)z5p*$s*20{R}hi(*9DGjS!=rH9CP^|-9ivl(uJD7YaT}vv&ydqgdlFxvF^MR z_i+y=@!Qxq(U0YK`X4-C}u9ohkqfA z4bJjz=HwdJuX;O^WToLe?Ob8_<%}kLgtBFTqyr)`AlT+?^R^N-doQ}JI>j!gx)PEh zxPNS51UmVfk4A@6y>R6_kfaLI6o@$C=^i9C&nYXUZ~`y3A_mhl?j(zs zFF@BP=G~++vM#j9*C8PsH`??Kc$pMfrvC6}`Qt1BGZBn~AhvF*=ORsY#@rx%YyD8_@rA#YYJ7DaNidyk3%wuXO*}ne4?O0d{qd zr;!TF{LuFLy~A#X+NsDo&dNQipypzTE}H4NwDiWWP)b>48sTHtqx10L*u>2u{ZJAi zZ$N|0ZCQrU^2K>=G!PbFksl|)Q2cKUQR8=RIs_Dwt5fagJ@BMAz7Ah6zqbM^2lJ+ zt>q6s(}xWNK6I17g{+s%n_f$=Uw}cc^D)G+^64hdbli*H&Y9*w&^Q@o(|R9UF6x@Z zQ7Uw(IR!=DGh0FXAuLAqV;cl98t0!ALQ0lI*V;!{230WIA23P!{YTwu(oVcgO_Mpv z*Da1(%zIm$dm(%_@<@1xyEIzWv#{#*Y>HzwiH+Gf=bSgSh%}3BejJDpxj<9S!oAj$ zy$1(}(+?p85Y``cd@>Z|$fSnOE zVPmKTT}MInXH6{u)^exCi$Hm#fA%ehTJnhovqZU@mnIJI>;3X*s>)NKlw9H=_1q1) zw=wMu`4fDcPL1^?8d`3-_9_XolgPeu1-j&$d1F`eQ~4E>kaei?-qO==gi)a}HhyQs zu)H}Bq5U5%B3su;n}k=5Ka<0;-;uI7GEiPkJ`O&?A!;=insviXQGjG8nPV{a!Ehq+ zfV0^R6CG2Rv0TYI&1*YMC7_|(y!-P>#@@A_-SEZQy-Pc~rI=p@D2HHr%JV;%*r)uk z9=^e7!G6%9^Uy@V(Re^O@w!$6r>{Mt4QZ`4Ehi7y)?eex&!;GUzFLT(sgegvTC3AO zh30WOq9^(-SR)=a5f!2e`ZPOT;d_bI5oQsyEA(|w*XVc*o zT^c>lJ#&(Liib1UKtKiu|2w5panqP+23kVW$E$&T{9UlEiKyGRi&!NqEhf)shjWp* zZzh8`RPpc-j-HC{<5na9-`^`yDm+FZjlPkn>zZFjoHmfL zx*NN2;!lU~Dgdlj;cCE+tP2S6h*sg7>`K(BD8*}TTORhJh*Y^=IX~!y>TBp(7rOwr z_Rc-OG|a9b%7_+Y8PQSW_3ylIuQf-u=d%wb9AV9~=IlT_gsMEoMH8Vov^?`HCl1i2 zL5U(2&AVwmd0>NlS1AarzNJrfaw8>tMyXCuq0`sX1o-Pie3&NTWgMViVtXLmDM*9r zvyD{OcuFxTm>5+RRxO>EJ>?u#%_1NKq)iJ={H%rNT%DZ$|?Uhg^X4$EL;1Djz% zNaNg^7jHw#h7v^>66(WaY#EFfV|4%%HknK1P(u&8cU=elTb=>G~*hR74_C z_T68lipUw}7pw!cN5PqSG1OPXX^p46Rulz)6tI~FPuMiK%5t4g=sU1=IQZb zK!aYiPqPevPXC50Cru*Eo1N8tG-G-v6Hi6hQHKYfc~fIeSJcEo7$k+!2;-p_cRR{N z-GDKjx~W#%4KJGLKl7tUy3;aCQ50f+6-&+AuL!9~{}9(Rt~{N7cWOTdOkSaHu?Y8_wC0)ADnAVNTY!k7Rlwnx>kFldBT>+}=QNztKtcxKpb&RYM zn#d)r(sCjgcCgbEPo!3zg$5#ctQTfVlvi`|$Nwj(q=g^RPYIefn!28acmNfxYZef@{qyYYFN zT1w1Lt+iMitGLg%)n-{R&TKRwAKyx2btgmEy?qL6@DAX2@Uq9BsjP{AItuEl zlEH=x_DnEy@_S%*p@f4*>Kg;Y`yxDo1PfXw!k2E0dpxJHAr-r3@kh>o0pZJ5(jwF| zYHd_q@l78PYmQC*hzR_Elt&cTQd6z%__5zmFDskEQ7u@46J{XA-8u;SQ~L-yv3f+U z1dqSuSkq?+cV0>1|J>`Lz1)0%AVh^Z%{ekUdNXB(W^`xMVA4p|U=?EE>>FH6!VeTH zCsc5#VGj3rI5aRSX`jwdzoG1>E)b+GG(}LM$^Ho&^dg^#nPM{NI?5C=nmi?uw`x3F zJ||pMAaKHl6KnM3!qD`)HlS-j;WI~l7cICsW=EPc$k7`Nr^rx8j^V<8E@2eGx9AnE zJX$e02M(G&sy+2l;TGwrr-Gm8)6r)VWK;&=y)L{F?zWVv42S`=tovsLNvp1n!JGrP zT61TBy@Ke@qFVJP`RdI4^A@yHq9^@P^nE}U)-QigCgl3zjylcPw26{)wcR?2DpShpk$1Wj_+xu+H=Eh#P}0`pO?R&bhm4YAodCJ z(xv>Ys4BtM>L*NSZnkjNL?O~;L+eB;mNF)vUTcElX3IkAiOJs{45h0jf)AsT243)4 zeX|)ES9hrATZ!3-pTZ2yi%3_`(1sEDiFag*njF%+nZBmH*!iu|Ew&@yG1Vq!;y7x$ z#>Mi4`c)r6#FOHGB-EzfcU%bW%Ff;&IrkX+1i_wh;s;uihQu9wGypRMkC3BhSU%ZB zb;v`ckKal8`*Tr$4fJNw=pD(*Q>hD;!5~e3>*mUs5aZP%cSy$|i~xZuIhnMMtxMfT zmxYGnl7<3)GmLGA83`yJ?pjH)5WUfk>vD~nyS<57!ajQ z3clD%BNqXc!@Nf3W-}*1vBlAgW3>6H>EXUSoviEk)uv*PS?+t;ku$BNj?ig!p^lo5 zNZ4i-zNb4Qe#)_XzpXQ~DZi?$M~3PPAt>xAh)r|OpiY>0H>z2s4+rACMxXL32q1xn zilkFcgeru8=oX)+PLBSpn7DeTbB8Y`F=X1J2j4!#Y1YNy(7H-bENuz6kz1?>#cE;P znk!%5ZGUsp%31dv3r>b7Vz1(0o_LSh?y_#pm+A1B$P`caH5=@93S5bjw-E z4B&ivcC?bc6wv7WHGyodhKSZ@V?){NP^vOSzgQuEE2(e}*c~ND=Re${jiZ8;OMhNd zGtE{r_)c-O(#bo|KM5+j*N<83?H&jRY~KT=2p4-x6fA?!T8AnlPHp3PJCJJMbs z9JGCZ8Kwrl-B(BnRex2zZWj85K`lLYD2WdJ+XidZCjTze#Br||QZ&>F;BF_kyVO3$ z0gKP2@$`DJ7;bHySMYa4g2WOr%kMhgI?zc)=aIJXxW?jg^!{I5Ke=bAEf0%OvE4>` zP1al|#=@J;%?roX&1=FznZ}-KSkPx8mq(6&Q7`Gy*`G3JIGKj02;rA4TNn+&o5Wz| zbz3C}-5bG@6|Lj02-CEizJI!ih6GzuK-kERpAN8s>#m~%yg*;2UaTzOPe z5--HYcx+M(E*p7jm^Kr=crVBm4Kjb}q{oej)01C*DnGr*AY1gEGRDNl{XLuHy%l{W(lV}4#y#lOE}iV#VygYXWBkKTNB+hy-yf;p3V3wO zR3%VnB7%P)017B{;Q zqK}+IKuA4~<6bw`nX@g`j9!ThFW(465?4x+jQQ>}Tu4*&*&T~#Fa0ScUaK87ZBV*D-G=D!vnY_|5!Vf@NIX%-4 zi54uXYtPL=(wFpsQ)O>56>5^@?FgTn`Mhh#yQQTH=8coKs;iYqbyrE|x81*g$VykY zoyg~AQ_zmpC_|aX%dLEN-h-R+8(V{fv1-^mW=g#>SxYE}hp_L5w!uJ@%naw%LI8T4 z7^bHu+gIM^CqtwYwgC9Niw*OO<}CGy4bQnPbStN#fuFv$KCd_L#PO{8^am9IF-aA$AC3+0(JIlliZ1Di4GOJkpoz%0VvI5*2(GqK2=>fU2 z;E|yWjAez<<6v|VVJZojJS%~COL*tC+$u#nhRE0>BVukoZ+jp&WFJMDA>O!Bg2;OXU5uNR4}7z1E~x<7cgDXstYms zaN{uA(Q!D$fUfAQ=FJ;lv?aQPRGQDy1Fbzhw1v!~i8+0+G2rQLJ`VHr`QpK7cHw5v zi-7sMkOk|)IwY!QKVfTsnQ6P9JKN0Y(5_E`WIK=-sYG#qa4Wu)ZYP$~AtR>N85$i^ zAfcjS!x2k^N3A3fD!S7gyNdv)PAHm^5PRZtt;V_CqK`al-!A`qJF7LwP#8$gstHyH zAHp;|yyW2Cz zSQ%-*8EJ3nCheN#iOFwTBB<*(TJT#^FW!0?d!QTpOG|CjfD(x>b9Sw*IBbHu2O+ATg`?E?gQj3 zUl=(5nv9X__ME_ooe?C84TMD47w>AR@r$OlRE(P|&sC!sup*VpaW%kaGJyb{-6~HM z7u$~MX=m*5Gpa9J)4!ooQe3`3u^Q?qfJWykXRPx8>&7a7p$pU_QzOIFpA(9uB?c6@ zhR&qVjOy3xDNmyMqeiJ`Da|Y>&eUCyHft2h_rwcEs)?nyU|goAiiKu)b?NS<_p=V()v#R^jzwe}2`&(fHM9dVMp}T<<#)W5i5{+N1_%F^wf`H2mCpWAcWDF@Kj}O`l#u zau5)~5)%{V6S`15ZNIIK8GNg(jBZd7%!Xr-)DMiU5ww~l) zL?{B8biF>tX_;MCDAeHqBesuMIya=HVbC+L*wcJdr)k`{1jRx9Btu*EwqNq~a2@i0 zH+9Taj%Zs5H^>IIS)%(k=W$0|GW~D?h>wX*{mz-$J{gUTmsUj)k)IB;woOpDp74C3 z=J)=Z2=|&POwh~PzS8?pf(K3}PVj?Z`T()Ajbp%4P!D3pUzN&Ha}N&RMcXNFH58WqhAS|49) zgvv4o>toNAD%`r+&IPB#*h@=;P6#fk8D5bWrlYH*1QH)V_zdo{FL`AeEg6b`1%vjT z<2VzFg(%0?mid84;a8&5~~FoEX-?MO!GhU(T1`wsGspVpv|d@j{Y= zfXRgH=Y$JUa^I+pUfk6^~=y6zti_RZt z`&5%VI8Q9r3+XUSRTlF3LtWr(^RWOJSr3gWQb4MfZMy=5D1`GamT`F2578VuZBkb0 zQ$9s<#H`y%I|X1?-jw@bKG)ebF!$Vr(vhiLNc78 z3WSwzX%))014u53Fw4?^!OR@tILRBQ3H=Sd3U5t71QZ|?;P?jbdeWi?!5j->Xd3`h;4^(6-&(2RJGL&iiU2kDb%2Rr7*e@xEvesF=K2d&DX1rA_`FkHZ0eJgmPxB)ZC$9!Qgd zll?4l#4MIqx1hxfW#(`?B{tl`>pKVnE>nV^Y3NaDbfBz%H1*s#~~Cc3PyR9*b;ts%4q{lzl@K8mauW5!8)8K z>ME=eke6;~Mmwge63-yb%US!UT)dW`5!)+d_*1nSgm+ zLP2zaG6^?-)*06^u)RewIpcaLGazi z)-U6KVQ$2brmLgIPeu|6ns}`&R$B})Q~v>29qRl844Kkj6j-_$FQLwyuk)LckL;VY zPCtaM;Tg9IV{~_-E_DN3-kZ6nRo2K`Mj0oRF*kXJ!JMhnTGX*KT@yn?sPxRstWHI! zq0(LM8UsCx{|lnz)H2$-Xf}gVQ~tnM?Jw?s<6PlMokf@Ybayv7P}=v=7+$jgj4`Ubt|NQ zr%F@xl>Fyk=M?|*)lJ;&iAYWPq$HAB(p#5r|84?Xac0{r`PA`1G_07|)67r0)zAK@ z&$ci>4ix5XfLIclN{&tll%o-N@AuJqO))vMRk_|3#edx=JbQ3BxmN&qSFF+!qzfXqgSf-$-3$`ZD zCp;An%9s0Iu5^yio0A@s*2%|+xN;Ix?(Kv%*e zr>pY}-@;rT)Pa?40Y9)nF7h?l{&y2t_m!54`qIvrQyKM$Ko z_aTMR2@R&I&SBn;;(qM||KoUrO~X>+Rj>0S=pE9$1~`mA(E9hmOaUnN;l>x3!bgL~ z6*CZcb6qS1g2Y9(OJE=^Keo|!bo`GQa%g`ax^FQ946~t*ju76$tmlM$!}x3=MgO!a z?(_Je@pdvl&Km=$iF$|!;tnT&WlQZ+ku!e+j`Gh|e_p;}+%=*o~Zy8;yzw59+6 From 14a4c40f612d86b1d2ae4d7f5abf200281021496 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Tue, 20 Oct 2020 12:28:47 +0200 Subject: [PATCH 110/403] Update of README.md Started to update README after review by Celine. Thanks for the review and good suggestions! --- README.md | 26 +++++++++++++++++++++----- 1 file changed, 21 insertions(+), 5 deletions(-) diff --git a/README.md b/README.md index b1ec9bdf..98d6c209 100644 --- a/README.md +++ b/README.md @@ -1,20 +1,34 @@ # McStasScript -McStas API for creating and running McStas instruments from python scripting +[McStas](http://www.mcstas.org) API for creating and running McStas instruments from python scripting Prototype for an API that allow interaction with McStas through an interface like Jupyter Notebooks created under WP5 of PaNOSC. ## Installation -McStasScript does not include the McStas installation, so McStas should be installed separately. -McStasScript can be installed using pip, +McStasScript does not include the McStas installation, so McStas should be installed separately, link to instructions [here](https://github.com/McStasMcXtrace/McCode/tree/master/INSTALL-McStas). +McStasScript can be installed using pip from a terminal, python3 -m pip install McStasScript --upgrade -After installation it is necessary to configure the package so the McStas installation can be found, here we show how the appropriate code for an Ubuntu system. The configuration is saved permanently, and only needs to be updated when McStas or McStasScript is updated. This has to be done from within python. +After installation it is necessary to configure the package so the McStas installation can be found, here we show how the appropriate code for an Ubuntu system as an example. The configuration is saved permanently, and only needs to be updated when McStas or McStasScript is updated. This has to be done from a python terminal or from within a python environment. from mcstasscript.interface import functions my_configurator = functions.Configurator() my_configurator.set_mcrun_path("/usr/bin/") my_configurator.set_mcstas_path("/usr/share/mcstas/2.5/") + +To get a python terminal, run the command python in a terminal and then copy, paste and execute the lines above one at a time. Exit with ctrl+D. + +For the second case, +1. open a text editor (not MS Word but something like Gedit...), +2. copy and paste the code above, +3. save the file as a Python script, for example, myMcStasScript_config.py +4. In a terminal, run it by typing python myMcStasScript_config.py + +On a Mac OS X system, the paths to the mcrun executable and mcstas folder are through the application folder: + + my_configurator.set_mcrun_path("/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin/") + my_configurator.set_mcstas_path("/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/") + ### Notes on windows installation McStasScript was tested on Windows 10 installed using this [guide](https://github.com/McStasMcXtrace/McCode/blob/master/INSTALL-McStas/Windows/README.md), it is necessary to include MPI using MSMpiSetup.exe and msmpisdk.msi located in the extras folder. @@ -34,9 +48,11 @@ For a standard McStas installation on Windows, the appropriate configuration can my_configurator = functions.Configurator() my_configurator.set_mcrun_path("\\mcstas-2.6\\bin\\") my_configurator.set_mcstas_path("\\mcstas-2.6\\lib\\") + +Double backslashes are necessary since backslash is the escape character in python strings. ## Instructions for basic use -This section provides a quick way to get started, a more in depth tutorial using Jupyter Notebooks is available in the tutorial folder. +This section provides a quick way to get started, a more in depth tutorial using Jupyter Notebooks is available in the tutorial folder. The following commands suppose that you are either typing them in a Python environment from a terminal or in a file to be run as the end of the editing by typing a command like, 'python my_file.py' or in a Jupyter notebook Import the interface From a7aa6703a0a27b387cecdb74c495a45290be80a6 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Tue, 20 Oct 2020 13:32:03 +0200 Subject: [PATCH 111/403] Update of README.md Last corrections of the README file after review by Celine. Thanks! --- README.md | 43 ++++++++++++++++++++++++++++++++++++++----- 1 file changed, 38 insertions(+), 5 deletions(-) diff --git a/README.md b/README.md index 98d6c209..4d4f9e23 100644 --- a/README.md +++ b/README.md @@ -62,10 +62,35 @@ Now the package can be used. Start with creating a new instrument, just needs a my_instrument = instr.McStas_instr("my_instrument_file") -Then McStas components can be added, here we add a source +Then McStas components can be added, here we add a source and ask for help on the parameters my_source = my_instrument.add_component("source", "Source_simple") my_source.show_parameters() # Can be used to show available parameters for Source simple + +The second line prints help on the Source_simple component and current status of our component object. The output is shown here, but without bold, underline and color which is used to show which parameters are required, default or user specified. + + ___ Help Source_simple _____________________________________________________________ + |optional parameter|required parameter|default value|user specified value| + radius = 0.1 [m] // Radius of circle in (x,y,0) plane where neutrons are + generated. + yheight = 0.0 [m] // Height of rectangle in (x,y,0) plane where neutrons are + generated. + xwidth = 0.0 [m] // Width of rectangle in (x,y,0) plane where neutrons are + generated. + dist = 0.0 [m] // Distance to target along z axis. + focus_xw = 0.045 [m] // Width of target + focus_yh = 0.12 [m] // Height of target + E0 = 0.0 [meV] // Mean energy of neutrons. + dE = 0.0 [meV] // Energy half spread of neutrons (flat or gaussian sigma). + lambda0 = 0.0 [AA] // Mean wavelength of neutrons. + dlambda = 0.0 [AA] // Wavelength half spread of neutrons. + flux = 1.0 [1/(s*cm**2*st*energy unit)] // flux per energy unit, Angs or meV if + flux=0, the source emits 1 in 4*PI whole + space. + gauss = 0.0 [1] // Gaussian (1) or Flat (0) energy/wavelength distribution + target_index = 1 [1] // relative index of component to focus at, e.g. next is + +1 this is used to compute 'dist' automatically. + ------------------------------------------------------------------------------------- The parameters of the source can be adjusted directly as attributes of the python object @@ -76,13 +101,13 @@ The parameters of the source can be adjusted directly as attributes of the pytho my_source.focus_xw = 0.05 my_source.focus_yh = 0.05 -A monitor is added as well to get data out of the simulation +A monitor is added as well to get data out of the simulation (few bins so it is easy to print the results) PSD = my_instrument.add_component("PSD", "PSD_monitor", AT=[0,0,1], RELATIVE="source") PSD.xwidth = 0.1 PSD.yheight = 0.1 - PSD.nx = 200 - PSD.ny = 200 + PSD.nx = 5 + PSD.ny = 5 PSD.filename = "\"PSD.dat\"" This simple simulation can be executed from the @@ -93,6 +118,14 @@ Results from the monitors would be stored as a list of McStasData objects in the data[0].Intensity +In a python terminal this would display the data directly: + + array([[0. , 0. , 0. , 0. , 0. ], + [0. , 0.1422463 , 0.19018485, 0.14156196, 0. ], + [0. , 0.18930076, 0.25112956, 0.18897898, 0. ], + [0. , 0.14121589, 0.18952508, 0.14098576, 0. ], + [0. , 0. , 0. , 0. , 0. ]]) + Plotting is usually done in a subplot of all monitors recorded. plot = plotter.make_sub_plot(data) @@ -106,7 +139,7 @@ If one wish to work on existing projects using McStasScript, there is a reader i It is highly advised to run a check between the output of the generated file and the original to ensure the process was sucessful. ## Method overview -Here is a quick overview of the available methods of the main classes in the project. Most have more options from keyword arguments that are explained in the manual, but also in python help, for example help(instr.McStas_instr.show_components). +Here is a quick overview of the available methods of the main classes in the project. Most have more options from keyword arguments that are explained in the manual, but also in python help. To get more information on for example the show_components method of the McStas_instr class, one can use the python help command help(instr.McStas_instr.show_components). instr └── McStas_instr(str instr_name) # Returns McStas instrument object on initialize From 46f86105d951da75f50238a3c90e6b10744b3c4f Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Sun, 25 Oct 2020 11:30:56 +0100 Subject: [PATCH 112/403] Updated plotter after review from Neil, thanks! Before there were three plotter classes, all with duplicated code for plotting. They did not even need to be classes as they had no methods. Now there are three simple functions for plotting, which all rely on a single shorter plotting function. Allowed better handling of keyword arguments for plotting, for example make_sub_plot(data, log=[True, False]) Sets the log mode for each data set, the first to True and the second to False. This works for all keyword arguments used in set_plot_options. All plotting functions also get the figsize keyword to set figure size, and no_data_to_black to set no data to black instead of white. --- McStasScript_documentation.pdf | Bin 179139 -> 181093 bytes mcstasscript/interface/plotter.py | 823 +++++++------------ mcstasscript/tests/test_McStasPlotOptions.py | 171 +++- mcstasscript/tests/test_Plotter.py | 610 ++++++++++++++ 4 files changed, 1057 insertions(+), 547 deletions(-) create mode 100644 mcstasscript/tests/test_Plotter.py diff --git a/McStasScript_documentation.pdf b/McStasScript_documentation.pdf index fd536d006ac54933bb4e449b4869dfc7b92de67b..560e48c21c960e615c4b22d7a711dbb2be5fc970 100644 GIT binary patch delta 48967 zcmY(pV{o8Nv@IN46Ki7In0R8_wrxJKZDV5Fw(U%8TN8foJ*V!i`u=oPuU4(KtGc_^ z-h(f2N1^cX3|w5yOx&zQj1olJL@ex_Z2vWEM7l(b@F;b1d0WH#ewG2`GcHZ<`r6PXoQAcoYmU`USoN*pDbn3%upqd>Cy z`naTG6NeIQqM)}C3&|+P+uV1zn52-{Q9;1>kbkt^w1M@4HTr{jKqOhhVo`DsF%c>K zCys-uoshAMrM(>y>whZ!FXrlEV`*pV{C`wTDupEn}$>$I`6+zT@8zATKP!WN85_plC@4aM-Zy|3jCRl_LoP{x>EIJInvlS2A_BcXcxU zk3TCbXBx3TC|;5~JUu8|QZallFwrw0he=xiA*~`x)+i!rt+1~Ki;^n2Tbjt*IwfJ( zqC|uD-M(Xi)9DC8!BTTF(JTz8=}?3;7qx+iS^gRL7!{6^lK!y@ex^JvKBs+DZ~V9v z-D{&DPlhI{8)83$QP|K5o0OXtP#`I91UWzfL8D`4fmX7)w}2& znMP7xQ*z!LHLkIGP!^rx%GcqAk;?NF@JXl>09;KNe~@?)j7pz9&iNgCFQMx$J*-6u z6$~UN!$L4pF@tXh*BXuh2Zd*Z+GP>^N=Y|X6V3sG$(32^3w@3iBKU0Z<2+u!$0CL) z*pi%$7u(eiJgMo$Kd9M(wxgvcT#%{0F*(WdVrO>rZK4+&yfqH8Yj>Pb&^Ry_R${AH zYbvpH7FZ9$wI%}(5r$3HBgTKzey;VuJqUZOK^0|pCdL{O)#C92xq2=?(f1(HI)l_t z*Za9Da}&-zyZFn$;5Z1gtlWlhTgbBs4se9SYQlQ)n7Z2VChCaQ4_(isuIpV+vk{?# zjMrN!HI7IYfDqez^in$qDrEUcsGWW6>62w0J3se_>pMQF11lo!x^L{Cq*-xS=$J`* zn^h^G{Z#}w9x1$ljz0B1qS?<<4x*3tLTbLjmfDW?OE`y996^RRSMf^TXo&yYC@w?KaGU_!%O`58mlkrG(Gf347Uk+MPm)yqOF=^vR@gS_C-*T_=-CpOBTKe791NhRI>9pi12kGB0gwo-)*ptyiM-$kaTow2ismbPv?h@Et3-Y2}%)*)w6yF_>(k=Zxh^GW z1y}Sh!BT~h@`|UQPZ^U9dRzGPvDGbT$Re+$UpnFMbXs2p+2FM~Iw)XYCK}Y*WGX^Kb2SE&C zCb}^(zgZz__UJ1z%@)k;R{zITA{*fs4Lrr5j!0-wsDV>=VA8 z)lG_=>%LPtK(xiL_FfEf)&uD+`~H3rd~`jOKp<~KZj{1LB@6ZAvNcyG9Oh2{He6v+%=#XTy`Y{*FK32Fe_(SIzu6P^(6L*8GEOU&{t zDn;rTkC2pts%(N7CC5-^AW*?c)ySN8-y*4}EiH$gI_*Zt+1gZ2n3@zYYA)5;zLpRy z9~*$NI4-}VstVuqm{8U#Voc=1cc@4zAkMtfgO$In>uJ6m;V9!TttK7`s`62yr5!1M`n_P1fty#q{P$$f}ebPw3gP7 z-A}4AU73@qiTjGN{m=(tN^p#gxY9!6yOIM*`27Pw72#T>g{(pRA3(YW)SHTm%fNOj zVHDyqn@ENi>x(AG_GG|7^mF6GiLpH93w6;;B_gi^*?9;&4_`A@uTy{rOv#eP<_C^# zPk{4L<8o{EK>9*OUG)yktvNtj4wf!ikK?6nQ51X!ttrPl9h#@XJ?aD4kKLFQ22*&3jf1rq+jDJb zpvuiJBw|rJL`ow%$k_{QpmA_)U{z|TkTQk9zh4$08BAgp2QWdSWCMc1&A|aSc(7>s z$;2{bIk3W;?1mBq;}MZ<;ArgiM9~F?j}omCp`s3Qb6Vmq8p|*<>p!5fStY}G3njd! zKqP+Y7_v#q--1iaLB$fEjVFe|90b<~tivCmb2EVuX;Om`Y3|zbj!W%c&RcM8LBPuZ z6v*NO{?2T{peGU|{d*La|8+<-ak3i&9l7Bu$0~0NRS#9e>uHi8r8E$0af?CYO=Rju za9NN*rr0N7tq~1*{RRJ%crh5%yw(zv>s`>Nj~m36jSG4L25~09r5^(Cr(qv=;+DcH zg*3KHsXH(^Z?l&`fn2#Oh69YHeM-q0kj4qR)tAn24`rZ?|lYWN*uZ`waXk zW1o>HSE6as81X;g<2ES1b=W?f7IWU1IIq_Owh|Yif4xIe1N|heF~fu05BR93l=B{9 z{ula(D|T&&Lik8=i1=Kr-}xXs#a0HlJhZiE{m7e1vnA}|AtheCm5|Td;r2#bJno00 zCzmdrdaE2I{1Wt|pkt?QE?o&$<-fq6(^EI{zer-}666{5Yx(t?e)Ee~PReJ{9^O4p zpSz6T6=irY#O3w!`aJp z=AG{&-|%sDxQE543!gE$=y!ZtofR;A&Tr*ifBy~;=;);9UyA1B*&oz6bEC=`#TM*m z?s+&Zi0x8Mi5>6KPeH0StnENrj-Hm-->SOByx%kOyD!o;1RV=&MFt9_-YuKEnOxSi zv8nE3Dr#nN>sMn$$wq%1to~7nB^AqX=x9l|9@^k!h(3yD*;|&FSzExp5qA*!& z3Y{q?jnFkEM^@V75!orT76GC>d@UkkkelJO$Vc8L*>6jUDUG&O8?Kw~GeXWe z_-yZ%A%lKZgwNJPHHyo+UB9DgZIg7LKJDT_1RfV3(UuZ6spK_K}>; zjZe<2_&dhP1}}1H>G_?Z*4u_|15O9IV4baSaP=NZ$P4`))Z_4%oyD(T7BuuN#^|!Q?c9-q&MRs zSN2lK2?siVn{{xqP(h56NT4+e_Mza2i4v)$8v0X~Tu&7NwjkeuCgf(Yh@2=olA!`m zK@6Au2)#1xRi7ymuWs=c9gmx$lLutN}V>{!6QM#5Fb}@V=Z}N!Kc^2Dyj80m3r53ol7(@d6@sY z@n{cK<8;y~rIxXphRxU*{?;PlE)-X39sqDe+#yr~<7bKMN!zLB`_l%0Bo$mSa+OS8 z3NMv{rE(PUtC5+X#uSKd-w~|k(7vWcEi&~4Z$Rby3w5%lP0YA2(5YL`y*IItwdtUt&9(!>j{iL zAtbH{^MxF7rL-Ju#Tha>f)fCxy4J$-rSAC#X)Ok06Y*CRwGLP%_ycMId=sff^)ja2 zt9te1c&}ZZnBM}U|dicpxv(=?#uD`x<}f+e9E&jv%C&X~5#88@d=)|F!JCUN3!?2-N^OZg+{ZH|WSYUkieiqn^T*9=q zpL2Kj(|NeF zXUNLi<@SO%qu!5K@Og(8%?u*z1=*Y4d!8^|7GHR8suDB{$MtA8C8>5|n8sH`8Z*^s|C;m^t|k^9rf5iU>u=*G9K6z0Y?unTVo zb;kStI>}1U$>ja9*vS5ZDlP_ zj)AL7DOz)$0G=D8Z)}`B;Z83sA%AzLHYOB5g0b>xFLnFwXwp0!TBG3a9ASX<|5=(W zL@dm#T%7;c;bi^K5&XYqCkqSL|G35f&$Hc#euY%fS>J$yJGj1PgK%Hny}o9MA#1a) z+r?yS6ZYS|?$7xTx`t@a$>64R?)k3mXzhsHp1tT$v!@zQUd9%kx{?h@e0BpEqN`-+ zd_b5XRn;&-;Nf}D;NkJW$csCgqY!TiS-^@Z=Em1IwqtMf!Hnbt(XdctH-{j}N)7Cx z<6WCU>l(l{+Fv!=|7mD|*wE2+eg9~3-vSm8Ed~-*LgJI7Fa+wt97eDDg@2*lkn#7Z+Q&;|3uK=-b|&VP=TJSt;_(6 z%a`;zo3h#dASnGK8weIB2n!C)tkAze1!q95Snff{q4T$P2JQiPCJ^AO9ML}|;;Hxe zYyQi2Y~z~I6pfYDTN@gUN8Xx8+CQWj5hb6DdiHRCZvcd;p7opF!sx&Td4bcBwZ4U! z84~sbqa9XINd(dWOzJl8F?%|@>ZeY2Ms~HWU+LJ#Uxcy=RJUWJ=av>h9xU_Vox2Ea z9?)q)(-)Jk&PKwk%Prul>l+kv#qAigH;KvJ)nKKr(ai;NBK(^ajD+~3Kod+CB%6+o zZnNtWB%c)I)X;4B<8N0-DflfT#f3c!6}Y}Vv^TUrBo%CaZ8IdwW6186%{~-F8&^A+ zZ}<1~tA23b1RPT%9jRoLI5UUtniRi#RuX=mk+EPL)LwKeY}i=u<0E? zyK&?KL*M6&jYZji0<+mZcW}PbC~2&2KyS?s4M3S192-D10Aw7_)BYD=nkq}<8*QZ5 z#q^Ty60{2tho@NtNZj7dK`g#Bk+k~0HV)@#)4GvJb{; z`g<=xZSs=z^wa?==1`xG$in$+wKzB@qx;_thVj860G7_ho#8>^pNa508^m61jv*7A z?+e!mgf%Ir8(snuL~0hx!0;ycwzE(t8^kPOr>OS_mcQmB@;($()TaSvH({n)2azQ*Ak)!%~zx0k<(;@xBZ5A^UKwEFfR)chUgA@t?)-$2ngAw(kE zfBU&IyRtC9!$54YVKM-xm*2(T-Spq4{-~_~ZLycB$&=B(p|$3p`9{b>ITn`DjcDQj zCA{}a5AzH6d+5%)A$|HAQYZoBTLS<&g8LvG)#?2gTa$15Q3ys;G)#!0FowBe*9Y7Q zp-%!r3J7Z7f%*Gd-|&GIk9Ybg$pgK*0Shgk;6hsOjQ%J5wrj)Ew@?v<|paS6xwDCmtq_BVNBLm*rB7oZliIyruz)r}VtuZPE?NqE&SP-JeU(gK!O?+Pfq|h8yfytBG%lQz52KFOh)^!0NjK7RauB%5Z^)H zZ@QomULeybm?xLhuL3~Xzs+X_^53U3ZSTqknNI4oA*u7;^W|Glu#g-PEi9xCTW4}) zmSuRhrrLqWY90}f!|!eFNE}V%Ld8#MvyF<`=ZAK*0|O9p-yT4Jy@V|xGw+YWj@#VX zsKPk2KJhWLTf&B9?${b$stM0@H{@4?2$t*E?rOjQ zEkPVQwovj`vRreEq}`Y8fV4mI5LMccbaWlOb9}pnBIeoL{AtWRM^9LhKk-;kA2_bD zp@i&(bRz9b1bXyz(08@#rLoO}=MGDxT|!Q3hLtLBS3xe!1En$;IVK#_hopHWj}BV7 zuo$4J;J5*kA}_ZS+E9{5a6SRv`(xG|%T((ozr87S;=kMxCipyM$k^zJaMwrOtO9Et z?_au0DDQK64|jhy`D9$E%#?H9o$WlrDgd|AMx}~m2{MuS&u1ItuCq>MS4B>izattd z^sWJ=SM@W0%-utka2%!12Sh{o+Xr6?_@kiU_d@`_SJkfpuD#ZnFB|qNDP%SS2^@<` z=42f2$@rV-jWAqxMtxWj*ySa{`)yBK|EDSW7~7;689QZ1Re$E% zp|q-usau3j!)&zA^6AnkUM(64RYO^d%p4Ha&2H2n&~KtE)nDe-)o$41pi0^WKbL)) zamt&Ulaxy?(-v#OfFqWW-ReS_b|@3=+N%Ozcw6oRU#IT*?fiYBE;1x}Adh&%Dyg9< z<+H1_v)xLtk-N&y&tOu8sHt0ZNn#KO)42I~}kheGar8 z-zoUb_WzRhq2FcsB0_8lj+~lJ+1Nb1AUm1x8vCM^6-GeV_=Q+1w^7_>=CtuLgBE9U z{gi|QTm02=(BA7OJxLIT8itpl*D>EMBdxdWX?w)#_MNLq20Hoc?u8a|T|C6*XKKT| z2B&?EYu6C>XBYuUuyV_R0xmaCPanW%VpQ^$9E-mgiN8IMVv7Y{vs9PeDw&>MQ>LQE z0|r}v!h$FjjPELeoP|2sbi4}3fMW^=m!%&jZz>xN+lJ?r<1xzGS6?s|1`5XI(?0J> z!yz>(vM5zM=e@4@p#r7;E)QpF)9s;WU2|8?UBIg2Vp;7XI_A4IwnMq&0RSI#dRXVv zY0^W?g~NC_y*o?2byIHCrKmLPu{bx~|4g9^{Vun2>sG}QjBCmmSCaK^oh8rg>~z`` zqNal${YMjIwtXs$vgW>C7m+F{oR{*;{2iXA7pZZiebVG=x>reu&klw@{RK?z|HX|H z+q_IS%W{CfFXXxkhRjFBM+3_+6&FG^Wmg$w2n_msv~Zih8@P4G^C?$-4Newt{WVbA zUs-dzewJ>e@TkHb+_|WlrY5fnGvEBk?IUviK$Kj| zlr#hB)8a&wgVkhJay@T+sb_E~&B`@WCBEK#OAvvO7YRy|>CRM0TMHh^bPuOCi8}PU zS>Ejm_~*M*-R|=?HXbo8ER+(GT0bZLXSi^&bmv9==DAhPH!krpC}6aX z+V?|lo1Rt!G+1j6J!Tn|{C;b-=o75@4@a9#%xt_jLEZC}4hDEBY-wG$DvK9LLz6Cd z(pkPPfz`s!0cZuxti(-eiy8K>>%ONLDLL|nj{CpW+6ptIV1Pq9@%El;1ku>|EX`gy zbw9?*{p1Oiu@{~_SetkL#OEd!sUf@$gB#eHt0`KmB%@CZvrS>eC3BVE)=d?eOEC}l zJa$Sw+#`4i(iic^c4cwlE$9)=B^PvN<_CPct+C-E)fhI0l#G-n-U@;(FYnHYM4+74 z??C!S$VW(yU|^h_Gxv~;aLHK~C?0aPfErqxThmZ;F=fb*OA)V4WdE5wLopkBYTv_~ z=}=a;uNLD6=5w;;v_xm~#-Rlh?#}Vyk$GZ6kYpFOkFg2~t)1Je-^VFVmUk3lj}qjk zcpi+cn68d{SVFb^qnv1XTAG;D{!=Q2sKG$8&C-1E2!JJ^fhVLbR{@^%ko;aWJgWq$ z#Y7`+wA38ek;cQFWgV%BlDy&NYnw%MZc zwGjf$^H-%sIvhB%e&Y8hok=l{7J6DQho}xUcd?<33z=j~#*ymV223yUC2S+?Dk(XX zz>xJd0wkz})taK0r1IpX|C%0h@^b$Q_4aLn6AGJ4!}U9)DE~3CIU)kZ3!?gKQOvDb z@#XihKbIFO0x@3l!}&gX*&}2$t5<4i05JFtJ&y38&SwZEs?iEk9#DV}_o z8^zZSg-|$3b;0<<=6LtwSKs|I2SdlU@Zv*@9{}silC-&-vr5@jyMw=3(-F@aA-u12 zgZUPjkuBmmNL_c8=`u7itdZxXD>WUmvxW8GFYBX%kQ0$y2{xN?JbS~NDOm>_@AD@> zNGDvWE0zlEWM_?z4WPgHa)l$%kA3cvTgANV>80Yd>_mQGHKQ(aHve(+?p3Z~!VG(0 z089_^R>nLR=t>;~z?>?Rq*}xn&+T?Xg#*Cnr5f#lR4HT+W>lz>=RysaGvKG87^sV1T+G zi~WNe5rQPPN`Q^xTv0#tF?+)i%vp0jb#gpOYBd9yB#zG0*a=XoH|qw?%Rp1zn&s3+r7(w0lCgq zejBDFst1JU3bS-sE}UgAI!e|&|E8--S^nazlM78uoa_?~%#*>BE?u5P%M=kOuhOD= zPfD)TGU{Xd$#CjkwD7zIJ6qA|XV`5Gz;AD!eBy`hwYW0$_AE4{jV3q@X8zs_ zJ2RoZcRS7wUfu$HO-nnGB-1u%00k$3OCN8;yjWA3%bzFQVKCwp6k@n%G1gF{MMtH7 z9h~GEMgy(G+6>Q8Y|g5(jpX{d$^rF%&J;OPU)_VqRM8YFcrs*p$MR>cywLJ8!rkMD zkC+0`UA$3SffAfCRwCUrp~8*Ac5A_#W*fT(M6or0?M{TfoBCz%$31S%0eG7qiD|-j zbX!>C20wNQ+T6+aT!ZH+_Kk}~!BVb)Zlqs>+HKJf~v ze(SyvQH*Dk3r!(w-8jNM4wu)0cezR~r5<(FrFae1rJ>`|dhu$-nJzgBeZCro_Cqn)ELproI`)GG!nP^Y z*aE%FCIUnMn;O1U;6Js}i>&sWH00P^t^(oL{?0Z3*1}m0CQA1(cn}^YW(eN(&fQ_N zHJ1=RHul}aaAp$#s&M()6Ad5ecVgj_ZJwa_Na^BknuSo==#&OO1hnhYRPl+8q@Yj* zDwH|(O$zSJyTA7(EL!UhaCePJ8Amenx8Qg2Nnay(u{n1xxKy!;n$WoShG|N~b|jN) zr#2oUAh;k3MmR#pzH~V>4J}`t6A`D6T=*dICE*<;Ow-nZ6`=&>SUjBzNbEh~zl~jW zW~jtDIz0t{d3DG4aI5#;3v1nbPfD<%q`{daITEXqT$~`DB{;wtz&Q&WwRv-57{xse z)Tk8KU4Gxw>I%9zs*L#0=_7_d5!_yTbwF;xnX1T>i)>e@ggJ8FCS@*GmcmjB3TcX0 zn79Sz1!K_wnPVUoCaCJr2$U=u>5Bq>uD*$(AbZ55awyD=lx2<*I&Z=j1RE`^Eog4} zqf#sb1j?0hGyqa-P{+tEDx(=w<=QQSqK$Ew&H3a*M{M83{+;I)aqY znX$B8Ga>dY+OG|@l%<4m=!iB+(kWzxX*bH+R9x}{Gx1i|mR+y>JIkCLXOAo5cqDJL zQ_6nWctlCpTyZLienEJ+QN-+CHsOZ?FxCG&kFZ+F{~o4BDWMtE-6I7U{b)gV&Cr^X zqVfk=pFYjmyRi0G785FJr1yfIx@2D2k{W&iVpS?X1RBHRh4H-UZ+}5%R%&2V){WTT zq{f_3Ub=J%(BU<{uL-vOP{(dnm|Q#TdbL$ax?15o*_NYqN6z!0JnolJDanTaaAD$R z5<$?Y`=#~0dmF4Wb8z1Nd(Q<(>GH}sj5OG@K3)@^T|fF4acR12!0`}q zTkrrO8dQMaHAo)jHk&E`MpG(G-R7QAG5}MC?jS)|zJ7Pk1sX)EaqLw$KS?!=)#AB+ zfsu@n%}`w_k5lP*-ZBR(7RbBTY#ZLnOoDqQc~)E2v%J*D;ICfb+eN%&7DbNt?LP=` zO@IB%UGwtR)ABfy_8<0`n;fN3Ejf7ni^Xa64XRCnaL(L(Wp}qSFN!y7uEcu{kX}QZ<*qi9eAN?|hDMi-sTDBR4~_-XTce zp9ZHdbW-%5)l}hmk?(zo!Lt|yF<1ydX=d@^^(%MpAbJ}ze(Ue6F)r@hDD+0{aEO|V zeC^KEf9|!{k2=lrxp^{%r(6X;QKNRY?}o(~Gm`o$Fn`y8p^E6tCB))L_c9sG+cl>r zV{qZcHk>T4bkZK(IHB`)dOaPs$Gx=$^paLn#Z!$b zc$oEdF36lIly_bXtOPu3I8st&1$pP2g%Gs1yB%RH8*yBKJ*reWyh-W2UMbegOowFX zja8E(i)=mMcL!s1T;47w?|c$!I9FL7Q6GuXl4I3C>s^}uV|tY61}f!F;yhGFEXVjSO0TgqleFbF#b0SI5;S|^ zNcpn@bfjp?vhE z^Y`Cp1_w*-lrMa7eu-_znM(K02#@bvGi#qHmdLTwDj4 zsb1djf5A&wy9vOyJX?o`gC7VawAiuM#JQnr3W4pJK0)mE-GH#mwu+pbdGoQgoELk_ z`JgyPXAb{c%TLAP;cpS}0+x_Sm{)c=iTqQDe~ZGM^Yhv~+e?l#^6)e1i@$%e`@bSD zGGpu`WKD@n$h{-6b$@QcO8T)u ziB=d{$y_ADd|HX7Fl5l4Wz=WEF31tP_9*W`jyrGq4s!w`8thj!s;TEMrcKpqcv{X( zpjY^q(~0{rYW0&c@XhBaO`%qENzr8eZr44G2;qhuk+P_3Xhyr7DKFu_!sjdI`n+nd zGdkg)Tc~}5Lm|@^SJiW5(1F=!F>GzA14DW_BYE~&<^!h@1%vUw;&wKHmwi2f5{PA_^V0u*b z7zs*JUQtJaa9^tw)9()Dv>gp2aF_$HxCUDdzxH$uosZz$(lM$IK#UB0xD!dynq zj7O?}C~CIaL2)Y)I=ohP?B0=0H#6$9peW@os`9U%RabSdo-Q1d2EyrRVX_qV7H*b> z3aA1$x<6D84iPXGA^dent2rjY_zwS+34rbgMu_m$_olXMA`?F`S9nA z#6`$$pz(~T6S-4fPCYRG3rfL&>)QmQ5d*21#S}i~ZdBhZD9FrFv4D|t$gell1maO4 zK~7Af(Qtv@3e~cfN_=iLVkH{UpG#4To%cYnHV-p9jpIxU6LIy_R*1HwQ$=GT`;Z1H zcQA1Q3a5QM2NiBlifjO=nZvl)KfPj4`-??_qLe*~@#no$$rSyszRqG$`v(%}m+{#l zgBAG|@uFvkE;(3Z+-)~K(jFZvs8z5DvA?BUpnFf}{u~&t&?&z~RlDtfyhuGmGHL-* zI>j=_pIJu`119ee`p6;(urv-YM<}#vL%9E_b=Aa90=54u&0IRoYI>7>g0T`62p#Te zT-GvMQLTB>UNvIEpdxxbvd@vLsWDTvbmk8uJq!D51<{?CIKP4X#1ZZOkGsvP*%+ZP z;WS$tzPqVv-J`FACdt zj=Dvg7Q-z$I>>;8%9!3U?6cbV;=wqW^9nAU0eh~AAvSLV_6DbvdKe_#P+JU8`c#(I zLLm$9y<=L@-zfFv&dGCY#Uuuhp+nbus$)+Mb&;dr6V3f~@*UD$x`5%Wj87H8=+*(J z$-L>21GFo|+inNP$HLwlsPSbG7&GkQ+9{MaETh4Wtk0H3eFl`o{gkTWo?{8U{$2d*iMeyS>%3(uBi2e!9iiywd+pwD0QA|Ai&yM8XA%VFW!q zQ6IgaNY^XRDzW-NIO2yj#%nZ;Y!l*tBnZkL(YyPqsRnttBw= zGmPpy9a_ox`-Xst^Bs9gimjP8 z+Y|IitKqN9^o$L8g|K_um2)abG8CUg4&@^^^^`u7dR+oQS9{smWB~57JUu*w$N`0fu;XNNOSfQPIabdiU$MgYp^6~R z*$bQp!(np&RozW7-mX>v?y!sebbz?=-S|?_+Q<2|BeTb(Qa$SFaJ&JT@oqk2JFT!1 z?t)L9`IQRC5<2yW+xf&0;vBG8^UT$Z+pfo{rJyo!Y%W%f z9m|=yvP@hP;LWd|4QPD~I_*l>CYV27)OQ~&L)yOJIH!};D8N8_*SA_YF^inF|K&W@ z?;_p}k`qSIWHwqrnpX)o6Nc5}xyiiGt_2mq5h&6pMw&7>zDh-W}w+9!)*tb;?zYaPf ztXXcnSp)}E5iCGeQH)7`i%F$|{UO0F)dZ)*R;S%z*ohVCVw1Wx&&?~*_GsIo9O)L++{O`#=xs1LvNWotonl`0`i$UM&IIk)*(vyKv&&1jL1luIn zj+?cJR!iLtKbgnlkg3jhU3RVT{~0(K0mun=cjf}HgOQlTgSYZ@F_A~XwPzR%_1_U{ zQaLyNf&4+48eZ7`!5BLxzj6AR;v*UinS#sOFOIK2)SVzf|yc;{8$xvhbtf*c4VwD6!|-p zq8|pp(gz!F9{bs*Jq^WevAa<ZQ?~-kQ**>hoF=BCH4v-2|{~ZVP8&~?E#d4HY_k9Iyv5&8ej1b~~EkjgW zUL!?lA#5cSMCIywbaTgJ934!Dyd^-0QB*Nx<+f2UNNs2#DF5~w@dW=NP~8H_5Z0`- z@hL+AA*@JyOYy*WX`fb-q$xXBzK6BR^59m|(9v&gxt6w!~|4Kg~ie#j?iEHzyy zXJ#zjTRBTmudltH#dP(UNw`kW$pz>=|0M8GwNDra3+dE>R@5`_u%Zb)Zs}WKUbef} z0w>#Zk+h zJ#d%#Y^PoA1B*^KrF-RSdrJY<#KB8Obi;cC+Y-$4(c@Igd^CTaSUk0fIM4W=qIAjf z)i)$nb9-@?xZ2RuB}yFL7)%egR}FmsO$UPL_)aC#|q z`G@~WT0K46bXjt76%GaHJLyw|CHPBtu<^SY-I^{ z8!q$j?(QSXL_0`Ol40gRvf;Od-%%oyb4^n~Zj`plUK;h0jSMT$M++`*Gz<}eM znnYCH<|fdCfJDSD^59W{|UeagT6HC}~q!CFUqD zk<<0{?^aLRwMYpb{A~wB0pafPh>!cHtos23y8d?QFl(Jt!$1?AF0v35VGu2#Y^k zOkt%3pjh$38?tSb2h9UgmSva>ir)Q^BxSo+JLOxfqKj@odX7VeqdNomif}h1v2Sf4 zAw6)6{o<&wK>bI4R)bfFx&M5QZTrXoCEXF?&@t?} zh{I#rzvl=hE`2v*8}~fEz|}pWop)qBNXlXYswwjn6!aadTWba{*?-D)StWljE8FTU zvF7v(M|TjrC|wua)_Au_@W}_@|4W!XtQPxxYdvf;nP2|id1R)R$4oy7%{sAD6Cwa~ z9&rnVNW)~Tv5JS{7w9x;aN)G|$uCfpeuOJsZQ@I(qw)tVN#4^+SpAMvyN@nZ@H9fR zCKyiMmg8NpC`4LC(*q|gzV-2DlVx=Qim`NHEDze7M(ZDyU~vYgTNH88N+VW zr15LI!Jk1)i^Q+_k3Z8+M>TKIgI4tr^)lAV9|_~052s>$8Jf||t&w>r=u2^fA0j6; zMxr#Wn-<4f3p?c=7BN*qQiNOm=y^_KXy;G!+l{ z>_c=@vM7l-&{&tpKMwstE}mnvlafa$t67Oi1n>~x$lJ|W8I_Lh-Ul#hdRnh^Y652> zE>#|#uBd^PIhK?mhn>TjvzrNziWn*tTukwv&l9v27>+*tTukwrx9^*iPn~ z^PY?ET)Y?ERjZ#`z3OuJ?x*&T`v#|G_9(Zi#_(jHJ^Yyj+|ZhB%eA*gjxJ|JB+s`^*0>pSeb(>NAevu&H1Ur+#??X#zZ3SI`xbjcAk_(63K)>g|MC zVXP~86E-Ii6rTN{WOd2PX3>tVirh=$TRNe>_jS;d0`h4r_XM=`dqAmmi^*+rboJK7 zN4n)+=01#eKJ+nuv&xMM*#*|_!SZVEBA8^r+alqLep6?b>xu!Lx$Kb=0 zOf>_8cQ}N4uEyS^d1KrdV80;V-(#@dNokY8lj6m2?LWKvZqxjfBn72ogO;Utn_pRoc$-}m89f9-X)a&Flsv;= zC=J!u#D|eqTW3ke%5UsU*WWiHys+dVE47A>ymvwKq}v*78#O2cxW&K~d}xYf)eWso z9iM~S7M~=s5L)5x6ltDdDG_gpL4PUutZ$rDt7x}N7^T<_nk}^(W#Qt>h51P0^o{ka z(P^ifD8wqkCr|RNG7%TlVD0xSF*_>t1+rhT2OvOGUQqOrS-(EG6s}a6YpOT38VYeP zg5@0twK-)BG_*|s7+*psdFSj{*u3Naw<= zq#v6-5eIdj@0!&j9LrD42peJH%+*0Gtpc;zZCYp6I$cCRR!q3P%meaSZUO=oGd9wf zwgQ=wwf$^U`iQEt`Zes#DZ=qb%4Mf6SqhNlV@02U0yDZ!xbcyd4?dJY*w#qPQ&eU^ z$%dpyo>XQYtfyn$>@fGrK!EcTEjLqt-~KY45>q1T)bMNWI$>aE(P^&t`q$J*mjzR) zOGq-bneo0uD*=RI2MBY+b70-q^Ap7imNXbRc`&XP;^@@euS{=^Y=_6WvF|oEZ463^ z@E2mh{HN5IXbW>&6Iz&7VM6r5a}9%{SP`h($qWzZs%5+4F?S2S6`J@#w?d^4=s?2- zwEwHLW1<+6D0(s(6h)%PIVebFDe4KBy`@HMwj5V=+i`kT3?T+WpUW?F6((IIh-cD~ zZLaM%Z~1Ys!sWD7r#_-~+`5E^mY@y_8$ow~n!M4!|HUc*FAvvw%1tv=qwIGcYS-v} z`OS{P^qt%7h{<)LAZlt9*a)}{-DZ>*VZO$9;`j1X(zAqowY0GNNk6x61V^%bwqR0Y zEdpJ4npjPg&2|r2V_;?)K^`yxzNg5nADr9n5YE~=8vY%L({Sogwd?-pa8@sXkP=#DFGR@z$Tn^ z8;Q&AISrobKpo@LFAQeomK|uX4quGTg3p2gsk>kRx!Q;Y|$yjw=Z(yB~>_GMW=Xuv=qX^rKul{@;l(HMQv; z#LB4DyYcoRqcv)`5#kr9z4ru#Z~yXOV()#<_|0gfD47JN1fuh8uBrsR8=A@z-aZbZ z(JA+;C?elxyR74YgmHe03Xb#=oEbCih7GWpWS@WI*Uf(%!gu#?F)B%SGY2*Tu8-`P z^c6{8xsOE6R9!ss)!lKLQgpxFFR`v(*XsvI2Wi{*_)T%&I2?n5i=oqpoFxC9x>2Aa zU{^k;gQF$oWnSX@E;4TApYua5Us~j4_WKiiE8OEpqsl2+6y5W%Iic(EDZJ7^!hvEd za_>>LN&I~O^;nq74$m;_nZiB{kcYEG3mWg0F_pX3K8u;a{CFf}e-GF+!EGN|*+e6$ z6Od9G3mw?K0KSI$+O9gjwpNV9#+})-VVI6T4YLUiWs#UW3SEtwZ)ygWf}JOPdhig_ z3K});aspGARfy3_;05-{As2z@%RcH-`jaJFnp7e}pWV+~sLWo;J4kT=uy-Q~G<6QL zeD^2(Hnf013*APL)$^s&u%g)ME@pdgpiP9$he!F+ptb;eq2s(&4D42+=j1y}m8$tI z;(ddrR#(hC$G5}VMWzlogy|{W{UR9yGcqW2ruH)4DW@HGOW;4a-s3pfCY{UO$4axy z9!3;JXH*)7Lx;Z#H*_Nhtb@0-X4%Z5CAKhAU6a2)5AC_+N%>)~rgcvg-CUvE!eZGV zo{guW693B=(gaZ~)0(eU?e%foZtphY%m!6Qoa+tk@yu@@4SP*Fo&mV$a#Id(?X^Xx zl5K$jCuAN+7?AMVf zTI|^+iOXp`?=EtK=|VH4$_d|U!);C$jV}p-X~+@HogO`Ab-oSD?>8)p)rWztJZqMu z_fExYTiC(Q1;jm8jwHQHan}wfP;=37PRVa^+J{7B1V9KxEpYm9k->vyn__?NHstb6 z%{%e_ep^?OUMqM5&|WHR$)d?IZ;HQytF}=$4F$}WMb@cWOFv{jU*hXUrw?<0)sbzD z!0Q+`jD_w#?rZ+wjTac-Jc=$7MhSAPfXc}oBjuZUSWzO5fmAO2&ly6 zH!?bte85WdrYcuG-JmE2;5{Z}`mR^PK+m~Ql56q?06*#DT&8k7!6sA}#96-qkIbk zHx_svrn?y=qIw32!8pS0y7M1o+@`JT)!i$Vcj0@o=M-<^WlH?c4-_AUNMM$Sj^Aai zj6TVL6GHZM0xP?#%dCNK)*47`P#ZccMLbESAr5w^#C(atTe>>Yy|8pE=Sz7)r?~MK zAItItZQIij8q6vh3X)E)0F2Tfn^whh+tER^f}lz(Fl#Mv^v$yi@8e>@x=oQ_E}rYy zJQmz7jMacr=D1}t7}+}RfU3pCJofTSrX>zQMD+^(e1s+XW{Og^KB#qyee$yei6QZj z!xB-j%Vn93_~U}yuLgyu`HF)bqL$}YSwc4PWNlJuhY_$C2Ld<(+bE_h^`ZHMa^X%O zk@fSi?~loK{WXKq|dj$wE~->>Diwmm4^pY`)K`hI+o^CV|GFWhmo4kQ7}sEL#zOX&f?6#BJ5wFHDG8C)zNr= z1mpMYzfVzhGteR=ht(=mqwU{3lSLm|4+v31+_`NQl4he-!J{_bRtC=xaydmz!%KL| zN$Z&gD9wVV%-6|S?_D^iMBU7Z`suWQUay8?C2eZBY4N!81LtSO^~->oX7p<_rej1Z z{M0H(gH931+>>lbj8U~4d(tA?Le;776W;_^%XBGTlOxV-<&&}f@teL>2^X#GiUmQ2 z5Jn^wk)^`B5nbFk@}0;JNMceGI+Mnd36YPAxhG~cLFlO=e?Wzg8I|SAR=PCcPdZ=a zYp2{T>R7n9`+)*sXJ9_I0@B_Q&G(75qdA^eSBcL#R|jjQ*DBFwwC#M2bcOYTjcwfh zMO(+tbgYxw&uQ@IJ}a^|aNzxiqhAzhr8Vtuv#w?sdK6&zAHIrWJ08rY z4l0{RFuYIdpVA) z_ljTG*(#D|6**2&r9RC8iBGN}!+al)!&B=Amv}SH*4Pr}wtF?~9R)=W){wY_Fy;4q zRb`IW9bw&15iT4_rHqwnU7Y>R1S5Qt0{4kg$pX)2jFbrzKADvDRI4*-iDay#AwJ^c z2s`!>2gkFhN)^Nm`_`oIn!!-rNzc{}8q&ehdz9szPdBdcJ?M@A#`R}C2WBIxPw}A8 zdi@R}(qawF&i4tjc-l#M@qadvH81%$-44n7QhyeV4{>Vk(#u^f{ph?u*GdSbvyQKf zkeJ(`5^eLI?B3j0zC^auDqLLIuq4h3W`ir7?F{|z1O0<<;K2f~C-k9BK~!XUo~kbH zl#_CL(cKGI|3ojqvy9J<%L40%G1-$g+v_a#`~dROdH0+@4syw{%7`(%n&O-f`aAB0 z{j~4&%`v|ha5v0?qWz-BvOVO^dLBaG)3R07J56x@;n<7-sW2z^9|z9aHA8_eZ3++)bf;0x9Wa$GQDboDw?R>w7jUW*q%e`>yQ9*D~|Bq48Mp9OMG*M5uEs6km$mJ8nufLf=@1tiDE;CDCA__Sj z1vf{+_2?dONe{CY-(R?m`6-31=aDvWdjx+xVA7rJ&UlYKE!q@3Bq1M&-khea9cY(-!f zoJ;xQ54Z)B5Yo21z?~ebTF!B4Xd7EpG;Bd(DzYPBp1A^OarI`2(r}N#)hq*(Ec)e1 z@MQa4tGN3phP5~D@uxL!TWf(cIrM)+oRox=MD|_oAb3}lTRboFU$fzP8 z+8#en6|O=^5H0I|Ra;g$jKJeGz-jVK8<{wyD$p@K?!!B#s6a5f3%*kyz=F_mpz2mw zWjg|xR9VC54UUV=-sSICj0_J`fjY<1EbTC-Ea_W3^`k~Xb$5K%b4rhP$V3+eNz?P&9_&9)rh4JgZ$@0Ht*hxM&BkvD8|*6gOAmN6eTUA&Xmd?P^tk!kRJi z^~PQ)Z=<`|j#KY2R(PvQpxKMme0V^1Jc4PUWrNL!3*O$6-WPIx=v{8o|G5t(jrA@< z%jq~4F7@((1$Az!wG?uh=vJ@l)*xLsJW1WGT54 znAYzTgg?^|Ktw{MJLZ0{3N$q>XMh9TyS#d+@1*!jmu$FyX&Ue7Hn&~;TBQ;7Q&Zej z4?;H&%h;Y>WqKwJUiq3I`_-k#`*WVWrd+-oP!(=At8vWMpLC%>xk zFOxd&cL2~lXe`~3_5oSwM{iKf>~J=*mmT|V(`zHN_f~S1oKy5dPWX2;(`Og}f;n^# zY%{CO66gT7Gbls;Z_CF3IVebNzA@Oy*U3)x6r?$VQHsp~No6lxk1v7kSbjd2}v)DQ`NN+mj@W#}^^= z>7LF}IsXM3x39Sk*ysa2`wnt|xN5BQh9>4m^LM3sB9J|D$_EyLCv=~=b~u^lcQs3M zQyN5uDMG>t!Lfh>z5M-&vgsyTp+Vmk*1GEZoah2gDlU~HD=jnsfyw8zv>TY*?wKs@ zg?~rQTx2jQ-=pf%2D}G^E>hw53H9z(gE^vSxM;med#1+1WDCD}62k=`c)*s*ea6JS zKm;?JCY$AKSeXkPu^(BvA)rOz?hzjvaS3CFHX6Rb`-#ycV04QU0nPY6;ttwRla@kO zn~dXx(`D;l>-W?yEvk)O(M8t2v!KOQP*NN_ltiE;;{4i~H|O=Y%$Ub7!YpLzb(S_C zS5f+hURA87O@SuWHEJ1v)?Jh0GP3mQvq<;f4Q6Zdyfd|B$)au3qZYEUG@%jxI{W=N z(r47@g4u~iIaU^SiQ8u|OqEdZ_xFT37-BB}zw;Pp9!L`#T)k^ZX>_A`2dd+GLEV3N zyq>loAgFaRZ3mH#&#;0nh*i(cp0R;5*@FqQL|JEh*|lp4(tFJTIqk;A7@tSJd3jzO z;Do`Dy=NO?ve^B?hTIoA$MPsU$y$ypLRelb+kqtvCi!K9iMUPthB8DlU(x0-Z1kg{ zNSQDm6qN>MLd-r=I`KP*rB69jiEC5&zVlgcD-0}(LB{5I$M<5aSe5lvyRhi;`$tC# zJlUbprLft8gX{Ewh&Pn*kyZC|TDL-9Zb`TCP61a8@|H`@Bc#0j5XklyGsN1Z0T+ZaSjT6;5-JerL5Tvvz|P;gI*gh zAEY>$<896`plX9^WT06bwrWnX&tkFKGb*QyVv%ZrB&ykf94HVjnfS!^3qnx#f>NYg zq+ll0)V;?xbu496^cjC&sc!;X?h{7j*Pf~iN#oiag;t+vg*8F6~C`3n!pxL;zkmUTLc)7cpsuG)7Vxihx0Wf0Xc z0}wZwdi14bAh7+K#4uijQa#cm1aew2L`L7Po zim>Esi?yodpL_UXe7y_?9@k4*s;OOO>scW)7L5w{ro-9XY9r-vp3s+p2bQ;>h%D6P z^u7B4n^!es(J;T7Aj*_HsWGOQl>0>>SOdM*(E$jdts|#^m6xGE6R7It3kvzS?X1+k zpU8)R?t9HVEV&W`C)90JxCI{SSWYg9Ya3>{XZUeBF7+aq{jg60VrePC!H-@kp>9E* zN$07>QuQdlB9M(q`_qpp)7!tOE|^j0h=acXj2xkwItqzM_Kp^<{N2Cb-K8}y$$1|l zL+IlL?h)EiIqq-g<<6_3l5$k;p-g+jFkg~OPm$!FKC3$d)%Tohdk_@;Hp-nq6q){o zc^U1$8^x#9@K;-S!fR&t5zoN2RgD%rJ-~hBL8(`Y84cFXO$LjqLtLElAek(+H!>*! z%JoDz(|a>}A@`hr(cF)~UAfaZN034v-nWHeVp(lx`Ns_!GItj0p<%8@{6S^b-<}*i zr{65Gz(hfJ$=>d|h}Fk1o~F`be}!}ewz&Rm5w%-f4pBy(O**=e+sOecS~G}}a2=ik zq}h?-soOObe|WX)Fvu%FOz4UN+^^dp(KdK_O#~^uaJvg-T5^HL(PAcLfv@Dp zQS8?(;%b+GA*gF6S$54`7Md+$J#Rhisi}_JR=Lb*kR;N^3HFpz0?w78JZYv1BWoYs zv}?U946eYt&st)_5D`OB={#))UsRyPj%zJ$wVe-gPM}vIJH=i(Te~GG#U@q&LxEnM z^lvNihQvS)_P-FM21zvf%-uGnXR&stVS?8za)Gx44c8k^8hksAg}fa!M;^;)Zt#ns z623l!VI~8G4BAgyFCOGN;h2r&h~D+mPRH32fc-I^*2$Rd5|4SCY=*j@ym&x_)4m2$ z4OpcjXB)3%|5=cq0nI$t3|?y9klw-7F|zw=|mvcIFEJ0vLg9UoNz| z~ z+U}PkwjTO_43meF=d*H`s!>OI5i|bAd!4uA!n)Z{BD3t?#L9V`HXko%ECc;rO9e!$ zn;rMmuf;Mjl!|84Hs;_9$nmrdkISbNzJZ$!Vg7NSh&}mLSLj^+OjRGR7kR=kz+d@+ zGO-;jG}sooybo5eq~CpOf5&^DnGboTaPZO|Acof{`m;ywqGEg0 zOe=rd0lxa=%5^cvcF);4@*X=RtfgG?QBFy~XdU!J{CAVSyU?<>M885nv=SJqB0qa{ z`nwR)wIt!6Gc(=9E~S7JG;DTv9Z;_6C*svo3G!mbu8+vmFT*YV_PHbpomG7vr83fD zU)ttYZ7>xzN)r77fMe2*AtB#s)+EvhG%I*Jdp57Iq&_E=h1~~(TBm6^YZ^Mu!U|BY z?uPL%Y{#XiOUm=!O2TeGafB;oT^jXTLj{&!e-$3FHkG;ubNVU>W^@+P#MMA}SW>)b z>J9KZj5JO{UJA2@Y#HuKJIFiofN*r%<)r&6JFf`sZfh*w0eP|PC*=~z$P4tEXkpta zNRUo$J5>=~!I3-vT8;dF?;-+qo`JnB%U8Kt=HMOW?+mM@$On$xjToDFfbkNRF9^_q zy2qJ+Uky1%z+s9BR?+A#KhljFN5svVZRr%Zp?XkwCp+u=(yQ~OXA;nhbi_u@!IaUa ziDiq4Y?nYf0v?v1`_buZYJy}$iDh&1nI*ZN_Z8^h2uP5>&tRw}gqlP%O~eGOxcO?J z9|gltbk+tXXCF4L=f_w$RV|7jAGoH`2Hb2m9U02>Zx>cagwgOf-m2w@JJL^4)_ ziPw~ZIV~ScR&|LHR5}BjT)=!LF%N_VXOud>zR zS#vD6o;V`~NdChq+9dPdvy#QJjQ``BKT{skqDAtVo|&YS4436s*V_8LFEkZ_@KDf{ z^PVBwzfkYqoW~0neNSHdbIFqKYjaud(>gVDHcDmWIZ<%JSojYH{BPSRXoh>i)wsyq z0C-6bRcJ+qX1lpXFinV}wG1DkH4q%U1=fxJmCqL)VU>xf0#EUmrPeVwq8j!;rTnO; z0gNzPcex-lN?>LWBD~(gOL|Xh0$t+oa9py=0NQVTJis@#hlDTIK~yB`wCLVlRDtCa zJB|IpWY$9`8X3LnwLm{HEBLC%7kE1FM0yvgFiyaqwq}Ucr#$XcUhSbBBuK2%=L>C4{@8N=!G%PGYpW*8_JH3rV9ekw65A)8M5< z034aFk1W;_%&Lh(bBr2;p-#D_7HSkY$THNFW^_=#0cu>rSRG$ z!IX;!N1rwS+`_xrfaX}dk&@l90GV2W`KA%8{rN06SUjaVYjylx)x_zDHJXoOO;&sX zm6E^uV(HzEcva+y<5Vn*&<)H%f!Xs1fTYz<=aG0XqwGf3BR`!k-d;~O&h~?`dSZ~K zZE;R1nvvCQ95W4Ux1Z$hGtjZbE^|n{H0X&ZD>`p*F|H>=+c?az3!W%0++N#w5MNL3 zUneMvDT&k-KFkz%-M>#7j6hUt>N6oD4kDd|#bZ`fA>j_?HkzLG>)xNzX>sP70Im@l zA>a<|F0r#<{KYIVo4Lgr7u;$#OPdfjSA5JYVv~aCV>N0^+=A!1hm48n>L_D;I=|1s z#d#w;Ex0RCVWk-zCDbUFj(0+Cs?AY!V*h{u@x9gE5xL%!(UK&4$EjA>P*Ul%6O1VP zI6bBrb2-DH5{%sdL66|BjI5zY0v5&8_9r!9g39)qD!&>|oi!I9D)=#>Ly%O+<5{~2 zvz3xeL^JwF0HPCi#bN#$dc+$>X@Lsn*@rD_v(IG)N>(mQdZC|qRk_80A9@^2@BDY^ znN0F@HVOx`Yae~apOHLZ8<*<+hIhjN&=!(>eBU%l^e+L0TGXqBwx_t3e-Rqy7WfV3LT zxSmf71NEyBGMO;>3ua|60a&lvQ*#aXX@#pMX9W&Y)3bIh4TqLEPGT)w$$ESS-NKE) zWF@me1Q^mYApJ$ydZ|4y&g^DRSW z8dSK#CDly>AxaN;K|YOuTt%L@sr4G#t~_MijQVfYN0y|~a}*$&1A=N4{&Zi~SgOU# z#@CrVuEObPigg{}U_D%D=xn$Vhc+d1f7_VjKV%!SYn2(o30!uKIL7Mncw`><##PSn zJDZu^>zi!^gxEft;pRXdrA~bNrxkpGPNh8YLOG|n;+%_yBlk>u6D`ie4+@^+?Qe*G z_(^wH9)y01(+86}0a8G;?0WS}VRn}IF=uzefN)HaLXImf<-c)!9ZWU`Q)BCJ0RzYbcz9~4UY4sxtZ|G;bINul8>>|U~7SSRF~j^ zlN!>}=aGD)xzp*;Qv4Z*oV=(PmBAkkEe=kkS-#~R0Mu*?X1*laW|gooBy5!e=Y7Eo z@R_{^&hPiG#)TqNg#2|Cp58EXZ`ZSM@fhe|T;#hICV_uQL57=+wJP+N>oo&)gQDD` z+lIqc0%jYS!nRBixHUo+jE@|gcuN@YA;3YuAgd?e$2&i1W>sPu@8YFbt6w>RD4Qb{ z;|IFDE@H5W$@!%woUX<356h?pn?ZPdWuH6AW%i+q}kPwS@>X<_O>NCl2et&2=! z_(Bt75+p878O_?3oWqy`&19iFg`;@91o=dE0c+CGue`=9eB-AFuPV2;oehYeuK3st zgK?N5k%2(-EF?wvT&PmN9Dn|P3;-IQin>Wj;6=%)LH?FR~d>sRXC@O25P1P9eLiW{likE=82|1$z3Fu$MR{0e~k9N^ok%-l#)Ql3>8vx)qKs}0OHDww& zn%6(hn1E4>?T^1%0LGRNsFNjVQi8XYRxgCQhE_~)g*VC2mqOF`LapWSsHcT3nva(~ z;~Pi3eN*6{G>YUs%w=ub0sL$e^aN)K{Z_Wg5y_yC7|SBNkMbtZNvSH=%qnNA7J4h0 z_9FU?wlg~ykVJGk*G6*nLqkj^KJRhjPh0mOi5D>U_uTI5@(yG!@L%3gnLnF&ZSgP5 z)4P!;e+XO(w(PXC2{aG3E<#F(#61DS9eBcfmuN`>c;D`JH$l%jM8I!d4-nMP@+_Ep zI}7Ml-vv3?%f`J}V2_l=vfG$lerO8w)Y~S~H6||7ND5+GOtb5evf+6ZJqA!UduO14 z7M8Uvi{obI6%C>xtW(xrqtFs}yF_2J z>yWr~n{SpV-Pyb&kdr)Kn~X2B2PL5$-N2CN5l`7Xwb;Y`V-H)QIYb>bJdXVB=5j0X z`cZ>}MkN6$r@A$hDtFTE<~M)30!`nO&C%pxJ|HEfAr*Q}y8w31l#hN-?7-KQ%x;xL z72}VOeJfIgX#DNN{kRbvNvlnsMM!AED`jn!r_GVtB%}w<#z{;~&IuycL6|BSr-z>L z=QfCvVDwvd-_F^p6N4*LGVj$rs!wmGYoi0t+d6;hT~NKCwyyaYTZ@oJhjH}FRnDb4 z*BECzBh{B)^#NA5l&QLLa<+`65DiJBIZidSi|HEaYM+6o9tMV4V!c)hph$c4Ciehv z(mWMbA(av!os^vZQBiWk>=6vP;~MboYyn;`BM2LLT8urUg13mpZ$T`jQ-ij{LKnrh z-S~TsT*hdXA~zbr5~aiK{qjV8i_FTY`=MAKPUJs$QvletY*26Z{9`QRYTu!=D~;)2 zr>umG^q)g|){e0MEUFa;ifRe*rwAdVBsGoChGJ4KLg~6cLlD@Slhm<5Cl0iGL#r#V zl}g&dL{J~tV)j}CUE`dPSQ=q8n?Xa6f7RX4hoY)W$-Ig>_0qYsZb=-c^Q7MIL@COF zgTV$sN&zXw##(>55+`@Yc*vljTZ1cvXdRQ6>1|Du$CTdu0)$seXeWv!+=u?e74a8^ zl6Xf}+QY|2oY61un9W+w?LVVP#`~Qyvz|#d8t~w78MrRW36ObKJ_T2N)%%=Hu=b=Y z5T8cbR3sG=E7yhxY0#GBg%lQ&`4?ARiU>OzL;(EB4LT0=fAd24V#QuvB`IBDcJ=oM zm={X=OEpqb_S~Vl7dQf=Ds~jwQx%5VA4Fg5rhxa%u9nH3wVU_aFFj6E8kqano$ocE z)hwSXXWa-4$xLdWgN8(#XEdkQnSoSBJ!aPRcHPRL!l*5PiM63H=XvX@=zn?Q$GmwJ zegXoz|HOxT;EWG1<^sWYw&F&piBB5!3vf^w*}nCu4n^Teojn_uD4oKa+SJ|*Xevt{sy-cIQL%5hJ+QDigA6xxB`rKo-la&hG}#;RWHXdpjt|MZq5j5r|^o0 zG_)`_2|PLehT5oRfIi=tZINeS>-6O7I+6U>lXpHOK-tmRb1b=s_ob4ZmuQ+R61dnvxWG;337*>Ei++VVRo%@sNO>!_FeA&j75Wbf_D{Ksw-qtH{4 zZx@%b{NVoV6KfGa62$sY1_HEca}D72hgY_gFmmf1EAgy7lM!{ajLQAaWMcAi=h>0> zsl~dhZFDSQY8lDt<;CQ20V$Y;+rn_iE|t_enIdFO^#0?+{ULTvnw&g3-`iap_11^< zdDvQ)pB@OB)t|vm11#J~Ge074M2PjUwhZp%7}J_Z%Ic-;kiaOlBI$Z2%Mp-|zkA9k zg&z!7>|v${nXTq7ZF<{R>Ywr@3wOBarw64R9Z2sS|MOt*u>Lfl?W))f&D+j#m9rd& zQiF4EY(|N*di>>JSe(cGy8+m1`IrwZ^mmcf5Pd1{hRon|V6)vBWE#!I4*j6I z4ON;s@N|W1wQ_!6iQ7F*!HU+! zrtK`zm3sDDkwFj3^2i$TWP3?bp(6#AI@xV<>pOP8Oa21T&p`iRLZ$r^N07^xeOUj? zR{`HYiw9-n)3xB3NRSRuD$%6URa zL=6Xp^;w;cFr-u;4sIB;ATK$NT@0Ild&x?)=A?8@VV+LhG>XN3-uN>?=|*wxR>krW z&GF1Wif?C^C~>IdUPiZs@&?|7tOYWW(sSkDx&gWJP7wl8(iK=xt0p|Kfvn^x{Qi!u zcOW=tEIC45_&hwBt-SW6z7bF4tcolQ@nTRL?H2E{%nYoG#qg^O0SRwF=W!PBWGssX z3D2?3#7$0QShi#}Mr=^k7~ev9@3I`}bhlIxut?60qr8FO6WDRhaL`b+L5dbWW=|7Y z27myKKxqH&sH=TwzG4#*6Le(`VoE(~icJwnGZy+rM<^XQn;kd`ieISmbQv1m(gqon z>Bj-H6AMVNk7P+Kd2&7*i|Rx`*fJP%$NS?@CL7sU;=oC)r1Tb%rcG$}k;dcX>4Duj zE;IqQnkd|12lHCw#7U9V8%-P4)FIPxsQ{2c?M7&Aw*t~^DL3cT@6cmh^IyFQm^F|M zT)wavfA6l_PG7t~a;SR!SlR>$etc88lJx6t2@qe+?_0ip-aURih)zia`#$Y9uCM-m zm$>)&@qJAJrOs#}d^9;YV@%I#Kk3fGd}}#6V<^lyZ8bRo)R#UthA=n3mNT|6#{gqX zT8#=&bvLVhnd408(6|ZvJPGpw`apDF>yMu?k#}k%?Y|o2QZ9m@I6^$+r8c1^aCu!w zFuUkPlo?IBc-^~>+}sIcEnI&f9B`-Cb@08b!e(x2Y_{L_!@8CZMnG*leeWL>0f5Jk zxVfJP6&nbzm#rOAHL4GBxH-hKS3um@+*z2UOn8cOaKxA6=jl|}BS3&q3gO%JxyX*a z%|5O#7r^_=RKD}74dDGU#KeG+%ax60VxQON`^-=L`96oRI)1EyNdG!d1;~35epInQ zSE*8|8E$q0W`EE=yb02n8=HEU_nK--h5kGBOBI6AJfsqu^Wg(K^{Cb^E-hM5#&znv zKJ{~r@hooav(8%|Ul4ze?jh?8@iwoQdyhXiFWp`sH~i8?U>DHtd2t6l^?iS{RB$## zVL7FES<`R7Mvu%w1-6@z1P}qDupp5lr>o5{5o$Di=Fe^nSz78G(;q5=FfG&M`Gp80-$>yL!P0PL&+)C zlduRo;(Jk0sT+*wR(bb9(zxY!=lDnZ)Rsyc1%{@67my=23O0KjvpvgjH0m*2%aGoB z$=&l%n7M6GgKQ9LEyaHqtgy}f%v)ue11t=uBRdY=17z^a_bKw%3B~WjC;|Rzg>#q` zR5VVmaFOVNC-5?*fCfDSceU_&%x)Kal*hnSPT&lGm;qK{6@Dh+dli%F$Q3F2=yu3o zwf;AKK3?t~$Gsk`)Lt2JYQqV%Ouj8wC-u0NeRgD;1t!Z>i{>dqVyx3mlWm93_zbEJ zwi}Ksd<@Aj#AgX0B3do}DO3gi5{3@q0rVFKYz^w&{Ot}yfTam`m%%vlXl36OwwUC8 zG<$Rxu>!FN7@opA3h>`6bGIUr-CToHYX>XvdI6GXA~)!5C?U#|m;KZg-G>f^O4>Cv zzGeF9Ep_bn*!%J#O%IUdVIYu6Z9E~mXsVd^s_6f2y6DN>sLu`>o8aUuW6gq_;4Ui3##}=;Wk2R5T0< zbfh$XXfubka#Q?t)Rt>X(C(_)YQg#a^o5ZiZA{z6{q%60F%H%>&rP8(Dd;>(O!q1C z^Krir7Yi0G4B{b5*m&dB6C^+bEb=5k)n=48f?(_borO?-ht-q0lCY=&d7)^qpk=xQ zvJl8rC&>!%i>D9i#cEC6u; zk(rSu~W` zLD+SDw?RbF-g zuPomK{7KXFVdE1wnYfphUh1CpHJsvR2}X9PWQcRwl4vK9m@$4^hNpWhGkCsb54~n;Ri)k%QY<@9*{sR-~4p7P|Nu=SX%0mfn zHRfb--pR*2A4IPSSSd4%?20d&Xhmn78I{^=Lvb?Am({N?pVtGT0F6GETCMVSzRfl8 z4x!gebZUz%bZQODp24;%wT%;EZ7t|>_ONXLRp&}z zcZ-hwL7S^aRf5AE{KucWA0MCg+uLxA52roGzLVc5wHWP|ZH*4x;n&^WXIiURv&v5D zAopIWFbV(n=AK0 zTAX829 zby(MlbX2OI{r;t1;%<{ zD{@%vkU;hL{20~v9o2o087EJv3$RvcxXlr$=0Y%fd}7AG9tou&Ddwr#rpxEx9Aejc z;G1_4wyHrdoxqVOw8o!%XekQHUGxEkTxD}!Qp1>R+|Eu%Z0b6!xl1RRD8p}oB z@wvUKdnCbP_1Q?k4K^qt`Fz!DLHq-|8~?<@-77bH6wqz+FJ4a}qd!x*0Qf=Mx{{%<(xdM=qn-@$#P;x-Q541KJXz z)9Y=iT;rR_<_7dh0M5pjW35r4UD4c_W7apDLIcwr>TrU2HZliZ(S=D1YKl89N$BiZ zW^%@&GPY|-79M5_WC%~Ja};b$Q_3X6h6HvBky)nAA)~SSO>ev~843&k3}!QpH)Mg?KaIQ(WR_O|v27hhh0%{U`~q|erO1P2X&f9tEVB*H&!om6Wc|V0`lJcxKPc>X>OyVg! zOUx*KSLG52{=8k|nqVDSBNWv8gkMRUNda@ zSt+BXhIp5=936dosFb_BtaRx{?ncv=IWPUNx>m?zH0WzEr`)5a+$e%BO*MxikMOY- zKUcPHoOqL;Utb;O(tDt3NCSEe1TNCHvfS8jnC<5T6K=~DD7K3?Kor4r(vZX zSEE(e9f7ek6Ne{t=8AoPd%WL2JRglbIT$$1rwVl9!VF4I$Nbv;)$NHeTC`0Baxl!= z-ZF5cctX_HTQ(|fN~o|#loe`J)MeT4Wnl8Dy7>tyTXNm2-1Ag*2hJh4?p|jND+vJ% ze}gK^p|DG^dKASOO%qd8b&O*YCv{6M9Q$x6ZR1KVKjYRev22HY^n@V1HthmJZRXe9 zU|p=JOS-^$iuOX(>A0~!PPAyfI4C8@;&*xp-Pf9QDHdHa7WPtJ^iw11&{NVK5}d2W znv7GLt0W}R7Yr}v@48?t23joCJ5~WwE+!?v>DfifMd(|etJx0yFn#r9mQ4e?0|k5^ z_me%OM5eRsp=d^Zoo|NBN~W08jeS)^X+5#2GiW>)+-qnlOb!eKjACVf2R+{f1y>?u z&8LatuR@;OkJk-kmK*BaTVd3zzbj4PHp6)7@7bp}-T+fy!cfN}RVHS^Xs!YxRj8}M ztL358{ta{lN&>0d`u$ew{ThZF!ul%axV%*)Ya5~F-H{cEm_5uLJbGX1N);aHFq#$n zBUMaehhasHx)Jg?8U+fFUlb}MIx7B$rx5xV#Nc#ImCm&pfvs~N@VEcavcI2LoeSO0 z4_Y+i5cI5|oo&X?8*5`Z_W}6CfXVW~!eJbpe^0B;J6Kbc%Ay%gCh;!sHt$-O2V^wM zP}ctJ+bBJ}CiBqc4vZ+M^k;_eMV2@z^Ofdl_%)IS4Op+aN(w;N?5#{Un9XJ+U449d?BBl|8-Ax#V=f*mruAE}SakOQFz$U)2 zT__e(%#sVpyMd5OV7YEk&#d6S8W;=$>RbTo?6d2q>rm8un4^7>`xrwHOD5-I=2)7f zT&%hMAc)CB|Rspv4d>=vEpwBYaw8`2o zhbQG=voxz%j^v!WWOn~wU+);*S@5il#+f7&+qP{d6Wg|J=NH?yZQHhOO)#;Y-2BgZ z*SYK5^{)G2qjq&ySAW=hcXd}kPbomxD*4zZS?~U#hOX8w$cW~$Hdu!LD$iJ{jCrH1 z$$M*gj$-%NXW6u+8@F z>kaS+8dS;R{smFI;UV?YlszeyPq^NEAkCw>y5%{)CL`Wq4y6RTYsWsB5_R~=XOoS# z$!(%1qz4Af=7R?c*w3W?Qa-_teCbI6jk&jdiQ zadofrH<=Omc`^I;lejsyQ}_I}awH0K4Gf7?4o+5Ev{P-`!6ias&&h20j+*de?Y`wh zrU*7gX-%@G)+FAX=cZW@_e+uE@g69r25)F=|K>)z`RsHTU*_`+q5{nQXme_6>~PpE z)aamAU!{lqqn_ym_$I7QF10+VR6TV;i2G;4tJyPz%zafc~3e?2631>vK%VmGp zp6IGamDm>KM*NB|LZnId`kHqP)&V0l5qKxr5d8S2=W&H;yF?QY(am+bh)#vV7Qf^m znV`pv&Z!EDt0LOOM`O9%5%`s0eoJ?XFEqJOFvs-PmAU;rOi(r!OB{>Ag}Zf#k7LNx zmnm$)OWrIwW$Yz{p>s|;V!+3fur5<}kC+a%5?aD8qk;v*ZXZwH2t$xo8?aBE{Y;vm zV_)KA8w-6lbG*k~TcZ=3NlG9OY~%epFT{Y0_+8($4n^`Iy8*a5=k!6y92})7o#eMX zSU%bH{_l(jyL+SeaXS4X=ssJ%?L|AWUfxf(hfYp|KD9)bx*ygwRKU*$dI_L}&bXw( z)>(l~W>D@!5=vm%jjT1{L0|52$i3jg;X>5qwyzK54)>a6yFO!2LL>%zeaa8gsAx7U zf|kyp`u_YVM|wewej5lMdO_u1e(*xG<#0FqETAWQD3#{BTlGGfeK0i5#s@$V@*T7k z;WB~69K$Qaq#ut0pn#N1KmWYAR+A}bojL{4%x(;Z0s!$uaIla4%ixvpzP2rG z!lqiN+P0?B1zmnF3-q=s2Fx`}k?xr$(&HkW9Ic>B+emzKXj|FD04=P-@m=4Qb-c7j zpzQ5ncTjU0nXNb%P$HHU_!!+a4;kF<5?6IB&4}_*1ns)hmwpNl7;a}J)cgW!$36)d zIJw1|i59InMSzg;Z|iE1-_Wo3AF%n%w75~=sye^FMm+t?z@iQ5g^}klAcYwU+sCh= z>cYY^t%?HQMkBJU?CT4&B&e8M(YWj?eS4{5yYdRkGtrJ<^f@9hqJaCb`O#TeH;?L; zQGSLMqe?SbvDgW}YC~Vf<}zY5ku9%Be4vAU#5%;)g#gT%U86SgYHkjY%5Jn-NBwiS z^j^;hvKIqbH~NH0^67COU7`ZRw&oNN!njBFp>ROzW{=LP*z}7k?K96Vzw@?qxpP_w zwtZg7rk)3dS);9fJDrgg5QBt@$H)wCVt@e?x)>ybY2tFPW)AxzwroT(CQ}?UpFgA% z0jCYXMgxjN)d?>6*U&O13w^@3z;-*neTC2ba&Y^&ph(nVM7ECA@qgQD$DkHTo=a@e5!%|Ietcg zk@$h00sZmxXaUPQU`e@E0Ar=VnuDLf4JXi?I|nefgo?Q7$Y!L~-mm$R)7#{#zey_E`J&ZiKEVC2r^oLD!x@6kkfkFEL zRszH?m}+J+N8|5V_HA&aEV(k#Ql@3gO!D(OC7NW&&d!vS&VBQ30AgX{mF!=@r6v7D z`4>|dIEMDp#DU0i#EgXEkHIAz>)5Y|l>42}hzo!zmwcKlskb(Q`j55#o{XPBsfX3y zmJN?g+%fK6{4-w(G?{FD4orufLlmL&M+KOk5PiRNjbY+Y*w@ezIbld)ep03D1z4lJ zCH>zB*htOV-~`zB3HPdz|^+*_z0CHEIIa53%8Xe+GaL*DWJYAb|u5W^Jm zK4@<%H1a3^I~&bSWqRDW3I6km%IK5%j`AX&B3+Y@>U)ifCY#%ZH6&oGfKnpb4grAC zPes8f%wZD>_aP9Yq}4s((R#dHHXi`>*a1~Eg>5ioKzVePuaE^79k+mxrF8+JzyP3zSI2)8G*3A!8Pf6N`KmB$s5QJ zFP?r6jVCH=FEpsQtnl_mHqt5th`NRn6L3D6S^%As(NUtP?yI6Zf|ka?k`OfR*hLbS zIpRPcK{%t|2V&((@J1U*O5_PsfcL#Av5nw%JEb9`07Y|{bK^{w{hH}S3Is%Oief~D z7T*w3ul%R}I_cM=Z0l%jmGQvxe(voCfox~Uk%o5v zW2#|Es_YL$Ejx@AIA+Nbmt8;z$a+CEx~MT{BYXj;X7_3KYcf2&9=)71vu89jb!v;q zb2VR}EL+5$v^#Gn!-}EKiWfBs`(l2Eb)5yK2`Ak` zNGTKmAqfsz9N^Eza&}4zn?s+^tLjwhTwP#^A%vcBJ$iPA=L~1 z8SshNcTKq(@n+0Dx>cH@qYk5~tStlqhk~nrov8YCbjDNPDS#9o{OF4btJ94Y@}r{tA?h8$6rnZ_6&9y49%e11$Nj^-=wJHrxa7KcXra% zgEe9$;dcsRZJz2-cnq-iro*s<8tMEVd^yqQ8DUL+bi(x&g9-!uVPGpVramT&gn*^nbbxT)@?pe3P|Kj~{a2zju1;L2J^vcm*swg}!Ic&~ z?z>9Wom%AbhSGxDp1Wmovxn;G1;px%&Hm5xqyZBgg|^mXa~VLR=0@8WE5YHk!gfJn)4$2=|P9@h>~Kn+3+C2~v~OGeuMn-fK!!cNMf^-t-5$xN6~rAY%no ztd1kjTqw|v2l2c33)?(d304CO6tpXwalZS?nqR#%n2N2xdPxN2ef&ug?P-z_m@T|H zZ~l@5&`ZT+4Z8un8R^?ey!Hd5hkiB)vYVT~ICN29WaPd030{`uL;i2 zwe)*sRHhofN^1Rj(}n@T-1TMz(h0Z6*AKk%em-FSiAV`hXS*>yN807db#rrNIv#;y z(_9!TT$e}z7h;QN$vNi%pXfDngHa9(Ylu;BPW5JoVJ+p)_@c~?((9MOL&A6rl)EC+ z4Nd$j%JPv=ZR#6Q|CC};Mq%h=#AIdON8KH!07L>4A8k=TKK$iva{ioNJ7{?!DZUVc zz8%+)8qxwl{|zI;w-wN3{-EY7IJ`h-L?vhg76xH=nF0JZsU9=P1^=q8JQKN|qAvVs0W$D%N zLlwiJ2aLhJGVfIx@fYmZ1PPx-`hJl ztpVshotrbY)(OiczWnSRmdCwa?_bNiJKb;B)ZqG#C8m z`5>qydoPo$s!nIO4*TCXy-57`j`y0YbAV%S=T~#OaQo?*ub!l5mu=^MzYOKO$|7s& zu4~!#c`H@aazZ0Dt|P!WcxR@tCdS9wxy-hK;Zm@FT1OS3M&TL{h0aZbs*6hj`@Hr< zZAP`1jX*2wvT8g{gEqk5R#lS(Bi<}zYMi7%aZxa{W%3W=5{)=*7hAE-<n)2?56wZ1myF9j%CR2V|2Y#K;gqg-oc_PoGq-5JrV-=Xcm!U>VJOZ|8iV5alk>50v0l=u^jWm-O zv?Ov+)WMD+kcj(AKe}HFQ3e_*w|m~KlMT{9CzTpsn9CF~7oARv@ujyBMoGc5Q0ocmv~W&?lhc%-2Az20>Y z1zfBA_;e%EKr<<^)%bH3EF<%1oDwVxSto`A3$o;@`_Cg&o*z_}M0-iisR19Hp0vt{ zJ59{zx>9Y)PTUFbgQ|?H%zak!YpoaS_1ZGa<)+rk_81j-c+?U-hW!$K!k`ti?AFdv z3CtT1&NerN7mVC%^U?>W?xSo0Gazv`#R|&O2)ywjR@m%SaAPvqoi(}OC$o(5BH+xf zC}{wxPx#Y_&<}z#Ucqw`N$1R2kIrlNNL6n1vfH$bkGj$^Z7Kh`ix``IuVskBZj+9i zv^(5-i+r7$Rwn4(qMs z9MPNKn_rcvw4xN#xss9aFn@dT_eT@9kzW|eQOWxepMf%?wAZbOet+o>L)tyx%HH;DnZTHj%aG18DQk1icrKZke`CIC=FnjxXul{of>o9K1~iZ100LfSbGg)xdf0Ho%QsSY+f(F-RX0 z@>iupdJt*N!?E@5l&!urpV-h~r@ET&T_k)f{~Ti?umcgeJvxU9LBKGngk?So?qu1x z!SH#jLyA6ena?eY5UCf7kUcG(vK4@arvt6)d{Rg6DnoIPG6EX)cllGvMxK)GG#f%-9DASdUAx9oVccm@q3 z;GMjKj%ICMa0twVDRRf0^p=1*gK~Gw`tiTwzC=$yauCZXREx!%ibj3vV*k3ljn}=w z!ek?LA`%z@`Hm|`{YStTY)g{hXzg%6XQsaR_UgYqdEU|saGb58d~Zl}rPr;b*=P|+ z$m1tdTa`yRI^veCkbiNt^Mit`d!c*7b5NGiR@`Wvid+0w;J8V1#{i`6xW+Np4XDWQ zm&YSpy$CCs3HxNpHNNig-rbZ6&xd-fjo@hT*k{Mps_4m4N95g)MQEIpWLd=E(`I@K4RHo@jTV z+vSnwvYe;XFe`G{PyTiv@cw_97sr5*u~q)RU&0RGZ&}w%M!Qh89|0wrBqQ=!4fL|> zg}&-6g_3G6W(BOE{yHq^r_x6H&sBp>%o639%mFqi=$ImhO?3;he{CbSI#60oy!;{) zsKZ^C53z(+98%*Lnx)693M&&Dn?s zgPED@mES!<4uTf*(!sl9Quoppjl_)Wc?4{4ci5!t&W#NE)j~2ZCPy~V z(~>5}Mm~U=*p018qt(8(;4w{uW+KxfvIeU-N#!mHo0{)hXH4^$x!oo7*rgl{ZOUm> zgWfWKFd9}b-w_pQRwjfgD(KtB6iyWLRx}*N4n+YE{jMj@9)q;Ns zJtw-vWCGAfpS5y=rau#t+Phqh9Sl!EqS5nFx?Yn@o_I#JZ8IK(OuB0AY}r6j|hNhE%+VB#{$vVq<{DVwWISvIu@i5 z(xO)e;Jv1#;woW>CXl=bM3aOe6y){5J2%7=dDrmG)OvyTkuNMEKieIf082O#12rdv zpEmxZ`cK9GWeM#++W&aq_a96C|LsyE0rdad&i@n#SNPHX$G`t{>_1-2^d$WMlz(gd z85)oQ6r8En3;6LnH+&LwszDoK=mlz4Uc1z~{j`06k@vhF!;o zcZ6O1?Q;(dt*#00WOMfnA*qX^+G}|pP$L16u#+WHf! z4)_lB)p#QaHDQssGLNY>OUAxa>w-a_4P35MCBA?w1X>701O7^b=ltC7YnI##3~(*U zN~WYH@={H+G7g2(`TffJuivv{d|an&PiKL)!KFD*N-V0N*F}*mYx+!mZTGZ%h}eLB z7eQxx#Ci$n^F`&0dkBnbJ}mui+U}RWwg!kG=|SK-bmJSVHInhYUbKqD6hU{po?pw9r_yo?uNSK2LM{QFZ990hva;%{%}-bQ4`6 zE%(+5LD;qaI_p3a6i8^7_Y&QdiVkI*U;$JS+TbkhM~tbc8IN1aN3pMp8EeJ1w$1B1 zjjOx5JTcfNGGqv81Jk}#(UI6lAFtJ1^1%Xd9O2f|KU)WyunO%9CLp(89MdMXq3U50 zr8l@NAKG&m2BU6E*GXsq}U2_jv~V@S;%ncK&yxx25i<_k#8U*E1JuVlb9nhQ&~d#JiZ z*I)pb`LfUHo2f9?lToxw^8hS;TP^&FW}6*aC+vfa!D^a128;ZHtfznWQx4u=g$cDo zUT#%qo8x%gl}CYyzzHTPkm-Z~0d$=!!mbV6H))Xm^LL?|pvuh_dHXn`Al7or)V~m7 zT{^}aJP~EjeoO4{$Xw_!K_8kFMZqwq#+uuYN2qDW-=IMC^mwW5GC#31>;HExm5Jg1 z#LmL9KWm{(Y@GjVEp%E-#_6yPvHM-E%(0+iMco^e=culHf}}B7hLpQz!k`gSv%tpG zM1or3FddM)3Pgd(L>en(VhP9g3&ENND|+PIHcSqW-1{yS+qdB3^H1IpG9%&)gW1uL z$MnR4oarok@5cnWQ`d*XK)TSP6yWrYCtj2B1SJPO5uW|K>veH^`uRF2^H;wlD3TjI z@;SZHD9fQlPGUDYSw+hSCg*tWQC3DSHBkMsl&T4KQWu@L<~lgBN_CL4D5AA;J__0X0LS-a$>Gyueg+w5aP z$=pcGPH8D8dkCej?f@s`VB%G7mNg!^7%l&E$^*CxHvf< zFpko8QhzwRsAVP|nMGT11K@$5b#Wg-!n%&&m$j>gW+fChqoSf>aoJ_J{72MHi=mpb zc|gu$sWVl^FdV9GWmFx}d^wlFeVqR+>oC&J*Lhs^U{X{0nGQ{#jzoq&EsWC^ZcSqd z{8YRzFFIIwly=Jkac@x%r&85_l&WPQeH$u0W(NRC2Ef<99oW5G18%;Tmx>dnG+ctq zrG6+`#WZjEqTZixcC|;klu1<|3*-iTL*1(>Q%@@cCjCSwmp|J+ zzHqBlX8pD!7MN-;j#Md2w2@?)lxkOo#2O86qm#{O<4m>Fy(RAac~LUo1tcqbwzGEr zC7{o`yf+QZAU2ir07|r`Pe3<8m8)FT48)Td{%RZJG*<$5A7xln)-shG<(x643UQ$A zs0*jHS;JPF=~8I^z@J4r`=%Kp&z?B1?dAJa91cchs7?zR z~F}|wp%FKb;&%9 z?ye3p?xE?AHX0~*xI>MDV-sL&OziYhrA1RxSQ_W+{_d2(ex4BL&$Uh9T~fgQtoHLU z%4gQ}hFU}ShJW(^cJ2dY-0W5}n)p3k(Pp6yO%pYdOUEXsi>`eWu59E;=|eJh$4^<} zzoZlr0J?#l@A=RLkVExc2cJENV!^`xAsO4zi#`=|BVC&4y|>z5uFlyN`b|vO{pp1j zkVSuwQ*$ychW7l8jOM&Nw$~GK&^&>poe+#k0fS%k|zIw}=ttnEuUn)6~Y;i)dw-)DBm^m9Ra5vKM?u4gR){>4lZ8;L^?C32|W z#WZ@ZN78x3Uwvq-`>rUb;@Erq=-Og&6cV(DTDM7*G=^7E+HtIHM3!65(J);{H&3C`(g2P^Bj+$piG zoHn{&qp4*1L;rRb`QVd*#`{zXPF-9aR%H~zLJEwp?UtD~RD!zS4k=KuO{9u_2XJPv zRfb)gIX&Qitcs?kKT-!v{nhPP&1NH@1Sn&fTr2!nA?B}HodDER7(sjGR{ryLZXnWR zj{fsGX_7Z-fmZqy7x`yPgIZ4x!I@JB4=Xo*OUs9j`Hrw=CAGJW51e@)Z^ zuCKlClO{MS=nc@DF8k8j>GY%)$tGZl##D*t;vqGAAJYgOBxw2vSAtw3%E^(445;3x zO7hgU@0(}55}2%SxFE_dLR+JY^pB?mf%vLnYza|WWMErgBN?`Rhr5ukOmFBxmb26H z4X37KWq!f1Rk@*`xrHkvSN2$0SE(DHqlK+Vh-7c1RkXSdq2IZM1huH{MFZf-kG46j zqmkmw>c;;Yi3^+j=sE(a8JtR}2k@D{oNXLSi3g#Wbh|4EU{!Z}I zgMVQN0UNqJ;z0TXnioZEurCmMG|&$K;=>mm0Ii56j_-P6B$>eYizz7NILtwCh=GJc zl|U?!M2N){0>%)DGak$&&BYlJ1RXyal!%560!XaK8%aqS|EvmF{6O8*Y2(mLzEA8?@9vovP#@ekjIh$Bh1%~FA9PY zwdp{TWo$@-jwj$jg1*B{IZ}?cSBKLoe5%A614Bz9f6IY{q^`Z@K*F==iUZZ*&5!^i zljej26~P&)z#*m8r^=lW1TedrY#Zyp$J7%@p1%**-LYhb@s+ShyvOzbvQ$u;Ji^84@pJnCnI*El#WB1ZVMbi7U+w7alFF#+C`EN}=QrM>yVTg?^p;Y| zCQ7FWVxN3K%vWuc3jRAjbGBX)VA*05;ju=O40kEzsmQxDuX4qO`E|DxBrvIz<9ba> zgI}>-0E=j%;N5MU11K2lZ%v#kjB1`+?P**6%SA%3OW~*&^6o_;R1-TI2hjNa`Yse~ z1vQk4m0T65pX{~{w(77pTW?NGFIV3ZF&u~M&o3~Zc1xo%tZl)Zf(Pd)SRY0cFVXx) zeGL0KtajJd`yiP!q~QlHPx2kf_we@|r?{!)#n$tjurV|Z3!r(~D6TwZXe5&=Mmbxh zd>iA~!1zoi8pmR}sUFui$eWFPR-85mG`7ID4fOMI$}4GQm{%=6>|+3SOnUh=_;Rph zTwxmNtfSO#k~4wvGrHu{LbyZiQCG`kGbUf?CSqyc?zG$<3f1_=_zjwW+tV00g3FgK zw#c`sb%Vk88<5>nxptDjF%+s#1rO@Fe`$lA`HpxK)$fx~Ga!m`;AWu`zB6t`uf?~PxH@c8}6@sy~_TrZXlt;!1f{6iFu2sE+n0*)CHZW!uzCcA{IV@ zNy<{x9-wa9CS?#^lF_(LtwT;BgcPSOI(?f{CS6v@$Kgx*79IfW)Z`Kfu~B3No(XPUl0LHuKRIQJTesEct9Z zDO=?X?ZOHC{&w?W5BZY)`N^r_Hn#z${8^^+xq|KT%Td>{GXWQleH$)ik9yAl7@&jo zUcG1F?jMSemJK=-zv&-p@4L%*?Yny`2}9``OiSX2cS^MW4M&L!2b|2@ z4VZB+Gh*CarO6}G=~^_|lY5;L4Mr|e%QT6uRF8v5HED~6q)Kzb6i+GPFmU6YI(v~w zSazw~TW2vd*iw1<#`&uCqMgLEd%*F1BW{1;|DG5@`T_xqG89o5KJWl4OhOAe#X3;H zv2Eo*lEeB|qS;WlW-2jV?<7O3RHvcO1-vBt;v+L)Z&gXzT0;#8_06gEVTnlMZ@2W| zSZN35!&w>Q?8o6_r0o4#IlwBElyr{Md=kTrw&xi-=z-{4M}`XE606bhU9Z~&`swI$ zcW�spk<528Js~FjlC7BWln@PhZC;x_+Tl;eV1{|99FeQ!2VPh}i!nMq*_DPd+J5 zYK->J`XUn(8{7X1l7=-W9S_@3x8JGTk}5XLyP#+qPL(f=OPJD&HYL!Q8}mrl4p2lb z#4WR~YG?Zc8z>fAmP}V^tPyG>1HIts=z!)g_zKtc=*=a+y`65qGX7#34N(m@W_C)e z7er6oX(P}nG)(zs_)x9b`i>U^(oruzQZui2^{8Ff#Gn(DV8ZhsyU)D~BP%l_cj+)B zEk>BE#A}=ps7WW$&LeYu^VgAFcFmH0Sv7>tIc7r@NXOJty*uC5hS_sq6=waS3_(D5 z5;ecb88^I8(q4+u0Iz*rsx^*tX+VqsM`oCm3P8=9TbLIBCi3@n_{ zU?wjia(v9uNENv%5vpXIGJ~2k%N!Mw&bz?uvXOzqOoWmZ{C7qZi z&Z}sf`Yx0&#t=-3gI(cfmu(p-06a@eW7j6bWj;BR3+=%IF|jm;VP$3VrQUVh@{rog z9|4`;HGj6@RNHF_aFS2ixp(YcvN`l%HevjCWQ(TH%Zjvkt7>a4r=N7c{S5uq;%YM> z+?@@Lm6{Wl=Y~2;zr_Kt_b2$9HSc9g^NO$;vG4yhh`}>n~T%wRB z)j>Ybp$dK3_H2Pebd{B~WiaiU(mw)pI?r8;uJTT(_k0%(jUm=krC9E z-L|hdY9-HAfOStBNoO0(ny?G(A9R&hQkN&sTZ`?|E5b)k`Du!|cqlroP|+rD$ZGp! zRYblCu99u48&o~``#q8Nbe|aT^M*?sZ56slZe{KUR;F^meA`Psh3hjleQD&Y3>Gv@ z!5QT46$ngl#%G>-5y`JZfkPPoaqV>59`Xu&{d!GFRFvxxxi|JT)r%oUz zM4`bd;BB{s>fhe^?l964c*O&j2x3&QbzZ{zc3@cdy@pDQ&JhAudyj|q=FY4;b-f0- z>2i(DxI!Q6)^!M-kFgU>rtX%OH+Tr^?|9&bG2SR}ih)tUukn2K_+DcYi86U%V%UC0 zjPQXNT{Luy$*tOqr>f}ZgnlY{xeb5~iYs^{;8R!meY4Blx-D@l}Gh$uIlC|v*W`teCw6fyd6C6_(h>rQf_+Fe7A z+>q`ZZ*38GeBL5_JDyPD_}Z_#P=)jp1L53&2?UF`vO63qIpF-#JHn7yr!3$+fGGl3 z1C}LU_-cUX_#%avyl4^*2zT%bR+qv*tu|xn7;Hw^O2Wtt-EB2Mto7FwzZw7~J6I5` zbP2^7O;=AcTjoT9fP@R40qoNg%j+{|%!n0}M39!?mar%>%sTwkDAMAyQ9i@IoXnsh zRrKBHTrIby`_3y4yz$^Ly}&CH}{RMNeq!R|fYx)c6!)`{tIkpea4o?DV>E4ww+pJx0i*E^+N* z8d1q!BEbR2nbjBu0ay4)fcg-t+51uaI{}SkU4m7dXlCm?Iyd-AL992RN;dBb>!c^k zW8+yl{ts-p*QMLcp3^`yY)}caZ&%>spRP|zC#fTkvvjve78}%)CpNJq`t9mNqGWm(`*oX7R>om0HD1fl}WnhG!iQ3tRxu>7x~P_&wq-60!7&xzU#1*jEyf$kHdXr>{$ zPM!el!`zdARMYUE0_}*1!>_j)`;dkvhlTF2BYW|g!^}`Tw9(Bkw&C4jqCD3EQMapfx7X0YzKWPpl3B(4 zr=A<#rTrBE0K_urEpG8J*9?s3xkWo-e1dIVM6*+~b5U$l#O1#8VjUG$5u=zX11j^< z_MGxi{d32igoa9mCcT#K-@30nnHzfU3T;=bU!Syp^)5R zPQJ*)BaPmtl0hXglf4Cw1X)DEoW4Qw%6=G!Ar>21P`w?g!fX=vgSWYQaUeM}NHDMr zlw@HWAQOv>L^c55ki}pOrHMZv5L-IRiI1E8 zk>(4+g1={-P9(EE0=`1a@*lRQg_w~B>^-vBmrIn}FHRSXG+c#%!d4KV4-=2S#LWm- zAvzE@x_>S3e3nNuyiYMngQt(Ov1@SkP=lsh0sd|9Iq;j+Vo#Cqq6OlH?$qlac`Ue? z3kx0j7pju%rXn^%bWoUJ#A`|TrM(;i)IjHx_Cle0S%w__la_M&dDqPI%hW<(Na@Qj z6K;El%v8yKMZeg@Wvj|tpa(JC)*y`Tz{%`@*SNGU(@0=lRWt#BS@yG4FRMLM-!3CnGt> zG>gWmbFhhcOjx--*vlU|CUAO)9-d&LbN=ajijt|i=B6s^xY1wFrhT#9A^xrHF^=7I z2$C$AQ6X)C>W`#tVZND579v#%U2&^ICxyd1tE1b;;mqItX5N|Bjf?IQ~9bZJ7;+BjRN!1KPg*nC@9S!ldU$+r%XGO zUd+P5=Ta~-i_M6Jq|58%9M*D;*4)o)#3eGj{6)m}7LtYRSh83bA$33W$KD8|fgo!` z^S&+PXJ-pZ5^Xmy6E6&LH0tmS0#ayPJB1~ROKL8Q)Ak5*F> z_`INZ_V@1A-KMZ*GSE?wQ1nLkSmnE)Xid;%h-D_2?$BA|Slw`Yd3+DM&G!vvDgIKN zgivT-SL_e@jEKum>ppG@1}r#8=0!8gl^RirV|r1tB!>};TEM2j%_gdPW8w6Rm8Axc z52@H4h61tnFo6FF;|@~pAgy!g+8y(~HX$rjeiQ_h?$-iEfiD|=VY{A=Aa;5YINeXq>kegJ15%%{aX;d#|zqS5v36qQj&bqNv9m5HZUV2QJ zqm(nMbrV^As>sI$<9gi=>y^p4Y54R84R`>NO0YZAG1AvkhlK4&C@F?pYJR~L;UETi zWV?ACj7qUB1-t$XVPI*LT~m90B#c{C&A5yFPhn!cfQ9_cuUFr`A7^GQfE|d8G~vwn zmQ_HP=c9)8#W79|b=B;#`7^ZD`T(8B@+POP+FA|mV~ktXwyZ+?z|1;bJn?3pwvNFf z_FYdvNXuDjQww%RSHM5(NjeL!7MC+yTRZG(J%iMi?9{Ht)*X5er)Ip=E=J8#cWndS zjJMI-PyE=IufE~Oy#ppYK==bd_|c9$xC4gC26cVR)ZJUMubI0w6m{X9&V*+p>n!4yib5>|vq_H=I~wRT)!~{xS?IO0 z2^;^v8|j}hsWo-5o%gG2n=w+lPc6^cy-k%in>strQKlZL?9n?c0NeT9=s?Z#{(ypp${X7+ly9Ga-=&F!igRDE5+8EPFhbyh8>twV`q4`|qtA&)DO zO)Jg+$RtfIeRYpx0Vkr1cLh~_TxBfyyXN>fOuW}C&(RaBSDH(`M=!61+tZ*sCV!}I zN_ViqUs#F;D`fM)awSzwj~F?aPMstTl=tRmDj%UQMqmNa+cv2(&cG{K(+>$6iR3Cj zWTJWrm$w}LJamN@`jQOrc{*e_jP7yB)Lu16JmxVI<|umvVw;DJ^X}i~g};|b>p_&# zy(mvWr0a1_0+sy|4Y~g@>H3woG}2AS_8a`^^-S;I>+)QuQPuxzJ1v#l?z&M0{|x&= zzv~nR+Nx>;A}j&P%E-XP!NQW7*8(E>Kf-Mb$R;pHBElYe>QO6*xDczcfq?-FixDe> z0TUaGi2u_3#WArl9y0V5|Tn;{FEp#dYSF`FSL z6FW0Qs%;wxx>fIQ>EFMjiU|~NeuWtWH3q{Gta)4YSxO2NjR^*MevRw9VuqpYfmhN) z#&<0XBq(q}(ZHY~vWbjA_XvmG=Lpul%ES%5BK|blEoT{1XInzg> zFas~p@${S=Tudxngbb2|+Jww(|5nVb9E7@r3<`uyEUbhKVuW0r{~-+WgiLIN461}o z9Gr}tT!j4mN%|m;2`ePP97%>d7-^wBAY4f@z;Gb!97$Thq=+nB|8f+aOx^x(0vBUa zEHFBNgVD&0nbF9|h@I1viItVr$b`|DnUTYog~^n~)YQzBpZ8y2#BOS6%)!jT!o|$R z#>r*I!N|nS#>mFP$KsvkMd4`h^7p<^(Hy7Us{&f%p(8 zR>FMC!bnMQG`m`c)J69b@+FL4$si4$Nr7vAj}Jt1YHl#uGYa&Kw*vrrbr(`ds$)k@ zf``F?V*I}}Sy-5o=wXD>nb>NR-pjr+`0 zRb)fpjM6A*#{&3Ts#=k)_>y^6{DIrlad?HLW}l`(Uc?!c`}0X1A`cm!WDzCy9fq)r zI9MN0Gz$%|m!JXGAAH8`4LdVO+klzXzLwsz;Bg>M;cqqlE0IFxXo#^5RY6cZvM}f8kjI5#DJ{}^u6_3CzPF&A* zs4JoN``3Z|YDCvvLqwjxBPuTuAEpBSrX$)k@BSb%TKu$Cbxnl91jDIxVSu0pbB}8B zeGR#WETRsiXN_h*dCi}OdI-&3T*jZnyFvpnWIm1D;c>;BjtCeBeoK^2yEyO9zn6QPcD0xvR@Tm{%dT^9U}?#o{I z8p61!ZYy0norTHGY3ynPwI7VtE!D8%XM^n zkC-!<+%9~dTmE}PTZ*A@ZN#-Q>P~URA}2PSn79+&e0|gy3Ewm}Nu`{wK_Z?W%B-*G zBNqI%$4(C&S?+N+O4#b4Yk^-Qr0N_nBgD3cRd3)im(W@+<)!xU2M(v6&Kp~5$+v^ZE^K0 zm04aPfIP+t7Zx}Y=mHG4b%N(HX8nF%Z}T9b4v7{ItppW}rKMlJq~^#>Bl~50Z(c7Pks%k@ri_4wJV{3uBUzc*NEMMoCuRRFQlW zF!O`zw~*(<-eZWi9pZPAW38hUl80x(BDdww*8 zeTFp5Na@vwPXQ;b3VOZ5oK_vkIav8jxWt2CySt9wod&0R+Xt&4QM=&U9MO5{r#W>6 z)*lr9$Uf!}JkO)Bmk$?llI`C`QXFv6&;fxE1KyB*Shf7fO4$ReVENafD{u)1%4_P| z9h3APsk>zBR33lEymN+}t3b#-Yj$_ftJPWrZ2 zhJ%c2i~tUhyZ56LQ1>< zZsD$qe-nS3`MP~?ph9V0TzHqJzvf}$yzT;7U`7LbQt)`UK$H)G(vyX;Jf{4jJtGr;FGcCUhiIuCiY`wUw7~>9gBU2(ZqQ~J+|}^ljH<_wKM^*a$6zvKweCu+em?K zKfmmrG{F*EM)v+?G$C*1M=EAw?mRZ3?+;icj21gTKLzp2db?`2L&v_9EcM zm<5=l6j(~0>U_jYMtl7(pok$*#s~33%=1g$oFw6Mot2Z9Rc6*GCgY?pPj|ZeGhR11 zAKiU{9-+%6CubmjV|sddoEvGP_l;D^cXaP20U|AiE-uKT5F=qIb~vn(J5TJJFu3Qh zk^>93w)k2k@2lnUbVrMOYo6nJ?h0{PJPimZ;KTTtg&!kky3QD;OH41qayLCvQs<&7 zG2n)opEr+s^fVJwSh#Hp^?fMEQG=U}1a>U1hOYFVUQPZBa0Vn)37_#Y-M+p{H$c;J zz-WKgX5{GQhVytBDaKF1b_u}Y?wgNg7xn&%tubO`a)2F2OB6(>lz^ZMT3}W{0|%7Q zVEcgi1*NaBIKVQxmEe9FHW@22H$anCojfcROtbg!m@idD<;y|=(+}MiVu~|PVWJGQ z(FPwDqoUpc!@`Cu*XcrQfdXYi?xJ-UkkN^uz3Pei2R8jdqsomX(-ns|M+SPm4;F=O z>y5&{D&Q1Tw!x@cyBj4Lndx+^%?7kcGUwFfwA@X9bmWg1-T2|_Yn8TFL}Juc!fiT9 z8#s#A!0oEch>_uD3~lKl{?Tba6DyMfaiV&78-G+5BxzWd$%Y@;T-t=xhY6z%p}PYp z&C1@6Nu-DWKt6KF3|m~VhFCBwVlq*A3lFC7R@KOg?6fjZgLSLwI!?j$I00PYy!QaG zm-@pb*)N+}T12mBF^8Ya3RiDa(W|ZjabnQ}u*%P2f1YDp^{yF0sgk7Nv7l0AX3btJ z#Eng?x{TQI_TD-kpEeDwp*Z6Stl4Cf z9_3)FOkUX^-_pN#B`+RaO$Eyaz2se516GK^V(E0D6e84#+x}Y0P_+gzP7yU&zxz_w z1V_TI1pWq3DW+D28^J4qR;?5s)HG6~brFGZaQ@e~CUW2dHk@!ckbQS*dk^evJso<~ij_^r zl=fHe-_duJ{r())4+bNfCOTdEeC67~a)}^EN;Gq57YBHGVQ-yY2SG66UUe!8cMu9% zV2G7;kTw->(7N<@srO@Udeg}kd6U?{zuJdzK>XzVBE9GepW6o@QZ4wRYB@?!E@Hdm z>l|bQW`V6}&!96e1MnmhiY1DOki+a?*%XmL91U2l_65~RO^N0ZBSeggh2rOv@t~k{ z=p6rWQS56NCKJViB1Ig8%w=){gTWDrzgCROBM;B-GNBHLh*3r_?2-=lB|Mn~-ZTNu@*glZO<0cT?w8uVx zbgzn79s;-r(QgkI#55X0sIA{2$Gr|-cUpxI7{-KJfQ zdtf-iS@OfVQE&G#5~hHl-@V^knePbZxzqY(G&8_v32^bay~nQ-@NBcyQ>z-`n=MaR z{+fN?`-Db7I`dv=k(or>+A9YX{cY9YMhyaIsSWYr)NDGntjoR^j4TgJT5!|6yL`(z zd9fd8EOnO|u{xfLePdj1$J077mz@oh)d<=)wXQtS8VwYp_qzr!~WY&jR`MBzqLxrt^ zl}bQ+$Nl_OYbK9YV_&b&thO`4t<*drE-vr#Ui8$;W>%;HtHZ;*TLu=>e!wrDk% zGz}kShsHUH6i9&!Rf+*r+UZvGmq;xMUQMhQW$NUi>C@nriK_lwSg=%7I8 zsnO-J8BPWtidzj^ww2S9tF0}Ty|)?bb5gW&{ASumf1&=~i53Jnqkv`lD$W6qtSsNw zqPbx|EUZ+hsd2KFw|~R=Cy`zeH2&<5zW?o?V;@$#)8o4G z{(-d>>|Oc$I~ZOc>H-)Tz zu-|ZDP8zmVeO7iq=$b}wd--Q&bpoD#{s5A@5DKn~QHGUzU$X!tj+qfJU~F}4O|p7r z2vUwOLw=HhxroiCGx{^zXmnkUAuY^zoKp2BYYU5K4pj|s;=Nw+?MHXgKB|oS)vJD8 zNfl(5!>2O{m-8EAqH!hb62}f^>TW%MxJd&C5}07iHdxv2eDiNtE(_xIP0(`8^?F5F zM0XNwaKJpd0hv496*zCsczd&CUFB*)mMagYNj-XfS1+^l61?XxI5Yz}PA1xN6w9&L zOU|m?erFs&B>v@$$awrL1P(&D!2lRIS3FBbXaXz3;!ueV9VkujZ5_lsVja!^L}_|M z%upT5y2a-3nDvIxD6UJpbVr68ZozyeoXaQqZ8s1suXB0Q6-Vc?A7dx=BW3pBHr8hub=x zX|;dp!i|jK{J72JhwG@9gnPNrFAdGKNMKtSM0R9dAefa$?snBz+cRRr#!wpe#_q)U zzJ-0kd>L(8mBg^#Hp_`GBuV%ZGR3rIC%(qV0uc|roEqz-3Aq-%y{0lIp=E1L&zh7H zsPZ#Fu~f^jYdf50Sfg9LMiI=G3|F^1Xhc9L+|vpP?t&XOB#ALXRf&(I%*)V9I?GYR zYs7Z5_8KvKoQ5f|X5w@(e9qbcm2wLwem?vD;2JM@k0`uB1pnd&(|&89txb}o;?fkW(> zUSwX%FSK^+6;mj*HO0L{7_tdm!o2v8C-Khs@9w0VlGhI)E5E<-rT4M``J)>r z@|mNM?1?uq8ipg&j`ZoB@fRneG$*bv%CyF@d)b=9bDOzlr>7Aey)lG)gf}I>M8G$U zL{W3}GrDgeVVqggLh-5JBoAjgU=a8mJyyE~7Voi%uH$Rv=xxqr8M^D6Es_&~{N!r; zrqEqIY3=dwd5Eg$jG|S|`x_SUXL^7j0-}du3`4iKF12RHaYbwqp2Vx&f}+xmX_~@% zlw#erwdp2l$JO!#vLRolrAeD7d9 zxm&yX4EzitTD~MIsq(?S@wt#UW9AscVrGUSnx36u<3&9Qi=-O9F{%>qz;R{7#fL{2 z>vv*eEQ_Y%PvqGWdT?}U1tr_vlUcjoVs9oEdILRXU^`Q4syOj1;(h0NJ1(#>lK8QU!6y7bhK2Zcv>B!jpRxZkw`l)8|jFy#)52hlPP|~pNIIeY`LQgh3ITI+(p*`L(YbJFqCx;CYkik}!NSi|Ys~%gIJDuX^;C1Cz0<3zt3aZ& zGewQnz5O(nIKFiM@-TKT+udhF6JHXsVpn3IK095Cp+1pNWA3O(vjCa&sHQsTX}00o z7A6lP|1_`4PV0L_1#Z4fN7}RGMyn$>o@)AJs*O4sYZq1Ud}sW! z+xXBn#l{3{O!TNvvC8L}RL_pm$S#~C0$}~;EB`<5llh+!%Erp{KOxIM3-NzkQDzoK zM$Z53i>^n%f-CB*twTVQ^lgzz9?-{hbae2rB5!U5f&Bt=58K73m7LwZt^p2&bhk4% zn;y%)`Ki3Ft|@qVXs=nqp=L&NC0BxxV2KAL7Y5;=#Al=+5Z07In1I(cG_W)_G!Q8( zS+2IO1$+~cC|d^T=-A@oy?&DsUV|{Zf-aECZuL4v#=-+}x$^+U;{hG+gE~FbH-M~a zXnOvToSybW#xp+E)dNv7gC64I3D$(G?#Ie+)3g6xwlm=P@dTUATmbg(?A(k7l!F39 zuY~B?k4xZz#8fz}4v)VC$SuIDwl=e0H8gnn_%h_KbTjaDtAbB4 zfpgjImVwyfX-0=YO@Lo>7zM``@gLpICc{;M;H+_0dd|*cQ|)p~=m~++4a|+`fLt}f{Ton5_v{TrdcXmgz(0!+Kqe61E1LrAJ#cHBpT#y-cGng+Cg;1h z2L|AEP4%F_$;GJYTb-Mjz$NhLJ>YUzI(U8WCHN)mZY5?00X@VV;F1v)AhLZ>-$}WZ zZBa2vSu~B6FYDR?!kcs3_=mg4k*_@bP&gRzT&n`K0zkhC|vK@`1ttL#6P`31@(@XX?v!uJ$M4X zjX(fNeORv_++5tiw0%M96`y;DPYhc_Sg!#~8Lgop-)#@7&xpqgu( zgx~e>z~Ik0LsU~_Xlo7rzz)_= z8U^|BDfq4Fz5zI6y<-E2e@|F6&gbq=kD02h?KjkcetQFaYAn!pPa$~PnE;aaCks&1 z4=p6#F2I(GE3gzD?9Ug=Aw*Sn)$y)C@6Sx(ciQ+*57dwC(U0xu55Qhf`P$75P;dFO z|MOEPcV&Co`GW+6P~Cy!0gQ^*XT5t15c?|xV5lY@?H}Iy{&6zhlI@EkJU1|X*}i>t9tJMjKec-J&;Vu((0%}T>@G34fD_==>?V9hfrHpj z|FkE&FuFIrb{W}Z19X5?Ffdf?MIDm*!clf%z-|h_M=xrLAnF)-INJl%fOa20fm37Y z!+UtfhoB6QzU1C<9Dy|kzX|PtqFxCGK@AdKgFJv~6Mw`utANnU1%Ca?9TEtK>m`1G ztOwOF`5}Y{irORqixvAu02wK`g$yuO`V8u=r~DGy)kyw{0(kV+mwgHu+*kn+S3BMb zz@BUFAOpIrzyCp6|3T0HK@a+aFwdngkO5?JKZJEfYXo35Q5jL?ZFIkU7Bt$w@*98B zzF(R@(}3kCKM_E}tnChruI=nCA??lqquB-o$FXj^!0!kl2Q7rJ7N001H)BTiuNYtw zAn(Qi;B1;x0Iu`bF;7QO%Uv9FYkVp|wUiEUh>|w+n&{3 z|D5l-KJuJijQoKg)=@+$0y_%&$N;?> zUOAQbwg+T>U}b*(UV9AGH}>fW!{4O2S*0uZW5wR8WtSWKqYSj+@Ph%?GIOAhh?@a8 zAsB^NetyRQ%X<070DBoaQE)Jj;U`S%(fyj~GrztDv5Vf&S4VkO{Y3b_2!r@_2+k~_ zlj+WS0{E%<_WjVUKGjwzAvg$RQ59%fI8FCS)8XDEP~1yAvuY4#*Rc~#3iFy(cPF*1 z6-$-M^NrK$=@s*lQ?>Pe^k$A#&w2;Ug|>1=eE1feN;c)^VFrXtiI~jXtgR`~tfIH0 z-DlydvlR7e9a=a}a;sfz&K#w}hy5th2J={<`|?=4H>GMOOy$Qo7O%+{P=59{n? z2X7zKPxLGrS2$SG+fZtYobF)5zefnxqI{p&*NkpXe3q%%R&_dlQ9?c5M&tu(nIuZf ze23tb4{y`>53{=wsSlT1vcwKMRT{T|BN4c0MOOdav2fMymLbzR&av|VpDZ}lA^`vE^1<)t zsE337J?(;%`~GBC=IK$oq2B=zZPia79Y>L5u&gHd+uolhl?|r6N!-ji$b2G2O=!@PL6`2g0?B;@((-yfkG_SgN zNTM)qs{%ulyGu0c`BVS|{OTba5R2H?3tT5e+C*5H60&*18+UI)9MwFvu2e2f(v|VAniKh5!Bm77&8+R2SBYUOzzOIIq?C|&(=#|TOKL2XJd<@+!keQwX z%+k0(kG4>2nT=1ZhZbeYblMNn78fD58>!I$!oYk89a|t37&QejXHrdr%3{znO>x}0 z@jQm^Nf={|ROQB2ra#h+{;Lv^^>jX@Xfqx$c9B;!ebakidOGJhaa!FKv&3W&X*KN1{5Jqe>k5T6D?+Pw^%Oo%RX z-X$N3J{|E(x7^5d#t9g%`>B| zB_eH()^wmu8RmEHp>npAV{XqP3DuXCUJ#xd`0&e!NTJu~#wUyyX-)*7ezL@LDO2K z^vt}~V>eyKs$R6B*F=++?ik5KNTHLB@W^`CeU)hZQ=fm@0W9nR@-_!<#ZFyG+K8PO zuHB{-=pybu0yHGu%2;hMr8GO+BuqFWAb&%>_Tz8;G^ z^~DYVR1uRGVp=URyNPf=bg58maQBKGP<9(dg??)qw5`)Zq&sl|WJHxb|MChApM8#z zyJ#va!Sa`lYo6b|xHIfEFo+eZqp5J_szG5{8bSZq*FA*^xXe<}0vzFi%NrLnYj{R? zG3YRIB<$Ijcxv5wPwiDq?YYuSwMxd4@eu()jwRvX`xb!{L7TeLwdRJWN}Xu)=0mDg z;BsyRP3sME)LNRYakS4>5Q5XP=JvVNO`YJgj0@UM$3B$_AOet4~*<0dz7 zd9mD`yT-Q86Um6^1{?q2q9(>No|-ALGPdbN9CH8TaYK#Y=>)EJxP;}pnc036-ya2_ z1dY4bY#=J~OCV>f_fAqQx=AmjqNbOXe!1YQJrmhb@AiAj2v2|x7VB-I>8T~WNkFN9 z=+az7j#@w`x!+kS_;@r^^K}>s^=JB__2@d3g+plpZ)q)*J3jz&@eGq@e-H}m&nhRZ z?cm6}i+LJxZ6ap6g`lrheXvqwRn-I3@(Dj&BMA*eL&-Bt1n1KSEJq;FMO?S`@OQ;A z8P+|J1^0lLZ%+f5(d!2fj3|=V6q%mV?}=t{2bgN6@CLqX)PYI!8Fuhq!!=P#M;Q%{ zQBkLFI)3v6$9n%M9_mTo;Ya5RiVW1Oo~+7lv>aHS9#COYK=#_i!8Ze>&{z<* zQVG-leIsOWElse0PDkGhKj2bJ!?5t%Fbu4I??s zi&Dx(oJQLDL3x~dwNsHIl3okYwdGWIa32~SFA|=lY}bhxFY)SF#QeJmmxel0;1Vep zvz6agU9fA%qx8dg4`ynfGx+)bFi!Ej24va5vlj+f9wG`ZaB9AZCr}gKFpiUWMldg~ zO!iKPo`MhUFR0}50=awchpcQprz#R4w>z!FFzu3)QPY=Xl?GDn3RIAE(fxdC6evhIH^H z7;!LLK%++n?{n%*(}I}aN_P~H-lP_p9+O%dGMTlLY10+K+T*@d6N;M(i8m~~_*s@b`OMi=h;p=h~<6p$IR!%I$<)*pZeWD^w z&5!Sr(}pi;MUEEm7glVVnRri9Xy&(3c7Td+oJqHA$(F58=f;sW8W%+cGp*FXnzFAoV9+G@#NiCjo>vTT>SDo zpP#Hre`d9O{4SVtgv#EMGs$(R(ZvQi~}PD!)c)ZpT1 zm}1qwapZ*U*470g<@r@jOT;*3;)%a>x?@jOkmo0=HbgIYj<#UxA zzJBxb-1`G)0hY_#Cf9J|x%BeAPLHr9-^aP(ivv?2rPXb zZ?Zf_H9M+EG!q(QHFZ#7;m?w)Cft3zf-{53#6xe;w-!9c$PI!#&hJhphnTnnCb&_K zQ=F$e@M6k4-wWTorC~RWTXXZ!C>xk~z6c4|!;=Io2s7gcwh?;|Ca3)Jp_w6L<`jM9 zxh7El)lR&99tzyk@034Zd3}XDbPV`SP8?ri;vHYVO~5K4MHWI>Ys;IRDrJ{`E)lA+ zUGCusHWqxe_lnnVDd4-OpFo~5BEB+2Y>v^fuhZ_c-m#I$M3`4T8`cF{5?z{??o7RP zm&yZxs&}0D8^Nc~-rgXXC(fohr4t1t({}4?k-SON4_K;AabdT+1s3O6? z>aD)8#)>TJ3H#-<;#{bUT|HY$ZYEkqZf5mzHCoxnX)nZ)Rhz3)UvxY*ynP1!tci;I z+eRBr>tLgIULw_9%rNUq=FQ~$f?TRp0(lXzE-Dms)bUWkU7cLVj6?QeQE1m7rgrr! zAjo-Ard_m06dlijT1R;{rZyJucaZn45_d|T+oouWK{~1;u5y7&h+*`KV@&kG@2WZ! zY)~hMo{>8MD^Yn4FI5Ugl!m|w$P=4uZQ}A^3n4Ta-m0&PYa{|i73Ht&{0nIN@oswn zZMVVOC_<^cV35tC*Hp{Jvv|#Q&L~l{x|m2ADP83w61h+5HG*iE-=*epc|H;|D!QR%X6v3ZXZV?QneCRq3e=t_C z;%WBKK|P|hf>z#7{65h6 zo*x;jn<}e+A*4439%Tx zNfR%ZzDkmSVU|{x&B};EjH}JctIoDsBqa@3D-dS3mIudJmq5^u69O7H( zgeC{{EVz4?Sh-(3S zyYfH)r6nhN(d`FWs;YlRe3Y^J6L~N=haTGkAMJZ#S_$Vqiug(lw+cqo8EPnUtiLFz z=B5J;#Z7>R5@Fvesg||D&2uIo%hg1noA*e6rtA@x;Da2kS9-Z92P&2)10RzJoI#6# zYC|~7gd@-FnsbYfQ2h?j>Rqecu2WQ{OWr}E^`6D^!tCJY4H?f@i#2U3(AjmtExu$@ z6?o|~QMl2#m((_Tp$dPYonOrkK?V6knmT{(bYOP3N94LeAZ|j+`~ouJeNf+DP`PI9HEQYqjh4T(z*q}*QVctPqPgD`l73! znhuN}Jufwwh?q6sKxaEHoV+kc$ovEBZ6=$^^pt}i(L6`Sb3>u*b1k|FVzPDNc^6vY z_mLMPF2^>1ojp9C;ou%4(>oJqVMoi1SbZVM!k_kk15eEKC*x1qA`f#g^XR_z8r7o%!^2E(2fkXIW<~sRfl-0 zx_Z`gkUTtBnvy>2KIB2uW1e0YQEv>Yu@Ixt6b`rcR5~%BN?r z+HaeP51P(*e*Rh?kUsBdez-Sg6})j>h06Rv@*~ABTS`FfY0ETde#o}HiKU9(#!kL7 zb#n5ATL#Dbhh~zC((s3*jj^TtqtCs~!q@2Rolf}(hhOs!htgsm_@~>P1x72_xfc(R z<-Q*Uh}h{%$$dJixgXp8uFSA|p=nJ^DJ|EwN*sB~$y<6Jq*B47^>E>=TnUc^nKQIE zFI0zNtQkNRY=NAj4_8G+b)C_|+dCneo?w%$Ut;!o1A1uIN}OHp5@QnYRC->heFB~)Eq8z0Rxg3eaQ_bcwB#RN^I za|*yfQzMlPyz7hm?sL@t@1v%~eJd%rZ~U7>RF!o@TDG2@SPsr#Yt6JGh}=`4~>57%HOw@Xv+Fr!!q(OAuL4X z7Iv}r-Z!Adx3o<~XvbJs&yKo|)W!Od>@ffht?}%h$8N0lfTq|piOSBN6_WBtPX?u9 z^1w+ynEuJpNj^m#R3tA6ia)lt4VA0-RFCb7jE~rL;Oo3|iSbzvGGFg%kW+vP(M>Wd z#G8)cKc~CEiDcg_s#=D^iID;VvZ!ye9iLOMLmr*tdMp)-S3!OJdk@ufHpHwlT3$?#Lp3E`i+9|%X(K}HEWU0wtiK@QIwVydy!(-5DQCT{? zxKXnX-S-!k==D*{UJeKWX@<5mHXVpt&zg4bg@*CE&wQ+<#uV+}e&0o?0^Ehju2gWT za+=9PIf+&+mm!mvt4pMoX>|}g5u<>DMXc@ac^c&GcKH`<>l{Hc-K?jQXI>iz$S~8& zWYI>~P3Q-sAPCf)1nx;x6sh!}(jOL*e?L*mQKZvFoQG;tbcyuy5^R`?g$gs5Q(WF3 zO~6JA1sh`%QP=3DQnDQfv5w(JKWWyjwgl_bzAm69L@yiKg` zoA90~dFLizi+XPZ2>#n4ag_jljc|ZrUjHVBYgL(1H{rxR*T-`rzS47J>zlJHX*0i2 z;H&2sMAY%nAVnK(&=Q1BB6R_b&clJ}=but`y#*iUl{uR32+d7)2r^jS}Ooi3)4p8pwvh=|m zMiLt`=Cleu-8`d!eFrPvG*v$(7|pvDa@vHx?{L{0pm-gA2og68i^3Tt&3oM7N8`SG zSuhyu^`UbC)q;@|^p^Ri` z2NRgRO zFV)n-NDW^hi=av*{Z^g6o<-+scV>RnElYE6b?oTre6FGBS2t$w!Ei>+367}G>ol}p z)Nlbf>(OR`V!?4j>=}pH=gVwv<`1pP0Uox)j31VowmUnW@CQF$1iw3$xkA@uU52Y; zl=RlDn77!K_SgX~uku`4TI)ijSA(G<53%4x^3Q6+K}RJhQz>H3DV+^zy{Ac%4_+%m zQKu709*ReEjSDACOKZ)G9L^0S5x^{!!oq196YvU|ENrK8^A1dTcv?mX#$bDo;dW}& zBRVF?yQvTn7*o7PG>>>)U?y!z-G&v6J)X)zYRq}TZT^5%63>&=efy)B+2gC)u>lR* z+Z6GQ7Th`tUV4R6P4@WcbJFfzcCPfI5g6r~LTm-gor+Q-wR;)=h%;3&(7X zkx%~8Mx-|@5BiE7yX=ls(MQ>BL5&ptu+)ni6fS#cpnFJ8n}Z-wLn(G6AkbRq#;VI6+!-ls`j}l9UuLbm~ze$@>>KE zTJ5^KB&R6=brV=q^|a{rJ+mf?1>)ZmlCR))+I%0)<7D$=*t9FXKzNWNd4;>srOnMm za?j@>u$~K4mj%}7R{X=uw<%rf3rWhC@XtzB2d!m{o;2>GOcarTwvpjPiZOmO#W8>@ z`H@EN&C#_WBc2*k1>~ZPDd^8dqvFylLp!+L6^At*t64_MJ@TcZR+n1{V#Qu$eKS+} zh^uyFqr>7C4KH;7N(5()h4n5*l6`vZoIJWWgvvXeR(I(WIyUKNUj8t6NwZlYE9h@A z^489PG`^})6o~!%*q&~*bB+r~9xOn2>#hekl%=>bfEHop_8rkUKUJCphh=2dt)ZMp zO1EmcFn+!^w_qTBo;J$l^8H6oif2~!uu~D4m;4Toyi!WR8$JZDg?!we3i?z~ zi)-hUh-$MX{@zslKp7858G!3WAFiKAoj$t$ZRsEvlS!xt9#dVWNrk`*J{Qo{u{hc_ z1*^nX1iC0369J7wqYV`qVU&9aTW6$KmHO$$hx#-}OOkHusy1mWU#KpC1J7uj7#Q>@ z=qfYJ?6OL%0<*J{H$Az5w>Cu2Qx%stBZrLt=5tl^?}~Hfr&2byi~jl5DpjA6zJyy% zHIPDSz-X1JCwB8aUkrVRf(+2x_k~!WIccN#TP&2ZoT3p*HM{dAFtH!3UNd^j;108|Pa6`*Oy883JI6vcmVCxNadC ze*8_UrPgkJI-ffg&5AT~YfU-qqQl-9h{OD|VS7}<(Kc>WeX(&>f158Yt&mB)g5Wx| zpC;JPgVtQ1W~CbxghkC)ty-CFP64d?XQ5wA4i7uPvx>2E0###Gdwo2Z3eR* zM2JqjPWg_ft^FzjBX)oji*Hi&pJ=40ncol8_j7gm*e5vhFR0o)IDpkKRh7roHyjge zM_BV=I|#Rgm}Nx5imRoz;e1jv_H6vD?qGC$t6?u%XCuR9O%x=7oLDmauo$1=D;r?e z11*nhskOL$(E;=9i|bwGfd_XfUi|WlvrZ4g{PcO!KCIP(I(@)kzTuiTt#B~v2%JSA zsI%%;M}^76`vdq+s0T{tbtW0EU=I_%24{ZXB=?$HN_{rr>n#ie%_&%hnrvVn4N6bXxFQ z_3i$=WVgVPd1L?)Ab^!5x{$$H4iWPM8H7dC ztHP*?NMREPDx^C#6jcB2bftFrYmoN9VU?SG>eNA=a}hApWFEiRaaj(ih*=C;K2(%2 zI~}l=EpDr2d_?y6k>kBE@SqSZx`uUmkmh?)D|i$B-_L-*Ww1xzAanx}Bw$A@%d6Y4 z=prpol@*p0+4}BU_-R3H8auFVS{r_)#pWmIjc{9R23}6T4Lxp2eV!^u4l(>1oWPYp zpHMIeC?nNSs}FTs{kn2~*$CM2e#JNAV(KL?1lay%8ImtR(PPUAxA&;J&CJz*@dAyr z*mgg`(GmtAHpYhFg)DU;epvP|dqY2{qi{UHCLbh0t5;j>;@9A%SWbDve+ApDNK)G~ zhL;h4=&7~pZKIA^V5%<4-M=R~cGOZ!&dcD4cGnca8zR9{im6*Os$LqwMF+olU1*P0GjZ?pE=Fl`pqd47Ne7 zgb916+p)-_G3o!&)->@QTfnZ9(-MEO9RX^Nw{eLM!_}TfqgtJd8$n^p3aXZikOA!p z5w;G{zByZ+V&{&B6*v-5fFlWtzq90XxsAXe)lJF%a3DVF zmHu4_tt*n}QVcE^I+_OG1no?YSd|^xmq_eWEht#5JI3|U{gDt}$ngThM|2OO?D-&) z>@-RzNcC||cd&GoB${O>kB|lz&yT(O3Sh@RW#bb&GR#jLa zR}V$hM9cEAxM?bgZpu#KdJXB0XYy&e~FPeBJEgpU85 zB@dj^P8Qz@pGkqhIU@m~`HJmm&%7HT64&eER06!0vvXsX!CZ4!NMI+34oy!T?$3?7 zNN+0PX^t$m0P|HH=|`S8Uy{%~vWBqnWaW2>JQx0p)tCN69;gNrx=w}ia7(T3?&~rG zIz=;Xx)xS^M9bW|=Z+Oas6u&vIR<~h4c+!LaMf(L(!O={ZfmWmj>whcdI%rjct`2X z^H~}G`PofNPspd!a6b6v(G~a|P>aG7EX1Hbfy<_FL(`d~67e~9%aJ-ub!~ZmT;W|_ z$pFT~_ua!AG0BdB^!STpyKg4$?dKQs2NFZsBW-*_@2^9!em~uA+NJ$XFSy%-7B^{}t2VqKS=Y?t zJ2tkxpa)6s?d!4kDvb`S*A`S5gSzw0JEvu}zKa zmGT=Xd8ziMYR#w#oQ9UPOPx}O*kZ%0Vzr~Xl>yq6p-@FrxyayR&SqFZm1l73+gLxE_gOk2Rfie1TvYYo7ns=&lY=FN< z)N+2jaF%P3lBMLYbV`(1FWd4sSBQGppXIjZ;V!uk#)wU^dxw~Mx1}ZeO+2^=%@|!A zbGJ7tjgN#@LNTafSe3Y+1x|FwtmaTG-eVdzVvytY{aU+S3$!XbY|WS8bkU!yc`K%< zxo7PHycynfomMgcA#r(?>xIO!(a_exoH*Zm$}=squ4DrV@)c)i0g)4~7P#FzW2O|x z9m3rvJs;YmJ(%*VfJOY~%e+bH5LcAeL)G5%5f6vJqZtNawil@3W?-(JOzAiEbn6X z&6K-8_{({K1*!ALOPAD2>l)M85ejNFopyafSPULXPjdOQ3Q+)*GBSZr?l>+cap&?g z;e}{$(rW{6rfSHK9wz`p8t0btuskO30oJ8rVSGzAlm+6@16M#gD(HSz*4~0%uOsbj zs>VsDv-(JcA=8ql5|hJITe6-mr~XG>FS6Qd{YJ%yYMK3yrCo6`KVH;?w+^&a1Y^-+ zl2G=fKj42p$+BVxDbF$V=ov^X<%TpP-^P?jPBf%t5+6YW^X>q_P_(Ks*6^wN-#tZ4 zZOsL>ebS%p>h2bjPIo!#Lk%4{^gDIqxjd@0@1FQ)*DX2(!|wrsMonyB(^ypogXoe|kA{-Zq1Pp5s^Z%a{c5(O zcSXOwVkjqJNU~L)Dh^E~w@F03XZzgPl-^$RtjIp<5iS67`Q;8jis>b7>c;V6q*XZ{ z7ft!ePPW%;c8py{P1*Cp)$dv|R!=`lt{@M1?3!Rx{LXE=q1iQkSB+tzBdXn`D%kGOgDCv9q z$j2S+mHq;1Jky`9raUk16Se=6mtAb)fVy>7abt7Yj}Pdf68gjL!CP?Ka5m7j&XptW z`HHr>D3~43m&*@GsDni%lm8Am8~T|a@W&Uiol*J6j`)|EI*E9z2uZnQ~GkmFk4CJpP~bDkHmbOdc7$-bVg0umjczM_ssByEmtrS(i@ zysxPM7CD|dm~-20`kKUA$g&2D&AjuqQFo}J$uR#3=o|2Y$1;0bW0%=IG;uR31rKM@ zB<0A2I$JP4LfzdBZzGReLA=JA7DR$o#H}n!1BZ+y=-uGy!zO= zy7;*pSS7W5IqNtceV!K>I21=MtbLArU!xQNh|+v3@g-zA%VWL=FRpmO2Z@~sbURp=PqI5(@8jd+0oHeZhv#Hh$ zbnKxAiQ~obB!vjDa5sLCJqP;JFw9I74Kho$Eh!#uS%EGd1hFp37#2}BGwFAQ-!VJ@ zhB5t%ZzEGmdi+hh(Rbo{7|yaZI;~_`Kt|)2tHYYbXCfwqk6Xr_`%s%g*Pf-O1B%Wt zW+*x3iL;B^DL6O+b7lI6%;+1`YJ!z~N1`@1 zVgIy*%g=Uy7K6vpSG87m?W6pHNVR1ErRB?96JfY~%NGaHP-W{FSLfiGZOk;muN;v| zN?3P}s6>`1Nh=pKHX>mQP-^{&w=7Cs?x6y+qJq)HglDm1EZ2L5?8HWE43f;+?n%7h zlgCHS0d>9=tn*EiMwKeXLi}ur_D(2tl2q)X!_ii^jQ>xE_7{9^tNiMmB3|4|k%MF= zosF^ENPb5%Mv5 z3W&yBrt#wEl4rj}z;unX%!09_wE-A4*|;!G=mqTgcx+-JfgEaLK%8T3u8~vTVR5iY zkt}Eb&j9#c;$}QAit^TCr9S3I1mSpOV4cT8WWGD33WAKXGq}qmJ`Rq8N8xX5Vn(I}Z>b(@k z>EoA~MKaL~7pTJo->MA)PH^RllxIvEiibc`SV7B<`3QuE24F&z zu%?%F3rJj1b%O1Ll{lcE~pYesi++B8nTJ-GrMghrM02R-|RB}&!kN0B#z9{zx6wkN%^va87C&{!aqs|sk` z4)0>)jPzEm5r;L5{C#?$g;L(a*j~k`(j6_&;wOXPRWRgR<^}-J(yyLrFR`)SHjQvA z2fJ>lm^0fLD<^u8<|^9U-?>j;Ec{;Awl&(F(6uRL$<-FlIMrD%@a*pybb}@WBxG!n z@Vk?T8LLI<;a!394w_09~Ts(m}yu1?mT@eH#Xsd z)B-#AFyg#*^eG2PHS(%AF zJ;$@UXvQAD&o{25s+Q;fG;~M}W~&GC&%awbubV0&#J>U*b#G~K_6e*tnW_76E^6*4 z+xg@pka?OZ4euJp-Lb4j3YF1fA)@(mU4EVZ{)tQI4i0sZ^z$+(Gh~U-lW2YyeYOSA zFgL=hmpKgioOPDeUI1haljy6ym9t^a%>=Gi@5qtXvB!X)?}6I_^nZff;dkNe z>1!XfyYvBq$e&ah3~|{lyb5&)C@XYc1bRM^hz%Bxx;7Ha0?7*KtC037YkipItvQi- zk(jTOWnC=+LEiV~&(>$$rWT5)*YhdEtYr|SMUSEcQeyz)&u;UV@ofx+!8$jLFc z=g*Lb@D;$(f6K)T1<6$IXPVOFux#siS-9_0Gz zrv?D#lU1f#C5l|7AT@VhENhEq0X*4&c>JS80Tl(m&->2ObbPw`Mf&mKpdeMpGxG*! z)!XLokd3wHy5qGy0vQapY~MD`&h{)6q%q@atbT7caGNAC<+vY1Deayw5AoBY=p4Hq zs56c&G5$Q)Qf@?=H_mk=6IiDf!8HOv9bW)x!HhOM9alkiv5e8$*Q{HgrwUSsHsI%yMIK^Mc<75EgEN&cjNf_j#2b!UIAM@h`+#yXC_8ICEzIJd~-+00mb zLQ9t^@D<_?VeBa4k3GV$DgkcKQUhVU*)28rZI+X68)e;|_sio*XnmPFNd+o;U@V|y zsmWufNIahxzl+&=P1R4hEF0ZyX%=@9|ZZEfi7m&zoSdm}iX0WF_PC>kg z>|Jd|X<#|Y-A$J^{zfM^m87mHs_(BC(XB z4NEw}Mks^9X(!ckx%WYI-|$5sOwnD!lN$x}1NJ`l@O|?RW)@B?ch`T*r5!*mFc_4A zj*N-8<&LCNtVD-g;vYeOtAjcH`2)>Y4f{PbFf-V3-1s2#^w;b%Q{*>aKJ{y`CRk6{ zkmc&5N2(xYO3#J3eZ^T_fVor7RphYwIv?ohJWQ~2{)`iY_eWdyuM_ox9h>!FD8)}R z-?@ItDrzKb$3ncS& zQ(_#pd5H%ismbhB##dA=cU$)|4&Qb@2qrR$>21D*hy`A&D~4*6g*{Ey}Dsi!D6bW0y=F+?<+AR*1_=Lz6I zDTkw~jfOpFa^129SA8U~Dl-gr2PM?^WW7!@tgYu%g8n4R;$4T0gO{FT`u;t}S9W7<251q+~L8}%SPH@L?lX6U8 zPElr3!rHYO_GPiDu85=hX2T}@l~qrOlHC-Y=+gC!9VoC#(ET?8d7pIHpR%>Y4yI9* zFZ)&-yF!$@xf4*EixD;AHf;}Tl_l=fwyd{$`8%CdYfCM}h{Onv!yo2NByVy% zH`<}#$PHRMJ7nov;WQObIC_G_kx7-*1|p%v>QdXi`flAM{avgvKDy}JJE3B+qlhPgmS%YE3vo4wxG`0*lGK-+M1aMCWrlzY_uoSaD`l}5#T~qmC8(-MG%PJy(xKq4Sm_XD`tWf<1+(`i`)y@*L z$I09AX%|4RN4efeNV1l*9bIOCWZf=2woc)$w&K-*Z4djUBXognmDeb2i0rY9R(St} zB9L<@_7t9%xjnQC*kG7E0&LGHF`?e? zttDy%v)0hmMh#rQ9Q&TT$_X8X(_c>te_yDPwcG#@hUCb^N)R=fb&t?`IYd($`;X^e z3`)#DNTc?Lzj&EbB3gaDq>p?*VMAC3gKN-UqJDQ!IEx|8gPRKMO4E{^U8)H*lcKnh zukhAmW+O2}UkZimZz_-qeE

GBTX`*PS0}2F!-Om@LJGVE(b+_?V%{{8*lG0PJ#B?k)&TzvQ~QFu4& zzyHUZ1U~~ijcJZN(tF^;NS?qVU6H)eXBrd$lJE zt`#s2<(~XI`OlogiBPo0y>=H2_%zqnRAIUB%*jq%csB`t4F0Ii#`7nCCQ%3K&U{gi zIEaI!7jcZwCYeG-p+OdZ%x41 zW=C%*6=1y5HDNLHiExaTIZ4jnDF&Qi{`F+DsVbKp<5~TWZ);M*I!? zblD5kV1c-u!tP3*l$Ag>+W*&Nn+m{?a3;hVaCs7SDVMg}hm3-Hnp8Fx(FgHNR#%}2 ztv^EFxWu1LBWMh*ug(AA0_U?wNP8gb7!{!%FRLf(oY=!oJ^J||J@EqORUV`59e%;! zKXnvBg=mJH)r&-{^YOA)^s~o^5ai3Nv4KNnsvyW!9TXO4=QZ0u%N7?bP#Z82meLzo zpAgNWn;9(mSwr%3cK=@TG(=}ps?_5CtT|YNxx{RJ;d`}gsXdPOwVK;soLKW+9)}bT za-1S#mkR-{WND}HgPgU`xyi%{@?;@Lfs3I-+nH4%WbFzqPP|M2?v!Ly) ziBXhMqm6pOer8zSb?eBTg~_@j1`ACNd@`9^UV1nCEM}d0Yxk+wW(eRLGSjwJ9fDy| zN5OT7k6DkiTApB5ME)FL`s24xk0MV{4Yq8MifTABD{`677(L1(UNYF;G`XhFQ788$ zPiWKl(st9^54jgCV>o4;A*2%_mV)cydEKM*b%mhmbW(*qpPiLySZl*4gi>9_N2);Z zley2XTohYQFA;n~J`MmZUovGVx8Ys?$z_|gbEVf4iVJ3lxUYt>Dm6)%(gd%&Y-kGw z3P*uBg4bgjXk`g%>nlu#^w~1}u)ZtG%0}QSQz9CzOP7C(p`9-1oIv6`_u?K)Vg<$D z7T>r|;1wZK^vOkqDDM&X?D&3Z-UriW9IJ3Xa#8}!+-kenFB1U2Z8Zuq7yQL35rr~% zzw@uGk^Un0YV1j8?T!AFyzEW4EXK~V7vDCjnjr%tqLf6Dzc1DKaQlSAa1IAL9LRCC ziJyZ!RJFI1A+`=5V?8L^`xDnbPeUof;P{c}K(eQ45}Q;aTHn6*kZI%#&%t_oNGF*R z3rtP#LIINy8C^it{90@o2@CUSJ@gxizZkX2-9ICzRDs$8FD%4tWwXYQw?S=t*U8%mJhe=A6Ui!L4yZW*6k%C zhQ0XKnYXagFo(syX#9MYdW!h8?WyaiA5F0WJIan1wss4k0?sWD6!-|ixD z*Yix-*?yhN16Dd+CU$Q$JXyJdMA001U$=iw>#Vm!`abfK#s@C^g6>T@z9H?o=$BaJ z2<`eedjcR?JI3_B6ngsf5lj`KqkqX_ZyRF2Nx)gl8$6V7?{XEJbV@!*&iGO6Mf|=! z8S|rN4a%ongyQbPIu;jKujnB5%2tNUzZd5mBQ^m)e`-C%sV?E{$@{`#^a)OV(za@T zRkp1={|?0iH$4$EKqqq0HnmqOl5Z0Ub|4v2(6FliAYsPKbAzw*< zW{InNrUiAB!w{*{rps{hYlkzB+ytdOSK}U~X<5RVQS`^LmyGpj5k8J|;!G942{TI^ z^%9_eS5xYeP1M_C$3lIi{?sNp{Vy7I#+V6X5}LHtiZG*Nn5hyr5Ehz6M|+5hTZ0Wo!G-jaQuSN{M#zydU~VwUsm z*k9?(%FQ|i;S0riVui#7el?Rmj*}#lQ`^MiFa!Q+-xrCwM?pP0mswd#~J=b&U&~JHH8hkrZLj zN3O+UeX+nTi8*mt^sST~yA-{;IE3@ZSnMiEX+*0N7l zil@KNd`#!f33!Z8i-%}2QvgzRA`BTYFl-9nH1#~vj5n-`LG@Tu_*YqfZ&${6sY+Vi zHcOI<+5usng9#@~p`uq*ZTfjBG}%M-lw-cld&@jE5odEw z!=m?DI+1v3(g$piqb*=xdJ-^zrWs=U%h;Ty9gbvH&F-{wc=T5i^OTjr9*!dQ<}b>t z$YhHU8d-U-?XynozG*L*{MsLuJ-@LN#f4Y~{oa2@wAZ76A69o({@9D#=1iR+eZ2f4 z=q6uONtn;RCwx|}=zMF!>UvUN%2yadz1yL2XG2Fe3uW!L#_Cu6>mEZENc zf=qwHW7bm&RxqR`JYB|)qtFt+>VVW7aqDp5PS1t|y@0RCdoPC#j2wftcWzO*3|gX` zhQ1;zZLwtHd0o%mHf+>Lj3MU3a$pIt`{!5$ah!BFmu2-riTBLN7=0bCUj+q1*EY6k zrPetqzpHDSXmSC_2^c012xywpOuRt6Fm}oKd*k|sl1)^(b{y3z;|ii1+wxP?@f0!0 z6%wN0Y-RJNS_^BcR$4LSJ@nNa=-t^Z0EsD3@|H0`Qy0sFFTE(W;naH)fTpfvSWIc~ zhrym}Y)cKI?1Au04sPa!&Z#KtPaoU3WPX}oT~Vs(2r>|WaaPvoH%zNI1q`{@h#vYe zf};yT8YNpcdc(n@JbJ>nU`^yALQf(_3*e+nV4k41;9m8-dUK$1+s7M4;O8693WvH) z%OW=1r66($h=|Fq|Lzf$ASuZ6Zg49SSDLa4YZCqWxmTvWa;)M{Gq2)Z6V&ijR}5*X ziIvRp`U^E~AqgL0XEbg5Z2YMB$9|vfZ@}o)Wap%OY`nboao05*Vr* zBqgR2o#$`@WVwJAvBnm9c~Id_Kx-|BH+7JO_scNFJtfuV8!F#NLGE8($96`_g{TVz z{`vj_a_o)-u?U3OO<;>DOT&JmS2g*(8|KIZ%Jcx9J_6d#6m}V}ziHc%h~hhV;Z~>Q z-1lPCR43cWg>N3BXHGTQaLcxJCRj%rU{U18i!I6Oe;*t^N=z5}bTyX6msM`kg z4Z#CGxM5u+YMLqHhiT%&O%_pF*Tz73XE6YgC|xWm2!zuN)(`8w%w0&9naY|yp}|8{aH7B1z} zV%p#N!oVYtio>qyx6&19;hu75-IN1%{ay-iG)nYr*bu9Bo=31(-2GU3SC~e`h)|ba z(OKQ}Urr1y)1MoYEjl|LCstW-^6F&P&~NUlFHdOvO=_lEsg zUi7!h`{6lDS9_`XmB#u;;^kKkI+*Gw3vBe}sw^HidTSL7GqsUAaO=1@yxgA9wJMFQ zXGNy&QDeh41hr+RNcM1&;0mrI_V|jy*iOR4Qh6of zo`@R`#I>Yn{y87!ApDz;&J--+ltR^B9jm;)ebwBZYmrAray~S+jr_H!4}7uC3@GE_ z9fbsgImdWOVWf?*#85?av8Txb=Vy`|bdl+A+1-;fWU2hKoB}!jpf3aXB^Sn}qQ5wu8e>ye)yuAP^>z zMFnQ+&oQE@dm5tp^lm9>(BN(wHAI|*nlfk-q+213Nzb{Wd{kSz~ ze6xpP3MFm}`a2e+W_ zd?FDR)J|MI{)onUL4z=)lN3lfbQ~qfIT%NUPQOUH;Q`4TN0Y%`KURkd0}-r zN|Id0*2=R=!q%Xy8iRENF!}lS(6(I{BIflwby+2qiI+q`dz_(E|GbN#TfRVh@#s`bC%k>3Uz`fel+UTMQINT;FUVT!(F%WW}{q|}Nu$4%AEy6~O6PM5R zFV?fj!0hZ5reP+DF9SZGQ!cc1cd-cW=i@PqDPrsMJZ%|^p3%1x^RlvqxNN292kQQ1 zR!y%BE5A&|hyB&~9Vz8y=OwmUB?E2M{h)`Q|&v-6S3*D{TTq8rVWOVXka%O=Y_)$>;z3iOA6AP!UBUDPxKQ-1sreLh81-9thq%Se z4<3@!58*nau<1J+kCx*WC5zW)_;okHeay!g0HenS2yJ7>pDD}$#)N{8RLEiTIu2>s z6#8a&dLJ~!shp4u1U)qfYi!hNu=GV{ye#^*3y^=uIEOhSFE0B7zg!dDR0p@|!{@i4 zb02*$2A(egk%gqon}3JxP$i=gRBJWp6xzf28?>UpM#StJS9NJK@n5X6$p;t{3G#j9 zy?Iqpc1i6tA_YyOfd7gJuQ2|`jW}N(vi?l4f=NcH@mY}|pfM&aigTcn+=b3<&mcrc zL5f}QdJPbdMV{Gs&`ikGx@Rmpj}1dndikVRWsJiHWc-=4^;*-K_0%u4V*@Ii%5*Ud z{G#OKPhgaAvxP%)?t~RtP1+&3V0>t+3-hn8VG+xxkB@_2?#gM}w_EJP;Zmiou|uO9 zRiFbR{UpLNH+n%bx^|82C+cLy-t$lT_&jq==&R8sSpUgP&5;NJhWVOPG!-S{I>?^e zV(E+o0P94$ne5f_h179%xeU+DOTjuGMTf#8j3i|!o?CW>I5X5K>Vw1PtL0kfHXh7# zMDJH`#1dp=ObVRHV+t9ot9qB6M_0Bjl==zJzi1%&hr4YsxnetLx|_EBDd<`c)~hh; zQvt@-F1HA;;ML{SYVY{zA!XxNJqJ4(O}+ah;L#^owmSk=00aqOX1AiiIIUGq8=w*3p~QXfS5no!2tOz7^Z> zbbNcdHh%dfXzmUb3@{UotxcMR-P@oQFj>Q2O^Q=puV$p7mlzTI)2(JiLk{h&(@ z$f%?PW(6s@cnKwvx!OC3AodwzL0lcuo*%EW&q@iOjy0-wso$rZ3o3q>*2B)zh}%Fz zLA*~xbVCPb3AEy;sW^~40f?i=rc^RcJ;FpJ!^lK5udLXHiQrRQ*zdPi`ZtA{h-smy zl1IifqqEgqna~ziqTek^m=kO&sJ`m}8q4H<(Ef@dJXBOOZ{gX0hNu&L(nE!$Ms?0I zZPKQ3g8;$ka*A#zu^`-FABCA-eJh1!J1kQ;7-!v_v=pKc3U_^nd=|AeILwNrkzNSa z5Fp=9f>7Xjq~Ia$yJD3FFnYt+Y{NhBdzfH>~UW#jKnCRo#9GN@`S z8P1KNIJuCROhVrinUbMlD@VR}Q-^}{>zN1Ng1rv`{jP$bSc@e zM@m<}IJ*2;!kc7T(*$7;1_c6U_$vnB>*k4~7hgr2lCQR-;(X4rY&m1Tk2AIyYF7;H z>q!FZmV=?f0Dt_*nPCjD9wn@}#MCzUIPE|9JaN&zUwl~F9FD&P5Y_z#dDWegIHj=1 zId@WAd+-JaFiDtlw)it~ZI+XlVp;K==5uL*9 zxs+2Kb0c6zkTnRfHp&!5rUlMlBw4TAQ0mgx;lc+6JbK&+J^mvL* zpPM@98Nn%NhJntYC%G+g8>${5;sG|xg>Jo&Zr~Mrs|*`6Wy4M|FTMn`NEeE6{Oa!< zM$JYbBO^T-%3(WyB0!7^M_XP!p7-v%d6nK9Y1F$Ll!pK?831Rl``D$~C)sy@jGI%Z zsHV%D3dRHF8B%wi-iXA`N>XZ-nS>cOjzo2)>Fzs_+`HLzmqC|bO^SnQBvFH0O@B2N zg+W^WID_4He`9FqA3ynu6BBay#9oBH?`D7z9hEQefQj#_HvM-<{HR81v)Nwf#U?+P zWELc|&$9}ErNM_mRWxukI+8?J9lXZ!3B>G+uB73?_W7a%?zz(k*sWE>%W$2^2p(EPLgD|7iZVG1J_ zr_>4h*NvSR8#b`r-*gMM?NV(n zM}!lA*r{-f@#L?)=Q5>v-nu4AGk9petN+B>OfJmk)opT`B+k_qWL9fVsu`QIUJ1n#bU|%3#v|xtqQhU zOFPtRKw24f`kjjwAL>GPW(%v!7fk=RIcf_4^E0#T9swBya2$oZbCjO!FyoKZE$;Xy z@;l)3N`CBYWKN1$bR_D)b5g*1=1vWB7zEh!{F@3V-TIdx5>H4cHq6bc#1yKg2juPT zLyYJue+USw_sxFM#KBK-3!a&EiVMvPD2_7+W{e`-s4jvlGr}!k3;N{{WP`~=7ZE<7 zZK)rh*bm-wBt)$@%$~pxr-R23xz5-Dnp*Z?==T$3Rn;r{F?jY{*-Y$3>wGA{t8)Qf zoH1!ECoz_I@`#W(Q~_M4X8hDgT@U%|-Q50s^%vz1)gQ+nnq&f08s6Rwzpx=wB&B5B zaCpL}b?n2E>oB&?OjLi+pDIb*$t;Zmww%?|W^}Ua>X65$KNe_zWVZWvxu60%hhu>c zNV`2<3|uAC;G8AOZ5|}4g$?*Y;~c;QQS@t(^+!{ow6j#Tq*2BK1hJCYuD-yd0lIV9 zC|Zp`Bk>)7WpXDIPv{T}=v$lFtbxtRvOS)?l|aK3D>kPXXv5Unh$LEyys!p9EUjSD z6_87UmC}iZ-|U|Xoqb*`9mzt%r z;frs@i4?-drWO$mUSuKCe`y-nbK_Ac#O^c+_Ph>fXXJ{NRXl&MB-GXVVk+Ji=g*Ev zRrTt^zqm`+L%@Rc$J-=6jcc@O(Q!Z*{>E`T^)B}7cfPb-h9z%+Th}>&5ac=mC3Kg( z9|TYkm!>9EPtGg7)~*QJ;DK>RAb=QHxO~_g6jo5+RF7#={3ABMm0&UqE*`LTP+1%J z3erX}JOdK4^*5r|C(KHH5X4@P$iUgX8BOY~#9LvM`H=lNP;*c^Uy3#)c9}^YSt4dW z`gJ?HPo@^?{gy#`oG}M*{%M*hou~rh8&NiVm^D?v zIOgC?nFHTvDOh-fUqQ_9{I!=D5dd9rK;zu2oI)2&38ElItz2*NQ}GkHxZ^}YZb*`> z>0gTE^tQj#04;EoCG?7-!s5l_@T45q0AedWEAc}yf)r-?FiRA0#zr^Iji)&?DxrFM zTXK0dCN3D}f`C`&=#I66!5JFwL;k~@F!tkkyGp?;I!lV%t{fs`@0q2lgVkBh6ueR z@bN})rzJ>q8bam#Ytr&hez9?^p+Xi2PtTBPr|ZDN-}ywGl!bJu!hrYt2QJq;j7SvLxMtHUiz?I!0#6fFX}(f3+d`A9C$2H zu87cUg&G*Kt9$OOcATR$3gqp|`Jb2s9CtAmhkNpM4BRy}1kQ}sNA#0^r(vE(yvBuc z`j-`( zr1fUe-H!xt7PkL^#sCz4{s-N=j7@D7;+1~}ue{MATzb;s_dt$`=)kdcc&8vv(0 z9^GTD-&+A81Bh`{vP=q_jbb+kGPypp7^U^h)N*jJ^xRpK#YE7!&+4VwcDzmLkRH6W5N}%q` zEi^G$#v3Wrwe*1y_)@nv_tGR&fRwv#z-^x^a{sC15%2-)^=|2SSMxX9$J68C^znPu z7T4L~>+Y_`_^?fb=HD-ucPz_JLihh5sLqB`>wt50@LvV+dj-*HU3(SL z68eZw!$bmr{n6V2{;&J<JxC{;mup zhSgG4Nm8yc^!>a$1DwfXJ}U z@ppE7J>9dnpZA};KLqo-jh{=0<%S=Sap@fKCmJ+j2q8jLI*i;D95U`}r335_M zMaChj@lF!PRYuq`Lk)b=j`}T3$L)(3mfpr)82B$V$E*QP1Htlgx@dCZ(NmC}Q>n7hdVuB&MV#7&r&J6O^5b(@H??jq)h# z-T_1$wd*balq&l?bNHONQ1WmzSSCJHU$vJH5;$@j!3$%}SV^y4&fY#M!8A0f=*+$- zMhpUTc)U6j3t$9aKx<(F#r4ff+|;znM@_LvRIo4`@9`%Q5MeR~{a;A=PncyxBg0$b z+P=WA9UIKG!c8c3-zhoBoJ>rzJPA`pn^|_U2ujQ(;}yi^SZ?;LlA(y)2vpH56&p?7 zH%mgH9G;}RNJ<>1Q=lM?71zYxP?=k-6229?hXKHU!=*)0l2WVRS%5oY^mvVJ+0-U_ zE}NQ>^?9Yuq5D6f(fI=U**Na`!m(R7j<`oEZt#FeD}Kdm%%V3Gt|3{L(>TtQJj-Ho z(RS?jELeyZcZIZ%2BO!l64|2mauST9*EA~=_1+qa=Ctw~Q@5wKYsx*i8;hcrY+TEt znt)igi^6IN+~;|9@Op13e|Pzf$uLp|omdTd{GK1O{O5a!X06UAF|CoK6=6qPNjSQX zNP9CHCDtuP>OKw!AdhLJHaXnf=(v`%NUl$t){dQ&9`Gn~Wu1HF@R2i zvj&@(=fYHhVp6DFkO8Ym;oAzO6U6zP;A7q0>?<{f;VM^7XC{Y;!qjOSA*ces?RqC_D*a12Mu{A$Zx8C%xX8Ohh0Vb(|flBblLxV85)YglQkx}F>10{fU1 zQP)w)(ckCGX(7%VI#woe!QQsJ>$QV}-DR+dU-;8!L$#%afU2qW`?u(l8Nlk%t;6nj zM+Y!BcF1Ji@ZCcO9qxu|Q{!d!qC2{Wle9`QM&!Gw^{7Z4WdL%ar!lL9Ma8^mCsu50vV>R7-v?9DXlPP zsYtYBmK=$0KjF1#htKw}B7jbKic>*ssF@zUqO71Sp@@Ap^69HT0`to)^{#ZU7_VtRu6-Yy5(d zW9{eRSDbBA;~Z%`UAF6RFL^wJ%@K?wo+j_91|ez)~^rVmQ-etzHT#AGrlX>e9z zR_ak74IBURk(nhgFWzAPZD+I4WLz-*M?gvqf8L?1pkKX5F0pwEE7IRLQw)Bn`X)X| zbLp`PI~eTbrb&~TC^`vS^!JDbnk0AGrETp5`O6x;k!|l$k^!hux=Ur}gwql(${2vQ z*9N$Do_WiZ&jhK8KyZ8x9NAn=(3!A7XbLkF#=rhdz>vvPrCuyk`6RSb%zkT|%LlQ< z86|`V&Qf0%)igBGaqz@PCh%fkkD@|X_oiPn@nVBo%3*_T7$pr38^w9LAe>}05PWRe z9bsfVLO{9BDuoA=fNMY#CHx3?4g!!$4;(CjG=$4qKM?uyaIYnkSb~I!lbOx3QkV$R z5&r^%Vjbu5%JmJyozD)UIvKy_rLGA=O!8SJf35z!n0ZHED0Xm~ihiEiQXT)?$ zw?`#SvPTyAbC2#vItm^veOmE|j2`7xa{eJYB8W%dn2$7L`cbMCbrVIexCTJ3sLpP# z2yI8veB9Yv9B1sZhkt> zFOS&=&rL$Xcg%O0v3>2@X4`Zp&yQp`{(P|bG5cR}Y+m)Xg@fffI1#`-`}kLLXE5K) zgraxAT%FE}etr0#GK}9GRm!5Db8Ww4vUTa&BP`SuyDyP^J~4t==<2o_3Hn<67zdH^ zS`Wpo{gNc(C^Xx%qPoW;ggVnn&|^Hm%4ebKchtz((C}ute=gBmd=RdzD|i zLwH@NDe~!t^LA{+nm-_ci28lxz>zVp;^g?#J-StT&*6N}1%EA@DC?vMkFnhnmxqHg z`m{e!;Lo4eoA>H+VDs^L$9fJ!xC1|7kUG2I%P@C~H)12z70KiMlaU9qU^P^d!2nH- z3PrAR?Ww^8(LKXgR_Fs zt0>7Bn%Ii2B YSgZ2fVHlg-Hhy-38Eb)s%j-TFkGx2IJ`A2!FJ8ULUjY7ZpD#!H z#MJKeXwXM*{LVlBs@_2$5 z6z9B~)7_w*{ck{N5w#x67)Z#J$rwE8yNrg=>Cq|8I9J#<5c(%5tr(+yxKs>(6!0_L zvTNZX+R+jM!O~igQ+o!_j9#9BKB5}WE0z+ek$Isugd=EdBpLplR0A{8>m^hVBs z4~<8Ez*ZZe`rxLKJ~nx_))V9OEb;2@dH(aXv7-x5=kK*jPjon~%DvHIrtyR5Vv4#E zir`|Ua`3+7^MguiA!nCh#^(gEH0?F+H3i`<%kMDDh22BCk4)|buBSVl8cArz)(~zE zGdFEbz&M^$d_q1;RRdLHnhd>h+%uhJ8R|s~d#PTgDS-oCo(w@vh&zvSE>c`jTE5gp zLkAQVuRN$NX&-IclrX4m5Qo~hEb4*QxNTxm=PVmMr_%ie)@|asb6&5?O1e*B*;*g4w&q1%a2|4)&V z{eQUb?R&+bcZlHs$nWh-ji9U;|8oaB4hn+;%G8d!1{(CAYw9VeDi!*FS@DejKO3Hz zgXzD0V4;9{q5U5^C+C0l{(qDIAODBW^p)Z5N||3Ahg)_?Y~mZ+MPi{PEO~%_kS^&&mT#q!%&cL;8vlgfLd6RM z&}_h@?hx|7zQcJ`e?5l_&0rN{fGrP^?lg}(mxd;IF?D->JP-6mwHb?lC9 z+qTiMZF}-OQ#CdJnt5^6xy}bTr_S1Iuis9&wcXU1d^~;1_`CJ)P~TGq$=}d{QvT0E zKD_5tL1({=saX&68T_$;^#q8sEVpR@)RQqXq_HI;29rwuY}+~yd7L$|#F9&8t!`R; zWV}~nWkJ#pE(EJy)-{tBtNoa1l7qkcX=Wg@1sTA>Pn03LC3h0ov9|!g<<&DBWvsuq zo;~mP0))}9M|lpU)amlkVeiAczG|{@P?|sCpLZj+&4xfv^2nn9I1z6urN09MwqJ=@ zYw#sL*nslTZ<7K`911vp)2jSTDScqN=D%i<4UMYk&sW<#sx8K+&>fOkEE-^U%USd2 zq}Y;MJu(98ZT-t8_2;zX>^j`=#0|PILbb_E$yIMtJjC%hC>K(@z3qhfFQA&`#M?M? zk^p-;3&6#9-N$+~zBa)suY$`61fMkzg~r!BM3C)afhUk}4V?FZC2BcHV|#_AqEe>x z-E2H)vl(ZQWZ~82RCNSrnm+P$A|*? z?77f=>uBStfMkqy{q7A4XYb_n^q*sb>p{GG*0gBm7@xfeE7gN;n^RE>FeMGcsfg(G zJ=q-w`daGiZZbAq;iwHN5UJj>-SW^9`mQgmf z7nA{B%6Ok>$p3m7cKIV7NTS`vGc(ovr?KmF*2nn4WN}Nv_=W1x_TM4o$6x`^o0)e8A{5wt z7W>NFyIxi(xWdjU0)U{-xCPwvWGv%N8fU=flY{8&@0myv{b@&h;7&8~Y5d7Oc)Ctn zo#J~;ur#YX6cJc-2{`(H{%DFqKrrb9h@2KgF>c;Bga$s=9NZsLusL&w1E_fS7X_#wxG@~DuBv;V zci1*J>s1DU%lE<*%V_8Aiz(L}|H39ZQ1m+HHnvsA-i{QbwmAZ8Q%GnbNMLf0RG}dp z(*vCxA{JFXZ36%`i}8`*Y{CakIb>aUyn_bUE>}owhHFRwAPk;|&XDvnB(a*Rhe4IF z#XW~2yd4fF-%JSJToIh%Y}dpd%J1=bWD?&3PmPao`Lgw)Uym2hmYH60keb?s-mgz> z{P#?`uedqzbf9RWqma^J*P%zKZEBE65q_&+ckMp05QXyHYt4ROG*)GMd#JaS8EtkB zki-&PI5fKpz!~B^y>E`*sd*$Gi;7xUTN-mXn4cABxIc5kS1e1 zwjgTyAzy&ZW)K*>L)uqFtfd18LV`gaTj_M<%&P9d!t%_v+ z*Pi|*3u(0}xv-W|f#j*P>-%mHngbMb>~lh2B4Rh}qN_?%6iHg9@PW;0-3Cb#{))2; za`3m100J?DDH8D4J9MdP+uw@pgR`RdH;JrA`NC*B4{>C;n??CcL7Qtz3c0mcBUrF9 zmgWghz!E4I7ku`dHrpKv)9~8-x^UAZ@42msSr>8J zKnc2V3x_(U-oAHhonhJZXJ0ltLpfH)7&g1Ib@&)a#NT9?+e)O<4L2mXeu-Sz=vH;~ zG^tq(;{yDS33};_(^JXCfC*mZ?$BTY(t*YvzeKY7rR-+vA(+x_-GAb#(o&0%O2T2t zz7J%k!DIKRi`!^tUH=v_PdWUfTkGCgfF8Uz5zNR0l`AV+{QDVtgdZ9s@<(g!y?_1P z5QS5E;56sbW(4>coVkiXf|55B8Sbrs;oJ{^)kw~Hdn!1tfuTqu#UA9a^LY^{{*oxI?dDc2M(-4%oQkc+LH}CnU~Ba* zB@H)`T`$2~K1cvnjUAe|kO^iLAeX}dZcz}7_UxnS+v*>dVzP5KPa~cHf-syqHpxr( z5u$MW=NJUkULGq0$QBv~26MrS`fkkX1%a%rxSTtMzWeJUp0QX~NXq?+7n`(+$ z8ZX{9LDG0a8FP}Vz{BteSfp_;Nk`S{`wz(^gv9BPGt}!y3W0}YwCZnY<@^M|5qvD) z<#ns>xSh!jU5wk{Zm~tm-zd)~Is+s0?gk0sXznSsN~YVOMH34GlbLcddm6KA+X7)z za?;~G%vrvGQ*~?BUXCwSh>gg5m>uHR2_BOM1P>B@Q!cfz|EClr@T(vI$kQ=5t3mGG z5%jon5>EDRckDLG0m$M8hO-BzvRdrttD$dz|6usQx`)4%0O>AX|9g_KLEyw>+g^he zRniiKK(NA{udw!#ka9P20VV~3we)62GSZpVa=>InCs+>R!=kpThjyr-z^&Z&X7Hk1u|@)?S`Lj zo2n!De61RsFWB?n4oGm9Ed%$Ljm?GZw@tedM!E8r^V9S|e*T7X9Y9<819~nA_H#2lX`$F3?NoHtf{(|(DHdA02PDs^EX+1&h3T)&1cu`~7=H^;w!#fyhn#YlOD7@>U-1*UKy4bW|f0b$@tf1mLbx`qZlWgY^nL3Lb$ReTFChyFgpE}FRQ z@#UoLRm^g<1j)@m5hImtcd~?P3 zhVUfncD8m1-D4`Fm9IFGRe!UG)p5 z*+q~6eYJJW3H2g^uZUDhX!ax;*tAT^d{6d|Wqzy&EyiDo#uyLnn~zix6m-510{PdY zTqUsc?_|TXF0N9X#^o)9f$Y7pPNBeV?koOYzxG0eU~eiBQiF>I+v^0XXNsTCmy2^i z`czr}YXVWE(~6N^mWcae7A?rSKb``&WE5ZO6EU-=g1mjnvua1y7e zXqwa8(hyALpu&GN{}ooi=4W2M&}#vp&8OyEsZww=e+qRSG6Ac--VGSjg0ij6dL9N6 z*#3f2+zC*%^$w?O3WI6?ztW2Z@V}*7iiHRm4UmPC<$r3gNo|>gwHDO>Xs?5T(g?#2 zP@>PYHf9=>xNZA&6>D87(QT?F8d~@1w*tvPz zN8KN%;eBU5FHUzC@wH5aYx;1~^zCt*Zaz);hDR$hD>N_0%DhsL=O8yrtBES4VOFa<7^g$qD>+YHXoS-xz2+KYE` z8%bw^W0t}K{8>HM*U9M6xTTrre zfRf>fX>YG-N5h*8CQNWs>()u|l|&8=g7Yiy?811dI-~vP`H@6qiGM2hSd!scGVb!> z#l2uFlHj7?RNfR`{`v@dX0*(12}+?rFB!DPVmI5ca4ASc0$Y#~F29G{1m4Zi!Bf55@> zA&}dQlIGS|1)}CG=Y{fVZmE2Oa^DzJY@73*dprLH@-^$ZAPTdM)ADa1w|H>!3t*B_ zl(QvRg}Z2qE>KQHMtS?5+HoMY65h+R=)-qW)h1pjWg!%}uL9&(NB;?9t3G#txN z;%}=402z0t;$?$>8m5O;jZ&8V4o7m9$)5%4Zfb}`X&c5x3$UEo)q#(-k22hU`%azW z3OguDWG#eq(bp3vB|1xLtL&P`l)RVAWYM2}eQ!JM?ss&C!*J02u`zTwp&~WwfN@M* zX^PgfMf|^*6*Vjsp_`q9q-ii_x9lA5(Lqohz!j^EFG#$zezd(lG!Yqu!KT`UAjv^0 zT_ncPcc#iQPMl3LrqUPLNrF$mYX(_VjB8zfyde_LKW$s8tVXlXjO>HSIMt;>H?5+r zl+AIi2++cyC!fESAhdSeaNf8;Wd_iXN-#x21MG`o5TtjU z<$gn#VA6>%)2M{$4i>NZ$1_`d%``l0sD%F@2&X{v{Vc?G#q3&y=%8S)A zAmv49u!ji31IfKUm9>=lIT9tGjg4Xjtx-)oMM+km&$#gf3d0Ul2=7BASOPjKS%@Y` zEiU+dG!;bYIVu$a8{1;SWrXxGi=%va7&LeosEC{P?qN`3f`J>)*NGpf)W-$BKsY#U z_a3Oi+>oERaCi(V;QUCCh;A0a0i^S~8!@M9}AQl0Flu_nFg%-zNeh`Dd;?Qy?{0TjcyT}in;>O^M za(Vc(+BxG!yvKZHyq77&WXK^JfX2v{ouYzg^#4X71Cxw>K@|479o3wB^W1N2OrBU_q2ViE=B- zQx+++ze#M`DWd1GnEel$HtUTW7Hxfwipb3iB7cKC5ZA)m>+s!h|1T#QxF@F$| z-MV+5pI!jqe+C7}4905o*P<_@@Zw#%QzEj8XTtExj`4c#`cjJs*l z(Kjr!Zj%!<$|ga>fn0$+=9pVr4sO-}IM}SN-)-HFX4DAaXwZeMo@X= zTEjd228&d@hU?Ln`ygQ~D>HjM=mOUAqRK{qU6pubm!5D*HD}anUya0Na)}P9()4$0 zuZLJ{L2$pt`>V8@fcQ0tY6D{`i|`Ca!&c$qZv@4CG{O4R4L3ikLdu9F+FhhbI8bP$ zb)(S!k-EMblAbrVld9UTbi+#S>!8+2sWPe zx0ZpQxw(N;r8_hnH8~(8!G(TNCCfw;Q}&k*=g(5l$@MPp0`jW+#_Zw_b~GQwBPZio z6pd!Bv%&=Z=|-u!++^-=5B3>QBuaFBJ$4)gEpuWpAbV-03xzfd#K;`II?`(hD!BUl z#OQhZ_(j;G8mN!qUmi}<1n0vgJo1+7t7t@Fsu_jYM^FmBj~|YgB57aiptyc00H$OO z<8CSYnJo?;4V1>41VudxNRb|)dT(%>CyLNCQl8gE-%B6RR6*CDa16Lrb;aw*2Jso_ zZzJx*H6_lGW_kHLH*mdAzI|)oTfzUu`Ofp~lhdXe&s{$Cy1#DhS)y?wG}n}k~o4#h85$B8_0N(4P@p0 z2Q?oYh?{j})c&9Q4u_u7GK*F2jdi=)0ysFS1!uzt-o5Kaq}ydmJF z{Ei@G->!oX9%(>YpX94~8VSiS^T>#|#n@X1Vjk4Ha?TOHk}uX>akiDYW;1>evTK&h^Z0n*A^BQY>3Du>U6`H5g-n?Desnl0 z&0Qs1OA^ikMd;Tk$jU@`-1Ek4z25>H7WW19&=*tUXiD5$wH-=1CePz%{o2oxvmqwQ z0GIBshNg7i)mrF-dDdMm*immKKN4At!C$U}%d*0z^8BddGVh`!x3uQ@%>rp`vZS%U zLM$ynVf)^m`m-_UdmmYdeq!>@X5ZE8xNN6PE%wy!a80;XtUIwB=FFJR4nP6GK8aL)4u1g_VElz{CXcauM1kK-4#(KpV?N70Ks zOe@cs}T1O-6DY%%Q|(k?V{ULEu<9mI<*XM@br6oQ1kbWm>N8R;9xP@xGEXM zpS(;h@>+yc8b+)|^j&k%+HF{c3w9LvtW=O+qPl3tytL_W`CyfTh;@=WJhU^UOqfuv zS;4o;kg@m_b0pkgr7JuM07f!JvT&2kl4nvNaLWSTvu_jv$<;LYPWWZupW1iZZ?#X% zvX%5=W;QRvSs+;VH5sD$l73NYI?o*FhR)3R?vJ@gR{?u78${ym{~k z?rC0K)n!|?=Z&x3_CuBR7eqyT7Y4{=8P2Ng6+-in66E!?wv>|wj`(`G9wpy6uUfL= zNBkrc3g%E9Io-@cn^W*O2&?J|UDi|7Fs*#weAx4MTTmHoqU@2adwD7$t^2i6EN2l7 z`fG|h8SKY-;JJn#6fiRZDG3B>KLjFr3~rsl&JOFQ)V!Psyy`TvfftDS;RO_$Fo-EQf~@d zVu)ij?2#;ioiDdMyI0iloQ+c!^36d%Rhyn_-}mB5sxYgqxwwJ^aG4;)u%w@?*RB4* z*f3WJICTO2{hat_0`oV<*Gx$3Z{hn5q`x9v7Jnm2&d;R1-&7=qn3l;MK#(Aaa&e{r zzn?RwY9xLe>J{L*n5ooff;crn>dHpFKoEEzOc>~)R~{6@e}#0Vk}iEqN~Ec>I5^SP zf;}F4#*{D)jT*|N^eqHuf|6M<-?0frmOsXXFq6FiU0AZ;+(5{FOz)_nzI|<6=94-wZ6c$HbJxJl(fwUx&o_>9);JWRCYVh3I za@TS}Kg6L49u##7Z%Rz0sFoyEt`wLq`Gy_>tTXvAW5c_Zog_znCk%n*wq{U-q`AUL&rzN22l7dWo+lrtIrrwiS;S>@)9N zl=3Akk>4~7U+sBf0Tqbj{$o`=kPCx$qpWT@UBP_AQOr=m0;^S)DZFY9EX)+6RF2q! zj;9^y!J7EABJYyQz-wGDbKS~?8HG_>M#jm?4gp^BBIWsDxQyp}T2#_jeuaeyl;qa| zJ0xW~TytYVoeQwg4yhj>u1~{5AXVuB`VIg=CxK)Z5R;`9QnT#@EJl8F+bb1}v{?s^ML25 z9%dDm+=n$F@GDu|XxkT09hvtGkC=HM&#q4|T-9g^Y%Sr~MuLxDqX$|Hi7@uy4gfr8 zfgm5D@_S1IuwpCdeWrHD3wvqmwmYS^BAPb)<4lBqQ!1SKKuZUQQF?91$zZ^}ku=zJ z`JH8e{er0*A!Z>#mlhk!&DR18x!GHRv!69>2bkm_QdULj7vd&5^T+$w%s6EM zBaRZ~tvr$dTHOKze#qw-+yaB46^yaPW962z3etqiqn`!l>{%xwP^Wv%ldH^l$Zk(4 z&hNuHumRX=kNMV%k77Ry2>U7K`rV~WE#$5tql`-_S}YH(nIo7bsaD{#Tl@_sZFn>X zb0k^=e)>hkM-XDdCo@9TD4+eIX*$#c;fJ=pfI&#?zf1}aAC>o3+6%mC{tjf2?-OG8%kA724X@UElEyr)mhAdu>G z)5nAqI+Dh3i<}-7&59SG5(J71lsqVNW66ZQ)+r1foa;6B39p5ArP);Wm;btj!&b}B zE$U(ZW&h(U={k}V+)-5Nd}g^<>B;T64#`WWd+q*QHa8XqN_HFl0&58?n*VqhQQX0F zM@T~BnUAI`voIh#$I(FUS>7@k#=0x2FkmEcv78|Zch+D?*>S2m4Z-XZNNIJ`$dH*p zM~}YsPrC9Dz7ocf<3++>j3sD$ld1&_cRPp2{Lpkis3mt-aDl)gYX^uMAr%>ugG+2l z_leug)3v%2Fm3;kGkfEy=h0u2cK5EQaxs(v_FmPGb0KWT=@d+?^r}UeY25ZWD}@9? zQx|v@@R6y<(Ir51WXNFx^kzL5VLHMdW%6L}c&<~SUKzeQ*d1TsbP$bnly2cqf~$6a zh?5J*roT5`IF}b$uwsc+kC9--ucxzGl^Onwe2OF*x08TzagV?!a8;N$OO|SN-WF?s z{5h@bKDrS;7XThi!YZ0uFd6KMU2{bFTcCJK%#-phNFOI%jh}-Ss1$X3+CT@EU2(OB zRwZJE%mPYGmFa(JvJ^lnn9U*m$WPKnN0h&RvD$ zXFQ^ibU~5NhM?$sxC?Fs;H~%BJ$;I}VNCII?Qoi`XX-KA^{W-?&s5p%GywM{z>F_( z&?lAEXp$@!o^-nd$gquZ0g#XSnmma812e1dzoQu8bIklbIW%zlDQTl-SWPX+L#1gC zXdy&CQLMfAJ29&J0bj*mt|O1OEq3~!ZS-D#ee zUWxaPtBxxz>rYGJGv86+Kb9cze92X=^fw0i=O_R?B-tm)OY5#-nwNDQ@0QCxu+~gD z$gwYI4LxhH6lBByudZX}{@=PT)$rTIVCG=`A8D=9iajF{_)hUNy`Y7*Z6OjAMr_0}Ev`r(;ok@WhgdAp;KggeHj%2pz zuWyELGI|%?uRVHt_~m-)mV$V8E~G}|N4>9i$mNQzujPcp9XPb!G>*ba#_(EbZ!`X&X;~N={q*_okCh9Iv8#Dxp(-k!18Ph1Frm08@4G< zj!_V%q`yGK>t)H&ygN4cD1L;oQZWmnCf(9lQRMa*g{Ct~9@6I`l>CX%tT|w2oVW4{ z(CfC83Nq?Mm};bqKfT;`;Wxn23SHfBUGB!t)G_9gVN3;*$7dKG;~maeT{Kl3{z^zu za{l$PeZlvRCzc6u;wZ<)dc**>7lyXJ7Ee#+MPE?TpP{B(cSf)=rNQQl10oUMh&bC3M+o~H#G8qUmA4aW`RrPV??l) z#<+q;2tgWh?Rf^g%Mu(2!Yprzc0>e9EylX{Vma~jc*Vx~66S{l##QTQlbdqw_}(p)~xe1mOwPdZL42?J?{6jB_CVYG4W zh1`LOn?z|=TwB}nxNvJ%Mlk+lzUv6Px+?DteN)PlRCOvQe$(D zWLf7TW0r714t2?1{wR$d$o<~^BX=xCLBd7r&}2wST^vo3$JB)IyCnVm++IGL%|(?_xD@+H@nDyS`YE#$rA*jsdMB@mZ~~wXL5U3e&(G>4v3KsT zYP+@FzbmLN2G2MRwjJU{Wq2ohcx1r-4Y+3O9%#O(ImCodNB-#P-{*r9Ct(^j&0}*X zeER7-w%o@3w7U7ycY_<~cOkDr*1lsMKflDCG4a2mx7AUm2EysAv<`G4Hnr5k)V=!S zZ|W5~Jg|+G#3ST2#T8|0vdr$0sAd+RV=~tsR~{NYkZ+GXx+LKta1M<@xSxUK5KKAi z;W&TUM}i&Mz0;Nx)bu2JuOcwWv#Hj_Jz^|82-#FE62h<(S^eSdLgnC2#E;YXH6N;* zZ3W?&=x+kOuC3UZnLc_S(Kqa0!6yIdt63b`5k3xk zWj_uxYSE8Oib)k(Z={KN9QwQlrSNV*IfE!=fa{TM;gYop8Eu#B-FL%cFM|10Ue)>oa%t zk&s=yi;}5_nu<5jHK&8|$%V)L7SZ%r-J>k*@exH`EKC1dg6EJZlaExbFus}EZBG2L zVa~rRny^QCYwpye5eS8E)56?i#h_q6)ghoU~8I@&p&nr*n4e-07$eh_z?@0xixq`o0 zq!TXii(~VAA%1=ikV-y8hy-tH`#^H;6_31gIpHkaymjY78L+JJ+q z>*j3Dsa%AiUl)oZj>9kcZFi7}{~EMKcmVZ|+FkR**`&qa%I*!hWwUS^{D^$jO*ISL zOvb}W-7`uB1864NNId|PD!*BCD)qZ=g`{Nd3>%8Mio(Zx@19$bTKGJNjKNVv^k#cF z3D4HD$%?)jaqJM)kwV-E7W`fe5y$h?{Y#3hYbM~)R})7}Kr!Ga;cg;+RIV~yACEWQ z;*+S}y(BwYTe##wW^|ym>;+o_TATkhVAlO=t;!r217tT{D@z_FrwD*6=A-tL%jRbaiW)tm72iO+J8x+>aUb~ub0LZH9QRJS zMz|qhTrVRK|J@F|5OzhOQ~gn4B^a8mrdFNcM9it}7fKElvXfzyPiP#P7a0E2Th__b zCI$dLlMQeGIHi%62Euz`3Cj97 zL8;u>t?3`I1>A6s)CJdposG-g^fKdhO`*;=7>f-2qM?xrwfuuAnq|*eYc!w{zYH}Q zjoynO>iwB1l72}a_K@Yfh12YH7_eZCFwCpfjc4|#Vx1L^8h1LcR-}+-V5ik-Ap^BS!rEdF!dPM`Q!7k_8ZL(esAAdfsX5Ly4P){_!0;uX+KUwqMk6_^x5oPSZNNTU zUUqm1dRN|{uPs*HkW0i^HwALm$>-gW&nz#DKF`y5Up}Wff$z_^mG49MFYq3>^W)uH zV^I+F7@L=PMb9s}s^P=8}a|gI92)jZsR+=>dv!yj3+sav$^0pRp3&!2MlM2gfvEvwn!P06$BqoCakI z+!+B=dw<@_MA-y}CdSWKN~U;1$KjvU2F#c4(2l8QTJ$wh<5%wJKno8WxC+uMz0o&j zjww`~#o5Z5`h$);PAo{-a$^m{ACNYx2TeV{FD874Wi(boHeRgHZHFnDyw={P4E`-P zT`=17h}UpOhmE6}%YUm0p5e8mj`E>c+4P|NhJC;FGzY9iglzJynXh5(s>IotQ1_DVuDZ zQw2TLDe)*ggKIaB^p)ZLC2U_?YpH49DQT@&ZkK0Tba-S2{Cw`P)YebL)PzntoX5Y& z7jc!J{+ucCKC2S@u#WjF@Na{6ThF`z40!345Arv}S#uFKaa(0{EQ%LO0?J38CJK)C z--}fzSi57tfr;Ci8M>Yyy9H~fskl5t{`%H)x=rjb?EW6h7*Y|$9caTi1V0q=Z)3A* zwE*ZzCERE*DFRb3Z)QAV{(scqE>aaes)zbxtsp8k600Pb+XX8zZBf{UWfv7PcP0+0 zv(@_M0Iq6%jz~<+R-L;!i>fS+vwk1&Pw2DaFxKX0XD|^dXaInlm6?q_MYs!0`u}Va zy1>>zIsSX;gmi;R3UdOC%~=4(#>O06X3T7CY{sSl6BYoc2`jT1tC^X(89(p$#+bv* z$b^%Hla-r=o1Kf>oD;yz!VX|(<>FxHHc3J00mBCFA;=;iL=}=KU&Dl%g472ik*s)I z_nf1l(0HQcW&>GL^`OWg-FvOZgedIU<4hCfg~P&d$W{WbP;9#3ATsdjr(jUK15hjs z!VT+h{YG6#<`Qr#HbIXgf!T)5pdR`A)KavtAnVMSLH~UsI{!8^vi;BBf1-UPBqa4# NU}az_iv3`i{|gN3u%iF~ diff --git a/mcstasscript/interface/plotter.py b/mcstasscript/interface/plotter.py index f49fdf3d..a04db47f 100644 --- a/mcstasscript/interface/plotter.py +++ b/mcstasscript/interface/plotter.py @@ -1,4 +1,5 @@ import math +import copy import numpy as np import matplotlib import matplotlib.pyplot as plt @@ -11,640 +12,380 @@ from mcstasscript.data.data import McStasData -class make_plot: +def _fmt(x, pos): """ - make_plot plots contents of McStasData objects + Used for nice formatting of powers of 10 when plotting logarithmic + """ + a, b = '{:.2e}'.format(x).split('e') + b = int(b) + if abs(float(a) - 1) < 0.01: + return r'$10^{{{}}}$'.format(b) + else: + return r'${} \times 10^{{{}}}$'.format(a, b) - Plotting is controlled through options assosciated with the - McStasData objects. - If a list is given, the plots appear individually. +def _find_min_max_I(data): """ + Returns minimum and maximum intensity to plot given dataset - def __init__(self, data_list, **kwargs): - """ - plots McStasData, single object or list of McStasData + Uses the plot options embedded in McStasData to determine the proper + minimum and maximum intensity to display in a plot. - The options concerning plotting are stored with the data + Have to take cut_min and cut_max into account that can cut parts of + the intensity away. When plotting logarithmic, orders_of_mags limits + the orders of magnitude shown. - Parameters - ---------- - data_list : McStasData or list of McStasData - McStasData to be plotted - """ - - # Relevant options: - # select colormap - # show / hide colorbar - # custom title / label - # color of 1d plot - # overlay several 1d - # log scale (orders of magnitude) - # compare several 1d - # compare 2D + Returns tuple of minimum and maximum, when no data is present the + function returns 0, 0. + """ + cut_max = data.plot_options.cut_max # Default 1 + cut_min = data.plot_options.cut_min # Default 0 - if isinstance(data_list, McStasData): - # Only a single element, put it in a list for easier syntax later - data_list = [data_list] + to_plot = data.Intensity - number_of_plots = len(data_list) + min_value = to_plot.min() + max_value = to_plot.max() - if "fontsize" in kwargs: - plt.rcParams.update({'font.size': kwargs["fontsize"]}) + if min_value == 0 and max_value == 0: + return 0, 0 - print("number of elements in data list = " + str(len(data_list))) + if not data.plot_options.log: + # Linear, simple case + # Cut top and bottom of data as specified in cut variables + min_value = min_value + (max_value - min_value) * cut_min + max_value = max_value * cut_max - index = -1 - for data in data_list: - index = index + 1 + else: + # Logarithmic, minimum / maximum can not be zero + max_data_value = to_plot.max() + max_value = np.log10(max_data_value * cut_max) - print("Plotting data with name " + data.metadata.component_name) - if type(data.metadata.dimension) == int: - fig = plt.figure(0) + min_value = np.min(to_plot[np.nonzero(to_plot)]) + min_value = min_value + (max_data_value - min_value) * cut_min + min_value = np.log10(min_value) - x_axis_mult = data.plot_options.x_limit_multiplier - # print(data.T) - x = data.xaxis*x_axis_mult - y = data.Intensity - y_err = data.Error + # Take orders_of_mag into account (max / min in log10) + if max_value - min_value > data.plot_options.orders_of_mag: + min_value = max_value - data.plot_options.orders_of_mag - #(fig, ax0) = plt.errorbar(x, y, yerr=y_err) - plt.errorbar(x, y, yerr=y_err) + # Convert back from log10 + min_value = 10.0 ** min_value + max_value = 10.0 ** max_value - ax0 = plt.gca() - - if data.plot_options.log: - ax0.set_yscale("log", nonposy='clip') - - ax0.set_xlim(data.metadata.limits[0]*x_axis_mult, - data.metadata.limits[1]*x_axis_mult) + return min_value, max_value - # Add a title - plt.title(data.metadata.title) +def _plot_fig_ax(data, fig, ax, **kwargs): + """ + Plots the content of a single McStasData object - # Add axis labels - plt.xlabel(data.metadata.xlabel) - plt.ylabel(data.metadata.ylabel) + Plotting is controlled through options assosciated with the + McStasData objects. - if data.plot_options.custom_xlim_left: - ax0.set_xlim(left=data.plot_options.left_lim) + When plotting 2D objects, returns the pcolormesh object + """ - if data.plot_options.custom_xlim_right: - ax0.set_xlim(right=data.plot_options.right_lim) + print("Plotting data with name " + data.metadata.component_name) + if type(data.metadata.dimension) == int: - elif len(data.metadata.dimension) == 2: - # Split the data into intensity, error and ncount - Intensity = data.Intensity - Error = data.Error - Ncount = data.Ncount + x_axis_mult = data.plot_options.x_limit_multiplier - cut_max = data.plot_options.cut_max # Default 1 - cut_min = data.plot_options.cut_min # Default 0 + x = data.xaxis * x_axis_mult + y = data.Intensity + y_err = data.Error - if data.plot_options.log: - to_plot = Intensity + ax.errorbar(x, y, yerr=y_err) - max_data_value = to_plot.max() + if data.plot_options.log: + ax.set_yscale("log", nonposy='clip') - min_value = np.min(Intensity[np.nonzero(Intensity)]) - min_value = np.log10(min_value - + (max_data_value-min_value)*cut_min) + ax.set_xlim(data.metadata.limits[0] * x_axis_mult, + data.metadata.limits[1] * x_axis_mult) - max_value = np.log10(max_data_value*cut_max) + # Add a title + ax.set_title(data.metadata.title) - if (max_value - min_value - > data.plot_options.orders_of_mag): - min_value = (max_value - - data.plot_options.orders_of_mag) - min_value = 10.0 ** min_value - max_value = 10.0 ** max_value - else: - to_plot = Intensity - min_value = to_plot.min() - max_value = to_plot.max() + # Add axis labels + ax.set_xlabel(data.metadata.xlabel) + ax.set_ylabel(data.metadata.ylabel) - # Cut top and bottom of data as specified in cut variables - min_value = min_value + (max_value-min_value)*cut_min - max_value = max_value*cut_max + if data.plot_options.custom_xlim_left: + ax.set_xlim(left=data.plot_options.left_lim) - # Check the size of the array to be plotted - # print(to_plot.shape) + if data.plot_options.custom_xlim_right: + ax.set_xlim(right=data.plot_options.right_lim) - # Set the axis (might be switched?) - x_axis_mult = data.plot_options.x_limit_multiplier - y_axis_mult = data.plot_options.y_limit_multiplier + elif len(data.metadata.dimension) == 2: - X = np.linspace(data.metadata.limits[0]*x_axis_mult, - data.metadata.limits[1]*x_axis_mult, - data.metadata.dimension[0]+1) - Y = np.linspace(data.metadata.limits[2]*y_axis_mult, - data.metadata.limits[3]*y_axis_mult, - data.metadata.dimension[1]+1) + min_value, max_value = _find_min_max_I(data) - # Create a meshgrid for both x and y - x, y = np.meshgrid(X, Y) + if "fixed_minimum_value" in kwargs: + min_value = kwargs["fixed_minimum_value"] + if "fixed_maximum_value" in kwargs: + max_value = kwargs["fixed_maximum_value"] - # Generate information on necessary colorrange - levels = MaxNLocator(nbins=150).tick_values(min_value, - max_value) + # Set the axis + x_axis_mult = data.plot_options.x_limit_multiplier + y_axis_mult = data.plot_options.y_limit_multiplier - # Select colormap - cmap = plt.get_cmap('hot') - norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) + X = np.linspace(data.metadata.limits[0] * x_axis_mult, + data.metadata.limits[1] * x_axis_mult, + data.metadata.dimension[0] + 1) + Y = np.linspace(data.metadata.limits[2] * y_axis_mult, + data.metadata.limits[3] * y_axis_mult, + data.metadata.dimension[1] + 1) - # Create the figure - fig, (ax0) = plt.subplots() + # Create a meshgrid for both x and y + x, y = np.meshgrid(X, Y) - # Plot the data on the meshgrids - if data.plot_options.log: - color_norm = matplotlib.colors.LogNorm(vmin=min_value, - vmax=max_value) - im = ax0.pcolormesh(x, y, to_plot, - cmap=cmap, norm=color_norm) - else: - im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) + # Generate information on necessary colorrange + levels = MaxNLocator(nbins=150).tick_values(min_value, max_value) - # Add the colorbar - fig.colorbar(im, ax=ax0) + # Select colormap + cmap = copy.copy(plt.get_cmap(data.plot_options.colormap)) + if "no_data_to_black" in kwargs: + if kwargs["no_data_to_black"]: + cmap.set_bad((0, 0, 0)) - # Add a title - ax0.set_title(data.metadata.title) - - # Add axis labels - plt.xlabel(data.metadata.xlabel) - plt.ylabel(data.metadata.ylabel) + norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) - if data.plot_options.custom_ylim_top: - ax0.set_ylim(top=data.plot_options.top_lim) + # Empty data, return without cmap or norm + if min_value == 0 and max_value == 0: + levels = MaxNLocator(nbins=150).tick_values(0.001, 1.0) + norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) + im = ax.pcolormesh(x, y, data.Intensity, cmap=cmap, norm=norm) - if data.plot_options.custom_ylim_bottom: - ax0.set_ylim(bottom=data.plot_options.bottom_lim) + # Plot the data on the meshgrids + elif data.plot_options.log: + color_norm = matplotlib.colors.LogNorm(vmin=min_value, + vmax=max_value) + im = ax.pcolormesh(x, y, data.Intensity, + cmap=cmap, norm=color_norm) + else: + im = ax.pcolormesh(x, y, data.Intensity, cmap=cmap, norm=norm) - if data.plot_options.custom_xlim_left: - ax0.set_xlim(left=data.plot_options.left_lim) - - if data.plot_options.custom_xlim_right: - ax0.set_xlim(right=data.plot_options.right_lim) + # Add the colorbar + if data.plot_options.show_colorbar: + fig.colorbar(im, ax=ax, + format=matplotlib.ticker.FuncFormatter(_fmt)) - else: - print("Error, dimension not read correctly") + # Add a title + ax.set_title(data.metadata.title) - plt.show() + # Add axis labels + ax.set_xlabel(data.metadata.xlabel) + ax.set_ylabel(data.metadata.ylabel) + if data.plot_options.custom_ylim_top: + ax.set_ylim(top=data.plot_options.top_lim) -class make_sub_plot: - """ - make_plot plots contents of McStasData objects + if data.plot_options.custom_ylim_bottom: + ax.set_ylim(bottom=data.plot_options.bottom_lim) - Plotting is controlled through options assosciated with the - McStasData objects. If a list is given, the plots appear in one - subplot. - """ + if data.plot_options.custom_xlim_left: + ax.set_xlim(left=data.plot_options.left_lim) - def __init__(self, data_list, **kwargs): - """ - plots McStasData, single object or list of McStasData + if data.plot_options.custom_xlim_right: + ax.set_xlim(right=data.plot_options.right_lim) - The options concerning plotting are stored with the data + return im + else: + print("Error, dimension not read correctly") - Parameters - ---------- - data_list : McStasData or list of McStasData - McStasData to be plotted - """ - if not isinstance(data_list, McStasData): - print("number of elements in data list = " - + str(len(data_list))) - else: - # Make list from single element to simplify syntax - data_list = [data_list] - number_of_plots = len(data_list) +def _handle_kwargs(data_list, **kwargs): + """ + Handle kwargs when list of McStasData objects given. - # Relevant options: - # select colormap - # show / hide colorbar - # custom title / label - # color of 1d plot - # overlay several 1d - # log scale (o$rders of magnitude) - # compare several 1d - # compare 2D + Returns figsize and data_list - # Find reasonable grid size for the number of plots - dim2 = math.ceil(math.sqrt(number_of_plots)) - dim1 = math.ceil(number_of_plots/dim2) + figsize has a default value, but can be changed with keyword argument + data_list is turned into a list if it isn't already - if "fontsize" in kwargs: - plt.rcParams.update({'font.size': kwargs["fontsize"]}) + Any kwargs can be given as a list, in that case apply them to given + to the corresponding index. + """ - fig, axs = plt.subplots(dim1, dim2, figsize=(13, 7)) - axs = np.array(axs) - ax = axs.reshape(-1) + if "fontsize" in kwargs: + used_fontsize = kwargs["fontsize"] + else: + used_fontsize = 11 + plt.rcParams.update({'font.size': used_fontsize}) + + if isinstance(data_list, McStasData): + # Only a single element, put it in a list for easier syntax later + data_list = [data_list] + + known_plotting_kwargs = ["log", "orders_of_mag", + "top_lim", "bottom_lim", + "left_lim", "right_lim", + "cut_min", "cut_max", + "colormap", "show_colorbar", + "x_axis_multiplier", + "y_axis_multiplier"] + + for option in known_plotting_kwargs: + if option in kwargs: + given_option = kwargs[option] + + if isinstance(given_option, list): + if len(data_list) < len(given_option): + raise ValueError("Keyword argument " + option + " is " + + "given as a list, but this list has " + + "more elements than there are " + + "data sets to be plotted.") + + index = 0 + for per_list_option in given_option: + input_kwarg = {option: per_list_option} + data_list[index].set_plot_options(**input_kwarg) + index += 1 - index = -1 - for data in data_list: - index = index + 1 - ax0 = ax[index] + else: + for data in data_list: + input_kwarg = {option: given_option} + data.set_plot_options(**input_kwarg) - print("Plotting data with name " - + data.metadata.component_name) + # Remove option from kwargs + del kwargs[option] - if isinstance(data.metadata.dimension, int): - # fig = plt.figure(0) - # plt.subplot(dim1, dim2, n_plot) - x_axis_mult = data.plot_options.x_limit_multiplier + if "figsize" in kwargs: + figsize = kwargs["figsize"] + if isinstance(figsize, list): + figsize = (figsize[0], figsize[1]) + else: + figsize = (13, 7) - x = data.xaxis*x_axis_mult - y = data.Intensity - y_err = data.Error + return figsize, data_list - ax0.errorbar(x, y, yerr=y_err) - - if data.plot_options.log: - ax0.set_yscale("log", nonposy='clip') - - ax0.set_xlim(data.metadata.limits[0]*x_axis_mult, - data.metadata.limits[1]*x_axis_mult) +def make_plot(data_list, **kwargs): + """ + make_plot plots contents of McStasData objects given in list - # Add a title - ax0.set_title(data.metadata.title) + Here a new figure is used for each dataset - # Add axis labels - ax0.set_xlabel(data.metadata.xlabel) - ax0.set_ylabel(data.metadata.ylabel) + Plotting is controlled through options assosciated with the + McStasData objects. If a list is given, the plots appear in one + subplot. + """ - if data.plot_options.custom_xlim_left: - ax0.set_xlim(left=data.plot_options.left_lim) + figsize, data_list = _handle_kwargs(data_list, **kwargs) - if data.plot_options.custom_xlim_right: - ax0.set_xlim(right=data.plot_options.right_lim) + for data in data_list: + fig, ax0 = plt.subplots(figsize=figsize) + _plot_fig_ax(data, fig, ax0, **kwargs) - elif len(data.metadata.dimension) == 2: +def make_sub_plot(data_list, **kwargs): + """ + make_sub_plot plots contents of McStasData objects given in list - # Split the data into intensity, error and ncount - Intensity = data.Intensity - Error = data.Error - Ncount = data.Ncount + It is fit into one big figure, each data set as a subplot. - cut_max = data.plot_options.cut_max # Default 1 - cut_min = data.plot_options.cut_min # Default 0 + Plotting is controlled through options assosciated with the + McStasData objects. If a list is given, the plots appear in one + subplot. + """ - if data.plot_options.log: - to_plot = Intensity + figsize, data_list = _handle_kwargs(data_list, **kwargs) - max_data_value = to_plot.max() + number_of_plots = len(data_list) + # Find reasonable grid size for the number of plots + dim2 = math.ceil(math.sqrt(number_of_plots)) + dim1 = math.ceil(number_of_plots / dim2) - min_value = np.min(Intensity[np.nonzero(Intensity)]) - min_value = np.log10(min_value - + (max_data_value-min_value)*cut_min) + fig, axs = plt.subplots(dim1, dim2, figsize=figsize) + axs = np.array(axs) + ax = axs.reshape(-1) - max_value = np.log10(max_data_value*cut_max) + for data, ax0 in zip(data_list, ax): + _plot_fig_ax(data, fig, ax0, **kwargs) - if (max_value - min_value - > data.plot_options.orders_of_mag): - min_value = (max_value - - data.plot_options.orders_of_mag) - min_value = 10.0 ** min_value - max_value = 10.0 ** max_value - else: - to_plot = Intensity - min_value = to_plot.min() - max_value = to_plot.max() + fig.tight_layout() - # Cut top and bottom of data as specified in cut variables - min_value = min_value + (max_value-min_value)*cut_min - max_value = max_value*cut_max - # Check the size of the array to be plotted - # print(to_plot.shape) +def make_animation(data_list, **kwargs): + """ + Creates an animation from list of McStasData objects - # Set the axis - x_axis_mult = data.plot_options.x_limit_multiplier - y_axis_mult = data.plot_options.y_limit_multiplier + Parameters + ---------- + data_list : list of McStasData + List of McStasData objects for animation - X = np.linspace(data.metadata.limits[0]*x_axis_mult, - data.metadata.limits[1]*x_axis_mult, - data.metadata.dimension[0]+1) - Y = np.linspace(data.metadata.limits[2]*y_axis_mult, - data.metadata.limits[3]*y_axis_mult, - data.metadata.dimension[1]+1) + Keyword arguments + ----------------- + filename : str + Filename for saving the gif - # Create a meshgrid for both x and y - x, y = np.meshgrid(X, Y) + fps : float + Number of frames per second - # Generate information on necessary colorrange - levels = MaxNLocator(nbins=150).tick_values(min_value, - max_value) + """ - # Select colormap - cmap = plt.get_cmap(data.plot_options.colormap) + figsize, data_list = _handle_kwargs(data_list, **kwargs) - # Select the colorscale normalization - if data.plot_options.log: - norm = matplotlib.colors.LogNorm(vmin=min_value, - vmax=max_value) - else: - norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) + if "fps" in kwargs: + period_in_ms = 1000 / kwargs["fps"] + else: + period_in_ms = 200 - # Create plot - im = ax0.pcolormesh(x, y, to_plot, cmap=cmap, norm=norm) + # find limits for entire dataset + maximum_values = [] + minimum_values = [] - def fmt(x, pos): - a, b = '{:.2e}'.format(x).split('e') - b = int(b) - if abs(float(a) - 1) < 0.01 : - return r'$10^{{{}}}$'.format(b) - else: - return r'${} \times 10^{{{}}}$'.format(a, b) + is_1D = False + is_2D = False - # Add the colorbar - if data.plot_options.colormap: - fig.colorbar(im, ax=ax0, - format=matplotlib.ticker.FuncFormatter(fmt)) + for data in data_list: + if isinstance(data.metadata.dimension, int): + is_1D = True - # Add a title - ax0.set_title(data.metadata.title) + elif len(data.metadata.dimension) == 2: + is_2D = True - # Add axis labels - ax0.set_xlabel(data.metadata.xlabel) - ax0.set_ylabel(data.metadata.ylabel) + min_value, max_value = _find_min_max_I(data) - if data.plot_options.custom_ylim_top: - ax0.set_ylim(top=data.plot_options.top_lim) + # When data empty, min and max value is 0, skip + if not (min_value == 0 and max_value == 0): + minimum_values.append(min_value) + maximum_values.append(max_value) - if data.plot_options.custom_ylim_bottom: - ax0.set_ylim(bottom=data.plot_options.bottom_lim) + if is_1D and is_2D: + raise InputError( + "Both 1D and 2D data in animation, only one allowed.") - if data.plot_options.custom_xlim_left: - ax0.set_xlim(left=data.plot_options.left_lim) + if len(minimum_values) == 0: + raise InputError( + "No data found for animation!") - if data.plot_options.custom_xlim_right: - ax0.set_xlim(right=data.plot_options.right_lim) + maximum_value = np.array(maximum_values).max() + minimum_value = np.array(minimum_values).min() - else: - print("Error, dimension not read correctly") + kwargs["fixed_minimum_value"] = minimum_value + kwargs["fixed_maximum_value"] = maximum_value - plt.show() + fig, ax0 = plt.subplots(figsize=figsize) + im = _plot_fig_ax(data_list[0], fig, ax0, **kwargs) + def animate_2D(index): + data = data_list[index] + intensity = data.Intensity -class make_animation: - """ - make_plot plots contents of McStasData objects + im.set_array(intensity.ravel()) + return im, - Plotting is controlled through options assosciated with the - McStasData objects. If a list is given, the plots appear in one - subplot. - """ + anim = animation.FuncAnimation(fig, animate_2D, + frames=len(data_list), + interval=period_in_ms, + blit=False, repeat=True) - def __init__(self, data_list, **kwargs): - """ - plots McStasData, single object or list of McStasData + plt.show() - The options concerning plotting are stored with the data + # The animation doesn't play unless it is saved. Bug. + if "filename" in kwargs: + filename = kwargs["filename"] + if not filename.endswith(".gif"): + filename = filename + ".gif" - Parameters - ---------- - data_list : McStasData or list of McStasData - McStasData to be plotted - """ - if not isinstance(data_list, McStasData): - print("number of elements in data list = " - + str(len(data_list))) - else: - # Make list from single element to simplify syntax - data_list = [data_list] - - # Relevant options: - # select colormap - # show / hide colorbar - # custom title / label - # color of 1d plot - # overlay several 1d - # log scale (o$rders of magnitude) - # compare several 1d - # compare 2D - - if "fontsize" in kwargs: - plt.rcParams.update({'font.size': kwargs["fontsize"]}) - - if "fps" in kwargs: - period_in_ms = 1000/kwargs["fps"] - else: - period_in_ms = 200 - - fig = plt.figure() - ax = plt.axes() - #fig, ax = plt.subplot() - - # find limits for entire dataset - maximum_values = [] - minimum_values = [] - - is_1D = False - is_2D = False - - for data in data_list: - if isinstance(data.metadata.dimension, int): - is_1D = True - - y = data.Intensity[np.nonzero(data.Intensity)] - if len(y) > 0: - maximum_values.append(y.max()) - minimum_values.append(y.min()) - - elif len(data.metadata.dimension) == 2: - is_2D = True - - y = data.Intensity[np.nonzero(data.Intensity)] - if len(y) > 0: - maximum_values.append(y.max()) - minimum_values.append(y.min()) - - if len(maximum_values) > 0: - maximum_value = np.array(maximum_values).max() - else: - maximum_value = 0 - - if len(minimum_values) > 0: - minimum_value = np.array(minimum_values).min() - else: - minimum_value = 0 - - if is_1D and is_2D: - raise InputError( - "Both 1D and 2D data in animation, only one allowed.") - - # initialize plots - - data = data_list[0] - if isinstance(data.metadata.dimension, int): - x_axis_mult = data.plot_options.x_limit_multiplier - - x = data.xaxis*x_axis_mult - y = data.Intensity - y_err = data.Error - - er = ax.errorbar(x, y, yerr=y_err) - - if data.plot_options.log: - ax.set_yscale("log", nonposy='clip') - - ax.set_xlim(data.metadata.limits[0]*x_axis_mult, - data.metadata.limits[1]*x_axis_mult) - - # Add a title - ax.set_title(data.metadata.title) - - # Add axis labels - ax.set_xlabel(data.metadata.xlabel) - ax.set_ylabel(data.metadata.ylabel) - - if data.plot_options.custom_xlim_left: - ax.set_xlim(left=data.plot_options.left_lim) - - if data.plot_options.custom_xlim_right: - ax.set_xlim(right=data.plot_options.right_lim) - - ax.set_ylim(minimum_value, maximum_value) - - elif len(data.metadata.dimension) == 2: - # Split the data into intensity, error and ncount - Intensity = data.Intensity - Error = data.Error - Ncount = data.Ncount - - cut_max = data.plot_options.cut_max # Default 1 - cut_min = data.plot_options.cut_min # Default 0 - - if data.plot_options.log: - - min_value = minimum_value - max_value = maximum_value - - min_value = np.log10(min_value - + (max_value-min_value)*cut_min) - - max_value = np.log10(max_value*cut_max) - - if (max_value - min_value - > data.plot_options.orders_of_mag): - min_value = (max_value - - data.plot_options.orders_of_mag) - - min_value = 10.0 ** min_value - max_value = 10.0 ** max_value - else: - - min_value = minimum_value - max_value = maximum_value - - # Check the size of the array to be plotted - # print(to_plot.shape) - - # Set the axis - x_axis_mult = data.plot_options.x_limit_multiplier - y_axis_mult = data.plot_options.y_limit_multiplier - - X = np.linspace(data.metadata.limits[0]*x_axis_mult, - data.metadata.limits[1]*x_axis_mult, - data.metadata.dimension[0]+1) - Y = np.linspace(data.metadata.limits[2]*y_axis_mult, - data.metadata.limits[3]*y_axis_mult, - data.metadata.dimension[1]+1) - - # Create a meshgrid for both x and y - x, y = np.meshgrid(X, Y) - - # Generate information on necessary colorrange - levels = MaxNLocator(nbins=150).tick_values(min_value, - max_value) - - # Select colormap - cmap = plt.get_cmap(data.plot_options.colormap) - - # Select the colorscale normalization - if data.plot_options.log: - norm = matplotlib.colors.LogNorm(vmin=min_value, - vmax=max_value) - else: - norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) - - # Create plot - im = ax.pcolormesh(x, y, Intensity, - cmap=cmap, norm=norm) - - def fmt(x, pos): - a, b = '{:.2e}'.format(x).split('e') - b = int(b) - if abs(float(a) - 1) < 0.01 : - return r'$10^{{{}}}$'.format(b) - else: - return r'${} \times 10^{{{}}}$'.format(a, b) - - # Add the colorbar - if data.plot_options.colormap: - fig.colorbar(im, ax=ax, - format=matplotlib.ticker.FuncFormatter(fmt)) - - # Add a title - ax.set_title(data.metadata.title) - - # Add axis labels - ax.set_xlabel(data.metadata.xlabel) - ax.set_ylabel(data.metadata.ylabel) - - if data.plot_options.custom_ylim_top: - ax.set_ylim(top=data.plot_options.top_lim) - - if data.plot_options.custom_ylim_bottom: - ax.set_ylim(bottom=data.plot_options.bottom_lim) - - if data.plot_options.custom_xlim_left: - ax.set_xlim(left=data.plot_options.left_lim) - - if data.plot_options.custom_xlim_right: - ax.set_xlim(right=data.plot_options.right_lim) - - def init_1D(): - # initialize function for animation - er.set_data([], [], []) # wont work - return er, - - def animate_1D(index): - data = data_list[index] - intensity = data.Intensity - error = data.Error - - er.set_data(x, intensity, error) - return er, - - def init_2D(): - # initialize function for animation - im.set_array([]) - return im, - - def animate_2D(index): - data = data_list[index] - intensity = data.Intensity - - im.set_array(intensity.ravel()) - return im, - - anim = animation.FuncAnimation(fig, animate_2D, #init_func=init_2D, - frames=len(data_list), - interval=period_in_ms, - blit=False, repeat=True) - - #plt.draw() - plt.show() - - # The animation doesn't play unless it is saved. Bug. - if "filename" in kwargs: - filename = kwargs["filename"] - if not filename.endswith(".gif"): - filename = filename + ".gif" - - # check if imagemagick available? - print("Saving animation with filename : \"" + filename + "\"") - anim.save(filename, writer="imagemagick") + # check if imagemagick available? + print("Saving animation with filename : \"" + filename + "\"") + anim.save(filename, writer="imagemagick") diff --git a/mcstasscript/tests/test_McStasPlotOptions.py b/mcstasscript/tests/test_McStasPlotOptions.py index 790ce998..b6ed26f4 100644 --- a/mcstasscript/tests/test_McStasPlotOptions.py +++ b/mcstasscript/tests/test_McStasPlotOptions.py @@ -10,7 +10,8 @@ class TestMcStasPlotOptions(unittest.TestCase): def test_McStasPlotOptions_default_log(self): """ - Test that newly created McStasMetaData has correct type + Test that newly created McStasPlotOptions log attribute + has correct type and default value """ plot_options = McStasPlotOptions() self.assertIsInstance(plot_options.log, bool) @@ -18,21 +19,96 @@ def test_McStasPlotOptions_default_log(self): def test_McStasPlotOptions_default_orders_of_mag(self): """ - Test that newly created McStasMetaData has correct type + Test that newly created McStasPlotOptions orders_of_mag + has the correct default value """ plot_options = McStasPlotOptions() self.assertEqual(plot_options.orders_of_mag, 300) def test_McStasPlotOptions_default_colormap(self): """ - Test that newly created McStasMetaData has correct type + Test that newly created McStasPlotOptions colormap has + the correct default value """ plot_options = McStasPlotOptions() self.assertIs(plot_options.colormap, "jet") + def test_McStasPlotOptions_default_show_colorbar(self): + """ + Test that newly created McStasPlotOptions has correct + default value for show_colorbar + """ + plot_options = McStasPlotOptions() + self.assertIs(plot_options.show_colorbar, True) + + def test_McStasPlotOptions_default_cut_max(self): + """ + Test that newly created McStasPlotOptions has correct + default value for cut_max + """ + plot_options = McStasPlotOptions() + self.assertIs(plot_options.cut_max, 1) + + def test_McStasPlotOptions_default_cut_min(self): + """ + Test that newly created McStasPlotOptions has correct + default value for cut_min + """ + plot_options = McStasPlotOptions() + self.assertIs(plot_options.cut_min, 0) + + def test_McStasPlotOptions_default_x_axis_multiplier(self): + """ + Test that newly created McStasPlotOptions has correct + default value for x_axis_multiplier + """ + plot_options = McStasPlotOptions() + self.assertIs(plot_options.x_limit_multiplier, 1) + + def test_McStasPlotOptions_default_y_axis_multiplier(self): + """ + Test that newly created McStasPlotOptions has correct + default value for y_axis_multiplier + """ + plot_options = McStasPlotOptions() + self.assertIs(plot_options.y_limit_multiplier, 1) + + def test_McStasPlotOptions_default_top_lim(self): + """ + Test that newly created McStasPlotOptions has correct + default value for top_lim + """ + plot_options = McStasPlotOptions() + self.assertIs(plot_options.custom_ylim_top, False) + + def test_McStasPlotOptions_default_bottom_lim(self): + """ + Test that newly created McStasPlotOptions has correct + default value for left_lim + """ + plot_options = McStasPlotOptions() + self.assertIs(plot_options.custom_ylim_bottom, False) + + def test_McStasPlotOptions_default_left_lim(self): + """ + Test that newly created McStasPlotOptions has correct + default value for left_lim + """ + plot_options = McStasPlotOptions() + self.assertIs(plot_options.custom_xlim_left, False) + + def test_McStasPlotOptions_default_right_lim(self): + """ + Test that newly created McStasPlotOptions has correct + default value for right_lim + """ + plot_options = McStasPlotOptions() + self.assertIs(plot_options.custom_xlim_right, False) + def test_McStasPlotOptions_set_log(self): """ - Test that newly created McStasMetaData has correct type + Test that set_options works on log parameter which + can be set both with an integer and a bool. """ plot_options = McStasPlotOptions() plot_options.set_options(log=True) @@ -49,7 +125,8 @@ def test_McStasPlotOptions_set_log(self): def test_McStasPlotOptions_set_orders_of_mag(self): """ - Test that newly created McStasMetaData has correct type + Check that set_options works with orders_of_mag keyword + argument """ plot_options = McStasPlotOptions() plot_options.set_options(orders_of_mag=5.2) @@ -57,12 +134,94 @@ def test_McStasPlotOptions_set_orders_of_mag(self): def test_McStasPlotOptions_set_colormap(self): """ - Test that newly created McStasMetaData has correct type + Check that set_options work with colormap keyword argument """ plot_options = McStasPlotOptions() plot_options.set_options(colormap="hot") self.assertIs(plot_options.colormap, "hot") + def test_McStasPlotOptions_set_show_colorbar(self): + """ + Check that set_options work with show_colormap keyword + argument + """ + plot_options = McStasPlotOptions() + plot_options.set_options(show_colorbar=False) + self.assertIs(plot_options.show_colorbar, False) + + def test_McStasPlotOptions_set_cut_max(self): + """ + Check that set_options work with cut_max keyword + argument + """ + plot_options = McStasPlotOptions() + plot_options.set_options(cut_max=0.8) + self.assertIs(plot_options.cut_max, 0.8) + + def test_McStasPlotOptions_set_cut_min(self): + """ + Check that set_options work with cut_min keyword + argument + """ + plot_options = McStasPlotOptions() + plot_options.set_options(cut_min=0.2) + self.assertIs(plot_options.cut_min, 0.2) + + def test_McStasPlotOptions_set_x_axis_multiplier(self): + """ + Check that set_options work with x_axis_multiplier + keyword argument + """ + plot_options = McStasPlotOptions() + plot_options.set_options(x_axis_multiplier=2.8) + self.assertIs(plot_options.x_limit_multiplier, 2.8) + + def test_McStasPlotOptions_set_y_axis_multiplier(self): + """ + Check that set_options work with y_axis_multiplier + keyword argument + """ + plot_options = McStasPlotOptions() + plot_options.set_options(y_axis_multiplier=0.1) + self.assertIs(plot_options.y_limit_multiplier, 0.1) + + def test_McStasPlotOptions_set_top_lim(self): + """ + Check that set_options work with top_lim keyword argument + """ + plot_options = McStasPlotOptions() + plot_options.set_options(top_lim=128.9) + self.assertIs(plot_options.custom_ylim_top, True) + self.assertIs(plot_options.top_lim, 128.9) + + def test_McStasPlotOptions_set_bottom_lim(self): + """ + Check that set_options work with bottom_lim keyword + argument + """ + plot_options = McStasPlotOptions() + plot_options.set_options(bottom_lim=120.9) + self.assertIs(plot_options.custom_ylim_bottom, True) + self.assertIs(plot_options.bottom_lim, 120.9) + + def test_McStasPlotOptions_set_left_lim(self): + """ + Check that set_options work with left_lim keyword argument + """ + plot_options = McStasPlotOptions() + plot_options.set_options(left_lim=9.2) + self.assertIs(plot_options.custom_xlim_left, True) + self.assertIs(plot_options.left_lim, 9.2) + + def test_McStasPlotOptions_set_right_lim(self): + """ + Check that set_options work with right_lim keyword argument + """ + plot_options = McStasPlotOptions() + plot_options.set_options(right_lim=1.4) + self.assertIs(plot_options.custom_xlim_right, True) + self.assertIs(plot_options.right_lim, 1.4) + if __name__ == '__main__': unittest.main() diff --git a/mcstasscript/tests/test_Plotter.py b/mcstasscript/tests/test_Plotter.py new file mode 100644 index 00000000..ac6a4092 --- /dev/null +++ b/mcstasscript/tests/test_Plotter.py @@ -0,0 +1,610 @@ +import unittest + +import numpy as np +import matplotlib.pyplot as plt + +from mcstasscript.data.data import McStasData +from mcstasscript.data.data import McStasMetaData +from mcstasscript.interface.plotter import _find_min_max_I +from mcstasscript.interface.plotter import _handle_kwargs +from mcstasscript.interface.plotter import _plot_fig_ax + + +def get_dummy_MetaData_1d(): + meta_data = McStasMetaData() + meta_data.component_name = "component for 1d" + meta_data.dimension = 50 + meta_data.limits = [0.1, 1.1] + meta_data.title = "test" + meta_data.xlabel = "test x" + meta_data.ylabel = "test y" + + return meta_data + +def get_dummy_McStasData_1d(): + meta_data = get_dummy_MetaData_1d() + + intensity = np.arange(20) + 5 + error = 0.5 * np.arange(20) + ncount = 2 * np.arange(20) + axis = np.arange(20)*5.0 + + return McStasData(meta_data, intensity, error, ncount, xaxis=axis) + +def get_dummy_MetaData_2d(): + meta_data = McStasMetaData() + meta_data.component_name = "test a component" + meta_data.dimension = [5, 4] + meta_data.limits = [0.1, 1.1, 2.0, 4.0] + meta_data.title = "test" + meta_data.xlabel = "test x" + meta_data.ylabel = "test y" + + return meta_data + +def get_dummy_McStasData_2d(): + meta_data = get_dummy_MetaData_2d() + + intensity = np.arange(20).reshape(4, 5) + 5 + error = 0.5 * np.arange(20).reshape(4, 5) + ncount = 2 * np.arange(20).reshape(4, 5) + + return McStasData(meta_data, intensity, error, ncount) + + +class TestPlotterHelpers(unittest.TestCase): + """ + Tests of plotter help functions + """ + + def test_find_min_max_I_simple_1D_case(self): + """ + test _find_min_max_I for a 1D case, it finds the minimum + and maximum value to plot for a given McStasData set + """ + + dummy_data = get_dummy_McStasData_1d() + found_min, found_max = _find_min_max_I(dummy_data) + + # np.arange(20) + 5: min = 5, max = 5+19 = 24 + self.assertEqual(found_min, 5) + self.assertEqual(found_max, 19 + 5) + + def test_find_min_max_I_cut_max_1D_case(self): + """ + test _find_min_max_I for a 1D case, it finds the minimum + and maximum value to plot for a given McStasData set. + Here cut_max is used to limit the maximum plotted. + """ + + dummy_data = get_dummy_McStasData_1d() + dummy_data.set_plot_options(cut_max=0.8) + found_min, found_max = _find_min_max_I(dummy_data) + + # np.arange(20) + 5: min = 5, max = 5+19 = 24 + self.assertEqual(found_min, 5) + self.assertEqual(found_max, (19 + 5)*0.8) + + def test_find_min_max_I_cut_min_1D_case(self): + """ + test _find_min_max_I for a 1D case, it finds the minimum + and maximum value to plot for a given McStasData set. + Here cut_min is used to limit the minimum plotted. + """ + + dummy_data = get_dummy_McStasData_1d() + dummy_data.set_plot_options(cut_min=0.2) + found_min, found_max = _find_min_max_I(dummy_data) + + # np.arange(20) + 5: min = 5, max = 5+19 = 24 + self.assertEqual(found_min, 5 + (24-5)*0.2) + self.assertEqual(found_max, 19 + 5) + + def test_find_min_max_I_log_with_zero_case(self): + """ + test _find_min_max_I for a 1D case, it finds the minimum + and maximum value to plot for a given McStasData set. + Here a bin contains zero intensity and log mode is enabled, + since log(0) is not allowed, this data point should be + ignored. + """ + + dummy_data = get_dummy_McStasData_1d() + dummy_data.Intensity[5] = 0 + dummy_data.set_plot_options(log=True) + found_min, found_max = _find_min_max_I(dummy_data) + + # np.arange(20) + 5: min = 5, max = 5+19 = 24 + self.assertAlmostEqual(found_min, 5) + self.assertAlmostEqual(found_max, 19 + 5) + + def test_find_min_max_I_log_cut_max_1D_case(self): + """ + test _find_min_max_I for a 1D case, it finds the minimum + and maximum value to plot for a given McStasData set. + Here cut_max is used to limit the maximum plotted while + log mode is enabled. + """ + + dummy_data = get_dummy_McStasData_1d() + dummy_data.set_plot_options(cut_max=0.8, log=True) + found_min, found_max = _find_min_max_I(dummy_data) + + # np.arange(20) + 5: min = 5, max = 5+19 = 24 + self.assertAlmostEqual(found_min, 5) + self.assertAlmostEqual(found_max, (19 + 5)*0.8) + + def test_find_min_max_I_log_cut_min_1D_case(self): + """ + test _find_min_max_I for a 1D case, it finds the minimum + and maximum value to plot for a given McStasData set. + Here cut_min is used to limit the minimum plotted while + log mode is enabled. + """ + + dummy_data = get_dummy_McStasData_1d() + dummy_data.set_plot_options(cut_min=0.2, log=True) + found_min, found_max = _find_min_max_I(dummy_data) + + # np.arange(20) + 5: min = 5, max = 5+19 = 24 + self.assertAlmostEqual(found_min, 5 + (24-5)*0.2) + self.assertAlmostEqual(found_max, 19 + 5) + + def test_find_min_max_I_log_orders_of_mag_1D_case(self): + """ + test _find_min_max_I for a 1D case, it finds the minimum + and maximum value to plot for a given McStasData set. + Here orders_of_mag is used to limit the minimum plotted + while log mode is enabled. + """ + + dummy_data = get_dummy_McStasData_1d() + dummy_data.Intensity[5] = 10**6 + dummy_data.set_plot_options(log=True, orders_of_mag=3) + found_min, found_max = _find_min_max_I(dummy_data) + + self.assertAlmostEqual(found_min, 10**3) + self.assertAlmostEqual(found_max, 10**6) + + def test_find_min_max_I_log_orders_of_mag_1D_with_zero_case(self): + """ + test _find_min_max_I for a 1D case, it finds the minimum + and maximum value to plot for a given McStasData set. + Here orders_of_mag is used to limit the minimum plotted + while log mode is enabled. A bin in the data contains + zero intensity, which should be ignored. + """ + + dummy_data = get_dummy_McStasData_1d() + dummy_data.Intensity[5] = 10**6 + dummy_data.Intensity[6] = 0 + dummy_data.set_plot_options(log=True, orders_of_mag=3) + found_min, found_max = _find_min_max_I(dummy_data) + + self.assertAlmostEqual(found_min, 10**3) + self.assertAlmostEqual(found_max, 10**6) + + def test_find_min_max_I_simple_2D_case(self): + """ + test _find_min_max_I for a 1D case, it finds the minimum + and maximum value to plot for a given McStasData set + """ + + dummy_data = get_dummy_McStasData_2d() + found_min, found_max = _find_min_max_I(dummy_data) + + # np.arange(20) + 5: min = 5, max = 5+19 = 24 + self.assertEqual(found_min, 5) + self.assertEqual(found_max, 19 + 5) + + def test_find_min_max_I_cut_max_2D_case(self): + """ + test _find_min_max_I for a 1D case, it finds the minimum + and maximum value to plot for a given McStasData set. + Here cut_max is used to limit the maximum plotted. + """ + + dummy_data = get_dummy_McStasData_2d() + dummy_data.set_plot_options(cut_max=0.8) + found_min, found_max = _find_min_max_I(dummy_data) + + # np.arange(20) + 5: min = 5, max = 5+19 = 24 + self.assertEqual(found_min, 5) + self.assertEqual(found_max, (19 + 5)*0.8) + + def test_find_min_max_I_cut_min_2D_case(self): + """ + test _find_min_max_I for a 1D case, it finds the minimum + and maximum value to plot for a given McStasData set. + Here cut_min is used to limit the minimum plotted. + """ + + dummy_data = get_dummy_McStasData_2d() + dummy_data.set_plot_options(cut_min=0.2) + found_min, found_max = _find_min_max_I(dummy_data) + + # np.arange(20) + 5: min = 5, max = 5+19 = 24 + self.assertEqual(found_min, 5 + (24-5)*0.2) + self.assertEqual(found_max, 19 + 5) + + def test_find_min_max_I_log_with_zero_2D_case(self): + """ + test _find_min_max_I for a 1D case, it finds the minimum + and maximum value to plot for a given McStasData set. + Here a bin contains zero intensity and log mode is enabled, + since log(0) is not allowed, this data point should be + ignored. + """ + + dummy_data = get_dummy_McStasData_2d() + dummy_data.Intensity[2,2] = 0 + dummy_data.set_plot_options(log=True) + found_min, found_max = _find_min_max_I(dummy_data) + + # np.arange(20) + 5: min = 5, max = 5+19 = 24 + self.assertAlmostEqual(found_min, 5) + self.assertAlmostEqual(found_max, 19 + 5) + + def test_find_min_max_I_log_cut_max_2D_case(self): + """ + test _find_min_max_I for a 1D case, it finds the minimum + and maximum value to plot for a given McStasData set. + Here cut_max is used to limit the maximum plotted while + log mode is enabled. + """ + + dummy_data = get_dummy_McStasData_2d() + dummy_data.set_plot_options(cut_max=0.8, log=True) + found_min, found_max = _find_min_max_I(dummy_data) + + # np.arange(20) + 5: min = 5, max = 5+19 = 24 + self.assertAlmostEqual(found_min, 5) + self.assertAlmostEqual(found_max, (19 + 5)*0.8) + + def test_find_min_max_I_log_cut_min_2D_case(self): + """ + test _find_min_max_I for a 1D case, it finds the minimum + and maximum value to plot for a given McStasData set. + Here cut_min is used to limit the minimum plotted while + log mode is enabled. + """ + + dummy_data = get_dummy_McStasData_2d() + dummy_data.set_plot_options(cut_min=0.2, log=True) + found_min, found_max = _find_min_max_I(dummy_data) + + # np.arange(20) + 5: min = 5, max = 5+19 = 24 + self.assertAlmostEqual(found_min, 5 + (24-5)*0.2) + self.assertAlmostEqual(found_max, 19 + 5) + + def test_find_min_max_I_log_orders_of_mag_2D_case(self): + """ + test _find_min_max_I for a 1D case, it finds the minimum + and maximum value to plot for a given McStasData set. + Here orders_of_mag is used to limit the minimum plotted + while log mode is enabled. + """ + + dummy_data = get_dummy_McStasData_2d() + dummy_data.Intensity[2,2] = 10**6 + dummy_data.set_plot_options(log=True, orders_of_mag=3) + found_min, found_max = _find_min_max_I(dummy_data) + + self.assertAlmostEqual(found_min, 10**3) + self.assertAlmostEqual(found_max, 10**6) + + def test_find_min_max_I_log_orders_of_mag_2D_with_zero_case(self): + """ + test _find_min_max_I for a 1D case, it finds the minimum + and maximum value to plot for a given McStasData set. + Here orders_of_mag is used to limit the minimum plotted + while log mode is enabled. A bin in the data contains + zero intensity, which should be ignored. + """ + + dummy_data = get_dummy_McStasData_2d() + dummy_data.Intensity[2,2] = 10**6 + dummy_data.Intensity[2,3] = 0 + dummy_data.set_plot_options(log=True, orders_of_mag=3) + found_min, found_max = _find_min_max_I(dummy_data) + + self.assertAlmostEqual(found_min, 10**3) + self.assertAlmostEqual(found_max, 10**6) + + def test_find_min_max_I_fail_case(self): + """ + test _find_min_max_I for a 1D case, it finds the minimum + and maximum value to plot for a given McStasData set. + Here orders_of_mag is used to limit the minimum plotted + while log mode is enabled. A bin in the data contains + zero intensity, which should be ignored. + """ + + dummy_data = get_dummy_McStasData_2d() + dummy_data.Intensity = np.zeros((5, 5)) + dummy_data.set_plot_options(log=True, orders_of_mag=3) + found_min, found_max = _find_min_max_I(dummy_data) + + self.assertEqual(found_min, 0) + self.assertEqual(found_max, 0) + + def test_handle_kwargs_log(self): + """ + Tests handle_kwargs with log option + + Keyword args can be set for all by normal use, or individual + data sets by using a list. Both are checked here. + """ + dummy_data1 = get_dummy_McStasData_2d() + dummy_data2 = get_dummy_McStasData_2d() + self.assertEqual(dummy_data1.plot_options.log, False) + self.assertEqual(dummy_data2.plot_options.log, False) + + data_list = [dummy_data1, dummy_data2] + _handle_kwargs(data_list, log=True) + self.assertEqual(dummy_data1.plot_options.log, True) + self.assertEqual(dummy_data2.plot_options.log, True) + + _handle_kwargs(data_list, log=[False, True]) + self.assertEqual(dummy_data1.plot_options.log, False) + self.assertEqual(dummy_data2.plot_options.log, True) + + def test_handle_kwargs_oders_of_mag(self): + """ + Tests handle_kwargs with orders_of_mag option + + Keyword args can be set for all by normal use, or individual + data sets by using a list. Both are checked here. + """ + dummy_data1 = get_dummy_McStasData_2d() + dummy_data2 = get_dummy_McStasData_2d() + self.assertEqual(dummy_data1.plot_options.orders_of_mag, 300) + self.assertEqual(dummy_data2.plot_options.orders_of_mag, 300) + + data_list = [dummy_data1, dummy_data2] + _handle_kwargs(data_list, orders_of_mag=12) + self.assertEqual(dummy_data1.plot_options.orders_of_mag, 12) + self.assertEqual(dummy_data2.plot_options.orders_of_mag, 12) + + _handle_kwargs(data_list, orders_of_mag=[50, 10]) + self.assertEqual(dummy_data1.plot_options.orders_of_mag, 50) + self.assertEqual(dummy_data2.plot_options.orders_of_mag, 10) + + def test_handle_kwargs_all_simple(self): + """ + Tests handle_kwargs with all simple options option + + Keyword args can be set for all by normal use, or individual + data sets by using a list. Both are checked here. + """ + + known_plot = ["log", "orders_of_mag", + "cut_min", "cut_max", + "colormap", "show_colorbar", + "x_axis_multiplier", + "y_axis_multiplier"] + + kwargs_to_attr = {"x_axis_multiplier": "x_limit_multiplier", + "y_axis_multiplier": "y_limit_multiplier"} + + defaults = {"log": False, "orders_of_mag": 300, + "cut_min": 0, "cut_max": 1, + "colormap": "jet", "show_colorbar": True, + "x_limit_multiplier": 1, "y_limit_multiplier": 1} + + test_value = {"log": True, "orders_of_mag": 15, + "cut_min": 0.25, "cut_max": 0.8, + "colormap": "hot", "show_colorbar": "False", + "x_limit_multiplier": 2.8, "y_limit_multiplier": 0.8} + + for option in known_plot: + + if option in kwargs_to_attr: + kw_option = kwargs_to_attr[option] + else: + kw_option = option + + default_value = defaults[kw_option] + + dummy_data1 = get_dummy_McStasData_2d() + dummy_data2 = get_dummy_McStasData_2d() + + self.assertEqual(dummy_data1.plot_options.__getattribute__(kw_option), default_value) + self.assertEqual(dummy_data2.plot_options.__getattribute__(kw_option), default_value) + + data_list = [dummy_data1, dummy_data2] + + set_value = test_value[kw_option] + given_option = {option: set_value} + _handle_kwargs(data_list, **given_option) + self.assertEqual(dummy_data1.plot_options.__getattribute__(kw_option), set_value) + self.assertEqual(dummy_data2.plot_options.__getattribute__(kw_option), set_value) + + given_option = {option: [set_value, default_value]} + _handle_kwargs(data_list, **given_option) + self.assertEqual(dummy_data1.plot_options.__getattribute__(kw_option), set_value) + self.assertEqual(dummy_data2.plot_options.__getattribute__(kw_option), default_value) + + def test_handle_kwargs_left_lim(self): + """ + Tests handle_kwargs with left_lim option + + Keyword args can be set for all by normal use, or individual + data sets by using a list. Both are checked here. + """ + dummy_data1 = get_dummy_McStasData_2d() + dummy_data2 = get_dummy_McStasData_2d() + self.assertEqual(dummy_data1.plot_options.custom_xlim_left, False) + self.assertEqual(dummy_data2.plot_options.custom_xlim_left, False) + + data_list = [dummy_data1, dummy_data2] + _handle_kwargs(data_list, left_lim=0.08) + self.assertEqual(dummy_data1.plot_options.left_lim, 0.08) + self.assertEqual(dummy_data2.plot_options.left_lim, 0.08) + self.assertEqual(dummy_data1.plot_options.custom_xlim_left, True) + self.assertEqual(dummy_data2.plot_options.custom_xlim_left, True) + + _handle_kwargs(data_list, left_lim=[0.08, 1.08]) + self.assertEqual(dummy_data1.plot_options.left_lim, 0.08) + self.assertEqual(dummy_data2.plot_options.left_lim, 1.08) + self.assertEqual(dummy_data1.plot_options.custom_xlim_left, True) + self.assertEqual(dummy_data2.plot_options.custom_xlim_left, True) + + def test_handle_kwargs_right_lim(self): + """ + Tests handle_kwargs with right_lim option + + Keyword args can be set for all by normal use, or individual + data sets by using a list. Both are checked here. + """ + dummy_data1 = get_dummy_McStasData_2d() + dummy_data2 = get_dummy_McStasData_2d() + self.assertEqual(dummy_data1.plot_options.custom_xlim_right, False) + self.assertEqual(dummy_data2.plot_options.custom_xlim_right, False) + + data_list = [dummy_data1, dummy_data2] + _handle_kwargs(data_list, right_lim=0.08) + self.assertEqual(dummy_data1.plot_options.right_lim, 0.08) + self.assertEqual(dummy_data2.plot_options.right_lim, 0.08) + self.assertEqual(dummy_data1.plot_options.custom_xlim_right, True) + self.assertEqual(dummy_data2.plot_options.custom_xlim_right, True) + + _handle_kwargs(data_list, right_lim=[0.08, 1.08]) + self.assertEqual(dummy_data1.plot_options.right_lim, 0.08) + self.assertEqual(dummy_data2.plot_options.right_lim, 1.08) + self.assertEqual(dummy_data1.plot_options.custom_xlim_right, True) + self.assertEqual(dummy_data2.plot_options.custom_xlim_right, True) + + def test_handle_kwargs_top_lim(self): + """ + Tests handle_kwargs with top_lim option + + Keyword args can be set for all by normal use, or individual + data sets by using a list. Both are checked here. + """ + dummy_data1 = get_dummy_McStasData_2d() + dummy_data2 = get_dummy_McStasData_2d() + self.assertEqual(dummy_data1.plot_options.custom_ylim_top, False) + self.assertEqual(dummy_data2.plot_options.custom_ylim_top, False) + + data_list = [dummy_data1, dummy_data2] + _handle_kwargs(data_list, top_lim=0.08) + self.assertEqual(dummy_data1.plot_options.top_lim, 0.08) + self.assertEqual(dummy_data2.plot_options.top_lim, 0.08) + self.assertEqual(dummy_data1.plot_options.custom_ylim_top, True) + self.assertEqual(dummy_data2.plot_options.custom_ylim_top, True) + + _handle_kwargs(data_list, top_lim=[0.08, 1.08]) + self.assertEqual(dummy_data1.plot_options.top_lim, 0.08) + self.assertEqual(dummy_data2.plot_options.top_lim, 1.08) + self.assertEqual(dummy_data1.plot_options.custom_ylim_top, True) + self.assertEqual(dummy_data2.plot_options.custom_ylim_top, True) + + def test_handle_kwargs_bottom_lim(self): + """ + Tests handle_kwargs with bottom_lim option + + Keyword args can be set for all by normal use, or individual + data sets by using a list. Both are checked here. + """ + dummy_data1 = get_dummy_McStasData_2d() + dummy_data2 = get_dummy_McStasData_2d() + self.assertEqual(dummy_data1.plot_options.custom_ylim_bottom, False) + self.assertEqual(dummy_data2.plot_options.custom_ylim_bottom, False) + + data_list = [dummy_data1, dummy_data2] + _handle_kwargs(data_list, bottom_lim=0.08) + self.assertEqual(dummy_data1.plot_options.bottom_lim, 0.08) + self.assertEqual(dummy_data2.plot_options.bottom_lim, 0.08) + self.assertEqual(dummy_data1.plot_options.custom_ylim_bottom, True) + self.assertEqual(dummy_data2.plot_options.custom_ylim_bottom, True) + + _handle_kwargs(data_list, bottom_lim=[0.08, 1.08]) + self.assertEqual(dummy_data1.plot_options.bottom_lim, 0.08) + self.assertEqual(dummy_data2.plot_options.bottom_lim, 1.08) + self.assertEqual(dummy_data1.plot_options.custom_ylim_bottom, True) + self.assertEqual(dummy_data2.plot_options.custom_ylim_bottom, True) + + def test_handle_kwargs_figsize_default(self): + """ + Tests handle_kwargs delivers default figsize + """ + + dummy_data = get_dummy_McStasData_2d() + retrived_figsize, data_list = _handle_kwargs(dummy_data) + self.assertEqual(retrived_figsize, (13, 7)) + + def test_handle_kwargs_figsize_tuple(self): + """ + Tests handle_kwargs with figsize keyword argument, here + using tuple as input + """ + + dummy_data = get_dummy_McStasData_2d() + retrived_figsize, data_list = _handle_kwargs(dummy_data, figsize=(5,9)) + self.assertEqual(retrived_figsize, (5, 9)) + + def test_handle_kwargs_figsize_list(self): + """ + Tests handle_kwargs with figsize keyword argument, here + using tuple as input + """ + + dummy_data = get_dummy_McStasData_2d() + retrived_figsize, data_list = _handle_kwargs(dummy_data, figsize=[5,9]) + self.assertEqual(retrived_figsize, (5, 9)) + + def test_handle_kwargs_single_element_to_list(self): + """ + Test handle_kwargs will grab a single McStasData element + and turn it into a list. + """ + + dummy_data = get_dummy_McStasData_2d() + self.assertFalse(isinstance(dummy_data, list)) + figsize, data_list = _handle_kwargs(dummy_data) + self.assertTrue(isinstance(data_list, list)) + + def test_plot_function_1D_normal(self): + """ + Run the plot function with 1D data set without showing the + result. + + """ + dummy_data = get_dummy_McStasData_1d() + + fig, ax0 = plt.subplots() + _plot_fig_ax(dummy_data, fig, ax0) + + def test_plot_function_1D_log(self): + """ + Run the plot function with 1D data set without showing the + result. Here with logarithmic y axis. + + """ + dummy_data = get_dummy_McStasData_1d() + + fig, ax0 = plt.subplots() + _plot_fig_ax(dummy_data, fig, ax0, log=True) + + def test_plot_function_2D_normal(self): + """ + Run the plot function with 2D data set without showing the + result. + + """ + dummy_data = get_dummy_McStasData_2d() + + fig, ax0 = plt.subplots() + _plot_fig_ax(dummy_data, fig, ax0) + + def test_plot_function_2D_log(self): + """ + Run the plot function with 2D data set without showing the + result. Here the intensity coloraxis is logarithmic. + + """ + dummy_data = get_dummy_McStasData_2d() + + fig, ax0 = plt.subplots() + _plot_fig_ax(dummy_data, fig, ax0, log=True) \ No newline at end of file From 11c9533215a559986f3db8c6300f3a22f2b07bbf Mon Sep 17 00:00:00 2001 From: Christian Felder Date: Mon, 2 Nov 2020 14:30:29 +0100 Subject: [PATCH 113/403] Fix: do not change calling process' cwd Changing calling process' current working directory (cwd) may lead to unwanted side-effects. Better change the cwd on the subprocess. --- mcstasscript/helper/managed_mcrun.py | 9 ++------- mcstasscript/tests/test_Instr.py | 13 ++++++++++--- mcstasscript/tests/test_ManagedMcrun.py | 15 ++++++++++----- 3 files changed, 22 insertions(+), 15 deletions(-) diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index 545a247b..5409e944 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -186,17 +186,12 @@ def run_simulation(self, **kwargs): + parameter_string) try: - os.chdir(self.run_path) - process = subprocess.run(full_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, - universal_newlines=True) - - os.chdir(current_directory) - + universal_newlines=True, + cwd=self.run_path) except: - os.chdir(current_directory) raise RuntimeError("Could not run McStas command.") if "suppress_output" in kwargs: diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index c61cc49a..f8ae0ebe 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -1,4 +1,5 @@ import os +import os.path import io import builtins import unittest @@ -9,6 +10,9 @@ from mcstasscript.helper.formatting import bcolors +run_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '.') + + def setup_instr_no_path(): """ Sets up a instrument without a mcstas_path @@ -1519,7 +1523,8 @@ def test_run_full_instrument_basic(self, mock_sub, mock_sub.assert_called_once_with(expected_call, shell=True, stderr=-1, stdout=-1, - universal_newlines=True) + universal_newlines=True, + cwd=run_path) @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) @unittest.mock.patch('__main__.__builtins__.open', @@ -1558,7 +1563,8 @@ def test_run_full_instrument_complex(self, mock_sub, mock_sub.assert_called_once_with(expected_call, shell=True, stderr=-1, stdout=-1, - universal_newlines=True) + universal_newlines=True, + cwd=run_path) @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) @unittest.mock.patch('__main__.__builtins__.open', @@ -1597,7 +1603,8 @@ def test_run_full_instrument_overwrite_default(self, mock_sub, mock_sub.assert_called_once_with(expected_call, shell=True, stderr=-1, stdout=-1, - universal_newlines=True) + universal_newlines=True, + cwd=run_path) if __name__ == '__main__': diff --git a/mcstasscript/tests/test_ManagedMcrun.py b/mcstasscript/tests/test_ManagedMcrun.py index a0d003f9..71a2538c 100644 --- a/mcstasscript/tests/test_ManagedMcrun.py +++ b/mcstasscript/tests/test_ManagedMcrun.py @@ -120,7 +120,8 @@ def test_ManagedMcrun_run_simulation_basic(self, mock_sub): mock_sub.assert_called_once_with(expected_call, shell=True, stderr=-1, stdout=-1, - universal_newlines=True) + universal_newlines=True, + cwd=mcrun_obj.run_path) @unittest.mock.patch("subprocess.run") def test_ManagedMcrun_run_simulation_basic_path(self, mock_sub): @@ -144,7 +145,8 @@ def test_ManagedMcrun_run_simulation_basic_path(self, mock_sub): mock_sub.assert_called_once_with(expected_call, shell=True, stderr=-1, stdout=-1, - universal_newlines=True) + universal_newlines=True, + cwd=mcrun_obj.run_path) @unittest.mock.patch("subprocess.run") def test_ManagedMcrun_run_simulation_no_standard(self, mock_sub): @@ -171,7 +173,8 @@ def test_ManagedMcrun_run_simulation_no_standard(self, mock_sub): mock_sub.assert_called_once_with(expected_call, shell=True, stderr=-1, stdout=-1, - universal_newlines=True) + universal_newlines=True, + cwd=mcrun_obj.run_path) @unittest.mock.patch("subprocess.run") def test_ManagedMcrun_run_simulation_parameters(self, mock_sub): @@ -201,7 +204,8 @@ def test_ManagedMcrun_run_simulation_parameters(self, mock_sub): mock_sub.assert_called_once_with(expected_call, shell=True, stderr=-1, stdout=-1, - universal_newlines=True) + universal_newlines=True, + cwd=mcrun_obj.run_path) @unittest.mock.patch("subprocess.run") def test_ManagedMcrun_run_simulation_compile(self, mock_sub): @@ -233,7 +237,8 @@ def test_ManagedMcrun_run_simulation_compile(self, mock_sub): mock_sub.assert_called_once_with(expected_call, shell=True, stderr=-1, stdout=-1, - universal_newlines=True) + universal_newlines=True, + cwd=mcrun_obj.run_path) def test_ManagedMcrun_load_data_PSD4PI(self): """ From 664ba9e6b570ea8e9b77cebb35520a6024f4bcde Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 5 Nov 2020 16:55:43 +0100 Subject: [PATCH 114/403] Update of release number for pip update. --- setup.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/setup.py b/setup.py index 708b6649..36a797ff 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ setuptools.setup( name='McStasScript', - version='0.0.21', + version='0.0.22', author="Mads Bertelsen", author_email="Mads.Bertelsen@ess.eu", description="A python scripting interface for McStas", From e515e8d46de65ce956983a7cf1f309e3328e93bb Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Mon, 4 Jan 2021 11:09:28 +0100 Subject: [PATCH 115/403] Allowing saving of created plots instead of displaying them by providing a filename to the plotting functions. When force_compile is set to False, a new instrument file will not be written anymore to avoid compile happening because the new instrument file is newer than the old one. May need to add a check that ensures the instrument object is unchanged from the previous, for example by writing a dummy instrument file and ensuring they differ only in generated time. --- mcstasscript/interface/instr.py | 7 +++++-- mcstasscript/interface/plotter.py | 17 +++++++++++++++++ setup.py | 2 +- 3 files changed, 23 insertions(+), 3 deletions(-) diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index f27c3f1f..9f835877 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -395,7 +395,6 @@ def append_declare(self, string): #self.declare_section = self.declare_section + string + "\n" self.declare_list.append(string) - def append_initialize(self, string): """ @@ -1511,7 +1510,11 @@ def run_full_instrument(self, *args, **kwargs): kwargs["parameters"] = self._handle_parameters(given_parameters) # Write the instrument file - self.write_full_instrument() + compile = True + if "force_compile" in kwargs: + compile = kwargs["force_compile"] + if compile: + self.write_full_instrument() # Set up the simulation simulation = ManagedMcrun(self.name + ".instr", **kwargs) diff --git a/mcstasscript/interface/plotter.py b/mcstasscript/interface/plotter.py index a04db47f..861fe224 100644 --- a/mcstasscript/interface/plotter.py +++ b/mcstasscript/interface/plotter.py @@ -274,6 +274,11 @@ def make_plot(data_list, **kwargs): fig, ax0 = plt.subplots(figsize=figsize) _plot_fig_ax(data, fig, ax0, **kwargs) + if "filename" in kwargs: + fig.savefig(kwargs["filename"]) + else: + plt.show() + def make_sub_plot(data_list, **kwargs): """ make_sub_plot plots contents of McStasData objects given in list @@ -301,6 +306,11 @@ def make_sub_plot(data_list, **kwargs): fig.tight_layout() + if "filename" in kwargs: + fig.savefig(kwargs["filename"]) + else: + plt.show() + def make_animation(data_list, **kwargs): """ @@ -360,6 +370,13 @@ def make_animation(data_list, **kwargs): maximum_value = np.array(maximum_values).max() minimum_value = np.array(minimum_values).min() + if "orders_of_mag" in kwargs: + orders_of_mag = kwargs["orders_of_mag"] + mag_diff = np.log10(maximum_value) - np.log10(minimum_value) + if mag_diff > orders_of_mag: + minimum_value_log10 = np.log10(maximum_value) - orders_of_mag + minimum_value = 10**(minimum_value_log10) + kwargs["fixed_minimum_value"] = minimum_value kwargs["fixed_maximum_value"] = maximum_value diff --git a/setup.py b/setup.py index 36a797ff..3a91dddb 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ setuptools.setup( name='McStasScript', - version='0.0.22', + version='0.0.23', author="Mads Bertelsen", author_email="Mads.Bertelsen@ess.eu", description="A python scripting interface for McStas", From 289d8b7686b73d1939b0b50332979506cff9d590 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Mon, 4 Jan 2021 14:04:50 +0100 Subject: [PATCH 116/403] Fixed broken test after merge with McXtrace --- mcstasscript/tests/test_Instr.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index 5f13574e..92f2ade6 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -1589,8 +1589,11 @@ def test_x_ray_run_full_instrument_basic(self, mock_sub, + " test_instrument.instr" + " has_default=37 theta=1") + expected_run_path = os.path.join(current_directory, ".") + mock_sub.assert_called_once_with(expected_call, shell=True, + cwd=expected_run_path, stderr=-1, stdout=-1, universal_newlines=True) From c29dfb401ee1b417822a9886128d0f00af97ee96 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Mon, 4 Jan 2021 14:34:59 +0100 Subject: [PATCH 117/403] Updated manual and version number. McXtrace support now mentioned. --- McStasScript_documentation.pdf | Bin 181093 -> 184620 bytes setup.py | 2 +- 2 files changed, 1 insertion(+), 1 deletion(-) diff --git a/McStasScript_documentation.pdf b/McStasScript_documentation.pdf index 560e48c21c960e615c4b22d7a711dbb2be5fc970..f1c876a952f59cac5590f349e98822e7ef376ef0 100644 GIT binary patch delta 86610 zcmZs?18}85w=NuKVoq$^+DRsMCYac^J@Jn19owGR#>BR5+xq9Lb8h|T)V)=2clGLO zKE1l$r&q5&2tlaKM=+yQ6q8_NW#WXV?0(AsglA=EBVi%2H?o4~=O zYC^*LPadh4es)8U#J}hO*htv80spBfZD(dr!p`xpPbCs&C3}09e=YsD zr2Ma65)RgX9V*~Q7!&=%f3)7Z$w zVB6fl$iRRHjtr3FFEuE^G6Ig315eg^=r2{IY4B)*dZGkHM!p0oJt)M6R&y?bN(;*s z9h&4HegiyXu7N|0D%huyPBqbHySBrjq@~7fM()6u7|D}>0ORvQA+1-1;D(L&V-@%Z z@PDTFe*l&@v^8}mVQ1z1F8~xAOznh?T`cYG{$axY-+8VsHvg8v`5)Gtpiwvq2rdrL zH5>`30D%;!Ov1{|^B?%x*Z}|5$JEZ;#o}KU*Z-cJfx*9-ZP%F_7#bL?^pXsNK^t%( zNG1B4LO?>2OW6$3nKci-Amd{=VOf-ft&~O74seDNstDFplb(iH!B!wZLLQCdveU1Q ziDI=E|ITKEt4M`3%7kI%QfV&^WC=1xSM$Ib4l$zn9V2~c*bEnR0R{mLQ+$d?GJ*8B z!yvv4@f{J7uABhxPG8L4S=+EXZs;`f5_|$tQZ5wM02%`q=S~Z!C;K};G8hxDWErT2 z3ll{59T9|w08hm6U%J4~@m~P_Qy5WuI~P+s7w3O^!kyw@0M3HR{ol%C>TK`oWc(jE zIk-~d;=%DD|5IeA0Gt}g#?Hh2KQURIz}1c2l?mTXm$>~$>K9o*OFxAR-p zI2mOEgR-Sdb7bN#>Ee8yv_ci$HtT%-UE;IfRq4RZ1>?74uCKN?@WcIhj&Lp^IOki6 zIl9$T4%VVu<#MxCo5s=I>WgC=?iC_)3GK90vgjr{1$aNPH_-)q6{4wy=fBG1_#rYh zBeyEJBmBSEIBD!F#L~hb#EMVHCG47%$~iu}wk&Yl9l@yB><(8OMS*JCRHo?(s}MM* z;qbt_D`duU2J!VC6~)r**xW`sqoL!GnC|?1tPwF>_3U-RbA&rObh$0JewaWsg=LAI$?mXg}- zm*F=ZkYUw0j&3B(VB8M;O+E|plHWIx1Ka{8EwFX)TD9-hnA_kYo^?rl{-{6M*xg6d zTNei7v}$}qK9|&@@s@M1PmK5%)Rsn z!}Ml@Dbygk#BOXWvMkeLvweP^meXXLh!e;Y^N5+_28SXT{)j_y(!nJpzZi16^+hN! zrIq_i>DG3{i`NaHgQ@y;bJ zakT`+6@DC4!Fwf~gC5IR;y)B&)DKD6-6>gjCVF)K8ZiMuX5-9PKZCz1LE#eWnEC`e zh2fTF=54V->itytTNIW$q3eb=*giQnIOPXHuL7RdTQt~5!E~v`x+HdLb7aRGT*KDp z#`}>3L~ED{l-YO>k;J}qT3RVkV3R~3Njw4HzRjXx=JGJ7I>E76oZu_$n&11Z0upIA zfo+O?osfsYl}_8Dok1JC4RcX+I0&D;}f^^fYJ)BweYpg(Z!UFS4~z zwWnV~eMSH1UQBu9EK1r}sKkHMG_p)eRebV!s||RM44)j1x;?TG&4Cbx|J8Is7hx4< z=M|E;_QNg~7EyWVhvei8FvMZG4V+$p!joBPrtt$(NSajj?xsZ1%i|q;2A|`kct?hS z_>$1XE@m6|NI2>PdmsqKMu4@vsICjDGeurdC;?-xSP&iJ178CDh>6 z+snWuU+i(<+v>&fc!Y-3~1V^;etrxvynLYTGdmlKl zRrB&jH9-O=dX=Hh=J`;3@D*COJ$GQugRieUNJPo$`TN^%Alb+^g8Y+ib~={ndr4%N zd-Q#CHyOFE-$!!;_%g2*3J~gypK&F@LHASi`DI%Uny7)Z5d~p9d-W`M7GR~zFD(77 znQB$URZC`MM>f<8*~}vPisKVKCA8gPav@6MC9T-%Q29#O18xbqYxbFRffNT; zf`3*OwtxRGkm7rws%C(3Wog7gFnk;_vfI7x?}TO5ITJ{B&rrWfyUP=~i7~<5KP~WA z0%Af%!{KPtCnIfM1%0*y04pE%PHYaZSD0;o~X6*u+zP;J`&qb3OAOCRd5~ zEtuF6k8*}uof*0!`?xz#m>BTG$taLulp7+Q#G-%DgLjwKJb+P8 zx87@aSPJW=CE`=OqVXBSs!g813D!ncOr~P%I1Dm%y>UX9b5Q%!)}ahY?#$P*{b# zhJI>D*G)YD1y031(-t!vd+n9IIUAE+$%C|00a=_L@{lOlK!4ir$gAoDH zEUr!vs^CPq#4hU$IC zh5PuIr3*XdPaJ2XAmk$lQO*Py{k{lbO17VsM6C0c{xCd2O7*y(qVy>s-WjqQgzBKp zi=K@hE9PYDQBtyvJj+osJo)%`-GZ)X^2})Qkn806y)1MOSr*#YANDW*%EQ=XxA|4d zqQVKR`O3lj7dwh_T}%$090vFabcFtJ%B_}BK*Ov4pP#5{@TPVq|4pz#?ObpmE)m*# z*@c9MmHmG*wafvnH79&-bf2y2 zo;^ET4~K5mA|2C}U*|ltuUKnmi9{A24347VY~lc?E?))ikW4f{LvF;9b`d!K57_9g zJn*<#CV0vQ***_%llYlCcZN1Sgsf8gAlCWjKCx3iL*t$jY~Uo=UZ8{jrsNK&-yFTy z#M=yw>{U3tbOuH1uaFOULVnkGxH?XET1juuc*6Z)5~qN7uaf5vhBR?~ zP&`DbLY08ZN?-0FXIHZfom0-ZQWzd=pWNFh^*3Oh9vA`BoFNb5Xz^j!XSI$Rl<1$Amso+b7AwNr62=P1 zYGfM~jGZuB7XB8vm=W&80PfzmySpL-5oNb@HXGtR78>TkJAmTpke2N6f5e6v=)+L?xcz}GQ>86sLHfPRyoU7Cq_AF)n(i? zft)L9uPX!dCg%vM1{qET^w4Wj;`v;V&p-w=iH$t5)c86i2d)g$w+z2u3b$&U8_;Uy zzdT(q)?mDn6uqr_HJ-Rs%Ki6#21Zw6MO}#4zP`L&x(}{XzMHM_N$+T|osP1yES^~q z5<~X$nYqBl1o&XgAD>u2RoY;97nvL>0!JmEzF1izEN%;0>yVnHxp@Ff0eSW1^SDnH zAu%&a27#UBvpod(>Xv$wvj^c3k3#CLP@+e;!(!|I&d*^llrY|=ZLc;Oi8t+osH`PUK>G8hluwX zVXR!z1pa-7xRQ>!4t)~%BR^y`M7<(cJ<+o)E$w@Lr7F<9U*qeXW(}`PD2!BUpm&oK zVAY?L-VVCP5?`Mis9YGsqKw=?0@Ki79~mI*UaKsu!{IAU4R~Lt|00`{H#TTv=+8+N zW85Kx6oxb=#czR7G}}%bJ$Q;O@;ukhLoUTY>RDHo6|bN0N4!%B#2-CsL>06FcHe*W zd$oMaQo$Z;FL1p_Y7RC7+A4DXQ418BN2x#^o#6S+sXvA5_vYJ^r~Uha1~@rmV#-LzPdlZXD}m5^)Olmf9#b37zvG+^|rdf|4(NC~p{U z%9h3{Ag_AEZyE+0TqueR91zEvHZPU_-8CMDRt*IrH~Xd%LcW-+ge}RIVO~Nww9d|U zf6{H6?dW(c^un$4d|AAR6L>a%V?Ff7w9*2mF_iM2V1-IJF1Je^NwND*4V@N?q8gjH{$MkIVSE6-|vJJRGq71qh5bF7^VJ@R;=yu zu7p&|wq?}jB5V{8JZ*rn#?=&eRT;{yNfTHMVrj_T>?XesEQZlbYpsOOG_9?W#c(Z~ z#@7W+CKB@4f`Z{J!-4xzM86j3#GEi7OQA?}M2#e!e)R#Qoq5RYT9-cqjCIV2XHk@X zCUX@EsBuh9N&&hOh>T)y4(m<_bUDvMP5s&X%# z)@`SgEgcSlrxv6sdr!3p^0)s*f$n85DZ3I=TvaK=W7vZMcf_I*QEpx@YieUcu5+^!f3cCl@)Pc_A zl(q*c^Xh=hr?77Vf(I>g$LUw_0e%rZ*1?y#y95i+@^13 zU~cSjZoyz&G1Ow{Az9B;NB$81|;q^dB>t^CJd8cSn;zXRacjcP*8Uw z2Ppr7w$yAd28nI`s5cOi6iu;W0jH~<2@cUrK~w^#t@qnHQ%u2k07pzYF964HPGAA| zBn9XAkFAiZnOzC|m=K&ZMc)B}1d0v7{eLLxKdb70Q&cV%YA)D?Ty%~V)#D4pu?Gz0gW>hg05ER!tkira< zEOj74oCQD+_HiQeb2*a*TI9D@B8-!wYV&#giQkrO0bszR;r`G z%gkO>VU{fCeft_hGKr(Wej#*tojz-bF#qet>2HI}%3yJ*#3N#VX&{3sAwskZkVANQ z$e7capl+#GnPhZ`SnALU{OrB483Dwi*qwtUq)j+L)^B)7^kvhj$?#k8baKCDNhBD< z#i%V2H530v4HgO+eIHaMi{%mDH?q?Lz6L9iq`l~ji#@@G24 zX}C_!LexXn*g_PV-Ntc>v+dLHatqp@YS-+Xqd9EZS^5NDh<5(eQtFj4O zRt5P4xc9VmWi~Wpvu)n3!~7*wM(_u^TnoXVAvs$|HhPKeLCdWnIZX#)(E7#m526-< z{?_h3+KcKc>Pe*L|9wuJ;(o0N$V9OqDRhb>QPku4?bqvc-ryW!tt+Jw}4e6_mCQrg`#h zqTB7oksVPks$*gW_(ji3hzAc%tv7^0E>6V{Gj3z1VB{Y*50-Nuu=sI^^dQh3yLwcn z`O1Sn>_SO3_sIO%z>Cuy8Q;hC;``-NN$ zguhytBhLPkTG-t`N#z;3z|rn?cAja)%38^z4>kWqN0Gvx6MEEp7^T9G<>lDX;!&rQ z1?+t`G^ZM#nmcG}r=C7J@N9g!aH{f0^HRW|7zbJ?tcqyjGKRrHvrRN3uY44IK$;vj)87se7CktvBCaHa-Nsu#RrHq+X z@NY0NshOixP5ycVYo~B*)79%5D0ame0f*c55jL-ZkKW!Ky=xA%iL2rqhO5UBopgy6{36_)f| z{Vb;wChJI9HSn;Yv>ujmkbWMyHK1klSIy?D1FLx#<)-AB?i2kh16yLf1NJ`Ge?W+u zEY$FPEwY_PZOusm(@}6T)<|B~wfXEAm&&v-no?Lb2lNy9^3i51arhTdc{gO_ZSLaH z$kmnm>E+a^krMPoq?bdOX@`Aw@o~910Mp2|wy^NB<3IZ}!sK85;9^NX_{u?)<`^De zfeSv#qQnM40?q;<2cax7OM+XLjweshUzQZT%U^rU7rL-qT&M-|yqiU_3ZO zTYa?c509Ms;h?ClJ%|S+!SEM`lM*wS24lj+*#)x{36y3?Gv%6xbFYPD=tC zAxnHsvHdQAg(=A{hRzbkA?~EsWvNMC_eL7eCeY9JhzZ9}4u;OsE?W=@k5ku33f@l# zC^o>7TUE`C$^;YlwwT1&?Po)@+U;lcw%F}&S2GAhF{8Ydg$4j&LBBYunu#%JD|%2( z!(w|pq`bvoK%@dKy2fEBRRRgdbg!DZ-q54vaEgB=O`JwZh)Hl^REVbY9y0BMOxlnT3O2NG@{0vg|E`r@U<6 z(4p9eyR)F`#G28wD3d{jOacB`>+DWe#z-#K4v%rGAfMxeuK2u0D|Dovm9~eW-?zEg z#)n?`FZe(9BaEUz}$ysg!?8LkLBA<7~<8Ee?Z z;q@y8j^miMQ%;RnZX6=3LXQ#4+cXtk;!qP#I7NYCM9%-E#D`he-%J8`SUnESZ5tH( zWgcvZ%YlU#xOGP8EDpv_!T$JgRp#3g0cYARaSCXu|Fk3z0vbbyGRIEn1byRZVVKc3I_s zUk#e)mDQ4H97#xSKF9iXFUYLIna0BO1@25o@5m8CX==0nftES;$T(qCOkfg9 z?LeAmr!BsiZmndI{O#LSqa3^VyIhgn8kqA(ay0!!UCvX&fiIrS1jYY-7y zfjx+F=$@hLr!xJ-JRol2`<#2~ygN>(=cMIxv}I2) ztwXC2`;Wj8XkNCw$%mv?YL-^AK`sTkaxIdy{coCVB_NJk81n&T&fYW5~KZ8TjM5^!Yow;U!l3oLm-m{o#Qb~Uk~tP#3+qK0?MFyF8)NH}X9 zG8L3CQLkl{@F?W`a$7Lb=2B=?eEr5>@UVG=%a~H;GuI`aL@)$c*pL!LZ@c8AzBXv) za&qF*Iz7|AWn6O*wuStV(8O>sTESfXfl?0-L8-0W&#-k?Z$$DXN-TR<^c@r@N?fe& z)v~^g`NvI=<5N(Wh=1n)w@m*_{l^u9^`FPUKfX^2$<77%k3~Ag-V>YvIH9p-wb`B^M|#%w}BQB%PEWwSVOmBBLa$gIlqm=M(qX*I&=h zXKt>>HVUFBfWWmQgN~*8rDW1TQPiqh$PcCkiop9r`lqF_P*?0sD)#Q3uDK`X?inhQ zD?Z7hHlQ(;J)-icmMQ}ss3j_Yvz$=B&g+CsFbI;}X7}fJPM6BQUzf9JYkeYiGOBn44hz(WaaI zc)Jz6^)|fM06F=~et-x&BvhW3sK(Tn8N5UCAp7V7qfXB0dkAu&_ z#4pA}688}N2<*+I_!nv@sR96$e&j^5P<;-$l(Ea;=Ty8kU~B#{#(!9r>uGStXA%%& z2#A*X2Ll7AkbykmmTKw!MEJ;!d%6b?`~lVpruMkwT(z0cj^7Z?+y=IX&scd_%Yx?z zxygAW%t_fsh)d!0pL?j23slp4kqM^^_!r?v#jY75p@dw}t+9!*l2qL>1bm+M;Z%oQ zYATOJ=Nd%_m0aZ)6gDzqvIRcw?+GynCC{SDx3)gPMS)PE;JjFs3vRAnvOu=iZ4bWt zjRUJf-u2?egL$r?+KpU2BNwDbgN_U!+h@p z3q!J?%7QApPBjyhO{KhfwO$Uf&zJVy=|$w}!Mk@VZ2VByo*B+jEzIS1CiVzLBW zCQ2et2SqW9GvdJ0Z#SS})W>bV;p*^+Gea|rD97O9wZBFn>xBVrsGgv9ZT81_PV7M< zs$rcweRTT+9W*5x;pEn1?vAQh-aB-C z610`H`@t@Zml5I`ra>dw;fV8a-M^BEdu7N2=n!hn2a)mZ(LaEs5@sB%?$P}40XagF{Nko&@TtC;WzwRzE}~MGsn(Js(r*o zs@|_iOv7J)e{zv3)Mg(0JZ{GK8vzaLZzl~P?b@5-mMGV`5j+^}7K)>m=r-#!JJ>Y{ zbg!I-%pw+~4CRvtG{}R+b+Hh1sDhSEAFT?Zbg5v2qk1GOzC}j$04*^M2c-fztxnx!L}wwPp2!U)OoBCI0G; zUd1=RVvwavkm!=My;a8z)LF5XRiU#$h0-9l){#URoX^Jo_4x{!D4ymv2ze3Zlmgo> z{msIK8!s9LPY%$YF|yL#89&w2-SrFX;O9gp=HQxUm|7vG`CTZt;FtI$*7e#G`!f(O zVpDk{G)+#82Y<%{@OCl*?0Pxe$T-_7V^Nl&IJ!UIxES{^tV|C!2#)oAv}1j1eO)W6 zSKVlQn5b**aAGR5npt0LHwC_={NCz*S^ACf7m7BKotkWr677$f5z*mV*QUS)5A9BE zRf-6Ncb+kM<}9;o2EmNLshjfCQwmU>N<&lk%dB3r>8{Owsp8@R zUxqAUc^5cpg|F9#alP(Un@4@8*=Tj%A!mYMJKHa@+jM;-InZZ8 zvQ<$4a+B$xQ3^pLCR)jH-SSh=GlJJ=?f`2f_l1?gT%^G~YXmn3GMUV#cGQRP{JC$IP zBAA^e8(xgucEw$5`bnxZlYrGSpOu*%jzEArUm-Q9Ez}s#&q0uA4$#zHohQ8IvQ`!^ z?vn#u7VK7QW0Hg=Vckcm3mnziYf+Qqo~f7b8*@*uibgvvJu+>F=r1iyRArl570U^5 zSjAoygRB(ezU%GfM_&JG_d4E`%3^$QTC#cRygY_gzR=)_Y_rFDpR-%5x_ln;wLmVv zHZMEhsH%8#9WuQ$?c8wce0sVd__O+>yQvj)(5AH2FtWT4z#WJbZzF@Dzi`q zRlSSMZ*uP5j`p3kza=-ov=E=Eb_SRYs&e!9yw_<|-zs0ufiW>HlibFBeDF4lW+%7a z;>mp%JY3zna{8c3`Fd-!Z>iw?`hteLFMstB-3^NIYmLQ~PC+A<#*umD6ve@8CdRa> zTX8uV96)(5X<%<`&E_{JE%Y<+u z`?=e}K%d;V$!#Agoi`}L>P#8jB*5@);2Z)>c0l%zYzgYUX-d^bFpo7&% z#cJ%Jnh-r<9!lecaID<^`GI8k@F87-dg5K~Gkz~b2v31AhEum)UnC1p1mESs&%GpS z7q0v&86i0sF`ByWDE=b+xXP)qOvS1Q#{wIUP!&V(5N5ZweZbO^9jGj{8Znsgvyw@c zB_jee-~*eV1ftXX*>InJ1Js!v(_qvJt3VKpXjz5_BI@SBM`!3a{op%L^!x5Nz0!sMbnU zIBU7pkhvs;d;#Y0ZiCzMF`8c6pGWJ!A%me{3@_B+3{)?80R6RAXSA^u*E(?GGJ@%UT@t=>wY>r;vzgGEa>YU#Oq4XWe%Or7h7|IF~K-E_K>sMq=pYRoM# z17?vA5H(YQs?)8GDJ1*+XUxaeZ}r*4p$WL4^>tRz1Yh}OuvlKb^@&jjYteeuIuhe%4(6) z?|7=I#OVBX5D@<51l^sf*Ensb|3B4=>kre)7F4hH-ddtv1* z@=+FNtyh14ql)7T_%4oenlL%&`9fneY~J|kvWPJK>Hr^l6W66b<|*E!=ZzP;jT?%# zUXI}qf?N>%aS+xBdzs2(LM~x44b&d8=j@(&4 z|H9soe2cvj2*9FD+8Bz-J`2>(SZYh~bfEnH78kH3u#}{t+_datsEx=Z&33dW6QIA> zQ=RvMC2t-DZaYm~GZ4D}A=8A@AI}pRK&eeI-oWT4@~SwQ>LeXxF_g*J3fxLA)3{li zUx+EqyMg;#K^6tN2dQw7(_KFQIpXH%8bKa*vrFQ$ZC=NQDQS$aRTZqlR(f%SSQ-PskgVo=xr2EFUC*W{gxHlSDR_cOa*q%z?_{c5KR-ltjP!mRiUSv+5hraMpezbl-K zHE-I4LfUhkSrMAdi+pYPW--#msoYEfm{g&=s_gbnYi(~~N_{PDjtlnBCD6M^)~5H_ z!C2B38a?XqIHWRpdQ2yJ2q~yvXB$qv)w*{}x_tNW=eFz~6z9y?{J`Hz@TTJ{I6p1L z6fNo8^-Ng6ZIy1Iun&VG0_H10U-gK}qnRxY-MEnaQT-TdI_=YVC^;wv=4iPR2_lJ{An zsTG;^q~n}M7wr8y)VWlltrGLzSu9J+>U{3MMI!&q4;$gvExTmnNdw5TN+f1eq}H-6 z^jxz&|M~?}QZK7(*t;5ZZlpN2ex+# zylVO^f<1ls`c*jd{^aOt)d;m$CdYbu+VK4S8yJ)~IGS0s!~_^2jHJDb563m43Cg$RWAd_i^^!-^K|~9V zXBiUtW@5gq<1Ak!=M-ki-&menghAe7^=moBSt6Lj&Zc%Siylb^@{LTa$hilmpL&Cn zs-fLV3LcnUlTiaBTcIEfWiw8r{{V*u8hxgbEEz;={^k`N1h|9a|L|6LdOACR=ogVc zB=rx?^Q))bG2AqC4Ez#Or+rwM0YC)!n80O+!cbt93mhe@$Z!-aKD}o<%jW#@Cb;{# z|GT2eJ~TUN|6G3H+u3*1!9M)KJ5;AfhI6>XF@Gx z)o9_0hNwDtsb1Sy6V_S zkXm{h8rJYYfNn%6=iot2sc!Ex|2_%PXJUQAP4fdxVk#fkDv$KyC)eh)eGtTjbWsGAr?_xRGu9wCk{0zWEz% zWSZTwCL2Jswf6vG~K@NUErt+*3YQiO^ zX>IScR&O=z9Mz|vmf`t*Zy6%F5@=jA!FuHpIhUttu+Kke^UzGY zCd_$cJcN~g5F)PNOl|KrlkF;7&TW6u@wLnaMhoJ}IT;9l zyv3X|`Sg)hQ!9eh3i@l;t9?00rt1Bl40j{d|N86j9+)!`v4Y)@wkY%(7?2-Qv4~wq zi_-O>?!YPskV4mN)j|a(AY+m020=VAZ2KnWg7sS#(TT<%_j6Fv7&xDeg#rD3{8ViE z7R*joPS&Z!b}Z1luy%4gS%+98o-=u~n+R0YxN5n!SgPU~G^B&qAwM6E1Vn zWK@x2M>(FsfgRH{-VFCZECDEPY}Ej5UMy7~)yqCX=4@Dr*=7UB!W9sxUZ@okkZBrt z`p2PIsu9sMt$0`m=XySX5nts!(T`F2&;CpfQ;z{9EQ+k6Uq!J_yqTuMLIbxcO#(}o zR6RqB6&Ge2LL_l3qIkM#ulilBRJ}vSccYcuSBlYOFnkCbP()=gv^r2OnGyW?mk47d z$C!UL481fO{PjZRtSL>tL;0{4&-H@9#1x*rL(Wz)J#SR5?yEzwsd8LS2jx^W)uhMb z3(Yug$>4ErS9yqYokNtfRMD|-THojp0S56?;x;T~AeviL-Ze(XEIhQ^H^&oH$t@0O zae_OxL}Eob`^YBi!w+EF+c3Wo$sCXjR47`@QF~f zt~KH|LZBZeN&w+GSYVt4wyz&17b8nb;u9I3GYuj7F#BxYG8j?sjHNdx@#Lf3s_KMD z{&p_EfFA*yJ63GMT|YH9D^sj_m3I%|8y+NCY`)XBU|*9_p(t>Ov_1Sd1spi#fHgQq z?Di65KVX!Qx@T?nrqF&J&RCQyKSFp0E9GLS<>Cuu;UE4~ zv;z%UCE6X@tehBh*%ol{Y|RFI!-p!yhVC;5!%3W;YSda*c=6{;`SF=kq7)hq@ww1vo@`Kg5^ppQ_} z$|;)h%kxIGbJ=NzTW*Pa%(lJ_)m?L49oROc0l&!0J6Oz?4Qyo`z^UN~H4rN0YI|SN zuk0b^7prvCCzcSXfhypC0>!74G@z74g+lbRVQMrHG3?B|dXtt;K&x8_fCaC)b>f8z znc;zaIrX-u$yP?7(5FAYp#AH}aZ)Ja!8I`c?}u{SDY5b3;y`u|mj7*HAsBPo8@%b# z?;V9JuQNOP;MqqVT3MFQRH@TW>R*LT4H6r~qz&92eS12A6@vKpFXv0F6h($&5zQ?z zFV30!K~BAd0eCsXU)d0M0$t`)KRoQ`9&VL%zMbJiUyX*Rr&4&kfVOuo*G)X{V9tP9 z5oF8ZO4soj^9%c@6Wv{?xRravoh{6L+WJ8EyT>g5LoxVX1pytoDD>Gf>2DGi71YFL zpxEHH=ac>?zA*c(0crFRYfpV?Qqusz}z6^RUZ|i3mdptsTN5`@PW?!J6%mrMr+kh7nrw(0f18L>gZ65a`oz>3I+)d32 zhZ@083TpP}J1-n`(C&VWUT2y`Jeiv{zypO`VUOe3?H)qXhD9F14!F>`B?&*hB=KEP zhT4N8IC42L>;mdCl7$%*n=<;cixTJ$e8o76=+@Vv(tih40Rt=OyV?bjSAhVMHg?27 zH=#x?lu$#7X!UvbdavRU84e=F?&71@`A2uO_AZPko}x?IZA?2dP9p<6aX-d8HU&e^;q-V?N(H%I z8CJ-}{gz$gMHqXx&uh!|S|28|K+_=hcrDm*)eL@D7g8s$b~%^~*AU4LFe-tDs^ zhnNY`z?8p7wAt0gLOQsx_nz)rpNAQLoU~~FOn4im+~NuxT?jYgYy*}AP5N`*KW4%I z5u28ZCrL|E9Q|qV8uS=0eJgkeKRmOl$Z;1zj8!40Y;T{d2cq zhJ6#OV$IfB-vI!*OO-A?ZE?$Q#fX#phXqroA1kXC;({6MKm=&bw64danK+Tj%1^?O z!BAG%OYk1BQ6=DfWjJbOAWAR%ytwpJTL_UQe6wV?{YNh}8LTBjW|nE=Nmp6RW0f8U z5*ow&u8I-m9Hz=Ui_cbK#?zdqULwuZV2G8U zv_qeV;0+7`oW*0UX1yAXb!ZD>D?bE0*6}Ys!~83Rf-w_5lF(*~7 z$cNKU9#`P9KUc(LCLG_ji|)~G?zb{-q&o}!a|a|XtuyVve{>Siq1(kqAxizk*uD$s z@}Qz!xU*NIv;oMdxE5SG)1x`97}sI9)rCag4__mor63a${yCbUq#4jc=nNe&^0 z(4=h)Km3hE-<~6e?Dfk#8ziAXYnbo{W1~Fut}X;(plL9`2C*H(90*NoNnO+n`Q5@~ z@SuocZg-gY*XUVn7Zac&Gr$to3AxKL86kh0X5iZYr4~lwAcqxp9K7VA;ivoE1S`_A zY-D~IJWo;R$S^NoO0%HM6;;WMwH$_%rvC8X+uELkQ3&vKg7tTPRD<(jegp#Wq{p(7Fg77?VE^pQM(7>?E!RA+#5*++1cl0L~2-kKPXA<17M<>ifBX{KV zj>M0SU9-}TptO#GihbMlEOjY1H~7XwLu}fF3MKMe`cG5VH0f-DBt+D0RfMbhni_bH zv=Jk=$f^)F50d;aRuqJ56ws6ro3(IK8iN|J8QCRmv>&3wJ}ERvLFA1=tr=WJQ;(a> zf-PylgbUYD8LNU%2kS-v1ARw z-zty)4%%)X+qP}nwi`8e+SvZb zwr!h@jmEZ}G-zy{zTbECo^#fkt7m5Inaf%8?EM?Bzq`k$@ttRLpUO{z;(uaT`)%^F$&8v=yBo zpQ-Y~&emfkXBy>R3~_x}hJ-7q4jsyWWgLwnf}J6G^xRs!YZX{z5b z@Z=o#BW^jg9X6aO^9xc&5Yi4sW)Hs2ek;_G2pG?&OspwQW@y{Kuf^2YaUk6E$|4YC%m!DOqif=@;#^fArmpuK)3pU%MQ;6^kT*qAc zN05V)GzMb&t=TXwaTGlhW4nf<^>|6BJUmlPI|tetms-#X*0cz!lox6WfUh=$+1h(* z+#wDOmn6z_ZvoUuay~4b%s7gfqhGa|FzIOQeCGR`14CS}$|Z*lDvd`=&Q(zq6&dB_ z8Rgb|WZy;fOUNPvzVMhBpMM>1M1E~#^UzypkhWoK!pylk1p zY4g0BL89DWbtt*2q%`#aR0JQwn93l7LdhFGhYy-kCHrI(64cN;D6gU8AiR|6SV^RO z6;Wj9P#5pkOJJ=~`cMtx8$+%y7WcKzsO$Wm=i%Fi`#2H~H;h9u-?Y9X*bm@3`+C{^ zE3aCX?52T?s8GYzODIO6KMJ$VkBoLJ(M(o>+EWP{{IFW(xIGk*4xwfY*jb@YX?%vd z({?0a&1mu!!W|`!UCEEzKsBt?0+*7_b!cwMI-AZ-HjA%Kl*WAUOL^j`F*Am8oE~2ifnU~9%dawZ>C8*Oa%-=1 z>mNiy2u!62bEg|%uftlovp`607?5ub`qnBq7_D?6zToPLy|w<}oyQo({A;h&x_ztJ zuzDG}N8u*HX)xq`m^w1ES_aP8s~wZ8l#6WnSP}@kfEoFjWv?_7jX#*zd?6QFU$2m;1MR*SlzH=m)jQqK@aD zm9a@B^1#4miT*#ov_L6FTy!Ji?CSyq@zYjj%2fIs`0Hv_)4dq|B=NQ3HhiRJ;KyKg zQ>jdK!*D4;xkU>_$OwtGM;U4Qi#f?U8WIW4zD>kTtWIqejf8O`^a)nvC>E+=wn%gV zHw@h+J0N&5KG;jtwl@wSzrxXaH{H^BtLJiGMY6y<9vT+^@FSTJ=^5z`rFN*Q{6XGU z5VNbc`>Qfb6hjcB*KP&z77vwiX*2nOIqPp!)b}^ATduGLb ziz~%;s?chQLD+f8E)9PptB7CQjo*CzgGB;22$9uPf;tTS-B<}9%={EeccDkVdRN$? z>bon@qVKdtc*Pf7=GCdI+5>{Mo}*W=%3v3N`%8YCe*ma`@zdu-sJHpjE@CqCs}^Rg z?ELi@xwGD1e2BP=5JhQ!N^&3i2jN2x&7DV|IW5}A-%i7a6aETHS4zsa-wdM8T2l0^ zf5cdDq#jOT0)&dnBtvW&PQdCBX}-3%b<+2aV@2>zyBjFSh<~+V~Muz3-$S2cLYitzh z$+;WR25(Gc5%aEVpN;b&mT6UA$g(Tya$35b!sYVWl7hQKa+uR3U0Wo-x}#bD^3M1A zVFJXr5LUL>2^EdAp2=SZ5QL!a%*hD6Y#RZlkaj~x7`0FZ9YrQ)BD+?JLFiH3p~NvMjUSxJ|G;b4Qn;QlSn&j%R>dm0V7q?2jI0j`n$${yn; z@wl2Z^?N9R?|KrT>od{Y>BV8bZ-L)F0+)m-elFt@betuz+Ui|y~=5A=&;7-SZ03femGzwven1}}Pw8Tyn0{kXG# zkT_2d*sDtA^$Odr40Xvx%(6@L@%_Kv^S6|-iD1PssfkMcYb$?6cFSjtD5M3yT?tn8G0zBF#;Pz8^!WEpA9c4fI}___=W~R$zR|q)3*UQ1AEqx-QS9(W9d#uMn$g{u?fHV zg9p)$N&9Ry=0St4k(&q18sI#0KttsGLyDkQ^|y?lhlBev-SO>{*#?h+?sZ># z%0STjjDw@Lz%ZEw$Y2Ca1p0TP*&@L(cFS;85$p0kYy8uY8jW8;RS5ychXhb${iSBW zjKME$CPDWIcrrW*K_?c9yJ8_It0&H7WWe5|7*LF^+69Q_VA)9<`M~&c-K-D&^Ft(a zpve+m62ZlSUb1ibO!~qml6ppT`FN?JA^b8|kgtPMCeFj4Cq&F6lvMtZ#Vsj94E7yA zknhd$>wMIs#chuTfw%zyWAh-Io(?0o^|KxZqN%&hyC?@Q+PowTL}xg6BL3#Pw|x73 zY$`f|=ri?0IIc+HAgKXUXxUhs9F%u_Xh|wU^1G`TG$hWA;`iwjR-#odmb8zLtKJb| zH?*#K}^>Q`N)-C>`!P`~e>F8sM>d-nTlL-9kqTW6;^ z1;a$z>JDD_g<|AHwHnF&HE#0n$AJkln&K#tl=Ge%HD91PMH{5^t#EY(Wk{M%5vcb6 z$E(7_{XeXswB4eAUKJkB|3WXVU*hX0ZTz~~>J?j{{xKqbfWPZaTH!`#R5v~v^3I_vqFT8d+mKKK+COUvZ>yx9;`ol{RA)#X5~tO4`8q!_`wy42bZ@tn+CTS!?wyRM!z1z3Nt= zH++oX^9`xAxQV5`D7Pv?uF2nwk=owq$SPN`kuo{v?+p7sBhDla1Fpn;W$A?JJVA9u zQd#~~21in<^2VDu+iu>Wr7`4{;tz17+|W@ZUYiz87&-D}M~rAX2Mi3b0pq@RWcqX6z~zaCF=W#LV;L{*tnGv3>(jma<4ho5huH zv_P=g8U?+G_hXq^K{jTXk~=$u3WuaWG_FwAlJY5E##B@GM6=1Ji0p* zt5MI>kEUA`T3QXnw_;KPFu`1xH`L1q{t74;!Nrx;sD|jTe`Q04XN zO?Iw0zrwOhnj2!MS415eX>cr25VQ_E64ZaxE(zFyqnk1_vxoGV7@WA`|0sMo?pV%h zd``vCxy8bV)U|_AvvbjFk`cQ_RC_w(bg&5v>z0KquPev&!xD3-`#TV#VZGww$mnT+ z&P76cB;Lnbzi0{r;J39c|Ctdz7J2aJg*)frsD&$r6K1V#>UK20g%>17iVNxl7uhc| z(Bc8JQA+iyKdeiZ`DPmZ?ylOWTF#hVHEffib@Yl=Rd3nATUY5*DPYH@=^jP)xnuu@ zIWhb}7&xUtwUpgiQ*Uf|)rLLVOg0<_T%MauPYru}@tbr3Q4|5psuykv`AEl4>Jq)1 z*qk=m-~KV=0EAD|XJS26ZOHiG#dMyfu0lJqc1HeZiNqBcN+(*)R*tGIlZE%K9IJ)z z6b~jrHSP^sxW>h5R1?|MjEVc=J?l*H6q?VW+Ndj8X(AHyRct^j16gRNQ+qT|>vw~; zt}~OQU|S=g)Y0m+h=5_=Mr+>8;ip|&!dS3ad#(GDALLKaufJ`VmZXUD8^Y1wmXE0V z%JuMeC8(lzX0|VGUmG6bcVRsR9d{-8c%brT{YXaFA6pEGO|Si#W>rRTq~sTi)=|eQ z{TabuDRZen^`-PU%CXJ^?)3ZH84j&s)aA+s2vn8GJmgF1dI!1J2z0)X5+4(Ommei(_R;_p zoxdaie}AAtC$JsUql)mm0-@|5k0Pp5;c-@~;MlWHgq|&~GJev~gq&u`S8qE@alux- z1%CLd&ax{Tjg#u@+m$6v9Xy&J4syCq+dn4Uq8leXI|KI>=)JUR-sPje2$ib_45oYM zT3rP7S(=`-P}Lis>8}D`DkkvJ4dhGYjk;OD2?8`5y??c}TI7x4s?5Q!%+lGh`mVzG z`#G8(!8vH=MRwYHz?2B(8mpaXztNP@=+#{QUp*;~sxr!b^}iud>M$-k_K$Z&xa?5! zPzk%0mxcZTBW*;FQEfy&lFx5!HbtE-z=B`6p}e8Y=$jOom$X}@$7XdJEqf_fF+}zKX1Sc~)+VJt7tqMeE6-;EhitD_>w4k}r zBbmnCPErGeKlexFRSfbuZQOWI+N8KO^X_7wJdPka&K(k+yZGO}(wyHP8BU(1$(27) zu#_05iu3$ea{2D6({nN5JU%H{1qt9L1JH->l|;4C7x?q5H&b33-#^OhbA`Bo>J?H` z2?=HcTzzIa5$kAMEbJnV2FkovN(d^o5JVZw0VM>ODjBqXNgI&$Qa0O3qe?v|oGsThe|(D< zG}E-^$PdM2T$m#3VI*8s)5;*g=Tr|4dSD0#k}Ks!LWA{Li1=}ij#-TsAsW(l9pTpa z%O}wFdN~iGJycyW3;eJiF)m?%^{|*1QBCDoZWO$Dcnd^xR%bdJhMq6w6@eE z&S9IoTE&OvTz~3)P*v|IabfN3sMF7^D$=yY7rInDgnajYe6W&*xV>#4r4#bE_6weE zJALav-*Hg2ZXR>#k6`%{mo$@WoP-jCQ}z*!mVIv<%h7pH5Xd0TAkm=TLH(xT#|i`~ zji8%<0?%i9F81PD^y^aH=O;HtcD~=HO!Tpu0;zI>yvSAG9`L5a z)-Z4z|4Fx_<|%zNe1bo`4K7`U&RZzfLW}m5jR(B}@i?G-pxN)Kuo}{%D!v%#0I;~z~w%- zlYU9B1gCv)$v~aaHPg@L*BWggX__wlOh(Vmda2k>Gm>*U zSM;%+LmAte_4dm&&B*j}|h z8G~GQ&=H!+S{Sqx(fs>Z7LP+`nvVSSB2{jh23UvsQ$T_aQD#wqNJvq_L7s(^%V`K)3GDMmX+|4 zJ87-RHckWgz^ry7|7Zjw1g*K>YV4m(^p^Fe2#_mw?Z5VPhg-ZCkB*~Xf^mAE)C>_$ z{K>(+{^H8=b0L;K)bt)n>bdvCEOa%7{<_}V0NT!O(wv%E`TRRyzJCBM8`32)mgvdj6{d>B1GgTHT za;le=6E02YF@{3bRrQpgp=`-7K+T4-C)(snWd->O)rvslauV7DEpCbD{^Bv;(#kT> z58O`U0K>bvqEkk{N$h0=vIM+#X}oze36>SPJ-=S9Jtv9Ccxd7>m5mu!gHdf}VLspM zY&Y3xa3`TA{Z?6Km1V*?k8xnZ>-x-kgiE-ipSYpiX;h6$j5HEynys|=oRww**Xikk zUhHd-Il#Vez{nH?i?T{659XMV?dAn?1G9P3Q>U#6SPGK;Es>(t32_K6h6@azitJvB zN5mC+D(ysQQt2SiwZD}?21V1?U3tJimB!}BevIWdyVRn6vqTrk3b6Fxg(jM2_BEKrhvySx|oQOL)@edyG{ zyoJ`!e3xS&v}D19!!dZj@OBsfX&0>}ArEDK)w=;Y7o<)PuKf2o;}ijhmwz=c^X4QP z7;do*lSsoLFWS{C!Ry*WRdqnX1}v0;l$%W&9;BnJ8MfTWKw%_FWQPP)2b2Ue?X%h(uhJF6Hj&>7*Qr@`1n**;qou@OI{ntz8+8Apm#BOXtiQ z>9mxI&R&nlb{2`(b5mk0V&7?Wrh9UFbyB!n0jg)u?>+Xs-!5_gYCXgt-Gwn)5?8vV z5HDuEt2O9p+J3W-;yk%JvruogZRtLFuk0|a*$eYfDnYLL5kQH%RcjTgxR$DD*J{P~ zSo(fa@MGMZX`9Ku2e_lg*{o?C(47G2DF}29e9;5pTEo9fRoYjw*IW_s8~0xvQRR+ zMfw^Km3Ja{>#;8=l59HMhmF)O_|VD`YH!Ui!P9#$r3a^i$`Jw-9DUOZy`dTa4a&k?pd8E zAS7qkQ}8c#u%gjZ;v)N%ZC7C$^hZMp7Lx<9ZxF;tsQ1HQI`tYwMmrtD5?RBQeSu8! z;>GKcQ-Miw*vM=e_Q8xwvzw{90#KJ37CGIKrDm^b3xAfJgm)ev@R{l9hHSnwM5MYu z(yGq+Leynn>?!%f!U0)!-xM*+2b*?5oepCg?J$mLX`)=CwfGu3&o5U;tM7LTGL^(z z5OK>>BfkH}gZ0dldQZE*@N-Y5A|$DZfcLa3MrBLwf#hSx@DUx#GMICL1&}~Zd2v9P zkzp3GE$;eU{c>=|j~}oDzcC^ihtIG3lqzl|W2>g^CM?dIfYUy`r|p2fr{7Pq`y_zE zeWdaNO>`M(t||`EKv#uGxS+t$9WV=yph*m0I2NO)4$KG@qu=w*4khzP$qfZ7sml!~ zgFP=Ts8>qoL4>rjD55Ha0d~=YWof!V-;Bs2DU$y!E{2Q|M1;g?G*Fb-3u#(V@y9j_$_gceqc1C9(Zpd#3`r4ti=gRJvBrZd z3zVcF zs7f#j#r`3n*=U%toF1%#4Hbu$!eDAmkciTo%plZPfrL47CEbDiFf{_}5WV4DziR{; zaw*wG33xb;rJ_=iMF@%Ou&fPn5LUZm>i}_p#X6H;e@E!(Z7OrkI>!jn<#M%PjA|_WIRk zm1U=75MT-ZWoIJuma@h7%+cqv%pI+*k;OpsE_kIA)18&j0*|wS z>4M%DMqytJ-M)-M2h{30v|`O0TsDmr6>n(3fYCXyrz4cC0!CCBd#2woZFNqZHoL1k z)R9gn=9C)e4FMLag@g?Ok3&!(BdZ`6MA+qw5^Mp8eR=`wK}uSi7pZTJB5MQ&7T{wx z`FR_lvQuB-Z3sop5;>V`BI+sx&XgyaqIMI!7?-51F_wSME0Cw%#o8`mtyUt=E78Xw z02LjPGU@cOI2LpVxiP)wUA?%B{Q4P%AAM+{I%MyS44^2%LrW|nkb#^!ldnw*pyQpU za2gv%uAqMcTt42RtS_A9gj1SPZNmBWunqK4zR9%6&U^({4M9<97uh1$=UB7z(y&1a zoM1%BrL10Fv+*C1 zZrjIDddX;CpMF6XM~A9~fhMoQ+C{@O{9bkL^HC}Q`~$I(7+vAMEfS{3(tdBKm*ui|I4H2qEi{`_ zT!@{p)JsVKwmG=vq=Gu!L+y1Zp51WvD|7RWvt;e^cOPmz6Rr27F^E|Xu;Wx~F{>8~ zC5ARqR#gyCUSUoZ*mQD`d`;?x{so1d7RVwx^QG`L!?U7WDOH6kV*?$TPAHEjhkdVH zOL=2HdXyHG$4e|?rH^bF8cRC^X`F&8O6(bOfj=RI?9CD1X{o}7!)pqIltY>ck;YR3 zn`@j57Ja2YvjdLmPxna-XbeZ1K*$NleLY^b5-3bfCno7f7xF<;E4AxEepHmdigr0P z-$w?NNVAjj-ysW1ob!Z>>5>HocbHzPv6Hlzyn)(0&N*RFc!hDvLp^9y^>dAGIoF!8j8M#`sxFqsCM8FrO_z$E01^{UqvU57 zJ^Pd%5{Mo{xqGNUtOed3THH`FO{U}Pc)qa;OF7OayEfrZsb!IX{o)s!hAGNt#c;urCb9cc^Fl38#CG|FJj*we$#eM~&4A^R1E4VxLOfl*oi|G-WWUDL}zQa>??dbB; z<~5S3Y34|CL!`S6c~A4RH@_Vr-5NlvaWN1apupsp`$iCel_47bOA*I(1*o&g!#2Ld zZSu3#y8&@BsO!V7!LLv-*iM77)Xxdi%)*!cH@m^A8FjaOcQ$36eOe@T$bHx%0lS?8 zk{fc`!JSi@{Vjs10&N)MU6R_2u=X^vdp zzZemKXu>K`l;!u^o9@9#{(onU)Cc8%vr zp^P!>C-W&a`2*!Qe}sXob5+pUMkr$cG4592M8Uk;L>nyGVQPj|^!Q5m z*aEE*A-lgL>NZ%Cev^efSuDoasOG1WS%JjZq0{$ctlfe7XBN9U*x2MY zSp*`0FJrJRI!|#=(!`B`F+cHZaE`L5wE@~FArH6Iss~)Z%FpHBw86F^PF|~*(ssTf zy28HU9#A14u{)IWi9U2BH({$?b7q2XVQM*~)^3O$bd!JIFJ$Izh9$TfO;5GU&EPHp zY@gy4#*@YhzuiqQkq1O#cp9(00)_eGL<&LxF(O7_I#m?K|F4c{9J4Zgs90?J?pAHrWjh)O2d)F-edd?S5< z9-fE>$*a|7JkI`-_}uT#c7^5KpR%oYsCF0+ngEBPOW+Pm`?(Wh+a6uF~(mX~7&M`cvXA4r~|U9|M}d z7Y0!@t|!3~j6d<~6=5eUYrQH@= z7kRvMJBW?j0CadCQ12iRz6B@1@w=srd-@&{=JcMib9G;9(h<8x(9e^@i&Qg%Pq1_6 za^yx~X2Ifv(-=!_%LuK+OKio5R67oO=ZC<&zmcU!fv>UhZO$qV7kbD#E&A1vBq{*~rySJ@w6LS@JG)*3#O%^Y@arW_9%ga{bKuA-t`TKk=CTV^#nZTTmTq%?n>!Bd zlE5i|`1#r_cU|r$Z|VJ|%CwFopP(LPG7+&5EpDN1Q?+G`*ycxUF1dl@IB5Ha04RJbVIdv<~D#cO)ombnP*>20={vxmZAVb%esN=EL3!ilUFNN;S&Ayk;Vc8G=X%=iMaAI)3}W%;Bk z!tHy(Pj#&d`s^&rx18HRr9N6qVIQvvcgm1BX+i}6Y<#4Q{Q5##v@^!n`KGAM zvMIJXSgdQqPElpSa+W~z5&7um57p{Uq|LOAMp8Q>RWN(_Tq>&!&Mg>#InW@w~+na2GcGwH?15o{PvLzFvoM{J*Cx+fa;+BKRJ}N*aT3*G_K#EbO1N+f3a29j|lYb z587@7dk1J#M4*=S`~ZP_W8}2%jlpeccjpzbcHh}`xx(dC^|f}hw{w1RwMO%aSl@dn zs84E9>9u|jH^+|%B&zGPFi=Xc z4x$gBZ%ss1zD>!d4DV5RiU7$I zzj>nph*#h_L!CXbg=7eiSls@+S(LfHX6rSO>6rWNr5c9(gu6h0`voZ}=A@~<(sK!{ z57fLx`*^9XF9p<&oGKzYfhEdBppME{U0!PGb+I~U-A1X#T>)`QpbOB(;QvEM+u+5l zAK;_Ztf3FS8{T+^0u#tnV0o1wu_N0i7m?!ZO){cF=A29qaK%>_D(m&+D~s02rF==wwM zbHrdpqT0<{f%f>vTQ|>!%4ABx7li{H*3I=sv*vh=1mu}F94N6?NfPj)h^+Gz0Y;J9 zsS@!0kPTcBSYrO?6bn|M!X*qbSo3H<7OV<5cy|7&B>ErAff@7cam8R^jnJk*4WNxJ zSnYAhqQlEls?tSZBsvy)qR~>6N$}@F4J2~3P=`>ZmL-S<{@k6HDd2JBivch)QR(JM z{4M_#j1i3aVlXsOndY(fA!NbwX~@Mk{+&oB0c)F0Tmw%YQ;WhjkDfFf%epu|8Yfc< z?oT-D{VR}VBgt$k>!rPg4A^SH5;^weFtUq))wQOh$20jr!f)&fP;{7I%y zVsZ6A-%drLa$OHezSdU=0F7l}I3x66Znq!&T?Z4fk}!t_>V`PphPeWxP1k!FwsXzc z1XM)Sg{bty;YDcj{cr2Uo{Zd+O=9`zxwX#X8=9n$Cs=$BiwyIALN9@NZ7xEas_(~7U|q2!^tpIvzFjW`SbDnhGh!)v*?g)< zQh4i>G@Z*jZcJ1YuG+B1{c8o-bpG0%4SGu-5QKWdX(VGns`pww(Rx?#a*Xjk)_MFh zDuliUJrPa7fe8H&Ih5;(_wUxFPLg&usOJ2mrz8G><sl3|Kr2Wb#< z%ncIDQ{=0Tc~zlM^b~YlffuKs+4PHQDr<5lff@1VNJp$2an<=PGd`-Y~Dh1W5 zUnf;$|2f}furLu5bgQjYMsHjn z^O%zy^=ADSnY|k?0!JuyqBCZpz5eGp+n2zWCqmi3)X&!{1(7|RG)LQx(CgkWM-6F$ zWV1ZiJteOz>>X||h^wl?^q~!bXfeW9I8AY#M-Q#onI4_tUzwcSUv`_!M za@wZ@L=t?|6;4K9e$!;S2G^%^KbCroTRzPN=)cHCIW3<-iG+A0j^Tc!KJ1MA8^&()4 z0bdZwjS(aH>>vbT5yjCGN*XBMXeAWo)Lq$%Cafm?(Uj?~$@{o4{o#6C_w-XRr5EdT zamZUQykxssf>agDlA6oO>;Wd2NG~pZe$9}t*yocPPmeM^47V7A%iPM2UwP?9r88Uv zpbne8S}K5N{mnGwUz&u51)8?zD7>`MMn;Jr^ud;;4(s55v1X%G67lmeRk(>C)837` zoR6wKje=HXy9I4+hvmY(Y_;8MW;$g#O+@DUGd+oxUn`($Krs#C?N_bAM#mXtYi&aA zu90ejiJm#~UIo$=56AG0iu$iw)yL-$;Pir=tZGoqMLQe`e$JSb@7ysLLYyea|4$(M zK*$A~FX}O)I6M55uT|+e4`IW+K{ri6Tm3hWM`M`CD<_!7Ya(X*Yp0MjcaImwE_1d1 zT)tr30YZDE3;7K2(na_x?Xhr;lY=iA$#MtL#i4dy5j12+rG1bZ<~spFlBgR{z%(Fw z_OKwsHYtp~8l;h$1lba5v{5vd=S$rxwV;AuCWilNe0EY?ov`f*_3{x;gtX=#&mx5jx74j4@;bv;Vi_^Q>)A}5?ipM7EpXuLa z7z5aa9vu_DaL77SE=4!n2!upyfXHl2Ed@GR=ZKUAhDPSH6@P1<2hIyDe++k>k(Y2j zX14@=$6(hFdxM99lWHXCrBxLJ(f(%jscq0Y%DL$tu zgBeRJO!Ut>8a(u63||;W@Y3WR2Nd)m5CMUIGCR9E7)`$PyL2Xr&m8ye_!zw1(fL53 zQ-?w0j`pWd9CfYOEU3gsRQD^GcX$XYk6A!V>6T)XsF#RNpX0~`d?O3t?7^J!O$41# zF+CWo@6wj>jtT=P&;VzPY6f@VJSf&eKZ)Q;!Vb8 zc^g9wVk%AOvmxrzZ7up8o1qcJV0h*pnZad3HYE3r?--;0rQhl~`9~QB?iY~QCQKtL z4c2jw17Dk=M<+Nq%&k&?53cQ5$5!7%CBmZr${w>5V@F1Wi|^xrqUo*6)Hsc(S1=5w z6!m0r1d|2rlx|A`^ksRQK+YiL2?~MRHQWt} z!ruc?36mRygicb#>j~6~`q6)eO0t9xG*XRQQnDD%Jcl58{m>uS(M!ZHAAhpufmDfrz+ zk!8;S+{lDQrKce6nU;2AaTbnSQ_u9oH}#liRl-`pUuPU}4&T9|_!jnkKlmoUZMIX+ z*k`&h#dk6~IF_v^9fKX=hhy4dy;L4p!CLDJ8}gMnS?M14Pq^l=YTpA&sP!CYZuM_> zUa87uh9-5)k%P@66q*Txe2Y?WM|a|P!Wfx&nL6z@KkwF^I&V1YCawX>wr>m4lrg<-Jbi1vz}aYaqCu zccBaB5+iQ;R?o(!Hm4*T&f7*2tW)2BHD?O(sn#6iI@D)tSpdBhEMi1HZ#FZ|rKS%o z1*TuhxEA-@3wIeEP!?l+CH1dS5TrZq=4Ay%G7QPdU5O(#Y-h|4*}IA+q6jFv8|{63$?U$pV&^>GJTim_ z_`I0#Meu?A$BP1ft3N5i?pA^bPz8X-i)@?XTnp4b;bq4v74=W)Y&kERZrCOSFjU__ zPEYw_ZfysJZrDuJ(2ej%JMx9znCDk6wXhV70j|dW=8B%`!&=>WOLkE;RE*!IY@!Gw z9SdfGD9HuKFAB4Tr%`MKVL9hYfhf+IIP{%3wkQ5xXsVfSJm(lP4g%^4_%guei7V1Q z4E26kSssfC+BjjlAJ}Vcqq0z0@*9Lky62pt;1NHYO2M1)99SecbqTXXUz{`2sAx;x zhMgG%0$Ka&vr`r2^a!d$ z+M|qs&|D5H3FjC14?*dFpsTd@<$op!-v9eYV{V@R4H*cp{0E51!}VWZb}!^eexzeu=ik9r*FMx}X?iH3NJ&Puq;4B3@lc*%;(dp^ap1qd8V z0hI^d$LzRdcmHezKJj)Mpmq@%Pqo$m6LODEP(mxtfnS9P)VCp_p@aDbd$CT%)udIp^+fyDZDc{?akS<7^VT#?YEHSdw+W4?n;mrI%$KB*8HhQ# zKE-??vDGxLp{Ke`n1hz2@eg_8e$=ZTZk@Uq{NSU=nP=qMlWZ8ev)Ek*! zF!LM;&TS>wY5$}TjBVDR=O?M3CqFb&o zjRhi$gA-oIw4Y2mWG~!ro9~U@+J9TrX zIfiE2>?OB`4|x-ppkn#i#pns#yJzI2Y8>qq1W-nRrb-d>#AOV_9g^Y z8b1Fz1sWo5!K;4YEe6)`08fvw+a2ZsK8)X%1FHuW2HV=LRj+njA4d|wxXhn+; zYQDQEbMK0owWYo1YK~cvVG|XfXGS^%>qaP(QI`WAS(7e1qYMWF_m}C3`@@fT=Ylm) zb>?*qqHN#*Ih3@dYTddr|lZZsW|1bVdw92jK?V4a{&Dm-8ucwI-94^sMLG)q{A3a&m8}8dt7nboFIrlj+ek3sQmY) zo}zRm31S%%KXC`ak;{Y>1*bs>_nCpzLl{-m8{}s>RDj=r2(rt3AH(8ys#OX>0m(Vg z`oIA-9f4_rCwA5WFJH_N9T6FuW8PH)?X*@u-#Aw!PMfvFGBwI|i;QneaQpc9Jk%jl zRNV_qJRF%T$~D*aZ#1Od*02@+o8dCVT@908@+VHDuV7_N{RnOk?wra0pmLV z7{`Ks9q2PUvi+f3QmKIX*!`!YU)>w5pR6#a{8K2@d(*uR`=!K@OZA0IP&nsK8DH{+Np7>A{2e+jeW^x`aRs} z(x12TW%AKLN3LKrDr^@)y%9q;vYla6lV$bqNg#n4mO(o$8)u{Q-L~U<@qW5AC1v&< zO2(3Cs)t5;^h6We zwr%5yZB1;O6X)i=UwuE`y7$lSQ)kzyuIlRQ>b=)qYoRFw>v6Nxvr@cCQzyyI`O8sb zTv6}~;;c(uTxBd4%0HeSK9CYD{1wrU6htWwjziQ0WUqvVB0X`LZ?08A$fSA3I)|V=OuRKE;KuPmUwhZVB~1(tc4b!(C)(t?8;!L~vrZ z26YZioKC@qTwX1mOqn3hJBXU&SfR%o00I1lg4HB0LCtQ zK;J4*yUHjS1syL37x_@4uE@FpJvJObwM^k=)oURsF8a`d&?A*gS%=M$okRMG>q;SB zrh3DO=WFp)D3urgnEHz10L4Hevkau7f%gkR8by49zCesjO@;|I$e}9m!G)P3&}{mg zRElbLl$65SY)~X82-b>WBNzNfU86Cr9#oL53RQmxM9`X);jH{1UF|s`Mg|CAlHpyF zi>tf}05yy2mDhO6nzUuEBp7t9*WEV7a4XP%y>5Tyy-*6zX{BNJg82#3LCG4~2Om@L zXVIrI=*>kvW4G;Z?nK+=+}3$p+gRH-jgPXWH^V_urPx!D@$%kX!($-GLPy$lwYl}O zAm=hhFWmf1+JT`Ba>}z#6Y%Eb^loZOFNxZDI(}5P?fM&EyXpSq? z?dV}3oIEa;#oxWL%H^#}uUe==vHg@zeA{lye`lV_f&A?ANl2&bHqEj)2(+TH;LrDy zgmaG#3_2AI4>az}B*)m%Q$_3b2kYlY9-z)6X)`4Hh>#{h15z-O1_+1RsEdQ)2cfit z1<&8^Si{0H;9`xEp+NyY)Y4U=EiyXE&>RU|)3v#$qG%S%Q=>#D(a-|e@W);8e1d<% zOH13QhvI99f=!sCNbn}BG_Wd5gF#i%l8f+p#48lL%iWRfCxyK47I6Ih1sU5WSNiu) z6a7Lte3fN&T+VwSYcg3|T}K$aL`*5QN_k-IejqhDYFeuV?H_zVe;}<&xeDhnfRcip zOw6Fkl*TiuKZ$0^`G;A$O0`8qD$Nq9F+H2(VdBIu(Lf}v2(n`9>D|V0R6=w!Nn9(U+HokU0a=%IaK98HR*Qg56 z-eim0gb6lh_RCL7cjaw>#xth_uch4RPOFX|030i}y%Yu83&?A#LKj<-reXsSAAXON zt4fS)HG;&?B?8g}xZ&ZCpF}ka5p`0vWkPM&v14sP^(-Y|W;&jF_c-n`l2tQJVurxVE6 z>8jgea$Tw{PByC3gpk>S^(DRNNmfaVY#z8<$}@_mR}V5kbZyGlEq}CmEm4$^GpfTB z3Ms9;+(SSYUwpxZkGB0O56+p(Pw*JVF$Mu>bYFWb;2^Zu?LW;VBU!7Gf4zWJaaHUE zsPoqb@r4)qfTb`8a*8A3fZh7B5W{Kv5rXLeVptPYUDy(Fxs=P>X;D|P z=~I`DGpiE_sY$Uf*q?99nV=bwh_@FE{$*rxS!#%A%+Vwz;f;au1L18OufhpwPw|BO zFbIt*5_MGAVixE~cG>h$l<~oEj^Kex8Zyw{aV*@Fx|mxfb8VQ+V0u;B4QQhYIXajh zv$cRQ2u=}o(_aY-Bj6Gxlz+lWbYWr3(^Mo%B-)|XIgx@LGqAO>iiw(N8|Y;PEHz71 zE7Nu*QY6Zu3(daYvM9O*7=D{TSy}0W12IroS;4<#R>K=Xvt|^c2*|S1(xC$FqYWn{ zF-$HDNs`ib5%fQe$nUmN;)TN)Bmc7|11OaSLvR)-9qB1u1x&Cmh#ri|#|Nlh1wgAy z_M50OvNDVdgt1-+IwObWL`qYSjc*8y3rO3HOV6$pOQaN|23D{hi<0B0nEfnuN6U1c zbIunSDbY38-ugbw{tZ6>PxVhXuLUwHUhf##=wRIapcEmt^4Ue6Mo8b8=6_ zU%yz8J6nFIHBCUQ0ouv))EJAO`1%q{*Kv=HhBnp97tfU-pnl2CMb*LleCej{o-Fk( zZ03nP^im4p@k4-qXQ%PcNtEg+Upy$0l;rhh9s-9M&2K7W7?`-G2Z||~l=R1<1kbJPf z~yo*tUDFPGol zLwn#=!645%{`Nysm@&E6bh)(kD!!uk^{esC$aAP&q+;%yJ{qNliZ7~^QdvKWf;qvXlF*Hg-&8>WbX0F2nsdQbKc;Ag+?t(;1}ZUPs~({ZxJ~^`|Iov4s>h@wqs|UAB`|M#=^7u)+` zuGTgH`2!|L7e)ms<(~wZ9RL9?$CU)l%IzT9I+EhyD?BJ7r~uM>o;K5^ZjVIBZ^uqs zI=Ej>P6kP7r23F`$}FkBL8wK@Q548NkQ8-uYi&p{$uc=__{&=qT=$QO_xl(eI~G*{}fQu0+64ye|~6}3uH(t zgB7EZhj5t#FPDH@#xL)WP2^JlwY4H#OQw{bvtU?J^^pa3My*j&?SC259qDu7jTF_= z8q=A5YzC<^FSB7_zQphgJ|JWkex0e&SCTB=a6M50Bz#bE`kb?1%)0#tMkW6QG>XPs zN-@R2CM1lN9mY8!3SgyBQxm-IbU(E>s)xC~Zo7$UMRJ@%;4c~(gP4m@f~9;^f;!4Z z6)QJ<`P3`*_=90?NMcx%e>E;rLB6g z8U(oat8UwmPaMe|X@3YGAHEU0sr6rcMTIQF!y_-oef3MiuYk``Pz*B(mR$3!w;Wow zAJR2EV|nv86J$CdXrDAkX&@MpV57e3eK^|ruS|4|9rEDAK0~{?YUj1FVK(Z)Pz%N_ zxO;IVp3*jT*RH>9W(a>D(Ea?}!@ zYIqaXK$?WKwJU|!=E-7Q#kz~)+hUI5DJ{ub3z8g>fdD8dL0dK{SuXuDl)dts15+iW zQ)`R`ria3ATy1fyDM+D-3nsB#T!OAI$tTAffxC51jYrvSg#6?CyV~fiGaA2C^2>p? z#$B~4C99M1s0;B@TLDTM0Y{XC52z|gu8oOHx}IPcE8O2>Vj?5I^qlUnyOp(qPfDJV z8dcv_j0pHNnI3aZ`8IAY!VERTlI$kjhrsWUzt@K9JW~of8EMU*J~tN3T)>0ify1T* zsc$CUh7O)CFe9k>idS7s7Dct-IyGlO(VZf-k>GTj-sFdBcEomhH8RNls6p!^`{K{J| z6R7H~1g&elh7$hVGQ8jz);GFf7#_yK&$eSkY~zyEA6LtOXxQ5kADvMwPJA>iXbvVc z9qJ4D5mJJsf{tW($&DDbhxmg*(@l5DS$#tNQqY8{E4)d{lM}68;Lr0jg)@pBV$(s) zF#&*{N6V$IOa$?dru3$&-PQ35aJY_V%mKudLOOMWbzwALHQKnpUnuCG5! zlLmp)xFgckBgt=X7L8HQzr*r%qG$Jle>xU6Ij%2e)~TFr!5f}bcq3~q!2DhwCr<&F9jl;eDK2T2zLYUz-EOT zMn_P8^dYGx?EEk38T1L&av_I~Yuz(30s2gF-Vjng*s3=S@C$#owW8=J(=WK^`j|H+ zB~VHS+Jx%%q9KUBEqMuXG|h!ElY+~!E4jWXK1Ob7p6A(q4W}FIO9n7ak=gxIhu1HRZC~gnVohOqatS>GKe}m3;?Iot7cl-aCu6+Pg7;bn3%P{Pjhp*eS_Z@vM zd#wMrXukbQLe(eGBp8^8(z+b_wVoaPS4u-KCK{VHL505|6(rkoH6U>o;*ATy2V06{ zbxzJc;#w4oQaN)eQg_zVGz?TnRuCHmP5G_wq)+6@*u0;@hjN9zO=xvaw*P)=yto5i zrnQZ|kNUJQ$a_~2#KYkP=2fv~7~@1m)KOQ+pi;HZcww0;UeBqg`*&_y$}m8&t8M`@ z@3mh6evSp(y#qwq;ICD{^P>=;Fqi1QK*6(e5cVv}*cI0zSrK2;?kp}c#RnUjLY2^U z6Kb*os@5iFflf3E4I)a-6&u>5x|3T?0HcV&KLkXhj%@Ahb7Y;THyYlowQ`E=J*xJ^ z^w9yqX>CJB&Cm2)+xTua*x#|;`>RvZ>vCuI(o?tpKAW8usKGC1v10O?g z6hiQ~D;nbW?H!f%V=JTRL9NY5lL?qb-Sfo0GOn<_jO++nq&H`Iu*1L$mhQ!u0BTD~P)n4}R=j7K9 zWFs8qcPgJ+%9xIO6QalI*bqCYre{}BX*=aao&B#7gBO__s6(ZF6y&c>qh_FfWC@i~ zU*4J5>gOA3hmBPunFrki7BLU9)5cP^4W*%a03=UHKMe^UFsT!e=lD0N>2m^uQI9Qk z+z`35ci6vTumImsh1O7+ZxpG(c}uE+{8YNjuAVMu&S8H}aVCbsMN(3u0(?xDH`~5l zcf8LyCzNl=vpl?iJucq2qT%(`HQmTN5o*2DisOE%2wCM3NE*|ccBYUAa+5-k39*Ll z_bn{3=bMJ`N?;ARYM1z92dZ2!w}V(qtHwxG={5yfPLfN{xj>%;Ccx(L5Y-UojJfK% z?Q30Rh6h6kt2Ce}v&}Vu;Eg2BzS)WH74M{1U|UTrpT~*Z7fK3rB-f>o$s2=eH5uKc zub%^&!7~D_`i{nBeu1u-l)#=wF~vDtw;Sn4b0HF5qY?nH6z97*)_^kUIq*A-x$}n^ z!{qGw`SR%KW_Vgm5B!JY+)g+pJeneebSE`@NA^6lR9uw%*v+0K*HiyA!I@t7Z%@1) zq9(5FyZO2vks6#0g+{WFa0b-hyvWA=3r3$1t2er8BV1LMeDDqBz+{l_Q7P8RHY1}# z@n!MoeOds!vEX?a4_XggIw*_6BnMU}RV*%xh1jBS@s?Ha=BzFE+3_0#vqkFpfgK331P%|e;xxC8I0cVYtKh$^K5lcyi0LQ!`0il z6O5%sZVVT0`1H2Af|V&m3eQRQCj(Vokerdsv(W)@!QXz(Z#alHO2J$~;*Y%}wRbhl zoLhpDX&&9t0^Z+MR;w-A1+16%-lI3ch{a>U!S<2FZhR%W6pymX88xW-H88xtM0Zb- z9~y8CrsRvXCF(lKIs;*8~d@`eGEdYTJfvaglne5Ah(3Xj4Sk{I$fXF91Bg5X;}ij{xN z|DZWAC1{q2`0B7t65H_cI+4srq_gp1j10IBVY%g!C^67@$gYMMXrYkQ1t{G&>}|m2 z9-HW8kVM(~qE^)j9F8QA5QI%Rw6!59h{Q9t`CEF8{XuAl5n?>1sF@O}X`;Co<=SOS>) z3POXH*X$y1G4_cF_s~yjBVP*;ZZ)=^6Y+P2QbzwxQc&RUZXIrxU$Bk9rNYJj|fbn})M)>nOJ5CE9FyNggg=XC&C6;i=+hJTlBCG`t! z!2`V^*?R18?e(T#Iu4UmaZATdbksSrKh{wVR^oTYm%-Z+&_Sj!R}carWRCkm2&BH3&TaZesrt(FcN%99;yL+2!y7LGcPG zEKJ95rGEhJ!pHc3P*xTWw*M*puu;Hh0jymAt>t#8`_pBgJE3Q#R>^iyd=}M&eJgf= zz}mahqO#Pcv~*k`HAk?HV(lnK-0Oi_^W$v_nmU~IvO#WjKTIIZ6Gi+78tl$b5>lS_ zjM1^&?NNfyRzeA_E#W_ z=KH-|Xu+$OcZtayqeYf>ZJXArV@H;+;6Prw2AiLYcJldD!`{jzrA1G!pKdDMw2ncl z&GaR$&Qhe8KI8p4r|QmudZ+!+YP+h{$i8)VRc7UT&u0{Z#?;gKHj`gqN-iB;)#FA7 zhi|%VecAGgk`RC$p+-1kY8cwl+WRDIN9MYmG5==|K+D zMxnOnXxV2skir%we`ql-Br(??5{0;h5vvt&;2>nTybf3^r)%8~EwJLr{#~0c%edf} z?xn{t!SN5(6kX)1gc6(jWoW4+NBu)_WreVC!C4*F_8lL#g71{btD!4{;K1ka>6^*; zr{nFBfdd9cDta>^;u;L*ylIDL(2Ifusx1*mq8UfK&wXp5<;A!$(O20H;|po50{FqV z)xg4znkax5^1>6<=gMwKWt7A3pGg+QH`Dy?KTPwkyo5ZrasM zAX5u?lHk;NLw7g2=yN$`Nl|1S;**ruN*cW%j8tr%uz0j`5s5mq9cka@0nQw`J`jD% zY~H$b47N=l<_h8VKW88X92|uYvdm*!kMxncu>l$(s*X6qb&~&h-osBmWoQ091lQO4 z(0-C;Pgb0fp`oyx4>7`S3cOtE@)*2J)e7}~gd=myCGXV)=N%Y2X@W54NAA4CLgZCT zsb4h-ZP?FBydDr;3Q7t|^8KieNW~Wq-qUITyX}HbqUHt$DWwc({OM?S$^jTgscj zF~ETFSo@bM#;}`?VkM@GIM#JoKwYvFPbty~uXP^Vxq@%XxifrU@mUoeAVQsBtRiHh zj@ErGq;`CQL&Uk5Vf^K!^Sv$&e1mV zR?eND+Wga?8c4UzTKv=CJ5N`X3`9R~7|}W+jsEV*`1_^v2el;z7hCQbo8Pi3#q;n4jJV`00!?T-D8ufk^K!x zVj<9>hAbYcs4aLv0(4P828JWWyeZ|ReVwYpJY@#4F)W~tlT-<}dqCfY1AM``Rl(4p zU8~_&;d4MLIe@38v4KkpQncP+TG8s-CX)SUs?3XhXGBsX!0**u-y>L0^G1eiW|6=g(g++V1~z^9CJ^S{)IY(NB07jAOi>xgfI{0Qb@<;ZxG#yQL=i# znK`L~vN?A2iL#iZij&4Q@__ivoOjz%li1lZv2M$QQqv#cRVgt{maY!*5KJ2`Pd0Je z$tm}_=e)|8Hqk)pC@A&L5upQ{|^8!QAu-citOzi*3|7Y2};=X=^U*Y9Q>-dj&$uUuwIs$X z;1mNCNbtbj?*j}&Ja4TE%WwBd?8q7Y-YEpq`1MnNX(tWoTJihYU}f!A!VQILLcM7;3t z{-HyHw-&scYbe3F$$X9M#H6;>V~_>jf=AYp#4aBlYaKhT_8hxFNI3oERRByCe~Rew z%)oCm_sKD;pTB21#wpvZ-f-N8N`7%ve~~6vPh%{=ereoT%VBI~tbpl9FNtPiZ=L~4 z+L?LR6rTRsyMePDOr5biSFW$l+8ic@wLa*gz;k)?Or>!AyHRKjXy1oGC^#-$-Zpe} z0%9-I=M+pdg%07D)cS_M_c}hkjQR<1K*J+((%k!ocU{HHQu5gY}WL*v!-%o+!ECL0UDRK4%^z{*f84+(nL8@hHr zdL0#Xy3)B4XR6l)(w^;C^5Ahu!V%v2mHWj%_Ae+GB~;nz#WrqD?4D|ai>rpGH5)C8 zP#ELXzD?z@?xqAmLUT>(tnXK^{hZ6HPWCf5@%Ef1a-UsfUac{Phd&kH?R+5F9{JCpOo3M>5&tUg&sK+9#@N(R?f11A zw}-6j#sofU_+NH@U;>{sKs@Tex`ap0i-H$wi?=y=6=c6IwfX#IItApPKM^eUdUK4h zyGx&$*0Z$Ukp%#GtpvT?d>#O0L9bV3URca@9`MQNwBl&g;SN7GDMg`U{n9qGOarf=O~@5CJF^aJnCSY>O3pX!BkLJKwM?Zq0oefk$YCjR zj9?0;`@CW31)BGDHs*5SNCA-NZDD`T{7U%A-~%Xd8`zSh0t~HsyhuRVp2suE+TH-J zmX^@YzJ*WM(8y3a{19K%NA`9Ov=T!wTwgs?H=zpg#?jsE>R%YPvmD4Bi-nk62@MfJ<{{Wtof^QHvKJfvWA?1 zk*=reG;t&7L1fJd%-s3I(K0h7Ci`i*!oxpNH)6M5Xc;Ip7L8Fg{vx#@o!-LL=JDYs zJc?!-O6UewbK@7IRxz_I(D^TROIVW`*S~#pTllM|yL?p&V7U*-Y)~dJV>1I(kwyrx z0C~#=U@&5lCxaxh2@TT0&CahIq{;@p(vBJAgmp%S@w?dYUBxYf><_s%{o0*D{U1{^ zf3My|2l8bnwX4Ev^PsvY!{MT_h2q~%sJpY#q-uI^X^_ZvcPmy?=>MSM8*%MG1T|9K z+-eOHI#}(gD6s>u;gglzZVi*v*HJDro>z8|0zO1SQ{Re@jc$Y}_~VpWb>=Rkb)>G~ zx8Jvb6bDc}iiUOtDngImlzr9#3WVRPF_pYgWx|kmlb+wY#eKoWQfeT>;soSiz)zY% zR7~!NyC)OcFp#>*Fu1PJcs|M4z(47(Q7DC28qss)X+S_$(|6imL+T_xrOk<7h6dn1pEt(z&s}mu#TM8u?}hs)vKr*mG?UznB){i)K_3U(gcE% zG5`>#C1tl!8Xe|fnKYIux0Hy`<^C_&}6ohf?n}r$GYa`V@at>A`=%X36!p}Q>+!#Pt91%Sf=o)}a#$@cSeYDSY;Q`CM>M|5qkots0wW5<#9kay8CGa`xej&G zlS?vQ1;r_Z$`-u(!PyL%IoKYrgT`#%+-yo=UH-(>pYG_0io{lO;Doc6Gh%dN4>XFpnl=Qq zKb3U$5?{4PhA@r4G|*bKFIM$;$CYI4elZrk_rjBYAxng9=4MoDa2PDDlDBHB>-}+w zA+Sc?1XF=|pYNm0^Jcd`=jO@#C0jt5K%~Y1$*rB=UF;~d5u?JuF63KK5$K}0T*bFl z{0!~$-LphfG7d@?ZQ@D`R?YSX#K|I@tf&v+Z&U1FRZ2Z@SSWo zD^GtheKD?+V$&wvm5c2xf64+ffn|;)G>_DTAh1b^r1B$0A>8t(E&bEqove^OOaY#l z=wNWq8lJ|( zMIci1@TIBJ%iKmFOCGWp>%HR?znXwOwgAg?>~&0PH-&2wRT^me-dAl*G7X-V#w#D* zO@xn!!Ok_`?dMe`j|x;;?GiaZAZY;nr}qh*5k&`(y87fqYvHzT-bV`|U{82ouIh9W zC#6?_3D)8Tf@c@jS?wRGQaN)w zYjEVUy;uoe^b9}@&9_hGBnSHi%9DDE491iSBnP7bu(SO){rXbxJa(Vk`AZP+#|a3^ zSvR%&cI)Kv^y6>m1XQ{Wi7@9s5tB-9pW8yk6pxaBwThULNtCT?e1x=w$DG6^G;=ET z&nERm6h8+n{;>(Zm2$mTyCmXds&?0U>su(AZw8=%4TD@jh=`VS@SiyO3A6NQMIN8J9l^zm2Ao(OLFLMX0S+5}zf6#WrpbQj zT_CIZ=sR$p(!#IvAd89$b%Ak`*L#>;!cBEyyu_oI31f5Xah}IQ@Ncx{4(sd&S_w16 zYe~4KX3_@g#Wt7MO})Q!nXn6>x9od&2hG)To*PJpp91ApJezf*yLh^0O8f`Y+x9+a!rLh>5-eQw|gN!fNcf?(_%D8Kghy?8S&!=FQ^T!(QO`Q>Tlo+Nv{G!afG`!>8I+g@D_> zh0D;Qc1-q>K$nyw@O@@#P7ob3nO2;WsMhNbgn-nPq6nug03z;amlBaA9oFTJJx|$& zDk!gT2(tzEzo~aNHK;$yV3M}-9t@k&Wmcpjn*&7>=G`}`5B{coq4`8O527-`-m~YZ zgba>#fjI>t)%lb>wzu}P*Ya22eqZ$(P(ONhmGU9=!_O0| zQ{1IzzmZ!X)t9_(viZ9Bd(uUd!(YohCP|bPQl0X~@(JKWr`h|TGUyQ^2ScgHRM?)2 z82zmR@ymscF0%oTiMy5q0?0HU_bupwfG|ef7MGO^)qU-P8{SlC=9-)S<3V>YH?ic} zvT96d0AyaRq)t%ra&Ju~As_C_HFn?Rmp@>OL3rXFx3*_Ui1;K_Qw%Nd{)aANf=W(F za+g1)r(nLzh+poY9y0K0v#QNofSc4A_T38tJt)`IX)(Qd58+nC`1EdoXE;Ent_*gd zH4^`P=eicX{r&u+6o1ByymT5*wvPL{1wRMH)hVk z<6DQ2^{sT=pseBS64ABxnr(^(V0b%+4F^^Z75;&2oN>ix;}u_*!HL$ADA`Zl*!K)e zwj1!!%Z`!bAB_Qr{P!7gs9%MJX5*`aHi;1_BR=JKj%L+M@udVP*4(>$fe}cU3x@>z zM(8tKq0tx(9_Nn=P_enX-#_qLCapO@dFTE4SDD2vBoJ2y<<~n49iP?O0j0+51W1!W z2s#U8rzy{ii&YTO0lvK-o0KK0b3`Qzy8wGCmLbIgdcTCVk<}tS!~WFY^a(U^g8}cpcJCD3!ImR(eNZ{c z5YTSGVFxO|c`RfzgIJB$9kcPOrKztGMIJvO`U`=_j!m?_Oo2pF+5jto=k|_zS`lSPAXA4`P9=aDJ&Eop zMH(4(aD@`qN*5La@cu&@O;kl;ZI2?KMr&L~6g=lDCUZ)-_DpMm9J%k?Jsi0)@&t92TL4K9t%&777d!aCbq9b_I{ofP$`7v9Vd7 zMFxYDj=0YwF`sjYArdfnZY|O4H+|F3(HALI-~peOcG*#`=up(SlQSLIxuxys&3m$0 zcsqM>dz!oADl4GUzRtA{w_vM(UDX^YjI!WUV~VdBz+^XR^J5r>7~Lc)(i}8`1Cs%> zFq|bsJMC-~KqvlFBAkVQEYzs>x@?miGgCK;+ib_jnhz4&(3OFI>zFK{u5gdpzv$G- zvamar`_TZn5x>*>Blk%AjWXCww+wrg2{O&{vZT&H8t%Q`pw(c?iHnuHkCps^0zt%d z7y;qNztExzyG&oQBy8BJ8W?@s8IX=_yeUAVgo3PV5mHz!AO@`uNlq-od<@ z-3eb}Wx2`x!J@BpW#(<`46ZIF6B{d*v3T`QU8ndp7Et&w<<2gX9QzB+!(K)=Df$7u z+_%l&&xmuX+~LZUXx_!-w=hbE^)`c}U8>Ak&OwsbkKl<|hJWh}{_$F2-Gp^_Fz)t0 zSAuaH02{kYfTnWf5qWR1^z5BHHt+)1lvP-PS>0((RLQP>h+46ps3G%cZ8Oh5lZLCI z`YxceL8M&wy-WTAmKHWc?^5g$nNubOO@$5ic$1OC9@Nm>D$zSksUsm*E9J=+N=vr~ z?$9fng0PrgXq6q|pR+KdX^E5yV=b9bS%0Jg0Z`bEQ78lN^{?=*_}<{;++Rp$$R>X~ zb{x*f;dI`eib*D zxhro+{CbTAsUDBV$BBH3sNr(eVJBWDfU8sKVXI^`#`E0x>yF<=Iw#9qrxl-XPMfZ$ z$)kZu;gJ0IUE6|HV|=0If0vO@In;2HV%imG;??>q-xd!l1pT*r3)VO-g21LHP&Jj| z`86x{r`tkyJNP+*2^69mF#vU$qN~#ILT2&m@8#qJxN%wpVM1m{K?(Dc2&mCKfM#ZI z@ANUpAl%-vHlQpZwPKHX2 zApU$HBM9!0gwu3qF;W(l2kyzkR8p8*a^UmBZ`3kA%Cy4JfTQA=HSR4BKp{qUu0`iL zrMNftWnmZ%RC}X%h@30M-IA@nI*5|pf5Ff!1fyLJk~s)x#(&h)PQX|B*?$i z)rRm2Ao9S_F&SE0ttv!mKa+Yo8Fw-mQ$lKA`7X99RB61EPGN8`;4o^Pm7Af4ET!+1 z9=!!Yq1Hr20ydl^y-C8+8fivGS+bw)Fk)x1pEay6QhLX^hb~Z+ZY+vENOd1Kl$Eea>j@H4$-xa{)CJX!B30{Bi}06SQk6r zs>rY)O4zU;Bfts+;P=&pAZM4xZf1!04p9Yoi5U8Gh$}^>?Ap|9U17JmJZ0o$()I6t z$tyf_LOXp$UuXo8@@rr@zC6!X@?k_u|Fl z!+qj|rM8EM%29?fdpmCa{3UjzO*IwEZypSp0lWS8H-VNIu;8VqE0G#B)$L`w>h)Hq zzwzvEkbjYa{VfG&JD$s7c1n4sqq;A8epa=#pD(Br!nzAoD$DYe%eq}6IdyDd4J1TygZrcEH zQ}?!0=WUTHE;qqqmQEH%Mhb*HFLMFn-h=!l1fjKWTohGOVdRkF-Lg{9U~;AJmL1zF z6}wl9mVV`)_zuoqf2s5XR%kmnW!dSJXm`r9Bs%X_{kcfaw)GW$p<5vlq2$nfDO|%e z`f0F_W_Qo$r_bu*M|CQxecLml^%{N&JSDsj?Rk701Qw(H(p~`hjrqj7S_BUbwB3A$ z7sgg3VBfX#28>IicZ_^i>~vN~Qb;GoW3!-JVErTt90aww(TE!)bbmlhm3Vj>9`Yz_ z5c1S;JPw$+v=azQnL49z8Owl63tjO+sdO>FVSmmfW6h@`VAZs$K%uwo+xXb-3vH90 zbVu1qAN1w5^Io}wa%(aT-`~|rUZj6nan#m6K>;E&H^1m7Y6dd2fDQw&< z|7C(ile~-lf`VdVYZLNajjc_^rW>W5?bin=j4WL> zR|}UM+wYq@GBgm8I1rdLrW!1t+Zk;BWT7s=?Q69oJgFA5B;%F=qnhDz<{y^`8AO4~ zq0qhUREy*JzXiR3nmXf%M|pVxK#q*2+P_wddF*v}iEK0PW*trZ_r-Ub%5skh|O>9v~FKdOjBK#npy%72M+&-*9!Z49-i1pH}RJRWr!1xji18UFcfr zC8-%osTvVtFKAp`=z1G;RlW)$LK1=Pj!IVj)5)MJv#hjVc_8FClgCqh@2i3BABC%; zZ_V6ppVjPa`K3IQk#}COmV_V1-K_tf^aW8-2?wI?)}1wkCE4Tau5&4#N^M ztiz@sJk01B9!X9ILCASdp8?6sZ#}pBIO^l{BeGW?0E07)ZOos(!3KHg`~mhBeKUF5 zWDwc%OSk8FTZa3|q(1iBjMn$Q)m4>R_`Bo6sgDupgz_UaEt}*MW=}Nm`L)^r0;?)& zADqoGmx2Zi6*2z$W*ymWLj4w*+7);$`chC(Fw(C~hcTgjobrpoj&y*`@Fz$TA*R!} z@&d*%fR%|ui76fAEFhiub0-qhCs^Ks_Ib#TphI68%g6s$qbGD$v`-r2Ppv-FSr6KhAW@)Nv^nIIE?ZGcfU(Jztj-w)7VaKJA+LQ7W4Xt^PxY}+* z27z(5QPmunn3x|`m{M!h^(hcgNeMYSPJytsQ0%EQDCIoaZT-r{+4Ppm^}#5ACa{T3 z0NoLf<|^BRuj*C*>iv9q3qp-ypilXBB5(iX2O6PD4WXxB&s*GMty8vmEwvxqB(As2_X=q>eZ&n5mJAaD26>l zezwC`I_V$-614|L9gV&iWcX67p}@Of_Q5l&+rB#n270 z&gCl!{}L9@RAji;CSsi{?tqXp{Eb2N;Ou4KJcY&Tvb_t>CZxya%AWOBv7t zT{-8x`n%;eMC=GQss8Ryoe&UGP2=4_510&sq8cf#Lx9CWOuw>`P}lvLLWLn|lYAk7 z(FjN-b0+aOGj19S^v_Wl4FFkTv3G$A2FYUQgbv&R$|g1=fZkbGje~QVIRy)~E ziPDm^QjQ2_$2^BMIWM$odL30soKrEI_CGQAJ1&>;qX4J*qX8AdsE6gOkP)LtG-}^* zjs8U=FU*+~gzX-q0!+YEFU2z`2+`hbnMXY@^hSUJ8sdaBvs4N5ET8{Rg);IV`rXB{ z&^wF@D1igd6d#*eF-FCF>+krJp8bS0wN#OV_xAUzS`d*ls{?6XsBVtvQeJ4*WP$^t z*XSXQ8lo5AKNoPX(Q^71&i|X|_|8u!IDBvYClT?#@x=@ZBfhazNSpsI%b49IPo4T% zx#h6qtg_|jHC3foxDish+bz`pVe1^bGmEx$8&+)Fw(X>1TNPAnJ9%T&EDeOPU_Hs=`67`>Nc-r3wxMa$fXGu3C}8{~3>`(C}mh7^2Ul-rcu9Hh;O ztzDL1YjnOlY*b6b9=J0^0A6uvGGT`%Hd34I?R}OyWlB$lF8+3vBQtyT_A~SQ5zTW4 zbyL{t)s&tbS$AnFnu2ifS2z#c-xe`Map}~_q~4ZQemo8!hs!{^*ZiUS)DJX4go(P?fP24GJ+tmt$%?f7|P z3?eoeBy4lHfel@oI$D$hwfObVuUGT?*tuefX|hl*3fs3~;xHRU}QLbT0r zoDyXC2#Q|VwE%|5RSzmrB4!x^lL7&*aPW@vC*6T908{1jBmX`--j26gcPOntbbG9n+A4pT^HMUB*XcV3bl`#%3_np7;3t39P`*)th@V1I_53<0Wp)!Zpr}i z8Wsgx04WGZ!a3Nys0Xo3pCE$h_p2>3R_*0E|5&)nHlY6u-GpaV#CRjxA9Yvw%ebW* zYaJpduWhp!)2<84wKO~LZs<#^{A@jBgrZQ)(Dg1;FV>25!HH7=N`fOEZ=xJm z*{xFj71;C1hM01GO^QLsQc*Co1lBS5woFY9 zM*z*S`NZLg`Ew*P?^Rpq!$NYv5~PNr=g?$fDAupR3S~qSCd1;iR~N!t0kUOhWpdvH z(X40>>Q?^uYoHr%<>HJQqRmG}5WV;InBw@|fe#R3nw7Ge4*8V+trh7Nj2~MR<-6@5 zUy2T+!DEWu3>v2l!EL)Lc*#D36v_yx7ho2V$up(X$uiaMI-ancw&H>-fELPC04G8=i#$y&8<=J##nSB!XWV(CFDG*gl7PZP$56-{ zZ$oazeug6y2YW^DX8@Z`cXvRY#mC=$1FxU}9)rfmPQh(@GjBWR6U`bJb5fKD$BGwi z;$sSw!q7IxPI?R zPJVEZ|596?pp-g!(7r3!sOj?i>4OYNEsjho`4<~J!SgPNgkRXCD6yVID%~}P)m_fb zD$A9?wtb^jABJ4gWNMJuMVB^h%Z<-h6rI}Zh8}ulqT3Sy^S2F#)M`9U(6`Cm-PXU( zj~DqHpYPr)|A%=?I`o`nm>H?!!+tGQY*X|cwFtck-KHvAnlHEG3U*u7=zv%^;58>iMrY z2OfGzE0Ioa|BBY)DREmsb3oOJ{UkqBTu#H6JI7f{yiL>613f_soL*U z1p~F#;F`)h_xTqaCJG0oZ?-ZG)=LSPR_Pt2 zz*D-~O?r0}{F*L!b!Yg`qBjSV*miK{gNF9XTE+M1ejiHdKvFDx`vba5^TKvdD&tWp zL*;(}>LaoQRBuiPZgc(}Bkv^=HwU1D*jFO)SEAA!hPtVQj7}ImNH+&8Ol1)jq`tVf zS=IA(IR;P-WS}&(C`GgM31qN8=GCD_g2Q{5L19OCqLe_{-u4}W;{Mk1_w$m~BS|vS z`--V!UQ(oSDdQs?NVe%@cqg3z1%KmKnLuHH{TB5^Hqm3@492P_duC!nHqmMkA4VK+6FB zHv3m1oX`>isU{%{QJM8M0i>WnPgPqYOo8qh_)OtM(y#PDea&9%IkL{~+zVjNB}r8P zKhbC;6o>+Ou|@cyk4so&a3XbNW10zwceF9NMt}MkGL(;y)Ot`sP+0p*k4r|)9m4*X zl8(;krbef!Om)CWEhDlGFe&5AyL~NWJOtj!VJJ0KYL>!Lj!oMfbyQgc$~h{z zKF0pb5tZz=;JP46p*&BTILZKdGIuW^UT%oWpw%=B;}0_@u6mkUsgm9#ws(;14lX;~ zn9FT{asBluX@&M`0XH27E7ekD9!aDk(4B#wSBriB1Fm2MrI5e?fjH;*ro76im8j zbY-(oAnOp}hIvS2?#Y)Tvp5u?0suQ0Jr9z8H$4lnd&FP;Wlyz_do2X-@n`$$4p?Ms zJ{CSO**LHINB<#7o(9z+c)*MO^FXh^uPBSKBx=X1uV#O1?&e$qIbn2a;BQH_%>+D#Z>IuI zuN!SnYPvV8A*RPZgFIP3??cvs=r*xe|C>w_!V({x_l;ZaAdV1$p{Ec4KRLE^ism-wCAHOiqP9KMDMCHVQlep*p=<;rtYK!gEOPIavWd8wTk){w-y~vmP{P&AVXn% z@5F8bvgL|5+&^cGoc7>EIh>HdU3lvzon_sWZN5eO!|?v`?r?+=`rybDU@J(xIT-w< z*NrRucgq|T^NR01RuU(`CU~kzOL@;HY7b9{df%xXjH=g8J^fxGFTGE zowR@`$6cPLo?UeJ`l5N!-6kw>CE*u+3H^ijgJ&p_i%96=lXFx0ZzLp#(4-cox1gkr zp;4mFk~Tp+TEN|e&8tZ$BLzFlpvD4_(=Bm_4|c=1^IKg_`^y=qKIqSWyWe2l) z$OZOj*efhMGCw#V!fy+~fCMX0Yhq8e}=tjOP5 zo=embdKulIvX(pmWKYIzFmlE4fZHaqFiq`kq7~1u2}Xvo)u>>ZS*{AJ!U++nB<-q8 z9$(j^!S7F-ftySR{dT8sY}SCOB9?ooC4+4ia_d*!V7*lU0kBtqkatv4fZv>Lv*V<< zQyrwfq<&7@l3ZtUA5l99_Rm1? zB5D*M3C9)?fOGS`69t%#Dyb~4_cVa!{Y;LOUu7KGgHpI&GukoVygZEUnkEC{-w1wBNrhxtcV8vgqYqQ?@f=)@ zhP99!cj94n;bC>+nf6QP1vC|ijJ&GMn2Qj=tD?D${^6(nO2!t}G48v8S_|R4BWM3u zowN`^iFU8{4K^t1I`m0@Wt=2PHwjz}Ga%iK?;3+(`B#Zx62Ru%z>g`qc4kQ%0R%=i zm`DKFnSpSO_hQ7^=lXmW(R09>4E}jZA|uRQ#&+$cm=~DY=6{3wKjz(&cpe0F*_Z7E zf3Ix|>TMy85-c9RawQb(7&>%@h&!fnuZuO*Zn=72(q*`~Z@PFlY5U_jW9&o^n0vtQ zHHPmwd9h#;aj*+(q_hh(cbHL(zR$KHJaGfc{d)ba%M*xT_R(njJ$7tDTV;sIOM*!#NrWgiinqh3-xxTpzVXOnD=A~f)+6bzYzD!CmQ8zqE|~nlRNa(^ z$cylAOP+ih!V$s9THaT+uM1?W(seoB70@@1n9*@7&+B1I4C{zRhp3Dduhc+m14RK# ziqI65ViHTfXe_E|fr?TYUf4>srZy#iFD<;ZvgXO26X}^|3Z*ZNynAxYlZTTgKN*o? z8|{*kI)>x?{ifjDq2GkFg}c`sHq2;bS*2YVcPp?G!UQG#JVhgvHGu<-iFR}BjL|6M z9$qM{0uTQgUYI#&^13rncBhn|;ks4yWq48q42Zfs z!3${{{o4dBIQFIn8$3Z{rf{OB-8~@%nD~W>GhH0)BZ^|#&1)T<@_1>Qmrih~j=SV_ z9cm?{pws`zu$9G2@)<9oqTCymsl@0*WyH&h=#IiX%CNlG?#6<0<5IMYW#<8A$;Be2 zDUgMF3Ir6Z+_rbV_zJ&Mygh9GW_)KlHOQILa%W~ZJsq`dZH58U2G;J13!e@|1!QyK zp+s5&?dQ$5QIr45IB5K`0`ay$qEBTlncLeHYS(*|VN+XK!?09OqK}G$$t!DQsnTrV zQNT-a$<$L@#%5TZNNNIgN!J5Fu?zt*qOHc++d_b9H@%Epac!Hd2BlGXVPyBo{$Ti6!35Jh+ zYavH;@gYM}`;Yx@k%a`4krX0R)J*+zBfQ-STj?GagOFABlEHzav1jUmpncMJHJ26o z!SVOeV3mUV(FS3pyaa<|hSK&vrdb=)8-)e)yvq0$aDa%J-1R z^E~*JYn?fPHcJ4{CdZC|ENoGRqe6J7>b*@OHd6dDn3M;AKQz6q4aCO7Gf7gnk}*SO z{pO@v7l@IJx0;cnr2h9_al*EB`47Hbx%m2?zb-E$`DWxLOkmb~-(sPt$;YcS#CV5Y z*Hx;WpU%q1%k2H#iy@k?%|W2uz^j`Q!=m$1g?JczOA3JF(hg@+s5Hbdurw+uD<69i zqS(*06=V~1ZCIy5KDb7UZaNu8SHKbL&Z8G}c9#G%B+MUyGOy z2M!O2uIN)~AC8dIf_m)l7R7nKNxr>%qfJ(N8mx%c#H$g@7}hn$$jPs$-2N;uMhU;9AU? zz>}gPuoLICY^vyTe3pPi#sZsaAtf8tRS$Dq&v+J8d^qiXoh-0RDREOS^>(nn7rKUY ztiS$Pq)x0_A>otKud~{vtv|n_d$=M~V~lwP`T=(wx}WpWJ>|?%KbvO4l;U^@rOv#$ z%X^mr+3&9^Bf-=8t#B0Uzk^w%&}nMsyrQQz%?U%wLXs&SD<`NY!MAnf&UgpiIqHZm z(?TgY$kBQnDE`o@^&19}7!X*Fbmkk9S+tK$2<)RIjcJHA0WX(8&F*ouM9&?GT(0B^ zjsuYBnX|jLp{KVU%p<9Nbjm;DPNe^aTfnui4tt6$c2GtrmeB^U|4sR$($Q#qy632H zqE~>hSUn%Qw+k~Zl}@bouTKB>y6zJNN5-krb1=cgf(Xuvv3mMmR!opH;%& zg@H;@5;~&eLgu1wB{f^_BOW~ovRwYdQXBAsP?m4j&bjf}tO>}nbGL_qC`Nr3-hdzJ z-jVO&3Vih_EchwTR9Mo<%)x%< zN-}I0+=*?xOr7XX#RMl4JbhMfvvTOQnYK#TG`@%|;3J1+H1l|F;xlyO_mZ@SWEA+)Lv}D6?6yAOWje#g@zB+t16TJ`4lytH!YoE zb1*E6Mp{aJA7TGZ$xUgQp(lI^eP)-UsJj20sJl(CtRC7(pkqngj6T|tyxD(KX=cQI z#>;gx_E9))RVvm|!w-HHY;uqXd1-{{t|>VkM56T7aVp1>`Pve2R4$W<34h&?nLY|#5*?hlLpPiret+DD@i-GpoyoZ1(PjxDc zrJqZYtH7G{o5tXJ zEK>KCmzN)PW%r4(v?Z8FZCZ^s9fQ~uT+_FGn29LL&p9`1cB-;nnKIDA_(<0ai#MF& zEtFr@&0k*n@Q}YR2Jfn9InpduUn(O85=$JqBuCrCMZi%4G1MRn{~wHtT7)7Ff#iYu zblk+n$uXcmQF!A`XHqOy;}|JOD57(l)EiHL!LBJ^g}W0@-BRjkrd2MOf}U{Av7;wB z)#x4$n(Bv>{Q!b13QX3It@E$(4RYfRMxNt(V+K$IMPnW8v}2!vPoW@zVAG0slCzC< zMj*h_0*=9xu_kb{?9FPO(pxcvJb!sZ0@4h{SOj=AO?c`^o2|=HXvtFGpw9s9S;I%p z3kimG+=xfxM`TSZf7Nc-xVu1+D9CuvdAS&9-X@1uce~e)Y{7eho#OApy5sTy`Zio7 zE71^~|8Q{%yc??CvLDHOhw3FSIg8=J|A55%2rT>Ob;%9=2=wk7BXi35M;0tygoX7& z_W|&c?tL&`106Syy8lZEpAB(P~*RV*BAR z=bHjlKBT3%cAJT#nW_+a`fW(b*6aj%v<$LMLM&>KG4O@7Y#ERUq=I;H@zvUAmxRoE z*YV`n^u#(%akiU#Tg?$aeaakZ|81mxXacb0+7l+MNGlmuZ+FH8>k}uE6MmlMZ+L3u zWNd^!JxKEt`j(O(@F?`1L+thh28Sy&#-P-|V@nq56XHw}>w~e9xTgfN#m*2R;;baq zM5R_X1Z0W;d&bQJah${gbv6xm=4T=G=$!^VLROyg$z6Q@nx zHDxMWd6A_O`%L12ve`6gG-bTbcmc>j=1Rs@M%a|HW4y?|=2}MarTd;-q@4`1qa;YR zVNdR))KRj6%f$MDv|UrAib;Kkak1T#Fc`liWQ~IOKy%3()PO)Ui;b2o%zPIbM@f-x z|7;6p1~{L@-Tqq65+|nI-ZzOY1*_yq5cPFFv6iL6sA!nn0I7ib`6n7t^8k2FPb*Do zg9nM-1?rfcDuyy=Cfpm>zww{s zWaftC%=o)9CHu{~${@%l?EryplOfP79ovwOMQ3%6 z7FQ-+&TOfylRNmUg+WB&IDooQ*DB~lX8>Hts?=%v{5 zu3k(MP`Zgn)j%U_1-nIUwB0zu=PYYyyv#z&> za`lD=L;!C4=&JeOaDoK19apA;Z|w#=lwoCju52yQX9T7heiPCX|7iYV2Cla*zA2q| z!;MG1dEa8;n2lgPK3?=V(l`1dR$1`aVrP?T7t-IkirQ*&)D}p;5*iO8STR&qMUcbm zw!!i4W{vhx)u^prE&)!^JlunAKtST_GGx^D#X^sFywQcLR_itsE`A%Ozb!ODw0~Bv zHgDUI;YzzCoq4j+83bDHM;ukG7db;(&o4B3P@V2dvH_m?MD%j`gX6qZCOzNv zPK;Q*{rQ)Nel?Ufal#{8OpAW{w!yj1wP)zU+t@pAD|-py`; ze{=DFf1rad!^Z-n*K+Q&H1{O|ufE8xg7{#oPp$FW`u3HM0j)qR@BbZTNtYXm?=Fal z-$oj7!jsoNg9pq7%3sj*njRewue%(?ZFT$bCf@YuU8O4CirxI9Z2B9lW!f!$m8xEM zC_bEEN7d#6>xyA9QhFXZs4QoS9>dkUxF+a%3^4kZeu7M;i#Ym(d&SY^wmkW~NxO?4 zGJA`Lr#gC}`Gc}|=pH)rRoN;#6TWdMY_F}VXrJ-8=Kv^LE;>)N6n1Zn7o<~KT?-ch zr}k3nu)<7qWd_Q;e?z&(NG$2)N%S{Wdhg^OvZ|p$gUW~HRt<;bsu<7Jiq5D5I?TK3 zX6((y`E8s$Jqc`6{LOmrHr3Co4Hm!Z-5!zq%Y~7CqZSrE_w?fYDY;{LlZi0PtG9v4t@|U&lQ`j*JrrQXgfJ4_&fHnmq0bFMG zYCaN2t74B6TU#w^H3>Y_*M#aEiSDc<{#Wn4*lg&Q8QYlapCRB9rlMed`4xiKI1C?e)3jOruGeD-9$RcW$orx`Z$idbbe~b^9IfcQa;Q zS3|8wkgB6=r!rUObh@$93Y7`Ttg_^UvS_6zy^p+Y3aAj}FjaeT9M`~_8flWtbJ>m% zn^u6DBt*5ia0W97j?#L{BjvPGC$}uGg80thdgp-+A3An^Lf0S#g8}qeehhYg#WUw% zICi_wuD_~I6b>78Ykqcl?=|E0Y$Qjwl z9SeCNdCH#PYt+;|DHmFA={Z|`58JU92xpRF?9`_sPziG*+CTQ~O2crLq3s+$A6hKM zei3$q0`5PqDlx}UZ=BX6#P8`Dp}MduYbA0bHKn_d2^M?dIkV=lxcE_Y{P$bEu9kpq zZ4lyB<&fQdx5_c#P(S#}D;Xw^$z}s0mrYSCa!i7I8?s|QU%q)6zHLJgwH_d!jeWgi zgT0KL-fcjjlE~f8>&@Lib9=5YRNz=n&t0hi-*oN4n79kQ1HcFO9F;_J%?D{acj5)D znC6*IpinDL>)9VF;MotI9dqPwf>S_iKeWs zAgLk0eXP@~fZa)>kc5s&T|3c_ekFu+(F4j(xw=kem$SlFUOU5`>5kbG7U05ETon9oKOZ0_dzVzhmuxAh468Mw^$d0s>td;;S2rG>-OwLEa@IJ^ zPcQUFpn0UR%b?xiz${1ZUD`F3;XEQf&q6fcDUPS>#DymnQhJLnY?jMIm?1`FGVJOu zjGFXv(FrA~!GcbQ!@{%c&O773v21j(fI#9i{B83&HT;TGCa(U2MFN~`lw!29FI5JW zhtIqHy?>N`Bd0nc={ViQk>W3TAQV;tH0?0d$!sv{eJSeu6d5o*lQHJ(My1Z?gq_YH zzIQZ#{*>`OLG$_b(!ZVr?rJ1CU|$99x9sY%>>|vzsX2uR>-Ltp%(myxBvYe$46Z}s zKFTB-(ZV#FQvy6*v;YcvZ!A;Y*B7^R3Lktv_BVB^uLG9`pm^%{o8=rE{nU8Yn0++s zWl?Vc8}xCyQaNtueBK&}eQ0;vGQ1w##z8YBCaAnqoLMj>_T?*NfDvFbx z9OpuljLN<`KY5CI`vA~ea`bq;?wxNSsQ2hW$waFgCY3@Sd}>q;QTKGczoob}4Yd%c z*%!_mIiHAcS39B71gsl8eV^+&nxSBj*)xlM}cXrdYdv~>|8Fp>yQ1n;d zq}S7QlS&q{&zH49$}&fj1XM#Qj=-6Gy+%tRTvqOaj%S2 zoUFRRR5#Uzp5{$ zY2Kuy!H;{I@>6MnPjCm`Rv4%j$QHKksPWs*A+ZQf+6DanN+zon9Mj!7>^dVP4-EL1dbId$&CPvqjFDMj zi}=?m3z8y&7;Y7V)^9;MUlbRrO0c8k4e2O9Giq?WSh7&(e(_8#PIB|nDQC~I&?GB_ zOlMrfl@x%^NgskWsbC3p+5u(**HoNmMc!(T_Hn@DC|nhtDEoedg*RcQh9#?7zZlnN zq(c+u>*5veLdlmmPxYiM73i-NY^7OJAR3CV7#tV}cC{MO6iECBBPS-La=hI^ z&JyAA2cjzJK=m$zT{Io_bgm@~q)H@9c)>=E?4Hg(aKRD?xL3}YujHqElk>baQ%|6bIs3tt0 z?B{DnCdU98Ct9ZSi?|MP%$QIKWoV)_wl3UIBT8Cuw-c%jQ55>91vbzrPDdh$InK!e z2@+66O!o5;kd$#@M5^mVW5UXaMwAFaPS5~vEXY?@6C$)S-)o&;z{`HxAVNd*TFnJg zn3U6Eh=u;LIrJcTqKT_PgmwrFg~A<_x)MQkinQ@!g!%zPE?AHhBz3XjV8Qpo)bXV8 zhG}MfxXBZ8q0t8O^aa8&P!(=ikWkt>s{mudc!>>T!o;XaVQSX3%n3nEEX}&n>3MXM z3SCIzu+53mRO}h~H;{Bbg6I2l@)sXTi-3ozU>|SFdg@jP0`@Q+j*{KJcS>Nc?vH&* zao;Zshns+b+uaRMT7+!Aw-(*IM212k_jLNlAYs}$DL)=I(d=#-Y~s>4TwMHC6_-{xY!Fvx0e!<8M^J(3ZrYDv*eR{eSO5aJt;lA7`k z#J19a0L*<7$<>kCuC$oVO~-;)9YC{gsC(qlK>Q;(*O&`<$M_c^%FdNEf!SKfs1#2e z&w8n@3%3&{HM=364xsY0{9jzfv5E8Y!vf{+H~%_Q0|W*^az8plSV@v696yrsf#RBU z!=`}Ou3sYq8s`TB0=Ic@%8=1Cxg-MH4vCZ?7lag1iST(4Oi;d^-YJ!YwSYtJzr4Zj zcqpPT>sZ{8wDzU8-d(rOm*Fb#mf=CsE3UJk-g7p~=ZbqFiI!-c^+1hLvj_F|deu*i$W96eoE>a8E2F41wspRwJYMzqt z`R0^H;43_%eIh6u9q(91QNEfDJ`HVhwI)8`XtudVk_i`?Jaw^ZRsWzXExzD&=fz8dP<@K#EZTCxQwk}g zQsF=yPFFT?~DYS_~Fh#o^bkah!EFKnB0*wI_5;obK%eh?r6$&9{Kmby8N zw^R{E-jnIm6qL9$=1$IEEteV&WCS~b_(hsJO>8l1#&GJL z&0d15;;kFe9V0@wP<|rWMxqxS|31IrV)ARhWE8rpygL;zHv=}}OY<|qo5btZl0ChO z1s^SN@nVV|D7}*)!2w^?Bq${_U}-^K=jSDlN%6x2N_Ui_n_%@Bg0RM-a(*t|nSvH~ zT!Xe5^^pC(GkgBSO9QT~zYJYaR$c6|JAw8w)r@z7aPNjK{E0%5M( zX=fsuv$k6Uww%lLop7&1BG?3sthF2G*3cMb51+>9Uh;LyT>!-K>$=1#Qn`j#-zyAh?R%Za4VT5gH_pq2*Ei*NQwxJh}&7z=6`r%PA)f4zpmn(k&*3Ys^rV5!tM zu2^e(kR-HAyaGxKr|y#eNR@3%pSclIFe&Z@k-06!qCSkK_T=NGA2oAke55*AfcNxj zaAuH)8^F>j!fBE5$L85%kxt7UI?7PAbjo4g-N@JFvuflQkG!&1j31osILexBq)`=hA31eh*4i2)W&@dilM2A!mh5XyIHRtKSv z6|63EhRD^ZGF@9IX4VIZgMo^=6k)}vS?Pi4rRbY=CNbMld!(|&lg-+COPyN57ZXnp z0)zb{yv#IL!)rq;<@mg*??e)N41ZU7&1*UeA^)^+Hl+oDXUZVLcEnL_LA={DC6zkh zslED5t^s$;-!IGm@WuI-LfOkLYj_Rss0-FRmrK!;VHsC_J0mHX>1|9S6BmV1bPe5A zU{|y=>EwI=rA0(XmM(GILMKNN+stEN;fxP+ z%D*EI2j@GvmSbS!q!5;Ju#=r5${Hl?B_w zHvsk??uA3reqX4I!49z|%>sn4#y+rUI$o#7pq+&M3r%X|ch!r>8N;$!aAcYfXIeC2 z@+3{GGMUhC?qsQWx9l|q^gsC~dK>$hI=-?VmeSld{il9NAFByRxeK&d@yM{lI{vV) z9FkTgMu(BD$NR};Tyoqr*R;Rs`2Cmb&H#Z^NdE?^I&MbKC_H%)M)(bsBcRj7h@-aW#wF_R2aT@9;I# z1KX5FVs@GEyb78~%?h3~GmHA{WL30D_9@I{`-y3!;|JCgdP@4-6- zfmp?y*irml09o6RRk8)BCY)c(`y`PmcFwCmpV+6L#G;#`&0~Q*mi1F^ERv{W-NPJ1 zyh%buJlYMxGMph2fE=l@`rzZo4QI6Nyfm9nSY*rzXevEiJ2TlCQJt#>r3OF`Jdehd z(2MH%RBrfeR#Q*`f#4Gi7kLJ&4C1;vLyoxl7`9wX|3aSG;APECxm*PwXL?>y#_7hV zGU+(lwuYkaSNnhmbPjXw3K@)6q7>~mYD}cje@u29pBNgB_YA4wC#zXt(^K%53)-Kg z{9F9>ezErt(+u?_{4X;WKmd^BJ*wS@za+`5yR}sY97B}K=7IlZ0_h&2;;`x|oe@-w zQAAvr<35;Y6=L<&Z8nWE<&!e_4m4IC{v6cj@KFlNcB9&Cmha4Anos!;exrmvC8X}} zC5az$^-T10NwK&0EA|A-S4*aCopnzAfL+#e%I;;8^KePfP<**+x%c0fvMTfrZ;h&h8{Rf}9`r&`m zR*NZqsH3!jsNTuq3_DfAje1Y8T?XKG}fRe~s zB$GcKlKGUry}Y0I(MF(#B^>4AFWiOMki#jIlteKbC*xzzRR5%naUE&?sHcmo0QcQy z7CW)7-IwT7Uxy1%84VK`4GgB3m8MXuNx0_6RZPJN=FZP|%E^)q zI+CSHV@qoUA-)D>NF_$0R$O(MS})pZ+l^cD_%l=GFG(NydaQQ_OF_=8j(UGSJ)YKA zikE*Yvs<4eBVl>mg`ZlZo?t>M0c6Ne0!fIPek`WtWT}1T${8LYWRoLK$smPd2iztJ zjzMDUY2QH7&?HG^qRe51x$<>`3cufCi-`CuIeQDH(IK?qw}(U<9zANSw;WQg94Ep0 zb%ex7{6V);^wfrQ|DvRCGk%dkdzeFGxEFgp=-VUyHt>(Lr1>|w{JK!3I2Al1A z09{~`IYI)Bb&Crh3lqgh6&P94Ox$AsL9_p&q+$Wjh{6^d*O#L9ZciTZMQri{5@|9y z++dz2G>%h5M556fEd>=7KT9R9Iy=L1&(Y(|*H<8;K%Fx!$7qJ4%_8#zwoCmvPI^;e z?cha>tw)|)!3EDWfDX&{#J`&}>L}OGU&Pz#w%_);3;dh)54#cz?Jw!<+ieqLT#3eR z*2p(23#u|kd*8YlANplC8zA&o_S3vTcL)t>8LrQT6ZJ^mLxsYy7fhMPvT?E4YEKVc zXfj_=#d7yc1u8rQNdD>Q$l8MpzvJZAjaY!9-VHo`<1}^)d$UffNo$y-LB*>9&d@|=01Rack}pu3e*Z#>7>BO2?(9dk zgmphksBg}u^h!kj1NQkO>n`|_OrEgH`ib50EnP#DDhF>eJ{7FSItG4kMW5(WD`RGr zQ~>)amJX^I7zniy>mU@a80hy-6)bk@`EVG1^HaW7^HgB`8KT{ z_F)q7H1qy3{}Nl^u;FMV)i|?ms-*d-0pOJLxVNR+5@z0$O?UqbCO_@N4Q)(&;ib7W zTq5cLJaJ&+nq#$%a$>kR)w82GbaeTBIEDNM5PsjcT-1TyI?OC%dEug^Z6kY;jpzJa zrL7#G2%FJ%2ls}|3rhvm>ANtCj@;p0H*t}VuxFHWBI|n?-Jg*N9nnzH_bf%o{>DKr z|6v4g^Df%>cHFEE%7$6DmWM7={zz=YuTiGSFmu6+mOMm}EZN9|hriLd2K z19HvOmtbdDcFb0i@^co9*iQTh@W*H{E5ot#K^UyI#i4A7k5}>%025E{W5l!6Xvt->=d9loS`)DAT zY|3YXTAD`HgHGaE%ULJ&{UdgxHlQk^UFHh&ktNifd;TWw@%;$aU!sX+z1ibw=X&E~ z#y#uMy_s$z)jXjxX!O3km{bpx6IIoMw;HjpS~Tm|!J}OfN+@LdoaY0t88b8qo^B>o zrBd>N2EnG&KBLp~4SC9;R*@%1_G$pC01!?pbF*PzFxOrSkyUO^XC1_k2J=gYUd=yw z;AiIW>|xLi^(4A@_SYcXS8_e^X5{#!vy@^Xc{Ov0$1Y@_P4W7bDnH)q2#Jo!z7 z3Ex$1u4V<@5*~B}ATWkn)I~OU53;c{7ha7AZ2^CgHX^^E&1}(ezjmfrM$HEl?8K5; zVa>&}7oW`F=;_!xt-IfF1EEKM%y7b@zrl)?{YV6cL!$YL>n`~*MgUQJ%v=nff;b(n zuCr49zje@Iw#2N`DYEj1EcYphs+CMX<77to%n3XH+J+QmK`hN*{pFSZt<}~y2mzVV zQy2GLt?2l=Y>vi>uMST5L>3Wx&rLIN^%dpqt9{0l5({H5S;)o?2TqCFKwusMWxr*a zE1S)~gU3u!Q=#E3J`QL&SizeRi4wLD_Ztn_Coscll_VW2mK2Ef<0yGxTyf*>7>&_0 zD@$Pt(O8M;{bMLL*yQ0p(;6pAudtt4<~|+!JFZVMB>NbrV}t`QW_s2iE1NBA@D~EjVC-$G1^P??T^7ENBE+3j&0P zw(XEE>j}8_r&Pbbd_onZgS8DOZ{VrOT144>ZV-xhw3SECU)Or;MhD*5L~xbJ1sirP z=eDx0N8ClXx9@nbk9mf_yvq2I?cNrWLy^DP$u8>SH4)nOh#$_Uj~A}b02}U^PATtQ zAOtBEb|4raoE!-TI~XbHb|CP8|MC@Oc4P8r%kn-~Ke7YTHWXUKbx0Z7y+e6=CZT1!BMVK+xNbSl0#vd37hZDdG z*pjhW0r`J{OT;?Ljp4=0G68d;wy{u658gB`js`9F=K>nt6L7Bdc|}dR-Dmqmx=(S* zLg-Lj{9;c`6#7N&L9)4e=?3d-)eMikFn(JFqin#2_olM%n*Hhq$_YS-sSmLAW9Wr= z;HquwZP73w`@IT8<1WA3+hRWr-reN~x}&(;>sqUER*BNMM;BZpNY`11j;vUTMuNZn zJKw+QZy>RPu&^{8N&0c^4-3fU=%cHwfv+pXRV@lS&9t zEwC&7FH4piX*Qr%4zmx%z(lf!ncRIcEVh67k%jzh)Ex4D5^rSCk%IZMtwCbS0b;P( z5n>Wvo-tr;fq)ZUIF?60`jHd2{7lt^u_ltrDIb7i`x}v|4i!K3Wekro$5x4#2b4EY z_%w2lGXskn2@*Mm`On`>!`MXPOIdqNolr@Akbid6D$0wT%|%w4g!0l9l&RLbji6`` z-v?_f?e1@H3v{~VjOx5B2hQ}nN{}x$L|6n}dS<`It}$X;cLQA`B8&BoXL1&%Dj0J9 zxjz8*lD7@s_sO<8ziw~nx<=$vR=Rt?+dZ#mdcKF}#0ANuUldC37gk~j0O3bm?4rv9 z>$PV0a#+!$uC=50d)o(5O(8ktwu6wQYA_eUbtfT=Skf7t+#?q69BwgmvfEgH#bZ`t zq819C{tp0QK%T!X<3N5b>}qoQ8Pl4awg#$03#vX?n}4*TgIAN6c?e2F2W#gHi5{=* zHI$pY%ZGZCH+0zik@rDCdV(5s9$2+6R&98EmM1vHX_3>r2iu{!>>BG-Rj|N@kF8bqUt@7+7}<4uSX3Z1-4+&kqTI9ro#V{j*#w>A zSkGsS&VO;5K12SGycRy1Cr{nDap&o0&HupP+c7SvT`*Lzs_IjLrw!*OvqQH>D$P`2 zHxF?i1#(&=h$C43sn*1)9*RZm#mEeP--L-ix zq)C(6k0VW*%)S+A(q%@rT6xc`z%d_7lLBn}u{0^b=#5<7z=ybL2N{3(SUZl{OYP>hdDS@hkZn*C~jYXk9@o@E)uDWGcWO z7-qZ7j(ja|ECtpKCTklEr+ArE*I;!XwU{d`^tpc;l6x>3MBTItEaMj2#-gRw#i#(I z7|psEU4sS1i0htRfKiON?%CI1#*H)oVfP*U9~^^;MrCefb98cLVQmU!Ze(v_Y6>$m zm*JxUCVw#?GBGqWATLa1ZfA68G9WQGH!(CIFHB`_XLM*YATS^=Ol59obZ8(kI5{{q zAU-|{b98cLVQmU{+KlxBbR|mDfD6ZVCQc?hwr$(CZQGjIPA0ZF$;7rjaWb)O-JJ7c z&inoUTKBHK*53OmbX9d%b(0XtE71rT+ZmdO+JD(P(=gD|a{`29lqDD#0rd1twDk0h zFeD_(7S7ft|B=IxsG2xBS=iZf{=-7Z(Zs;{QzmTS{Anm-XA6*Yu?8?O0T@_08Q3`K z=>d%N^c?>&v~%PH2phOs7z1Qz0g`sMCQdLULU#5ZjuvL-&YyAq^A|vFL;+yn;9#Tv z+kYJ(U}NHFVPs$nkTGyJH?jGQXk=gwP_i?!Fmd+ypC!n-&7Ga?IqB%!+}vmlY@BHA z9L;zsr~z&k&gK9`6DJc#R}*8vUnK)%4Qx#QT^cP62|(H0!s%ZMB|B4RHv>l#z^B04 z!pOwd>C?r<*4V@m@EIMTBq0ruvp2E*mw&PJzYM4W|K1z`11-aUm;1N(Ukh2-{_SjF zWMpS!Z(!?TVQU63wXik;$cakRI=eel0}O19|1vbNcC!2QH*htuur@IKH26Dp1AwT2 z0>I$2!hhH2WaMaJ@9aeDWMTbRjdXu4^SR9;w#GtsHZ~@<&Q36YHZ3!>|t;6x02y6@n;P_UiNnO0MpMhOnfX%O+J5MyqpYNO#sf0E+#%+|5W@h z!7wlYj4h0u0fr`K7Pc^dR{s>6n1B9@KhNLM!X2PR|Ji;F0Q$c^|NW=)*hh z%>O=OIwcJ?B{5B^f0z7UrJ$glJHU&Ei4{P@$ie_%V4!CLu(8kseExSGc>{}o=RyC+ zSHjlR4#4rRbU*j$KPkKZy9dbsJs=c-|6NPg?z3}E0OWrfU7MbT-stm-;eY>gyZ`O- z|F6scTIK(>(f@BoqAu3ff9uKrW$^!_H?Xm=_V~BOXXm;&e@=mn-RCUW{$EoylYfn_ zjES*@i_QPlN;n&QPJ@80*=I-7Ffh~7Gyh9&;UsF|ZelEN;cR67udex*T;;EMv$n7` zk+*ZQ`0IxG^rEN#Kf2E$Gk>!ByhWToTk~&~$>$9HZ(I>uBRk{2hK-Sh6=2}#Xy5@u z|JhNDEGz&ohR>-qHgW&EnE`aPwsy{+E`ZM(eE_C*jxc{6EGr9uPT()mzlaS$C-jHd z0d&HDhyy?;@?T=32hfTBAqD`Q*dJm9(24&cCIFqpA7Td3N&X>L0DqnIANq_g^M^j8 z%l@Iy=yLxh_Rr|@f9Nxw;vf2qr}T$D<0=24&uUfv&}VejKlB-0?GJrMSN|_@eCiDT z(5KGu4}E54^j~8BjQ4p1+WfKp>s0BC|AC)-W%3XFOy2Yl{zVpl@Us?E>wg%3ve`fI zGnn~5@Uyyq_|kutXMgz*{H($1ANX0sKUe;&!sZV$eCBNX5B$v8?oW-Mwx4g?Kh&RD z+y57tJ_FgCIDWni&i^p^%-rE0_?fxmKkzeir+?sQ=6`%YTc6I^&F&xS&j2p}z|Trt z|AC*`x&329KfT@mfuEIl`~yET_xv0GXR3@`934N?|NHv;9Dlk0@Zay5iHW<35zO+U zoe@{CWqok_W32#=8_nJ%BQyNqb;K={+O7ze>w!X`5cks!Q$ge}f$sVJ$fqro6UNey zW-E1cdMn*c@AODc^yS8Oa8tt_YVT9T7OWGPo9~n$cDm-D zJWIqAJ$gzX7-MAlJ-AX%4Q#QUj&pnrZ!dNG{g^lHu$L8EN`D$KN3z>1g833h9(dax z96)a9G_J(`Q&BONRyxtoxb4`@cUK}V&|aL0ohs@e^?xeiQ7dTGK3=847tZiMh|JL9OaWi$j9vv-wx-VALllg5C=}h=jX<_a6M`&|s8X8cGf#5@ zORq>tehN4=pFCROg3fPL7VkKfgH&aXSo4~*;U_5mRUjEcd@KNfAXMZ95$4+80p33Z zRe>s=N%TYcK?p&JQp-sY^a5#wqfjY>>%d7KAb&F}w@A_KO$>$Yi&y53O%OFCz~%zs zPCnFDCGn;dd@SajFM$P$4Rxb1AA2$JRU@{%k0%={2Z@7lt9RBS@M?_#|FJ`G12QSE z?UfFX@5&t{p;dyNS^UWH5Ttl*@+x!9T{N7=4+uEg2SbVP-OS{-x_R@%j^Xh%nJig4 zD}TGLoqsg;8T@8^PLT3?uw?<^gC5u~>_%9ZS|)U*QmxYLy&9%!U9l*yj;szSwMfkN z=;E*^Cv!sC%u}$SkzF)=wez|st44ex35C0F9NEjpIA!PA4end^rC1{xaFT6_$&#%Y zz;Y-rh1K9qWB23-Cr~OfX#NIL!b|o|C4Z>V@{l~16yEn+m>^U}Ib0NSFp>0Q1ZB1a?(4|VK0^xh0bRQB~d%2xY= z$uF?i`z?xvLO3qPWR_ce(`yo`r*%JsAq=Jy7)WxM6G*>~5x1Y)D$;#lz(*OtSbr9% z@x`*}C8a5=G+X<6Idq8#?ypy(eL2t9r&rS)U(pGb>)&DRc+dZ8xNKW2hV7SKiD)H0b~y|W(l}krn}Kt zi;RH8ULXQUwC(g|8kd@PEye83o~SX5Ds&*Ls99(PNBrtpQ}T5pDEzb!uwib6qZBMlG*;&r`gjVfGmfRgf<{Zk zHH%^gAjUIs-Q7%uChuiKW8YTr+YBd)IBD|?!@d~lU9)FCyFAXQ*@}lM8 z3}3GC(Gf_D4L*8qu2Qjpd*lhde=DTr4EVk1<_doC!3qn)9T1LY`?T}Lmrr$Wn#%up zBrGbma)mwqwpI~##}T9^z{bhZA|;l29Ee^$(JW4K2Yd?Kw+Z;=BP}Y41NpL2ygr{w=2E!RrAhnkat6UNB7_3rIp2mVkonm1oBk&fYD zd-8ap1n1~%%`zIr%ZM4sM8QZ1xLrH^ZN@ZhD#bk8Sqn14d>I3<>I^op!?mJN^4 z8hxRwOE7o+dux^OTkWu8jlVv+nkD)dy!!OOv@fo8trtW1a_Enb9_KDuO$MJrHzMr6 zpM>-Gw&f&op`@yG)xLvRGLXbhHF3-OZU=${=i5#JTVb23T6{|#d52T4iu0Y+3~tgw z!nXeU~pE;9)i5ZHGFXsOGdsmgH{W<*i4hC? z(sp%bJ(zoe6IP0Tf4#bRls({eK~kG~Rh7H?RUXNbj4u%!EuL1+aBNXvOSeF_2;p?H zR4!;_+kb{Zj>O6f%n)ofw5#)|+R@b#^pfVh8x$D|LG!g*@j8Tcpu;b4zv2+!S0H3c zgo1GKr*;OC4^}6>CEYb#d{sGpvB!U%ybG8_a2XtfZMEuN@G1whoj?pblm#U-LpL{f z0+jg3Vy7fNn!QrKqc%9V=PYTL(1lv!Fdy4Dg@2QE*P>4_cHZT@qT$mOX?o2qta-6m z71i#{uID`8gy5IiSAO_metTQbmM4MZ6Pg~sM@z$n=2-XZ5m3Fg_sqH39uY(7lkg|e zR5z-YggL2l#B(1+J%2INkj;B_G;K6;!`}5xt?CF8Ea!s~%qxW;C3T)D`em#8vmz(b zet-7)q!G1H7zpuAlvHAV{Mvm2&*V9Scw%D3*6BJB~;ip4yL&i7r;naaZ$2hz#rWi_YuX2Z!4v*1n?f3E-JROSTfqS{nEHXSpphOXR8WFJ!3C7ix3NM|AMj;&&fh+eccD+nHv z=;?!oZG&yIBZ)oR9K?0n>Id(&`{>_Z-Na)fiYGW<*e z0)u!Wh!h7anbrCWZ@MOV3#7m4yaufd+};#T!AxsM{75+ZYW8?=Ow5>`OMm?91;pkM zqZ>95Cf1<|2DB!6B~wG~0je~cDn4zWK)-J&C8ZB`{BX1ZhqZ!wcOcSUvw z0Cwt$9V`e_U(D|2MXI^5C8oE=n{vpDK6<`y4^|HS>7lAJNr9VlBolr=B`%K0i!(?fv&kyypuO-J3E}wqyrWT9cz?8-G6mwBMq?rP z`W%sTM@e;J+_~)^ppKy!JccU)uL*S>7*#ULBq~}Wd-!f2AVk4H`E;tNT2c>VX+xwQ zdfy;{=gGlD$~EaKi>(}vJThxx|MeG~!xFj^6&EAnFQcwujV9hq46+(o4kV|nAv5HO zg_4;*X@fj*JPm1v}pUun6?&cr|I=H`yS44q4_B+MH!KqC4# zwPoMu+pCC?l7OE#Xt<@+?bl>`Bm8V&s)Uo)TKc9IDgXX5x1q_+nLqNCx|}wT_(18(`I4tp$x`%}9@ezI2!GJ;eb1>4$3UNI!3Vpc z8`+--LtxbK9=iJ1zbKh@WRluUEQ-^?``mL2%mjm{?2(1w;`nXgVZS_fEUX4{aV6}6 zxE$?O(bIhC#KLV?aA0Z^;v*ayt8tPa5OfVey;|Kg$%!@8eZC9!U96x;Ps!0VS$#^O z9!v1+)QW}ipnt3Z=bKt@ND!IL{z0cVqA7dOWSm$mVni7E{m84VbsNNm2}siRV&)=0 z1?ZL~3b@zmtIORPwsawvmT$T-I60xc3^vY`RB5qPvL!NNcv@zh%k9{xfT1L7Vbx9J znCk_mGtI_JIHhS#lgl0H5y{Wpcy%O2Y?g4T(~bEu{C^Kfbl(oV?uZ}WTbvMvJTZx%s7}@q>DT5LMXDui24uv1W?z zw(&Gqh6zr`6x38BUWY0+D*|RR&k z=B7n5F>n!9KUtu!qy&&WN&kW}HzL?zjyrtFjDON;v8+yiTZckRl-MXrc|SHh*x((@Ec7& zX@85?!*HvPCpmT4vu_rfh#KO%P)B0VG+C#(p{?%?$eU$;`-~JFg)a>Hp4I&~6hniU zyiZA{d+bsT@ardf|p0jPc#ff7Jo8zIz4fmZZOQB`4C?_5N^xQhEEI-_Yz*H(X+Rit;fd%6WXWhCgZ3`>yN&`vP@1R{?kAiV#HyvBatt0*J%>un z_me8;R`VZBNkzV5iiSVGvg@vchayV)uQ6xdl}@5_p(Ho z*s0vDfjc!K!(&PAu(1uk_Zot%-%TM?7u_W7g8>si%s;Q4dxU&h-10p_fu*{I{}%YI z0Xs34y3l+orK2;>!E@o*`F|1_OgKJyLlnX4!ueeR;hF$#1Xtli&>E4veUv$Ik9UJJ z$UI=(waVeS=Rsm)5T{$1@|8`kbaj^{z_UcGVCCAW?AMjU#~zfnI-9FafemO1g{)N$ zB2caPG4|at5*rfOIOnsn_HDB$2rjbib`d-1)573Z*hv>c6aqn5(0|Yaj$|+lubixA zZWs(qi2-|MI^iJ;uq^;ub9H%I(wG2jJAP~RaOl-AidCOyXg=mE%!Cam)6+`4Mv4># zl83ozgIUpp`D)RFyZ~b0`l=CGyAr+%1`SxecdA%J5BqSUH{BrN*S2mMJgKT^s~!me zNK!g>x1)uw|BROOZdO>n zfXF4dSb9Bfwk<64o=32G$Y$>3gb(w)Wue91^io(Bg`j|S@7WDMo8V(fmibqYNIM|G z0YlTl-!0nv$8qc!sbWfq*-QyN->b%Aqx{3~WjB5pt5Y|6;eRmm2a&3j(UuJ{pjne< z%Xdh@t}a$8c-btGy@nb+f(6!KZIie-VLM`=vQD)U)!q=G<>Uu0sJOz=9?|eewyA~S zT}{-B7(2A;0IL?Knk!b(ni{Xy#n_oSGPz?}uSUH_K0G(aoI0R84K!`75gB+K0Vh9~ zTb%u3hN`o1lYbTttRmF_9-n9C-(!gByKti%kb7U7?HYij=4qvBM_TK284XZD-CBOq zDTrV+ca22$ETPl6rj#}>OX8$Egy5?2V^F+um=I(F-(sjejR=H$1C`At z9{Ef6km75|3=&uvwk1Vji`9J}(M+4?JmWC;&*E}^>3{JtmcwWfZw{fr)pqo6)c0U) zOh?&8Zm#N&Z3VtvolTomN9! zre79707`MUqyS6r9+OTlH*HITx)x9BPZtYPJf>IDMER!6rrgf1$ShGnK^$lv6?=%@ zt}*n%_23ghE2hCKoear9gAoJs9i{nD!N>IXiGRMCh?TxFsujsWR6SEYWy1IHt%}%q zNi-b^?YU;Q8T#19Vgu2|p0>BxaLYX0%7nxYQfm*-w19C#6jHYXG3*7Muvr%yf*+dj zeSgmnfrB~Tu#ZlgGWKh$WrECc_1Rk`Ra?K--C=KrNkox_V=z<&W$^5_&2be3$o@a(ZCk&9vcTyEsA0y2N7r zZ345(B)Ye>jB~JW55Gie>1Z(6b0-{UNwb^_iNfJpe%2(o-1~b9ijx7fmVObf<9}{m z*AV2pXJDq{%woD-T;LmuImL6FpCvd^mZ65jzoyM3{LsM;efX(xygiIIOstPJL`;w* zTfkygiASCYF;A3S79pVuXmOq{BKX>yDBUjK^IHw^KEu)zr~ikiF{&Pm>D$Z~Py^5U zV`!5BIrd68S^@052~B0htn0;%7k`pQN)Iz=Z7V?h3!?LmoKqcECtQ1NXw~9uhzuK0 ze>M^{ezk*~QNCnZgj&G$iYP}rB}AD<6UBwI@Hg%ogV_gSQn$VzHU^Fo-`B_Ej+G)* zNZ&L+0;Z+jE=99AayXM*I|z@#!}u*DUbx8LuGsVB1FH+T+j=D9uu=p{CV!f}l9}#} zYnIK>ftH!BPUcUr92&)Dl&e8~Q3Y4ULR72G>9aAwwp$Fq6v||V^NK;bI!p72zN!_( zT6vr!AJxT~Xag!~odr~K&~{~o7h|pF>GSkd^dC>VuVc6er5Y1E(xSNh2iszf5q&w% z;itb~t2Fy^*N&oivdFF+MSm)721P!s6E*U%(6M-mq*q>IH&>FFAqN>SGH{kqADJQO+BLE+zd}u_L`nCbb<8{|2SUs;by@L2<@YECN0eDeRAlVE(mM{ea zUt|3^%gQ1!SgfVOMAmf**ScqI3kU8frjzsgE>YUh%+GPjeszqyi+@I=rn0)SoEBLc z<=VU6IT*0bx=Vh;4Bu(3TUujS(8`a97BR-OWgm09(Gvop@onRXWO2`lx!vUHvulFU z(M7y)J{?5u??9NAAI^9m$dB;6)y8}_B`ood7EwSaGtz5T0e%rls`ma6sb$MLoc5Y( za5?j_*iL-Ofd@AmWq)YCuR^7}u>ffg|nHt)$<52vts9q<`RF#P$JeJ6okt0kX)MBa@Kb&r&No7L zAu7Rc#6vjsNPnk?RjL9S)bW?PW`$@_(&jJSURDON{GLo#5B;CU{>~55R4e*F8>a=r zY+k4h`Fd%1G#$8i+wrXo&XAoa>3FiKndGB}diUoS$1Q2Le%WO_4=68~y#m*I-%+X1 zLu3?`y(!`oH*DKUo^;IpzyiA(vLWL_nN2Qg1V?EK9e)_?G2U96g#iQNyPTz(_Wn8Vg0iLU4J&hckr9e)J-3n8}U+Ki7!1l~u zI)%*HT&%>Lq_m2>of6W|e%uIRdffp6YX^g!H;}vTs8-?6;>|3ufJ$bW`Co}DHIhPCH-1PJ_AN)u#7~^A?o_H z!ye=617o-kQ`Uc3_1!bV&v(HuF;O0G!u;XHB@^4Nq6GgIrX;g+U#ek=lE&7{SZ*|3 z=n4`ViV%l#DQrt6#|M@+`-%LoQlP0_xVK zC)j2V3<;99h(L#xr{v`CB4H!rhDH4wqcxx3^jV-ro79zw1eh5`B!9nVRNz zs$ADf?%4@caRZpzjbGAVzIUh8E{;je+J79>gQ}YMhuHxx&?tRdX%-o2pa%|VM&BeU zPSBkDF@u#KL@ESn;+bpifBHKGrw<Ds!E_RNIRafL^6DR3RGG51*OZ&t!Xg2aL<3 zb2d9_`z8y(xDK#sP&jAc!t~@TdkDP%L&Y@jv7J@ht3y;re+&qk!@< zzR8KvA$NzIhY(q26aCB*c`y(I!lY_cnj`X7e>~>n~u>1;j zg1INnl_Ta(8?Q1&Jfp`iMsTv`91<~1Ed=l!tB$YOe#PF{CERkr z%VEa;_5Ez9{({F;$_@7ef#`Nhas_?%Xuyd%o_(fv>?aOnY}?re{$g{bDtsU?5dw=4 z7b*XEXG|DB-|XU1nkPL7st-s=s8~?$v)-4Z5ItM zk`CpE1@GEbuVTS;p0ewdV6v_^Y$!*TDTAaMP}>IR9)g|gcW{(!WQ~KY`0BC{MU!Mr z=(<(m3VWB=pJtYK=NsHv*abZ~gSK4L5om8X6saw8$2CDVH5eZt|b7`Qn(_$mt*5^fHk?*!lphsK>RH&^zK;xvg_#NY@@TCqSa zgnDvf`_q);9!`fTkXs48yK3Xc9EE!u&}QI`puv@Xkx>}LTp|&@K4)ow1O`TqFPY5N z0Te49V6wl_Hh;!CY=0|^Kcg=QoSKtF``DMb&SB{5a0(!*j9)Igj}cB`MD9(pWjYWX zYfpIo8jP2C&C~Jo5kDZ!ltEZT1b=;;FFy+|r=xo$GRiEfx@wfFP2?MQ{}KQLnTQYH zs)YWIMj@*&)q*+P;}>tO!f2pT*dDUwst?M}Er0u2G{TvILQ-C6mNcc4lJXxMNmkpTUNpI||3pLODhD5^x=)@xG~4*j6V zXzWub1?H-=JLX5-EfGrQh77M!srhfab(odmP;0K4VOxkT<}MlEhTcL zj4xP-K`PG_O1cTH$@g>o*{erQHGK5y%`2f=Q1s)e(0|cYTeqRuVggR#o~>JPp)b1N z*iP{Q9l>>r5Hv$}`SKj@*D4Iqm|4lr2{+A>v~qij(c@yMg!w)1zL*73Y-?ZvaOYSS z2#*LFg7%n3rF4m8LrO5m-m~*S_Em$(`LbG2d%loP(kQ%Z{G!Mn>DuDSt;%uzL4?Ru zXF2mD=YI?g+0)dJx6v%`SFjXp(+N?ixd} z!AGXo7CiV!%i}2=M#I8fr#Rj7&$?UF^EqAB4UR$+3Bvw<_CW~TR+4b(3iOHr`fBid z%7%9u=WN7QC9Y~|v_oXCaJT)dAQf{`yG>ilv zue%vHZuaRb1G1~2KJ-}pXTu|ld2ar9DIvLI+i;|A^~hVT`yG`0H?y1@zpA~532yUP zmAz0g#yR0leqR`gkEtQxLQ%i%Kp89B1?KO04iBHpF?5<8F4V0Cpt6RMIFw6V+Kv)Lu(WicbQwjy+%1X zN1f7}@EW;TFBtj?T-=*{czBg;b&D>K)+MA~<-S#Ti`ZbIvLgALw?n~fWu!%_>Olse zC?*pEKVf-9s@W*RAY670eL&HtM}#xnB7di4+m17SPv6Z~y2h=gG9PF{g%#~Cqh+H{ z2V*K+%iWY*k=kaGmm()!Hp$Bd`w=@~{{$a_`l7A`= z%OEujj@8|m)b(1%4y^0t)?zK0Y@u6?wZb*H6*;CSk)XGzFQQs1a}mu&bbOa~PpE-x(ZBL z_LperS}rhTmJ)3pXo*XCA=L0Q%17_o*~p@bo|#x*m~^6wR_g;Bq}Q%gmsO$k)BCZv=ph-S3bsyHd5AOa$stnHJFx3r(J{*qg#Pk+%p z?#WZ0ZvunUjQ<;Fmvd>PlYd$`;T2Rn2(mc=8vX~VDol8ZDN+VI%Cv7fwgtaLjt6X& z4^_o^sp*$i1VY206S%60Wh*6?K)!{qowG+19&bN2*k?yw`$H#yI8Q=%-33i&(E3}# z;Yh_fl*+#(a8}dO&37hbCpsUTQ#5-QaY(l0FmX`hYoOgg*z?ci=6};(T8i)W=Q(nQ zIdXd0UJUsX3#CaLObo85eUa|mTY}A@)jRVI%+bPZBJeXVY^pHfN+s|!Jl3)z0)UsX z6?sdXLjJ-XrZ3d>?S(G=gPbEhF%Jb$(QUcUdP z5#Jj+EHo=-vNCdH19?bb$n$kXBzXUxgu9vbu_y~2*R5K-$RaNew;GuG4!c54V+Wi} zctL?i2Mx;m^wfL0JPO~aP!~LX3Fk4Cn-CO_KwMPY<}nabvVT1InC;L@8acToZ_MXl zj!38%X_akjb9%jw1!4i>BmXVPb*FURTWFlcYSTNM!@XTPyY)B8e!du3mZI0(3n6Wj zHuTwm(*hCMj|5I;)>L&LVKKk6s+$76kINv_JHBt_WQ@jKCFj7^1#Gz2CSaC4ymq@W zZhqa#6(>xi)PD!IGZ9#l5V3h{VE#4|WELfzC4N$-Ys;SQ8hE})5VKbMfY|+jDQJ*F zYpUz1jyVxmlgH(9B7+_VH#4QjatwoI!ynnmt?F3PgI!z^IZG~;0%hfhN z`^cvYbCB=zRtMpmwbc*9Sid6A_sN@quk4=t<*L4OzJF6J|H)-4evZo1JGKb{-42Ou zlHfrGU8X*5GIIh)`ktCRlGR@;pF95g#8E8o>TAw}s=Iz#=P^N?R=^(ukowsS+txEe z)q?K_FntME5ZN<#!yv+f3zj(jy+khdw+zh1Lrkqc?o8wZ{KA!&Qu`!DY-ByIJq zb>ShJLguy7`qhz!l>6<2svg7Cw0t-+NUO2pKut~V{8t?mpUzV=QI~6?$pRO?v>AFP z@qZ2%-I`@RAYjudBv&dNRpd=19m%-Mh*AEK$9~Oo?9GqoL9;KeGm_+dx2kT1Q6%DWa9jT{GfrRG&dG0x=orC0dz_jOk48eO&mW8?C-$H%_P) zGXLU*OL2EySz{HxsTdMh2%np?A zNbPGn=&`Xvn&R{eOvj)v%AJ8+kP?w<@nT6=`(`N)w20V0vQ;aqUCluFob6@2{jM&L z=MF3nRD?L-io($W#{}x*OW8bd1+j0=BFd2K$z5@+CpDz_%w9p%PT;IBAyU9ZPk&g+ zn&;@G5e{rNax7jcEa1_a-w$vtQcu2gmG3&u(4+_$G4i(PLEJv{qgYUAiGA@fW7YOK zo!pzA3nbjL`Npio-s1DRk7MeQf+7gJ|MT}LBa=apnw5KoA=Rm>F8!C0h5gGsQx(T1 zKJmg{TxCDGuUqGYvIa{FzuYydiGOk)9ZXTs+MGf0fC_c^=@(gu({P#FbVS60{bCc2sUqp#voN}-A=@g{W2a{ifuN_{CmQ~hb$lsZ^ec*Q<-dpB&>T%zb>$=SkHiGwQS@pajd z_EO}~y3`hY$hO!4JAf;lgw{6Rn4z+df7wc+{~WqEV*k)zFZIxAAi?akHgk_Hyq7U3 zN_}wmW%XNwy)|kFB^x-@Y9y1fi~ZO!GZceH_w^tJuPch>Ab;oDEAW~u5sLC5;>%b1 z-q6Gpwe+7GJR)zw{I^$n*f`Ect*(0?`{v_fn>sj-2^CsM=d4tZp?m@Hk~s=b(rgB`@Xdky3Bb zqPPRR!(}!mYpZCqc5~-l;lF&~mka0#%&+?u63q)+jBF`z31Wq1kbceN3JFs|wdiP- z+1k{!wqhq6{vbHG9EbPXwgvRcxmOc>Q+I6Mn8SC#y`~L+~=>f z8I|FE^V=7c*y_XiE7YufYC8hM>9g-e`yCutr=UyXAY%D7pCj-=7$`&Tsazmps~!xa<{qzItD z6ui|YUR7Grl&7=#dr(js*(9@#KmjwU5KN-|Lt*iShb$iZB%ozkktE#lew{B<;+XT^ zJrmv;B5QbovDK@6-}l7b7>xEVw0M!5L#BMzf`1|b41?m@0o)RwmUe_RUYMrtta8K% z%7l^~tvZ99PSQTjK0{S4bfzl4UHQp#(XmMIHb5u+$k;2yya#81ZTVDClgtDJTqgMxt`dJ15*x!CcFyK+6n&v0 z@bMPHMr+x4A{&l8${&Xe6`~??FS(Ae+gf1UxbqUJ;Cz%Ej2Q$vSwJBBa4DC!?;MV0 zOSO@Y1w1Fu4QhQnF$nh>n@154_@)iCBY&I}80a(4qRC_`9;rJM&^w-WuW~wzR9ah7 z)TapzwVOf9F+>xEq-Yr@_tH$V1qT5xGjieV2=bSi*3_O8)rzjMEG7$9oS4xQ1Pj4Q zKQigqV0+4x27eN&1Hsy`hkH`0rW`6s&}>Af8_8ud7SKwc4enYM6g|n#_1R6?vwxhp zm$xE2It)+2jmfeKJcWBt?*=ZOeQ|}R%-2L}JVvhj*|HRlOv}8cd%0+%Kh3YiF}8+L zU$%K}lL7#SQbzYls-2s+bEXt2=SJA}PdU{uz7QGUJtm^Uuu zmGgKg9Bg4PsbCBI@uS_VN4dbr&3}>Yz{}8%mlN*A*cGfcNiGEf1`9kS7wWWIk+hrU zKptbG)*ZN+^zzBFXO6DThCtLOuRaPeyISP5Y)^^ws-EzB;E7p!Ei73|+0-K~%Hbum zLdD2*!w#Cir#N%w9Z4&k(hEA!F?NOT;EcA@Vd`03SI;z26ptg6JJK|87Ju?JOnEj?!n-zc4gTsA9xSnfqw3cl8P%QhcT>{?$4CC4X@yFTpV5_q_H- z8aZ3Y~QklaMm=5k$RKKstD+&%*K-w+`oA$J9g%V1!sl zrn#GoIJH`?vT0T1z#9vYGgMU9C@72MFHD!rb!eLX>?dW=L~tc07<@Fe|ByLJB4(~1 zOi5m&(E6Rr=uoa9?0uxcv}t_KU#(=E4(>-L8q8ucK9GrUqlVPHNzb zT9O|9LnL)$C%u0w4HX~te&uvon^8W*S!Y#EK}N|SX#Cbv6xVyS078~b$D zO8D2;JEPrqj=&J6!K7DASN0_#NVS(Zs!X<4ln?aXs0?QCKjB@_Pn`5O)H5C(idHHm z>S%3fgZv1_^L^y@$FW(rGKGnzbbBc&L_K&JMWziahIXC zeM@U=JVtTt7CH!KEa$8I-6e~cV(=mWr>8{qI?;uNOR9iXSHj-A3Aa_e@S40B z=qY5%eBAIzfcxOEJAY99+PCFiUL7nwOi&Ht>LO<=@1CjwvVROKy43&bl(#v=mE=ZU zi*@Y{9Dh=1sBfAOtYr#Py3ltY`9pci0*2KDufZ3+@cCkKgOlzTI>%LQRN(;Rb@e@X z)u~LSOCtL;NWq%U4sNjK@b-3_CR)`w;o?mPf&WeFa z^ap}ucI-;DnG;bkH-4}nsf4L&zt4)j%vD_5M-s{7Obls;`+s<(T>wlMWHMeXRmk|U z7Zk)KBGoqY*I6SC)TU3ri9Ej~mz6AYZgs%QbZ=OYJ;aq-XM{3pkdnQ|oX#tXL|8sk z^?zNrT6tHaId$r5h+4dGsrd5Yan*nYj+TWJ%9uN}-doZ>8@a9Lc~}cvCun~N<9{0g z61s(~g4L;5{~}1DrBCTcwxs}`x5Q8y5Wr1%^crx~SwwSzS7tc`D`*K_!?M)@VFp- zx8QvZGzUzjDi(Ip?WRpn+}mtsq}Maj5q`i0y)U-h)BhsWXo9XI7l-xy0Hf zu~g~oB{IcTiXo^(B#ZM?iR2&qT)yi&j^L+*;R3!^Y3&vhHQ3wp@D z%>4+Q3OhN;%O)x(D0m*i*nfAqR0S=i)!#RI)^%kqy7Foggpvch97}YC+*S_OD@{z0 z87{vQC?Q1I@t@wC^#(`5M1jOyC)A0e|JuZtAUw(n;0J<4sdJz6%D_~>3{eGR^}#%Q zh%sKT*;Iy$Ak9`HvPDODA+fx8Gn!}& zx2BWbi?c!AzH=&8<2?7$;+oJRx36x9RTi0b21NlB;K_0wawLlf&KmCefQ! zUS#G40XY=;a5haYf$iq|&2OPEikszM&Fg>g0xO5=H7H42bE=-Gxqqogx67C!NdQ%7 z!9&^A1iEjE&{%1c2hqQxL_W(MH56C7<9twV^)~nGw8m?g*R@O4tml857w;Fs9tOl2 zO4So3u3O*3GGTI0yFXPF8q>~53$1ml1{B}wHphnX&0G?(W>f+DIj0z{FD3X*;$J*$ zq9c3L!gczkXf6rJVTvR*mrUAV%Z6Jrw!(CsZRiYl?y1K_jZfa@;t%bR!!T9eov19C zX!CmP6AIWFy0EQg=evK~id+dtco=h$e*vx7v}xJh6^dqBZ62*tug8UEL(6PkQnh?gRTLo?Y|Czi*tV;RVbpe&k4IXyS7uq zcY4awB@~rJFM-?WZBoJXi>2It@L3dd@3c2cBmw>5(l3d&RtNhWzosz86l&`w%eL1up<4q01_7P$0wIQRH?gXFYM892Vk zHN9?lDe_O`iZu@Z3^ zofqZ`zE$9)*D$94+2nxl5}V8Oyt3goqu_Dxn%)aAT(yYH%KisR!jh46a--Hmk|qGo>)I8yj~QTx}#057@pF#UF!So)>B z-qwVE2NYg}Kn+H8B>H2-E{-=3Rh)OWhB8MrApXiNVF2Qg0R)F@DDRVjgkq^tkEV*$ zmw(+?L_ModzImfI!D-ZhY_Q5CBzt~tLVqRM^51}+sEm|IyvfCZ#S!2?>ca&U2c@{S zOICkC1>u+Qkw^=k#>t2?w3NJQ@$5`Y$yP2GeIBd& z_;W2{5OVuEb(pg(33bpJ%VMvD%@B@pRqyjR*ton->1|pM(dBsRH`PE6#QH|=6a&yb zOcnmDiG9{OnC{s57A?*)cPai@!cYu%vD<$;;4$e$uG|B0&g}~B-%icT6#4zHj{~#By^^y?P340#b}9YUuJynXrM){<$dVw;PqRD&pGBjXfYb+)Qtx zfgK@#xF2qzl)T_i+DWA0>`X^KV}+o39;!T1A0vSFfN8*(k-(~S?=oIx=fV%bM7@73 z!{@8KSJJTUq-8S-<9}QOs>cdTArN_>rbtJ+p*L0U;coQOFRmd}jySLL=6UNiMsfj= zy#{Icg z?Y=ffOo2zmQL(|1Q-fmT(mGtW12Q#^Po5WVL9+m*n~h=s3wy!^YNs_PbH~Nz1P>od|*K+?q6$zA(>O((-paN z`km9Gr{Vc^@9z2lSk{t?YT?yWqBja2Boz9JkyGFi?}?3F&H_c#E$DEr@+ z99i!J$|+*U%9}M0ip75xC1!XneFxCE?jI2=F+--E#A8K9xWib3Q8m%V5526*_sSRP zfvoY-M_j_|zqZ&Th-zAcb&O@il8kCRxJpC`Evzj*rm7)(NLKTv@YB>$W})J#L(5!2 z&7nkqCLhP0X|{FX)EU=j;loze@_m|vbd$|2#aKJ+%4z|YGdO>A$yGZl=i00ml;y$d zJ%>d~fNs`-KnpUgyNCs8`Wr)$$u)LPvivsKtmA|iaUTz5PJlENRI(lnGG9_zY0%mI zX+zT-6eVT>v{62+WCEoE3w*Vj%_z&2L&V!-&_CJ$sRtijPgAoQ=>%EIn!Y*zfH#sg zw8Sq=)R|u9SCD^qcG8Jl+Q7Q~wZL!i0axRi5Sz`K!$L7jDNs`G;F&dP{-!yLh`a9$ z1(P3K>gzZ%SgYxdmPicEc6q{Q14}~~*XNsK45cr|~zKnEwVx%UD$E;=OE#+_d7 zv@IaA0bd+Ay*PZm)Z_)&hN*GxYymbjh` zK*;8G=DC^GWM%eauYtLaz#s5{q{d9}%}d@1Bx&s$?M=@gkMo>Q-Wl5I`e-q#o@Oax|f8`NO`)TrfI7Cx+3wn zS-&qC(JSpbY8mew^g3riSSmI%R*&B-A;3bqVFDVk5Sm2_o}I!YMU_MHp-cl$%z2pe zfFqX}%2^(M#8IQLOqU)8HQI1>oya$+TuOI2reSUgWI(=x14uF6;=uHrs0T{u`vXTesPVOO%WJPD zxq>YNTX0;Tu2t`Jj2}I60T2FfbUPH|KD^U^R2Zx6_|d2if`KJUZriu1$j5+!U_hgM zTsYN_M2B0|=>yNH~Caxu51D5NwGx ziX=MxN-8y19Uj5o=Vl02-Z$#N;Q8mB{S=c{au1YWt&@2BN~8PDSsw@6;B60M#+~KUfrnuGKa?Q8z*)xAAht>X){Gg+Y}LL zDt+%lBELFzIW=)*b|JICNW@utp4Z5bj%QR3Ut(M#jWmjr+8P5lzE9YfE`Hj?RmT}z z65vtCsYDG?W-gK?7C8!KZe(+Ga%Bu*Z3<;>WN%_>3Ntj94!!~@3o$S;Ff=hUGcYtY zmqNY*Mhh`8F)%bSGczzWHJ6jV0=fY;mrlO|cuF!LFG)loTRb;4Vl!hiVr61AF=1gj zIbmjGVL3TBG-5PnV=`f3Vl+NHIWl51F)(2;F=k{jFf}n{V>V%8V>n|qH8C?{H8e71 zmk_`L7JtTI1|}e@6hsQeBG`hqAd(Tx=8pukOTgkcki=!c>dQc+Kq7+8_YFug$|QkB z%E7w+fptOHa}aFadIVcQ6QN#U4uZ|M7{O+Lj8M;kNz1;g4HuH qj*_D!sU!f`%@v9YWo~41baG{3Z3<;>WN%_>3bSVdw*r??!vYnzC8&S^ delta 83302 zcmZs?18`S;$-6Fjg!g5wr$(CGqE|bjX&SL=hT1hty{Hs@9y4f zH=eb2*VC(3SLVYXhQeD=D2YihurPAKQS?0Jf5Ne_F$0(Z4kk8m{QLkWIcs}!V`pnG zb29+TcL~74&BDyX24Io`=mJySF@H-c09ZHxOlsfq z%*^a;071b7Log?Z@5Wi;*1dR`0jylC|M^VX-ogRE#`@i%3V=z)!NK*rng1%Oes>CB zXJ!R3DLI?F{qKg@6QV(}fE;GV#>VXIrX0-1teouT#w->*tQMS{rpBf`Y!=KM+=Bev z<`!ILCS0Z_tlS*NEId4%ChVLh#w;9WoF+W1Tx`sO`rjjhb8&SxH@1WG$TT%EGup8< zGBGmZh9%``36vU^V17ZS7sM2EZVHkb(gwtrz=-h%jg>wK#j_}}LJVr?z>psH7CT8Z zGqZd;`~k`6?d6t-vBEZ+nKun*qAy0HwKE1=Jvv-uGS9r0Jd*H{}(Qbzg%s<)!_0Uz!TnJ$-y`{ z6G-3yplm5~N1yxibh7?^V``oH8M6b(j5hi zfFvn1g|XlS$cjKrOHi=ZC_D#zU671jkU@Tl}x5|E#g?xw*RWRA`r}Giec_RB`-m@_u$+G$Tj(tIZJh6(B!!F5d`-RjfdzuU337iXjsSxV?;gp)=!(<%nD$i1l^hCXFf zjqh0;@Qio&D`3&(LCC6!lQ)P-|5V!3fJI4`-YJRaZ<&;`Z&snj|7zQ|!tHPZp=7N- z9&Zu_YUojhG!?dj041#R``<@I|H#OqE`$G5osyi@J*+dmUySUrRZ=8J7uWN0cDE8_ zt0AAex8sTo@FFw)VQj9G9N-IZwCk~y(|mku+jzs}d&c6_^Ad;XEi!m z%e+Ets$#HWO{7@3!c2m#WV=E_Uwt@$%?esB$UM~jFQd-Y0C;E~L3K&Rb!*bF!sbC$ z_zzF97C($kkuOg`N|Ol4-H4fw#E)Q7^5}6Y=+tu#U3>2FQ=C}INO~eH1Tz^c_rS^wQ{ za14V!*JMmi0F@t?y^bBdY!?FvXx7GEY z0f#*Ey_Qds8;+yuL)iaQ*-DN5vVd+fDCR-beRE?F1Z*uFt;gV!nh?{1U0Wev)`lrCgP6H_ zK=y>-%c0F@LLIv~9ea)ij$FZ-DVOLc@fh<-k z9RemyoYKWhzknu>-l7A? z&~CH<3SaUzVhBVsNuoA*Ga1l3{yws|x20A^7yPfReq>JIz)?w*JPC~GRR;}N3H)UC+WPPL)t~xHiDvo1znf#TuvF^b=6AD#P<2dq zhkE|9etnK0S+L<9mZaCGrE~|?gKZn$7v6}Di}oV#EyToUcovo*wU7OlmVv5hgczZ~ zRAnSm!%fyopL5?Nt)nX`1Hw+8bRlGIZm7mhPW&)wD$(1zloBc%?T4{CD!ZYs4Bzk= zSJf$GisvS9EKkTI$-v85EK`K95zGz&|Ez3K=$iKLTEx96INl>(Bhe-w7FcK%M@wMe zudd`jrKK9ekh2uld9{rboT)sq#>@U&>mc~6pd3_(1;E&(Zj3pL3(Tm0bhu=SSEtUR zf+8|Bl-3A1v@rhj#nG@Zf$jvYhyYigmiJT=Ao@<9mVklNH>Zw32^B5eCW1B!b~u`A z?x=HAmf!0t9u(8-fO6*r6%9H(ofz~Z(hWgILL(sf!KYhiarMakxHA10OCk+PZxN0k z#sEw)uBi!kN=R&HA~29t&_4iF8LnAY_$P?}9Y|-tW@BMdDcE)ej8ZICBk9mWUE##& zt{fPMVRmdd3AV>vfj&lwRK!If2Op8=!E@U3Wzrp%bn!yd9p{!Okn3LSd~;@B_DoGv z{RYgfDL_{NmOgs43DoDbtu&adp>-V|EK!!L3x-2lh|yfo5SV5FXC?O6>-U0jYDfCp z&d=T0qFRbiCb)E1!50|xn=k)Qi!mI#tYQ>-C^#}obH(u1_^_oU>l1v<;k4eAa=Pla zUCruhW2X0*fR71};Ja*ZRXT_tU2&P)uVn%~X{a5H*LC4eslwx*D2v^7(-R*<%;v0P zBxHTguxkj0OF*kgxhl=cVlsYUN_Y0Uzxi8{N0f*2$_i|-Xw22i1WhY(A$KkO*Srz& zVN}8~n`ubEk+=Nr;(bg1@hVQHQ!nIEP>?bke34i0-zlUsZkJ<^NuaJP8>AeLi%~Gr zh@&V^d}u>3E>n^}twfB=w&55YfwgaUH3CeM*354tF8ynr;NH3-x?P$Z8S)lRI~quL zlwuw+H~Ajqp(LfaU7gwT+h|k0mE_@({r(b`egLJ(#J0%1^jALrCES4tPMy#t|rfLjk4>2`E=ei~}eMI5+DzI~xJT z1}Xq}zBddK*3K@jfbTuS|D<7=Lpo-UHrN#-QT)_*k6-XMh zgw;Mw&J&E z53i$5fRxcftidY+jWv_29mZot0-59(hy96Y%cLj7m`7VZtnJbn8xLvGD^gL)aX0#f! z(lqYic<wdm-%KVF3zrBvqrREHwRE zafy_X=wk!YP`~3@Z!vB#(i(bAJh|h|6Glm1fbZ8qz}S`{hj2QqIa89H9uL?GJcPd0 zc4;k)dd(IED)>d{dm*O|{cQST?24B_!l}tCMPAY<`Zz^K z!R&HvjS%Kjt=bF26(qezbQm z2rfo)@$C(0{d1$v8o?3jW9hy-$&2n(Pl_Jv1R5qGRTKlWOhP5E)$-G%NbuqiH=;Bb{MwM63;MFZhiIb0@?l0%7MUzRSIkq>a{v2H6VvIbD zWZhkonqHa5yOMO4NV4;3Li!snY75q!;WW6l&lO4T*8JOz-m)SCXTafi%rE8Q%LNgUD@9F>y;+%?UgNyXF1*~S?6d^0&RS(j`K^(&jB;6X zXqy5_jja5)0m&okG|m`q$!6$u5!r8ja|&dYT|Tkx(w}0$KOVkTzoU?w;B+X4Une-O z)WV%$twl-?WukC?O{)c|kx8K0R5rv7Rs)^f3In)?+rOZMaVhyJQitzgdS2_*D`={v51UUefOriKMej(0_P0AVC`Ki__sg z_&K_SvJ{?Ik6XrC?G`n*gi(pQuX$B|lT~n4jsEdbVKC_MkgHzsYc%ncbgkq8bsV^e zUL+#7u1GYI)|_)XSLT-Rt8Q+ot6bt-y}+5n@aZ>)!Z@P_Taid)g7XF+zTdGN?DAOR zM}j6ocU?1HA)ZsE?GHmvk3t$#B>kSX1IH?+ zpK8^8f%3<^Gx5Y9y&BmSG=cVn0$xE9?QVMd^rkhOb6gu(sUJ z^v~#ZB~Qocw}Z?@3WJc|Ob6VViy_CH7=o=ogA;}GqEy5Jf1= z-=E|egCV^<3)^}`mbJ9Scux9{Fi+_h`X@ER<1=mU5f7VKtM(}!C@N-0{(c{Zq^;FY zr*3yNjWdsix})LFUUzE2Xo}}21RBC6XjqVK)#(4lZ-+z!;@LNEgAq8W?M@zfg0 z&lJFiY!@?PV1-F~0cYN2grEwB{J~P1rHTQ_=*R60Ght+_Y02^Jjmc+eMJb%zt0+F| z8IC(Ak8~S899W}XOmzGAO%Z-4kV-8hzd8}MQ(UR)l(1V%oHyLTBS6Ct@0anSt@)zC zr&ho!Xbd(~dRFjUinV}Pd@Sp3e7b{GxE=H=$)#-OVbiw8B08iz1(Iq_{kUT85Nd(3 zGbD9nZPaspDFdhpc^6FF#S`bEizQ&moP~lK^;5M4h>VqR}OC4{6;>Tn1m^6Ub3=v``SNd}jvc%=@ zq1Dd<`9hU6Dx}stss!-ao+A$k@qa}HLJql;n)f$jjG3IkiGU^gKSdQw+;fdmnvF)s zV=pLc9I=ZD`ZWRs#*+){Mos~7}&~q;L)ja=oa`BwsyF>%lqu>5L*i+#1b&s%zJIPkS za@Bt+>7;QOTfe1xY3L-o8aF)f^&}@A{TdCst@9zx88c!0k;-g0|^ z0VD>UV#2=7;!je2F_=C`<4xTaD4 znK~i+qWlRY`7t(gI|JN}Sj4h(n00seH+-w(S8gFVoZ2T&Z zBv!Djnr-edL_O*|sN8&`_i*P(lUKCQ?g4K?yB#YR@D44U9zZq-axlO3JZ3&GI`iI8 zCu$On>DFybQ18I8OyDp>&*IfvYZ<#rZ@jB>u$l)VUi_6X{_q*2tf(@V4|eDT3@R4?a--}}BO=DDGoY|UQQ@k}3%*ZJa;LC7ytMgd(Yt5YG zUWm0=$941bd~DaJFS&vm(?@x{~mE`(A(D2U1j@fOtntkZpL{gRV+K7QTo) zA3jcSIf{o@zNIBFSHA)~@wd?y9SCJ?fqG#lJ;{%x{}%1ZTfVsRiKM@($UK9k@tpOSf`Tdi@0{?4ztJ+JBsbT7J$-A>=+kJ>BZINIw_JFh^1z**@E-F!6TAO zmDtoD&?|mg51(KkFUwTOV~>s@|Ez=mbtqHxX=Vs&tF-BK|H!CRIQ&`J96#T9y*7n* z4!5>?|L)8)e@}03_6aS_d%Z{7VAsAnaU$7*WUvwRPto9gh%q?ndTL_9-l;sL*qKM; zADto%cY{6IOP8D0F0G0JT}2IFmeDWQ67;5=A8t&((J>Ch+dZ(vf?XZDSWtoprm81B zG;KR03D%hW4fDcMqF`)1|M37*Hi(3TYbTTm(>C01ohl{ZhtRY@GlP1NB#dv-w3I4? z9ucN&F@Ykaq&t9OfwOb*{5SvR@mx!gK_Pvo4iPSMoP~d?*7nCvrz2wSs)#pei-liuUIa! zC4t3j;nnm46&|(Rf6aK|1KB9h1pJ+v zufgz+S+j&X2zhzaoB15be1G3luqm=K#)`qLwpzW&vM{nK79#$g3y6CLIf=1CBxjw^ zi+hM}Bx!Ia$FU=?GGT|Q#QG4*d6DHzrN5$vf=6+wALa{$9K(%iM1X~%3sSW5vA7=t zW*7x%2EzJx{yE=);L2dl9PEt3n5|~wh=V4ukug|Bm^WZJM3|0Jqy~0o zxzYyMX`%6i?apdbkR(LVtTwDx(u7O`W0Jx8b?RYt-15jWrQBSSKSB@iEtR|Du&bc! zxP9TVzOFA?jvl>Vv#7iMSX+J&eflPICm7aT5g|WW-ZZ^`zIc3k0FFq1^t{=xUYuLB zEV%dh@xM=iBu{B0y*4<_}n}8-Q0eR2|2s6mQlBbxFnd2}?neZf+;NR~~Z$}dycR)d6DWs2I4+Zud zEeC$i{^Y4DgUp2LWflfUvwM}JeaeI{Tiw}AMYKSdhT!IJ)r4^|Z1$}jznNYp)gFt3|$O4<`?}*-B2>FEPK?wPW z`(Vj#CxHborN7b@sgEFmNXXA;9xHwZb6}&G(z;ZNjRM(@geYu4z6?yy1L$LnQW!a< zT2fYFCqgeuY7L_yy$bIhXj-@2&Mf~3pXy?1lfcmAk30(0`X7xR2kZ|rob?8b7cyj5 zUUE0QlooEQG+?X5+6%ECc}wgwpR+dUmOv}x$%wW+_W&8f(jCg&6=Lz5Fe;$Gdj1SH zB{i+{FN6rpz(Yi!OmUrok-K{MEOw_WA=+JFG8br?KU^Q1u&MyF@QtcjWyF#cLu4zo za<%_ukB^tT$3eFT8;w_5jQU_49kXxK`C%=-b&ox{R-V}+^}J=$fEe3k!+6Wy10kcD zqur|05(1uaBn{H&LztaHyXUrDEm z*0;nkwW)@~0e44Uq~R8tA`A>Vp@la@4?_+6Mh){j(ZfvaM1OG9T!W-w9f5V9h%WbT z4X@bRjR2PLhRJ51W=v|#!xX0FL|tJ2_1Ndt`ezaE&`*RxL3RZf5g#W{fJs57OHIqD zKu<>NhcUHREjJ-RPh-8T1naJrsUDo$%a9)d*226|*vo*x73KJ|>Y*X@F$t4biTNgJ zb~Z*Cc|LF6$|x49h@CH1BTfQ5z$!-qTzyJqH3$f2-<}WSw^uoyEeVevkQ0gl4_=~2 zBnyQ~eVC|#IDd4TTBzR839o@8!aQXJ>#f|FlBoJhD>aTeq#N%nqX;40mfxz(PS?QV zG_(duGW|Uw+`C{H{#H8qRBHYm0^O4Q=S$oJg0DpNH)j*OQ8Tj)oNd=JoVIK0GL90UJ#2K ziv|zexz^!iHVadyHAsrX>w06rcEDaco{3D5Dcp~H35wx*gfNAF=yE1FG9^~D?Twa= zCKf-02psr%{YvifDR0mnRrphfj%2W@;DBf4jZXQsfT9>pNc~{n=RK^gN=P;Pl1Lb_ z-LQ*NF`Xmhv7tH-l#rSqiH|W&mDIj9f_mra5x#~@U0LMWjs>h}Z@gvE3U{nlw5ByF z!m4RrzEyfM%hly=`gZH<-F9!q3XpEty}X9rrd-} zdZo6PC;}9gKD@RTDb+lniIe=js)a^@w zolUw9yDh&oE8-ll5numZfBN{eUR{M_y*h6*^&IM>Rb#bUx70iGgkN-a9&7)_nO1Su z0K4&$)^7FK*N8c|=zT5ZPtuiU@CB`T$d~Ql3sPe1R27vod6j!l*j@eTS655%}9z&PsHQlrJcl zi-r$fAv)LDV&`ykjC*BI#U`_l!@ahI<#Ce6Q|PJ{VLFA`csv!Q!>X988i6%C1*Te1 z8wz-xkU)*t+$go!O|>15DQ8cqQ;241gtZ}<#(W3{LK3DgkGNv6Bt6Sy^TiWLPO%FE z$hB)IJGG$4cF+hkI@7mpj3fn>4u*hy?vfcV3ia28bP}DYPz}&L#9u4+T(h*<+9S_m zrj6IYSq$A>u`{4#!awU7WU95m$J-eBFG%D2Dpaj4n zt#x}0Nfh51&BcO`*z9h#ZPH+|+DsJCI$N}mT>i@CAc4NE)o{lvrZ2jr?zna@+m zw;d zvGQ+edaeh(eL51NlPfLB+@ou#mPSB^1g`qW1MOj;KN!ZM377C_<67~ydR$dlLR47lJ6Es|GbE*X6x;PF>k!j|&0h5v1HE)72 z8A>bvG!|nRvlwY8AT z7_}}&Fd6k^W&VlzrPB+Gj^#Kkc8;7*KVXI3JBhjjVv&;vwed5E8mpIJ@Dbz)Mv)iC z+B7(TL}mp7;RxgVrcah&woKh4O?83NLbBp^hAUM7`STWuS!*VTQadQ6M^!H87mc<_ zZw)XG{F#;M3Tr6;_@~lr2Enm(F~N4^K~yGpSv$v}6I@MuMj)>ltnwmn;r5KjN-N?svw9 zE=-zinXEd})^Q(uC4rk3ZJV~2B*<*H2}C=0XUXju53}3N`Rk#0cx%As3yX~n<2F(D z0cjw%f5`#Z~i~<#~G=EzfCqQoJGRD^08Awnfx9Ln;bYsv5E!H!^U!)SUvvR886L74A7| zdVMF*>(@`y#=vr7#;>6AQW)GKoGwLiCiD0tHC@xF_;J0WQ>Pw0D!Z7Xv$vS#GaS1C z9|IvMuQmICP}|vMH+WYYnxYO!-h%BA4SF8j*F$YOFHS1Sk=V^{V)x|+J<564w7Ko1 zN5kabHJC}Mj&UxPVhyHAjTI7-m~+Obv)3JPR((xY8o;){Qm$r2`V1T*r6LSX50&hD ze%QW-GK=N`oq>YBcRPt5QX-QX4luOCzAl#o7DW>*siwYap>&?OG-n}lR&fsWb zQOe^p;DB0xBUEWBAuHu!)W09}L`s6m8-~3$8oipvtHOq=miT-Xq|2+JmYor0@z`A~ zZM+8W8cJmzm~dKUJ3|%BBYR;5^?JYM@ig-kpx-G~hjdl__l}?pPe~x@8_Hd((*m1k zUJe0%n_;v5oZzLF8SR7CDwq~S_NjJ}#AwMYW|}PMVClC0T-7lU{?Ij9 z57@D8S8hJ1{?Odz*Wd#W!(e7JZ_?87*}XMgB-@ULmg9QyFk`NJm0`YWz;?Q7 zHJZbe`&FNIq6L0j)h0DE>S!rR=upleM;q5yIKEVJoX`k}V{{fQBRJwv0#l`E$$kU2 zgkGvs4v1}^PbA-oivml{W;(So_1pG(9_^aC_J4GA^GFTUq|Lg&6`uf4Lno3m^6lET z!hSUk!qy$xV)Cvo4n^dZA2gR;wcUd>!lC`$z?x8Mq?1zFLT`3A=QXq%?bg*KXA}C+ zDvw}bSEX#*y*ZpL-wJJ+EdkTgs}z0J5lKNCZ<1*Q+88Kia`7Vh+$8;0EY$T95MmM-X#9JLK+?{*biiq2f3 zrbRf-#XAN-NY4QSl>!Oa7j&q$h0f%dX*}z93y*?rEGAPjt^6U@g+(sdmnJ4dv&J(`wUvSmKdnqpo>mD+mzR%GA6Qo=l={Y1MD9JqQDTn~EtIB>|mt zXcjh(_tmXdaxiNjD_HzwFPo3dCdL@3Fsa-#&v~r5X}E#^B&K$Mz}q|`$Kr6H5qw`f z6x=p|!B)yXvxF`3Z8EDV0V|1EbF}z~1U`kwO!iESOxK{J;M~U6`qW5ExX#}-R3&IC zAI|LcDrFF!03M~31XYlVq;~&Iq??Y$Oqm+#egZmq66qJ%I5`}Reks<_JsR}kVorC{ z`OCI13gFYWWBqYIjSG2Lz*5Ri!)V{iqF>}x^cz#_SF}s*uf+bF&fQfL{>QjiK>En} zOd~sJ-q?~y+?Or-N~mGZ>fmi9^g!8RArEnHn{S{+hj2x}A>-M|2|dX2al_H6>w_c~ zQ2&8~0Oo2!+oF#)i7{2>)%g^@*T(&~xm);l3Q)z6r-F&X37*(V(JU6%w#RvLXYKlkC?Y)G#>+a4P_!><=mKUzwCiXN!&F90x2>C330! zzYJoe*BwVN3+fK_cmhIGW}ndzu!urw8xpJ%$=ENsmz|J)*;ji9!58P@$SKDK_wQ%& z^4Rh`DSkQ0FF>*`TR{m2a1wQm>rqgIkcPfFca zgvS&|cFyRTnHR-Y%X&p?A`2!%X|Kr(>+LW8n13vW5X*%94Q)j)Nbl$K5)uOlWn}zl z*3IkA^b56^9Y?_J&F`iX-G8ZHIgIjnMXhx64hMpM z>5%vc%IEtSrBf9fgA(&G3mu5mt(fD?sBInXz{^|>vN6&i0O1QBbcSQ;0pL4CP+>An?dk0TmnVJMKE`d)b zLQdK-IWYhIn`J(hJxjAd{~d(-U$Zrb!{HDdlmCOv`c#65|o2CuK(?yrj~dE>h}`Go2nt$&Loj?)_UUrULL+F8KVr zIA)6%ON8#1LWFLS3ehZCM<{X$pzXKP2Iqr;o{G~CO@|-#1!mC`;TRGLghe2!DsIiQ zxga4Y3|Wo z)JPD>)wCL%hB28Bz~G;(Se1aFxRM^9elR>NIL`ecTo})N99K3GVSRh{n~QH953s>t zbT0IgO*Eqx{U#AH#%5kFQ9_C81LjZWEk{D}>JFWesXP{e;G27a3P+>(S(aTd_gb<6 zMpjprc#0-DTZX6Xsuq>S!(Blia?M>(;z=Dws0CGjc9%e_=G?=HlUO-ra4gqo+5SMUFx7$;IdRmk5wAnhQl#W@S}7~= zG*fKy7Ay;^h2Z!paO|cxLO%4H^`;Hp?e6#ocHtD0zO=4mtOxDo z3@W}ZT7HT=_ca3zpJ?y7n?~a}GIcPjV7-FL(^!r1WU<5^1*WX`%LA{fc_J66q)~B_ z%W_B|nTvhV&{;u1p4X2-{Nc9bK!j#!8zcSwy$#Mx07eikzk@(TBP47vV2q0X>=ngE z_x~{!>eX24eWZhekki}WhhgbeAeIaVbvtqj){;cMVgUd%Nm>jLV356-(Uk$tktmB! z0A~G46UG=&Q200wRwRhpg+WxX@2pdBuZWpl zVskE`8E|7uq))_bpA#Dni}Y*{rtX|1@;~CgoPu{mFu00akvuV>NlWkpQ334LqD~p` zQD;g-;^D);sAI?=mhBSiTs9@t^kz%*B&DNr|wN8bECXN2)7BQl5 zCjFNBof%06p+QPjuox1MG&)B8%XrqfVh;d3a6NKq_IwS_%BoWhI6vPSDWEXu@aR@1 zT$69*_3DWYo!Z1P`IjjPH{TR}h6l*EsV^l?RNE7!lJXVm^_N3zby;&ZCRvzupcGat@2G5 zZ61jws|%fH>mzZ6e3ElskgF%7Y(oc9%6oPd4vPY?|MkL;JgdO%2&2qgK{4v>4l_E^ z<9Hle5lOlJ*`CCfp!xz8Y}8W$EK&3@Wz@qU*>!fcUi|qpRjhY|+y5*isw1zE>S)kR z%g389M5#!~W0hs`iPCdAoJbhK1^WQI2f+h8G0gF4;9!wSs+asTx0zyT`W* zhd>AKj#ERM*>yzA?46zgvh4v+^Ow5TZTXzXoxUV>s>&yyxb#>7bAiN%N=bTS9aqhF zg(z)`QTm58f-?vmheqX*5M&5oHDdRbc?cU+o=Q~mSC^M+r4Hk3wQaleLh^bAM$CZS zZ4Czzl5rI}6I;^FJG|XLIWSq}z_JH|40)vY2gsLZw%UT+V9oGcLJ=uDI_QoZRwOSZR{T=}>n zZ8wx#%xx?t$&{&yIq`cXEn>zD-K>QWZOa#fwu`HzmV&cGL}dAK=T9gyH~O%z)B}cN z-f7ItpCto*EP{w-ciL*MkzttF+?;!=Lmv)rpJ7sS!uikr*f34fpS*?#oG*L=z`zn| z%0||`mo3SQ&Zz(HoTekiIL^V{CH47IOD%BC@{v>U6SH-;x$YXjvE3nQE?G5 zWPVXe@G-V}*Dh6BUTx?H%h`-tV0}S?-DRqv9x$sDBZBA3Y%J(^VKVb}apT@B_$f__ zDH8HidY6pL*t--c%8b{|zeXj3yDAWRPDF2{2>R*7?%5~`|11d6Ya6r6h;Ub!ur=U# zvU_6OyV1KiNPi{QRB$Dn_s23sIHgV2z+Dwo=3v*V8*BHskB1SJC5Mt0RDq+WCbPrr`&g{$}D znfIft_STfPZNt6mCGb)DipFeRea^RIs@!(CPqi^&f;_ZNW+mpej00`>_DgIK=O6_= z0aWY%;m+V>`95cbpOT&cN&{s7KAiSHVhh$T_$Tbic;cU4;fxh%a;Ns*oK6N9ExatD zS0LTm{RLc~NOWb^`$yv?k-bl^sEFifRAtuV%bfqsLjRVgWWym3>VuJhI6Sc@m;8E= zCMx`TIb1l-amAydh?2btKDA%0i;1}#o)mOn5)caat zWe~R-b=b4Uj&&N;7=k&o>kNAs`{F=ah9G@5&9U|m%@SAnVMis2@XFSj!E6kacyUw! zbGU+nmP9GIcRPt80o{OsiaU!crN56(%6XD9%uYb8QWdJ_`KCg#fs9C(C5uYYhX*Gg zaA~$~Wk#Xbni0>gQm%%>J&#c89{c+}p%!W#Za9mN|K zB}_;TR%H(~fMpgXV#fB_I;F5Fnp#%4b^fdH+7ntZwe5%IVP3Dq+|A-zuN8aK(GBT-$l zL^>U_HJZFAT5wRlTKa*0Xk(K((uG<`ZOz6-4w&}oMB_Lke7elV;CxS1Cp=s+M{zA2 zNZm9V9Wx1hv@lsA929I5TrBGPS5}zXq_q4ZdjeZ?@jsIuv0J9vKLW9aQ;boKsn~$# zT4F0>YICG)V+r{xApJ6QolO1xv@2tBbEFM;Zmj0x-*n0p7b_P)Y1lYg8B#Tg!SL(M zh)LC4%m1@#JoZ}J%CK?K&cCX%5+Bu#RlRZ4mbJe)zv%MXXz+~{r8Z$TU;GH;+>AD} zMytCr-W$i@qCsZ*_1*^_&%T~gjRSZxT=xoh>d0E3&e`(d)@^)&UEZ#T+0ZhfuF-qd zFutK0gWPmIc57VY5w?SL|GM=vROi?&$MTLR#7vRu zO*$^hn|?ZqC3eXF{43XcHl?+%=*3qbgUvdMoi2SB#EqVm1#*~J-Zltlfl5bbY^3da z^2>oSZA#J(U-wqOxOk~wypKDtgWEsQJNP5kBFvm5YF7fr(QJv%=gM(6`!O;X2D=%P zZ(?XK8-O#CLs04HH2$yAF6F>r*IpT;0w-S8hSRJE-%pxoG+UDN(;zoW;nM^?bP44& zDQL$~i}r+!d$^QLkPv?eJyAY~Z~?CS&VT%5m-F+&2E}N-i0RlYGh>4Aq5`jnP>H~nQ^gOL1+E`; zs4y716=jE1UiK%RTb>59cZ32CCoiAxp|7px!T)S;2e1O>8#(kQXq5n7p`D&5KXoDf z^uI_~n2n3dgM?NO#L!}CE^vxB)0O@B?a@f_n#%X7Ev zZbZ7sP9v@~MJ?vGgup8W$7KWVsrQoCbAB;z=Jo98O|^wRZl(pH8K#G27_nc7eRf=m z)lvf`0)nWC6DWXGbPA62iIYDc=GVpJ7v*1OG^mI&$#V%j!HoT8$a3hWd{V$(D|G8GP0e`wV;t1u#nu8i$AA8T2Lc zrCVGiII1KmHXuQzzJs!CJ9n@Rn@qQby8J;34NdLjF?;|9W_J%B6mVA7dHmJVQ#2(R zk`8ki*!=NTXzQ>F1!|+#VQ*b?ft-!L_4@d+`X*JVUTFnOqr*w7`0!5+j<=Hg30?X! zc~IJfSJr_S2Vfb(x^3g3=Anx8+>KY3xRf&&gE@jKz;k!ED)j04`uWn1akHh*0g<NfQ6dc#k~|-iW!-3}7LV=zRq1Lo`*uGo2r5VLWP3Xs)r2BreCmqo!DmY@ZSpO;ep~`|AX=4wS#hdUd&BOs&6$`k?ALnvg9%Em1a5bg z%l72uC6{O}0?g6;g;ACB%xnhwTdj3RdxP!8Yu6JnaVTPSk-e~# zU$A3m$NSFM$Hp6YC#uwoPP>tE(lA}y7??tFujO??nN1?s^U&0xmqTa;N)T^{_jN?P zN^n!)YtW<0_AG5nhO;xIgTJGGkYa+drX}PyzMaH0h;~;sTK7Nn=v#{R7w-EdWxuOa z1c;c+LGS`w@WxNhz7gM+;s*<#HkBZQB2jt#1s@Er_y>ZQHhO z+qP}{i+z(D+qP}nw(Z;-CpVLsdNuD&&HHh>s;f@bIsIez?p}NCwS@m2q%@JyRyVBh zB;A6+$EC(bD@EC*cd$s0rW=RcXR?Y>sHMoI0$BqL9J!=`U_99(GZ5f2H8}7JHsQ#M z-^rGltv-5gaM$9TSH2lIXLgHc@LPK_!nvIvoB)FR=KY380TGl=F{Kl$Tfb}C%$n^r zvU0)s)xNhGINMhvttyTS48BZv0+?_8@*rjLsI`mW6h#n-w^; zi=_i#gC8ln@lPAW>5g+Fr0_H_uSe4QWu~C!TH{w|ZH@gM>R~%4n+F&+R=@vzJ$AsW zY}BS>(sTT&(_<6wHNzZEFJ&CAyFN5?VS`JMV8pYCyfg!Z_iY~$7@J#3;^-r^2O5gS zmUisSc3i&^tRV>0w8nsQ!y1Kejz&CP14{!OdC&Th13HfX)^0HM^Ym#QT8zWGJh9p4 zx?a$)Z4Qvl!SCW&xW=6l{eAC+1C1m5czfqk1gjFd>qr&FaLa^c_A4e0UUSPOV&6C- zBg_$YFzTThMj(?LW=X+s>mS_}*?f9Q*sAOJQfGYW|B1XT1BNxRiV+(Df8a_LLSKN6 zWeMu0!7qBkRnmI6uU7g!a2FqY^EXc}!{ODpLr{qgGSb>HiSXV|=4>NU*`1=GB)box zex7EG$MBmI{j0ax#yD1@Uy@m^B9CL^JnQ!06eu^FvjcGc1bbfb-vhjjbP;?RtUkR{ zOX+27G_Bo%v%pC+8oJF@gCxzhEwzAvVLQp+$1^L{)TqLG3uQThRqd!~kP5b63)b}S zmg}CIW9t;67!{_e_B~KMAh!xs`hyMl)8OYwJ;Lob+7}8e@xcB?d~smdkwhVYrG7Hh zyn~8dZmFkf;Z92g6@J&>w;3U7wg~S~Fc89vp;yLQz!n>p;U^681018fQM~};0#U@A z^P~d`oBnYnF7J$!QL>%8E#A1lj&{wd>*bGD|45NR;;Wwq65IvC3Al71q@sG+COxU} zSOBG>OPL7rknsxfY>A-ejAGF=eLq4I8*YiUmem+U+XfBI!UB?SXM}5y$9ytW1hr#1{(9+Qa&f8!5*>Q=(B*)mu9{EJ*EqD#%bbValaYp$$S^=J>*+rjtB}Mw)5n_|6H3MlwQPjDFZC12B0% zXEXX>SaBj0?1N|`Bc(!m;DQp&35+LETFPP-aiV78??MzLB25~jQE{TgK=~f1PfNd?jRp?d}x4-mgZ{0Z!jxtaU!8}S94o2O1E&T%g7*kzHyRSYoj4V;j|zr zB6~Dvh4n^Z2>Po?VENkE4;-H%AZO;M#FB=YKzdP-Ri)k7%o!q$DMQNz|F^dtSx z=p!QQ5J*~HDz|SFyQO>9A&18}hA>Mj=n35%}LehO6yY3~L~eNXm3&n;Ie z0c@8gknO+1Q$>B;<#=;5g_jLscvysx_XqQz`JJnhAVyspV#n|5Yp9z5ImrE2zQ`5h z;_v>yw@3dLO6w{S;lDHq)G+YMpVXJ^#cRFGUMXvZafHc zM3rv78M^jd8BQ!`WTdS&Rd}QjEO5cXzxbuOujr~CYJNx9s{eH@Qu8E5%gyP zXWQLRZ0%z8Pn_^&PIi>3c8LkxXX|mJ8m3acxrk365u?GgM8$nLv^akaz0L$4b3_Ebf zx3!qf>xg(%w8b?m^|DW;^3!kpv@PK|CflWt|2b1Q~}Qr<`ryj4;~- zxeh+KiARwWW$AqfbzFi$1s=vbxGC8wQ5A3$2-+=X>A5zVm1ZT5%xg=w(w&Q$Ms5K` zH!GTP3dHtewdQi@``<+!s1O=buI$^;qVS8-wefpF+{$7j;$qDToQy+RlghTMe!Xn(?|&^|%O-G0Fsio5FmrtilmAw^XziGqkKw`pT_KzZ zT2*QuM8sRXe=Gse^;k>h_OKX}ff@j`$heX9&biN!!Y&!R?&lGpA!U168lTXTA74Qt zss0Kij^53~hU+Z3tr6V<=b}oohwC(X**ADAni6OsMiw!}i8{HHDZE1H-T64FKjD7m z1t12=OM?}?Vc)EH>TNd|8FO?sbq+n6E`e(vQAs@RhUx%(hfupW zYbRF0MrH)kv0Ub`$>+&4XDCRQt-Ud~d&8q#bso)Ow9GBnbrH7?8z~()y|8!sCYsXp z#<}^>d|Q496Lnqq_O`MxdE&OSCQM#x>VJH4@cpv@D~R!Kx`9ar;u@{H3pIb7_AJ80 z-%uRv{xEmdtyVeMR>EfrTw7CJdCe$K&6p8x`R%v7Z;G#eF z`+h^9{e81b8!7((VmVw)Y0M?SVgNQ4&i{eqtl&<$Y)L%c)*0PES2yl^3)tD| zZcI9?YP=;L110^Agn?QlqSAhQzZnZ8q0&Mj)uAPf%*941^?hev+F?aXnu<#QJWAmT z+{@|n`J*usmF(TDAwSDV!E?&69`(Yb388bEWZ0Nzao1%6VEwxJ9Mjy(>wEtzGdN{J zLMePUAODU+O4)Q$Wf*{(#Qj5H5j*AypJ0E|Q;=h54pZU(p|nLk)nJL>e?#&hl?rlh zud7!aevwnK`TqgxUFh@~J52>b1eY)wb{rSA>LWDA}?B#mT? z?t*!O^sus=2}dU6YN#MgD6ObIep=VCU`E&$HG)~yyH&Zv9JA+WF|7hkCl9c1ZKAIC z4^jmw09Ud)5ORm3YBt>lmyzK%!JfG_0Rv|MvnEbYRz_knqe!av-AaulYfuMY)(rGN%iz?eT?iC z^?tlOE*yuC1V4_t(Fj&ZC##m$RbUVb9ozq@5!ing#kH+?TDL3*GQ{ulE<$I(*1KRj zV@J_paBHFOcEcy7OO}=Qp%INj0qR#3=86#jaqQnN>K9zR%$G| zh(Z(j#!MzLDxftCC^IqjtBX zIXQ?9`N)WOG=g4|3}=g5HVngMZ-?rr3Z3If?{xCz)b%E zhK;6xHi+08gb5;WCDd828?F}|q38URrXeT(b9hsK+ZT2gB&6mbbxwTLGVTKXl9F-d zU3R6D7dWPP$82H)Pl+*F=UU-xWCNa|Iaj5V|7ZdT%c8zwSj6km4lpP4-!aDFSOGSv zzUC2GO<-;_{t+isuW$t=EtH&Pq;{31U2MNGi&WBmV=vB!)Cw&_ ze4+FDUCNBaT%(|vTipXowIJCMGmLUXt=|7Ur|gw=zPgDpu0+$)F>a;`Vt*3biuYU= zZUa3XDG#K0UyXD-L$nvQBuMqkjwN zu%Y5Kguc)%~li|WgEObO=oiVBO9`>!b$_W@L!>&C&Cx_jkT zO?0osZJz`K-M?ZkoNl{55=MWZdfv3AofVGyRrsN3lGy>pQZ%vDiOWVXAj`O`(2Ubb zwM0@st1lpli*1`r;qk_id5;@9s_h(YA zbmx~G<&s_Rd~{jSI0@G`;&D@ulMkOa6j-+=-Q~lYrJm0|4-f^=2RjNB<09eCmuXL6 z;_m0TYXWB8yO3x2+^JLdHC|@_2HC@dVHoqT*_iZO(Z3eGVE6X_J`ae32LA~cL|jzu zE_CZ(a`9+P`)&@aU*NFT{QYxRomSBTn}pK}4gX()LP-Ic+r_u}>)&96T^hq6HFVUPC4mGo8wx&ASmEN^`|Mnc%+nXw6xo zPTxe>Yl!VIZ%aaLa0*kAo?HzAnPD6?!J=%1^RMuY-AL2w`F*Ye#ZqEki_O?B@z-aJ z8UaoG*RnpfFFH6rslF$1xn7K9?REHx(1WC4;t@cpaI0`O5ab~<4F>)csPRqjTl0dsq7qkM|jKnS#o-Jtz*sbSt_AxGuY zd%Y!B@f-LQSs#~!*aO zh0sF_*+^PpzDGz*hxaIK7!Jpvo9e5$Rh$#j<-6qeW`j3V*Zw=Cg~?FaQq&b~Eq%Mj zZI0fZ&5QyQk5Km;>p4ab(#4Gw{_~{g+By++sAyw~i=wt^$c#RlD1;r9qc|H~1)#gs zMczDH6zszblD!o+?Uz`_q{-uGZlJ`8kd(|`$%3-Z2*k@xfU$)?Nf529|g%Wf6ul6qiO%+t)$*D3eEHQ8|L1(6tm)IB7 z5Zh*|dle>nX*8X`)%V2 z-R9=0x^>XaG6F#tN#Nn^=peu$e{&f;xmw=Focp%pi5&~GjJC0VcffeVG&5CpoI+9Np9 zWz3b6!f-<6KHDAxwJte!wKegqWG48{(uJ+ZrB<5@Tb{X#%LLa5fxT#$>w$?%&Ct=X zT%-G$I&SHU_hE`p?y))`>4A>fi#H$Hyf0&qKKh5lWcZ6wEWpo(!zZZWZ6}p;g$}22 z?+M`Y_}(FO@3hjK0zGEWi=U46v6Jw0txexpy70l8RULPG2dV*gA1DSI_GKkIj{AGT zD7Q{>tP1VLtWWfjlNDs~DdM`S41uY;*Z|S1a-YLmTeD@eqOpTeMS#cTEGuFnq#iV1 znB#gA9d6Cp59mLWHI$+zvipHtGr^Q!FspMZabsWJsdh*4z|DI|>~|CVlBBfjqB zEBG2Gq-kBDbGa5BKa*-7v|w{b0+D0*VJ-zk^Fu!;4TW$--|!|6f_!Srx8Wu|IepOw zEZHdcLl(Wtts!H*sB&D7KmX?SHZyIP;*ARo&K?XZsK^2@s1rBgYD$UjFd!38VhHHI@ z=eez#zna5j6!=)|cOnVfr^H-CEedtBK?z3Qyqp+WIi69=>FIeb4SBsR;-wBX2x~bdWJPc1WKL9A-v}4lFqqDQqycjS zE9_OEf(=y`wiref{Y4G>qwpt!^t1i2AmzIh(t{$WKouZ~Aqi)aAWc9y0$_y64*Zaz zkeH2Cv7sW#s~NzML!EyFmAPt^fAB_;Di)+sX!9u{EvRG>;>e%6I4Cd;Wrhe6l7P25 z*q|=*&xay=g8xAw^#P0!42-xk>bGf;^7@(c2trSWu#j)@7(#hCEYBv-tw%=CF0hfEGIe7rIu9&hHx=9WP$+8uH%|VFTYnc-(m&c!l1p0`vm!YS85AH*W`ErPy{{U4(Te&DPMB5 z6h`$-M>{qj=x(Gk3NNyFP=(JmT4YWjY%dS5A{Z62_rbsL+P39jp}=18Y81U;Ysh_j zGs&}y4A|jHrK*l}=Od4K^O=^FKg`fzd&D_#@mTfG>%qlslHO#2O;lZC$%)hGiQ`ct ziMUk}*5yC~xd?24RM=WFPsqoVL8nFZ_<)I`q*Lkfq)l6gZ;oy)nK$YR>`3A;(2>*_Zb4mF_>?sHVTaTean`q znGP-2Af}vylzI(_uQFw%NA*@sCy^ku>X{T%eL8$attBNucQlX>T0eIDeC$xre!!cb zOMXh^Xl^W#l~b>~M(S;QV{9)YRHl2B2N~365|I!y1(Z%;nXsw1J_)1&nH=!*8Q+<* zCSMBn<>`Gho>VI6*F3V6%{%)b3)~`#uT3hbJhyZ8ik>Y*3;LQ;OT@5TZcAMmH`gA` zfxV(|mxexIPB%pk90xZ2ZzS6rvNecug?6lk-jy^e+jEIDyxCyAT&SQ11(USD$f$5o z-fdIvlcYIFtS2q1RqMbF$SUa5`y2M-`k5P`+=lcOX-x{Vl;ND_c(b@{k0fP%2+Y%M zi*|jXIRhW910>fr+Py^P`h|JVTBD4nL2;dbO8^%j&3_wkzNGA`0$tWP2_-27^FSiU zl=K(n1|A%NCNT-ZOW!3d630gjT=#P*P+}!8U@Oi^i%rk0u(rKjxDdkSw8b=M@uH>L zq)o5OUw}nIs6-HZ;x9AwS)bRhC#S zFnn9n?N6#DQvR~n+XGzK)PzD_u=YD6QQQF%c0S;lyxI?OMc24%xqnXOR6rD(v*8NF zx!DoarbZHk8)`k^7^~*gY%tiC+bIiv5l9!naO-OgB;JriRtt43evAkDh6zmCW_g5K z7bFDern?dn$a~p`*Gan|im#6bp;Y$tc#dHOfB2(FlY(sa{Ta_h_YjeBQy2J4n>%{9fMYMcP< zx!BK$|M8RCF9xc+GfVHs20jh*7Q#OQCijb^-(~#Wnj8%6^G@jIPt>uh!bu`QRDw@s zyxPL%X1I_-BAYn%dn=F8|5P4rax{rJN}VKKgCYLJct9SZ6BYB(iLQ$uZ%ODTJSH>d zM#}137@rr1%~|a;p}{yAWc%*mdJh!98Yuh^6~|1x0;GhnH0Z-XZ?@v}_rwH;I`iHc z)pN@>cu{5fdqwyBo9{~h9;w~vsqE{*9DmnZ^L-HB?>kctMj}b6-&>=-Zx_!)(lD#S(iHpla)fo)_BrB9xoaz z15H4<_AAnunOII~EER1tH-1-Pzx!g1e#2N;aT{~fO^0H(bI2zAnhnEfC>V(lXg7RJ zYUg+@)qx$(>_1I6rU;e7I0r_6KtytRQ1Uvd${@GAX>MX-I?4$f+*DZ94-c4|hb8Ne zKxBb`%{FTzI7~AA3}mdmL&u;OZh>GHniRboAHFPcPGrv5RW1|yB%&O+Y>+v1y@e6Y zv}vgb=pPxzVn#Off$)RtGrsF+O6QRlyVmhPjdaABWMCvOM*}z%Ku-FAAW?fN3_UeH zA_$PH)&5zymtj3#dokxmIf%^Y<7=MfUDEUQm{Cy@;Cr;;A$Mu$ur7nC=vsGAMeeVC z|E{~0G-}>@KJ8Mv2{g(qkcm)b0?!BM1omj5!(`M62L(xS%!_pXh}3;&=k;dh2(779@MN`8WVs>pq!<8G9{6nPR^+@%Qc@VdObV zte-&m;L{t*745TFnX+NgJ22h6@Llt&C0v5GW3d)&C=*G@ z*2pIKM;Rt?l39z+MO2e@iK{#a!^VLZU*cPyyK8&uc01=4iKh@Y(abWyb$wB=`djT} zMcY>88lq|yNX`O2!dIUrDte+tFD;O?e?)E8cVVjrCzw2bi%e=Tjvd9`_?@$Q2*8$P zkST3B+s8IMPz4t(G}A3k<*(-uD178f_K8>J35fBB4EziGmaQg#vjegpz8c<=Uv&+o zT0u@dozK4+Je-~5Nwr|4XiUNvr4?a!J+D4%@cisN)bRkUc!VxMT+&Cu1yo=+U*0>*EN#zZO># zPL2>(T|NN_i7+)_DHSDGbp3`_kDE3hq1E$D3>ltn>{faCYb5lY=BINdmnxK2Z~;s= zeu=p1Ju8Itm^Fu-)3rRlY>DW7Kh63?$hX!}PN1>_KT2~v#InqnpL|tfSVk(IJgI|$ zoW?FV`h+`^U;rNXs2p4#QjG=lLN-h{LEAxtu>(K>l#SPZ&^Xf<>njD=bfQJ`v19+2 z{F*`t*wk6fX0mkc14gLXZRlYxWxpfo`6?yr4fhx?gTveX5&s&8-gHO$LsPUZY`91n zeeN&WKzcnM{GJM8oS2$jzHL2xJPD=5MZ~WmD4NjcQGnXi-P+st*t=k8s=yjSYMy_E zYAS$H-i|IXt6wvD`cI&fMjt%`qzpbzqouo|y;^Vm<|L_JUnccae6r=F?^D zGgN%hYK6eG>q!9#a2E~qk_Cq0(q_Ma;Q>I~fxE|m(+|`(yUyW}AG7Kme{cF8kqej3 zh(*_7x7O8L_YeGmQ`aiJ?fy8wAWIK%-H%-ts9WEFr`3)V8wIg9!x3RjG$m*aA}&Gy3fP zkC*fuQtNByncNX={vArHrMiQ2Ms=ynimB&=R{~8?mt=XzVhW$Zy8hE@NOY}Vmqu zpR&L3o~ZEp&y#3kq$VbVN;c z$o^^GdP^@L!llE3<-D@vVtLU*Zuy>+WAy6F7xL8ukH*1A)*D(>vH{3)*vw zb4W`q3qBJEr)NU8s}nMZH%~pr1BCOb(m^Uy66~STgl%Blj(Z!b%b|UU&$E4O^r`k> z6?}>uZv3gI!)-X8DFHA`_qM9j0XN;2iq!T2H2L+6v6hwBQxud5aJjKTh*v_b$#Hsv+Dzc5)~c#0baJ5y&j8Va1u+NLxOsn08`-w8h1v%mV$ z(G3qbJQww61(srJD)O0_plWsm2DbVrt?tBp( z8;y{8=d=GgCfc3@KBr8_!?$>_mnyewnn=H?!m3x^3~qrGOI#AIi%Gf@s`lnLO1+OH zJk2=JX!2P;U2b~1w6U{_$q3nm17&Dof6TagM*MwgPPLOlzvV-d^dapu`#;Jintj?cT`VDjFhs0F|Y4ssUpb4X$fB{9SjpRhhsLJREgI1&_ zbc12c(E|EevkTA6pG@n6pdBc_>J`F!OriM8TzqSt)^$^K%_6NXlCJ;W44u zJ19^Z0G$IpWEwg!H3Q6oK^tnn#h=SOm8$Qm7qUAx4P84#1swWog1BKgOkL;?bkWZ$ zWnK=2)cV1qCPvvztt%DWhXJ0dvLKv7f+Ve_im_Wsq=zk?<54I#n==r{13b~ke>}z4 z-M`xTu!yT^&X^c*jxCDy%FDi>M9KT>bFx#^lu!ER@!;jhdxDaQRX9gx-yy&5F*sEM z@=SI99?HoZ`UgP{ck@c*{PQ5TP15fN1)w6TX)-G0Fk_jEm!irXi34i14@5lj$KG**o><(KUm+ZL@X5nl?6z_Rb^6 z_Iq)K6TLYe9AA}Dm_MC(+hgjO&&%F(6vJ1zDyuX2N-;?JHKgs#JGcP^yF4|(M5X$n zkFvJ~7}|-edam9mu#9G2#PrU1V-4TY<~BM>ekhXhsQ=}`y_zNNPEEqV4U>< zBnh|3z@cJ$&ti97@yr!t5*`j4$WI@7-#)JH&ZWMAc{*|yGO`3g;=O+p_I^BH!M=Nd z*;}8`1JUY#fEj;!$z3295KJ)S`Voz=|h+*lQr@BbF07?O%m=vlo>TiGE2{p93h zZ|bV#Rmm2uMp1jM0RxuY41jUT7iCy+B$s?B&%pXpZmRtIIhHdS{#d(SpA96uUQz${sA%C_0$>*je+yxEze9_$ROe{m|3u#g zI_p~3g0;PkP(1f*3Dnk{0WDb$;;w0JC;@QKgUfjO^1ErHkl~8Bm_D_ty7J;J{wQzL zMEb3hj*?kdsireM%@9E{@!{H8=hwp*wR*Y9hzHNHw)9&cb8V(MuCCQB!D+*kAD4=V zIp>m=vvwTjlUWl1TVp8#?ewJcw4g$a$LqlN8@50J$R$m)SL-G12ujOsMiQGgAfVK2*wqf0dytp6S7l zJ*%tNa!u1kFR`3Y4%yNK2vo+n>jUVD49nYl{V_|_L_FtP*oCFMXW0m~MqF#?XNV~& zhB5lySK<9`e?dKQPhtPLCt428IAW0_r?7Y7RDi)uW~1UKpp@?~4*C(E`V~s+k?9oe zn&Dai>a2l#yz+r)#}pJnUN){YjWcN+2b?JB!Yd8H&E~yfC2$R>Ycf82_ zRZ_*+;Z_3!2bmO&hsxud-xZ$7On&lEliTQ4<1vOfY$izD5DsBtMf6_-1p=8qU%o|; z;83ybfGe>&&xPz|TcMf41V4F`d}bV$b)A7)zn&Hii7zME$cqI4s_`Dwz~JZvf^qNY z#L{OnC7j)T+)N74&Fz%N0;zWeTcx$m!Q#q}le)EC-p=}atrZyLFq>xz!pb#$tpnKQ zoX||Zv2Ff3LwFQ_kAbN?}hugP~Fl{K|BO5x~4Q*lDyjXEaHWk-NSHZF)ndZeV=EQT^SyWnhq7K@go?LMZ(Y+44C$QI) zzM#F{c?Yau21uQRM6Cy596CxA+_d`d@@XKDB zJkfELBl})8on5UG%^^VrwhcsRM6`7kkt4yXcJ*tdl}xBv`(~ioerZ40FJLuqo3fb9 zXiOz&4rl-(77|8tByd>eQQ@t%WiQnFOtAzf>4N5Jc_>O#F%qj#0L{EmSuBR5(yY0!xPqNmxm=4={dzw+vF7fg1FrVEAC; zNMV0oWAz0zG9(TM5~g&}7RW>6FU=SM+7n~d>XUx0TwNDx&kDH=TLzVs4sdFgRN5jD z-ORCul)TMSthN;r6y1@7`C_XzWXTd#EVdJZDi0X|x|0`w;YiMShOT!Kp>p%&mN-&F zqvEho32y5mno>iZa=EFdiPmQtg$sB8Y=0rzrOn?q z;KppUwWxJ$@EnLUs|=0I=F!$h!xA1h zIvrVBYHIe31GTnNFbEm)2++-oHggyO;?%RZ7ECf^n&odaa2-9b6q(5sZY@kEVvr6e zb_}rAxY2 z8u%*1T4#W{dq1PolcjCn(dN#@;l ztQ(b!%QEhqw8N>+AG+1*cvtK?d(B-wID-ng#zY*`Equ=F6(TkC2#!&P06(2Nm(n_* z8^MekF$6TA2=kA4YTgzG8_!C2#nX*5z-m0JQkN!OeJULm7-k@C43`KQHNRe8#rxim znS2e6#hkV7(q#2ao;e+G-zCP@&4~rzYUsa5RFl9GPzgWAq#^0cbuq7gnl?9B43UnS z_5ZcYziR>{`*;}26!<`MSxh8}o<~m#-6k%Yfz-0FCHEH9$v9@ewo;gp3~#08gun~w zfgX!;!Y8GEf0rknvd{q{DSk97F`ks|a^%7&EZ}TQx?IbY4y090Mre#oQ+@~tk>-|+ z$5@jBHidhIoa&|C49-P`S(@QA%LIRP8P`+{9v13sx~r}7S(uL5xTa2BJ=z!oWBvtw zK$%Y+x;v;SATa#1=$O0=P5Z9sZRo{cc@UQ3s^FhytQ=<$IC&n7rEr0srQ&`njO9kG z64u__-v&kT5J$a4k z?V@sg#Rs^%U|H8kasBPJt&COskQNvH_y?r%sc-ce_^>Q-Iz^p$XYx|V1<!^wfyM_vtyYJ`AI@$31v~as!kEby^HGB0k3u6hN2(@@;ntGD)E;)l(4KhPNC4OO-@*7Sx~NWa`OrGZ zaWRok3?y59k;A7XixFWcgCs6y8*YRI9kk(p#o?qb@WLLj;H03}kEr|+kffXmO~MSo zf>O=%Vh+HobpaT`?VKI%G$rTU|CU08v5~W@U6F`mgE(3v+Zi)KUWNAt5hHTJ+T~R~ zp!gp!>nZo|Z~#6qfhx%Jl$YKahYBMIuTjy2sa4@7Bhu(1NcU>91VA*2UZ@8^P4JLf zWGn(YIUqXBmRHvb!V?f+VTx`0h?17!*U`sMG17suP-@tZcI+@?P2HXxDi2^0=&8wU zFvV_yac2IrH5(CR&Tvua9z-pZ>MtqPm3PQ~3j%Q9)PUZ*L+DUw}~mg2)G>Jx5@d1n(*Hrv~0RiRngd=BR3|)V^?_%+mCy8ah-bO=(vo%aZh& z-fbNBUuPgk+`N9f&LvkT&jnEp8d-YXM2VEyfjjdn*Pmc^Licpj86(+!eY}Gw*u7F7l2y1+xPS4df-5FC!UBOU|t2bH4ddXz?;e+Q;{kxPAOa)zov&%+)}{ zreloYJopS$xR}o;3|?>ycC!V3K7Ju{;kQOp|8T8lvVcCNe!)VaDn#X)pfsw6@ss)Iyk{V)P)ot}`zHLP~%iLzgX?*t3p4@k&qKM2c!Q$o_t}o<`gM zdH}vSU>JseprXsIr&A<4z0~&gJL8VB(bR=QM z3I223J#mGk9ylw4dJl^AWy+qVYz%jaB{)pELZ33W50SOb$SWxfTJtxIfLO?}VgQ^s?*B&7VZwY;BIzt3P~44<$0 z;hekNU1%CjSi|UxXM8g3be;>tje%T%QaHIc$+e+Cg zQhvBqHfI$xQUuurBC!(?eC6;NsWMbu6q^C`D4UbN zc;)AdU+XrMZuoV55=w~mW_MP+gz;2t5hLvzJD9q4vHNff+xzfMsNUm=zsuC4rv72o zIu5E%?!ifJW(@s%FgGiP{_X;G{I>nB4pyjN6o{SKO5#IZ7t<+KVZi^lMw5m_=`fhr zrx(L@;K}1G4FX@#U;E~bsVhgiAq4uJq{6~5}pktLXrvn^9LdHhF^mB z=r2`{fBUu{(|pIXPbz1Kf8zq9B+7u_zGfg7VIGLXE0)ucJ(=>pnw8@BFLL%7VBjDT z{SiE`1X*WxSrD~IL83%(LH~;tFe5Ke7mP?mztb%XZ^%q87YZl*yHhLxrSjp4C7lvx zHZY{ls@@CQLhOpKJRVn>?%DISv9i$>lhmI)Trdm0+V<|;zK5a=CSOar3iRkF zhe(J+`}W5In8GkSPAw2cv7qUx2ZDMf0B;y(%x2oNJnf;KgP`e?-hMUPu3Ne6Q%b< zv;LW_vJt79FoK^8o&2iCPVb6pV&EZ&SQ5pSI+3^d&$NOwX0wv3musn^Q_v7Dt!m;r)Ak}n ztL9YieeHZ~r9OmTw>GnDE0ef2Wym~2BxdC?cMtK~>L91W2Df6N+xl`rCfmRJlX5hm zwz_`x&ued$r8}#h{3)wVRn;4M8NeRW2Nu5eL!E~AW|xs0f2LyKjxDqEVBpGzM{h+Q zGC~EkzrX(U6KiNxk`yA|dOR|+$<@}*eZ$y^Gpl-2AzXgvi6h5EN?%ZO=F?;C+zV|$ zgY(HLn;H5R*mwEtfW#h`2PeGJ0kfZ0Mjy`FU-I9^c=}Q+ThD)pDFO0ddtK0o z1UHyN7GAob+m%;u6iJBi8EoU*OT{bpkbNf`1oE?g(z%aGTWXjs92;sVfe=A>*PK;K%sjvG^1) z1`Fae!rXhGdk1`&ts0>o0w(kk$By`~p?jY(=*)*qudPF43g&Wkzq~2^l(17F=u#6z zxdzA!!!iF`6E_{loe5gGdy&Rc@q0<)ouZV&J^p^3$@c||PHveo9B!<@@O<}DP zo@orveNbGIauK&~!|IkgMJ>#4Ex8ER)26x7&LIVBI)eeZDIdblmd13q7>RW23)X!HYB8vnT{R$cGujrnTO-c08CfGFreM8w|alU96C+H z>9J?^tv@;?`GEO`fx5*BL4&Y1ocVuY}0)#ykn8g+z(F@l_| zEGHu`3+q|Xf&veWrq)Tc4)n0)i!cn*7TBZ@RI%k%Ljfr|Vyg5#kxWA}LPGWw>SC%j zEmT=B_Q}6@lY{b8x*|*K(Lz(jrz>($c`z>MZs6$-Su#z~8#`l5iK9sL3rIJ>&B^5J z5ABdK!r>Iv#Z*9bDan3>XQIwyq+nRZ$W+BtO#Pm}WrVc6!W*Q_v9*#XQ;=6=3*51l z{X@I7B>>Anb1kt0@@7dbU}C`=HPMkaC80BwQ$k_~{>aKTk0j|Ng*x`)8Mk3wbS89# z6)h;W35=i#q08oM?!r{s5~{EB^)1mtU><$4LSp1{8(bzLT`ZXtUc0@Kr3yR;a>(*I zEQ3`f|2%Y{32z>5F9Q1Zkbj9@dGz(Y{)6`(O9MCpdINcLJ_$7U+G+#JFO6Aq+;k^C zKL2%@x5ZBb$0)HssqZW|DSy@9B(wUT`PX?O+z{?#5Hvgpi}0Tl_{{4ew%Y7E+IbMn zd#Hw-N&RL8F72kwF5jgVX~?+~Rz<9ZiX!FlvXXWG{13LyDLRl~3)ivjOzdQ0+n(6A zZKGq`wk8uN6Hjb&;)!iLxjEK10KT=uyVV9IWFJ zm<&IF|4*g+l7XgkfVnK%A&+xxVK1ZC+EX{>_!=d!#nIk~bfvTOVL7K4MP`)09ZN8Z`)uJ3Zv~Ky0M9a#1hjJn`MDy6Rukw>t~!~E zRrH71{IQ`@Ul|P;=&vzs=Cm8o%KDf_FnnV@2~`~AvGjU%u#Ss6syg z)y8W721^$f#x8_eyh=O~T7?6N%TXQ62@8_2ie`rnj&E5}Ld78@Sv*HP5Zb~G7iJm1 zFou+=%Br{oLJZHF8br7d+JG&a`=-DaHzMUvFdB+$7zLJ78Z%OtEvj5ByJku>*SH}` z)NFcSKyb}}+eP$Wi9*c?YIYGD)=bA z9v=oUqb6$B$FGh*wBV?r^5QvW1iI%eyFu%kDrG!&Ghg#BgvO#pJL6gmehrOjOd2lI z6;q|ErgpK&nbS=EI+*)Z&XO7!p_x2+Eq_DigBHc1yI8Xo8c6oMzzqx*2VoZ?>Ob-K zM$gzY%&ZK(^Rh5yRmX+$ve=FElFR;fKV_YE)%A3V4*ucWzIpK8eayd9J^ie5UvA!@ zJv$kUn{EX^*Wq6yK ztoJ0J*1_S6CHKcR@&?GFdf$GCt{u8xys~fCewgN&UUhXDx9}S_@(VX=)eL}a*MX-( zLc7N)Aj|3xO7D}2M8~adaC`D~B2A^+;#CQrEz?T|mL9e>>XYS0iB43WsY4bXeznZ}I)l=1U+VW}Q7$cECXiwS7^b+F9 zHSrIj$gtRhe1ItS%IS839YfSn;^ci5$)9x>$K2mbkk2D*SA8JIL#eKTb+PJmkx({`7CL{N?l3R6R4pzQc9l+pp`F;{N{mPCm)E>Cev`g22UU)A)=Gb7tq2K#rj? z8~%=EGuPc~$tS8p2H^{rB=a z6JEO2UT{c+p#746Y^@v~5!xwKGDFT@$>~oDtPDuC;mKOO72M_H?F5hBDP&--qDyn> zfa@k+GT=4e?3K=Fby$i6FFdl;=}mjnMgJ>CvO?gV!7toBKjgzSXuM8)G|zkJUY7zI zeWNSoJ_qc0NbpY%6>7)tH)4llz9S*Y4LX9B0q`$YbB<8Pn3tCFxAr()sq7JEat`9| zxfR_Y6Df-94H+{`?pO{Hkj*PniTS84mXAwLs1~&?x6DS5stUJH3J3Is{z%cCo zk*v$x4?9;dtjwjtzCn#$;7w)#F9bSJu`%hXJv}+x<@FNGN zW1a^Sk}dKiS!^Bz^58Ri0hj^GL-+A^!|*|G!;x;r|IfG$tjAx7 zZk_qBq7IK2kj{d+feF`xj@_JnKv`PagVW&qmNLsTgtNxSMnAT2yKfd`{7>oghB9NVBqWedR6mW(U>3tdh zd|K>3Kry(C9(aOZjJkfV8jw+=Qn>Ja?2H{XQob`D2%FK7*xWRswCgHW)BN1sZ zda>bnC&>KxGNzO)6O4p+7F4=Oa-Oz)v4Q`59@KSHV_dvjy3>Gs!6^GY5JF~u z-_IY*f$adoS?ZgS~<>~ zM(AtZ%W~9&^Q&^p_zQ{lL2U8WA_*PkB?uSZr<^eIM|!52(Jwu*z)$)mK126>1R^bk z&ty~urg+z~6{*)}KEgtgV>(B+@`CSrGi4pU{I+q|G!FzT^#c0<1^>Z_d_fr%cLTcX zu>oItal=Qr#XBT$q5JRsr8{@+0(c%CM1~$bKl0`1v>4Gvk~@eOy_6|<15*90Y5%V} z@Sj$?+5xC6#{Z)bFf+0IS0b1>_)6k4v-~d(bVFMvd5r_DYr0nPT)OgRW*~XXsO7s& zd~)l~fX#TSDh2lphD8`&l&aJi>&N3UG;v~sxt-UMmIe}Oo*1wJ5?HGfVWH9J`Eah~ zEBSJ{zp`r~F%c4>Y_ezT#jRpxnwv=x8C4RNwRpDl99`56*ke)V)nXmOC5@Nu%WB;D zX&E?eA6_!}@9D<*WqYeVn5np^Nwr!1*(MaTin*7~u47ZT3e;(|XCYx_+|CBOE zT`_F))+yxx5+YJP(ocE#^THWYH0bTBlWLh3UtSpN_NzswBOFy&q+Trv_Wx8bNAfh^ z?TzmEY{t**)Lf~J-D^tXn&iz7!BqN9YNIxd3s1qQB(?Dom6=2mHC99>)`G^h&Ux>a zAT8PjPW^T%ZCL9JX5H5pbmLwqZ`+q2>{KKpcIlu1dW&rmi}S^^f`diFpMD~n(fcd; z7GUketo1qph9>DHjlOD?oh|gGhG@w7veKe%DyPk5UFwG^i-x<@x&8H z8fo@jJ``9ji{2kCn|z3^O){4AV*O9jv@4em5%S z?Qy&wzu6fsC(2x7mgG*CkWlYi5AtgQWCi;68Wyc3_gLgB8yL8jI0gPZU=G?DEd1&L zb?WpLx@VB=&lz}10^J2~gd8M64mUy#5dz;j=SugPI@~0#qDd5>dl@|Q*^w17$dZ=w z5yYw^pM$zFyX5uoYJ?R__;&I|yMfz;Tc0>92?|4J4Kvx((B3g>Xk$YpY&2EnonzM1KDxTuI4O>p9u+*m!)&fEbk=t8q9Ut zVVbnQ2(qcFj${=*k1KF?T4VMHP$$6MYV&;?9gVwm^*h@=$LxTFfJe>@wsSb!)SiR3 zy@uftVt4deFASmV_=>-Fn-6wrkAb$}G3%_Rf<*rs$cFSVt7;r@6|a8TwcT9y^I+Yc zBS9c;t#}@UBAUmMCyj4e>}_YX)iccP*pM7hf{q@GqPZl_g%@Jn7*QMpKP|HrM?$u} z_EOO5{*Qf6%OQy+>K{;`9aqet^ly0N9fB@X*uRtvfDlymM#ZavjTsje07`EE=>; zmFS^D^6}FdnnWVxHOf9vvNe__L-B=d(nwDBuM2_X{k)Yys4^ny)Gx9AFa>>`<;>8z zAjH;uv`+VVq3ERIUrly3y<=Ft*TEk~J`o=M%!V#S=lTfoD7d5IR+QilAT7HpaHOW) zALg&9;cDIu{*`#-iY9c$Eg3m)B9_0$qa}TKgF#&Kd#jru;OPOt{PA%-IgY+TWkqJD zd@0bT0=7-8^esth@LR-bQyyw-HaWQwiRL=1Ubt*JEi(v%9-M946}waevz`S&ml12? zGn6W+2W=~~o^b$vX(E+Tj|l6nhMAhK>*ED#@1(P*JTIqH!m#pcK=7WCzAf*>g16lyW%FL5 zH)#zb4$Se|n~qciZM37hYu`_MiH!=*8juZFK)5U$?QX%EH0p_`w<40nu|ATyB6@2x zuWrx2yit)pDsaNyA7}ma-H%M0Cf#oxKLY=PMU=d2<3j+|?5aPZW7m13)*D;0*Kymz z9kgxGBgOu)x;n_QsIyYFAsT6__&5HNrq(5@Tl64ps@v#;kPVojM71|33)xIs*9h68 z8tX1Rl%cdVPy!)RXGDp8%?90dLTZnnxN3R)5}pQLbbB5;_aWF5vbq?hKkbZu^17+A zVg@GnknaPLB#wySK!Q#2Pa^y%V%9gg$;h*k#2 z^s3f~FGsv<5Q9P0Xns}QPsXPA4E`!}*xF(tNstBJeTb|E9#}%Y^{CXrK}oQQ6hBt@1A%GHkF zva@)hjXgu+Hd5a2d)Xs8t=32{`TM;u)!ObcCc<+CT^9zN3uP|G~G!TxIz$YwQlfBH_8 z&sSNaOJ5;$ew3arxHG-Zbh2%M=$$Pq>ZFJy#}yCkuG_uKaCesH~Bn#78S*6&;{`JaH% zJ`_vXGcjUZe=u;+_8tc2lX1$iC;~FNtxN=Ea}3-)>b6=xA%U36d|dw7RvsFi)qz(e z`rxSjcWEGxWI)KIPp6z7Jabe}O@TWFnM06nUz1(4WxIKYqgtZfAmrsnu$=3Z_bYf= zu%!@>)eZaNUkOOdfTqbPfie=@#SkEjg-q+=MGyve+)T^R;xF5cwJz{|j45-IH}5e8 zk@`T*$wzjnhprHK>^h~9h~)A!ZNo#@KTz9cN5JZ`qgnaSp{#Z@7X=#0o%T{<)cUKYx}G}Vks1NFJk`~ zY8co}HNk#lzMit7BzV}p7B`dePC!71V7#{HKJ;%k>NySxED*DYwI_Y8-a2=Yoz|AA zTNGU1q|F>r3?WzqcBtAn8yWCT5A7yH&o0PWp|Lo$o9&I(J4H) z9=)I8Gz$r1CH}Ck8H33MX>&wAzP2p#h+EF>AVbTOh%|GIl)2cyt{8~|XLm`0@4=sy zmrQh&Tv{a%@6Nqn<^mRWrO8YtF<{U!t&E0Y43gK=L$;yE0EK6Ye*jyO!SdxS^C~zs z&N5jjV(<;EHFDyg}`3E42Qo#n<3tjwqJu2@PwiV%ay2@!Ir=Uhy*c zbl0JNZpm)7;Uc;>V?BcGl9#}Z4{CXsFoKOT%E*FyIQp_T*ST235a|QVU-{6crST55 z6AzRveV+u3F+Cpzj0WIh{a+i!bN=xpGEV2mXSgsj3}J~1W=}yR9~_&~`>Ljnhl)SY zHf{wYS%hKFmdUoUCAA&`isZuTjnaXlv$RC*R~4iziBjY&=&(&^{CB383bm&4pZ6b& zr?sj_|8X8@_xS9x_;Mb&|Bv%P1@2euZUR6?6_m&7z(}&sC;~KVR=1g7 z`)^EezcyLlSX^SueAu%Xu#exHelR_Kd`#DNJ6mHn|CM;c0AUAvT`?8N5{Sk7XcC*J zH2UMvty>*_Y7S)xTJI*|#;^E}+#iDxy#Hp&>{G%(cd*a+j}e=7$eGKaN{~$k0$2}b zj8*)1caehm*E!fG0BDc*L4gSa3rxt4#bqflrZs@3=V;_3nVG!?1*i;dcFrGAX9 z)XL6(X3rKqHplIE}HO2|56jqdB-DxDyY9`U*5=m3xJFtuv1 z{xG)=E9_3_SuTvA4JcXfAtBt?YmWkM3-)q#Ti``^(X(&r& zuJ#7O)(Q!+=Tt?{RaEFY0zq>erCmJ(4;q?QPte49NSVr@!hBN%h!Y@31V%sTm1QYZ zusmsx8sp3)B@sM(M`MzQi=6cfxB$ZWt-yqIA-2B5e-~ulFihSkcG!V1eIkTZldYwF zpx?B;3YF$miwlJ>d{P!WEZ-CpKK%k0oNwi`7e2#XS*G=|QHvtHfJ)nFCUEb~4H^`p zPvyF&alv}DXHuGwT+>go{oxdcqc%SB*hG08jHAU8W|m0)zABiLgsTjtyz6Z9oT&?a zY1E2^fA@ldu|>V1tTZQnpN*_evhT1+t%uS_nWEtCI5G-3G2GncpHwCwv|69%TT|m7 zoX=jZVLB9SF{bYcfR2qgf{*dmCQQxLbmK_*?~~|Te-Ya6Gw4qs(nzAsJ9Amd`UO8?1QH}XsA3w_VLbs>-CX|Kvx0E!+=+O@uiyfBw7q>IS6hVWJAz{CxR?tg^ zL0}SVAW6e=^=Xbs$rVC1skI7UhH9l_8i^*6eBZ3ztSmA52`FHH<&QNXis+e*e?!#~ z|Aw0TPx`ni&HxPd+~~M5Tx!C-P*AYB^aLj6B-DwixdOHKWynM(MSK#I2MRXRF2jqI z-k*7ie>3DM*ld1cC7LY?&t{n143OtLTaApi zKRHj0_Lt9W7?Llq-tqPNeGV5jy@hy_RXB)29#@nn5L3>fVHU7$cv%#_s%E()0ZUgM zx@`i0i>z+>&b~WFtqmP64{Yh;BpohP6VuGTrS{1$I$VJS2Vs_$-(*w1j2)0oQ1o&X zA{?WNWCg;%l8C3H?Bj8+f|7Bm;$zl|da74w5@-JY0F0wMbS#JE3#)|}tbIUPtm@X# zD(WCJ?S(AU8{G_2yN1rh9q26gTUdN%8JBs0(0Cf($Q%`~n=Yt+?k!d^7t_=myrD1gI-BMxPTmZJyEi zG7BlawSdOW8c=^;W@jyb((-qgwB&RXt+!DtqzS^MH;;@As*;t)q7Jn;q%ZCq0!V59 zK8T2!%RZ?p7P6l3lVGV#e zbTgMwKPXbht~$#Pvvc{REa_hXF=0yHC!VtZ2-HsuEa{T5r3(G~BZ$;MW8rX*2)i!i zFBp`1;*B;wLX6|;`wO%Gz~{y=jLJSMXnqvh(5OChKUN!@^#Uvf0L)! z;r%oLTbd9remT5hsTl~kLaHVIZnxk{a19@fj8N580Z{Lm!}jZtZ&NjP4`=GwY#z3r zSQKP&67 zTdZVvdrlvBK0oDP=l2=VBO1VZAg^| zbmh>;iXn9uAu6or)F)ZsE3;VCs>GclRu|b5LzL92%=A#y)$7yl<(D;wwR>UeuzzJm z{CMKA8IoYK(<87cB{t6G4t{W~WVJZT8L>K$wZbE0t};r{>!7)EySFuvK~KzG_vivj=BKPK|I7xnnkjhJFdj^TS?;l z;i*JOEM1DS$y2@@{_LM5U-x26KIayHyNOBZCwN(XbDBs}pniwsrR*}VcQ_^)oD+f* z)c|vo#RZdOx!YC8AX%H+s`BtLr!R93L-sZo0I=K7T(dX~89N>(optNE_(jXw8~@I_ z+Abh)3=mq|N@0DS5Iu~;u#TbWFmSfWH>r>-F^9IGiIkAz8PkGWuwB>vZRowXac?lG zZMg`>CDVc5omG!iq$S8Ue&FIx<@d&fOVaH(GAPXp>mi~g3Oqe=<+435o%dGZPkz(x z29_Lr9^j~4uQ(euf<$^-f93sY2rFVerj{$&El~1!ZpTa*5)-9vuSDdl9!1r;a}zVf z4jHk9My<(I=_;f;tmkF+-!Ysmu-eRj=qF)5?{d{xN7YoFGYH`E?7}(QPvSxBe~+x! zB)UkQ$GNagQfPJVEk!DCjZ3ntwf5~b2WDQ2GwYvvG}$1#8iP{iZ^QT6%af;~1XzXC z_!9Ny)S3pW?!t8)MN#|n^||mCocAXo3ClES1L(sOCrzhU-LD5Wr%gQ?IPMXTRkDW?C2x}BR*gsHDTi3@tOeQyv z6^U&SWok8u)9^fV7y6sRM$mAXs!#B6J^fSs_-H%rkZ_-20D~`V3R{J$`YBqu($WuP zN|cC$=$?hB=6tve%SGAj#Z0_+02OEL`7my*`eAB}gr9SGuWPF$bX@Wf>zuJ{m+~{h zJ-G$?k}!+AvscvhRM(H|-0>N#IBfaM({~_RBKC`SLSIkQ5xZJ2uA#0sgn)y=r5LAh zF0Hm)IeL-FshAjxGx2-f-B8mC-ZIOM&I(%BY?POAytl+1bbi+P1{|Fb7@N+DhQs=t zykVw1iMxtR<-p(FT15z1@&EMF$WE*Yx4K-+=s!X(Pd3QwXdbc)Kt9Y(ZwW{`X@)w_ zS~0w%^Z&MAzM_B6(kB%wixDL|GEjhUy@*mfWYs`mPm1tX$j2ilGr z(oZ~kmMc7+uwr0|fgDL4P_Ruexj0hbYl~~ZOpq%)34-H`H5%9V*oX)WPCcUl*~#QD zm5I2F_E%W*SAktwoc(>&f%PWv2}mLDp|T>Oa1wHVEaQSN8aMtv)3J8aM-Xt{0z2>bBau${+vXUs)j4(g z9t4cSr|7UD)%#~1$?{8o)<>>eJdL#*IOjul8i;^7Gr?{&a=O*{!NN{6rL1%OkbN8Y z=J1=e^UN-pEhDf;nR@fGw$rSRsXT*zf3xu<2j~Y0QykFcJq6Kjmzq_xU5tfv0p6r zKE>c87DV1z!HCFIgPPg1XXU;QbjwlgRQb@U3uhMHD2Sq-5|pJ33rJFn9+e5f;PGD- zNt1$9`bbvu*2$@V1`JyN?izJ7Jzi~>?t^h!;p_~+`o)}DC7C9;76Ej+K&hXJe&yJML#fH7I=!K(Tyq!kRcppjC=F@zcRBI!WVH{}D#V zeNqcw)6ynSB9W}5@pJq5p^f9mdX`#H2ADCpD~w z4oY0`>Elk*zNa9xgpjf1S=d0jb>VqoF&gIm!LU55?s4?yBO)|OPsfvb?>@9pOh}I+ z0n`5fB`=IgFVwU=^G~G)?KkCj;PK|L@S^tPTL6ab0KWbz zs!+e`*KbWaP9pzjUW2NuH3O`ipIg|-^#|sKxEfGx_dAEkpDr~zml=ot|Li)>!!J&> zq4n*uw(ULKs>Ob{w?Fi$BkS?9DM*sHnT>UL;3i?@SkWAsw6D}IS+uL=NHcDh>y&1q z0T&1uuX2rlz#v5Ndt7W@HsU4l=R2^3S$~n6Wng4(eWLmEqp){=yU0rE-K(idteM|k zI8Mm>917JxtVBL{Om|-MP99fBTwLbRNFkCgab5b|a^5@@lD|u}&+j74m@_L2mI}}G z-Mnss73XkXT{sAxl%~e~O^i%)4(HUV8NeCw5Cpq1Sx8BofNE?_3)3n`51sa)H=;Zr zNtheVBqiCA`}3n)Am)fPe?}aUF7Iw}#(lC-TwCS4yczm{W$WeI`8jOttG(oJz)oXw z;c~KOZ9%kStziH=qu=F2pS%rbVm(sqP?ec?vkW8B1P@R4EFDNi-kIsrg?~e zI;eDvhc=W(TkHj>;0=J|3cf_xFG5K{!Bjl_qQrGr}DW0 z@q-b;(qbaqiBmXCBo`NG)Wp+4hQlN2k-I>&hmCh3F0q)Jb#n8DGmq(TTp(moKt#!NWWHk`4&J_p(b@hxm99 z+Ci$hteWK4=JY}dtO3kZ686JU`4Q9)aNfS=w>$?W+>R^a|Ik|5pR5L7*+Sp_c+^fn zUyO~}XbZtJCoHwBmtKt|dG=WBu$8$TERz+>ex`@?=qYn{@Jn>aJsYK4FWkM>qW*Db z|6XM`Jw1!mesM_!h5<}fNO;D}GMd`Z16~UvBq1qMF$6+SwS+zx zEGqJQae-Zxh6vcJ`Wg$hOHb(aNZ3Niqk~2g1#N z3gDzesHJ42gnC>wph8(>D-^{?`S{kjrEYO`iyS#@vi;*^)${U~ zS_k=3bb8SX=!$zwb;qzRTPvEH^R@($aZ_@F(-x2+(R6Ox_-xo}vuZ2!bU&6+sehSm zxkvfyp?=o6WBpt*JJY2v37LzVtMsn@ z_pfTt>Kw&a20C6Xr~=eLEDYNGcNk!|Z=t2>=to5x?y-XA0b3PU_GE*CKbowiHDyeG=N=nr@(o z<2WcYxZ!}exy!$=Mt6lv{Tsf&%YU{XdC39{50)4gas1CFqK@L}C=}Gqd+P1EOpB-H zcUlZJsj(c#nboN=*OR8|{$uoDcErAH46LLhEC~hJQd@R*eDVydJCH~em;0}GHW=S> zTyyAho%rVt6a>-<+A8Un7J-A<=jSnamVDqxJZtL<8T>({_(E(T^}r;ni@Pptd~;U z75ObRZ=$NVYb@c;gIDBg+e@_N?Cx0RiFQz?M1~dRoN0bR$WeqOV=6vAW7n$N zmn8hyuIT4%KEt@C$8eOrjb1n?nFY*al^G1r)1*;xRd5j=OYVYDiprTksBKhF@jlzS z8d{`}9$+oV4#Lc<^${+gU~rCUY-faS_&d}SKq23>}j-t3w@;ZpuVborFHd) zI%wz9{m%W$7fy1XoaoaZ0)m+4PI?#AHPPw`JMEqkMn4J~6h_;K2}H5=2qYQX=wS={ zbgmlj~+ArR48=qPPN=L8Sdwg9=P&Y<0G+c&Cm(Ed9qf!Yxuv< zyX((yBH%Ha;>}T@RKnuT%FK)kPd92M2Y-qcwN?CH-Z{AM7;iNEXgk)qN}iLxGoCra z5!~8G#kZEHaz-M{8Uu01R>?{KS;)}*ZAvt=+rfdM@LPySm-S>HRO<{XKiDn7l_x!) z%)x?`fl2H*$`gL3JXn%^wwu@-dPBMOaJW38Au^_V4=f_`HB;`RhK(FmFf3}l7L^*c zt8|J9wh$o@Z+x>qtAZMsrZOF95brUDQG3ZX0rn=wMwQI5C82({+W<|{kaBiK>;~+a#hx&1^FJv`$`zt z2-nVL_kj&=A#Kw)-`^(0F&PAN$?|=a|K??)u8Sikb)bnK*5v)!{?U;#?4FIuO?4%4 zV?YC2-45uk0f-C;Oe^Iel1L}rueD+5*h|jl4hMrxMGT%A28mj3mJQ-*QBzF<%y6|K zQc*=iOc+#7V_>BA<8RSU+J6Z;WrBQYzH8nsgj=;FfmXoXRVC8UbK(I3b1XmKFR2pkl} ze$S1tKOsdU@qYRtC4{7<*G!5c)-0Rz9fnkgQUMbpk-ahoVv8=h0#0sREHj9>!3<1I z7)1%h85S0%NEwdgU)+C(X$<^>a~?^9RfXghJ4ir7!?4t*RKy%DWC^U4MhYc8SOCbw z#~>=h@SQs&y4m*F%mxD_cC zX*7pZVO7Do_f%1VVq6z9utgyxB`z^oSnu+B*@AB{q#Bfph!Bai9qG6*q!yd@4XuXq zsByWGd(nTB@kgnC`+plFxhuP!*obYl@q~)aD-8JH!(A~$^_uDe zjFM4Id7%!&3OJjItUGIwPzfAfsBI+0>=Yd-IoJF%TQtq#$`)cuiUDSX>E*cib|;?M zN&W{96M3_K&OTH8#cMyyFi5?2(QB;MKXqf;K7U*YOZ&f|Y}}Ff*F%1CUIPT5$mN8C zpMv?F3aDIp2Q@{as(^U6_zPkDjTffA0%OkYxQ%nUSK(Oaq?0tC;He!Y>vQkVclLkg zQCA;792#Y+WG=5&j7iD1k2&}^N=-d!)qJ3STrCmxkS+7@oin7N0aM_}iRFusOAWD? z2v^KK&(&SB)!@6{Z!n7P64j?&3Ic=0@!_3=;lqcUim&k--T=Elk@?$$Y}`8U^ zWOu{c=NJYpYX>)MvIhG@q8bi9)Y##*#yG3tb80FngqUIq`SGZ}o_wP8oqL|3Mg>>wM`RUj+*PK^TZ>#NvJ-4Dj7qN7a>6Z8>(=Y?0W+SJsQf zLQ7ckfcy)nFVmFsdiAWI+-JRg!65CkAno1uJ#=jfnm5z553(=AnBgfDe9Rp4V^n{C zPWYr_WdC~XZZw75^#7qrS$G2edmSJjtBcWrf9CP>xWD`btn2&Tg15jPW-e)yx10`) z$--xA{$kmcb?*4_uN=^~Nj8}d+Lp2u#Tz)`&Db%DIer@NKJw$a>xzeBgt@bw`FMtFbxQf;7 z6RK3hUHZE@XG*+)XuV}$hS%@v=EuUCtVE|7j54^+e~zg%n1c^~YaH}V9%Ef$UGNZg zZ+uvhUD+A;RkRNv)d9hfxf*Y}(-jEUj2@E@O(O+|J=HRI29;C6-q)USCVZ9# zqy!wQRJ*_1=F|rxefjV*<$FFjMa(Qg}b7I*__y()>M^RTIaW>Beft z*G8D!bD5fiY&1CE=g|+;D03BJ8Z&oyO3|Upp}%!Hc6Cnj?Xsn8vj8Y|?w)mlW>Z3t zbd5dRDZE@8>05z1dD6xCM#iLSJBLfny6JXpkkVoCrrdrd^~4xfr)6U1xc^kz8| z%hE5dGm~tn+vVtqgm*L({a1AM`}xrxe*gZIo)_}C8V5`*Lpw{s0pt88>&DhaLkWTz=Ev@*VtVe0k;&EpI14e&b!Rj{4!8>#gka zSYkmU;gW*T#3-2YL?j%LM215;JKYSwf=&f66+Gyr7$xB5p_yh6LLM#%)^Hw5Vaj2D zs}aKemhf*ckcEgQJkNote6D6y)r}B(9bd|=unb~j)X@jc zz9^wjzBg6KA42{cDroIV{eh(r4&j{H@^@x?3m2S&%^KgTf9_@l>g@nJ{b>SE_?$mS zK^1QSW#E*Xfed(i5Y=bN?UK}^Rl!QyWLC0*+U(&g7-9<1X$AGGbDYW$cJ4_YZ)Ic5 zWli*&X>D}jFiQ*OLu|ZV;fLyTle+1d)T2(_h>7L+M%>&HQr}w` z^F>g@>9vFMV-!|}2|yN^{)u$8%?5tBh4IUBbG_a#y9b``x9JW@lwvzQb);NyDc9iN zL5jC~A#fn=JRqel!v{pcw+E_VIdn)>lR+3-X#)M8RoT6J0a^?R-=%k}&SRRo^ z&(yv4D5ZFE*Wm|`lAv40<4<_~ul?sKl*N_NKoF2fiiCLIy9oIU+26joRn%MuQ`g>H zwx~0}ZI01i&4{&TA=)$BOmmepE7sNZ`x5mhf#Fvj-Gm{z2JFWRWJ*SXq|hc;gJ;PYsQ*& zW|RRDQv};;Fa)^g+c(5QR(gUMNOe7gk0I~C3W!)^Mp5(`9B5Id;_@Em%Abzx=zu$9EPK{mjPNgE!=g!ifRx!4t%0V_(~=Tf~sWoE=t~ z%8AEIf~gIE8kxz8(?++x9P)z;^^;E6V{sFj_E@&8q zW81cE^CUU3ZJQ_dj&0kvZJQ@HPHa0j&-ecI-FmBT{ZqAjPfxGa(=%1Grn{%Xo6|zH zXGLTA0l)BVIY!LS+>XLx;U2LQw?pKff_A{sy_OHME_J^;4#UTceg5V?O@W-r|751;6C$+EQ#i?Ooz zlf%DYrj^MWO}J~-x6YOF*Oi5yIxSmvQjp&%(KJJDcBZ6s?pt6T5DOcx?C=6EBjqP1 zxR}DkHME;10Ys4_Zu~3$2wc*!j`NB{rQi9Kv;dg;uTOI&?dEz=|B?2;GmGUw)5+H7z;wttWKjlxbb#40$@fdw7&ac2Lk$Co6P7ggCr!G3fDPJP z(i!)!?=To54fd4E}8GW+fQC_4|*Ib33qJ|t4Kw7LfZdXKlu=6#?Zd!UM@uyv*kXpgS)Ws2a!L$*P#(!#P5C$6zH zd+Of&oh&QYogSK97>Luq4z$i5Sd#BlFQ^@z#aQ_s0>9m>YV7c8QpjZ}G<2c}sX>N7 zXo`2`g0#*>t_7aCSvR(N}(8fzB<#9Tv3iMXH4EP>7`7^us`J)Y`B=bb5!28~mIY#iiozhUzfTFo9c=0C7pk_Kz0s#@+Vpx%( z#W%!MoV!K_s1LDEblpBIA~Zf_W2pW*dd6VLP6qX8Te_N?Wqk1bpSwFjAX^#oea)57b44>zJSI1y|Fqlo(>V}luCu_j5M)}2 zsec7PNP&YE2l(@_ot}`x=P>5;t9cec_2RziDj~=WHs~465FJfnzXD8_MW6d5rF+3Y z13r=auBlfd-b{E$H%n7~nsI8W==_2}K*KkeAXrWZ_6&9q48x??1$NNS*rcTEryNtSe|p^2 zgEL|+>30HRW0Cr&@Cabz&46VOJ<|C-_;PH(H^QF$=!ExOvyMSUyN6htTPFksbEDqn zJy>x&gANP)VQ42hrZFahf`p^jw2yS&@?k7EP|Kv^{ZFzru1@0DPb*$v6QlBo2UmLV zxbG@8cUsZQ8){2l2i}&+jUJk(7ZB@H4u{{*lZGq^R65#^&1C@1nj0NooPy9whGKFYNNyYoL1Ru$5Y&ddY+oeEi9g9q5vfSS`J| zZ~l=5FiOW{4Z8unnHk&3y!Ha4hr&eaI4vw*{&Z1cW#qm1315_b49&T-urVBIPY}Yv zQ&m{w-O)C)e+`+N%G*Xi1DVDc|K2b_j!Z-iBFPV;7uWh3p+{G!5%*6WwSN5*^vl)Eh3 z4MPeQW%Wp`KJ|@ka6+{xt2lH#V!AxR3uy^p{Du`3*o<%$Pc69T3eT>-PHh}Nk@jU*L~#%=?ieFA11(7@K)nk-3G#04 zZ|RrFFo?e}XjPZ~?l)us9|$bBa7n3dit73(mr?V#DcX+hf*KcW)NJBGij6a6`}^wn zp@#LR2aL(RGVfId8J(PT1ajVtqU9v3suO8i6XJ)$OfH)^?Ka_308TWg82e%CX)2DM| zrq(85spKcIxx?zHx9k0DX=l6p?V1+cz_G+kiZ|b8j8MDMEONRs7ZBe_&iCO<5iI$~ zHCKOYsw!@zf64Rdpc0U~C~``s@>f~xYPnM&GFhJO&DA-;vA6T9IbEdv!R5?E1Ww zCTc06krv+(U=qANQ&S)fLDVH|4sVZaVdik+sMiyYAP?ROFIOdGJb ze73NI9@!-q)HXDz0mI)R1hpp#ZbXj11PA zX|k>l7Z&q}mW(C8@fElDLOyW@q} zq78JDlADb`P`Hf3qj5^OEM$!o0W8Rhr|!Q)W_*(kSxW;vDW=?%!A@uQi}3Q4ioYZ= z@Dr(8b>HjL^|{SumI$c~(W%7#NpBwm2mp#1U_F02aS|P*w5A4p@OsiJBkr`YpX*9> zq&o2@!1t>%t}^%7DX+C(Y}RVatd^QuE8AmK5fRZ#^qKZb42Xl4&9hrOMSHMju;I~)hgP+VZ%8P(AyP{+OWqnF&KWqmZ1kLXJU&t1eh9D1!n6nC0*-DKPm)>?jQ zz?Zk{H~X+^Bqb);gvpq8clwMCx&%^Z%?|a`BxISJVNttW!C$#qx_%TkiD_BvcIYVZ z?$Y40Cw)e2=V!6#z@r+z`KnIKI?j>31-%8; zNJ=Y8v7IZKi4XF(7U4dcaE<-K$PP>14+RWWm}R_fMGXQpkl~#-qdR$JkaDMswaI0k zyk3WgJFf1m8);#cLFl`uK7hk?l$4{KU97Zp7b9Pj+3m2no%JiteiD%Z$MYM9ZG7n_ zU%na0Y9`4mCvgHv=k8~dRPufIW-P-^+N)geKQ>7pSNJyy4Kj}f_ zH4jHNJ5zQBG6Ld5gPj`czITy`t%7sRiNJqIz#TBTREYwH$tA7w(eNkB#tnzhTmPgO zke2z}vi&0WV*BMl&!A!rpyTVn=sKU&)xXM6+NF+wL5C}UDp}8yR&w_X9DY~I;vH2Y z_m?bc55C!k#A9OTt z^FlykB~Fn);%2l0%o&!uW7m)Wlkg>Z`oV+PMxk3Q-&8g0Qy2T!6l}fj4HqUGX%kVv zh$y#Rx#~XxzTjJughy+K`?)g>B(_%0b`|(bFTn9Oi}Jl8F_m98lV+nuAt8^R%=8ga;-Eoa$uItc|;V+MecKQ+4 zbQ2EAQmX>pYn$RhKpd+b}Q4O z2%?ib(AFgzhc%iPEt9Oa?g1xp_AQ;C5KlaW4$6S%e;+;YZQ!3;n?2F)K(|XH&1E@H zsbSWX@SlS1KH&XlnHNWZkg*lPe_tYhzTdL0{~GT=*M0<)XpxO5WHm6#trhxeuoX(F zyOUXR-#^qG4i-9yHZ0$o;d6*z7=SHTCj~OsLk;%h2n& z!U6~I7ok-1nl)T;!96%F{Nfdf*~*5#uXnug?Nmx0{9ye;mVd2|n*IH}u8pia=J9Re zVc7D-Oejc{()!eXqBlyUq?C#rc|1%kGc16*h07SgDN^els7DHyZI`ni4F)?i*Q>B| zj2aBl-RSXahcA!&2uPRUjzz;uM=TOMuICZ3wbfypvNJa_=vNELyqFx>z(`M?7#sNj zYHB~WDuYq`)Li`}SH#R>$0lQ%&)n@Up~pUDe`rHqvl{f4^@G`{ zdg+d&NUJg-Oi586zh+j#8O7*eEcK*nZclXoc+njlj$tNz;2>H*YE&EXCG?!+5}O6U z7=7Bx4VwN;O77rtHMT!I0g1sVK<#=>DRt}_)wadFA2R8xy}fA*O_l3uliKOs7GPMu zuq01!mVWza>=(j0eeL$>x<&^Lj7rgKD&NV-?$epi>12bzj`U&*h+N#80-iAAl=0si z=0AF3{dNx!fT{V@;T-x18p!=jHM|JeA$andIII#xnsaUA0crZ_*l_OhUQbZA@a2wG zH-(?bz1S)4`2OS8o4TDhJJMNHbKwMQFl{01I64xF#wGtP5U3NK57Mz9jg%I>Jb>sm zB^_4@KQw{jJs_4O0->m&58k;hk;uPFXs+H1w1;|O1p!iDi48SWV@8D3nGpz3SY3hx zGg41p)S&8apV6&L$)OZ=Jx zkZQsr@ns)VYyO(}POS+CeKzp8PL=oqu8`;%ZV;#{_szIG#=e?Se~lo|M_tK(C7;*;Wl$`r7X41(0z8{Vu}J4#@SA zFz1UZ7xxfY)dDyM-SpireQga8vrc8b_h`eup-XdYuii|JNh_em=-;u?g0G+fdxZBF z9MglqcbFzO)~jUWyS*3{i7CSF_B~Kb)F(3Ximw-H<-c44Iw{NK#^Qt?3sz(*5<{7s z7UpWk1kqlPXJ!qXvfNSuarV(SGqV47eqN>pBQ=|Q{TXkLDzw<*v&Oyz6e?BJ(W=?` zM#VuYbm%#TjRM0(eS#`TZ3$Rm?E#rpToNTzrIE+*gCktZ`E-_iJi$}#xI+uf0-_h^ zN37q{>1gv=AE_++$VBhEW_fg**H72de*T=nbZ0kdm;sr_{LOp-eN0omU)t`i6T#GqV&O8I*(XWQ8OO5)Q{p{6*D$UZEYLZcbZpsb$R0O zO%$jQGKOY-sbV9skv?84xs-zi;CLdfrN1}#wcr)o7feBJzqqDNYeO}{Buj7b**Uk zlyA~2VYfV3nJDw@hHl4bNp|yOn>WOFe!a&4ELbrRYX13l{q;%)Ok=pPg}aApNOlbd@K`MQ zoV=Nd;5->eyEG5LGq%+t9&5GPV|2nl$QrJsX<)G_EXaBKXFuf-{8OAzKj7z8bGAK- z$6tOFiU^!wkp`Jg2oS>5y&~>f$A6On=|6w}RTEVC(+bofjwFb^+$!}Sgm{;($vR&| z*|XnY&UaKEOxU0gEvlkm*b@`2t;a+3G?Q;opn67vR8}PrO>}m4A|@gwBF6u>k~<3% zM{2$jh}ci)_y4Y(Fs&`?bkK&}{jOf-SWvO7;SI`nSXVwl)|f0y&Ra8K*a)drU~6V7 zNvn8}4#-^rqC#dNkNst8g}?!YWW$CNJ#uarCQm@=eV2;sTk!GuJMR#c8F_}u{BX!) zdSXG|Y?ib4V}jDD>*LQr`maT4z{wk5ycY8@S`KC+BIkG4>*Ch*^L0=rRKFA`iW?&8 z9=KCO7FTKdqpKrl?uQcF! z_Q$JTnBZtS)0x&sdV&W%Dd79)7vq`f<0f;HEvNgh-u=?G(3W*M`{brH0K~f6>|;X7 z+(^rIX(=~n2(_Nx05{}d;#F>z4FRP%z2I}o1MC|?niBc)uuN8yOhn!KU%Mc4IZ9z! zj>kj)v^E1j5q+yjK>k5~gr1==T8MG6Q_8Xk^hh)iuLgqMzGE2CM9lv4^+%COadJLj z9IfrR{$O@d+gu_ti@xFpz=t^N;y!|ca~&ZlXI~A&PAprIxa> zPswJbJ5|Os9I9b$TpiJTIhVnEl>aREXQW-A^Qh{Kekfefz-T_)r3E^8AFZTp|&q;%eAVd-h;)5*6Xpuwv*-%-~k2h-FN8$7OWeZeeNgIZVu0jv?NAO7TfL=q zcPz^&F+gjp7~PPaKCFK`R@>DYE0xEbgx))Dew@FQuaOCE#o(7^_!38;jLEv2r!bc$ zH@}@Q$}ZbB$iwN_u>QI1!jVO$#m;ik;iO&bmyY^9z;kiMePv^^zad}8exYQ?CG#Y@ zyE@3Ehps=`c%b~x9eNxBhY&|&VyBlHJ%+O4-*JKN?@meF=LreHT)PDRzlyk@)qXz4 z`K(&r(5slJ;IjuwELhkXiitg=*i$ht%B89Pd#l6c%A9?n-^7Id?_PKz zIn4Jsbtki87*9A<4Cke>-JX#B<_Q#?gn0DRX{>DUeV026C0jgqARE}MJ&?Rx7*J6C zRZ&Yp2UN(CX(Q29x-xP*3DJ?^=>P~98|Jc~(!6f4BiRRdZ9^L@C-F z-PNhGiwN0=howS|wS5VPb6#wweAT4}d#vu*el934BD5aK_3S0UP^@IJk$8;Iq6Y?D zETiZ8WSxhC)dwbe?@IEjj=e{Zt}T{Vft3jY6-KwK-c_lP0E!@(Me$DCM(>MGZ9*Yq zz!pL~58o?S&GmsqtrKA=jvkIs#0#35AfH;jhJ3L+Eb7^o&I$KSa85@%SXs~Ic8Oi( zwDJ8aT_xLZ#<$bR2cHZK{-;uK+T!A{D&r6~a$rIox6HJm67;=xNTGr)5;fdAfHRYw z3jFHK$-dxYRWv>0p$1qgRJUI>hpmt@pp0#DweYM$++V9Y0jQ@ig8s^_{O9RhN2bdh zJ@YwkQZQ|SQT~(=J+q@jucw6I&Z$F$5FffVVdi_ZLZ(F4DYC3H0F!T-zVEodCTRgT z(Ao1z6CM@z2Ix{Zy0B85eg|)JeJo~>&EBk;VTj%IUDJftZzdYw{IaqEvtJm0C)Rf6Tti@|BzJ~uZJs=WkE{*b-nx1eyuOK(L}V z{*Yyv7?EKT2ziiUZnIL4lw<7H;kAmKD6_}F(vvCNa-pDT=&b%B<6CsagYNKVN`RG3 zbHam;;Eq(}lGg51<4p(xm|sn{jrHGS>kB2%--qjMTd~6WN?In~VW?{u&Au%JII>HDk*4XqZFY#^B@DAy23dH^{tT9Rl?2FTcG^w29dQDD8 zSg}ZN+O`Ix>YMxu^X?nU*hCU!Iqpb7W-{wvrT zdMFhqxhl{g*=-GM<|MC!@qO9;--=pJI{0C#?UkzfYxQBgvykWv23b1^=y^O zZH!|B^D~859GlgKMqJ+@e>UoAaoQZv*aF8E(9hzOSJKKfuU34}#{}${^zv!=^~Z{N znPsH2j@qC}-W1l)_);6GWX_vgaMeJ(w-QM7G+Ou@$o^1!&JYJB{SksP3; zbZ%Xw7>>5``q|k}cV@hW@K2#$b?;U$kXUhG>wxFjqQz4Wl0i-Sf=1>OPL5Rp<4;@jDpIqPzOL3n68fcGnOXpo{Zf zy=&<1A4-Uk4LTISdNqN7EI5+ucwrRpyTg3#yK^fAOYIs=Pv%E(LbCRaK#h+8oXpw{ zm~k&NX5Lt#%Olb4S~T62f1MKxMlDg#G>xv*h=WKqZHtDaNpr%MNGahmbmN~oeUVI9 za;e*0V>370RDJoz`>OS#pCqt*`D_W&wP!U#FR*;mA~ zYvn?b$N5&KTi38*DKT5?q`;`upkvGhyd?V)qB7xbR!Q60Ko9)tn^W(@5tSm`YU#nV z)(OlGmt*AGYxj&2VF8r;J8H z^u(PG5`$vHly8O)&9a^EcrhRy{qiF<^Lj_0)^$}JCP5iCJpZx#+`BNcGBa|A0ZYnq zgvDB-#uclspiBX?O74Q5w78`kcxDwh#$7SDfVZJ#>H~Wo>!d_4|<{yDEsl-eR>f$c~yeK$25BKD(~BA#NFn6a$n!#CG9hfi;@Yi-lGQe zA67oopBglaqQXBKe}4fIUcS~%QZ%Mr$bj-+Nw;06!4m3qHm5^R+z@%gF zD%zsG3l)el0+Z(ARJ_^YSV9Q^&(hZ1vCVLqPtN4Qc(6oHERA7WUY>lZcipl&p!M=c z!W4APpZzJx@AVgOoKM}kd*ofRG4xldj8HZ+M?M^m3B-`;&WIvXCzI zj}UtEzIL^eu4b!l>pg~690g2#9B$z8+}tE=p~JB2)WgATX#q+-@-u#5KZZ^-145%iXw zwy!u^WzQ9WO-~zHXB+IQhztC0Ox0I%mnY9#%dOHY;zw?UX{xz+Xa<~6u_kZGYKLSs zWPu5uk}aAWbbZA8UD5V*pBV7-hD%!=Rfb1i72XDRmU6&++eoYB5Y2>Rc4h(F; zDdf%-2yAf1XPxD{s~dk28PtJLBrPEl_BAnrdFcY+f@8i#EDdqm+y^Ik?lx|e^CVsN zJ_yeiu+?1d8acsan#3TTCsBd`Zs>s@b33??n&He$z#n5rHlJaNlNsBxpRAF1yI10b z2Ty7;B^F0s9fboW%{yHv7uK2grJH$UUx2)5b1sWHi96(;=kNdwvRB4tHkRF~8^{e& zXt)A++i9UW+dbbIM)?a~@qiNY658N=u9|cY|FbaSg&)10WH6fEMQxGAA?`Ose zABfSzz_gs)tj&0;ihfS$r%{k!2iT&yf;R#_^;F)snsz|NTdNDhtz@Y*%GfBg)?2f^ zn-DhxsiaVwk}F$$Opui6qUT-uizz@dvOu6yp{BVAe?gz`>qg-3s|7MT>=J{cMea_D zBq75F>_^8^@k-ioe8uiqzw6KiEnWwTeQQrCO#%Js#H> zF==cDz%zTN9m8bsPeWQuq2)qEx#30O`-j($Ps*W*Glna>?Al#-Qj*l}7;)u> zbmw^Mh`JN<7ZKX?g_6eCe%*yCrXL%MZ~zA8#>C zBvI;4A1y50;3-@D4-3nl(AKXE-goHnDdhHzO&MV`Mw;2_HIp2$UnKWfA&+{bwTo#a zCA*14`&_5iV^~By;UfVWL+s}7hw<-3bW(K*)^TE)t@D_?;L8QE-he8(yepjJo-B{` zXO;Nh@ZnyUZZo@11JUq7C9J+(fsentKG{|1JH8euH5b_P^}p*L6x8mei&W1zt`XNG zb+5-4g!yzjAtgf@QM`^*M;>PxZc!}PX(x|uhyTPKxuR(Qi5S!xYO17UUG615qf_Ru zJT*w$j%(Ggd~6)V_y!D}jMyC+@r^hFA}6-pS&z{%849ER&F=Hwx2z^?5?~+n`ZA1S zxF6|0om!tI3WvfVvuvI+o#L-frnarh&><)>^4T*<3Ok&LGLbxPJI4#_{V3K;SfLr>w4#zCd2?FJGSv9+2F;u|FjSCYa**La3q}UuHV&mVk)`21_;GwA z;#QGf{vVYo)zkq*<^M}bVqyLtCF#uJCz*zwiS2*sNYU!j_6HnDJ;&-VRG`+B1$s}+ zVwpymx_LtI4|7jK(oMs^3v?nP4!+)I96}nJ{w#Ed9Xd$N9At(PV2lnA?jLtT5&%}W zwgkg3Nf?$%W)_C8>Lgmuy%XspNHil==v=i_0X-|(nqSTDj^AjQ zkz9KAjWWCAp~F&#*1(~k`MTBb|7egs{#GvRVQZi%LZjA)XZp`LBJKyY?FNiNo$GdJo= z|0UTK6Y0#hZPBCeTp4KD#c04MNvr)Y>674`k3+Tje*q+>sztOJh!x(!e!fLM03d?b?4z3W2yI*Ex z?3E7{?&q`W4j`VIx)cn)m}J2O;-UvWz0Yp2mjAk&i8A;G%zo<8I={34mCkQy2XUmM z9s9UB9BREFE%ivb!NjC3`Lu(X#;h!*I4(&1OAewGne|D=_?LEbg%{1WXi zFqHJAmkGDs16G=3zal6O3Aw8B7MMY7w^az^J8%kn;8h;&%QQ0h9oATZUd|ER3)Z?D zFyt?YEr4ILi}dfU8`&2-3C=vo4+;%~fVLz+LCtH>xoi`m2I089*D|h2(02u@RwB=@;Al z-{X;-Bf3SC)H(P>0v4QHAKayn98&~+WDid;u{rwWXS2T8?hyah z_87-*1|%sq?5L2oK#fQ8wlLq!zm}p^30-k3zm5-5M0|)$Y4o$ousezg394?>Jyv5w z3<1oqx&pvvRRYs02MfP6Fi1CpIdNLeSPoGK%uf`muI!x=z1IsYN`I$pwxOXlgG{#C zI-js?PkOP61fNU8$}Tn|8<8)qQF7VHH`?$%uacI??g$o%#$)d%vo^=|K4$l z`De6jQe{VdUP)tIEkRLSCIPJ@G{mQ@V{Npz2+h*;SDxr5Y=)lNCc6(zxI0HekNfa0 zq`a702^82;(wP26Ci(&&S^Ru1VM0(pn9D=;-!4*mr3q*{0c>_jX83Uw22@6|@-#r< z3pd`Xu02I3Gx-%lTq-7&w1Nn~J2r0?DtI$fQmEA#wpK#CORAQe#mn8$ehJ8^5*C>@ zS0h?oS?KeE(b?a-TW^cXj>S+{QBuhp(_=;8exfx&k13XwXu3mpm1||)?d9=3>^9#w zn63CrX%a%QeNCx9cNlMwN(Xt}pRS!T-)mFiLX}5hK63{jlN^V zOD@C=4>w63)l1!PV*n>62wt zYXkc1Qbml~bJ_;EllAjo3|os$JX+Kl7-*ks+t+3oZ{1B@J`pr~yR+iUDVeD*`E8JUkd_D?h(heAub?pzIUzl}DoK z6UzFKs+j<*39?vl;xmC1(h05x?J`y7E}O2+Lj zUs^=eEZ&LhyRBEQfcjp+zFgBCpF9i^=xc$#4Z+^NtXn3)lT42H`+MdNpa<}(=4<%& z5zP0x_b=D}pSrK7#uN9`>(#gK$EkVCHbh36NM?M?3ZTpLQPbw)2(N~=YWB$D8OC~T zfWc#FgWFDhwTAvN#;s~gPO*JpW{n}9bR$nk*KiT{t|uU*@N8_8McPtPsBLII>2YjN2a~2YT+=59vsyM`>;G>({WB&NP*VrrdB3u{5hJbl z)bgC&+f-@0p}XxIW#*B}8NJPBSHErM@rj{9+4JvF+W`GDWyRkAQV01!&b;W7r6Y3p zXtap%?_8|{hiY%0-52b~m+z_VRfR)}fxVvE8pwsRc2cW3v;a=K35O`Z)a|FagMKcT z7P>}ryIKZKUsrGjK)s`;&bsBKbtsYI0RuNOu>Mj%WL7*H0ZYJZ6wK#B=5PnY6` z**y-G)~g1E&mv~R0&SOQs5%)@Gp!zPGO)w?dY7G9Zd~w|67UvbL+7( z|HM1|?4(M&gAgUo34aguL821ro;13kJhUK~>6cjo*I>vU0g>mC&h>*^ zfV@R2lVg!vQ{7jk zct~%IN3WS;TzFk|G(6JbA=G!O05U9O-tBvLC+o-io|eCju5ivbu`+C2_^G~a8rKGM zSpeNdwtoW2cZ>&T|95>lFd!SqCMqf_Yf1+wk00p7%x30B9T?q>cXvmwq<89?-`#6{ zZ5>!xkMt1^`+=^h@L7s&V@g zV}kL8MyE!=42+CSfF0_XLAt)5@xVnQ0p|uEiL}rx&EO87(pT^NpW+RZz2<&rJFvgt zUv?S~ZFVRzq4M5XPk5qiqDHQJ)4l{_-*>3Lze_%9mA~{MKfh^EoLXAGHsl{`{k{o% z^P_{C-+M{7DOc7`0Y0!MwmWXX4*-!R|8Ff_&Ajm7#_8`zDIV+|`#_?x3!j41G>ubi z&2Q6I2ed{9&5CnvftDC56)ZwWSh#M16z>XAZ-p0-#oIxJs8c%mA z(6-kDMA|w}-}j@z+8PjC03iKK3=armPjCp@0O?gk2MA*R8wHZ|CqE0385nEm8;R9V zcptGI2#f3+iPlf}46z;*%j9d$%VkaQK~MJzv0FX$oAFPNy84UA^<&Zxf&bqRLH-|N zw_D{~=r*9T@-zSW?ChJo#*O7e8^t>{1C2p03fA+pf1|hZ^#~6x0nCG#}D{Ud>6QY zldEa@cId@)_=4wAjQx>Gf9_0BqU)9^sFmD^ubizh(ecX$gFQYj`}{i@w6pF{8#1tg z>XH3-$;OqlONJHkB-3-%UrwFi|HdtiNPH4|d09bfi#8{M|10W_C zGtOQ>b(qIlYaZ)sv=U@Q{<~^N^LEnXwQu1rdW-8o^&MJUdYNzAUCbUUXW?bnuxQ2_ zA~#QUbw!Hn?t?40E_s0b<1Z1i<7*Pa;Rf^IZTJY2*MIB99DK>NgP&0K!5k zW<(<4>vin|;0sj@B+F2~6>ui>#pSL11hokC;~Y?{jqPtZDZft6jC~i`J&^I~jVw##(Vnb&3%OUd(1 zG?I3L%JHLg0{A<~F8b%QL>cbEXdK)z6D2;Yp86~N!&H=RIf7`-$HA`8HRZZDN_4Sj z>L?0Sw2c~6XffLO-jo&5ofl8=m%f;@D(Fgb^P9#3bd{-pH-XUQVwRsSFdo{a>#}cS z;!!JY&|0Zf7iz!RF|jP&0nz+ri6-e$*u?n5v(1go4-g0Pxjp;K@QqLoS`pj{adlC; z4Mz?))2yAL);SO!3#Hzxl@t+lnz zr+F`W@~I&muq42R(T(P;PdlXs%?QD$koWl@?ZR;M^8QendC==J@bA?{gLkuy5ias9 z;DGf@?m?PG*3rxCvAWz_SB_E8a7RmsnYh zzm~YH()1*~08u}KYHKNnYhN(vHnjc~kovoT@M4cL+>*T{ss26_Sjh~W66fQq39!6D z=h|17)4U~weB?PKhns@bzum?FCP(!FNeZHZq_2Ed`ZAE#3cCZvaoso8KD!hKVrT>0 z1n^pC{GIj_!}SV3W{2O4+$*7ZxpEPIE}ayvKaN5ie_a=1!)CKTuoEUqt(9U`GsW_F zi>_*lCm9MJlO$zE+ z?rt<^`mo7G>xu8?{)JQGM~8%tNFBDd2GBT5N*g1jGITdT;6wdC0YX5%zg;=%@A^%v zb9D)ZR*Nu8if){|sNYG;<<`=$SO}6k1q2{}MSw#1*3w6B>xQ`1M><3SuH0%a0!DKE zjmCT&Ze-_?s{E?xl#H+kg9~s|)n`8#@97 zuYWjyCg@@3qYuB@?9^w!qv5cq)QV-!_?sFfgdGQnYJVF?2aA+g)-fUK>T>Zh78Sus7Gqu>E21rc&NE5oz(uPsCVU+US4iGGR2!7K z5J$PErj~Qimqy(IzGU;2rhvw5oNCgp)rH1?gwb=kvYSD^2~Hd{tClNey#uX@fN>MF zygIjbsC_@U7_Do<3)CY-gr58_a6+>TAhV1HiLYc#lwwfi#JnyYem0{Jwsn(EvU+C| zxh%m1+>%SV`o-3|OGby74L%>LO0jqSdTW%4T5WM-O$dLxm?ioZK704TxBp!2S}TEn z@!>KU8#&5bu$l-u`Otv;>-9KXptmhIi3dGZwX5b8!jg$RcCv|A&SxtCBB%f~32udJ zs%8LQ5okmp%v7mjf!hc*m%n8^0i=r;W0^7l9mM%F*6At5YTrvsl|td+-EYF zJ~#2RnX#8%_9nW@ga!2SfmQEFYEi>~e#P^)zmjplbd#iX(6#?JzSSUXuR=^RF!(y= z`au+nM{<4U8XM8iL*N(T$qG)0Qd3K@;7;Yw-44>+r1CL!^fO$R^Q{v!??~2mti&1= zILmNl%orT=)~<;qb4o~0G}Z%c*Xz>Z{lG89_Bv&64Ns1@>3C)cw3-vQ6Vfk#pES0> zaHp;obj@s)E?j-$!6k<+?8@3TSoPuW1drLNfB5Ow#-s0nuL)7u)Tyc7)~)bKm1ca5 z;A-)(azf;Yf?Bu%10jbq$bELkq}(zJbRbiiXNBRYreB%E(21^+WRx=hvQC|$7&up> z9j{AL3pw`+@?=N!JaOwkf$TgmiqLA+ zJ?~i#1sX>QJCK8iSj%&Ee$|uBs<>unW-a&eI+*CIUB#O(cF4#bpN^gc;HaxD$xDk=EmN(TbB0gSUJGflbtX9v>;V^`c=pVZ2ZK%sJe zIHCM97zzrf>EcC@-uG|0k#;kW#|;=oB48*lVib~dV^?nD1i;4(@)KjsaSP0ybNKDx zZ*0?0fk_v<_vyXS1;UJf!Wh-Jlo=_PaOff3DaAU&V&8t|!*ssxdbAB_FDrf9LRw*k z)(s})s|pN(U8Oz{H7H1)7#+{qk1o@cB$m1_HU)8Gs~76d_orG-fFwzKBP~e|BZNYP zT>M>@miwmKoyG3O<#_1OQRl43q$m86EvOu4t-T8*#G7oHc1L7?JoW~&y>>5@Kf4)0 z2kbcF(g0cVzHpB%Kz_`NLKTxk?idJHEiPyZfwh6Jf4i;zC`^fS@=^DBb(muI+8{k5 zR6PJ;P%Q!B>UtE*s=|h1Gvb$Dv(QeIK%U>kWac=_BeEF$;5*yz1RS?$xa-61`jWl;of_&u~cl zEvSzaTCRi%VrNyNcO{lSR5)fqHWWl%bhmK^8OQ-qr^rEU8hTysFq~$!U~*wfBo}w~ z^SJN6N$1{nlrDvRw@Y%Q?1ogyRfh;dcrf#5+y4BK$Ykq(;^{tw#)tZw?zvWM4H#Eq zy-GrV`QkE9ey&K~W`-}&KOm4Vf>ddsf>r%T(RJ6vmqM8k-RHpN{+sLKN%$$9h{l9N zLbKodM`Xn(5m3z_+VS8ElI5RmnU1m+tQnUI@AEj=WDEu~Yu@3)G~ijP}i=7j5C< zEXbQVI-j}b|?G@p-6I=B4%HL#R|M)4()wBW7+qDn_t#KcPF4qom2 zg{hf;XdX_K)Jp5%Ep13OLhtG&2|T!1D0n7Z)ZcBls`v(y;8vCba=AO46bG-0}*|gn}mR(1a0x z;{9eO{0PcEc70-fKmF=zM#MD^tXy?UQZ-O+{iSi;FiYT~;EUY>9>v zo|YNsd^0*CXe7m6RC(Pn>T-_lM7RDFPGef#hB^iOIUi30M*KUWNY@(Ri* z;s^AFU@CE)o^vAQW6hLaLGg5#MhT8b)U=<6Jr7iEmi;NyKqbP|;l9?Jv_GmTuq$LD za|dnl!>*`2t}TXnnJBLu%d8Y;DDPX}Oej&`-L%6XnA@GAP} zm14m4QY?Z^Fxt+oc*tgZm%gBX{)lqjH4>R8MO(RCMVCLxsAp?_;akL}nnqmlgIUC9 z-xh}b82dx42l_e;?n>(U`np9bG2kbHL9$?9X(=Fig7FD`c37z19DnG56}{79NrUmG z7M-5dBezoZeBs%JG+}Tl?AMa8`A*Eoc++Lu1ebxmPfCM&3jXB@L4)jnHnh@COL}8M z18F1r&ny-O2+gP^-QV($CY)a!BxYWI)`(MJtnS9XZ}aPD&Cov!=%q|~6k zV|@*W*OY2p4)g3L1bwZ=FJtk15N_4+Ag_UN8e*Y^qA9TpcPRcymwkdC+WK0Lw(-^X z7c+H7(G!z_N7avO>cIhj>@N>Vru@i-h}*zWR6Z=tONOKSAlI|SZ={3G=d;srt|#|? zJTb*FSEz&dnA!feujt^WX>r8W} z-egzyBwGqI;S&d_nMSFEwx8$Y#$UyvVjW%RW_JXRbXZs3D&=f{6sX}e_M`7=a5vTp zx_sMwy~p*@SAB1Y@bK)c}gN693| zob`S~qfEIu2cfHUFrImGI~P}RaafLnos(c)s2Uj6GWI!pa(L8kUNshH?L??6EoG6{Ct1i)q2KDN2{cr`T@N&2L@E|lpR+qvtn}kT6rCKyuuE8T?%s% zcmV+lRJ)$w#IdWx_;{gQ{zb;zEuLu9@OrHK-0#JOOD}@$Un^H;_Q^#y>Z+r~Esm)) zh^FlHGSV=Aco4csERkP=Wo=b&SD_sn(2#JXb~rc&UVDuo)@~=!Xp66tenEkg-OoL) zp1B8q{JH6Kh>r021}P*Uq#idhmbS=zGNq$4&fa7G$ms$NN+dpcT@2ak-04*j`HC2G z7+>*N$Qp&JeS|e}@5?%Opt=8=OQro|&%NaO0A9C$2+cExdfCb@o4-e?c;WJuUP07kN3YyfAq9QbW#)bdm!$a1h{w*2>b9lnF7^R{ZA5!Qit|6uSZ6 z;9LxUA^f-vH_O9vyk?3tHLAP0X}wwTxcN%)y@DW0z}kv2WxFzwDi$47yjQAteGlhQ zq8Gye31M5eEP-@ov{jEJ03s_)V;yPequury<)?5>R zW9AkF%&WS<(;w0aM7F616I_nhiJI8A>Vm74q?#*L(wmyB)yCMGIk33lSg%AqN8Ud+ z$DG)Ia_n!~TqQMhKLk&HEVnpaWQD7>ag`AXsHD&YADd$p*kg+6J9nk&mw#QI>FS52 z6}PGm9Io<<76yNdr;{)cp4Qd4A+vnsKx58k94}tV~%-<_j^gXfXvt^ z+d;Ib7ng9rO8ch}+B+x?mctyQ${P*tW+J4Xm`ehEn6w_kC<1v@uR7GsHk~_vs;NE% zN!!|a>s^XMms}fiM`@I6V#Y&H6%&Y^9VdInG!>su&#IlyJmGO(+(e{|*4q=NT*t~m$NID!#2kBqz664wa;%e^w4Qc#+s0LgUHqz^rfC?Z0v5kaz`aS zJal;{sNN{NRAxtY(yGb68hrJCCx)cHT~I_|bc;!6l%E2TW30wg_%Xynl#J?^HqpH3 zaj3L&DzQoyQj-OkN5vj|YS$cmaNUQquL#Ux1jqbBA>GZ@F1=i+{2Tmj9)cXvVrFK2Ar)@YORE|x40X@1){rS zM?yyVUeQ=%Ut3fg5)5a5#`V3xGkX9_$DDwVGCq|v&1#}*6ATi`NdZ-JoV@P@3LsDO)tZVw3Mnj~3Wn<0&Ipb$pBInnZ zaz=3QjkKX7+c+Vb+QbrrEn>5ZB!-u?j5DZ^`$f?j20ARxym5yaifpGM(s0C<@6`#; zcYYp15|jY#g+;sUn}>{PrNY}fO1A|r9fc&@Y41V@^$7~x3IY10Xfy11eD z-xZIxhA@Z73~&a2$%vEW3fasm2&fWa=17yjMo6jwTAZeei3xiXW!e>bw$)MYGAupt zel&WRVCb`%zD$3FH1w!D`T*>g=d3`a7sSmU*HS^rzWTZTMBYH-ZuUXP3K0K<;%mILfZ4(bP@Dtme30;#VN>i$>DVqEQiG%#N^o2bv7L_&D44QKAj zC|vs*Z44bGv)0Dqj+7%*DPFYR{HLT}F2u6Aa=DXSI!KP7!vriNo_MHUE;;iR0;&pm z+j^wpa8d+I$D2KqS?)}#m&`taEwNl4&mH5~H;7NGR6+V+2(5?*t5umZ=3qf>wHQJv zew7`{FM;TP>MYAAB~&krwQ@g0J8OYMY^wah$G`9`zHO!*2bb{>oI7Q6COfc$aoz-( z4Zj1}ViOrUCE$c1bYL|1WHB;PrO9#POMG5EoN>n4*=9ndU8OA$xfG|s5Tb`Z**8k< zaO!w{_|bb<7$O8R))ktDp?c+oRyIl0$>}I6!+bM;$_XYa`$0kci9G+pv48T!b6Pnf z{}4VJulfOF=n_!{*OVIKQ_KmWWslK&)qA-Vg`VXMUYv!j7UhP`i60n*KCM8k<5EaOSjn*(0`XiJZF8NM-owNT0dbW2+cKw%BS$gE-woNM&NGuIaA6MS>@yuYmESf(2MD3~{z_!E zPvF$1oEH3Utb<8739EUY{qyId4v)Ei`55niui+GzU9W@my$e3nw+&Fl#BCGuPnf~r zmuJtC;O4`tRyMuv)z7Z@C!?)z?)t9!*{!u_svr~}@Z~kl-A$)Rhvl5G;w>~SV{v|q zP+p!%=E*f6be|ZEmFsTd*B_PiWQ<--kP)N<0)qk!E)kIygCfk zrhj87u*Un4j*H>-TeMObGgMfj7_M)B-MIy%sTMFNzY_!9H}Xzd!tAA#6>vY`JXtrn zo*3-&R4tul-OShvw~H*ekl9tp2Mvw?>700{KEy#?2JaC@fG%?rOP8C?inYk{=- z_I^>pQ4mI#@dAYv`Yr0LT#*hL)Md7EY41T_V@N*p;N}Q;a^az54_$4xb%MFb~ z?3SuTdT>K&4VC^fX9uvEmmL;$BGTt!hl3vfN;D{4-o6gklQLxqt%up*xY?^-{6h31q_Quub$TKQ3~bPddsUZ^s57hze~og!xH zkVv5q`2k-?lM*$R*C^5nqIxc_ClLN(*X!$12_!yya0w4V;H@{ULwXB;;_}ulc%8lH zcxt$>()6Qrr;SNK1BXDGL*h4029xPr3|h~esJh14=u*B?o@`XME|ojB7M`hrlZL$4 zD_Waj5X9%Qg|D`}E#452QE>q%K+VH?8+9M&2$GYtosMu^*hKwQHe|C-~v1pH3S_^^T zuoZ7Us&%#2cW#YZ4SXE=&6T4L0V9OZ<}*;(;H3ujxy#U|>_eq~@x;rv5{l^L&=qGg zsgtGE?@n5P!`+3SJ>Q+7~h;A;I_k*VW~m`PQCc0-TXytitaoa~Vy z`RyGsnqF`{yTy^TGIeG{x$~a0$PAJb%V5)88C8MPV|zdTj_at@nug$QR!(QnY_Mu3 z{vR=*c{I3z8xQ``SxwkH6-M2x1^WQDNcGY3 z9jpy-B+(lQGd8M!otUfPNx$Wif)}H=w4;o#XLcrPea#YA{0&)HdWtG|cE#Q3>e1Rn z+}r!T4~|yAcs+H%+?Y_r zBOdJS2Q}Y+C7md$;Ib;X|K3cZO_FZb<$4J2hYIPj2$uZ?W|+if7B>Pi0bQ5Up?mK@ zB_XkaQ$c7mCdY6ja(jL@3N1YIGmCElmz;S&MR1Um)4ShZPe0tj>|@TYe8D9((9dGS z7x$jy-EKRg*a6igF~P4GMk6452&a!dC~t*{d7?~zq&Ll2V={;v9!qWASA`>SLLM$n zR|&NY-hzZY*`d&&$q<+K9wtIZlC0{IejYr{LL0TWL5|uAu;g@nz0M*NBsAkTD1}R)Evwm2fi24&j!Od)(>PJ>~?0Wb*5gFH%PbiYA!^JXF<6@?RPA@hj) z8(e*O#dloB0Bz#ZE!Ln3O>WU_^VO@2-{Ee5uQR8*afjbJ+8LP*kfz~~R~~nzey63~ zAvc0$buXs1OQv72XBcSLcej%}>n(iDL73t`ZjAj_JP%QK=(7J^!GpA7u5d3ws#b^0 zyPkb1vHS|AN6PQU=*2{dC>Il43y>hvhC2#&J{+j@T{ z7qg>p##w|OmnBZxA)U%5km0#*bYAW&iU{(UIz~d|P5OoFhg(C+ z*kBZ9<_at`*aVJ0E9#s4RXuTk>&GiReP@r-IqSjIgaksJZmi_{HbsYx3;HdYJAbjt z=nT0%xTy!UM+ge>z?)^6H9;Wv0wYY{HLyd#^_BBzZnk((qipJguNfDv`ZmYx#p=ZM zzO=T&;`phUW8TB%R37szq1nL^;`vP?_B`dgn~?M+79PD6^FJY@%?Wvb<9K%$LzgGA zq-yRn{07_Gsx(wf%pecy8(Ms6@*8^2q^1?DNNyOHkyu&jHrh~bnJvRz!%#yqOu;n! zGP;a?lo5+uvr7*7^Xpq;^2<@f?#$gL*!Le(xpL`2G)cGoBr2x)*up*GNw>1$bd(Tf zE;i8L?j%)Dr#j_?OrP+79#~qYncj%uA1%>&A^^ELPg=jL57VprkcJ;g$(*JHK7-0l zF(G%AA63BQg=9u(8?k{1bn~{9M~Lf0$T`vDX~Jx^cUg=1Phi&N>o~2`*+owCLSq>I zj-xa16ycTdhxiU*8gHZS89#7BXueT^4Q%GgO8A#fWjhEN-?O2A>qJ{m&Hj>ik$@sk zY1dT{X0mLAP*3!{IPW5bgX0F8?d}>i6A|e;T6izdH>E^>6SzvJxY}22{iMDQE%wxh z5%Ya01-YoXRZkJK8V{8Qj(u~2=PopC@CQ*k*rj2X_bu;Y-gVEzrLO?ib@gEU^e~B@ z;3`KZ+j#BR4Ws6N{?w;2cNa^-DQ$VCAAYtEe2&mPC6%VX=BeS9C0T76J6J3$)GCyk zd3jTuey7$e;N#zW8)LOj-=pN0`SkEo66a_$b; z*7neh;FL}9eg@)T0ap7yGm-Y`T@bQ@&U~>kQWM49NE?wetlQH+eGm!PLP=9%cY=AN`Z8AuP69+E zd8Xo*k@|MhA%h{dSHV=Y+I2K+m#B*80eQj`w*bWOs7Z6nbqpJbV!y@+_ovTaqV2;g z;rX8KF2wnNFuK8QaIR%u?Y~9v$(O(7$+^U~sGyV{ulU)v#EDejbNfhnVXqp0Am+JbCp3)3`iq02l6grLw$#R0Yu?C=|6 zFP$+YG|ux*4Eo1zhFA3Rf{XyEOsbs8CgZV5i|;5Y7055|o2qh4Bd94WWTQ@|!`0lH>A+tewb254OV3?Oj;AEGbgTUFgDZaR*{t)x7&7)RFD}C|B zNl&dR`$`O?Pg;BL6Ykq)Z6VDi=7;jSTWBePdJWBJ=zEvWJVozaVzvByI`k7BOc+Gf z>qYo~=pf|-mf7%r$4@dSnTB0#$iE^XMvx0J*Mx6VgenJiGqJ|SsgnwuBV%StZJ!ms z?ub^6r?gn!1l7#)NhSa;yrgpm@=cnYSm~6uHML(&k>WHS{|=7YCO;G{(~nz8qF*?w3=Y^fo!ab zFvqtQ4^#q-dBc~7r`q38MQ1AwH-q)7rnr|ZXk5iIfg8GnS}y|Do3u<(Xx$#C+x@J6 z4vv@JYBJJ7*6v7{A5*@v(dq@|qm0J)8m+nlWRtm$+#y4{mREoXCE8#i2v%w9j`nNu zBnbEE_G7TEPig|G8vMq034%l(12y=^SwDGx;b`Va_7nZEKskKd2LbGw<~f$I1#~%p~Q-;nK{DXW1WPcK6Q3GIYH? zM0D51p?LdGxu39bf5sE~MDK37rP@aFIsJDs69R^rx6P8OhNhvIrn_31xk#3_UdTz< zjb@sCU-)B$1T1N(e!()3GiPMs0i1B!l11N?%v_i2w%Q9)p!+jO*?1xKljLfD3Y^Gs zIlpA(c%0U+DwgrFeFGMZbC2K`(){pwL<*Lv!a;`*cO%#?R;HUYcVEus9fC8i;eCWl zvQXoS7=;J1@h5eDCS|7lo*=dv4_rW2Mfx$5vmr^;r$Vd0XJ=`syB0#ai52I)%Zb%=<$kIYLb#=7E2)zVC#a81 zWlmrz-J$vyOVT*`t20}F68*dTg=lT#z#;I9-{Hu^T~_IwPD;(E2J#(aGnen9%qw*nH3>mus1rakF!r_GHc0- zzQ606BO7N(sD@pCbD$5aPNBS%TD2Xv+St5q)>NDNfj7giA07w!FhRU`=vHM^Q`z7F z^9IccgpTTmBluzjf?l?D)xHVMjs7B4JyS+gDUhxPpz#oAz8OBRk{YxYrSEGahBAy| zn5g9x@iEY#4$JGqBbg5PIteK5pcW6#YN7`BqY#ka7z{@Chq%VY?RlKI%)5CKb7iBbl}fEzF;4*isB@gZGx{7o0~MAf75~CbqS27E?5kfVr9VP?L7GL_?~>V;)xt4`6Jz z14E>oX~EjfjbJ|&)p&Jx)t`USCPO! zt+f%Tn51Fe%PC4@b*K0U?He+hUHAZuX>_C5Kz7RD6!AAUX|Ck-85V5{< zFDfB_?P=CGx$fa@#sBdp8~2O4UpkMf*3NV>UO8%AvHWX~pppa%u|8oizPQ?v_{#jm&g?h_O4q5 zxVC7-v#3{$KL#DT$v1WD6Z&sIbWEcZ`KPaim=08Kofz`Xk-A5OH z<`@!)v%5re#Bo6Qz$!&y-V%nZJ{RO+rm$w03pikS-fO648Uy_qUG)f&)$Q6`n>$p_ zk?mj>%LLi*VqLlJ28&$o4Wn(<-gr;DHbbQLk;(Dpdeb|f9p>y(I+z`WCBGyDom3yx zD|M{az(#wOwR^((PIsn5jl-Xo$Sj(FR9O`T{>aNzqx=qxVC#9d4J}POgMgh+Ve>^x zSP9Mo|C#lnt#_Arn3|0j@rIq9JYOA9L_YFkmNsOs$M0zu6k_cNGaHJJevT<2pD#YR z9)(x@Dvv(yS{1b>)n(yQF6+1ZG$m+60wF59g#@DSEn!?YeA0rIIxmTLsGX&MqU^Rm zH-c*$vKOeb>SA7=>>E%Az~*JhnXFj|hfpEtH*wWPX2R?;7b2-HuGO_%4B~)q@*}mc z%kYf@z_(xhu%LWQHb?5((tchBal0AMuEB4NWtk&1UxYb)pB<_}-i+XV=uweoB!kTJ zckxsP>IdXme!z##smZuf)x0HtxOfPt)R3DarEh!j;`4RwG8f@vy08;3(a3wT%>$m} z|6b%^(|P%Tonzdq;B-0cI7q3$J zf?EvjmYS>|hM0`0pyruJfrhP6Z%qD;CX0GuVgz=08v;0xEOgz zBZ(#nU$?L-bTERf7+;%z=uMT5Fg`Gn@6d`HSyl|VxAwsu2I;3tZkb#D^lMRAuo_Mi zJ^fPGom}v}90E{=%FrH0w#MA=T|j4+^Al<8^KY!`+8-G$Xz>i)+2A!eZ1+B8Q-_oz zTPYD*l9wj@8Ik37kwr12a{YjxS%(kFrU35`@N)-u26WI3TpkA#U zD>t?Z+wS1WReIFoK*2@826--tignhxddZ~J?ok;+my~HBlO{<8e92OW^1ab5FxIE? z=Jq!nQ5j}TQO-OQpt9Oked3YFma`DU;|xo^!r z1F7nd*v&0vbkItF8;}y!qWn{)q1yhzrgimpcOmkH$A`ih_f31ugoZAw-(&ds$ZR+| zef7-xW=yW^d2Y{FE$-GImgC7jvXP35VCdD++>4i0SQE)Y6OBtca)W}2H>iGWocvTk zv|XzpB>Un5s3df~8b)wmr$i#`4M62TQ4C#crFcQPCn@-UzCq9d}fYdXG_{Gp*B=6+*a^D<0BI--`3#zN$jUAT!BsGN22 z{@Mh_sJ3E%@`1Fk8;wt0?R?&F4HQtuqDJRhsLd?ck=1uh=$Kg4`i5=$gAQ9k0k1A5 zAbat9OHTdx{SGu0`d;jKY6XQmR-&3rB*b}acmCbE-+Z@kE))UDh|~+yF-x4Q$ixWP z_P03sa@AYi58WI;*s=rA1siOJ_kELrq8+@vow?Y5Nf$3ixb1aY$vht^&{iV39wUus z=WPshHj`VYt9qzn+rh-X{aVKnPB$dU`uL)2Moye=ZPYK5cA7`C8n-?E`iecR@768` zlj*tUQtB=u8YAav5#Ysf5VR2&Qbq+R6Og2$2-JksqCta&zJ?Du~S-9`^A!Q`mG>lw{%-x8JHZ}v4 zzy?pg)EM?_%#9!WIc}{H`KpcIBm!%RNgH^rgqw;f6t8RN=-D@md$%@M(K757_ek(N z$2SkT!KOpT6-+olX`v=@1e|~fI}3MsN!j;*qse^!Yt^^OwNCJU2RF#zogbm1dv1%C zf?w>3j8|nwlO`!@IR}VWH1QrV>fF!z5=Dy{SuJ`e648u=TP&>Us$ulD^v>k(_%3p| ztw(pA0`+gs4ulZz8r<$jVEO#7J$?isVH+F;eLmYpT0+2zJy*CT0~x}qO?(Ko-+3*6 z;@Pd2kG;g*ua)pEgh+fjYSHe0n@UnZ!Cad*p!;B^N8;;PlRbOh7XE@*fA0Q@fG=ZQ zvEEw8=|+Bj!AI};thxIQDVf;pdC95^jW6Dw48+yI(G|NTjZN?^9w8xKatWOhE^oI0 zhvwWFH(`sM@wm6O9eXb?aYbCyv3k3I3l=wm^P)J`1lY&*VIS{E4H*SgsM{}&30J4F zb-An^;s3W2b(OSu=w)D0!V;gnEA}f&s9A9Si(n6`^ICS;$R{Q5 z9DN+dUOoP+-HcoQ8q&5L#06T(^Fe4ZRp;A9?fJlw$X?qzLtUD#WTt>`E~&@O8ZlP+47_n6tBNN z?k+stQ}s_}Sg`(O=n#!2q2984t7~^Oj#Rd%tXnV3C-PWFl~ZSB(*`H%Rcw|P-qYKT zi(NKNJG?#&wnPR}eHi8vWtv|4=$Ps=<7q#^hGEYSLk+<@3ApSjm@OH7=9F+w`xpq* z40+xcEj!N+&OO5$zLd>>=fbaJB+40fZ9(7Fila_iw;y$T@X@cZ0N7w~bH$DNE{e263#=z@aS$!~uVN(q; zltE{X($35w&l>GA*<|>ZX`hSq^WMZ!m3oh=2NpDO4~whJ8Y?%TacM#qMSShB3LuWAw1)3;h;$l~%di5=8V? zVKzlD(LE6n;|6NcSQUbtkW=58)Ye|MW>d+U*SZ4dWCbH+jokLvWH90cX87(ry5@t3 zj(D!52lg90aIFso7s41f9IO>IrrB*D2pa$>oDic6)_OF5`O0_Eu+$Dral9jUUXAJD zB_R~iy+d9!FpRGhv{nZ6xgvTgm6VOJ@-Lg&N6SXjh8mnm7pYKR+ z0JpGnjF7&s!UL>R>%Bt=EbMbh4^(hZ!3xg4yi`9@I~@kWMfo0*z;22&SLS@aGxOOl zjVRr`z^8zag0RWz6XNMo@2!Y*@1-ZJk&e^g;5jMl^_{7ipR3^479!11B3wC{*Vz$3X!S(VeY0mH1e5!R)f@<(s z0?yV*V;fT9wxuFQF^WnH!IF2iOG^5883ii$i$(H7=BQ2`?g&2JIkZOv4yQt6|1j=F z7`{XOyio?070&Pq+-;1nGz`DJ+t3h!QjIu&e6VI3VjU?MUgfW;?2^aBbHTj>2JiqH z9QZh0kmW>O4ueHdQ|@FMrwqq;)m>#@I2VOJbE%&dqs2M|dE zvh#m$z9J*8hX>|_AzzkLBQ4G7c9-?6R1CCzm|DwXR0w7hEyJ6PU~(tQQH&tKdl^E1 zY6|5O9ArSBA&{c|#ToD*B4(9f3&-Hr``PqRGmR5gQ7*rWJP8Arjky6{pf0z^BM+%D zgS^)sfCb+SAMhDbiV@?^P$3ML!~6OH4K)w+Yn0o(ZN8V+PN*m=r?p~-we5gz!5{hY zqFT@qCIkVz@mUZ$m$8-tE{{RY0hm62!$>|9v9dQ}utPR!VELWBk>%IZJd1GrhXl;4 zB%+l5IcFSbpV6pK>@a=7{_M%h1|lomQ@Qz=2iM50c69nr4pOmT!Zl}Ufh#ICS>&oe zMxxl-Sr{w&>*9=rGWvfr2tq<{Gb|bsnDn^>W9ObdPD@6q<~0Wo>2}!}{`z%)b$6br zP8P3Pf{l6H39;Pp@l2{U?Q`DP2rJkjL(=BCJ%_t(T=qf~0a=s1R3D;y4)<9x73shd*z*2gzH*dhAk1jNV)N(ZCMjD546Hj zS!QUKf24xuMMG->G;C2$l&5WfrUthW8_DZHV00)WO0Ih}1Zh8FCx7*;blgM;Upi4# zq58Grf`o?AkM_9k)8d}YNx08gcJS;r#MDej-0|@luw2x1Fm<~RO(FVvV`Zsv0COI? zGsb!UMpOuW$&8*-`uOwE;T|e(026csvCHV`W`ORNWCQrss|}w#$R-ni<*98`Vxr3< z)+Tqe?bj*FC;@T2^4tZ|s>W!Wtda4cpP}n_ghX(Nsmx-C2_O}z-(I?W zC;?WM5Npt>gM3{KcZiACm5WeG7oy-<#yXeP>=^ z&S8~{TnFd_rzyYlP0);?As;@y#R&NI8Zu6BadQ4*+>NsAZ684Z{|kcd)9qXf9Y0EN zaPI@7JKVXgyGuavd0~9YLbHI5kuNp(@+@iNcZ#S~9-xf7p&08i(EYbm-#~T2tQnC| zGx~Z7JVl(f9|)6w$-JfTP!YW6M{yA?tbaFGtwBcjM(Oo$l67{+dhJ2(4mDBTsGm5? zSS<7WTM8#0beoRCEE*~FC>>T<*tXC?Qs-n^K@~#Fm$JZKA6|X|))S-9u6EqU$!odH z`-{8SVuJiapg$CI%k;ZTOBd!!%afn^08ZwTTXM9t^4Y6@?rAO91T0Dp>Vk6nhrI?n zi1--1=ZA=LmH&z%x8t~|hrA!qez~{Hi(s=GB(1vti+oYtv?Bfn-89tT!UVn^?e~yq za7nf5fIx1J<(a=ZgzyU?TC~DmDVIq&Uq>o>RZ}KkbQp%rmn1@_W zGSe1?ieMUl`z|XbasgI>X}6d@k}Yu!-J!qv3M)4*l|8_WAV{+@w`) z9KPa*nW|dB8rCXA$29!p@WJYM2~Uj90ra)|uZr4PST7iUs&^pZL!!<|B`A9Xr82cb z^z00)`(VopXt^6uy;Ao58=*YDNj(S}GaM&z=dZwx_J+jr=KAN6E(wT}B$i^HW zed&Pf{S=+vX8{ssz5Uw3KkD^z7wq=2-6w)h6&QL~#_G#$XYNEbAmq)t!TuJj#QVI^ zoC|?VFku{)bz*ZbEE6{7QJ0`2=am&muvRLk!ucoW(C7#<_2yY#jhxw6&8574A27Pm zeVK26i^kF$+nstTjiccMgSh{0VcF3o^|H%I@2_|&8vl$#Hv=SciGLCq2D?ooJ{Adh3d98xYc|cJG$%(TLIeq6IAa^A6~{&JEwfVZ_eq$4 zNcesvo!ambRd-y#42_)MXt_8rbqp3inu^r&NVeY9E^&Aq(4R|w4t&PihQ<^+Fsg^A zH%3Kl2h)_h6te;cWD}U0USK~vzr}ck)2YHFd0gGZ#Ez6oS07pV?+|aZkHK7W1GX6P zk_Xd;ry~e{XzL6KD6Rc)hT2dz=bLnY%<mz42pb%g+U#7$JFYRd{5%S&{wY5WW@;{VS;GEOrbSMxnwQ!x#P57VcUU!yr$U;&&R-Ms zzm-mPcJ(~Vs@WzY--Wfo5I3y6M&WeOS2lmHC>IpnwCl+zmIF4Lkb%o!-oR4lNH31H z3)zGYp{rb4X=_PE37n9$a-?W~A20Qsz5|{u>J=|_BjY&t`7ZS^$*$O;@l^hoZ6|Dl zk)9ZA#GAZw(;JI`elw(XTvZReau>PZ)Rx#pfs=p7Y79?orNWyj@a0&GzcbCwB7)?;v{nv=uLzh-ud*-Q z&g64P2(;Q^@o-{I9}rxBEfvb1>ky~|wY1mPABkPu)H9IQ7k3IGr$8;>MTHd$kCK$W zU>}h0w5&A?+#Vma%Ev{3V57jVgLaqM#lQT3``6R zjHMt_@Cb-x0JDV-AlQ6sz-mfBq{u;pdQSeyV0IaZ6yOD`F9(sl)j*O_IteTb77;c? z$O^tgi1VI7u=!1p#Q72GIaLtiY+4|a73>~QX0W&e&=>z4FM-uFFpiR=B&j3-f_W5# Ow@%Iiy#kjP(E=5?gLer4 diff --git a/setup.py b/setup.py index 3a91dddb..69d61eea 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ setuptools.setup( name='McStasScript', - version='0.0.23', + version='0.0.24', author="Mads Bertelsen", author_email="Mads.Bertelsen@ess.eu", description="A python scripting interface for McStas", From 5a9819a63aa347f2ed4359d0663f01920d37bab4 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Mon, 4 Jan 2021 15:49:15 +0100 Subject: [PATCH 118/403] Created CONTRIBUTING.md Quick description on guidelines for contributing to McStasScript. --- CONTRIBUTING.md | 11 +++++++++++ 1 file changed, 11 insertions(+) create mode 100644 CONTRIBUTING.md diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md new file mode 100644 index 00000000..a75c1504 --- /dev/null +++ b/CONTRIBUTING.md @@ -0,0 +1,11 @@ +# Guidelines for contributing to McStasScript + +This document describes how to contribute to McStasScript. The preferred method is to open a pull request on the GitHub page. The list below act as a checklist of things to consider before creating the pull request. Since the manual is currently on overleaf, there is no way to directly contribute, so a note on the necessary updates to the manual is appreciated. + +* Provide docstrings to new functions / classes +* Update docstrings as necessary +* Adhere to PEP-8 where reasonable +* Include a unit test for new functionality +* Note for updates required to manual +* Clear Jupyter Notebooks before committing +* Check CI tests passes From e655d91fc732dd92d093579a2bc57e0b23850265 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Wed, 6 Jan 2021 08:13:45 +0100 Subject: [PATCH 119/403] Update CONTRIBUTING.md Fixed typo --- CONTRIBUTING.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index a75c1504..899b6523 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -1,6 +1,6 @@ # Guidelines for contributing to McStasScript -This document describes how to contribute to McStasScript. The preferred method is to open a pull request on the GitHub page. The list below act as a checklist of things to consider before creating the pull request. Since the manual is currently on overleaf, there is no way to directly contribute, so a note on the necessary updates to the manual is appreciated. +This document describes how to contribute to McStasScript. The preferred method is to open a pull request on the GitHub page. The list below acts as a checklist of things to consider before creating the pull request. Since the manual is currently on overleaf, there is no way to directly contribute, so a note on the necessary updates to the manual is appreciated. * Provide docstrings to new functions / classes * Update docstrings as necessary From 2ccef681e30170522b64574f45f04763e4b518cc Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 12 Jan 2021 19:48:31 +0100 Subject: [PATCH 120/403] Corrections after review by Celine Durnaik, much appreciated! Improved input sanitation Better doc strings typo in variable name options_string The improved input sanitation of paths broke many tests which were fixed. It also made it more difficult to have the load_data function use a dummy ManagedMcrun object, so this structure was changed making load data a stand-alone function instead. --- mcstasscript/helper/managed_mcrun.py | 212 ++++++++++++------- mcstasscript/interface/functions.py | 5 +- mcstasscript/interface/instr.py | 2 +- mcstasscript/tests/test_Instr.py | 60 ++++-- mcstasscript/tests/test_ManagedMcrun.py | 269 ++++++++++++++++++------ 5 files changed, 395 insertions(+), 153 deletions(-) diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index 69198f7a..3526f29a 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -54,22 +54,22 @@ def __init__(self, instr_name, **kwargs): Name of instrument file to be simulated kwargs : keyword arguments - foldername : str + foldername : str, required Sets data_folder_name - ncount : int + ncount : int, default 1E6 Sets ncount - mpi : int - Sets thread count + mpi : int, default None + Sets thread count, None to disable mpi parameters : dict Sets parameters - custom_flags : str + custom_flags : str, default "" Sets custom_flags passed to mcrun executable_path : str Path to mcrun command, "" if already in path - increment_folder_name : bool - If True, automaticaly appends foldername to make it unique - force_compile : bool - If True, forces compile, default is True + increment_folder_name : bool, default False + If True, automatically appends foldername to make it unique + force_compile : bool, default True + If True, forces compile. If False no new instrument is written run_folder : str Path to folder in which to run McStas @@ -104,15 +104,37 @@ def __init__(self, instr_name, **kwargs): if "ncount" in kwargs: self.ncount = int(kwargs["ncount"]) + if self.ncount < 1: + raise ValueError("ncount should be a positive integer, was " + + str(self.ncount)) + if "mpi" in kwargs: self.mpi = kwargs["mpi"] + try: + self.mpi = int(self.mpi) + except ValueError: + if self.mpi is not None: + raise RuntimeError("MPI should be an integer, was " + + str(self.mpi)) + + if self.mpi is not None: + if self.mpi < 1: + raise ValueError("MPI should be an integer larger than" + + " 0, was " + str(self.mpi)) if "parameters" in kwargs: self.parameters = kwargs["parameters"] + if not isinstance(self.parameters, dict): + raise RuntimeError("Parameters should be given as dict.") + if "custom_flags" in kwargs: self.custom_flags = kwargs["custom_flags"] + if not isinstance(self.custom_flags, str): + raise RuntimeError("ManagedMcrun detected given customf_flags" + + " was not a string.") + if "increment_folder_name" in kwargs: self.increment_folder_name = kwargs["increment_folder_name"] @@ -122,35 +144,50 @@ def __init__(self, instr_name, **kwargs): if "run_path" in kwargs: self.run_path = kwargs["run_path"] - def run_simulation(self, **kwargs): - """ - Runs McStas simulation described by initializing the object - """ - - # get relevant paths + # get relevant paths and check their validity current_directory = os.getcwd() if not os.path.isabs(self.data_folder_name): self.data_folder_name = os.path.join(current_directory, self.data_folder_name) + else: + split_data_path = os.path.split(self.data_folder_name) + if not os.path.isdir(split_data_path[0]): + raise RuntimeError("Parent folder for datafolder invalid: " + + str(split_data_path[0])) if not os.path.isabs(self.run_path): self.run_path = os.path.join(current_directory, self.run_path) + else: + split_run_path = os.path.split(self.run_path) + if not os.path.isdir(split_run_path[0]): + raise RuntimeError("Parent folder for run_path invalid: " + + str(split_run_path[0])) if not os.path.isdir(self.run_path): - raise ValueError("Given run_path for McStas not a directory!") + raise RuntimeError("ManagedMcrun found run_path to " + + "be invalid: " + str(self.run_path)) + + if not os.path.isdir(self.executable_path): + raise RuntimeError("ManagedMcrun found executable_path to " + + "be invalid: " + str(self.executable_path)) + + def run_simulation(self, **kwargs): + """ + Runs McStas simulation described by initializing the object + """ # construct command to run - options_string = "" + option_string = "" if self.compile: - options_string = "-c " + option_string = "-c " if self.mpi is not None: mpi_string = " --mpi=" + str(self.mpi) + " " # Set mpi else: mpi_string = " " - option_string = (options_string + option_string = (option_string + "-n " + str(self.ncount) # Set ncount + mpi_string) @@ -176,7 +213,7 @@ def run_simulation(self, **kwargs): + "=" + str(val)) # parameter value - mcrun_full_path = self.executable_path + self.executable + mcrun_full_path = os.path.join(self.executable_path, self.executable) if len(self.executable_path) > 1: if not (self.executable_path[-1] == "\\" or self.executable_path[-1] == "/"): @@ -207,28 +244,58 @@ def run_simulation(self, **kwargs): print(process.stderr) print(process.stdout) - def load_results(self, *args): + """ + Method for loading data from a mcstas simulation + + Loads data on all monitors in a McStas data folder, and returns these + as a list of McStasData objects. + + Parameters + ---------- + + optional first argument : str + path to folder from which data should be loaded + + """ if len(args) == 0: data_folder_name = self.data_folder_name elif len(args) == 1: data_folder_name = args[0] else: - raise InputError("load_results can be called with 0 or 1 arguments") + raise RuntimeError("load_results can be called with 0 or 1 arguments") + + return load_results(data_folder_name) + + +def load_results(data_folder_name): + """ + Function for loading data from a mcstas simulation + + Loads data on all monitors in a McStas data folder, and returns these + as a list of McStasData objects. - if not os.path.isdir(data_folder_name): - raise NameError("Given data directory does not exist.") + Parameters + ---------- + + first argument : str + path to folder from which data should be loaded + + """ + + if not os.path.isdir(data_folder_name): + raise NameError("Given data directory does not exist.") - # Find all data files in generated folder - files_in_folder = os.listdir(data_folder_name) + # Find all data files in generated folder + files_in_folder = os.listdir(data_folder_name) - # Raise an error if mccode.sim is not available - if "mccode.sim" not in files_in_folder: - raise NameError("No mccode.sim in data folder.") + # Raise an error if mccode.sim is not available + if "mccode.sim" not in files_in_folder: + raise NameError("No mccode.sim in data folder.") - # Open mccode to read metadata for all datasets written to disk - f = open(os.path.join(data_folder_name, "mccode.sim"), "r") + # Open mccode to read metadata for all datasets written to disk + with open(os.path.join(data_folder_name, "mccode.sim"), "r") as f: # Loop that reads mccode.sim sections metadata_list = [] @@ -259,48 +326,45 @@ def load_results(self, *args): # Start recording data to metadata object in_data = True - # Close mccode.sim + # Create a list for McStasData instances to return + results = [] + + # Load datasets described in metadata list individually + for metadata in metadata_list: + # Load data with numpy + data = np.loadtxt(os.path.join(data_folder_name, + metadata.filename.rstrip())) + + # Split data into intensity, error and ncount + if type(metadata.dimension) == int: + xaxis = data.T[0, :] + Intensity = data.T[1, :] + Error = data.T[2, :] + Ncount = data.T[3, :] + + elif len(metadata.dimension) == 2: + xaxis = [] # Assume evenly binned in 2d + data_lines = metadata.dimension[1] + + Intensity = data[0:data_lines, :] + Error = data[data_lines:2*data_lines, :] + Ncount = data[2*data_lines:3*data_lines, :] + else: + raise NameError( + "Dimension not read correctly in data set " + + "connected to monitor named " + + metadata.component_name) + + # The data is saved as a McStasData object + result = McStasData(metadata, Intensity, + Error, Ncount, + xaxis=xaxis) + + # Add this result to the results list + results.append(result) + + # Close the current datafile f.close() - # Create a list for McStasData instances to return - results = [] - - # Load datasets described in metadata list individually - for metadata in metadata_list: - # Load data with numpy - data = np.loadtxt(os.path.join(data_folder_name, - metadata.filename.rstrip())) - - # Split data into intensity, error and ncount - if type(metadata.dimension) == int: - xaxis = data.T[0, :] - Intensity = data.T[1, :] - Error = data.T[2, :] - Ncount = data.T[3, :] - - elif len(metadata.dimension) == 2: - xaxis = [] # Assume evenly binned in 2d - data_lines = metadata.dimension[1] - - Intensity = data[0:data_lines, :] - Error = data[data_lines:2*data_lines, :] - Ncount = data[2*data_lines:3*data_lines, :] - else: - raise NameError( - "Dimension not read correctly in data set " - + "connected to monitor named " - + metadata.component_name) - - # The data is saved as a McStasData object - result = McStasData(metadata, Intensity, - Error, Ncount, - xaxis=xaxis) - - # Add this result to the results list - results.append(result) - - # Close the current datafile - f.close() - - # Return list of McStasData objects - return results + # Return list of McStasData objects + return results diff --git a/mcstasscript/interface/functions.py b/mcstasscript/interface/functions.py index 663a4f36..559de253 100644 --- a/mcstasscript/interface/functions.py +++ b/mcstasscript/interface/functions.py @@ -2,7 +2,7 @@ import os from mcstasscript.data.data import McStasData -from mcstasscript.helper.managed_mcrun import ManagedMcrun +import mcstasscript.helper.managed_mcrun as managed_mcrun def name_search(name, data_list): @@ -92,8 +92,7 @@ def load_data(foldername): foldername : string Name of the folder from which to load data """ - managed_mcrun = ManagedMcrun("dummy", foldername=foldername) - return managed_mcrun.load_results() + return managed_mcrun.load_results(foldername) class Configurator: diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index e81c6bd7..5b7d494d 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -1901,7 +1901,7 @@ def __init__(self, name, **kwargs): Affiliation of author, written in instrument file executable_path : str - Absolute path of mcrun or empty if already in path + Absolute path of mxrun or empty if already in path input_path : str Work directory, will load components from this folder diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index 92f2ade6..df6560a9 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -1572,16 +1572,24 @@ def test_x_ray_run_full_instrument_basic(self, mock_sub, data is loaded even though the system call is not executed. """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + instr = setup_populated_x_ray_instr() instr.run_full_instrument("test_instrument.instr", foldername="test_data_set", - executable_path="path", + executable_path=executable_path, parameters={"theta": 1}) - expected_path = os.path.join("path","mxrun") + os.chdir(current_work_dir) + + expected_path = os.path.join(executable_path, "mxrun") current_directory = os.getcwd() - expected_folder_path = os.path.join(current_directory, "test_data_set") + expected_folder_path = os.path.join(THIS_DIR, "test_data_set") # a double space because of a missing option expected_call = (expected_path + " -c -n 1000000 " @@ -1589,7 +1597,7 @@ def test_x_ray_run_full_instrument_basic(self, mock_sub, + " test_instrument.instr" + " has_default=37 theta=1") - expected_run_path = os.path.join(current_directory, ".") + expected_run_path = os.path.join(THIS_DIR, ".") mock_sub.assert_called_once_with(expected_call, shell=True, @@ -1609,16 +1617,24 @@ def test_run_full_instrument_basic(self, mock_sub, data is loaded even though the system call is not executed. """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + instr = setup_populated_instr() instr.run_full_instrument("test_instrument.instr", foldername="test_data_set", - executable_path="path", + executable_path=executable_path, parameters={"theta": 1}) - expected_path = os.path.join("path", "mcrun") + os.chdir(current_work_dir) + + expected_path = os.path.join(executable_path, "mcrun") current_directory = os.getcwd() - expected_folder_path = os.path.join(current_directory, "test_data_set") + expected_folder_path = os.path.join(THIS_DIR, "test_data_set") # a double space because of a missing option expected_call = (expected_path + " -c -n 1000000 " @@ -1644,10 +1660,16 @@ def test_run_full_instrument_complex(self, mock_sub, data is loaded even though the system call is not executed. """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + instr = setup_populated_instr() instr.run_full_instrument("test_instrument.instr", foldername="test_data_set", - executable_path="path", + executable_path=executable_path, mpi=7, ncount=48.4, custom_flags="-fo", @@ -1655,10 +1677,12 @@ def test_run_full_instrument_complex(self, mock_sub, "BC": "car", "theta": "\"toy\""}) - expected_path = os.path.join("path","mcrun") + os.chdir(current_work_dir) + + expected_path = os.path.join(executable_path, "mcrun") current_directory = os.getcwd() - expected_folder_path = os.path.join(current_directory, "test_data_set") + expected_folder_path = os.path.join(THIS_DIR, "test_data_set") # a double space because of a missing option expected_call = (expected_path + " -c -n 48 --mpi=7 " @@ -1683,10 +1707,16 @@ def test_run_full_instrument_overwrite_default(self, mock_sub, parameters. """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + instr = setup_populated_instr() instr.run_full_instrument("test_instrument.instr", foldername="test_data_set", - executable_path="path", + executable_path=executable_path, mpi=7, ncount=48.4, custom_flags="-fo", @@ -1694,11 +1724,13 @@ def test_run_full_instrument_overwrite_default(self, mock_sub, "BC": "car", "theta": "\"toy\"", "has_default": 10}) - - expected_path = os.path.join("path","mcrun") + + os.chdir(current_work_dir) + + expected_path = os.path.join(executable_path, "mcrun") current_directory = os.getcwd() - expected_folder_path = os.path.join(current_directory, "test_data_set") + expected_folder_path = os.path.join(THIS_DIR, "test_data_set") # a double space because of a missing option expected_call = (expected_path + " -c -n 48 --mpi=7 " diff --git a/mcstasscript/tests/test_ManagedMcrun.py b/mcstasscript/tests/test_ManagedMcrun.py index d4a93520..1f99ad53 100644 --- a/mcstasscript/tests/test_ManagedMcrun.py +++ b/mcstasscript/tests/test_ManagedMcrun.py @@ -1,6 +1,7 @@ import os import io import unittest +from unittest import mock import numpy as np from mcstasscript.data.data import McStasMetaData @@ -22,49 +23,88 @@ def test_ManagedMcrun_init_simple(self): """ Check shortest possible initialization works """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + mcrun_obj = ManagedMcrun("test.instr", foldername="test_folder", - executable_path="test_path", + executable_path=executable_path, executable="mcrun") + os.chdir(current_work_dir) + self.assertEqual(mcrun_obj.name_of_instrumentfile, "test.instr") - self.assertEqual(mcrun_obj.data_folder_name, "test_folder") - self.assertEqual(mcrun_obj.executable_path, "test_path") + + expected_data_folder = os.path.join(THIS_DIR, "test_folder") + self.assertEqual(mcrun_obj.data_folder_name, expected_data_folder) + + expected_executable_path = os.path.join(THIS_DIR, "dummy_mcstas") + self.assertEqual(mcrun_obj.executable_path, expected_executable_path) def test_ManagedMcrun_init_defaults(self): """ Check default values are set up correctly """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + mcrun_obj = ManagedMcrun("test.instr", foldername="test_folder", - executable_path="", - executable="mcrun",) + executable_path=executable_path, + executable="mcrun") + + os.chdir(current_work_dir) self.assertEqual(mcrun_obj.mpi, None) self.assertEqual(mcrun_obj.ncount, 1000000) - self.assertEqual(mcrun_obj.run_path, ".") + expected_run_path = os.path.join(THIS_DIR, ".") + self.assertEqual(mcrun_obj.run_path, expected_run_path) def test_ManagedMcrun_init_set_values(self): """ - Check default values are set up correctly + Check values given to ManagedMcrun are internalized + + run_path set to an existing folder in the test directory """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + mcrun_obj = ManagedMcrun("test.instr", foldername="test_folder", - executable_path="", executable="mcrun", - run_path="test", + executable_path=executable_path, + run_path="test_data_set", mpi=4, ncount=128) + os.chdir(current_work_dir) + self.assertEqual(mcrun_obj.mpi, 4) self.assertEqual(mcrun_obj.ncount, 128) - self.assertEqual(mcrun_obj.run_path, "test") + expected_run_path = os.path.join(THIS_DIR, "test_data_set") + self.assertEqual(mcrun_obj.run_path, expected_run_path) def test_ManagedMcrun_init_set_parameters(self): """ - Check default values are set up correctly + Check parameters can be given as dictionary """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + par_input = {"A_par": 5.1, "int_par": 1, "define_par": "Bike", @@ -72,10 +112,12 @@ def test_ManagedMcrun_init_set_parameters(self): mcrun_obj = ManagedMcrun("test.instr", foldername="test_folder", - executable_path="", + executable_path=executable_path, executable="", parameters=par_input) + os.chdir(current_work_dir) + self.assertEqual(mcrun_obj.parameters["A_par"], 5.1) self.assertEqual(mcrun_obj.parameters["int_par"], 1) self.assertEqual(mcrun_obj.parameters["define_par"], "Bike") @@ -83,17 +125,25 @@ def test_ManagedMcrun_init_set_parameters(self): def test_ManagedMcrun_init_set_custom_flags(self): """ - Check default values are set up correctly + Check custom_flags can be given by user """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + custom_flag_input = "-p" mcrun_obj = ManagedMcrun("test.instr", foldername="test_folder", - executable_path="", executable="mcrun", + executable_path=executable_path, custom_flags=custom_flag_input) + os.chdir(current_work_dir) + self.assertEqual(mcrun_obj.custom_flags, custom_flag_input) def test_ManagedMcrun_init_no_folder_error(self): @@ -103,24 +153,63 @@ def test_ManagedMcrun_init_no_folder_error(self): with self.assertRaises(NameError): mcrun_obj = ManagedMcrun("test.instr", mcrun_path="") + def test_ManagedMcrun_init_invalid_ncount_error(self): + """ + An error should occur if negative ncount is given + """ + with self.assertRaises(ValueError): + mcrun_obj = ManagedMcrun("test.instr", + foldername="test_folder", + mcrun_path="", + ncount=-8) + + def test_ManagedMcrun_init_invalid_mpi_error(self): + """ + An error should occur if negative mpi is given + """ + with self.assertRaises(ValueError): + mcrun_obj = ManagedMcrun("test.instr", + foldername="test_folder", + mcrun_path="", + mpi=-8) + + def test_ManagedMcrun_init_invalid_parameters_error(self): + """ + An error should occur if parameters is given as non dict + """ + with self.assertRaises(RuntimeError): + mcrun_obj = ManagedMcrun("test.instr", + foldername="test_folder", + mcrun_path="", + parameters=[1, 2, 3]) + @unittest.mock.patch("subprocess.run") def test_ManagedMcrun_run_simulation_basic(self, mock_sub): """ Check a basic system call is correct """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + mcrun_obj = ManagedMcrun("test.instr", foldername="test_folder", - executable_path="path", + executable_path=executable_path, executable="mcrun",) + os.chdir(current_work_dir) + mcrun_obj.run_simulation() current_directory = os.getcwd() - expected_folder_path = os.path.join(current_directory, "test_folder") + expected_folder_path = os.path.join(THIS_DIR, "test_folder") # a double space because of a missing option - expected_call = ("path/mcrun -c -n 1000000 " + executable = os.path.join(executable_path, "mcrun") + expected_call = (executable + " -c -n 1000000 " + "-d " + expected_folder_path + " test.instr") mock_sub.assert_called_once_with(expected_call, @@ -135,18 +224,27 @@ def test_ManagedMcrun_run_simulation_basic_path(self, mock_sub): Check a basic system call is correct, with different path format """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas", "") + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + mcrun_obj = ManagedMcrun("test.instr", foldername="test_folder", - executable_path="path/", + executable_path=executable_path, executable="mcrun",) + os.chdir(current_work_dir) + mcrun_obj.run_simulation() current_directory = os.getcwd() - expected_folder_path = os.path.join(current_directory, "test_folder") + expected_folder_path = os.path.join(THIS_DIR, "test_folder") + executable = os.path.join(executable_path, "mcrun") # a double space because of a missing option - expected_call = ("path/mcrun -c -n 1000000 " + expected_call = (executable + " -c -n 1000000 " + "-d " + expected_folder_path + " test.instr") mock_sub.assert_called_once_with(expected_call, @@ -159,23 +257,34 @@ def test_ManagedMcrun_run_simulation_basic_path(self, mock_sub): def test_ManagedMcrun_run_simulation_no_standard(self, mock_sub): """ Check a non standard system call is correct + + Here multiple options are used and ncount is a float that should + be rounded by the class. """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + mcrun_obj = ManagedMcrun("test.instr", foldername="test_folder", - executable_path="path", + executable_path=executable_path, executable="mcrun", mpi=7, ncount=48.4, custom_flags="-fo") + os.chdir(current_work_dir) + mcrun_obj.run_simulation() - current_directory = os.getcwd() - expected_folder_path = os.path.join(current_directory, "test_folder") + expected_folder_path = os.path.join(THIS_DIR, "test_folder") # a double space because of a missing option - expected_call = ("path/mcrun -c -n 48 --mpi=7 " + executable = os.path.join(executable_path, "mcrun") + expected_call = (executable + " -c -n 48 --mpi=7 " + "-d " + expected_folder_path + " -fo test.instr") mock_sub.assert_called_once_with(expected_call, @@ -190,9 +299,15 @@ def test_ManagedMcrun_run_simulation_parameters(self, mock_sub): Check a run with parameters is correct """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + mcrun_obj = ManagedMcrun("test.instr", foldername="test_folder", - executable_path="path", + executable_path=executable_path, executable="mcrun", mpi=7, ncount=48.4, @@ -201,12 +316,15 @@ def test_ManagedMcrun_run_simulation_parameters(self, mock_sub): "BC": "car", "th": "\"toy\""}) + os.chdir(current_work_dir) # Reset work directory + mcrun_obj.run_simulation() - current_directory = os.getcwd() - expected_folder_path = os.path.join(current_directory, "test_folder") + expected_folder_path = os.path.join(THIS_DIR, "test_folder") # a double space because of a missing option - expected_call = ("path/mcrun -c -n 48 --mpi=7 " + executable = os.path.join(executable_path, "mcrun") + + expected_call = (executable + " -c -n 48 --mpi=7 " + "-d " + expected_folder_path + " -fo test.instr " + "A=2 BC=car th=\"toy\"") @@ -219,12 +337,18 @@ def test_ManagedMcrun_run_simulation_parameters(self, mock_sub): @unittest.mock.patch("subprocess.run") def test_ManagedMcrun_run_simulation_compile(self, mock_sub): """ - Check a run with parameters is correct + Check run with force_compile set to False works """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + mcrun_obj = ManagedMcrun("test.instr", foldername="test_folder", - executable_path="path", + executable_path=executable_path, executable="mcrun", mpi=7, ncount=48.4, @@ -234,13 +358,16 @@ def test_ManagedMcrun_run_simulation_compile(self, mock_sub): "BC": "car", "th": "\"toy\""}) + os.chdir(current_work_dir) + mcrun_obj.run_simulation() current_directory = os.getcwd() - expected_folder_path = os.path.join(current_directory, "test_folder") + expected_folder_path = os.path.join(THIS_DIR, "test_folder") + executable = os.path.join(executable_path, "mcrun") # a double space because of a missing option - expected_call = ("path/mcrun -n 48 --mpi=7 " + expected_call = (executable + " -n 48 --mpi=7 " + "-d " + expected_folder_path + " -fo test.instr " + "A=2 BC=car th=\"toy\"") @@ -253,23 +380,30 @@ def test_ManagedMcrun_run_simulation_compile(self, mock_sub): def test_ManagedMcrun_load_data_PSD4PI(self): """ Use test_data_set to test load_data for PSD_4PI - """ - mcrun_obj = ManagedMcrun("test.instr", - foldername="test_data_set", - mcrun_path="path") + test_data_set contains three data files and some junk, the mccode.sim + file contains names of the data files so only these are loaded. + """ THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder + mcrun_obj = ManagedMcrun("test.instr", + foldername="test_data_set", + executable_path=executable_path, + mcrun_path="path") + results = mcrun_obj.load_results() os.chdir(current_work_dir) # Reset work directory + # Check three data objects are loaded self.assertEqual(len(results), 3) + # Check properties of PSD_4PI data PSD_4PI = results[0] self.assertEqual(PSD_4PI.name, "PSD_4PI") @@ -287,21 +421,25 @@ def test_ManagedMcrun_load_data_PSD(self): Use test_data_set to test load_data for PSD """ - mcrun_obj = ManagedMcrun("test.instr", - foldername="test_data_set", - mcrun_path="path") - THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder + mcrun_obj = ManagedMcrun("test.instr", + foldername="test_data_set", + executable_path=executable_path, + mcrun_path="path") + results = mcrun_obj.load_results() os.chdir(current_work_dir) # Reset work directory - # Check other properties + # Check three data objects are loaded + self.assertEqual(len(results), 3) + # Check properties of PSD data PSD = results[1] self.assertEqual(PSD.name, "PSD") @@ -319,21 +457,25 @@ def test_ManagedMcrun_load_data_L_mon(self): Use test_data_set to test load_data for L_mon """ - mcrun_obj = ManagedMcrun("test.instr", - foldername="test_data_set", - mcrun_path="path") - THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder + mcrun_obj = ManagedMcrun("test.instr", + foldername="test_data_set", + executable_path=executable_path, + mcrun_path="path") + results = mcrun_obj.load_results() os.chdir(current_work_dir) # Reset work directory - # Check other properties + # Check three data objects are loaded + self.assertEqual(len(results), 3) + # Check properties of L_mon L_mon = results[2] self.assertEqual(L_mon.name, "L_mon") @@ -352,22 +494,23 @@ def test_ManagedMcrun_load_data_L_mon_direct(self): Use test_data_set to test load_data for L_mon with direct path """ - mcrun_obj = ManagedMcrun("test.instr", - foldername="test_data_set", - mcrun_path="path") - THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder + mcrun_obj = ManagedMcrun("test.instr", + foldername="test_data_set", + executable_path=executable_path, + mcrun_path="path") + load_path = os.path.join(THIS_DIR, "test_data_set") results = mcrun_obj.load_results(load_path) os.chdir(current_work_dir) # Reset work directory - # Check other properties - + # Check properties of L_mon L_mon = results[2] self.assertEqual(L_mon.name, "L_mon") @@ -386,16 +529,18 @@ def test_ManagedMcrun_load_data_L_mon_direct_error(self): Check an error occurs when directory has no mccode.sim """ - mcrun_obj = ManagedMcrun("test.instr", - foldername="test_data_set", - mcrun_path="path") - THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder - load_path = os.path.join(THIS_DIR, "non_exsistent_dataset") + mcrun_obj = ManagedMcrun("test.instr", + foldername="test_data_set", + executable_path=executable_path, + mcrun_path="path") + + load_path = os.path.join(THIS_DIR, "non_existent_dataset") with self.assertRaises(NameError): results = mcrun_obj.load_results(load_path) @@ -406,15 +551,17 @@ def test_ManagedMcrun_load_data_L_mon_empty_error(self): Check an error occurs when pointed to empty directory """ - mcrun_obj = ManagedMcrun("test.instr", - foldername="test_data_set", - mcrun_path="path") - THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder + mcrun_obj = ManagedMcrun("test.instr", + foldername="test_data_set", + executable_path=executable_path, + mcrun_path="path") + load_path = os.path.join(THIS_DIR, "/dummy_mcstas") with self.assertRaises(NameError): results = mcrun_obj.load_results(load_path) From 2400193e9b2f95d81651b47c766e021a3751355d Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 12 Jan 2021 21:27:28 +0100 Subject: [PATCH 121/403] Updated functions after review from Celine Durniak, much appreciated! Updates to tests for configurator and functions Added input sanitation for configruation Improved doc strings for tests, mainly for improved input sanitation Added check that load_data gets a existing foldername --- mcstasscript/interface/functions.py | 40 +++++++++-- mcstasscript/tests/test_Configurator.py | 32 ++++++--- mcstasscript/tests/test_functions.py | 89 ++++++++++++++++++++----- 3 files changed, 132 insertions(+), 29 deletions(-) diff --git a/mcstasscript/interface/functions.py b/mcstasscript/interface/functions.py index 559de253..c4214982 100644 --- a/mcstasscript/interface/functions.py +++ b/mcstasscript/interface/functions.py @@ -13,23 +13,23 @@ def name_search(name, data_list): McStasData objects are returned. The index of certain datasets in the data_list can change if - additional monitors are added so it is more convinient to access + additional monitors are added so it is more convenient to access the data files using their names. Parameters ---------- name : string - Name of the dataset to be retrived (component_name) + Name of the dataset to be retrieved (component_name) data_list : List of McStasData instances List of datasets to search """ if type(data_list) is not list: - raise InputError( + raise RuntimeError( "name_search function needs list of McStasData as input") if not type(data_list[0]) == McStasData: - raise InputError( + raise RuntimeError( "name_search function needs objects of type McStasData as input.") # Search by component name @@ -92,6 +92,10 @@ def load_data(foldername): foldername : string Name of the folder from which to load data """ + if not os.path.isdir(foldername): + raise RuntimeError("Could not find specified foldername for" + + "load_data:" + str(foldername)) + return managed_mcrun.load_results(foldername) @@ -111,6 +115,12 @@ class Configurator: set_mcrun_path(string) sets mcrun path + + set_mcxtrace_path(string) + sets mcxtrace path + + set_mxrun_path(string) + sets mxrun path set_line_length(int) sets maximum line length to given int @@ -200,6 +210,9 @@ def set_mcstas_path(self, path): Path to the mcstas directory containing "sources", "optics", ... """ + if not os.path.isdir(path): + raise RuntimeError("Invalid path given to set_mcstas_path:" + str(path)) + # read entire configuration file config = self._read_yaml() @@ -219,6 +232,9 @@ def set_mcrun_path(self, path): Path to the mcrun executable """ + if not os.path.isdir(path): + raise RuntimeError("Invalid path given to set_mcrun_path:" + str(path)) + # read entire configuration file config = self._read_yaml() @@ -238,6 +254,9 @@ def set_mcxtrace_path(self, path): Path to the mcxtrace directory containing "sources", "optics", ... """ + if not os.path.isdir(path): + raise RuntimeError("Invalid path given to set_mcxtrace_path:" + str(path)) + # read entire configuration file config = self._read_yaml() @@ -257,6 +276,10 @@ def set_mxrun_path(self, path): Path to the mxrun executable """ + if not os.path.isdir(path): + raise RuntimeError("Invalid path given to set_mxrun_path: " + + str(path)) + # read entire configuration file config = self._read_yaml() @@ -276,6 +299,15 @@ def set_line_length(self, line_length): maximum line length for output """ + if not isinstance(line_length, int): + raise ValueError("Given line length in set_line_length not an " + + "integer.") + + if line_length < 1: + raise ValueError("Line length specified in set_line_length must" + + " be positve, given length: " + + str(line_length)) + # read entire configuration file config = self._read_yaml() diff --git a/mcstasscript/tests/test_Configurator.py b/mcstasscript/tests/test_Configurator.py index 15f48235..592b0746 100644 --- a/mcstasscript/tests/test_Configurator.py +++ b/mcstasscript/tests/test_Configurator.py @@ -105,13 +105,16 @@ def test_set_mcrun_path(self): This test checks that setting the mcrun path works """ test_name = "test_configuration" - my_configurator = setup_configurator(test_name) + my_configurator = setup_configurator(test_name) - my_configurator.set_mcrun_path("/new/mcrun_path/") + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + dummy_mcstas_path = os.path.join(THIS_DIR, "dummy_mcstas") + + my_configurator.set_mcrun_path(dummy_mcstas_path) new_config = my_configurator._read_yaml() - self.assertEqual(new_config["paths"]["mcrun_path"], "/new/mcrun_path/") + self.assertEqual(new_config["paths"]["mcrun_path"], dummy_mcstas_path) # remove the testing configuration file setup_expected_file(test_name) @@ -121,14 +124,17 @@ def test_set_mcstas_path(self): This test checks that setting the mcstas path works """ test_name = "test_configuration" - my_configurator = setup_configurator(test_name) + my_configurator = setup_configurator(test_name) + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + dummy_mcstas_path = os.path.join(THIS_DIR, "dummy_mcstas") - my_configurator.set_mcstas_path("/new/mcstas_path/") + my_configurator.set_mcstas_path(dummy_mcstas_path) new_config = my_configurator._read_yaml() self.assertEqual(new_config["paths"]["mcstas_path"], - "/new/mcstas_path/") + dummy_mcstas_path) # remove the testing configuration file setup_expected_file(test_name) @@ -140,11 +146,14 @@ def test_set_mcrun_path(self): test_name = "test_configuration" my_configurator = setup_configurator(test_name) - my_configurator.set_mxrun_path("/new/mxrun_path/") + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + dummy_mcstas_path = os.path.join(THIS_DIR, "dummy_mcstas") + + my_configurator.set_mxrun_path(dummy_mcstas_path) new_config = my_configurator._read_yaml() - self.assertEqual(new_config["paths"]["mxrun_path"], "/new/mxrun_path/") + self.assertEqual(new_config["paths"]["mxrun_path"], dummy_mcstas_path) # remove the testing configuration file setup_expected_file(test_name) @@ -156,12 +165,15 @@ def test_set_mcstas_path(self): test_name = "test_configuration" my_configurator = setup_configurator(test_name) - my_configurator.set_mcxtrace_path("/new/mcxtrace_path/") + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + dummy_mcstas_path = os.path.join(THIS_DIR, "dummy_mcstas") + + my_configurator.set_mcxtrace_path(dummy_mcstas_path) new_config = my_configurator._read_yaml() self.assertEqual(new_config["paths"]["mcxtrace_path"], - "/new/mcxtrace_path/") + dummy_mcstas_path) # remove the testing configuration file setup_expected_file(test_name) diff --git a/mcstasscript/tests/test_functions.py b/mcstasscript/tests/test_functions.py index 40db8f6a..5e005d28 100644 --- a/mcstasscript/tests/test_functions.py +++ b/mcstasscript/tests/test_functions.py @@ -11,8 +11,17 @@ from mcstasscript.data.data import McStasMetaData from mcstasscript.data.data import McStasPlotOptions - def set_dummy_MetaData_1d(name): + """ + Sets up a dummy MetaData object for a 1d dataset + + Parameters + ---------- + + name : str + base for filename, .dat will be appended + """ + meta_data = McStasMetaData() meta_data.component_name = name meta_data.dimension = 50 @@ -22,6 +31,15 @@ def set_dummy_MetaData_1d(name): def set_dummy_McStasData_1d(name): + """ + Sets up a dummy McStasData object for a 1d dataset + + Parameters + ---------- + + name : str + base for filename, .dat will be appended + """ meta_data = set_dummy_MetaData_1d(name) intensity = np.arange(20) @@ -33,6 +51,15 @@ def set_dummy_McStasData_1d(name): def set_dummy_MetaData_2d(name): + """ + Sets up a dummy MetaData object for a 2d dataset + + Parameters + ---------- + + name : str + base for filename, .dat will be appended + """ meta_data = McStasMetaData() meta_data.component_name = name meta_data.dimension = [50, 100] @@ -42,6 +69,16 @@ def set_dummy_MetaData_2d(name): def set_dummy_McStasData_2d(name): + """ + Sets up a dummy McStasData object for a 2d dataset + + Parameters + ---------- + + name : str + base for filename, .dat will be appended + """ + meta_data = set_dummy_MetaData_2d(name) intensity = np.arange(20).reshape(4, 5) @@ -52,6 +89,9 @@ def set_dummy_McStasData_2d(name): def setup_McStasData_array(): + """ + Sets up an list of McStasData objects, similar to simulation output + """ data_list = [] @@ -74,6 +114,11 @@ def setup_McStasData_array(): def setup_McStasData_array_repeat(): + """ + Sets up an list of McStasData objects, similar to simulation output + + Have Hero twice in naming, testing search capability + """ data_list = [] @@ -104,7 +149,9 @@ class Test_name_search(unittest.TestCase): def test_name_search_read(self): """ - Test simple case + Test that Hero object can be found and check the unique dimension + + Here the name is used """ data_list = setup_McStasData_array() @@ -115,7 +162,9 @@ def test_name_search_read(self): def test_name_search_filename_read(self): """ - Test simple case + Test that Hero object can be found and check the unique dimension + + Here the name of the datafile is used """ data_list = setup_McStasData_array() @@ -126,7 +175,10 @@ def test_name_search_filename_read(self): def test_name_search_read_repeat(self): """ - Test simple case with repeat name + Test that Hero object can be found and check the unique dimension + Here the used data set has two monitors with Hero in the name + + Here the name of the monitor is used """ data_list = setup_McStasData_array_repeat() @@ -135,29 +187,34 @@ def test_name_search_read_repeat(self): self.assertEqual(hero_object.metadata.dimension, 123) - def test_name_search_read_dubplicate(self): + def test_name_search_read_duplicate(self): """ - Test simple case with duplicated name, should return list + Test simple case with duplicated name, search should return list """ data_list = setup_McStasData_array_repeat() - + + # Adds another dataset with a name already in the data_list hero_object = set_dummy_McStasData_2d("Big_Hero") hero_object.metadata.dimension = 321 hero_object.plot_options.colormap = "very hot" data_list.append(hero_object) - + + # Now two McStasData objects match the Big_Hero name results = name_search("Big_Hero", data_list) + self.assertEqual(type(results), list) + # Check two results are returned self.assertEqual(len(results), 2) + # Check they have the correct dimensions self.assertEqual(results[0].metadata.dimension, 123) self.assertEqual(results[1].metadata.dimension, 321) def test_name_search_read_error(self): """ - Test simple case + Check an NameError is returned when no match is found """ data_list = setup_McStasData_array() @@ -167,22 +224,23 @@ def test_name_search_read_error(self): def test_name_search_type_error_not_list(self): """ - Test simple case + Check error is given even when data list is just single object """ data_list = set_dummy_McStasData_2d("Last_object_2d") - with self.assertRaises(NameError): + with self.assertRaises(RuntimeError): hero_object = name_search("Hero", data_list) def test_name_search_type_error_not_McStasData(self): """ - Test simple case + Checks that an error is returned if the given dataset contains + non McStasData objects """ data_list = [1, 2, 3] - with self.assertRaises(NameError): + with self.assertRaises(RuntimeError): hero_object = name_search(1, data_list) @@ -196,7 +254,7 @@ class Test_name_plot_options(unittest.TestCase): def test_name_plot_options_simple(self): """ - Test simple case + Check set_plot_options can modify given attribute """ data_list = setup_McStasData_array() @@ -206,7 +264,8 @@ def test_name_plot_options_simple(self): def test_name_plot_options_duplicate(self): """ - Test case where several datasets are modified + Test case where several McStasData objects are modified since + the internal name_search finds multiple matches """ data_list = setup_McStasData_array() From b827ae4d46187d84b3a9e48fddefc4578dd1720d Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 13 Jan 2021 10:55:13 +0100 Subject: [PATCH 122/403] Fixed issues with data classes after review from Celine Durniak, much appreciated! Improved docstrings and input sanitation (for example checks chosen matplotlib colormap exists) Fixed typos Added additional test cases Added additional comments --- mcstasscript/data/data.py | 166 +++++++++++++++++----- mcstasscript/tests/test_McStasData.py | 89 ++++++++++-- mcstasscript/tests/test_McStasMetaData.py | 6 +- mcstasscript/tests/test_Plotter.py | 2 +- mcstasscript/tests/test_functions.py | 10 +- 5 files changed, 217 insertions(+), 56 deletions(-) diff --git a/mcstasscript/data/data.py b/mcstasscript/data/data.py index 5dc37ad4..ff099f6a 100644 --- a/mcstasscript/data/data.py +++ b/mcstasscript/data/data.py @@ -1,3 +1,5 @@ +import matplotlib + class McStasMetaData: """ Class for holding metadata for McStas dataset, is to be read from @@ -20,10 +22,10 @@ class McStasMetaData: limits : List Limits for monitor, length=2 for 1d data and length=4 for 2d - data + data, for example spatial or time limits for monitor title : str - Title of monitor when plotting + Title of monitor when plotting, placed above plot xlabel : str Text for xlabel when plotting @@ -34,7 +36,7 @@ class McStasMetaData: Methods ------- add_info(key,value) - Adds a element to the info dictionary + Adds an element to the info dictionary extract_info() Unpacks the information in info to class attributes @@ -87,9 +89,7 @@ def extract_info(self): if "filename" in self.info: self.filename = self.info["filename"].rstrip() else: - # Monitors without output files does exist - #raise NameError( - # "No filename found in mccode data section!") + # Monitors without output files do exist print("The component named \"" + self.component_name + "\" had no data file and will not be loaded.") self.filename = "" @@ -97,14 +97,14 @@ def extract_info(self): # Extract limits self.limits = [] if "xylimits" in self.info: - # find the four numbers + # find the four numbers xmin, xmax, ymin, ymax temp_str = self.info["xylimits"] limits_string = temp_str.split() for limit in limits_string: self.limits.append(float(limit)) if "xlimits" in self.info: - # find the two numbers + # find the two numbers, xmin, xmax temp_str = self.info["xlimits"] limits_string = temp_str.split() for limit in limits_string: @@ -137,16 +137,43 @@ class McStasPlotOptions: Attributes ---------- - log : bool + log : bool, default False To plot on logarithmic or not, standard is linear - orders_of_mag : float + orders_of_mag : float, default 300 If plotting on log scale, restrict max range to orders_of_mag below maximum value - colormap : string + colormap : string, default jet Chosen colormap for 2d data, should be available in matplotlib + show_colorbar : bool, default True + Selects if colorbar should be shown or not + + cut_max : float, default 1 + Factor multiplied onto maximum data value to set upper plot limit + + cut_min : float, default 0 + Removes given fraction of the plot range from the lower limit + + x_limit_multiplier : float, default 1 + Multiplies x axis limits with factor, useful for unit changes + + y_limit_multiplier : float, default 1 + Multiplies y axis limits with factor, useful for unit changes + + custom_ylim_bottom : bool, default False + Indicates whether a manual lower limit for y axis has been set + + custom_ylim_top : bool, default False + Indicates whether a manual upper limit for y axis has been set + + custom_xlim_left : bool, default False + Indicates whether a manual lower limit for x axis has been set + + custom_xlim_right : bool, default False + Indicates whether a manual upper limit for x axis has been set + Methods ------- set_options(keyword arguments) @@ -164,64 +191,128 @@ def __init__(self, *args, **kwargs): self.cut_min = 0 self.x_limit_multiplier = 1 self.y_limit_multiplier = 1 - - self.custom_ylim_top = False + self.custom_ylim_bottom = False + self.custom_ylim_top = False self.custom_xlim_left = False self.custom_xlim_right = False def set_options(self, **kwargs): - """Set custom values for plotting preferences""" + """ + Set custom values for plotting preferences + + Keyword arguments + ----------------- + + log : bool, default False + To plot on logarithmic or not, standard is linear + + orders_of_mag : float, default 300 + If plotting on log scale, restrict max range to orders_of_mag + below maximum value + + colormap : string, default jet + Chosen colormap for 2d data, should be available in matplotlib + + show_colorbar : bool, default True + Selects if colorbar should be shown or not + + cut_max : float, default 1 + Factor multiplied onto maximum data value to set upper plot limit + + cut_min : float, default 0 + Removes given fraction of the plot range from the lower limit + + x_limit_multiplier : float, default 1 + Multiplies x axis limits with factor, useful for unit changes + + y_limit_multiplier : float, default 1 + Multiplies y axis limits with factor, useful for unit changes + + bottom_lim : float + Set manual lower limit for y axis + + top_lim : float + Set manual upper limit for y axis + + left_lim : float + Set manual lower limit for x axis + + right_lim : float + Set manual upper limit for x axis + + """ if "log" in kwargs: - log_input = kwargs["log"] - if type(log_input) == int: - if log_input == 0: - self.log = False - else: - self.log = True - elif type(log_input) == bool: - self.log = log_input - else: - raise NameError( - "Log input must be either Int or Bool.") + self.log = bool(kwargs["log"]) if "orders_of_mag" in kwargs: self.orders_of_mag = kwargs["orders_of_mag"] + if not isinstance(self.orders_of_mag, (float, int)): + raise ValueError("orders_of_mag must be a number, got: " + + str(self.orders_of_mag)) if "colormap" in kwargs: + all_colormaps = matplotlib.pyplot.colormaps() self.colormap = kwargs["colormap"] + if self.colormap not in all_colormaps: + raise ValueError("Chosen colormap not available in " + + "matplotlib, was: " + + str(self.colormap)) if "show_colorbar" in kwargs: - self.show_colorbar = kwargs["show_colorbar"] + self.show_colorbar = bool(kwargs["show_colorbar"]) if "cut_max" in kwargs: self.cut_max = kwargs["cut_max"] + if not isinstance(self.cut_max, (float, int)): + raise ValueError("cut_max has to be a number, was given: " + + str(self.cut_max)) if "cut_min" in kwargs: self.cut_min = kwargs["cut_min"] + if not isinstance(self.cut_min, (float, int)): + raise ValueError("cut_min has to be a number, was given: " + + str(self.cut_min)) if "x_axis_multiplier" in kwargs: self.x_limit_multiplier = kwargs["x_axis_multiplier"] + if not isinstance(self.x_limit_multiplier, (float, int)): + raise ValueError("x_limit_multiplier has to be a number, was " + + "given: " + str(self.x_limit_multiplier)) if "y_axis_multiplier" in kwargs: self.y_limit_multiplier = kwargs["y_axis_multiplier"] + if not isinstance(self.y_limit_multiplier, (float, int)): + raise ValueError("y_limit_multiplier has to be a number, was " + + "given: " + str(self.y_limit_multiplier)) if "top_lim" in kwargs: self.top_lim = kwargs["top_lim"] self.custom_ylim_top = True + if not isinstance(self.top_lim, (float, int)): + raise ValueError("top_lim has to be a number, was " + + "given: " + str(self.top_lim)) if "bottom_lim" in kwargs: self.bottom_lim = kwargs["bottom_lim"] self.custom_ylim_bottom = True - + if not isinstance(self.bottom_lim, (float, int)): + raise ValueError("bottom_lim has to be a number, was " + + "given: " + str(self.bottom_lim)) + if "left_lim" in kwargs: self.left_lim = kwargs["left_lim"] self.custom_xlim_left = True + if not isinstance(self.left_lim, (float, int)): + raise ValueError("left_lim has to be a number, was " + + "given: " + str(self.left_lim)) if "right_lim" in kwargs: self.right_lim = kwargs["right_lim"] self.custom_xlim_right = True - + if not isinstance(self.right_lim, (float, int)): + raise ValueError("right_lim has to be a number, was " + + "given: " + str(self.right_lim)) class McStasData: @@ -238,11 +329,11 @@ class McStasData: Name of component, extracted from metadata Intensity : numpy array - Intensity data [n/s] in 1d or 2d numpy array, dimension in + Intensity data [neutrons/s] in 1d or 2d numpy array, dimension in metadata Error : numpy array - Error data [n/s] in 1d or 2d numpy array, same dimensions as + Error data [neutrons/s] in 1d or 2d numpy array, same dimensions as Intensity Ncount : numpy array @@ -263,7 +354,7 @@ class McStasData: set_title : string sets title of data for plotting - set_optons : keyword arguments + set_options : keyword arguments sets plot options, keywords passed to McStasPlotOptions method """ @@ -277,26 +368,23 @@ def __init__(self, metadata, intensity, error, ncount, **kwargs): metadata : McStasMetaData instance Holds the metadata for the dataset - name : str - Name of component, extracted from metadata - intensity : numpy array - Intensity data [n/s] in 1d or 2d numpy array, dimension in + Intensity data [neutrons/s] in 1d or 2d numpy array, dimension in metadata error : numpy array - Error data [n/s] in 1d or 2d numpy array, same dimensions + Error data [neutrons/s] in 1d or 2d numpy array, same dimensions as Intensity ncount : numpy array - Number of rays in bin, 1d or 2d numpy array, same - dimensions as Intensity + Number of rays in bin, 1d or 2d numpy array, same dimensions as + Intensity kwargs : keyword arguments xaxis is required for 1d data """ - # attatch meta data + # attach meta data self.metadata = metadata # get name from metadata self.name = self.metadata.component_name diff --git a/mcstasscript/tests/test_McStasData.py b/mcstasscript/tests/test_McStasData.py index f6add939..0335dd37 100644 --- a/mcstasscript/tests/test_McStasData.py +++ b/mcstasscript/tests/test_McStasData.py @@ -6,6 +6,9 @@ def set_dummy_MetaData_1d(): + """ + Sets up simple McStasMetaData object with dimension, 1d case + """ meta_data = McStasMetaData() meta_data.component_name = "component for 1d" meta_data.dimension = 50 @@ -14,6 +17,9 @@ def set_dummy_MetaData_1d(): def set_dummy_McStasData_1d(): + """ + Sets up simple McStasData object, 1d case + """ meta_data = set_dummy_MetaData_1d() intensity = np.arange(20) @@ -25,6 +31,9 @@ def set_dummy_McStasData_1d(): def set_dummy_MetaData_2d(): + """ + Sets up simple McStasMetaData object with dimensions, 2d case + """ meta_data = McStasMetaData() meta_data.component_name = "test a component" meta_data.dimension = [50, 100] @@ -33,6 +42,9 @@ def set_dummy_MetaData_2d(): def set_dummy_McStasData_2d(): + """ + Sets up simple McStasData object, 2d case + """ meta_data = set_dummy_MetaData_2d() intensity = np.arange(20).reshape(4, 5) @@ -44,12 +56,12 @@ def set_dummy_McStasData_2d(): class TestMcStasData(unittest.TestCase): """ - Various test of McStasData class + Various tests of McStasData class """ def test_McStasData_init_1d(self): """ - Test that newly created McStasMetaData has correct type + Test that newly created McStasMetaData has correct names, 1d case """ data = set_dummy_McStasData_1d() @@ -59,7 +71,8 @@ def test_McStasData_init_1d(self): def test_McStasData_init_values(self): """ - Test that newly created McStasMetaData has correct type + Test that newly created McStasData has expected data, 1d case + Here checking a single data point """ data = set_dummy_McStasData_1d() @@ -69,9 +82,27 @@ def test_McStasData_init_values(self): self.assertEqual(data.Ncount[3], 6) self.assertEqual(data.xaxis[3], 15.0) + def test_McStasData_init_values_full(self): + """ + Test that newly created McStasData has expected data, 1d case + """ + + data = set_dummy_McStasData_1d() + + intensity = np.arange(20) + error = 0.5 * np.arange(20) + ncount = 2 * np.arange(20) + axis = np.arange(20) * 5.0 + + for index in range(len(data.Intensity)): + self.assertEqual(data.Intensity[index], intensity[index]) + self.assertEqual(data.Error[index], error[index]) + self.assertEqual(data.Ncount[index], ncount[index]) + self.assertEqual(data.xaxis[index], axis[index]) + def test_McStasData_init_2d_names(self): """ - Test that newly created McStasMetaData has correct type + Test that newly created McStasMetaData has correct names, 1d case """ data = set_dummy_McStasData_2d() @@ -81,7 +112,8 @@ def test_McStasData_init_2d_names(self): def test_McStasData_init_2d_values(self): """ - Test that newly created McStasMetaData has correct type + Test that newly created McStasData has expected data, 2d case + Here checking a single point """ data = set_dummy_McStasData_2d() @@ -90,6 +122,30 @@ def test_McStasData_init_2d_values(self): self.assertEqual(data.Error[2][3], 6.5) self.assertEqual(data.Ncount[2][3], 26) + def test_McStasData_init_2d_values_full(self): + """ + Test that newly created McStasData has expected data, 2d case + Here checking a entire dataset + """ + + data = set_dummy_McStasData_2d() + + intensity = np.arange(20).reshape(4, 5) + error = 0.5 * np.arange(20).reshape(4, 5) + ncount = 2 * np.arange(20).reshape(4, 5) + + shape = np.shape(data.Intensity) + + for index1 in range(shape[0]): + for index2 in range(shape[1]): + + self.assertEqual(data.Intensity[index1][index2], + intensity[index1][index2]) + self.assertEqual(data.Error[index1][index2], + error[index1][index2]) + self.assertEqual(data.Ncount[index1][index2], + ncount[index1][index2]) + def test_McStasData_set_info_title(self): """ Test that title can be set @@ -116,7 +172,7 @@ def test_McStasData_set_ylabel(self): def test_McStasData_set_log(self): """ - Test that newly created McStasMetaData has correct type + Test that log setting has correct type regardless of how it is given """ data = set_dummy_McStasData_2d() data.set_plot_options(log=True) @@ -131,9 +187,26 @@ def test_McStasData_set_log(self): self.assertIsInstance(data.plot_options.log, bool) self.assertTrue(data.plot_options.log) + def test_McStasData_set_show_colorbar(self): + """ + Test that log setting has correct type regardless of how it is given + """ + data = set_dummy_McStasData_2d() + data.set_plot_options(show_colorbar=True) + self.assertIsInstance(data.plot_options.show_colorbar, bool) + self.assertTrue(data.plot_options.show_colorbar) + + data.set_plot_options(show_colorbar=0) + self.assertIsInstance(data.plot_options.show_colorbar, bool) + self.assertFalse(data.plot_options.show_colorbar) + + data.set_plot_options(show_colorbar=1) + self.assertIsInstance(data.plot_options.show_colorbar, bool) + self.assertTrue(data.plot_options.show_colorbar) + def test_McStasData_set_orders_of_mag(self): """ - Test that newly created McStasMetaData has correct type + Test that orders_og_mag can be set correctly """ data = set_dummy_McStasData_2d() data.set_plot_options(orders_of_mag=5.2) @@ -141,7 +214,7 @@ def test_McStasData_set_orders_of_mag(self): def test_McStasData_set_colormap(self): """ - Test that newly created McStasMetaData has correct type + Test that colormap can be set correctly """ data = set_dummy_McStasData_2d() data.set_plot_options(colormap="hot") diff --git a/mcstasscript/tests/test_McStasMetaData.py b/mcstasscript/tests/test_McStasMetaData.py index aa7be2c0..0c73e3aa 100644 --- a/mcstasscript/tests/test_McStasMetaData.py +++ b/mcstasscript/tests/test_McStasMetaData.py @@ -5,7 +5,7 @@ class TestMcStasMetaData(unittest.TestCase): """ - Various test of McStasMetaData class + Various tests of McStasMetaData class """ def test_McStasMetaData_return_type(self): @@ -64,7 +64,7 @@ def test_McStasMetaData_add_info_ylabel(self): def test_McStasMetaData_long_read_1d(self): """ - Test that extact info can read appropriate info + Test that extact_info can read appropriate info, 1d case """ meta_data = McStasMetaData() meta_data.add_info("type", "array_1d(500)") @@ -90,7 +90,7 @@ def test_McStasMetaData_long_read_1d(self): def test_McStasMetaData_long_read_2d(self): """ - Test that extact info can read appropriate info + Test that extact_info can read appropriate info, 2d case """ meta_data = McStasMetaData() meta_data.add_info("type", "array_2d(500, 12)") diff --git a/mcstasscript/tests/test_Plotter.py b/mcstasscript/tests/test_Plotter.py index ac6a4092..3a6c7d90 100644 --- a/mcstasscript/tests/test_Plotter.py +++ b/mcstasscript/tests/test_Plotter.py @@ -394,7 +394,7 @@ def test_handle_kwargs_all_simple(self): test_value = {"log": True, "orders_of_mag": 15, "cut_min": 0.25, "cut_max": 0.8, - "colormap": "hot", "show_colorbar": "False", + "colormap": "hot", "show_colorbar": False, "x_limit_multiplier": 2.8, "y_limit_multiplier": 0.8} for option in known_plot: diff --git a/mcstasscript/tests/test_functions.py b/mcstasscript/tests/test_functions.py index 5e005d28..b646a60f 100644 --- a/mcstasscript/tests/test_functions.py +++ b/mcstasscript/tests/test_functions.py @@ -258,9 +258,9 @@ def test_name_plot_options_simple(self): """ data_list = setup_McStasData_array() - name_plot_options("Hero", data_list, colormap="very hot") + name_plot_options("Hero", data_list, colormap="Oranges") hero_object = name_search("Hero", data_list) - self.assertEqual(hero_object.plot_options.colormap, "very hot") + self.assertEqual(hero_object.plot_options.colormap, "Oranges") def test_name_plot_options_duplicate(self): """ @@ -276,13 +276,13 @@ def test_name_plot_options_duplicate(self): data_list.append(hero_object) - name_plot_options("Hero", data_list, colormap="cold") + name_plot_options("Hero", data_list, colormap="Blues") results = name_search("Hero", data_list) self.assertEqual(len(results), 2) - self.assertEqual(results[0].plot_options.colormap, "cold") - self.assertEqual(results[1].plot_options.colormap, "cold") + self.assertEqual(results[0].plot_options.colormap, "Blues") + self.assertEqual(results[1].plot_options.colormap, "Blues") class Test_load_data(unittest.TestCase): From d3f452d46cc8f59da7ec5c1e2a223615e2244f60 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 13 Jan 2021 11:04:58 +0100 Subject: [PATCH 123/403] Added input sanitation for creation of McStasData, here intensity, error and ncount should be numpy ndarrays. Thanks to Celine for the suggestion. --- mcstasscript/data/data.py | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/mcstasscript/data/data.py b/mcstasscript/data/data.py index ff099f6a..676fcda1 100644 --- a/mcstasscript/data/data.py +++ b/mcstasscript/data/data.py @@ -1,4 +1,5 @@ import matplotlib +import numpy as np class McStasMetaData: """ @@ -389,6 +390,13 @@ def __init__(self, metadata, intensity, error, ncount, **kwargs): # get name from metadata self.name = self.metadata.component_name # three basic arrays from positional arguments + if not isinstance(intensity, np.ndarray): + raise ValueError("intensity should be numpy array!") + if not isinstance(error, np.ndarray): + raise ValueError("error should be numpy array!") + if not isinstance(ncount, np.ndarray): + raise ValueError("ncount should be numpy array!") + self.Intensity = intensity self.Error = error self.Ncount = ncount From 7c4105a1647b1bf8e12886446d9e4e340fad7188 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 20 Jan 2021 11:30:36 +0100 Subject: [PATCH 124/403] Addressing review comments from Celine Durniak, much appreciated! The review concerns McStas objects and their tests. Fixed typos in docstrings and comments. Documented missing methods in docstrings. Added input sanitation for parameters, declare variable and some component methods. Added the option of specifying a float to set_AT instead of a list, as the most common use is just a distance in the z direction. Simplified path handling in component_reader Converted to built-in startswith method instead of adding my own method. Added a test for checking _freeze and _unfreeze methods on component. Added test for SPLIT number being a variable. Declare variable and parameter had different behavior in terms of spacing after type, this was simplified so only one convention is used, which incliudes no additional spaces. Ensured that tests fail when targets are changed after concern expressed by reviewer. --- mcstasscript/helper/component_reader.py | 102 ++++---- mcstasscript/helper/mcstas_objects.py | 228 ++++++++++++++---- mcstasscript/tests/test_ComponentReader.py | 60 ++--- mcstasscript/tests/test_Instr.py | 42 ++-- mcstasscript/tests/test_Instr_reader.py | 6 +- mcstasscript/tests/test_component.py | 104 ++++++-- mcstasscript/tests/test_declare_variable.py | 14 +- mcstasscript/tests/test_functions.py | 2 +- mcstasscript/tests/test_parameter_variable.py | 14 +- 9 files changed, 371 insertions(+), 201 deletions(-) diff --git a/mcstasscript/helper/component_reader.py b/mcstasscript/helper/component_reader.py index cb806f9f..daabd19f 100644 --- a/mcstasscript/helper/component_reader.py +++ b/mcstasscript/helper/component_reader.py @@ -19,15 +19,15 @@ def __init__(self): class ComponentReader: """ - Class for retriveing information on available McStas components + Class for retrieving information on available McStas components Recursively reads all component files in hardcoded list of folders that represents the component categories in McStas. The results are stored in a dictionary with ComponentInfo instances, the keys are the names of the components. After the components in the McStas installation are read, any - components pressent in the current work directory is read, - and these will overwrite exisiting information, consistent + components present in the current work directory is read, + and these will overwrite existing information, consistent with how McStas reads component definitions. """ @@ -48,10 +48,6 @@ def __init__(self, mcstas_path, input_path="."): """ - # add trailing / or \ depending on operating system - if mcstas_path[-1] is not "/" and mcstas_path[-1] is not "\\": - mcstas_path = os.path.join(mcstas_path, "") - # Hardcoded whitelist of foldernames folder_list = ["sources", "optics", @@ -67,6 +63,7 @@ def __init__(self, mcstas_path, input_path="."): for folder in folder_list: abs_path = os.path.join(mcstas_path, folder) + abs_path = os.path.abspath(abs_path) self._find_components(abs_path) # Will overwrite McStas components with definitions in input_folder @@ -86,15 +83,16 @@ def __init__(self, mcstas_path, input_path="."): print("input_path: ", input_directory) raise ValueError("Can't find given input_path," + " directory must exist.") - + """ + If components are present both in the McStas install and the + work directory, the version in the work directory is used. The user + is informed of this behavior when the instrument object is created. + """ overwritten_components = [] for file in os.listdir(input_directory): if file.endswith(".comp"): abs_path = os.path.join(input_directory, file) - if "/" in abs_path: - component_name = abs_path.split("/")[-1].split(".")[-2] - else: - component_name = abs_path.split("\\")[-1].split(".")[-2] + component_name = os.path.split(abs_path)[1].split(".")[-2] if component_name in self.component_path: overwritten_components.append(file) @@ -102,6 +100,7 @@ def __init__(self, mcstas_path, input_path="."): self.component_path[component_name] = abs_path self.component_category[component_name] = "Work directory" + # Report components found in the work directory and install to the user if len(overwritten_components) > 0: print("The following components are found in the work_directory" + " / input_path:") @@ -129,7 +128,10 @@ def show_components_in_category(self, category_input, **kwargs): """ if "line_length" in kwargs: - line_limit = kwargs["line_length"] + line_limit = int(kwargs["line_length"]) + if line_limit < 20: + raise ValueError("line_length should be more than 20 " + + "characters, was " + str(line_limit)) else: line_limit = 100 @@ -150,7 +152,7 @@ def show_components_in_category(self, category_input, **kwargs): for component in to_print: print(" " + component) else: - # Prints in collumns, maximum 4 and maximum line length line_liimt + # Prints in columns, maximum 4 and maximum line length line_limit columns = 5 total_line_length = 1000 while(total_line_length > line_limit): @@ -171,9 +173,9 @@ def show_components_in_category(self, category_input, **kwargs): total_line_length = 1 + sum(longest_name) + (columns-1)*3 - for line_nr in range(0, c_length): + for line_nr in range(c_length): print(" ", end="") - for col in range(0, columns-1): + for col in range(columns-1): this_name = column[col][line_nr] print(this_name + " "*(longest_name[col] - len(this_name)) @@ -228,6 +230,9 @@ def _find_components(self, absolute_path): """ + if not os.path.isabs(absolute_path): + raise RuntimeError("_find_components received non absolute path") + if not os.path.isdir(absolute_path): if absolute_path.endswith(".comp"): # read this file @@ -252,20 +257,20 @@ def read_component_file(self, absolute_path): result = ComponentInfo() - fo = open(absolute_path, "r") + file_o = open(absolute_path, "r") - cnt = 0 + line_number = 0 while True: - cnt += 1 - line = fo.readline() + line_number += 1 + line = file_o.readline() # find parameter comments - if self.line_starts_with(line, "* %P"): + if line.startswith("* %P"): while True: - this_line = fo.readline() + this_line = file_o.readline() - if self.line_starts_with(this_line, "DEFINE COMPONENT"): + if this_line.startswith("DEFINE COMPONENT"): # No more comments to read through break @@ -308,9 +313,9 @@ def read_component_file(self, absolute_path): result.parameter_comments[variable_name] = comment # find definition parameters and their values - if (self.line_starts_with(line.strip(), "DEFINITION PARAMETERS") - or self.line_starts_with(line.strip(), - "SETTING PARAMETERS")): + if (line.strip().startswith("DEFINITION PARAMETERS") + or line.strip().startswith("SETTING PARAMETERS")): + line = line.split("//")[0] # Remove comments parts = line.split("(") @@ -350,16 +355,16 @@ def read_component_file(self, absolute_path): if part == "": continue - if self.line_starts_with(part, "//"): + if part.startswith("//"): break_now = True continue - if self.line_starts_with(part, "/*"): + if part.startswith("/*"): break_now = True continue if "=" not in part: - # no defualt value, required parameter + # no default value, required parameter result.parameter_names.append(part) result.parameter_defaults[part] = None result.parameter_types[part] = temp_par_type @@ -373,8 +378,8 @@ def read_component_file(self, absolute_path): try: par_value = float(par_value) except: - par_value = par_value # Could change the type + par_value = par_value elif temp_par_type is "int": par_value = int(par_value) @@ -385,27 +390,26 @@ def read_component_file(self, absolute_path): if break_now: break - new_line = fo.readline().split("//")[0] + new_line = file_o.readline().split("//")[0] parameter_parts = new_line.split(",") parameter_parts = self.correct_for_brackets(parameter_parts) - if self.line_starts_with(line, "DECLARE"): + if line.startswith("DECLARE"): break - if self.line_starts_with(line, "TRACE"): + if line.startswith("TRACE"): break - if cnt == 1000: + if line_number == 4000: break - fo.close() + file_o.close() result.name = os.path.split(absolute_path)[1].split(".")[-2] tail = os.path.split(absolute_path)[0] result.category = os.path.split(tail)[1] - """ To lower memory use one could remove all comments and units that does not correspond to a found parameter name. @@ -414,15 +418,24 @@ def read_component_file(self, absolute_path): return result def correct_for_brackets(self, parameter_parts): + """ + Given list of string elements, correct for brackets will + combine terms until curly brackets are balanced, for example: + + ["A", "{B", "C", "D}", "E"] would return ["A", "{B,C,D}", "E"] + + Default values of vectors can be given in such a manner in + McStas components, and without this each part would be recognized + as different parameters. + """ corrected_parts = [] - current_part = "" index = 0 while True: current_part = parameter_parts[index] inner_index = 0 while True: - if (current_part.count("{") == current_part.count("}")): + if current_part.count("{") == current_part.count("}"): corrected_parts.append(current_part) index += inner_index break @@ -436,17 +449,4 @@ def correct_for_brackets(self, parameter_parts): break return corrected_parts - - def line_starts_with(self, line, string): - """ - Helper method that checks if a string is the start of a line - - """ - if len(line) < len(string): - return False - - if line[0:len(string)] == string: - return True - else: - return False diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index 2f71e4cc..96f420b1 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -4,7 +4,7 @@ class parameter_variable: """ - Class describing a input parameter in McStas instrument + Class describing an input parameter in McStas instrument McStas input parameters are of default type double, but can be cast. If two positional arguments are given, the first is the @@ -35,6 +35,18 @@ class parameter_variable: def __init__(self, *args, **kwargs): """Initializing mcstas parameter object + Examples + -------- + + Creates a parameter with name wavelength and associated comment + A = parameter_variable("wavelength", comment="wavelength in [AA]") + + Creates a parameter with name A3 and default value + A = parameter_variable("A3", value=30, comment="A3 angle in [deg]") + + Creates a parameter with type string and name sample_name + A = parameter_variable("string", "sample_name") + Parameters ---------- If giving a type: @@ -52,12 +64,23 @@ def __init__(self, *args, **kwargs): sets default value of parameter comment : str sets comment displayed next to declaration + + """ if len(args) == 1: self.type = "" self.name = str(args[0]) if len(args) == 2: - self.type = args[0] + " " + specified_type = args[0] + allowed_types = {"double", "int", "string"} + if specified_type not in allowed_types: + raise RuntimeError("Tried to create parameter of type \"" + + str(specified_type) + + "\" which is not among the allowed types " + + str(allowed_types) + ".") + + #self.type = specified_type + " " + self.type = specified_type self.name = str(args[1]) if not is_legal_parameter(self.name): @@ -68,18 +91,27 @@ def __init__(self, *args, **kwargs): self.value = "" if "value" in kwargs: + if not isinstance(kwargs["value"], (str, int, float)): + raise RuntimeError("Given value for parameter has to be of" + + "type str, int or float.") self.value = kwargs["value"] self.comment = "" if "comment" in kwargs: - self.comment = "// " + kwargs["comment"] - - # could check for allowed types - # they are int, double, string, are there more? + self.comment = kwargs["comment"] + if not isinstance(self.comment, str): + raise RuntimeError("Tried to create a parameter with a " + + "comment that was not a string.") + self.comment = "// " + self.comment def write_parameter(self, fo, stop_character): """Writes input parameter to file""" - fo.write("%s%s" % (self.type, self.name)) + + if not isinstance(stop_character, str): + raise RuntimeError("stop_character in write_parameter should be " + + "a string.") + + fo.write("%s %s" % (self.type, self.name)) if self.value != "": if isinstance(self.value, int): fo.write(" = %d" % self.value) @@ -123,16 +155,29 @@ class declare_variable: write_line(fo) Writes a line to text file fo declaring the parameter in c """ - def __init__(self, *args, **kwargs): + def __init__(self, type, name, **kwargs): """ Initializing mcstas parameter object + Examples + -------- + + Creates a variable with name A3 and default value + A = declare_variable("double", "A3", value=30) + + Creates a variable with type integer and name sample_number + A = declare_variable("int", "sample_number") + + Creates an array variable called m_values + A = declare_variable("double", "m_values", array=3, + value=[2, 2.5, 2]) + Parameters ---------- - Positional argument 1: type : str + type : str Type of the parameter, double, int or string - Positional argument 2: name : str + name : str Name of input parameter Keyword arguments @@ -146,9 +191,13 @@ def __init__(self, *args, **kwargs): comment : str sets comment displayed next to declaration """ - self.type = args[0] - self.name = str(args[1]) + self.type = type + if not isinstance(self.type, str): + raise RuntimeError("Given type of declare_variable should be a " + + "string.") + + self.name = str(name) par_name = self.name if "*" in par_name[0]: @@ -219,13 +268,13 @@ def write_line(self, fo): class component: """ - A class describing a McStas component to be written to a instrument + A class describing a McStas component to be written to an instrument This class is used by the instrument class when setting up components as dynamic subclasses to this class. Most information can be given on initialize using keyword arguments, but there are methods for setting the attributes describing the component. The - class contains both methods to write the component to a instrument + class contains both methods to write the component to an instrument file and methods for printing to the python terminal for checking the information. The McStas_Instr class creates subclasses from this class that have attributes for all parameters for the given @@ -243,34 +292,43 @@ class contains both methods to write the component to a instrument component_name : str Name of the component code to use, e.g. Arm, Guide_gravity, ... - AT_data : list of 3 floats + AT_data : list of 3 floats, default [0, 0, 0] Position data of the component - AT_relative : str + AT_relative : str, default "ABSOLUTE" Name of former component to use as reference for position - ROTATED_data : list of 3 floats + ROTATED_data : list of 3 floats, default [0, 0, 0] Rotation data of the component - ROTATED_relative : str + ROTATED_relative : str, default "ABSOLUTE" Name of former component to use as reference for position - WHEN : str + WHEN : str, default "" String with logical c expression x for when component is active - EXTEND : str + EXTEND : str, default "" c code for McStas EXTEND section - GROUP : str + GROUP : str, default "" Name of group the component should belong to - JUMP : str + JUMP : str, default "" String describing use of JUMP, need to contain all after "JUMP" + SPLIT : int, default 0 (disabled) + Integer setting SPLIT, splitting the neutron before this component + + c_code_before : str, default "" + C code inserted before the component + + c_code_after : str, default "" + C code inserted after the component + component_parameters : dict Parameters to be used with component in dictionary - comment : str + comment : str, default "" Comment inserted before the component as an explanation __isfrozen : bool @@ -299,6 +357,9 @@ class contains both methods to write the component to a instrument set_WHEN(string) Sets WHEN string + set_SPLIT(value) + Sets SPLIT value, a value of 0 disables SPLIT + set_GROUP(string) Sets GROUP name @@ -308,18 +369,33 @@ class contains both methods to write the component to a instrument append_EXTEND(string) Append string to EXTEND string + set_c_code_before(string) + Sets c code to be inserted before component + + set_c_code_before(string) + Sets c code to be inserted after component + set_comment(string) Sets comment for component write_component(fo) Writes component code to instrument file + show_parameters() + Prints current component state with all parameters + print_long() Prints basic view of component code (not correct syntax) + print_long_deprecated() + Prints basic view of component code (obsolete) + print_short(**kwargs) Prints short description, used in print_components + set_keyword_input(**kwargs) + Handle keyword arguments during initialize + __setattr__(key, value) Overwriting __setattr__ to implement ability to freeze @@ -345,37 +421,37 @@ def __init__(self, instance_name, component_name, **kwargs): name of the component type e.g. Arm, Guide_gravity, ... keyword arguments: - AT : list of 3 floats + AT : list of 3 floats, default [0, 0, 0] Sets AT_data describing position of component - AT_RELATIVE : str + AT_RELATIVE : str, default "ABSOLUTE" sets AT_relative, describing position reference - ROTATED : list of 3 floats + ROTATED : list of 3 floats, default [0, 0, 0] Sets ROTATED_data, describing rotation of component - ROTATED_RELATIVE : str + ROTATED_RELATIVE : str, default "ABSOLUTE" Sets ROTATED_relative, sets reference for rotation RELATIVE : str Sets both AT_relative and ROTATED_relative - WHEN : str + WHEN : str, default "" Sets WHEN string, should contain logical c expression - EXTEND : str + EXTEND : str, default "" Sets initial EXTEND string, should contain c code - GROUP : str + GROUP : str, default "" Sets name of group the component should belong to - JUMP : str + JUMP : str, default "" Sets JUMP str - SPLIT : int + SPLIT : int, default 0 (disabled) Sets SPLIT value - comment: str + comment: str, default "" Sets comment string """ @@ -405,7 +481,7 @@ def __init__(self, instance_name, component_name, **kwargs): """ Could store an option for whether this component should be - printed in instrument file or in a seperate file which would + printed in instrument file or in a separate file which would then be included. """ @@ -433,29 +509,28 @@ def set_keyword_input(self, **kwargs): self.set_RELATIVE(kwargs["RELATIVE"]) if "WHEN" in kwargs: - self.WHEN = "WHEN (" + kwargs["WHEN"] + ")" + self.set_WHEN(kwargs["WHEN"]) if "EXTEND" in kwargs: - self.EXTEND = kwargs["EXTEND"] + "\n" + self.append_EXTEND(kwargs["EXTEND"]) if "GROUP" in kwargs: - self.GROUP = kwargs["GROUP"] + self.set_GROUP(kwargs["GROUP"]) if "JUMP" in kwargs: - self.JUMP = kwargs["JUMP"] + self.set_JUMP(kwargs["JUMP"]) if "SPLIT" in kwargs: - self.SPLIT = kwargs["SPLIT"] + self.set_SPLIT(kwargs["SPLIT"]) if "comment" in kwargs: - self.comment = kwargs["comment"] + self.set_comment(kwargs["comment"]) if "c_code_before" in kwargs: - self.c_code_before = kwargs["c_code_before"] + self.set_c_code_before(kwargs["c_code_before"]) if "c_code_after" in kwargs: - self.c_code_after = kwargs["c_code_after"] - + self.set_c_code_after(kwargs["c_code_after"]) def __setattr__(self, key, value): if self.__isfrozen and not hasattr(self, key): @@ -475,7 +550,19 @@ def _unfreeze(self): self.__isfrozen = False def set_AT(self, at_list, RELATIVE=None): - """Sets AT data, List of 3 floats""" + """Sets AT data, List of 3 floats or single float for z only""" + if isinstance(at_list, (int, float)): + at_list = [0, 0, at_list] + + if not isinstance(at_list, list): + raise RuntimeError("set_AT should be given either a list or " + + "float, but received " + + str(type(at_list))) + + if len(at_list) != 3: + raise RuntimeError("Position data given to set_AT should " + + "either be of length 3 or just a float.") + self.AT_data = at_list if RELATIVE is not None: self.set_AT_RELATIVE(RELATIVE) @@ -498,6 +585,15 @@ def set_AT_RELATIVE(self, relative): def set_ROTATED(self, rotated_list, RELATIVE=None): """Sets ROTATED data, List of 3 floats""" + if not isinstance(rotated_list, list): + raise RuntimeError("set_ROTATED should be given a list " + + " but received " + + str(type(rotated_list))) + + if len(rotated_list) != 3: + raise RuntimeError("Rotation data given to set_ROTATED should " + + "be of length 3.") + self.ROTATED_data = rotated_list self.ROTATED_specified = True if RELATIVE is not None: @@ -538,12 +634,13 @@ def set_RELATIVE(self, relative): def set_parameters(self, dict_input): """ - Adds parameters and their values from dictionary input + Set component parameters from dictionary input - Relies on attributes added when McStas_Instr creates a - subclass from the component class where each component - parameter is added as an attribute. + Relies on attributes added when McStas_Instr creates a subclass from + the component class where each component parameter is added as an + attribute. + An error is raised if trying to set a parameter that does not exist """ for key, val in dict_input.items(): if not hasattr(self, key): @@ -559,34 +656,64 @@ def set_parameters(self, dict_input): def set_WHEN(self, string): """Sets WHEN string, should be a c logical expression""" + if not isinstance(string, str): + raise RuntimeError("set_WHEN expect a string, but was " + + "given " + str(type(string))) self.WHEN = "WHEN (" + string + ")" def set_GROUP(self, string): """Sets GROUP name""" + if not isinstance(string, str): + raise RuntimeError("set_GROUP expect a string, but was " + + "given " + str(type(string))) self.GROUP = string def set_JUMP(self, string): """Sets JUMP string, should contain all text after JUMP""" + if not isinstance(string, str): + raise RuntimeError("set_JUMP expect a string, but was " + + "given " + str(type(string))) self.JUMP = string def set_SPLIT(self, value): - """Sets SPLIT value, should contain all text after JUMP""" + """Sets SPLIT value, needs to be an integer""" + if not isinstance(value, (int, str)): + raise RuntimeError("set_SPLIT expect a integer or string, but " + + "was given " + str(type(value))) + + if isinstance(value, int): + if value < 0: + raise RuntimeError("set_SPLIT got a negative value, this is " + + "meaningless, has to be a positive value.") + self.SPLIT = value def append_EXTEND(self, string): """Appends a line of code to EXTEND block of component""" + if not isinstance(string, str): + raise RuntimeError("append_EXTEND expect a string, but was " + + "given " + str(type(string))) self.EXTEND = self.EXTEND + string + "\n" def set_comment(self, string): """Method that sets a comment to be written to instrument file""" + if not isinstance(string, str): + raise RuntimeError("set_comment expect a string, but was " + + "given " + str(type(string))) self.comment = string def set_c_code_before(self, string): """Method that sets c code to be written before the component""" + if not isinstance(string, str): + raise RuntimeError("set_c_code_before expect a string, but was " + + "given " + str(type(string))) self.c_code_before = string def set_c_code_after(self, string): """Method that sets c code to be written after the component""" + if not isinstance(string, str): + raise RuntimeError("set_c_code_after expect a string, but was " + + "given " + str(type(string))) self.c_code_after = string def write_component(self, fo): @@ -601,7 +728,6 @@ def write_component(self, fo): # Could use character limit on lines instead parameters_written = 0 # internal parameter - if len(self.c_code_before) > 0: explanation = "From component named " + self.name fo.write("%s // %s\n" % (str(self.c_code_before), explanation)) @@ -689,7 +815,7 @@ def write_component(self, fo): # Leave a new line between components for readability fo.write("\n") - def print_long_depricated(self): + def print_long_deprecated(self): """ Prints contained information to Python terminal diff --git a/mcstasscript/tests/test_ComponentReader.py b/mcstasscript/tests/test_ComponentReader.py index 21eccc5c..c512a437 100644 --- a/mcstasscript/tests/test_ComponentReader.py +++ b/mcstasscript/tests/test_ComponentReader.py @@ -8,6 +8,11 @@ def setup_component_reader(): + """ + Sets up a component_reader instance with dummy mcstas + installation located in the tests directory + """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) dummy_path = os.path.join(THIS_DIR, "dummy_mcstas") @@ -21,6 +26,11 @@ def setup_component_reader(): return component_reader def setup_component_reader_input_path(): + """ + Sets up a component_reader instance with dummy mcstas + installation located in the tests directory, and specifies + a input_path which is also located in the test directory. + """ THIS_DIR = os.path.dirname(os.path.abspath(__file__)) dummy_path = os.path.join(THIS_DIR, "dummy_mcstas") input_path = os.path.join(THIS_DIR, "test_input_folder") @@ -40,13 +50,14 @@ class TestComponentReader(unittest.TestCase): """ Testing the ComponenReader class. As this class reads information from McStas, a dummy McStas install is made in the test folder to - avoid the test results changeing with updates of McStas. + avoid the test results changing with updates of McStas. """ @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_init_overwrite_message(self, mock_stdout): """ Test that ComponentReader reports overwritten components + Here using default input path, which is current folder """ component_reader = setup_component_reader() @@ -62,6 +73,7 @@ def test_ComponentReader_init_overwrite_message(self, mock_stdout): def test_ComponentReader_init_overwrite_message_input(self, mock_stdout): """ Test that ComponentReader reports overwritten components + Here using user defined input path, a directory in tests """ component_reader = setup_component_reader_input_path() @@ -466,7 +478,7 @@ def test_ComponentReader_read_component_required(self, mock_stdout): @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_read_component_int(self, mock_stdout): """ - Test that a integer parameter is read correctly when reading a + Test that a integer parameter is read correctly when reading an component file. Has default, is int type (comments and unit checked already) """ @@ -517,50 +529,6 @@ def test_ComponentReader_read_component_string(self, mock_stdout): self.assertNotIn("test_string", CompInfo.parameter_units) # Have already tested units are read - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_ComponentReader_line_start_long(self, mock_stdout): - """ - Helper function that should return true when certain string is - the start of another string. - - """ - - component_reader = setup_component_reader() - - test_string = "monkey wants banana" - - return_val = component_reader.line_starts_with(test_string, "mo") - self.assertIsInstance(return_val, bool) - self.assertTrue(return_val) - - return_val = component_reader.line_starts_with(test_string, "on") - self.assertIsInstance(return_val, bool) - self.assertFalse(return_val) - - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_ComponentReader_line_start_short(self, mock_stdout): - """ - Helper function that should return true when certain string is - the start of another string. Here checked with short test_string - - """ - - component_reader = setup_component_reader() - - test_string = "m" - - return_val = component_reader.line_starts_with(test_string, "m") - self.assertIsInstance(return_val, bool) - self.assertTrue(return_val) - - return_val = component_reader.line_starts_with(test_string, "mo") - self.assertIsInstance(return_val, bool) - self.assertFalse(return_val) - - return_val = component_reader.line_starts_with(test_string, "on") - self.assertIsInstance(return_val, bool) - self.assertFalse(return_val) - if __name__ == '__main__': unittest.main() diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index df6560a9..13a4e804 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -278,8 +278,8 @@ def test_show_parameters(self, mock_stdout): instr = setup_instr_root_path() instr.add_parameter("double", "theta", comment="test par") - instr.add_parameter("single", "theta", comment="test par") - instr.add_parameter("float", "theta", value=8, comment="test par") + instr.add_parameter("double", "theta", comment="test par") + instr.add_parameter("int", "theta", value=8, comment="test par") instr.add_parameter("int", "slits", comment="test par") instr.add_parameter("string", "ref", value="string", comment="new string") @@ -288,11 +288,11 @@ def test_show_parameters(self, mock_stdout): output = mock_stdout.getvalue().split("\n") - self.assertEqual(output[0], "double theta // test par") - self.assertEqual(output[1], "single theta // test par") - self.assertEqual(output[2], "float theta = 8 // test par") - self.assertEqual(output[3], "int slits // test par") - self.assertEqual(output[4], "string ref = string // new string") + self.assertEqual(output[0], "double theta // test par") + self.assertEqual(output[1], "double theta // test par") + self.assertEqual(output[2], "int theta = 8 // test par") + self.assertEqual(output[3], "int slits // test par") + self.assertEqual(output[4], "string ref = string // new string") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_show_parameters_line_break(self, mock_stdout): @@ -305,8 +305,8 @@ def test_show_parameters_line_break(self, mock_stdout): instr = setup_instr_root_path() instr.add_parameter("double", "theta", comment="test par") - instr.add_parameter("single", "theta", comment="test par") - instr.add_parameter("float", "theta", value=8, comment="test par") + instr.add_parameter("double", "theta", comment="test par") + instr.add_parameter("int", "theta", value=8, comment="test par") instr.add_parameter("int", "slits", comment="test par") instr.add_parameter("string", "ref", value="string", comment="new string") @@ -324,22 +324,22 @@ def test_show_parameters_line_break(self, mock_stdout): output = mock_stdout.getvalue().split("\n") - self.assertEqual(output[0], "double theta // test par") - self.assertEqual(output[1], "single theta // test par") - self.assertEqual(output[2], "float theta = 8 // test par") - self.assertEqual(output[3], "int slits // test par") - self.assertEqual(output[4], "string ref = string // new string") + self.assertEqual(output[0], "double theta // test par") + self.assertEqual(output[1], "double theta // test par") + self.assertEqual(output[2], "int theta = 8 // test par") + self.assertEqual(output[3], "int slits // test par") + self.assertEqual(output[4], "string ref = string // new string") comment_line = "This is a very long comment meant for testing " - self.assertEqual(output[5], "double value = 37 // " + self.assertEqual(output[5], "double value = 37 // " + comment_line) comment_line = "the dynamic line breaking that is used in this " - self.assertEqual(output[6], " " + self.assertEqual(output[6], " " + comment_line) comment_line = "method. It needs to have many lines in order to " - self.assertEqual(output[7], " " + self.assertEqual(output[7], " " + comment_line) comment_line = "ensure it really works. " - self.assertEqual(output[8], " " + self.assertEqual(output[8], " " + comment_line) def test_simple_add_declare_parameter(self): @@ -567,7 +567,7 @@ def test_show_components_folder(self, mock_stdout): @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_show_components_input_path_simple(self, mock_stdout): """ - Simple test of input_path being recoignized and passed + Simple test of input_path being recognized and passed to component_reader so PSDlin_monitor is overwritten """ instr = setup_instr_with_input_path() @@ -590,9 +590,9 @@ def test_show_components_input_path_simple(self, mock_stdout): self.assertEqual(output[6], " Work directory") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_show_components_input_path_simple(self, mock_stdout): + def test_show_components_input_path_custom(self, mock_stdout): """ - Simple test of input_path being recoignized and passed + Simple test of input_path being recognized and passed to component_reader so PSDlin_monitor is overwritten Here dummy_mcstas and input_path is set using relative paths instead of absolute paths. diff --git a/mcstasscript/tests/test_Instr_reader.py b/mcstasscript/tests/test_Instr_reader.py index f429434c..3b89efc3 100644 --- a/mcstasscript/tests/test_Instr_reader.py +++ b/mcstasscript/tests/test_Instr_reader.py @@ -67,17 +67,17 @@ def test_read_input_parameter(self): self.assertEqual(Instr.parameter_list[0].name, "stick_displacement") # space in type inserted for easier writing by McStas_Instr class - self.assertEqual(Instr.parameter_list[0].type, "double ") + self.assertEqual(Instr.parameter_list[0].type, "double") self.assertEqual(Instr.parameter_list[0].value, 0) self.assertEqual(Instr.parameter_list[1].name, "test_int") # space in type inserted for easier writing by McStas_Instr class - self.assertEqual(Instr.parameter_list[1].type, "int ") + self.assertEqual(Instr.parameter_list[1].type, "int") self.assertEqual(Instr.parameter_list[1].value, 3) self.assertEqual(Instr.parameter_list[2].name, "test_str") # space in type inserted for easier writing by McStas_Instr class - self.assertEqual(Instr.parameter_list[2].type, "string ") + self.assertEqual(Instr.parameter_list[2].type, "string") self.assertEqual(Instr.parameter_list[2].value, "\"\\\"hurray\\\"\"") def test_read_declare_parameter(self): diff --git a/mcstasscript/tests/test_component.py b/mcstasscript/tests/test_component.py index eceb92f3..d5338c40 100644 --- a/mcstasscript/tests/test_component.py +++ b/mcstasscript/tests/test_component.py @@ -105,7 +105,6 @@ def test_component_basic_init(self): def test_component_basic_init_defaults(self): """ Testing basic initialization sets the correct defaults - """ comp = component("test_component", "Arm") @@ -162,6 +161,7 @@ def test_component_init_complex_call_relative(self): self.assertEqual(comp.SPLIT, 7) self.assertEqual(comp.comment, "test comment") + def test_component_basic_init_set_AT(self): """ Testing set_AT method @@ -175,9 +175,31 @@ def test_component_basic_init_set_AT(self): self.assertEqual(comp.AT_data, [12.124, 214.0, 2]) self.assertEqual(comp.AT_relative, "RELATIVE monochromator") + def test_component_freeze(self): + """ + Testing frozen component cant have new attributes, and that + _unfreeze / _freeze works correctly. + """ + comp = component("test_component", "Arm") + + with self.assertRaises(AttributeError): + comp.new_parameter = 5 + + self.assertEqual(comp.name, "test_component") + self.assertEqual(comp.component_name, "Arm") + + comp._unfreeze() + comp.new_parameter = 5 + + self.assertEqual(comp.new_parameter, 5) + + comp._freeze() + with self.assertRaises(AttributeError): + comp.another_parameter = 5 + def test_component_basic_init_set_AT_component(self): """ - Testing set_AT method using component object + Testing set_AT method using component object and method """ prev_component = component("relative_base", "Arm") @@ -192,7 +214,7 @@ def test_component_basic_init_set_AT_component(self): def test_component_basic_init_set_AT_component_keyword(self): """ - Testing set_AT method using component object + Testing set_AT method using component object and keyword argument """ prev_component = component("relative_base", "Arm") @@ -206,7 +228,7 @@ def test_component_basic_init_set_AT_component_keyword(self): def test_component_basic_init_set_ROTATED(self): """ - Testing set_ROTATED method + Testing set_ROTATED method med relative as string """ comp = component("test_component", "Arm") @@ -220,7 +242,7 @@ def test_component_basic_init_set_ROTATED(self): def test_component_basic_init_set_ROTATED_component(self): """ - Testing set_ROTATED method + Testing set_ROTATED method with relative as component object """ prev_component = component("relative_base", "Arm") @@ -235,7 +257,7 @@ def test_component_basic_init_set_ROTATED_component(self): def test_component_basic_init_set_ROTATED_component_keyword(self): """ - Testing set_ROTATED method + Testing setting ROTATION with keyword and component object input """ prev_component = component("relative_base", "Arm") @@ -249,7 +271,7 @@ def test_component_basic_init_set_ROTATED_component_keyword(self): def test_component_basic_init_set_RELATIVE(self): """ - Testing set_RELATIVE method + Testing set_RELATIVE method with string """ comp = component("test_component", "Arm") @@ -263,7 +285,7 @@ def test_component_basic_init_set_RELATIVE(self): def test_component_basic_init_set_RELATIVE(self): """ - Testing set_RELATIVE method + Testing set_RELATIVE method with component object input """ prev_component = component("relative_base", "Arm") @@ -523,6 +545,59 @@ def test_component_write_to_file_complex(self, mock_f): handle = mock_f() handle.write.assert_has_calls(expected_writes, any_order=False) + @unittest.mock.patch('__main__.__builtins__.open', + new_callable=unittest.mock.mock_open) + def test_component_write_to_file_complex_SPLIT_string(self, mock_f): + """ + Testing that a component can be written to file with the + expected output. Here with complex input, and a string as + given for split. + """ + + comp = setup_component_with_parameters() + comp.set_SPLIT("VAR") + + # This setup has a required parameter. + # If this parameter is not set, an error should be returned, + # this will be tested in the next test. + + comp.new_par3 = "1.25" + + with mock_f('test.txt', 'w') as m_fo: + comp.write_component(m_fo) + + my_call = unittest.mock.call + expected_writes = [my_call("SPLIT VAR "), + my_call("COMPONENT test_component = Arm("), + my_call("\n"), + my_call(" new_par1 = 1.5"), + my_call(","), + my_call(" new_par2 = 3"), + my_call(","), + my_call("\n"), + my_call(" new_par3 = 1.25"), + my_call(","), + my_call(" this_par = test_val"), + my_call(","), + my_call("\n"), + my_call(" that_par = \"txt_string\""), + my_call(")\n"), + my_call("WHEN (1==2)\n"), + my_call("AT (0.124,183.9,157)"), + my_call(" RELATIVE home\n"), + my_call("ROTATED (482,1240.2,0.185)"), + my_call(" RELATIVE etc\n"), + my_call("GROUP developers\n"), + my_call("EXTEND %{\n"), + my_call("nscat = 8;\n"), + my_call("%}\n"), + my_call("JUMP myself 37\n"), + my_call("\n")] + + mock_f.assert_called_with('test.txt', 'w') + handle = mock_f() + handle.write.assert_has_calls(expected_writes, any_order=False) + @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) def test_component_write_component_required_parameter_error(self, mock_f): @@ -619,7 +694,7 @@ def test_component_print_short_standard(self, mock_stdout): def test_component_print_short_longest_name(self, mock_stdout): """ Test print_short that prints name, type and location of the - component to the console. + component to the console. Here with specified longest_name. """ comp = setup_component_with_parameters() @@ -639,18 +714,19 @@ def test_component_print_short_longest_name(self, mock_stdout): def test_component_show_parameters(self, mock_stdout): """ Test print_short that prints name, type and location of the - component to the console. + component to the console. An extra parameter was added. + This test also checks for specific formatting. """ comp = setup_component_with_parameters() - comp._unfreeze + comp._unfreeze() # This is now not set by the user, but has default # This results in different formatting in show_parameters comp.new_par2 = None - comp._freeze + comp._freeze() comp.show_parameters() @@ -720,13 +796,13 @@ def test_component_show_parameters_simple(self, mock_stdout): comp = setup_component_with_parameters() - comp._unfreeze + comp._unfreeze() # This is now not set by the user, but has default # This results in different formatting in show_parameters comp.new_par2 = None - comp._freeze + comp._freeze() comp.show_parameters_simple() diff --git a/mcstasscript/tests/test_declare_variable.py b/mcstasscript/tests/test_declare_variable.py index 3a5748ab..103b48ff 100644 --- a/mcstasscript/tests/test_declare_variable.py +++ b/mcstasscript/tests/test_declare_variable.py @@ -21,7 +21,7 @@ def test_declare_variable_init_basic_type(self): var = declare_variable("double", "test") self.assertEqual(var.name, "test") - self.assertEqual(var.type, "double") # space for easier writing + self.assertEqual(var.type, "double") def test_declare_variable_init_basic_type_value(self): """ @@ -31,7 +31,7 @@ def test_declare_variable_init_basic_type_value(self): var = declare_variable("double", "test", value=518) self.assertEqual(var.name, "test") - self.assertEqual(var.type, "double") # space for easier writing + self.assertEqual(var.type, "double") self.assertEqual(var.value, 518) def test_declare_variable_init_basic_type_vector(self): @@ -82,7 +82,7 @@ def test_declare_variable_write_basic(self, mock_f): new_callable=unittest.mock.mock_open) def test_declare_variable_write_complex_float(self, mock_f): """ - Testing that write to file is correct. Here a line is in a + Testing that write to file is correct. Here a line is in an instrument declare section. The write file operation is mocked and check using a patch. Here a declare with a value is used. (float value) @@ -106,7 +106,7 @@ def test_declare_variable_write_complex_float(self, mock_f): new_callable=unittest.mock.mock_open) def test_declare_variable_write_complex_int(self, mock_f): """ - Testing that write to file is correct. Here a line is in a + Testing that write to file is correct. Here a line is in an instrument declare section. The write file operation is mocked and check using a patch. Here a declare with a value is used. (integer value) @@ -130,7 +130,7 @@ def test_declare_variable_write_complex_int(self, mock_f): new_callable=unittest.mock.mock_open) def test_declare_variable_write_simple_array(self, mock_f): """ - Testing that write to file is correct. Here a line is in a + Testing that write to file is correct. Here a line is in an instrument declare section. The write file operation is mocked and check using a patch. Here an array is declared. """ @@ -153,9 +153,9 @@ def test_declare_variable_write_simple_array(self, mock_f): new_callable=unittest.mock.mock_open) def test_declare_variable_write_complex_array(self, mock_f): """ - Testing that write to file is correct. Here a line is in a + Testing that write to file is correct. Here a line is in an instrument declare section. The write file operation is - mocked and check using a patch. Here an array is decalred and + mocked and check using a patch. Here an array is declared and populated with the selected values. """ diff --git a/mcstasscript/tests/test_functions.py b/mcstasscript/tests/test_functions.py index b646a60f..1d0d3861 100644 --- a/mcstasscript/tests/test_functions.py +++ b/mcstasscript/tests/test_functions.py @@ -291,7 +291,7 @@ class Test_load_data(unittest.TestCase): tested elsewhere. Since the load data is tested elsewhere, this function has just a single test to check the interface. """ - def test_crun_load_data_PSD4PI(self): + def test_mcrun_load_data_PSD4PI(self): """ Use test_data_set to test load_data for PSD_4PI """ diff --git a/mcstasscript/tests/test_parameter_variable.py b/mcstasscript/tests/test_parameter_variable.py index d94936d4..61350bc2 100644 --- a/mcstasscript/tests/test_parameter_variable.py +++ b/mcstasscript/tests/test_parameter_variable.py @@ -29,7 +29,7 @@ def test_parameter_variable_init_basic_type(self): par = parameter_variable("double", "test") self.assertEqual(par.name, "test") - self.assertEqual(par.type, "double ") # space for easier writing + self.assertEqual(par.type, "double") def test_parameter_variable_init_basic_type_value(self): """ @@ -39,7 +39,7 @@ def test_parameter_variable_init_basic_type_value(self): par = parameter_variable("double", "test", value=518) self.assertEqual(par.name, "test") - self.assertEqual(par.type, "double ") # space for easier writing + self.assertEqual(par.type, "double") self.assertEqual(par.value, 518) def test_parameter_variable_init_basic_type_value_comment(self): @@ -51,7 +51,7 @@ def test_parameter_variable_init_basic_type_value_comment(self): value=518, comment="test comment /") self.assertEqual(par.name, "test") - self.assertEqual(par.type, "double ") # space for easier writing + self.assertEqual(par.type, "double") self.assertEqual(par.value, 518) self.assertEqual(par.comment, "// test comment /") @@ -72,7 +72,7 @@ def test_parameter_variable_init_basic_value_comment(self): new_callable=unittest.mock.mock_open) def test_parameter_variable_write_basic(self, mock_f): """ - Testing that write to file is correct. Here a line is in a + Testing that write to file is correct. Here a line is in an instrument parameter section. The write file operation is mocked and check using a patch. Here a simple parameter is used. @@ -95,7 +95,7 @@ def test_parameter_variable_write_basic(self, mock_f): new_callable=unittest.mock.mock_open) def test_parameter_variable_write_complex_float(self, mock_f): """ - Testing that write to file is correct. Here a line is in a + Testing that write to file is correct. Here a line is in an instrument parameter section. The write file operation is mocked and check using a patch. Here a parameter with a value is used. (float value) @@ -123,7 +123,7 @@ def test_parameter_variable_write_complex_float(self, mock_f): new_callable=unittest.mock.mock_open) def test_parameter_variable_write_complex_int(self, mock_f): """ - Testing that write to file is correct. Here a line is in a + Testing that write to file is correct. Here a line is in an instrument parameter section. The write file operation is mocked and check using a patch. Here a parameter with a value is used. (integer value) @@ -151,7 +151,7 @@ def test_parameter_variable_write_complex_int(self, mock_f): new_callable=unittest.mock.mock_open) def test_parameter_variable_write_complex_string(self, mock_f): """ - Testing that write to file is correct. Here a line is in a + Testing that write to file is correct. Here a line is in an instrument parameter section. The write file operation is mocked and check using a patch. Here a parameter with a value is used. (string value) From 0e6b644b6b69acf57fdd41b7cb2ab1b784b70d66 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 20 Jan 2021 13:36:10 +0100 Subject: [PATCH 125/403] Updated class names in mcstas objects to cammel case: parameter_variable -> ParamterVariable declare_variable -> DeclareVariable component -> Component --- mcstasscript/helper/mcstas_objects.py | 44 ++-- mcstasscript/interface/instr.py | 40 ++-- mcstasscript/tests/test_component.py | 188 +++++++++--------- mcstasscript/tests/test_declare_variable.py | 42 ++-- mcstasscript/tests/test_parameter_variable.py | 56 +++--- 5 files changed, 182 insertions(+), 188 deletions(-) diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index 96f420b1..4a6b47a1 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -2,7 +2,7 @@ from mcstasscript.helper.formatting import is_legal_parameter -class parameter_variable: +class ParameterVariable: """ Class describing an input parameter in McStas instrument @@ -39,13 +39,13 @@ def __init__(self, *args, **kwargs): -------- Creates a parameter with name wavelength and associated comment - A = parameter_variable("wavelength", comment="wavelength in [AA]") + A = ParameterVariable("wavelength", comment="wavelength in [AA]") Creates a parameter with name A3 and default value - A = parameter_variable("A3", value=30, comment="A3 angle in [deg]") + A = ParameterVariable("A3", value=30, comment="A3 angle in [deg]") Creates a parameter with type string and name sample_name - A = parameter_variable("string", "sample_name") + A = ParameterVariable("string", "sample_name") Parameters ---------- @@ -124,7 +124,7 @@ def write_parameter(self, fo, stop_character): fo.write("\n") -class declare_variable: +class DeclareVariable: """ Class describing a declared variable in McStas instrument @@ -163,13 +163,13 @@ def __init__(self, type, name, **kwargs): -------- Creates a variable with name A3 and default value - A = declare_variable("double", "A3", value=30) + A = DeclareVariable("double", "A3", value=30) Creates a variable with type integer and name sample_number - A = declare_variable("int", "sample_number") + A = DeclareVariable("int", "sample_number") Creates an array variable called m_values - A = declare_variable("double", "m_values", array=3, + A = DeclareVariable("double", "m_values", array=3, value=[2, 2.5, 2]) Parameters @@ -194,7 +194,7 @@ def __init__(self, type, name, **kwargs): self.type = type if not isinstance(self.type, str): - raise RuntimeError("Given type of declare_variable should be a " + raise RuntimeError("Given type of DeclareVariable should be a " + "string.") self.name = str(name) @@ -266,7 +266,7 @@ def write_line(self, fo): -class component: +class Component: """ A class describing a McStas component to be written to an instrument @@ -570,12 +570,12 @@ def set_AT(self, at_list, RELATIVE=None): def set_AT_RELATIVE(self, relative): """Sets AT RELATIVE with string or component instance""" - # Extract name if component instance is given - if isinstance(relative, component): + # Extract name if Component instance is given + if isinstance(relative, Component): relative = relative.name elif not isinstance(relative, str): raise ValueError("Relative must be either string or " - + "component object.") + + "Component object.") # Set AT relative if relative == "ABSOLUTE": @@ -600,15 +600,15 @@ def set_ROTATED(self, rotated_list, RELATIVE=None): self.set_ROTATED_RELATIVE(RELATIVE) def set_ROTATED_RELATIVE(self, relative): - """Sets ROTATED RELATIVE with string or component instance""" + """Sets ROTATED RELATIVE with string or Component instance""" self.ROTATED_specified = True - # Extract name if a component instance is given - if isinstance(relative, component): + # Extract name if a Component instance is given + if isinstance(relative, Component): relative = relative.name elif not isinstance(relative, str): raise ValueError("Relative must be either string or " - + "component object.") + + "Component object.") # Set ROTATED relative if relative == "ABSOLUTE": @@ -618,12 +618,12 @@ def set_ROTATED_RELATIVE(self, relative): def set_RELATIVE(self, relative): """Sets both AT_relative and ROTATED_relative""" - # Extract name if a component instance is given - if isinstance(relative, component): + # Extract name if a Component instance is given + if isinstance(relative, Component): relative = relative.name elif not isinstance(relative, str): raise ValueError("Relative must be either string or " - + "component object.") + + "Component object.") if relative == "ABSOLUTE": self.AT_relative = "ABSOLUTE" @@ -634,10 +634,10 @@ def set_RELATIVE(self, relative): def set_parameters(self, dict_input): """ - Set component parameters from dictionary input + Set Component parameters from dictionary input Relies on attributes added when McStas_Instr creates a subclass from - the component class where each component parameter is added as an + the Component class where each component parameter is added as an attribute. An error is raised if trying to set a parameter that does not exist diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 5b7d494d..fc4e004a 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -7,9 +7,9 @@ import copy from mcstasscript.data.data import McStasData -from mcstasscript.helper.mcstas_objects import declare_variable -from mcstasscript.helper.mcstas_objects import parameter_variable -from mcstasscript.helper.mcstas_objects import component +from mcstasscript.helper.mcstas_objects import DeclareVariable +from mcstasscript.helper.mcstas_objects import ParameterVariable +from mcstasscript.helper.mcstas_objects import Component from mcstasscript.helper.component_reader import ComponentReader from mcstasscript.helper.managed_mcrun import ManagedMcrun from mcstasscript.helper.formatting import is_legal_filename @@ -39,10 +39,10 @@ class McCode_instr: executable_path : str absolute path of mcrun command, or empty if it is in path - parameter_list : list of parameter_variable instances + parameter_list : list of ParameterVariable instances contains all input parameters to be written to file - declare_list : list of declare_variable instances + declare_list : list of DeclareVariable instances contains all declare parrameters to be written to file initialize_section : str @@ -265,8 +265,8 @@ def add_parameter(self, *args, **kwargs): comment : str Comment displayed next to declaration of parameter """ - # parameter_variable class documented independently - self.parameter_list.append(parameter_variable(*args, **kwargs)) + # ParameterVariable class documented independently + self.parameter_list.append(ParameterVariable(*args, **kwargs)) def show_parameters(self, **kwargs): """ @@ -377,8 +377,8 @@ def add_declare_var(self, *args, **kwargs): Comment displayed next to declaration of parameter """ - # declare_variable class documented independently - self.declare_list.append(declare_variable(*args, **kwargs)) + # DeclareVariable class documented independently + self.declare_list.append(DeclareVariable(*args, **kwargs)) def append_declare(self, string): """ @@ -578,21 +578,21 @@ def _create_component_instance(self, *args, **kwargs): input_dict["line_limit"] = self.line_limit self.component_class_lib[component_name] = type(component_name, - (component,), + (Component,), input_dict) return self.component_class_lib[component_name](*args, **kwargs) def add_component(self, *args, **kwargs): """ - Method for adding a new component instance to the instrument + Method for adding a new Component instance to the instrument - Creates a new component instance in the instrument. This + Creates a new Component instance in the instrument. This requires a unique instance name of the component to be used for future reference and the name of the McStas component to be used. The component is placed at the end of the instrument file unless otherwise specified with the after and before keywords. - The component may be initialized using other keyword arguments, + The Component may be initialized using other keyword arguments, but all attributes can be set with approrpiate methods. Parameters @@ -689,9 +689,9 @@ def add_component(self, *args, **kwargs): def copy_component(self, *args, **kwargs): """ - Method for adding a copy of a component instance to the instrument + Method for adding a copy of a Component instance to the instrument - Creates a copy of component instance in the instrument. This + Creates a copy of Component instance in the instrument. This requires a unique instance name of the component to be used for future reference and the name of the McStas component to be used. The component is placed at the end of the instrument file @@ -1592,10 +1592,10 @@ class McStas_instr(McCode_instr): executable_path : str absolute path of mcrun command, or empty if it is in path - parameter_list : list of parameter_variable instances + parameter_list : list of ParameterVariable instances contains all input parameters to be written to file - declare_list : list of declare_variable instances + declare_list : list of DeclareVariable instances contains all declare parrameters to be written to file initialize_section : str @@ -1773,10 +1773,10 @@ class McXtrace_instr(McCode_instr): executable_path : str absolute path of mcrun command, or empty if it is in path - parameter_list : list of parameter_variable instances + parameter_list : list of ParameterVariable instances contains all input parameters to be written to file - declare_list : list of declare_variable instances + declare_list : list of DeclareVariable instances contains all declare parrameters to be written to file initialize_section : str @@ -1788,7 +1788,7 @@ class McXtrace_instr(McCode_instr): finally_section : str string containing entire finally section to be written - component_list : list of component instances + component_list : list of Component instances list of components in the instrument component_name_list : list of strings diff --git a/mcstasscript/tests/test_component.py b/mcstasscript/tests/test_component.py index d5338c40..e0ea24cb 100644 --- a/mcstasscript/tests/test_component.py +++ b/mcstasscript/tests/test_component.py @@ -3,16 +3,16 @@ import unittest import unittest.mock -from mcstasscript.helper.mcstas_objects import component +from mcstasscript.helper.mcstas_objects import Component from mcstasscript.helper.formatting import bcolors -def setup_component_all_keywords(): +def setup_Component_all_keywords(): """ - Sets up a component by using all initialize keywords + Sets up a Component by using all initialize keywords """ - return component("test_component", + return Component("test_component", "Arm", AT=[0.124, 183.9, 157], AT_RELATIVE="home", @@ -26,11 +26,11 @@ def setup_component_all_keywords(): comment="test comment") -def setup_component_relative(): +def setup_Component_relative(): """ - Sets up a component with the relative keyword used + Sets up a Component with the relative keyword used """ - return component("test_component", + return Component("test_component", "Arm", AT=[0.124, 183.9, 157], ROTATED=[482, 1240.2, 0.185], @@ -43,12 +43,12 @@ def setup_component_relative(): comment="test comment") -def setup_component_with_parameters(): +def setup_Component_with_parameters(): """ - Sets up a component with parameters and all options used. + Sets up a Component with parameters and all options used. """ - comp = setup_component_all_keywords() + comp = setup_Component_all_keywords() comp._unfreeze() # Need to set up attribute parameters @@ -83,7 +83,7 @@ def setup_component_with_parameters(): return comp -class Testcomponent(unittest.TestCase): +class TestComponent(unittest.TestCase): """ Components are the building blocks used to create an instrument in the McStas meta language. They describe spatially seperated parts @@ -91,23 +91,23 @@ class Testcomponent(unittest.TestCase): tested. """ - def test_component_basic_init(self): + def test_Component_basic_init(self): """ Testing basic initialization """ - comp = component("test_component", "Arm") + comp = Component("test_component", "Arm") self.assertEqual(comp.name, "test_component") self.assertEqual(comp.component_name, "Arm") - def test_component_basic_init_defaults(self): + def test_Component_basic_init_defaults(self): """ Testing basic initialization sets the correct defaults """ - comp = component("test_component", "Arm") + comp = Component("test_component", "Arm") self.assertEqual(comp.name, "test_component") self.assertEqual(comp.component_name, "Arm") @@ -121,12 +121,12 @@ def test_component_basic_init_defaults(self): self.assertEqual(comp.JUMP, "") self.assertEqual(comp.comment, "") - def test_component_init_complex_call(self): + def test_Component_init_complex_call(self): """ Testing keywords set attributes correctly """ - comp = setup_component_all_keywords() + comp = setup_Component_all_keywords() self.assertEqual(comp.name, "test_component") self.assertEqual(comp.component_name, "Arm") @@ -141,12 +141,12 @@ def test_component_init_complex_call(self): self.assertEqual(comp.SPLIT, 7) self.assertEqual(comp.comment, "test comment") - def test_component_init_complex_call_relative(self): + def test_Component_init_complex_call_relative(self): """ Tests the relative keyword overwrites AT_relative and ROTATED_relative """ - comp = setup_component_relative() + comp = setup_Component_relative() self.assertEqual(comp.name, "test_component") self.assertEqual(comp.component_name, "Arm") @@ -162,11 +162,11 @@ def test_component_init_complex_call_relative(self): self.assertEqual(comp.comment, "test comment") - def test_component_basic_init_set_AT(self): + def test_Component_basic_init_set_AT(self): """ Testing set_AT method """ - comp = component("test_component", "Arm") + comp = Component("test_component", "Arm") comp.set_AT([12.124, 214.0, 2], RELATIVE="monochromator") @@ -175,12 +175,12 @@ def test_component_basic_init_set_AT(self): self.assertEqual(comp.AT_data, [12.124, 214.0, 2]) self.assertEqual(comp.AT_relative, "RELATIVE monochromator") - def test_component_freeze(self): + def test_Component_freeze(self): """ - Testing frozen component cant have new attributes, and that + Testing frozen Component cant have new attributes, and that _unfreeze / _freeze works correctly. """ - comp = component("test_component", "Arm") + comp = Component("test_component", "Arm") with self.assertRaises(AttributeError): comp.new_parameter = 5 @@ -197,13 +197,13 @@ def test_component_freeze(self): with self.assertRaises(AttributeError): comp.another_parameter = 5 - def test_component_basic_init_set_AT_component(self): + def test_Component_basic_init_set_AT_Component(self): """ - Testing set_AT method using component object and method + Testing set_AT method using Component object and method """ - prev_component = component("relative_base", "Arm") - comp = component("test_component", "Arm") + prev_component = Component("relative_base", "Arm") + comp = Component("test_component", "Arm") comp.set_AT([12.124, 214.0, 2], RELATIVE=prev_component) @@ -212,13 +212,13 @@ def test_component_basic_init_set_AT_component(self): self.assertEqual(comp.AT_data, [12.124, 214.0, 2]) self.assertEqual(comp.AT_relative, "RELATIVE relative_base") - def test_component_basic_init_set_AT_component_keyword(self): + def test_Component_basic_init_set_AT_Component_keyword(self): """ - Testing set_AT method using component object and keyword argument + Testing set_AT method using Component object and keyword argument """ - prev_component = component("relative_base", "Arm") - comp = component("test_component", "Arm", + prev_component = Component("relative_base", "Arm") + comp = Component("test_component", "Arm", AT=[1, 2, 3.0], AT_RELATIVE=prev_component) self.assertEqual(comp.name, "test_component") @@ -226,12 +226,12 @@ def test_component_basic_init_set_AT_component_keyword(self): self.assertEqual(comp.AT_data, [1, 2, 3.0]) self.assertEqual(comp.AT_relative, "RELATIVE relative_base") - def test_component_basic_init_set_ROTATED(self): + def test_Component_basic_init_set_ROTATED(self): """ Testing set_ROTATED method med relative as string """ - comp = component("test_component", "Arm") + comp = Component("test_component", "Arm") comp.set_ROTATED([1204.8, 8490.1, 129], RELATIVE="analyzer") @@ -240,13 +240,13 @@ def test_component_basic_init_set_ROTATED(self): self.assertEqual(comp.ROTATED_data, [1204.8, 8490.1, 129]) self.assertEqual(comp.ROTATED_relative, "RELATIVE analyzer") - def test_component_basic_init_set_ROTATED_component(self): + def test_Component_basic_init_set_ROTATED_Component(self): """ - Testing set_ROTATED method with relative as component object + Testing set_ROTATED method with relative as Component object """ - prev_component = component("relative_base", "Arm") - comp = component("test_component", "Arm") + prev_component = Component("relative_base", "Arm") + comp = Component("test_component", "Arm") comp.set_ROTATED([1204.8, 8490.1, 129], RELATIVE=prev_component) @@ -255,13 +255,13 @@ def test_component_basic_init_set_ROTATED_component(self): self.assertEqual(comp.ROTATED_data, [1204.8, 8490.1, 129]) self.assertEqual(comp.ROTATED_relative, "RELATIVE relative_base") - def test_component_basic_init_set_ROTATED_component_keyword(self): + def test_Component_basic_init_set_ROTATED_Component_keyword(self): """ - Testing setting ROTATION with keyword and component object input + Testing setting ROTATION with keyword and Component object input """ - prev_component = component("relative_base", "Arm") - comp = component("test_component", "Arm", + prev_component = Component("relative_base", "Arm") + comp = Component("test_component", "Arm", ROTATED=[1, 2, 3.0], ROTATED_RELATIVE=prev_component) self.assertEqual(comp.name, "test_component") @@ -269,12 +269,12 @@ def test_component_basic_init_set_ROTATED_component_keyword(self): self.assertEqual(comp.ROTATED_data, [1, 2, 3.0]) self.assertEqual(comp.ROTATED_relative, "RELATIVE relative_base") - def test_component_basic_init_set_RELATIVE(self): + def test_Component_basic_init_set_RELATIVE(self): """ Testing set_RELATIVE method with string """ - comp = component("test_component", "Arm") + comp = Component("test_component", "Arm") comp.set_RELATIVE("sample") @@ -283,13 +283,13 @@ def test_component_basic_init_set_RELATIVE(self): self.assertEqual(comp.AT_relative, "RELATIVE sample") self.assertEqual(comp.ROTATED_relative, "RELATIVE sample") - def test_component_basic_init_set_RELATIVE(self): + def test_Component_basic_init_set_RELATIVE(self): """ - Testing set_RELATIVE method with component object input + Testing set_RELATIVE method with Component object input """ - prev_component = component("relative_base", "Arm") - comp = component("test_component", "Arm") + prev_component = Component("relative_base", "Arm") + comp = Component("test_component", "Arm") comp.set_RELATIVE(prev_component) @@ -304,7 +304,7 @@ def test_component_basic_init_set_parameters(self): parameters manually to test this. """ - comp = component("test_component", "Arm") + comp = Component("test_component", "Arm") # Need to add some parameters to this bare component # Parameters are usually added by McStas_Instr @@ -326,12 +326,12 @@ def test_component_basic_init_set_parameters(self): with self.assertRaises(NameError): comp.set_parameters({"new_par3": 37.0}) - def test_component_basic_init_set_WHEN(self): + def test_Component_basic_init_set_WHEN(self): """ Testing WHEN method """ - comp = component("test_component", "Arm") + comp = Component("test_component", "Arm") comp.set_WHEN("1 != 2") @@ -339,12 +339,12 @@ def test_component_basic_init_set_WHEN(self): self.assertEqual(comp.component_name, "Arm") self.assertEqual(comp.WHEN, "WHEN (1 != 2)") - def test_component_basic_init_set_GROUP(self): + def test_Component_basic_init_set_GROUP(self): """ Testing set_GROUP method """ - comp = component("test_component", "Arm") + comp = Component("test_component", "Arm") comp.set_GROUP("test group") @@ -352,12 +352,12 @@ def test_component_basic_init_set_GROUP(self): self.assertEqual(comp.component_name, "Arm") self.assertEqual(comp.GROUP, "test group") - def test_component_basic_init_set_JUMP(self): + def test_Component_basic_init_set_JUMP(self): """ Testing set_JUMP method """ - comp = component("test_component", "Arm") + comp = Component("test_component", "Arm") comp.set_JUMP("test jump") @@ -365,12 +365,12 @@ def test_component_basic_init_set_JUMP(self): self.assertEqual(comp.component_name, "Arm") self.assertEqual(comp.JUMP, "test jump") - def test_component_basic_init_set_SPLIT(self): + def test_Component_basic_init_set_SPLIT(self): """ Testing set_SPLIT method """ - comp = component("test_component", "Arm") + comp = Component("test_component", "Arm") comp.set_SPLIT(500) @@ -378,12 +378,12 @@ def test_component_basic_init_set_SPLIT(self): self.assertEqual(comp.component_name, "Arm") self.assertEqual(comp.SPLIT, 500) - def test_component_basic_init_set_EXTEND(self): + def test_Component_basic_init_set_EXTEND(self): """ Testing set_EXTEND method """ - comp = component("test_component", "Arm") + comp = Component("test_component", "Arm") comp.append_EXTEND("test code") @@ -395,11 +395,11 @@ def test_component_basic_init_set_EXTEND(self): self.assertEqual(comp.EXTEND, "test code\nnew code\n") - def test_component_basic_init_set_comment(self): + def test_Component_basic_init_set_comment(self): """ Testing set_comment method """ - comp = component("test_component", "Arm") + comp = Component("test_component", "Arm") comp.set_comment("test comment") @@ -407,14 +407,14 @@ def test_component_basic_init_set_comment(self): self.assertEqual(comp.component_name, "Arm") self.assertEqual(comp.comment, "test comment") - def test_component_basic_new_attribute_error(self): + def test_Component_basic_new_attribute_error(self): """ - The component class is frozen after initialize in order to + The Component class is frozen after initialize in order to prevent the user accidentilly misspelling an attribute name, or at least be able to report an error when they do so. """ - comp = component("test_component", "Arm") + comp = Component("test_component", "Arm") with self.assertRaises(AttributeError): comp.new_attribute = 1 @@ -424,13 +424,13 @@ def test_component_basic_new_attribute_error(self): @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) - def test_component_write_to_file_simple(self, mock_f): + def test_Component_write_to_file_simple(self, mock_f): """ - Testing that a component can be written to file with the + Testing that a Component can be written to file with the expected output. Here with simple input. """ - comp = component("test_component", "Arm") + comp = Component("test_component", "Arm") comp._unfreeze() # Need to set up attribute parameters @@ -455,13 +455,13 @@ def test_component_write_to_file_simple(self, mock_f): @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) - def test_component_write_to_file_include(self, mock_f): + def test_Component_write_to_file_include(self, mock_f): """ - Testing that a component can be written to file with the + Testing that a Component can be written to file with the expected output. Here with simple input. """ - comp = component("test_component", "Arm", + comp = Component("test_component", "Arm", c_code_before="%include \"test.instr\"") comp.set_c_code_after("%include \"after.instr\"") @@ -496,13 +496,13 @@ def test_component_write_to_file_include(self, mock_f): @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) - def test_component_write_to_file_complex(self, mock_f): + def test_Component_write_to_file_complex(self, mock_f): """ - Testing that a component can be written to file with the + Testing that a Component can be written to file with the expected output. Here with complex input. """ - comp = setup_component_with_parameters() + comp = setup_Component_with_parameters() # This setup has a required parameter. # If this parameter is not set, an error should be returned, @@ -547,14 +547,14 @@ def test_component_write_to_file_complex(self, mock_f): @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) - def test_component_write_to_file_complex_SPLIT_string(self, mock_f): + def test_Component_write_to_file_complex_SPLIT_string(self, mock_f): """ - Testing that a component can be written to file with the + Testing that a Component can be written to file with the expected output. Here with complex input, and a string as given for split. """ - comp = setup_component_with_parameters() + comp = setup_Component_with_parameters() comp.set_SPLIT("VAR") # This setup has a required parameter. @@ -600,13 +600,13 @@ def test_component_write_to_file_complex_SPLIT_string(self, mock_f): @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) - def test_component_write_component_required_parameter_error(self, mock_f): + def test_Component_write_Component_required_parameter_error(self, mock_f): """ - Test an error occurs if the component is asked to write to disk + Test an error occurs if the Component is asked to write to disk without a required parameter. """ - comp = setup_component_with_parameters() + comp = setup_Component_with_parameters() # new_par3 unset and has no default so an error will be raised @@ -615,13 +615,13 @@ def test_component_write_component_required_parameter_error(self, mock_f): comp.write_component(m_fo) @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_component_print_long(self, mock_stdout): + def test_Component_print_long(self, mock_stdout): """ - Test print to console on the current state of the component. + Test print to console on the current state of the Component. Using a mocked stdout to catch the print statements. """ - comp = setup_component_with_parameters() + comp = setup_Component_with_parameters() comp.append_EXTEND("second extend line;") comp.print_long() @@ -671,13 +671,13 @@ def test_component_print_long(self, mock_stdout): self.assertEqual(output[15], "JUMP myself 37") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_component_print_short_standard(self, mock_stdout): + def test_Component_print_short_standard(self, mock_stdout): """ Test print_short that prints name, type and location of the - component to the console. + Component to the console. """ - comp = setup_component_with_parameters() + comp = setup_Component_with_parameters() comp.print_short() @@ -691,13 +691,13 @@ def test_component_print_short_standard(self, mock_stdout): self.assertEqual(output[0], expected) @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_component_print_short_longest_name(self, mock_stdout): + def test_Component_print_short_longest_name(self, mock_stdout): """ Test print_short that prints name, type and location of the - component to the console. Here with specified longest_name. + Component to the console. Here with specified longest_name. """ - comp = setup_component_with_parameters() + comp = setup_Component_with_parameters() comp.print_short(longest_name=15) @@ -711,14 +711,14 @@ def test_component_print_short_longest_name(self, mock_stdout): self.assertEqual(output[0], expected) @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_component_show_parameters(self, mock_stdout): + def test_Component_show_parameters(self, mock_stdout): """ Test print_short that prints name, type and location of the - component to the console. An extra parameter was added. + Component to the console. An extra parameter was added. This test also checks for specific formatting. """ - comp = setup_component_with_parameters() + comp = setup_Component_with_parameters() comp._unfreeze() @@ -787,14 +787,14 @@ def test_component_show_parameters(self, mock_stdout): par_name + " = " + value + " [1]" + comment) @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_component_show_parameters_simple(self, mock_stdout): + def test_Component_show_parameters_simple(self, mock_stdout): """ Test print_short that prints name, type and location of the - component to the console. No formatting used in simple + Component to the console. No formatting used in simple version. """ - comp = setup_component_with_parameters() + comp = setup_Component_with_parameters() comp._unfreeze() diff --git a/mcstasscript/tests/test_declare_variable.py b/mcstasscript/tests/test_declare_variable.py index 103b48ff..2b537d5a 100644 --- a/mcstasscript/tests/test_declare_variable.py +++ b/mcstasscript/tests/test_declare_variable.py @@ -3,43 +3,43 @@ import unittest import unittest.mock -from mcstasscript.helper.mcstas_objects import declare_variable +from mcstasscript.helper.mcstas_objects import DeclareVariable -class Test_declare_variable(unittest.TestCase): +class Test_DeclareVariable(unittest.TestCase): """ - Tests the declare_variable class that holds a declared variable + Tests the DeclareVariable class that holds a declared variable that will be written to the McStas declare section. """ - def test_declare_variable_init_basic_type(self): + def test_DeclareVariable_init_basic_type(self): """ Initialization with a type """ - var = declare_variable("double", "test") + var = DeclareVariable("double", "test") self.assertEqual(var.name, "test") self.assertEqual(var.type, "double") - def test_declare_variable_init_basic_type_value(self): + def test_DeclareVariable_init_basic_type_value(self): """ Initialization with type and value """ - var = declare_variable("double", "test", value=518) + var = DeclareVariable("double", "test", value=518) self.assertEqual(var.name, "test") self.assertEqual(var.type, "double") self.assertEqual(var.value, 518) - def test_declare_variable_init_basic_type_vector(self): + def test_DeclareVariable_init_basic_type_vector(self): """ Initialization with type and value """ - var = declare_variable("double", "test", + var = DeclareVariable("double", "test", array=6, value=[1, 2.2, 3, 3.3, 4, 4.4]) self.assertEqual(var.name, "test") @@ -47,12 +47,12 @@ def test_declare_variable_init_basic_type_vector(self): self.assertEqual(var.vector, 6) self.assertEqual(var.value, [1, 2.2, 3, 3.3, 4, 4.4]) - def test_declare_variable_init_basic_type_value_comment(self): + def test_DeclareVariable_init_basic_type_value_comment(self): """ Initialization with type, value and comment """ - var = declare_variable("double", "test", + var = DeclareVariable("double", "test", value=518, comment="test comment /") self.assertEqual(var.name, "test") @@ -62,7 +62,7 @@ def test_declare_variable_init_basic_type_value_comment(self): @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) - def test_declare_variable_write_basic(self, mock_f): + def test_DeclareVariable_write_basic(self, mock_f): """ Testing that write to file is correct. Here a line is in a instrument declare section. The write file operation is @@ -70,7 +70,7 @@ def test_declare_variable_write_basic(self, mock_f): used. """ - var = declare_variable("double", "test") + var = DeclareVariable("double", "test") with mock_f('test.txt', 'w') as m_fo: var.write_line(m_fo) @@ -80,7 +80,7 @@ def test_declare_variable_write_basic(self, mock_f): @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) - def test_declare_variable_write_complex_float(self, mock_f): + def test_DeclareVariable_write_complex_float(self, mock_f): """ Testing that write to file is correct. Here a line is in an instrument declare section. The write file operation is @@ -88,7 +88,7 @@ def test_declare_variable_write_complex_float(self, mock_f): is used. (float value) """ - var = declare_variable("double", + var = DeclareVariable("double", "test", value=5.4, comment="test comment") @@ -104,7 +104,7 @@ def test_declare_variable_write_complex_float(self, mock_f): @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) - def test_declare_variable_write_complex_int(self, mock_f): + def test_DeclareVariable_write_complex_int(self, mock_f): """ Testing that write to file is correct. Here a line is in an instrument declare section. The write file operation is @@ -112,7 +112,7 @@ def test_declare_variable_write_complex_int(self, mock_f): is used. (integer value) """ - var = declare_variable("double", + var = DeclareVariable("double", "test", value=5, comment="test comment") @@ -128,14 +128,14 @@ def test_declare_variable_write_complex_int(self, mock_f): @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) - def test_declare_variable_write_simple_array(self, mock_f): + def test_DeclareVariable_write_simple_array(self, mock_f): """ Testing that write to file is correct. Here a line is in an instrument declare section. The write file operation is mocked and check using a patch. Here an array is declared. """ - var = declare_variable("double", + var = DeclareVariable("double", "test", array=29, comment="test comment") @@ -151,7 +151,7 @@ def test_declare_variable_write_simple_array(self, mock_f): @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) - def test_declare_variable_write_complex_array(self, mock_f): + def test_DeclareVariable_write_complex_array(self, mock_f): """ Testing that write to file is correct. Here a line is in an instrument declare section. The write file operation is @@ -159,7 +159,7 @@ def test_declare_variable_write_complex_array(self, mock_f): populated with the selected values. """ - var = declare_variable("double", + var = DeclareVariable("double", "test", array=3, value=[5, 4, 3.1], diff --git a/mcstasscript/tests/test_parameter_variable.py b/mcstasscript/tests/test_parameter_variable.py index 61350bc2..68b81acb 100644 --- a/mcstasscript/tests/test_parameter_variable.py +++ b/mcstasscript/tests/test_parameter_variable.py @@ -3,65 +3,65 @@ import unittest import unittest.mock -from mcstasscript.helper.mcstas_objects import parameter_variable +from mcstasscript.helper.mcstas_objects import ParameterVariable -class Test_parameter_variable(unittest.TestCase): +class Test_ParameterVariable(unittest.TestCase): """ - Tests the parameter_variable class that holds an input parameter + Tests the ParameterVariable class that holds an input parameter for the instrument. """ - def test_parameter_variable_init_basic(self): + def test_ParameterVariable_init_basic(self): """ Smallest possible initialization """ - par = parameter_variable("test") + par = ParameterVariable("test") self.assertEqual(par.name, "test") - def test_parameter_variable_init_basic_type(self): + def test_ParameterVariable_init_basic_type(self): """ Initialization with a type """ - par = parameter_variable("double", "test") + par = ParameterVariable("double", "test") self.assertEqual(par.name, "test") self.assertEqual(par.type, "double") - def test_parameter_variable_init_basic_type_value(self): + def test_ParameterVariable_init_basic_type_value(self): """ Initialization with type and value """ - par = parameter_variable("double", "test", value=518) + par = ParameterVariable("double", "test", value=518) self.assertEqual(par.name, "test") self.assertEqual(par.type, "double") self.assertEqual(par.value, 518) - def test_parameter_variable_init_basic_type_value_comment(self): + def test_ParameterVariable_init_basic_type_value_comment(self): """ Initialization with type, value and comment """ - par = parameter_variable("double", "test", - value=518, comment="test comment /") + par = ParameterVariable("double", "test", value=518, + comment="test comment /") self.assertEqual(par.name, "test") self.assertEqual(par.type, "double") self.assertEqual(par.value, 518) self.assertEqual(par.comment, "// test comment /") - def test_parameter_variable_init_basic_value_comment(self): + def test_ParameterVariable_init_basic_value_comment(self): """ Initialization with value and comment """ - par = parameter_variable("test", - value=518, comment="test comment /") + par = ParameterVariable("test", value=518, + comment="test comment /") self.assertEqual(par.name, "test") self.assertEqual(par.type, "") @@ -70,7 +70,7 @@ def test_parameter_variable_init_basic_value_comment(self): @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) - def test_parameter_variable_write_basic(self, mock_f): + def test_ParameterVariable_write_basic(self, mock_f): """ Testing that write to file is correct. Here a line is in an instrument parameter section. The write file operation is @@ -78,7 +78,7 @@ def test_parameter_variable_write_basic(self, mock_f): used. """ - par = parameter_variable("double", "test") + par = ParameterVariable("double", "test") with mock_f('test.txt', 'w') as m_fo: par.write_parameter(m_fo, "") @@ -93,7 +93,7 @@ def test_parameter_variable_write_basic(self, mock_f): @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) - def test_parameter_variable_write_complex_float(self, mock_f): + def test_ParameterVariable_write_complex_float(self, mock_f): """ Testing that write to file is correct. Here a line is in an instrument parameter section. The write file operation is @@ -101,10 +101,8 @@ def test_parameter_variable_write_complex_float(self, mock_f): is used. (float value) """ - par = parameter_variable("double", - "test", - value=5.4, - comment="test comment") + par = ParameterVariable("double", "test", value=5.4, + comment="test comment") with mock_f('test.txt', 'w') as m_fo: par.write_parameter(m_fo, ")") @@ -121,7 +119,7 @@ def test_parameter_variable_write_complex_float(self, mock_f): @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) - def test_parameter_variable_write_complex_int(self, mock_f): + def test_ParameterVariable_write_complex_int(self, mock_f): """ Testing that write to file is correct. Here a line is in an instrument parameter section. The write file operation is @@ -129,10 +127,8 @@ def test_parameter_variable_write_complex_int(self, mock_f): is used. (integer value) """ - par = parameter_variable("double", - "test", - value=5, - comment="test comment") + par = ParameterVariable("double", "test", value=5, + comment="test comment") with mock_f('test.txt', 'w') as m_fo: par.write_parameter(m_fo, ")") @@ -149,7 +145,7 @@ def test_parameter_variable_write_complex_int(self, mock_f): @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) - def test_parameter_variable_write_complex_string(self, mock_f): + def test_ParameterVariable_write_complex_string(self, mock_f): """ Testing that write to file is correct. Here a line is in an instrument parameter section. The write file operation is @@ -157,9 +153,7 @@ def test_parameter_variable_write_complex_string(self, mock_f): is used. (string value) """ - par = parameter_variable("double", - "test", - value="\"Al\"", + par = ParameterVariable("double", "test", value="\"Al\"", comment="test comment") with mock_f('test.txt', 'w') as m_fo: From 131ebf68b03d66a5cb1909c4e963908735dc24c8 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 20 Jan 2021 14:15:35 +0100 Subject: [PATCH 126/403] Small formating changes. --- mcstasscript/helper/mcstas_objects.py | 2 -- 1 file changed, 2 deletions(-) diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index 4a6b47a1..879438e5 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -65,7 +65,6 @@ def __init__(self, *args, **kwargs): comment : str sets comment displayed next to declaration - """ if len(args) == 1: self.type = "" @@ -79,7 +78,6 @@ def __init__(self, *args, **kwargs): + "\" which is not among the allowed types " + str(allowed_types) + ".") - #self.type = specified_type + " " self.type = specified_type self.name = str(args[1]) From aeaa5d7750beb47f2d4f4cd4c5dac737f41cba08 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 20 Jan 2021 14:31:06 +0100 Subject: [PATCH 127/403] Changes after review by Celine Durniak, much appreciated! Fixed a last few issues after review. --- mcstasscript/data/data.py | 2 +- mcstasscript/tests/test_McStasMetaData.py | 4 ++-- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/mcstasscript/data/data.py b/mcstasscript/data/data.py index 676fcda1..86fa03de 100644 --- a/mcstasscript/data/data.py +++ b/mcstasscript/data/data.py @@ -1,4 +1,4 @@ -import matplotlib +import matplotlib.pyplot import numpy as np class McStasMetaData: diff --git a/mcstasscript/tests/test_McStasMetaData.py b/mcstasscript/tests/test_McStasMetaData.py index 0c73e3aa..3c0cbe9a 100644 --- a/mcstasscript/tests/test_McStasMetaData.py +++ b/mcstasscript/tests/test_McStasMetaData.py @@ -64,7 +64,7 @@ def test_McStasMetaData_add_info_ylabel(self): def test_McStasMetaData_long_read_1d(self): """ - Test that extact_info can read appropriate info, 1d case + Test that extract_info can read appropriate info, 1d case """ meta_data = McStasMetaData() meta_data.add_info("type", "array_1d(500)") @@ -90,7 +90,7 @@ def test_McStasMetaData_long_read_1d(self): def test_McStasMetaData_long_read_2d(self): """ - Test that extact_info can read appropriate info, 2d case + Test that extract_info can read appropriate info, 2d case """ meta_data = McStasMetaData() meta_data.add_info("type", "array_2d(500, 12)") From 25cd535d4c729e524a86e1072adf61c8fc0dbcce Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 20 Jan 2021 14:43:20 +0100 Subject: [PATCH 128/403] Fixes after review by Celine Durniak, much appreciated! Removed unnecessary f.close() Fixed spelling mistake in PSD_4PI ylabel --- mcstasscript/helper/managed_mcrun.py | 3 --- mcstasscript/tests/test_ManagedMcrun.py | 2 +- mcstasscript/tests/test_data_set/PSD_4PI.dat | 2 +- mcstasscript/tests/test_data_set/mccode.sim | 2 +- mcstasscript/tests/test_functions.py | 2 +- 5 files changed, 4 insertions(+), 7 deletions(-) diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index 3526f29a..e5a5677a 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -363,8 +363,5 @@ def load_results(data_folder_name): # Add this result to the results list results.append(result) - # Close the current datafile - f.close() - # Return list of McStasData objects return results diff --git a/mcstasscript/tests/test_ManagedMcrun.py b/mcstasscript/tests/test_ManagedMcrun.py index 1f99ad53..3ed4d53b 100644 --- a/mcstasscript/tests/test_ManagedMcrun.py +++ b/mcstasscript/tests/test_ManagedMcrun.py @@ -410,7 +410,7 @@ def test_ManagedMcrun_load_data_PSD4PI(self): self.assertEqual(PSD_4PI.metadata.dimension, [300, 300]) self.assertEqual(PSD_4PI.metadata.limits, [-180, 180, -90, 90]) self.assertEqual(PSD_4PI.metadata.xlabel, "Longitude [deg]") - self.assertEqual(PSD_4PI.metadata.ylabel, "Lattitude [deg]") + self.assertEqual(PSD_4PI.metadata.ylabel, "Latitude [deg]") self.assertEqual(PSD_4PI.metadata.title, "4PI PSD monitor") self.assertEqual(PSD_4PI.Ncount[4][1], 4) self.assertEqual(PSD_4PI.Intensity[4][1], 1.537334562E-10) diff --git a/mcstasscript/tests/test_data_set/PSD_4PI.dat b/mcstasscript/tests/test_data_set/PSD_4PI.dat index 8d173c4e..be568542 100644 --- a/mcstasscript/tests/test_data_set/PSD_4PI.dat +++ b/mcstasscript/tests/test_data_set/PSD_4PI.dat @@ -23,7 +23,7 @@ # xvar: Lo # yvar: La # xlabel: Longitude [deg] -# ylabel: Lattitude [deg] +# ylabel: Latitude [deg] # zvar: I # zlabel: Signal per bin # xylimits: -180 180 -90 90 diff --git a/mcstasscript/tests/test_data_set/mccode.sim b/mcstasscript/tests/test_data_set/mccode.sim index aac53eaf..5891d96b 100644 --- a/mcstasscript/tests/test_data_set/mccode.sim +++ b/mcstasscript/tests/test_data_set/mccode.sim @@ -40,7 +40,7 @@ begin data xvar: Lo yvar: La xlabel: Longitude [deg] - ylabel: Lattitude [deg] + ylabel: Latitude [deg] zvar: I zlabel: Signal per bin xylimits: -180 180 -90 90 diff --git a/mcstasscript/tests/test_functions.py b/mcstasscript/tests/test_functions.py index b646a60f..0e5224d8 100644 --- a/mcstasscript/tests/test_functions.py +++ b/mcstasscript/tests/test_functions.py @@ -313,7 +313,7 @@ def test_crun_load_data_PSD4PI(self): self.assertEqual(PSD_4PI.metadata.dimension, [300, 300]) self.assertEqual(PSD_4PI.metadata.limits, [-180, 180, -90, 90]) self.assertEqual(PSD_4PI.metadata.xlabel, "Longitude [deg]") - self.assertEqual(PSD_4PI.metadata.ylabel, "Lattitude [deg]") + self.assertEqual(PSD_4PI.metadata.ylabel, "Latitude [deg]") self.assertEqual(PSD_4PI.metadata.title, "4PI PSD monitor") self.assertEqual(PSD_4PI.Ncount[4][1], 4) self.assertEqual(PSD_4PI.Intensity[4][1], 1.537334562E-10) From c55f09ad37b7c263ad559700bbb5237ccc7ebe8a Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 20 Jan 2021 14:44:43 +0100 Subject: [PATCH 129/403] Fixed spelling error in local PSD_monitor_4PI component. --- mcstasscript/tests/dummy_instrument_folder/PSD_monitor_4PI.comp | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/mcstasscript/tests/dummy_instrument_folder/PSD_monitor_4PI.comp b/mcstasscript/tests/dummy_instrument_folder/PSD_monitor_4PI.comp index e4ed8756..d17dc65b 100644 --- a/mcstasscript/tests/dummy_instrument_folder/PSD_monitor_4PI.comp +++ b/mcstasscript/tests/dummy_instrument_folder/PSD_monitor_4PI.comp @@ -109,7 +109,7 @@ SAVE DETECTOR_OUT_2D( "4PI PSD monitor", "Longitude [deg]", - "Lattitude [deg]", + "Latitude [deg]", -180, 180, -90, 90, nx, ny, &PSD_N[0][0],&PSD_p[0][0],&PSD_p2[0][0], From 63debe9e8ec5ab3c4ea79676c306d0b27306b919 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Mon, 25 Jan 2021 10:37:32 +0100 Subject: [PATCH 130/403] Adressed issues pointed out in review from Celine Durniak, much appreciated. Updated doc strings to include all attributes. Added some examples in complex methods. Reduced reliance on *args in places where it was not necessary. Fixed many spelling mistakes. Additional input sanitation on paths Tests Improved doc strings Removed unecessary mocks --- mcstasscript/interface/instr.py | 454 ++++++++++++++++++++--------- mcstasscript/tests/test_Instr.py | 470 ++++++++++++++++++++----------- 2 files changed, 620 insertions(+), 304 deletions(-) diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 5b7d494d..aa925393 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -18,24 +18,40 @@ class McCode_instr: """ - Main class for writing a McStas instrument using McStasScript + Main class for writing a McCode instrument using McStasScript - Initialization of McStas_instr sets the name of the instrument file + Initialization of McCode_instr sets the name of the instrument file and its methods are used to add all aspects of the instrument file. The class also holds methods for writing the finished instrument - file to disk and to run the simulation. + file to disk and to run the simulation. This is meant as a base class + that McStas_instr and McXtrace_instr inherits from, these have to provide + some attributes. + + Required attributes in superclass + --------------------------------- + executable : str + Name of executable, mcrun or mxrun + + particle : str + Name of probe particle, "neutron" or "x-ray" + + package_name : str + Name of package, "McStas" or "McXtrace" Attributes ---------- name : str name of instrument file - author : str + author : str, default "Python Instrument Generator" name of user of McStasScript, written to the file - origin : str + origin : str, default "ESS DMSC" origin of instrument file (affiliation) + input_path : str, default "." + directory in which simulation is executed, uses components found there + executable_path : str absolute path of mcrun command, or empty if it is in path @@ -43,7 +59,7 @@ class McCode_instr: contains all input parameters to be written to file declare_list : list of declare_variable instances - contains all declare parrameters to be written to file + contains all declare parameters to be written to file initialize_section : str string containing entire initialize section to be written @@ -60,13 +76,25 @@ class McCode_instr: component_name_list : list of strings list of names of the components in the instrument + component_class_lib : dict + dict of custom Component classes made at run time + + component_reader : ComponentReader + ComponentReader instance for reading component files + + package_path : str + Path to mccode package containing component folders + Methods ------- add_parameter(*args, **kwargs) Adds input parameter to the define section - add_declare_var() - Adds declared variable ot the declare section + add_declare_var(type, name) + Add declared variable called name of given type to the declare section + + append_declare(string) + Appends to the declare section append_initialize(string) Appends a string to the initialize section, then adds new line @@ -83,12 +111,21 @@ class McCode_instr: append_trace(string) Obsolete method, add components instead (used in write_c_files) + append_trace_no_new_line(string) + Obsolete method, add components instead (used in write_c_files) + show_components(string) Shows available components in given category + component_help(name) + Shows help on component of given name + add_component(instance_name, component_name, **kwargs) Add a component to the instrument file + copy_component(new_component_name, original_component, **kwargs) + Makes a copy of original_component with new_component_name + get_component(instance_name) Returns component instance with name instance_name @@ -146,6 +183,9 @@ class McCode_instr: write_full_instrument() Writes full instrument file to current directory + show_instrument() + Shows instrument using mcdisplay + run_full_instrument(**kwargs) Writes instrument files and runs simulation. Returns list of McStasData @@ -191,28 +231,39 @@ def __init__(self, name, **kwargs): + "\" which is not a legal filename") if "author" in kwargs: - self.author = kwargs["author"] + self.author = str(kwargs["author"]) else: self.author = "Python " + self.package_name self.author += " Instrument Generator" if "origin" in kwargs: - self.origin = kwargs["origin"] + self.origin = str(kwargs["origin"]) else: self.origin = "ESS DMSC" if "input_path" in kwargs: - self.input_path = kwargs["input_path"] + self.input_path = str(kwargs["input_path"]) + if not os.path.isdir(self.input_path): + raise RuntimeError("Given input_path does not point to a " + + "folder:\"" + self.input_path + '"') else: self.input_path = "." self._read_calibration() if "executable_path" in kwargs: - self.executable_path = kwargs["executable_path"] + self.executable_path = str(kwargs["executable_path"]) + if not os.path.isdir(self.executable_path): + raise RuntimeError("Given executable_path does not point to " + + "a folder:\"" + self.executable_path + + '"') if "package_path" in kwargs: - self.package_path = kwargs["package_path"] + self.package_path = str(kwargs["package_path"]) + if not os.path.isdir(self.package_path): + raise RuntimeError("Given package_path does not point to " + + "a folder:\"" + self.package_path + '"') + elif self.package_path is "": raise NameError("At this stage of development " + "McStasScript need the absolute path " @@ -249,6 +300,20 @@ def add_parameter(self, *args, **kwargs): """ Method for adding input parameter to instrument + Type does not need to be specified, McStas considers that a floating + point value with the type double. + + Examples + -------- + Creates a parameter with name wavelength and associated comment + add_parameter("wavelength", comment="wavelength in [AA]") + + Creates a parameter with name A3 and default value + add_parameter("A3", value=30, comment="A3 angle in [deg]") + + Creates a parameter with type string and name sample_name + add_parameter("string", "sample_name") + Parameters ---------- @@ -299,6 +364,7 @@ def show_parameters(self, **kwargs): longest_type = len(max(types, key=len)) longest_name = len(max(names, key=len)) longest_value = len(max(values, key=len)) + # In addition to the data 11 characters are added before the comment comment_start_point = longest_type + longest_name + longest_value + 11 longest_comment = len(max(comments, key=len)) length_for_comment = line_limit - comment_start_point @@ -379,7 +445,7 @@ def add_declare_var(self, *args, **kwargs): """ # declare_variable class documented independently self.declare_list.append(declare_variable(*args, **kwargs)) - + def append_declare(self, string): """ Method for appending code to the declare section directly @@ -393,15 +459,15 @@ def append_declare(self, string): string : str code to be added to declare section """ - + #self.declare_section = self.declare_section + string + "\n" self.declare_list.append(string) def append_initialize(self, string): """ - Method for appending code to the intialize section + Method for appending code to the initialize section - The intialize section consists of c code and will be compiled, + The initialize section consists of c code and will be compiled, thus any syntax errors will crash the simulation. Code is added on a new line for each call to this method. @@ -410,14 +476,14 @@ def append_initialize(self, string): string : str code to be added to initialize section """ - + self.initialize_section = self.initialize_section + string + "\n" def append_initialize_no_new_line(self, string): """ - Method for appending code to the intialize section, no new line + Method for appending code to the initialize section, no new line - The intialize section consists of c code and will be compiled, + The initialize section consists of c code and will be compiled, thus any syntax errors will crash the simulation. Code is added to the current line. @@ -549,21 +615,16 @@ def component_help(self, name, **kwargs): dummy_instance = self._create_component_instance("dummy", name) dummy_instance.show_parameters(**kwargs) - def _create_component_instance(self, *args, **kwargs): + def _create_component_instance(self, name, component_name, **kwargs): """ Dynamically creates a class for the requested component type - Created classses kept in dictionary, if the same component type + Created classes kept in dictionary, if the same component type is requested again, the class in the dictionary is used. The method returns an instance of the created class that was - initialized with the paramters passed to this function. + initialized with the parameters passed to this function. """ - if len(args) < 2: - raise NameError("Attempting to create component without name") - - component_name = args[1] - if component_name not in self.component_class_lib: comp_info = self.component_reader.read_name(component_name) @@ -581,9 +642,10 @@ def _create_component_instance(self, *args, **kwargs): (component,), input_dict) - return self.component_class_lib[component_name](*args, **kwargs) + return self.component_class_lib[component_name](name, component_name, + **kwargs) - def add_component(self, *args, **kwargs): + def add_component(self, name, component_name, **kwargs): """ Method for adding a new component instance to the instrument @@ -593,14 +655,14 @@ def add_component(self, *args, **kwargs): used. The component is placed at the end of the instrument file unless otherwise specified with the after and before keywords. The component may be initialized using other keyword arguments, - but all attributes can be set with approrpiate methods. + but all attributes can be set with appropriate methods. Parameters ---------- - First positional argument : str + name : str Unique name of component instance - Second positional argument : str + component_name : str Name of McStas component to create instance of Keyword arguments: @@ -641,8 +703,8 @@ def add_component(self, *args, **kwargs): Comment that will be displayed before the component """ - if args[0] in self.component_name_list: - raise NameError(("Component name \"" + str(args[0]) + if name in self.component_name_list: + raise NameError(("Component name \"" + str(name) + "\" used twice, " + self.package_name + " does not allow this." + " Rename or remove one instance of this" @@ -658,10 +720,11 @@ def add_component(self, *args, **kwargs): new_index = self.component_name_list.index(kwargs["after"]) - new_component = self._create_component_instance(*args, **kwargs) + new_component = self._create_component_instance(name, component_name, + **kwargs) self.component_list.insert(new_index + 1, new_component) - self.component_name_list.insert(new_index+1, args[0]) + self.component_name_list.insert(new_index+1, name) # Insert component after component with this name elif "before" in kwargs: @@ -674,20 +737,22 @@ def add_component(self, *args, **kwargs): new_index = self.component_name_list.index(kwargs["before"]) - new_component = self._create_component_instance(*args, **kwargs) + new_component = self._create_component_instance(name, component_name, + **kwargs) self.component_list.insert(new_index, new_component) - self.component_name_list.insert(new_index, args[0]) + self.component_name_list.insert(new_index, name) # If after or before keywords absent, place component at the end else: - new_component = self._create_component_instance(*args, **kwargs) + new_component = self._create_component_instance(name, component_name, + **kwargs) self.component_list.append(new_component) - self.component_name_list.append(args[0]) + self.component_name_list.append(name) return new_component - - def copy_component(self, *args, **kwargs): + + def copy_component(self, name, original_component, **kwargs): """ Method for adding a copy of a component instance to the instrument @@ -701,10 +766,10 @@ def copy_component(self, *args, **kwargs): Parameters ---------- - First positional argument : str + name : str Unique name of component instance - Second positional argument : str + original_component : str Name of component instance to create copy of Keyword arguments: @@ -744,16 +809,14 @@ def copy_component(self, *args, **kwargs): comment : str Comment that will be displayed before the component """ - - # could also allow input of a component object - - instance_name = args[0] + if isinstance(original_component, component): # Update to CammelCase + original_component = original_component.name """ If the name starts with COPY, use unique naming as described in the McStas manual. """ - if instance_name.startswith("COPY("): - target_name = instance_name.split("(", 1)[1] + if name.startswith("COPY("): + target_name = name.split("(", 1)[1] target_name = target_name.split(")", 1)[0] instance_name = target_name @@ -763,20 +826,20 @@ def copy_component(self, *args, **kwargs): instance_name = target_name + "_" + str(label) label += 1 - if instance_name in self.component_name_list: - raise NameError(("Component name \"" + str(args[0]) + if name in self.component_name_list: + raise NameError(("Component name \"" + str(name) + "\" used twice, " + self.package_name + " does not allow this." + " Rename or remove one instance of this" + " name.")) - - if not args[1] in self.component_name_list: - raise NameError("Component name \"" + str(args[1]) + + if original_component not in self.component_name_list: + raise NameError("Component name \"" + str(original_component) + "\" was not found in the " + self.package_name + " instrument. and thus can not be copied.") else: - component_to_copy = self.get_component(args[1]) - + component_to_copy = self.get_component(original_component) + # Insert component after component with this name if "after" in kwargs: if kwargs["after"] not in self.component_name_list: @@ -788,10 +851,10 @@ def copy_component(self, *args, **kwargs): new_index = self.component_name_list.index(kwargs["after"]) new_component = copy.deepcopy(component_to_copy) - new_component.name = instance_name + new_component.name = name self.component_list.insert(new_index+1, new_component) - self.component_name_list.insert(new_index+1, instance_name) + self.component_name_list.insert(new_index+1, name) # Insert component after component with this name elif "before" in kwargs: @@ -805,20 +868,20 @@ def copy_component(self, *args, **kwargs): new_index = self.component_name_list.index(kwargs["before"]) new_component = copy.deepcopy(component_to_copy) - new_component.name = instance_name + new_component.name = name self.component_list.insert(new_index, new_component) - self.component_name_list.insert(new_index, instance_name) + self.component_name_list.insert(new_index, name) # If after or before keywords absent, place component at the end else: new_component = copy.deepcopy(component_to_copy) - new_component.name = instance_name + new_component.name = name self.component_list.append(new_component) - self.component_name_list.append(instance_name) - + self.component_name_list.append(name) + # Set the new name of the instance - new_component.name = instance_name + new_component.name = name # Run set_keyword_input again for keyword arguments to take effect new_component.set_keyword_input(**kwargs) @@ -836,7 +899,7 @@ def get_component(self, name): Parameters ---------- name : str - Unique name of component whos instance should be returned + Unique name of component whose instance should be returned """ if name in self.component_name_list: @@ -996,7 +1059,7 @@ def set_component_JUMP(self, name, JUMP): component = self.get_component(name) component.set_JUMP(JUMP) - + def set_component_SPLIT(self, name, SPLIT): """ Method for setting SPLIT value of named component @@ -1012,7 +1075,7 @@ def set_component_SPLIT(self, name, SPLIT): component = self.get_component(name) component.set_SPLIT(SPLIT) - + def set_component_c_code_before(self, name, code): """ Method for setting c code before component @@ -1028,7 +1091,7 @@ def set_component_c_code_before(self, name, code): component = self.get_component(name) component.set_c_code_before(code) - + def set_component_c_code_after(self, name, code): """ Method for setting c code before component @@ -1043,7 +1106,7 @@ def set_component_c_code_after(self, name, code): """ component = self.get_component(name) - component.set_c_code_after(code) + component.set_c_code_after(code) def set_component_comment(self, name, string): """ @@ -1107,7 +1170,7 @@ def print_components(self, **kwargs): longest_name = len(max(self.component_name_list, key=len)) - # Investigate how this could have been done in a better way + # todo Investigate how this could have been done in a better way # Find longest field for each type of data printed component_type_list = [] at_xyz_list = [] @@ -1138,6 +1201,10 @@ def print_components(self, **kwargs): AT_pad = 6 # requires (, , ) in addition to data length RELATIVE_pad = 0 ROTATED_pad = 6 # requires (, , ) in addition to data length + ROTATED_characters = 7 # ROTATED is 7 characters + AT_characters = 2 # AT is 2 characters + SPACING_between_strings = 7 # combining 8 strings, 7 spaces + # Check if longest line length exceeded longest_line_length = (longest_name + name_pad @@ -1145,7 +1212,10 @@ def print_components(self, **kwargs): + longest_at_xyz_name + AT_pad + longest_at_relative_name + RELATIVE_pad + longest_rotated_xyz_name + ROTATED_pad - + longest_rotated_relative_name + 8 + 9) + + longest_rotated_relative_name + + ROTATED_characters + + AT_characters + + SPACING_between_strings) def coordinates_to_string(data): return ("(" @@ -1159,6 +1229,7 @@ def coordinates_to_string(data): configuration file, attempt to split the output over an additional line. This is hardcoded up to 3 lines. """ + if longest_line_length > line_limit: n_lines = 2 longest_at_xyz_name = max([longest_at_xyz_name, @@ -1166,6 +1237,8 @@ def coordinates_to_string(data): longest_rotated_xyz_name = longest_at_xyz_name RELATIVE_pad = 0 + SPACING_between_strings = 4 # combining 5 strings, 4 spaces + longest_line_length_at = (longest_name + comp_name_pad + longest_component_name @@ -1173,7 +1246,8 @@ def coordinates_to_string(data): + longest_at_xyz_name + AT_pad + longest_at_relative_name - + 7 + 6) + + ROTATED_characters + + SPACING_between_strings) longest_line_length_rotated = (longest_name + comp_name_pad + longest_component_name @@ -1181,7 +1255,8 @@ def coordinates_to_string(data): + longest_rotated_xyz_name + ROTATED_pad + longest_rotated_relative_name - + 7 + 6) + + ROTATED_characters + + SPACING_between_strings) if (longest_line_length_at > line_limit or longest_line_length_rotated > line_limit): @@ -1242,7 +1317,7 @@ def coordinates_to_string(data): + ROTATED_pad) p_ROTATED_RELATIVE = str(component.ROTATED_relative) - + if component.ROTATED_specified: print(p_name, p_comp_name, "AT ", p_AT, p_AT_RELATIVE, "\n", @@ -1295,42 +1370,40 @@ def write_c_files(self): print("Creation of the directory %s failed" % path) file_path = os.path.join(".", "generated_includes", - self.name + "_declare.c") - fo = open(file_path, "w") - fo.write("// declare section for %s \n" % self.name) - fo.close() - - file_path = os.path.join(".", "generated_includes", - self.name + "_declare.c") - fo = open(file_path, "a") - #fo.write(self.declare_section) - for dec_line in self.declare_list: - if isinstance(dec_line, str): - # append declare section parts written here - fo.write(dec_line) - else: - dec_line.write_line(fo) - fo.write("\n") - fo.close() - - file_path = os.path.join(".", "generated_includes", - self.name + "_initialize.c") - fo = open(file_path, "w") - fo.write(self.initialize_section) - fo.close() - - file_path = os.path.join(".", "generated_includes", - self.name + "_trace.c") - fo = open(file_path, "w") - fo.write(self.trace_section) - fo.close() - - file_path = os.path.join(".", "generated_includes", - self.name + "_component_trace.c") - fo = open(file_path, "w") - for component in self.component_list: - component.write_component(fo) - fo.close() + self.name + "_declare.c") + with open(file_path, "w") as fo: + fo.write("// declare section for %s \n" % self.name) + + + file_path = os.path.join(".", "generated_includes", + self.name + "_declare.c") + with open(file_path, "a") as fo: + for dec_line in self.declare_list: + if isinstance(dec_line, str): + # append declare section parts written here + fo.write(dec_line) + else: + dec_line.write_line(fo) + fo.write("\n") + fo.close() + + file_path = os.path.join(".", "generated_includes", + self.name + "_initialize.c") + fo = open(file_path, "w") + fo.write(self.initialize_section) + fo.close() + + file_path = os.path.join(".", "generated_includes", + self.name + "_trace.c") + fo = open(file_path, "w") + fo.write(self.trace_section) + fo.close() + + file_path = os.path.join(".", "generated_includes", + self.name + "_component_trace.c") + fo = open(file_path, "w") + for component in self.component_list: + component.write_component(fo) def write_full_instrument(self): """ @@ -1421,11 +1494,15 @@ def write_full_instrument(self): fo.write("\nEND\n") fo.close() - + def _handle_parameters(self, given_parameters): """ Internal helper function that handles which parameters to pass - when givne a certain set of parameters and values. + when given a certain set of parameters and values. + + Adds the given parameters to the default parameters, and ensures all + required parameters are provided. Also checks all given parameters + match an existing parameter. Parameters ---------- @@ -1433,19 +1510,36 @@ def _handle_parameters(self, given_parameters): Parameters given by the user for simulation run """ - + + if not isinstance(given_parameters, dict): + raise RuntimeError("Given parameters must be a dict.") + # Find required parameters required_parameters = [] default_parameters = {} - for index in range(0, len(self.parameter_list)): + for index in range(len(self.parameter_list)): if self.parameter_list[index].value == "": required_parameters.append(self.parameter_list[index].name) else: default_parameters.update({self.parameter_list[index].name: self.parameter_list[index].value}) - # Check if parameters are given + # Check if all given parameters correspond to legal parameters + for given_par in given_parameters: + if not isinstance(given_par, str): + raise NameError("Given parameter must be a string.") + if (given_par not in required_parameters + and given_par not in default_parameters): + raise NameError("Given parameter: \"" + str(given_par) + + "\" did not match any in instrument. " + + "Currently available parameters: \n" + + " Required parameters:" + + str(required_parameters) + "\n" + + " Default parameters: " + + str(list(default_parameters.keys()))) + + # Check if required parameters are provided if len(given_parameters) is 0: if len(required_parameters) > 0: # print required parameters and raise error @@ -1460,13 +1554,13 @@ def _handle_parameters(self, given_parameters): for name in required_parameters: if name not in given_parameters: raise NameError("The required instrument parameter " - + name + + str(name) + " was not provided.") # Overwrite default parameters with given parameters default_parameters.update(given_parameters) return default_parameters - def run_full_instrument(self, *args, **kwargs): + def run_full_instrument(self, **kwargs): """ Runs McStas instrument described by this class, returns list of McStasData @@ -1496,18 +1590,33 @@ def run_full_instrument(self, *args, **kwargs): executable_path : str Path to mcrun command, "" if already in path """ - # Make sure mcrun path is in kwargs + # Make sure executable path is in kwargs if "executable_path" not in kwargs: kwargs["executable_path"] = self.executable_path + else: + if not os.path.isdir(str(kwargs["executable_path"])): + raise RuntimeError("The executable_path provided to " + + "run_full_instrument does not point to a" + + "directory: \"" + + str(kwargs["executable_path"]) + "\"") if "executable" not in kwargs: - kwargs["executable"] = self.executable + kwargs["executable"] = str(self.executable) + else: + # check provided executable can be converted to string + str(kwargs["executable"]) if "run_path" not in kwargs: # path where mcrun is executed, will load components there # if not set, use input_folder given kwargs["run_path"] = self.input_path - + else: + if not os.path.isdir(str(kwargs["run_path"])): + raise RuntimeError("The run_path provided to " + + "run_full_instrument does not point to a" + + "directory: \"" + + str(kwargs["run_path"]) + "\"") + if "parameters" in kwargs: given_parameters = kwargs["parameters"] else: @@ -1528,12 +1637,12 @@ def run_full_instrument(self, *args, **kwargs): # Run the simulation and return data simulation.run_simulation(**kwargs) return simulation.load_results() - + def show_instrument(self, *args, **kwargs): """ - Uses mcdisplay to show the instrument in webbroser + Uses mcdisplay to show the instrument in web browser """ - + if "parameters" in kwargs: given_parameters = kwargs["parameters"] else: @@ -1559,7 +1668,7 @@ def show_instrument(self, *args, **kwargs): full_command = (bin_path + executable + " " + os.path.join(self.input_path, self.name + ".instr") - + " " + parameter_string) + + " " + parameter_string) process = subprocess.run(full_command, shell=True, stdout=subprocess.PIPE, @@ -1583,12 +1692,24 @@ class McStas_instr(McCode_instr): name : str name of instrument file - author : str + author : str, default "Python Instrument Generator" name of user of McStasScript, written to the file - origin : str + origin : str, default "ESS DMSC" origin of instrument file (affiliation) + executable : str + Name of executable, mcrun or mxrun + + particle : str + Name of probe particle, "neutron" or "x-ray" + + package_name : str + Name of package, "McStas" or "McXtrace" + + input_path : str, default "." + directory in which simulation is executed, uses components found there + executable_path : str absolute path of mcrun command, or empty if it is in path @@ -1596,7 +1717,7 @@ class McStas_instr(McCode_instr): contains all input parameters to be written to file declare_list : list of declare_variable instances - contains all declare parrameters to be written to file + contains all declare parameters to be written to file initialize_section : str string containing entire initialize section to be written @@ -1613,13 +1734,25 @@ class McStas_instr(McCode_instr): component_name_list : list of strings list of names of the components in the instrument + component_class_lib : dict + dict of custom Component classes made at run time + + component_reader : ComponentReader + ComponentReader instance for reading component files + + package_path : str + Path to mccode package containing component folders + Methods ------- add_parameter(*args, **kwargs) Adds input parameter to the define section - add_declare_var() - Adds declared variable ot the declare section + add_declare_var(type, name) + Add declared variable called name of given type to the declare section + + append_declare(string) + Appends to the declare section append_initialize(string) Appends a string to the initialize section, then adds new line @@ -1636,12 +1769,21 @@ class McStas_instr(McCode_instr): append_trace(string) Obsolete method, add components instead (used in write_c_files) + append_trace_no_new_line(string) + Obsolete method, add components instead (used in write_c_files) + show_components(string) Shows available components in given category + component_help(name) + Shows help on component of given name + add_component(instance_name, component_name, **kwargs) Add a component to the instrument file + copy_component(new_component_name, original_component, **kwargs) + Makes a copy of original_component with new_component_name + get_component(instance_name) Returns component instance with name instance_name @@ -1699,6 +1841,9 @@ class McStas_instr(McCode_instr): write_full_instrument() Writes full instrument file to current directory + show_instrument() + Shows instrument using mcdisplay + run_full_instrument(**kwargs) Writes instrument files and runs simulation. Returns list of McStasData @@ -1750,6 +1895,7 @@ def _read_calibration(self): self.package_path = "" self.line_limit = 180 + class McXtrace_instr(McCode_instr): """ Main class for writing a McXtrace instrument using McStasScript @@ -1764,12 +1910,24 @@ class McXtrace_instr(McCode_instr): name : str name of instrument file - author : str + author : str, default "Python Instrument Generator" name of user of McStasScript, written to the file - origin : str + origin : str, default "ESS DMSC" origin of instrument file (affiliation) + executable : str + Name of executable, mcrun or mxrun + + particle : str + Name of probe particle, "neutron" or "x-ray" + + package_name : str + Name of package, "McStas" or "McXtrace" + + input_path : str, default "." + directory in which simulation is executed, uses components found there + executable_path : str absolute path of mcrun command, or empty if it is in path @@ -1777,7 +1935,7 @@ class McXtrace_instr(McCode_instr): contains all input parameters to be written to file declare_list : list of declare_variable instances - contains all declare parrameters to be written to file + contains all declare parameters to be written to file initialize_section : str string containing entire initialize section to be written @@ -1794,13 +1952,25 @@ class McXtrace_instr(McCode_instr): component_name_list : list of strings list of names of the components in the instrument + component_class_lib : dict + dict of custom Component classes made at run time + + component_reader : ComponentReader + ComponentReader instance for reading component files + + package_path : str + Path to mccode package containing component folders + Methods ------- add_parameter(*args, **kwargs) Adds input parameter to the define section - add_declare_var() - Adds declared variable ot the declare section + add_declare_var(type, name) + Add declared variable called name of given type to the declare section + + append_declare(string) + Appends to the declare section append_initialize(string) Appends a string to the initialize section, then adds new line @@ -1817,12 +1987,21 @@ class McXtrace_instr(McCode_instr): append_trace(string) Obsolete method, add components instead (used in write_c_files) + append_trace_no_new_line(string) + Obsolete method, add components instead (used in write_c_files) + show_components(string) Shows available components in given category + component_help(name) + Shows help on component of given name + add_component(instance_name, component_name, **kwargs) Add a component to the instrument file + copy_component(new_component_name, original_component, **kwargs) + Makes a copy of original_component with new_component_name + get_component(instance_name) Returns component instance with name instance_name @@ -1880,6 +2059,9 @@ class McXtrace_instr(McCode_instr): write_full_instrument() Writes full instrument file to current directory + show_instrument() + Shows instrument using mcdisplay + run_full_instrument(**kwargs) Writes instrument files and runs simulation. Returns list of McStasData diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index df6560a9..499db65d 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -16,32 +16,31 @@ def setup_instr_no_path(): """ - Sets up a instrument without a mcstas_path + Sets up a neutron instrument without a package_path """ return McStas_instr("test_instrument") def setup_x_ray_instr_no_path(): """ - Sets up a instrument without a mcstas_path + Sets up a X-ray instrument without a package_path """ return McXtrace_instr("test_instrument") def setup_instr_root_path(): """ - Sets up a instrument with root mcstas_path + Sets up a neutron instrument with root package_path """ return McStas_instr("test_instrument", package_path="/") def setup_x_ray_instr_root_path(): """ - Sets up a instrument with root mcstas_path + Sets up a X-ray instrument with root package_path """ return McXtrace_instr("test_instrument", package_path="/") - def setup_instr_with_path(): """ - Sets up a instrument with a valid mcstas_path, but it points to + Sets up an instrument with a valid package_path, but it points to the dummy installation in the test folder. """ @@ -51,14 +50,31 @@ def setup_instr_with_path(): current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder + os.chdir(current_work_dir) # Return to previous workdir + return McStas_instr("test_instrument", package_path=dummy_path) +def setup_x_ray_instr_with_path(): + """ + Sets up an instrument with a valid package_path, but it points to + the dummy installation in the test folder. + """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + dummy_path = os.path.join(THIS_DIR, "dummy_mcstas") + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + os.chdir(current_work_dir) # Return to previous workdir + return McXtrace_instr("test_instrument", package_path=dummy_path) + def setup_instr_with_input_path(): """ - Sets up a instrument with a valid mcstas_path, but it points to - the dummy installation in the test folder. + Sets up an instrument with a valid package_path, but it points to + the dummy installation in the test folder. In addition the input_path + is set to a folder in the test directory using an absolute path. """ THIS_DIR = os.path.dirname(os.path.abspath(__file__)) @@ -68,16 +84,17 @@ def setup_instr_with_input_path(): current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder + os.chdir(current_work_dir) # Return to previous workdir + return McStas_instr("test_instrument", package_path=dummy_path, input_path=input_path) - os.chdir(current_work_dir) # Return to previous workdir - def setup_instr_with_input_path_relative(): """ - Sets up a instrument with a valid mcstas_path, but it points to - the dummy installation in the test folder. + Sets up an instrument with a valid package_path, but it points to + the dummy installation in the test folder. In addition the input_path + is set to a folder in the test directory using a relative path. """ THIS_DIR = os.path.dirname(os.path.abspath(__file__)) @@ -85,16 +102,16 @@ def setup_instr_with_input_path_relative(): current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder + os.chdir(current_work_dir) # Return to previous workdir + return McStas_instr("test_instrument", package_path="dummy_mcstas", input_path="test_input_folder") - os.chdir(current_work_dir) # Return to previous workdir - def setup_populated_instr(): """ - Sets up a instrument with some features used and two components + Sets up a neutron instrument with some features used and three components """ instr = setup_instr_root_path() @@ -109,9 +126,36 @@ def setup_populated_instr(): return instr +def setup_populated_instr_with_dummy_path(): + """ + Sets up a neutron instrument with some features used and three components + + Here uses the dummy mcstas installation as path and sets required + parameters so that a run is possible. + """ + instr = setup_instr_with_path() + + instr.add_parameter("double", "theta") + instr.add_parameter("double", "has_default", value=37) + instr.add_declare_var("double", "two_theta") + instr.append_initialize("two_theta = 2.0*theta;") + + comp1 = instr.add_component("first_component", "test_for_reading") + comp1.gauss = 1.2 + comp1.test_string = "a_string" + comp2 = instr.add_component("second_component", "test_for_reading") + comp2.gauss = 1.4 + comp2.test_string = "b_string" + comp3 = instr.add_component("third_component", "test_for_reading") + comp3.gauss = 1.6 + comp3.test_string = "c_string" + + return instr + + def setup_populated_x_ray_instr(): """ - Sets up a instrument with some features used and two components + Sets up a X-ray instrument with some features used and three components """ instr = setup_x_ray_instr_root_path() @@ -126,9 +170,36 @@ def setup_populated_x_ray_instr(): return instr +def setup_populated_x_ray_instr_with_dummy_path(): + """ + Sets up a x-ray instrument with some features used and three components + + Here uses the dummy mcstas installation as path and sets required + parameters so that a run is possible. + """ + instr = setup_x_ray_instr_with_path() + + instr.add_parameter("double", "theta") + instr.add_parameter("double", "has_default", value=37) + instr.add_declare_var("double", "two_theta") + instr.append_initialize("two_theta = 2.0*theta;") + + comp1 = instr.add_component("first_component", "test_for_reading") + comp1.gauss = 1.2 + comp1.test_string = "a_string" + comp2 = instr.add_component("second_component", "test_for_reading") + comp2.gauss = 1.4 + comp2.test_string = "b_string" + comp3 = instr.add_component("third_component", "test_for_reading") + comp3.gauss = 1.6 + comp3.test_string = "c_string" + + return instr + + def setup_populated_with_some_options_instr(): """ - Sets up a instrument with some features used and two components + Sets up a neutron instrument with some features used and two components """ instr = setup_instr_root_path() @@ -170,13 +241,13 @@ def test_complex_initialize(self): my_instrument = McStas_instr("test_instrument", author="Mads", origin="DMSC", - executable_path="/path/to/mcrun", - package_path="/path/to/mcstas") + executable_path="./dummy_mcstas/contrib", + package_path="./dummy_mcstas/misc") self.assertEqual(my_instrument.author, "Mads") self.assertEqual(my_instrument.origin, "DMSC") - self.assertEqual(my_instrument.executable_path, "/path/to/mcrun") - self.assertEqual(my_instrument.package_path, "/path/to/mcstas") + self.assertEqual(my_instrument.executable_path, "./dummy_mcstas/contrib") + self.assertEqual(my_instrument.package_path, "./dummy_mcstas/misc") def test_load_config_file(self): """ @@ -262,6 +333,8 @@ def test_simple_add_parameter(self): """ This is just an interface to a function that is tested elsewhere, so only a basic test is performed here. + + ParameterVariable is tested in test_parameter_variable. """ instr = setup_instr_root_path() @@ -346,6 +419,8 @@ def test_simple_add_declare_parameter(self): """ This is just an interface to a function that is tested elsewhere, so only a basic test is performed here. + + DeclareVariable is tested in test_declare_variable. """ instr = setup_instr_root_path() @@ -356,8 +431,9 @@ def test_simple_add_declare_parameter(self): def test_simple_append_declare(self): """ - The declare lines are held as a string. This method - appends that string. + Appending to declare adds an object to the declare list, and the + allowed types are either strings or DeclareVariable objects. + Here only strings are added. """ instr = setup_instr_root_path() @@ -374,8 +450,9 @@ def test_simple_append_declare(self): def test_simple_append_declare_var_mix(self): """ - The declare lines are held as a string. This method - appends that string. + Appending to declare adds an object to the declare list, and the + allowed types are either strings or DeclareVariable objects. + Here a mix of strings and DeclareVariable objects are added. """ instr = setup_instr_root_path() @@ -415,7 +492,7 @@ def test_simple_append_initialize(self): def test_simple_append_initialize_no_new_line(self): """ The initialize section is held as a string. This method - appends that string. + appends that string without making a new line. """ instr = setup_instr_root_path() @@ -434,7 +511,7 @@ def test_simple_append_initialize_no_new_line(self): def test_simple_append_finally(self): """ - The initialize section is held as a string. This method + The finally section is held as a string. This method appends that string. """ instr = setup_instr_root_path() @@ -456,8 +533,8 @@ def test_simple_append_finally(self): def test_simple_append_finally_no_new_line(self): """ - The initialize section is held as a string. This method - appends that string. + The finally section is held as a string. This method + appends that string without making a new line. """ instr = setup_instr_root_path() @@ -476,8 +553,9 @@ def test_simple_append_finally_no_new_line(self): def test_simple_append_trace(self): """ - The initialize section is held as a string. This method - appends that string. + The trace section is held as a string. This method + appends that string. Only used for writing c files, which is not + the main way to use McStasScript. """ instr = setup_instr_root_path() @@ -498,8 +576,9 @@ def test_simple_append_trace(self): def test_simple_append_trace_no_new_line(self): """ - The initialize section is held as a string. This method - appends that string. + The trace section is held as a string. This method appends that string + without making a new line. Only used for writing c files, which is not + the main way to use McStasScript. """ instr = setup_instr_root_path() @@ -519,7 +598,7 @@ def test_simple_append_trace_no_new_line(self): @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_show_components_simple(self, mock_stdout): """ - Simple test of show components to show categories + Simple test of show components to show component categories """ instr = setup_instr_with_path() @@ -543,7 +622,8 @@ def test_show_components_simple(self, mock_stdout): @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_show_components_folder(self, mock_stdout): """ - Simple test of show components to show categories + Simple test of show components to show components in current work + directory. """ instr = setup_instr_with_path() @@ -567,7 +647,7 @@ def test_show_components_folder(self, mock_stdout): @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_show_components_input_path_simple(self, mock_stdout): """ - Simple test of input_path being recoignized and passed + Simple test of input_path being recognized and passed to component_reader so PSDlin_monitor is overwritten """ instr = setup_instr_with_input_path() @@ -594,7 +674,7 @@ def test_show_components_input_path_simple(self, mock_stdout): """ Simple test of input_path being recoignized and passed to component_reader so PSDlin_monitor is overwritten - Here dummy_mcstas and input_path is set using relative + Here dummy_mcstas and input_path are set using relative paths instead of absolute paths. """ instr = setup_instr_with_input_path_relative() @@ -626,7 +706,7 @@ def test_component_help(self, mock_stdout): instr.component_help("test_for_reading", line_length=90) # This call creates a dummy component and calls its # show_parameter method which has been tested. Here we - # need to ensure the call is succesful, not test all + # need to ensure the call is successful, not test all # output from the call. output = mock_stdout.getvalue() @@ -663,9 +743,11 @@ def test_component_help(self, mock_stdout): @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_create_component_instance_simple(self, mock_stdout): """ + Tests successful use of _create_component_instance + _create_component_instance will make a dynamic subclass of component with the information from the component files read - from disk. The subclasses is saved in a dict for reuse in + from disk. The subclass is saved in a dict for reuse in case the same component type is requested again. """ @@ -685,23 +767,12 @@ def test_create_component_instance_simple(self, mock_stdout): self.assertEqual(comp.parameter_comments["radius"], comment) self.assertEqual(comp.category, "Work directory") - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_create_component_instance_simple_error(self, mock_stdout): - """ - _create_component_instance will make a dynamic subclass of - component with the information from the component files read - from disk. The subclasses is saved in a dict for reuse in - case the same component type is requested again. - """ - - instr = setup_instr_with_path() - - with self.assertRaises(NameError): - comp = instr._create_component_instance("test_component") - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_create_component_instance_complex(self, mock_stdout): """ + Tests successful use of _create_component_instance while using + keyword arguments in creation + _create_component_instance will make a dynamic subclass of component with the information from the component files read from disk. The subclasses is saved in a dict for reuse in @@ -735,6 +806,8 @@ def test_create_component_instance_complex(self, mock_stdout): @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_add_component_simple(self, mock_stdout): """ + Testing add_component in simple case. + The add_component method adds a new component object to the instrument and keeps track of its location within the sequence of components. Normally a new component is added to @@ -756,6 +829,8 @@ def test_add_component_simple(self, mock_stdout): @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_add_component_simple_keyword(self, mock_stdout): """ + Testing add_component with keyword argument for the component + The add_component method adds a new component object to the instrument and keeps track of its location within the sequence of components. Normally a new component is added to @@ -777,15 +852,15 @@ def test_add_component_simple_keyword(self, mock_stdout): self.assertEqual(instr.component_list[0].WHEN, "WHEN (1<2)") - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_add_component_simple_before(self, mock_stdout): + def test_add_component_simple_before(self): """ + Testing add_component with before keyword argument for the method + The add_component method adds a new component object to the instrument and keeps track of its location within the sequence of components. Normally a new component is added to the end of the sequence, but the before and after keywords can - be used to select another location. Here keyword passing is - tested. + be used to select another location, here before is tested. """ instr = setup_populated_instr() @@ -798,15 +873,15 @@ def test_add_component_simple_before(self, mock_stdout): self.assertEqual(instr.component_list[0].name, "test_component") self.assertEqual(instr.component_list[3].name, "third_component") - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_add_component_simple_after(self, mock_stdout): + def test_add_component_simple_after(self): """ + Testing add_component with after keyword argument for the method + The add_component method adds a new component object to the instrument and keeps track of its location within the sequence of components. Normally a new component is added to the end of the sequence, but the before and after keywords can - be used to select another location. Here keyword passing is - tested. + be used to select another location, here after is tested. """ instr = setup_populated_instr() @@ -819,15 +894,16 @@ def test_add_component_simple_after(self, mock_stdout): self.assertEqual(instr.component_list[1].name, "test_component") self.assertEqual(instr.component_list[3].name, "third_component") - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_add_component_simple_after_error(self, mock_stdout): + def test_add_component_simple_after_error(self): """ + Checks add_component raises a NameError if after keyword specifies a + non-existent component + The add_component method adds a new component object to the instrument and keeps track of its location within the sequence of components. Normally a new component is added to the end of the sequence, but the before and after keywords can - be used to select another location. Here keyword passing is - tested. + be used to select another location, here before is tested. """ instr = setup_populated_instr() @@ -835,17 +911,18 @@ def test_add_component_simple_after_error(self, mock_stdout): with self.assertRaises(NameError): comp = instr.add_component("test_component", "test_for_reading", - after="non_exsistent_component") + after="non_existent_component") - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_add_component_simple_before_error(self, mock_stdout): + def test_add_component_simple_before_error(self): """ + Checks add_component raises a NameError if before keyword specifies a + non-existent component + The add_component method adds a new component object to the instrument and keeps track of its location within the sequence of components. Normally a new component is added to the end of the sequence, but the before and after keywords can - be used to select another location. Here keyword passing is - tested. + be used to select another location, here after is tested. """ instr = setup_populated_instr() @@ -853,12 +930,11 @@ def test_add_component_simple_before_error(self, mock_stdout): with self.assertRaises(NameError): comp = instr.add_component("test_component", "test_for_reading", - before="non_exsistent_component") + before="non_existent_component") - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_add_component_simple_double_naming_error(self, mock_stdout): + def test_add_component_simple_double_naming_error(self): """ - This tests checks that an error occurs when giving the new + This tests checks that an error occurs when giving a new component a name which has already been used. """ @@ -866,11 +942,10 @@ def test_add_component_simple_double_naming_error(self, mock_stdout): with self.assertRaises(NameError): comp = instr.add_component("first_component", "test_for_reading") - - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_copy_component_simple(self, mock_stdout): + + def test_copy_component_simple(self): """ - Checks that a component can be copied + Checks that a component can be copied using the name """ instr = setup_populated_with_some_options_instr() @@ -882,12 +957,28 @@ def test_copy_component_simple(self, mock_stdout): self.assertEqual(comp.AT_data[0], 0) self.assertEqual(comp.AT_data[1], 0) self.assertEqual(comp.AT_data[2], 2) - - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_copy_component_keywords(self, mock_stdout): + + def test_copy_component_simple_object(self): + """ + Checks that a component can be copied using the object + """ + + instr = setup_populated_with_some_options_instr() + + comp = instr.get_component("second_component") + + comp = instr.copy_component("copy_of_second_comp", comp) + + self.assertEqual(comp.name, "copy_of_second_comp") + self.assertEqual(comp.yheight, 1.23) + self.assertEqual(comp.AT_data[0], 0) + self.assertEqual(comp.AT_data[1], 0) + self.assertEqual(comp.AT_data[2], 2) + + def test_copy_component_keywords(self): """ Checks that a component can be copied and that keyword - arguments given under copy operation is sucessfully + arguments given under copy operation is successfully applied to the new component. A check is also made to ensure that the original component was not modified. """ @@ -912,13 +1003,11 @@ def test_copy_component_keywords(self, mock_stdout): self.assertEqual(original.AT_data[1], 0) self.assertEqual(original.AT_data[2], 2) self.assertEqual(original.SPLIT, 0) - - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_get_component_simple(self, mock_stdout): + def test_get_component_simple(self): """ get_component retrieves a component with a given name for - easier manipulation. + easier manipulation. Check it works as intended. """ instr = setup_populated_instr() @@ -927,11 +1016,11 @@ def test_get_component_simple(self, mock_stdout): self.assertEqual(comp.name, "second_component") - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_get_component_simple_error(self, mock_stdout): + def test_get_component_simple_error(self): """ get_component retrieves a component with a given name for - easier manipulation. + easier manipulation. Check it fails when the component name + doesn't correspond to a component in the instrument. """ instr = setup_populated_instr() @@ -939,11 +1028,9 @@ def test_get_component_simple_error(self, mock_stdout): with self.assertRaises(NameError): comp = instr.get_component("non_existing_component") - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_get_last_component_simple(self, mock_stdout): + def test_get_last_component_simple(self): """ - get_component retrieves the last component for easier - manipulation. + Check get_last_component retrieves the last component """ instr = setup_populated_instr() @@ -952,10 +1039,11 @@ def test_get_last_component_simple(self, mock_stdout): self.assertEqual(comp.name, "third_component") - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_set_component_parameter(self, mock_stdout): + def test_set_component_parameter(self): """ - Set component parameter passes a dict from instrument level + Tests simple case of set_component_parameter + + set_component_parameter passes a dict from instrument level to a contained component with the given name. It uses the get_component method. """ @@ -971,10 +1059,12 @@ def test_set_component_parameter(self, mock_stdout): self.assertEqual(comp.radius, 5.8) self.assertEqual(comp.dist, "text") - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_set_component_parameter_error(self, mock_stdout): + def test_set_component_parameter_error(self): """ - Set component parameter passes a dict from instrument level + Tests set_component_parameter fails when trying to set a parameter + that does not exist + + set_component_parameter passes a dict from instrument level to a contained component with the given name. It uses the get_component method. """ @@ -983,11 +1073,10 @@ def test_set_component_parameter_error(self, mock_stdout): with self.assertRaises(NameError): instr.set_component_parameter("second_component", - {"non_exsistant_par": 5.8, + {"non_existent_par": 5.8, "dist": "text"}) - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_set_component_AT(self, mock_stdout): + def test_set_component_AT(self): """ set_component_AT passes the argument to the similar method in the component class. @@ -1004,8 +1093,7 @@ def test_set_component_AT(self, mock_stdout): self.assertEqual(comp.AT_relative, "RELATIVE home") self.assertEqual(comp.ROTATED_relative, "ABSOLUTE") - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_set_component_ROTATED(self, mock_stdout): + def test_set_component_ROTATED(self): """ set_component_ROTATED passes the argument to the similar method in the component class. @@ -1014,16 +1102,15 @@ def test_set_component_ROTATED(self, mock_stdout): instr = setup_populated_instr() instr.set_component_ROTATED("second_component", - [1, 2, 3.2], RELATIVE="home") + [4, 1, -29], RELATIVE="home") comp = instr.get_component("second_component") - self.assertEqual(comp.ROTATED_data, [1, 2, 3.2]) + self.assertEqual(comp.ROTATED_data, [4, 1, -29]) self.assertEqual(comp.ROTATED_relative, "RELATIVE home") self.assertEqual(comp.AT_relative, "ABSOLUTE") - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_set_component_RELATIVE(self, mock_stdout): + def test_set_component_RELATIVE(self): """ set_component_RELATIVE passes the argument to the similar method in the component class. @@ -1039,8 +1126,7 @@ def test_set_component_RELATIVE(self, mock_stdout): self.assertEqual(comp.ROTATED_relative, "RELATIVE home") self.assertEqual(comp.AT_relative, "RELATIVE home") - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_set_component_WHEN(self, mock_stdout): + def test_set_component_WHEN(self): """ set_component_WHEN passes the argument to the similar method in the component class. @@ -1054,8 +1140,7 @@ def test_set_component_WHEN(self, mock_stdout): self.assertEqual(comp.WHEN, "WHEN (2>1)") - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_append_component_EXTEND(self, mock_stdout): + def test_append_component_EXTEND(self): """ append_component_EXTEND passes the argument to the similar method in the component class. @@ -1073,8 +1158,7 @@ def test_append_component_EXTEND(self, mock_stdout): self.assertEqual(output[0], "line1") self.assertEqual(output[1], "line2") - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_set_component_GROUP(self, mock_stdout): + def test_set_component_GROUP(self): """ set_component_GROUP passes the argument to the similar method in the component class. @@ -1088,8 +1172,7 @@ def test_set_component_GROUP(self, mock_stdout): self.assertEqual(comp.GROUP, "developers") - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_set_component_JUMP(self, mock_stdout): + def test_set_component_JUMP(self): """ set_component_JUMP passes the argument to the similar method in the component class. @@ -1102,9 +1185,8 @@ def test_set_component_JUMP(self, mock_stdout): comp = instr.get_component("second_component") self.assertEqual(comp.JUMP, "myself 8") - - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_set_component_SPLIT(self, mock_stdout): + + def test_set_component_SPLIT(self): """ set_component_SPLIT passes the argument to the similar method in the component class. @@ -1118,8 +1200,7 @@ def test_set_component_SPLIT(self, mock_stdout): self.assertEqual(comp.SPLIT, 3) - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_set_component_comment(self, mock_stdout): + def test_set_component_comment(self): """ set_component_comment passes the argument to the similar method in the component class. @@ -1132,9 +1213,8 @@ def test_set_component_comment(self, mock_stdout): comp = instr.get_component("second_component") self.assertEqual(comp.comment, "test comment") - - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_set_c_code_before(self, mock_stdout): + + def test_set_c_code_before(self): """ set_component_c_code_before passes the argument to the similar method in the component class. @@ -1147,9 +1227,8 @@ def test_set_c_code_before(self, mock_stdout): comp = instr.get_component("second_component") self.assertEqual(comp.c_code_before, "%include before.instr") - - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_set_c_code_after(self, mock_stdout): + + def test_set_c_code_after(self): """ set_component_c_code_after passes the argument to the similar method in the component class. @@ -1226,6 +1305,8 @@ def test_print_component_short(self, mock_stdout): @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_print_components_simple(self, mock_stdout): """ + Tests print_components for simple case + print_components calls the print_short method in the component class for each component and aligns the data for display """ @@ -1251,6 +1332,8 @@ class for each component and aligns the data for display @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_print_components_complex(self, mock_stdout): """ + Tests print_components for complex case + print_components calls the print_short method in the component class for each component and aligns the data for display """ @@ -1389,10 +1472,9 @@ class for each component and aligns the data for display expected = (" AT (0, 0, 0) ABSOLUTE") self.assertEqual(output[6], expected) - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) - def test_write_c_files_simple(self, mock_f, mock_stdout): + def test_write_c_files_simple(self, mock_f): """ Write_c_files writes the strings for declare, initialize, and trace to files that are then included in McStas files. @@ -1451,17 +1533,16 @@ def test_write_c_files_simple(self, mock_f, mock_stdout): handle.write.assert_has_calls(wrts, any_order=False) - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) - def test_write_full_instrument_simple(self, mock_f, mock_stdout): + def test_write_full_instrument_simple(self, mock_f): """ - The write_full_instrument methods writes the information + The write_full_instrument method write the information contained in the instrument instance to a file with McStas syntax. The test includes a time stamp in the written and expected - data that has an accuracy of 1 second. It is unlikey to fail + data that has an accuracy of 1 second. It is unlikely to fail due to this, but it can happen. """ @@ -1546,27 +1627,40 @@ def test_write_full_instrument_simple(self, mock_f, mock_stdout): handle = mock_f() handle.write.assert_has_calls(wrts, any_order=False) + # mock sys.stdout to avoid printing to terminal @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_run_full_instrument_required_par_error(self, mock_stdout): """ + Tests run_full_instrument raises error when lacking required parameter + The populated instr has a required parameter, and when not given it should raise an error. """ + instr = setup_populated_instr() + with self.assertRaises(NameError): + instr.run_full_instrument(foldername="test_data_set", + executable_path="dummy_mcstas") + + def test_run_full_instrument_junk_par_error(self): + """ + Check run_full_instrument raises a NameError if a unrecognized + parameter is provided, here junk. + """ instr = setup_populated_instr() + pars = {"theta": 2, "junk": "test"} + with self.assertRaises(NameError): - instr.run_full_instrument("test_instrument.instr", - foldername="test_data_set", - executable_path="path") + instr.run_full_instrument(foldername="test_data_set", + parameters=pars) @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - @unittest.mock.patch('__main__.__builtins__.open', - new_callable=unittest.mock.mock_open) @unittest.mock.patch("subprocess.run") - def test_x_ray_run_full_instrument_basic(self, mock_sub, - mock_f, mock_stdout,): + def test_x_ray_run_full_instrument_basic(self, mock_sub, mock_stdout): """ + Tests x-ray run_full_instrument + Check a simple run performs the correct system call. Here the target directory is set to the test data set so that some data is loaded even though the system call is not executed. @@ -1578,9 +1672,8 @@ def test_x_ray_run_full_instrument_basic(self, mock_sub, current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder - instr = setup_populated_x_ray_instr() - instr.run_full_instrument("test_instrument.instr", - foldername="test_data_set", + instr = setup_populated_x_ray_instr_with_dummy_path() + instr.run_full_instrument(foldername="test_data_set", executable_path=executable_path, parameters={"theta": 1}) @@ -1588,7 +1681,6 @@ def test_x_ray_run_full_instrument_basic(self, mock_sub, expected_path = os.path.join(executable_path, "mxrun") - current_directory = os.getcwd() expected_folder_path = os.path.join(THIS_DIR, "test_data_set") # a double space because of a missing option @@ -1606,12 +1698,11 @@ def test_x_ray_run_full_instrument_basic(self, mock_sub, universal_newlines=True) @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - @unittest.mock.patch('__main__.__builtins__.open', - new_callable=unittest.mock.mock_open) @unittest.mock.patch("subprocess.run") - def test_run_full_instrument_basic(self, mock_sub, - mock_f, mock_stdout, ): + def test_run_full_instrument_basic(self, mock_sub, mock_stdout): """ + Test neutron run_full_instrument + Check a simple run performs the correct system call. Here the target directory is set to the test data set so that some data is loaded even though the system call is not executed. @@ -1623,9 +1714,9 @@ def test_run_full_instrument_basic(self, mock_sub, current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder - instr = setup_populated_instr() - instr.run_full_instrument("test_instrument.instr", - foldername="test_data_set", + instr = setup_populated_instr_with_dummy_path() + + instr.run_full_instrument(foldername="test_data_set", executable_path=executable_path, parameters={"theta": 1}) @@ -1633,7 +1724,6 @@ def test_run_full_instrument_basic(self, mock_sub, expected_path = os.path.join(executable_path, "mcrun") - current_directory = os.getcwd() expected_folder_path = os.path.join(THIS_DIR, "test_data_set") # a double space because of a missing option @@ -1649,12 +1739,11 @@ def test_run_full_instrument_basic(self, mock_sub, cwd=run_path) @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - @unittest.mock.patch('__main__.__builtins__.open', - new_callable=unittest.mock.mock_open) @unittest.mock.patch("subprocess.run") - def test_run_full_instrument_complex(self, mock_sub, - mock_f, mock_stdout,): + def test_run_full_instrument_complex(self, mock_sub, mock_stdout): """ + Test neutron run_full_instrument in more complex case + Check a complex run performs the correct system call. Here the target directory is set to the test data set so that some data is loaded even though the system call is not executed. @@ -1666,9 +1755,13 @@ def test_run_full_instrument_complex(self, mock_sub, current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder - instr = setup_populated_instr() - instr.run_full_instrument("test_instrument.instr", - foldername="test_data_set", + instr = setup_populated_instr_with_dummy_path() + + # Add some extra parameters for testing + instr.add_parameter("A") + instr.add_parameter("BC") + + instr.run_full_instrument(foldername="test_data_set", executable_path=executable_path, mpi=7, ncount=48.4, @@ -1681,7 +1774,6 @@ def test_run_full_instrument_complex(self, mock_sub, expected_path = os.path.join(executable_path, "mcrun") - current_directory = os.getcwd() expected_folder_path = os.path.join(THIS_DIR, "test_data_set") # a double space because of a missing option @@ -1697,14 +1789,11 @@ def test_run_full_instrument_complex(self, mock_sub, cwd=run_path) @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - @unittest.mock.patch('__main__.__builtins__.open', - new_callable=unittest.mock.mock_open) @unittest.mock.patch("subprocess.run") - def test_run_full_instrument_overwrite_default(self, mock_sub, - mock_f, mock_stdout,): + def test_run_full_instrument_overwrite_default(self, mock_sub, mock_stdout): """ Check that default parameters are overwritten by given - parameters. + parameters in run_full_instrument. """ THIS_DIR = os.path.dirname(os.path.abspath(__file__)) @@ -1713,9 +1802,13 @@ def test_run_full_instrument_overwrite_default(self, mock_sub, current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder - instr = setup_populated_instr() - instr.run_full_instrument("test_instrument.instr", - foldername="test_data_set", + instr = setup_populated_instr_with_dummy_path() + + # Add some extra parameters for testing + instr.add_parameter("A") + instr.add_parameter("BC") + + instr.run_full_instrument(foldername="test_data_set", executable_path=executable_path, mpi=7, ncount=48.4, @@ -1744,6 +1837,47 @@ def test_run_full_instrument_overwrite_default(self, mock_sub, universal_newlines=True, cwd=run_path) + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + @unittest.mock.patch("subprocess.run") + def test_run_full_instrument_x_ray_basic(self, mock_sub, mock_stdout): + """ + Test x-ray run_full_instrument + + Check a simple run performs the correct system call. Here + the target directory is set to the test data set so that some + data is loaded even though the system call is not executed. + """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + instr = setup_populated_x_ray_instr_with_dummy_path() + + instr.run_full_instrument(foldername="test_data_set", + executable_path=executable_path, + parameters={"theta": 1}) + + os.chdir(current_work_dir) + + expected_path = os.path.join(executable_path, "mxrun") + + expected_folder_path = os.path.join(THIS_DIR, "test_data_set") + + # a double space because of a missing option + expected_call = (expected_path + " -c -n 1000000 " + + "-d " + expected_folder_path + + " test_instrument.instr" + + " has_default=37 theta=1") + + mock_sub.assert_called_once_with(expected_call, + shell=True, + stderr=-1, stdout=-1, + universal_newlines=True, + cwd=run_path) + if __name__ == '__main__': unittest.main() From 1c1f59bf6303c9306f2e8453c4b492355b7c00e7 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Mon, 25 Jan 2021 17:13:04 +0100 Subject: [PATCH 131/403] Updating unit tests so they are running from test folder when required. --- mcstasscript/tests/test_Instr.py | 61 ++++++++++++++++++++++++++++++++ 1 file changed, 61 insertions(+) diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index 499db65d..8d4f124e 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -18,26 +18,54 @@ def setup_instr_no_path(): """ Sets up a neutron instrument without a package_path """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + return McStas_instr("test_instrument") + os.chdir(current_work_dir) + def setup_x_ray_instr_no_path(): """ Sets up a X-ray instrument without a package_path """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + return McXtrace_instr("test_instrument") + os.chdir(current_work_dir) + def setup_instr_root_path(): """ Sets up a neutron instrument with root package_path """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + return McStas_instr("test_instrument", package_path="/") + os.chdir(current_work_dir) + def setup_x_ray_instr_root_path(): """ Sets up a X-ray instrument with root package_path """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + return McXtrace_instr("test_instrument", package_path="/") + os.chdir(current_work_dir) + def setup_instr_with_path(): """ Sets up an instrument with a valid package_path, but it points to @@ -226,6 +254,10 @@ class TestMcStas_instr(unittest.TestCase): Tests of the main class in McStasScript called McStas_instr. """ + #def test_show_test_folder(self): + # os.system("tree") + + def test_simple_initialize(self): """ Test basic initialization runs @@ -600,10 +632,18 @@ def test_show_components_simple(self, mock_stdout): """ Simple test of show components to show component categories """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + instr = setup_instr_with_path() instr.show_components() + os.chdir(current_work_dir) + output = mock_stdout.getvalue() output = output.split("\n") @@ -627,8 +667,15 @@ def test_show_components_folder(self, mock_stdout): """ instr = setup_instr_with_path() + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + instr.show_components("Work directory") + os.chdir(current_work_dir) + output = mock_stdout.getvalue() output = output.split("\n") @@ -751,8 +798,15 @@ def test_create_component_instance_simple(self, mock_stdout): case the same component type is requested again. """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + instr = setup_instr_with_path() + os.chdir(current_work_dir) + comp = instr._create_component_instance("test_component", "test_for_reading") @@ -779,8 +833,15 @@ def test_create_component_instance_complex(self, mock_stdout): case the same component type is requested again. """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + instr = setup_instr_with_path() + os.chdir(current_work_dir) + # Setting relative to home, should be passed to component comp = instr._create_component_instance("test_component", "test_for_reading", From 72bf29164232adb14dcb591cfe28d6957b70ba17 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Mon, 25 Jan 2021 17:43:29 +0100 Subject: [PATCH 132/403] Added unit tests to increase coverage. Failure of copy_component tested. mcdisplay call tested. --- mcstasscript/interface/instr.py | 3 ++- mcstasscript/tests/test_Instr.py | 44 ++++++++++++++++++++++++++++++++ 2 files changed, 46 insertions(+), 1 deletion(-) diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index aa925393..b6a99f1d 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -1673,7 +1673,8 @@ def show_instrument(self, *args, **kwargs): process = subprocess.run(full_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, - universal_newlines=True) + universal_newlines=True, + cwd=self.input_path) print(process.stderr) print(process.stdout) diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index 8d4f124e..0be76306 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -1019,6 +1019,17 @@ def test_copy_component_simple(self): self.assertEqual(comp.AT_data[1], 0) self.assertEqual(comp.AT_data[2], 2) + def test_copy_component_simple_fail(self): + """ + Checks a NameError is raised if trying to copy a component that does + not exist + """ + + instr = setup_populated_with_some_options_instr() + + with self.assertRaises(NameError): + comp = instr.copy_component("copy_of_second_comp", "unknown_component") + def test_copy_component_simple_object(self): """ Checks that a component can be copied using the object @@ -1940,5 +1951,38 @@ def test_run_full_instrument_x_ray_basic(self, mock_sub, mock_stdout): cwd=run_path) + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + @unittest.mock.patch("subprocess.run") + def test_show_instrument_basic(self, mock_sub, mock_stdout): + """ + Test show_instrument methods makes correct system calls + """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + instr = setup_populated_instr_with_dummy_path() + + instr.show_instrument(parameters={"theta": 1.2}) + + os.chdir(current_work_dir) + + expected_path = os.path.join(executable_path, "bin", "mcdisplay-webgl") + + # a double space because of a missing option + expected_call = (expected_path + + " ./test_instrument.instr" + + " has_default=37 theta=1.2") + + mock_sub.assert_called_once_with(expected_call, + shell=True, + stderr=-1, stdout=-1, + universal_newlines=True, + cwd=".") + + if __name__ == '__main__': unittest.main() From 32f1054619a6e72de0a0b645da902bd7a8251663 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 26 Jan 2021 08:47:11 +0100 Subject: [PATCH 133/403] Updated to new CamelCase Component class name. --- mcstasscript/interface/instr.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index b071ab68..5907cafc 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -810,7 +810,7 @@ def copy_component(self, name, original_component, **kwargs): comment : str Comment that will be displayed before the component """ - if isinstance(original_component, component): # Update to CammelCase + if isinstance(original_component, Component): original_component = original_component.name """ If the name starts with COPY, use unique naming as described in the From 5bd4e7950990cbd7b3e05f044a2cc413098d0d63 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 26 Jan 2021 09:17:34 +0100 Subject: [PATCH 134/403] Small change in formatting. --- mcstasscript/tests/test_Instr.py | 1 - 1 file changed, 1 deletion(-) diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index fd0505eb..ced71652 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -1950,7 +1950,6 @@ def test_run_full_instrument_x_ray_basic(self, mock_sub, mock_stdout): universal_newlines=True, cwd=run_path) - @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) @unittest.mock.patch("subprocess.run") def test_show_instrument_basic(self, mock_sub, mock_stdout): From 50e76b7b84200641fb1023dbab3747f04465435d Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 26 Jan 2021 10:38:31 +0100 Subject: [PATCH 135/403] Updates of integration tests in connection to review by Celine Durniak. --- mcstasscript/integration_tests/test_complex_instrument.py | 2 +- mcstasscript/integration_tests/test_simple_instrument.py | 6 +++--- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/mcstasscript/integration_tests/test_complex_instrument.py b/mcstasscript/integration_tests/test_complex_instrument.py index f8238a05..50265d44 100644 --- a/mcstasscript/integration_tests/test_complex_instrument.py +++ b/mcstasscript/integration_tests/test_complex_instrument.py @@ -13,7 +13,7 @@ def setup_complex_instrument(): Sets up guide system with two guides that are placed next to one another with separate entrances but converge at the end. - It attempts to use as McStas keywords and features as possible. + It attempts to use as many McStas keywords and features as possible. """ Instr = instr.McStas_instr("integration_test_complex", author="test_suite", diff --git a/mcstasscript/integration_tests/test_simple_instrument.py b/mcstasscript/integration_tests/test_simple_instrument.py index fc0a919f..58caad86 100644 --- a/mcstasscript/integration_tests/test_simple_instrument.py +++ b/mcstasscript/integration_tests/test_simple_instrument.py @@ -99,7 +99,7 @@ class TestSimpleInstrument(unittest.TestCase): @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_simple_instrument(self, mock_stdout): """ - Test that an instrument can run and that the results matches + Test that an instrument can run and that the results match expectations. Here beam in small area in the middle of the detector. """ @@ -127,7 +127,7 @@ def test_simple_instrument(self, mock_stdout): @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_simple_instrument_input(self, mock_stdout): """ - Test that an instrument can run and that the results matches + Test that an instrument can run and that the results match expectations. Here beam in small area in the middle of the detector. """ @@ -187,7 +187,7 @@ def test_simple_instrument_mpi(self, mock_stdout): def test_slit_instrument(self, mock_stdout): """ Test parameters can be controlled through McStasScript. Here - a slit is can be moved, but the default value of 0 should be + a slit can be moved, but the default value of 0 should be used. """ CURRENT_DIR = os.getcwd() From b773ce24d4dafe1a8d740e971479867fa3bb59b3 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 26 Jan 2021 10:39:54 +0100 Subject: [PATCH 136/403] Updates for code distribution after review by Celine Durniak. --- MANIFEST.in | 2 +- setup.py | 3 ++- 2 files changed, 3 insertions(+), 2 deletions(-) diff --git a/MANIFEST.in b/MANIFEST.in index 0288d07d..f9224b57 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -1,4 +1,5 @@ include McStasScript_documentation.pdf +include McStasScript_developer_documentation.pdf include mcstasscript/configuration.yaml include mcstasscript/tests/test_for_reading.comp include mcstasscript/tests/test_instrument.instr @@ -8,4 +9,3 @@ include mcstasscript/integration_tests/test_input_folder/PSDlin_monitor.comp graft mcstasscript/tests/dummy_mcstas graft mcstasscript/tests/dummy_instrument_folder graft mcstasscript/tests/test_data_set - diff --git a/setup.py b/setup.py index 69d61eea..ccf00909 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ setuptools.setup( name='McStasScript', - version='0.0.24', + version='0.0.25', author="Mads Bertelsen", author_email="Mads.Bertelsen@ess.eu", description="A python scripting interface for McStas", @@ -19,5 +19,6 @@ "Programming Language :: Python :: 3", "License :: OSI Approved :: GNU General Public License (GPL)", "Operating System :: OS Independent", + "Topic :: Scientific/Engineering" ], ) From 5de471329f8e69cee5c21f6589a2f393a6162bef Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 27 Jan 2021 14:36:19 +0100 Subject: [PATCH 137/403] Using flake8 to bring code to PEP-8 standard. Still some issues outstanding. --- mcstasscript/data/data.py | 18 +- mcstasscript/helper/component_reader.py | 34 +- mcstasscript/helper/formatting.py | 4 +- mcstasscript/helper/managed_mcrun.py | 13 +- mcstasscript/helper/mcstas_objects.py | 39 +-- mcstasscript/instr_reader/control.py | 90 +++-- mcstasscript/instr_reader/read_declare.py | 151 ++++---- mcstasscript/instr_reader/read_definition.py | 67 ++-- mcstasscript/instr_reader/read_finally.py | 50 +-- mcstasscript/instr_reader/read_initialize.py | 49 +-- mcstasscript/instr_reader/read_trace.py | 258 +++++++------- mcstasscript/instr_reader/util.py | 71 ++-- .../test_complex_instrument.py | 8 +- .../test_simple_instrument.py | 13 +- mcstasscript/interface/functions.py | 56 +-- mcstasscript/interface/instr.py | 60 ++-- mcstasscript/interface/plotter.py | 9 +- mcstasscript/interface/reader.py | 22 +- mcstasscript/tests/test_ComponentReader.py | 74 ++-- mcstasscript/tests/test_Configurator.py | 68 ++-- mcstasscript/tests/test_Instr.py | 169 +++++---- mcstasscript/tests/test_Instr_reader.py | 324 +++++++++--------- mcstasscript/tests/test_ManagedMcrun.py | 38 +- mcstasscript/tests/test_Plotter.py | 44 ++- mcstasscript/tests/test_component.py | 15 +- mcstasscript/tests/test_declare_variable.py | 32 +- mcstasscript/tests/test_functions.py | 22 +- mcstasscript/tests/test_instrument.instr | 26 +- mcstasscript/tests/test_parameter_variable.py | 4 +- 29 files changed, 929 insertions(+), 899 deletions(-) diff --git a/mcstasscript/data/data.py b/mcstasscript/data/data.py index 86fa03de..f7418bbf 100644 --- a/mcstasscript/data/data.py +++ b/mcstasscript/data/data.py @@ -1,6 +1,7 @@ import matplotlib.pyplot import numpy as np + class McStasMetaData: """ Class for holding metadata for McStas dataset, is to be read from @@ -259,41 +260,41 @@ def set_options(self, **kwargs): raise ValueError("Chosen colormap not available in " + "matplotlib, was: " + str(self.colormap)) - + if "show_colorbar" in kwargs: self.show_colorbar = bool(kwargs["show_colorbar"]) - + if "cut_max" in kwargs: self.cut_max = kwargs["cut_max"] if not isinstance(self.cut_max, (float, int)): raise ValueError("cut_max has to be a number, was given: " + str(self.cut_max)) - + if "cut_min" in kwargs: self.cut_min = kwargs["cut_min"] if not isinstance(self.cut_min, (float, int)): raise ValueError("cut_min has to be a number, was given: " + str(self.cut_min)) - + if "x_axis_multiplier" in kwargs: self.x_limit_multiplier = kwargs["x_axis_multiplier"] if not isinstance(self.x_limit_multiplier, (float, int)): raise ValueError("x_limit_multiplier has to be a number, was " + "given: " + str(self.x_limit_multiplier)) - + if "y_axis_multiplier" in kwargs: self.y_limit_multiplier = kwargs["y_axis_multiplier"] if not isinstance(self.y_limit_multiplier, (float, int)): raise ValueError("y_limit_multiplier has to be a number, was " + "given: " + str(self.y_limit_multiplier)) - + if "top_lim" in kwargs: self.top_lim = kwargs["top_lim"] self.custom_ylim_top = True if not isinstance(self.top_lim, (float, int)): raise ValueError("top_lim has to be a number, was " + "given: " + str(self.top_lim)) - + if "bottom_lim" in kwargs: self.bottom_lim = kwargs["bottom_lim"] self.custom_ylim_bottom = True @@ -307,7 +308,7 @@ def set_options(self, **kwargs): if not isinstance(self.left_lim, (float, int)): raise ValueError("left_lim has to be a number, was " + "given: " + str(self.left_lim)) - + if "right_lim" in kwargs: self.right_lim = kwargs["right_lim"] self.custom_xlim_right = True @@ -451,4 +452,3 @@ def __str__(self): def __repr__(self): return "\n" + self.__str__() - diff --git a/mcstasscript/helper/component_reader.py b/mcstasscript/helper/component_reader.py index daabd19f..d5477a31 100644 --- a/mcstasscript/helper/component_reader.py +++ b/mcstasscript/helper/component_reader.py @@ -84,7 +84,7 @@ def __init__(self, mcstas_path, input_path="."): raise ValueError("Can't find given input_path," + " directory must exist.") """ - If components are present both in the McStas install and the + If components are present both in the McStas install and the work directory, the version in the work directory is used. The user is informed of this behavior when the instrument object is created. """ @@ -110,7 +110,6 @@ def __init__(self, mcstas_path, input_path="."): print("These definitions will be used instead of the installed " + "versions.") - def show_categories(self): """ Method that will show all component categories available @@ -316,13 +315,10 @@ def read_component_file(self, absolute_path): if (line.strip().startswith("DEFINITION PARAMETERS") or line.strip().startswith("SETTING PARAMETERS")): - - line = line.split("//")[0] # Remove comments + line = line.split("//")[0] # Remove comments parts = line.split("(") parameter_parts = parts[1].split(",") - parameter_parts = self.correct_for_brackets(parameter_parts) - parameter_parts = list(filter(("\n").__ne__, parameter_parts)) break_now = False @@ -374,13 +370,13 @@ def read_component_file(self, absolute_path): par_name = name_value[0].strip() par_value = name_value[1].strip() - if temp_par_type is "double": + if temp_par_type == "double": try: par_value = float(par_value) except: # Could change the type par_value = par_value - elif temp_par_type is "int": + elif temp_par_type == "int": par_value = int(par_value) result.parameter_names.append(par_name) @@ -391,8 +387,9 @@ def read_component_file(self, absolute_path): break new_line = file_o.readline().split("//")[0] - parameter_parts = new_line.split(",") - parameter_parts = self.correct_for_brackets(parameter_parts) + new_line = new_line.split(",") + new_line = self.correct_for_brackets(new_line) + parameter_parts = new_line if line.startswith("DECLARE"): break @@ -406,7 +403,7 @@ def read_component_file(self, absolute_path): file_o.close() result.name = os.path.split(absolute_path)[1].split(".")[-2] - + tail = os.path.split(absolute_path)[0] result.category = os.path.split(tail)[1] @@ -416,7 +413,7 @@ def read_component_file(self, absolute_path): """ return result - + def correct_for_brackets(self, parameter_parts): """ Given list of string elements, correct for brackets will @@ -431,22 +428,21 @@ def correct_for_brackets(self, parameter_parts): corrected_parts = [] index = 0 while True: - + current_part = parameter_parts[index] inner_index = 0 - while True: + while True: if current_part.count("{") == current_part.count("}"): corrected_parts.append(current_part) index += inner_index - break + break else: - inner_index +=1 + inner_index += 1 current_part += "," + parameter_parts[index+inner_index] index += 1 - + if index >= len(parameter_parts): break - - return corrected_parts + return corrected_parts diff --git a/mcstasscript/helper/formatting.py b/mcstasscript/helper/formatting.py index 5593a082..f41ef1e2 100644 --- a/mcstasscript/helper/formatting.py +++ b/mcstasscript/helper/formatting.py @@ -18,7 +18,7 @@ def is_legal_parameter(name): parameter in the c programming language. """ - if name is "": + if name == "": return False if " " in name: @@ -39,7 +39,7 @@ def is_legal_filename(name): filename """ - if name is "": + if name == "": return False if " " in name: diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index e5a5677a..b9817c02 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -183,7 +183,7 @@ def run_simulation(self, **kwargs): option_string = "-c " if self.mpi is not None: - mpi_string = " --mpi=" + str(self.mpi) + " " # Set mpi + mpi_string = " --mpi=" + str(self.mpi) + " " # Set mpi else: mpi_string = " " @@ -222,10 +222,10 @@ def run_simulation(self, **kwargs): # Run the mcrun command on the system full_command = (mcrun_full_path + " " - + option_string + " " - + self.custom_flags + " " - + self.name_of_instrumentfile - + parameter_string) + + option_string + " " + + self.custom_flags + " " + + self.name_of_instrumentfile + + parameter_string) try: process = subprocess.run(full_command, shell=True, @@ -264,7 +264,8 @@ def load_results(self, *args): elif len(args) == 1: data_folder_name = args[0] else: - raise RuntimeError("load_results can be called with 0 or 1 arguments") + raise RuntimeError("load_results can be called " + + "with 0 or 1 arguments") return load_results(data_folder_name) diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index 879438e5..dd65edb2 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -204,7 +204,7 @@ def __init__(self, type, name, **kwargs): elif "&" in par_name[0]: # Remove the first & indicating the variable is an address par_name = par_name[1:] - + if not is_legal_parameter(par_name): raise NameError("The given parameter name: \"" + self.name @@ -252,16 +252,14 @@ def write_line(self, fo): if isinstance(self.value, str): # value is a string string = self.value - #string = string.replace('"',"\\\"") - fo.write("%s %s[%d] = %s;" % (self.type, self.name, self.vector, string)) + fo.write("%s %s[%d] = %s;" % (self.type, self.name, + self.vector, string)) else: # list of values fo.write("%s %s[%d] = {" % (self.type, self.name, self.vector)) for i in range(0, len(self.value) - 1): fo.write("%G," % self.value[i]) fo.write("%G};%s" % (self.value[-1], self.comment)) - - class Component: @@ -445,7 +443,7 @@ def __init__(self, instance_name, component_name, **kwargs): JUMP : str, default "" Sets JUMP str - + SPLIT : int, default 0 (disabled) Sets SPLIT value @@ -471,7 +469,7 @@ def __init__(self, instance_name, component_name, **kwargs): self.JUMP = "" self.SPLIT = 0 self.comment = "" - self.c_code_before = "" + self.c_code_before = "" self.c_code_after = "" # If any keywords are set in kwargs, update these @@ -485,7 +483,7 @@ def __init__(self, instance_name, component_name, **kwargs): # Do not allow addition of attributes after init self._freeze() - + def set_keyword_input(self, **kwargs): # Allow addition of attributes in init self._unfreeze() @@ -517,16 +515,16 @@ def set_keyword_input(self, **kwargs): if "JUMP" in kwargs: self.set_JUMP(kwargs["JUMP"]) - + if "SPLIT" in kwargs: self.set_SPLIT(kwargs["SPLIT"]) if "comment" in kwargs: self.set_comment(kwargs["comment"]) - + if "c_code_before" in kwargs: self.set_c_code_before(kwargs["c_code_before"]) - + if "c_code_after" in kwargs: self.set_c_code_after(kwargs["c_code_after"]) @@ -672,7 +670,7 @@ def set_JUMP(self, string): raise RuntimeError("set_JUMP expect a string, but was " + "given " + str(type(string))) self.JUMP = string - + def set_SPLIT(self, value): """Sets SPLIT value, needs to be an integer""" if not isinstance(value, (int, str)): @@ -682,7 +680,8 @@ def set_SPLIT(self, value): if isinstance(value, int): if value < 0: raise RuntimeError("set_SPLIT got a negative value, this is " - + "meaningless, has to be a positive value.") + + "meaningless, has to be a " + + "positive value.") self.SPLIT = value @@ -699,14 +698,14 @@ def set_comment(self, string): raise RuntimeError("set_comment expect a string, but was " + "given " + str(type(string))) self.comment = string - + def set_c_code_before(self, string): """Method that sets c code to be written before the component""" if not isinstance(string, str): raise RuntimeError("set_c_code_before expect a string, but was " + "given " + str(type(string))) self.c_code_before = string - + def set_c_code_after(self, string): """Method that sets c code to be written after the component""" if not isinstance(string, str): @@ -736,7 +735,7 @@ def write_component(self, fo): fo.write("// %s\n" % (str(self.comment))) if self.SPLIT != 0: - fo.write("SPLIT " + str(self.SPLIT) + " ") + fo.write("SPLIT " + str(self.SPLIT) + " ") # Write component name and component type fo.write("COMPONENT %s = %s(" % (self.name, self.component_name)) @@ -786,7 +785,7 @@ def write_component(self, fo): str(self.AT_data[1]), str(self.AT_data[2]))) fo.write(" %s\n" % self.AT_relative) - + if self.ROTATED_specified: fo.write("ROTATED (%s,%s,%s)" % (str(self.ROTATED_data[0]), str(self.ROTATED_data[1]), @@ -804,7 +803,7 @@ def write_component(self, fo): if not self.JUMP == "": fo.write("JUMP %s\n" % self.JUMP) - + if len(self.c_code_after) > 0: fo.write("\n") explanation = "From component named " + self.name @@ -884,7 +883,7 @@ class is used as a superclass for classes describing each if self.SPLIT != 0: string += "SPLIT " + str(self.SPLIT) + " " string += "COMPONENT " + str(self.name) - string += " = " + str(self.component_name) + "\n" + string += " = " + str(self.component_name) + "\n" for key in self.parameter_names: val = getattr(self, key) parameter_name = bcolors.BOLD + key + bcolors.ENDC @@ -945,7 +944,7 @@ def print_short(self, **kwargs): print_rotate_rel = self.ROTATED_relative else: print_rotate_rel = self.AT_relative - + if "longest_name" in kwargs: number_of_spaces = 3+kwargs["longest_name"]-len(self.name) print(str(self.name) + " "*number_of_spaces, end='') diff --git a/mcstasscript/instr_reader/control.py b/mcstasscript/instr_reader/control.py index aacbf5c7..208bbda7 100644 --- a/mcstasscript/instr_reader/control.py +++ b/mcstasscript/instr_reader/control.py @@ -1,6 +1,4 @@ -import io import os -from decimal import Decimal from mcstasscript.interface.instr import McStas_instr from mcstasscript.instr_reader.read_definition import DefinitionReader @@ -9,31 +7,29 @@ from mcstasscript.instr_reader.read_trace import TraceReader from mcstasscript.instr_reader.read_finally import FinallyReader + class InstrumentReader: """ This class controls loading of a McStas file as a McStasScript object. - + This is done by reading the McStas file line by line while using the McStasScript API to load the information into the Instr object. - - Optionally a Python file with the McStasScript commands required to + + Optionally a Python file with the McStasScript commands required to replicate the McStas instrument can be written to disk. - - - + Methods ------- __init__(filename) Initializes reading of McStas instrument with given filename - + generate_py_version(product_filename) Generates a file named product_filename.py that recreates instr - + add_to_instr(Instr) Inserts information from instr file into McStasScript Instr instance - """ - + def __init__(self, filename): """ Initialize the InstrumentReader with a target McStas instrument @@ -41,22 +37,22 @@ def __init__(self, filename): McStasScript python file or the add_to_instr method to load this instrument file onto a Instr McStasScript object. """ - + self.filename = filename - self.Instr = None # could set it up to create Instr + self.Instr = None # could set it up to create Instr self.write_file = False self.product_filename = "mc_script.py" self.instr_name = "" self.file_data = None self.line_index = 0 self.file_length = 0 - + def generate_py_version(self, product_filename): """ - Generate a McStasScript version of the instrument file used for + Generate a McStasScript version of the instrument file used for initialize of the InstrumentReader object. The filename given is for the generated file. - + One should use this feature with some caution. Look through the generated McStasScript file and compare some output with the original insturment file to ensure everything was loaded correctly. @@ -64,69 +60,70 @@ def generate_py_version(self, product_filename): # Generate dummy instr object self.Instr = McStas_instr("dummy_object_for_generating_file") - + self.product_filename = product_filename self.write_file = True - + if os.path.isfile(self.product_filename): os.remove(self.product_filename) - + self._read_file() - + def add_to_instr(self, Instr): """ Add contents of McStas instrument file selected in initialize to an McStasScript instrument object. """ - + self.Instr = Instr self.write_file = False - + self._read_file() - + def _open_file(self): """ Internal method that opens the instrument file to be read """ - + with open(self.filename) as file: self.file_data = file.readlines() - + self.file_length = len(self.file_data) self.line_index = 0 - + def _get_next_line(self): """ Internalmethod that gets the next line to be read """ - + line = self.file_data[self.line_index] self.line_index += 1 return line - + def _return_line(self): """ Internal method that puts line back into stack """ - + self.line_index -= 1 - + def _read_file(self): """ - Master method for reading the instrument file. It goes through - the file line by line, and checks which part of the instrument - file it is currently reading. There are separate methods for + Master method for reading the instrument file. It goes through + the file line by line, and checks which part of the instrument + file it is currently reading. There are separate methods for reading the individual parts of the instrument file to reduce clutter. """ - + # Initialize readers of the different McStas instrument sections - args = [self.Instr, self.write_file, self.product_filename, self._get_next_line, self._return_line] + args = [self.Instr, self.write_file, self.product_filename, + self._get_next_line, self._return_line] self.Definition_reader = DefinitionReader(*args) self.Declare_reader = DeclareReader(*args) self.Initialize_reader = InitializeReader(*args) self.Trace_reader = TraceReader(*args) - self.Finally_reader = TraceReader(*args) + self.Finally_reader = FinallyReader(*args) # A mode for each type that activates the correct reader function definition_mode = False @@ -136,15 +133,15 @@ def _read_file(self): finally_mode = False comment_mode = False any_mode = False - + # check if insturment name has be read from file yet instr_name_read = False - + self._open_file() - - #for line in self.file_data: + + # for line in self.file_data: while self.line_index < self.file_length: - + line = self._get_next_line() # Find appropriate mode @@ -157,7 +154,7 @@ def _read_file(self): any_mode = True if (line.strip().startswith("INITIALIZE") or - line.strip().startswith("INITIALISE")) and not any_mode: + line.strip().startswith("INITIALISE")) and not any_mode: initialize_mode = True any_mode = True @@ -170,7 +167,7 @@ def _read_file(self): any_mode = True if line.strip().startswith("/*"): - comment_mode = True + comment_mode = True # Read with appropriate reader if definition_mode and not comment_mode: @@ -212,15 +209,14 @@ def _read_file(self): # Stop comment mode when end of comment block reached if "*/" in line.strip(): comment_mode = False - + def update_file_name(self): """ Updates filename for reader subclasses """ - + self.Definition_reader.set_instr_name(self.instr_name) self.Declare_reader.set_instr_name(self.instr_name) self.Initialize_reader.set_instr_name(self.instr_name) self.Trace_reader.set_instr_name(self.instr_name) self.Finally_reader.set_instr_name(self.instr_name) - diff --git a/mcstasscript/instr_reader/read_declare.py b/mcstasscript/instr_reader/read_declare.py index c5fd4f1f..63145bbb 100644 --- a/mcstasscript/instr_reader/read_declare.py +++ b/mcstasscript/instr_reader/read_declare.py @@ -1,168 +1,172 @@ from mcstasscript.instr_reader.util import SectionReader + class DeclareReader(SectionReader): """ Reads the declare section of a McStas instrument file and adds the found parameters / functions / structs to the McStasScript Instr instance. The information can also be written to a python - file for reproduction of a McStas instrument. + file for reproduction of a McStas instrument. """ - - def __init__(self, Instr, write_file, product_filename, get_next_line, return_line): - - super().__init__(Instr, write_file, product_filename, get_next_line, return_line) - + + def __init__(self, Instr, write_file, product_filename, + get_next_line, return_line): + + super().__init__(Instr, write_file, product_filename, + get_next_line, return_line) + self.in_declare_function = False self.in_struct_definition = False self.bracket_counter = 0 - + def read_declare_line(self, line): """ Reads line of instrument declare, returns bolean. If it encounters the end of the declare section, it returns False, otherwise True. - + The contents of the declare section is written to the McStasScript Instr object. """ - + continue_declare = True - + # Remove comments if "//" in line: line = line.split("//", 1)[0] - + # Remove %} and signify end if this is found if "%}" in line: continue_declare = False line = line.split("%}", 1)[0] - + if "/*" in line: line = line.split("/*", 1)[0].strip() - + if self.in_declare_function: if "{" in line: self.bracket_counter += 1 - + if "}" in line: self.bracket_counter -= 1 - + if self.bracket_counter == 0: self.in_declare_function = False - + self.Instr.append_declare(line) - self._write_declare_line(line) + self._write_declare_line(line) # Check for functions - if ("(" in line and not ";" in line and " " in line.strip() - and not self.in_declare_function): - + if ("(" in line and ";" not in line and " " in line.strip() + and not self.in_declare_function): + # If in function, it will define a block n_curly_brackets = line.count("{") n_curly_brackets -= line.count("}") - + while n_curly_brackets != 0 or ("{" not in line): - next_line = self.get_next_line() + next_line = self.get_next_line() line += next_line - + n_curly_brackets = line.count("{") n_curly_brackets -= line.count("}") after_curly_bracket = line.split("}")[-1] - + declare_lines = line.split("\n") for declare_line in declare_lines: declare_line = declare_line.rstrip() - declare_line = declare_line.replace('\\n',"\\\\n") - declare_line = declare_line.replace('"',"\\\"") + declare_line = declare_line.replace('\\n', "\\\\n") + declare_line = declare_line.replace('"', "\\\"") self.Instr.append_declare(declare_line) self._write_declare_line(declare_line) - + line = after_curly_bracket - + # Check for struct / function that returns struct if line.strip().startswith("struct "): # Can be a function returning struct or struct definition - - # If struct definition, no parenthesis and ; after ) + + # If struct definition, no parenthesis and ; after ) n_curly_brackets = line.count("{") n_curly_brackets -= line.count("}") - + # Add lines until end of block found while n_curly_brackets != 0 or ("{" not in line): - - next_line = self.get_next_line() + + next_line = self.get_next_line() line += next_line - + n_curly_brackets = line.count("{") n_curly_brackets -= line.count("}") - + if "{" in line: before_curly_bracket = line.split("{", 1)[0] if "(" in before_curly_bracket and ")" in before_curly_bracket: # This is a function that returns a struct! self.in_declare_function = True - + after_curly_bracket = line.split("}")[-1] - + # if not in function, add until ; is found while ";" not in after_curly_bracket and not self.in_declare_function: # It is surely a struct, find ; line += self.get_next_line() after_curly_bracket = line.split("}")[-1] - + declare_lines = line.split("\n") for declare_line in declare_lines: declare_line = declare_line.rstrip() - declare_line = declare_line.replace('\\n',"\\\\n") - declare_line = declare_line.replace('"',"\\\"") + declare_line = declare_line.replace('\\n', "\\\\n") + declare_line = declare_line.replace('"', "\\\"") self.Instr.append_declare(declare_line) self._write_declare_line(declare_line) - + if self.in_declare_function: line = line.split("}")[-1].strip() else: line = line.split(";")[-1].strip() - - # if in function, stop now + + # if in function, stop now self.in_declare_function = False - + # Grab defines if line.strip().startswith("#define"): # Include define statements as declare append line = line.rstrip() - line = line.replace('\\n',"\\\\n") - line = line.replace('"',"\\\"") + line = line.replace('\\n', "\\\\n") + line = line.replace('"', "\\\"") self.Instr.append_declare(line) self._write_declare_line(line) - + if "\n" in line: line = line.strip("\n") - + # Read single line parameter definitions if ";" in line and not self.in_declare_function: # This line contains c statements statements = line.split(";") - + for statement in statements: statement = statement.strip() - if statement != "\n" and statement != " " and len(statement) > 1: + if (statement != "\n" and statement != " " + and len(statement) > 1): self._read_declare_statement(statement) return continue_declare - + def _read_declare_statement(self, statement): """ Reads single declare statements, which can have multiple variables. """ - + statement = statement.strip() - + # Find type (same for all parameters in one statement) this_type = statement.split(" ", 1)[0] statement = statement.split(" ", 1)[1].strip() - - if this_type == "const": # other c keywords to consider? + + if this_type == "const": # other c keywords to consider? this_type += " " + statement.split(" ", 1)[0] statement = statement.split(" ", 1)[1].strip() @@ -172,7 +176,7 @@ def _read_declare_statement(self, statement): fixed_variables = [] array_mode = False for variable in variables: - + if "{" not in variable and array_mode is False: fixed_variables.append(variable) elif "{" in variable: @@ -183,8 +187,8 @@ def _read_declare_statement(self, statement): else: temp_variable += variable fixed_variables.append(temp_variable) - array_mode = False - + array_mode = False + variables = fixed_variables else: @@ -194,7 +198,7 @@ def _read_declare_statement(self, statement): # Treat each variable independently for variable in variables: variable = variable.strip() - + dynamic_size = False kw_args = {} @@ -202,7 +206,7 @@ def _read_declare_statement(self, statement): value = variable.split("=")[1].strip() # remove the value part before proceeding variable = variable.split("=")[0].strip() - + if "{" in value: # handle array as value value = value.split("{")[1] @@ -218,9 +222,9 @@ def _read_declare_statement(self, statement): try: return_value = float(value) except: - value = value.replace('"',"\\\"") + value = value.replace('"', "\\\"") return_value = '"' + value + '"' - + kw_args["value"] = return_value # Handle array @@ -228,31 +232,31 @@ def _read_declare_statement(self, statement): array_sizes = [] array_size_strings = variable.split("[") # remove the array size part before proceeding - variable = variable.split("[",1)[0].strip() + variable = variable.split("[", 1)[0].strip() for array_size_string in array_size_strings: if "]" in array_size_string: this_size = array_size_string.split("]")[0] - try: + try: # Size declared normally array_sizes.append(int(this_size)) except: # No size declared means the size is automatic dynamic_size = True - + if len(array_sizes) > 1: raise ValueError("Can not handle arrays with larger" + " than 1 dimension yet") if not dynamic_size: kw_args["array"] = array_sizes[0] - + if dynamic_size: # McStasScript needs size of array, so it is found manually kw_args["array"] = len(kw_args["value"]) - + # value, array and typeremoved, all that remians is the name variable_name = variable self.Instr.add_declare_var(this_type, variable_name, **kw_args) - + # Also write it to a file? write_string = [] write_string.append(self.instr_name) @@ -262,19 +266,18 @@ def _read_declare_statement(self, statement): write_string.append("\"" + variable_name + "\"") write_string.append(self._kw_to_string(kw_args)) write_string.append(")\n") - + # Write declare parameter to python file self._write_to_file(write_string) - + def _write_declare_line(self, string): - + string = string.rstrip() - + write_string = [] write_string.append(self.instr_name) write_string.append(".append_declare(") write_string.append("\"" + string + "\"") write_string.append(")\n") - + self._write_to_file(write_string) - \ No newline at end of file diff --git a/mcstasscript/instr_reader/read_definition.py b/mcstasscript/instr_reader/read_definition.py index d4ce1dd5..e4306097 100644 --- a/mcstasscript/instr_reader/read_definition.py +++ b/mcstasscript/instr_reader/read_definition.py @@ -1,30 +1,33 @@ from mcstasscript.instr_reader.util import SectionReader + class DefinitionReader(SectionReader): """ Responsible for reading the defintion section of McStas instrument file. Contains instrument name and instrument parameters. """ - - def __init__(self, Instr, write_file, product_filename, get_next_line, return_line): - - super().__init__(Instr, write_file, product_filename, get_next_line, return_line) - + + def __init__(self, Instr, write_file, product_filename, + get_next_line, return_line): + + super().__init__(Instr, write_file, product_filename, + get_next_line, return_line) + def read_definition_line(self, line): """ Reads line of instrument definition, returns bolean. If it encounters the end of the definition section, it returns False, otherwise True. - + The contents of the definition section is written to the McStasScript Instr object. """ - + continue_definition = True # Remove comments if "//" in line: line = line.split("//")[0] - + if "(" in line: # Start of instrument definition, get name self.instr_name = line.split("(")[0].strip().split(" ")[-1] @@ -36,7 +39,7 @@ def read_definition_line(self, line): continue_definition = False # these parameters are to be analyzed parameters = parameters.split(")")[0] - + elif ")" in line: # Found end of definition continue_definition = False @@ -45,29 +48,29 @@ def read_definition_line(self, line): else: # Neither start or end on this line, analyze everything parameters = line - + # Separate into individual parameters parameters = parameters.split(",") if "\n" in parameters: parameters.remove("\n") - + for parameter in parameters: # Analyze individual parameter parameter = parameter.strip() - + if parameter == "": # If the parameter is empty, skip it. continue - + # Ready for keyword arguments kw_args = {} - + # Default to double type if nothing else is set parameter_type = "double" if " " and "=" in parameter: # Read parameter type type_and_name = parameter.split("=", 1)[0].strip() - + if " " in type_and_name: parameter_type = type_and_name.split(" ", 1)[0].strip() parameter = parameter.split(" ", 1)[1].strip() @@ -75,12 +78,12 @@ def read_definition_line(self, line): # Read parameter type parameter_type = parameter.split(" ", 1)[0].strip() parameter = parameter.split(" ", 1)[1].strip() - + if "=" in parameter: # Read default value parameter_name = parameter.split("=")[0].strip() value = parameter.split("=")[1].strip() - + if parameter_type == "string": if '"' in value: value = value.replace('"', "\\\"") @@ -97,10 +100,10 @@ def read_definition_line(self, line): else: # No default value, just return the striped name parameter_name = parameter.strip() - + # Add this parameter to the object self.Instr.add_parameter(parameter_type, parameter_name, **kw_args) - + # Also write it to a file? write_string = [] write_string.append(self.instr_name) @@ -110,34 +113,30 @@ def read_definition_line(self, line): write_string.append("\"" + parameter_name + "\"") write_string.append(self._kw_to_string(kw_args)) write_string.append(")\n") - + self._write_to_file(write_string) - - + return continue_definition - + def _start_py_file(self): write_string = [] - + # Write warning about robustness of this feature write_string.append("\"\"\"\n") - write_string.append("This McStasScript file was generated from a McStas\n") - write_string.append("instrument file. It is advised to check the content\n") - write_string.append("to ensure it is as expected.\n\"\"\"\n") - + write_string.append("This McStasScript file was generated from a\n") + write_string.append("McStas instrument file. It is advised to check\n") + write_string.append("the content to ensure it is as expected.\n") + write_string.append("\"\"\"\n") + # import McStasScript write_string.append("from mcstasscript.interface ") write_string.append("import ") write_string.append("instr, plotter, functions") write_string.append("\n\n") - + write_string.append(self.instr_name) write_string.append(" = instr.McStas_instr(") write_string.append("\"" + self.instr_name + "_generated\"") write_string.append(")\n") - + self._write_to_file(write_string) - - - - \ No newline at end of file diff --git a/mcstasscript/instr_reader/read_finally.py b/mcstasscript/instr_reader/read_finally.py index 0dae1be6..6e3d7140 100644 --- a/mcstasscript/instr_reader/read_finally.py +++ b/mcstasscript/instr_reader/read_finally.py @@ -1,55 +1,57 @@ from mcstasscript.instr_reader.util import SectionReader + class FinallyReader(SectionReader): - - def __init__(self, Instr, write_file, product_filename, get_next_line, return_line): - - super().__init__(Instr, write_file, product_filename, get_next_line, return_line) - + + def __init__(self, Instr, write_file, product_filename, + get_next_line, return_line): + + super().__init__(Instr, write_file, product_filename, + get_next_line, return_line) + def read_finally_line(self, line): - + continue_finally = True - + # Remove comments if "//" in line: line = line.split("//", 1)[0].strip() - + if line.startswith("FINALLY"): line = line.split("FINALLY", 1)[1].strip() - + # Remove block opening if "%{" in line: line = line.split("%{", 1)[1].strip() - + if "%}" in line: line = line.split("%}", 1)[0].strip() continue_finally = False - + # If the line is just a new line quit - if line is "\n" or line is "": + if line == "\n" or line == "": return continue_finally - + # Remove newline at the end of the line if line.endswith("\n"): line = line[:-1] - + self.Instr.append_finally(line) - + if self.write_file: # Cant get both \n and " to work in written string - write_line = line.replace("\\n","\\\\n") - #write_line = line.replace("\\n","test") - write_line = write_line.replace("\\t","\\\\t") + write_line = line.replace("\\n", "\\\\n") + write_line = write_line.replace("\\t", "\\\\t") # May need to expand to more cases - + write_line = write_line.replace('"', '\\\"') - + write_string = [] write_string.append(self.instr_name) write_string.append(".append_finally(") - write_string.append("\"" + write_line + "\"") + write_string.append("\"" + write_line + "\"") write_string.append(")\n") - + self._write_to_file(write_string) - - return continue_finally \ No newline at end of file + + return continue_finally diff --git a/mcstasscript/instr_reader/read_initialize.py b/mcstasscript/instr_reader/read_initialize.py index c704e231..a16b0840 100644 --- a/mcstasscript/instr_reader/read_initialize.py +++ b/mcstasscript/instr_reader/read_initialize.py @@ -1,65 +1,68 @@ from mcstasscript.instr_reader.util import SectionReader + class InitializeReader(SectionReader): """ Reads the initialize section of a McStas instrument file. - The initialize lines are added to the McStasScript instrument, and + The initialize lines are added to the McStasScript instrument, and are sent to the function writing the lines to the python file. """ - - def __init__(self, Instr, write_file, product_filename, get_next_line, return_line): - super().__init__(Instr, write_file, product_filename, get_next_line, return_line) - + + def __init__(self, Instr, write_file, product_filename, + get_next_line, return_line): + super().__init__(Instr, write_file, product_filename, + get_next_line, return_line) + def read_initialize_line(self, line): """ Reads lines from INITIALIZE file and returns True as long as the stop characters has not been encountered. Comments are ignored with typical c syntax. """ - + continue_initialize = True - + # Remove comments if "//" in line: line = line.split("//", 1)[0].strip() - + if line.startswith("INITIALIZE"): line = line.split("INITIALIZE", 1)[1].strip() - + if line.startswith("INITIALISE"): line = line.split("INITIALISE", 1)[1].strip() - + # Remove block opening if "%{" in line: line = line.split("%{", 1)[1].strip() - + if "%}" in line: line = line.split("%}", 1)[0].strip() continue_initialize = False - + # If the line is just a new line quit - if line is "\n" or line is "": + if line == "\n" or line == "": return continue_initialize - + # Remove newline at the end of the line if line.endswith("\n"): line = line[:-1] - + self.Instr.append_initialize(line) - + # Need to prepare string for being written again - write_line = line.replace("\\n","\\\\n") - write_line = write_line.replace("\\t","\\\\t") + write_line = line.replace("\\n", "\\\\n") + write_line = write_line.replace("\\t", "\\\\t") write_line = write_line.replace('"', '\\\"') # May need to expand to more cases - + # Write line to Python file write_string = [] write_string.append(self.instr_name) write_string.append(".append_initialize(") - write_string.append("\"" + write_line + " \"") + write_string.append("\"" + write_line + " \"") write_string.append(")\n") - + self._write_to_file(write_string) - - return continue_initialize \ No newline at end of file + + return continue_initialize diff --git a/mcstasscript/instr_reader/read_trace.py b/mcstasscript/instr_reader/read_trace.py index 62ca6733..f94aff80 100644 --- a/mcstasscript/instr_reader/read_trace.py +++ b/mcstasscript/instr_reader/read_trace.py @@ -1,5 +1,5 @@ from mcstasscript.instr_reader.util import SectionReader -from mcstasscript.helper import mcstas_objects + class TraceReader(SectionReader): """ @@ -7,46 +7,48 @@ class TraceReader(SectionReader): component a McStasScript component instance is created and the parameters/keywords are applied to this instance. When the next component is found, the previous component is written to the - python file for reproduction of the McStas instrument. + python file for reproduction of the McStas instrument. """ - - def __init__(self, Instr, write_file, product_filename, get_next_line, return_line): - - super().__init__(Instr, write_file, product_filename, get_next_line, return_line) - + + def __init__(self, Instr, write_file, product_filename, + get_next_line, return_line): + + super().__init__(Instr, write_file, product_filename, + get_next_line, return_line) + self.current_component = None self.in_component_mode = False self.EXTEND_mode = False self.component_copy_target = None self.SPLIT = 0 self.stored_include = None - + def sanitize_line(self, line): """ Removes comments, the starting blok and newline characters """ - + line = line.strip() - + # Remove comments if "//" in line: line = line.split("//", 1)[0].strip() - + if line.startswith("TRACE"): line = line.split("TRACE", 1)[1].strip() - + if "/*" in line: if "*/" in line: line = line.split("/*", 1)[0] + line.split("*/", 1)[1] else: line = line.split("/*", 1)[0] - + # Remove newline at the end of the line if line.endswith("\n"): line = line[:-1] - + return line - + def read_trace_line(self, line): """ Reads line of McStas file from TRACE section. Has the responsibility @@ -54,33 +56,33 @@ def read_trace_line(self, line): section. May take extra lines through get_new_line if statements are spaced out over several lines. """ - + continue_trace = True - + # Find stop characeters if line.startswith("FINALLY"): continue_trace = False - + if line.startswith("END"): continue_trace = False - + if line.strip().startswith("%include") or line.strip().startswith("#include"): # Handle include statement and attatch it to a component - if self.current_component != None: + if self.current_component is not None: c_code_after = self.current_component.c_code_after + line + "\n" self.current_component.set_c_code_after(c_code_after) else: # If the include statement is before the first component, # it is saved and attatched to the next component - line = line.replace('"',"\\\"") + line = line.replace('"', "\\\"") self.stored_include = line.strip() - + # If the line is just a new line quit - if line is "\n" or line is "": + if line == "\n" or line == "": return continue_trace - + line = self.sanitize_line(line) - + # Handle keywords that appear before components if line.startswith("SPLIT"): # Read split and save for the next component @@ -89,7 +91,7 @@ def read_trace_line(self, line): # Default split without indicating amount self.SPLIT = "\"\"" else: - try: + try: self.SPLIT = int(line.split(" ", 1)[0].strip()) except: self.SPLIT = "\"" + line.split(" ", 1)[0].strip() + "\"" @@ -97,46 +99,46 @@ def read_trace_line(self, line): if " " in line: # If the line continues, remove the SPLIT number line = line.split(" ", 1)[1].strip() - + # Read component definition (can be over several lines) if line.startswith("COMPONENT") or line.startswith("REMOVABLE COMPONENT"): # Start ned component, but write the previous component to file first - if self.stored_include != None and self.current_component != None: + if self.stored_include is not None and self.current_component is not None: # In case an include statement was stored, include that statement self.current_component.set_c_code_before(self.stored_include) self.stored_include = None # write previous component self._write_component_to_py() - + # start new component self.in_component_mode = True # Assume this is not a copy self.component_copy_target = None - + # Remove COMPONENT from line - if line.startswith("COMPONENT"): + if line.startswith("COMPONENT"): line = line[9:].strip() elif line.startswith("REMOVABLE COMPONENT"): line = line[19:].strip() - + # Add new lines until the entire component definition is found full_component_line = False while not full_component_line: - + expected_end_parenthesis = 1 + line.count("COPY") - + if line.count("(") >= expected_end_parenthesis: full_component_line = True - + if not full_component_line: new_line = self.get_next_line() - new_line = self.sanitize_line(new_line) + new_line = self.sanitize_line(new_line) if new_line.startswith("AT") or new_line.startswith("WHEN"): full_component_line = True self.return_line() else: line += new_line - + # Retrieve information from component definition instance_name = line.split("=", 1)[0].strip() component_name = line.split("=", 1)[1].split("(", 1)[0].strip() @@ -150,26 +152,26 @@ def read_trace_line(self, line): # Get the previous component name last_component = self.Instr.get_last_component() self.component_copy_target = last_component.name - + self.current_component = self.Instr.copy_component(instance_name, - self.component_copy_target) - + self.component_copy_target) + else: # Normal component instance self.current_component = self.Instr.add_component(instance_name, component_name) - + # In case there are no parameters, stop in_component_mode if line.startswith(")"): self.in_component_mode = False line = line.split(")", 1)[1] - + if self.SPLIT != 0: self.current_component.set_SPLIT(self.SPLIT) self.SPLIT = 0 - + # In case of COPY, there can be empty parameter lists - if self.in_component_mode: # and self.component_copy_target != None: + if self.in_component_mode: # and self.component_copy_target != None: # Check if this line starts WHEN or AT if line.strip().startswith("AT"): self.in_component_mode = False @@ -179,12 +181,12 @@ def read_trace_line(self, line): # In component mode reads parameters of each new line read if self.in_component_mode: - + par_line = line # check for parameters if par_line.strip().startswith("("): par_line = line.split("(", 1)[1] - + # _in_func like python in, but does not look inside parenthesis if self._in_func(line, ")"): self.in_component_mode = False @@ -193,7 +195,7 @@ def read_trace_line(self, line): # All parameters found saved in dictionary par_dict = {} - + """ A parameter line can contain a comma for separating parameters or inside of a string. This piece of code finds the next comma and @@ -201,7 +203,7 @@ def read_trace_line(self, line): part, if not it increases the read part of the line to the next comma. In this way commas in strings do not separate parameters in the component input. - """ + """ while len(par_line) > 0: # find the next parameter expression if self._in_func_brack(par_line, ","): @@ -218,9 +220,9 @@ def read_trace_line(self, line): par_exp += "," if "," in par_line: # include up to the next comma in par_exp - par_exp += par_line.split(",",1)[0] + par_exp += par_line.split(",", 1)[0] # remove the part of the par_line added to par_exp - par_line = par_line.split(",",1)[1] + par_line = par_line.split(",", 1)[1] else: # no commas left, must be end of par_line par_exp += par_line.strip() @@ -231,17 +233,16 @@ def read_trace_line(self, line): # last parameter par_exp = par_line par_line = "" - + if "=" in par_exp: par_name = par_exp.split("=", 1)[0].strip() par_value = par_exp.split("=", 1)[1].strip() - + par_dict[par_name] = par_value - - + # Set all found parameters in the component self.current_component.set_parameters(par_dict) - + # Read keywords given after parameters but before position (WHEN) if line.strip().startswith("WHEN"): if "(" in line: @@ -253,14 +254,14 @@ def read_trace_line(self, line): character_index += 1 if character == "(": parenthesis_counter += 1 - if character == ")": + if character == ")": parenthesis_counter -= 1 if parenthesis_counter == 0: end_index = character_index break - + WHEN_statement = line[:character_index] - WHEN_statement = WHEN_statement.replace('"',"\\\"") + WHEN_statement = WHEN_statement.replace('"', "\\\"") line = line[character_index+1:].strip() else: # WHEN statement that does not use parenthesis @@ -273,11 +274,10 @@ def read_trace_line(self, line): self.current_component.set_WHEN(WHEN_statement) - # Read component position if line.strip().startswith("AT"): # read AT statement - line = line.split("(",1)[1].strip() + line = line.split("(", 1)[1].strip() AT_data = [] AT_data.append(self._split_func(line, ",", 1)[0]) line = self._split_func(line, ",", 1)[1] @@ -285,9 +285,9 @@ def read_trace_line(self, line): line = self._split_func(line, ",", 1)[1] AT_data.append(self._split_func(line, ")", 1)[0]) line = self._split_func(line, ")", 1)[1] - + if line.strip().startswith("ABSOLUTE"): - line = line.split(" ",1)[1].strip() + line = line.split(" ", 1)[1].strip() relative_name = "ABSOLUTE" # The line can continue, remove the used part if " " in line.strip(): @@ -307,22 +307,22 @@ def read_trace_line(self, line): line = "" else: raise ValueError("Could not read: " + line) - + self.current_component.set_AT(AT_data, RELATIVE=relative_name) - + # Read component rotation if line.strip().startswith("ROTATED"): # read ROTATED statement - line = line.split("(",1)[1].strip() + line = line.split("(", 1)[1].strip() ROTATED_data = [] - + ROTATED_data.append(self._split_func(line, ",", 1)[0]) line = self._split_func(line, ",", 1)[1] ROTATED_data.append(self._split_func(line, ",", 1)[0]) line = self._split_func(line, ",", 1)[1] ROTATED_data.append(self._split_func(line, ")", 1)[0]) - line = self._split_func(line, ")", 1)[1] - + line = self._split_func(line, ")", 1)[1] + if line.strip().startswith("ABSOLUTE"): relative_name = "ABSOLUTE" if " " in line.strip(): @@ -330,7 +330,7 @@ def read_trace_line(self, line): else: line = "" elif line.strip().startswith("RELATIVE"): - line = line.strip().split(" ",1)[1].strip() + line = line.strip().split(" ", 1)[1].strip() relative_name = line.split(" ", 1)[0].strip() # The line can continue, remove the used part if " " in line: @@ -339,39 +339,39 @@ def read_trace_line(self, line): line = "" else: raise ValueError("Could not read: " + line) - + self.current_component.set_ROTATED(ROTATED_data, RELATIVE=relative_name) - + # Read keywords after component position (GROUP, EXTEND, JUMP) if line.strip().startswith("GROUP"): line = line.strip() - + group_name = line.split(" ", 1)[1].strip() #group_name = "\"" + group_name + "\"" group_name = group_name - - line = "" - + + line = "" + self.current_component.set_GROUP(group_name) - + if line.strip().startswith("EXTEND"): line = line.split("EXTEND", 1)[1].strip() self.EXTEND_mode = True - + if self.EXTEND_mode: if "%{" in line: line = line.strip().split("%{", 1)[1].strip() - + if "%}" in line: line = line.strip().split("%}", 1)[0].strip() self.EXTEND_mode = False - if len(line) > 0 and line != "\n": - line = line.replace('\\n',"\\\\n") - line = line.replace('"',"\\\"") + if len(line) > 0 and line != "\n": + line = line.replace('\\n', "\\\\n") + line = line.replace('"', "\\\"") self.current_component.append_EXTEND(line) - + if line.strip().startswith("JUMP "): line = line.strip().split(" ", 1)[1] self.current_component.set_JUMP(line) @@ -379,36 +379,37 @@ def read_trace_line(self, line): if not continue_trace: # write last component self._write_component_to_py() - + return continue_trace - + def _write_component_to_py(self): # code for writing McStasScript python file if self.current_component is not None: - + # Write the add_component statement write_string = ["\n"] write_string.append(self.current_component.name) write_string.append(" = ") write_string.append(self.instr_name) - if self.component_copy_target == None: + if self.component_copy_target is None: write_string.append(".add_component(") write_string.append("\"" + self.current_component.name + "\"") write_string.append(", ") - write_string.append("\"" + self.current_component.component_name + "\"") + component_name = str(self.current_component.component_name) + write_string.append("\"" + component_name + "\"") else: write_string.append(".copy_component(") write_string.append("\"" + self.current_component.name + "\"") write_string.append(", ") write_string.append("\"" + self.component_copy_target + "\"") write_string.append(")\n") - + self._write_to_file(write_string) - + # Write all parameters as attribute updates for key in self.current_component.parameter_names: val = getattr(self.current_component, key) - if val != None: + if val is not None: write_string = [] write_string.append(self.current_component.name) write_string.append(".") @@ -422,29 +423,29 @@ def _write_component_to_py(self): # If the value is a string, it needs quotes if '"' in val: # If it already has quotes, these need escapes - val = val.replace('"','\\\"') + val = val.replace('"', '\\\"') val = '"' + val + '"' write_string.append(val) write_string.append("\n") - + self._write_to_file(write_string) - + # Write EXTEND block if present if self.current_component.EXTEND != "": EXTEND = self.current_component.EXTEND EXTEND_lines = EXTEND.split("\n") EXTEND_lines = EXTEND_lines[:-1] - + for EXTEND_line in EXTEND_lines: write_string = [] write_string.append(self.current_component.name) write_string.append(".append_EXTEND(") write_string.append("\"" + EXTEND_line + "\"") write_string.append(")\n") - + self._write_to_file(write_string) - + # Write WHEN statement if present if self.current_component.WHEN != "": write_string = [] @@ -455,7 +456,7 @@ def _write_component_to_py(self): WHEN = WHEN[:-1] write_string.append("\"" + WHEN + "\"") write_string.append(")\n") - + self._write_to_file(write_string) # Write SPLIT if present @@ -465,9 +466,9 @@ def _write_component_to_py(self): write_string.append(".set_SPLIT(") write_string.append(str(self.current_component.SPLIT)) write_string.append(")\n") - + self._write_to_file(write_string) - + # Write GROUP if present if self.current_component.GROUP != "": write_string = [] @@ -475,39 +476,42 @@ def _write_component_to_py(self): write_string.append(".set_GROUP(\"") write_string.append(str(self.current_component.GROUP)) write_string.append("\")\n") - + self._write_to_file(write_string) - + # Write JUMP if present if self.current_component.JUMP != "": write_string = [] write_string.append(self.current_component.name) write_string.append(".set_JUMP(") - write_string.append("\"" + str(self.current_component.JUMP) + "\"") + jump_string = str(self.current_component.JUMP) + write_string.append("\"" + jump_string + "\"") write_string.append(")\n") - + self._write_to_file(write_string) - + # Write c_code_before if present if self.current_component.c_code_before != "": write_string = [] write_string.append(self.current_component.name) write_string.append(".set_c_code_before(") - write_string.append("\"" + str(self.current_component.c_code_before) + "\"") + c_code_string = str(self.current_component.c_code_before) + write_string.append("\"" + c_code_string + "\"") write_string.append(")\n") - + self._write_to_file(write_string) - + # Write c_code_after if present if self.current_component.c_code_after != "": write_string = [] write_string.append(self.current_component.name) write_string.append(".set_c_code_after(") - write_string.append("\"" + str(self.current_component.c_code_after) + "\"") + c_code_string = str(self.current_component.c_code_after) + write_string.append("\"" + c_code_string + "\"") write_string.append(")\n") - + self._write_to_file(write_string) - + # Write AT write_string = [] write_string.append(self.current_component.name) @@ -517,12 +521,12 @@ def _write_component_to_py(self): if self.current_component.AT_relative == "ABSOLUTE": write_string.append("\"" + "ABSOLUTE" + "\"") else: - relative = self.current_component.AT_relative.split(" ")[1] + relative = self.current_component.AT_relative.split(" ")[1] write_string.append("\"" + relative + "\"") write_string.append(")\n") - + self._write_to_file(write_string) - + # Write ROTATED write_string = [] write_string.append(self.current_component.name) @@ -532,32 +536,10 @@ def _write_component_to_py(self): if self.current_component.ROTATED_relative == "ABSOLUTE": write_string.append("\"" + "ABSOLUTE" + "\"") else: - relative = self.current_component.ROTATED_relative.split(" ")[1] + relative = self.current_component.ROTATED_relative.split(" ") + relative = relative[1] write_string.append("\"" + relative + "\"") write_string.append(")\n") - + if self.current_component.ROTATED_specified: self._write_to_file(write_string) - - - - - - - - - - - - - - - - - - - - - - - \ No newline at end of file diff --git a/mcstasscript/instr_reader/util.py b/mcstasscript/instr_reader/util.py index 38135579..97e8867b 100644 --- a/mcstasscript/instr_reader/util.py +++ b/mcstasscript/instr_reader/util.py @@ -3,61 +3,63 @@ class SectionReader: """ Super class for the many necessary readers """ - - def __init__(self, Instr, write_file, product_filename, get_next_line, return_line): + + def __init__(self, Instr, write_file, product_filename, + get_next_line, return_line): self.Instr = Instr self.write_file = write_file self.product_filename = product_filename self.instr_name = "" self.get_next_line = get_next_line self.return_line = return_line - + def set_instr_name(self, name): self.instr_name = name - + def _write_to_file(self, string_array): """ In case a py file is being written, this function writes to the appropriate file. """ - + if self.write_file: with open(self.product_filename, "a") as product_file: for string in string_array: product_file.write(string) - + def _kw_to_string(self, kwargs): """ Used when a dict containing keyword arguments need to be written to a string. This string can be used as argument in method call. """ - + output_string = "" for kwarg in kwargs: output_string += ", " output_string += kwarg + "=" + str(kwargs[kwarg]) - + return output_string - + def _split_func(self, *args): """ Returns list of strings seperated by commas that are not - within open parenthesis. + within open parenthesis. """ - + string = args[0] split_character = args[1] - + if len(args) == 3: limit = args[2] else: limit = -1 - + split_positions = [] parenthesis = 0 - for index in range(0,len(string)): + for index in range(len(string)): character = string[index] - if character == split_character and parenthesis == 0 and limit != 0: + if (character == split_character and parenthesis == 0 + and limit != 0): split_positions.append(index) limit -= 1 else: @@ -66,7 +68,7 @@ def _split_func(self, *args): if character == ")": parenthesis -= 1 - split_positions.append(len(string)+1) # virtual comma at the end + split_positions.append(len(string)+1) # virtual comma at the end result = [] last_position = 0 @@ -75,28 +77,28 @@ def _split_func(self, *args): last_position = position + 1 return result - + def _split_func_brack(self, *args): """ Returns list of strings seperated by commas that are not - within open parenthesis / brackets + within open parenthesis / brackets """ - + string = args[0] split_character = args[1] - + if len(args) == 3: limit = args[2] else: limit = -1 - + split_positions = [] parenthesis = 0 brackets = 0 - for index in range(0,len(string)): + for index in range(len(string)): character = string[index] - if (character == split_character and parenthesis == 0 - and brackets == 0and limit != 0): + if (character == split_character and parenthesis == 0 + and brackets == 0 and limit != 0): split_positions.append(index) limit -= 1 else: @@ -109,7 +111,7 @@ def _split_func_brack(self, *args): if character == "}": brackets -= 1 - split_positions.append(len(string)+1) # virtual comma at the end + split_positions.append(len(string)+1) # virtual comma at the end result = [] last_position = 0 @@ -118,32 +120,25 @@ def _split_func_brack(self, *args): last_position = position + 1 return result - + def _in_func(self, string, character): """ Returns true of character is in string when excluding occurances - within parenthesis. + within parenthesis. """ - + if len(self._split_func(string, character, 1)) == 2: return True else: return False - + def _in_func_brack(self, string, character): """ Returns true of character is in string when excluding occurances - within parenthesis and brackets. + within parenthesis and brackets. """ - + if len(self._split_func_brack(string, character, 1)) == 2: return True else: return False - - - - - - - \ No newline at end of file diff --git a/mcstasscript/integration_tests/test_complex_instrument.py b/mcstasscript/integration_tests/test_complex_instrument.py index 50265d44..40f93df2 100644 --- a/mcstasscript/integration_tests/test_complex_instrument.py +++ b/mcstasscript/integration_tests/test_complex_instrument.py @@ -1,11 +1,10 @@ import io import os -import time import unittest import unittest.mock import matplotlib as plt -from mcstasscript.interface import instr, functions, plotter +from mcstasscript.interface import instr, functions def setup_complex_instrument(): @@ -91,10 +90,10 @@ def setup_complex_instrument(): guide2.l = "guide_length" guide2.m = 4 guide2.G = -9.82 - + guide2.set_SPLIT = 2 - done = Instr.add_component("done", "Arm", RELATIVE="after_guide") + Instr.add_component("done", "Arm", RELATIVE="after_guide") PSD1 = Instr.add_component("PSD_1D_1", "PSDlin_monitor") PSD1.set_AT([0, 0, 0.2], RELATIVE="after_guide") @@ -175,5 +174,6 @@ def test_complex_instrument(self, mock_stdout): # time.sleep(10) # plt.close() + if __name__ == '__main__': unittest.main() diff --git a/mcstasscript/integration_tests/test_simple_instrument.py b/mcstasscript/integration_tests/test_simple_instrument.py index 58caad86..0e99a421 100644 --- a/mcstasscript/integration_tests/test_simple_instrument.py +++ b/mcstasscript/integration_tests/test_simple_instrument.py @@ -1,9 +1,8 @@ import io import os -import unittest import unittest.mock -from mcstasscript.interface import instr, functions, plotter +from mcstasscript.interface import instr def setup_simple_instrument(): @@ -30,6 +29,7 @@ def setup_simple_instrument(): return Instr + def setup_simple_instrument_input_path(): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) input_path = os.path.join(THIS_DIR, "test_input_folder") @@ -137,7 +137,8 @@ def test_simple_instrument_input(self, mock_stdout): Instr = setup_simple_instrument_input_path() - data = Instr.run_full_instrument(foldername="integration_test_simple_input", + foldername = "integration_test_simple_input" + data = Instr.run_full_instrument(foldername=foldername, ncount=1E6, mpi=1, increment_folder_name=True) @@ -196,7 +197,8 @@ def test_slit_instrument(self, mock_stdout): Instr = setup_simple_slit_instrument() - data = Instr.run_full_instrument(foldername="integration_test_slit", + foldername = "integration_test_slit" + data = Instr.run_full_instrument(foldername=foldername, ncount=2E6, mpi=2, increment_folder_name=True) @@ -238,5 +240,6 @@ def test_slit_moved_instrument(self, mock_stdout): self.assertTrue(1000*sum_outside_beam < sum_inside_beam) + if __name__ == '__main__': - unittest.main() \ No newline at end of file + unittest.main() diff --git a/mcstasscript/interface/functions.py b/mcstasscript/interface/functions.py index c4214982..62dafcc0 100644 --- a/mcstasscript/interface/functions.py +++ b/mcstasscript/interface/functions.py @@ -43,7 +43,7 @@ def name_search(name, data_list): for check in data_list: if check.metadata.filename == name: list_result.append(check) - + if len(list_result) == 0: raise NameError("No dataset with name: \"" + name @@ -76,7 +76,7 @@ def name_plot_options(name, data_list, **kwargs): McStasPlotOptions """ object_to_modify = name_search(name, data_list) - if type(object_to_modify) is not list: + if type(object_to_modify) is not list: object_to_modify.set_plot_options(**kwargs) else: for data_object in object_to_modify: @@ -102,17 +102,17 @@ def load_data(foldername): class Configurator: """ Class for setting the configuration file for McStasScript. - + Attributes ---------- configuration_file_name : str absolute path of configuration file - + Methods ------- set_mcstas_path(string) sets mcstas path - + set_mcrun_path(string) sets mcrun path @@ -121,16 +121,16 @@ class Configurator: set_mxrun_path(string) sets mxrun path - + set_line_length(int) sets maximum line length to given int - + _write_yaml(dict) internal method, writes a configuration yaml file with dict content - + _read_yaml() internal method, reads a configuration yaml file and returns a dict - + _create_new_config_file() internal method, creates default configuration file @@ -141,7 +141,7 @@ def __init__(self, *args): Initialization of configurator, checks that the configuration file actually exists, and if it does not, creates a default configuration file. - + Parameters ---------- (optional) custom name : str @@ -155,7 +155,7 @@ def __init__(self, *args): # check configuration file exists THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - conf_file = os.path.join(THIS_DIR, ".." , name + ".yaml") + conf_file = os.path.join(THIS_DIR, "..", name + ".yaml") self.configuration_file_name = conf_file if not os.path.isfile(self.configuration_file_name): # no config file found, write default config file @@ -166,7 +166,7 @@ def _write_yaml(self, dictionary): Writes a dictionary as the new configuration file """ with open(self.configuration_file_name, 'w') as yaml_file: - yaml.dump(dictionary, yaml_file, default_flow_style=False) + yaml.dump(dictionary, yaml_file, default_flow_style=False) def _read_yaml(self): """ @@ -184,19 +184,18 @@ def _create_new_config_file(self): mcstas = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/" mxrun = "/Applications/McXtrace-1.5.app" \ - + "/Contents/Resources/mcxtrace/1.5/mxrun" + + "/Contents/Resources/mcxtrace/1.5/mxrun" mcxtrace = "/Applications/McXtrace-1.5.app" \ + "/Contents/Resources/mcxtrace/1.5/" - default_paths = {"mcrun_path" : run, - "mcstas_path" : mcstas, - "mxrun_path" : mxrun, - "mcxtrace_path" : mcxtrace} + default_paths = {"mcrun_path": run, + "mcstas_path": mcstas, + "mxrun_path": mxrun, + "mcxtrace_path": mcxtrace} - default_other = {"characters_per_line" : 85} + default_other = {"characters_per_line": 85} - default_config = {"paths" : default_paths, - "other" : default_other} + default_config = {"paths": default_paths, "other": default_other} self._write_yaml(default_config) @@ -211,9 +210,10 @@ def set_mcstas_path(self, path): """ if not os.path.isdir(path): - raise RuntimeError("Invalid path given to set_mcstas_path:" + str(path)) + raise RuntimeError("Invalid path given to set_mcstas_path:" + + str(path)) - # read entire configuration file + # read entire configuration file config = self._read_yaml() # update mcstas_path @@ -233,9 +233,10 @@ def set_mcrun_path(self, path): """ if not os.path.isdir(path): - raise RuntimeError("Invalid path given to set_mcrun_path:" + str(path)) + raise RuntimeError("Invalid path given to set_mcrun_path:" + + str(path)) - # read entire configuration file + # read entire configuration file config = self._read_yaml() # update mcstas_path @@ -255,7 +256,8 @@ def set_mcxtrace_path(self, path): """ if not os.path.isdir(path): - raise RuntimeError("Invalid path given to set_mcxtrace_path:" + str(path)) + raise RuntimeError("Invalid path given to set_mcxtrace_path:" + + str(path)) # read entire configuration file config = self._read_yaml() @@ -308,7 +310,7 @@ def set_line_length(self, line_length): + " be positve, given length: " + str(line_length)) - # read entire configuration file + # read entire configuration file config = self._read_yaml() # update mcstas_path @@ -316,5 +318,3 @@ def set_line_length(self, line_length): # write new configuration file self._write_yaml(config) - - diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 5907cafc..f112ad0f 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -6,7 +6,6 @@ import subprocess import copy -from mcstasscript.data.data import McStasData from mcstasscript.helper.mcstas_objects import DeclareVariable from mcstasscript.helper.mcstas_objects import ParameterVariable from mcstasscript.helper.mcstas_objects import Component @@ -158,13 +157,13 @@ class McCode_instr: set_component_SPLIT(instance_name, string) Sets SPLIT value for named component - + set_component_c_code_before(instance_name, string) Sets c code before the component - + set_component_c_code_after(instance_name, string) Sets c code after the component - + set_component_comment(instance_name, string) Sets comment to be written before named component @@ -264,7 +263,7 @@ def __init__(self, name, **kwargs): raise RuntimeError("Given package_path does not point to " + "a folder:\"" + self.package_path + '"') - elif self.package_path is "": + elif self.package_path == "": raise NameError("At this stage of development " + "McStasScript need the absolute path " + "for the " + self.package_name + @@ -273,7 +272,6 @@ def __init__(self, name, **kwargs): self.parameter_list = [] self.declare_list = [] - #self.declare_section = "" self.initialize_section = ("// Start of initialize for generated " + name + "\n") self.trace_section = ("// Start of trace section for generated " @@ -373,7 +371,7 @@ def show_parameters(self, **kwargs): for parameter in self.parameter_list: print(str(parameter.type).ljust(longest_type), end=' ') print(str(parameter.name).ljust(longest_name), end=' ') - if parameter.value is "": + if parameter.value == "": print(" ", end=' ') else: print(" = ", end=' ') @@ -450,18 +448,17 @@ def add_declare_var(self, *args, **kwargs): def append_declare(self, string): """ Method for appending code to the declare section directly - + This method is not meant for declaring simple variables which should be done using add_declare_var. This method can be used to declare functions, structures and unions directly. - + Parameters ---------- string : str code to be added to declare section """ - #self.declare_section = self.declare_section + string + "\n" self.declare_list.append(string) def append_initialize(self, string): @@ -721,7 +718,8 @@ def add_component(self, name, component_name, **kwargs): new_index = self.component_name_list.index(kwargs["after"]) - new_component = self._create_component_instance(name, component_name, + new_component = self._create_component_instance(name, + component_name, **kwargs) self.component_list.insert(new_index + 1, new_component) @@ -738,7 +736,8 @@ def add_component(self, name, component_name, **kwargs): new_index = self.component_name_list.index(kwargs["before"]) - new_component = self._create_component_instance(name, component_name, + new_component = self._create_component_instance(name, + component_name, **kwargs) self.component_list.insert(new_index, new_component) @@ -746,7 +745,8 @@ def add_component(self, name, component_name, **kwargs): # If after or before keywords absent, place component at the end else: - new_component = self._create_component_instance(name, component_name, + new_component = self._create_component_instance(name, + component_name, **kwargs) self.component_list.append(new_component) self.component_name_list.append(name) @@ -1085,7 +1085,7 @@ def set_component_c_code_before(self, name, code): ---------- name : str Unique name of component to modify - + code : str Code to be pasted before component """ @@ -1101,7 +1101,7 @@ def set_component_c_code_after(self, name, code): ---------- name : str Unique name of component to modify - + code : str Code to be pasted after component """ @@ -1202,10 +1202,9 @@ def print_components(self, **kwargs): AT_pad = 6 # requires (, , ) in addition to data length RELATIVE_pad = 0 ROTATED_pad = 6 # requires (, , ) in addition to data length - ROTATED_characters = 7 # ROTATED is 7 characters - AT_characters = 2 # AT is 2 characters - SPACING_between_strings = 7 # combining 8 strings, 7 spaces - + ROTATED_characters = 7 # ROTATED is 7 characters + AT_characters = 2 # AT is 2 characters + SPACING_between_strings = 7 # combining 8 strings, 7 spaces # Check if longest line length exceeded longest_line_length = (longest_name + name_pad @@ -1238,7 +1237,7 @@ def coordinates_to_string(data): longest_rotated_xyz_name = longest_at_xyz_name RELATIVE_pad = 0 - SPACING_between_strings = 4 # combining 5 strings, 4 spaces + SPACING_between_strings = 4 # combining 5 strings, 4 spaces longest_line_length_at = (longest_name + comp_name_pad @@ -1350,7 +1349,7 @@ def coordinates_to_string(data): " ROTATED", p_ROTATED, p_ROTATED_RELATIVE) else: print(p_name + " ", p_comp_name, "\n", - " AT ", p_AT, p_AT_RELATIVE) + " AT ", p_AT, p_AT_RELATIVE) def write_c_files(self): """ @@ -1371,13 +1370,12 @@ def write_c_files(self): print("Creation of the directory %s failed" % path) file_path = os.path.join(".", "generated_includes", - self.name + "_declare.c") + self.name + "_declare.c") with open(file_path, "w") as fo: fo.write("// declare section for %s \n" % self.name) - - file_path = os.path.join(".", "generated_includes", - self.name + "_declare.c") + file_path = os.path.join(".", "generated_includes", + self.name + "_declare.c") with open(file_path, "a") as fo: for dec_line in self.declare_list: if isinstance(dec_line, str): @@ -1460,7 +1458,6 @@ def write_full_instrument(self): # Write declare fo.write("DECLARE \n%{\n") - #fo.write(self.declare_section) for dec_line in self.declare_list: if isinstance(dec_line, str): # append declare section parts written here @@ -1504,12 +1501,11 @@ def _handle_parameters(self, given_parameters): Adds the given parameters to the default parameters, and ensures all required parameters are provided. Also checks all given parameters match an existing parameter. - + Parameters ---------- given_parameters: dict Parameters given by the user for simulation run - """ if not isinstance(given_parameters, dict): @@ -1541,7 +1537,7 @@ def _handle_parameters(self, given_parameters): + str(list(default_parameters.keys()))) # Check if required parameters are provided - if len(given_parameters) is 0: + if len(given_parameters) == 0: if len(required_parameters) > 0: # print required parameters and raise error print("Required instrument parameters:") @@ -1662,9 +1658,9 @@ def show_instrument(self, *args, **kwargs): bin_path = os.path.join(self.package_path, "bin", "") executable = "mcdisplay-webgl" if "format" in kwargs: - if kwargs["format"] is "webgl": + if kwargs["format"] == "webgl": executable = "mcdisplay-webgl" - elif kwargs["format"] is "window": + elif kwargs["format"] == "window": executable = "mcdisplay" full_command = (bin_path + executable + " " @@ -2113,4 +2109,4 @@ def _read_calibration(self): # This happens in unit tests that mocks open self.executable_path = "" self.package_path = "" - self.line_limit = 180 \ No newline at end of file + self.line_limit = 180 diff --git a/mcstasscript/interface/plotter.py b/mcstasscript/interface/plotter.py index 861fe224..27f2daaa 100644 --- a/mcstasscript/interface/plotter.py +++ b/mcstasscript/interface/plotter.py @@ -7,8 +7,6 @@ from matplotlib.colors import BoundaryNorm from matplotlib.ticker import MaxNLocator -from mcstasscript.data.data import McStasMetaData -from mcstasscript.data.data import McStasPlotOptions from mcstasscript.data.data import McStasData @@ -74,6 +72,7 @@ def _find_min_max_I(data): return min_value, max_value + def _plot_fig_ax(data, fig, ax, **kwargs): """ Plots the content of a single McStasData object @@ -257,6 +256,7 @@ def _handle_kwargs(data_list, **kwargs): return figsize, data_list + def make_plot(data_list, **kwargs): """ make_plot plots contents of McStasData objects given in list @@ -279,6 +279,7 @@ def make_plot(data_list, **kwargs): else: plt.show() + def make_sub_plot(data_list, **kwargs): """ make_sub_plot plots contents of McStasData objects given in list @@ -360,11 +361,11 @@ def make_animation(data_list, **kwargs): maximum_values.append(max_value) if is_1D and is_2D: - raise InputError( + raise ValueError( "Both 1D and 2D data in animation, only one allowed.") if len(minimum_values) == 0: - raise InputError( + raise ValueError( "No data found for animation!") maximum_value = np.array(maximum_values).max() diff --git a/mcstasscript/interface/reader.py b/mcstasscript/interface/reader.py index 2c8d4465..16748f00 100644 --- a/mcstasscript/interface/reader.py +++ b/mcstasscript/interface/reader.py @@ -2,24 +2,23 @@ from mcstasscript.instr_reader.control import InstrumentReader from mcstasscript.interface.instr import McStas_instr + class McStas_file: """ Reader of McStas files, can add to an existing McStasScript instrument instance or create a corresponding McStasScript python file. - - + Methods ------- - + add_to_instr(Instr) Add information from McStas file to McStasScript Instr instance - + write_python_file(filename) - Write python file named filename that reproduce the McStas instr - + Write python file named filename that reproduce the McStas instr """ - + def __init__(self, filename): """ Initialization of McStas_file class, needs McStas instr filename @@ -44,13 +43,13 @@ def add_to_instr(self, Instr): Parameters ---------- Instr (McStasScript McStas_instr instance) - McStas_instr instance to add instrument information to + McStas_instr instance to add instrument information to """ # Check Instr if not isinstance(Instr, McStas_instr): raise TypeError("Given object is not of type McStas_instr!") - + self.Reader.add_to_instr(Instr) def write_python_file(self, filename, **kwargs): @@ -60,7 +59,7 @@ def write_python_file(self, filename, **kwargs): Parameters ---------- filename (str) - Filename of python file to be written + Filename of python file to be written """ if "force" in kwargs: @@ -73,9 +72,8 @@ def write_python_file(self, filename, **kwargs): if force: os.remove(filename) else: - raise ValueError("Filename \"" + filename + raise ValueError("Filename \"" + filename + "\" already exists, you can overwrite with " + "force=True") self.Reader.generate_py_version(filename) - diff --git a/mcstasscript/tests/test_ComponentReader.py b/mcstasscript/tests/test_ComponentReader.py index c512a437..b6c93f70 100644 --- a/mcstasscript/tests/test_ComponentReader.py +++ b/mcstasscript/tests/test_ComponentReader.py @@ -1,9 +1,7 @@ import os import io -import unittest import unittest.mock -from mcstasscript.helper.component_reader import ComponentInfo from mcstasscript.helper.component_reader import ComponentReader @@ -25,6 +23,7 @@ def setup_component_reader(): return component_reader + def setup_component_reader_input_path(): """ Sets up a component_reader instance with dummy mcstas @@ -60,7 +59,7 @@ def test_ComponentReader_init_overwrite_message(self, mock_stdout): Here using default input path, which is current folder """ - component_reader = setup_component_reader() + setup_component_reader() message = ("The following components are found in the work_directory " + "/ input_path:\n test_for_reading.comp\n" @@ -76,7 +75,7 @@ def test_ComponentReader_init_overwrite_message_input(self, mock_stdout): Here using user defined input path, a directory in tests """ - component_reader = setup_component_reader_input_path() + setup_component_reader_input_path() message = ("The following components are found in the work_directory " + "/ input_path:\n test_for_structure.comp\n" @@ -115,27 +114,31 @@ def test_ComponentReader_init_component_paths(self, mock_stdout): self.assertEqual(n_components_found, 3) expected_path = os.path.join(THIS_DIR, "test_for_reading.comp") - self.assertIn("test_for_reading", component_reader.component_path) - self.assertEqual(component_reader.component_path["test_for_reading"], - expected_path) - self.assertEqual(component_reader.component_category["test_for_reading"], - "Work directory") + path = component_reader.component_path["test_for_reading"] + self.assertEqual(path, expected_path) + + category = component_reader.component_category["test_for_reading"] + self.assertEqual(category, "Work directory") expected_path = os.path.join(dummy_path, "misc", "test_for_structure.comp") self.assertIn("test_for_structure", component_reader.component_path) - self.assertEqual(component_reader.component_path["test_for_structure"], - expected_path) - self.assertEqual(component_reader.component_category["test_for_structure"], - "misc") + path = component_reader.component_path["test_for_structure"] + self.assertEqual(path, expected_path) + + category = component_reader.component_category["test_for_structure"] + self.assertEqual(category, "misc") + + self.assertIn("test_for_structure2", component_reader.component_path) + + path = component_reader.component_path["test_for_structure2"] expected_path = os.path.join(dummy_path, "sources", "test_for_structure2.comp") - self.assertIn("test_for_structure2", component_reader.component_path) - self.assertEqual(component_reader.component_path["test_for_structure2"], - expected_path) - self.assertEqual(component_reader.component_category["test_for_structure2"], - "sources") + self.assertEqual(path, expected_path) + + category = component_reader.component_category["test_for_structure2"] + self.assertEqual(category, "sources") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_init_component_paths_input(self, mock_stdout): @@ -154,29 +157,34 @@ def test_ComponentReader_init_component_paths_input(self, mock_stdout): n_components_found = len(component_reader.component_path) self.assertEqual(n_components_found, 3) + self.assertIn("test_for_reading", component_reader.component_path) + expected_path = os.path.join(dummy_path, "misc", "test_for_reading.comp") - self.assertIn("test_for_reading", component_reader.component_path) - self.assertEqual(component_reader.component_path["test_for_reading"], - expected_path) - self.assertEqual(component_reader.component_category["test_for_reading"], - "misc") + path = component_reader.component_path["test_for_reading"] + self.assertEqual(path, expected_path) + + category = component_reader.component_category["test_for_reading"] + self.assertEqual(category, "misc") expected_path = os.path.join(input_path, "test_for_structure.comp") self.assertIn("test_for_structure", component_reader.component_path) - self.assertEqual(component_reader.component_path["test_for_structure"], - expected_path) - self.assertEqual(component_reader.component_category["test_for_structure"], - "Work directory") + path = component_reader.component_path["test_for_structure"] + self.assertEqual(path, expected_path) + + category = component_reader.component_category["test_for_structure"] + self.assertEqual(category, "Work directory") + + self.assertIn("test_for_structure2", component_reader.component_path) + path = component_reader.component_path["test_for_structure2"] expected_path = os.path.join(dummy_path, "sources", "test_for_structure2.comp") - self.assertIn("test_for_structure2", component_reader.component_path) - self.assertEqual(component_reader.component_path["test_for_structure2"], - expected_path) - self.assertEqual(component_reader.component_category["test_for_structure2"], - "sources") + self.assertEqual(path, expected_path) + + category = component_reader.component_category["test_for_structure2"] + self.assertEqual(category, "sources") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_init_categories(self, mock_stdout): @@ -332,7 +340,7 @@ def test_ComponentReader_read_name_error(self, mock_stdout): component_reader = setup_component_reader() with self.assertRaises(NameError): - CompInfo = component_reader.read_name("no_such_comp") + component_reader.read_name("no_such_comp") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_read_name_success(self, mock_stdout): diff --git a/mcstasscript/tests/test_Configurator.py b/mcstasscript/tests/test_Configurator.py index 592b0746..42f68557 100644 --- a/mcstasscript/tests/test_Configurator.py +++ b/mcstasscript/tests/test_Configurator.py @@ -3,48 +3,50 @@ from mcstasscript.interface.functions import Configurator + def setup_expected_file(test_name): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) expected_file = os.path.join(THIS_DIR, "..", test_name + ".yaml") - + if os.path.isfile(expected_file): os.remove(expected_file) return expected_file + def setup_configurator(test_name): - + setup_expected_file(test_name) - + return Configurator(test_name) - + class TestConfigurator(unittest.TestCase): """ Tests for configurator class that handles yaml configuration file """ - + def test_simple_initialize(self): """ Tests that initialization happens, new configuration file should be written. """ - + test_name = "test_configuration" expected_file = setup_expected_file(test_name) - + # check the file did not exist before testing self.assertFalse(os.path.isfile(expected_file)) # initialize the configurator - my_configurator = Configurator(test_name) - + Configurator(test_name) + # check a new configuration file was made self.assertTrue(os.path.isfile(expected_file)) - + # remove the testing configuration file if os.path.isfile(expected_file): os.remove(expected_file) - + def test_default_config(self): """ This tests confirms the content of the default configuration file @@ -52,14 +54,14 @@ def test_default_config(self): test_name = "test_configuration" expected_file = setup_expected_file(test_name) - + # check the file did not exist before testing self.assertFalse(os.path.isfile(expected_file)) - + my_configurator = Configurator(test_name) - + default_config = my_configurator._read_yaml() - + run = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin/" mcstas = "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/" mxrun = "/Applications/McXtrace-1.5.app" \ @@ -72,34 +74,34 @@ def test_default_config(self): self.assertEqual(default_config["paths"]["mxrun_path"], mxrun) self.assertEqual(default_config["paths"]["mcxtrace_path"], mcxtrace) self.assertEqual(default_config["other"]["characters_per_line"], 85) - + # remove the testing configuration file - if os.path.isfile(expected_file): + if os.path.isfile(expected_file): os.remove(expected_file) - + def test_yaml_write(self): """ This test checks that writing to the configuration file works """ test_name = "test_configuration" my_configurator = setup_configurator(test_name) - + config = my_configurator._read_yaml() - + config["new_field"] = 123 - config["paths"]["new_path"] = "/test/path/" - + config["paths"]["new_path"] = "/test/path/" + my_configurator._write_yaml(config) - + new_config = my_configurator._read_yaml() - + self.assertEqual(new_config["other"]["characters_per_line"], 85) self.assertEqual(new_config["new_field"], 123) self.assertEqual(new_config["paths"]["new_path"], "/test/path/") - + # remove the testing configuration file setup_expected_file(test_name) - + def test_set_mcrun_path(self): """ This test checks that setting the mcrun path works @@ -139,7 +141,7 @@ def test_set_mcstas_path(self): # remove the testing configuration file setup_expected_file(test_name) - def test_set_mcrun_path(self): + def test_set_mxrun_path(self): """ This test checks that setting the mxrun path works """ @@ -158,7 +160,7 @@ def test_set_mcrun_path(self): # remove the testing configuration file setup_expected_file(test_name) - def test_set_mcstas_path(self): + def test_set_mcxtrace_path(self): """ This test checks that setting the mcxtrace path works """ @@ -183,13 +185,13 @@ def test_set_line_length(self): This test checks that setting the line length works """ test_name = "test_configuration" - my_configurator = setup_configurator(test_name) - + my_configurator = setup_configurator(test_name) + my_configurator.set_line_length(123) - + new_config = my_configurator._read_yaml() - - self.assertEqual(new_config["other"]["characters_per_line"],123) + + self.assertEqual(new_config["other"]["characters_per_line"], 123) # remove the testing configuration file setup_expected_file(test_name) diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index ced71652..1d2e7c60 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -1,7 +1,6 @@ import os import os.path import io -import builtins import unittest import unittest.mock import datetime @@ -23,10 +22,13 @@ def setup_instr_no_path(): current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder - return McStas_instr("test_instrument") + instrument = McStas_instr("test_instrument") os.chdir(current_work_dir) + return instrument + + def setup_x_ray_instr_no_path(): """ Sets up a X-ray instrument without a package_path @@ -36,10 +38,13 @@ def setup_x_ray_instr_no_path(): current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder - return McXtrace_instr("test_instrument") + instrument = McXtrace_instr("test_instrument") os.chdir(current_work_dir) + return instrument + + def setup_instr_root_path(): """ Sets up a neutron instrument with root package_path @@ -49,10 +54,13 @@ def setup_instr_root_path(): current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder - return McStas_instr("test_instrument", package_path="/") + instrument = McStas_instr("test_instrument", package_path="/") os.chdir(current_work_dir) + return instrument + + def setup_x_ray_instr_root_path(): """ Sets up a X-ray instrument with root package_path @@ -62,10 +70,13 @@ def setup_x_ray_instr_root_path(): current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder - return McXtrace_instr("test_instrument", package_path="/") + instrument = McXtrace_instr("test_instrument", package_path="/") os.chdir(current_work_dir) + return instrument + + def setup_instr_with_path(): """ Sets up an instrument with a valid package_path, but it points to @@ -78,9 +89,12 @@ def setup_instr_with_path(): current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder + instrument = McStas_instr("test_instrument", package_path=dummy_path) + os.chdir(current_work_dir) # Return to previous workdir - return McStas_instr("test_instrument", package_path=dummy_path) + return instrument + def setup_x_ray_instr_with_path(): """ @@ -94,9 +108,12 @@ def setup_x_ray_instr_with_path(): current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder + instrument = McXtrace_instr("test_instrument", package_path=dummy_path) + os.chdir(current_work_dir) # Return to previous workdir - return McXtrace_instr("test_instrument", package_path=dummy_path) + return instrument + def setup_instr_with_input_path(): """ @@ -104,7 +121,6 @@ def setup_instr_with_input_path(): the dummy installation in the test folder. In addition the input_path is set to a folder in the test directory using an absolute path. """ - THIS_DIR = os.path.dirname(os.path.abspath(__file__)) dummy_path = os.path.join(THIS_DIR, "dummy_mcstas") input_path = os.path.join(THIS_DIR, "test_input_folder") @@ -112,11 +128,14 @@ def setup_instr_with_input_path(): current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder + instrument = McStas_instr("test_instrument", + package_path=dummy_path, + input_path=input_path) + os.chdir(current_work_dir) # Return to previous workdir - return McStas_instr("test_instrument", - package_path=dummy_path, - input_path=input_path) + return instrument + def setup_instr_with_input_path_relative(): """ @@ -124,17 +143,18 @@ def setup_instr_with_input_path_relative(): the dummy installation in the test folder. In addition the input_path is set to a folder in the test directory using a relative path. """ - THIS_DIR = os.path.dirname(os.path.abspath(__file__)) current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder + instrument = McStas_instr("test_instrument", + package_path="dummy_mcstas", + input_path="test_input_folder") + os.chdir(current_work_dir) # Return to previous workdir - return McStas_instr("test_instrument", - package_path="dummy_mcstas", - input_path="test_input_folder") + return instrument def setup_populated_instr(): @@ -148,12 +168,13 @@ def setup_populated_instr(): instr.add_declare_var("double", "two_theta") instr.append_initialize("two_theta = 2.0*theta;") - comp1 = instr.add_component("first_component", "test_for_reading") - comp2 = instr.add_component("second_component", "test_for_reading") - comp3 = instr.add_component("third_component", "test_for_reading") + instr.add_component("first_component", "test_for_reading") + instr.add_component("second_component", "test_for_reading") + instr.add_component("third_component", "test_for_reading") return instr + def setup_populated_instr_with_dummy_path(): """ Sets up a neutron instrument with some features used and three components @@ -192,12 +213,13 @@ def setup_populated_x_ray_instr(): instr.add_declare_var("double", "two_theta") instr.append_initialize("two_theta = 2.0*theta;") - comp1 = instr.add_component("first_component", "test_for_reading") - comp2 = instr.add_component("second_component", "test_for_reading") - comp3 = instr.add_component("third_component", "test_for_reading") + instr.add_component("first_component", "test_for_reading") + instr.add_component("second_component", "test_for_reading") + instr.add_component("third_component", "test_for_reading") return instr + def setup_populated_x_ray_instr_with_dummy_path(): """ Sets up a x-ray instrument with some features used and three components @@ -237,14 +259,14 @@ def setup_populated_with_some_options_instr(): instr.append_initialize("two_theta = 2.0*theta;") comp1 = instr.add_component("first_component", "test_for_reading") - comp1.set_AT([0,0,1]) + comp1.set_AT([0, 0, 1]) comp1.set_GROUP("Starters") comp2 = instr.add_component("second_component", "test_for_reading") - comp2.set_AT([0,0,2], RELATIVE="first_component") - comp2.set_ROTATED([0,30,0]) + comp2.set_AT([0, 0, 2], RELATIVE="first_component") + comp2.set_ROTATED([0, 30, 0]) comp2.set_WHEN("1==1") - comp2.yheight=1.23 - comp3 = instr.add_component("third_component", "test_for_reading") + comp2.yheight = 1.23 + instr.add_component("third_component", "test_for_reading") return instr @@ -254,10 +276,6 @@ class TestMcStas_instr(unittest.TestCase): Tests of the main class in McStasScript called McStas_instr. """ - #def test_show_test_folder(self): - # os.system("tree") - - def test_simple_initialize(self): """ Test basic initialization runs @@ -278,8 +296,10 @@ def test_complex_initialize(self): self.assertEqual(my_instrument.author, "Mads") self.assertEqual(my_instrument.origin, "DMSC") - self.assertEqual(my_instrument.executable_path, "./dummy_mcstas/contrib") - self.assertEqual(my_instrument.package_path, "./dummy_mcstas/misc") + self.assertEqual(my_instrument.executable_path, + "./dummy_mcstas/contrib") + self.assertEqual(my_instrument.package_path, + "./dummy_mcstas/misc") def test_load_config_file(self): """ @@ -460,7 +480,7 @@ def test_simple_add_declare_parameter(self): self.assertEqual(instr.declare_list[0].name, "two_theta") self.assertEqual(instr.declare_list[0].comment, " // test par") - + def test_simple_append_declare(self): """ Appending to declare adds an object to the declare list, and the @@ -475,11 +495,11 @@ def test_simple_append_declare(self): self.assertEqual(instr.declare_list[0], "First line of declare") - self.assertEqual(instr.declare_list[1], + self.assertEqual(instr.declare_list[1], "Second line of declare") - self.assertEqual(instr.declare_list[2], + self.assertEqual(instr.declare_list[2], "Third line of declare") - + def test_simple_append_declare_var_mix(self): """ Appending to declare adds an object to the declare list, and the @@ -496,8 +516,8 @@ def test_simple_append_declare_var_mix(self): "First line of declare") self.assertEqual(instr.declare_list[1].name, "two_theta") self.assertEqual(instr.declare_list[1].comment, " // test par") - self.assertEqual(instr.declare_list[2], - "Third line of declare") + self.assertEqual(instr.declare_list[2], + "Third line of declare") def test_simple_append_initialize(self): """ @@ -652,7 +672,7 @@ def test_show_components_simple(self, mock_stdout): + "work_directory / input_path:") self.assertEqual(output[1], " test_for_reading.comp") self.assertEqual(output[2], "These definitions will be used " - +"instead of the installed versions.") + + "instead of the installed versions.") self.assertEqual(output[3], "Here are the available component categories:") self.assertEqual(output[4], " sources") @@ -709,7 +729,7 @@ def test_show_components_input_path_simple(self, mock_stdout): + "work_directory / input_path:") self.assertEqual(output[1], " test_for_structure.comp") self.assertEqual(output[2], "These definitions will be used " - +"instead of the installed versions.") + + "instead of the installed versions.") self.assertEqual(output[3], "Here are the available component categories:") self.assertEqual(output[4], " sources") @@ -736,7 +756,7 @@ def test_show_components_input_path_custom(self, mock_stdout): + "work_directory / input_path:") self.assertEqual(output[1], " test_for_structure.comp") self.assertEqual(output[2], "These definitions will be used " - +"instead of the installed versions.") + + "instead of the installed versions.") self.assertEqual(output[3], "Here are the available component categories:") self.assertEqual(output[4], " sources") @@ -902,9 +922,9 @@ def test_add_component_simple_keyword(self, mock_stdout): instr = setup_instr_with_path() - comp = instr.add_component("test_component", - "test_for_reading", - WHEN="1<2") + instr.add_component("test_component", + "test_for_reading", + WHEN="1<2") self.assertEqual(len(instr.component_list), 1) self.assertEqual(instr.component_list[0].name, "test_component") @@ -926,9 +946,9 @@ def test_add_component_simple_before(self): instr = setup_populated_instr() - comp = instr.add_component("test_component", - "test_for_reading", - before="first_component") + instr.add_component("test_component", + "test_for_reading", + before="first_component") self.assertEqual(len(instr.component_list), 4) self.assertEqual(instr.component_list[0].name, "test_component") @@ -947,9 +967,9 @@ def test_add_component_simple_after(self): instr = setup_populated_instr() - comp = instr.add_component("test_component", - "test_for_reading", - after="first_component") + instr.add_component("test_component", + "test_for_reading", + after="first_component") self.assertEqual(len(instr.component_list), 4) self.assertEqual(instr.component_list[1].name, "test_component") @@ -970,9 +990,9 @@ def test_add_component_simple_after_error(self): instr = setup_populated_instr() with self.assertRaises(NameError): - comp = instr.add_component("test_component", - "test_for_reading", - after="non_existent_component") + instr.add_component("test_component", + "test_for_reading", + after="non_existent_component") def test_add_component_simple_before_error(self): """ @@ -989,9 +1009,9 @@ def test_add_component_simple_before_error(self): instr = setup_populated_instr() with self.assertRaises(NameError): - comp = instr.add_component("test_component", - "test_for_reading", - before="non_existent_component") + instr.add_component("test_component", + "test_for_reading", + before="non_existent_component") def test_add_component_simple_double_naming_error(self): """ @@ -1002,7 +1022,7 @@ def test_add_component_simple_double_naming_error(self): instr = setup_populated_instr() with self.assertRaises(NameError): - comp = instr.add_component("first_component", "test_for_reading") + instr.add_component("first_component", "test_for_reading") def test_copy_component_simple(self): """ @@ -1010,7 +1030,7 @@ def test_copy_component_simple(self): """ instr = setup_populated_with_some_options_instr() - + comp = instr.copy_component("copy_of_second_comp", "second_component") self.assertEqual(comp.name, "copy_of_second_comp") @@ -1028,7 +1048,7 @@ def test_copy_component_simple_fail(self): instr = setup_populated_with_some_options_instr() with self.assertRaises(NameError): - comp = instr.copy_component("copy_of_second_comp", "unknown_component") + instr.copy_component("copy_of_second_comp", "unknown_component") def test_copy_component_simple_object(self): """ @@ -1051,14 +1071,14 @@ def test_copy_component_keywords(self): """ Checks that a component can be copied and that keyword arguments given under copy operation is successfully - applied to the new component. A check is also made to + applied to the new component. A check is also made to ensure that the original component was not modified. """ instr = setup_populated_with_some_options_instr() comp = instr.copy_component("copy_of_second_comp", "second_component", - AT=[1,2,3], SPLIT=10) + AT=[1, 2, 3], SPLIT=10) self.assertEqual(comp.name, "copy_of_second_comp") self.assertEqual(comp.yheight, 1.23) @@ -1066,7 +1086,7 @@ def test_copy_component_keywords(self): self.assertEqual(comp.AT_data[1], 2) self.assertEqual(comp.AT_data[2], 3) self.assertEqual(comp.SPLIT, 10) - + # ensure original component was not changed original = instr.get_component("second_component") self.assertEqual(original.name, "second_component") @@ -1098,7 +1118,7 @@ def test_get_component_simple_error(self): instr = setup_populated_instr() with self.assertRaises(NameError): - comp = instr.get_component("non_existing_component") + instr.get_component("non_existing_component") def test_get_last_component_simple(self): """ @@ -1294,7 +1314,8 @@ def test_set_c_code_before(self): instr = setup_populated_instr() - instr.set_component_c_code_before("second_component", "%include before.instr") + instr.set_component_c_code_before("second_component", + "%include before.instr") comp = instr.get_component("second_component") @@ -1308,7 +1329,8 @@ def test_set_c_code_after(self): instr = setup_populated_instr() - instr.set_component_c_code_after("second_component", "%include after.instr") + instr.set_component_c_code_after("second_component", + "%include after.instr") comp = instr.get_component("second_component") @@ -1350,8 +1372,6 @@ def test_print_component(self, mock_stdout): self.assertEqual(output[3], " " + par_name + warning) self.assertEqual(output[4], "AT [0, 0, 0] ABSOLUTE") - # Rotation not printed since it was never specified - #self.assertEqual(output[5], "ROTATED [0, 0, 0] ABSOLUTE") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_print_component_short(self, mock_stdout): @@ -1512,7 +1532,7 @@ class for each component and aligns the data for display + " ") self.assertEqual(output[0], expected) - expected = (" AT (-0.1, 12, dist) RELATIVE home") + expected = " AT (-0.1, 12, dist) RELATIVE home" self.assertEqual(output[1], expected) expected = (bcolors.BOLD @@ -1525,10 +1545,10 @@ class for each component and aligns the data for display + " ") self.assertEqual(output[2], expected) - expected = (" AT (0, 0, 0) ABSOLUTE ") + expected = " AT (0, 0, 0) ABSOLUTE " self.assertEqual(output[3], expected) - expected = (" ROTATED (-4, 0.001, theta) RELATIVE etc") + expected = " ROTATED (-4, 0.001, theta) RELATIVE etc" self.assertEqual(output[4], expected) expected = (bcolors.BOLD @@ -1541,7 +1561,7 @@ class for each component and aligns the data for display + " ") self.assertEqual(output[5], expected) - expected = (" AT (0, 0, 0) ABSOLUTE") + expected = " AT (0, 0, 0) ABSOLUTE" self.assertEqual(output[6], expected) @unittest.mock.patch('__main__.__builtins__.open', @@ -1581,7 +1601,6 @@ def test_write_c_files_simple(self, mock_f): call = unittest.mock.call wrts = [ call("// declare section for test_instrument \n"), - #call(""), call("double two_theta;"), call("\n"), call("// Start of initialize for generated test_instrument\n" @@ -1666,7 +1685,6 @@ def test_write_full_instrument_simple(self, mock_f): my_call(")\n"), my_call("\n"), my_call("DECLARE \n%{\n"), - #my_call(""), my_call("double two_theta;"), my_call("\n"), my_call("%}\n\n"), @@ -1862,7 +1880,8 @@ def test_run_full_instrument_complex(self, mock_sub, mock_stdout): @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) @unittest.mock.patch("subprocess.run") - def test_run_full_instrument_overwrite_default(self, mock_sub, mock_stdout): + def test_run_full_instrument_overwrite_default(self, mock_sub, + mock_stdout): """ Check that default parameters are overwritten by given parameters in run_full_instrument. @@ -1894,7 +1913,7 @@ def test_run_full_instrument_overwrite_default(self, mock_sub, mock_stdout): expected_path = os.path.join(executable_path, "mcrun") - current_directory = os.getcwd() + os.getcwd() expected_folder_path = os.path.join(THIS_DIR, "test_data_set") # a double space because of a missing option diff --git a/mcstasscript/tests/test_Instr_reader.py b/mcstasscript/tests/test_Instr_reader.py index 3b89efc3..aa813f0f 100644 --- a/mcstasscript/tests/test_Instr_reader.py +++ b/mcstasscript/tests/test_Instr_reader.py @@ -4,15 +4,19 @@ from mcstasscript.interface import instr from mcstasscript.instr_reader import control -from mcstasscript.instr_reader import util -# Disable print def blockPrint(): + """ + Disables print capability + """ sys.stdout = open(os.devnull, 'w') -# Restore print + def enablePrint(): + """ + Restores print capability + """ sys.stdout = sys.__stdout__ @@ -20,32 +24,35 @@ def set_dummy_dir(): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) os.chdir(os.path.join(THIS_DIR, "dummy_instrument_folder")) + def setup_standard(Instr): set_dummy_dir() filename = "Union_demonstration_test.instr" InstrReader = control.InstrumentReader(filename) InstrReader.add_to_instr(Instr) - + return InstrReader + def setup_standard_auto_instr(): set_dummy_dir() - + blockPrint() Instr = instr.McStas_instr("test_instrument") enablePrint() return setup_standard(Instr) + class TestInstrReader(unittest.TestCase): - + def test_read_instrument_name(self): """ Check if the instrument name is read correctly """ set_dummy_dir() - + blockPrint() Instr = instr.McStas_instr("test_instrument") enablePrint() @@ -57,286 +64,292 @@ def test_read_instrument_name(self): self.assertEqual(InstrReader.instr_name, "Union_demonstration") def test_read_input_parameter(self): - + set_dummy_dir() - + blockPrint() Instr = instr.McStas_instr("test_instrument") enablePrint() - InstrReader = setup_standard(Instr) - + setup_standard(Instr) + self.assertEqual(Instr.parameter_list[0].name, "stick_displacement") # space in type inserted for easier writing by McStas_Instr class self.assertEqual(Instr.parameter_list[0].type, "double") self.assertEqual(Instr.parameter_list[0].value, 0) - + self.assertEqual(Instr.parameter_list[1].name, "test_int") # space in type inserted for easier writing by McStas_Instr class self.assertEqual(Instr.parameter_list[1].type, "int") self.assertEqual(Instr.parameter_list[1].value, 3) - + self.assertEqual(Instr.parameter_list[2].name, "test_str") # space in type inserted for easier writing by McStas_Instr class self.assertEqual(Instr.parameter_list[2].type, "string") self.assertEqual(Instr.parameter_list[2].value, "\"\\\"hurray\\\"\"") def test_read_declare_parameter(self): - + set_dummy_dir() - + blockPrint() Instr = instr.McStas_instr("test_instrument") enablePrint() - InstrReader = setup_standard(Instr) - + setup_standard(Instr) + self.assertEqual(Instr.declare_list[0].name, "sample_1_index") self.assertEqual(Instr.declare_list[0].type, "int") self.assertEqual(Instr.declare_list[0].value, 27) - + self.assertEqual(Instr.declare_list[8].name, "array") self.assertEqual(Instr.declare_list[8].type, "double") self.assertEqual(Instr.declare_list[8].vector, 3) self.assertEqual(Instr.declare_list[8].value, [0.1, 0.2, 0.3]) - + self.assertEqual(Instr.declare_list[9].name, "I_array") self.assertEqual(Instr.declare_list[9].type, "int") self.assertEqual(Instr.declare_list[9].vector, 4) - + self.assertEqual(Instr.declare_list[10].name, "T_array") self.assertEqual(Instr.declare_list[10].type, "int") self.assertEqual(Instr.declare_list[10].vector, 5) self.assertEqual(Instr.declare_list[10].value, [1, 2, 3, 4, 5]) - + self.assertEqual(Instr.declare_list[11].name, "home") self.assertEqual(Instr.declare_list[11].type, "char") self.assertEqual(Instr.declare_list[11].vector, 20) - self.assertEqual(Instr.declare_list[11].value, "\"\\\"test_string\\\"\"") - + self.assertEqual(Instr.declare_list[11].value, + "\"\\\"test_string\\\"\"") + def test_read_initialize_line(self): - + set_dummy_dir() - + blockPrint() Instr = instr.McStas_instr("test_instrument") enablePrint() - InstrReader = setup_standard(Instr) - - self.assertEqual(Instr.initialize_section, - "// Start of initialize for generated test_instrument\n" - + "I_array[2] = 8;\n" - + "printf(\"Hello world\\n\");\n") - + setup_standard(Instr) + + initialize = ("// Start of initialize for generated test_instrument\n" + + "I_array[2] = 8;\n" + + "printf(\"Hello world\\n\");\n") + + self.assertEqual(Instr.initialize_section, initialize) + # Check a few components are read correctly def test_read_component_1(self): - + set_dummy_dir() - + blockPrint() Instr = instr.McStas_instr("test_instrument") enablePrint() - InstrReader = setup_standard(Instr) - + setup_standard(Instr) + components = Instr.component_list - + test_component = None - + for component in components: if component.name == "Al": test_component = component - + self.assertEqual(test_component.component_name, "Union_make_material") - + val = getattr(test_component, "my_absorption") - #self.assertEqual(val, "\"100*4*0.231/66.4\"") self.assertEqual(val, "100*4*0.231/66.4") - + val = getattr(test_component, "process_string") self.assertEqual(val, "\"Al_incoherent,Al_powder\"") - + self.assertEqual(test_component.AT_data, ["0", "0", "0"]) self.assertEqual(test_component.AT_relative, "ABSOLUTE") - + self.assertEqual(test_component.ROTATED_data, [0, 0, 0]) self.assertEqual(test_component.ROTATED_relative, "ABSOLUTE") - + def test_read_component_2(self): - + set_dummy_dir() - + blockPrint() Instr = instr.McStas_instr("test_instrument") enablePrint() - InstrReader = setup_standard(Instr) - + setup_standard(Instr) + components = Instr.component_list - + test_component = None - + for component in components: if component.name == "sample_holder3": test_component = component - + self.assertEqual(test_component.component_name, "Union_box") - + val = getattr(test_component, "xwidth") self.assertEqual(val, "0.0098") - + val = getattr(test_component, "priority") self.assertEqual(val, "52") - - self.assertEqual(test_component.AT_data, ["0", "-0.03", "-0.03*0.35-0.004"]) - self.assertEqual(test_component.AT_relative, "RELATIVE sample_rod_bottom") - + + self.assertEqual(test_component.AT_data, + ["0", "-0.03", "-0.03*0.35-0.004"]) + self.assertEqual(test_component.AT_relative, + "RELATIVE sample_rod_bottom") + self.assertEqual(test_component.ROTATED_data, ["-25", "0", "0"]) - self.assertEqual(test_component.ROTATED_relative, "RELATIVE sample_rod_bottom") + self.assertEqual(test_component.ROTATED_relative, + "RELATIVE sample_rod_bottom") def test_read_component_WHEN(self): - + set_dummy_dir() - + blockPrint() Instr = instr.McStas_instr("test_instrument") enablePrint() - InstrReader = setup_standard(Instr) - + setup_standard(Instr) + components = Instr.component_list - + test_component = None - + for component in components: if component.name == "outer_cryostat_vacuum": test_component = component - + self.assertEqual(test_component.component_name, "Union_cylinder") - + val = getattr(test_component, "radius") self.assertEqual(val, "0.09") - + val = getattr(test_component, "priority") self.assertEqual(val, "11") - + self.assertEqual(test_component.WHEN, "WHEN (necessary == 1 )") - + self.assertEqual(test_component.AT_data, ["0", "0.01", "0"]) self.assertEqual(test_component.AT_relative, "RELATIVE beam_center") - + self.assertEqual(test_component.ROTATED_data, ["0", "0", "0"]) - self.assertEqual(test_component.ROTATED_relative, "RELATIVE beam_center") - + self.assertEqual(test_component.ROTATED_relative, + "RELATIVE beam_center") + def test_read_component_EXTEND(self): - + set_dummy_dir() - + blockPrint() Instr = instr.McStas_instr("test_instrument") enablePrint() - InstrReader = setup_standard(Instr) - + setup_standard(Instr) + components = Instr.component_list - + test_component = None - + for component in components: if component.name == "test_sample": test_component = component - + self.assertEqual(test_component.component_name, "Union_master") - + val = getattr(test_component, "history_limit") self.assertEqual(val, "1000000") - + lines = test_component.EXTEND.split("\n") line0 = ("if (scattered_flag[sample_1_index] > 0) scattered_1 = 1;" - +" else scattered_1 = 0;") + + " else scattered_1 = 0;") line1 = ("if (scattered_flag[sample_2_index] > 0) scattered_2 = 1;" - +" else scattered_2 = 0;") + + " else scattered_2 = 0;") line2 = ("if (scattered_flag[sample_3_index] > 0) scattered_3 = 1;" - +" else scattered_3 = 0;") + + " else scattered_3 = 0;") line3 = ("if (scattered_flag[sample_4_index] > 0) scattered_4 = 1;" - +" else scattered_4 = 0;") - + + " else scattered_4 = 0;") + self.assertEqual(lines[0], line0) self.assertEqual(lines[1], line1) self.assertEqual(lines[2], line2) self.assertEqual(lines[3], line3) - + self.assertEqual(test_component.AT_data, ["0", "0", "0"]) self.assertEqual(test_component.AT_relative, "RELATIVE beam_center") - + self.assertEqual(test_component.ROTATED_data, ["0", "0", "0"]) - self.assertEqual(test_component.ROTATED_relative, "RELATIVE beam_center") - + self.assertEqual(test_component.ROTATED_relative, + "RELATIVE beam_center") + def test_read_component_GROUP(self): - + set_dummy_dir() - + blockPrint() Instr = instr.McStas_instr("test_instrument") enablePrint() - InstrReader = setup_standard(Instr) - + setup_standard(Instr) + components = Instr.component_list - + test_component = None - + for component in components: if component.name == "armA": test_component = component - + self.assertEqual(test_component.component_name, "Arm") - + self.assertEqual(test_component.GROUP, "arms") - + self.assertEqual(test_component.AT_data, ["0", "0", "0"]) self.assertEqual(test_component.AT_relative, "ABSOLUTE") - + def test_read_component_SPLIT(self): - + set_dummy_dir() - + blockPrint() Instr = instr.McStas_instr("test_instrument") enablePrint() - InstrReader = setup_standard(Instr) - + setup_standard(Instr) + components = Instr.component_list - + test_component = None - + for component in components: if component.name == "sample_4_container": test_component = component - + self.assertEqual(test_component.component_name, "Union_cylinder") - + self.assertEqual(test_component.AT_data, ["0", "0", "0"]) - self.assertEqual(test_component.AT_relative, "RELATIVE sample_4") - + self.assertEqual(test_component.AT_relative, "RELATIVE sample_4") + def test_read_component_JUMP(self): """ Check a JUMP and GROUP statement is read correctly """ - + set_dummy_dir() - + blockPrint() Instr = instr.McStas_instr("test_instrument") enablePrint() - InstrReader = setup_standard(Instr) - + setup_standard(Instr) + components = Instr.component_list - + test_component = None - + for component in components: if component.name == "armB": test_component = component - + self.assertEqual(test_component.component_name, "Arm") - + self.assertEqual(test_component.GROUP, "arms") self.assertEqual(test_component.JUMP, "myself 2") - + self.assertEqual(test_component.AT_data, ["0", "0", "0"]) self.assertEqual(test_component.AT_relative, "ABSOLUTE") @@ -344,67 +357,66 @@ def test_comma_split(self): """ Test the Tracer_reader._split_func """ - + InstrReader = setup_standard_auto_instr() - + test_string = "A,B,C,D(a,b),E" - + result = InstrReader.Trace_reader._split_func(test_string, ",") - - self.assertEqual(result[0],"A") - self.assertEqual(result[1],"B") - self.assertEqual(result[2],"C") - self.assertEqual(result[3],"D(a,b)") - self.assertEqual(result[4],"E") - + + self.assertEqual(result[0], "A") + self.assertEqual(result[1], "B") + self.assertEqual(result[2], "C") + self.assertEqual(result[3], "D(a,b)") + self.assertEqual(result[4], "E") + def test_comma_split_limited(self): """ Test the Tracer_reader._split_func """ - + InstrReader = setup_standard_auto_instr() - + test_string = "A,B,C,D(a,b),E" - + result = InstrReader.Trace_reader._split_func(test_string, ",", 2) - - self.assertEqual(result[0],"A") - self.assertEqual(result[1],"B") - self.assertEqual(result[2],"C,D(a,b),E") - - + + self.assertEqual(result[0], "A") + self.assertEqual(result[1], "B") + self.assertEqual(result[2], "C,D(a,b),E") + def test_parenthesis_split(self): """ Test the Tracer_reader._split_func """ - + InstrReader = setup_standard_auto_instr() - + test_string = "A)B)C)D(a,b))E" - + result = InstrReader.Trace_reader._split_func(test_string, ")") - - self.assertEqual(result[0],"A") - self.assertEqual(result[1],"B") - self.assertEqual(result[2],"C") - self.assertEqual(result[3],"D(a,b)") - self.assertEqual(result[4],"E") - + + self.assertEqual(result[0], "A") + self.assertEqual(result[1], "B") + self.assertEqual(result[2], "C") + self.assertEqual(result[3], "D(a,b)") + self.assertEqual(result[4], "E") + def test_comma_split_brack(self): """ Test the Tracer_reader._split_func """ InstrReader = setup_standard_auto_instr() - + test_string = "A,B{C,D(a,b)},E" - + result = InstrReader.Trace_reader._split_func_brack(test_string, ",") - - self.assertEqual(result[0],"A") - self.assertEqual(result[1],"B{C,D(a,b)}") - self.assertEqual(result[2],"E") - + self.assertEqual(result[0], "A") + self.assertEqual(result[1], "B{C,D(a,b)}") + self.assertEqual(result[2], "E") + + if __name__ == '__main__': unittest.main() diff --git a/mcstasscript/tests/test_ManagedMcrun.py b/mcstasscript/tests/test_ManagedMcrun.py index 3ed4d53b..cc6ae7c7 100644 --- a/mcstasscript/tests/test_ManagedMcrun.py +++ b/mcstasscript/tests/test_ManagedMcrun.py @@ -1,11 +1,6 @@ import os -import io import unittest -from unittest import mock -import numpy as np -from mcstasscript.data.data import McStasMetaData -from mcstasscript.data.data import McStasData from mcstasscript.helper.managed_mcrun import ManagedMcrun @@ -151,37 +146,37 @@ def test_ManagedMcrun_init_no_folder_error(self): An error should occur if no filename is given """ with self.assertRaises(NameError): - mcrun_obj = ManagedMcrun("test.instr", mcrun_path="") + ManagedMcrun("test.instr", mcrun_path="") def test_ManagedMcrun_init_invalid_ncount_error(self): """ An error should occur if negative ncount is given """ with self.assertRaises(ValueError): - mcrun_obj = ManagedMcrun("test.instr", - foldername="test_folder", - mcrun_path="", - ncount=-8) + ManagedMcrun("test.instr", + foldername="test_folder", + mcrun_path="", + ncount=-8) def test_ManagedMcrun_init_invalid_mpi_error(self): """ An error should occur if negative mpi is given """ with self.assertRaises(ValueError): - mcrun_obj = ManagedMcrun("test.instr", - foldername="test_folder", - mcrun_path="", - mpi=-8) + ManagedMcrun("test.instr", + foldername="test_folder", + mcrun_path="", + mpi=-8) def test_ManagedMcrun_init_invalid_parameters_error(self): """ An error should occur if parameters is given as non dict """ with self.assertRaises(RuntimeError): - mcrun_obj = ManagedMcrun("test.instr", - foldername="test_folder", - mcrun_path="", - parameters=[1, 2, 3]) + ManagedMcrun("test.instr", + foldername="test_folder", + mcrun_path="", + parameters=[1, 2, 3]) @unittest.mock.patch("subprocess.run") def test_ManagedMcrun_run_simulation_basic(self, mock_sub): @@ -204,7 +199,6 @@ def test_ManagedMcrun_run_simulation_basic(self, mock_sub): mcrun_obj.run_simulation() - current_directory = os.getcwd() expected_folder_path = os.path.join(THIS_DIR, "test_folder") # a double space because of a missing option @@ -239,7 +233,6 @@ def test_ManagedMcrun_run_simulation_basic_path(self, mock_sub): mcrun_obj.run_simulation() - current_directory = os.getcwd() expected_folder_path = os.path.join(THIS_DIR, "test_folder") executable = os.path.join(executable_path, "mcrun") @@ -362,7 +355,6 @@ def test_ManagedMcrun_run_simulation_compile(self, mock_sub): mcrun_obj.run_simulation() - current_directory = os.getcwd() expected_folder_path = os.path.join(THIS_DIR, "test_folder") executable = os.path.join(executable_path, "mcrun") @@ -542,7 +534,7 @@ def test_ManagedMcrun_load_data_L_mon_direct_error(self): load_path = os.path.join(THIS_DIR, "non_existent_dataset") with self.assertRaises(NameError): - results = mcrun_obj.load_results(load_path) + mcrun_obj.load_results(load_path) os.chdir(current_work_dir) # Reset work directory @@ -564,7 +556,7 @@ def test_ManagedMcrun_load_data_L_mon_empty_error(self): load_path = os.path.join(THIS_DIR, "/dummy_mcstas") with self.assertRaises(NameError): - results = mcrun_obj.load_results(load_path) + mcrun_obj.load_results(load_path) os.chdir(current_work_dir) # Reset work directory diff --git a/mcstasscript/tests/test_Plotter.py b/mcstasscript/tests/test_Plotter.py index 3a6c7d90..47f84d1e 100644 --- a/mcstasscript/tests/test_Plotter.py +++ b/mcstasscript/tests/test_Plotter.py @@ -21,6 +21,7 @@ def get_dummy_MetaData_1d(): return meta_data + def get_dummy_McStasData_1d(): meta_data = get_dummy_MetaData_1d() @@ -31,6 +32,7 @@ def get_dummy_McStasData_1d(): return McStasData(meta_data, intensity, error, ncount, xaxis=axis) + def get_dummy_MetaData_2d(): meta_data = McStasMetaData() meta_data.component_name = "test a component" @@ -42,6 +44,7 @@ def get_dummy_MetaData_2d(): return meta_data + def get_dummy_McStasData_2d(): meta_data = get_dummy_MetaData_2d() @@ -237,7 +240,7 @@ def test_find_min_max_I_log_with_zero_2D_case(self): """ dummy_data = get_dummy_McStasData_2d() - dummy_data.Intensity[2,2] = 0 + dummy_data.Intensity[2, 2] = 0 dummy_data.set_plot_options(log=True) found_min, found_max = _find_min_max_I(dummy_data) @@ -286,7 +289,7 @@ def test_find_min_max_I_log_orders_of_mag_2D_case(self): """ dummy_data = get_dummy_McStasData_2d() - dummy_data.Intensity[2,2] = 10**6 + dummy_data.Intensity[2, 2] = 10**6 dummy_data.set_plot_options(log=True, orders_of_mag=3) found_min, found_max = _find_min_max_I(dummy_data) @@ -303,8 +306,8 @@ def test_find_min_max_I_log_orders_of_mag_2D_with_zero_case(self): """ dummy_data = get_dummy_McStasData_2d() - dummy_data.Intensity[2,2] = 10**6 - dummy_data.Intensity[2,3] = 0 + dummy_data.Intensity[2, 2] = 10**6 + dummy_data.Intensity[2, 3] = 0 dummy_data.set_plot_options(log=True, orders_of_mag=3) found_min, found_max = _find_min_max_I(dummy_data) @@ -407,23 +410,32 @@ def test_handle_kwargs_all_simple(self): default_value = defaults[kw_option] dummy_data1 = get_dummy_McStasData_2d() - dummy_data2 = get_dummy_McStasData_2d() + data1_value = dummy_data1.plot_options.__getattribute__(kw_option) + self.assertEqual(data1_value, default_value) - self.assertEqual(dummy_data1.plot_options.__getattribute__(kw_option), default_value) - self.assertEqual(dummy_data2.plot_options.__getattribute__(kw_option), default_value) + dummy_data2 = get_dummy_McStasData_2d() + data2_value = dummy_data2.plot_options.__getattribute__(kw_option) + self.assertEqual(data2_value, default_value) data_list = [dummy_data1, dummy_data2] set_value = test_value[kw_option] given_option = {option: set_value} _handle_kwargs(data_list, **given_option) - self.assertEqual(dummy_data1.plot_options.__getattribute__(kw_option), set_value) - self.assertEqual(dummy_data2.plot_options.__getattribute__(kw_option), set_value) + + data1_value = dummy_data1.plot_options.__getattribute__(kw_option) + self.assertEqual(data1_value, set_value) + + data2_value = dummy_data2.plot_options.__getattribute__(kw_option) + self.assertEqual(data2_value, set_value) given_option = {option: [set_value, default_value]} _handle_kwargs(data_list, **given_option) - self.assertEqual(dummy_data1.plot_options.__getattribute__(kw_option), set_value) - self.assertEqual(dummy_data2.plot_options.__getattribute__(kw_option), default_value) + + data_1_value = dummy_data1.plot_options.__getattribute__(kw_option) + self.assertEqual(data_1_value, set_value) + data_2_value = dummy_data2.plot_options.__getattribute__(kw_option) + self.assertEqual(data_2_value, default_value) def test_handle_kwargs_left_lim(self): """ @@ -541,8 +553,8 @@ def test_handle_kwargs_figsize_tuple(self): """ dummy_data = get_dummy_McStasData_2d() - retrived_figsize, data_list = _handle_kwargs(dummy_data, figsize=(5,9)) - self.assertEqual(retrived_figsize, (5, 9)) + found_figsize, data_list = _handle_kwargs(dummy_data, figsize=(5, 9)) + self.assertEqual(found_figsize, (5, 9)) def test_handle_kwargs_figsize_list(self): """ @@ -551,8 +563,8 @@ def test_handle_kwargs_figsize_list(self): """ dummy_data = get_dummy_McStasData_2d() - retrived_figsize, data_list = _handle_kwargs(dummy_data, figsize=[5,9]) - self.assertEqual(retrived_figsize, (5, 9)) + found_figsize, data_list = _handle_kwargs(dummy_data, figsize=[5, 9]) + self.assertEqual(found_figsize, (5, 9)) def test_handle_kwargs_single_element_to_list(self): """ @@ -607,4 +619,4 @@ def test_plot_function_2D_log(self): dummy_data = get_dummy_McStasData_2d() fig, ax0 = plt.subplots() - _plot_fig_ax(dummy_data, fig, ax0, log=True) \ No newline at end of file + _plot_fig_ax(dummy_data, fig, ax0, log=True) diff --git a/mcstasscript/tests/test_component.py b/mcstasscript/tests/test_component.py index e0ea24cb..776811b4 100644 --- a/mcstasscript/tests/test_component.py +++ b/mcstasscript/tests/test_component.py @@ -1,5 +1,4 @@ import io -import builtins import unittest import unittest.mock @@ -161,7 +160,6 @@ def test_Component_init_complex_call_relative(self): self.assertEqual(comp.SPLIT, 7) self.assertEqual(comp.comment, "test comment") - def test_Component_basic_init_set_AT(self): """ Testing set_AT method @@ -283,7 +281,7 @@ def test_Component_basic_init_set_RELATIVE(self): self.assertEqual(comp.AT_relative, "RELATIVE sample") self.assertEqual(comp.ROTATED_relative, "RELATIVE sample") - def test_Component_basic_init_set_RELATIVE(self): + def test_Component_basic_object_ref_init_set_RELATIVE(self): """ Testing set_RELATIVE method with Component object input """ @@ -364,7 +362,7 @@ def test_Component_basic_init_set_JUMP(self): self.assertEqual(comp.name, "test_component") self.assertEqual(comp.component_name, "Arm") self.assertEqual(comp.JUMP, "test jump") - + def test_Component_basic_init_set_SPLIT(self): """ Testing set_SPLIT method @@ -454,18 +452,17 @@ def test_Component_write_to_file_simple(self, mock_f): handle.write.assert_has_calls(expected_writes, any_order=False) @unittest.mock.patch('__main__.__builtins__.open', - new_callable=unittest.mock.mock_open) + new_callable=unittest.mock.mock_open) def test_Component_write_to_file_include(self, mock_f): """ Testing that a Component can be written to file with the expected output. Here with simple input. """ - comp = Component("test_component", "Arm", c_code_before="%include \"test.instr\"") - + comp.set_c_code_after("%include \"after.instr\"") - + comp._unfreeze() # Need to set up attribute parameters # Also need to categorize them as when created @@ -514,7 +511,7 @@ def test_Component_write_to_file_complex(self, mock_f): comp.write_component(m_fo) my_call = unittest.mock.call - expected_writes = [my_call("SPLIT 7 "), + expected_writes = [my_call("SPLIT 7 "), my_call("COMPONENT test_component = Arm("), my_call("\n"), my_call(" new_par1 = 1.5"), diff --git a/mcstasscript/tests/test_declare_variable.py b/mcstasscript/tests/test_declare_variable.py index 2b537d5a..397d6cfc 100644 --- a/mcstasscript/tests/test_declare_variable.py +++ b/mcstasscript/tests/test_declare_variable.py @@ -1,5 +1,3 @@ -import io -import builtins import unittest import unittest.mock @@ -40,7 +38,7 @@ def test_DeclareVariable_init_basic_type_vector(self): """ var = DeclareVariable("double", "test", - array=6, value=[1, 2.2, 3, 3.3, 4, 4.4]) + array=6, value=[1, 2.2, 3, 3.3, 4, 4.4]) self.assertEqual(var.name, "test") self.assertEqual(var.type, "double") # space for easier writing @@ -53,7 +51,7 @@ def test_DeclareVariable_init_basic_type_value_comment(self): """ var = DeclareVariable("double", "test", - value=518, comment="test comment /") + value=518, comment="test comment /") self.assertEqual(var.name, "test") self.assertEqual(var.type, "double") # Space for easier writing @@ -89,9 +87,9 @@ def test_DeclareVariable_write_complex_float(self, mock_f): """ var = DeclareVariable("double", - "test", - value=5.4, - comment="test comment") + "test", + value=5.4, + comment="test comment") with mock_f('test.txt', 'w') as m_fo: var.write_line(m_fo) @@ -113,9 +111,9 @@ def test_DeclareVariable_write_complex_int(self, mock_f): """ var = DeclareVariable("double", - "test", - value=5, - comment="test comment") + "test", + value=5, + comment="test comment") with mock_f('test.txt', 'w') as m_fo: var.write_line(m_fo) @@ -136,9 +134,9 @@ def test_DeclareVariable_write_simple_array(self, mock_f): """ var = DeclareVariable("double", - "test", - array=29, - comment="test comment") + "test", + array=29, + comment="test comment") with mock_f('test.txt', 'w') as m_fo: var.write_line(m_fo) @@ -160,10 +158,10 @@ def test_DeclareVariable_write_complex_array(self, mock_f): """ var = DeclareVariable("double", - "test", - array=3, - value=[5, 4, 3.1], - comment="test comment") + "test", + array=3, + value=[5, 4, 3.1], + comment="test comment") with mock_f('test.txt', 'w') as m_fo: var.write_line(m_fo) diff --git a/mcstasscript/tests/test_functions.py b/mcstasscript/tests/test_functions.py index f1357794..3f0f26f3 100644 --- a/mcstasscript/tests/test_functions.py +++ b/mcstasscript/tests/test_functions.py @@ -9,7 +9,7 @@ from mcstasscript.interface.functions import load_data from mcstasscript.data.data import McStasData from mcstasscript.data.data import McStasMetaData -from mcstasscript.data.data import McStasPlotOptions + def set_dummy_MetaData_1d(name): """ @@ -159,7 +159,7 @@ def test_name_search_read(self): hero_object = name_search("Hero", data_list) self.assertEqual(hero_object.metadata.dimension, 123) - + def test_name_search_filename_read(self): """ Test that Hero object can be found and check the unique dimension @@ -186,7 +186,7 @@ def test_name_search_read_repeat(self): hero_object = name_search("Big_Hero", data_list) self.assertEqual(hero_object.metadata.dimension, 123) - + def test_name_search_read_duplicate(self): """ Test simple case with duplicated name, search should return list @@ -220,7 +220,7 @@ def test_name_search_read_error(self): data_list = setup_McStasData_array() with self.assertRaises(NameError): - hero_object = name_search("Hero8", data_list) + name_search("Hero8", data_list) def test_name_search_type_error_not_list(self): """ @@ -230,7 +230,7 @@ def test_name_search_type_error_not_list(self): data_list = set_dummy_McStasData_2d("Last_object_2d") with self.assertRaises(RuntimeError): - hero_object = name_search("Hero", data_list) + name_search("Hero", data_list) def test_name_search_type_error_not_McStasData(self): """ @@ -241,7 +241,7 @@ def test_name_search_type_error_not_McStasData(self): data_list = [1, 2, 3] with self.assertRaises(RuntimeError): - hero_object = name_search(1, data_list) + name_search(1, data_list) class Test_name_plot_options(unittest.TestCase): @@ -261,7 +261,7 @@ def test_name_plot_options_simple(self): name_plot_options("Hero", data_list, colormap="Oranges") hero_object = name_search("Hero", data_list) self.assertEqual(hero_object.plot_options.colormap, "Oranges") - + def test_name_plot_options_duplicate(self): """ Test case where several McStasData objects are modified since @@ -269,17 +269,17 @@ def test_name_plot_options_duplicate(self): """ data_list = setup_McStasData_array() - + hero_object = set_dummy_McStasData_2d("Hero") hero_object.metadata.dimension = 321 hero_object.plot_options.colormap = "absurdly hot" data_list.append(hero_object) - + name_plot_options("Hero", data_list, colormap="Blues") - + results = name_search("Hero", data_list) - + self.assertEqual(len(results), 2) self.assertEqual(results[0].plot_options.colormap, "Blues") self.assertEqual(results[1].plot_options.colormap, "Blues") diff --git a/mcstasscript/tests/test_instrument.instr b/mcstasscript/tests/test_instrument.instr index 2da161ee..07f05b12 100644 --- a/mcstasscript/tests/test_instrument.instr +++ b/mcstasscript/tests/test_instrument.instr @@ -14,8 +14,8 @@ * Instrument test_instrument * * %Identification -* Written by: Python McStas Instrument Generator -* Date: 15:36:48 on May 27, 2019 +* Written by: Python McXtrace Instrument Generator +* Date: 12:22:07 on January 27, 2021 * Origin: ESS DMSC * %INSTRUMENT_SITE: Generated_instruments * @@ -26,7 +26,8 @@ ********************************************************************************/ DEFINE INSTRUMENT test_instrument ( -double theta +double theta, +double has_default = 37 ) DECLARE @@ -41,4 +42,21 @@ two_theta = 2.0*theta; %} TRACE -COMPONENT first_component = test_for_reading( \ No newline at end of file +COMPONENT first_component = test_for_reading( + gauss = 1.2, test_string = a_string) +AT (0,0,0) ABSOLUTE + +COMPONENT second_component = test_for_reading( + gauss = 1.4, test_string = b_string) +AT (0,0,0) ABSOLUTE + +COMPONENT third_component = test_for_reading( + gauss = 1.6, test_string = c_string) +AT (0,0,0) ABSOLUTE + +FINALLY +%{ +// Start of finally for generated test_instrument +%} + +END diff --git a/mcstasscript/tests/test_parameter_variable.py b/mcstasscript/tests/test_parameter_variable.py index 68b81acb..c2d32bd2 100644 --- a/mcstasscript/tests/test_parameter_variable.py +++ b/mcstasscript/tests/test_parameter_variable.py @@ -1,5 +1,3 @@ -import io -import builtins import unittest import unittest.mock @@ -154,7 +152,7 @@ def test_ParameterVariable_write_complex_string(self, mock_f): """ par = ParameterVariable("double", "test", value="\"Al\"", - comment="test comment") + comment="test comment") with mock_f('test.txt', 'w') as m_fo: par.write_parameter(m_fo, ",") From 247e94e14459e058a17e3ccaaa6df484daf68637 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 27 Jan 2021 20:45:23 +0100 Subject: [PATCH 138/403] Fixed two tests that broke during last commit as cwd was different in instrument setup and run instrument execution. --- mcstasscript/tests/test_Instr.py | 12 +++++++++++- 1 file changed, 11 insertions(+), 1 deletion(-) diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index 1d2e7c60..b6ecd5e0 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -288,12 +288,19 @@ def test_complex_initialize(self): """ Tests all keywords work in initialization """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + my_instrument = McStas_instr("test_instrument", author="Mads", origin="DMSC", executable_path="./dummy_mcstas/contrib", package_path="./dummy_mcstas/misc") + os.chdir(current_work_dir) + self.assertEqual(my_instrument.author, "Mads") self.assertEqual(my_instrument.origin, "DMSC") self.assertEqual(my_instrument.executable_path, @@ -1728,9 +1735,12 @@ def test_run_full_instrument_required_par_error(self, mock_stdout): """ instr = setup_populated_instr() + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") + with self.assertRaises(NameError): instr.run_full_instrument(foldername="test_data_set", - executable_path="dummy_mcstas") + executable_path=executable_path) def test_run_full_instrument_junk_par_error(self): """ From e68b1f6d0363ca7d0383a1c23f965c8025203149 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 28 Jan 2021 17:05:09 +0100 Subject: [PATCH 139/403] Further corrections to satisfy PEP-8 requirements --- mcstasscript/helper/component_reader.py | 4 ++-- mcstasscript/helper/managed_mcrun.py | 14 ++++++-------- mcstasscript/helper/mcstas_objects.py | 3 ++- mcstasscript/tests/test_instrument.instr | 2 +- 4 files changed, 11 insertions(+), 12 deletions(-) diff --git a/mcstasscript/helper/component_reader.py b/mcstasscript/helper/component_reader.py index d5477a31..e9028ac0 100644 --- a/mcstasscript/helper/component_reader.py +++ b/mcstasscript/helper/component_reader.py @@ -373,8 +373,8 @@ def read_component_file(self, absolute_path): if temp_par_type == "double": try: par_value = float(par_value) - except: - # Could change the type + except ValueError: + # value could be parameter name par_value = par_value elif temp_par_type == "int": par_value = int(par_value) diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index b9817c02..d12d6b95 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -227,14 +227,11 @@ def run_simulation(self, **kwargs): + self.name_of_instrumentfile + parameter_string) - try: - process = subprocess.run(full_command, shell=True, - stdout=subprocess.PIPE, - stderr=subprocess.PIPE, - universal_newlines=True, - cwd=self.run_path) - except: - raise RuntimeError("Could not run McStas command.") + process = subprocess.run(full_command, shell=True, + stdout=subprocess.PIPE, + stderr=subprocess.PIPE, + universal_newlines=True, + cwd=self.run_path) if "suppress_output" in kwargs: if kwargs["suppress_output"] is False: @@ -300,6 +297,7 @@ def load_results(data_folder_name): # Loop that reads mccode.sim sections metadata_list = [] + current_object = None in_data = False for lines in f: # Could read other details about run diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index dd65edb2..9acdbc11 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -242,7 +242,8 @@ def write_line(self, fo): try: fo.write("%s %s = %G;%s" % (self.type, self.name, self.value, self.comment)) - except: + except TypeError: + # Value could not be converted to float, write as string fo.write("%s %s = %s;%s" % (self.type, self.name, self.value, self.comment)) if self.value == "" and self.vector != 0: diff --git a/mcstasscript/tests/test_instrument.instr b/mcstasscript/tests/test_instrument.instr index 07f05b12..bbe65f75 100644 --- a/mcstasscript/tests/test_instrument.instr +++ b/mcstasscript/tests/test_instrument.instr @@ -15,7 +15,7 @@ * * %Identification * Written by: Python McXtrace Instrument Generator -* Date: 12:22:07 on January 27, 2021 +* Date: 09:22:00 on January 28, 2021 * Origin: ESS DMSC * %INSTRUMENT_SITE: Generated_instruments * From 0b5599a5004f3d479badecc100f24ea916166b91 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Fri, 29 Jan 2021 13:20:06 +0100 Subject: [PATCH 140/403] Fixed issue where generated_includes folder was created in whatever folder the unit tests were performed from. --- mcstasscript/tests/test_Instr.py | 10 +++++++++- 1 file changed, 9 insertions(+), 1 deletion(-) diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index b6ecd5e0..ae6a865e 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -1587,7 +1587,15 @@ def test_write_c_files_simple(self, mock_f): """ instr = setup_populated_instr() - instr.write_c_files() + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + current_directory = os.getcwd() + os.chdir(THIS_DIR) + + try: + instr.write_c_files() + finally: + os.chdir(current_directory) mock_f.assert_any_call("./generated_includes/" + "test_instrument_declare.c", "w") From f387f7c9e73c9b8de3e4d0be88a294cf9a5f7fb4 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Fri, 29 Jan 2021 13:29:51 +0100 Subject: [PATCH 141/403] Fixed small mistakes in Reader that affected the created objects. --- mcstasscript/instr_reader/read_declare.py | 3 ++- mcstasscript/instr_reader/read_definition.py | 12 ++++++++++-- 2 files changed, 12 insertions(+), 3 deletions(-) diff --git a/mcstasscript/instr_reader/read_declare.py b/mcstasscript/instr_reader/read_declare.py index 63145bbb..28cf4559 100644 --- a/mcstasscript/instr_reader/read_declare.py +++ b/mcstasscript/instr_reader/read_declare.py @@ -223,7 +223,8 @@ def _read_declare_statement(self, statement): return_value = float(value) except: value = value.replace('"', "\\\"") - return_value = '"' + value + '"' + #return_value = '"' + value + '"' + return_value = value kw_args["value"] = return_value diff --git a/mcstasscript/instr_reader/read_definition.py b/mcstasscript/instr_reader/read_definition.py index e4306097..52c0e766 100644 --- a/mcstasscript/instr_reader/read_definition.py +++ b/mcstasscript/instr_reader/read_definition.py @@ -86,8 +86,10 @@ def read_definition_line(self, line): if parameter_type == "string": if '"' in value: - value = value.replace('"', "\\\"") - value = "\"" + value + "\"" + pass + # Value has to be normal for object version + #value = value.replace('"', "\\\"") + #value = "\"" + value + "\"" else: if parameter_type == "int": value = int(value) @@ -104,6 +106,12 @@ def read_definition_line(self, line): # Add this parameter to the object self.Instr.add_parameter(parameter_type, parameter_name, **kw_args) + # Fix values for script version + if parameter_type == "string" and "value" in kw_args: + if isinstance(kw_args["value"], str): + kw_args["value"] = kw_args["value"].replace('"', '\\\"') + kw_args["value"] = "\"" + kw_args["value"] + "\"" + # Also write it to a file? write_string = [] write_string.append(self.instr_name) From 443e76549138c4af2a9d310f45adff532d42f295 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Fri, 29 Jan 2021 13:31:05 +0100 Subject: [PATCH 142/403] Added flake8 requirement to contributing as suggested by Celine Durniak. --- CONTRIBUTING.md | 1 + 1 file changed, 1 insertion(+) diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 899b6523..6ec5f166 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -9,3 +9,4 @@ This document describes how to contribute to McStasScript. The preferred method * Note for updates required to manual * Clear Jupyter Notebooks before committing * Check CI tests passes +* Use flake8 to check code quality, reduce to reasonable number of issues From 9099c5d27df108171975985c6f36186aa7af9227 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 3 Mar 2021 09:00:08 +0100 Subject: [PATCH 143/403] Update of instrument reader and fix of mcdisplay when using input_path. New version number. --- mcstasscript/interface/instr.py | 7 ++++++- mcstasscript/tests/test_Instr.py | 3 ++- mcstasscript/tests/test_Instr_reader.py | 4 ++-- setup.py | 2 +- 4 files changed, 11 insertions(+), 5 deletions(-) diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index f112ad0f..22d19e8a 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -1663,8 +1663,13 @@ def show_instrument(self, *args, **kwargs): elif kwargs["format"] == "window": executable = "mcdisplay" + self.write_full_instrument() + + instr_path = os.path.join(self.input_path, self.name + ".instr") + instr_path = os.path.abspath(instr_path) + full_command = (bin_path + executable + " " - + os.path.join(self.input_path, self.name + ".instr") + + instr_path + " " + parameter_string) process = subprocess.run(full_command, shell=True, diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index ae6a865e..d564f70b 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -2007,10 +2007,11 @@ def test_show_instrument_basic(self, mock_sub, mock_stdout): os.chdir(current_work_dir) expected_path = os.path.join(executable_path, "bin", "mcdisplay-webgl") + expected_instr_path = os.path.join(THIS_DIR, "test_instrument.instr") # a double space because of a missing option expected_call = (expected_path - + " ./test_instrument.instr" + + " " + expected_instr_path + " has_default=37 theta=1.2") mock_sub.assert_called_once_with(expected_call, diff --git a/mcstasscript/tests/test_Instr_reader.py b/mcstasscript/tests/test_Instr_reader.py index aa813f0f..85ae5d21 100644 --- a/mcstasscript/tests/test_Instr_reader.py +++ b/mcstasscript/tests/test_Instr_reader.py @@ -85,7 +85,7 @@ def test_read_input_parameter(self): self.assertEqual(Instr.parameter_list[2].name, "test_str") # space in type inserted for easier writing by McStas_Instr class self.assertEqual(Instr.parameter_list[2].type, "string") - self.assertEqual(Instr.parameter_list[2].value, "\"\\\"hurray\\\"\"") + self.assertEqual(Instr.parameter_list[2].value, "\"hurray\"") def test_read_declare_parameter(self): @@ -118,7 +118,7 @@ def test_read_declare_parameter(self): self.assertEqual(Instr.declare_list[11].type, "char") self.assertEqual(Instr.declare_list[11].vector, 20) self.assertEqual(Instr.declare_list[11].value, - "\"\\\"test_string\\\"\"") + "\\\"test_string\\\"") def test_read_initialize_line(self): diff --git a/setup.py b/setup.py index ccf00909..7bc8431d 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ setuptools.setup( name='McStasScript', - version='0.0.25', + version='0.0.27', author="Mads Bertelsen", author_email="Mads.Bertelsen@ess.eu", description="A python scripting interface for McStas", From 8ba4fb4e05760fddcc055691764daaba586a02e4 Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Tue, 6 Apr 2021 11:19:51 +0200 Subject: [PATCH 144/403] New license Adding BSD license to McStasScript --- LICENSE | 703 +++----------------------------------------------------- 1 file changed, 29 insertions(+), 674 deletions(-) diff --git a/LICENSE b/LICENSE index f288702d..544802a8 100644 --- a/LICENSE +++ b/LICENSE @@ -1,674 +1,29 @@ - GNU GENERAL PUBLIC LICENSE - Version 3, 29 June 2007 - - Copyright (C) 2007 Free Software Foundation, Inc. - Everyone is permitted to copy and distribute verbatim copies - of this license document, but changing it is not allowed. - - Preamble - - The GNU General Public License is a free, copyleft license for -software and other kinds of works. - - The licenses for most software and other practical works are designed -to take away your freedom to share and change the works. By contrast, -the GNU General Public License is intended to guarantee your freedom to -share and change all versions of a program--to make sure it remains free -software for all its users. We, the Free Software Foundation, use the -GNU General Public License for most of our software; it applies also to -any other work released this way by its authors. You can apply it to -your programs, too. - - When we speak of free software, we are referring to freedom, not -price. Our General Public Licenses are designed to make sure that you -have the freedom to distribute copies of free software (and charge for -them if you wish), that you receive source code or can get it if you -want it, that you can change the software or use pieces of it in new -free programs, and that you know you can do these things. - - To protect your rights, we need to prevent others from denying you -these rights or asking you to surrender the rights. Therefore, you have -certain responsibilities if you distribute copies of the software, or if -you modify it: responsibilities to respect the freedom of others. - - For example, if you distribute copies of such a program, whether -gratis or for a fee, you must pass on to the recipients the same -freedoms that you received. You must make sure that they, too, receive -or can get the source code. And you must show them these terms so they -know their rights. - - Developers that use the GNU GPL protect your rights with two steps: -(1) assert copyright on the software, and (2) offer you this License -giving you legal permission to copy, distribute and/or modify it. - - For the developers' and authors' protection, the GPL clearly explains -that there is no warranty for this free software. For both users' and -authors' sake, the GPL requires that modified versions be marked as -changed, so that their problems will not be attributed erroneously to -authors of previous versions. - - Some devices are designed to deny users access to install or run -modified versions of the software inside them, although the manufacturer -can do so. This is fundamentally incompatible with the aim of -protecting users' freedom to change the software. The systematic -pattern of such abuse occurs in the area of products for individuals to -use, which is precisely where it is most unacceptable. Therefore, we -have designed this version of the GPL to prohibit the practice for those -products. If such problems arise substantially in other domains, we -stand ready to extend this provision to those domains in future versions -of the GPL, as needed to protect the freedom of users. - - Finally, every program is threatened constantly by software patents. -States should not allow patents to restrict development and use of -software on general-purpose computers, but in those that do, we wish to -avoid the special danger that patents applied to a free program could -make it effectively proprietary. To prevent this, the GPL assures that -patents cannot be used to render the program non-free. - - The precise terms and conditions for copying, distribution and -modification follow. - - TERMS AND CONDITIONS - - 0. Definitions. - - "This License" refers to version 3 of the GNU General Public License. - - "Copyright" also means copyright-like laws that apply to other kinds of -works, such as semiconductor masks. - - "The Program" refers to any copyrightable work licensed under this -License. Each licensee is addressed as "you". "Licensees" and -"recipients" may be individuals or organizations. - - To "modify" a work means to copy from or adapt all or part of the work -in a fashion requiring copyright permission, other than the making of an -exact copy. The resulting work is called a "modified version" of the -earlier work or a work "based on" the earlier work. - - A "covered work" means either the unmodified Program or a work based -on the Program. - - To "propagate" a work means to do anything with it that, without -permission, would make you directly or secondarily liable for -infringement under applicable copyright law, except executing it on a -computer or modifying a private copy. Propagation includes copying, -distribution (with or without modification), making available to the -public, and in some countries other activities as well. - - To "convey" a work means any kind of propagation that enables other -parties to make or receive copies. Mere interaction with a user through -a computer network, with no transfer of a copy, is not conveying. - - An interactive user interface displays "Appropriate Legal Notices" -to the extent that it includes a convenient and prominently visible -feature that (1) displays an appropriate copyright notice, and (2) -tells the user that there is no warranty for the work (except to the -extent that warranties are provided), that licensees may convey the -work under this License, and how to view a copy of this License. If -the interface presents a list of user commands or options, such as a -menu, a prominent item in the list meets this criterion. - - 1. Source Code. - - The "source code" for a work means the preferred form of the work -for making modifications to it. "Object code" means any non-source -form of a work. - - A "Standard Interface" means an interface that either is an official -standard defined by a recognized standards body, or, in the case of -interfaces specified for a particular programming language, one that -is widely used among developers working in that language. - - The "System Libraries" of an executable work include anything, other -than the work as a whole, that (a) is included in the normal form of -packaging a Major Component, but which is not part of that Major -Component, and (b) serves only to enable use of the work with that -Major Component, or to implement a Standard Interface for which an -implementation is available to the public in source code form. A -"Major Component", in this context, means a major essential component -(kernel, window system, and so on) of the specific operating system -(if any) on which the executable work runs, or a compiler used to -produce the work, or an object code interpreter used to run it. - - The "Corresponding Source" for a work in object code form means all -the source code needed to generate, install, and (for an executable -work) run the object code and to modify the work, including scripts to -control those activities. However, it does not include the work's -System Libraries, or general-purpose tools or generally available free -programs which are used unmodified in performing those activities but -which are not part of the work. For example, Corresponding Source -includes interface definition files associated with source files for -the work, and the source code for shared libraries and dynamically -linked subprograms that the work is specifically designed to require, -such as by intimate data communication or control flow between those -subprograms and other parts of the work. - - The Corresponding Source need not include anything that users -can regenerate automatically from other parts of the Corresponding -Source. - - The Corresponding Source for a work in source code form is that -same work. - - 2. Basic Permissions. - - All rights granted under this License are granted for the term of -copyright on the Program, and are irrevocable provided the stated -conditions are met. This License explicitly affirms your unlimited -permission to run the unmodified Program. The output from running a -covered work is covered by this License only if the output, given its -content, constitutes a covered work. This License acknowledges your -rights of fair use or other equivalent, as provided by copyright law. - - You may make, run and propagate covered works that you do not -convey, without conditions so long as your license otherwise remains -in force. You may convey covered works to others for the sole purpose -of having them make modifications exclusively for you, or provide you -with facilities for running those works, provided that you comply with -the terms of this License in conveying all material for which you do -not control copyright. Those thus making or running the covered works -for you must do so exclusively on your behalf, under your direction -and control, on terms that prohibit them from making any copies of -your copyrighted material outside their relationship with you. - - Conveying under any other circumstances is permitted solely under -the conditions stated below. Sublicensing is not allowed; section 10 -makes it unnecessary. - - 3. Protecting Users' Legal Rights From Anti-Circumvention Law. - - No covered work shall be deemed part of an effective technological -measure under any applicable law fulfilling obligations under article -11 of the WIPO copyright treaty adopted on 20 December 1996, or -similar laws prohibiting or restricting circumvention of such -measures. - - When you convey a covered work, you waive any legal power to forbid -circumvention of technological measures to the extent such circumvention -is effected by exercising rights under this License with respect to -the covered work, and you disclaim any intention to limit operation or -modification of the work as a means of enforcing, against the work's -users, your or third parties' legal rights to forbid circumvention of -technological measures. - - 4. Conveying Verbatim Copies. - - You may convey verbatim copies of the Program's source code as you -receive it, in any medium, provided that you conspicuously and -appropriately publish on each copy an appropriate copyright notice; -keep intact all notices stating that this License and any -non-permissive terms added in accord with section 7 apply to the code; -keep intact all notices of the absence of any warranty; and give all -recipients a copy of this License along with the Program. - - You may charge any price or no price for each copy that you convey, -and you may offer support or warranty protection for a fee. - - 5. Conveying Modified Source Versions. - - You may convey a work based on the Program, or the modifications to -produce it from the Program, in the form of source code under the -terms of section 4, provided that you also meet all of these conditions: - - a) The work must carry prominent notices stating that you modified - it, and giving a relevant date. - - b) The work must carry prominent notices stating that it is - released under this License and any conditions added under section - 7. This requirement modifies the requirement in section 4 to - "keep intact all notices". - - c) You must license the entire work, as a whole, under this - License to anyone who comes into possession of a copy. This - License will therefore apply, along with any applicable section 7 - additional terms, to the whole of the work, and all its parts, - regardless of how they are packaged. This License gives no - permission to license the work in any other way, but it does not - invalidate such permission if you have separately received it. - - d) If the work has interactive user interfaces, each must display - Appropriate Legal Notices; however, if the Program has interactive - interfaces that do not display Appropriate Legal Notices, your - work need not make them do so. - - A compilation of a covered work with other separate and independent -works, which are not by their nature extensions of the covered work, -and which are not combined with it such as to form a larger program, -in or on a volume of a storage or distribution medium, is called an -"aggregate" if the compilation and its resulting copyright are not -used to limit the access or legal rights of the compilation's users -beyond what the individual works permit. Inclusion of a covered work -in an aggregate does not cause this License to apply to the other -parts of the aggregate. - - 6. Conveying Non-Source Forms. - - You may convey a covered work in object code form under the terms -of sections 4 and 5, provided that you also convey the -machine-readable Corresponding Source under the terms of this License, -in one of these ways: - - a) Convey the object code in, or embodied in, a physical product - (including a physical distribution medium), accompanied by the - Corresponding Source fixed on a durable physical medium - customarily used for software interchange. - - b) Convey the object code in, or embodied in, a physical product - (including a physical distribution medium), accompanied by a - written offer, valid for at least three years and valid for as - long as you offer spare parts or customer support for that product - model, to give anyone who possesses the object code either (1) a - copy of the Corresponding Source for all the software in the - product that is covered by this License, on a durable physical - medium customarily used for software interchange, for a price no - more than your reasonable cost of physically performing this - conveying of source, or (2) access to copy the - Corresponding Source from a network server at no charge. - - c) Convey individual copies of the object code with a copy of the - written offer to provide the Corresponding Source. This - alternative is allowed only occasionally and noncommercially, and - only if you received the object code with such an offer, in accord - with subsection 6b. - - d) Convey the object code by offering access from a designated - place (gratis or for a charge), and offer equivalent access to the - Corresponding Source in the same way through the same place at no - further charge. You need not require recipients to copy the - Corresponding Source along with the object code. If the place to - copy the object code is a network server, the Corresponding Source - may be on a different server (operated by you or a third party) - that supports equivalent copying facilities, provided you maintain - clear directions next to the object code saying where to find the - Corresponding Source. Regardless of what server hosts the - Corresponding Source, you remain obligated to ensure that it is - available for as long as needed to satisfy these requirements. - - e) Convey the object code using peer-to-peer transmission, provided - you inform other peers where the object code and Corresponding - Source of the work are being offered to the general public at no - charge under subsection 6d. - - A separable portion of the object code, whose source code is excluded -from the Corresponding Source as a System Library, need not be -included in conveying the object code work. - - A "User Product" is either (1) a "consumer product", which means any -tangible personal property which is normally used for personal, family, -or household purposes, or (2) anything designed or sold for incorporation -into a dwelling. In determining whether a product is a consumer product, -doubtful cases shall be resolved in favor of coverage. For a particular -product received by a particular user, "normally used" refers to a -typical or common use of that class of product, regardless of the status -of the particular user or of the way in which the particular user -actually uses, or expects or is expected to use, the product. A product -is a consumer product regardless of whether the product has substantial -commercial, industrial or non-consumer uses, unless such uses represent -the only significant mode of use of the product. - - "Installation Information" for a User Product means any methods, -procedures, authorization keys, or other information required to install -and execute modified versions of a covered work in that User Product from -a modified version of its Corresponding Source. The information must -suffice to ensure that the continued functioning of the modified object -code is in no case prevented or interfered with solely because -modification has been made. - - If you convey an object code work under this section in, or with, or -specifically for use in, a User Product, and the conveying occurs as -part of a transaction in which the right of possession and use of the -User Product is transferred to the recipient in perpetuity or for a -fixed term (regardless of how the transaction is characterized), the -Corresponding Source conveyed under this section must be accompanied -by the Installation Information. But this requirement does not apply -if neither you nor any third party retains the ability to install -modified object code on the User Product (for example, the work has -been installed in ROM). - - The requirement to provide Installation Information does not include a -requirement to continue to provide support service, warranty, or updates -for a work that has been modified or installed by the recipient, or for -the User Product in which it has been modified or installed. Access to a -network may be denied when the modification itself materially and -adversely affects the operation of the network or violates the rules and -protocols for communication across the network. - - Corresponding Source conveyed, and Installation Information provided, -in accord with this section must be in a format that is publicly -documented (and with an implementation available to the public in -source code form), and must require no special password or key for -unpacking, reading or copying. - - 7. Additional Terms. - - "Additional permissions" are terms that supplement the terms of this -License by making exceptions from one or more of its conditions. -Additional permissions that are applicable to the entire Program shall -be treated as though they were included in this License, to the extent -that they are valid under applicable law. If additional permissions -apply only to part of the Program, that part may be used separately -under those permissions, but the entire Program remains governed by -this License without regard to the additional permissions. - - When you convey a copy of a covered work, you may at your option -remove any additional permissions from that copy, or from any part of -it. (Additional permissions may be written to require their own -removal in certain cases when you modify the work.) You may place -additional permissions on material, added by you to a covered work, -for which you have or can give appropriate copyright permission. - - Notwithstanding any other provision of this License, for material you -add to a covered work, you may (if authorized by the copyright holders of -that material) supplement the terms of this License with terms: - - a) Disclaiming warranty or limiting liability differently from the - terms of sections 15 and 16 of this License; or - - b) Requiring preservation of specified reasonable legal notices or - author attributions in that material or in the Appropriate Legal - Notices displayed by works containing it; or - - c) Prohibiting misrepresentation of the origin of that material, or - requiring that modified versions of such material be marked in - reasonable ways as different from the original version; or - - d) Limiting the use for publicity purposes of names of licensors or - authors of the material; or - - e) Declining to grant rights under trademark law for use of some - trade names, trademarks, or service marks; or - - f) Requiring indemnification of licensors and authors of that - material by anyone who conveys the material (or modified versions of - it) with contractual assumptions of liability to the recipient, for - any liability that these contractual assumptions directly impose on - those licensors and authors. - - All other non-permissive additional terms are considered "further -restrictions" within the meaning of section 10. If the Program as you -received it, or any part of it, contains a notice stating that it is -governed by this License along with a term that is a further -restriction, you may remove that term. If a license document contains -a further restriction but permits relicensing or conveying under this -License, you may add to a covered work material governed by the terms -of that license document, provided that the further restriction does -not survive such relicensing or conveying. - - If you add terms to a covered work in accord with this section, you -must place, in the relevant source files, a statement of the -additional terms that apply to those files, or a notice indicating -where to find the applicable terms. - - Additional terms, permissive or non-permissive, may be stated in the -form of a separately written license, or stated as exceptions; -the above requirements apply either way. - - 8. Termination. - - You may not propagate or modify a covered work except as expressly -provided under this License. Any attempt otherwise to propagate or -modify it is void, and will automatically terminate your rights under -this License (including any patent licenses granted under the third -paragraph of section 11). - - However, if you cease all violation of this License, then your -license from a particular copyright holder is reinstated (a) -provisionally, unless and until the copyright holder explicitly and -finally terminates your license, and (b) permanently, if the copyright -holder fails to notify you of the violation by some reasonable means -prior to 60 days after the cessation. - - Moreover, your license from a particular copyright holder is -reinstated permanently if the copyright holder notifies you of the -violation by some reasonable means, this is the first time you have -received notice of violation of this License (for any work) from that -copyright holder, and you cure the violation prior to 30 days after -your receipt of the notice. - - Termination of your rights under this section does not terminate the -licenses of parties who have received copies or rights from you under -this License. If your rights have been terminated and not permanently -reinstated, you do not qualify to receive new licenses for the same -material under section 10. - - 9. Acceptance Not Required for Having Copies. - - You are not required to accept this License in order to receive or -run a copy of the Program. Ancillary propagation of a covered work -occurring solely as a consequence of using peer-to-peer transmission -to receive a copy likewise does not require acceptance. However, -nothing other than this License grants you permission to propagate or -modify any covered work. These actions infringe copyright if you do -not accept this License. Therefore, by modifying or propagating a -covered work, you indicate your acceptance of this License to do so. - - 10. Automatic Licensing of Downstream Recipients. - - Each time you convey a covered work, the recipient automatically -receives a license from the original licensors, to run, modify and -propagate that work, subject to this License. You are not responsible -for enforcing compliance by third parties with this License. - - An "entity transaction" is a transaction transferring control of an -organization, or substantially all assets of one, or subdividing an -organization, or merging organizations. If propagation of a covered -work results from an entity transaction, each party to that -transaction who receives a copy of the work also receives whatever -licenses to the work the party's predecessor in interest had or could -give under the previous paragraph, plus a right to possession of the -Corresponding Source of the work from the predecessor in interest, if -the predecessor has it or can get it with reasonable efforts. - - You may not impose any further restrictions on the exercise of the -rights granted or affirmed under this License. For example, you may -not impose a license fee, royalty, or other charge for exercise of -rights granted under this License, and you may not initiate litigation -(including a cross-claim or counterclaim in a lawsuit) alleging that -any patent claim is infringed by making, using, selling, offering for -sale, or importing the Program or any portion of it. - - 11. Patents. - - A "contributor" is a copyright holder who authorizes use under this -License of the Program or a work on which the Program is based. The -work thus licensed is called the contributor's "contributor version". - - A contributor's "essential patent claims" are all patent claims -owned or controlled by the contributor, whether already acquired or -hereafter acquired, that would be infringed by some manner, permitted -by this License, of making, using, or selling its contributor version, -but do not include claims that would be infringed only as a -consequence of further modification of the contributor version. For -purposes of this definition, "control" includes the right to grant -patent sublicenses in a manner consistent with the requirements of -this License. - - Each contributor grants you a non-exclusive, worldwide, royalty-free -patent license under the contributor's essential patent claims, to -make, use, sell, offer for sale, import and otherwise run, modify and -propagate the contents of its contributor version. - - In the following three paragraphs, a "patent license" is any express -agreement or commitment, however denominated, not to enforce a patent -(such as an express permission to practice a patent or covenant not to -sue for patent infringement). To "grant" such a patent license to a -party means to make such an agreement or commitment not to enforce a -patent against the party. - - If you convey a covered work, knowingly relying on a patent license, -and the Corresponding Source of the work is not available for anyone -to copy, free of charge and under the terms of this License, through a -publicly available network server or other readily accessible means, -then you must either (1) cause the Corresponding Source to be so -available, or (2) arrange to deprive yourself of the benefit of the -patent license for this particular work, or (3) arrange, in a manner -consistent with the requirements of this License, to extend the patent -license to downstream recipients. "Knowingly relying" means you have -actual knowledge that, but for the patent license, your conveying the -covered work in a country, or your recipient's use of the covered work -in a country, would infringe one or more identifiable patents in that -country that you have reason to believe are valid. - - If, pursuant to or in connection with a single transaction or -arrangement, you convey, or propagate by procuring conveyance of, a -covered work, and grant a patent license to some of the parties -receiving the covered work authorizing them to use, propagate, modify -or convey a specific copy of the covered work, then the patent license -you grant is automatically extended to all recipients of the covered -work and works based on it. - - A patent license is "discriminatory" if it does not include within -the scope of its coverage, prohibits the exercise of, or is -conditioned on the non-exercise of one or more of the rights that are -specifically granted under this License. You may not convey a covered -work if you are a party to an arrangement with a third party that is -in the business of distributing software, under which you make payment -to the third party based on the extent of your activity of conveying -the work, and under which the third party grants, to any of the -parties who would receive the covered work from you, a discriminatory -patent license (a) in connection with copies of the covered work -conveyed by you (or copies made from those copies), or (b) primarily -for and in connection with specific products or compilations that -contain the covered work, unless you entered into that arrangement, -or that patent license was granted, prior to 28 March 2007. - - Nothing in this License shall be construed as excluding or limiting -any implied license or other defenses to infringement that may -otherwise be available to you under applicable patent law. - - 12. No Surrender of Others' Freedom. - - If conditions are imposed on you (whether by court order, agreement or -otherwise) that contradict the conditions of this License, they do not -excuse you from the conditions of this License. If you cannot convey a -covered work so as to satisfy simultaneously your obligations under this -License and any other pertinent obligations, then as a consequence you may -not convey it at all. For example, if you agree to terms that obligate you -to collect a royalty for further conveying from those to whom you convey -the Program, the only way you could satisfy both those terms and this -License would be to refrain entirely from conveying the Program. - - 13. Use with the GNU Affero General Public License. - - Notwithstanding any other provision of this License, you have -permission to link or combine any covered work with a work licensed -under version 3 of the GNU Affero General Public License into a single -combined work, and to convey the resulting work. The terms of this -License will continue to apply to the part which is the covered work, -but the special requirements of the GNU Affero General Public License, -section 13, concerning interaction through a network will apply to the -combination as such. - - 14. Revised Versions of this License. - - The Free Software Foundation may publish revised and/or new versions of -the GNU General Public License from time to time. Such new versions will -be similar in spirit to the present version, but may differ in detail to -address new problems or concerns. - - Each version is given a distinguishing version number. If the -Program specifies that a certain numbered version of the GNU General -Public License "or any later version" applies to it, you have the -option of following the terms and conditions either of that numbered -version or of any later version published by the Free Software -Foundation. If the Program does not specify a version number of the -GNU General Public License, you may choose any version ever published -by the Free Software Foundation. - - If the Program specifies that a proxy can decide which future -versions of the GNU General Public License can be used, that proxy's -public statement of acceptance of a version permanently authorizes you -to choose that version for the Program. - - Later license versions may give you additional or different -permissions. However, no additional obligations are imposed on any -author or copyright holder as a result of your choosing to follow a -later version. - - 15. Disclaimer of Warranty. - - THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY -APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT -HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY -OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, -THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR -PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM -IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF -ALL NECESSARY SERVICING, REPAIR OR CORRECTION. - - 16. Limitation of Liability. - - IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING -WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS -THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY -GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE -USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF -DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD -PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), -EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF -SUCH DAMAGES. - - 17. Interpretation of Sections 15 and 16. - - If the disclaimer of warranty and limitation of liability provided -above cannot be given local legal effect according to their terms, -reviewing courts shall apply local law that most closely approximates -an absolute waiver of all civil liability in connection with the -Program, unless a warranty or assumption of liability accompanies a -copy of the Program in return for a fee. - - END OF TERMS AND CONDITIONS - - How to Apply These Terms to Your New Programs - - If you develop a new program, and you want it to be of the greatest -possible use to the public, the best way to achieve this is to make it -free software which everyone can redistribute and change under these terms. - - To do so, attach the following notices to the program. It is safest -to attach them to the start of each source file to most effectively -state the exclusion of warranty; and each file should have at least -the "copyright" line and a pointer to where the full notice is found. - - - Copyright (C) - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . - -Also add information on how to contact you by electronic and paper mail. - - If the program does terminal interaction, make it output a short -notice like this when it starts in an interactive mode: - - Copyright (C) - This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. - This is free software, and you are welcome to redistribute it - under certain conditions; type `show c' for details. - -The hypothetical commands `show w' and `show c' should show the appropriate -parts of the General Public License. Of course, your program's commands -might be different; for a GUI interface, you would use an "about box". - - You should also get your employer (if you work as a programmer) or school, -if any, to sign a "copyright disclaimer" for the program, if necessary. -For more information on this, and how to apply and follow the GNU GPL, see -. - - The GNU General Public License does not permit incorporating your program -into proprietary programs. If your program is a subroutine library, you -may consider it more useful to permit linking proprietary applications with -the library. If this is what you want to do, use the GNU Lesser General -Public License instead of this License. But first, please read -. +BSD 3-Clause License + +Copyright (c) 2021, PaNOSC-ViNYL +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are met: + +1. Redistributions of source code must retain the above copyright notice, this + list of conditions and the following disclaimer. + +2. Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + +3. Neither the name of the copyright holder nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. From 483c555d66d6f7d1005be7794d1a86d477421c98 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 6 Apr 2021 13:10:56 +0200 Subject: [PATCH 145/403] Split of load functionality allowing loading individual datasets instead of forcing the user to load an entire folder. The function loading an entire dataset is refactored to use the new function for loading a single data set. --- mcstasscript/helper/managed_mcrun.py | 100 +++++++++++++++++---------- mcstasscript/interface/functions.py | 32 +++++++++ 2 files changed, 96 insertions(+), 36 deletions(-) diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index d12d6b95..1ab7e708 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -277,11 +277,34 @@ def load_results(data_folder_name): Parameters ---------- - first argument : str + data_folder_name : str path to folder from which data should be loaded """ + metadata_list = load_metadata(data_folder_name) + + results = [] + for metadata in metadata_list: + results.append(load_monitor(metadata, data_folder_name)) + + return results + + +def load_metadata(data_folder_name): + """ + Function that loads metadata from a mcstas simulation + + Returns list of metadata objects corresponding to each monitor, all + information is taken from mccode.sim file. + + Parameters + ---------- + + first argument : str + path to folder from which metadata should be loaded + """ + if not os.path.isdir(data_folder_name): raise NameError("Given data directory does not exist.") @@ -325,42 +348,47 @@ def load_results(data_folder_name): # Start recording data to metadata object in_data = True - # Create a list for McStasData instances to return - results = [] + return metadata_list - # Load datasets described in metadata list individually - for metadata in metadata_list: - # Load data with numpy - data = np.loadtxt(os.path.join(data_folder_name, - metadata.filename.rstrip())) - - # Split data into intensity, error and ncount - if type(metadata.dimension) == int: - xaxis = data.T[0, :] - Intensity = data.T[1, :] - Error = data.T[2, :] - Ncount = data.T[3, :] - - elif len(metadata.dimension) == 2: - xaxis = [] # Assume evenly binned in 2d - data_lines = metadata.dimension[1] - - Intensity = data[0:data_lines, :] - Error = data[data_lines:2*data_lines, :] - Ncount = data[2*data_lines:3*data_lines, :] - else: - raise NameError( - "Dimension not read correctly in data set " - + "connected to monitor named " - + metadata.component_name) - # The data is saved as a McStasData object - result = McStasData(metadata, Intensity, - Error, Ncount, - xaxis=xaxis) +def load_monitor(metadata, data_folder_name): + """ + Function that loads data given metadata and name of data folder - # Add this result to the results list - results.append(result) + Loads data for single monitor and returns a McStasData object - # Return list of McStasData objects - return results + Parameters + ---------- + + metadata : McStasMetaData object + McStasMetaData object corresponding to the monitor to be loaded + + data_folder_name : str + path to folder from which metadata should be loaded + """ + # Load data with numpy + data = np.loadtxt(os.path.join(data_folder_name, + metadata.filename.rstrip())) + + # Split data into intensity, error and ncount + if type(metadata.dimension) == int: + xaxis = data.T[0, :] + Intensity = data.T[1, :] + Error = data.T[2, :] + Ncount = data.T[3, :] + + elif len(metadata.dimension) == 2: + xaxis = [] # Assume evenly binned in 2d + data_lines = metadata.dimension[1] + + Intensity = data[0:data_lines, :] + Error = data[data_lines:2 * data_lines, :] + Ncount = data[2 * data_lines:3 * data_lines, :] + else: + raise NameError( + "Dimension not read correctly in data set " + + "connected to monitor named " + + metadata.component_name) + + # The data is saved as a McStasData object + return McStasData(metadata, Intensity, Error, Ncount, xaxis=xaxis) diff --git a/mcstasscript/interface/functions.py b/mcstasscript/interface/functions.py index 62dafcc0..6fab8b38 100644 --- a/mcstasscript/interface/functions.py +++ b/mcstasscript/interface/functions.py @@ -98,6 +98,38 @@ def load_data(foldername): return managed_mcrun.load_results(foldername) +def load_metadata(data_folder_name): + """ + Function that loads metadata from a mcstas simulation + + Returns list of metadata objects corresponding to each monitor, all + information is taken from mccode.sim file. + + Parameters + ---------- + + first argument : str + path to folder from which metadata should be loaded + """ + return managed_mcrun.load_metadata(data_folder_name) + +def load_monitor(metadata, data_folder_name): + """ + Function that loads data given metadata and name of data folder + + Loads data for single monitor and returns a McStasData object + + Parameters + ---------- + + metadata : McStasMetaData object + McStasMetaData object corresponding to the monitor to be loaded + + data_folder_name : str + path to folder from which metadata should be loaded + """ + return managed_mcrun.load_monitor(metadata, data_folder_name) + class Configurator: """ From 8b06eab81f92442e72a1ae05d9324afa6cf0e821 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 27 Apr 2021 13:29:54 +0200 Subject: [PATCH 146/403] Added tests to new loader functions. Can now load metadata or a monitor seperately. --- mcstasscript/tests/test_ManagedMcrun.py | 165 ++++++++++++++++++++++++ mcstasscript/tests/test_functions.py | 64 +++++++++ 2 files changed, 229 insertions(+) diff --git a/mcstasscript/tests/test_ManagedMcrun.py b/mcstasscript/tests/test_ManagedMcrun.py index cc6ae7c7..71a34f4a 100644 --- a/mcstasscript/tests/test_ManagedMcrun.py +++ b/mcstasscript/tests/test_ManagedMcrun.py @@ -2,6 +2,9 @@ import unittest from mcstasscript.helper.managed_mcrun import ManagedMcrun +from mcstasscript.helper.managed_mcrun import load_results +from mcstasscript.helper.managed_mcrun import load_metadata +from mcstasscript.helper.managed_mcrun import load_monitor class TestManagedMcrun(unittest.TestCase): @@ -560,6 +563,168 @@ def test_ManagedMcrun_load_data_L_mon_empty_error(self): os.chdir(current_work_dir) # Reset work directory +class Test_load_functions(unittest.TestCase): + """ + Testing the load functions in managed_mcrun. + load_results loads all data in folder + load_metadata loads all metadata in folder + load_monitor loads one monitor given metadata and folder + These are used in ManagedMcrun + """ + def test_mcrun_load_data_PSD4PI(self): + """ + Use test_data_set to test load_data for PSD_4PI + """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + results = load_results("test_data_set") + + os.chdir(current_work_dir) # Reset work directory + + self.assertEqual(len(results), 3) + + PSD_4PI = results[0] + + self.assertEqual(PSD_4PI.name, "PSD_4PI") + self.assertEqual(PSD_4PI.metadata.dimension, [300, 300]) + self.assertEqual(PSD_4PI.metadata.limits, [-180, 180, -90, 90]) + self.assertEqual(PSD_4PI.metadata.xlabel, "Longitude [deg]") + self.assertEqual(PSD_4PI.metadata.ylabel, "Latitude [deg]") + self.assertEqual(PSD_4PI.metadata.title, "4PI PSD monitor") + self.assertEqual(PSD_4PI.Ncount[4][1], 4) + self.assertEqual(PSD_4PI.Intensity[4][1], 1.537334562E-10) + self.assertEqual(PSD_4PI.Error[4][1], 1.139482296E-10) + + def test_mcrun_load_data_PSD(self): + """ + Use test_data_set to test load_data for PSD + """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + results = load_results("test_data_set") + + os.chdir(current_work_dir) # Reset work directory + + self.assertEqual(len(results), 3) + + PSD = results[1] + + self.assertEqual(PSD.name, "PSD") + self.assertEqual(PSD.metadata.dimension, [200, 200]) + self.assertEqual(PSD.metadata.limits, [-5, 5, -5, 5]) + self.assertEqual(PSD.metadata.xlabel, "X position [cm]") + self.assertEqual(PSD.metadata.ylabel, "Y position [cm]") + self.assertEqual(PSD.metadata.title, "PSD monitor") + self.assertEqual(PSD.Ncount[27][21], 9) + self.assertEqual(PSD.Intensity[27][21], 2.623929371e-13) + self.assertEqual(PSD.Error[27][21], 2.765467693e-13) + + def test_mcrun_load_metadata_PSD4PI(self): + """ + Use test_data_set to test load_metadata for PSD_4PI + """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + metadata = load_metadata("test_data_set") + + os.chdir(current_work_dir) # Reset work directory + + self.assertEqual(len(metadata), 3) + + PSD_4PI = metadata[0] + self.assertEqual(PSD_4PI.dimension, [300, 300]) + self.assertEqual(PSD_4PI.limits, [-180, 180, -90, 90]) + self.assertEqual(PSD_4PI.xlabel, "Longitude [deg]") + self.assertEqual(PSD_4PI.ylabel, "Latitude [deg]") + self.assertEqual(PSD_4PI.title, "4PI PSD monitor") + + def test_mcrun_load_metadata_L_mon(self): + """ + Use test_data_set to test load_metadata for PSD_4PI + """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + metadata = load_metadata("test_data_set") + + os.chdir(current_work_dir) # Reset work directory + + self.assertEqual(len(metadata), 3) + + L_mon = metadata[2] + self.assertEqual(L_mon.dimension, 150) + self.assertEqual(L_mon.limits, [0.7, 1.3]) + self.assertEqual(L_mon.xlabel, "Wavelength [AA]") + self.assertEqual(L_mon.ylabel, "Intensity") + self.assertEqual(L_mon.title, "Wavelength monitor") + + def test_mcrun_load_monitor_PSD4PI(self): + """ + Use test_data_set to test load_monitor for PSD_4PI + """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + metadata = load_metadata("test_data_set") + PSD_4PI = metadata[0] + monitor = load_monitor(PSD_4PI, "test_data_set") + + os.chdir(current_work_dir) # Reset work directory + + self.assertEqual(monitor.name, "PSD_4PI") + self.assertEqual(monitor.metadata.dimension, [300, 300]) + self.assertEqual(monitor.metadata.limits, [-180, 180, -90, 90]) + self.assertEqual(monitor.metadata.xlabel, "Longitude [deg]") + self.assertEqual(monitor.metadata.ylabel, "Latitude [deg]") + self.assertEqual(monitor.metadata.title, "4PI PSD monitor") + self.assertEqual(monitor.Ncount[4][1], 4) + self.assertEqual(monitor.Intensity[4][1], 1.537334562E-10) + self.assertEqual(monitor.Error[4][1], 1.139482296E-10) + + def test_mcrun_load_monitor_L_mon(self): + """ + Use test_data_set to test load_monitor for PSD_4PI + """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + metadata = load_metadata("test_data_set") + L_mon = metadata[2] + monitor = load_monitor(L_mon, "test_data_set") + + os.chdir(current_work_dir) # Reset work directory + + self.assertEqual(monitor.name, "L_mon") + self.assertEqual(monitor.metadata.dimension, 150) + self.assertEqual(monitor.metadata.limits, [0.7, 1.3]) + self.assertEqual(monitor.metadata.xlabel, "Wavelength [AA]") + self.assertEqual(monitor.metadata.ylabel, "Intensity") + self.assertEqual(monitor.metadata.title, "Wavelength monitor") + self.assertEqual(monitor.xaxis[53], 0.914) + self.assertEqual(monitor.Ncount[53], 37111) + self.assertEqual(monitor.Intensity[53], 6.990299315e-06) + self.assertEqual(monitor.Error[53], 6.215308587e-08) if __name__ == '__main__': unittest.main() diff --git a/mcstasscript/tests/test_functions.py b/mcstasscript/tests/test_functions.py index 3f0f26f3..cd10f340 100644 --- a/mcstasscript/tests/test_functions.py +++ b/mcstasscript/tests/test_functions.py @@ -7,6 +7,8 @@ from mcstasscript.interface.functions import name_search from mcstasscript.interface.functions import name_plot_options from mcstasscript.interface.functions import load_data +from mcstasscript.interface.functions import load_metadata +from mcstasscript.interface.functions import load_monitor from mcstasscript.data.data import McStasData from mcstasscript.data.data import McStasMetaData @@ -320,5 +322,67 @@ def test_mcrun_load_data_PSD4PI(self): self.assertEqual(PSD_4PI.Error[4][1], 1.139482296E-10) +class Test_load_metadata(unittest.TestCase): + """ + Testing the load metadata function which calls ManagedMcrun, which + was tested elsewhere. Since the load metadata is tested elsewhere, + this function has just a single test to check the interface. + """ + def test_mcrun_load_metadata_PSD4PI(self): + """ + Use test_data_set to test load_metadata for PSD_4PI + """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + metadata = load_metadata("test_data_set") + + os.chdir(current_work_dir) # Reset work directory + + self.assertEqual(len(metadata), 3) + + PSD_4PI = metadata[0] + self.assertEqual(PSD_4PI.dimension, [300, 300]) + self.assertEqual(PSD_4PI.limits, [-180, 180, -90, 90]) + self.assertEqual(PSD_4PI.xlabel, "Longitude [deg]") + self.assertEqual(PSD_4PI.ylabel, "Latitude [deg]") + self.assertEqual(PSD_4PI.title, "4PI PSD monitor") + +class Test_load_monitor(unittest.TestCase): + """ + Testing the load monitor function which calls ManagedMcrun, which + was tested elsewhere. Since the load monitor is tested elsewhere, this + function has just a single test to check the interface. + """ + def test_mcrun_load_monitor_PSD4PI(self): + """ + Use test_data_set to test load_monitor for PSD_4PI + """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + metadata = load_metadata("test_data_set") + PSD_4PI = metadata[0] + monitor = load_monitor(PSD_4PI, "test_data_set") + + os.chdir(current_work_dir) # Reset work directory + + self.assertEqual(monitor.name, "PSD_4PI") + self.assertEqual(monitor.metadata.dimension, [300, 300]) + self.assertEqual(monitor.metadata.limits, [-180, 180, -90, 90]) + self.assertEqual(monitor.metadata.xlabel, "Longitude [deg]") + self.assertEqual(monitor.metadata.ylabel, "Latitude [deg]") + self.assertEqual(monitor.metadata.title, "4PI PSD monitor") + self.assertEqual(monitor.Ncount[4][1], 4) + self.assertEqual(monitor.Intensity[4][1], 1.537334562E-10) + self.assertEqual(monitor.Error[4][1], 1.139482296E-10) + + if __name__ == '__main__': unittest.main() From e04a270edd3519deb2f8b1418484eb1ca7e610ef Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 28 Apr 2021 13:38:39 +0200 Subject: [PATCH 147/403] Early version of simulation widget. Run with: from mcstasscript.jb_interface import simulation_interface interface = simulation_interface.SimInterface(instrument_object) interface.show_interface() Can control a simulation with parameters, ncount, mpi. Can select which monitor to plot and set log mode / orders_of_mag. Running a simulation keeps the same plot options / choice of monitor, which makes it quite convinient to see changes quickly. Things to improve: 1) Error checking in entered data 2) Will move creation of widget elements to seperate classes / files 3) Colorbar for 2D plots to be added 4) Improve design 5) Provide method in instrument class to launch --- .../jb_interface/simulation_interface.py | 497 ++++++++++++++++++ 1 file changed, 497 insertions(+) create mode 100644 mcstasscript/jb_interface/simulation_interface.py diff --git a/mcstasscript/jb_interface/simulation_interface.py b/mcstasscript/jb_interface/simulation_interface.py new file mode 100644 index 00000000..fa3099fe --- /dev/null +++ b/mcstasscript/jb_interface/simulation_interface.py @@ -0,0 +1,497 @@ +import sys +import os + +import ipywidgets as widgets +from IPython.display import display + +import matplotlib.pyplot as plt + +from mcstasscript.interface.functions import name_search +from mcstasscript.interface import plotter + + +class HiddenPrints: + """ + Environment which suppress prints + """ + def __enter__(self): + self._original_stdout = sys.stdout + sys.stdout = open(os.devnull, 'w') + + def __exit__(self, exc_type, exc_val, exc_tb): + sys.stdout.close() + sys.stdout = self._original_stdout + + +def parameter_has_default(parameter): + """ + Checks if ParameterVariable has a default value, returns bool + + Parameters + ---------- + + parameter: ParameterVariable + The parameter to check for default value + """ + if parameter.value == "": + return False + return True + + +def get_parameter_default(parameter): + """ + Returns the default value of a parameter + + Parameters + ---------- + + parameter: ParameterVariable + The parameter for which the default value is returned + """ + if parameter.value != "": + if parameter.type == "string": + return parameter.value + elif parameter.type == "double" or parameter.type == "": + return float(parameter.value) + elif parameter.type == "int": + return int(parameter.value) + else: + raise RuntimeError("Unknown parameter type '" + + parameter.type + "' of par named '" + + parameter.name + "'.") + return None + + +class SimInterface: + """ + Class for setting up widget that controls McStasScript instrument and plot + """ + def __init__(self, instrument): + """ + Sets up widget where the user can input instrument parameters, run the + simulation, see plotted results and adjust the plots. + + The parameters of the instrument model are displayed with name, default + value and comment. Can be adjusted with free text. + + A run button starts a simulation, and basic settings can be adjusted. + + A dropdown menu is available for selecting what monitor to view results + from, and basic settings related to the plot can be adjusted. + + Show the interface with the show_interface method. + + Parameters + ---------- + + instrument: McStas_instr or McXtrace_instr + instrument for which a widget should be created + """ + + self.instrument = instrument + + self.fig = None + self.ax = None + + self.log_mode = False + self.orders_of_mag = "disabled" + + self.run_button = None + + self.monitor_dropdown = None + self.current_monitor = None + + self.ncount = "1E6" + self.mpi = "disabled" + self.data = None + + self.parameters = {} + # get default parameters from instrument + for parameter in self.instrument.parameter_list: + if parameter_has_default(parameter): + self.parameters[parameter.name] = get_parameter_default(parameter) + + def make_parameter_widgets(self): + """ + Creates widgets for parameters using dedicated class ParameterTextbox + Preliminary check for parameter type disabled as the ParameterVariable + class does not set type for default case, will be fixed. + + returns widget including all parameters + """ + parameter_widgets = [] + for parameter in self.instrument.parameter_list: + if True: #parameter.type != "": + par_widget = ParameterTextbox(parameter, self.parameters) + else: + raise RuntimeError("Unknown parameter type '" + + parameter.type + "' of par named '" + + parameter.name + "'.") + + parameter_widgets.append(par_widget.make_widget()) + + return widgets.VBox(parameter_widgets) + + def run_simulation(self, change): + """ + Performs the simulation with current parameters and settings. + + Changes icon on button to hourglass while simulation is running, then + returns to calculator icon. + + Has dummy parameter change to allow the method to be used in on_click + method of the run button. + + Parameters + ---------- + + change: widget change + Not used + """ + run_arguments = {"foldername": "interface", + "increment_folder_name": True, + "parameters": self.parameters, + "ncount": int(float(self.ncount))} + if self.mpi != "disabled": + run_arguments["mpi"] = self.mpi + + self.run_button.icon = "hourglass" + print("Running with:", run_arguments) + with HiddenPrints(): + data = self.instrument.run_full_instrument(**run_arguments) + self.run_button.icon = "calculator" + + self.data = data + self.monitor_dropdown.set_data(data) + self.update_plot() + + def make_run_button(self): + """ + Creates a run button which perform the simulation + """ + button = widgets.Button( + description='Run', + disabled=False, + button_style='', # 'success', 'info', 'warning', 'danger' or '' + tooltip='Runs the simulation with current parameters', + icon='calculator' # (FontAwesome names without the `fa-` prefix) + ) + button.on_click(self.run_simulation) + return button + + def make_ncount_field(self): + """ + Creates field for ncount, links to update_ncount + + The field supports scientific notation + """ + description_layout = widgets.Layout(width='70px', height='32px', + display="flex", + justify_content="flex-end") + description = widgets.Label(value="ncount", layout=description_layout) + textbox = widgets.Text(value=str(self.ncount), layout=widgets.Layout(width='100px', height='32px')) + textbox.observe(self.update_ncount, "value") + + return widgets.HBox([description, textbox]) + + def update_ncount(self, change): + """ + Updates ncount variable from textbox input + + Only updates when usable input is entered. Supports scientific + notation in input through conversion to float + + Parameters + ---------- + + change: widget change + state change of widget + """ + try: + self.ncount = int(float(change.new)) + except ValueError: + pass + + def make_mpi_field(self): + """ + Creates field for mpi, links to update_mpi + """ + description_layout = widgets.Layout(width='40px', height='32px', + display="flex", + justify_content="flex-end") + description = widgets.Label(value="mpi", layout=description_layout) + textbox = widgets.Text(value=str(self.mpi), layout=widgets.Layout(width='70px', height='32px')) + textbox.observe(self.update_mpi, "value") + + return widgets.HBox([description, textbox]) + + def update_mpi(self, change): + """ + Updates mpi value when integer or the word 'disabled' is given + + Parameters + ---------- + + change: widget change + state change of widget + """ + if change.new == "disabled": + self.mpi = change.new + + try: + self.mpi = int(change.new) + except ValueError: + pass + + def make_log_options(self): + """ + Creates widget with options for log options, links to update_log + and update_orders_of_mag + """ + description_layout = widgets.Layout(width='250px', height='32px', + display="flex", + justify_content="flex-start") + description_log = widgets.Label(value="Log plot", layout=description_layout) + + log_check = widgets.Checkbox( + value=self.log_mode, + description='', + disabled=False, + indent=False, + layout=widgets.Layout(width='70px', height='32px') + ) + log_check.observe(self.update_log, "value") + + log_widget = widgets.HBox([description_log, log_check]) + + description_layout = widgets.Layout(width='250px', height='32px', + display="flex", + justify_content="flex-start") + description_orders = widgets.Label(value="Orders of magnitude", layout=description_layout) + textbox = widgets.Text(value=str(self.orders_of_mag), + layout=widgets.Layout(width='70px', height='32px')) + textbox.observe(self.update_orders_of_mag, "value") + + orders_of_mag_widget = widgets.HBox([description_orders, textbox]) + + return widgets.VBox([log_widget, orders_of_mag_widget]) + + def update_log(self, change): + """ + Update log_mode and replot figure + + Parameters + ---------- + + change: widget change + state change of widget + """ + self.log_mode = change.new + self.update_plot() + + def update_orders_of_mag(self, change): + """ + Update orders_of_mag and replot + + Parameters + ---------- + + change: widget change + state change of widget + """ + if change.new == "disabled": + self.orders_of_mag = change.new + self.update_plot() + return + + try: + self.orders_of_mag = float(change.new) + except ValueError: + return + + self.update_plot() + + def select_monitor(self, monitor): + """ + Selects new monitor to plot and replots figure + The method is called from MonitorDropdown class + + Parameters + ---------- + + monitor: str + Monitor name + """ + self.current_monitor = monitor + self.update_plot() + + def new_plot(self): + """ + Sets up original plot with fig and ax + """ + # fig, ax = plt.subplots(constrained_layout=True, figsize=(6, 4)) + self.fig, self.ax = plt.subplots() + + self.fig.canvas.toolbar_position = 'bottom' + self.ax.grid(True) + + self.update_plot() + + def update_plot(self): + """ + Updates the plot with current data, monitor and plot options + """ + + self.ax.cla() + + if self.data is None: + self.ax.text(0.4, 0.5, "No data available") + return + + monitor = name_search(self.current_monitor, self.data) + plot_options = {"show_colorbar": False, "log": self.log_mode} + if self.orders_of_mag != "disabled": + plot_options["orders_of_mag"] = self.orders_of_mag + else: + plot_options["orders_of_mag"] = 300 # Default value in McStasPlotOptions + + print("Plotting with: ", plot_options) + monitor.set_plot_options(**plot_options) + with HiddenPrints(): + plotter._plot_fig_ax(monitor, self.fig, self.ax) + + plt.tight_layout() + + def show_interface(self): + """ + Builds and shows widget interface + """ + output = widgets.Output() + + with output: + self.new_plot() + + # Make parameter controls + parameter_widgets = self.make_parameter_widgets() + + # Make simulation controls + self.run_button = self.make_run_button() + ncount_field = self.make_ncount_field() + mpi_field = self.make_mpi_field() + + simulation_widget = widgets.HBox([self.run_button, ncount_field, mpi_field], + layout=widgets.Layout(border="solid")) + + plot_box_monitor_label = widgets.Label(value="Choose monitor") + self.monitor_dropdown = MonitorDropdown(self.select_monitor) + monitor_dropdown_widget = self.monitor_dropdown.make_widget() + plot_box_options_label = widgets.Label(value="Plot options") + log_options = self.make_log_options() + + plot_controls = widgets.VBox([plot_box_monitor_label, monitor_dropdown_widget, + plot_box_options_label, log_options], + layout=widgets.Layout(width="25%", border="solid")) + output.layout=widgets.Layout(width="75%") + plot_widget = widgets.HBox([output, plot_controls]) + + return widgets.VBox([parameter_widgets, simulation_widget, plot_widget]) + + +class MonitorDropdown: + """ + Class for creating monitor dropdown menu + """ + def __init__(self, update_function): + """ + Sets up MonitorDropdown menu with given update function + + Parameters + ---------- + + update_function: function + function called when dropdown menu item selected + """ + + self.update_function = update_function + self.data = None + self.widget = None + + def set_data(self, data): + """ + Updates the menu options given new data + + Parameters + ---------- + + data: McStasData list + Data returned by McStasScript simulation + """ + self.data = data + + monitor_names = [] + for data in self.data: + monitor_names.append(data.name) + + self.widget.options = monitor_names + + def make_widget(self): + """ + Builds the widget for the dropdown menu and links to update method + + """ + self.widget = widgets.Dropdown(layout=widgets.Layout(width="98%")) + + self.widget.observe(self.update, "value") + + return self.widget + + def update(self, change): + """ + Calls update_function when dropdown menu is used + + Parameters + ---------- + + change: widget change + state change of widget + """ + self.update_function(change.new) + + +class ParameterTextbox: + def __init__(self, parameter, parameters): + + self.parameter = parameter + self.parameters = parameters + + if parameter_has_default(parameter): + self.default_value = get_parameter_default(parameter) + else: + self.default_value = "" + + self.name = parameter.name + self.comment = parameter.comment + + def make_widget(self): + label = widgets.Label(value=self.name, + layout=widgets.Layout(width='15%', height='32px')) + textbox = widgets.Text(value=str(self.default_value), + layout=widgets.Layout(width='10%', height='32px')) + comment = widgets.Label(value=self.comment, + layout=widgets.Layout(width='75%', height='32px')) + + textbox.observe(self.update, "value") + + return widgets.HBox([label, textbox, comment]) + + def update(self, change): + self.parameters[self.name] = change.new + + + + + + + + + From d848d6fdcd78fdefa5a4b66dc011fa945d2072d4 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 28 Apr 2021 17:25:37 +0200 Subject: [PATCH 148/403] Split the interface class into two, one for simulation control and one for plotting data. Now its possible to just use the interface for plotting data to explore data returned from normal simulations. Experimented with moving widget code out of the interface class and to seperate small classes, which does improve readability. Will do the same for the simulation interface. Moved some helper functions to seperate file. To try the plot interface: from mcstasscript.jb_interface import plot_interface my_interface = plot_interface.PlotInterface() my_interface.show_interface(data_from_simulation) --- mcstasscript/jb_interface/__init__.py | 0 mcstasscript/jb_interface/plot_interface.py | 240 ++++++++++++++++++++ mcstasscript/jb_interface/widget_helpers.py | 53 +++++ 3 files changed, 293 insertions(+) create mode 100644 mcstasscript/jb_interface/__init__.py create mode 100644 mcstasscript/jb_interface/plot_interface.py create mode 100644 mcstasscript/jb_interface/widget_helpers.py diff --git a/mcstasscript/jb_interface/__init__.py b/mcstasscript/jb_interface/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/mcstasscript/jb_interface/plot_interface.py b/mcstasscript/jb_interface/plot_interface.py new file mode 100644 index 00000000..d08f4b52 --- /dev/null +++ b/mcstasscript/jb_interface/plot_interface.py @@ -0,0 +1,240 @@ +import sys +import os + +import ipywidgets as widgets +from IPython.display import display + +import matplotlib.pyplot as plt + +from mcstasscript.interface.functions import name_search +from mcstasscript.interface import plotter + +from mcstasscript.jb_interface.widget_helpers import HiddenPrints + + +class PlotInterface: + def __init__(self, data=None): + self.data = data + + self.monitor_dropdown = None + self.current_monitor = None + + self.log_mode = None + self.orders_of_mag = 300 # default value in McStasScript + + self.fig = None + self.ax = None + + def set_data(self, data): + self.data = data + self.monitor_dropdown.set_data(data) + + def set_current_monitor(self, monitor): + self.current_monitor = monitor + self.update_plot() + + def set_log_mode(self, log_mode): + self.log_mode = log_mode + self.update_plot() + + def set_orders_of_mag(self, orders_of_mag): + self.orders_of_mag = orders_of_mag + self.update_plot() + + def new_plot(self): + """ + Sets up original plot with fig and ax + """ + # fig, ax = plt.subplots(constrained_layout=True, figsize=(6, 4)) + self.fig, self.ax = plt.subplots() + + self.fig.canvas.toolbar_position = 'bottom' + self.ax.grid(True) + + self.update_plot() + + def update_plot(self): + """ + Updates the plot with current data, monitor and plot options + """ + + self.ax.cla() + + if self.data is None: + self.ax.text(0.4, 0.5, "No data available") + return + + print("current monitor in update_plot:", self.current_monitor) + monitor = name_search(self.current_monitor, self.data) + plot_options = {"show_colorbar": False, "log": self.log_mode} + if self.orders_of_mag != "disabled": + plot_options["orders_of_mag"] = self.orders_of_mag + else: + plot_options["orders_of_mag"] = 300 # Default value in McStasPlotOptions + + print("Plotting with: ", plot_options) + monitor.set_plot_options(**plot_options) + with HiddenPrints(): + plotter._plot_fig_ax(monitor, self.fig, self.ax) + + plt.tight_layout() + + def show_interface(self): + # Set up plot area + output = widgets.Output() + with output: + self.new_plot() + output.layout = widgets.Layout(width="75%") + + # could retrieve default plot options from data if given + + plot_control_list = [] # Keep all control widgets in this list + + plot_control_list.append(widgets.Label(value="Choose monitor")) + + # Set up dropdown list for monitor choice + self.monitor_dropdown = MonitorDropdown(self.set_current_monitor) + plot_control_list.append(self.monitor_dropdown.make_widget()) + + plot_control_list.append(widgets.Label(value="Plot options")) + + # Set up checkbox for log plotting + log_checkbox = LogCheckbox(self.log_mode, self.set_log_mode) + plot_control_list.append(log_checkbox.make_widget()) + + # Set up text field for orders of mag input + log_orders_of_mag = OrdersOfMagField(self.set_orders_of_mag) + plot_control_list.append(log_orders_of_mag.make_widget()) + + plot_controls = widgets.VBox(plot_control_list, + layout=widgets.Layout(width="25%", border="solid")) + + if self.data is not None: + self.set_data(self.data) + + return widgets.HBox([output, plot_controls]) + + +class MonitorDropdown: + """ + Class for creating monitor dropdown menu + """ + def __init__(self, set_current_monitor): + """ + Sets up MonitorDropdown menu with given update function + + Parameters + ---------- + + update_plot: function + function called to update plot + """ + + self.set_current_monitor = set_current_monitor + self.data = None + self.widget = None + + def set_data(self, data): + """ + Updates the menu options given new data + + Parameters + ---------- + + data: McStasData list + Data returned by McStasScript simulation + """ + self.data = data + + monitor_names = [] + for data in self.data: + monitor_names.append(data.name) + + self.widget.options = monitor_names + + def make_widget(self): + """ + Builds the widget for the dropdown menu and links to update method + + """ + self.widget = widgets.Dropdown(layout=widgets.Layout(width="98%")) + + self.widget.observe(self.update, "value") + + return self.widget + + def update(self, change): + """ + Calls update_function when dropdown menu is used + + Parameters + ---------- + + change: widget change + state change of widget + """ + # can do input sanitation here + self.set_current_monitor(change.new) + + +class LogCheckbox: + def __init__(self, log_mode, set_log_mode): + self.log_mode = log_mode + self.set_log_mode = set_log_mode + + def make_widget(self): + description_layout = widgets.Layout(width='250px', height='32px', + display="flex", + justify_content="flex-start") + description_log = widgets.Label(value="Log plot", layout=description_layout) + + log_check = widgets.Checkbox( + value=self.log_mode, + description='', + disabled=False, + indent=False, + layout=widgets.Layout(width='70px', height='32px') + ) + log_check.observe(self.update, "value") + + return widgets.HBox([description_log, log_check]) + + def update(self, change): + self.set_log_mode(change.new) + + +class OrdersOfMagField: + def __init__(self, set_orders_of_mag): + self.set_orders_of_mag = set_orders_of_mag + + def make_widget(self): + description_layout = widgets.Layout(width='250px', height='32px', + display="flex", + justify_content="flex-start") + description_orders = widgets.Label(value="Orders of magnitude", layout=description_layout) + textbox = widgets.Text(value=str("disabled"), + layout=widgets.Layout(width='70px', height='32px')) + textbox.observe(self.update, "value") + + return widgets.HBox([description_orders, textbox]) + + def update(self, change): + """ + Update orders_of_mag and replot + + Parameters + ---------- + + change: widget change + state change of widget + """ + if change.new == "disabled": + self.set_orders_of_mag(change.new) + return + + try: + float(change.new) + except ValueError: + return + + self.set_orders_of_mag(float(change.new)) diff --git a/mcstasscript/jb_interface/widget_helpers.py b/mcstasscript/jb_interface/widget_helpers.py new file mode 100644 index 00000000..7e6637ca --- /dev/null +++ b/mcstasscript/jb_interface/widget_helpers.py @@ -0,0 +1,53 @@ +import sys +import os + +class HiddenPrints: + """ + Environment which suppress prints + """ + def __enter__(self): + self._original_stdout = sys.stdout + sys.stdout = open(os.devnull, 'w') + + def __exit__(self, exc_type, exc_val, exc_tb): + sys.stdout.close() + sys.stdout = self._original_stdout + + +def parameter_has_default(parameter): + """ + Checks if ParameterVariable has a default value, returns bool + + Parameters + ---------- + + parameter: ParameterVariable + The parameter to check for default value + """ + if parameter.value == "": + return False + return True + + +def get_parameter_default(parameter): + """ + Returns the default value of a parameter + + Parameters + ---------- + + parameter: ParameterVariable + The parameter for which the default value is returned + """ + if parameter.value != "": + if parameter.type == "string": + return parameter.value + elif parameter.type == "double" or parameter.type == "": + return float(parameter.value) + elif parameter.type == "int": + return int(parameter.value) + else: + raise RuntimeError("Unknown parameter type '" + + parameter.type + "' of par named '" + + parameter.name + "'.") + return None \ No newline at end of file From 21a26d03c8f27c5b752a2f2791366ee3025ac2ce Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 28 Apr 2021 17:32:36 +0200 Subject: [PATCH 149/403] Split the interface class into two, one for simulation control and one for plotting data. Now its possible to just use the interface for plotting data to explore data returned from normal simulations. Experimented with moving widget code out of the interface class and to seperate small classes, which does improve readability. Will do the same for the simulation interface. Moved some helper functions to seperate file. To try the plot interface: from mcstasscript.jb_interface import plot_interface my_interface = plot_interface.PlotInterface() my_interface.show_interface(data_from_simulation) The print output for all plot settings is temporary and for debugging purposes. Currently plot options are default regardless of the underlying data, but could load the current plot options from the data. --- mcstasscript/jb_interface/plot_interface.py | 5 +- .../jb_interface/simulation_interface.py | 315 ++---------------- 2 files changed, 33 insertions(+), 287 deletions(-) diff --git a/mcstasscript/jb_interface/plot_interface.py b/mcstasscript/jb_interface/plot_interface.py index d08f4b52..a5ebd7bb 100644 --- a/mcstasscript/jb_interface/plot_interface.py +++ b/mcstasscript/jb_interface/plot_interface.py @@ -64,7 +64,10 @@ def update_plot(self): self.ax.text(0.4, 0.5, "No data available") return - print("current monitor in update_plot:", self.current_monitor) + if self.current_monitor is None: + self.ax.text(0.4, 0.5, "Select a monitor to plot") + return + monitor = name_search(self.current_monitor, self.data) plot_options = {"show_colorbar": False, "log": self.log_mode} if self.orders_of_mag != "disabled": diff --git a/mcstasscript/jb_interface/simulation_interface.py b/mcstasscript/jb_interface/simulation_interface.py index fa3099fe..169d3f4b 100644 --- a/mcstasscript/jb_interface/simulation_interface.py +++ b/mcstasscript/jb_interface/simulation_interface.py @@ -8,58 +8,40 @@ from mcstasscript.interface.functions import name_search from mcstasscript.interface import plotter +from mcstasscript.jb_interface import plot_interface +from mcstasscript.jb_interface.widget_helpers import HiddenPrints +from mcstasscript.jb_interface.widget_helpers import parameter_has_default +from mcstasscript.jb_interface.widget_helpers import get_parameter_default -class HiddenPrints: - """ - Environment which suppress prints - """ - def __enter__(self): - self._original_stdout = sys.stdout - sys.stdout = open(os.devnull, 'w') - - def __exit__(self, exc_type, exc_val, exc_tb): - sys.stdout.close() - sys.stdout = self._original_stdout - +class ParameterTextbox: + def __init__(self, parameter, parameters): -def parameter_has_default(parameter): - """ - Checks if ParameterVariable has a default value, returns bool + self.parameter = parameter + self.parameters = parameters - Parameters - ---------- + if parameter_has_default(parameter): + self.default_value = get_parameter_default(parameter) + else: + self.default_value = "" - parameter: ParameterVariable - The parameter to check for default value - """ - if parameter.value == "": - return False - return True + self.name = parameter.name + self.comment = parameter.comment + def make_widget(self): + label = widgets.Label(value=self.name, + layout=widgets.Layout(width='15%', height='32px')) + textbox = widgets.Text(value=str(self.default_value), + layout=widgets.Layout(width='10%', height='32px')) + comment = widgets.Label(value=self.comment, + layout=widgets.Layout(width='75%', height='32px')) -def get_parameter_default(parameter): - """ - Returns the default value of a parameter + textbox.observe(self.update, "value") - Parameters - ---------- + return widgets.HBox([label, textbox, comment]) - parameter: ParameterVariable - The parameter for which the default value is returned - """ - if parameter.value != "": - if parameter.type == "string": - return parameter.value - elif parameter.type == "double" or parameter.type == "": - return float(parameter.value) - elif parameter.type == "int": - return int(parameter.value) - else: - raise RuntimeError("Unknown parameter type '" - + parameter.type + "' of par named '" - + parameter.name + "'.") - return None + def update(self, change): + self.parameters[self.name] = change.new class SimInterface: @@ -90,20 +72,12 @@ def __init__(self, instrument): self.instrument = instrument - self.fig = None - self.ax = None - - self.log_mode = False - self.orders_of_mag = "disabled" + self.plot_interface = None self.run_button = None - self.monitor_dropdown = None - self.current_monitor = None - self.ncount = "1E6" self.mpi = "disabled" - self.data = None self.parameters = {} # get default parameters from instrument @@ -161,9 +135,7 @@ def run_simulation(self, change): data = self.instrument.run_full_instrument(**run_arguments) self.run_button.icon = "calculator" - self.data = data - self.monitor_dropdown.set_data(data) - self.update_plot() + self.plot_interface.set_data(data) def make_run_button(self): """ @@ -243,133 +215,10 @@ def update_mpi(self, change): except ValueError: pass - def make_log_options(self): - """ - Creates widget with options for log options, links to update_log - and update_orders_of_mag - """ - description_layout = widgets.Layout(width='250px', height='32px', - display="flex", - justify_content="flex-start") - description_log = widgets.Label(value="Log plot", layout=description_layout) - - log_check = widgets.Checkbox( - value=self.log_mode, - description='', - disabled=False, - indent=False, - layout=widgets.Layout(width='70px', height='32px') - ) - log_check.observe(self.update_log, "value") - - log_widget = widgets.HBox([description_log, log_check]) - - description_layout = widgets.Layout(width='250px', height='32px', - display="flex", - justify_content="flex-start") - description_orders = widgets.Label(value="Orders of magnitude", layout=description_layout) - textbox = widgets.Text(value=str(self.orders_of_mag), - layout=widgets.Layout(width='70px', height='32px')) - textbox.observe(self.update_orders_of_mag, "value") - - orders_of_mag_widget = widgets.HBox([description_orders, textbox]) - - return widgets.VBox([log_widget, orders_of_mag_widget]) - - def update_log(self, change): - """ - Update log_mode and replot figure - - Parameters - ---------- - - change: widget change - state change of widget - """ - self.log_mode = change.new - self.update_plot() - - def update_orders_of_mag(self, change): - """ - Update orders_of_mag and replot - - Parameters - ---------- - - change: widget change - state change of widget - """ - if change.new == "disabled": - self.orders_of_mag = change.new - self.update_plot() - return - - try: - self.orders_of_mag = float(change.new) - except ValueError: - return - - self.update_plot() - - def select_monitor(self, monitor): - """ - Selects new monitor to plot and replots figure - The method is called from MonitorDropdown class - - Parameters - ---------- - - monitor: str - Monitor name - """ - self.current_monitor = monitor - self.update_plot() - - def new_plot(self): - """ - Sets up original plot with fig and ax - """ - # fig, ax = plt.subplots(constrained_layout=True, figsize=(6, 4)) - self.fig, self.ax = plt.subplots() - - self.fig.canvas.toolbar_position = 'bottom' - self.ax.grid(True) - - self.update_plot() - - def update_plot(self): - """ - Updates the plot with current data, monitor and plot options - """ - - self.ax.cla() - - if self.data is None: - self.ax.text(0.4, 0.5, "No data available") - return - - monitor = name_search(self.current_monitor, self.data) - plot_options = {"show_colorbar": False, "log": self.log_mode} - if self.orders_of_mag != "disabled": - plot_options["orders_of_mag"] = self.orders_of_mag - else: - plot_options["orders_of_mag"] = 300 # Default value in McStasPlotOptions - - print("Plotting with: ", plot_options) - monitor.set_plot_options(**plot_options) - with HiddenPrints(): - plotter._plot_fig_ax(monitor, self.fig, self.ax) - - plt.tight_layout() - def show_interface(self): """ Builds and shows widget interface """ - output = widgets.Output() - - with output: - self.new_plot() # Make parameter controls parameter_widgets = self.make_parameter_widgets() @@ -382,116 +231,10 @@ def show_interface(self): simulation_widget = widgets.HBox([self.run_button, ncount_field, mpi_field], layout=widgets.Layout(border="solid")) - plot_box_monitor_label = widgets.Label(value="Choose monitor") - self.monitor_dropdown = MonitorDropdown(self.select_monitor) - monitor_dropdown_widget = self.monitor_dropdown.make_widget() - plot_box_options_label = widgets.Label(value="Plot options") - log_options = self.make_log_options() - - plot_controls = widgets.VBox([plot_box_monitor_label, monitor_dropdown_widget, - plot_box_options_label, log_options], - layout=widgets.Layout(width="25%", border="solid")) - output.layout=widgets.Layout(width="75%") - plot_widget = widgets.HBox([output, plot_controls]) + self.plot_interface = plot_interface.PlotInterface() + plot_widget = self.plot_interface.show_interface() return widgets.VBox([parameter_widgets, simulation_widget, plot_widget]) -class MonitorDropdown: - """ - Class for creating monitor dropdown menu - """ - def __init__(self, update_function): - """ - Sets up MonitorDropdown menu with given update function - - Parameters - ---------- - - update_function: function - function called when dropdown menu item selected - """ - - self.update_function = update_function - self.data = None - self.widget = None - - def set_data(self, data): - """ - Updates the menu options given new data - - Parameters - ---------- - - data: McStasData list - Data returned by McStasScript simulation - """ - self.data = data - - monitor_names = [] - for data in self.data: - monitor_names.append(data.name) - - self.widget.options = monitor_names - - def make_widget(self): - """ - Builds the widget for the dropdown menu and links to update method - - """ - self.widget = widgets.Dropdown(layout=widgets.Layout(width="98%")) - - self.widget.observe(self.update, "value") - - return self.widget - - def update(self, change): - """ - Calls update_function when dropdown menu is used - - Parameters - ---------- - - change: widget change - state change of widget - """ - self.update_function(change.new) - - -class ParameterTextbox: - def __init__(self, parameter, parameters): - - self.parameter = parameter - self.parameters = parameters - - if parameter_has_default(parameter): - self.default_value = get_parameter_default(parameter) - else: - self.default_value = "" - - self.name = parameter.name - self.comment = parameter.comment - - def make_widget(self): - label = widgets.Label(value=self.name, - layout=widgets.Layout(width='15%', height='32px')) - textbox = widgets.Text(value=str(self.default_value), - layout=widgets.Layout(width='10%', height='32px')) - comment = widgets.Label(value=self.comment, - layout=widgets.Layout(width='75%', height='32px')) - - textbox.observe(self.update, "value") - - return widgets.HBox([label, textbox, comment]) - - def update(self, change): - self.parameters[self.name] = change.new - - - - - - - - From b162e8d48ef00f79df6aa9709b53a1fa2a257a19 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 29 Apr 2021 09:36:36 +0200 Subject: [PATCH 150/403] Now shows colorbar in plot interface. It was previously removed as weird things happened when switching between plots. Now a seperate ax is created for the colorbar and cleared with each transition. --- mcstasscript/interface/plotter.py | 7 ++++++- mcstasscript/jb_interface/plot_interface.py | 14 ++++++++++---- 2 files changed, 16 insertions(+), 5 deletions(-) diff --git a/mcstasscript/interface/plotter.py b/mcstasscript/interface/plotter.py index 27f2daaa..ba240179 100644 --- a/mcstasscript/interface/plotter.py +++ b/mcstasscript/interface/plotter.py @@ -164,8 +164,13 @@ def _plot_fig_ax(data, fig, ax, **kwargs): # Add the colorbar if data.plot_options.show_colorbar: - fig.colorbar(im, ax=ax, + cax = None + if "colorbar_axes" in kwargs: + cax = kwargs["colorbar_axes"] + print("colorbar axes set") + fig.colorbar(im, ax=ax, cax=cax, format=matplotlib.ticker.FuncFormatter(_fmt)) + cax.set_aspect(20) # Add a title ax.set_title(data.metadata.title) diff --git a/mcstasscript/jb_interface/plot_interface.py b/mcstasscript/jb_interface/plot_interface.py index a5ebd7bb..0b00f3ab 100644 --- a/mcstasscript/jb_interface/plot_interface.py +++ b/mcstasscript/jb_interface/plot_interface.py @@ -24,6 +24,7 @@ def __init__(self, data=None): self.fig = None self.ax = None + self.colorbar_ax = None def set_data(self, data): self.data = data @@ -46,7 +47,7 @@ def new_plot(self): Sets up original plot with fig and ax """ # fig, ax = plt.subplots(constrained_layout=True, figsize=(6, 4)) - self.fig, self.ax = plt.subplots() + self.fig, (self.ax, self.colorbar_ax) = plt.subplots(ncols=2, gridspec_kw={'width_ratios': [4, 1]}) self.fig.canvas.toolbar_position = 'bottom' self.ax.grid(True) @@ -59,6 +60,9 @@ def update_plot(self): """ self.ax.cla() + self.colorbar_ax.cla() + self.colorbar_ax.xaxis.set_ticks([]) + self.colorbar_ax.yaxis.set_ticks([]) if self.data is None: self.ax.text(0.4, 0.5, "No data available") @@ -69,16 +73,18 @@ def update_plot(self): return monitor = name_search(self.current_monitor, self.data) - plot_options = {"show_colorbar": False, "log": self.log_mode} + plot_options = {"show_colorbar": True, "log": self.log_mode} if self.orders_of_mag != "disabled": plot_options["orders_of_mag"] = self.orders_of_mag else: plot_options["orders_of_mag"] = 300 # Default value in McStasPlotOptions - print("Plotting with: ", plot_options) + #print("Plotting with: ", plot_options) monitor.set_plot_options(**plot_options) with HiddenPrints(): - plotter._plot_fig_ax(monitor, self.fig, self.ax) + plotter._plot_fig_ax(monitor, self.fig, self.ax, colorbar_axes=self.colorbar_ax) + + self.colorbar_ax.set_aspect(20) plt.tight_layout() From 74b3d451ee8978c6446fcd6ded3d45c86d03fff0 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Mon, 3 May 2021 14:53:34 +0200 Subject: [PATCH 151/403] Adds documentation and dropdown for parameters. Documentation in the form of docstrings. ParameterVariable can now have options as keyword argument, when present, a dropdown menu will be made as a widget in jb interface. Interface now integrated in instr and plotter interface. instr.interface() creates simulation interface plotter.interface(data) creates plotter interface with data --- mcstasscript/helper/mcstas_objects.py | 12 +- mcstasscript/interface/functions.py | 1 - mcstasscript/interface/instr.py | 18 ++ mcstasscript/interface/plotter.py | 13 ++ mcstasscript/jb_interface/plot_interface.py | 212 +++++++++++++++++- .../jb_interface/simulation_interface.py | 88 ++++++-- 6 files changed, 320 insertions(+), 24 deletions(-) diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index 9acdbc11..61de5a0d 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -90,7 +90,7 @@ def __init__(self, *args, **kwargs): self.value = "" if "value" in kwargs: if not isinstance(kwargs["value"], (str, int, float)): - raise RuntimeError("Given value for parameter has to be of" + raise RuntimeError("Given value for parameter has to be of " + "type str, int or float.") self.value = kwargs["value"] @@ -102,6 +102,16 @@ def __init__(self, *args, **kwargs): + "comment that was not a string.") self.comment = "// " + self.comment + self.options = None + if "options" in kwargs: + self.options = kwargs["options"] + if self.value != "": + if (self.value not in self.options + and self.value.strip("'") not in self.options + and self.value.strip('"') not in self.options): + raise RuntimeError("When giving both options and default, " + "the value has to be an option.") + def write_parameter(self, fo, stop_character): """Writes input parameter to file""" diff --git a/mcstasscript/interface/functions.py b/mcstasscript/interface/functions.py index 6fab8b38..56d7903c 100644 --- a/mcstasscript/interface/functions.py +++ b/mcstasscript/interface/functions.py @@ -82,7 +82,6 @@ def name_plot_options(name, data_list, **kwargs): for data_object in object_to_modify: data_object.set_plot_options(**kwargs) - def load_data(foldername): """ Loads data from a McStas data folder including mccode.sim diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 22d19e8a..50c788fd 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -13,6 +13,7 @@ from mcstasscript.helper.managed_mcrun import ManagedMcrun from mcstasscript.helper.formatting import is_legal_filename from mcstasscript.helper.formatting import bcolors +from mcstasscript.jb_interface.simulation_interface import SimInterface class McCode_instr: @@ -188,6 +189,9 @@ class McCode_instr: run_full_instrument(**kwargs) Writes instrument files and runs simulation. Returns list of McStasData + + interface() + Shows interface with jupyter notebook widgets """ def __init__(self, name, **kwargs): @@ -1680,6 +1684,14 @@ def show_instrument(self, *args, **kwargs): print(process.stderr) print(process.stdout) + def interface(self): + """ + Shows simulation interface in jupyter notebook interface + + Needs "%matplotlib widget" in notebook to work correctly + """ + interface = SimInterface(self) + return interface.show_interface() class McStas_instr(McCode_instr): """ @@ -1850,6 +1862,9 @@ class McStas_instr(McCode_instr): run_full_instrument(**kwargs) Writes instrument files and runs simulation. Returns list of McStasData + + interface() + Shows interface with jupyter notebook widgets """ def __init__(self, name, **kwargs): """ @@ -2068,6 +2083,9 @@ class McXtrace_instr(McCode_instr): run_full_instrument(**kwargs) Writes instrument files and runs simulation. Returns list of McStasData + + interface() + Shows interface with jupyter notebook widgets """ def __init__(self, name, **kwargs): """ diff --git a/mcstasscript/interface/plotter.py b/mcstasscript/interface/plotter.py index ba240179..fe5273ef 100644 --- a/mcstasscript/interface/plotter.py +++ b/mcstasscript/interface/plotter.py @@ -8,6 +8,7 @@ from matplotlib.ticker import MaxNLocator from mcstasscript.data.data import McStasData +from mcstasscript.jb_interface.plot_interface import PlotInterface def _fmt(x, pos): @@ -412,3 +413,15 @@ def animate_2D(index): # check if imagemagick available? print("Saving animation with filename : \"" + filename + "\"") anim.save(filename, writer="imagemagick") + +def interface(data): + """ + Shows plot interface to explore data + + Parameters + ---------- + + data : List of McStasData objects + """ + interface = PlotInterface(data) + return interface.show_interface() \ No newline at end of file diff --git a/mcstasscript/jb_interface/plot_interface.py b/mcstasscript/jb_interface/plot_interface.py index 0b00f3ab..133e292b 100644 --- a/mcstasscript/jb_interface/plot_interface.py +++ b/mcstasscript/jb_interface/plot_interface.py @@ -1,6 +1,8 @@ import sys import os +from collections import OrderedDict + import ipywidgets as widgets from IPython.display import display @@ -11,46 +13,86 @@ from mcstasscript.jb_interface.widget_helpers import HiddenPrints - class PlotInterface: + """ + Class for providing plotting interface given McStasScript data + """ def __init__(self, data=None): + """ + Initialize interface for exploring a dataset with plotting options + + Parameters + ---------- + + data: List of McStasData objects + Optional to set the data, otherwise use set_data method + """ self.data = data + # Variables related to monitor choice self.monitor_dropdown = None self.current_monitor = None + # default plotting self.log_mode = None self.orders_of_mag = 300 # default value in McStasScript + self.colormap = "jet" + # Matplotlib objects self.fig = None self.ax = None self.colorbar_ax = None def set_data(self, data): + """ + Set a new dataset for the interface, and updates the plot + + Parameters + ---------- + + data: List of McStasData objects + New dataset that will be plotted + """ self.data = data self.monitor_dropdown.set_data(data) + self.update_plot() def set_current_monitor(self, monitor): + """ + Selects a new monitor to be plotted + """ self.current_monitor = monitor self.update_plot() def set_log_mode(self, log_mode): + """ + Sets log mode for plotting, True or False + """ self.log_mode = log_mode self.update_plot() def set_orders_of_mag(self, orders_of_mag): + """ + Sets orders_of_mag value for logarithmic plots + """ self.orders_of_mag = orders_of_mag self.update_plot() + def set_colormap(self, colormap): + """ + Choose colormap, has to be available in matplotlib + """ + self.colormap = colormap + self.update_plot() + def new_plot(self): """ - Sets up original plot with fig and ax + Sets up original plot with fig, ax and ax for colorbar """ # fig, ax = plt.subplots(constrained_layout=True, figsize=(6, 4)) self.fig, (self.ax, self.colorbar_ax) = plt.subplots(ncols=2, gridspec_kw={'width_ratios': [4, 1]}) self.fig.canvas.toolbar_position = 'bottom' - self.ax.grid(True) self.update_plot() @@ -59,21 +101,30 @@ def update_plot(self): Updates the plot with current data, monitor and plot options """ + # Clear plot first self.ax.cla() + self.ax.xaxis.set_ticks([]) + self.ax.yaxis.set_ticks([]) self.colorbar_ax.cla() self.colorbar_ax.xaxis.set_ticks([]) self.colorbar_ax.yaxis.set_ticks([]) + # Display message if not data can be plotted if self.data is None: - self.ax.text(0.4, 0.5, "No data available") + self.ax.text(0.32, 0.5, "No data available") + return + + if len(self.data) == 0: + self.ax.text(0.25, 0.5, "Simulation returned no data") return if self.current_monitor is None: - self.ax.text(0.4, 0.5, "Select a monitor to plot") + self.ax.text(0.3, 0.5, "Select a monitor to plot") return + # Get monitor and establish plot options monitor = name_search(self.current_monitor, self.data) - plot_options = {"show_colorbar": True, "log": self.log_mode} + plot_options = {"show_colorbar": True, "log": self.log_mode, "colormap": self.colormap} if self.orders_of_mag != "disabled": plot_options["orders_of_mag"] = self.orders_of_mag else: @@ -89,6 +140,9 @@ def update_plot(self): plt.tight_layout() def show_interface(self): + """ + Show the plot interface + """ # Set up plot area output = widgets.Output() with output: @@ -98,7 +152,6 @@ def show_interface(self): # could retrieve default plot options from data if given plot_control_list = [] # Keep all control widgets in this list - plot_control_list.append(widgets.Label(value="Choose monitor")) # Set up dropdown list for monitor choice @@ -115,15 +168,110 @@ def show_interface(self): log_orders_of_mag = OrdersOfMagField(self.set_orders_of_mag) plot_control_list.append(log_orders_of_mag.make_widget()) + # Set up dropdown box for colormap + colormap_control = ColormapDropdown(self.set_colormap) + plot_control_list.append(colormap_control.make_widget()) + plot_controls = widgets.VBox(plot_control_list, - layout=widgets.Layout(width="25%", border="solid")) + #layout=widgets.Layout(width="25%", border="solid")) + layout=widgets.Layout(width="25%")) + # In case data is already supplied, set it if self.data is not None: self.set_data(self.data) return widgets.HBox([output, plot_controls]) +class ColormapDropdown: + """ + Class for controlling dropdown menus for colormaps + """ + def __init__(self, set_colormap): + """ + Controls colormap dropdown menus with given set_colormap function + + Creates dropdown widget and calls the given set_colormap function + when the user updates the colormap choice. + The colormap choice is given as two dropdown menus, one for selecting + the category of colormap, and the other to select the actual colormap. + + The available colormaps are those supported in matplotlib + + Parameters + ---------- + + set_colormap : function + Function called with colormap name as argument when changed + + """ + self.set_colormap = set_colormap + self.colormap_widget = None + + # Default colormaps in matplotlib + self.cmaps = OrderedDict() + self.cmaps['Perceptually Uniform Sequential'] = [ + 'viridis', 'plasma', 'inferno', 'magma', 'cividis'] + self.cmaps['Sequential'] = [ + 'Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds', + 'YlOrBr', 'YlOrRd', 'OrRd', 'PuRd', 'RdPu', 'BuPu', + 'GnBu', 'PuBu', 'YlGnBu', 'PuBuGn', 'BuGn', 'YlGn'] + self.cmaps['Sequential (2)'] = [ + 'binary', 'gist_yarg', 'gist_gray', 'gray', 'bone', 'pink', + 'spring', 'summer', 'autumn', 'winter', 'cool', 'Wistia', + 'hot', 'afmhot', 'gist_heat', 'copper'] + self.cmaps['Diverging'] = [ + 'PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu', + 'RdYlBu', 'RdYlGn', 'Spectral', 'coolwarm', 'bwr', 'seismic'] + self.cmaps['Cyclic'] = ['twilight', 'twilight_shifted', 'hsv'] + self.cmaps['Qualitative'] = ['Pastel1', 'Pastel2', 'Paired', 'Accent', + 'Dark2', 'Set1', 'Set2', 'Set3', + 'tab10', 'tab20', 'tab20b', 'tab20c'] + self.cmaps['Miscellaneous'] = [ + 'flag', 'prism', 'ocean', 'gist_earth', 'terrain', 'gist_stern', + 'gnuplot', 'gnuplot2', 'CMRmap', 'cubehelix', 'brg', + 'gist_rainbow', 'rainbow', 'jet', #'turbo', # turbo reports errors + 'nipy_spectral', 'gist_ncar'] + + self.categories = self.cmaps.keys() + + def make_widget(self): + """ + Creates the widget and sets appropriate update functions + + The category dropdown will change options for the actual colormap + dropdown menu through the update_cmap_options method. + The colormap choice uses the update_cmap method and calls the + update_function held in attributes. + """ + + header = widgets.Label(value="Colormap category") + category = widgets.Dropdown(value="Miscellaneous", options=self.categories, + layout=widgets.Layout(width="98%")) + category.observe(self.update_cmap_options, "value") + + description = widgets.Label(value="Colormap", layout=widgets.Layout(width="39%")) + default_options = self.cmaps[category.value] + self.colormap_widget = widgets.Dropdown(value="jet", options=default_options, + layout=widgets.Layout(width="58%")) + self.colormap_widget.observe(self.update_cmap, "value") + + colormap = widgets.HBox([description, self.colormap_widget]) + + return widgets.VBox([header, category, colormap]) + + def update_cmap_options(self, change): + """ + Updates the colormap options in the colormap widget + """ + self.colormap_widget.options = self.cmaps[change.new] + + def update_cmap(self, change): + """ + Updates the colormap with the set_colormap function in attributes + """ + self.set_colormap(change.new) + class MonitorDropdown: """ Class for creating monitor dropdown menu @@ -187,11 +335,29 @@ def update(self, change): class LogCheckbox: + """ + Class for widget with log mode checkbox + """ def __init__(self, log_mode, set_log_mode): + """ + Sets up checkbox with log mode, takes initial mode and update function + + Parameters + ---------- + + log_mode : bool + Initial state of log checkbox + + set_log_mode : function + Function which will be called with new log_mode + """ self.log_mode = log_mode self.set_log_mode = set_log_mode def make_widget(self): + """ + Creates the actual checkbox widget along with descriptive text + """ description_layout = widgets.Layout(width='250px', height='32px', display="flex", justify_content="flex-start") @@ -209,14 +375,44 @@ def make_widget(self): return widgets.HBox([description_log, log_check]) def update(self, change): + """ + Calls given update function with new log_mode + + Parameters + ---------- + + change : change object + Change object from widget interaction + """ self.set_log_mode(change.new) class OrdersOfMagField: + """ + Class for handling orders_of_mag widget + """ def __init__(self, set_orders_of_mag): + """ + Widget for entering orders_of_mag used in log plotting + + Orders_of_mag parameter controls how many orders of magnitude are + plotted when showing log scale, counting from the highest value and + down. The object needs an update function orders_of_mag. + The widget text field starts with the text "disabled" which + corresponds to the default value of 300 orders of magnitude. + + Parameters + ---------- + + set_orders_of_mag : function + Function for updating orders_of_mag value + """ self.set_orders_of_mag = set_orders_of_mag def make_widget(self): + """ + Creates actual widget with descriptive text + """ description_layout = widgets.Layout(width='250px', height='32px', display="flex", justify_content="flex-start") diff --git a/mcstasscript/jb_interface/simulation_interface.py b/mcstasscript/jb_interface/simulation_interface.py index 169d3f4b..e896f11a 100644 --- a/mcstasscript/jb_interface/simulation_interface.py +++ b/mcstasscript/jb_interface/simulation_interface.py @@ -14,8 +14,31 @@ from mcstasscript.jb_interface.widget_helpers import get_parameter_default -class ParameterTextbox: +class ParameterWidget: + """ + Widget for parameter object from McStasScript instrument + """ def __init__(self, parameter, parameters): + """ + Describes a widget for a parameter object given all parameters + + When no options are given in ParameterVariable object, the widget will + be a textfield where the user can input the value. If the options + attribute is used, the widget will be a dropdown menu with available + options. The make_widget method returns the widget, and the update + function is called whenever the user interacts with the widget. + + The widget shows parameter name, the interactive widget and a comment + + Parameters + ---------- + + parameter: McStasScript ParameterVariable object + The parameter this widget should represent + + parameters: dict of McStasScript ParameterVariable objects + Dict with all parameter objects of the instrument + """ self.parameter = parameter self.parameters = parameters @@ -29,19 +52,49 @@ def __init__(self, parameter, parameters): self.comment = parameter.comment def make_widget(self): + """ + Returns widget with parameter name, interactive widget and comment + """ label = widgets.Label(value=self.name, layout=widgets.Layout(width='15%', height='32px')) - textbox = widgets.Text(value=str(self.default_value), - layout=widgets.Layout(width='10%', height='32px')) + if self.parameter.options is not None: + par_widget = widgets.Dropdown(options=self.parameter.options, + layout=widgets.Layout(width='10%', height='32px')) + if self.default_value != "": + if self.default_value in self.parameter.options: + par_widget.value = self.default_value + elif self.default_value.strip("'") in self.parameter.options: + par_widget.value = self.default_value.strip("'") + elif self.default_value.strip('"') in self.parameter.options: + par_widget.value = self.default_value.strip('"') + else: + raise KeyError("default value not found in options for parameter: " + + str(self.parameter.name)) + + else: + par_widget = widgets.Text(value=str(self.default_value), + layout=widgets.Layout(width='10%', height='32px')) comment = widgets.Label(value=self.comment, layout=widgets.Layout(width='75%', height='32px')) - textbox.observe(self.update, "value") + par_widget.observe(self.update, "value") - return widgets.HBox([label, textbox, comment]) + return widgets.HBox([label, par_widget, comment]) def update(self, change): - self.parameters[self.name] = change.new + """ + Update function called whenever the user updates the widget + + When strings parameters are used, this function adds the necessary + quotation marks if none are provided. + """ + new_value = change.new + if self.parameter.type == "string": + if type(new_value) is str: + if not (new_value[0] == '"' or new_value[0] == "'"): + new_value = '"' + new_value + '"' + + self.parameters[self.name] = new_value class SimInterface: @@ -96,7 +149,7 @@ class does not set type for default case, will be fixed. parameter_widgets = [] for parameter in self.instrument.parameter_list: if True: #parameter.type != "": - par_widget = ParameterTextbox(parameter, self.parameters) + par_widget = ParameterWidget(parameter, self.parameters) else: raise RuntimeError("Unknown parameter type '" + parameter.type + "' of par named '" @@ -130,9 +183,16 @@ def run_simulation(self, change): run_arguments["mpi"] = self.mpi self.run_button.icon = "hourglass" - print("Running with:", run_arguments) - with HiddenPrints(): - data = self.instrument.run_full_instrument(**run_arguments) + #print("Running with:", run_arguments) + + try: + with HiddenPrints(): + data = self.instrument.run_full_instrument(**run_arguments) + #data = self.instrument.run_full_instrument(**run_arguments) + except NameError: + print("McStas run failed.") + data = [] + self.run_button.icon = "calculator" self.plot_interface.set_data(data) @@ -161,7 +221,7 @@ def make_ncount_field(self): display="flex", justify_content="flex-end") description = widgets.Label(value="ncount", layout=description_layout) - textbox = widgets.Text(value=str(self.ncount), layout=widgets.Layout(width='100px', height='32px')) + textbox = widgets.Text(value=str(self.ncount), layout=widgets.Layout(width='100px', height='36px')) textbox.observe(self.update_ncount, "value") return widgets.HBox([description, textbox]) @@ -192,7 +252,7 @@ def make_mpi_field(self): display="flex", justify_content="flex-end") description = widgets.Label(value="mpi", layout=description_layout) - textbox = widgets.Text(value=str(self.mpi), layout=widgets.Layout(width='70px', height='32px')) + textbox = widgets.Text(value=str(self.mpi), layout=widgets.Layout(width='70px', height='36px')) textbox.observe(self.update_mpi, "value") return widgets.HBox([description, textbox]) @@ -228,8 +288,8 @@ def show_interface(self): ncount_field = self.make_ncount_field() mpi_field = self.make_mpi_field() - simulation_widget = widgets.HBox([self.run_button, ncount_field, mpi_field], - layout=widgets.Layout(border="solid")) + simulation_widget = widgets.HBox([self.run_button, ncount_field, mpi_field]) + #layout=widgets.Layout(border="solid")) self.plot_interface = plot_interface.PlotInterface() plot_widget = self.plot_interface.show_interface() From 4fa4aff0ad725700c5dc270f9cc21909900a9d25 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 4 May 2021 08:44:09 +0200 Subject: [PATCH 152/403] Added requirement of ipywidgets --- requirements.txt | 1 + 1 file changed, 1 insertion(+) diff --git a/requirements.txt b/requirements.txt index 79e87c1e..a28ff210 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,3 +1,4 @@ numpy matplotlib PyYAML +ipywidgets From 697224750549d22b0887fe1d0aace68236bce70a Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 4 May 2021 08:49:22 +0200 Subject: [PATCH 153/403] Fixed bug in plotter that caused crash when calling without colorbar_ax keyword argument. --- mcstasscript/interface/plotter.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/mcstasscript/interface/plotter.py b/mcstasscript/interface/plotter.py index fe5273ef..8a12ae59 100644 --- a/mcstasscript/interface/plotter.py +++ b/mcstasscript/interface/plotter.py @@ -168,10 +168,12 @@ def _plot_fig_ax(data, fig, ax, **kwargs): cax = None if "colorbar_axes" in kwargs: cax = kwargs["colorbar_axes"] - print("colorbar axes set") + fig.colorbar(im, ax=ax, cax=cax, format=matplotlib.ticker.FuncFormatter(_fmt)) - cax.set_aspect(20) + + if "colorbar_axes" in kwargs: + cax.set_aspect(20) # Add a title ax.set_title(data.metadata.title) From 2c8e3fab2463900a4706d4d80b15a113b7544e7d Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 4 May 2021 09:49:46 +0200 Subject: [PATCH 154/403] Small fixes for jupyter widget interface and how it is used. Added method to Instr class that returns data from interface. Added example with calibration sample. --- examples/calibration_sample.ipynb | 682 ++++++++++++++++++ mcstasscript/interface/functions.py | 5 +- mcstasscript/interface/instr.py | 21 +- mcstasscript/interface/plotter.py | 2 +- mcstasscript/jb_interface/plot_interface.py | 6 +- .../jb_interface/simulation_interface.py | 12 +- 6 files changed, 711 insertions(+), 17 deletions(-) create mode 100644 examples/calibration_sample.ipynb diff --git a/examples/calibration_sample.ipynb b/examples/calibration_sample.ipynb new file mode 100644 index 00000000..63298e8f --- /dev/null +++ b/examples/calibration_sample.ipynb @@ -0,0 +1,682 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Demonstration of McStasScript\n", + "Here the McStasScript Python McStas API is demonstrated by creating a small simulation with an imaging calibration sample. A python function is defined in order to ease the task of adding the many materials, and a for loop is used for arranging the smaller cylinders which are embedded in a larger Aluminium cylinder. This demonstration will use widgets to control the simulation." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The following components are found in the work_directory / input_path:\n", + " Union_sphere.comp\n", + " Union_box.comp\n", + " Single_crystal_process.comp\n", + " Union_logger_2D_kf.comp\n", + " Template_process.comp\n", + " Union_conditional_standard.comp\n", + " Union_logger_2D_space.comp\n", + " Union_conditional_PSD.comp\n", + " Union_master.comp\n", + " Union_logger_2D_kf_time.comp\n", + " Union_cylinder.comp\n", + " Powder_process.comp\n", + " Union_make_material.comp\n", + " Incoherent_process.comp\n", + " Union_logger_1D.comp\n", + " Union_logger_3D_space.comp\n", + " Union_logger_2DQ.comp\n", + " Union_logger_2D_space_time.comp\n", + "These definitions will be used instead of the installed versions.\n" + ] + } + ], + "source": [ + "import math\n", + "%matplotlib widget\n", + "\n", + "# Import McstasScript\n", + "from mcstasscript.interface import instr, plotter, functions\n", + "\n", + "# Create a McStas instrument\n", + "Instr = instr.McStas_instr(\"calibration_sample\", author = \"Mads Bertelsen\", origin = \"ESS DMSC\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding powder material definitions\n", + "Here we will be adding a few powder material definitions, and it is thus easier to create a small python function for the task. Normally the syntax would be like this for each material:\n", + "\n", + "`\n", + "Al_inc = Instr.add_component(\"Al_inc\",\"Incoherent_process\")\n", + "Al_pow = Instr.add_component(\"Al_pow\",\"Powder_process\")\n", + "Al_inc.sigma = 4*0.0082 # Incoherent cross section in Barns\n", + "Al_inc.unit_cell_volume = 66.4 # Unit cell volume in AA^3\n", + "Al_pow.reflections = \"\\\"Al.laz\\\"\" # Data file with powder lines\n", + "Al.my_absorption = \"100*4*0.231/66.4\" # Inverse penetration depth in 1/m\n", + "Al.process_string = \"\\\"Al_inc,Al_pow\\\"\" # Make a material with aluminium incoherent and aluminium powder` " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def add_union_powder(name, data_name, sigma_inc, sigma_abs, unit_V, Instr):\n", + " \"\"\"\n", + " This function adds a Union material with incoherent scattering and powder lines\n", + " \"\"\"\n", + " material_incoherent = Instr.add_component(name + \"_inc\",\"Incoherent_process\")\n", + " material_incoherent.sigma = sigma_inc\n", + " material_incoherent.unit_cell_volume = unit_V\n", + " material_powder = Instr.add_component(name + \"_pow\",\"Powder_process\")\n", + " material_powder.reflections = \"\\\"\" + data_name + \"\\\"\" # Need quotes when describing a filename\n", + " material = Instr.add_component(name,\"Union_make_material\")\n", + " material.my_absorption = 100*sigma_abs/unit_V\n", + " material.process_string = \"\\\"\" + name + \"_inc,\" + name + \"_pow\" + \"\\\"\"\n", + " \n", + "# Add a number of standard powders to our instrument (datafiles included with McStas)\n", + "add_union_powder(\"Al\", \"Al.laz\", 4*0.0082, 4*0.231, 66.4, Instr)\n", + "add_union_powder(\"Cu\", \"Cu.laz\", 4*0.55, 4*3.78, 47.24, Instr)\n", + "add_union_powder(\"Ni\", \"Ni.laz\", 4*5.2, 4*4.49, 43.76, Instr)\n", + "add_union_powder(\"Ti\", \"Ti.laz\", 2*2.87, 2*6.09, 35.33, Instr)\n", + "add_union_powder(\"Pb\", \"Pb.laz\", 4*0.003, 4*0.17, 121.29, Instr)\n", + "add_union_powder(\"Fe\", \"Fe.laz\", 2*0.4, 2*2.56, 24.04, Instr)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Describing a simple instrument\n", + "Now we start describing an instrument, we start with the source. We would like to control the energy and energy spread at run time, so this will be described using input parameters" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# Since we want to change the energy and energy range at run time, we add these as instrument parameters\n", + "Instr.add_parameter(\"energy\", value=10, comment=\"[meV] Energy of source\")\n", + "Instr.add_parameter(\"delta_energy\", value=8, comment=\"[meV] Energy spread of source\")\n", + "\n", + "# Add a source to the McStas instrument\n", + "src = Instr.add_component(\"source\", \"Source_div\")\n", + "src.xwidth = 0.11\n", + "src.yheight = 0.11\n", + "src.focus_aw = 0.1\n", + "src.focus_ah = 0.1\n", + "src.E0 = \"energy\"\n", + "src.dE = \"delta_energy\"\n", + "src.flux = 1E13;" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The source will illuminate the sample directly, but we may want to rotate the sample in its place. We define rotations around vertical and horizontal as further input parameters, and set up a few arms to act as reference points." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Now we want to set a position and rotation of our sample\n", + "# The rotation should be adjustable, so we add instrument parameters for controling the rotation\n", + "Instr.add_parameter(\"rotation_y\", value=180, comment=\"[deg] Rotation around vertical\")\n", + "Instr.add_parameter(\"rotation_x\", value=0, comment=\"[deg] Rotation around horizontal\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# We add arms at the sample position, and a second arm with the correct rotation\n", + "sample_pos = Instr.add_component(\"sample_pos\", \"Arm\", AT=[0,0,1], AT_RELATIVE=\"source\")\n", + "sample_arm = Instr.add_component(\"sample_arm\", \"Arm\", AT=[0,0,0], AT_RELATIVE=\"sample_pos\")\n", + "sample_arm.set_ROTATED([\"rotation_x\", \"rotation_y\", 0], RELATIVE=\"sample_pos\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding the sample\n", + "The aim is to create a simple calibration sample which is made from cylinders of different materials embedded in a larger cylinder. To do so, we will need the McStas Union_cylinder component, so lets get a bit of help on its parameters." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Union_cylinder ____________________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[1mmaterial_string\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [] // material name of this volume, defined using \n", + " Union_make_material \n", + "\u001b[4m\u001b[1mpriority\u001b[0m\u001b[0m [1] // priotiry of the volume (can not be the same as another volume) \n", + " A high priority is on top of low. \n", + "\u001b[4m\u001b[1mradius\u001b[0m\u001b[0m [m] // Outer radius volume in (x,z) plane\n", + "\u001b[4m\u001b[1myheight\u001b[0m\u001b[0m [m] // Cylinder height in (y) direction\n", + "\u001b[1mvisualize\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // set to 0 if you wish to hide this geometry in mcdisplay\n", + "\u001b[1mtarget_index\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m\n", + "\u001b[1mtarget_x\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m\n", + "\u001b[1mtarget_y\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m // Position of target to focus at\n", + "\u001b[1mtarget_z\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m\n", + "\u001b[1mfocus_aw\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [deg] // horiz. angular dimension of a rectangular area\n", + "\u001b[1mfocus_ah\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [deg] // vert. angular dimension of a rectangular area\n", + "\u001b[1mfocus_xw\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // horiz. dimension of a rectangular area\n", + "\u001b[1mfocus_xh\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // vert. dimension of a rectangular area\n", + "\u001b[1mfocus_r\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // focusing on circle with this radius\n", + "\u001b[1mp_interact\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [1] // probability to interact with this geometry [0-1]\n", + "\u001b[1mmask_string\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [] // Comma seperated list of geometry names which this \n", + " geometry should mask \n", + "\u001b[1mmask_setting\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [] // \"All\" or \"Any\", should the masked volume be simulated \n", + " when the ray is in just one mask, or all. \n", + "\u001b[1mnumber_of_activations\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // Number of subsequent Union_master components \n", + " that will simulate this geometry \n", + "-------------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "Instr.component_help(\"Union_cylinder\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "# We add the large aluminium base that contains samples of the remaining materials\n", + "base_cyl = Instr.add_component(\"base_cyl\",\"Union_cylinder\", RELATIVE=\"sample_arm\")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT base_cyl = Union_cylinder\n", + " \u001b[1mmaterial_string\u001b[0m = \u001b[1m\u001b[92m\"Al\"\u001b[0m\u001b[0m []\n", + " \u001b[1mpriority\u001b[0m = \u001b[1m\u001b[92m100\u001b[0m\u001b[0m [1]\n", + " \u001b[1mradius\u001b[0m = \u001b[1m\u001b[92m0.04\u001b[0m\u001b[0m [m]\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.02\u001b[0m\u001b[0m [m]\n", + "AT [0, 0, 0] RELATIVE sample_arm\n", + "\n" + ] + } + ], + "source": [ + "# We set the parameters and confirm this looks appropriate with the print function\n", + "base_cyl.radius = 0.04\n", + "base_cyl.yheight = 0.02\n", + "base_cyl.priority = 100\n", + "base_cyl.material_string = \"\\\"Al\\\"\" # Select our Al material defined earlier\n", + "print(base_cyl)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next the internal cylinders are added. We use a small python for loop to add a cylinder of each material in succession. We add an additional sample with material chosen by the user from a list of our defined materials." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# We define a string containing the names of the materials we wish to add\n", + "Instr.add_parameter(\"string\", \"material\", value='\"Pb\"',\n", + " comment=\"Material choice for extra material sample\",\n", + " options=[\"Cu\", \"Ni\", \"Ti\", \"Pb\", \"Fe\", \"Al\"])\n", + "\n", + "sample_strings = [\"Cu\", \"Ni\", \"Ti\", \"Pb\", \"Fe\", \"material\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "# Here we write a for loop that adds a small cylinder of this material inside the large Al cylinder\n", + "angle_seperation = 36\n", + "distance_from_center = 0.03\n", + "sample_radius = 0.007\n", + "counter = 0\n", + "for sample_string in sample_strings:\n", + " x_position = distance_from_center * math.cos(counter*angle_seperation*3.14159/180)\n", + " x_position = round(x_position, 5) # round to 4 digits for easier printing\n", + " z_position = distance_from_center * math.sin(counter*angle_seperation*3.14159/180)\n", + " z_position = round(z_position, 5) # round to 4 digits for easier printing\n", + " this_sample = Instr.add_component(sample_string + \"_cyl\",\"Union_cylinder\",\n", + " AT=[x_position, 0, z_position], RELATIVE=\"base_cyl\")\n", + " this_sample.radius = sample_radius;\n", + " this_sample.yheight = 0.019; # yheight must be different from base_cyl\n", + " this_sample.priority = 150 + counter; # ensure higher priority than base\n", + " if sample_string != \"material\":\n", + " this_sample.material_string = \"\\\"\" + sample_string + \"\\\"\"\n", + " else:\n", + " # The user selectable material is a parameter, where the remaining are treated as strings.\n", + " this_sample.material_string = sample_string\n", + " counter = counter + 1\n", + " \n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Union Loggers for seeing scattering intensity in the sample\n", + "Now that the sample has been defined, a few loggers are added to investigate where neutrons are scattered within the sample." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "# A few Union loggers are set up for display of the scattering locations\n", + "space_2D_zx = Instr.add_component(\"logger_space_zx_all\", \"Union_logger_2D_space\", AT_RELATIVE=\"sample_pos\")\n", + "space_2D_zx.filename = \"\\\"space_zx.dat\\\"\"\n", + "space_2D_zx.D_direction_1 = \"\\\"z\\\"\"; space_2D_zx.n1 = 1000\n", + "space_2D_zx.D1_min = -0.05; space_2D_zx.D1_max = 0.05\n", + "space_2D_zx.D_direction_2 = \"\\\"x\\\"\"; space_2D_zx.n2 = 1000\n", + "space_2D_zx.D2_min = -0.05; space_2D_zx.D2_max = 0.05\n", + "\n", + "space_2D_zy = Instr.add_component(\"logger_space_zy_all\", \"Union_logger_2D_space\", AT_RELATIVE=\"sample_pos\")\n", + "space_2D_zy.filename = \"\\\"space_zy.dat\\\"\"\n", + "space_2D_zy.D_direction_1 = \"\\\"z\\\"\"; space_2D_zy.n1 = 1000\n", + "space_2D_zy.D1_min = -0.05; space_2D_zy.D1_max = 0.05\n", + "space_2D_zy.D_direction_2 = \"\\\"y\\\"\"; space_2D_zy.n2 = 1000\n", + "space_2D_zy.D2_min = -0.05; space_2D_zy.D2_max = 0.05\n", + "\n", + "space_2D_zy = Instr.add_component(\"logger_space_xy_all\", \"Union_logger_2D_space\", AT_RELATIVE=\"sample_pos\")\n", + "space_2D_zy.filename = \"\\\"space_xy.dat\\\"\"\n", + "space_2D_zy.D_direction_1 = \"\\\"x\\\"\"; space_2D_zy.n1 = 1000\n", + "space_2D_zy.D1_min = -0.05; space_2D_zy.D1_max = 0.05\n", + "space_2D_zy.D_direction_2 = \"\\\"y\\\"\"; space_2D_zy.n2 = 1000\n", + "space_2D_zy.D2_min = -0.05; space_2D_zy.D2_max = 0.05" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The Union master component\n", + "The Union master component is what will do the simulation of the collected calibration sample. It takes all the material information and physical volumes that we have described, and runs a simulation with full multiple scattering." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "master = Instr.add_component(\"calibration_sample\", \"Union_master\", AT_relative=\"sample_pos\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### McStas monitors\n", + "At the end we add a few McStas monitors to view the transmitted beam, including a PSD / energy monitor to see the Bragg edges of the different materials." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "# Add position sensitive detector for transmission measurement\n", + "PSD = Instr.add_component(\"PSD\", \"PSD_monitor\", AT=[0,0,1], RELATIVE=\"sample_pos\") \n", + "PSD.xwidth = 0.1; PSD.yheight = 0.1; PSD.nx = 200; PSD.ny = 200;\n", + "PSD.filename = \"\\\"PSD.dat\\\"\"; PSD.restore_neutron = 1" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "# Adds 1D position sensitive detector for transmission measurement\n", + "PSD = Instr.add_component(\"PSDlin\", \"PSDlin_monitor\", AT=[0,0,1], RELATIVE=\"sample_pos\") \n", + "PSD.xwidth = 0.1; PSD.yheight = 0.1; PSD.nx = 200;\n", + "PSD.filename = \"\\\"PSDlin.dat\\\"\"; PSD.restore_neutron = 1" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# Add energy position monitor to see Bragg edges\n", + "EPSD = Instr.add_component(\"EPSD\", \"EPSD_monitor\", RELATIVE=\"PSD\")\n", + "EPSD.xwidth = 0.1; EPSD.yheight = 0.02; EPSD.nE = 300; EPSD.nx = 200;\n", + "EPSD.filename = \"\\\"EPSD.dat\\\"\"; EPSD.restore_neutron = 1;\n", + "EPSD.Emin = \"energy - delta_energy\"\n", + "EPSD.Emax = \"energy + delta_energy\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Last check \n", + "Before running the McStas simulation we do a last check to see that the McStas instrument looks as we expect. First the components are listed with their locations and rotations, then the available parameters are shown." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Al_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", + "Al_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", + "Al Union_make_material AT (0, 0, 0) ABSOLUTE \n", + "Cu_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", + "Cu_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", + "Cu Union_make_material AT (0, 0, 0) ABSOLUTE \n", + "Ni_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", + "Ni_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", + "Ni Union_make_material AT (0, 0, 0) ABSOLUTE \n", + "Ti_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", + "Ti_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", + "Ti Union_make_material AT (0, 0, 0) ABSOLUTE \n", + "Pb_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", + "Pb_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", + "Pb Union_make_material AT (0, 0, 0) ABSOLUTE \n", + "Fe_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", + "Fe_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", + "Fe Union_make_material AT (0, 0, 0) ABSOLUTE \n", + "source Source_div AT (0, 0, 0) ABSOLUTE \n", + "sample_pos Arm AT (0, 0, 1) RELATIVE source \n", + "sample_arm Arm AT (0, 0, 0) RELATIVE sample_pos \n", + " ROTATED (rotation_x, rotation_y, 0) RELATIVE sample_pos\n", + "base_cyl Union_cylinder AT (0, 0, 0) RELATIVE sample_arm\n", + "Cu_cyl Union_cylinder AT (0.03, 0, 0.0) RELATIVE base_cyl \n", + "Ni_cyl Union_cylinder AT (0.02427, 0, 0.01763) RELATIVE base_cyl \n", + "Ti_cyl Union_cylinder AT (0.00927, 0, 0.02853) RELATIVE base_cyl \n", + "Pb_cyl Union_cylinder AT (-0.00927, 0, 0.02853) RELATIVE base_cyl \n", + "Fe_cyl Union_cylinder AT (-0.02427, 0, 0.01763) RELATIVE base_cyl \n", + "material_cyl Union_cylinder AT (-0.03, 0, 0.0) RELATIVE base_cyl \n", + "logger_space_zx_all Union_logger_2D_space AT (0, 0, 0) RELATIVE sample_pos\n", + "logger_space_zy_all Union_logger_2D_space AT (0, 0, 0) RELATIVE sample_pos\n", + "logger_space_xy_all Union_logger_2D_space AT (0, 0, 0) RELATIVE sample_pos\n", + "calibration_sample Union_master AT (0, 0, 0) ABSOLUTE \n", + "PSD PSD_monitor AT (0, 0, 1) RELATIVE sample_pos\n", + "PSDlin PSDlin_monitor AT (0, 0, 1) RELATIVE sample_pos\n", + "EPSD EPSD_monitor AT (0, 0, 0) RELATIVE PSD \n" + ] + } + ], + "source": [ + "Instr.print_components(line_length=117) # Show nice overview" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Running the simulation\n", + "The simulation can now be performed from the Jupyter Notebook using the widget interface." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bf34078b8add43c189b04e53744c6bc3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "VBox(children=(VBox(children=(HBox(children=(Label(value='energy', layout=Layout(height='32px', width='15%')),…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "Instr.interface()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Getting data from the widget simulation\n", + "It is possible to grab the latest data produced by the widget simulation. Run these cells after a simulation has been performed with the above widget." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[\n", + "McStasData: logger_space_zx_all type: 2D I:4.46366e+09 E:1.38106e+07 N:167764, \n", + "McStasData: logger_space_zy_all type: 2D I:4.46366e+09 E:1.38106e+07 N:167764, \n", + "McStasData: logger_space_xy_all type: 2D I:4.46366e+09 E:1.38106e+07 N:167764, \n", + "McStasData: PSD type: 2D I:4.35753e+10 E:5.06929e+07 N:738940, \n", + "McStasData: PSDlin type: 1D I:4.35753e+10 E:5.06929e+07 N:738940, \n", + "McStasData: EPSD type: 2D I:4.62274e+09 E:1.65109e+07 N:78398]\n" + ] + } + ], + "source": [ + "data = Instr.get_interface_data()\n", + "print(data)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f97deafa40e44f4080ee340e89704057", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plotting data with name EPSD\n" + ] + } + ], + "source": [ + "if len(data) != 0:\n", + " EPSD_data = functions.name_search(\"EPSD\", data)\n", + " plotter.make_plot(EPSD_data, figsize=(9,6))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Using plotting interface without simulation interface\n", + "The plotting interface can be used for existing datasets." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "21a32af6dc9749f4946010f7ae22ca6d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(Output(layout=Layout(width='75%')), VBox(children=(Label(value='Choose monitor'), Dropdown(layo…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plotter.interface(data)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/mcstasscript/interface/functions.py b/mcstasscript/interface/functions.py index 56d7903c..8d7a6600 100644 --- a/mcstasscript/interface/functions.py +++ b/mcstasscript/interface/functions.py @@ -26,7 +26,10 @@ def name_search(name, data_list): """ if type(data_list) is not list: raise RuntimeError( - "name_search function needs list of McStasData as input") + "name_search function needs list of McStasData as input.") + + if len(data_list) == 0: + raise RuntimeError("Given data list empty.") if not type(data_list[0]) == McStasData: raise RuntimeError( diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 50c788fd..372a97f3 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -291,6 +291,8 @@ def __init__(self, name, **kwargs): input_path=self.input_path) self.component_class_lib = {} + self.widget_interface = None + def _read_calibration(self): """ Place holder method that should be overwritten by classes @@ -1690,8 +1692,23 @@ def interface(self): Needs "%matplotlib widget" in notebook to work correctly """ - interface = SimInterface(self) - return interface.show_interface() + self.widget_interface = SimInterface(self) + return self.widget_interface.show_interface() + + def get_interface_data(self): + """ + Returns data from last run performed with the widget interface + """ + + if self.widget_interface is None: + print("No widget interface initialized, use interface method.") + return [] + + if self.widget_interface.plot_interface.data is None: + print("No run has been performed with the interface widget yet") + return [] + + return self.widget_interface.plot_interface.data class McStas_instr(McCode_instr): """ diff --git a/mcstasscript/interface/plotter.py b/mcstasscript/interface/plotter.py index 8a12ae59..2e5d2162 100644 --- a/mcstasscript/interface/plotter.py +++ b/mcstasscript/interface/plotter.py @@ -171,7 +171,7 @@ def _plot_fig_ax(data, fig, ax, **kwargs): fig.colorbar(im, ax=ax, cax=cax, format=matplotlib.ticker.FuncFormatter(_fmt)) - + if "colorbar_axes" in kwargs: cax.set_aspect(20) diff --git a/mcstasscript/jb_interface/plot_interface.py b/mcstasscript/jb_interface/plot_interface.py index 133e292b..cda1878e 100644 --- a/mcstasscript/jb_interface/plot_interface.py +++ b/mcstasscript/jb_interface/plot_interface.py @@ -103,15 +103,15 @@ def update_plot(self): # Clear plot first self.ax.cla() - self.ax.xaxis.set_ticks([]) - self.ax.yaxis.set_ticks([]) + #self.ax.xaxis.set_ticks([]) + #self.ax.yaxis.set_ticks([]) self.colorbar_ax.cla() self.colorbar_ax.xaxis.set_ticks([]) self.colorbar_ax.yaxis.set_ticks([]) # Display message if not data can be plotted if self.data is None: - self.ax.text(0.32, 0.5, "No data available") + self.ax.text(0.3, 0.5, "No data available yet") return if len(self.data) == 0: diff --git a/mcstasscript/jb_interface/simulation_interface.py b/mcstasscript/jb_interface/simulation_interface.py index e896f11a..f13a33ae 100644 --- a/mcstasscript/jb_interface/simulation_interface.py +++ b/mcstasscript/jb_interface/simulation_interface.py @@ -140,21 +140,13 @@ def __init__(self, instrument): def make_parameter_widgets(self): """ - Creates widgets for parameters using dedicated class ParameterTextbox - Preliminary check for parameter type disabled as the ParameterVariable - class does not set type for default case, will be fixed. + Creates widgets for parameters using dedicated class ParameterWidget returns widget including all parameters """ parameter_widgets = [] for parameter in self.instrument.parameter_list: - if True: #parameter.type != "": - par_widget = ParameterWidget(parameter, self.parameters) - else: - raise RuntimeError("Unknown parameter type '" - + parameter.type + "' of par named '" - + parameter.name + "'.") - + par_widget = ParameterWidget(parameter, self.parameters) parameter_widgets.append(par_widget.make_widget()) return widgets.VBox(parameter_widgets) From 2b5edfc31360b68c7869a689c60caf1e6a996164 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 4 May 2021 09:56:29 +0200 Subject: [PATCH 155/403] Cleared cells in calibration example. --- examples/calibration_sample.ipynb | 253 +++++------------------------- 1 file changed, 35 insertions(+), 218 deletions(-) diff --git a/examples/calibration_sample.ipynb b/examples/calibration_sample.ipynb index 63298e8f..68b81833 100644 --- a/examples/calibration_sample.ipynb +++ b/examples/calibration_sample.ipynb @@ -10,36 +10,9 @@ }, { "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The following components are found in the work_directory / input_path:\n", - " Union_sphere.comp\n", - " Union_box.comp\n", - " Single_crystal_process.comp\n", - " Union_logger_2D_kf.comp\n", - " Template_process.comp\n", - " Union_conditional_standard.comp\n", - " Union_logger_2D_space.comp\n", - " Union_conditional_PSD.comp\n", - " Union_master.comp\n", - " Union_logger_2D_kf_time.comp\n", - " Union_cylinder.comp\n", - " Powder_process.comp\n", - " Union_make_material.comp\n", - " Incoherent_process.comp\n", - " Union_logger_1D.comp\n", - " Union_logger_3D_space.comp\n", - " Union_logger_2DQ.comp\n", - " Union_logger_2D_space_time.comp\n", - "These definitions will be used instead of the installed versions.\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "import math\n", "%matplotlib widget\n", @@ -70,7 +43,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -106,7 +79,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -134,7 +107,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -146,7 +119,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -166,49 +139,16 @@ }, { "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " ___ Help Union_cylinder ____________________________________________________________\n", - "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", - "\u001b[1mmaterial_string\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [] // material name of this volume, defined using \n", - " Union_make_material \n", - "\u001b[4m\u001b[1mpriority\u001b[0m\u001b[0m [1] // priotiry of the volume (can not be the same as another volume) \n", - " A high priority is on top of low. \n", - "\u001b[4m\u001b[1mradius\u001b[0m\u001b[0m [m] // Outer radius volume in (x,z) plane\n", - "\u001b[4m\u001b[1myheight\u001b[0m\u001b[0m [m] // Cylinder height in (y) direction\n", - "\u001b[1mvisualize\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // set to 0 if you wish to hide this geometry in mcdisplay\n", - "\u001b[1mtarget_index\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m\n", - "\u001b[1mtarget_x\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m\n", - "\u001b[1mtarget_y\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m // Position of target to focus at\n", - "\u001b[1mtarget_z\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m\n", - "\u001b[1mfocus_aw\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [deg] // horiz. angular dimension of a rectangular area\n", - "\u001b[1mfocus_ah\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [deg] // vert. angular dimension of a rectangular area\n", - "\u001b[1mfocus_xw\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // horiz. dimension of a rectangular area\n", - "\u001b[1mfocus_xh\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // vert. dimension of a rectangular area\n", - "\u001b[1mfocus_r\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // focusing on circle with this radius\n", - "\u001b[1mp_interact\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [1] // probability to interact with this geometry [0-1]\n", - "\u001b[1mmask_string\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [] // Comma seperated list of geometry names which this \n", - " geometry should mask \n", - "\u001b[1mmask_setting\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [] // \"All\" or \"Any\", should the masked volume be simulated \n", - " when the ray is in just one mask, or all. \n", - "\u001b[1mnumber_of_activations\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // Number of subsequent Union_master components \n", - " that will simulate this geometry \n", - "-------------------------------------------------------------------------------------\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "Instr.component_help(\"Union_cylinder\")" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -218,23 +158,9 @@ }, { "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "COMPONENT base_cyl = Union_cylinder\n", - " \u001b[1mmaterial_string\u001b[0m = \u001b[1m\u001b[92m\"Al\"\u001b[0m\u001b[0m []\n", - " \u001b[1mpriority\u001b[0m = \u001b[1m\u001b[92m100\u001b[0m\u001b[0m [1]\n", - " \u001b[1mradius\u001b[0m = \u001b[1m\u001b[92m0.04\u001b[0m\u001b[0m [m]\n", - " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.02\u001b[0m\u001b[0m [m]\n", - "AT [0, 0, 0] RELATIVE sample_arm\n", - "\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "# We set the parameters and confirm this looks appropriate with the print function\n", "base_cyl.radius = 0.04\n", @@ -253,7 +179,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -267,7 +193,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -306,7 +232,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -343,7 +269,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -360,7 +286,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -372,7 +298,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -384,7 +310,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -406,54 +332,11 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": { "scrolled": false }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Al_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", - "Al_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", - "Al Union_make_material AT (0, 0, 0) ABSOLUTE \n", - "Cu_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", - "Cu_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", - "Cu Union_make_material AT (0, 0, 0) ABSOLUTE \n", - "Ni_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", - "Ni_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", - "Ni Union_make_material AT (0, 0, 0) ABSOLUTE \n", - "Ti_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", - "Ti_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", - "Ti Union_make_material AT (0, 0, 0) ABSOLUTE \n", - "Pb_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", - "Pb_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", - "Pb Union_make_material AT (0, 0, 0) ABSOLUTE \n", - "Fe_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", - "Fe_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", - "Fe Union_make_material AT (0, 0, 0) ABSOLUTE \n", - "source Source_div AT (0, 0, 0) ABSOLUTE \n", - "sample_pos Arm AT (0, 0, 1) RELATIVE source \n", - "sample_arm Arm AT (0, 0, 0) RELATIVE sample_pos \n", - " ROTATED (rotation_x, rotation_y, 0) RELATIVE sample_pos\n", - "base_cyl Union_cylinder AT (0, 0, 0) RELATIVE sample_arm\n", - "Cu_cyl Union_cylinder AT (0.03, 0, 0.0) RELATIVE base_cyl \n", - "Ni_cyl Union_cylinder AT (0.02427, 0, 0.01763) RELATIVE base_cyl \n", - "Ti_cyl Union_cylinder AT (0.00927, 0, 0.02853) RELATIVE base_cyl \n", - "Pb_cyl Union_cylinder AT (-0.00927, 0, 0.02853) RELATIVE base_cyl \n", - "Fe_cyl Union_cylinder AT (-0.02427, 0, 0.01763) RELATIVE base_cyl \n", - "material_cyl Union_cylinder AT (-0.03, 0, 0.0) RELATIVE base_cyl \n", - "logger_space_zx_all Union_logger_2D_space AT (0, 0, 0) RELATIVE sample_pos\n", - "logger_space_zy_all Union_logger_2D_space AT (0, 0, 0) RELATIVE sample_pos\n", - "logger_space_xy_all Union_logger_2D_space AT (0, 0, 0) RELATIVE sample_pos\n", - "calibration_sample Union_master AT (0, 0, 0) ABSOLUTE \n", - "PSD PSD_monitor AT (0, 0, 1) RELATIVE sample_pos\n", - "PSDlin PSDlin_monitor AT (0, 0, 1) RELATIVE sample_pos\n", - "EPSD EPSD_monitor AT (0, 0, 0) RELATIVE PSD \n" - ] - } - ], + "outputs": [], "source": [ "Instr.print_components(line_length=117) # Show nice overview" ] @@ -468,24 +351,9 @@ }, { "cell_type": "code", - "execution_count": 21, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "bf34078b8add43c189b04e53744c6bc3", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "VBox(children=(VBox(children=(HBox(children=(Label(value='energy', layout=Layout(height='32px', width='15%')),…" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "Instr.interface()" ] @@ -500,23 +368,9 @@ }, { "cell_type": "code", - "execution_count": 22, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[\n", - "McStasData: logger_space_zx_all type: 2D I:4.46366e+09 E:1.38106e+07 N:167764, \n", - "McStasData: logger_space_zy_all type: 2D I:4.46366e+09 E:1.38106e+07 N:167764, \n", - "McStasData: logger_space_xy_all type: 2D I:4.46366e+09 E:1.38106e+07 N:167764, \n", - "McStasData: PSD type: 2D I:4.35753e+10 E:5.06929e+07 N:738940, \n", - "McStasData: PSDlin type: 1D I:4.35753e+10 E:5.06929e+07 N:738940, \n", - "McStasData: EPSD type: 2D I:4.62274e+09 E:1.65109e+07 N:78398]\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "data = Instr.get_interface_data()\n", "print(data)" @@ -524,31 +378,9 @@ }, { "cell_type": "code", - "execution_count": 23, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "f97deafa40e44f4080ee340e89704057", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Plotting data with name EPSD\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "if len(data) != 0:\n", " EPSD_data = functions.name_search(\"EPSD\", data)\n", @@ -565,24 +397,9 @@ }, { "cell_type": "code", - "execution_count": 24, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "21a32af6dc9749f4946010f7ae22ca6d", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(Output(layout=Layout(width='75%')), VBox(children=(Label(value='Choose monitor'), Dropdown(layo…" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "plotter.interface(data)" ] From 26bf9c1f63c88908a27fac7bde0ce4b3b0016ba3 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 2 Jun 2021 12:39:34 +0200 Subject: [PATCH 156/403] Updated version of jupyter interface. Now has a live mode where the run is split into 5 parts, and data is added as it is simulated. This is slower, but provides some data to plot earlier. This is accomplished using threading, so it is still possible to navigate the plotting while the calculation are performed. --- examples/calibration_sample.ipynb | 857 +++++++++++++++++- mcstasscript/interface/instr.py | 3 + mcstasscript/jb_interface/plot_interface.py | 80 +- .../jb_interface/simulation_interface.py | 301 +++--- setup.py | 2 +- 5 files changed, 1080 insertions(+), 163 deletions(-) diff --git a/examples/calibration_sample.ipynb b/examples/calibration_sample.ipynb index 68b81833..a47af077 100644 --- a/examples/calibration_sample.ipynb +++ b/examples/calibration_sample.ipynb @@ -10,7 +10,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -43,7 +43,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -79,7 +79,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -107,7 +107,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -119,7 +119,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -139,16 +139,49 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Union_cylinder ____________________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[1mmaterial_string\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [] // material name of this volume, defined using \n", + " Union_make_material \n", + "\u001b[4m\u001b[1mpriority\u001b[0m\u001b[0m [1] // priotiry of the volume (can not be the same as another volume) \n", + " A high priority is on top of low. \n", + "\u001b[4m\u001b[1mradius\u001b[0m\u001b[0m [m] // Outer radius volume in (x,z) plane\n", + "\u001b[4m\u001b[1myheight\u001b[0m\u001b[0m [m] // Cylinder height in (y) direction\n", + "\u001b[1mvisualize\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // set to 0 if you wish to hide this geometry in mcdisplay\n", + "\u001b[1mtarget_index\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m\n", + "\u001b[1mtarget_x\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m\n", + "\u001b[1mtarget_y\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m // Position of target to focus at\n", + "\u001b[1mtarget_z\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m\n", + "\u001b[1mfocus_aw\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [deg] // horiz. angular dimension of a rectangular area\n", + "\u001b[1mfocus_ah\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [deg] // vert. angular dimension of a rectangular area\n", + "\u001b[1mfocus_xw\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // horiz. dimension of a rectangular area\n", + "\u001b[1mfocus_xh\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // vert. dimension of a rectangular area\n", + "\u001b[1mfocus_r\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // focusing on circle with this radius\n", + "\u001b[1mp_interact\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [1] // probability to interact with this geometry [0-1]\n", + "\u001b[1mmask_string\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [] // Comma seperated list of geometry names which this \n", + " geometry should mask \n", + "\u001b[1mmask_setting\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [] // \"All\" or \"Any\", should the masked volume be simulated \n", + " when the ray is in just one mask, or all. \n", + "\u001b[1mnumber_of_activations\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // Number of subsequent Union_master components \n", + " that will simulate this geometry \n", + "-------------------------------------------------------------------------------------\n" + ] + } + ], "source": [ "Instr.component_help(\"Union_cylinder\")" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -158,9 +191,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT base_cyl = Union_cylinder\n", + " \u001b[1mmaterial_string\u001b[0m = \u001b[1m\u001b[92m\"Al\"\u001b[0m\u001b[0m []\n", + " \u001b[1mpriority\u001b[0m = \u001b[1m\u001b[92m100\u001b[0m\u001b[0m [1]\n", + " \u001b[1mradius\u001b[0m = \u001b[1m\u001b[92m0.04\u001b[0m\u001b[0m [m]\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.02\u001b[0m\u001b[0m [m]\n", + "AT [0, 0, 0] RELATIVE sample_arm\n", + "\n" + ] + } + ], "source": [ "# We set the parameters and confirm this looks appropriate with the print function\n", "base_cyl.radius = 0.04\n", @@ -179,7 +226,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -193,7 +240,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -232,7 +279,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -269,7 +316,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -286,7 +333,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -298,7 +345,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -310,7 +357,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -332,11 +379,54 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": { "scrolled": false }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Al_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", + "Al_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", + "Al Union_make_material AT (0, 0, 0) ABSOLUTE \n", + "Cu_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", + "Cu_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", + "Cu Union_make_material AT (0, 0, 0) ABSOLUTE \n", + "Ni_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", + "Ni_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", + "Ni Union_make_material AT (0, 0, 0) ABSOLUTE \n", + "Ti_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", + "Ti_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", + "Ti Union_make_material AT (0, 0, 0) ABSOLUTE \n", + "Pb_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", + "Pb_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", + "Pb Union_make_material AT (0, 0, 0) ABSOLUTE \n", + "Fe_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", + "Fe_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", + "Fe Union_make_material AT (0, 0, 0) ABSOLUTE \n", + "source Source_div AT (0, 0, 0) ABSOLUTE \n", + "sample_pos Arm AT (0, 0, 1) RELATIVE source \n", + "sample_arm Arm AT (0, 0, 0) RELATIVE sample_pos \n", + " ROTATED (rotation_x, rotation_y, 0) RELATIVE sample_pos\n", + "base_cyl Union_cylinder AT (0, 0, 0) RELATIVE sample_arm\n", + "Cu_cyl Union_cylinder AT (0.03, 0, 0.0) RELATIVE base_cyl \n", + "Ni_cyl Union_cylinder AT (0.02427, 0, 0.01763) RELATIVE base_cyl \n", + "Ti_cyl Union_cylinder AT (0.00927, 0, 0.02853) RELATIVE base_cyl \n", + "Pb_cyl Union_cylinder AT (-0.00927, 0, 0.02853) RELATIVE base_cyl \n", + "Fe_cyl Union_cylinder AT (-0.02427, 0, 0.01763) RELATIVE base_cyl \n", + "material_cyl Union_cylinder AT (-0.03, 0, 0.0) RELATIVE base_cyl \n", + "logger_space_zx_all Union_logger_2D_space AT (0, 0, 0) RELATIVE sample_pos\n", + "logger_space_zy_all Union_logger_2D_space AT (0, 0, 0) RELATIVE sample_pos\n", + "logger_space_xy_all Union_logger_2D_space AT (0, 0, 0) RELATIVE sample_pos\n", + "calibration_sample Union_master AT (0, 0, 0) ABSOLUTE \n", + "PSD PSD_monitor AT (0, 0, 1) RELATIVE sample_pos\n", + "PSDlin PSDlin_monitor AT (0, 0, 1) RELATIVE sample_pos\n", + "EPSD EPSD_monitor AT (0, 0, 0) RELATIVE PSD \n" + ] + } + ], "source": [ "Instr.print_components(line_length=117) # Show nice overview" ] @@ -351,13 +441,675 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "6d7fbe54d8a84ca48c37cb9eb9d0168a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "VBox(children=(VBox(children=(HBox(children=(Label(value='energy', layout=Layout(height='32px', width='15%')),…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "Instr.interface()" ] }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "\n", + "INFO: Using directory: \"calibration_sample_20210602_123159\"\n", + "INFO: Regenerating c-file: calibration_sample.c\n", + "CFLAGS= -I@MCCODE_LIB@/share/\n", + "INFO: Recompiling: ./calibration_sample.out\n", + "In file included from /Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../contrib/union/Incoherent_process.comp:62:0:\n", + "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../share/Union_functions.c: In function ‘write_tagging_tree’:\n", + "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../share/Union_functions.c:1377:82: warning: passing argument 4 of ‘qsort’ from incompatible pointer type [enabled by default]\n", + "qsort(total_history.saved_histories,total_history.used_elements,sizeof (struct saved_history_struct), Sample_compare_history_intensities);\n", + "^\n", + "In file included from mccode-r.h:41:0:\n", + "/usr/include/stdlib.h:165:7: note: expected ‘int (*)(const void *, const void *)’ but argument is of type ‘int (*)(const struct saved_history_struct *, const struct saved_history_struct *)’\n", + "void qsort(void *__base, size_t __nel, size_t __width,\n", + "^\n", + "In file included from /Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../contrib/union/Incoherent_process.comp:62:0:\n", + "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../share/Union_functions.c:1381:3: warning: passing argument 1 of ‘printf_history’ from incompatible pointer type [enabled by default]\n", + "MPI_MASTER(\n", + "^\n", + "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../share/Union_functions.c:1207:6: note: expected ‘struct dynamic_history_list *’ but argument is of type ‘struct saved_history_struct *’\n", + "void printf_history(struct dynamic_history_list *history) {\n", + "^\n", + "INFO: ===\n", + "Warning: 17 events were removed in Component[33] PSD=PSD_monitor()\n", + "(negative time, miss next components, rounding errors, Nan, Inf).\n", + "instrument definition parsed\n", + "reading particle data...\n", + "\n", + "Component Al_inc AT (0,0,0) 0 m from origin\n", + "Component Al_pow AT (0,0,0) 0 m from origin\n", + "Component Al AT (0,0,0) 0 m from origin\n", + "Component Cu_inc AT (0,0,0) 0 m from origin\n", + "Component Cu_pow AT (0,0,0) 0 m from origin\n", + "Component Cu AT (0,0,0) 0 m from origin\n", + "Component Ni_inc AT (0,0,0) 0 m from origin\n", + "Component Ni_pow AT (0,0,0) 0 m from origin\n", + "Component Ni AT (0,0,0) 0 m from origin\n", + "Component Ti_inc AT (0,0,0) 0 m from origin\n", + "Component Ti_pow AT (0,0,0) 0 m from origin\n", + "Component Ti AT (0,0,0) 0 m from origin\n", + "Component Pb_inc AT (0,0,0) 0 m from origin\n", + "Component Pb_pow AT (0,0,0) 0 m from origin\n", + "Component Pb AT (0,0,0) 0 m from origin\n", + "Component Fe_inc AT (0,0,0) 0 m from origin\n", + "Component Fe_pow AT (0,0,0) 0 m from origin\n", + "Component Fe AT (0,0,0) 0 m from origin\n", + "Component source AT (0,0,0) 0 m from origin\n", + "Component sample_pos AT (0,0,1) 1 m from origin\n", + "Component sample_arm AT (0,0,1) 1 m from origin\n", + "Component base_cyl AT (0,0,1) 1 m from origin\n", + "Component Cu_cyl AT (-0.03,0,1) 1.03 m from origin\n", + "Component Ni_cyl AT (-0.02427,0,0.98237) 1.04854 m from origin\n", + "Component Ti_cyl AT (-0.00927,0,0.97147) 1.06708 m from origin\n", + "Component Pb_cyl AT (0.00927,0,0.97147) 1.08562 m from origin\n", + "Component Fe_cyl AT (0.02427,0,0.98237) 1.10416 m from origin\n", + "Component material_cyl AT (0.03,0,1) 1.1227 m from origin\n", + "Component logger_space_zx_all AT (0,0,1) 1.1527 m from origin\n", + "Component logger_space_zy_all AT (0,0,1) 1.1527 m from origin\n", + "Component logger_space_xy_all AT (0,0,1) 1.1527 m from origin\n", + "Component calibration_sample AT (0,0,0) 2.1527 m from origin\n", + "Component PSD AT (0,0,2) 4.1527 m from origin\n", + "Component PSDlin AT (0,0,2) 4.1527 m from origin\n", + "Component EPSD AT (0,0,2) 4.1527 m from origin\n", + "Opening input file '/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../data/Al.laz' (Table_Read_Offset)\n", + "Table from file 'Al.laz' (block 1) is 26 x 18 (x=1:8), constant step. interpolation: linear\n", + " '# TITLE *Aluminum-Al-[FM3-M] Miller, H.P.jr.;DuMond, J.W.M.[1942] at 298 K; ...'\n", + "PowderN: Al_pow: Reading 26 rows from Al.laz\n", + "PowderN: Al_pow: Read 26 reflections from file 'Al.laz'\n", + "PowderN: Al_pow: Vc=66.4 [Angs] sigma_abs=0.924 [barn] sigma_inc=0.0328 [barn] reflections=Al.laz\n", + "Opening input file '/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../data/Cu.laz' (Table_Read_Offset)\n", + "Table from file 'Cu.laz' (block 1) is 19 x 18 (x=1:6), constant step. interpolation: linear\n", + " '# TITLE *-Cu-[FM3-M] Otte, H.M.[1961];# CELL 3.615050 3.615050 3.615050 90. ...'\n", + "PowderN: Cu_pow: Reading 19 rows from Cu.laz\n", + "PowderN: Cu_pow: Read 19 reflections from file 'Cu.laz'\n", + "PowderN: Cu_pow: Vc=47.24 [Angs] sigma_abs=15.12 [barn] sigma_inc=2.2 [barn] reflections=Cu.laz\n", + "Opening input file '/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../data/Ni.laz' (Table_Read_Offset)\n", + "Table from file 'Ni.laz' (block 1) is 19 x 18 (x=1:6), constant step. interpolation: linear\n", + " '# TITLE *Nickel-Ni-[FM3-M] Swanson, H.E.;Tatge, E.[1954] [carcinogen];# CEL ...'\n", + "PowderN: Ni_pow: Reading 19 rows from Ni.laz\n", + "PowderN: Ni_pow: Read 19 reflections from file 'Ni.laz'\n", + "PowderN: Ni_pow: Vc=43.76 [Angs] sigma_abs=17.96 [barn] sigma_inc=20.8 [barn] reflections=Ni.laz\n", + "Opening input file '/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../data/Ti.laz' (Table_Read_Offset)\n", + "Table from file 'Ti.laz' (block 1) is 72 x 18 (x=0:5), constant step. interpolation: linear\n", + " '# TITLE *-Ti-[P63/MMC] Pawar, R.R.;Deshpande, V.T.[1968];# CELL 2.950800 2. ...'\n", + "PowderN: Ti_pow: Reading 72 rows from Ti.laz\n", + "PowderN: Ti_pow: Read 72 reflections from file 'Ti.laz'\n", + "PowderN: Ti_pow: Vc=35.33 [Angs] sigma_abs=12.18 [barn] sigma_inc=5.74 [barn] reflections=Ti.laz\n", + "Opening input file '/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../data/Pb.laz' (Table_Read_Offset)\n", + "Table from file 'Pb.laz' (block 1) is 41 x 18 (x=1:9), constant step. interpolation: linear\n", + " '# TITLE *-Pb-[FM3-M] Bouad, N.; Chapon, L.; Marin-Ayral, R.-M.; B[2003] [to ...'\n", + "PowderN: Pb_pow: Reading 41 rows from Pb.laz\n", + "PowderN: Pb_pow: Read 41 reflections from file 'Pb.laz'\n", + "PowderN: Pb_pow: Vc=121.29 [Angs] sigma_abs=0.684 [barn] sigma_inc=0.012 [barn] reflections=Pb.laz\n", + "Opening input file '/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../data/Fe.laz' (Table_Read_Offset)\n", + "Table from file 'Fe.laz' (block 1) is 17 x 18 (x=1:5), constant step. interpolation: linear\n", + " '# TITLE *Iron-Fe-[IM3-M] Swanson, H.E.;Tatge, E.[1954] [Iron alpha phase];# ...'\n", + "PowderN: Fe_pow: Reading 17 rows from Fe.laz\n", + "PowderN: Fe_pow: Read 17 reflections from file 'Fe.laz'\n", + "PowderN: Fe_pow: Vc=24.04 [Angs] sigma_abs=5.12 [barn] sigma_inc=0.8 [barn] reflections=Fe.laz\n", + "---------------------------------------------------------------------\n", + "global_process_list.num_elements: 12\n", + "name of process [0]: Al_inc \n", + "component index [0]: 1 \n", + "name of process [1]: Al_pow \n", + "component index [1]: 2 \n", + "name of process [2]: Cu_inc \n", + "component index [2]: 4 \n", + "name of process [3]: Cu_pow \n", + "component index [3]: 5 \n", + "name of process [4]: Ni_inc \n", + "component index [4]: 7 \n", + "name of process [5]: Ni_pow \n", + "component index [5]: 8 \n", + "name of process [6]: Ti_inc \n", + "component index [6]: 10 \n", + "name of process [7]: Ti_pow \n", + "component index [7]: 11 \n", + "name of process [8]: Pb_inc \n", + "component index [8]: 13 \n", + "name of process [9]: Pb_pow \n", + "component index [9]: 14 \n", + "name of process [10]: Fe_inc \n", + "component index [10]: 16 \n", + "name of process [11]: Fe_pow \n", + "component index [11]: 17 \n", + "---------------------------------------------------------------------\n", + "global_material_list.num_elements: 6\n", + "name of material [0]: Al \n", + "component index [0]: 3 \n", + "my_absoprtion [0]: 1.391570 \n", + "number of processes [0]: 2 \n", + "name of material [1]: Cu \n", + "component index [1]: 6 \n", + "my_absoprtion [1]: 32.006800 \n", + "number of processes [1]: 2 \n", + "name of material [2]: Ni \n", + "component index [2]: 9 \n", + "my_absoprtion [2]: 41.042000 \n", + "number of processes [2]: 2 \n", + "name of material [3]: Ti \n", + "component index [3]: 12 \n", + "my_absoprtion [3]: 34.475000 \n", + "number of processes [3]: 2 \n", + "name of material [4]: Pb \n", + "component index [4]: 15 \n", + "my_absoprtion [4]: 0.560640 \n", + "number of processes [4]: 2 \n", + "name of material [5]: Fe \n", + "component index [5]: 18 \n", + "my_absoprtion [5]: 21.297800 \n", + "number of processes [5]: 2 \n", + "---------------------------------------------------------------------\n", + "global_geometry_list.num_elements: 6\n", + "\n", + "name of geometry [0]: base_cyl \n", + "component index [0]: 22 \n", + "Volume.name [0]: base_cyl \n", + "Volume.p_physics.is_vacuum [0]: 0 \n", + "Volume.p_physics.my_absoprtion [0]: 1.391570 \n", + "Volume.p_physics.number of processes [0]: 2 \n", + "Volume.geometry.shape [0]: cylinder \n", + "Volume.geometry.center.x [0]: 0.000000 \n", + "Volume.geometry.center.y [0]: 0.000000 \n", + "Volume.geometry.center.z [0]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [0]: [-1.000000 0.000000 -0.000000] \n", + "Volume.geometry.rotation_matrix[1] [0]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [0]: [0.000000 0.000000 -1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [0]: 0.040000 \n", + "Volume.geometry.geometry_parameters.height [0]: 0.020000 \n", + "Volume.geometry.focus_data.Aim [0]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [1]: Cu_cyl \n", + "component index [1]: 23 \n", + "Volume.name [1]: Cu_cyl \n", + "Volume.p_physics.is_vacuum [1]: 0 \n", + "Volume.p_physics.my_absoprtion [1]: 32.006800 \n", + "Volume.p_physics.number of processes [1]: 2 \n", + "Volume.geometry.shape [1]: cylinder \n", + "Volume.geometry.center.x [1]: -0.030000 \n", + "Volume.geometry.center.y [1]: 0.000000 \n", + "Volume.geometry.center.z [1]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [1]: [-1.000000 0.000000 -0.000000] \n", + "Volume.geometry.rotation_matrix[1] [1]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [1]: [0.000000 0.000000 -1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [1]: 0.007000 \n", + "Volume.geometry.geometry_parameters.height [1]: 0.019000 \n", + "Volume.geometry.focus_data.Aim [1]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [2]: Ni_cyl \n", + "component index [2]: 24 \n", + "Volume.name [2]: Ni_cyl \n", + "Volume.p_physics.is_vacuum [2]: 0 \n", + "Volume.p_physics.my_absoprtion [2]: 41.042000 \n", + "Volume.p_physics.number of processes [2]: 2 \n", + "Volume.geometry.shape [2]: cylinder \n", + "Volume.geometry.center.x [2]: -0.024270 \n", + "Volume.geometry.center.y [2]: 0.000000 \n", + "Volume.geometry.center.z [2]: 0.982370 \n", + "Volume.geometry.rotation_matrix[0] [2]: [-1.000000 0.000000 -0.000000] \n", + "Volume.geometry.rotation_matrix[1] [2]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [2]: [0.000000 0.000000 -1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [2]: 0.007000 \n", + "Volume.geometry.geometry_parameters.height [2]: 0.019000 \n", + "Volume.geometry.focus_data.Aim [2]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [3]: Ti_cyl \n", + "component index [3]: 25 \n", + "Volume.name [3]: Ti_cyl \n", + "Volume.p_physics.is_vacuum [3]: 0 \n", + "Volume.p_physics.my_absoprtion [3]: 34.475000 \n", + "Volume.p_physics.number of processes [3]: 2 \n", + "Volume.geometry.shape [3]: cylinder \n", + "Volume.geometry.center.x [3]: -0.009270 \n", + "Volume.geometry.center.y [3]: 0.000000 \n", + "Volume.geometry.center.z [3]: 0.971470 \n", + "Volume.geometry.rotation_matrix[0] [3]: [-1.000000 0.000000 -0.000000] \n", + "Volume.geometry.rotation_matrix[1] [3]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [3]: [0.000000 0.000000 -1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [3]: 0.007000 \n", + "Volume.geometry.geometry_parameters.height [3]: 0.019000 \n", + "Volume.geometry.focus_data.Aim [3]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [4]: Pb_cyl \n", + "component index [4]: 26 \n", + "Volume.name [4]: Pb_cyl \n", + "Volume.p_physics.is_vacuum [4]: 0 \n", + "Volume.p_physics.my_absoprtion [4]: 0.560640 \n", + "Volume.p_physics.number of processes [4]: 2 \n", + "Volume.geometry.shape [4]: cylinder \n", + "Volume.geometry.center.x [4]: 0.009270 \n", + "Volume.geometry.center.y [4]: 0.000000 \n", + "Volume.geometry.center.z [4]: 0.971470 \n", + "Volume.geometry.rotation_matrix[0] [4]: [-1.000000 0.000000 -0.000000] \n", + "Volume.geometry.rotation_matrix[1] [4]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [4]: [0.000000 0.000000 -1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [4]: 0.007000 \n", + "Volume.geometry.geometry_parameters.height [4]: 0.019000 \n", + "Volume.geometry.focus_data.Aim [4]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [5]: Fe_cyl \n", + "component index [5]: 27 \n", + "Volume.name [5]: Fe_cyl \n", + "Volume.p_physics.is_vacuum [5]: 0 \n", + "Volume.p_physics.my_absoprtion [5]: 21.297800 \n", + "Volume.p_physics.number of processes [5]: 2 \n", + "Volume.geometry.shape [5]: cylinder \n", + "Volume.geometry.center.x [5]: 0.024270 \n", + "Volume.geometry.center.y [5]: 0.000000 \n", + "Volume.geometry.center.z [5]: 0.982370 \n", + "Volume.geometry.rotation_matrix[0] [5]: [-1.000000 0.000000 -0.000000] \n", + "Volume.geometry.rotation_matrix[1] [5]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [5]: [0.000000 0.000000 -1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [5]: 0.007000 \n", + "Volume.geometry.geometry_parameters.height [5]: 0.019000 \n", + "Volume.geometry.focus_data.Aim [5]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [6]: material_cyl \n", + "component index [6]: 28 \n", + "Volume.name [6]: material_cyl \n", + "Volume.p_physics.is_vacuum [6]: 0 \n", + "Volume.p_physics.my_absoprtion [6]: 0.560640 \n", + "Volume.p_physics.number of processes [6]: 2 \n", + "Volume.geometry.shape [6]: cylinder \n", + "Volume.geometry.center.x [6]: 0.030000 \n", + "Volume.geometry.center.y [6]: 0.000000 \n", + "Volume.geometry.center.z [6]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [6]: [-1.000000 0.000000 -0.000000] \n", + "Volume.geometry.rotation_matrix[1] [6]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [6]: [0.000000 0.000000 -1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [6]: 0.007000 \n", + "Volume.geometry.geometry_parameters.height [6]: 0.019000 \n", + "Volume.geometry.focus_data.Aim [6]: [0.000000 0.000000 1.000000] \n", + "---------------------------------------------------------------------\n", + "number_of_volumes = 8\n", + "number_of_masks = 0\n", + "number_of_masked_volumes = 0\n", + "\n", + "Generating children lists --------------------------- \n", + "LIST: Children for Volume 0 = [1,2,3,4,5,6,7]\n", + "LIST: Children for Volume 1 (temporary_list) = [1,2,3,4,5,6,7]\n", + "LIST: Children for Volume 1 (permanent_list) = [2,3,4,5,6,7]\n", + "LIST: Children for Volume 2 (temporary_list) = [2]\n", + "LIST: Children for Volume 2 (permanent_list) = []\n", + "LIST: Children for Volume 3 (temporary_list) = [3]\n", + "LIST: Children for Volume 3 (permanent_list) = []\n", + "LIST: Children for Volume 4 (temporary_list) = [4]\n", + "LIST: Children for Volume 4 (permanent_list) = []\n", + "LIST: Children for Volume 5 (temporary_list) = [5]\n", + "LIST: Children for Volume 5 (permanent_list) = []\n", + "LIST: Children for Volume 6 (temporary_list) = [6]\n", + "LIST: Children for Volume 6 (permanent_list) = []\n", + "LIST: Children for Volume 7 (temporary_list) = [7]\n", + "LIST: Children for Volume 7 (permanent_list) = []\n", + "LIST: True children for Volume (post mask) 1 = [2,3,4,5,6,7]\n", + "LIST: True children for Volume (post mask) 2 = []\n", + "LIST: True children for Volume (post mask) 3 = []\n", + "LIST: True children for Volume (post mask) 4 = []\n", + "LIST: True children for Volume (post mask) 5 = []\n", + "LIST: True children for Volume (post mask) 6 = []\n", + "LIST: True children for Volume (post mask) 7 = []\n", + "\n", + "Generating overlap lists ---------------------------- \n", + "LIST: Overlaps for Volume 0 = [1,2,3,4,5,6,7]\n", + "LIST: Overlaps for Volume (pre mask) 1 = [0,1,2,3,4,5,6,7]\n", + "LIST: Overlaps for Volume (pre mask) 2 = [0,1,2]\n", + "LIST: Overlaps for Volume (pre mask) 3 = [0,1,3]\n", + "LIST: Overlaps for Volume (pre mask) 4 = [0,1,4]\n", + "LIST: Overlaps for Volume (pre mask) 5 = [0,1,5]\n", + "LIST: Overlaps for Volume (pre mask) 6 = [0,1,6]\n", + "LIST: Overlaps for Volume (pre mask) 7 = [0,1,7]\n", + "LIST: Overlaps for Volume (post mask) 1 = [0,2,3,4,5,6,7]\n", + "LIST: Overlaps for Volume (post mask) 2 = [0,1]\n", + "LIST: Overlaps for Volume (post mask) 3 = [0,1]\n", + "LIST: Overlaps for Volume (post mask) 4 = [0,1]\n", + "LIST: Overlaps for Volume (post mask) 5 = [0,1]\n", + "LIST: Overlaps for Volume (post mask) 6 = [0,1]\n", + "LIST: Overlaps for Volume (post mask) 7 = [0,1]\n", + "\n", + "Generating parents lists ---------------------------- \n", + "LIST: Parents for Volume 0 = []\n", + "LIST: Parents for Volume 1 = [0]\n", + "LIST: Parents for Volume 2 = [0,1]\n", + "LIST: Parents for Volume 3 = [0,1]\n", + "LIST: Parents for Volume 4 = [0,1]\n", + "LIST: Parents for Volume 5 = [0,1]\n", + "LIST: Parents for Volume 6 = [0,1]\n", + "LIST: Parents for Volume 7 = [0,1]\n", + "\n", + "Generating parents lists (ignoring masks) ----------- \n", + "LIST: Parents for Volume 0 = []\n", + "LIST: Parents for Volume 1 = [0]\n", + "LIST: Parents for Volume 2 = [0,1]\n", + "LIST: Parents for Volume 3 = [0,1]\n", + "LIST: Parents for Volume 4 = [0,1]\n", + "LIST: Parents for Volume 5 = [0,1]\n", + "LIST: Parents for Volume 6 = [0,1]\n", + "LIST: Parents for Volume 7 = [0,1]\n", + "\n", + "Generating parents lists ---------------------------- \n", + "LIST: Parents for Volume 0 = []\n", + "LIST: Parents for Volume 1 = [0]\n", + "LIST: Parents for Volume 2 = [0,1]\n", + "LIST: Parents for Volume 3 = [0,1]\n", + "LIST: Parents for Volume 4 = [0,1]\n", + "LIST: Parents for Volume 5 = [0,1]\n", + "LIST: Parents for Volume 6 = [0,1]\n", + "LIST: Parents for Volume 7 = [0,1]\n", + "\n", + "Generating parents lists (ignoring masks) ----------- \n", + "LIST: Parents for Volume 0 = []\n", + "LIST: Parents for Volume 1 = [0]\n", + "LIST: Parents for Volume 2 = [0,1]\n", + "LIST: Parents for Volume 3 = [0,1]\n", + "LIST: Parents for Volume 4 = [0,1]\n", + "LIST: Parents for Volume 5 = [0,1]\n", + "LIST: Parents for Volume 6 = [0,1]\n", + "LIST: Parents for Volume 7 = [0,1]\n", + "\n", + "Generating intersect check lists -------------------- \n", + "LIST: Intersect check list for Volume 0 = [1]\n", + "LIST: Mask intersect check list for Volume 0 = []\n", + "LIST: Intersect check list for Volume 1 = [2,3,4,5,6,7]\n", + "LIST: Mask intersect check list for Volume 1 = []\n", + "LIST: Intersect check list for Volume 2 = []\n", + "LIST: Mask intersect check list for Volume 2 = []\n", + "LIST: Intersect check list for Volume 3 = []\n", + "LIST: Mask intersect check list for Volume 3 = []\n", + "LIST: Intersect check list for Volume 4 = []\n", + "LIST: Mask intersect check list for Volume 4 = []\n", + "LIST: Intersect check list for Volume 5 = []\n", + "LIST: Mask intersect check list for Volume 5 = []\n", + "LIST: Intersect check list for Volume 6 = []\n", + "LIST: Mask intersect check list for Volume 6 = []\n", + "LIST: Intersect check list for Volume 7 = []\n", + "LIST: Mask intersect check list for Volume 7 = []\n", + "\n", + "Generating grandparents lists ----------------------- \n", + "LIST: Grandparents for Volume 0 = []\n", + "LIST: Grandparents for Volume 1 = []\n", + "LIST: Grandparents for Volume 2 = []\n", + "LIST: Grandparents for Volume 3 = []\n", + "LIST: Grandparents for Volume 4 = []\n", + "LIST: Grandparents for Volume 5 = []\n", + "LIST: Grandparents for Volume 6 = []\n", + "LIST: Grandparents for Volume 7 = []\n", + "grandparents_lists[0]->num_elements = 0 \n", + "\n", + "Generating grandparents lists ----------------------- \n", + "LIST: Grandparents for Volume 0 = []\n", + "LIST: Grandparents for Volume 1 = []\n", + "LIST: Grandparents for Volume 2 = []\n", + "LIST: Grandparents for Volume 3 = []\n", + "LIST: Grandparents for Volume 4 = []\n", + "LIST: Grandparents for Volume 5 = []\n", + "LIST: Grandparents for Volume 6 = []\n", + "LIST: Grandparents for Volume 7 = []\n", + "\n", + "Generating grandparents lists ----------------------- \n", + "LIST: Grandparents for Volume 0 = []\n", + "LIST: Grandparents for Volume 1 = []\n", + "LIST: Grandparents for Volume 2 = []\n", + "LIST: Grandparents for Volume 3 = []\n", + "LIST: Grandparents for Volume 4 = []\n", + "LIST: Grandparents for Volume 5 = []\n", + "LIST: Grandparents for Volume 6 = []\n", + "LIST: Grandparents for Volume 7 = []\n", + "\n", + "Generating grandparents lists ----------------------- \n", + "LIST: Grandparents for Volume 0 = []\n", + "LIST: Grandparents for Volume 1 = []\n", + "LIST: Grandparents for Volume 2 = []\n", + "LIST: Grandparents for Volume 3 = []\n", + "LIST: Grandparents for Volume 4 = []\n", + "LIST: Grandparents for Volume 5 = []\n", + "LIST: Grandparents for Volume 6 = []\n", + "LIST: Grandparents for Volume 7 = []\n", + "\n", + "Generating destinations lists ----------------------- \n", + "LIST: Destinations list for Volume 1 = [0]\n", + "LIST: Destinations list for Volume 2 = [1]\n", + "LIST: Destinations list for Volume 3 = [1]\n", + "LIST: Destinations list for Volume 4 = [1]\n", + "LIST: Destinations list for Volume 5 = [1]\n", + "LIST: Destinations list for Volume 6 = [1]\n", + "LIST: Destinations list for Volume 7 = [1]\n", + "\n", + "Generating reduced destination lists ----------------------- \n", + "LIST: Reduced destinations list for Volume 0 = []\n", + "LIST: Reduced destinations list for Volume 1 = []\n", + "LIST: Reduced destinations list for Volume 2 = [1]\n", + "LIST: Reduced destinations list for Volume 3 = [1]\n", + "LIST: Reduced destinations list for Volume 4 = [1]\n", + "LIST: Reduced destinations list for Volume 5 = [1]\n", + "LIST: Reduced destinations list for Volume 6 = [1]\n", + "LIST: Reduced destinations list for Volume 7 = [1]\n", + "\n", + "Generating direct children lists ----------------------- \n", + "LIST: Children list for Volume 0 = [1,2,3,4,5,6,7]\n", + "LIST: Direct_children list for Volume 0 = [1]\n", + "LIST: Children list for Volume 1 = [2,3,4,5,6,7]\n", + "LIST: Direct_children list for Volume 1 = [2,3,4,5,6,7]\n", + "LIST: Children list for Volume 2 = []\n", + "LIST: Direct_children list for Volume 2 = []\n", + "LIST: Children list for Volume 3 = []\n", + "LIST: Direct_children list for Volume 3 = []\n", + "LIST: Children list for Volume 4 = []\n", + "LIST: Direct_children list for Volume 4 = []\n", + "LIST: Children list for Volume 5 = []\n", + "LIST: Direct_children list for Volume 5 = []\n", + "LIST: Children list for Volume 6 = []\n", + "LIST: Direct_children list for Volume 6 = []\n", + "LIST: Children list for Volume 7 = []\n", + "LIST: Direct_children list for Volume 7 = []\n", + "LIST: Allowed starting volume logic list = [1,0,0,0,0,0,0,0]\n", + "\n", + "Generating start destinations list ------------------------------ \n", + "LIST: Starting destinations list = [1,2,3,4,5,6,7]\n", + "\n", + "Generating reduced start destination list ----------------------- \n", + "LIST: Reduced start destinations list = [1]\n", + "LIST: Start logic list = [0,1,1,1,1,1,1,1]\n", + "\n", + "Generating next volume list ------------------------------------- \n", + "LIST: Next volume list 0 = [1]\n", + "LIST: Next volume list 1 = [0,2,3,4,5,6,7]\n", + "LIST: Next volume list 2 = [1]\n", + "LIST: Next volume list 3 = [1]\n", + "LIST: Next volume list 4 = [1]\n", + "LIST: Next volume list 5 = [1]\n", + "LIST: Next volume list 6 = [1]\n", + "LIST: Next volume list 7 = [1]\n", + "\n", + " ---- Overview of the lists generated for each volume ---- \n", + "LIST: Children for Volume 0 = [1,2,3,4,5,6,7]\n", + "LIST: Direct_children for Volume 0 = [1]\n", + "LIST: Intersect_check_list for Volume 0 = [1]\n", + "LIST: Mask_intersect_list for Volume 0 = []\n", + "LIST: Destinations_list for Volume 0 = []\n", + "LIST: Reduced_destinations_list for Volume 0 = []\n", + "LIST: Next_volume_list for Volume 0 = [1]\n", + "LIST: mask_list for Volume 0 = []\n", + "LIST: masked_by_list for Volume 0 = []\n", + "LIST: masked_by_mask_index_list for Volume 0 = []\n", + " mask_mode for Volume 0 = 0\n", + "\n", + "LIST: Children for Volume 1 = [2,3,4,5,6,7]\n", + "LIST: Direct_children for Volume 1 = [2,3,4,5,6,7]\n", + "LIST: Intersect_check_list for Volume 1 = [2,3,4,5,6,7]\n", + "LIST: Mask_intersect_list for Volume 1 = []\n", + "LIST: Destinations_list for Volume 1 = [0]\n", + "LIST: Reduced_destinations_list for Volume 1 = []\n", + "LIST: Next_volume_list for Volume 1 = [0,2,3,4,5,6,7]\n", + " Is_vacuum for Volume 1 = 0\n", + " is_mask_volume for Volume 1 = 0\n", + " is_masked_volume for Volume 1 = 0\n", + " is_exit_volume for Volume 1 = 0\n", + "LIST: mask_list for Volume 1 = []\n", + "LIST: masked_by_list for Volume 1 = []\n", + "LIST: masked_by_mask_index_list for Volume 1 = []\n", + " mask_mode for Volume 1 = 0\n", + "\n", + "LIST: Children for Volume 2 = []\n", + "LIST: Direct_children for Volume 2 = []\n", + "LIST: Intersect_check_list for Volume 2 = []\n", + "LIST: Mask_intersect_list for Volume 2 = []\n", + "LIST: Destinations_list for Volume 2 = [1]\n", + "LIST: Reduced_destinations_list for Volume 2 = [1]\n", + "LIST: Next_volume_list for Volume 2 = [1]\n", + " Is_vacuum for Volume 2 = 0\n", + " is_mask_volume for Volume 2 = 0\n", + " is_masked_volume for Volume 2 = 0\n", + " is_exit_volume for Volume 2 = 0\n", + "LIST: mask_list for Volume 2 = []\n", + "LIST: masked_by_list for Volume 2 = []\n", + "LIST: masked_by_mask_index_list for Volume 2 = []\n", + " mask_mode for Volume 2 = 0\n", + "\n", + "LIST: Children for Volume 3 = []\n", + "LIST: Direct_children for Volume 3 = []\n", + "LIST: Intersect_check_list for Volume 3 = []\n", + "LIST: Mask_intersect_list for Volume 3 = []\n", + "LIST: Destinations_list for Volume 3 = [1]\n", + "LIST: Reduced_destinations_list for Volume 3 = [1]\n", + "LIST: Next_volume_list for Volume 3 = [1]\n", + " Is_vacuum for Volume 3 = 0\n", + " is_mask_volume for Volume 3 = 0\n", + " is_masked_volume for Volume 3 = 0\n", + " is_exit_volume for Volume 3 = 0\n", + "LIST: mask_list for Volume 3 = []\n", + "LIST: masked_by_list for Volume 3 = []\n", + "LIST: masked_by_mask_index_list for Volume 3 = []\n", + " mask_mode for Volume 3 = 0\n", + "\n", + "LIST: Children for Volume 4 = []\n", + "LIST: Direct_children for Volume 4 = []\n", + "LIST: Intersect_check_list for Volume 4 = []\n", + "LIST: Mask_intersect_list for Volume 4 = []\n", + "LIST: Destinations_list for Volume 4 = [1]\n", + "LIST: Reduced_destinations_list for Volume 4 = [1]\n", + "LIST: Next_volume_list for Volume 4 = [1]\n", + " Is_vacuum for Volume 4 = 0\n", + " is_mask_volume for Volume 4 = 0\n", + " is_masked_volume for Volume 4 = 0\n", + " is_exit_volume for Volume 4 = 0\n", + "LIST: mask_list for Volume 4 = []\n", + "LIST: masked_by_list for Volume 4 = []\n", + "LIST: masked_by_mask_index_list for Volume 4 = []\n", + " mask_mode for Volume 4 = 0\n", + "\n", + "LIST: Children for Volume 5 = []\n", + "LIST: Direct_children for Volume 5 = []\n", + "LIST: Intersect_check_list for Volume 5 = []\n", + "LIST: Mask_intersect_list for Volume 5 = []\n", + "LIST: Destinations_list for Volume 5 = [1]\n", + "LIST: Reduced_destinations_list for Volume 5 = [1]\n", + "LIST: Next_volume_list for Volume 5 = [1]\n", + " Is_vacuum for Volume 5 = 0\n", + " is_mask_volume for Volume 5 = 0\n", + " is_masked_volume for Volume 5 = 0\n", + " is_exit_volume for Volume 5 = 0\n", + "LIST: mask_list for Volume 5 = []\n", + "LIST: masked_by_list for Volume 5 = []\n", + "LIST: masked_by_mask_index_list for Volume 5 = []\n", + " mask_mode for Volume 5 = 0\n", + "\n", + "LIST: Children for Volume 6 = []\n", + "LIST: Direct_children for Volume 6 = []\n", + "LIST: Intersect_check_list for Volume 6 = []\n", + "LIST: Mask_intersect_list for Volume 6 = []\n", + "LIST: Destinations_list for Volume 6 = [1]\n", + "LIST: Reduced_destinations_list for Volume 6 = [1]\n", + "LIST: Next_volume_list for Volume 6 = [1]\n", + " Is_vacuum for Volume 6 = 0\n", + " is_mask_volume for Volume 6 = 0\n", + " is_masked_volume for Volume 6 = 0\n", + " is_exit_volume for Volume 6 = 0\n", + "LIST: mask_list for Volume 6 = []\n", + "LIST: masked_by_list for Volume 6 = []\n", + "LIST: masked_by_mask_index_list for Volume 6 = []\n", + " mask_mode for Volume 6 = 0\n", + "\n", + "LIST: Children for Volume 7 = []\n", + "LIST: Direct_children for Volume 7 = []\n", + "LIST: Intersect_check_list for Volume 7 = []\n", + "LIST: Mask_intersect_list for Volume 7 = []\n", + "LIST: Destinations_list for Volume 7 = [1]\n", + "LIST: Reduced_destinations_list for Volume 7 = [1]\n", + "LIST: Next_volume_list for Volume 7 = [1]\n", + " Is_vacuum for Volume 7 = 0\n", + " is_mask_volume for Volume 7 = 0\n", + " is_masked_volume for Volume 7 = 0\n", + " is_exit_volume for Volume 7 = 0\n", + "LIST: mask_list for Volume 7 = []\n", + "LIST: masked_by_list for Volume 7 = []\n", + "LIST: masked_by_mask_index_list for Volume 7 = []\n", + " mask_mode for Volume 7 = 0\n", + "\n", + "Union_master component calibration_sample initialized sucessfully\n", + "Detector: logger_space_zx_all_I=4.24506e+09 logger_space_zx_all_ERR=7.73168e+08 logger_space_zx_all_N=40 \"space_zx.dat\"\n", + "Detector: logger_space_zy_all_I=4.24506e+09 logger_space_zy_all_ERR=7.73168e+08 logger_space_zy_all_N=40 \"space_zy.dat\"\n", + "Detector: logger_space_xy_all_I=4.24506e+09 logger_space_xy_all_ERR=7.73168e+08 logger_space_xy_all_N=40 \"space_xy.dat\"\n", + "Detector: PSD_I=4.38373e+10 PSD_ERR=2.93556e+09 PSD_N=223 \"PSD.dat\"\n", + "Detector: PSDlin_I=4.38373e+10 PSDlin_ERR=2.93556e+09 PSDlin_N=223 \"PSDlin.dat\"\n", + "Detector: EPSD_I=2.75212e+09 EPSD_ERR=7.35534e+08 EPSD_N=14 \"EPSD.dat\"\n", + "\n", + "\n", + "Top 20 most common histories. Shows the index of volumes entered (VX), and the scattering processes (PX)\n", + "267\t N I=5.248679E+10 \t V0 \n", + "4\t N I=7.863190E+08 \t V0 -> V1 -> V0 \n", + "3\t N I=5.316424E+08 \t V0 -> V1 -> V5 -> P1 -> V1 -> V0 \n", + "3\t N I=5.228126E+08 \t V0 -> V1 -> V6 -> P1 -> V1 -> V0 \n", + "3\t N I=4.435212E+08 \t V0 -> V1 -> V5 -> V1 -> P1 -> V0 \n", + "2\t N I=3.931595E+08 \t V0 -> V1 -> V5 -> V1 -> V0 \n", + "2\t N I=2.714067E+08 \t V0 -> V1 -> P1 -> V0 \n", + "1\t N I=1.965797E+08 \t V0 -> V1 -> V2 -> V1 -> V0 \n", + "1\t N I=1.965797E+08 \t V0 -> V1 -> V7 -> V1 -> V0 \n", + "1\t N I=1.656375E+08 \t V0 -> V1 -> V4 -> V1 -> P1 -> P1 -> V0 \n", + "1\t N I=1.448487E+08 \t V0 -> V1 -> V4 -> V1 -> P1 -> V0 \n", + "1\t N I=1.323150E+08 \t V0 -> V1 -> V5 -> P1 -> P1 -> V1 -> V0 \n", + "1\t N I=1.289778E+08 \t V0 -> V1 -> P0 -> V0 \n", + "1\t N I=1.107849E+08 \t V0 -> V1 -> V3 -> P1 -> P1 -> P1 -> V1 -> V0 \n", + "1\t N I=1.023142E+08 \t V0 -> V1 -> V3 -> P1 -> V1 -> V0 \n", + "1\t N I=6.676574E+07 \t V0 -> V1 -> V6 -> P1 -> P1 -> V1 -> V0 \n", + "1\t N I=5.751379E+07 \t V0 -> V1 -> V6 -> P1 -> P1 -> P1 -> V1 -> V5 -> V1 -> V0 \n", + "1\t N I=5.535036E+07 \t V0 -> V1 -> V3 -> P0 -> V1 -> V0 \n", + "1\t N I=2.879975E+07 \t V0 -> V1 -> V4 -> P1 -> P0 -> V1 -> V0 \n", + "1\t N I=2.387658E+07 \t V0 -> V1 -> V4 -> P0 -> V1 -> V0 \n", + "\n", + "starting particle parsing\n", + "ended particle parsing\n", + "\n" + ] + } + ], + "source": [ + "Instr.show_instrument()" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -368,9 +1120,23 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[\n", + "McStasData: logger_space_zx_all type: 2D I:4.46932e+09 E:9.78589e+06 N:334938, \n", + "McStasData: logger_space_zy_all type: 2D I:4.46932e+09 E:9.78589e+06 N:334938, \n", + "McStasData: logger_space_xy_all type: 2D I:4.46932e+09 E:9.78589e+06 N:334938, \n", + "McStasData: PSD type: 2D I:4.35683e+10 E:3.58426e+07 N:1.47764e+06, \n", + "McStasData: PSDlin type: 1D I:4.35683e+10 E:3.58426e+07 N:1.47764e+06, \n", + "McStasData: EPSD type: 2D I:4.64794e+09 E:1.1707e+07 N:157656]\n" + ] + } + ], "source": [ "data = Instr.get_interface_data()\n", "print(data)" @@ -378,9 +1144,31 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "842a963bb6c6401a9393877978ba1c10", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plotting data with name EPSD\n" + ] + } + ], "source": [ "if len(data) != 0:\n", " EPSD_data = functions.name_search(\"EPSD\", data)\n", @@ -397,9 +1185,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 26, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "31522898410542958ea06e8ab06e057d", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(Output(layout=Layout(width='75%')), VBox(children=(Label(value='Choose monitor'), Dropdown(layo…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plotter.interface(data)" ] diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 372a97f3..91a4ea02 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -1590,6 +1590,8 @@ def run_full_instrument(self, **kwargs): Sets parameters custom_flags : str Sets custom_flags passed to mcrun + force_compile : bool + If True (default) new instrument file is written, otherwise not executable_path : str Path to mcrun command, "" if already in path """ @@ -1692,6 +1694,7 @@ def interface(self): Needs "%matplotlib widget" in notebook to work correctly """ + self.write_full_instrument() self.widget_interface = SimInterface(self) return self.widget_interface.show_interface() diff --git a/mcstasscript/jb_interface/plot_interface.py b/mcstasscript/jb_interface/plot_interface.py index cda1878e..0e70ada9 100644 --- a/mcstasscript/jb_interface/plot_interface.py +++ b/mcstasscript/jb_interface/plot_interface.py @@ -1,10 +1,11 @@ import sys import os +import threading from collections import OrderedDict import ipywidgets as widgets -from IPython.display import display +from IPython.display import display, clear_output import matplotlib.pyplot as plt @@ -29,6 +30,8 @@ def __init__(self, data=None): """ self.data = data + output = None + # Variables related to monitor choice self.monitor_dropdown = None self.current_monitor = None @@ -99,45 +102,52 @@ def new_plot(self): def update_plot(self): """ Updates the plot with current data, monitor and plot options + + Threading lock is used as this method is used in a threading context + and can easily fail if new data is written while plotting. The lock + prevents this from happening. """ + lock = threading.Lock() - # Clear plot first - self.ax.cla() - #self.ax.xaxis.set_ticks([]) - #self.ax.yaxis.set_ticks([]) - self.colorbar_ax.cla() - self.colorbar_ax.xaxis.set_ticks([]) - self.colorbar_ax.yaxis.set_ticks([]) + with lock: + # Clear plot first + self.ax.cla() + #self.ax.xaxis.set_ticks([]) + #self.ax.yaxis.set_ticks([]) + self.colorbar_ax.cla() + self.colorbar_ax.xaxis.set_ticks([]) + self.colorbar_ax.yaxis.set_ticks([]) - # Display message if not data can be plotted - if self.data is None: - self.ax.text(0.3, 0.5, "No data available yet") - return + # Display message if not data can be plotted + if self.data is None: + self.ax.text(0.3, 0.5, "No data available yet") + return - if len(self.data) == 0: - self.ax.text(0.25, 0.5, "Simulation returned no data") - return + if len(self.data) == 0: + self.ax.text(0.25, 0.5, "Simulation returned no data") + return - if self.current_monitor is None: - self.ax.text(0.3, 0.5, "Select a monitor to plot") - return + if self.current_monitor is None: + self.ax.text(0.3, 0.5, "Select a monitor to plot") + return - # Get monitor and establish plot options - monitor = name_search(self.current_monitor, self.data) - plot_options = {"show_colorbar": True, "log": self.log_mode, "colormap": self.colormap} - if self.orders_of_mag != "disabled": - plot_options["orders_of_mag"] = self.orders_of_mag - else: - plot_options["orders_of_mag"] = 300 # Default value in McStasPlotOptions + # Get monitor and establish plot options + monitor = name_search(self.current_monitor, self.data) + plot_options = {"show_colorbar": True, "log": self.log_mode, "colormap": self.colormap} + if self.orders_of_mag != "disabled": + plot_options["orders_of_mag"] = self.orders_of_mag + else: + plot_options["orders_of_mag"] = 300 # Default value in McStasPlotOptions - #print("Plotting with: ", plot_options) - monitor.set_plot_options(**plot_options) - with HiddenPrints(): - plotter._plot_fig_ax(monitor, self.fig, self.ax, colorbar_axes=self.colorbar_ax) + #print("Plotting with: ", plot_options) + monitor.set_plot_options(**plot_options) + with HiddenPrints(): + plotter._plot_fig_ax(monitor, self.fig, self.ax, colorbar_axes=self.colorbar_ax) - self.colorbar_ax.set_aspect(20) + self.colorbar_ax.set_aspect(20) - plt.tight_layout() + plt.tight_layout() + self.fig.canvas.draw() def show_interface(self): """ @@ -305,6 +315,14 @@ def set_data(self, data): monitor_names = [] for data in self.data: + + # Ensure data names are unique + original_name = data.name + index = 1 + while data.name in monitor_names: + data.name = original_name + "_" + str(index) + index += 1 + monitor_names.append(data.name) self.widget.options = monitor_names diff --git a/mcstasscript/jb_interface/simulation_interface.py b/mcstasscript/jb_interface/simulation_interface.py index f13a33ae..346b8151 100644 --- a/mcstasscript/jb_interface/simulation_interface.py +++ b/mcstasscript/jb_interface/simulation_interface.py @@ -1,5 +1,8 @@ import sys import os +import numpy as np +import threading +import copy import ipywidgets as widgets from IPython.display import display @@ -14,89 +17,6 @@ from mcstasscript.jb_interface.widget_helpers import get_parameter_default -class ParameterWidget: - """ - Widget for parameter object from McStasScript instrument - """ - def __init__(self, parameter, parameters): - """ - Describes a widget for a parameter object given all parameters - - When no options are given in ParameterVariable object, the widget will - be a textfield where the user can input the value. If the options - attribute is used, the widget will be a dropdown menu with available - options. The make_widget method returns the widget, and the update - function is called whenever the user interacts with the widget. - - The widget shows parameter name, the interactive widget and a comment - - Parameters - ---------- - - parameter: McStasScript ParameterVariable object - The parameter this widget should represent - - parameters: dict of McStasScript ParameterVariable objects - Dict with all parameter objects of the instrument - """ - - self.parameter = parameter - self.parameters = parameters - - if parameter_has_default(parameter): - self.default_value = get_parameter_default(parameter) - else: - self.default_value = "" - - self.name = parameter.name - self.comment = parameter.comment - - def make_widget(self): - """ - Returns widget with parameter name, interactive widget and comment - """ - label = widgets.Label(value=self.name, - layout=widgets.Layout(width='15%', height='32px')) - if self.parameter.options is not None: - par_widget = widgets.Dropdown(options=self.parameter.options, - layout=widgets.Layout(width='10%', height='32px')) - if self.default_value != "": - if self.default_value in self.parameter.options: - par_widget.value = self.default_value - elif self.default_value.strip("'") in self.parameter.options: - par_widget.value = self.default_value.strip("'") - elif self.default_value.strip('"') in self.parameter.options: - par_widget.value = self.default_value.strip('"') - else: - raise KeyError("default value not found in options for parameter: " - + str(self.parameter.name)) - - else: - par_widget = widgets.Text(value=str(self.default_value), - layout=widgets.Layout(width='10%', height='32px')) - comment = widgets.Label(value=self.comment, - layout=widgets.Layout(width='75%', height='32px')) - - par_widget.observe(self.update, "value") - - return widgets.HBox([label, par_widget, comment]) - - def update(self, change): - """ - Update function called whenever the user updates the widget - - When strings parameters are used, this function adds the necessary - quotation marks if none are provided. - """ - new_value = change.new - if self.parameter.type == "string": - if type(new_value) is str: - if not (new_value[0] == '"' or new_value[0] == "'"): - new_value = '"' + new_value + '"' - - self.parameters[self.name] = new_value - - class SimInterface: """ Class for setting up widget that controls McStasScript instrument and plot @@ -128,10 +48,17 @@ def __init__(self, instrument): self.plot_interface = None self.run_button = None + self.live_widget = None + self.progress_bar = None + self.sim_steps = 5 self.ncount = "1E6" self.mpi = "disabled" + self.thread_data = None + self.thread = None + self.run_arguments = None + self.parameters = {} # get default parameters from instrument for parameter in self.instrument.parameter_list: @@ -151,15 +78,9 @@ def make_parameter_widgets(self): return widgets.VBox(parameter_widgets) - def run_simulation(self, change): + def run_simulation_thread(self, change): """ - Performs the simulation with current parameters and settings. - - Changes icon on button to hourglass while simulation is running, then - returns to calculator icon. - - Has dummy parameter change to allow the method to be used in on_click - method of the run button. + Runs simulation as thread, allowing user to update plots simultaneously Parameters ---------- @@ -167,27 +88,67 @@ def run_simulation(self, change): change: widget change Not used """ - run_arguments = {"foldername": "interface", + + thread = threading.Thread(target=self.run_simulation_live) + thread.start() + + def run_simulation_live(self): + """ + Performs the simulation with current parameters and settings. + + When live mode is used, updates plot as more data is added. + + Changes icon on button to hourglass while simulation is running, then + returns to calculator icon. + """ + + lock = threading.Lock() + + if self.live_widget.value: + sim_parts = self.sim_steps + else: + sim_parts = 1 + + part_ncount = int(float(self.ncount)/sim_parts) + + run_arguments = {"foldername": "interface_" + self.instrument.name, "increment_folder_name": True, "parameters": self.parameters, - "ncount": int(float(self.ncount))} + "ncount": part_ncount, + "force_compile": False} if self.mpi != "disabled": run_arguments["mpi"] = self.mpi self.run_button.icon = "hourglass" #print("Running with:", run_arguments) - try: - with HiddenPrints(): - data = self.instrument.run_full_instrument(**run_arguments) - #data = self.instrument.run_full_instrument(**run_arguments) - except NameError: - print("McStas run failed.") - data = [] + if self.live_widget.value: + self.progress_bar.layout.visibility = 'visible' + else: + self.progress_bar.layout.visibility = 'hidden' - self.run_button.icon = "calculator" + self.progress_bar.value = 0 + plot_data = None + for index in range(sim_parts): + try: + with HiddenPrints(): + data = self.instrument.run_full_instrument(**run_arguments) + except NameError: + print("McStas run failed.") + data = [] + + self.progress_bar.value = index + 1 - self.plot_interface.set_data(data) + if plot_data is None: + plot_data = data + else: + add_data(plot_data, data) + + with lock: + sent_data = copy.deepcopy(plot_data) + self.plot_interface.set_data(sent_data) + + self.run_button.icon = "calculator" def make_run_button(self): """ @@ -200,7 +161,8 @@ def make_run_button(self): tooltip='Runs the simulation with current parameters', icon='calculator' # (FontAwesome names without the `fa-` prefix) ) - button.on_click(self.run_simulation) + button.on_click(self.run_simulation_thread) + return button def make_ncount_field(self): @@ -267,6 +229,24 @@ def update_mpi(self, change): except ValueError: pass + def make_live_checkmark(self): + """ + Makes widget for choosing live simulations on / off + """ + widget = widgets.Checkbox(value=False, description="Live results") + + return widget + + def make_progress_bar(self): + """ + Makes a progress bar for live simulations + """ + widget = widgets.IntProgress(value=0, min=0, max=self.sim_steps, + description="Sim progress", + orientation="horizontal") + + return widget + def show_interface(self): """ Builds and shows widget interface @@ -276,11 +256,15 @@ def show_interface(self): parameter_widgets = self.make_parameter_widgets() # Make simulation controls + self.live_widget = self.make_live_checkmark() + self.progress_bar = self.make_progress_bar() + self.progress_bar.layout.visibility = "hidden" self.run_button = self.make_run_button() ncount_field = self.make_ncount_field() mpi_field = self.make_mpi_field() - simulation_widget = widgets.HBox([self.run_button, ncount_field, mpi_field]) + simulation_widget = widgets.HBox([self.run_button, ncount_field, mpi_field, + self.live_widget, self.progress_bar]) #layout=widgets.Layout(border="solid")) self.plot_interface = plot_interface.PlotInterface() @@ -289,4 +273,113 @@ def show_interface(self): return widgets.VBox([parameter_widgets, simulation_widget, plot_widget]) +class ParameterWidget: + """ + Widget for parameter object from McStasScript instrument + """ + def __init__(self, parameter, parameters): + """ + Describes a widget for a parameter object given all parameters + + When no options are given in ParameterVariable object, the widget will + be a textfield where the user can input the value. If the options + attribute is used, the widget will be a dropdown menu with available + options. The make_widget method returns the widget, and the update + function is called whenever the user interacts with the widget. + + The widget shows parameter name, the interactive widget and a comment + + Parameters + ---------- + + parameter: McStasScript ParameterVariable object + The parameter this widget should represent + + parameters: dict of McStasScript ParameterVariable objects + Dict with all parameter objects of the instrument + """ + + self.parameter = parameter + self.parameters = parameters + + if parameter_has_default(parameter): + self.default_value = get_parameter_default(parameter) + else: + self.default_value = "" + + self.name = parameter.name + self.comment = parameter.comment + + def make_widget(self): + """ + Returns widget with parameter name, interactive widget and comment + """ + label = widgets.Label(value=self.name, + layout=widgets.Layout(width='15%', height='32px')) + if self.parameter.options is not None: + par_widget = widgets.Dropdown(options=self.parameter.options, + layout=widgets.Layout(width='10%', height='32px')) + if self.default_value != "": + if self.default_value in self.parameter.options: + par_widget.value = self.default_value + elif self.default_value.strip("'") in self.parameter.options: + par_widget.value = self.default_value.strip("'") + elif self.default_value.strip('"') in self.parameter.options: + par_widget.value = self.default_value.strip('"') + else: + raise KeyError("default value not found in options for parameter: " + + str(self.parameter.name)) + + else: + par_widget = widgets.Text(value=str(self.default_value), + layout=widgets.Layout(width='10%', height='32px')) + comment = widgets.Label(value=self.comment, + layout=widgets.Layout(width='75%', height='32px')) + + par_widget.observe(self.update, "value") + + return widgets.HBox([label, par_widget, comment]) + + def update(self, change): + """ + Update function called whenever the user updates the widget + + When strings parameters are used, this function adds the necessary + quotation marks if none are provided. + """ + new_value = change.new + if self.parameter.type == "string": + if type(new_value) is str: + if not (new_value[0] == '"' or new_value[0] == "'"): + new_value = '"' + new_value + '"' + + self.parameters[self.name] = new_value + + +def add_data(initial, new_data): + """ + Method for adding new data to a data set + + Updates Intensity, Error and Ncount + + Updates all data except metadata info + """ + + for monitor in initial: + ref_ncount = float(monitor.metadata.info["Ncount"]) + + new_monitor = name_search(monitor.name, new_data) + new_ncount = float(new_monitor.metadata.info["Ncount"]) + + total_ncount = ref_ncount + new_ncount + + scale_old = ref_ncount / total_ncount + scale_new = new_ncount / total_ncount + + monitor.Intensity = scale_old*monitor.Intensity + scale_new*new_monitor.Intensity + monitor.Error = np.sqrt(scale_old**2*monitor.Error**2+scale_new**2*new_monitor.Error**2) + monitor.Ncount = monitor.Ncount + new_monitor.Ncount + + monitor.metadata.info["Ncount"] = total_ncount + diff --git a/setup.py b/setup.py index 7bc8431d..ed2cda63 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ setuptools.setup( name='McStasScript', - version='0.0.27', + version='0.0.30', author="Mads Bertelsen", author_email="Mads.Bertelsen@ess.eu", description="A python scripting interface for McStas", From ab10be4e54289fc7d0fa5432d51ab4c301df6a6c Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 16 Jun 2021 13:48:45 +0200 Subject: [PATCH 157/403] Update of plotting and simulation GUI along with unit tests. Now include the live simulation, chopping the simulation into smaller chunks that are displayed to the user earlier. Unit tests now test a large part of the GUI code and underlying methods that are called when using the widgets. An integration test going through the GUI simulation interface through the closest method to pressing the run button has also been added. --- mcstasscript/helper/plot_helper.py | 263 +++++++++++++++++ .../test_complex_instrument.py | 54 +++- mcstasscript/interface/plotter.py | 268 +----------------- mcstasscript/jb_interface/plot_interface.py | 11 +- .../jb_interface/simulation_interface.py | 2 - mcstasscript/tests/test_add_data.py | 236 +++++++++++++++ mcstasscript/tests/test_plot_interface.py | 222 +++++++++++++++ .../tests/test_simulation_interface.py | 208 ++++++++++++++ mcstasscript/tests/test_widget_helpers.py | 81 ++++++ mcstasscript/tests/utilities.py | 15 + 10 files changed, 1090 insertions(+), 270 deletions(-) create mode 100644 mcstasscript/helper/plot_helper.py create mode 100644 mcstasscript/tests/test_add_data.py create mode 100644 mcstasscript/tests/test_plot_interface.py create mode 100644 mcstasscript/tests/test_simulation_interface.py create mode 100644 mcstasscript/tests/test_widget_helpers.py create mode 100644 mcstasscript/tests/utilities.py diff --git a/mcstasscript/helper/plot_helper.py b/mcstasscript/helper/plot_helper.py new file mode 100644 index 00000000..3e317510 --- /dev/null +++ b/mcstasscript/helper/plot_helper.py @@ -0,0 +1,263 @@ +import copy + +import numpy as np +import matplotlib +import matplotlib.pyplot as plt + +from matplotlib.ticker import MaxNLocator +from matplotlib.colors import BoundaryNorm + +from mcstasscript.data.data import McStasData + +def _fmt(x, pos): + """ + Used for nice formatting of powers of 10 when plotting logarithmic + """ + a, b = '{:.2e}'.format(x).split('e') + b = int(b) + if abs(float(a) - 1) < 0.01: + return r'$10^{{{}}}$'.format(b) + else: + return r'${} \times 10^{{{}}}$'.format(a, b) + + +def _find_min_max_I(data): + """ + Returns minimum and maximum intensity to plot given dataset + + Uses the plot options embedded in McStasData to determine the proper + minimum and maximum intensity to display in a plot. + + Have to take cut_min and cut_max into account that can cut parts of + the intensity away. When plotting logarithmic, orders_of_mags limits + the orders of magnitude shown. + + Returns tuple of minimum and maximum, when no data is present the + function returns 0, 0. + """ + cut_max = data.plot_options.cut_max # Default 1 + cut_min = data.plot_options.cut_min # Default 0 + + to_plot = data.Intensity + + min_value = to_plot.min() + max_value = to_plot.max() + + if min_value == 0 and max_value == 0: + return 0, 0 + + if not data.plot_options.log: + # Linear, simple case + # Cut top and bottom of data as specified in cut variables + min_value = min_value + (max_value - min_value) * cut_min + max_value = max_value * cut_max + + else: + # Logarithmic, minimum / maximum can not be zero + max_data_value = to_plot.max() + max_value = np.log10(max_data_value * cut_max) + + min_value = np.min(to_plot[np.nonzero(to_plot)]) + min_value = min_value + (max_data_value - min_value) * cut_min + min_value = np.log10(min_value) + + # Take orders_of_mag into account (max / min in log10) + if max_value - min_value > data.plot_options.orders_of_mag: + min_value = max_value - data.plot_options.orders_of_mag + + # Convert back from log10 + min_value = 10.0 ** min_value + max_value = 10.0 ** max_value + + return min_value, max_value + + +def _plot_fig_ax(data, fig, ax, **kwargs): + """ + Plots the content of a single McStasData object + + Plotting is controlled through options assosciated with the + McStasData objects. + + When plotting 2D objects, returns the pcolormesh object + """ + + print("Plotting data with name " + data.metadata.component_name) + if type(data.metadata.dimension) == int: + + x_axis_mult = data.plot_options.x_limit_multiplier + + x = data.xaxis * x_axis_mult + y = data.Intensity + y_err = data.Error + + ax.errorbar(x, y, yerr=y_err) + + if data.plot_options.log: + ax.set_yscale("log", nonposy='clip') + + ax.set_xlim(data.metadata.limits[0] * x_axis_mult, + data.metadata.limits[1] * x_axis_mult) + + # Add a title + ax.set_title(data.metadata.title) + + # Add axis labels + ax.set_xlabel(data.metadata.xlabel) + ax.set_ylabel(data.metadata.ylabel) + + if data.plot_options.custom_xlim_left: + ax.set_xlim(left=data.plot_options.left_lim) + + if data.plot_options.custom_xlim_right: + ax.set_xlim(right=data.plot_options.right_lim) + + elif len(data.metadata.dimension) == 2: + + min_value, max_value = _find_min_max_I(data) + + if "fixed_minimum_value" in kwargs: + min_value = kwargs["fixed_minimum_value"] + if "fixed_maximum_value" in kwargs: + max_value = kwargs["fixed_maximum_value"] + + # Set the axis + x_axis_mult = data.plot_options.x_limit_multiplier + y_axis_mult = data.plot_options.y_limit_multiplier + + X = np.linspace(data.metadata.limits[0] * x_axis_mult, + data.metadata.limits[1] * x_axis_mult, + data.metadata.dimension[0] + 1) + Y = np.linspace(data.metadata.limits[2] * y_axis_mult, + data.metadata.limits[3] * y_axis_mult, + data.metadata.dimension[1] + 1) + + # Create a meshgrid for both x and y + x, y = np.meshgrid(X, Y) + + # Generate information on necessary colorrange + levels = MaxNLocator(nbins=150).tick_values(min_value, max_value) + + # Select colormap + cmap = copy.copy(plt.get_cmap(data.plot_options.colormap)) + if "no_data_to_black" in kwargs: + if kwargs["no_data_to_black"]: + cmap.set_bad((0, 0, 0)) + + norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) + + # Empty data, return without cmap or norm + if min_value == 0 and max_value == 0: + levels = MaxNLocator(nbins=150).tick_values(0.001, 1.0) + norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) + im = ax.pcolormesh(x, y, data.Intensity, cmap=cmap, norm=norm) + + # Plot the data on the meshgrids + elif data.plot_options.log: + color_norm = matplotlib.colors.LogNorm(vmin=min_value, + vmax=max_value) + im = ax.pcolormesh(x, y, data.Intensity, + cmap=cmap, norm=color_norm) + else: + im = ax.pcolormesh(x, y, data.Intensity, cmap=cmap, norm=norm) + + # Add the colorbar + if data.plot_options.show_colorbar: + cax = None + if "colorbar_axes" in kwargs: + cax = kwargs["colorbar_axes"] + + fig.colorbar(im, ax=ax, cax=cax, + format=matplotlib.ticker.FuncFormatter(_fmt)) + + if "colorbar_axes" in kwargs: + cax.set_aspect(20) + + # Add a title + ax.set_title(data.metadata.title) + + # Add axis labels + ax.set_xlabel(data.metadata.xlabel) + ax.set_ylabel(data.metadata.ylabel) + + if data.plot_options.custom_ylim_top: + ax.set_ylim(top=data.plot_options.top_lim) + + if data.plot_options.custom_ylim_bottom: + ax.set_ylim(bottom=data.plot_options.bottom_lim) + + if data.plot_options.custom_xlim_left: + ax.set_xlim(left=data.plot_options.left_lim) + + if data.plot_options.custom_xlim_right: + ax.set_xlim(right=data.plot_options.right_lim) + + return im + else: + print("Error, dimension not read correctly") + + +def _handle_kwargs(data_list, **kwargs): + """ + Handle kwargs when list of McStasData objects given. + + Returns figsize and data_list + + figsize has a default value, but can be changed with keyword argument + data_list is turned into a list if it isn't already + + Any kwargs can be given as a list, in that case apply them to given + to the corresponding index. + """ + + if "fontsize" in kwargs: + used_fontsize = kwargs["fontsize"] + else: + used_fontsize = 11 + plt.rcParams.update({'font.size': used_fontsize}) + + if isinstance(data_list, McStasData): + # Only a single element, put it in a list for easier syntax later + data_list = [data_list] + + known_plotting_kwargs = ["log", "orders_of_mag", + "top_lim", "bottom_lim", + "left_lim", "right_lim", + "cut_min", "cut_max", + "colormap", "show_colorbar", + "x_axis_multiplier", + "y_axis_multiplier"] + + for option in known_plotting_kwargs: + if option in kwargs: + given_option = kwargs[option] + + if isinstance(given_option, list): + if len(data_list) < len(given_option): + raise ValueError("Keyword argument " + option + " is " + + "given as a list, but this list has " + + "more elements than there are " + + "data sets to be plotted.") + + index = 0 + for per_list_option in given_option: + input_kwarg = {option: per_list_option} + data_list[index].set_plot_options(**input_kwarg) + index += 1 + + else: + for data in data_list: + input_kwarg = {option: given_option} + data.set_plot_options(**input_kwarg) + + # Remove option from kwargs + del kwargs[option] + + if "figsize" in kwargs: + figsize = kwargs["figsize"] + if isinstance(figsize, list): + figsize = (figsize[0], figsize[1]) + else: + figsize = (13, 7) + + return figsize, data_list \ No newline at end of file diff --git a/mcstasscript/integration_tests/test_complex_instrument.py b/mcstasscript/integration_tests/test_complex_instrument.py index 40f93df2..24537e93 100644 --- a/mcstasscript/integration_tests/test_complex_instrument.py +++ b/mcstasscript/integration_tests/test_complex_instrument.py @@ -3,9 +3,16 @@ import unittest import unittest.mock import matplotlib as plt +import threading from mcstasscript.interface import instr, functions +from mcstasscript.jb_interface.simulation_interface import SimInterface +class FakeChange: + def __init__(self, new=None, old=None, name=None): + self.new = new + self.old = old + self.name = name def setup_complex_instrument(): """ @@ -133,7 +140,7 @@ class TestComplexInstrument(unittest.TestCase): correctly in order for these tests to succeed. """ @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) - def test_complex_instrument(self, mock_stdout): + def test_complex_instrument_run(self, mock_stdout): """ Test parameters can be controlled through McStasScript. Here a slit is moved to one side and the result is verified. @@ -174,6 +181,51 @@ def test_complex_instrument(self, mock_stdout): # time.sleep(10) # plt.close() + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_complex_instrument_interface(self, mock_stdout): + """ + Test that a simulation can be performed through the simulation + interface, or as close as I can through scripting. + Need to join the simulation thread to the main thread in order + to wait for the completion as it is performed in a new thread. + """ + CURRENT_DIR = os.getcwd() + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + os.chdir(THIS_DIR) + + Instr = setup_complex_instrument() + + interface = SimInterface(Instr) + interface.show_interface() + + change = FakeChange() + + interface.run_simulation_thread(change) + + for thread in threading.enumerate(): + if thread.name != "MainThread": + thread.join() + + data = interface.plot_interface.data + + os.chdir(CURRENT_DIR) + + intensity_data_pos = functions.name_search("PSD_1D_1", data).Intensity + sum_outside_beam = sum(intensity_data_pos[0:50]) + sum_inside_beam = sum(intensity_data_pos[51:99]) + self.assertTrue(1000 * sum_outside_beam < sum_inside_beam) + + intensity_data_neg = functions.name_search("PSD_1D_2", data).Intensity + sum_outside_beam = sum(intensity_data_neg[51:99]) + sum_inside_beam = sum(intensity_data_neg[0:50]) + self.assertTrue(1000 * sum_outside_beam < sum_inside_beam) + + intensity_data_all = functions.name_search("PSD_1D", data).Intensity + sum_outside_beam = sum(intensity_data_all[49:51]) + sum_inside_beam = (sum(intensity_data_all[0:45]) + + sum(intensity_data_all[56:99])) + self.assertTrue(1000 * sum_outside_beam < sum_inside_beam) + if __name__ == '__main__': unittest.main() diff --git a/mcstasscript/interface/plotter.py b/mcstasscript/interface/plotter.py index 2e5d2162..4c6bae29 100644 --- a/mcstasscript/interface/plotter.py +++ b/mcstasscript/interface/plotter.py @@ -1,270 +1,16 @@ import math -import copy + import numpy as np -import matplotlib import matplotlib.pyplot as plt import matplotlib.animation as animation -from matplotlib.colors import BoundaryNorm -from matplotlib.ticker import MaxNLocator -from mcstasscript.data.data import McStasData +from mcstasscript.helper.plot_helper import _fmt +from mcstasscript.helper.plot_helper import _find_min_max_I +from mcstasscript.helper.plot_helper import _plot_fig_ax +from mcstasscript.helper.plot_helper import _handle_kwargs from mcstasscript.jb_interface.plot_interface import PlotInterface -def _fmt(x, pos): - """ - Used for nice formatting of powers of 10 when plotting logarithmic - """ - a, b = '{:.2e}'.format(x).split('e') - b = int(b) - if abs(float(a) - 1) < 0.01: - return r'$10^{{{}}}$'.format(b) - else: - return r'${} \times 10^{{{}}}$'.format(a, b) - - -def _find_min_max_I(data): - """ - Returns minimum and maximum intensity to plot given dataset - - Uses the plot options embedded in McStasData to determine the proper - minimum and maximum intensity to display in a plot. - - Have to take cut_min and cut_max into account that can cut parts of - the intensity away. When plotting logarithmic, orders_of_mags limits - the orders of magnitude shown. - - Returns tuple of minimum and maximum, when no data is present the - function returns 0, 0. - """ - cut_max = data.plot_options.cut_max # Default 1 - cut_min = data.plot_options.cut_min # Default 0 - - to_plot = data.Intensity - - min_value = to_plot.min() - max_value = to_plot.max() - - if min_value == 0 and max_value == 0: - return 0, 0 - - if not data.plot_options.log: - # Linear, simple case - # Cut top and bottom of data as specified in cut variables - min_value = min_value + (max_value - min_value) * cut_min - max_value = max_value * cut_max - - else: - # Logarithmic, minimum / maximum can not be zero - max_data_value = to_plot.max() - max_value = np.log10(max_data_value * cut_max) - - min_value = np.min(to_plot[np.nonzero(to_plot)]) - min_value = min_value + (max_data_value - min_value) * cut_min - min_value = np.log10(min_value) - - # Take orders_of_mag into account (max / min in log10) - if max_value - min_value > data.plot_options.orders_of_mag: - min_value = max_value - data.plot_options.orders_of_mag - - # Convert back from log10 - min_value = 10.0 ** min_value - max_value = 10.0 ** max_value - - return min_value, max_value - - -def _plot_fig_ax(data, fig, ax, **kwargs): - """ - Plots the content of a single McStasData object - - Plotting is controlled through options assosciated with the - McStasData objects. - - When plotting 2D objects, returns the pcolormesh object - """ - - print("Plotting data with name " + data.metadata.component_name) - if type(data.metadata.dimension) == int: - - x_axis_mult = data.plot_options.x_limit_multiplier - - x = data.xaxis * x_axis_mult - y = data.Intensity - y_err = data.Error - - ax.errorbar(x, y, yerr=y_err) - - if data.plot_options.log: - ax.set_yscale("log", nonposy='clip') - - ax.set_xlim(data.metadata.limits[0] * x_axis_mult, - data.metadata.limits[1] * x_axis_mult) - - # Add a title - ax.set_title(data.metadata.title) - - # Add axis labels - ax.set_xlabel(data.metadata.xlabel) - ax.set_ylabel(data.metadata.ylabel) - - if data.plot_options.custom_xlim_left: - ax.set_xlim(left=data.plot_options.left_lim) - - if data.plot_options.custom_xlim_right: - ax.set_xlim(right=data.plot_options.right_lim) - - elif len(data.metadata.dimension) == 2: - - min_value, max_value = _find_min_max_I(data) - - if "fixed_minimum_value" in kwargs: - min_value = kwargs["fixed_minimum_value"] - if "fixed_maximum_value" in kwargs: - max_value = kwargs["fixed_maximum_value"] - - # Set the axis - x_axis_mult = data.plot_options.x_limit_multiplier - y_axis_mult = data.plot_options.y_limit_multiplier - - X = np.linspace(data.metadata.limits[0] * x_axis_mult, - data.metadata.limits[1] * x_axis_mult, - data.metadata.dimension[0] + 1) - Y = np.linspace(data.metadata.limits[2] * y_axis_mult, - data.metadata.limits[3] * y_axis_mult, - data.metadata.dimension[1] + 1) - - # Create a meshgrid for both x and y - x, y = np.meshgrid(X, Y) - - # Generate information on necessary colorrange - levels = MaxNLocator(nbins=150).tick_values(min_value, max_value) - - # Select colormap - cmap = copy.copy(plt.get_cmap(data.plot_options.colormap)) - if "no_data_to_black" in kwargs: - if kwargs["no_data_to_black"]: - cmap.set_bad((0, 0, 0)) - - norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) - - # Empty data, return without cmap or norm - if min_value == 0 and max_value == 0: - levels = MaxNLocator(nbins=150).tick_values(0.001, 1.0) - norm = BoundaryNorm(levels, ncolors=cmap.N, clip=True) - im = ax.pcolormesh(x, y, data.Intensity, cmap=cmap, norm=norm) - - # Plot the data on the meshgrids - elif data.plot_options.log: - color_norm = matplotlib.colors.LogNorm(vmin=min_value, - vmax=max_value) - im = ax.pcolormesh(x, y, data.Intensity, - cmap=cmap, norm=color_norm) - else: - im = ax.pcolormesh(x, y, data.Intensity, cmap=cmap, norm=norm) - - # Add the colorbar - if data.plot_options.show_colorbar: - cax = None - if "colorbar_axes" in kwargs: - cax = kwargs["colorbar_axes"] - - fig.colorbar(im, ax=ax, cax=cax, - format=matplotlib.ticker.FuncFormatter(_fmt)) - - if "colorbar_axes" in kwargs: - cax.set_aspect(20) - - # Add a title - ax.set_title(data.metadata.title) - - # Add axis labels - ax.set_xlabel(data.metadata.xlabel) - ax.set_ylabel(data.metadata.ylabel) - - if data.plot_options.custom_ylim_top: - ax.set_ylim(top=data.plot_options.top_lim) - - if data.plot_options.custom_ylim_bottom: - ax.set_ylim(bottom=data.plot_options.bottom_lim) - - if data.plot_options.custom_xlim_left: - ax.set_xlim(left=data.plot_options.left_lim) - - if data.plot_options.custom_xlim_right: - ax.set_xlim(right=data.plot_options.right_lim) - - return im - else: - print("Error, dimension not read correctly") - - -def _handle_kwargs(data_list, **kwargs): - """ - Handle kwargs when list of McStasData objects given. - - Returns figsize and data_list - - figsize has a default value, but can be changed with keyword argument - data_list is turned into a list if it isn't already - - Any kwargs can be given as a list, in that case apply them to given - to the corresponding index. - """ - - if "fontsize" in kwargs: - used_fontsize = kwargs["fontsize"] - else: - used_fontsize = 11 - plt.rcParams.update({'font.size': used_fontsize}) - - if isinstance(data_list, McStasData): - # Only a single element, put it in a list for easier syntax later - data_list = [data_list] - - known_plotting_kwargs = ["log", "orders_of_mag", - "top_lim", "bottom_lim", - "left_lim", "right_lim", - "cut_min", "cut_max", - "colormap", "show_colorbar", - "x_axis_multiplier", - "y_axis_multiplier"] - - for option in known_plotting_kwargs: - if option in kwargs: - given_option = kwargs[option] - - if isinstance(given_option, list): - if len(data_list) < len(given_option): - raise ValueError("Keyword argument " + option + " is " - + "given as a list, but this list has " - + "more elements than there are " - + "data sets to be plotted.") - - index = 0 - for per_list_option in given_option: - input_kwarg = {option: per_list_option} - data_list[index].set_plot_options(**input_kwarg) - index += 1 - - else: - for data in data_list: - input_kwarg = {option: given_option} - data.set_plot_options(**input_kwarg) - - # Remove option from kwargs - del kwargs[option] - - if "figsize" in kwargs: - figsize = kwargs["figsize"] - if isinstance(figsize, list): - figsize = (figsize[0], figsize[1]) - else: - figsize = (13, 7) - - return figsize, data_list - - def make_plot(data_list, **kwargs): """ make_plot plots contents of McStasData objects given in list @@ -422,8 +168,8 @@ def interface(data): Parameters ---------- - data : List of McStasData objects """ + interface = PlotInterface(data) - return interface.show_interface() \ No newline at end of file + return interface.show_interface() diff --git a/mcstasscript/jb_interface/plot_interface.py b/mcstasscript/jb_interface/plot_interface.py index 0e70ada9..3247375c 100644 --- a/mcstasscript/jb_interface/plot_interface.py +++ b/mcstasscript/jb_interface/plot_interface.py @@ -10,7 +10,7 @@ import matplotlib.pyplot as plt from mcstasscript.interface.functions import name_search -from mcstasscript.interface import plotter +from mcstasscript.helper.plot_helper import _plot_fig_ax from mcstasscript.jb_interface.widget_helpers import HiddenPrints @@ -30,8 +30,6 @@ def __init__(self, data=None): """ self.data = data - output = None - # Variables related to monitor choice self.monitor_dropdown = None self.current_monitor = None @@ -71,7 +69,7 @@ def set_log_mode(self, log_mode): """ Sets log mode for plotting, True or False """ - self.log_mode = log_mode + self.log_mode = bool(log_mode) self.update_plot() def set_orders_of_mag(self, orders_of_mag): @@ -93,7 +91,7 @@ def new_plot(self): Sets up original plot with fig, ax and ax for colorbar """ # fig, ax = plt.subplots(constrained_layout=True, figsize=(6, 4)) - self.fig, (self.ax, self.colorbar_ax) = plt.subplots(ncols=2, gridspec_kw={'width_ratios': [4, 1]}) + self.fig, (self.ax, self.colorbar_ax) = plt.subplots(ncols=2, gridspec_kw={'width_ratios': [6, 1]}) self.fig.canvas.toolbar_position = 'bottom' @@ -142,7 +140,8 @@ def update_plot(self): #print("Plotting with: ", plot_options) monitor.set_plot_options(**plot_options) with HiddenPrints(): - plotter._plot_fig_ax(monitor, self.fig, self.ax, colorbar_axes=self.colorbar_ax) + #plotter._plot_fig_ax(monitor, self.fig, self.ax, colorbar_axes=self.colorbar_ax) + _plot_fig_ax(monitor, self.fig, self.ax, colorbar_axes=self.colorbar_ax) self.colorbar_ax.set_aspect(20) diff --git a/mcstasscript/jb_interface/simulation_interface.py b/mcstasscript/jb_interface/simulation_interface.py index 346b8151..deaa9f10 100644 --- a/mcstasscript/jb_interface/simulation_interface.py +++ b/mcstasscript/jb_interface/simulation_interface.py @@ -381,5 +381,3 @@ def add_data(initial, new_data): monitor.Ncount = monitor.Ncount + new_monitor.Ncount monitor.metadata.info["Ncount"] = total_ncount - - diff --git a/mcstasscript/tests/test_add_data.py b/mcstasscript/tests/test_add_data.py new file mode 100644 index 00000000..b21c3ced --- /dev/null +++ b/mcstasscript/tests/test_add_data.py @@ -0,0 +1,236 @@ +import unittest +import numpy as np +import copy + +from mcstasscript.data.data import McStasData +from mcstasscript.data.data import McStasMetaData +from mcstasscript.jb_interface.simulation_interface import add_data + +def set_dummy_MetaData_1d(): + """ + Sets up simple McStasMetaData object with dimension, 1d case + """ + meta_data = McStasMetaData() + meta_data.component_name = "component for 1d" + meta_data.filename = "data.dat" + meta_data.dimension = 50 + + meta_data.info = {"Ncount" : 40} + + return meta_data + + +def set_dummy_McStasData_1d(): + """ + Sets up simple McStasData object, 1d case + """ + meta_data = set_dummy_MetaData_1d() + + intensity = np.ones(20) + error = np.ones(20) + ncount = np.ones(20) + axis = np.arange(20)*5.0 + + return McStasData(meta_data, intensity, error, ncount, xaxis=axis) + + +def set_dummy_MetaData_2d(): + """ + Sets up simple McStasMetaData object with dimensions, 2d case + """ + meta_data = McStasMetaData() + meta_data.component_name = "test a component" + meta_data.filename = "data.dat" + meta_data.dimension = [50, 100] + + meta_data.info = {"Ncount": 40} + + return meta_data + + +def set_dummy_McStasData_2d(): + """ + Sets up simple McStasData object, 2d case + """ + meta_data = set_dummy_MetaData_2d() + + intensity = np.ones(20).reshape(4, 5) + error = np.ones(20).reshape(4, 5) + ncount = np.ones(20).reshape(4, 5) + + return McStasData(meta_data, intensity, error, ncount) + +class Test_add_data(unittest.TestCase): + def test_1d_updates_correctly(self): + """ + Test that adding 1d dataset modifies only the intended dataset + """ + + data1 = set_dummy_McStasData_1d() + data1_original = copy.deepcopy(data1) + + data2 = set_dummy_McStasData_1d() + data2_original = copy.deepcopy(data2) + + add_data([data1], [data2]) + + # Data 2 should not be touched + self.assertTrue(np.array_equal(data2.Intensity, data2_original.Intensity)) + self.assertTrue(np.array_equal(data2.Error, data2_original.Error)) + self.assertTrue(np.array_equal(data2.Ncount, data2_original.Ncount)) + + # Data 1 Intensity should be unchanged, as data1 and data2 equal + self.assertTrue(np.array_equal(data1.Intensity, data1_original.Intensity)) + # Data 1 should be updated + self.assertFalse(np.array_equal(data1.Error, data1_original.Error)) + self.assertFalse(np.array_equal(data1.Ncount, data1_original.Ncount)) + + def test_1d_updates_different(self): + """ + Test that adding 1d datasets work as expected when different + """ + data1 = set_dummy_McStasData_1d() + data1.Intensity *= 2.0 + data1.Intensity[10:] *= 2.0 + data1.Error *= 1.5 + data1.Ncount *= 4.0 + data1.metadata.info["Ncount"] *= 4.0 + data1_original = copy.deepcopy(data1) + + data2 = set_dummy_McStasData_1d() + data2.Intensity *= 3.0 + data2.Error *= 1.5 + data2_original = copy.deepcopy(data2) + + add_data([data1], [data2]) + + # Data 2 should not be touched + self.assertTrue(np.array_equal(data2.Intensity, data2_original.Intensity)) + self.assertTrue(np.array_equal(data2.Error, data2_original.Error)) + self.assertTrue(np.array_equal(data2.Ncount, data2_original.Ncount)) + + # 4 times more weight on data1, intensity 2 and 3 + expected_low_intensity = 4/5*2.0 + 1/5*3.0 + # 4 times more weight on data1, intensity 4 and 3 + expected_high_intensity = 4/5*2.0*2.0 + 1/5*3.0 + expected_error = np.sqrt((4 / 5) ** 2 * 1.5 ** 2 + (1 / 5) ** 2 * 1.5 ** 2) + + for index in range(len(data1_original.Intensity)): + if index < 10: + self.assertEqual(data1.Intensity[index], expected_low_intensity) + else: + self.assertEqual(data1.Intensity[index], expected_high_intensity) + + self.assertEqual(data1.Error[index], expected_error) + self.assertEqual(data1.Ncount[index], 5.0) + + self.assertEqual(data1.metadata.info["Ncount"], 40*4+40) + + def test_fail(self): + """ + Test that adding datasets fail when they dont have the same monitors + + Both 1d and 2d cases included. + """ + + data11 = set_dummy_McStasData_1d() + data11.name = "first monitor" + data11.filename = "first_monitor.dat" + data12 = set_dummy_McStasData_2d() + data12.name = "second monitor" + data12.filename = "second_monitor.dat" + data13 = set_dummy_McStasData_1d() + data13.name = "third monitor" + data13.filename = "third_monitor.dat" + + data21 = set_dummy_McStasData_1d() + data21.name = "first monitor" + data21.filename = "first_monitor.dat" + data22 = set_dummy_McStasData_2d() + data22.name = "second monitor" + data22.filename = "second_monitor.dat" + data23 = set_dummy_McStasData_1d() + data23.name = "third monitor" + data23.filename = "third_monitor.dat" + + # Should succeed, monitors match + add_data([data11, data12, data13], [data21, data22, data23]) + # Should succeed, all monitors needed to update first argument present + add_data([data11, data12], [data21, data22, data23]) + + # Should fail if a monitor is missing + with self.assertRaises(NameError): + add_data([data11, data12, data13], [data21, data22]) + + data23.name = "different monitor" + # Should fail if name mismatch + with self.assertRaises(NameError): + add_data([data11, data12, data13], [data21, data22, data23]) + + def test_2d_updates_correctly(self): + """ + Test that adding 1d dataset modifies only the intended dataset + """ + + data1 = set_dummy_McStasData_2d() + data1_original = copy.deepcopy(data1) + + data2 = set_dummy_McStasData_2d() + data2_original = copy.deepcopy(data2) + + add_data([data1], [data2]) + + # Data 2 should not be touched + self.assertTrue(np.array_equal(data2.Intensity, data2_original.Intensity)) + self.assertTrue(np.array_equal(data2.Error, data2_original.Error)) + self.assertTrue(np.array_equal(data2.Ncount, data2_original.Ncount)) + + # Data 1 Intensity should be unchanged, as data1 and data2 equal + self.assertTrue(np.array_equal(data1.Intensity, data1_original.Intensity)) + # Data 1 should be updated + self.assertFalse(np.array_equal(data1.Error, data1_original.Error)) + self.assertFalse(np.array_equal(data1.Ncount, data1_original.Ncount)) + + def test_2d_updates_different(self): + """ + Test that adding 2d datasets work as expected when different + """ + data1 = set_dummy_McStasData_2d() + data1.Intensity *= 2.0 + data1.Intensity[1,:] *= 2.0 + data1.Error *= 1.5 + data1.Ncount *= 4.0 + data1.metadata.info["Ncount"] *= 4.0 + data1_original = copy.deepcopy(data1) + + data2 = set_dummy_McStasData_2d() + data2.Intensity *= 3.0 + data2.Error *= 1.5 + data2_original = copy.deepcopy(data2) + + add_data([data1], [data2]) + + # Data 2 should not be touched + self.assertTrue(np.array_equal(data2.Intensity, data2_original.Intensity)) + self.assertTrue(np.array_equal(data2.Error, data2_original.Error)) + self.assertTrue(np.array_equal(data2.Ncount, data2_original.Ncount)) + + # 4 times more weight on data1, intensity 2 and 3 + expected_low_intensity = 4/5*2.0 + 1/5*3.0 + # 4 times more weight on data1, intensity 4 and 3 + expected_high_intensity = 4/5*2.0*2.0 + 1/5*3.0 + expected_error = np.sqrt((4 / 5) ** 2 * 1.5 ** 2 + (1 / 5) ** 2 * 1.5 ** 2) + + for index1 in range(len(data1_original.Intensity[:,0])): + for index2 in range(len(data1_original.Intensity[0, :])): + + if index1 == 1: + self.assertEqual(data1.Intensity[index1, index2], expected_high_intensity) + else: + self.assertEqual(data1.Intensity[index1, index2], expected_low_intensity) + + self.assertEqual(data1.Error[index1, index2], expected_error) + self.assertEqual(data1.Ncount[index1, index2], 5.0) + + self.assertEqual(data1.metadata.info["Ncount"], 40*4+40) + diff --git a/mcstasscript/tests/test_plot_interface.py b/mcstasscript/tests/test_plot_interface.py new file mode 100644 index 00000000..9a52ac63 --- /dev/null +++ b/mcstasscript/tests/test_plot_interface.py @@ -0,0 +1,222 @@ +import unittest +import unittest.mock +import io +import numpy as np + +from mcstasscript.jb_interface.plot_interface import PlotInterface +from mcstasscript.jb_interface.plot_interface import LogCheckbox +from mcstasscript.jb_interface.plot_interface import ColormapDropdown +from mcstasscript.jb_interface.plot_interface import OrdersOfMagField + +from mcstasscript.data.data import McStasMetaData +from mcstasscript.data.data import McStasData + +import ipywidgets as widgets + +def set_dummy_MetaData_1d(): + """ + Sets up simple McStasMetaData object with dimension, 1d case + """ + meta_data = McStasMetaData() + meta_data.component_name = "component for 1d" + meta_data.dimension = 50 + + meta_data.limits = [0, 1] + meta_data.xlabel = "" + meta_data.ylabel = "" + meta_data.title = "" + meta_data.filename = "dummy" + + return meta_data + + +def set_dummy_McStasData_1d(): + """ + Sets up simple McStasData object, 1d case + """ + meta_data = set_dummy_MetaData_1d() + + intensity = np.arange(20) + error = 0.5 * np.arange(20) + ncount = 2 * np.arange(20) + axis = np.arange(20)*5.0 + + return McStasData(meta_data, intensity, error, ncount, xaxis=axis) + + +def set_dummy_MetaData_2d(): + """ + Sets up simple McStasMetaData object with dimensions, 2d case + """ + meta_data = McStasMetaData() + meta_data.component_name = "test a component" + meta_data.dimension = [5, 4] + + meta_data.limits = [0, 1, 0, 1] + meta_data.xlabel = "" + meta_data.ylabel = "" + meta_data.title = "" + meta_data.filename = "dummy" + + return meta_data + + +def set_dummy_McStasData_2d(): + """ + Sets up simple McStasData object, 2d case + """ + meta_data = set_dummy_MetaData_2d() + + intensity = np.arange(20).reshape(4, 5) + error = 0.5 * np.arange(20).reshape(4, 5) + ncount = 2 * np.arange(20).reshape(4, 5) + + return McStasData(meta_data, intensity, error, ncount) + + +def fake_data(): + return [set_dummy_McStasData_1d(), set_dummy_McStasData_2d(), set_dummy_McStasData_2d()] + + +class FakeChange: + def __init__(self, new=None, old=None, name=None): + self.new = new + self.old = old + self.name = name + + +class TestPlotInterface(unittest.TestCase): + """ + Test of PlotInterface, mainly the set functions. + Each set function does run the main update_plot function, ensuring + this does not throw obvious errors under a mixed set of circumstances. + The update_plot function is not tested directly. + """ + def test_initialization_without_data(self): + """ + Initialize PlotterInterface without arguments + """ + + interface = PlotInterface() + self.assertEqual(interface.data, None) + + def test_initialization_with_data(self): + """ + Initialize PlotterInterface with data + """ + data = fake_data() + interface = PlotInterface(data) + + self.assertEqual(len(interface.data), 3) + self.assertEqual(interface.data[0].Intensity[5], 5) + self.assertEqual(interface.data[1].Intensity[2, 3], 13) + + def test_show_interface_return(self): + """ + Ensure the show_interface method returns a widget of type HBox + """ + interface = PlotInterface() + widget = interface.show_interface() + + self.assertIsInstance(widget, widgets.widgets.widget_box.HBox) + + def test_set_data(self): + """ + Initialize PlotterInterface without data, add later and ensure + monitor_dropdown received the data and applied it to widget options. + + Furthermore the widget options should be made unique as there are + two identical monitors in the fake data. + """ + + interface = PlotInterface() + self.assertEqual(interface.data, None) + + interface.show_interface() # Needed to set up monitor_dropdown + + interface.set_data(fake_data()) + self.assertEqual(len(interface.data), 3) + self.assertEqual(interface.data[0].Intensity[5], 5) + self.assertEqual(interface.data[1].Intensity[2, 3], 13) + + mon_drop = interface.monitor_dropdown + self.assertEqual(len(mon_drop.data), 3) + self.assertEqual(mon_drop.data[0].Intensity[5], 5) + self.assertEqual(mon_drop.data[1].Intensity[2, 3], 13) + + self.assertEqual(mon_drop.widget.options[0], "component for 1d") + self.assertEqual(mon_drop.widget.options[1], "test a component") + + # The last monitor is identical to the second, so the name is modified + self.assertEqual(mon_drop.widget.options[2], "test a component_1") + + def test_set_current_monitor(self): + """ + Check monitor can be set and that error occurs if wrong name given + """ + + interface = PlotInterface(fake_data()) + interface.show_interface() + + interface.set_current_monitor("test a component") + self.assertEqual(interface.current_monitor, "test a component") + + with self.assertRaises(NameError): + interface.set_current_monitor("component that doesnt exist") + + def test_set_log_mode(self): + """ + Check that set_log_mode works, even through widget + """ + + interface = PlotInterface() + interface.show_interface() + + self.assertFalse(interface.log_mode) + interface.set_log_mode(True) + self.assertTrue(interface.log_mode) + + log_checkbox = LogCheckbox(interface.log_mode, interface.set_log_mode) + + fake_change = FakeChange(new=False) + + log_checkbox.update(fake_change) + self.assertFalse(interface.log_mode) + + def test_set_orders_of_mag(self): + """ + Check that set orders of mag works, even through widget + """ + interface = PlotInterface() + interface.show_interface() + + interface.set_orders_of_mag(37) + self.assertEqual(interface.orders_of_mag, 37) + + log_orders_of_mag = OrdersOfMagField(interface.set_orders_of_mag) + + fake_change = FakeChange(new=42) + + log_orders_of_mag.update(fake_change) + self.assertEqual(interface.orders_of_mag, 42) + + def test_set_colormap(self): + """ + Check that set_colormap works, even through widget + """ + interface = PlotInterface() + interface.show_interface() + + interface.set_colormap("hot") + self.assertEqual(interface.colormap, "hot") + + colormap_dropdown = ColormapDropdown(interface.set_colormap) + + fake_change = FakeChange(new="Purples") + colormap_dropdown.update_cmap(fake_change) + self.assertEqual(interface.colormap, "Purples") + + + + + diff --git a/mcstasscript/tests/test_simulation_interface.py b/mcstasscript/tests/test_simulation_interface.py new file mode 100644 index 00000000..17f5af05 --- /dev/null +++ b/mcstasscript/tests/test_simulation_interface.py @@ -0,0 +1,208 @@ +import os +import io +import unittest +import unittest.mock +import ipywidgets as widgets + +from mcstasscript.jb_interface.simulation_interface import SimInterface +from mcstasscript.jb_interface.simulation_interface import ParameterWidget +from mcstasscript.jb_interface.widget_helpers import parameter_has_default +from mcstasscript.jb_interface.widget_helpers import get_parameter_default +from mcstasscript.interface.instr import McStas_instr +from mcstasscript.interface.instr import McXtrace_instr + + +def setup_instr_root_path_McStas(): + """ + Sets up a neutron instrument with root package_path + """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + instrument = McStas_instr("test_instrument", package_path="/") + + os.chdir(current_work_dir) + + return instrument + +def setup_populated_instr_McStas(): + """ + Sets up a neutron instrument with some features used and three components + """ + instr = setup_instr_root_path_McStas() + + instr.add_parameter("double", "theta") + instr.add_parameter("double", "has_default", value=37) + instr.add_declare_var("double", "two_theta") + instr.append_initialize("two_theta = 2.0*theta;") + + instr.add_component("first_component", "test_for_reading") + instr.add_component("second_component", "test_for_reading") + instr.add_component("third_component", "test_for_reading") + + return instr + +def setup_instr_root_path_McXtrace(): + """ + Sets up a neutron instrument with root package_path + """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + instrument = McStas_instr("test_instrument", package_path="/") + + os.chdir(current_work_dir) + + return instrument + +def setup_populated_instr_McXtrace(): + """ + Sets up a neutron instrument with some features used and three components + """ + instr = setup_instr_root_path_McXtrace() + + instr.add_parameter("double", "theta") + instr.add_parameter("double", "has_default", value=37) + instr.add_declare_var("double", "two_theta") + instr.append_initialize("two_theta = 2.0*theta;") + + instr.add_component("first_component", "test_for_reading") + instr.add_component("second_component", "test_for_reading") + instr.add_component("third_component", "test_for_reading") + + return instr + + +class FakeChange: + def __init__(self, new=None, old=None, name=None): + self.new = new + self.old = old + self.name = name + + +class TestSimulationInterface(unittest.TestCase): + """ + Tests of simulation interface + """ + def test_initialization_McStas(self): + """ + Checking that interface can initialize from instrument and retrieve the + parameters that has a default value. + """ + + sim_interface = SimInterface(setup_populated_instr_McStas()) + self.assertEqual(sim_interface.parameters["has_default"], 37) + + def test_show_interface_McStas(self): + """ + Ensure that show_interface runs without errors and returns widget + """ + + sim_interface = SimInterface(setup_populated_instr_McStas()) + widget = sim_interface.show_interface() + + self.assertIsInstance(widget, widgets.widgets.widget_box.VBox) + + def test_initialization_McXtrace(self): + """ + Checking that interface can initialize from instrument and retrieve the + parameters that has a default value. + """ + + sim_interface = SimInterface(setup_populated_instr_McXtrace()) + self.assertEqual(sim_interface.parameters["has_default"], 37) + + def test_show_interface_McXtrace(self): + """ + Ensure that show_interface runs without errors and returns widget + """ + + sim_interface = SimInterface(setup_populated_instr_McXtrace()) + widget = sim_interface.show_interface() + + self.assertIsInstance(widget, widgets.widgets.widget_box.VBox) + + def test_update_ncount(self): + """ + Check ncount can be set correctly + """ + sim_interface = SimInterface(setup_populated_instr_McStas()) + sim_interface.show_interface() + + fake_change = FakeChange(new=100) + sim_interface.update_ncount(fake_change) + self.assertEqual(sim_interface.ncount, 100) + + def test_update_mpi(self): + """ + Check mpi can be set correctly + """ + sim_interface = SimInterface(setup_populated_instr_McStas()) + sim_interface.show_interface() + + fake_change = FakeChange(new=3) + sim_interface.update_mpi(fake_change) + self.assertEqual(sim_interface.mpi, 3) + + # Check input that wouldn't work is ignored + fake_change = FakeChange(new="wrong input") + sim_interface.update_mpi(fake_change) + self.assertEqual(sim_interface.mpi, 3) + + def test_ParameterWidget(self): + """ + Test that ParameterWidgets are initialized correctly + + This code is part of the initialization for the simulation interface, + yet it is useful to have as its own test as if it fails its clear where + the overall problem is. + """ + + instrument = setup_populated_instr_McStas() + + instrument.add_parameter("string", "choice", options=["A", "B", "Long"]) + + parameters = {} + # get default parameters from instrument + for parameter in instrument.parameter_list: + if parameter_has_default(parameter): + parameters[parameter.name] = get_parameter_default(parameter) + + parameter_widgets = [] + parameterwidget_objects = [] + for parameter in instrument.parameter_list: + par_widget = ParameterWidget(parameter, parameters) + parameterwidget_objects.append(par_widget) + parameter_widgets.append(par_widget.make_widget()) + + self.assertEqual(parameterwidget_objects[0].name, "theta") + self.assertEqual(parameterwidget_objects[0].default_value, "") + # Parameter does not exist in parameter dict yet + with self.assertRaises(KeyError): + parameters[parameterwidget_objects[0].name] + + change = FakeChange(new=222) + parameterwidget_objects[0].update(change) + self.assertEqual(parameters[parameterwidget_objects[0].name], 222) + + self.assertEqual(parameterwidget_objects[1].name, "has_default") + self.assertEqual(parameterwidget_objects[1].default_value, 37) + self.assertEqual(parameters[parameterwidget_objects[1].name], 37) + + change = FakeChange(new=227) + parameterwidget_objects[1].update(change) + self.assertEqual(parameters[parameterwidget_objects[1].name], 227) + + self.assertEqual(parameterwidget_objects[2].name, "choice") + self.assertEqual(parameterwidget_objects[2].default_value, "") + with self.assertRaises(KeyError): + parameters[parameterwidget_objects[2].name] + + change = FakeChange(new="test") + parameterwidget_objects[2].update(change) # Should add necessary extra quotation marks + self.assertEqual(parameters[parameterwidget_objects[2].name], "\"test\"") + diff --git a/mcstasscript/tests/test_widget_helpers.py b/mcstasscript/tests/test_widget_helpers.py new file mode 100644 index 00000000..5f7a7ece --- /dev/null +++ b/mcstasscript/tests/test_widget_helpers.py @@ -0,0 +1,81 @@ +import unittest +import unittest.mock +import io + +from mcstasscript.jb_interface.widget_helpers import HiddenPrints +from mcstasscript.jb_interface.widget_helpers import parameter_has_default +from mcstasscript.jb_interface.widget_helpers import get_parameter_default +from mcstasscript.helper.mcstas_objects import ParameterVariable + + +class TestWidgetHelpers(unittest.TestCase): + """ + Tests of widget helpers + """ + + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_HiddenPrints(self, mock_stdout): + """ + Checks HiddenPrints suppress output to stdout + """ + + print("test") + + output = mock_stdout.getvalue() + self.assertEqual(output, "test\n") + + with HiddenPrints(): + print("Hello") + + output = mock_stdout.getvalue() + self.assertEqual(output, "test\n") + + def test_parameter_has_default_false(self): + """ + Check for parameter that does not have default, should be false + """ + + par = ParameterVariable("test") + self.assertFalse(parameter_has_default(par)) + + def test_parameter_has_default_true(self): + """ + Check for parameter that has default, should be true + """ + + par = ParameterVariable("test", value=8) + self.assertTrue(parameter_has_default(par)) + + def test_get_parameter_default_string(self): + """ + Get the default for string parameter + """ + + par = ParameterVariable("string", "test", value="variable") + self.assertEqual(get_parameter_default(par), "variable") + + def test_get_parameter_default_double_specified(self): + """ + Get the default for specified double parameter + """ + + par = ParameterVariable("double", "test", value=5.5) + self.assertEqual(get_parameter_default(par), 5.5) + + def test_get_parameter_default_double(self): + """ + Get the default for parameter that was double by default + """ + + par = ParameterVariable("test", value=5.7) + self.assertEqual(get_parameter_default(par), 5.7) + + def test_get_parameter_default_int(self): + """ + Get default value from integer value, should be rounded + """ + + par = ParameterVariable("int", "test", value=5.7) + self.assertEqual(get_parameter_default(par), 5) + + diff --git a/mcstasscript/tests/utilities.py b/mcstasscript/tests/utilities.py new file mode 100644 index 00000000..7c1fbb9d --- /dev/null +++ b/mcstasscript/tests/utilities.py @@ -0,0 +1,15 @@ +import os + + +def work_dir_test(func): + def wrapper(): + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + current_work_dir = os.getcwd() + + os.chdir(THIS_DIR) # Set work directory to test folder + + func() + + os.chdir(current_work_dir) # Return to previous workdir + + return wrapper From d0fb259e6e33549c08e8fa21797c9ddeedcbc48a Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Wed, 16 Jun 2021 14:27:53 +0200 Subject: [PATCH 158/403] Added info on widgets and mcxtrace to readme.md --- README.md | 38 ++++++++++++++++++++++++++++++-------- 1 file changed, 30 insertions(+), 8 deletions(-) diff --git a/README.md b/README.md index 4d4f9e23..b5a3e254 100644 --- a/README.md +++ b/README.md @@ -1,20 +1,22 @@ # McStasScript -[McStas](http://www.mcstas.org) API for creating and running McStas instruments from python scripting +[McStas](http://www.mcstas.org) API for creating and running McStas/McXtrace instruments from python scripting Prototype for an API that allow interaction with McStas through an interface like Jupyter Notebooks created under WP5 of PaNOSC. ## Installation -McStasScript does not include the McStas installation, so McStas should be installed separately, link to instructions [here](https://github.com/McStasMcXtrace/McCode/tree/master/INSTALL-McStas). +McStasScript does not include the McStas installation, so McStas/McXtrace should be installed separately, link to instructions [here](https://github.com/McStasMcXtrace/McCode/tree/master/INSTALL-McStas). McStasScript can be installed using pip from a terminal, python3 -m pip install McStasScript --upgrade -After installation it is necessary to configure the package so the McStas installation can be found, here we show how the appropriate code for an Ubuntu system as an example. The configuration is saved permanently, and only needs to be updated when McStas or McStasScript is updated. This has to be done from a python terminal or from within a python environment. +After installation it is necessary to configure the package so the McStas/McXtrace installation can be found, here we show how the appropriate code for an Ubuntu system as an example. The configuration is saved permanently, and only needs to be updated when McStas or McStasScript is updated. This has to be done from a python terminal or from within a python environment. from mcstasscript.interface import functions my_configurator = functions.Configurator() my_configurator.set_mcrun_path("/usr/bin/") my_configurator.set_mcstas_path("/usr/share/mcstas/2.5/") + my_configurator.set_mxrun_path("/usr/bin/") + my_configurator.set_mcxtrace_path("/usr/share/mcxtrace/1.5/") To get a python terminal, run the command python in a terminal and then copy, paste and execute the lines above one at a time. Exit with ctrl+D. @@ -28,6 +30,8 @@ On a Mac OS X system, the paths to the mcrun executable and mcstas folder are th my_configurator.set_mcrun_path("/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin/") my_configurator.set_mcstas_path("/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/") + my_configurator.set_mxrun_path("/Applications/McXtrace-1.5.app/Contents/Resources/mcxtrace/1.5/bin/") + my_configurator.set_mcxtrace_path("/Applications/McXtrace-1.5.app/Contents/Resources/mcxtrace/1.5/") ### Notes on windows installation @@ -48,6 +52,8 @@ For a standard McStas installation on Windows, the appropriate configuration can my_configurator = functions.Configurator() my_configurator.set_mcrun_path("\\mcstas-2.6\\bin\\") my_configurator.set_mcstas_path("\\mcstas-2.6\\lib\\") + my_configurator.set_mxrun_path("\\mcxtrace-1.5\\bin\\") + my_configurator.set_mcxtrace_path("\\mcxtrace-1.5\\lib\\") Double backslashes are necessary since backslash is the escape character in python strings. @@ -58,11 +64,11 @@ Import the interface from mcstasscript.interface import instr, plotter, functions, reader -Now the package can be used. Start with creating a new instrument, just needs a name +Now the package can be used. Start with creating a new instrument, just needs a name. For a McXtrace instrument use McXtrace_instr instead. my_instrument = instr.McStas_instr("my_instrument_file") -Then McStas components can be added, here we add a source and ask for help on the parameters +Then McStas components can be added, here we add a source and ask for help on the parameters. my_source = my_instrument.add_component("source", "Source_simple") my_source.show_parameters() # Can be used to show available parameters for Source simple @@ -129,6 +135,19 @@ In a python terminal this would display the data directly: Plotting is usually done in a subplot of all monitors recorded. plot = plotter.make_sub_plot(data) + +## Widgets in Jupyter Notebooks +When using McStasScript in a jupyter notebook, it is possible to plot the data with a widget system instead. + + plotter.interface(data) + +There is also a widget solution for performing the simulation which works as an alternative to *run_full_instrument*, this method is also called *interface* and is available directly on the instrument. This interface includes setting parameters, simulation options and plotting of the resulting data. + + my_instrument.interface() + +The data from the latest run performed in the simulation widget can be retrieved with *get_interface_data*. + + data = my_instrument.get_interface_data() ## Use in existing project If one wish to work on existing projects using McStasScript, there is a reader included that will read a McStas Instrument file and write the corresponding McStasScript python instrument to disk. Here is an example where the PSI_DMC.instr example is converted: @@ -151,7 +170,9 @@ Here is a quick overview of the available methods of the main classes in the pro ├── append_initialize(str string) # Appends a line to initialize (c syntax) ├── print_components() # Prints list of components and their location ├── write_full_instrument() # Writes instrument to disk with given name + ".instr" - └── run_full_instrument() # Runs simulation. Options in keyword arguments. Returns list of McStasData + ├── run_full_instrument() # Runs simulation. Options in keyword arguments. Returns list of McStasData + ├── interface() # Shows widget interface in jupyter notebook + └── get_interface_data() # Returns data set from latest simulation performed in interface component # returned by add_component ├── set_AT(list at_list) # Sets component position (list of x,y,z positions in [m]) @@ -172,8 +193,9 @@ Here is a quick overview of the available methods of the main classes in the pro plotter ├── make_plot(list McStasData) # Plots each data set individually - └── make_sub_plot(list McStasData) # Plots data as subplot - + ├── make_sub_plot(list McStasData) # Plots data as subplot + └── interface(list McStasData) # Shows plotting interface in jupyter notebook + reader └── McStas_file(str filename) # Returns a reader that can extract information from given instr file From 52e2faeda2bd1cf807829dc572016a9a0dd11a24 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 16 Jun 2021 14:53:57 +0200 Subject: [PATCH 159/403] Update of documentation, now mentions widget interface. --- McStasScript_documentation.pdf | Bin 184620 -> 594931 bytes mcstasscript/interface/instr.py | 9 +++++++++ setup.py | 2 +- 3 files changed, 10 insertions(+), 1 deletion(-) diff --git a/McStasScript_documentation.pdf b/McStasScript_documentation.pdf index f1c876a952f59cac5590f349e98822e7ef376ef0..27fc59c8e322e55dbdd5a9fe36e16bfd238a3a85 100644 GIT binary patch delta 443604 zcma&Nby!_Jvp0;pyR&gE?heJ>-QC@7Aw`N8DJ@QMC{ifyP}~X>ch`-(zVyD&dF49K zcU|B9Bbiy5nIw~}>`B%y-@hSWmQY*Ms7gw|V`t$;qUpT-_JYL0!4F~sxtQA{2?>E% z744j@%-rq#tt>(8Zybo5pNpUKjgkc!fH>H=c|aUId>|tbs|tvNlM}=$1>)!7;pYai zDudX0L9Ci@@|+xeJRlK~6cZ>n7$go(woglBP<-6!ZUd0`DOix=f`98{=l{ouoU^qH zi1Tmt>L6Bi7Z=YrqwN238gESiadEuaRCTxV{?{yTN&+MvV9jpM&B4jX$H~slW5sUC z%gtxbX31gA&SA#O%gtlOCnCgc$<52n#?8fRZOzGJ#>>xV#cjsVYi?=5WzGGjW-Vg$ z);=T;Pj@RbCnVo23v)};bsJN2Q&T=f%7wXb*?wuZA!xi@B+BO95ZOLG&{PqEq;#kz z2V6`@A3jZ(EPoAum_LeQ+-tyV_%#PxLUI9hn57~6nKJ=R6cHjs#Tm+4qw+Y^5L8_V zloyo9n-l(a>c2g#Z02O;0pk4cj;gp?Ig49(+POG`IJy7J6)Ikyj&I}O0pj3eOL;`3 zhT`QL4_!IQ&@6B0&E|) zkapG^LWnQ0vV}-i&X)f*E^pLdkNurx|HpUY&dx5L9-z0m$jQU@&qU$m`FFy+P09Bz z&Yo7zZ^ay(>8`twY`Fg=!m4iN;o{|P@z?7-9O;k}P^9UecCVHgzUPVlkrZ`VA+q^Lq7$hR?W#N<+-HPQzg|EiNFP1 z4r7n-V!aK=&o_KAbqvUe*L%4aY^8^Ut z_oMdw#--YmCB!Z-ZIDLOk{T>O11M%zCeywwCX9QhfZeQ9X(aF`wRh#zEEOMmmknrf zcX7Qhbc@w%Kzh=YDushwNQ)A5LsEE7oPK5?9s>$XJYdZwHF|{)0vnUp1H72uxzCi$ zF(SK$L-18H^8Pjo&kNUXxl0qnWI{$&2k(c)mF0j5Z%Cu;=g)3CLo3}P0B1Gjlxu}_y+UL+9kgHRtjiS!=WAox8q2L`JU$*L386ScN%etA`54gIuEX*hkQVzYy zf@51BafoTxDZTK}1tT5qqwPXpe;M(zEibJmq}7cuR0H1uZwsve%Ow@(4_dw3WN8

WXW)oR8Y2Ms@hLb$|h{2sY50*L<8=Tb}!OI5K$$%!$RBxrrp7wXnf% z(zLKctr1+US7GF`mZrASu+gl0Yrte{oP(QEQ`nM3)eC>c%QG8>E75JI-wlr43x}Ed zrhNP4eB58_g+~c3$v;1;V_58C6x_9&L05=|1n+KbzXWHwH1;yv7CF~b*KMeF1=T>S zTjoczwggQa4a=#EjBjfD&!2lU+Cw#pOl-=NQ%jHh4(9q>G{`tD;h#Z??}&VYtb#+r zJijME-zc}H7`Lyl>$7$i@~zaXf!IZdLR-Q)=DC?nk3HPK{uqi>oEYvsPvQpbhF0;V zgkY;T2mSUg{r(+6Pq>&=sSaha*BJz_Swo0Yybv4}J2R5!ua2vC%QB>Y82nO(HRN-GZPjv9^ zJyE}li(=mf(|t%+32V_4sqFs;*MAjwl=6?plj{pdKv@@w1Ak$K{!dEODx27H8>@cW zl>8``7D)_!IyoYZ#WU?iB9NN)sruqrXc9q5GfXl-zxZwqd;Ww95V&?%1x${ru%=+` z<9?t!X&OC2uCTqU1X3d4N!}8+jOEjCYGhe7BS^ZJF#>8)vTIQc(g_d1%KeKp^jTA^ z5`G(Szi;((-epPBJHH7^-wU^@kMx%svldv1y!)#JZxr23Q$kLbfEHx}^YtjeAKtmf z!JH9VKDgwBu_6U<{MHO7M1$V@LIxgf|GZ*>X`q8uZPI+T{oEfaT5x+p+iRsjJfv@n zYbJ03?C3y<2v|0m|E8O}V{cd8_1gf(0}vSD1u*8G<{1AhMMNThLZYWG*;{ z(pYa`f16?2tf2Y3g7D(D`I+Tf3M2C3$!4yvkSMT(wpIc!iBcwdkAqGk zQ4VcSgUp-yC)Tj^M40O7kjt~P95a$}^bjQiMikl*rKlQ~@XTjS{h=MjsW#uwvW|MO z%$YaZIBp=la!cOe}DV8D3M>@lRQMO0f@>I2ESz%ft`)(;|*+bj;> zwr@UWt0A;OhK+hrM+Wbx!;ZWgvcn}E9#lAV4vxGDky@%^rT$`C9v%H*Yc!94`45KO z?d=VGl-8~fuAfho>gtt)l4HQtID{DY?LWsqPDHDGTnj9R2IkB756(}X${a(#2tMt) z@3Z}VdybDf(7c>7tC9$GPV^QExNOS9FsM*_P9D)9&mQGf8`7@>wpa5g9=Of5N(|Bk z(^$Ia%yaQMwGne6_jQd`?s$hNhEezKw>n!_Oh(>IjkNjnYYk7fLMN3J~A1&wI~ECR5!Mt-0KJ%YL7RTG%`zQ)Ze}6B&lT`Sso&0Z?{4z6*8aJnpBlKoZdMo^!ZK~7$6n*= zI+c@Mb9U|@{tbTm;OOs`3I^D~OMk}F9^mWk=x*nKb)6LG%%wfTS8y~UFmynsby;e3 zdwqW5QyN8&Nj}b5+G}4 zN9C-mA_tz$S5m`XP^-pLw0#Go87|7k%~a>P6-eBhr3ID>F@#WkX?4A{#`V`BYfX~x z`x=TpJWQMW!jU7)-IFDE2rgt^E!=iM}t3Tk^eXAh}k_I$0N@Z|rZ%qSOeZ%c= zpJdIRI0*)=GX(&56eK4VG*|sx*t+fP0b}!qs8)Fi3Zm!7bjb@c2@%&#h|fZemq-25 zH;+M{f%hPWu)h~rqsUmnoejx7RWV_dLnr>tz3?@8iOP;-i(1P?Vq((i$bD=V+}z!R!cVJnFK7!r``@!p))>Ul2Ux zmJOm^(KWw`0No5fQ6riXAa`7XkdR}9i8s|Obai4qz`EVV*}CMFg`3U@RSKsx8j3#P zMHlOo%wf_7QZbUk68<{EZcp zOm0qf))Fd=`ZH}|F38*LW@4+-=2M}fUhyKXoS>EjFrb$h(G=WFtnYX}lOFjzd$Eu@ z69?Zs$hM%^B0J~)eq9eQs5>!i6hd0ujnjEp$C7URpzLj4$&rAQmi0QZP@_-C{|zfI z+t{82gyL8rG}C!ga)ZILb@pbhcq&@HM|C(Xo%`(K)-X z*F3`f*k13b%Gup*kLlhH$qG(F4@2cu+DtG-Cr$3AVF+c8n>r*Ikq-|v;-jw8%qbh^ z&qK@-rd2gl-JGLa7@yJY75vcJ%~eO!`0nBgYS&zw-6d#Q1|%T>9O|P#`kXlJcRcFr zeLl}=a?ePMo;14!x;?GaP^590J!4_lV0MT(a7VP9>Ms3X&s#eQ7d<}jM$4MBisppY z{_v^&6ML75PS@--_76|D>#E%PSf0Ip@VB(Y4v^pH%jI=W@|HbO^FlZ@c#MNt_&ikx zc`GZ_3+sH;tG%F%|1ZGazDj4*yaTf$(=29MV`aM`@pGU&vV*_XH>_(lJyR-;s8Wf@ zm^>))kDB0P|#hBVRFMsSgeuB(kH*qqKB^Tj2 zewrL%!ePSqP-pQyz8oY<^x^>ntM}okYY4iwzE}=i?>KaB1VT6#GtYh5JGsY^rjI=n zyc>aTjRS38Y96KC{$q^*O=-8Uj#~&Y{oyGSyitRMb}HT}kgfu$(fC(f5Kr?~g$hM0 z1COUc@7rG`ae+Mq;XU%cznP3s{Fpy*QOwIIE|L-+N5eZ+@IVY$5M1vs;!`>OIL6LW z3&=2x7eQpL;3fhSAslaC`khr|4|`@;VAL`P20thEyBU?Q3Awig6_UYvnQXP`K3Bx- z4Efk{S(}L?N4^>~GI2W`!j_$`5QmbM2Yf15%)gOJ;e@}zm{~*DKZfE(+8;A9PJ}#3Z^Dq8Z)veD{SC^}_ORZ^Hhw-sA_jpl)}$cN`x;I;@w&U6S}CE^RTxS&MgM1cGV867Dm?ehRN%Z3~rkXer87D#uToL}O+jevMho`TSJEa>lfC(;mXe-&; zAdlg;zMka8>)fx?C21fgbZRULo6R~V@?Z54vAV#4HkI8zSD-{AmMuB$sjs^=c|8}g zSt5-C_eoMBGTPfeYwd<}o43o7ivm9|N}OYzYz&*(oTbVI@=I7F6r z^ID@&;=rPxC$b6I)tIl9#DHB{Ef=?$kZaK_3c*!t4-R5PH?{UftQZyDr0Ks@M}NG&>SU$8T6l#z5~mKrM(&LH339>i zxe3^S66;%8_y%`W4BA67hv}QlK?57i?G?{nCF@!J#$a6#ZLJlzIl^T!GbFH!Qzbr-29PiTmNQp{fXw{UsL>8RJo7H z(RiqpT!y!Ys1t1&|I9GfiJOX^SUZY=bfYc{;t|X`!5xuN0HGIl`>*Bd%_YeQlO>F%-bG}x&5blyIWM0N$c(nERst}AgK!6j0WD|S+A@_$Dv_XF2tD5MbsQ#zf zeIKlBR_{k0DIgb)lUj>P#jFLl#gj&xtE1FWnPmim{YwFa2ZX61tKgO{>pg7wReR}8 zVHXK+3Sy|i{L%;hpca)AOALNDsT_YlH_V=Yl_47k1_ul$PSzjY%q?`UWv#ugy#^Pw zZ+gxcr?wo7djrD*%Y2NF*OlHCF-fPvqYOEA+jG9AYn>bHwQ*C{LKa3u*|pZG)WA*+ zD4hBX&sWGfh92;dc6`6U5Pk8ywR4Qf_&bzJ(9*^^u}B5jFiEW6MPrnJ{sy#2Gg||j z>O|{0C$so?6?I$3uHTN0*Y(Sdp1J>=Fi-?DP)ccVGA1vna2K$5x4N_?`dX)mnxN|n6G&&MJLa1;Hz3d5Dk%y{x2b|K9s|x80&F+P$+tk8`4&i*1TS^pWZ z>|%T6{p0gppfMcr>!dj1}L?5JnW18&czw1UO1^+Y!E{7hpGZn-3gHDyEM4bxZ z!F=R4>*oz9J@ghY>?ZxGhix=O&2KCHr58Zfsh`FlpJAa0RC=DHn-^mL$(;ptGjF3*+BWMBc>5*w*k z0i6S3en4x0O7yQl@)TzT8W({f3Asrrb$$k2>F2|imn#!QokwghqrH~udy=J$t~YoH zwW=k-CHJcIN^A98Oc7%@s)z3-Cn$Mr#Jhx!M`^DKFgy=S`*IfNYg9*??H2Vzy4BGe zSG5XssY+*^%4EM7>AHSQw6?aK!*FiD)PTo+vwV_C%Mpn%>*48D60eLpi&1zGN(EA= zWvq|V(>EA@WJHd4Mhwdsj_f7;1!q6b1Xv)`BpgBE8)62;K1gdQjcB`dQZ4HHK6QBh zO3-38!N!1Wq)TlytUDFfUw>imZt85Npo9W-c6Xn%oYiv2q$7`auL|}E30NAfd)Y`Y z(6~3P(b#*$g6^g+oaNRC-oMl>TUZGoAHPQa9`>WGdX07OmL|;*_p+XpJ5N{LJcE~Y z9F8NRcW(UywCs{tKZ0`yZt{rKtD){N&6G zWLh#fP^Y@#g=M!~6#gZ?v>?+|M<)Q>(31j^$0?gLEt2)A?$?U%M>GJT8k`Ig@DyWu zHEQWta5Z4EHp#P9Ae@n=F(5ZX`GVZ>Aw@VTwtJ-{^2sm~z2tQbdq<6&UY?<*=w;F)r_m6S3Ms_^xYa&=|+uUHx1yn+!ltY}#B6UiKY*hRq zSb&~Lt}I#3`TFHxHF3=tUn@rf%2RgYzzQMSzGiM(1y|xA@MTCO#^s8uS3K6NP-0X| z>%a%O>LI6%-uho_CP#*FSWpW#M~19lsu_HFuDDUMB<jQ|qd1 zP_Y3X732Vz(QiH%U+SOe{fLf!ID=o;T{Rgbu6V!Tc(E1%mNtV`JUvujsjNV+DpsB< zO0*hSnMMTKEEyJ}n!P+~PG&-@FeCqY%viE)mkS&XDnw@fMS zJ|hcmnP8gWrD@;kfQP=zD}3XIZqv_eMT)}RgA+1CiAEc>-uoaZx|LXph%$W_(>#Q~ z5KJR^)@EA6MOwoxWqS*KmXRxo{sGt>RFULBS5DkdNy1Jfbs*Mpz*l@^mUAAHpF>ti z^{52>en#S#T1t2`Z(1ix`MdsPL&w*1zWKcSELZ_FdasvM)ZM30g?>*3Pg|3wqO#m% z-ozaCD?mGqUA?GVlQ#chs5rUOKPJRX@4p0Vtef_CZIHz>a9{s@Zo8#cgSp;|mREk* zW1cRu9i$fKG9`ug$V27MQ$pgmDqygto)QnL`{uQOq<;G668MKi!gd2q4^DCZdxN7J zYfCBKZto_iTU*=W8P?ab+DU;YSI_=47sae8r;Q7uEz)dr4yOm7-wbDSLbOl*wZvvQ z#>97ulOt)q8-iCjYL*-89jgC_s&D+uJp9%TlWo^D*-f_XCR>wj_id`FCTp^7+s0(u zwypF0_THa;&UthH2kTyIU09cKu&kFtk~{H*Ch*$Gz#B93_PxQg!?|>XvW70#$<_ET z;OWLL_)No4Up>f3AwF+TUFg-#Uok|}5{#)t63foZe+#lwEU{F~3$&=OS~ip(ew-AJ z((k?O8PD;YE;{+A-7mCW`REM;VGPw@C|so+7#w zZHP0}IQ_7+G{01MflbJ}B7-?&z@%y!wRG zPValWR(?QRv2)NW6pOXUkwmQH)M1}O*fwO42U*G|C)Fs6s^!UizQ#eGe%4=9B@-{ zp$n0(oPJwwCm;nJC4lO-58ieYq}SZ7a2E3_VQk0|iF8wjbaO{!ys3KEE$0$V+8GhQ zUMNeb1xJz+%7|gwia5rSKOTl@Bf7`WP%p;-Wn0z(AHE(3AvUG|W_7{yaI;y`0a%K> z4m9ui2LCRNe%yP*D*%)lP{dacfh7uFr<~IP#{ns0@+#$; zP(PM0hocp-NCm24_^Ps&5?Apz+k4u|fiB4k9J)<%$+!cOk^7tx+niC`MFqlASiK%# zBH+F9AyZ{yi2s7%w3Kpp>1@iudOjJJ4;d)a7n#$Oh({G4{cKOJSJ={V$aN1Fo4=v? zz%tRqtak4r0gS@_d;d(aM<-#ob5=Y0fA-#Ce8C&+I_Wt4#?>i|kr`(Brp6F4#GFcE z{t)r>QIJB0Gk!raaY9k~W7E5{*ty=7YlMPAYQ9de^vc7jge=>lwbN3Yf06^7I!&2soiMh-(ue!ybJ&H|| zhkcskbZxJW6%YH`FdK2vG%{jNmo1)6Sx$^gfU=1(6i;rb7aXt}4eXh~8?W`{orCSW6Cck@^~Jqp z`;%RMZ*o35u|8As%A;-QG1`t6Gq=5kN*6f^t|wE=_DQne>K^-owIm=I4hDZP7@fc$ z=O=l4e)qQ}jR}X&_RE*OcD`Ioo~HBDl@BjRps!i&?%aTNwzt(a_HdrJ4{t=zD-=EQ#$z*Gyqf3)-XmWKV7@?i{6Vhm6WIH?~! zMWi{2ur6(+qsEc_7gbWWPYU;E=0x)EQyFCRDP)rUU>D_>Ji$TX{&*{t^ZK3FD1N%3 z9xK#)0`{=G%1hJjUK#~-bu*AQ1u3d3Sr6{wYmo$$qnkgLf+4u2^@`@PwaLb=Q=$wO z1+3A&$AtUPzcl{VrhSMB`Duz)$U z2?r6MPLHQ=@(fMGt{TI7+u8i70LP-rbU%z@PjfTa(;@8fVB4r|IB-sEk){e zn}2au=_04cAQXWS;xhonr+twO*p%e(v4jQ~ENDwMxZg2Av^QQq+*IDv5k)Wb-*3>; zA|OGG6B`M8YSzxAE$TP&%NH3z35tDWe4$gJ^;t@~?RFo(jz zly4(%i{k#!>8B0wzSKLq4wf@iEhdRVZMS3CVzh+cvI(urHx3CLgc$l#9wMO~E?DvKCCPnf; zmMEolNz<_>?R8;`AevXIidAUk06ENWO?0CZN7S5BTmCxgq3AL}((^k{UU2VF0b}~v zYx8kXxVf#b7haRw53EZs2&pvZO9n(-fwtYJW*`L%Cta{R>l29Nwnq2mRcs}hYbIE1 zBUxxCnTD>$98Q-obL{f7%ZzaASNf)D#L9H(^jiJ*B zzwf{I#BrE0NzIu*Ju(3e1Qg#p*TSv@uOYAoLmGB#tG#S(Crm9tPmU zrBht)Xf{ioUGo`m`*DH+N7LMwf?jA(W|?+>BhvJpr_|)HLUdv$=0en1#?8zEGSHYf zgR=MAqt?7#X<30-6u;zE7mSmlm1}Dz!44rLO`E@rT-YsM@(;3@U@z@4ZS%8iFL} zxS`L?x`Hbb54nJ_E{{qYD?9(8wq&DuA}?VaRh+e8aVm7{v*uQW$Oa6INuU6d+_}$6 zf?vQuaW;aUbDEDVOnmBzyh#YU^=QUUDW8fL?a9B$fSsQaMEUo6k>$K{0eySArJ{7| zf((CW`2RU(>irs6@M&bwx?gn;&*G7!Q;PZ?mdQHbhqVV(i(z$*2F`A5#a-_~1KJ|( zeqxEHgplHh@da%(F&GfJ0SUzxuIo{aZV~B}(we><-i0e24t!-9zN7ycxFg5dk9bUF zQ|>r8CX-xI#MHhkGWs*wy2v#yQL^*=^wHu4{iwL4U1`x{R;(z3$-2bXqsb*_EF$q3 zyYa~8i2!X$rV}4*semWo)e(ovmNpCT!+VvJMn`fKS*&l9(YnUn$-^T%4|~+`r+ID3 zggC=5f|~!MzGhi~2Th+DO~(^(t>dmuuRM#b+R;8uz6F_cATNxXfnu@AlC-m0c4pu9 zW?yHgLGI{xcQCc_uH+-WnkN&A*G~df0MZWzSUNjBJ)O0OxWZ^Y_;d~grI&BXnwy)0 zlFp-}qq_`HbX(fn`2+<~2gu9*M7+UH!`;b(R95zuQf|W)E{X4@ zK)}EMm$PEZ4Cbx=XIDlH5#(cEDY(ET_h$!x{~8ej?k%z?+g- z=4`=+Y+78M_6Eo8TG)Md8O(h5(Yza@I}R-uEdY}G6wj6)7FUfKJJC6*W zR*_2wTRuzKfB}d_%aZzCsK3LM;0!3z_$y<48NM{gaWd?u1~`u9(aHn{EUoUN5FX1XtlGi&wHB2R}A_=idkm9)ZG+3 zp<558^`dF(o}=tx@3kxEHhZ#VOuI50iL+lKbzSS4LIa%s)MMd|glt-sv{zu7U6T#G z%Oi*&`v=>jWqe257n(D+VD&GgA!?-HWm`2!Jlxj_zt^hOWKg=7QC`Hdf2nZv8=rLd z)D3r@Dq<5mbCc$D-3H4KX?Pl{V8Tlx&o*!FcK3*ergGpQrkgRkWbdo+QEpY%B0QSt+ANy_0#l{-+yIkL43Sa$NePu_CkO+ zGsD*2gc;A2JV@vZ8U?2E7ioVf=!l*rT$66f6hc65g8MKX^x#KG58@Is4|3qaZ5}@e zIB$Ah&ad&cmjlV^(gq$1ki-EkvabyzBLyJ?va$m;nanzo>6jZ?<(^FDL#>QNnot>SWQd3joq{u(tNusk3 z9y!?9Jp6JC3(d^U4+VAaHT2e3SJRS{f$Hk&qqDOFeP5a%`BJgp#A!=`T`)j|a|ly1 zo4#z08|!2Z9Kv#JDj&~U;HS+@p1FEqxGm?D-6AV$`Yg5NO*$jZqUGr$I=i!DvQ0v4 zc)1gQ=1X$ns^r&5{8SDL=3lsTWDGI)D-L%yMDt4h%_A=<#j;HmyCrl2BM8ft ziw_A-4B_PEfa8P-%?qde>VV>g2_SN}!*GL+p4=Y^{9HwA*@fP`g(k3H-}3M7bQSh* z0WxC3<$Nlj-zO;0KB+KfFPXVdIB3|CxPrqs+_fK+PQMkso>TgJ)Iu_`-o*6A?!9pR zP$ECE!hg`_8j18(?wWt@%*bgO;GRHoUNkJ`H++PYpp@r&Y5pY*7r-e@39wnRtgzwL z(3(AB;o556;=4}x3(yeI7OR>sS|=~&EdOR6bqN)ROvTC%h*W8W)%Y1q4I~s(wxDA9>>`h`P?`1i5dcwTXfF`4hL$BDUNZE6>7LXMsyo z9~Rf5IzT)jH}aC=71guz5TNL@2^DgQN-zG`?)gXb{nt0HA%`x*q--18w~7mXZehxx ztU_po_YTiLs9(*UUvo`r!;l`mHyRMOgyFXWzIqb0Igjxr&u>3mr0kXNt0%6Chb?H( zQsPYSqWohC%7h%?|Fb~zdt|=lv97i6A6-V=0fuaU$dKo?C8YbVBt4+_k0Ibom#%cZ zbaFUd$=|(% zqZxEwX;WDrWgkT!a4HROZq_$bMijB}k!UB=ojoUiaPwg4gVm_yr`u96Mel%jH5deE+8!?GJF2^U*m((;D#37YR2 z_((|nec{;S>5^XiE+n<>BW-@z0F!3~^*L*in(#>?K7VAbv%?wH#Q=)1{dm*(b228&3h9|L@^H~XVHO?L0s(LlZuH97imntf-B+d2N!Gl@Mr zC+A{+znHKvDLp`c*5s@IKeZpGs`@E-0P_7d)VlsV)((l?PrkAe7-IpKIO1fpnaSZ3 zO8%QuQjvP6&QK>opC^-{ANc)phEy#lC53r{LCcIW0_N!qF(n3;LSq*(^(sL@uZ~8A ztXnfA@=seu`Fn-VYue%?C;x-N8lR>!ScpoJtuVlyVM;WvLs-s3IO!lD|6Tx@A$i*# z{~ewyX2l+2>FAglPOh9y22F4d%^jm(@5KKW4X-tHG^pZBwCvT&%{(2w$QeRp?c`JftrlN)9tnrukb$T0D0+cI<^K z(t6n;%_dom_QHx`nH|AQExrj}T%UmE;^g#%p*=HJ=<4Bj^L}4* zhIYN3tqgw9auEBZDC%g;ftscSet$0N#5fQHo15^Z!9qPd9d_yAIMtNQk~D1XTeGQv zTukX;2c0=y&R3}rmb&c&b_@0PS~Y^q1ZYz;ktJo+8Cy@|`dTgI1RS4b9z8Y9A|v9Q z;k$&{$GARo(Pt=TKjesAve7aBE3ijImFkJ$l+7egg!rb~r)g?kVbm%cy@;*7?q(n- zZ0)PKSt`PbPoDzkT6+>%4#uN6i|s3VZC2Wk1#u)^;cJbMXS_v#gKv)gn5@ zIx?#e-UI)ti-WVUcM7|F`MV#cL&fesJnLP(6x+vrH5^Gx(4~ixBU%Q&)-20*osDHo zoh%_o%dT{`Uki0F3F3$9WUt4DS5G#GnXAfVE|yy}L8g&+wEYlX60^Fr*FHcdDNRCl z%tyvWk8JAV4>F!2mAb*0edr_dW>trUi@aa<&otPYRC@x?8G)7+ZarhSBF)*(O*teHRNkwXtVFXRwJYw6 z`U3R`BOJG7VgKmNnyXY@+O2@gP45~qZYY>h_28rpyR-HcFH0uO^NtlLh4Q_pyS?|1 z5;oVF&6r|8v%7}jI|7(ldqO~TOThf?Z*FTx$NK#I{nPbsZEY=6=hF_8xZ1Z^Fcec$ zQ!+9#cQ?0(79uhK% zkH1nfhipRD9pQu;fhM}EEIJ#qvZsxhCmX)-y9g0Av=6!;TVDGw&naothf*478c*0R zW=M^IGuhSm-Sy!*{6$;!WgwjbAMq4p7BwGDr|$fF(R;<|>!dE2EEM0JMGv|S-vJ5Z zGNAx=KuKaEATD%BW$F5bl_pX}anQ0zlw3L_vpM|h1$p`de&z%IFITG-S7C7|+4(JD z!HSufgq(rM6`-;ZUdkFx=0_=GWp`%bS0Uwb(afN-42iOg!QzaS9xKCVRd-yA5{2P&y5XjYP+Lh%&FTY6z-Aqysef*xR+8OH`F3l}g)>LWJhP2s!FTHok6rO2kcr~WkR&jgsgq|yO@9hKqg;cW zyO4V=00pdmJanDJD824)ov^L7M0RS)+V}l(GOQL*ntKH_zwiJp!61UhfaeG-`rnEl zbM)Ze6*J6bL(Hes^SK*20+z)!(b}T`J1^r#1P&M_zei|JyYV85)<$U3#^ei~x zn{vWXu%mWhnNfP65Z6u%w&^OtD1AxtqFLpkE6uzEO9<2?FYD87BXswW^Sx6;kz@=E726ySP;8gHUp9XL zn|B_+F6B`sADP^YFY@R0{@C1)`_|nUb5|T$%H3(2`L?#c``D>qO|!xc(6Tw>!O@){ z45tlSi+!7lA7Jm;n0~Et*B8*vqCd918_TT1hgIILYPv&e-2hfTj~pj`I4H8I%HQ4> zkVU|u)dHIq*onFXpQ>9}b@=yOCceu78;t7jFFyye3Hl6*cd9Qik#)yprb<5U{hfe9jWXa?o^l zcgMp^xxc?R2w4H0PQJgp3liBjIFN_P^t#@Gy7B~%{QLh*^j$c}o1H}ErNmB;5OdJX zh1lhuR8bp&R5+x|09kNh;1^@Yh|MC=i$$u$T&@9X^*YKtjp*dSpBlN%>pYl38U)Pc zh_F@Aq6BlS){D8OWf-;Jv7_ND9yr&KGh5CC-FbbCU8{`|hL1m--5q|NU|2iUoD_lj zJ5Zs{I?A1CmKl|tftZ|$7_0Cap$PM5M?gtc5k{^Do}FD2aAZ*U5tYbhAx+EHO;I** zvcI>Cy9^`W#>UHeDQV&XazTTHo;C>!t;I=+-$3?L{L`-^8olW~| zVNBUy>wlC1AmJ>(l_NB#T~X=n9oE{hC_u9N9%V5V{2-jg`*=(cKOLu$8Go);xvb(tG#HM`qB5OjHgrQZHq7-b#RXRmV>M5oWw#q^V|M zmJdJr3_+^>2ddb*z1Ec@NH4%}F?-pQIh@PXh$jdO$T7sKpe_}wbINYd9(@zTI<<0D zD6jnrBN47_)}o&sHgRl_WMnSmkRv*W#9GQ{bd*3NG8sZ#?n%!*MQgw75OwJC3((lu`vuRS`s>tXGf;t%~OU5P(cLGqoPn1F|euM(CImQ8zT z+U(Nz)Y^OU|E73?%t)wEYH*gp{OH=pBEq5(f}Vlhn`m4k{jh>7Sz%DH!n}+#}6lK z=hNGf{fduciNT8Fv&4n&+Q{vJqVrvX3=?Zx6Y&*B)|QHH-sk&846d`;#+v1F%Ioc# zJG1*H%2H^9KM`Gy%+K<_-qT4RFk=Cn(6uZ0YheZ1cU+&gD}kh>fT`|m!Z)`JAH>tFqKdZ zN6e?}$>-X4`g$y1b0EJMcThs2l5`8f+)K~nBX;Yz-G_eMV2k4#lZNSrZMg!caRh95 zpxH8>k{zbUqF2SAY_FSsC|z!&@wTU=i$LQsOK*MCMNk*}yo&eS{@19gu&iDql=)j! zOmxv$PtH8e0i0n;-p_8uU*|=^G+cO3IgGge#S4~U1RqtYrSjU@#fgCksuT^WamLjO zNLxik*UXOCB5~01`Mu=F%u|5AGip)I)NZIEom$>k{{rGKLdcL`4Kq@`4R@&tq1hff zNO>7Ui8T5N%=hTL=U7PE%zo4KvDAJIKn=2HNsxS3AH9;y{f)>fCv4~oj;DyK*J6lP zA*b-YE!N`ff^xLkeupsEkV+&x28csaVY^SNn+UmWH+?3qJ@E7}q8tNsU68ZNdl~$- zC`+{;j$?xn_qI)799+;vx5+ zMp9luN7Y8O3d?@s`NsqE%|=_)%$x{=;VNdE2}Y9C)9t1s8WR}yBMv62!%$LA421uhTC_OpmM(YDrzJP!42d2yjMH#qCaBX)(#^cfT>hvBme-Az;(

UI`V%O?yRPvNUz%(9ZD8Q!5 z%mBr2=KH=d>1}gkfNGeEjs{#BYQDJ65dVU)_!k z{&%ap>Ae0Kj;4N=(W}VL7KJqboX{B@XV9&_b-q`RyNAB%iI6&#nmdL6lyp#)O+=^L zlWop5_j|}B)0IbicbB1+)d?W03WD*!<3_Z!JOf=Rz?+4=eN|=U$I*1&`}=!L4641o zJqZa35G#dAMAXsJLeuf`-vAtF2?xxj$m2MfB<-F!oz}eNsTsJms{~5qGE@pCCW7it zuXyJ1^I0(K)Z&%HzMKVL=K1fxBhm>mx80AeTqo#HDUQp2pCeXTcXHLvqpUz5PkG3_ zWYFc;bY6m-{qzc$^#?auZ+5Fbad;B*0IH2)C{?`rp~SHWmG?6vekf2{P{q4cD~$V> zG>d-LFDk7;V3$0*hFx0X2(OhwdX(iuU8&P+rWNATF%G2rYUg>S!Y`;|;gp7hn?(K& z-TfM;n@>)FEJepPmI^2MC*Xr8(Q6A~{Wbu?sr3>8w1o4+|5&~E@8}HkI7D7W1uWWK zh09k-%Unl(Sv@qFo@GoJNGsRCw~o1UPj)#e9MKJ7WOCw^ET?7SRAaJ}B*W^)vh7R` zOPCC`(Q4S!hRID>uKz&a2>yQS67<)@nS|S{HrP5Sck7>c1|Mz{uAOq!&cm^i*Hr?z zo>NP!Cq|TZ$waxBqfX6%(42`T9$?jr%~u0IE){Zxt_pH}Vt3p5vuKzkpibTF>y3j5&X6h+#EqDm&@^_I$kzi zSBMG;J*nu!=Odx#K)Mh93m{Rkx2Nd&az520e&P7G{rXa%t-+P`cp@D;O5`(Fdq-kN~#`k zggbpe7;l@FZbsawI=ed9#knM@ZlG*oxai!@;X*1t}IU!l|__2&JQR zCl-vKxPM>8QS(&-RL=n&!w;#?7Xu(BDQWQq0iS^2vq{X=$q7ADLPuNsV?T3ZVgmMy zv6&h4lC8D1wU?Kdjg5_^rF5#a^#5(ZseiAJ(OHvzuyGO$S`R4Wvyb`i;~6P2EGSMv zaB-b12IoDV#=^&ztFn~~hc8u#;!&c4pW}aL28h_0Tb(w#56sWm*!^gFjZ=+kiR_v= z=~jSk@aB`A!l7x1Ps4L~O?lUGKcMg4V}%e^E&JACT0#(;cuGS8+CJ7*+!P!-xnZN6N- z{4X^ZO3vbKJN<$hZ);;|XBjQX=@Kv+pq#>+TS*CtK|q&%rXoWHHO-p#Ql?U7d5&qpy4ld zRD6V6EYI?B`|l4<`h!Q214Z(MM;?EuHr;QIz}9*^Rjb|{=S!;C2S&(q;P3m%l^Pk5 zY3?;&CcSQq{?j9UAG#x&9SUQP?3q; z3NnnSo~84xDg1oidKB=Xo?(ipKQRCe)M_)+VT-`Qs zKzf>U2q}zVVIumJQ`x-UJHaiU|M>%HD~F^}(B;{TUHhepH>AnCFq1eCAdAcBZBtAO zQG7t&w70_v7jbSkks<1ZRBj6U{hhtNdm08SI&H}0YUBQy-#m+UbWeN0d}r+@vO^M~ z6{e2&$8_bq#6^W0_+-eTe_;9I7 z5pO)`Uaf$~)5-bA!NW!w;7&3raM85{H`iImR^R;b^OS?txV826r}gRjNq9qI?0$&K zxLa)B_5e)PrnJ2z@S1D&)bMVPAf##vsM0bp@V_8@)Lx7kkd=a<|Cy<&?Ahbbn$_jy zl#C1_!>Zfc+ZhA~@&B$<@%zg^eM$D%b=EJ`9Ijk}KU{Zt05)FP@zTX9%<5@7A}97> z<#02U6AY5+JK~*gH>ynS-#hBL&8AYshDJ1{>J(DpR)}T#fy;&RzGL&th#bp0Q0AWj z>}s6rC<__L>S7_`y@6^Wd6Ik%=O?WgTu2^0=*$awmJ8R^yY-t-9;q}J>|f~ST+qN6 z_|I9vW#`$ffDAVRhDyN~7=# z!jD!VFsr{;!Pt=MPiQ)SR!m`>ROyp?`Lt(Ypm#p z0;kZ##0w##Q06n32(mKi%W%zo=S(esk*h%u&^gc1yuQ}J+wQ_rn4fZ?WsMV$jByY1 zv&hPeUiCgnCuCV4Gp4iY&u?DIjnHfY9Rh=FuJm0`)XF_apRD@{zRNUE_J%bKbpgD@ zS2s7y&MPD68yU6-2_x;<FqQ-&)PL9rQc#(IAKk37!G=f@we;JDjTczNM7FheuVsD{&5ojJXfPsR}+p^$o z?c3`sc@AMU%6~n!I}UVgU_GCexM4&eNqG{Z=flbT2Xy050Zfiqj@0oB&vN8z?ZILG-NhEzdzHy^5VYB@` zZNVfBDuM3oUZw8mS$ApX;Cwt9xLxFr+^x#I1iO5=+iE7OJup1%>nU5O!deFn00m8X zU5?80uQP*N)~}n`M}jjqGXkc(22J^a^@uB@eYImJ zD$Rf`_kd8Tpe9(hfV#Nb4bLu4?Z^W$^+TFPH7*iNwuG{G;9AKM)JFrslFA2#!NmEI zm3XgU7K<-lg#^}u{H}r^Y=tx)JF+j^v+4MB2{PjfPWOIoab=np0ew&4@GeYv+gNH% z^ouat0lWcO>>tl0pI5tr8P0t6xMgE#8C0=dCLa3r2rAVx&l8$=tdS2HBMf*G6|!cO z0E^N);`99HHFx$ef7}I2e~coM9SeS*1XBJVAsh{;6Q@)$v|w1`nqYn_Ayn>LN9$P! z%1st5UasS<^(73Nz^x1$ov^r4xkB_0%wSqr+UYS$`aC$ z^rI@Xp=OecH3udR8Y3cCp<=frPr>-u z*Ft}sHKO*YM!RVGj6Q<8$n4R?5j{Psri2t;Ic5stNLEhMQf&5o595v+)B7I&g{!w+ zvBfP~tSd!$F4_M0`amFh5dGr#F8~uO?SO8Y35PQnVbxp{yW71=Xp@Y9QM>e*7ef|o zl$W0eoZi(N*j`qW&>5M(b76>Pn_bPs4fiNF^tSn!@81Q7+5EFLR+A7Mc>V}l3K|YNf2Bg;@bT(zQep2T!#Y1#H$eJ~z>tlOij#ti945Bk)51F8;3-N9JnlfQB!Vj zGE;BEmpFYJZAR?L`nV%Q3{KC?Tn0LLV^?CrT=OXUe;34=UteG6b-zd#1U^RMsk+SG^|ZBnjcXbk8~tl!{@(%>?1vfRy|rfG+vGuH z#j;8bpQ)Nh@){5Yc4;@=8U>BVP?%&2tE z4#5hBg7yn+Pj$@%47rG7t9zi-HFfLD7G(u%w;F)}1voT$y_8;Dbj)5}|L>DHzAqs8 z2MQc=J|$?(rATpLzP3l*yJFm{ARt7Y$pdSc#jUPAafIFLV>ogozXKu(cD5MvlZuri z+3A9GRB`pvXsqOCTdY3oI+Dua-lAa_xGOif5gwRy8w7iqe1l(;fHz8!Shd1SRXZZW z(4BC`sTtMZ<(IZlf-9-OklH&Z`veMfLb!zEVqfQH5yIVNMCqIsf9sy)&vy`?#waA! za0JhA-P7|w-flE+x(HIvk3{ba3z2NsG+Z?65%X0al z_FEhlVSdsu>ab-xtXGbjPCbQynhCa*KKBD`$hRctmVM^5_Rn$FRc_YPTGsunZNSW% zG18>bCBbv!CLKMQS3#ecfRhNoFv&4__gpB9BfrRZn9#cFi4qtVXSWAc25WQA?{&k& z%X(5b=Iev#3&d`I>lNvvx=FSEZ8SP=k``aagwwRqu>{rcocD>Aog0lmR20^hW=F*e zNDO>Es?&;0t2>=H(;&g(=t|Y%_vr9$b-!{lJUPBOka2atoewHF+1Ovm87%wmXoVbc zNwnL7aud-}bSk0VW=`pR3g5g4Bclz{u+d)ry`;B42Rb}I-Augc8%XiY7XMxOG`;i= zQFDQNcMP)RkFaDDnr})~+jrrol^wr$8JS!TtX5nXG&I%_7fmTlcU&a&^0l9aL~0=9 z(G@5+INRneR#ag_Q&hOh^JgZHl6s*)?~hZc-K{I=SrX}3UyuzimH5d{B1q|-5&Cd9 z)vxdp06D(9eFtfI?l3!f7$YMzsQyK=_F}+j?hDiBRmw!t!i&N3d!vvqbZF@fXvXzV zv;)CN6%|<6*nSVo=2}`>Wo2dd8|~m5!D8Pm?d_A2lDfR^PX-4EUtU_<+S*c6wJj}= zfjA+}|5;T*ZFaM%j5y0($rBzC ztwvB93-OSF4^pWRF73y4-JwDIcVO!gkIaDoRRvE;zXX~AyjPKYRwIn&5{K}Sv+B~m z6|&N+dfTh|0+CS(#M;85WNBtaC@T(98`>2}uEk3aj=*ZI+57MqezTj8t=|C@+mIAi z@4;o?=hb@VOVn^3BM-7z!8D8~{B1cP%H`t`Y_{VdgfzDOYcd7=GsQ#|zL84i#Kc=H zIaaSY7O#Bp4;#VWaly5mgX^?_OG~h_xY)cWFfdG5YK{;b#62%!j+y)|$55kJ6I7Xh zUbqU5=vI+%5Dmuo%H-4SCh7}7jZf#BZfERfFM!iFW;Dg~Gu;qQUY}21SLszdXw)k@ zz$(l)wKEP4&$^yX7cfq_3`In|-b>{{Q|3Vz+NRdSQrsFr?s|ga=mc#nSZoY=jDPAz z794iB1b$KJ{s}q(rpL1*)@No)BmdrwyRcFXZ^k0=L@IQAN68|31OvCL3x5G)t^wqS~z6f;tt_HUv{JD zFJG7zw&6J@aB9$G-k70InW6luzwt{)#(pU{5P{N|sB0G7o*^aNI!q*MSyuAn2qLL4 z#`eKO{pps#68Ie7^Y@kzs1O|4Pt~teua*vEeGzdoK2|=Lj^sSL*st+a(=s*E{}mn| zy-w}^GWxn{-=SxLTXH-0kJBaPG;Q2PhN(-Vnd8o)#=Nki-PY7||9(w|>~aH?Z1ivw z9;O5J{f!zj;9BYR%ED4HirTU~ANbZlDLudfW6hbox?g&EPJYS-DD&Src{QAyd6n5( zbR8+^Y0C$wT@4QRhL~5m9jLcfN;a)eW?p!{xmmkA-~EB%-)fBYt$Ak0F*!{#mjL1^Kw@Bky)c!DISnM)6Kp{mkpXhbE{K))NDo zQXL%~P!DCsJ)0?z{d|i4gthtA*wAoarcvc@4w7fg%+CG-h!LUla&o{!`gV7AKsUMd zP5)Pr0UUyu0gXb4tdo!)KXM2$l!%aWWN=u#p`?-F#U>;$>`k(?!M_w-q>Y1s zUZzkn(=?jBJ}FtpVpK1M%Vdy-RU!5e4>W|Edcb3fYwT;zU0(GI9)B5C$@^O}&-1WU zHJ|Qhel#JxyAgg`2ze~YW*Hq3jD##{zhtf zS_M-2q;VP0rebugbZm0)*#SaOb<`B$9#}>kb1W#rbmGdnm^~sK8#nl-C-vy$ocaSS z!t>w2|ADsIorDTI{rr}o2HsoJ3ObBIBMZ=h^(&w)k7k-z1vhszZZk)q36CB>;MQv|ZPqq^3Q9Aw@f;rUHC%au&9#;CrIdito zlkppMVk*8xzWjGP;Q~_&MX8aYy6DMQvlELZ6}`7`(OI)wZIx?{F~l*OVqoHX#q=3J_v*UeWbbU0ai?!krP*#wNh8 zu~NtWl22F2ILO+{P_}D%3v3xGo!s2OJH)gEJdj2onT4md6kc3&iX=gsQP!r0*QHgp zcvT~wmqEgNL*AY|_54*=jt=7$^m}V=d%ZXxJRNF@9M7%Z=U5IteG%Y#*Uc{A$GPB7@0tz13!wAua;x zirGF$mbB*SkwWOp`Vl({CAX#cFRN_DLjXia6-dQ(zdtAq(HZN?%*0u3b!pW8>HPrd zVu*L}xx!nopOKvz`zStWGsxb{{b?S3!heVYvzIf5ECAmc+{5G?nqd*vBf%IDPx;0a zZ)adEMjPtGxNIgI1V>BAg!e0}oEq6`d#D9FZ_KJ+c_=cHpyB90Ix(TEaac$%vpUQU zeIk}AFyPIlch2G8oWr186_Wj0g{0NOwEY~p`!)>{S3Eu;+7h^j+uD-FT7NN?r2RbG z~Dw~dlEF)PKNF1ZKGotKr6-v+r!7rjY2*3T0< zIBv>LwSdr#>;TvZ>vT^G1L4ivoM-L0*Y5EpJ_SP~Rdv!n&dsU14N{KD{x-5oBP%D$ zeZZ|35;7~ZJeBZd+^Vlk3m^GhdVX9OkF3QOOCM^N!naR(pGguY*luVdTK>FaO$#}a zc)V=qG?tfaCUvZma<_7kfa_e2v0XNe%O}TbAeogqYu4 z58v-Aj)N!OLiZAvZsxCtMp1@Z30`=t+hlkD@m!dy#@bhLAa`Wy@Om~q9$eQAtn?JE z*D2nlWnnh@czhh3J^cipkEb6l!l?*OZ>`UNaj*YcmbBj>x|ER(dHWDkJ4K+&0RF2W z1@inppFN=ix8MJOEX&8P|5IZ5xwQM74y~_#tTaa2hUy_jAjS?0_y17!j?sCBP1kUf z291-(wr!)aZL_h>Gq%}SjcwbujW)I#f7gAl?|I($owcq%*Y7#!*t7SZnL9Ev4xxzU z=tA=HZ(U|KaJ!v9Ob!@)g=wNUOYA}JI+v4-6icg{>4^~9g^Bo1SXX(ZocSubs^y=E znsYf#>ld=?mor)yg3kP!&5*zwTGrQ2W4MJ&T=*n8@JS%Il7N~z zI}bh?xGfA(c@@t-U*m5r+{!}j*aZI~D>gDnDk*{Q$ZEBLRxr|8P`q*?ITV3SmV?iy zlt_jpbMXU0qtN!p!w8bNeR+eu6p|Y?lk5+UcX@)UrH}To)tHk>YHh%ngIz{yMOw62 zg7y9L%=At$GHrPE)^>!HRkQ{BfnCY&+;P2A*1Iis^_Hh@AncM(C@!%*=;creE=VcQ zd>vok?y+$_APKwWhxm-~g3ej2mcwOd#$jjEB07u1&5%`kFqeV~dijmW=Q_FSF**9% zAa1e7KCvtoo1FtZnH50lD-&<1U``hDbgMyxoZUdwo99z&QHWa%Ed(>KmrG(c7yr`P zq!hFiU3f@}UGz<#8oW|MC5E|XXnw=tUN-!Xh@2NppiaQPYCiS~BX%lrD-t`lrBxuB znjd6h(r*&@PMZ{@meCNc<$|?zD}OVc!~XPa59y3@HUBJEfj|JihE7r$NTCq5iPVG##Xs1rfxODIwIkoaD8 z48`KTeiVUpWfxF!!kM_0^TiA^W4rwOP^H^cXNJ~RI>3XTCQ&%=zRWptMZwu7vBlng zG80905Hdu&QACoBxYH@k2|RWL%{G}#avWm#1 z5cvDBfGGhjG1B3E)#A3CQ+Zx#13m%2$;QYfFrB5_1K-({Qsn@ z7(i35{NYS?wbONeTv4<=ITWr8+63HWX=dS8K|!i5wd*_9jwn;5Z2mH;gqJ+SzAH=1 zKK7Kd_AX8#LJ=&DU&TSMP1)BdAH*%jcD}$$E5TZ*gn_SZ5euz=58&%< z8Mq6i=jF=I3c30kJM$qno|O2Pf-_5^0q!XN7h_afo3=!kvtRG1*)0OTmOWERQEMw# zGE~nZoA;AHQ}ycikym(z4={1==+ z5FD5r4gSYwKc!OmkJ!^;r7a^9{tR5TofEiE;UtCi#^};bhtl5w7`b! zPmZ+X4t_;&`H)(yvF5hC1DENWaY(oZ=i>ZG@KK5#v>q69x4XnXcqyd#DIEH7 zqCS`TQIGY-TD={ch$3z)Lmq_%J(iV|6-v2G6bgSPwz8qx)7rm5P=-=@Mqd|bTp#mt zw8AhDW;aIIwsawQ;rhk{op~B94*-f`5X(a>vLH@pGCEocK48($f>YNBi^c_79h?cP zc`5?(Y9b!*nfA6`Xg7kqfoU97*b}7#wN|s|ED(&i{m_k#$bFDxm>!y;#wjG+>{#NV z8ATgn#>CNQM7Ms0Rr}8epIRJSfhH>uMdyzJn!d9opRT5DD&nuaEiQ2W z)#=K%ZcEkFc422%|Lkf2!TDpQaDcW-u+_oD$+gqU!`EqOm)Ds2k9hgZlB8?g$Lllh zRuY_9RS|iS!fD4wHmQ3qz~{}^x%gdaZnP^i#F3#XMsRcM>VE7oAKD-Z(~S5WE?mHT zgwhwSgL=?K{KlG>XFE`9Quxz zq+wPJ4W|w*(+pjK_-Y;NpGzR{mvF{0mH;l6;3oFxntv+D!V~vXlk#9O$r0xlY^w;8 zZq2&b7wZMKeKJ=~$IRH@$|B04Q2TUn3}f%?xJ*E+<^vm~Un0Dq&lhh$34UyI%~Gi- zH4HJTRj;vHkUhewlWMX6lB{%9?_CV5#1x;7FfLv`J#5nZP0of~#5Yvmbk+yTSIf!UChnLXmJbc7Q{5GXlIa z6EvXeKD=m{QrI*)>p4EBU2ry;^iVS9b;A^+1~+Naeo6X$k6On%rmAUhF(?0+QSrXr zWlX4WX0;Uru(2g_Npa|Yoy;iT2k__4y1ag=AU|Vdav4X)@PEMU`!~kq1-%VlyQQz! z;DulX+Cm#c`L*Vhlj&lCcqLye<+PFxq6yFng5hG>?Hr=Q*lm8m`AaT|n3sFuVa1WC z`{ih;j5%`YWGQ3N8+M%l6SNh4Q<`n!;QR95!15jz9?YL$nw>l38;0DO%B^C|M9oxo zVI1i3JK(>GGXCB^_xRY|kdi9THA7q}TchWMJK=*IY4zTQeuxIvdrtpsteZOpf9wEH zC#$zEPGa)XmUJ&xk>#WBBsV$N!y8ka0m&O7#GZvgg$XNH#&SU8JEy61m!nv2@^}4gW`eSFW zsYNgNJK?B@^}&OLgmYlkoUXf^zE1eD=Y8;9%XO4?|Ke@Eus=5aJQZXQdIjvCWG+|a zORS>Lxj#`GIuZ(%SxsHr`<}qH5jQ;Q&-r&5-dB$bL@207;DFt zm=JTQUzEF~WwD>ICMRx!LXcf=w8(?DRK|6<*Cp%7HC!*UhB}s=pj5gTR2dErJrEx* z6d!igyyM97M8n}20|sm%EC7ole1%!WG@Dp+ZfG6OI1Gpp=S>kIjic6)1{;TT8pBG| z`vZ`QPj+CM?6hw3Wg3EjBr>ycu!#%Qh#_EX{wK1<8+=t<{RW*DYo!P|tBw-Va|oYB1dlVWJ=MQ~dY_h;#{FLpF*pFku+daM)&0 z{eflg?8Ah`_|zoz@kED)9#((23c?*&FO13hSa@(TZn0z*%) zN}BXn)INpfj5|`#*y=9wLB6J0A6Oq*xGAxWOS}jsV~hK7b>AU8Br2L~x>;^fqVD?F z#esPoB7c)gKmm)VfhADV+SI^wiiY*xRHdaoY_mD3 z?OxgePj`YocC;e4ape|y-mW~`29=k70&Ry1?fO_5{3@IJD2b|;Zmwl{mSuiS2uI8W zYFMVgAy=lZa<<0i$|`f}&R$TPJRedUxs$m~MZT+C7=N!ttEg>3@0&(j4~nt^e}^r?ixb-e@_!M!(+JZN8=Ne5 zg0?v4jgPrJ~$?>^c&s$*&A!2UNH&PvsOb1LB>$DBZu!anEotG7w4Fy5GbGphEmiKW7#0$Ea zq(YS&W-P)YNKwC;f|nVPfG~^+zM00+L!b94o{$n*{y$Q?8ujN=JB2%&1{5xJWKe1?yy##SC(DcqS5K>{)5wAbatM&K8MWE)%aDxK^;s(K?21g|=6% zvk8qyB4bcn9AMZ=XJWJ=N?cGV(zvXZy>x0k|4zY}t6=DO8YmcGegrw#Ec$Le0v%aw zpeVoyitwg%avpKNf+1E3ECRe29LcJd;k@^K7GQ^Hx`kfxk!y$|-K`-W#${@iQa>jw z*NHtIv{Shie>4`j5>NL3%@PkL;g^}B!K5iwG6xlMbSioF$TJ5RTTigLh?3a(hkB)E z$8iqw(@Lse&P9kT7xm4bX5GUYvqEa7p&3M&By|2a187*CxvJK4(ZCmUn@oYKnOQFN zkeOGMxDR0t^(87?lF=W(6yo7?;Mkihnf%kMof~s**bKPymOWd^DLz8Jb%-wfGlPx18$NdC0oSdHuXo2A1n6mu%0-ZP>3p z%t!OvhHu21bpQSplV9vOld!Ic zhBrmuCVt{o5y)IE7jsx;tY@?K1LTDd^dwMbI+Xx9Brv5s4XFQ#OS4VpqRuLf4ZnT8 zzjjImj+&0Uv!E87qoV*t?xz{S=dyJ(&_t@H9o!DkW`A3pabv2hMBSJDbtSHkWxkfq z*>&JspnZ}7#VPNosTee-?e|i1Eqi={tmW%3{WB~NR74)C8J_GLp_nIaV1C+`ZWq%C z_JnJ+DI9ZJfVN#*#1MYeT$NFvxQ|IjNXuH}Cm)E{Q8U+WIiYGyh z8bW61RsE3n$0-_+LXjpD`fAd_+}X~A-r=e1@{Q*-w_j4Ci-g#y-hK$6BZsT z7QV?9pR}4gVuPomw7(EL4!>-#!z)(uMC=#YzXe-L{BTIOaDxif3i}B~bxbKFOEb5K zWu}dor5}0NWWlnZBKFMWmqY;+>Skv`6_F1_)6AW-uw}o|_vyrBn-wX%r08II5^tIpy^; zw{NFrzr1G7BI(a^%8zDOgxgXc%IG|3OpkJ|AmftU%Rnz~RD`cQmg)gWtJSzZD+o}H zxjIG|U`b6XJN3hzwZnXv7M*TF{HRv`#Iqh&5!pp2-QV-UT6~RT0nj&AXO++W)2eaw z%a&V6A!O$@H(|%*A^|6>=7EJA7Ov}=;&62I(d0cCbqTco#EYUL-iU0{8o7k%*R%=e8R1++bm*4Vw$|&n>a8}%=hAhU0;H?fY8Ct>3 zlFg4W?C$1olAd{!QA*!+xo0@um#M&t)cPM!9^@F0Bq|Z;?qAIgP4KL~x%t5ge}#1xcsGZZWzpcg3MuWB{+N#Emmo)FEZC=)g zW0f+elnQxbg07vX?ltJ3sj2eDvy`tp(NoQ392g?&10H|!_-^N8gDkD}o)`e{{ASK< zyGm92N@L1yzU{~g9Sz#?ykXK(l%d-4eH_%N`iwURmP ze4_MMP_l?NOCsj=3VvFDBbC)+Gg%^T{BM!pl9$&9ck0^1m9%Qv#AdXDh+y@P+)}~M zt&INu{xg|Q?7)8hhU1M2h5hHbr=R&nlj_4ejK zL!gZGBo>ml{iGPIxGur8h7@~I2O;tns%*YmaC^HLA4);*@4E8=cB#Km3L3767ZJMlY$M$&@wa5& z-jLzsWIlW)_WG*EImr_1=t^G8Z`XDX@k3c;{(*TezX_6f_)v|{(Cxx>WBbcl_^%E5 z70&pk5Ra`oWCPNSU!$y33$hL_yEePp^kgGn;?)gnc;+T9uJ;ArHe`?Gc<$Yx*?=C@ zPY$?@ov)1NVcVwtHOlcVy!mNkqZ{zY59%IvaBs$>d!8(}POPgCf(j&jJCZ&a3J@%C zI81BiFu~@T@j3!DiYrHsgOo~#VRMHY@)YrFgf{0A3CYm;i?4ghuLA3=wd@)9R2eQa zB0ad$uVX`B1iV*bhHcY^C+qFBxPdgXTUyw$74b{4qJP#^yP+xkv`SxcAtSx?NFh41 z6Gs`T2am+Yr2@)BhT04Md_@tM(onczD+w8wk1dNJ)SKSag!Pto+%_3(4XUhVE4S1( zwOjc8*sh{rGyPIsX3bNS7k|i&cgTnJJ)uZ}FZzxU{@z<~C7@(ov_1{lX9=iWRnF?^ z&(KQHo-dcH{;|2+GAI1x+VKeQ<+go^*W>-Lp=&*#FLYga>mF&c-lRjbhD)mjlX5uA z6IhXfzC$8Qg;Me}Np5<^V&f*`WcYH!B#n`v9G97*Iezoq2%6@Qn*F}^Yv0S@7yZ;; z*FxL!9MmgVVwS^MXZ@&L!#tp@1F(8tg%u$Lk~gqdpTT0MJiq=wHj9G|oGF zKfiw#j}v1tZ6WpaRq%3xDm%hWIY}~<&p3w2*{V7y+uYL&u?-IwE~K-=wrA-GWZv@r z9RbIDq{?oyi(xnQuz^PY^k*hGuiWJ@%^#hjeo71%1)1%~e}C2^NZKJyDZ}b)Shf@A zG=>yR!xqThq{xW^xSF}$IomVyh;`8evL=LEnm-mB6(@yUGsEQ_kV=&!=nc$|9;N$F zPu9f=x}q2_!QA_qFa_61Da&jF7(Z8Vi9eK$dH{3aMFD)Xt4Glu_cw%a_&|y5uW4|FLcmyT6 z!)`bUYd(kxIK_uXwV+)Ycu;Y5 zrC)|s`G*qWjKfc7jW<~-vzdm4aa235m4C(9MpDs=Yzt6WL$~y&ppc7z?d)K*frzk%(lV30CjXD~JsE zZ$!`x_h15Ax;~rRojTQ5N9z<^>xkv9$raY*8|H@=aSQgg=StOHpoOQj-dKN)QtJ|q zaZJt_>CjD23bZLbGE{sX$Q1O36sKTQvSr`3%FZiwmqqK;kONBB{n75{=-EYWfm3ZI z@h>Go)z(GUR^J{OikpM%atl*e&zG&qZh<`p z`NHtrFbAEwnucse&DgL8sh?VKRkI6ki)mtZ0A+d{0<)-|R{ExKa<;3%kmbgrg`_SO zWrIo@CspEcVX7$k-`(>?2oMh}rhGg!`>Ivj&UuJ|9ZH8(+IAlQtZx9n9j^JU#=<{T za4-I6S^v+lQq@jJR`n~M`G_-*?nX`OBicbH^w)meZ`D8N#6K`w>H8+_ik}_gr(Uty zZ{bcH*QT{+x;doIzf5coG;7QnGoZP}hFn;h{L|4)z?Akb$4^%?^#urq*otGhtsirf zth}*bpwtilg>I(LR!zBF6{F{mBph?hh0;i?;_q{Vi5((;_qMTo;t8v6$t|0`AZW3_ zKo?iP;Y5cBK@aw@(yD73oaNYR9*glzyR(Yh)8)P%UKkQlbNT!&sfFkX7s0V-mB=?J zOcXEZ^Uwdi;o6<9{5N1GKVGsOXWf@uTFYGie}EIOGdW3F%q3629ozTpciDk&IvXSN zO$it5WNMT$JQTC{4G*Yzdc@nT)5~$r>__Cc4aT0-##R1V52kR}KXx0u9qNA+H^&*- z{diwwn_76BqkD%pK{v+Tvw-G4l@A5;u;4yqAa}$CB$s&-9kVJx8(mD)L+G)eoE^o;2%x2TP_o1w8dKB8vhbsgK}t* z6P2I`*5E%Nc6Ws|HmKYTyG`&e*rAWqD59a%?&bt~ov~;4e;mG}SU7Ti*h1aAVY21M zgeoe@Y$4EJ4)v@D!qTmydf+y;B6$%g_@qbkZAp6M2y2c89L?ubN(HA$jW&4fSIB+) z<%uQUg)8liCgz9s!!sLJFg(x4c31FQ;Rl`+&~0cIFhDpGf3>Q$li6xGbL1#mdy*RB ztj_Q%P2FZ|l$#`Dewc_W&Y-w>CA$eiRcG3Jwz$^nq^;%X`brTsG(!df#ov9e3?GC7CG{U?l`~iF1C8ci?h`%`OwM?iGZ#JzmxpK9D z&EBYKb8&^V( zOkACee~&G^EG0JQc-(w~xL@a%t_T%?TuqPp4uYI6 z4nw(%-@IXmbM)g=Rk8dcmgEB`f3{F0#w{JIvPxMqZ?z@=+6J6AgyGVbI-+|RpdZo? zZE#i_y55r5J><|6*;fkn%iMI2#e^{sl%Lg^8Gj3K6FVXlcWt|DL0uxQ^3$l?bppiYPQck)exb8I2jv1!2vp>{~Ty*tF_;;9*w?BJ4IOF6d;|!0`aa0R_K0Je;kLWL&Zh7R^j3~Oj=s6% z@9C5<<;>ka;bx^|+OZ_k4ksLuRoPbjIET<-?uzHV`cKfI`thSBoSlYZ`Dx{1Jbq=wcP=mAO^z6p{ZDbakX z`o%;FCK0`|xx-H&I&^X{wdFXfz z1bq?+zc*dK0S{7Zu}-VJZO@uP#H^kv3wLcouiiARNpHL1eyMetcGM$b7*M=TJ(P!G zdF*Z*)NT%9we?hk29ctHv~C;j*;4#D5#j4d=z%+e>Rx{dMODWL8Oz6)av_cWZxq9N z^>>?r&(qP;p+MMXW>{){G}VMSha#~H2rAx;RxED0$WfD)ziFHjmEhm67SWY6wZ;!x zkWPYUk`v^{8WKH77UCXdLu8TdHC53F!Q96mL6Nfhk{?%vXL!6^)=(=zOg+Y$UX)%s7Sz#+ zS}oCo0a4yxwid-2?wJvGn_lVYNJn{4#h2EMf7>FkJbE~93(kd$5_ z<`1aun1WM=9L?{B@c(n?{^wZ>{EDQzlo%=PmLy`p6MB8`UJve+5^+Vp_zEA)mU8Wk z_3#X}FO0|q+q9w~HM)U6+vPwrJDE22&0+@i+swYC;f)m9Np~ES&m9Vnf*-Q<*I_T# zEUz7zug$M9>2S>-ho*riB7zSRw69upCw)-+)Dho3&Jg%NQ?p&wDSD2IfE_oM9#&`j zjJB4^tOlnO?6&(xNyz38i#^?yo1S@CM#(=x7Q!?O+}Jo4)k@}Ubp^v+=|@QH(dV|~ zaPSr4!n}(*-c{IB=cN?-Z*6bG&glFrG%q8QndR}d>XA>U2`}=0ils+4gdUK{3DrJ{ zuSLT<$OZ-Lnp$`2ZFkyhfx$m}yerRM{A)w?_zkbL3M?FG!b*BRSE}oEB)Y2)w>k25 zWUXN}^>H%$9>oBkwqQ8WbEj@nIdLKe=l&4BK~O0LS;gK-utzu(k*7+?rV3 zGKs~Pu7u-C{|DBQGyRW$yV?&9+-TZT@HIriPoDLJz}-PVE*^&9NAoRBso5q!0l1|m^X!sXi}ch{3DI`!qI-CQ1yRw80Z@e& z`ofES`xA(ClqHcfII=N1mH1O&gm@ZZJ{b9ZR8Pu5_L}_l>qS@)x-Z_GWrB@=Ro3A| z>^>wV4Aha+<`)T$K{kZ?=oObhlxjC|3VhU3?Xky7*XAt4iD>0TN#@ia&2kkG5!T^T zY+J}OJHl!BA**^IE8$WD%bHk`X;wuhO8L6wDLr5vEu_InO)jFl^&#}ssOTv*VY#1R zn_FXBOvAe30|?k}^R}6NFqc zDK5=IAWF|>?1mBGpi9rpQvO-vnyXiKQUPfnhsOGIusYPujZ0n+u(zBNv~Z3e2XBom zPLoFUj0)M>l^gEguV}v^%6ywQC_m;MUR@P^XsRWpU5jYS`nRR{FV=OrvT1LrvQ^#j zJUy}7+V|*;zYTwSv9Pw|yOXP@b2r~yeI}Mt@GogP-f`+V*ZHa{;U@~wPK5fR>Lx%n zk(8FmAdTo{zptG~+cb@-T?K1F6ln^b93Qr^+)qMKJT7;<{POOC-%Q~=k1MJSrZ7`J z`ihaBvT*O#Yfw+YDT`=bhFA|*usvemnpkIlr8Q0%Wr%oNI^%V%Nk`CTXKsHJLq;(T zrK%*PoFVo~+HNbmeOk-g2YbzHFdpzQznyTCQLi$!?l8G3<8NZ@?)fyj;eTBEB#kJK z`S+jv-lc?i|=VE1-EFb;jy#d@jmF&mt_&ShHpKUx?o_1`3P?iruPF3{+$> zWWGou+@mUAd8;XC$Hyie2{PIr%cVEP8nX7S86*#FUCbDAHbgmA8h#xpOL3or+4@_a z8mW^4t8s*vWQxN~}KvTPt+j$RdwD^i* zfw>cAw1^oI9A;EnCvdF-G}c``TQG7G$Mu)Gci!g?l(vA-2Nd47;+@lHgA)kBbxp$- z!pid+*FgKm{!H~pdRlLFnjW&WobP4TROCm4<7YTVs6%dis|LvDeBw?9Q`V*A9@T0{ z>UEqMpF%Qb;WI!m1(?i~K4wmkIfpdIeJO`axXDkIy9zGcumU6kI7ibOcYGLl+5zuz z>Pt5D+lOsdLHL|An5mPPjTYWfgQLkdpWn@C_HI6i_I+pTF&pdA*m_p4KLZ~bO}j2HvJe0Cvgj~ZfZ5KiqX6-bICB@9dSh~SDz>%-AqZml z8PfDT(~ zWmNaf)cb)F`TmmXI18}cQD&u~-v5Ru`hnnA!oPpFeY{P`jJ+{ec>3mIZrDh5AHFGg zi;?q?s)8Y1nEjG3WG%+dFORVrhjaX0)4-8LFK7CSys#=>hd~;N9btn!rDb~h`_wtm z(-q>COoEeM>E5|9r50|~o>IjCmb-iT8>o2#dX*(wGr%PQqR~}Jm6^z7&dE)?@}?N$ z3jfYO@km*1QFeTcNr-o9Rq!T)TbuHA;G~%t1>9*A5Rrqfl4;Rf6KrhX^`844yMD}5 z)K{haL!wvWft)VJ)Jxw9=~WA%qMgw7e=@|p^(+%)st6Ys)b%* zMF{GaY^eR*!EG3Ji9f6`eN|xcY5TFh*8t|%eQ^j>B>M0ja zQ=$CUs9-5>Mz^8V95>~~apBDb&@B0vC-ZB4JVAJJ-%bb2p667a zl4$8FZ2DDgI`J@@vv4#hH+mB7trjJ2AFcF!UMtlH-MAB#|1-llR5==HddMC9yxvK* z-)yaOig@;{^g@C9Z-DU0XTqDyg?c)xoAPC~xUL@CM5B(C-^{T5;dhSeVGhx9%1G}(o@%zEi?gV)|2{Gu{I zExJt@f`Rno$_bRi9i$ey`b@qZ2p4B?e+_IyjvADbvUPy+de}xZxf+OQS4_UN*ifyx zMJX7F*=5pRT68c3 zEyHmaM(%H7Y)uco3^sfj$%}Cpf8pCB^MY)vF`#6x-e`*aNsZ|235XT_H}Z$|CP=e=G>}8ljr!wvFy;HwjtD}vP2WNwApEOLB4J(JXz=q32*NUfKgtDbp?9h8EMH#We2tmmDu~VVsZ zw$e(#jzC=|PT78vs3pCWKrhqd>^*sHU5pi#sOp2Mh@i+)AKDjE0Y=mS%X?U3Y}2be zO%NWFuieekoD*kdOOUHF)uCNu?q!pATH1oQWgOt5PGy@Fvt?s%-NXhGoTANsp_iAV zxRdXflXJx$u)pJ35*j?XQu#U(W{{kuIqkoi$go?-3R%?e*fe%r)qGXmxeU~|4+CQ2 z1r*3886O_>MnnBAyQKpRN`w`RB^kfNI8$FYAPlBu#%svTEm6*q)qcb#J@a9ModxU# z$|1d}8kR98#^?Ipr;P!lT?V{RVM+lW0^f=RBJ(zDoq998^BZ6NPA?R#Fb$r&VjQKz zbmOJ3+E0#>6EiWULDg9;R0Qusl+Y?(ot8@$uGXDy!~&*xuW&)Qvg}8q_n<|z{DArOzk#Y2{b@rt zJ(bJP{YJ#;EO|^V@zw?3_;}16@z$=c80?P7fM5(<dh<&1L^BERvs* zMkBQupprmRN34G^C==5-Oss&tvFzqC$>y?yYyp3ac62dZXcS@}Tadq9EE$3|jBOD9 z=oY5B zI?9ThRM8!D|1!9oIhKIxq9(+Nfri|k#Xo(2=P3W(V+Wn+>Td7pdA39M`2EM*{&vxJ zPsfctD@f8LsvX$Z_b?*FG0EPkONPdh4F~`z@||8N5WJeOp)SN&j2I9+F=V_j6gqK# zc-95{^C8`P!1!lL2eW#{&xjCys>k^5i1zG_`}%|H4>aXnr1D!s)D2teKf2g&S(tcm z7*}EQz1RdVWjmSNPhE{yRau1il^YCy-6;rKZS#85{>)<}n*6l(BPVUgbIUz!FaP5O zyb`WGK;(JH_Q%&+30v^b>BK$-ggMi#YJjz!{;@oYZAN-^ds3`Y$+$lI!(YfeEBo50{qGvab`?y7(MJC&uFY$c>~mqp1`(W#gnXi z|BVQk5#{yr`9lI~ca<%jcME+}Ai4n*@SJ(F$4c$_6<$V4R6E`F^CICcsaXymZ%5Qa z{VV(aSyrOYd}!Ahsq{@ZkCJqZ#of*BY?24kKg&PR-ZF-A8-;(89dd(JjI8qPmM`#KP)*EAG~}@>LuQ~9GZUIymuMDy ztjoZjv?{WHGflN&?Du?xu+%O+l@9bW$n!}q#K)w5S!;(%^vx=<-B+d{_aW-MP{agY6805&{DP6`$bpDUduDFD3OBpDlqE1~b_T53AXf7oj?tDkm#g#$N zShzF`nYMUv{7!o=S<+LT!8;rBT^Yo+iNMX~JtrgPQ>XZii9osmj!1sQxPmPRo|#}@ z1${GPAEEuyCBMA-%k`=ml>A^+j_2IS!-NS2SxiE@{%PnK5&aV4z6vd9OVlSrwjW74 zVwp9r>^1Luk(e`W)VQ9%UIHoWg$^_s`ePElcw#SOLq2HYT~|edF{EIhkY`t1zmNu~ zcd$G`DApQhj}r&jbB(!9)OXOM$NO{4L;bjEXdmY*fie*LIc44nAXXEvTBj+?gDKfQ z{6QQ%%>ITr0aq{b>FW9DW&K0a0~@&Wb6byPH-g?<<s|ozhrV}s5c#1W46_H z0|T7|&WYX-!e^k)@U23t%Io2cyTr6!eEB$vJ^vbScUviGdma|%`T){rbz@WDcP}+^ zg1uv$h-rCWFZX$rKKqrCN_gtQHX5V2E7s}h2cPStQMgD8BG1T(OCyt8qxvH!=aI0G zA*86QkJ||V`n+LC^x+c?v_h)qO=Z?zw$)61vxIO#-Q@q`j{&<67QxStp^AXb;#wg+ z`FN}7ifjxjkPC+(;{nZJLAve}Cp&Am!fI?Ek>XlThuda60DB5e2X#&frfoc;-mRR& z5uq)Uo_1L0v2sPMCNDQ}j8W1|&*cti6k_gEnF&wEJWP~tr*MNT49e&GZfsAiL*bc0 zP+XT*$ly;$Y4n;yq=TBaB%S7#cu`6Lx7Y-+;@DZJ&|5+DtKDK5Bm>0mX6#o$LuQa< zwPYK2P^B2CMD>QOkH%socA;Hak#CeoWCZoilVsHpIC7$9zq84(_n|j`w=)CEc~;vo zBCF6ZW-4FSr*lB6T#8y;e-Bz=ng0%cus|}3e={TYR3xS`QS)*Vnp_Q^ljV+gCP7giRyNM>9mXKbirePlY5xIr|_GYQ~GIh`-tZXg}93L7yd#Sbr{zyj8Y@>NyRrH!uX--#M z4#JyXY2yd8yRuD8!642;^DoB1roi73F`gqq1MjZ9=N3(^Mq zd1t~#8l;p^tA8SpCGMSgu9sPSEV!BHdm`0BR(b#BCrN=e9Ivb8KF9q&N6@3)?$nn3 zH#HvpkSb8z74+BgaCk;Kxnm_n!7@oub)`(R9&`TZ4 zed;v0DbJ3?9IeN8AV6Xk$cSrNM(H^YlT%JKs3}$p=&MDYMN9{S4v?n4w2OOaF+dvY z$kZyxc30_&9)?72(gwxlxvka zL|2>_WzK}7+sgR*dSe%R1vbRl<$N!#p&~mfn&->1Osp7#Yj#nR3k%9Ji!Y2l&f2xy z7+Wp``u_41bfpwr8J~Kmi|@7#SnL}+V=mkmMSR*&?%8sbSHQi_8kP6ph3#Y$bp;_4~@ zV+sR=Qkb3_aUUBZKjH zHkTIba(Os?ujg5K28n0};W-Zs_idnm1+3_VPd$xT?;qz(h2^=qBUd855G_c`vC zL#_NTE{ev#!Pl`+ndMUZ6d4D`j`jec?1(^JnT_juDLJuLc(HXGtP(oP$QsAT?dy1X zG;(#cW0Xq?dcj)?a9Ssk-^%_Rtd}bcf&^p3|3*RNO-n!M?AG<;++9sMlsz6pn;}vr za^@>mv17Aeve_|6CytQMt00v%!Cd0$Uuur8DrsG}%V5;5|(P5rsX-quNh8JNSQ-b1#{&#Da+KeM^lBZ_+P$>jC>Ed5# zQS?jN@lttoUcQ+fd2@keiAjTVYQbee?tyHBXn<>SQG@yT2z}qExf_0&BTBvFMgrrH9QJ>_bF_SxWa-wgN}{<`pu5*{c0l{`Il!CWV(z5>L<9M zZ;p^h6O7hs6p$SmtLlp^|3e}Z)V`0z>yx46451QAB;^h!5{Lo`0Z9UJl;Fg^I1-(N z;_q`~Z)+j|n!IPaqzAH`Uyh^)+7A%>^g1^TPVvf?>N3#>&hnZa;XN?PPm0blOJ-RS zwthxsjY%!yb3!)m&WDvgGZ2n|FQjqg^_+C-AaH0wkah zAVP`S=v0)G9Ruaa&bVs=eXLLI4YBhD&EG*oqNVZ|sg`Y3-(b!jej-H;jAJ>X&q&ONbEv=NZs zSe1Qbn;oe5mzm*;9i-GYQ#{?-{rF%2JVU;cF)O_TC`KEoThI|&p8yQVPS0g=ogOqg8w zrR-9jaQ8x$SYKIEWsNe7&EG|)&^}i?n5XekqPY$gu~OK+gBVCBEs+K-l1l`h!m%&m zk1W}U<-ebr6W4x=G*|a>$9mYu(osE|KBr5(rNQ$`0aLlbBc*NhJ>!p8+CTIm%6=MS z8>I>xkxRq?c#{RaVAV3PrWxAv_1#Vh^WljpveI-gc6?Hr@%LJ1-I%PqTCm2Myv)|9 zqCP{eavKbLKo+Tc@N%vLv5^9+iNEqN+eP!-MXNe+cB0Q4eyOzn_<8$Lvq5K<>^!DJ z@T8rO0~vEs7|xWel+-pXZf~;E;zUN#{KM~TEWrL-OZ=8#!8;(js!o~_Z`R-1@bg*# ze?uxMyf4}gwo6o>dqlWR87Em&Q(N^Dik z_I{pD36`eY_qr5YGL9}%iFDdGHl)3Lwu`rWuz|I+bdBn4{G)iWMHM|u&fPte)Tarf zC~~@4_NpkHwK2d(Mrhw9&51DPq!SZ&t@dj}25CZR`de7-*<^;)3~ET|4iH^fZU{xc zoj7&0Tc;KM-&EB6Is)2jE@mA)$n~>H>TG3*Yh*iNo+k@Y=|0fmntM?z)sBsXq$J4$l^%R^kG^w1a;>O!dWA{$3=hn}kfEq0w5U2mxC$K435w z)}s0Nt#PWZ_ZrYsyg zQ2lnmN`TfZG`AnGWFBT^0Rn|bdw|G`t458>+&E8Z=Igm08;aTaAAiJfr1-?to^BUo z4N|mgJt9_Ep1ct)j9q%dg_C~AG%hY`-(s&zBUt{}DawhH^YP&qTU2EJM4?LAKzi!Z z0GwuLN#pzdQzcrMb(KX*}F#N4%H+)92f~n zA7(n$NIHx7ieS&P(RPu}ncjw#grvHKHDs{ZK%etzr-J2On(r!A7fiGbB;8As?*aaJ^r(w=s)ylP{`IEyVjopjBv&SuuU6T0!PH zH7}eZpRXG-NQlYla~9Vh-}zU+@i*1Wv&;)^(*Err-z*uM8)(ZH<(w&=+X(dv%T=~+ zY>T;MAt#M#`~i@sE@80leqGxCj9+d1z2qdt(#6#e6VgWR6%)l|&Pt6s(lb zTkco&CDVIeQ&)O#mA8MSNw7m0c%wK`yvU>;r)|7%XI1@H5E_uhe+s7Q3xrML{CD1h zWaQ?=%KXa>_os{Ql8cJ=UGgXuU(KH;wm8dQ{t*U5LX?5~rsZ~#^BK;F_hCg(&q>h0 zEy)$<8+A0ooJqT9uaoC0@vbFfi*TJ1+s~Vg($<~-uxTZ|&Or*7@G#+2<`^3P5-cRl zrT%MQ@(Y5(pp|bXv0>5tfinNwPLuMuX2{9Llk4awfpxJY7*u6viUD{2b5Cy?Dswa!y7!8=OTO1B3I+469rN`LRTp1?|Hp1Gu^4JZ`=qGq^e&FbIJ$9g zdViTwB_UNJ`z|E>?r+}9w7NnrBA04Q_}xRPIQ#F>`muo)CX|`SdgeN%rT#7I-!2+8 z4ij|LWIj4PM=PX2yLkFsM;a#6GcD-`5{8php7f#(|88DFGw&B_%mU`l8(!t; z_vWSbq}}r;V(FZZy(wp>BAtB6c|~tzXewOZuN*>h@TCuUM`>1^XRNQDfjOCqv60ix|0!j%=(U zc%45+oO-ksKgGAVqS2jNR(3X$(BgbJe-f1N$MWhF{q!mYN&pZ+c*s{8@T1L>-PiIDAB9 z1P%8FGkL6?J;=#C&st^zm`FY^kq7$cw91IY(PtAT!gAlJRc`(+&ma0p|LoiNwABd0 z<#PIW(N6(33;zm37Adz^p?eu^J!hhQ*T zAHt8#4K?jIH~@+FT#|kQUBK#Qlvii1(tb6sZ@zn)bLL;*QY#CT=P8Eb&4$o3CUf;_%1QGK;_5U1+PXp}Tp@rq%smS73<2!R-*C^-Pl2o1 zkR6BUs9xiZ)!=kKGt^dO$E>Qg=;$M?$_ch^VMvXU_$_!6+?3+dRubjl#c!k#-l9Xln}J--+q@?$j`aA z=jCqoo}Rj(91Xf{DdS!Rg`($ym6^Y5sD6V>s=j{OxyU~CCc8$Ej=+`Xr~~r|oYw!O zZ{mqAWvSnRv5z4~$CN!LEF~#i_EWZro;;^CT>Sm|lcuI3An|2b*;o4=oYb~C_mBP7 z*qeavys)y1ime3q%`ahZ41tx8_G0ua2c{kjF(V8)ZJ{f6G(5a?iEs6`l<8p4$OY-x zAu9TIkdsO+_Rh)ouQFW4ZFp=Qa^_HHHvFLG7rclnEHOed`3kj2tyH>w6z;4&bbTCU zKVw662d^q?fV$k_;7|FF7OA6a(dOKzRhS%So+8u`vsor~fHe26vGaNX70E7!(^v<-{Tt{^hl`5w0>z z-GIxjkJ8IKG&=Z9orB$zl@ue|Ksg+ZLYhm8tz&8$+fJgg_=`~%R^hKYaK$Z-k0m+K z?jl0N$E<|$sdiZql@JQ%#)9p4jZ;||JALKup6OzWy9!H^uM~P~2R&-tPd9L3P3O(R z@TH?{9u~Vn%9YT(_&%HX^K|f~rQjn0PkKE3ED-SWq!5W2Eav@y0X1IoduIJdjHI zi0pYaX?IbR75?F4aB)^TmRpyOt3jo`;^*qr9iBEmfQG-$-_+U}dMeA`gc7hG(wJ#U zh{erHUbt_eEv4P%*VusjS|1Y^hvDkR>Z3-+jP|CL&bq|HnTjUb!s(tsS^V(7U) z=PLS=F(Q1baN`d7*4!Y{<)=PTFU4rV5oK7se-Cbm-n;HlMF%cm%PuU}gKFIsU9Zl? z7M6F5ahWP#Cm87d3PQBS&_$@X`c zjxL6RxFqMAi z759m>xW=Q zD;kt`3_EsnHC4(TI%C(;5MPl#Hf_sjntb)9E1mY4-(S1KSvM93jZu);?)M~II~`0* z5{m@OfxD|$@Bg=c`s*RMV*Yo_O+{PN*;-#@O&X?tWgu7Y`xj^kRm$Y4x&wsa!^#ObYWi~PR@u#gIR|;#trKX7kSJr=eV7VA zwZ;UNo!Hx7%#53K3V1E)2L4*V0FC8L3@Ryd_zzlPZQ+^>3eU#v4aag=lF-yd*J*JMu$9zZU_NEEQzb5At*+XM?a|egV0B ztQvC15VOkMH1qw99mU=?L&D3Y*;ye8U8A$lTL?&!f zYT3+*j){A=O>?Qsx(!S6Q)X;7GQ<2-2PYAG-T!Q%CUcq0oX}fq?rpR4rVij2lACHo zVyfMEMK*77sZo6YyS0y|ydu$(VAHCLr%}5K=e9SJY948PL~=4=*{&|6AkLb(gOKKx zb5qJbesx2jDN4Z}#e5Tx*wsk(jLp29%e0(hA9L#2!{-tz*}0-AnVjEEAAK?P;iA<^ zj&Z~dN8oC;-%jfkvf<}+P$H){swGU+!$S>1pW!v(j(4@ z7+_LCL3f=ow{v1F#~SP6`^ap~n@#hL{Q^ygg*La%!J6qADgPtjA+7M9mC=t~zw}BYL8lX9;ew zfQ?VYLuyWJ-VvryjKOWi^J}&nVh|%+@_Zj%#*ti1Gs69)BP5RB6?;hivaQ~o+(;gN z_we8#f%vT~1rO5^7d98A@peFd6YwsOVG6J&ot$r)(y=S6)6p&S4rfvh>LEi$M$1_t zQ^!U9@}&ps5$#>epWC!>R_lYs7{F#5;g|vDfT_rbqy-h7oN~^TNrqSBOQ`kPwYL&Y zc5vH|WVoD$>m0dR*qgS8Suxf$2aVwm0Vf`H_It0@px4o@qeWKIYInMizJ#;?c@4~^ zzF`{HZ#3X@xgCq>7=5}J!?YycDn&9KE}Gz%Y3dIdoME2-eHD=_-&%J$kz_Ny6`~rj zB6njIELQ*}Z0L02*Nvh!qnU%Qw@KdRe&v@gFQRK75y(Uk_9i~ADXq7>DnO%ND!kes zJIg1IW-dlQSp8^qfJjNs)(!tmyO&>+<+2W+LJ*QJ|1c+RBCY#m zeMLpoLf>@i6C2rCkZ$W_TLyC)9O9lKS(A;u8l$8sztV`3DkXUpx%ZHpUH8?bHP|e{ zYIZD|P;!OJr2b9;{X%=FmlJRwV8`}_h@4?%F-&HNvKlNO$0fR!7a^WAb|+G@r!-1@ zGS$Y9x=M^v^JIIv*yMr?OdUPn5IUFb8e97jy zlboJv09mhS^gDm6*cg;2uGxX((!@82MagdF^y6?-<|cGtD~5(?22S%)F;KGozYJOBfbzyBD@= z7oI+l+Yn2jARB5y*aWQW@CH`?k+ zWLODn&mt@~xzR0pQK?R7RPd8sRQvP)nRg*=j@9-4jn@Ec7MCFXEziclX36<+ezt9} z?W<|3R)_>0{X2I-+ZCBTX$*-ByrJ_xPWRTg)!$e8IozXGrE3N!Zno*NGA4Owklj)Cl}EtV%^0ThQ0Fnl5@jFold*T?t}-8?7(07JGp43G{UPdt zEaNkZEqU?sClsp)|JS}vnp{RDunUbc`fRUzmx}QKvI4tZvD3Tr9fjH9bBw8z#UjRx zvX8QxG{>fCbw1}OyIhv@W`v=y0u{!vy`+)Z0-53NJEwXaqt9)E8Ntz~%qL=t={JnnQDWdiMkUcuB1){R%Bo>D*THvg=u>I2Oz|Dh zsc*Cly30t~PkqH^6@;v0euD=@=)e$=J4{D23sT!vUBT=w1ePMvuj5clPxwd*P>$Dm z)W?RWtl6bp=)~{7bxA|i(1p&w1${}}&~da7tvx%gDB+v2X<8)*_Xvg=R#0 zp+8#jU}klP5;c*oHA*@2*XS%B?O^pf=6r%4<^_KI=J$KbgwlI6wV}hQIrmbKJ_zTU zcUmo;>f6|7+}XK6#Fes3z4+U1z@`LNuw*&3(|ev1b8WH7!iQL%sV;eENYsCZW`A`` zuHBm8OVH0cKXJD73L~c>$5rROkR>-CM%oXB{`1Nz#?JdciD}2O_P+fL3Er(`zASKU z|I6fjeP}4%;O~dI)JSQ`eR|1>1B2}@d&o0pZzT_1*VH`{MK6ThV0P z(_)PO%&J7`4Sz~>sLXVDx5Sb$H#o!FpP6NB{kqEuV>F5Ey<_+vY06o_CKsRg)(w}D zqk=uoVeb!LT6hO;9I`>P>th|t&rG7%EldSUiKr4QBKH0Jbw$XSXan+d zi%+Ir#<$PXlv@R@h_@$Z(MBOsED&V$r{Np2)q|uQauPfn3V=5Ti6ReJ2;zHA45Zs5 zURhDdbKp3nk`Q#C46wTnLh#A!U3iW6zOlFza7VHo4!y^dIN?{EnR~6pOIqiGHhFPn ztb&E-5|a5qCh*{qtqV=@%}Lpg=Iwe8RXr|E2L;L^<;R$QZW=uIK-F@OVDN}{bK6&V zE5mLBw?8QW*pi;MZbT*4DnRS>)++zSv@Mcp0g-B!fpY}O%#H}O_q3cX_7=`YCx=JR zhf`uSyYD&n@BVQ*m+- zheAiX8_kl`toz4{7vx+)H4;q~OJ$M$$Av)zfF@6PBsXtGEJnqP~o@(awc8|o+u5%FeG@bd>+n@$* z-vn0r9y4V`CC?s=IO}Ei4s*H>)qPs*KA$b!tFx}&TL`^Xf^jP^D_gE7uVP^_C&!ve z#;}B%db4W8v7~O17*ou5R-XYudS{sT{(jHB@Jhq=m)wps7al3kiwTltIP`7 zEe>xenV6Y{>?TJ(D=H!XMN-JOnHCs|WJyAWZEm?tP7fOMKh>r^J*!jZcbir0npdyv zW1g0SK5<)Ax;W-CBwv-^Fm?WT7AQ^Z=ai2PjKvj`Zj7-hPgpf(Y=WSlyiiU11oO@= z^L?>&QW$vRhf*PiES(zT-B^WCfJq=Ldj0OYFKxQQ=1?wAp@VlY$FBO${H9i*zyNi# zcn>DK)VNMsf!r(7dRiC>uS$8~`FSC0edVGl9o66r3q>e9zYbf+XqhCEoVq6_trfqcT+X4CumzW7P&_JG|uw3OltKeSu#nATI%Yp zhETF~I=o#niOvK<9(7hYLqkt^Nyp*WD|F?ui7BhfvYWOX!4))wb|d(sfP7N)iU$pG zLy+^Hn=_O9wrtKN+2$@_7Z=FP`lx`QffkLLP_mrQ#TT}7X*+Tj^$x3(;6vOMS^RBD z?PEWa({`;^5Cwu>U3%k@v;xN~{d>|){);6Si%#d^(m7{N{<_9X`}VKArICj$!8;*- zG`ZJlj4+??w(oAgR)NVTR{OJE!t+<4)_E{uU|^iad!25LE&vM)&YMG%6BD=hHJ(;h zR>sDEVko5)(z%s2G|qRLdJS5Aq*Vhc%XW6|Z<=wl(SX#~ikWaBO%=!1y#2nqYevn3 zAc>5Wy34$aZbul$@t(l&%)A9bSls0pCA9oz#(v(#?wqhkb8_Va-&BGE|P=l^O{-I~99S}nk&TpA8)N{DG-N^q~vT=Ty#!Zc; z@3tj3TXH~LiXhL~ynyG?>$>p2x*XGQTtuhY*~35F@U{GAzBYE9sXhHHQz|uuBj1uq zGtqkDn6N^~a<+q5xBFP%xs(K)*Se;qpM2wUY;Egz&19!-4rAx=!o38#Z@Uvm&!-ah zCeCKcfP>>Z(|QbEvH}zfyaBC5fx9MIzSR;|1B=AI6Kcq=*2S^|c5(X+Vf2;*bcS6# zrHtL{?P4w(64J<Z}6trdPwhaW9)Wj}0&fj}$v+w+3GU1Z>eKxlOZzKbw(V4_mB=7yP=O6GqOo^L1PvEbv z_K*0rvorLgB>Ej)Dt_q5sb*BhF}^Sh&%Hc<0!B&|xCK@G%Fnu4BrW3>#**))nDXc~ zhM2oQuJmq6@mg89PmXhI(}8m=@fvt$akW30firphrzUDP5qgEMV0>-RK$C-;txGr0 zIH)D(&XCDESmVNLzTwnEb@(|{^E+%^FimkR-6B6+sCo*+!((rwzra%EQa8AGG~^x{ z#w-@E{Y)JR>GMkwPOp;FEuoFk z@Mphh1TJhjqF=#skogM8CkrIDZb+BCx(-dH%1B>bX7-9&y_lv=U)MCXs83t>`@Kk$ zN((PyOcC%u$uG7{36f72t_HLjKcz)^V9pDUFI-io^goyF{s5~#QJV6LLJ;ZSYX~Uk zWOFZ#g)(rCcQ8v(2v{@Z&?#`>9$4Jij=t=HxF~YD6zC1IISOBDAgU6H-DO^RrB^ydywYM#W8$ZBStu8v4kG`ya{d^=8_$4~@2WL5%#ZMMVuF%1TpIF>H%e3Shwjv)E3LriV zPm(XM+YPDP-6@}8{IjjDX>VfZKZIM{eoYv)<&XpFi?*RzErTc?64LUXvRb)eo8L-D z==SzDZuaS3nQr|H3;;ubpWgufD0zsPfq{taW5-;b4Ps|!OE;BZAcN2SaQWBz`uee^ z5hDWwKC6MPv2m68V5)I@&>OWs4p&_1NrNDI0gl#YPr7IoiL>LAQ8^_=VN$pb$ z+I6>ufzC4hA_4rW@_Ohxet9OYo^6q@5hiaKc%oom!=fW0-33$Emk> zCnSHCEb5PyZWG8l1ZpVoY~*-kS_D<;LNxLF<2pw>OZNn`O!waF(TXf5Tg_Cb+2blU z$_{gN%i;C{$N9yPE3>}uV_GzZEx#s8ktj+g@H(ge@2K{*)vyZLl=~#T?Ai4x z-(uI+c|gx;P_H_oLmD|6Wj9ej>Z@zP8tc5L+1}82$wilM3!C|RYZ#-u0Yo5seZ6Lr zHLK0?s!;Xw5Kgg-zPH~j<+1ykXuK_PmU=w868}^+iRX))eX1+k?Lb94|rjktwL0-7PIG#UOr9p_UzI zOOGMXN+#rY_2b@5>@K`Bx^{l!#l6C&oASmhC1-mQk`_C+|=ek;>#7o^u3wZw$t z*Ks-%GHdI5A@0&xGFu&TlotYxepRB5up&k?6R2Zp&wMy1ibxc;4^7gQY(|s|Q7Vbd7 zSnEbt>GWdLql36nywayg7xPGGu{(9^JgYcImaBSrFRP{``&PtPdvbiPdw7S~(yG{d zL22o5g+6K=J%e8@_?%14R-_PwXD&vCDr$2xGYhSE4|{Eznws@a>wRPbUh#=QBFsCD zL1L@g3|vSKQOMw>Zo5uk)QpdhhuO}m7#b=TjMS^O$|f=u6&1~bzT_Z)AtUoB?efwC zY=xYhJb>Z01u{9orLHlq0+clGtOZuDCLQ1zG`_PK%}9<kL>}bqX^H!|1e)zFaXx7l z;@jcyu5tdE;4obv^E&^7(A_WBog-K5qemq}w!EKMuZHF=E#Wk7Lsx3CF8tTkx=@1K~oI!k7E~SKrAEtJd!Xb^bGi z#igZ800qU*dkkb0lx?dFQP<I$CG2_|1E;Iw_1w1Jo}O1=hW9!-0wY+&zt5=$WRioytOZ~0# z(O_{2wHa75;jN{ws;A@C@MHHpV<)UQ2-Q_BgFs!lkO8+?;3<7g@aZ}O?8TOV=fD=` zKZDkG@aroo4-XIO5(OV$8ci2&F+M&%6bj|CUoa|HS5+0`M( zwMR(H@Mr2%%dI4xiH}-1|2>;@WxYS?WOI0We4LSq$<#oo#r+^ti)rJ?LtR~cz}elz z#6(r~)rsrJk1HYAlrKqnJA42Sj6qbo58mgyp8E?tyj&C%Ml%jUFG*z*WH9(XEeo@< zvR*O5{?3<&g_!I2>igx^r(w(}UN#h950H2tcUoCn?f4Ky`YdEt#pRR#^T7z%K8f{X=+aICjt)$Z?(UjKim&2-v8cu z9mag;ttk4>XyG#SS&c*Gli&U7@3)yM)wZ^_7R|0~Zcg{q+zv#4%}o+jP*A{cd$Bjq zWi>{%Gd?VMGcYmX0zzRzLc-xp0Wq+ZpG$mdO{X4)+7{odTR+OS8Q>Pb!usoYNb_@Y z-tzMU{1g72CMXCjb((|Nl z+tX9^6=QLA;o<#*Xo$hfu_AFyB`J7;!VE+NuwlTpsSv33iJ&F>->JpvfOyZ&OL?_y$rdJ8}<---X<|Fw&$H`MDaEfR$> zw|GYpNB$q~4Rj*5h36`&`(@=bV@(BUfA2@iMg!xJ?CiM~#fs3r78-ik=}tDg7w-Sh zHD}Q*gJQ5PuLwc`Ym)z7QqG>sm%RWMnX|96Kgw2+<^B`lf0iK%W70sNTNUi_sgJ|| zwDv1|&P4AZQA6D{TZuIAza29zbVE#<*j8k&;_7-eb0Poj)<2?uYes2r*2HC)%mnZ6 z1)m8zy#Kx^B{;CkfPi;|vhDV$FTsC%R+T-Md(#6x#?rH59`$dJK%xrdIHbU^n(QD_ z#nuXAvg*J8Mh)8Wh6lG@EI#W@+=mDKQ;h!%JW;U>yb06BN<9#~@D!7T+jKNXqN*%4 zHTBRNoE?xfK?0CO&+NqN=9R3~I}`0?zQ*62ZXS8WYSh)$UABM^{?}Uebz=5h+5ESC zcrXLZMU{x#n#%3&U;gT^Z`UilFX2>c^8G&Ze;Mz8b9Ij}1YHwK6FtVxlzfbYbkRdk zjLE-#{b!6Z)dTVK%YpyCM|Y65CUyQr6MZ9{>)!vRT*0P36}pjr&&yjLtFtlu@93F` zfp*wWM*oHp=CYT=@3dz5-)mxGb*y#8A7ztReE;Wx7?Uje3A(!KG5NAdi~skrz~5oD z&MFUM(QiEcr}qCbED*IOm+i3|X3;v@|4z(k_FM^LU9l+Guz+L~$^S@zW#PF`_`1M< zyI>-AX85o(njik9zwLkefH}FZ-`HF*b6mj!|0i$%-v6^Zy;{?oe+Esva41tCZG!+0 z4{s10{s&60>+iJKUJRZHFuf3{qn;gD9{yMGw&Zqpb}Zfg?Ctr2Ho^;(w+Czi-;uay z0tq9p`gDVKbeUxSjk5xNF<4Xg^(n^R;KK5Mzt^l^*jfgFY|Gn!PmU~5%-Y!8l#-O} z>gecb_1-F&Yjm{%!2;+x2uMju(H|&@AVj=G!bDx}Cz`kW=olDv_7a9h5Zp@l1JI1C>-xuU|9L)9W{T9A(_SSu%rILR=u9ArS<^ooX5y3O4^9^yy$xKuD-fyT)8y zQ_}>(i_jRjH98H*nc={$+nIlO!D`U_eg4-tFF0_w&n>5vRaC~nAd6A6+~{e}4AR)h zDAL%wk4Si8o}4XszW$?1NX{Pst-$D7l$kJ49YAZ9yn-x>mmO9{0RDyK2L!o+{l34u zF>LX|%?kV-rh@KzV(!NEZ_ zRPf1p4duTN{H}vBDKJPeC@?6WDzSm_c<+DiB_bjMaBy(IbI`N+J->|p)OZ2jJ7Ps+ z1)63LQW4|7Ly)}GI!JU`ir0mO67rvZ{q5WT-;du?jm0nn0|V&nl=bv{Hit4A8ylB+ zK97Me1@vF`i_Oxnp#Zs{&j(H5?Bm%PaOR>)O-&7|dxjs9)ejH|$Xz6L1q8)BJ#mjx znO|7AJ>4EZK0Zd2?Ju^-nskyB2j1IRT7u_AlSLB4aWix^G$iX6t|TM&)vT=O;UYxk zAhdWGVzaW6D=sNB zf#@fUxYP&9N*8+6?0fSb{xU=MtK8DP*vm}GihxA$UVFvZ8^OO;%}9el?i!W=+XukD~(a=cG75CAcVTrrlC;i1}eGF z_u}Gf5ZaCH*277nY5aSE-d=E6TvG0CF5LI6h*dF~-1a_JX|)Go4K z7Wf;RQZj;+Z)$LGZ=y)GLSH($3Y71v#6 zb!&V3av(pS+AbQRR4YAZGFJj*v=x9ve zw8X?Nxlqkgt)r}m+hD)fV9+u+G?dtDDi-u2dmh;9p8}*@q_(0k$@nkF6@{3YnB?T- zYOAZqCMV5yib$=4$^9;kL9$Ee;r8U}WV7CG9-5oGy1p)f(y2#5LnEoG>O55nXiG>) zfS{J-r4$7gzsKQs=L&~f*eM8h?{BYgFTv>rv9n7BNWT~~{qnmzo33>l!F=C~?Z ztQ@9#%{-zZ{Z+DrJd&ZT-ev!9#1KukcW|&oZ`k2b(%QP%*=Ys_6{s&szIQzw_p@$4 z`UE1%3TEFqqaq7CJ3A|&WpH@7U@}@`8nhyA>%>Gvy!H#+p!NUfN`B6J-`{!~7%U$C zX?Ne7lZfL=ZCz}1m1V-8pP5lpS8wt13{y?T8DE1zp+V)cujVAe@vCNS(aK@YF!d6R zhK7c_%hhPe!QN@MjL6RZzQQAQZEb0knTZMUuhM&jI5@|^9N{r2V_*l9)6!&Xv>W+3 zkq2$_Rp@Jmt$i88u&)!HB8Kv@(geKS#Kgol30P!kL7Yt%t*NIc=l(4yd@PgQxI2op zqMTN(0#d08m23EG8PxUlNy~IV#p;eGw@96ynMvlo7|WME<&4zz@$mtnF&GK(Ins{= zZ3BP)yun4YQZ<{Z@9FvA>UtIu5;A?S9?*9R@-R@30?x3f02p@6&CRJ<3?Pkt8!J9* z#w+U;5fM3Pdl1zB@#;WO-iGwd{9v(#esS9|;%RnXUO-U%dx)2?jeED1kKg5=;8x$8 zOhMn&pwx2j(=BBkZ>tPj?cQ1~%lJot^&;ws5dodl(*L&x>E`AJhA*K}QTMa~41>zr zO!#$qx4vH>$Z|t%Ud9ZpDRPoU60SexLW{urlZ}mx4(BwDDhyhR3kqI?`)|)!8LZ`` zKODAW7ARye0Pwge2ul)TZx3#7VI@-l1_{=Wb&`@53b18mWX48Dz8B|LR2a4if(9PM zF)H@AbJr`HU705hy1^jjiw&@1&>S_9>mgBieDwgg}Y&J{wk2GsVqRs~%`w zhgkldZhlWE506Wrq+aeT%;RVUWMdYZ+$&xM?|@cXqfBQKgagD}_U}qa%JjkP4d^j0 zd*f*51++$=B0xcEm(3lFcy3ql=+UD%8u{2Zp)ajql+xPPCd6498Hw=^GcE6pM#R(T z$H&<%J!!BSrvVLDdV0F%W=nj&Snx}ES=l%)2|z^TQE>a!>A2$hI%0jD6SQVvs0{)T zK(r8aM(Mwe;f=1x9tAt@E-q^)R~3tn){G$5U}R*xLQ+}uI~nA{HLSQd`@AtcVFn2T zJA9jwyM7z_?jU@3wq_HY&NXmWv{!O?CC@*;x{^?)jYVdoHd5I>Z91a4s3h5H^N|h51-m%_(fNMUu^~ ztgOtn{JPp0OoLQT6d#X5Kk7FEF7)~tLE)YQataEty1K~d=z=ohzwraop_CG`p7&Qi z_kDi9+vH+@^E1$A*m{@gH@V4Y@~5!Zz{`{wpP-_SyF?+2EaHNme$}bL&(Ckbhn0zG zU}WSQi||Q{0#@sQbqz`)z4%5^&okz*t^raGuxyQC;nHwlfK4 zmU0gdNB}&~I8;os%j;{5)&v=`mPV0Cf9Leu_*P!~%?{7;v8=*~t+@q!# zCj=5N%E`s0DR__{@?9xElmw)Qewx=<;e-B4QnhYoW=1(za&#fO^`38E`h$?Oxj9Yb za9Y>5r(yd<>Q^&WCZNBe!Bj^>l~D%0uBKQ*tiR~umD1AF7gBf;U6I7N#USd83uY*L4ls5U&qA69Jd8bOimIK6OUIwLG1;Ng4g+OgYS)-C$BR3?A%qs9q<%{Zi}?HQ2NN#`~6@9taiXeDg*`Fr&Y>7u@1k z>&K@z@ZX9;cM!i@k5po*`sB479~4p{ zp&RALO!-~4RaM#Bh!T#;G%g1nEiEOvUes?J_2A|d)EL}%hQ|c-tgM)5Xk(+Jp0A~g-T9EOIxq|+^V)n zAR|3}E%y$b=wYD;ACQo(cUXe{QBhXTZp3{4JX@+63~t8yq@Oo~@C&qjF8k5aU_6d= z`JfI;Tq3hB=*gVUceTxfB;)?(^uS~VxS=6?QZ_wHM(4m*@`Z`YH+Dc-l6D{7q^YPF zP16X0>o>a4Cs<`IfvNdiF!sYGnsChUK$i2T$9i^qd%M=)vO7}+JDATO%cEx;Pa80N zY8eX>pxrO%sS_$HSm9r8FNM@TsTL?qf{qG*-^UqVT+HC>>zg9i)hzbyX?9^@2!j>K zqzzb0x~E)yk&Ms)M8nv1mXh6{jnRWn6;x_aq6bDm&don37li#h^|iI}49V;o2EQ^C zJw166%#DmFYJQIhk6ufPHGcXdx-kz!@c=Q>92Ncdw4~hR>|i z(Y(F~21_(FG?|&1$MxEK3k`A5x`8(=pyRf+v%B)~b9Lp^PjaH5p!ob20p|HmnW>op zc+cvRlIq9;D+F>niRrr~SNN+)Iv9gk0|Z#AdNP+Fql(ztdPg29<9-XWm+|Qkmo^xg zT8aWW_owAd0q9#vFO24#yzBNiIQ+%}A%>fW+-+Z`; zH@`VLI)WhA-UkE+7eJxxtVYT-fR?s)N@^-Qs#K1H)hE!9fY@RvqO88Y-rrvY1fCUT zH+T0ShMag77#NtbVPat@K@107s}&NfVXGX<2TGXR-W;aT?K?`!)#<4uDSC-*8))p` zSTWba%BuG^KSU)SEospFFTQW!)VYIja^BtE7Pj$Thzze;j#vVBo)32yubH%dzCbSv zgUEnn^#D0yi|rd(-4iF^pDjcXBJxQ|3^t+0EVAMsQ>O~DPwvRqzX66mNj%{{cS z5rn7cG?$m3L^1W`cQPgY;OW0 zJ3!+fwQkG8BkZ~fG;VW$syFGQNP*8UN+>(Q*aOTE08%&@kayERy%vG!y?i;{H!@5hqN;z!ske*St6m(3cY{41K!x_9NtK{fi}Ju80@Bk zhc3miS}bg?xh(UTQ=S2t`@Q5rQT%wh)%~4aqiLzTqi42V&A^Rub3y1>Kfr#uwIvG& zkvIlChk^*m;Lsx$`GB0d$u?>V`9{z-S5%zl)vePaLfUJygV~3jFE0&J%${Bnwxw66 zFKMkAZ8xz1=7PwpJ09>}!!E=TfiKhlmqI|n$Hxa$zl@AmKs_9}DGEd<`Z*2_f`aT0N@jd z+CxL3h8+redU9(VtgR#d(yxE3kzg0|^YeiSzqK8;qXVc+{&9MMH3pR(9lwj>1aY4L zD)Bu}`sJ6Rk3jMUh~%4ET4JN4vsp|-fvlV|H3A|c!1s1f!o-AhvHTzX^aiA6{^5mz z-P}N{FkoR~QZ(_pohWN*tpvlOx9MFCM`3?Tmw)`Z|I6|%lmSCA3gY6yz!~>)yWjiq z+qPZ{cm}M)m=@4Ul9Cz)!m@vSTVQv8P=T`r$io4CKhT()nwuX2shq_{z~cV?K9PX; z1GJd?%grv(<^yAP20&+rqc$})H8WGk!NCDYSlZiP0^OEXJ5Jw!LFm7x4_4w3h#aWo z)BnDwUrl?SSZfj0$L0nGMBxm0OPZP%wzjs0hKg%yV%sNn2g88&Pg)x0-(>XB_Lmwk zHwOT5_#}`HicG1P62kdm$N2_C{S!36Sd>Zq%I0P_Q0P1qz$~+w87E-Y*gvd2@VmSO z0UdfBWo08XGx2xeV-KbQt_|-@l;3%2na~X%hg7ydR?tvKLOxd9{lyW*)ix}uO_hB|GB)> zW@cpp*O>mR)=R3(2k_cZP*6}+g&_8q>I0T*(Go$wKQF+MJ)X`R1qKZMmOj3(6~JKe z9kp6QQz}n%=9n4(aT+EH_|NiA@VgtvTHgg0@ z4Pa&EAr=&b`=51QYaz`00^EM4NR;#5Nwm?P@KlCa$;a2DkFWTN+Swc8P3(chvSgfb13|U8T_E4m+7C~npVtlxi#}OMfQ=HB_ z#0d2}xESo+ddJOo-=NL9Ld`tJJyuZpFt!(X1zq~7rTia+A^307;2>ru{wo%Keqtt3 zYd2SAa~Cm3dnZQ+a|btKZek`eM>|IsRVQOpb7CfOa}R4%b14_&Z)wh>px6Lub8Aa0 zH)0-Uc48(~cN4d7PQXSo_QsaLUuyqcXepW4n47v0Gih3zxmgjjuyU{vGs&AfSpL0W zVfoKPaM{oD_XQuw|EREp6UzTDhZyi*w)pRD@P9x5zgNEhRqy{-{{NMP{(I~H|Cay% zG?D*rzodT}sO+_tbeg0Im<|RzQ0;vsX8LOG>geubYVJzR!p)urDhh_5He&)t1K{E2 z`cKy35`R2#o%8OhR{1hQ^|0X958q`)zqU2;$AX3Fb{CHmxy?{88WlNa-2LPFCJ4>f zqHk6tojxmrD8%A!;4zZDGdL}6`gOxXhV@coy}n+LM>$9EQ?9kmT0UA##nUnK@V4fR z7)@1JM2*kp+xq$dxyc4U)zC3t{S7@4?WNsr?XU)z;U6ca)pT!_hJt@?jtE*++3lPe z%xbz|as24t6kOdI>{8P*~2IXcvM|2>)JnL((W5_nc2DVL;6ZW zmvO1~!xt-duyqCN<79B~d^+JfdH#5Jb7*?lF~Z6(*#zC=!MQu(5SZIZzSf&|uE3t> zb|^yAT`}TXz;Rpj%|%#;8Sfj+d7t@+=q)@J?f5R&Ihz)zgHb{q^OyRyY|-p5;!>t} zQzQ|B9|Kr)FSpR?;SUbC5rUhHH{i(4-nWD&5{+3%so(;LjrXgY&_nLjk<6J{HyW|M zuyhTd%#);IR$(}<*cAXT$U;Uz16TWo-U(oi2=-MY;Bc||b~QJbK;XMK=fg%W=*_Sd z0X@W5VMsV?1q}Z^N{qvsb?m;&4A3d=C|TJY38;&LfbFR>5@EFo>^Kdz{om8A1J18U zIX9}P-|Pz*Az);o1Lq_}+I_aMH+9im#^UDWT{Z+`vqZKC?ZKe$Ko22QLCz`!@?9t& zeUK-l0K?rACB)JL_sr#;9XtVQPVjkpU}Y%yPG>xGM>VyX`p*b5$77e7d@F-+;~SNx zhoSS~9Z=gkbB^b%$(?Wp2BgOUY?J_*${jln6ua=B;ZnZkgUfO)IqKpy z1UOE+lpcV&L7j4vPQ^xp+s8m8And>SU~52x+962)dh6_1!IX{)>$JkjM&U925DgMj zII_pl+XO+3dE~s4G3qWwdLS1pYc6O8`8K7sLQ{}a#q@%dkHJuP(xMX@>Y(kP;ufj8 zroQSyWri_@!e0Hvsaa>AmtHZ!fvq%|1c1-6J%ve~amF;_;}@rOcepTj3S<}&L7Z@M zh|*=%RDO5e#E|A7BWT*z)HMrv_sC~cp_p+aSj)e!IeV^5xZKyF&+4!a=rMwmLJOk( z2?`*0!{B&WZ2>V*#WxoxYUObibRj2+{fT5aZ(u8WKKZl!rr}x|M+AJ0b-hrE6Hs26 z^%Hba0bci;vg>}s=&V~-ow-sK=yJPioz}>q&Rdhjj$m4-@GqJ#4l}=@7pn+a+izKQ zQ_f8cpN&b0YVfCZh_8Bl2uk0q!SxUiDH}YpWw{FQNr=5AwW+p3J&RSav0$U!U8r=pN%Kqxu~4hKhDiOl%>C|`v`r~pC|DQ1v# zy>uU4S)+dwmYEqdH%i!7t|RhvmU(idq4}tsKyMkZb>VB-XBt`CmffQn5KY>Go6;5) z`!JKR<)DB-=6&NNIe1HwGi%cEM@<`F*!<~w0}G1*bGQlz>&Kqd21|90Mtj{nr|dW$Vp!Pwe(BGZ-UCRoOFQ#1H%MA6zaR`B z?TuZ=;kN9GO2D*v)7zb~6v03&tN6>1sj<}PKzepdgt64{gpY?Os53z%WppWEs2BAJ zZBQBEU=}qY%m34X7#x6Dl!+i~)~O8AAM8v5%eZW4*Tvn7{>I!34)vC5V*O;H$d2N8<2$|yM(1h7xC%GVq_7Qz` zr4~NJPe{s-rMZlx2@lD((m~5O@{9p)(obJY7|Pn$p5r7{F8J^VlEV)6xUL5cQ+3iDxp7u}3p@=V_c~)w0wHWWkR6!WB|-G2suX) z%n3ha_PF|OweefN8z@C4=F;1|1@W^-VRCP1v2vg427oP5G{CpNaG#2io(7}^bmdo} z3GaxdM95CAomW91B2#X|Za+=aSAC;me6il0iRlr*ZxcKNxrR_iW`s)@hXo%T!?Dm- zv%${K^_#fW8=OV8rRkWL=S7EzCbWTn(?QYCi!Gf-T;eFX3(WSaWvd0eqn zUrqE~WNZeZ)gx5G@;!j-c=pp(X1GK?`a$Z8?$CYrWwzV294q{0xQJ_OP!70$xcte; zFh^F8eKwlKAC2)4VX(`pL2fo*WPDz)Ve*h8mRb#2s$hz_K9H;2kqb)|fo-oq3v{Oe zy!m#*dxJG2=e`+L4`RS*)pg)teyPW{4tAe+2xBC9K4lJlUM^!rNVRvDIu+}a!GISt zL^dao?wLHOV=E?a-VMTuJn1+K9e}6i&AL(DR7L>TiBukH1OL1l z(Ysia<(9na(H{L})O>5ULQ5J(1+*j@&^`=7k3@Rp&oc%(D4~@zm&aX*!}iKNq=~c; zJGwIb(8N0;dx1m85;r7!VdvXhXamJz+LOZui2xEv+&+{M2%00O0{1GOEZU>xx}Hy` zpe*O1yiDy>~r23-hbD&ZCK!IBsdYyf$hc5TIu~ z1Zm}OtS3L3GixNkrdx>Gh-*hfD*v6XX0MdV})zYg(!2~hPw$|BTR-j%(x98dGODko(VMX!g{211g}WCk(c7A|No7nx9^JVsaSC~L~Uo#9}L{M+Y+wLm9wpa$yoSW=+C5P?-&{{OQHN$Y0{+O9Md25b-a`QH)ApbD_Wh)92cxFiP7c{&hQv zoxo=~UMmf_LCf|hr^v^lierZjp3ad4@3+sTWMq~}ric)L48>KN1A)6>?@wwf0OM0= z5Jy4kk;{S!z1G8psr2uh7v@IQ+kimHokdkggMr@2Im+A<3XYe#sOH(Kl?4ZF!9BJn zW@bx1Wk(Uj7DNODH?+H16E{tzD9nYf{nW#A^_$th)rv({sbooZT~`N~)D)z$oH9)90f16Xd4sfl3*SWr$K=J(4H!?g>Vzn)2kghSdE9#NAmPw4*ocev|RkLJyfb7 z^L(YZB;>K~vCJP0A3)v^$Rs>lqW{Di7`Ox?#q7r&#_J4lmY8R_Hw$JoOH)97nyjG1 z21(0u^U40T0m~)krHb9e*gL$lam!&6giXJ#Sc}>_XgegaIsEwEL=#rBrJ>I?qC-T< z23S+`{nmywN~qVAr$;Zi5m&UpC~zETjn+CB8spg)qelDY*M`a?cSvHeC2taa3+Kk6 z=aQojd%Y+8soR&j$gXAGsJ{4)MTPO<4!IDEHcYkuojww_<2pmPesp$q^|K|Dsp`ha zV78kgzWX**Fs)ITGkUkzoTbt^&B*Eh=;ZTo{maQea{{9VuyJwyX999kchdE|1+}-g zS2S&EhHV<5M+k|hNyad1!mU(+KS?YToIwT4R8~!zw&s4>6C3_(u{@t&05DKX?hn!i zf)%w%geBL~picxvpIm>InZRNZ+*46VUtZd7KYv*lt*JY&BaO zue1iku=@Gh?@vTEr}FD%{sa7b8)+8KlqFOcWLSe zpO-T0G`*&bHW{jN>k^kj(XmN~nFQNXrn^xK1T1-;ZITBnZENf`OihexgUfPry}fB^ ztOFJ|Eb2-Je%c|2L|Z~qJOh%Gl@2pplLna(l(cUX`J*=Ygwl>z+aM9L$6v+c7MvAe zk@8^iTaBR1mUgu4(=iSy(pKLpZM7KGkT=e&2E@%hlieBzwohQaNUFwq zAV>v0K)(37UuuQsSjVwfCsAi)%h-W82eOSRq#btg-`m49xlnAtQ34VMISV5E!1py| zgEs@LRXh<7W4Vi~PCL$87%R%-)XNyLFv8j_Z*~b=WnW+XVNW_&3cL9($7ibI^zGIy zh)x;k*kRB5##D@VLVX)P=3cV*9Z>5&)+kQdtR);6keh;^m?~5vaHBd~PnQNQOue@* zfAAJ=||vI`%}CdItJ(*9ArJ?s)W=E2T_&R13CelbusX{k|D`~XtGqaNiIK%R{}F2gMLd@9 z3@ZPmrZOCgZ9`b8oMfaf<$lOpjz$m5P3H#0h}4^$z)eKmSJZknR?aKRr@1{|PxE#i96TQSn{lu4f>HjgJtsury74Zs{9r`m;&5PYn;Q^J%;v%EafRaD1Cjy z&p%5Onf!!lTjnqOV5k7p7xNFReG^T}Q`V@EvXr62n;U}~4U^%aS>?Eg-Xu#q-_O~-bt8?0zvnl5V-@_` zZ%NV=oe9uq^7o<7KHH9s1p8^I9PeZjK+}$0-_1_Vai|s*Q%5yo#MW5U2hV~Gxa_CXY{-KHBR@4VWos1yc zR$V@*Tc6gH!xwsjN$Lm@d`D;gCH3}iL~#UYZUO)|u~NCwkhrNd8#$!3Sy|-R+{Qr* zi|)uy(zd~$>>jh@=#p?2_b7%mP@~GaSL5&MPFE0FTd7%pMAyLyvzftW!iCwfME0KC zw8+qfqrRnHM!nI|U}17~4Fx!^5q}!ENl|kTpT6o$g!MrZ+Dqh{tGP+Lm92*uaDe+< zY?T5utNVlvA9&%mN@#f+9T}gO@v*)|6Kn4JwCVAx_=j# zsNXK$*L1b-Dra34`xAw(B^e3L-yZ6BneLgragu)3rDi|smnn*1BaZY08$i{*u{rk_ zRm5Mt8Hl{eWDiSZ521GM`Kgm6Xx`<@>|BU|v0d;zRmKJ)S~pJ9d(?_uvDaQx=au9v zY0yo|UZ|M$uQG<0rsE)U1rR7kGo5V=rB1w8jlOJlAqB?k3u??|f+DMJ_8qDUu0%Jc z*a454Wi2ru*}qxPcoEtYgx$-3|0u8AhFcRjen;TrXNGbOLQ8*G&s!U;Tc#?@EJ+#w z)SN(x%XNM%q^zrEZwv{{9Y&FM1%JiVB0PPR!;=YuX$QH@Q!kZ0hDvS^BpBA)09)Mk z0y|xdbp=spt{UBU8e=wK)_dvTMrp~U@jj8Zb)t(Mz=G48w%UYWx=g*y@Sg?ceQw$9f`MVUkivPZJ4G2$JJcv()HYseHZJwkkPP|=~IGACx zH8}<$o*o)(Oxcw<8sUyLF0835(im+>@S?xeoHTcaT&^ToEM#Pv3J6}js4z1;U@k{I zAPCl3rV+#p$3gF_v^3HH!<=-Vif&ngf03Z7HF*>0u403+myu*$j_APNum&z{m!TPL z3%g)E zkaSAm;}Wfv#Mg0ZGR6eYx3^dW$h(5YgcDJfqr;Ni&|vfUQX~V{`4#l3g>C3%E_W;W ze}Pf=SqD;Si$QV&0VNvJT8Y9CPW%-+nnr+IS%MQOq4Os&W8qfP4k*)o^#@N#z+#eOe+{nV zcCjh~o3Y=PbuY8hls|x(mwzi?Y0B&>ILp&pciw%{_hDg{1BOR(7TK=LWp(+mg?n-K z{dsrHIU0;U%qp1Wr-z~Y<_VhM=suFeW|;nBTmn|+aQ<5Vt1g$S;T<*nGH$KxqaLa9 z+S#3Qex3cnC^E0+;DMYJ|=l~{*4(!A`W`DrnKx!6y89{3nkT`15sVtMwG6STnJ=o;CZSb zqgiH;-vj#5)?Te&5piVbpaC0eHrkn*py+~CK=z6b%XpUgpr*0)7KqQISRt8SBr zI_rO4*GVK?=Z~0uxzZ8a@DzZ61^31}+RKXeXscUKJC=J@dQl0+Xv4ldMiZn|VS{^= z85pgCAra!=2y#{2HNAO|f5DN=*|`B}p$d)rB3#iJ;j!=;@!K#`%71ZAvRC3$_DJ&l z+o#l7Td6UC{UO*h`OkbvEeltLXTjFg!1_^rzYj^*NU#UZjdK^THlXg*c zn;w{bemVUxwQsu}l^2nb&>)-Qz{tr6P>N*~ zj+-Sy3k4^X7rX0-eYWqiAjB)v=pqV(n@2tVAJ zPBK)P9$ar!1$(&6os9yuJ8&FH9jxsGzQe0Nzu&{71~X3CEwiH%G1|^OaXn_JsIEIA zGRGwhkVl|CHfeY(9A#NtyaXwY=-ee1AzMq%oAQH^M2*dhct@#=LHsW9QjbW~Dsg{{ z-GtbWBOOVR%Abz-MI0)xv_nC8Q%g$)?0mO4cpm`sQBA$7EPg{Ekn*qqXjt5x0@eL< z+`t>|I!XLu0*APg1U&cYPnT-jC>%-Z?}polhd3ACh*3KH4`5NzR+f_YE};hwO7k z+&+wWFs!t@%+!uqZ}+5@g%Lh_ON-Ew@Qyuw83K3fVqo^m%!m_ru&*>T!Pr{Ein59b z0Me9-RV%%`dN8sGanKV(`SLukMhbHl${y7(*1@cW(dY9P-ly^H zdg3V@0*LAAwgL2l{^}pD4EB4PhnXHkGl_FZ#;*F?j2)DESMS_CtjD5UCnr0C(Rt2&T~3mbA!IxsrF3a~Sia@(HIa;O=m0 z?p}9{6OMm`J=S=rp(i2z75oJb6GI5hV4Z))BdMenC=EjMAW4@OBeX9vV+(II*K-&IBuukd0i>Q= zAa@mbX`NCZVa}a+AiW$4YM{;yZY*@hKjq zw0yw%59%t$$Qx4>DEMl|j2oeK3hgb-W$0A)GXQzZAk?U=6mg>FHb|T>D0b|)F(c;= z;Yx&5K6hz&euaPDCG!u^Sx~2#Ef0piO^(eeSxj^F{u!fk?fT<908B#$$esM=PtajG z#>mA^LgxDHdY#{#e7+9Og6Wq9NApBR--UE-$mTA~c=T}L%KP(`ef+T|XG_*vd{(i9 zPOw(RRYIT}GyA^qqsc&R{D-~9_-U=D(AJ+;3fQVc@R zsSohK3Ddt)EDg(NH_1oVtt~hNTPjkCC~!U=1f;ha`HLCaL;(u+3nC4SMKD55OI%Zz z#9&8aK=`zf9QItoiN|91p0EEDo0X�DfV#9oO$q&+A%BM`bho0Nn5+PrG}Kpy6Ie z3Mo2P!*P&^SpsuP+1l_ds?4$^Pgq3*5gk<_dD57KmvwudQUJ*HzxNzp0M|F4iwh-*6WZ<}6>{bo2~s+@g3)i!H`{t6U1}5>kA+GDeqmnK zG^uJ@^d9BS^(%Tm1L~yEl*auf#uwk){(KNrsZaZFM$WO;UK{|AVAn%aWL2$Q8j@-> zxs6G&WQe!W%kYu83lPA_dJ~qd?AgrTI!nZ!c7JOcm_lu;0PvUUP9B4=gR51!YZ^-@ zGau@i;Wt-;b{}L~SJtwY9^{^~ripT6ZE1<6x7i_9TN+U7$d{Hxx%s7=pidvWt?U%| z{@5Rk&eR-lF=(kbeso$e1xP}Yp`?+!X%V>VIf7NkO?Dxfn&etM|gGe?(ebg@HgV?j3|{GatO{XazG$0^rcz` zI%K~O8F)1ts{f{*v{U`;vE_WsM*OigTX2w(-woeM3pn@&1L@Ou`3)jOKag!jRNf#Q zVHfhoE%>I%`HmqtZ6zsC=D2n!7lggu+O|86b(934vsr>^%)t=ezZIwJVT+T-Ye~xB z6F>V)pp3tf8DZH-)H-63Gf3WS&C^?iTboC~K?H4weGBa2^yjeQxx(C$RhHHEQt`pK zL+gj0Cg9$Ce%WhzeZ0S+K+kcmblW}aB&NGM*sO=XKgM*R!ubv}9*I+!voWdjy9NW6 zs>;GI!S2sa8NBB)X`wuaM1chry!UE}x#3%@)8+DvW0C*Zn4@GbqOcu4;?JF)(7om{G`++G z%+pDn9LPQQJFBnu_+B7(@Y%ay`L}T3;D#&W)a=h4x#-j-5(b!VBDM4KzjD`H?@QOZ5{2O!;0i~+U}y;O zYt(Bgl_E z(5)E@|Dz2m6{=pbb)6A}Qp@Ch$Ne>F3#5_Wu5Y@?sE7~1aI*YEcdOHzPCSR0J?4vg z0xv&><=ao~utDOcGo(`VQVAaJBmjE#E^V^6o>Si}%a!nWeZvK5PBGRBV^lx_4H(o% z4NFU?`aCn|>I(U=!yD3ta%DzC54w`0u3rQlBL~|Hj)VFQ)6^|e5tZ7vrB(I1Uo#Ad zKN6$38X3OY-i9)5-9m#~SNCE8@Rdi~TvxFu@TUzD&PL+H$NzL4fYl66Bm(LMtzJ)I zK~Z1tPY8U{!Z76HAS^`k58$PhlgAMf{SA>{m_s3kE)TfTB*F8e$&7b};|>P;0U&}z z5(D5r;>Z%Zo><7oa1OtSh`J1O6Yt}oVbCU$$t08DvW7x1N8$epVU_3Qi42C4P1~2o z0nHamga{aSCa*GGi%=oYh6Ttpv5@b~q$lVlgSEKgLuQLRAV3Zi;I$UY;^0iFVC=Me zsl<{NK-_zf!@ew&wG-#FC&G&fHWNvJ;Y6=HlV_WmkYf`Hezo(8${bS$AqIZ~Z2-w+&qV>*Z@t#tqQw>r@2Y@CEE6c(gY7dT;+8oNH# zMgC1%z9Ib$!8pmH8WTXqo)m3pZUsfsk8|^Uf|7=%#dp$2WJX+EF867fDAdr8rn^3f zqDt)+ukF$_77Z6U+PypfUo8d;jV-RfQ!6} zTcJ-ux|H+&DzGrCe#QIc<8C2Xcw9Bt`)qRN>z|iisvfCGH^5PdMh#}rTUi0 z;dp`oA>m)?xAfY>de&^Igh(zT_2KjhGQeGtj}YI7HSgMbA7pcfwEZEK$v>k69}ds) zOPWew9K6p-8pF~7xH^}O(rObXrV7Aid(%~Fx3Mk_EYFk@@$5G1TJe2@0y*fXCFwID zKj%0%L4e9BzqFNkR-f1-$sFF_^ioh4r?+ig5@nB{I>^YV93Bs$Y5w&VKC(4_kdM@N6X^R_%G&%n0l{VOm~Txx6KsIUWoheGhm7P$pAL4#b^XcBDIQr_1akNE|eFE_k7 zQ{0|=pbP^5iB^S7i!t?Gn#hjv73J3B#nRX?hLVA*sSqAVPL_4iY;MI`tGek z5Q)mb=05MSRg1R)G^2*x1*3$@+qgp#E)lVL>OwSNr*6|ebr4&Y#jH)ULrEo+0>3RL zW0OZALs8WH0qbX#XTk%=ZtHv&1Zc@@zlHLbX5Z#bPEg~o=rlwrP29T$^IyHMnwqv* zESPUmAmtuX-=ei}=rd|+}g9XM|t?>6ThKRogBmX{IwPafg zlsQoV2-%rLL&q21>HpDV$a-`@m1j4nOgY_5&QU+bx^RWOzg>UWLBHgBesXQN&1-@$^jn=WV;$eLKPaxbGa}{ z@Y`m&_S?Rdg{ScdVIcP>JRx2EM4}-;0!?89bWeGeo3gAg)8~`wcg>scD80@|grJvd zW|_xSYQ;mPnYYD2)26$Akxnh;Hue;lIDL^xTy(G7S!K60-cWz}#Q&)M&M;2s_<-;C zo2>ms=yPlY?E?%V+C*Gsc<&oXQ8HHO3GSW>zC$ZFniB4(D*c+49c!t@Y9}RDr4~IC zAnzr`j|iO^Z=*`i!47snv~NbU4_924XtSjU-&QZE0Lj)2e>a{8Cv^vAX%DwZR@N|$p#LLjWw;F4GaT}jV;aj2$Ttv^MA`5W@Tmh>n{CmF?$3`1zcCc$@!mB zhlh2>UH02BH{a;ml7FmOb-~g%oTy!xm9l0OughSuHRe;S>|sb)OWR~$)lT;ZHBisD zELbel+o9A(1${?mWCWSL5G-0XWU`X|^l`oY$UOXFIz&6%nAIt-RTwjNr-#C*(lFtd z=}Wuh;PpUvYuV59;ecLh_#g4G^MY3%=lIQr|XE9-TC;Qq18+Jdpb82Gk*QI8t_A$0%qqL46EWI zXRQTMK;p~CnpvvWq&qoC!7JJ3QJVaZRYpp4`BWBXrHJ(VK2V|bk~0cY7n2wQv|AL3 zng}ehnRQSo?4)7AvXtC+*oY?3Jmvz}M2C1?1UN1hYhg57ONa;-ObObhsa4pWrh zuTHC}IN~4mh6V#SH86Djej>w|5fI2T&M0DFtUVB9j%+S1H{XCw&-lG~lkP4|FxCV@ zj+;y6W}9;nEf6wWS9{w&(|tB2ix=y`8a1gbmU(Gu{H5Mw(`KLUdjJZykVnCE!-?Ma z1;B9uP3O*$PwD#5gXNgn;m8Jk-*;Pzl8vg3mE3-c-S$)LTkEU!zzCmh3R+$1FB?ra zg87e%YiSr2#o?<9wg*Jila$=+m5qF`M^vtH0`N zx9T@;E7m!b)ORyB$dPs3gFM&aQL?snt^zy!|e&g>; z%oo~l)i+dOFFKsgaZ4<7P_zsJ6FUMT!6);*blG7bc++U#k+7h2+K=PA;2TQ@BcOC- zuy|V-{TL&8{WhMw#H?|;%CEaqDMHri@mf!QOuG(t(Je?qr;LnXwrsb3#M7yIF9Ym) z+Q>WG;8(=l5hbzJUn$(5yl<^H%dSWsd6XxqXA)o;al<5TwM zk?(iJ+cSJ)A$Jo`@&IlL?~abNsuhd<^UI*vn>+o$di`7xFIvQ@uOTP84CBo`1Zg<#kK6EXeHh5mb&62l9^3N#8Xs9 zatN@oh6Gy!&2Ty+!{31-HHDo8J1?v=?2yHl)R3jr}i`K8}s+ zP)1)fSNJT04P76|P!5Cy(1xD^(U8;wqX3v+1zHKcX5=#E%3@@Q{VX^U1F;5J*w*74 zwV6*AzNYjshCjRLh+IXhMMT5FC^6Y@q7wJds5 zN@a_$8Hy@>%&dEV2_;x&HW+Lg%p^CFDD3&3ek8%3Mi7(J4hbYi)XunAGAexFUL@ro zB9^73@+h*0W25m_(jx!Rs+`d1_~9x7iv1aS9khf-8K`4iM#$M)qZ>ero}+2L$8TEU z0~r^hEkenHTU;aHnL=w)rg0}+QZI4uV)gi25B74zt>UodY1Zk{kHb?+qaH*rea1dJy(_qeEEVrL}%7*IzUrE#*;3MiAXpyA#*;c)#ENyANe z3*MMpT|8V%nSw|Ch4=xJ*s;@*gKyucKUNSMyMH}w{La@tqDEuVf5WHagknk(X4cvW zL}c+vKZeT`n1r^K#mIw-_Qa1S2#BcvHLi#u#T23HzTYaV3}tf^ zj%A3+d6AhR-o0_Zzvuom<@iD_!a#gWQk)cS7ja@5W&Pf$oat0SY21(|@n(9inb%Uf zU+;fx?2Sf9=FJHRSDik(#X#{UBr@?r+s?(Y)52tAD(xE{1kWYd;|-aBiy}_j?xTZ8 z7(8W90Cr*B6W02X$@d2PYXY@>eM4Tvf{Au|a@8ysLX`9#C-l*Ptad(~v~(wlc#r$k z_9qT8Z^THT))0r~+d;w`F}-YEqHVlHR_iP_ALLSDoDZN%G5-qpxF`GD+Ot}MBx1z( zOV6nt*MS(s;8HffuAoQBu6GVKhK`RpD(yLr0>jU`2W5?WxnlJ*&THhgDE;eSb0YkD zozOC2OlaSa(?%Yr8E?_7*XYKN?T4M?k37(Hog)WzhMFp=*p_-p&gfMIDo>5lx8hq3 zD<2yNu|5GqCnF9=Cj28VfT*!8FScV$Y{sJK!|6S~`<9i&4Z<(`y?%_NSYAi^Pp7tL zNg`ozsH_{O%%=n^<7sUx^7KewnfM)W&Y2lXJ0Ypb` zzstSc-&=5VXPc+?JJyFrEA-Cy8#Es;{erhyPlgT_)KMd>d~%`Sa_qT00{35}tT?X1 z#vYDcnh^r+{eDS>T*g@A%NIO#-oW^S44adj;8`dt5U+74y@@=X@WG$+6B%!c?D`-0 zl-4m0hMU&K1_lep#_|7*nK=HTn4u@Z5R(+(Fw^=_z@Pyv9Kdy?|8YrfjHaC9J|{}g zvE~akxGhy8^)JCvE7glac#QG@!Zkvxh?W)UWH}Y*4a4m(Q_88FiXGSq_(;FL`P|P8 z?zMSo{qcG3+ehx~d@D2S43Bb0voxvaqo2Fv-8PFVlwOXI#_F`Wl}cvPbj~)Ljq3m~ zh4n1wXn!=nxqM<^M{yfCHq!SeAxEhv)}nJ?AYa;S0vE9+N_Eo`!Fs#8FH_u^7@MUg z8&Zj`aBf5G33>_I zwGyr}31UQ$M(kFb-3QINnMuo?hc@WaY^I|&!?u%~p+p<0`elFYfmDN3F%7~J_&G=J zLNHYd1O)UthP zP&R~*ecOiD0B<8pb|?`igwhQK8`8*1^Zr$XwC4tjT5|AWE_rMjfH+*;5X538E20%v zpw?5@e^E79m5idm{@7k$#xu^oO5rwG92Pxdxh=`jYnd^qDV|Fxg6d|J>O@l_$Hdh(wCe40Q1y9cuXl-tv5WX}? z%qqsvw>#5N+o02Lx6Brddof*4B4E}qF|aEvONOVYS?2B32}}adJ~NF==k)y~mfV?3 zmULv#W?w-xPCC$hA&!NHtcxgmw@YIArtMupM=E;V_X}ZI3=k=9^#&V&3_R(uv*0%w zA?GX^%fpNfr-%K~BBLJEJHO4Hj~H>!$HQBQv}Ea@&zQ#)Og z^$ibhww)69lC!rl)-eg@3Zkg)_SGiY!r~DEgAF$0Xv$>3;okAn?cC5P`NA`kemdj& z36u6Gr_T~{Q=6B7s;JQin4ITu!&vxbhVHDeSL_c8#7o;pXM;wc8Ab{pGVHyBrPY1+ zJYmi0=6cn}@E|&Y9S7p;Iexx&U<;AMm|y)7zDy9IR4UZ zGbn5=*^Ymd==2e3zk6v4=vMFUid!z4ngW_{3upX0b6oldr2&B?$9q!?(86J8vBCKL~@4*Hvdi7%l714~{* zBhrKOJ?X7$GHGUdB{@%tbE_tresp;t(0kazpHX@pAxvZebq1L8VG{atIr*ZtqF1%Ev18ZFVF<0z4M8nfC66~8^@bpNXzAR&90X? z7)`A^=6kR?K=9A?h*dGWZ zVBOaN2fUk;MaR-RWuLf4%sU$3pMSjd*e}(zy%NH;*SPQl5!>XrSLxOiS~|^Jnmr*4 z#dT~50Y%fQB_CWHNf?aL9<&|XVX*!#wn-=?Nm~-zSUYS!UtQUVNep;oDZ3-Hj#OPb z6%Y)GskGM~6IXxz?0*Twe zV5df_h~AG1#MPt6RgNcjw+P!)>JC^qL*UafbCYdOYY=@{xY!oa2@?cFVZ+Kw=B3 zq8g}+hqsvbVQ+k|Vk7N|ZZ|-q1pwrTawK79Ea0d&IV=Qjk(L>#uarXT{^Y}5x_nN< z$nS8h&BKiW9>_1{Y=vGW7+6SllF?$tp&yI6n-#|n>vdV^U4aKC#fg+pFs3?*1Pz8V zLv9QmmQOv}YW?i+%%Ifz#+QPl;@ZTzu6cuc(rs8 z_XQ=TxUS}P5Fc!^GV;~ar3|Kp`B-zvUrbRdJh!5YDd~pd-89$BdT%Awy;6fwu&fCy zaIk%RvjT%am?@LcLOa{zIbN2$-gyWEcfTWtXIc1S$+@ku0r-@{r|$TA-x~Y`48kGB zN1*cn|E>yYC+=1-q~OjW)B3PWLV{s8y504mOglO%c03a~nMkL+2#afcAhgq~9QCr< z943}DaKv7aT8HUIQ0YXEgQ0^6pRi9g{teGXX>+J@FgL`o^Lj#5A(0m%3!E^XbwyA` ziCYw$e%}E)qqlDGU$KeYqw-MDUVg|j0O1qQ0&(T9AQb5h*y{}%5=DE`{o^Ucu^+*D zAjgq?gB}AFi;bFDpDa>f@DAp&DbA^2T6aPRKB7b+>X6OlPMIJmiPSrU14lQxcN& z2F9So)bdUSx*4$%@=mFsfZeKy$wrU=U3#>@KG@g60CjE4c-;Rd zutYxCltK01nSRn`h0Q3jD>=phP2WzMzP9B7ml;kWhF^od^R{iU$`@kC7V9^`))Ej- z+KIO=b-+uZ=W82@*YPuoVZlqwX;_IL7RWm=4|^cIOyTd zc&VL-40)=ED;-rleY1H&%5pioydld2_)N||qyKWHNXa80_%KQ#49Dk*`Ngdlx9(LH z`Mgb{OTMp&8cD+6PW=JWWH7;x#%64=W}n|2iG@Jw1U;+j63Xn_UI*j{s$i(5GurH} z?z<;RWrYOqdi{KF`fKr$H?Ze77m^*K@vhgLg8O>t2A%Tu>sXZeGX$HNI_IMejNzZx zEwxFCib01~7?`JB*`-pv`a9ULc~=FN+On|DpNVfq;&puRW=x9uJ8}8g62Cg4)(rpY z%1$<6*2WD3O^y+l?~Z;h$h}MteTR7c(a5hlec>wsZM^#*J}a3Q;ZLSP z?^G#UI}6``?m?2D$MXeY@t1&hbkM~MYi!(CpCq*q`|6`bk{g5nq`&9dNqW*VN^K!A z`81sxneX*u+Q?_-`=c)FuE*qUKUuuAHGrkjucf>CR23&X z>gPf13?OHk4^rM0tnOb%7z7O5h!2we{EZw;x97Hh6t8jEQ2C}N2HfPf$1yBdFT^qndSeprRJj>h4=-)?;RlD-R(c-O^WPF2B%7g{^^D34rRa%~YV1sV; zB@3aJS_c{1i{E=Fkn|gUuI-FW2Y;yTW3=o|^$b(6;7}P@$SNiLPEC&hIWW@G$(QQr z;CQ(n{~L2${(`s;OK;u%nJE~C#fzP)iIrFXf77vA%OOx3s4@&B1|oBffG+#3 zt7?q(&D!6(FDI)mf^#5O5|f~3W?+XU?|Clzgk@%BAz~tOG_ir@<0E2}vvx2ycCq$0 zHzQ*H(ukP3*f?02h!~}abct9vSXjRV8<9Q{qaqPAD+dvyI1x7&2OBF9qXH50m#X$P zo|T=Qi%38K*4)ADAEU{}pw{4D4`EH*AOPj&N>)b0OhyF=^ZxT#7EbPeY)Ly zvoFcXX2ND+%3^G6!Y07S&0@mJ%w){OY+=UC#LjGP%3*9`%4N#V&dh4U&c>Nk~_~ zq=$u=QED$lkg1_KV#8AdBX5D{jI}WEF~x^e(ivvDEH@5V=zD6DSR+z?V<{+2nsaUcuPj+?9xxnf+gGP;@eP5H@wQc69ji4C}w! z+}-TH!sGfC1NP)WC^AqEw&XJ?0x)J)_Vl`301;4?h?$e?pV+XlaDN5Q+`-b#>Z^(4 zfA7=C=xdX^^_E7)Mn-FWM57=OMjUWbDS_soU|^(Db|W+vEyJ&fxM(gIR^<_E6;X9V z?BV!og0(foXJIx_Rd8Tn$CKEswCfY17#(Hb^H^Z2GQdo7AelLU9c95xA*QGrURa}H zCRE?!q<i)o#7BoAq;jJC04-yfrqE5#KXBa6mxXdHSS3mIg7pmOutOZfed9v}Vc?Oh_$QD49ix9|)IW*$|N2eX!NJkZ^(#AB+3^3BG^}j@ z^5Iuzi8?yCnLB)SGqZB0E9U|jzp-=v%aRpH(pS=nZ}zGw{m6?i zXreJ0IT?%VDJsGk6T{Zb+r+I*il!>Uw=u-*$TMD0$`875EacEW8*ls!RH` z`})eQ>f?Knr(t`St^Np>fsat=_6Ja|F_?AyTPzT5Kw7A`(4?I^IMw@{4o=RSkDK@m@eahZ* zZg2Ke-zn(n3&W#XR1f%!V|HJ1JBQIU zx0ERPZ5uJjBWT(RQxB(2_d$cP9VY5UpUCg0=Chr{LoBUrNhnsE7Bu38r0xu&_Cdtb z2m$jjA}|+Y+ZZn|9yV^&f%XnkzgL}4E0Qi~)O2a#bs!Y7FAqeq7Tzs>YgdVBl^T=f z^Yg5dD$h(DPl1q2%n~~^9L|_O0m(%V8=v%Y#N*B%uGo@N!SXd!x}1H1CPIAXej__K zM9y9aoO6)cZ&&xbD;RB0vox5rDaQ%*blh0e3lRR^Ei+}k9LXJaGP#Q9S~wpyp1wSA zB+6s}48NyKvi@B3_~I>U3Y5gomA7FIcUywYE!;Wd8EOX2Bh$jyYKz$Sx%#^(6lGHP zEp@14T6}0aKVF|Aj?Q~5$Vc()535Z{%#4=k&Ucu`o$akZ#}c4z5oX{Plf48Ihtipu zKY#+;L;|VeNw|*fR*iF4zw>L7oXf=V{zlyJ`JPvSA?zoy%&=|})1xJhj|Ln*q_~ek z=j~m77YFCfrzT-UBSqikhU=3qoJ~;mAEjOuq`cwaM#w&kW(y>Y{ z5n9{CIyFP-+3&qB=udRy^k~f8v6W~(s4%Q@^CeA`O@xC_Sjq;!Lp&6`>IlE&^c*nE zX|)|dD?sMWs4~~|0VX6(tbTu6uH@tO2XhXW?X+x929NLx-^?Ly7yDQ^<^yvm1j$Z- zxw5pr8@wxDKZ1@}rcpIQC^?>|e6&vH2YQ=`6Sq=bMB_keExY!}swq`y$Cb4>)Y!;G zKvKkcG|EqSlrx0;T~IV=y6g3PL0zERymgjTD~vDkoOC%=Pb)^AlC|0`F>F_l0GzgU z*}!Yi0vt1#UNM{Jc!8i2ugbYbb+KV{C>uI_${OrIh?yGSqi6E{;Fs!~U~m5T*Cs&LLiBB{V&<6%eX zC>3#)m&g2YM{C9=)LTv4o!2gE7W(~-6$R#7#SGk4XAmt&Q=#r8{WlwgdUSj}83ju$ zT9lHK_>!C8UKW?b#IF~EOvW(`!CH?&?22{X@ZW-m;HjP3*LR93A{f!@Y)uyL$Fifp z;q|)mu$tGGlwP;Xa5KR+~~CJ-WeJm`N&yFLhhusgw$GV@>M#?ftyk8GqdxcW@?(TRIX2RDa6IWEV?~mMoA@DGpu-GQQla zlCDl~j;7Qx;ociE4)A+ACRs4X1D-}=IWXkWw_9hCo8Cab!Dbmaq*NLLl5X;%0#BM@ z5fjXWB0tQxuZkL|43<7ct@CGeY86_RTbm+kB(Ry zdM<59-Tl9F1)0dn@k}Ux1x^gTtJt(5*USpoOjzPVBC0&K3^T&IZyUJLUcO(f3+DD~ z`s)uEyljBIPxyx1=SeQ8L3ewTa_>Ag933zjtswc*ncx8}66yuPn`)|E+j=s}Om#kJqt(W4sXugHdQSeec4H-%!*VqVK|FR6 zWlw@M?2iJb=LOhE#Jlboj>6)l*GvW|NuO~ix`NdtBRlExpyr{*i@Df)m6z`#&a;(| zPCvchw4xfAz0g}d7PxqSs|Y_pl!fpQgc{^qdz_f=vAj-SRy>8WTs!*nmla91J}#d| z9u05`5oI`OgBz`@?jsYkt3&wNe!f@}T_W8*x9 zz{-oxSu~PGoZF?_Uy(B`2Zg(_AZkUo6oAVQ72911NSJ4UC2y4N_wqGMoV)j=Yd3() z{oxqGyx7t&cE)RL+FOnZoCY}vb_(2<+)Ey?MC~*4wLl?x6OQ~bhomzoG%^NSCKQo-P{Yt}La#!W8Oq2k$i7oJ4!l%}T2OU0FcNHR4UH1E7~L5a zS~7jr8L4~Np4ujh3ZwsM6@?GK!0>dyc%ZvDM1K1PHAuojSVuTwU z!_|{DHJI26?13t$uT_5uX{hX#N}(9&reUi8#avs1Xs3p@7h%uD*9sFi#+eet+4p{b zUuqXF4_M_9;2g;5G-40&qEgD$#LQ9t7~`S9^BBA`1NZ`dp=$C%H*j(Ml<)74p# zw*Azhp)>)E@v;QZu@`+bDTmP_?#6xeyTBeMtBayyjJ-1jEN%c|bT|d#AZ}`cz>*Z! zU5aTTHe$q! zIKWygd#-af zuNcNIo1>$KrmH1BxF8keaTHVRYh5d0yc!i^0t*{{En*Yc>@Pz$pvjfL%H*eA9{zO<>Lbxg*J8z9vE62gYh>VB;uEfjaGzGd1}RD zPJ;Ac;^e0d+cqxX=ZP3n>wa`KZ3_5og*5+$f5?tt=8(n<>^H`ibS`k}m%tt4m(ddS ziC*_c&9%06>{ZTCr1^7$t9O<=x+$SJR;`8FLyCvdaQfqJ*gc-`=E6wr(i945>=q1| zi30UR2kP+l%gQzqw%Xi?=WTWn(UP>OQ5Vf{L8=Vx9xkjTtSL2dCmBh*{nXiutIVp< zd*dSPN-SA3_u9JZ?GyHxXC{g8qgR8ViaN;Q8~=b$D|D_J=0r!a`vXEts0GkoiT$TW zu+Sn>74rBL*LQZq8SH>}|K38~@0V1-#o6zre0Lmf_QJIltq$4h zyh`_?HtB?@HZyjdfKqcAh}R4zeHP#vII^Cjy8PTQk5Tc2K{9Y^+ zcet28dOfT~-1de^Ch!o_R6Y5clO3pS$h~-8yU{6fgq9cHQzyJdIV%F;w6rjz0QRyZ z)hM}Oa4Qci?Mg4%CqV_ceqs~AI~gHJ$7nz(gMDUZ5T9I5M>F5{%f6hfw7$;7k8nuit(PeK$sJ1%esFV z%Wp{ISq)=o$=~j$y$vl#&`Rs9Mb0&EtdYcVtePj*hfJs7bJ-_{!dOQF4`T?FmuSRX z(7=9x6X%PXNV+KZb4$B&kvO!ieg>K9SrE=6smP^qln7|B&CKG8Mt2_Y*YaxKP-2!F z`$qbZo^i>S$EgL_}q|WcN-uSI}I3E1*TE*iXKy_rPEs^KzsP=y% z5T8V&Og+;%a60)eO0oc(YeiUIvs(*a`zaDmXaD32j^%Ws$zlf+CmJ?kk5w3+L$XFK zlSmw^ipZEmunE>I2bDfTf5q@1Tj|Ty=DDe$ zs4yoF*jgA1`b7%_rXwASzDj*k0h8j7&|VwS@sqA&j_zViq2*oJy+eME7ECpTb7baQj9`aI8sL-{y1q1=tRuw)YmatQ)-U|wC; z^13h{mVWp?9u?7pNkSx*mG$6QDzg2b}=YEtz_Q0S^nxgu=DE4!27$+ zV0k%m6lIWLS2B0&=IrbKgTm=Gp&nZtK|I#XR^{>PXP37!U2N$g@BUe==OLrGy6EiD~gj|HAZ6hmkkk=q)isRs`oIYe>rd-!U$69<6iR0h_Ayinsep}Fp zz?`o$$yz)Ge1bw6!r8T^E%3#cJiIB;+VRe#tF7X3iG8Jlh z6*Cp(B&!%4#KLEtLIg6r715d0dMuHjvtcfy^%_>9Ub3cEq7X# zaP0SXG{!W;7HZdp^7QD(JDcni#r&P>W=vT%#8cqG^Uk%!$ei7-Wse@?U!e-TpAeNg za7K-3d3v(3D=d#X9*t?4dT_(Guiii5b?^*#_7B09A|k zF4nVD(BgQ5bO|iJc^{H&ww;7C=y0E^nU};>G{47$DC0>`D`#IE%;P#Yp$JBqR9n2? zUhn|%9|=A{nPM!mdCuJLuDK=~Mw+K0f{TYNUQci+Ba_2xw!69Bo^Qu&>GrrqMhr1* zt2tg^*a;XoEzg&xp1fmAJ&;>VLf)Iv%3BCqfLnBPsGl`=vUwYk->Vci7_$*!_hKKv zUjw}!&cy2xMbBlJm;LPVzwh#$`_vNl@NxsW-ynVxcGXORnQr?wcnxI(A1-cZ${Arg zad9Nqbr0%T;>2C@?AvCZqLVEZRd$bNxr*#!I~>IkoslkU;^GDPM9<3!hku*fZV4y5 zxs*N5c}$ptkbc-bS}%M+;U>V-CMVysYR2SPu00w;EtS`BjxA0My}B%r@P6D}Jum}H z7qiQO`6>!PSECQI#u(|NqlrlEX^~MFWyBgF?Df(DVcuVVmA1Sum%`h-Ol-xdRdh9%OkY2|m24l?I>lr(GvgnqeJwt8!3fFyI!}_kD8eCEXA*;m{6X1Uot!AneM{i2Mkm_! zkccn3<^ILnoeQx*Wa$f?K+WJWoHIjrMCwb;i@aWhtTXwqp~oea&4}!ytc&QKAsxFx z4ZFXc7%lrqx8*N1pQwMcF(o!Tp&kkXhlD6e!i_IBqC2QGHe3|Zodu`kO%!C^Th33g zDa=b^$%WPPljRVvp6qr~MwNl8`(b163zttO?(Uq=uV*ez3B_|n$3%n^RP58m;^fS)g&>F^wN&GBv^EMmrolai+HFbe5zyQk=It(8v2r5&DY;iO!R(%sOV1S0Z%m_n%UA-VC2SnW0Y8q{SfCb)We}LK7 zYJZ?Z!zcpDg8WVvf*S~xtjtc)LWo9P)r)K%5#Q@2#-kO&)6o(yn6k}5eO)+dwId&v9>!7|-vcAj+nEJ~uU6mzVR9B@CI z5Fkw+odJRcnuu_j`Eh9NyX*mrJ-c*yG;)-MI6M$pk9l%vj0_aV=^=G&StZWx(P#$E zB%5(QiqCo^$*^|w1Rqn;V*~2(2w0a@CoD) z)Is~e)ZMUpcy}OGAH6vOZJ)e3wn_ug!=?qn-4x7`gt?*H99yPh5H^8$f<;U|)f~I1 zdAzPl*`U&Eb-mHo=l0!~~&&U31A5 z7A5|aOH6W{$i>$$@loc@ceCIkr)@eeV0{Jv1TJ9vtG8tiCVTptKq}+(y{dY`Q;}N>6 zgy_1f43NdQRK7f80eAkFYEt36C9f+i{|gV=BRX6DhndTcr64wo-&1m=Y9s4a4) z3HWLb7{Pn9v3v6P;M%&(KOtmJys}T}m68~QGCC0!S*gn|XWOcoB)|K2*Q&-Zf3H*` zwFTz?lpN1G)s**^FuR*Cq2vo=am~1b(;0?`P-G1uA9F*AQ#kU5^E55|3LGgt|k zkqeTxB+M*9EW4i4SkVMgHdV_rV_alhA0nK)36_zZG}WMElk_Cy`g&J9)$UeeQ+D&t zSNynrj7^_j;kVE&o{G1S+%nK*b6Y@01m zUR~_rulfCfx9;q9nzX_xUgG3aGmcLhv&Vxg$-(#0X>e|ITb1(k!sHBlWq#la*+E7g z3!bcdz$k#h{KgErIAUj{di~d=Vx_3&lcR<3)DXMxOv$k!u>NY}IhUt>YbOd(W9(Qn-|XN> z8W~&o?08RM_NC;>u(bKDm!yioS_{IwDrw^{K>=He5+Xa5B~}V4+&Bz`|1*#`u;;Id zATUxBn`R8A^f_FmsxZZZszqwo&-Ntf3-i=KbiCiK8vs;PaAdr~<`aaetB~1j9b0|< zj8(4+X@X17M5ybL-*!GzM$@LCi4}0{7$ZE8JW~5qvI|qxsJ@}g^o6Jp60b`KPr7RC z5G+B$6}gatml_AV#23qEml=~M)7r1NXl@K!xSgK5waw0T?3mUbMeHCxCN}Qzf|Bd14$$qKH<%Fp6(y9tFa4IBAWB%K>C?Koi~iF?knK}Yn1FBYKb#vl{=xgi zV5}V6|5U8gncM&bzzv5D31q)(&B@}A*`sYnab%*VJq~e(uv`rJV1ZE<(}rg0)S{Tf zYo9O~64FRgs1+223B56OAVIsWU^vVYzGpEcnW0|vqrMgHuVxd5S`>GoS(!$ zTboMs#m=ST@Bh%W^v2!4fJbvArdrhnHD$0yRUg+;WTWbc0u^polNvU8ToCbwlVx{V z1NmIDr1CDAB7K9JG*pbLeikA3nX-$onpGE`v^JrScuC4ggvW)8#_8Mk$pypX?e@!6gOVQLn)9WuJ8@PL0Ri8XT)f+D~ooHPFGM`B-RO%bpLxoywH8!`sY zv+qnctWCBbA79bOs6Tt|3@%V%La>%}}T5^gYZt?(90$K2Wrvmc$Rlo%W zPc6tsV4Uesrqu>2tjW0~_&7X*Rleci;2A`&NT9Vw)&K!6V$*^C(Ia1wZIZbo_9RDL z&WkfNyoJZm?&vu)7js4E;xH#EPn0Dw%NXGg7{ixd%CutjtUg5i86&=B*m1ENx@d4A zH&k0pLX1>(Pc#9)=R+9v5x3gvW6^~s5quSQg(bzU?6^FEkB0|*^kK>Kn97}tQN85h?js9idE52keb_p(DdE{HTRvLk2&vmDFhFeB*w9W}Pf;Z${-Onlo^^R#dE)W|828$eEFTXwH(*9bT;8H*zW^}?)It; z<7hAU+fZNLA5b$4*Or%^-6cydXXQJfgh0-TSDUs?;Va6+a{OM*7IyaU(cK+2Yt7{9 ziz~pIv!mKgqcx%|r7o*0oX(9VXc@tds_=H;#Up(nerI*~`IU?Gbq7J!j{7s-J}}d0 z;iKBoqBiyY9+AarZM8FhL!GoZn}72c1>UCYYadF;;qY6Ts#Uo6bf<|8&#Y?de$A%kNU z!J3!@R?E?4U9To4aOKZWdo_a|}@d z-kM>{6wtbpvC(0>{T-3pKMLzH2o6P)zpWfZuD1C;#%e*V|kJAi!eRPsf2wpq(L-rb@DRc zhQqd^sLBrapW$a5K0h|(Hi2uoSKTPMO8fORIVQPtO5YVgxvRek;4Z^!*zPqLPZ@nH zpJ6e`PTLwEhyfAE)?|t zK>y-QH~tC0Yx#@@1fhVkbEeNm0~lIra{+ls|7kQw`j;Wx7QdeW0#vmBYmMVy#>RU9 zreD*!|G!)_POg?Os@cGQ>f&bmFBV!0+YTU)`aeu%W=|KI0pPcQ!GMaPeEYwqnc4qE zV{7rm0sVoJZl4Ja1IohuZ_?ZUS;!Yp@Sly~rRURuQUh7JnEz+_X?+TJ!)3Giir=s< znbM2G!n4QiH(#T?tHXkVVsc9((%mmR+sZ9>a(lbK9{^|>+Mk@woN}yQH+LkcAi@bC z&>4)sFnn)kF!@piJAt=vKb_!+wU{IrwhbB7jFz)QU8AHC_^XD(_jl4QkLOp5dVs%b zO`;y<<@tem(wb_|Etd0`8y@1h<~~ijnz(-!7hc+n8ME!rPAWgYE#eUxt($b&eaC%k z-~6?5L?PVqGdryPyFPpI0EWJy!?ai(4d9XR`tSYQPn3lwE8|RcoHU&DThiFf8ciyS zYQiv(-`VXIIwD;20V#c(Lv3k+UJO9YV-eP$^z!TOkH60@^sMz$)Qlumjqx!TG%ham zd<;9Q-UJXJ2tfBnC90owvnYR9RXMCY;Ip57{fqUd?-xw}C~P%dOZHCNtY$~Ej`B=a z!Fkbo3Z}e!j;I8yW8Q9pg^IxLY}Ft#F4i*?d|TJA^w#&4fc$$CeUpPc9Q#M$3ZjNV zixelOcw0Y0^}BZmH7?HlLZ{&9!$9$ZAME4i~p|PehP53f5Ss{*GK0x1NZzfM04WpZN^txYmq`96< z>*7E6d;RWP+*GNAMuJ>94A6s|ktxD6a)~~n_eFwU-hLW_V^qf+fU!E|lTm}BAS7Pj zY#_N$sNW({x%FO)ycQJ|jr1$iqEBcar|Hn!6AzFW$%3Tde{-fi?nEC3vM{nMF=m3C z1!fX{?nZy}4UxB`c^R_DYd4U>@D0#u@Px{V_03?A)#@{wbrsN4xOp!s)Nl=fM@mk4 zLpAf9VAFJEIWzu9jEU3X|8^NO$lg>r79y11!r*@#CMti@N_Ry%!A&2%py9kuL+}jX ze9d=Qq3x2Col<3fn8CL7AiY~Z|c?0 zb^d-lMd2pUP^Y}R(YK+6LB=Rj!$_;>Yz-!Q$KPTz?)q2@hqvCM<}ZaS+8rgrwXd;T zPUqDWBU-j5@Gojxe#Ce7$)cQfyvTmk9z)jfGGPv8q7Ny~GT_;zq4l1*VzT7{N^euB zLerbvfBY?AIAGN41VUl12*1AlgjbbCV6dKOMTE_qNsS;XAyqp z?FHFW)!tz}{%(rFsg*n5r-K&uykg~GgN6+QNq2`Dqp({FN#6y&!RaRf_ZpGNSYou^ zDr}Q4<_MoR+|{MnjkTYJ^%N1W$NEQTHYqbcU*@c*vRTMgmvOFnXQFkv`Y)zu5z z7HQ@@f?}0&09!%FT9^)j8QPQBfkv}tRQVmQQFuZ z{Dj3<#AI~4*ivgzJDq^5T*ReW2#EHG_H^txp_YjFcr+8ETEw;SuZGfU{RQnxbms&! zBIfMD(P$)58R|@o6C00*0QOX(cHh9fV|tmfXJRZ=1pJu-rs(M5=f*MT-QOj*DQu6o zMY(z~b%KXaIgN7zHDEdjKrvR_00&I~pMGN{qN)v@LV+e~m3YO2)(A`|aUlvYH)$LT z3dmC#4Fp+Xc5sCZ0m)(GfC}2}l}T=b2i)0IkAndw8@=EHtFRbm@StH^PwUBW`A|U; zB|`xYK<`8-(ALv?43ofYf%6zxs0(=QeS~hXfKi@O5)fX|JYT3*U$12mvhN@yvfZUj zASAZLDl|8&^@x?=s++LsP@wMG7~o368Wv+M;P__d+dM)r+NthJx1x8z@R*9E!O#|H%9=x%`6Cr zg7TZ`r+EekBRH5ZbE_AG-|&+`fu9g(mn(fcE948UR7MJ=+gtn*eurKO$$#jX=4(4E z%AiQpbv%}4ELRn4;3lvUo5 z#)uW}w~&=sw+`3TadOv^%=I}0#sxeO0hcfE;l=Ogl@1lx2bpu?YZsMQTAgn$8^2`X z54;$ofiHNpIq*Xh8yU^c&i+fCaz9Rl&rQ23QCWO@`&k46iRXDjyD1$FYknLb*>`Cx zTY_>5RJjk_-IOxMa_iN}W!zL$zdsD1M#({Y)fiC!F$ytO3@RZFG;(vdfgMAa zCQghnB$c@f3e&i4Oa`uYGWea%R8l^IQ_Zbm)DkxCit3IVDb8UyQ3X0`1kEt=N)S`@ zvIm_w1*-yyS&0x&By7k15B-575KHaPd(mB9k`v!A{h^E>QHgNhDpUn7`|tNcO%uIh z0YG*}HG^Jmhsa||uxS@&79_jdFaCj z_b*#L%~Lc(7cw-%7hS;#+px@Y5tW2RzCbmNf+;495ck`#aeJF!e;=OVXa2ayfwNj1 zSJ1*v$R@?bmqbuQz2*(}r6+XnaU)meUFvD{E z7ZH5|gbgnRUPdHBis~NLR&9D3XzlS@BW0+t^w&2F41S7?ngg;SGU1nJi5AmoL~aw{TV5~K>AVFSX9m;yR95?V0n zUPNkc%CldQ1Wi;YAbAOXW@_+flMV5e0@{>=u0O=Ut&-Ws5ZiLJIbDIYzpW<@kFB3# zQ28#~BJLN`f|sDRlzoOKOCqo#2dh+(EtpNpGG9E1ZUo7f-Bl?9lErf4ylK8Zakv7x z_ERm(t|8uhU;;IKYmYBW+8uZYC81rZsOeBl@84RHUBPr3N1%Fh9OO^eV={h7cbfUe zB}aJEt`1SYk0gUOLgovcMP~L%?{u?`Hie4S6~nYvkvQ_)z$*Bsn!qcvsicg`j=5Ml z>^MIbDfv;dV0JOKogJZw&hdMFV-y3|^?dI;E^vhs#J9T`9ybtgb`T)%z=V#erZ&*h z1Ngp+L3TjKu=kfXmun!PGnWl4cLR!`hUqt}p6YBCKyIJZs~MPIWv^5bPT3i4S&0jN zq~|#qmDtam^A3?915>V<#l74Y#3kS7#WnP%`etupY*ZCXgIJxYo{f>t@IkOR=4BfEY8HRK5qzQy3<5oM>T1IU`243P% z#AD^BXPSx%X@>ru;BHwhlmU}W>IcDscKD}h*~Mf*aVkhu#26Yy<4ySWm>Vy&@?fvn z7Y$^y>Gl?+v+Vb0-@pqPkk`2Jp;Ks^!OG9c{aCvO&YBD@+O_Igm*h7kTFJ}b+W^Xu zbO0SFS~>?WC`dS@;G56H&E@xN%T>z8`6uA5v*-S3)e7m-m` zb+`U_zw7rN6%+>t1uk?I34hR}4LWy)nKfN}KE9KKXe5%$q(QPH5o@&$bZBC)KXDA9 z?Q^>0Pm8Psy9JPT<&+85;1E3^vu~Z?5(>A zQT=rL9qcfK`iZ`&*~)_x*bjKuoyMX?%=RPP0Xt$sRH|$~C2XEz={`wYDx+`-n4#A! zRf)uY_fT)yQWa@KCPyn!J5}-dKrO9b)aw+Z#0((T41tP=BzdxYA zG%w=xs5Ty(K2&J{)Eto~q<(cf@SF?k7VsgXmLAgF) zWv+;>A`8H~$^A87mv0QyKn_MrhgLevkW3CQDi<)+NO*V$Hz?xjMVuZY-`l=JSk~WK z`F2*mdL&Iwc2_m^n~w}-T*mwe7n*%K4be?6SSiT7RW3vX=)6TUkw^Sc^6=*0gYO6} zyC?)+Nd}<%tXre!Tuq3)qp)AqbTLw`$u|x}_cyK%Imxoa;2Hv>L+rvR4=oD}Qo0I) z$ZjOI4sIDB*yi|1K@eU-BGV>fC9bf)B7_za?D^T20#~em3NceMkqVg=Vx--RGe_Rp zU2qQIT9Q@=3J{ORzCNNbiYsrRwR8ZfbQ}%KZu+sbxZS0FW`wygAoGCqdyKA4bqnXXGj!INN}>%=r1A6ulN5%ijaw~qF%4L_@H8_ueyA8u z;`oKi@8EGDjCtJjm(|~`%;ig71yOe+k4wkq8Y~-DUK%IE`!w1wUHLOTIPsD!kSiHu zVw|7f%ULD}S=S7>H4@^ZA%dTsp9Xq^0>oHFq|rN81GM{F3pVGHDTv}SLL{U$ zHk0ugKi!JCe6Mx6Xy{+0(!Zprv*G!1_Emq6xn)L-nqz5+#&9MP53-Z0b)+F}gGPsV4GAU#V$s@#xUw z=E^0~4KkJ_^-k<2quQ?cA^dg6%x@1%QNRrk*+sN((p%O~-{xO*K8)%g?~XzmVF-&k z2G~L4&%qHay=+_(yxHbkSXX`Sv5~p~Hz6`CS}J?~p!e{GYxbQu!KwRVPeOt$$C9Y< zRX=qs;xdVIDg;iywdx{Dr{)V<3Cul9kgh%i!$OPkuknkF@48x92R-!I8P$>`f3W5% zN&T>};t3iuTNl>%1Iv^+luG(QzRmf?j*eT4H5+m@m-j6{PYElJAR9TnK-0b*=y%bl zSAj2nnFgMUc`GX@#(7()ZRix&y}oE&dbehp3C7#bz+EN>ISrvu(jIJ{UyFi~=_4r(ocxZRL+_~SHuy1&-dv_GGM8G-H1 zwZHguU39Qmho9q&M!vvvpb9_$qXV~)j7hOWbS73-rJT2k{vu4b?UR}_M?Wimk3#8F zBwJO8h8H!h<-I^3VUW`gt!OC(Lic3fgrQaq4|r~ph|t#Fq}cHeTVQ6J+l>lUSQV(T zDIF7&Nz<)*6!LdH7)$(d7`V=HF=}`F#9<4bDrLQcSu);crLcd|4>Mc^5(0dKh5cev zg9GOrn_VaUY}Z1YW{dW5_?(p7Bzo+RcI2kfI-;q^8fv#^d;&K&67@e3$3?h94s-re zjf;4RZ3zsC?zfKz87)ALt7D+y^;FP-Klg=V(zM^~lVcJH7p9)UX1K_F$b4nnl0s)% zA8|V<4$i#!B6=(^71t3MjC=jL6APS89lpEY67v8TdA&v-l!hq0tu9xfO}3W*a^-E-K-2gyhN()?B`G<)JYAU0t0w>E zZ6x;l}*;r_;yv#mw2BZ9b#pJ|t{d_;RYncX2dL@*Yk_peX@4ifS z#u%pL=RLR_jcg(P-HDIgg^%5dZ`m(f7~E7WI`X16V=YREsQ%4!)IfmlBMnDH&%Ey% zW-XlSmV)Dbb<#!@Ezav#K$vl9*P(yb3)3WFmPN>7q%qlUQr8$1>)&c5i(q#51_3Ow zwNqQVXb^Dn!4yK^&J2`mk}nhPKKGv|Q9~E($*?bMiHbCLkT?j>5&Im8Q2?SUztn{xBrc<-+RX) zT#+FA(>P{eWP{tZ-Y#2IQ5sxIMJimmQL-H|>)P0D^_5p1M@1DYp&mtlWiu2WtYX^l z&%zfE8_QF5h@zC>ru@;rAqp9syyb0G_o`U_XO=$an-a#x5eo)h^;tb!xk(*~*bue3 z@}&k?ZHO3fNg0;1T3l)=;2W#@w-9BSY+oD|I!lLg(+eA4o!oiyrxXU}nG)FxGryjE z>$Kt2$v;de35`yvsU5?KL4i{UUa+qsc_Q8GE*n;~@@%pmOuJRs$&o_Rfj(l26C-ZNV3ir>Hb|Hs{bNIX%DSh;(j$J~5D4M$fbC+*nik`K3t@LA&+6dih zMsmFAg2u#MJ`g2zjX`ZfHk^A?gAG1l@l&|5(_TK%g3JOUBsm@~&e5d_9M-k2ZiRfb z%}d9))W5qF^<8SEWMH!l3DLo-5!rxwl*UHbRo67 zk|HPnPi^lIo>>^C>&CWi+cqk;Rk2mE^T)RS*tTukHY&C%PMzxRea_Xp_nw~NnykUP zzQOlC&wB5BC^k5kmk>S17UZyCzJrbmD(k5E%MQ%X29+tDqio?|U$oQkNuE=4Z3Ej@ zE0rlW5x$_JnY~7*iC>uz=$>t;xr)cUK9$-6?w)A~fMp*6VZmHabaI3S*K2thyXM`s zSPune*KD@JK@_tEH*F9BO*&1w^`9@i3X5qAlnu!cUVXgCE)hVN=c)W4Az)LBElI3! zdD1`!KzNfO2UPR3p#yD-T#+E8%EEL|y6H;BgZeXQFbj_fP}H?1*hJe^KLk()MH=m~ zU>b!1T*x74CBYdppam0xGZ2BwhR1;{TiLm}-9bRqfKx4S(i6zP{sN$8SKS7^&%-}NjVol>BSI24rwfL^&)9zN}Xv8+ZqZNms6*!rx@;nQh|16Oc) zFo<+KN9^diQ2ieMbWwl=ywP6}?yv>$Z*%VnDmq zJG5CUY4P_h4>#ZAGVqY?6k@dV_qBR|_hpU~>~I$DH1_SK!M5psQYRaQ+>r&~yLTcw z6swLf53P*LC@3XdhN}#+?u0soZPg}E9T-R(j`9_)@VHnjt4Al0K}B0?eo;;IJJJ4d4xbzz?ddnNGS0u(2wi=G9?Q!h?W&ZiCOoxV}oZ zSRXeuF&ZgCrPt{X& z(~!IRisu5uUfd0&R~Zr1+*Fu-&eT5{GzU#W$&HC^$GQtmC~Z0?{;e^ir%q@~wt%jd z!OkCWx5X_Si(jo3h)e=dnb>lBcHw4sovmZ&{Pin86Hnz#qihg6*GGNCm%C`9RVo<5 zHcf#))w`O_&kkIaPYsKZmunXz4))<^Wi!b%|CXy?uocZxloehk_vU}SFH_*~^{*H| z7q{wc%8Ny-9CAnpxiizM$iPK+UCLiJtfl8Fek5U~!c;1K*y;gZkShwUI(fF9T6F+9 zzr38_p-VB|#kP>fdiRw2ctigD{HD1;)LhX0TV%s+bXr%qGir81&wctP>=n2c3P;5R zvEgR(r@27KF^nBe}fcjOK4-A1RRJ;0h&l= z_kLq*iH(}Aug;Qaet!9-*R9(fHxBVWz{V&M!pa82p;iZqVL2)+FpFgKcW`#Vnx8=)f4`Qx0Nu%+2GzgKw%}T0-J1YXUsy-sx!R;vwLf>dKk~HhJ$-@i zugtx#o*ym`oQUq`$34-tRC0l|kCUkba+*bEj1*DAzA#ml)!9+Erb6bN00kNXF#_+h+JQ*x5Yxl_Xe(o^ z_bq9eVAAEUE;D(yY&W*&fT}~o1Gj?L(eML{BeOZBdl{Yo{odX21;5C)?7+ z>@}=IGMaYSw>Y_reeqN46pZf;mjq^K-WIA)L1EP3zQ*BDLp?Q{02*VJhwI$odY#L( z)kU{5cO|n+`&%w+3TrpO!lEEEG7EP4xD^4F%r+XlLqcz7>Q`oQ7(t9SO2)ct`BMe0V!fzZ~D`c3EC&9p`y{< zyA*ze!py%~3f1|#5w&b(kLTJI!>E}^He9;;($dWy5aDR4cYi#B5lDbi4&v$mZGMB< zdV^QuzS)`s)WOo*hq>-KWf4&;OCvk96Q1Vn;+_)=v$sKF^Ji@c->&*`*aQ2kM$i_o zZppz~VOdIE0hYB8wmHt|9j$wL4B@+3&FZRAuM! z{6rrxgdZUle|@j`;GRI<1LEb+Sbi!%WQwzMTpB!n05bhf7qSlaR9Ia(!vfHIhZ^`} za{U_%bnrHJI*A7uK0X`j9OJBieR#Lq7L7T6I4=YMK`KXdRW|Oj@paObBhJ1}XgFJ4 zVUAb9cFD;kjI)NmP*-h(Q$W;FE-$~@2Y#iZaol%32ev$O%u=84=ik+GC(WL*#W;PN zY5lga1@In-kyK@rjcRqe5kL$`kt&M)nHOq$Zs%cXhC4gT2o(L6RT}ax4p>0x^#O%M zEH=lc(I(_f6CDuc0ZIl1iIehFQ|MsOshI$>#X)@%7eTmB6F|C~$&w{# z>{F${Ja>#yr%4MG&i#mBizfHQuwdy;B&Nw!0I7q&6G6HYJ15Bw>?_oXBJ<@KAEk}7 zjLe8aE2ke=LuZ0!@IsQb#l%)=QWjZm1kiK`+ck(_ue|MvVC|klC&-NnWB6?mi@w;@ zGbIP9T6L60mG=Lb_}ExmN)tJ?+8WK#w#l0b4fb?9~Eea{8Z z03g}XaUx`W=Z9TKD-p&%nIY=sP&Q0UKDh(3L>jyMj;G6GZZSR1HTg! zdZ*#Bp`;beLIuI|shTuFz_UxuR&A^TmYT;YQ15>3iev}7ohIHvt>#FP(d-^tB$Pu` z^CwFLxSiT7&|+6LO>co!!T$Ru+OdmB039DY9XjJj>HQ_T_>lV&Brl3;#@IPs#G0iN zx0`2~cuQyAs3lD`rqfnO|2kUc3O81QTMyHuPbx}l6Dl^MefhG(Rs%IKH8^pZ%{{e~ zQiX{(>8Evtjh=?%-Y$3EhpZ)vb!lK2p9=HLbNx|zTb6y7{_v>w^W~rx zx0DW^UZSzXjK1p+M~1-0U`t6bK$X7@rm@w)Pg|{aOB*_vpmTiP+BAwd8FSBrwdh-~ zi4c8Mjfgi_SK<#c>zt4UMOjdsP$@I-TaVz3{=3Q6li^}OsaX70n4zEmRwBh4QwfIx zWJ0N%MXfuuNysD@og!uxr%0}M?%yO%3h031Kxa0dv8 z)TTTool~jk)4f1k@w(ln!<2jAR{0Mb9WcFZHBco#@CxLt&eL9hD}GmY*sNkM;Dt4Y za;PUmijELGBerb{~f8eOay#ppcYFv2b`&fYze#yU~>eS70y*iff3CNG#1n^?j0uNiSVt zOw375d1WH7mCK>Pc}jqmD8E*2FPUm)eS&+s~3(He=-%A;W5lmRRw; z{mUC7J|_UPZ@FifbjIl8PsCSz13uf+&)baqxDl(jI3(KR7y6&*2fw`{=Dw=i73QM0 zev3KjX{b15Jsmig09H#bQf$S%nv+BrRo6G7#3AW?RlDqPQaso|vLD{iZ?IF!`uS6W zELGpT`9|#O=rLgn5%@HsV0f!0^L6908bE#*T=%l{=i~n{Pn(?vbtwJjc<`JV6wrf6 zTKDUW&WCbmVcM!kK*~S6ym(IQTHR)46~$JLj%m_GfUr=U1x%k?FG_vd5MH`Ci6*4Z zjc2ZZ;%Gk~4XZiEBCS`Mq1Q33!<3K7rL7-?&zIuw^n%lvk-w$>da| zC0E3$J{x`%>{7#qt3_%!N#T2h)YZw6UtK74g*&us0%V|TrNpw>!0=T!floBEs@;4F z0?JZ*!<*el4uV*Cg~>g`)Xc_k=Y{cjg;jrehNJL0{r7`3^keZk>Dmi(EBkL)cIRWb zvtGp^Od4)PtjoKA7|;s~tf|ao4yMW9c30|Qvz&P|8{;H$@d1@$8hEVC$f}bnm&;3pUKkPj#PsQvM2zfIAymKvk=NLn2MS)y{_+dXq(06Q zUof6jm4um36_7HvX3W1_yVWL9>?6B*f&L7*Dud!&#zlNTJ=Eh*VBdJ`$H?9@vmy)- z);7u%#p}xVVUleQqVndg5eSH48HFBp`aNuW0eWC$>uTZqho03Fpb>#c)z|W@+|#Yb zr0&}ic2qdT4-S+kf&qey@`Af2V48g({#%EJC&mX^dHuV95LNN}z1Q3Ozt&E?Ul^bX zJU;uf!2y|i!|{oihDU%8z6Dz8w7L(9PQH{&21%WB{SeW1{Py#ow4n1J`g_)B-^6F_ zfI%w#E?$A&kOVL(3_45JIm?({*htzjGBJvh(U669`LRwXCMn3yU@6ELkDeW-GMns2 zM>5nBo9+ac#5C1;+4KnXy`Ty-^04tCn6$Ak$hn z&$2h{FSXhR^?jZyM=WT)L&aZXB~IXlBC7#BO!dNAI@DOQDvbCl zY?^aYIsFhn{M_9+u^suc@c?wZan)6So$PWySC7ED;Uh3{P;&s6mQoUsrh|gXU`iGJwZ$CDDJ}>fY4&}Y8_4D6w-xs=A*eD0}EPP)l!;SDN z{IK(@5%*WL)h->6C`rS?DzDY<;<-$EY@hK>c;ZKebTek8PAf3j`$bn7VED#9(|dDy z$Ef@v=Dfs zmj~JioTXq%vu0HszNes~Rm^^!>M+ktzjuLHkM<3LWV`6NEOH3V&+rfs6-I& zpd5H#{lisR8r|<78orv}*F!5?9&84%s3oK0E8#n`C5Z~tlf0NRvANe5r_b?kA4~vS z?mpkwgNrR>tv*9o`8X|;)N+`kPwko!y1t(GH=t+BNE@-HQ}Lpi+o{xUtt$q7@TT$e z_l2R06*@Mh6Px5mp7xn|L&vIhcQ0e7Ur&doNzaZx^H0ug*oRwx#_9s*a6ggmZrWS@Yj(B6S?KTEys3WZ*R-a63jVv~W72#~J z*_&~7Y50=d<>>M&Nv&tgl5nk6GK>3o46*X7I3_ylK@GJuO=F9*Y^xA1Sk69Yw0|D-w_Y`p=@ZJ}j>>K@a?dj23~)>&8<0)@>SkqQvK!K=n4HWG~QN z<)K>PTrtP4y1?B$a+|Q!{U3mzKAOU)358=Ns|GXDv$%@O?;kTQM!wF1bKdSoRA;9| zo{_lfTMvKEC>3&0dJDqCY2W4XN@io9 z-BWjhNKnUEKJVF}M*oC|F)no;prf0vdd{Q6m17;U?2+~*CZQ?rr2UyV1N~+A~SfRM1?*SSp&+1 zIf*Lz$W(bkLzIbjtenVxH*5!r1l(~OLWpakzH}&CqN_71ObvjH^509qfRq2Y&NnIM zB-PQ)=+PoP;K6>lFs~dIq?i=}H~LVZtATo8q9aVYtwpjpG_#T@#X$;rOkf2PDeIvm zzmS=W#kyz=q(d827?LDOjDknpabc**8xo=*!XCuvk|>f)GOPv&(xwz6;*1xWip1by zt2}XGVDg7y(p%;vDY4UHbQ~MmQzAIHIt}Bqi&z#_1~6oi+f(J~cymf`V3~r% ze;zKVUi@Wjf*)tX{QYPe>Dr-*xgzzs%k~G}X+U{tppj8S&fO zE=8~UtpI}vub7dcq$fz;33te@$uAQ0y=ysQtBvq+S^h-+&2j^GK35z%E)zn1K=o(k z-^8jD3%AwBC7K^^K@FD1$jl;Cfs7^yGUU(rf#j7#rFEGmEy1rnP-8>d7e~UvcLi^1 zFmd$xs^?9z>~xiUdI)ncWlj|@_wHH{hM8vpo!IQmxCJFd(1 zJAio!WYtAYRf<&Udi8Jq>*;2vcdOqUXvmh2T+afKHQtQ-@-`g+C;w zW4@V8@?|!ELxN__U$|FSsq#<^|B?lpj(kX9F->ebBDk|6xO-Y_c69!wq=<4I zXNDl@Q$!c)eh9~3_KXZ(gaqE>gSugJPo`&L}nnCKmBpm?sC z#3lFN&u_%|!ul_H<(?Y9Ze^V9;H{+c!fePEsfLX-AKy}uCmRC7_>xB&zf>5=F901m zdf6OAMyT(_McGqo(&&)tJdf}8MY zPGK{9z2=1tOcsUT&l8L*h6F^~UBkdp&RR$MN*OLc+}BR-UYnbXOb5zJ6_m4!W;{g? zAL5kH(|oufbPe}l%N1A2C4eR25QXNjtDG5f*?oPA5j6Y>rf#RY!lhYdhp}%Gps!SWvXDmCkxpeMGgQpda16 zcuJqij~d@a9T!owe<{wkoCxS#1$5+|6ow<1UuU+AY8Min@1VuaJz(|wW%VzSl;BDP zSEX&8fXO{w(PsB*IaV41%X&a}3=JETgJn$0vKYF7iI+OUnqD@eQvctK=(uPLF?FFg zO=lGsm7d&t<``Gqekp~Ev1$Z;W}XPRv{*8SMQmLB$x$AqceK&4LRXJUY&?7*NjWzc z6~;kYo~WFR$khmCJwR60JwZFJfr-lrjUoC24{H`=n0Z-kfAYfIO3#t}%b(8McTP|8 z_KO?_wk^~APjona!sfsGQaU=tqGvk>=2eh(rR1EM1i~Doji|~mNu3!9wZL$aJ!`>brUiKF&Qkocyu}twyG}#Ryu;x3 zyvi+oWJp$A^k>vuV|lvD$lA{3VO&>(DKLh^bY$AJ@6QD`zw>&`E>;~fpN-64?H3hA z4buo`w@UUWyBVk*3jKCxMt^0|#dRfaf=UDF+N9X*3a~O1_%V^S5k5wtrTZFbKcGPj zl|Pw)_YCME^3vRyr@Q1qYzQ0rqAK86Yf)erOaC(R7MOuXsbNd$D*Y~ksc*_D+X2*) zEN&EhlFOI66*OK<9WqVhGR`m*up^u(1gbTcNH=gC;7p+0redHR?}y`>%#jMijMdqF z2nrEIu{d^LSuG|nv*ZQ0l>gp1x7ZugSf~Z3g98lx8ILbxk}&kI-tynBrKSY|BO)Fx z@d;BOCh%~B8T0fvX}ghwLYvzX;K&DFtwT<-{#jGQ?d;{KGC`uV-$O|gHq zWji+5=QR%f%J~D_ziM$CEejnmmggdnWUAHHc$CVLS3c(x>dIe+#3*1N zH~&?$?nJ^!q5q$)DjN{R8C2*Rjlj6@cer8PY9_#2XKb8V&9(t{8_7XgLudrsm zelI;|HBDVMFdYSF6bA;NDo=G9LQdKe&T3ytnLc2xmgNmbIX&i@239P2#AlK05-Pcw@eLve zN1j?C!4_GZuhcNC{NpX5gjA@Sr@v?x3tA6pcSNG;$-BOG#~FC-G7T}PFDgkM1ik|_ z)EqJRnaOvz@ek4q4U~kKWWXpyIh}hH1l91C!|)b3oizress)sMku)HfjY)~-V<^Xm zqcBk=f!C3;`Mx=Lubl1(VUe*7Pta&b7{MG7GDz+`UoS0ELY$G1No&Q@?Zl8!PVg*3 z>WM*}_qHYYceR53q3iX1D{^JPkQ9q4Ftv@0TyhhD3d%nM4S7KyWSq#iV74ZCqfuF! z)+GwX%X9(^Z=kHPW@3@xMU>qp#6be3tDHFO?PV~RU%nq|)*deVm;mYN6+t~e;tMTU zMvl)-h`>eFAF&|DYB3wkU!*Y~7f=@D!O7S}TvK8=3oq41$}4n?qS#``5?RAI>W((( z9fvY5r6SX9;kssN$XZK7_;iMgNMOiz!|FY11s?zj1-ygK1SSz-R{P!{mpGIzFd!4X zQer1!q)D+wX14TGcX&TBoxW&j*&(xH@gygWWa<1m)5Zc&T6{soTP%KWvCWd0C#s;J z(i@JKgG)%Ar<2v3pW}Mv8S)ewDN|BoELc`zx56^yQ2K!WO8&~N^Hk?m$WemfZ~32iq%?n^IqzGQOkc1%t1rkH!$qus78X~>%$ zd>dqa7**VEfiYb>%?g0rBR6GadHgA!YDD!LDHcPxWX(2LNKC-fe17b~l>dS)ReV?} zQs|yor?t@+{iIjZDq5SKP(i&8+|2}?{Hf-@d{E14K+0rmdLGiOJ3{))|Z!>#gcv>!;Pflp%`V=K6m$S zH0yWwshfWBk?7zy8(4Z#yRdZ8ngPbrGBLvJm#Dik)_p@@?>C9a zGYtY{{UCZoK;E|8 zT6Ezf-o-S>KIE}{ftdQ{>95s0#->;eZhIVc*EwCsYzGAmvulPtd;a= zQxI9j#D|9M;KjRSFVX^vwSi%Zxwb5*l?a8uh#)*T)=Xvg8!9*JaXV`L<21@y_QO-* z6`t_#rsJ`6^X!J1vex4!fNS28`8ipm3Q>==P^ZPc2vlA*aq~|z%1`nA>eo1U{(rTbW_#9A6XKvH*PAW567r7{5W5Q z{SGz*;9e%RH5GoQO#a&rRUl*|Ax)jcypZd**9^kjUfR`;1PY3NVlZGaT=2vC5ogX% z8|U&D;NY-BBu1&0}kY9U=k7&q$duLChZJvKcrA-jPfDk*@P; zU(B#B45$)QPzZnSjhM%&M(4WVDUsdNpvWf!r!JVSLc;Wq`i;!f0Nb@Dw7Quuk?zRc z_?=X>KRNJ{dr2RlALE>1%qMO~kqCOW=S^E2C!SrLYplRw1QYW1TyN_dkK~YFzi@dJ z$x8+s&>sg-*1x{Nv+ouc4rhHr+I*k~aBJ zcILD^tt*3q&EE#tDr8kBxUOz`;A0uGx?g-XMO<0G6YP?h zmGFNG-{kHBu(l|GI;8Z8SAS$0W-3eNFFMCVAQXU~$(kA3HIMo!=WXZRbPrE>&3ZL} z=uY`-oG11OFTTaw#HaUTgdph__RUuB=e?V)k2$ZL-(IbZQ|Z>p)uH1Lm8BGh;5--_ zHUhOM1GN%4P)AR{O3))w2|87=XEzgKfrzg^qDk+(uV&1eR%#j?1^z2S2_bfdzH>t@cz|k7vlz6O| zja1-x_#v?se!C3CM5&B$LLhh9Bg>j6U)OlNp;ZNtHC%fwzW=9*!uZ+wAlzJP4Tx~f2G*X&@K+)c(BP)y?BIvM6gdwoe0U84 zIIoAoEm{)xHA(Q~Ug*>Uz_^*q0MhjMZ$`H2zXNhDbn=Rb@;o2V@y)tH}@i2ds~vXe|mn)t?Wum11!kjl(;1<-`kR@Qq9)G{s% zodzDia{^_QLM3wpFRBT;Ur-E5i1fYx^$;w3X7aulbt$C_dw87x%nDhIe)R|4iJnrF(j6;}@?R{SD(oZ=B);s#GFP`?d=^IX7co61%(i0yii8qhG!iLTJC< zmeL~7zPTtb8v>fbg|HU<9;o<&Iu9;yQ3?krv zDCT;!XQDJ^5O(I&e#2JM_h~>L%IZgVrsFzswxdH@8xsK(dmS3am}5~33JUytUFH-h zsbzLn^JO|C-Vz)Rl^4a?us0~2s7#ZN%*3LI5riEn+3i4rz96L&Tofk=6BJlMc`-WJ zX=jITo0rE!R|f(4&0fj)*G2*omV93G1LD1B1eD>7=8;by#0*BjrE!) z$G+GeZx`O294p&xncJNnzSjVXVugV1{^?f17i%|iC} z1cL9W?Du=rYoAx6Hy<#D)rl~6H(;TuRAZ78?fxhXYB2?bI0ZzouELYY^>TN|z8qj4 z{yLMnC8qk6p;_IBPdK7!q%a6Y9VO>*-gihRfvy$am;0Nez=t{?T(5{TfNpFdQ^!W- zH658SxcbCSbv|wl^Ds>~Hta&pcGb}&J>v{L-0A{7jikg9ys<>ggCv%~Zxr{$Lr{6H zVZl-tL+c7C#CQCG!rFjAl>Rb7$dc!%D!>meP#|^|bHI~@ONR=B7SHz6G}|O0h3rbf z2}eId#t7{1FFJL#WuDd&I~@`wIcl18dxK_h%*XGe4fam2x3?um11c6R0rn#|rhQeI z7Y9;Y;vPdQsEHfwg!cUqkLZ|E!;`tZrI{+`yuV(6$Ah$8Om1VZrr1O{NZ5tD7Ga$kIHcv zhC&nmGOXb=oCQ}dtDA4k=AGL!o>5^J*HkKgEk1Us=$Y|I#GmoX#`zt0DKonjs!|-j zQb-$+)m#{?l??QPkrjuwJw=Els=MY)$?Bd8_fF<^UH?pc5f$|g!gD3kZeiB6_w-Gp z<{7b0TST$t z;pU^QPQtN+h2>Sa-3*#@G`+h4k#nT|uTBQcI%Nupf5&%Y31w0%?X)|co?FiR?cdvC zWhysdQLnGOPzx+WJf&(9Zz^Ud^Wp*}806vIAGWf!;Np z6m`WmcNL>x!EY6Nj93B!UrS@j85~p>ad1!mDr)gNeE2gBS1Fh3o!+`|&1AQoI)xiB zx(7LygzA?0$&|iU-&mWvA6&T8;>A=fle`g6u8=w1i)p=R{-agbYp%MVl~^tr%N{=KA*VJNYIoGTXw z9RR!}9~L}`oo0B3Bdo2_!jhGda*!gNnNA#oV91e(%Upv1m6-OMjWwguSoXihFNB}O z1i_I%{tu)g`~TvrFAc!B$%1kKWe{NLVOd!?{<%e2{?XO_5MZVM+v6+(YzOeQ9tJV- z1Rb1}_5T%*@&f)-Df%DwQDzwl5M_- Co+l#! diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 91a4ea02..848d5fb1 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -192,6 +192,9 @@ class McCode_instr: interface() Shows interface with jupyter notebook widgets + + get_interface_data() + Returns data set from latest simulation in widget """ def __init__(self, name, **kwargs): @@ -1885,6 +1888,9 @@ class McStas_instr(McCode_instr): interface() Shows interface with jupyter notebook widgets + + get_interface_data() + Returns data set from latest simulation in widget """ def __init__(self, name, **kwargs): """ @@ -2106,6 +2112,9 @@ class McXtrace_instr(McCode_instr): interface() Shows interface with jupyter notebook widgets + + get_interface_data() + Returns data set from latest simulation in widget """ def __init__(self, name, **kwargs): """ diff --git a/setup.py b/setup.py index ed2cda63..edd37717 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ setuptools.setup( name='McStasScript', - version='0.0.30', + version='0.0.31', author="Mads Bertelsen", author_email="Mads.Bertelsen@ess.eu", description="A python scripting interface for McStas", From 1fa3a7a29b194e4e03607164f721534a32419955 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Fri, 27 Aug 2021 13:19:02 +0200 Subject: [PATCH 160/403] Addition of new datatype, event data. Data loader now checks if Errors are available, if they are a McStasDataBinned dataset is made, if not it is assumed the data is events. In that case an McStasDataEvents dataset is created. Added data set to test_data_set to test loader. Unit tests modified to take this into account. New test added for Event data. --- mcstasscript/data/data.py | 268 +- mcstasscript/helper/managed_mcrun.py | 45 +- mcstasscript/interface/functions.py | 2 +- mcstasscript/tests/test_ManagedMcrun.py | 57 +- mcstasscript/tests/test_McStasData.py | 78 +- mcstasscript/tests/test_Plotter.py | 96 +- mcstasscript/tests/test_add_data.py | 46 +- .../event_dat_list.p.x.y.z.vx.vy.vz.t | 12029 ++++++++++++++++ mcstasscript/tests/test_data_set/mccode.sim | 22 + mcstasscript/tests/test_functions.py | 60 +- mcstasscript/tests/test_plot_interface.py | 22 +- requirements.txt | 1 + 12 files changed, 12556 insertions(+), 170 deletions(-) create mode 100644 mcstasscript/tests/test_data_set/event_dat_list.p.x.y.z.vx.vy.vz.t diff --git a/mcstasscript/data/data.py b/mcstasscript/data/data.py index f7418bbf..218b307a 100644 --- a/mcstasscript/data/data.py +++ b/mcstasscript/data/data.py @@ -317,7 +317,7 @@ def set_options(self, **kwargs): + "given: " + str(self.right_lim)) -class McStasData: +class McStasDataOld: """ Class for holding full McStas dataset with data, metadata and plotting preferences @@ -452,3 +452,269 @@ def __str__(self): def __repr__(self): return "\n" + self.__str__() + +class McStasData: + """ + Class for holding full McStas dataset with data, metadata and + plotting preferences + + Attributes + ---------- + metadata : McStasMetaData instance + Holds the metadata for the dataset + + name : str + Name of component, extracted from metadata + + plot_options : McStasPlotOptions instance + Holds the plotting preferences for the dataset + + Methods + ------- + set_xlabel : string + sets xlabel of data for plotting + + set_ylabel : string + sets ylabel of data for plotting + + set_title : string + sets title of data for plotting + + set_options : keyword arguments + sets plot options, keywords passed to McStasPlotOptions method + """ + + def __init__(self, metadata): + """ + Initialize a new McStas dataset, 4 positional arguments, pass + xaxis as kwarg if 1d data + + Parameters + ---------- + metadata : McStasMetaData instance + Holds the metadata for the dataset + """ + + # attach meta data + self.metadata = metadata + # get name from metadata + self.name = self.metadata.component_name + # initialize PlotOptions + self.plot_options = McStasPlotOptions() + + self.data_type = None + + # Methods xlabel, ylabel and title as they might not be found + def set_xlabel(self, string): + self.metadata.set_xlabel(string) + + def set_ylabel(self, string): + self.metadata.set_ylabel(string) + + def set_title(self, string): + self.metadata.set_title(string) + + def set_plot_options(self, **kwargs): + self.plot_options.set_options(**kwargs) + + def __str__(self): + """ + Returns string with quick summary of data + """ + + string = "McStasData: " + string += self.name + " " + if type(self.metadata.dimension) == int: + string += "type: 1D " + elif len(self.metadata.dimension) == 2: + string += "type: 2D " + else: + string += "type: other " + + if "values" in self.metadata.info: + values = self.metadata.info["values"] + values = values.strip() + values = values.split(" ") + if len(values) == 3: + string += " I:" + str(values[0]) + string += " E:" + str(values[1]) + string += " N:" + str(values[2]) + + return string + + def __repr__(self): + return "\n" + self.__str__() + + +class McStasDataBinned(McStasData): + """ + Class for holding full McStas dataset with data, metadata and + plotting preferences + + Attributes + ---------- + metadata : McStasMetaData instance + Holds the metadata for the dataset + + name : str + Name of component, extracted from metadata + + Intensity : numpy array + Intensity data [neutrons/s] in 1d or 2d numpy array, dimension in + metadata + + Error : numpy array + Error data [neutrons/s] in 1d or 2d numpy array, same dimensions as + Intensity + + Ncount : numpy array + Number of rays in bin, 1d or 2d numpy array, same dimensions as + Intensity + + plot_options : McStasPlotOptions instance + Holds the plotting preferences for the dataset + + Methods + ------- + set_xlabel : string + sets xlabel of data for plotting + + set_ylabel : string + sets ylabel of data for plotting + + set_title : string + sets title of data for plotting + + set_options : keyword arguments + sets plot options, keywords passed to McStasPlotOptions method + """ + + def __init__(self, metadata, intensity, error, ncount, **kwargs): + """ + Initialize a new McStas dataset, 4 positional arguments, pass + xaxis as kwarg if 1d data + + Parameters + ---------- + metadata : McStasMetaData instance + Holds the metadata for the dataset + + intensity : numpy array + Intensity data [neutrons/s] in 1d or 2d numpy array, dimension in + metadata + + error : numpy array + Error data [neutrons/s] in 1d or 2d numpy array, same dimensions + as Intensity + + ncount : numpy array + Number of rays in bin, 1d or 2d numpy array, same dimensions as + Intensity + + kwargs : keyword arguments + xaxis is required for 1d data + """ + + super().__init__(metadata) + + # three basic arrays from positional arguments + if not isinstance(intensity, np.ndarray): + raise ValueError("intensity should be numpy array!") + if not isinstance(error, np.ndarray): + raise ValueError("error should be numpy array!") + if not isinstance(ncount, np.ndarray): + raise ValueError("ncount should be numpy array!") + + self.Intensity = intensity + self.Error = error + self.Ncount = ncount + + if type(self.metadata.dimension) == int: + self.data_type = "Binned 1D" + if "xaxis" in kwargs: + self.xaxis = kwargs["xaxis"] + else: + raise NameError( + "ERROR: Initialization of McStasData done with 1d " + + "data, but without xaxis for " + self.name + "!") + elif len(self.metadata.dimension) == 2: + self.data_type = "Binned 2D" + else: + self.data_type = "Binned" + +class McStasDataEvent(McStasData): + """ + Class for holding McStas event dataset with data, metadata and + plotting preferences + + Attributes + ---------- + metadata : McStasMetaData instance + Holds the metadata for the dataset + + name : str + Name of component, extracted from metadata + + Events : numpy array + Event data + + plot_options : McStasPlotOptions instance + Holds the plotting preferences for the dataset + + Methods + ------- + set_xlabel : string + sets xlabel of data for plotting + + set_ylabel : string + sets ylabel of data for plotting + + set_title : string + sets title of data for plotting + + set_options : keyword arguments + sets plot options, keywords passed to McStasPlotOptions method + """ + + def __init__(self, metadata, events, **kwargs): + """ + Initialize a new McStas event dataset, 2 positional arguments + + Parameters + ---------- + metadata : McStasMetaData instance + Holds the metadata for the dataset + + events : numpy array + event data + """ + + super().__init__(metadata) + + # three basic arrays from positional arguments + if not isinstance(events, np.ndarray): + raise ValueError("events should be numpy array!") + + self.Events = events + self.data_type = "Events" + + # Intensity for compatability with plotting routine + data_lines = metadata.dimension[1] + self.Intensity = self.Events[0:data_lines, :] + + def __str__(self): + """ + Returns string with quick summary of data + """ + + string = "McStasDataEvent: " + string += self.name + " with " + string += str(len(self.Events)) + " events." + if "variables" in self.metadata.info: + string += " Variables: " + string += self.metadata.info["variables"].strip() + + return string + + def __repr__(self): + return "\n" + self.__str__() diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index 1ab7e708..9e24db5a 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -1,9 +1,11 @@ import os import numpy as np import subprocess +import mmap from mcstasscript.data.data import McStasMetaData -from mcstasscript.data.data import McStasData +from mcstasscript.data.data import McStasDataBinned +from mcstasscript.data.data import McStasDataEvent class ManagedMcrun: @@ -339,7 +341,7 @@ def load_metadata(data_folder_name): # This line contains info to be added to metadata colon_index = lines.index(":") key = lines[2:colon_index] - value = lines[colon_index+2:] + value = lines[colon_index+2:].strip() current_object.add_info(key, value) if lines == "begin data\n": @@ -367,8 +369,8 @@ def load_monitor(metadata, data_folder_name): path to folder from which metadata should be loaded """ # Load data with numpy - data = np.loadtxt(os.path.join(data_folder_name, - metadata.filename.rstrip())) + filename = os.path.join(data_folder_name, metadata.filename.rstrip()) + data = np.loadtxt(filename) # Split data into intensity, error and ncount if type(metadata.dimension) == int: @@ -377,18 +379,37 @@ def load_monitor(metadata, data_folder_name): Error = data.T[2, :] Ncount = data.T[3, :] - elif len(metadata.dimension) == 2: - xaxis = [] # Assume evenly binned in 2d - data_lines = metadata.dimension[1] + # The data is saved as a McStasDataBinned object + return McStasDataBinned(metadata, Intensity, Error, Ncount, xaxis=xaxis) - Intensity = data[0:data_lines, :] - Error = data[data_lines:2 * data_lines, :] - Ncount = data[2 * data_lines:3 * data_lines, :] + elif len(metadata.dimension) == 2: + # Need to check if it is binned data or event data + + with open(filename, 'rb', 0) as file, \ + mmap.mmap(file.fileno(), 0, access=mmap.ACCESS_READ) as s: + if s.find(b'# Errors') != -1: + data_type = "Binned" + else: + data_type = "Events" + + if data_type == "Events": + Events = data + + return McStasDataEvent(metadata, Events) + + elif data_type == "Binned": + # Binned 2D data + xaxis = [] # Assume evenly binned in 2d + data_lines = metadata.dimension[1] + Intensity = data[0:data_lines, :] + Error = data[data_lines:2 * data_lines, :] + Ncount = data[2 * data_lines:3 * data_lines, :] + + # The data is saved as a McStasDataBinned object + return McStasDataBinned(metadata, Intensity, Error, Ncount, xaxis=xaxis) else: raise NameError( "Dimension not read correctly in data set " + "connected to monitor named " + metadata.component_name) - # The data is saved as a McStasData object - return McStasData(metadata, Intensity, Error, Ncount, xaxis=xaxis) diff --git a/mcstasscript/interface/functions.py b/mcstasscript/interface/functions.py index 8d7a6600..58010fcf 100644 --- a/mcstasscript/interface/functions.py +++ b/mcstasscript/interface/functions.py @@ -31,7 +31,7 @@ def name_search(name, data_list): if len(data_list) == 0: raise RuntimeError("Given data list empty.") - if not type(data_list[0]) == McStasData: + if not isinstance(data_list[0], McStasData): raise RuntimeError( "name_search function needs objects of type McStasData as input.") diff --git a/mcstasscript/tests/test_ManagedMcrun.py b/mcstasscript/tests/test_ManagedMcrun.py index 71a34f4a..d7debc10 100644 --- a/mcstasscript/tests/test_ManagedMcrun.py +++ b/mcstasscript/tests/test_ManagedMcrun.py @@ -396,7 +396,7 @@ def test_ManagedMcrun_load_data_PSD4PI(self): os.chdir(current_work_dir) # Reset work directory # Check three data objects are loaded - self.assertEqual(len(results), 3) + self.assertEqual(len(results), 4) # Check properties of PSD_4PI data PSD_4PI = results[0] @@ -432,7 +432,7 @@ def test_ManagedMcrun_load_data_PSD(self): os.chdir(current_work_dir) # Reset work directory # Check three data objects are loaded - self.assertEqual(len(results), 3) + self.assertEqual(len(results), 4) # Check properties of PSD data PSD = results[1] @@ -468,7 +468,7 @@ def test_ManagedMcrun_load_data_L_mon(self): os.chdir(current_work_dir) # Reset work directory # Check three data objects are loaded - self.assertEqual(len(results), 3) + self.assertEqual(len(results), 4) # Check properties of L_mon L_mon = results[2] @@ -519,6 +519,49 @@ def test_ManagedMcrun_load_data_L_mon_direct(self): self.assertEqual(L_mon.Intensity[53], 6.990299315e-06) self.assertEqual(L_mon.Error[53], 6.215308587e-08) + self.assertFalse(hasattr(L_mon, 'Events')) + + def test_ManagedMcrun_load_data_Event(self): + """ + Use test_data_set to test load_data for event data + """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + mcrun_obj = ManagedMcrun("test.instr", + foldername="test_data_set", + executable_path=executable_path, + mcrun_path="path") + + load_path = os.path.join(THIS_DIR, "test_data_set") + results = mcrun_obj.load_results(load_path) + + os.chdir(current_work_dir) # Reset work directory + + # Check properties of event data file + mon = results[3] + + self.assertEqual(mon.name, "monitor") + self.assertEqual(mon.metadata.dimension, [8, 12000]) + self.assertEqual(mon.metadata.limits, [1.0, 12000.0, 1.0, 8.0]) + self.assertEqual(mon.metadata.xlabel, "List of neutron events") + self.assertEqual(mon.metadata.ylabel, "p x y z vx vy vz t") + self.assertEqual(mon.metadata.title, "Intensity Position Position" + + " Position Velocity Velocity Velocity" + + " Time_Of_Flight Monitor (Square)") + self.assertEqual(mon.Intensity[12, 1], -0.006163896406) + self.assertEqual(mon.Events[12, 1], -0.006163896406) + self.assertEqual(mon.Events[43, 4], 22.06193582) + + self.assertFalse(hasattr(mon, 'xaxis')) + self.assertFalse(hasattr(mon, 'Error')) + self.assertFalse(hasattr(mon, 'Ncount')) + + def test_ManagedMcrun_load_data_L_mon_direct_error(self): """ Check an error occurs when directory has no mccode.sim @@ -585,7 +628,7 @@ def test_mcrun_load_data_PSD4PI(self): os.chdir(current_work_dir) # Reset work directory - self.assertEqual(len(results), 3) + self.assertEqual(len(results), 4) PSD_4PI = results[0] @@ -613,7 +656,7 @@ def test_mcrun_load_data_PSD(self): os.chdir(current_work_dir) # Reset work directory - self.assertEqual(len(results), 3) + self.assertEqual(len(results), 4) PSD = results[1] @@ -641,7 +684,7 @@ def test_mcrun_load_metadata_PSD4PI(self): os.chdir(current_work_dir) # Reset work directory - self.assertEqual(len(metadata), 3) + self.assertEqual(len(metadata), 4) PSD_4PI = metadata[0] self.assertEqual(PSD_4PI.dimension, [300, 300]) @@ -664,7 +707,7 @@ def test_mcrun_load_metadata_L_mon(self): os.chdir(current_work_dir) # Reset work directory - self.assertEqual(len(metadata), 3) + self.assertEqual(len(metadata), 4) L_mon = metadata[2] self.assertEqual(L_mon.dimension, 150) diff --git a/mcstasscript/tests/test_McStasData.py b/mcstasscript/tests/test_McStasData.py index 0335dd37..81e58b85 100644 --- a/mcstasscript/tests/test_McStasData.py +++ b/mcstasscript/tests/test_McStasData.py @@ -2,10 +2,12 @@ import numpy as np from mcstasscript.data.data import McStasData +from mcstasscript.data.data import McStasDataBinned +from mcstasscript.data.data import McStasDataEvent from mcstasscript.data.data import McStasMetaData -def set_dummy_MetaData_1d(): +def set_dummy_MetaDataBinned_1d(): """ Sets up simple McStasMetaData object with dimension, 1d case """ @@ -16,21 +18,21 @@ def set_dummy_MetaData_1d(): return meta_data -def set_dummy_McStasData_1d(): +def set_dummy_McStasDataBinned_1d(): """ Sets up simple McStasData object, 1d case """ - meta_data = set_dummy_MetaData_1d() + meta_data = set_dummy_MetaDataBinned_1d() intensity = np.arange(20) error = 0.5 * np.arange(20) ncount = 2 * np.arange(20) axis = np.arange(20)*5.0 - return McStasData(meta_data, intensity, error, ncount, xaxis=axis) + return McStasDataBinned(meta_data, intensity, error, ncount, xaxis=axis) -def set_dummy_MetaData_2d(): +def set_dummy_MetaDataBinned_2d(): """ Sets up simple McStasMetaData object with dimensions, 2d case """ @@ -41,17 +43,17 @@ def set_dummy_MetaData_2d(): return meta_data -def set_dummy_McStasData_2d(): +def set_dummy_McStasDataBinned_2d(): """ Sets up simple McStasData object, 2d case """ - meta_data = set_dummy_MetaData_2d() + meta_data = set_dummy_MetaDataBinned_2d() intensity = np.arange(20).reshape(4, 5) error = 0.5 * np.arange(20).reshape(4, 5) ncount = 2 * np.arange(20).reshape(4, 5) - return McStasData(meta_data, intensity, error, ncount) + return McStasDataBinned(meta_data, intensity, error, ncount) class TestMcStasData(unittest.TestCase): @@ -59,35 +61,35 @@ class TestMcStasData(unittest.TestCase): Various tests of McStasData class """ - def test_McStasData_init_1d(self): + def test_McStasDataBinned_init_1d(self): """ Test that newly created McStasMetaData has correct names, 1d case """ - data = set_dummy_McStasData_1d() + data = set_dummy_McStasDataBinned_1d() self.assertEqual(data.name, "component for 1d") self.assertEqual(data.metadata.component_name, "component for 1d") - def test_McStasData_init_values(self): + def test_McStasDataBinned_init_values(self): """ - Test that newly created McStasData has expected data, 1d case + Test that newly created McStasDataBinned has expected data, 1d case Here checking a single data point """ - data = set_dummy_McStasData_1d() + data = set_dummy_McStasDataBinned_1d() self.assertEqual(data.Intensity[3], 3) self.assertEqual(data.Error[3], 1.5) self.assertEqual(data.Ncount[3], 6) self.assertEqual(data.xaxis[3], 15.0) - def test_McStasData_init_values_full(self): + def test_McStasDataBinned_init_values_full(self): """ - Test that newly created McStasData has expected data, 1d case + Test that newly created McStasDataBinned has expected data, 1d case """ - data = set_dummy_McStasData_1d() + data = set_dummy_McStasDataBinned_1d() intensity = np.arange(20) error = 0.5 * np.arange(20) @@ -100,35 +102,35 @@ def test_McStasData_init_values_full(self): self.assertEqual(data.Ncount[index], ncount[index]) self.assertEqual(data.xaxis[index], axis[index]) - def test_McStasData_init_2d_names(self): + def test_McStasDataBinned_init_2d_names(self): """ Test that newly created McStasMetaData has correct names, 1d case """ - data = set_dummy_McStasData_2d() + data = set_dummy_McStasDataBinned_2d() self.assertEqual(data.name, "test a component") self.assertEqual(data.metadata.component_name, "test a component") - def test_McStasData_init_2d_values(self): + def test_McStasDataBinned_init_2d_values(self): """ - Test that newly created McStasData has expected data, 2d case + Test that newly created McStasDataBinned has expected data, 2d case Here checking a single point """ - data = set_dummy_McStasData_2d() + data = set_dummy_McStasDataBinned_2d() self.assertEqual(data.Intensity[2][3], 13) self.assertEqual(data.Error[2][3], 6.5) self.assertEqual(data.Ncount[2][3], 26) - def test_McStasData_init_2d_values_full(self): + def test_McStasDataBinned_init_2d_values_full(self): """ - Test that newly created McStasData has expected data, 2d case + Test that newly created McStasDataBinned has expected data, 2d case Here checking a entire dataset """ - data = set_dummy_McStasData_2d() + data = set_dummy_McStasDataBinned_2d() intensity = np.arange(20).reshape(4, 5) error = 0.5 * np.arange(20).reshape(4, 5) @@ -146,35 +148,35 @@ def test_McStasData_init_2d_values_full(self): self.assertEqual(data.Ncount[index1][index2], ncount[index1][index2]) - def test_McStasData_set_info_title(self): + def test_McStasDataBinned_set_info_title(self): """ Test that title can be set """ - data = set_dummy_McStasData_2d() + data = set_dummy_McStasDataBinned_2d() data.set_title("title_test") self.assertEqual(data.metadata.title, "title_test") - def test_McStasData_set_xlabel(self): + def test_McStasDataBinned_set_xlabel(self): """ Test that xlabel can be set """ - data = set_dummy_McStasData_2d() + data = set_dummy_McStasDataBinned_2d() data.set_xlabel("xlabel test") self.assertEqual(data.metadata.xlabel, "xlabel test") - def test_McStasData_set_ylabel(self): + def test_McStasDataBinned_set_ylabel(self): """ Test that ylabel can be set """ - data = set_dummy_McStasData_2d() + data = set_dummy_McStasDataBinned_2d() data.set_ylabel("ylabel test") self.assertEqual(data.metadata.ylabel, "ylabel test") - def test_McStasData_set_log(self): + def test_McStasDataBinned_set_log(self): """ Test that log setting has correct type regardless of how it is given """ - data = set_dummy_McStasData_2d() + data = set_dummy_McStasDataBinned_2d() data.set_plot_options(log=True) self.assertIsInstance(data.plot_options.log, bool) self.assertTrue(data.plot_options.log) @@ -187,11 +189,11 @@ def test_McStasData_set_log(self): self.assertIsInstance(data.plot_options.log, bool) self.assertTrue(data.plot_options.log) - def test_McStasData_set_show_colorbar(self): + def test_McStasDataBinned_set_show_colorbar(self): """ Test that log setting has correct type regardless of how it is given """ - data = set_dummy_McStasData_2d() + data = set_dummy_McStasDataBinned_2d() data.set_plot_options(show_colorbar=True) self.assertIsInstance(data.plot_options.show_colorbar, bool) self.assertTrue(data.plot_options.show_colorbar) @@ -204,19 +206,19 @@ def test_McStasData_set_show_colorbar(self): self.assertIsInstance(data.plot_options.show_colorbar, bool) self.assertTrue(data.plot_options.show_colorbar) - def test_McStasData_set_orders_of_mag(self): + def test_McStasDataBinned_set_orders_of_mag(self): """ Test that orders_og_mag can be set correctly """ - data = set_dummy_McStasData_2d() + data = set_dummy_McStasDataBinned_2d() data.set_plot_options(orders_of_mag=5.2) self.assertEqual(data.plot_options.orders_of_mag, 5.2) - def test_McStasData_set_colormap(self): + def test_McStasDataBinned_set_colormap(self): """ Test that colormap can be set correctly """ - data = set_dummy_McStasData_2d() + data = set_dummy_McStasDataBinned_2d() data.set_plot_options(colormap="hot") self.assertIs(data.plot_options.colormap, "hot") diff --git a/mcstasscript/tests/test_Plotter.py b/mcstasscript/tests/test_Plotter.py index 47f84d1e..a0b4fd0d 100644 --- a/mcstasscript/tests/test_Plotter.py +++ b/mcstasscript/tests/test_Plotter.py @@ -3,14 +3,14 @@ import numpy as np import matplotlib.pyplot as plt -from mcstasscript.data.data import McStasData +from mcstasscript.data.data import McStasDataBinned from mcstasscript.data.data import McStasMetaData from mcstasscript.interface.plotter import _find_min_max_I from mcstasscript.interface.plotter import _handle_kwargs from mcstasscript.interface.plotter import _plot_fig_ax -def get_dummy_MetaData_1d(): +def get_dummy_MetaDataBinned_1d(): meta_data = McStasMetaData() meta_data.component_name = "component for 1d" meta_data.dimension = 50 @@ -22,18 +22,18 @@ def get_dummy_MetaData_1d(): return meta_data -def get_dummy_McStasData_1d(): - meta_data = get_dummy_MetaData_1d() +def get_dummy_McStasDataBinned_1d(): + meta_data = get_dummy_MetaDataBinned_1d() intensity = np.arange(20) + 5 error = 0.5 * np.arange(20) ncount = 2 * np.arange(20) axis = np.arange(20)*5.0 - return McStasData(meta_data, intensity, error, ncount, xaxis=axis) + return McStasDataBinned(meta_data, intensity, error, ncount, xaxis=axis) -def get_dummy_MetaData_2d(): +def get_dummy_MetaDataBinned_2d(): meta_data = McStasMetaData() meta_data.component_name = "test a component" meta_data.dimension = [5, 4] @@ -45,14 +45,14 @@ def get_dummy_MetaData_2d(): return meta_data -def get_dummy_McStasData_2d(): - meta_data = get_dummy_MetaData_2d() +def get_dummy_McStasDataBinned_2d(): + meta_data = get_dummy_MetaDataBinned_2d() intensity = np.arange(20).reshape(4, 5) + 5 error = 0.5 * np.arange(20).reshape(4, 5) ncount = 2 * np.arange(20).reshape(4, 5) - return McStasData(meta_data, intensity, error, ncount) + return McStasDataBinned(meta_data, intensity, error, ncount) class TestPlotterHelpers(unittest.TestCase): @@ -66,7 +66,7 @@ def test_find_min_max_I_simple_1D_case(self): and maximum value to plot for a given McStasData set """ - dummy_data = get_dummy_McStasData_1d() + dummy_data = get_dummy_McStasDataBinned_1d() found_min, found_max = _find_min_max_I(dummy_data) # np.arange(20) + 5: min = 5, max = 5+19 = 24 @@ -80,7 +80,7 @@ def test_find_min_max_I_cut_max_1D_case(self): Here cut_max is used to limit the maximum plotted. """ - dummy_data = get_dummy_McStasData_1d() + dummy_data = get_dummy_McStasDataBinned_1d() dummy_data.set_plot_options(cut_max=0.8) found_min, found_max = _find_min_max_I(dummy_data) @@ -95,7 +95,7 @@ def test_find_min_max_I_cut_min_1D_case(self): Here cut_min is used to limit the minimum plotted. """ - dummy_data = get_dummy_McStasData_1d() + dummy_data = get_dummy_McStasDataBinned_1d() dummy_data.set_plot_options(cut_min=0.2) found_min, found_max = _find_min_max_I(dummy_data) @@ -112,7 +112,7 @@ def test_find_min_max_I_log_with_zero_case(self): ignored. """ - dummy_data = get_dummy_McStasData_1d() + dummy_data = get_dummy_McStasDataBinned_1d() dummy_data.Intensity[5] = 0 dummy_data.set_plot_options(log=True) found_min, found_max = _find_min_max_I(dummy_data) @@ -129,7 +129,7 @@ def test_find_min_max_I_log_cut_max_1D_case(self): log mode is enabled. """ - dummy_data = get_dummy_McStasData_1d() + dummy_data = get_dummy_McStasDataBinned_1d() dummy_data.set_plot_options(cut_max=0.8, log=True) found_min, found_max = _find_min_max_I(dummy_data) @@ -145,7 +145,7 @@ def test_find_min_max_I_log_cut_min_1D_case(self): log mode is enabled. """ - dummy_data = get_dummy_McStasData_1d() + dummy_data = get_dummy_McStasDataBinned_1d() dummy_data.set_plot_options(cut_min=0.2, log=True) found_min, found_max = _find_min_max_I(dummy_data) @@ -161,7 +161,7 @@ def test_find_min_max_I_log_orders_of_mag_1D_case(self): while log mode is enabled. """ - dummy_data = get_dummy_McStasData_1d() + dummy_data = get_dummy_McStasDataBinned_1d() dummy_data.Intensity[5] = 10**6 dummy_data.set_plot_options(log=True, orders_of_mag=3) found_min, found_max = _find_min_max_I(dummy_data) @@ -178,7 +178,7 @@ def test_find_min_max_I_log_orders_of_mag_1D_with_zero_case(self): zero intensity, which should be ignored. """ - dummy_data = get_dummy_McStasData_1d() + dummy_data = get_dummy_McStasDataBinned_1d() dummy_data.Intensity[5] = 10**6 dummy_data.Intensity[6] = 0 dummy_data.set_plot_options(log=True, orders_of_mag=3) @@ -193,7 +193,7 @@ def test_find_min_max_I_simple_2D_case(self): and maximum value to plot for a given McStasData set """ - dummy_data = get_dummy_McStasData_2d() + dummy_data = get_dummy_McStasDataBinned_2d() found_min, found_max = _find_min_max_I(dummy_data) # np.arange(20) + 5: min = 5, max = 5+19 = 24 @@ -207,7 +207,7 @@ def test_find_min_max_I_cut_max_2D_case(self): Here cut_max is used to limit the maximum plotted. """ - dummy_data = get_dummy_McStasData_2d() + dummy_data = get_dummy_McStasDataBinned_2d() dummy_data.set_plot_options(cut_max=0.8) found_min, found_max = _find_min_max_I(dummy_data) @@ -222,7 +222,7 @@ def test_find_min_max_I_cut_min_2D_case(self): Here cut_min is used to limit the minimum plotted. """ - dummy_data = get_dummy_McStasData_2d() + dummy_data = get_dummy_McStasDataBinned_2d() dummy_data.set_plot_options(cut_min=0.2) found_min, found_max = _find_min_max_I(dummy_data) @@ -239,7 +239,7 @@ def test_find_min_max_I_log_with_zero_2D_case(self): ignored. """ - dummy_data = get_dummy_McStasData_2d() + dummy_data = get_dummy_McStasDataBinned_2d() dummy_data.Intensity[2, 2] = 0 dummy_data.set_plot_options(log=True) found_min, found_max = _find_min_max_I(dummy_data) @@ -256,7 +256,7 @@ def test_find_min_max_I_log_cut_max_2D_case(self): log mode is enabled. """ - dummy_data = get_dummy_McStasData_2d() + dummy_data = get_dummy_McStasDataBinned_2d() dummy_data.set_plot_options(cut_max=0.8, log=True) found_min, found_max = _find_min_max_I(dummy_data) @@ -272,7 +272,7 @@ def test_find_min_max_I_log_cut_min_2D_case(self): log mode is enabled. """ - dummy_data = get_dummy_McStasData_2d() + dummy_data = get_dummy_McStasDataBinned_2d() dummy_data.set_plot_options(cut_min=0.2, log=True) found_min, found_max = _find_min_max_I(dummy_data) @@ -288,7 +288,7 @@ def test_find_min_max_I_log_orders_of_mag_2D_case(self): while log mode is enabled. """ - dummy_data = get_dummy_McStasData_2d() + dummy_data = get_dummy_McStasDataBinned_2d() dummy_data.Intensity[2, 2] = 10**6 dummy_data.set_plot_options(log=True, orders_of_mag=3) found_min, found_max = _find_min_max_I(dummy_data) @@ -305,7 +305,7 @@ def test_find_min_max_I_log_orders_of_mag_2D_with_zero_case(self): zero intensity, which should be ignored. """ - dummy_data = get_dummy_McStasData_2d() + dummy_data = get_dummy_McStasDataBinned_2d() dummy_data.Intensity[2, 2] = 10**6 dummy_data.Intensity[2, 3] = 0 dummy_data.set_plot_options(log=True, orders_of_mag=3) @@ -323,7 +323,7 @@ def test_find_min_max_I_fail_case(self): zero intensity, which should be ignored. """ - dummy_data = get_dummy_McStasData_2d() + dummy_data = get_dummy_McStasDataBinned_2d() dummy_data.Intensity = np.zeros((5, 5)) dummy_data.set_plot_options(log=True, orders_of_mag=3) found_min, found_max = _find_min_max_I(dummy_data) @@ -338,8 +338,8 @@ def test_handle_kwargs_log(self): Keyword args can be set for all by normal use, or individual data sets by using a list. Both are checked here. """ - dummy_data1 = get_dummy_McStasData_2d() - dummy_data2 = get_dummy_McStasData_2d() + dummy_data1 = get_dummy_McStasDataBinned_2d() + dummy_data2 = get_dummy_McStasDataBinned_2d() self.assertEqual(dummy_data1.plot_options.log, False) self.assertEqual(dummy_data2.plot_options.log, False) @@ -359,8 +359,8 @@ def test_handle_kwargs_oders_of_mag(self): Keyword args can be set for all by normal use, or individual data sets by using a list. Both are checked here. """ - dummy_data1 = get_dummy_McStasData_2d() - dummy_data2 = get_dummy_McStasData_2d() + dummy_data1 = get_dummy_McStasDataBinned_2d() + dummy_data2 = get_dummy_McStasDataBinned_2d() self.assertEqual(dummy_data1.plot_options.orders_of_mag, 300) self.assertEqual(dummy_data2.plot_options.orders_of_mag, 300) @@ -409,11 +409,11 @@ def test_handle_kwargs_all_simple(self): default_value = defaults[kw_option] - dummy_data1 = get_dummy_McStasData_2d() + dummy_data1 = get_dummy_McStasDataBinned_2d() data1_value = dummy_data1.plot_options.__getattribute__(kw_option) self.assertEqual(data1_value, default_value) - dummy_data2 = get_dummy_McStasData_2d() + dummy_data2 = get_dummy_McStasDataBinned_2d() data2_value = dummy_data2.plot_options.__getattribute__(kw_option) self.assertEqual(data2_value, default_value) @@ -444,8 +444,8 @@ def test_handle_kwargs_left_lim(self): Keyword args can be set for all by normal use, or individual data sets by using a list. Both are checked here. """ - dummy_data1 = get_dummy_McStasData_2d() - dummy_data2 = get_dummy_McStasData_2d() + dummy_data1 = get_dummy_McStasDataBinned_2d() + dummy_data2 = get_dummy_McStasDataBinned_2d() self.assertEqual(dummy_data1.plot_options.custom_xlim_left, False) self.assertEqual(dummy_data2.plot_options.custom_xlim_left, False) @@ -469,8 +469,8 @@ def test_handle_kwargs_right_lim(self): Keyword args can be set for all by normal use, or individual data sets by using a list. Both are checked here. """ - dummy_data1 = get_dummy_McStasData_2d() - dummy_data2 = get_dummy_McStasData_2d() + dummy_data1 = get_dummy_McStasDataBinned_2d() + dummy_data2 = get_dummy_McStasDataBinned_2d() self.assertEqual(dummy_data1.plot_options.custom_xlim_right, False) self.assertEqual(dummy_data2.plot_options.custom_xlim_right, False) @@ -494,8 +494,8 @@ def test_handle_kwargs_top_lim(self): Keyword args can be set for all by normal use, or individual data sets by using a list. Both are checked here. """ - dummy_data1 = get_dummy_McStasData_2d() - dummy_data2 = get_dummy_McStasData_2d() + dummy_data1 = get_dummy_McStasDataBinned_2d() + dummy_data2 = get_dummy_McStasDataBinned_2d() self.assertEqual(dummy_data1.plot_options.custom_ylim_top, False) self.assertEqual(dummy_data2.plot_options.custom_ylim_top, False) @@ -519,8 +519,8 @@ def test_handle_kwargs_bottom_lim(self): Keyword args can be set for all by normal use, or individual data sets by using a list. Both are checked here. """ - dummy_data1 = get_dummy_McStasData_2d() - dummy_data2 = get_dummy_McStasData_2d() + dummy_data1 = get_dummy_McStasDataBinned_2d() + dummy_data2 = get_dummy_McStasDataBinned_2d() self.assertEqual(dummy_data1.plot_options.custom_ylim_bottom, False) self.assertEqual(dummy_data2.plot_options.custom_ylim_bottom, False) @@ -542,7 +542,7 @@ def test_handle_kwargs_figsize_default(self): Tests handle_kwargs delivers default figsize """ - dummy_data = get_dummy_McStasData_2d() + dummy_data = get_dummy_McStasDataBinned_2d() retrived_figsize, data_list = _handle_kwargs(dummy_data) self.assertEqual(retrived_figsize, (13, 7)) @@ -552,7 +552,7 @@ def test_handle_kwargs_figsize_tuple(self): using tuple as input """ - dummy_data = get_dummy_McStasData_2d() + dummy_data = get_dummy_McStasDataBinned_2d() found_figsize, data_list = _handle_kwargs(dummy_data, figsize=(5, 9)) self.assertEqual(found_figsize, (5, 9)) @@ -562,7 +562,7 @@ def test_handle_kwargs_figsize_list(self): using tuple as input """ - dummy_data = get_dummy_McStasData_2d() + dummy_data = get_dummy_McStasDataBinned_2d() found_figsize, data_list = _handle_kwargs(dummy_data, figsize=[5, 9]) self.assertEqual(found_figsize, (5, 9)) @@ -572,7 +572,7 @@ def test_handle_kwargs_single_element_to_list(self): and turn it into a list. """ - dummy_data = get_dummy_McStasData_2d() + dummy_data = get_dummy_McStasDataBinned_2d() self.assertFalse(isinstance(dummy_data, list)) figsize, data_list = _handle_kwargs(dummy_data) self.assertTrue(isinstance(data_list, list)) @@ -583,7 +583,7 @@ def test_plot_function_1D_normal(self): result. """ - dummy_data = get_dummy_McStasData_1d() + dummy_data = get_dummy_McStasDataBinned_1d() fig, ax0 = plt.subplots() _plot_fig_ax(dummy_data, fig, ax0) @@ -594,7 +594,7 @@ def test_plot_function_1D_log(self): result. Here with logarithmic y axis. """ - dummy_data = get_dummy_McStasData_1d() + dummy_data = get_dummy_McStasDataBinned_1d() fig, ax0 = plt.subplots() _plot_fig_ax(dummy_data, fig, ax0, log=True) @@ -605,7 +605,7 @@ def test_plot_function_2D_normal(self): result. """ - dummy_data = get_dummy_McStasData_2d() + dummy_data = get_dummy_McStasDataBinned_2d() fig, ax0 = plt.subplots() _plot_fig_ax(dummy_data, fig, ax0) @@ -616,7 +616,7 @@ def test_plot_function_2D_log(self): result. Here the intensity coloraxis is logarithmic. """ - dummy_data = get_dummy_McStasData_2d() + dummy_data = get_dummy_McStasDataBinned_2d() fig, ax0 = plt.subplots() _plot_fig_ax(dummy_data, fig, ax0, log=True) diff --git a/mcstasscript/tests/test_add_data.py b/mcstasscript/tests/test_add_data.py index b21c3ced..9208e29d 100644 --- a/mcstasscript/tests/test_add_data.py +++ b/mcstasscript/tests/test_add_data.py @@ -2,11 +2,11 @@ import numpy as np import copy -from mcstasscript.data.data import McStasData +from mcstasscript.data.data import McStasDataBinned from mcstasscript.data.data import McStasMetaData from mcstasscript.jb_interface.simulation_interface import add_data -def set_dummy_MetaData_1d(): +def set_dummy_MetaDataBinned_1d(): """ Sets up simple McStasMetaData object with dimension, 1d case """ @@ -20,21 +20,21 @@ def set_dummy_MetaData_1d(): return meta_data -def set_dummy_McStasData_1d(): +def set_dummy_McStasDataBinned_1d(): """ Sets up simple McStasData object, 1d case """ - meta_data = set_dummy_MetaData_1d() + meta_data = set_dummy_MetaDataBinned_1d() intensity = np.ones(20) error = np.ones(20) ncount = np.ones(20) axis = np.arange(20)*5.0 - return McStasData(meta_data, intensity, error, ncount, xaxis=axis) + return McStasDataBinned(meta_data, intensity, error, ncount, xaxis=axis) -def set_dummy_MetaData_2d(): +def set_dummy_MetaDataBinned_2d(): """ Sets up simple McStasMetaData object with dimensions, 2d case """ @@ -48,17 +48,17 @@ def set_dummy_MetaData_2d(): return meta_data -def set_dummy_McStasData_2d(): +def set_dummy_McStasDataBinned_2d(): """ Sets up simple McStasData object, 2d case """ - meta_data = set_dummy_MetaData_2d() + meta_data = set_dummy_MetaDataBinned_2d() intensity = np.ones(20).reshape(4, 5) error = np.ones(20).reshape(4, 5) ncount = np.ones(20).reshape(4, 5) - return McStasData(meta_data, intensity, error, ncount) + return McStasDataBinned(meta_data, intensity, error, ncount) class Test_add_data(unittest.TestCase): def test_1d_updates_correctly(self): @@ -66,10 +66,10 @@ def test_1d_updates_correctly(self): Test that adding 1d dataset modifies only the intended dataset """ - data1 = set_dummy_McStasData_1d() + data1 = set_dummy_McStasDataBinned_1d() data1_original = copy.deepcopy(data1) - data2 = set_dummy_McStasData_1d() + data2 = set_dummy_McStasDataBinned_1d() data2_original = copy.deepcopy(data2) add_data([data1], [data2]) @@ -89,7 +89,7 @@ def test_1d_updates_different(self): """ Test that adding 1d datasets work as expected when different """ - data1 = set_dummy_McStasData_1d() + data1 = set_dummy_McStasDataBinned_1d() data1.Intensity *= 2.0 data1.Intensity[10:] *= 2.0 data1.Error *= 1.5 @@ -97,7 +97,7 @@ def test_1d_updates_different(self): data1.metadata.info["Ncount"] *= 4.0 data1_original = copy.deepcopy(data1) - data2 = set_dummy_McStasData_1d() + data2 = set_dummy_McStasDataBinned_1d() data2.Intensity *= 3.0 data2.Error *= 1.5 data2_original = copy.deepcopy(data2) @@ -133,23 +133,23 @@ def test_fail(self): Both 1d and 2d cases included. """ - data11 = set_dummy_McStasData_1d() + data11 = set_dummy_McStasDataBinned_1d() data11.name = "first monitor" data11.filename = "first_monitor.dat" - data12 = set_dummy_McStasData_2d() + data12 = set_dummy_McStasDataBinned_2d() data12.name = "second monitor" data12.filename = "second_monitor.dat" - data13 = set_dummy_McStasData_1d() + data13 = set_dummy_McStasDataBinned_1d() data13.name = "third monitor" data13.filename = "third_monitor.dat" - data21 = set_dummy_McStasData_1d() + data21 = set_dummy_McStasDataBinned_1d() data21.name = "first monitor" data21.filename = "first_monitor.dat" - data22 = set_dummy_McStasData_2d() + data22 = set_dummy_McStasDataBinned_2d() data22.name = "second monitor" data22.filename = "second_monitor.dat" - data23 = set_dummy_McStasData_1d() + data23 = set_dummy_McStasDataBinned_1d() data23.name = "third monitor" data23.filename = "third_monitor.dat" @@ -172,10 +172,10 @@ def test_2d_updates_correctly(self): Test that adding 1d dataset modifies only the intended dataset """ - data1 = set_dummy_McStasData_2d() + data1 = set_dummy_McStasDataBinned_2d() data1_original = copy.deepcopy(data1) - data2 = set_dummy_McStasData_2d() + data2 = set_dummy_McStasDataBinned_2d() data2_original = copy.deepcopy(data2) add_data([data1], [data2]) @@ -195,7 +195,7 @@ def test_2d_updates_different(self): """ Test that adding 2d datasets work as expected when different """ - data1 = set_dummy_McStasData_2d() + data1 = set_dummy_McStasDataBinned_2d() data1.Intensity *= 2.0 data1.Intensity[1,:] *= 2.0 data1.Error *= 1.5 @@ -203,7 +203,7 @@ def test_2d_updates_different(self): data1.metadata.info["Ncount"] *= 4.0 data1_original = copy.deepcopy(data1) - data2 = set_dummy_McStasData_2d() + data2 = set_dummy_McStasDataBinned_2d() data2.Intensity *= 3.0 data2.Error *= 1.5 data2_original = copy.deepcopy(data2) diff --git a/mcstasscript/tests/test_data_set/event_dat_list.p.x.y.z.vx.vy.vz.t b/mcstasscript/tests/test_data_set/event_dat_list.p.x.y.z.vx.vy.vz.t new file mode 100644 index 00000000..989f9608 --- /dev/null +++ b/mcstasscript/tests/test_data_set/event_dat_list.p.x.y.z.vx.vy.vz.t @@ -0,0 +1,12029 @@ +# Format: McCode list with text headers +# URL: http://www.mccode.org +# Creator: McStas 2.7 - Nov. 27, 2020 +# Instrument: event_test.instr +# Ncount: 12000 +# Trace: no +# Gravitation: no +# Seed: 1630142078 +# Directory: event_data +# Date: Fri Aug 27 12:51:34 2021 (1630061494) +# type: array_2d(8, 12000) +# Source: event_test (event_test.instr) +# component: monitor +# position: 0 0 2 +# title: Intensity Position Position Position Velocity Velocity Velocity Time_Of_Flight Monitor (Square) +# Ncount: 12000 +# filename: event_dat_list.p.x.y.z.vx.vy.vz.t +# statistics: X0=0; dX=0; Y0=0; dY=0; +# signal: Min=2.49999e-06; Max=2.49999e-06; Mean=0; +# values: 0 0 0 +# xvar: List +# yvar: p +# xlabel: List of neutron events +# ylabel: p x y z vx vy vz t +# zvar: I +# zlabel: Signal per bin +# xylimits: 1 12000 1 8 +# variables: p x y z vx vy vz t +# Data [monitor/event_dat_list.p.x.y.z.vx.vy.vz.t] I: +2.499985086e-06 0.005476124948 -0.00688575492 0 1.632069004 -0.5240574608 992.5004585 0.002015112419 +2.499984569e-06 -0.001733593824 0.004791744661 0 1.381763976 -0.8502880853 923.5218743 0.00216562277 +2.496856437e-06 0.0008841058053 -0.004494516801 0 18.94603399 -17.15675038 1018.890295 0.001962919864 +2.497044251e-06 0.007899970417 -0.009599994554 0 21.68522323 1.791436417 894.5392473 0.002235787872 +2.497127939e-06 0.002746270066 0.004339154698 0 8.944170969 23.42568419 1045.788193 0.001912433142 +2.498591539e-06 0.005766389919 -0.003936564261 0 15.10675725 2.503815482 912.1717984 0.00219256943 +2.494442331e-06 0.008963741655 -0.01207258223 0 13.64230533 -30.81198184 1009.875948 0.001980441264 +2.496267853e-06 -0.006437451518 -0.003652858904 0 -28.78474349 -4.489612533 1065.722258 0.001876661564 +2.496786367e-06 -0.003534191852 0.01211220376 0 -24.34546891 6.840194821 996.9980213 0.002006022035 +2.499201739e-06 -0.007529071802 -0.004231258454 0 4.483371261 -12.06810202 1018.764369 0.001963162494 +2.497732451e-06 -0.00276489717 -0.006969841509 0 19.23156592 12.21812856 1069.545763 0.001869952712 +2.499762516e-06 0.003068927624 0.004148559293 0 -5.751541185 -3.682916722 990.9476005 0.002018270188 +2.498647519e-06 -0.006163896406 -0.008998548598 0 -13.6361434 7.233695076 938.353772 0.002131392295 +2.499539447e-06 0.002081135092 -0.006960694841 0 4.877260296 -7.022674698 890.8215809 0.002245118487 +2.499344236e-06 0.006125937179 0.005604947666 0 -10.32117247 1.050186456 905.8037115 0.002207983887 +2.497401839e-06 0.001464129761 0.005609475807 0 -22.72506149 8.188914395 1059.249233 0.00188812976 +2.498954247e-06 -0.002471557772 0.01121518917 0 13.37871014 -2.522750707 941.2468763 0.002124841049 +2.498251507e-06 -0.002076305286 -0.01083195396 0 15.22874075 7.426736265 905.8028408 0.00220798601 +2.497462064e-06 -0.004008813258 0.007711837082 0 -13.57043188 -16.31655956 941.6120828 0.002124016924 +2.49855457e-06 0.009577006693 -0.003736359207 0 5.457628832 15.72199525 978.6022319 0.002043731288 +2.495577247e-06 -0.008312994759 -0.004820886652 0 -23.95883662 12.16736438 902.9010648 0.002215082115 +2.498508805e-06 -0.0009346664883 0.0007737028738 0 -2.965880758 17.64802359 1036.011633 0.001930480253 +2.499507127e-06 -0.0004463621275 0.01030021374 0 6.77265304 -7.244417172 998.7883536 0.002002426232 +2.496769489e-06 -0.002883989005 0.004426012484 0 -13.55568086 21.6026086 1002.856632 0.00199430301 +2.497832947e-06 0.008956127753 -0.002919677873 0 16.62296075 11.36358022 966.895888 0.002068475029 +2.499832753e-06 0.009805621132 -0.0118382482 0 1.016629505 -5.990096529 1050.498155 0.00190385865 +2.499421524e-06 0.005425303122 0.01383663482 0 -0.1002391701 9.921016287 922.322878 0.002168438025 +2.49597915e-06 -0.004843568378 0.01210303007 0 -25.94601211 13.47242352 1030.317812 0.001941148621 +2.496672613e-06 0.00350157111 0.01015715958 0 6.384707054 22.69779569 913.5578061 0.002189242965 +2.496339288e-06 0.006132966266 0.006061192118 0 22.82102272 -8.812951443 903.6156921 0.00221333031 +2.496298119e-06 0.001811339199 -0.008283818769 0 -18.79057757 -16.80730719 926.0077667 0.002159809099 +2.499504736e-06 0.008547971067 0.00955616818 0 8.178637635 -5.624740581 997.2724265 0.002005470067 +2.498886849e-06 0.008396180794 0.01303440363 0 -0.1915252308 15.61098647 1046.160731 0.001911752125 +2.498392909e-06 0.007747798916 -0.01494681782 0 17.56093623 3.375400529 997.2074995 0.002005600641 +2.49761974e-06 0.005943170544 0.006921155993 0 -9.651764612 20.24963838 1027.755808 0.001945987542 +2.499253366e-06 0.00191303188 -0.008436810435 0 7.370996926 -9.555571458 987.4691181 0.002025379795 +2.499019135e-06 -0.006660835962 0.006861666902 0 11.97389261 -7.810330539 1020.541752 0.001959743437 +2.498941874e-06 -0.005207632971 0.006969249048 0 -12.19015985 -4.28921283 888.1822892 0.002251790003 +2.499461983e-06 0.001431799126 0.01097990871 0 -6.247809433 -7.060404686 908.7928396 0.002200721565 +2.497847559e-06 -0.003554674331 -0.002008224113 0 -21.02045081 -6.611705063 1061.712117 0.001883749811 +2.496544823e-06 -0.009572534971 -0.0009221146535 0 -21.38223389 -9.075644263 883.1763552 0.00226455338 +2.496860813e-06 0.006194520216 0.008029699393 0 22.6281878 -11.62785713 1014.857698 0.001970719643 +2.497420598e-06 -0.005611266033 -0.01271674367 0 -2.240602106 -22.55013046 997.332026 0.002005350222 +2.49567472e-06 -2.108644694e-05 0.01024982001 0 22.06193582 -14.38007012 894.7958402 0.002235146734 +2.499091147e-06 -0.009229327347 0.003147861427 0 -6.406420209 12.65698128 1052.052859 0.001901045165 +2.49976738e-06 -0.005022102511 0.006077045908 0 -6.712946738 -2.081915692 1030.388737 0.001941015006 +2.499740463e-06 0.005723873638 -0.001024968862 0 2.938691172 6.610733083 1004.09756 0.001991838323 +2.494619989e-06 -0.007458014041 -0.01336348435 0 -14.54208897 -31.91348862 1068.280005 0.001872168337 +2.498280101e-06 0.001136284457 0.01219576627 0 16.98246202 8.398753801 1021.255127 0.001958374501 +2.498546229e-06 0.001667280551 -0.01384938365 0 -7.870602506 15.95446474 1043.093467 0.001917373719 +2.495790305e-06 0.008281009193 -0.004077090137 0 21.32604926 20.51073674 1019.086426 0.001962542085 +2.499088507e-06 0.009021220277 0.001662426239 0 -4.321941232 -12.42512635 974.2062859 0.00205295329 +2.497895425e-06 0.004063977916 0.009549332801 0 16.52087485 -12.88157093 1020.788309 0.001959270087 +2.498991222e-06 0.00963586329 0.00889300162 0 5.238543062 11.56203225 893.5114284 0.00223835973 +2.497675375e-06 -0.009633268388 0.005981239623 0 13.00472979 18.78190041 1059.116104 0.001888367094 +2.497526073e-06 0.003640855965 0.01449298027 0 17.31238786 10.67592689 914.0502459 0.002188063522 +2.499828213e-06 -0.0008232565597 0.00811874195 0 3.371877096 -4.337754906 937.2999027 0.002133788763 +2.496696897e-06 -0.007990758852 -0.01487318958 0 -20.74345096 16.12157416 1021.632868 0.001957650407 +2.498532325e-06 0.003729637708 -0.01224121948 0 13.43384757 8.061045569 914.2287005 0.002187636419 +2.497463714e-06 0.0004384329217 -0.01393433142 0 -22.99122994 -6.041223246 1055.068314 0.001895611851 +2.498381581e-06 -0.006202636538 0.0127914979 0 -14.49895639 8.14267793 924.0587611 0.002164364523 +2.497481613e-06 0.003914215062 0.001321119452 0 14.22439654 -17.43501215 1002.234228 0.001995541505 +2.496125793e-06 0.003159697014 -0.009964204801 0 -21.58770561 19.59914493 1046.863938 0.001910467949 +2.497671815e-06 -0.003031294397 -0.01157089066 0 -13.35972447 16.89151494 997.6827496 0.002004645265 +2.499656299e-06 -0.006821462568 -0.01022427376 0 7.623773699 -1.735191648 942.9949742 0.002120902078 +2.498721063e-06 0.007552930866 0.00622933913 0 14.29967529 3.547226309 921.0230958 0.002171498206 +2.496930876e-06 -0.001291483901 -0.01290409576 0 -22.65853619 -12.75628014 1049.043419 0.001906498782 +2.499037441e-06 -0.008108729641 -0.007049219802 0 13.34408459 6.446469464 1067.938274 0.001872767415 +2.498144436e-06 -0.001545119127 -0.01319298465 0 9.711852391 14.87157439 921.7531853 0.002169778236 +2.493905945e-06 -0.007436115337 0.008386091776 0 -17.84398724 25.49079238 890.459759 0.00224603075 +2.498170989e-06 0.004935684036 -0.007924232797 0 -13.81549513 -10.69647947 913.2899888 0.002189884948 +2.498195447e-06 -9.123015217e-05 0.01290616409 0 -4.293923446 -16.62806384 903.7374352 0.002213032151 +2.497664134e-06 0.003657920235 0.003992500326 0 -13.52091945 14.32439635 911.017361 0.002195347845 +2.495282948e-06 0.008910747725 -0.006951337389 0 22.79566943 21.28457847 1014.673209 0.001971077962 +2.495859423e-06 0.004931798694 -0.006546945486 0 27.03641983 13.93816135 1056.359862 0.001893294201 +2.497232364e-06 -0.003352350551 0.01437498282 0 -23.49826201 2.344661395 1003.314581 0.001993392738 +2.497921549e-06 -0.002921178034 -0.01313531215 0 9.329337513 16.52988516 930.670422 0.002148988463 +2.498799429e-06 0.006236083633 -0.00642187943 0 -5.821489163 14.34259176 998.7479054 0.002002507329 +2.497863253e-06 0.006559577216 0.007938934523 0 -8.916927538 -19.52148102 1037.841541 0.001927076457 +2.499718907e-06 0.004903384936 0.005604270946 0 6.982695172 -1.724825613 959.2372374 0.00208498995 +2.496561144e-06 -0.0063561831 0.0005599850183 0 -18.6258111 -19.36161117 1023.906046 0.00195330422 +2.497456814e-06 -0.006569413594 -0.01207498603 0 -20.33503068 -1.873664437 905.1295461 0.002209628455 +2.497047378e-06 0.008651970145 -0.002607780509 0 -13.30343052 19.8094359 981.5116458 0.002037673224 +2.495399141e-06 0.007671323181 -0.007110733883 0 28.70033166 -11.55284359 1019.205498 0.001962312806 +2.495076465e-06 0.007836574707 -0.003214955432 0 19.91853229 19.45124743 886.5515941 0.002255931875 +2.496250748e-06 -0.004252728308 0.004240146051 0 -18.91617511 15.87626614 901.3419022 0.002218913816 +2.49945307e-06 0.008700432526 0.01058993194 0 8.423740484 6.171203408 998.3497564 0.002003305943 +2.498538779e-06 -0.007014143239 -0.007393461044 0 17.70447906 2.277606387 1043.949214 0.001915802008 +2.498721999e-06 0.001527540232 -0.007482607279 0 -1.429551454 -14.62201364 918.7745969 0.00217681247 +2.499084735e-06 -0.003529742677 -0.00578131194 0 -10.56919782 -6.316481631 909.9341484 0.002197961252 +2.498525808e-06 0.004564218218 -0.003249399983 0 -13.32582746 8.423669492 917.9234711 0.002178830875 +2.498932772e-06 -0.00340594749 0.00934852038 0 5.649885607 -14.27174417 1050.456298 0.001903934513 +2.495502305e-06 -0.002637258936 -0.01149122981 0 -1.540318591 -27.49632673 917.5966296 0.00217960696 +2.498433868e-06 -0.002974388427 -0.002943998454 0 13.48199992 -12.48243766 1037.896946 0.001926973586 +2.496763929e-06 0.004298099861 -0.004687186468 0 21.19732569 -12.30576198 962.9749637 0.002076897194 +2.497823027e-06 0.005960387336 -0.007732736534 0 6.279110644 21.16496355 1057.673807 0.001890942166 +2.498539658e-06 0.005177797512 -0.008651454707 0 -15.21706588 2.242325286 899.8250763 0.002222654217 +2.493752989e-06 -0.0005317598302 -0.01164131233 0 19.08523907 -30.6960297 1021.63303 0.001957650097 +2.496366892e-06 0.007706710361 -0.001925554792 0 25.53299316 13.4378959 1069.803313 0.00186950253 +2.495804708e-06 -0.005549750235 0.001531030631 0 -25.05920896 17.42894868 1053.115342 0.001899127209 +2.49804171e-06 -0.005576659278 -0.01231783464 0 7.896327992 16.68699616 932.5532132 0.002144649733 +2.497972801e-06 0.004982564724 0.01270191244 0 15.08845114 -15.27776245 1066.077631 0.001876035986 +2.496314989e-06 0.001390462006 -0.01379625754 0 -0.2179167545 -27.42893248 1009.829423 0.001980532508 +2.495568876e-06 -0.004281493751 0.01368263257 0 -2.553357751 26.1455045 881.8553972 0.002267945523 +2.498748816e-06 0.005784426853 0.003022081561 0 -15.74860183 3.420985872 1018.584212 0.001963509719 +2.4976693e-06 -0.002373360475 0.002229967879 0 22.20328402 -0.05705883536 1028.036621 0.001945455988 +2.499424183e-06 0.003171622907 0.0119262697 0 -10.16162796 -4.716204826 1043.828904 0.00191602282 +2.498129193e-06 -0.00127328604 -7.165367715e-06 0 -0.04021170124 18.51113753 956.7154194 0.002090485801 +2.499121948e-06 0.004350648928 -0.006638495622 0 13.09965424 -1.128888882 992.0513054 0.002016024765 +2.498357935e-06 0.00498256397 -0.01120421486 0 0.9116112264 -18.5016489 1021.92667 0.001957087586 +2.496072892e-06 -0.005251844148 0.01078345716 0 9.553173518 24.83964899 949.0572515 0.002107354426 +2.498142304e-06 -0.009936385406 -0.008016889959 0 -19.89203446 5.493970308 1070.332047 0.001868579013 +2.494429782e-06 0.008580571497 5.391358864e-05 0 30.9686323 17.1675838 1059.977606 0.001886832315 +2.495029276e-06 0.00330721762 0.001219662961 0 19.17910167 23.75797732 967.6629893 0.002066835274 +2.496717724e-06 0.009236318306 -0.00419070761 0 23.70832444 -8.681324451 984.9327937 0.0020305954 +2.497373417e-06 -0.002597582885 -0.005288157854 0 18.65432393 11.95170852 966.2343966 0.002069891123 +2.499304253e-06 -0.0001970499987 -0.00755427443 0 2.536771038 -10.48953983 914.7723847 0.002186336222 +2.495857144e-06 -0.002031487599 0.001472656962 0 11.66183523 22.5365195 880.9918887 0.002270168461 +2.498212894e-06 -0.006941088415 0.01331174175 0 8.068061714 -14.88573026 895.3462356 0.002233772724 +2.497161578e-06 0.001591813923 0.00487746109 0 -9.038930511 21.10226353 963.0970444 0.00207663393 +2.498368214e-06 -0.00812166451 0.01423793709 0 14.3483611 -7.284065517 890.5142951 0.0022458932 +2.497747805e-06 -0.002051346721 0.0138091629 0 -16.8163409 -15.14128074 1065.836166 0.001876461002 +2.498487571e-06 0.006761496314 0.001805053549 0 -9.74370037 13.1934446 942.823562 0.002121287673 +2.498022026e-06 -0.002170714354 0.01298085156 0 8.67633897 16.38352206 931.8257715 0.002146323981 +2.497214312e-06 0.001846454027 0.002586862729 0 -11.99085576 -19.41018229 966.189879 0.002069986494 +2.497043729e-06 0.002066632574 0.0118368806 0 10.71993019 23.53837468 1063.222419 0.001881073954 +2.498507922e-06 0.009679576238 0.005763285414 0 -9.411005733 15.91476051 1070.058948 0.001869055909 +2.493637518e-06 0.006053738333 -0.0117561285 0 -17.11272847 -28.44393966 929.669283 0.002151302659 +2.497033681e-06 -0.00125230134 0.01153498209 0 -23.95732177 -5.957841987 1013.098019 0.001974142642 +2.498267491e-06 -0.008796966197 0.001035112243 0 16.99293873 7.850737049 1005.339476 0.001989377765 +2.494713364e-06 -0.002741631707 -0.001762343205 0 -24.33132139 -23.22138058 1033.544161 0.001935089061 +2.497094903e-06 0.004666323052 0.002275374611 0 17.09351296 17.22031337 1006.172531 0.001987730671 +2.499980229e-06 0.00279015569 -0.004316535322 0 1.799826066 1.048861458 1047.594034 0.001909136493 +2.493631853e-06 0.007912202445 0.004503233526 0 27.13757769 22.08506461 979.4651666 0.002041930707 +2.49817289e-06 0.001678877375 0.01075087255 0 6.314535246 15.77252302 888.5180817 0.002250938997 +2.498311722e-06 0.003344848864 0.000340794269 0 -16.86856822 5.43402265 964.2089801 0.002074239134 +2.497705475e-06 -0.0005904727895 0.01007661731 0 -20.523079 -6.402346821 1003.223906 0.001993572909 +2.498326728e-06 -0.0008538721316 0.006657124003 0 -2.879503863 -18.66575481 1032.156068 0.001937691461 +2.495729121e-06 0.001236105906 -0.009401897262 0 13.02875642 -26.23743852 1001.682177 0.001996641296 +2.497745944e-06 -0.001430533859 -0.009588559626 0 -20.91730714 3.702073212 1000.136194 0.001999727649 +2.499480086e-06 0.004901887141 0.01231361959 0 9.616969019 -0.5544801402 944.5922822 0.002117315627 +2.499743203e-06 0.007455043131 0.003650684094 0 1.112564437 6.953426581 982.5651229 0.002035488492 +2.499000228e-06 -0.003746386101 -0.01403473007 0 1.060335484 14.47782195 1026.441826 0.001948478665 +2.498054749e-06 -0.007005714835 -0.004107665545 0 -18.39385753 -9.220796804 1042.854684 0.00191781274 +2.496374359e-06 -0.004303379036 0.01009288186 0 -2.951042 27.63902575 1031.669134 0.001938606026 +2.499463361e-06 0.005697810836 -0.001285331275 0 -3.621644018 8.709721223 910.4252673 0.002196775586 +2.496128175e-06 0.006435930855 0.0137130988 0 -19.48442247 15.89545385 903.1068804 0.002214577304 +2.496930387e-06 0.002418612582 -0.009256834353 0 -19.47735289 12.38064522 931.0287902 0.002148161282 +2.496912792e-06 -0.006070701131 -0.006154891925 0 -20.20330641 13.6796764 981.4572432 0.002037786173 +2.497388386e-06 -0.002760042869 -0.01493318846 0 19.95880655 -3.445440722 885.8728741 0.002257660279 +2.497610754e-06 0.003170755706 0.006524824218 0 19.26967422 11.22874421 1019.891403 0.001960993096 +2.497157396e-06 0.00894797971 0.006834651406 0 -16.67022431 -14.65777104 930.579251 0.002149199005 +2.499386459e-06 0.008199877422 0.008818948525 0 8.386416098 6.337365939 948.8396218 0.002107837778 +2.496087722e-06 0.008863959336 0.0004047785047 0 22.07767012 -15.9953472 974.0691541 0.00205324231 +2.499107948e-06 -0.006386050349 0.00554736698 0 9.797156932 -7.039367519 903.0638473 0.002214682833 +2.49679291e-06 -0.00812693926 0.005744442127 0 18.43308846 -18.80312737 1039.183787 0.001924587379 +2.498897616e-06 -0.001034744466 0.001190952798 0 10.83660117 10.14496682 999.5524605 0.00200089548 +2.496574013e-06 0.008701735879 0.00048258072 0 -15.61260126 -18.34137982 919.6923114 0.002174640339 +2.498127051e-06 -0.0007605162123 -0.01164936161 0 -20.56801539 1.423801646 1064.952897 0.001878017334 +2.498238119e-06 -0.008224672866 -0.0002635569661 0 13.91049746 12.93015311 1011.461572 0.001977336614 +2.497333506e-06 -0.004790840503 0.005515882722 0 -7.177830724 20.95823321 958.9133653 0.002085694154 +2.497153328e-06 -0.0005379098142 -0.002093633458 0 -1.297966291 22.20152317 931.6535611 0.002146720716 +2.496105165e-06 -0.005297851255 0.01325890532 0 11.5216559 24.12050241 957.1985132 0.002089430742 +2.4972254e-06 -0.008223910895 -0.008200568659 0 20.24741201 12.64002737 1012.832707 0.001974659769 +2.497085498e-06 0.006926925126 0.007916903473 0 7.002522714 21.26556186 926.9239604 0.002157674292 +2.498154484e-06 0.002833655039 -0.00536661925 0 -19.78888866 0.6857058274 1030.357268 0.001941074288 +2.499625741e-06 -0.00877838233 -0.01139917118 0 -6.170069753 6.408384654 1028.169922 0.001945203762 +2.499019296e-06 -0.003313527154 0.01215380503 0 -11.92155852 6.118476746 956.6565629 0.002090614414 +2.495319431e-06 0.007665669383 0.01243686543 0 3.540135934 27.48045759 904.9583006 0.002210046583 +2.495171099e-06 0.003754941844 0.004296296728 0 27.05102359 16.87360773 1025.167145 0.001950901382 +2.496330739e-06 0.009003144712 -0.007180282299 0 -18.08620561 -21.89133191 1047.649332 0.001909035723 +2.496525536e-06 -0.0006100597931 -0.005903768744 0 -18.45613629 -14.01909853 878.7555744 0.002275945733 +2.49686449e-06 -0.005593831856 -0.008224140569 0 -19.24377988 -15.94848115 997.5951483 0.002004821298 +2.499153405e-06 -0.0009726527613 -0.01297317727 0 2.143347249 -13.05325163 1016.454507 0.001967623721 +2.499133335e-06 -0.001510343705 0.001366606071 0 11.45224327 -3.855812186 917.7211342 0.002179311259 +2.494886623e-06 0.008359733322 -0.008658560019 0 -15.05277792 -27.67979413 984.5078853 0.002031471794 +2.496584323e-06 0.004725821647 0.003473635395 0 -21.99134811 15.96595842 1039.222194 0.00192451625 +2.497322694e-06 -0.003008537129 0.01067495711 0 -10.79544183 19.34709255 957.0543194 0.002089745545 +2.497586768e-06 0.00290323664 0.005836732218 0 -19.63240759 -2.495337685 900.4959726 0.002220998273 +2.499588354e-06 0.001214904008 -0.01071334998 0 4.255170326 -7.464796245 946.9167569 0.002112118077 +2.499963443e-06 0.00252900403 -0.005686186545 0 -0.7755058842 2.433403519 944.5331876 0.002117448096 +2.498866844e-06 0.007722974368 0.003776776374 0 11.20551767 -10.37346683 1014.156371 0.001972082469 +2.496318251e-06 0.002056277785 -0.008867090517 0 23.73494174 -9.840296607 946.3433479 0.002113397853 +2.496387205e-06 0.0006858632294 0.009734031733 0 -20.8686872 -17.11709807 1003.556399 0.001992912409 +2.496660932e-06 0.003825483629 -0.009863875858 0 -22.2929614 -12.91952387 996.5586732 0.002006906421 +2.499412797e-06 -0.001633276874 -0.008196823045 0 -10.61296561 4.091391721 1049.486695 0.001905693526 +2.497023666e-06 0.004503267449 -0.008564764042 0 9.144056347 -22.92885495 1011.305177 0.001977642402 +2.498303098e-06 -0.003371612281 0.0002418822376 0 4.585900955 18.75479856 1047.775615 0.001908805638 +2.49697643e-06 -0.006412535808 0.008016962735 0 -21.26901745 -4.130534038 880.672496 0.002270991781 +2.49692146e-06 0.007574997339 0.003469865215 0 8.611112229 22.03110575 952.8402969 0.002098987634 +2.495496656e-06 0.009699703152 -0.008791909728 0 25.66725807 -8.40554117 899.3421125 0.002223847824 +2.499660861e-06 -0.002865100941 -0.0004543827055 0 1.458739788 -7.968492773 983.575545 0.002033397445 +2.4994377e-06 0.0007951061754 0.01124664306 0 -0.373378299 -10.05344531 948.5896878 0.00210839315 +2.49786235e-06 -0.004359523649 -0.008990472013 0 8.013147111 -16.38876027 882.0034807 0.002267564747 +2.495670508e-06 0.001196842687 0.008903780677 0 -20.73899099 21.62996695 1017.684229 0.001965246137 +2.499167047e-06 -0.009949182156 -0.0008966233861 0 -12.76296814 -4.292324373 1043.134335 0.0019172986 +2.499930502e-06 -0.007544835364 -0.009250133329 0 -3.749378102 -0.6857417219 1022.346852 0.001956283229 +2.498571429e-06 -0.00424706134 0.003042704905 0 5.334934005 -14.6684024 923.2102589 0.002166353743 +2.497885647e-06 0.007864113552 0.002091119564 0 -20.17091772 5.054758841 1010.903264 0.00197842867 +2.496994902e-06 0.007750448342 0.01061863234 0 -20.24896208 13.43591331 990.7999884 0.002018570876 +2.498515768e-06 -0.006566441166 0.01084893646 0 -17.72476326 -2.822126103 1041.487361 0.001920330554 +2.498608295e-06 -0.003963117758 -0.005737087762 0 -7.885107342 -12.38094828 879.6438723 0.002273647396 +2.497931248e-06 0.001999313496 0.01114093397 0 -19.85062695 1.437344795 978.1505916 0.002044674938 +2.49793587e-06 -0.004200016335 -0.009046265578 0 17.62015387 3.75808101 886.44457 0.002256204243 +2.49698032e-06 -0.009466090701 -0.000763708062 0 -20.85997011 -5.498056107 877.4158347 0.00227942091 +2.499230031e-06 -0.002059196625 -0.00920758507 0 10.37609632 5.514079969 946.7721229 0.002112440736 +2.497034365e-06 -0.003098801016 -0.002704965973 0 -17.538964 16.59956883 991.1218867 0.00201791528 +2.497055885e-06 -0.006678916248 0.001699787057 0 16.1873788 18.37547908 1008.739339 0.00198267275 +2.494990965e-06 -0.006296567274 -0.01095565765 0 -13.0459585 -29.11562168 1007.250346 0.001985603686 +2.493407196e-06 -0.002503195936 0.00305717061 0 -22.46802254 23.65841075 897.6341776 0.002228079155 +2.499792244e-06 -0.001510037757 -0.0119000176 0 -0.5926691822 6.828843664 1063.337409 0.001880870534 +2.49668753e-06 -0.005796857593 0.006816713316 0 18.79096625 13.41562672 896.5800737 0.002230698695 +2.498781577e-06 -0.001907835477 -0.007039763869 0 12.80611505 -8.86505548 997.5604589 0.002004891014 +2.498700707e-06 0.002667080294 0.003715235274 0 -13.80029964 4.199489696 894.6768306 0.002235444053 +2.496537041e-06 -0.006045790538 0.004683715075 0 -19.56772327 17.05824436 985.8859885 0.002028632137 +2.499494707e-06 -0.008436082704 0.009949456688 0 8.274670907 -6.630458226 1054.696391 0.00189628031 +2.499173455e-06 -0.008561361297 -0.009532993175 0 7.210690698 -8.91459784 891.6647325 0.00224299552 +2.499806729e-06 -0.006649383409 -0.003660517582 0 -4.046763108 3.964821882 911.202413 0.002194902001 +2.499296324e-06 -0.0007590152463 -0.006999881614 0 -10.80911183 4.3041612 980.6234942 0.002039518747 +2.495643184e-06 0.009023911674 0.007134447237 0 26.8779154 15.61774668 1052.399217 0.001900419506 +2.497815902e-06 -0.004332052167 -0.003389496384 0 15.40522957 14.45636253 1010.470617 0.001979275761 +2.498247015e-06 -0.008997264989 0.003708543526 0 -8.079102507 -18.3515567 1070.588293 0.001868131768 +2.498538811e-06 0.006872830819 -0.0008042218303 0 10.90147161 12.69403769 978.5897934 0.002043757265 +2.495932097e-06 0.0006238460634 -0.005095200296 0 22.9636687 15.12573261 963.450154 0.002075872832 +2.495104679e-06 0.002080229092 -0.01158342544 0 -10.96198318 -27.08466528 933.1234814 0.002143339054 +2.496910415e-06 0.009254534999 0.008935145647 0 4.767716851 24.60417589 1007.736063 0.001984646649 +2.497791815e-06 -0.0009742745943 -0.01264349107 0 -18.43302379 4.571410566 903.4016196 0.002213854787 +2.498363986e-06 -0.008288903651 -0.004201960105 0 11.3726416 -13.15826121 961.2378663 0.002080650451 +2.494194925e-06 0.002099042032 0.007573082938 0 -20.85491998 27.30081049 1007.376313 0.001985355398 +2.499905761e-06 -0.009692228474 0.0007573509193 0 3.836744418 1.033693674 915.254207 0.002185185258 +2.497283972e-06 -0.003525658101 -0.00969670431 0 -23.71696992 4.05816133 1031.968456 0.001938043734 +2.49506012e-06 -0.008403863092 0.00562920738 0 -25.28744061 -16.02991802 951.8285845 0.002101218678 +2.497908974e-06 -0.001493943878 0.01214886538 0 -1.176412494 19.29579139 945.0118336 0.002116375614 +2.497568708e-06 0.003037581681 -0.0008470816514 0 -21.23775555 2.022281382 967.11171 0.002068013425 +2.497649837e-06 -0.003380640307 -0.008274790174 0 -22.27891701 1.729536448 1030.342657 0.001941101814 +2.497614251e-06 -0.005636656545 -0.01387722694 0 -9.371118763 -18.43877697 946.5438676 0.002112950142 +2.499299844e-06 0.0001481965231 -0.0008105415897 0 11.1691741 1.106066167 948.3794698 0.002108860497 +2.496198409e-06 -0.009104416328 -0.01365098235 0 -26.05508366 0.8161631321 944.8436006 0.002116752443 +2.49824504e-06 0.0004081860976 0.005884709288 0 16.93274121 -5.04673615 942.8542759 0.002121218571 +2.496748632e-06 0.002389194993 -0.001147649449 0 19.09582359 16.85244547 998.2676312 0.00200347075 +2.494875767e-06 0.005793312103 -0.00193873771 0 29.03136426 -17.32919144 1055.316072 0.001895166815 +2.497222819e-06 -0.009730917597 0.007533814071 0 -10.88979689 18.72763384 918.8247238 0.002176693713 +2.496468e-06 -0.008797190436 0.001379954894 0 -22.94177368 13.21575302 995.6291403 0.002008780096 +2.496209173e-06 0.004804242193 0.01182763845 0 -0.4382095825 29.41458474 1067.780059 0.001873044906 +2.497313436e-06 -0.00533223798 0.01409757085 0 16.60835115 13.32885199 918.3280828 0.002177870891 +2.499708025e-06 -0.009491376588 -0.0002084994782 0 -7.03823875 -0.8041449204 926.9867953 0.002157528036 +2.499262566e-06 -0.009134252933 -0.01404320464 0 -5.036311629 -10.96774465 993.6632715 0.002012754277 +2.498412495e-06 0.002239572867 0.0008286601212 0 -18.22711418 -2.6594674 1033.513654 0.00193514618 +2.49921097e-06 -0.008361206553 -0.003771889075 0 -11.58601305 2.380842865 941.4606044 0.002124358673 +2.496733687e-06 0.003470583716 0.004356540414 0 -14.49817558 -19.14992852 939.2902802 0.002129267216 +2.498120304e-06 -0.009672157485 0.01444284596 0 18.95440399 -5.13930647 1012.589265 0.001975134509 +2.497532421e-06 -0.00370695631 0.002047978209 0 14.7480897 16.83269123 1007.025892 0.001986046254 +2.495384984e-06 0.008549259081 0.002256221997 0 24.20399959 21.48126444 1064.458076 0.001878890343 +2.497168458e-06 0.007823931063 -0.003776255522 0 19.54073511 -7.330980488 876.646887 0.002281420295 +2.497862448e-06 -0.009853340643 -0.005395629723 0 -21.90853161 3.192244686 1070.440587 0.001868389543 +2.497395673e-06 -0.004434044356 0.0003302649222 0 2.710002344 -20.24613482 894.6759249 0.002235446316 +2.494385074e-06 0.001637408002 0.01301750398 0 14.24864411 30.14103847 994.0374575 0.002011996615 +2.497679914e-06 -0.002455852381 0.01105433917 0 -8.584810763 16.95483086 881.9312141 0.002267750555 +2.49898993e-06 0.006291660508 -0.004162703287 0 -8.565575816 -9.351535317 892.1007413 0.002241899269 +2.499275806e-06 0.005570284715 -0.005623587901 0 3.934402088 -11.76144751 1030.396227 0.001941000897 +2.499979064e-06 -0.005099609797 0.007057247241 0 -0.6423750701 -1.822225956 944.220986 0.002118148219 +2.496308272e-06 0.003264176296 0.008498913562 0 15.13127491 23.87661762 1039.719089 0.001923596499 +2.49989965e-06 0.005682416246 0.0121842079 0 3.365276796 2.184401378 895.5465238 0.002233273143 +2.498031917e-06 -0.001396875889 0.003628401342 0 11.19310317 -17.68461196 1054.599296 0.001896454897 +2.49839372e-06 -0.006375997053 -0.0003787318873 0 3.206510732 -18.0817576 1024.315979 0.001952522503 +2.497206907e-06 0.002764035654 0.003546730606 0 -12.24369788 -22.158232 1070.665642 0.001867996806 +2.495694341e-06 0.007670578817 0.002017042714 0 27.18792228 13.15982781 1028.652235 0.001944291697 +2.493980858e-06 0.001002702834 0.008236608957 0 19.66503763 24.62068597 907.352706 0.00220421451 +2.499585984e-06 -0.008187711597 -0.001924538137 0 -2.005292514 8.296234863 937.9084841 0.00213240421 +2.495754823e-06 0.001175383534 0.006125700299 0 -20.22441419 21.75771842 1018.824319 0.001963046977 +2.494645014e-06 -0.006369386744 0.01212419896 0 13.82161783 28.3816008 963.8439058 0.002075024792 +2.499827862e-06 0.009474787656 0.004222733304 0 3.812993562 -3.544420155 887.2281813 0.002254211534 +2.498937489e-06 0.002624967769 -0.01438656931 0 3.943259029 -13.99494365 997.2627519 0.002005489522 +2.495753264e-06 0.009151736605 -0.01168115821 0 20.69184448 15.70737261 890.8238364 0.002245112803 +2.496665823e-06 0.00675800934 -0.01453499091 0 21.07841158 16.57575698 1037.897441 0.001926972668 +2.497145253e-06 0.005369616509 -0.00278972229 0 -6.031660074 -24.27544441 1046.382835 0.001911346338 +2.497670924e-06 0.008905663393 -0.008315216932 0 19.16402835 1.6757709 891.0093936 0.002244645247 +2.499219302e-06 -0.006939486987 -0.007023605509 0 9.125231462 8.824387281 1015.76609 0.001968957243 +2.499625764e-06 -0.0007443432417 -0.009659846427 0 -8.442772096 -0.791680744 980.108239 0.002040590947 +2.499375259e-06 -0.0005674311053 0.01102318261 0 -4.593956275 -10.34515726 1012.544684 0.001975221471 +2.498181531e-06 0.007315992415 -0.01058760372 0 12.32772352 12.3149366 913.452953 0.002189494263 +2.499511782e-06 -0.002529291804 -0.009678509762 0 9.925301128 2.485154028 1035.366029 0.001931684007 +2.497304992e-06 0.0009162040846 0.01114546873 0 4.847608119 21.13718573 933.7003152 0.002142014914 +2.496517331e-06 0.009609413715 0.005176498129 0 -14.74704494 19.38834513 922.5066657 0.002168006015 +2.496013782e-06 -0.002498907684 0.01000451019 0 -6.416159083 24.70265128 903.3675877 0.002213938188 +2.499045171e-06 0.007791871005 -0.0103854282 0 -3.461976993 -13.30544412 994.7499857 0.002010555445 +2.496098557e-06 0.006152924551 -0.01140453632 0 -12.97963149 -23.26452611 953.1432209 0.002098320542 +2.49934945e-06 0.004545152388 0.01413546297 0 0.04493726781 -10.94293841 959.2680831 0.002084922906 +2.497597346e-06 -0.0004517983738 0.008445952095 0 18.25634679 13.28063651 1029.501815 0.001942687201 +2.497830978e-06 -0.007979703201 0.001194986638 0 16.74324587 -7.491483884 880.3948561 0.002271707957 +2.497005518e-06 0.003969660429 -0.01161842103 0 -21.61274346 9.266833579 960.4738984 0.002082305415 +2.499436567e-06 -0.005973421703 0.003415048574 0 7.601081906 6.452656826 939.1811794 0.002129514564 +2.498270411e-06 0.0006630652351 8.723807987e-06 0 12.46165947 -13.63622328 992.9571976 0.002014185511 +2.497884216e-06 -0.008039513822 -0.007891767304 0 -16.84043576 7.668731019 899.2583603 0.002224054942 +2.499236021e-06 0.006418421781 0.01039638066 0 0.4975791423 -11.83121636 957.872508 0.002087960541 +2.499012981e-06 -0.005836619455 0.002266779465 0 13.11079991 0.9182804853 935.2973896 0.002138357299 +2.499464179e-06 -0.009984820019 -0.005735731856 0 -4.869050384 9.807557584 1057.650873 0.00189098317 +2.499791418e-06 -0.0007382966951 -0.009164939155 0 4.605098809 -3.591685656 904.1821581 0.002211943669 +2.497181129e-06 -0.002083899127 0.01159808419 0 14.29347511 -16.07977041 905.7109749 0.002208209965 +2.495751639e-06 -0.007323795743 -0.005522689079 0 -18.02381781 18.59146953 887.762841 0.002252853924 +2.496222737e-06 -0.008871321618 -5.594972055e-05 0 -21.73538922 18.14828149 1029.626477 0.001942451991 +2.498007689e-06 3.999185283e-05 0.005400824281 0 9.231258206 -16.7713038 958.7586289 0.002086030769 +2.497047547e-06 -0.006879283539 -0.01183244065 0 -24.44442347 -1.271170196 1006.855804 0.001986381756 +2.495680341e-06 0.006018172987 -0.005884773948 0 25.35406128 16.04797404 1020.206707 0.001960387034 +2.497745966e-06 0.007288830471 -0.008976982415 0 -14.90466818 -15.77141685 1021.682838 0.00195755466 +2.498819781e-06 0.00649666884 0.006742429091 0 11.63194607 9.662534833 984.0751254 0.00203236516 +2.497637814e-06 -0.006919777598 0.008173810677 0 -16.75659644 -14.18736112 1009.779797 0.001980629842 +2.496919633e-06 -0.005363800912 -0.002580340854 0 -21.78246385 8.711022504 944.7251245 0.002117017901 +2.497834138e-06 0.007807775978 0.004755970028 0 9.976630721 -18.93381517 1027.949642 0.0019456206 +2.497472283e-06 0.003702589297 0.003490576674 0 0.3244205025 20.53675054 913.149689 0.002190221411 +2.499023495e-06 0.004827411529 -0.001999215879 0 -12.56761267 -3.965241328 942.8533631 0.002121220625 +2.496482931e-06 -0.005978563367 0.002227638799 0 -26.50440975 -0.1885994407 998.8364888 0.002002329733 +2.499915973e-06 -0.002672261097 -0.003326865693 0 -0.2862487711 -3.899593517 953.7960234 0.002096884398 +2.497824022e-06 -0.00961815998 -0.01333407357 0 10.44616282 16.12374943 920.6329617 0.002172418416 +2.497398115e-06 0.008989544935 0.01023475467 0 -14.3038994 -16.426995 954.4770916 0.002095388163 +2.49938182e-06 -0.007565656505 0.01280225133 0 -7.506140066 -6.854762097 914.1134368 0.002187912265 +2.499280155e-06 -0.002431057962 -0.003841600909 0 2.394156906 -10.33513972 884.0679833 0.002262269461 +2.499374075e-06 0.0007659361837 -0.006247467916 0 3.612240272 -10.96395852 1031.638854 0.001938662926 +2.496929962e-06 0.002545751971 0.01406111586 0 14.51484505 19.62799491 984.7226094 0.002031028821 +2.497064827e-06 -0.002362451525 0.007058211321 0 -20.7880903 -12.91341534 1009.611708 0.001980959595 +2.49705461e-06 0.001703319782 -0.01289130507 0 -18.72713427 -14.90709947 985.7603449 0.002028890704 +2.494858829e-06 -0.009261577069 -0.01394014071 0 -20.84544577 -19.20872991 883.3113464 0.002264207302 +2.498504153e-06 0.005127264569 0.01419595092 0 12.44148358 10.63678409 946.141286 0.002113849199 +2.497060189e-06 -0.001885314742 0.002024999808 0 11.30210273 -21.59273919 1004.66444 0.001990714431 +2.496460888e-06 -1.482298132e-05 0.009644652419 0 -18.21379951 -15.09960568 888.7928304 0.002250243174 +2.49891194e-06 0.001874143793 0.009553292049 0 -0.5001644849 -15.16585622 1028.467848 0.001944640277 +2.499665406e-06 0.002385708885 -0.01219878528 0 3.264647682 -6.917609464 935.025786 0.002138978443 +2.498994287e-06 -0.005183607708 -0.0055982011 0 10.89521989 -8.076129927 956.1111469 0.002091807011 +2.496406982e-06 0.009050518591 -0.00434812872 0 27.09207099 5.116107283 1027.950383 0.001945619198 +2.495838402e-06 0.009703244185 -0.0051169175 0 27.62962761 -1.704222701 958.9218884 0.002085675616 +2.499709097e-06 0.006245572963 -0.00934742782 0 1.697976148 -7.471132599 1004.418727 0.001991201425 +2.499881461e-06 -0.005354677881 -0.008854862012 0 2.860367072 -4.028736601 1014.732995 0.001970961829 +2.494919554e-06 0.002788252407 0.002170828327 0 26.57449607 -20.97951364 1061.354033 0.001884385358 +2.496987323e-06 -0.0005735801952 0.00796188622 0 19.70270984 10.25632568 904.4969354 0.002211173882 +2.49390158e-06 -0.003786982144 -0.008973571141 0 18.44225769 -27.18374217 939.731871 0.002128266649 +2.499238075e-06 -0.009231437515 -0.003085554452 0 4.861094624 -11.70349609 1026.48996 0.001948387299 +2.496477894e-06 0.005221730713 -0.002937811897 0 14.5791557 18.15905329 876.9507377 0.002280629816 +2.494815749e-06 0.0006600856362 0.0006316473149 0 21.51854041 -18.48205607 880.2441268 0.002272096955 +2.496595983e-06 -0.004335185671 -0.007782616471 0 7.380283331 -23.47628923 942.6748048 0.002121622419 +2.497973968e-06 -0.008589885607 -0.009009497236 0 -13.82381874 -15.76498334 1041.29738 0.00192068091 +2.497591963e-06 -0.002834048043 -0.006491510302 0 17.44885268 -14.82358116 1042.906622 0.001917717232 +2.498210245e-06 -0.004710338912 -0.003690893697 0 16.50339683 10.90773017 1045.31967 0.001913290314 +2.496745197e-06 0.002293700655 0.0009769954369 0 -17.23960679 -14.52200492 883.0431605 0.002264894956 +2.497671996e-06 -0.008497072072 0.01414443514 0 6.396283563 18.51182398 907.3622636 0.002204191292 +2.495645681e-06 0.0004859812791 0.0007911288994 0 -24.15797206 -20.32295131 1069.074504 0.001870777007 +2.499548016e-06 -0.003176840683 0.007006629934 0 2.897994344 9.599962753 1054.633759 0.001896392925 +2.495319814e-06 0.001701058084 0.002337781428 0 -23.98605881 19.82369954 1016.378642 0.001967770589 +2.497449644e-06 -0.008402506816 0.008761247238 0 10.80155631 20.35380677 1019.871923 0.001961030551 +2.497370266e-06 0.002840590202 0.008392268918 0 -20.99470255 7.285982426 968.6368281 0.002064757339 +2.49967274e-06 0.007696497808 0.01395379352 0 -4.83113376 6.688576668 1019.805049 0.001961159146 +2.499624776e-06 0.0006050739111 -0.009663496544 0 -4.457971927 6.589490566 918.3311959 0.002177863508 +2.497913508e-06 0.005979403369 0.000304129282 0 9.276446303 18.83901965 1027.639486 0.001946207817 +2.499795955e-06 -0.0005073515698 -0.003619489905 0 4.556164736 3.856538272 934.3853355 0.002140444551 +2.495340497e-06 -0.006469508004 0.01137820574 0 -20.29984907 22.56592861 993.6035431 0.00201287527 +2.498996781e-06 0.001281621959 -0.01361648686 0 -12.78047404 -0.951383443 904.6252841 0.00221086016 +2.499143972e-06 0.005109258392 0.0007801143243 0 -8.899674909 -10.64937234 1060.543653 0.00188582525 +2.499232052e-06 -0.003894354934 -0.005737746817 0 -11.38634265 0.8622635647 921.2869228 0.002170876358 +2.498577217e-06 -0.009958236776 0.00429641404 0 6.477456311 -14.46563775 939.3841456 0.002129054455 +2.497441356e-06 0.00299819856 0.002500331146 0 20.92421965 -10.74537417 1039.413133 0.001924162718 +2.497297344e-06 -0.007124942257 -0.006506186645 0 -13.81372162 15.46620081 891.5771613 0.002243215828 +2.499763492e-06 -0.005099594356 0.004236908911 0 -0.835276286 6.098564651 894.9738301 0.002234702214 +2.497871061e-06 0.003678834592 -0.005562024429 0 -19.76668088 -3.740122388 974.6231264 0.002052075254 +2.495935534e-06 0.002609436763 -0.00669578454 0 -16.1383483 -21.36299238 938.4788167 0.002131108305 +2.499576657e-06 -0.005365488604 0.008693109462 0 8.240071259 -1.54083562 910.9731331 0.002195454429 +2.497758405e-06 -0.0006027588388 0.001438057234 0 -7.804487781 19.02998626 971.0831407 0.002059555888 +2.495078658e-06 -0.001379225971 0.003063648627 0 -22.0399895 -19.24213881 931.8898205 0.002146176464 +2.496660322e-06 0.003238605126 0.008594269669 0 25.46949297 -2.953805571 991.5999135 0.002016942491 +2.496762463e-06 -0.007718720036 -0.000881245702 0 -18.38827405 -18.0424194 1011.902401 0.0019764752 +2.499687725e-06 0.001975613795 -0.0001147686783 0 6.578541731 -3.809580499 961.8847598 0.002079251157 +2.499801236e-06 -0.005558399456 0.000520857498 0 1.025905303 6.171084814 992.1672447 0.002015789183 +2.49745613e-06 -0.003294678787 -0.004143653037 0 -21.63714938 -4.9385289 983.5563607 0.002033437106 +2.494320231e-06 -0.001561503545 0.01168524667 0 25.76859305 25.16540752 1067.757249 0.001873084919 +2.49977382e-06 -0.0006237679534 -0.01074268667 0 -1.451940674 6.791916357 1032.616104 0.00193682821 +2.499982397e-06 0.006257209573 0.000460721869 0 1.499442751 -0.8809653159 926.8632144 0.002157815704 +2.494705824e-06 0.00938274303 -0.01394672869 0 25.67391687 14.7998313 909.9836841 0.002197841604 +2.499935116e-06 -0.007072555013 0.01224937656 0 1.762863395 3.295078897 1037.373997 0.001927944989 +2.497467342e-06 -0.00153845184 -0.01078659365 0 -16.90748065 15.85351836 1029.433915 0.001942815338 +2.49772931e-06 -0.009112926768 -0.01455390821 0 -19.93116073 7.151150603 993.3130661 0.0020134639 +2.499705078e-06 0.005081719998 -0.01050128053 0 -7.703824454 -0.5611004775 1005.697754 0.001988669053 +2.498497814e-06 -0.006803754028 -0.01419339638 0 -14.70699981 -9.909181068 1022.885582 0.0019552529 +2.498573018e-06 -8.494322654e-05 0.004177983322 0 8.528094437 -15.02743023 1022.569536 0.001955857211 +2.494684553e-06 -0.009562368696 -0.0001678617764 0 -23.4718216 23.04616099 1008.074318 0.00198398071 +2.49535173e-06 0.00403276437 0.005561099981 0 -20.14062481 24.70227331 1044.60098 0.001914606667 +2.497261957e-06 0.002171668811 -0.01411313263 0 22.40154976 -4.34176481 974.7023259 0.002051908513 +2.497385122e-06 0.001293137162 0.00463875887 0 -19.00793439 13.29056036 1013.808736 0.001972758696 +2.495994819e-06 0.003675189684 0.004681868255 0 -24.35016744 -18.04622719 1070.225541 0.001868764968 +2.497695815e-06 0.007724789125 -0.009029831928 0 16.21273404 -10.9414632 910.8161237 0.002195832889 +2.494340701e-06 0.005502700922 -0.01310852252 0 28.26048713 -19.504348 1019.77721 0.001961212684 +2.49866962e-06 -6.22767536e-05 0.007574006093 0 -3.010266113 -16.55115359 1031.111187 0.001939655029 +2.496872289e-06 -0.007865570458 0.009089447111 0 7.430703837 21.94174688 925.7967534 0.002160301376 +2.493691389e-06 -0.003541050316 -0.002942905419 0 -26.42960557 -23.10137458 987.2947973 0.002025737404 +2.498742309e-06 -0.009406130048 0.002715167454 0 -2.330435558 14.71873491 939.4271124 0.002128957078 +2.498662056e-06 -0.005407516509 -0.004004368905 0 3.872133956 -13.83651248 878.1696723 0.002277464211 +2.496095648e-06 -0.005552790817 -0.008969646818 0 -24.43345795 -12.32753719 978.781834 0.002043356273 +2.498849885e-06 -0.0005054961098 -0.01346110244 0 -14.09848245 4.245746046 970.6498993 0.002060475153 +2.496401479e-06 -0.003677702895 0.0006527051772 0 13.07695978 -23.86620417 1013.867009 0.001972645309 +2.497987146e-06 0.0008965069521 0.00601950452 0 18.74329128 1.351593984 936.310275 0.002136044059 +2.49880439e-06 -0.007842544583 -0.005572071152 0 1.336925535 -13.81131221 897.1655332 0.002229243017 +2.499546519e-06 -0.009785317602 0.0003482652688 0 -5.044801345 -8.210794802 1011.828893 0.001976618789 +2.497869143e-06 0.001595461462 -0.006551030651 0 20.57684042 -1.690305857 999.7884175 0.002000423255 +2.499869847e-06 0.008464404489 0.003136851923 0 -4.660420975 0.9109319616 930.7131329 0.002148889845 +2.497295009e-06 -0.006580841285 0.0111993218 0 -0.13968133 24.1341416 1037.205821 0.001928257593 +2.497650277e-06 -0.004881422119 -0.0003398422594 0 -8.395168621 -17.10449528 878.6225289 0.002276290368 +2.496021618e-06 0.007871646499 0.01420252494 0 -16.11716831 19.62305697 899.6926619 0.002222981341 +2.499567562e-06 0.0006585395802 -0.0105729177 0 -7.98571076 3.732040142 947.773407 0.002110209028 +2.495814048e-06 0.008193734423 -0.01356212256 0 -3.06558799 -27.60349647 959.2702341 0.002084918232 +2.49655633e-06 -0.003411411908 0.0137840813 0 -24.22436154 6.204801159 952.3589291 0.002100048563 +2.497365412e-06 0.002912320425 -0.004962599252 0 13.0261659 20.20306288 1046.797165 0.001910589812 +2.497089941e-06 -0.006395936571 0.008492160367 0 -23.06419069 1.948764075 959.0193756 0.0020854636 +2.497271107e-06 -0.002295805737 0.004802312718 0 -11.05564708 -19.47170808 958.0653014 0.002087540376 +2.49818268e-06 7.834534161e-05 0.006181355487 0 8.402679832 18.24006805 1053.095426 0.001899163125 +2.499059994e-06 -0.009803210911 0.004507384677 0 -13.78172682 1.093028239 1008.146364 0.001983838925 +2.498607554e-06 -0.003000335153 0.008240996401 0 0.7178519563 15.77973348 946.3540634 0.002113373924 +2.498115242e-06 -0.006375091146 0.01053217849 0 -6.847401054 19.06827015 1043.238274 0.001917107577 +2.498309047e-06 -0.003392806808 0.0003170992993 0 -17.62930563 -1.46270727 961.6875879 0.00207967746 +2.498279477e-06 0.003938050075 0.009914464394 0 11.2227678 -15.07708799 1012.967519 0.001974396969 +2.499251053e-06 0.006862610891 0.003396193078 0 -3.611485206 11.32725908 971.3104504 0.002059073903 +2.499933378e-06 -0.007049509655 -0.0142518278 0 3.339523621 -0.9848769042 953.8223658 0.002096826486 +2.496658707e-06 0.000473481738 -0.007727594404 0 25.57164216 7.519634563 1030.570759 0.001940672179 +2.497610763e-06 0.0024238835 -0.003589049277 0 18.3706143 10.41165886 965.6275699 0.002071191899 +2.495340239e-06 0.008817165615 -0.01395484009 0 28.777875 -11.85662676 1018.835978 0.001963024513 +2.498687279e-06 0.001252422337 0.006445483679 0 8.07503937 14.7809305 1039.272134 0.001924423771 +2.499463205e-06 -0.002213650355 -0.001152543544 0 4.622688005 9.302280358 1002.443127 0.001995125655 +2.498597771e-06 0.002648017439 0.002498964532 0 13.31287485 10.90494508 1027.401775 0.001946658112 +2.497863564e-06 0.008890604232 0.01277452344 0 -17.05438651 10.17053482 960.3061998 0.002082669049 +2.499863745e-06 -0.007526426818 -0.006493900416 0 -3.539532528 -3.276871263 923.9784681 0.002164552605 +2.498191025e-06 -0.002074797535 0.01162121288 0 16.97382472 -7.961976506 985.4073532 0.002029617491 +2.494314193e-06 -0.008406440667 -0.01430556123 0 10.68565826 -31.17767776 976.5157281 0.002048098092 +2.498935477e-06 -0.008367601898 0.01411405904 0 11.42479949 8.18167027 962.9063069 0.00207704528 +2.499680917e-06 0.001048078584 0.00755336961 0 7.005886368 2.297952829 922.9200082 0.002167035043 +2.498854812e-06 0.003908329983 0.01140030649 0 -7.387078871 14.40118598 1069.281364 0.001870415091 +2.496556211e-06 0.009832505854 0.01189936333 0 -9.210173813 21.32663615 884.7069062 0.002260635682 +2.498784518e-06 0.008121207785 -0.01266334528 0 1.484948699 -15.78159086 1016.474087 0.00196758582 +2.496177266e-06 -0.002857042248 -0.0009379873727 0 -14.61388948 25.69497604 1068.449977 0.001871870507 +2.49997274e-06 -0.006217111554 -0.004552313536 0 1.871560704 0.8644709487 882.9126839 0.002265229661 +2.497868561e-06 0.003475775737 -0.01070751812 0 -21.05472359 4.513144045 1042.591322 0.001918297186 +2.499357277e-06 0.00326735124 -0.007641149957 0 7.337091193 8.009394336 957.946731 0.002087798763 +2.495321609e-06 0.004880706677 0.0137175576 0 19.08679521 18.81407103 875.5422657 0.002284298632 +2.499681106e-06 0.005889947256 -0.003622135925 0 4.826589827 5.812670667 946.0085142 0.002114145877 +2.499651714e-06 0.002305374928 0.00598474249 0 8.487408481 0.4587889431 1018.364236 0.001963933855 +2.49896735e-06 -0.001827887772 0.00849096559 0 -11.19314106 -6.940465076 916.297166 0.002182698009 +2.497108025e-06 -0.008127723862 0.0006552629289 0 -24.2282417 7.185586639 1050.333954 0.001904156285 +2.497882074e-06 -0.001706704325 0.01110196475 0 -15.5918296 -12.023885 956.3737762 0.002091232581 +2.49678611e-06 -0.009093904635 -0.01051300402 0 -22.00455546 -11.85075067 985.3151775 0.002029807361 +2.498053677e-06 -0.009311958957 0.01289462849 0 -9.143917811 -15.49606272 911.6924836 0.002193722155 +2.499994105e-06 -0.007884060838 -0.002058166265 0 0.7534953673 -0.8481432452 1044.834989 0.001914177856 +2.499152994e-06 -0.004201040813 0.009592825344 0 0.7474615844 11.58748994 892.0260081 0.002242087094 +2.499378578e-06 0.005630863244 0.009072757016 0 -1.432126011 -10.85586391 982.1147305 0.002036421956 +2.498789755e-06 -0.004879075047 -0.001610874468 0 -2.502691074 14.86469689 968.7132888 0.002064594368 +2.497414735e-06 0.002096534683 -0.002828693229 0 12.84945151 -15.92150773 899.425117 0.002223642594 +2.499839771e-06 0.003498914884 -0.006729265256 0 0.3880592874 5.867519371 1038.738409 0.001925412581 +2.499002856e-06 0.001680423338 0.002502472254 0 -6.543994937 -10.54893471 878.9170708 0.00227552754 +2.496904224e-06 0.003298813449 0.01135747587 0 -22.14516031 -10.8811426 991.14785 0.002017862421 +2.49904649e-06 0.003203449533 -0.006368639725 0 -12.60833271 2.092901779 925.3802275 0.002161273756 +2.499654244e-06 -0.007995106317 -0.009502776302 0 8.215854376 -0.2963712973 988.5818121 0.002023100138 +2.498922031e-06 0.001248708256 -0.003660957722 0 14.95624366 4.002207273 1054.270101 0.001897047063 +2.499723637e-06 -0.004252181975 0.0005412376835 0 5.541249703 -4.678737044 975.4467664 0.002050342539 +2.498815685e-06 -0.006985111749 0.001256609783 0 11.90152086 -7.575049954 916.49648 0.00218222333 +2.497249413e-06 0.006743000974 0.001449203698 0 23.76737347 7.851625518 1066.758355 0.001874838843 +2.499668796e-06 0.008361816676 0.00829601038 0 1.361362157 -8.271412058 1029.909861 0.001941917516 +2.49863864e-06 -0.004322031033 -0.0008067196864 0 3.529963141 -17.00720929 1052.450526 0.001900326856 +2.497797412e-06 0.004038522211 0.01198127557 0 18.80157067 6.670698593 950.1995863 0.002104820954 +2.499340023e-06 -0.003849817249 -0.01132030944 0 -7.456421685 -8.798214448 1003.724486 0.001992578669 +2.49824117e-06 -0.007617701776 0.0148038505 0 -7.463505728 -17.21328452 1000.07005 0.001999859911 +2.497736481e-06 0.000190560855 0.004635989936 0 20.4655936 9.481374693 1059.722387 0.001887286732 +2.498394413e-06 0.007930294545 -0.01091480235 0 -9.898433135 14.37987849 973.9627976 0.002053466523 +2.497175483e-06 -1.632976346e-06 0.01344777302 0 19.89572578 -9.275525788 923.2006922 0.002166376192 +2.498498046e-06 0.007367973076 -0.01003900637 0 8.595325618 -15.50982066 1022.877787 0.001955267799 +2.49851003e-06 -0.00420979389 0.009723396718 0 16.49168963 -1.25678299 957.9035116 0.002087892962 +2.49985522e-06 0.008632841231 0.008580659644 0 -0.4155241607 -5.463254923 1018.183 0.001964283435 +2.49618711e-06 0.009032645072 -0.000554018158 0 16.62258422 19.21880626 919.6351009 0.002174775624 +2.497142445e-06 -0.0005239956081 -0.002257486233 0 -16.39954499 -17.30830003 996.9542196 0.002006110171 +2.49895431e-06 -0.004962808476 0.004306659638 0 3.384643813 13.75966503 979.6709005 0.002041501895 +2.499596843e-06 0.003476762418 0.00725958132 0 -2.474443826 -8.974697073 1036.695975 0.001929205909 +2.499507001e-06 -0.007564424183 0.005240453335 0 -3.143150197 -9.33103618 991.5134986 0.002017118277 +2.499514794e-06 0.001145176995 0.01257572038 0 5.027889931 7.927900679 952.9177363 0.002098817058 +2.496238854e-06 -2.02061329e-05 0.009558740433 0 -7.084483527 24.38929655 925.4839326 0.002161031574 +2.498089322e-06 0.006285245758 -0.01308013387 0 14.07217389 11.18810851 919.395289 0.002175342885 +2.494464777e-06 0.00422746981 -0.01491284827 0 10.50303017 -27.87904522 894.6518423 0.00223550649 +2.49976149e-06 -0.00752045196 0.00526193229 0 -6.196137022 0.3635717082 898.6347341 0.002225598371 +2.497959042e-06 -0.00755636178 0.006674016144 0 -2.469529609 -21.33677364 1062.804188 0.001881814188 +2.499133187e-06 0.0007931398554 0.006244443418 0 -4.209396615 11.0198957 895.8152427 0.002232603225 +2.498606197e-06 0.006887541516 -0.002973114986 0 11.32656511 13.29136913 1045.704372 0.001912586437 +2.496932041e-06 -0.00354922906 0.008447343574 0 -22.32952383 0.8040683576 901.6149948 0.002218241724 +2.495217479e-06 -0.003882336328 0.01267535225 0 9.32647192 29.47031354 998.7483539 0.002002506429 +2.498842894e-06 0.007055938425 -0.008766470903 0 -4.342439304 13.79140085 950.2941771 0.002104611444 +2.496483872e-06 -0.008982182816 0.006216924135 0 -18.28096681 21.38121579 1060.248795 0.001886349704 +2.495956934e-06 0.007592016449 0.00961380522 0 29.12675762 7.372217842 1055.946643 0.001894035095 +2.497887088e-06 -0.001408462641 0.005878854215 0 -18.37502999 9.479290852 1005.481176 0.001989097408 +2.496682157e-06 -0.004942519316 0.001434190948 0 18.55983522 -15.18705087 930.5029631 0.002149375208 +2.497238146e-06 -0.004139694986 -0.004910481968 0 6.312234241 21.06513457 935.278004 0.002138401621 +2.499559469e-06 -0.005498843226 -0.000753855058 0 -7.9386205 -3.189462154 911.3954326 0.002194437155 +2.497479376e-06 0.001900104806 0.003084549468 0 20.1742809 4.748064164 922.7230449 0.002167497616 +2.498256608e-06 -0.008327284898 -0.0128666566 0 7.919413624 18.18192186 1061.782274 0.001883625343 +2.498102752e-06 0.008521260275 0.0101813937 0 9.820287684 -16.79599846 998.5212051 0.00200296197 +2.499431065e-06 -0.0047517754 -0.007675979231 0 7.164889419 6.776821772 924.4548328 0.002163437227 +2.49649729e-06 -0.007250525826 0.008639169484 0 -14.46183786 18.71493591 893.1272402 0.002239322585 +2.499792402e-06 0.0002737661311 -0.002307900412 0 -5.136825491 2.843281912 911.145612 0.002195038832 +2.499557813e-06 0.008176437714 -0.005367558757 0 2.507347031 8.360754046 928.1092756 0.002154918664 +2.499698768e-06 0.007742406251 -3.413180821e-06 0 -7.463629718 3.074347615 1039.912922 0.001923237954 +2.49797894e-06 0.003223735895 0.009995278011 0 -6.945618286 16.87614472 907.4355082 0.002204013378 +2.49847025e-06 0.007585783312 -0.001735933288 0 -16.76929816 4.898582392 998.5534352 0.002002897321 +2.495024693e-06 0.004469399657 0.008025017688 0 -21.60108596 23.44646509 1009.882693 0.001980428038 +2.496397876e-06 0.005608206932 -0.007131808237 0 -7.247974658 -23.07597728 900.6609912 0.002220591343 +2.49851424e-06 -0.009436950232 -0.001160061762 0 -16.10866948 1.745696409 939.7423775 0.002128242855 +2.498317118e-06 0.005821874216 -0.01486049902 0 7.75469513 -14.16393362 879.9593256 0.002272832325 +2.499323569e-06 -0.005510784881 -0.002844003006 0 -9.312815179 -6.866001636 994.6528241 0.002010751844 +2.498848849e-06 0.002655069269 -0.007856403021 0 5.675524112 14.95133378 1053.79223 0.001897907332 +2.496145349e-06 -0.001362607633 -0.006302926883 0 7.005324657 -24.83383954 928.7763606 0.002153370913 +2.496961656e-06 0.006221621186 0.01352798308 0 24.95986123 7.677731925 1058.869146 0.001888807515 +2.499403317e-06 0.003256921442 -0.005729794675 0 -10.01354232 3.831455222 981.3655709 0.002037976529 +2.499698698e-06 0.004371469636 -0.0008908288437 0 2.872574257 -6.760960891 946.2578805 0.002113588739 +2.497761111e-06 -0.001750291684 0.009592247133 0 15.21091751 15.54274177 1027.377162 0.001946704749 +2.497394787e-06 0.008621692299 -0.005762818612 0 5.17733664 20.12685064 910.0864332 0.002197593467 +2.497436777e-06 -0.00541212243 0.01333323583 0 20.72708375 9.042448324 998.3797043 0.002003245851 +2.497983738e-06 -0.005212887577 -8.481072262e-05 0 12.93309921 -16.20356583 1032.10462 0.00193778805 +2.49400702e-06 0.000227417117 -0.01267267755 0 -19.90485675 -27.79418139 986.570115 0.002027225404 +2.496425057e-06 0.007716082837 0.009860107179 0 24.35857149 -4.432415926 925.4282841 0.002161161523 +2.498631133e-06 -0.00413616613 -0.007324938078 0 10.2861106 13.96013881 1047.790339 0.001908778814 +2.498714778e-06 -0.006601881441 -0.0006621503318 0 4.544339265 -13.3506857 879.4690895 0.002274099254 +2.498832293e-06 -0.001519685821 -0.001539075435 0 8.000136287 12.34868296 962.6380459 0.002077624096 +2.498779406e-06 -0.008722926518 0.01440166241 0 -12.37814799 -6.655412994 899.3271349 0.00222388486 +2.498994493e-06 0.00358225537 0.004272358452 0 7.109026869 -10.80591871 911.9747663 0.002193043134 +2.497012578e-06 -0.009670534017 -0.01172595029 0 -20.29572612 -15.24985121 1038.113595 0.001926571436 +2.498594066e-06 -0.0008866678225 0.01385576026 0 13.90474203 7.952875808 955.0603541 0.002094108494 +2.499397848e-06 0.001799207395 0.00343167644 0 10.3476008 -0.364361835 943.4124836 0.002119963467 +2.498019217e-06 0.002797457487 -0.01097737646 0 15.37746841 -13.83486518 1038.946967 0.001925026072 +2.49668466e-06 -0.007398252576 0.002023798157 0 5.867402391 26.082585 1037.708044 0.001927324368 +2.498978884e-06 0.0005377200618 0.005363571639 0 -13.42681854 0.8952392892 941.4933822 0.002124284714 +2.495988928e-06 0.002061035526 0.003589706048 0 -18.69949902 -19.04587073 941.8033762 0.002123585507 +2.495618124e-06 -0.008564532762 -0.01191739699 0 0.5044313204 -27.37353354 924.2167826 0.002163994463 +2.495598511e-06 -0.005171666481 -0.007603935208 0 -24.88516636 -12.34836176 935.7019331 0.002137432797 +2.499132773e-06 0.006837893445 0.01185269616 0 4.124050663 12.61502346 1007.625556 0.001984864307 +2.494402394e-06 0.009432057338 -0.01214138959 0 12.12272691 -27.86740341 907.5062853 0.002203841486 +2.49582232e-06 0.006579794786 -0.001953954622 0 15.30388898 21.23683439 905.0187553 0.002209898953 +2.497963855e-06 -0.0008613218181 0.0130559986 0 -16.85008146 6.593858822 896.3757351 0.002231207207 +2.49593173e-06 0.004622299732 -0.004008406077 0 12.5917743 -23.82322628 944.0886767 0.002118445067 +2.496975955e-06 -0.005339719253 -0.01137653853 0 -18.14138382 -15.99771182 983.0719277 0.002034439133 +2.499469582e-06 -0.001468345593 -0.009548148466 0 -8.659568836 -5.45272617 993.4750366 0.002013135636 +2.496696228e-06 -0.007366635534 0.01499438557 0 -22.64435825 7.410384466 926.4387978 0.002158804235 +2.49668987e-06 -0.00427051561 -0.009887005195 0 -21.6442756 8.240065756 899.6639003 0.002223052408 +2.496504249e-06 0.001619225428 0.00266267061 0 24.41622222 9.463138876 989.8169676 0.002020575587 +2.499287094e-06 -0.004176146011 -0.007646969471 0 11.0928402 5.119059544 1023.029552 0.001954977739 +2.499411117e-06 0.007450169884 0.005382501937 0 -8.806471021 -5.728724442 967.9701917 0.002066179328 +2.497391726e-06 -0.001257552397 0.01192262993 0 23.69520145 -2.045995375 1040.906624 0.001921401934 +2.49823703e-06 -0.009354178542 0.009820553809 0 19.03933324 3.377399001 1029.501915 0.001942687013 +2.4995989e-06 -0.003566432237 -0.001325715459 0 7.519714196 3.525607964 927.2168875 0.002156992638 +2.493374674e-06 0.006891561029 0.008359538913 0 23.48969153 30.22318904 1050.506412 0.001903843686 +2.498970017e-06 -0.0006436776556 -0.004153293204 0 12.18905069 -8.645180665 1041.019622 0.001921193374 +2.496691029e-06 -0.00423715048 -0.01093614561 0 -27.00589481 -3.914786571 1060.222843 0.001886395877 +2.497977101e-06 0.0009298970085 0.007191636446 0 4.759580618 -19.10221787 978.4282295 0.002044094743 +2.498473531e-06 0.006530713579 -0.01087662495 0 6.234664779 14.83375565 920.6978179 0.002172265385 +2.495414504e-06 0.008456372512 0.01057670436 0 -19.27163164 22.52051774 978.0947483 0.002044791676 +2.498720925e-06 0.004586265841 -0.008416275331 0 6.642463078 -13.13529509 920.113283 0.002173645394 +2.496911446e-06 -0.004428774668 0.004175894544 0 15.33033914 -20.72613763 1036.773015 0.001929062553 +2.498760125e-06 0.006533628106 -0.003603132034 0 14.71726135 -4.726985178 981.4353252 0.002037831682 +2.497898304e-06 0.009067960256 -0.009954129013 0 17.71375808 -11.97744506 1042.637915 0.001918211463 +2.497881807e-06 0.003971641287 0.007394430083 0 3.847336682 17.7798463 883.5455838 0.002263607036 +2.497924145e-06 -0.001643075012 0.001604024763 0 3.61720429 17.47470402 875.5307772 0.002284328606 +2.49782001e-06 0.00791956875 -0.01307096367 0 -17.10769862 -9.691804301 941.3456276 0.002124618144 +2.498936227e-06 -0.008976554926 0.006026557116 0 7.544473152 11.61457011 949.3691325 0.002106662131 +2.495034808e-06 -0.009737845785 -0.01142200522 0 18.66556637 -23.43581782 950.045868 0.002105161516 +2.498307523e-06 0.007114927662 -0.01241296391 0 -17.93410598 -3.622466807 994.2063262 0.002011654872 +2.499581387e-06 -0.00771155417 -0.0146291249 0 7.784192287 1.873316307 874.9645538 0.002285806884 +2.497631162e-06 0.00509033164 -0.01142074718 0 -1.67206237 -19.79782806 912.4811363 0.002191826133 +2.499232572e-06 0.003420073809 -0.01471300078 0 -11.80398724 -3.674450674 997.7660678 0.002004477868 +2.497922699e-06 0.006268152753 0.002959800165 0 6.360144484 20.76815545 1065.280641 0.001877439542 +2.497723956e-06 0.005550959562 0.007331657913 0 -13.43679422 -15.12924453 948.074118 0.00210953971 +2.497336465e-06 0.0007307943329 -0.00946650553 0 -13.2741038 18.6937869 992.9662205 0.002014167208 +2.496667882e-06 -0.009692758839 0.004402824724 0 13.2023972 -18.70066282 886.3000368 0.002256572173 +2.497229671e-06 -0.009196933829 0.009244092226 0 3.710006126 22.50525547 968.6013059 0.002064833062 +2.497936366e-06 0.006352598174 0.01313917709 0 -14.79282414 -10.18959031 883.9010251 0.002262696776 +2.497388008e-06 0.005269418675 0.002847637259 0 13.41236337 18.79874687 1009.969474 0.001980257872 +2.499556478e-06 -0.001307457653 0.01025891457 0 -3.924620362 -7.840044819 930.838061 0.002148601442 +2.497926808e-06 0.006204726766 -0.01321438377 0 19.85270757 5.547441001 1011.988495 0.001976307054 +2.496021429e-06 -0.005695970245 0.00727608199 0 -9.787742073 22.95548461 884.138746 0.002262088399 +2.49984376e-06 0.004678208064 -0.006112190417 0 2.479372004 -4.595653581 934.1135088 0.00214106742 +2.497577208e-06 -0.00590549937 0.002492668745 0 -9.346259587 -17.74096188 910.6112666 0.002196326878 +2.497571129e-06 0.00303282775 0.01346592543 0 -21.39444867 6.261766668 1011.05096 0.001978139657 +2.498709807e-06 -0.008159757797 -0.007532142999 0 8.915273679 -12.99423145 980.8218008 0.002039106388 +2.495565327e-06 0.009296639492 0.008383748678 0 26.08689228 16.36243417 1033.302972 0.001935540742 +2.49881326e-06 0.004055127027 -0.01167567852 0 14.69696856 -0.8308032434 955.323348 0.002093532001 +2.498032588e-06 0.005430083862 0.009160416566 0 17.36960341 -11.92019169 1061.695187 0.00188377985 +2.496726485e-06 -0.007356966296 -0.001017341679 0 -21.40679831 10.17379043 925.8459058 0.002160186687 +2.498145015e-06 0.005384068885 -0.01219455639 0 11.90046524 13.61902678 938.7145643 0.002130573101 +2.498068359e-06 0.0008177839639 -0.00599895831 0 9.033086734 -17.81137661 1015.772013 0.001968945762 +2.498829704e-06 -0.003264875556 -0.0130420936 0 -0.3345491541 -16.1572902 1056.142351 0.001893684122 +2.494977018e-06 -0.0007240169449 0.01239093916 0 -14.20325126 30.06567026 1048.312579 0.001907827912 +2.499231065e-06 -0.006283593522 0.007488076135 0 5.143133678 -11.86712485 1042.827753 0.001917862269 +2.498929653e-06 0.00588729213 0.008338992682 0 -9.664801131 9.855759189 943.3026166 0.002120210381 +2.499875189e-06 0.002057961454 -0.0004611530621 0 -1.289640225 -4.819409779 998.5324883 0.002002939337 +2.498304036e-06 -0.008088435051 -0.01468070579 0 -16.85542672 2.796960538 927.4795241 0.002156381837 +2.497171174e-06 0.007432655017 -0.008202666154 0 9.311312165 -21.96478066 1002.563096 0.001994886913 +2.498569308e-06 -0.005323681496 0.01355492093 0 -13.36936111 -7.992892058 920.6351514 0.002172413249 +2.495106026e-06 0.009933197582 -0.01128296251 0 -16.55733705 -25.88642724 981.4747644 0.002037749795 +2.498684024e-06 0.004349419256 0.0001771297725 0 14.00858467 -4.644970575 909.5370267 0.002198920925 +2.49771556e-06 -0.006341808103 0.01212979797 0 -21.28168059 8.243183599 1067.349742 0.00187380005 +2.496952859e-06 -0.008118956387 -0.001122933074 0 -19.94065929 13.1940277 968.1192631 0.002065861177 +2.499956234e-06 0.006062185541 0.003364672714 0 -2.569002876 1.332415443 978.1556773 0.002044664307 +2.495955948e-06 -0.006468820707 0.01408601157 0 -0.123598495 29.63263481 1041.326845 0.001920626563 +2.496395038e-06 -0.008879925394 0.01426848973 0 -21.32382552 15.57052992 982.7924721 0.002035017623 +2.497201667e-06 -0.007152018026 -0.0009242323623 0 10.2497892 20.17447621 956.1291676 0.002091767585 +2.498194633e-06 0.005518463799 -0.004316523259 0 17.18152943 -5.574372325 950.3398331 0.002104510335 +2.496611484e-06 0.004546183217 -0.01325232233 0 -19.4571915 14.97905447 942.7609385 0.002121428581 +2.497634982e-06 0.004650850762 0.002446214897 0 -16.69777552 -10.41500518 904.5461016 0.002211053695 +2.494787544e-06 0.0007328202156 0.01378077913 0 19.82065843 23.09212373 941.7897706 0.002123616185 +2.499348725e-06 1.540860627e-05 0.01176242685 0 9.939885612 5.151249503 980.8428226 0.002039062686 +2.498734751e-06 0.0009441585001 0.0134515971 0 -8.462092261 13.66933351 1010.436973 0.001979341664 +2.498993589e-06 0.001517333519 0.009085439681 0 9.730671718 9.928786576 979.7387758 0.002041360462 +2.499975972e-06 0.008159566117 0.0001530491305 0 -0.2633958739 2.022697588 930.4889325 0.002149407618 +2.497707644e-06 -0.002650784156 -0.01314324558 0 -18.70628739 -8.633647649 961.8682248 0.002079286901 +2.498545012e-06 -0.00422131788 0.001413112523 0 -14.34777949 7.709239418 954.6010737 0.002095116018 +2.498510803e-06 -0.0006851821998 -0.006564993567 0 -2.082802522 -17.50743283 1021.37719 0.00195814046 +2.4996377e-06 0.0028092635 0.002565647985 0 3.08677119 -8.539300351 1066.636999 0.001875052151 +2.497080091e-06 0.008656974994 0.01354372458 0 -17.56291569 17.33436268 1020.694875 0.001959449439 +2.497807957e-06 -0.003877469641 -0.01494849253 0 -21.41824333 -2.14560032 1027.707896 0.001946078266 +2.498620506e-06 0.006756419158 -0.004909457127 0 15.5466127 -1.987854494 943.3924419 0.002120008505 +2.496186904e-06 -0.004374808525 0.01320339486 0 -19.7497352 16.70001586 936.0347928 0.002136672713 +2.496609684e-06 -0.0008233286999 0.01082698842 0 20.96740432 10.23329447 895.5379628 0.002233294492 +2.498210979e-06 -0.009522891645 -0.01192215402 0 -16.39814095 6.524235202 932.749542 0.002144198319 +2.493802934e-06 -0.002687252038 0.009787183183 0 17.86380459 27.60565763 933.1218208 0.002143342868 +2.496065652e-06 -0.0002043434791 -0.005200171242 0 17.13087099 -22.47311637 1006.773297 0.001986544543 +2.496884443e-06 -0.007047467763 -0.01185235814 0 16.28476921 16.53125964 929.174577 0.002152448043 +2.495081294e-06 -0.002991753924 -0.007591952928 0 -24.75737171 20.01004308 1014.177919 0.001972040569 +2.496830913e-06 0.00145419817 0.003438847591 0 -19.25795603 -18.73178988 1066.60686 0.001875105135 +2.499681602e-06 -0.00786525446 0.01406025306 0 5.997237444 3.828007964 891.5435435 0.002243300414 +2.498082893e-06 -0.009470350491 0.009238719251 0 -15.80570242 8.986739351 928.2742543 0.002154535678 +2.499009599e-06 0.006122877151 0.0141625347 0 10.57748507 6.839509678 894.8527166 0.002235004669 +2.496851385e-06 -6.424307823e-05 -0.002088349157 0 -13.79976258 -18.25037657 911.344063 0.002194560848 +2.498929845e-06 0.003284833343 -0.008844009633 0 15.16554996 3.856758387 1069.444956 0.001870128975 +2.498951442e-06 -0.005729772649 0.01294433737 0 -6.997090473 12.79966535 1007.156128 0.001985789436 +2.496102469e-06 0.002382888286 -0.004778161689 0 -11.97128263 -22.02777516 897.4301714 0.002228585648 +2.498262877e-06 0.004499659585 0.009428499697 0 -17.85417978 3.906424309 980.2806805 0.002040231986 +2.497104927e-06 -0.005237354496 0.006592058963 0 13.46998786 18.58568509 953.4931595 0.002097550444 +2.496723601e-06 0.002477096943 0.002585785864 0 18.92375597 -12.137195 877.8074264 0.002278404055 +2.499950184e-06 0.002872860678 0.01306328959 0 2.881003924 -0.5373487011 928.4656464 0.002154091546 +2.495549392e-06 0.0003428192483 0.0130074486 0 -14.56985157 27.68667882 1047.947167 0.00190849316 +2.499338936e-06 0.006852432322 0.004451307699 0 11.23212038 -1.601719254 986.6278588 0.002027106758 +2.498461094e-06 -0.0008238812396 0.010952793 0 -3.984291129 15.5123825 912.7033257 0.002191292552 +2.497196651e-06 -0.003829352106 0.007634902394 0 -24.66283348 3.587608789 1052.091828 0.00190097475 +2.498358319e-06 -0.003032559981 -0.006897886922 0 -0.1504241339 16.45509525 907.9296548 0.00220281383 +2.499603701e-06 -0.004092406528 0.01185576581 0 1.229387113 8.689472611 985.6999617 0.002029014992 +2.498009081e-06 -0.001784278909 -0.009882632671 0 -3.28380415 20.34026503 1032.220163 0.001937571141 +2.499757156e-06 -0.005494087669 0.0005910454248 0 -3.931117733 5.856188934 1012.036892 0.001976212544 +2.495164955e-06 -0.001652404186 0.006304728189 0 17.55002358 20.86075866 876.0218296 0.00228304813 +2.498544595e-06 0.008688001046 -0.007937614925 0 11.72450245 13.42596218 1044.529659 0.001914737396 +2.496675769e-06 -0.005443417029 0.001854646197 0 -25.08714402 0.8903291165 973.0770631 0.002055335673 +2.498672172e-06 -0.004783911947 0.005102554495 0 11.17417439 12.4121985 1024.639703 0.001951905625 +2.49795431e-06 -0.006126662889 -0.0003145148233 0 8.375029589 16.16546967 899.8075444 0.002222697523 +2.497959451e-06 0.009309436525 -0.003875894649 0 2.65785476 -18.84707704 941.8864863 0.002123398126 +2.498514619e-06 -0.004548787763 0.009270873978 0 8.466306641 15.89207596 1044.480144 0.001914828166 +2.498829858e-06 -0.004632131229 0.01176718944 0 -12.54484652 6.086712838 911.3000886 0.002194666746 +2.498673244e-06 0.009309130446 -0.009344569948 0 -5.19270902 15.28689075 990.910727 0.002018345291 +2.497227783e-06 -0.008389652316 -0.002530806314 0 -19.32050501 10.74549826 938.4973706 0.002131066173 +2.498627445e-06 0.001336211301 -0.01481991063 0 -1.310599087 15.13100014 916.4767229 0.002182270373 +2.497352421e-06 0.005300874356 0.006532827755 0 -15.69238238 -15.6553828 962.8970553 0.002077065237 +2.498128689e-06 -0.002492044033 -0.009851955192 0 13.47030388 -15.74887896 1070.92637 0.001867542023 +2.498749514e-06 0.007763352618 0.0007733284193 0 -12.49770915 10.99162246 1052.23012 0.00190072491 +2.499989869e-06 -0.006772469752 0.002829110732 0 -1.306700248 -0.5452064645 994.6962646 0.00201066403 +2.496799979e-06 0.00983484704 -0.01459652832 0 -11.1356409 -19.36933192 882.7257146 0.002265709458 +2.497943705e-06 -0.009759333995 -0.01460397832 0 -11.48653618 14.56789062 914.5152861 0.002186950869 +2.49399778e-06 -0.004791480205 0.01006025662 0 -20.43262671 28.70210802 1015.959827 0.001968581776 +2.495415577e-06 0.002598617943 -0.006780496796 0 -16.44202227 -22.43721201 918.0139687 0.002178616087 +2.497913351e-06 0.007119308654 0.01040642282 0 -1.898321285 19.9608392 981.2016451 0.002038317007 +2.498644898e-06 -0.004746144996 0.003500732726 0 10.78222827 -13.61348036 1054.664733 0.001896337232 +2.49923127e-06 0.002971123564 -0.003832756416 0 10.66630706 -4.307850954 927.6267484 0.002156039596 +2.496613065e-06 0.001222394533 0.01345941978 0 -9.695740243 21.38869777 901.8352064 0.00221770007 +2.499422439e-06 0.00199032316 0.005095284493 0 -11.1423176 2.586742633 1064.198664 0.001879348346 +2.499891812e-06 -0.002346532722 0.008290750764 0 -2.834214515 -3.377260494 947.8086235 0.002110130622 +2.498850334e-06 -0.004556957809 0.001032034352 0 14.64957733 -0.4376144611 966.3690853 0.00206960263 +2.496228806e-06 -0.001563528506 0.003019710307 0 14.35517069 24.70957183 1039.952335 0.001923165064 +2.497363953e-06 -0.003727463526 -0.01296677157 0 4.095113988 -23.23590129 1027.160422 0.001947115521 +2.499796002e-06 -0.007894981382 0.01420347784 0 5.632611763 -0.8476686074 891.7261322 0.002242841078 +2.499960989e-06 0.004741784791 0.0007291092561 0 2.461611232 1.243551186 987.332724 0.002025659589 +2.496752236e-06 -0.00369163957 0.003671217402 0 -26.46277446 -5.629612386 1061.030866 0.001884959302 +2.498363397e-06 -0.009945099056 -0.006637256322 0 5.183487169 18.02404471 1036.368654 0.001929815218 +2.497452512e-06 -0.006489117215 -0.005533359004 0 -18.17945044 14.33353328 1025.23181 0.001950778331 +2.499235143e-06 -0.001368733058 -0.01111890423 0 8.582725275 -7.349128749 913.4700378 0.002189453312 +2.499564355e-06 -0.002581588645 -0.008865288247 0 6.688289215 6.659804874 1011.103007 0.001978037831 +2.498400063e-06 -0.003892115555 0.003208796389 0 -14.33153863 -6.600405392 881.8457258 0.002267970396 +2.499845032e-06 0.007081989995 -0.009416679007 0 2.6821178 4.118253386 882.7668021 0.002265604002 +2.497318708e-06 0.001394515466 -0.009831917917 0 15.80011673 14.41728606 923.2824382 0.002166184384 +2.499277668e-06 0.0008019396616 -0.002167909036 0 4.073222833 -10.48079888 935.424347 0.002138067078 +2.497194594e-06 -0.0003848944698 -0.01224181417 0 18.21435495 11.25340904 903.4987197 0.002213616861 +2.499740561e-06 4.281777423e-05 -0.002166072673 0 -1.92961184 -6.658452948 962.3537322 0.002078237901 +2.497441147e-06 0.005846741362 0.006328762996 0 12.03172624 19.05957021 995.9558943 0.002008121054 +2.496798887e-06 0.00042941703 0.011992394 0 21.36686628 12.82968715 984.5141091 0.002031458952 +2.498151728e-06 -0.006409464334 -0.0005081303394 0 -18.66471136 -0.5264684493 970.902455 0.002059939173 +2.497438714e-06 -0.004891017717 0.001081638169 0 5.120788264 22.2717312 1009.320873 0.001981530406 +2.499725229e-06 0.004916015551 -0.00874126506 0 -6.913281403 0.459074232 934.5912271 0.002139973009 +2.499350913e-06 -0.002950298814 -0.01307775846 0 11.22093361 1.608226746 994.7997549 0.002010454858 +2.49807862e-06 0.003672513408 -0.004809592653 0 3.576978036 -19.26459535 999.2477053 0.002001505722 +2.497629292e-06 -0.004709161688 0.01027398554 0 12.48623222 18.69869033 1032.220016 0.001937571418 +2.497457278e-06 0.00318000481 -0.005395718452 0 8.052184413 -19.2355946 924.3521407 0.002163677577 +2.496464926e-06 -0.007225402091 -0.006955624816 0 -16.99634778 -18.59219848 946.8621513 0.002112239883 +2.496389065e-06 0.003252369254 0.001468564658 0 21.67490776 12.78072181 935.8204935 0.002137162003 +2.498988823e-06 0.001297719241 0.001555535335 0 -14.45699227 -0.003270763813 1016.444246 0.001967643584 +2.498889343e-06 -0.008378251232 -0.007212999926 0 -15.09163459 4.928054926 1065.025944 0.001877888526 +2.499348479e-06 0.00981383252 0.01276660338 0 -7.209741568 -9.667284433 1056.368175 0.001893279302 +2.497246653e-06 -0.00273395943 -0.006729567046 0 16.35325564 12.80890288 884.8384407 0.00226029963 +2.499635634e-06 -0.005819137446 -0.002874839378 0 7.733070705 0.04548585868 905.8407774 0.002207893539 +2.496378931e-06 -0.002392489393 -0.007022262763 0 -13.48191097 -19.70648142 886.7657164 0.002255387148 +2.497397734e-06 0.001465771911 -0.004389459144 0 -14.52395556 -14.19436676 889.840693 0.002247593323 +2.499652956e-06 0.003640412176 7.867565844e-05 0 -6.738651065 4.367539512 963.8264528 0.002075062366 +2.497854546e-06 -0.0003500796389 0.003465779694 0 15.43091019 -14.36990015 1017.592117 0.001965424031 +2.495940862e-06 -0.008370307167 0.003317347155 0 -20.09731047 18.73580361 963.734543 0.002075260262 +2.497104e-06 -0.009380667577 0.009842327975 0 -14.25226811 -20.80306755 1047.344606 0.001909591159 +2.499311256e-06 0.004885464883 0.006389122987 0 -7.412493724 7.68743028 909.7938714 0.002198300146 +2.497398906e-06 -0.001039498313 -0.01270043344 0 18.71826269 -8.420027394 899.5345189 0.002223372153 +2.495171739e-06 -0.007721843855 -0.0147546537 0 -17.13392912 -23.16611327 926.5668217 0.002158505952 +2.496963456e-06 0.0001368313143 0.004504063795 0 -23.10503727 -0.8698203095 937.8027832 0.002132644556 +2.498698431e-06 -0.006721787257 0.001715080042 0 -13.10431982 6.936807855 918.8029234 0.00217674536 +2.496445486e-06 0.00293804355 0.008814362905 0 -14.34188906 22.35581277 995.6417194 0.002008754717 +2.498233529e-06 -0.001920551672 0.001883715042 0 -8.420604851 -15.45048684 935.9098642 0.002136957923 +2.497716674e-06 0.008086337694 0.008257622591 0 18.28531475 -5.169382412 888.8962692 0.002249981319 +2.496862212e-06 0.007706006821 0.0114346369 0 -15.41631152 -17.02484781 916.3961448 0.002182462259 +2.497645869e-06 -0.006567108096 -0.004136578578 0 20.3947996 8.500903264 1017.93734 0.001964757477 +2.499185011e-06 -0.002310805325 0.01129478695 0 12.407486 -1.598164695 979.7449953 0.002041347503 +2.496852306e-06 0.009255450508 0.01322214486 0 19.38294485 15.71235694 993.985394 0.002012102001 +2.497154859e-06 0.007798240017 -0.003285485955 0 12.90961688 -17.78229033 920.7928013 0.002172041307 +2.498184496e-06 0.0004396941932 -0.01085979721 0 14.99174864 -8.323848983 899.6436299 0.002223102497 +2.498760481e-06 -2.139274497e-05 -0.009163005457 0 0.3974387795 -14.77379863 938.4840987 0.00213109631 +2.499885193e-06 -0.001979946815 -0.01388297042 0 -0.1469488197 -4.979386124 1039.579425 0.001923854928 +2.497675698e-06 0.00868935884 -0.01012944706 0 21.03594549 -1.187705328 976.8781228 0.002047338305 +2.498506896e-06 -0.0005090937857 -0.01258510001 0 -16.57888428 -0.5541879417 959.7110083 0.002083960674 +2.495678616e-06 -0.008585364022 -0.009300036288 0 -3.527743031 -30.31245463 1037.371435 0.001927949751 +2.496443726e-06 -0.008166823974 0.00615072869 0 -11.52684853 22.72103172 954.8076123 0.002094662814 +2.497288282e-06 0.008122240659 0.007301521562 0 13.50747141 17.47834213 948.136953 0.002109399907 +2.496758463e-06 0.002278022505 0.00769866548 0 -20.82684426 16.40696493 1040.780526 0.001921634725 +2.495144172e-06 0.006104971934 -0.009512178374 0 25.19184041 15.74643136 952.6064566 0.002099502881 +2.498288552e-06 -0.005316929785 0.005933313165 0 16.09088616 1.8623569 875.3084126 0.00228490892 +2.497021107e-06 0.001737167649 -0.001150487806 0 -6.766214702 -21.12448075 908.3581235 0.002201774772 +2.497990975e-06 -0.004822169221 0.006396649028 0 2.029041555 21.2622652 1065.220571 0.001877545416 +2.498803391e-06 0.004506050623 -0.01448069178 0 -13.4410534 -3.601885384 899.3388237 0.002223855957 +2.499304168e-06 0.005856116461 0.003500275898 0 -10.86039117 0.8873033521 923.5865129 0.002165471206 +2.496372317e-06 -0.0003083431907 -0.005715265281 0 16.35063048 -22.58193996 1034.485962 0.001933327347 +2.497871559e-06 0.005342959543 0.004923440572 0 18.48697339 7.323599702 963.4641964 0.002075842577 +2.498128808e-06 -4.361403175e-05 0.009379374711 0 8.814731637 15.10966482 903.9943028 0.002212403324 +2.497754611e-06 -0.009767639455 0.006498822668 0 -18.18878052 -11.80621881 1022.922586 0.001955182168 +2.49890616e-06 0.006602476463 -0.009134757605 0 -14.25206753 0.2404609361 963.5551921 0.002075646539 +2.495796047e-06 -0.008972744485 0.0110235063 0 18.06958114 20.47047005 941.0665607 0.002125248185 +2.499243023e-06 0.009639118626 0.009720576941 0 -9.734601091 7.162949423 982.1443295 0.002036360584 +2.494007914e-06 0.002429015064 0.01404038229 0 -20.39172055 24.52552586 920.5232868 0.002172677246 +2.497376514e-06 -0.006677161306 0.002840567068 0 8.154020845 21.3942015 999.1325013 0.002001736504 +2.497877125e-06 -0.009417485329 0.0009047767846 0 -0.7820014324 -20.68834621 1004.431243 0.001991176612 +2.498643976e-06 0.004680579524 -0.00687131793 0 -1.055459909 15.16147125 922.6863955 0.00216758371 +2.494411136e-06 0.004299742049 -0.004503386824 0 27.11025496 23.32828619 1068.867112 0.001871139992 +2.496069836e-06 -0.006774072908 0.000618422837 0 -16.31803522 20.32536807 929.1500473 0.002152504868 +2.493920947e-06 0.001932420847 -0.008502646296 0 19.33783322 -29.0439497 999.7825983 0.002000434898 +2.494940126e-06 0.0009179197485 0.009388885538 0 22.40383018 23.09769702 1010.756847 0.001978715262 +2.497547337e-06 -0.005558050591 0.003033043602 0 16.27485428 14.92684597 996.722811 0.002006575929 +2.495629622e-06 -0.005560377012 0.009083068203 0 -2.146334377 31.51910061 1067.871492 0.001872884533 +2.499473114e-06 0.00505255471 -0.01379607614 0 4.644463224 7.776054745 882.2671402 0.002266887101 +2.496817378e-06 0.00909121722 0.007594885002 0 -10.71596797 22.35831705 982.258812 0.002036123245 +2.499560589e-06 0.001682299417 -0.008070031574 0 9.051118309 0.4285839889 966.5173384 0.002069285175 +2.497383558e-06 -0.003908469756 -0.01264404862 0 -22.87559157 -3.710354894 1012.675089 0.001974967116 +2.497718532e-06 0.009311131742 -0.004405475655 0 -15.05630692 11.83533262 896.2405067 0.00223154386 +2.497559286e-06 0.0007769561419 -0.004266181604 0 -13.38732743 -16.00548833 944.0822564 0.002118459474 +2.497641358e-06 -0.004747525514 -0.003967034847 0 22.56767404 -3.375450172 1050.246766 0.001904314363 +2.495587723e-06 0.003284550104 0.008543170758 0 -8.725222616 24.8451802 885.8532552 0.002257710279 +2.497662804e-06 0.002716402989 0.007746342269 0 14.48656227 -17.40191666 1046.914841 0.001910375058 +2.498500593e-06 -0.0004362412356 0.00879907557 0 -12.03559861 -13.17082121 1030.062816 0.001941629159 +2.498718009e-06 -0.003652500268 -0.00480073377 0 5.476447988 14.74136568 981.9070957 0.002036852579 +2.494497682e-06 0.006392366588 0.004802154922 0 26.70404281 -17.30376636 958.4213593 0.002086764846 +2.496072432e-06 -0.008675880195 0.0008944472065 0 19.82916222 -19.124908 982.3718998 0.002035888853 +2.496651887e-06 0.001937067979 -0.01192687271 0 -20.74310822 15.60185964 1002.53201 0.00199494877 +2.494567592e-06 0.006662794156 0.006606092923 0 17.1608471 27.00619064 969.9476126 0.002061967032 +2.498172993e-06 -0.000782015766 0.01127613966 0 14.64976653 10.80083463 951.8954578 0.002101071062 +2.499442755e-06 6.625273731e-05 -0.01465625326 0 5.734999636 8.339349527 958.6273153 0.002086316515 +2.499526032e-06 -0.005633729422 -0.00517383927 0 2.835520431 9.172687705 986.0390615 0.002028317212 +2.499751434e-06 -0.008103144956 0.0095297996 0 -1.192962118 -6.74898134 972.002314 0.00205760827 +2.499898124e-06 0.005281581967 0.007368346963 0 3.768464134 -1.291301921 882.4980621 0.002266293928 +2.497045017e-06 -0.006876477133 -0.001502297306 0 -24.33847605 -0.2475090898 1000.761928 0.001998477304 +2.499606959e-06 0.006526724659 0.004300397881 0 -5.636006612 5.801605207 912.2341405 0.00219241959 +2.498701084e-06 -0.005740122795 0.005875763444 0 -11.35234648 11.36896675 996.6172269 0.00200678851 +2.498101167e-06 0.0043211025 0.002978453196 0 1.356779888 18.45505603 949.3004961 0.002106814447 +2.497204416e-06 0.00607149492 0.0131926244 0 14.74473203 14.93623244 887.2348645 0.002254194554 +2.499414353e-06 -0.0008309119241 0.003292513762 0 -6.151800315 -8.322623568 956.1922302 0.002091629629 +2.499438586e-06 0.009731967649 -0.009794343933 0 -8.221680946 7.513893866 1051.025737 0.001902902973 +2.499883664e-06 -0.007821472427 -0.0117713049 0 -5.014522778 -0.8731376836 1055.201398 0.001895372773 +2.498199079e-06 -0.001315639238 0.003385711976 0 4.05962705 -19.89983515 1069.852316 0.001869416899 +2.498836668e-06 0.001220184029 0.01240011435 0 12.23560007 6.289720128 901.7762366 0.002217845092 +2.497816388e-06 -0.002521634931 -0.0106253402 0 -13.87362229 -13.01612429 910.0125056 0.002197771995 +2.499553453e-06 0.003657514518 -0.005869855152 0 -2.842857536 -9.288575685 1027.815802 0.001945873956 +2.499396192e-06 0.002342382343 -0.003060480393 0 6.541932384 -9.680183821 1063.083184 0.001881320324 +2.498240644e-06 0.009708851343 0.01246699435 0 -7.304740556 15.20467982 899.0137376 0.00222466011 +2.497592811e-06 0.0004797432479 -0.006242116448 0 7.543046712 22.2191892 1069.023299 0.001870866615 +2.496146557e-06 -0.006685956195 -0.0001330291643 0 -27.36474906 9.078457 1037.945554 0.001926883344 +2.499630553e-06 0.00594716426 -0.00409943636 0 7.984893241 4.569227344 1070.195912 0.001868816707 +2.497815426e-06 0.006964843143 -0.0043741514 0 -17.40432597 -11.93971312 1009.408913 0.001981357579 +2.496137368e-06 -0.009922972047 -0.008406796516 0 2.551265721 -28.40850142 1025.614484 0.001950050463 +2.499094646e-06 0.007576623554 -0.004138842272 0 -14.22460843 1.604504352 1063.659109 0.001880301672 +2.495005843e-06 -0.0002186356205 -0.00437684848 0 -20.04995602 -24.05322707 990.0680206 0.002020063226 +2.499047151e-06 -0.009102566815 0.00129723985 0 -3.24575343 14.37575536 1067.426925 0.00187366456 +2.498272147e-06 -0.009181907349 0.009768091359 0 -18.45828551 -3.10968333 1006.671205 0.00198674601 +2.497976032e-06 -0.00899241453 -0.006987238547 0 19.92995606 -5.802792675 1031.400321 0.001939111284 +2.497211397e-06 -0.0004162227502 0.01390336682 0 14.35562539 -15.06731785 880.8623897 0.002270502207 +2.495528611e-06 -0.001833615783 0.01080745509 0 -24.43841691 14.76455608 954.1394931 0.002096129564 +2.499904174e-06 0.004128473606 -0.001989028109 0 3.701225902 1.092550658 881.506475 0.002268843232 +2.496139282e-06 0.0004509651288 -0.01061338395 0 22.29057187 -18.72081288 1046.95429 0.001910303076 +2.499827583e-06 0.002672523954 0.001499068472 0 -5.327903404 -2.452363429 998.7732229 0.002002456568 +2.499854641e-06 0.007519227313 0.0086921566 0 -0.1495959205 -5.686540556 1055.002037 0.001895730937 +2.498142227e-06 -0.003976830579 -0.006680458942 0 10.97874042 13.75617578 912.8172396 0.002191019093 +2.49923905e-06 -0.008174924655 -0.004370116512 0 0.09269403718 12.72630312 1031.504235 0.001938915937 +2.499120149e-06 -0.0039431707 0.005953502816 0 8.484029867 -8.639293428 912.6706129 0.002191371095 +2.4980911e-06 0.007158180284 0.01143192592 0 -13.03787833 -15.06778656 1019.477397 0.001961789449 +2.49932477e-06 -0.00319092779 0.007225251168 0 -6.046480457 10.51606789 1043.738774 0.001916188274 +2.496520044e-06 -0.000653848974 -0.01327959558 0 17.44867655 15.70504016 889.3819882 0.002248752534 +2.49777747e-06 -0.007533240989 0.004667934878 0 -15.41986394 12.10394735 929.4777533 0.002151745959 +2.496872083e-06 -0.005715988511 -0.01198865175 0 -17.15504364 -17.2937824 973.4563658 0.002054534821 +2.498613288e-06 0.006161301555 0.009006484486 0 11.152477 10.31593092 912.0440932 0.002192876435 +2.498600816e-06 -0.002214193144 0.006370447318 0 -15.66918396 5.01256487 983.2405786 0.002034090174 +2.497705424e-06 -0.006980028213 -0.006602198614 0 19.13828998 -7.496971591 959.1503811 0.002085178758 +2.496222313e-06 0.002819947042 0.007276949307 0 -21.5922289 13.43466577 924.6599745 0.002162957255 +2.494721034e-06 -0.008208599687 0.01099052081 0 17.0931328 24.54455695 919.778686 0.002174436123 +2.499911049e-06 0.00153752245 0.001010288335 0 3.70587311 -1.894355548 986.743404 0.002026869389 +2.494519021e-06 -0.003093620385 0.01019373088 0 -15.24696019 30.53126497 1029.893044 0.001941949225 +2.497971116e-06 0.008595554805 -0.007092286753 0 -13.590549 14.49480106 986.084111 0.002028224548 +2.497691432e-06 0.000576367639 -0.01442621434 0 -2.457914125 -20.10108104 942.1181149 0.002122876069 +2.498728094e-06 -0.002235966548 0.002008303986 0 3.294063132 15.71184006 1006.334895 0.001987409967 +2.497068273e-06 0.005557026267 -0.005189022585 0 17.4447145 13.64715767 914.2806622 0.002187512088 +2.497292072e-06 0.009256661409 0.01108085224 0 19.89452247 12.12128038 1000.637628 0.001998725556 +2.499955466e-06 0.005839380273 0.01401839515 0 -1.550898579 -2.480871286 980.3359276 0.002040117009 +2.497314056e-06 -0.008518374632 0.001665215555 0 10.09562087 -19.26093507 937.88258 0.002132463107 +2.498596889e-06 -0.001748583154 -0.01463794932 0 7.089463692 -14.41679966 958.8384867 0.002085857032 +2.499567192e-06 -0.004892461416 -0.005058269484 0 8.221849431 -4.864868352 1026.74573 0.00194790194 +2.494703263e-06 -0.0006457038969 -0.004479139061 0 -20.11203821 -23.91405777 959.2769136 0.002084903714 +2.499089398e-06 -0.005988594294 -0.0003426413122 0 9.016518229 10.28337016 1013.292205 0.00197376432 +2.499568781e-06 -0.003963009054 -0.006230775579 0 0.5756381315 -9.464463884 1020.953214 0.001958953626 +2.499462966e-06 -0.001734817782 0.009039923502 0 -0.3113267899 9.838098068 949.6804283 0.002105971588 +2.49497345e-06 -0.009254570743 -0.003626398703 0 -26.95293148 11.79849152 927.2507088 0.002156913962 +2.498115208e-06 0.008867379026 0.009928523465 0 7.174997372 15.71340694 889.45478 0.002248568499 +2.495357354e-06 0.006366179269 -0.004669079636 0 -18.88107237 -19.66937408 894.1383262 0.002236790373 +2.499149339e-06 0.004987102156 0.001919539589 0 4.79065843 -11.46464475 952.4862536 0.002099767836 +2.49880325e-06 0.005011280295 0.004975341666 0 16.20866794 2.53408588 1060.221033 0.001886399097 +2.497454434e-06 -0.001262406372 0.00619138018 0 2.968712709 19.62844669 879.4762927 0.002274080628 +2.498179799e-06 0.006816063416 0.01206636305 0 17.73978919 5.78682132 977.7172782 0.002045581115 +2.496424197e-06 -0.005469070924 -0.0005161800538 0 23.13658096 16.02468247 1051.847689 0.001901415977 +2.499022063e-06 -0.008781095683 0.005715966623 0 -2.63305961 -11.95247529 875.0120252 0.002285682874 +2.498349587e-06 -0.006832864415 -0.009617845612 0 19.19819984 1.842148144 1061.284473 0.001884508866 +2.497049602e-06 0.003137318939 0.002780966142 0 -18.78735197 17.21606533 1048.562488 0.001907373212 +2.498699773e-06 0.006956788008 0.0126343653 0 13.32601942 -7.734918388 955.3046278 0.002093573026 +2.498557507e-06 -0.0002521349909 -0.009813962218 0 6.548418622 16.37206465 1037.917451 0.001926935518 +2.498658894e-06 -0.002128839684 0.01182632515 0 9.147116564 -14.5888676 1051.191552 0.001902602809 +2.497025137e-06 0.002196036163 -0.007430841734 0 3.218882471 -24.14865636 998.3316478 0.002003342281 +2.499037938e-06 0.006002618303 -0.005066919406 0 -0.6693716474 -12.31745371 889.1644803 0.002249302626 +2.499677372e-06 4.25985083e-06 0.001613871544 0 5.924468868 -4.862098685 954.0633006 0.002096296963 +2.496746251e-06 0.007216904331 0.00138632637 0 12.40135861 18.97472392 888.162098 0.002251841195 +2.494536441e-06 0.003735392969 -0.01308351979 0 -12.46356984 -31.67977172 1029.017981 0.001943600634 +2.497594281e-06 0.003587051802 -0.002012792474 0 -18.91107113 -3.364691643 875.365432 0.002284760086 +2.499779605e-06 0.002129965951 0.001212016633 0 5.980601998 2.926263206 1002.815959 0.001994383897 +2.496685156e-06 -0.009974800907 -0.009762261997 0 -0.5663878846 -27.0025279 1048.424871 0.001907623575 +2.497227875e-06 0.004568909057 -0.005782875828 0 20.78872015 -6.863624935 929.3786404 0.002151975431 +2.499319791e-06 0.001969054909 0.009764253977 0 7.482461412 7.730920723 922.33405 0.002168411759 +2.498285966e-06 0.005260311393 0.007909659573 0 -17.30349674 8.996074416 1053.05201 0.001899241425 +2.494999281e-06 -0.002479942897 0.008595830679 0 -21.74931698 21.08154118 957.0558577 0.002089742186 +2.496619844e-06 0.009064301429 0.002719760018 0 13.43057147 -22.70130811 1013.949997 0.001972483856 +2.499683592e-06 0.008292053686 0.01292568349 0 5.470255475 5.035258149 934.576599 0.002140006504 +2.498811798e-06 0.005631656013 0.0005299737677 0 -3.737344448 -14.75928238 987.4682508 0.002025381574 +2.498191575e-06 -0.008403332285 -0.004300693532 0 16.85836818 -9.581034692 1019.321695 0.001962089113 +2.499499423e-06 0.00474657855 0.01478417922 0 8.984926311 -4.538207702 1005.943854 0.001988182534 +2.498706581e-06 0.005950400238 -0.01049452413 0 -1.231232395 16.95135438 1056.520685 0.001893006003 +2.497033191e-06 0.00287369173 -0.009614276045 0 -23.81542864 -7.133951483 1020.152125 0.001960491921 +2.499408358e-06 0.008407477019 0.007926298224 0 9.647263917 5.922069099 1040.544041 0.001922071456 +2.49789271e-06 -0.00552099091 0.001323662996 0 -5.546728486 20.1444798 1017.444281 0.001965709608 +2.495922374e-06 -0.007635732424 0.01070026529 0 -0.9272861756 26.81157148 938.8523843 0.002130260341 +2.497481131e-06 -0.008891792283 0.007505737818 0 -22.1349797 -7.943450455 1047.375612 0.001909534629 +2.494615003e-06 -0.005570826652 0.01126842765 0 19.18029102 26.54127315 997.0200274 0.002005977759 +2.498191791e-06 -0.005706522898 -0.01407879144 0 -15.55764281 -9.994882008 972.1124007 0.002057375257 +2.498325712e-06 -0.008344316562 -0.003891747538 0 13.10986912 9.994810577 900.6530331 0.002220610964 +2.497544511e-06 -0.00171184998 -0.0005428257957 0 -20.1816805 -8.173202942 982.1811794 0.002036284183 +2.499520366e-06 0.007636221256 0.008207074441 0 -9.537195301 -3.517536043 1037.802247 0.001927149421 +2.499180065e-06 -0.0005881563667 0.01387842781 0 -6.682164471 -11.35040747 1028.420057 0.001944730645 +2.497002465e-06 0.002098630825 0.0007478454988 0 23.72153787 7.786992362 1019.231829 0.00196226211 +2.496637579e-06 0.003187421937 0.009641485387 0 23.08653958 -12.96093264 1020.447718 0.001959924027 +2.495951976e-06 0.003951389347 -0.009207477879 0 -21.34015255 16.86595219 955.3776443 0.00209341302 +2.499184902e-06 0.004763693893 0.01001770047 0 11.31438641 1.472429828 893.5209285 0.002238335932 +2.499328265e-06 0.008043207079 -0.00820395747 0 -12.29941548 -1.412686371 1068.00322 0.001872653529 +2.498135064e-06 0.003182484759 -0.005057468209 0 9.845263164 -17.46026259 1037.602641 0.001927520151 +2.49794553e-06 0.005411873744 -0.00762074888 0 9.095617502 -17.27912053 963.0163315 0.002076807978 +2.495610354e-06 0.009713694323 0.005197792731 0 28.52572074 7.578224248 995.4732967 0.002009094575 +2.494838089e-06 -0.00610370385 -0.01358939559 0 -10.53784552 -32.60962487 1065.755101 0.001876603733 +2.496014354e-06 0.004045540374 -0.01267748707 0 10.84566042 -27.98474764 1062.389623 0.001882548509 +2.499962161e-06 0.006113656461 -0.0149970474 0 1.274871701 2.458710118 1006.759449 0.001986571869 +2.498305844e-06 -0.001214433629 -0.01493807336 0 16.25771932 4.401943355 914.7877535 0.002186299491 +2.498747991e-06 0.005565402242 -0.008630953012 0 11.86452399 -7.403032597 883.5943096 0.002263482209 +2.497274943e-06 -0.009753986965 0.006167364218 0 -21.04785068 5.182803466 928.1327027 0.002154864271 +2.495763083e-06 -0.009391444926 -0.001199405165 0 -29.41028534 6.308314021 1032.643509 0.001936776809 +2.497142952e-06 -0.004092306686 0.01412526405 0 -8.762429364 23.16440712 1035.622023 0.001931206518 +2.498025773e-06 0.0009319410147 0.009925921967 0 -18.77525787 -3.026823705 956.7869988 0.002090329407 +2.499407822e-06 -0.005999173876 -0.01268339729 0 8.449223056 -6.16370787 960.9277699 0.002081321888 +2.497844191e-06 0.0003701097425 -0.01360957573 0 17.49855801 -6.676751916 901.6871953 0.002218064103 +2.498371081e-06 0.005186232417 0.0008240705612 0 -15.72460967 -7.361748449 961.7075011 0.002079634398 +2.49998774e-06 0.003765507676 0.004648100627 0 -1.000876008 -1.03859527 921.108391 0.002171297124 +2.498700017e-06 0.005067986688 0.01476713239 0 -14.65067618 -2.902543334 926.0814238 0.002159637315 +2.498001283e-06 -0.007646938032 0.01422975977 0 -8.541903872 16.41288709 925.1503849 0.002161810699 +2.497394126e-06 -0.0005219015712 0.003551843099 0 -23.9667985 2.951731381 1057.346959 0.001891526696 +2.497462408e-06 0.004936605608 -0.0001511562383 0 -21.26955976 -0.5368485086 944.0729261 0.00211848041 +2.496945948e-06 -0.001872756272 0.001322940888 0 -9.169640132 -19.6020716 875.2269746 0.002285121526 +2.497720666e-06 -0.004496511598 0.004437608365 0 5.736700467 -18.66874233 914.409787 0.002187203187 +2.497870578e-06 0.007958564395 -0.002464165378 0 13.68178833 -14.09617966 951.5883867 0.002101749063 +2.497034957e-06 0.001312701679 0.01371483238 0 22.10388352 10.21553013 999.4961355 0.002001008237 +2.498176704e-06 -0.001291570347 0.01212830045 0 -9.344791195 17.124488 1021.308026 0.001958273067 +2.497775684e-06 0.00350517692 0.01434724514 0 -21.56620644 -3.184219092 1033.233607 0.001935670681 +2.495853722e-06 -0.004945942927 -0.01408328265 0 17.06331828 -20.45485982 924.4415572 0.002163468295 +2.496493817e-06 0.00432650073 0.01103682861 0 -13.61568793 23.74993549 1033.259563 0.001935622056 +2.499937247e-06 -0.007273781602 0.01242962263 0 -1.54581157 3.334450602 1037.437275 0.001927827397 +2.495325755e-06 -0.0009896784974 0.01016450173 0 -17.66258214 22.01938887 922.5814375 0.002167830306 +2.499162937e-06 0.007052205941 -0.0005013734219 0 3.940662607 10.62421666 875.6664852 0.002283974588 +2.497426319e-06 0.001270803781 -0.008612526816 0 16.47512032 14.55148968 968.4837828 0.002065083624 +2.499916346e-06 0.004092205022 0.006433309859 0 -0.6609039987 -4.027004993 997.6739005 0.002004663046 +2.497477242e-06 0.008202256504 -0.005370123424 0 19.63511239 -4.165742048 893.257332 0.002238996455 +2.495833738e-06 -0.008800902003 -0.01030094582 0 -9.377761655 -27.20637472 996.2977557 0.002007432004 +2.493984064e-06 -0.002065314702 -0.006530756853 0 21.56847129 -25.37417698 959.2155189 0.002085037159 +2.496163493e-06 0.005877835015 -0.008665993921 0 14.7121218 -25.48041021 1061.573497 0.001883995791 +2.497833585e-06 0.001605963157 -0.011935542 0 -6.090710357 -20.69728461 1036.145877 0.001930230139 +2.496018404e-06 -0.006628773636 -0.009102251802 0 2.37015699 -25.2600524 898.534037 0.002225847789 +2.498943556e-06 0.007570867431 0.004786326424 0 -11.24410055 -8.385849121 964.8345971 0.002072894158 +2.496816328e-06 -0.002146111117 0.001484149243 0 -24.69604544 -5.656601745 1003.56214 0.001992901007 +2.498033619e-06 -0.007193429675 0.01183800263 0 -19.0268494 5.380606947 996.7718904 0.002006477128 +2.499698431e-06 0.006029717717 -0.008731411058 0 6.075456817 -3.614571493 910.2362986 0.002197231645 +2.49634102e-06 -0.001048186524 0.002328765071 0 24.15825426 13.56862564 1023.694487 0.001953707894 +2.499616391e-06 -0.0001307748538 -0.009686289453 0 4.013730431 6.697509349 891.3783094 0.002243716253 +2.497881276e-06 0.00938165796 0.003535868595 0 15.76186068 10.79334527 927.7181773 0.002155827113 +2.498464321e-06 0.002610623529 0.00101669857 0 3.371625589 -15.72590643 917.5069533 0.002179819993 +2.499062805e-06 -0.00251737027 0.01047243504 0 -9.762875701 -8.00720969 922.131634 0.002168887745 +2.497911145e-06 0.006057900698 -0.01050199625 0 5.018005734 -21.05802145 1058.779291 0.001888967812 +2.495660433e-06 0.0003869439475 -0.001227116799 0 -16.86020227 23.00966256 967.6403991 0.002066883526 +2.498443005e-06 0.007812288618 -0.01287630737 0 7.992419265 -14.62419495 944.1993569 0.00211819674 +2.497123853e-06 -0.004023542888 0.00339689567 0 -7.391125374 -22.8204531 999.7182145 0.00200056373 +2.495288124e-06 -0.002711966941 0.001376632482 0 25.0068072 -21.06168255 1064.281414 0.001879202224 +2.498986689e-06 0.001504408359 0.007384829982 0 -12.19726781 -5.368809504 935.9788831 0.002136800345 +2.498124856e-06 -0.0007856127666 0.0008738608542 0 5.294422688 -17.5541705 946.5234205 0.002112995787 +2.499719716e-06 -0.006786543834 0.01377268841 0 -7.664849013 0.7000280645 1027.957362 0.001945605989 +2.497158192e-06 -0.007507643718 0.003474680493 0 -3.538900918 21.34862311 907.316311 0.002204302927 +2.498717006e-06 0.007681837096 -0.006915342892 0 14.83825884 -4.403958646 966.060095 0.002070264583 +2.499935035e-06 -0.001034380677 0.01217203029 0 0.6927748447 3.423174149 968.9131554 0.002064168485 +2.49620201e-06 -0.002258791332 -0.00771458298 0 -25.29972166 10.67116052 995.7072234 0.002008622568 +2.496888727e-06 0.007071496402 0.01017573764 0 4.683310612 25.62767872 1043.89228 0.001915906495 +2.498628105e-06 0.008037031097 -0.01291741678 0 -2.334101599 -14.74697668 901.1790057 0.002219314906 +2.498391673e-06 0.008686551149 0.0001786262426 0 -8.233075605 13.57672001 885.0928073 0.002259650043 +2.496851258e-06 0.001677998095 -0.009700141833 0 -12.71254855 -18.58665137 896.904545 0.002229891699 +2.494532211e-06 -0.009628016739 -0.007820417325 0 -27.25642457 -19.74941816 1017.017388 0.001966534716 +2.498120202e-06 -0.006165389353 0.01161358441 0 18.99314156 6.295599049 1031.667793 0.001938608545 +2.498554746e-06 0.008078825786 0.0004394879448 0 -0.09196953336 -15.83601229 931.2621521 0.002147622982 +2.499103194e-06 0.008756260918 -0.002957512178 0 -5.487137186 12.98472955 1052.420421 0.001900381217 +2.496284863e-06 -0.0006422555447 -0.01221389997 0 -23.31234804 -11.27191477 949.4274424 0.002106532749 +2.499804997e-06 -0.008624368324 0.01053373771 0 -1.44561795 -5.485629186 908.3605388 0.002201768917 +2.499711092e-06 -0.007204105319 0.005300566996 0 1.809158057 -7.734363857 1044.908542 0.001914043114 +2.497637553e-06 -0.007564757499 -0.008421613653 0 -19.09010795 -12.17545566 1041.287384 0.001920699348 +2.499429837e-06 -0.004828694402 0.008915407243 0 -9.341198409 -6.231510531 1051.448459 0.001902137935 +2.499288222e-06 -0.002977914698 -0.001551817164 0 5.411071598 -11.01458507 1028.44244 0.001944688319 +2.497122331e-06 0.002676757686 -0.003093561607 0 18.62364432 -13.04864923 947.4741565 0.002110875517 +2.499915189e-06 0.001379423919 -0.01201264913 0 3.964337105 -1.040682417 995.1640789 0.002009718842 +2.49500762e-06 -0.006974019539 0.008048838323 0 16.97411393 26.89451899 1005.714707 0.001988635531 +2.498612161e-06 -0.006623594738 -0.004067396026 0 13.97124717 -10.39785832 1045.127413 0.001913642275 +2.499466247e-06 -0.005858015805 -0.007696446322 0 -8.028980289 7.529878048 1065.28534 0.001877431262 +2.498871789e-06 -0.009340200927 -0.01065718335 0 -10.21603246 -9.636629576 934.770386 0.002139562859 +2.498027681e-06 0.00402576359 0.01209219625 0 15.25301748 8.685082523 883.4933389 0.002263740893 +2.498847227e-06 0.002279449464 0.009175969397 0 -14.22797312 2.491619523 951.1310862 0.002102759576 +2.499795367e-06 0.00745442918 0.0006992082624 0 -3.036175865 -5.223624719 944.402771 0.002117740504 +2.499177992e-06 0.002567906906 -0.006701598766 0 5.352481833 -11.7264672 1005.206669 0.001989640601 +2.499256906e-06 -0.009860780826 -0.007924960228 0 10.15479553 8.05849409 1063.275831 0.001880979461 +2.496329335e-06 -0.00246121733 -0.003194980777 0 -15.16549118 -20.28568546 934.2692562 0.002140710493 +2.498920814e-06 -0.008194402573 0.01014832947 0 -11.1303589 -9.998229408 1018.226829 0.001964198883 +2.497590117e-06 0.001209332636 0.01195163821 0 -21.10925766 -6.857418278 1010.620594 0.001978982035 +2.498173377e-06 0.009926480949 0.003306613911 0 -16.82998751 3.045634807 894.5869035 0.002235668767 +2.494072788e-06 -0.009922034582 0.007452931583 0 -29.2636872 -20.40465498 1035.233972 0.001931930418 +2.496784236e-06 -0.002630391945 -0.01417164502 0 -18.79675179 -14.56424763 937.1836325 0.002134053488 +2.498524737e-06 0.003477904517 0.001894745626 0 -0.3179729177 -17.33378201 1009.06825 0.001982026488 +2.499271446e-06 0.001480462612 -0.004473260329 0 8.989398509 7.725142714 981.8042686 0.002037065904 +2.498756441e-06 0.00750913884 -0.001410706847 0 11.90166851 11.97676302 1070.443546 0.00186838438 +2.499877786e-06 0.0003854309302 0.003731684682 0 4.735087666 0.01962674998 957.7412173 0.002088246766 +2.497373267e-06 -0.009056387348 0.004842978988 0 -22.33995712 2.447451629 980.1192513 0.00204056802 +2.494166791e-06 0.003588178302 -0.001762514391 0 21.18290241 -23.00475416 914.756743 0.002186373607 +2.499832079e-06 -0.005178961121 -0.01122913674 0 1.595165108 -5.115939541 924.6855949 0.002162897325 +2.495596392e-06 -0.006179551352 0.01488206928 0 -4.318700162 26.22836022 895.1042836 0.002234376527 +2.496616735e-06 -0.002088114242 -0.004996383616 0 -7.632823447 -26.32149619 1053.027981 0.001899284764 +2.499101156e-06 0.00994688611 -0.01170620427 0 11.94117316 7.544480383 1053.337177 0.001898727248 +2.498336575e-06 -0.0004667398753 0.01443975852 0 16.75722788 7.515231727 1006.636032 0.00198681543 +2.497525087e-06 0.0007018975308 0.004788796913 0 16.62942239 -13.60407681 965.3407613 0.002071807262 +2.497799512e-06 -0.008313803342 0.01008913572 0 11.96847742 -15.66592965 939.4426608 0.002128921842 +2.499805785e-06 0.003556932784 0.01074274783 0 4.985086261 -4.069061693 1032.465211 0.001937111274 +2.498609425e-06 -0.002998150163 0.006343998823 0 13.56670883 6.768772709 908.9501651 0.002200340653 +2.499649134e-06 -0.005193929756 -0.004946831355 0 8.189550602 2.402875498 1018.788022 0.001963116916 +2.497333316e-06 -0.003050640458 0.008100060574 0 -19.89877055 13.29275256 1035.79356 0.001930886692 +2.496845071e-06 0.004797502919 0.0003484782041 0 5.441718924 22.31254773 913.8610674 0.002188516473 +2.49556964e-06 0.007714673905 0.00919835656 0 8.286062009 28.99163115 1012.278495 0.001975740876 +2.499477917e-06 -0.007974898578 -0.0122578018 0 8.851202608 3.432500972 928.9790917 0.002152900983 +2.497641826e-06 0.003898806223 0.01044155015 0 6.878177594 21.90808553 1056.966807 0.001892207008 +2.498250083e-06 0.008408137211 0.01239896638 0 16.71524947 -1.610922499 897.3929221 0.002228678153 +2.497275672e-06 -0.008426579894 0.005070856281 0 -1.423013851 21.66957095 929.9560654 0.002150639234 +2.495606181e-06 0.001989223002 -0.009146910226 0 15.38597931 -22.81522345 927.685442 0.002155903186 +2.49241875e-06 0.0005288044317 0.01141331771 0 -25.3420015 30.9267829 1025.654768 0.001949973873 +2.495932668e-06 0.007189805536 -0.001575387719 0 22.65637782 18.18437858 1017.962749 0.001964708436 +2.499750972e-06 -0.001256049275 0.00977470746 0 5.886710679 -3.296860437 956.0020253 0.002092045777 +2.494777191e-06 0.002722746315 -0.009588204562 0 -23.77584281 -25.1021613 1068.933409 0.001871023942 +2.49674933e-06 -0.001561494018 -0.009330743419 0 20.63985807 -10.25845033 903.5077443 0.002213594751 +2.494879689e-06 0.007689464027 -0.005107312999 0 22.2105532 18.97389329 912.1331648 0.002192662297 +2.495403336e-06 0.009691639929 0.01375317152 0 25.85511632 -8.519670995 897.209955 0.002229132645 +2.499481825e-06 -0.008699010373 0.003189201315 0 -8.012039464 -5.591899033 959.6849422 0.002084017277 +2.498107556e-06 -0.004584298283 0.009029120745 0 -15.69069227 -8.710298092 922.1961903 0.002168735917 +2.498264456e-06 -0.0002273855219 0.01040529532 0 -17.83661628 6.966901916 1027.541132 0.001946394104 +2.499010563e-06 0.004776846361 0.01021169612 0 9.890401407 11.18916947 1061.441306 0.001884230422 +2.497735914e-06 -0.009878336 -0.01285121477 0 -13.15439109 -16.6659381 997.421805 0.002005169719 +2.494497022e-06 0.005859592347 0.0002477742545 0 25.19234884 -21.31208182 993.8323351 0.002012411882 +2.495152502e-06 -0.005891438765 0.0122222821 0 -19.29387174 20.17859635 895.9802635 0.002232192027 +2.499364081e-06 0.006580768107 0.003636717859 0 7.350158884 -7.239446753 914.7106154 0.002186483863 +2.498412626e-06 0.005878154067 -0.0127418393 0 -6.335438938 17.185652 1027.727918 0.001946040352 +2.499674743e-06 0.008059084034 0.002643154711 0 -4.951263948 -6.211427589 984.8136697 0.002030841023 +2.49807792e-06 0.008097593803 -0.00347414843 0 20.82580681 1.453713351 1064.464775 0.001878878519 +2.498627405e-06 -0.006031009983 -0.007413180638 0 15.44638579 6.993688994 1023.163837 0.001954721158 +2.495746764e-06 -0.005689734193 -0.00563985503 0 -18.14166898 19.75810554 919.1031483 0.002176034326 +2.497261632e-06 0.008045053352 -0.01384134476 0 24.16873983 -6.444710563 1068.391912 0.001871972239 +2.499061782e-06 0.004443922457 -0.005625083798 0 12.36927653 7.420211455 1052.845859 0.001899613303 +2.498283166e-06 -0.0006038096268 0.0126737926 0 -14.93414723 11.24338149 1008.548478 0.001983047958 +2.498617127e-06 0.003450559559 0.007905416822 0 3.803829993 -16.27101136 1004.553626 0.001990934031 +2.499616926e-06 -0.009780073534 -0.01283868193 0 -2.978842851 8.653458501 1045.505292 0.001912950623 +2.494065776e-06 0.007853317247 -0.0001762233535 0 28.4401929 21.235323 1029.352169 0.001942969626 +2.49635476e-06 -0.007805380821 -0.008809600824 0 -0.09040266691 -28.60360315 1058.783689 0.001888959966 +2.496995988e-06 -0.0008848653547 -0.008660793852 0 -21.25676721 -15.30589117 1068.165589 0.001872368873 +2.497086044e-06 0.001755647049 0.01118784731 0 -13.54735497 19.17350936 972.0535848 0.002057499742 +2.499767615e-06 0.002007734543 -0.01282703048 0 6.887456982 1.73985286 1041.976113 0.001919429798 +2.496247978e-06 0.001337543945 -0.002403812043 0 -22.63782091 16.66547738 1025.601726 0.001950074721 +2.498043887e-06 -0.001753800674 -0.0149991093 0 -20.26446965 -5.770748261 1064.946261 0.001878029035 +2.49892549e-06 0.007515269164 0.004695839274 0 5.178452487 -12.84084273 944.3325988 0.002117897871 +2.497532906e-06 0.00771515721 -0.005405500776 0 10.02136998 17.50834858 907.8469293 0.002203014556 +2.49882117e-06 -0.007927411129 -0.01270266133 0 13.07055271 9.566353208 1054.694998 0.001896282815 +2.496097625e-06 0.0002465269715 0.005830885198 0 -16.35848183 24.33478076 1048.962924 0.001906645082 +2.497112502e-06 0.005846122117 -0.004653828547 0 -0.9148492827 -24.33511851 1012.92218 0.001974485345 +2.497656563e-06 0.007651648833 -0.00503529906 0 -16.12431503 12.06683004 929.9414594 0.002150673012 +2.495256276e-06 -0.008714576373 0.01312360569 0 -14.99628714 26.40788409 985.2441742 0.002029953642 +2.497117127e-06 -0.00671356509 -0.01302572415 0 22.72883709 11.44297417 1059.298197 0.001888042485 +2.498045004e-06 -0.008553156112 0.001847072309 0 -17.52026306 -9.090017727 997.9009033 0.002004207024 +2.495562001e-06 -0.001124157514 -0.007853275684 0 -17.80335368 -21.90920572 946.9428801 0.002112059811 +2.493221807e-06 -0.007529915823 0.01243986242 0 -22.58972122 30.89734812 1038.475121 0.001925900736 +2.499842021e-06 -0.001140259192 -0.01362473816 0 -5.150895407 0.7083744232 924.9684807 0.00216223584 +2.494653551e-06 -0.005943298121 0.006420134332 0 19.11089772 22.46317391 901.1944504 0.002219276871 +2.49811898e-06 -0.008930368144 0.01011683234 0 -16.52032483 10.22223243 1001.325771 0.00199735197 +2.496243104e-06 -0.007712327987 -0.006538709763 0 15.39065729 -22.40364002 991.0318403 0.002018098631 +2.497355786e-06 -0.005828707577 -0.01423772841 0 19.45963404 7.93941191 913.553014 0.002189254449 +2.498681822e-06 -0.00566512235 -6.588555872e-05 0 -15.48227729 -3.618858961 979.034673 0.002042828569 +2.497404469e-06 0.007546087401 0.01449153851 0 18.99302682 13.67425411 1026.791215 0.001947815653 +2.498985226e-06 -0.0005284996796 0.003225083747 0 4.02358243 -12.79813995 941.5606438 0.002124132963 +2.49989397e-06 -0.004006154398 0.00733798282 0 -4.050306634 -1.656868335 950.276241 0.002104651167 +2.498481292e-06 0.009169642595 0.006587417044 0 -7.81268111 16.66832916 1056.005762 0.001893929059 +2.499416954e-06 0.001257047113 -0.006337438656 0 10.91234406 -0.08957682436 1010.481585 0.001979254277 +2.4994663e-06 -0.006825654199 0.01282106594 0 6.826337827 6.485540871 911.3145972 0.002194631806 +2.498751994e-06 -0.008097938295 -0.005969073207 0 15.64577118 3.493578866 1014.513472 0.001971388312 +2.498812085e-06 -0.006270901021 -0.01184125648 0 -13.53767696 0.1635320953 878.1944783 0.00227739988 +2.495381351e-06 0.001457796753 0.01043691126 0 3.71241797 31.15196798 1031.511524 0.001938902236 +2.498048219e-06 -0.001750009977 -0.0009020778816 0 7.687828287 -16.177886 906.3114972 0.002206746804 +2.49787126e-06 0.008327679867 -0.008391925413 0 -6.0395837 -17.39164718 891.9698364 0.002242228289 +2.498052458e-06 -0.006966683203 -0.007523561795 0 -11.55804081 -13.96725022 918.3246551 0.00217787902 +2.498710243e-06 -0.006543226279 -0.002232035883 0 7.929661251 13.16012492 956.4582586 0.002091047866 +2.497803531e-06 -0.000360356071 -0.0001619703043 0 -11.63405602 -17.78162065 1013.505541 0.001973348856 +2.496016771e-06 -0.009077727478 -0.001582835368 0 -14.39478894 -21.7543391 923.6541878 0.002165312545 +2.496494795e-06 0.004391570571 0.006991483038 0 3.651775946 23.06752491 881.6084134 0.002268580891 +2.497305917e-06 -0.003399432502 -0.001059375694 0 0.9685149907 23.23628209 1001.491984 0.001997020477 +2.496333353e-06 0.00613369578 -0.0138722975 0 25.77073559 9.984163222 1020.012121 0.001960761014 +2.49882061e-06 0.004334971216 -0.002169585158 0 -15.65282548 -1.788536678 1025.625541 0.00195002944 +2.499931299e-06 -0.002629227252 0.01035411878 0 -2.942524606 -2.650104985 1068.296014 0.001872140281 +2.495546604e-06 0.005534786452 -0.01144699796 0 -19.28985151 -17.74875781 877.7366986 0.002278587648 +2.494516426e-06 0.001883013006 0.007323831541 0 21.38720925 26.41418665 1025.438189 0.00195038572 +2.498646607e-06 0.004347288413 -0.01433052669 0 -14.3152073 -2.717229725 885.4592778 0.002258714828 +2.496832376e-06 0.007442856664 -0.007387478035 0 17.24049192 -14.04911822 883.1696534 0.002264570564 +2.499306735e-06 -0.008575271801 0.00707257397 0 11.08067174 3.213652446 979.7015055 0.00204143812 +2.498127038e-06 -0.004800949018 0.002790426321 0 -17.06273487 9.409814552 1006.487083 0.001987109456 +2.497216718e-06 0.007647139598 -0.003101888881 0 -19.17510808 11.98582594 958.0361658 0.002087603862 +2.498199025e-06 0.001675301255 -0.009395738645 0 14.468824 -12.77735703 1016.809934 0.001966935937 +2.498302862e-06 0.008762185536 -0.01471057559 0 6.270844422 16.32378597 948.9144613 0.002107671536 +2.494428542e-06 -0.005445483867 0.01417879398 0 22.11320587 27.57712966 1058.044659 0.001890279378 +2.492865031e-06 -0.006079968917 0.01238110405 0 -27.22270974 28.46116946 1041.466768 0.001920368525 +2.499991289e-06 -0.002144832439 0.00506243045 0 -1.230249148 -0.4468813872 991.6414428 0.002016858023 +2.496551074e-06 0.003671712088 -0.003423838201 0 0.9294734347 -26.65375546 1014.940507 0.001970558852 +2.498844021e-06 -0.009962981786 0.002501393573 0 9.539738788 -11.35180291 975.0296658 0.00205121964 +2.499313122e-06 4.842922091e-05 -0.009776103089 0 -11.45486951 0.008577581867 977.2160307 0.002046630363 +2.496962987e-06 -0.008874073876 -0.01128965153 0 13.06286876 -18.36202826 913.9263328 0.002188360186 +2.497917154e-06 0.003467123345 0.006012172282 0 4.265704391 18.25818881 918.3726457 0.002177765212 +2.498597747e-06 0.003624630291 0.01417245615 0 9.268228441 14.1228105 1008.491538 0.001983159923 +2.497220958e-06 -0.004580682488 -0.01361306211 0 -6.79423742 -21.38036886 951.1783932 0.002102654995 +2.498816219e-06 0.00295408993 0.01482584039 0 2.154859601 15.20667272 997.9837653 0.002004040616 +2.498520543e-06 0.0009124093875 0.006775827936 0 4.590995178 -15.87307196 960.3818003 0.002082505103 +2.498362907e-06 -0.007414415646 -0.006697925027 0 16.05461281 -2.421502904 897.0693992 0.002229481913 +2.49939866e-06 0.008997813785 0.008043860276 0 -5.125291237 8.120943957 875.5768949 0.002284208288 +2.495583783e-06 0.004380409834 0.007686960977 0 14.22802359 27.83607585 1051.19236 0.001902601348 +2.498609425e-06 0.002661326625 0.01430636884 0 12.33680363 11.22551121 999.9599902 0.002000080023 +2.499672048e-06 0.0007065024879 0.01312082159 0 -4.462429798 6.919821775 1016.63347 0.001967277351 +2.496663405e-06 -0.001409735978 -0.00624432547 0 -22.17215968 -11.57577514 967.7545721 0.002066639681 +2.499042009e-06 -0.005172369317 0.0100550262 0 -11.87729004 6.691697976 984.7402485 0.00203099244 +2.497042919e-06 -0.005543329953 -0.009514882097 0 -9.877991531 -21.71944321 980.6965097 0.002039366899 +2.49951662e-06 -0.0009762247 0.004686522342 0 -1.122928318 -9.26609804 949.2311752 0.002106968305 +2.498388572e-06 -0.003475470338 -0.01192722141 0 11.75248632 13.76062916 1007.776345 0.00198456732 +2.499342523e-06 0.0007596294954 0.006905552053 0 -10.96946086 -1.428594883 964.581939 0.002073437122 +2.498468013e-06 -0.00387434978 0.01349298516 0 -9.155814122 -13.62019235 937.3609337 0.002133649833 +2.498207868e-06 -0.001127007455 -0.01353854959 0 -16.0670938 -7.223994362 930.2517089 0.002149955739 +2.499888297e-06 -0.008389389506 -0.008748878825 0 -4.120285397 1.028168946 898.4435117 0.002226072061 +2.49613584e-06 0.0004705916531 -0.008572279927 0 -0.945277393 -26.55527537 955.2813615 0.002093624016 +2.496764108e-06 -0.002508925949 -0.01384553698 0 -22.34408883 -12.22054669 1000.611729 0.00199877729 +2.496929879e-06 0.009515238274 -0.002833922098 0 22.74963074 13.48710741 1066.80437 0.001874757974 +2.498713859e-06 -0.001599198785 0.008827838365 0 14.3622573 -7.138086326 999.8040482 0.002000391981 +2.497062687e-06 -0.009668542342 0.01050089664 0 17.24981398 -15.16616888 947.2354408 0.002111407485 +2.496713208e-06 -0.00922048864 0.0006406463077 0 -23.67280711 -5.442287109 946.9305052 0.002112087412 +2.496430169e-06 0.008979620654 0.001425278394 0 11.27055464 23.77814729 984.271845 0.002031958966 +2.499347719e-06 0.002134702024 -0.004463261501 0 7.413494684 7.556416997 926.7214159 0.002158145874 +2.498838565e-06 0.002955226232 -0.008399278556 0 14.29482742 5.346101722 1001.193303 0.001997616239 +2.497232467e-06 0.004526147209 -0.00290596304 0 -14.82006906 19.16357155 1029.275709 0.001943113962 +2.49860335e-06 0.0004684893973 0.0007796863513 0 -14.71077113 5.181690215 933.0021301 0.002143617828 +2.497562045e-06 -0.005148372841 0.01133003675 0 -9.609978 18.91067704 960.2910042 0.002082702005 +2.49689467e-06 -0.007783016767 -0.005833196284 0 19.27848408 15.46775436 991.3289379 0.002017493814 +2.497191287e-06 -0.007481012973 -0.0147992936 0 -20.72555183 10.1926223 974.0701917 0.002053240123 +2.499904197e-06 -0.003205451784 0.01245936655 0 1.448836165 -3.605543293 887.694573 0.002253027179 +2.498544514e-06 0.006375081041 0.001850544694 0 16.83644196 4.081125746 1015.160305 0.001970132196 +2.498495198e-06 -0.005423450018 -0.01100304309 0 -10.42853798 -12.6401807 944.3706549 0.002117812524 +2.499758378e-06 -0.001759608136 -0.005189746285 0 6.207158751 0.9011688224 902.2431787 0.00221669728 +2.498865037e-06 0.009720349191 0.01046771159 0 -10.53167083 10.98149813 1009.728204 0.001980731043 +2.495115295e-06 -0.003307038061 -0.001813531879 0 -24.92579932 18.88314286 999.7411827 0.002000517769 +2.49745516e-06 -0.001953832093 -0.005055782846 0 -3.813604921 -20.38803714 919.0348359 0.002176196072 +2.498390391e-06 0.007176719885 -0.005922927442 0 -9.503852535 13.71612884 929.8175153 0.002150959696 +2.49566371e-06 0.0008310054569 -0.005052775231 0 18.74463685 -25.22616504 1066.498525 0.001875295609 +2.496701674e-06 0.009306763643 0.004073862559 0 -2.686631397 26.37491093 1031.705521 0.001938537653 +2.496607018e-06 0.001547121243 0.003649055189 0 2.33403546 23.04080166 888.5617114 0.002250828473 +2.494372517e-06 -0.007940270109 0.009573120531 0 17.37745733 28.22421591 987.1365795 0.002026062089 +2.498078573e-06 0.003265197333 0.002184110319 0 3.935527677 17.89238669 934.2767511 0.00214069332 +2.495975304e-06 0.004631673642 -0.009883892855 0 -22.05339972 18.58999038 1016.019738 0.001968465695 +2.499829832e-06 0.009135513254 0.01195375906 0 0.6669757923 -5.484318713 946.9912446 0.002111951944 +2.495184861e-06 -0.005197787504 0.0003728814446 0 -21.35084857 24.67959933 1050.82276 0.001903270539 +2.499579032e-06 0.0003134968597 0.00106206961 0 -9.356815625 0.110278672 1019.743934 0.001961276682 +2.498793019e-06 -0.002834042865 0.007976660735 0 -16.27243336 0.4920241218 1047.627836 0.001909074895 +2.49688422e-06 0.005449477155 0.002449020257 0 -13.05464074 -18.09645969 893.4535375 0.002238504764 +2.49766043e-06 -0.00488686854 -0.004718082477 0 11.00707284 16.03274933 898.727396 0.002225368904 +2.497761754e-06 -0.005624224469 0.00211722452 0 9.497284089 18.98831193 1003.125262 0.00199376895 +2.497502605e-06 0.004772251416 -0.01074881143 0 20.93806709 0.4144812282 936.6995216 0.002135156423 +2.496549621e-06 0.003371347804 0.00788618458 0 25.24846832 0.7151798243 961.0276852 0.002081105499 +2.494699311e-06 0.007514802152 0.0008173763752 0 24.12418581 15.67695207 882.9192788 0.002265212741 +2.497815235e-06 -0.003893108396 0.01023199958 0 -19.61084262 1.548726393 940.7767695 0.002125902834 +2.49938747e-06 0.00840599943 0.01383733538 0 6.008097611 9.001995741 977.7357476 0.002045542474 +2.496778124e-06 0.004057479715 0.01277583639 0 2.517480424 24.34557999 963.7187372 0.002075294298 +2.49700844e-06 -0.0002768354816 0.01242546848 0 -25.8361599 1.459889248 1057.453571 0.001891335993 +2.497661155e-06 -0.001031851466 0.002697160542 0 -19.98909482 -7.474377559 986.3766351 0.002027623049 +2.494891744e-06 0.008221770213 0.001404503169 0 28.91335663 -16.60033019 1042.271143 0.001918886475 +2.498863562e-06 -0.008376402603 0.01079219305 0 8.594448187 -10.97203215 924.31224 0.002163770979 +2.49966515e-06 -0.005406740597 0.008429006513 0 7.981075057 -3.442305433 1062.05364 0.001883144057 +2.498578323e-06 -0.006866083085 0.002369034982 0 14.09892487 8.177714681 966.3860518 0.002069566294 +2.497312659e-06 -0.002052275836 0.01454199432 0 -13.72871147 -15.13568337 881.0716852 0.002269962857 +2.495057448e-06 -0.008389218454 -0.007300590954 0 -13.85587652 -24.13843223 884.5852096 0.002260946688 +2.499166611e-06 0.007913516508 -0.0002479615621 0 8.290611569 -8.119772297 898.7399486 0.002225337822 +2.498405991e-06 0.007195484946 0.001351063403 0 -10.12397228 -13.61227657 949.8888456 0.002105509512 +2.497182571e-06 -0.005887644487 -0.008365255399 0 21.136881 12.1245215 1026.088041 0.001949150482 +2.497091781e-06 0.002162391497 0.01260278687 0 -7.071525631 23.89464407 1032.794414 0.001936493819 +2.496296971e-06 0.007876135092 0.002621214394 0 22.96542524 7.237446122 884.3026839 0.002261669038 +2.499248526e-06 0.004840243175 0.01015359248 0 6.908127942 -9.45914717 955.3279368 0.002093521945 +2.498487648e-06 0.008135472182 -0.003381083566 0 11.93658382 -10.16048984 901.1107709 0.002219482959 +2.495953831e-06 0.008456445658 0.005662612673 0 25.76442843 4.282338547 917.5659408 0.002179679858 +2.498936469e-06 0.003285608813 0.009482071828 0 6.800370608 -11.69647111 927.5309533 0.002156262271 +2.498321099e-06 -0.006607764266 0.008224412038 0 -14.51991659 -10.94741763 992.1173553 0.002015890549 +2.499748813e-06 0.007169482606 0.01094033678 0 5.65628656 -5.030010324 1067.890726 0.0018728508 +2.498243801e-06 0.0008755414188 9.864395019e-05 0 -5.649395928 -18.95243507 1054.953614 0.001895817952 +2.498115891e-06 0.003749849466 0.002487898471 0 13.46387149 12.75484381 955.1341288 0.002093946745 +2.497767134e-06 0.003014165345 -0.007042346208 0 -9.188125648 -19.98065488 1040.334426 0.00192245873 +2.495644345e-06 -0.006371007524 0.005873942077 0 16.08670936 26.26032528 1042.718423 0.001918063358 +2.494567805e-06 -0.009423677679 -0.003220748864 0 -25.64884134 -21.13135126 1007.408731 0.00198529151 +2.499086352e-06 -0.002984737367 0.01429296863 0 -7.028789034 -11.50871693 997.465912 0.002005081052 +2.498607151e-06 0.003858009502 0.005105613931 0 -15.75892907 -2.49772172 955.7766354 0.002092539121 +2.498545821e-06 -0.009518729099 -0.004566144298 0 -2.927469151 -14.89157779 889.7249948 0.002247885596 +2.497994358e-06 0.000115640345 0.005486214424 0 -17.39040945 7.960957978 954.6656891 0.002094974212 +2.499236044e-06 0.00678711033 0.009301498553 0 0.8897903675 12.79049655 1037.138687 0.001928382409 +2.495955108e-06 0.005077310125 0.006944263063 0 28.73544507 -9.006409418 1058.116435 0.001890151154 +2.498820445e-06 -0.005676015178 -0.001293324963 0 2.492212533 -14.17219147 936.6977134 0.002135160545 +2.499088297e-06 0.008054781659 0.007383400442 0 10.39250842 -8.553833879 996.6546984 0.00200671306 +2.497397016e-06 0.007379216696 -0.001318729862 0 7.401308159 -19.70250285 922.0739282 0.002169023479 +2.498588121e-06 0.007107855938 -0.0001425482961 0 11.96239534 -12.72911792 1039.288746 0.001924393012 +2.49632018e-06 0.003587478786 0.01232216462 0 -6.277847435 25.48883732 967.0979885 0.002068042767 +2.49687002e-06 0.002070232141 -0.007286603318 0 13.85572073 -22.20681704 1045.67007 0.001912649178 +2.494576044e-06 0.008932182719 -0.002381414445 0 28.28962273 18.81088299 1030.63469 0.001940551798 +2.497412742e-06 -0.007282871753 -0.006794278328 0 -18.540465 -11.8708828 967.4268283 0.002067339815 +2.499458091e-06 -0.003548987429 -0.01009631846 0 7.831645505 6.127817601 955.1051573 0.002094010261 +2.496214651e-06 0.005967615163 -0.008817434376 0 -18.71863899 17.03027412 919.2145798 0.002175770537 +2.496781954e-06 0.003032289464 -0.007095252327 0 1.150857495 -26.67869047 1052.076509 0.00190100243 +2.497551958e-06 0.005474270657 0.01205205761 0 -8.166443456 18.50414587 913.7506525 0.002188780927 +2.495627811e-06 -0.00182420786 -0.008293840424 0 -8.440641777 -24.53927296 876.9878989 0.002280533178 +2.495339194e-06 -0.004027732657 -0.005422931907 0 18.35386798 -22.09100088 940.0373952 0.002127574935 +2.495288206e-06 -0.0004753126437 0.005042490426 0 -24.39348217 -18.74543056 1001.450791 0.00199710262 +2.497731706e-06 -0.0009260693798 -0.003000008063 0 6.603487871 -17.93793779 897.1340827 0.002229321167 +2.499482315e-06 -0.008310926026 -0.01310634124 0 6.193362008 -7.139535048 928.7931671 0.002153331948 +2.497251463e-06 0.008107296126 0.002123005351 0 13.28654746 20.31458445 1034.884401 0.001932583 +2.495833028e-06 0.00279924355 -0.004417130922 0 22.94994265 16.24536758 973.3851377 0.002054685163 +2.499687596e-06 -0.005085446825 0.01412232083 0 3.311586229 7.684737395 1058.577664 0.001889327603 +2.49514507e-06 0.006663420703 0.004615176406 0 23.18714954 18.97365922 960.7910883 0.002081617975 +2.498097126e-06 0.004816503963 -0.003627848597 0 -10.80941375 13.3077844 878.5888514 0.002276377622 +2.498518744e-06 0.002481038808 -0.007317522622 0 3.643126046 -14.74465767 882.217958 0.002267013477 +2.497194103e-06 -0.001118883411 -0.009387014473 0 13.3681078 17.96237918 944.7964017 0.002116858189 +2.496903803e-06 -0.0009400705667 0.002560273006 0 -20.34304195 -16.3291414 1047.79576 0.001908768938 +2.499149013e-06 -0.001542200614 0.001679056375 0 -9.819765107 -8.4385599 992.3229917 0.002015472801 +2.497196726e-06 0.005293525257 -0.01358857525 0 -15.78203377 -15.13453047 923.0834815 0.002166651273 +2.499463008e-06 0.001133973156 0.01110598978 0 1.4367828 9.414188098 918.8592008 0.00217661204 +2.499508909e-06 -0.004253655621 0.004114807933 0 5.591143767 8.15698395 997.781085 0.002004447699 +2.499725505e-06 0.008821044257 -0.004095414996 0 -3.32445119 6.43666041 977.704775 0.002045607274 +2.498609166e-06 0.002938123131 -0.01222807151 0 -6.017121189 16.25658875 1039.121282 0.001924703146 +2.497273215e-06 -0.009883491695 -0.01185414837 0 20.94644606 13.28621325 1061.737666 0.001883704482 +2.494428813e-06 -0.00363683857 0.0113747098 0 -15.0808883 26.35267107 908.8431237 0.002200599804 +2.496469954e-06 0.009881109777 0.01016442334 0 26.15769644 8.527519434 1034.895464 0.00193256234 +2.499714612e-06 0.00739378945 -0.007968633953 0 -6.849483307 -3.077079937 993.8621624 0.002012351487 +2.499162527e-06 -0.001075841216 0.008561649083 0 -4.197551994 12.4657433 1016.21587 0.001968085777 +2.497349199e-06 -0.004210626082 0.01305368483 0 -9.629590878 19.79808176 955.7780666 0.002092535987 +2.495086813e-06 -0.008101648651 0.008918161292 0 -27.02680594 14.29544554 974.6399647 0.002052039802 +2.499903911e-06 0.002572340393 0.001185283314 0 4.251253615 -0.07456297127 969.8974985 0.002062073573 +2.4963472e-06 0.006231409907 -0.01083625523 0 21.21085157 -11.18608386 886.7040423 0.00225554402 +2.499856981e-06 0.001934355577 -0.008140160199 0 4.749507004 -1.167024807 914.4455623 0.002187117618 +2.498566814e-06 0.002309824945 0.003837764261 0 10.27262402 14.26963035 1038.303514 0.001926219043 +2.498899852e-06 0.001924982714 -0.005696205343 0 13.05524697 0.4452592852 880.4919268 0.00227145751 +2.498591042e-06 -0.008838779954 -0.01083565497 0 -17.76488616 -0.4779880434 1058.433955 0.001889584125 +2.498071195e-06 -0.001661778577 0.01469663705 0 14.77740845 12.02233465 969.6468674 0.002062606571 +2.499200439e-06 -0.006421518521 -0.00688536183 0 7.384369253 -8.94964571 917.4238738 0.002180017391 +2.4966226e-06 0.002301333873 -2.514647087e-05 0 20.98129387 16.46451627 1025.648346 0.001949986081 +2.495811301e-06 -0.004510685885 -0.006656479882 0 18.41844813 20.70598293 956.8556626 0.002090179405 +2.498731459e-06 -0.004188030572 -0.001576409368 0 -16.76568585 -3.097862511 1070.19142 0.001868824552 +2.499262976e-06 -0.005684575518 -0.004853524058 0 12.494388 -1.82653927 1039.927524 0.001923210948 +2.498580597e-06 -0.003446107856 -0.009148514152 0 -17.77747553 -0.88577319 1056.204757 0.001893572232 +2.498454848e-06 -0.008943483871 0.006713864431 0 -15.72753668 -1.028443195 896.3672498 0.002231228328 +2.499143296e-06 0.001614209488 0.0009799231659 0 4.332582537 12.50972124 1011.254847 0.001977740829 +2.49826807e-06 -0.004416785645 -0.004591413417 0 -7.958028514 -17.56753304 1035.972789 0.001930552637 +2.499002005e-06 0.002479707142 0.004478739579 0 -1.937532053 -14.97849888 1068.876119 0.001871124226 +2.4971306e-06 -0.0009871957731 -0.01220178235 0 18.72178335 12.27933874 934.2128036 0.002140839852 +2.498989067e-06 -0.001391696511 0.005478403587 0 6.745869572 -13.56153866 1065.063388 0.001877822505 +2.499672637e-06 -0.00797577017 -0.006329880282 0 0.7424117974 -8.19513025 1016.903246 0.001966755448 +2.496063009e-06 0.008563672183 -0.01196961191 0 17.77565369 -21.37180068 990.0551907 0.002020089404 +2.497283341e-06 -0.0001302492758 -0.01476598745 0 20.33603529 9.06498087 954.7995911 0.002094680411 +2.496519066e-06 0.003345427676 0.007342796281 0 11.73529212 19.97035022 877.4209774 0.002279407549 +2.497467768e-06 -0.004778124699 0.002474997318 0 -12.53473699 -20.30042591 1059.768349 0.00188720488 +2.497200652e-06 0.005823012548 0.007770991079 0 21.94665209 1.038505539 928.171171 0.002154774962 +2.49793428e-06 -0.001708426587 0.00837556025 0 -19.20890691 9.808916653 1060.799011 0.00188537129 +2.495916021e-06 0.00504418009 -0.0124416949 0 25.97320244 -15.67109985 1060.757037 0.001885445895 +2.499084002e-06 -0.003769029644 -0.007023635851 0 8.624357386 9.067236324 924.4131937 0.002163534676 +2.49504285e-06 0.001755954004 0.0009995923075 0 19.28595634 20.03006698 882.4256331 0.002266479944 +2.499494979e-06 0.007686763327 -0.01324294601 0 -4.868079181 -8.659192395 988.3517893 0.002023570981 +2.498896008e-06 -0.008006935278 0.01202426598 0 11.75888601 8.154036284 962.8359605 0.002077197033 +2.497734477e-06 0.002346972371 -0.000283798459 0 22.62453462 -1.677332406 1065.425383 0.001877184486 +2.499919306e-06 -0.00374715012 0.008603474612 0 -3.721917325 1.712121931 1019.77991 0.001961207491 +2.497264705e-06 -0.002268528179 -0.005245434539 0 21.7080874 11.69067389 1053.72019 0.001898037088 +2.496974638e-06 0.003408484389 -0.01069662351 0 -12.79578086 -22.11069756 1038.072381 0.001926647927 +2.498683534e-06 0.0007863028487 0.01464911782 0 -3.656999679 -16.75269895 1056.544206 0.001892963862 +2.496505904e-06 0.001023115856 -0.004709697424 0 20.97049677 -18.97515902 1069.265387 0.00187044304 +2.499784919e-06 -0.006020195647 -0.01165421489 0 4.916541952 4.955648674 1064.319649 0.001879134716 +2.497611555e-06 0.0007508824207 0.006553240847 0 2.334801201 20.94771981 964.0275591 0.002074629487 +2.499154831e-06 0.001743064541 -0.008801919585 0 4.601070556 12.10339306 995.8076929 0.002008419913 +2.497555569e-06 0.0009974346356 0.006240992916 0 12.87906151 15.65419221 916.4685572 0.002182289817 +2.49844598e-06 0.006180256782 0.003533113548 0 -13.73491775 10.12427271 967.638201 0.002066888221 +2.497406697e-06 -0.003933125236 -0.008836423787 0 -19.73362015 -5.812316049 902.9456201 0.002214972813 +2.498210562e-06 -0.000225597918 -0.008490028486 0 -12.02452776 14.84281274 1009.476055 0.001981225796 +2.498963297e-06 -0.007301920583 0.01224086228 0 3.209718635 -13.5076381 964.0445551 0.002074592911 +2.497455548e-06 0.003513897853 0.008116207675 0 17.56277546 -15.38501105 1034.617799 0.001933080991 +2.499742618e-06 0.005745046278 -0.01012473561 0 5.266990975 4.26521545 944.5878484 0.002117325565 +2.499343886e-06 -0.002296633204 -0.0008971764729 0 5.934540911 -9.350459327 966.6874672 0.002068920999 +2.499840646e-06 -0.007554258909 -0.01419293731 0 4.167082231 -4.102837791 1035.841203 0.001930797882 +2.49780988e-06 0.007783240601 -0.00110883794 0 -3.2000509 19.30802418 934.8252173 0.002139437365 +2.497617228e-06 0.004697731175 -0.007402940698 0 -21.16397598 1.526996825 971.6574251 0.002058338616 +2.498556097e-06 0.001809347305 0.0002981861634 0 -10.36264376 12.3893412 950.2600668 0.00210468699 +2.499298041e-06 0.004830906368 0.004355195824 0 -9.497741296 7.870312181 1040.921004 0.00192137539 +2.497901712e-06 -0.006723255999 0.009574971157 0 14.97685603 -14.96474962 1033.179584 0.001935771895 +2.495740044e-06 0.007693272904 0.01145660478 0 -15.76374081 23.02393761 955.3469873 0.002093480198 +2.495447701e-06 0.003528840803 0.01197648285 0 -3.946884606 31.32173475 1045.537367 0.001912891938 +2.498763889e-06 -0.006264255019 -0.007017001121 0 9.355318952 -11.51163603 943.249075 0.00212033073 +2.498736336e-06 0.0007241152832 -0.007699583962 0 13.12495564 -9.130654859 1005.531084 0.001988998682 +2.49920995e-06 0.003038228592 -0.0003786756378 0 -1.877598188 -13.0284267 1047.037086 0.001910152016 +2.498919763e-06 -0.002323436611 0.004907773146 0 -8.05693687 -10.59077998 905.1871521 0.002209487834 +2.49562023e-06 -0.0008907486824 0.007108810635 0 24.55693938 -19.62852399 1061.507505 0.001884112915 +2.496346961e-06 0.006227986878 0.01167855022 0 -15.07506046 24.06120417 1049.88281 0.001904974519 +2.497542073e-06 0.009495609128 0.002737208842 0 6.290796958 22.56922762 1056.341555 0.001893327011 +2.494946709e-06 -0.009193341429 0.01051166116 0 18.77780696 26.40713978 1018.476971 0.001963716467 +2.49981053e-06 0.003474126165 -0.001533720586 0 -4.761248834 3.680222996 977.5468956 0.002045937652 +2.498294233e-06 0.002941404851 0.002413649827 0 -7.25411098 -17.04969139 1002.904927 0.001994206975 +2.498354117e-06 -0.003638947033 0.002865607794 0 -9.037391559 16.58942954 1040.978063 0.001921270074 +2.496995769e-06 -0.0005710976245 -0.005028760931 0 15.76703823 18.54358822 992.5527569 0.002015006241 +2.498498033e-06 0.006311955121 0.002836209841 0 16.09681345 3.125738475 945.8762526 0.002114441498 +2.497488158e-06 0.004123679916 0.002425014926 0 -9.991556718 -20.9000704 1033.161725 0.001935805355 +2.497366643e-06 -0.008829157515 8.726067608e-05 0 0.5360495456 -21.36104834 930.7173427 0.002148880125 +2.498442376e-06 -0.001193096428 -0.0131668908 0 -12.91905497 -13.20587453 1046.45016 0.001911223369 +2.498109047e-06 0.0008388524968 0.01194569038 0 -14.20016091 -10.00346771 892.9334607 0.00223980855 +2.498922268e-06 -0.003961869478 -0.005922937409 0 6.473160739 -13.8670147 1042.195097 0.001919026492 +2.498859277e-06 -0.004390571364 0.001985546958 0 2.298365036 15.46209153 1034.747912 0.001932837919 +2.498288627e-06 0.005302344859 -0.004168585553 0 15.37686421 -11.87924526 1050.01769 0.001904729814 +2.499511901e-06 -0.0083472864 0.00922688575 0 9.202682466 -2.919518672 977.0963858 0.002046880972 +2.499924924e-06 0.005170858735 0.01073924222 0 2.938636407 2.91809366 1068.744353 0.001871354917 +2.498317928e-06 -0.002027631607 0.005361002649 0 -17.61824581 -2.566542202 970.4556891 0.002060887501 +2.49968896e-06 -0.0002498499816 0.007558239049 0 2.655050669 -6.942404986 942.3418097 0.002122372137 +2.497836328e-06 -0.001876573381 -0.008390001026 0 15.88013514 13.63594104 1005.874084 0.001988320439 +2.497828833e-06 -0.007449484356 -0.01058935489 0 -21.34456444 5.89263559 1062.267366 0.001882765171 +2.496753018e-06 0.003151358841 0.006190496259 0 23.0082927 -14.02397933 1056.860666 0.001892397044 +2.496375431e-06 -0.006963318367 -0.01253603067 0 -16.23278762 -19.62083009 945.298492 0.002115733831 +2.496664254e-06 -0.00681851909 -0.003204710016 0 -16.28862526 18.95495633 967.1090138 0.002068019191 +2.498704286e-06 -0.001515354915 -0.01120845931 0 14.34370036 -1.584496361 896.2744698 0.002231459299 +2.495179056e-06 0.006095949253 -0.01186956309 0 19.59857794 -23.25670297 978.7469468 0.002043429108 +2.498443143e-06 0.003508447888 0.006855951247 0 5.444091539 16.69595608 994.9733837 0.002010104022 +2.495375345e-06 -0.001038633091 0.007900833995 0 12.56476005 28.64605158 1027.820893 0.001945864317 +2.498160948e-06 -0.00366096973 0.006503303647 0 -12.70071471 -15.55299389 1046.719938 0.001910730777 +2.498662267e-06 0.001464029048 0.004188832466 0 -11.2143423 10.20030208 926.6063544 0.002158413862 +2.497386128e-06 0.003040313255 -0.008950233492 0 17.14423894 -13.6022044 956.7870228 0.002090329355 +2.499219023e-06 -0.00515466474 -0.008255538403 0 -13.1258375 0.7835911854 1051.997221 0.001901145706 +2.498228328e-06 0.0003775119968 -0.01054863833 0 -3.435659768 17.58063995 951.3733061 0.002102224213 +2.49936284e-06 -0.006155293235 -0.01021076516 0 10.19076891 3.909952059 966.8233958 0.002068630123 +2.499794547e-06 0.005752025032 -0.01015878333 0 4.94241767 -3.473810237 942.3919756 0.002122259157 +2.498647589e-06 -0.00790784949 -0.002433951627 0 2.434070122 -15.77739341 970.4776179 0.002060840933 +2.495733965e-06 -0.0003159731952 0.007577985234 0 -18.24351463 18.230326 882.391213 0.002266568355 +2.497248669e-06 -0.0004152061325 0.002253157713 0 17.19645596 -14.4412344 956.8959275 0.002090091454 +2.499242408e-06 -0.002998256856 0.01470913748 0 -11.18521993 -5.221404395 1002.699662 0.001994615213 +2.49805103e-06 -0.006694867518 -0.007835416168 0 5.736762121 17.14369075 915.3927841 0.002184854452 +2.499236668e-06 -0.00212624935 0.01494275213 0 12.87167551 0.06468552894 1041.643359 0.001920042962 +2.499147398e-06 0.005332954456 -0.01138087205 0 -1.376245977 -12.80832166 986.3728701 0.002027630788 +2.497764579e-06 -0.003299343642 0.008072786839 0 12.22340044 -14.94583061 912.8332294 0.002190980713 +2.496205718e-06 -0.0038883826 -0.0003922600485 0 -24.11893007 14.66226856 1024.050984 0.001953027761 +2.496220911e-06 -0.009810103178 0.01105217401 0 -26.84851725 1.971771611 978.6635534 0.002043603231 +2.49445596e-06 -0.009870784581 0.00467321547 0 -25.3623572 15.38771189 890.1419236 0.002246832721 +2.497746187e-06 -0.006663291464 -0.002001860195 0 -3.810423104 -19.67161458 943.4468594 0.002119886224 +2.498112868e-06 -0.004000028665 -0.007749072255 0 18.46017526 -2.321000983 957.4200799 0.002088947205 +2.496331432e-06 -0.0006330826506 0.01315905928 0 -20.77234001 18.23440377 1019.857656 0.001961057985 +2.497749309e-06 0.001958159404 -0.00540849285 0 -17.52091987 -14.47518238 1070.831788 0.001867706976 +2.499334221e-06 -0.003113446785 -0.003007859588 0 -4.596815585 -9.774141249 935.9355487 0.00213689928 +2.498735254e-06 -0.008919384931 0.002470418285 0 4.48973058 -15.96853616 1042.766683 0.001917974588 +2.499058034e-06 -0.0003096106648 0.0007139008865 0 -11.89424462 6.23120483 978.148917 0.002044678438 +2.499110095e-06 0.009856094788 -0.004288870809 0 -9.025903547 10.6214601 1044.652301 0.001914512607 +2.497071625e-06 -0.004477944183 -0.01365113934 0 17.56215415 18.99669588 1068.544071 0.001871705673 +2.498570577e-06 -0.004896817608 0.00638520852 0 7.060348384 -14.48022125 952.5796593 0.002099561943 +2.499366173e-06 0.005817213119 0.01419520324 0 -10.91422127 1.86162529 983.283103 0.002034002205 +2.496484049e-06 -0.009652328887 0.002006277235 0 -25.55468366 5.752019904 987.272009 0.002025784163 +2.49975243e-06 -0.008200873467 -0.005014997476 0 -4.316585507 4.759748121 913.1290739 0.002190270858 +2.497511602e-06 -0.009832974696 0.007276764004 0 -13.06117481 -18.01067548 996.9104052 0.00200619834 +2.4977244e-06 -0.00578682574 -0.002179099952 0 18.8532973 -9.743425768 994.440678 0.002011180802 +2.494452423e-06 0.007495732955 0.008405384193 0 -18.63834481 26.69912353 976.7239989 0.002047661368 +2.496655511e-06 0.002596034743 -0.004084447317 0 10.86914633 -21.31953695 924.8066155 0.002162614288 +2.498963521e-06 -0.001965061044 0.007177057893 0 5.98577788 -13.822764 1046.051016 0.001911952638 +2.499175373e-06 -0.001528219949 -0.00991693971 0 -13.66624682 -0.3121981237 1064.302373 0.001879165217 +2.497092245e-06 -0.008772232095 0.01490213779 0 -21.45234976 -11.75420168 1013.910229 0.001972561222 +2.497350026e-06 0.006074551051 0.0126972174 0 -7.660885105 22.53909451 1033.637118 0.001934915034 +2.496715601e-06 0.001035785964 0.00716128153 0 22.42344297 6.236256781 907.6597372 0.002203468897 +2.49899482e-06 -0.00243438398 0.01188640331 0 -4.895254285 -14.18170624 1057.962346 0.001890426447 +2.499035993e-06 0.006626547589 -0.01304551942 0 4.999210607 13.46807671 1034.468121 0.00193336069 +2.499298178e-06 -0.0009410116915 0.006991626474 0 -4.84069387 11.19208865 1029.13949 0.001943371156 +2.499638166e-06 -0.009249756876 0.01176358917 0 -7.656886196 -2.535890033 948.1115252 0.002109456479 +2.496769106e-06 0.007026094571 0.005328356016 0 18.37441337 -12.80539076 880.624022 0.002271116788 +2.496806512e-06 -0.00760286903 0.005406288933 0 -18.52937425 15.31935426 950.8581519 0.002103363153 +2.499666808e-06 -0.009347628783 -0.0006576117198 0 5.775237474 4.886592574 926.6933278 0.002158211287 +2.499445499e-06 -0.00310013969 -0.0003971710755 0 -7.538239095 -6.804244853 964.2174612 0.002074220889 +2.498660128e-06 0.002634794498 -0.002023794993 0 -5.250035492 -14.45398138 939.2122248 0.002129444174 +2.499357323e-06 0.00184791734 0.01225614165 0 -9.162323342 -7.916411861 1067.922822 0.001872794513 +2.498836356e-06 -0.005077963932 -0.005038463229 0 -13.77053201 -6.269362781 991.637327 0.002016866394 +2.49677076e-06 -0.007016287297 0.002746606255 0 -22.6282592 6.021348457 920.9400675 0.002171693979 +2.499299869e-06 0.007073357189 0.01185295949 0 -7.327833687 -9.772893258 1032.151837 0.001937699404 +2.496286066e-06 0.008237183122 9.341697441e-05 0 -17.57429811 20.57176097 992.195266 0.002015732254 +2.497074714e-06 0.0009617766691 0.01073175013 0 -25.4314339 -0.8040747066 1051.472645 0.001902094181 +2.496464694e-06 -0.005631781584 -0.01059752118 0 -13.37216612 -21.69038069 957.7663428 0.002088191984 +2.496745027e-06 -0.001546855085 -0.006427313439 0 -15.76788929 -17.30734744 917.1851974 0.002180584691 +2.499468699e-06 0.001802431927 -0.0006667667837 0 -10.43987019 -3.513750362 1068.506684 0.001871771164 +2.499534384e-06 -0.002288315832 0.002416065861 0 -3.972970593 9.545290455 1071.330994 0.001866836684 +2.49859974e-06 -0.008146369676 -0.009657329021 0 -15.50688481 -7.880518157 1039.200728 0.001924556004 +2.499763837e-06 -0.0008405616786 0.01323375034 0 1.221221767 -6.274720596 930.1041934 0.002150296724 +2.498054884e-06 0.008096260158 -0.00879882148 0 14.44291185 -13.50830319 1002.337136 0.001995336628 +2.49973676e-06 0.003161029909 -0.01433481038 0 0.9411665419 -7.143903134 993.0344696 0.002014028779 +2.496017967e-06 0.001172127747 -0.01455057244 0 -9.920258236 -24.2020555 926.2942643 0.002159141082 +2.497992171e-06 0.002872745097 -0.007693156844 0 -8.88782819 -17.53207525 980.5976785 0.00203957244 +2.499120275e-06 0.009789458844 0.01003425273 0 9.296112592 9.29094439 990.7175418 0.002018738859 +2.497293142e-06 -0.00567539975 0.01073383588 0 15.73772327 14.44584086 917.7592916 0.00217922065 +2.498111027e-06 -0.007524037701 -0.00736648456 0 -15.98523276 -10.71464311 989.7926695 0.002020625189 +2.497171412e-06 -0.005921823708 -0.001462817627 0 6.873337126 20.29046388 900.3190998 0.002221434601 +2.497901856e-06 0.003069357146 -0.00607039477 0 -14.73923346 14.15809531 997.3810585 0.002005251637 +2.49826653e-06 -0.005985300457 0.004462675801 0 17.99020254 -8.174148868 1060.973307 0.001885061562 +2.499250085e-06 0.003150373059 -0.004174758336 0 10.42139945 -6.436150114 1000.042609 0.001999914786 +2.499855692e-06 0.009093881166 0.0136434785 0 -3.777759712 3.889339818 1009.23595 0.001981697144 +2.496895947e-06 0.009164378433 -0.001796639299 0 22.41816054 -13.05207518 1040.646495 0.001921882225 +2.496217096e-06 -0.002145466637 0.005747482495 0 -17.85828013 16.88290218 892.9485934 0.002239770592 +2.495088601e-06 -0.005169430496 -0.0009515360976 0 -17.79826912 -22.01689917 902.6511251 0.00221569546 +2.497870459e-06 -0.001897977106 -0.00192083224 0 13.68246332 12.06776341 883.7337324 0.00226312511 +2.496546599e-06 0.00884149862 0.01201700198 0 22.72179249 15.86825512 1053.998558 0.001897535803 +2.497443279e-06 -0.0007390478719 -0.008827630389 0 4.263505769 -22.39110825 1007.594678 0.001984925132 +2.497613584e-06 0.008878195458 -0.007347381643 0 19.495078 -6.824988991 945.118962 0.002116135725 +2.497303427e-06 -0.009607821372 -0.01450372334 0 19.02114842 12.28827805 974.7194789 0.002051872404 +2.495228945e-06 0.005347026675 -0.005379107881 0 -15.8945121 -24.74033142 951.2712288 0.002102449795 +2.498146698e-06 -0.006193094742 0.005773554321 0 14.74039128 12.44202354 1001.638625 0.001996728111 +2.497892198e-06 0.006983078425 -0.000875557051 0 15.43528809 -9.331426895 878.194097 0.002277400869 +2.497341674e-06 -0.005595318559 -0.002302327619 0 -12.15649863 18.14424456 946.812746 0.002112350101 +2.499771691e-06 -0.008045984115 0.005832605876 0 6.456983368 1.325368256 975.4383989 0.002050360128 +2.499925613e-06 0.006010482656 0.01460613467 0 1.983719731 -3.023387077 937.4963851 0.002133341559 +2.49641293e-06 0.002247200278 0.01388827404 0 -18.24024456 16.06217221 906.9110429 0.002205287956 +2.497550939e-06 0.008003775035 0.005936236975 0 19.52043375 13.22123021 1064.887413 0.00187813282 +2.497803226e-06 0.007613418996 0.002519275064 0 11.40821374 -19.33290079 1070.594228 0.001868121411 +2.498944452e-06 0.003033082574 0.004897644056 0 7.5005495 -10.4407679 884.6499081 0.002260781335 +2.498354216e-06 -0.005551884575 -0.01026849106 0 -15.1730439 5.834104932 895.7883609 0.002232670223 +2.497149445e-06 0.004373806552 -0.003319422374 0 24.70439708 3.43709428 1044.17163 0.001915393928 +2.496163624e-06 -0.001206109328 -0.00102268225 0 -14.30572004 -24.8984438 1036.077721 0.001930357114 +2.497189845e-06 0.002033663313 0.006846695943 0 -21.16421939 -5.789830514 925.1468225 0.002161819023 +2.497704389e-06 0.001327403984 -0.01182562206 0 19.35015564 6.168702243 947.5201979 0.002110772947 +2.494381411e-06 0.007169359 0.001821112465 0 25.29226558 -15.58580973 885.5047796 0.002258598763 +2.494814221e-06 0.008026025696 0.004973039848 0 22.02822851 26.48471876 1068.826543 0.001871211015 +2.493661256e-06 0.009000743385 0.01412844679 0 25.69320282 27.97390723 1065.749174 0.001876614168 +2.495304828e-06 0.005717249201 -0.009439198282 0 21.30167142 -24.00885594 1046.673008 0.001910816448 +2.497413955e-06 0.001931860745 -0.007805523248 0 -11.57279621 19.33086691 990.2945031 0.002019601233 +2.499730399e-06 0.002908215355 -0.01301209205 0 -7.108978297 -2.802218527 1040.58084 0.001922003483 +2.498410998e-06 0.001625300609 -0.004996109989 0 -5.631821866 16.14007404 958.6801963 0.002086201434 +2.496225239e-06 -0.007581124064 -0.01046163723 0 -24.3508445 14.54610421 1031.742843 0.001938467529 +2.497565928e-06 -0.00110501112 0.001792126768 0 -21.13271433 -4.021555511 974.6298456 0.002052061107 +2.4985431e-06 -0.009391813688 0.01284999062 0 -17.66700733 -0.5190970453 1035.203053 0.00193198812 +2.499828638e-06 -0.004347299184 -0.01159839047 0 1.127242471 5.058379337 885.2219402 0.002259320414 +2.498996906e-06 0.007754333685 -0.00137296167 0 12.16752767 -5.036335284 929.5870462 0.002151492975 +2.499953391e-06 0.005060495762 -0.01139253475 0 1.321037471 -2.671145203 976.0200076 0.002049138321 +2.499690246e-06 0.009883123585 0.008137199362 0 7.629344808 3.330654724 1057.604923 0.001891065327 +2.495297954e-06 0.000408600485 0.01056634141 0 9.892331823 30.89586002 1057.129007 0.001891916678 +2.498599204e-06 -0.008977074637 0.004279323667 0 14.01595229 -7.041921345 936.9259176 0.00213464049 +2.499414913e-06 0.009157799534 0.001715235861 0 8.988397932 -6.87218492 1045.857844 0.00191230578 +2.498374529e-06 -0.009492733418 0.008436834086 0 -2.861634532 -15.51495758 874.7911679 0.002286259937 +2.499974421e-06 -0.004353802032 0.007060773717 0 0.6376942823 1.934190926 900.4327962 0.002221154103 +2.499370974e-06 0.007457471942 -0.003905099651 0 -10.54810212 5.203686372 1048.540055 0.001907414019 +2.498292016e-06 -0.001914184643 -0.01163448317 0 -5.120483042 17.80646072 1002.217669 0.001995574477 +2.495596793e-06 0.002792530665 0.0100213962 0 25.42032665 -15.02334287 994.3635176 0.002011336865 +2.497669163e-06 0.008712688545 0.01195915972 0 16.99771508 15.42834273 1062.83134 0.001881766114 +2.497916119e-06 -0.007417354584 -0.01354097507 0 -10.48375887 17.41425535 995.347548 0.002009348397 +2.499461077e-06 -0.004473364707 8.311787155e-05 0 -9.767608107 -1.207084022 947.9071279 0.002109911342 +2.498228971e-06 -0.001602165671 -0.001419999849 0 11.72684497 12.45759503 908.8159293 0.002200665652 +2.499427245e-06 -0.001465657293 -0.0138829923 0 6.451387811 -8.533639018 999.4446157 0.002001111386 +2.497848088e-06 -0.003368619825 -0.007338904054 0 -12.88716055 15.11134843 957.0143606 0.002089832799 +2.498231159e-06 0.001586040971 -0.001117873541 0 3.29181155 -18.68403401 1008.402378 0.001983335268 +2.496917111e-06 0.00528620223 0.009604875315 0 18.26740103 16.36941908 987.3682237 0.002025586759 +2.499138015e-06 0.001971295248 -0.00810869385 0 5.109134372 12.93421205 1059.019545 0.001888539271 +2.498626373e-06 0.004009468621 0.008429594629 0 -10.6345128 13.50986191 1037.09868 0.001928456798 +2.496951817e-06 -0.005639487943 -0.006410452423 0 -12.48786854 22.59616631 1045.145666 0.001913608854 +2.497062866e-06 0.009387744307 -0.01163698688 0 -18.08906866 -11.97492046 894.6717327 0.00223545679 +2.499311549e-06 0.008511503511 0.006200135183 0 -12.28550448 -1.302697697 1052.747875 0.001899790109 +2.499360572e-06 0.004093967983 -0.01203072455 0 6.518784795 -8.863903899 972.867719 0.002055777945 +2.498898873e-06 -0.007471178975 -0.00742580465 0 13.45650862 -6.961841014 1020.771018 0.001959303276 +2.498170522e-06 -0.006416368838 0.005506826411 0 19.83762932 1.065807899 1038.287975 0.001926247869 +2.496292575e-06 -0.006915402953 -0.01491995227 0 -15.4741186 -21.98517374 986.7680566 0.002026818751 +2.495868243e-06 -0.006315683909 -0.01035246422 0 17.33571832 -24.92826786 1055.60375 0.001894650337 +2.498253012e-06 0.003219281752 0.002921078322 0 19.44450586 -3.422097291 1055.958493 0.00189401384 +2.499440842e-06 0.002014719434 -0.01261021715 0 -10.50588632 1.315508393 1001.133706 0.001997735156 +2.495885705e-06 0.00686663222 -0.00883466108 0 -18.38730971 -20.866106 968.9374313 0.002064116769 +2.498045763e-06 -0.0002814752935 -0.00810240773 0 3.693555553 17.05237513 882.2868212 0.002266836534 +2.49576574e-06 0.00259936119 0.01422381629 0 -15.95234925 22.53286329 948.1057625 0.002109469301 +2.496560748e-06 -0.000388309327 -0.004731640932 0 18.376217 -13.95221196 879.2801902 0.002274587807 +2.49738795e-06 -0.0005908023054 0.008077319241 0 -16.07284797 -14.80344387 955.6544358 0.002092806694 +2.498506836e-06 -0.007694293056 -0.007831129096 0 0.929164156 16.13000234 934.7335052 0.002139647278 +2.499676851e-06 0.008169902619 -0.009346859953 0 -7.562160889 3.621788557 1042.920783 0.001917691193 +2.497772241e-06 0.005413169949 0.008088757647 0 -10.06488423 19.84567332 1053.841379 0.001897818818 +2.49775853e-06 -0.002848371072 -0.005683889352 0 -10.52868322 -17.42835982 961.3634758 0.002080378598 +2.497808115e-06 -3.864290193e-07 0.005470210123 0 -7.759148407 20.60535549 1051.25447 0.001902488938 +2.497915756e-06 -0.00481940818 0.01354378703 0 9.126882359 18.00002328 988.1719374 0.00202393928 +2.495813324e-06 0.008109322865 -0.001134441993 0 24.84618559 12.91747411 967.1395633 0.002067953867 +2.498236167e-06 0.002217577887 0.008121754832 0 -16.34083023 2.258956496 878.0637532 0.002277738937 +2.497597152e-06 0.000520747425 -0.014093884 0 -21.39360858 0.9296104649 976.470082 0.002048193833 +2.497044274e-06 0.000315459976 0.009560170993 0 4.198864803 25.00698826 1042.458938 0.001918540796 +2.498951745e-06 -0.005291161528 -0.01079976977 0 -12.00929507 5.2967135 906.3553092 0.002206640133 +2.497388094e-06 0.001557689467 -0.002271776847 0 20.85838041 6.816230972 959.7298726 0.002083919712 +2.498623405e-06 0.008006890095 0.004126166599 0 -8.19240719 -14.70896124 1014.483518 0.00197144652 +2.498178572e-06 0.0005749108875 -0.00991726893 0 0.02541651449 -17.80019412 932.3638467 0.002145085319 +2.496901068e-06 -0.006475321432 0.01385373213 0 -8.384579944 22.02530331 946.2063692 0.002113703802 +2.497608587e-06 0.003467179635 -0.01132241699 0 -14.59994048 16.08852244 993.0526591 0.002013991888 +2.498311986e-06 0.0005898984475 0.0002798606269 0 -18.17059566 3.616270029 1008.070607 0.001983988012 +2.49452363e-06 -0.006458686641 -0.006942343691 0 -21.92398424 -22.68558729 952.4843603 0.00209977201 +2.49874196e-06 0.001457965565 -0.002945874485 0 16.24249019 2.736325448 1038.210706 0.00192639123 +2.498691131e-06 0.002933567711 -0.008332306731 0 7.650815315 -14.77243797 1028.023872 0.001945480114 +2.496130586e-06 -0.009121784884 0.01369301486 0 0.4073169645 26.59336985 955.5082808 0.00209312681 +2.497291154e-06 0.005455276989 0.001831896342 0 -5.323929296 20.37614389 904.4373925 0.002211319453 +2.498761039e-06 0.008467071229 0.000336340887 0 2.755031827 15.51547929 1000.878891 0.001998243761 +2.496652578e-06 -0.001066578664 0.001810184224 0 5.758989655 24.17410173 959.9502709 0.002083441258 +2.498000135e-06 0.008518963489 -0.01297368211 0 -15.24673331 14.4737054 1050.851585 0.001903218332 +2.499710227e-06 -0.006317433226 -0.003507312094 0 -6.538485126 -3.666219527 984.6421413 0.002031194803 +2.495719149e-06 0.00105224988 0.01288487645 0 -18.97669801 19.9419667 940.1937188 0.002127221189 +2.498882535e-06 0.001436158386 0.002209916494 0 -14.62763049 3.981041258 1013.877922 0.001972624076 +2.498683665e-06 0.001040278212 0.009896153135 0 -5.288104116 14.91059904 974.8499435 0.002051597801 +2.495722434e-06 0.00357985131 -0.01265272104 0 -14.28788603 -26.14438667 1017.968094 0.001964698119 +2.498354921e-06 0.008857784555 -0.01125274822 0 -16.30277149 -10.48718791 1068.416447 0.001871929251 +2.499648611e-06 0.007443187758 -0.0005747283739 0 -5.380884667 -5.074451556 882.2216778 0.002267003918 +2.496211424e-06 -0.00337780253 0.01405842161 0 3.802056873 27.45342737 1006.287345 0.001987503878 +2.49954823e-06 -0.002913657804 -0.01194419024 0 -6.429784758 -6.984764296 998.6871597 0.002002629132 +2.495642534e-06 -0.004690432032 0.01197835078 0 -25.57878416 -17.44070875 1048.019182 0.001908362018 +2.498112543e-06 0.007718231729 -0.007978142265 0 -3.038067391 19.27256808 1003.905998 0.0019922184 +2.497294458e-06 -0.00915237858 -0.01424823719 0 8.589638013 -21.57309548 997.8115238 0.002004386552 +2.495536296e-06 0.004303423157 -0.01132670142 0 -22.70139605 -20.67835991 1027.04656 0.001947331386 +2.497498094e-06 -0.003979407153 0.006833547573 0 16.64581174 -12.7976275 938.2917562 0.002131533168 +2.499027097e-06 -0.009494820912 0.009279677379 0 6.615589825 -13.03972329 1048.072115 0.001908265635 +2.499910885e-06 0.003806313635 0.009296187807 0 3.778302015 -0.1225390141 895.4235877 0.002233579758 +2.496770806e-06 -0.0003951593908 -0.01274241534 0 19.32474167 -18.3392484 1047.821647 0.00190872178 +2.496364659e-06 -0.002823725389 -0.005198893212 0 -18.60985093 15.02636317 886.5807299 0.002255857738 +2.496631036e-06 -0.000497040851 -0.01030553583 0 22.02068588 8.708595317 911.8050021 0.002193451446 +2.499491148e-06 0.004519784534 0.008657342771 0 8.805401877 6.163219701 1065.333158 0.001877346993 +2.498213718e-06 0.0003479289962 0.01046139973 0 -7.258728207 17.02271296 978.8130596 0.002043291086 +2.499479776e-06 -0.007027650457 0.01110603752 0 1.010562606 -9.80255879 966.0308831 0.002070327186 +2.499292689e-06 -0.007296517333 0.006390802322 0 -10.53429395 0.5928075437 887.004005 0.002254781251 +2.498728147e-06 -0.007492540185 0.004439456135 0 13.29139003 -9.416445318 1021.120934 0.001958631866 +2.497644682e-06 -0.007761820909 0.008274567251 0 -18.68109827 13.02394656 1048.879885 0.001906796029 +2.496783493e-06 0.002893802519 0.001363341969 0 23.83506336 0.6654135936 939.655266 0.002128440155 +2.497595359e-06 -0.009406571509 0.006615249601 0 -12.18882077 -18.58953729 1013.275146 0.001973797549 +2.499718849e-06 0.008871664573 -0.0004786939407 0 -5.817818396 -3.393502308 898.1461706 0.002226809027 +2.498954987e-06 0.009739984502 -0.01058218632 0 -6.250461035 13.76644013 1045.630146 0.001912722206 +2.49627841e-06 0.007780558816 0.003737775846 0 21.29110449 15.95130437 974.5849008 0.002052155742 +2.498696551e-06 0.00706539589 0.01134649479 0 1.200182432 -16.42249568 1019.644884 0.001961467204 +2.498230875e-06 -0.009831976281 0.007566693651 0 9.017653943 -16.25892189 988.1471747 0.00202399 +2.49898214e-06 -0.007268468859 -0.003158736401 0 -12.24032561 3.934441388 900.9862839 0.002219789619 +2.498369491e-06 -0.004292801605 0.003090598709 0 -12.84770576 13.57870598 1034.919086 0.00193251823 +2.498134492e-06 0.008801353909 0.001099635882 0 7.068993513 -16.40681975 924.6241617 0.002163041031 +2.49932985e-06 0.0005047707446 0.01430234305 0 7.7207686 9.553643142 1060.900386 0.001885191133 +2.497949504e-06 0.002418756844 0.005139289659 0 21.09902647 3.028705789 1052.236374 0.001900713613 +2.496582759e-06 -0.002922920925 2.098414348e-05 0 11.28588373 24.24605375 1022.471162 0.001956045388 +2.4998644e-06 -0.008774584718 -0.009700700676 0 -1.763014604 5.257705229 1064.831524 0.001878231396 +2.49898735e-06 -0.0009320608852 0.01239156234 0 -9.500338633 10.29656916 984.2890147 0.002031923521 +2.498584218e-06 0.001943665813 -0.00958109047 0 -6.24091275 -13.66366003 892.4974719 0.002240902706 +2.497621641e-06 0.0003165409528 0.002538530866 0 -11.11636465 -16.8021887 923.4086947 0.002165888205 +2.498355245e-06 -0.008934882735 -0.01124305897 0 -15.96802757 0.7430561979 881.1466056 0.002269769851 +2.497372124e-06 0.005177010498 0.001045247745 0 23.21425046 -5.384124756 1039.066934 0.001924803816 +2.497891461e-06 -0.002889014361 -0.01292048411 0 12.39774186 15.55325892 968.2537855 0.00206557416 +2.495974384e-06 -0.006622687248 0.0008451837581 0 -25.21475293 3.137198665 894.9459466 0.00223477184 +2.498418566e-06 -0.006866876343 0.01120030531 0 1.702414948 18.95512086 1069.861325 0.001869401158 +2.498317284e-06 -0.007239904408 -0.01422028716 0 -15.15721058 9.33791672 970.1901802 0.002061451498 +2.497044199e-06 -0.002476602849 0.01243776317 0 -9.886125548 20.48526368 935.1046739 0.002138797993 +2.498086254e-06 -0.003302926337 0.006697055739 0 -10.63737824 -14.65598625 925.3864175 0.002161259299 +2.496937239e-06 0.008663616991 0.001811096733 0 -17.60443734 -14.49844568 921.0454266 0.002171445558 +2.49952134e-06 -0.00469741099 -0.00827295328 0 -7.939451736 -4.904255252 953.7089612 0.002097075818 +2.494984988e-06 -0.003293253882 -0.01452128739 0 -1.505533546 -30.94908643 977.6493351 0.002045723275 +2.496388713e-06 -0.004892602046 -0.007829032985 0 -20.9230314 -18.44543263 1037.314382 0.00192805579 +2.498501697e-06 0.008967403248 -0.008264074358 0 -16.11498707 -3.44558967 951.7530735 0.002101385386 +2.499130027e-06 -0.009410152463 -0.001473268841 0 -8.736376347 -7.741075395 884.7923946 0.00226041726 +2.499654758e-06 0.004612074648 0.01300097113 0 4.920528929 -6.695735444 999.9190919 0.002000161829 +2.49993417e-06 0.007270931383 0.00348002638 0 -0.08333803897 -3.593168586 990.5176515 0.002019146248 +2.495711209e-06 0.001285613878 -0.006188873383 0 19.32976419 21.68634828 991.2726062 0.002017608464 +2.499252341e-06 -0.001235051034 0.005679214918 0 10.19213377 -5.405877808 943.3627604 0.002120075207 +2.496070349e-06 -0.008223229586 0.004426342396 0 -27.23064772 -12.15769653 1063.115233 0.001881263609 +2.499151595e-06 -0.006612113831 0.01367276241 0 8.003868733 -10.99010833 1043.59352 0.001916454982 +2.492832628e-06 -0.007563590021 -0.01309350077 0 -24.01335048 -28.51254763 983.5204322 0.002033511389 +2.497788426e-06 -0.005239897957 -0.01084046564 0 18.30029934 8.450235326 958.1147754 0.002087432583 +2.496952571e-06 0.006974361334 0.007109689938 0 -4.588094813 24.82031963 1021.934362 0.001957072855 +2.499344792e-06 0.001035670429 0.01117315244 0 9.537006303 -4.900962781 936.5958567 0.002135392748 +2.499308502e-06 -0.002531315638 -0.006996052468 0 10.1611298 -3.564826822 915.5710636 0.002184429019 +2.497529777e-06 -0.009015115374 0.00764204096 0 -17.94643436 14.42569948 1035.537211 0.001931364686 +2.498475846e-06 -0.007239648351 0.007301520682 0 -14.90043682 -7.103558128 945.2385301 0.002115868044 +2.499165638e-06 0.006370693962 0.007405982777 0 -11.46486278 -6.494476336 1019.8937 0.001960988679 +2.498316359e-06 0.00680357838 -0.009753540948 0 -17.21849267 3.001473738 952.2384428 0.002100314281 +2.496387158e-06 -0.009693442979 -0.01417549461 0 -20.62888162 13.02007892 907.0061045 0.002205056824 +2.499784458e-06 0.002512791329 -0.01220755758 0 -3.547415543 5.426397964 987.3794305 0.002025563768 +2.49982199e-06 -0.005946168331 -0.004401780465 0 4.937315503 2.726484719 945.2322848 0.002115882024 +2.498973201e-06 0.008419003519 0.003907046216 0 6.057378542 11.89155675 931.1262676 0.002147936397 +2.498075918e-06 0.006640013619 0.001535562181 0 -19.08759506 -6.463881215 1027.008404 0.001947403733 +2.498992599e-06 0.007818206041 -0.005740902387 0 -11.77377764 -5.726877018 922.2476756 0.002168614845 +2.497973087e-06 0.008262218172 0.003222629812 0 -4.588557611 20.85084039 1060.055182 0.001886694235 +2.496724552e-06 -0.007935154908 -0.003296144544 0 15.61779396 -20.80665953 1015.960443 0.001968580582 +2.497243716e-06 0.00590908817 0.004667343912 0 -16.38093974 17.60736995 1023.859884 0.001953392287 +2.498313178e-06 -0.002926930245 -0.006879006489 0 -13.0241108 -13.77567523 1031.875898 0.001938217575 +2.499173278e-06 0.00925309787 0.008003455137 0 -5.860233685 -11.32044455 991.2222221 0.002017711019 +2.498314747e-06 0.001358643961 -0.002053082949 0 -1.69890321 -17.89948589 979.1081487 0.002042675268 +2.497274591e-06 -0.003855905603 -0.01180233021 0 20.86369075 -3.952114023 909.1547656 0.002199845478 +2.498398e-06 -0.005800492335 -0.002017128963 0 -1.932153178 18.74031663 1052.258303 0.001900674002 +2.495867326e-06 -4.604329355e-05 0.0003215733776 0 20.41892486 -15.59346588 893.102183 0.002239385412 +2.495969385e-06 -0.003176420103 -0.003833853216 0 -22.95706042 19.37210661 1057.33664 0.001891545157 +2.49574026e-06 0.008089290066 0.008904432796 0 -17.98388896 24.44494967 1039.058161 0.001924820068 +2.495820998e-06 0.001037375121 -0.004644405129 0 17.71377354 -23.2941412 1011.610389 0.00197704573 +2.498296351e-06 -0.009837605841 0.007293686823 0 18.70281256 -5.307196777 1052.950026 0.001899425377 +2.498714236e-06 -0.007981426837 0.0009599035 0 3.172540453 16.86442005 1069.901776 0.00186933048 +2.498377486e-06 0.005664985962 0.007700716308 0 18.06574863 6.080561329 1057.899357 0.001890539008 +2.498016222e-06 0.009468082269 0.01334453205 0 -18.27201972 10.99000661 1070.154013 0.001868889875 +2.499877505e-06 -0.002467159694 0.006486454702 0 3.283484301 2.995645189 897.9633405 0.002227262417 +2.496889242e-06 0.006063842657 0.003374587549 0 15.36140957 -16.97776021 917.4973094 0.002179842905 +2.497518661e-06 -0.001435271017 -0.00573635987 0 19.78989843 12.9049413 1060.147786 0.001886529432 +2.495670225e-06 0.007336126305 -0.01016330745 0 10.51717398 -28.97018612 1046.658535 0.001910842871 +2.499460483e-06 0.007598606744 0.01291422231 0 -7.51693967 5.526197802 898.0793131 0.002226974801 +2.498452559e-06 -0.003202831536 -0.007684050661 0 -15.52195962 7.804262923 987.3335004 0.002025657996 +2.498618051e-06 -0.002180864839 0.0103037204 0 13.2458553 -9.380949242 976.1176253 0.002048933395 +2.498432497e-06 0.004063042155 -0.002638232459 0 15.6940867 -0.6123211476 886.8395558 0.002255199361 +2.499498162e-06 0.003713946836 0.003406289129 0 7.456400198 4.966857897 894.2118822 0.002236606379 +2.498306954e-06 -0.005834801989 -0.007527675424 0 1.602050163 16.28172934 888.8594243 0.002250074585 +2.4984237e-06 -0.006162303039 -0.01343291709 0 -12.04038867 12.74881147 987.3875469 0.002025547118 +2.497778735e-06 -0.0059136861 -0.0116861959 0 -17.30938104 8.685985757 918.5251272 0.002177403688 +2.49780558e-06 -0.002079253043 0.01166618948 0 20.28319372 4.287577735 989.2609624 0.002021711233 +2.499758277e-06 -0.0006735017337 0.01397621167 0 4.449556102 -4.511568514 911.3150544 0.002194630705 +2.499613083e-06 0.002617483702 -0.01099644865 0 7.200131202 3.463139798 908.1995085 0.002202159307 +2.499478609e-06 0.00876986566 0.0002506732824 0 -2.368010624 -10.06304346 1012.283062 0.001975731961 +2.499016305e-06 0.004050752469 -0.007182158113 0 -4.827842119 13.39258191 1014.809723 0.001970812808 +2.498367769e-06 -0.008689958616 -0.007598118489 0 17.40510864 -2.347746143 971.8069103 0.002058021999 +2.495095469e-06 0.001165334955 -0.007292006195 0 24.32409094 -22.43702545 1055.819513 0.001894263154 +2.49728603e-06 -0.00756883434 -0.01483563689 0 -16.14448959 14.33483498 926.3180064 0.002159085742 +2.496223808e-06 -0.008022524184 -0.000763215702 0 -26.58452502 -3.729920906 976.278573 0.002048595611 +2.499272633e-06 -0.003908322346 -0.005686081548 0 -9.03239397 -8.921848292 1052.497832 0.001900241444 +2.498548053e-06 0.000430389978 0.009821003289 0 8.100296948 -15.27384917 1014.335934 0.001971733362 +2.49994669e-06 -0.009010748877 0.01069574046 0 -0.3923094083 -3.100862577 957.2109087 0.002089403685 +2.49845016e-06 -0.006815171046 0.004363797738 0 9.401608042 14.38745924 975.97326 0.002049236472 +2.496036342e-06 0.003071262371 0.01469444848 0 9.239609417 27.12020977 1016.991556 0.001966584666 +2.495055582e-06 0.004928575507 0.01041248992 0 -8.836048939 27.88668115 929.5582781 0.00215155956 +2.497068007e-06 0.001254090085 -0.005498533307 0 23.70408298 8.170258859 1034.933125 0.001932492015 +2.498221552e-06 0.005680733072 -0.008667902201 0 4.531012563 18.37190098 1003.054387 0.001993909829 +2.497344669e-06 -0.005027482468 0.004546061307 0 2.673407304 24.19156468 1055.728783 0.001894425948 +2.499124635e-06 0.001593987085 0.01193110483 0 -12.60437793 5.927661359 1052.549628 0.001900147933 +2.496020872e-06 -0.006453188607 -0.01299531723 0 19.1124621 -18.62064718 945.314032 0.002115699051 +2.499434445e-06 -0.003138735215 0.002151929783 0 -10.68018163 3.370651174 1052.9489 0.001899427408 +2.498997822e-06 0.006308605494 0.01245272279 0 -13.62375054 -3.748957647 997.9164984 0.002004175703 +2.498904493e-06 0.006745574344 0.01177815115 0 -14.47894428 -5.417104623 1044.218171 0.001915308559 +2.497400006e-06 -0.008198114904 0.009103183234 0 -22.28671693 1.9255972 980.596825 0.002039574215 +2.499193147e-06 7.957324386e-05 0.008841145495 0 -11.93012407 3.252331949 973.3003068 0.002054864245 +2.498289793e-06 0.002551220553 -0.01191657953 0 3.156479272 -16.15365222 889.7271766 0.002247880083 +2.498665518e-06 0.009957600678 0.01272163962 0 -15.39846482 -5.366999866 997.9644442 0.002004079415 +2.49688373e-06 -0.008063145149 0.0006443512836 0 19.70885218 -15.3851827 1001.045764 0.001997910657 +2.494901616e-06 -0.003726606639 -0.009102266827 0 -21.21604464 -22.61758892 970.3997395 0.002061006324 +2.49965713e-06 -0.008043514574 -0.003850364434 0 1.348570314 7.506234786 920.9121944 0.00217175971 +2.496852604e-06 0.002928295317 -0.004272678739 0 -9.406716404 20.1949037 887.5345187 0.002253433481 +2.497233166e-06 -0.002384210806 -0.0001736221835 0 4.547698896 -23.5151312 1017.733228 0.00196515152 +2.496380415e-06 0.005828981488 0.01143759075 0 -19.62945541 20.35319887 1050.382423 0.001904068419 +2.497046123e-06 -0.005148833035 0.0130216304 0 10.89702931 23.48885115 1064.844908 0.001878207788 +2.496260886e-06 -0.008014956363 -0.01355857519 0 -20.34307686 -14.67025579 916.6466781 0.002181865759 +2.497991177e-06 -0.003787740986 -0.001891951344 0 17.19081651 12.07726633 1047.832272 0.001908702426 +2.498353841e-06 -0.003366129412 -0.01126840093 0 0.6900804861 -17.38051874 958.3997385 0.002086811922 +2.496595105e-06 0.003889538227 -0.01060679398 0 -17.94747595 -17.38679591 957.0772568 0.002089695462 +2.497440003e-06 0.003393505984 0.005063572596 0 -12.13115101 -17.987359 958.4624209 0.002086675446 +2.497159028e-06 -0.0002923744032 -0.006186754752 0 21.63733553 -13.39118619 1067.052174 0.001874322595 +2.499912061e-06 0.0007301597809 -0.007607023437 0 -3.952301717 -0.684247708 956.4278008 0.002091114456 +2.498006243e-06 0.008577621439 -0.008671653648 0 -5.087455699 19.82429342 1024.62804 0.001951927843 +2.499023878e-06 -0.00178192141 0.01488211503 0 -13.77340575 1.444153962 991.0255435 0.002018111453 +2.494999872e-06 0.007577937753 -0.00582061525 0 15.61224338 -23.90752797 902.257135 0.002216662991 +2.49780966e-06 -0.000150043699 -0.01434733775 0 -9.287041296 -18.22698437 977.0565962 0.002046964329 +2.498993898e-06 0.00873813204 0.0005914494954 0 10.30131772 10.88539431 1056.359942 0.001893294056 +2.499342787e-06 -0.003766352683 0.0138892272 0 5.092113447 9.277537438 923.0019242 0.00216684272 +2.499717143e-06 -0.007059682105 0.006470089238 0 -1.528050752 7.471713964 1013.912291 0.001972557211 +2.499353322e-06 0.005187893156 0.002774530726 0 5.414725589 -9.606479302 969.5547803 0.002062802474 +2.496185791e-06 -0.003209737549 -0.00368011598 0 -24.03600292 14.46393611 1015.087615 0.001970273276 +2.497570838e-06 -0.004316685931 -0.01418643042 0 -3.729441606 -20.91306021 963.4167865 0.002075944729 +2.499754173e-06 0.002148717889 -0.003173599597 0 1.100107824 -6.467382225 935.570271 0.002137733596 +2.499886739e-06 0.009010905013 -0.01404922709 0 -4.569023598 0.848233718 976.3812256 0.002048380231 +2.497848446e-06 0.00174614144 0.01212083356 0 6.887073572 20.58860043 1046.231034 0.001911623661 +2.496856047e-06 0.0008332842775 0.01350339198 0 23.57535407 -5.145383518 961.8451108 0.002079336868 +2.497777238e-06 -0.008622043366 0.003952407364 0 11.24241881 -15.32700991 901.2249258 0.002219201825 +2.497994951e-06 0.003519530799 -0.01321414206 0 -14.77417068 -14.77869002 1043.221118 0.001917139105 +2.498785668e-06 -0.00291879762 -0.01385608115 0 14.72799671 -1.84996131 952.3137803 0.002100148125 +2.498631515e-06 -0.001725554396 -0.003738121747 0 17.064471 -1.844361121 1037.267024 0.001928143818 +2.498901788e-06 0.004788799123 -0.01226784429 0 -3.200722791 -14.81614894 1022.610739 0.001955778406 +2.499223261e-06 -0.009456194998 0.003623527272 0 12.23147386 4.142512731 1035.988328 0.00193052368 +2.497488986e-06 0.003384208311 -0.006407672684 0 -21.03925505 -6.01201685 976.0484915 0.002049078522 +2.497697818e-06 0.0003148478922 0.01232681783 0 2.885447455 22.26603853 1045.982577 0.001912077738 +2.497272998e-06 -0.007319957963 -0.00759811911 0 13.17024561 -19.45713316 1005.652671 0.001988758204 +2.499550917e-06 -0.002463124846 -0.01336157036 0 -7.953419147 4.535727752 966.0318519 0.00207032511 +2.498143003e-06 -0.00624729861 0.0008131550811 0 -9.447248455 17.36695372 1025.580849 0.001950114418 +2.495929947e-06 0.00589704284 -0.01164224529 0 -4.387961329 -24.6666154 877.5954431 0.002278954404 +2.49753948e-06 0.001526257508 0.003151671037 0 20.62431505 8.620418929 1007.290027 0.001985525465 +2.497455791e-06 0.008033098415 -0.01404664748 0 -18.37013044 14.77552535 1044.704379 0.00191441717 +2.495672262e-06 0.005453494443 -0.01483788472 0 27.10633167 -13.26927897 1025.156847 0.00195092098 +2.496261838e-06 -0.004618718768 0.008879336261 0 -20.1421608 -15.54185386 929.9299972 0.002150699521 +2.499785573e-06 -0.00100756193 0.004089381457 0 1.56086057 5.709788458 903.8598491 0.00221273243 +2.49760426e-06 -0.006327305892 0.009147315952 0 8.59038448 -18.0761938 913.9739606 0.002188246149 +2.497703522e-06 0.001533838431 -0.007313376395 0 18.18952445 10.74278439 985.3741571 0.002029685867 +2.499329996e-06 0.006731594382 -0.008540169967 0 -9.511856267 4.784794162 919.7106274 0.002174597031 +2.498661928e-06 -0.007657447574 4.187978106e-05 0 -6.108923953 16.06404284 1050.371824 0.001904087632 +2.499131057e-06 -0.009937388836 -0.004271297206 0 10.67638425 -4.965119215 893.0449667 0.002239528887 +2.498910776e-06 0.008211806142 -0.006115833975 0 4.953668474 14.94745053 1066.720517 0.001874905346 +2.498097516e-06 -0.004632149935 0.01067739123 0 -7.030173686 -16.04489796 897.7845888 0.002227705872 +2.498819107e-06 0.001501240646 0.009948879112 0 -14.06177783 6.859166509 1017.869949 0.001964887559 +2.496064195e-06 -0.006222713855 -0.009924854951 0 -19.21868952 -18.99872078 962.6426206 0.002077614223 +2.499760769e-06 -0.006494801296 0.009137965073 0 6.099125509 0.9075087429 891.422813 0.002243604237 +2.499320906e-06 -0.002567983894 0.009884832704 0 10.96948587 -2.521044095 965.6922315 0.002071053214 +2.495154024e-06 0.008592700912 0.003878408179 0 27.82047407 16.75428554 1042.412858 0.001918625605 +2.496753133e-06 -0.00608901436 0.002702414864 0 17.33266953 20.9958629 1067.880886 0.001872868057 +2.498003898e-06 0.004499286255 -0.009707866693 0 -4.27647972 19.15096905 981.7953674 0.002037084373 +2.499585221e-06 0.0007222123072 0.006151578007 0 5.780400567 5.537006464 878.7840705 0.002275871932 +2.499914934e-06 0.003412888832 -0.0143158093 0 -3.77751921 2.195317147 1059.236882 0.001888151775 +2.497433402e-06 -0.003394194967 0.01144285533 0 19.61892867 -4.482679532 887.9011374 0.002252503027 +2.499140039e-06 0.008148594252 0.006209571571 0 -12.48941586 1.222009968 956.7550922 0.002090399117 +2.499236475e-06 -0.00201408735 -0.0001340549905 0 -6.89856532 9.152818811 927.3897561 0.002156590567 +2.497575751e-06 -0.002775141844 -0.006780050034 0 -8.461884178 19.97846481 984.9861285 0.002030485448 +2.497116418e-06 -0.002931638849 0.0003756216704 0 7.335817418 -20.349242 900.3474526 0.002221364646 +2.498530197e-06 0.006994230654 -0.01201797208 0 -6.081792963 16.6892733 1035.793576 0.001930886661 +2.498339988e-06 0.009124753536 -0.01385478441 0 17.29047506 0.4500058266 949.0195124 0.002107438228 +2.499084737e-06 -0.005486451485 -0.01498492017 0 6.950395525 10.80500103 949.4414068 0.002106501766 +2.496495147e-06 -0.004477140764 -0.004373024656 0 11.2346386 -25.58154527 1054.738845 0.001896203985 +2.498080964e-06 0.004834390273 -0.01085170851 0 17.96437941 -6.590257955 976.4459478 0.002048244457 +2.497236544e-06 -0.009667801191 0.01142338396 0 18.5289663 -16.60750405 1057.962233 0.00189042665 +2.499452838e-06 0.007572550043 0.009498386309 0 -8.431858408 6.817580181 1036.454447 0.001929655476 +2.498724367e-06 0.001769573316 0.01248270085 0 -7.295570915 -13.12048107 939.700205 0.002128338367 +2.49958855e-06 0.006554370471 0.01056910571 0 7.726096752 4.529534552 987.2156886 0.002025899733 +2.497700237e-06 0.003998665013 -0.01431467241 0 -0.2680191967 -19.60309019 913.8159767 0.002188624461 +2.497272835e-06 0.002473783041 -0.0004579851008 0 -11.58010712 21.50454444 1045.376964 0.001913185453 +2.499185794e-06 0.00806539977 0.01346302296 0 12.94046087 -3.134276514 1043.262819 0.001917062473 +2.49807458e-06 0.008565425971 0.001237087541 0 -18.87643659 8.466952702 1053.957901 0.001897609001 +2.499196209e-06 0.007474406767 -0.003951881735 0 -12.67291419 3.37715514 1034.273154 0.00193372514 +2.496959572e-06 0.002706118044 0.01265265934 0 18.0698388 -13.37426357 911.2399934 0.002194811482 +2.499917184e-06 0.007568567446 -0.005803023214 0 -1.420469217 3.362258387 896.8400076 0.002230052164 +2.496076192e-06 0.006998669482 -0.01209562835 0 19.66068971 -16.10852754 906.7776553 0.002205612355 +2.497048893e-06 -0.005882835086 0.009573993143 0 -16.11735063 18.94466311 1023.362432 0.001954341822 +2.494943932e-06 0.002724431455 -0.002631227898 0 23.26411441 17.77252875 919.9410235 0.002174052411 +2.497420237e-06 0.002710157307 -0.007890284741 0 -12.10250428 -19.84970437 1023.098248 0.001954846472 +2.49848059e-06 0.0006173204677 0.006511291887 0 -1.58813056 16.70986755 962.6626631 0.002077570967 +2.494769479e-06 -0.00203599839 -0.01132120545 0 15.67471488 -30.63902986 1063.23499 0.001881051714 +2.498241074e-06 -0.004442148851 0.001913968327 0 17.93677344 -1.6227352 959.9773593 0.002083382468 +2.495604665e-06 0.007679387699 -0.009247385196 0 -5.82343533 -27.71831921 954.6596353 0.002094987497 +2.497765268e-06 0.0006220376678 -0.0148292671 0 -8.085499723 -20.39912364 1037.587124 0.001927548978 +2.495930734e-06 -0.006329274736 -0.001759754322 0 19.84283238 -17.14857471 918.7480515 0.002176875365 +2.499221503e-06 -0.006825287165 0.005074458173 0 -10.85252857 7.014414305 1035.469436 0.001931491101 +2.49826862e-06 0.006325608566 0.01110756532 0 17.64167773 4.981525955 984.8596626 0.002030746182 +2.49996753e-06 -0.00358083644 -0.0104354352 0 -2.685594613 0.07303178026 1054.24737 0.001897087967 +2.499467647e-06 -0.009486614354 0.01059168587 0 -8.941886263 -5.97097199 1041.952516 0.001919473268 +2.498035301e-06 0.004859126532 0.01031853927 0 13.7158266 -14.56495085 1008.976263 0.001982207187 +2.497587071e-06 0.009892232381 -0.006433805216 0 -13.08581986 17.51710135 994.968161 0.002010114573 +2.496731387e-06 -0.001130650402 -0.01066665372 0 -10.25407449 -24.3906393 1034.31906 0.001933639315 +2.498132928e-06 0.001624267702 0.002071691738 0 -12.30835115 16.17199371 1051.412157 0.00190220361 +2.497832773e-06 -0.009173608599 -0.001525245456 0 -15.14339624 -16.27019144 1067.267639 0.001873944199 +2.497356616e-06 6.445254665e-05 -0.003210873683 0 4.489250391 19.61563248 874.8238603 0.002286174498 +2.499113199e-06 -0.0086099499 -0.005800038397 0 4.075351275 12.0354338 953.9967952 0.002096443101 +2.497431789e-06 -0.004578388692 -0.01242426592 0 -16.22700134 13.34652679 926.7033306 0.002158187992 +2.499042896e-06 0.003172795139 0.001770227705 0 0.05566420023 12.63590475 913.1739955 0.002190163112 +2.499215009e-06 -0.008230755688 -0.009636957999 0 -7.746928049 10.50328372 1041.482633 0.001920339271 +2.499832829e-06 0.0007067166641 0.006959900286 0 -5.204363332 -1.66100271 944.7663912 0.002116925431 +2.499443451e-06 -0.008017634805 0.005309838715 0 9.003724533 -6.326819311 1042.945254 0.001917646197 +2.499884893e-06 -0.007497920343 0.003153123865 0 4.58630221 1.011871462 978.8373321 0.002043240418 +2.498097086e-06 -0.003382982695 0.004138205135 0 3.213646452 -17.59361372 916.5017423 0.0021822108 +2.495790203e-06 0.00907771735 -0.009734828782 0 30.34560844 -4.146542934 1054.855399 0.001895994467 +2.499716174e-06 -0.003590233983 -0.009934812658 0 5.427530872 4.673462261 950.5961401 0.0021039429 +2.497525367e-06 -0.005283768103 0.007878430006 0 7.21229084 18.32128513 884.7259339 0.002260587063 +2.499101054e-06 -0.003525721235 0.01251545004 0 -11.58405914 7.128865776 1014.281562 0.001971839058 +2.496480529e-06 0.007651301138 -0.01375455375 0 27.28623313 7.837201856 1069.482504 0.001870063318 +2.496740099e-06 -0.0006302398769 -0.0125871064 0 -7.055419433 -24.31450971 991.0387503 0.00201808456 +2.492601765e-06 0.006882975097 -0.01128081363 0 24.13032439 -27.54868367 951.0109517 0.002103025203 +2.498933297e-06 -0.009123042198 -0.006017662135 0 -12.47137815 9.277920087 1064.034775 0.001879637815 +2.49868795e-06 -0.001497912765 -0.01266007337 0 -14.57758206 1.128268237 902.41603 0.002216272687 +2.497228036e-06 0.008251291099 0.01090699662 0 22.19870989 -5.353057061 969.4197411 0.002063089821 +2.496424959e-06 0.005234779017 0.006092049081 0 -8.530024118 22.8167541 910.4845772 0.002196632486 +2.496424061e-06 0.006338912332 -0.01423082625 0 25.60308815 -8.662267706 1010.142658 0.001979918366 +2.497088634e-06 7.520895917e-05 -0.001268075772 0 20.39768737 -9.852488098 938.3471753 0.002131407279 +2.499871456e-06 0.0005813004682 0.01463340394 0 -4.925894237 -2.262646641 1069.068566 0.001870787397 +2.498048189e-06 -0.008885717671 0.01362285159 0 16.31992412 6.291929513 885.0111829 0.00225985845 +2.497465984e-06 -0.009947290262 -0.01037841549 0 -18.88588004 -13.8340565 1039.508947 0.001923985364 +2.497516894e-06 -0.008755787667 0.002064716332 0 13.65869715 15.32618941 920.8727306 0.00217185278 +2.499234433e-06 -0.002051007268 0.00419120613 0 -10.12290355 7.280457346 1007.577224 0.001984959518 +2.497780902e-06 -0.001779931812 -0.01304040707 0 -17.69905189 -6.990266327 902.9808935 0.002214886289 +2.49724552e-06 0.004207150578 -0.001893838188 0 -21.07836525 7.709167232 955.8373739 0.00209240615 +2.499999076e-06 0.00466931453 -0.01044300225 0 0.1438558629 0.4340422377 1063.429989 0.001880706789 +2.497743061e-06 0.009048057823 -0.01394217765 0 -8.758648791 -20.53977009 1050.636421 0.001903608098 +2.496329194e-06 0.009710154333 -0.01260667427 0 23.79616844 2.339864674 881.9855723 0.002267610789 +2.499548866e-06 0.009739884147 0.004477050744 0 -7.170871992 4.511085589 891.8221801 0.002242599528 +2.498863287e-06 -0.002632065774 0.006768939206 0 -8.511518097 -11.6329782 955.8267759 0.002092429351 +2.499679034e-06 0.002326675467 0.01144976603 0 -7.983796931 1.227573183 1008.133233 0.001983864765 +2.499497248e-06 0.002716971422 -0.006297677339 0 8.282033841 -5.52099085 992.5535484 0.002015004634 +2.497854468e-06 0.009691718044 0.0005305844452 0 7.665253418 20.80394232 1069.956138 0.001869235502 +2.497959412e-06 0.005688468795 0.003172414626 0 5.134802979 17.53442301 904.1323415 0.002212065544 +2.494195851e-06 -0.003864331851 -0.01010413381 0 18.06493872 -28.35466796 985.9155167 0.00202857138 +2.497129024e-06 0.001416636766 -0.00526049654 0 -23.82597431 6.826663568 1033.871173 0.001934476996 +2.499138816e-06 -0.0074939341 -0.01038795074 0 6.322262928 -12.15796679 1044.032015 0.001915650067 +2.494924832e-06 0.001897455757 -0.007191508971 0 24.53418477 -18.10339527 956.2924516 0.002091410422 +2.499646463e-06 -6.655111909e-05 -0.0003253350221 0 3.874810523 -6.979088505 949.2670696 0.002106888634 +2.498941619e-06 0.007433657432 0.0002414676896 0 -9.457377358 10.63215937 977.8928529 0.002045213843 +2.497619595e-06 -0.001805556011 -0.01419184021 0 -8.986356457 -19.7341282 993.4391854 0.002013208286 +2.499719513e-06 0.001817267393 -0.01431025135 0 4.58269332 5.532097114 959.084668 0.002085321627 +2.49259958e-06 -0.00983296114 0.01410410067 0 -21.93264281 29.68528411 958.3046426 0.002087019003 +2.49844987e-06 0.0008327056374 0.007008198006 0 11.652896 13.80409437 1025.739635 0.001949812537 +2.498599937e-06 0.002231877041 0.003204590916 0 -11.74211614 -8.877285631 879.4940302 0.002274034765 +2.498472626e-06 0.004217156451 -0.0126644991 0 -11.74263235 9.903558057 878.7009111 0.002276087318 +2.497639061e-06 0.005271609607 0.0004931510333 0 18.39548201 -11.18593989 990.4270371 0.002019330981 +2.497602975e-06 -0.0001145001547 -0.01266277793 0 20.97821211 6.221904513 999.0068576 0.002001988259 +2.498272911e-06 -0.005820272882 0.007639405124 0 -14.06522253 -8.868160776 894.422811 0.002236078928 +2.496406093e-06 -0.003532878407 -0.0004581555957 0 18.93400548 -15.7776569 918.7890154 0.00217677831 +2.495682675e-06 -0.009419794152 -0.01118752858 0 -28.32943812 8.933349095 1010.228208 0.001979750698 +2.497192512e-06 0.003260799898 -0.006685653557 0 16.00622218 15.83749806 949.8563337 0.00210558158 +2.497338014e-06 -0.000409064889 0.00955506772 0 19.26411264 -14.0413807 1032.724783 0.001936624387 +2.497685526e-06 -0.002920496487 0.008253023245 0 -18.44848586 -11.050049 999.1726523 0.002001656066 +2.497196302e-06 -0.004673405923 -0.002904336099 0 -20.98299982 -12.255627 1025.750416 0.001949792044 +2.498103911e-06 -0.0007246937184 -0.0003477622708 0 -18.81680696 -8.236181676 1054.484889 0.001896660655 +2.497748647e-06 -0.001128302091 -0.01059858968 0 -22.00495808 -5.271968522 1065.998152 0.001876175861 +2.494494647e-06 -0.006535893288 0.006609360483 0 -26.63183981 22.32136894 1046.349307 0.001911407583 +2.498013478e-06 0.005424023964 0.01366476028 0 16.71974455 12.31499234 1041.484199 0.001920336384 +2.499750459e-06 0.004716780675 0.002217363215 0 -6.22460945 -2.654122124 957.819062 0.002088077048 +2.498487402e-06 -0.007878760928 -0.006139039421 0 -17.96186266 0.1225369373 1032.490808 0.001937063251 +2.498049592e-06 0.009587332052 0.00991120303 0 -15.8730637 -9.970699688 948.8048895 0.002107914938 +2.497212186e-06 0.003927210364 -0.001541969853 0 16.27345395 -17.88804177 1023.712102 0.001953674277 +2.499390696e-06 -0.006855521272 -0.01485983418 0 9.592210385 -4.530424074 960.8873829 0.002081409368 +2.496385845e-06 0.004626980401 -0.0008083514334 0 -11.95489284 25.7225275 1054.453353 0.001896717379 +2.498646664e-06 -0.000902210963 -0.002192170923 0 -14.70425474 -5.224766674 948.3210255 0.002108990464 +2.499121023e-06 0.005457149609 0.01420119772 0 -2.830043266 12.2268816 946.4274388 0.002113210076 +2.497875466e-06 0.002025985699 0.005008184141 0 -15.797541 15.34507055 1068.072218 0.001872532556 +2.49697849e-06 -0.004990715161 0.004835203285 0 20.84396372 -10.16976241 943.0284005 0.002120826901 +2.497821367e-06 -0.008027086728 0.01080091545 0 6.935861886 19.87412258 1008.080949 0.001983967659 +2.497955506e-06 -0.0007077268278 -0.006032115966 0 15.42600518 15.12506418 1068.049346 0.001872572656 +2.498980542e-06 0.007467311081 -0.01089420392 0 -14.00652991 5.022424367 1041.910126 0.00191955136 +2.499739406e-06 -0.008963691797 -0.01462217279 0 -5.535412791 -4.33005122 973.4318924 0.002054586475 +2.49947347e-06 -0.007415204816 -0.01479019545 0 0.2191407604 10.24054475 998.0713466 0.002003864761 +2.499630549e-06 7.86565803e-05 -0.006952614142 0 4.50011188 8.011635365 1068.930689 0.001871028702 +2.499878507e-06 -0.007126401644 0.01380178081 0 -4.568048838 0.9907433473 948.2289714 0.002109195205 +2.494463334e-06 0.00592784219 -0.01259640573 0 19.89398547 -23.94625206 934.7706557 0.002139562242 +2.499524705e-06 -0.009044015105 0.003202396736 0 -0.9397706849 9.397591049 968.6112762 0.002064811808 +2.493934003e-06 0.007163045267 -0.01239549978 0 -18.05479057 -30.70997507 1021.838944 0.001957255605 +2.498261656e-06 -0.00882767702 -0.008654827131 0 15.89129259 -7.577174233 943.9464844 0.002118764181 +2.499336468e-06 0.008877980895 0.01302826267 0 -10.64746071 -0.3624430959 924.7161295 0.002162825905 +2.499485832e-06 -0.005570634673 -0.005342187148 0 -8.867346842 -1.267317327 883.2494794 0.002264365897 +2.499962753e-06 0.004295684905 0.002242486062 0 -1.383098178 2.498904567 1046.437679 0.001911246164 +2.498469891e-06 -0.005904453811 0.004952546891 0 13.42663227 10.84457213 986.3798267 0.002027616488 +2.498178728e-06 -0.006963729262 0.01492119263 0 -16.18096826 6.060700111 905.0898773 0.002209725299 +2.499358801e-06 -0.006610414893 0.003700399983 0 7.207224396 -8.906315193 1011.634737 0.001976998146 +2.495985087e-06 -0.006957316571 -0.007344920305 0 -8.628965809 -27.76451167 1025.41013 0.001950439089 +2.496725936e-06 0.004912014008 -0.005049281311 0 -3.122841221 -26.77635191 1052.962989 0.001899401994 +2.498180638e-06 -0.00551486331 -0.004131613732 0 -1.831228469 -18.78632039 989.241154 0.002021751715 +2.497923091e-06 0.005944370683 -0.009950806322 0 3.883835487 -20.8196349 1038.824483 0.001925253047 +2.498824874e-06 -0.004303530916 -0.008030342865 0 -10.56694845 10.34694774 964.5175654 0.002073575507 +2.498410222e-06 -0.004046726795 0.01132526594 0 -12.11740238 12.90990385 992.7272677 0.002014652025 +2.496195735e-06 0.00659376476 0.006703019561 0 -17.46907209 18.71127622 927.5026739 0.002156328015 +2.499582972e-06 -0.007584401201 -0.002601920196 0 -7.527666428 3.03940149 888.853771 0.002250088896 +2.497972493e-06 0.0001852773502 -0.008441119124 0 -1.749197645 -21.49511125 1070.642981 0.001868036344 +2.498357856e-06 0.007225163863 0.005447054082 0 0.8692364638 -17.65956633 975.3889405 0.002050464094 +2.499749327e-06 -0.004257491003 0.002652523241 0 -5.853921791 4.014917938 1002.485153 0.001995042014 +2.496315792e-06 0.004586878642 -0.01095610014 0 -20.31990955 15.62326279 943.7360091 0.002119236715 +2.498966807e-06 -0.003836755268 0.01306798798 0 7.877392813 11.42942303 965.4969913 0.002071472017 +2.498168956e-06 -0.009187877886 0.003656458855 0 -16.71965717 1.511893358 877.0251431 0.002280436332 +2.493268678e-06 -0.002972074053 0.004680032542 0 -23.57548443 24.98502155 935.2912169 0.002138371412 +2.497191059e-06 0.005277704909 -0.008850393689 0 -19.58591275 -13.27184997 997.7635586 0.002004482909 +2.498587886e-06 0.007396365288 -0.005846976859 0 -12.16536665 -9.336506272 912.3172204 0.002192219938 +2.499030595e-06 -0.001417654501 -0.01374905921 0 -13.28485712 -1.767894265 962.3610324 0.002078222136 +2.498695062e-06 0.009841816979 0.01049273437 0 10.57013394 11.36859662 960.7027341 0.002081809418 +2.498251988e-06 0.001862995396 -0.01190405929 0 13.57023953 -10.73495938 925.1626975 0.002161781928 +2.499173398e-06 -0.00224379838 0.01455648953 0 -12.26817433 0.9173791424 956.6952289 0.00209052992 +2.498001091e-06 -0.002186828223 -0.007317594099 0 -17.96885764 7.064533491 965.3590514 0.002071768009 +2.498004455e-06 -0.005418010773 0.005449579835 0 13.81296219 -10.96276557 882.4507566 0.002266415417 +2.498572814e-06 -0.002066626521 0.002642953321 0 10.30909325 12.30964253 950.1607605 0.002104906962 +2.499043633e-06 -0.005637574312 -0.01476818629 0 13.96448997 3.386932297 1038.837553 0.001925228823 +2.499182623e-06 -0.004120602501 0.01075674513 0 2.826379344 11.27782569 909.2290435 0.002199665765 +2.494495966e-06 -0.001613554242 0.01473164201 0 9.674924577 33.72107364 1056.48724 0.001893065931 +2.497434086e-06 0.003303534254 -0.000512216175 0 16.09502113 13.12833882 916.5122474 0.002182185787 +2.49766836e-06 -0.0002435061289 -0.01049662132 0 21.70701388 -7.709084629 1066.340534 0.001875573455 +2.499538482e-06 -0.001971189547 0.007359057139 0 -8.367152202 -4.30912623 979.5421258 0.002041770279 +2.498451043e-06 -0.00390607255 0.007187726651 0 13.5399437 -9.694048094 945.8952079 0.002114399125 +2.499466801e-06 0.0007650047448 0.006788184524 0 2.689644665 10.49790102 1049.334081 0.001905970687 +2.495047157e-06 0.002142926049 0.006358948855 0 25.28375852 -18.2282555 989.6112259 0.002020995668 +2.498625958e-06 -0.006166931042 0.01011308278 0 -15.71719273 -2.048808921 955.9370925 0.002092187881 +2.495910671e-06 0.0001706591155 0.005037329241 0 18.98840606 22.83950098 1037.950089 0.001926874925 +2.499114701e-06 0.002057710504 -0.004156818443 0 11.80841875 6.914479665 1028.233774 0.001945082966 +2.497841916e-06 0.008504233612 0.01331848254 0 17.01565734 8.95836461 925.3046054 0.00216145039 +2.498299062e-06 0.009813745553 0.01194500521 0 9.313920462 14.93444591 954.0286282 0.002096373149 +2.496418644e-06 0.00543282195 0.001454803075 0 -16.18316063 23.13847027 1054.469842 0.00189668772 +2.498523553e-06 -0.003293330376 0.01286193251 0 15.14721954 6.420113133 957.1694152 0.002089494261 +2.497819781e-06 -0.00433485535 -0.01056209693 0 15.79960723 -11.38094929 932.1813345 0.002145505307 +2.499555563e-06 -0.004999695085 0.01043723126 0 4.302347514 7.335361433 901.9305503 0.002217465635 +2.497713191e-06 0.008139233575 0.00753624483 0 -8.965372238 -19.15749648 988.6964554 0.002022865551 +2.497513082e-06 0.003310703491 -0.007132763676 0 -15.91563493 12.95335586 919.7782791 0.002174437085 +2.493459995e-06 0.003000859888 0.01432148705 0 -16.79281661 29.10405449 928.1645521 0.002154790328 +2.49704666e-06 0.003622620604 0.004748139835 0 23.92192801 -2.961112492 991.3657047 0.002017418991 +2.496659266e-06 -0.0006425873609 -0.004561110539 0 -17.6524174 17.71069359 966.90172 0.002068462553 +2.496811202e-06 0.001713097263 0.01153518178 0 22.59777113 10.63437029 988.4816511 0.002023305134 +2.496332787e-06 0.00611583156 -0.00712738737 0 26.77141217 5.644553172 1009.703613 0.001980779284 +2.49793903e-06 -0.00657566505 0.007033463682 0 3.326459757 -21.24561929 1058.871789 0.001888802801 +2.499253713e-06 0.009605393894 -0.008633025025 0 -3.904769301 11.02881718 957.539353 0.002088687001 +2.499456803e-06 -0.0004713002173 0.01092055177 0 -9.544092741 3.77273633 984.5390211 0.002031407549 +2.498815613e-06 0.003698361088 0.008324983923 0 12.41694548 6.316279228 904.996385 0.002209953579 +2.495299704e-06 -0.006652885182 -0.004721033969 0 17.07098505 -27.7508218 1061.894571 0.001883426146 +2.499587672e-06 -0.006251685801 0.002316578671 0 7.65052518 5.718843921 1051.765863 0.001901563903 +2.497957578e-06 -0.0002936672419 0.006735688203 0 -2.075201675 -21.34720481 1060.871205 0.001885242988 +2.497985027e-06 0.007313180133 0.01360970414 0 18.48877781 -2.473955274 928.9253872 0.00215302545 +2.497924708e-06 0.004873761358 -0.01161911581 0 -1.239137775 -18.24499258 897.3321246 0.002228829154 +2.496545803e-06 0.00665067134 -0.01129416798 0 22.23926669 12.33698477 967.0895321 0.00206806085 +2.499533776e-06 0.001141666193 -0.01076264108 0 8.854299287 -0.8748745413 921.3430791 0.002170744042 +2.498423272e-06 -0.001727211764 0.008586818897 0 14.20553878 -7.089214852 893.8216575 0.002237582837 +2.497476935e-06 0.006236653645 -0.004320800949 0 -12.95116001 -20.21620298 1068.387084 0.001871980699 +2.498032424e-06 -0.002590473485 0.01371427744 0 -17.87744382 -8.45100096 996.5334706 0.002006957176 +2.499016587e-06 -0.004348805975 0.01331284469 0 -13.16288753 6.426659158 1044.313671 0.001915133408 +2.498950083e-06 -0.001453841887 0.006772025283 0 10.52921639 -8.124559292 917.6343205 0.002179517434 +2.493357619e-06 0.008925163946 -0.001060044772 0 24.77600423 -23.09845855 928.4216416 0.002154193645 +2.498587453e-06 0.002298780032 0.0007187322923 0 16.44749644 3.599974637 1001.50399 0.001996996537 +2.498802035e-06 -0.005253472058 -0.00090879553 0 -13.51183896 2.923103497 892.95909 0.002239744264 +2.498816334e-06 -0.004207219267 0.004150726839 0 -11.66180663 -10.3469249 1013.087788 0.001974162579 +2.498714468e-06 -0.007564149052 0.008518132037 0 7.051268043 -14.33595696 996.1717731 0.002007685877 +2.498357297e-06 0.009912001584 -0.001625495357 0 -13.1317466 -13.31100862 1031.335861 0.001939232481 +2.498451115e-06 0.0002658805717 0.0147676674 0 -16.37068034 -7.27832342 1017.674265 0.00196526538 +2.494141584e-06 -0.003658546261 0.01468835534 0 19.94689317 25.78752398 951.5988817 0.002101725883 +2.496140662e-06 -0.003657056573 0.001407863034 0 -17.77743009 -20.77826081 983.6982866 0.002033143726 +2.49589789e-06 0.009203782869 -0.01284481937 0 21.80328152 -20.18346742 1036.65472 0.001929282684 +2.497185313e-06 0.003997412864 -0.01323779501 0 1.665058405 -25.35648926 1070.557407 0.001868185664 +2.497360969e-06 -0.002960823579 0.0001857105084 0 10.53096254 -21.49357349 1041.407408 0.001920477985 +2.498220101e-06 -0.008772351919 -0.01420615494 0 -18.22610854 -5.408626931 1007.377084 0.001985353877 +2.497917765e-06 -0.003577465457 0.0003216699581 0 -6.140582203 19.81870682 1016.400657 0.001967727969 +2.498895723e-06 0.005045895865 0.01024013923 0 4.591815336 12.56376415 899.951535 0.002222341895 +2.497754059e-06 -0.00583352867 -0.00174425341 0 14.72631084 15.77641536 1017.93573 0.001964760584 +2.498613867e-06 4.02810052e-05 -0.002687642472 0 -3.965157727 16.88412227 1041.425678 0.001920444292 +2.496204473e-06 -0.005532025374 0.008417098587 0 -23.55698104 -12.72539018 971.2270685 0.002059250679 +2.497681058e-06 0.001365244463 -0.005284032219 0 9.08794441 21.1919107 1070.329007 0.00186858432 +2.497392503e-06 0.009632070726 -0.004236388367 0 12.38438431 18.076006 959.1262717 0.002085231172 +2.498275249e-06 -0.002922053696 0.0004785429756 0 15.69845197 5.232364321 890.7200266 0.002245374461 +2.496869298e-06 -0.009895220161 0.001419529282 0 -13.30612496 18.26587076 902.694716 0.002215588465 +2.498490502e-06 -0.002734107277 0.01087562047 0 11.37628919 -10.85767349 904.8788072 0.002210240735 +2.496819157e-06 -0.004348712461 -0.01377382293 0 -18.02813601 16.25979652 962.0766429 0.002078836457 +2.499844223e-06 0.0003701019054 0.002908317775 0 5.030337102 -2.758311337 1027.787829 0.001945926916 +2.497704162e-06 0.003034299612 -0.007241029653 0 16.84531359 -11.72449802 957.4664897 0.002088845951 +2.495358094e-06 -0.007371081579 -0.005043487691 0 -17.17980406 -27.42549998 1061.379062 0.001884340921 +2.497951633e-06 -0.001168060326 0.002898497251 0 -7.868132833 18.87843225 1010.166501 0.001979871634 +2.498102073e-06 0.004866291499 0.00341711405 0 12.13505224 -13.18293395 919.4061916 0.002175317089 +2.497289743e-06 -0.008580022426 0.01496187352 0 7.19022006 21.73846638 983.052187 0.002034479986 +2.494017465e-06 -0.009608467445 0.00160520569 0 -24.64222817 22.27701472 959.4875304 0.002084446057 +2.498242804e-06 -0.005064541372 0.01450386059 0 -0.5873968296 18.65480162 995.327892 0.002009388078 +2.497803724e-06 -0.003194671972 0.007268136812 0 21.26862223 -1.90398743 1018.523545 0.001963626673 +2.497093149e-06 -0.007984693572 -0.00438964782 0 -12.96350283 -16.64495654 874.6139336 0.002286723231 +2.496015244e-06 -0.008324232614 0.008890231289 0 -20.69344155 -21.03595364 1044.638585 0.001914537744 +2.499055383e-06 -0.0001764108613 0.0002895423328 0 -13.42060015 1.007542545 979.011797 0.002042876302 +2.495225869e-06 -0.006764155473 0.005087802841 0 -28.87357223 13.29118522 1027.92183 0.001945673243 +2.496107185e-06 -0.0009420586796 -0.008707518554 0 9.259306369 -26.4469261 1003.65048 0.001992725595 +2.495664323e-06 -0.0005684105819 0.01383442898 0 -19.32913735 19.24414812 925.6495189 0.002160644995 +2.498198835e-06 -0.007899088729 0.00459319453 0 -16.15534658 -4.919038231 889.52806 0.002248383261 +2.49760459e-06 0.002273779395 -0.01062497129 0 -8.026774395 -19.50667025 963.3616034 0.002076063643 +2.496306947e-06 -0.00739999861 0.01278058551 0 -23.07394107 -14.64385795 1005.00443 0.001990040979 +2.496913501e-06 0.004939767607 -0.004365347733 0 25.18745272 -1.714046753 1015.636511 0.001969208451 +2.495473174e-06 -0.009410819565 -0.006730498164 0 -30.50040345 -5.349316236 1028.436123 0.001944700264 +2.498882149e-06 0.005127626709 -0.002985592168 0 14.7189408 -6.094885091 1065.274745 0.001877449935 +2.493462231e-06 0.001349885077 0.01146877545 0 20.00069748 27.84192988 947.1088059 0.002111689795 +2.495996824e-06 0.008266902873 0.01090414814 0 21.19434067 20.74589152 1047.520021 0.001909271383 +2.499675644e-06 0.009908785145 0.01358661257 0 -1.449428366 -7.241898031 916.925074 0.002181203303 +2.496042473e-06 0.008172651599 0.004272421869 0 12.63949618 22.90968334 929.473059 0.002151756827 +2.498216814e-06 0.009836215335 0.005712973396 0 -4.457900152 -18.68038797 1016.678156 0.001967190884 +2.496313617e-06 -0.007735811612 0.01192985439 0 -27.22358226 2.179778182 1005.257781 0.001989539437 +2.498555832e-06 -0.002586780274 -0.009007896879 0 5.784002825 -16.10590185 1006.718954 0.001986651777 +2.49998428e-06 -0.00722030485 -0.001025893881 0 0.343944113 1.593578905 919.4171418 0.002175291181 +2.495447004e-06 -0.008672852954 0.008380862293 0 -9.736044974 30.63389757 1064.479298 0.001878852885 +2.499551728e-06 0.005350573123 -0.0004871865688 0 7.150777279 -5.269788516 938.0695942 0.002132037977 +2.499689561e-06 0.00521119616 0.0006210074387 0 6.958702899 1.297676375 898.3142279 0.002226392434 +2.499979214e-06 -0.00794269044 -0.009327199194 0 -2.011914606 -0.2647852969 995.2565169 0.002009532182 +2.497849354e-06 0.009954480017 0.004154903458 0 -13.54082673 -13.56119957 923.7348011 0.002165123581 +2.497530131e-06 0.008614906142 0.005806246817 0 19.63725176 8.316210402 959.1536992 0.002085171544 +2.494785771e-06 0.009868615442 -0.007100766271 0 17.60508899 -26.58678593 986.6586731 0.002027043449 +2.499519401e-06 -0.001604873575 -0.01111549219 0 0.9509723131 -9.55937726 979.7834012 0.002041267486 +2.491681475e-06 -0.006325257374 -0.01419818366 0 -23.30937551 -27.36898214 880.2693757 0.002272031784 +2.499153155e-06 -0.00942495971 -0.0122671306 0 -9.278679119 8.328991069 957.9557755 0.002087779051 +2.49645446e-06 -0.002816526047 -0.002286407955 0 12.62821399 -23.7236403 1008.710093 0.001982730236 +2.499350198e-06 -0.0005309925601 -0.0004219155363 0 11.12802118 -3.709054671 1028.834808 0.00194394667 +2.496200675e-06 0.001177691887 -0.006198294768 0 -6.92323201 -27.94029413 1043.648502 0.001916354018 +2.498754287e-06 -0.003472394762 0.009955426182 0 2.579520653 -15.56409167 999.3160999 0.002001368736 +2.497192127e-06 -0.008464451605 -0.001253655567 0 -11.02961138 19.13735473 931.6965995 0.002146621552 +2.499679926e-06 -0.003752737888 0.01139967596 0 7.59741371 -2.977437154 1019.834897 0.00196110175 +2.499984788e-06 0.009005490849 -0.0049523459 0 1.235683994 0.9953327445 909.6691007 0.002198601666 +2.497562421e-06 -0.008892358975 0.008118599004 0 -2.935046001 22.28643983 1017.703736 0.001965208469 +2.496167769e-06 -0.004758299645 -0.01482684421 0 -23.77007048 7.192649546 896.5284842 0.002230827057 +2.498203388e-06 0.009059726023 0.006457783983 0 -16.46100566 -8.971877074 988.7312349 0.002022794395 +2.497934646e-06 0.00771007569 0.01300977535 0 16.94470745 -10.50766159 980.7093873 0.00203934012 +2.495117476e-06 0.006082552918 -0.0009145897091 0 19.21309961 -21.12543654 913.1393982 0.002190246094 +2.499352559e-06 0.006370858098 0.008765602231 0 11.83586907 2.6378125 1065.538683 0.001876984883 +2.498214545e-06 -0.006949526351 0.003783213424 0 14.61513443 -13.34848719 1047.171096 0.001909907566 +2.498208393e-06 -0.007205025917 -0.001797804432 0 -10.20234806 17.0243294 1048.210678 0.001908013381 +2.494194484e-06 -0.006200095187 -0.004347905957 0 -26.5387427 -22.07120185 1012.098096 0.001976093037 +2.498895029e-06 0.001791304373 -0.001222624748 0 13.08993674 -3.015254692 903.4453998 0.002213747505 +2.496981013e-06 -0.007985738008 0.004964060881 0 -10.40602948 19.6030671 902.7960909 0.002215339677 +2.499786776e-06 -0.002862697192 -0.0135746316 0 -5.361068958 -3.509888146 981.2161887 0.002038286795 +2.498466443e-06 0.00839137421 -0.0127746971 0 -17.17963594 5.608508635 1031.668238 0.001938607709 +2.498311278e-06 -0.001451744786 -0.01043275818 0 -7.970523305 -14.96437572 922.3290301 0.002168423561 +2.498747441e-06 0.008009528192 -0.01025655222 0 12.61812201 9.254347054 988.4692611 0.002023330496 +2.499281534e-06 0.004398477077 0.008402744131 0 -11.706569 -0.9357341001 979.5976621 0.002041654525 +2.498728073e-06 0.001591521385 0.002302878611 0 -11.25523117 10.53282126 966.3021567 0.002069745975 +2.498434171e-06 -0.001310321596 -0.007918185471 0 6.59636405 -17.47878446 1055.445618 0.001894934203 +2.497337427e-06 -0.0009298395179 0.002269461988 0 -8.171142195 22.83964053 1050.759168 0.001903385724 +2.495557313e-06 -0.005878471048 0.01251714312 0 12.70719835 27.35613258 1011.236741 0.001977776241 +2.498729736e-06 0.001707836231 0.006852293853 0 8.484961279 13.00627473 974.1050301 0.00205316669 +2.49551146e-06 0.005552897528 0.003535326426 0 24.44999635 -20.25133137 1058.894175 0.001888762869 +2.496302e-06 0.002574248021 0.005684866598 0 -5.440150672 24.37070898 917.6731176 0.00217942529 +2.498925515e-06 -0.003620269587 -0.01467092015 0 8.759486977 10.46297719 930.6954349 0.002148930708 +2.494416698e-06 0.007448090105 -0.01341657032 0 11.76857901 -31.52894499 1006.256265 0.001987565264 +2.498189479e-06 -0.009719890989 -0.01023889876 0 -0.3814760976 -19.76146381 1038.401389 0.001926037486 +2.49374854e-06 -0.002157727256 -0.01119533217 0 -17.37118964 -26.25418896 889.4720465 0.00224852485 +2.496084679e-06 0.008465419575 -0.007826975416 0 -12.99513872 -25.0691127 1008.47755 0.00198318743 +2.496875919e-06 -0.007867818847 -0.006914539877 0 18.69715309 17.97632698 1037.149229 0.001928362808 +2.49943364e-06 0.007317411439 0.005220718032 0 6.174911955 9.202221223 1041.164393 0.001920926238 +2.499838629e-06 0.009971676311 -0.01041600602 0 -2.078646305 -4.521808378 875.9975038 0.002283111529 +2.495842957e-06 -0.002545087161 0.00739045002 0 21.53156734 17.80982635 968.4811777 0.002065089179 +2.497673616e-06 -0.008738908721 0.01416378493 0 -17.82226916 -14.63802011 1068.832538 0.001871200519 +2.49617584e-06 0.0004181370512 0.01453390524 0 -3.672103155 24.7238132 903.2776764 0.002214158561 +2.49799149e-06 0.008525741496 -0.0031890431 0 19.02593225 7.520616853 1020.442622 0.001959933815 +2.496710615e-06 0.00755406403 -0.01125832019 0 17.63779381 -16.53219276 942.0419829 0.002123047631 +2.499238848e-06 -0.003069629096 0.01121939391 0 -3.057776667 -11.65596063 976.5628893 0.002047999184 +2.499897395e-06 0.003341086945 -0.004214342495 0 -3.30323621 -2.868686289 965.7685331 0.002070889588 +2.498467559e-06 0.002044256702 0.008789675978 0 6.444159669 15.03957817 934.3950801 0.002140422229 +2.499968905e-06 -0.003418758977 0.002959120036 0 2.305664292 -0.1025018459 925.4632188 0.002161079943 +2.497891222e-06 -0.001859688945 0.01342814274 0 15.86774583 -10.25536746 919.688273 0.002174649888 +2.495481816e-06 0.009571656324 -0.007449643398 0 28.93301558 -10.85260908 1027.275857 0.001946896724 +2.499537808e-06 0.0002928755945 -0.007533878011 0 8.500235272 -0.7820929995 887.7794783 0.002252811705 +2.498367654e-06 -0.00447282027 -0.007736132022 0 5.495933548 18.40242988 1062.674235 0.001882044313 +2.499174828e-06 0.000333910482 0.007405375494 0 -13.01289592 -3.909586222 1057.544966 0.00189117254 +2.498252592e-06 -0.009816394011 0.009401939681 0 -17.26341079 -5.41202263 967.5136612 0.002067154274 +2.497559671e-06 0.002627879037 0.01355983638 0 -4.883697781 21.21654005 985.1158519 0.002030218066 +2.499609887e-06 0.0008474571165 -0.006386406831 0 3.246710772 7.825772641 959.1300244 0.002085223014 +2.496665199e-06 -0.003637517383 0.0006786848302 0 -16.28403761 -20.36657498 1009.198691 0.001981770306 +2.49872642e-06 -0.002408342441 0.005765256027 0 14.41504603 8.200982037 1038.949422 0.001925021524 +2.499909237e-06 0.00309894362 -0.01355294928 0 2.997733354 2.931819559 984.1455491 0.002032219728 +2.499130229e-06 -0.001311296839 -0.01472804787 0 3.312295926 12.5371787 983.0534936 0.002034477282 +2.499988076e-06 0.0005630201334 0.01025456862 0 0.4818581124 1.345677677 925.5628203 0.002160847385 +2.498174555e-06 -0.008257112554 -0.001186375036 0 -15.5253886 12.82369661 1053.583682 0.001898283007 +2.498937072e-06 -0.001462726234 0.01443490783 0 -11.95989596 9.115905521 1031.220012 0.001939450337 +2.49617707e-06 -0.009441954773 0.002424077452 0 -28.17827191 -2.931928312 1023.977071 0.001953168734 +2.499633045e-06 0.008877218696 0.006231573697 0 8.541320811 -3.255540289 1066.927938 0.001874540846 +2.497385227e-06 0.002024515755 0.0006352054607 0 12.19513752 17.58508304 935.4265803 0.002138061973 +2.496823868e-06 -0.004493328794 -0.01307782531 0 -7.713362509 -21.31694898 899.0244191 0.002224633678 +2.4989479e-06 -0.005942987008 0.002269504687 0 -2.465971335 -12.76305634 895.985994 0.00223217775 +2.499317499e-06 0.002377773356 0.01498589401 0 -8.886736297 5.639876638 900.7912957 0.002220270122 +2.499773112e-06 0.004150713389 -0.00605767285 0 5.871986038 2.875493422 970.5668111 0.002060651546 +2.497740752e-06 0.001280322755 0.006901888386 0 -4.289806301 -19.38981261 933.912621 0.002141527971 +2.496924805e-06 0.008269654131 0.01068702492 0 -20.00585883 17.49066499 1071.023751 0.001867372221 +2.499206437e-06 -0.001178671257 -0.01002404337 0 3.949603974 -12.30206306 1025.469984 0.001950325246 +2.497527941e-06 0.008241060795 0.01384247849 0 -16.37244754 -11.87560304 909.2896906 0.002199519054 +2.495850333e-06 -0.006723473188 0.006494795617 0 -15.1025027 26.14149396 1047.315268 0.001909644651 +2.499043163e-06 -0.002586574024 0.01221824071 0 11.85364436 -3.485119557 893.0157606 0.00223960213 +2.499768283e-06 0.001802920769 0.01233297453 0 -3.574035924 5.599660006 975.7922994 0.002049616503 +2.495563815e-06 -0.001436730828 0.006538528833 0 23.28495654 -21.10286897 1054.299365 0.001896994408 +2.497233288e-06 0.004716768241 -0.00886498339 0 -12.38284103 -19.081233 966.602043 0.002069103841 +2.499963928e-06 -0.003199034971 0.003702112134 0 -1.983245144 -1.727962316 979.3203003 0.00204223276 +2.497284341e-06 -0.002956647058 -0.001481172689 0 16.46418295 17.35646372 1026.096949 0.001949133561 +2.498373586e-06 0.001248258729 -0.004628550396 0 -2.485187368 -16.9379949 948.9655832 0.002107557993 +2.496228719e-06 0.008873955216 -0.01204534572 0 2.983223624 -24.47193574 897.1523559 0.00222927576 +2.497465159e-06 -0.0003319599153 -0.003818095566 0 18.78950896 12.39572316 999.354886 0.002001291061 +2.497340336e-06 0.004569270108 0.001475946105 0 23.16061776 -6.505655075 1042.651603 0.001918186281 +2.496413504e-06 0.004367208355 -0.009497689193 0 4.356480074 -23.5065875 892.1518952 0.002241770724 +2.494235977e-06 0.001051532081 -0.01461220918 0 10.11106895 -29.57892459 919.8692645 0.002174222009 +2.49779585e-06 0.005663575064 0.009559479214 0 8.054691565 -18.66583726 967.9412915 0.002066241019 +2.499806847e-06 0.007213608823 -0.005244863529 0 -0.4347707126 -5.634126482 909.1537519 0.002199847931 +2.495668897e-06 0.005633431161 0.00291381073 0 -18.3657354 -19.80007266 916.9999777 0.002181025135 +2.496882776e-06 -0.006030708691 -0.004346890091 0 -12.99679464 20.88930556 984.8631668 0.002030738957 +2.49963183e-06 -0.005508737108 -0.014061362 0 -7.861346489 0.4864550828 917.8327518 0.002179046233 +2.497083583e-06 0.003285651682 0.01082059222 0 -19.99919896 -9.170969669 910.5971685 0.002196360882 +2.498403072e-06 -0.00838607661 0.001767889434 0 -14.518209 -7.4084602 911.8101199 0.002193439134 +2.499095024e-06 0.005291173444 0.002563935919 0 -12.3252339 4.751916175 981.7377225 0.002037203984 +2.498830498e-06 -0.001792280446 -0.002324952171 0 -14.95823285 -5.015436223 1031.39188 0.001939127154 +2.497544874e-06 -0.0009600662952 -0.001963388524 0 20.15632201 5.057779866 937.4731742 0.002133394379 +2.496219458e-06 -0.0008202931145 0.01167822015 0 -10.9211615 25.49803641 1008.193115 0.001983746934 +2.497416234e-06 -0.006137354882 0.006482193712 0 6.857452424 22.48737693 1033.802014 0.001934606408 +2.498457631e-06 -0.005573277338 0.004238220484 0 -17.67382006 4.024244436 1031.802751 0.00193835498 +2.498675523e-06 0.004785764613 -0.0145204559 0 -9.397951333 -13.15905459 993.3390558 0.00201341122 +2.495558978e-06 -0.00770387508 -0.003762867996 0 -26.40495256 -7.597546404 921.3219894 0.002170793732 +2.496081281e-06 -0.0009080148907 -0.005494383594 0 16.74340647 20.51735923 945.3890224 0.002115531229 +2.498660986e-06 -0.007017984707 0.01335947694 0 2.60324522 -14.93810498 926.3971508 0.002158901286 +2.498628059e-06 0.004333179304 0.01159212346 0 -1.425980617 14.90214505 903.5578867 0.002213471909 +2.499832119e-06 -0.00757407764 0.001180096306 0 5.068266057 0.1708654663 875.1444034 0.002285337131 +2.497796856e-06 0.003584541925 0.01085665792 0 -20.38085116 -8.512999604 1051.872872 0.001901370454 +2.495039082e-06 -0.0008799668076 -0.01192673768 0 21.46143272 -18.27630153 894.25056 0.002236509642 +2.499134463e-06 -0.00085721171 -0.010940207 0 -10.54256633 -4.815512671 880.8060393 0.002270647465 +2.498970133e-06 -0.001597399181 0.01128148418 0 1.555704814 -14.21313306 996.1007839 0.002007828959 +2.498051514e-06 -0.00609820202 0.007044056403 0 18.92745392 -5.69691344 1000.997495 0.001998006997 +2.497972303e-06 0.008460137956 0.0021142553 0 20.44437128 2.166249032 1020.585753 0.001959658944 +2.498698194e-06 -0.005268437997 0.006250833585 0 5.153682868 -16.21120625 1054.02062 0.001897496085 +2.499289283e-06 -0.001817156798 -0.01097044637 0 6.685830285 -9.799412795 994.905386 0.002010241404 +2.497682146e-06 -0.002786034206 -0.009562298229 0 18.94961691 -10.14513621 997.9699301 0.002004068399 +2.49531139e-06 0.007066621953 -0.007966986322 0 11.90247349 -27.60456922 980.9906544 0.002038755406 +2.495572296e-06 0.009083372247 0.006292366034 0 30.43426968 4.489912268 1033.107094 0.001935907722 +2.499681099e-06 0.003570099897 -0.01456242401 0 -6.943366239 2.683924211 932.0625589 0.002145778715 +2.497786674e-06 0.007474640063 0.001333575232 0 19.90281257 -6.160540266 989.9199878 0.002020365307 +2.495978917e-06 -0.002924202303 0.01298020223 0 20.71274238 21.38898228 1049.282102 0.001906065104 +2.496426127e-06 0.009099007924 -0.005036493181 0 -15.70762356 23.60172273 1059.860165 0.001887041391 +2.497762743e-06 0.006621084115 0.000740349933 0 -22.36622349 -0.9469746225 1057.944283 0.001890458725 +2.49897522e-06 -0.006608616249 -0.01487627024 0 -1.334647336 14.67217391 1028.932346 0.001943762394 +2.496684127e-06 -0.0007979150815 0.01230543415 0 20.11529295 -10.36788074 878.3243946 0.002277063022 +2.495345242e-06 0.006831620261 0.01162598202 0 24.03844175 13.3124863 899.9663949 0.002222305201 +2.498532435e-06 -0.00692721603 0.005223529546 0 -3.542061724 15.94820775 953.3624488 0.002097838029 +2.497128089e-06 0.002250159243 0.0149744162 0 4.92154012 24.1245677 1026.895318 0.001947618189 +2.497120824e-06 0.009750112528 -0.001440121166 0 -17.86463706 -15.62151271 988.5204168 0.002023225789 +2.497263156e-06 -0.003707197406 0.003100768842 0 4.26453021 20.21242291 882.5865348 0.002266066749 +2.497718283e-06 0.004506901181 0.008228658023 0 7.536092166 20.07762133 1003.549534 0.001992926042 +2.498284229e-06 -0.000767120989 -0.0006011254876 0 0.6933230732 17.17699853 927.778613 0.002155686682 +2.499160142e-06 0.009574253289 -0.00597038334 0 -9.68882363 7.3570337 938.5495573 0.002130947678 +2.497072562e-06 -0.00869641399 0.01220330467 0 -22.87470245 7.578938022 995.45901 0.002009123409 +2.495492249e-06 -0.003994156509 0.01307912305 0 0.1337181503 28.50298728 948.6506905 0.002108257571 +2.499173512e-06 -0.006484414754 -0.007368667836 0 -12.19969022 0.7141799005 950.3959913 0.00210438598 +2.499848451e-06 0.006368357069 0.01207407083 0 -1.556363786 5.452464217 1029.910414 0.001941916475 +2.499423029e-06 0.004818294565 0.006325465059 0 8.115030065 -5.571184018 916.2499716 0.002182810436 +2.496125518e-06 -0.004567129272 0.006759095408 0 5.926804611 27.34680351 1004.614526 0.001990813339 +2.498309281e-06 0.0005181866512 0.006957558424 0 -4.395738131 -18.39585348 1028.292564 0.001944971762 +2.498413007e-06 -0.003839388993 0.01235780088 0 15.98459822 -10.33137924 1068.058675 0.0018725563 +2.496619438e-06 -0.0003225145629 0.004820907789 0 9.173463619 22.62560664 938.4670137 0.002131135107 +2.497254402e-06 0.002767809457 0.001717281388 0 24.37162646 -4.887873424 1060.315791 0.001886230514 +2.498363055e-06 -0.002013914576 -0.01499285938 0 5.459731902 15.5572715 910.9948522 0.002195402087 +2.496643696e-06 -0.006072559035 -0.002296260735 0 -6.250622779 -25.84857488 1025.917757 0.001949474006 +2.497826595e-06 0.003082191064 0.01067193267 0 7.232480008 -19.58958293 1001.25897 0.001997485226 +2.49964603e-06 -0.007266213847 -0.007455639769 0 1.6530367 7.258624396 884.7340752 0.002260566261 +2.498385233e-06 -0.005106460927 0.005473927273 0 16.65412388 -0.3965240942 926.765177 0.002158043968 +2.495038157e-06 -0.001979885171 0.007631988872 0 -21.64818156 -18.71010451 907.6229709 0.002203558156 +2.498780566e-06 0.002782136034 0.0003983647912 0 -12.99614309 7.618054954 964.4431885 0.002073735419 +2.498239039e-06 0.0002199037606 -0.0141237124 0 -6.314158243 -17.22095814 977.108306 0.002046856001 +2.49929468e-06 -0.008128131288 -0.006858753185 0 -8.359905577 -8.883678259 1026.972646 0.00194747154 +2.499442466e-06 0.005145424064 0.01186062287 0 11.16297409 -1.656026049 1068.612181 0.001871586377 +2.498837257e-06 -0.0001483947597 -0.007578442174 0 9.816095922 -10.82842708 958.2496817 0.002087138705 +2.494826169e-06 -0.003481289526 -0.01466889746 0 -25.04611028 -23.15549674 1059.550956 0.001887592086 +2.498899502e-06 -0.008664546935 0.006209231189 0 7.44687322 -10.67106611 876.9656087 0.002280591143 +2.496153412e-06 0.009994181977 0.01281985574 0 -5.40594043 24.07336038 889.0295999 0.002249643882 +2.497990984e-06 0.009833330186 0.000564611312 0 -2.38878835 17.46897625 879.331808 0.002274454287 +2.497890878e-06 -0.0004537444795 0.006181156843 0 -7.310367099 19.41704013 1009.868026 0.0019804568 +2.49834931e-06 -0.004200643934 -0.01266457347 0 -15.54395968 -4.924346218 897.1692479 0.002229233787 +2.497920673e-06 0.002596044363 0.006719681206 0 2.052644294 -18.29829862 902.6393796 0.002215724292 +2.496766436e-06 0.006471575764 -0.007228057464 0 -13.22478175 -21.95250697 1007.28534 0.001985534704 +2.498632349e-06 -0.003107178411 -0.002687763234 0 16.25309584 -5.656253878 1040.324269 0.001922477501 +2.497462344e-06 -0.005191121185 -0.01485870325 0 20.05779362 -7.426524954 949.0383851 0.00210739632 +2.496654868e-06 0.006539483098 -0.005246727301 0 -10.24110793 -21.14814412 907.9851179 0.002202679274 +2.499730878e-06 0.004335961984 0.005003795475 0 7.097739823 -0.3627715879 968.6772759 0.002064671124 +2.495774605e-06 0.003254949804 -0.01059054949 0 -20.33814541 18.15037867 937.1143544 0.002134211252 +2.498805765e-06 0.0007157612359 -0.007680100403 0 -8.932353596 12.15171475 975.6774383 0.002049857793 +2.497186102e-06 -0.007609091219 -0.0005480755982 0 4.681318782 -22.21341193 956.5302456 0.002090890496 +2.498519356e-06 0.004132515728 0.01237477677 0 14.93853279 -2.791635875 882.9274752 0.002265191713 +2.498404241e-06 -0.008551085154 0.008507626802 0 15.86742713 -4.211052964 918.7205463 0.002176940538 +2.498730202e-06 0.008306678156 0.007776529917 0 -11.83758421 -7.405017974 876.0132518 0.002283070485 +2.499280562e-06 0.005072002606 -0.0004675983894 0 10.80165259 -6.832900622 1065.417946 0.00187719759 +2.49925634e-06 0.002068269076 -0.0102736836 0 10.77325224 -2.484756679 906.4644724 0.002206374393 +2.496573647e-06 -0.003012583256 0.008570275165 0 -15.03032392 19.03406776 925.998834 0.002159829933 +2.497031491e-06 0.00728285911 -0.003579557596 0 -6.221868852 -23.58478065 1000.607783 0.001998785173 +2.496051193e-06 -0.004542425089 -0.003166866302 0 -22.61661377 19.28335431 1056.971337 0.001892198898 +2.494583469e-06 0.008061935524 0.0100655366 0 25.11111166 14.80048731 884.8795116 0.00226019472 +2.497808261e-06 -0.006842584414 0.01144558183 0 -6.692984872 20.63831234 1035.944462 0.001930605426 +2.499978327e-06 -0.009190094252 0.01474253999 0 0.2367101837 2.175083069 1050.887899 0.001903152565 +2.499852118e-06 -0.00284686618 -0.01267385316 0 -4.589959005 -2.23244744 938.5015219 0.002131056747 +2.495647838e-06 -0.009049568288 0.007173794056 0 -28.56183997 -6.523212949 992.3756809 0.002015365792 +2.49918794e-06 0.002699864535 -0.003228435055 0 13.1977149 0.2660605018 1035.678912 0.001931100437 +2.496037088e-06 0.008763537621 0.006633908891 0 21.16545298 -17.35419172 971.6328236 0.002058390733 +2.49745454e-06 0.004555666209 -0.009547871312 0 -13.49389115 18.25370615 1005.67779 0.001988708531 +2.497932159e-06 -0.005650134352 0.01009545868 0 -17.68734999 8.645539057 967.7800567 0.00206658526 +2.496789229e-06 -0.00203983515 0.006069671426 0 1.068355466 26.06636318 1029.001369 0.001943632011 +2.497902848e-06 0.001772262333 -0.007318813847 0 13.18714787 -17.31160738 1062.272332 0.001882756371 +2.497515691e-06 -0.004264394618 0.003706849362 0 19.70162011 10.39500118 998.9711707 0.002002059778 +2.498379623e-06 0.0005467598606 -0.005362430129 0 -15.70061227 -10.55619944 1050.698407 0.001903495795 +2.496017845e-06 -0.001351159071 -0.01085468244 0 17.5300612 -19.64365968 932.3698507 0.002145071506 +2.495345259e-06 0.007818033695 0.006862986521 0 15.96265032 24.5769492 959.8160419 0.002083732624 +2.49703062e-06 0.007604871788 0.006328783049 0 -19.99189506 11.69071121 949.9093538 0.002105464055 +2.498892043e-06 0.007322289362 0.006672123377 0 10.42611911 -8.639468659 909.4631354 0.002199099581 +2.496760921e-06 -0.006786268377 -0.01372573499 0 -21.17228159 -13.89254322 994.4500963 0.002011161754 +2.498125776e-06 0.008533812333 -0.01468270734 0 10.09145789 -17.12007625 1026.15899 0.001949015718 +2.499295075e-06 0.008468907108 0.003327059008 0 -4.828888424 -11.7049308 1066.267691 0.001875701587 +2.497487064e-06 -0.008707480081 -0.000703907304 0 -17.10987413 10.98733745 906.6761161 0.002205859363 +2.498772832e-06 -0.00403823541 -0.005928987844 0 14.57591221 -0.2591014966 930.3737856 0.002149673638 +2.498950607e-06 -0.004283567918 0.008161633734 0 12.52266734 -4.734436171 923.9646945 0.002164584872 +2.497926459e-06 0.001842020731 -0.01027659759 0 3.091317228 -18.77481298 934.0663255 0.002141175573 +2.498020114e-06 -0.003160730437 0.006589867668 0 -20.08596566 5.252005326 1043.012221 0.001917523073 +2.498587509e-06 0.001024871133 0.006421247832 0 2.651336445 -17.38993003 1046.37601 0.001911358805 +2.496073583e-06 0.008441323633 0.003549667031 0 27.55548388 2.427290822 986.5459064 0.00202727515 +2.49926087e-06 -0.006971085826 -0.001590682729 0 -5.145549076 -10.22131248 941.0928284 0.002125188865 +2.496341274e-06 -0.002458381718 0.009662694919 0 -13.67019493 20.4048172 907.4512611 0.002203975118 +2.497485446e-06 -0.006578925923 0.001208704545 0 -22.81639255 2.041565051 1021.102308 0.001958667592 +2.497060051e-06 0.003023741702 0.0002606055234 0 21.58081118 -13.74836531 1054.777658 0.001896134209 +2.495178987e-06 0.008609237145 0.01292013387 0 24.66213237 11.6757875 878.1059219 0.002277629555 +2.498707397e-06 0.008624219 -0.002816033894 0 16.79308537 3.145822517 1062.400056 0.001882530022 +2.497755865e-06 -0.0065287212 -0.01486211354 0 7.114787954 -19.46389311 977.8613636 0.002045279704 +2.498318406e-06 0.008691481673 -0.005759856671 0 -16.49748243 -2.033584109 906.1648815 0.002207103851 +2.498047697e-06 -0.002582962732 -0.005790731572 0 12.80134641 -16.29302021 1048.294599 0.001907860636 +2.499670569e-06 0.00698836701 -0.001396579016 0 5.244079172 6.757362141 1053.718955 0.001898039312 +2.498198861e-06 0.007299560378 0.01063571842 0 -3.030700036 -17.69487263 945.6271264 0.002114998549 +2.499768407e-06 0.007807591609 0.004923768521 0 -2.850298788 -6.242080865 1008.233362 0.001983667746 +2.494602863e-06 -0.006152348807 0.01293759416 0 11.05675823 30.12799604 976.0206784 0.002049136913 +2.498146142e-06 0.004874169771 -0.002074476527 0 11.09208727 16.3672108 1026.525791 0.00194831929 +2.496165059e-06 -5.41069638e-05 0.003715796219 0 -6.885941546 26.64466097 993.127867 0.002013839372 +2.497623013e-06 -0.005348324333 -0.005391497752 0 -18.18360295 8.126995804 913.1520506 0.002190215746 +2.496994722e-06 0.006064188988 -0.005115236321 0 -11.12962406 -22.83875009 1035.826995 0.001930824365 +2.497161832e-06 -0.0001561703859 -0.007540717938 0 -6.288207604 -23.12257309 1005.334653 0.001989387308 +2.495478339e-06 -0.00474834735 0.01348295376 0 -1.511423099 26.4156459 879.249532 0.002274667119 +2.497011722e-06 -0.007542164666 -0.008935048124 0 -19.01758914 -14.65963263 981.7640099 0.002037149437 +2.499004098e-06 -0.00868488532 -0.009903394443 0 -0.3163216125 14.88181224 1054.546333 0.001896550144 +2.496211836e-06 -0.008951026495 0.006697516912 0 19.78795132 -18.04359545 972.3529071 0.002056866376 +2.498395338e-06 -0.006930890214 0.01014726438 0 14.32387341 12.41874285 1057.978236 0.001890398056 +2.498877573e-06 0.005595225999 0.01196011753 0 14.30225528 -6.404262485 1045.730184 0.00191253923 +2.499114822e-06 -0.005794305541 -0.008137214526 0 -11.12738993 7.261064103 998.4719496 0.002003060778 +2.498691586e-06 -0.007114866441 -0.009138686566 0 7.046454757 -15.31217993 1041.77623 0.001919798075 +2.499160357e-06 0.002377577843 0.01040272702 0 12.99794989 -4.267528997 1055.571932 0.001894707447 +2.4994764e-06 0.002350279805 0.001086878206 0 9.545941665 1.473547964 943.8073358 0.002119076557 +2.493948962e-06 -0.005771647436 -0.004900662422 0 -23.92512187 -21.98240838 933.1100954 0.002143369802 +2.498471383e-06 0.003645928195 0.00127284796 0 18.32365876 0.2297378733 1047.809578 0.001908743766 +2.498313232e-06 -0.007702878737 -0.01047265665 0 -10.24246352 16.22835527 1044.549794 0.001914700489 +2.494492373e-06 0.009960953807 0.007073212811 0 28.64547141 13.90818262 958.6557801 0.002086254568 +2.49717157e-06 -0.005294925333 0.0009398467164 0 -10.76874244 21.6087617 1014.674232 0.001971075975 +2.495582408e-06 0.003283009194 -0.01154790428 0 25.59097446 13.17894258 967.7697591 0.002066607249 +2.49933892e-06 -0.007068473464 0.01258583337 0 -6.787664149 9.533865236 1017.706917 0.001965202325 +2.498351228e-06 0.006464097388 0.007710222211 0 13.97762163 -9.438063023 928.5408391 0.002153917109 +2.498391832e-06 -0.008458739305 -0.008917709333 0 8.258596086 16.12264902 1009.826772 0.001980537708 +2.499264085e-06 -0.009234216819 0.01202844825 0 -3.343138335 -10.80023423 931.805548 0.002146370565 +2.499448748e-06 -0.002149696145 0.001711327541 0 -8.236426791 -6.644539873 1007.76892 0.001984581941 +2.499993572e-06 -0.006271534381 -0.01205430582 0 0.0130108745 1.051987402 927.8848491 0.002155439872 +2.496414442e-06 0.009177199407 0.006471827379 0 23.35932699 10.39600502 954.2755859 0.002095830627 +2.4985664e-06 0.002899397374 -0.004927792037 0 17.15311464 -0.6498030187 1013.519375 0.001973321921 +2.495819508e-06 -0.0002248868486 0.01240603016 0 10.55074713 23.36781749 886.1449303 0.002256967152 +2.498585705e-06 0.006197634703 0.01140590855 0 -16.61761258 -2.768343588 1001.464995 0.001997074295 +2.499293243e-06 -0.00291825518 -0.01271314892 0 6.448522422 -8.757932416 914.6783787 0.002186560923 +2.497084418e-06 -0.006459875265 -0.01301876423 0 -12.35655774 -17.49322119 886.5340805 0.002255976441 +2.496936889e-06 0.006995893586 -0.001929141926 0 20.11096626 -8.745092858 885.6126533 0.00225832365 +2.498554092e-06 -0.003980359226 0.009715715717 0 -14.91490096 -3.219234196 897.074573 0.002229469054 +2.497924158e-06 0.001982433368 -0.007483816249 0 -5.709302032 -20.69888211 1053.468998 0.00189848966 +2.498031819e-06 -0.008301396249 0.01488592517 0 -12.24818256 -15.14055521 981.2721918 0.002038170465 +2.494913322e-06 0.001251567593 -0.004858662675 0 -24.68881804 21.80029591 1031.832395 0.001938299291 +2.499616205e-06 -0.005928371805 0.009221512433 0 -7.959745379 -2.596602118 955.5845726 0.0020929597 +2.497827991e-06 0.000593037745 0.0009276606096 0 8.968644144 19.75385409 1040.548337 0.001922063521 +2.497727207e-06 4.559643567e-05 0.01261609518 0 -10.44193104 -18.51591976 996.701697 0.002006618436 +2.497847666e-06 0.00875570369 -0.001995770268 0 -13.73669081 -15.34581597 992.3629286 0.00201539169 +2.498321252e-06 -0.0003218367323 -0.01406444707 0 15.30546772 -6.639955331 910.2812751 0.002197123081 +2.496219533e-06 -0.008186164582 0.01386246562 0 -2.691983766 25.96676008 948.8661747 0.002107778792 +2.499003759e-06 0.00553115875 -0.0008123781555 0 12.02934446 -6.281482048 961.2539441 0.00208061565 +2.498708673e-06 0.005512175919 0.01424591737 0 7.19066459 -12.74583848 910.4456116 0.002196726498 +2.499215969e-06 -0.00334353582 0.01346254514 0 -11.07516401 -4.997001328 970.1828531 0.002061467066 +2.497529507e-06 0.007637215089 -0.006773490824 0 -20.67113347 -11.51540756 1064.11259 0.001879500363 +2.499326839e-06 -0.0008174558682 0.0002697666641 0 -9.885241304 -3.70546379 909.7426793 0.002198423846 +2.498619e-06 -3.343294375e-05 0.006487869699 0 -13.83328878 8.290871712 970.21289 0.002061403245 +2.497343115e-06 0.007840392222 -0.007060227664 0 14.76339949 19.16771235 1049.147689 0.001906309303 +2.498950954e-06 -0.009988612644 -0.005259231117 0 14.95939524 0.9441532316 1034.65762 0.001933006592 +2.4994761e-06 -0.007035143692 0.01171800033 0 -5.1249139 8.974277058 1009.524991 0.001981129756 +2.496768065e-06 -0.002113046017 0.005418339183 0 -1.114824236 25.65641928 1009.598502 0.001980985507 +2.497663284e-06 0.0001563452603 -0.009567173822 0 -21.49388727 -0.1616395826 993.93268 0.002012208714 +2.49692026e-06 -0.005174180963 -0.00971990634 0 -0.1887798117 -22.60372661 910.3793553 0.002196886373 +2.493266547e-06 -0.009061191236 -0.009765614765 0 -26.28273697 -24.20262591 972.62564 0.002056289612 +2.499331472e-06 -0.007650134806 0.003686271454 0 -11.33012769 -4.258970869 1046.68586 0.001910792987 +2.497342516e-06 -0.007451217673 -0.0004164328077 0 -11.7167854 18.14955041 936.6780903 0.002135205276 +2.496264605e-06 -0.0007570040738 -0.01233103987 0 -17.54216502 16.47731276 880.0320628 0.002272644469 +2.498998874e-06 -0.006960830195 0.003233930378 0 -6.601649693 -10.55464061 879.6630574 0.002273597809 +2.497238619e-06 -0.004083111119 0.01112362637 0 20.56682305 6.027536667 911.5953826 0.002193955825 +2.499815507e-06 -0.003920048336 -0.008919339613 0 -0.9347933825 6.039260022 1006.023642 0.00198802485 +2.499068891e-06 -0.0009698080784 0.003331354468 0 -13.25386137 -1.751245547 979.5460433 0.002041762114 +2.495935661e-06 0.002281176159 -0.002569911643 0 21.08515658 17.43307265 959.0025922 0.002085500098 +2.499500413e-06 0.00393334121 0.008024699853 0 3.394609088 8.525817769 917.9860734 0.002178682289 +2.497081714e-06 -0.003383891322 -0.003417577988 0 -23.41692444 0.6103675362 969.1883239 0.002063582434 +2.499843891e-06 -0.00969457801 0.01089023917 0 -3.257162909 4.138424518 942.4971134 0.002122022414 +2.495459168e-06 0.0007163011609 0.01002895553 0 -20.25678579 24.10787924 1044.175644 0.001915386564 +2.49937218e-06 -0.007519419496 0.005942415157 0 -4.792574556 8.865217346 899.2691048 0.002224028368 +2.496323672e-06 -0.0007413426694 -0.002731388044 0 -22.53494505 17.88927612 1060.508229 0.001885888243 +2.499141301e-06 0.007266711756 -0.003883540558 0 13.31855877 -1.138505998 1019.874355 0.001961025875 +2.497136405e-06 -4.110840149e-05 0.01299700918 0 18.00758852 16.41998906 1017.877005 0.001964873939 +2.49777722e-06 0.006853950848 -0.001735919199 0 18.4990645 -9.64850788 989.2151896 0.002021804781 +2.497515733e-06 -0.008662919528 -0.01128153071 0 -12.90877322 -17.51661999 975.8194294 0.002049559519 +2.497381612e-06 -0.009153675567 0.004022375364 0 9.078950055 18.94923846 917.8319597 0.002179048113 +2.496828088e-06 0.003655408141 -0.007034367048 0 -15.01041732 -22.20285484 1063.565893 0.00188046647 +2.498562451e-06 -0.0083439219 0.003519729576 0 9.185780933 14.68469173 1021.301934 0.001958284747 +2.498761454e-06 0.00580764561 -0.000961023001 0 -14.64732637 -5.43731703 992.5213175 0.002015070069 +2.496188542e-06 -0.008634571312 -0.003186253987 0 11.32591722 -22.97305336 927.1613299 0.00215712189 +2.497269807e-06 -0.006226398875 0.0006980272382 0 17.12906172 12.49688902 907.0107963 0.002205045418 +2.498006031e-06 0.003204416237 0.01455130576 0 -19.4485876 -6.007158376 1018.992188 0.001962723584 +2.495859778e-06 -0.002747068061 0.004178720468 0 -18.22229079 -19.40393884 924.4704087 0.002163400776 +2.49919903e-06 0.003019615938 -0.001840758927 0 6.993331173 11.46681921 1061.051497 0.001884922651 +2.495538987e-06 -0.002836151472 -0.01000200406 0 -24.29341728 -14.00675842 938.1838832 0.002131778254 +2.496436812e-06 -0.003301448757 0.006432900962 0 17.2932898 -18.82125561 956.9491541 0.0020899752 +2.497142638e-06 0.004857572415 -0.01194172431 0 22.22899691 10.85306701 1034.338051 0.001933603813 +2.497309989e-06 0.006573669016 -0.01099410845 0 -17.45521753 10.55999356 879.1898618 0.0022748215 +2.497779708e-06 -0.005038080486 0.01321541078 0 -20.5170966 -0.2723016354 973.3955807 0.002054663119 +2.498835698e-06 -0.007705197572 -0.01423824881 0 -15.84537995 2.670006274 1052.830824 0.001899640431 +2.499783039e-06 0.006661240677 -0.01326624042 0 3.221348688 5.720694198 996.633699 0.002006755342 +2.499015186e-06 -0.009370749271 0.01144211337 0 12.62744643 2.901822012 923.0689678 0.00216668534 +2.495939657e-06 -0.008109248513 -0.01134406077 0 -9.45998234 -23.94771725 903.0058964 0.002214824962 +2.497626316e-06 -0.0005639194977 -0.002626045269 0 -21.55391193 -1.224137504 990.476659 0.002019229814 +2.495842394e-06 0.007174040396 -0.009035411698 0 22.86309295 13.30983294 916.8573991 0.002181364302 +2.499890343e-06 0.008897517063 -0.008431504886 0 4.161579766 1.80471928 968.5865578 0.002064864502 +2.497641684e-06 0.0007321503898 -0.004004674063 0 15.4458674 16.62641227 1044.573941 0.001914656226 +2.497674926e-06 -0.00209753701 0.01495412857 0 -5.222083968 21.21321642 1012.73879 0.00197484289 +2.497812955e-06 0.007276720582 0.006874092976 0 -4.528723608 -18.58230146 914.2019025 0.002187700545 +2.498499283e-06 0.006705519361 -0.006602929712 0 -10.32833591 -14.17219307 1011.995014 0.001976294323 +2.498139087e-06 0.001529625221 0.009231001607 0 20.2091078 1.311504712 1049.446797 0.001905765977 +2.497571412e-06 -0.003717316138 -0.005679012628 0 -8.494981712 18.81599454 936.3965455 0.002135847264 +2.496600429e-06 0.005420514247 7.301355712e-05 0 26.96045051 -4.903830395 1050.379554 0.00190407362 +2.49688786e-06 0.009254171862 0.0004318079981 0 -15.73854715 20.58503793 1038.145026 0.001926513107 +2.498971597e-06 0.005612775716 -0.005020920541 0 -14.96749328 -0.1075417968 1043.509818 0.001916608704 +2.495075183e-06 -6.328930147e-05 -0.004618674719 0 -20.59913722 -18.23823203 876.001001 0.002283102414 +2.498697981e-06 0.008186164913 -0.005532292568 0 12.02329526 12.12699818 1058.041853 0.001890284391 +2.497070078e-06 0.006012825011 -0.01389756924 0 -16.04371363 -14.97165075 906.1230371 0.002207205775 +2.497623459e-06 0.005263203247 0.004533871212 0 -17.72808622 -7.70502353 886.3217131 0.002256516985 +2.499011664e-06 0.008832341381 -0.01138927745 0 12.62239797 1.399840901 903.1598446 0.002214447434 +2.497943657e-06 -0.006702697072 0.008822472256 0 -8.786464141 -17.37114237 959.619541 0.00208415931 +2.496838463e-06 0.001349997935 0.01073536684 0 -13.3343346 18.630126 910.6726538 0.002196178826 +2.498020707e-06 0.00372301993 -0.01172989546 0 4.326983628 -17.61070553 911.1844586 0.002194945251 +2.499418662e-06 -0.009662446696 0.005945332458 0 -3.879329896 -10.76950445 1061.501572 0.001884123446 +2.497096772e-06 -0.009704966778 0.006265354289 0 -11.69460508 20.28865868 971.4072417 0.002058868736 +2.498490259e-06 0.001048555383 -0.001371127241 0 -7.124961318 -15.43322587 978.0170222 0.002044954182 +2.495530187e-06 0.005201893775 0.008200992225 0 -15.33078272 21.4448795 881.0792718 0.002269943312 +2.499766538e-06 -0.009125668402 0.005621771459 0 5.323634285 3.366465965 921.7551752 0.002169773551 +2.494251224e-06 0.008762306976 0.01185819342 0 28.76383995 20.58610904 1042.260992 0.001918905164 +2.494934066e-06 0.0003241302678 0.006700899526 0 -22.23379195 -20.17468141 942.4838178 0.00212205235 +2.497983402e-06 -0.0002733861702 -0.008781330523 0 -17.14153889 4.733015219 885.2134959 0.002259341966 +2.497780871e-06 0.005791247915 -0.009516964811 0 -3.332860541 -18.84467865 908.0840093 0.002202439399 +2.499248372e-06 0.007451297194 0.004853702963 0 -11.10730659 4.110768022 965.868382 0.002070675505 +2.497746739e-06 -0.003109404161 0.003138780857 0 -21.61034719 6.991772237 1069.576264 0.001869899387 +2.495297474e-06 -0.007593865171 0.00221292105 0 22.58497875 23.68879724 1066.4887 0.001875312884 +2.497720845e-06 0.003822185607 -0.01394660528 0 18.81863112 2.134702395 886.7760432 0.002255360883 +2.497280867e-06 0.00197491643 0.002273824511 0 7.09920661 -20.87847268 945.2546601 0.002115831939 +2.499102413e-06 0.004223571918 -0.004504060415 0 -7.055950432 9.484553033 882.1725801 0.002267130089 +2.496141134e-06 -0.005798492124 0.00659846259 0 -8.765682097 23.95662609 917.7260591 0.002179299563 +2.492560082e-06 -0.005039758435 -0.01291160305 0 -24.69638828 -27.61279716 959.2956704 0.002084862949 +2.498277449e-06 -0.008909397149 -0.007844625302 0 0.2981935701 -18.15165594 977.8258229 0.002045354043 +2.496776748e-06 0.005042269933 0.01352557871 0 26.53448504 3.662166078 1054.473834 0.00189668054 +2.498756528e-06 0.0003025323106 0.00842716591 0 -16.57388628 -0.3159173165 1050.967295 0.001903008789 +2.494439282e-06 -0.0009792472748 0.01470456448 0 20.52476352 25.89145858 989.9092596 0.002020387203 +2.499431667e-06 0.008122164877 0.01379605191 0 11.18024282 0.9906280664 1052.678653 0.001899915035 +2.498584697e-06 0.0007484947052 -0.01393559486 0 -10.31930925 14.38343333 1051.956425 0.001901219434 +2.498829131e-06 -0.006695056912 0.001621469515 0 13.68822231 -1.244364266 898.0256969 0.002227107762 +2.496895719e-06 -0.008543953663 0.01257204157 0 17.03362545 -17.54639293 980.9799059 0.002038777745 +2.494984016e-06 -0.0004781297874 -0.008803012592 0 -13.57430691 -26.03127569 926.2016743 0.002159356926 +2.497580599e-06 0.007028104588 -0.01280724011 0 -20.05141902 -11.78323851 1056.899228 0.001892327998 +2.499759337e-06 0.001324799261 0.009960415566 0 -7.20729677 0.2537028637 1039.455642 0.00192408403 +2.496687554e-06 -0.002109993026 -0.006248878248 0 -22.12664428 9.048645001 928.3035725 0.002154467632 +2.498266096e-06 0.001605626149 -0.00578316316 0 14.48290731 -13.03350544 1046.015165 0.001912018169 +2.498428886e-06 0.007972568944 0.007506256707 0 15.04919911 6.439364016 923.2101922 0.0021663539 +2.494792107e-06 0.00798718872 0.01158492012 0 19.85070366 24.9623998 987.4418786 0.002025435667 +2.499383937e-06 -0.003180434303 0.00558868597 0 -8.614385894 -4.85111678 890.5750298 0.002245740037 +2.499112718e-06 0.00914833019 -0.01216449794 0 -12.66297775 -0.4352980402 951.0178066 0.002103010045 +2.496660847e-06 -0.005360329864 -0.004264755899 0 22.64466054 15.17503039 1054.294093 0.001897003895 +2.497248504e-06 0.002556730653 0.01272033617 0 -15.33403521 -18.76260997 1032.529605 0.001936990464 +2.49725278e-06 -0.005851723622 0.00268505889 0 -8.211973512 19.01242011 883.1645722 0.002264583593 +2.499780143e-06 0.005043285037 0.007191208627 0 -0.02773314239 6.699016288 1010.217606 0.001979771474 +2.499907421e-06 -0.004377525775 -0.01278478607 0 3.976798477 2.171609613 1052.994119 0.00189934584 +2.496317614e-06 -0.009076990671 0.009454050469 0 12.61592041 25.87749703 1060.246422 0.001886353926 +2.498775781e-06 -0.005936152898 0.004799441728 0 -7.66302802 -14.37085896 1040.634081 0.00192190515 +2.497242297e-06 0.007307247524 -0.01029967091 0 19.86865554 -13.31303894 1017.957743 0.001964718097 +2.498672834e-06 0.0003730990924 0.00018397148 0 -7.359681276 -15.19280213 1035.971276 0.001930555456 +2.497671287e-06 -0.009698084178 -0.001442702988 0 -0.9774038358 19.13963528 887.7168988 0.002252970517 +2.499401199e-06 -0.008597782166 -0.008554677987 0 2.013850288 -11.28962733 1047.819065 0.001908726484 +2.495374221e-06 0.002184631596 -0.009652123335 0 -17.93053232 -22.91393617 955.9119524 0.002092242905 +2.498265202e-06 -0.005569091709 -0.00364336285 0 -9.466039875 -14.88651508 946.8414091 0.002112286156 +2.498755427e-06 0.002270335546 -0.01308568723 0 6.961638508 -15.39855917 1070.921674 0.001867550213 +2.498379896e-06 -0.009290355127 0.01311410713 0 17.66382545 -2.999777181 995.1003269 0.002009847596 +2.495364669e-06 0.001532307528 -0.007948411459 0 19.86693285 18.75631918 896.7176612 0.002230356428 +2.495862506e-06 -0.002355179791 -0.008109875573 0 17.88570384 -23.26724082 1019.56383 0.001961623139 +2.499980913e-06 -0.003106717207 0.013729389 0 -1.68979082 -0.292201996 877.7108672 0.002278654708 +2.49371961e-06 0.006832626304 -0.01153414539 0 26.54553794 -23.52439349 999.8462871 0.002000307473 +2.497365167e-06 0.005678319894 -0.00405167293 0 9.808836633 -20.69745131 997.3553879 0.002005303249 +2.497804833e-06 0.009607978635 -0.003303509185 0 -7.74204859 -20.33908303 1038.29804 0.001926229198 +2.497990635e-06 -0.009058535057 -0.009349527061 0 -13.26687302 -13.47311413 942.9392178 0.002121027488 +2.497213109e-06 -0.00954534559 0.006717033098 0 -23.38458921 3.273710031 999.7414433 0.002000517247 +2.495112622e-06 0.00676061281 0.01130484305 0 25.03396815 -19.07944545 1006.015975 0.001988040001 +2.496355396e-06 -0.004692841507 -0.002087252203 0 -12.60627786 22.37691602 950.7739411 0.002103549449 +2.495571878e-06 0.004244720573 0.007916438871 0 17.95904295 26.02655626 1061.858735 0.00188348971 +2.499672165e-06 -0.007578381011 0.002064361512 0 0.7678332772 7.121740122 884.5693036 0.002260987344 +2.497747432e-06 0.008202909436 -0.01334190965 0 22.34590065 -1.456969799 1054.673996 0.001896320577 +2.499054744e-06 -0.004436575565 -0.001986317961 0 12.5138638 5.209860164 985.7114355 0.002028991374 +2.499323894e-06 -0.008587492178 -0.004001947429 0 -9.868937559 -6.207171378 1002.497164 0.001995018113 +2.497433219e-06 0.003042169581 0.01052841243 0 -16.04338688 11.98346659 883.4705763 0.002263799218 +2.498348396e-06 0.0009141164133 0.001657939448 0 2.470351028 17.70969914 983.6037755 0.002033339084 +2.497569678e-06 -0.008396319598 -0.001097411423 0 17.29186955 12.04485901 955.49614 0.002093153406 +2.497560713e-06 -0.0005032200227 0.01042448499 0 -19.09175189 -3.360392498 877.3352309 0.002279630328 +2.496505937e-06 0.002383011002 -0.01461750328 0 12.13358839 -21.62847454 937.6368696 0.002133021924 +2.497939362e-06 0.008584463303 -0.007330054371 0 2.759297282 -20.6169419 1024.304978 0.001952543475 +2.49873181e-06 0.0003365922952 -0.004967402411 0 5.616589005 14.81775445 994.8184913 0.002010416993 +2.49658858e-06 0.001983616329 -0.00538857003 0 -20.72322821 18.56522618 1064.631067 0.001878585044 +2.499227835e-06 -0.0006476852344 0.008322381803 0 -11.96957635 -2.14173986 978.3667068 0.002044223282 +2.499660328e-06 0.004427609704 -0.009138156802 0 -7.648635576 1.551270856 946.8271601 0.002112317944 +2.498118382e-06 0.008612219919 -0.01035517629 0 8.884087598 16.69201208 974.462763 0.002052412956 +2.499727496e-06 -0.001158111617 0.01069575465 0 4.880651383 5.718973858 1018.381113 0.001963901308 +2.496945973e-06 -0.002615634524 0.001176149568 0 16.41069403 -15.95052724 925.5573748 0.002160860098 +2.496352e-06 -0.007052537454 -0.008820627916 0 -24.61503551 -15.21209832 1070.686619 0.001867960209 +2.497872471e-06 -0.005257765874 -0.00641567131 0 -9.764973389 15.85710761 902.5053876 0.002216053253 +2.499965803e-06 -0.005925307502 -0.01407599581 0 0.9746509263 -2.292595353 952.5636603 0.002099597206 +2.499454453e-06 -0.001638913644 -0.01104875572 0 -10.9866397 -1.799855399 1065.735245 0.001876638696 +2.499688892e-06 -0.007017281903 -0.009127171249 0 -5.96110456 -3.801049356 896.2299049 0.002231570258 +2.499237025e-06 0.0001963685872 -0.01297739378 0 -6.015468164 -9.977730427 943.0520003 0.002120773827 +2.498644194e-06 -0.005231967294 -0.009911493436 0 11.35170686 -12.99591732 1047.677344 0.001908984681 +2.499690439e-06 -0.009881810714 -0.00610712941 0 2.861699343 -6.858663219 944.454875 0.002117623671 +2.497696338e-06 0.006055528186 -0.01462747656 0 21.28474384 0.3142103543 991.382482 0.00201738485 +2.498699818e-06 -0.003599164663 -0.0005513646919 0 7.766018297 14.16783185 1001.72956 0.001996546852 +2.496973698e-06 0.006819444522 -0.001738935434 0 7.920787114 24.50156978 1046.188518 0.001911701347 +2.498808338e-06 -0.008522020732 -0.01239032778 0 13.49352841 9.060226133 1052.608308 0.001900042004 +2.499893979e-06 -0.009623054573 -0.0129392317 0 -3.133105599 2.866309065 922.1575732 0.002168826736 +2.494413923e-06 0.002077893652 0.01327566237 0 22.1979712 20.05330195 894.2333093 0.002236552787 +2.497609341e-06 -0.006706975489 0.0116174039 0 15.1107073 12.96239418 910.1515521 0.002197436235 +2.498359789e-06 -0.002458344791 -0.004263164874 0 0.2116762832 15.92834685 879.3004353 0.002274535437 +2.498096463e-06 0.00721762009 -0.00922011795 0 -5.010938856 19.60967896 1037.017954 0.001928606918 +2.496067379e-06 0.005641051736 0.006614333361 0 22.58047073 -18.45801862 1039.307734 0.001924357853 +2.498004846e-06 -0.006138852905 -0.01376298976 0 -5.749380975 -19.78617001 1031.169679 0.001939545006 +2.498601833e-06 0.00139498862 -0.01080440417 0 -7.24618368 16.36786284 1070.212953 0.00186878695 +2.497529021e-06 0.0002482464956 0.008048073084 0 19.99099119 -10.41765203 1013.660936 0.00197304634 +2.499084027e-06 -0.006266298187 -0.01274637561 0 -13.74664673 -2.832570336 1036.836468 0.001928944497 +2.496854324e-06 0.009741823692 -0.007337349756 0 -17.22733385 -15.43516482 921.7435707 0.002169800868 +2.496901287e-06 0.009814026915 -0.00619321215 0 -9.671790447 -21.87189197 960.1988973 0.002082901788 +2.498394214e-06 -0.004666599706 -0.007493400383 0 10.40326328 15.31118422 1032.686189 0.001936696764 +2.499224119e-06 0.004639560757 0.008729993531 0 11.41033132 -5.588268817 1019.815491 0.001961139067 +2.496384385e-06 -0.001890488914 0.009192267924 0 25.3777121 13.51537785 1068.637855 0.001871541412 +2.497936286e-06 0.003932010173 -0.009301324342 0 -18.11369238 -3.015324657 903.583526 0.002213409101 +2.498813706e-06 -0.005205693957 0.004463723225 0 3.590332574 14.75936503 985.968506 0.002028462357 +2.499003406e-06 0.001266640183 0.01077387394 0 -14.32132386 3.843172068 1050.132813 0.001904521005 +2.497760321e-06 0.006804681714 -0.005661874136 0 5.889704033 -20.60406632 1012.172922 0.001975946952 +2.499792401e-06 0.008287907406 -0.01229460592 0 5.486052381 -2.159054216 914.9310854 0.002185956988 +2.496678736e-06 -0.003842254942 -0.003831096687 0 -19.82193054 17.41033201 1023.128848 0.001954788006 +2.498362424e-06 -0.001524449447 0.01119891413 0 -15.26887766 8.406705841 962.8964325 0.00207706658 +2.49638074e-06 0.004892230621 0.009306229355 0 15.94353725 18.43773865 905.4948655 0.002208736986 +2.498618404e-06 0.006696100375 -0.009613343503 0 -4.85903424 -16.19855048 1017.161528 0.001966256042 +2.49718159e-06 -0.007807904165 -0.007283784854 0 -4.307816494 -21.72427622 932.4366981 0.002144917724 +2.497140408e-06 0.007955291145 0.0002207235619 0 19.45863062 -12.20680831 960.1018181 0.002083112397 +2.498633442e-06 0.007325180518 -0.01422152543 0 -4.17561639 -16.07434441 1004.372986 0.001991292107 +2.4983118e-06 -0.0004314051569 -0.01179561626 0 9.764233045 13.11742743 889.712152 0.002247918044 +2.497515119e-06 0.0007960566087 -0.001597535019 0 -1.884826528 22.07983044 993.6709979 0.002012738627 +2.498569138e-06 -0.009989523962 -0.004835333833 0 17.225311 -3.087023685 1034.24794 0.001933772283 +2.497097532e-06 -0.002248392324 -0.00333636093 0 17.19651603 16.69250208 994.2694627 0.002011527131 +2.499249073e-06 -0.002627376034 0.00497514738 0 11.50448187 -3.101588885 972.164889 0.002057264177 +2.496887766e-06 -0.002780582584 0.003132686361 0 15.50758615 21.52364446 1062.810956 0.001881802204 +2.497396993e-06 -0.009497723579 -0.006062354904 0 16.51904108 -13.79257375 942.804255 0.002121331113 +2.497678148e-06 -0.0009024046129 0.01113966819 0 17.25044517 -14.86245601 1056.27851 0.001893440016 +2.4964448e-06 0.000213309722 0.007173455749 0 -24.73207797 -12.14088573 1032.676048 0.001936715782 +2.49743896e-06 0.00233593612 0.001673482102 0 -20.782685 5.045017227 944.593095 0.002117313805 +2.494793213e-06 0.004687637449 0.01077544589 0 25.67591091 19.09523266 990.798125 0.002018574672 +2.499516094e-06 0.001506219883 0.002219667854 0 7.42031344 -5.721343423 952.3734577 0.002100016526 +2.498778011e-06 0.003815445816 -0.009965536846 0 -12.85202869 7.861668359 963.5317348 0.002075697071 +2.499252886e-06 -0.005637008585 0.00209033902 0 4.73799583 -12.14616721 1066.446888 0.001875386409 +2.499600154e-06 -0.003546622642 0.01144421618 0 1.430338132 8.137736725 923.8958124 0.002164746255 +2.497125615e-06 -0.005935040759 0.006525407773 0 -18.41701536 13.2339053 945.4596954 0.002115373093 +2.497129676e-06 0.006024448639 0.002113238093 0 5.113213508 23.5625748 1005.883199 0.001988302422 +2.495474865e-06 0.00765816215 0.003251475028 0 26.50700553 -12.35189927 971.4169655 0.002058848127 +2.495995378e-06 -0.008860264365 -0.01312520654 0 -24.1278053 17.09258041 1044.179609 0.001915379292 +2.494914527e-06 -0.00387000754 0.01383859288 0 6.506576503 27.98349166 900.1666727 0.002221810761 +2.498688707e-06 0.006923773773 -0.01182191469 0 15.57744222 6.210215404 1035.322095 0.001931765978 +2.499294389e-06 0.0004140915582 -0.002453978634 0 8.550876267 6.878304597 923.6787771 0.002165254902 +2.498316907e-06 0.001224933937 0.002650379897 0 -15.98356474 -5.050906206 913.4053892 0.002189608276 +2.497787199e-06 -0.004890056793 0.0140492274 0 -20.18021236 -7.00282509 1015.045694 0.001970354646 +2.496903092e-06 0.005303541198 -0.01058908135 0 -6.885145143 -25.25645083 1051.374095 0.001902272473 +2.494014128e-06 -0.002770523303 -0.01068531655 0 -23.35602533 -23.93073327 965.5784181 0.002071297331 +2.497792167e-06 -0.003676192281 0.01301435142 0 18.96034752 8.47091909 987.9231988 0.002024448867 +2.495794214e-06 0.003628161419 0.009000696628 0 15.16366674 26.64812909 1056.488835 0.001893063073 +2.498866829e-06 0.002402307419 -1.687048702e-05 0 10.17762174 -9.513094497 925.2458252 0.002161587705 +2.497826581e-06 0.000927438084 -0.00577113112 0 -1.019479504 19.38155891 930.5941634 0.002149164565 +2.498761668e-06 -0.008928773156 -0.01077476922 0 13.81767972 -4.992758436 933.3997322 0.002142704707 +2.498050736e-06 0.00534464377 0.01249090307 0 7.01160254 -18.0079405 978.4485036 0.002044052388 +2.496580014e-06 0.009665481765 -0.000501545209 0 -18.37145913 21.00402083 1066.42231 0.001875429631 +2.493516027e-06 0.00584116891 -0.01456954506 0 19.3814181 -25.13170838 880.457621 0.002271546015 +2.498167027e-06 -0.001872264664 0.0008850093512 0 -2.453905023 18.2744655 962.7482621 0.002077386248 +2.497041631e-06 0.005128426305 -0.01153572688 0 -18.74556048 -10.34125827 879.7490642 0.002273375535 +2.494478336e-06 0.005329888146 0.002059604293 0 23.5835487 18.79581201 906.7409704 0.00220570159 +2.499632287e-06 -0.007957429942 -0.002605132973 0 3.115142001 -8.147099012 1017.044889 0.00196648154 +2.495578404e-06 -0.00223475385 0.01074057158 0 -13.31880875 28.08961737 1044.695047 0.00191443427 +2.4962496e-06 -0.005091501428 0.007470329774 0 -22.5169578 17.03446773 1030.342693 0.001941101746 +2.49680168e-06 0.008863201952 0.0007247417397 0 -6.51029345 -21.99344421 906.4583953 0.002206389185 +2.497722224e-06 0.00510332495 0.005240932836 0 -18.58619807 -9.659528636 981.0502541 0.00203863155 +2.499366971e-06 0.007709661443 -0.001935226112 0 -10.81250832 -1.575639996 971.0046068 0.002059722463 +2.499070863e-06 -0.006310165362 0.002236361636 0 12.04458301 -4.914103151 954.1373577 0.002096134255 +2.498665845e-06 0.00790784413 -0.007024064481 0 -2.301091129 14.68946341 910.0496987 0.002197682174 +2.499424344e-06 0.005118598137 0.009155808601 0 -8.604895795 4.038090778 885.7908027 0.002257869458 +2.499465001e-06 0.004399589663 -0.0001736799907 0 -4.743316249 9.691975516 1043.067735 0.001917421019 +2.499727077e-06 -0.001506758481 -0.002095227821 0 7.164415508 -0.763891739 975.1746285 0.00205091472 +2.498176587e-06 0.007508153077 0.01139252996 0 -13.51687692 -14.20263042 1026.424584 0.001948511398 +2.499957757e-06 -0.003504753187 -0.01397641733 0 -0.5998902015 -2.996061783 1051.217833 0.001902555243 +2.496507695e-06 0.009431424038 -0.001158388169 0 -11.07960743 -25.89124191 1065.047823 0.001877849949 +2.497381815e-06 -0.003448052243 -0.004190934892 0 -8.706142548 -20.74358059 982.7191437 0.002035169471 +2.498481435e-06 -0.009690545155 -0.004481191628 0 -16.53024605 5.15870746 993.4122749 0.002013262822 +2.499859742e-06 0.006189577463 -0.01127930481 0 -5.228067485 0.9582839868 1003.525684 0.001992973405 +2.496608579e-06 0.008507337626 0.01177381899 0 -9.157789043 21.75218841 905.7525239 0.002208108669 +2.49778583e-06 0.008174393498 0.00621790977 0 6.066080899 19.00172359 947.5494353 0.002110707817 +2.496319346e-06 -0.0052446859 0.007643567647 0 20.64016846 16.14997471 965.4055246 0.002071668277 +2.499607298e-06 -0.001281523765 0.01318491472 0 4.339210907 -8.250925561 1051.850665 0.001901410596 +2.4974476e-06 0.004102700716 0.005516338586 0 20.32238258 4.129356226 917.4959662 0.002179846096 +2.49969421e-06 0.001828986863 -0.009315928216 0 2.102739989 -7.242564527 964.3149273 0.002074011242 +2.496887964e-06 -0.006519113416 0.01215147053 0 21.52996513 -15.05288233 1052.506705 0.001900225425 +2.498327839e-06 0.006733705038 0.004792229701 0 13.66264427 10.14533001 930.3213829 0.002149794723 +2.499055099e-06 0.001458024755 -0.01055864947 0 -1.140326185 14.00147028 1021.737879 0.001957449206 +2.498508915e-06 -0.004451506454 -0.002084581037 0 2.568041674 16.07558072 942.4867274 0.002122045799 +2.499610872e-06 0.007866781321 0.002589073589 0 2.036977501 8.606522403 1002.481973 0.001995048345 +2.497251566e-06 0.007435239172 -0.01114247138 0 20.15372584 -7.250923643 913.1678204 0.002190177923 +2.497740035e-06 -0.002713468992 0.01499112563 0 3.479973895 20.17797354 962.7842295 0.002077308642 +2.494342384e-06 0.007191098263 -0.01062193644 0 -21.47133856 -28.17541454 1052.201944 0.001900775808 +2.497966134e-06 -0.008972440124 0.01454804573 0 -7.692597814 17.27200059 937.1911557 0.002134036357 +2.497225468e-06 0.004169203797 -0.01231906856 0 -20.92454326 12.69181725 1038.468242 0.001925913495 +2.497408804e-06 0.003410458304 0.005974319251 0 -22.95026978 5.658476266 1037.930471 0.001926911346 +2.497267815e-06 0.006035565641 0.009311854835 0 20.82754144 9.337889846 976.0307506 0.002049115767 +2.498114794e-06 0.0002927911514 0.01112187896 0 17.57874617 5.718697957 951.7333968 0.002101428832 +2.497935677e-06 -0.004128628834 0.01242655607 0 -19.3996271 -7.791754899 1028.562443 0.001944461432 +2.496481728e-06 -0.007724049906 0.0032909724 0 -14.41762757 -19.46603285 912.7124377 0.002191270676 +2.497930274e-06 0.002930567446 3.353623906e-05 0 6.020725873 20.39212106 1044.732344 0.001914365925 +2.496153425e-06 -0.001666626101 -0.002225772764 0 19.52090632 21.78044425 1053.890188 0.001897730924 +2.498404514e-06 0.005039125714 -0.0008386537177 0 -11.14138859 -14.71585332 1033.028218 0.001936055536 +2.496485743e-06 -0.006778454231 0.01487597467 0 -4.225890021 28.01886644 1068.25258 0.0018722164 +2.499902219e-06 -0.00475312327 -0.01388061719 0 3.978455597 -0.400511649 904.1810908 0.00221194628 +2.498433501e-06 0.004965558131 -0.003440892783 0 3.586456744 -18.29786223 1053.183846 0.00189900368 +2.49983941e-06 0.001827981598 -0.01035278804 0 5.499265001 -2.489466163 1065.125707 0.001877712638 +2.499675335e-06 0.004012855012 0.01102538487 0 -3.516597827 -7.698972292 1050.33087 0.001904161876 +2.497581787e-06 -0.0005930416053 0.00337610364 0 -19.94543959 2.078770133 911.5274842 0.00219411925 +2.496727294e-06 0.00119160186 -0.01459244961 0 20.60606544 -17.73578717 1062.159561 0.001882956264 +2.496124741e-06 -0.008982475777 -0.003164331056 0 -27.25129156 5.231009039 996.1536284 0.002007722447 +2.498084094e-06 0.004716226938 0.01244847044 0 10.90710899 -17.58781606 1056.927557 0.001892277278 +2.498478599e-06 -0.0003548632422 0.004747399706 0 8.92380295 13.39663426 922.5739055 0.002167848004 +2.499308847e-06 0.0001608509524 0.007140658919 0 2.800192958 -9.91506416 876.2173599 0.002282538662 +2.499064822e-06 -0.001942636515 0.008348627449 0 9.970062618 -10.31435539 1048.786231 0.001906966301 +2.49630559e-06 0.00531069688 0.01438924522 0 18.84159918 -14.94118073 884.1530743 0.00226205174 +2.497982769e-06 0.004700083844 0.009364582475 0 12.78609741 -16.85994405 1053.148459 0.00189906749 +2.494340272e-06 -0.004386739093 -0.01324098173 0 -22.67782085 -25.87235394 1021.720369 0.001957482752 +2.497329642e-06 -0.003374665589 -0.004919994709 0 -14.90395942 -17.85525749 1006.004832 0.001988062023 +2.498227145e-06 -0.008408589563 0.004540397292 0 15.85315104 -8.131724188 945.9511211 0.002114274147 +2.494258986e-06 -0.006542634522 -0.01408742851 0 12.0907281 -30.09480091 956.3128414 0.002091365831 +2.496941661e-06 -0.004272000943 -0.01457972556 0 18.15475022 12.11970934 882.1982814 0.00226706404 +2.498969795e-06 -0.00339707484 -0.002794704647 0 0.2680365739 -14.3237504 997.9039046 0.002004200997 +2.499638932e-06 -0.006587755103 -0.001289940372 0 6.854438873 5.896952186 1063.972532 0.001879747775 +2.499823643e-06 0.005398047506 -0.00659034828 0 5.517054214 0.1458821427 929.2569804 0.002152257171 +2.496206246e-06 0.002067583632 -0.01185589364 0 22.27356994 -10.81155745 898.3259123 0.002226363475 +2.497226319e-06 -0.002825713032 -0.008038808301 0 -1.278465068 -23.34594372 992.28777 0.002015544342 +2.498221719e-06 -0.002499408191 -0.01336277957 0 -16.60505461 10.84798534 1051.452637 0.001902130376 +2.497905884e-06 0.009277845835 0.014552897 0 -17.44957136 -4.463556021 879.8241654 0.002273181482 +2.495984056e-06 -0.009760828861 0.002929472763 0 -17.99374476 -22.42405527 1013.865913 0.001972647442 +2.498811393e-06 0.001831213301 0.01403869614 0 15.0865385 4.118858297 1014.118909 0.001972155318 +2.498060416e-06 0.006934315567 -0.003158017478 0 -1.946291101 20.17558938 1028.826031 0.001943963255 +2.493965276e-06 0.009049480087 0.01382056877 0 22.03333647 27.86742134 1021.651804 0.001957614122 +2.499364616e-06 0.008389771311 0.003422179178 0 -10.14089208 1.815504825 913.8019889 0.002188657963 +2.49722825e-06 -0.006778338086 0.0001455234736 0 19.5557619 8.709033568 908.8463014 0.00220059211 +2.499737104e-06 0.00844798435 -0.01263099689 0 -4.432617703 5.746684152 1000.846696 0.00199830804 +2.496910865e-06 0.009199238755 -0.01266152391 0 22.04521817 -14.80339157 1067.825907 0.001872964485 +2.495470174e-06 -0.0003516108077 -0.001738917637 0 20.65599444 19.32496852 939.1342741 0.002129620923 +2.497361073e-06 0.006849483927 0.003418352162 0 12.69679212 -17.62223576 945.0527837 0.00211628391 +2.495637237e-06 0.008386411536 0.003532462812 0 25.69274601 16.68147451 1036.361249 0.001929829006 +2.499332154e-06 0.008895395864 0.01325961724 0 -9.324647872 5.972657548 958.0474125 0.002087579356 +2.49685803e-06 -0.001576801585 0.01401708682 0 20.83851235 -9.655235693 915.7499897 0.002184002209 +2.499079242e-06 0.0007769936183 0.003546928391 0 -5.341351945 -12.54043813 1004.307235 0.001991422475 +2.498470204e-06 0.006023427565 0.007726273946 0 -6.39009291 -16.03176656 986.4339284 0.002027505282 +2.498319889e-06 0.005639073565 -0.002109732942 0 -10.2418418 13.59522612 928.3246528 0.002154418709 +2.499069523e-06 -0.007837771494 -0.01477116968 0 14.33715698 0.7698626625 1052.348968 0.00190051025 +2.499723852e-06 0.004401145792 0.007729643863 0 -3.879848788 6.345619217 1000.777348 0.001998446512 +2.498598246e-06 -0.006911338028 0.007688806497 0 12.5954358 -9.635377112 946.9220967 0.002112106167 +2.498340448e-06 -0.006632196358 0.007096295957 0 -7.45851637 -15.24146763 931.1642728 0.002147848729 +2.499221669e-06 -0.00377757228 0.008533107061 0 -12.22756696 -3.293073986 1014.839123 0.001970755713 +2.49896495e-06 -0.001347762686 0.008383684068 0 -1.052980121 14.96934934 1042.825417 0.001917866565 +2.499022346e-06 0.004252389972 0.004107551014 0 10.52634983 7.659723385 930.8551463 0.002148562006 +2.497783261e-06 0.008209115271 -0.001812049944 0 19.7111975 10.76904117 1066.388373 0.001875489315 +2.498917364e-06 0.003100056406 -0.008103124055 0 -12.75287489 -3.616601179 900.6963642 0.002220504134 +2.499645393e-06 -0.0045832801 0.005048532004 0 -4.602713724 -5.806472122 879.7813301 0.00227329216 +2.497554623e-06 0.009982305076 -0.0008816266735 0 12.14337844 16.95775251 942.7810939 0.002121383228 +2.497491253e-06 0.008122615069 0.001682272344 0 13.64231951 -18.55550033 1027.786292 0.001945929826 +2.499442029e-06 0.00303891473 0.01279337896 0 -4.735335062 -9.62166178 1015.059015 0.001970328789 +2.499049906e-06 0.002096508858 0.01097755589 0 -13.25562002 1.042726935 964.4495014 0.002073721846 +2.499290118e-06 -0.00307864571 0.006332734872 0 10.37220551 -1.998910715 886.4115814 0.00225628821 +2.496764354e-06 -0.004277717206 -0.01263671153 0 19.88848635 11.64191417 905.474153 0.00220878751 +2.496899196e-06 0.003675726131 0.00234976727 0 -15.97323373 -21.29215471 1068.355167 0.001872036624 +2.497671859e-06 -0.002883885601 0.01355544327 0 15.38008229 16.63147077 1049.426238 0.001905803313 +2.496747451e-06 -0.006501974561 -0.01023872178 0 -17.15665153 -20.68470434 1053.154576 0.001899056459 +2.497096215e-06 -0.005296984352 0.007630366771 0 -20.88219228 -10.46242342 968.7731777 0.002064466736 +2.4965441e-06 -0.00408221304 -0.003371950372 0 10.35819383 -21.88663401 920.545778 0.002172624163 +2.497140106e-06 -0.004845365658 0.01125229973 0 5.479198827 24.79673703 1061.377131 0.00188434435 +2.496701624e-06 0.003254895518 -0.01190107057 0 -22.70605913 -12.3698428 1006.227116 0.001987622843 +2.496741734e-06 0.003056776104 -0.0004613425769 0 -6.473187276 -26.15186629 1054.859145 0.001895987734 +2.497874422e-06 6.888459902e-05 -0.01224788443 0 15.3567667 -11.21861701 922.0931725 0.002168978211 +2.494574277e-06 0.0009519150341 -0.004871151033 0 22.97815001 -20.71889683 938.4673312 0.002131134386 +2.495115887e-06 -0.006233989242 -0.01102014866 0 12.04108872 -25.2855945 895.4233092 0.002233580452 +2.499907801e-06 -0.001899941661 -0.002143885964 0 -1.515987683 -3.643807087 919.0481304 0.002176164592 +2.499766909e-06 0.005789747629 -0.003588680418 0 3.997075987 -5.567737618 1003.79826 0.001992432224 +2.498554784e-06 -0.006561991782 0.009168722711 0 -12.37114669 8.836300525 894.0221981 0.002237080918 +2.498605865e-06 -0.008476003213 0.01133608094 0 -15.72540546 1.255552421 944.5467253 0.002117417748 +2.49965086e-06 0.001126124947 -0.0123061799 0 5.018270559 6.559965628 988.3399368 0.002023595249 +2.498851969e-06 -0.006753511094 0.004420598515 0 -3.40288539 15.57549546 1051.962713 0.001901208071 +2.498996127e-06 -0.007232645066 -0.004901479608 0 5.330619794 -13.83893493 1046.46324 0.00191119948 +2.498404139e-06 -0.001050987267 -0.005087664539 0 -15.93004567 8.389993126 1007.5395 0.001985033837 +2.497186214e-06 0.009531965032 0.0007098646788 0 -14.39441582 -19.41902854 1018.528667 0.001963616799 +2.496941399e-06 -0.002738257158 -0.00511964903 0 15.295254 -15.62938737 883.7700264 0.002263032169 +2.49997179e-06 -0.00596341264 0.003666329866 0 1.223433752 1.829514363 926.5767564 0.002158482809 +2.497269298e-06 0.007931579677 -0.001883032182 0 5.342638687 23.37491922 1025.59904 0.001950079828 +2.499475022e-06 -0.002956928979 0.009021403331 0 5.056994777 8.359785862 953.4303822 0.002097688554 +2.498105144e-06 0.006826630281 0.003847902264 0 -17.35371471 -9.699831117 1020.946061 0.001958967351 +2.497745649e-06 0.004685677486 -0.01070070108 0 8.68591176 16.45577624 876.0208249 0.002283050749 +2.497624871e-06 0.009963808795 0.01073812312 0 22.87072364 0.7012511119 1049.471342 0.001905721405 +2.498011085e-06 -0.0005502441665 0.002975177059 0 11.24728405 16.7950984 1013.174017 0.001973994562 +2.49662351e-06 0.004157302808 0.005142438286 0 5.434212204 26.21227849 1029.615032 0.001942473583 +2.498677085e-06 0.0005069459649 0.0009171203314 0 13.75334692 4.422827179 887.9951728 0.002252264496 +2.495561722e-06 -0.008653101977 0.008274088749 0 -24.46504863 15.19424125 965.9870815 0.002070421063 +2.497709922e-06 0.004429570576 0.009679183227 0 -20.10054714 5.843982241 977.7750395 0.002045460274 +2.49804381e-06 -0.003381689275 0.01071972994 0 13.61620188 -15.54403906 1044.420053 0.001914938338 +2.498606661e-06 0.003879577261 -0.01278003091 0 13.20645339 6.26093807 875.3392771 0.002284828354 +2.49879966e-06 -0.004290836896 0.008410980538 0 -16.34962251 2.006064418 1062.936063 0.001881580718 +2.499110241e-06 -0.007904354129 0.01077677648 0 -10.94339132 -5.776833912 927.5141396 0.002156301359 +2.49874841e-06 -0.007541029654 -0.004033892553 0 5.718173411 15.11841834 1021.438613 0.001958022709 +2.496286553e-06 -0.009586893073 -0.005534768638 0 -9.574815098 -26.39571926 1029.747335 0.001942224011 +2.496717566e-06 -0.0009175273031 0.01402395599 0 -15.33482355 21.60383741 1033.487695 0.001935194787 +2.498813123e-06 0.008788619856 0.007381603732 0 5.216818103 -13.27335864 925.5019962 0.002160989396 +2.498814955e-06 -0.007268125773 -0.01262747556 0 9.414889416 12.74378625 1029.000332 0.00194363397 +2.496961981e-06 0.006956602517 -0.005915815753 0 18.91015436 -17.69417376 1050.143572 0.001904501493 +2.494456993e-06 0.003345200983 0.005427842166 0 -23.91848819 26.00339072 1060.242369 0.001886361137 +2.497443782e-06 -0.00462913149 0.003474055231 0 23.78171801 -2.751004848 1058.398349 0.001889647694 +2.498200233e-06 -0.007215614975 0.01008469815 0 12.45674794 -13.7521824 977.7408354 0.00204553183 +2.495768333e-06 -0.000470399214 -0.001751319047 0 -18.98209852 -22.96556815 1023.518372 0.001954044064 +2.499594391e-06 -0.001008361061 0.01055529387 0 2.797354064 -7.518775018 890.6423838 0.002245570205 +2.498138349e-06 0.004085819414 -0.01117394082 0 16.8710577 -3.127728303 888.9855345 0.002249755392 +2.498788092e-06 0.006962939408 -0.004161981361 0 9.773914355 -10.08102778 901.7303898 0.002217957854 +2.498531496e-06 -0.006019395092 -0.000157475837 0 -12.76497148 12.74087674 1052.14769 0.001900873821 +2.497171862e-06 0.003947891402 -0.007969323602 0 -19.0138 -13.21497602 973.1900428 0.002055097064 +2.49641766e-06 -0.005684517818 0.008228569098 0 8.7775824 24.29009049 964.3811015 0.002073868927 +2.499511994e-06 0.0003367117606 -0.005994827526 0 -6.260705203 -7.565200984 993.9026044 0.002012269604 +2.499627997e-06 -0.00970815002 0.003408163637 0 7.258681143 -4.375393592 982.5345147 0.002035551902 +2.499595758e-06 -0.007200944163 0.01097845976 0 -0.8673610663 8.674081126 969.4420123 0.002063042425 +2.497324106e-06 0.00480009512 -0.0003601768962 0 -2.750503915 -24.31474716 1057.321254 0.001891572681 +2.495850938e-06 0.0005252781697 -0.007478413687 0 -22.05948331 14.09395742 908.1704594 0.002202229746 +2.499711703e-06 -0.003385228571 0.01204678905 0 -0.02078950632 7.467970589 983.4459033 0.002033665495 +2.499161314e-06 0.002855265066 0.002985753603 0 3.928123518 -11.65704073 949.6731246 0.002105987785 +2.499639518e-06 0.002058698232 -0.007760954881 0 -7.479086418 4.040025471 1001.069103 0.001997864078 +2.49906139e-06 -0.005034128982 -0.01263140534 0 11.7352283 -6.826030662 990.731408 0.002018710605 +2.496756711e-06 -0.001622495623 -0.006563565431 0 -22.52845844 -2.65762927 890.2527105 0.002246553115 +2.496301428e-06 0.002927529486 0.005362099707 0 5.663523981 27.27968847 1023.834168 0.001953441351 +2.498939759e-06 0.000572538767 0.003303256806 0 3.140821364 -13.5731285 956.577821 0.002090786506 +2.497941111e-06 -0.006669971696 -0.001049261678 0 -14.20069023 12.81049091 942.1876833 0.002122719322 +2.49852468e-06 -0.00994199709 -0.008287663891 0 -12.25687034 12.93210146 1037.043926 0.001928558617 +2.496544352e-06 0.009127964959 0.01000920016 0 9.001231558 26.04642787 1047.710624 0.001908924043 +2.499085834e-06 -0.007945007947 -0.008607644916 0 12.27656505 -1.054637239 911.1429004 0.002195045365 +2.49898356e-06 -0.004373773579 0.01098515763 0 -5.411034243 13.46159223 1017.41362 0.001965768848 +2.496338808e-06 0.006748377499 0.01151736944 0 19.47777468 -17.58543122 969.2334887 0.002063486274 +2.497420684e-06 0.004388960223 0.006051322985 0 6.395077739 21.524908 988.2664658 0.002023745689 +2.499368496e-06 0.006567821261 -0.0027883265 0 -10.72925469 -0.7357274828 956.8506972 0.002090190252 +2.497795756e-06 0.004094940023 0.004746883905 0 -2.093414874 19.54625534 935.9480326 0.002136870777 +2.498774771e-06 -0.007804806866 -0.008497599601 0 5.576849605 12.66279021 883.7337071 0.002263125174 +2.499417297e-06 0.009611249669 -0.008608531386 0 1.209128712 -9.445722388 882.0392324 0.002267472836 +2.498975655e-06 -0.002643564041 -0.006787680234 0 -8.745930507 9.636697988 909.0694539 0.002200051923 +2.499009399e-06 -0.004959816225 0.007488553359 0 3.997051787 13.60621248 1007.356217 0.001985395004 +2.496542236e-06 -0.004441929245 -0.001007728761 0 -25.87156272 5.186106438 1002.857797 0.001994300693 +2.49871667e-06 0.009213501876 0.004331392874 0 2.173094187 16.65554629 1048.229766 0.001907978637 +2.498893481e-06 0.007775413888 0.003790133824 0 -2.718093532 13.80468287 945.6255062 0.002115002172 +2.495700297e-06 -0.001814169693 -0.001644153886 0 -27.21814434 -15.6988216 1070.793386 0.001867773957 +2.496824343e-06 0.002598215025 -0.007116435708 0 -24.00158542 10.27891448 1035.542986 0.001931353915 +2.496242986e-06 0.003920789002 0.008105533433 0 23.73266104 12.58789005 979.4793721 0.002041901092 +2.499887351e-06 -0.004323627851 -0.003752422433 0 3.308461491 3.049301941 947.9032057 0.002109920072 +2.499330492e-06 -0.007972355392 0.01388592631 0 -10.27112245 6.596819172 1054.816693 0.001896064039 +2.497570984e-06 0.006520111132 0.004441763896 0 -10.30663247 -20.13352258 1025.81872 0.001949662216 +2.496569138e-06 0.008938826108 -0.009906801735 0 23.79077038 -12.82093353 1031.177215 0.00193953083 +2.49850166e-06 0.00507920078 0.005746499619 0 2.481875197 17.96031612 1047.137083 0.001909969603 +2.498273092e-06 0.006718622739 0.008280066547 0 13.64128435 14.46768915 1069.683909 0.001869711214 +2.498488146e-06 -0.009936799454 -0.00463857393 0 -3.241049844 -14.90918652 877.2270498 0.002279911456 +2.496206083e-06 0.003929692097 -0.01098919765 0 14.78575643 -23.15525647 996.7935916 0.002006433445 +2.498257224e-06 -0.002792020212 0.004003800934 0 14.69097222 -9.685998815 942.2832499 0.002122504035 +2.497976386e-06 0.0006009859638 -0.004106098716 0 -15.84184553 -10.12599862 934.2949187 0.002140651694 +2.496649984e-06 -0.001926128552 -0.0003926145611 0 -7.901437631 23.98539424 975.1293753 0.002051009897 +2.498991327e-06 0.0007854900556 0.01356131584 0 9.05730327 -12.11914182 1065.06221 0.001877824583 +2.497924871e-06 0.006978892027 0.0003601991362 0 21.02704162 -5.433357729 1065.714138 0.001876675863 +2.494558355e-06 -1.254733186e-05 0.01485018476 0 14.65902697 25.71664709 896.550732 0.002230771699 +2.498084447e-06 0.00920472512 0.004495176177 0 -19.83109735 0.770471715 1013.648553 0.001973070443 +2.499775201e-06 0.009953751299 0.002000602365 0 -2.562185517 6.582805688 1053.453042 0.001898518415 +2.498816037e-06 0.002419235767 0.01006519413 0 -13.39350275 7.894450102 1010.147097 0.001979909665 +2.498480461e-06 -0.008859763122 0.005304102462 0 -14.85304469 -10.13814748 1031.327889 0.00193924747 +2.49969701e-06 0.009880367857 -0.006042179056 0 6.889974512 1.333992063 901.4875067 0.002218555427 +2.497076423e-06 -0.007917201384 -0.002012740828 0 -14.65719284 -20.3797587 1037.68449 0.001927368116 +2.498611078e-06 -0.006407153797 -0.01285307512 0 -12.5524161 -10.94231879 998.914905 0.002002172547 +2.498028752e-06 -0.009978951677 0.01302787535 0 17.55772867 -8.837367482 989.6672709 0.002020881218 +2.496558997e-06 0.005059106429 0.009663240903 0 22.53892697 11.17883946 958.5387107 0.002086509369 +2.496498282e-06 0.007860818058 0.005148609511 0 24.03914784 -5.863144416 934.5080906 0.002140163387 +2.498575197e-06 0.00674869475 -0.005453232313 0 7.994751537 -15.16922616 1015.557086 0.00196936246 +2.499984825e-06 -0.00102634002 0.003337297244 0 0.6132443304 1.403256351 879.0504326 0.002275182317 +2.497266709e-06 0.001090599908 -0.005391461346 0 -21.77332177 9.904068348 1022.647044 0.001955708974 +2.497563101e-06 0.005664130636 0.004444303201 0 11.56539007 -20.09880601 1049.990983 0.001904778263 +2.496492685e-06 0.008270648601 0.00751170903 0 24.51712884 14.17785276 1068.768313 0.001871312964 +2.499671288e-06 -0.007050285554 0.007058687818 0 -6.982439524 -3.276950319 951.235294 0.002102529219 +2.498653678e-06 0.009106997238 -0.007191488477 0 15.10646939 5.507139832 979.6742944 0.002041494823 +2.499952655e-06 -0.007077877615 -0.0005551503925 0 -2.63606783 1.069128689 924.4178381 0.002163523807 +2.498664211e-06 0.008604085804 -0.01335103151 0 -5.212693854 -15.8551587 1020.909163 0.001959038151 +2.499990159e-06 -0.009263086794 0.006850914108 0 -1.336054683 0.3569221914 985.7491558 0.002028913734 +2.497355211e-06 0.006792847249 0.01312180051 0 -15.96947428 -15.93095856 980.3902705 0.002040003925 +2.499366185e-06 0.002469072863 0.0005979112722 0 11.69312812 -2.134544368 1055.628947 0.001894605113 +2.497816251e-06 0.0005585185671 0.006057205887 0 -20.16342781 -6.801441412 1017.901501 0.001964826655 +2.499459286e-06 0.008472593487 -0.0004114863533 0 -8.275556875 -5.959256989 980.5676404 0.002039634919 +2.497603672e-06 -0.0008809336508 0.003579247431 0 15.87758888 14.44582716 980.172127 0.002040457941 +2.495248895e-06 0.0004302063817 -0.009504580095 0 10.04403403 -26.528353 919.55497 0.002174965136 +2.497044191e-06 0.004436327438 -0.01128023838 0 -14.59632921 18.55408873 970.5130738 0.002060765645 +2.498934701e-06 -0.002020968371 -0.01390060933 0 14.40378575 1.721680199 993.6579063 0.002012765145 +2.49724753e-06 0.007604043623 -0.009170784226 0 7.114851512 -22.23549737 994.6215838 0.002010815 +2.499882869e-06 -0.0003665125696 0.009367668168 0 -4.333653303 0.4510267858 900.1906293 0.002221751632 +2.496051169e-06 -0.002947276952 -0.002382765769 0 -24.00332464 -8.971076837 911.2905822 0.00219468964 +2.49757608e-06 0.002294091298 -0.01446044519 0 13.85806372 16.35816847 973.3626955 0.002054732536 +2.499642273e-06 0.001455456112 0.004836545228 0 -2.10029759 -7.530718246 924.2468631 0.002163924034 +2.498782402e-06 0.007784072692 0.01093896065 0 12.8696303 10.38897095 1059.689124 0.001887345973 +2.498252807e-06 0.001687579313 0.008889640672 0 11.32442815 -15.74884875 1037.408627 0.001927880632 +2.495321077e-06 -0.0006683866912 -0.0009355055611 0 17.24200518 20.6241553 878.1500356 0.002277515138 +2.498833711e-06 0.0006829103967 0.009572770635 0 -10.52084855 -11.47434932 1019.122748 0.001962472139 +2.499790051e-06 -0.003539783224 0.01485895229 0 5.294028106 -3.921705977 1016.698443 0.00196715163 +2.49942978e-06 0.003352242499 0.004378497158 0 -10.5666344 -0.3425140509 989.9004789 0.002020405124 +2.497168573e-06 0.001933486555 -0.003805382699 0 8.872154876 21.73995146 986.297198 0.002027786355 +2.498956892e-06 -0.002370987637 0.01133447844 0 -2.01156043 13.24770262 927.5612926 0.002156191743 +2.4957587e-06 0.004972986956 -0.01291427585 0 10.68051256 -24.7992975 926.5015013 0.002158658132 +2.49695028e-06 -0.009147556415 -0.009346769757 0 -24.30826044 -6.072490546 1014.040713 0.001972307398 +2.497977612e-06 0.002713033971 -0.004502512717 0 19.67526144 -1.004842399 979.2805341 0.00204231569 +2.497180358e-06 -0.001793998112 0.009178339185 0 -22.75693503 8.442161488 1021.68375 0.001957552913 +2.494449504e-06 -0.002938561821 0.008185275039 0 -16.44931177 26.85932032 944.5254227 0.002117465504 +2.497456883e-06 0.001489874157 0.01430470719 0 -21.93454887 4.736801682 994.6320734 0.002010793793 +2.497748144e-06 0.009502679175 0.006585759732 0 10.48607759 20.05734883 1066.13233 0.001875939735 +2.498509822e-06 -0.007346342667 -0.001497209093 0 10.87259896 -13.09472507 985.6710354 0.002029074537 +2.496652949e-06 -0.003858926804 0.004095100025 0 -11.63986758 20.46684153 909.5754044 0.002198828146 +2.499703581e-06 0.007996304887 0.01104549863 0 -6.695677973 -0.9505708781 878.2951974 0.002277138718 +2.499776203e-06 -0.001504135346 -0.00363389649 0 -5.894378128 -3.335478886 1012.285486 0.00197572723 +2.497676936e-06 0.001933228392 -0.01050139661 0 17.48027321 14.90513113 1065.383468 0.00187725834 +2.499188218e-06 -0.009488408538 -0.01428973748 0 -0.4447108537 12.19704937 957.7575813 0.002088211087 +2.498390463e-06 0.0003795448085 0.01373378018 0 -3.972602278 -15.85921602 911.0162168 0.002195350602 +2.499765446e-06 -0.006260118373 0.008139464878 0 -6.368021484 0.9510899943 940.0341815 0.002127582209 +2.493757139e-06 -0.003677712535 -0.006590143929 0 -21.46585653 -24.2180635 914.9999412 0.00218579249 +2.497677095e-06 0.0004856170248 -0.009377486366 0 -16.9981748 -10.16090893 918.4631941 0.002177550514 +2.497427615e-06 -0.004774724604 0.002346168074 0 -11.24212097 19.96840618 1009.903016 0.001980388185 +2.497384876e-06 -0.009219103078 0.01043068613 0 -14.44016226 14.43776062 892.5229414 0.002240838759 +2.498595681e-06 -0.006614938732 -0.0006834580936 0 -17.09055898 -0.4243069159 1019.883733 0.001961007844 +2.497932184e-06 -0.006633655648 0.007287918208 0 -1.561421102 -18.82862115 928.7546973 0.002153421141 +2.496457522e-06 0.004509164644 -0.003521458763 0 -15.59198255 -22.95035414 1041.83162 0.001919696005 +2.496120563e-06 0.007997632641 0.01457754746 0 -13.3508186 25.58097731 1035.318558 0.001931772579 +2.497566355e-06 -0.004225425781 0.004039429449 0 -9.290032008 -17.19825631 885.681651 0.002258147719 +2.498769781e-06 0.008588018366 0.0001712896884 0 12.13493345 -8.65400096 950.0252423 0.002105207221 +2.495101911e-06 -0.008308227146 0.01440897395 0 12.00849275 30.62188707 1050.138634 0.001904510447 +2.494656818e-06 -0.002137201135 -0.002966902005 0 -22.66258562 20.38478442 931.6983829 0.002146617443 +2.499571244e-06 -0.005382525418 -0.0101767048 0 0.1052262857 9.015806705 973.6122926 0.002054205781 +2.498645906e-06 -0.00905898869 -0.008488860035 0 14.12998409 -3.693362816 887.2892015 0.002254056509 +2.498320694e-06 -0.001919245552 0.002102808289 0 -12.65079782 -12.65155364 976.015227 0.002049148358 +2.499768121e-06 0.007792266295 -0.001860787484 0 -2.559951768 -5.683491147 915.3040382 0.002185066291 +2.4968021e-06 0.005609627571 0.01096753692 0 19.63606164 15.25703432 982.792911 0.002035016714 +2.495948227e-06 0.0009707596339 -0.006955833966 0 1.144786224 -29.7738849 1046.055137 0.001911945107 +2.499094483e-06 0.00853138804 -0.003052793664 0 13.20188713 -2.068103515 992.8373457 0.002014428656 +2.495758195e-06 -0.001100382209 -0.0004008551524 0 -23.27479832 -15.84807748 966.1315009 0.002070111572 +2.496136803e-06 -0.005135521917 -0.005990397669 0 17.25679339 -18.56758138 911.410166 0.002194401681 +2.499320886e-06 -0.009073228822 0.008535305823 0 -2.961246762 -10.13011335 905.5007877 0.00220872254 +2.498392185e-06 -0.003585495264 0.01336184186 0 15.29814027 -5.27606219 902.2044544 0.002216792425 +2.496621865e-06 -0.006493750783 -0.004406186405 0 -15.60134224 -19.86601379 971.3084763 0.002059078088 +2.499797008e-06 -0.004508687062 0.004457887101 0 1.369240826 5.705797298 920.8880736 0.002171816594 +2.496638027e-06 0.002598643964 -0.003563659885 0 -24.65940247 11.70886138 1052.205093 0.00190077012 +2.498372762e-06 0.008193950201 -0.002921494525 0 -18.19120085 4.517645187 1038.748535 0.001925393811 +2.497819906e-06 -0.006110670748 0.0006692858459 0 -15.21159104 12.39525336 939.4101791 0.002128995453 +2.499571545e-06 -0.006736755958 -0.01152837324 0 9.799749565 1.014141861 1064.223309 0.001879304825 +2.497338024e-06 0.007422392117 0.003352069755 0 6.515989719 -22.74251129 1024.894811 0.001951419774 +2.499128184e-06 0.00120148574 -0.001542057039 0 9.554957553 8.625363857 974.6964289 0.002051920927 +2.499753053e-06 -0.004724290972 -0.01008638072 0 5.919384572 4.293635774 1040.495556 0.00192216102 +2.495838935e-06 -0.001660203431 -0.01337711818 0 -23.53820905 16.05116673 986.9742578 0.002026395303 +2.495829577e-06 0.004316204758 -0.007138752427 0 21.74894988 -16.38357069 942.2378156 0.002122606381 +2.498369905e-06 -0.008730670614 0.006749387865 0 6.349842598 15.72585345 939.0400667 0.002129834574 +2.498673568e-06 -0.001452040006 -0.004614537901 0 13.74839335 -5.942904905 919.4031597 0.002175324262 +2.498345008e-06 -0.007308095424 -0.005209472857 0 -12.76576786 -13.13779187 1006.626676 0.001986833895 +2.495449956e-06 -0.006340517947 0.005756834478 0 18.07039824 20.14148258 896.3981455 0.002231151425 +2.497895178e-06 0.009992096466 -0.007612315658 0 17.43603165 -4.596083174 878.5668878 0.00227643453 +2.497141681e-06 -0.007777471277 0.01405157928 0 -6.536296576 22.02176211 960.3491176 0.002082575975 +2.498768923e-06 -0.002686461378 -0.003442987287 0 -8.560270469 -13.78506433 1033.933724 0.001934359963 +2.495801424e-06 -0.009316887064 -0.001228564382 0 -25.14001196 7.231532002 902.1699447 0.002216877221 +2.498720613e-06 0.007548148097 -0.000795169808 0 -10.87019488 -9.742123498 912.3508353 0.002192139167 +2.497649611e-06 0.004667794327 -0.002878662301 0 21.61592744 6.639478908 1042.588787 0.001918301851 +2.498647352e-06 0.001377027985 -0.01445840597 0 -14.8090165 5.614840344 962.7136285 0.002077460982 +2.499550794e-06 -0.005338916536 -0.01114115997 0 7.258957645 4.41255315 896.1700167 0.002231719387 +2.49985117e-06 -0.003252987913 -0.008393777395 0 0.4468426536 5.725067435 1052.5165 0.001900207741 +2.499609484e-06 0.008862534231 -0.003058763654 0 6.636349802 5.032367409 942.351265 0.002122350841 +2.499840927e-06 0.007174140285 -0.006910827763 0 -4.43010884 3.821673818 1037.2576 0.001928161335 +2.49709693e-06 -0.004961515372 0.001527121786 0 -13.15349512 -17.65278394 913.2180669 0.002190057416 +2.497664857e-06 0.00433108524 -0.007324606685 0 18.68834064 -9.40514018 967.7645284 0.002066618419 +2.499492185e-06 -0.001793592293 -0.01025765392 0 -1.378367532 10.27964052 1029.074121 0.001943494604 +2.497957656e-06 -0.005290864334 0.008071716113 0 -6.460778193 20.41764423 1059.289779 0.001888057489 +2.49611137e-06 -0.007097950829 -0.005443725879 0 20.0391217 18.83204643 985.4964765 0.002029433943 +2.499015208e-06 -0.009262895547 -0.004812191895 0 10.93143465 8.418843425 982.9954751 0.002034597361 +2.496947853e-06 -0.008128932114 -0.007636959068 0 -16.91630529 -14.47536995 900.7241851 0.002220435549 +2.499049167e-06 0.005602478315 0.004740008928 0 -13.58185089 3.460045626 1016.211796 0.001968093667 +2.498936999e-06 -0.0007134099212 0.008096094907 0 -12.82783095 -2.475390062 895.8620538 0.002232486566 +2.497637206e-06 -0.001744971694 0.0004989535874 0 12.87703864 16.40635045 959.0825163 0.002085326305 +2.497324961e-06 0.007598565691 0.001726991683 0 21.21157473 0.7845311781 917.3083794 0.002180291868 +2.496757431e-06 0.008902942361 0.005141972853 0 26.43005355 3.649628965 1047.197524 0.001909859368 +2.495714536e-06 -0.006104325079 0.008525557984 0 5.301393243 25.27251034 881.4667909 0.002268945377 +2.497974381e-06 0.007978814836 -0.002753543628 0 6.935994417 19.34018497 1020.487937 0.001959846783 +2.498943198e-06 -0.008027657252 0.008195993174 0 -12.59677464 6.064670403 961.4952436 0.002080093493 +2.499206625e-06 -0.003995828121 0.01097960223 0 11.95560256 1.119082206 953.1469471 0.002098312339 +2.498134588e-06 -0.002935422705 -0.01333262897 0 1.389730689 -20.16544438 1046.195396 0.001911688779 +2.497753155e-06 0.0002815873921 0.004110333149 0 -14.50026799 12.41289718 900.1277809 0.002221906759 +2.496260825e-06 0.007103984626 0.003814768181 0 26.48976849 -5.614695831 989.6331275 0.002020950941 +2.497417394e-06 -0.003885999424 0.006199683133 0 13.67235473 15.82311212 919.7703328 0.002174455871 +2.499374168e-06 0.006758796601 -0.007668005254 0 0.6801508309 10.15525488 909.6578487 0.002198628861 +2.496958744e-06 0.006440877696 0.009834985267 0 9.780343592 23.83172414 1044.036118 0.001915642539 +2.497242846e-06 -0.005451560635 -0.007441405007 0 -10.84187133 19.08429079 934.3046458 0.002140629407 +2.498711927e-06 -0.005222440879 -0.01439078178 0 -14.3018106 -4.181063688 928.1751387 0.002154765751 +2.497433292e-06 -0.004281210727 -0.008069511387 0 -20.31990499 -4.252230911 915.9209993 0.002183594438 +2.499390338e-06 0.005304840114 -0.002058069692 0 -4.008629341 -9.989121929 974.6574322 0.002052003026 +2.498219937e-06 0.009120452339 -0.0117907401 0 15.40277995 11.52794046 1019.374504 0.001961987467 +2.498706312e-06 0.001332729226 -0.01371426055 0 -14.80890659 2.323752369 931.7316938 0.002146540698 +2.498214778e-06 -0.004779439163 -0.008440764898 0 -9.784966593 -16.33040754 1007.24082 0.001985622464 +2.498673168e-06 -0.001786841373 -0.009350828792 0 -1.720857078 17.22255048 1062.295089 0.001882716037 +2.498658989e-06 0.006796219512 -0.0001944404421 0 11.44670412 10.15561422 934.2025174 0.002140863424 +2.498279542e-06 0.0006462741876 -0.002603035877 0 15.1568723 -6.033688807 879.2306238 0.002274716037 +2.49830419e-06 0.001647251681 -0.007670461556 0 15.84407027 7.037147031 941.1278363 0.002125109813 +2.496017255e-06 0.0004049754003 0.01232797157 0 -18.9018791 17.2822745 906.9266306 0.002205250053 +2.497059861e-06 -0.00601099357 -0.001653793934 0 -23.26798485 9.899303388 1042.303385 0.001918827118 +2.497800794e-06 0.006868941966 -0.003916987446 0 19.60072795 5.635537802 972.1386234 0.002057319761 +2.499181632e-06 -0.0005457350705 0.002967669661 0 2.783388239 11.43711248 919.9580401 0.002174012197 +2.49811074e-06 0.001981994277 0.009501789697 0 -9.368051093 15.15536014 916.3271038 0.002182626697 +2.499136214e-06 0.001839342876 0.01493928241 0 6.268810077 -10.08523266 903.3384519 0.002214009595 +2.497520729e-06 0.0006939756637 0.01271997181 0 17.74131939 -11.26498238 943.4146231 0.00211995866 +2.498136257e-06 -0.00256191331 -0.0004244370572 0 -18.52875165 -4.599330402 988.5542698 0.002023156504 +2.497971896e-06 -0.004821228134 0.01145083338 0 10.02881708 15.01814077 896.3912647 0.002231168552 +2.496887427e-06 -0.006669763359 -0.001248537179 0 7.795717436 25.05399842 1051.155056 0.001902668868 +2.498895104e-06 -0.005673821936 -0.004518333643 0 8.926067964 -11.10001457 958.0257875 0.002087626477 +2.497831003e-06 0.002382365549 -0.01333838396 0 2.07528963 -19.00095467 917.4123854 0.002180044691 +2.49939226e-06 0.00351991856 0.01419781271 0 -10.0145705 3.219673333 954.0644262 0.00209629449 +2.494410869e-06 0.009080452546 0.007546565565 0 25.78861042 19.46001326 965.4848938 0.002071497973 +2.497829313e-06 -0.00116253919 -0.003047299152 0 18.82879749 5.591756009 942.3693324 0.002122310151 +2.497404795e-06 0.001393723809 -0.00189022155 0 20.89830915 -7.257386752 970.657476 0.00206045907 +2.495070227e-06 -0.008440398448 -0.011297376 0 -23.16286243 -16.60675785 907.0036188 0.002205062867 +2.499094545e-06 0.004931929661 -0.003187730662 0 -12.34282166 -4.659554226 980.252456 0.002040290731 +2.499223766e-06 0.0007389605977 0.0007049751026 0 -6.870721493 -9.080148339 913.76468 0.002188747326 +2.495338424e-06 0.005931690088 -0.007526408401 0 26.75513548 14.82821177 1001.119834 0.001997762838 +2.499847544e-06 0.009284653054 0.003601711295 0 1.516517192 4.705242441 895.2518518 0.002234008225 +2.493928856e-06 0.001613963051 0.01415506908 0 24.79884311 25.49414124 1019.735845 0.001961292241 +2.499634387e-06 0.004399615661 -0.003887994995 0 -6.646247373 4.449251084 935.2621295 0.002138437917 +2.496174149e-06 0.0007412734209 0.0005394293857 0 15.31098501 24.9739886 1058.393628 0.001889656122 +2.499623396e-06 0.00883995147 0.006718327054 0 7.931614036 -4.335861738 1041.492543 0.001920320998 +2.499416393e-06 -0.004741768162 -0.004698954255 0 11.53219382 0.8609603772 1070.300353 0.001868634346 +2.498661719e-06 0.008108087354 0.01148304442 0 9.266701684 11.20665185 888.6670664 0.002250561628 +2.498036998e-06 0.001741654938 0.005877919968 0 -5.92365916 17.11877711 913.9612896 0.002188276487 +2.499856972e-06 -0.0008645073092 -0.007921701365 0 -5.317809487 -2.04921991 1065.522355 0.001877013645 +2.499433502e-06 0.004251607624 0.005725979009 0 5.814237211 9.633552157 1057.022012 0.001892108185 +2.499890397e-06 0.0005937585747 -0.01361026482 0 -2.904957955 -3.74051221 1011.541064 0.001977181226 +2.496460724e-06 -0.004526117095 0.00800496907 0 -19.86064946 20.08339938 1061.062387 0.001884903305 +2.498715065e-06 0.006479998273 -0.01144640816 0 6.348340448 -15.66496652 1054.169006 0.001897228991 +2.499269145e-06 0.008497295622 -0.01280132336 0 -8.828362523 -7.734506077 970.7055794 0.002060356963 +2.495909008e-06 0.0005065525882 -0.01150514779 0 15.79918104 -21.90313715 943.5727583 0.002119603372 +2.499194362e-06 0.00705884072 0.00686698582 0 7.497918044 -11.00606501 1049.013239 0.001906553631 +2.497464245e-06 -0.007005053363 -0.01275729687 0 -19.47988398 4.969137791 892.3635012 0.002241239133 +2.496829673e-06 -0.007878105035 -0.001769217288 0 -24.47357475 8.837794704 1032.858156 0.00193637431 +2.495898706e-06 0.008902603928 -0.006041346523 0 29.24852506 -8.124882659 1059.259802 0.001888110921 +2.497801785e-06 -0.007270151079 0.008366422886 0 19.6273805 3.4269363 949.9260859 0.002105426969 +2.499385928e-06 -0.006772910124 -0.003262715258 0 -11.64560078 -0.07826015019 1050.768511 0.0019033688 +2.499715678e-06 0.0043228353 0.001381701794 0 -6.728042315 2.895966477 971.3120663 0.002059070477 +2.498545004e-06 0.004254023237 0.01276377522 0 7.541384613 13.99711453 931.8386954 0.002146294214 +2.499190645e-06 -0.008833208247 0.01088022358 0 9.271261007 7.123643034 918.8639348 0.002176600826 +2.497501801e-06 0.001495858659 0.01251724689 0 5.814334299 19.95682121 929.5898871 0.0021514864 +2.494883387e-06 -0.008447959418 -0.001767442909 0 -28.02572555 16.28725725 1012.518079 0.001975273373 +2.499316897e-06 -0.006849777079 -0.002932623897 0 -8.179409206 8.222327113 992.1419437 0.002015840589 +2.497979982e-06 -0.008809087072 0.004918477396 0 -3.223462386 -19.63723228 989.7596603 0.002020692579 +2.498390592e-06 0.008169209412 -0.001489929166 0 -11.41923479 -15.15038545 1057.2018 0.001891786411 +2.498306578e-06 -0.007203451348 -0.0032605773 0 13.82103729 11.69952065 983.6999394 0.00203314031 +2.496211695e-06 -0.001766760102 0.009069704083 0 -20.64038787 -14.93036637 924.9501204 0.002162278761 +2.499302502e-06 0.001697308659 -3.63748474e-05 0 1.747265711 10.64336499 913.1069005 0.002190324045 +2.495830951e-06 0.003055325849 -0.01409548243 0 -18.2815115 -22.85721445 1012.979057 0.001974374481 +2.496778568e-06 -0.008332592854 0.01359270413 0 -10.392171 24.71747353 1055.844796 0.001894217793 +2.499045032e-06 -0.003226352343 0.008390418452 0 -5.263040071 13.16233548 1025.578022 0.001950119794 +2.49937142e-06 -0.009791040709 -0.0128404744 0 6.742317491 7.463953965 896.9920814 0.002229674087 +2.498938609e-06 -0.009357779864 -0.001558875265 0 -8.992272616 -12.57464789 1060.868309 0.001885248134 +2.495949791e-06 0.009310017019 0.008328623653 0 11.09481332 22.6003641 884.0621268 0.002262284447 +2.498626832e-06 -0.006409738394 0.005100848407 0 -2.904943457 -17.28178908 1057.238334 0.001891721039 +2.498455988e-06 0.001720814761 -0.01477295733 0 -4.910558088 16.46794729 977.6781147 0.002045663056 +2.49751284e-06 0.004752295022 -0.01160100574 0 -19.47246305 -1.951134275 877.1243864 0.002280178309 +2.496634885e-06 0.007407079735 0.005305078786 0 22.47061911 -9.079074248 933.7213146 0.00214196674 +2.499817374e-06 0.001414254839 0.01060256491 0 -5.349838823 -1.552947264 921.7201265 0.002169856058 +2.498395297e-06 -0.007991335099 0.002746464887 0 -17.80668588 -6.716733851 1062.069493 0.001883115948 +2.497298448e-06 0.006306388821 -0.001232946706 0 -3.306684163 20.78137555 904.9111588 0.002210161716 +2.497325882e-06 -0.007621904816 -0.009791647727 0 14.70940884 14.10423254 880.8446897 0.002270547832 +2.49984596e-06 -0.007890110803 -0.00501264631 0 5.039789635 0.4251687695 911.1927508 0.002194925276 +2.495772549e-06 -0.009957571519 0.009921880164 0 -25.49917226 -2.796995195 881.6440066 0.002268489305 +2.497142203e-06 0.0006248960178 0.001504569557 0 11.67591059 -20.23579584 976.7997173 0.00204750264 +2.498655368e-06 -0.006989767277 -0.0134547858 0 -16.04569321 5.521332463 1034.555555 0.001933197295 +2.496061702e-06 -0.004923674017 0.0104834202 0 -26.59497999 7.475004007 983.748819 0.00203303929 +2.498422509e-06 0.006709676553 0.01417450547 0 0.8266379101 18.67072975 1051.926426 0.001901273654 +2.498280273e-06 0.003072012272 -0.01332482885 0 12.52467064 14.16917462 1019.440638 0.001961860186 +2.499521678e-06 -0.009829719267 -0.005745388919 0 -3.113422338 -8.507754306 926.1899628 0.00215938423 +2.499805081e-06 0.000616902262 -0.01494131195 0 -1.631191886 -5.613636867 936.247704 0.002136186814 +2.497757315e-06 -0.002496406827 -0.003061481256 0 -16.86013188 13.73905959 1026.590246 0.001948196963 +2.499862079e-06 -0.009209894873 0.007992238377 0 -1.286684554 -4.965109676 976.5721939 0.002047979671 +2.496174706e-06 -0.006958647328 0.005569760387 0 17.58501102 16.89540238 881.1453027 0.002269773207 +2.49782147e-06 -0.002082844567 0.007736798739 0 -18.74975001 -9.345359681 1003.317928 0.001993386089 +2.496468711e-06 0.006877570534 -0.0106236528 0 19.57283407 19.13475991 1029.43088 0.001942821066 +2.499200345e-06 -0.006810017684 0.007053553741 0 5.511978961 -9.635780111 877.6880106 0.002278714049 +2.499611447e-06 -0.001694176197 0.01463909851 0 -9.097369465 2.238170159 1062.702337 0.001881994544 +2.499930411e-06 3.48341465e-05 -0.01171897885 0 -1.376503278 3.240300554 943.6702608 0.002119384369 +2.498111025e-06 0.003944903705 -0.01482058696 0 -18.48265791 0.0006288085542 950.6336505 0.002103859882 +2.495201377e-06 0.001963347578 -0.005797075338 0 -24.67420383 -20.18549905 1028.296827 0.001944963699 +2.498334787e-06 0.002316362914 -0.001875272943 0 -16.93772766 -4.848307176 965.1554754 0.002072204998 +2.498663943e-06 0.009784110719 -0.001282833656 0 -7.136475289 12.81315924 897.0405932 0.002229553506 +2.499655552e-06 5.309136119e-05 -0.003292001516 0 8.020651482 0.6633218287 969.595351 0.002062716161 +2.498704128e-06 0.003246914102 -0.01198355129 0 4.935617352 16.50225982 1069.712968 0.001869660422 +2.494530072e-06 0.008021145943 0.009766757092 0 21.52360363 25.89786756 1017.272595 0.001966041365 +2.497403644e-06 0.008981275661 0.01091380245 0 18.03941037 -15.44044456 1041.614034 0.001920097018 +2.497211343e-06 0.006442590957 0.01356078542 0 12.12977267 18.14078042 923.6536834 0.002165313727 +2.497564437e-06 0.00886285068 0.00429209189 0 19.42839274 -11.73403571 1028.000868 0.00194552365 +2.496524552e-06 -0.006782943914 0.008796618863 0 -10.09241838 24.01567488 987.5590134 0.002025195429 +2.495398326e-06 0.001856615958 -1.363899093e-05 0 18.83941736 -25.72421232 1050.303122 0.001904212183 +2.493716656e-06 0.002998616351 0.01078219723 0 25.0071214 22.59200122 949.7778954 0.002105755472 +2.499758742e-06 0.001849372052 -0.008309286693 0 0.885498547 6.25855631 909.9262173 0.00219798041 +2.499576425e-06 -0.002786468226 0.0006117182015 0 9.815463555 -0.2062954762 1066.593076 0.001875129367 +2.49965022e-06 0.008364093271 0.003096198631 0 -4.755347766 6.029428394 918.0593962 0.002178508284 +2.497039208e-06 -0.007009501797 0.004196850001 0 -3.339363647 23.43149798 972.1972301 0.00205719574 +2.498084786e-06 -0.007378233755 0.01019474502 0 10.30492703 17.47906353 1036.446397 0.001929670465 +2.499698857e-06 -0.004389286218 -0.01240357585 0 -6.8606735 -1.216171242 897.7687655 0.002227745135 +2.499005134e-06 -0.003043311154 0.006722046118 0 2.498582484 14.20046716 1022.023894 0.00195690141 +2.49535517e-06 0.009866251685 0.0009503280628 0 25.22757276 -10.63065117 897.5652473 0.002228250265 +2.496065621e-06 0.0007604258182 0.01242627011 0 17.09358752 18.6727991 901.9312491 0.002217463917 +2.499990292e-06 -0.001347714048 -0.002415437589 0 0.8834063203 -0.9331913585 922.2047185 0.002168715861 +2.498634672e-06 -0.002278556908 -0.009343698258 0 3.232326787 -14.38455857 892.0121845 0.002242121839 +2.49807017e-06 0.00281732549 -0.01051820788 0 8.576155787 15.63325491 907.3576299 0.002204202548 +2.49733884e-06 0.009937757533 0.006885896078 0 20.61878904 3.281712147 904.6311274 0.002210845879 +2.499111839e-06 9.273958858e-05 0.01308578 0 -5.764600656 12.57191126 1037.576518 0.00192756868 +2.495417609e-06 0.0053206683 0.01260458391 0 3.545142558 28.98584051 963.9405685 0.002074816711 +2.498387067e-06 0.0007899188111 -0.01257054437 0 18.06179746 6.015790072 1059.684829 0.001887353622 +2.493172664e-06 0.0005023239926 0.00761946837 0 23.92170678 25.89375191 953.0226477 0.002098586015 +2.49635552e-06 0.006337689497 0.0007189455908 0 23.79776336 -13.16387954 1006.779388 0.001986532525 +2.499725732e-06 0.008471859139 0.00116622851 0 -6.951093722 -0.9344636224 946.9383349 0.002112069948 +2.497339821e-06 -0.009876727848 -0.00637269174 0 -24.17483965 -1.71676434 1050.297042 0.001904223206 +2.499545211e-06 -0.00528336999 0.008013356673 0 -7.711296193 -5.050933465 966.4930954 0.00206933708 +2.496735378e-06 -0.005260838657 -0.0002639827179 0 11.80901885 -22.58895889 997.049875 0.002005917708 +2.496755003e-06 0.003386723497 0.001260679259 0 -11.65010301 -23.58805811 1032.184862 0.001937637408 +2.498839606e-06 0.001965966425 0.003594807044 0 15.14607215 1.849124259 1001.427062 0.001997149943 +2.497415641e-06 0.007017488293 -0.000563911486 0 7.474592705 -21.13823289 985.8075768 0.002028793496 +2.49836477e-06 0.000243385667 0.00144105505 0 18.69262729 1.611209846 1037.209942 0.001928249933 +2.499707471e-06 -0.006159879682 -0.01035186868 0 0.9560035444 -7.785655398 1025.477176 0.001950311568 +2.498001849e-06 -0.005952345883 0.01009585618 0 -3.323555235 19.77484656 1002.773007 0.001994469323 +2.49729594e-06 0.006925118328 -0.009161228193 0 -9.0574415 -18.6910674 892.7652181 0.002240230645 +2.496652658e-06 -0.006739500761 -0.004816656369 0 -3.677910454 -26.37711697 1028.786885 0.001944037224 +2.497908637e-06 -0.006202757433 -0.01412682997 0 -20.46632929 4.20016874 1021.250185 0.001958383978 +2.49923083e-06 0.001381398882 0.01427696059 0 1.015923838 12.85885435 1039.86551 0.001923325643 +2.499086566e-06 0.002988195121 0.005212401997 0 -5.213544387 -12.97749247 1034.587854 0.001933136941 +2.499117144e-06 0.002692891266 -0.004816368786 0 10.78698086 6.191027982 935.8590727 0.002137073902 +2.499001713e-06 -0.004309578687 0.004778286922 0 13.88759016 2.197169787 994.9184345 0.002010215039 +2.496089758e-06 0.004486629264 -0.006991869814 0 22.26749346 -14.06122327 941.1742483 0.002125005018 +2.499289654e-06 -0.006086153984 -0.0001595865679 0 11.31132035 -3.080322299 983.4478464 0.002033661477 +2.498893843e-06 -0.00457950308 -0.007153473229 0 8.598305173 9.816670132 877.2213379 0.002279926301 +2.495056395e-06 -0.008020843435 0.01049121761 0 -17.30028722 26.09860135 995.0630354 0.002009922918 +2.497516423e-06 0.003673719717 -0.002960637063 0 0.7706347699 -21.93972792 984.6532842 0.002031171817 +2.49886756e-06 -0.008085208158 -0.0114229265 0 15.91019126 -1.302106012 1060.543777 0.00188582503 +2.497484286e-06 -0.007123080026 -0.005575718377 0 -14.4615997 -17.82407247 1022.887476 0.001955249279 +2.499665121e-06 -0.009810808916 0.0004421473132 0 4.253420844 6.769642522 976.8691275 0.002047357157 +2.498949962e-06 0.005049887239 -0.006945737838 0 11.26203727 -10.55560192 1064.962493 0.001878000412 +2.499718604e-06 0.008770172358 -0.004224816759 0 2.413567348 -6.745151213 954.9065249 0.002094445841 +2.493759356e-06 0.005248930356 -0.008632494654 0 -20.42935649 -28.39110717 989.1221986 0.002021994858 +2.499418036e-06 -0.005323782731 -0.01331701658 0 8.400116814 5.113287623 911.4432975 0.002194321913 +2.495869483e-06 -0.008859824599 -0.002307361008 0 -18.58111637 16.99938888 875.6677247 0.002283971355 +2.498443301e-06 -0.0007015248109 0.008059892091 0 16.28876592 -7.023222629 1005.06666 0.001989917763 +2.497884189e-06 -0.003455741266 0.00790377554 0 -0.1681459381 20.3484466 988.9053979 0.002022438147 +2.499009361e-06 0.003687572861 -0.007213452361 0 4.07859893 13.36800916 992.7885791 0.002014527606 +2.499084268e-06 -0.004983133818 -0.001114592138 0 11.65135556 -7.346815933 1017.674452 0.001965265017 +2.496054332e-06 -0.002368261544 -0.008971696578 0 -10.69899635 -23.83802442 929.5842939 0.002151499346 +2.499513749e-06 0.008245916083 0.0006678825058 0 5.661395398 8.403279582 1027.394965 0.001946671015 +2.498231958e-06 0.001283665658 0.005823355482 0 -4.832424785 17.58945483 969.7880005 0.0020623064 +2.499615595e-06 0.001776156272 -0.00357544688 0 -2.092226121 -7.388002178 875.6776519 0.002283945463 +2.498637877e-06 0.004084580871 0.01404188768 0 -6.704113321 -16.28659703 1066.860852 0.001874658722 +2.499428167e-06 0.008493993483 -0.01456830741 0 -5.325000317 8.387358504 928.9222698 0.002153032676 +2.497844759e-06 -0.004324252522 -0.01276670677 0 -19.97782243 -2.146536058 967.4695426 0.00206724854 +2.496319868e-06 -0.007183326459 -0.01111404911 0 -24.58966024 -6.198996872 934.2122899 0.002140841029 +2.497317573e-06 0.007952825702 -0.01233601656 0 -4.280850688 -24.41236424 1069.62774 0.001869809398 +2.499034135e-06 0.007259561745 0.01145980946 0 -12.89512931 3.117816969 954.39165 0.002095575752 +2.499964073e-06 0.009060972966 0.01098137449 0 0.411580311 2.822912208 1064.239467 0.001879276293 +2.499521991e-06 0.002310550525 -0.01044113135 0 -5.624005437 -6.854962409 906.7806281 0.002205605124 +2.496441092e-06 0.001685578274 0.00788421347 0 -18.36380698 15.53477156 901.0902261 0.002219533563 +2.4991591e-06 -0.001776956059 0.008154823005 0 -0.4263182238 -13.76704556 1061.95724 0.001883315 +2.498989075e-06 -0.009471412753 -0.009562174547 0 -5.139291162 13.84902365 1038.711309 0.001925462815 +2.497279383e-06 -0.009208840248 0.01477491427 0 -3.027263658 22.01232051 952.1566459 0.002100494712 +2.496885401e-06 0.003413353702 0.007595294856 0 -19.02320778 -13.73958726 939.7713017 0.002128177352 +2.498480938e-06 -0.006365946815 -0.009608198586 0 -6.633355264 -17.2300269 1059.000056 0.001888574027 +2.496898406e-06 0.009451108393 0.01352518947 0 24.02529097 -9.359868829 1034.7679 0.001932800583 +2.498384259e-06 0.005569814113 0.002827182035 0 -17.35406604 3.144934373 980.8709113 0.002039004294 +2.496358641e-06 -0.002174425866 -0.0007786108204 0 17.40977139 16.53404159 889.2134105 0.002249178854 +2.49808109e-06 0.007574161282 0.007111596556 0 -1.941828946 -17.28189604 887.4592129 0.002253624697 +2.499383069e-06 0.0001338152681 -0.01181923515 0 -0.1909169525 10.97732005 988.2989682 0.002023679134 +2.495443999e-06 -0.00970403594 -0.002484581578 0 -21.66011237 -23.94155776 1068.820143 0.001871222219 +2.49884861e-06 0.0051901402 0.001420622708 0 7.099524205 -12.52076657 948.3422834 0.00210894319 +2.49950185e-06 -0.002211029385 0.01060936662 0 3.581389161 -7.986483639 876.8310316 0.002280941171 +2.498256329e-06 -0.007915322841 0.007720410288 0 14.02421608 -10.78279605 947.0539847 0.002111812032 +2.499024446e-06 0.009164847098 -0.01050967247 0 7.957694948 -12.15071749 1039.68272 0.001923663789 +2.496682974e-06 -0.006925165066 0.005092291315 0 19.64299022 -14.90526606 956.8660881 0.002090156632 +2.499115218e-06 -0.006779636312 -0.008399092939 0 -5.947353886 10.72480921 921.7696707 0.00216973943 +2.499863659e-06 -0.001044663796 0.009552907781 0 -3.475992543 -3.18642317 903.0029449 0.002214832201 +2.499990731e-06 0.009982523215 -0.01212584329 0 0.9396596115 -0.7436812392 880.1550183 0.002272326986 +2.498038975e-06 -0.007068696716 0.001628997959 0 -4.461088187 -17.04010958 889.1666431 0.002249297154 +2.499719921e-06 0.004935871051 0.006109281499 0 7.145622978 -2.53451448 1012.974883 0.001974382617 +2.49727901e-06 0.001415388365 0.005548995717 0 -16.63834191 -12.0101621 879.2769636 0.002274596154 +2.498519067e-06 0.002803364373 -0.00358132995 0 -8.868804517 -14.25319738 975.210772 0.002050838708 +2.499064426e-06 0.008882834115 0.01387187238 0 9.659363197 10.66351991 1051.683036 0.001901713664 +2.497908874e-06 0.008422222384 0.007167998103 0 -17.7769832 -6.773836327 929.9433316 0.002150668683 +2.496067531e-06 -1.896863338e-05 0.008531157598 0 -23.08908752 -14.22841839 966.5030792 0.002069315704 +2.496311811e-06 0.00690974988 0.005106737951 0 24.16257368 6.717852067 922.8887437 0.002167108456 +2.498208128e-06 0.004934862838 0.01237037372 0 6.809709384 18.90684231 1061.25526 0.001884560742 +2.498424154e-06 0.001303962823 -0.01333508401 0 16.14955853 -5.350850816 958.0863053 0.002087494612 +2.496401159e-06 -0.001471315539 -0.01188142332 0 -21.41051088 -11.96647899 913.7457897 0.002188792575 +2.499719337e-06 0.0008006363548 -2.435162896e-05 0 -1.250258476 -7.282667203 986.2153487 0.002027954648 +2.498540995e-06 -0.007558499947 -0.0003805845254 0 -1.12516087 -14.93167374 876.3942539 0.002282077947 +2.499933525e-06 -0.007445962308 0.008145647021 0 -3.477912969 0.6770791288 971.737667 0.002058168648 +2.499769745e-06 0.006783610345 -0.01397019839 0 -6.311364299 -0.911215099 939.6548594 0.002128441076 +2.493461435e-06 0.006609482463 -0.009316949719 0 22.64005669 -23.82900288 908.0469914 0.002202529185 +2.498932663e-06 -0.003452359713 0.005460243348 0 -10.84998165 10.46374102 1031.526332 0.001938874402 +2.496752652e-06 0.007273134878 -0.01469775112 0 17.53523827 13.86405742 876.7224774 0.002281223593 +2.492305023e-06 -0.00465848675 -0.01319142625 0 -23.39459404 -26.71674386 904.175319 0.0022119604 +2.499883645e-06 0.007168351994 -0.004084256608 0 -3.497147917 3.394081753 1010.217431 0.001979771818 +2.49937817e-06 -0.001204837919 0.003553136783 0 9.63001033 4.191496972 941.6894869 0.002123842336 +2.496801866e-06 -0.002262544772 -0.006282013664 0 -21.03210466 -9.32819527 909.2967759 0.002199501915 +2.499424436e-06 -0.009933093246 0.003266857371 0 -6.442492022 -6.885264557 878.7840899 0.002275871881 +2.497485448e-06 -0.003817004259 6.003538147e-06 0 -20.81110733 5.185429214 956.016618 0.002092013844 +2.497255951e-06 -0.0009139066795 -0.01066285844 0 -5.254802444 -23.52803979 1028.64656 0.001944302424 +2.499174631e-06 -0.006988108535 0.0008299099747 0 3.446494806 -11.38655733 925.8367918 0.002160207952 +2.49534056e-06 0.004827716551 -0.01443807243 0 26.72999063 -17.57818505 1047.261414 0.001909742852 +2.494388869e-06 0.009648626698 0.01046417983 0 25.66951678 18.31743752 940.5587765 0.002126395553 +2.49976613e-06 -0.008887684285 -0.002085484585 0 -0.7474834648 -7.123848127 1047.308158 0.001909657615 +2.496519168e-06 -0.001446395679 -0.01481517378 0 -23.64115041 -8.388617568 950.2461354 0.002104717847 +2.497640273e-06 -0.009265974709 -0.01412432411 0 -18.10903246 12.01861388 1000.110537 0.001999778951 +2.494641918e-06 0.006872246871 -0.01054281047 0 25.2431759 -21.90111766 1020.078488 0.001960633445 +2.497529794e-06 0.008556880299 0.009800897695 0 0.1322605757 21.08304177 948.1985184 0.002109262946 +2.496857257e-06 -0.007206777357 -0.01490519188 0 -16.53215529 -14.98675014 889.6173123 0.002248157688 +2.499463515e-06 -0.009230142827 -0.01132746814 0 0.2615567581 -10.78283115 1041.194221 0.001920871206 +2.499788217e-06 0.002595492951 -0.0132100774 0 -5.732306806 1.428045709 907.6744477 0.002203433186 +2.497460116e-06 0.007004585555 0.007279832033 0 19.82654325 -1.941763782 883.5527205 0.002263588752 +2.499814167e-06 0.00261594411 -0.009728818364 0 -2.596351611 5.175286446 949.7155466 0.002105893714 +2.499538675e-06 0.004039202468 0.009173721001 0 10.0648257 0.9399444054 1052.309087 0.001900582276 +2.499119533e-06 -0.0003476299904 -0.002372491148 0 8.202033227 -11.56823308 1068.499282 0.001871784131 +2.496610555e-06 0.00977231943 0.008549292111 0 22.18842565 11.62344776 961.5739311 0.002079923275 +2.496900483e-06 0.006333604455 0.0009971093852 0 26.53365391 0.1019212479 1065.212343 0.001877559919 +2.499779396e-06 0.003221644568 -0.0006657274067 0 0.05790965074 5.900639315 888.3505419 0.002251363517 +2.496763784e-06 0.005829608329 -0.004183207923 0 2.019555325 -22.43934777 885.150996 0.002259501496 +2.499039474e-06 -0.001004776531 0.01405677589 0 -12.65447756 -1.573867115 919.9100031 0.002174125722 +2.497663728e-06 0.007709478685 0.005580154052 0 19.94303414 3.38650032 935.4814315 0.00213793661 +2.499531242e-06 0.00828498241 -0.01250192055 0 -5.628948378 6.496329319 887.6975558 0.002253019609 +2.497225993e-06 -0.0027369445 0.002631521774 0 -23.08743649 -9.329897186 1056.752096 0.001892591467 +2.495864706e-06 0.001919841636 -0.001629369082 0 16.1764104 -23.51299253 991.7852183 0.002016565647 +2.496078693e-06 0.003434860338 -0.01271546894 0 6.770710139 -27.48871627 1010.318114 0.001979574524 +2.499772262e-06 0.008201675727 -0.002939610989 0 -4.220248111 -5.273231017 1000.732839 0.001998535396 +2.498402914e-06 0.0010221719 0.01310392513 0 15.82780221 8.442998498 1003.4881 0.001993048048 +2.498877225e-06 -0.006126934504 -0.01477473164 0 4.542003487 14.7500594 1029.747797 0.001942223141 +2.498847558e-06 -0.001477521844 -0.01047963168 0 -12.19487081 -6.523989998 910.8191386 0.00219582562 +2.499300418e-06 -0.008857434411 0.004700710012 0 8.816880253 -8.479085876 1034.029135 0.001934181477 +2.497595904e-06 0.005016577784 -0.010395948 0 -17.65029452 9.422827068 912.1315431 0.002192666195 +2.497442716e-06 -0.007076120782 -0.003682444913 0 -20.70119139 -3.169335488 925.6680106 0.002160601833 +2.499644454e-06 0.008099369858 -0.0009748979635 0 7.542682274 -0.7219614052 898.5044135 0.002225921175 +2.499733619e-06 0.004717208631 -0.006261404534 0 -1.219424307 6.526506405 909.5947863 0.002198781293 +2.497530611e-06 0.003453279934 -0.003474980774 0 19.53196867 -7.790586879 945.8761429 0.002114441743 +2.499069637e-06 0.007812005049 0.00796599535 0 -2.6423854 -12.36860028 927.064614 0.002157346931 +2.497221614e-06 0.000917735328 -0.001199817059 0 -22.02985096 3.424149862 945.3724071 0.00211556841 +2.496769134e-06 -0.008822982484 0.007836367849 0 17.14939947 18.58804477 994.4318259 0.002011198705 +2.497650931e-06 -0.004964978439 -0.009040833239 0 -9.125163333 -20.2447063 1024.139038 0.001952859843 +2.496856667e-06 0.004246071209 -0.003258715372 0 -18.95540717 11.63547765 886.6501674 0.002255681072 +2.495869106e-06 -0.009299597009 -0.01075089983 0 7.148799479 -27.10867228 974.7672294 0.002051771889 +2.498505685e-06 0.0027061373 0.004420499427 0 6.369587872 -15.66788992 978.1170309 0.002044745094 +2.497935646e-06 -0.007770616128 0.01014086941 0 -4.58176967 19.81187344 1000.455359 0.001999089697 +2.498903019e-06 -0.008841737416 0.01134784828 0 4.653856725 -15.12275739 1068.053745 0.001872564944 +2.499649915e-06 0.007277140487 -0.009116352643 0 -1.742560798 8.342245582 1018.432279 0.001963802642 +2.499850685e-06 -0.007852972923 0.01418531281 0 2.831406757 4.419412938 960.436504 0.00208238649 +2.497327745e-06 0.007060527238 0.007709363101 0 13.87230996 -19.69995744 1041.799093 0.001919755943 +2.497732728e-06 0.00375579909 0.006460311706 0 21.11234212 -6.984079738 1043.931998 0.001915833602 +2.496729002e-06 -0.000165963727 0.001716156725 0 -2.565241436 24.424641 959.7144046 0.002083953299 +2.495752982e-06 0.008465347644 0.009339747217 0 -16.26899325 23.91669936 991.8545457 0.002016424695 +2.499682466e-06 -0.003509044014 0.01343628023 0 0.8339953691 -8.475100171 1068.579944 0.001871642838 +2.496234178e-06 -0.001745734066 -0.01152638484 0 0.8644525508 -26.86627904 978.9079446 0.002043093031 +2.49783287e-06 0.006004442195 -0.002542808193 0 17.35479559 10.46106056 973.0221498 0.002055451667 +2.495918261e-06 -0.006916744988 0.008222313258 0 -21.34132554 -14.61436511 904.7314607 0.0022106007 +2.49724341e-06 0.007425371138 0.01339581499 0 22.0587584 0.1869346502 939.1088183 0.00212967865 +2.497190766e-06 -0.008042785232 -0.0018439488 0 4.515281201 21.82746531 939.9615339 0.002127746645 +2.497088827e-06 0.0004153671023 0.0144691942 0 -17.72008471 13.22806435 916.0268399 0.002183342139 +2.499454701e-06 0.002579093091 -0.008879814923 0 -7.799745612 -5.577198271 918.0941614 0.002178425791 +2.495880327e-06 -0.004782179352 0.001035655998 0 18.43874261 22.38265183 1009.660517 0.001980863831 +2.497951874e-06 -0.004102342906 0.01409982061 0 -10.77764225 -14.45130847 890.4580379 0.002246035091 +2.498863311e-06 0.005391018041 -0.003323718393 0 -11.34550661 7.779973391 912.2342082 0.002192419427 +2.495578683e-06 -0.009661405073 0.003635449873 0 16.2696996 23.04132482 947.9160107 0.00210989157 +2.498644417e-06 0.005977924597 0.006082867091 0 14.62390359 -9.633424571 1063.317932 0.001880904986 +2.497887708e-06 -0.003175021447 -0.01177558672 0 -3.902958866 -21.59197717 1067.196534 0.001874069055 +2.498624853e-06 -0.007345603742 0.01262987704 0 -9.116753781 12.49282721 932.3706615 0.002145069641 +2.499772681e-06 -0.001998210689 0.004505169194 0 -6.004696142 -2.580591779 969.2740422 0.002063399939 +2.495455255e-06 0.0006129984884 0.007496685844 0 -16.66829317 23.47263531 954.2406148 0.002095907436 +2.498209578e-06 0.002863720991 -0.007761208748 0 18.57549328 -5.555929011 1024.322592 0.001952509898 +2.498967376e-06 0.009243341205 -0.004930377798 0 -13.24743923 -5.078692277 987.0867908 0.002026164283 +2.497079365e-06 -0.009327655714 -0.001394281222 0 10.27383859 -22.80394486 1034.414377 0.001933461139 +2.499184528e-06 -0.009787278431 0.006284422064 0 5.167720352 10.94238848 947.456038 0.002110915884 +2.496892325e-06 0.001838480248 -0.0003092414676 0 19.37123315 10.54869509 884.3308939 0.002261596891 +2.496899577e-06 -0.001750958478 -0.004667046424 0 -26.12496944 -0.8984136366 1049.264192 0.00190609764 +2.497269875e-06 -0.004977089586 0.005853026714 0 3.299687434 20.92802306 906.3087035 0.002206753606 +2.497934352e-06 0.001798767033 0.00983786589 0 7.998298875 -16.37025483 896.1150423 0.002231856297 +2.498839337e-06 0.001842098795 -0.009368807457 0 14.94229653 -0.9638126629 982.5966756 0.002035423129 +2.495712702e-06 0.001512971506 -0.01104380842 0 24.09614989 13.33850083 939.9460515 0.002127781692 +2.499115335e-06 -0.008980925018 -0.01407771196 0 8.879369804 -9.985484907 1004.434615 0.001991169927 +2.49922403e-06 0.002053862135 0.008053777751 0 -9.837531138 8.102461958 1022.918184 0.001955190582 +2.499255179e-06 0.009422800094 0.0111222361 0 10.71168025 -0.5732161542 878.797765 0.002275836466 +2.499342924e-06 0.005290576876 0.004275520309 0 -5.817662889 10.70530866 1062.729444 0.00188194654 +2.499920573e-06 -0.005593620571 -0.007453269255 0 3.910888359 0.7443625281 998.8466803 0.002002309303 +2.499493624e-06 0.002648182968 0.009196239905 0 -9.432916759 -4.401089811 1034.257817 0.001933753815 +2.495776904e-06 -0.007441936913 -0.007224247274 0 18.42264834 -24.80830905 1062.578158 0.001882214485 +2.496733835e-06 0.0008459539199 0.01370652006 0 -0.9754295854 26.38782905 1032.650128 0.001936764395 +2.499061298e-06 0.005917058289 0.009556676543 0 -4.307974041 12.47081369 962.7960138 0.002077283216 +2.499599315e-06 0.0001300364826 0.01442356036 0 -8.189370309 -3.602285154 999.3489251 0.002001302998 +2.497628536e-06 0.004240637049 -0.0007523195911 0 -11.5667033 -18.50833893 1001.806939 0.001996392641 +2.49877725e-06 -0.006425863756 -0.00722165816 0 8.653147196 -11.66459965 928.5724759 0.002153843725 +2.497882274e-06 -0.009521762994 0.001846483368 0 11.51867333 16.04798896 959.5455723 0.002084319972 +2.499508289e-06 0.002467930336 -0.002121888127 0 5.884288822 7.421223178 954.977042 0.002094291184 +2.499283991e-06 0.006121612452 0.009910615731 0 -11.72156359 -2.466251827 1000.854583 0.001998292293 +2.499956173e-06 -0.0087620376 -0.01003823674 0 -2.202848513 1.822977315 965.7789387 0.002070867276 +2.498717808e-06 -0.00329017947 -0.01033747746 0 -0.09154939699 14.5041496 905.5778061 0.002208534691 +2.498233084e-06 -0.003194082621 0.001852614514 0 -9.970982302 15.95746092 1000.693234 0.001998614493 +2.497442186e-06 -0.006325492943 0.00346918802 0 -11.82844722 17.15114161 920.8006552 0.002172022781 +2.49806602e-06 0.001803275337 0.01122723456 0 -10.57965566 13.94670739 889.8269775 0.002247627967 +2.496031391e-06 -0.00326467793 -0.006608013071 0 11.10012844 -25.5530799 988.2943432 0.002023688604 +2.496936507e-06 0.001303100758 0.005217167521 0 -19.30477689 16.31128765 1020.554891 0.001959718207 +2.499627416e-06 0.00500790053 0.001968885977 0 -7.565086891 -0.2581413567 876.8293556 0.002280945531 +2.49991179e-06 -0.007584324121 -0.01264238109 0 -1.43775439 -4.241071226 1066.149813 0.001875908972 +2.499156904e-06 -7.489633746e-05 0.009632310772 0 -5.991464318 12.26135484 1050.814806 0.001903284945 +2.498050464e-06 -0.007947693532 -0.006070457271 0 -6.467848571 -17.52357599 945.6889085 0.002114860375 +2.497330584e-06 0.006312357862 -0.006681677517 0 -4.908196528 -22.35364476 990.0920552 0.002020014189 +2.497155016e-06 0.009046833063 -0.00886339034 0 -10.04198294 -20.3952238 952.628775 0.002099453693 +2.497497956e-06 0.0006000427483 -0.01109362214 0 -21.72193899 6.859060138 1017.915818 0.001964799019 +2.49929891e-06 0.005067378939 0.0142519651 0 7.592597811 8.421675003 957.4717312 0.002088834516 +2.499857483e-06 0.0006525953626 0.000931779833 0 2.53725898 4.345372329 942.483982 0.00212205198 +2.498917238e-06 -0.002972110403 0.009634159966 0 11.92009026 8.793426726 1006.419276 0.001987243336 +2.499631267e-06 0.006049207803 0.002462780066 0 -3.043885366 7.489064074 941.3082964 0.002124702404 +2.499150831e-06 0.005652671098 0.009649075891 0 2.455266129 -11.96694866 937.2809149 0.00213383199 +2.497022952e-06 0.002788739474 -0.01329194028 0 16.24828026 -17.5764597 980.510104 0.002039754605 +2.496663302e-06 -0.001594403433 -0.0005903073773 0 17.23712418 -17.73427111 956.8655227 0.002090157867 +2.498904688e-06 -0.002358137518 -0.01371613915 0 -4.913388222 -13.64258811 979.5457503 0.002041762725 +2.499849252e-06 -0.003898776607 -0.003831110923 0 -4.047096682 -3.991139005 1035.156366 0.001932075255 +2.499729251e-06 -0.0001813023863 0.00176139348 0 6.850455595 -2.925746483 1012.246257 0.001975803799 +2.499652968e-06 0.007969693458 -0.007044975855 0 -1.405331546 -8.72180243 1060.350822 0.001886168199 +2.498493182e-06 -0.002927638278 0.002534373498 0 9.603426172 -13.98520623 977.0362756 0.002047006902 +2.496642829e-06 -0.002624621727 -4.938773112e-05 0 -17.23165228 -20.68979186 1038.598387 0.001925672161 +2.496723461e-06 0.004569932427 0.000971329899 0 20.49645379 -13.4555562 957.3210224 0.002089163356 +2.495477613e-06 0.0009486969281 -0.01351890214 0 17.42441283 -23.5626675 973.7661994 0.002053881107 +2.497057578e-06 -0.007473749248 -0.006783836139 0 -20.20743894 9.435457051 918.9244745 0.00217645743 +2.498198631e-06 -0.006689275368 -0.001282787465 0 18.14521372 6.597397507 1016.926044 0.001966711358 +2.495930406e-06 0.008020908353 0.004294395985 0 21.38146634 14.64786036 907.9052178 0.00220287312 +2.499804058e-06 -0.006399803553 0.002742911421 0 1.128312921 -6.427472123 1042.413012 0.001918625321 +2.496985958e-06 0.004165093685 -0.001151789152 0 -3.40922576 -21.76752681 896.985226 0.002229691128 +2.499903153e-06 -0.0002238363214 -0.01012571518 0 4.594961907 -0.665515855 1054.935701 0.001895850143 +2.497854206e-06 0.00914117855 0.009076813739 0 -7.252721147 -19.63205751 1009.945411 0.001980305051 +2.496986395e-06 -0.008381515234 -0.002548260831 0 -18.23373022 12.94042937 910.3266195 0.00219701364 +2.495846941e-06 0.00772325187 0.002649950394 0 -20.80287037 22.05333666 1051.268734 0.001902463123 +2.497431546e-06 0.004308018335 0.01264356283 0 -16.24515247 -14.29274771 954.3148554 0.002095744385 +2.496443842e-06 -0.007642011568 0.00160065776 0 -26.39059855 -10.78411239 1068.424931 0.001871914387 +2.498094948e-06 0.005900257397 -0.0002998270537 0 -18.44163759 3.614815804 962.4846098 0.002077955304 +2.496895564e-06 0.002669754787 0.007520009384 0 9.946223974 24.68293867 1067.484474 0.001873563549 +2.499567915e-06 -0.005643239361 0.001278911757 0 7.205949726 -5.720471259 989.6569065 0.002020902382 +2.49938441e-06 -0.003753629886 0.003683346212 0 6.947067544 9.246609409 1042.233084 0.001918956546 +2.498073393e-06 -0.0044754013 0.01481218738 0 -16.64026509 -10.76151102 1009.248306 0.001981672882 +2.495539883e-06 -0.004459805768 0.01468763621 0 5.365206214 26.33089375 899.125198 0.002224384329 +2.499838603e-06 -0.003003621367 -0.007816835402 0 -1.881662656 -5.295144479 989.0702423 0.002022101075 +2.499929137e-06 -0.004586453903 0.01012143172 0 -2.529147306 2.661882297 975.3290382 0.002050590028 +2.496094644e-06 -0.003485852866 0.006087944456 0 -26.71795144 -9.523201523 1014.317679 0.001971768846 +2.497838067e-06 0.001910407078 0.01296196998 0 19.70434016 -8.868596086 1038.821645 0.001925258305 +2.49819573e-06 -0.002669523298 0.006973510205 0 -9.190175885 -14.65165603 910.2211691 0.002197268167 +2.4987952e-06 0.006333271456 -0.01347810165 0 -3.013344201 14.46708953 951.8148134 0.002101249079 +2.497352232e-06 -0.009800058776 -0.008056080483 0 17.00417438 11.93702781 902.4653781 0.002216151498 +2.498204659e-06 -0.004612560654 -0.005729433903 0 -0.4218458197 -19.56468312 1032.448315 0.001937142974 +2.498125151e-06 0.003068558546 -0.004449101603 0 18.45749758 -5.599732348 995.8005075 0.002008434405 +2.497464184e-06 -0.005259110481 0.007123938147 0 -20.70811315 2.949799617 928.4605615 0.002154103344 +2.498084755e-06 0.004036858785 0.009543797574 0 -18.17795996 -1.829887593 933.2167401 0.002143124865 +2.499335438e-06 -0.008045120123 0.01154787679 0 -5.64573469 9.898909867 988.3622381 0.002023549588 +2.498892012e-06 0.003816304151 0.008142729462 0 13.31555163 0.3500701395 894.652652 0.002235504467 +2.498499202e-06 0.002055877922 -0.009621713161 0 -5.237966093 -16.5336322 1000.836236 0.001998328926 +2.499505844e-06 0.003239104701 -0.00664975029 0 -5.28582338 -8.419795805 999.934299 0.002000131411 +2.499685001e-06 0.001367174108 0.01273369134 0 -7.231560572 4.176864603 1052.097592 0.001900964336 +2.498019112e-06 -0.006175861619 -0.007803953339 0 17.81868739 -8.543425694 992.5081125 0.002015096879 +2.497148848e-06 0.002041490413 -5.449575372e-05 0 -17.72776135 -17.24666087 1035.298613 0.001931809794 +2.499812612e-06 0.002584593282 0.0134623795 0 4.576235721 3.442022001 935.338602 0.00213826308 +2.498539324e-06 -0.00109978199 -0.001542093961 0 -16.58406462 -7.359762214 1061.307026 0.001884468821 +2.498098032e-06 -0.0005831823638 -0.009811334903 0 20.47800103 0.4239038201 1049.881053 0.001904977707 +2.494997077e-06 0.00384316097 -0.011131234 0 22.01153989 -23.38209217 1014.436069 0.00197153873 +2.497108983e-06 0.003141849828 0.00903643962 0 9.169254205 21.25242455 962.1628735 0.002078650149 +2.498181961e-06 -0.004414160559 -0.01246174066 0 17.47929536 -4.799950908 950.332843 0.002104525814 +2.495281974e-06 -0.0032252526 -0.01063709132 0 -17.16009872 -23.85705853 956.0060262 0.002092037022 +2.49657285e-06 -0.005052386844 0.001472775105 0 -23.5766253 3.387071493 909.3115681 0.002199466135 +2.498081944e-06 -0.008592399652 -0.009410868343 0 1.045138279 20.73938079 1059.926813 0.001886922735 +2.498937777e-06 0.005846150783 -0.007345068371 0 13.49863737 7.715413683 1066.554223 0.001875197675 +2.49638734e-06 -0.007971494445 0.01104379223 0 -26.63824152 -10.21746658 1060.830874 0.001885314661 +2.497314791e-06 -0.002829419267 0.007231498032 0 -17.01830352 16.09319149 1010.308985 0.001979592411 +2.495069145e-06 -0.002545191767 -0.009516944883 0 -22.7144192 -22.76081918 1023.204897 0.001954642716 +2.496590444e-06 0.008830889962 0.01456787696 0 10.8473173 24.39634491 1021.907671 0.001957123971 +2.495388489e-06 0.006581389825 0.01096447019 0 -4.82557798 30.40706642 1013.067645 0.001974201832 +2.498556162e-06 0.005160613293 -0.008669481324 0 -8.843082626 -13.02091778 926.0481598 0.002159714891 +2.496883778e-06 -0.007901824592 0.01330819388 0 -8.054351906 24.95330763 1049.824566 0.001905080205 +2.49485183e-06 0.002882774733 0.003383918144 0 25.66101585 22.85130816 1070.008307 0.001869144368 +2.49778186e-06 0.001715684235 0.01211183016 0 -10.79115251 19.14638762 1043.120336 0.001917324331 +2.499071678e-06 0.009752211832 -0.01443004728 0 -9.981482219 8.022461138 939.6881946 0.00212836557 +2.497880152e-06 -0.008356326902 -0.009731991529 0 -18.96275118 -5.150355399 954.0062459 0.002096422333 +2.497142418e-06 -0.005705546038 0.01335804045 0 3.683733912 23.57267835 997.5794309 0.002004852885 +2.497255363e-06 0.00387851153 0.009498253022 0 11.69289088 18.63066192 938.4431441 0.002131189313 +2.497780258e-06 0.006704432676 0.009109604261 0 -12.77538456 -13.67208438 887.7847875 0.002252798232 +2.496342211e-06 -0.009801608766 0.009074781057 0 8.714682903 25.11792992 982.4325239 0.002035763222 +2.496949585e-06 0.005260125562 -0.007703952275 0 -20.40383943 -14.76806729 1019.277872 0.00196217347 +2.496078832e-06 -0.007110357429 0.01280103633 0 -23.48546626 14.65768375 987.9923587 0.002024307154 +2.498895042e-06 0.0005441166181 -0.003138434133 0 -7.27630402 10.92235728 882.6941894 0.002265790377 +2.499151746e-06 0.009860608573 0.002857560343 0 -2.252893178 -13.52271069 1052.387251 0.001900441115 +2.49806972e-06 -0.009969319087 0.003077897946 0 18.62633025 8.466919889 1041.031103 0.001921172186 +2.499828693e-06 0.008163383384 0.005493892422 0 3.844961794 3.786150034 921.8757385 0.002169489788 +2.499063922e-06 -0.004408839107 0.009124659821 0 -10.97714231 -7.300865663 963.3705123 0.002076044445 +2.493612418e-06 0.002068087514 0.01183134364 0 -17.63197092 29.7909222 967.6056922 0.002066957663 +2.496850192e-06 0.008562784949 0.005340721901 0 15.54682075 19.06059363 979.5325713 0.002041790195 +2.497701118e-06 -0.002112959619 -0.006706693524 0 20.06611786 6.852044186 988.5298363 0.00202320651 +2.499319035e-06 -0.006148229516 -0.0006063591409 0 -11.19428245 2.700757093 986.642697 0.002027076272 +2.499861403e-06 -0.007085427335 -0.00996497463 0 3.253897692 -4.498644074 1054.521274 0.001896595213 +2.498267095e-06 -0.008909843424 0.005002347627 0 -16.0021668 5.741379562 912.9735683 0.002190643924 +2.499303349e-06 -0.007048223563 0.003959056274 0 -0.7653165722 -11.1930771 950.3735579 0.002104435654 +2.499344727e-06 -0.001219568327 0.01034039377 0 9.585668887 -6.833569243 1028.219129 0.001945110671 +2.498587867e-06 -2.162656747e-06 0.007788180811 0 -15.51767119 -8.669952349 1057.488015 0.001891274389 +2.497875409e-06 -0.004174985359 0.009797925304 0 -15.12933417 14.85262246 1028.187512 0.001945170483 +2.497174862e-06 0.0004229206359 -0.007985052557 0 -19.17625974 12.85114783 970.7248329 0.002060316098 +2.499535527e-06 0.00252520612 -0.01232272508 0 0.4940243463 -9.471066666 983.927938 0.002032669185 +2.497968021e-06 0.004423386012 0.007876078498 0 -9.520317354 -15.87228752 917.8359319 0.002179038683 +2.494958102e-06 0.00780819485 0.008286861854 0 16.21026201 23.6001899 900.9438229 0.002219894237 +2.497134328e-06 0.0003747490468 -0.006686214858 0 2.710634074 -24.54724646 1031.144651 0.001939592082 +2.497316411e-06 0.001567279152 0.009909076164 0 -23.77917567 -4.053257681 1040.801934 0.0019215952 +2.499927081e-06 0.003758087256 0.01279979663 0 -3.754152646 -1.236436883 1034.986071 0.001932393156 +2.49705492e-06 -0.009836874343 -0.0006930745533 0 11.98979687 22.41176275 1046.827177 0.001910535038 +2.49900248e-06 -0.004212251138 0.004688733579 0 -11.04639985 -6.082974018 892.6736618 0.002240460412 +2.498927902e-06 0.005269680824 -0.004638530037 0 -12.55490734 8.324963544 1028.595292 0.001944399334 +2.499060236e-06 -0.002086732546 -0.0008778075501 0 -12.16617057 4.687209218 950.8686356 0.002103339962 +2.499716566e-06 0.002908506659 0.008981829006 0 -1.699580148 7.656071364 1041.578689 0.001920162173 +2.497550741e-06 -0.006316917595 -0.01332914527 0 -9.71466025 -21.27338193 1056.268801 0.001893457421 +2.498680678e-06 -0.006157427733 -0.0116744284 0 5.702923082 16.36612844 1066.729872 0.001874888904 +2.496938793e-06 -0.006834889008 0.0009898189874 0 -22.98505911 11.96609772 1046.79649 0.001910591046 +2.495728418e-06 -0.0002995776944 0.01006466621 0 8.043297396 28.84789242 1023.960243 0.001953200833 +2.497564975e-06 -0.002841627654 -0.007273042118 0 -20.44693997 1.926154796 930.2965112 0.002149852199 +2.497432684e-06 -0.00158951066 0.005101880743 0 -18.23014142 -8.793019627 892.8680597 0.002239972612 +2.498001535e-06 -0.001738471361 0.006202186486 0 -5.209675436 19.07217799 988.6282842 0.002023005038 +2.498211646e-06 -0.003220713311 -0.0130469309 0 4.297422745 -16.27269386 889.6941803 0.002247963451 +2.49969679e-06 0.007095283717 0.008401229458 0 4.265331961 -5.463670699 890.0544855 0.002247053447 +2.499487553e-06 0.00376074912 0.01219427579 0 -6.729655261 7.293522886 980.1883869 0.002040424093 +2.498504644e-06 0.005378419003 0.007493400502 0 -6.231120713 -14.82078754 929.4605201 0.002151785855 +2.49716598e-06 0.008937632935 -0.00121319693 0 -18.41772667 10.89100101 898.3577251 0.002226284635 +2.499166702e-06 -0.001054486413 0.00335578328 0 -8.971577259 9.668440286 1021.562875 0.001957784536 +2.495369903e-06 0.003023010679 0.002847037492 0 -22.66997148 23.16325553 1064.335769 0.001879106255 +2.499423837e-06 0.009427162576 0.006543118574 0 -8.931359276 3.725577361 901.4187581 0.002218724629 +2.498533207e-06 -0.003252899293 0.009980758794 0 16.43161337 7.568802554 1056.009403 0.00189392253 +2.499875542e-06 0.001558008217 -0.003815491274 0 0.690218271 5.08859018 1029.253213 0.001943156432 +2.498265309e-06 0.003421637602 -0.00808498424 0 12.35808651 -10.76175521 879.5561543 0.002273874147 +2.498030184e-06 -0.004680534783 -0.004914710533 0 -2.366306951 -20.62903056 1045.830204 0.00191235632 +2.497195917e-06 -0.004908801084 -0.0005254203547 0 -22.41596647 11.28556894 1059.306943 0.001888026897 +2.498906778e-06 -0.006466718563 0.00362877755 0 -10.92843473 -7.591602653 899.7537615 0.002222830385 +2.499503662e-06 0.009340268397 0.002313705829 0 -6.764270918 7.401122677 1006.273199 0.001987531818 +2.493633944e-06 0.008100021021 -0.01011918917 0 -21.24198736 -31.12170266 1054.983051 0.001895765053 +2.497321613e-06 -0.007568984628 -0.001561742804 0 21.44591269 10.40073375 1029.406967 0.001942866199 +2.495780025e-06 -0.008508432959 0.007522045684 0 14.4361254 25.96211932 1021.87061 0.001957194953 +2.498998523e-06 0.001932722614 -0.01237362186 0 6.331796397 12.04782691 961.542833 0.002079990544 +2.496378483e-06 0.009278401202 -0.007835010854 0 -9.99438584 -22.82951177 925.4979307 0.002160998889 +2.499195229e-06 -0.003065160355 0.01053591912 0 -7.120701835 -10.50672868 1000.319041 0.001999362122 +2.49930596e-06 -0.003222430688 -0.004231411885 0 -4.667790533 11.1781159 1028.062821 0.001945406408 +2.498417506e-06 0.0004344792757 0.01336773678 0 14.09181958 11.14524575 1009.659397 0.001980866029 +2.495306972e-06 -0.003010499151 -0.001343108048 0 23.19550357 20.00049215 999.0004172 0.002002001166 +2.496511872e-06 -0.004805359151 0.005571435951 0 11.59076195 24.68006717 1031.781496 0.00193839491 +2.495543859e-06 -0.007943099234 -0.01135850298 0 -11.47543483 -25.80330974 945.3211844 0.002115683043 +2.494590053e-06 0.002633881173 0.01057538518 0 16.6542374 24.49497064 899.7594906 0.002222816231 +2.498050451e-06 -0.002050491781 -0.006645316968 0 -17.34423951 0.5506526516 878.5467159 0.002276486798 +2.497354e-06 -0.005519229691 0.001278122503 0 -22.11270267 -6.876259815 1006.243544 0.001987590392 +2.499567202e-06 -0.005481808386 0.01240387441 0 -6.583039637 6.806818266 1017.737572 0.001965143133 +2.497039866e-06 0.007527279425 0.01175844594 0 -18.48290301 -15.35043355 987.0056741 0.002026330803 +2.499445914e-06 0.004701295281 0.008387988252 0 9.942389622 -3.045720423 987.7078677 0.002024890219 +2.494379823e-06 0.00703445632 0.008961044422 0 15.1874492 27.48531701 935.8457122 0.002137104411 +2.499079282e-06 0.0005545368325 0.007803783731 0 -9.589296293 -9.032100871 970.6290639 0.002060519383 +2.498566467e-06 -0.006521199816 -0.008147339397 0 -8.61898215 -12.04973916 874.7585247 0.002286345252 +2.497162482e-06 -0.008299994022 -0.007402431266 0 16.05588783 -14.97414445 921.2165131 0.002171042281 +2.498762713e-06 0.00817640706 0.01443534737 0 2.780506437 14.7465599 953.7750078 0.002096930601 +2.499449525e-06 0.009614429679 -0.0007857158594 0 11.07238867 -1.814075094 1069.235897 0.001870494627 +2.495162625e-06 -0.003879007353 0.0136805963 0 12.35797792 24.88536548 892.6345077 0.002240558686 +2.493960975e-06 -0.001605260083 -0.01052676999 0 21.75229038 -24.9729241 952.0796155 0.002100664658 +2.499945328e-06 -0.007557720374 0.003759468254 0 2.841694887 -1.627268249 990.2868555 0.00201961683 +2.496415378e-06 -0.007066983255 -0.0002783799917 0 10.71230848 -25.78649267 1042.29943 0.001918834398 +2.498725958e-06 -0.007217584476 -0.01053255738 0 12.59656156 -6.321758792 882.7571727 0.002265628716 +2.497780197e-06 -0.005216470077 0.004034769209 0 15.15687426 16.16317764 1051.270814 0.00190245936 +2.499535825e-06 -0.002340388424 -0.008020709977 0 3.262667308 8.500264253 944.908891 0.002116606182 +2.498917546e-06 0.007499350463 -0.01196476725 0 13.27766189 -6.092713005 992.7155328 0.00201467584 +2.499565364e-06 0.005293381475 0.00613333235 0 1.759368546 -8.46825539 927.6076951 0.002156083882 +2.495329569e-06 -0.0005329836626 -0.01382659873 0 9.137099463 -31.15323587 1061.51104 0.001884106641 +2.494829333e-06 -0.001610012734 -0.00993041612 0 -20.09157557 -24.74369139 990.3864317 0.002019413772 +2.499624538e-06 0.005752880611 0.004851599105 0 8.712142529 2.118914825 1034.622042 0.001933073063 +2.497521361e-06 -0.0005617637234 0.01059821168 0 22.09244755 7.750240466 1051.147295 0.001902682916 +2.499911255e-06 -0.006160933631 0.01306080075 0 -4.124598179 0.4640001035 985.1867358 0.002030071993 +2.496523018e-06 -0.006401752592 0.002704979202 0 -21.88311477 13.01830627 965.074641 0.002072378565 +2.496832431e-06 0.004389496525 0.004271032086 0 -14.20299365 19.94005201 972.1847093 0.002057222234 +2.499499335e-06 0.005044174762 0.005343626747 0 4.781623754 -9.105183577 1027.677036 0.001946136705 +2.495151509e-06 0.009442606666 0.008202638843 0 18.43935036 22.16354318 925.1811432 0.002161738828 +2.498436848e-06 -0.001676850822 -0.0008238936751 0 10.3748212 -14.20509008 994.6213292 0.002010815515 +2.496050277e-06 0.002791536273 -0.01196506385 0 26.55604472 -13.64094834 1061.587702 0.001883970581 +2.499643637e-06 0.008270748355 -0.002981043623 0 7.247754823 -3.359119791 946.1769392 0.002113769547 +2.495958008e-06 -0.008411983773 0.009721764601 0 -3.624384398 26.20929496 930.0203172 0.002150490654 +2.498163977e-06 0.00688599864 0.006466627289 0 -19.30067827 0.6352930691 1007.474281 0.00198516234 +2.49960414e-06 -0.00245429893 -0.001654010529 0 7.705114439 -2.70658109 917.7684507 0.002179198902 +2.49670607e-06 -0.007437957632 -0.009466465751 0 15.16239529 18.15993269 921.262818 0.002170933159 +2.497371941e-06 0.004628423089 -0.001986879723 0 20.48405278 5.776433269 927.9569848 0.002155272316 +2.495739476e-06 -0.003869915158 -0.01237565943 0 -26.68815068 -15.93851277 1064.217203 0.001879315608 +2.499607885e-06 0.001615570858 0.006624077184 0 7.811739948 -1.647718653 901.4737626 0.002218589251 +2.499366176e-06 0.008419649932 -0.007584288907 0 -8.152477804 -6.607051236 931.9328998 0.002146077255 +2.497874604e-06 -0.002022848967 0.0006910043629 0 9.403240553 -17.28702644 954.1774745 0.002096046127 +2.496621464e-06 -0.003276359551 -0.005701211512 0 -22.05863034 -7.844626102 900.199722 0.002221729191 +2.496505013e-06 -0.00565810075 0.01213130607 0 -14.40113487 21.46006804 977.0099276 0.002047062106 +2.496257404e-06 -0.003984111254 -0.009746154808 0 -17.60283922 18.51886382 933.3561653 0.002142804724 +2.497005235e-06 -0.001140098153 -0.005468809262 0 -9.585571504 -22.45664231 997.2373811 0.002005540544 +2.498530482e-06 -0.0021400384 0.005271903675 0 0.07360435156 -15.32621145 893.8026532 0.002237630413 +2.49592328e-06 -0.007778421603 -0.01461829023 0 -25.90747332 11.05618342 985.8704111 0.002028664191 +2.498445427e-06 0.005374811781 0.01390201912 0 -17.94134376 -5.339874051 1061.363136 0.001884369197 +2.499089525e-06 -0.001882330789 -0.006977455281 0 3.613861928 -12.96186641 997.0453176 0.002005926877 +2.49876395e-06 0.005297505558 -0.01456423331 0 -0.1022012354 15.94103881 1013.706013 0.001972958604 +2.499838703e-06 0.004744940037 -0.01350065087 0 -5.482141974 0.2767785536 966.4153248 0.002069503606 +2.499340877e-06 -0.007956532817 0.0001875337539 0 -7.070511786 -8.845781248 986.2124608 0.002027960586 +2.499775667e-06 -0.00815588213 -0.009526251806 0 4.337201059 -5.684770339 1067.463133 0.001873601007 +2.49735345e-06 0.001957458341 0.012912793 0 -22.6737226 0.7672186065 985.6977334 0.002029019579 +2.499679168e-06 0.006878982754 -0.01260886634 0 8.232337406 -1.150246271 1037.64099 0.001927448915 +2.496822293e-06 -0.002317123851 0.00503476178 0 18.30608419 17.6533929 1008.302534 0.001983531662 +2.49310897e-06 -0.00824077717 0.008060786922 0 -26.00922736 20.67498889 894.0570124 0.002236993807 +2.498345443e-06 0.003125853469 -0.004792605741 0 -13.19917389 9.424057489 891.3327787 0.002243830865 +2.496734878e-06 -0.0005783456611 -0.00181910764 0 11.30976088 23.66282669 1025.808348 0.001949681931 +2.49765813e-06 -0.009532800121 -0.009531695223 0 -18.97242049 -0.2623195242 876.4259483 0.00228199542 +2.495812913e-06 0.007803992871 0.007585010729 0 24.31257761 -16.33416412 1011.523535 0.001977215488 +2.498458066e-06 -0.007949374123 0.004469126738 0 -10.33138235 14.97968825 1035.976656 0.001930545432 +2.498914002e-06 0.003265404645 -0.008593713152 0 1.894253177 -15.16563248 1036.864141 0.001928893016 +2.496910566e-06 -0.003650739095 0.01136602161 0 20.76399835 12.4860829 974.2719478 0.00205281493 +2.499134836e-06 -0.007837123019 0.01192100622 0 4.516404619 -10.9394131 899.6009107 0.002223208065 +2.496659776e-06 0.001211889312 -0.003550739412 0 12.68812472 23.97127831 1048.826128 0.001906893761 +2.495108278e-06 -0.001064866814 -0.01462398884 0 11.08666575 -29.231098 998.7687596 0.002002465516 +2.494095055e-06 -0.004244919154 0.00847043219 0 -18.97296442 27.28017112 966.0778733 0.002070226485 +2.495660202e-06 -0.008829319645 0.004137973229 0 -18.51431804 23.69925885 1020.131022 0.001960532478 +2.496394206e-06 -0.004574040705 0.01065896423 0 -7.081588793 23.27169465 905.3319342 0.002209134489 +2.497048738e-06 0.005581251243 0.008081504172 0 -0.370665226 22.42949791 922.9275428 0.002167017352 +2.499767539e-06 0.004512407593 0.0104886498 0 -5.451118725 -4.774947877 1062.760968 0.001881890716 +2.497069549e-06 -0.004248421467 0.01021265353 0 -21.88042149 -4.386262441 921.378349 0.002170660947 +2.499645055e-06 -0.008988161101 0.008279596253 0 7.803262108 0.6349556882 929.1605968 0.002152480429 +2.496249038e-06 0.004685886255 -0.009900888952 0 26.33408128 2.902345877 966.7386516 0.002068811459 +2.494148058e-06 -0.007715195566 -0.009608151633 0 -25.4777684 -17.95990066 910.3613757 0.002196929761 +2.497293955e-06 0.001269412604 0.006639509106 0 1.063544811 20.93981234 900.8933214 0.002220018678 +2.499811535e-06 0.009233718468 -0.007791733146 0 1.036440036 5.389281664 893.8692911 0.002237463598 +2.4984316e-06 0.00485376976 -0.007458837689 0 17.09037938 -2.843579643 977.9934093 0.002045003556 +2.498093158e-06 0.005021692184 0.002500359868 0 -14.31406548 10.04435577 895.177156 0.002234194636 +2.499328965e-06 -0.007346670586 0.003687942435 0 10.20141573 0.06909478545 880.5199148 0.00227138531 +2.499723081e-06 0.002060843348 -0.01415273606 0 -4.566361878 6.47242133 1064.330829 0.001879114975 +2.496726772e-06 -0.0008580129594 -0.009027527918 0 22.65579609 15.27296655 1067.363988 0.001873775041 +2.498955381e-06 -0.002962042401 0.001699450642 0 -12.95859735 -1.643923685 903.5719699 0.002213437409 +2.499900341e-06 0.009785398333 0.002756982632 0 2.955832484 2.678381373 893.4396912 0.002238539456 +2.497592054e-06 0.006016027601 -0.004266442826 0 -17.06750391 12.88333534 974.0826717 0.002053213817 +2.495598939e-06 0.002728422782 0.007445365093 0 19.24902984 -18.0642532 889.1738392 0.002249278951 +2.498766603e-06 -0.00347986415 0.008133267495 0 -7.469669454 13.65582935 990.8544822 0.002018459861 +2.497803874e-06 -0.00152396223 -0.005435960395 0 4.341952058 -18.76294914 918.6332915 0.002177147311 +2.497284097e-06 0.003410189822 -0.009857175602 0 19.42089153 -14.78135232 1046.766528 0.001910645734 +2.495667427e-06 0.006445657276 -0.006670332213 0 22.47999352 -17.70096973 971.3711303 0.002058945276 +2.497137624e-06 -0.009378778376 0.001502243627 0 -23.19341728 -0.1855838527 968.9775864 0.00206403123 +2.497348803e-06 0.003046517838 0.01151790794 0 19.10843247 9.640072667 929.0816845 0.002152663252 +2.494482407e-06 -0.0009885342652 -0.01007090827 0 -22.64150102 -24.69822935 1007.791419 0.001984537635 +2.498205139e-06 0.0008864637511 -0.007912893207 0 -12.98915123 -11.71833661 923.0813151 0.002166656358 +2.496638985e-06 0.005484612253 0.01061868772 0 -17.94233228 15.25979753 908.0180746 0.002202599327 +2.49695905e-06 0.007714420175 -0.006430929727 0 16.0992011 -20.6774172 1062.131441 0.001883006117 +2.498366366e-06 -0.0025374529 -0.009776903435 0 9.155022928 -15.99293639 1019.242768 0.001962241051 +2.49936267e-06 -0.006484520794 -0.008947827453 0 -5.874183678 -9.556080414 993.4462409 0.002013193988 +2.499905289e-06 -0.0003040086804 0.003430276006 0 2.073918716 3.442188184 923.3405189 0.002166048125 +2.494021135e-06 -0.001131689986 0.01378538215 0 -22.15963232 29.24748873 1060.188864 0.001886456336 +2.498076722e-06 -0.008536736695 -0.01254606497 0 -0.4139525746 -19.65546969 1002.116898 0.001995775147 +2.499590614e-06 -0.001830802974 0.001593470285 0 -8.149939817 4.252291941 1015.848855 0.001968796825 +2.498212184e-06 0.004254786037 -0.01178807226 0 -16.12960439 -12.22043771 1069.881809 0.001869365367 +2.496479138e-06 0.001668166653 0.01354669095 0 22.0423493 -14.76598191 999.2779119 0.00200144522 +2.499861754e-06 -0.003235331001 -0.01348800835 0 4.661089121 -2.929949006 1046.997278 0.001910224642 +2.499215115e-06 0.001334022083 0.01313619193 0 -6.122327822 10.07190614 940.6389772 0.002126214253 +2.498540147e-06 0.003680516589 -0.01323619327 0 15.38879636 -6.205945222 970.8702985 0.002060007401 +2.498050559e-06 0.004497109884 -0.001219788564 0 -18.19643019 -3.902127363 942.2197103 0.002122647168 +2.495563569e-06 0.004698552303 0.0033877298 0 -13.55759388 24.7845513 947.7695452 0.002110217626 +2.498182739e-06 -0.003458211673 0.01161151955 0 -1.233633403 19.09817778 1003.584531 0.001992856543 +2.498539341e-06 0.005914741177 -0.003745348442 0 -16.1201391 -7.663341205 1044.067389 0.001915585163 +2.496151318e-06 0.003188687791 -0.0001033575903 0 -16.3641207 -19.45180384 915.6872704 0.0021841518 +2.495224936e-06 0.001980302082 0.005633344876 0 24.14909905 -17.4695575 963.7838334 0.002075154128 +2.499829103e-06 0.0002657500328 0.00100368327 0 5.553902264 1.261025688 974.139217 0.002053094635 +2.496954498e-06 -0.006465584198 0.001756497833 0 17.25082889 -17.4657629 994.231423 0.002011604093 +2.496282992e-06 0.008169143298 -0.004915937951 0 20.39338688 -18.82076534 1017.238438 0.00196610738 +2.498256358e-06 -0.00884522039 -0.006683626848 0 19.07703022 -3.67322967 1040.060024 0.001922965938 +2.493835084e-06 0.00144308072 0.01338073404 0 23.63473114 26.51334027 1010.585175 0.001979051394 +2.497555136e-06 -0.003125178893 0.01382586265 0 14.82437495 14.55159234 939.0618898 0.002129785078 +2.499813615e-06 0.0004720282415 -0.01119252032 0 2.078851321 -6.134633753 1060.865932 0.001885252358 +2.498321533e-06 0.009276383952 -0.01385509541 0 -15.01324388 -12.62969793 1070.525301 0.001868241692 +2.497673079e-06 0.0003556036577 0.002150182114 0 18.84858908 12.8017917 1055.823022 0.001894256857 +2.498932318e-06 0.00779404439 0.007788471719 0 -13.97624915 -5.002594595 1015.69247 0.001969099958 +2.496016481e-06 0.0009056861745 0.01429901065 0 -6.862279497 24.08293566 886.6513301 0.002255678114 +2.494174719e-06 0.006121879704 -0.001079737348 0 23.42911279 -26.28921653 1030.779122 0.001940279889 +2.498140145e-06 -0.007507215533 0.006664324603 0 17.33312603 4.907435989 933.7811314 0.002141829528 +2.498313962e-06 0.009836526592 -0.0001815849426 0 15.21171002 10.11328473 994.4961071 0.002011068707 +2.499671462e-06 -0.002424665228 -0.01487974083 0 -2.961588748 6.595907575 891.920047 0.002242353456 +2.496305371e-06 -0.003599658958 0.0009058102453 0 11.85497994 23.6473606 972.5826885 0.002056380423 +2.494387415e-06 0.005267597525 -0.008101611561 0 24.06482214 -25.45550825 1044.665477 0.001914488459 +2.498081451e-06 -0.009798660059 -0.01315727152 0 15.54152917 -8.446929798 902.7534918 0.002215444214 +2.497775948e-06 -0.001873452403 -0.0127304592 0 -12.47001957 -13.95927543 887.210188 0.002254257252 +2.497326123e-06 0.004207926649 -0.01164120326 0 1.330378506 -21.17825764 917.245275 0.002180441867 +2.49972175e-06 0.004667714429 -0.008222942047 0 -4.75147155 4.508334367 877.9817171 0.002277951763 +2.49720186e-06 -0.001596675268 0.005720792881 0 24.87775538 2.925085767 1058.426093 0.001889598163 +2.496087098e-06 -0.0007332212245 0.000938824676 0 -21.518077 -15.53418131 948.1370877 0.002109399607 +2.496845482e-06 -0.008932132288 0.002766585695 0 -8.499226999 -22.92154502 972.8156607 0.002055887956 +2.494136104e-06 0.005595751996 0.01229754684 0 27.35286145 20.43867931 996.193209 0.002007642676 +2.498218339e-06 -0.003995888471 -0.0002800901164 0 14.36762423 11.07516559 960.7543455 0.002081697584 +2.496394778e-06 -0.007573726075 0.007699260134 0 20.99040628 -17.18538084 1009.726097 0.001980735178 +2.497310616e-06 -0.006327290358 -0.002061624331 0 16.92602293 -14.4276779 958.5868551 0.002086404575 +2.495676011e-06 0.006610100656 -0.001601224313 0 22.8637746 -15.57827728 940.1885595 0.002127232862 +2.498110001e-06 0.005336726774 -0.01192687931 0 17.12055266 -5.633446569 926.7698465 0.002158033095 +2.499960413e-06 -0.006272766348 0.009879624972 0 -2.775575279 0.5229119966 1003.766027 0.001992496205 +2.498143804e-06 0.00549599654 -0.001135162411 0 10.72699774 13.14678439 880.3954473 0.002271706432 +2.494937651e-06 -0.0021452804 0.01397462839 0 9.262407701 32.72202957 1067.962683 0.001872724611 +2.499468465e-06 -0.0007628548658 0.009025819993 0 10.89207206 -1.675873205 1068.748898 0.001871346959 +2.49639691e-06 -0.004599745916 0.002570353097 0 16.46784654 22.84661332 1048.557702 0.001907381917 +2.496653221e-06 -4.20775637e-05 -0.0002049166616 0 14.66493009 -18.0894526 899.6395352 0.002223112615 +2.498252016e-06 -0.005309836767 -0.003184867955 0 -17.92978443 -7.599452092 1041.245137 0.001920777277 +2.498649761e-06 -0.001356291524 0.01371923016 0 -3.52602252 -16.10345051 1002.950677 0.001994116007 +2.499590643e-06 -0.003928190018 0.003831289429 0 -2.978369565 7.641062428 906.3055153 0.002206761369 +2.497860267e-06 -0.008721291972 0.01396430705 0 -3.722633193 21.71206449 1064.530995 0.001878761642 +2.499030013e-06 -0.002602271098 0.01082606089 0 0.3689201612 -13.60627382 977.0968727 0.002046879952 +2.496527988e-06 0.002041619085 -0.000891259911 0 -22.56490684 -12.68162317 981.7592534 0.002037159307 +2.499977643e-06 -0.008191800313 0.001370420214 0 0.07053815977 1.868278272 884.1494298 0.002262061064 +2.498479243e-06 0.006202055858 0.004235994502 0 -6.640837221 -15.12112557 946.7553128 0.002112478243 +2.497416727e-06 0.007289137593 -0.001424916862 0 11.99109509 -19.63309049 1011.71847 0.001976834524 +2.496533849e-06 0.001121978923 -0.012201339 0 -22.91118715 15.10728095 1041.781805 0.001919787801 +2.497361156e-06 0.003858873998 0.005723070586 0 -19.42808665 -7.183326706 901.2815608 0.002219062374 +2.498166e-06 0.0007246704772 -0.01458516798 0 -9.984581102 -16.51703647 1007.468608 0.001985173518 +2.498762274e-06 -0.009448208418 -0.003721370869 0 -8.205421883 12.98465191 976.0765246 0.002049019672 +2.499566363e-06 0.006898814579 -0.001138704387 0 -2.7015814 8.100584698 916.8763868 0.002181319127 +2.49842879e-06 -0.008396381359 0.001344436915 0 -13.61740241 11.17836184 993.6168243 0.002012848365 +2.499862972e-06 -0.008822612693 -0.003632504675 0 3.056941073 -4.267070619 1002.662623 0.001994688895 +2.497563545e-06 -0.001050046547 0.002520011959 0 -16.63158538 -16.23169043 1052.385953 0.001900443458 +2.499559196e-06 0.003969205623 -0.01251860677 0 3.735917091 9.097937842 1047.401755 0.001909486966 +2.498258992e-06 0.005617810367 -0.01226081148 0 18.57648485 -1.400853333 998.0815492 0.002003844277 +2.499782681e-06 0.001154595725 0.01255415085 0 -5.347507169 3.100980755 937.6083209 0.002133086872 +2.499625721e-06 -0.0003370452113 -0.005528886148 0 -6.290828721 5.041705135 931.7451352 0.002146509731 +2.497004012e-06 0.008365278514 0.002270505193 0 -12.89479632 -20.364462 984.2443511 0.002032015726 +2.498196857e-06 -0.008529170784 0.004165724244 0 19.89273348 -0.5416298199 1047.629734 0.001909071436 +2.499038405e-06 -0.003803918841 0.008376751619 0 11.9990698 4.423813618 922.0375779 0.002169108991 +2.498186648e-06 -0.002046577246 -0.007551990591 0 13.0894736 14.92763928 1042.237977 0.001918947538 +2.497658467e-06 -0.0088198927 -0.005310418101 0 -17.33079498 12.80880886 995.4939521 0.002009052889 +2.496267285e-06 0.006646718564 -0.0009474135144 0 25.6858855 6.227605786 966.7792131 0.002068724661 +2.498640298e-06 0.0006921035144 -0.01185156827 0 -15.27132506 -5.880913188 992.1528347 0.002015818461 +2.494234409e-06 0.007321499097 -0.005281037323 0 25.50801583 19.77778423 949.6932864 0.002105943075 +2.496702181e-06 -0.007690585516 -8.028006647e-05 0 14.66821204 -19.40907216 946.8239694 0.002112325062 +2.499589816e-06 0.004802097064 0.01083106948 0 -7.953036047 5.342453096 1057.724429 0.001890851667 +2.498878088e-06 0.007801905056 -0.009526819142 0 11.67484472 -7.988852405 944.2387906 0.002118108279 +2.497659938e-06 -0.003944539689 -0.01123340767 0 -12.4451283 -15.50889002 918.8421396 0.002176652456 +2.495332306e-06 -0.008578569153 -0.0007894759183 0 -25.14893054 -10.57224135 892.2494419 0.002241525638 +2.498711628e-06 0.001484956448 -0.004367034752 0 -12.28044842 10.21779899 995.0197018 0.002010010452 +2.498346196e-06 0.0005017240113 -0.011753274 0 -11.94496991 13.27369451 981.6218914 0.002037444374 +2.498077673e-06 0.007221150585 -0.004292752782 0 -20.13869756 -3.000169854 1038.111717 0.001926574921 +2.499903757e-06 -0.000335504096 -0.005352111035 0 -4.046221284 0.9181487221 945.6839741 0.00211487141 +2.496806068e-06 0.002316042297 -0.001961852212 0 4.898232948 -24.77871787 998.8877027 0.002002227072 +2.497832621e-06 0.007705677664 0.01411426829 0 -10.38874525 -17.21251771 965.32328 0.002071844781 +2.497091374e-06 0.00570715785 0.007073741632 0 18.66390106 -15.21813143 998.0224482 0.002003962941 +2.497870151e-06 -0.004924000427 -0.00739443206 0 15.55206715 -11.81969273 946.149912 0.002113829928 +2.497931827e-06 0.005671256981 0.002616508906 0 -13.64598592 12.52117756 910.3309403 0.002197003212 +2.497271661e-06 -0.0005605319608 -0.008903008879 0 -4.036553727 -23.57469977 1023.478965 0.001954119301 +2.499545994e-06 -0.00649445225 0.01368315041 0 -0.7940857589 8.516212863 897.5340511 0.002228327714 +2.498330155e-06 0.008507660646 -0.009371752823 0 0.3304199648 -16.32360946 893.1887932 0.002239168264 +2.495622586e-06 -0.0009058205597 -0.0002939410019 0 -22.95135552 15.64758613 938.1887106 0.002131767285 +2.498258911e-06 0.0009915400995 -0.01205391927 0 -14.43941208 -12.34898925 1017.914063 0.001964802405 +2.499520264e-06 0.003877807301 -0.002594115946 0 -1.377573957 9.021138995 931.5785565 0.002146893556 +2.495434436e-06 -0.005861546863 0.006813491138 0 -11.39381 29.37525764 1041.968325 0.001919444144 +2.498407178e-06 -0.005374902235 0.005810998189 0 -16.62115837 -1.290301556 933.820952 0.002141738195 +2.497482005e-06 0.005800055582 0.008386643766 0 12.67811713 -16.80863047 937.8320482 0.002132578007 +2.496198266e-06 0.004821955687 -0.01169268301 0 15.96415903 -22.51390568 1000.338416 0.001999323396 +2.496756691e-06 -0.005716756359 0.01360645917 0 -18.89532718 18.20526377 1029.722974 0.001942269961 +2.498557096e-06 0.007004109439 -0.01016673818 0 -13.84156921 7.280727227 920.4468291 0.002172857722 +2.494784261e-06 -0.003451638795 -0.009781556278 0 -13.28098839 -29.1805078 991.8810245 0.002016370866 +2.498883958e-06 -0.002049196707 0.01396141678 0 -13.00921104 -3.451633255 900.7310407 0.002220418648 +2.498766026e-06 0.0002429740876 -0.0007967591914 0 -6.484956147 12.67344433 906.039607 0.002207409019 +2.499341348e-06 0.001089028744 -0.002156251485 0 -3.946595167 -10.36706605 966.4020701 0.002069531991 +2.496083919e-06 0.009013192672 -0.012066 0 26.97979558 -7.663341773 1001.591906 0.001996821249 +2.495371603e-06 -0.009418800399 -0.0003867933084 0 -18.95580882 -20.42779811 915.3170208 0.002185035299 +2.497129493e-06 -0.004948555343 0.0001447023894 0 22.18814881 -11.48306291 1042.249474 0.001918926369 +2.497354246e-06 0.002927122796 0.01446713964 0 -20.93373308 9.916133826 1006.568436 0.001986948853 +2.498676029e-06 -0.0008485452645 -0.01418934312 0 -1.065428615 15.45290015 951.6983184 0.002101506287 +2.498306862e-06 0.003357650908 -0.004723694846 0 13.20167654 12.3883234 983.5650695 0.002033419102 +2.49849802e-06 -0.006763162515 0.002149924811 0 7.086861781 16.22990282 1021.565333 0.001957779826 +2.498140246e-06 -0.007939453651 0.009364830111 0 -19.28516487 3.562829146 1016.592923 0.001967355816 +2.498885312e-06 0.00421098819 -0.005571008292 0 5.098990817 -13.70866799 979.4197171 0.002042025462 +2.498113522e-06 -0.00068319235 -0.008853284572 0 3.195790789 -18.83085524 983.0419685 0.002034501134 +2.495992366e-06 -0.0002830970986 0.007094602771 0 6.112239433 28.72395589 1036.669724 0.001929254761 +2.498040052e-06 0.00805853318 0.005163809625 0 4.007483023 19.52929142 1006.648711 0.001986790404 +2.498364645e-06 0.0009606435848 0.005850304384 0 -3.373980713 16.28559449 919.3945758 0.002175344572 +2.497506849e-06 -0.0005520988163 -0.01097002342 0 -15.84585108 16.63092385 1028.331174 0.001944898736 +2.495093756e-06 0.008040054678 0.01432157322 0 -18.97630516 24.82378581 996.7511555 0.002006518868 +2.496379754e-06 0.00475508776 -0.01481563579 0 16.67877795 -22.32117481 1034.968956 0.001932425111 +2.498601889e-06 0.002326995558 0.01431588643 0 -0.4584586214 -17.14910125 1025.698152 0.001949891394 +2.498271296e-06 0.004920041077 -0.008964277853 0 -16.49615851 2.481006327 896.9164801 0.002229862027 +2.496960199e-06 0.009866785323 -0.008834265657 0 -14.92050589 -17.13031007 920.9120929 0.002171759949 +2.497625212e-06 0.00399289425 0.01324347337 0 -20.998545 -8.688595419 1042.374578 0.001918696064 +2.499980518e-06 0.00107500724 -0.01214342182 0 2.047687889 0.1511790531 1040.182271 0.001922739942 +2.495484907e-06 0.009827022338 -0.008890334973 0 27.47503031 16.55487998 1066.725295 0.001874896947 +2.499929674e-06 0.00192858865 -0.005964621298 0 -3.912707614 0.1270511681 1043.829417 0.001916021877 +2.496396487e-06 0.007283577896 0.005508048884 0 23.72890987 6.038472946 911.570888 0.002194014778 +2.498083507e-06 -0.001393947545 0.0004999061488 0 17.3269931 1.756775562 889.3046703 0.002248948045 +2.499945533e-06 -0.008260282869 0.008106053509 0 -3.005378214 0.3255823652 915.8974379 0.002183650611 +2.496972076e-06 0.0006939004129 -0.00584403852 0 24.87826955 0.5706960092 1010.76361 0.001978702024 +2.499641806e-06 -0.007496850393 -0.005933049303 0 -5.319706451 6.847567816 1024.420295 0.00195232368 +2.499668428e-06 -0.004206861956 -0.00733790667 0 -7.626816384 1.087389111 945.9925692 0.002114181512 +2.499295331e-06 -0.001266317838 -0.009279848384 0 9.307920264 -8.436713395 1058.087228 0.001890203328 +2.498543176e-06 -0.006388592673 -0.003963512946 0 -13.18240848 9.711590268 959.0198531 0.002085462562 +2.495500732e-06 0.000868077632 -0.004849050217 0 -19.88569744 -20.52259746 951.9852127 0.002100872969 +2.498791899e-06 0.005423805001 0.01009790142 0 13.49127464 -3.510180265 896.6667886 0.002230482968 +2.496112344e-06 -0.0008543115947 0.008770241502 0 8.300046022 26.17928648 984.3376598 0.002031823105 +2.497543002e-06 0.005332280346 -0.01493739768 0 11.88439856 -19.39303348 1025.665597 0.001949953284 +2.49792924e-06 0.004580908548 0.01335574105 0 11.85736364 15.00766592 939.5568461 0.002128663112 +2.499296653e-06 -0.007585940436 0.01355459973 0 11.08704035 -3.383276177 977.2462636 0.002046567047 +2.498043688e-06 0.009697637921 0.00728897773 0 18.16261274 -9.012889847 1024.752166 0.001951691411 +2.499117237e-06 -0.00525983586 0.005629043779 0 -9.27049568 9.220568852 983.9065277 0.002032713417 +2.49859519e-06 0.001582976975 0.009992764033 0 8.027170628 -14.38578698 982.6043871 0.002035407155 +2.496956193e-06 0.003172010691 -0.009307582963 0 -5.11494397 -22.79970136 946.6076518 0.002112807768 +2.496627336e-06 0.006206008405 -0.0114756819 0 26.64201625 2.02083053 1028.232812 0.001945084787 +2.498718705e-06 -0.005277971104 -0.0004527614429 0 9.342262628 -12.50079238 974.6953086 0.002051923286 +2.496697042e-06 0.007908963459 -0.0008190414892 0 15.29027257 -17.65455964 908.2511116 0.002202034189 +2.498015267e-06 -0.002729438981 0.00157734564 0 19.50350578 7.94271046 1056.667528 0.001892742937 +2.499288415e-06 -0.008346303962 0.01292492042 0 7.145061853 -10.46666805 1062.189476 0.001882903235 +2.499752588e-06 0.003494173181 0.001913525218 0 3.586508024 -6.019801041 996.1023837 0.002007825734 +2.498544191e-06 -0.0005749384547 0.002095489413 0 -12.46119169 -11.19108214 981.3437301 0.002038021886 +2.498133433e-06 -0.005517966808 0.004873543368 0 -13.57206601 -13.99730456 1008.799888 0.00198255375 +2.498032419e-06 -0.001228155624 -0.009985358336 0 -1.696785371 20.64251463 1043.795374 0.001916084369 +2.496418893e-06 -0.008381983424 -0.002540127647 0 -22.59172555 17.3127332 1062.959601 0.001881539053 +2.498473833e-06 0.007672045664 -0.004982445182 0 12.40702465 9.562902244 896.4107222 0.002231120122 +2.497008974e-06 0.002438375899 0.01169366523 0 16.61600138 -14.8554408 910.8777557 0.002195684314 +2.496631637e-06 -0.008825855334 0.01391617021 0 -22.97164477 -13.11498481 1018.618865 0.001963442922 +2.496826589e-06 -0.005370050413 0.008001778491 0 -18.0549197 -15.05929481 932.7908582 0.002144103346 +2.49870026e-06 0.008024430792 -0.01254008055 0 6.047378522 13.53632101 919.3663717 0.002175411307 +2.497629108e-06 0.007628811011 0.002803792963 0 -5.352239811 -21.24790765 1005.887696 0.001988293533 +2.499489105e-06 0.005301975044 0.001773540087 0 -8.094565371 -6.382676166 1019.698942 0.001961363219 +2.499595397e-06 0.0007698742114 0.01246310372 0 -7.547346283 -5.306018958 1025.53487 0.00195020185 +2.499579125e-06 0.000145619968 -0.004478029883 0 -0.07274625106 8.399459014 915.4795192 0.002184647453 +2.496730511e-06 0.008104609204 0.01260029602 0 18.10084771 16.39267326 954.5229705 0.002095287449 +2.49614111e-06 -0.004554646658 0.004518481228 0 -10.28845367 27.69300131 1062.792127 0.001881835543 +2.498744841e-06 -0.002231228338 0.008186488585 0 12.89885265 -5.697536992 889.8325784 0.002247613819 +2.497698532e-06 0.001841062196 0.006718999366 0 -13.06252216 -14.96842616 925.6715049 0.002160593677 +2.497993703e-06 0.001584653961 0.00282208516 0 -15.44257906 -11.90811656 973.2096951 0.002055055565 +2.499911767e-06 -0.006698922678 0.01331784831 0 -3.427389276 -2.676401097 1035.165228 0.001932058714 +2.495146145e-06 0.004691843474 -0.009958735497 0 25.28148725 20.98862539 1053.833075 0.001897833772 +2.497030415e-06 0.007769879322 -0.003287521158 0 15.54731255 -17.41804304 957.6008058 0.002088552963 +2.49943951e-06 0.008019703887 -0.007766334554 0 7.595664812 -6.080546953 918.8914736 0.002176535595 +2.498536092e-06 -0.009396349224 -0.0003484021244 0 -12.97635199 8.082934916 893.2649632 0.002238977327 +2.495659086e-06 -0.004360054904 0.0143876248 0 16.15184778 26.39434173 1049.51977 0.001905633469 +2.499299992e-06 0.006022786032 0.004090483894 0 1.047104397 11.30126771 959.1161994 0.002085253071 +2.497110187e-06 -0.0002944363514 -0.002683169274 0 12.50237342 -22.31062727 1063.347134 0.001880853332 +2.499093224e-06 0.009163052463 -0.00137506325 0 -12.80601159 2.227796173 965.0816578 0.002072363498 +2.496132006e-06 0.006019158871 0.008511065505 0 -2.048354196 28.00900981 1009.127375 0.001981910362 +2.498022468e-06 0.006400884795 -0.002407534481 0 -14.33661578 13.18225134 979.0203894 0.002042858373 +2.499104013e-06 -0.001329464647 0.01099000799 0 10.67463976 7.309999618 966.3463581 0.002069651304 +2.493499007e-06 -0.00779892195 -0.007088311622 0 -25.57425874 -23.78449396 967.6217826 0.002066923292 +2.498847659e-06 -0.002313811816 0.0009001651034 0 -8.382712308 13.31941324 1036.482391 0.001929603453 +2.498734446e-06 -0.005291423537 0.008138065862 0 16.64002107 2.804413033 1060.468868 0.00188595824 +2.499069533e-06 -0.001672736672 -0.005873532963 0 -0.834555403 13.71396072 1007.023329 0.001986051308 +2.498698945e-06 -0.009564817324 0.006002226658 0 5.294767184 13.96296186 925.5581671 0.002160858249 +2.499448847e-06 0.004497380774 -0.005112629305 0 -7.727665815 7.246361257 1008.929425 0.001982299209 +2.499884826e-06 0.009913974977 -0.0006197682302 0 -1.168183915 4.913437208 1052.267034 0.001900658231 +2.497832614e-06 -0.007974298391 -0.01140783776 0 -18.32825272 -8.861324534 977.4861748 0.002046064744 +2.499524063e-06 -0.008452706938 0.004119034961 0 9.672057623 1.34085117 1000.763896 0.001998473375 +2.498343379e-06 -0.008064537784 0.004007900348 0 -0.580036142 18.20101156 1000.187468 0.001999625133 +2.497828959e-06 -0.006594596645 0.008661497596 0 -18.13284303 4.240609732 893.3842652 0.002238678336 +2.498294842e-06 0.008321775855 0.008429422898 0 0.4948848902 -18.78069396 1017.077186 0.001966419095 +2.498708845e-06 -0.005371500934 -0.003449850334 0 12.03812311 -7.840132727 893.8194027 0.002237588481 +2.495611586e-06 -0.004930124064 -0.008942156027 0 10.67438101 -25.45541653 931.1077536 0.002147979106 +2.496322078e-06 -0.009782197471 -0.0053678099 0 -16.15845381 -22.7051038 1026.9458 0.001947522449 +2.49785556e-06 0.003689189251 -0.003893403942 0 -8.152916906 16.83318037 902.8473344 0.002215213939 +2.497068679e-06 0.00106674951 -0.01253772399 0 13.34053141 -21.30580213 1037.74065 0.001927263812 +2.495366183e-06 -0.002109994013 -0.006025249574 0 19.42396564 -20.21347622 920.2169025 0.002173400635 +2.499353781e-06 -5.584931932e-05 0.005302964451 0 -10.50531741 1.891072595 938.8302333 0.002130310602 +2.496780459e-06 0.002366447169 0.01064485383 0 19.20004729 -14.19800506 940.5922125 0.002126319965 +2.498101625e-06 -0.008580383393 0.001167767623 0 -16.10318843 -12.71326038 1052.640782 0.001899983388 +2.498003246e-06 0.0006780856848 0.00315363076 0 -4.969100268 -17.38495708 904.5219451 0.002211112744 +2.49554407e-06 0.009125583456 -0.0103031167 0 23.43879833 12.2402464 885.169219 0.00225945498 +2.496729055e-06 -0.006216025348 0.01089581444 0 9.821193591 25.42240396 1065.020111 0.001877898812 +2.4968162e-06 -0.007374269115 -0.001882921611 0 -24.60985821 0.07926470131 974.8008979 0.002051701024 +2.498436942e-06 -0.004700725013 -0.01472130626 0 5.808477542 14.85622328 901.9724229 0.002217362692 +2.498264674e-06 -0.008404321615 -0.0003972830088 0 -19.82749865 1.104985043 1065.669817 0.001876753914 +2.495555119e-06 0.006093363557 -0.01495375251 0 11.21640732 -26.40993046 961.7056441 0.002079638414 +2.497932163e-06 0.003141468377 0.011584338 0 -0.1097604779 21.08974966 1036.738815 0.001929126189 +2.495679065e-06 0.00376392025 -0.006883123079 0 20.59844861 18.84946123 949.1827831 0.002107075724 +2.496854366e-06 0.002431855612 -0.01381533232 0 16.38479987 -18.22579899 976.6376871 0.002047842333 +2.496846474e-06 0.00391806405 0.005389041882 0 22.94289378 -3.48792728 923.6151694 0.002165404019 +2.499774071e-06 0.009551593065 0.005426088301 0 -3.612442227 -6.015102722 1043.769098 0.001916132604 +2.495038079e-06 -0.00355416087 0.002858651646 0 -23.00261174 19.38517008 954.196946 0.002096003355 +2.498113868e-06 0.009557741773 0.005878158566 0 19.31779644 -6.058969077 1042.098749 0.001919203916 +2.496928021e-06 -0.008122586678 0.0008222268079 0 -10.71706155 24.06372106 1062.257342 0.001882782939 +2.498201711e-06 -0.009238889399 -0.001430043674 0 -15.26911427 -11.16275449 997.0793221 0.002005858467 +2.496207635e-06 0.006234609028 0.01310669369 0 20.50919168 17.3924812 975.8645082 0.002049464842 +2.495715881e-06 -0.006179245585 0.002686118935 0 -18.20409484 24.38979456 1039.056866 0.001924822467 +2.495212071e-06 0.006447706204 -0.005220885559 0 23.97591017 -20.66711857 1022.179605 0.001956603311 +2.496214178e-06 -0.009524912769 0.007148248537 0 5.675177869 26.1983284 973.6203674 0.002054188744 +2.496248424e-06 -0.008379247249 -0.01160977114 0 -20.43244711 14.88776791 922.4192412 0.002168211493 +2.493109202e-06 0.001438541021 0.00893659851 0 24.24455719 27.92940846 995.2222557 0.002009601361 +2.498739201e-06 -0.003629446924 -0.004941873914 0 -13.12705933 5.871144967 905.4089619 0.002208946547 +2.499452699e-06 0.0004703315767 0.004749191555 0 9.688443862 1.882969245 943.2818228 0.002120257119 +2.49402988e-06 -0.007257570913 -0.009275980736 0 18.58981908 -24.37085109 886.2517042 0.002256695237 +2.499881409e-06 -0.00982342395 0.01374323578 0 4.242046378 -0.4656549302 876.2506866 0.002282451849 +2.495888901e-06 0.007927065133 -0.01178808723 0 2.295243458 -27.14166307 949.3400911 0.002106726577 +2.497647404e-06 -0.005027995375 -0.006114922226 0 4.82139294 -21.0823665 996.6605051 0.002006701369 +2.499418452e-06 -0.0001766009303 -0.001765854433 0 10.32231818 1.182853754 963.3066043 0.002076182174 +2.496143798e-06 0.009950393615 0.01091193612 0 7.304617861 27.77812382 1033.65553 0.001934880569 +2.495072058e-06 -0.009940927103 -0.01286087067 0 15.35393273 -28.0669934 1018.29747 0.001964062622 +2.499251538e-06 -0.005644574584 0.008359883633 0 -8.255610393 9.36863658 1020.495812 0.001959831658 +2.498038323e-06 -0.002816720754 0.001918001482 0 -19.93204309 -0.4636333948 1006.265751 0.001987546529 +2.499675769e-06 -0.004285356845 -0.01367874248 0 -5.194338654 6.625764466 1045.453262 0.001913045827 +2.499270469e-06 -0.007221171288 -0.004722900752 0 7.174766915 -9.020431638 954.089309 0.002096239818 +2.499740468e-06 0.007796278107 -0.01252916615 0 4.807438654 5.828436423 1048.631617 0.001907247472 +2.495470859e-06 -0.007950017373 -0.005789083173 0 -18.13717727 -20.89066636 918.5854313 0.002177260744 +2.496435971e-06 -0.001484603849 -0.003953492101 0 -17.56450251 -16.91306872 912.8117391 0.002191032295 +2.499305105e-06 -0.001569865248 -0.01082832975 0 -12.02816346 -2.756022098 1046.624027 0.001910905872 +2.497561164e-06 -0.0076962964 -0.00350800168 0 10.62867242 20.44222098 1042.850181 0.001917821022 +2.496389069e-06 0.001710462943 0.006574984726 0 -3.301641967 27.54243902 1031.66948 0.001938605376 +2.496959122e-06 -0.001165320748 -0.002469016069 0 16.11034267 20.72224927 1063.855578 0.001879954424 +2.499513884e-06 -0.006694447175 -0.002802112189 0 -8.775992883 0.6115838915 892.1374765 0.002241806955 +2.498728395e-06 0.001248617964 0.01291027309 0 13.11193273 10.94730117 1070.886853 0.001867610938 +2.499267743e-06 0.001408220078 -0.008007606415 0 1.478315628 -11.41289822 950.8552625 0.002103369544 +2.499890685e-06 -0.00742945449 0.001678575561 0 0.4993632929 -4.980693147 1070.533071 0.001868228132 +2.498676504e-06 -0.001284791026 -0.0105616083 0 -13.1509617 -8.638896083 966.9272326 0.002068407976 +2.499328618e-06 -0.002625804818 -0.005100667435 0 0.9338913917 11.95417909 1034.659158 0.00193300372 +2.498293364e-06 0.0008984346548 0.009958014165 0 18.33283839 0.8144045426 993.0271986 0.002014043526 +2.499520513e-06 -0.00976625809 0.005153939717 0 8.814216209 4.419902331 1006.830508 0.001986431663 +2.499540478e-06 0.007547377027 -0.009226547352 0 9.524373207 -3.833372542 1070.876889 0.001867628315 +2.496076338e-06 0.008771923054 -0.01060225977 0 19.30721013 -17.10614731 920.2823983 0.002173245955 +2.499865073e-06 0.003782077278 -0.008982121206 0 -0.3001103797 -4.829543175 931.4708089 0.002147141897 +2.498181282e-06 -0.00146381537 0.00199737112 0 15.3220446 -11.35175316 999.5674388 0.002000865497 +2.498349977e-06 -0.00138663277 -0.005038340497 0 -1.697919235 -18.11625987 1001.382887 0.001997238046 +2.498532415e-06 -0.001546648424 0.001394712855 0 15.88692282 6.69503164 1006.06275 0.001987947572 +2.499878551e-06 0.004923144169 0.001080861599 0 3.809247677 3.331979176 1026.846794 0.001947710225 +2.497285414e-06 -0.009309636955 -0.01023178338 0 0.7517213339 -22.33448456 958.6896468 0.002086180868 +2.49730228e-06 -0.001042580782 0.007001860673 0 -12.0978874 17.76657455 924.9887243 0.002162188519 +2.499456381e-06 0.005928896894 -0.001686183822 0 -10.49039092 1.406866681 1014.997372 0.001970448452 +2.49816211e-06 -0.008063744488 -0.003678329741 0 -4.320069106 -19.50979695 1041.963427 0.001919453167 +2.499487426e-06 0.004558199765 0.009211613014 0 -2.584904802 -8.495174001 876.9471083 0.002280639255 +2.498475539e-06 0.0001128495717 0.01223677638 0 -11.05417324 13.95952067 1019.530621 0.001961687035 +2.498543528e-06 -0.006876601391 -0.007512961077 0 17.1776684 4.594599794 1041.616884 0.001920091764 +2.498376928e-06 -0.009075214933 0.001915213026 0 -17.99903497 -4.04314458 1023.644504 0.00195380329 +2.498160111e-06 -0.009129576925 0.01198186704 0 19.70667112 1.944187706 1032.014704 0.001937956883 +2.497962914e-06 0.008600606266 0.0006934244209 0 -20.66236316 2.857994656 1033.101148 0.001935918862 +2.498650887e-06 0.001497088559 -0.01259971375 0 13.23178995 10.90153172 1043.494742 0.001916636394 +2.499443703e-06 -0.007575541507 0.01088633428 0 -9.345346659 -4.348167682 977.1100964 0.002046852251 +2.498423165e-06 0.009042576086 0.01076033223 0 -16.6661725 6.99945857 1017.652295 0.001965307807 +2.498988888e-06 0.002316555665 -0.006819381884 0 -1.453842207 -13.4785053 953.1757235 0.002098248991 +2.497411764e-06 -0.0005601822073 -0.01008159045 0 -20.20651279 -8.821393741 968.6929644 0.002064637686 +2.496578147e-06 0.004951078752 -0.005401768656 0 24.88707877 8.133494307 1000.32574 0.001999348732 +2.498476709e-06 -0.003837105539 0.006590047935 0 15.64868782 -2.540423838 908.0733419 0.002202465272 +2.499507898e-06 -0.005777111147 0.01392401344 0 -10.01291519 -2.042870704 1030.011054 0.001941726735 +2.494476378e-06 -0.003846434387 0.01202068355 0 -24.03883076 24.45632099 1030.889812 0.001940071554 +2.497128148e-06 -0.008618183611 -0.006454157594 0 -17.49338634 -11.81488495 880.4289722 0.00227161993 +2.496929099e-06 -0.003721124725 0.01267644085 0 18.29191695 -18.06883636 1036.998178 0.001928643696 +2.499804768e-06 -4.312978592e-05 0.002676897536 0 -5.281393344 -1.936173433 900.1768208 0.002221785713 +2.494570404e-06 0.002087096721 0.00175077752 0 21.36715189 19.95805398 886.5424825 0.002255955061 +2.499932828e-06 -0.00295371593 0.002139441872 0 1.052302333 -3.384246494 966.9174275 0.002068428951 +2.498705522e-06 -0.007428918383 0.01069224312 0 6.956816925 13.59576631 948.9795849 0.002107526897 +2.496563774e-06 0.009236411885 -0.01454995563 0 26.34170569 3.516851152 1013.212526 0.001973919538 +2.499512353e-06 -0.006126493206 0.01012903704 0 8.40094146 2.607772819 890.6446402 0.002245564516 +2.499175684e-06 -0.00353939875 -0.00581722185 0 3.186204005 -11.09756613 899.1091472 0.002224424038 +2.499233031e-06 -0.006067726389 0.009936337983 0 -6.889886267 -11.06954655 1052.634529 0.001899994676 +2.496036964e-06 -0.004183337595 -0.01478029408 0 -24.32264181 -7.429380416 902.8033047 0.002215321975 +2.497965244e-06 0.0001169624319 -0.01077948562 0 10.32349332 15.22864181 911.7307692 0.002193630036 +2.499911124e-06 0.004600621071 0.01191887423 0 -3.814967156 -1.973865939 1018.795411 0.001963102679 +2.496526309e-06 0.002914080466 0.01334924227 0 -4.541725606 26.23639889 1009.668236 0.001980848687 +2.49919594e-06 -0.005275310883 -0.006336296881 0 0.4219305505 11.68528919 921.9572762 0.002169297918 +2.499332711e-06 0.00999980425 -0.01273339037 0 3.65226709 -9.537699468 883.9769471 0.00226250244 +2.499811179e-06 -0.008660320551 0.006538583497 0 2.248624309 6.019037624 1045.547669 0.001912873089 +2.497841751e-06 -0.005902590351 -0.008101535181 0 -20.89760052 -2.986602782 1015.735257 0.001969017011 +2.499481567e-06 -0.004535321947 -0.009670291159 0 -10.41998296 1.390500128 1032.296916 0.001937427081 +2.495240953e-06 -0.005595515906 0.01067554933 0 -8.422732531 26.08025249 887.7076494 0.002252993991 +2.496880434e-06 -0.007084011873 0.002617733153 0 17.79551073 -16.83968924 980.39844 0.002039986926 +2.496665619e-06 0.006764409235 0.007296338989 0 -7.978345022 23.40525046 957.0706112 0.002089709972 +2.49569146e-06 -0.00372653333 0.008105087711 0 -23.88502421 16.52565992 988.7926298 0.002022668798 +2.497696954e-06 0.003355788095 -0.003654799133 0 17.48548348 8.861319161 913.059423 0.002190437938 +2.49576261e-06 0.001990179936 0.01047542759 0 -1.842967181 27.86815117 958.7719162 0.00208600186 +2.495726024e-06 -0.001101083397 0.01300995776 0 12.74708422 27.23145321 1027.742154 0.001946013396 +2.497165421e-06 -0.00668333313 -0.01039814279 0 -14.88258811 14.58690104 874.8537009 0.002286096519 +2.494493815e-06 0.009203741732 -0.004878665891 0 29.44431241 -15.09004845 996.1931735 0.002007642748 +2.499094178e-06 0.003432373609 0.007735894688 0 -13.25921885 1.882803152 994.849808 0.002010353708 +2.499946503e-06 0.007147909133 0.001027430124 0 3.005634263 -0.9687592289 965.4169134 0.002071643838 +2.499461377e-06 -0.009062557365 -0.01245087881 0 -2.218147903 10.46173739 1030.291533 0.001941198133 +2.499376531e-06 -0.001592733175 0.008785633938 0 6.538450087 8.905946887 989.3191361 0.002021592353 +2.49765987e-06 -0.001604858967 -0.00852993713 0 9.870456169 -19.78534833 1021.68328 0.001957553813 +2.495669762e-06 -0.006768683312 0.01154544875 0 -12.11483576 26.76318692 997.6118557 0.002004787722 +2.499825623e-06 0.006318152426 0.006531662657 0 -4.109457282 -4.792725583 1069.019774 0.001870872783 +2.498502493e-06 0.007773146336 0.01068282329 0 7.49846405 -13.50979871 892.6208853 0.00224059288 +2.496457472e-06 0.001522070034 -0.009752889255 0 -5.548510557 -27.85218001 1066.369354 0.001875522765 +2.497161664e-06 0.005587666202 -0.0144171153 0 -13.62130452 -17.34045272 925.1017805 0.002161924279 +2.498149051e-06 0.001184217003 0.01347486834 0 8.311163012 16.42417444 956.4391758 0.002091089586 +2.499300936e-06 0.003774088616 -0.01452668128 0 10.34452894 3.915927695 935.3452501 0.002138247882 +2.498449783e-06 -0.005602535838 -0.01414137497 0 8.317526401 15.1336395 980.5000731 0.002039775473 +2.498956075e-06 -0.0005187017331 -0.003951916262 0 11.74366926 7.508372562 964.5106037 0.002073590474 +2.499246795e-06 0.008492703331 -0.006662764472 0 -3.333407222 -12.49621535 1053.621325 0.001898215186 +2.499680788e-06 -0.00294198907 -0.002865141125 0 7.804559302 1.178509947 987.7996916 0.002024701989 +2.497767015e-06 0.003259005123 -0.0008969547367 0 20.06824954 3.863192863 966.7350478 0.002068819171 +2.499708292e-06 -0.002526039523 -0.002417703315 0 7.637299576 1.014991798 1008.633981 0.001982879852 +2.494417089e-06 0.004757337929 -0.00797377384 0 24.56763963 17.46795542 901.3645619 0.002218858034 +2.49989146e-06 -0.00240561571 -0.01127353381 0 4.033768686 1.347358119 912.773291 0.002191124587 +2.4991556e-06 -0.005719897794 -0.0101849688 0 7.64353884 11.05681442 1034.205965 0.001933850768 +2.495790336e-06 0.009860628662 0.01214047629 0 27.84947966 6.722552332 986.737995 0.002026880499 +2.499373708e-06 0.00276992111 0.004935515709 0 7.538313255 -6.760903406 904.6779353 0.00221073149 +2.497221965e-06 -0.0001582715241 0.0003289956925 0 -0.8046013868 -24.95781775 1058.930003 0.001888698965 +2.498558228e-06 -0.008664675285 -0.01344890107 0 0.1688791696 16.1777702 952.5440788 0.002099640368 +2.496324021e-06 -0.003495170553 -0.01262701081 0 -25.19669228 -12.65971444 1039.396166 0.001924194129 +2.499568922e-06 0.0002549951151 0.005505414095 0 -0.5066643861 8.786489568 947.7970502 0.002110156388 +2.497034807e-06 0.009109915923 0.01140302285 0 18.29932952 -12.42339934 907.8441136 0.002203021389 +2.497004004e-06 2.186672762e-05 0.01129987397 0 20.73678113 13.26632269 1005.214672 0.001989624759 +2.49959732e-06 0.0004835052043 -0.007577552428 0 8.240921031 2.705331192 966.4484397 0.002069432696 +2.499844087e-06 0.006240578885 0.006292034097 0 -4.636175649 3.718189644 1064.236675 0.001879281222 +2.494389401e-06 0.005046049794 0.006282304153 0 25.02050034 22.01267809 994.0085432 0.002012055141 +2.499013318e-06 0.005300931833 0.006028734134 0 11.67706689 -7.084218478 972.1162565 0.002057367096 +2.496599304e-06 0.0095802829 -0.00226903514 0 25.54926736 8.999455353 1038.137825 0.001926526471 +2.49623947e-06 0.006979045025 0.01067855162 0 19.69840485 20.86316665 1045.668585 0.001912651894 +2.496448474e-06 0.0006378817838 -0.01467469511 0 6.239523186 -24.04687871 931.651137 0.002146726302 +2.497804124e-06 0.003209899981 0.002170425395 0 17.99658605 -8.629042958 952.0584036 0.002100711461 +2.498723389e-06 -0.005374420877 -0.01049918549 0 -14.34200891 3.654159487 926.0625561 0.002159681316 +2.499050664e-06 0.005799838318 0.0008178372821 0 -13.96579932 -3.811714962 1050.46274 0.001903922837 +2.495427921e-06 0.006516567115 0.008644103764 0 -13.47770341 23.88324688 906.2660111 0.002206857562 +2.498411389e-06 -0.00237988364 0.001595031093 0 16.68863559 -4.37642371 967.6885555 0.002066780669 +2.498344675e-06 0.000934755588 -0.009316952296 0 -4.305935514 -18.82983193 1061.329554 0.001884428821 +2.495239483e-06 -0.001368336249 -0.00352132512 0 -25.05436435 -18.04379761 999.9131624 0.00200017369 +2.498659862e-06 -0.004904540391 -0.006911931101 0 14.65174594 8.961654634 1048.872732 0.001906809033 +2.498911899e-06 0.00216086138 -0.001489180089 0 1.788639692 -14.80020632 1010.405608 0.001979403107 +2.499260224e-06 0.005833190712 0.009047337072 0 -10.78838272 2.537183386 911.0303216 0.002195316613 +2.497952342e-06 -0.003231418016 0.007646516596 0 17.87970022 0.6754750265 883.878827 0.002262753603 +2.498342096e-06 0.005785397799 -0.01213446745 0 -17.94147611 -1.802296255 990.0010285 0.002020199922 +2.499152086e-06 -0.006174128172 0.007115203924 0 -9.541056322 7.546922939 934.043006 0.00214122903 +2.499546282e-06 0.004094962156 0.01057906856 0 2.488516978 9.436415758 1024.39919 0.001952363902 +2.498684134e-06 -0.007294741943 -0.009100734489 0 -7.875426633 -14.34449228 1008.527945 0.001983088332 +2.499358045e-06 0.008634416005 -0.01338376682 0 -10.03007981 3.945504975 951.1233165 0.002102776754 +2.499244926e-06 -0.007457385305 -0.007055669348 0 6.416099603 -11.25085217 1053.828038 0.001897842844 +2.498492509e-06 -0.002812444153 -0.003374969289 0 4.053433449 15.33773918 913.4415768 0.002189521531 +2.495369775e-06 -0.00492624748 -0.01487303445 0 -25.12708604 16.27353793 983.0693702 0.002034444425 +2.497462306e-06 0.004870734289 -0.005373640296 0 15.90018704 12.98945673 911.0042085 0.00219537954 +2.49957498e-06 0.003443971029 0.01065508194 0 5.31870449 8.030699774 1044.676306 0.001914468615 +2.49464538e-06 -0.002520808517 -0.003767155346 0 -25.80597537 -22.3627525 1042.625697 0.001918233942 +2.498224225e-06 -0.003480344554 0.00720034203 0 18.47238657 1.939270779 985.3225404 0.002029792193 +2.49961878e-06 -0.002298961557 -0.01218395513 0 -0.4185374271 8.825096469 1011.764696 0.001976744205 +2.496357693e-06 -0.007579901982 0.01100536379 0 -13.55452492 22.26396745 965.2172919 0.002072072285 +2.498873314e-06 -0.000234609819 0.006300662141 0 13.29391481 -6.424252919 983.4168893 0.002033725495 +2.497582824e-06 0.009766357294 0.01110479074 0 1.559489895 22.40943424 1021.299995 0.001958288465 +2.499878212e-06 0.001487181499 0.0009589511971 0 -5.228646606 0.5398909744 1065.04378 0.001877857078 +2.498658826e-06 -0.006943570776 -1.182918437e-05 0 5.166874604 16.03377727 1028.359435 0.001944845286 +2.497663199e-06 -0.006345275939 0.01370941522 0 20.56534773 2.268783816 956.7198663 0.002090476084 +2.498135728e-06 -0.003466065009 -0.01222302215 0 -20.12343976 -2.159514143 1047.846079 0.001908677277 +2.496721128e-06 0.004174951571 0.009974374466 0 20.69282289 8.767741591 877.1688696 0.002280062676 +2.498575497e-06 0.00685703197 0.0001292286348 0 -14.62317216 5.981619603 935.8313247 0.002137137267 +2.499600336e-06 0.00396904151 -0.002793904881 0 -5.900821345 5.328378431 889.2197295 0.002249162871 +2.49994739e-06 0.004623229448 0.009958246441 0 -0.6898443219 -2.95424214 935.2384506 0.002138492059 +2.499992205e-06 -0.003459975086 -0.005489644934 0 0.793803691 0.7505162256 874.9054498 0.002285961301 +2.497550508e-06 0.003668447845 0.007770571467 0 18.81851172 14.2459575 1065.976409 0.001876214129 +2.49797126e-06 0.003542614295 -0.004170524685 0 -17.27422002 5.860026597 905.2972539 0.002209219117 +2.497597985e-06 0.003543242863 0.006283394792 0 -2.666258592 22.89271095 1051.147323 0.001902682865 +2.496209504e-06 -0.00600531911 0.009703709981 0 -26.1485384 3.015908414 955.4476965 0.002093259534 +2.495529277e-06 -0.001348288893 -0.006015899701 0 -22.6964168 -22.05420242 1057.629184 0.001891021948 +2.496279648e-06 0.007316526258 0.0009426659695 0 14.78079815 18.83671275 877.2816375 0.002279769591 +2.497015841e-06 -0.007922767298 -0.01476419857 0 13.7745416 -18.68870326 949.8962517 0.002105493096 +2.498575199e-06 0.005184000232 -0.004030473602 0 -11.83362205 11.42974717 974.401827 0.002052541307 +2.498659222e-06 -0.001762460512 -0.01391384707 0 -14.14988603 4.213567786 901.407247 0.002218752963 +2.496060741e-06 0.006957429405 -0.008918231532 0 27.11885261 12.51863103 1063.504853 0.001880574399 +2.498521729e-06 0.005927408934 0.01320376197 0 18.36039452 -1.406566784 1070.691651 0.00186795143 +2.497408812e-06 0.003608820573 -0.01391697542 0 13.15693412 -16.21536309 916.9196477 0.002181216211 +2.497227168e-06 0.008484406043 0.01176579711 0 5.332357451 22.66870112 988.4709885 0.00202332696 +2.499993991e-06 0.009392206469 -0.000928582144 0 1.147778666 0.2488086632 1071.300076 0.001866890562 +2.49948075e-06 0.005658727931 -0.009119201868 0 9.018238339 0.5812345726 886.7167384 0.002255511725 +2.499126761e-06 0.008560274811 -0.007690951384 0 6.480935464 10.651618 943.3440017 0.002120117366 +2.498514462e-06 -0.003139110268 -0.01334453036 0 -5.931214689 -16.71515346 1028.747768 0.001944111143 +2.496964562e-06 -0.004693658412 -0.01344588236 0 21.07398636 -15.08694084 1051.41326 0.001902201614 +2.498208835e-06 0.009850919708 -0.00898762357 0 15.1033601 -7.992046392 902.5685829 0.002215898091 +2.497711753e-06 -0.004212209922 -0.01299725919 0 12.53231756 17.46337322 1004.427783 0.001991183471 +2.499606061e-06 -0.008420926072 0.01287855806 0 -8.384542752 -0.3611980163 945.4238847 0.002115453219 +2.4993035e-06 -0.009354575532 0.00289794459 0 10.32336944 3.062586879 912.2569104 0.002192364867 +2.498987831e-06 0.002730071796 0.007237406981 0 -2.061998089 -14.76058855 1047.352726 0.001909576354 +2.498440149e-06 -0.003993884688 0.01461578762 0 11.28094593 -10.75589978 882.2659525 0.002266890153 +2.495910324e-06 -0.00900773067 -0.005562175973 0 -19.00007286 17.03209915 891.6536333 0.00224302344 +2.497179763e-06 -0.009211934051 -0.01358000376 0 -20.88381415 7.453867266 933.2667122 0.00214301011 +2.498187108e-06 0.007777567049 0.01216660167 0 -10.20075043 16.07684179 999.6476192 0.00200070501 +2.496768925e-06 -0.0003837908758 0.01284792631 0 11.68124145 22.59168431 999.9950526 0.002000009895 +2.495155106e-06 -0.007610178539 0.01312962278 0 -26.85687423 -12.55586473 951.7150851 0.002101469265 +2.49768672e-06 0.009569914956 0.01260782162 0 20.17283404 -3.74155117 953.5236732 0.00209748332 +2.499759756e-06 -0.006997473016 -0.001305196008 0 5.914621148 3.256057609 973.9855849 0.002053418481 +2.49914723e-06 0.006253647325 0.008481246724 0 -12.76942101 5.410094028 1061.778194 0.001883632581 +2.498304825e-06 0.00780677516 0.003468789055 0 -9.756058822 15.52552544 995.590503 0.002008858053 +2.496837748e-06 0.001639198666 -0.00984428392 0 0.3567780325 -24.29379888 965.6570551 0.002071128657 +2.498782922e-06 0.009724071124 -0.01370023544 0 1.24539383 14.55607299 936.2125488 0.002136267029 +2.497437231e-06 -0.001023810199 -0.003227805309 0 8.966586047 21.21729715 1017.035162 0.001966500348 +2.499437785e-06 0.006400933149 0.0005089382781 0 2.19261753 9.246875035 896.128802 0.002231822028 +2.499618684e-06 -0.002860345184 0.0001554849464 0 -6.09279801 -5.029339747 904.6219702 0.002210868259 +2.499977228e-06 -0.006034682831 0.005112594673 0 -1.177575969 -1.64483085 947.8817304 0.002109967874 +2.494788841e-06 -0.002067299536 0.001555561451 0 -22.06517107 -18.47863032 890.7998335 0.002245173298 +2.498444589e-06 -0.005721343514 0.01132731624 0 15.1776912 6.805295406 942.8562512 0.002121214127 +2.498668533e-06 -0.008631269112 0.009966271471 0 15.08146706 2.444214106 936.0662612 0.002136600883 +2.496908572e-06 -0.002744232509 0.005667165765 0 -24.78996797 -1.542794319 998.4338177 0.002003137278 +2.499340013e-06 0.005807390907 -0.01072211787 0 -8.769378196 7.488628735 1003.621846 0.001992782449 +2.493347999e-06 0.0003391039371 0.01077583465 0 -23.32368001 26.88378144 974.8039988 0.002051694497 +2.498674097e-06 0.003914486663 -0.006874127327 0 -11.1563155 13.03882531 1053.577619 0.001898293931 +2.499916247e-06 0.004950600369 0.01198036022 0 -4.033254171 0.1737693226 986.3633927 0.002027650271 +2.494588046e-06 -0.00430181351 -0.0137834578 0 -10.29321951 -28.61302892 923.5174638 0.002165633113 +2.496848177e-06 0.001194130806 -0.0002567143226 0 -22.28454535 6.853657424 928.1706192 0.002154776243 +2.497879387e-06 0.000554221496 0.00598400028 0 -19.51376081 0.05817962875 947.2377097 0.002111402428 +2.498357207e-06 0.008985700491 0.003039350363 0 4.560300955 18.56178244 1054.223834 0.00189713032 +2.497506425e-06 -0.007244779109 -0.003179280146 0 4.308733504 22.87557039 1041.965963 0.001919448496 +2.497742792e-06 0.009979303335 0.01401437936 0 11.09643026 -16.17308591 922.8112372 0.00216729047 +2.495827756e-06 0.0009146020422 0.00155220248 0 22.90270389 17.10630477 988.9665245 0.002022313142 +2.496372762e-06 0.005324439784 0.007262280586 0 -6.601909883 27.72541099 1057.582833 0.001891104827 +2.499981237e-06 0.00906865316 -0.002128804866 0 1.348162928 1.374580961 993.9133363 0.002012247876 +2.497934652e-06 1.16182724e-05 0.001625746612 0 -14.77422452 10.82419074 900.8691128 0.002220078335 +2.495531501e-06 -0.00802622423 0.00543361261 0 -10.94431917 24.85666321 907.888779 0.002202913007 +2.498717127e-06 0.0001981927129 -0.007407356836 0 -3.898582039 16.09605517 1033.732541 0.001934736424 +2.497267898e-06 -0.0007902098866 0.002437008207 0 -17.98659387 16.54552756 1045.068009 0.00191375105 +2.499428665e-06 0.004117104681 0.01103581342 0 -9.450646294 1.719992636 898.5450278 0.002225820563 +2.499837936e-06 0.005111415838 0.004203134228 0 5.246713824 -0.2240228663 922.3890959 0.002168282354 +2.496706132e-06 -0.0001154915988 0.00814590072 0 -22.55679791 14.35685565 1041.234353 0.001920797171 +2.495926707e-06 0.006885190499 -0.001225154924 0 25.53054772 -3.860108254 904.0966563 0.002212152856 +2.496613743e-06 0.004669766729 -0.01323794388 0 -20.66666627 18.09580027 1055.003273 0.001895728716 +2.498973811e-06 0.005359076788 -0.002881818465 0 -6.28018386 -12.1472391 954.3788669 0.002095603821 +2.498502298e-06 0.005339040947 0.004449776164 0 16.82952898 3.577963937 993.9077989 0.002012259087 +2.49627757e-06 0.001719750538 -0.005936482355 0 -19.42131587 -21.00487415 1047.875857 0.001908623036 +2.498681515e-06 0.006135769379 -0.01424653982 0 12.65585764 -9.396577456 970.4994603 0.002060794551 +2.495529522e-06 0.007588408869 0.01222559255 0 19.18161601 18.06214352 880.5442108 0.002271322638 +2.495436189e-06 -0.008894200637 0.004788802585 0 -26.53769518 -8.325010055 919.9605721 0.002174006213 +2.499173109e-06 0.003468252663 -0.003326875863 0 12.23301204 5.287925995 1036.189175 0.001930149483 +2.496955228e-06 -0.008691875208 0.005560294774 0 -26.2006946 -2.305201114 1065.360028 0.001877299643 +2.499352145e-06 0.004045750629 -0.003599121957 0 10.73714264 2.585549688 970.1363023 0.002061565983 +2.499595789e-06 0.009250969696 -0.007448249257 0 -7.080262434 -5.04520685 966.8742036 0.002068521419 +2.495358531e-06 -0.009606983084 -0.006188271164 0 -24.1926435 19.62378697 1021.703584 0.00195751491 +2.497884701e-06 -0.003254901026 0.009149109288 0 6.448713045 19.35114182 991.3690566 0.00201741217 +2.496176573e-06 -0.006508267904 0.006187576123 0 21.87307824 -18.52415632 1035.93668 0.00193061993 +2.496904375e-06 -0.0004343087506 -0.009928388405 0 24.13757713 -10.98809288 1065.364235 0.001877292229 +2.496750507e-06 0.0004519827291 -0.01373171532 0 21.94056359 -8.364046122 920.6135677 0.002172464181 +2.498906966e-06 -0.00510413745 0.004680560825 0 -10.52408163 11.76760739 1067.578226 0.001873399018 +2.498022338e-06 0.005142640127 -0.0008667210443 0 -13.64417927 13.32202184 958.552467 0.002086479425 +2.499915649e-06 -0.002436928349 -0.01337418642 0 3.811085841 0.7853535835 947.3599788 0.002111129924 +2.49955699e-06 -0.002292445712 0.01045085088 0 7.29674729 5.385746886 963.4166011 0.002075945129 +2.496388743e-06 -0.0007182353269 0.006051112642 0 -14.24379219 22.21538202 981.414635 0.002037874644 +2.497629019e-06 -0.0002415588964 -0.00182539399 0 21.38027785 4.856429048 1006.477417 0.001987128539 +2.496166445e-06 0.0005601744214 0.008637411932 0 23.28242566 16.5189325 1030.383245 0.001941025351 +2.49708945e-06 -0.002693367703 -0.01354484601 0 -18.24853417 12.33430379 912.5215 0.002191729181 +2.496784705e-06 0.005420184946 -0.008463497367 0 -21.03509002 15.62385311 1032.78636 0.001936508921 +2.497377626e-06 0.004699864862 0.001306661395 0 -13.32182618 -16.60238855 929.1134235 0.002152589716 +2.49846257e-06 0.008502019336 0.01140310092 0 15.66808505 5.718461908 950.949832 0.00210316037 +2.497896082e-06 0.003384883851 0.01228985804 0 0.9948237679 18.14553078 885.6351494 0.002258266286 +2.497514807e-06 -0.005399048231 0.0006881586928 0 -3.477742093 -21.74693658 987.4715712 0.002025374763 +2.499820977e-06 0.009690379365 0.01455670251 0 1.475084155 -6.045432784 1039.931122 0.001923204294 +2.497236143e-06 -0.005691848565 0.01433743883 0 8.882043261 20.23332725 939.4652691 0.00212887061 +2.496742993e-06 -0.005005340814 -0.01234949184 0 17.2316173 -20.15217681 1038.372102 0.001926091808 +2.498938918e-06 0.0004089052603 0.007119315248 0 9.166784058 9.407931257 901.540281 0.002218425557 +2.498667367e-06 -0.001601076988 0.006174793553 0 -16.11782703 5.144645767 1036.13638 0.001930247831 +2.499112918e-06 -0.002760369298 -0.004712085652 0 -7.542323377 8.99380511 881.1113978 0.002269860548 +2.495603471e-06 0.007875777069 -0.0009831108316 0 17.22562634 22.92581557 966.4124875 0.002069509682 +2.495406337e-06 0.004497130373 0.003681768039 0 21.16975565 18.14373574 919.2111581 0.002175778636 +2.497448627e-06 -0.00855670928 -0.01015815068 0 13.72317782 17.86121319 996.7470533 0.002006527126 +2.499362827e-06 -0.009359997199 0.01064621719 0 -10.42871971 -3.52986427 975.2112897 0.00205083762 +2.498366824e-06 -0.009265224016 -0.005735025534 0 18.42253118 -3.463092514 1036.936625 0.001928758182 +2.498731338e-06 -0.003713807166 -0.01057435193 0 9.712184406 -12.92915895 1014.978088 0.001970485889 +2.494871828e-06 -0.004252329487 -0.006152112675 0 -26.78541876 20.36853441 1049.9218 0.001904903774 +2.498972004e-06 -0.004533774415 0.004283227588 0 -13.37049084 -1.733867996 940.1365647 0.00212735051 +2.497184478e-06 -0.001750182295 -0.01238643234 0 -21.01718536 -10.79862325 995.3329964 0.002009377773 +2.497683298e-06 0.001039460385 -0.008970066758 0 -19.55606691 8.28932898 986.4173631 0.002027539331 +2.49768152e-06 0.009848598619 0.006721673633 0 6.462593179 19.15770338 938.5956334 0.002130843069 +2.496218338e-06 -0.0007756325323 -0.01040015759 0 -6.633778273 -25.86793149 970.4869333 0.002060821152 +2.499869878e-06 -0.007836472341 0.007673992726 0 4.874715509 1.824434896 1020.27574 0.001960254393 +2.499673008e-06 0.008149432922 0.0002832563873 0 3.720782228 -6.42448349 917.9993087 0.002178650878 +2.499291237e-06 0.0009205555404 0.002237702538 0 -10.83027761 -1.582916393 919.2164833 0.002175766032 +2.495773387e-06 0.002785412725 -0.0007953607826 0 22.08773568 21.30183423 1054.76278 0.001896160954 +2.49541514e-06 0.005278476672 -0.005338480705 0 -16.15831725 -24.17779057 959.666031 0.002084058345 +2.499571982e-06 -0.009854531158 -0.003858592787 0 -2.281421116 -8.65216221 967.0450098 0.002068156063 +2.499651432e-06 0.00929170399 0.009041439397 0 6.970889511 5.373439074 1054.08874 0.00189737346 +2.499555729e-06 -0.0002108473098 0.003187692845 0 7.533338487 6.665542255 1067.040801 0.001874342572 +2.497837927e-06 0.00601173324 -0.003318452281 0 0.6781629016 18.2280951 876.901005 0.002280759161 +2.497200708e-06 -0.001888971971 0.01355246841 0 21.40668944 13.27292633 1064.059263 0.001879594558 +2.497683757e-06 -0.008893726291 0.00284520546 0 -20.7869267 5.641819085 1000.383577 0.00199923314 +2.498810178e-06 0.008556180438 -0.01394199006 0 -14.21875619 4.918430414 975.1469862 0.002050972857 +2.498477191e-06 0.00762592644 0.01436857219 0 -1.284058352 -17.79701563 1022.204279 0.001956556082 +2.498344514e-06 0.009930571164 0.01438156217 0 11.13688669 13.83652186 975.8881755 0.002049415138 +2.49864549e-06 -0.001273908806 -0.01118469344 0 -0.8881616337 -16.30513212 991.9125159 0.00201630685 +2.494857012e-06 -0.000236966568 -0.006098266449 0 14.72652952 -24.76178261 897.6049859 0.002228151616 +2.497366936e-06 -0.005658847676 0.01410616764 0 -16.56213205 -13.45616768 929.5359009 0.002151611356 +2.494670612e-06 -0.0001498552784 -0.01181040286 0 10.47120118 -28.22964871 921.5032693 0.002170366689 +2.49808539e-06 0.00790449691 0.01026682162 0 -11.40077701 13.80232491 914.5801632 0.002186795735 +2.499085269e-06 -0.004156484413 0.006969957564 0 7.814924908 -9.550917981 912.2603262 0.002192356658 +2.498494082e-06 -0.001472457987 -0.01258886373 0 0.7423047026 -18.09765124 1043.454362 0.001916710566 +2.492805754e-06 0.008675735765 -0.0142765856 0 26.82313721 -28.22070043 1025.313645 0.00195062263 +2.498876904e-06 -0.001766982106 -0.0139194249 0 14.17919866 1.451942844 950.8676608 0.002103342118 +2.49881112e-06 0.003621619623 -0.00250612559 0 14.79568887 4.599901626 1004.63629 0.001990770211 +2.497138279e-06 0.004608091107 0.01210968206 0 21.93338085 -2.969484673 924.7718487 0.002162695591 +2.496207051e-06 0.008135567242 0.004244580483 0 21.73507497 19.73818036 1065.381569 0.001877261686 +2.498989559e-06 0.003795749368 0.006468085384 0 -0.07900809681 13.05017516 917.8844283 0.002178923553 +2.499210325e-06 -0.009687713892 -0.004134793463 0 -1.494323127 13.06668395 1046.396335 0.001911321679 +2.497611647e-06 0.00530329877 -1.580110285e-05 0 20.17317423 4.535566157 945.7199238 0.002114791018 +2.496493804e-06 0.002400400229 0.01097515647 0 7.726067634 23.64542731 938.8862015 0.002130183612 +2.496710579e-06 -0.009212728501 0.00836643131 0 -21.82972646 14.39892904 1019.052191 0.001962608017 +2.498775359e-06 0.0008975294326 0.007247330707 0 11.91627802 7.005967889 883.1000185 0.002264749132 +2.495712688e-06 0.00746777379 -0.01108373468 0 22.08778503 -15.92373483 929.2865601 0.002152188664 +2.495682423e-06 0.005508713052 0.01363652579 0 -20.84643792 18.36916841 944.9138601 0.002116595051 +2.49643427e-06 -0.006690679388 -0.002224688313 0 12.26155232 -23.6527637 997.1167205 0.002005783234 +2.498724355e-06 -0.0006803213106 0.006114573099 0 -0.4862229222 15.32612928 959.8157166 0.002083733331 +2.496503597e-06 -0.001647726805 0.00269600854 0 22.09032739 17.27766465 1059.975375 0.001886836286 +2.495910265e-06 -0.002114078901 -0.002114990798 0 -16.96720015 24.48811593 1041.041631 0.001921152758 +2.499566819e-06 -0.001136425468 0.007215209508 0 1.693719247 8.293604612 909.3640919 0.002199339096 +2.497997425e-06 0.006304050512 0.01176940211 0 6.322312485 -17.02836321 907.3512845 0.002204217963 +2.497754066e-06 -0.000544811287 0.008716497347 0 -21.59115471 3.647924117 1032.827455 0.00193643187 +2.498824843e-06 0.003963966719 0.000340140732 0 13.82266903 -2.223719799 913.0632082 0.002190428858 +2.498030501e-06 -0.007874479718 0.004846960686 0 20.04972099 1.182572611 1011.67556 0.001976918371 +2.499682825e-06 0.001368973544 -0.0126440697 0 5.5522182 -5.58858089 989.0509162 0.002022140587 +2.498962141e-06 -0.0006287809089 0.01014063955 0 -11.76384887 -9.061661084 1030.515051 0.001940777089 +2.49729242e-06 -0.003374859202 -0.01365637697 0 -23.16363462 -3.532043829 1006.504248 0.001987075568 +2.494854548e-06 0.000807210952 0.01122532424 0 -15.26987995 28.72653455 1013.3493 0.001973653113 +2.497619655e-06 0.001196723692 0.004322339783 0 15.73352409 -12.97042379 934.1991736 0.002140871087 +2.498543617e-06 -0.004624851844 -0.005281984219 0 -14.00798064 -6.613818581 907.4596138 0.002203954831 +2.497973683e-06 0.00104426879 0.009654297188 0 2.577000963 20.75661086 1038.669233 0.001925540814 +2.497159265e-06 -0.002268044376 0.009313899328 0 6.45049499 20.59541324 905.0548715 0.002209810767 +2.497274491e-06 0.001805257336 -0.004032181625 0 20.2796407 11.24927986 992.882971 0.002014336088 +2.498561756e-06 -0.009834079072 -0.0003191376943 0 -14.81713467 8.581690908 1009.372966 0.001981428142 +2.499035731e-06 0.003257263708 0.007338691391 0 -10.00846619 7.708390723 909.5450198 0.002198901601 +2.498664222e-06 0.009702156074 -0.008374138407 0 -9.764269177 -10.96122944 897.9328399 0.002227338071 +2.497343525e-06 -0.0008797455067 0.007797319412 0 19.19775521 12.67943777 997.743687 0.002004522831 +2.496485982e-06 0.00808217831 0.01253695076 0 19.82765874 17.78745117 1004.243834 0.0019915482 +2.497276855e-06 -0.007495927089 0.006683677314 0 -2.258047558 20.89312312 900.1132119 0.002221942722 +2.496068464e-06 -0.003311179774 -0.01258818913 0 6.656080919 -26.85085225 985.9511292 0.002028498108 +2.498274274e-06 0.003326804787 0.008789756962 0 16.7158216 -9.261666791 1028.372095 0.001944821345 +2.496108477e-06 -0.007941330671 -0.001540661291 0 -24.60928642 3.971322045 893.0033714 0.002239633202 +2.49655752e-06 -0.007735665324 0.0114231894 0 -2.939775901 24.81032591 951.6666529 0.002101576213 +2.497414945e-06 0.002389459102 0.006768031167 0 -22.96853683 7.254676756 1058.923216 0.00188871107 +2.498644437e-06 -0.004295504675 0.002790658751 0 -1.230996632 14.62373975 891.1044203 0.002244405879 +2.497565879e-06 -0.001807570541 -0.01135418912 0 -21.05629034 4.867200699 979.1297756 0.00204263015 +2.498213098e-06 0.001566454042 0.01344002756 0 9.516536646 15.75323479 973.29457 0.002054876357 +2.498076782e-06 0.003347440208 -0.001375223456 0 17.5078818 -3.472950097 909.828645 0.002198216127 +2.498862631e-06 0.009514274513 0.01178822921 0 -5.611541012 -13.8273638 989.2499022 0.002021733837 +2.498888849e-06 0.004107268872 -0.007845288604 0 -10.79720919 11.30569831 1048.51668 0.001907456542 +2.499285857e-06 0.001534965504 -0.008659432002 0 -10.7516409 4.384071984 971.4478717 0.002058782626 +2.496015173e-06 0.008511549244 -0.01079312216 0 20.93020177 18.48065123 988.4588634 0.002023351779 +2.496681093e-06 -0.004646381163 0.002423228463 0 15.75012339 21.17237846 1023.718554 0.001953661963 +2.49973173e-06 0.006050013369 -0.0127608194 0 -6.76858124 0.907167352 932.2777221 0.002145283484 +2.499409046e-06 -0.002158424216 0.01146797588 0 2.464453822 10.0054781 947.7582463 0.002110242784 +2.495008196e-06 0.005318964999 0.003254331511 0 21.20058333 -22.36819444 974.6462554 0.002052026557 +2.496820908e-06 -0.009412912298 0.01401919145 0 1.762930162 23.94191305 951.6105076 0.002101700206 +2.498516145e-06 0.007967543378 -0.007580030893 0 -13.94704255 -6.934374392 903.9468034 0.002212519578 +2.496067786e-06 -0.008244966255 0.01413348996 0 -26.94207354 -10.35465996 1028.625202 0.001944342794 +2.498569501e-06 -0.001533991317 -2.7886522e-06 0 -16.45988267 -2.530547092 984.3455123 0.002031806896 +2.499257559e-06 0.002259787396 -0.01058874357 0 9.764313905 -6.062396177 943.078717 0.002120713747 +2.499189954e-06 -0.006899674628 -0.00511842361 0 -10.57128708 5.017076635 919.2122335 0.002175776091 +2.496510496e-06 0.004128251541 0.01497925922 0 24.55978562 6.675747122 962.895056 0.002077069549 +2.498937382e-06 0.001854329342 0.00161658054 0 -13.89036618 -3.858442415 988.737936 0.002022780686 +2.497716736e-06 0.003202721993 0.009483118567 0 0.9509210815 22.5314957 1054.956634 0.001895812526 +2.498439142e-06 -0.003562275441 -0.01023120923 0 17.50529924 2.249163289 998.6806249 0.002002642236 +2.49531158e-06 0.00841253811 -0.01418765509 0 15.8352935 -26.04802679 994.7955053 0.002010463446 +2.497832063e-06 -0.00961374558 0.002475884955 0 17.95890542 10.86388936 1007.66515 0.001984786315 +2.496626388e-06 0.001288137785 0.01257331902 0 8.987807803 22.13347835 919.2012632 0.002175802058 +2.497415344e-06 0.0001566440938 0.01001459022 0 13.31030567 -18.91860234 1017.006311 0.001966556136 +2.496197809e-06 0.000122986557 -0.009022216117 0 19.23571289 -19.57235834 994.5888686 0.002010881142 +2.499484559e-06 -0.003173211366 0.005290834098 0 1.72566398 -9.832511393 983.1374188 0.00203430361 +2.496931338e-06 -0.001832519374 -0.0004672785639 0 -24.00356674 10.69292376 1060.218477 0.001886403646 +2.498969464e-06 -0.007127463147 0.004557244715 0 -9.086013392 10.69956873 977.5962453 0.002045834371 +2.498851818e-06 -0.007391725578 0.008800147553 0 -14.83850027 1.959873741 987.5301353 0.002025254651 +2.497581651e-06 0.004141994892 0.009345887988 0 15.13994866 12.36604152 888.5410259 0.002250880873 +2.497516932e-06 0.001591791948 0.01133551763 0 -18.75195251 13.31510603 1031.637412 0.001938665637 +2.498431529e-06 -0.002574206996 0.006913754884 0 -10.09632726 13.66867618 959.2226466 0.002085021665 +2.49923348e-06 -0.009052418121 -0.009933619844 0 -11.59146472 2.500630301 957.6114319 0.002088529787 +2.496821155e-06 -0.006965067382 -0.01283433604 0 -25.23552465 0.7492115819 1000.798817 0.001998403642 +2.49822618e-06 -0.008337551518 0.01053726157 0 12.88557094 11.88436487 930.4199926 0.002149566879 +2.497018143e-06 -0.009445111807 -0.006777299156 0 -5.195882043 -23.84905313 999.0523362 0.002001897125 +2.497980132e-06 0.009218236851 0.01261083881 0 -20.92094728 1.047912875 1041.879115 0.001919608495 +2.49936655e-06 0.007563383495 -0.01003962137 0 -8.519563076 6.782765548 967.4074176 0.002067381295 +2.498000902e-06 -0.005579768959 0.007590467264 0 -1.701643624 20.26991973 1016.985389 0.001966596593 +2.495022304e-06 0.007911765962 0.006316711782 0 22.65118417 -17.0139422 897.1858294 0.002229192587 +2.499475925e-06 -0.002284447677 -0.01073103268 0 3.30596764 9.719993683 1002.744735 0.001994525556 +2.496756228e-06 0.00393816012 0.0148387894 0 11.5050986 22.04040548 975.6504113 0.002049914577 +2.495898375e-06 0.006032158327 0.008027125737 0 -20.02080655 -18.10121513 941.7821206 0.002123633435 +2.499321866e-06 0.009190322077 0.004242385039 0 0.7455316871 -10.24839558 882.2367543 0.002266965177 +2.499893375e-06 0.004994396227 -0.006027912309 0 3.243461567 3.523241646 1037.00826 0.001928624947 +2.495267721e-06 0.007439651638 0.01318429767 0 23.58680922 14.68222358 902.4503177 0.002216188482 +2.495549949e-06 0.006888350719 -0.01350329843 0 25.90362515 -14.84343393 1000.070262 0.001999859486 +2.499934969e-06 0.008106562421 0.01020647844 0 -1.361028863 -2.944182357 899.3765537 0.002223762663 +2.496967181e-06 0.002809475278 -0.001599521048 0 6.284834022 -25.45964666 1064.293244 0.001879181336 +2.498783081e-06 0.008963411776 -0.01383728405 0 11.93561841 -10.90834609 1036.263172 0.001930011654 +2.498278213e-06 -0.002225371068 0.01278979545 0 16.20873535 -6.387773132 938.6021967 0.002130828169 +2.498251183e-06 0.009337210483 -0.002102250452 0 17.77791075 7.722524288 1036.130581 0.001930258635 +2.499155465e-06 -0.009564163806 0.01131302507 0 -9.66138289 -6.334738431 888.8223601 0.002250168414 +2.497902615e-06 0.002034303048 -0.01474733812 0 -9.558972672 -16.2912931 921.9547404 0.002169303885 +2.497582963e-06 -0.002968644528 -0.01223465576 0 12.83582839 19.17471521 1049.098756 0.001906398219 +2.498759798e-06 0.008684849739 -0.007327891847 0 4.692733967 15.40562467 1022.363535 0.001956251305 +2.499189513e-06 0.007265646947 -0.006908562882 0 11.30488558 -5.874419084 1000.531574 0.001998937416 +2.497909851e-06 0.002878597695 -0.01485512068 0 18.81914421 0.586647015 920.5998568 0.002172496536 +2.498447434e-06 -0.0002107278816 -0.01401651844 0 -16.1720981 8.677275637 1041.274871 0.001920722429 +2.495120699e-06 0.00376859596 0.004824228329 0 -16.80932266 28.27729914 1052.285525 0.001900624833 +2.499034095e-06 -0.002362821093 -0.01301118471 0 -12.5584453 -0.707963969 904.8564567 0.002210295329 +2.499633807e-06 -0.006905210684 -0.001096662562 0 -4.439905339 -6.946342209 963.2671693 0.002076267171 +2.498865312e-06 -0.001698604827 -0.01055146301 0 -8.87508132 -13.39562264 1066.495837 0.001875300335 +2.495916518e-06 -0.002091343328 -0.01307106545 0 22.76023672 -20.13881143 1062.785138 0.001881847918 +2.49670755e-06 0.004435579856 -0.002368206005 0 -20.51228015 -12.74367379 940.5951374 0.002126313353 +2.498789138e-06 0.006212149798 0.004847114508 0 16.52774954 0.8821980572 1063.384376 0.001880787461 +2.497606822e-06 0.0008610197855 -0.001483175475 0 -17.72402502 -7.557139147 880.3910089 0.002271717884 +2.499165139e-06 0.004502616073 -0.01281219944 0 -4.961086978 12.49726029 1040.436182 0.001922270713 +2.499095371e-06 -0.00698554418 0.01180430874 0 13.71992954 3.907359647 1060.418034 0.001886048648 +2.496656396e-06 -0.002299229819 -0.008159932746 0 20.16722836 -17.51559152 1032.429932 0.001937177467 +2.496355184e-06 0.0065453764 0.001723612498 0 28.25865226 5.956526614 1069.056932 0.001870807757 +2.498401541e-06 0.002238844996 -0.002158735644 0 5.446307202 18.15357021 1059.758663 0.001887222129 +2.499634598e-06 -0.001536091915 -0.003334533102 0 7.097086071 -5.404538736 1043.448617 0.001916721118 +2.496567162e-06 -0.007971552359 -0.001947808403 0 -27.2622159 -5.86463921 1063.699531 0.001880230217 +2.499747509e-06 0.004121926157 -0.004611159672 0 4.256930932 -5.827454327 1015.509105 0.001969455508 +2.498729153e-06 0.006411223123 0.01310222459 0 2.685571566 -13.69940331 875.4790657 0.002284463534 +2.499395801e-06 0.003582396205 0.009234077388 0 11.55997333 -1.775192583 1063.833467 0.001879993497 +2.498671225e-06 0.001498096311 0.009134603797 0 6.93350382 -13.00702609 903.9799616 0.002212438422 +2.49843327e-06 0.003103784001 -0.005500402458 0 -12.81596864 -10.92872687 951.2724493 0.002102447097 +2.498851039e-06 0.007455040109 -0.006870718624 0 -11.24651604 -9.907656001 988.568136 0.002023128126 +2.498634604e-06 -0.0004304208048 0.006889661208 0 3.993858699 14.69469579 921.3041847 0.002170835684 +2.499421143e-06 -0.005483320514 -0.0003779617022 0 -10.00847134 2.858856733 967.2999768 0.002067610925 +2.496703786e-06 -0.008052232899 0.002130321914 0 -8.36156502 22.55753814 936.5070584 0.002135595223 +2.49671733e-06 -0.002580487831 0.005380004689 0 17.86860383 -14.79355414 904.9061522 0.002210173945 +2.497601664e-06 -0.006750231511 -0.009444192429 0 13.41229964 -14.47143132 900.580748 0.002220789201 +2.497125321e-06 -0.008658446684 0.01089320095 0 10.452869 20.66843501 965.5310691 0.002071398906 +2.49945095e-06 -0.004239932252 0.0006281145173 0 -1.454468118 -9.566862662 923.3679114 0.002165983868 +2.496974455e-06 0.005178542114 0.009291878182 0 17.93877009 -16.81487709 999.0755235 0.002001850664 +2.499857161e-06 0.005740079903 -0.01367096698 0 -2.310133576 -4.83689445 1002.851378 0.001994313458 +2.49978897e-06 0.005779125942 -0.001643009526 0 5.603222204 -2.237909045 928.7009491 0.002153545769 +2.49734553e-06 -0.005417548441 -0.0007649426186 0 -17.01598168 13.16864063 933.4547868 0.002142578332 +2.494917694e-06 0.007491529118 0.001703272539 0 25.33722796 -14.0987561 908.7756032 0.002200763305 +2.495371362e-06 0.0005584639264 0.01427654787 0 -20.02510393 23.02301751 1002.181536 0.001995646426 +2.496073917e-06 0.006132427296 -0.0008400036371 0 14.12927718 23.04167766 963.9975132 0.002074694149 +2.49668431e-06 -0.009064628496 -0.01062065528 0 -18.86131987 14.98463633 934.9835362 0.002139075099 +2.498062307e-06 0.006182187693 0.001454342238 0 14.71834715 14.8988883 1063.539951 0.001880512339 +2.497838455e-06 0.00905129387 -0.0007889385545 0 4.234765861 -21.706872 1063.335672 0.001880873606 +2.498692419e-06 0.006181553486 -0.005749297086 0 -13.29801564 -7.719354527 950.6329571 0.002103861417 +2.497788566e-06 -0.005119428933 0.01127720945 0 -5.98692274 21.29124965 1051.307092 0.001902393712 +2.498386081e-06 -0.007701199087 -0.004578542265 0 -17.23950595 -6.63446898 1027.907816 0.001945699769 +2.49476386e-06 0.003201120314 -0.006155735473 0 15.39272082 -24.44395474 891.9412148 0.00224230024 +2.499693794e-06 -0.008990569706 -0.01364473727 0 6.346371653 4.265210293 977.0550835 0.002046967498 +2.499507769e-06 0.004175240984 -0.01402600555 0 3.134875613 8.453528117 908.6275198 0.002201121974 +2.496185078e-06 -0.001736269938 -0.01086143808 0 -6.49245012 -28.06944873 1042.42427 0.001918604601 +2.496554136e-06 0.004983961168 -0.01109616963 0 -2.33663207 -28.03269646 1070.975891 0.001867455669 +2.499016764e-06 0.003894121288 -0.01278565782 0 -10.80556039 10.07015764 1053.143886 0.001899075735 +2.498059558e-06 0.003231991748 -0.006049510329 0 18.63613865 -8.331020566 1035.919336 0.001930652252 +2.498394539e-06 0.003958901502 0.002753148903 0 -14.72299555 5.571196921 878.2847167 0.002277165892 +2.499562766e-06 -0.00653994971 -0.002345854479 0 8.612114509 -3.201110804 982.4508698 0.002035725207 +2.498140434e-06 0.004172376636 0.003490934295 0 14.82057345 8.619064413 888.7623294 0.002250320399 +2.498037666e-06 -0.005776840458 -0.006094706354 0 -19.85677341 6.092286221 1048.128212 0.001908163502 +2.497667952e-06 -0.005217709099 -0.003758597919 0 -2.394145829 -19.43335717 906.323293 0.002206718083 +2.495675702e-06 0.007691601687 -0.008890838991 0 28.59141136 8.930908437 1017.88134 0.001964865571 +2.495724416e-06 -5.275425036e-05 0.007920975157 0 -23.90923268 14.82341671 961.3963432 0.002080307476 +2.499076195e-06 -0.000850110529 -0.002900294471 0 -1.935543927 -13.30823443 989.2370548 0.002021760093 +2.498885779e-06 0.006332194381 -0.004050121657 0 -4.27109712 13.03808956 918.9158925 0.002176477756 +2.499219565e-06 -0.001273230482 0.0004774254584 0 12.43654051 0.5992030312 996.4807831 0.002007063291 +2.496067043e-06 -0.009815147589 0.01279387375 0 5.579851991 24.15724786 883.4931625 0.002263741345 +2.499538999e-06 -0.0003890992329 0.01010026895 0 -5.502107896 6.579370176 893.1591101 0.002239242681 +2.499599618e-06 -0.00744822579 0.005927817367 0 6.670258348 5.812669148 988.656692 0.00202294691 +2.498666073e-06 -0.008808816602 -0.01326347264 0 -9.094503913 -13.53741736 998.2737952 0.002003458379 +2.499891648e-06 -0.004139040932 0.01084842927 0 -4.500590148 -1.254383605 1003.632122 0.001992762045 +2.4965497e-06 -0.00414386353 0.007354605517 0 4.05801702 24.45069008 943.0251517 0.002120834207 +2.499839251e-06 0.005114950091 -0.008430061396 0 -0.3311074777 5.986607204 1057.411745 0.001891410805 +2.497548121e-06 0.0004952636315 -0.01264371871 0 -15.9419711 -13.62072176 946.5407986 0.002112956994 +2.499156832e-06 0.0005378983822 -0.0119598209 0 -6.442455904 -10.60198011 955.2179495 0.002093763001 +2.498018562e-06 0.006007540794 0.01406975042 0 19.61609404 -7.45868045 1053.902985 0.001897707881 +2.497995314e-06 0.004977618675 0.01108760969 0 2.38109962 17.48148263 880.8482235 0.002270538722 +2.494724773e-06 0.0008306020126 0.01249621225 0 -22.45709515 24.99604931 1033.692041 0.001934812227 +2.499093912e-06 0.0008751111245 0.003183922225 0 -7.747315261 10.25596008 954.6698507 0.00209496508 +2.499069311e-06 0.004996207198 -0.0114513549 0 11.91253338 -2.229188483 888.1781601 0.002251800472 +2.496900657e-06 -0.0007781004859 -0.005957487363 0 9.689281988 -22.07764499 967.9436311 0.002066236024 +2.497307765e-06 0.004906224199 0.01309843472 0 -23.41282184 7.734781757 1062.185071 0.001882911044 +2.497435442e-06 0.001928034462 0.0007983143977 0 15.01429149 16.84010205 995.8137732 0.00200840765 +2.496200384e-06 -0.006843369151 0.01109507471 0 -11.09780005 24.05759533 960.5369613 0.002082168704 +2.49734928e-06 -0.007464072285 -0.00176084274 0 21.817679 -9.300777021 1029.668962 0.001942371843 +2.498949609e-06 0.007253968525 0.01087216984 0 4.239539533 13.03514066 945.5648775 0.002115137784 +2.4989976e-06 -0.004325246238 -0.007787488543 0 -7.774145138 -11.77780441 996.537437 0.002006949188 +2.498006831e-06 0.0005097694136 0.007456278547 0 -10.58698071 -14.64793463 904.9442591 0.002210080875 +2.499975318e-06 0.0002278442122 -0.004204481815 0 -1.377713135 -1.70712155 987.3503456 0.002025623436 +2.499696511e-06 0.001744342176 0.00264354639 0 -3.280408899 7.143775118 1008.948619 0.001982261497 +2.498684406e-06 -0.004315864965 0.001054669982 0 -14.62313103 0.466083556 901.7769178 0.002217843416 +2.499139696e-06 -0.00990126682 0.01488765225 0 -8.421435788 10.25490348 1011.492109 0.001977276919 +2.494585979e-06 -0.008972276216 0.002989679324 0 -24.76554064 16.75004299 907.8528923 0.002203000086 +2.499829526e-06 -0.002096001054 0.003854436872 0 5.331117121 -1.758365815 961.3642748 0.002080376869 +2.498497653e-06 0.005515476172 0.00257072058 0 15.4710046 5.887260933 954.743332 0.002094803842 +2.498204398e-06 -0.009004446426 -0.001809689538 0 -17.33049653 -4.684936579 947.0862333 0.002111740124 +2.499721632e-06 -0.002776407232 0.006458492707 0 -3.484541447 6.844327981 1029.282334 0.001943101454 +2.498065917e-06 0.008744784077 -0.0009036974609 0 0.1409997062 19.45051571 988.6986855 0.002022860988 +2.496357477e-06 -0.00220340162 -0.01024795769 0 22.35708516 -18.1910313 1067.28967 0.001873905517 +2.49758242e-06 -0.005158313722 -0.01463711665 0 17.78425455 -9.613647061 919.0526456 0.002176153901 +2.496824503e-06 0.008905826998 -0.005742254744 0 -8.849798914 -22.07119767 943.1306839 0.002120596895 +2.499914576e-06 0.001661589127 0.01416627449 0 -1.771538843 3.661899335 984.1464869 0.002032217791 +2.495529188e-06 -0.003266262342 -0.005495420911 0 -21.85918224 -20.04879857 991.2584695 0.002017637237 +2.499381967e-06 -0.00734123284 -0.01178358686 0 -7.320686782 -7.386801363 935.3341012 0.002138273369 +2.49670181e-06 -0.009796940768 0.01366450849 0 5.079034926 25.89018717 1026.756509 0.001947881492 +2.494778518e-06 0.008441122416 -0.005696517031 0 23.26496786 -21.37359342 976.8599454 0.002047376402 +2.498582299e-06 -0.009363899017 -0.002989551981 0 -7.95995632 -13.82259346 947.0660074 0.002111785223 +2.499424672e-06 0.0007465761481 0.01359896759 0 -7.82319885 7.266959737 995.3217502 0.002009400477 +2.498407014e-06 -0.006413490372 -0.004832916283 0 -11.9851981 -12.8032283 982.3030218 0.002036031607 +2.497928974e-06 0.009930600137 -0.007451218623 0 21.07417586 -2.595086361 1042.979699 0.001917582866 +2.497309478e-06 -0.005439968412 -0.003443655577 0 -0.138252074 22.17472725 955.560291 0.002093012884 +2.499915751e-06 -0.005073062833 0.0100008883 0 4.3710521 0.3721730282 1068.688275 0.001871453113 +2.498585327e-06 -0.004214983406 -0.005736697828 0 7.261341613 15.79428549 1033.24277 0.001935653515 +2.497310304e-06 0.003295912575 -0.01428134083 0 -0.9673447111 -23.09539383 996.2402728 0.002007547832 +2.499083047e-06 0.009096166203 0.004208679674 0 -14.34698782 -2.116323491 1070.746891 0.001867855062 +2.497132887e-06 0.008340432816 0.01363274485 0 -15.5792882 17.63841255 982.3428438 0.002035949071 +2.498309009e-06 0.003908614642 0.005398126594 0 11.77476583 13.36202777 968.1956666 0.002065698153 +2.496826536e-06 0.008772079288 -0.01129869839 0 24.80318021 -1.515909049 985.889672 0.002028624558 +2.499663477e-06 0.009313493497 0.004005976603 0 1.105605945 7.5531983 930.4431899 0.002149513288 +2.496049484e-06 -0.003868308109 0.004594273337 0 -21.09081755 -17.81114232 981.5105082 0.002037675586 +2.496032835e-06 0.005937044453 -0.005153140656 0 -13.81417334 -22.49353402 936.5637697 0.002135465907 +2.496343299e-06 0.004266711087 -0.0001421681559 0 -18.96494465 14.82908491 889.7237682 0.002247888695 +2.496488158e-06 -0.007566777961 -0.0004030778795 0 13.3105093 20.54505913 923.2080064 0.002166359029 +2.496762448e-06 -0.001392600653 -0.005952356297 0 22.0893686 10.89415575 967.4420717 0.002067307241 +2.498190042e-06 -0.004774308484 -0.0113831673 0 -3.187024932 -17.96206037 958.5609951 0.002086460862 +2.49542749e-06 -0.007726963651 0.009096442005 0 -11.69242485 30.05229716 1065.603406 0.001876870878 +2.498778416e-06 0.007402163711 0.008929630306 0 12.60300324 -8.827952527 984.2505438 0.002032002941 +2.498334286e-06 0.006076486139 -0.005157524971 0 10.01787834 14.15353373 949.7925714 0.002105722934 +2.497834676e-06 -0.003649443639 -0.0006114557711 0 3.427662005 19.59074445 955.3908046 0.002093384184 +2.499405056e-06 0.007073621782 0.01261242146 0 10.29658322 -3.768940544 1005.089472 0.001989872599 +2.49977581e-06 0.009758131551 -0.01194897928 0 2.529836562 -6.37798543 1024.647319 0.001951891117 +2.498472932e-06 -0.001148205702 0.00317599752 0 -16.98076472 -0.5633193001 971.9689779 0.002057678841 +2.497523163e-06 0.009343619351 -0.005990219009 0 15.06934075 -15.7657095 979.5243129 0.00204180741 +2.497257438e-06 -0.001545881326 0.00201907895 0 5.0817642 -24.44582841 1065.661682 0.001876768241 +2.496155517e-06 0.0002552124625 -0.00165900145 0 -20.64617865 16.1753766 945.3234378 0.002115678 +2.497536757e-06 -0.0004645928368 -0.001403278175 0 19.36975939 8.440411098 951.5829311 0.002101761113 +2.498445675e-06 -0.008920928049 -0.00218124164 0 13.99001182 6.905887385 884.6746213 0.00226071818 +2.499816896e-06 0.001864376822 -0.01408739739 0 -4.725339385 -2.905884045 916.6608395 0.002181832052 +2.49790871e-06 -0.00269832659 -0.0146541185 0 18.26958036 7.881253417 972.5899358 0.002056365099 +2.497857233e-06 -0.000500897076 -0.005038272869 0 12.27983874 -13.50497004 881.4475151 0.002268994995 +2.499745694e-06 0.002403411521 -0.01466478128 0 4.305597606 -5.48042912 977.2120237 0.002046638755 +2.499828406e-06 -0.007027481981 -0.01046050832 0 3.080760364 4.771387466 969.4737822 0.002062974819 +2.494758865e-06 0.001940105013 0.00642634887 0 -16.11698555 26.22979126 950.1224689 0.002104991794 +2.499394046e-06 0.003718448104 -0.008032143291 0 0.5036930987 -10.82508696 984.2982566 0.002031904442 +2.496877471e-06 0.005687212152 0.01143815964 0 10.99741206 19.90165073 909.455374 0.002199118348 +2.497024693e-06 0.00283931612 -0.007389685758 0 -21.44557022 -6.257091376 915.3836494 0.002184876255 +2.497215179e-06 0.004157803142 0.005191187896 0 9.020761579 -23.23538677 1055.700218 0.001894477207 +2.498936726e-06 -0.006892451346 0.01277043639 0 4.152312102 13.96207125 998.7265312 0.002002550185 +2.499135333e-06 -0.006176192993 -0.001274938958 0 -4.335415026 -10.98500036 897.9214921 0.00222736622 +2.497413419e-06 -0.008141913321 0.002037092799 0 -16.19299026 16.66581982 1021.257272 0.001958370388 +2.497935549e-06 -0.005979426168 -0.003580144071 0 21.45014062 1.295550834 1057.228999 0.001891737743 +2.496867893e-06 0.001871685651 -0.002103146743 0 13.93028402 19.99841098 973.3114753 0.002054840666 +2.499659178e-06 0.007231608396 0.01218304497 0 -7.058608528 4.52419406 1015.436826 0.001969595694 +2.499274391e-06 -0.004919305472 -0.01456436791 0 -11.91011206 -4.882575741 1068.402799 0.001871953164 +2.499297674e-06 0.009572951021 0.007380145274 0 6.854835976 8.882029917 946.5575336 0.002112919637 +2.498766e-06 -0.00774593574 -0.003650647814 0 8.370421428 -11.64766768 912.8470235 0.002190947605 +2.496814145e-06 0.00577977485 -0.01042754095 0 25.73399298 -1.663212142 1021.119773 0.001958634092 +2.494204792e-06 0.00721245334 -0.006801436068 0 24.47605584 -20.71218256 940.9884555 0.002125424588 +2.497431692e-06 0.001768969344 -0.005448012608 0 18.13491779 -14.15658574 1014.701988 0.001971022057 +2.498826663e-06 0.004476379841 -0.006920584731 0 -13.1854542 8.076193714 1009.182752 0.001981801607 +2.497480831e-06 -0.001765081994 -0.001376711119 0 -22.538593 -7.573803439 1058.890773 0.001888768937 +2.499425356e-06 -0.0003376682289 -0.006100293542 0 7.050554136 7.801266933 980.7694107 0.002039215312 +2.497157806e-06 0.00565699378 0.002814628179 0 -4.679384238 22.10832003 947.4251781 0.002110984642 +2.493588605e-06 -0.002895261068 -0.01007190112 0 -20.70052616 -25.39352894 914.0287594 0.002188114957 +2.497362694e-06 0.0008450545184 0.007915527862 0 -16.82029704 -13.9510853 951.1404621 0.002102738848 +2.497634886e-06 -0.00560188747 0.004605990965 0 -20.6390058 0.2273090892 948.6803741 0.002108191605 +2.499955013e-06 0.001263275356 -0.01243870495 0 -2.942915505 0.4025459781 990.2469077 0.002019698304 +2.499010607e-06 -0.005949980579 -0.01430017484 0 -7.4148718 10.53294903 915.5662775 0.002184440438 +2.498902121e-06 -0.009380211318 0.01281746672 0 6.414924846 12.87236457 970.4274478 0.002060947477 +2.498235945e-06 0.005771245365 -0.01087951338 0 -19.98845358 -1.681755687 1067.640219 0.001873290238 +2.498588986e-06 0.006928187269 0.006728615002 0 -10.41370456 13.50821715 1015.107606 0.001970234474 +2.497194018e-06 -0.009726280733 0.01126303899 0 -17.75751853 -13.34737337 937.3359555 0.002133706691 +2.4972352e-06 0.009713848685 -0.002692669588 0 2.777292122 21.6648332 928.4698701 0.002154081747 +2.498349388e-06 0.003809726923 -0.01090689261 0 -13.06777592 10.71721651 929.9369221 0.002150683506 +2.499505604e-06 0.0004175601713 -0.002353134588 0 -7.433448112 7.312177179 1048.523509 0.001907444117 +2.497569635e-06 0.003826310467 0.00576040264 0 23.11691459 1.622544399 1050.722036 0.001903452989 +2.495243249e-06 -0.004624825339 -0.01040862957 0 -6.868404551 -32.13294419 1064.563095 0.001878704991 +2.497882017e-06 0.005988563304 0.01210215089 0 17.61185767 5.362930707 894.2238549 0.002236576433 +2.497258606e-06 0.007639854066 -0.01119456303 0 23.68326754 -7.874434641 1065.445286 0.001877149419 +2.499266473e-06 -0.00601548906 -0.0002030006284 0 9.409774811 -6.382837763 938.6469777 0.002130726511 +2.499679286e-06 0.003260279489 0.003757205273 0 -2.097866089 7.447917448 966.0923336 0.002070195498 +2.498100126e-06 -0.002467026669 -0.004504358147 0 3.873056857 -18.68749013 978.7738853 0.002043372867 +2.494287887e-06 0.006710124975 -0.01375982457 0 15.29507921 -28.04455209 944.2936752 0.00211798517 +2.494062479e-06 0.004288721369 0.01224914934 0 -18.50477788 26.03316477 926.0357433 0.002159743848 +2.498877214e-06 0.007741150772 0.01215889933 0 -4.736846962 -14.54620903 1020.702168 0.001959435439 +2.497308799e-06 0.003132206979 -0.01482479684 0 4.669735093 -20.6755888 913.2679137 0.002189937881 +2.49956568e-06 -0.001454270319 -0.0004009448318 0 8.250583261 0.9354965414 890.8616014 0.002245017629 +2.498000278e-06 0.001280546407 -0.01418660887 0 -2.799907531 -19.33652925 976.6842168 0.002047744773 +2.499663666e-06 -0.004130400107 -0.01159822194 0 -3.157969606 -6.830422436 917.4691161 0.00217990989 +2.497728841e-06 -0.008777492717 0.01045383889 0 -6.049373654 18.36646007 906.9923022 0.00220509038 +2.498445982e-06 -0.0004754132079 -0.01104277326 0 9.007527803 15.09058816 996.6382399 0.002006746199 +2.499172898e-06 0.006221550512 -0.005480962435 0 10.24643445 7.465387711 985.5720936 0.002029278237 +2.498689106e-06 0.001863636468 -0.006086549191 0 -15.88156198 5.206073788 1031.982795 0.001938016807 +2.497403285e-06 -0.009550383631 -0.007640448085 0 -23.21577399 -0.6299552542 1018.700667 0.001963285255 +2.494235426e-06 -0.007480065352 0.01423750829 0 -15.83331552 27.32407287 929.261914 0.002152245745 +2.498181459e-06 0.003841157327 -0.009912114611 0 1.509500265 17.74881419 933.7686798 0.002141858089 +2.494919155e-06 0.008681442528 -0.007316515537 0 -18.47987069 -24.81394563 969.829936 0.002062217226 +2.496835023e-06 -0.00644443295 0.01120932095 0 -24.41781599 1.165841784 971.1687755 0.002059374282 +2.497613337e-06 0.005847910615 -0.001203235674 0 17.00972487 12.85964665 975.6565304 0.00204990172 +2.498597484e-06 -0.009588962025 0.01044255992 0 11.55857425 -11.00852902 952.8608821 0.002098942288 +2.497778557e-06 -0.001405709931 0.004920824273 0 3.526134459 18.38363623 887.7681706 0.002252840399 +2.499734472e-06 -0.003678035326 0.003910787303 0 -7.073897898 0.02538329822 970.6755192 0.002060420769 +2.496554134e-06 -0.008467528578 -0.003221181468 0 -21.81833133 9.211479769 901.6757389 0.002218092285 +2.49951136e-06 -0.004408087763 0.006171684216 0 4.740762683 8.062468776 946.0380812 0.002114079803 +2.49907933e-06 -0.006567127462 -0.01185142754 0 -7.871172626 -9.737091854 922.5702106 0.002167856687 +2.49864303e-06 -0.008561322317 0.01090519854 0 -9.747161416 -11.29784284 905.5683803 0.002208557679 +2.499245364e-06 -0.004950781926 -0.0002800801559 0 -10.57499396 -3.793511805 914.3940091 0.002187240927 +2.497962363e-06 0.006211733734 0.01311565523 0 18.61288401 -9.350203859 1031.493409 0.001938936287 +2.49545986e-06 -0.002671288378 0.00871938626 0 -15.83449898 21.53477598 886.4388817 0.002256218721 +2.499327677e-06 -0.003483656179 0.007055014651 0 1.607191781 -11.20303133 975.9140817 0.002049360735 +2.499225999e-06 -0.001833255645 -0.0007706163009 0 12.74942836 -3.039227788 1053.310194 0.001898775888 +2.498918388e-06 0.005394213866 -0.01354030193 0 0.7779357662 13.3114185 906.4491542 0.002206411679 +2.499869576e-06 -0.009306518268 0.001099198787 0 -4.700906238 0.7573207574 932.2735877 0.002145292998 +2.498514247e-06 -0.004599959627 0.007280684297 0 -13.42669937 10.59260717 991.8879395 0.002016356808 +2.497159854e-06 0.007458935631 -0.004317762677 0 -4.828444384 -24.24487872 1036.801555 0.001929009452 +2.498088792e-06 0.007088907594 -0.003451673335 0 14.7039815 9.115497658 884.6252819 0.00226084427 +2.499247165e-06 0.005932250158 -0.001191112418 0 -10.72165538 3.548333465 920.2736206 0.002173266684 +2.498057793e-06 0.002008333961 -0.01182534465 0 -3.781483438 -17.00832981 883.7905467 0.002262979625 +2.496132902e-06 0.009072297742 0.01014684332 0 -8.255156531 25.92087143 977.6145457 0.002045796074 +2.498441833e-06 0.001538681556 -0.0132008209 0 6.397915908 -16.53895236 1004.306383 0.001991424164 +2.496489899e-06 -0.006748057045 -0.0127958986 0 -23.83311818 -13.68561718 1036.716631 0.001929167469 +2.496280895e-06 -0.002079005479 0.01335625428 0 -19.52590148 18.03426823 974.0429658 0.002053297514 +2.499468627e-06 -0.00651565237 0.01220205151 0 9.208587719 -6.012565079 1066.723212 0.00187490061 +2.49641107e-06 -0.002987824199 -0.01412695278 0 13.98928266 -18.82021193 874.8036269 0.002286227375 +2.49651431e-06 0.00271245501 -0.01266673355 0 -18.55239559 -17.7878266 972.9311586 0.002055643899 +2.498986798e-06 0.008101026528 0.01447518045 0 12.49114523 3.406329215 909.3878339 0.002199281677 +2.496615551e-06 0.00651556781 0.002519137845 0 25.20263979 -11.7134699 1067.666067 0.001873244887 +2.498269393e-06 -0.008334262669 0.005309673159 0 17.88238624 8.412370206 1061.964584 0.001883301976 +2.495384583e-06 -0.005413615643 -0.01298972429 0 -13.97800844 -29.28636259 1067.353819 0.001873792892 +2.495095387e-06 -0.009815683938 0.007984466788 0 16.6474799 27.43174164 1023.776967 0.001953550494 +2.498727793e-06 0.001281007235 0.008121489971 0 -14.05541822 -9.718584434 1071.0723 0.001867287577 +2.498218789e-06 0.0007461892674 -0.001269668459 0 -6.296895368 17.07654668 964.0406293 0.002074601359 +2.49717762e-06 -0.005912682982 0.01072259244 0 -4.9632267 23.12652421 995.1341401 0.002009779305 +2.495746868e-06 -0.003752182303 0.001900484974 0 -24.22117824 15.6075116 987.3254084 0.002025674598 +2.49951523e-06 -0.008706113962 0.01269169733 0 -1.370926863 10.11864233 1036.949589 0.001928734068 +2.49831393e-06 -0.008311675307 0.01294295085 0 -8.104465234 -14.05305499 883.1941173 0.002264507837 +2.499275409e-06 0.007088167174 0.01307148904 0 -11.26303881 -2.142761045 952.2861453 0.00210020907 +2.499665444e-06 0.006817777501 -0.011112714 0 -7.583821047 -3.08043162 1000.639267 0.001998722282 +2.499561511e-06 0.009542347146 0.006648946584 0 -6.422124586 5.464313584 900.3662977 0.002221318151 +2.499087982e-06 -0.00587649961 -0.004707295932 0 -1.361258117 13.26664931 987.3234329 0.002025678651 +2.498837076e-06 0.005358109777 -0.01442468104 0 8.254380069 13.60392131 1043.197945 0.00191718169 +2.497311531e-06 -0.002081132689 0.01159435113 0 -4.958655875 21.68804068 959.0517464 0.00208539321 +2.493396782e-06 0.007642807085 -0.007009635998 0 20.28552253 -24.96435494 884.276777 0.002261735298 +2.498699359e-06 0.001915421514 0.00220691124 0 5.255819999 13.97586668 925.6011109 0.002160757994 +2.495752309e-06 -0.006358101582 -0.01087578353 0 -8.887934263 -23.97183795 876.6018676 0.002281537462 +2.498831851e-06 0.008094888479 0.007999299879 0 3.386361701 -12.98964698 878.0824213 0.002277690512 +2.496840015e-06 -0.00480992557 0.0100322926 0 16.79836189 -16.33234516 931.5264906 0.002147013553 +2.497169249e-06 -0.0005688577285 -0.007426345116 0 19.44448682 -8.298595453 888.1400396 0.002251897123 +2.498224093e-06 -0.001471308623 0.007359293047 0 -15.38489362 6.988440809 896.3705276 0.002231220169 +2.498028889e-06 -0.002542967582 0.005349505702 0 2.419512809 18.9099815 959.8827777 0.002083587753 +2.495659798e-06 -0.002416235097 0.01412737546 0 22.26901306 22.21684649 1066.975284 0.001874457666 +2.494065119e-06 -0.008013909091 0.0002105996548 0 -26.76921147 22.86757186 1020.982048 0.001958898302 +2.499781034e-06 0.0005016493332 0.002674421445 0 -1.470721966 6.457141228 1000.703113 0.001998594762 +2.498182406e-06 -0.00798843387 0.0105032145 0 -15.21528979 -7.249298651 883.7330669 0.002263126814 +2.498273773e-06 -0.004129602402 -0.002834624697 0 -19.14024936 2.883002513 1041.460285 0.001920380478 +2.498478134e-06 0.001340938518 0.01223093032 0 -16.79893816 2.310429053 971.7367601 0.002058170569 +2.499100057e-06 -0.0006647340907 0.006994210649 0 -13.99503474 -0.876030619 1045.061619 0.001913762752 +2.497613917e-06 -0.008616713914 0.009603115122 0 -6.70738832 19.43558997 940.8467014 0.002125744818 +2.499038817e-06 0.009569636062 -0.00564950895 0 -12.56942329 3.090853966 933.4339336 0.002142626198 +2.497870772e-06 -0.001621225979 -0.008863634267 0 -7.170744577 16.99941619 893.7781886 0.002237691662 +2.498718968e-06 0.004069976532 -0.01196279005 0 -16.06584469 -3.478777554 1026.774074 0.00194784817 +2.495863419e-06 -0.005507905455 0.01306655355 0 15.88811336 21.24790447 921.832014 0.002169592691 +2.499256466e-06 -0.001436371254 0.007342511988 0 11.86497743 -4.996009988 1055.59417 0.001894667531 +2.494521598e-06 0.009414112545 0.01287505823 0 29.66765263 -14.72077206 999.720381 0.002000559394 +2.499644488e-06 0.007576184766 0.0112078998 0 6.190682273 6.093168179 1030.072984 0.001941609994 +2.49794564e-06 -0.008601193083 -0.01291079627 0 17.90837498 -3.414488358 899.1307705 0.002224370543 +2.499628524e-06 -0.006220173859 -0.008963112077 0 9.158982413 -0.1352896366 1062.649864 0.001882087476 +2.495657838e-06 -0.001148046167 0.001378693159 0 22.47929306 -21.09860847 1045.485713 0.001912986448 +2.496529952e-06 -0.004081336604 -0.005414124483 0 10.98987431 -25.26564982 1045.320007 0.001913289698 +2.498153244e-06 -0.008501751442 -0.01323536063 0 -16.61814808 -6.813940182 934.3016701 0.002140636225 +2.495010707e-06 0.007202094244 -0.0006332060415 0 25.98808076 15.92351871 964.1258002 0.002074418089 +2.497479928e-06 -1.164228655e-05 0.007799240069 0 7.573986079 -18.25018249 879.8089041 0.002273220913 +2.497520014e-06 0.004665487609 0.003126702507 0 11.03681509 19.72935618 1014.691963 0.00197104153 +2.49685544e-06 -0.006086799842 -0.008415966576 0 -16.05170445 -15.57632237 891.4690321 0.002243487915 +2.497985142e-06 0.001779717319 0.0003322291933 0 14.80694212 11.54706731 935.1051703 0.002138796858 +2.496773538e-06 -0.007702070908 -0.009528820901 0 13.35694284 -22.92278465 1043.891077 0.001915908703 +2.499984901e-06 -0.005529705156 0.01001964858 0 0.6582241261 -1.644769966 1019.468079 0.001961807379 +2.497149118e-06 -0.00265503129 -0.0008190593147 0 2.30684293 22.71541202 955.7806335 0.002092530367 +2.49842432e-06 0.001562815174 0.009193346584 0 -10.45829865 -13.93492329 981.2265553 0.00203826526 +2.498730639e-06 -0.003841853696 -0.00778641552 0 -5.846179959 -15.77317363 1055.554335 0.001894739033 +2.499965972e-06 0.003580005569 -0.01425625011 0 -1.829667186 1.96202626 1028.367426 0.001944830174 +2.49828763e-06 0.006403191993 -0.003612619573 0 15.43189252 -8.892059773 962.1647215 0.002078646156 +2.495860062e-06 0.008984812726 -0.01468018747 0 -2.570327218 -28.63245797 998.4348019 0.002003135304 +2.498982205e-06 0.0008647983056 0.007184433269 0 -14.48730876 -3.467827239 1043.938559 0.001915821561 +2.499937393e-06 -0.007411465198 -0.01428485112 0 -0.7659156046 3.300588768 957.5229103 0.002088722869 +2.497532607e-06 -0.007113085003 -0.0005378513248 0 -5.647573484 -19.14022838 898.0061599 0.002227156215 +2.498315248e-06 -0.001313019893 -0.001936619261 0 -10.36572916 15.8635415 1032.084018 0.001937826733 +2.499359217e-06 -0.005357921347 0.009761445809 0 9.255834781 -3.851290068 885.4762948 0.00225867142 +2.499391625e-06 -0.005286331382 -0.001507543093 0 -8.911264679 -5.918441674 969.7191408 0.002062452844 +2.498568107e-06 0.00562589603 -0.007726057407 0 15.9873507 -3.169410174 962.9054652 0.002077047096 +2.496607301e-06 -0.002168301158 -0.01341920586 0 -19.52152388 -17.90242288 1016.323253 0.001967877832 +2.496152617e-06 -0.003464114293 -0.0007051046519 0 11.49249293 -23.91001672 955.7970801 0.002092494361 +2.4984242e-06 0.0004777328437 -0.01346009536 0 -15.07173999 -6.822371318 931.6886194 0.002146639938 +2.496312216e-06 -0.004052569815 0.01201380744 0 -23.80457401 -6.294312804 906.1437572 0.002207155304 +2.49978828e-06 0.008333165757 -0.01329409686 0 -6.859630017 0.7327187944 1060.119983 0.001886578907 +2.498051199e-06 -0.008180724727 0.01042018786 0 -17.43548062 3.703057179 902.5862319 0.002215854762 +2.498109842e-06 -0.007824988272 0.01067941021 0 18.39748357 0.1594262739 945.9920097 0.002114182762 +2.495121227e-06 -0.004704155237 0.002616675168 0 -23.24262547 -18.01190974 940.657248 0.002126172954 +2.493908001e-06 -0.007900607982 0.01009127894 0 -18.00272913 29.56025007 990.6478285 0.002018880921 +2.497948769e-06 -0.0004834803101 -0.006626947001 0 -20.40854984 4.995793104 1037.034319 0.001928576483 +2.497202206e-06 0.0004654617887 -0.0009061947023 0 -18.23531336 -15.84978073 1020.952092 0.001958955778 +2.497121615e-06 0.00660448798 0.01262074453 0 -10.04001772 23.1768548 1052.258794 0.001900673115 +2.498792745e-06 -0.001502863555 -0.0008721682336 0 -12.56469799 -5.615628539 885.5331718 0.002258526347 +2.497264151e-06 0.006846883842 -0.01130999867 0 -14.03556549 -15.78502701 902.6262151 0.002215756607 +2.498766831e-06 -0.002740705027 -0.008239905895 0 2.375589149 16.1933437 1041.966107 0.00191944823 +2.496096894e-06 0.003888256163 0.001268542393 0 -15.02850385 19.31539135 875.4213971 0.002284614023 +2.495927257e-06 -0.00704064033 -0.01329377434 0 -4.420483359 -29.48772551 1044.102482 0.001915520779 +2.499365444e-06 0.002406579419 -0.002992757801 0 -4.76413872 -10.59530092 1031.114805 0.001939648223 +2.499530274e-06 -0.0005904733064 0.01196720385 0 -6.646854016 7.518471983 1035.295087 0.001931816373 +2.499908249e-06 0.001209655972 0.003005739148 0 1.99770805 -3.573100796 955.6171825 0.002092888278 +2.498271152e-06 -0.006176598351 -0.01398159297 0 -15.67204161 4.794961293 881.1514981 0.002269757249 +2.497879015e-06 0.002581370273 0.003058243948 0 -6.477305729 -20.7667369 1055.859687 0.001894191079 +2.497644923e-06 0.0009740353795 -0.0107830479 0 -19.15026203 -11.24879446 1022.987653 0.00195505781 +2.497921806e-06 -0.005015348759 -0.01448608198 0 -20.77938385 -2.658419923 1027.222517 0.001946997819 +2.496338163e-06 0.002874808093 0.01096620447 0 6.698026996 24.97444668 954.9389752 0.002094374669 +2.499781697e-06 -0.008443540712 0.01365263242 0 0.3295997856 -6.860099839 1039.373573 0.001924235955 +2.49955264e-06 -0.002235649265 -0.01091810515 0 5.61044497 -6.857302804 936.6155389 0.002135347874 +2.497180962e-06 0.003231521128 0.0009854288818 0 -8.974565641 22.75336983 1029.663527 0.001942382097 +2.49985217e-06 -0.005867598443 0.006208441216 0 -2.294946398 4.750128622 970.1856071 0.002061461215 +2.496382263e-06 -0.009590567541 0.01474602055 0 -9.52648626 21.99411155 890.581641 0.002245723365 +2.496214801e-06 -0.005779860574 0.0009308074205 0 16.89716971 -20.79928638 973.405565 0.002054642044 +2.497916941e-06 -0.002676881761 -0.0012617828 0 10.62191121 17.59233656 1006.507179 0.001987069781 +2.496426392e-06 -0.005134807634 0.0123884484 0 -16.76278816 20.55729417 991.6524851 0.002016835565 +2.499507393e-06 0.004045710559 -0.002539339405 0 -2.214303364 -8.540652889 888.8340484 0.002250138824 +2.497255448e-06 0.004610842699 -0.002158757604 0 -15.18732601 -14.90946217 908.0171458 0.00220260158 +2.499274996e-06 -0.0001391194807 -0.01062979333 0 2.805610871 12.25957568 1044.306067 0.001915147352 +2.49809748e-06 -0.00195394495 0.01486937324 0 -18.59124659 -1.261615806 954.9983242 0.002094244513 +2.499116936e-06 -0.002415998196 -0.006527981493 0 -3.618844412 13.16507707 1027.240297 0.00194696412 +2.49830855e-06 0.005976775205 0.001858677501 0 -2.297482472 16.91867987 928.0672882 0.002155016156 +2.497646784e-06 0.0001543267397 0.005638618909 0 9.68894883 -19.9018191 1019.953132 0.001960874414 +2.498300907e-06 0.005478934776 -0.001606666425 0 -0.3610351813 16.16063865 876.6629041 0.002281378613 +2.499683147e-06 -0.00687846378 -0.01158781968 0 4.966581809 -5.850312976 963.9785311 0.002074735002 +2.494087397e-06 -0.004563702703 -0.00703748821 0 -23.63580684 -20.59600789 910.8628378 0.002195720274 +2.496078479e-06 0.006665382185 -0.008930198306 0 6.282131334 -23.69583281 874.8307558 0.002286156479 +2.496417652e-06 -0.0008442196017 -0.00349327337 0 -20.77575393 16.89268262 999.8286254 0.002000342808 +2.495702275e-06 0.006274193362 0.01262419956 0 21.07790436 -14.89641768 879.7954265 0.002273255736 +2.499455161e-06 0.005203502644 0.01048497264 0 0.6966920978 10.51785035 1009.701416 0.001980783594 +2.496087628e-06 -0.003464851365 0.01269884137 0 16.9243744 22.6331716 1009.718607 0.00198074987 +2.498288293e-06 -0.004659686214 0.002965813985 0 18.81737551 1.592853186 1020.394695 0.00196002587 +2.497718051e-06 -0.001659901626 -0.005906678662 0 -5.974348493 -18.52037113 910.6033073 0.002196346075 +2.495656042e-06 0.005619700486 -0.001744333806 0 -18.44494463 19.15782445 901.6580069 0.002218135906 +2.496568926e-06 -0.003689112728 0.006782490648 0 -5.888630122 27.24064451 1063.361537 0.001880827856 +2.498655684e-06 0.006206298452 0.01110811844 0 -4.075108859 16.63114988 1044.070612 0.00191557925 +2.497358241e-06 0.009634021209 0.01418996764 0 -14.02801224 18.93374832 1024.752745 0.001951690308 +2.498288077e-06 0.008684901418 0.002808638373 0 -16.50913353 10.09381677 1045.491395 0.00191297605 +2.499827109e-06 0.007221138072 -0.00375664511 0 -5.676018219 -2.096675662 1028.979812 0.00194367273 +2.499871399e-06 -0.005121941357 -0.003051786963 0 -4.883607735 -0.03407087062 962.9533181 0.002076943879 +2.498270671e-06 -0.002532866192 0.008061724494 0 -3.605270268 16.974129 932.8301282 0.002144013084 +2.499682822e-06 -0.005242026965 -0.01234508532 0 -3.171815636 -7.714490833 1047.214089 0.001909829157 +2.499972149e-06 -0.00761123857 -0.001716850873 0 1.294837728 -1.790328986 936.1777118 0.002136346524 +2.496395365e-06 -0.006744999248 0.002625417989 0 -22.09656506 10.44345981 909.7548092 0.002198394534 +2.499607041e-06 -0.004436938618 0.002220556273 0 -9.000075689 -1.408047227 1027.501972 0.001946468284 +2.496649443e-06 0.004650871363 -0.008688727459 0 18.22074844 -14.4410672 897.6809768 0.002227962998 +2.499220604e-06 0.003095813757 -0.01169444931 0 8.851491893 9.788422836 1056.895052 0.001892335475 +2.499711184e-06 -0.007246758579 0.01180247804 0 -5.399507912 -4.824885387 952.7140798 0.002099265711 +2.496209091e-06 0.00161671523 0.002658169039 0 17.5478641 -21.00745121 993.5205457 0.002013043423 +2.494955099e-06 -0.007689432898 0.001715384061 0 -18.06202096 22.3394157 903.7160783 0.00221308445 +2.49770178e-06 -4.559397697e-05 -0.006915719337 0 -17.87284853 -8.741677631 927.7005642 0.002155868043 +2.498850874e-06 -0.007853705883 0.001679362273 0 0.7035261988 16.01149952 1057.005015 0.00189213861 +2.494535057e-06 0.009488880709 -0.01495185894 0 20.16039189 -24.87723394 967.7543469 0.002066640162 +2.495872663e-06 -0.001164536746 -0.00796482034 0 -25.11451702 -16.29439476 1041.344976 0.001920593123 +2.496364168e-06 0.0003882485768 0.006738088955 0 -20.71460822 -13.94013096 925.4165408 0.002161188948 +2.49995521e-06 0.003466390874 0.00553032171 0 2.648250129 0.5595576519 904.3501721 0.002211532724 +2.498153607e-06 -0.0004750225041 0.00995959942 0 -16.68454189 7.631137249 954.4757387 0.002095391133 +2.49716785e-06 -0.002471850747 -0.01449674277 0 -6.819263392 -20.79111016 918.9818097 0.002176321641 +2.497000063e-06 0.002490357803 0.005435650928 0 19.06586102 16.3582678 1025.138407 0.001950956072 +2.499224509e-06 0.008601379036 -0.006414863749 0 9.60107267 -7.014911153 954.6733611 0.002094957377 +2.498357707e-06 0.008587432168 -0.00864435087 0 -16.74636311 9.092478409 1051.172552 0.0019026372 +2.495932337e-06 0.003832114139 0.009316534095 0 11.21462032 24.87744368 956.1474186 0.002091727657 +2.497365837e-06 0.009089830583 -0.004185745921 0 21.22490632 4.997091007 949.6255959 0.002106093189 +2.49373869e-06 -0.006210031011 0.01276118144 0 -22.33538789 24.25279075 930.8340793 0.002148610633 +2.496422657e-06 0.008915720629 -3.795144148e-06 0 26.10078169 -5.457431609 996.3612183 0.002007304142 +2.496580824e-06 -0.0007034120755 0.005472524017 0 -21.08608086 14.89746145 986.7795177 0.00202679521 +2.498701996e-06 -0.0097559166 -0.01164920129 0 13.64554758 -9.149566931 1019.474513 0.001961794998 +2.495750645e-06 0.004649650292 -0.00586607761 0 13.00775431 -25.23649139 973.2762019 0.002054915137 +2.499154858e-06 0.00978682158 0.01105154474 0 -5.11940307 10.65878378 909.3822305 0.002199295228 +2.495462529e-06 0.009751604167 0.005414061849 0 22.77631421 -16.66827128 936.2679487 0.002136140624 +2.498597407e-06 0.003427227172 0.006795307437 0 -3.826106111 15.3864822 946.4457403 0.002113169213 +2.499326199e-06 -0.0008052092791 0.01472109555 0 -8.057419127 -8.677394526 1019.950022 0.001960880393 +2.495478055e-06 0.005679007224 0.002616433622 0 26.6419609 -12.86591001 983.1332129 0.002034312313 +2.499555554e-06 0.001389421122 0.005276642467 0 -8.441378677 -4.901148542 1035.244594 0.001931910596 +2.49633823e-06 0.001322965682 0.009182569908 0 0.4151706926 27.20774179 1004.948521 0.001990151693 +2.497065629e-06 -0.005713498252 0.008954609369 0 22.16321065 12.48022168 1049.485061 0.001905696493 +2.496445037e-06 0.009250123873 0.004875684294 0 22.87627124 -11.62464593 961.8318944 0.00207936544 +2.495153734e-06 0.002609811481 -0.01154503376 0 16.15230733 -23.53316709 916.1490176 0.002183050968 +2.499057956e-06 0.002919618818 -0.002474613532 0 -3.088871539 -12.52878392 939.9619417 0.002127745722 +2.498964053e-06 0.0004500812432 0.01488695607 0 11.72128081 9.2905494 1038.925343 0.001925066139 +2.497220859e-06 -0.00685952079 0.000963100302 0 21.39508343 12.10413392 1042.222292 0.001918976417 +2.499548154e-06 -0.003393067303 0.008994648443 0 -7.32777843 6.279525658 1015.084428 0.001970279461 +2.49863167e-06 0.009732019096 -0.00444909913 0 12.88013218 -8.29033518 925.7415893 0.002160430106 +2.496749346e-06 0.00868328175 -0.000387798117 0 6.919621563 25.90446914 1051.063233 0.001902835088 +2.498314475e-06 0.00925558961 -0.01363902905 0 -14.51295603 -12.58148069 1045.859767 0.001912302264 +2.495413252e-06 -4.827735946e-05 -0.007474521257 0 19.32190115 -24.78550306 1036.899365 0.00192882749 +2.498487912e-06 0.001585052521 0.01383473183 0 -14.60156273 -5.940133011 906.2606228 0.002206870683 +2.499599475e-06 0.00208952127 0.01074796915 0 -4.533520772 -6.696127617 903.4477228 0.002213741813 +2.499312376e-06 0.005374406441 0.007121229752 0 -7.040088251 8.809635738 961.5267691 0.002080025293 +2.499802362e-06 0.003859274779 0.01452402071 0 -3.43004719 -5.132033181 981.7841803 0.002037107585 +2.494861702e-06 -0.006119566988 -0.004903052473 0 -19.24322748 -22.36428635 919.6350173 0.002174775821 +2.498558284e-06 -0.00636751283 -0.003477717431 0 -12.37949482 -12.98175162 1056.1588 0.001893654629 +2.497642148e-06 0.002894633897 -0.01120217713 0 -21.07405623 -2.720107701 978.1580693 0.002044659307 +2.495574902e-06 -0.006596835027 -0.01013043856 0 -7.221684219 -27.59226369 958.0982349 0.00208746862 +2.498523052e-06 -0.0005118903471 0.01064003458 0 -13.90520457 -6.659427038 896.8569472 0.002230010044 +2.498860803e-06 0.003568685767 -0.01449210996 0 14.42783487 -6.020098603 1035.536714 0.001931365613 +2.499994067e-06 -0.007717977492 0.002104540395 0 -0.354259894 1.029538009 999.4809248 0.00200103869 +2.49774204e-06 0.006561955838 0.003624828737 0 -18.66048942 5.629447401 916.8893747 0.002181288229 +2.498318406e-06 -0.005113616181 -0.002798011957 0 -13.72219742 -14.02058889 1069.485704 0.001870057722 +2.499809404e-06 0.003881482654 -0.0111447089 0 1.541349356 6.166454497 1029.464479 0.001942757657 +2.49964852e-06 0.004389930549 -0.002249456893 0 -5.321682807 5.394115887 903.7139133 0.002213089752 +2.499526288e-06 0.009387127948 0.009883078057 0 -6.150823292 6.777578559 940.2353992 0.002127126889 +2.496517791e-06 0.007678678064 -0.005153118724 0 2.554917655 -27.24472188 1036.368574 0.001929815366 +2.499695277e-06 -0.008699255311 0.01493666979 0 6.147066603 4.411817163 969.1753478 0.002063610063 +2.494942579e-06 -0.006385224601 0.007436435809 0 15.64254911 26.76754501 974.081934 0.002053215371 +2.495218743e-06 0.004309874228 -0.00884588581 0 9.950658195 -27.58570594 947.6502983 0.002110483164 +2.498249242e-06 0.002953656423 -0.008390843973 0 -13.86188565 11.09664052 948.660972 0.002108234721 +2.499345897e-06 0.008869316694 0.002321009778 0 7.365200532 -9.639053564 1060.49934 0.00188590405 +2.498600053e-06 0.001397915543 0.01082473918 0 -12.82298113 7.405198368 884.7559388 0.002260510399 +2.499949657e-06 -0.0002588521643 0.01062203449 0 -0.3842616114 2.767283948 880.4702661 0.002271513391 +2.498157526e-06 0.00062807546 0.002906968673 0 14.4701954 12.21860913 986.3214313 0.002027736533 +2.499570186e-06 0.009501934471 0.007938123525 0 8.587734805 3.561326234 1002.662261 0.001994689615 +2.49833798e-06 -0.0004402103927 0.003659490324 0 8.99978435 15.17760353 967.5804765 0.002067011529 +2.494848099e-06 0.005847461419 -0.01137740134 0 19.82792162 -20.01046954 876.9132931 0.0022807272 +2.49901e-06 0.007420201027 -0.003517238125 0 8.412946215 -11.10365997 989.8762965 0.002020454482 +2.497929895e-06 0.009994190442 0.01001497205 0 -5.916628359 -20.94418748 1069.276023 0.001870424433 +2.498476259e-06 -0.007633581529 0.01382884781 0 4.31718315 17.15645863 1013.187611 0.001973968076 +2.499420702e-06 -0.004556228598 -0.003271866844 0 -2.140982008 -10.72103732 1015.60475 0.001969270034 +2.49713966e-06 -0.001227522879 0.01432231505 0 7.021439204 23.7710556 1035.86341 0.001930756488 +2.498889297e-06 -0.003589849854 0.00250959771 0 15.8043797 -0.6995509508 1061.245993 0.001884577198 +2.497862138e-06 0.008030765848 -0.003727524737 0 -18.64746013 6.404239483 953.2056646 0.002098183083 +2.498332226e-06 0.002385008656 0.003742488089 0 3.778364996 15.58332593 877.7530605 0.002278545174 +2.495636311e-06 -0.005992983072 0.01411555886 0 15.00099456 24.72881775 978.4036382 0.002044146119 +2.497882738e-06 -0.005052430467 -0.01246708942 0 -9.028422133 19.12911845 1027.602102 0.001946278618 +2.494246173e-06 0.0002064072387 -0.009250293395 0 -17.60445734 -30.91844477 1047.913498 0.001908554479 +2.496791058e-06 -0.006374759688 -0.009829547012 0 2.510602445 -25.16230008 997.6915402 0.002004627602 +2.496599852e-06 0.009927256852 0.000393237609 0 17.0951672 15.83681918 893.1701455 0.002239215014 +2.494772766e-06 -0.003609171347 0.01372969062 0 16.33482096 28.86116071 1024.857868 0.001951490116 +2.499925375e-06 0.006103196852 0.007441131156 0 -1.364733401 3.346228354 935.4150157 0.002138088406 +2.494384699e-06 0.002669702889 -0.01414205577 0 -20.40488778 -28.66738595 1049.117018 0.001906365034 +2.497412413e-06 0.009604242546 -0.0004307115963 0 -7.134823603 -21.9225403 1013.029038 0.001974277069 +2.498463364e-06 -0.005252032676 0.004504927921 0 -10.68574177 -14.27007764 1016.693586 0.001967161029 +2.497334306e-06 0.006553243399 -0.009925483202 0 17.96944891 -12.10494069 937.9762873 0.002132250066 +2.49685277e-06 -0.002607087875 -0.0007946112938 0 -26.01010338 -3.856040369 1047.559198 0.001909199981 +2.49977658e-06 0.007030715463 -0.002538758176 0 -3.321397728 4.921741206 888.2206551 0.002251692739 +2.499116021e-06 -0.005974877365 -0.0108177398 0 -11.44405381 2.136191019 875.4345072 0.00228457981 +2.497083363e-06 -0.004563321029 0.005794686251 0 21.2693435 -13.92198635 1052.057311 0.00190103712 +2.495543378e-06 0.002060221219 0.01093546856 0 18.58388738 21.75970678 957.8391072 0.00208803335 +2.496183966e-06 0.008465271555 -0.005236835636 0 18.03028828 -20.77839992 995.2454958 0.002009554435 +2.499174061e-06 -0.004929272626 -0.007250369699 0 -6.228804323 9.956747276 913.6799552 0.002188950287 +2.498185262e-06 0.002417838494 0.01179451214 0 18.29994141 5.977158312 1010.231322 0.001979744596 +2.49919184e-06 -0.0002730513737 -0.007351880854 0 11.60915291 -2.047350172 927.1175976 0.002157223642 +2.497768642e-06 0.004061430432 0.0003635772108 0 -18.12584946 7.298837273 924.663968 0.002162947913 +2.493466e-06 -0.006968146614 -0.01449200008 0 -23.86699322 -27.37261241 1003.631085 0.001992764104 +2.499895395e-06 0.001404421059 0.00963214407 0 -3.20176541 -2.45152468 881.6151 0.002268563685 +2.495045655e-06 -0.004214885146 -0.008179886614 0 -21.95852931 -17.83319515 897.9829074 0.002227213885 +2.497862238e-06 -0.002469639014 -0.008202860041 0 5.098250767 -20.44185571 1018.567418 0.001963542094 +2.497422518e-06 -0.004807139477 -0.005074500712 0 -9.888102171 20.3222918 995.0202702 0.002010009303 +2.496463748e-06 0.005092100753 0.008875603178 0 10.2613525 22.96949778 945.4707474 0.002115348365 +2.4966081e-06 0.004414949673 0.01054288844 0 -23.02167131 -14.62761493 1046.690908 0.00191078377 +2.496119483e-06 -0.008124816362 0.00594589202 0 -23.98202306 -12.25706864 966.2020809 0.002069960353 +2.498134154e-06 -0.005574043384 0.01459666359 0 -18.73445187 0.4878221584 969.8704064 0.002062131174 +2.498904482e-06 -0.008469681181 -0.01240518588 0 -14.03089783 2.492280203 962.575543 0.002077759002 +2.498553934e-06 -0.006211733725 0.0138893952 0 0.5919359014 14.98226207 881.4805898 0.002268909858 +2.497425726e-06 -0.0006635571178 -0.007121304127 0 -12.82063626 16.12028562 907.3853135 0.0022041353 +2.498939751e-06 -0.007708859881 0.01077717831 0 5.800018095 13.39099504 1001.98216 0.001996043523 +2.497233246e-06 -0.003519082661 0.002303331618 0 10.08347259 21.19090442 997.2156616 0.002005584225 +2.497869809e-06 0.009627130008 0.005221325385 0 -10.03883943 -15.52198147 895.2944729 0.002233901873 +2.497987409e-06 -0.009456024207 0.004598157958 0 -12.57481289 -16.87154838 1048.497999 0.001907490526 +2.494497682e-06 -0.009984392719 -0.01256570599 0 13.22601632 -31.26405779 1022.466567 0.001956054179 +2.499580754e-06 0.007754242043 -0.0005543216108 0 -9.368992268 1.444459774 1035.18353 0.001932024555 +2.498047811e-06 -0.005745744347 0.005821127559 0 -18.27874291 2.151583696 931.1746935 0.002147824693 +2.498858203e-06 -0.00972674388 -0.01367285803 0 -1.440514257 15.06591042 1001.354158 0.001997295347 +2.498900326e-06 0.0004071702668 0.01139699129 0 13.12370601 1.940907946 894.4089783 0.00223611351 +2.494312907e-06 0.009462425648 -0.002740373074 0 22.97359542 -23.74241587 978.7652119 0.002043390974 +2.49912698e-06 0.00836669072 0.005402696645 0 11.77633376 0.05287108363 891.1085001 0.002244395604 +2.497110203e-06 0.007969949697 0.01457929597 0 1.28278368 23.89924266 995.1115937 0.00200982484 +2.494533841e-06 0.008909984245 0.001898385566 0 25.19474614 -18.56033693 945.6637492 0.002114916641 +2.49875054e-06 0.002731526247 -0.002610013965 0 -7.742196931 14.3937138 1033.703624 0.001934790546 +2.498877503e-06 0.004732309985 -0.01040599222 0 12.37684165 7.224857129 956.3202645 0.002091349597 +2.499453331e-06 0.001938753519 -0.0002933275024 0 -7.581183249 5.962634358 922.3432818 0.002168390055 +2.496818661e-06 0.003209812595 0.002181976845 0 12.96199857 -19.4110915 924.8957354 0.002162405905 +2.497634852e-06 -0.003990135579 -0.005419630597 0 -18.57961334 -11.20039666 997.1286445 0.002005759248 +2.49996149e-06 0.002502898639 -0.006388683007 0 1.867395331 1.624888358 891.9349436 0.002242316006 +2.494789688e-06 0.003757413141 -0.00685929907 0 -21.37200428 -24.93937168 1016.64831 0.001967248635 +2.498165089e-06 -0.007915075202 -0.008358160907 0 10.15989967 -15.30481762 958.6712026 0.002086221005 +2.49902278e-06 -0.001526924577 0.007444108988 0 -5.901308172 13.1032621 1027.796663 0.001945910191 +2.498565048e-06 -0.005655296561 0.00466996128 0 -15.53005312 -4.926437467 961.5370765 0.002080002996 +2.498213994e-06 0.003574563111 -0.01347413815 0 -3.113259507 -17.02899008 915.7043759 0.002184111 +2.498336808e-06 -0.008394962396 0.01179416683 0 13.84907634 -13.39445328 1056.12248 0.001893719751 +2.499003698e-06 -0.0005443868227 -0.009522333043 0 -6.112761889 -11.1163376 898.5763959 0.002225742863 +2.496836163e-06 -0.009876125688 0.01138338994 0 1.28810624 22.17817414 882.7318084 0.002265693817 +2.495191562e-06 -0.002162614036 -0.008957933025 0 -22.50202743 -17.95609609 927.6508164 0.002155983657 +2.498704897e-06 0.003796578585 0.006018676073 0 6.216426838 13.64186404 931.3069312 0.00214751972 +2.498566441e-06 -0.001605283613 -0.005010076908 0 -16.45283482 7.189547385 1060.160005 0.001886507688 +2.497857705e-06 -0.002360995659 0.003416804729 0 -10.54722659 -19.47280447 1069.537545 0.001869967079 +2.497385744e-06 0.008648621938 0.01256191711 0 -10.81270807 19.32537729 968.0751926 0.002065955223 +2.499752421e-06 0.002559106466 -0.01402098522 0 -3.562844089 6.630218897 1069.611944 0.001869837011 +2.498811044e-06 -0.008541123583 0.01067704815 0 -15.21992163 4.74829888 1033.726888 0.001934747004 +2.497948514e-06 -0.00965541143 0.01354505941 0 18.20336415 -8.206117342 985.4659939 0.002029496718 +2.498546387e-06 -0.009887127546 0.01153803582 0 10.77690598 -12.36623823 961.8226558 0.002079385413 +2.4991446e-06 0.003977991752 0.009612560717 0 -6.828999379 9.514871099 895.3048901 0.002233875881 +2.497179903e-06 0.0008561449405 0.009884885657 0 -13.21837996 20.57070247 1029.143455 0.001943363668 +2.499596613e-06 -0.003258360219 0.005898318901 0 4.094816006 -6.933618394 896.4539407 0.002231012559 +2.497876798e-06 -0.002299558483 0.007232315443 0 11.03155202 -17.52758682 1004.696383 0.00199065114 +2.498498567e-06 -0.003792993515 -0.007149721545 0 -3.769138357 -15.58520788 925.1016898 0.002161924491 +2.498867935e-06 0.003469653586 -0.002154409855 0 9.763976497 -9.478767145 904.2224069 0.00221184521 +2.499420729e-06 0.0059376805 -0.004882604408 0 7.638808991 -5.580576728 878.8278392 0.002275758585 +2.495592054e-06 -0.009239612864 -0.00597131816 0 -30.92016965 5.986780531 1060.017685 0.001886760974 +2.497994537e-06 0.004867709922 0.0082809181 0 -17.24260496 9.823386877 990.5772349 0.002019024796 +2.497359648e-06 -0.0001077799918 0.001575243173 0 22.45576007 -6.463469178 1016.467014 0.001967599511 +2.498193814e-06 0.004091093787 -0.01320445314 0 19.15622348 4.910171586 1040.192346 0.001922721319 +2.498880609e-06 -0.005537311626 0.009759584866 0 6.6547841 13.73515665 1019.86788 0.001961038326 +2.498758546e-06 0.008411606322 0.00851584442 0 14.28542059 8.235652463 1046.267669 0.001911556727 +2.496901167e-06 -0.008481844072 0.009480048632 0 19.25567375 16.8192535 1026.508676 0.001948351775 +2.496640648e-06 -0.004200924672 -0.002246258527 0 6.42570199 -23.87454366 953.3659132 0.002097830405 +2.496334521e-06 0.009240798517 0.0005229272065 0 26.94591356 -9.075758446 1049.561104 0.00190555842 +2.497645034e-06 -0.009116978282 -0.004803383367 0 16.20043381 -15.02870976 1017.864057 0.001964898933 +2.496534842e-06 -0.008652023138 -0.008709898225 0 9.69515068 -25.50043913 1035.767763 0.001930934782 +2.498511111e-06 -0.002348445142 0.003752179267 0 3.060041693 16.72196066 984.9100951 0.002030642198 +2.495079704e-06 -0.002006330234 0.0136856326 0 3.052468789 28.51251695 913.4373104 0.002189531758 +2.497017344e-06 -8.361057844e-05 -0.003168416598 0 -15.07857309 20.90015381 1054.706979 0.001896261275 +2.4992187e-06 0.001498345369 -0.006561362164 0 8.57584471 9.526956739 1025.308791 0.001950631865 +2.49813594e-06 -0.005456219632 0.00325935839 0 -16.12390284 -12.40512206 1053.329228 0.001898741577 +2.497081857e-06 -0.008668956789 0.0005168514163 0 16.54209995 -18.73068056 1033.952499 0.001934324839 +2.498110441e-06 -0.0008399578277 -0.004140936902 0 -9.817144252 -16.70374652 996.3773444 0.002007271654 +2.495956766e-06 -0.008191451007 -0.009499455148 0 -6.174591867 -28.47303992 1023.928835 0.001953260746 +2.497725746e-06 -0.002675025985 0.01485338914 0 20.79153453 2.971732972 984.4535648 0.002031583887 +2.499120772e-06 0.009580879505 -0.001025130611 0 7.3512012 -10.05472772 939.1513692 0.002129582159 +2.497498819e-06 -0.000421735202 -0.006643040031 0 -23.25290718 3.372541418 1050.139981 0.001904508004 +2.499004516e-06 0.003027822846 0.007304647474 0 -13.31543983 -0.9483690509 945.9263402 0.002114329536 +2.495944414e-06 0.004139153794 0.00521568368 0 -22.74020289 -20.22255141 1067.862501 0.001872900301 +2.497394293e-06 -0.005174329821 0.009626787531 0 13.83364385 17.82216726 987.8954214 0.00202450579 +2.496888429e-06 0.007871519709 -0.001928990814 0 15.46321891 -17.12519947 924.495193 0.002163342779 +2.49383956e-06 -0.005465272437 0.01325642013 0 -25.52894256 22.97264734 977.5088478 0.002046017286 +2.495613825e-06 0.004780070097 -0.01353369459 0 15.26960278 -22.98472027 931.0630101 0.00214808233 +2.498476405e-06 0.001675239461 -0.0003044841299 0 -16.79518979 -3.298215515 980.2855048 0.002040221946 +2.49661195e-06 -0.00945828639 -0.008023340029 0 -19.82624257 -19.11099962 1057.335173 0.001891547781 +2.497356029e-06 0.002936434126 0.0008098658198 0 -17.41080253 -13.32119726 952.9538024 0.002098737625 +2.497758439e-06 -0.00516259029 -0.004923546966 0 -0.2056654987 22.38985829 1057.141943 0.001891893528 +2.499065454e-06 -0.001594183738 -0.01168682833 0 -5.524114217 13.06745365 1037.570805 0.001927579295 +2.496082152e-06 0.006747205001 0.007526031921 0 18.08202459 18.84719769 932.5114838 0.002144745705 +2.498077725e-06 -0.00881381759 0.01118204503 0 5.054107617 -17.05285124 906.8419746 0.002205455919 +2.494731068e-06 -0.006290842695 0.008738580903 0 -19.0347102 28.57253356 1056.777535 0.001892545908 +2.499840347e-06 0.006451845011 -0.0009056564793 0 4.60487157 -2.053221035 892.2336405 0.002241565336 +2.496916759e-06 -0.008478421881 -0.009224898282 0 -2.550061273 -22.95311435 929.577796 0.002151514385 +2.496304937e-06 -0.002934376071 -0.001794129554 0 -15.80779363 -19.95583779 935.9691472 0.002136822572 +2.499956256e-06 0.007712762207 -0.0113783523 0 2.335345904 2.069062486 1054.847177 0.001896009246 +2.495656594e-06 -0.003884073696 0.005339153779 0 -19.3404229 18.27392249 902.1933535 0.002216819701 +2.499951917e-06 0.002890362595 0.001325151685 0 -0.7478916581 -2.830766879 944.1567414 0.002118292347 +2.499979621e-06 -0.00999682893 0.0005549914856 0 -1.285283807 -1.624739334 1026.148597 0.001949035457 +2.497877545e-06 -0.0006859869743 -0.01454785304 0 -2.162510928 -18.16360762 887.5359482 0.002253429852 +2.499798943e-06 -0.00149100902 0.006053741646 0 4.679717943 4.747306877 1051.194225 0.001902597971 +2.499767966e-06 0.005083856131 -0.0003717341507 0 -6.029534685 -1.198879076 902.3974283 0.002216318373 +2.496542297e-06 0.003348699533 0.01215512011 0 17.28257484 19.55315693 991.8444207 0.002016445279 +2.49814545e-06 0.006409930037 0.008068870793 0 -9.591145178 16.21095982 977.7495508 0.002045513596 +2.499859244e-06 -0.005131289889 -0.00635025203 0 -3.21330906 -4.477390743 1038.681158 0.001925518708 +2.497326808e-06 -0.006749780541 -0.01442865034 0 -15.35018078 17.15748694 995.2603263 0.00200952449 +2.497682725e-06 -0.003108824375 0.007688067472 0 17.25404882 9.590324934 916.6368413 0.002181889174 +2.498985248e-06 0.007677930896 -0.001500306514 0 10.04343657 -10.74778095 1032.411478 0.001937212094 +2.496922404e-06 -0.001705534551 0.004886040611 0 -9.811978835 23.05111902 1009.322781 0.001981526662 +2.496382985e-06 0.002820830401 -0.009527846128 0 22.90114008 -8.502574349 907.7629128 0.002203218453 +2.494137132e-06 0.002031010003 0.01313383206 0 19.74734743 27.20249591 980.7855192 0.00203918182 +2.493104498e-06 0.0003467227053 -0.01357735777 0 -23.01207236 -26.89934149 952.2486612 0.002100291743 +2.499719825e-06 0.00497602582 -0.009524358921 0 7.239769849 -2.094077809 1006.755746 0.001986579176 +2.499824736e-06 -0.0009707884025 0.007955261541 0 -2.81337102 -5.153246698 991.641747 0.002016857405 +2.499339842e-06 -0.008852455802 -0.007012452206 0 -8.591268661 -6.44053854 934.361274 0.002140499671 +2.498841269e-06 0.00184302452 0.0005654844479 0 7.423598701 -12.87234358 975.9435985 0.002049298754 +2.499809474e-06 -0.008633473571 -0.001762890012 0 4.161215403 5.031993112 1057.761237 0.001890785869 +2.499821214e-06 0.007854771167 0.01483233236 0 -2.751183314 -4.990820016 953.0078991 0.002098618492 +2.49972696e-06 0.002293166709 -0.009120013188 0 3.051184525 6.839486809 1013.422549 0.001973510459 +2.497126848e-06 -0.002482881811 -0.006680413485 0 18.46513717 -13.30324198 948.9802129 0.002107525502 +2.498778967e-06 0.009585840944 -0.005007693095 0 -10.95418583 -11.38915998 1011.014258 0.001978211469 +2.495628466e-06 -0.007091412153 -0.01000905794 0 -27.56250435 12.02947178 1016.396865 0.00196773531 +2.499359994e-06 -0.003625972648 -0.001983109941 0 4.832937302 9.978957827 979.9238556 0.002040974907 +2.498078968e-06 0.001972074131 -0.00957667093 0 -12.6010314 -12.11058595 891.382656 0.002243705312 +2.498846413e-06 -0.009444863168 0.005640881241 0 5.428717593 -12.50106765 897.111232 0.002229377951 +2.499737241e-06 0.00855347692 0.009123174087 0 -6.456886797 3.358000657 1003.907441 0.001992215535 +2.499405135e-06 -0.004368047924 0.0001696079713 0 1.587570251 -10.04836206 932.5803687 0.002144587284 +2.499339343e-06 0.004183992399 -0.006728517143 0 -0.08625164037 -11.08268643 964.0777503 0.002074521479 +2.497606725e-06 0.004532070686 -0.008233416884 0 0.340197098 -19.88531643 908.7171666 0.002200904829 +2.496789425e-06 -0.0003597928444 -0.001392565579 0 -20.60624714 -17.08877153 1055.931887 0.001894061562 +2.495079012e-06 0.009301609453 0.01266879962 0 25.46527775 20.24989945 1036.314076 0.001929916853 +2.498242622e-06 -0.009812543066 -0.01265259782 0 -16.21499318 -4.453575735 896.7000092 0.002230400334 +2.497749284e-06 0.009132276024 -0.0001530897757 0 19.7440874 7.294735066 991.7460935 0.002016645201 +2.498418877e-06 0.006988699557 0.002771297966 0 -14.6508871 -7.643481597 929.0459444 0.002152746064 +2.497145329e-06 -0.005952936257 -0.01038786695 0 -25.52222214 0.04068539025 1067.677077 0.001873225568 +2.498184411e-06 0.004659483065 0.0064519255 0 -14.97662417 -7.986840592 890.4738642 0.002245995172 +2.499147796e-06 -0.008566660346 -0.009042203827 0 10.23020449 -7.989967168 994.1533473 0.002011762074 +2.497760291e-06 0.009886039156 -0.002739031124 0 17.77600135 12.76200363 1033.582736 0.00193501684 +2.497704826e-06 0.007369252285 0.001580983303 0 -8.60524151 -17.05399297 891.267134 0.002243996131 +2.499153819e-06 -0.008284958815 -0.01206618658 0 2.094521712 13.70963739 1065.944047 0.001876271092 +2.498747977e-06 0.00523858543 -0.004817766328 0 -0.6171298636 16.03154127 1013.664206 0.001973039975 +2.499551671e-06 0.001153398277 0.006147331058 0 -7.362199678 -6.454172366 1033.884789 0.001934451518 +2.49955709e-06 0.003547775191 -0.01036266297 0 5.495625051 -7.970855547 1028.614034 0.001944363906 +2.497878869e-06 0.00663565713 0.008491559476 0 13.72322332 15.9048425 1019.589919 0.001961572946 +2.498190481e-06 0.002132512429 -0.005411563371 0 7.058449745 -17.51328596 992.2880949 0.002015543682 +2.497112063e-06 -0.00684825446 0.003618955154 0 17.86380968 15.12188407 973.4391539 0.002054571148 +2.497936401e-06 0.0009724356234 0.01405098243 0 11.68415229 13.73680139 887.4133121 0.002253741264 +2.497850219e-06 -0.002582677836 -0.004323203454 0 -19.84565962 -8.614357514 1043.031261 0.00191748807 +2.497509943e-06 -0.004566473966 -0.008350000558 0 21.32930781 -6.815769116 1003.015582 0.00199398697 +2.497355664e-06 -0.007271956117 -0.01335788896 0 -7.89050812 -19.83784951 927.9864747 0.002155203825 +2.497582648e-06 -0.007609407627 0.00451480834 0 12.20997176 19.34635797 1040.063502 0.001922959508 +2.499280777e-06 -0.001693993774 -0.008360180457 0 5.227385301 10.31390933 963.9972638 0.002074694685 +2.499650607e-06 -0.006263961373 0.001550545881 0 -4.824860791 -5.700901091 893.3937354 0.002238654605 +2.49669581e-06 0.009486395079 0.007034707067 0 -5.157444479 24.38071209 968.9232108 0.002064147063 +2.499303753e-06 0.00415768554 -0.01423365702 0 8.919181316 -7.17372483 969.8779089 0.002062115223 +2.499933071e-06 -0.008679421726 -0.006037267239 0 -1.480884893 -3.249590509 976.0630802 0.002049047895 +2.497599714e-06 -0.004085725206 0.007672310255 0 -12.35190564 16.69485754 947.5032729 0.002110810651 +2.49587524e-06 -0.007312612585 0.005887382906 0 -23.57093591 18.42805943 1041.052255 0.001921133153 +2.498960344e-06 -0.00713187858 -0.01363142658 0 -10.36045757 11.15364393 1055.542413 0.001894760433 +2.499494641e-06 -0.004716424332 0.005074070978 0 -7.95202601 5.110075665 940.1417065 0.002127338875 +2.498652486e-06 0.004549241005 0.01076040842 0 15.18444093 -7.235635554 1024.386113 0.001952388826 +2.492651761e-06 -0.007976545049 0.006354226309 0 -27.27054934 28.28253094 1023.715329 0.001953668118 +2.499207239e-06 0.009556942792 -0.008391897627 0 12.24070848 2.483671258 991.8120761 0.002016511039 +2.499854559e-06 0.002228083727 0.01418621362 0 -5.184314809 2.190263434 1043.485244 0.00191665384 +2.496830055e-06 0.001046240879 0.001781062649 0 -14.55335824 20.05592289 983.6734519 0.002033195057 +2.499125571e-06 -0.007298693699 -0.006158045246 0 10.1207313 7.998324231 975.31647 0.002050616453 +2.497974386e-06 0.006003306876 -0.009208235429 0 20.29546478 2.753327377 1017.264199 0.001966057591 +2.495574116e-06 -0.003254367015 -0.01021123622 0 -18.65919928 -24.02677555 1021.817468 0.00195729674 +2.496689559e-06 0.0027532234 0.007568637268 0 23.95267332 10.38082557 1014.043765 0.001972301462 +2.497910771e-06 -0.003657788732 -0.01474709073 0 14.17197884 16.65196735 1069.375271 0.00187025084 +2.499817435e-06 0.009483358697 0.01153296703 0 -5.51985091 -2.307927744 990.0971392 0.002020003817 +2.496803769e-06 -0.002873070915 -0.004109404776 0 14.59620477 22.8073585 1070.474073 0.001868331098 +2.496894868e-06 0.002317946777 0.00773712921 0 21.60524561 -3.406647619 877.2723946 0.002279793611 +2.4967654e-06 0.002946876693 -0.006020732755 0 -20.86381843 10.69544143 921.3471809 0.002170734378 +2.49686644e-06 -0.002312600361 -0.01417947571 0 -12.22387653 -20.70722903 960.0756729 0.002083169126 +2.498761215e-06 -0.007010073625 0.006790263613 0 11.91202962 -7.149838227 882.4776099 0.002266346452 +2.495726177e-06 0.006389154983 -0.004741289893 0 -17.62294221 18.85842656 882.2732691 0.002266871354 +2.494640301e-06 -0.003886520504 -0.003257221556 0 -22.10443613 -19.93916527 908.5009401 0.002201428652 +2.496342285e-06 -0.0001925732521 0.005942927613 0 0.08612467908 26.46321394 977.8821269 0.002045236276 +2.499174586e-06 0.009284344348 -0.01159883001 0 12.90978471 4.722790968 1069.765573 0.001869568483 +2.496297679e-06 0.003580428264 0.002665814026 0 24.43756736 -6.053872501 924.6936217 0.00216287855 +2.498886989e-06 0.003186836587 0.01260123332 0 8.671696096 10.39657467 907.2533589 0.002204455878 +2.499513656e-06 -0.001012436827 0.01247676416 0 5.092349629 8.559022533 1009.747723 0.001980692757 +2.497680794e-06 0.00745545086 0.006693336871 0 -18.90174013 -5.868397228 918.6469645 0.002177114906 +2.498805552e-06 0.009350741305 0.008831024074 0 -14.00864289 1.564115196 911.8218971 0.002193410804 +2.497809157e-06 -0.004402356464 -0.005723390167 0 -10.87775073 -17.13675631 969.3530223 0.002063231819 +2.498545351e-06 -0.007727703964 0.01217172367 0 -9.928859693 12.31037105 927.0258208 0.00215743721 +2.497437467e-06 0.0018229328 0.01496673531 0 21.02222414 -6.541975473 972.1511326 0.002057293288 +2.498012004e-06 0.008067255388 0.001822529824 0 19.94551633 2.265742394 1006.41519 0.001987251404 +2.49805802e-06 0.003809626284 0.005183179323 0 -19.48469246 8.131770745 1071.015655 0.001867386336 +2.495771766e-06 0.006018735697 -0.005406603261 0 23.67126978 -12.93579674 927.0330479 0.00215742039 +2.49838523e-06 -0.007398639396 0.003374687035 0 16.0181016 5.811021933 947.9459413 0.002109824952 +2.498814224e-06 -0.006685500662 0.006206549685 0 6.97362541 -12.32560757 919.4327132 0.00217525434 +2.498973548e-06 -0.006153255221 0.01360200652 0 -14.01207551 1.310077386 982.0672545 0.002036520402 +2.499993152e-06 0.004068627181 0.01220404559 0 -1.166320669 0.4422900074 1065.852359 0.001876432494 +2.497544375e-06 0.003336385204 -0.003586270774 0 7.069478799 19.82260068 949.299298 0.002106817106 +2.499457454e-06 -0.009099188359 0.007036281936 0 -1.544789777 -10.36441777 1005.882679 0.00198830345 +2.499889724e-06 0.002089443221 0.005774619626 0 1.95809558 -4.290573046 1004.23421 0.001991567286 +2.493034604e-06 0.00481943286 -0.01177630801 0 22.91221264 -32.01053906 1053.595124 0.001898262391 +2.499182954e-06 0.002734185806 -0.005086276077 0 -11.52253193 -4.534748048 968.5586453 0.002064924008 +2.499587552e-06 -0.008964448618 -0.00785971219 0 -5.59467598 -7.140009175 998.6677196 0.002002668115 +2.4989926e-06 0.001548436675 -0.003968905695 0 8.108646402 11.39605093 985.2014946 0.002030041581 +2.499692186e-06 -0.007666684831 0.01089029405 0 -5.867437404 5.934274641 1063.549328 0.001880495757 +2.499992204e-06 0.004250675407 -0.006680530929 0 0.2768569849 -1.132658704 933.8020472 0.002141781554 +2.4959393e-06 0.00953364898 -0.003973763434 0 -13.15198601 -23.3613046 940.1589549 0.002127299846 +2.499196175e-06 -0.005007454399 -0.009744358573 0 -9.938940082 5.764615898 906.0680383 0.002207339753 +2.497824672e-06 -0.007555880034 0.006715009671 0 -11.15404813 17.10745781 978.7899353 0.00204333936 +2.495982546e-06 -0.0003313527163 -0.01348188695 0 -22.11262315 -13.95571373 921.9130224 0.002169402049 +2.499151639e-06 -0.00805461545 0.0115383409 0 8.271597963 -10.07907021 1000.858752 0.00199828397 +2.494507032e-06 0.001116880993 -0.0003905320633 0 25.06126887 -24.92019499 1065.415375 0.001877202119 +2.497943755e-06 -0.002130434434 0.000314617285 0 -18.73187178 8.631921732 1016.737474 0.001967076115 +2.496882001e-06 -0.005653365739 -0.008329326245 0 -5.942810833 -22.03615941 913.5342224 0.002189299482 +2.497896114e-06 -0.007153273602 0.01381827963 0 -13.23096403 14.71598274 964.4249506 0.002073774635 +2.497580515e-06 -0.009214769341 0.002538522275 0 -17.96408316 10.16564177 937.9838734 0.002132232821 +2.499071949e-06 0.005865500481 -0.003920406746 0 5.542882046 -11.80296319 956.9864187 0.002089893818 +2.495664346e-06 0.008564839857 0.002087810598 0 24.39165853 17.73278302 1023.41928 0.001954233264 +2.498442537e-06 0.007978926958 -0.01401352631 0 18.19533821 0.8792979456 1031.908625 0.001938156105 +2.499629003e-06 0.006075265156 -0.008901841391 0 -7.507423932 3.946253212 984.5638815 0.002031356256 +2.496449621e-06 0.002431952064 -0.00769075281 0 19.32646367 -16.06600693 942.6427892 0.002121694477 +2.498842031e-06 -0.00809558922 -0.003428705335 0 10.68768907 -11.9180277 1051.735739 0.001901618368 +2.49979713e-06 0.005466646184 -0.009858290541 0 -2.89260402 -5.161314649 928.8299972 0.002153246564 +2.498208666e-06 -0.009865069217 0.004656435808 0 -8.53017769 -16.81562379 995.9042177 0.002008225253 +2.499367666e-06 -0.007003910341 0.002269005741 0 -1.242322688 9.901668589 887.2998668 0.002254029415 +2.498417619e-06 0.004537343215 0.001110010764 0 15.27081391 8.162029028 973.092527 0.00205530301 +2.498826744e-06 -0.003548404383 -0.003922308523 0 -12.37343303 -9.704568029 1026.377203 0.001948601347 +2.497813398e-06 -0.00181850215 -0.01063272576 0 18.01104791 -5.81294488 904.7180419 0.002210633487 +2.495631723e-06 -0.002676719096 -0.01343376982 0 18.5895645 -20.82075418 943.7021868 0.002119312669 +2.498110035e-06 0.00464081604 -0.009929843321 0 17.74865918 -6.891390859 979.0225481 0.002042853869 +2.497246444e-06 -0.004319222174 -0.01322556793 0 20.59554413 -9.190107983 960.641756 0.002081941564 +2.497978109e-06 -0.006757619199 0.003067091976 0 -11.54178706 15.43769633 958.2402478 0.002087159253 +2.499179561e-06 -0.009669096386 -0.00615858942 0 -2.841903999 -10.88314514 877.9843501 0.002277944931 +2.496701334e-06 0.004601139566 0.01324884552 0 1.073350964 22.90795436 892.4077646 0.002241127968 +2.495723723e-06 0.006303059841 -0.0115304112 0 15.88076624 -20.68125521 891.0457435 0.002244553677 +2.499011341e-06 -0.007754157674 -0.00952973777 0 -13.69553436 1.705136513 981.3330506 0.002038044065 +2.495240322e-06 -0.007678448614 -0.008638321774 0 -21.64468378 18.05928512 912.9949911 0.002190592522 +2.497813573e-06 0.008045064802 -0.001059859009 0 -16.08175954 12.73115148 980.5370582 0.002039698534 +2.497301399e-06 -0.0003159338376 0.0106594076 0 -19.90403325 14.30357355 1054.60855 0.001896438256 +2.497812455e-06 -0.005970166405 -0.003988395268 0 -16.93256338 10.61281081 955.0745134 0.002094077448 +2.49688578e-06 -0.001187728392 0.001564447407 0 0.7468310446 25.26025045 1012.126326 0.00197603792 +2.49971077e-06 -0.009737587571 -0.008963036025 0 -0.5333808798 -7.851493226 1034.656833 0.001933008062 +2.49553482e-06 0.004088500459 -0.002406535156 0 27.36815536 16.07446367 1061.393166 0.001884315882 +2.496925031e-06 0.002650365327 0.009360275846 0 23.45917701 -2.222113566 949.7659771 0.002105781896 +2.496045975e-06 0.008403026769 6.230068859e-05 0 25.88558416 11.27985998 1003.501619 0.0019930212 +2.499909881e-06 -0.005146643124 0.01347612046 0 -0.3390515494 4.035556571 953.8971376 0.002096662125 +2.496325562e-06 -0.009487935556 -0.0003443595674 0 -14.15600431 24.80400994 1052.923885 0.001899472534 +2.499579624e-06 -0.0002953439625 -0.003950738674 0 -8.152733341 -3.360270224 961.640119 0.002079780118 +2.493971857e-06 0.007198326592 -0.01332021522 0 23.54721143 -25.7822116 1004.700107 0.001990643762 +2.4998699e-06 0.009608723386 -0.01488867681 0 1.142615485 4.892901809 984.9960525 0.00203046499 +2.498138861e-06 -0.002301615048 0.01084166392 0 18.61984622 7.79495904 1045.964292 0.001912111164 +2.498018321e-06 -0.005978107266 -0.01305980654 0 17.74226906 -8.55734541 989.1545664 0.002021928693 +2.498205733e-06 -0.003087874469 0.001943538815 0 -5.761664888 18.9490867 1045.235456 0.001913444467 +2.494813956e-06 -0.00931347419 0.01279905348 0 -8.749384517 28.77772385 933.2182614 0.002143121371 +2.499523315e-06 0.003647108325 -0.01174525546 0 9.165157145 -2.721848531 979.1105318 0.002042670296 +2.496145831e-06 -0.006035367488 -0.003827409656 0 -12.71077724 -23.9305814 975.4082062 0.002050423594 +2.49950163e-06 0.007819235814 0.007505021088 0 -4.833680101 -9.536090253 1070.785237 0.001867788171 +2.499090586e-06 0.003762936108 0.002090952212 0 13.17197511 -1.809333139 985.7231215 0.00202896732 +2.495979694e-06 -0.0001257617865 0.01079654563 0 6.001889532 26.94001619 972.7700105 0.002055984435 +2.496448892e-06 0.008368895762 -0.006371261138 0 16.02721642 -18.98728436 931.8604104 0.002146244199 +2.497706863e-06 -0.006863461388 -0.01158946266 0 18.16851558 8.83369869 943.0166934 0.00212085323 +2.497615799e-06 0.001275921711 0.009408851643 0 1.680846335 21.48956561 986.7569934 0.002026841475 +2.494275409e-06 0.003349433495 0.009852354485 0 20.97113612 22.86559546 916.1525899 0.002183042456 +2.494282014e-06 0.008278121506 -0.004143401671 0 -20.08317793 -26.51550419 982.760864 0.002035083074 +2.497745282e-06 -0.005775912269 0.01180930828 0 -7.649309582 19.3363468 978.8991225 0.002043111444 +2.498697377e-06 -0.003462947765 0.01038557644 0 -6.523137921 15.19055191 1024.032764 0.00195306251 +2.498723502e-06 0.007475116737 7.798257284e-05 0 -8.719293713 -14.60890851 1064.573827 0.001878686052 +2.498448458e-06 0.001486679614 -0.00662635132 0 11.46270119 -12.27418499 953.1572842 0.002098289582 +2.496130349e-06 0.007357527399 -0.01192758512 0 -16.05485803 -18.52302519 880.6103921 0.00227115194 +2.499590427e-06 -0.002613275968 -0.01473332361 0 -7.643230472 5.784333272 1059.002784 0.001888569161 +2.496963356e-06 -0.005824392955 -0.003449891782 0 -22.07437449 14.18073761 1064.146691 0.001879440135 +2.499866413e-06 0.009168831385 -0.009247622055 0 2.750418308 4.29570354 986.8019919 0.00202674905 +2.498828683e-06 0.008174564545 -0.002555042203 0 12.97200412 -7.045033151 964.2852295 0.002074075117 +2.495849165e-06 0.006342437007 -0.01236596621 0 28.93517303 8.835228212 1049.37251 0.001905900889 +2.497868551e-06 0.009854722922 -0.003094698263 0 -1.898582379 -20.27465689 985.9570683 0.002028485889 +2.49825368e-06 -0.005350883766 -0.001692211346 0 -9.737165582 -15.74016791 990.1044567 0.002019988888 +2.495377589e-06 -0.008767258073 0.01459755153 0 -26.46562965 18.48811322 1061.043485 0.001884936883 +2.49978485e-06 -0.009953981359 -0.006371082289 0 -5.662116342 -3.799995653 1039.499606 0.001924002653 +2.499855422e-06 -0.005400923379 -0.01354405371 0 2.463448564 4.523130886 957.7908067 0.002088138648 +2.494515883e-06 -0.001453334801 0.01045495434 0 15.9603163 30.42775547 1036.625172 0.001929337675 +2.49979053e-06 -0.001934010158 0.001525904783 0 -5.670187166 3.539926129 1032.706611 0.001936658465 +2.497705304e-06 -0.006642896165 0.008462226789 0 14.41684765 13.87918678 933.8170918 0.002141747048 +2.498835727e-06 -0.008422394055 -0.01195159573 0 -12.54451242 7.877851923 970.5663039 0.002060652623 +2.497306107e-06 -0.002641316396 -0.004696903685 0 -10.74790409 17.25004177 875.259931 0.002285035484 +2.497527549e-06 -0.0004319446906 0.007407262442 0 14.17168914 17.77739159 1022.001868 0.001956943586 +2.499721879e-06 0.006934779529 -0.01211394515 0 -5.009091903 4.669882193 918.1857971 0.002178208382 +2.497722799e-06 -0.001476436392 -0.01393470488 0 -20.38304442 0.7506536634 955.430923 0.002093296283 +2.49615835e-06 -0.002550288085 0.01210042665 0 -15.45804569 19.53002864 898.0534219 0.002227039006 +2.499332193e-06 -0.001791608087 0.007731919864 0 9.989414836 -5.525950406 987.70946 0.002024886954 +2.497780544e-06 0.007417426812 0.01124958612 0 9.349719989 -19.49624542 1025.929697 0.001949451318 +2.499652118e-06 0.007146840175 -0.01145163939 0 3.267016321 7.257981867 954.1690086 0.002096064724 +2.499822581e-06 0.004777890886 0.01413960567 0 -3.090455227 5.164961386 1010.401019 0.001979412097 +2.497485922e-06 -0.009041018505 0.011913369 0 -20.06410154 11.68878588 1035.154251 0.001932079203 +2.497206893e-06 0.003635860528 0.009873283566 0 23.12264337 3.17525481 987.0823593 0.00202617338 +2.499186969e-06 0.002137809186 0.002780575384 0 -3.811425901 11.39738627 942.3307041 0.002122397149 +2.498404562e-06 0.005498802294 0.006596623224 0 16.85145549 -1.157187238 945.3662654 0.002115582154 +2.497169643e-06 0.003782608588 0.002230839548 0 -11.60444123 -21.47012748 1025.340274 0.001950571972 +2.498053599e-06 0.00357014901 0.01209921297 0 13.67779959 15.46924847 1046.261596 0.001911567821 +2.497627188e-06 0.007153981957 -0.001841870451 0 -12.15813551 19.83228112 1067.464425 0.001873598739 +2.497834216e-06 0.008713942338 -0.008764494227 0 7.319171294 -20.51403756 1046.180978 0.001911715125 +2.496186905e-06 0.001018688027 0.007350829847 0 -2.934440364 25.57401478 931.6157665 0.002146807806 +2.498509808e-06 0.001063586907 -0.01057767524 0 17.12101468 -0.7720995 992.5156845 0.002015081506 +2.49655089e-06 0.0006153820269 -0.004572482791 0 -22.10225308 15.81368546 1034.203604 0.001933855184 +2.497919013e-06 -0.006738080117 -0.01198871067 0 -15.17500935 -13.99728781 1011.635384 0.001976996882 +2.495538479e-06 0.002384698419 0.003140099875 0 17.00558691 -20.08159071 880.3392822 0.002271851365 +2.499105021e-06 -0.007023303122 -0.004745002447 0 9.278737045 10.05883015 1022.727877 0.001955554401 +2.497572454e-06 -0.006740007447 0.007620934839 0 20.76367196 -5.105523366 970.0507863 0.002061747723 +2.496431478e-06 0.003517055535 0.004544936595 0 -23.22600839 -14.34892375 1021.374729 0.001958145178 +2.49763225e-06 -0.006062795976 0.009081221977 0 -18.59633643 6.762790457 908.994881 0.002200232413 +2.49788488e-06 -0.0008650611853 -0.00799783058 0 21.88197741 1.451820091 1065.908656 0.001876333389 +2.496577375e-06 -7.043574005e-05 0.007436443325 0 9.876456713 21.17518418 892.5896002 0.002240671412 +2.494997819e-06 0.00965776959 0.009236041938 0 -14.97992069 30.32882329 1068.653399 0.00187151419 +2.497995803e-06 0.006092590159 -0.003173492595 0 3.689101136 17.22466872 879.5776874 0.00227381848 +2.497517124e-06 -0.001539372774 -0.002379237344 0 1.049751352 -21.30321563 956.7919276 0.002090318639 +2.498002483e-06 0.005215745899 -0.005966021384 0 -20.00636527 -3.439811357 1015.322468 0.001969817535 +2.498115644e-06 0.007960137995 0.005643304875 0 -5.676573816 -18.86881846 1014.704683 0.001971016822 +2.498232695e-06 -0.007324881726 0.005437103135 0 -16.43846873 9.737456609 1015.979837 0.001968543004 +2.495128747e-06 0.008423102396 0.005672807477 0 -16.182814 25.01154194 953.7215844 0.002097048062 +2.497949424e-06 0.006364145917 0.001782335665 0 -9.205028397 19.42526099 1061.130763 0.001884781848 +2.498687717e-06 -0.00838414812 -0.006994046462 0 11.14440926 -8.856601676 878.5072944 0.002276588951 +2.494295424e-06 -0.009185504238 -0.001984401718 0 -23.88651106 -24.54343325 1013.071779 0.001974193775 +2.499252323e-06 -0.0008779778844 -0.009496129705 0 9.660027453 -5.614624355 913.6008108 0.002189139914 +2.496057366e-06 -0.007632871252 0.006857951952 0 15.61465264 24.89226439 1045.806641 0.001912399407 +2.499379713e-06 -0.006514179097 0.003174981689 0 -0.587068601 -11.5880445 1041.633891 0.001920060415 +2.49965441e-06 -0.005332081043 -0.01496362728 0 1.487154917 8.013932491 980.3460541 0.002040095935 +2.497833833e-06 -0.00558222075 0.01030988212 0 15.50123055 14.47433416 1018.603031 0.001963473443 +2.499245968e-06 -0.003353343667 -0.01271434608 0 4.851952652 9.963440887 902.3201217 0.002216508257 +2.498955836e-06 0.006265795315 0.005223382227 0 0.3785683156 -15.04192054 1041.054542 0.001921128931 +2.499675622e-06 -0.002527787802 0.007494847274 0 7.479904893 -2.965140561 998.9141249 0.002002174111 +2.499994621e-06 0.009357161107 -0.01079688868 0 -0.9115771987 0.5698988721 1036.538026 0.001929499883 +2.495147975e-06 0.004374212949 0.008996242925 0 -13.98417657 28.32876464 1013.418753 0.001973517852 +2.499824414e-06 -0.005862097563 0.001093749411 0 4.705312045 -4.084782137 1051.446521 0.00190214144 +2.498917056e-06 0.007932752795 -0.01087155407 0 -13.93247111 -3.699971631 979.3499394 0.002042170954 +2.497580692e-06 -0.008989391662 0.01320170519 0 16.46465365 14.34256962 992.309643 0.002015499914 +2.497266111e-06 -0.008857461344 0.003935333972 0 -20.75118532 6.858525801 934.2685787 0.002140712045 +2.496906848e-06 0.009134324873 -0.004226117993 0 -11.28589266 -19.60008255 908.9086768 0.002200441091 +2.499762075e-06 0.002996815192 -0.001882504611 0 -7.319751982 0.1967847759 1061.458755 0.001884199448 +2.498789711e-06 0.007936559832 0.009703098207 0 13.0852635 -4.036995984 880.0087944 0.00227270456 +2.496350208e-06 -0.00494183741 -0.004896325555 0 15.23963731 18.27145604 880.1502354 0.002272339334 +2.495084731e-06 0.0006480117468 -0.01386433972 0 17.08380773 -23.08669258 915.3324039 0.002184998577 +2.498251955e-06 -0.0005870424304 0.006706720765 0 -5.636382418 19.04381288 1061.898051 0.001883419975 +2.499391678e-06 0.006713104411 -0.0005317945546 0 3.4982129 -10.16717631 974.7076706 0.002051897261 +2.499475599e-06 0.0007883494673 -0.01323629309 0 4.539069781 7.936899224 892.7207596 0.002240342211 +2.496787698e-06 0.001225220412 -0.01035986332 0 18.46317144 14.02479176 914.3034932 0.002187457463 +2.498024189e-06 -0.001906386609 0.0001552359969 0 0.3565033716 18.78322238 944.7824905 0.002116889358 +2.495144762e-06 0.006644656858 0.007249184791 0 19.21411263 20.6137057 903.6550337 0.00221323395 +2.499688478e-06 0.006338432571 -0.004878198733 0 2.182608286 -6.92856756 920.2569921 0.002173305954 +2.495495808e-06 -0.00885589506 -0.005406736527 0 -24.89987063 -17.06424519 1005.050353 0.001989950049 +2.498405885e-06 0.002955359905 -0.0005581193115 0 6.938791004 -15.77944935 965.162034 0.002072190917 +2.497573657e-06 -0.0009892923059 0.01391667334 0 14.36972769 14.20458422 916.8932298 0.002181279057 +2.497372693e-06 0.009746927926 -0.00273181668 0 -15.36329448 15.11620573 939.8650474 0.002127965079 +2.496750502e-06 0.009408300486 0.008249351413 0 -19.68388696 -16.05330411 995.8642425 0.002008305866 +2.494818177e-06 0.00913377055 0.01477545678 0 -18.07558108 23.46309315 919.3182691 0.002175525133 +2.499293017e-06 0.00213657442 0.01239986221 0 -7.799185974 8.714728638 983.4127137 0.00203373413 +2.49958737e-06 -0.007822323395 0.01122421554 0 -3.379133071 9.093386242 1067.803271 0.001873004189 +2.497231918e-06 -0.007757496145 -0.01091244706 0 19.08463637 12.8322068 977.0061956 0.002047069925 +2.495711196e-06 0.00596349447 -0.01354925717 0 -5.110661918 -28.86002022 1000.0894 0.001999821217 +2.499022922e-06 -0.0003440319467 -0.01080792687 0 0.1718336556 12.8299291 917.7407656 0.002179264641 +2.49555333e-06 -0.009615728366 0.01045672118 0 -28.30169289 -3.903590056 957.3754016 0.002089044691 +2.499691283e-06 -5.365408957e-05 0.00838956852 0 6.974720843 2.236572281 932.1064826 0.002145677599 +2.495109397e-06 0.008955800836 -0.0005252573965 0 -18.81439808 -25.5379509 1013.49189 0.001973375435 +2.497139455e-06 -0.004960001162 -0.01389241307 0 -0.3268730068 -23.22093171 970.5028413 0.002060787372 +2.497898998e-06 0.001388391051 0.0006013932964 0 20.72911408 -4.611575438 1035.631293 0.001931189231 +2.49640351e-06 -0.00288048733 0.001075933878 0 -19.32295619 14.26296233 895.0082072 0.00223461638 +2.49835627e-06 -0.005570897749 0.007672975638 0 -14.28107028 11.47782146 1010.256053 0.001979696132 +2.498251204e-06 -0.00844823095 -0.009272177343 0 6.094713576 -17.45889926 988.5263896 0.002023213564 +2.498414842e-06 -0.008590628798 0.01436900847 0 -9.5246106 -12.59603617 886.6960801 0.002255564274 +2.496629727e-06 -0.007015084098 -0.001745929692 0 -22.03229702 -13.64743474 997.7282334 0.002004553879 +2.49796352e-06 0.005122211194 -0.01404527774 0 -10.41406304 15.47598262 924.0088735 0.002164481378 +2.497465772e-06 0.001286363858 0.01258955022 0 -9.680452631 18.73851735 936.484289 0.002135647147 +2.498187729e-06 0.002123083612 0.007076996109 0 17.34893316 7.10450278 984.4484954 0.002031594349 +2.497899636e-06 -0.008580662496 0.002200101893 0 0.6271308602 -18.59704373 907.5937784 0.002203629033 +2.495489919e-06 -0.003091481528 0.003009551608 0 21.42650904 22.72898972 1039.339558 0.001924298931 +2.498758335e-06 -0.00858882572 -0.0009343987587 0 10.31984089 10.56736065 937.1254021 0.002134186092 +2.498141988e-06 -0.006233504713 -0.002111439833 0 10.44401462 -14.0645311 908.5106185 0.0022014052 +2.497958787e-06 0.003601908647 0.0003702461254 0 -20.70896797 -3.106735912 1036.093869 0.00193032703 +2.495348833e-06 0.006773037105 -0.01481346297 0 16.9823871 -26.37947467 1027.920897 0.001945675008 +2.499260939e-06 -0.005967165073 -0.01369144895 0 3.013165956 10.79822744 922.0005728 0.002169196049 +2.495846714e-06 0.007200606144 -0.009204571377 0 23.93136266 -8.857482752 884.8381991 0.002260300247 +2.498030879e-06 0.005135321794 -0.005089426129 0 18.6726884 8.174336019 1026.834193 0.001947734127 +2.498270631e-06 7.290265057e-05 -0.01275253065 0 16.76045683 6.126955077 959.2918906 0.002084871163 +2.496835911e-06 0.006023898106 0.0002838064148 0 18.53907448 -18.15097686 1030.889292 0.001940072533 +2.499261062e-06 -0.00815166282 -0.01059500496 0 4.523307304 -11.88622227 1046.032032 0.001911987338 +2.499073387e-06 0.005002936879 0.01201040604 0 12.67617963 -0.9366127766 933.5683254 0.002142317756 +2.496936579e-06 0.002376469807 0.01366993946 0 -20.69327173 -15.09185922 1034.250723 0.001933767079 +2.496694407e-06 -0.006235382957 -0.01245119571 0 -9.326897025 -25.2093139 1044.874077 0.001914106249 +2.497340064e-06 -0.004045903315 0.008963699341 0 -19.95033237 5.389835427 895.6196183 0.002233090878 +2.499229288e-06 0.003746493738 0.0145443083 0 -12.45001165 -1.209522927 1007.391427 0.00198532561 +2.49899521e-06 0.004960546717 -0.006701287965 0 -13.91728244 4.150568938 1024.327065 0.001952501372 +2.49991669e-06 0.005976778818 0.002693284673 0 -2.574331833 3.104792658 988.0632969 0.002024161819 +2.498361149e-06 -0.003187504942 -0.01488904195 0 12.99361802 -9.6196223 892.7654233 0.00224023013 +2.495943746e-06 -0.0005337389 -0.007298182596 0 -22.17739523 15.16997758 942.7923874 0.002121357816 +2.497015978e-06 0.0005977704143 -0.008940257553 0 -14.00787255 -16.27133596 878.4742413 0.002276674609 +2.499546491e-06 0.006381393215 0.009139948308 0 7.659743321 -4.817134639 950.0399148 0.002105174708 +2.497680065e-06 0.005749832927 0.01215845989 0 18.30703467 -9.70978715 961.7027407 0.002079644692 +2.496249309e-06 -0.005941948085 -0.01298776102 0 19.34838318 16.48502896 927.5560091 0.002156204025 +2.498320764e-06 -0.002769095283 0.008369275702 0 -8.705050752 -16.26876066 1006.576154 0.001986933618 +2.497695485e-06 0.003170697941 -0.003404049051 0 -3.988780334 21.53067761 1019.601578 0.001961550514 +2.496477559e-06 0.007573132813 0.002327219197 0 17.50951271 -16.96318167 918.0118661 0.002178621077 +2.49545573e-06 0.00226362044 -0.003199630966 0 16.18212782 -23.36840434 942.208895 0.002122671533 +2.499006708e-06 0.0002125733998 -0.003926076125 0 12.7526987 -2.770975657 925.7663237 0.002160372384 +2.499275511e-06 -0.003401220106 -0.009841760632 0 1.134235086 12.36278616 1031.237081 0.001939418235 +2.496739242e-06 0.002947102357 -0.004357256424 0 -9.337859354 -23.19655172 978.6985268 0.002043530204 +2.498423626e-06 -0.009416506123 0.01471186812 0 5.040636007 -16.75042494 984.923446 0.002030614672 +2.496343009e-06 -0.002447073082 -0.004933079733 0 -22.43399025 -15.471395 1007.108269 0.001985883804 +2.495280262e-06 0.00363147588 0.0001313349162 0 17.78843281 -24.50221262 984.8101336 0.002030848314 +2.496920377e-06 -0.003878295724 0.005189195224 0 -21.79797213 3.678620569 890.3268927 0.002246365932 +2.496323069e-06 0.001555355308 -0.009508486607 0 -22.79146389 12.66851779 961.0335926 0.002081092706 +2.498582648e-06 -0.009365083426 -0.003525845788 0 2.813482034 -16.2473731 979.157884 0.002042571512 +2.497706326e-06 -0.009780054935 0.01157654454 0 -10.46392779 18.92708675 1009.407516 0.001981360321 +2.499991891e-06 -0.002446570694 -0.00206652004 0 -0.5349093238 1.158694985 1002.144575 0.001995720028 +2.498090106e-06 0.005792461019 0.01267994015 0 -10.08685054 -16.79282652 1002.02026 0.001995967625 +2.496943765e-06 -0.009802548154 -0.00124213571 0 -10.03673698 -20.23597415 913.2207062 0.002190051087 +2.497058363e-06 0.0003783150669 -0.01040811781 0 -17.72950305 -15.983642 983.7042967 0.002033131305 +2.4990277e-06 -0.000150430575 0.001291515708 0 -10.06218026 7.038888221 880.4661248 0.002271524075 +2.499169752e-06 0.004044599021 -0.004830012247 0 6.10511223 10.95890954 973.3925893 0.002054669433 +2.498645285e-06 0.003254049583 0.0009334198851 0 6.827245793 15.46373802 1026.731898 0.001947928182 +2.499728317e-06 0.006611557114 0.001684252247 0 3.750683897 -5.30491495 881.3383959 0.002269275921 +2.498095796e-06 -0.007836559787 0.01404262756 0 17.7439474 -7.001945678 977.1926537 0.002046679324 +2.496084747e-06 -0.0006721465243 0.001582497892 0 21.27522739 15.60157084 942.2546042 0.002122568562 +2.497160104e-06 -0.003349909596 -0.001249775388 0 1.051453237 -21.52154702 903.7323695 0.002213044556 +2.49775006e-06 0.0002154160338 0.00889684197 0 21.93452163 3.634306002 1047.760493 0.001908833186 +2.499351132e-06 -0.001254162807 -0.001283020489 0 0.4835398982 11.35012721 997.1468794 0.002005722568 +2.498383698e-06 0.005490502436 -0.008004415529 0 -4.284181332 15.75821829 908.0507877 0.002202519977 +2.497133709e-06 0.006678982121 -0.003324904474 0 16.81289424 -14.09973906 916.063057 0.002183255819 +2.49647777e-06 -0.009098547576 0.0143259967 0 -24.81490731 11.19404159 1025.134564 0.001950963385 +2.494157122e-06 -0.0004736211803 0.01185674791 0 15.97170348 31.50350878 1032.339131 0.001937347854 +2.49794989e-06 0.002102861768 -0.007975681645 0 -11.71404448 14.18703762 908.3145012 0.002201880513 +2.499534574e-06 -0.002021909282 -3.847644897e-05 0 7.991731761 3.36138905 898.5498819 0.002225808539 +2.496333948e-06 0.003036871394 -0.0114576376 0 7.197694812 -25.92538814 993.106424 0.002013882854 +2.496711186e-06 0.008830569121 -0.006656666156 0 -1.086755413 -23.47920863 916.007776 0.002183387578 +2.499046171e-06 -0.006294487864 -0.006240112935 0 -8.492009415 9.099008885 900.9940383 0.002219770514 +2.498216845e-06 0.006669916455 0.002128667389 0 13.31628769 -12.24720008 957.7646032 0.002088195777 +2.498352675e-06 0.00907575829 0.01360096422 0 -9.009072117 15.85399037 1004.365923 0.001991306111 +2.497760978e-06 1.10841589e-05 0.002143500885 0 -7.863921905 -21.18008753 1067.286885 0.001873910405 +2.498161022e-06 -0.001806442938 0.003361382643 0 19.02886837 -2.322018263 999.3082455 0.002001384467 +2.49929338e-06 0.006120066699 0.002664418404 0 8.437304138 6.704108364 906.4090289 0.002206509353 +2.49590171e-06 0.001734878253 -0.01425930386 0 -23.38550791 16.74367224 1003.992024 0.001992047698 +2.499259908e-06 0.00793785552 -0.009225747117 0 -5.77600182 11.14397107 1031.581573 0.001938770575 +2.495559678e-06 0.001908421763 0.0002387231612 0 18.54278452 22.52757868 978.4449587 0.002044059793 +2.497651858e-06 0.00650054879 0.0009538331022 0 -20.49395715 -0.9444821079 946.3599771 0.002113360717 +2.493696731e-06 0.00608406004 -0.001073061568 0 27.40287403 22.61758062 999.7742279 0.002000451646 +2.497881864e-06 -0.004395633866 -0.005886765446 0 -18.52981171 7.893688085 978.2580368 0.002044450365 +2.499061947e-06 0.003367116405 -0.0001907111728 0 -9.42400461 10.38592473 1023.739869 0.001953621287 +2.499860291e-06 -0.009002847737 -0.005340544826 0 4.96053683 -1.759945828 995.7205227 0.00200859574 +2.499883163e-06 0.003647061419 0.005291919024 0 -1.499249502 -4.76485183 1033.322517 0.001935504131 +2.499561114e-06 0.002196732722 0.007141611585 0 -9.024457198 2.746735792 1006.791984 0.001986507672 +2.495692545e-06 0.002702159192 -0.008135634803 0 11.17462532 -26.31485398 973.4109061 0.002054630771 +2.497190151e-06 0.008509228486 0.001237049878 0 20.14019469 12.04933434 989.6071278 0.002021004037 +2.498782616e-06 -0.004121071664 0.01238713115 0 -8.943873917 10.43636338 880.6839184 0.002270962326 +2.499782897e-06 0.004098911299 0.01077343971 0 2.428570327 5.780480045 951.4801476 0.002101988155 +2.497121551e-06 -0.002250047387 0.005004022624 0 20.21364561 5.926273326 877.5437805 0.00227908857 +2.499323183e-06 -0.004352526576 0.01013283564 0 -7.870866226 -8.142907952 973.2996141 0.002054865707 +2.499737195e-06 -0.0008106136601 -0.01349628057 0 6.26139843 -2.16392952 913.7388854 0.002188809114 +2.495689885e-06 0.000363870291 0.009035097957 0 -9.874468999 26.01081956 946.9981164 0.002111936619 +2.4991026e-06 0.000549432002 -0.0004144256632 0 13.23008846 0.3432229296 987.7390506 0.002024826293 +2.496778697e-06 -0.003326269374 0.004880154028 0 -23.54877976 2.901042144 934.3259059 0.002140580698 +2.497505589e-06 0.00257689191 -0.002995480704 0 16.69871313 13.78141785 968.9924806 0.002063999505 +2.496554765e-06 -0.009606777104 -0.005622090383 0 -2.354440777 -26.75022537 1022.478349 0.001956031639 +2.497918067e-06 -0.001383815431 0.01028076273 0 -5.608701841 18.10096293 928.3785974 0.002154293524 +2.499157744e-06 0.002891356666 -0.01075262987 0 -12.14120374 4.576710895 999.5883471 0.002000823645 +2.497336438e-06 0.0008917981107 -0.002148987225 0 -18.23906285 8.826835044 877.5604064 0.002279045391 +2.497619657e-06 0.005182035263 0.004463914703 0 -19.66371159 6.396347383 947.3625006 0.002111124304 +2.497518214e-06 -0.005644845637 -0.0005927611515 0 -19.80645333 -1.643535232 891.7392093 0.002242808188 +2.499807947e-06 0.002239585491 -0.01125961904 0 2.762843222 5.994884321 1065.038339 0.00187786667 +2.498801433e-06 0.009661661284 0.008112972546 0 10.01878464 -10.06220681 916.9526307 0.002181137752 +2.497932287e-06 0.004668521909 0.00808294625 0 -14.54740956 -14.90821845 1023.978947 0.001953165155 +2.497929365e-06 0.006718523824 0.01155271917 0 -11.8972835 14.91185803 937.1186666 0.002134201432 +2.498093149e-06 -0.008814245514 -0.01367737759 0 18.36596102 -0.6289055552 940.7418438 0.002125981759 +2.49980714e-06 0.008016505432 0.009819121887 0 -2.344528399 4.94991778 881.8626528 0.002267926863 +2.499048677e-06 -0.0090237374 0.0007216553972 0 -12.22390923 6.846707692 1015.595525 0.001969287922 +2.498315678e-06 -0.007756021996 -0.0103159588 0 12.10527332 14.3693575 1023.434064 0.001954205035 +2.498933603e-06 -0.008545860639 -0.007690578187 0 -6.471087459 -11.46824095 901.5192503 0.002218477309 +2.497582082e-06 -0.004377110857 -0.01171232931 0 -11.0091465 -17.91490032 955.8482069 0.002092382437 +2.499298412e-06 -0.005892745978 -0.006526650977 0 10.8839882 0.3117374779 919.1035282 0.002176033427 +2.496732736e-06 -0.008594907387 0.001886550668 0 -22.93818961 -3.548577397 907.5587955 0.002203713974 +2.498183843e-06 -0.00905016066 0.01433727615 0 15.0066672 9.936942238 944.1134717 0.002118389431 +2.499026832e-06 -0.004607391115 -0.007964439515 0 -12.93515298 -7.057097031 1056.035155 0.001893876346 +2.497084305e-06 -0.001880845828 0.01311448407 0 21.38829149 -2.346235458 890.6302567 0.002245600781 +2.499110916e-06 -0.005637370846 -0.0008844342618 0 11.78621305 2.868366979 909.5456866 0.002198899989 +2.497060175e-06 0.004569616853 -0.005165633261 0 9.035144999 -22.998314 1018.580782 0.001963516332 +2.497446707e-06 0.007167606452 0.01400297601 0 -19.95404904 -10.83734443 1004.453422 0.001991132645 +2.499005103e-06 -0.007546222163 -0.003656505276 0 2.157742668 14.5798782 1044.695537 0.001914433373 +2.498909385e-06 0.007509104228 0.0040515353 0 15.25951868 2.765002995 1049.866419 0.00190500426 +2.497491963e-06 5.038014613e-05 -0.007423571956 0 -17.63511592 -11.33961066 935.7838718 0.00213724564 +2.498284926e-06 0.009400264858 0.007369720638 0 18.46083631 3.919939699 1018.731016 0.001963226768 +2.497594962e-06 0.006609951821 -0.007315293867 0 -22.16186335 -3.659742399 1023.801788 0.001953503132 +2.497469811e-06 0.001553519494 0.01431296347 0 18.23193212 14.54334042 1036.353622 0.00192984321 +2.497581555e-06 -0.009841934736 0.002515357879 0 10.45383158 19.48262831 1004.961618 0.001990125756 +2.498735939e-06 -0.008275562525 -0.008834476266 0 -16.23887595 -3.152851306 1040.182672 0.001922739201 +2.498435247e-06 0.00775108004 -0.01434642714 0 16.94742221 3.312390634 975.8981373 0.002049394218 +2.495303861e-06 0.006655542208 0.008629708705 0 26.82997231 -17.25546469 1040.151378 0.001922797049 +2.499229422e-06 0.000372868944 0.005114694207 0 7.631189273 10.02907282 1015.02202 0.001970400603 +2.497939217e-06 0.00828624947 0.005506273324 0 15.77253424 11.39041315 958.022584 0.002087633458 +2.494496813e-06 0.002395372698 0.003699481012 0 19.63836972 22.67729517 903.487698 0.002213643865 +2.496106052e-06 0.00140105708 0.004072593253 0 -17.73145088 22.56256259 1027.687097 0.001946117652 +2.497960024e-06 -0.006133457036 0.006513525113 0 21.30453822 -0.6809039654 1054.953615 0.00189581795 +2.496902597e-06 0.009881856563 -0.00386485198 0 14.16802431 20.90148147 1014.051539 0.001972286341 +2.497780851e-06 -0.008444651607 -0.004690774621 0 0.5704528474 -20.28890129 963.1129647 0.002076599603 +2.496790965e-06 -0.005357001219 -0.007663761671 0 -4.516748639 -22.18695534 893.314107 0.002238854155 +2.499242677e-06 -0.002271976131 -0.0001747105666 0 7.489400326 -10.2746724 1032.990664 0.001936125921 +2.496282066e-06 -0.005239902632 0.005166363548 0 3.4682938 25.59177778 946.5516685 0.002112932729 +2.496070935e-06 -0.003707967768 0.01155502999 0 18.50723872 21.21637774 1003.750338 0.001992527348 +2.492318233e-06 0.007769537722 -0.008464817677 0 27.22975903 -26.52235345 968.660185 0.002064707553 +2.49439813e-06 0.003691890831 -0.001467603303 0 23.77725388 24.18827742 1012.472885 0.001975361542 +2.495584661e-06 -0.009736973713 0.007837751987 0 -20.76680716 22.22089341 1022.804501 0.001955407899 +2.493968441e-06 -0.003738876865 -0.01103342355 0 -20.12584939 -29.11353178 1018.102033 0.001964439649 +2.498985429e-06 0.002996481028 0.006939459303 0 7.50543932 10.57934046 910.4589954 0.002196694206 +2.493255237e-06 0.004549968615 0.01299636138 0 -20.48042219 27.19830755 926.0620431 0.002159682513 +2.497934088e-06 -0.008109654505 0.01127710398 0 -16.56132133 11.7805981 999.5418851 0.00200091665 +2.498417126e-06 0.005569790103 -0.01306162153 0 -13.96777536 -12.52579362 1054.208521 0.001897157878 +2.497198115e-06 -0.002256185999 0.01377548647 0 -17.10922491 -14.27984965 941.0179662 0.002125357934 +2.496468225e-06 0.007107243957 -0.003334865808 0 -15.42905437 22.88196336 1037.846517 0.001927067217 +2.499493505e-06 0.009613342504 -0.007215886319 0 8.361054741 3.74109993 910.0251782 0.00219774139 +2.499075877e-06 -0.007669141702 0.00329484646 0 -9.159589599 -8.100220017 899.2851578 0.002223988668 +2.499946539e-06 -0.009392454866 0.00356276657 0 -0.854426558 3.214070132 1017.061073 0.001966450249 +2.498039054e-06 0.001069282489 -0.006581876208 0 7.101580085 -19.2098691 1033.868544 0.001934481913 +2.496765818e-06 0.00217717614 0.000360543339 0 -22.68671745 11.95491823 1007.802068 0.001984516667 +2.498103028e-06 -0.003003989109 -0.002921569627 0 12.56923001 -16.33236672 1057.762662 0.001890783323 +2.49561533e-06 0.005838378831 0.003798277178 0 -13.71024517 26.59786173 1009.818587 0.001980553761 +2.497295552e-06 -0.006217310135 -0.01027614512 0 18.49942305 -13.59988757 986.8500929 0.002026650263 +2.496095695e-06 0.008815314323 -0.005170848188 0 -7.097422951 -23.61949304 882.0658892 0.002267404311 +2.498767316e-06 0.003611339233 0.01397012054 0 11.17094801 11.84087877 1036.570454 0.001929439522 +2.49967301e-06 -0.002827760605 -0.00927355025 0 -7.537441037 -0.7236582568 936.2950063 0.002136078892 +2.498232496e-06 -0.004291027533 0.01365400678 0 -4.117802881 16.61123751 910.0003365 0.002197801385 +2.499339787e-06 0.007495141439 -0.006818048232 0 0.6788674928 -11.9537063 1041.841568 0.001919677676 +2.496771441e-06 0.0003414202062 0.0006457235687 0 19.7326539 11.41426475 896.6668989 0.002230482694 +2.496577112e-06 0.001519359942 0.004621370828 0 -14.12139262 19.61637372 923.3199209 0.002166096447 +2.495681912e-06 -0.008875510143 0.0006402476365 0 -20.61344451 19.35690274 961.6015786 0.002079863474 +2.498992302e-06 0.002792025567 -0.0114874145 0 -12.21552555 -7.447177989 1007.607244 0.001984900378 +2.495949474e-06 0.001682845685 -0.001367382465 0 -17.74886451 -20.57382976 954.0761839 0.002096268656 +2.495740888e-06 0.002511852444 -0.01018699461 0 -8.883277571 -27.58637238 992.3546576 0.002015408488 +2.497421232e-06 0.002491794294 0.01178840368 0 9.317658677 22.40654901 1068.123184 0.001872443208 +2.498459388e-06 0.004337578788 -0.002099912774 0 14.75745158 -4.416924166 877.3627953 0.002279558708 +2.494471053e-06 0.003839380089 -0.01060685642 0 22.72563087 -20.18299631 913.2591273 0.002189958951 +2.497899318e-06 -0.005757815032 -0.007630920801 0 17.75694762 -2.563979578 875.0182145 0.002285666706 +2.496990713e-06 -0.00983077534 0.005506907024 0 19.252327 15.91192044 1017.639825 0.001965331889 +2.497160399e-06 -0.001029313388 -0.01316630982 0 -16.28976431 19.4242372 1063.31269 0.001880914259 +2.49595816e-06 0.007798075792 -0.0123485231 0 -4.206939872 -27.60216667 981.4354075 0.002037831512 +2.498444928e-06 0.008791516335 0.00379149677 0 9.026870101 -15.94082689 1038.52202 0.001925813763 +2.499615682e-06 0.001191198123 0.01164685782 0 8.240890666 4.312342333 1060.826643 0.001885322182 +2.498780197e-06 0.001892983415 0.002571533744 0 -13.53198708 6.037135144 948.5033248 0.002108585123 +2.499883324e-06 0.003746714606 -0.001123702044 0 -3.146148018 2.964416604 894.8378085 0.002235041905 +2.495011483e-06 0.004335034378 0.01391618741 0 -4.386896016 28.10037251 899.7356539 0.00222287512 +2.498073828e-06 -0.004024874573 0.004556939795 0 -6.107611814 18.79167646 1006.429882 0.001987222395 +2.499940472e-06 0.007935582167 -0.01210736803 0 3.620695909 -0.3438721689 1054.049079 0.001897444853 +2.499931415e-06 0.002027983153 0.007000882337 0 -2.298510267 -2.968177232 1013.608769 0.001973147886 +2.496254647e-06 -0.009835286038 -0.01477083847 0 12.10107173 -23.22664879 956.3768086 0.00209122595 +2.497570596e-06 -0.0006247432996 0.01261019471 0 15.53758416 13.61085912 936.7504124 0.002135040427 +2.497654366e-06 0.001979851094 -0.01348463702 0 9.698327986 -20.23694386 1035.717225 0.001931029002 +2.498638064e-06 0.008504178221 0.01185896531 0 -16.6955377 3.1689329 1029.446429 0.001942791722 +2.499331554e-06 0.004346031388 0.01331076489 0 8.157625448 -7.118972151 936.3140797 0.002136035379 +2.499451561e-06 0.002982311817 0.01083981237 0 8.265509964 6.83181362 1023.810872 0.001953485799 +2.499621715e-06 0.004471560325 0.004486950652 0 -8.034961997 3.795095433 1021.559939 0.001957790164 +2.498612423e-06 4.92232386e-05 -0.002746193327 0 -8.453093619 13.10411662 935.8869203 0.002137010312 +2.498047609e-06 0.007558711586 0.007922281714 0 11.87033757 -14.04241204 930.236244 0.002149991481 +2.496197718e-06 0.008303932315 -0.0128852536 0 5.450281379 -26.74360386 989.1712543 0.002021894582 +2.499256742e-06 0.007311196658 0.01062789134 0 8.005481345 8.056661639 931.445717 0.002147199739 +2.498735135e-06 -0.005739376638 -0.01292267287 0 -7.351763911 -13.81617033 983.7980252 0.002032937604 +2.499453676e-06 -0.005240650089 -0.01072820831 0 -7.812408197 5.711622504 925.7485238 0.002160413923 +2.498529827e-06 0.004307393809 -0.005936387395 0 12.24685323 -11.80648198 991.8319185 0.002016470697 +2.496630507e-06 0.004271346307 0.01361302187 0 20.34093421 -12.25964464 914.4140026 0.002187193103 +2.49548705e-06 -0.003772926177 -0.009680895077 0 -22.38292525 -15.19827214 899.9345606 0.002222383813 +2.497564074e-06 -0.00485296695 0.008466157035 0 21.2586876 -4.750818352 986.5366308 0.00202729421 +2.499170905e-06 0.0001610603649 0.01372404723 0 -2.776111737 -12.74736001 1013.004074 0.001974325723 +2.497362559e-06 -0.004061300792 -0.01253278068 0 21.64319985 10.99053534 1056.478085 0.001893082335 +2.496625801e-06 -0.008808441381 0.009290018831 0 -20.77834315 -9.440830766 878.0998578 0.002277645284 +2.496701386e-06 -0.004932473991 -0.01233321657 0 -3.940292183 -22.43502361 886.3958752 0.002256328189 +2.498852715e-06 -0.0084560451 -0.0072333386 0 13.92806497 1.581157075 925.2218608 0.002161643693 +2.497651952e-06 -0.002794539491 0.01202540778 0 -19.50110756 -0.9601564035 900.6655672 0.002220580061 +2.496804406e-06 -0.007774868761 -0.0002079110336 0 6.66945942 -23.53752395 967.2345914 0.002067750696 +2.498161955e-06 0.004144847817 0.003408551964 0 -7.39051486 -18.08200265 1018.542293 0.001963590528 +2.499916463e-06 -0.003693582299 0.002172284606 0 -0.8980493233 -3.633571692 915.6918127 0.002184140966 +2.498276551e-06 0.00840087695 0.005090345023 0 8.858232056 17.79654828 1070.468663 0.00186834054 +2.499953408e-06 -0.006743830838 0.01010409191 0 -2.823362394 -1.172130766 1001.437978 0.001997128173 +2.497846819e-06 0.007662183349 0.003437533469 0 21.07786735 -1.782118619 1019.008668 0.001962691843 +2.499567203e-06 0.006275548292 0.01445457394 0 6.240912077 7.474026611 1046.506644 0.001911120212 +2.497644841e-06 -0.009761713916 0.00685357196 0 3.115433588 20.98072255 976.9622655 0.002047161974 +2.498126629e-06 -0.003199793822 -0.009906923489 0 -8.44180963 18.63506754 1056.608822 0.001892848098 +2.499643678e-06 0.0005247168615 -0.008415006527 0 1.342138638 7.880949305 946.9507967 0.002112042154 +2.499188484e-06 -0.008713702406 0.007964320786 0 -8.198455515 8.394910294 920.9444579 0.002171683626 +2.499698794e-06 -0.00918973946 0.01134900478 0 3.725159587 -5.755894298 883.3151023 0.002264197674 +2.498204216e-06 -0.007432708391 0.006730605452 0 -0.6106627405 -18.08552395 954.5955659 0.002095128106 +2.497678423e-06 -0.003995703543 0.009217211539 0 19.63904404 -3.272818417 923.6573079 0.002165305231 +2.499827802e-06 0.001155969533 -0.009069431182 0 4.660170862 -2.373106538 891.1048748 0.002244404735 +2.499532298e-06 -0.007519503245 -0.009985813019 0 -0.684688006 -8.780786163 910.582885 0.002196395334 +2.498362692e-06 -0.006115376377 0.00582255462 0 18.21345294 -5.844386898 1056.784477 0.001892533476 +2.496987337e-06 0.007172201858 0.009507466466 0 -14.96216686 19.64021387 1005.396593 0.001989264747 +2.495395601e-06 0.006744993599 -0.009740496289 0 26.22404724 -12.43096962 955.6823608 0.002092745542 +2.496694598e-06 -0.003603193783 0.007237804863 0 2.073962246 25.91183264 1010.513694 0.001979191387 +2.491717244e-06 -0.009553623945 0.009333215179 0 -30.45029115 29.31484438 1037.21421 0.001928241998 +2.498121945e-06 -0.005255341073 0.008294357148 0 -10.02013154 14.30308755 900.8346563 0.002220163252 +2.498755742e-06 -0.005798189742 0.01014419019 0 -14.57405716 2.62302693 938.53735 0.002130975395 +2.49752095e-06 0.004098294652 -0.01329609063 0 13.98944639 18.64367309 1046.398552 0.001911317629 +2.492708749e-06 0.007437344692 -0.007322188723 0 24.63004476 -24.23248934 903.82368 0.002212820979 +2.498829125e-06 0.007425768161 -0.01233427421 0 12.85700494 3.969779063 879.1576539 0.002274904838 +2.498429082e-06 -0.008426107797 -0.008757062531 0 17.96025662 4.393153968 1042.88585 0.001917755427 +2.498667343e-06 -0.00978599384 -0.01154067558 0 13.10695185 -11.06548741 1050.479827 0.001903891868 +2.49821446e-06 0.003632443673 -0.001302369777 0 14.3840624 -12.73988703 1016.525453 0.001967486395 +2.497572058e-06 -0.005946732112 0.006105284896 0 -19.37677819 7.477534035 942.1805754 0.002122735336 +2.496352506e-06 -0.005297677424 0.0001243066555 0 12.611488 22.20213701 944.8624508 0.002116710213 +2.499435523e-06 -0.007554692915 -0.001477777844 0 -8.757075394 5.042502158 950.9686459 0.002103118761 +2.496429006e-06 -0.001028843527 -0.01385177389 0 -20.20275453 18.51520926 1024.866453 0.00195147377 +2.498279505e-06 0.001512088832 -0.0103305149 0 4.653821578 18.88960426 1048.491409 0.001907502516 +2.496742638e-06 -0.003075509914 0.01030202727 0 -23.43473137 11.54810704 1023.070145 0.00195490017 +2.496573805e-06 0.00949460288 -0.0008792403946 0 19.83256433 16.39517741 982.4898462 0.002035644447 +2.497425118e-06 0.002789519238 -0.003178884604 0 -3.718347792 -20.95292204 937.3811203 0.002133603885 +2.498719862e-06 -0.00607967203 0.002111308607 0 -11.14160933 -10.53732461 958.2190191 0.002087205493 +2.499905466e-06 -0.002414566418 0.0003205215745 0 3.801287264 0.3577378596 878.0710916 0.002277719901 +2.499602926e-06 -0.008395271176 -0.007925318987 0 -2.883061026 8.676561927 1025.918533 0.001949472531 +2.495959736e-06 -0.001563603724 -0.005567565537 0 20.84283851 -16.14158719 926.8324906 0.002157887235 +2.49795756e-06 0.009768367317 0.01258172621 0 -1.394266509 20.06178609 994.7023862 0.002010651656 +2.499042539e-06 0.00702430387 0.01425674471 0 -13.35987578 -6.375468373 1069.586604 0.001869881309 +2.498562968e-06 0.0008639313281 -0.006660644417 0 11.35125332 -12.30965687 987.485308 0.002025346589 +2.496106596e-06 0.009387391289 -0.008244744733 0 7.106535437 -23.72635868 887.0610594 0.002254636227 +2.499797186e-06 0.002733450052 0.01281946356 0 5.35021895 1.966574689 894.978894 0.00223468957 +2.499169274e-06 -0.002426553792 -0.004881702906 0 10.72592135 -6.010935996 953.7720353 0.002096937136 +2.496486928e-06 -0.004595745653 0.01017101755 0 20.24479902 -19.19200504 1051.850181 0.001901411471 +2.494245978e-06 -0.001675694888 -0.01490688715 0 -19.24364313 -24.56497596 919.0709325 0.002176110602 +2.493670144e-06 -0.006439999524 0.01411028586 0 15.44546522 29.96277145 946.5149905 0.002113014606 +2.499675488e-06 -0.005912543721 -0.003449430841 0 4.851765194 -5.377551324 898.9859191 0.00222472895 +2.496257087e-06 -0.00396070878 -0.009278494497 0 1.611019645 -26.77052733 979.6659802 0.002041512148 +2.499882233e-06 0.004135313374 0.01483900225 0 1.47095762 4.012330769 880.5340926 0.002271348738 +2.496480479e-06 0.003398567489 0.0137999715 0 -16.38810773 20.10198941 977.0384234 0.002047002402 +2.498803083e-06 -0.002271319898 0.005520091744 0 -12.69319165 -5.447355698 892.5933982 0.002240661878 +2.498995716e-06 0.005346741192 0.0004745393666 0 -12.44749722 -6.955468022 1005.958251 0.001988154079 +2.497929088e-06 -0.006999747902 -0.01162558377 0 -11.08976798 -15.85223432 950.3101385 0.002104576095 +2.497118219e-06 0.008760328419 0.004764168493 0 -15.01038006 -17.57375754 962.2716434 0.00207841519 +2.498249772e-06 -0.004914531773 -0.006628390204 0 -18.50574122 1.5073075 992.1240375 0.002015876971 +2.497819898e-06 0.0003120137006 0.009020682389 0 -10.38473253 17.69693885 982.3315243 0.002035972531 +2.494670804e-06 -0.0001538289245 0.0003851708444 0 -20.5487619 -23.44847019 954.2412459 0.00209590605 +2.497251045e-06 0.005876817834 0.01120480438 0 -22.6784964 -10.76231105 1070.141141 0.001868912356 +2.496524619e-06 -0.003183365418 -0.006046300319 0 -19.75403599 13.09318705 898.444926 0.002226068557 +2.499569212e-06 -0.009779783534 -0.004228329656 0 -1.869974116 -8.482049947 935.6891431 0.002137462014 +2.496501199e-06 0.004027293944 0.005556261947 0 18.26058494 -15.39895549 902.5148243 0.002216030082 +2.498830299e-06 -0.00258475523 -0.00246299692 0 14.64693035 -0.4403277795 957.8867234 0.002087929555 +2.49695775e-06 -0.007529645707 0.0009181066789 0 -2.945537505 23.67460156 966.7353433 0.002068818538 +2.499940813e-06 -0.00445194473 -0.004819862468 0 2.070898664 2.922041117 1040.946858 0.001921327669 +2.495724088e-06 -0.008602975379 0.007081518397 0 -29.08554798 -1.664003238 995.585786 0.002008867571 +2.499197817e-06 0.002144224723 -0.000151667709 0 -5.969925564 12.17537477 1070.441606 0.001868387766 +2.495447595e-06 0.0002027920727 -0.004928013543 0 -23.8941217 -16.89642378 969.1938963 0.002063570569 +2.496521547e-06 -0.001241940823 0.001606395333 0 -25.74319997 -11.18298773 1063.56819 0.001880462409 +2.495822606e-06 -0.001525549381 0.01082050521 0 -21.77681317 13.08433873 878.3838466 0.002276908902 +2.498098967e-06 -0.009821855249 0.0007246666099 0 -7.924575998 17.12564393 967.4847427 0.002067216062 +2.498399769e-06 -0.001526218001 0.000466983919 0 16.48808802 2.772211075 934.3574663 0.002140508395 +2.498679884e-06 -0.004189356766 -0.007455002144 0 11.61450495 -12.68560477 1058.2971 0.001889828481 +2.499918018e-06 0.007517331396 0.003950578726 0 -0.7810452458 4.036394157 1015.301367 0.001969858473 +2.499662109e-06 0.004506225288 0.001958407739 0 -0.7015030546 -8.771395031 1070.355491 0.001868538086 +2.499911717e-06 -0.0002691566292 -0.0002912238194 0 0.4946037452 4.23525405 1014.757462 0.001970914306 +2.494842896e-06 -0.007394419494 -0.01285896286 0 -9.203308748 -32.49876931 1050.906379 0.001903119098 +2.497062263e-06 0.001514893658 0.00612091088 0 -13.63486734 -17.29193358 908.0764127 0.002202457824 +2.499466522e-06 0.004945192761 0.006977595545 0 7.024440844 -8.440591357 1063.019385 0.001881433235 +2.497061402e-06 -0.003421005155 -0.004053954729 0 -25.76910873 -2.979056524 1069.561204 0.001869925716 +2.499712488e-06 0.009662333555 -0.002912166431 0 6.752143491 2.069548126 931.2744501 0.002147594621 +2.498756719e-06 0.009096982195 -0.011296209 0 -8.393244957 13.58682345 1012.583038 0.001975146654 +2.497991146e-06 -0.001981641999 0.009704857171 0 14.55202168 -11.61413652 928.5924548 0.002153797384 +2.497603163e-06 -0.007684645187 0.01349506012 0 19.72162136 12.35781726 1062.605613 0.001882165853 +2.496571662e-06 0.00750894554 -0.0005155331246 0 -17.02118845 -19.4505994 986.559156 0.002027247923 +2.499596109e-06 -8.701877203e-05 0.008943417615 0 -4.590827554 -8.067761301 1032.739114 0.001936597513 +2.498417321e-06 0.003321053055 0.0002841808274 0 17.19671782 0.6797893777 967.0970387 0.002068044798 +2.496989361e-06 0.00847432428 0.003155328752 0 -17.52641531 -13.32329138 896.7870713 0.002230183802 +2.499160364e-06 0.006627555862 -0.01223035074 0 3.889393989 -13.01431265 1048.051558 0.001908303065 +2.494755588e-06 -0.008931885771 -0.008091287313 0 17.4262083 -25.79568761 960.4544092 0.002082347669 +2.498041772e-06 0.007411142914 -0.007040438913 0 11.64702649 -15.10362754 963.4759841 0.00207581718 +2.495426714e-06 -0.002867277833 0.002522660801 0 19.82424148 17.63328103 876.6745123 0.002281348405 +2.49387246e-06 -0.0001412290195 -0.01015459154 0 24.23174361 -27.53975155 1046.894105 0.001910412897 +2.495871197e-06 -0.003657190651 0.007830594156 0 -24.8002569 -15.52522836 1017.565372 0.001965475688 +2.497422584e-06 -0.0003844645899 0.003087465847 0 9.838429179 21.67909395 1048.168587 0.00190809 +2.498968401e-06 -0.003391487137 0.01134912168 0 -11.45368214 8.634533695 998.4440045 0.002003116841 +2.495644419e-06 0.007032967792 -0.0003367384756 0 16.63970757 -26.36133972 1055.520002 0.001894800663 +2.497251114e-06 -0.002301255595 -0.00480019304 0 -24.52145575 -3.722805706 1057.357705 0.001891507472 +2.499537071e-06 0.004032864254 -0.008205130817 0 2.852381033 9.702216942 1050.920032 0.001903094373 +2.496455291e-06 -0.0009183748625 -0.008736848664 0 25.75772386 11.82457031 1063.891558 0.001879890845 +2.498861856e-06 -0.006353744739 -0.005099001392 0 4.429940168 12.92596267 905.5033483 0.002208716294 +2.498081743e-06 -0.001484697852 -0.009852324282 0 -2.831668051 19.98605872 1030.266437 0.001941245418 +2.497678675e-06 0.004730166313 -0.008179260925 0 -12.88032366 -14.97445871 916.3775314 0.002182506589 +2.498310543e-06 -0.009120999919 -0.004161575704 0 -17.85479774 -7.140817804 1045.866026 0.00191229082 +2.497728522e-06 0.00237515524 -0.002378586265 0 19.4169709 -2.432302213 917.7939147 0.002179138441 +2.499315049e-06 -0.005889225835 0.0106362415 0 -7.886631168 8.234607867 974.0812964 0.002053216715 +2.497962687e-06 -0.009986915691 -0.009166533756 0 3.77793248 17.48694389 886.019202 0.002257287422 +2.496964334e-06 -0.006458919379 -0.009770047087 0 19.73392484 10.74135572 911.4266471 0.002194362 +2.499350656e-06 0.002231236408 0.00874460161 0 -3.361821486 -11.52281303 1053.180342 0.001899009999 +2.496106257e-06 -0.001476034569 0.01073918342 0 7.024763169 25.25058355 938.6565277 0.002130704833 +2.499767885e-06 0.007216077922 0.007802930572 0 -5.862857305 3.3984446 994.560298 0.002010938908 +2.493469315e-06 -0.002289107898 0.008295069183 0 -21.05890412 24.93583389 902.2153109 0.00221676575 +2.497524503e-06 -0.006186411991 -0.01271361681 0 -13.63991501 19.25291243 1060.013988 0.001886767555 +2.499210394e-06 0.002395000653 -0.005614308924 0 -10.15518177 -5.762853912 929.0457242 0.002152746574 +2.493764249e-06 -0.007994254082 -0.00628675391 0 -25.16167308 -22.91172219 962.7175231 0.002077452578 +2.496871971e-06 -0.004176027724 -0.008442174105 0 23.22712616 12.25266716 1049.428611 0.001905799002 +2.499916077e-06 -0.006778946808 0.01300291324 0 0.7417544717 -3.528168375 879.995325 0.002272739347 +2.499442881e-06 -0.003577303747 0.01269752403 0 -9.482764149 5.496152216 1038.248916 0.001926320336 +2.499797193e-06 -0.004849513331 0.001305095579 0 0.2822666161 5.792974688 910.6404005 0.002196256611 +2.4958936e-06 -0.002105098772 -0.008897414126 0 -19.74271709 19.59327973 969.9848827 0.002061887804 +2.498512204e-06 0.00566233851 -0.007858297911 0 -11.04373035 13.32932259 1003.257833 0.001993505492 +2.495684045e-06 -0.008790519633 0.002571424877 0 15.15339648 21.70908481 900.5259132 0.00222092443 +2.495215675e-06 -0.00914217208 -0.01309634785 0 -25.23276309 15.86489396 962.8615688 0.002077141787 +2.493879284e-06 -0.006440438903 0.005415853998 0 -25.88519988 26.52747714 1058.372797 0.001889693315 +2.499033561e-06 -0.005921713342 -0.005398311198 0 13.99496909 -4.963935667 1067.920688 0.001872798255 +2.497072098e-06 0.007954342556 -0.00146271117 0 20.08664346 -14.50580267 1023.438422 0.001954196713 +2.498714595e-06 -0.003754276973 -9.807590162e-05 0 -14.07168835 -8.642964106 1029.756028 0.001942207615 +2.495729517e-06 0.008300833432 0.01354762825 0 -21.75641299 22.17186985 1062.225562 0.001882839268 +2.498621557e-06 -0.001490078652 -6.621186621e-05 0 0.5017797609 15.49552111 933.5434629 0.002142374811 +2.498432393e-06 0.004215440555 -0.001694724981 0 -4.965010013 -17.74346805 1040.333456 0.001922460523 +2.493933417e-06 0.002965501011 -0.01437212425 0 22.66284973 -20.40652468 874.7138768 0.002286461954 +2.499959135e-06 0.008876128662 0.0010319498 0 -1.817542554 -2.091689532 969.2822337 0.002063382501 +2.499996039e-06 0.007411536253 0.01157940258 0 -0.8088851507 0.1230547288 919.21645 0.00217576611 +2.498418679e-06 -0.004270401481 -0.01098135377 0 16.79284521 -2.686327025 956.0555802 0.002091928588 +2.498670128e-06 -0.005712512326 -1.95756834e-05 0 15.70089576 -2.915885799 978.9961386 0.002042908977 +2.496757032e-06 -0.0001736504957 0.00692437574 0 15.5296883 18.98582609 962.6491782 0.00207760007 +2.495779512e-06 -0.00317947167 0.01110202777 0 9.856540489 25.14767623 929.0907513 0.002152642244 +2.49574108e-06 0.007782137878 0.01262590415 0 22.88161465 16.62995772 968.5815344 0.002064875211 +2.497444913e-06 0.003316758983 -0.003134731469 0 -20.68107686 2.796475057 922.8333961 0.002167238429 +2.499030439e-06 0.004061170416 0.007489679754 0 6.987774562 10.89758977 929.5090329 0.002151673549 +2.498178522e-06 0.009067784711 -0.01106390633 0 -15.83259463 -7.555344277 918.8750057 0.002176574602 +2.498859413e-06 0.008130184324 -0.00396270213 0 7.201871418 -11.94748145 923.4815172 0.00216571741 +2.498887031e-06 0.006170596131 -0.006124597499 0 -5.664636335 -11.89524644 882.9314921 0.002265181408 +2.497900445e-06 -0.009248504071 0.005457172513 0 -13.08357727 -13.57856141 919.8973498 0.002174155628 +2.498278589e-06 0.001062725852 0.00445075063 0 -11.86652 -14.11977723 993.7714129 0.002012535251 +2.498591454e-06 0.004550248799 -0.00965328045 0 -12.82020622 -8.414049075 913.4480948 0.002189505908 +2.493905026e-06 0.0006658235984 0.011193612 0 18.17934962 29.64447463 995.0975422 0.002009853221 +2.496797812e-06 -0.007127604876 0.00743180376 0 15.58474528 21.72490892 1055.995643 0.001893947208 +2.499302882e-06 -0.002365746684 0.004851101527 0 -3.860208055 -11.91815086 1060.86007 0.001885262776 +2.497146476e-06 -0.000293365079 -0.01391813139 0 9.628761503 -20.1344004 933.8338438 0.002141708628 +2.496702175e-06 0.0002149508521 -0.008933897058 0 -7.77671471 -21.1031437 875.2945422 0.002284945128 +2.499019129e-06 -0.003275509868 -0.001099595195 0 -10.86356445 -7.394888898 938.1300591 0.002131900562 +2.499001808e-06 -0.00927899614 0.005416748954 0 11.03078251 9.96702867 1052.03077 0.00190108508 +2.497604009e-06 0.003358302452 0.006755637629 0 -14.60619384 15.69768729 979.153991 0.002042579633 +2.498751163e-06 0.005557947187 0.01271032327 0 -14.15616307 -7.367512938 1009.591558 0.001980999131 +2.496365497e-06 0.001330591314 -0.0103487157 0 25.68551035 11.94668443 1050.121667 0.001904541219 +2.498968986e-06 0.007292740215 0.01443476234 0 13.99216116 -4.531296328 1024.064168 0.001953002617 +2.498563854e-06 -0.008257203097 0.01393151634 0 0.6703629967 -16.43484495 970.3285069 0.002061157624 +2.49481358e-06 -0.0006823456148 0.006608891641 0 19.70164463 22.90999761 937.4622198 0.002133419308 +2.497136387e-06 0.009087868943 0.0006697923085 0 -7.103644975 -24.54767227 1067.368499 0.001873767121 +2.495415737e-06 0.007423611549 -0.003430899619 0 25.101204 13.10889014 934.5769946 0.002140005598 +2.498725136e-06 0.006542749167 0.01193139788 0 14.40035855 0.5776223328 902.3859612 0.002216346537 +2.495133424e-06 -0.006302836863 -0.003960134347 0 -25.37005543 -18.36177457 1003.10168 0.001993815821 +2.497380225e-06 0.001797667742 -0.001667331986 0 16.8707364 11.71708327 897.0014153 0.002229650886 +2.498108729e-06 0.006171853421 0.01259546593 0 9.98946738 16.93560629 1010.690503 0.00197884515 +2.498007378e-06 0.00609045608 -0.01235393194 0 14.882349 14.03399951 1024.372683 0.001952414421 +2.498556215e-06 -0.005563868415 -0.005870740938 0 14.74572262 4.160589878 901.4457786 0.002218658124 +2.49990565e-06 -0.009511849312 -0.01294113213 0 4.024011679 2.328601801 1070.252428 0.001868718022 +2.499081985e-06 0.003940617442 0.005446373806 0 -4.11636443 13.1455697 1016.463412 0.001967606484 +2.496954888e-06 -0.002821556507 0.0009762812289 0 -15.99032582 19.38628013 1017.836187 0.001964952735 +2.49592497e-06 0.004728035587 -0.003504790636 0 9.451617075 -23.86304003 898.511011 0.002225904831 +2.496069186e-06 0.001654388113 -0.006906370295 0 22.56147997 -14.67246454 959.284092 0.002084888113 +2.49642458e-06 0.005615397003 -0.006698349046 0 21.67271468 18.2070324 1057.936498 0.001890472637 +2.499332404e-06 0.008439221703 -0.008522323142 0 -7.741738222 -7.599984127 938.7765286 0.002130432472 +2.495653996e-06 -0.003790193694 -0.01321763815 0 13.3748248 -24.43116195 944.1095971 0.002118398125 +2.499911103e-06 -0.003594119269 0.01229030402 0 -3.401745669 -2.334392229 978.4322528 0.002044086337 +2.498011552e-06 -0.006550777452 0.01242509962 0 -17.93622518 -10.96686032 1053.900841 0.001897711741 +2.49576474e-06 -0.003296677563 0.01162599688 0 14.21475412 22.59071028 916.4960925 0.002182224252 +2.498609973e-06 0.008530454081 0.01373269792 0 -15.16510163 7.921743543 1025.934687 0.001949441836 +2.498788572e-06 -0.003216393711 0.0002426248603 0 -13.24988796 7.556229654 979.7483341 0.002041340547 +2.497426412e-06 -0.001235662522 0.009624867146 0 -21.56211962 5.427913779 979.6735692 0.002041496334 +2.499840196e-06 -0.004844713369 -0.009956940652 0 2.236442838 5.11332099 987.1747369 0.002025983775 +2.495871729e-06 -0.003075868478 -0.01322627153 0 -23.87672471 -19.07311707 1062.863996 0.001881708296 +2.499664814e-06 0.0002471042657 0.01107520349 0 8.688093632 -0.07586815831 1061.112669 0.001884813986 +2.49899634e-06 -0.0006141001172 -0.01113821488 0 6.11780233 12.94662957 1010.528529 0.001979162332 +2.499471348e-06 0.006327570537 0.01155045594 0 -3.560770478 -9.882747702 1021.521513 0.001957863809 +2.495979419e-06 0.008885549218 -0.01052320812 0 25.98735439 4.540195409 929.7567833 0.002151100197 +2.495479079e-06 0.004926798334 0.002837273155 0 14.90064855 23.68322541 929.9010606 0.002150766447 +2.49841586e-06 -0.000991586009 0.003322399375 0 -2.007013727 18.94268866 1069.918559 0.001869301156 +2.49614866e-06 0.002637201198 0.008175848275 0 -15.68256736 21.05300994 945.348324 0.002115622305 +2.499365866e-06 7.001099642e-05 -0.008194720424 0 10.01303739 1.915702084 905.1599675 0.002209554191 +2.496891042e-06 -0.001602585376 -0.0007527523069 0 7.232322495 23.66214216 991.7970082 0.002016541675 +2.495506643e-06 -0.009080326566 0.01317250113 0 -26.1575464 11.35911609 950.6436494 0.002103837754 +2.493470049e-06 -0.0006594937388 0.01324375093 0 21.65784556 26.25732076 940.9225241 0.002125573518 +2.495104756e-06 -0.005607791166 0.01244145165 0 15.3282693 24.74569569 929.6053382 0.00215145064 +2.497737804e-06 0.008247348615 0.003174534549 0 7.554672672 20.59490066 1030.969104 0.001939922344 +2.498770792e-06 0.008906946904 -0.01381001606 0 -11.72065243 -7.45095875 885.620281 0.0022583042 +2.498218218e-06 -0.001295761354 -0.01196785908 0 -18.29145758 -5.653121975 1013.910217 0.001972561245 +2.498117398e-06 -0.002846485227 -0.01299571787 0 -6.046261183 19.01275663 1027.892341 0.001945729062 +2.499964482e-06 0.007790433662 0.003811575884 0 1.759813262 -1.58583918 888.8098879 0.002250199989 +2.496960111e-06 0.005298422626 -0.007748985607 0 24.44818745 5.451685713 1015.411995 0.001969643858 +2.497361143e-06 0.005888472986 0.002388494527 0 21.38608862 -8.797510244 1006.201457 0.001987673529 +2.49777501e-06 0.008267751606 0.007292793074 0 -15.28372824 12.27090058 928.8300001 0.002153246557 +2.497061908e-06 0.009970674622 -0.00661166758 0 12.20123136 -21.76682587 1028.934945 0.001943757484 +2.498127245e-06 -0.0002099731425 0.008504712316 0 14.41018754 9.392166178 888.5262574 0.002250918286 +2.49951751e-06 0.007460897886 0.008956432433 0 5.356205925 7.922774545 973.4712781 0.002054503348 +2.498213528e-06 0.00845616648 0.01058314685 0 -7.55365321 16.04130339 937.7749551 0.002132707841 +2.499501338e-06 -0.0008919810504 -0.008390943096 0 5.970999396 -8.653138359 1052.661798 0.001899945456 +2.498440542e-06 -0.003022652762 -0.008851134537 0 15.80420699 8.562980113 1017.567752 0.00196547109 +2.497152525e-06 -0.00827264667 0.002231270929 0 -7.987984504 -19.39183812 878.460771 0.00227670952 +2.497374934e-06 0.003836392099 0.009556856181 0 -18.29575301 -8.77413314 885.2067987 0.002259359059 +2.499025907e-06 0.0008438458247 -0.005536073665 0 5.361676658 11.406126 902.8409821 0.002215229525 +2.496117327e-06 -0.004521199744 0.005645627745 0 -28.45649772 -8.262554975 1062.732919 0.001881940387 +2.497009876e-06 -0.009361597416 -0.006768391323 0 -22.84876492 -11.84655173 1051.980996 0.001901175028 +2.49737913e-06 0.008535795598 -0.007972915568 0 17.40886368 -16.67263064 1052.437609 0.001900350181 +2.497229299e-06 0.0002168200025 -0.003416965718 0 23.7931596 3.616220085 1021.92891 0.001957083296 +2.498609337e-06 0.001818582336 -0.01431296348 0 -15.16042168 -1.270416011 912.0405965 0.002192884843 +2.497519681e-06 0.003592525921 -0.01408426312 0 -19.65860199 12.06104046 1035.133888 0.001932117211 +2.49702199e-06 0.007930675233 -0.004946978025 0 24.37232123 -3.025896155 1005.880323 0.001988308106 +2.498294798e-06 -0.009727348131 -0.008559096975 0 4.00345946 -17.40633676 966.9119021 0.002068440771 +2.498384788e-06 0.001164458441 0.0009481729218 0 -4.446532728 -17.91412998 1026.699117 0.001947990378 +2.499890294e-06 0.006168904481 0.01469221323 0 1.432896021 4.424871068 992.9291826 0.00201424234 +2.499073077e-06 0.009821116244 0.007306048579 0 -1.080327018 14.32545921 1054.97645 0.001895776915 +2.497627652e-06 -0.008210526244 0.01058921745 0 20.32901423 -6.678799136 982.0073011 0.002036644736 +2.497357512e-06 0.005351903527 -0.01010108477 0 5.166705098 -20.35196159 913.0087465 0.002190559518 +2.497705623e-06 0.006979114828 0.01038757017 0 16.54455977 -10.76629435 921.1541897 0.002171189169 +2.497609158e-06 0.006866171085 0.001945095775 0 -0.8470213192 22.41987308 1025.643953 0.001949994435 +2.496300781e-06 -0.002735695443 0.006676421617 0 -5.436314361 27.92891715 1045.485915 0.001912986077 +2.496818731e-06 0.002594790519 -0.009486082031 0 24.35950669 -2.656384633 970.9860346 0.002059761859 +2.498270494e-06 -0.008826508331 0.001921908658 0 -19.58607457 1.343557765 1055.305193 0.001895186353 +2.499717558e-06 -0.004644559864 -0.006556227012 0 -4.005942856 -6.932960882 1065.311526 0.001877385113 +2.499551557e-06 -0.001740137124 0.009822335327 0 8.544084734 3.624383661 979.9374532 0.002040946586 +2.497810789e-06 -0.0009716988122 0.003059920545 0 19.09211173 -9.771685922 1024.648499 0.001951888869 +2.497367595e-06 -0.00446544202 -0.01029362068 0 0.4356278027 -21.2811384 927.3056997 0.002156786053 +2.497642499e-06 -0.00169517098 0.003856346395 0 -21.56528724 -7.802344295 1055.778384 0.001894336946 +2.499682789e-06 0.009690094008 0.007091647745 0 -7.056508212 -4.315777179 1038.442377 0.001925961464 +2.497373191e-06 -0.007329885531 0.00516222555 0 -15.19053794 -13.58317134 888.703694 0.002250468872 +2.498463922e-06 -0.006273901928 0.006297135546 0 -16.72930573 1.463929141 957.8833567 0.002087936893 +2.496374225e-06 -0.009320244114 0.002179873162 0 -21.13519647 14.03949397 941.727039 0.002123757646 +2.498702065e-06 -0.006891311263 0.004136723459 0 1.565650404 -17.17267506 1070.063142 0.001869048584 +2.499880424e-06 0.006234409749 -0.006920293446 0 3.257872227 3.446891011 969.8307953 0.002062215398 +2.498390397e-06 -0.006068028733 0.0005537609174 0 -9.116075698 -14.32704388 946.223008 0.002113666634 +2.498356211e-06 0.008066348662 -0.01286413383 0 7.342626908 -15.81002697 961.168587 0.00208080042 +2.499362402e-06 -0.009264400401 -0.005988632762 0 9.387666443 4.560646914 924.1433708 0.002164166365 +2.497394617e-06 0.005364103885 0.01320994969 0 -12.59433462 16.24237316 900.0316526 0.00222214407 +2.499665596e-06 -0.00608438361 -0.008696307871 0 7.234994196 -4.179210428 1021.620225 0.001957674633 +2.498227809e-06 0.002707639085 -0.003207683531 0 -14.68663243 11.45498167 989.0655194 0.002022110731 +2.497756979e-06 0.003819605117 0.01107959528 0 -11.97505602 17.03985729 982.9836155 0.002034621909 +2.498666983e-06 0.005459964341 -0.007934105177 0 12.3485482 11.45631553 1031.420858 0.001939072674 +2.496069962e-06 -0.0006733941427 0.006319914688 0 -20.85725221 17.27309213 965.3756075 0.002071732478 +2.497370973e-06 0.003711556951 0.00140887341 0 -14.85385695 16.1656871 957.0277534 0.002089803554 +2.498758076e-06 -0.008400407843 -0.01178844902 0 13.57712698 3.543319014 890.1685656 0.002246765475 +2.496047782e-06 -0.008526202799 -0.008771852881 0 -26.98769966 11.69280627 1045.513017 0.001912936489 +2.498662993e-06 -0.00310524927 0.003163021971 0 -16.08550944 5.713772398 1043.683804 0.001916289198 +2.495977929e-06 -0.002128672306 0.008546169105 0 -10.72314979 28.30042083 1066.404362 0.001875461195 +2.498504006e-06 0.00113441797 -0.006249557119 0 16.21020916 6.931593027 1019.003283 0.001962702215 +2.494975193e-06 0.007018552315 -0.007831553507 0 13.04211639 -28.05258984 975.1327515 0.002051002796 +2.498069335e-06 -0.009131285702 -0.009726175354 0 -17.28951418 5.112943312 917.2628689 0.002180400044 +2.494331511e-06 0.0002760726633 -0.00265041925 0 21.87466108 -22.40297563 929.1419074 0.002152523726 +2.498962586e-06 -0.002741532461 -0.00288848191 0 3.792823339 13.52425094 974.9781622 0.002051327996 +2.494615115e-06 0.003923581271 0.001872110995 0 23.40581627 19.6728557 930.93086 0.002148387261 +2.49995869e-06 0.009639851633 -0.004301759389 0 -0.3559645483 2.659834912 933.605568 0.002142232296 +2.499550553e-06 0.008200923116 0.002959989191 0 0.679461127 8.633216015 913.3347274 0.00218977768 +2.498911042e-06 -0.006072091474 0.01168682041 0 -7.322605952 -12.95209363 1008.033794 0.001984060466 +2.495208601e-06 0.008381269611 0.01047977886 0 10.85537162 25.07974972 882.1717344 0.002267132262 +2.499978763e-06 0.005807396346 -0.001823222833 0 -0.2151188372 1.850195345 903.8023552 0.002212873189 +2.498277397e-06 0.008852682603 -0.006001738929 0 -16.15649409 -2.442478831 880.1042714 0.002272458009 +2.498183032e-06 -0.00503753541 -0.007425695679 0 -3.643938994 19.19370622 1024.567869 0.001952042476 +2.497695963e-06 0.006518728337 -0.003165022074 0 -9.466381448 16.526352 886.918067 0.002254999728 +2.497765339e-06 -0.0008670193562 -0.009225415543 0 -10.07376311 18.22933446 984.8565968 0.002030752504 +2.498906233e-06 -0.00101222056 0.01202180004 0 -4.840784196 -13.12555476 945.7178974 0.002114795549 +2.497636011e-06 -0.006109122848 -0.006187547743 0 -12.73401425 -18.95801078 1049.931232 0.001904886662 +2.497991431e-06 0.008846582109 0.002157337458 0 12.47157218 13.9299493 932.580359 0.002144587306 +2.496624728e-06 -0.007413376207 -0.01369911264 0 -21.19866528 -10.01004035 901.8363774 0.00221769719 +2.497946498e-06 0.006869796771 -0.003540451869 0 14.33774309 -16.02514402 1060.721459 0.001885509134 +2.497536866e-06 0.008099646536 0.005713960673 0 16.30123351 -11.55446524 899.9021003 0.002222463976 +2.497541462e-06 -0.001297275717 -0.01408511407 0 15.2778463 -12.36874548 886.1434578 0.002256970903 +2.496010438e-06 -0.003220374999 -0.00131151472 0 -20.12987272 -22.21099434 1060.549734 0.001885814437 +2.49267921e-06 -0.007980699968 -0.01149725685 0 -26.74489406 -29.87746388 1046.803205 0.001910578789 +2.499116202e-06 0.001919958466 -0.01089238262 0 9.520614285 8.356307418 952.6816512 0.002099337168 +2.49891124e-06 -0.007828254369 -0.006296068202 0 -12.83128435 -5.364664761 942.3243164 0.002122411536 +2.497709732e-06 -0.004934441489 0.01322539698 0 -13.03870703 17.80886593 1030.931866 0.001939992414 +2.493745357e-06 0.009166826108 -0.01487855996 0 -16.80866902 -30.55703296 985.1212181 0.002030207007 +2.498550348e-06 0.005279313824 -0.006745664505 0 15.70544096 6.717594611 1002.978421 0.001994060846 +2.493021056e-06 0.008774936618 -0.01049370386 0 27.17604267 -23.00977084 952.1213249 0.002100572635 +2.497551162e-06 -0.00182209813 -0.005229038789 0 16.85584856 15.24157977 1026.476811 0.001948412257 +2.499908551e-06 0.0002282033488 0.01444550097 0 -4.232100071 1.404909823 1042.669112 0.001918154069 +2.498579014e-06 -0.00766668323 0.004215621476 0 7.178121132 -16.10421534 1045.653276 0.001912679896 +2.496168922e-06 0.009277864741 -0.01065417582 0 27.84764743 -7.155522602 1038.118414 0.001926562492 +2.499984703e-06 0.009433584958 0.006090553093 0 -0.2061192684 -1.644008271 947.2523836 0.00211136972 +2.496807515e-06 0.005706988969 -0.004043913377 0 -11.64229402 -23.47700718 1036.573357 0.001929434118 +2.498042844e-06 0.008322869237 -0.006524466667 0 -10.07058716 15.82130444 947.6536495 0.002110475701 +2.498088029e-06 -0.00688419905 0.008940753923 0 15.90092911 -10.1057288 963.1917577 0.002076429729 +2.49699789e-06 -0.001221847567 -0.006198968687 0 -20.20093746 -13.90377703 1000.357377 0.001999285502 +2.497528699e-06 -0.00522547123 0.004606798324 0 -11.86184922 19.37281685 1021.386124 0.001958123332 +2.499258048e-06 0.009956927816 0.01485240993 0 10.55903362 -6.466096919 1016.30671 0.001967909864 +2.495328689e-06 0.001048294259 -0.01141360269 0 21.72823624 -18.11263022 924.8171392 0.002162589679 +2.495535319e-06 -0.005151104298 0.01296672225 0 -10.93086923 28.90746112 1033.543707 0.001935089911 +2.497268449e-06 -0.003233212074 -0.007008938142 0 17.74545747 -11.86614851 912.9458621 0.002190710406 +2.496479753e-06 -0.0001700233202 -0.007222923751 0 -7.427473995 -27.01426041 1055.325807 0.001895149334 +2.499008834e-06 0.004611033658 -0.001779293537 0 12.11361162 8.836847325 1064.814228 0.001878261904 +2.499807837e-06 0.007220902112 -0.00874198202 0 -0.5493638227 5.488275697 889.6885445 0.002247977691 +2.499230261e-06 -0.0002528232243 -0.008880604331 0 1.268307352 11.54013299 935.580427 0.002137710391 +2.497646898e-06 -0.006213893318 0.005161596634 0 -0.6504439126 -20.17229953 930.0201303 0.002150491086 +2.499336631e-06 -0.00161154795 0.003642022514 0 -12.07558707 -1.766998654 1059.431375 0.001887805145 +2.497271847e-06 -0.008807744985 0.004467950617 0 -9.810243445 21.76926047 1021.796026 0.001957337813 +2.499872967e-06 -0.001426556488 0.005714066445 0 3.715768101 -2.665143918 907.1820918 0.002204629057 +2.498750664e-06 -0.006814917582 -6.640127627e-05 0 -14.73319375 2.060091885 940.9476885 0.002125516673 +2.499920797e-06 -0.00770586404 -0.01290516278 0 -3.44413022 -0.7345009052 884.8033708 0.002260389219 +2.497074889e-06 0.001996133253 0.01444333406 0 11.28623892 19.66781153 937.1089523 0.002134223555 +2.499711039e-06 -0.007719318485 -0.005408776647 0 -2.460510186 -6.887538847 962.0380535 0.002078919844 +2.497942452e-06 0.008294785512 0.01080470339 0 -14.85102987 -12.42874035 954.3485648 0.00209567036 +2.498313531e-06 0.005933452621 0.009401523618 0 6.882542555 16.21506233 958.9041158 0.002085714272 +2.499026028e-06 -0.004974361365 -0.01487986512 0 7.256003967 12.55057915 1038.556815 0.001925749243 +2.497816083e-06 -0.008679056931 0.001116616549 0 -13.28526745 -13.55301327 907.7911839 0.002203149838 +2.497413735e-06 0.006211372036 -0.007576597799 0 -12.91595371 15.39476025 883.2306474 0.002264414178 +2.499423544e-06 -0.002831581542 -0.01018642862 0 -10.78122843 -0.6330038704 1005.726506 0.0019886122 +2.496102627e-06 -0.003229957581 0.002820856569 0 11.3837924 26.48610997 1031.983648 0.001938015204 +2.499842692e-06 0.009458963042 -0.002011688661 0 -1.448458898 -4.844571438 901.4603416 0.002218622282 +2.496049388e-06 -0.005080037406 -0.003157500455 0 20.28197545 -19.15520262 991.8895536 0.002016353527 +2.499060064e-06 0.0006448961981 0.002067844032 0 7.74016704 -10.53095386 953.08742 0.002098443394 +2.49846579e-06 0.001100433879 0.01054151741 0 18.08793195 -0.7666328951 1033.287683 0.001935569379 +2.499346757e-06 -0.007903871415 0.001198044587 0 -1.712462449 10.96044487 970.4434318 0.002060913531 +2.496579178e-06 -0.003575016637 -0.007075996127 0 6.196874629 -22.60685139 895.7136158 0.002232856534 +2.496300346e-06 -0.007843667869 0.008080765565 0 -23.43221814 14.88268763 1019.923075 0.0019609322 +2.498001009e-06 -0.006481636325 -0.0002722394723 0 -0.294200744 -18.08868499 904.5108382 0.002211139895 +2.499494723e-06 -0.003967238078 0.008951122065 0 -7.448400591 -4.757620534 879.1248901 0.00227498962 +2.499549302e-06 0.008929985822 -0.003546408664 0 8.052093685 4.107605751 952.022117 0.00210079153 +2.497099135e-06 -0.00500622984 0.0009106986481 0 -22.34416841 0.9191709299 928.0332047 0.002155095302 +2.499033469e-06 -0.008751905537 -0.01448339628 0 -9.460113961 10.4102863 1011.58337 0.001977098537 +2.495661958e-06 0.004570055907 0.01144020337 0 -5.18247455 27.53125287 950.4789936 0.002104202211 +2.497142128e-06 0.008785672216 0.006931323207 0 13.61789959 -21.50752599 1064.319116 0.001879135656 +2.498636894e-06 0.005109732132 -0.001844596742 0 10.22382535 -11.32201811 923.7261036 0.002165143967 +2.499495526e-06 -0.00407367683 -0.01123741591 0 -7.329908783 -7.85350209 1069.412108 0.001870186418 +2.499829076e-06 -0.006565385698 0.005080986663 0 -5.394683412 2.822092845 1041.273225 0.001920725465 +2.499944249e-06 -0.00065031162 -0.01008969799 0 1.754586746 -2.762965007 980.1728872 0.002040456358 +2.497508776e-06 -0.008038920616 0.00376719275 0 -19.70630199 -11.53980332 1022.693919 0.001955619333 +2.49961454e-06 0.006481839037 -0.001117421051 0 8.574503129 1.183106507 985.7670204 0.002028876964 +2.494494497e-06 -0.008248265516 -0.002513130116 0 -26.63088511 18.72531995 980.2751504 0.002040243496 +2.496938979e-06 -0.00523753731 0.0115154123 0 20.94388532 11.18475168 959.1658171 0.0020851452 +2.498824081e-06 0.0003235410387 0.01391344528 0 -15.26261554 5.881111626 1066.374806 0.001875513176 +2.499237112e-06 0.009530463894 0.008417170176 0 6.606249906 -8.752555086 887.66098 0.002253112444 +2.497871391e-06 0.004951151977 -0.01311740432 0 12.91238098 -12.71699433 878.0798528 0.002277697175 +2.498983066e-06 0.008812175621 0.0009227611218 0 -0.6905711135 14.98081975 1051.401968 0.001902222044 +2.49833282e-06 -0.008055960378 0.01300793618 0 -5.465869478 -15.10130275 879.2895295 0.002274563648 +2.498883723e-06 -0.007578868861 -0.002470903785 0 -15.0457141 5.00668164 1061.069216 0.001884891173 +2.49782881e-06 -0.002545352066 -0.008864597082 0 -17.08668324 11.45582586 986.8760749 0.002026596906 +2.499857003e-06 -0.0008874183102 -0.00850884831 0 -3.987226986 2.759757064 906.7301387 0.002205727939 +2.497971112e-06 -0.005492858407 0.01226954709 0 8.491274736 -16.90613416 938.8931124 0.002130167932 +2.496410982e-06 -0.0001370325731 -0.003438193733 0 -17.92150613 16.45754787 907.6857831 0.002203405669 +2.497463987e-06 0.001221194658 0.002930313419 0 -19.49681155 8.060501444 936.4217826 0.002135789702 +2.496379585e-06 0.007394168861 -0.003787077558 0 23.39074014 9.870337266 942.9706859 0.002120956706 +2.49763071e-06 0.005396550582 0.01169861809 0 11.32205072 19.32225687 1028.427252 0.001944717039 +2.497658779e-06 -9.287465829e-05 0.001654044392 0 -21.40449434 -4.750890492 1012.88199 0.00197456369 +2.498489409e-06 -0.002943637418 -0.01465024092 0 -11.85821526 10.58226047 914.1787903 0.002187755854 +2.499274399e-06 0.009709187197 -0.01246290882 0 -3.528412222 11.56841808 1003.872091 0.001992285688 +2.494360827e-06 0.002243137974 0.01482094834 0 -15.87361825 31.68182566 1054.275697 0.001897036995 +2.499686978e-06 -0.0027408265 0.0004062675918 0 -5.692043154 -4.182250159 892.6606233 0.002240493137 +2.49618638e-06 -0.005608627554 -0.003334530999 0 -25.8142428 -13.99975843 1062.708297 0.001881983989 +2.496311775e-06 -0.00515591017 -0.008788982132 0 -24.41035142 -14.19939837 1039.197285 0.00192456238 +2.49876546e-06 0.009171329276 -0.01297813611 0 -1.082029735 -15.4523842 985.6203974 0.002029178785 +2.496863012e-06 0.006325581404 -0.004401038541 0 -17.94896274 -17.20399552 992.129746 0.002015865373 +2.499001847e-06 0.002104826649 -0.01259950201 0 14.22985182 0.3386615451 1007.267565 0.001985569742 +2.496550516e-06 0.0001618858147 0.002819855239 0 14.54945337 -18.68960485 901.2801444 0.002219065861 +2.497847823e-06 -0.007859137608 -0.01249966194 0 18.34910423 -7.519815795 955.5053052 0.002093133329 +2.495723308e-06 -0.001581578688 -0.01270588181 0 23.98928813 16.90764365 1002.866502 0.001994283383 +2.496612256e-06 0.002214265773 -0.0004962360975 0 11.14320609 -23.93390923 1013.739128 0.001972894155 +2.49965877e-06 -0.005055970056 -0.004445681996 0 -1.260847912 -8.526704626 1043.319472 0.001916958375 +2.499182066e-06 0.006270754696 0.01426620033 0 -8.548726609 -8.460770624 940.2752185 0.002127036809 +2.497699255e-06 -0.005375061813 -0.01332889612 0 10.33457051 -17.23179732 936.3770604 0.002135891709 +2.49852159e-06 -0.004201328591 0.002830756952 0 14.81296252 4.846058761 906.175524 0.00220707793 +2.499317752e-06 -0.007759344699 -0.007943321492 0 -9.594449529 4.526363815 908.0835067 0.002202440618 +2.495054259e-06 0.006736186785 -0.001590391996 0 21.42383487 25.14884399 1049.657903 0.001905382692 +2.497678045e-06 -0.00265765355 0.004591585037 0 -13.81647024 -15.36388328 958.4999282 0.002086593792 +2.496582266e-06 0.003955297722 -0.002131844242 0 -18.87334905 15.54742024 934.7955423 0.002139505282 +2.498115799e-06 0.003133004443 -0.0126104723 0 -18.55595326 1.513547262 958.7862326 0.002085970712 +2.498724085e-06 0.002297654613 0.001546576854 0 -11.18241286 -11.80241236 1017.595386 0.001965417716 +2.496468503e-06 -0.004281060845 0.01070107542 0 -16.34186153 18.77299581 936.0296992 0.00213668434 +2.49700534e-06 0.009630736164 -0.01301127482 0 18.75101687 16.05541948 1008.228826 0.001983676669 +2.496445604e-06 0.00122291089 -0.01370585869 0 10.48762205 -22.37144147 926.1964537 0.002159369097 +2.497630345e-06 0.0004095419124 -0.01150028107 0 15.84525511 -11.34957116 894.9813317 0.002234683484 +2.495250165e-06 -0.001602733368 0.007429493414 0 11.57957637 24.61961121 882.0923969 0.002267336174 +2.496815716e-06 0.009257793338 -0.0008347520605 0 6.763179735 21.91589285 908.4139398 0.002201639487 +2.498730126e-06 -0.003546147584 0.006819526646 0 -15.71208463 -1.873283399 992.7061668 0.002014694848 +2.497692099e-06 -0.002327125315 -0.004282067672 0 8.619435129 -19.40511239 987.9695132 0.002024353964 +2.498272493e-06 0.0004924930213 0.01169854891 0 18.70474218 6.645792408 1067.650923 0.001873271457 +2.496574512e-06 -0.003172030943 0.01293207429 0 -19.86023024 -12.51843807 896.4611842 0.002230994532 +2.497194614e-06 -0.009244040139 0.006324664622 0 -10.89778278 22.74181792 1064.187171 0.001879368643 +2.498963709e-06 0.004902980584 0.01083449755 0 -3.049517979 -12.43888692 889.4719933 0.002248524985 +2.495476855e-06 -0.002150446032 0.01200176226 0 15.18302892 24.85368379 967.6686183 0.002066823251 +2.498976539e-06 0.007351050139 0.004609651614 0 -12.84278492 6.091929059 993.3693397 0.002013349839 +2.497936071e-06 -0.00594407252 0.009128057042 0 -19.89904413 8.233259064 1059.617369 0.00188747378 +2.495766502e-06 0.002513512117 -0.01125582919 0 23.63500823 -16.73662411 994.6492101 0.00201075915 +2.495057572e-06 0.009769596369 0.00481118219 0 21.446453 23.74578475 1016.957552 0.001966650422 +2.499132812e-06 -0.001267383071 0.01168215014 0 8.900897612 10.27613189 1032.171888 0.001937661764 +2.498351792e-06 0.0004400577629 0.01339313564 0 9.500430154 -13.96756122 930.1677522 0.002150149793 +2.498518894e-06 0.0006551233632 0.01016312287 0 5.468927467 15.67020656 964.1136024 0.002074444334 +2.498877472e-06 -0.002716231844 -0.009438364673 0 -9.587627824 12.85372054 1070.036648 0.00186909486 +2.498791992e-06 -0.008204523292 0.003744389915 0 -5.238138044 -15.14991377 1031.104097 0.001939668367 +2.499004961e-06 -0.00441431581 -0.002169333855 0 12.35733186 8.313609592 1055.602248 0.001894653033 +2.499925794e-06 -0.007927154968 -0.002041108464 0 2.021137939 -3.572555833 1065.462455 0.001877119171 +2.498910314e-06 -0.006956148604 0.01242106436 0 8.767557002 -9.90413009 895.8495498 0.002232517726 +2.498547269e-06 -0.007850844883 0.01284777476 0 14.97791486 4.578307582 918.6403685 0.002177130538 +2.496943483e-06 0.001015663049 0.007712588499 0 -21.27594612 -11.40912803 975.9887763 0.002049203893 +2.498801156e-06 0.00684105142 -0.0009718350624 0 -11.2039069 -10.71408224 1000.966677 0.001998068513 +2.496157741e-06 -0.004822514621 0.006389211018 0 16.26706991 22.47447395 1000.247446 0.001999505231 +2.4984452e-06 -0.005203949125 -0.01437531848 0 -17.0569935 -7.173566308 1049.093103 0.001906408492 +2.499008001e-06 -0.00806022902 0.001523845992 0 -8.554347709 10.52336356 962.6687371 0.002077557859 +2.498410675e-06 0.004963251175 -0.01257571195 0 10.38540964 -15.50198299 1046.332298 0.001911438655 +2.499567753e-06 0.007207530821 0.01089872149 0 -7.773419684 2.541329753 879.5352868 0.002273928096 +2.499244985e-06 -0.003367757029 0.001643590441 0 -8.547144532 -7.934922805 948.9737793 0.002107539791 +2.497583947e-06 0.009479330955 0.002159523005 0 8.349570964 18.72204393 932.219009 0.002145418599 +2.498389868e-06 0.008656476568 -0.006856558565 0 -13.48599761 -10.25287801 943.8120696 0.002119065929 +2.493335551e-06 -0.001516729863 0.01493158812 0 -17.44039628 30.79829306 968.4832596 0.00206508474 +2.496948683e-06 -0.0001227633003 -0.002865476722 0 23.15705374 2.436558705 942.1424741 0.002122821181 +2.494167247e-06 -0.007160901027 -0.01404211213 0 -24.0685774 -19.52970935 906.6988599 0.002205804031 +2.498278482e-06 0.005802121358 -0.0002398031694 0 16.72212142 7.833752711 994.9295457 0.00201019259 +2.498314263e-06 0.004184885719 0.007435684002 0 12.53691533 10.16759421 878.8794866 0.00227562485 +2.499275745e-06 -0.009743845672 -0.0005503525003 0 11.80051551 0.812284309 982.6969606 0.002035215412 +2.499646021e-06 0.004896192118 0.001010546247 0 1.622900159 -7.817719248 948.888628 0.002107728917 +2.49701431e-06 -0.006538552959 0.006630260744 0 17.3990411 16.18389494 971.9766181 0.002057662667 +2.499101747e-06 0.00638556065 0.006062897039 0 2.610692047 13.28604901 1010.065834 0.001980068954 +2.498023565e-06 -0.005131916562 0.0003064317 0 4.361514802 16.88504792 876.8854181 0.002280799702 +2.498102707e-06 -0.002406986677 -0.01186639458 0 9.041667886 14.60422023 881.5174454 0.002268814997 +2.499190189e-06 -0.001504135034 0.001028047919 0 11.67772433 -2.644874478 940.7222536 0.002126026032 +2.497214197e-06 -0.001662470829 0.007861535554 0 13.63622405 -17.75548227 948.059049 0.00210957324 +2.49414354e-06 -0.0007558705658 -0.009988820949 0 18.58266772 -29.74424098 1023.868778 0.001953375317 +2.499490496e-06 -0.005978256152 0.002168576703 0 -10.75332347 -0.9368611085 1069.209079 0.001870541543 +2.498602396e-06 -0.00135675428 0.002240283815 0 15.6739747 -5.430625768 991.97016 0.002016189681 +2.499496636e-06 -0.005519023817 0.005402756478 0 2.227298064 -9.318987879 954.8666345 0.002094533339 +2.496905277e-06 -0.009879335244 -0.006308315063 0 -24.60841658 -10.0921318 1068.593819 0.001871618537 +2.494869204e-06 0.0002936080704 -0.008521424609 0 -16.44618249 -27.70882629 1005.102365 0.001989847074 +2.49890928e-06 0.00834439443 -0.01095017191 0 -0.1315707937 14.76966476 999.8735695 0.002000252893 +2.499042107e-06 0.007773982058 0.008705444809 0 1.842295597 12.44447239 908.758088 0.002200805722 +2.496990894e-06 0.004758546539 0.01289697718 0 21.92950143 -0.7173205892 893.9867558 0.002237169608 +2.49784555e-06 -0.002701167064 0.006341822539 0 -7.0007131 -18.72742171 962.8480155 0.002077171026 +2.499226345e-06 0.009886506749 -0.006545493845 0 7.806792647 -8.447415619 924.5892547 0.002163122695 +2.49949996e-06 0.007707529403 0.007251249764 0 -8.006295972 -6.980383434 1062.076266 0.001883103939 +2.497853247e-06 0.002908743764 -0.01137845628 0 4.234543715 -21.19166949 1042.607696 0.001918267061 +2.49908202e-06 -0.00114631481 0.01270019207 0 -10.9913807 5.841695569 918.5114115 0.002177436203 +2.499825197e-06 -0.007136203861 0.003511138943 0 -3.498634875 -4.578000591 974.4487657 0.002052442438 +2.499676186e-06 -0.004411928109 0.006876636855 0 6.067318083 4.156115369 913.8119867 0.002188634018 +2.499449574e-06 0.00906137648 -0.004972784242 0 8.326892818 -5.907939094 973.0128288 0.002055471358 +2.494718404e-06 -0.006257704562 -0.004510476168 0 18.84506221 -23.67194632 930.2219342 0.002150024555 +2.499618881e-06 -0.007461105795 -0.01278302305 0 0.006389106366 -8.381378958 959.9435142 0.002083455923 +2.498636077e-06 -0.005968122575 0.003466004049 0 8.784986295 -13.33105764 966.4519571 0.002069425164 +2.499988409e-06 -0.007664497467 -0.009531060769 0 -0.7084687281 1.451421167 1060.789877 0.001885387524 +2.499541211e-06 0.004037607191 -0.009350876212 0 -5.381579669 -7.776317747 987.1800135 0.002025972946 +2.499706863e-06 -0.004945437857 -0.000429883576 0 4.018640294 -5.44204958 883.4842858 0.00226376409 +2.499053737e-06 0.003680927153 -0.01078800462 0 4.569043769 13.77147848 1054.567279 0.001896512475 +2.496976311e-06 -0.006618509027 0.004605806095 0 -3.057338397 25.77087063 1054.832188 0.001896036188 +2.498968898e-06 0.007029619133 -0.0003076789202 0 -1.756247278 12.80254404 899.7287181 0.002222892256 +2.499463522e-06 -0.006632634182 0.01427033284 0 10.78564971 -0.5181788052 1042.368112 0.001918707965 +2.496236738e-06 0.009360724166 0.007895470583 0 15.56591157 22.23671971 988.8335395 0.002022585117 +2.497853957e-06 0.003613684 0.005999131962 0 21.06245506 -1.938457343 1020.625548 0.001959582537 +2.497629785e-06 0.007344537424 -0.008996645689 0 -16.04815626 16.00027748 1040.468617 0.001922210787 +2.499319406e-06 -0.006599028688 -0.002370099917 0 -4.937094971 9.711720276 933.7017199 0.002142011691 +2.495909203e-06 0.005519589791 -0.001190096035 0 19.00643234 16.72976844 884.6821459 0.002260698952 +2.498550303e-06 -0.00666601331 0.007507821615 0 -0.8998318914 -15.94541869 937.731116 0.002132807546 +2.498144373e-06 -0.008261601124 0.0120361264 0 18.71679123 1.872694525 976.1422504 0.002048881707 +2.499434419e-06 0.006556179528 -0.004146941614 0 -7.987203916 5.610236583 917.6546243 0.002179469211 +2.498695904e-06 -0.005382255563 0.00769168024 0 -7.330921845 -13.95735156 976.0052998 0.002049169201 +2.49535494e-06 0.002927632187 0.001451786952 0 24.57202996 14.32314008 932.4892816 0.002144796771 +2.4958032e-06 0.002947238516 0.002598524848 0 23.59983399 -11.16296866 900.5453861 0.002220876405 +2.498804391e-06 -0.0002592498064 0.003175045475 0 -10.54624086 -11.85479977 1025.901135 0.001949505592 +2.498237935e-06 -0.004538483457 0.01096713034 0 19.14075782 -3.841114218 1039.660723 0.001923704489 +2.498396968e-06 0.002104425053 -0.0009493396757 0 -18.10822129 -5.110019587 1050.565818 0.001903736031 +2.496483101e-06 0.00756009094 0.002557022588 0 16.94352672 19.88842899 984.6215492 0.002031237283 +2.499452839e-06 -0.00398614008 -0.002050057047 0 9.780801746 4.460580607 1027.536249 0.001946403353 +2.494655749e-06 -0.00556230363 -0.01048358241 0 15.15372993 -28.5740782 988.5131929 0.002023240574 +2.497339517e-06 -0.003320956761 -0.00386431315 0 -21.07977912 -8.938151556 992.2007734 0.002015721065 +2.499494758e-06 0.004132415736 -0.001985499929 0 -2.66820897 -8.965669545 930.4926607 0.002149399006 +2.497309998e-06 0.004801782537 -0.004183540342 0 -21.95237924 -6.91784415 991.9148858 0.002016302032 +2.497635342e-06 -0.00812618807 0.001480615062 0 -19.02802263 11.89713653 1031.556068 0.001938818511 +2.499464598e-06 -0.002902658307 0.01037682494 0 -4.893192144 9.861625827 1063.78154 0.001880085266 +2.496716632e-06 0.005897629666 0.009603227614 0 25.30930308 -6.727141798 1021.444509 0.001958011407 +2.493327251e-06 -0.004746628762 -0.01054517238 0 -19.36006775 -27.84819944 927.4904631 0.002156356404 +2.497540164e-06 -0.004204343269 -0.005814290699 0 -2.680785935 23.18852462 1052.029097 0.001901088103 +2.497280691e-06 0.004262347803 -0.0002880032407 0 -14.57580855 -18.09511104 995.9327031 0.002008167815 +2.496304355e-06 -0.00457964797 0.006389240068 0 -16.56543065 -21.4835674 997.2986507 0.002005417333 +2.498113447e-06 0.001290482846 0.009318149714 0 13.91274233 -12.05716923 947.5209068 0.002110771367 +2.498649976e-06 -0.000790524655 0.001555854867 0 -4.617097039 14.74382117 940.0491867 0.002127548248 +2.498386249e-06 0.008448267896 0.01440691404 0 18.68755602 4.139260899 1065.159198 0.001877653598 +2.496203894e-06 -0.009844834302 0.01106451169 0 -25.52652656 -6.838186239 958.5381215 0.002086510651 +2.498935122e-06 -0.005730527123 0.01446703575 0 -11.20745918 8.492983579 963.4089925 0.002075961524 +2.496468216e-06 -0.009148490913 -0.0002711825562 0 -25.29876833 -1.857478766 953.9476173 0.002096551177 +2.496135481e-06 0.005255275508 -0.01429926277 0 6.213698197 -24.02880766 892.2230852 0.002241591854 +2.497728313e-06 0.0007976283692 0.002817000865 0 19.96793591 3.98136034 954.9078179 0.002094443005 +2.495436961e-06 -0.00316112367 -0.0116191813 0 -20.99682975 -22.04381495 1007.053729 0.001985991355 +2.497702138e-06 0.005090927356 -0.002277836606 0 18.76520929 -1.459388073 877.6797897 0.002278735393 +2.497454663e-06 -0.003751538773 9.709348669e-05 0 20.95320381 -0.8936193989 929.1620703 0.002152477016 +2.49927876e-06 0.008844641782 0.01353584099 0 -9.464389625 -7.419554377 1001.195448 0.00199761196 +2.499339997e-06 0.006497764462 0.003139285538 0 4.350536871 10.10099716 957.1614473 0.002089511655 +2.497946834e-06 0.008418555441 -0.01242650055 0 17.60604486 7.033443672 935.3059939 0.002138337628 +2.49784981e-06 0.006847459944 -0.001302107424 0 11.53592796 -14.34560839 887.4128063 0.002253742549 +2.496054685e-06 0.007846354502 0.004259562695 0 22.64856681 11.77023041 908.1190968 0.002202354303 +2.497977646e-06 -0.003727925834 -0.01352924959 0 -3.197654476 -18.74770043 945.3653257 0.002115584257 +2.495341663e-06 0.006807017177 0.01288350741 0 14.43369567 24.29156501 925.0799635 0.002161975266 +2.498190973e-06 0.00304109843 0.001310396658 0 -17.85334235 -7.015026041 1008.185347 0.001983762217 +2.499998319e-06 -0.006513537299 -0.008664717714 0 -0.5375356199 0.1760129843 975.5716288 0.002050080118 +2.495561392e-06 -0.000814117291 -0.01297651386 0 -10.60071341 -26.04134489 943.0409103 0.002120798767 +2.497001767e-06 -0.000451325532 -0.005649184578 0 -16.37571829 -15.10592399 909.3943523 0.002199265913 +2.495814258e-06 -0.008881948777 -0.006928508962 0 -20.86749538 -21.43137257 1033.185319 0.00193576115 +2.49965577e-06 0.006904402501 -0.00815161963 0 5.494031292 -4.778662555 877.5221847 0.002279144659 +2.49734422e-06 -0.00223000627 -0.00418436209 0 22.22795183 5.193546972 990.0508878 0.002020098184 +2.498294606e-06 -0.008016182999 -0.008872581355 0 10.02280802 -14.64273551 960.5604032 0.00208211789 +2.49774038e-06 0.002473912784 -0.004937215273 0 9.370405407 17.04046527 914.4719955 0.002187054398 +2.499742565e-06 0.0006230210839 -0.002814193249 0 -2.61458448 7.070172927 1050.505255 0.001903845784 +2.49545087e-06 -0.005173148229 0.004063160133 0 -20.19940714 23.93627597 1037.648323 0.001927435293 +2.496055139e-06 0.0063623153 0.002620325207 0 16.61449504 -18.36713579 881.2140781 0.00226959606 +2.499615649e-06 0.002632030216 -0.01415033732 0 1.356074075 -7.805511311 903.5546362 0.002213479871 +2.498734605e-06 0.005283300066 -0.001841527086 0 -7.876764896 13.02633925 956.7085163 0.002090500885 +2.497578245e-06 0.003932344615 -0.003010312957 0 -17.36601968 -11.47882607 945.5348562 0.002115204941 +2.49758643e-06 0.001805753121 0.01303096911 0 -6.557450677 20.47060205 978.0030966 0.0020449833 +2.499549143e-06 -0.005253368802 0.005219055894 0 -7.333117016 6.440927491 1027.760614 0.001945978443 +2.496631775e-06 -0.00215332259 -0.009626695029 0 -23.40061745 -12.85505497 1028.161527 0.001945219644 +2.494654803e-06 -0.004495579987 0.01446759533 0 -15.74025863 27.59336596 970.8058286 0.002060144203 +2.497456064e-06 0.003694855161 -0.01360622616 0 13.93305298 -15.00802254 907.538618 0.00220376297 +2.498548724e-06 -0.005138020399 0.0142959619 0 6.291085703 -14.79899407 943.6687416 0.002119387781 +2.497059479e-06 0.004946721303 -0.002038986082 0 17.30739171 13.17563997 896.5563245 0.002230757784 +2.499306216e-06 0.005586844273 0.002270273929 0 -9.424001641 -5.723352479 935.9192504 0.002136936492 +2.499779833e-06 0.005490671834 -0.0001092442847 0 -5.948735991 3.831632642 1066.298336 0.00187564768 +2.499928499e-06 0.004173782552 -0.01494856992 0 -0.01423373899 3.736661999 988.1251197 0.002024035175 +2.496466308e-06 0.006883681598 0.008210241417 0 23.73548613 13.86886555 1033.523677 0.001935127414 +2.49647786e-06 0.008363717683 -0.008181340217 0 -5.060945645 -24.54691983 943.8190893 0.002119050168 +2.498352781e-06 -0.008307320992 0.008948467034 0 5.884075608 16.51301717 965.5721959 0.002071310678 +2.49920648e-06 -0.007894460806 0.001983228538 0 11.16960402 7.106263474 1050.738449 0.001903423257 +2.497222922e-06 -0.001847161576 -0.003350239377 0 -22.62680252 0.9442841663 960.5301027 0.002082183572 +2.49736753e-06 0.004499328006 -0.005056821392 0 9.143236819 -19.27428732 929.359412 0.002152019955 +2.498696128e-06 0.001493507326 0.01321761528 0 5.510613326 -16.23575487 1061.528311 0.001884075987 +2.499067151e-06 -0.006416376862 -0.007332209107 0 4.940487848 11.52430939 917.8461234 0.002179014487 +2.499090568e-06 -0.001855411869 0.01027357873 0 8.90362636 -8.343590936 904.6350263 0.00221083635 +2.498274588e-06 0.005961431507 0.007996405866 0 -16.80379166 -1.321106432 907.1341352 0.002204745607 +2.498610988e-06 0.006868908894 -0.0131769859 0 6.971001956 -16.2081535 1058.352596 0.001889729385 +2.499036522e-06 -0.00460632219 -0.008621829171 0 -7.593879502 10.47390755 931.8365833 0.002146299078 +2.498354354e-06 -0.003189787134 -0.002458018202 0 18.28848699 -5.478763357 1052.082352 0.001900991872 +2.49746816e-06 0.0007861628383 0.006928654828 0 21.02701649 10.5260572 1044.571631 0.00191466046 +2.495278395e-06 -0.0006132955104 0.007902297245 0 -22.39159581 19.38459678 963.0931699 0.002076642284 +2.495402218e-06 0.001385351624 0.005360965719 0 23.77497536 -18.22169976 987.1314978 0.002026072519 +2.499641299e-06 -4.735899158e-05 0.004745101423 0 7.159146871 2.005806875 877.7407355 0.002278577169 +2.497042441e-06 0.006242609238 0.00230680767 0 -18.58239185 11.33207431 894.5135169 0.002235852184 +2.498402888e-06 0.009403417646 -0.002410872357 0 -4.668187632 -18.52271634 1068.538198 0.001871715962 +2.498147971e-06 -0.003833399271 -0.0003251070832 0 16.16446447 -9.748673767 980.5382668 0.00203969602 +2.496916444e-06 -0.006318675433 -0.009439158398 0 -16.90120401 15.66113321 927.413389 0.002156535612 +2.494611633e-06 0.007168060159 0.007855899122 0 25.15798887 20.30189841 983.9708036 0.002032580634 +2.495139632e-06 0.008392389915 0.01499021613 0 27.44547638 -16.69515935 1029.602702 0.001942496844 +2.497401354e-06 0.007121752342 0.0009489271673 0 20.88437939 -6.050973952 953.3837886 0.002097791072 +2.49949017e-06 0.0096155287 -0.0002850605291 0 2.961905737 -9.417151973 977.558252 0.002045913884 +2.498842854e-06 0.00446016992 0.007128651829 0 -8.460054869 -12.46516339 990.109537 0.002019978523 +2.497113774e-06 -0.001570454929 0.005463914105 0 -14.37944618 -19.58748714 1010.924938 0.001978386254 +2.499054506e-06 0.009766545743 0.003529574792 0 11.63426124 -3.153544865 876.4521672 0.002281927155 +2.497927182e-06 0.009915104578 -0.002123889048 0 -16.16434713 14.26182261 1058.398016 0.00188964829 +2.499763174e-06 0.006068874635 0.01335818636 0 -6.479437435 -1.825577681 978.0926813 0.002044795998 +2.499089206e-06 0.007060807287 -0.006047311784 0 -0.9114279319 12.19533388 905.9805292 0.002207552961 +2.495703904e-06 -0.007990969382 -0.005547249787 0 -22.95560706 20.22893555 1043.146309 0.001917276591 +2.493608448e-06 -0.007706964561 -0.009915015043 0 -21.34776877 -26.7739319 956.8293524 0.00209023688 +2.499300382e-06 -0.009120536325 0.01351993266 0 5.063365358 -11.17257856 1036.872637 0.001928877211 +2.498237551e-06 0.004216604014 -0.008286340702 0 -10.40298248 -16.97331221 1060.064465 0.001886677712 +2.49862323e-06 -0.0004797619348 0.00328532788 0 13.30840344 7.12319196 909.4784381 0.002199062579 +2.499036022e-06 -0.007830187287 0.01148459231 0 13.32849251 -1.498408367 965.8217507 0.002070775481 +2.496775706e-06 -0.002660473306 0.002745138633 0 -3.491841803 22.25676116 886.7468425 0.002255435152 +2.496817163e-06 0.0002712234715 -0.01443516572 0 -15.25509988 -20.0451206 997.9176277 0.002004173435 +2.496245685e-06 -0.007643314935 0.00402854214 0 -22.45303283 13.74890656 960.2738745 0.002082739157 +2.497441369e-06 0.001888505281 0.002483903691 0 2.476856053 20.24160515 901.128302 0.00221943978 +2.497721853e-06 0.004167634873 -0.005771725543 0 21.7036314 -1.978964541 1020.648003 0.001959539425 +2.498687232e-06 0.001901572947 0.001007719436 0 -7.103030038 -14.33713847 987.2587047 0.002025811462 +2.498772622e-06 0.003073569029 -0.004592043876 0 7.66942829 -12.42755472 931.9119112 0.00214612559 +2.496790784e-06 -0.002660129932 0.008358426746 0 17.47211315 17.15540864 966.0528983 0.002070280006 +2.496813754e-06 0.004315909101 0.009258549116 0 23.41784451 3.409854656 937.0017934 0.002134467633 +2.496377937e-06 0.001002760036 0.009122195332 0 -23.35440335 13.1659661 995.5569656 0.002008925726 +2.498852851e-06 0.001300959866 -0.001528189753 0 -8.127528244 -11.35945866 921.9818639 0.002169240067 +2.499114546e-06 0.001327257361 -0.008563076374 0 9.144672301 8.726736369 949.7446499 0.002105829183 +2.499606989e-06 -0.0001397661166 0.001081981128 0 -2.561759628 -8.759984561 1029.388734 0.001942900611 +2.498553794e-06 -0.001237824489 0.002052449703 0 -17.48010554 4.231883214 1057.274997 0.00189165544 +2.496773398e-06 -0.003143735919 0.001090438783 0 -10.41407042 -23.6006301 1014.979572 0.001970483008 +2.497422364e-06 0.000713528269 -0.008554682597 0 10.53282841 -19.77828467 986.5303067 0.002027307206 +2.499177234e-06 0.003511914546 -0.009714293978 0 11.71372781 -2.661155266 936.3025429 0.002136061698 +2.497068927e-06 -0.003366728844 -0.003641405404 0 -9.709682336 -18.85731514 875.6432748 0.002284035129 +2.499390249e-06 0.008514261115 -0.007452796767 0 -7.204119897 6.543244481 881.2003903 0.002269631314 +2.49831213e-06 0.008385026185 -0.008549547452 0 11.54071443 -15.43184707 1048.541159 0.00190741201 +2.497069557e-06 -0.007718432387 0.002010670581 0 -14.91201335 19.55984689 1015.521538 0.001969431395 +2.497284075e-06 -0.00605042214 -0.006916056946 0 -15.6288085 -16.94512719 988.6865444 0.002022885829 +2.499788601e-06 0.005886529516 0.001920079447 0 5.484767598 -2.001923128 897.9158944 0.002227380106 +2.498543273e-06 0.005120218461 -0.01231644142 0 15.47034152 7.466211721 1006.161529 0.001987752406 +2.495549453e-06 -0.009115322819 -0.01162715276 0 -26.41931063 -12.42521167 977.915139 0.002045167234 +2.498559312e-06 0.0043263538 0.005262073672 0 -13.24642841 9.043409537 944.6800778 0.00211711885 +2.499156155e-06 0.007410677536 0.002988984156 0 8.287685813 10.03489656 1001.695992 0.001996613759 +2.497592344e-06 0.00159167836 0.00676517474 0 6.694209241 22.52617879 1070.521224 0.001868248807 +2.4993505e-06 0.002839011969 -0.0089443827 0 9.232651313 -4.741474515 910.5591427 0.002196452604 +2.498238605e-06 0.004438013905 0.001872251392 0 13.36973279 -9.721402363 880.4937403 0.002271452832 +2.498073199e-06 0.00761057267 -0.01116734726 0 19.63590066 -5.575616628 1039.512877 0.001923978091 +2.495464964e-06 0.009992657341 0.01445707614 0 21.62542655 17.68121971 926.8841765 0.002157766904 +2.497188611e-06 0.0009958189446 -0.007687829216 0 -10.48297934 -19.50899732 933.593997 0.002142258848 +2.497609734e-06 -0.003478387948 -0.008593926507 0 0.7761215278 -23.04885415 1054.390672 0.001896830135 +2.497086301e-06 -0.004631625484 -0.008293396547 0 -9.712473695 -22.23670076 1004.74943 0.001990546041 +2.497858954e-06 0.004556934708 0.003721610717 0 18.27274589 -9.903739552 1004.067481 0.001991897993 +2.498852132e-06 -0.008437034609 0.0007847506064 0 -1.457916963 15.91215856 1054.407841 0.001896799248 +2.49531032e-06 -0.0003445569659 -0.006563808904 0 13.61067816 -27.84625222 1011.33134 0.001977591241 +2.496107126e-06 0.0003976557823 -0.002053060737 0 13.09132309 -23.53750034 964.6811646 0.002073223852 +2.498536694e-06 -0.00754127868 0.003880519147 0 5.458397144 -16.78097422 1031.283435 0.001939331063 +2.499754781e-06 -0.006559903631 0.01346865952 0 -6.481864067 0.2290487832 926.1100401 0.002159570584 +2.495649455e-06 -0.008920912626 -0.0119752579 0 -25.83961209 -7.076210087 907.6504837 0.002203491361 +2.499849502e-06 0.0008464906923 0.0137610101 0 3.673616701 -3.5795023 934.8808721 0.002139310002 +2.496206139e-06 0.001426521428 -0.001297430531 0 -22.30904225 14.48821833 965.1425714 0.002072232703 +2.498741346e-06 0.005455228696 -0.01442239318 0 1.293716375 15.92620692 1006.909432 0.001986275962 +2.496550917e-06 -0.008953358969 -0.007358305582 0 6.483199115 -22.46539548 889.8015479 0.002247692201 +2.496185401e-06 0.0008374793222 0.01421458341 0 21.49027583 16.88949745 989.0027178 0.002022239135 +2.497032384e-06 -0.004374008719 -0.00443487036 0 -19.96819901 8.271746451 886.7807359 0.002255348948 +2.496201301e-06 0.009976374176 -0.01254530855 0 -3.698410361 -24.96542682 915.1091156 0.002185531721 +2.496710855e-06 -0.006394234491 -0.003195525203 0 -9.945366132 -25.5883871 1069.846377 0.001869427278 +2.499211249e-06 0.008039295892 0.01373733577 0 0.9599993437 11.34920209 906.728038 0.002205733049 +2.499417444e-06 0.002783048153 0.007897723771 0 8.739635433 5.782212448 970.7544228 0.002060253297 +2.495779236e-06 0.0009378458746 -0.0107185254 0 9.865829935 -29.17282486 1059.271696 0.001888089719 +2.496253665e-06 -0.006489884495 -0.01409152984 0 -12.84238354 -22.25908553 938.2940407 0.002131527979 +2.495028535e-06 -0.001544361799 0.01016566965 0 17.03013133 27.85295158 1034.567897 0.001933174233 +2.499809084e-06 -0.009928659592 -0.01172760726 0 5.585116576 1.065707848 920.1291294 0.00217360796 +2.496560593e-06 -0.007521834876 -0.01476038553 0 -10.34658701 -25.35623908 1043.63101 0.001916386137 +2.498689892e-06 -0.009968587141 -0.002576412333 0 13.43882151 10.1070509 1038.606003 0.00192565804 +2.499310736e-06 -0.003691601707 -0.0008629234205 0 5.365786503 9.821305418 953.0939904 0.002098428927 +2.497003446e-06 0.006932138745 0.005647054352 0 -13.19212394 -20.20921807 985.3850165 0.002029663499 +2.495887836e-06 0.003987260475 -0.006776781867 0 26.66877659 -12.392215 1024.795471 0.001951608936 +2.499019752e-06 0.002194512249 -0.01210658017 0 13.4615549 1.77898719 969.6341322 0.002062633661 +2.496358565e-06 -0.001418714523 -0.007864168736 0 -22.34817386 -10.73748058 918.2376056 0.002178085484 +2.496729035e-06 -0.001251888131 0.004716402499 0 -22.34537517 12.28734351 996.5266338 0.002006970945 +2.499514806e-06 0.005523917773 0.01037161555 0 -8.173443467 -5.499499777 999.9835688 0.002000032863 +2.496428454e-06 -0.004964831332 0.007682845818 0 -17.02134283 -17.55663305 914.4514087 0.002187103635 +2.496092219e-06 -0.006330814539 -0.009099059331 0 -11.83673613 -27.41196365 1067.410999 0.001873692516 +2.49667409e-06 0.001319210734 -0.00916105306 0 -9.480545777 -21.15077143 898.2464246 0.002226560491 +2.498352508e-06 -0.002333893427 -0.005909516208 0 -8.580879839 -15.73523677 987.1280358 0.002026079624 +2.499490393e-06 0.008735152697 0.005889766971 0 3.738123944 8.571336603 926.1743768 0.002159420569 +2.499337307e-06 0.008728654757 0.005168835938 0 -7.690294344 -7.913657294 958.4065245 0.002086797146 +2.497388073e-06 -0.004829185992 3.424787661e-05 0 -21.00373762 11.95822841 1057.057901 0.001892043944 +2.498626219e-06 0.0004560199892 0.001724064052 0 -13.08997445 10.69734088 1019.654373 0.00196144895 +2.497892134e-06 -0.006426287275 0.008281991095 0 8.530136417 -20.24027583 1069.409898 0.001870190283 +2.49463224e-06 -0.001469835937 -0.01480469911 0 8.422141113 -33.08827972 1041.224246 0.001920815817 +2.498164061e-06 0.008324123155 0.005528576192 0 6.897044354 -17.35579654 974.3614408 0.002052626383 +2.498146533e-06 0.002487430922 0.00273088411 0 -2.874545105 -18.55265868 974.8307705 0.002051638151 +2.499877489e-06 0.004506821944 0.007386220093 0 -5.01267952 -1.189083833 1040.752599 0.001921686288 +2.495711481e-06 -0.007368548065 0.004481950316 0 16.63628046 -20.13079314 891.1454452 0.002244302556 +2.497820087e-06 0.001965535074 0.0113051749 0 18.097001 -11.48662554 1026.218174 0.001948903315 +2.498601172e-06 0.008437309577 -0.00223818857 0 -12.79887879 10.21575618 978.8567584 0.002043199868 +2.494035391e-06 -0.00877843942 -0.01353972302 0 -17.87400958 -31.75583421 1054.119534 0.001897318031 +2.496645838e-06 0.001685648523 0.0004082680587 0 25.48145012 2.070743976 986.5698273 0.002027225995 +2.498879325e-06 -0.00889901971 -0.005450876788 0 12.54304326 4.766375675 896.1159491 0.002231854039 +2.497908817e-06 0.009538963558 -0.0129799425 0 -13.46945144 16.68879698 1048.345173 0.001907768597 +2.496623111e-06 0.0009064579755 -0.007734936734 0 26.74274266 7.440425636 1067.585003 0.001873387125 +2.4992193e-06 -0.002885234184 0.006508831792 0 -11.12430131 -0.8325855892 892.6429468 0.002240537504 +2.49918114e-06 0.007968103015 -0.009625846969 0 -5.012986003 -10.99839617 944.3744958 0.00211780391 +2.494450741e-06 0.003382590669 0.01147527118 0 19.70669548 27.61098312 1017.397176 0.001965800621 +2.495173435e-06 -0.00863653155 -0.004024683523 0 -25.65532254 10.22610326 888.2754704 0.002251553788 +2.49735373e-06 -0.00957021832 -0.008573553306 0 2.531645527 -23.63475028 1032.817925 0.001936449737 +2.496988356e-06 0.003472408005 0.01424582652 0 19.88216634 -12.35248553 953.303843 0.002097966996 +2.499090569e-06 -0.007033352498 0.008025404024 0 -4.096356087 -12.52687931 977.1121711 0.002046847905 +2.497656077e-06 -0.001067512594 -0.001708826374 0 17.9873874 -11.19911852 978.2895995 0.002044384404 +2.498309932e-06 -0.0006391363498 -0.006352095022 0 10.08358331 -13.47354755 915.1262499 0.0021854908 +2.49829668e-06 0.007673168061 0.008141920965 0 15.92619695 7.740019916 959.1364886 0.00208520896 +2.499473632e-06 -0.002264480926 0.0141472557 0 -4.815612067 -8.409804949 944.4376883 0.002117662208 +2.498447199e-06 -0.003960918351 -0.009385238118 0 5.28242599 16.93950463 1006.649532 0.001986788785 +2.498090472e-06 -0.001804669271 -0.009506517111 0 17.45350187 2.381943537 901.1297038 0.002219436327 +2.49862903e-06 0.001828124253 -0.01194434779 0 -6.957859796 13.94503131 940.965643 0.002125476116 +2.497450474e-06 2.091071103e-05 -0.001611933187 0 6.090611152 -21.75836544 1000.221799 0.0019995565 +2.497712897e-06 0.005315906936 0.00176700948 0 21.53989382 3.184528252 1017.728302 0.001965161032 +2.499501567e-06 -0.009327675216 0.001964462246 0 -8.697452032 2.72842093 912.9004033 0.002190819495 +2.498783188e-06 -0.003742165789 0.003485726472 0 -3.15050614 14.07390933 924.3282444 0.002163733514 +2.499994508e-06 -0.006121594789 0.01151427787 0 -1.066410287 -0.05952268533 1019.067137 0.001962579233 +2.498584203e-06 0.00989301098 -0.00267216586 0 -13.95923987 7.610426236 944.6320783 0.002117226427 +2.499815081e-06 0.009880390288 0.0004000879917 0 1.374963218 5.905246284 996.9758299 0.002006066687 +2.498327314e-06 -0.004746660255 -0.00417757835 0 17.4120946 6.018333836 1006.991104 0.001986114864 +2.494404038e-06 -0.002491610767 0.01441359955 0 -23.00356227 24.92595638 1013.024244 0.001974286412 +2.497068718e-06 5.384920165e-05 -0.007732621883 0 25.36944709 4.912059801 1066.76293 0.001874830803 +2.495111163e-06 0.0002480943175 -0.01481420383 0 -0.8827537002 -32.24845492 1030.943888 0.001939969792 +2.498365193e-06 0.009646085948 -0.006506954057 0 -1.143108393 18.85885964 1044.616902 0.001914577485 +2.497751909e-06 0.008075718246 -0.0005870359135 0 -4.560884497 -21.89572498 1054.420927 0.001896775707 +2.498327327e-06 -0.008198350561 -0.01283130791 0 15.7951571 8.384361747 977.4604495 0.002046118593 +2.496298659e-06 0.002402375001 0.004979205437 0 -21.96775364 -16.07095534 999.8425642 0.002000314921 +2.499809894e-06 0.005701713776 0.01096883947 0 -1.96777935 -5.499871655 947.2928321 0.002111279567 +2.497647263e-06 -0.007257471997 -0.003888910704 0 22.53203835 5.480184019 1068.62455 0.001871564713 +2.497876861e-06 0.00816342555 -0.007796478574 0 -8.051659263 19.76546192 1035.387469 0.001931644008 +2.497499461e-06 -0.00430406617 -0.01076536731 0 13.05721764 -18.29995293 1004.879222 0.001990288938 +2.498923789e-06 -0.009506365103 -0.007912769818 0 -9.345797617 -11.29243566 998.9572892 0.002002087598 +2.49447759e-06 0.00528177103 0.01100685849 0 20.21847782 27.70963232 1031.280845 0.001939335933 +2.498963375e-06 -0.003509126091 -0.004814666728 0 10.17227065 7.812376959 890.6367807 0.002245584332 +2.496256479e-06 0.0007673473749 -0.005992897335 0 -18.85878505 22.37946796 1068.963956 0.001870970475 +2.496591668e-06 -0.004978543716 -0.0002175583108 0 -24.04394112 12.45858201 1036.670789 0.001929252778 +2.499617718e-06 -0.008634883128 -0.01311938475 0 8.607328856 -3.379066552 1057.455476 0.001891332587 +2.499203048e-06 -0.002361151315 -0.01030761309 0 -6.594570839 -11.14105633 1025.342447 0.001950567837 +2.49444497e-06 0.009921353767 0.002774971656 0 28.39904263 18.84899039 1021.747033 0.001957431669 +2.493847973e-06 -0.009023211454 -0.00103136783 0 -27.74116988 19.75140506 969.9418517 0.002061979279 +2.499825887e-06 0.005451374701 0.005589735538 0 4.288606005 -3.891801991 981.3604639 0.002037987135 +2.498989586e-06 -0.006542918561 0.006391594154 0 -14.21434057 1.334343652 1004.156618 0.001991721176 +2.497044821e-06 0.001131320661 -0.01125865033 0 -16.67057658 -15.66421273 940.5151625 0.002126494159 +2.495392991e-06 -0.007563241101 0.01183718984 0 -14.13895503 23.53311834 903.8148414 0.002212842618 +2.498064765e-06 0.00208968895 -0.0005573910428 0 -5.262637063 17.40573413 924.0161553 0.002164464321 +2.498758459e-06 -0.007892031805 -0.005217533552 0 10.5541939 10.90980535 963.1166131 0.002076591736 +2.497531878e-06 0.0003071780177 0.003553103863 0 -20.59139224 0.2343996838 926.5196578 0.00215861583 +2.496500646e-06 -0.004070178745 -0.01004609968 0 23.17201146 14.51416346 1032.995612 0.001936116646 +2.49709912e-06 -0.007733461089 -0.008603062006 0 15.49185037 16.40860503 936.4663998 0.002135687944 +2.499405006e-06 0.008372051958 -0.002786905887 0 4.015294557 -9.401928717 937.1024999 0.002134238251 +2.498936574e-06 0.0008877065172 0.009269134195 0 8.796227493 11.54534951 995.0891995 0.002009870071 +2.495108177e-06 -0.001782866418 -0.005633271234 0 -21.99315039 -21.73791247 987.9002963 0.002024495799 +2.497016658e-06 -0.007708893018 -0.01362315796 0 14.52832862 15.72528542 876.0742919 0.002282911413 +2.498453971e-06 -0.006892199209 -0.01043753138 0 -6.440275925 14.89421475 922.5990881 0.002167788832 +2.498065004e-06 0.007828234974 -0.001944388426 0 11.21704355 -17.56395623 1059.061284 0.001888464842 +2.497375084e-06 -0.008375851014 -0.003511154163 0 -11.91005556 20.16647576 1021.783443 0.001957361918 +2.49960716e-06 0.003446808676 -0.001822265466 0 -5.234631919 6.238878341 918.7341101 0.002176908398 +2.497753784e-06 0.004711093009 0.004742510151 0 -18.58034445 -0.07651021842 876.3353476 0.002282231346 +2.499841541e-06 -0.008264229456 0.008977769252 0 3.183106159 -3.780913077 877.9200797 0.002278111694 +2.498183947e-06 0.006288940622 -0.007808463068 0 19.46806662 -2.24468968 1027.999814 0.001945525644 +2.499215585e-06 -0.003526402549 -0.01209912729 0 10.11867411 5.185012637 907.6389086 0.002203519463 +2.496940133e-06 0.002386761759 0.005410080564 0 8.77925317 21.75270402 947.7994592 0.002110151025 +2.49716528e-06 0.005844590329 -0.006338346766 0 -19.81774961 -13.96818538 1017.840459 0.001964944488 +2.498550565e-06 -0.004571354259 -0.007333419083 0 -7.860111313 -14.92041623 990.2755082 0.002019639972 +2.498488376e-06 -0.006323077418 0.01283067539 0 3.762449896 -17.08048859 1005.666021 0.001988731804 +2.498725761e-06 -0.002760210461 0.005119705922 0 -7.434402743 12.85506983 930.0443878 0.002150434997 +2.498718379e-06 0.009051528219 0.0132537934 0 -1.375725439 -14.6021469 915.9195654 0.002183597857 +2.499841625e-06 0.001582001583 -0.01017691361 0 4.394063387 -2.708002938 917.0798943 0.002180835075 +2.496788088e-06 -0.0001904176828 -0.01340326844 0 16.70330122 -21.00833961 1058.438919 0.001889575264 +2.495888905e-06 -0.006475603809 -0.004148791954 0 -19.99410691 -23.18912474 1067.146021 0.001874157763 +2.49844768e-06 -0.005826998116 0.007129678235 0 -12.98923274 10.98073938 965.083742 0.002072359022 +2.499298718e-06 0.001204817225 -0.006823802863 0 -9.590453662 -5.644797792 939.5599562 0.002128656066 +2.496196854e-06 0.007905575368 0.002037275566 0 -20.38473207 20.69224259 1052.594807 0.001900066375 +2.495667213e-06 -0.007520456356 0.005164872387 0 -24.1652557 -8.992638477 875.3328313 0.002284845179 +2.498118806e-06 0.009211941669 -0.009083549206 0 -9.887081486 -15.97105157 968.1167109 0.002065866623 +2.492673966e-06 -0.005026395358 -0.01319131929 0 -21.26943142 -30.28505549 965.7512711 0.002070926604 +2.495607013e-06 -0.006587369535 0.01202484201 0 -23.30960914 16.29909035 958.9421873 0.002085631466 +2.499872311e-06 -0.003043251047 -0.006371716205 0 0.8287682747 4.481825023 901.8947762 0.002217553591 +2.498997105e-06 0.002935967711 0.006867546653 0 -11.85243908 9.216161011 1059.951939 0.001886878005 +2.498221629e-06 0.009791515865 -0.007080857588 0 7.186983362 18.6206068 1058.05087 0.001890268281 +2.497528142e-06 0.006112950481 -0.008046485509 0 11.19481911 16.42454467 893.6345211 0.00223805141 +2.499850366e-06 0.009119957108 0.00969611217 0 -0.1211787639 -5.729257364 1047.502065 0.001909304111 +2.499337697e-06 -0.008192622284 0.0122713114 0 -12.09727873 -2.004237839 1065.32271 0.001877365404 +2.498851205e-06 0.009523749677 -0.005163156611 0 15.79850586 -2.030164878 1050.658249 0.001903568551 +2.497911094e-06 0.006108659697 0.0008879150636 0 13.26264508 -14.49073502 960.7603918 0.002081684484 +2.496213861e-06 0.00105122867 -0.009318430005 0 -17.79746946 17.81445636 914.5773031 0.002186802573 +2.497287636e-06 0.007880352847 -0.003000622289 0 -10.40566645 -19.01151636 930.1473833 0.002150196878 +2.496486767e-06 -0.005167252645 -0.002339213071 0 -22.06491184 14.75807447 1000.904539 0.001998192558 +2.497550862e-06 0.00380569438 0.00783099873 0 -10.43728988 16.78634021 892.7926089 0.002240161914 +2.499057673e-06 0.001132162646 0.00660081194 0 11.10682605 -5.055331497 888.7843823 0.002250264564 +2.499024223e-06 0.0006813990138 0.005779810601 0 9.917175748 -9.708043183 993.2769139 0.002013537184 +2.498105399e-06 -0.007029192862 0.009952041821 0 18.59509457 -1.325379 957.4176665 0.002088952471 +2.49959895e-06 0.004580495995 0.005771783832 0 -0.357903604 9.222502699 1030.469153 0.001940863532 +2.499948663e-06 -0.003676052606 -0.005596366671 0 -0.1161029532 -3.2506783 1015.12375 0.001970203141 +2.497569095e-06 0.001452799407 0.001751454994 0 6.761653775 20.59196176 982.5970248 0.002035422406 +2.499158167e-06 -0.004494476989 -0.01058699638 0 -5.542190438 10.71789392 929.7833158 0.002151038813 +2.499483416e-06 0.008709778385 -0.009528060174 0 6.248602912 8.285715458 1020.904284 0.001959047514 +2.495265173e-06 -0.00358860591 0.004919381174 0 20.14423041 20.66758439 937.1969466 0.002134023171 +2.498359327e-06 0.008854607395 0.0007079884526 0 16.86723671 -8.177705976 1034.557704 0.001933193279 +2.498331938e-06 0.004864969561 0.002282234766 0 -16.02212289 -9.787460101 1027.664783 0.001946159909 +2.497334272e-06 0.00535256085 0.002030349076 0 21.94988929 10.05673418 1045.234243 0.001913446688 +2.498219118e-06 -0.006867922917 0.004170816375 0 15.8221382 5.089011536 880.4266923 0.002271625812 +2.497014803e-06 0.003889416158 0.007915891155 0 12.32908502 18.58902325 912.4852343 0.002191816289 +2.497486034e-06 -0.00503483837 0.007684094617 0 13.7827021 -17.1748873 981.7147787 0.002037251596 +2.49510426e-06 0.001329663773 0.008574315996 0 20.42942893 18.54849006 881.1814114 0.002269680198 +2.497140838e-06 -0.006826692536 0.01085497353 0 -16.85394953 -18.26569787 1038.879197 0.001925151651 +2.499211185e-06 0.002587452433 0.01359535722 0 -11.21888388 0.4373297447 893.7694189 0.002237713618 +2.4969811e-06 0.00694084594 -0.007161021635 0 23.25056488 -7.819217338 997.8477589 0.002004313766 +2.498054089e-06 -0.008358134399 0.00937962878 0 18.04711005 10.63178994 1061.443574 0.001884226396 +2.499013721e-06 0.005000691833 -0.009738575437 0 -13.61571122 6.340051888 1069.239217 0.001870488818 +2.499023e-06 0.005221224064 -0.01136398494 0 12.8613362 4.089739876 965.3318464 0.002071826396 +2.495479105e-06 -0.009413823364 0.01048324383 0 -29.43598236 6.635760628 1002.814235 0.001994387325 +2.49493803e-06 -0.006299296543 0.006278188855 0 -24.46950573 -21.07987066 1014.289229 0.001971824152 +2.496333794e-06 -0.009209090769 -0.008817091968 0 -24.08625343 -16.13202516 1069.985735 0.001869183799 +2.496249656e-06 0.006241604756 -0.008615212406 0 -22.34768333 18.54562024 1059.768992 0.001887203736 +2.499028197e-06 -0.002465798715 -0.0003703886666 0 14.66233459 -0.7313900788 1052.871611 0.001899566841 +2.495110459e-06 -0.005725131445 -0.01172508511 0 -26.85328933 -17.37611405 1022.059141 0.001956833924 +2.496953926e-06 -0.006750879213 0.008159117131 0 -21.60780929 14.07074067 1044.212575 0.001915318822 +2.496086192e-06 0.009854522208 0.002918580913 0 20.40843295 15.88504501 923.8274264 0.0021649065 +2.498896096e-06 0.003500738982 -0.01282271631 0 -7.687251834 -12.85638345 1007.95223 0.001984221018 +2.497362628e-06 0.003636574843 0.005235874692 0 24.17950116 1.251177724 1053.793252 0.001897905492 +2.499502262e-06 0.00285042061 -0.01228969767 0 8.985059153 1.645030507 915.4459867 0.002184727476 +2.496459051e-06 0.0001730186353 0.005788312247 0 17.85458279 -17.95844135 951.0912498 0.00210284765 +2.496789132e-06 0.003121862314 -0.005003997576 0 26.27460886 -4.586359824 1052.006153 0.001901129565 +2.498160525e-06 -0.009793270901 0.01498431031 0 16.72123602 8.183758185 970.3222388 0.002061170939 +2.498192472e-06 0.001019093571 -0.005297217148 0 -0.193740636 18.66710804 981.5787449 0.002037533932 +2.499885747e-06 -0.008667112086 -0.006320402648 0 -4.911321161 -0.5015230225 1032.749128 0.001936578735 +2.499816032e-06 0.005795057295 -0.0009537273226 0 1.035554341 5.265038104 884.5955526 0.002260920252 +2.498526336e-06 0.004557102215 -0.005320200529 0 0.7239387828 15.55892871 907.0661473 0.002204910861 +2.4963201e-06 0.00561778638 -0.005838714635 0 25.09188809 6.802043716 957.7648032 0.002088195341 +2.496769199e-06 0.009452138143 -0.01321683535 0 22.88835473 -1.953926641 903.2554963 0.002214212931 +2.499238001e-06 0.009786234079 0.0021172478 0 10.68007493 6.276306738 1003.344517 0.001993333263 +2.498253361e-06 -0.002379099866 -0.01416406919 0 -16.72192437 4.16927804 921.8324821 0.002169591589 +2.495581826e-06 -0.005007601376 -0.003633219211 0 -24.90152808 -12.73718044 940.303947 0.002126971823 +2.499177068e-06 -0.005927933617 0.007065082777 0 -10.64209566 -4.144946923 890.1152392 0.002246900077 +2.497982171e-06 -0.001946104406 0.01098680088 0 -13.78208875 11.95494588 907.9176268 0.002202843012 +2.493412645e-06 -0.006897760974 0.01353649911 0 -28.3922197 22.63565864 999.3979429 0.00200120484 +2.496308289e-06 -0.000718345819 -0.009092085322 0 -4.885688119 -28.31579213 1056.889457 0.001892345492 +2.499673041e-06 -0.001701600542 -0.004225227598 0 -3.517251145 -7.57847677 1033.138696 0.001935848504 +2.494577064e-06 -0.0009440276865 -0.009660659255 0 -22.53113655 -23.66142188 991.2909452 0.002017571138 +2.499676566e-06 -0.008909741309 0.0113976555 0 -6.889480385 1.603950601 879.4663545 0.002274106326 +2.499455932e-06 0.007503046957 -0.0002188374731 0 -1.072947998 -10.87416259 1047.424471 0.001909445555 +2.496195712e-06 -0.004204222304 -0.01348280919 0 -4.764367955 -24.47405038 903.4064139 0.002213843038 +2.499030221e-06 -0.007220686763 0.01007007417 0 7.070456046 10.06021798 882.7960929 0.002265528831 +2.497063775e-06 0.009431094555 -0.000701113001 0 14.26702004 20.92938794 1044.784683 0.001914270024 +2.498631996e-06 0.006250352021 -0.005454617443 0 12.24494782 12.22194387 1045.721964 0.001912554263 +2.499299782e-06 -0.004155820655 -0.003430257398 0 9.298940971 -5.13692397 897.6138457 0.002228129623 +2.498746985e-06 0.002904962683 0.003376406834 0 1.616012451 15.19472604 965.0737982 0.002072380375 +2.497081063e-06 -0.002406864194 0.004454516605 0 9.672531342 -20.83400735 950.255644 0.002104696786 +2.499009124e-06 -0.003949776758 0.01415328601 0 10.08483148 -7.164725912 878.6362005 0.002276254949 +2.499315467e-06 0.009178173663 0.01112845866 0 8.203858738 -8.556456877 1012.993369 0.001974346587 +2.496409858e-06 -0.005105041326 0.01460250727 0 -26.86552475 -3.515499454 1010.595317 0.001979031534 +2.497277756e-06 -0.003100372152 0.001703544469 0 1.651611744 -23.31175939 1001.166636 0.001997669447 +2.498671304e-06 0.007194337486 0.00780247028 0 -14.84850042 -2.911362733 928.0252739 0.00215511372 +2.498244252e-06 0.004668841087 -0.002964187232 0 -17.06195081 4.948627063 947.7796469 0.002110195135 +2.497813204e-06 0.007420411813 0.0132872837 0 -10.50966652 17.3251538 968.6240134 0.002064784656 +2.497803303e-06 0.004157734136 -0.01459899788 0 -16.37252456 -14.75558475 1051.186259 0.00190261239 +2.499850589e-06 0.001424785559 0.00946121861 0 -2.530433876 4.609794073 961.9601116 0.002079088286 +2.49949871e-06 -0.009849103754 -0.002119666224 0 0.01744083987 -9.846070115 983.2664875 0.002034036576 +2.496265549e-06 -0.004665982882 0.006625629372 0 -16.45382224 20.69600768 966.9036483 0.002068458428 +2.497343686e-06 -0.00642209596 0.002013790298 0 19.42266265 12.06126154 991.5260958 0.00201709265 +2.499235391e-06 -0.003445887412 -0.01402671504 0 12.09357317 3.475386685 1017.421421 0.001965753776 +2.496071508e-06 0.004956440395 0.007674440544 0 27.86060839 -8.948114245 1043.336555 0.001916926987 +2.497812875e-06 0.005168316923 -0.006675040447 0 10.6354711 -19.29527769 1053.088772 0.001899175125 +2.494228746e-06 -0.007312357458 0.007912838899 0 -29.92953921 -20.07293324 1059.80989 0.001887130907 +2.497994599e-06 -0.003130251053 -0.01218132606 0 19.29037039 -3.579972803 979.370956 0.00204212713 +2.498446602e-06 0.0007067341683 0.008254559201 0 -9.90540493 -12.1921458 891.0140158 0.002244633602 +2.496747114e-06 0.009093107488 0.007623313826 0 21.52210626 -15.16897287 1031.807646 0.001938345783 +2.497415758e-06 0.005043896371 0.01162252162 0 10.19214115 21.44078363 1043.831654 0.001916017772 +2.495489055e-06 -0.0009924697224 -0.008149283293 0 -18.99153211 -25.09865184 1047.154562 0.001909937724 +2.498425257e-06 -0.007625748254 -3.018721472e-06 0 5.693263051 17.6323481 1043.81268 0.001916052601 +2.499222624e-06 -0.004378526406 -0.0007488689711 0 3.35394159 12.66135951 1050.329521 0.001904164322 +2.4996297e-06 2.108397894e-05 0.0131703629 0 5.876495566 -7.070517777 1068.261197 0.001872201299 +2.496853451e-06 0.007481401074 0.007464247076 0 22.22382442 -13.79486357 1042.204938 0.001919008371 +2.499431253e-06 0.00855412093 0.01040130953 0 -9.848586068 -2.211542271 946.3343112 0.002113418034 +2.49821155e-06 0.006894487562 0.01388217032 0 10.90894045 -16.02071014 1024.547711 0.001952080882 +2.499519878e-06 -0.006362826913 -0.006311139241 0 -5.037860399 7.310507862 905.9533753 0.002207619128 +2.498668584e-06 -0.002011963683 -0.009108184136 0 0.1456942409 17.29739348 1059.833099 0.001887089582 +2.498484075e-06 0.008096580449 -0.001544669028 0 16.37037381 1.514684289 943.9675247 0.002118716955 +2.496663323e-06 0.00440752028 0.0007688444434 0 23.27764806 10.49112801 987.8821463 0.002024532995 +2.49952769e-06 -0.002593608773 0.0006551193399 0 -8.007813752 -3.615844056 903.9571206 0.002212494326 +2.498567967e-06 0.006093492843 0.00259420133 0 -6.949150835 -14.08116662 927.6522472 0.002155980332 +2.499951045e-06 0.008658897835 0.009433990731 0 -3.116991945 -0.4530093862 1006.60657 0.00198687358 +2.496361552e-06 -0.007426993242 -0.004405707121 0 15.96102359 -23.7397193 1059.872446 0.001887019526 +2.496560646e-06 -0.008800715106 -0.004557275169 0 -26.08684717 -2.074464196 997.2701834 0.002005474578 +2.497224933e-06 0.005647087488 0.006414692653 0 23.70584398 4.335203852 1022.506698 0.001955977406 +2.498559232e-06 -0.006446040138 -0.004855131099 0 4.615521289 14.32023424 886.1464682 0.002256963236 +2.498567138e-06 -0.008189343107 -0.001780421371 0 14.69344322 -7.951410869 986.7033291 0.00202695171 +2.497047413e-06 -0.003225794979 -0.008153437616 0 -17.34277292 14.63728306 933.4779199 0.002142525235 +2.497385546e-06 0.003211843106 0.01204104777 0 12.25073445 16.72878317 906.4092802 0.002206508741 +2.498102963e-06 -0.003988673068 0.00669776035 0 -5.310438671 19.47308937 1035.940921 0.001930612025 +2.495378642e-06 0.001806712626 0.009556121675 0 8.425146392 25.9467194 896.7021353 0.002230395046 +2.497149475e-06 -0.008158224658 0.01256114451 0 -3.647566507 22.16414514 940.3524102 0.002126862204 +2.497150171e-06 0.003098165416 -0.001049216827 0 24.82512302 4.535396574 1056.600236 0.00189286348 +2.497096595e-06 0.002491815714 -0.00879598802 0 24.40953157 -8.401093063 1070.805511 0.001867752808 +2.495655742e-06 0.005814791159 -0.007829455007 0 -6.754537846 -30.59464608 1062.242448 0.001882809338 +2.496377313e-06 0.007341097412 -0.009762968661 0 24.52032844 -13.0389545 1031.179111 0.001939527263 +2.499956045e-06 -0.004087016983 0.004597285527 0 2.970691314 0.06084489283 1002.138212 0.001995732701 +2.498214813e-06 -0.00165976231 -0.009671358196 0 -18.78609622 5.37114085 1033.774335 0.001934658205 +2.498850473e-06 -0.004315061322 0.008914273926 0 2.379478638 13.06165183 875.4637321 0.002284503546 +2.497383423e-06 -0.00621549062 0.004329009312 0 -3.244609522 -22.97820092 1014.029826 0.001972328574 +2.496007938e-06 -0.005091853691 0.01239160058 0 8.86095931 24.47456529 920.6349836 0.002172413645 +2.499866301e-06 -0.002675968981 0.008887113109 0 -4.32943542 -3.163930376 1036.965103 0.001928705214 +2.498775432e-06 0.002629715195 0.006740695825 0 -3.948761661 15.59742466 1027.913543 0.001945688928 +2.499283491e-06 0.005998255527 0.0117050734 0 11.48726707 -1.325438883 965.8641289 0.002070684623 +2.499062711e-06 -0.009292996759 -0.01390973641 0 10.78592425 7.072985291 941.9241218 0.002123313284 +2.498611544e-06 -0.006244272836 -0.0112530404 0 11.28638161 -13.58924984 1059.840976 0.001887075556 +2.497555468e-06 -0.009861149839 0.004393889979 0 -20.42807787 7.90746061 990.3152152 0.002019558994 +2.499125973e-06 0.006862130086 0.00795158966 0 3.689070063 -11.35001105 902.5460661 0.002215953374 +2.496175266e-06 0.008801512048 0.007335730945 0 24.78162231 9.507396713 959.1389082 0.0020852037 +2.497822775e-06 -0.00767049958 -0.01378808108 0 -0.2391559724 -20.65035433 989.3457093 0.002021538054 +2.499830934e-06 -0.00219710838 0.005041021791 0 5.353233008 -2.725117464 1032.998287 0.001936111633 +2.499843058e-06 -0.003027158394 -0.01371138828 0 0.1445217012 5.632531317 1005.662527 0.001988738713 +2.497366587e-06 0.001675982699 -0.01490541587 0 20.26727604 -0.6568727001 883.2369189 0.002264398099 +2.497278318e-06 0.001210303204 -0.004103636763 0 11.09654029 -17.75194128 896.9271314 0.002229835546 +2.499226044e-06 0.003374349824 -0.004410190147 0 -9.526435316 6.013204787 905.3720181 0.002209036683 +2.499689053e-06 -0.0003732202062 -0.006123302698 0 -7.754377672 1.454800379 1000.41491 0.001999170524 +2.499160359e-06 0.00194961031 -0.004703878176 0 0.6225945082 13.71618419 1059.409224 0.001887844616 +2.497912599e-06 0.002386243204 0.005381807846 0 -2.738499893 -18.38551942 909.4667275 0.002199090895 +2.494702986e-06 -0.001928364881 0.01297903018 0 16.94476752 25.818223 948.0500397 0.002109593288 +2.497177296e-06 -0.009966599117 0.01454189347 0 -8.220279477 19.41487048 886.9705983 0.002254866175 +2.497093899e-06 -0.007856547073 -0.007417060656 0 -12.06214629 22.3051588 1051.358741 0.001902300253 +2.498361547e-06 0.008420332484 -0.009403702326 0 15.6837642 4.199015235 896.6934143 0.002230416738 +2.494725438e-06 -0.005125770797 -0.01179929334 0 -21.0807942 -21.03101462 916.0877277 0.002183197023 +2.498462949e-06 -0.003275337052 0.009797805625 0 13.31442265 11.54828617 1005.002502 0.001990044797 +2.498767538e-06 -0.002311187615 -0.0009751256788 0 13.06826932 8.609891909 996.6006407 0.002006821909 +2.49618536e-06 -0.003946191687 -0.001303437953 0 12.4028028 -24.16560341 982.8350073 0.002034929551 +2.499731666e-06 -0.00742536258 0.002843557235 0 1.612208543 -6.516974486 916.3777851 0.002182505984 +2.499841845e-06 -0.00874052179 -0.0128432821 0 4.987730259 -1.852449723 946.0097528 0.002114143109 +2.497316809e-06 -0.002411376978 0.008707755224 0 22.61233338 8.93901221 1049.204613 0.001906205878 +2.499509702e-06 0.00469098052 -0.004694927442 0 3.521166419 9.376919761 1011.41177 0.001977433978 +2.499801518e-06 -0.0008924228745 0.01495043731 0 -3.689657648 5.089177784 997.661643 0.002004687675 +2.495108558e-06 0.002635021969 -0.006456831177 0 -20.63119298 -19.90405482 915.8731119 0.00218370861 +2.497355788e-06 -0.00457848595 -0.01231820217 0 -15.04028581 19.47401902 1069.554249 0.001869937876 +2.499262278e-06 0.009395734281 -0.009677975324 0 -10.81867449 -6.965353183 1059.175678 0.001888260882 +2.496631165e-06 0.008531237314 -0.009972837497 0 23.99020553 3.237674062 932.1352751 0.002145611322 +2.499562121e-06 -0.006020987742 -0.01178165697 0 -2.934970733 8.681630504 979.2182844 0.002042445522 +2.499797288e-06 -0.00120969912 0.003868657469 0 -3.855615869 4.469763225 927.042232 0.002157399017 +2.49874607e-06 -0.008274154686 0.006192540131 0 16.67103391 -0.3051388639 1052.693546 0.001899888156 +2.49849911e-06 -0.005272928989 0.007170377481 0 18.13772771 3.080462904 1061.623735 0.001883906637 +2.499459593e-06 -0.006833826671 0.00839617443 0 -7.49207931 8.210746195 1069.070997 0.001870783143 +2.499212867e-06 -0.001613544347 -0.009025946986 0 11.45618988 1.452218743 920.2620823 0.002173293933 +2.498075086e-06 0.005223038825 -0.005625837855 0 2.271049823 19.43290121 996.8668563 0.002006285982 +2.499750898e-06 0.008710308941 -0.004477219298 0 3.88802992 5.218701732 921.9664247 0.002169276393 +2.495216901e-06 -0.005494414167 0.002244082927 0 -22.93362782 22.31874008 1033.915015 0.001934394966 +2.499525167e-06 0.001872008685 -0.002361553079 0 -8.239302587 -2.465176359 882.4528751 0.002266409977 +2.499152305e-06 0.008708106293 -0.004128378248 0 12.12508391 -6.35440682 1051.211826 0.001902566116 +2.499400419e-06 -0.007147118403 -0.003180908854 0 9.112523813 -3.15267006 880.4623153 0.002271533904 +2.498490235e-06 0.005955117838 0.008556293508 0 -10.55105124 11.31945707 890.3151216 0.002246395632 +2.499045777e-06 -0.008245214885 -0.001813227651 0 10.93139395 -6.954715126 937.7258121 0.002132819609 +2.49555718e-06 0.008717575083 -0.00438482736 0 -15.77977153 -26.18579352 1024.946992 0.001951320426 +2.49722949e-06 0.002459996436 -0.008963906527 0 -17.77903241 13.68434103 952.7124841 0.002099269227 +2.499417518e-06 -0.009250549991 0.01473627573 0 -9.551992063 1.73064809 899.3188634 0.002223905315 +2.499070595e-06 0.001875876514 -0.001716502074 0 -14.19239961 -0.9727544827 1043.267011 0.001917054771 +2.498628713e-06 0.0009581646137 0.008102382061 0 13.79741167 -7.133577293 937.7152365 0.002132843663 +2.498168483e-06 0.009237443097 -0.00154365924 0 17.05461218 -0.8419346832 891.9296239 0.002242329379 +2.494703241e-06 -0.005040507358 0.006875296414 0 -28.0128827 19.7548487 1052.322687 0.001900557713 +2.499222459e-06 -0.00614499032 0.00761641151 0 -11.37083798 4.498037011 980.4704749 0.002039837049 +2.494914058e-06 -0.00307730251 -0.01254651498 0 -16.76332535 -27.52020101 1009.587225 0.001981007635 +2.498077264e-06 -0.005662468867 -0.01029494429 0 18.87323508 0.0226422758 962.1583267 0.002078659972 +2.497471618e-06 -0.006042825137 0.01159376049 0 -14.35395964 -16.77342188 981.373684 0.002037959681 +2.496049319e-06 -0.00866686435 0.01491250161 0 -18.00280083 22.94409332 1036.9 0.001928826309 +2.498014933e-06 0.003826240781 0.01361312432 0 -19.86123986 -1.197050423 998.3016724 0.002003402434 +2.497692101e-06 0.008478944306 -0.006530976682 0 -20.1051087 -6.051495272 976.9327976 0.002047223724 +2.499853449e-06 0.004789347262 0.01092970707 0 -2.711078421 -4.160698169 917.2543264 0.002180420351 +2.498361112e-06 -0.00970073998 0.002089901401 0 -15.4671259 -5.23576923 901.7174612 0.002217989654 +2.498250147e-06 0.002730840272 0.00902231012 0 7.316321035 16.88830122 983.570633 0.0020334076 +2.497423604e-06 0.008183388566 0.004601192402 0 -12.73867187 -16.78933504 928.0647588 0.002155022029 +2.499855709e-06 0.008810672625 0.001481650646 0 -4.114787916 -2.849558143 931.6929956 0.002146629855 +2.496673602e-06 0.003193102051 -0.001354160313 0 24.83786414 -6.379615238 993.7296073 0.002012619917 +2.499078467e-06 0.004527562819 0.008636348513 0 10.58613692 -7.743914017 966.0003285 0.002070392671 +2.498298175e-06 0.006816779301 -0.002814063595 0 -10.31217403 -15.10092198 990.9139847 0.002018338656 +2.498536687e-06 0.005580943958 0.007963796826 0 -12.53051278 11.95584402 1012.161504 0.001975969242 +2.495753148e-06 -0.008715374032 0.01061407224 0 -26.59817236 12.99211399 1015.057224 0.001970332266 +2.492447192e-06 -0.00842628689 0.004149676231 0 -25.41321228 24.39635505 905.3704578 0.00220904049 +2.49947997e-06 -0.002430126965 -0.006222325321 0 -0.6465713531 -10.29497351 1011.385706 0.001977484937 +2.497368926e-06 -0.001197207719 0.00839967062 0 -24.43396692 2.314211583 1069.498613 0.001870035151 +2.498970197e-06 -0.009352504746 -0.01492818695 0 13.0328874 -0.5873153311 908.9121316 0.002200432727 +2.49681034e-06 -0.0006054893183 0.0116617924 0 17.5185376 -13.58698482 877.3421209 0.002279612425 +2.498910873e-06 0.008816113798 -0.003884918438 0 -13.69379667 -0.780806042 929.187611 0.00215241785 +2.496668749e-06 0.00897963231 -0.008029963095 0 -19.23025069 19.36507627 1056.784858 0.001892532794 +2.49817803e-06 -0.006431072531 0.0004163912404 0 17.79332595 7.1092329 1003.491378 0.001993041538 +2.495847173e-06 -0.001284166616 -0.01237969921 0 18.39241891 -23.70524968 1040.439019 0.00192226547 +2.499078672e-06 -0.000410726713 0.01181511842 0 -12.78472107 1.033260671 944.7628406 0.002116933387 +2.49829408e-06 0.006128708655 0.01326800274 0 -4.127306319 17.59733956 978.2947896 0.002044373558 +2.49929674e-06 0.008375991951 0.001847445925 0 -8.874120659 -7.963181315 1005.248776 0.001989557259 +2.499021691e-06 0.003152568117 0.007552369076 0 -5.688614627 12.42405644 976.7326964 0.002047643134 +2.493569627e-06 0.009070421983 0.01471194196 0 -17.1519444 34.0239882 1061.461052 0.001884195371 +2.499446464e-06 -0.001279058554 -0.01188012624 0 -1.356411505 9.840586299 944.0258978 0.002118585946 +2.497102497e-06 0.009107052162 -0.002451320915 0 -11.70163169 -18.78963266 919.1210493 0.002175991945 +2.498181486e-06 0.001622104882 -0.006765624625 0 6.959584821 -17.01456865 963.6568751 0.002075427522 +2.497680411e-06 -0.004250429831 -0.006688817767 0 -15.90614764 11.55114637 912.3599828 0.002192117188 +2.499423752e-06 -0.00640042529 0.008588496696 0 2.630352454 10.37594975 997.0003238 0.002006017403 +2.497161081e-06 -0.00556139627 0.002962965583 0 -16.19401699 18.19412881 1021.763968 0.001957399225 +2.495805639e-06 -0.009297662098 -0.01138656442 0 -21.76360797 -16.14586621 935.0359223 0.002138955255 +2.499913394e-06 3.338592593e-05 -0.000915781525 0 3.736016285 0.9575279766 926.6810321 0.002158239924 +2.495553818e-06 0.00868337323 0.0149996234 0 17.8195014 21.51577138 936.21953 0.002136251099 +2.494058479e-06 0.006840394405 -0.008691851471 0 26.78499346 -21.4913738 995.322024 0.002009399925 +2.49764221e-06 0.003660120959 -0.0004088742589 0 -20.10423353 -5.906025861 964.5869627 0.002073426324 +2.494520385e-06 0.00610544594 0.01188297537 0 18.39861508 24.83519087 932.8709995 0.00214391915 +2.497502357e-06 -0.006096023424 -0.004852128255 0 -19.35526888 5.518834689 900.1804687 0.00222177671 +2.499468799e-06 -0.009578614198 0.01442776624 0 7.502872359 5.49452969 902.1655724 0.002216887965 +2.498459538e-06 -0.001214334196 -0.01134111274 0 6.389921278 15.30116978 944.4770041 0.002117574056 +2.496964111e-06 -0.002670659465 4.642723594e-05 0 -10.6753341 22.39188896 1006.256368 0.001987565061 +2.49790474e-06 0.009085617363 -0.01436254876 0 12.09962139 14.90225443 937.4224159 0.002133509895 +2.498024011e-06 -0.008290669066 -0.009896969714 0 14.08845001 -12.10553828 934.0957607 0.002141108101 +2.497693916e-06 -0.008955349275 0.01278433752 0 16.0872978 -10.39626072 891.5817172 0.002243204365 +2.499636533e-06 0.005959923798 -0.01116023657 0 4.170877855 6.734698589 929.0610175 0.002152711138 +2.499728995e-06 -0.003436787277 -0.006376210114 0 7.693650099 -0.3944088003 1046.359304 0.001911389322 +2.497408463e-06 0.001058934736 0.006970567508 0 22.31010584 -4.075830428 995.7907458 0.002008454094 +2.49823675e-06 -0.002861229 0.003110778343 0 -3.996816993 19.19510532 1043.806176 0.001916064539 +2.496998691e-06 -0.004554975573 0.00621487712 0 -17.63620883 -19.05827019 1059.365008 0.001887923412 +2.496601126e-06 -0.001592864059 -0.004842512263 0 -15.57235918 17.06356385 885.5838412 0.002258397124 +2.499239818e-06 -0.005440118005 -0.01315415359 0 -9.889263364 4.965823824 897.3637287 0.002228750657 +2.497753677e-06 0.007813082505 -0.006388377543 0 1.351468417 -21.58207376 1019.871682 0.001961031015 +2.496530073e-06 0.009528036467 0.01204869194 0 -17.51480573 20.63627372 1026.926278 0.001947559472 +2.499670846e-06 0.004916384341 -0.01117004118 0 5.262031596 6.20776281 1002.942453 0.001994132359 +2.496671584e-06 -0.007431506086 0.001668774281 0 -16.0847807 20.12759512 998.1160176 0.002003775077 +2.49750422e-06 0.001198508041 0.002006532275 0 19.03447418 5.953290815 892.3307705 0.002241321342 +2.496110285e-06 -0.002552976212 -0.001910706377 0 -17.7205612 -21.14123285 988.4536291 0.002023362494 +2.49774071e-06 0.009621230126 -0.009176646005 0 -2.151906389 -22.12805495 1045.535903 0.001912894616 +2.497282137e-06 0.009362573121 0.01390553261 0 21.35915019 -6.350003606 955.365125 0.002093440453 +2.499396578e-06 -0.004755604463 0.009072853555 0 9.09813846 -6.123510959 998.2057085 0.002003595034 +2.495750524e-06 -0.005081889876 0.01015864344 0 -10.41194238 27.15739654 997.0299234 0.002005957848 +2.498981028e-06 0.007957888893 -0.007167261865 0 -10.86860205 -8.34531056 959.7351745 0.0020839082 +2.497677544e-06 -0.0002024368336 -0.003656629762 0 12.13138309 -18.70519448 1034.098747 0.001934051275 +2.499401504e-06 -0.001215442182 0.00609519124 0 -10.42635421 -2.631361525 982.7799944 0.00203504346 +2.49626611e-06 -0.008185719014 0.008676201794 0 -27.74183492 2.316233639 1018.132952 0.001964379993 +2.496586664e-06 -0.006574150701 -0.0009976789774 0 15.16866104 -22.24207526 1029.867853 0.001941996727 +2.499311488e-06 -0.009934723154 0.007503312605 0 -9.744998558 6.937914292 1019.303601 0.001962123942 +2.497689824e-06 0.002280710121 -0.00631822512 0 -5.508649843 -18.68486671 905.9419213 0.002207647039 +2.496728888e-06 0.002968341815 0.005850430846 0 25.03328483 9.149242739 1041.519963 0.001920270442 +2.499867774e-06 -0.00602228146 -0.0001144359517 0 -3.982148711 -2.382135918 902.3207676 0.00221650667 +2.498978513e-06 0.009813154908 0.0006894039921 0 -13.98562262 -2.502160113 993.860484 0.002012354885 +2.499635465e-06 -0.003614923102 0.01385446756 0 -5.840720132 5.957272155 977.02495 0.002047030631 +2.496395339e-06 -0.006875304217 -0.01088443747 0 1.221191173 -25.84159929 962.9896307 0.002076865561 +2.498469648e-06 0.00697548816 -0.009688534567 0 2.802268389 18.51695968 1070.228068 0.001868760556 +2.497639932e-06 -0.002817374635 -0.005722664336 0 17.64635596 13.86318093 1032.532914 0.001936984259 +2.499915527e-06 0.007410009596 -0.01485055114 0 -4.294866877 -0.7737773938 1061.713409 0.001883747519 +2.498073464e-06 0.005065882765 0.005674566363 0 -16.61947069 -10.61937437 1004.461706 0.001991116225 +2.499549328e-06 -0.001454921938 -0.004272460146 0 -7.00334214 -5.047286964 909.2162963 0.002199696605 +2.498864309e-06 -0.002436366342 0.001979472537 0 5.12957179 14.02058304 990.4337268 0.002019317341 +2.498030474e-06 0.006711046775 -0.006726502525 0 16.60813939 -12.54512714 1048.395918 0.001907676257 +2.495236489e-06 -0.006750187967 0.01052574971 0 18.70890323 24.35975171 994.4054883 0.002011251973 +2.499332245e-06 -0.0009241927089 -0.01127229878 0 -7.224535108 -8.147089152 942.1468145 0.002122811402 +2.495603311e-06 -0.008344048411 0.0139912677 0 -3.224701124 27.14057116 921.0824159 0.002171358356 +2.499405677e-06 0.002616408109 0.004427772188 0 11.12646398 -1.075332458 1025.205874 0.001950827683 +2.497840366e-06 0.003337319139 -0.01216901468 0 9.460425138 19.81586826 1056.217855 0.001893548751 +2.498156349e-06 -0.004792935383 0.01040918932 0 6.317967235 -15.82519794 887.133789 0.002254451386 +2.497741871e-06 0.007530022077 0.003116170471 0 -8.878032657 -20.39038128 1046.128181 0.001911811609 +2.495844877e-06 0.009102065954 -0.01189670605 0 27.13441045 -13.14370794 1045.230475 0.001913453585 +2.497085263e-06 0.003954963139 0.0008893454005 0 12.32384565 -17.92874229 900.6818499 0.002220539917 +2.496826809e-06 0.004439907027 0.01207783671 0 -3.583229031 25.7638237 1032.04961 0.001937891338 +2.497154371e-06 -0.008354286589 0.004046615884 0 -16.75467859 -13.73344092 907.7118541 0.002203342383 +2.498729349e-06 0.006652446524 0.007203716564 0 -14.46280306 -1.637896792 912.8696065 0.002190893404 +2.497695858e-06 -0.0003030884359 -0.01082154552 0 -20.22715911 -7.413825592 1003.199462 0.001993621483 +2.496361278e-06 0.007821443537 0.009496484539 0 -3.82304844 26.76491898 1001.670978 0.001996663619 +2.499777545e-06 0.002335224091 0.01243132382 0 -2.501687264 -5.393068681 891.2611881 0.002244011101 +2.499118401e-06 0.009566051187 -0.0005684262584 0 -6.207915892 12.60723281 1058.166836 0.001890061125 +2.498994377e-06 -0.007694614558 0.01158641689 0 -11.71916541 -5.299165458 906.7672747 0.002205637605 +2.499063044e-06 -0.004559823452 -0.001348335736 0 8.682787563 -10.10671242 973.2133787 0.002055047787 +2.497976582e-06 -0.009854885195 0.009622010817 0 -2.9591254 -19.60824059 985.4598937 0.002029509281 +2.499468672e-06 -0.002815527469 0.006247966387 0 -1.436728583 -10.2386534 1002.873006 0.001994270449 +2.497729799e-06 -0.00275348573 -0.01389277671 0 10.2626414 -16.69740256 919.4778 0.002175147676 +2.495348006e-06 0.00510145077 -0.00901384993 0 11.83984124 -27.08009407 968.2708816 0.00206553769 +2.497889131e-06 -0.009138242877 -0.008085959419 0 -18.39285617 5.593604709 935.3503256 0.002138236279 +2.499020947e-06 -0.009213921041 -0.009922876032 0 0.2185652128 -13.78794074 985.3084028 0.002029821317 +2.499363336e-06 -0.009088074248 0.001404691839 0 -11.26034459 2.312355859 1018.613198 0.001963453845 +2.497674508e-06 0.007320061582 -0.001095326194 0 -4.988814337 -21.68282233 1031.319149 0.001939263904 +2.498195236e-06 -0.004900624938 0.005146881135 0 -5.029451432 -17.93311746 980.0639292 0.002040683205 +2.495899785e-06 0.008454944817 -0.003042982626 0 -17.64670544 -20.88505755 954.2158631 0.002095961802 +2.495294493e-06 -0.008017577096 0.00598950332 0 16.13199735 28.48672043 1066.396272 0.001875475423 +2.498398805e-06 -0.007086006831 -0.009722673905 0 -15.51227162 -8.482838098 987.7463826 0.002024811263 +2.497436594e-06 -0.002511173422 0.001982100236 0 -5.04381799 19.27328038 879.5275428 0.002273948117 +2.499834364e-06 0.007170458585 -0.01261818306 0 -5.137732356 2.000649272 957.9129696 0.002087872347 +2.497543324e-06 0.009477757355 -0.005810269006 0 -4.130238786 -20.31714076 934.9898621 0.002139060626 +2.496739298e-06 0.001315587587 -0.00166958991 0 -15.10105501 -19.38949477 961.9075832 0.002079201822 +2.497149983e-06 0.001620594803 0.001480247942 0 -20.84892073 14.11758127 1054.179416 0.001897210256 +2.499301318e-06 -0.009362581898 0.007005589257 0 8.689840323 -7.235421034 956.4779742 0.002091004763 +2.498237293e-06 0.0006490300037 0.009867676422 0 17.8233263 5.447163712 992.3366669 0.002015445027 +2.499113437e-06 -0.009994067047 0.01016611875 0 8.62816695 -9.87572471 984.7029957 0.002031069275 +2.497694824e-06 -0.002786236019 0.001987130523 0 -1.528724627 -20.31202538 948.336592 0.002108955846 +2.49751318e-06 0.004505248968 0.002503369635 0 13.52541168 16.3329405 950.5239222 0.002104102751 +2.499706548e-06 0.009240850839 -0.01137651437 0 -6.079143219 3.714116533 929.8616856 0.002150857521 +2.497012797e-06 -0.003246978507 0.007935029618 0 -14.05782107 -16.57146981 888.6637724 0.00225056997 +2.495467145e-06 -0.008379547866 -0.01352072373 0 -26.6750588 -12.90558192 983.5098387 0.002033533292 +2.497209314e-06 0.009950790079 0.002527827302 0 21.32782579 -1.167152505 903.7400147 0.002213025834 +2.497202196e-06 0.0005880326731 -0.008813073188 0 20.30492552 9.392583523 945.3674053 0.002115579603 +2.496995429e-06 0.005442451644 0.003109739302 0 -13.50735404 22.40704328 1066.822873 0.001874725458 +2.498751926e-06 -0.007168425 -0.006053739956 0 6.096888971 -13.59379923 942.8102569 0.002121317609 +2.497282154e-06 0.003074588683 0.006692679478 0 -21.09877705 -1.958062038 908.4790442 0.00220148171 +2.498947269e-06 0.004279376501 -0.002302455143 0 -15.25028151 2.239537457 1062.108234 0.00188304726 +2.49598649e-06 0.002668723431 0.00620702452 0 3.729586331 25.54299797 910.5710982 0.002196423765 +2.498222453e-06 0.00825986248 0.01137174846 0 13.65843187 14.17936289 1043.889355 0.001915911864 +2.499858997e-06 -0.002596943816 0.001317407198 0 5.04508126 0.8480237363 963.3409774 0.002076108094 +2.49730935e-06 0.002661634427 0.01341619063 0 24.32183725 0.5596507595 1048.316408 0.001907820945 +2.494184298e-06 0.004577466259 -0.00432900378 0 26.26950994 20.60604582 978.0993088 0.002044782142 +2.497976968e-06 0.00630731415 -0.003036510819 0 -18.8104455 8.34600491 1022.757409 0.001955497935 +2.498983691e-06 -0.001041336888 0.002205916133 0 -3.917908808 11.96167956 882.7284227 0.002265702507 +2.497647437e-06 0.008819916248 -0.00622617733 0 17.3811585 13.77949428 1022.196433 0.0019565711 +2.499782705e-06 0.00485745877 -0.003309410226 0 3.826872824 4.634926007 911.7267313 0.002193639751 +2.497117145e-06 -0.004279797822 0.0136066034 0 -18.0807202 14.15591095 955.906681 0.002092254443 +2.497301451e-06 0.0005744995223 0.004016207862 0 -13.38699426 20.42799377 1050.883276 0.001903160937 +2.497000516e-06 0.008144178693 0.01244534748 0 23.25856359 -10.61858562 1043.423222 0.001916767768 +2.499359495e-06 -0.001244055084 -0.01385358692 0 -6.708265176 -9.801631464 1049.309891 0.001906014626 +2.499012851e-06 0.001698634615 0.01280166244 0 -12.02093896 4.425875539 911.5324472 0.002194107304 +2.496623009e-06 -0.008801899222 -0.01173915634 0 -20.92075805 17.16661694 1040.795671 0.001921606763 +2.497342918e-06 0.0005266521452 0.0005551284668 0 13.16277369 -18.42829433 981.9944814 0.002036671323 +2.49557123e-06 0.001278416961 0.01246878773 0 25.16703382 -16.11813371 1003.51229 0.001993000007 +2.499206213e-06 0.00900120296 -0.008978459251 0 12.77653404 -2.685733453 1036.056783 0.001930396126 +2.497177935e-06 0.004595442857 0.001363523249 0 -18.75775308 -17.05433698 1066.652534 0.001875024842 +2.497611335e-06 0.008511594445 0.008872667325 0 9.827917675 20.43199026 1036.946062 0.001928740629 +2.497069349e-06 -0.0026510063 -0.01138513276 0 8.512218554 -20.45390766 914.6884273 0.002186536902 +2.496359285e-06 0.008870545528 -0.01366704939 0 21.39607529 16.36217895 997.6470853 0.002004716928 +2.498151106e-06 -0.002474867846 0.004629755435 0 -6.354530505 -19.44947192 1063.751683 0.001880138036 +2.498977363e-06 5.781254731e-05 0.006067084288 0 9.657012072 9.863976177 965.0923632 0.00207234051 +2.498864029e-06 0.002174238665 0.006298767105 0 -5.541149673 -14.33567988 1019.487807 0.001961769417 +2.499199602e-06 0.005093382946 -0.006106042368 0 5.775495918 10.49289947 946.5446607 0.002112948372 +2.497730302e-06 -0.008105917689 0.01370624231 0 -21.39561449 2.84413808 1012.701464 0.00197491568 +2.499808099e-06 0.004201805852 -0.01423706719 0 -5.298282356 1.66619492 896.4942621 0.002230912215 +2.498452322e-06 -0.006829926567 -0.01022582462 0 0.6582051182 -17.14910763 975.2253439 0.002050808064 +2.496375382e-06 -0.004499171828 -0.001267659171 0 -24.23803429 14.28002337 1044.27769 0.001915199395 +2.498651174e-06 -0.006189132426 -0.009877375129 0 -15.80180081 2.951056983 978.5208251 0.002043901314 +2.497723453e-06 0.009595347475 -0.008281213101 0 -9.770550153 16.03672836 879.7602076 0.00227334674 +2.499744556e-06 -8.553564548e-06 -0.01254521918 0 7.076844679 0.6172491344 993.8157945 0.002012445376 +2.499596693e-06 0.0008035648707 0.005787199319 0 -1.823189653 -8.979077957 1020.106483 0.001960579639 +2.4979019e-06 0.006735702399 -0.01020475125 0 2.684090933 -18.44607971 909.6806207 0.002198573823 +2.498544879e-06 -0.003102265592 -0.004886366799 0 10.88594047 11.27795039 918.6276875 0.002177160592 +2.496846522e-06 0.005756387152 0.01014935255 0 18.65536328 -11.75988887 877.6968267 0.00227869116 +2.498661474e-06 0.005137116681 0.0112526685 0 13.54348812 10.03645656 1030.061418 0.001941631796 +2.499610674e-06 -0.004329793346 -0.01307007008 0 -5.499227518 -6.904845732 1000.283006 0.001999434148 +2.498319203e-06 0.003310669847 0.00459947245 0 -16.86248546 -8.315229552 1025.189789 0.001950858292 +2.497739784e-06 0.003193627833 0.007763366983 0 8.877295219 -20.70734867 1059.311754 0.001888018322 +2.499704295e-06 0.003651715433 0.006882324438 0 6.323345075 4.01004063 973.6052162 0.002054220712 +2.497934311e-06 0.007956762961 0.01092325654 0 -20.65519967 4.667648186 1041.507601 0.001920293234 +2.499420254e-06 -0.005699087242 0.007079765294 0 -8.981651311 -4.97235544 953.316832 0.002097938411 +2.499529758e-06 -0.001598383151 0.01135348607 0 -9.346055034 3.700901538 1036.458942 0.001929647108 +2.499629933e-06 0.002293382939 -0.008725000145 0 7.553636409 2.483747996 924.2084526 0.002164013967 +2.493455893e-06 -0.004799737986 0.01234251466 0 -25.40988601 28.05414768 1045.226059 0.00191346167 +2.499979205e-06 0.002887327517 0.006905997552 0 -1.305099954 1.417599856 944.8434628 0.002116752752 +2.498869161e-06 -0.003059741366 0.00513551394 0 -3.895481139 14.87432235 1022.241074 0.001956485659 +2.497986301e-06 0.001464774753 0.01319830591 0 -0.5017868598 20.32440167 1012.760162 0.001974801216 +2.497966335e-06 0.003889018847 -0.008577149576 0 17.72703256 1.697352146 882.7353556 0.002265684712 +2.495794695e-06 0.00381737845 0.0138536263 0 24.05188336 -11.73954479 922.2796444 0.002168539675 +2.496296438e-06 -0.001618017405 -0.01324227971 0 -12.95466178 -20.87280985 902.1349515 0.002216963212 +2.497045111e-06 0.007374975816 0.002266526073 0 -5.030921557 23.14243578 973.7730281 0.002053866704 +2.496023537e-06 -0.00761728507 0.006089861398 0 -24.31751037 17.47097688 1061.135746 0.001884772997 +2.49801015e-06 1.392522827e-06 0.008196149063 0 -17.79340799 2.60221145 901.1553705 0.002219373113 +2.499877637e-06 -0.00346523236 0.01288517947 0 2.623465361 4.503877386 1053.602335 0.001898249401 +2.497499355e-06 -0.0001803431427 0.001142965949 0 17.03717219 16.7956842 1069.376814 0.001870248143 +2.499788554e-06 0.003351022303 -0.002945694665 0 3.241503025 -4.675050803 874.7797897 0.002286289674 +2.498288851e-06 0.006584231639 -0.005455417223 0 -5.15114521 18.7247027 1049.508509 0.001905653916 +2.496484428e-06 -0.006316347728 0.009443410237 0 -22.70580812 -5.848606333 883.7803953 0.002263005619 +2.497333818e-06 -0.008553109784 -0.01452705906 0 11.67980341 -16.67814504 881.3929938 0.002269135351 +2.49725103e-06 0.0001910666656 -0.006754517897 0 -21.26083821 -12.61199666 1053.833232 0.001897833489 +2.495773728e-06 0.008096952187 0.008346375888 0 25.56182853 -9.058885171 932.2091792 0.002145441221 +2.495444304e-06 -0.009731135019 -0.009754831642 0 -21.28884839 -20.52310764 978.9689557 0.002042965702 +2.498007119e-06 0.003668458546 0.003335180038 0 -15.13206809 9.003090289 881.6981075 0.002268350111 +2.49904135e-06 -0.009030997949 0.005673140308 0 11.29329472 -5.439216441 905.134645 0.002209616007 +2.498060629e-06 -0.009609076474 0.002289841056 0 -16.99488023 8.206049163 957.9742984 0.002087738683 +2.493919616e-06 -0.0005625297083 -0.005270363123 0 -24.03776168 -23.02168553 953.5774641 0.002097365002 +2.498007996e-06 -0.002026890158 0.001940763553 0 3.57251478 20.05103854 1020.077455 0.00196063543 +2.496497139e-06 -0.002375812549 0.01212651602 0 -23.55228881 -12.73320986 1011.01549 0.001978209057 +2.497910389e-06 0.006425644313 -0.007527437608 0 -2.635773447 -19.94462435 983.7883144 0.002032957671 +2.499605128e-06 -0.005490766121 0.009755717274 0 -8.533644911 3.001273892 1017.863331 0.001964900335 +2.495335438e-06 -0.003669719789 2.231802559e-05 0 -16.65043405 -21.94516199 901.2532814 0.002219132004 +2.499861044e-06 -0.008770034951 -0.00351021657 0 4.976283753 0.5776534298 950.2742876 0.002104655494 +2.498047839e-06 -0.004060760853 0.001129480849 0 9.059336885 -15.42400357 905.0147142 0.002209908821 +2.497828019e-06 -0.006875208537 -0.01458144973 0 -11.54670363 -15.07900504 910.9407988 0.002195532358 +2.498089005e-06 0.008250207277 0.008775794485 0 16.34037703 -8.107546084 932.7887538 0.002144108183 +2.498388922e-06 0.002451240974 0.0007325005461 0 -15.91506422 -3.34174124 905.730326 0.002208162786 +2.499816423e-06 0.006789550558 0.01363951331 0 -4.797261936 2.264506128 875.4667201 0.002284495748 +2.499570874e-06 -0.003045578809 0.01496977533 0 1.690151291 8.389309811 923.6982607 0.00216520923 +2.495058827e-06 0.002811308554 -0.01161942855 0 -18.03043533 -21.57172387 893.6780473 0.002237942407 +2.497557725e-06 -0.0002202963829 0.002025829435 0 3.675158068 20.88585046 959.1848455 0.002085103835 +2.498519942e-06 0.00191033348 0.01384427416 0 -0.5567031214 -15.36733575 893.5780978 0.002238192727 +2.497025442e-06 -0.009217256103 -0.01295719675 0 13.54938596 -20.7922153 1017.034601 0.001966501433 +2.496047843e-06 -0.007390202689 -0.01415717983 0 -22.31372768 -12.21758067 904.31556 0.002211617369 +2.49627766e-06 -0.008775797361 -0.01192625207 0 -20.4854009 -15.52572633 941.5349373 0.002124190958 +2.497752686e-06 -0.001277999943 0.002400795661 0 15.99316698 -13.25277263 979.3896429 0.002042088166 +2.497996366e-06 -0.006699945321 0.006784893111 0 11.3694433 -16.98404731 1020.678477 0.001959480918 +2.498029251e-06 -0.001826365883 -0.00878346063 0 -1.758029854 -20.2910437 1025.579227 0.001950117502 +2.497721189e-06 0.003288576431 -0.001500212629 0 -3.741086485 -22.48195444 1067.204102 0.001874055765 +2.496596608e-06 -0.009157088622 0.002246312674 0 -23.03325358 -2.127642585 886.1504239 0.002256953161 +2.497710723e-06 -0.002028459241 0.005877795161 0 -3.56990057 -22.17273017 1049.211615 0.001906193156 +2.499429529e-06 -0.005931164604 -0.009561898077 0 11.08501442 0.5583634506 1039.004745 0.001924919024 +2.498938406e-06 0.007846590052 0.001688559086 0 0.5161245385 13.11186779 900.4039528 0.002221225255 +2.497330248e-06 -0.001172660561 -0.005166612428 0 -20.29807746 -9.815602365 975.3496804 0.00205054663 +2.499882204e-06 0.0002714455454 0.003164325643 0 3.866263434 3.029760462 1011.969784 0.001976343593 +2.499420028e-06 0.004693382913 0.003644789422 0 -9.212176367 -4.699334028 960.12987 0.002083051535 +2.499395483e-06 0.009069530992 -0.005010584104 0 -10.28214624 5.743452456 1071.013514 0.001867390069 +2.499139338e-06 0.003132688315 0.002855496285 0 12.07056086 7.174189667 1070.11462 0.001868958672 +2.496629319e-06 0.00357436202 -0.007125187959 0 24.86399557 2.922071152 963.7313041 0.002075267236 +2.499179853e-06 0.001162109161 0.002245889499 0 12.4611334 0.6806378672 974.2942085 0.002052768027 +2.495987519e-06 0.004850444365 -0.002874614387 0 22.26468716 17.83880122 1006.497881 0.001987088138 +2.498960359e-06 0.00570495124 -0.007156905415 0 -3.113436453 13.1828297 939.2267551 0.00212941123 +2.49723834e-06 0.004576809867 -0.003039437339 0 22.37538896 -0.976064355 952.5840032 0.002099552368 +2.498763188e-06 -0.0004527090723 -0.007211930263 0 -7.429993678 12.3028253 913.6509016 0.002189019894 +2.497134457e-06 0.0003437066171 -0.01409413705 0 -19.12764432 -11.81460483 938.7167708 0.002130568093 +2.499957827e-06 -0.0008584216004 -0.009794930003 0 2.532138982 -1.155261418 958.3268858 0.002086970563 +2.49935112e-06 0.009131960552 0.01340721207 0 -7.408773039 -7.11043164 901.3224124 0.002218961797 +2.49785261e-06 -0.0002302492782 -0.009776749627 0 14.65955772 12.13683952 918.051627 0.00217852672 +2.496969927e-06 -0.007311622277 0.01153256049 0 -13.69054527 20.74996902 1009.374834 0.001981424474 +2.498438144e-06 0.009408562505 0.007867953731 0 12.98884536 8.905163961 890.8388383 0.002245074995 +2.495972322e-06 -0.006486414787 0.006918475635 0 16.47006317 23.26934291 1003.845609 0.001992338246 +2.496774896e-06 -0.006422821283 0.004390248782 0 -22.07627983 7.125615247 912.9545179 0.002190689635 +2.499327961e-06 -0.001967132874 0.001849221911 0 9.038238697 -8.1514455 1049.72119 0.001905267817 +2.498903916e-06 0.001950553181 -0.004451473947 0 -13.10130406 7.78791068 1029.229775 0.001943200682 +2.497995639e-06 -0.004917374407 0.005699123272 0 -20.23575664 -0.1156997567 1010.399205 0.00197941565 +2.499977553e-06 0.001494386378 0.01396052975 0 0.139275478 2.189240224 1035.309688 0.001931789128 +2.494567364e-06 0.009418395869 0.01484320808 0 24.75411243 22.28013173 1009.542441 0.001981095512 +2.49837217e-06 0.003032977995 0.003533082618 0 -4.805119576 -17.06668059 982.4003469 0.0020358299 +2.498630149e-06 -0.007215750115 -0.01057959279 0 6.139053841 -14.79882608 967.7567892 0.002066634946 +2.496423223e-06 0.006374636511 0.01359945812 0 13.85105785 22.90824031 1000.359744 0.00199928077 +2.499122693e-06 -0.004758236604 -0.01445262783 0 -9.403851777 -8.049794153 934.3860486 0.002140442918 +2.499459045e-06 0.005469648787 0.002724446186 0 -7.001193476 -8.52694925 1060.621029 0.001885687673 +2.496926282e-06 -0.004273462049 -0.003445222909 0 14.80031917 18.4585459 953.7980102 0.00209688003 +2.496683841e-06 0.001268203827 0.002383415659 0 25.76429818 -8.873872887 1057.578072 0.00189111334 +2.498354877e-06 -0.005441635633 -0.009410887621 0 -4.573489369 -15.36052319 883.3421515 0.002264128341 +2.496382292e-06 0.000391568332 -0.007996746262 0 9.334130647 -22.45068946 903.4097104 0.00221383496 +2.499130301e-06 -0.003975391374 -0.01120406016 0 -4.126295417 -11.97610593 960.3251726 0.002082627903 +2.497652405e-06 -0.008731209273 -0.00651699478 0 -14.53510482 16.53394927 1015.617956 0.001969244428 +2.49957946e-06 0.006884856895 -0.01121726467 0 4.72375689 6.534547812 879.1397508 0.002274951165 +2.497685191e-06 0.006308284141 0.01481507301 0 -18.40510105 8.829840964 948.4086775 0.002108795551 +2.499028229e-06 -0.0009999490809 0.01407456899 0 -0.117373595 -12.91701329 926.4454552 0.002158788722 +2.497110629e-06 0.0002738493774 -0.005816401346 0 6.452412547 -24.60740551 1057.791785 0.001890731265 +2.498105687e-06 -0.001363378898 -0.01361174171 0 -18.69309411 1.912930694 965.1150107 0.00207229188 +2.499028911e-06 -0.00764634911 -0.01497092121 0 5.421964696 -11.21260495 893.5656026 0.002238224025 +2.497336392e-06 0.00562706999 -0.007934901193 0 -0.8277247706 -23.95448987 1038.059585 0.001926671676 +2.496484222e-06 0.004537412277 0.0004328390071 0 16.83904235 17.07892221 904.0048048 0.002212377622 +2.498031741e-06 -0.0003089015326 -0.002520677985 0 -19.07817158 -5.584490319 1001.621901 0.001996761451 +2.499446036e-06 0.00635824631 -0.009841858372 0 -4.135185462 10.45083481 1067.686296 0.001873209395 +2.497349964e-06 0.009673034032 -0.001837906551 0 4.983798656 20.69473517 924.2477199 0.002163922028 +2.497489342e-06 0.006426579161 0.008320611448 0 -19.2295353 6.44716803 904.7500672 0.002210555238 +2.495485042e-06 0.008041385747 -0.009624718654 0 -17.61517934 -22.1120538 940.1598755 0.002127297763 +2.495215245e-06 -0.008170145052 -0.01235608694 0 -18.40219938 -27.10813095 1058.382184 0.001889676555 +2.499679285e-06 0.002693475154 -0.007457203944 0 -7.421612364 1.650076365 949.2483492 0.002106930185 +2.498622286e-06 0.008305893675 0.004270456096 0 -15.48922072 -8.320963494 1059.018234 0.001888541609 +2.499296742e-06 -0.001468198495 0.004972770209 0 5.137208053 -9.111533773 881.885688 0.002267867624 +2.496820306e-06 0.005314638214 -0.0005569488066 0 18.47378604 14.57074744 932.5629898 0.00214462725 +2.496630513e-06 -0.002478863504 0.004610500932 0 -19.03930762 -15.04327437 934.2555205 0.002140741966 +2.49700131e-06 0.00861031963 0.003903764491 0 16.75717923 -17.78164087 997.2572187 0.00200550065 +2.496485459e-06 -0.005157482908 -0.01388085611 0 -22.745975 7.190565883 899.3105031 0.002223925989 +2.496816149e-06 0.004773283913 0.003095513026 0 19.79625795 -13.4954264 948.9951909 0.002107492239 +2.497062091e-06 0.003273257473 0.009197129002 0 25.18956447 1.512165104 1040.581641 0.001922002004 +2.498140649e-06 0.008573921826 -0.001351639554 0 -9.428889561 -16.61323633 990.3123004 0.002019564938 +2.499090032e-06 0.005921218283 -0.009257923902 0 -0.4923101836 -12.52476162 929.0036787 0.002152844005 +2.495844535e-06 -0.001639433252 -0.01498253841 0 15.07675525 -23.47978131 967.3060867 0.002067597865 +2.496382316e-06 -0.002814126736 0.006725877738 0 -24.22596487 -12.15277432 1007.060571 0.001985977863 +2.499306485e-06 -0.003346224981 -0.01126376707 0 -8.680657589 -9.077930738 1066.384849 0.001875495514 +2.498613736e-06 -0.00894870156 -0.006911048137 0 -13.20031192 11.09078583 1035.226635 0.001931944109 +2.495134788e-06 -0.006186596905 0.008080269706 0 -23.68524857 23.26061826 1063.44985 0.001880671664 +2.497269315e-06 -0.000285074492 -0.0001566975005 0 14.60213849 19.32434886 1036.004876 0.001930492844 +2.49606763e-06 0.001667402619 -0.008474701631 0 20.91205034 -15.16426934 920.55964 0.002172591447 +2.497796958e-06 -0.007037405907 0.01352681162 0 13.11782216 15.90769583 981.9558438 0.002036751461 +2.496987495e-06 0.008301043115 0.01294899263 0 11.23235244 23.76718648 1070.478376 0.001868323588 +2.499967109e-06 -0.009210811104 0.01435926192 0 0.3110159604 2.435514656 957.3005877 0.002089207952 +2.498090663e-06 0.001579742287 -0.004955546306 0 -15.25735305 10.29110162 941.5053014 0.002124257821 +2.499566611e-06 -0.005179440472 -0.001360905413 0 6.508442538 5.083653879 886.9937097 0.002254807422 +2.498157218e-06 0.006060475549 -0.007808348634 0 12.1562913 16.33758881 1060.451614 0.001885988926 +2.499557967e-06 -0.0009521837905 -0.007186181985 0 8.532618655 -2.148973826 935.7626201 0.002137294178 +2.498833836e-06 0.002755323956 -0.01224228183 0 14.22273089 1.685638544 937.6508256 0.002132990176 +2.497281332e-06 -0.008515083864 -0.01010652829 0 14.48873131 -17.77695149 983.1033295 0.00203437415 +2.498318086e-06 -0.00400768891 -0.01072416513 0 -17.82591504 4.355760764 1000.272256 0.001999455636 +2.496366711e-06 -0.008872641362 -0.01466297338 0 15.87218076 -17.51568539 876.3898697 0.002282089364 +2.497014808e-06 0.001088950713 0.00714067159 0 24.4642279 6.657608226 1037.169443 0.001928325225 +2.499793808e-06 -0.009528741511 0.0006768266461 0 1.564776756 6.17721826 992.2784708 0.00201556323 +2.498626873e-06 -0.002616847083 0.0005869427975 0 14.70382459 7.912678814 1007.387551 0.00198533325 +2.49706702e-06 0.004450505511 0.009701379072 0 -1.332738994 22.76590165 941.1677897 0.0021250196 +2.498648942e-06 0.00578979989 -0.0131594568 0 10.8040108 10.66557256 923.3739528 0.002165969696 +2.499848696e-06 -0.0001063890755 -0.009571753435 0 4.182564529 -3.1221522 948.7827347 0.00210796416 +2.499230732e-06 0.007116595348 -0.01429316242 0 12.46636931 -2.341183834 1022.498032 0.001955993985 +2.497901737e-06 0.006051710746 0.005502923874 0 15.33025539 11.60228799 938.213826 0.002131710218 +2.493600393e-06 0.003461391637 0.005388698622 0 21.22703835 24.17497101 898.3892888 0.002226206417 +2.495391563e-06 0.004472404448 -0.005880035197 0 15.88843281 -22.88050573 916.9113346 0.002181235987 +2.499083e-06 0.00226448189 0.004731919316 0 3.314471606 -13.38449975 1018.044084 0.001964551468 +2.494930579e-06 -0.009176590974 0.009080348541 0 -27.24168411 17.94577577 1023.714368 0.001953669951 +2.494322395e-06 -0.008318951288 -0.009335023568 0 17.37989619 -28.22166207 982.7357026 0.002035135179 +2.497063955e-06 -0.006964822062 0.004652441817 0 12.06689811 22.37825289 1048.725217 0.001907077247 +2.498250215e-06 -0.002337473352 0.009826427393 0 -14.719808 -12.86125705 1044.620115 0.001914571596 +2.498852503e-06 0.009717177395 -0.008957937432 0 -10.87798949 9.348046868 946.605822 0.002112811852 +2.499690511e-06 0.008712486327 0.005290177383 0 -4.170601098 6.345709787 965.1324353 0.002072254467 +2.499284205e-06 0.008709666552 -0.005664912304 0 -11.16299725 -3.979233293 990.3757035 0.002019435647 +2.499875092e-06 -0.007684362093 -0.003346902779 0 2.004750588 4.697120943 1021.767219 0.001957392998 +2.497859582e-06 0.005832296582 0.006330387772 0 -17.86033092 10.78791109 1008.151316 0.001983829181 +2.497166361e-06 0.003597978298 -0.001770817316 0 -15.64402085 -16.08760925 942.2104054 0.002122668131 +2.4991839e-06 -0.008874858897 0.005320333047 0 1.591990984 -13.33320173 1050.917403 0.001903099134 +2.497168802e-06 -0.007081655245 0.008544776968 0 -15.19212005 18.59943319 1008.800241 0.001982553056 +2.498380481e-06 -0.005272124195 -0.0001667216769 0 15.37986685 -3.689112232 878.5905498 0.002276373221 +2.495538151e-06 -0.005328635708 0.01106551699 0 -22.35194445 18.40708191 968.6571487 0.002064714025 +2.499162157e-06 -0.008473031372 -0.0008909076406 0 11.59879028 3.007892507 925.5396968 0.002160901371 +2.499002186e-06 -0.006899225507 -0.01154029408 0 -14.2412239 4.23119084 1051.505657 0.001902034465 +2.498465905e-06 -0.00451936515 0.002070009483 0 -7.837226626 15.66014431 999.5144084 0.002000971655 +2.49966297e-06 0.008482815279 -0.006269825748 0 -4.922767232 -5.751244733 922.0318891 0.002169122374 +2.498167947e-06 -0.004677411304 -0.01037598343 0 8.542834842 18.13873081 1047.143505 0.001909957891 +2.495568408e-06 -0.008536553145 0.00943658794 0 -26.32474921 9.734715661 942.1332971 0.002122841859 +2.497852579e-06 -0.008872963362 0.01142183724 0 -11.13378583 18.67095508 1048.61857 0.001907271202 +2.497871612e-06 0.008689927366 -0.01274312282 0 -6.601573882 -17.79481287 919.6329565 0.002174780695 +2.499405406e-06 -0.002167150564 -0.01493449529 0 9.929562361 4.413789922 996.3689431 0.002007288579 +2.495962285e-06 -0.006917893672 -0.009095788111 0 -22.35890458 -14.42291081 935.7341543 0.002137359196 +2.49918413e-06 0.00818826261 0.004213268131 0 6.099919986 -11.68966047 1032.09032 0.001937814899 +2.49646481e-06 0.006609201711 0.006699581004 0 16.27550325 23.13880992 1063.343705 0.001880859397 +2.495078933e-06 -0.006639563763 0.01014623738 0 -27.36238454 -18.51920273 1052.394041 0.001900428853 +2.495874565e-06 -0.006347124339 -0.006935005195 0 -29.57346171 -6.166453438 1051.05369 0.001902852366 +2.496615969e-06 0.0008289839141 -0.007976801118 0 15.21327123 19.66375928 955.1665756 0.002093875614 +2.496196798e-06 -0.00318935385 -0.002228867027 0 -18.33880485 22.5181855 1052.383823 0.001900447304 +2.496311394e-06 -0.001357934223 0.01275811348 0 20.21923589 -13.41315827 892.8358189 0.002240053499 +2.496913344e-06 -0.001175737823 -0.0007782878936 0 -18.46724974 14.44737386 943.2538787 0.002120319932 +2.497645128e-06 0.009706954123 0.005552117571 0 15.81364248 -11.56955873 902.5507817 0.002215941796 +2.49559771e-06 -0.007071970925 -0.0009055874404 0 -24.36869691 -11.93460252 913.8537169 0.002188534076 +2.49667135e-06 -0.009340346432 0.002658387304 0 20.70361451 -16.82893568 1033.544157 0.001935089068 +2.496448037e-06 0.002187418747 -0.00415003068 0 18.77929747 15.19969513 905.9648926 0.002207591063 +2.499711481e-06 -0.009908835208 0.009920443122 0 3.391936539 -7.363880451 1067.252581 0.001873970638 +2.496973153e-06 0.00399159892 -0.007774001635 0 -21.99454227 -11.87022807 1015.348393 0.001969767239 +2.498309933e-06 0.004650884867 -0.001862924332 0 5.813070318 17.86588483 1021.642633 0.001957631695 +2.496899627e-06 0.005593785378 0.0004494949384 0 19.95762113 12.84646588 952.7096562 0.002099275458 +2.499786322e-06 -0.003798000864 -0.002057251744 0 -6.519427949 0.4320853265 999.4304743 0.0020011397 +2.496512285e-06 0.004118901538 -0.0108927493 0 2.316661828 -24.92033677 947.1300535 0.002111642422 +2.49849904e-06 0.004092173567 -0.004774660065 0 -14.81296009 5.155716316 905.0546843 0.002209811224 +2.498514629e-06 -0.00508008468 -0.01366095891 0 -7.933284976 14.80409121 974.2510997 0.002052858858 +2.496881682e-06 -0.0004172314517 0.01250218729 0 -21.06934888 -10.95043601 950.3759736 0.002104430305 +2.49658422e-06 0.002874957658 -0.01154331575 0 21.94118097 9.983016576 921.7939774 0.002169682217 +2.499459368e-06 0.0002231280366 0.009167294875 0 -6.440781686 -6.655462546 890.6127662 0.002245644882 +2.499149068e-06 -0.005379398991 -0.00380640395 0 4.251789019 -11.62429803 948.6682552 0.002108218536 +2.496608587e-06 0.006708247862 0.01423055226 0 24.95155007 4.840232901 975.4218243 0.002050394968 +2.496284612e-06 -0.003862563493 0.01457410692 0 3.127824678 28.4656815 1049.949419 0.001904853666 +2.499515575e-06 0.0009010029398 0.004741621027 0 -0.8064783462 10.30230394 1049.786337 0.001905149581 +2.49757819e-06 0.00248880303 0.002233021106 0 -9.962694851 -19.98942891 1014.459137 0.001971493899 +2.497119723e-06 0.000679146992 0.01406310552 0 21.02487332 -0.6770870221 876.0695993 0.002282923642 +2.496236358e-06 0.0001557287807 0.002319908417 0 -13.19977918 -22.05775126 936.4044323 0.002135829275 +2.495842468e-06 -0.005038053161 -0.01210058667 0 12.72559264 -25.80786212 997.2585218 0.002005498029 +2.498003215e-06 -0.003658315912 5.980856018e-05 0 -15.63668863 -10.81048076 950.9699026 0.002103115981 +2.496979234e-06 0.003338397122 -0.01459486238 0 9.111529969 -20.62506701 916.9339451 0.002181182201 +2.497800599e-06 -0.009977226774 -0.004243336231 0 -3.866003123 22.07203052 1068.054634 0.001872563384 +2.499120803e-06 0.0002377539827 0.007397108681 0 10.78860192 -7.313917706 982.7996527 0.002035002754 +2.496614807e-06 -0.002865979653 0.007651894363 0 -13.47089915 20.01730667 926.8147217 0.002157928605 +2.496774084e-06 -0.00497559011 0.003109738387 0 -18.32414554 -16.4352101 968.6017325 0.002064832152 +2.495430652e-06 0.0003513841704 0.01107475329 0 2.113874825 26.99252778 895.0168331 0.002234594843 +2.494239214e-06 0.006972894063 -0.0008936764835 0 25.54010668 19.8150406 951.5084188 0.002101925701 +2.497350078e-06 0.00383748495 0.00753287147 0 1.716594736 20.79267243 905.9016953 0.002207745068 +2.499379046e-06 -0.00727481422 0.003751793043 0 -10.17632855 1.406459885 921.7530482 0.002169778558 +2.495517154e-06 -0.004568228335 0.007083293879 0 -20.49890861 17.88942635 908.0320031 0.002202565541 +2.499933207e-06 -0.009263737197 0.002403480692 0 0.8418224806 3.750100511 1051.559704 0.001901936706 +2.49841262e-06 -0.0006823463086 -0.012468803 0 -12.46670549 13.35959864 1025.292438 0.001950662978 +2.49982309e-06 -0.004751814436 -0.008203583797 0 -0.7957599653 -5.914781821 1003.301327 0.001993419072 +2.495876605e-06 0.00697855589 0.008712669499 0 23.02046486 -18.9874874 1038.47849 0.001925894488 +2.497987016e-06 0.00664080488 0.00546165827 0 -7.395584922 19.76641207 1051.505492 0.001902034763 +2.499535366e-06 0.009463448743 0.0124301956 0 -0.3138689599 8.878654696 921.547363 0.002170262843 +2.498939695e-06 -0.00936695423 0.003305280127 0 -12.23528871 8.716217873 1031.435344 0.001939045439 +2.497693938e-06 0.002793079237 -0.006831362711 0 12.14219267 19.24095534 1059.049213 0.001888486367 +2.49709721e-06 0.002176359543 0.001190553792 0 -9.10019559 21.30830145 961.2080882 0.002080714909 +2.498588235e-06 -0.0008919194154 -0.008825854207 0 3.327684954 14.94803165 911.1693941 0.00219498154 +2.499159981e-06 -0.0004210773995 0.005474879458 0 5.744061931 9.899251771 882.8844146 0.002265302192 +2.499128303e-06 -0.00375971307 -9.620874189e-06 0 13.09125961 -3.901869345 1034.445983 0.001933402065 +2.499290655e-06 -0.004446382555 0.01288930978 0 -5.188249118 10.96942477 1018.666577 0.001963350958 +2.495948711e-06 0.005905581745 -0.00552299696 0 21.93037397 19.54013303 1031.261426 0.001939372451 +2.499987667e-06 0.007400076436 0.0003745805332 0 0.4776756198 -1.291033109 876.506224 0.002281786421 +2.494693304e-06 -0.009923138521 -0.001321465226 0 -30.69212824 14.10201415 1035.966224 0.001930564871 +2.498091148e-06 0.002993564345 -0.008180110368 0 18.15008381 -3.219850023 943.1518972 0.002120549199 +2.49582775e-06 0.008727156757 -0.00134867711 0 24.82658949 -7.592191483 898.1690772 0.002226752235 +2.497536532e-06 0.004563624347 -0.007057289109 0 18.4432299 -8.453694378 913.6881654 0.002188930617 +2.497114755e-06 0.005306103034 0.006272065281 0 22.34941157 -2.190269919 934.431127 0.002140339659 +2.499470891e-06 -0.001543719959 0.009904078238 0 -8.746863524 -3.845535576 928.7593828 0.002153410277 +2.498517217e-06 0.008128607702 0.009885557215 0 17.17539012 -2.528513804 1007.887585 0.001984348283 +2.49672679e-06 -0.004636064614 0.008525737713 0 12.23540783 19.41694327 896.5526652 0.002230766889 +2.497308998e-06 -0.004250441375 -0.00764536507 0 -20.81385551 -3.140945508 906.9737163 0.002205135567 +2.498721598e-06 0.00287148451 -0.01271887264 0 12.74466527 10.24597507 1022.478011 0.001956032285 +2.496513136e-06 -0.009380061752 -0.002582342047 0 -10.34775777 -24.43382834 1004.277347 0.001991481741 +2.499564643e-06 0.004098838917 -0.004817321682 0 5.921667504 6.850916379 970.3852507 0.002061037097 +2.496897914e-06 -0.0003142319247 0.002826983628 0 18.33892972 -19.14892546 1063.978404 0.001879737401 +2.499798763e-06 -0.00976153479 -8.45602504e-05 0 4.619804067 -3.881852257 951.1218069 0.002102780091 +2.497853446e-06 0.003946187245 -0.01197404909 0 -1.479789141 -19.49498392 943.2886665 0.002120241736 +2.499638921e-06 -0.000948642455 -0.007384709381 0 -4.725062981 6.368896097 933.1422335 0.002143295982 +2.497722011e-06 0.007546537295 -0.003432002971 0 -0.7599489695 19.33217806 906.1014727 0.002207258304 +2.498590149e-06 -0.00776773422 0.006689094538 0 1.214069532 -15.61674425 932.6216209 0.002144492423 +2.497521353e-06 -0.009469745108 0.009223482397 0 11.68453743 -20.57738768 1062.413448 0.001882506292 +2.49933022e-06 0.001523248525 -0.008589768838 0 9.657505493 4.780495962 930.9573542 0.002148326119 +2.499341496e-06 0.004660414485 0.002946683443 0 8.821017653 -7.09194648 986.1606897 0.002028067049 +2.49747731e-06 0.003928946713 -0.004862983476 0 -19.05823643 -13.90844989 1049.987533 0.001904784522 +2.496291557e-06 -0.004763453216 -0.00920203815 0 -21.2500816 -19.77698497 1065.32642 0.001877358867 +2.499673115e-06 0.001846810235 -0.003968807962 0 -5.155533648 5.521973348 934.2797162 0.002140686526 +2.498590358e-06 0.0001306520402 0.01485283794 0 7.996255135 15.87734642 1058.529583 0.001889413421 +2.497431793e-06 -0.001683613788 -0.006247304287 0 3.710118025 -21.3881237 957.4431312 0.002088896912 +2.498847798e-06 -0.004311134061 0.004571380243 0 3.299034692 14.44719053 976.0377834 0.002049101002 +2.499554826e-06 -0.008155035828 -0.009834235702 0 -5.746393262 7.498496752 1001.131942 0.001997738675 +2.49869972e-06 -0.009865481816 8.395238779e-05 0 0.3910265096 15.09418138 936.1317997 0.0021364513 +2.496088051e-06 -0.008978319271 -0.007539335336 0 17.29375892 -21.82861447 995.0428182 0.002009963756 +2.499621543e-06 -0.007084583603 0.003472931469 0 8.254370778 3.669080673 1038.218409 0.001926376939 +2.498810091e-06 -0.007322110548 0.008275795695 0 -5.162853627 13.96586688 965.0144922 0.002072507736 +2.499870072e-06 -0.0003855510708 0.004204391318 0 4.553807389 -1.058184036 917.1055263 0.002180774123 +2.499649355e-06 -0.001215120116 -0.002568389203 0 -6.225000523 4.494114386 916.7722968 0.002181566794 +2.499752207e-06 -0.008349361098 0.01221692635 0 -3.845683984 -5.391825471 940.7285505 0.002126011801 +2.498574885e-06 -0.008977862508 -0.001561473305 0 -16.68445777 2.31458947 997.5130492 0.002004986302 +2.495910789e-06 -0.0002313083177 -0.01463694812 0 15.60423632 -20.39524536 897.4128606 0.002228628637 +2.498874234e-06 -0.007849065023 0.001696594551 0 2.387258279 13.20528853 894.1672911 0.002236717916 +2.495496081e-06 -0.005933419084 -0.006430745681 0 -21.40867543 -20.96891761 997.7937145 0.002004422328 +2.499889108e-06 0.009103065194 0.003052383377 0 -2.613334691 -3.508463182 928.9359364 0.002153001 +2.497230586e-06 0.001368273082 0.01393137119 0 -14.01923634 18.6934637 992.4320159 0.00201525139 +2.497531953e-06 -0.004427650692 -0.005520197873 0 16.61259809 -10.44563036 882.9342189 0.002265174412 +2.498852897e-06 0.009136458244 0.002565775383 0 7.655609737 14.01632568 1054.229278 0.001897120524 +2.496004686e-06 -0.008112377496 0.01005650531 0 15.78444384 20.42380285 912.5939218 0.00219155525 +2.497438795e-06 -0.002285198336 -0.004866499726 0 -12.4596329 18.07287032 969.5302142 0.002062854742 +2.4993138e-06 0.00187921077 -0.008240230519 0 0.07381667397 11.5579984 986.5215324 0.002027325238 +2.493791351e-06 0.0009516546503 0.009635263053 0 -22.49622774 28.10535319 1020.663433 0.0019595098 +2.498949246e-06 -9.325887077e-06 0.008811524226 0 11.30437472 -9.543107457 1020.349687 0.001960112328 +2.496172676e-06 0.00140236225 0.008926847458 0 19.58111061 21.51850836 1050.975624 0.001902993708 +2.498411874e-06 -0.005064650457 -0.001412732082 0 5.021658492 -17.88688506 1042.192336 0.001919031575 +2.493806812e-06 -0.0005520387087 0.01377901222 0 21.15569725 26.63918395 965.6727466 0.002071095003 +2.498143594e-06 0.003502796115 0.006442297124 0 19.20861628 -6.779564763 1056.858405 0.001892401093 +2.499487583e-06 -0.007615925493 -0.0002155717299 0 3.056925839 10.25844925 1057.292802 0.001891623585 +2.496335663e-06 0.009065220174 -0.01480268791 0 24.40725482 8.254690867 951.2282133 0.00210254487 +2.496354156e-06 0.004427402611 -0.002401697135 0 -19.47108793 -19.47996554 1019.418508 0.001961902776 +2.495238438e-06 0.009290959723 -0.009140306893 0 26.8768754 15.02418462 997.0689149 0.002005879403 +2.499546181e-06 0.008364907955 -0.008639478036 0 6.399340285 -6.863598339 984.9284407 0.002030604374 +2.495747497e-06 0.0005180763686 0.006697493938 0 24.35532038 -14.55076832 972.2057249 0.002057177765 +2.497669492e-06 -0.009919023993 -0.005415325742 0 -15.72713456 -15.46948376 1021.44541 0.00195800968 +2.498726538e-06 0.009764523474 -0.01402126109 0 -4.455429481 -15.23002349 994.124344 0.002011820767 +2.499109929e-06 -0.004494414828 -0.001211384651 0 4.326049796 12.45239769 987.8950643 0.002024506521 +2.499564384e-06 0.004469969519 0.008276369025 0 -2.32192254 8.169854433 909.8847483 0.002198080585 +2.497741655e-06 -0.008786636698 -0.0004959432967 0 19.67245613 -5.95738309 966.8385024 0.002068597801 +2.499001222e-06 0.004849154344 0.01155215707 0 13.18546134 -2.925036094 955.4596478 0.002093233351 +2.49872799e-06 0.007880321261 0.009500531601 0 12.92839698 -5.839444821 889.2353207 0.002249123436 +2.49856418e-06 0.002736803843 -0.0004775512079 0 -2.957440545 17.78506978 1063.701875 0.001880226074 +2.499938977e-06 -0.005269756471 -0.009485411416 0 3.453977648 -0.5218851192 999.8986528 0.002000202715 +2.498541359e-06 0.004288241817 -0.005595288053 0 12.33740389 13.35648563 1064.319286 0.001879135355 +2.496468967e-06 -0.008746495922 -0.003044468584 0 -25.23628837 -11.31404178 1040.159496 0.001922782042 +2.497822782e-06 0.00388276808 -0.002303677881 0 18.30295079 -5.336169182 913.3307056 0.002189787322 +2.497690795e-06 0.009500480061 -0.001458985121 0 19.22726549 -2.821700241 903.9571674 0.002212494211 +2.498316682e-06 -0.009375342811 0.004108754955 0 16.71208083 1.983892253 916.9832985 0.002181064806 +2.497828278e-06 -0.002791054347 0.004871174425 0 -6.574457263 18.69389815 950.5252314 0.002104099853 +2.497473172e-06 0.009409364047 -0.009666682093 0 -16.05745259 11.37114273 874.9215822 0.002285919151 +2.497795515e-06 0.001501088352 -0.005680508281 0 -21.56244684 -3.236420214 1038.062452 0.001926666355 +2.498880583e-06 -0.001922288565 0.01432473073 0 -11.5878742 -10.9374826 1064.765114 0.001878348543 +2.49991185e-06 0.009495201628 0.004183631537 0 -3.741821907 -1.644094646 973.3805981 0.002054694745 +2.499666146e-06 -0.003638689383 -0.004750965668 0 8.263569361 2.425740794 1053.905666 0.001897703053 +2.499330462e-06 0.009768123995 -0.01352137712 0 4.702582874 -11.43006883 1067.971241 0.001872709603 +2.497064122e-06 0.003538114815 -0.002346234159 0 20.2551314 7.091894482 885.2588407 0.002259226238 +2.497270475e-06 0.002415570845 0.004182252679 0 -24.02861296 -1.466957115 1029.91192 0.001941913635 +2.499402872e-06 -0.005658121696 0.00664227915 0 7.265000914 7.335260239 944.6326248 0.002117225202 +2.496894046e-06 0.007777388771 0.008342190105 0 7.445402803 22.55931375 952.7124932 0.002099269207 +2.499967489e-06 -0.007232240471 -0.002960571998 0 -2.255401814 0.6098521182 916.2485709 0.002182813773 +2.497228388e-06 -0.0002801787807 -0.008328157375 0 -23.98317178 -7.251797024 1063.75655 0.001880129434 +2.494680185e-06 0.0001013317378 -0.006362893358 0 -19.12084938 -26.47753878 1000.470449 0.001999059545 +2.498071294e-06 0.0006498175021 -0.01125349673 0 5.408269203 -19.89852495 1049.59854 0.001905490455 +2.495428445e-06 -0.00459668776 -0.004157540775 0 17.32301198 -22.60054766 941.0896012 0.002125196153 +2.49945813e-06 -0.003138961759 0.01230513312 0 -4.881212631 9.812458027 1052.671116 0.001899928639 +2.495383752e-06 -0.005527927391 -0.003319185327 0 -21.42036125 -23.32892164 1041.610076 0.001920104313 +2.498772293e-06 0.007809045292 0.009914602269 0 -9.538095972 12.86069824 1021.62996 0.00195765598 +2.49502494e-06 0.003309020638 0.01258242341 0 -22.2028877 24.80832576 1054.663362 0.001896339697 +2.49834695e-06 0.006309909713 -0.003882641145 0 15.74126564 3.924323369 892.0046263 0.002242140838 +2.498066884e-06 0.006239875453 0.01103637391 0 -20.32021065 0.9655684689 1034.303695 0.001933668041 +2.499011815e-06 0.009885552404 -0.003128898803 0 3.895511647 14.32610403 1055.89151 0.001894133991 +2.497009364e-06 0.00365400719 0.003093512224 0 -4.810114408 24.74429321 1030.238545 0.001941297974 +2.496055699e-06 0.001740899752 -0.01031872593 0 19.2221372 18.69591562 954.1478381 0.002096111232 +2.499087182e-06 -0.0006531740632 0.009074260192 0 8.386297193 11.20657388 1035.785633 0.001930901468 +2.497873141e-06 -0.006399924969 -0.01128871121 0 -20.75731428 1.777157667 1009.79711 0.001980595885 +2.497722483e-06 -0.003036028906 0.00606072301 0 13.11498089 18.32156694 1055.363043 0.001895082468 +2.4995489e-06 -0.00689735794 -7.572367089e-05 0 -4.502470879 7.928295118 959.839113 0.002083682539 +2.499495637e-06 0.001663837489 -0.005060270769 0 -2.354299858 -9.793532492 1002.812223 0.001994391327 +2.498973657e-06 0.009564741021 0.0008758333325 0 8.675330815 10.51904718 951.5362513 0.002101864219 +2.499351232e-06 0.003003404797 -0.0058453327 0 -1.48891501 11.13269028 985.9341958 0.002028532947 +2.496157818e-06 0.0007701363042 0.008388755915 0 -1.297853708 24.63782694 889.5076068 0.00224843496 +2.497753895e-06 0.00970015028 -0.008565992138 0 0.0006260562949 -20.5688334 970.1375032 0.002061563431 +2.499969362e-06 0.001008298993 -0.005420437257 0 -1.994066193 1.356633828 974.2961675 0.002052763899 +2.496914129e-06 0.006603725841 -0.01312498461 0 -3.367088507 -24.41736899 991.7090355 0.002016720559 +2.496993719e-06 -0.006633684202 -0.008327053317 0 -3.505968312 -24.04877032 990.6812456 0.002018812821 +2.499773808e-06 -0.007751834411 -0.005114439153 0 -1.888168218 6.32096101 980.7873289 0.002039178057 +2.498328669e-06 -0.008565860474 0.003062495305 0 9.721290535 -14.93717316 974.5420348 0.002052246007 +2.497725731e-06 -0.007824539132 -0.01061712048 0 -11.5910126 18.13859057 1008.962716 0.001982233802 +2.496181e-06 0.0008400200959 -0.009539205856 0 16.91764962 -20.10804909 950.2891707 0.002104622531 +2.496402139e-06 -0.005546364207 0.007167743377 0 -23.38113431 -15.24674416 1040.00686 0.001923064239 +2.498567473e-06 0.000362680424 -0.002973417831 0 13.0837048 -7.263508664 883.9098897 0.002262674084 +2.499238689e-06 0.0008317848854 -0.001878550127 0 11.94047246 2.261795771 984.76087 0.00203094991 +2.499981546e-06 -0.003195223464 -0.0005173676368 0 0.110694237 1.67983171 876.2872589 0.00228235659 +2.499200531e-06 0.005239669434 0.002212725508 0 -6.770038388 9.107443773 897.3349934 0.002228822028 +2.499681843e-06 -0.0004789365688 0.005842049955 0 -3.336784643 6.908895651 961.7887135 0.002079458796 +2.496596487e-06 -0.00614509949 -0.005481600836 0 -21.88593179 14.76322232 1011.344715 0.001977565088 +2.495701267e-06 -0.001101882472 0.01141623295 0 -13.37677182 26.56583481 1013.743372 0.001972885895 +2.497919768e-06 -0.007678012629 -0.006196133774 0 8.124277462 19.83660994 1050.591639 0.001903689241 +2.495153136e-06 0.009363605632 -0.001434830062 0 29.55874348 13.6356566 1044.768043 0.001914300511 +2.496706847e-06 -0.001976382807 0.01221444238 0 -19.66203205 -17.16014069 1016.386732 0.001967754927 +2.497762342e-06 -0.002215083996 0.005128490974 0 -21.47890904 6.007148039 1053.920917 0.001897675592 +2.495427668e-06 0.0004613404162 -0.004970502479 0 20.35472352 20.62658037 957.6313121 0.00208848643 +2.497922867e-06 0.009339286978 0.01074297998 0 -11.17531886 -17.56222213 1020.99003 0.001958882988 +2.497328275e-06 0.006514084586 -0.002970048508 0 3.804348139 -20.44534003 899.2916007 0.002223972734 +2.497133973e-06 0.005784542826 0.009323810586 0 19.34469288 -9.812664157 905.6083966 0.002208460089 +2.497600562e-06 0.00291990241 0.00934226769 0 2.370240908 19.79321207 909.6658593 0.0021986095 +2.499332831e-06 -0.003460801081 -0.01116518188 0 1.692315794 -10.65121554 933.547387 0.002142365806 +2.495711401e-06 0.008953670338 0.01105836448 0 -11.51532 25.74356777 962.3264556 0.002078296807 +2.497599974e-06 0.008601906355 0.003872225045 0 -7.302718291 -21.26921388 1026.055806 0.001949211718 +2.499205983e-06 0.007838316937 -0.009209192481 0 6.859465525 8.719382385 880.2618887 0.002272051109 +2.498957114e-06 -0.006208312032 0.01254456496 0 -11.37361361 9.563198679 1028.754735 0.001944097979 +2.497814087e-06 -0.003127092952 -0.005524166767 0 1.855470796 -20.15599037 967.7488176 0.00206665197 +2.495911522e-06 0.0009396921145 -0.006539700965 0 -15.73968839 -19.7156922 881.6952519 0.002268357458 +2.497585702e-06 -0.003294115802 0.003012721804 0 5.785349034 19.28462414 915.9176603 0.002183602399 +2.498558076e-06 -0.007720937682 0.0007565239957 0 -2.541944697 -17.76306683 1056.427718 0.001893172591 +2.497387881e-06 0.002704648632 0.008586071057 0 15.54370533 16.0525536 977.2265599 0.002046608312 +2.49389223e-06 -0.005055051385 0.01160782855 0 -21.52942871 24.35854384 929.2937945 0.002152171909 +2.498245471e-06 0.006499301409 -0.005094658833 0 -16.91731793 -0.1625486478 902.9046571 0.002215073302 +2.498009953e-06 -0.004901142595 -0.0009076258843 0 6.86926733 -17.81713504 956.8726338 0.002090142334 +2.497319652e-06 0.006967888158 -0.008013980251 0 -19.32014726 -14.94249375 1054.476225 0.001896676239 +2.497318438e-06 -0.008410215173 0.003481665042 0 14.0866135 15.55728441 905.8794749 0.002207799222 +2.494094232e-06 -0.007824890283 0.01112103185 0 -21.22548084 28.39038022 1030.502174 0.00194080134 +2.499892542e-06 0.005051607583 0.007110950018 0 -0.7971996882 -4.358472718 955.7389706 0.002092621585 +2.496383799e-06 -0.003855120395 0.009407830692 0 -10.86978153 26.36695098 1059.904234 0.001886962931 +2.498903109e-06 -0.00753771605 -0.01203155684 0 14.51393886 4.791312521 1031.759746 0.001938435773 +2.499359175e-06 -0.008734016381 -0.01445490504 0 10.86316569 0.7629172631 961.8296524 0.002079370287 +2.496338806e-06 -0.005383564234 0.01336634931 0 6.326947461 22.98271082 880.4385563 0.002271595202 +2.497008459e-06 -0.003880085014 0.009058921959 0 -2.828079885 23.54112991 968.9052983 0.002064185224 +2.498519874e-06 -0.009759048633 -7.355326088e-05 0 -10.58777661 12.73076352 962.1699198 0.002078634926 +2.496132321e-06 -0.009707592875 0.006356794084 0 10.14225459 27.48301364 1052.681973 0.001899909043 +2.498639699e-06 -0.005949994596 -0.002752360089 0 -4.090368177 -15.13420796 950.2720608 0.002104660426 +2.498649642e-06 -0.002616177551 0.0123842309 0 16.77445516 -0.5294424749 1021.027071 0.001958811922 +2.495941775e-06 -0.002258532615 0.007377348666 0 -6.818894184 26.83972277 971.4326709 0.002058814841 +2.496049878e-06 0.008687878866 -0.0005762101547 0 15.0038274 20.92003323 915.3796634 0.002184885769 +2.49759557e-06 0.005891549676 -0.006853534793 0 15.69913667 -16.24532701 1029.831756 0.001942064797 +2.494704793e-06 0.008296023742 -0.01427248998 0 -20.06104623 -26.58719673 1022.651236 0.001955700955 +2.497238227e-06 0.003456424908 0.004557091172 0 -20.44906108 6.921801679 918.203943 0.002178165336 +2.497400096e-06 -0.003114362187 -0.008771231601 0 -23.27541431 -4.984124327 1043.445968 0.001916725984 +2.494132644e-06 -0.002267975444 0.001185320481 0 -23.12147706 -19.96923744 891.0637632 0.002244508286 +2.496271945e-06 -0.006530716489 0.006038659222 0 -12.03272254 23.71298336 973.2821453 0.002054902589 +2.496847842e-06 0.00368402225 0.002471317321 0 9.80941272 20.8524074 917.3651803 0.00218015687 +2.496777928e-06 -0.005200894051 -0.01006788285 0 12.55160348 -21.46584878 979.0748469 0.002042744747 +2.496453137e-06 -0.00669587506 -0.01213722024 0 -23.11545251 12.75135957 990.6573629 0.00201886149 +2.496878306e-06 -0.001916000941 -0.005641967277 0 8.1013711 -20.52791865 882.8016621 0.002265514538 +2.498344741e-06 0.002774162069 0.006310332119 0 16.32453933 -10.21782643 1058.203841 0.001889995031 +2.497212945e-06 0.003235025052 -0.01383915964 0 -20.4251097 11.91036206 1001.043039 0.001997916096 +2.498093753e-06 -0.007036800967 0.007267425621 0 -16.88533072 -12.10443883 1063.721472 0.001880191433 +2.499862165e-06 0.002957551852 -0.01494734792 0 -4.72880921 -2.844066887 1050.97534 0.001902994223 +2.496225197e-06 0.001604066826 -0.005957946782 0 -19.97092535 -13.9773753 886.6656856 0.002255641594 +2.497119395e-06 0.004446270587 -0.01239795259 0 -23.12863099 10.08111425 1050.693081 0.001903505444 +2.497515276e-06 -0.006391773582 -0.0006851355429 0 11.48002693 17.93300421 954.8098442 0.002094657918 +2.498665299e-06 -0.005222146013 -0.001838257285 0 -7.08035007 -15.10810436 1021.009711 0.001958845228 +2.495595625e-06 -0.001866660593 -0.01287167681 0 15.61447763 -21.84919976 904.2393122 0.002211803859 +2.498984111e-06 -0.002707865969 -0.004359273277 0 9.906280271 -9.80670192 977.7742321 0.002045461963 +2.499179747e-06 0.007633299013 -0.006270851442 0 -0.8962803447 13.30030237 1040.64586 0.001921883396 +2.498341284e-06 -0.005168339959 -0.004068062939 0 -8.808809157 -15.37980314 972.8547818 0.002055805283 +2.493428911e-06 0.0001208106475 -0.005737916159 0 22.04374835 -25.91713604 937.6087765 0.002133085835 +2.496570999e-06 -0.005479042782 -0.002391054109 0 -21.46742276 -8.967779024 887.9431709 0.002252396398 +2.499695008e-06 -0.0004479130963 0.01320911022 0 0.9865956679 -7.19599261 929.9411835 0.002150673651 +2.498746091e-06 -0.009452177067 0.008506279138 0 -15.05752576 -6.698897873 1040.491758 0.001922168038 +2.499837716e-06 -0.0005474762199 0.0008500865009 0 -4.609572173 2.009651591 882.6396941 0.00226593027 +2.496620792e-06 -0.004733203715 0.01396255282 0 -25.27474625 4.859252074 989.5224553 0.002021176972 +2.49474479e-06 -0.005603490607 0.00419792996 0 -16.53985564 25.06232592 925.4974028 0.002161000122 +2.498091187e-06 0.004170565209 -0.001920844945 0 -19.87938929 6.08332677 1063.701659 0.001880226456 +2.499363075e-06 -0.0035555122 -0.007740804995 0 10.64318166 -2.768961636 974.2988645 0.002052758217 +2.499720321e-06 0.008006732152 -0.001928673077 0 7.24778592 -1.10176149 980.1728189 0.002040456501 +2.499611728e-06 -0.00318580918 0.008634693129 0 -4.823724132 -6.175459602 889.1856025 0.002249249194 +2.498094876e-06 0.006117254524 0.00842621749 0 8.306173056 -16.93375346 965.9803706 0.002070435447 +2.498491314e-06 -0.001716742134 -0.003233927793 0 -13.01631649 12.88274655 1054.052284 0.001897439083 +2.499814527e-06 0.008590389774 -0.003972904847 0 -4.693617325 4.126454447 1026.091562 0.001949143793 +2.498472176e-06 -0.003653067164 -0.01087856067 0 -14.68291882 10.14764888 1020.813454 0.001959221827 +2.49717464e-06 0.005155087728 0.008194551312 0 15.6925605 -17.55285034 990.055381 0.002020089016 +2.498831887e-06 0.0007781469403 0.004104927666 0 -9.184330149 -10.6501903 919.9326802 0.002174072128 +2.495409171e-06 -0.003944747415 -0.00331189319 0 -27.23679589 14.86960928 1023.391036 0.001954287198 +2.494908496e-06 -0.005105497888 -0.008946545573 0 -26.44196862 -20.9394913 1056.166507 0.00189364081 +2.495900052e-06 -0.008167931908 0.007309058674 0 -4.842843321 26.87991123 953.2195518 0.002098152515 +2.498450321e-06 0.005112835262 -0.01492346282 0 -16.81764511 0.6504409428 955.7687828 0.002092556313 +2.497630845e-06 -0.00765558037 -0.004447579156 0 6.774054819 -18.97368231 925.2033223 0.002161687006 +2.497614619e-06 0.00304005756 -0.006734226854 0 -11.52586324 -16.61933304 925.6305522 0.002160689268 +2.497501304e-06 -0.003838454434 -0.005110386433 0 -22.31944727 6.478476738 1039.235495 0.00192449162 +2.495830075e-06 0.002698282385 0.0109290333 0 -16.37414508 26.09654385 1066.141043 0.001875924403 +2.498800844e-06 0.007768825102 -0.001931744318 0 -9.187851758 -10.85329767 918.0601086 0.002178506594 +2.49890119e-06 -0.003529819651 0.00408173397 0 6.157862159 12.55031587 942.8603778 0.002121204843 +2.499429922e-06 0.003787421379 -0.009969499754 0 -5.743961233 8.778973489 982.4314191 0.002035765511 +2.499724941e-06 -0.00309082998 0.003739550693 0 6.933836815 -2.474111492 992.5475169 0.002015016879 +2.498271468e-06 -0.009850974656 0.001650905481 0 -17.22128958 1.781864452 930.9185227 0.002148415733 +2.498037339e-06 0.003535613855 0.002499439472 0 19.25098552 -5.377936633 1008.567866 0.001983009838 +2.498664065e-06 -0.007676902818 0.003382316069 0 5.471850915 15.27270658 992.3057547 0.002015507811 +2.499989164e-06 -0.001421687282 0.001633905096 0 1.062431414 0.9932226283 987.943364 0.002024407545 +2.496241724e-06 0.009984981189 -0.005681696374 0 -2.584109851 -25.11058134 920.2165023 0.00217340158 +2.499128554e-06 0.002665401855 0.01106772732 0 -7.055948389 -10.1334026 935.1978628 0.00213858487 +2.493685102e-06 -0.003697229708 0.01245288979 0 -22.48134271 24.28475989 930.3124116 0.002149815455 +2.495489316e-06 -0.007414395944 0.01207875785 0 20.40032329 24.33411602 1056.499793 0.001893043437 +2.497148662e-06 -0.004463598076 -0.003094022996 0 17.43686666 -18.22075606 1055.643135 0.001894579649 +2.493593655e-06 -0.006359990044 -0.0084468572 0 19.80346633 -27.8893916 954.6717868 0.002094960831 +2.496793543e-06 -0.002075044853 -0.003822571621 0 -12.11099071 -21.63220085 978.5196191 0.002043903833 +2.499585967e-06 -0.003613650324 0.008900468387 0 7.388662301 -3.373267019 892.5196438 0.002240847038 +2.499639758e-06 0.009800794218 -0.01434799623 0 -7.604815917 -1.319862785 909.2797969 0.002199542986 +2.499521481e-06 0.0007822186453 -0.004868631908 0 -6.378341864 7.707018322 1022.540804 0.001955912168 +2.498611034e-06 -0.002433259999 -0.01121641218 0 13.5054977 8.611758753 960.8241263 0.002081546399 +2.49802267e-06 -0.001702156514 0.0007084646425 0 14.9730098 -9.245664594 884.6438045 0.002260796933 +2.499634698e-06 0.004736959734 0.01244610416 0 8.936174021 0.9426993313 1051.211638 0.001902566455 +2.499199538e-06 -0.008344791569 0.005080000916 0 -1.949194786 13.23852647 1057.448946 0.001891344265 +2.498816116e-06 -0.004590081391 -0.0119565661 0 2.62596494 15.1951886 1001.958049 0.001996091555 +2.499280226e-06 0.002698329105 -0.01029327437 0 8.488166018 7.952938213 969.3620597 0.002063212584 +2.497989655e-06 0.009129157411 0.01449547451 0 -9.402195125 17.53168103 991.8255353 0.002016483675 +2.497535502e-06 -0.005153314392 0.005729868785 0 18.03794153 8.674727701 901.2090097 0.002219241018 +2.498627147e-06 -0.00704998394 0.01305769133 0 14.67733646 7.573381376 996.5290525 0.002006966074 +2.499778603e-06 0.006023048162 -0.003897065639 0 5.213907532 4.077153282 994.6301777 0.002010797626 +2.49877927e-06 -0.001181335156 -0.01263581522 0 -6.725023431 -13.94561727 990.684434 0.002018806324 +2.498732404e-06 0.007898904998 -0.008432516078 0 -4.309959617 -15.64445587 1018.96176 0.001962782195 +2.495992597e-06 0.009606371368 0.01424384146 0 25.27664244 12.64845951 997.7834619 0.002004442924 +2.497478081e-06 -0.006104505779 -0.006864323022 0 -7.812660867 22.05384103 1041.384945 0.00192051941 +2.4992574e-06 0.009402799746 -0.007776919599 0 1.684527191 10.98885702 912.1269047 0.002192677345 +2.496364326e-06 -0.007789916364 -0.0002439040085 0 -28.16098202 0.5455309734 1043.96225 0.001915778086 +2.498511061e-06 -0.009808201957 0.01391601099 0 12.64844293 -10.40008007 948.7116994 0.002108121995 +2.497193854e-06 -0.004419799694 0.01323282227 0 12.3838352 18.90590603 953.6066707 0.002097300765 +2.49970246e-06 0.007275044182 -0.0008983575739 0 -7.400883861 -0.04783571842 959.3694174 0.002084702685 +2.499062211e-06 -0.00559202434 -0.007737997805 0 -7.506862562 -11.6095813 1009.350352 0.001981472534 +2.498773389e-06 0.003966596979 0.007812800556 0 -15.71253003 -2.411087378 1014.732571 0.001970962653 +2.499213601e-06 0.000979496357 0.007771086304 0 6.340852804 -10.90128601 1005.475462 0.00198910871 +2.496350308e-06 0.006490927823 0.01135138215 0 16.63242575 18.53359649 921.2150013 0.002171045844 +2.499118292e-06 0.009101925655 0.003932532412 0 -12.28352094 -6.473866703 1045.475729 0.001913004717 +2.496372215e-06 0.008482914031 0.007644719251 0 -8.256995536 23.07082785 909.2073278 0.002199718303 +2.499571573e-06 0.006681013792 -0.01273711418 0 -5.196999521 7.335103095 971.0865264 0.002059548707 +2.499763379e-06 0.001201599492 -0.006947037738 0 -4.836748976 4.188088666 930.0078588 0.002150519462 +2.499443166e-06 -0.008917022645 -0.009395790913 0 4.429263056 -10.0828676 1043.48211 0.001916659597 +2.499387486e-06 0.00506490883 -0.01342304405 0 4.949672313 10.53033579 1051.177177 0.001902628829 +2.498262782e-06 0.0007576066768 -0.01490730372 0 -16.82968711 6.513535414 967.8986273 0.002066332097 +2.49716223e-06 -4.232320469e-05 -0.01057578452 0 13.14268455 18.8254542 963.317498 0.002076158696 +2.499848653e-06 -0.005724663963 0.01311584543 0 1.168689601 4.991308758 931.7345616 0.002146534091 +2.498734387e-06 -0.008698517834 0.002700667984 0 10.06106959 -13.48221232 1057.162001 0.001891857632 +2.499477537e-06 -0.007266771696 0.01476566064 0 -5.839272417 -7.679622937 943.7063171 0.002119303393 +2.498668762e-06 0.006869065925 0.01330115661 0 8.347958978 11.86277302 888.8072555 0.002250206653 +2.499996309e-06 0.009779680292 0.003649396989 0 -0.7481298909 0.1142921528 880.8393966 0.002270561475 +2.49806788e-06 0.00197104854 -0.01056364974 0 17.51369088 3.899354869 912.4848479 0.002191817217 +2.494653239e-06 -0.004088443783 0.01220007686 0 -20.41671983 25.46550835 997.3186816 0.002005377054 +2.498958303e-06 0.007457254427 -0.007046692036 0 12.5990045 -6.460787594 980.7952048 0.002039161683 +2.497091185e-06 -0.004759506956 0.008774810806 0 -15.24516999 15.85045887 911.3894034 0.002194451672 +2.499325123e-06 -0.008676681812 -0.01466677018 0 7.533422626 8.756683043 994.1654574 0.002011737569 +2.499534362e-06 0.003005747842 0.01391828042 0 -8.431117306 5.428910117 1039.048872 0.001924837275 +2.495924292e-06 0.001886614263 -0.004676492717 0 -17.14055822 -22.85036875 999.8765658 0.002000246899 +2.49762685e-06 -0.002992709372 0.006604674831 0 21.9620059 -0.1005550159 1007.73018 0.001984658234 +2.498451619e-06 0.004738802458 -0.01197872136 0 5.673028029 -16.30445891 980.7695022 0.002039215122 +2.495115739e-06 -0.0009987517726 0.01079522714 0 -20.94374879 23.85481926 1014.91859 0.001970601405 +2.497360466e-06 0.008933539018 -0.003495769794 0 3.654100087 -22.27928106 982.2332726 0.002036176187 +2.498533978e-06 -0.009299793523 -0.005108853125 0 4.01741137 15.09578634 912.0823246 0.002192784518 +2.497295669e-06 0.001647822582 -0.006685846348 0 14.46971408 -15.87065342 923.0966058 0.002166620468 +2.497755915e-06 -8.133445866e-05 0.009314611992 0 21.54964978 -2.146148804 1021.885901 0.001957165665 +2.495693637e-06 0.007396734785 -0.01001354324 0 19.17958712 -17.71441891 889.0617905 0.002249562428 +2.497836174e-06 -0.008644236834 -0.0003827443253 0 -4.065901155 -18.06498506 889.817458 0.002247652012 +2.498588654e-06 -0.003303427394 -0.004570653413 0 -9.772050329 12.58972748 948.3925528 0.002108831405 +2.498089397e-06 0.002067124392 -0.004397569655 0 -17.11722795 9.624840356 1004.30267 0.001991431526 +2.498253144e-06 -0.001079299781 -0.001317953495 0 16.06896729 5.803791583 913.8111012 0.002188636139 +2.498125236e-06 0.006329748179 -0.003374389317 0 -1.089980113 -17.57564566 909.1474652 0.002199863143 +2.498021942e-06 -0.003382554771 -0.01369942927 0 -18.53135761 -2.939042677 943.0576547 0.002120761111 +2.499119417e-06 -0.00641224876 -0.008822721646 0 -13.06797966 4.548176427 1042.507535 0.001918451361 +2.498462178e-06 0.005077247638 0.01441098555 0 10.62893759 11.70694372 901.4156049 0.002218732391 +2.499087756e-06 0.001266647307 -0.01201464049 0 12.74482187 -4.926508955 1011.447469 0.001977364186 +2.497067204e-06 -0.006307202019 0.001604808311 0 -16.6013684 -16.60942404 969.2083988 0.002063539691 +2.496152704e-06 0.006784803909 0.001954948409 0 17.45159413 18.34922309 912.3696443 0.002192093975 +2.498210268e-06 0.003737549069 -0.001822731346 0 9.074568338 15.80232701 962.9053121 0.002077047426 +2.495585345e-06 0.004255258441 0.006318732882 0 12.39601648 23.2779839 886.9627953 0.002254886012 +2.495249871e-06 0.005060160286 0.01335531347 0 -1.062224567 28.20572824 915.0980632 0.002185558117 +2.495504786e-06 0.007898201221 0.002230367828 0 20.13056622 -20.30249466 952.8889648 0.00209888043 +2.498911646e-06 -0.002590287221 -0.0102219061 0 0.2936686276 -13.05572953 884.9932138 0.002259904335 +2.499322024e-06 -0.0001331443386 -0.002834156847 0 -7.989420121 8.000107804 970.8547652 0.00206004036 +2.496441656e-06 -0.004412690485 0.002721428555 0 -14.04015975 -24.8490806 1069.306137 0.001870371759 +2.497874878e-06 0.001960765091 -0.01043417502 0 16.3929808 -14.61181391 1064.838854 0.001878218466 +2.497877274e-06 0.005371790747 -0.002219902386 0 7.330212897 -20.71521325 1066.121583 0.001875958645 +2.497661841e-06 -0.003636779976 0.001342120639 0 -19.80057217 -7.165294658 973.409165 0.002054634445 +2.496817518e-06 -0.008322765129 -0.01051327958 0 6.313343965 -25.72809402 1049.540384 0.00190559604 +2.497251632e-06 0.008921989654 0.01288486443 0 18.88094054 9.520513864 901.5408044 0.002218424269 +2.498881941e-06 0.002274283306 -0.01305318637 0 -12.98445613 -9.239978975 1065.549904 0.001876965117 +2.496741037e-06 -0.003382726228 -0.01394325654 0 -24.559779 1.385475792 963.0464865 0.002076742949 +2.496816103e-06 0.003891764036 -0.003260451641 0 16.98243317 16.00305907 924.2665944 0.002163877838 +2.497513051e-06 0.008015571479 -0.01189555983 0 -11.11193403 -17.49676401 929.0253379 0.002152793813 +2.498416187e-06 0.009963415628 -0.01118325437 0 16.65851609 -6.319724288 1000.838957 0.001998323492 +2.498577326e-06 -0.009019082123 -0.0104791464 0 17.34620545 -3.191916003 1045.38209 0.001913176072 +2.499567901e-06 0.006437177719 -0.01277786838 0 -7.587130034 4.75505255 963.1299202 0.002076563045 +2.495319757e-06 0.002856469001 -0.002239073154 0 17.95850878 -20.39131361 887.4954268 0.002253532739 +2.499427408e-06 -0.0005180863524 -0.01210730379 0 -5.511339377 8.988616657 985.1877084 0.002030069989 +2.498721595e-06 0.006854944858 -0.008605473989 0 15.13200697 -2.3545124 957.5439466 0.002088676981 +2.498833463e-06 0.0007610304141 -0.004594800782 0 -10.97429183 10.0322239 973.2737241 0.002054920369 +2.499816544e-06 0.002437589793 0.0101328166 0 5.099979246 -3.531018769 1024.029079 0.001953069537 +2.494355553e-06 0.008843625118 0.00842981749 0 20.25385472 23.18793577 915.5609363 0.002184453181 +2.498506785e-06 -0.001980390088 -0.01041422314 0 -3.229121782 -16.34978569 964.1573006 0.002074350315 +2.495224292e-06 -0.001229189667 -0.01355812941 0 16.87086746 -21.40977099 881.3541752 0.002269235293 +2.497400716e-06 -0.006292800074 0.001640416402 0 -21.2978708 -10.20164087 1035.329085 0.001931752937 +2.49949978e-06 0.004625583878 0.009942156938 0 8.277444417 4.420662149 938.1171715 0.002131929849 +2.496985704e-06 0.003360682749 0.01090585899 0 19.46211093 16.56249323 1040.356212 0.001922418472 +2.498244883e-06 0.009428284876 -0.005308688062 0 -16.77953324 -1.575866775 899.2995665 0.002223953035 +2.498594779e-06 -0.004726603609 0.005923598392 0 -14.19180572 4.866881882 894.7527473 0.002235254383 +2.496619919e-06 0.006785620833 0.01015196129 0 -0.5850708027 27.05396775 1040.240161 0.00192263294 +2.499049137e-06 0.0007876130426 0.0123042767 0 10.9714113 -9.865288271 1069.766901 0.001869566163 +2.49981884e-06 0.005025941078 0.01274251935 0 -2.350781811 5.430106886 982.9977812 0.002034592588 +2.497544201e-06 0.001591013363 -0.001646372101 0 19.47044907 -11.31933931 1015.849138 0.001968796277 +2.49613958e-06 -0.004354073065 0.004572496426 0 22.47597165 18.07621126 1037.424567 0.00192785101 +2.497275392e-06 -0.0008074480295 -0.007662050044 0 12.24191947 -20.43202231 1019.938729 0.001960902105 +2.499057199e-06 -0.002783726347 0.01059416808 0 12.98866667 0.672928609 947.0222632 0.00211188277 +2.499790534e-06 0.002114403285 -0.007180133031 0 4.70938101 -3.666824698 922.1145548 0.002168927916 +2.497802368e-06 0.006656089644 0.003361296672 0 -0.6175849206 -19.62873033 936.4213782 0.002135790624 +2.498207495e-06 0.00542453486 0.01416477788 0 5.428143772 19.25511315 1056.305779 0.001893391137 +2.499554195e-06 0.00940146551 -0.005129744131 0 8.121381807 -4.818418817 1000.005475 0.001999989051 +2.497662218e-06 0.002664855826 0.01051237861 0 -21.86342833 -2.201012365 1015.870827 0.001968754242 +2.495255115e-06 0.005143192946 0.01271839731 0 21.7908802 20.27752906 965.5720741 0.00207131094 +2.496647673e-06 -0.0003427051008 0.005687187107 0 17.07044114 -15.97024329 902.3352903 0.002216470996 +2.498374089e-06 0.002428893154 0.000963607037 0 -1.94357252 17.10035011 954.1636151 0.002096076573 +2.497902248e-06 -0.002869312372 -0.00142688869 0 -20.93456567 -1.522125198 1024.424817 0.001952315061 +2.49693159e-06 0.002903485601 -0.003803688122 0 24.44353186 -10.23667365 1069.257065 0.001870457596 +2.49919899e-06 0.00809274347 0.007915501369 0 12.5664216 -4.509231167 1054.693916 0.00189628476 +2.495624178e-06 0.001104920222 0.01156654083 0 -7.651317152 27.89320736 977.0616706 0.002046953698 +2.498734861e-06 0.001554643605 0.006324968822 0 -9.863633529 11.89825282 971.4149917 0.00205885231 +2.499871698e-06 -0.008882579096 -0.0003578925692 0 -1.551914896 4.505490991 940.6939105 0.002126090089 +2.498256357e-06 -0.009298956529 -0.00503537412 0 -17.78770055 -3.291200121 968.4384308 0.002065180332 +2.495496149e-06 0.006069874465 0.003272308947 0 23.93545215 21.42856573 1069.690144 0.001869700316 +2.499914756e-06 0.003850391163 0.005205364774 0 -3.287046972 2.67460582 1026.310035 0.001948728874 +2.498502783e-06 0.005219388925 -0.008432796712 0 -8.800651903 14.6592186 987.8529417 0.002024592847 +2.496425133e-06 0.00594492882 0.003910601274 0 23.89522695 8.743392266 951.082123 0.00210286783 +2.498871717e-06 0.007966050738 -0.006821715916 0 2.973916206 13.46032065 917.5022045 0.002179831275 +2.496458047e-06 -0.005886839074 -0.0004113601008 0 15.21441659 -20.36579239 954.6209045 0.002095072495 +2.498220669e-06 0.001926843417 0.00331853098 0 -4.782680837 -17.29127556 950.7704526 0.002103557167 +2.499202735e-06 -0.003726349878 0.008212764908 0 4.488199206 12.23913014 1032.238126 0.001937537425 +2.49845862e-06 0.008758122851 0.01479110207 0 -14.74501114 9.108245392 986.8746292 0.002026599875 +2.496019982e-06 0.005732830451 0.01050935718 0 25.86432982 -6.186611417 942.032156 0.002123069778 +2.497426426e-06 0.006588690667 0.0122380093 0 -16.55058086 12.68782999 918.8508348 0.002176631858 +2.499476684e-06 -0.002206386686 -0.0143836126 0 -5.500510339 -7.557882672 913.6249605 0.002189082048 +2.495747947e-06 -0.0007116550393 0.004307293904 0 22.92445941 15.42356201 946.8679331 0.002112226986 +2.499876158e-06 -0.00370045743 -0.002425961166 0 3.252855676 3.862731115 1014.678694 0.001971067305 +2.498514539e-06 -0.007849560678 -0.01497334947 0 2.322522074 -15.775168 924.8856635 0.002162429454 +2.498240274e-06 -0.005115602138 0.01223440175 0 -12.44811236 -11.68996673 910.0172072 0.00219776064 +2.498902771e-06 -0.002918888889 0.01205014146 0 9.069003166 -9.320739265 877.7405376 0.002278577683 +2.498090827e-06 0.004976769532 0.002488710531 0 -17.29945826 -7.534286093 965.3510952 0.002071785084 +2.49772059e-06 0.003636769201 -0.006591520468 0 3.272374199 21.49654607 1018.048588 0.001964542777 +2.49866693e-06 -0.006705423109 0.009942795262 0 -9.411763777 14.69984405 1068.769588 0.001871310732 +2.498802611e-06 -0.004252606384 -0.002697439324 0 0.1669853864 15.93896264 1029.848278 0.001942033639 +2.498818101e-06 -0.00956039561 -0.008219409124 0 -14.51944209 -7.112056175 1051.397424 0.001902230265 +2.498092514e-06 0.00624931314 -0.002987478808 0 -14.41912123 -14.28927673 1039.030676 0.001924870985 +2.497867648e-06 -0.003112524021 0.005795971518 0 -9.584735417 18.65514061 1015.276719 0.001969906295 +2.498287844e-06 -0.004322828115 -0.009247562047 0 9.170517266 -15.68025604 981.3823395 0.002037941707 +2.496640929e-06 -0.007048621443 0.004853920934 0 -25.86698954 -0.6043907455 997.7479593 0.002004514248 +2.499383166e-06 0.00646439272 -0.01172407595 0 -10.08305144 3.902074578 973.3230118 0.00205481631 +2.499263103e-06 -0.00708738124 -0.0121364524 0 -3.26322679 -10.55655638 910.0660357 0.002197642722 +2.497228341e-06 0.00394092957 0.009389642102 0 -13.56682625 18.29580141 967.0132387 0.002068224012 +2.498636593e-06 -0.009107833607 0.003947848112 0 5.051424621 14.961431 956.0881936 0.00209185723 +2.498432068e-06 0.006765793557 -0.003054905862 0 -12.73616945 -11.7440674 978.0842334 0.002044813659 +2.497603535e-06 -0.00852501425 0.0022344508 0 -16.67223303 -16.09321398 1058.064545 0.001890243851 +2.499006769e-06 0.008019086299 -0.0124329631 0 7.460051378 -12.12247088 1009.769127 0.001980650771 +2.498209566e-06 0.00476900076 -0.002051319291 0 -0.06885585664 -17.22349637 909.9425601 0.002197940933 +2.497250424e-06 0.0008898103377 -0.004386580288 0 8.085697678 -22.2235453 1008.048789 0.001984030953 +2.495298562e-06 0.002293700008 0.008425636904 0 24.01183522 -18.00249959 978.0096093 0.002044969682 +2.499945621e-06 0.0015968034 0.000490355955 0 1.252648006 -3.225334484 1049.171187 0.001906266607 +2.499563132e-06 0.001090591326 -0.01232023393 0 8.403617482 3.153343579 960.1800612 0.002082942649 +2.496332909e-06 0.002205837253 -0.005089614743 0 -17.84186133 -21.80411653 1039.746363 0.001923546041 +2.498345751e-06 -0.002047450179 0.003660560888 0 18.10806228 5.66512244 1042.858223 0.001917806234 +2.499660965e-06 -0.003946633092 0.004909887356 0 1.665899018 8.639462725 1068.451124 0.001871868498 +2.498580072e-06 -0.002278712755 0.001714221938 0 -10.86530373 12.48062506 981.7311937 0.002037217533 +2.494965168e-06 0.003880905905 0.01342610406 0 3.108689533 31.79843924 1006.086988 0.001987899678 +2.496881505e-06 0.009350005272 0.001002952033 0 15.63150255 18.04767194 955.5872706 0.00209295379 +2.499681665e-06 0.001377704251 -0.001747535574 0 -8.090119883 -2.7097344 1069.217965 0.001870525997 +2.49952189e-06 0.001551389671 0.01128015493 0 1.795407575 8.402134548 878.5673445 0.002276433346 +2.499605719e-06 -0.00320752386 -0.004966505561 0 3.719382988 8.317179964 1025.935303 0.001949440666 +2.497361793e-06 -4.906903021e-05 0.01324832321 0 23.7843876 -5.65951352 1063.922826 0.001879835596 +2.498299576e-06 0.003849061606 -0.01036477076 0 15.34571763 9.620403648 981.8862435 0.002036895835 +2.498599267e-06 0.007305072094 -0.004563445807 0 -9.903474067 -12.23419365 940.2137846 0.00212717579 +2.498075799e-06 0.004388045357 0.01246889412 0 15.94323394 8.750421502 926.805616 0.002157949807 +2.49843318e-06 -0.003874008637 -0.006155513702 0 6.57940982 -15.02257735 926.2375625 0.002159273259 +2.499692152e-06 0.008560468252 0.01485344182 0 6.772005758 2.872181075 937.4188577 0.002133517993 +2.496986665e-06 -0.0007402390521 0.007624398374 0 23.23082999 5.523416301 972.2337697 0.002057118424 +2.498512854e-06 0.006951140026 -0.004982766754 0 14.52798938 -9.441125847 1004.418497 0.00199120188 +2.498158401e-06 -0.0002122016391 -0.005241358127 0 -11.17672976 15.62938231 1000.913386 0.001998174896 +2.495369798e-06 -0.00993749659 0.002887757749 0 -23.8599184 21.54046643 1055.586182 0.001894681868 +2.496731539e-06 -0.002150904108 0.007357294634 0 -9.413364326 24.53973117 1027.494576 0.001946482294 +2.495339004e-06 -0.005645967843 -0.001829124608 0 19.66492509 -24.68612078 1032.990251 0.001936126694 +2.497153391e-06 -0.006234113197 -0.0100213564 0 1.796647004 -20.8536446 876.8461248 0.002280901909 +2.497795736e-06 0.006441160985 0.01177658452 0 -8.906764333 -19.51938716 1021.52147 0.001957863891 +2.499888345e-06 -0.0005959463352 0.0002803484816 0 2.139931931 4.213627797 1000.049673 0.001999900659 +2.497722168e-06 -0.001058866424 0.004710092666 0 -4.039295265 18.87176395 903.8891435 0.002212660717 +2.49994297e-06 0.008584592999 -0.005696492898 0 -1.090594567 2.755111274 877.3585205 0.002279569815 +2.499414971e-06 0.009491498349 -0.009973078994 0 7.362172234 -6.9769772 937.6124104 0.002133077568 +2.495526327e-06 -0.003809083123 0.001167543749 0 -21.20120741 15.40811755 875.6052526 0.002284134311 +2.497612557e-06 -0.005878468039 -0.006203927225 0 -12.10910859 17.93113874 989.824679 0.002020559845 +2.495737751e-06 0.002675130432 0.003433668127 0 21.30397484 -15.57440624 903.2828715 0.002214145826 +2.499760528e-06 0.009081486966 0.01263321599 0 3.989451721 5.384570691 968.3013956 0.002065472599 +2.495206663e-06 -0.001020395071 0.01186399408 0 5.836110308 27.65634599 912.2394595 0.002192406806 +2.496408311e-06 -0.005397462193 -0.01071850085 0 -17.32583226 -16.99785296 905.1076946 0.0022096818 +2.499806104e-06 0.000640099477 -0.005185945958 0 -0.2849846863 5.605034138 901.2107748 0.002219236671 +2.495096772e-06 -0.008279261766 0.01284547109 0 5.771106609 27.32347399 891.1228427 0.00224435948 +2.496455408e-06 -0.0008645153604 -0.005646240581 0 20.91617059 17.61033494 1026.38057 0.001948594955 +2.499072251e-06 0.007320901342 -0.002664572715 0 5.098973243 12.45737162 988.0322841 0.002024225354 +2.498980588e-06 0.007593601164 -0.01284965894 0 -13.34600228 7.397482775 1068.491766 0.001871797298 +2.497965308e-06 -0.007742999513 -0.01174147427 0 -3.853316829 -19.82051783 1000.630851 0.001998739093 +2.497445546e-06 -0.001110528703 0.000439772252 0 -2.977362787 19.72162199 882.0753374 0.002267380024 +2.499275159e-06 -0.009289259347 -0.01020712554 0 -3.108527682 -10.19448759 885.0898592 0.002259657569 +2.497465922e-06 -0.00531799804 0.003312014008 0 -12.51449839 -16.80640104 930.4127823 0.002149583538 +2.498362113e-06 0.004008414368 0.005037133077 0 10.69738447 12.27112554 899.2308006 0.002224123105 +2.498264048e-06 0.008180112708 -0.01455722123 0 16.30068224 9.704709295 1017.864816 0.001964897468 +2.499531315e-06 0.003946971144 0.007941120865 0 -8.099586799 5.757866635 1026.352544 0.001948648163 +2.499999252e-06 -0.004146011397 -0.01285196796 0 -0.1699997289 0.3628921718 1036.125583 0.001930267944 +2.499960418e-06 0.0009220903041 -0.0006449899077 0 2.364141388 -1.331542131 964.3479328 0.002073940257 +2.496128226e-06 0.009012100059 0.00520438083 0 11.95489548 24.73635014 986.7234445 0.002026910388 +2.499690097e-06 0.00358158832 -0.01157520809 0 -6.802550562 -4.35842845 1026.150363 0.001949032103 +2.49729567e-06 -0.003039696878 -0.01032487262 0 16.75187545 13.52063817 925.2783623 0.002161511694 +2.493075348e-06 -0.008288595229 0.004797908231 0 -28.56361762 26.11065603 1038.816968 0.001925266974 +2.494166346e-06 0.007531233304 -0.01495721518 0 29.67886249 -20.24293525 1050.828788 0.00190325962 +2.498858518e-06 0.001365652098 0.001519415542 0 9.658658812 -9.404900777 892.0793943 0.002241952917 +2.498467448e-06 -0.00727303945 -0.01412572096 0 -9.810363046 -14.98372239 1022.737775 0.001955535473 +2.499686779e-06 0.004159498382 0.01430126191 0 -6.647772631 2.331232415 890.0209982 0.002247137994 +2.495580278e-06 -0.009429753874 0.00204983698 0 -24.95780869 -14.68410808 973.3182203 0.002054826426 +2.499003347e-06 -0.008002293217 -0.005726211697 0 10.99906169 -7.465764387 941.428414 0.002124431311 +2.499279894e-06 0.002476488831 -3.202079097e-05 0 -11.44653505 1.794570145 965.3541345 0.002071778561 +2.498225835e-06 0.007697108202 -0.007634675237 0 0.1836364256 20.06269299 1064.828844 0.001878236124 +2.496872042e-06 0.002236311873 0.007977597769 0 -13.58194489 20.13560238 970.6086741 0.002060562669 +2.498290621e-06 -0.008899114281 -0.00580722884 0 -18.15070604 5.323230307 1022.740381 0.001955530492 +2.496532989e-06 0.002827049424 -0.006006066219 0 18.21881543 -19.32858518 1008.174941 0.001983782693 +2.499224313e-06 0.0001899591461 0.01481985705 0 8.166928194 -10.33010031 1057.128551 0.001891917495 +2.499250207e-06 -0.006592732933 0.0009740556241 0 11.93617215 2.938844189 1003.715746 0.00199259602 +2.495007428e-06 0.005112778903 -0.007163768762 0 -16.85911553 -24.24933312 933.9427483 0.002141458889 +2.498889292e-06 -0.008507897379 -0.008409173756 0 13.11652228 8.144423422 1035.720998 0.001931021969 +2.4975393e-06 0.005302893589 -0.008551446896 0 -8.284104642 -21.51364755 1038.800127 0.001925298185 +2.496191998e-06 0.0007113816869 -0.01013096408 0 -10.69660666 -26.93515015 1049.559436 0.00190556145 +2.498921357e-06 0.002121457462 0.004325763532 0 8.442127956 -11.33714053 962.2191036 0.002078528677 +2.499857196e-06 -0.007420118391 0.009409789585 0 0.2032822372 5.41004596 1013.008641 0.00197431682 +2.496009112e-06 -0.00219190835 0.01077704454 0 -7.232655022 26.6257259 976.0026573 0.002049174749 +2.49390501e-06 0.002787419576 0.01352471589 0 -17.4648381 29.40926085 978.7686211 0.002043383857 +2.497325262e-06 -0.002065192759 0.01337227374 0 -22.14385673 7.012005333 1003.86027 0.001992309148 +2.49644263e-06 0.004249968664 -0.001470110079 0 20.37527073 17.65112513 1010.113888 0.001979974757 +2.499785703e-06 -0.005538940937 -0.006985569871 0 -6.712024389 -0.6427563186 1029.909551 0.001941918102 +2.49684337e-06 -0.00579760001 0.01087880497 0 -10.9098174 19.77872879 898.5600881 0.002225783258 +2.496669236e-06 -0.006405775882 -0.005467335375 0 -18.57787575 -19.28204473 1036.897277 0.001928831374 +2.498394739e-06 -0.004878414026 -0.01391042775 0 7.945894451 14.33568778 914.5348651 0.00218690405 +2.496970915e-06 0.001600816455 -0.004300583918 0 -20.92575283 5.950060043 883.4777727 0.002263780778 +2.496393954e-06 0.002917032922 -0.001306681379 0 20.73971907 15.44271998 962.3252517 0.002078299407 +2.497900499e-06 -0.006925743083 0.005915877689 0 13.09763288 14.64737062 958.59753 0.002086381341 +2.499507774e-06 0.009607065842 -0.007333724792 0 -6.910836164 7.028358884 993.364582 0.002013359482 +2.498113983e-06 0.0007612317009 0.0002369962097 0 15.80205515 8.495397002 923.494091 0.002165687923 +2.499396462e-06 -0.008845699732 0.003164140102 0 0.6691984633 -10.2574406 935.5230545 0.002137841489 +2.499269764e-06 -0.006672894694 -0.009553368143 0 11.75155518 3.318020113 1010.314682 0.001979581249 +2.495776331e-06 0.003333362848 0.01105821185 0 4.48261221 29.95577213 1041.487487 0.001920330321 +2.498129513e-06 0.0007293019397 0.01031521299 0 -12.84777303 -11.69624526 898.0362785 0.00222708152 +2.498850762e-06 0.004575337046 -0.003125920978 0 -11.50337424 -9.382222809 978.9610364 0.002042982229 +2.495909366e-06 -0.009286361746 -0.005953745046 0 -26.63879015 -1.544260481 932.3222121 0.002145181112 +2.497350133e-06 0.002646504282 -0.003099225804 0 20.05535619 -3.258728014 882.2453161 0.002266943177 +2.496628244e-06 -0.004882277981 0.002468717045 0 -10.57080709 -23.89101115 1005.531351 0.001988998153 +2.498252282e-06 -0.002028345447 -0.0002001251047 0 3.171349943 16.44395251 895.5125743 0.002233357808 +2.497455617e-06 -0.006007380337 0.009274545887 0 -6.804070738 19.39872462 910.9524072 0.00219550438 +2.49620774e-06 0.0008658903604 -0.005448574014 0 5.077717486 -26.24286717 970.0209305 0.002061811181 +2.497711072e-06 0.003003574028 -0.002661809761 0 -16.2894725 -14.36494206 1014.733552 0.001970960747 +2.4994216e-06 -0.00191177899 -0.003700976504 0 -10.44632563 -3.992031632 1039.671399 0.001923684735 +2.498307189e-06 0.006120522125 -0.01063973089 0 -16.52307762 -8.589205863 1011.816082 0.001976643815 +2.498650111e-06 -0.008253048123 0.003666486482 0 9.669708631 12.05506767 940.3520759 0.00212686296 +2.49637888e-06 -0.00196812225 0.01488246814 0 -19.15469596 16.86576236 947.8438502 0.002110052198 +2.497742579e-06 -0.0009670803789 0.01068395267 0 -19.59022135 0.5174057178 921.9819226 0.002169239929 +2.499129215e-06 -0.008539137556 -0.01010294785 0 -11.38652625 4.80783106 936.4601687 0.002135702155 +2.496130953e-06 -0.007450164007 -0.01420720877 0 16.56424321 -23.27818568 1026.459663 0.001948444807 +2.499654305e-06 -0.001889585019 0.001878562288 0 8.111376941 -2.025967529 1005.429576 0.00198919949 +2.499448636e-06 -0.0001186206425 -0.01404434336 0 -1.831003734 10.9004545 1052.48699 0.00190026102 +2.497828282e-06 -0.0005227297544 0.007185563114 0 20.72857703 -5.321879697 1026.532497 0.001948306562 +2.499023834e-06 0.006296510012 0.01485270023 0 -13.78219201 3.081079375 1010.573064 0.001979075112 +2.49878577e-06 0.003872345742 0.00771636718 0 -14.94354928 3.369863857 982.8339468 0.002034931747 +2.496228999e-06 -0.004587971559 0.003186845121 0 19.64434969 14.38868505 886.1643683 0.002256917646 +2.497032329e-06 -0.002675971482 0.01040751029 0 -4.822135553 24.35026544 1018.451696 0.001963765202 +2.494250738e-06 0.008108483697 0.001855198215 0 26.72585394 -19.33043705 971.8649584 0.002057899076 +2.496483582e-06 -0.005197222661 0.007722307581 0 -27.78001727 -2.627567433 1051.652083 0.001901769638 +2.497855795e-06 -0.006516569047 0.008142391532 0 -8.995566592 18.19130733 979.6669134 0.002041510204 +2.497728932e-06 -0.0006556660729 -0.007185923012 0 6.365523919 20.63325618 1012.819007 0.001974686481 +2.499384601e-06 0.001358626848 -0.00987217448 0 8.422595086 5.961700827 930.0464523 0.002150430223 +2.499013124e-06 0.003826479586 -0.002674297902 0 1.000891169 13.02073584 929.4035353 0.002151917788 +2.497411228e-06 0.007919508242 -0.005257709089 0 21.0321725 -7.710672399 984.0964134 0.002032321196 +2.497422672e-06 0.002024629228 -0.005455363279 0 19.13106798 13.01231938 1018.681016 0.00196332313 +2.498719439e-06 -0.005788377994 0.008713049185 0 -4.378851179 13.44511344 883.399436 0.002263981522 +2.499416e-06 -0.008340431997 0.003901118953 0 6.035053226 7.447510037 886.8864826 0.002255080035 +2.499475085e-06 -0.006076992503 0.009759866274 0 9.196711719 0.3241112736 898.0664638 0.002227006665 +2.496306589e-06 -0.00736182306 -0.01371722045 0 6.943955073 -24.30116576 929.3964913 0.002151934098 +2.49989375e-06 -0.0005833579507 -0.007060312866 0 1.451800169 -3.778724626 878.1243258 0.00227758182 +2.497327919e-06 0.003885885864 -0.01308305648 0 20.38424903 -5.508121879 913.0273889 0.002190514791 +2.496483631e-06 0.004955844372 0.000684764476 0 20.38811246 -15.777593 971.6082322 0.002058442831 +2.498562775e-06 -0.008163573984 0.01095392508 0 11.61583999 12.27352266 996.5130962 0.00200699821 +2.498663394e-06 0.00592397613 -0.006712855445 0 -3.169020803 -15.99548156 997.1346295 0.002005747209 +2.499021636e-06 -0.005681590005 0.009999396026 0 -7.101926276 12.72622658 1041.699417 0.001919939637 +2.496735416e-06 0.00440474336 -0.00782614836 0 17.99966511 -15.49416935 929.0089511 0.002152831787 +2.499659909e-06 0.00813500368 0.01345676936 0 7.794506944 1.584607492 964.3793539 0.002073872685 +2.497699515e-06 0.005676159123 -0.005686038095 0 8.868332987 19.58978475 1002.161194 0.001995686932 +2.498257679e-06 0.008716061129 0.009119649469 0 -7.336602153 -16.82974968 983.2524432 0.00203406563 +2.497860851e-06 0.003548501935 0.003005455155 0 -6.870975183 -17.15910937 893.3319123 0.002238809532 +2.499075339e-06 -0.000752596925 -0.006807083997 0 -8.658171091 -9.889995198 966.4407101 0.002069449247 +2.499758908e-06 0.002707655504 0.0141667484 0 -6.540964278 0.001089761084 941.93197 0.002123295592 +2.497765527e-06 0.008105459395 0.01478345825 0 -11.09260058 15.22976528 890.9653781 0.002244756137 +2.499559195e-06 -0.001964623034 0.002336319736 0 9.820537944 -0.943472709 1050.662621 0.001903560628 +2.49728241e-06 0.003362841681 -0.004348381846 0 19.39931728 8.396771898 906.3409655 0.002206675055 +2.49808478e-06 -0.005755347423 0.005470403277 0 -1.884022285 -18.15282972 932.2272199 0.002145399702 +2.495950251e-06 0.002482748758 0.0129870888 0 25.4966223 13.08576242 1006.379501 0.001987321878 +2.499498393e-06 0.00346701507 0.0108513175 0 2.068661725 -9.584530159 978.877397 0.00204315679 +2.498627283e-06 -0.003575837421 -0.01107340237 0 -15.50953373 2.583096711 948.7353071 0.002108069537 +2.496184838e-06 -0.009843944251 0.0005924563715 0 -12.09118294 -22.72092745 931.2196934 0.002147720902 +2.499329391e-06 -0.0008406164357 0.01392712607 0 -6.912481642 -7.774651166 898.2053663 0.00222666227 +2.497155383e-06 0.001553267641 0.0106310999 0 23.39841923 -9.848178524 1063.873294 0.001879923118 +2.499300952e-06 0.008163685845 -0.001466532878 0 -8.031877299 7.134544648 908.4748428 0.002201491892 +2.496240818e-06 -0.007016454265 -0.003895005179 0 -24.92357777 7.493569376 948.6283719 0.002108307172 +2.498823395e-06 0.004626533296 -0.004546014103 0 -14.47842284 -4.529149873 988.7514953 0.002022752946 +2.497450275e-06 0.004193606051 -0.002274572575 0 4.892631613 20.18564768 919.4145113 0.002175297404 +2.499856571e-06 -0.009979937528 -0.004692930467 0 -2.918117637 -4.82460215 1052.731456 0.001899819739 +2.497499791e-06 -0.009908834617 -0.009221301733 0 14.8517122 -14.91494717 940.9140762 0.002125592603 +2.499707197e-06 -0.0005061445525 0.005702496339 0 -2.143238369 6.780414008 929.21027 0.002152365363 +2.498331404e-06 0.001443326524 -0.001955675902 0 -4.62753773 16.13815573 918.7828361 0.00217679295 +2.498492651e-06 -0.004765204554 -0.0007255878369 0 2.199851622 -16.94621204 983.9688089 0.002032584755 +2.499142975e-06 -0.008331030132 -0.005801368465 0 -9.974527261 -6.293807442 900.74298 0.002220389217 +2.49737278e-06 0.001459067101 -0.001000387226 0 11.64159606 -17.67816125 923.0515872 0.002166726137 +2.499877582e-06 -0.008873531376 -0.0009157218807 0 -4.498948848 -2.731113027 1063.628126 0.001880356444 +2.498240263e-06 0.00734121039 -0.00561246478 0 18.85650687 6.827806848 1068.711042 0.001871413245 +2.49757977e-06 0.008261996298 -0.004241009247 0 -17.53283144 12.41703422 976.1664044 0.00204883101 +2.497387827e-06 -0.008873310671 0.005451147126 0 -11.66643461 -20.66608452 1037.868438 0.001927026517 +2.49789648e-06 -0.006352045247 0.004751382794 0 -20.56143102 3.551468757 1016.978014 0.001966610853 +2.499501189e-06 -0.006985838148 0.005760187686 0 5.086962426 7.464127579 904.2824027 0.002211698463 +2.497560813e-06 0.007140127006 -0.0002277712896 0 0.7165294257 21.9623717 994.5204741 0.002011019433 +2.498552942e-06 -0.003374206112 -0.005708379163 0 3.34011379 16.38187388 982.5527172 0.002035514192 +2.499772826e-06 -0.001621731929 0.0004021823569 0 -5.841695356 -3.960403358 1047.008863 0.001910203506 +2.49714401e-06 -0.007523639523 0.01278594876 0 -21.26254124 8.840243752 963.0725399 0.002076686768 +2.499765956e-06 0.008930409532 0.004426565983 0 -5.248783792 -3.663549234 935.5378062 0.002137807779 +2.495107942e-06 0.002859922992 -0.003882150734 0 26.5219095 -17.39660776 1013.283101 0.001973782053 +2.499387719e-06 0.009368657386 -0.01455222757 0 5.291670181 10.49407051 1061.963551 0.001883303809 +2.499904717e-06 -0.009432570785 0.01011942294 0 -0.1151767219 -4.037662324 925.2881527 0.002161488823 +2.494265043e-06 -0.009613667843 -0.007289977446 0 -16.88827339 -24.52706907 878.5299153 0.002276530332 +2.498553956e-06 -0.007015582989 -0.004872008697 0 13.47395139 -9.841957615 980.9424622 0.002038855567 +2.498146777e-06 -0.006793997013 -0.002483983131 0 0.377668668 18.97528195 985.5409009 0.002029342464 +2.498751513e-06 -0.002231512186 -0.01115833815 0 15.87294671 0.1484285764 1004.357137 0.001991323531 +2.499412412e-06 -0.0009742417606 0.0132620796 0 3.420028824 10.94483893 1057.670082 0.001890948825 +2.497734443e-06 -0.002275137133 0.003337380532 0 -1.948714908 19.77792496 933.3156405 0.002142897765 +2.498608112e-06 -0.009428940671 0.01375926114 0 16.4549738 -5.161824402 1033.404507 0.001935350568 +2.498601038e-06 -0.001461206949 -0.01366390989 0 -13.46142082 8.661396911 956.7655386 0.002090376293 +2.499758207e-06 -0.003740034974 0.0109752998 0 3.155720895 6.326339517 1016.601456 0.001967339303 +2.498986735e-06 0.001052290979 -0.004001759409 0 4.478666495 13.3312031 987.752174 0.002024799391 +2.499703181e-06 0.007792645912 -9.661833057e-05 0 -5.184973375 6.131833701 1042.181725 0.001919051114 +2.494695418e-06 0.006862599785 -0.008493283696 0 -19.31612103 -25.56049437 982.839798 0.002034919632 +2.496288324e-06 0.001334017902 8.245285135e-05 0 15.89688269 20.99330037 965.9600894 0.002070478917 +2.498233797e-06 0.0001780209783 0.002624510173 0 -15.89125396 -8.512663897 958.9358375 0.002085645276 +2.495844142e-06 -0.008835301157 0.004561784018 0 -22.46305884 -13.28362062 904.6303676 0.002210847736 +2.497886148e-06 0.002682298245 -0.01456980168 0 -4.655861317 -17.94864523 901.534727 0.002218439224 +2.496718818e-06 -0.003508233074 0.009765058674 0 -23.14083832 9.517218307 976.268845 0.002048616025 +2.498476723e-06 0.003700064183 -0.005051163824 0 16.74460195 5.461130886 1008.837468 0.001982479897 +2.499973878e-06 0.002582817664 -0.01330480697 0 0.5106412494 -2.011723389 908.044191 0.002202535978 +2.498969023e-06 0.006912885811 0.0006507478631 0 4.144516817 -11.906469 877.8319072 0.002278340515 +2.499212411e-06 0.00824815413 0.001301641816 0 -12.21431236 4.977216226 1050.778564 0.00190335059 +2.495795532e-06 0.008303822139 0.004722381423 0 16.32680673 25.74093018 1050.511142 0.001903835114 +2.496987519e-06 0.003382247924 0.004879242999 0 23.93994243 0.1538123952 974.8965562 0.002051499708 +2.499639112e-06 -0.003479174431 -0.008370502938 0 2.708579988 -6.928585031 875.5911739 0.002284171037 +2.498924046e-06 0.003251979207 -0.008541230166 0 -10.29301707 7.86335151 882.8484019 0.002265394597 +2.499064877e-06 -0.006895491416 0.007833517164 0 14.09872318 3.014309096 1054.084286 0.001897381477 +2.494466955e-06 -0.008079948551 0.01340855191 0 19.22199307 26.83039303 991.3495413 0.002017451884 +2.49943427e-06 -0.0005611444032 0.01351233809 0 0.561594917 -9.415151466 886.6292662 0.002255734247 +2.499700896e-06 -0.008249045559 0.01391774284 0 -2.227330218 -7.339686925 991.6568916 0.002016826603 +2.499421936e-06 0.003867212124 0.008464253324 0 8.341527495 5.91438399 950.9204877 0.002103225271 +2.499202763e-06 -0.008864890737 0.013716985 0 -1.933404033 12.34699129 989.6022192 0.002021014061 +2.4993824e-06 0.000251612328 -0.007510012058 0 -5.225770775 9.598760865 983.2750211 0.002034018924 +2.499329092e-06 -0.009331815639 0.009672515995 0 11.22339974 0.6112529273 970.2360047 0.002061354135 +2.499145066e-06 -0.009858878083 -0.009122903345 0 -7.750442739 9.319864959 926.8663182 0.002157808479 +2.497973693e-06 -0.001873675236 -0.008312659843 0 -4.909536754 -17.57599149 906.2224707 0.002206963593 +2.499673105e-06 0.008686011066 0.01327038774 0 -2.562655833 6.926980689 913.3935683 0.002189636614 +2.49985516e-06 -0.00683873279 -0.005702096885 0 5.383740269 1.044870941 1018.9286 0.001962846072 +2.498989198e-06 0.002714753845 -0.01122518488 0 1.394145624 -13.44369634 950.4464639 0.002104274229 +2.498242903e-06 -0.004048269796 0.01030579441 0 -17.51374748 -6.928231252 1004.437017 0.001991165166 +2.496956873e-06 0.00473596374 -0.001566233577 0 -5.046310186 21.50562333 894.9883713 0.002234665906 +2.497063977e-06 0.005646198043 0.01001611024 0 -16.81584104 -13.97207737 901.8286055 0.002217716302 +2.499480116e-06 0.007058971324 0.0012526445 0 8.289890182 5.529526151 977.1648251 0.002046737611 +2.498869734e-06 -0.00711200628 -0.009478914833 0 -14.87698572 3.697750984 1019.420195 0.001961899529 +2.498345921e-06 0.002926203334 0.006749022813 0 7.100872259 14.81892003 903.232067 0.002214270367 +2.497945248e-06 -0.001977497791 0.006586637374 0 -10.2458129 -15.11356966 900.4342317 0.002221150562 +2.499249401e-06 -0.005184898474 -0.005744593134 0 7.438524606 7.781953673 878.5285851 0.002276533779 +2.496749868e-06 -0.004807714927 -0.006606215159 0 19.09963537 13.99128154 928.1765421 0.002154762493 +2.499305373e-06 -0.00397679816 0.004954870641 0 11.88580056 -0.345873063 1008.733101 0.001982685012 +2.497334453e-06 0.005460827206 -0.005029832167 0 -5.607099858 -21.08895703 944.724808 0.00211701861 +2.496333919e-06 -0.009586448986 -0.007249338082 0 -7.131115116 -28.12278855 1070.865772 0.001867647703 +2.495811683e-06 -0.001890188926 -0.01276436899 0 19.21114927 -21.5278281 996.2959569 0.002007435628 +2.496893146e-06 0.006114231101 -0.01037789638 0 2.290825061 -25.61060884 1031.032781 0.001939802532 +2.499785842e-06 -0.006439737189 -0.00143090657 0 -0.3468315397 6.23362808 953.9290652 0.002096591951 +2.496403978e-06 -0.009360533515 0.008247799035 0 -26.0740344 6.482379481 1001.315356 0.001997372744 +2.498419401e-06 0.009766464387 -0.01042294761 0 -16.03349602 -4.493079106 936.3006516 0.002136066013 +2.497464534e-06 0.006828989782 -0.01335330186 0 -8.419514726 -17.82139446 874.945481 0.002285856712 +2.496845395e-06 0.0009441202739 -0.0003411064111 0 -23.19838996 -9.626744703 999.462047 0.002001076485 +2.499765455e-06 -0.001835665144 0.00909114745 0 6.4853122 -3.233600837 1058.034714 0.001890297146 +2.498563014e-06 0.003588274904 -0.005260545749 0 -7.8844571 14.99492498 999.1148203 0.002001771928 +2.499865496e-06 0.003869225783 0.009135741382 0 -4.88300885 0.04431418013 941.4866389 0.002124299929 +2.498511761e-06 -0.0007998990687 0.009166861963 0 8.999244259 13.71574776 950.6377055 0.002103850908 +2.499763855e-06 0.00730416425 0.008989625636 0 6.544411186 0.3591713371 953.683334 0.00209713217 +2.498083576e-06 -0.007481273413 0.004387010671 0 18.28363979 -1.332706439 936.1115958 0.00213649741 +2.498535437e-06 0.007299809419 -0.007787310435 0 -5.305289542 -15.64602176 965.1002257 0.002072323627 +2.497585537e-06 0.001576230726 0.006079007427 0 -5.666821116 21.99390658 1033.18206 0.001935767255 +2.497124901e-06 0.0002979656914 -0.003630560834 0 14.52362001 -16.57732131 918.7016822 0.002176985238 +2.499568323e-06 0.00863993858 -0.0119748365 0 -0.1896398416 9.451398038 1017.328165 0.001965933971 +2.497157005e-06 0.004198620943 0.001089532252 0 -6.542932921 22.97027355 1001.193292 0.001997616261 +2.496618549e-06 0.006399645656 -0.007032890443 0 15.903253 -20.95762321 1011.133656 0.001977977874 +2.497263898e-06 -0.006818143702 0.002234329018 0 2.193866311 -22.71257932 975.042661 0.002051192302 +2.496630645e-06 -2.135075163e-05 -0.01056116987 0 25.47849614 -9.962490842 1053.319934 0.001898758331 +2.498119048e-06 -0.0004935849179 -0.01220772676 0 3.630081274 -20.27053896 1061.435261 0.001884241153 +2.499259565e-06 0.003391897636 -0.01465600924 0 2.610114807 -10.49638482 888.7135367 0.002250443948 +2.496174757e-06 0.007587790187 0.009628125066 0 26.45890782 -10.11147479 1023.478675 0.001954119854 +2.499569222e-06 -0.00965883262 -0.01410811638 0 9.309844124 2.044780234 1026.840354 0.00194772244 +2.498178774e-06 0.00424089218 -0.002152697607 0 15.19610922 -13.00832965 1047.826942 0.001908712135 +2.496306014e-06 -0.003495678739 -0.008525496335 0 -24.79740765 -13.7941628 1043.38808 0.001916832326 +2.496409001e-06 0.003667478529 0.006579957262 0 20.86346034 18.79658899 1047.298525 0.00190967518 +2.496486406e-06 -0.0005159739731 0.001403330325 0 20.55403229 -13.22077446 921.4267596 0.002170546904 +2.497663144e-06 -0.003912489451 -0.009220312187 0 6.172187618 -20.60741137 994.707083 0.002010642162 +2.49451761e-06 0.0007236428838 0.005489477715 0 20.60682797 21.17780745 891.6300415 0.002243082789 +2.498291677e-06 -0.00251407688 -0.003569618999 0 1.080394668 17.45469734 945.8697061 0.002114456132 +2.497566128e-06 0.003684794814 -0.01251669557 0 -16.40543213 -13.38217991 959.2317797 0.002085001813 +2.496699515e-06 -0.003351080311 0.004621783539 0 21.44651116 16.91804528 1062.675839 0.001882041471 +2.499620104e-06 -0.001017273404 -0.0007162219752 0 -3.213563191 -7.847107157 972.7572931 0.002056011314 +2.494982731e-06 -0.007606052891 -0.01303689381 0 -4.298996233 -33.05087881 1051.357251 0.001902302951 +2.497310634e-06 -0.002734899628 -0.009080799299 0 23.3096521 5.414067324 1031.407243 0.001939098269 +2.497756261e-06 0.001765310653 0.01424434774 0 2.118568319 20.97957479 995.0671653 0.002009914576 +2.497364834e-06 -0.001378062316 -0.0005572526925 0 21.80017472 -10.1702392 1047.439715 0.001909417766 +2.498643219e-06 0.008164040395 0.001093127453 0 8.263609873 -15.02716468 1040.857584 0.001921492461 +2.499840232e-06 0.00360937946 -0.006287284659 0 -3.435948292 3.90349531 919.9362711 0.002174063642 +2.498491657e-06 0.008237008392 -0.00935834944 0 -14.28892585 10.54787858 1022.32486 0.001956325311 +2.499694355e-06 0.006373629496 0.0003931354824 0 5.905053838 -3.831470951 900.2795675 0.002221532147 +2.494998741e-06 -0.00746340041 -0.01348967252 0 -20.94350262 -20.66922882 929.6937012 0.002151246155 +2.499975627e-06 0.005177334673 -0.009461178971 0 0.5640951445 -1.88192194 889.8350421 0.002247607596 +2.494905935e-06 -0.001657994352 0.001149260919 0 -25.88770669 -22.13092855 1066.204444 0.001875812853 +2.49807166e-06 0.001656017052 0.01234798199 0 -16.76740292 4.482616336 883.5347636 0.002263634757 +2.498138234e-06 -0.007886121268 0.002272870126 0 -18.1545437 -3.407317573 956.9822515 0.002089902918 +2.497072008e-06 0.009769121199 0.007523846787 0 14.0989965 16.26788384 889.1997155 0.002249213495 +2.499768159e-06 -0.004059702866 -0.0003032729938 0 -6.00108771 -1.983808836 928.1648276 0.002154789689 +2.496679261e-06 0.0006939621409 -0.009651464475 0 -17.06167637 -15.00411046 881.1915444 0.002269654098 +2.497068853e-06 -0.008501781463 -0.01137815091 0 20.6225637 12.81512313 1002.35946 0.001995292187 +2.498451745e-06 0.009777562404 -0.00122738326 0 -16.39170229 -4.799408811 970.3930746 0.00206102048 +2.499639031e-06 -0.00436905677 0.002317436601 0 -3.674408976 7.6452057 998.2589853 0.002003488102 +2.497893501e-06 0.009542332389 0.008454276302 0 -6.076804845 17.54015019 904.0967474 0.002212152633 +2.499099767e-06 0.006296220841 -0.004128794591 0 -4.817031189 -10.73691923 876.9008398 0.00228075959 +2.496985224e-06 -0.008916752567 -0.002245482802 0 8.441516203 23.61878964 1020.993689 0.001958875967 +2.49826319e-06 0.008965090318 -0.005363565115 0 14.19894893 -13.21687523 1040.543994 0.001922071543 +2.496941138e-06 -0.0013119544 0.007403807736 0 -17.60863973 19.59523002 1064.625968 0.001878594042 +2.499823329e-06 -0.005332014412 -0.003060365226 0 -1.835404219 -5.534675068 980.9320226 0.002038877266 +2.498948745e-06 -0.008162194132 -0.00858333966 0 14.06516014 -3.680274143 1002.507014 0.00199499851 +2.497176198e-06 0.006090078712 0.001731312338 0 14.78851648 15.54416231 902.4315761 0.002216234508 +2.499868566e-06 0.004738573167 -0.0126001071 0 1.859863344 -4.876290566 1017.899612 0.0019648303 +2.498947387e-06 -0.004189161686 -0.01281733454 0 -6.0720953 12.96157563 986.3343248 0.002027710027 +2.498807909e-06 -0.009400844374 -0.007589774989 0 -14.89141595 -3.100308686 984.9234933 0.002030614574 +2.497863748e-06 -0.006386090773 -0.01257670238 0 -17.74197352 11.09058432 1011.921671 0.001976437561 +2.499635721e-06 0.000780762136 0.01398617378 0 -7.717790902 0.6190907523 907.0469229 0.002204957593 +2.49609291e-06 0.005696925349 -0.01008213015 0 27.31023835 7.990235439 1017.334508 0.001965921715 +2.499284534e-06 0.009280403233 -0.005713119388 0 12.64715715 0.4818645648 1057.917248 0.001890507035 +2.498257646e-06 -0.007823452898 -0.009185199982 0 16.99371582 -1.334461697 912.9069351 0.002190803819 +2.497841928e-06 0.009436377534 -0.0007559380378 0 4.553282612 -19.5922403 967.8722269 0.00206638846 +2.49723664e-06 -0.005370884021 0.01396646088 0 -22.50052469 5.628274114 986.1830782 0.002028021008 +2.498410896e-06 0.009523760253 -0.01224696363 0 4.06271043 -18.29439006 1050.936617 0.00190306434 +2.497488991e-06 -0.0005052511767 -0.00372960041 0 10.96374378 -16.46014178 882.1924244 0.002267079091 +2.496876448e-06 -0.001896143523 -0.009366159844 0 20.75083627 -11.65521708 951.7754458 0.002101335991 +2.498404199e-06 0.004540741839 0.009276497215 0 12.81163418 9.758199457 901.2463601 0.002219149046 +2.496560792e-06 -0.00580528337 0.01021817136 0 -24.25951997 -11.63524578 1025.349403 0.001950554606 +2.499031324e-06 0.009723341446 -0.003333843998 0 -13.86827697 2.296896853 1009.790815 0.001980608232 +2.498578235e-06 -0.006050738194 -0.005969778474 0 -15.52095306 -1.232607362 923.1281747 0.002166546375 +2.499569017e-06 0.005656501055 -0.01460056914 0 8.940324384 0.3489140336 963.6309474 0.002075483364 +2.495679079e-06 -0.003550012354 -0.006237052598 0 -12.09729309 -27.50605829 1021.507657 0.001957890365 +2.499264402e-06 0.005159797017 0.0001147461799 0 -4.399931533 -10.26369975 920.566438 0.002172575403 +2.493020879e-06 -0.008421219904 0.01360900615 0 18.72158404 29.48699292 933.9117689 0.002141529924 +2.496425749e-06 0.008333532745 0.006262866058 0 25.98586528 -5.724966514 994.6916908 0.002010673275 +2.497804381e-06 -0.0002345082676 -0.008370589984 0 -13.8260485 -12.30676321 883.0133529 0.002264971411 +2.498029345e-06 -0.0004301644722 0.003958526468 0 7.804601852 15.71923704 883.7533615 0.002263074843 +2.497824123e-06 0.001969741052 -0.01467740532 0 -15.35025076 15.58149151 1048.160039 0.001908105561 +2.497603529e-06 0.0002902109036 0.01166780842 0 -0.8384207512 23.20602201 1060.294999 0.001886267502 +2.49845253e-06 0.008953626323 0.005942302595 0 2.834988611 -15.14930624 875.8710452 0.002283441165 +2.499639032e-06 -0.003899968937 -0.001811866793 0 7.445958131 -0.01666649781 876.2924792 0.002282342993 +2.498851279e-06 -0.004970082855 -0.006245120075 0 -14.55421947 5.561892298 1027.759414 0.001945980716 +2.494930503e-06 0.008713559546 -0.0138953648 0 27.16253865 -20.23295222 1062.886745 0.001881668022 +2.497728642e-06 0.001007311489 -0.004564093575 0 -19.99533742 4.044266085 956.817974 0.002090261737 +2.497840614e-06 -0.0001039566891 -0.004128538768 0 19.26392676 4.001206949 946.4453647 0.002113170051 +2.49966675e-06 0.001224926384 0.006676291621 0 7.123322134 -2.7272322 934.2496617 0.002140755391 +2.498365257e-06 -0.000384480455 0.006249119367 0 14.91262229 6.396797792 897.1882744 0.002229186512 +2.499209705e-06 0.009091519369 -0.006617055216 0 -12.17250131 4.063295494 1020.609055 0.001959614203 +2.496543946e-06 0.006964813969 -0.009093402922 0 -6.094565025 -23.63003693 927.7233319 0.002155815135 +2.499379684e-06 0.00331794675 0.003744811574 0 -1.621492379 10.34149345 939.7129353 0.002128309535 +2.496648225e-06 0.009647803316 0.002217463183 0 15.28799928 18.4269116 924.2942262 0.002163813149 +2.495780882e-06 0.00184643005 0.008022871998 0 7.22001796 26.52922722 945.8874782 0.002114416404 +2.497506723e-06 -0.005836895457 -0.01462932648 0 -20.90375161 11.02608367 1057.949433 0.001890449523 +2.498759479e-06 -0.009944148967 -0.001563859745 0 4.737381209 14.58958954 973.6704632 0.002054083055 +2.499635282e-06 0.009119613804 -0.0007837892929 0 -1.721643072 8.323672791 995.1634177 0.002009720177 +2.496121535e-06 -0.00512026614 0.00734933747 0 -26.75494174 -10.79205675 1035.23989 0.001931919374 +2.498378566e-06 -0.0008079222729 -0.008467792547 0 -11.20166272 -12.6087739 936.3520143 0.002135948841 +2.497618157e-06 -0.008058984187 0.006922503 0 -14.2729203 15.72998837 972.8214485 0.002055875724 +2.499423437e-06 0.007549904147 0.00294960916 0 -9.689275124 6.180288153 1070.136559 0.001868920357 +2.497381506e-06 -0.009324418535 -0.01138772059 0 -23.25718954 -0.6317167029 1016.262495 0.001967995483 +2.497030186e-06 -0.003251802353 0.009723039649 0 -9.241782724 22.66479803 1003.870747 0.001992288357 +2.49975461e-06 0.005455624019 0.003820034643 0 -4.824356867 -4.237530597 916.5430356 0.002182112484 +2.499426474e-06 -0.009300272861 -0.01019971234 0 -9.472804406 -1.556914789 896.2674308 0.002231476824 +2.499321974e-06 0.002876518085 -0.01465961728 0 8.997121793 8.028317535 1035.38751 0.001931643931 +2.497479871e-06 -0.00530409039 -0.006079097057 0 21.65407037 6.037870793 1000.93874 0.00199812428 +2.496534904e-06 -0.001139152264 0.004579020983 0 18.40137981 19.74543901 1024.741328 0.001951712052 +2.496456571e-06 -0.006235134923 -0.003508401511 0 14.17772095 -24.42358575 1060.260942 0.001886328092 +2.498446796e-06 0.0004770399397 0.007657990814 0 0.3389690165 15.70685368 891.1685917 0.002244244264 +2.498293695e-06 0.002959346757 0.01367711287 0 -19.23102882 3.38026035 1056.708664 0.001892669255 +2.497121569e-06 0.008738619685 0.01036508773 0 24.527576 6.261331251 1054.588052 0.001896475118 +2.498865197e-06 0.007360544424 -0.002465751863 0 4.783392199 -15.0758136 1049.688837 0.00190532654 +2.499154413e-06 0.004959656545 -0.001045401196 0 3.40936951 12.78657985 1017.464329 0.001965670877 +2.499944551e-06 -0.00923602568 -0.01471101962 0 1.459652446 -2.607181533 897.2427368 0.002229051201 +2.497848717e-06 -0.008043117491 0.0001198980468 0 19.35815714 -8.313426559 1015.347614 0.001969768749 +2.496922924e-06 -0.0008000896545 0.001173466269 0 -24.90226605 8.664410635 1062.352366 0.00188261453 +2.497752125e-06 -0.006927832682 -0.009800220849 0 10.17192774 -17.69848422 962.4240172 0.002078086129 +2.499897277e-06 -0.001425579954 -0.01486073853 0 -0.1521024848 4.061409341 896.6561563 0.002230509417 +2.499831312e-06 0.005062480033 0.007492099029 0 -4.289304462 2.738232117 876.0887592 0.002282873714 +2.498138539e-06 -0.007107238071 0.003628176057 0 6.604765287 17.97005802 991.9753948 0.002016179041 +2.499250229e-06 -0.009614083325 0.01436501574 0 7.777556018 8.404363296 935.0019425 0.002139032989 +2.498511954e-06 0.00652573043 0.002806646253 0 17.1521252 6.427964177 1061.537472 0.001884059728 +2.495929907e-06 0.0001858059643 0.005394616728 0 -23.82607127 -14.96248813 985.5049288 0.002029416537 +2.498676109e-06 -0.005091989422 -0.006165402553 0 14.78375847 -8.292184837 1041.490814 0.001920324186 +2.498659297e-06 -0.005413581636 0.003770428018 0 14.9645778 1.5836256 918.7854226 0.002176786822 +2.49786701e-06 -0.001329243388 6.837989436e-05 0 -22.04418868 0.497902677 1067.22608 0.001874017172 +2.497648783e-06 0.002105388995 -0.003950338061 0 9.327279964 -21.02804586 1060.43944 0.001886010576 +2.497216789e-06 -0.0003780248901 -0.002254927049 0 9.243410245 -22.26060994 1021.196763 0.001958486427 +2.496207525e-06 -0.005813661711 -0.01027460351 0 14.975777 -24.0072065 1026.808783 0.001947782326 +2.499492675e-06 0.00186089966 -0.01056323949 0 9.427667535 3.208454423 988.5764814 0.002023111047 +2.49736619e-06 0.005202343208 -0.003684099067 0 16.24746664 -17.52632339 1040.871405 0.001921466945 +2.497954147e-06 -0.005578166023 0.004479050436 0 15.78948691 11.44521692 963.7804552 0.002075161401 +2.498814984e-06 0.008288710951 -0.01028485251 0 -13.63904531 -3.058254439 907.7826213 0.002203170619 +2.498777135e-06 -0.005322987577 0.004718295448 0 11.85384085 -7.104317048 883.5182494 0.002263677068 +2.496938594e-06 0.003866598932 -0.007963900978 0 -17.43699662 -14.94958516 927.795489 0.002155647472 +2.499689829e-06 0.008867589016 0.00154996044 0 -0.6430766726 7.70137978 981.1640859 0.002038395034 +2.497122934e-06 -0.003516404242 -0.009352974559 0 20.27297888 -10.52315325 951.7998253 0.002101282168 +2.497683453e-06 -0.007442301051 0.009602101792 0 -9.698626644 18.62793577 975.3577811 0.002050529599 +2.499142296e-06 0.007320700171 -0.01399395408 0 6.517840949 -10.67784117 955.0268689 0.002094181918 +2.497586583e-06 -0.006728773555 -0.005742518236 0 -17.3936301 9.682132405 905.7612091 0.002208087496 +2.497067356e-06 -0.003817026727 -0.01496115387 0 -2.547711485 -23.59354582 979.4331188 0.00204199752 +2.498755911e-06 -0.007772296248 0.00307477846 0 3.888853095 -13.72714803 904.3198411 0.0022116069 +2.498628227e-06 0.004614156224 -0.006703827758 0 -7.829859915 -14.1314125 975.1638749 0.002050937336 +2.495163198e-06 0.003278141273 -0.0003585442971 0 23.37121148 -15.94974756 909.0764915 0.002200034891 +2.494511277e-06 0.009628839144 -0.008015402779 0 27.18407682 -16.04073105 951.879447 0.002101106402 +2.49730038e-06 0.0004548763251 -0.007789492914 0 17.62868296 13.43475986 953.4871889 0.002097563578 +2.497711213e-06 -0.0007995532593 -0.003069470795 0 -0.7338838553 -22.40910419 1047.5878 0.001909147854 +2.499932008e-06 0.00189198208 -0.01087567576 0 -0.001064076173 -3.302485806 895.5555787 0.002233250563 +2.494593452e-06 0.005588445617 -0.008328373167 0 -15.67056931 -29.30734914 1009.840532 0.001980510721 +2.496081663e-06 0.003004543073 0.0140967495 0 -6.340625966 28.34263899 1036.867918 0.00192888599 +2.498923025e-06 0.007581524001 -0.005955506733 0 13.64817382 -0.6143579962 930.7352387 0.002148838807 +2.496207992e-06 -0.003434519446 -0.003852919126 0 17.60283238 18.30804714 921.7177498 0.002169861653 +2.499874117e-06 -0.004595088856 0.01151230278 0 -4.709320174 1.630918585 993.2265919 0.0020136392 +2.499985053e-06 0.008878932181 0.005473264251 0 1.249530864 -1.159762495 986.0256704 0.002028344758 +2.496765554e-06 -0.005229777438 -0.01423020502 0 19.88141606 -14.60577369 969.4824293 0.002062956418 +2.498206633e-06 -0.008602382699 -0.01198997699 0 7.581653819 15.21946726 897.5689635 0.002228241039 +2.498653829e-06 -0.006545721865 0.0117494156 0 -14.15478309 6.54588767 950.2432696 0.002104724194 +2.499466356e-06 0.0002422958752 -0.004472318315 0 -3.182420452 9.866902303 1003.449582 0.001993124554 +2.494388049e-06 0.006540927659 0.008549405155 0 -22.26579508 28.0383244 1067.803704 0.001873003429 +2.494268586e-06 -0.003649357334 -0.01403083522 0 -23.67223236 -26.22560616 1042.593347 0.001918293461 +2.498149461e-06 -0.001331755589 -0.008854039824 0 -19.16381616 1.972738159 1001.120118 0.001997762271 +2.497506484e-06 -0.001461994965 -0.000781245043 0 10.74935203 19.45644055 995.0034277 0.002010043327 +2.49901522e-06 0.000944793392 0.00600528423 0 9.3848085 11.43588276 1053.970511 0.001897586297 +2.499976843e-06 0.002601434528 0.003701465183 0 -1.220253419 1.492750429 895.9042901 0.002232381318 +2.494080734e-06 0.00439797584 0.00203288456 0 27.05083525 21.24304435 998.7576504 0.00200248779 +2.498742704e-06 0.002115650666 -0.01265893639 0 13.12066473 -4.704459586 878.8253553 0.002275765017 +2.496076945e-06 5.644880235e-05 0.003385010718 0 22.3859998 12.41216427 913.2764628 0.002189917381 +2.499268816e-06 -0.006573019801 0.002646839947 0 2.176215313 12.42576455 1043.055969 0.001917442648 +2.496474454e-06 0.003630258939 0.001803289955 0 -13.71747446 -24.87554673 1069.223511 0.001870516295 +2.498977757e-06 0.006799055245 0.002032185355 0 7.466381248 -13.02307005 1049.705189 0.00190529686 +2.498353448e-06 -0.005745609174 0.0143150417 0 -6.311571934 16.83711607 990.6249595 0.002018927527 +2.496779562e-06 -0.004783104113 0.001250239913 0 15.66022015 17.00412028 910.4241298 0.002196778331 +2.49609181e-06 -0.006551131839 0.005732582831 0 -28.48918552 3.931226236 1028.059591 0.00194541252 +2.49581972e-06 0.007506509232 0.001806184219 0 19.49378702 -19.15933193 944.7035918 0.002117066154 +2.497497725e-06 0.009282286074 -0.001698166234 0 8.189787948 -19.92639758 962.6670348 0.002077561532 +2.498293753e-06 -0.003223776356 0.004971884082 0 -18.50716762 -2.76373684 1012.702926 0.001974912829 +2.494348869e-06 -0.003932458689 -0.00317262949 0 -25.38193161 -24.55659556 1049.612082 0.001905465871 +2.496497872e-06 -0.00844339306 -0.001872619812 0 -15.86284895 -21.07810834 996.2522104 0.002007523777 +2.499039973e-06 0.002267619106 0.007527117657 0 -2.162491998 12.02909443 881.9022102 0.002267825136 +2.499883143e-06 0.005106050638 -0.009737692466 0 -4.992386195 -0.9559181767 1051.420507 0.001902188503 +2.496639994e-06 0.004463186166 -0.004948394545 0 0.5125406478 -24.12557016 930.4038638 0.002149604143 +2.497354649e-06 0.005458941478 -0.002425733102 0 21.71160502 11.56142972 1068.9819 0.001870939068 +2.497292706e-06 -0.00295646783 -0.01474702153 0 17.741775 14.12127058 974.0893212 0.0020531998 +2.498503936e-06 -4.557735752e-05 -0.01393477743 0 -11.55152732 -14.3192125 1063.352789 0.00188084333 +2.499516604e-06 0.009862210015 0.008633395589 0 8.603692997 5.307260754 1028.033624 0.001945461659 +2.499693325e-06 0.006990008182 -0.01152894603 0 -0.8365253159 7.135667149 917.3272943 0.002180246911 +2.497122033e-06 0.002836903543 0.004068529475 0 13.24871787 -17.73949632 922.4635951 0.002168107241 +2.496496561e-06 -0.002233879957 0.01060530578 0 -17.31314597 16.77722052 910.2897449 0.002197102638 +2.497267292e-06 0.009225171763 -0.01121039422 0 -2.044965774 -24.09425722 1033.909218 0.001934405812 +2.497143556e-06 -0.002641924326 0.01057609348 0 -22.39326768 -8.178430553 996.9929118 0.002006032316 +2.496341758e-06 -0.0007971535716 -0.007726713305 0 22.27897151 12.81613173 949.6891928 0.002105952153 +2.498616178e-06 -0.007404598645 0.0126115898 0 6.86303349 14.82505823 981.7832953 0.002037109421 +2.49738107e-06 -0.004131219606 0.0006649318594 0 -16.88878735 13.11454406 933.9339362 0.002141479094 +2.49741667e-06 -0.003578272518 0.01276506885 0 -16.92056663 -14.67369531 984.9526728 0.002030554417 +2.499396662e-06 -0.009343165262 0.01203489737 0 -10.32045331 2.228239057 961.0757533 0.002081001412 +2.49973105e-06 0.007299632132 0.007493617446 0 1.075596543 7.027654077 969.3258353 0.002063289688 +2.498595765e-06 -0.001511021769 -0.01139397907 0 -6.878044588 -14.78381756 972.7633545 0.002055998502 +2.49812882e-06 -0.004277500887 0.01368015138 0 -11.73568148 14.29972758 955.9841176 0.002092084966 +2.499320786e-06 -0.001384606441 -0.01125576435 0 -11.45309819 -2.239904781 1001.177269 0.001997648231 +2.493518775e-06 -0.00657537559 0.001044364886 0 -27.42559187 23.25516124 997.7626017 0.002004484831 +2.495907058e-06 -0.009047480822 0.01107721899 0 7.589694432 24.94888354 910.9003447 0.002195629864 +2.49912101e-06 -0.002035706542 -0.008097743473 0 -4.981607675 -10.64168235 886.0791368 0.002257134738 +2.497468228e-06 0.001366212615 0.003233120902 0 12.00618439 -18.54993567 981.5857156 0.002037519463 +2.497312991e-06 -0.006934867399 -0.01224938708 0 -18.48722619 -8.856523718 883.916808 0.002262656374 +2.497603428e-06 -0.009684919817 -0.0004456208297 0 -23.14729162 -0.9496465248 1057.78875 0.001890736691 +2.497785174e-06 0.001622007494 0.01173035051 0 -18.13386422 -11.77652476 1027.005185 0.001947409838 +2.495434494e-06 0.001241005789 -0.0005194885097 0 25.09661293 15.8383191 981.4202129 0.002037863062 +2.498832046e-06 0.004612744176 0.0137720548 0 14.55577269 6.47894436 1042.274803 0.001918879738 +2.499322797e-06 -0.006889227228 0.00287659744 0 9.487748313 6.374306703 982.0529026 0.002036550164 +2.498636374e-06 0.006060685706 0.002879431034 0 12.99634579 -9.668079316 980.6436996 0.002039476724 +2.496840736e-06 0.002639807072 -0.002769288446 0 -19.24932061 -13.67210323 938.8452768 0.002130276468 +2.4994717e-06 0.001074661203 0.001982710795 0 8.205961989 -6.899945495 1042.940221 0.001917655451 +2.496477654e-06 -0.0008739718702 -0.003588216458 0 -25.90073079 10.52108211 1052.72585 0.001899829856 +2.495069747e-06 0.003432017909 -0.01328701151 0 21.4475728 -17.92448461 889.4751862 0.002248516913 +2.494714987e-06 0.006162827355 0.01493286945 0 22.01380068 26.82087113 1066.410822 0.001875449834 +2.499106794e-06 0.005831218706 -0.01040155791 0 -11.57179971 -1.908696014 877.3658095 0.002279550876 +2.493498164e-06 0.001154709379 -0.01305954165 0 -19.17433803 -30.65905067 1001.81101 0.001996384527 +2.499439777e-06 -0.009494461874 -0.000256217618 0 -8.462438212 -7.499369085 1068.129703 0.00187243178 +2.496736235e-06 -0.009019614211 -0.009642939458 0 8.646289368 -24.64858005 1021.889475 0.001957158821 +2.493511887e-06 0.00883856283 -0.00763328301 0 24.8796232 -25.46108335 987.2699566 0.002025788374 +2.498274086e-06 0.008832967691 -0.004719367311 0 16.35611037 6.826391902 953.700753 0.002097093867 +2.498294374e-06 0.002671895246 0.009099918169 0 -19.22143272 2.375235782 1048.35545 0.001907749895 +2.49862821e-06 0.004527311604 -0.006120217445 0 -11.35221461 11.24832374 964.6287016 0.002073336608 +2.496116984e-06 -0.007949407184 -0.01285850683 0 18.64194766 -17.39932168 914.5139751 0.002186954005 +2.49811587e-06 -0.003119806885 -0.003957599115 0 2.130712343 -19.74572143 1022.807023 0.001955403076 +2.495423174e-06 -0.006268901429 0.01188263234 0 -27.79844262 -11.43611036 992.8362766 0.002014430825 +2.498999991e-06 -0.006460761763 -0.006504939278 0 -13.40975388 -6.361918502 1049.350894 0.00190594015 +2.497781185e-06 -0.007427226421 0.00237831715 0 -16.23825267 11.81631222 953.0094942 0.002098614979 +2.497391912e-06 0.0008262248849 -0.01218022099 0 22.6468008 4.277102503 1008.721224 0.001982708357 +2.498847413e-06 0.007663169629 0.001815123763 0 15.46522999 2.882686418 1035.967074 0.001930563288 +2.497773026e-06 0.002676921855 0.004877155717 0 -9.159852779 16.26841376 884.3489993 0.002261550589 +2.499801586e-06 -0.007177029238 0.00484723689 0 -6.425929355 -1.059709494 1033.828738 0.001934556398 +2.497188664e-06 -0.001884879777 0.01389799184 0 13.32573435 20.43906251 1028.54779 0.001944489133 +2.496243745e-06 0.009383782721 0.01462532516 0 22.94219518 8.780064274 895.7307002 0.002232813947 +2.496581981e-06 0.007641875921 -0.008695266531 0 12.64068369 -21.50418594 953.5553211 0.002097413706 +2.496502612e-06 0.008529527928 0.005391507454 0 26.25791112 6.622316831 1023.377169 0.001954313678 +2.49548015e-06 0.009041143567 -0.004475827524 0 21.38281214 21.43321717 1006.282631 0.001987513187 +2.499354594e-06 0.009266738612 0.004155694661 0 -11.04243007 2.210671854 991.1157941 0.002017927685 +2.494219496e-06 -0.005202463111 0.01482471249 0 23.50387308 26.96082471 1051.028449 0.001902898064 +2.497932469e-06 -0.008908438254 -0.007478789992 0 -3.744446476 -17.63737443 886.4032065 0.002256309528 +2.498626558e-06 -0.001583552784 0.003980482724 0 -13.70924666 -6.500102413 915.2465332 0.002185203579 +2.499912043e-06 -0.00293486964 0.0004346427647 0 -3.988070279 1.213064844 993.8516841 0.002012372703 +2.498368014e-06 -0.005576160336 0.01043622181 0 -16.54648752 9.081780731 1044.496655 0.001914797899 +2.49964884e-06 -0.009244316588 -0.003941840788 0 7.832695211 -2.913530019 997.1518885 0.002005712493 +2.496409405e-06 -0.002665775651 -0.001061565969 0 22.26240266 -16.49575161 1033.404654 0.001935350292 +2.499072764e-06 -0.007058352586 0.007504061521 0 11.59603957 -6.582567948 979.0236845 0.002042851498 +2.496129851e-06 -0.003913732599 0.006454439079 0 -0.3385587441 28.88006144 1037.520793 0.001927672211 +2.498396683e-06 0.0004282151721 -0.004210794847 0 -14.62168953 -9.438182975 971.6306501 0.002058395338 +2.496153437e-06 0.008767049811 -0.009405982832 0 -10.70953937 -22.30626962 891.5939738 0.002243173528 +2.499287311e-06 0.004495171728 0.008337309533 0 -2.493317428 11.08051778 951.2048363 0.002102596543 +2.496008863e-06 0.007760986565 0.0003678505146 0 -18.90759009 17.02198001 899.9341986 0.002222384707 +2.499208693e-06 0.001736998176 -0.001933501347 0 3.250743161 -12.32661865 1013.222277 0.00197390054 +2.498846056e-06 0.006893880535 0.01073284066 0 -10.53592048 -10.99804262 1002.366019 0.001995279133 +2.498196516e-06 -0.004050288489 -0.001331807531 0 8.491830882 -17.58276985 1027.838337 0.001945831293 +2.498943277e-06 -0.009233577326 -0.01093687527 0 -10.3123113 7.97972692 896.7786377 0.002230204775 +2.498445266e-06 -0.00180840638 -0.01358873757 0 17.85695219 -1.530119889 1016.135148 0.001968242122 +2.499090564e-06 0.008845026242 -0.004267967069 0 6.6143071 11.95770277 1013.102477 0.001974133955 +2.499073246e-06 -0.004683680078 0.001518796426 0 12.67225006 -3.813342672 971.8956862 0.002057834013 +2.495183641e-06 0.006896921908 0.00133607825 0 19.61276579 26.65423493 1065.467435 0.001877110397 +2.49822093e-06 0.007870591655 0.01408575764 0 17.48230336 2.792742218 938.3029776 0.002131507677 +2.498748314e-06 -0.004213157278 -4.665234592e-06 0 0.3112443755 -16.35018322 1033.372791 0.001935409968 +2.494306372e-06 0.002346818568 0.009109993621 0 18.97956533 23.65560944 897.9840998 0.002227210928 +2.495162296e-06 -0.009707581401 -0.002589209466 0 -19.67873652 -22.17851671 952.5302257 0.002099670904 +2.49846348e-06 0.004793686736 0.01322500785 0 -16.4081298 -6.670514207 1010.156476 0.001979891283 +2.499324424e-06 -0.005298663964 0.002237597338 0 4.56648451 10.18650425 960.2708689 0.002082745676 +2.498756545e-06 -0.00499594342 0.002425420645 0 7.344596947 13.99306909 1001.938053 0.001996131392 +2.496535671e-06 -0.0003147113882 -0.008601212252 0 -19.28371594 -16.20853178 956.5158441 0.002090921977 +2.497509634e-06 -0.00110700096 0.008080177722 0 -21.95479657 6.56709567 1026.428219 0.001948504497 +2.499207509e-06 0.001957914438 -0.00529476857 0 7.053490195 10.52785778 1006.449904 0.001987182861 +2.498410807e-06 0.0001448572893 0.01384314777 0 18.30226825 3.889279912 1049.274082 0.001906079674 +2.495759335e-06 -0.006844979892 -0.011729461 0 -6.095510389 -25.08775137 885.9476561 0.002257469712 +2.497312487e-06 0.005372478194 -0.006824613267 0 -15.58771678 14.32667813 912.820282 0.00219101179 +2.496121382e-06 0.002607358689 -0.01413853476 0 -19.74407211 -16.462895 922.4584682 0.002168119291 +2.496802003e-06 0.003214305369 -0.0001750881155 0 -18.25135295 -13.49864745 897.1773741 0.002229213596 +2.499250458e-06 -0.005337833329 0.0007340124529 0 -9.808990442 -8.175712893 1042.821649 0.001917873494 +2.497704264e-06 0.006537217265 -0.01153077293 0 22.22748162 -5.336023112 1066.428533 0.001875418688 +2.493987706e-06 0.007080626744 0.004796605592 0 24.38251175 -19.30251748 895.9982536 0.002232147208 +2.498949654e-06 0.003981061806 -0.008450754716 0 -12.13372546 -7.179558113 972.5891508 0.002056366759 +2.496342818e-06 0.009721021298 -0.008251790539 0 26.72258919 5.514402692 1008.340631 0.001983456719 +2.499684731e-06 0.009692804776 -0.005588577075 0 -0.09635283786 7.532186279 948.5947761 0.002108381841 +2.49674889e-06 0.002271857769 0.0119793772 0 20.80726808 -13.68006454 976.0755288 0.002049021762 +2.499895069e-06 -0.005139678149 -0.01338961474 0 1.351771668 4.21276936 965.7693214 0.002070887898 +2.496244235e-06 -0.005733200004 -0.006338191603 0 -25.76184077 1.94322952 942.1062505 0.002122902803 +2.499684067e-06 0.009054463133 -0.006562223865 0 -4.758107332 -5.419106332 907.1823113 0.002204628524 +2.495710127e-06 0.005028935713 0.008456230494 0 3.388274501 26.29759373 904.6369538 0.00221083164 +2.496591256e-06 -0.001790809077 0.00315289997 0 -19.44777728 -19.94138178 1066.255862 0.001875722396 +2.499965445e-06 -0.0006254036585 0.005228785928 0 1.647632463 2.175865777 1038.195952 0.001926418608 +2.495980025e-06 0.007405577861 -0.01465983925 0 27.00456 -12.64705159 1051.016539 0.001902919627 +2.494904725e-06 0.001298043942 -0.01029228213 0 17.69841109 -27.18095085 1015.277166 0.001969905427 +2.496725344e-06 0.005792729189 0.004886865139 0 14.76914817 -18.66534991 929.6028866 0.002151456314 +2.498231197e-06 -0.000504000294 0.008523808394 0 -18.66768803 2.219706481 999.2386301 0.0020015239 +2.497254387e-06 -0.00866820829 0.008995071861 0 21.29635897 12.81412646 1060.200809 0.001886435082 +2.496136546e-06 -0.007099367403 -0.01097975858 0 -14.84636182 -20.97878303 924.0373281 0.002164414726 +2.498297831e-06 -0.007059484776 0.008287456445 0 18.70511191 -2.689550706 1023.945083 0.001953229751 +2.497933325e-06 -0.0005442376621 -0.002333763933 0 19.7111549 -7.834935299 1042.989372 0.001917565082 +2.497495712e-06 0.004324276242 -0.004193307718 0 20.51918056 9.509872122 1010.163383 0.001979877743 +2.499357835e-06 -0.009666969059 0.003118533245 0 7.730705633 -6.875728204 912.8339615 0.002190978956 +2.498590163e-06 -0.007709674658 0.001831423868 0 7.393765843 13.18174106 899.873619 0.002222534318 +2.499048881e-06 0.004018685836 0.00599033908 0 13.3008935 -2.584672633 982.2798538 0.002036079629 +2.494395454e-06 0.0003711206373 -0.004691133974 0 19.07981535 -22.55437976 881.6406388 0.002268497971 +2.49770245e-06 -0.001292118425 0.006076356552 0 18.74446311 11.4024096 1023.156968 0.00195473428 +2.496535327e-06 -0.00768231119 0.01043674983 0 -24.4910007 -6.801785412 965.0925537 0.002072340101 +2.498557211e-06 0.003184949956 0.005037832155 0 13.51172179 -8.469629686 938.5637886 0.002130915367 +2.49951474e-06 0.004136603591 0.004982598152 0 -10.12041747 0.2013905776 1027.426038 0.001946612142 +2.498073017e-06 0.009529421623 0.007171338717 0 -15.73055339 8.346169741 906.8274146 0.002205491329 +2.49713201e-06 -0.001228544279 -0.00814910172 0 -11.18070022 18.31394254 895.5316356 0.002233310271 +2.497943065e-06 0.005924312966 -0.004331285222 0 -9.51879756 16.72791001 948.6238483 0.002108317226 +2.497139523e-06 -0.006404990554 0.0001664281427 0 3.523889197 23.22898014 981.8612937 0.002036947594 +2.499410786e-06 0.002236689213 0.007338269837 0 9.418524285 -3.482532943 924.9522633 0.002162273751 +2.499173979e-06 -0.00282813956 0.01218934037 0 9.598812322 7.202203293 933.5342799 0.002142395885 +2.493561063e-06 -0.002005515713 -0.005999290457 0 22.4278413 -26.13282915 958.7116184 0.002086133058 +2.498080138e-06 -0.009105966655 0.006658987314 0 -18.90977091 8.182863118 1051.195632 0.001902595425 +2.497393062e-06 -0.00939884935 0.002666557494 0 -17.60567523 -16.40683525 1053.520554 0.001898396753 +2.495609977e-06 0.002630036278 0.008640876277 0 18.65136188 19.97150904 921.612779 0.002170108798 +2.495465669e-06 -0.004751087371 0.004059028951 0 20.20737903 -21.99665183 991.2007672 0.002017754693 +2.498374446e-06 0.00583335523 -0.005169177828 0 0.2448665874 16.78667964 930.870717 0.002148526066 +2.494557005e-06 -0.005627570618 0.01434145781 0 -13.29411356 31.56570706 1037.250566 0.001928174411 +2.499164873e-06 0.004663550151 -0.006098067141 0 10.30155954 -5.727407696 911.8952172 0.002193234444 +2.497366046e-06 -0.006599946846 -0.009083457319 0 -10.51141791 19.60027741 968.6413538 0.002064747692 +2.496776875e-06 -0.009033329794 -0.002516904753 0 -24.19881786 -9.768880658 1027.340243 0.001946774706 +2.499720416e-06 0.004141707243 -0.01395730802 0 -3.767403348 5.870383948 932.7667525 0.002144158756 +2.498351902e-06 -0.008705396135 -0.009609148682 0 11.8013976 10.76172011 879.4896726 0.002274046032 +2.499378301e-06 -0.007338571977 -0.010523365 0 -11.21560244 1.417575637 1013.721184 0.001972929078 +2.495649099e-06 0.001057919781 -0.008685878261 0 -10.82133654 -24.86877175 918.7978488 0.002176757382 +2.49988176e-06 0.009248661529 -0.008522522841 0 -4.005646213 -1.451418307 876.103193 0.002282836104 +2.498149936e-06 0.005624884954 -0.006173363698 0 -15.53627328 -13.3660986 1065.148924 0.001877671709 +2.498273711e-06 0.003504370945 -0.01393118177 0 -11.92165484 -13.74275198 978.8646754 0.002043183343 +2.496387002e-06 -0.008147515347 0.01129430462 0 -16.52006366 19.61519461 953.4964238 0.002097543263 +2.497028711e-06 0.001680717506 -0.0007587128598 0 15.17935062 -20.39208999 1042.36342 0.001918716603 +2.499339928e-06 -0.001249374743 -0.01259998061 0 -0.3764399999 10.12197699 881.4785474 0.002268915115 +2.49892499e-06 -0.007192158592 -0.01009927503 0 -12.7217857 -3.130575557 893.3536424 0.002238755074 +2.49935468e-06 0.009010611605 -0.003499777489 0 -0.9857090521 -10.70267523 945.9794995 0.002114210721 +2.499990427e-06 -0.006922343466 0.008080697658 0 0.3336908207 -1.182526804 888.011478 0.002252223141 +2.49701476e-06 0.001175350975 0.005036375457 0 -20.10083776 8.097865248 886.4896308 0.002256089559 +2.499627065e-06 -0.0009074484091 -0.004688816601 0 8.172145003 2.062392623 975.8603666 0.00204947354 +2.498567403e-06 0.001341745332 -0.005345855732 0 1.200914661 -16.81655488 995.7979119 0.00200843964 +2.498662595e-06 0.0057446452 0.003646673206 0 15.58722714 -5.171958867 1003.958164 0.001992114882 +2.497433173e-06 -0.007356453757 -0.01356642449 0 -9.918635001 -21.6164102 1049.283259 0.001906063002 +2.497459734e-06 0.007956226594 -0.008151631427 0 22.68099797 2.11413959 1010.230679 0.001979745855 +2.498765723e-06 -0.007852812707 -0.0002972334553 0 3.82441536 14.8587237 976.3571575 0.002048430725 +2.499556131e-06 0.009715270372 0.007479569055 0 -7.52987358 5.490994572 989.0393564 0.002022164221 +2.499976584e-06 -0.007242461336 0.007393054096 0 0.5724693308 -1.874556066 905.7091804 0.00220821434 +2.498786462e-06 -0.0002349195816 0.005067419317 0 -13.22235918 -6.133219346 935.4157899 0.002138086636 +2.497145693e-06 0.008655992583 0.01271599565 0 13.82728726 17.82208838 943.6936094 0.002119331932 +2.49874055e-06 0.007105844622 0.004226367599 0 -8.828771277 12.79334199 979.2103703 0.002042462029 +2.496150485e-06 0.00846532783 0.009812166891 0 26.58497982 9.570352132 1017.720428 0.001965176237 +2.4968734e-06 -0.00366100797 -0.009049393886 0 7.681438778 -24.32519655 1019.628542 0.001961498641 +2.498824186e-06 0.004284154144 -0.002845556389 0 6.267067183 -13.5649285 974.2428716 0.002052876196 +2.499568018e-06 0.003813477554 0.01408634876 0 5.349836971 -7.916779791 1027.898167 0.001945718034 +2.499413466e-06 0.007147151106 0.007842845775 0 -5.275406803 -8.058922725 889.2390314 0.002249114051 +2.499971445e-06 0.004552012002 0.01164850561 0 -0.2365315549 2.482476767 1043.490171 0.00191664479 +2.498787789e-06 0.007939041979 0.01488214464 0 -6.91671541 -14.88608248 1054.010964 0.001897513468 +2.497926445e-06 0.005863123615 0.004560294973 0 -16.25071256 -10.79050897 957.5937674 0.002088568314 +2.499215674e-06 0.00694049845 0.0007436493575 0 4.170232395 -12.37486232 1042.517854 0.001918432372 +2.495102282e-06 0.004020508602 0.008941920076 0 25.82695199 -18.88579073 1021.541667 0.001957825182 +2.497043174e-06 0.007738500037 0.01001297644 0 21.73520302 10.39655168 990.3375931 0.00201951336 +2.496995568e-06 0.004281635373 -0.00525573777 0 -15.78593449 -18.46244501 990.5015848 0.002019179 +2.497417153e-06 0.00430753612 0.008855062716 0 5.179342647 19.66173186 894.2468371 0.002236518953 +2.497658491e-06 0.003574851411 -0.00971061032 0 17.11174774 8.896986029 890.9174335 0.002244876938 +2.498863078e-06 0.0008584367251 -0.009619864204 0 -8.551142394 10.21695848 883.3947422 0.002263993552 +2.498477715e-06 0.003472793419 -0.008204059484 0 -16.06690184 5.079516429 965.5090708 0.002071446101 +2.495175511e-06 -0.003828443526 0.003655807783 0 -19.42640016 20.27827458 903.3818561 0.00221390322 +2.498957345e-06 0.005171173448 0.003423791053 0 -7.813089512 12.24928206 1005.957772 0.001988155025 +2.494442846e-06 -0.008512137556 0.005819802764 0 -20.99377986 21.9924264 911.2293503 0.002194837117 +2.497100728e-06 0.009985307227 0.008108398626 0 22.18255309 -13.18010822 1071.068481 0.001867294234 +2.499710445e-06 0.008456504922 -0.0076570409 0 -5.35443119 -5.777442502 1035.064677 0.001932246404 +2.499545044e-06 0.008859910527 0.01463644459 0 5.157426115 -7.459216293 950.6257918 0.002103877275 +2.499042522e-06 0.004157487149 -0.002541104013 0 2.240041482 -13.86257659 1014.610572 0.001971199645 +2.499915244e-06 0.00644282924 -0.01215359215 0 3.978457012 1.402516127 1024.577345 0.001952024423 +2.499259369e-06 0.008893179367 -0.01198591455 0 -0.8573542725 11.1248817 916.6782602 0.002181790588 +2.498600467e-06 -0.007373431074 0.01033019578 0 -13.27294868 -11.75348172 1059.461285 0.001887751848 +2.496904664e-06 -0.001928527211 -0.0009546438348 0 -4.533386586 23.35818719 955.8672118 0.002092340835 +2.49957944e-06 0.008533194126 -0.01447148674 0 0.1296645232 -9.033741181 985.0445525 0.002030365017 +2.499134742e-06 -0.00470985841 0.006244846671 0 7.400651116 -10.10176868 951.8096501 0.002101260478 +2.498018437e-06 -0.003000527089 -0.01355406457 0 15.08351328 -11.04075235 938.6852324 0.002130639677 +2.496085321e-06 -0.008243227862 0.01000479399 0 -4.996605353 29.49508271 1068.501823 0.001871779679 +2.499285357e-06 0.009956151014 0.002949611249 0 -8.040984443 7.578055127 924.1102643 0.002164243897 +2.496376784e-06 -0.005750386501 0.009481915799 0 6.370594949 26.21596828 1001.673275 0.001996659039 +2.49882068e-06 0.000244194041 0.002856695261 0 -11.69836958 -7.557504159 906.6863162 0.002205834547 +2.499704559e-06 -0.007207309888 -0.009849447927 0 5.709735544 5.040343123 990.7570444 0.00201865837 +2.499138419e-06 -0.008535005646 0.003188856854 0 -12.07991416 -5.346377379 1006.210123 0.00198765641 +2.495691036e-06 0.0002223463869 0.01311247489 0 -20.95037368 18.44132336 950.1376793 0.002104958096 +2.498763306e-06 0.002774504246 -0.00597332339 0 4.59639433 14.90768585 991.7521249 0.002016632937 +2.497534015e-06 0.005038650609 0.006054881893 0 -11.03504133 -20.35358638 1042.144543 0.001919119582 +2.499130323e-06 0.002279512729 0.0102462967 0 4.381659525 -11.73631512 949.7649329 0.002105784211 +2.499986863e-06 -0.005064634164 -0.009999132862 0 1.403058877 0.4028687197 900.5762945 0.002220800183 +2.496800475e-06 0.004746105229 0.00573101515 0 24.7453332 3.030211885 985.0517532 0.002030350176 +2.497961149e-06 -0.005344235259 0.001557644124 0 13.77351962 11.45472019 886.8660945 0.002255131877 +2.496718534e-06 7.039280608e-05 -0.003870528701 0 21.32522785 -16.82685145 1059.835157 0.001887085918 +2.497897321e-06 0.004905827665 -0.01472591326 0 -19.28083042 9.459633704 1046.941977 0.001910325543 +2.498713088e-06 0.005668766201 -6.515977671e-05 0 4.263156111 -14.3225199 931.2792994 0.002147583438 +2.497305782e-06 0.0049773941 -0.009628221185 0 -17.64900611 14.01230762 970.4052545 0.002060994611 +2.495816383e-06 0.007041020463 -0.01116140619 0 -16.41584614 -25.52847732 1048.59869 0.00190730736 +2.49874058e-06 0.007262718538 -0.0001161183184 0 -13.20982705 -8.87104192 1002.40948 0.001995192623 +2.4982786e-06 -0.007311113128 -0.009343281621 0 8.183821428 -16.75125948 1004.521284 0.001990998132 +2.496487839e-06 0.002675494119 -0.007143922553 0 -9.992317759 -24.38975337 993.9614197 0.002012150532 +2.49800706e-06 -0.005252547408 0.01073294444 0 16.19854386 8.411278018 913.9512394 0.00218830055 +2.498984486e-06 -0.007407245953 0.009141071127 0 -15.10020076 -1.904130479 1067.786426 0.001873033738 +2.498539106e-06 -0.001513754702 -0.003655171108 0 6.807699948 16.23165833 1029.506683 0.001942678016 +2.496602799e-06 0.0002732591284 0.000689337342 0 23.43188701 -7.391584947 942.1271174 0.002122855784 +2.493841681e-06 0.009502797481 0.01165309521 0 27.03050901 25.42497404 1056.40758 0.00189320868 +2.494253642e-06 -0.002885950338 0.01041183926 0 -15.70708953 28.13804589 949.749985 0.002105817354 +2.498488713e-06 0.003119570361 -0.01177679451 0 -3.631742868 14.97888265 886.3320836 0.002256490583 +2.497433499e-06 0.006334555084 -0.004360182672 0 19.27265239 10.857657 975.9895375 0.002049202295 +2.496842866e-06 2.007497475e-05 -0.01059827448 0 19.23650828 17.1297842 1024.576227 0.001952026553 +2.498040981e-06 -0.004749864065 -0.004265222233 0 13.90471123 -12.80766065 954.775795 0.002094732617 +2.499343865e-06 0.005576506187 -0.01075118075 0 7.562937775 9.169444763 1037.482846 0.001927742716 +2.499681424e-06 -0.009032508247 0.002637762416 0 -4.126454314 -6.332857541 946.8910689 0.002112175376 +2.49801997e-06 -0.006713434132 -0.0113016012 0 15.43165045 8.172727956 877.2425973 0.002279871048 +2.498797677e-06 0.006191863189 -0.0007426592661 0 -9.037316996 11.74881852 955.6939546 0.002092720154 +2.499518438e-06 0.0009685178427 0.0009821867128 0 -7.914847317 4.583727669 931.910845 0.002146128045 +2.498056873e-06 0.004876130465 0.01338209191 0 11.56988746 -14.09192261 924.628726 0.002163030353 +2.497869816e-06 0.006502302191 -0.0143851125 0 21.47374927 2.265876749 1045.803006 0.001912406055 +2.495096277e-06 0.0004762594402 -0.01139544368 0 -9.422995225 -26.51339384 897.8362034 0.002227577806 +2.49917463e-06 0.005929188528 0.0008044222626 0 -12.87372034 2.313587457 1017.919333 0.001964792233 +2.498805412e-06 -0.004811022077 0.00320025458 0 11.77411284 -9.531996519 979.8932783 0.002041038595 +2.497729118e-06 0.007892280356 -0.01130783538 0 -15.52905257 14.82933804 1007.207072 0.001985688997 +2.497607426e-06 0.00708427751 0.008089252403 0 2.111361197 20.60201249 946.4000424 0.002113271249 +2.499360931e-06 -0.003385021654 -0.005830524685 0 -2.333145591 -11.83209489 1066.631704 0.00187506146 +2.497696945e-06 0.007006232617 0.002480626779 0 -19.45605573 2.664600166 914.6875457 0.002186539009 +2.497654249e-06 -0.002952399412 -0.01348879065 0 -21.90260906 -4.62388319 1033.130839 0.001935863227 +2.498246825e-06 0.006874555405 -0.01462430551 0 7.659135739 -14.78715171 889.0997799 0.002249466309 +2.494589464e-06 0.005292864437 0.002924137737 0 27.57057434 -21.44624193 1060.976583 0.001885055742 +2.498712351e-06 0.001826976226 0.01418892798 0 8.786921614 -11.0686763 880.4793336 0.002271489998 +2.497708853e-06 -0.0092096399 0.003138211761 0 10.34010359 18.34339225 983.345108 0.002033873951 +2.49694265e-06 0.004241688396 0.006499918015 0 1.436892058 23.92448233 968.8077038 0.002064393163 +2.498329119e-06 0.006156752543 0.01303826022 0 -12.34732159 -13.39461805 996.2970063 0.002007433514 +2.495782211e-06 -0.005576515505 -0.004096229821 0 -26.24852539 14.54761022 1032.613826 0.001936832483 +2.498569609e-06 -0.003360711113 -0.01168654609 0 2.485986797 15.03903607 901.0280581 0.002219686703 +2.497408684e-06 0.003827767451 -0.002949673443 0 -5.16757677 22.4240209 1010.428413 0.001979358433 +2.495144355e-06 0.005576209757 -0.014694748 0 -2.776136091 -30.21240594 972.8726603 0.002055767504 +2.499250511e-06 0.009724075547 0.01295778109 0 11.70860332 2.291871478 974.3687874 0.002052610907 +2.497226268e-06 -0.002730293698 -0.004641813815 0 -21.83367786 -3.935780619 941.5484962 0.002124160368 +2.49870324e-06 -0.001275448073 -0.009821269889 0 9.897540815 -11.26712573 931.0533603 0.002148104594 +2.49727945e-06 0.001730546383 0.01247066197 0 1.5194906 21.08786 906.016909 0.00220746432 +2.49800849e-06 -0.0004617877072 0.006958008951 0 -8.808082799 -17.07036386 962.1995227 0.002078570975 +2.495237739e-06 0.001282866439 -0.000693328036 0 24.44861012 18.05416943 984.080111 0.002032354864 +2.497968901e-06 -0.006447260212 -0.006745539245 0 12.39926183 -16.61171959 1028.170576 0.001945202524 +2.497628148e-06 0.006028799191 -0.006945483468 0 -22.09810823 2.124531474 1018.918914 0.001962864731 +2.497036726e-06 0.0008145545237 0.00794717496 0 -21.19722876 -14.63135804 1057.531724 0.001891196222 +2.499893725e-06 0.002676536259 -0.01127752992 0 -4.410351628 -0.9779183579 979.8461145 0.002041136838 +2.498213772e-06 0.005889848792 -0.0007486878103 0 17.62624661 -9.174598846 1051.043127 0.001902871489 +2.495934819e-06 0.0004385358561 0.005312820033 0 -12.02421942 22.28977102 887.6665252 0.002253098369 +2.498550761e-06 -0.000809048051 0.001013611257 0 -13.04827815 9.422289084 945.1519061 0.002116061965 +2.497876877e-06 -3.460696898e-06 0.008404079773 0 8.001943042 -20.19977829 1054.043814 0.001897454331 +2.496762664e-06 -0.003338710545 0.009462651021 0 -27.16149407 -0.04920647954 1066.926445 0.00187454347 +2.497034e-06 0.003617249094 -0.001678226504 0 5.332055008 22.33851181 942.5244164 0.002121960944 +2.499198636e-06 -0.009051651182 -0.0108048776 0 5.5932744 -12.07736621 1051.199894 0.001902587712 +2.49648423e-06 0.001160321017 -0.007565022153 0 -7.327709138 -22.0778433 876.7887585 0.002281051143 +2.499169752e-06 -0.009156129523 -0.01114748604 0 -3.655537391 -10.86939848 889.8177716 0.00224765122 +2.497839209e-06 0.005567703932 -0.01317309116 0 13.23578973 -16.27362284 1008.724382 0.00198270215 +2.499625093e-06 -0.001579283914 0.0002116605802 0 -8.26628956 -2.026008984 982.8257651 0.002034948687 +2.498705735e-06 -0.008018082092 0.002243572099 0 -4.486602821 13.38228728 877.1023216 0.00228023567 +2.499448755e-06 -0.007874459382 5.05227386e-05 0 -9.130777726 1.130753384 876.1718961 0.002282657101 +2.498748755e-06 0.00136019425 -0.01352304738 0 15.39539737 -0.5531339777 973.6508439 0.002054124446 +2.497303225e-06 -0.0003749779286 0.00588380639 0 9.677653547 -22.5807964 1057.409581 0.001891414676 +2.49630147e-06 -0.006212932384 -0.01496953973 0 -26.43660129 -10.22645879 1041.634466 0.001920059353 +2.49934614e-06 0.009868891067 0.00901121767 0 1.655836438 -10.2279877 905.9584315 0.002207606807 +2.496905451e-06 -0.002841540556 0.003024065362 0 -17.84346615 -18.75752727 1040.154555 0.001922791176 +2.498257784e-06 -0.009128584219 0.002699610572 0 15.75729406 -7.046768255 924.4674884 0.00216340761 +2.499146636e-06 -0.005466872421 -0.0003169355937 0 12.00315208 4.214068664 973.6370551 0.002054153536 +2.498939687e-06 -0.008186745895 -0.00417793771 0 -2.067693947 -13.15607454 914.3738631 0.002187289117 +2.494632508e-06 -0.00543717911 -0.002843436019 0 -17.98172893 -23.61234034 905.1257835 0.00220963764 +2.499395667e-06 -0.009465074791 0.002095225314 0 -2.648238999 -10.86774614 1017.355286 0.001965881563 +2.496887058e-06 0.006222969969 -0.01084158021 0 -19.50400371 15.23098569 991.3118503 0.00201752859 +2.499415583e-06 0.001659634588 0.00955308663 0 -4.142625535 8.833967954 902.4114241 0.002216283999 +2.496700948e-06 -0.009369625938 -0.008864696589 0 -25.1278126 -4.591015135 993.9405604 0.00201219276 +2.498893539e-06 0.008900265959 -0.006337204187 0 11.60339733 8.32417318 959.8120014 0.002083741396 +2.499231197e-06 0.003666712851 0.001221024517 0 -8.554449817 -7.08373651 895.5932207 0.002233156698 +2.496659459e-06 0.009068092289 0.01180863462 0 24.64288686 -4.343435761 967.5950419 0.002066980414 +2.496064937e-06 -0.001663944926 0.003481606019 0 -15.815591 20.24211103 915.132123 0.002185476774 +2.495519731e-06 0.004446247513 -0.01115595538 0 24.87506431 18.93646734 1043.681146 0.001916294079 +2.497992524e-06 -0.006549880477 0.010938633 0 17.9424995 -9.27673721 1007.753707 0.001984611902 +2.49675032e-06 -0.001404468981 0.00603925396 0 11.19771392 24.37108972 1051.525128 0.001901999245 +2.498039343e-06 0.007627432016 0.01268302082 0 3.1598052 20.62218482 1053.247127 0.001898889585 +2.499361558e-06 0.006525033307 0.004127882284 0 1.932463849 11.23217485 1008.511565 0.001983120541 +2.498296903e-06 -0.005970983622 0.005217625669 0 -16.01727569 -8.221466829 975.2691013 0.002050716051 +2.498793181e-06 0.003306270288 -0.0007862794027 0 6.588258927 -12.99557288 937.6702182 0.002132946063 +2.49799548e-06 -0.0004200450331 -0.01247486131 0 19.70382541 1.27139148 985.8296933 0.002028747981 +2.499788216e-06 -0.007583172107 -0.005414964866 0 -6.226840464 -1.601065516 987.8571887 0.002024584143 +2.498843094e-06 0.001617791113 0.01337106752 0 -13.24356615 8.317072912 1027.917979 0.001945680532 +2.497072693e-06 -0.009642011141 -0.01175360533 0 -2.326669435 -23.47355627 974.4552702 0.002052428738 +2.498323552e-06 -0.005008969731 0.01108850007 0 6.097173156 -18.10600184 1043.107025 0.001917348798 +2.499173785e-06 0.00640119921 0.007940975404 0 -7.326733254 -11.02412714 1029.5966 0.001942508358 +2.497749192e-06 -0.009646485746 -0.01149289283 0 18.30811396 -11.07303481 1008.106821 0.001983916742 +2.494519854e-06 -0.00261822673 0.01167059154 0 -23.23009923 26.69967901 1068.125397 0.001872439327 +2.498479473e-06 0.003585916194 -0.005014167982 0 -16.59668088 0.358353972 951.7246222 0.002101448206 +2.495859976e-06 0.005603601527 0.0005585810286 0 27.0827853 14.34264473 1064.363858 0.001879056664 +2.49839705e-06 -0.002839544518 -0.01354328839 0 -11.36756535 -13.68529196 993.3753958 0.002013337564 +2.49955238e-06 -0.005464806529 0.008618155983 0 -9.092815443 2.470603508 995.7868907 0.002008461869 +2.498566527e-06 0.0008817104669 -0.01200803543 0 -13.15160728 -11.89856047 1047.213352 0.0019098305 +2.497540784e-06 0.009722668817 -0.003011918021 0 -16.70624831 -10.41154417 887.2819604 0.002254074904 +2.499039253e-06 -0.0008177304734 0.01364530146 0 -11.82874472 -4.398610618 910.2919888 0.002197097222 +2.496810296e-06 0.006009034696 0.01049970243 0 -19.20162758 -14.68509436 956.6213464 0.002090691377 +2.495566988e-06 0.002813897887 0.002647374258 0 15.57476054 21.70981754 896.7306128 0.002230324215 +2.499255922e-06 0.009014464705 0.007012495415 0 -8.617834942 -8.152141161 972.3262078 0.002056922856 +2.498819049e-06 -0.005075686811 -1.295877155e-05 0 -11.5817583 -10.92544812 1035.817528 0.001930842013 +2.498920162e-06 0.008961631567 -0.002511835524 0 11.83008264 -5.858656716 898.1574519 0.002226781057 +2.498171106e-06 -0.006536287265 -0.0141161855 0 16.44535618 -5.302877177 903.2226283 0.002214293506 +2.499778924e-06 -0.0002181815309 0.003326317775 0 6.28362598 -0.7519503331 951.6958023 0.002101511844 +2.495749003e-06 0.009181283261 -0.00429844714 0 -17.6028832 22.08111214 967.8558297 0.002066423468 +2.4959883e-06 0.002239536825 -0.002388198485 0 17.47654749 -18.20256743 890.3242606 0.002246372573 +2.498324698e-06 -0.001076494525 0.008923158715 0 14.59328896 -12.06598227 1034.20206 0.001933858069 +2.497960357e-06 -0.00468598403 0.008795590368 0 -15.67180533 -9.860769592 916.4756514 0.002182272924 +2.496764048e-06 -0.0079831377 0.0002700617979 0 16.4297476 -21.31686083 1057.415828 0.001891403502 +2.496293027e-06 -0.005276344935 -0.0008753497247 0 -26.84376037 -9.190886842 1041.472291 0.00192035834 +2.499121382e-06 -0.002396246968 0.003307267623 0 9.566279129 -7.604454628 921.7600268 0.002169762131 +2.497986658e-06 0.009475269467 0.01223866979 0 12.38651228 -16.134551 1013.360022 0.00197363223 +2.498632057e-06 0.006279982678 -0.005772342996 0 -4.139889109 -16.17009002 1008.929091 0.001982299865 +2.49733441e-06 -0.003426205181 -0.002687236054 0 -12.80926844 -16.65323888 909.5666984 0.002198849192 +2.497634644e-06 0.00945071165 -0.004388641 0 20.84448874 -7.787778854 1022.69827 0.001955611012 +2.497581053e-06 -0.003116631308 0.0076457984 0 -1.020564725 23.23770016 1057.123554 0.001891926438 +2.499433251e-06 -0.0054367295 0.00831533036 0 3.139584833 10.47419277 1026.96616 0.001947483839 +2.496659413e-06 0.006933054589 -0.001466452014 0 22.41486117 -15.10341376 1045.147498 0.0019136055 +2.496015223e-06 -0.004315536418 0.009512750446 0 0.8418941091 26.85604101 951.2145495 0.002102575072 +2.496958592e-06 -0.009983744305 0.0116633334 0 -21.53373757 9.491272589 953.7189824 0.002097053783 +2.498611724e-06 -0.00941094181 -0.006514364707 0 -7.034078071 -14.97108675 992.4851648 0.002015143471 +2.494890129e-06 0.005499076629 -0.00836014475 0 -13.83034931 -29.25880445 1011.565572 0.001977133322 +2.499621932e-06 0.001056888392 0.004237039327 0 -9.139323028 -0.31860713 1051.606425 0.001901852207 +2.496810428e-06 -0.00100292725 -0.004442394404 0 -12.67783148 22.87841437 1035.109629 0.001932162492 +2.499526964e-06 0.004702086556 0.0115099583 0 -8.705185017 -1.922843155 916.493282 0.002182230944 +2.496849177e-06 0.005683567999 -0.009712786982 0 23.49252929 7.656876906 983.8297005 0.002032872152 +2.496601848e-06 -0.004480310595 0.0077719811 0 17.69189884 20.03977453 1024.878426 0.001951450971 +2.495702654e-06 -0.001293777027 0.01291236926 0 -14.292826 21.47218918 879.2784268 0.002274592369 +2.496033095e-06 0.008488794803 -0.001061091428 0 17.61189831 23.70836235 1047.912046 0.001908557124 +2.499742743e-06 0.006331669143 -0.002368159513 0 0.433722981 -6.701260966 936.1576437 0.00213639232 +2.497227693e-06 0.005084867431 -0.008485457841 0 -8.195734432 -20.62510839 942.1400802 0.002122826575 +2.499130053e-06 0.004260412436 -0.01016474135 0 10.66673661 5.560016296 911.812885 0.002193432483 +2.497353486e-06 -0.003508059243 -0.0002636138862 0 7.315165228 18.94148588 882.2215456 0.002267004258 +2.496078114e-06 0.004705340574 -0.009772909801 0 13.20959846 -26.58122919 1059.213248 0.001888193906 +2.499257083e-06 0.0006545708003 -0.01426527844 0 -2.024987864 -10.90687962 909.9674982 0.002197880698 +2.495349291e-06 -0.003098102272 0.003071499208 0 -22.94133588 -20.07141995 998.7781754 0.002002446639 +2.499477397e-06 0.005539945867 0.01310262936 0 5.909784502 -7.305448005 919.0378266 0.00217618899 +2.498972757e-06 -0.007332115741 -0.0005080523947 0 6.344872643 12.89488496 1002.487004 0.001995038332 +2.499538582e-06 0.004978841222 -0.01281834537 0 3.279710349 -8.006092654 900.5657712 0.002220826134 +2.497412215e-06 0.00336959918 0.00108046232 0 -12.94470769 -19.83872451 1040.849758 0.001921506908 +2.499046519e-06 0.002443550164 -0.003578012546 0 1.230959816 13.95417825 1014.272084 0.001971857485 +2.497229684e-06 0.006993939588 -0.001313747372 0 -17.14371658 -17.04755405 1026.695628 0.001947996996 +2.495112659e-06 -0.006065292517 0.008973607176 0 -21.53178536 19.66333219 931.9809086 0.002145966705 +2.495800987e-06 -0.00665206817 0.0114236412 0 -12.16201818 28.39700072 1065.322487 0.001877365796 +2.496592118e-06 0.001046436653 0.004485106627 0 11.05443995 21.34154693 920.1478275 0.002173563791 +2.494602357e-06 -0.003801575038 0.004107433066 0 -16.78129316 23.42730924 876.3706921 0.002282139302 +2.49766358e-06 0.006026579388 0.009069866971 0 -12.07461221 17.1644189 970.4822191 0.002060831163 +2.495342578e-06 0.005038108267 0.003286218052 0 26.08015315 14.54444511 977.7360528 0.002045541835 +2.499255293e-06 0.006900677457 0.01471470698 0 -11.40341746 -0.5652466906 935.4304925 0.002138053031 +2.497628147e-06 0.005455352133 -0.006823730876 0 -15.9577327 -11.86695304 912.7364156 0.00219121311 +2.496843513e-06 -0.003335041306 -0.005495134809 0 -24.9042853 -6.866116833 1027.684099 0.001946123329 +2.497552629e-06 -0.001913704625 -0.004790117266 0 -17.7855973 -9.30932295 907.0332537 0.002204990822 +2.496676757e-06 0.002640375751 0.002463537741 0 13.66986159 -19.33472679 918.0183862 0.002178605603 +2.498706576e-06 0.00918708656 -0.005467785064 0 15.59593879 6.023678322 1039.286379 0.001924397394 +2.497935322e-06 0.007665025871 -0.003972167715 0 3.247121203 21.33703997 1061.76916 0.001883648609 +2.498437148e-06 0.007560567083 -0.000195213086 0 8.431018276 14.00684854 924.4907169 0.002163353253 +2.497541306e-06 -0.006081788032 -0.01447842382 0 -21.10375331 2.810862191 959.7336118 0.002083911593 +2.498751564e-06 -0.000160675142 0.001758760598 0 -15.51852113 -1.604810186 987.1444486 0.002026045938 +2.499419785e-06 -0.009949383638 -0.01253011547 0 -10.12113859 3.535517539 995.1375334 0.002009772451 +2.499689723e-06 0.002870043274 -0.002592387234 0 -7.92120991 -2.517886988 1055.073539 0.001895602464 +2.499951208e-06 0.001219924996 -0.00708395056 0 2.632357858 -1.332026857 944.3996846 0.002117747425 +2.494173243e-06 -0.004858692475 0.009318710316 0 -22.21598624 27.92135248 1044.315446 0.001915130154 +2.499395476e-06 -0.007648487152 0.0007965996419 0 -10.70622276 -2.603354052 1001.957589 0.001996092471 +2.499475843e-06 -0.001329302792 0.01347932587 0 -1.870867183 -10.35982885 1028.114279 0.001945309039 +2.496350363e-06 -0.004090618631 -0.001650187208 0 -20.10628267 -16.30680369 957.6706562 0.002088400628 +2.495827117e-06 0.0008854767494 0.006669416707 0 22.37070852 17.7787235 988.5105952 0.002023245891 +2.492704124e-06 0.008054124061 -0.0130737367 0 24.57141415 -32.60403908 1067.601592 0.001873358015 +2.498411926e-06 -0.005268614679 0.00560376755 0 14.18858665 -9.432554215 955.7879462 0.002092514357 +2.495993825e-06 0.007754917592 -0.01112292278 0 -14.79389906 -25.01984668 1026.240661 0.001948860609 +2.496837408e-06 0.003752002153 -0.00997742756 0 24.84655027 7.069537673 1026.661801 0.00194806118 +2.49666296e-06 -0.007984869438 -0.004729810422 0 -14.36477473 19.25459908 929.4096665 0.002151903592 +2.49886104e-06 -0.009602399268 -0.009242646962 0 8.155107838 -11.1302092 914.0617479 0.002188035988 +2.496740629e-06 -0.00732221398 -0.01024316667 0 -22.45127993 -13.83983746 1032.489785 0.001937065168 +2.497448482e-06 0.002577940654 -0.001258531983 0 -2.971633509 21.02733448 939.7183728 0.002128297219 +2.499826115e-06 0.005376334684 0.005025851943 0 3.916579317 -4.681710197 1035.027512 0.001932315786 +2.498768738e-06 0.008506445163 -0.002991607008 0 -13.24828486 -5.778579707 920.8907613 0.002171810256 +2.495882145e-06 -0.0009616063721 0.006541897624 0 23.4806982 -14.62460832 963.329415 0.002076133012 +2.49983697e-06 0.005507789943 -0.01205607927 0 5.326598323 -1.005637376 949.2835196 0.002106852125 +2.498916591e-06 -0.00815727022 0.01197116606 0 10.07294566 -9.340419885 933.0674855 0.002143467682 +2.495981448e-06 -0.004190060808 0.004893142772 0 -18.96679342 23.140882 1054.770315 0.001896147409 +2.49718117e-06 0.009114140193 0.005108309188 0 20.54607953 -10.61421569 973.5623305 0.0020543112 +2.499900258e-06 -0.005942756967 0.001833345601 0 -3.588732927 2.137040813 935.1623345 0.002138666118 +2.496386035e-06 -0.008509558537 -0.002266396999 0 -23.71175762 -3.367949315 890.3452546 0.002246319604 +2.499196386e-06 -0.007629408608 0.0133014267 0 -0.4870170544 -12.23123228 965.4351597 0.002071604685 +2.499195663e-06 0.006901499927 0.01068329499 0 -11.40477819 0.9656593688 902.301235 0.002216554652 +2.496300621e-06 0.001918174969 0.01314690812 0 3.245698791 27.10768637 1003.142964 0.001993733767 +2.49964917e-06 0.00096491748 -0.01216749599 0 3.570391423 -6.424190919 877.3704257 0.002279538883 +2.498896823e-06 0.004423330184 -0.01308204351 0 -0.7330273446 -13.66563221 921.1794118 0.002171129722 +2.497021603e-06 -0.002059923145 -0.006680643044 0 3.504583842 -22.81728643 945.4243892 0.00211545209 +2.499041242e-06 -0.009751148894 0.01004177534 0 -4.942373103 -11.43538069 899.5119793 0.002223427865 +2.49705878e-06 -0.007070106803 -0.001233987228 0 -22.97471318 5.871058737 977.2737041 0.002046509582 +2.492564847e-06 0.008030589125 -0.009577809479 0 22.3626661 -26.83342604 904.808313 0.002210412936 +2.499096119e-06 -0.007209254508 0.005587461556 0 -2.591829868 13.78626056 1043.180271 0.001917214173 +2.499495906e-06 -0.001038790536 0.004700372682 0 7.320195533 -7.516738261 1044.873692 0.001914106954 +2.493567562e-06 0.004214791949 0.007108368063 0 22.88301192 24.54022555 934.585147 0.00213998693 +2.499326892e-06 -0.004118315531 0.004029160501 0 9.075374588 7.265386508 1001.852649 0.001996301554 +2.497833232e-06 0.004058094174 0.01435070613 0 -18.10280752 -12.50006207 1056.437484 0.001893155089 +2.497445515e-06 -0.001117457789 0.008531991919 0 -18.95902252 14.52995277 1056.377326 0.0018932629 +2.499046444e-06 -0.002304351139 0.01122282776 0 13.57257441 -4.800725945 1042.339783 0.001918760114 +2.49483937e-06 0.004110231064 0.01116409642 0 16.56720208 25.90738798 956.4577683 0.002091048937 +2.49506025e-06 0.001422165181 0.01116836797 0 21.47219336 22.69523049 993.2622417 0.002013566927 +2.49894197e-06 -0.007117759888 -0.01285255424 0 2.88565387 13.9803114 981.1686214 0.002038385611 +2.496202321e-06 0.00297498208 0.002747201964 0 23.21438416 16.52910984 1033.446923 0.001935271136 +2.49849712e-06 -0.002766971099 -0.01272607495 0 -11.0851628 -11.73408258 930.8650267 0.0021485392 +2.495826798e-06 0.007474043216 -0.01428200666 0 27.07125583 -10.35632511 1002.640777 0.001994732356 +2.49746744e-06 -0.006854897528 0.01129118907 0 -17.50872912 14.88986143 1020.858085 0.001959136172 +2.498284542e-06 0.005531739304 -0.00358753091 0 -18.13272274 -4.131540672 1003.775502 0.001992477398 +2.498905529e-06 0.008117839536 0.001746455231 0 13.44589938 -1.098414278 911.6871089 0.002193735088 +2.495847731e-06 -0.005643119803 0.008682033231 0 6.147198816 25.88575244 922.6676539 0.002167627738 +2.499391393e-06 0.001892332253 -0.01176829975 0 8.6971957 -5.863173022 950.6242162 0.002103880762 +2.499402137e-06 -0.003084184472 0.000221098708 0 0.2865188486 11.60852405 1061.829056 0.001883542354 +2.496868956e-06 0.00364943597 -0.002747832465 0 2.394536057 -24.86311322 997.6924466 0.002004625781 +2.498264191e-06 0.003133324995 0.00126309931 0 -5.816488548 -15.65975335 896.3326547 0.002231314445 +2.497512943e-06 -0.0004886112316 -0.008484317721 0 21.88632796 -3.998820301 997.202737 0.002005610219 +2.49903626e-06 -0.008658765345 -0.002571476048 0 -8.197556711 -11.53000607 1018.849843 0.0019629978 +2.498715227e-06 0.00715060967 -0.01058086031 0 -6.805959853 13.64812968 951.2309496 0.002102538822 +2.495639827e-06 -0.006702056392 0.0148374065 0 17.09166282 23.21005287 975.4508066 0.002050334047 +2.495904018e-06 0.002946358463 -0.01402032245 0 3.87492704 -30.25898046 1065.185771 0.001877606757 +2.49660914e-06 -0.003713514572 0.004218374561 0 -13.6216544 21.70453944 983.4936382 0.002033566789 +2.496626796e-06 -0.008123026481 -0.004080922154 0 -5.572182073 -24.48846456 966.4224194 0.002069488414 +2.499057664e-06 0.007177186268 0.002121857295 0 -12.6853781 6.067657634 1024.148069 0.001952842622 +2.496764064e-06 -0.008569094832 -0.00111031896 0 3.670849813 -24.11452117 958.3568329 0.002086905348 +2.498065129e-06 0.008116940688 -0.01196907423 0 4.392042124 -16.71553954 878.314367 0.002277089019 +2.495118948e-06 -0.001795113538 -0.01372363939 0 -16.95644009 -28.07927735 1049.082 0.001906428668 +2.497726185e-06 -0.0007207786851 -0.007517413173 0 11.91685461 18.68004611 1038.676573 0.001925527206 +2.499321178e-06 -0.001002883739 0.004646817078 0 11.99324632 -1.021500041 1032.925714 0.001936247662 +2.498704576e-06 -0.006034614313 -0.002141266228 0 -16.44260351 1.019035353 1023.287378 0.001954485165 +2.4959782e-06 0.007055131653 -0.006945716548 0 -17.08267854 -22.3838548 992.2233226 0.002015675256 +2.495966223e-06 0.0065231355 -0.01082801518 0 25.7985718 -2.812447499 913.1186743 0.002190295803 +2.497107116e-06 -0.008817119785 0.006118007214 0 -18.48687577 -13.06860594 940.8065402 0.002125835562 +2.499195288e-06 0.006181603088 0.01418419218 0 -10.90171399 -5.711147121 969.9915332 0.002061873668 +2.498479499e-06 0.009820342744 0.003578306793 0 4.803807315 14.7437305 889.0142566 0.002249682708 +2.498213051e-06 -0.006262921821 -0.004498096816 0 -14.16642538 12.795518 1009.506981 0.001981165101 +2.497058744e-06 0.008034182037 -0.01122028389 0 -9.241725684 -24.09550238 1063.567055 0.001880464416 +2.496953569e-06 -0.005541110947 -0.006702862973 0 -24.79223961 2.882947668 1010.701995 0.00197882265 +2.49913681e-06 0.007209474756 0.008171579589 0 -14.05361459 0.8181799192 1071.268622 0.001866945376 +2.499889098e-06 0.001852373225 0.0009347470268 0 -4.511765881 0.917705457 977.5936265 0.002045839852 +2.498381296e-06 -0.004169009509 -0.006586802308 0 -1.954004858 -15.88113285 889.07815 0.002249521035 +2.495263581e-06 -0.002580545368 -0.0137673938 0 0.1901769116 -32.15683865 1044.075896 0.001915569556 +2.494710915e-06 -0.009963800488 0.01204056366 0 -14.26422692 25.16058898 888.5643641 0.002250821753 +2.499343447e-06 -0.005671478566 0.007490138663 0 6.203020238 8.011212238 884.1004759 0.002262186318 +2.495304178e-06 -0.002374474825 0.008224567836 0 -16.13341642 25.40030403 981.2016852 0.002038316923 +2.497675849e-06 -0.0006793600135 -0.01300794759 0 -17.52462209 9.774621912 930.3969689 0.002149620073 +2.497801345e-06 0.004530385444 -0.0001684336248 0 -2.49519069 -18.67963974 898.4049041 0.002226167723 +2.499411335e-06 0.002763056178 0.003866251786 0 -10.59222103 0.1269129878 976.1818224 0.00204879865 +2.498758701e-06 -0.008921088655 0.00664539149 0 4.168432227 14.4145369 952.1521716 0.002100504583 +2.495272648e-06 -0.00841304956 0.01016629942 0 -16.8465637 26.37243672 1017.017406 0.001966534682 +2.497736989e-06 -0.00557757102 0.008311825481 0 -15.86404421 -14.87945136 1022.009652 0.001956928681 +2.498264516e-06 0.006671951031 -0.01245574876 0 16.75277349 9.759794742 1040.406206 0.001922326097 +2.497051578e-06 0.005449872431 0.004108040272 0 -20.2389959 -14.78223216 1031.628353 0.00193868266 +2.498631192e-06 -0.00798072347 0.01420740388 0 9.389578048 -12.3323699 936.6075956 0.002135365984 +2.495131714e-06 0.0001129652094 0.007296003951 0 -20.26554641 -18.74100055 883.961815 0.002262541171 +2.497786853e-06 0.007579609416 -0.01222793107 0 -14.55054152 -12.31361741 905.7207752 0.002208186071 +2.499103538e-06 -0.004688234264 -0.002533289983 0 -11.52871411 4.925353615 936.151305 0.002136406785 +2.498812896e-06 0.00932861363 0.007164377379 0 -9.402511884 12.42061383 1010.832538 0.001978567097 +2.499202639e-06 0.007968923566 -0.002543542364 0 -9.062631606 9.468851496 1037.779276 0.001927192079 +2.49772232e-06 0.009497774616 -0.00495283043 0 17.35019278 -14.1981581 1050.047023 0.001904676606 +2.494553772e-06 0.008638602812 -0.01014716849 0 19.67376429 -22.30779491 900.4895408 0.002221014137 +2.496952858e-06 0.003402799065 0.004721916185 0 20.6973155 -13.84238738 1008.167306 0.001983797717 +2.496488983e-06 -0.006840094053 0.005690288425 0 -27.94034462 4.45810171 1067.162449 0.001874128912 +2.498729818e-06 -0.0001061127195 -0.007801423233 0 -8.873628244 -10.77741155 875.7261817 0.002283818894 +2.499774333e-06 0.008847491131 -0.003300171546 0 -4.076921326 -4.838059395 941.7139303 0.002123787209 +2.498036654e-06 0.005704479003 -0.008975565147 0 -18.69057729 -5.357505756 980.9068673 0.002038929553 +2.494661639e-06 -0.003519729781 -0.01363478233 0 9.952128002 -29.83880011 961.8749572 0.002079272347 +2.496110363e-06 -0.004001501012 0.001088995307 0 19.40097414 -17.79141591 943.240147 0.0021203508 +2.497917597e-06 -0.005298478948 0.002227647593 0 8.668132139 -15.76085909 881.113115 0.002269856124 +2.499561155e-06 0.002358616036 -0.006563456794 0 -8.524924127 0.5104927517 911.5251774 0.002194124803 +2.49689863e-06 0.004046292845 0.001516322619 0 19.91217112 11.6786153 926.4514372 0.002158774783 +2.496834538e-06 0.009156410699 -0.01194573018 0 -11.45308613 -21.07038554 952.6749985 0.002099351828 +2.498813123e-06 -0.00202923534 0.01283651242 0 9.544564893 12.21904007 1006.179257 0.001987717384 +2.494631128e-06 -0.007746059732 -0.01323789346 0 -21.85418406 -24.31504545 996.8895697 0.002006240271 +2.498910009e-06 -0.008528965558 -0.005832188458 0 0.4528248272 13.72208117 929.7344042 0.002151151975 +2.499910176e-06 0.003589966344 0.007879059843 0 3.536145992 2.39743328 1007.949189 0.001984227005 +2.497350369e-06 0.008889251752 0.01386527906 0 -6.621732077 21.27676561 967.6098703 0.002066948738 +2.497126703e-06 0.004374989262 0.006001025392 0 17.49478343 14.74920577 954.1353174 0.002096138738 +2.495984013e-06 0.007560801087 -0.006133875714 0 -10.17232751 -27.66207748 1039.330387 0.00192431591 +2.495982168e-06 -0.009273160235 -0.0008439404075 0 -26.18256301 -1.443365738 924.4815782 0.002163374638 +2.495879176e-06 0.0005116439564 -0.001873519951 0 -15.96806541 -25.3206401 1042.091658 0.001919216975 +2.49771074e-06 -0.001776301884 0.007476244534 0 14.47808266 -14.63159777 961.6493736 0.002079760103 +2.496808493e-06 -0.006239539166 -0.004966661897 0 -12.60758924 22.2826807 1012.873502 0.001974580237 +2.498158934e-06 -0.005373509866 0.003320576088 0 16.09379667 10.55962036 1002.844926 0.001994326289 +2.497153949e-06 0.001627590964 -0.005693364353 0 21.29441733 -3.63273983 905.0516236 0.002209818697 +2.494728478e-06 -0.0002500022529 -0.005299395989 0 -18.43302594 -23.97620677 930.6730324 0.002148982436 +2.498940358e-06 -0.006206823452 0.01373775568 0 14.58186278 -4.981238661 1058.318866 0.001889789614 +2.496239315e-06 -0.007409121054 0.01040609918 0 -22.61605925 9.555281006 894.7242332 0.002235325618 +2.497354189e-06 0.003507632059 0.0008128038305 0 7.091833566 -20.03213518 923.4231886 0.002165854209 +2.497946253e-06 0.00481691672 5.628459854e-05 0 -12.17444269 -13.93268573 912.6504556 0.002191419495 +2.497679624e-06 0.002364307838 0.01330565095 0 7.828561526 17.74693239 900.0924042 0.002221994087 +2.499266444e-06 -0.003436498144 0.0006669163727 0 1.244232506 -10.85431004 901.8982672 0.002217545008 +2.498071777e-06 0.009085176117 -0.01491668643 0 11.30452779 15.67204605 983.7189598 0.002033100999 +2.498724674e-06 -0.007739611454 0.00577129449 0 -8.154119435 14.38179455 1034.979041 0.001932406282 +2.49827791e-06 -0.0007867869874 -0.009051301461 0 -10.20510971 -13.82041582 925.4754882 0.002161051293 +2.49626975e-06 -0.006861786391 0.002433189852 0 -11.90582582 -20.98776586 882.9214042 0.002265207289 +2.498668143e-06 -0.008027914562 -0.01160712319 0 4.21311504 -16.35103322 1034.363082 0.001933557021 +2.497073603e-06 0.003224298055 0.003141277651 0 11.45099782 19.43962486 932.1738053 0.002145522636 +2.497875635e-06 0.007215093542 0.005113477476 0 14.24688513 -12.8250344 929.6816493 0.002151274043 +2.499380296e-06 -0.006016399525 0.002070992491 0 -0.9063344649 9.829659909 886.6029699 0.002255801151 +2.494802154e-06 0.009079776341 0.00633752286 0 21.68379962 -19.86269837 911.3193652 0.002194620324 +2.495832793e-06 -0.002557612308 -0.004704134585 0 -17.44204113 -23.17503974 1004.079557 0.001991874037 +2.49517322e-06 0.002949440475 0.009985269131 0 -20.77020945 22.44292411 983.4842947 0.002033586109 +2.497828818e-06 -0.004809742067 -0.002832497035 0 -2.76741522 20.68495274 1001.157368 0.00199768794 +2.495011059e-06 -0.006480968492 -0.003558717384 0 17.55055508 -23.76781532 934.6423841 0.002139855879 +2.497484335e-06 -0.001207800545 -0.003631741223 0 -7.159544081 -19.39712167 921.438703 0.00217051877 +2.498548625e-06 -0.003739847327 0.003905952538 0 0.6549260029 -15.97424264 938.1786827 0.00213179007 +2.495516431e-06 0.009265884077 0.01360673195 0 28.2530306 12.94147491 1037.063512 0.001928522194 +2.498490339e-06 0.003335307678 0.01190896797 0 13.15144595 12.80271873 1056.034495 0.001893877529 +2.495560402e-06 0.007784441742 -0.00715577624 0 15.82135564 -25.80808416 1015.219067 0.001970018161 +2.498142708e-06 0.0003106781188 -0.00773682107 0 10.69919666 -15.41213485 973.193878 0.002055088965 +2.499291734e-06 -0.002396564567 0.009168902286 0 9.805198423 4.471355513 905.361552 0.00220906222 +2.499304535e-06 -0.008607117976 0.00784935463 0 -10.66211422 -2.792915841 934.4503153 0.002140295709 +2.497767826e-06 0.00853827456 -0.006112134727 0 12.51629596 -17.66237477 1024.199533 0.001952744495 +2.495615569e-06 0.008208441525 -0.007944126832 0 24.61907451 13.79258617 952.33607 0.00210009897 +2.495059127e-06 0.00218873329 -0.005468069972 0 14.55958531 -24.78298861 913.6877494 0.002188931614 +2.497099229e-06 -0.008585664532 -0.003507470086 0 5.064362527 -23.04699533 979.2495825 0.002042380243 +2.498780062e-06 0.001970912595 -0.0109832199 0 10.46074716 9.575649071 907.7464363 0.002203258443 +2.497815165e-06 0.003301769565 0.009464787673 0 12.51636167 18.24097518 1057.942159 0.001890462521 +2.498446934e-06 -0.00281823216 0.005163135161 0 -5.019644393 -17.81831736 1050.120306 0.001904543687 +2.49875087e-06 0.004390909462 -0.002358448058 0 -13.05387849 4.658281031 876.7326638 0.002281197088 +2.497197868e-06 -0.006399942138 -0.006218085496 0 -4.007085777 -22.70651953 973.5718179 0.002054291181 +2.499073828e-06 -0.007006338993 -0.002389931409 0 -11.05266348 6.170175696 929.9382975 0.002150680325 +2.498055781e-06 0.005592176849 0.0110825729 0 -12.30428054 -15.35479143 997.5478689 0.002004916318 +2.499021779e-06 -0.005528727784 -0.002650260343 0 13.16944889 0.3034890212 941.641623 0.002123950292 +2.497765187e-06 -0.004184454638 0.00366543968 0 -16.34264367 10.07908997 907.8994056 0.002202887223 +2.497798986e-06 -0.001112425933 -0.009762375948 0 21.74685951 4.331619618 1056.514235 0.00189301756 +2.49942098e-06 -0.009202612857 -0.0117226471 0 -8.984404829 3.090800447 882.8327976 0.002265434639 +2.499781781e-06 -0.001177101596 0.003571631026 0 6.60646841 -1.819893833 1037.23339 0.001928206341 +2.497658563e-06 -0.007880177405 -0.0008393782005 0 -2.779631688 21.67471849 1009.454668 0.001981267771 +2.496982306e-06 -0.005768298376 0.002060542109 0 -3.806366326 22.93692988 945.9870853 0.002114193768 +2.497542691e-06 -0.007066600462 -0.003242747791 0 -22.22753091 -1.654029153 1005.044613 0.001989961414 +2.498972373e-06 -0.001673275419 0.007372740477 0 -11.60667899 9.113101455 1029.183967 0.001943287172 +2.498896381e-06 -0.004610433718 -0.005074821955 0 14.15326241 -1.250300292 956.1987175 0.002091615439 +2.492653257e-06 0.00930615305 0.01152172526 0 29.4880774 26.34085602 1030.366289 0.001941057293 +2.497965045e-06 0.003603890766 -0.00215919245 0 2.221311677 -21.21754123 1057.151188 0.001891876983 +2.493244766e-06 0.007981008021 0.004822030538 0 23.04467985 22.54651283 876.2258922 0.002282516435 +2.499159815e-06 -0.006171834278 0.0008392947796 0 10.91964435 8.315104351 1058.668082 0.001889166241 +2.499067602e-06 0.002290167436 -0.006195256168 0 9.630532153 -7.443613147 891.2119292 0.002244135131 +2.498150807e-06 -0.003337187553 -0.01273328544 0 18.43391454 -8.00296761 1044.688916 0.001914445506 +2.499241932e-06 -0.0008099965937 0.005569915229 0 -8.643177109 6.521102463 879.2242501 0.002274732527 +2.495367931e-06 0.0005688512931 -0.007353460465 0 -16.34885397 -23.99875251 953.3827118 0.002097793441 +2.494997253e-06 0.002498212885 -0.01363114989 0 20.58592417 -25.14233494 1026.524866 0.001948321046 +2.499848849e-06 -0.006008000732 -0.01325412834 0 4.165527112 -3.305574018 967.1572198 0.002067916114 +2.495495743e-06 0.0005049186014 -0.01174306049 0 -20.45665045 -20.03420755 953.3346821 0.00209789913 +2.492189808e-06 0.003585851779 -0.0121939937 0 23.70281556 -26.73402212 902.9430696 0.002214979069 +2.494036882e-06 0.007263089595 -0.0139495907 0 -17.10482741 -26.47213851 911.8227249 0.002193408812 +2.49866242e-06 -0.004771984462 -0.004516092686 0 13.21257053 11.14211696 1056.499511 0.001893043942 +2.497738818e-06 0.005323055862 -0.007610733965 0 5.362603196 -19.53190331 952.1286818 0.002100556404 +2.498934683e-06 -0.008008131264 -0.008259968909 0 10.1571708 -8.531133199 908.5917494 0.00220120863 +2.498379575e-06 0.001107139126 0.009629020735 0 -17.65128369 4.882479141 1017.069355 0.001966434237 +2.496649212e-06 0.007719168514 -0.009762729127 0 -18.01100778 -14.36426086 889.4657825 0.002248540685 +2.49668439e-06 0.009674933408 0.001648405048 0 23.28941387 -4.710961584 922.2607453 0.002168584113 +2.497379426e-06 -0.00333823483 0.004602612806 0 10.43339634 -18.96073558 944.9489711 0.002116516406 +2.49594166e-06 0.00931807803 -0.01425520734 0 -20.10795455 -20.86140103 1016.397925 0.001967733258 +2.495025659e-06 -0.00697371935 0.004776477709 0 -22.93933082 20.36191035 971.7313237 0.002058182083 +2.494838059e-06 -0.00522929457 -0.008063278834 0 -14.66484922 -26.54781452 943.1897131 0.002120464178 +2.498803509e-06 0.004317455729 0.008726158594 0 -0.4200048959 14.69262981 950.0122632 0.002105235982 +2.499661308e-06 0.001166231991 -0.01384105955 0 -5.936673248 -6.503633792 1069.86014 0.001869403228 +2.499809446e-06 0.005836100867 0.007325768941 0 5.730813284 -0.7244517507 935.6685267 0.00213750911 +2.498462153e-06 -0.009346337975 0.01121051914 0 8.097927864 -15.10932001 977.2471263 0.002046565241 +2.496363357e-06 -0.004662362551 -0.01007035034 0 -18.7859932 -15.91051243 912.3357661 0.002192175375 +2.498076454e-06 -0.003013061718 -0.009034066619 0 -4.289522714 19.73670371 1029.449846 0.001942785273 +2.494037066e-06 -0.006674236702 -0.000947821294 0 -25.02600908 22.13532877 966.6104809 0.002069085779 +2.499244757e-06 0.00527050552 -0.01132024339 0 -0.6321499374 -12.22742558 996.1092759 0.002007811842 +2.499707064e-06 -0.004595612399 -0.0105717327 0 7.056050637 3.916221252 1054.270411 0.001897046506 +2.499632824e-06 0.00695426885 -0.002057851679 0 8.327026189 -3.180589848 1040.126692 0.001922842683 +2.496243211e-06 -0.008318862696 0.01342957264 0 -23.00849251 -9.085855829 901.9601436 0.002217392879 +2.498793953e-06 -0.007572828005 0.01408131188 0 -13.15628283 -6.023735118 931.5041077 0.002147065143 +2.499234478e-06 0.001392499548 0.003880211916 0 10.40017039 -4.155826683 905.0333983 0.002209863198 +2.498314032e-06 -0.003895060127 0.005847694979 0 5.42904128 16.26440494 933.5296773 0.002142406448 +2.496160187e-06 0.008701979774 0.008071078488 0 -20.45447324 -19.55807032 1020.633432 0.001959567399 +2.49769836e-06 0.005826214212 -0.008699790167 0 -13.74457118 18.01439094 1055.741323 0.001894403445 +2.499658647e-06 -0.006465352857 -0.01413691344 0 7.02488308 -3.092402549 928.8859573 0.002153116843 +2.49540718e-06 0.008640555604 0.01346310277 0 26.10204068 13.45922479 968.3160819 0.002065441272 +2.498513708e-06 -0.003432426732 0.00483929072 0 -10.51791265 -11.55784198 906.1874647 0.002207048848 +2.49713758e-06 -0.006363343936 -0.003168373012 0 20.43408376 10.74316473 964.4551781 0.00207370964 +2.492873433e-06 0.003821834568 0.01349746818 0 -18.87291878 28.52681832 905.0376913 0.002209852716 +2.497890362e-06 0.003198262081 0.01329085829 0 2.46805415 18.71175155 918.5509578 0.002177342458 +2.497436188e-06 -0.00777039242 0.004134431246 0 5.835032611 22.64543534 1032.319667 0.001937384381 +2.496335785e-06 -0.008330301354 0.001090836853 0 -22.31553732 -16.35242771 1021.399568 0.001958097559 +2.497365219e-06 -0.005825692657 -0.0149233181 0 21.13294963 7.047737575 970.0653861 0.002061716693 +2.49910106e-06 -0.00477700965 0.003226659489 0 11.63241176 -7.52605135 1033.142555 0.001935841274 +2.495463673e-06 -0.001532065375 0.001900728364 0 -25.98611603 -16.78303056 1026.316508 0.001948716585 +2.498367314e-06 -0.000644956911 0.0117276904 0 -0.9940030104 18.791888 1041.128512 0.001920992439 +2.497311298e-06 -0.001665063752 0.008926210357 0 -16.56313463 -13.46318339 920.0845612 0.002173713248 +2.496809597e-06 -0.007715586629 -0.01127439582 0 -23.23348932 1.237294571 920.6269349 0.002172432637 +2.499085847e-06 0.002152526029 -0.006316748487 0 11.71332215 -5.828760632 967.4709109 0.002067245617 +2.498830421e-06 0.00821686741 -0.01374729485 0 8.278465425 12.45741572 977.7921613 0.002045424456 +2.496176647e-06 0.006848308863 -0.009237420685 0 -19.10069612 -17.64920537 939.9250174 0.002127829309 +2.499303489e-06 -0.008523421306 0.007350946516 0 -10.27906635 1.12721838 876.0425706 0.002282994077 +2.49815216e-06 -0.004694560929 0.007944553967 0 -19.58597678 6.063716657 1066.235004 0.001875759088 +2.49941389e-06 -0.007561495742 0.01114723778 0 11.28192237 1.55702854 1051.810138 0.001901483859 +2.497935883e-06 -0.007807648466 0.01414241981 0 -1.25466146 18.63873931 919.1399575 0.002175947182 +2.498470675e-06 0.00181107088 0.007807137463 0 16.6238329 0.3933093279 950.5787653 0.002103981356 +2.495995275e-06 0.009189670212 -0.006729099574 0 13.76810296 -22.09882017 919.4462055 0.00217522242 +2.497971239e-06 -0.008745186757 0.01007555898 0 9.191349947 -16.86390414 953.180763 0.002098237898 +2.498484272e-06 0.005970512452 -0.006310174554 0 -0.7087983636 16.62493052 955.4980789 0.002093149159 +2.495587075e-06 0.003948729839 -0.01203352007 0 -9.412364229 -26.00459662 930.2869684 0.002149874252 +2.498285158e-06 -4.70597297e-06 -0.01270048884 0 16.88150557 -0.7402162194 912.1988201 0.00219250448 +2.49806437e-06 5.74599579e-05 -0.006731940885 0 16.96270093 -4.801525332 895.7352932 0.002232802498 +2.499009915e-06 -0.002299200352 0.01037965808 0 -3.245919879 -14.45354101 1052.550713 0.001900145974 +2.499352385e-06 0.002914418406 -0.003896650064 0 1.795841169 -9.946115904 887.9817522 0.002252298535 +2.498903594e-06 0.002068766127 -0.001574201791 0 -5.485047598 12.13467567 899.1380741 0.002224352475 +2.498569733e-06 -0.003526352681 0.002265882532 0 -16.15090751 1.142606852 957.115295 0.002089612412 +2.498960606e-06 0.008553114007 0.00294311065 0 2.563007228 -12.85732781 909.158549 0.002199836324 +2.499212299e-06 -0.00296486266 0.01056150167 0 2.203331575 -10.99407193 893.228614 0.002239068441 +2.497162974e-06 -0.003658465305 -0.01497258507 0 -14.6420198 -16.95341519 940.0193805 0.002127615708 +2.498553441e-06 -0.009510150747 -0.001494674985 0 -13.46671426 11.28091646 1032.591816 0.001936873767 +2.499280359e-06 -0.008803470982 0.002560913956 0 0.8120017938 10.51230229 878.758922 0.002275937063 +2.499743387e-06 -0.003431148119 0.006426287054 0 5.175143457 5.034416424 1007.772568 0.001984574758 +2.499199458e-06 0.002292808415 -7.820174564e-05 0 -11.98277708 0.9057238863 949.5882128 0.002106176101 +2.497930273e-06 0.007592808479 -0.008914755746 0 -6.978816792 -16.94944031 900.6479595 0.002220623473 +2.496911515e-06 0.002106848741 0.01374525664 0 8.699032004 21.10367721 918.0065338 0.002178633731 +2.496165537e-06 -0.000915231281 -0.008847016327 0 -20.85665758 15.8361134 945.0961277 0.002116186853 +2.497294144e-06 -0.004051143229 0.007982781739 0 -14.72654174 14.80077388 897.1531888 0.00222927369 +2.495360047e-06 -0.007899314989 0.01028369157 0 14.69118364 26.7078023 999.9210415 0.002000157929 +2.499387939e-06 -0.003555877698 -0.01343769211 0 -5.664098094 -9.104464369 969.049916 0.002063877172 +2.498807682e-06 -0.009159381837 0.000906529231 0 -16.26827919 2.505813955 1065.723612 0.001876659181 +2.495804053e-06 -0.0005772112403 -0.01455950417 0 22.1969149 -18.26781978 991.7355691 0.002016666602 +2.497141982e-06 -0.0003316674847 -0.006630621781 0 -12.37230573 -18.97643258 947.1105379 0.002111685933 +2.498542152e-06 0.003293431746 -0.004610722291 0 -12.69891101 -12.01140838 1023.446726 0.001954180856 +2.497741197e-06 -0.00630584036 -0.01328268201 0 17.16971247 12.84317293 1008.457722 0.001983226422 +2.497868824e-06 0.003000120814 -0.00499382233 0 -3.356694709 -17.8546042 879.6890599 0.002273530604 +2.499660952e-06 0.0094983675 -0.01010023499 0 -7.003874635 3.259516437 938.0844732 0.002132004161 +2.498368889e-06 -0.005958802733 -0.005571991594 0 -13.44625019 -9.00942831 895.9090795 0.002232369384 +2.497649985e-06 0.005919226813 -0.004616994371 0 -12.13730783 16.78953356 955.2735233 0.002093641194 +2.4982256e-06 0.003155024284 -0.01449464457 0 -18.12477876 1.505729305 965.1833461 0.002072145161 +2.496632222e-06 -0.002075684527 -0.0001672544237 0 17.18605014 -21.23825819 1052.171516 0.001900830776 +2.497352579e-06 -0.0008957374375 0.01110560779 0 -18.94402067 7.411660117 883.6915201 0.002263233215 +2.498990134e-06 0.007575001968 -0.01034866922 0 -2.198035566 13.6123488 970.0847911 0.002061675452 +2.498202279e-06 -0.006386278174 0.003211517239 0 17.24633242 8.798656019 1020.790858 0.001959265196 +2.4996189e-06 -0.003621604973 0.006829534436 0 -8.327854136 0.3830497399 954.845131 0.002094580509 +2.497920294e-06 0.004320281669 -0.004037975434 0 -17.84180547 -5.131069908 910.0024816 0.002197796204 +2.49825678e-06 0.002925006598 0.004715956582 0 -9.394429503 16.80895171 1031.009962 0.001939845465 +2.498756052e-06 0.00582565147 -0.01319000035 0 16.75484717 0.550532667 1062.619122 0.001882141926 +2.499797573e-06 -0.008291489095 0.008395990538 0 -1.279019205 -5.426908751 876.2519059 0.002282448673 +2.495377328e-06 0.003105751364 0.01350808956 0 -4.970942475 28.11146412 938.2238651 0.002131687409 +2.498071799e-06 0.002745528263 -0.003340479231 0 -15.60754371 -11.8027212 996.1522477 0.002007725229 +2.498426579e-06 -0.005024055475 0.009782217653 0 -11.13780315 12.36091554 937.7275675 0.002132815617 +2.498371604e-06 -0.00805164543 0.009354515481 0 11.86144704 15.10637806 1064.023516 0.001879657706 +2.499759955e-06 0.007932603988 0.004571159722 0 0.05386775461 -6.147581975 887.2462678 0.002254165583 +2.497139897e-06 0.003247303921 0.004960971912 0 -16.88730198 -14.22800707 922.8842788 0.00216711894 +2.49545153e-06 -0.007012630664 -0.004297554356 0 19.98403011 21.11646462 963.280136 0.002076239222 +2.498674019e-06 0.006358027323 0.0087488079 0 14.17462191 -4.690736953 916.6579156 0.002181839011 +2.495864778e-06 0.0006540002162 0.009411660957 0 -22.62996392 -17.0609443 984.8621499 0.002030741054 +2.499905452e-06 -0.00213232649 -0.004731664967 0 -0.06334426526 -3.80572636 875.2885833 0.002284960684 +2.497437675e-06 0.001658645286 -0.01045466458 0 -21.05155788 0.2364522706 929.6350869 0.002151381793 +2.498104836e-06 -0.007605884578 0.0111008532 0 15.63587829 9.497622985 939.4129563 0.002128989159 +2.495289446e-06 -0.004464650005 0.0002978158998 0 -20.79811963 24.311464 1041.619131 0.001920087622 +2.496348944e-06 -0.006312408769 0.007934808426 0 -26.07234802 8.533221764 1014.647061 0.001971128757 +2.495581718e-06 0.002915987545 0.01078690929 0 -23.19852132 19.74310783 1024.08328 0.001952966169 +2.496352178e-06 -0.006334776846 7.424098905e-05 0 19.09351258 17.79700364 965.8243485 0.002070769911 +2.495658347e-06 -0.009105007513 0.007316335374 0 -20.49767273 22.57448465 1034.094569 0.001934059089 +2.49637598e-06 0.004641106497 -0.009913927778 0 -16.09115616 17.24335374 875.5718759 0.002284221382 +2.497590537e-06 -0.002808136744 0.005961973427 0 22.34925038 0.4811805559 1017.961729 0.001964710404 +2.499344383e-06 -0.00491065192 0.01486249746 0 11.63776503 -0.2980708706 1016.551253 0.001967436462 +2.498946878e-06 0.005511980555 -0.003941770596 0 12.86567585 4.471876168 938.3748067 0.002131344518 +2.498677622e-06 -0.004415740808 -0.001893157493 0 15.00508858 -2.88655988 939.3998873 0.002129018778 +2.496886179e-06 0.004776499127 0.004919213697 0 14.52584092 -18.26848077 934.8217892 0.002139445211 +2.496033437e-06 -0.005893304548 0.009690955407 0 -29.3992479 6.576162125 1068.949812 0.00187099523 +2.498401115e-06 0.001129927225 -0.01232545575 0 8.413229326 16.80231797 1050.561073 0.001903744628 +2.499499258e-06 -0.001243841983 -0.005279393499 0 -3.263527712 8.625044703 921.4292482 0.002170541041 +2.495847768e-06 -9.305561427e-05 -0.01391659267 0 -7.41557782 -27.16267153 976.4628868 0.002048208925 +2.49969501e-06 0.003138084388 0.00426099644 0 5.994931401 -4.191747974 936.5686314 0.002135454822 +2.497080955e-06 -0.001123334426 0.001737783747 0 9.227162209 -22.63893694 1011.351659 0.001977551509 +2.499900542e-06 0.006769009177 -0.002051830434 0 3.802470214 -1.765573292 939.9827313 0.002127698662 +2.499501913e-06 -0.0047767204 0.01329498773 0 -7.663997063 6.442763219 1003.075891 0.001993867083 +2.49984425e-06 0.001323591592 0.004058288941 0 -5.593661825 -2.067012268 1068.443139 0.001871882487 +2.49788215e-06 0.003046165607 0.01355866251 0 10.89104828 16.87392288 975.5225678 0.002050183221 +2.498571592e-06 0.00640640127 -0.006514253919 0 16.00950273 8.042393644 1059.760408 0.001887219021 +2.498945427e-06 0.00495933264 -0.008904449686 0 -6.206995749 -11.89092595 923.4615086 0.002165764335 +2.499573804e-06 -0.007909920174 -0.01181750727 0 1.791257194 -7.982058552 886.0054343 0.002257322498 +2.499125246e-06 0.0001990974275 -0.01342083259 0 -7.824327325 -10.50436295 990.1370049 0.002019922486 +2.497697007e-06 -0.00690737396 -0.009049448292 0 16.01154565 -15.26631936 1030.466714 0.001940868127 +2.497520381e-06 0.001225758046 -0.006498868363 0 12.39377888 -19.33643063 1030.964004 0.001939931939 +2.499643269e-06 0.007791277631 0.004998202196 0 6.481399333 -4.310000057 921.4516521 0.002170488268 +2.498631e-06 -0.007544770846 -0.003014030897 0 -16.43707277 -1.183805003 995.7309383 0.002008574729 +2.49670027e-06 0.0003382803267 -0.01217244482 0 24.26555491 -11.21574258 1040.076428 0.001922935609 +2.49986577e-06 0.001136653628 0.01402613421 0 3.673967883 -3.021960263 918.1123677 0.002178382593 +2.4969611e-06 0.001842431384 -0.0002237827191 0 22.91785694 5.218476689 952.9703968 0.002098701079 +2.499286667e-06 0.007124126134 0.008659592648 0 -12.10313825 -0.7493921465 1015.128973 0.001970193002 +2.498097242e-06 -0.002447860516 -0.0007238086453 0 -16.1268881 -5.881168816 879.6973551 0.002273509166 +2.496726656e-06 -0.005429651779 -0.004313377112 0 16.3979076 -16.17112887 899.6555645 0.002223073006 +2.497487276e-06 0.003466637749 -0.0003806992876 0 22.30729687 0.3515723066 994.832019 0.002010389656 +2.499442968e-06 0.0001228646049 0.001596224844 0 -9.786356146 4.82064549 1033.481746 0.001935205927 +2.499685607e-06 0.005876076398 0.01304434356 0 7.429018732 3.021674017 1011.3558 0.001977543413 +2.499097497e-06 -0.006384491283 0.00410423368 0 13.0797136 0.922176624 975.8359646 0.00204952479 +2.499455166e-06 -0.009094950017 -0.01464960733 0 -5.915191601 7.367135074 905.0151536 0.002209907748 +2.495369473e-06 -0.003589733932 0.002962501841 0 20.94019154 24.88935573 1068.082732 0.001872514123 +2.498702064e-06 -0.006150973258 -0.009449533923 0 13.91638087 -3.446293475 889.6614319 0.002248046199 +2.499579508e-06 -0.005099945874 -0.005387084435 0 8.26201685 2.898024071 954.6879812 0.002094925294 +2.495755543e-06 -0.004404461128 0.001381418416 0 -21.51676131 18.25478487 967.8555724 0.002066424017 +2.496525433e-06 -0.007725825035 -0.01334229235 0 -20.8417194 17.65783617 1035.687978 0.001931083533 +2.494236297e-06 -0.00843675754 -0.01393986269 0 -15.68741707 -32.32318055 1057.308693 0.001891595153 +2.496375051e-06 0.006061472236 -0.009661547772 0 -18.66786465 18.01098659 962.8709789 0.002077121488 +2.499139034e-06 0.009240054586 -0.007701506931 0 -12.05241081 4.982555238 993.7354702 0.002012608043 +2.497925125e-06 0.003752032281 0.009441805675 0 9.298706816 -18.4809543 1015.27015 0.00196991904 +2.499999032e-06 0.004951285264 -0.01347695245 0 -0.225650241 0.3209089326 891.5271076 0.00224334177 +2.497299515e-06 -0.008757776641 0.008161367504 0 -6.41027317 23.64106789 1053.563522 0.001898319331 +2.498371412e-06 -0.003779661604 -0.01281417481 0 17.5569606 -3.434034766 991.0032149 0.002018156924 +2.499877176e-06 0.008757511876 -0.01371863507 0 -4.31862731 -0.605230505 879.8424769 0.002273134172 +2.494703281e-06 -0.002928696102 -0.0005036400212 0 22.55892274 24.51796663 1022.832734 0.001955353925 +2.499598069e-06 0.002661142503 -0.006964008012 0 2.273120459 -8.090095535 937.2093721 0.002133994878 +2.497665936e-06 0.004088327675 -0.004216378655 0 17.36939548 9.697613262 920.4098387 0.002172945047 +2.499788839e-06 -0.0002879240829 0.005121429199 0 5.523556248 3.243948018 985.6664486 0.002029083979 +2.496306382e-06 -0.003635581159 -0.0109139043 0 20.45103559 -13.52538016 901.6142933 0.002218243449 +2.499574144e-06 0.002183453138 -0.01483415064 0 -0.06225328259 8.487220828 919.6084054 0.002174838756 +2.498896309e-06 -0.009119102308 -0.008038698756 0 -12.45215933 7.721345719 986.0082578 0.002028380578 +2.497776054e-06 -0.009391058069 0.002897811765 0 -13.93516397 -17.11908311 1046.296312 0.001911504395 +2.495288499e-06 -0.002911496758 -0.01410921833 0 13.54525375 -26.74434438 975.9188945 0.002049350629 +2.499979245e-06 -0.00166509212 0.01050821438 0 1.862839378 -0.6784862338 973.0794571 0.002055330616 +2.497012225e-06 -0.004320174749 -0.003679283308 0 -18.53795481 13.82844408 945.6821219 0.002114875552 +2.49943804e-06 0.007386438195 -0.005316804182 0 -9.595311343 3.451457504 961.7801113 0.002079477394 +2.498100297e-06 0.008842023164 0.01184243965 0 -19.09470094 -3.0973883 992.1356738 0.002015853328 +2.497045247e-06 -0.008838800103 -0.008328344815 0 -21.74922324 -9.9239776 982.9814119 0.00203462647 +2.497902317e-06 -0.006169913248 0.003164787192 0 -19.89108902 5.15246522 1002.857512 0.00199430126 +2.498739011e-06 -0.002416216522 -0.003607297246 0 2.97823199 -14.76492377 948.284072 0.002109072649 +2.496560247e-06 -0.0009786207136 0.004438675444 0 -10.31058473 25.65674534 1053.677427 0.001898114117 +2.498371773e-06 0.0004228405328 -0.01165895929 0 1.498256217 16.15037934 898.5970477 0.00222569171 +2.496876272e-06 -0.009818244744 -0.003271210226 0 -23.60913624 1.123906211 945.1841804 0.00211598971 +2.497598485e-06 0.003218418872 -0.008739216886 0 18.50957973 -10.55826424 971.9697263 0.002057677257 +2.496343568e-06 0.008110625166 -0.01318847425 0 -14.92140731 -21.65939697 972.0782852 0.002057447461 +2.49819215e-06 -0.0009724837821 -0.01004833712 0 -13.65653726 -13.51915464 1010.315949 0.001979578766 +2.494549838e-06 -0.009913668903 -0.001207588851 0 -27.2278961 14.14971843 928.6495962 0.002153664857 +2.498574474e-06 0.008808339401 0.01073901085 0 1.599601434 -15.94770102 949.0221734 0.002107432319 +2.496228154e-06 -0.003800392956 -0.005673871553 0 -7.168268455 -26.86697868 1011.843416 0.001976590418 +2.497533278e-06 0.007563801869 -0.005260500263 0 -13.77495012 -15.9018006 946.84285 0.002112282941 +2.494328567e-06 0.007143785534 -0.01274982234 0 15.51719171 -30.71317033 1020.844691 0.001959161877 +2.495039587e-06 0.004657603777 -0.005731099751 0 25.7908098 17.0484543 980.8209552 0.002039108146 +2.495188094e-06 0.008618877162 -0.01341383111 0 18.94436711 -21.67918813 927.3796151 0.00215661415 +2.497389755e-06 -0.00674092635 -0.007035070632 0 2.474829622 -22.66555861 997.5029751 0.002005006551 +2.498175203e-06 0.003241092502 -0.00247975819 0 16.22382599 10.50011058 1011.30847 0.001977635963 +2.49721289e-06 -0.004369069752 0.01187090945 0 -6.427192172 21.00868886 930.1502893 0.002150190161 +2.497975947e-06 0.007269647508 -0.001510002727 0 6.701429872 -17.8710279 948.33436 0.00210896081 +2.498640286e-06 -0.004200916272 0.002560304124 0 13.33224209 9.753124216 1001.502926 0.001996998659 +2.496462497e-06 0.007658823612 -0.01272908692 0 23.59002284 4.30371245 901.0400734 0.002219657104 +2.497827917e-06 -0.001932685152 -0.01019062706 0 -10.65418687 18.33366351 1017.03338 0.001966503793 +2.499386889e-06 0.009801694546 -0.008723630409 0 -1.762212895 10.77300348 985.7034503 0.002029007811 +2.496994327e-06 0.00697351804 0.004134514136 0 25.54854205 -1.688187133 1043.831571 0.001916017924 +2.499562212e-06 0.002975526322 -0.002849327945 0 -2.913269177 9.357281984 1047.282897 0.001909703678 +2.498405988e-06 0.001658363636 -0.007468549234 0 -3.276243122 -17.55595815 999.9851867 0.002000029627 +2.497036929e-06 0.003555808067 0.01120494763 0 -18.62349693 -17.56034313 1051.012587 0.001902926782 +2.495776246e-06 0.007121968586 -0.00585512124 0 -14.82746799 -22.27849378 920.1803549 0.002173486958 +2.497162605e-06 0.009989306033 0.00110938136 0 -10.48233714 21.04278497 986.452789 0.002027466517 +2.499893809e-06 -0.003649503705 -0.01478196956 0 2.876291202 -2.99042213 900.3197122 0.00222143309 +2.499434574e-06 -0.005031511798 -0.01390202389 0 2.889679302 -9.411535793 925.7273129 0.002160463424 +2.497979516e-06 0.008511197213 -0.00426363345 0 16.96146718 12.82131051 1057.382173 0.001891463702 +2.499207084e-06 0.005895961309 0.002830179131 0 -2.175072991 12.31846113 993.214138 0.002013664449 +2.498970401e-06 -0.0058509542 -0.007722167897 0 5.916205102 12.94910186 991.9506309 0.002016229375 +2.497544347e-06 -0.002082837503 -0.002553109881 0 -20.14162366 -4.290677958 928.908682 0.00215306417 +2.498683026e-06 -0.002088397034 -0.01105268988 0 6.417649296 -14.53484939 978.8061665 0.002043305476 +2.499714593e-06 0.008158033402 0.003092168095 0 5.464102008 4.804082301 962.9599361 0.002076929605 +2.497122136e-06 0.004355882308 -0.005688877464 0 7.890630263 -21.33586209 947.7843994 0.002110184554 +2.498890152e-06 0.004875853593 -0.004876097438 0 -12.82581277 -4.000324281 901.6217114 0.002218225199 +2.497099988e-06 0.006987469336 0.01465757109 0 23.49024644 9.10430588 1045.619113 0.001912742388 +2.497902263e-06 -0.005931407246 -0.01466028709 0 14.85871698 13.26314323 972.0748512 0.00205745473 +2.497845755e-06 -0.005405602357 -0.0007988124085 0 -15.04912006 -16.30269886 1068.542149 0.001871709041 +2.499160167e-06 0.004220759985 0.00424848909 0 -8.268669054 -10.76244002 1047.07996 0.001910073801 +2.494023152e-06 0.004081110745 0.01130980208 0 16.6204478 26.89577752 913.6440472 0.002189036317 +2.499164211e-06 0.00905675678 0.004832927173 0 11.87946705 -2.739823826 942.8293292 0.002121274697 +2.498411756e-06 0.002107587717 -0.0001063377061 0 10.89078555 12.7080648 938.8207188 0.002130332192 +2.496217138e-06 0.00576801511 0.009158419361 0 -19.11190252 21.85546322 1054.928241 0.00189586355 +2.499304054e-06 0.007400749885 0.0002629376622 0 11.8361662 3.101720369 1037.01574 0.001928611035 +2.497773428e-06 0.002404691624 0.007388686566 0 -13.60843531 -13.24905309 899.727127 0.002222896187 +2.496950335e-06 -0.00931280884 -0.001644713595 0 -19.80698878 -9.92154382 896.5861213 0.002230683648 +2.496021144e-06 0.005462721903 -0.01096852435 0 -17.46754197 -23.80978932 1046.188604 0.00191170119 +2.498586252e-06 0.001149123218 -0.005389658574 0 13.66573893 5.845856718 883.75284 0.002263076179 +2.498416486e-06 -0.004067610605 0.01155426919 0 -12.45344636 13.86270857 1046.887647 0.001910424682 +2.499963924e-06 -0.003353513768 -0.01297952347 0 0.4174780301 2.370893272 896.219517 0.002231596124 +2.499326872e-06 0.002980630267 0.005292662156 0 3.146664032 -11.10219617 994.442588 0.002011176939 +2.499606759e-06 0.005266431817 -0.005327109124 0 -9.342338336 0.6683082204 1056.072896 0.001893808664 +2.496406494e-06 0.006586662424 0.01197932443 0 24.93849866 -5.346515609 950.8672109 0.002103343113 +2.497378875e-06 -0.009264850919 0.002557818261 0 -9.18240285 19.27351605 932.0737671 0.002145752912 +2.493979224e-06 0.0007011081371 -0.01271019054 0 -19.72755763 -28.98341262 1009.438768 0.001981298979 +2.496655627e-06 0.00723144318 0.007933997253 0 5.47255197 22.71484703 902.9659513 0.002214922941 +2.499463252e-06 0.0008781372802 -0.01324218236 0 -6.122137943 -8.733333534 1029.304591 0.001943059438 +2.499702647e-06 0.009108744366 0.01366353534 0 -6.600634527 -2.857711317 932.6557289 0.002144413998 +2.499714533e-06 0.004891890935 0.004554049952 0 -6.201037351 -2.777830634 899.2172672 0.002224156578 +2.499107634e-06 0.004678713824 -0.01225982206 0 6.079555192 10.87819558 932.6862018 0.002144343935 +2.496322265e-06 0.008547150469 0.01106959998 0 7.937248923 23.52793982 915.0483972 0.002185676743 +2.497093996e-06 0.008666582988 -0.002252561802 0 -8.734355431 -24.27284588 1069.568237 0.00186991342 +2.498716605e-06 0.001356006744 0.004469904522 0 11.75536097 12.21462093 1057.921914 0.001890498698 +2.499542072e-06 0.003557326361 0.008624075695 0 7.529488799 -6.807464185 1060.592152 0.001885739015 +2.494642946e-06 0.002963334182 0.004364265238 0 24.25605935 -19.41292019 948.3864198 0.002108845043 +2.497188006e-06 0.0008615619503 0.01263220631 0 21.02652134 -7.119488868 935.6870838 0.002137466718 +2.494230669e-06 0.004798474894 -0.01002759889 0 24.60000446 -18.20576829 900.1719937 0.002221797628 +2.499879759e-06 -0.00315769644 0.01448310162 0 -1.739080351 4.754011495 1032.24442 0.001937525611 +2.498302181e-06 -0.007877697395 0.01456431696 0 17.1876594 -8.092696957 1030.686308 0.001940454612 +2.495500139e-06 -0.008663295824 -0.0140509109 0 -25.64703534 7.640315616 891.4408027 0.00224355896 +2.497075819e-06 -0.007685456504 -0.008659215064 0 -22.62800119 11.63304413 1051.630646 0.001901808403 +2.497697666e-06 0.002931316751 -0.002163365702 0 -14.91513599 15.61575674 1005.980539 0.001988110031 +2.499621051e-06 0.008455471317 0.01069444263 0 -5.940777289 5.113338728 900.3098746 0.002221457363 +2.499720397e-06 0.00412430462 -0.006208361511 0 -2.919928381 7.270599612 1047.698605 0.001908945941 +2.498213613e-06 -0.007851615213 0.008262713898 0 18.1538938 -1.060663547 961.8130222 0.00207940624 +2.499841234e-06 -0.005138606485 0.01144837307 0 -4.977750305 0.07528939687 883.4424933 0.00226387118 +2.498065556e-06 0.001037791003 0.01317345024 0 -8.315959378 18.17091641 1015.665897 0.001969151476 +2.499684739e-06 -0.004236710621 -0.004868282326 0 -2.161953072 -7.168986934 942.9501771 0.002121002836 +2.497525247e-06 -0.004986728197 -0.01006649792 0 19.74278199 3.662817881 902.2245967 0.002216742934 +2.499612105e-06 0.008904531589 0.008525425312 0 -1.691744982 -7.973356344 925.3496452 0.002161345185 +2.498334872e-06 0.002278912272 0.01079989232 0 -15.16040637 -10.42474854 1007.953567 0.001984218385 +2.498322867e-06 -0.009738967596 0.01325945509 0 -8.229232682 -15.39235457 952.7718399 0.002099138447 +2.497639477e-06 0.002485888177 -0.004030265061 0 19.10847479 4.862608667 907.1482681 0.002204711259 +2.496506066e-06 -0.00269319003 0.005088608901 0 4.449286806 23.58130426 907.3266774 0.002204277742 +2.499825057e-06 -0.00368628467 -0.001576580582 0 6.242346126 1.032489648 1069.631487 0.001869802847 +2.493817241e-06 0.00978559365 0.01399963195 0 25.17766961 24.9747927 1007.561152 0.00198499118 +2.496876594e-06 -0.007740552551 0.002351343089 0 8.904377874 21.24554317 921.2463952 0.00217097186 +2.494970183e-06 0.002466249745 -0.01462450967 0 -17.62005726 -26.11780832 992.5890171 0.002014932631 +2.497585367e-06 0.003491053837 -0.005802992487 0 0.5666182856 -21.83422937 993.5416816 0.002013000599 +2.498712333e-06 0.007575355256 0.00327802588 0 -14.53846335 6.400943447 989.6725143 0.002020870511 +2.497754363e-06 0.001586434646 0.009179115293 0 -8.93821542 19.71860268 1021.229455 0.001958423731 +2.499337239e-06 -0.008274568459 -0.01147044013 0 9.587715564 3.1552742 876.6128157 0.002281508968 +2.497154536e-06 0.006632875325 -0.001113968035 0 -5.915743651 -23.39674927 1011.195423 0.001977857054 +2.496474872e-06 0.001186197549 -0.006805891071 0 -15.63818363 -17.35369113 879.3182724 0.002274489298 +2.497285569e-06 0.001316866437 0.001077110237 0 9.851269261 -20.23974625 965.6993958 0.00207103785 +2.499807869e-06 0.009316276335 0.009280663161 0 5.492949539 -1.584437814 922.2204844 0.002168678785 +2.497659197e-06 0.007546103466 0.004351159881 0 17.37568143 8.984620438 903.7408282 0.002213023842 +2.499412037e-06 -0.001312580789 0.001254788248 0 -8.998034111 6.420346926 1019.25189 0.00196222349 +2.498333147e-06 0.006508116811 -0.001030206357 0 -9.720763976 16.04928413 1027.410541 0.001946641504 +2.499219096e-06 0.0001600360312 -0.01413380632 0 -12.99979412 1.699758908 1048.944941 0.00190667777 +2.497109463e-06 0.001500946996 0.01008184043 0 22.60098126 7.352865009 988.0551191 0.002024178572 +2.499747553e-06 -0.005201026695 0.002078852076 0 -4.562658027 5.24523616 978.3487353 0.002044260832 +2.499465565e-06 -0.0003645026684 7.836800069e-05 0 -9.547986616 2.205500348 947.7682943 0.002110220411 +2.498560389e-06 -0.006111676819 0.0008485165285 0 10.74246148 13.65670987 1023.775298 0.001953553679 +2.498399072e-06 -0.009402254275 0.0007157663 0 -18.05212037 -1.182622725 1010.771499 0.00197868658 +2.49911676e-06 0.003550776592 -0.01145904303 0 -3.119624787 -13.39777163 1034.869916 0.00193261005 +2.497539807e-06 -0.006222367985 -0.009457000257 0 -1.80266277 -19.56042367 885.2272719 0.002259306806 +2.498585698e-06 -0.00599799505 0.006523526944 0 13.36310253 -11.6443161 1053.656505 0.001898151809 +2.496115149e-06 -0.008733029943 0.001491936799 0 11.50847552 23.41142151 935.3438637 0.002138251051 +2.498989772e-06 -0.003374873293 -0.002731429758 0 -9.729330362 -11.30184749 1048.983816 0.001906607108 +2.4997284e-06 0.006114268797 -0.002019828048 0 -5.541303275 5.173820426 1028.584708 0.001944419341 +2.496475064e-06 0.006669272156 0.004135575125 0 18.90141894 -17.08522352 959.0877251 0.00208531498 +2.496718251e-06 0.0002160954196 -0.006962394908 0 -15.34070899 -21.83843175 1041.204348 0.001920852523 +2.497775055e-06 -0.003446044601 -0.004092458887 0 16.12203915 -9.422649505 884.9330076 0.002260058087 +2.49752323e-06 0.007728029001 -0.007686177855 0 -8.837194717 -20.96871078 1022.0087 0.001956930504 +2.499882365e-06 -0.005147738582 0.01020171136 0 3.486097123 -2.796252532 921.3378395 0.002170756387 +2.499102171e-06 0.007191535574 -0.01223323133 0 -13.02672585 -1.326381219 977.022725 0.002047035293 +2.499468784e-06 0.007961751712 0.001397050121 0 10.17407451 1.220477882 994.0594096 0.002011952184 +2.497948984e-06 0.009537874786 -0.001496372817 0 17.53583706 -12.39217337 1059.866111 0.001887030804 +2.493624474e-06 -0.002092411406 -0.01403792362 0 -21.68994607 -31.13808181 1061.689504 0.001883789934 +2.499543223e-06 0.002209325056 0.007010416745 0 0.4446244217 -9.896610969 1036.400308 0.001929756276 +2.497776038e-06 -0.008297077557 -0.00560387613 0 0.5882567342 22.19856596 1052.576584 0.001900099271 +2.499720704e-06 -0.002433044738 0.01005778367 0 -7.251832433 -1.929791666 1004.012433 0.001992007204 +2.49474819e-06 0.009649425782 -0.01306748681 0 -12.91990578 -26.90814561 920.2802857 0.002173250944 +2.499266963e-06 0.0002202111715 0.01194515171 0 -3.480424896 10.87589165 942.9972574 0.002120896943 +2.499442844e-06 0.009272699957 -0.008363409501 0 -1.933300974 -10.42218792 1004.073797 0.001991885463 +2.497294528e-06 -0.0003326052753 0.002658493866 0 17.50750689 -14.57105643 978.8113975 0.002043294556 +2.499266201e-06 0.004824930527 -0.001907893773 0 -11.16584437 1.122821581 926.243186 0.002159260149 +2.495335767e-06 0.002823191308 0.003109862111 0 24.88459718 -17.6290904 997.7891762 0.002004431445 +2.496761766e-06 0.005307077174 -0.001171349636 0 3.721094784 -22.25641689 886.2611737 0.002256671125 +2.497844291e-06 -0.001655724286 0.01125876801 0 -19.52587581 -4.531284173 965.0510588 0.002072429206 +2.499571446e-06 -0.004582642457 0.01234023799 0 9.86907579 0.2406762943 1066.252003 0.001875729185 +2.493294452e-06 -0.008500563675 -0.007536109679 0 -23.00712766 -28.2560543 993.9986597 0.002012075148 +2.496912434e-06 -0.0001282873657 0.0007683711802 0 13.81853862 -18.89483601 941.570401 0.002124110951 +2.498657396e-06 -0.0003277309146 0.002083354967 0 6.044418004 -14.17452821 940.1814883 0.002127248861 +2.49939693e-06 -0.0004760286072 -0.001172050287 0 8.285643792 -5.830647588 922.4393931 0.002168164125 +2.496447986e-06 0.006253312691 0.0007349825255 0 20.932121 -13.05993357 925.1737978 0.002161755991 +2.499414184e-06 0.004772117529 -0.001580686835 0 -2.019004314 9.657698079 911.4409006 0.002194327683 +2.499884309e-06 -0.002319670096 0.002015670589 0 4.79402117 1.618590308 1051.883757 0.001901350778 +2.499766262e-06 -0.009608567515 -0.003262096136 0 -1.760834131 -6.67969321 1010.298214 0.001979613516 +2.498726071e-06 -0.007641086821 0.003202684508 0 14.62401219 -0.1004043084 916.0224453 0.002183352613 +2.499735937e-06 -0.002546426132 -0.005526361708 0 5.285364412 -4.448123121 950.5351991 0.002104077789 +2.498971754e-06 0.00937590776 0.006474801069 0 -1.836090552 14.99589906 1053.351219 0.001898701937 +2.49814048e-06 0.008459141837 0.0002941980399 0 10.84658821 -15.44197694 978.2531791 0.002044460517 +2.498640236e-06 -0.007224929119 0.003948963799 0 -15.13074213 0.3093545033 917.5200226 0.002179788943 +2.498249644e-06 -0.005421298468 -0.004215629948 0 6.773415224 18.83925305 1069.719197 0.001869649536 +2.498133481e-06 0.009533333397 0.0006714364397 0 2.698044134 20.10563907 1049.640515 0.001905414256 +2.495852036e-06 -0.002552608899 -0.01007385539 0 -21.29540229 18.20829466 972.1693902 0.002057254651 +2.498191372e-06 -0.005858092816 -0.0137430386 0 17.61012585 -8.419494517 1026.024058 0.001949272032 +2.499497423e-06 -0.005517312037 0.01232459368 0 -10.52752626 1.877871848 1066.544499 0.001875214772 +2.49764555e-06 -0.002664870541 -0.004751090363 0 6.771140394 18.25783448 897.0553077 0.002229516935 +2.498931949e-06 -0.004794076164 -0.0103260361 0 -11.01956596 6.682653891 881.6364143 0.002268508841 +2.498590688e-06 0.007770930654 0.004195493669 0 -9.942510078 11.55931478 907.9756247 0.002202702304 +2.497992616e-06 0.008945458517 0.00915763967 0 -13.16996602 16.42563021 1050.420048 0.001904000218 +2.499412343e-06 0.009445587657 -0.009424923586 0 -6.075743532 8.370333108 953.9598517 0.002096524289 +2.499778968e-06 0.003186793723 0.01211848444 0 -6.413187948 -1.003689568 976.2729683 0.002048607372 +2.495882664e-06 0.005971673578 -0.002968245058 0 23.11619753 -20.00530041 1064.668689 0.00187851866 +2.495302741e-06 -0.009077109457 0.0060307896 0 -26.18150324 13.16874226 955.4862885 0.002093174988 +2.497895311e-06 0.006646463587 -0.0007696067076 0 -6.956754443 -18.72878635 973.4854095 0.002054473524 +2.499746974e-06 -0.006267094566 0.0149919085 0 6.319613649 4.093615049 1058.421767 0.001889605886 +2.49656875e-06 0.0008185991691 -0.006701932289 0 22.7261819 7.31522457 910.8974432 0.002195636858 +2.498025896e-06 0.00531866814 0.01469010058 0 -12.96557933 -12.57228978 908.6412893 0.002201088618 +2.496220545e-06 0.004775542729 0.009876699583 0 23.6932955 -12.93530276 981.2884911 0.002038136611 +2.498092074e-06 0.006989915124 0.01454355791 0 18.88788563 -2.718733597 976.5990255 0.002047923403 +2.497552737e-06 -0.002383322194 -0.01007545966 0 17.35171641 10.9712437 927.5948013 0.002156113852 +2.497727952e-06 0.009217354734 -0.007897210687 0 -20.13900911 -6.758900365 996.1912983 0.002007646527 +2.495669471e-06 0.0009707221575 -0.001548742773 0 -17.16143502 -23.23480514 980.8707412 0.002039004648 +2.499215551e-06 0.008013121136 0.001072513999 0 -11.71523914 -0.8862702165 937.8686534 0.002132494772 +2.499297404e-06 0.001548442361 -0.01248892657 0 10.42808078 -3.591242449 930.3108216 0.002149819129 +2.497634135e-06 -0.008366592643 0.00974952807 0 6.668368632 21.83519823 1049.194287 0.001906224637 +2.496580193e-06 0.008385296436 0.001547424041 0 21.15955417 -17.61142385 1052.117166 0.00190092897 +2.497881402e-06 0.004504670976 0.004656242444 0 -21.05631438 1.984899841 1027.131598 0.001947170163 +2.496945139e-06 -0.00220500112 0.002719026755 0 12.14599158 -20.21313924 953.5974884 0.00209732096 +2.496719173e-06 -0.007782932203 -0.0002986696456 0 -20.05002497 -17.82631659 1046.838513 0.001910514349 +2.496064442e-06 -0.008384660045 0.005083258369 0 -23.47704253 -8.582991726 890.4498189 0.002246055822 +2.498511562e-06 -0.005287949415 0.01254629186 0 -14.25910858 -6.527659771 908.7209778 0.002200895598 +2.498202763e-06 -0.0007004304696 -0.00342378448 0 19.21426512 -5.128113663 1048.64978 0.001907214438 +2.496955835e-06 0.003474290851 -0.003715271261 0 21.69906221 8.748080715 947.7554111 0.002110249096 +2.498671204e-06 -0.003490374335 0.01330658125 0 -16.71379462 -2.384772432 1035.42973 0.001931565167 +2.498277578e-06 -0.009922557133 -0.009698061082 0 -15.23510394 6.236613594 886.7285244 0.002255481746 +2.499452023e-06 -0.001296666902 0.001271839826 0 9.296356897 -4.669789958 993.6656698 0.002012749419 +2.499258821e-06 -0.008112119567 0.01135740122 0 3.579723171 11.04243309 953.3208496 0.00209792957 +2.495434496e-06 -0.006560662654 -0.0008687328896 0 20.65661814 -20.05824388 952.1992522 0.002100400725 +2.496399702e-06 -0.0002102599572 -0.002857704519 0 -20.78687687 17.62865219 1015.162626 0.00197012769 +2.496795302e-06 -0.003631924354 0.002665550297 0 19.14722966 -13.28367697 920.0500523 0.002173794779 +2.49723535e-06 0.0007814344624 -0.01224952395 0 5.076658465 -21.63947465 944.8557313 0.002116725267 +2.494994161e-06 0.002056948771 0.003089101198 0 19.26922468 26.10810605 1024.757746 0.001951680784 +2.497374682e-06 -0.006040923079 -0.007011471579 0 18.74254819 8.845161588 904.0960966 0.002212154225 +2.494182503e-06 0.002567564887 -0.01294918146 0 23.12280625 -21.9114181 933.0873223 0.002143422113 +2.498103866e-06 0.007389979097 -0.01250188344 0 -15.56212592 8.616406511 913.1883523 0.002190128679 +2.497227933e-06 -0.007232762114 -0.0009832765977 0 13.34957431 19.89921363 1017.255964 0.001966073506 +2.496787366e-06 -0.007265554038 0.003544930823 0 6.822347845 24.42371837 999.9344251 0.002000131158 +2.497677987e-06 -0.009538525594 0.007693725871 0 -17.35914267 -10.16026663 933.0365692 0.002143538706 +2.495721561e-06 -0.007585014817 0.00235400903 0 13.31291481 22.73650089 900.1193826 0.002221927489 +2.499628898e-06 0.008729872974 0.01314215812 0 -2.94159331 -7.647798847 951.0663881 0.002102902621 +2.499583645e-06 -0.004495270434 -0.006361329204 0 -7.252311174 3.855640563 900.0267767 0.002222156109 +2.499202398e-06 0.001254012608 0.0009131900431 0 -5.796905096 -10.51210526 950.3521968 0.002104482956 +2.495317562e-06 -0.007151700039 0.002334462837 0 19.90478762 25.83130668 1064.887336 0.001878132956 +2.499354413e-06 0.0001002445724 0.006978658789 0 7.985714747 -7.709792666 976.7714802 0.00204756183 +2.496418969e-06 -0.004604986319 0.002742923938 0 -19.96164556 -14.69370234 925.685187 0.002160561742 +2.498067222e-06 -0.0004684795858 -0.007358406123 0 18.28899136 6.02422366 979.0961567 0.002042700287 +2.498321446e-06 0.00276889205 -0.002424319277 0 8.232562362 16.96076022 1028.709079 0.001944184261 +2.499502197e-06 0.008793706796 0.01477631117 0 -0.5600573119 -10.1603666 1019.74634 0.001961272055 +2.499848227e-06 -0.001350219133 -0.01124601658 0 -3.874259512 3.854899577 991.9653794 0.002016199397 +2.498794377e-06 -0.003935563089 0.01147702754 0 -11.0718442 7.961752875 878.0682647 0.002277727234 +2.494374268e-06 -0.007225321778 -0.01418167011 0 -24.40406774 -23.27101239 1004.448469 0.001991142464 +2.499511388e-06 -0.005527181164 0.01132649844 0 -8.443873551 -4.804381678 982.6835733 0.002035243139 +2.498251581e-06 -0.002053700355 -0.002422535049 0 -13.60814173 13.95835019 1042.197167 0.00191902268 +2.495585391e-06 0.004838998979 -0.01122040951 0 13.41143202 -24.20307531 930.609988 0.002149128019 +2.498666014e-06 0.009044281379 -0.0114016963 0 -15.90327102 4.869600701 1018.051573 0.001964537017 +2.4991781e-06 0.001361596142 0.01480280107 0 7.448446758 -11.09928642 1042.442401 0.00191857123 +2.498578159e-06 0.009653241881 0.003143037516 0 0.4763702109 15.41109226 914.1291872 0.002187874567 +2.494447e-06 0.006709290738 0.004432609244 0 23.16320208 20.32306587 923.8903984 0.002164758941 +2.496216219e-06 -0.009773334521 -0.01242787408 0 -23.11961807 -9.005559951 901.427034 0.00221870426 +2.499541059e-06 -0.008191258083 0.01078082668 0 -5.955482987 6.314881503 905.9528206 0.002207620479 +2.496939555e-06 -0.0007695532311 0.005390847868 0 11.21947791 -21.92789717 995.1385885 0.002009770321 +2.499684321e-06 -0.00876943937 -0.006813358753 0 -6.256899388 3.88016106 926.5282933 0.002158595711 +2.498358087e-06 0.004915986434 0.009861889333 0 -6.177960765 15.8597967 939.025548 0.002129867504 +2.49974081e-06 -0.001051901844 -0.004364134676 0 2.599339523 6.529006627 976.010151 0.002049159015 +2.495996387e-06 -0.0091351924 0.006494024761 0 -22.19933077 12.11348264 893.1698946 0.002239215643 +2.49766093e-06 0.002984764408 0.0140357555 0 -12.18710482 18.51337156 1024.403924 0.00195235488 +2.499463656e-06 -0.009979741895 -0.01144057666 0 2.493530624 -8.969258891 898.7751486 0.002225250668 +2.498386666e-06 -0.006501613236 0.003390298951 0 -9.436298186 13.17183406 901.812576 0.002217755721 +2.497177305e-06 -0.006963580474 -0.002824159577 0 -23.25371233 -8.265569907 1038.238806 0.001926339093 +2.496733385e-06 -0.004528332348 0.003094157651 0 -23.87708622 2.384167407 938.3368109 0.002131430822 +2.499168635e-06 0.003554261313 0.01494052766 0 -7.412188925 -10.56439329 1000.69887 0.001998603235 +2.49826551e-06 0.003670671005 0.004016209559 0 -19.59648492 0.727972333 1052.600833 0.001900055498 +2.495589934e-06 -0.00705603214 -0.0003549593431 0 18.24651369 -21.92159151 959.7351631 0.002083908225 +2.495827033e-06 0.006172958454 -0.00161542756 0 20.01188398 23.30929536 1062.747738 0.001881914144 +2.499345791e-06 0.0009246308776 -0.0002458457253 0 -0.7410137996 12.17771275 1066.479156 0.001875329666 +2.495547408e-06 -0.001538556814 0.01495419977 0 -3.717558852 26.31665536 890.0398593 0.002247090374 +2.499344024e-06 -0.001948649134 0.002322734222 0 -3.455892066 -10.38594623 955.5356901 0.00209306677 +2.497328292e-06 0.007460947135 0.01361796025 0 0.03638688641 22.38842023 968.1449053 0.00206580646 +2.494741834e-06 -0.001946216887 0.01228752373 0 -13.52448074 28.25161023 965.1034975 0.002072316601 +2.497947334e-06 0.008815621017 0.01097108972 0 -14.42433636 16.08646897 1066.0418 0.001876099042 +2.499962772e-06 0.008583628647 -0.003992511663 0 -2.396670939 -0.04588356991 878.4908372 0.0022766316 +2.498997609e-06 -0.003583208169 0.01097338341 0 3.770659037 13.86958707 1014.959717 0.001970521556 +2.497379985e-06 0.0009961430822 0.008835864058 0 8.332307569 19.77823588 937.1889497 0.002134041381 +2.498284267e-06 -0.0008728881832 -0.00565043411 0 -9.198436496 -17.56245258 1069.972907 0.001869206208 +2.499153811e-06 0.006396109085 0.003466881746 0 0.6154327389 -11.38297965 876.1649297 0.00228267525 +2.493251648e-06 -0.008438987588 0.005098283265 0 -27.37401375 21.90227582 953.3010972 0.002097973039 +2.498133936e-06 -0.0005302274041 0.0122251023 0 -15.59594968 -8.380158291 916.2029868 0.002182922375 +2.497352292e-06 -0.00490253598 -0.01154663001 0 -18.1403768 13.76611434 989.2017812 0.002021832186 +2.498489291e-06 0.003166391477 0.004794581006 0 5.710577719 -17.04750782 1034.072126 0.001934101065 +2.498843058e-06 0.003566515823 -0.00284695623 0 7.425415908 12.45973985 953.3623744 0.002097838192 +2.498238955e-06 -0.002626868184 -0.01056770135 0 -19.7650909 2.60023068 1061.964146 0.001883302754 +2.498260251e-06 -0.001553471549 -0.006115142161 0 -16.96889776 -0.547939822 909.9306491 0.002197969705 +2.499591629e-06 0.001537142731 -0.001577519062 0 5.311149107 7.772108947 1041.554121 0.001920207466 +2.495099938e-06 0.003520295233 0.003787117868 0 23.90965837 16.15086478 921.0063894 0.002171537595 +2.498475342e-06 -0.006789958482 -0.01239313436 0 -15.56304993 -8.554740859 1016.775022 0.001967003473 +2.498723688e-06 -0.004220322059 0.007004780676 0 4.468250085 15.57166171 1013.771131 0.001972831874 +2.498052772e-06 0.008316922877 -0.002600954217 0 -0.5359454039 -20.75445686 1051.733768 0.001901621932 +2.499560411e-06 0.008184735365 0.002760070756 0 3.703245391 -9.154438241 1053.112412 0.001899132493 +2.496167059e-06 0.004156104233 0.01183766096 0 -11.24165485 23.77911003 949.4364588 0.002106512744 +2.498077914e-06 -0.003391967868 0.01022839485 0 19.77566397 -6.193922695 1056.636049 0.001892799325 +2.498243122e-06 0.001251351507 0.01251079343 0 -15.64559318 -9.362181116 972.4181416 0.002056728391 +2.499541274e-06 -0.008523403616 -0.002812982358 0 8.669565388 3.020248223 958.4051395 0.002086800162 +2.497656306e-06 0.002445043838 -0.002325885496 0 16.90595324 13.27317888 992.4243075 0.002015267043 +2.496967329e-06 -0.009522004393 -0.003484925211 0 -0.6140247958 -25.22361554 1024.02522 0.001953076898 +2.498561339e-06 0.008376412326 0.006849546167 0 1.876419122 -16.0012209 949.5786456 0.002106197321 +2.498285411e-06 -0.009627514491 -0.01205183581 0 -19.51262514 -0.6576450872 1054.036184 0.001897468066 +2.498529332e-06 -0.002341811378 -0.003969334436 0 -14.20937507 11.33722607 1059.686647 0.001887350384 +2.499405788e-06 -0.005353311663 0.001322874008 0 2.184663533 10.29817309 965.5945798 0.002071262662 +2.498318014e-06 -0.005282398202 0.001524428506 0 -12.56992933 13.86572112 1020.141404 0.001960512525 +2.496665778e-06 -0.0003462855518 -0.002080507209 0 20.40832469 13.30664459 942.9856366 0.002120923079 +2.498768013e-06 -0.003166132839 -0.0110524605 0 -2.119959848 13.70642385 883.4041182 0.002263969523 +2.499282243e-06 -0.003884113133 0.00734316871 0 10.54249555 -6.417623801 1030.012588 0.001941723843 +2.499281488e-06 -0.002071737195 -0.01443998518 0 -6.112190183 11.24496906 1067.551596 0.001873445749 +2.4960563e-06 -0.003618826563 0.01290780511 0 -12.10479928 22.33306013 903.9700534 0.002212462672 +2.499255187e-06 0.004267988047 -0.00166996947 0 -9.689986347 6.144015173 939.9711493 0.002127724879 +2.496736289e-06 -0.005023211045 -0.01266526597 0 -25.28465216 8.483176591 1043.364516 0.001916875617 +2.497265777e-06 -0.002043414642 -0.0002345344168 0 12.43278039 -21.33516235 1055.529556 0.001894783512 +2.497960438e-06 0.005591932023 0.009292688419 0 6.534592209 -17.32219143 916.3855776 0.002182487425 +2.496387168e-06 0.00102426277 -0.009826792537 0 2.22889452 -23.54337054 879.2893932 0.002274564001 +2.499342607e-06 0.004684630479 0.004300345124 0 -9.950027307 5.894676475 1008.502794 0.001983137788 +2.497102261e-06 0.009097596365 -0.00564845948 0 13.78712925 21.03370305 1044.232841 0.001915281652 +2.497850573e-06 0.009783641091 0.008507441387 0 6.553688718 19.83699147 1007.289607 0.001985526294 +2.496466292e-06 0.001112044328 -0.007811385517 0 -15.99815553 20.73672894 984.6604312 0.002031157074 +2.499203621e-06 -0.004416702143 -0.003134450458 0 -3.20454866 -11.61414484 954.5373464 0.002095255893 +2.499931043e-06 0.006456196345 -0.005104660706 0 3.801927975 -0.6075822401 1036.743872 0.00192911678 +2.499991395e-06 0.002767440537 -0.009111383494 0 1.152000057 -0.2915244798 905.8063771 0.00220797739 +2.497498551e-06 0.003446738226 0.001450395877 0 1.089471173 -21.10253781 944.3628208 0.002117830092 +2.495856744e-06 0.002686655708 0.01240990595 0 22.77763043 14.99551244 946.7575 0.002112473363 +2.496927673e-06 0.008445166587 -0.001144374723 0 -16.89453455 -16.41696259 949.8933278 0.002105499577 +2.499250896e-06 -0.006513897362 0.01039995301 0 -6.925661776 8.281664349 881.9069606 0.002267812921 +2.499844156e-06 0.00020790271 -0.006243666743 0 -4.184349548 3.37888378 963.3228182 0.002076147229 +2.496660747e-06 0.005883809868 0.01063910364 0 23.84680998 10.35133806 1005.445132 0.001989168713 +2.496424051e-06 0.0009911527205 0.008536926275 0 21.34749836 -10.05388487 881.8696276 0.002267908926 +2.495229056e-06 -0.003150453409 -0.01258098448 0 16.25922331 -21.83838965 880.7694171 0.002270741878 +2.498591737e-06 0.006323271277 0.01084634431 0 -17.0700363 3.965556116 1043.997986 0.001915712508 +2.499183932e-06 -0.00364284283 -0.009273027666 0 10.19628096 6.520545239 947.2405106 0.002111396185 +2.498260056e-06 -0.006388526703 0.009851782448 0 17.55328382 -4.695160336 973.7955257 0.002053819254 +2.495140089e-06 0.009616141822 0.008719319932 0 27.31899005 8.795684315 919.8906555 0.00217417145 +2.497194501e-06 0.009356996864 -0.008445319359 0 20.917844 -8.978356991 960.5766317 0.002082082714 +2.498696836e-06 0.009710848713 0.01003862895 0 -11.14960066 9.026388991 888.4070933 0.002251220206 +2.499364334e-06 -0.0009935047431 -0.003690496115 0 -10.56742159 0.3803754092 937.7330767 0.002132803086 +2.498262658e-06 0.006104320902 0.00735438158 0 2.26915031 16.96809743 918.1453054 0.002178304445 +2.498342467e-06 -0.009810696556 -0.01080293393 0 -17.05413897 4.973974743 975.4464253 0.002050343256 +2.498800071e-06 -0.005119951055 -0.006477831476 0 14.23341806 1.494034755 923.671913 0.002165270993 +2.49594678e-06 0.007272921903 0.006232964562 0 25.68227752 13.36038226 1016.162619 0.001968188912 +2.495353354e-06 0.008479306768 -0.003581820836 0 14.54110686 -25.99029662 976.2458358 0.002048664308 +2.49986076e-06 -0.007808310781 -0.004638078657 0 -1.384226163 4.710001177 930.2579924 0.002149941217 +2.499609817e-06 -0.006858859635 0.01053831956 0 7.967066008 -0.6047598762 904.4224423 0.002211356006 +2.498689522e-06 -0.001884047166 0.001159071217 0 -2.28386927 -16.85645783 1050.512458 0.00190383273 +2.496813433e-06 -0.006433732361 0.005193821741 0 2.933359906 22.54641158 900.1980146 0.002221733405 +2.496371717e-06 -0.001092656502 0.002473509789 0 12.83497854 -22.85877279 972.6542662 0.002056229093 +2.494444996e-06 0.008727435782 -0.01119411558 0 -18.83365798 -24.03226746 915.2680105 0.002185152302 +2.496317986e-06 -0.002723514345 -0.004537565103 0 -25.36577577 7.843292239 977.8635548 0.002045275121 +2.499487286e-06 0.001202895031 -0.004006513772 0 9.770475136 2.644581016 999.4993334 0.002001001835 +2.495414495e-06 -0.006183572318 -0.01133360065 0 13.02453298 -27.15156096 993.7087876 0.002012662085 +2.497907125e-06 -9.686775506e-05 0.01478876818 0 -18.17051137 -3.517210146 904.3394072 0.00221155905 +2.497969169e-06 1.070189755e-05 0.01285186502 0 17.15015355 -9.031630706 961.4689573 0.002080150363 +2.497531731e-06 0.009437778136 -0.002001839834 0 16.75866539 15.24231406 1019.20873 0.001962306583 +2.495875716e-06 0.0001379612926 -0.006722954172 0 21.20425092 -22.29148217 1070.555435 0.001868189105 +2.499766883e-06 -0.00667001124 0.003028904849 0 1.704036887 6.875932261 1037.427719 0.001927845154 +2.498912553e-06 -0.007681748755 0.01115619061 0 -14.38658004 -2.516270447 990.1726862 0.002019849697 +2.499417394e-06 0.003641690947 8.20570928e-05 0 9.692316319 -5.401986555 1027.846703 0.001945815454 +2.498101518e-06 -0.002668494973 0.004303918127 0 2.333808089 -19.41457857 1003.232069 0.001993556688 +2.499653496e-06 0.005085550137 -0.00224438515 0 4.789077546 -6.468674479 966.7747507 0.00206873421 +2.499065204e-06 0.005128707574 0.0143453014 0 -6.688594447 -11.75886653 989.2382643 0.002021757621 +2.498492553e-06 -0.003870799681 0.0124018235 0 -1.275488312 15.14007969 874.8420437 0.002286126981 +2.492232576e-06 0.009923773929 0.005599282973 0 29.52607151 28.14705941 1033.766409 0.001934673039 +2.497956931e-06 0.005024577528 -0.002752966904 0 8.265558875 18.56588273 1005.058571 0.001989933778 +2.499837523e-06 -0.006551180705 0.008743191948 0 5.350257956 -2.084978486 1007.288009 0.001985529443 +2.496632917e-06 0.002046363344 0.003976580899 0 5.768348488 24.05460283 952.7479692 0.00209919104 +2.498674718e-06 -0.002301041861 -0.000733354229 0 -0.9820638299 14.56387666 896.4099497 0.002231122045 +2.497516132e-06 0.006588272522 0.01408849527 0 2.771825725 22.60337988 1021.347059 0.001958198227 +2.499120893e-06 0.00333382234 -0.003572716343 0 -12.27518603 -1.000051089 928.6916064 0.002153567434 +2.496613223e-06 -0.002035348499 -0.003480477221 0 19.80121074 -17.18948866 1006.997237 0.001986102768 +2.497968642e-06 -0.001353376196 0.002194061803 0 -17.38543406 -11.71577924 1039.788892 0.001923467365 +2.498883747e-06 0.0004743744992 -0.001829590669 0 14.81659516 -1.321895843 995.407645 0.002009227084 +2.498155952e-06 -0.001010740874 -3.495692275e-05 0 11.08590458 -14.54818824 952.154323 0.002100499837 +2.498953963e-06 0.0005300898617 0.0004021251784 0 14.27690865 0.8340414869 988.5927389 0.002023077776 +2.497183271e-06 -0.002535099792 0.01118412627 0 15.30634337 -19.1799522 1033.434501 0.001935294397 +2.49988088e-06 0.002620911235 -0.01325605417 0 -4.517743171 1.263229726 961.0644734 0.002081025837 +2.497729635e-06 0.001305108923 -0.006417303469 0 -10.86487825 -15.37801097 883.3136902 0.002264201294 +2.496627399e-06 -0.009558528201 0.002415783831 0 -25.10933306 -5.026273807 985.4831438 0.002029461399 +2.495089103e-06 -0.004604264777 0.001277197651 0 -23.91713474 -22.2639105 1041.864577 0.001919635281 +2.496232656e-06 -0.008711725627 0.01433955407 0 -20.8065656 -15.65135596 947.9765022 0.002109756935 +2.496546349e-06 -0.007421576083 0.009781800506 0 6.590186755 25.55572822 1003.666158 0.001992694468 +2.49657407e-06 0.00397080719 0.006992866904 0 17.91518018 -19.96690823 1024.30057 0.001952551876 +2.49955017e-06 0.008445564061 0.01420680764 0 -7.340670969 -4.216523499 892.4497415 0.002241022555 +2.498553357e-06 0.005466999365 -0.002247716684 0 11.50196272 10.64518083 921.1651391 0.002171163362 +2.497513587e-06 -0.002346656388 -0.006243272074 0 17.39367907 -11.27609854 929.2106927 0.002152364384 +2.497720392e-06 0.005900892965 -0.004831499322 0 22.33570413 4.157469504 1063.658023 0.001880303591 +2.499637184e-06 -0.006612515021 0.01004520524 0 -4.830996353 -7.670749248 1064.138688 0.001879454269 +2.496324953e-06 -0.006536159259 -0.009028292389 0 -20.81776581 13.61265488 916.9557018 0.002181130447 +2.498560177e-06 7.055775262e-05 0.01352486658 0 14.73297038 -9.727581805 1040.148709 0.001922801984 +2.498230005e-06 0.006325112781 0.001573609246 0 -7.154383098 18.03700722 1031.043507 0.001939782353 +2.497161384e-06 0.004068967798 -0.004105404925 0 16.73886742 -13.79360558 909.9234657 0.002197987056 +2.49916129e-06 0.00405170016 0.006097139439 0 2.831138307 -12.97119048 1024.967333 0.001951281701 +2.496731979e-06 0.009211716088 0.0027037037 0 26.86797819 3.070189371 1057.259587 0.001891683012 +2.497602526e-06 -0.009741928685 0.00857378589 0 -19.70501219 6.090785281 941.549116 0.002124158969 +2.498453789e-06 -0.006831803019 0.008913818935 0 0.6396431713 18.33250939 1042.883956 0.001917758911 +2.499571697e-06 0.001181169772 -0.004854728426 0 -6.238642922 -7.566847809 1059.54421 0.001887604104 +2.497133813e-06 0.007853091466 0.0006996269315 0 22.42731516 -4.124616286 952.0205678 0.002100794949 +2.498318831e-06 -0.0031830979 -0.007936139884 0 14.61250316 9.853291716 960.9025615 0.002081376489 +2.498278423e-06 -0.006257798551 -0.003937575566 0 7.023252104 -17.44174719 1013.04618 0.001974243662 +2.498734749e-06 0.009245857918 -0.0009009366715 0 7.642773374 13.93488183 998.9065802 0.002002189233 +2.499607941e-06 -0.008387084519 -0.002003810231 0 9.138752443 -1.476814396 1045.366076 0.001913205379 +2.495728204e-06 -0.004959603599 0.009707428264 0 -1.738413405 29.80469239 1020.759372 0.00195932563 +2.499354168e-06 -0.0003462960524 -0.003535195312 0 0.641027481 -10.67342491 940.7383936 0.002125989556 +2.497053303e-06 -0.001146490797 0.004524839425 0 19.40267205 16.55072593 1050.055446 0.001904661328 +2.499927397e-06 -0.00962103284 -0.0007565003727 0 3.097223175 1.262211074 877.6882853 0.002278713335 +2.496587106e-06 -0.009299640525 -0.002260192246 0 -21.90805501 -12.80375084 970.7557957 0.002060250383 +2.499779973e-06 -0.007196117523 0.001186973141 0 6.162904893 -2.449666563 999.7041608 0.002000591854 +2.497162428e-06 0.0056825891 -0.01240468077 0 -9.663615156 -18.72557333 884.1664038 0.002262017638 +2.498845808e-06 0.006191854984 -0.00343647978 0 15.26261673 1.39134354 1008.548672 0.001983047576 +2.499678047e-06 -0.00543466046 0.004613767366 0 -0.4327251446 -8.248846619 1029.337147 0.001942997983 +2.49457065e-06 0.003969678688 -0.00396202344 0 22.20431466 -24.50611571 1002.72674 0.00199456135 +2.499004028e-06 0.003607005184 -0.007678866964 0 5.866041126 -12.6672472 988.9368171 0.002022373892 +2.498030602e-06 -0.002233199538 -0.01280297159 0 18.7200407 -8.249167105 1030.461407 0.001940878122 +2.499287409e-06 0.008720167121 -0.005916665518 0 -3.408665082 -11.69568358 1020.345327 0.001960120703 +2.49941596e-06 -0.002138167927 -0.000261922481 0 -2.824688719 9.168024696 887.5521876 0.002253388621 +2.495976336e-06 0.00971120025 0.01088119571 0 -17.23116775 20.20233603 935.450987 0.002138006189 +2.494678551e-06 -0.006664000028 0.000236489817 0 -21.80281897 -18.69879047 879.7353257 0.002273411038 +2.494426374e-06 -0.00308154637 0.001706330969 0 -25.92727621 21.80325586 1013.792272 0.001972790733 +2.499260065e-06 0.002717416235 0.003182655042 0 5.734085285 11.24156243 1037.249005 0.001928177314 +2.494330283e-06 0.006155147003 0.002136026965 0 22.68493744 22.07913621 939.2667547 0.002129320547 +2.497837918e-06 -0.008614943237 0.005500880352 0 -16.88759431 14.46261895 1068.879959 0.001871117502 +2.495182143e-06 -0.00530095927 0.01450947642 0 4.233516074 28.3192894 921.7765353 0.002169723272 +2.499678943e-06 0.005828258446 -0.008396165057 0 -3.619738633 -6.20282173 896.1961804 0.002231654234 +2.499519536e-06 0.001476688231 0.0005082341493 0 -8.936323406 -2.009256279 934.3109557 0.00214061495 +2.497653775e-06 0.00417584592 -0.01038707282 0 -17.39485961 8.532597076 894.1007974 0.002236884259 +2.499214267e-06 -0.00355360074 -7.422500756e-05 0 -11.16325535 2.314836552 909.3457483 0.002199383462 +2.49801275e-06 0.002982990677 -0.002174819964 0 -8.034693106 -16.14931982 904.5014033 0.00221116296 +2.497602848e-06 -0.003230882594 0.000535527498 0 8.526272577 19.0678669 953.5953121 0.002097325747 +2.495342759e-06 -0.006089381459 0.002352966168 0 -22.8791956 17.75091861 948.1612176 0.002109345924 +2.49990438e-06 -0.003941054298 0.003384430376 0 1.212502018 -4.177923681 994.7725576 0.002010509824 +2.492483339e-06 -0.00761739871 0.01101942339 0 -24.56380628 28.00392502 959.653349 0.002084085886 +2.497419216e-06 -0.003714112299 -0.004139993875 0 13.34098246 19.02403126 1022.341267 0.001956293915 +2.49714691e-06 0.009979718071 -0.01362340639 0 22.43406741 5.804199878 969.658417 0.002062582003 +2.496920467e-06 0.005417677476 0.003945105113 0 18.70475554 17.52139549 1032.239862 0.001937534166 +2.497531682e-06 0.007112688702 -0.003310980722 0 14.26575713 16.74326417 989.6425592 0.00202093168 +2.493964169e-06 0.003123746957 -0.006343286466 0 -22.11422441 -27.28121806 1009.852283 0.001980487674 +2.49825373e-06 -0.008649464217 -0.008864771489 0 -5.868842301 -18.32278665 1029.235817 0.001943189274 +2.499003848e-06 0.003389225849 0.003289341128 0 13.31782995 5.246311191 1013.948638 0.0019724865 +2.497708865e-06 0.005476653036 -0.003079595394 0 9.475715067 -19.36885941 1006.954232 0.001986187591 +2.494341935e-06 -0.003054866176 -0.005205434358 0 20.53531298 -22.56002807 906.1000863 0.002207261681 +2.499898188e-06 0.00279856219 -0.01308305957 0 3.74404213 3.042922615 1069.162185 0.001870623585 +2.498126601e-06 -0.00231941856 0.008574391112 0 -16.40364255 11.22273837 1026.508144 0.001948352784 +2.499440518e-06 0.008601072785 -0.001428608629 0 -8.45605302 7.454120366 1065.552103 0.001876961242 +2.498385269e-06 0.004068903578 0.007692490672 0 -14.76517621 -11.45328674 1039.58357 0.001923847258 +2.496312366e-06 -0.00830671093 0.002473509796 0 -26.8442226 6.5123836 1016.575465 0.001967389603 +2.49811621e-06 -0.003788017752 0.006757670722 0 -15.3310091 11.25884078 979.6727911 0.002041497955 +2.497484147e-06 0.0002374174912 -0.0063906403 0 -11.92099062 -18.81216578 992.4818743 0.002015150152 +2.49960371e-06 0.005130907302 -0.004181476815 0 -7.472722925 4.101195016 957.4242513 0.002088938104 +2.497370208e-06 -0.006010846808 -0.01389528742 0 -16.39819223 12.85923891 908.2976359 0.002201921398 +2.496489397e-06 0.004003125657 0.009380055517 0 -16.00577125 -18.25728023 915.823926 0.00218382589 +2.495917631e-06 -0.005556903975 -0.01241299776 0 -4.018982492 -26.72367628 945.1820709 0.002115994433 +2.499755982e-06 0.004791403734 0.008376528081 0 0.7699172725 7.176520042 1033.13422 0.001935856892 +2.495209516e-06 0.0002286017314 -0.002674032936 0 23.45284041 -17.82426165 950.9940075 0.002103062674 +2.498170938e-06 0.003956940924 -0.009633786811 0 -13.17802051 14.03084254 1006.144186 0.001987786668 +2.499142851e-06 -0.0062696712 -0.01428529461 0 6.743006387 -11.97768709 1049.675298 0.001905351115 +2.498557286e-06 -0.004213812766 0.007803166201 0 17.41470126 -3.884762437 1050.176406 0.001904441948 +2.498579727e-06 0.008973832009 -0.01337190403 0 10.61545628 12.29021255 963.368091 0.002076049662 +2.498559795e-06 0.008717688252 0.0024456259 0 -10.60685188 -14.04758641 1036.926101 0.001928777757 +2.498924451e-06 -0.009613467697 0.002509246361 0 -3.462752272 14.83774243 1038.684179 0.001925513106 +2.498906502e-06 -0.008566077193 0.00589616786 0 -8.130788934 13.09505577 1042.123144 0.00191915899 +2.499932536e-06 0.005336654731 -0.01119092128 0 0.6048104385 -3.696860082 1019.796396 0.001961175788 +2.495347131e-06 0.0002989808377 0.01258244775 0 23.12236952 19.23839225 985.3439729 0.002029748042 +2.498740343e-06 0.005366514865 -0.01394310294 0 8.727559077 13.39526703 1007.070935 0.001985957424 +2.497658201e-06 -0.006060127695 -0.01250350404 0 22.77019602 -3.453462429 1063.806568 0.001880041033 +2.499277214e-06 -0.008478607601 0.008832468186 0 7.520622257 -10.43562388 1069.749388 0.001869596769 +2.496734051e-06 0.006041844543 -0.00828094576 0 20.75547037 -15.97418466 1024.278584 0.001952593788 +2.497433664e-06 0.003055864437 0.005355561159 0 -2.252755065 20.23210799 898.2096477 0.002226651657 +2.496550979e-06 -0.009715413661 0.01430081308 0 -23.29991616 -14.5260009 1044.880204 0.001914095024 +2.498974801e-06 -0.003612932181 0.007358485681 0 -3.316750898 -14.67488843 1050.527711 0.001903805087 +2.49997572e-06 -0.009206220647 0.00625658656 0 1.469080856 -1.403081722 921.8629306 0.002169519929 +2.497062934e-06 -0.001161944396 -0.01259698287 0 12.58876934 -22.43921776 1061.11935 0.00188480212 +2.496077153e-06 0.0002062593773 -0.006664425989 0 21.9942862 -14.06269128 931.459568 0.002147167809 +2.498078772e-06 0.005616358472 0.003794025066 0 -13.03734729 12.8920361 935.0919463 0.002138827105 +2.499120928e-06 -0.006808315814 -0.01274262741 0 0.3172652238 12.80982628 966.2555623 0.002069845782 +2.499310866e-06 0.008589307438 -0.01468435451 0 -0.19681627 10.71246801 912.538212 0.002191689042 +2.499056637e-06 -0.006289602499 -0.007230420294 0 12.69887491 -2.796183272 946.5210703 0.002113001034 +2.496756629e-06 0.001290650535 -0.0008635865757 0 22.50212728 13.0786273 1021.401963 0.001958092967 +2.498994497e-06 -0.002814676138 0.005494993001 0 10.01842677 -9.585604162 977.6062991 0.002045813332 +2.496652946e-06 -0.009513995019 0.005926779695 0 -24.11916168 -11.32471094 1029.341472 0.001942989819 +2.499379194e-06 -0.007113286522 -0.01444299001 0 8.56272501 -4.779471708 879.9781075 0.002272783815 +2.496563972e-06 -0.00126721154 0.01147857002 0 -2.369546437 22.95451262 879.8374545 0.002273147148 +2.499028498e-06 -0.005039788666 0.00796307747 0 7.896095495 -11.30616794 989.1897419 0.002021856794 +2.499453535e-06 0.005355189159 0.002432510247 0 -3.64730622 8.581087846 891.8112655 0.002242626974 +2.498652975e-06 0.001887661023 0.01063756262 0 -14.25719393 4.010262028 902.1485846 0.00221692971 +2.494703627e-06 -0.008594219717 0.01374502352 0 -25.8523041 -15.86496594 931.2223885 0.002147714686 +2.499780639e-06 -0.0001470557554 -0.01347036079 0 -3.06697544 -6.042647025 1023.037746 0.00195496208 +2.498544989e-06 0.005800159751 0.008103928061 0 9.049230736 -13.13535647 934.841531 0.002139400031 +2.495781389e-06 -0.006933751041 -0.00526719199 0 -25.38406223 15.47769273 1022.890496 0.001955243506 +2.497478357e-06 0.003491222467 0.0119220926 0 -20.22054926 -10.92079468 1022.94221 0.00195514466 +2.499636164e-06 -0.006802538177 0.008790149731 0 4.204618538 8.018171743 1061.29459 0.001884490903 +2.496296865e-06 0.001303799544 0.0005797171011 0 -21.36008575 -12.55416278 909.8998921 0.002198044002 +2.499265135e-06 -0.001217149771 0.005252900727 0 12.31749506 1.502683777 1023.443285 0.001954187426 +2.496661849e-06 -0.002393548721 0.003016303482 0 1.298708646 23.59828275 914.2216639 0.002187653256 +2.497187796e-06 0.003507850002 0.008158020331 0 21.86597025 -11.09837037 1033.527178 0.001935120858 +2.499087684e-06 0.004229313992 -0.009131129114 0 -11.11619578 -7.062521827 974.8520928 0.002051593277 +2.499034163e-06 0.004352767533 0.002403404913 0 14.07601001 -2.933885388 1034.389611 0.001933507432 +2.496549443e-06 0.009561137971 -0.001725790941 0 -18.72542943 -20.0550799 1043.92447 0.001915847418 +2.496415448e-06 0.001228825119 0.01170542671 0 0.3363551673 26.85974276 1002.697205 0.001994620101 +2.499647392e-06 -0.008066019835 -0.002643198583 0 4.499756499 7.552774675 1046.849189 0.001910494866 +2.498080888e-06 0.0003248190787 -0.01074845916 0 5.237193281 -19.60216122 1035.346909 0.001931719681 +2.49808527e-06 -0.004532551779 0.001893007702 0 19.27345519 -3.235615894 998.392655 0.002003219865 +2.499551115e-06 0.003353974717 -0.01205173766 0 -7.092595401 -6.767333915 1034.55516 0.001933198033 +2.498284743e-06 0.00369699609 -0.00552381583 0 16.04046419 -8.622381737 982.9769644 0.002034635676 +2.499247498e-06 0.00447553663 -0.006892886397 0 10.98352566 0.3877226575 895.7654569 0.002232727311 +2.496000213e-06 0.008356668642 -0.01353954186 0 5.708279268 -25.94792054 938.7954645 0.0021303895 +2.495086742e-06 0.001091777449 -0.008268971457 0 19.63480188 -22.30488352 947.2582124 0.002111356728 +2.497282401e-06 0.004173857956 -0.005573056103 0 -10.00472012 -19.53364125 940.9887321 0.002125423963 +2.499974919e-06 0.001740872902 -0.01354652787 0 -0.6938699952 2.289707532 1068.230179 0.001872255662 +2.497138118e-06 0.009797729584 -0.01233087842 0 -13.9117231 -19.98855192 1017.48631 0.001965628412 +2.496240656e-06 -0.005902806432 0.009678219042 0 2.290403317 25.2277174 923.3033142 0.002166135407 +2.498346411e-06 -0.001025558054 -0.01363205657 0 -14.41277396 12.7513519 1057.925304 0.001890492639 +2.497164708e-06 0.002322446117 0.01421068523 0 -15.0469327 17.33721995 963.6121348 0.002075523883 +2.499365124e-06 -0.004276435575 -0.01165632795 0 -8.048291111 8.422654601 1033.748205 0.001934707109 +2.49690277e-06 0.003497548825 -0.002988718157 0 16.63995328 -16.08054258 929.3187784 0.00215211405 +2.498787343e-06 0.001091249427 -0.01156838967 0 7.108791862 -13.8106404 997.2118516 0.002005591888 +2.497393914e-06 -0.006522231032 -0.0119952653 0 -12.65045625 -15.59684426 879.2907441 0.002274560506 +2.498130194e-06 -0.00979045372 0.002343932684 0 -15.27163134 8.128381965 894.3621078 0.002236230697 +2.499224028e-06 -0.004353193338 0.01484565681 0 -9.720780822 8.689743505 1046.507898 0.001911117923 +2.496419133e-06 0.00683118389 -0.01154795167 0 -16.61047203 -20.98063713 999.4078794 0.002001184943 +2.496946346e-06 0.004817348425 -0.01089247489 0 21.88498144 0.6684482954 885.5736937 0.002258423002 +2.496820666e-06 -0.0003691546014 0.01280737696 0 -22.31265564 11.48073962 994.6343133 0.002010789265 +2.498877136e-06 0.002065778524 -0.007469361692 0 10.19625133 8.325947932 878.2712412 0.002277200831 +2.492524206e-06 -0.003250028742 0.009226005008 0 -26.07999429 28.57196643 999.3334175 0.002001334054 +2.495183894e-06 0.003810081496 -0.0105608867 0 23.64798053 19.09826545 978.7056422 0.002043515347 +2.499152122e-06 -0.005670444588 -0.00106870485 0 -12.06902803 -3.204562001 958.8015061 0.002085937483 +2.497325364e-06 -0.007232748689 -0.003482721085 0 5.465122107 -23.93970216 1061.276741 0.001884522598 +2.499396842e-06 -0.006178066079 -0.01426443936 0 7.596965551 -7.519063889 973.1025087 0.002055281928 +2.497808177e-06 -0.001651158049 -0.001251056304 0 -14.74417924 -12.13149105 911.6461305 0.002193833696 +2.499578342e-06 -0.004054873213 0.006780578764 0 -3.072692399 -8.152201616 948.6322387 0.002108298578 +2.496812997e-06 -0.001232997808 0.0140860224 0 -15.65284157 16.14356332 890.2270208 0.002246617945 +2.498677536e-06 0.003664133851 0.01042132066 0 12.69251257 6.591750016 879.2406657 0.002274690057 +2.497435883e-06 -0.0007939900737 -0.001268686785 0 -7.963455958 -22.4305937 1050.672451 0.00190354282 +2.499371819e-06 0.007886152216 -0.01311093748 0 -9.372236715 -6.334869665 1009.147304 0.001981871221 +2.496947386e-06 0.007386944345 0.006103717661 0 -9.218844008 22.31962706 976.8801094 0.002047334141 +2.497558995e-06 -0.009854453779 0.01463321682 0 -18.08262193 12.27167461 988.6952895 0.002022867936 +2.494201067e-06 0.003361329641 -0.005041721589 0 -22.03414837 -26.77651576 1017.355393 0.001965881356 +2.499576864e-06 -0.007192729991 0.008992319985 0 -9.043314876 1.866002271 1003.688915 0.001992649286 +2.498132514e-06 0.002420105268 -0.00286519831 0 11.51883504 16.05002035 1021.942593 0.001957057092 +2.499537728e-06 0.002557533984 -0.01017418804 0 -4.583967995 -7.905434263 950.324293 0.002104544748 +2.498280502e-06 0.002547621015 0.003389490314 0 10.24881397 -13.63160237 919.4185357 0.002175287883 +2.498522286e-06 -0.007510491656 0.00155307174 0 -10.02250268 -15.34343161 1065.810715 0.00187650581 +2.497257906e-06 0.0001425015228 -0.008217339485 0 12.26340516 19.16196716 971.0699745 0.002059583812 +2.496047592e-06 -0.007450331189 0.001802074551 0 -28.05503378 -10.34268992 1062.866767 0.001881703391 +2.498411547e-06 0.005262473589 -0.01296944633 0 -15.67770116 -9.560166853 1029.982207 0.001941781116 +2.499426021e-06 0.003918446316 0.005321965828 0 -3.083933301 10.17053999 991.8448666 0.002016444373 +2.495499015e-06 -7.773695979e-05 0.01353055607 0 5.135036521 27.05295378 917.146036 0.0021806778 +2.499704973e-06 -0.004636116563 -0.008033246286 0 2.786794242 -7.379077957 1026.80789 0.001947784021 +2.495247452e-06 -0.002843949152 0.01370556933 0 18.08985399 20.91060788 896.1889122 0.002231672332 +2.49597751e-06 0.00741888247 0.01216688829 0 4.184171005 27.27389094 972.2408253 0.002057103495 +2.498644923e-06 0.00874045914 0.01456676841 0 10.94927372 -11.39523676 959.7475896 0.002083881243 +2.498237942e-06 -0.007677711253 -0.0100633796 0 -3.016920321 -18.42120648 994.0900405 0.00201189019 +2.498829214e-06 -0.009641678231 0.01013565218 0 13.50449204 4.910600236 938.8897311 0.002130175604 +2.496225499e-06 -0.007106297817 0.00733393545 0 -7.780097521 25.97121367 986.1951 0.002027996286 +2.497166326e-06 0.002428776943 0.004438282256 0 -20.82328747 -2.105244387 878.7856564 0.002275867824 +2.499378083e-06 0.002507455284 0.001430936451 0 -11.15587476 3.176938841 1039.954497 0.001923161067 +2.497312133e-06 0.008009443074 -0.003069117072 0 -5.095140235 20.18300854 897.4442332 0.002228550729 +2.495908104e-06 0.00688530331 0.01192912088 0 21.99139674 13.49562446 901.3898014 0.002218795905 +2.499257136e-06 -0.002752119652 -0.0008597822045 0 10.0840189 -6.69356755 992.8598 0.002014383098 +2.499689548e-06 0.003956227489 0.008012487721 0 -6.265960146 4.167139792 954.9501105 0.002094350247 +2.498299872e-06 -0.006834880388 -0.01320382358 0 -3.890644867 -16.25615805 906.2465864 0.002206904865 +2.499462295e-06 -0.004008949706 0.004888835829 0 -6.456931162 8.388781202 1020.72839 0.001959385102 +2.497102618e-06 0.008274749219 -0.009227801836 0 9.016265275 -20.52596026 930.910603 0.00214843401 +2.497944998e-06 -0.005523952115 -0.009038037867 0 -15.01127062 14.45825753 1027.731228 0.001946034084 +2.49902169e-06 0.009983434174 -0.009573060523 0 2.551721123 -12.50005626 911.9277729 0.002193156146 +2.497493036e-06 -0.005803032531 -0.0004699049843 0 -22.00911531 8.321079353 1050.417356 0.001904005098 +2.499010157e-06 0.009178573187 0.002111029685 0 -13.26689564 -0.7064685843 944.1076027 0.0021184026 +2.49770641e-06 0.009836319927 0.002822443808 0 -6.907083072 -20.18492445 995.7484637 0.002008539378 +2.49710553e-06 -0.009445286565 0.004671678334 0 8.437031131 -19.3640541 877.5104688 0.002279175088 +2.499212973e-06 0.007410817635 -0.009511983697 0 -11.95748621 3.91978637 1002.865539 0.001994285298 +2.499731826e-06 0.009413010557 0.005355990389 0 3.431598223 -6.264437294 975.2711691 0.002050711703 +2.499317139e-06 0.004418059876 -0.01256311703 0 -10.03245129 -6.671591159 1030.856145 0.001940134916 +2.498836022e-06 0.004575795853 0.002227295204 0 5.871629658 -13.29330606 952.2946452 0.002100190325 +2.496689811e-06 0.008794326764 -0.0004215831449 0 23.82559627 7.801180106 973.8711351 0.002053659799 +2.49888694e-06 0.003910871334 0.002968547142 0 12.62502283 7.022952729 968.117204 0.002065865571 +2.498286739e-06 -0.006719537741 -0.005047361981 0 -5.044304717 16.47395936 930.5081808 0.002149363156 +2.497236264e-06 -0.00730173206 -0.00834430421 0 -25.11939751 0.6397953795 1068.333041 0.001872075395 +2.498092617e-06 0.006060157381 -0.00860937624 0 -16.99187599 4.066190206 894.2832209 0.002236427961 +2.499618692e-06 -0.001767784525 -0.0113284035 0 -7.36607152 -2.809722686 902.7247068 0.002215514857 +2.497108572e-06 -0.000964488443 0.004327383174 0 21.4449767 3.986234272 906.655064 0.002205910582 +2.4968304e-06 -0.004453583276 0.002844802772 0 13.34470552 21.69764519 1011.241013 0.001977767885 +2.499968458e-06 -0.002295271219 0.003463082446 0 1.27228704 1.968729827 933.2677633 0.002143007697 +2.499564804e-06 -0.009222786492 0.007306173218 0 8.344481315 -0.9002659287 899.5525354 0.002223327623 +2.49740197e-06 0.00906763758 0.008305172345 0 14.08779788 19.7241502 1062.919942 0.001881609255 +2.494917741e-06 -0.009320040541 -0.00737667219 0 19.21306498 -26.60607004 1028.58004 0.001944428166 +2.497133709e-06 0.00262894318 0.01279553282 0 8.983793398 21.94468037 989.9502958 0.002020303452 +2.499671332e-06 0.004392995671 -0.0131289748 0 3.016230015 -7.779597815 1029.084407 0.001943475177 +2.494295471e-06 -0.003866265425 0.01074932934 0 14.81372862 29.58871315 978.8090395 0.002043299479 +2.496392635e-06 0.004392158892 -0.004648366668 0 -18.39248631 16.24538719 913.1114597 0.002190313109 +2.495756414e-06 -0.009630297986 -0.01103820201 0 -20.9979194 -18.90828654 969.3081626 0.002063327306 +2.498174165e-06 0.003386163651 -0.009022568443 0 14.92011376 9.334588809 920.7399304 0.002172166031 +2.496541845e-06 -0.00533079986 0.006056170778 0 -12.48427464 21.82326234 955.5079625 0.002093127508 +2.497515733e-06 -0.002046907474 0.01016670835 0 13.06034563 15.01890041 892.5823047 0.002240689726 +2.499883723e-06 -0.00402239074 0.007844554384 0 1.883423003 -4.596782033 1030.108256 0.001941543511 +2.497439276e-06 0.001934260442 -0.002876221708 0 19.48179936 -4.122860977 879.5882085 0.002273791282 +2.498724341e-06 0.008533061869 -0.006020414536 0 4.42729188 -13.93661898 915.312134 0.002185046965 +2.497096011e-06 -0.00143462569 -0.01242337516 0 -11.46856812 -20.39851841 970.6014499 0.002060578006 +2.497628928e-06 0.005703927744 -0.01483351911 0 12.62783802 14.28764057 875.325261 0.00228486494 +2.499256638e-06 -0.005214243634 0.0001976776728 0 10.03647737 -7.453890478 1025.189177 0.001950859455 +2.499600241e-06 -0.008445767532 -0.002960270229 0 4.841587026 -7.409413379 989.8122439 0.002020585229 +2.493485625e-06 -0.006095281891 0.01184112817 0 -24.67673329 26.14520437 995.0414517 0.002009966516 +2.498759848e-06 -0.006565338685 0.00508596865 0 13.8642036 5.411396435 944.8283887 0.002116786523 +2.497154775e-06 -0.0006658429746 0.005871375937 0 20.47015809 -13.32102988 1023.38292 0.001954302697 +2.496854603e-06 -0.00529514614 -0.009568031738 0 -3.813364432 -24.91456006 1004.439577 0.001991160092 +2.49708616e-06 0.004243840496 -0.008313041346 0 23.02568895 10.39131932 1045.990348 0.001912063532 +2.498360175e-06 -0.00621583275 0.01458664824 0 -17.01028624 3.471613371 958.4124822 0.002086784174 +2.498083803e-06 0.002107238951 -0.0130735915 0 -18.76404671 -0.3151442128 958.3580903 0.00208690261 +2.498436398e-06 -0.007162196864 0.002158993059 0 -15.85087607 -8.08365074 1005.940952 0.001988188268 +2.498919065e-06 0.006879287176 0.001796855021 0 -13.2593408 -6.799134749 1013.278403 0.001973791205 +2.499607799e-06 0.007335212003 0.002295541365 0 5.706223197 7.449286158 1059.441 0.001887787993 +2.498625451e-06 0.003767638155 0.0001713988488 0 -16.08779516 3.148641735 988.4944016 0.002023279036 +2.496634893e-06 0.006140117403 -0.003887918873 0 23.59662892 7.462972047 953.494315 0.002097547902 +2.496643451e-06 -0.0001546521578 0.001421006795 0 -18.95300752 20.26664278 1070.414266 0.001868435487 +2.499292436e-06 0.009791180748 -0.005047312954 0 -3.311304274 11.57302885 1011.788961 0.001976696798 +2.498479224e-06 -0.007288177214 0.0003163029836 0 17.02673763 2.245429692 984.5295984 0.002031426991 +2.498342197e-06 0.0007605377259 0.005630100856 0 17.63325265 1.047787499 969.8582364 0.00206215705 +2.498936621e-06 -0.008062214591 -0.003025797929 0 -5.912243456 11.93141607 912.9404081 0.002190723493 +2.49930095e-06 0.002685223259 -0.005962571609 0 -6.896421738 8.299622385 912.5246629 0.002191721584 +2.497913154e-06 -0.0009026822355 -0.001554362441 0 19.23036471 -1.363430973 943.3657551 0.002120068477 +2.498574053e-06 0.008931162921 0.0008785953582 0 -4.591067348 15.45281685 954.369146 0.002095625166 +2.498630546e-06 0.004195520268 -0.003252229379 0 -13.50911961 10.34292953 1027.840445 0.001945827302 +2.499369017e-06 -0.006130777523 0.004191431422 0 7.492084876 7.880457566 967.8414532 0.002066454163 +2.499893309e-06 -0.004264177023 0.01342621253 0 1.675513946 -4.29088744 997.1881422 0.002005639573 +2.499672903e-06 -0.002771338387 -0.003888893744 0 5.571068302 5.579881947 974.8153359 0.002051670636 +2.4996842e-06 0.009330969937 0.004717725066 0 -3.329339831 7.652800164 1050.070658 0.001904633736 +2.497076044e-06 -0.0009476384101 -0.001871799999 0 4.510210996 -21.58941595 911.6451633 0.002193836024 +2.496117354e-06 0.009298914489 -0.001293253137 0 -17.95240607 -21.69473172 1009.929324 0.001980336596 +2.49939002e-06 -0.0001783370413 0.01147778029 0 -8.599714947 -5.726153324 935.3175274 0.002138311259 +2.498480435e-06 -0.009068252323 0.004902831079 0 -16.37396345 -5.833264019 996.8410571 0.002006337907 +2.498622906e-06 0.0008322681906 -0.005311870328 0 -7.365812657 -14.2954922 968.8163143 0.002064374815 +2.49969353e-06 0.007518135365 0.01040234845 0 4.398124567 -6.109303132 961.4721346 0.002080143488 +2.49875205e-06 0.005430869823 -0.00561962236 0 5.452395099 15.49051773 1039.28166 0.001924406133 +2.496316702e-06 -0.007212507948 -0.005237442318 0 -2.839166864 -28.21573075 1044.252096 0.001915246336 +2.499098574e-06 -0.007046114001 -0.009618120838 0 -10.5410748 -7.792371314 976.1521944 0.002048860835 +2.496819449e-06 -0.004113666173 -0.01486679971 0 18.22111698 14.28133788 917.4765676 0.002179892185 +2.497337808e-06 -0.0029060147 -0.01069878393 0 17.95293689 16.35279711 1051.999364 0.001901141833 +2.497458329e-06 0.00980164052 0.01304456573 0 23.15014874 -2.053381431 1030.422064 0.001940952228 +2.497339323e-06 0.007357656476 0.006422319291 0 -6.204971754 20.47648236 927.1451264 0.002157159589 +2.496262233e-06 0.008097468223 0.00895006584 0 27.53823861 -6.424987934 1033.668168 0.001934856912 +2.499086901e-06 -0.008868859042 0.01280466223 0 4.473496314 13.08101186 1022.881804 0.001955260121 +2.496701274e-06 0.009129135502 0.005702159812 0 19.2923196 -17.5746267 1015.523352 0.001969427877 +2.499373996e-06 0.004226251738 0.008978877675 0 7.958372088 -7.697117677 989.390475 0.002021446588 +2.497714426e-06 0.00398854515 -0.01157695323 0 -21.07671097 -3.424748685 998.389984 0.002003225225 +2.499712553e-06 0.006427348023 -0.009181529239 0 -7.304186379 -2.446912862 1015.911901 0.001968674644 +2.497232832e-06 -0.005971293994 -0.001949985176 0 -23.98171059 6.464151148 1055.351057 0.001895103992 +2.495007319e-06 -0.008912813393 0.01158799564 0 -23.17389718 24.39536559 1064.013386 0.0018796756 +2.49696238e-06 -0.004989076327 0.001607734307 0 -24.4423972 9.416900328 1062.225595 0.001882839211 +2.495709502e-06 0.0001147318957 0.01093845333 0 21.61329797 18.82710476 977.8679569 0.002045265913 +2.498973627e-06 -0.008959749392 0.01118776703 0 0.5778449637 -14.88353394 1039.438226 0.001924116267 +2.49540946e-06 0.0004147611372 0.01126941694 0 15.33887414 27.72094774 1044.87101 0.001914111867 +2.499762089e-06 -0.008594847717 0.006195643076 0 -5.445166266 4.210457747 997.8145821 0.002004380409 +2.494269294e-06 0.001300923359 0.004067834895 0 22.63285621 21.33319895 917.9084657 0.002178866493 +2.495701787e-06 0.0004753327137 -0.01306958187 0 -21.65865604 -16.51248545 928.3086527 0.002154455842 +2.498988536e-06 -0.001450996445 -0.007288523074 0 13.44953109 -6.527033102 1050.932994 0.001903070901 +2.497873007e-06 0.008902125987 0.004282191549 0 -4.590551063 -21.36443655 1059.145522 0.001888314645 +2.495776704e-06 0.008966350341 -0.009345330696 0 -10.87551897 -23.21679962 881.5858773 0.002268638883 +2.499568311e-06 0.009666208192 -0.01308697385 0 -8.324921453 -2.272860814 928.672359 0.002153612069 +2.499438491e-06 -0.006119761663 -0.0001065696194 0 4.735965464 8.590616124 925.5946936 0.002160772975 +2.498113836e-06 -0.003674270753 0.003897882127 0 -10.58813778 15.886587 982.6899233 0.002035229987 +2.497457997e-06 0.005973627907 0.01277529318 0 -9.280747265 18.49036599 917.2048219 0.002180538035 +2.497288291e-06 -0.005716804033 -0.006882902768 0 -24.03924491 -3.345132096 1041.770522 0.001919808593 +2.49784635e-06 -0.007178248228 0.01329812351 0 -9.956202789 19.53813968 1056.254553 0.001893482963 +2.499581715e-06 0.002921789512 -0.006104340765 0 4.467003956 -8.100354227 1011.304998 0.001977642753 +2.498787445e-06 -0.002278132765 -0.00772939601 0 0.6805420368 15.67178794 1007.124004 0.001985852776 +2.498029321e-06 0.005230328087 -0.008801549287 0 17.09661483 10.48457687 1009.90566 0.001980382999 +2.497811097e-06 -0.008499817564 0.01431718174 0 10.14249075 18.91453718 1025.427951 0.001950405192 +2.498821582e-06 0.009504461573 -0.01185306992 0 -1.869416963 14.17547561 931.194151 0.002147779814 +2.499226564e-06 0.002702935226 0.00259413067 0 -0.98091281 11.05869025 892.5404775 0.002240794732 +2.498469572e-06 -0.008354714871 0.01476060695 0 -12.1645501 11.01919788 937.9437555 0.002132324021 +2.49948272e-06 -0.003994862079 -0.008005480031 0 4.375697253 9.801315222 1055.20818 0.001895360592 +2.496868876e-06 0.007777265827 0.005218262644 0 11.53864872 18.93371061 885.6213869 0.00225830138 +2.497126201e-06 0.005445059659 0.01162277054 0 21.56202268 -1.471493295 901.089548 0.002219535233 +2.497022379e-06 0.008363482906 0.0115165385 0 8.641654981 23.91523212 1041.548715 0.001920217433 +2.498507833e-06 0.002204051246 0.006221638522 0 -5.097665513 -17.09357509 1032.316917 0.001937389543 +2.49841269e-06 0.001389580206 0.004600041022 0 16.49645064 0.5951439892 926.2401274 0.002159267279 +2.499617101e-06 0.00437108878 0.005622424863 0 7.025328989 -3.920121981 919.2763504 0.002175624337 +2.497696408e-06 -0.009191858796 0.01216535441 0 -21.90808503 -1.462500249 1022.591137 0.001955815896 +2.495963077e-06 -0.003041057768 0.0009100364358 0 22.44520633 16.49665304 979.7313417 0.002041375952 +2.499902211e-06 -0.004864245025 -0.0141244023 0 -1.630378532 -4.379653074 1056.708634 0.001892669308 +2.499264834e-06 2.401974518e-05 -0.01050990032 0 8.803564407 9.550458288 1071.075337 0.001867282283 +2.496789778e-06 -0.00693162634 -0.00347315718 0 8.067794983 -22.52346666 943.7489625 0.002119207628 +2.499906326e-06 0.006661276105 -0.008025362834 0 3.279116552 2.189545419 910.9360389 0.00219554383 +2.496770464e-06 -0.001116228374 0.009831975542 0 24.84015622 -7.191100626 1017.032371 0.001966505745 +2.49857116e-06 0.009496107046 0.005766075079 0 -10.5828434 -11.99781633 946.1778417 0.002113767531 +2.498316381e-06 0.005283284588 0.002969022242 0 -13.33071585 9.363166804 887.5338586 0.002253435157 +2.497030327e-06 -0.001534331585 0.0008510384476 0 10.14008446 20.86431907 951.4484077 0.002102058277 +2.49681289e-06 0.007101078806 0.008882372654 0 11.8362071 18.91018928 883.1991906 0.002264494829 +2.496322987e-06 6.885723677e-05 -0.01322848634 0 -2.80948266 -26.52477408 983.0417922 0.002034501499 +2.498544089e-06 -0.009517649701 -0.006343623544 0 -5.278979435 14.70794305 915.5618598 0.002184450978 +2.496638792e-06 -0.004935603328 -0.0007179091615 0 6.261329835 -26.46192621 1048.25999 0.001907923625 +2.496049848e-06 -0.004068319821 -0.01116938055 0 18.39534035 16.62843051 881.6991719 0.002268347373 +2.498846837e-06 -0.009121650122 0.006590202029 0 13.23301419 5.298210774 938.4452178 0.002131184604 +2.497477142e-06 0.003497709734 -0.003295541117 0 9.622040411 -17.50123289 888.7785659 0.00225027929 +2.498892909e-06 -0.009434971716 -0.007975234268 0 6.912082672 11.23541694 886.3598842 0.002256419808 +2.498919059e-06 0.004896082743 0.01483188913 0 3.300891264 -13.75678007 962.0239294 0.002078950366 +2.496720855e-06 -0.009226474734 0.00538101051 0 -13.84966692 18.16186286 891.4303701 0.002243585217 +2.496335334e-06 0.002399768438 -0.009158287772 0 -22.08772506 -13.70948668 959.7180101 0.00208394547 +2.497938367e-06 -0.002704279418 0.002171620459 0 -13.24777114 -13.65702578 936.7202079 0.002135109271 +2.496601102e-06 -0.003839944885 -2.231086604e-05 0 -20.79933137 11.73993105 915.5849721 0.002184395835 +2.498771036e-06 -0.006172913597 0.01230196318 0 15.65856649 -0.6123870781 999.35388 0.002001293075 +2.497249857e-06 -0.007446394828 0.0001147399354 0 -6.639337865 20.70704873 926.8204863 0.002157915184 +2.497925033e-06 0.005391264674 0.0001686152886 0 8.630967993 17.73941172 968.0985992 0.002065905272 +2.497903268e-06 -0.006858988972 -0.005827856362 0 -15.08179837 14.17962171 1010.563506 0.001979093831 +2.499704333e-06 -0.002978404742 0.006507820096 0 -6.142843522 -3.037122437 891.0911262 0.002244439363 +2.498535112e-06 -0.008651144835 -0.0001839565742 0 11.10980154 -13.6053184 1025.977268 0.001949360928 +2.498194922e-06 -0.009290735153 -0.004584467034 0 -16.38928042 10.31895396 1019.029504 0.001962651712 +2.495623816e-06 -0.007136807898 -0.009007313743 0 12.85995569 -27.81366119 1035.093715 0.001932192198 +2.496314081e-06 0.0002376892511 0.01194835406 0 -12.73010452 21.43442677 917.6751147 0.002179420546 +2.49708737e-06 -0.006285333047 0.009531807995 0 22.12482437 13.08830589 1064.61191 0.001878618849 +2.497448027e-06 0.001038103867 -0.01236727087 0 -20.90677271 -10.80714048 1041.33723 0.00192060741 +2.499343154e-06 -0.008099318882 -0.00292350549 0 10.10434715 -0.5588793758 882.8399891 0.002265416185 +2.498724941e-06 -0.003142686714 0.008065179053 0 0.5907443844 -15.52871303 972.9403233 0.002055624535 +2.498366357e-06 -0.004438868472 -0.00486593232 0 18.90171591 -2.850351665 1057.264947 0.001891673421 +2.496121261e-06 -0.003502019779 -0.01186612904 0 -15.16510447 -20.02109565 901.2415811 0.002219160813 +2.497908048e-06 -0.001229971964 -0.001114823276 0 -18.23392967 10.4595239 1027.363116 0.001946731363 +2.497738213e-06 -0.006712049935 0.003182640688 0 -4.167215724 -21.68750791 1037.992542 0.001926796117 +2.497426504e-06 -0.007321456731 0.004568453331 0 3.858084964 21.91286682 980.3560459 0.002040075142 +2.499020716e-06 -0.006445323508 -0.005871943817 0 13.31010662 -4.670730657 1007.780089 0.001984559947 +2.496168526e-06 0.006491391151 -0.003368836977 0 28.19984255 6.736107427 1046.763575 0.001910651122 +2.498679785e-06 -0.0009067374701 0.004193705397 0 12.37021383 -10.2582943 988.7826758 0.00202268916 +2.498070394e-06 -0.002551211808 -0.008535358335 0 -7.375609767 -19.29807068 1051.34403 0.001902326873 +2.496822315e-06 0.006196511108 -0.01129604042 0 23.136418 -10.33248809 1004.634998 0.001990772771 +2.496659729e-06 0.0001870695129 -0.01245107909 0 -18.90281756 16.56455206 971.9236945 0.002057774711 +2.49585559e-06 -0.004682992878 0.004677161258 0 20.08133964 -22.15255876 1037.889843 0.001926986774 +2.497002494e-06 0.009118628795 -0.00270425481 0 -10.88581893 23.49717148 1057.175857 0.001891832836 +2.497231965e-06 -0.002713294253 0.00924072708 0 16.50278186 -12.95598012 891.3400201 0.002243812636 +2.499293425e-06 -0.007619531658 0.0002067635441 0 -11.18855956 5.743156696 1057.836771 0.001890650858 +2.49843937e-06 8.180787321e-05 -0.008709498283 0 17.5227566 6.528676585 1058.188091 0.001890023161 +2.498498974e-06 -0.00331776611 0.01337934067 0 13.9145471 8.859932967 951.8482777 0.002101175205 +2.497981194e-06 -0.003111903002 0.009141603943 0 17.18720983 -11.85721751 1038.834466 0.001925234544 +2.496069131e-06 0.0007628076011 -0.01121205632 0 21.29366669 -12.3212106 876.8909622 0.002280785282 +2.499506713e-06 0.004220799333 0.007851051113 0 -9.269080292 -3.623629408 1001.895895 0.001996215385 +2.498032084e-06 0.004054632802 -0.003524628833 0 3.771596551 -19.44857495 998.2926325 0.002003420575 +2.497456505e-06 -0.003747431408 0.007992420041 0 -21.82919283 5.701292329 999.932105 0.002000135799 +2.49983956e-06 -0.006529940143 2.629262628e-05 0 0.5829384186 -5.025998927 893.1855871 0.002239176302 +2.498165184e-06 0.00515225227 0.005004865935 0 13.50513832 -12.52125694 961.1214561 0.002080902458 +2.498174775e-06 -0.002856213506 -0.0007542600646 0 -20.12225856 -2.614920963 1061.746963 0.001883687987 +2.498587933e-06 0.005831351266 0.005461029899 0 4.987425219 14.38253521 905.6453269 0.002208370032 +2.498895647e-06 0.00993857081 0.01437084762 0 -4.258960473 -14.60664854 1023.594711 0.001953898334 +2.499959336e-06 0.002246189429 -0.004313293914 0 0.3923587119 2.545776974 903.2183329 0.002214304036 +2.498050662e-06 0.003181063882 0.003504516121 0 -3.192498063 19.2905603 989.9805193 0.002020241773 +2.497805582e-06 -0.008217475247 0.0004074470792 0 18.20653976 2.331163666 875.8724472 0.00228343751 +2.496993094e-06 0.009632414719 -0.004302742488 0 25.80200454 2.046594793 1054.980536 0.001895769572 +2.499970988e-06 -0.002064101654 0.0004809081601 0 1.563875514 -1.425406373 878.443806 0.002276753489 +2.497666043e-06 -0.004184415108 0.01329477676 0 19.19725062 -4.268483232 909.9218526 0.002197990953 +2.495167919e-06 0.0007195994304 -0.01166400407 0 19.71929776 -26.23893071 1055.061242 0.001895624558 +2.496381558e-06 0.005391162108 -0.006327912239 0 25.96717246 6.40229572 993.6361579 0.0020128092 +2.498518408e-06 -0.002654239442 0.01417726504 0 -15.64123874 1.939402616 915.3945329 0.002184850278 +2.49764839e-06 0.009016649439 -0.009016735798 0 -8.150091626 20.73980954 1027.156452 0.001947123046 +2.499993501e-06 -0.002234394657 0.0005138255493 0 -0.5356803975 0.956143887 961.2871438 0.002080543793 +2.495931059e-06 -0.008217096063 0.009939292087 0 -18.04399091 20.51856745 957.2430757 0.002089333473 +2.497230162e-06 0.009530663155 0.006942377875 0 -6.998705492 19.89816704 895.8138336 0.002232606737 +2.498169611e-06 0.0003971006814 -0.002123803692 0 16.64393215 -8.915250965 986.5637926 0.002027238395 +2.499384998e-06 0.006807782063 0.01124544787 0 6.042366834 9.499646137 1015.04846 0.001970349278 +2.495987531e-06 -0.007360008098 0.0008387247333 0 -21.75819031 15.59281154 944.3700812 0.00211781381 +2.498470638e-06 0.003921516612 -0.01352155505 0 10.27608651 14.12916577 998.7223766 0.002002558516 +2.496829098e-06 -0.003025015802 -0.002624167863 0 21.89048067 12.80248292 1006.526078 0.00198703247 +2.499385054e-06 0.002309682518 -0.00444716722 0 -0.6716154221 -10.13357775 915.6743934 0.002184182516 +2.496406769e-06 -0.004270888995 -0.01029216453 0 17.31083726 -15.83101325 874.585904 0.002286796518 +2.4980653e-06 0.009607637394 -0.005468211095 0 2.660140208 -18.47419583 948.5797469 0.002108415245 +2.495683417e-06 -0.004807288833 -0.002044723844 0 18.44288478 -24.2996146 1037.570669 0.001927579547 +2.496722171e-06 -0.006470045196 -0.002336461453 0 -25.49312866 7.545937619 1037.860499 0.001927041257 +2.499209465e-06 0.001925347578 -0.01083181261 0 12.79344015 -3.764505924 1060.454493 0.001885983805 +2.496134434e-06 0.002177003189 -0.01473906428 0 -21.64540948 17.48415843 1000.13477 0.001999730496 +2.499358265e-06 0.004979528757 -0.01112097257 0 2.536606652 10.74005867 974.0000666 0.00205338795 +2.499038227e-06 0.00442524198 -0.001888424009 0 5.301566221 13.51939065 1046.89801 0.001910405771 +2.498027959e-06 0.00867041138 0.005863958616 0 5.310848679 -16.76513555 885.2600906 0.002259223048 +2.499943284e-06 0.009718302255 0.006608344351 0 -2.028414571 -2.613837649 982.3554178 0.002035923011 +2.499977618e-06 0.006197878141 0.009551306118 0 1.020526023 1.561019969 881.4844926 0.002268899812 +2.497889423e-06 -0.00761105713 -0.01470007025 0 -15.67378218 10.56882571 919.8233191 0.002174330612 +2.497951365e-06 -0.001311012842 -0.0119672546 0 -16.52233924 -13.72535958 1060.829013 0.001885317969 +2.495480012e-06 0.0005896587903 -0.01008619385 0 -4.135718607 -28.3190523 951.2242989 0.002102553522 +2.497205151e-06 -0.001669793352 -0.00385249519 0 -23.31777544 4.409248882 1003.320266 0.001993381443 +2.496454791e-06 0.009105821494 0.006935297437 0 -13.88567338 -18.71708511 874.7609325 0.002286338959 +2.496972148e-06 -0.009166248795 -0.003250605951 0 -23.00846522 7.014375793 977.0260989 0.002047028224 +2.498051078e-06 -0.001904423758 -0.002424258899 0 18.76946087 -8.420474358 1041.674715 0.001919985165 +2.49744322e-06 0.004706062875 0.0002757247235 0 -23.09664599 -6.203454143 1057.173173 0.001891837639 +2.499447762e-06 -0.003982271012 -0.005297408891 0 10.07729522 -4.250428649 1040.601265 0.001921965759 +2.498375535e-06 0.005269367341 0.00309122629 0 15.4829488 -9.190077056 998.6575309 0.002002688548 +2.496817739e-06 -0.00225576011 -0.006186422899 0 18.51606745 -15.83209854 965.2061493 0.002072096206 +2.499968579e-06 0.008054670901 0.005731544998 0 -0.5606392128 2.150843664 886.6603285 0.002255655222 +2.495647796e-06 -0.004576583412 -0.01409804229 0 1.821133623 -30.8606077 1047.143019 0.001909958776 +2.494999355e-06 -0.004945189808 -0.002729621495 0 22.37705794 22.14535253 994.7535279 0.002010548285 +2.498785019e-06 -0.003779297173 0.005045522545 0 14.58015564 -5.62048197 1002.231001 0.00199554793 +2.499389585e-06 0.00616590492 -0.01471753486 0 -10.39542093 0.7371846299 943.1132547 0.002120636085 +2.498472918e-06 -0.009218640761 0.006923381661 0 5.207788247 15.12128914 914.919539 0.002185984575 +2.499112197e-06 -0.008943460677 0.01117351007 0 0.8007578658 -12.98722962 976.3587038 0.002048427481 +2.498425879e-06 0.003802031409 -0.0135335985 0 10.58928341 -12.54020634 924.8128866 0.002162599623 +2.496313871e-06 -0.00215555422 0.003052565104 0 -20.94920135 17.78032914 1011.429399 0.001977399511 +2.499613443e-06 0.006601369008 0.005593955966 0 -8.144617907 4.390623811 1052.255447 0.001900679162 +2.498637395e-06 -0.007205632259 -0.01334120285 0 -5.581688845 -16.7415871 1068.798086 0.001871260836 +2.496488641e-06 0.009379548035 -0.004813386253 0 23.51312006 -3.559142566 896.9081233 0.002229882803 +2.498572422e-06 -0.002486333558 0.01497723511 0 -10.64327942 13.79922739 1031.129081 0.00193962137 +2.499447163e-06 0.004256894286 -0.01139881647 0 -5.885475638 -8.215130785 960.9948554 0.002081176594 +2.497254944e-06 -0.001428242209 0.002984999581 0 -9.282158584 -18.3101923 875.7676707 0.0022837107 +2.4973522e-06 0.003488945812 -0.001947147623 0 -18.53749737 -10.05477845 916.0553054 0.002183274294 +2.499693755e-06 0.002436476219 -0.009447662174 0 7.386199075 1.135166923 954.8182693 0.002094639435 +2.498798233e-06 0.000309530138 -0.01227859316 0 -10.08223676 9.226992182 881.3980873 0.002269122237 +2.49664767e-06 -0.0004767246218 0.01320460962 0 0.3066430133 26.85820068 1036.807919 0.001928997611 +2.497428083e-06 0.008629370839 -0.007544477074 0 12.8001429 -19.34256828 1022.283657 0.00195640416 +2.497983806e-06 -0.003509333893 -0.01428349465 0 18.81817907 -4.093991081 958.7532627 0.002086042445 +2.497102318e-06 0.004514966002 0.003611068432 0 16.50208542 -16.48662521 968.5480564 0.002064946583 +2.497132611e-06 -0.002168664765 0.004286052631 0 19.53426995 9.680652874 909.9970394 0.002197809348 +2.498405265e-06 -0.009051877474 -0.002256430497 0 -12.75258326 11.82432079 973.5505636 0.00205433603 +2.499609466e-06 0.006143513294 -0.004483701373 0 8.586769246 2.176150024 1002.252946 0.001995504236 +2.495627604e-06 -0.0007539372193 -0.01126251475 0 -23.23185053 15.58389809 945.3740318 0.002115564774 +2.495000257e-06 0.003390411362 -0.001150287241 0 -21.09337896 -25.93128461 1056.287449 0.001893423994 +2.499783676e-06 -0.009075889839 -0.002379410674 0 -5.841230326 0.4391812683 890.5269634 0.002245861251 +2.497919094e-06 -0.004618417751 0.006475981737 0 20.54349937 4.826010254 1034.098973 0.001934050853 +2.497330864e-06 0.006286505302 0.0148425479 0 -0.3798375698 24.32768922 1052.639005 0.001899986596 +2.497078003e-06 0.001590565946 0.002899029215 0 18.15889509 14.52134699 961.3880336 0.002080325457 +2.495103191e-06 -0.004326907857 -0.002263325772 0 18.28068521 -20.81645307 884.6075617 0.002260889559 +2.495410764e-06 -0.0004840244912 0.01437689525 0 -8.866648355 29.07648406 1002.687345 0.001994639716 +2.497716435e-06 -0.00234822615 -0.008046372256 0 13.74693424 12.92427439 882.5994492 0.002266033592 +2.499973743e-06 0.009222123506 -0.01334462492 0 -0.5788557248 2.126380169 961.6628133 0.002079731037 +2.499186062e-06 0.002997144596 0.008729145436 0 -12.11035109 0.6256199266 950.3241431 0.00210454508 +2.498187469e-06 0.007652031598 -0.008748161397 0 -14.19224956 -11.66443532 964.6006382 0.002073396928 +2.497432654e-06 -0.003963770624 0.01423615709 0 -20.14791243 10.14894828 995.1958458 0.002009654691 +2.497769683e-06 -0.00451887772 -0.01420494405 0 -13.87587618 -15.07149165 969.6624685 0.002062573385 +2.494034436e-06 0.006087602666 -0.002711372073 0 28.15250102 -22.27322372 1038.33945 0.001926152377 +2.499424059e-06 -0.001056119823 -0.005367335135 0 -9.17919258 2.933857345 897.8108337 0.002227640751 +2.497644503e-06 0.008627715106 0.008734292679 0 7.625528487 -18.30980257 913.494624 0.002189394384 +2.498066086e-06 0.00414707494 -0.0003162806598 0 5.686118401 -17.45347596 933.0971755 0.002143399479 +2.495709455e-06 0.008731505512 -0.004479493126 0 22.80312555 -17.00402347 970.4102153 0.002060984075 +2.497899984e-06 -0.006608846411 -0.008482374754 0 6.196370553 18.45371188 949.5524517 0.002106255422 +2.499614827e-06 -0.005323440772 -0.002349126718 0 -3.706104082 -6.764870397 878.7914995 0.002275852692 +2.49739265e-06 0.00737260743 0.01191325027 0 21.66501138 -0.4924098749 948.6072345 0.00210835415 +2.499425577e-06 -0.001382059292 0.00358335427 0 2.296553483 -9.105269836 876.0260603 0.002283037104 +2.497425139e-06 0.009533699439 0.003101101094 0 -17.1048001 -16.6478523 1051.412145 0.001902203631 +2.49454878e-06 0.005555949509 -0.0141776577 0 -13.9336205 -31.52833684 1043.095663 0.001917369682 +2.498266619e-06 -0.003265355867 -0.01311465013 0 -13.58760056 9.28872832 883.7556692 0.002263068934 +2.499621986e-06 0.003045463194 0.005600806174 0 1.859307752 7.632823685 903.4598445 0.002213712112 +2.498214062e-06 -0.004664333952 0.008546391001 0 -6.303223758 15.41059662 880.7355239 0.002270829262 +2.497959785e-06 -0.009780528951 -0.01088940031 0 -12.30705448 15.81434095 991.7166916 0.002016704989 +2.499600764e-06 -0.00227509317 0.01398047375 0 -3.575749891 -7.19631974 899.227636 0.002224130932 +2.499242002e-06 -0.003214104655 -0.007696972182 0 4.523074025 10.8532222 954.8499064 0.002094570033 +2.498866836e-06 -0.009832612984 0.001047309902 0 1.425362299 13.99414854 934.2271539 0.002140806967 +2.496813928e-06 -0.002211235003 -0.001358754316 0 -18.37458272 -14.03875513 915.6078096 0.002184341351 +2.499583509e-06 0.008466767282 -0.01362215027 0 0.793289149 9.644742744 1060.253184 0.001886341895 +2.497952089e-06 0.006213222006 0.004749551006 0 -0.7862557651 -19.89183697 983.3540291 0.002033855499 +2.497496253e-06 0.006777819218 -0.001001043704 0 5.984658214 -22.6902908 1048.263674 0.001907916919 +2.499878851e-06 0.005017664027 -0.01233691722 0 -5.261599563 -0.3398999132 1071.124134 0.001867197215 +2.495694532e-06 -0.004276328166 -0.003212751872 0 21.74588042 -19.80992697 1001.801402 0.001996403675 +2.498990593e-06 -0.003479959378 0.01261730182 0 -14.34435541 3.75364872 1043.397363 0.001916815273 +2.496335629e-06 -0.001303858976 -0.01415928293 0 -24.20612742 -8.907003841 952.2386989 0.002100313716 +2.498852401e-06 -0.001929345699 0.005253808033 0 13.15216546 7.944650951 1014.052159 0.001972285136 +2.498268903e-06 -0.001302416301 -0.01155883977 0 0.1459670858 -17.40090575 934.9721278 0.002139101199 +2.497707871e-06 -0.0006025053095 -0.0144977732 0 -18.21551353 -8.840138975 945.3292349 0.002115665026 +2.497963932e-06 -0.006841052421 -0.004792919811 0 -21.15723345 -1.869000935 1052.211371 0.001900758779 +2.499484651e-06 -0.00944361296 0.01495590938 0 0.6543893675 -10.84420581 1070.01025 0.001869140973 +2.496933971e-06 -0.00966481078 0.008675969476 0 19.85000489 17.5810177 1070.311521 0.001868614847 +2.496230099e-06 -0.005515773408 -0.01374665468 0 -25.47408156 14.07992114 1059.40093 0.001887859396 +2.497348504e-06 0.004238521252 0.006618937931 0 -15.61043607 16.85246958 997.1414286 0.002005733533 +2.496800981e-06 -0.0090447442 0.002418737956 0 -3.265826766 25.05167321 998.3070692 0.002003391603 +2.49540109e-06 0.006298783333 0.0004778249608 0 20.42255778 24.21695473 1043.819532 0.001916040024 +2.49677513e-06 -0.001846084478 -0.01185206916 0 24.58175274 9.135254076 1032.10304 0.001937791018 +2.498114436e-06 -0.008823080561 0.002663465375 0 4.742669329 -19.38943578 1027.601465 0.001946279825 +2.497730381e-06 0.004886160349 0.006317283686 0 20.1436595 8.604264959 1027.758181 0.00194598305 +2.497720499e-06 0.006220617406 -0.00896932146 0 9.091727058 20.11701278 1033.567224 0.001935045882 +2.495605064e-06 0.008864404168 0.01244038036 0 -16.99131788 22.04461672 938.1679219 0.002131814522 +2.49373861e-06 -0.0005294409674 -0.0122248794 0 21.16892188 -29.25823015 1019.548561 0.001961652516 +2.497578627e-06 0.000888498514 -0.004098271143 0 -10.1478333 -20.05029842 1020.796204 0.001959254936 +2.496132904e-06 0.005453654048 0.01445063788 0 29.04999033 -4.546104612 1056.672207 0.001892734556 +2.497581472e-06 -0.006900643827 -0.01144316208 0 -12.88843304 18.67438024 1031.311254 0.00193927875 +2.499222321e-06 0.006315849898 -0.005548447869 0 7.701018288 10.03887394 1014.399467 0.001971609869 +2.498900583e-06 9.376239963e-05 -0.01185585266 0 11.22044163 8.593213271 952.941812 0.002098764032 +2.499880639e-06 0.00446879433 -0.005092401111 0 -3.365871452 -3.36439323 974.0087472 0.00205336965 +2.49928762e-06 0.008312362242 -0.002547311112 0 -10.62999786 -3.444410799 936.0428455 0.002136654331 +2.499990967e-06 -0.005697970293 0.001178136345 0 -1.009388548 -1.024171481 1069.86172 0.001869400468 +2.492597652e-06 -0.003233024795 -0.008072928877 0 -26.85625738 -28.77965788 1021.920187 0.001957100002 +2.49620083e-06 0.008064965075 -0.01160887971 0 21.43754606 11.27880248 878.2749878 0.002277191116 +2.496808034e-06 0.004445835752 -0.01022212611 0 17.96859118 17.06092035 980.1953656 0.002040409565 +2.499864637e-06 -3.740268294e-05 0.003669737934 0 -2.990642897 -3.801869443 929.6463273 0.00215135578 +2.497790185e-06 0.009698312953 0.005872651739 0 -5.695887157 -21.65797668 1064.886358 0.001878134681 +2.497856841e-06 -0.00236157137 -0.0001835506666 0 -15.56699622 -13.92672949 1008.563736 0.001983017958 +2.497860529e-06 0.006558998842 0.01077872819 0 -14.52635013 -12.37816351 922.3217271 0.002168440731 +2.498862737e-06 -0.004515048466 -0.001026156032 0 -3.612363945 13.1343842 903.0755468 0.002214654142 +2.498977699e-06 -0.003893477973 0.01234354502 0 -2.753419047 13.18970933 942.1647253 0.002122771047 +2.495622356e-06 0.009608026259 -0.01097051305 0 1.127372345 -29.88958028 1010.201238 0.001979803554 +2.499990568e-06 0.005471506361 -0.005386187264 0 -1.373181816 0.383425118 1038.028397 0.001926729563 +2.498113604e-06 0.008437503795 0.01241597541 0 -1.654783488 18.16386412 938.7472769 0.002130498857 +2.495406524e-06 0.0006512712454 -0.01058622629 0 -17.07291578 -24.46415467 983.5687555 0.002033411481 +2.496493314e-06 -0.006555983676 -0.007451934486 0 -5.321127973 -27.18692173 1045.516945 0.001912929303 +2.499129878e-06 -0.006976348371 0.004929966449 0 12.92162608 0.1064434953 979.4228942 0.002042018838 +2.496916146e-06 0.006564634596 0.00619112076 0 7.474472633 21.30690655 908.7808323 0.002200750642 +2.495777219e-06 -0.003507665154 0.001651983226 0 -16.05572209 -21.06050148 910.6928018 0.002196130239 +2.499032012e-06 -0.001726591731 0.006734423402 0 -11.41592019 6.693901094 950.9748814 0.002103104971 +2.498159697e-06 0.007204770935 -0.0144829201 0 -14.3316129 9.054795861 883.3890449 0.002264008153 +2.499486147e-06 -0.007848774251 0.009349180846 0 8.795185162 1.712061263 883.7980175 0.002262960496 +2.494998605e-06 0.005350709842 0.0124927858 0 -7.754967432 29.80303039 972.9711026 0.002055559507 +2.497999979e-06 -0.003110848246 0.01119112812 0 15.86679754 -11.51390742 979.9116051 0.002041000423 +2.499889019e-06 0.0009820765955 0.003395914191 0 0.2033127336 -4.362816996 927.0232058 0.002157443295 +2.499586405e-06 -0.00163681868 0.01318202352 0 -8.239204656 -5.162797688 1068.995221 0.001870915754 +2.498450255e-06 -0.0004844410205 0.01365238359 0 -17.84464154 -4.907509842 1050.978091 0.001902989242 +2.498542071e-06 4.801599309e-05 -0.01433130328 0 14.0218876 10.75439302 1034.634865 0.001933049105 +2.498796021e-06 -0.006971273506 -0.007557220228 0 16.35747025 1.912965193 1061.116107 0.001884807881 +2.495463312e-06 -0.003048968837 -0.01461302807 0 9.949865073 -29.69009127 1038.828465 0.001925245666 +2.49782276e-06 0.0008795009507 0.0003043900291 0 -14.38505585 -16.66114581 1054.502123 0.001896629658 +2.499244437e-06 0.003511319128 -0.01352131 0 -3.834144559 10.21418938 887.420106 0.00225372401 +2.49938925e-06 0.006707413383 -0.01320286439 0 9.961440525 -2.211354813 923.1690162 0.002166450525 +2.496807792e-06 0.005603507594 -0.01383477105 0 -8.060851167 -22.61263021 949.6396151 0.002106062098 +2.499574792e-06 0.006687249211 0.002668764079 0 1.560034415 9.430359498 1036.447516 0.00192966838 +2.496505956e-06 -0.003006666936 -0.000912854257 0 18.31715432 18.22346507 976.9118208 0.002047267683 +2.496858865e-06 -0.006712223333 0.003745538313 0 -24.31403632 0.9812325125 970.3923378 0.002061022045 +2.497098094e-06 0.007172518065 -0.004563833051 0 21.2306126 8.544553175 949.5448209 0.002106272349 +2.495644191e-06 0.008466591695 0.009153362203 0 21.64675471 20.50388202 1009.520952 0.001981137682 +2.497359812e-06 -0.003997077486 -0.004517366798 0 15.58180798 -15.04984553 942.3590194 0.002122333377 +2.499230719e-06 0.004882144481 0.005704352113 0 3.375334474 11.80277813 989.5702913 0.002021079268 +2.496255821e-06 -0.00911864257 0.009991187872 0 -20.46921775 19.33954884 1028.492455 0.00194459375 +2.499394758e-06 0.008264243621 0.008055143484 0 6.522871259 -9.201012468 1025.027546 0.001951167076 +2.496347732e-06 0.002087385426 -0.01331096456 0 7.078416465 -27.87865702 1063.66105 0.00188029824 +2.498543659e-06 -0.009535023686 0.001022981009 0 -10.99489591 11.51765874 932.7931286 0.002144098127 +2.498858485e-06 0.003264960605 0.004885445929 0 15.38524653 -2.408131503 1030.457526 0.001940885431 +2.499614705e-06 -0.00931913198 0.006306894547 0 2.510365689 -8.489052415 1008.386389 0.001983366716 +2.498605502e-06 -0.006195612433 0.01033561531 0 -15.94483217 7.689677893 1059.773482 0.00188719574 +2.498519745e-06 -0.007768809912 -0.008069389758 0 15.04469962 3.448611857 896.8582923 0.002230006699 +2.497577266e-06 0.007497978671 0.004864632112 0 -15.60793725 12.77226206 915.8657659 0.002183726125 +2.499326307e-06 -0.002518622288 -0.008893130659 0 -11.35133554 4.677333455 1057.5731 0.00189112223 +2.49638612e-06 -0.009464215473 -0.01320973939 0 7.838560643 -24.89614753 970.3298262 0.002061154822 +2.496487164e-06 0.007726822793 0.002461564459 0 15.21770855 18.84880706 913.4671265 0.00218946029 +2.49739592e-06 0.007142712218 -0.001740693448 0 17.13089593 15.08115618 999.6983576 0.002000603467 +2.496653001e-06 -0.007153930692 0.00883165308 0 7.807790291 22.82049454 931.7560523 0.002146484582 +2.49712501e-06 0.002338904473 0.004173381517 0 22.44227327 0.2759655694 935.5760346 0.002137720427 +2.498478224e-06 -0.008767985664 0.01334366381 0 11.55912163 -11.74836654 944.507265 0.002117506211 +2.496986243e-06 0.0008580174996 -0.003030797916 0 -2.839713419 -23.53152341 964.9925563 0.002072554847 +2.497150343e-06 0.005724440045 0.005804535672 0 11.5821694 -19.09641304 935.1359452 0.002138726471 +2.499254715e-06 0.00518361988 0.0005027524126 0 5.760590608 -10.40057238 973.7170844 0.002053984707 +2.496308933e-06 0.00841556191 -0.004702443474 0 -8.47929223 -24.72462472 961.4885155 0.002080108049 +2.495860285e-06 0.001308391448 -0.009116480998 0 -8.735849793 -27.92105529 1016.111814 0.001968287321 +2.497974193e-06 0.004193728091 0.007838434638 0 -11.37394111 -15.88020875 970.1263105 0.002061587216 +2.497163238e-06 -0.007002352104 -0.004413058022 0 -17.31895596 16.14636833 993.6538588 0.002012773344 +2.495239693e-06 0.001731963521 -0.004679461434 0 16.75651021 -27.54574448 1044.190079 0.001915360087 +2.497710369e-06 0.007139109164 -0.005217927815 0 19.40276276 -10.89365137 1039.481 0.001924037092 +2.498984074e-06 0.004855729048 -0.01169911218 0 -12.24978317 -7.180918392 995.996156 0.002008039878 +2.496598009e-06 0.00632609182 -0.004482316249 0 -3.775089716 -24.14342294 936.3552006 0.002135941573 +2.495760047e-06 0.005368316127 -0.009608596978 0 -13.92480414 -25.97049593 1011.299168 0.001977654153 +2.495926037e-06 0.002413449567 -0.008836328269 0 22.93162047 16.8451801 996.2109223 0.002007606979 +2.497068555e-06 0.003561965576 0.002945998865 0 -24.62283215 7.583954407 1063.583922 0.001880434593 +2.496955432e-06 -0.005505125937 -0.01334055066 0 12.2691655 -18.95819738 914.7146771 0.002186474154 +2.498667089e-06 -0.001630505119 -0.01057741637 0 1.40178965 -15.24304819 937.3421514 0.002133692587 +2.498660877e-06 -0.008195532905 -0.001496669508 0 15.85001415 -7.497199953 1071.177196 0.001867104722 +2.498904214e-06 -0.007567331176 0.008692316702 0 -3.196544229 15.16487221 1046.71709 0.001910735975 +2.49971735e-06 0.002444145945 -0.01431673772 0 6.731328419 1.025811314 905.5822604 0.002208523828 +2.496399033e-06 -0.005851476262 -0.009687065778 0 21.09851093 15.0538236 965.2711192 0.002071956739 +2.496882782e-06 0.006898594326 0.007342255537 0 -18.51182329 -17.65260667 1023.970319 0.001953181614 +2.499837738e-06 0.009635542426 -0.006465021421 0 0.5196558721 -5.517960348 972.8854716 0.002055740432 +2.49746438e-06 0.00834544233 0.004045620365 0 3.104847863 -20.88950873 937.4557714 0.002133433983 +2.498101493e-06 0.003483890444 -0.01373363136 0 -11.97364225 13.7857134 936.8004438 0.002134926401 +2.498359793e-06 0.001873969347 -0.01423719355 0 -10.58212094 -15.48506344 1035.278778 0.001931846805 +2.497222661e-06 -0.004553400432 0.01156853247 0 12.9308452 20.93101144 1043.469732 0.001916682333 +2.495274033e-06 -0.005682844035 -0.01256512733 0 -28.39778765 15.39642834 1049.964212 0.001904826829 +2.497515452e-06 0.005791926235 0.01312501037 0 18.55029743 -8.64486795 917.7559482 0.002179228589 +2.499169181e-06 -0.00346513154 -0.00859515449 0 7.915031898 -8.233376013 885.8835384 0.002257633101 +2.497171417e-06 -0.005437187175 -0.007980434666 0 19.96161617 8.670520623 914.623239 0.002186692744 +2.499709886e-06 0.005729014664 -0.001579482201 0 -7.025530074 -1.328423023 938.618878 0.002130790299 +2.498731864e-06 -0.007849492277 0.001265287902 0 -4.193394536 13.3815799 880.3752895 0.002271758447 +2.497473361e-06 -0.008451663624 0.01269171276 0 -21.38315415 9.569280143 1041.741287 0.001919862469 +2.494723109e-06 0.003800863754 -0.01355578915 0 -15.67253287 -26.69273615 952.0596316 0.002100708751 +2.497900417e-06 -0.001294183251 -0.01458575769 0 21.2420449 5.153063374 1066.338315 0.001875577358 +2.499501032e-06 -0.008040009877 0.004875187555 0 -8.1771302 -5.994922684 1014.897622 0.001970642118 +2.499706458e-06 0.00856599499 0.01361047651 0 -1.240396448 7.741654683 1023.219576 0.001954614676 +2.496649528e-06 -0.006273447052 0.01457111183 0 -4.365035251 25.3417114 992.8836685 0.002014334673 +2.499682946e-06 -0.009863899243 0.00528429657 0 7.442780036 -2.889994567 1002.599688 0.001994814106 +2.498123176e-06 -0.0004144274071 0.01119838284 0 -13.05654085 14.8618799 1020.781597 0.001959282971 +2.496869613e-06 0.003927916093 0.002625917837 0 -19.80982358 13.08420185 948.3686858 0.002108884477 +2.499976965e-06 0.005427207826 0.0002399066719 0 0.7098347839 -1.831017775 914.9194039 0.002185984898 +2.499999165e-06 -0.003763379287 -0.01062430668 0 0.3224191624 0.2794425544 1043.820083 0.001916039012 +2.498264817e-06 0.003174717501 -0.0002747603087 0 -18.15427517 -1.416546977 977.2288261 0.002046603566 +2.495144413e-06 0.004835296469 -0.01429558759 0 -15.12618311 -26.46418086 977.4429889 0.002046155144 +2.499358611e-06 0.00593693044 -0.004249206742 0 10.303131 0.2414373294 909.8520869 0.002198159491 +2.498591219e-06 0.0006059209071 0.01263191534 0 -3.392188652 -14.38178234 880.1176533 0.002272423457 +2.495281236e-06 0.009209064925 0.0008027109434 0 20.56105034 18.55179935 900.8240538 0.002220189383 +2.498284028e-06 -0.002802640982 -0.002550892658 0 -7.310335246 -14.71870105 886.880841 0.00225509438 +2.499587694e-06 -0.003783412939 0.004370766892 0 8.744010387 -2.307214004 995.8051261 0.00200842509 +2.498999992e-06 0.003264862979 -0.01425793379 0 -7.138994262 -12.32268622 1006.855072 0.0019863832 +2.497438536e-06 -0.003414574503 -0.01257853367 0 -1.135834405 -22.12743736 978.5352565 0.00204387117 +2.498495469e-06 0.005267135589 0.01334051751 0 13.25751377 10.38959777 970.7785886 0.002060202011 +2.498188852e-06 0.0005649948213 -0.007780217521 0 -15.62791105 9.464772653 959.7143705 0.002083953374 +2.498264265e-06 0.001071261405 -0.00875851779 0 8.250028668 14.98647454 917.9309014 0.002178813239 +2.497320996e-06 -0.003296211618 0.01449664118 0 4.590904961 21.34200963 942.7173113 0.002121526757 +2.498098207e-06 0.0035493084 0.003593490806 0 -18.41184117 2.957261439 955.8892315 0.002092292636 +2.495795552e-06 0.00700841974 -0.00662642916 0 9.740183709 -24.21881362 899.6311981 0.002223133218 +2.497714774e-06 -0.008664121851 0.01018854682 0 19.58219039 -8.104593344 990.9816139 0.002018200915 +2.499183668e-06 0.002602679641 -0.007699149612 0 -9.397533023 -7.676294695 949.5329221 0.002106298743 +2.497077164e-06 -0.008772408422 -0.008665373619 0 -22.9060823 1.034573652 947.9503281 0.002109815188 +2.49816536e-06 0.002703174809 -0.00678996447 0 -1.026166555 -19.93282364 1041.678256 0.001919978639 +2.496463489e-06 -0.00125446951 0.002737893113 0 -23.95920369 6.93779476 937.3974624 0.002133566689 +2.496308583e-06 0.009642274403 0.008398759018 0 16.99235628 -16.96559448 883.2312998 0.002264412505 +2.498302226e-06 0.005875482471 -0.009820017507 0 -10.70025703 -14.54310547 979.5837176 0.002041683589 +2.496965165e-06 0.004415689274 0.002417883463 0 -18.82818809 -15.15252373 980.5350219 0.00203970277 +2.499937853e-06 0.008291861569 0.004104991788 0 3.193889256 1.101415005 958.2742789 0.002087085132 +2.499479857e-06 0.003422491541 0.008143422408 0 -7.057036584 -5.934413225 903.9567466 0.002212495241 +2.499088322e-06 0.002708903928 0.01068171313 0 8.726479563 9.980799443 981.6906085 0.002037301755 +2.496549685e-06 0.002769796634 -0.009575414336 0 -1.516237111 -24.40087066 930.1925491 0.002150092475 +2.497761868e-06 0.001523278463 -0.009605262831 0 20.57535869 -3.103745423 983.1720315 0.002034231992 +2.498928013e-06 -0.005182017023 0.01223260547 0 -6.433842954 -11.47355959 898.2346711 0.002226589625 +2.499378956e-06 0.006167166731 -0.001512035318 0 -9.488772545 2.636445481 883.5714689 0.002263540721 +2.498661862e-06 0.003551119352 -0.01023268984 0 7.848781862 -14.42505788 1003.636253 0.001992753843 +2.498650307e-06 0.008835474881 -0.003984165327 0 13.74388904 -10.35043462 1046.994773 0.001910229211 +2.498037406e-06 0.002356127044 -0.005959804219 0 -4.317119645 17.31352985 900.3793568 0.002221285934 +2.498822858e-06 -0.002320663626 0.002280777774 0 10.74683462 11.35637544 1018.824352 0.001963046915 +2.497297451e-06 -0.008829041156 0.008663489255 0 18.42010066 11.53858401 934.5337529 0.002140104618 +2.498136652e-06 -0.005742568681 0.008553377108 0 1.614066745 -17.74983644 922.9946115 0.002166859887 +2.497157645e-06 -0.003183829649 0.01320976838 0 -21.45283894 -5.503819275 928.5116264 0.002153984876 +2.496236524e-06 -0.006124966792 0.01402975745 0 15.96047844 20.54737561 947.8015968 0.002110146265 +2.498463196e-06 0.004707045103 -0.01154418548 0 -0.8218733507 -17.02279541 971.8787741 0.002057869822 +2.497930097e-06 -0.007319411323 -0.01318167358 0 -20.30648039 1.072390798 999.11294 0.002001775695 +2.497397795e-06 -0.0003206477035 0.006243613476 0 3.431582962 22.31493134 989.2716559 0.002021689379 +2.495823918e-06 0.005288091772 0.002076374965 0 25.95411762 14.85496348 1034.109478 0.001934031205 +2.497789244e-06 -0.004624907086 0.006526561738 0 -19.77546109 9.804044455 1049.346426 0.001905948265 +2.497384567e-06 -0.004880359429 0.004669788417 0 9.883678475 -18.54358879 918.4036027 0.002177691806 +2.493795542e-06 0.007259319103 0.01051436051 0 28.92213604 21.60342784 1023.843663 0.001953423234 +2.497669182e-06 -3.362591378e-05 -0.0008962802589 0 18.66448296 -9.1590469 962.6025271 0.002077700758 +2.496070771e-06 -0.00412256496 -0.000733482556 0 -25.50569968 -7.114323689 944.0216739 0.002118595426 +2.498433224e-06 -0.0002183953533 0.005502489377 0 12.45328025 13.88932769 1053.580022 0.001898289601 +2.497678656e-06 0.009341907403 -0.010327721 0 14.52698762 -14.11516272 939.7221683 0.002128288624 +2.499440917e-06 0.007251955699 -0.01212177778 0 -6.053800275 -7.787495549 932.7230449 0.002144259232 +2.498161904e-06 0.008959438517 -0.01127882635 0 -4.108352531 16.51614763 887.4147377 0.002253737644 +2.497237297e-06 0.007394895516 -0.006899823546 0 -16.86356378 18.36846112 1060.36718 0.001886139101 +2.496401664e-06 -0.006611605245 -0.008821864498 0 12.91328419 -21.6146998 938.0510281 0.002132080175 +2.496935297e-06 0.007528303713 -0.00629986943 0 -16.99770488 -14.69194816 907.0684837 0.002204905182 +2.496439959e-06 0.009898445257 0.007536829489 0 23.56460507 7.624562293 927.6966737 0.002155877084 +2.498699006e-06 0.007052898356 0.01330540637 0 6.91557139 15.69444416 1063.016717 0.001881437957 +2.495168446e-06 0.00854973088 0.01404283373 0 18.24203315 22.40076874 928.660475 0.002153639628 +2.496504121e-06 -0.005139897177 0.006584137911 0 -24.83169484 -2.286048165 942.5793254 0.002121837331 +2.497027921e-06 0.003262378005 -0.01375463082 0 24.13887437 6.0117037 1019.871214 0.001961031914 +2.497516551e-06 0.006383140371 -0.01053545547 0 19.90166641 -0.3156238526 892.7699187 0.002240218849 +2.498761917e-06 0.002812844412 0.00586360344 0 -13.00053399 -5.052666973 886.2118601 0.002256796698 +2.497616984e-06 -0.008032373046 -0.01120325084 0 12.57117505 17.65156019 992.2836555 0.002015552699 +2.497466874e-06 -0.005723509374 0.004959424166 0 -5.809464573 -22.79868802 1044.869649 0.001914114361 +2.497411578e-06 -0.00123982199 -0.0139066536 0 -4.27212654 -23.74306307 1059.874153 0.001887016486 +2.498430716e-06 -0.001154368999 -0.00717411574 0 -13.4471473 9.842774621 940.4259392 0.002126695911 +2.496213979e-06 0.000293949428 0.008360679543 0 -12.21042985 23.88438186 974.2707605 0.002052817431 +2.496386651e-06 -0.004228115864 0.01109971322 0 -17.32487482 21.10578984 1015.194121 0.00197006657 +2.49722386e-06 0.008166627842 0.001117992424 0 11.15747789 -20.12395332 976.1151903 0.002048938506 +2.498520611e-06 -0.004548098552 0.01069515031 0 -8.263464176 12.99153977 894.9136209 0.002234852564 +2.499176122e-06 0.009364744159 -0.007389528556 0 -11.81956914 0.5405158603 921.6271379 0.002170074988 +2.496331913e-06 -0.007131312187 -0.001442029935 0 -13.45934386 25.48698933 1063.552137 0.001880490792 +2.499613831e-06 -0.003290769216 -0.004758058735 0 7.564709254 -4.019334093 974.6744166 0.002051967268 +2.49996005e-06 -0.003614709945 0.006343586196 0 1.282130044 -2.687205584 1053.329046 0.001898741906 +2.499238552e-06 -0.00470203965 -0.00104086125 0 10.96911015 1.508124829 897.1252416 0.002229343137 +2.496460289e-06 -0.003875127588 0.003522960402 0 8.439360561 27.12014256 1066.923079 0.001874549384 +2.496915129e-06 0.005413442072 -0.01362260745 0 21.62480396 -11.39785966 983.6715982 0.002033198888 +2.497493432e-06 0.0003767176485 -0.0027632426 0 -21.54006345 6.108995437 999.6045256 0.002000791262 +2.498975171e-06 0.004320443049 -0.00842683662 0 -3.299552893 -13.44988784 967.1670755 0.002067895042 +2.497198091e-06 0.00483417986 -0.008971641159 0 -22.99817767 8.675077217 1037.90142 0.001926965281 +2.498897569e-06 0.0060333928 0.01351064738 0 5.948528195 12.68140139 943.1706567 0.002120507022 +2.499045129e-06 -0.004194431445 -0.002528740922 0 -9.275105466 -10.35146581 1005.615567 0.001988831584 +2.498492293e-06 0.004488437166 -0.01451283609 0 18.26448707 -3.22644528 1067.845348 0.001872930387 +2.499803072e-06 -0.0008050851384 0.01265849298 0 -5.99943166 0.5615840612 960.1140047 0.002083085957 +2.493529158e-06 -0.0007364318008 0.01112387311 0 19.86458722 30.6115283 1013.398996 0.001973556327 +2.496548684e-06 -0.001264131898 0.008999459033 0 13.07347401 21.18926453 947.1717189 0.002111549532 +2.494319826e-06 0.004904926647 0.01366384797 0 25.81540965 24.5725019 1056.518771 0.001893009433 +2.498634666e-06 -0.005802415949 0.002570343988 0 -6.834093533 15.28828057 1013.196784 0.001973950205 +2.497311705e-06 -0.00117471477 0.01109601721 0 15.09579168 16.99514502 979.9368756 0.002040947789 +2.49587099e-06 -0.009323914926 -0.01484401979 0 0.6951969851 -29.71644919 1033.733413 0.001934734792 +2.498121514e-06 -0.00441423811 0.005930162247 0 -3.915883849 -19.17649038 1009.482348 0.001981213446 +2.497530056e-06 -0.003610498458 0.001203700569 0 19.71575774 7.006456694 941.063873 0.002125254255 +2.498131711e-06 -0.006041734926 -0.01338872238 0 -11.77442211 -14.12492606 951.0344428 0.002102973257 +2.495799522e-06 -0.002461924558 -0.01372536076 0 -23.59246247 -18.02768413 1023.759611 0.001953583614 +2.496546066e-06 0.005429620985 -0.01435974853 0 26.07194552 1.8663594 993.999516 0.002012073414 +2.497539658e-06 -0.004955934794 -0.01349470572 0 -23.56237843 0.3257428641 1061.909679 0.00188339935 +2.498615722e-06 0.00731285641 -0.0004446806805 0 -12.48625229 -11.61330907 1024.618218 0.001951946553 +2.496782956e-06 0.008719570753 0.01081698839 0 18.48086628 -13.99422009 913.4563515 0.002189486117 +2.499446405e-06 0.003513791431 0.005948018844 0 -9.850188473 -4.633016239 1034.417032 0.001933456177 +2.496916881e-06 0.000690615247 -0.007406147893 0 -13.53324648 19.25598013 947.3727389 0.002111101489 +2.498409452e-06 -0.0007549152849 0.01363886541 0 10.97676991 -14.22086916 1006.984318 0.001986128249 +2.499370504e-06 0.002321648211 -0.005315495962 0 3.436012437 9.296512344 883.2272939 0.002264422775 +2.494911702e-06 -0.006596981538 0.00045163173 0 -20.4712857 22.39343183 950.3599021 0.002104465893 +2.499133931e-06 -0.00943376861 -0.01467030919 0 12.65774147 -1.392921873 967.4365638 0.002067319011 +2.495656761e-06 0.008794427519 -0.006227047804 0 22.61915109 -12.90598047 883.0205005 0.002264953077 +2.497361356e-06 0.003824593155 8.38377513e-06 0 -21.30505197 -12.26165239 1069.626496 0.001869811572 +2.49698639e-06 -0.004836551799 -0.01318515828 0 22.35066857 11.31744181 1019.997906 0.001960788339 +2.496592952e-06 -1.736510545e-05 -0.01399999986 0 21.06381618 13.18920276 951.5711972 0.00210178703 +2.497166454e-06 0.0060711959 -0.01281215756 0 20.6560161 14.60728617 1062.28257 0.001882738224 +2.496038147e-06 -0.008862732365 -0.01404335052 0 -22.59724552 -16.59322009 995.3610694 0.002009321101 +2.497605986e-06 0.006986321621 -0.007621745362 0 -5.045922232 -22.39199994 1048.611135 0.001907284726 +2.498988993e-06 0.001812598519 -0.0007632068172 0 -12.54645905 0.3268547076 882.4916987 0.00226631027 +2.499695838e-06 0.00962990853 -0.00427671867 0 -2.970496202 -7.264994994 1006.276299 0.001987525695 +2.496474553e-06 -0.003251984403 0.005442453604 0 9.494843922 21.60890393 888.4100333 0.002251212756 +2.497119233e-06 0.007975817192 0.007363566686 0 23.42611994 -9.092755111 1046.445363 0.00191123213 +2.497945478e-06 -0.008074827436 0.006833164981 0 18.43634408 -7.53528875 982.2351802 0.002036172233 +2.497671561e-06 0.009543469083 0.003968050147 0 -4.486373149 -21.73453024 1028.043634 0.001945442716 +2.499655953e-06 0.007442824575 0.005699389838 0 7.8060319 -1.239903506 952.7837735 0.002099112155 +2.497397155e-06 0.007116232361 0.01215554199 0 20.19164275 -12.30041678 1035.853158 0.001930775598 +2.497866704e-06 0.004569758079 0.01105056188 0 -11.17874146 -15.97330617 943.5729872 0.002119602858 +2.499203738e-06 0.002655214397 0.001958912266 0 12.8826218 -3.93858346 1067.364558 0.001873774041 +2.499395402e-06 0.001196756302 -0.01066612194 0 1.992838595 -10.30999534 954.8519097 0.002094565639 +2.495414792e-06 0.00911502501 -0.0128692496 0 15.96733639 -26.73547445 1027.624647 0.001946235919 +2.499944905e-06 0.004008593648 -0.006994210747 0 3.259463281 -0.1663597591 983.1883476 0.002034198234 +2.499992043e-06 0.001960938149 -0.01309998309 0 0.09218200354 -1.328000744 1055.248065 0.001895288952 +2.496292699e-06 -0.004305790858 0.008027292523 0 4.435845017 26.54122376 987.6832067 0.002024940777 +2.496841153e-06 -0.005007513249 -0.01499900363 0 12.46467608 -21.36075547 983.4817317 0.002033591408 +2.496823125e-06 0.001679846677 0.001577266334 0 1.813980548 24.00652274 954.6483636 0.002095012233 +2.499405661e-06 0.002715504775 0.002511184243 0 10.8669213 2.25008043 1017.773848 0.00196507309 +2.498924964e-06 -0.0002692420594 -0.01172513128 0 11.53110073 -9.237761144 1007.471765 0.001985167296 +2.498416802e-06 -0.002300128164 0.01015957827 0 7.954477758 -13.96410689 902.9240347 0.002215025764 +2.49893579e-06 -0.003425701079 0.008081628217 0 3.070913432 14.47999094 1014.434005 0.001971542743 +2.498964417e-06 -0.001860318664 0.00941437524 0 14.9023314 2.98776182 1055.934518 0.001894056843 +2.499333567e-06 -0.007988058561 -0.01004173129 0 10.10809287 -4.853535032 971.1433502 0.002059428198 +2.49717601e-06 0.009029192463 -0.0005161171546 0 0.3443205247 -24.24857494 1019.998104 0.001960787959 +2.4968497e-06 0.0028066243 0.004628830338 0 2.338947277 25.26174525 1010.230961 0.001979745303 +2.49998034e-06 -0.007890960113 0.01392375117 0 0.8168230544 -1.916593419 1050.653889 0.001903576449 +2.499597187e-06 -0.007489665993 -0.004983063054 0 1.81209713 7.828286956 895.1753422 0.002234199163 +2.495741834e-06 -0.006232536938 0.003851889709 0 -22.25152541 13.81844724 896.9814434 0.00222970053 +2.496000053e-06 0.007201111536 0.007225652549 0 26.92350468 -9.849383731 1012.984414 0.00197436404 +2.498644296e-06 -0.00534374306 -0.01404032944 0 -4.500932185 16.16616553 1018.903734 0.001962893975 +2.496272853e-06 -0.006163933459 -0.008025567506 0 5.206285027 -23.76936641 890.7318028 0.002245344776 +2.498993729e-06 0.004153110306 -0.001415012497 0 9.343258339 -10.0024204 964.6791751 0.002073228128 +2.495595269e-06 -0.004843648458 -0.00985461419 0 -22.75892713 17.17988731 960.0961938 0.0020831246 +2.496077046e-06 0.00857777894 0.002011194674 0 28.15355642 3.288888476 1011.344846 0.001977564832 +2.497511692e-06 0.006163132475 -0.004891895209 0 21.85113681 -7.246868725 1031.583336 0.001938767262 +2.497818442e-06 0.006955196667 0.01438723998 0 21.13272425 -1.87118371 1015.338166 0.001969787079 +2.498462291e-06 0.002031739759 -0.005978756757 0 -1.680171464 17.71722409 1014.582843 0.001971253519 +2.495863921e-06 0.008649809989 -0.01333247716 0 23.58942604 13.52785514 944.8860042 0.00211665745 +2.498359252e-06 0.0005263737775 0.01302514746 0 10.01467219 13.02271467 906.6639662 0.002205888923 +2.49763613e-06 -0.005380555601 0.006123846341 0 -5.452108375 19.69707771 939.6185193 0.002128523394 +2.495791711e-06 -0.005398615655 0.008250393996 0 15.04599602 20.48203123 875.4654685 0.002284499015 +2.496444224e-06 0.008084909469 0.003034728903 0 21.60222332 -10.08633867 893.530418 0.00223831216 +2.495634619e-06 -7.41317682e-05 0.01363243414 0 8.974590498 26.37902554 942.3908446 0.002122261704 +2.497501492e-06 -0.001429138104 0.01231306041 0 -11.29879835 -17.424925 928.681717 0.002153590367 +2.498865522e-06 -0.005110424273 -0.002170973271 0 0.5211358868 -14.61395893 970.6370008 0.002060502534 +2.498804832e-06 -0.001413088599 -0.003992984171 0 15.80053204 -0.5671659762 1022.454266 0.001956077711 +2.497838702e-06 -0.0007662365818 -0.0005091979634 0 9.988871651 18.71310912 1019.935835 0.001960907669 +2.497420652e-06 0.0002913974458 0.003763454799 0 10.7739705 -17.90753761 919.7769045 0.002174440335 +2.499776618e-06 0.002183630881 0.002076400013 0 -5.16764955 4.568495431 1031.903046 0.001938166582 +2.496147316e-06 -0.00490499381 -0.01115886292 0 6.91991834 -27.61093002 1024.852354 0.001951500615 +2.498798368e-06 0.001270251707 -0.01162377702 0 -2.61250932 13.77864959 904.4762279 0.002211224506 +2.496482263e-06 -0.005589251192 0.006521559998 0 -24.31375642 1.989780321 919.2329003 0.002175727174 +2.498071987e-06 -0.009389428552 -0.01335635191 0 18.1303846 -2.972896304 935.3469493 0.002138243997 +2.497974314e-06 0.005726449261 -0.007142357673 0 -11.07663138 15.8140991 958.9406824 0.002085634739 +2.497166787e-06 -0.00949031333 0.009007652749 0 20.26170679 -14.47435951 1045.615378 0.00191274922 +2.4975527e-06 0.008668075465 0.001989649341 0 -16.94404693 13.7044288 984.6649828 0.002031147685 +2.497540862e-06 -0.001918222168 0.001676884051 0 1.670669873 23.54225611 1063.829781 0.001880000011 +2.498639316e-06 0.003870147564 -0.004608705619 0 10.14484299 12.43853559 972.792317 0.00205593729 +2.498948367e-06 0.001607647818 9.629814886e-06 0 3.52654964 -12.37066107 886.8367201 0.002255206573 +2.49573892e-06 0.005041723792 0.008971949494 0 20.33394689 -16.01820801 886.138761 0.002256982865 +2.498493156e-06 -0.006544556939 0.008781146274 0 -1.935024321 -18.08975945 1047.746032 0.001908859532 +2.498223398e-06 0.008784982525 0.008653964263 0 19.63505971 -3.167616251 1054.837163 0.001896027244 +2.498225399e-06 -0.007068503336 -0.006476120017 0 15.19062814 -12.2248987 1034.729835 0.001932871685 +2.49813641e-06 -0.009508721419 0.0006797222514 0 15.61216014 -11.65098488 1008.754863 0.001982642239 +2.499217192e-06 -0.009626812367 -0.0005026895273 0 2.785054184 10.85110527 895.2273369 0.002234069401 +2.497880671e-06 -0.005511913933 -0.01365211659 0 -19.57836327 -1.843285634 954.8614793 0.002094544647 +2.494533365e-06 0.002206348181 -0.007435757155 0 20.86201315 -21.76509793 911.0387245 0.002195296365 +2.494939381e-06 -0.005949948803 -0.01143588861 0 9.960745726 -30.14251594 997.0977227 0.00200582145 +2.497120638e-06 -0.004242946822 0.01207741075 0 -22.04603805 -4.717214963 939.075814 0.002129753498 +2.495380582e-06 0.001323371022 -0.006878786394 0 -20.47831132 17.2879816 881.0967993 0.002269898156 +2.49519231e-06 -0.007631354015 -0.01345207487 0 -21.47050628 -18.3246072 909.642724 0.002198665418 +2.498956662e-06 0.008959687464 0.01291370915 0 -11.40770327 -5.874022392 888.1208468 0.002251945788 +2.496975526e-06 0.003426573607 -0.009349790839 0 23.86698761 7.058841528 1011.508834 0.001977244224 +2.499354737e-06 0.007818929823 0.0143415076 0 -6.836837604 -9.69013937 1043.832752 0.001916015756 +2.499287359e-06 0.001757462714 -0.01127788899 0 12.55533605 1.514988332 1059.181355 0.001888250761 +2.498533471e-06 0.006251818966 -0.008795877385 0 -17.83882447 -0.7360277675 1042.268628 0.001918891105 +2.49657468e-06 -0.006031996221 0.004057327502 0 -18.67465622 -14.9971113 914.6122111 0.00218671911 +2.497574242e-06 -0.002531448468 0.01200710787 0 -19.60413627 -11.23744699 1025.521077 0.00195022808 +2.49866129e-06 -0.001129974159 -0.01201102981 0 -12.00236874 11.29443403 1007.01557 0.00198606661 +2.497132048e-06 -0.009696946461 -0.01153549726 0 -1.124193582 -24.58205589 1027.032089 0.001947358824 +2.498939945e-06 -0.005064408956 0.008676830332 0 -5.049446247 -13.69106773 1002.034615 0.001995939032 +2.496262292e-06 -0.008583395355 0.01135404167 0 8.462830939 25.4353758 979.8860701 0.002041053609 +2.498928108e-06 0.006759550949 0.004033425897 0 6.778479635 -11.29276316 899.4091242 0.002223682133 +2.499837357e-06 0.006143529015 -0.01047843552 0 5.210385085 -1.42412369 947.0461755 0.002111829446 +2.498016114e-06 0.007203220678 -0.01241294865 0 19.10242103 -7.796006995 1035.473695 0.001931483156 +2.497635694e-06 0.004673121898 0.001126758128 0 3.137428336 -20.19075208 939.3175761 0.002129205341 +2.496527438e-06 -0.004973500827 -0.001862838648 0 -25.97697171 10.80490328 1067.019881 0.001874379321 +2.499354876e-06 0.006125214896 0.001321615947 0 -3.921492837 9.484535143 903.4555044 0.002213722746 +2.49770496e-06 0.009365539621 0.005897237111 0 -14.49889778 -17.63141059 1065.109882 0.001877740535 +2.496446837e-06 0.004856742411 -0.008005723581 0 -17.49821944 21.20058308 1030.639643 0.001940542471 +2.49696278e-06 0.005889511295 -0.005485798242 0 -15.30149333 17.71152064 949.2339723 0.002106962096 +2.497099185e-06 0.003978731651 -0.00413979301 0 25.01687261 0.3994083965 1038.30337 0.001926219309 +2.496361198e-06 0.0009458046313 -0.009636233663 0 -12.00598231 -24.5791856 1013.44609 0.001973464617 +2.49781856e-06 -0.00608973376 0.002846726454 0 22.07789835 3.150185495 1067.34659 0.001873805584 +2.498170129e-06 0.007265131054 -0.006280983032 0 -10.60786811 13.74603756 907.3713123 0.002204169311 +2.499928669e-06 0.008570360141 0.003879980939 0 1.988303711 -3.392368643 1041.038284 0.001921158934 +2.499973385e-06 0.006661208216 0.004616746414 0 -2.45284307 -0.09719712383 1063.978615 0.001879737028 +2.495508907e-06 -0.0008621349605 -0.01125510077 0 2.182908586 -28.51560154 953.6027668 0.002097309351 +2.497100095e-06 0.009735888629 0.01133885866 0 13.99574202 19.58336946 999.0547661 0.002001892256 +2.498157338e-06 -0.007832742464 0.0125447701 0 -17.20414053 9.617156495 1026.412742 0.001948533878 +2.498904379e-06 0.00289220348 0.01467916124 0 11.35421658 10.51932563 1045.450917 0.001913050118 +2.499007203e-06 0.006051694117 0.006899737674 0 14.80405407 -1.31821694 1054.594728 0.001896463112 +2.498692875e-06 -0.003923216197 -0.008548823521 0 -5.457534681 -14.93688411 983.3578351 0.002033847628 +2.493685333e-06 0.009890748947 -0.01316616407 0 27.18181728 -26.53673959 1067.919675 0.00187280003 +2.495950454e-06 0.004704730809 -0.007858120962 0 15.84965803 -25.0580395 1041.216867 0.001920829428 +2.496947445e-06 0.0002223215532 -0.007093733358 0 -21.59548517 7.719049831 927.7394314 0.002155777724 +2.49739567e-06 0.004313699445 -0.01044946962 0 15.87258553 14.49431337 941.4550328 0.002124371245 +2.49956257e-06 0.006647313917 0.0009521890688 0 -7.982229336 2.416286496 891.5892924 0.002243185306 +2.497377172e-06 0.005402954905 0.01168504862 0 17.78115505 13.58974879 976.7496759 0.002047607539 +2.498713004e-06 -0.004484102838 0.01477182159 0 14.36431141 7.80045733 1018.626657 0.001963427903 +2.496098709e-06 0.008055369086 -0.006645388312 0 24.04012142 5.228456154 880.2357403 0.002272118602 +2.497114779e-06 0.004957878431 -0.003990394275 0 17.84382746 -11.43006005 881.767301 0.00226817211 +2.498469351e-06 0.004948417721 -0.007191581237 0 -11.57572419 -12.19100672 960.6106312 0.002082009021 +2.498441331e-06 0.004118834725 0.01324405171 0 -10.8643653 -14.84560762 1041.690576 0.001919955931 +2.497305576e-06 -0.0008451095736 0.008896461949 0 23.69227992 4.620316714 1039.41341 0.001924162207 +2.496947102e-06 0.009128512419 0.005969457587 0 10.22563798 23.69864081 1044.067696 0.001915584601 +2.497797945e-06 0.008132282495 0.00231174811 0 -1.760419596 -19.45735566 930.6397026 0.002149059399 +2.497771982e-06 0.006637702822 0.005966373431 0 8.826155765 -19.2425474 1002.547739 0.001994917471 +2.498750303e-06 -0.007271075863 0.003024520583 0 -12.57660482 9.375773768 992.0555109 0.002016016219 +2.49598635e-06 0.002189247487 -0.011694636 0 22.75783501 15.54596657 972.1761136 0.002057240424 +2.498327526e-06 0.003401502664 0.008114625849 0 -16.14704713 -1.602698273 886.9889671 0.002254819478 +2.499703823e-06 0.00679113606 -0.01085013202 0 4.259757944 -5.689388415 923.4189965 0.002165864042 +2.495821474e-06 0.009926820174 -0.01373772558 0 -2.264674471 -28.29831972 981.4043951 0.002037895907 +2.499683808e-06 0.003410640871 0.00579290217 0 -7.877779036 0.7369264557 994.912203 0.00201022763 +2.495740775e-06 -0.006837282493 0.00826976544 0 3.060990957 28.89504196 994.9210945 0.002010209665 +2.499838928e-06 0.001887296601 -0.01058380995 0 -3.68135201 3.357454326 877.8245502 0.00227835961 +2.499517286e-06 0.008330645766 0.01017582583 0 3.085120857 -9.672166699 1033.170588 0.001935788749 +2.498945978e-06 -0.007879130398 -0.007107685755 0 11.29005393 -10.45369768 1059.575579 0.001887548221 +2.49721616e-06 -0.003292033034 -0.01362317475 0 -24.45184641 -3.617927956 1047.118153 0.001910004133 +2.49817878e-06 -0.008524370487 0.007917002533 0 -17.94656805 3.51986889 957.9942487 0.002087695206 +2.496241803e-06 -0.001820735964 -0.008873791108 0 9.901410052 -25.22306159 987.8009896 0.002024699328 +2.498880318e-06 0.00224880001 -0.003408529179 0 -12.20679287 -6.044645663 910.0969259 0.002197568131 +2.497158167e-06 0.00649698752 -0.0101665988 0 23.83436644 5.706160298 1027.558734 0.001946360762 +2.499113399e-06 -0.002949678316 -0.002266335182 0 13.45508829 1.690487411 1018.24111 0.001964171335 +2.497448694e-06 -0.005137254479 -0.005821160444 0 17.12576126 -14.07812262 981.0534674 0.002038624873 +2.499835824e-06 -0.009615606079 0.004835601607 0 0.9991325194 -5.22195866 927.8127324 0.002155607409 +2.499250004e-06 -0.005990888681 0.004387049298 0 3.648117718 11.23105127 964.0698958 0.00207453838 +2.497138257e-06 -0.004485872304 0.009902554352 0 -18.12960666 -14.95538252 981.9486567 0.002036766369 +2.495658729e-06 -0.005302787693 -0.01109223235 0 14.70264899 -24.86065547 979.566289 0.002041719915 +2.497255909e-06 -0.005212102956 -0.006536481462 0 -20.57213012 -12.35378991 1023.890635 0.00195333362 +2.499054589e-06 0.00518084696 -0.00814391789 0 -13.13496546 6.411453341 1062.792088 0.001881835613 +2.498902723e-06 -0.005953329187 0.01275627857 0 -14.18840102 -3.648601027 988.7659495 0.002022723377 +2.498157936e-06 -0.002546614856 0.01294682055 0 -20.50127839 -0.5302190194 1068.166083 0.001872368007 +2.497219989e-06 0.001037480184 -0.001238717751 0 6.06704433 20.09189125 889.7133631 0.002247914984 +2.49928702e-06 0.004673727402 0.009438367314 0 -12.58253799 1.262098264 1058.868705 0.001888808301 +2.496977338e-06 -0.001951786298 -0.01024112327 0 -6.136832784 -23.03755374 969.2063007 0.002063544158 +2.498712553e-06 -0.003165535876 -0.01266214897 0 -12.28362547 9.511743864 967.98754 0.002066142298 +2.499176558e-06 0.003381729368 -0.004195716649 0 -10.79055902 4.575579552 913.1961713 0.002190109927 +2.499338693e-06 0.004510145308 -0.01495764436 0 -10.82850286 0.51516064 942.5396984 0.002121926539 +2.499228897e-06 -0.003364476785 -0.008142422475 0 -11.61312253 0.5485934417 936.0772276 0.002136575852 +2.496694122e-06 -0.005918422183 -0.001555345603 0 -16.30707452 -17.00492035 915.8134897 0.002183850776 +2.499546001e-06 0.003542320826 -0.009797414155 0 9.583096446 3.0618945 1055.702306 0.001894473459 +2.498116387e-06 0.00370355153 0.01382900446 0 -1.614631444 17.86905488 924.1313906 0.002164194421 +2.497041086e-06 -0.0009378506197 -0.001367752813 0 -23.42680752 5.271288554 986.6519548 0.002027057252 +2.495612902e-06 -0.001972585283 0.004550099387 0 -22.67534001 16.24113167 940.9897185 0.002125421735 +2.499779862e-06 0.005227849139 0.001146428401 0 -5.922239186 0.1665306511 892.8543001 0.002240007132 +2.498633991e-06 8.063866291e-05 0.005496643782 0 14.24504309 -5.232236769 917.9391484 0.002178793663 +2.49879172e-06 -0.0007376013603 0.006029505932 0 -7.423903384 14.23465508 1032.554799 0.001936943204 +2.497310102e-06 0.005385277681 0.01100948616 0 -17.51197824 -15.91043915 1019.677015 0.001961405396 +2.498433686e-06 0.008686089651 -0.009528479967 0 -14.14879518 6.590266036 881.6577138 0.002268454037 +2.499777602e-06 0.008129279418 0.0146949241 0 1.602103999 -6.017727102 933.7003662 0.002142014797 +2.498349571e-06 0.003753320598 -0.004879971833 0 -9.903319865 14.86933017 983.0867984 0.002034408359 +2.496883749e-06 0.004654487805 0.003731015625 0 -20.06819215 10.07391604 899.0296562 0.002224620719 +2.496576107e-06 0.001071333555 -0.001741135195 0 23.54723726 -15.15047439 1069.45454 0.001870112217 +2.497353436e-06 0.006252775001 -0.003335426836 0 22.07999969 -7.230841939 1009.467636 0.00198124232 +2.498243174e-06 -0.002726987796 0.006446926771 0 1.050245815 17.0255506 909.7707686 0.002198355969 +2.497540139e-06 -0.009202508135 0.01023469912 0 15.13614104 -13.45034365 912.5758923 0.002191598548 +2.497721128e-06 -0.007086188132 0.00994295273 0 16.19169096 14.88584471 1029.89073 0.001941953589 +2.499199267e-06 0.006005070908 -0.01005810331 0 -5.894302634 10.90536985 979.4521781 0.002041957785 +2.497557026e-06 0.004830649681 -0.005849597049 0 -9.896929429 21.10801188 1054.302182 0.001896989339 +2.49891686e-06 0.009845614075 -0.01297312896 0 9.217593546 10.19229746 933.5275079 0.002142411427 +2.496075715e-06 -0.001647143178 -0.01235969409 0 -5.00479441 -24.16674847 880.4119692 0.002271663801 +2.499222005e-06 0.0009559529321 -0.003751016138 0 5.392753259 12.01412662 1055.593775 0.001894668241 +2.497628655e-06 0.000858964012 -0.005903034538 0 14.53151906 13.03990535 896.214436 0.002231608775 +2.496878545e-06 0.005160078327 -0.004498205173 0 7.182666115 -23.96780646 1000.935957 0.001998129837 +2.49636515e-06 -0.008546961094 0.01356844056 0 -24.12687982 -1.190312138 895.4345448 0.002233552426 +2.497633403e-06 -0.004679177208 0.01183723486 0 22.01305081 -3.939581712 1027.530619 0.001946414016 +2.49996225e-06 -0.00521900855 0.0005360767571 0 -0.1566570718 -2.912685752 1061.566409 0.00188400837 +2.495344243e-06 0.002354147038 0.004589958591 0 22.95574152 16.66295786 928.9274282 0.00215302072 +2.499207454e-06 0.001734727072 -0.004637881278 0 -8.724843759 10.27131958 1070.302332 0.00186863089 +2.496784044e-06 0.005267486894 -0.01372867848 0 -21.98806944 -11.79881785 983.4568795 0.002033642798 +2.499161333e-06 0.00488003328 -0.01116228718 0 12.18602084 2.307545023 957.5189457 0.002088731517 +2.496736844e-06 0.003774349289 0.0108349346 0 24.06710182 -11.44680694 1042.702552 0.001918092553 +2.496561074e-06 -0.001109137395 -0.01498268685 0 24.62762435 12.92323218 1059.956316 0.001886870214 +2.497995282e-06 0.0003908170527 -0.0109288846 0 2.862540228 -18.14580083 917.1525625 0.002180662282 +2.495581874e-06 0.003589964467 0.001556951653 0 -16.98340915 26.63784334 1062.051427 0.00188314798 +2.497743333e-06 0.00653168262 0.000549451774 0 -8.323376862 18.19842177 941.6389859 0.00212395624 +2.494899066e-06 -0.005151961786 -0.0005579803814 0 20.23945539 22.9027139 956.18179 0.002091652467 +2.495408665e-06 0.009219968622 0.01036445785 0 26.83702098 -16.32845933 1035.953974 0.0019305877 +2.49403583e-06 0.00678222097 0.01366436918 0 19.5805784 25.50174397 930.0927585 0.00215032316 +2.499034908e-06 -0.0006151750172 0.006639457864 0 12.36166393 -8.102352655 1063.708186 0.001880214919 +2.498527233e-06 0.008148893705 0.0005068171117 0 16.85726287 6.106314495 1044.435526 0.001914909969 +2.499538005e-06 -0.003056605998 0.009058257085 0 -9.922592094 2.087588096 1054.790857 0.001896110482 +2.498529815e-06 -0.003816406475 0.01482353565 0 -13.31852966 -9.711649113 961.0533544 0.002081049914 +2.496243211e-06 0.005800851742 -0.009944843575 0 -18.51267284 -18.07899378 943.4727557 0.002119828037 +2.496479262e-06 0.006047312343 -0.008999103382 0 -3.052950241 -27.74737535 1051.413372 0.001902201412 +2.499505009e-06 -0.008548763548 0.01270183154 0 9.052427532 -1.920854685 929.9993855 0.002150539055 +2.499923732e-06 0.008819000404 0.0003638886404 0 3.650083029 -1.732406904 1034.493181 0.001933313855 +2.498698434e-06 -0.004899214972 0.01177455794 0 16.29325506 4.70377945 1050.892463 0.0019031443 +2.497405941e-06 -0.0001973843575 -0.007995806315 0 16.98711207 -16.56485862 1041.27018 0.001920731082 +2.499966657e-06 -0.004865033091 0.01116219779 0 2.23370746 -0.826828698 922.3363147 0.002168406435 +2.499806161e-06 -0.0008803216228 0.004964544957 0 -5.667045876 -0.3859688879 912.248035 0.002192386197 +2.494336487e-06 0.008407387529 0.004066594171 0 29.12295371 -17.5798537 1009.895625 0.001980402677 +2.495994649e-06 -0.007425112645 -0.00596388001 0 17.83617805 -21.11320104 975.9349325 0.002049316951 +2.497173406e-06 0.0001380113 -0.003099548905 0 -19.72327743 -12.6461126 984.9819838 0.002030493992 +2.499156546e-06 -0.009278925085 -0.006572406816 0 -12.99818874 -3.126283105 1029.186311 0.001943282746 +2.498659936e-06 0.005052658939 0.01447892855 0 15.48567811 -7.826604803 1059.651024 0.001887413832 +2.497707869e-06 -0.003091817098 0.01182179124 0 -0.2301669682 22.6580066 1057.937548 0.00189047076 +2.496349496e-06 -0.005902688918 0.004058245537 0 7.8604218 25.55824752 989.06936 0.002022102879 +2.498957189e-06 0.001303963196 0.01331873239 0 -5.400051506 -13.26324877 991.4477061 0.002017252133 +2.49631838e-06 0.006023007054 -0.008602694969 0 -8.976746043 -25.86300625 1008.334717 0.001983468352 +2.497558025e-06 -0.006824407754 -0.008004785918 0 11.91314989 18.02896272 977.4580505 0.002046123615 +2.497948255e-06 -0.006520654317 0.0145454121 0 20.6629912 5.471273031 1054.866007 0.0018959754 +2.499781335e-06 -0.005318032512 0.005860495339 0 -5.315763165 -4.636301117 1066.568503 0.00187517257 +2.497888926e-06 -0.005208185059 0.0006547734677 0 19.49687183 9.534328241 1055.894883 0.001894127941 +2.499819969e-06 -0.004543192796 -0.001812145889 0 -1.307384473 5.279727304 906.4287662 0.002206461307 +2.498296166e-06 0.003053378686 -0.005611580615 0 0.6293263598 -18.34335233 994.0184761 0.002012035036 +2.497453786e-06 0.005042524952 0.01249788528 0 -19.69450636 7.522962891 933.8823138 0.002141597469 +2.495262984e-06 0.003042260548 0.01236642321 0 24.0936024 15.31346408 926.8373662 0.002157875883 +2.495209349e-06 0.007890295899 -0.002540440494 0 25.80230591 13.68084003 942.8240423 0.002121286592 +2.492869906e-06 -0.00520399888 -0.004299183518 0 -27.79235283 -27.40833334 1032.552803 0.001936946948 +2.49989879e-06 -0.006710613105 -0.006109719404 0 -4.045622866 -2.435188509 1049.524196 0.001905625433 +2.496817755e-06 0.003936373037 -0.01052039493 0 23.42523886 -10.16692349 1011.743825 0.001976784983 +2.499014986e-06 -0.006394400802 0.002473107304 0 11.30078913 -9.598406259 1056.20981 0.001893563174 +2.498686911e-06 -0.004461568291 0.01051852868 0 14.30977158 6.364747758 966.2356428 0.002069888453 +2.494871483e-06 0.008911554301 0.003441438507 0 24.81017003 -20.98397981 1013.818737 0.001972739235 +2.49593962e-06 -0.009445947562 -0.01060178123 0 -29.68586219 -5.092978086 1056.296409 0.001893407932 +2.496562386e-06 -0.006735854191 -0.007429778182 0 -21.80191239 7.308199686 876.4973891 0.002281809421 +2.49824586e-06 0.001626725662 -0.01183829897 0 4.747991678 -19.10489081 1050.744028 0.00190341315 +2.4985401e-06 0.004932823065 0.006903582376 0 10.65314175 11.82773813 931.3622734 0.002147392113 +2.498561891e-06 -0.002337894263 -0.008472442282 0 -16.28883081 -3.858893962 986.8307102 0.002026690069 +2.499485252e-06 0.003611078491 0.01463719505 0 2.455224701 10.38812115 1051.948647 0.001901233492 +2.496100986e-06 0.002292203549 0.0005323095317 0 14.35443426 -21.23144233 917.2292629 0.002180479931 +2.494110912e-06 0.004409276266 -0.003728261632 0 -23.88140353 -27.08301558 1051.197427 0.001902592175 +2.4971918e-06 0.004286093344 0.009635580441 0 21.74616903 -0.3531012805 917.3350489 0.002180228481 +2.496161759e-06 -0.002616167357 0.001788111976 0 -23.91950346 12.67714071 976.5105979 0.002048108852 +2.498066975e-06 0.001009335718 0.008541221463 0 19.68099151 -6.933352856 1060.940051 0.001885120652 +2.497237092e-06 -0.006029400979 0.01498481653 0 -7.562665652 21.82570295 982.2260214 0.002036191219 +2.499612576e-06 -0.002877966464 -0.01113657533 0 6.454817918 -6.342563889 1027.991229 0.001945541892 +2.497348535e-06 -0.005578061035 -0.001766090146 0 -15.33319401 -13.22260099 878.8838797 0.002275613475 +2.499820293e-06 -0.002129664812 -0.003960210972 0 5.514394876 0.3052181638 921.1965897 0.002171089236 +2.498206194e-06 -0.002312113382 -0.01246921891 0 -12.64586666 -12.06661651 922.5737334 0.002167848409 +2.499554055e-06 -0.00237117087 0.006140325491 0 -3.468382851 8.200812206 942.7696015 0.002121409088 +2.495010876e-06 0.001905457485 0.009658361769 0 16.47369234 28.27765717 1035.24703 0.001931906049 +2.499733495e-06 -0.004968367144 -0.004984179942 0 -5.663421199 -5.009309874 1035.593821 0.00193125911 +2.497599414e-06 0.008777280785 0.005409722684 0 12.60001437 -18.81310982 1032.99636 0.001936115244 +2.497625912e-06 0.0001125402609 -0.00245415814 0 3.34198421 -22.0413708 1022.718428 0.001955572469 +2.498650137e-06 0.007177175093 0.01027707963 0 -16.87698749 1.825959443 1032.937885 0.001936224848 +2.494025574e-06 -0.008285868736 -0.002837174633 0 -23.78946182 -27.78628362 1057.250638 0.001891699023 +2.498965231e-06 0.007772992575 0.011283648 0 -7.468908744 -11.00574381 924.4282247 0.002163499498 +2.496664559e-06 0.009016670473 0.005489857863 0 25.01266254 -5.801247788 993.6385518 0.002012804351 +2.496301099e-06 0.003332962277 -0.004580927531 0 26.88597595 -11.1174744 1069.077441 0.001870771866 +2.495974506e-06 -0.009095799131 -0.001675561261 0 -26.47405869 10.47882106 1002.854955 0.001994306345 +2.498688084e-06 0.001581135541 0.007962812127 0 -14.98184673 1.80145583 931.3844625 0.002147340954 +2.49859426e-06 0.005583813852 0.01069983808 0 13.00874874 7.533229012 896.3405563 0.002231294775 +2.498055158e-06 0.002332889796 0.01256677827 0 16.90224673 -9.666877975 986.9900338 0.002026362913 +2.4965914e-06 0.0003143947572 -0.00813853543 0 -19.73432454 -13.31775521 911.3644598 0.002194511733 +2.498772533e-06 0.009191282433 0.01054043971 0 7.328394503 12.29515618 913.3681141 0.002189697636 +2.498662654e-06 -0.003314655833 -0.0009069564776 0 7.262302073 13.69642344 947.7258056 0.002110315017 +2.498521117e-06 -0.008823716617 -0.002258522634 0 -15.10889906 -0.2868810095 878.4817791 0.002276655074 +2.494522509e-06 -0.00527880175 -0.009347461355 0 -20.94432137 -21.58076079 907.8534904 0.002202998635 +2.495312809e-06 0.001323511302 0.0006958755129 0 -21.38743209 22.69675762 1017.846726 0.00196493239 +2.495035288e-06 0.003608006849 0.01043519042 0 13.50575101 28.13594143 989.6961513 0.002020822247 +2.49827446e-06 -0.00337600938 -0.01381772358 0 2.153988601 -17.74092533 961.7538469 0.002079534183 +2.496285078e-06 5.528884009e-05 -0.01394005605 0 3.064841709 -27.97897137 1032.024046 0.001937939342 +2.499917401e-06 -0.003238963783 0.01475706827 0 2.844286528 2.793318526 980.8221235 0.002039105718 +2.492939313e-06 0.0006144509884 -0.01093731942 0 23.20525749 -30.76661912 1024.411046 0.001952341307 +2.499574031e-06 0.001427574041 -0.00226371034 0 -0.7530806991 8.09734646 881.0110537 0.002270119077 +2.497478078e-06 0.003444089349 -0.008240683756 0 14.68082088 16.20966177 973.4098755 0.002054632946 +2.497628222e-06 -0.006070092367 0.007747876954 0 19.13069334 10.16582757 994.3318697 0.002011400882 +2.49600366e-06 0.007070551505 0.01331226499 0 -12.24441465 22.77669478 914.1343977 0.002187862097 +2.499290672e-06 0.003587642321 -0.00548552407 0 -1.747120433 -10.82407612 920.430486 0.002172896303 +2.499755222e-06 -2.618357539e-06 -0.008016742927 0 -4.419682049 4.82437795 935.0748657 0.002138866174 +2.495462374e-06 0.009862653436 -0.003771491018 0 29.61858422 -12.52924728 1066.807417 0.001874752621 +2.49977307e-06 0.005705480454 -0.01030407976 0 -4.157792302 -4.79240114 941.7388687 0.002123730969 +2.498988161e-06 0.007190887919 -0.01268495567 0 12.9075156 -3.456538203 939.172329 0.002129534632 +2.499340205e-06 0.006488709385 0.01458168332 0 -7.982405852 8.955956313 1044.263506 0.001915225409 +2.497792106e-06 -6.988244131e-06 0.005317417325 0 -16.35810903 -9.016591952 888.5751465 0.002250794441 +2.498716965e-06 0.008076467733 0.007673912742 0 -14.30656354 -3.186213286 914.8068469 0.00218625386 +2.498700273e-06 0.001724637458 -0.001079579371 0 16.74893042 1.567838267 1043.171697 0.001917229931 +2.498504994e-06 0.0008184933802 0.00930856915 0 10.72272479 -14.76450328 1055.035145 0.001895671447 +2.497716956e-06 0.0003275946621 -0.004821319131 0 -21.45754763 -3.78235161 1019.303543 0.001962124053 +2.498256153e-06 -0.006652382659 0.007641916783 0 -9.392093568 -16.42756409 1012.989485 0.001974354157 +2.495155111e-06 -0.003527276837 0.01302362105 0 -4.584619356 32.70100584 1060.022342 0.001886752684 +2.497523908e-06 0.005947888833 -0.01134141177 0 -15.60176002 13.97612916 940.9085242 0.002125605145 +2.494774605e-06 -0.003174702199 -0.012291977 0 -18.26314004 -29.42452704 1070.426303 0.001868414476 +2.499505452e-06 -0.008291361132 -0.002952780726 0 -8.818890336 -1.616532431 901.4437347 0.002218663154 +2.49707726e-06 -0.004945125314 0.005169654039 0 -18.98505114 -10.40568264 895.0591145 0.002234489284 +2.499495848e-06 0.008745960575 -0.000849295333 0 8.012726987 -3.622369202 875.6534058 0.002284008703 +2.498927955e-06 0.005473956219 -0.001861523108 0 -12.28692843 7.54222409 984.435997 0.002031620142 +2.498074207e-06 -0.002976858336 0.01160407131 0 -0.4711027235 20.22386938 1030.47332 0.001940855684 +2.49961011e-06 -0.008428926263 -0.008649506969 0 1.699057001 -7.554750532 876.8460891 0.002280902002 +2.498701594e-06 -0.003411796149 -0.01126114572 0 -16.67358874 0.3035472617 1034.656625 0.001933008452 +2.498377728e-06 0.00839852035 -0.002558780685 0 15.39372129 -6.247755264 922.0889138 0.002168988229 +2.496480465e-06 -0.005085460963 0.0005549455527 0 15.73339802 -19.98176807 958.0795247 0.002087509386 +2.499049439e-06 0.004573756843 0.01121522374 0 -14.09603755 2.590992182 1039.311104 0.001924351614 +2.497214272e-06 0.002924873894 0.004012455947 0 -17.443703 13.14184154 924.8878101 0.002162424435 +2.498370527e-06 0.0008361886395 0.01250196904 0 -12.59563421 -13.57833795 1025.688996 0.0019499088 +2.498257018e-06 -0.006326129562 0.004503648207 0 18.01965848 -1.88600233 970.1464267 0.002061544469 +2.496133767e-06 0.0004495000746 0.006033423606 0 19.68169549 17.356278 943.1384894 0.002120579345 +2.496169322e-06 -0.004663707931 -0.004223737142 0 -25.85814552 -6.27629272 960.7822587 0.002081637106 +2.499962842e-06 0.002275296883 -0.00178045765 0 2.381307752 -0.240029104 877.9426358 0.002278053165 +2.496883134e-06 0.001079139048 0.01027246549 0 -15.4237835 -19.77324744 1003.932968 0.001992164879 +2.499506007e-06 -0.001517384672 -0.01306249619 0 3.922610798 8.632009096 953.8245288 0.002096821732 +2.498182891e-06 0.003510085517 0.006073005754 0 10.6332086 -14.3976234 938.6268554 0.00213077219 +2.498288814e-06 -0.009324430195 -0.0008321327996 0 -17.80814902 -6.595407757 1026.255763 0.001948831932 +2.497426015e-06 0.003556786063 0.01347632038 0 0.1302111413 20.40602089 899.0448938 0.002224583014 +2.498305515e-06 3.656029236e-05 0.01130715288 0 -19.30304632 -1.040893354 1049.813355 0.00190510055 +2.499189562e-06 -0.009901178321 0.01171797636 0 6.554718426 11.1655223 1016.839413 0.001966878913 +2.49989459e-06 0.00441007745 0.007644218418 0 2.20967442 -3.53625803 908.1556139 0.002202265745 +2.497859413e-06 0.001395402043 -0.008756004728 0 5.527608231 17.48923795 886.1864261 0.00225686147 +2.498580898e-06 0.0009766168194 -0.01446731919 0 -16.38704919 7.311636735 1064.904266 0.001878103096 +2.499173114e-06 0.007180704754 0.005833468996 0 -11.41984908 2.096079561 902.7419806 0.002215472464 +2.496059874e-06 -0.008538658423 0.0006473075808 0 -29.05198319 -4.02789075 1044.199102 0.001915343535 +2.49735251e-06 0.007727298313 0.01490219126 0 19.65038792 14.28546202 1055.35684 0.001895093607 +2.496548837e-06 -0.005539545394 0.005173706263 0 -0.08720041844 23.62825238 898.9009489 0.002224939247 +2.499640156e-06 0.00583176339 0.00184066623 0 7.988354921 -2.063963395 972.5107916 0.002056532449 +2.499025358e-06 0.003369273529 -0.006236699217 0 -14.32887919 -1.590637731 1032.454176 0.001937131977 +2.498477358e-06 -0.003786024512 -0.006362427184 0 -14.31428006 -11.04238796 1035.737593 0.001930991029 +2.496390926e-06 0.004462699951 0.005195176906 0 -18.07815157 -21.94276986 1057.64367 0.001890996048 +2.496964449e-06 -0.0002521038428 0.007738337223 0 -23.29238006 1.924079132 948.1104366 0.002109458901 +2.498459444e-06 -0.001549738273 0.0008558029728 0 -1.407329862 -17.45931637 997.652942 0.002004705159 +2.49659201e-06 -0.005483707692 0.004638579616 0 14.61862154 -23.49550545 1059.388276 0.001887881946 +2.496957995e-06 -0.007293551406 -0.001416729901 0 -18.16329666 -13.10070842 907.5215061 0.002203804523 +2.499205443e-06 0.004563849308 -0.009687944648 0 -13.30981385 1.622067914 1063.516507 0.001880553793 +2.499985882e-06 0.000870113424 0.001147918019 0 1.043130738 -1.236786467 962.8745541 0.002077113775 +2.496511755e-06 0.005230035656 -0.01026578436 0 22.18650394 -10.5433209 929.5178547 0.002151653128 +2.499934738e-06 0.007816207092 -0.0001361621241 0 -2.01323279 -2.831845873 961.7171314 0.002079613573 +2.499196843e-06 0.009433164457 0.004600210888 0 12.81144397 3.852030984 1055.416866 0.001894985824 +2.497032177e-06 0.001164828883 -0.01346110229 0 0.9321104242 -25.57273025 1049.875809 0.001904987222 +2.496876031e-06 0.00801222025 -0.01010762199 0 21.87293551 -3.681636646 886.955132 0.002254905494 +2.499191527e-06 -0.004074706109 0.008718101357 0 -4.362491949 -12.06223343 1008.603968 0.001982938858 +2.496468235e-06 0.006664440362 0.005565625029 0 -4.951295134 26.5010811 1013.848599 0.00197268113 +2.497892318e-06 -0.003589907978 0.0003137565055 0 10.88415399 14.40408721 879.0541611 0.002275172667 +2.496019948e-06 -0.0007756606909 0.003372449751 0 17.26939955 23.28683268 1026.957036 0.001947501142 +2.49663641e-06 0.005104492842 0.003400156216 0 -14.72148864 22.58253334 1038.818612 0.001925263926 +2.499710044e-06 0.0005061049061 -0.009496852364 0 5.521658213 -4.285523613 917.8075586 0.002179106046 +2.49791297e-06 0.007523427047 -0.009975177404 0 -4.21590821 -17.70450158 890.5228958 0.002245871509 +2.499799656e-06 -0.005307857632 -0.009303304155 0 -2.491292025 -5.022638926 885.686753 0.002258134711 +2.497218563e-06 0.009919175995 -0.003523426275 0 -10.40285677 19.61800126 941.0878456 0.002125200117 +2.496456857e-06 -5.627454259e-05 0.01196627612 0 11.5782106 24.92917599 1032.006242 0.001937972774 +2.499646277e-06 0.009563130662 0.009871239988 0 -2.099125134 -8.099379265 994.7155669 0.002010625013 +2.497989422e-06 -0.005287077557 -0.01039021826 0 -16.58331848 10.81896619 987.1151872 0.002026105997 +2.499095869e-06 0.008639483922 -0.008835168576 0 12.90023414 -3.671020335 997.2795841 0.002005455673 +2.497318202e-06 0.00728972489 0.004649056247 0 4.898817367 -20.41289069 906.0685485 0.00220733851 +2.49733474e-06 -0.002494022097 -0.007300527769 0 10.17628236 -18.8148914 926.1130877 0.002159563477 +2.499914081e-06 0.001176537606 -0.006412840581 0 -4.331467243 0.1093630236 1045.222126 0.00191346887 +2.497821111e-06 0.009143812233 0.003555059375 0 -10.3846135 -18.44995731 1013.867785 0.0019726438 +2.497736658e-06 0.001275314176 -0.007738225262 0 18.71345249 -5.679794546 918.8648364 0.002176598691 +2.498345818e-06 0.00441993339 -0.009599781688 0 -17.0460977 -0.1067764152 936.9556012 0.002134572863 +2.498766685e-06 0.0008166805701 -0.01256377538 0 10.10950164 9.327245677 875.6443487 0.002284032328 +2.497469122e-06 -0.00588476243 -0.003871614193 0 16.84131467 -16.30006326 1041.352797 0.001920578698 +2.494874805e-06 0.004394644196 0.00645035323 0 -15.0711079 24.23773005 890.7777443 0.002245228973 +2.49296999e-06 -0.0009744354989 0.01157940027 0 -25.72043257 27.8221209 1009.408286 0.001981358809 +2.497640958e-06 0.002378857769 -0.01256861032 0 18.18312896 -6.144430538 883.3068307 0.002264218877 +2.499254529e-06 0.005883589257 -0.01499250767 0 7.359789209 9.247739976 967.8304764 0.0020664776 +2.49877982e-06 0.001079856064 -0.0136032198 0 -13.48136569 -4.491273564 909.4563466 0.002199115997 +2.49883532e-06 0.0029807516 0.01110764439 0 3.696634794 13.50435449 917.2126717 0.002180519373 +2.496584743e-06 0.002805136372 -0.001211777364 0 23.65048572 2.48364108 909.4363662 0.002199164311 +2.4983293e-06 -0.008217091342 -0.001438086662 0 11.72571621 -14.7647747 1031.1959 0.001939495687 +2.496710748e-06 0.00582883887 -0.01003924908 0 26.38070857 4.440319037 1042.497162 0.00191847045 +2.49730839e-06 0.008181545823 0.01264479889 0 14.41749607 -17.53481032 978.0201487 0.002044947645 +2.497402082e-06 0.003078771164 -0.005684128362 0 -24.29618275 0.7016936567 1065.913768 0.001876324389 +2.497366544e-06 -0.009852783098 0.001044750188 0 -7.094536978 20.3436052 938.4269319 0.002131226132 +2.496531043e-06 0.00764749228 -0.002209633095 0 21.00805092 16.78375336 1020.324639 0.001960160447 +2.499520504e-06 -0.007908090143 -0.01073056884 0 -1.519940716 -10.05936174 1038.803409 0.001925292104 +2.499358456e-06 -0.005164980851 0.01385839223 0 -10.61353281 -1.24542087 943.3213728 0.002120168224 +2.498734868e-06 -0.004603608181 -0.01435377945 0 -16.69390759 1.065125695 1051.416586 0.001902195597 +2.498019293e-06 -0.008963427772 0.0005215433682 0 4.175033929 -20.63873024 1057.640015 0.001891002583 +2.499998934e-06 0.0007146976376 0.0008941460936 0 -0.2745486464 -0.4041534135 1058.283861 0.001889852122 +2.499415791e-06 0.007468832573 0.01191088041 0 5.694406164 9.831287929 1050.977092 0.00190299105 +2.495763752e-06 0.008336140541 -0.004043135229 0 26.9693128 -1.059885262 926.6657642 0.002158275483 +2.498530452e-06 -0.001333459369 -0.009117869425 0 8.555947167 -14.81021437 997.4588311 0.002005095286 +2.499846644e-06 -0.005555585772 0.01388643287 0 5.309834871 -1.926022343 1019.875142 0.001961024362 +2.49713212e-06 0.0003962405818 0.01345615492 0 -20.98933711 -9.312234712 958.3719973 0.002086872327 +2.499619439e-06 0.003650788302 0.01236776152 0 -7.506145032 -2.547370466 908.5228895 0.002201375467 +2.496804046e-06 0.008077009199 -0.01327650238 0 19.21992393 -14.73747607 957.5180248 0.002088733526 +2.495920514e-06 6.656099111e-05 -0.01357796598 0 -5.657051023 -27.45221632 980.6732895 0.002039415187 +2.496805244e-06 0.00969610448 -0.003066127149 0 -0.2139585452 -25.86832131 1022.918446 0.001955190081 +2.496065281e-06 -0.0004327547178 0.001643230228 0 -15.96274179 -22.52029779 983.4253059 0.002033708089 +2.49985251e-06 -0.005310882605 -0.0002543370612 0 -1.931703468 -4.991338443 985.4135218 0.002029604786 +2.499719483e-06 -0.004755425691 0.01371351723 0 1.536673977 6.444049762 884.4143354 0.002261383517 +2.496644957e-06 0.003987586549 -0.009451256837 0 23.25939106 -2.125921529 901.2019309 0.00221925845 +2.498604035e-06 0.009664056203 0.01109052768 0 6.612072993 -15.40288096 1002.964077 0.001994089365 +2.497634306e-06 -0.006761836349 -0.01208560743 0 -11.34317157 -17.30288774 950.8292996 0.002103426978 +2.498263996e-06 0.006627324657 -0.00300480203 0 12.94408468 15.14237411 1068.820348 0.001871221861 +2.499154269e-06 0.009795914511 0.001374937291 0 -11.23721239 2.908899557 892.3937688 0.002241163116 +2.498995075e-06 -0.002774183983 0.009518769777 0 11.94177211 9.353073005 1069.787831 0.001869529585 +2.493903228e-06 -0.009231348843 0.006611720575 0 -23.90165085 25.09549018 991.5669405 0.002017009562 +2.497798432e-06 0.007499050465 0.009632356663 0 -21.66892877 4.298933399 1052.436094 0.001900352917 +2.496336203e-06 -0.001690151705 0.004139358667 0 -14.26605586 25.05111682 1064.391924 0.001879007117 +2.498304812e-06 -0.0008703504829 0.001363449586 0 17.47546217 2.785778049 960.8230419 0.002081548748 +2.49842923e-06 0.004025685177 0.01221305949 0 -4.95749312 -15.64034905 925.4686892 0.002161067169 +2.496974459e-06 -0.007676569563 0.002636899715 0 -11.65261052 -20.70074321 965.2568213 0.00207198743 +2.498792357e-06 -0.003173454315 -0.0004252955876 0 -4.570290655 -14.89084063 1002.084996 0.001995838685 +2.498475764e-06 0.009625594453 -0.0117684843 0 16.14008682 -3.247212462 942.7176678 0.002121525955 +2.496025057e-06 -0.006647239728 0.01442180062 0 -26.49839563 8.63198377 987.8258386 0.002024648396 +2.49977235e-06 -0.001803911175 -0.007436499512 0 4.431534046 5.366044996 1031.351909 0.001939202305 +2.498438918e-06 0.005246629152 0.01336815463 0 3.909952854 -17.30511879 1003.821775 0.001992385551 +2.497438719e-06 0.005456645801 0.005150691143 0 -7.809349439 -20.98856248 989.0708868 0.002022099757 +2.495813302e-06 -0.002917850344 -0.004534907935 0 13.73583125 -24.44075492 968.2645586 0.002065551178 +2.499548889e-06 0.003335703495 -0.009753351056 0 -8.677781082 -2.347653229 946.3702948 0.002113337677 +2.498104433e-06 0.005495353676 -0.01116671512 0 -14.65840727 13.11662069 1009.949146 0.001980297728 +2.497925067e-06 0.00726820353 -0.01257072412 0 -3.812446879 -18.12886709 909.107775 0.002199959185 +2.499806193e-06 0.00778807607 0.01458074035 0 5.164912523 1.901518316 884.0005275 0.002262442089 +2.497485164e-06 0.004199936916 0.008848526229 0 14.04282498 15.46556839 931.1101672 0.002147973538 +2.498642015e-06 -0.002072895481 -0.0140398075 0 -5.162916959 14.53486974 935.7562684 0.002137308686 +2.495662711e-06 0.003102342547 0.009885264183 0 22.5263159 -14.05777915 900.9586594 0.002219857681 +2.494561211e-06 -0.002180613922 0.009297533892 0 22.73465206 24.14980696 1004.826053 0.001990394253 +2.49795072e-06 0.00399700881 -0.003770682381 0 17.68394578 -3.420585481 889.418557 0.002248660076 +2.498869216e-06 -0.005386146167 0.000381653728 0 -14.17725108 -5.211425842 1004.234171 0.001991567363 +2.499975701e-06 0.004997292496 -0.01412736463 0 1.166683621 1.772949537 962.7423551 0.002077398994 +2.495152211e-06 0.006160591189 0.010337798 0 -7.882468854 29.06115645 966.3291395 0.002069688182 +2.498368266e-06 0.003272054074 -0.009804374934 0 -1.617033851 18.22000139 1012.292809 0.001975712938 +2.496546148e-06 -0.003033802705 0.01179622494 0 21.17089688 -14.09086566 967.1178169 0.002068000367 +2.496715841e-06 -0.007305564536 0.003841890693 0 -18.84638177 16.47147185 976.1528408 0.002048859478 +2.498883689e-06 0.005034619635 -0.009506284946 0 12.18276077 8.894173436 1009.334529 0.001981503596 +2.495657584e-06 0.003541501705 0.01045863154 0 -7.174015937 25.0603732 883.9492702 0.002262573281 +2.498698382e-06 -0.001681077559 -0.008642006738 0 14.06530739 4.015461032 906.4031666 0.002206523624 +2.499525867e-06 0.005351215713 0.0003944499884 0 -1.643716846 -8.437528315 882.6890509 0.002265803567 +2.499925991e-06 0.005540916044 0.01327455695 0 0.6634149377 -3.525011734 932.3041324 0.002145222713 +2.497349065e-06 0.009640973466 -0.003279002826 0 -20.71137293 -12.33570418 1046.52476 0.001911087131 +2.496735752e-06 0.009912011013 0.009616826673 0 -3.369275027 22.20084161 878.4049102 0.002276854303 +2.497795321e-06 -0.009379114141 -0.0147439232 0 2.157493758 -18.69050052 895.7027904 0.00223288352 +2.497072433e-06 0.005813446995 0.003661610128 0 0.9244419888 23.47519368 970.4796659 0.002060836584 +2.499913996e-06 -0.00384988972 -0.002279153864 0 -3.505894737 -2.412589782 1026.131394 0.001949068133 +2.497159174e-06 -0.003272607205 0.004360403654 0 -12.13343182 20.37478786 994.4471438 0.002011167725 +2.496113769e-06 0.004405001737 0.008143529193 0 5.526735708 27.67522612 1011.696301 0.001976877841 +2.492841985e-06 0.008013191749 -0.001655333752 0 27.35439666 -24.62206247 971.6564164 0.002058340753 +2.499414137e-06 -0.006675491384 0.01044852562 0 9.852176754 -4.020598567 982.9483005 0.002034695008 +2.496493545e-06 -0.005176900364 0.0006915448071 0 -13.08260657 24.19550914 1038.123333 0.001926553365 +2.498307964e-06 0.008263806677 0.01333510066 0 4.260548863 16.32135486 916.7285737 0.002181670843 +2.498091821e-06 0.001953377281 0.006036895495 0 -5.579913349 -16.84627608 908.1546594 0.00220226806 +2.497438574e-06 0.004061203073 0.01288241656 0 -5.916186235 21.83289839 999.0218222 0.002001958271 +2.498383932e-06 -0.002651749211 0.006652213256 0 -0.3215827541 -18.93343043 1053.032705 0.001899276244 +2.497856394e-06 0.0003557335399 -0.008477433643 0 15.06191039 -11.62074142 918.4780136 0.002177515379 +2.499212367e-06 0.001887600524 -0.006367846155 0 11.51842693 -6.573302244 1056.53273 0.001892984422 +2.498391902e-06 -0.002846368509 -0.00359944246 0 16.27815531 -3.416686009 927.2373737 0.002156944982 +2.497219672e-06 -0.006612926731 0.001349076256 0 -0.8339454055 21.28514337 902.9536145 0.002214953202 +2.498163696e-06 -0.007141331737 0.01460091331 0 -17.73824598 2.037041249 931.4267326 0.002147243503 +2.495648411e-06 0.0007240766566 -0.01197691858 0 11.45118147 -24.83174628 926.3053358 0.002159115275 +2.498109692e-06 -0.001723620365 -0.01326822197 0 15.37384459 12.98388148 1034.639202 0.001933041003 +2.496635565e-06 0.005847280407 -0.001645161747 0 -11.75586307 22.21775329 968.5217393 0.002065002693 +2.496840339e-06 -0.004645276745 -0.007587014555 0 -16.84396058 17.67411075 970.7689264 0.002060222516 +2.498409985e-06 0.008373701796 0.01310406042 0 2.335923358 16.29034595 922.6366207 0.002167700647 +2.499878076e-06 -0.007833419451 0.005004243788 0 -3.70297436 2.697049248 927.6784003 0.002155919551 +2.499213841e-06 -0.0002423844114 -0.01489545748 0 -2.021387179 -12.8406179 1036.525718 0.001929522794 +2.498954551e-06 -0.007723934799 0.002743051972 0 -9.415402858 11.7396392 1040.566341 0.001922030264 +2.496820483e-06 -0.00608254292 0.003575195277 0 11.55942872 -21.29960077 960.560509 0.002082117661 +2.497127127e-06 0.009119086987 -0.007285094645 0 22.51195182 9.495496808 1018.848073 0.00196300121 +2.496342399e-06 0.009128888054 0.01148045104 0 10.49568016 24.46350899 983.6847255 0.002033171755 +2.495184126e-06 -0.006814095699 -0.01495795001 0 17.83834477 -22.76930778 931.3326336 0.002147460454 +2.499938908e-06 0.002663540081 0.008256806871 0 -2.339936335 2.860659563 1057.291692 0.00189162557 +2.497865162e-06 0.007286178027 -0.005649444479 0 -14.7987095 11.2235787 898.5752208 0.002225745774 +2.497214751e-06 -0.0007111457596 0.003510360494 0 17.02207271 -17.67773317 1039.348142 0.001924283038 +2.495726622e-06 -0.0007227975782 -0.003779558886 0 15.51030104 -21.61332467 909.3832795 0.002199292691 +2.497068913e-06 -0.003014118881 0.01360456999 0 20.28411867 -11.25393765 957.6563316 0.002088431866 +2.49841915e-06 -0.0003534662025 -0.01220250989 0 16.55327988 -1.859337395 936.576419 0.002135437066 +2.499145365e-06 0.000438054991 0.008623939427 0 11.4994074 -2.905344916 907.0916842 0.002204848788 +2.495623314e-06 -0.009995755698 0.005692410946 0 11.28720214 24.60491328 914.366872 0.002187305841 +2.497611537e-06 -0.005341831446 0.01259723639 0 -19.53009227 9.841361492 1000.252747 0.001999494634 +2.497266146e-06 -0.002767231767 -0.009351478124 0 16.86321321 -16.60746781 1011.768996 0.001976735804 +2.499888142e-06 -0.003925712532 0.009842654883 0 2.456988995 -4.270752458 1041.67786 0.001919979369 +2.498430302e-06 0.002044597049 0.005820934949 0 -16.29834864 1.016674745 921.4283964 0.002170543048 +2.497333191e-06 -0.009196932837 0.001935568212 0 14.43894594 14.88217013 897.4914429 0.002228433503 +2.498261056e-06 0.003587091905 0.008228311893 0 -12.17471214 -14.22555757 1003.757183 0.001992513762 +2.499504358e-06 -0.002440352393 0.01369688865 0 -3.527562084 7.971244408 875.4492104 0.00228454144 +2.497982902e-06 -0.0002771707065 0.007727159068 0 -18.78975407 5.938398865 980.8094829 0.002039131997 +2.496513546e-06 0.001351440549 0.008967631592 0 -9.825322918 22.5987409 932.7085653 0.00214429252 +2.497862995e-06 0.008738019005 -0.003633763636 0 20.12743799 6.133789349 1017.456717 0.001965685583 +2.494925128e-06 -0.001788242287 -0.0005071350723 0 20.81582435 -19.9310796 903.9065437 0.002212618123 +2.49995243e-06 -0.009470182299 0.005702998457 0 2.918903608 -1.448968115 1056.495772 0.001893050643 +2.49780864e-06 -0.0002605121676 0.0006894062064 0 2.774511511 -18.53012187 894.7013247 0.002235382853 +2.497685176e-06 -0.00658964443 0.00880344739 0 19.1193933 -12.46798898 1060.46128 0.001885971735 +2.498865617e-06 0.003628861029 0.007671506165 0 10.72518603 7.963670411 886.7252824 0.002255489992 +2.498410913e-06 -0.005249667647 -0.006109256793 0 -3.954988104 -18.05963147 1036.785116 0.001929040038 +2.499554786e-06 -0.009395385394 -0.01014385562 0 7.248496601 -6.98010769 1066.34057 0.001875573392 +2.496379307e-06 0.004396087141 0.002515744069 0 25.06760532 -11.33283385 1021.759877 0.001957407063 +2.49969162e-06 -0.003989381888 0.00652532964 0 -3.477179796 7.624969248 1067.052421 0.001874322162 +2.499867087e-06 0.003050443907 -0.0138008903 0 -4.830995582 -2.273442455 1035.545125 0.001931349926 +2.497643584e-06 -0.004346582373 0.009310479448 0 9.62817892 19.90044701 1017.981228 0.00196467277 +2.499491297e-06 -0.00666996893 0.01160129267 0 8.701686013 -1.982620892 884.7346701 0.002260564741 +2.499417818e-06 -0.008088499205 -0.001137520191 0 -5.049279839 9.228178185 974.7699031 0.002051766262 +2.49634608e-06 -0.008153473516 -0.01297223179 0 -5.407092429 -26.11304162 985.9185407 0.002028565158 +2.498985242e-06 0.007389174248 0.01464125585 0 7.858632401 12.30149703 1024.504987 0.001952162288 +2.497601906e-06 0.009935482894 -0.01142060522 0 -3.589812679 -22.10545327 1022.22734 0.001956511944 +2.499097431e-06 0.005073833079 0.008783816344 0 -11.84609032 -4.296448191 937.7707047 0.002132717508 +2.49363239e-06 -0.009830398452 0.001855087273 0 -26.38665144 -20.7614685 939.9398851 0.002127795651 +2.496935963e-06 0.001262310464 -0.001975978841 0 12.38763017 19.06722347 918.0973624 0.002178418196 +2.499885486e-06 0.005590267186 -0.008117842642 0 -2.560706428 -3.765687563 951.5409218 0.002101853903 +2.497719313e-06 -0.005794375525 0.003809676475 0 -19.59609635 -7.335895668 979.3828154 0.002042102402 +2.494910256e-06 0.004210694302 0.004745247527 0 22.54974456 -21.03602937 965.8210737 0.002070776932 +2.497781184e-06 -0.004768727073 -0.01485665035 0 -8.755796558 -18.43394346 968.4424229 0.002065171819 +2.49877575e-06 0.009277336723 0.009217520307 0 -0.08120514195 13.96844187 892.535318 0.002240807685 +2.498787885e-06 -0.006524795247 -0.01464556957 0 -14.46577533 -1.216395637 932.19295 0.002145478573 +2.499479119e-06 -0.001662659841 -0.0119949907 0 -8.727862827 -2.915688263 901.4963385 0.002218533692 +2.497458249e-06 -0.0007921984605 -0.01095199695 0 -21.02562387 6.195705708 971.8138999 0.002058007197 +2.497746764e-06 -0.004720012937 -0.01148910037 0 21.68048485 -6.50948428 1065.973751 0.001876218807 +2.496296454e-06 -0.0009289827384 0.0139460376 0 -22.34060053 14.38589914 975.7856383 0.002049630494 +2.498703874e-06 -0.004379539015 0.009697443035 0 16.96679618 -0.1133860417 1053.626172 0.001898206454 +2.496973956e-06 -0.003194244411 0.003997250469 0 18.98946995 12.1884451 916.80407 0.002181491188 +2.499001652e-06 -0.001466352995 -0.009738804067 0 -2.442099364 -12.39618706 893.9956162 0.002237147435 +2.499039818e-06 0.00273288927 0.00829268324 0 -11.70545058 -8.522767993 1044.716174 0.001914395556 +2.498058437e-06 -0.007182094264 0.01381615733 0 -16.87334186 -7.167458262 930.0482517 0.002150426063 +2.495873754e-06 -0.002204191 -0.00982598698 0 8.368794656 -25.41579033 930.882076 0.002148499849 +2.498156834e-06 0.004303234434 0.01202794266 0 2.83665809 -16.67848652 880.9099908 0.002270379518 +2.499337046e-06 -0.001083159246 0.009093174823 0 1.37485605 11.62223853 1016.266626 0.001967987484 +2.494817258e-06 0.002649932085 0.008899305502 0 27.44390827 20.23963122 1058.331657 0.001889766772 +2.496397788e-06 0.002454009843 -0.003066420278 0 15.48606211 -21.44811479 985.0649541 0.002030322967 +2.498596092e-06 0.00971986318 -0.0107963437 0 -6.545678188 15.01760965 977.45052 0.002046139379 +2.498737304e-06 -0.007751237676 -0.005482435045 0 8.056328423 -12.06038547 912.4983695 0.002191784738 +2.498395118e-06 0.004008291769 0.01310722068 0 -12.97003273 -13.91506291 1061.50875 0.001884110705 +2.496593587e-06 -0.00424345592 0.005728318985 0 18.42828045 -17.13783496 963.6546416 0.002075432332 +2.495737505e-06 0.00877972025 -0.007565269147 0 28.16320648 -3.129595614 969.8895047 0.002062090568 +2.496495526e-06 -0.005884206803 -0.008132793128 0 -22.67509877 4.841106648 875.3330372 0.002284844642 +2.497850727e-06 -0.00121555259 -0.00969325003 0 -7.323294768 18.98799846 981.2754962 0.002038163602 +2.499709133e-06 0.006213608924 0.002967292133 0 7.147892104 2.28388645 983.7975008 0.002032938687 +2.498923278e-06 -0.002227784083 -0.01400992401 0 12.03350192 -6.846239719 943.2941775 0.002120229349 +2.498740853e-06 0.001889587897 -0.01312560358 0 -7.224084899 12.40640436 904.503802 0.002211157096 +2.498287611e-06 -0.007511258763 0.005987846351 0 -5.796153735 18.02161643 1022.68174 0.001955642623 +2.499961926e-06 -0.006633233717 -0.01286033658 0 2.669530979 1.046985195 1039.13584 0.001924676181 +2.497899032e-06 -0.001197239952 -0.003058995882 0 20.56811832 2.011661699 1007.860187 0.001984402228 +2.499622938e-06 -0.001715697558 0.0008872458874 0 -7.224677411 -3.806159546 940.2880052 0.002127007884 +2.49794046e-06 0.003931971281 0.0003145117778 0 20.38852039 4.722527693 1030.860242 0.001940127206 +2.499592514e-06 0.005109521686 -0.008632619048 0 3.284710038 -8.793041347 1039.697756 0.001923635969 +2.49656092e-06 -0.007397526205 -0.0123550283 0 5.174292417 -23.69481944 924.2910588 0.002163820564 +2.498658612e-06 0.004311488415 -0.01468686151 0 3.185001933 -16.17849342 1006.503605 0.001987076837 +2.49782765e-06 -0.007824569265 0.004604410278 0 21.08194641 5.102347646 1040.279869 0.001922559553 +2.498703082e-06 0.003081254 0.006795628094 0 14.12009357 -5.981172407 951.9588268 0.0021009312 +2.497692106e-06 -0.002996393102 0.002370189847 0 -21.21599018 -2.892283027 996.2964289 0.002007434677 +2.49642343e-06 -0.001593676419 -0.003446472154 0 22.09598247 -15.26377118 1003.577507 0.001992870491 +2.498168106e-06 -0.007342978041 -0.007607376503 0 -17.0490637 3.98808561 914.5007499 0.002186985631 +2.498839523e-06 -1.557811163e-05 -0.00902890869 0 1.927282363 15.23720527 1007.959066 0.001984207562 +2.498500644e-06 -0.00380681315 0.002456489909 0 -5.678599328 -14.41683102 894.5884455 0.002235664914 +2.499903657e-06 0.002241366217 -0.001129021437 0 1.927554078 3.763325531 963.228773 0.002076349935 +2.497610326e-06 0.001547640543 0.01230776394 0 20.55355685 1.566291921 942.5497298 0.002121903956 +2.498707673e-06 -0.0008398262039 -0.0002495769924 0 14.12598724 6.748959227 973.5967238 0.00205423863 +2.497714699e-06 0.001119838022 0.0119577935 0 4.577739144 21.47937773 1026.908421 0.001947593338 +2.495713453e-06 -0.005159131535 0.01129851831 0 -10.81052395 24.47947103 913.3604884 0.002189715918 +2.497694974e-06 0.005511033051 -0.004809221704 0 -21.62535827 3.349893996 1018.847626 0.001963002071 +2.49668203e-06 0.008942503352 0.008838878847 0 -10.11095834 20.19532053 876.2997574 0.002282324037 +2.495032769e-06 0.002803154341 0.01175932962 0 18.37348467 24.6848258 975.577706 0.002050067347 +2.496649153e-06 -0.003702138308 0.01207055301 0 -22.80736056 -8.783446846 943.6142233 0.002119510231 +2.494285241e-06 0.008669455675 0.007461994907 0 17.63733234 26.60751026 943.4261883 0.002119932672 +2.498309704e-06 0.005939986031 -0.01289877001 0 -3.601464518 -16.20345154 902.5513846 0.002215940316 +2.495044594e-06 -0.006416992336 -0.0137287114 0 -11.00183697 -26.64932434 915.1284788 0.002185485477 +2.497351478e-06 0.0006581837125 0.01415003894 0 -20.77959188 2.895710167 911.2216612 0.002194855637 +2.497544826e-06 0.009378892761 0.001918346076 0 -11.71122576 -16.77552505 922.9293579 0.00216701309 +2.499213421e-06 -0.003385783383 -0.007541460791 0 -10.95723361 -2.10857529 889.5276856 0.002248384207 +2.499542209e-06 0.005509573915 -0.009850918266 0 3.499633153 8.667633924 976.8226767 0.002047454515 +2.497650115e-06 0.009092625999 -0.01317815276 0 -19.77942367 -8.369587526 990.3501681 0.002019487717 +2.497221008e-06 -0.002295988034 -0.005573715849 0 -8.862424925 -20.29997123 939.1563054 0.002129570966 +2.494736534e-06 -0.008908539377 -0.01438685054 0 -6.253490624 -29.83763919 938.8691993 0.002130222188 +2.494292577e-06 -0.008945040139 -0.003542660808 0 -29.18641223 -19.74407766 1042.069746 0.001919257331 +2.498032894e-06 0.006486285217 -0.01116397246 0 10.36196025 -14.0604909 880.3207542 0.00227189918 +2.497755213e-06 -0.003824450132 -0.005459468777 0 -22.23759798 -3.112089802 1059.377523 0.001887901109 +2.498931366e-06 -0.005097849597 -0.004253319944 0 -5.956448191 -14.40489065 1066.0712 0.001876047304 +2.499127122e-06 0.004682056513 -0.009407346505 0 -9.919508487 6.384305041 892.69346 0.002240410723 +2.498984389e-06 -0.0035719307 0.000977721673 0 -13.50278439 -6.207899564 1042.597823 0.001918285225 +2.497303179e-06 -0.002526631947 -0.006404827803 0 16.22624422 -16.71394325 1002.632569 0.001994748686 +2.498575113e-06 0.005690713981 -0.006871323015 0 14.42772842 3.741939003 882.7470348 0.002265654736 +2.495674543e-06 0.004503931641 -0.01157902406 0 24.38183649 10.0624987 896.2036546 0.002231635622 +2.498872511e-06 0.008852054877 -0.002537607062 0 14.87214754 1.413693486 994.6777473 0.002010701461 +2.494325319e-06 -0.003285001027 -0.007214568194 0 -19.82149492 -26.68861874 985.9605809 0.002028478662 +2.498996203e-06 -0.007774858559 -0.007321737658 0 -4.044740563 12.52034299 928.4722031 0.002154076334 +2.497478188e-06 0.005889261966 -0.01422956429 0 -15.65626645 -13.75129888 927.5080174 0.002156315592 +2.499254861e-06 0.008893503277 0.00142723209 0 7.570507076 -10.41446974 1054.57094 0.00189650589 +2.499612554e-06 -0.001635974837 -0.01091506044 0 -8.056326265 0.3841480357 916.1875079 0.002182959255 +2.499581203e-06 0.002610543356 -0.003433440893 0 1.865894725 -8.791153497 981.9063847 0.002036854054 +2.497283938e-06 -0.002359327739 -0.005977607151 0 21.54896613 -0.03353495365 924.1981365 0.002164038122 +2.494677219e-06 0.0008392721741 -0.0138733021 0 -7.056302315 -30.0569886 945.5049834 0.00211527177 +2.49566998e-06 -0.008695582338 0.008744136568 0 3.376264873 26.52672995 908.0943513 0.002202414316 +2.496174005e-06 0.009445372727 0.002210942789 0 20.4260742 18.05423566 984.9413511 0.002030577757 +2.498145447e-06 -0.006032641274 0.01005916545 0 -14.36888496 -10.21609646 915.1839265 0.002185353066 +2.497722326e-06 -0.008132911548 0.009444068314 0 -10.70946691 17.51460108 961.5365751 0.002080004081 +2.495758428e-06 -0.004870302416 0.01490492558 0 2.809401351 28.79393866 992.6668519 0.002014774641 +2.497933762e-06 0.005695930589 -0.01448420887 0 19.93158628 -1.374384034 982.4988893 0.002035625711 +2.497994194e-06 -0.003125518747 0.007263781505 0 -13.69922062 11.62170077 896.6670232 0.002230482384 +2.496859571e-06 -0.006981114531 0.003332256025 0 15.23389114 20.2251925 1009.854477 0.001980483372 +2.496779924e-06 -0.003182778801 0.007563217431 0 -23.93041148 6.496514786 976.6375708 0.002047842577 +2.497166162e-06 -0.007441102238 -0.00425407435 0 -20.20603206 -12.60892036 1000.016434 0.001999967133 +2.497338929e-06 0.007880941797 -0.006710289507 0 14.0494866 17.89500791 985.7994909 0.002028810137 +2.494841954e-06 -0.001630011275 -0.007303088992 0 -25.13531901 -19.89915968 997.3603509 0.002005293271 +2.497553374e-06 0.009292412698 -0.001607430037 0 16.94028652 -12.89765086 962.1559733 0.002078665056 +2.499583871e-06 -0.001522728419 0.001550457424 0 -2.683917785 -9.236391465 1054.261518 0.001897062509 +2.497663945e-06 0.003110394697 0.000115437652 0 9.781066451 17.19225452 914.775281 0.0021863293 +2.497475051e-06 0.003643174781 0.001350404473 0 -3.89562126 -20.82698669 942.5141646 0.002121984024 +2.498923186e-06 -0.0003726752615 0.00218985325 0 -12.84640883 -4.336073109 923.750569 0.002165086623 +2.498844231e-06 -0.00451971286 0.004800708555 0 -4.197196144 -14.61204022 999.7712135 0.002000457678 +2.497345262e-06 -0.007180821104 -0.01453304956 0 -11.52028477 -17.51713224 909.5229132 0.002198955047 +2.495503571e-06 0.007030647434 -0.007205263569 0 22.25771231 18.86199674 972.2296803 0.002057127077 +2.496834455e-06 0.005356324259 0.001691600794 0 -21.38147419 15.73273797 1054.514051 0.001896608204 +2.496488701e-06 0.009384105564 0.01416704526 0 18.9300366 -15.44339908 921.4100286 0.002170586317 +2.498355029e-06 8.514532819e-06 -0.01372350113 0 -17.31885008 -3.249679678 971.2511057 0.002059199715 +2.498683349e-06 -0.004112731912 0.0020927654 0 -5.525886236 -14.78349336 972.387852 0.002056792458 +2.49888136e-06 0.009910484091 -0.006998384327 0 14.87171089 1.502335938 999.1545956 0.002001692239 +2.499806835e-06 0.002397176502 -0.0007375839609 0 0.6086737121 6.477540342 1046.71193 0.001910745395 +2.496625575e-06 0.009997233287 0.01390734729 0 -17.04801581 18.42074553 965.6532495 0.00207113682 +2.498835725e-06 -0.002267325786 0.001904062154 0 -1.156205001 14.76811844 970.5846315 0.002060613712 +2.495812433e-06 0.0001998998877 0.009648423682 0 -24.70541375 -18.74485389 1070.919915 0.00186755328 +2.496931667e-06 0.007267122515 0.007167391477 0 -13.74909684 18.37394905 925.9564767 0.002159928734 +2.495330695e-06 0.009854359888 0.006431134567 0 28.41226582 -14.84232872 1048.229156 0.001907979747 +2.49461813e-06 0.007388187018 -0.01283956988 0 29.35603918 16.6308771 1027.561561 0.001946355407 +2.498985269e-06 -8.87566898e-05 0.01137580696 0 -14.11517736 -5.355339705 1059.577497 0.001887544805 +2.49930931e-06 0.009253238244 0.004709185925 0 10.63238124 -0.1943375895 904.6934933 0.002210693472 +2.499518246e-06 0.009496456212 -0.009411446191 0 7.882305638 -6.616960208 1048.382217 0.001907701187 +2.495854022e-06 -0.008439064315 0.0008225477091 0 -17.03837827 -22.28115775 973.467261 0.002054511826 +2.496607768e-06 0.00670835699 0.004692434643 0 21.36825509 -13.1588997 962.960017 0.002076929431 +2.49826983e-06 -0.009521333426 -0.01479060012 0 -3.377761213 -16.88724177 925.5605874 0.002160852598 +2.498023098e-06 0.002154732514 -0.002019600214 0 17.48484862 -10.14121292 1016.233988 0.001968050689 +2.496136966e-06 0.00749894734 0.01161944886 0 17.65116227 17.08483253 883.2657146 0.002264324276 +2.496333389e-06 0.00465168016 0.005794203796 0 23.91690858 -14.08240202 1024.360203 0.001952438208 +2.499260309e-06 -0.00195904017 0.01007442651 0 -3.73825572 -10.98376548 953.8119888 0.002096849299 +2.495021749e-06 -0.006137752063 0.005031999196 0 18.53819974 26.1759446 1015.773757 0.001968942381 +2.494273743e-06 -0.009908026587 -0.0106966627 0 17.94672539 -26.63505946 948.2288758 0.002109195418 +2.496097781e-06 0.008280343125 0.004367417127 0 27.9245056 3.092007048 1005.093431 0.001989864761 +2.498821787e-06 0.005523962406 -0.006962122796 0 6.857429248 -12.66060104 937.8036954 0.002132642481 +2.499560174e-06 -0.008991918615 -0.004555733737 0 8.541826984 -5.067233713 1058.867668 0.001888810151 +2.494720958e-06 0.0005100384448 0.006285947424 0 -23.13114166 24.6691205 1039.927799 0.00192321044 +2.496623322e-06 -0.0007646865817 0.009561656853 0 16.62614625 -20.50247614 1015.23829 0.001969980861 +2.496885415e-06 0.003031260255 0.01480965517 0 -17.37302444 15.78951472 940.1761381 0.002127260966 +2.497934665e-06 -0.009683669079 -0.002766890789 0 8.233044527 17.92724081 970.3406415 0.002061131848 +2.497444224e-06 0.005648790305 0.01104005793 0 7.389942601 20.07610419 945.8648174 0.00211446706 +2.497879912e-06 -0.006619975381 -0.009679601658 0 15.95176693 13.78304586 1023.463086 0.001954149619 +2.498399325e-06 0.005985184484 -0.01413677311 0 -0.3175286659 -17.1939606 960.9020308 0.002081377639 +2.497225193e-06 -0.002479733331 -0.003241364392 0 -19.44574023 -11.84599037 966.1559102 0.002070059272 +2.498915631e-06 -0.002758503403 -0.008483996764 0 -12.43231789 3.422227508 875.4639686 0.002284502929 +2.499456222e-06 -0.003015256692 0.0006800460792 0 -8.604402005 7.008636616 1064.06387 0.00187958642 +2.499742997e-06 -0.002948494838 -0.009827587644 0 6.506582946 2.713920935 983.2896148 0.002033988735 +2.499359174e-06 0.001781675434 -0.005988707996 0 -0.9561829036 10.11559612 897.4210312 0.002228608346 +2.496413136e-06 -0.009530713581 0.007808990185 0 -20.92444628 11.34050998 888.1177026 0.00225195376 +2.49761005e-06 0.001544308709 0.01095900747 0 -16.8042494 11.99434227 943.9859158 0.002118675678 +2.498820445e-06 -6.934121251e-05 -0.002105609779 0 4.249646031 13.12783595 898.2185631 0.002226629556 +2.496167696e-06 -0.00263608559 0.01163228973 0 22.56370949 16.75633363 1014.588884 0.001971241782 +2.495993638e-06 0.009569751797 -0.01404396026 0 25.10164962 -11.41616538 973.589718 0.002054253412 +2.498157378e-06 0.009185555754 -0.003803101005 0 -0.9402183534 17.83532193 930.1015598 0.002150302813 +2.498005113e-06 -0.009961451483 0.007503579541 0 -12.75613412 13.95920163 946.4144579 0.002113239061 +2.498419309e-06 -0.008355769785 0.0120227946 0 -18.13889113 1.06057671 1021.669249 0.001957580696 +2.497770624e-06 0.004619403081 -0.006808440748 0 -15.96058358 -14.59256749 1023.820839 0.001953466782 +2.499408335e-06 0.008922913568 -0.006207771418 0 -11.22804281 -3.084320122 1070.309976 0.001868617545 +2.49348766e-06 0.005436839098 0.01336286598 0 -20.08359845 30.20872451 1004.167434 0.001991699724 +2.499253382e-06 -0.007510162247 -0.003643460933 0 3.03803623 -12.58755752 1059.553613 0.001887587353 +2.499298764e-06 0.001920949644 0.005915042167 0 10.64369414 1.219468003 904.5474777 0.002211050331 +2.495630563e-06 -0.009971420798 -0.003509282141 0 -27.65957908 4.178612534 945.6560388 0.002114933885 +2.498178545e-06 0.0004088640073 -0.01299997235 0 -5.828566157 -18.92636367 1037.288303 0.001928104263 +2.499310784e-06 -0.001836676388 0.0008202108764 0 -8.450640482 -8.129313766 998.6475567 0.00200270855 +2.497833487e-06 0.009383723983 0.008773660299 0 11.80199196 15.60739969 939.7089823 0.002128318488 +2.499015089e-06 -0.009408776392 0.009741238416 0 6.295116814 -12.62926965 1005.280698 0.001989494082 +2.495272794e-06 -0.008340013288 0.004364457945 0 -30.71139619 10.86601011 1058.730497 0.001889054869 +2.499594469e-06 0.002526292782 0.003135058174 0 7.950332196 -0.3490699939 883.5880402 0.00226349827 +2.497752695e-06 -0.008876486798 0.002238138195 0 15.90980831 -12.35193693 949.7425922 0.002105833745 +2.49894506e-06 -0.003860414727 0.01385871281 0 12.42421837 5.275781686 929.1175083 0.002152580252 +2.498310316e-06 -0.001800084701 0.01140878679 0 -9.264980182 14.133167 919.0534064 0.0021761521 +2.496037535e-06 0.005720514106 0.008748628688 0 24.78047305 11.89049901 975.7722884 0.002049658536 +2.497651989e-06 0.009183258922 0.000512540862 0 -16.58641328 15.64737572 1051.871028 0.001901373787 +2.498909159e-06 0.004683196507 0.008478439918 0 1.931627645 13.34987418 913.0818062 0.002190384242 +2.499686952e-06 0.005313814222 -0.004267753505 0 -1.767733624 -8.122120006 1050.456794 0.001903933613 +2.497416657e-06 -0.007191208908 0.0003170391941 0 -16.52164896 17.54245841 1059.747919 0.001887241261 +2.497149141e-06 -0.008273369162 -0.01128240118 0 19.29423423 -13.81505337 993.374499 0.002013339382 +2.496399273e-06 0.002993591977 0.01343102889 0 25.72071711 -4.367642403 971.6530262 0.002058347935 +2.49972349e-06 -0.003329816666 0.006148067345 0 5.634041446 -5.358470438 1045.513527 0.001912935556 +2.49976181e-06 0.009507612078 0.008556375287 0 -5.757396939 4.475386103 1056.498085 0.001893046499 +2.497225215e-06 -0.0009058540035 -0.0002378136828 0 -23.40605448 4.213765273 1009.122423 0.001981920087 +2.499349241e-06 -0.009267976778 -0.0002409805893 0 -10.31955189 2.051525731 922.1683147 0.002168801474 +2.494103168e-06 -0.007214420578 -0.009247361985 0 -21.32194808 -23.98274027 933.6130904 0.002142215036 +2.498891152e-06 -0.001180535359 -0.001307804114 0 11.20908238 -9.924778021 1005.173303 0.001989706644 +2.496955197e-06 0.004762154683 -0.006101232679 0 -21.00950228 -12.30030724 986.1050634 0.002028181453 +2.499805503e-06 -0.007146782731 -0.006058400476 0 -4.172204431 3.840206579 909.1517703 0.002199852726 +2.498206437e-06 -0.006278785211 0.01060097203 0 -18.53283022 -1.306287684 980.6809947 0.002039399163 +2.4943758e-06 -0.00509251887 0.01481202977 0 10.20202627 28.62595038 905.3417167 0.002209110619 +2.499703854e-06 0.007928980845 -0.009613465299 0 6.785515404 1.914849827 916.0819303 0.002183210839 +2.497366601e-06 0.003455957454 -0.006290143691 0 6.977168428 -19.24300634 891.5560643 0.002243268909 +2.497130311e-06 -0.001511847274 -0.007393209077 0 12.167553 20.31311583 987.9501003 0.002024393742 +2.498905924e-06 -0.005541862263 0.01179142507 0 -5.544682053 13.46711358 984.3896145 0.002031715868 +2.497388909e-06 0.000110383397 -0.009050696706 0 19.35830406 -7.938932469 915.2234572 0.002185258676 +2.493839078e-06 -0.004609495453 -0.008292741361 0 -27.54352835 -25.60676944 1070.382995 0.001868490072 +2.498208615e-06 -0.006016181321 -0.01358418886 0 18.01754609 -2.386773404 959.9462548 0.002083449974 +2.499213309e-06 -0.009238977418 -0.003598026289 0 10.00214373 -8.091764255 1025.548975 0.001950175028 +2.49754845e-06 -0.002226698254 -0.009360975148 0 -20.85252363 2.574230159 948.5228251 0.002108541774 +2.496911979e-06 -3.997931723e-05 0.01370563998 0 22.24535051 -5.711918171 923.7347191 0.002165123773 +2.496899068e-06 -0.009562195796 -0.01485410806 0 18.82392989 15.12011964 969.070894 0.002063832494 +2.498830468e-06 0.007916697753 -0.007864190543 0 -15.09936296 -6.094893574 1064.483836 0.001878844875 +2.496083593e-06 -0.00194011759 -0.01277176157 0 -19.52355932 -16.780267 919.3049114 0.002175556744 +2.497998319e-06 -0.008162664729 -0.01005333766 0 -4.628597496 18.96569687 975.4137374 0.002050411967 +2.498086498e-06 -0.003228794052 0.01141420756 0 -10.39815185 16.17610751 982.7029925 0.00203520292 +2.498539263e-06 0.009088375713 -0.006299315882 0 3.88401994 -15.43429144 930.944868 0.002148354934 +2.497457192e-06 0.00469612699 0.009474983944 0 -19.35118883 5.566182323 892.5480081 0.002240775826 +2.496746929e-06 -0.006073270068 0.01053838788 0 -17.98991671 -16.59009096 958.9408678 0.002085634336 +2.49788736e-06 -0.001071931897 0.004649565748 0 10.24675532 -14.90488643 879.648443 0.002273635582 +2.498028425e-06 0.002961070882 0.003793713748 0 2.912069685 -18.1688643 926.372085 0.002158959701 +2.499761056e-06 -0.0007340435684 -0.01315608469 0 -3.043194983 -5.569526909 918.0565848 0.002178514955 +2.495665964e-06 0.003516818145 -0.009846895854 0 23.00536752 13.99143237 913.9602623 0.002188278947 +2.49961256e-06 -0.001518281074 -0.009361573958 0 1.357610391 -9.091728366 1044.221719 0.00191530205 +2.497509971e-06 -0.002448925953 -0.001291702478 0 7.168603901 19.85904611 945.7496386 0.002114724572 +2.499788693e-06 0.0007104449254 -0.01388943544 0 4.712570889 3.300467925 884.9876343 0.002259918583 +2.498857892e-06 -0.005543142357 -0.007338388832 0 4.777302497 -13.95863919 976.0059144 0.00204916791 +2.498751484e-06 -0.0003733954765 -0.0006280901749 0 -7.728415648 -12.50920927 930.3432731 0.00214974414 +2.498874941e-06 0.007857894069 0.005634248264 0 -5.349938899 13.31280864 956.3178502 0.002091354877 +2.495442089e-06 0.005875693616 0.004959075849 0 25.80150321 12.35887979 946.8986395 0.002112158489 +2.495130522e-06 0.0004806095688 -0.00990515847 0 -11.06590957 -28.2639993 971.9159646 0.002057791078 +2.498938032e-06 0.002100000153 -0.01130848935 0 -12.6848316 3.341689545 899.9430556 0.002222362835 +2.499273159e-06 -0.006761233546 -0.00710857546 0 5.973192067 -10.07457164 971.3078409 0.002059079435 +2.497649791e-06 -0.001693382994 0.009572780798 0 13.86093428 13.06817134 878.3620994 0.002276965276 +2.496222258e-06 0.004745731666 -0.01439245225 0 -13.43352788 -20.30549956 885.2517537 0.002259244324 +2.496470773e-06 -0.007042827392 -0.01318545451 0 -22.61957747 -17.07256061 1066.11659 0.001875967431 +2.497539538e-06 0.001805443265 -0.002129857829 0 -20.5139637 -1.357340034 926.4340183 0.002158815372 +2.498333853e-06 0.009314293838 -0.005936583532 0 -10.38986494 -14.63167459 982.8142988 0.002034972428 +2.498565135e-06 -0.006867171875 -0.005658852146 0 2.912756981 16.09901598 965.5611674 0.002071334337 +2.498278196e-06 -0.005403199224 0.01378257612 0 -9.871748432 14.98590917 966.7816089 0.002068719534 +2.49644814e-06 0.002092726072 -0.005245989191 0 6.188495368 -22.90516354 889.7297963 0.002247873465 +2.497246427e-06 0.006465750299 0.002011988712 0 1.04627344 -23.56796262 1004.862901 0.001990321264 +2.499988114e-06 0.003707419075 0.00838538442 0 -1.296193674 0.758853615 974.1686731 0.002053032555 +2.497656601e-06 0.006324976548 -0.01420263373 0 -16.19333519 11.12806822 907.2677502 0.002204420911 +2.497326256e-06 -0.0004355640104 0.01088489032 0 -23.54708691 -2.886008107 1025.476369 0.001950313103 +2.498004426e-06 -0.007246141401 0.01038312081 0 3.004239202 -20.12752038 1018.347453 0.001963966221 +2.499497305e-06 0.006378213121 0.007130877161 0 6.503924805 6.144120562 892.2446206 0.002241537751 +2.497982992e-06 0.00995018173 -0.01364242708 0 8.916366787 18.43422787 1019.233712 0.001962258486 +2.494518792e-06 0.008292109147 -0.003035990149 0 23.45395086 -23.00302434 991.3929091 0.002017363632 +2.495226683e-06 0.005394357261 0.00123048513 0 -22.0568178 -23.11319078 1033.278902 0.001935585829 +2.495421809e-06 0.0003812644677 -0.002214033217 0 -17.52845132 21.94793552 927.6126141 0.002156072448 +2.496640846e-06 -0.001374009731 -0.00065033847 0 -11.367363 20.05986406 889.0981485 0.002249470436 +2.497173596e-06 -0.008892647149 -0.00603440095 0 -21.82320499 3.849564929 931.6569085 0.002146713003 +2.496491219e-06 0.004700208176 -0.002015922898 0 -17.81760435 17.14746812 932.9907371 0.002143644005 +2.497301463e-06 -0.004801125089 -0.004490108171 0 -17.63374283 10.97288871 893.637559 0.002238043802 +2.499692211e-06 -0.006489100666 -0.01314425128 0 -7.258744544 -0.3160467485 926.000675 0.002159825639 +2.498377539e-06 0.000488163121 -0.01007582679 0 -16.1601946 -0.2126016145 896.966622 0.002229737374 +2.498291847e-06 -0.009645827701 -0.003541217137 0 14.66311202 -7.594243211 893.1748875 0.002239203126 +2.497403982e-06 0.006679415107 0.01261486998 0 11.50109702 20.79305831 1042.419655 0.001918613094 +2.496952808e-06 0.003573669563 0.006417627269 0 8.955918106 19.88998178 883.1973708 0.002264499495 +2.498546601e-06 0.007364930594 0.01247840996 0 -14.15882402 -5.273359145 885.9973957 0.002257342978 +2.499426515e-06 -0.007155857612 0.01032777647 0 -9.552452833 2.589936314 924.0691141 0.002164340274 +2.496219625e-06 0.005434376579 0.007596972766 0 21.72800866 -17.66491671 1017.822955 0.001964978281 +2.498071199e-06 0.0003272250667 -0.005450149868 0 17.17905191 0.6785523197 875.0911002 0.002285476335 +2.499219713e-06 0.001969640236 0.008440840726 0 7.441545461 -8.397457884 898.0684662 0.002227001699 +2.499132336e-06 0.00223279641 -0.006860195061 0 7.275566035 -10.03910708 941.0537059 0.002125277216 +2.496229626e-06 -0.005985536547 -0.0007711100369 0 -12.84636364 24.91878034 1020.354922 0.001960102271 +2.497751375e-06 0.003688674141 -0.01281791761 0 11.54091954 -17.76149069 998.4819973 0.002003040621 +2.499395736e-06 0.003183580777 0.006397526753 0 -9.929421283 -2.603915904 933.6807515 0.002142059796 +2.498117294e-06 0.005416491777 -0.001597829803 0 19.51091228 -1.911400641 1010.00323 0.001980191686 +2.495559498e-06 -0.003443688201 -0.0126018103 0 -23.8877372 11.83921205 894.0264904 0.002237070178 +2.499141877e-06 -0.002871579668 0.004968773494 0 10.78452388 -5.954791157 940.2443779 0.002127106577 +2.498703402e-06 -0.009141591419 0.0144999898 0 -2.341789055 15.75250383 988.7675899 0.002022720021 +2.49973344e-06 -0.008427573708 -0.001626486524 0 0.5093928425 7.286885673 1000.39268 0.001999214947 +2.498673725e-06 -0.001840354213 -0.005102335231 0 -16.10400321 3.470077892 1011.279009 0.001977693576 +2.497279233e-06 -0.006160548348 0.01117831296 0 -2.229939038 24.63484398 1059.946136 0.001886888334 +2.498660734e-06 -0.004525587982 -0.01064105596 0 -5.749190276 -14.56582275 956.6192768 0.0020906959 +2.494689102e-06 -0.001176910703 0.00644945937 0 -22.48111805 23.00063336 986.0643111 0.002028265274 +2.496830302e-06 0.004938572627 -0.008171419718 0 15.10607172 -17.95705083 931.5516468 0.002146955573 +2.498225745e-06 0.002129521118 -0.00846087548 0 -13.57819353 14.49978887 1054.255914 0.001897072592 +2.496346575e-06 0.009163006931 0.009698444763 0 19.28518464 18.37909868 985.0019465 0.00203045284 +2.49950392e-06 -0.009617086183 -0.006631330526 0 -0.7613320565 9.77749948 984.5036955 0.002031480439 +2.496784528e-06 0.002999668932 -0.009026177844 0 -8.523755988 -25.62037484 1064.226617 0.001879298984 +2.495683929e-06 -0.007577684876 0.01454303902 0 13.38050878 28.22989185 1062.616159 0.001882147173 +2.497470307e-06 -0.0009183385223 -0.01089769249 0 -19.10709519 -12.18481327 1007.112301 0.001985875853 +2.495642256e-06 0.008983694371 0.01453461957 0 18.0473413 19.25230255 893.2771834 0.002238946698 +2.498110853e-06 0.001166844033 -0.006034527279 0 -8.462074289 -16.50293523 953.8474989 0.002096771237 +2.498560979e-06 0.005002152016 -0.004398080818 0 3.640316023 16.2298484 980.2363339 0.002040324288 +2.497438026e-06 -0.001189595978 -0.003606684976 0 19.37532983 -13.46015022 1041.823458 0.001919711046 +2.498803262e-06 -0.001784175732 0.003273150951 0 2.294292792 -14.40617766 942.7466716 0.002121460685 +2.496547384e-06 0.003846056471 0.003158544931 0 -15.1691384 -23.60077563 1067.08892 0.001874258051 +2.495822272e-06 0.007865045192 0.009938621256 0 -3.542670594 26.40065716 920.9426819 0.002171687814 +2.496439538e-06 -0.004256885587 0.008649711495 0 -9.685821836 26.56275928 1058.962365 0.001888641245 +2.499370575e-06 -0.009808766465 -0.008171805837 0 9.027271598 5.689099909 950.9392525 0.002103183768 +2.49982533e-06 -0.008798894687 0.002975892909 0 -5.458681257 1.475332173 956.6698073 0.002090585471 +2.498433971e-06 0.0007462802948 0.004755311545 0 18.03116002 1.740992536 1023.344186 0.001954376668 +2.497588385e-06 0.001606744863 0.003293572655 0 9.647786478 18.91302436 966.4006729 0.002069534983 +2.499033881e-06 -0.009075409584 0.01381054546 0 7.033645569 -11.83531978 990.2964257 0.002019597313 +2.499192996e-06 0.0002770123351 9.466728196e-05 0 5.110255191 11.11286779 962.6662457 0.002077563235 +2.499991633e-06 0.00449598874 0.01062813786 0 0.4436756015 1.140371249 945.9161703 0.002114352268 +2.496898089e-06 -0.008568228735 0.009979285123 0 17.6284103 -18.5907838 1028.123252 0.001945292061 +2.498303602e-06 -0.0003523982642 -0.001602844438 0 3.253612049 17.84360037 984.4539816 0.002031583027 +2.49506602e-06 -0.001019472568 -0.01065498524 0 16.44509792 -25.15743937 956.070072 0.002091896879 +2.498068528e-06 0.008748613228 -0.003103998208 0 16.8571249 12.18441212 1057.960648 0.001890429483 +2.499699519e-06 0.001738404445 0.00783265044 0 5.371953406 6.065245187 1045.099644 0.001913693121 +2.498452119e-06 0.007554629552 0.004800106888 0 -10.68219609 12.22111531 922.3095966 0.002168469251 +2.499411263e-06 -0.001155688511 -0.01130822927 0 8.447806424 -7.802839202 1059.701063 0.001887324709 +2.497371676e-06 -0.003121318854 0.01159926445 0 -21.96971572 -6.641887774 1000.668344 0.001998664204 +2.496129015e-06 -0.003832806819 0.003672671984 0 13.47408448 24.58093203 1006.863322 0.001986366925 +2.495304173e-06 0.002976520956 -0.0006727961381 0 -22.31056376 -23.53436602 1057.435217 0.001891368821 +2.499519408e-06 -0.008241000683 -0.00547340061 0 2.365752627 -8.346057004 884.7661722 0.002260484253 +2.499823618e-06 -0.006354437363 -0.0002472379245 0 -2.820591064 -4.716859384 925.2987725 0.002161464015 +2.49867943e-06 0.002639633687 0.0102257102 0 -14.0472119 -5.616181247 930.6975346 0.00214892586 +2.495476207e-06 -0.002478601485 -0.0126042979 0 12.72858979 -23.77233596 895.8762333 0.002232451231 +2.498976448e-06 -0.000537178521 -0.01099073164 0 -13.42732682 -6.895249206 1054.814566 0.001896067863 +2.499944554e-06 0.004659417057 0.00325189047 0 0.3828190071 3.059873481 926.0217153 0.002159776566 +2.499870769e-06 -0.00148477959 -0.008686884481 0 0.6146390735 5.145524348 1019.293846 0.00196214272 +2.499585651e-06 -0.002492913189 0.00656790412 0 9.315912472 -2.382514883 1056.228336 0.001893529962 +2.497084709e-06 -0.004165350408 -0.001929663566 0 -23.16685952 -3.454893261 969.6111716 0.002062682505 +2.496744523e-06 -0.0040940898 -0.01104633734 0 -10.03431052 -20.81742513 905.2270204 0.002209390523 +2.499865632e-06 0.003383602966 0.007635703655 0 -4.544218493 -0.9710286909 896.3597938 0.002231246888 +2.497437763e-06 0.00360161073 0.01254513811 0 19.55176649 -12.92826111 1035.040308 0.001932291896 +2.498392678e-06 0.003148052748 -0.01381127263 0 15.97433895 -2.279230959 899.7626472 0.002222808433 +2.499035415e-06 -0.0003859889088 0.002769755842 0 6.450284351 10.86925672 909.8465387 0.002198172895 +2.49923063e-06 -0.008583361572 -0.007948662839 0 9.097083688 7.66040801 958.6309644 0.002086308574 +2.497661132e-06 0.004502901193 -0.004445750385 0 -6.770938083 21.04710626 1021.896704 0.001957144977 +2.499514254e-06 -0.004202196337 0.0005996205588 0 8.756135724 -1.415620197 899.8370407 0.002222624664 +2.494867654e-06 -0.008979934496 0.008825347556 0 -26.48600447 -12.57839882 914.4754739 0.00218704608 +2.499552447e-06 0.002966718422 0.001051767594 0 5.433972984 -7.464880096 975.8595159 0.002049475326 +2.496515616e-06 0.001657791412 -0.01297089466 0 4.254507024 -25.5766159 981.6684623 0.002037347716 +2.494948062e-06 0.002356499797 0.00116342329 0 22.50295339 20.22775635 951.1881556 0.002102633415 +2.497356317e-06 -0.002610925306 0.002655201294 0 21.52922568 -6.533032082 978.0564625 0.002044871719 +2.497940029e-06 -0.000880332822 -0.006796599641 0 13.9479153 -14.99113815 1008.489946 0.001983163052 +2.499619979e-06 -0.003089814526 0.01168650476 0 -8.044169312 -3.673373142 1014.299637 0.00197180392 +2.494813903e-06 -0.0006878299359 0.009406743546 0 20.57178515 27.20872275 1058.308085 0.001889808863 +2.498208524e-06 0.008457974745 -0.008500502862 0 -16.53314142 1.162863792 875.366101 0.00228475834 +2.497945545e-06 0.007267704932 -0.00729920442 0 -0.2071165224 -18.15594314 895.4675674 0.002233470058 +2.499818487e-06 -0.0004337381758 0.0009225945733 0 -5.268530385 -0.9206826303 887.6480066 0.002253145374 +2.497451272e-06 0.001666886131 -0.01165032927 0 -17.19362734 16.81057737 1064.638967 0.001878571105 +2.496933788e-06 -0.002151686945 0.005079682069 0 5.587767729 24.26418151 1005.010716 0.001990028531 +2.499864127e-06 -0.001736728004 -0.007604810076 0 0.04888438488 -5.087235376 975.9137922 0.002049361343 +2.497384985e-06 -0.007103141467 -0.01029413232 0 22.04669162 9.349734616 1046.72931 0.001910713669 +2.499421588e-06 -0.005554700703 0.01268912913 0 -7.830286203 6.906231993 970.6456627 0.002060484147 +2.496854863e-06 -0.0079631127 0.009980218196 0 -25.32340366 -6.509776643 1042.024097 0.00191934141 +2.499829525e-06 -0.005039358567 -0.006001117551 0 -5.944415334 -1.187464266 1038.123384 0.00192655327 +2.499741099e-06 0.001348524042 0.006225600557 0 -4.428628541 5.00900419 929.1135703 0.002152589375 +2.496756021e-06 0.0007653357368 -0.01444124053 0 16.22995251 15.76983022 887.9968636 0.002252260207 +2.498739721e-06 -0.001225956199 0.01328846778 0 -12.87697366 9.043699574 990.9441752 0.002018277164 +2.496824021e-06 0.008506933888 0.003730311538 0 22.59808805 6.681764903 934.5674685 0.002140027411 +2.499387845e-06 -0.005423289761 -0.006021418632 0 -2.383265594 -10.96112841 1013.67835 0.001973012444 +2.497305634e-06 0.0003887793608 0.01249643526 0 21.33083898 10.00234062 1014.489843 0.001971434228 +2.49898878e-06 0.006427146751 -0.008303771107 0 -1.06995828 -14.46106934 1019.488005 0.001961769035 +2.498744531e-06 -0.001321064993 -0.01364808984 0 -14.39988004 7.49772965 1024.354537 0.001952449008 +2.497761883e-06 0.00605474629 0.006925648316 0 19.8412389 2.055825956 942.5087548 0.002121996204 +2.495868947e-06 -0.006777969864 0.01123592871 0 -24.07039987 13.30231481 956.1864686 0.002091642233 +2.497914966e-06 -0.008964498071 -0.000578623605 0 8.286504435 17.16633134 933.1568094 0.002143262504 +2.495454037e-06 -0.003486025152 -0.004133801947 0 -12.90683372 -24.15991999 907.7989525 0.002203130984 +2.49708897e-06 0.007759494558 -0.0026321954 0 -15.66077873 19.78658173 1045.352599 0.001913230045 +2.496298875e-06 -0.008465302056 -0.0003430761932 0 -13.20498472 21.31764133 921.1657666 0.002171161883 +2.497399272e-06 -0.001958081345 -0.01121660205 0 -1.837469263 -22.09936889 971.9500694 0.002057718872 +2.49476012e-06 0.002194129056 -0.01264892184 0 22.39146631 -19.94006905 925.4621595 0.002161082416 +2.497907943e-06 -0.003711124756 0.01475587336 0 18.51753844 7.187675275 970.7771129 0.002060205142 +2.499049672e-06 0.004214749574 0.009090266163 0 12.43759433 3.585299455 938.763513 0.002130462009 +2.497806683e-06 -0.008613060918 -0.005976410047 0 5.003190947 -18.89732495 933.0460164 0.002143517002 +2.497312735e-06 0.0008067500871 0.0001934522297 0 -18.30039499 -16.6551558 1066.930742 0.00187453592 +2.495205983e-06 0.0013981573 0.01221939926 0 -24.30549123 21.37534582 1044.559796 0.001914682153 +2.497782765e-06 -0.009269998576 0.004375708003 0 -20.32461318 -7.932136015 1035.71925 0.001931025227 +2.498625072e-06 0.001935884203 0.007364503441 0 -15.32244624 6.378051612 1000.650206 0.001998700432 +2.499419977e-06 0.0009650849411 0.01469670743 0 -4.078631201 -10.61847134 1056.014901 0.00189391267 +2.496854041e-06 -0.002881175205 0.005229875471 0 14.60322894 19.02254587 955.6072401 0.002092910054 +2.498100403e-06 0.003976653554 -0.008980424381 0 9.952762604 17.12301747 1015.815535 0.001968861404 +2.496450555e-06 -0.0008342037443 0.01465152191 0 -6.844490168 25.4761471 989.5573148 0.002021105771 +2.49737354e-06 -0.003478529262 -0.00173219118 0 17.23621169 -15.985839 1025.291146 0.001950665435 +2.494922212e-06 -0.003550656936 -0.0007734834007 0 22.573218 24.46390803 1043.741531 0.001916183213 +2.497295069e-06 -0.005141576943 -0.002014812562 0 4.805322159 21.33749519 939.9764989 0.00212771277 +2.499758969e-06 -0.006103636082 -0.006355822189 0 -1.854513578 -5.808766433 878.2006643 0.002277383839 +2.498895374e-06 -0.005220434936 0.004591643885 0 -0.2868449875 13.94649473 938.3446358 0.002131413048 +2.497568282e-06 0.003063488374 -0.01227685331 0 -12.94855297 19.22608585 1050.706234 0.001903481616 +2.497229584e-06 -5.593248643e-06 -0.001431158117 0 21.61069229 -3.545774714 929.9701948 0.002150606558 +2.496537231e-06 0.006282118866 0.0001198395621 0 22.05573379 -8.104328553 892.4222528 0.002241091584 +2.495512968e-06 0.0002645207616 -0.01289150032 0 -15.42968349 -25.63081912 997.9936475 0.002004020772 +2.498741264e-06 0.002690277495 -0.01165153729 0 8.78507758 11.10774 892.3953235 0.002241159212 +2.498955812e-06 -0.002929944536 0.01313265463 0 -10.79019661 8.110934981 933.9432534 0.002141457731 +2.499290532e-06 0.002797848452 -0.001551652111 0 -0.3314880901 -12.5742331 1055.856407 0.001894196963 +2.499836545e-06 0.008284894773 -0.009967841478 0 -5.195063734 -0.9584921811 923.9220702 0.002164684733 +2.49872761e-06 0.003653268907 0.002817455004 0 1.655631164 15.76724123 993.6393325 0.002012802769 +2.498963543e-06 -0.002462731693 0.009121293118 0 4.135133759 14.39193379 1039.886362 0.001923287076 +2.497946212e-06 -0.004969759509 -0.009618268807 0 -16.7319046 -8.076492578 916.4318983 0.002182377113 +2.495973326e-06 -0.009075397761 0.002542407364 0 14.54561588 23.67243086 978.4673613 0.002044012993 +2.496917256e-06 0.003626497961 -0.01042374257 0 -4.305292295 -25.59617201 1044.836834 0.001914174476 +2.49899937e-06 0.006241190638 0.005808360146 0 10.2126896 10.37904275 1029.141762 0.001943366865 +2.499848166e-06 -0.002427784014 -0.006156630702 0 3.503330791 -3.793228091 936.9928931 0.002134487908 +2.496946845e-06 0.004671827992 -0.01028118447 0 -4.52922539 -25.47338739 1046.542353 0.001911055003 +2.497384555e-06 0.002325198585 0.01074695115 0 21.57323888 3.694044395 956.6046099 0.002090727955 +2.499105807e-06 -0.0005953990621 0.01262164806 0 -8.917694319 7.783818423 885.0145663 0.002259849811 +2.497359345e-06 0.005986236976 -0.0001823547366 0 -7.98150667 19.39085249 912.0949684 0.00219275412 +2.495156997e-06 -0.00811375706 0.007976802529 0 -13.96683458 26.33545709 957.1325065 0.002089574836 +2.497104794e-06 0.005775095979 -0.004861517656 0 1.428065272 -22.45521817 934.6527641 0.002139832114 +2.499237515e-06 -0.002279065419 0.00470029494 0 12.13122751 -1.593276505 990.6909605 0.002018793024 +2.49966667e-06 -0.004730968485 0.009528525146 0 -2.106715302 7.628887116 969.2725785 0.002063403055 +2.497935355e-06 -0.004267347436 -0.002379081 0 -21.58024763 -0.8743938558 1062.527976 0.001882303379 +2.498729598e-06 0.008367072139 0.003379611801 0 11.89259502 11.24653065 1026.674645 0.001948036809 +2.498602162e-06 0.002338950816 -0.001688234357 0 -16.02883365 -4.205594216 990.8868025 0.002018394023 +2.495011682e-06 0.005532864928 -0.0139879191 0 11.57677128 -29.63322857 1006.479886 0.001987123665 +2.497294175e-06 0.0005877587898 0.009366884509 0 -21.81771402 4.659249617 958.6318788 0.002086306584 +2.499878616e-06 -0.002450520024 0.0114431926 0 3.449215884 3.832400839 1046.426912 0.00191126583 +2.498082573e-06 -0.007970048706 -0.01315339375 0 -15.80162794 10.70260354 974.3002313 0.002052755337 +2.494471855e-06 -0.008098000535 0.01203663732 0 -28.90626356 -18.88625861 1037.578083 0.001927565774 +2.496781545e-06 0.006212834339 -0.01155659916 0 -20.20675327 -12.97636464 946.0760718 0.00211399491 +2.496550043e-06 -0.0009562292323 0.004597766837 0 -24.79011328 10.66858693 1026.901681 0.001947606121 +2.499002624e-06 0.003915616451 -9.025342762e-05 0 12.21707196 -2.724125926 886.1231905 0.002257022524 +2.497059093e-06 0.0002930158842 -0.00662672729 0 -21.20512052 9.491041798 957.511046 0.00208874875 +2.495349116e-06 0.002449877653 0.01238470464 0 -6.84140115 26.46364316 895.5953896 0.00223315129 +2.498099224e-06 0.009623251529 -0.003578133029 0 11.58224439 13.66611012 918.518627 0.002177419098 +2.499007887e-06 0.009044592623 -0.008384844004 0 -13.59400822 2.192801328 977.384149 0.002046278326 +2.498522898e-06 -0.009769859575 -0.01144837504 0 1.215286287 15.20004361 886.9762917 0.002254851701 +2.497155922e-06 0.005529049286 0.01355479226 0 -3.001420425 23.89949011 1009.521419 0.001981136767 +2.49758877e-06 -0.007841576743 0.005969015351 0 -20.29515402 -0.5661240898 924.2081598 0.002164014653 +2.499263373e-06 0.007874289285 0.001553453389 0 -11.18350614 -5.110134773 1012.899656 0.001974529252 +2.499357053e-06 -0.001685069199 -0.009168368226 0 10.5710886 2.111496953 950.5403368 0.002104066416 +2.496167418e-06 0.001994927661 0.01353662037 0 19.35324705 21.57437343 1046.235678 0.001911615176 +2.494571479e-06 -0.001001724526 0.009622370386 0 -21.69176314 26.75117402 1044.387098 0.001914998762 +2.493535116e-06 -0.008521561897 0.01121603348 0 -24.4506791 23.11654181 934.8598858 0.002139358026 +2.49936425e-06 0.002268519755 0.00379971781 0 9.681251549 6.857954563 1052.051965 0.001901046779 +2.499858789e-06 0.002843088042 0.003127049329 0 -3.501502986 -4.362817119 1052.633347 0.001899996808 +2.498877125e-06 -0.008983489531 0.01123851618 0 -11.34575621 -9.931450967 1006.011937 0.00198804798 +2.499517994e-06 0.0003885341575 -0.01050968762 0 3.278257086 -8.976611267 973.2528289 0.002054964487 +2.494998091e-06 -0.005231021452 -0.008244213634 0 -25.45945405 17.58327927 977.5243347 0.002045984871 +2.499014873e-06 0.006626565638 0.001288885635 0 -12.39577092 6.744915816 1005.226106 0.001989602129 +2.498157701e-06 0.003427069127 -0.01471256444 0 -17.08473536 5.612719351 936.5882202 0.002135410159 +2.496394294e-06 -0.003142762939 -0.0007810633932 0 -24.99878488 -6.204416758 958.6358384 0.002086297966 +2.496260056e-06 -0.007165710204 0.01434468359 0 16.68295439 21.48740119 994.1069347 0.002011855999 +2.497396847e-06 -0.004244564716 -0.01247154012 0 3.66047636 -20.67948598 920.0354991 0.002173829164 +2.495007622e-06 -0.006184866112 -0.002137573385 0 18.66178995 -24.79908148 981.469467 0.002037760794 +2.496468506e-06 -0.0008730103215 0.01274006601 0 -16.16397391 21.48529103 1011.142073 0.001977961409 +2.499937359e-06 0.006462784032 -0.009959818516 0 1.425091735 -3.446894183 1053.770418 0.001897946617 +2.494013277e-06 -0.006654504891 0.001668463256 0 -26.5289252 23.67638256 1026.678574 0.001948029354 +2.497866378e-06 0.003795079221 -0.003399587399 0 -13.95189343 14.99943478 991.3450249 0.002017461075 +2.498282273e-06 -0.007509464403 0.003003515233 0 7.510916518 15.36439686 922.450356 0.002168138358 +2.499428737e-06 -0.008796189846 0.01263686046 0 -4.163658974 -8.698912063 902.1685194 0.002216880723 +2.494930795e-06 -0.006134581207 0.01267392829 0 19.14621945 23.35751392 947.8027135 0.002110143779 +2.495872174e-06 -0.005036005741 -0.009823150516 0 3.513239359 -27.19568389 953.7820386 0.002096915143 +2.499481394e-06 -0.00363877994 -0.003701922325 0 -6.550875673 -6.548298878 909.4133411 0.002199219991 +2.497217638e-06 0.006856917618 -0.009960651998 0 20.76558475 5.906331123 914.8158617 0.002186232316 +2.498024889e-06 0.0003776971949 0.002149904827 0 -19.1393091 -3.881601131 982.2894516 0.002036059734 +2.497464424e-06 0.004976862012 0.001732223989 0 -16.68171111 -16.25507373 1033.913212 0.00193439834 +2.496755818e-06 0.0002442552196 0.001759068514 0 -20.55901621 -14.36817621 984.2079779 0.002032090823 +2.498691039e-06 -0.006893065399 0.01075220952 0 0.3946356798 -16.81530807 1039.347305 0.001924284587 +2.498777709e-06 0.005127824661 -0.009678526197 0 3.575280736 13.24290736 877.1594836 0.002280087074 +2.494560929e-06 0.001653976901 0.008984621514 0 19.70562219 26.20022421 993.1717422 0.002013750407 +2.499475054e-06 -0.005955949733 0.005636197196 0 -1.436082939 9.781444904 964.778388 0.002073014927 +2.496468425e-06 0.005096014263 -0.007684029518 0 19.51442977 14.74607194 919.846593 0.002174275597 +2.496241638e-06 -0.007732309066 -0.008165447724 0 -2.407890073 -27.45613083 1004.717034 0.001990610224 +2.499286131e-06 -0.005022626286 -0.01101557632 0 -6.427439237 -10.06549928 999.376218 0.002001248343 +2.497960166e-06 -0.00858471618 0.001878707204 0 14.63981734 -13.03674171 970.2396271 0.002061346439 +2.497351538e-06 -0.004511843892 0.005271939591 0 -6.379843258 -23.48701155 1057.065282 0.001892030733 +2.497306917e-06 0.001167874588 0.003614093475 0 -13.1407197 19.43001648 1010.290988 0.001979627676 +2.498715262e-06 -0.008146069231 -0.007547496089 0 13.59956636 -4.832007468 900.1915448 0.002221749373 +2.498788576e-06 -0.009657196025 -0.0118541342 0 9.851340928 11.25174032 960.6009781 0.002082029943 +2.497664548e-06 0.001173360194 -0.005500510961 0 21.90118132 3.070307922 1022.918591 0.001955189804 +2.497692582e-06 0.005193363088 0.001121677752 0 9.530355297 18.3005786 960.1589776 0.002082988387 +2.496449378e-06 -0.00663816764 0.01308024997 0 15.14726735 20.93582284 969.1873867 0.002063584429 +2.496867798e-06 -0.004627768812 0.01123786076 0 22.07480913 12.18105055 1006.870387 0.001986352986 +2.499606419e-06 0.007607298135 0.006800869843 0 -2.713828944 -7.959352918 947.7671969 0.002110222855 +2.49827109e-06 -0.002547392719 -0.009443008723 0 3.652231119 18.56876324 1017.445474 0.001965707303 +2.498407328e-06 0.006274770154 -0.009630017909 0 15.07924512 6.523685315 920.3507423 0.002173084573 +2.498484557e-06 -0.00191906156 0.01185767223 0 1.828646499 -17.27867977 997.8050358 0.002004399585 +2.499329374e-06 -0.007857087567 -0.005948020373 0 -8.865552866 -6.580712931 953.2567875 0.002098070558 +2.495583029e-06 0.0087516749 -0.008778591428 0 15.78105653 -23.54592496 953.0480666 0.002098530043 +2.498771976e-06 0.008758978187 0.01469841655 0 11.89555402 -10.19391942 999.4398485 0.002001120931 +2.497756191e-06 -0.007566416645 0.0001397907268 0 -6.78778622 17.62264183 891.1600168 0.002244265858 +2.498107082e-06 -0.002084196797 -0.009089785027 0 16.3046808 7.113266371 913.9915611 0.002188204011 +2.498886008e-06 0.009996361672 0.005114719674 0 -11.00290072 11.28260425 1055.633465 0.001894597005 +2.496757251e-06 0.003835790809 0.01106289671 0 22.71158422 13.58354644 1038.647007 0.001925582018 +2.498845458e-06 -0.003729759352 0.00107134246 0 -2.303201812 -16.05855833 1067.414492 0.001873686384 +2.499732856e-06 0.001510721198 0.01308492502 0 6.994180736 -0.767619313 962.5691851 0.002077772726 +2.497025783e-06 0.007641694006 -0.006915474564 0 0.08455922442 -24.8086599 1016.741743 0.001967067855 +2.49690938e-06 -0.009829943753 -0.00286559446 0 9.0911372 20.86244991 914.9129495 0.002186000319 +2.496729139e-06 0.005083871186 -0.001264928856 0 26.76361984 -2.204454514 1049.43095 0.001905794755 +2.496605878e-06 -0.0003365307068 0.002013231637 0 -25.02021102 -11.72374544 1059.967027 0.001886851147 +2.498630039e-06 -0.005632835999 0.003966941661 0 14.35467648 5.557160089 929.7359551 0.002151148387 +2.496880291e-06 -0.009309571413 0.01182393431 0 -18.64925463 -11.41396365 874.9270974 0.002285904741 +2.497771633e-06 0.001122123147 0.002336497083 0 4.576617734 -20.66506949 1002.260899 0.001995488403 +2.497115053e-06 0.002044312884 -0.00243345778 0 -6.643691043 22.38813392 971.7903205 0.002058057132 +2.498651944e-06 -0.0008718893724 0.002693466288 0 -8.551399399 -12.92389428 943.5993468 0.002119543646 +2.498722778e-06 -0.007086642087 0.003527680929 0 15.87072098 4.531581906 1032.485915 0.00193707243 +2.498051127e-06 -0.0009507488552 0.002830093468 0 -18.31844965 10.10085047 1059.256895 0.001888116102 +2.499031141e-06 -0.0069941861 0.006936577004 0 13.49565083 -1.06539734 972.376697 0.002056816053 +2.499738022e-06 -0.001612291089 0.008933643107 0 -6.153365262 -3.122029522 953.2108642 0.002098171638 +2.499358415e-06 0.003204035494 0.01261439588 0 -10.9161135 5.217858418 1067.992456 0.001872672405 +2.495947813e-06 -0.009305871162 0.01309064685 0 19.0492582 20.01322726 969.9585599 0.00206194376 +2.499798318e-06 0.008761061435 0.001608060147 0 -2.661554262 4.883572247 875.6908961 0.00228391092 +2.49962667e-06 -0.004723245557 -0.01456724309 0 8.451988338 -1.906966685 1002.663799 0.001994686556 +2.496484304e-06 0.00421371798 0.001656663576 0 13.33466293 -19.90376263 903.0170113 0.0022147977 +2.495992327e-06 -0.004596700692 0.0006222584378 0 -21.25061072 -16.86485974 957.6790868 0.002088382244 +2.496074147e-06 0.0008757972298 -0.00393961153 0 -20.15925093 -15.85940275 914.8445177 0.002186163836 +2.498837489e-06 -0.007157165459 6.720195059e-05 0 -14.31087236 7.866969237 1070.814698 0.001867736785 +2.498528157e-06 0.002668589843 0.006704347883 0 -16.70526288 -6.196377395 1038.253664 0.001926311525 +2.496791222e-06 0.006883658613 -0.009718888917 0 23.379145 -3.60238387 933.3186516 0.002142890851 +2.497954058e-06 0.0004954557633 -0.004730821343 0 7.804464769 19.58413723 1041.874908 0.001919616246 +2.499742641e-06 0.001548614483 0.01468753979 0 2.785795219 -5.91716574 911.5610559 0.002194038443 +2.49482785e-06 0.0002946433844 0.01143518331 0 -18.7166465 22.01009018 897.619391 0.002228115858 +2.497243044e-06 0.00215251158 0.00817456794 0 16.51186904 13.36635724 904.3232018 0.002211598681 +2.498853594e-06 0.001777970842 0.01321573309 0 6.940910549 14.38432626 1054.589921 0.001896471756 +2.496822536e-06 -0.004282155251 0.002245570337 0 -17.52432212 18.83007036 1019.904349 0.001960968205 +2.498424647e-06 0.001659301845 -0.0128395375 0 -12.07867248 -11.32925766 932.7471013 0.00214420393 +2.49898514e-06 0.009340802948 0.01485326105 0 10.15997339 -9.35956532 969.4717901 0.002062979058 +2.498529043e-06 0.004854554092 4.618659848e-05 0 15.33892655 -9.107804973 1039.83153 0.001923388493 +2.496661725e-06 0.003406673111 0.01406070664 0 25.41588803 -1.719836961 985.3797641 0.002029674317 +2.499283594e-06 0.007562582311 -0.008042175157 0 10.04959856 5.648829697 963.0018472 0.002076839215 +2.494997619e-06 -0.003495920259 -0.002478878608 0 -18.20054255 -25.45142239 988.4836483 0.002023301046 +2.499805252e-06 -0.006831942368 0.01382900422 0 5.063202346 -2.093190546 877.8544529 0.002278282001 +2.49848562e-06 0.006377141727 -0.00401012443 0 -3.9956341 -17.37928426 1024.437846 0.001952290233 +2.497016783e-06 0.003945893827 -0.003802971721 0 21.64528962 13.12879996 1035.947658 0.001930599471 +2.493899357e-06 -0.006394326785 0.006986471582 0 20.93869445 28.25198957 1005.806975 0.001988453103 +2.495615898e-06 0.001519198162 0.01341253866 0 2.88268137 30.80376102 1044.133485 0.001915463903 +2.492927101e-06 0.008858538549 0.01482160834 0 25.07797168 24.39745422 929.2670312 0.002152233893 +2.499063216e-06 0.009971325053 -0.00201427598 0 -10.02079226 -9.112297307 989.3807419 0.002021466474 +2.498251946e-06 0.007093309439 -0.004101209461 0 -14.01353496 9.902195812 917.458948 0.00217993405 +2.498772488e-06 -0.00500462472 -0.00649043795 0 7.330122623 -11.80924951 886.9178651 0.002255000241 +2.49459154e-06 0.009674553559 0.01199256602 0 18.97750283 28.78754557 1047.520149 0.001909271151 +2.495583366e-06 0.003879950033 0.01198156621 0 9.574238873 29.14912876 1031.630271 0.001938679055 +2.498783944e-06 0.005813613031 -0.002728293941 0 -1.511737408 -15.9313215 1025.952388 0.001949408202 +2.49812015e-06 -0.004074426997 0.005743709102 0 15.82464531 8.067594794 915.8079344 0.002183864023 +2.499860433e-06 0.005315473732 0.01358619131 0 -4.304697369 2.053228194 902.6887579 0.002215603089 +2.498479151e-06 9.703439195e-05 0.01121482752 0 9.505033443 -12.96676839 921.6341949 0.002170058371 +2.495819446e-06 0.005979020754 -0.01380971841 0 11.38871909 -26.0529443 982.7079637 0.002035192625 +2.495137195e-06 -0.007274991944 -0.003984080306 0 16.18264158 -22.10050572 877.6977001 0.002278688892 +2.499180152e-06 -0.003851915197 -0.003758844668 0 -12.99281632 2.204250061 1029.0343 0.00194356981 +2.499793845e-06 -0.008287077076 0.007904175497 0 -4.138690991 5.229932245 1038.632008 0.001925609826 +2.497564439e-06 -0.005765467971 -0.004518955986 0 0.06041375885 23.11776609 1047.066029 0.001910099214 +2.498008917e-06 -0.002540304447 -0.0083866009 0 17.94630382 1.18882775 901.0240045 0.00221969669 +2.497713048e-06 -0.009601476267 0.003141876804 0 20.11241448 10.12621271 1052.525278 0.001900191892 +2.496297791e-06 -0.007219847315 -0.003238249447 0 -15.84980898 -22.73533108 1017.947511 0.001964737846 +2.497759261e-06 0.007797523811 0.008808635627 0 20.72683141 -4.086243184 997.5995188 0.002004812515 +2.499552911e-06 -0.009080553083 0.003827651467 0 9.28829743 1.950683243 1003.615082 0.001992795879 +2.498934024e-06 -0.0007925255923 0.01177255282 0 -7.652183759 -10.34522407 881.1406638 0.002269785157 +2.495752773e-06 0.009357532687 -0.00387569481 0 15.91190549 20.08628323 878.6612975 0.002276189933 +2.49867621e-06 -0.004736870001 0.007380976786 0 -14.59204467 -7.00919455 994.687798 0.002010681144 +2.499199265e-06 -0.00481384628 -0.002668576024 0 3.000934525 -12.12471015 986.8942292 0.002026559626 +2.493852889e-06 -0.007868524762 -0.00823901559 0 -25.13296179 -18.21796234 884.4798696 0.002261215963 +2.495293822e-06 0.001728475369 -0.00425872565 0 -23.88374748 -21.55614052 1047.937235 0.001908511248 +2.497466511e-06 -0.001541105262 -0.01324051109 0 22.7458422 -6.989375708 1056.707538 0.001892671271 +2.498849638e-06 0.009225547165 -0.01010458177 0 -6.678644133 12.03180669 907.0827314 0.002204870549 +2.499869592e-06 -0.009510519649 -0.001266692905 0 -5.249063505 -0.08314061476 1027.921839 0.001945673225 +2.498610415e-06 -0.00944823693 -0.008122248813 0 -0.4500884565 17.37516226 1042.380931 0.001918684369 +2.499670201e-06 0.004453431354 0.0009696705826 0 -6.615087147 3.229010634 906.3208949 0.002206723922 +2.497477683e-06 -0.005266444483 -0.004251120009 0 -18.60592634 11.59677121 975.7584095 0.00204968769 +2.499417097e-06 0.006273761052 0.01457976954 0 -10.72030771 -2.035083992 1010.517443 0.001979184045 +2.496643707e-06 0.00961941197 -0.0003242189018 0 19.93052241 17.96643541 1035.161473 0.001932065722 +2.49942766e-06 0.008289444288 0.01168440159 0 4.516350874 8.53404809 902.3863198 0.002216345656 +2.495803876e-06 -0.006560179847 -0.001154337935 0 -20.43411801 -15.0766489 876.0310349 0.00228302414 +2.496065266e-06 0.005883219563 0.01318515908 0 24.14588438 -12.26478165 964.8407953 0.002072880842 +2.4921646e-06 -0.006100150859 -0.009714413846 0 -24.32150077 -27.66478665 929.4227356 0.002151873333 +2.494822652e-06 0.008196409433 -0.00125105337 0 28.15113309 -19.5287489 1063.901872 0.00187987262 +2.495646988e-06 -0.0003177138604 -0.003667272606 0 22.46540153 -15.21634501 918.9956475 0.002176288871 +2.495262142e-06 -0.001872154977 -0.01399681828 0 13.0226237 -29.85671888 1057.414553 0.001891405782 +2.498681358e-06 -0.006892732494 -0.014230111 0 14.27745439 2.507887211 892.4524939 0.002241015644 +2.49951351e-06 -0.005087064896 0.005047307003 0 9.560842462 -3.311038093 1025.671475 0.00194994211 +2.497135913e-06 -0.008916597348 -0.01243004268 0 -13.9508334 -16.27165458 895.1527321 0.002234255595 +2.49763639e-06 0.004456267231 -0.002955019504 0 20.28199004 -3.095253639 943.3069493 0.002120200643 +2.499625506e-06 0.008355673812 -0.01283817493 0 7.316999339 5.228791716 1039.094831 0.00192475214 +2.497879202e-06 -0.009333445826 -0.005408021291 0 6.370428442 17.56534189 906.9570066 0.002205176194 +2.499585281e-06 0.007443704959 -0.008636952052 0 4.513974375 8.610408809 1067.410704 0.001873693034 +2.499511137e-06 -0.00107957188 -0.00325489497 0 6.607656921 -6.914433592 967.1641237 0.002067901353 +2.499535128e-06 0.00234524955 0.00838289767 0 -9.707625249 -1.511667132 1018.834366 0.00196302762 +2.499274174e-06 -0.00420609701 0.009818204138 0 8.635673905 7.934594969 973.2500701 0.002054970312 +2.494182446e-06 0.004418714833 -0.002231996222 0 22.37002504 -20.83286565 895.381146 0.002233685631 +2.498691432e-06 -0.006005304689 0.003876777599 0 -14.33786572 1.620548191 891.7488962 0.002242783825 +2.498250222e-06 -0.001639411827 0.003435057609 0 -15.30335092 -8.202784192 927.913518 0.002155373277 +2.495063173e-06 -0.008409483205 -0.003721331509 0 -24.82050667 21.78826516 1050.289274 0.001904237289 +2.496246118e-06 -0.003118608445 0.003163315456 0 -16.98853235 -20.0723748 959.1783702 0.002085117912 +2.499257477e-06 -0.004291381291 -0.01234881211 0 -10.97546655 -6.006759148 1026.590324 0.001948196816 +2.496938078e-06 -0.004720326597 0.0003915593913 0 8.107141112 22.45701667 964.3668484 0.002073899578 +2.497266224e-06 0.003384885518 -0.0004169273609 0 23.30778704 3.087397642 1005.0866 0.001989878286 +2.497996755e-06 0.004975454393 -0.01485955935 0 17.39512279 10.3622311 1011.256664 0.001977737276 +2.499999004e-06 -0.006978920465 -0.0121954491 0 -0.3052270853 0.3635233335 1063.784637 0.001880079793 +2.496707998e-06 -0.001922109812 -0.0005343272095 0 8.424194205 -25.76361997 1055.855804 0.001894198045 +2.499633605e-06 0.004246971817 -0.003622539619 0 8.866916093 -1.91639604 1059.674472 0.001887372069 +2.496703092e-06 -0.008416278367 -0.009244768561 0 20.50863727 17.82236514 1057.586049 0.001891099076 +2.497761436e-06 0.005747170332 0.002778959891 0 -19.75218724 3.595633919 948.5246066 0.002108537813 +2.497658237e-06 -0.007209798275 0.005582973647 0 -21.54508665 -7.686975892 1056.642593 0.001892787602 +2.494917237e-06 0.008587936154 -0.005022913541 0 25.1666254 15.33535208 923.6269011 0.002165376515 +2.498744853e-06 -0.0005237766681 -0.006491339814 0 -7.808810176 -13.27045483 971.6405958 0.002058374268 +2.497111969e-06 -0.003336843522 -0.007893085191 0 18.23918199 -15.3321556 990.99537 0.0020181729 +2.497550543e-06 0.007559345337 -0.001047377712 0 19.04998242 -9.078111184 953.0673362 0.002098487614 +2.499387526e-06 0.001117933542 -0.008960666349 0 5.497980901 9.053686621 956.9560659 0.002089960105 +2.49789715e-06 0.006450254344 -0.007355296263 0 16.17488214 -11.55137144 968.893263 0.002064210864 +2.496234792e-06 0.002549515911 -0.003491264982 0 21.3310295 14.88067173 947.2442874 0.002111387766 +2.497572281e-06 -0.001447693906 0.01455619539 0 17.65303531 14.27970354 1030.050725 0.001941651951 +2.496350361e-06 0.00573420553 -0.006047630527 0 -16.2796402 21.96807127 1011.494226 0.001977272781 +2.499805242e-06 -0.003518975754 -0.004662753388 0 -5.088721019 -3.346496396 975.8367773 0.002049523083 +2.498276043e-06 0.006680832393 -0.009918122808 0 17.47049291 -5.940507992 993.5116232 0.002013061502 +2.498372132e-06 0.006242833133 0.005873377647 0 5.791102283 -15.4496838 914.1910172 0.002187726594 +2.496047637e-06 0.004984841421 0.006706075184 0 16.82841747 24.3282111 1051.519273 0.001902009836 +2.497586888e-06 0.007852160214 0.01422189675 0 21.46939145 7.262636769 1031.301408 0.001939297265 +2.495959516e-06 -0.001655833297 -0.006750110085 0 9.177530419 -28.46548976 1051.47219 0.001902095005 +2.495354343e-06 -0.00846008468 0.01237031597 0 3.40982143 27.67936121 914.2926774 0.00218748334 +2.497006341e-06 0.006851349953 -0.0094406544 0 14.64607648 17.11079292 920.0585536 0.002173774693 +2.499716509e-06 -0.002419400145 -0.003430036416 0 -5.685898078 4.278340056 944.9672294 0.002116475511 +2.498340273e-06 -0.004659309527 -0.000767181823 0 -16.21874753 -5.08532094 932.6924696 0.002144329525 +2.499684352e-06 0.008722932213 -0.01142263031 0 -2.768371493 -7.409344962 995.4496491 0.002009142303 +2.498404029e-06 0.005157928751 0.001692700773 0 -13.56760581 -8.815680901 905.4201682 0.002208919207 +2.49919495e-06 0.009612234361 0.01181162202 0 -5.61412417 -11.91653784 1038.003474 0.001926775825 +2.497052816e-06 0.005518968469 -0.007036855021 0 18.08543511 -13.86165897 938.1419197 0.002131873609 +2.497549266e-06 0.002575148866 -0.001365412453 0 18.51721007 -8.670046036 923.1979978 0.002166382515 +2.496767857e-06 0.008932262426 0.0009570780862 0 16.24078959 20.30275267 1022.094799 0.001956765657 +2.49804209e-06 -0.0006520118937 0.01081891372 0 -12.8570154 -16.1806588 1044.081125 0.001915559962 +2.495430245e-06 -0.0008432158874 0.01352933187 0 -8.873641141 30.1972817 1040.383786 0.001922367521 +2.496812915e-06 -0.008586107972 -0.004932647059 0 -23.50155321 12.6370018 1056.393059 0.001893234704 +2.494834027e-06 -0.002546834638 0.01238666905 0 17.61774882 28.36668484 1038.054174 0.001926681719 +2.496965058e-06 0.003197185183 0.006584689873 0 -18.49873816 12.4927208 905.6178851 0.00220843695 +2.498273086e-06 0.00657724706 -0.01461464153 0 -17.37129395 -0.9372303048 935.8375949 0.002137122948 +2.496565109e-06 0.007911523147 0.001960374364 0 13.36960384 19.27439183 894.5076806 0.002235866772 +2.4966626e-06 0.0005439352524 -0.009061276694 0 9.519146727 -24.18731176 1005.590244 0.001988881667 +2.497528547e-06 -0.0009003030183 0.007726075798 0 18.49776255 13.69853899 1034.92951 0.001932498765 +2.496691161e-06 -0.002238643174 -0.002660945482 0 -25.33695893 5.002568661 1003.437326 0.001993148896 +2.497129273e-06 0.009107062118 -0.006341984847 0 -18.77689936 -14.23757138 983.0104521 0.002034566363 +2.49803354e-06 0.003840781595 0.006293739737 0 7.036060346 -16.50975558 904.679911 0.002210726662 +2.497095659e-06 -0.0003274401929 -0.002091515714 0 -21.50453431 8.242812434 955.1446143 0.002093923758 +2.496821117e-06 -0.007358570402 -0.001610858592 0 8.869882375 -20.38732826 881.34043 0.002269270683 +2.499462898e-06 0.007989704083 -0.009356448697 0 2.038019712 9.013704137 891.5616135 0.002243254947 +2.498752086e-06 -0.004130824781 -0.01346758108 0 -9.457091916 11.36686061 935.7896033 0.00213723255 +2.49714071e-06 0.008864297532 -0.006525656884 0 21.24949962 4.929583791 911.802857 0.002193456606 +2.493068004e-06 0.005435887962 0.006094008009 0 28.82665094 26.44329863 1049.496965 0.001905674877 +2.496753842e-06 0.006079898053 0.004680396498 0 23.72675177 -13.22397032 1065.534138 0.00187699289 +2.496726888e-06 -0.003443111642 -0.0009168819571 0 20.77840537 17.4762711 1060.651542 0.001885633425 +2.497629525e-06 0.0003692605067 -0.0007573560043 0 -16.63873309 -15.92026785 1057.242525 0.001891713539 +2.494959572e-06 -0.008542671646 0.006752857394 0 -26.16532516 -15.96042973 964.5807269 0.002073439728 +2.49490248e-06 0.004445677488 -0.001602204235 0 24.69021358 -22.1412957 1037.859612 0.001927042903 +2.497775462e-06 -0.003016831148 -0.006734008086 0 -3.928753398 -21.89161374 1054.098804 0.001897355345 +2.497090946e-06 -0.004524931801 0.002726694366 0 -15.27207357 14.87685161 883.5144197 0.00226368688 +2.49637803e-06 -0.003097912087 -0.008922507903 0 18.28190142 16.99408286 926.893471 0.002157745267 +2.497693173e-06 -0.008270062334 0.001165502623 0 18.38674297 11.65554598 1013.168143 0.001974006007 +2.496551566e-06 -0.001574544497 0.003480998625 0 21.86148756 15.44184444 1018.637247 0.00196340749 +2.496909473e-06 0.008477610098 0.006513347381 0 21.52397538 14.90740882 1052.628041 0.001900006386 +2.494951808e-06 0.001179045476 -0.006697353667 0 15.83110308 -27.8728862 1008.053096 0.001984022477 +2.499238936e-06 0.005435292898 -0.007735122868 0 -11.17065834 2.137239906 921.744324 0.002169799095 +2.496233832e-06 -0.004866606439 -0.003928798002 0 -14.00464231 -21.26678543 927.284944 0.002156834329 +2.497152456e-06 -0.004175582617 -0.01346799995 0 -17.65895501 14.04768076 945.1444088 0.002116078751 +2.497520346e-06 0.007893175632 0.003342633764 0 -16.14036236 -11.85891984 899.0393151 0.002224596818 +2.49867357e-06 -0.005059240889 0.004932625378 0 7.75124344 13.97224016 980.8130969 0.002039124484 +2.498333946e-06 -0.003151810812 0.01196539518 0 -13.18926222 -12.57089483 997.9079718 0.002004192828 +2.497025353e-06 0.005677123028 0.006036043593 0 -22.61046794 11.47758031 1039.125823 0.001924694735 +2.495418643e-06 -0.001206472456 0.01326050377 0 6.394068765 29.49442352 996.3271897 0.002007372699 +2.499618877e-06 0.003666223674 -0.000602374936 0 -5.805318271 5.505773114 916.3668754 0.002182531968 +2.499933003e-06 0.003996314737 -0.007933367367 0 3.706453987 -0.6650293078 1028.711012 0.001944180608 +2.498286956e-06 0.007654351592 -0.005932391065 0 0.9186696187 16.24457254 878.8013445 0.002275827196 +2.496234385e-06 -0.004181953017 -0.007301205068 0 -6.750008668 -25.8592857 973.3103464 0.002054843049 +2.496000816e-06 0.006577998679 0.01153502931 0 -6.678066906 27.14309804 987.7791361 0.002024744122 +2.497491923e-06 -0.003001296963 -0.01251177542 0 -15.74431915 -11.94035319 881.9357919 0.002267738784 +2.498747e-06 0.00169132615 -0.001743932229 0 -12.53588597 -8.921741993 971.78256 0.002058073567 +2.498146077e-06 -0.006004597228 -0.01430722444 0 -16.82708825 -10.36650449 1026.107832 0.001949112889 +2.498480592e-06 -0.005189530482 -0.004754146084 0 15.15889282 -9.073225482 1013.226245 0.00197389281 +2.49800597e-06 0.001022848506 -0.01001179498 0 -5.976097431 18.27587586 962.5570367 0.00207779895 +2.499770624e-06 0.004259585589 0.004435883083 0 -6.83089723 1.387266397 1029.083077 0.001943477689 +2.497739957e-06 0.009387426572 -0.008293668386 0 -10.55810162 -19.93465409 1060.669717 0.001885601114 +2.499263184e-06 0.007740296284 -0.008304850368 0 -11.36196125 -3.939945699 990.5298055 0.002019121473 +2.498819963e-06 -0.003699842878 0.006566395559 0 13.43511154 -2.171114133 885.7262802 0.002258033938 +2.496133336e-06 0.0002143041557 0.01093818478 0 -16.51185496 17.95000498 876.5289756 0.002281727194 +2.497831425e-06 0.008230305929 -0.01218270897 0 -13.36006634 17.06980936 1040.507459 0.001922139033 +2.497443609e-06 -0.006746704364 0.001573120924 0 0.6739668398 23.97459103 1060.296986 0.001886263968 +2.496709021e-06 -0.004757918245 -0.001988786075 0 -11.63759972 21.51962489 953.1255967 0.002098359342 +2.492544426e-06 0.001815991122 0.01418142276 0 -23.54606221 32.18802979 1031.627885 0.001938683539 +2.495201879e-06 0.007179660238 0.01261728289 0 -4.050759331 28.8480023 939.7062724 0.002128324625 +2.496723045e-06 0.009876108719 -0.01474031271 0 -4.42039813 -25.29485056 1002.537254 0.001994938335 +2.498343108e-06 -0.006686792844 0.01434222664 0 18.35412935 -3.614846567 1027.37152 0.00194671544 +2.497803586e-06 0.001263423231 0.01155021991 0 18.25565349 -11.63398331 1032.510324 0.001937026637 +2.497211576e-06 -0.007912593544 0.01155708385 0 -21.00022193 -5.690328081 920.9434782 0.002171685937 +2.495296534e-06 -0.0002864983678 -0.002410180375 0 -23.79703997 21.4846086 1044.581055 0.001914643187 +2.49850755e-06 0.00601899927 -0.00171323573 0 -11.5051687 -14.24249858 1059.500971 0.001887681139 +2.497644439e-06 -0.00196762993 0.01354316234 0 -17.31908056 10.34325254 929.064737 0.002152702519 +2.497628475e-06 -0.005073147649 -0.001515316456 0 17.34691816 -12.78325112 989.0735452 0.002022094322 +2.493551113e-06 0.001270161038 -0.01374310074 0 18.93479529 -27.25399873 923.1583393 0.002166475582 +2.497502257e-06 0.003967556776 -0.01287656671 0 -9.410986569 -20.07280101 991.5235567 0.002017097815 +2.497802404e-06 -0.003806842896 0.01323301976 0 -10.87893669 15.10320131 887.550654 0.002253392514 +2.497303337e-06 -0.001250109649 0.01249340896 0 -0.1334319594 22.32075225 960.7546498 0.002081696925 +2.499005029e-06 -0.006323984447 0.00814164191 0 -13.39379756 -5.453551424 1025.010815 0.001951198924 +2.493457597e-06 -0.005490331943 0.009201936722 0 -21.44523547 29.52574015 1007.830589 0.001984460505 +2.498679116e-06 -0.009494360588 0.0008980674832 0 15.17048997 -2.569887575 946.4763749 0.002113100816 +2.49851954e-06 0.009293881343 0.006148000353 0 15.09005141 -2.556618009 889.2549487 0.002249073793 +2.496270848e-06 -0.009894060963 0.009918642598 0 20.89384344 19.78587786 1053.078787 0.001899193132 +2.497497586e-06 -0.007268874915 -0.003738339341 0 -17.97113792 14.56211969 1033.537439 0.001935101646 +2.498763539e-06 -0.008843728574 0.008861989081 0 -8.882329512 -12.20127714 959.5320626 0.002084349318 +2.497814866e-06 0.008162640841 0.009515629204 0 10.48513491 -17.23385458 964.6521886 0.002073286127 +2.499906175e-06 0.003561044126 -0.005147738226 0 2.839463168 3.350512192 1013.837345 0.001972703028 +2.497592611e-06 -0.003993969229 -0.005307995863 0 -17.78185522 -10.04709716 930.4545313 0.002149487087 +2.499613304e-06 -0.00142347022 -0.01296708354 0 5.106616839 7.886124624 1068.262591 0.001872198854 +2.499386391e-06 -0.006136535821 0.001548830161 0 -10.02123716 2.042569949 923.1227059 0.00216655921 +2.49334379e-06 0.006551977685 0.01431349402 0 22.41358834 25.05137686 920.3756717 0.002173025713 +2.499913612e-06 -0.007135295323 -0.008254811943 0 2.225107622 -3.65105859 1028.621769 0.001944349283 +2.498651936e-06 0.003097840799 0.001800563063 0 -13.5170421 6.330299675 908.8307475 0.002200629771 +2.496886381e-06 0.003372783302 0.008645115488 0 -13.59558245 21.12988084 1006.401376 0.001987278682 +2.499928858e-06 -0.007371989954 -0.0002164818998 0 -1.286886698 -3.20285668 915.0666719 0.002185633092 +2.497206854e-06 0.00314062411 -0.01102039119 0 -22.39385052 -7.461843988 998.268818 0.002003468368 +2.497818942e-06 0.002830593819 -0.005735339569 0 -20.63611453 3.635535027 1002.938535 0.001994140149 +2.497345805e-06 0.003709352966 -0.005724024335 0 22.45213136 3.344223911 984.8455326 0.002030775318 +2.493058558e-06 -0.0002916216431 -0.0131220895 0 -20.79145062 -29.12652425 959.4463869 0.002084535444 +2.499482809e-06 0.00191051709 -0.01222798722 0 1.538730325 9.072377957 904.7019329 0.002210672849 +2.498263339e-06 -0.006917839246 0.003314644068 0 10.90669125 16.11301927 1043.749219 0.001916169098 +2.499613777e-06 -0.002610492851 -0.01006850547 0 8.392811682 -2.232482991 988.0836315 0.002024120162 +2.4960219e-06 -0.004727860386 0.006554817413 0 -2.321801641 26.88816346 956.2293256 0.002091548488 +2.49870923e-06 -0.008769908538 0.008265423174 0 -3.255061189 -16.33893985 1036.697472 0.001929203122 +2.495160836e-06 -0.006858754144 0.007335965596 0 -17.86876561 22.42912053 921.1170385 0.002171276739 +2.498700353e-06 -0.001859132368 -0.009067346624 0 -1.029646697 16.74689458 1040.497714 0.001922157035 +2.499005105e-06 0.009427444665 -0.01491502063 0 14.13329935 -3.716324493 1035.840092 0.001930799953 +2.499122945e-06 -0.009891546154 -0.01059660591 0 -0.54404516 14.07901713 1063.679702 0.001880265268 +2.497074682e-06 -0.005817215764 0.0105128638 0 -18.2219254 17.52280937 1044.691214 0.001914441294 +2.497944598e-06 0.009517765441 -0.008039208089 0 19.41550563 3.728469264 974.7991745 0.002051704651 +2.494638771e-06 -0.004743882599 0.00291597435 0 -19.91149756 23.52415091 940.4408954 0.00212666209 +2.49743587e-06 0.0004694516258 -0.003121328002 0 20.88770152 -5.455636384 952.9470686 0.002098752455 +2.496447187e-06 0.006930336459 0.01372963435 0 27.23062876 2.375614022 1024.875963 0.001951455661 +2.498818813e-06 0.006454148013 0.01178318837 0 -9.636325168 -9.680893719 888.5449785 0.00225087086 +2.499636816e-06 -0.0006413890375 0.008566578368 0 -1.945505152 -7.461632376 904.7194828 0.002210629967 +2.496165281e-06 -0.006826342936 0.006239380378 0 -7.607133985 25.36572638 955.6890569 0.002092730879 +2.496292919e-06 0.003391520581 -0.001408642936 0 22.54933105 -12.33647597 943.4451033 0.00211989017 +2.499093747e-06 -0.008295581657 -0.0092637021 0 -2.907306892 -12.14663998 927.5858122 0.002156134747 +2.496292935e-06 0.001949512945 -0.009820988788 0 -5.665830836 -24.84296076 935.281522 0.002138393578 +2.498668296e-06 -0.00309153744 0.001064500585 0 -4.661609079 -15.98148277 1019.864923 0.001961044013 +2.498946564e-06 -0.005728246151 0.007044936488 0 13.95785784 1.21853754 965.1164886 0.002072288707 +2.498991797e-06 0.003577671666 0.007186817536 0 11.99648442 -4.101289534 892.6930082 0.002240411857 +2.498430017e-06 -0.00225378375 0.01341416467 0 10.1808127 13.90186462 972.1833432 0.002057225125 +2.499983255e-06 0.001188602252 0.002957090463 0 -1.670692943 -0.289488357 926.53349 0.002158583604 +2.495059542e-06 0.007663829112 -0.01053312769 0 15.33411227 -23.80645163 900.1907441 0.002221751349 +2.498421034e-06 -0.005656952481 0.005128199416 0 -15.69670319 1.363368996 886.413147 0.002256284225 +2.49820984e-06 -0.00869551992 -0.01038857139 0 9.83860827 16.59300325 1019.218664 0.001962287457 +2.499482465e-06 -0.009980549947 0.01132250549 0 2.149786408 -9.210873059 929.6082181 0.002151443975 +2.499124482e-06 0.008072164059 -0.01173013309 0 -11.01330244 4.928382534 911.6937661 0.002193719069 +2.497268684e-06 0.001844820823 -0.001745654368 0 -23.28751954 -8.175033857 1055.551637 0.001894743877 +2.498265807e-06 -0.0003791196551 -0.01254788528 0 15.44029396 -5.920995529 887.7095783 0.002252989096 +2.498342135e-06 0.004186054915 0.01247002782 0 16.10519814 9.883787446 1037.473479 0.001927760122 +2.495447303e-06 0.008801596416 0.01465584719 0 19.00249045 23.19187902 992.9410741 0.002014218217 +2.497282057e-06 0.003888029661 -0.006236895444 0 -6.85135416 -21.2692537 958.0277687 0.00208762216 +2.498001219e-06 0.001084538279 -0.01386376103 0 -11.59254112 14.56519192 930.772888 0.002148751888 +2.497927835e-06 0.004285427094 0.005146374868 0 -11.76839543 18.11627236 1060.8503 0.001885280138 +2.499167666e-06 0.0007284500543 0.002737973928 0 -11.12659171 -7.918448897 1058.338762 0.001889754087 +2.498289662e-06 0.003191820015 -0.005479283771 0 -16.1835746 -7.475204986 963.6083206 0.002075532099 +2.497382558e-06 -0.005479833987 0.002840377819 0 19.44299331 12.13861629 1001.40779 0.001997188378 +2.495840607e-06 0.009848482609 0.001518526445 0 29.77362327 1.52295017 1032.994401 0.001936118915 +2.49848887e-06 -0.006663209503 0.005732189992 0 -17.91175037 0.6476853902 1030.759495 0.001940316835 +2.499711502e-06 0.004416468018 0.01307599337 0 -6.36350038 2.836070478 917.1352657 0.002180703409 +2.49880373e-06 0.001797099425 0.01071899749 0 8.942570063 -12.29544819 982.7365404 0.002035133444 +2.498420714e-06 -0.004005294587 -0.008100222226 0 8.200799601 15.33358128 978.1881883 0.002044596351 +2.495430109e-06 0.007251043725 -0.007942509355 0 23.40427471 -14.79161662 915.1766218 0.002185370509 +2.495906174e-06 -0.008670686581 -0.01133213196 0 -27.46548052 -10.59312015 1028.145203 0.001945250529 +2.498819148e-06 -0.006652893098 -0.004897420651 0 -15.69946027 0.3218485286 1021.612849 0.001957688768 +2.497578344e-06 -0.00136834302 0.01480179404 0 14.05804163 -15.37256526 946.2108252 0.002113693848 +2.497926999e-06 -0.004119687448 -0.01479973823 0 16.64991831 7.983626382 906.5684988 0.002206121217 +2.499942388e-06 0.005279476726 0.01416679821 0 -2.984582558 1.836963112 1032.433558 0.001937170664 +2.497418316e-06 0.0009491367824 0.01402204762 0 -12.79102185 19.31920388 1019.267943 0.001962192584 +2.497090502e-06 0.003115526717 -0.01297525823 0 7.936830828 -20.18151573 898.6028161 0.002225677423 +2.494987224e-06 -0.008470877819 0.01422437877 0 -24.89955712 -16.11451676 936.0042434 0.00213674245 +2.498190206e-06 0.0001559477299 0.01173488354 0 2.958893379 16.81434687 897.1290196 0.002229333748 +2.499227338e-06 -0.006329745785 0.004678314391 0 -8.563661611 8.017424679 943.5682112 0.002119613586 +2.497522239e-06 0.006195432362 0.0006381364167 0 -4.933355476 19.08357931 885.1178262 0.002259586171 +2.499785684e-06 -0.009495141883 -0.001837271077 0 0.9103982975 6.546404192 1009.500057 0.001981178689 +2.496336844e-06 0.004189625802 -0.008613151875 0 27.51246954 -1.369514564 1017.151085 0.001966276228 +2.499970654e-06 0.003831420029 -0.006956730676 0 1.948882427 -1.271247352 960.4614983 0.002082332299 +2.497106985e-06 0.009829391241 -0.004367387951 0 19.11412377 12.29526682 944.4218603 0.002117697699 +2.496823481e-06 0.009073404046 9.826193796e-05 0 -18.09824835 -15.50736654 945.1178762 0.002116138156 +2.497387868e-06 -0.007709756861 0.007722036517 0 -19.30303948 -10.13911843 953.5662832 0.002097389594 +2.494996973e-06 0.004381912053 -0.009846006897 0 -10.71943012 -28.82884874 971.6053762 0.002058448882 +2.497928244e-06 -0.0008952666819 -0.008522508591 0 18.23831689 5.967194427 942.4281857 0.002122177616 +2.494890103e-06 -0.003382930406 0.002360422025 0 19.748847 25.25542235 1002.100538 0.001995807731 +2.496364321e-06 0.006523635071 -0.009538831695 0 -19.46072844 17.65090846 973.7919236 0.002053826851 +2.497751682e-06 0.003054769994 0.001915529959 0 15.80476151 14.00848359 995.6133794 0.002008811896 +2.499618556e-06 -0.003263200698 -0.01243890738 0 4.318408598 6.505858614 893.9644935 0.00223722532 +2.496900897e-06 0.005552118476 0.009313571944 0 -19.30527131 -11.45791435 901.3022662 0.002219011396 +2.495515059e-06 -0.009615721502 -0.0004750137194 0 -25.78047302 17.29761163 1035.897425 0.001930693089 +2.496778528e-06 0.006009447491 -0.0003542301944 0 7.223580725 -21.61095112 897.2651029 0.002228995638 +2.497563597e-06 -0.006436492614 0.009052716962 0 -10.23049366 -18.94947343 975.1951127 0.00205087164 +2.498849988e-06 0.00272052235 0.01340472835 0 8.787431669 11.43293832 950.6452296 0.002103834257 +2.495628379e-06 0.001501229 -0.0062493201 0 -25.59905213 -18.36267538 1064.740688 0.001878391633 +2.497481593e-06 -0.006627713018 -0.01160785153 0 -1.568361985 -20.60475821 920.4069971 0.002172951755 +2.498582289e-06 0.0059694531 -0.01359721652 0 -8.794810637 -13.74341107 968.7846519 0.002064442285 +2.495929318e-06 -0.001093238131 -0.01285024226 0 -4.807097411 -26.10218745 929.6205014 0.002151415547 +2.498189805e-06 -6.961948704e-05 -0.01095023969 0 -7.46745725 -15.72550291 914.6705226 0.002186579703 +2.499558641e-06 0.001468009437 -0.01106262381 0 4.3037651 -8.721477983 1035.08232 0.001932213469 +2.498853991e-06 0.006902335314 -0.009869529263 0 -5.806600389 14.04049974 1003.421323 0.001993180685 +2.49959522e-06 0.009676986123 0.007451940423 0 9.30879502 0.6111189691 1036.755118 0.001929095854 +2.499111734e-06 -0.003534710854 0.001468736418 0 13.9082287 -1.958147433 1053.633431 0.001898193376 +2.497744079e-06 -0.005396361272 0.01231140025 0 -12.06531128 -18.98520676 1058.657657 0.001889184843 +2.495723037e-06 -0.009353988338 -7.132326253e-05 0 -18.4994303 -21.13771501 959.8109613 0.002083743654 +2.498644693e-06 -0.007980716703 0.008065928402 0 -4.851413284 -15.91858106 1010.575457 0.001979070426 +2.499522114e-06 0.005630278299 0.007970720634 0 -7.439107693 -7.053517133 1048.521288 0.001907448159 +2.498815997e-06 -0.004100642488 0.008466116376 0 -12.44871743 -8.36332169 974.4091563 0.002052525869 +2.498918148e-06 0.009660403477 0.01029811896 0 9.063822585 11.0381652 970.821207 0.002060111569 +2.4986497e-06 -0.009880483411 -0.008119010695 0 14.03483642 3.847943213 885.3759641 0.002258927372 +2.49918878e-06 0.004711201275 0.01242045922 0 13.15394663 -0.7514482732 1034.251851 0.00193376497 +2.499499643e-06 -0.006758275595 -0.01177269507 0 -6.749539981 -8.208951158 1062.288281 0.001882728103 +2.499614374e-06 -0.005637833853 0.01421798544 0 -3.873174466 -8.546681238 1068.402206 0.001871954204 +2.498662315e-06 0.003559109964 -0.009929047055 0 14.28902856 9.348567087 1043.743819 0.001916179012 +2.497521915e-06 0.00818829136 0.01253182654 0 -14.66032899 16.72962743 998.8095987 0.00200238364 +2.49629387e-06 0.00249050823 0.0007787790312 0 16.91139088 22.42195339 1030.978963 0.001939903792 +2.498228653e-06 -0.0004405397736 -0.01219107328 0 -2.910523683 18.26131853 982.1934978 0.002036258644 +2.498105935e-06 0.0007169564534 0.0040050338 0 -4.381926775 -18.57906673 980.4899265 0.002039796581 +2.499330983e-06 -0.008296311381 -0.0119636474 0 -8.795889807 -7.565812443 1002.905695 0.001994205447 +2.497307023e-06 0.005216100188 -0.001522281307 0 22.96336045 -9.172118755 1065.053338 0.001877840226 +2.497015349e-06 -0.007289421447 -0.009442048213 0 19.08404047 12.51677678 933.7023669 0.002142010207 +2.496513332e-06 0.002478044187 0.002062061273 0 10.13396141 26.07208283 1058.719504 0.001889074483 +2.4957428e-06 0.009362187441 0.01305833897 0 26.84462778 -15.42823714 1060.422093 0.001886041429 +2.499480984e-06 -0.009290119647 -0.004119620842 0 -9.256752329 -1.921070968 927.8466153 0.002155528691 +2.497192901e-06 0.008283232502 -0.009041807293 0 20.56723007 -14.4682638 1060.837924 0.001885302132 +2.499338188e-06 -0.009968341575 -0.003593662628 0 -5.242424166 -10.28712763 1003.466193 0.001993091559 +2.498756437e-06 -0.00371661711 -0.01393400628 0 -15.19525507 -6.960455277 1059.593916 0.001887515557 +2.49681713e-06 -0.005443041758 -0.007469604111 0 -4.541414561 -25.69207149 1033.589736 0.001935003736 +2.4994887e-06 -0.007929317942 -0.009103101469 0 -7.387537697 6.938203576 1002.142144 0.001995724871 +2.497980693e-06 -0.005626449981 0.006787897039 0 5.799437 -18.74735475 976.1962356 0.0020487684 +2.499805608e-06 0.001431374792 -0.01003145377 0 -6.133061983 2.372175312 1054.5924 0.001896467299 +2.498141897e-06 -0.004548918819 0.003751790535 0 -12.91579841 11.21270905 887.0001655 0.002254791011 +2.49922814e-06 -0.0007217453327 0.001097720715 0 11.18872033 -1.461046296 908.0656642 0.002202483894 +2.49833393e-06 0.009625741676 -0.002166828287 0 17.44421759 5.700144209 1005.103824 0.001989844186 +2.495972094e-06 -0.009785241885 -0.01114031306 0 5.073145631 -29.23774142 1044.883208 0.001914089522 +2.497527964e-06 -0.0007591412682 0.01369680746 0 13.19012507 16.57448936 952.2943156 0.002100191052 +2.498864284e-06 -0.003894586978 -0.002829084371 0 -5.024928368 -14.44473701 1014.592171 0.001971235395 +2.498257384e-06 -0.001177009409 0.00281340665 0 -1.384151608 -19.32860776 1037.72414 0.001927294474 +2.496235664e-06 -0.004281164212 0.001938469447 0 13.57683349 -24.28864208 1013.540801 0.001973280205 +2.498031088e-06 -0.00165904128 -0.01238045034 0 17.9274048 9.246045605 1016.195805 0.001968124637 +2.497541161e-06 0.002940161121 -0.01038345071 0 -4.240114707 -20.81214815 957.4315288 0.002088922226 +2.499399166e-06 -0.005594602167 -0.001423174432 0 9.72585163 2.341086769 912.4873401 0.002191811231 +2.494686216e-06 0.004302626122 0.007753753709 0 -16.12580837 26.61990021 953.9429335 0.002096561471 +2.497648444e-06 -0.003909113156 -0.006224060808 0 7.538394459 -20.98228398 1027.705754 0.001946082321 +2.499858937e-06 -0.004608347467 -0.003526039899 0 -4.962068404 -1.923452686 1001.913039 0.001996181228 +2.499364085e-06 0.006197983059 -0.001047898724 0 11.49414679 0.5401047276 1020.233463 0.001960335622 +2.498816748e-06 0.002171151876 -0.006665220747 0 -14.78010964 2.880012994 978.6766403 0.002043575904 +2.496932285e-06 0.009737958745 0.005631045706 0 -18.8927827 15.17575118 977.8801435 0.002045240425 +2.493671826e-06 0.007420651447 -0.006247659121 0 25.84925763 -21.3230312 941.0117828 0.002125371899 +2.495239159e-06 -0.007427258156 0.0008958651731 0 18.99504674 -24.07626588 993.1324324 0.002013830114 +2.496083209e-06 0.008852064894 -0.01486447816 0 -2.868302929 -25.60527993 920.0297929 0.002173842647 +2.498697055e-06 4.606422503e-05 0.01086589729 0 10.70055044 10.54882918 930.6350883 0.002149070055 +2.496911794e-06 -0.003330441643 -0.0066251461 0 15.96932294 17.13633328 942.0793344 0.002122963457 +2.499621559e-06 -0.007824732037 0.01355304622 0 8.552042655 0.5349070797 984.8702145 0.002030724425 +2.497125814e-06 0.004702091375 0.009487013665 0 8.098340761 23.95368094 1054.177257 0.001897214143 +2.499731224e-06 0.00323031812 -0.01493246463 0 3.339156477 5.491309763 876.5371593 0.002281705891 +2.497548255e-06 -0.008390178033 0.007321899359 0 -7.53708265 -20.03365076 966.2593476 0.002069837673 +2.499312978e-06 0.002667038059 0.01023177455 0 6.168965849 -8.916622494 924.8877502 0.002162424575 +2.492296523e-06 -0.008822591328 -0.008216328991 0 -26.56531429 -24.03441208 911.6220287 0.002193891698 +2.498299186e-06 -0.009519434688 0.002333421106 0 -18.4958132 -0.1077790337 1002.597409 0.00199481864 +2.49767873e-06 -0.004444183507 -0.00979296217 0 -17.83418276 -10.17627421 952.6397497 0.002099429507 +2.497926396e-06 0.003684898987 0.01236098595 0 7.459576793 -17.05257977 913.6887337 0.002188929256 +2.49458021e-06 0.008869670802 -0.005137433752 0 25.78653931 -23.68483986 1062.602698 0.001882171017 +2.497893235e-06 -0.001300172242 0.01230810097 0 -19.29592333 8.15718183 1020.255055 0.001960294134 +2.499785073e-06 0.004053783305 -0.01060441097 0 1.072978416 6.162324889 954.0167593 0.00209639923 +2.496222559e-06 0.008648643321 0.003759360909 0 29.19640371 -2.659171268 1066.014653 0.001876146819 +2.498647934e-06 -0.006729550585 0.01073397069 0 -12.39599532 -10.73108774 996.8419376 0.002006336135 +2.49861975e-06 0.008414536007 0.008486135756 0 12.90523549 9.05571802 948.6892665 0.002108171844 +2.497155654e-06 -0.001307463772 -0.003836779715 0 10.32963364 -22.8127973 1049.507413 0.001905655906 +2.499421727e-06 -0.003995307162 0.01408595839 0 8.362495244 -5.305099806 920.7903462 0.002172047099 +2.497771918e-06 -0.003972273963 0.007294763611 0 -17.11673108 11.49998543 976.5338337 0.002048060119 +2.495855297e-06 0.007990424996 0.01355670183 0 -14.25370455 23.04359171 940.519824 0.00212648362 +2.496942662e-06 -0.006242343872 0.00863799826 0 -22.40425475 -9.276680198 980.1790215 0.002040443588 +2.496116449e-06 0.004483055724 0.01199471002 0 -7.614456895 25.44940573 952.6046409 0.002099506883 +2.497924281e-06 -0.002599832015 0.009004219319 0 -10.88396791 -16.33097707 962.9127856 0.002077031305 +2.497051792e-06 0.001275546988 0.00189497703 0 -12.7739182 20.0596725 978.936389 0.002043033666 +2.496986526e-06 0.0004947864683 -0.01228734118 0 20.5200045 12.46562787 977.5530676 0.002045924734 +2.498958206e-06 0.00584714022 0.01466313325 0 -3.057415238 15.13694212 1069.66411 0.001869745822 +2.496437365e-06 -0.008030555351 -0.003114113978 0 -14.85402826 18.70561873 894.3572575 0.002236242825 +2.497881708e-06 0.006287620915 -0.008966900557 0 -8.153760423 -16.79320287 906.6770088 0.002205857191 +2.49736638e-06 0.003557796832 -0.008576457552 0 24.03705136 -3.373140419 1057.188982 0.001891809348 +2.494238753e-06 -0.002875321414 -0.002312421666 0 21.64162051 -24.65040444 965.5119201 0.002071439988 +2.499611217e-06 -0.006758679366 0.0141306167 0 0.9150207789 -7.763538868 886.4649989 0.002256152248 +2.496225015e-06 -0.007706927299 -0.007903059761 0 -9.89044894 -26.11616968 1015.766487 0.001968956473 +2.495835384e-06 -0.004546129666 0.01110910321 0 -20.36721803 18.44978964 951.6171925 0.002101685442 +2.496027207e-06 -0.008793136938 -0.007050968008 0 -22.94138765 11.18534131 904.9161091 0.002210149626 +2.499226614e-06 -0.004450264452 -0.01479846961 0 -9.926747668 6.903997581 972.1168184 0.002057365907 +2.499181067e-06 -0.005316069624 -0.007966093586 0 9.158900663 9.430163915 1027.061268 0.001947303498 +2.495709144e-06 -0.002590238694 -0.006737102391 0 23.58543044 20.40812034 1063.988676 0.001879719254 +2.49926819e-06 0.0002419124963 0.006737004924 0 10.87560893 -3.885103359 954.4914136 0.002095356723 +2.498088143e-06 -0.003412561486 0.004492475975 0 -4.718305355 -20.3408357 1067.534645 0.001873475497 +2.499300161e-06 -0.002833577842 0.01053072629 0 0.9051243307 -11.43425233 969.4032831 0.002063124847 +2.498899721e-06 0.008777225697 -0.006926977308 0 10.42658652 8.807452084 919.9215763 0.002174098371 +2.495198665e-06 -0.002365704435 -0.008225837275 0 -14.67264291 -27.65704466 1009.596875 0.0019809887 +2.498940334e-06 0.009098937488 -0.01448389259 0 12.0860578 6.890525023 955.4996127 0.002093145799 +2.495759811e-06 0.003654925618 0.01132779387 0 -15.56471162 20.97448702 896.3309986 0.002231318568 +2.496688488e-06 -0.002347584185 0.008540279274 0 6.792331032 21.62197035 880.212709 0.002272178054 +2.496585621e-06 0.0003776726592 -0.005938795586 0 -22.22112295 16.16887474 1051.091932 0.001902783133 +2.494682625e-06 -0.008269548705 -0.01036853786 0 19.3894826 -27.26786105 1025.17825 0.001950880249 +2.497227103e-06 -0.003381995708 0.01169635143 0 -22.48558544 7.742945503 1009.426551 0.001981322959 +2.498113576e-06 0.009690601663 0.002186213247 0 -2.730715858 -19.43236771 1009.983743 0.001980229894 +2.499218959e-06 0.009104544446 0.01402365117 0 8.558469346 7.399806761 905.1275803 0.002209633253 +2.499493328e-06 0.009057220421 -0.01053019876 0 3.161434967 9.988710955 1040.707122 0.001921770264 +2.497835337e-06 0.003554349816 0.01246060545 0 -20.62268026 4.579827742 1014.956636 0.001970527536 +2.498677055e-06 0.003693086645 -0.001406943225 0 17.26212929 0.5447428459 1061.544861 0.001884046613 +2.499696036e-06 0.0008042367501 -0.01015927055 0 6.580212583 -4.220672643 1002.586632 0.001994840082 +2.496004783e-06 0.005198554392 -0.01174006644 0 23.35272183 -16.84592108 1018.044861 0.001964549969 +2.497719806e-06 0.0002444992587 0.00464072655 0 -2.587708692 21.2153833 1000.479414 0.001999041632 +2.499006628e-06 0.002558017862 0.01078017845 0 10.11865498 8.193673839 923.5901406 0.002165462701 +2.499699786e-06 -0.007050510752 0.004450659037 0 -6.963953983 -1.845306177 929.6965728 0.00215123951 +2.499944852e-06 0.0002771699708 -0.0009121068637 0 -1.280663618 2.688515779 896.6737553 0.002230465638 +2.496706214e-06 -0.006717392532 -0.0008564783796 0 -25.05789674 11.05368827 1066.539747 0.001875223128 +2.49985475e-06 -0.005755415475 -0.0137865988 0 -4.791959074 3.177617131 1066.768374 0.001874821234 +2.498936408e-06 0.008429381801 0.008653814639 0 -8.104686712 10.91445237 931.9493487 0.002146039377 +2.497339374e-06 -0.006781814378 0.003579685853 0 -10.80369664 -17.87979119 905.2434908 0.002209350324 +2.498695311e-06 0.00215175509 -0.0005085304216 0 11.52734841 10.15954294 951.0228459 0.002102998901 +2.497691118e-06 -0.009543068567 0.01367140267 0 4.651874767 18.83900117 902.7007532 0.002215573647 +2.498720662e-06 -0.00699433472 -0.00405009218 0 8.20276603 -11.40624384 878.1509688 0.002277512718 +2.497457423e-06 -0.003001141478 0.004117491085 0 -6.946961412 19.94449302 936.2042483 0.002136285969 +2.499669234e-06 0.004870271985 -0.01229232619 0 4.158387706 -6.040303792 901.5781735 0.002218332318 +2.498937595e-06 0.003145126165 0.00548556959 0 -9.293618796 8.758865683 875.9576573 0.002283215385 +2.498132927e-06 -0.004122446328 0.007605147727 0 12.33374802 16.41671229 1062.302652 0.001882702633 +2.499915844e-06 -0.005181444343 0.005638516985 0 3.764868746 0.2363788423 919.4796594 0.002175143278 +2.499631534e-06 -0.006128775799 -0.01430900991 0 7.450691155 -3.960386567 982.8662375 0.002034864892 +2.499891931e-06 -0.008475534241 0.01028435126 0 -4.169708825 1.644354114 964.0980692 0.002074477757 +2.49935797e-06 0.004878539047 0.01024603351 0 11.46017399 -3.252222159 1051.177361 0.001902628495 +2.499174971e-06 0.004348663967 -0.01251301133 0 3.513709422 -12.43874136 1006.106322 0.001987861477 +2.498220559e-06 -0.007374072317 -0.009601410578 0 18.3820292 7.257881324 1047.32133 0.001909633598 +2.498775125e-06 0.00952013433 0.01031764071 0 12.46937972 -9.123386529 986.9728514 0.00202639819 +2.498554983e-06 -0.00242954317 -0.001025499499 0 -14.4801639 -10.45120292 1050.227793 0.001904348765 +2.499001776e-06 0.007982309563 -0.01402862804 0 -0.6076354151 15.00157123 1062.426042 0.001882483976 +2.495441471e-06 -0.0008680441231 0.01299551068 0 25.02340196 -19.33923029 1046.679576 0.001910804458 +2.498038235e-06 -0.001078228145 0.00344371703 0 13.6852553 15.2912803 1035.693223 0.001931073753 +2.497990943e-06 0.0002781928098 0.008267907975 0 -17.04594388 -6.346759189 907.1321292 0.002204750483 +2.497247474e-06 -0.00450456134 -0.004426267797 0 -12.876291 -18.09088613 946.015248 0.002114130828 +2.499410175e-06 0.006651181225 0.01381686078 0 -0.4907504678 -10.96264611 1010.264366 0.001979679842 +2.49811709e-06 -0.006563870972 0.0004300192161 0 -18.43391384 9.298368544 1063.626759 0.001880358861 +2.498423315e-06 -0.00543164955 -0.002137991725 0 -17.47109693 -4.401325718 1014.358249 0.001971689984 +2.498105138e-06 -0.007097294275 -0.01181604075 0 -12.03816254 -13.94058535 945.8828371 0.002114426778 +2.496305764e-06 -0.008976822263 0.001473529686 0 -22.35698147 14.95928346 989.0894706 0.002022061764 +2.495727071e-06 -0.003337313468 -0.01150421826 0 -24.01745884 -13.24876042 937.6888586 0.002132903662 +2.499969788e-06 0.001948624612 0.005957039462 0 -1.764594789 1.68876433 993.6298754 0.002012821926 +2.498998098e-06 0.005801987373 -0.006365667356 0 14.40678376 3.730290445 1051.151011 0.001902676189 +2.496895225e-06 -0.003839125927 0.01042258278 0 19.76810683 10.21534392 892.5401632 0.002240795521 +2.495674077e-06 -0.0006229657028 0.00955506068 0 21.10126929 17.64136426 934.464238 0.00214026382 +2.498513826e-06 0.006645892439 0.0008300281386 0 -17.00740593 4.976871517 1027.620502 0.001946243771 +2.49990137e-06 0.008110771216 0.001608035518 0 0.523779282 4.533256115 1027.4565 0.001946554429 +2.499457379e-06 0.005635679308 -0.00213178063 0 -5.24960501 -7.869400367 907.9845332 0.002202680692 +2.497704626e-06 -0.0001618764317 -0.0005990078906 0 -0.7229882664 -22.19289038 1035.98356 0.001930532565 +2.498963483e-06 0.0003789543174 -0.006583849385 0 10.03956242 -7.723244317 879.6044775 0.002273749226 +2.497574438e-06 -0.006526386654 -0.01466560904 0 -18.01990999 11.85110347 978.8691965 0.002043173906 +2.497224744e-06 0.008587815464 0.006604207386 0 16.4498856 16.09153688 976.3386205 0.002048469617 +2.498840906e-06 0.006501558819 0.009937571723 0 15.52049037 3.42549167 1043.71915 0.001916224303 +2.495916291e-06 -0.005960853049 -0.002869040302 0 19.92305748 22.57910986 1053.013217 0.001899311392 +2.496573964e-06 -0.008225053111 -0.01272071434 0 -18.90253413 -16.02059918 946.1013488 0.00211393843 +2.498111819e-06 -0.005114148241 -0.001318440568 0 -14.27570483 -14.97821562 1064.47238 0.001878865096 +2.499235966e-06 0.008161337143 0.01382715055 0 -12.3213459 -3.752691793 1041.837328 0.001919685489 +2.492420145e-06 -0.005604182859 -0.01135603495 0 -24.94743898 -24.88214563 903.9256903 0.002212571256 +2.498616528e-06 -0.003510930608 0.008029743873 0 -14.16842436 -6.488325996 936.638746 0.002135294967 +2.498054907e-06 -0.007039409345 -0.001234356165 0 0.8527741297 19.00824336 964.4209794 0.002073783174 +2.499508897e-06 0.007640964431 0.006884258115 0 8.027756916 -4.78294897 942.8162636 0.002121304094 +2.498098325e-06 0.009051630008 0.008203994713 0 -11.73250091 16.17158794 1024.171833 0.00195279731 +2.498634652e-06 0.003507568277 0.009503450906 0 14.38001492 -1.838615481 877.1116274 0.002280211478 +2.498569673e-06 0.003627465121 0.0004366719536 0 16.92855276 -5.769904462 1057.205111 0.001891780487 +2.499493079e-06 -0.009166856059 0.01481741713 0 -6.795380749 -8.008672661 1043.040155 0.001917471719 +2.497385472e-06 0.0008653347194 0.002363337209 0 -23.51613861 -0.5243565255 1028.23388 0.001945082767 +2.496172515e-06 -0.008599368124 0.006258323437 0 12.20462024 24.73386395 996.3003102 0.002007426857 +2.496287872e-06 0.001301859594 -0.002071291648 0 -14.60392616 -22.80715244 993.3769991 0.002013334315 +2.498047556e-06 -0.007329904428 -0.01258473741 0 -20.44780428 0.6540043672 1034.99235 0.001932381432 +2.496860951e-06 0.009052467379 -0.009041608314 0 -12.28476573 -19.36711819 914.9018927 0.002186026738 +2.499309077e-06 -0.009703301555 0.0112580786 0 -6.809316685 10.00021774 1029.088887 0.001943466716 +2.496642702e-06 0.002797152838 0.002156200551 0 23.62235513 -1.228407455 912.3907128 0.002192043356 +2.495857212e-06 -0.002856561029 0.01029555389 0 13.82786682 23.08006694 934.1307825 0.002141027828 +2.495339316e-06 0.008578324141 0.003012680607 0 26.25455957 11.90650746 943.5702786 0.002119608942 +2.497084089e-06 -0.003725084513 0.01298290564 0 -16.75026817 -19.38117191 1060.2941 0.001886269101 +2.494294424e-06 -0.006897414308 -0.005060832098 0 19.88729072 -24.75219635 939.1420041 0.002129603395 +2.497734333e-06 0.009490941116 -0.0101380351 0 -18.27773616 12.14949647 1030.673997 0.00194047779 +2.498425404e-06 -0.007243016162 -0.01196695921 0 -18.66816464 0.2673004038 1051.826243 0.001901454744 +2.499660667e-06 0.001402537371 -0.007464985438 0 -6.702772442 -4.040413707 949.9703164 0.002105328941 +2.497451151e-06 -0.004862735514 0.00112034396 0 3.345549443 -20.40961887 915.6709052 0.002184190836 +2.498071967e-06 -0.00646866133 0.008599540223 0 9.613556141 18.40668915 1057.194628 0.001891799246 +2.499025992e-06 0.004524357347 -0.01449937962 0 -0.7671807474 -13.49273842 968.1470437 0.002065801898 +2.496175803e-06 -0.008297372865 0.01207628962 0 -24.68101538 10.29710673 966.4382807 0.002069454449 +2.498870361e-06 -0.001615557899 0.0001812010305 0 -5.958271774 13.66124278 991.3926794 0.0020173641 +2.499445745e-06 0.0009006854007 -0.01497048427 0 2.501768644 -10.55352328 1030.062587 0.001941629592 +2.499511024e-06 0.006959467791 0.003994638005 0 6.583717894 6.296661825 921.1515071 0.002171195492 +2.499526485e-06 -0.001433970579 0.006936564376 0 5.185394161 -8.302800887 1005.834347 0.001988398991 +2.498801693e-06 -0.005511673591 0.006878345066 0 2.628236586 15.84096335 1037.053409 0.001928540982 +2.498024249e-06 0.001201225342 0.00517364437 0 -16.43337934 -5.845887373 877.1854552 0.002280019565 +2.496516058e-06 -0.007982034017 0.006912895606 0 2.399111369 27.67687008 1051.876958 0.001901363068 +2.49785659e-06 0.009890825595 -0.00782389909 0 2.809871543 -20.62956452 1005.250682 0.001989553488 +2.499238731e-06 -0.004856311572 -0.01322913322 0 -4.706532154 -11.91244502 1037.922358 0.001926926406 +2.499040666e-06 0.003169165892 0.004402937873 0 12.29991211 6.795850083 1014.354142 0.001971697967 +2.496104699e-06 -0.007745916839 0.005657277619 0 -29.14961382 -1.771008048 1045.667078 0.001912654651 +2.496787201e-06 -0.003373374017 0.007726866086 0 -21.48792926 7.107697651 892.4316379 0.002241068016 +2.498604013e-06 0.0086063851 -0.007293356471 0 -0.5136709663 -16.15809702 967.3038076 0.002067602737 +2.499806274e-06 -0.003275556159 -0.00076796368 0 -5.616361734 -2.885295957 1014.363236 0.001971680291 +2.497814068e-06 0.00755211778 -0.005032821754 0 20.87468593 3.450577146 1011.574548 0.001977115778 +2.498219563e-06 -0.00734385591 0.005928079274 0 16.35761184 -5.701853375 917.7534879 0.002179234431 +2.496899682e-06 0.008137950148 -0.0007576726377 0 -10.59218644 20.41836762 923.3160144 0.002166105611 +2.497710827e-06 -0.001000392674 -5.715892185e-05 0 -12.82061979 -17.66859991 1019.881502 0.001961012134 +2.498114639e-06 -0.003992081294 -0.0008698344324 0 13.86647041 -13.5822626 999.2990125 0.002001402958 +2.496177631e-06 0.002061675056 -0.007520371126 0 -2.643115982 -24.36896263 886.0254062 0.002257271615 +2.498396332e-06 0.008943686681 0.01192326448 0 15.73445025 -8.650474011 1002.35891 0.001995293282 +2.49716829e-06 0.004056572109 0.01101421903 0 -19.24825416 -10.68110776 924.611768 0.002163070025 +2.495797658e-06 -0.001566464184 0.008513445526 0 -22.00720818 -12.92603759 879.8104538 0.002273216909 +2.497597331e-06 -0.005364370728 0.005850050496 0 -12.24130507 16.45145013 935.1133981 0.002138778039 +2.49774643e-06 -0.005060788183 -0.01087288357 0 2.456127849 -20.13936655 955.3321181 0.002093512782 +2.498957821e-06 -0.008739818581 0.005130748039 0 2.021090521 -12.51892657 878.2137642 0.002277349868 +2.49752682e-06 0.009827238084 0.009425164328 0 20.6033476 -8.015778873 993.6642174 0.002012752361 +2.496481793e-06 -0.008450522898 -0.004217838922 0 1.72119298 -23.64052175 893.0998845 0.002239391175 +2.499310688e-06 -0.001243944229 -0.003312144871 0 -5.233546251 10.93028999 1032.014127 0.001937957968 +2.498792852e-06 -0.002777887974 0.008866716321 0 -0.5117243903 14.33621138 923.0751453 0.002166670839 +2.499020287e-06 0.003044980192 -0.007537904447 0 12.52687868 -0.5595090736 895.6686391 0.002232968659 +2.498785694e-06 -0.005115667824 -0.008792522096 0 12.89484098 -6.377135732 922.9307752 0.002167009763 +2.494193148e-06 -0.00964756147 0.0006633468904 0 -23.3139467 -22.93124388 958.7433829 0.002086063941 +2.497285335e-06 -0.00749300716 -0.001139919099 0 -19.91654526 -4.445352318 875.4290013 0.002284594178 +2.498894859e-06 0.005767081305 0.002455528637 0 11.74024109 8.069666913 958.0798567 0.002087508662 +2.497072374e-06 -0.008334514513 -0.00138715358 0 -15.0935618 18.7412962 994.0199905 0.00201203197 +2.498569083e-06 0.009759790832 0.007303019373 0 4.631611247 17.1126699 1047.740073 0.001908870388 +2.499584253e-06 0.006401503072 -0.01206419592 0 4.69738777 6.530202823 882.1158859 0.002267275799 +2.497527658e-06 -0.00614743772 0.01308153998 0 11.57844241 -15.79077208 880.2390271 0.002272110118 +2.498311854e-06 0.005235629086 -0.01312597171 0 0.6572227326 -16.64446005 906.3126839 0.002206743915 +2.498246652e-06 -0.0001563541684 0.0145922931 0 16.15061013 -11.4227131 1056.095129 0.001893768796 +2.497814601e-06 -0.001244564699 -0.0050781211 0 -20.12980281 5.371837225 996.2191715 0.002007590355 +2.497594268e-06 -0.003454468991 -0.005848385424 0 -11.84861989 -20.29029288 1070.798763 0.001867764579 +2.498647204e-06 0.001101802993 0.01373914602 0 7.591208241 -13.76062452 955.2403088 0.002093713992 +2.498763784e-06 -0.008379439497 0.002064150085 0 -12.56773264 -8.962778112 981.5229445 0.002037649768 +2.497292318e-06 0.0007009561872 -0.01033736931 0 13.74134021 -15.97263065 905.0580849 0.002209802921 +2.494097619e-06 0.008271230375 -0.01007233158 0 -18.17456734 -25.9617876 921.5619483 0.002170228495 +2.497831923e-06 0.006869677836 -0.005060409824 0 13.43672175 -15.32874779 978.5887396 0.002043759466 +2.49537543e-06 -0.002639248511 -0.01490674927 0 -3.588459872 -31.48338797 1041.195137 0.001920869517 +2.497527083e-06 -0.003238525731 0.01425990595 0 20.01260342 -0.3314131755 899.6677556 0.002223042882 +2.496841726e-06 0.002161608282 -0.006361130176 0 22.64938456 -3.284339018 910.1842867 0.002197357205 +2.497088967e-06 -0.003414952019 0.003496905675 0 22.75959894 -10.74029058 1042.544711 0.001918382951 +2.496746468e-06 -0.006505255052 0.002935218494 0 -14.9999623 20.54167112 996.6297232 0.002006763348 +2.498689661e-06 0.001089523169 0.003386076086 0 14.55687954 5.108292056 952.7826965 0.002099114528 +2.49947027e-06 -0.008646259103 -0.002492230693 0 10.91669842 -0.3967445716 1061.209865 0.001884641357 +2.497610926e-06 -7.358700503e-05 0.009577726561 0 8.56926152 -17.39254771 886.6856474 0.002255590813 +2.49606936e-06 0.00682688605 -0.006037629666 0 15.99100378 -21.02970542 941.7000556 0.0021238185 +2.499976474e-06 0.004269219772 0.0147222996 0 -1.154246696 -1.695499472 945.583548 0.002115096021 +2.499620199e-06 -0.005943402941 0.01121369096 0 6.185774525 -6.453887905 1025.652666 0.001949977869 +2.499866834e-06 0.004776749779 -0.01418294689 0 0.08295604136 -5.283711528 1023.932951 0.001953252894 +2.498864148e-06 0.0004538512602 0.004105747067 0 6.561390509 13.55873047 999.2147316 0.002001571771 +2.498732361e-06 0.001388959484 -0.01129349029 0 10.01348462 12.90246278 1025.537194 0.001950197429 +2.495408097e-06 -0.003179474622 0.007906606758 0 -10.32680531 26.23994628 929.8680737 0.002150842745 +2.498477713e-06 -0.001635660804 -0.001165532134 0 7.05194236 15.98192896 1000.91122 0.001998179218 +2.498277256e-06 -0.0002462340472 -0.008020961406 0 11.87641546 11.43434427 887.9363642 0.002252413665 +2.496076397e-06 -0.0004130823305 0.004362391087 0 16.70087296 21.42985481 969.3069502 0.002063329887 +2.49724423e-06 0.00899642135 0.01129382491 0 6.776902282 22.47683938 999.5690264 0.002000862319 +2.496820556e-06 0.001367166117 0.006741036396 0 -18.5764726 12.86853356 895.7328183 0.002232808667 +2.496766438e-06 0.008995262464 0.004360554612 0 -14.94391821 19.8496597 976.5448721 0.002048036969 +2.49643261e-06 0.00498315807 0.01307783857 0 21.77621709 -17.08352724 1035.632983 0.00193118608 +2.498168928e-06 0.006032450804 0.00915112332 0 -15.4696376 7.861859022 906.5290153 0.002206217304 +2.499958076e-06 0.009403403313 0.006451705832 0 2.211814681 1.26603535 880.114039 0.002272432789 +2.499783332e-06 0.00165677805 0.005082974536 0 4.477923739 4.33899787 947.1730713 0.002111546517 +2.496761236e-06 0.003541359627 0.0004733483191 0 24.02533975 11.03720208 1038.327256 0.001926174999 +2.498468224e-06 -0.006363000469 0.008954977831 0 11.73279726 13.62743805 1027.151507 0.00194713242 +2.49670896e-06 -0.006053141053 -0.0004453549767 0 18.29599373 13.1505766 877.807693 0.002278403363 +2.497146699e-06 0.003830210753 0.007395379508 0 9.750844527 21.8981258 1003.022373 0.001993973468 +2.493946944e-06 -0.009985338859 0.01467205452 0 16.35652521 33.46809769 1069.652641 0.001869765869 +2.496451091e-06 -0.003923717216 -0.0125094888 0 -22.52915238 16.04469994 1037.613426 0.001927500117 +2.498174542e-06 0.005358290835 -0.001331176527 0 -17.06523152 -6.249400498 950.8662535 0.002103345231 +2.499941542e-06 -0.005804170324 -0.0009393691574 0 0.3988497253 -3.592847764 1057.199308 0.001891790871 +2.499456483e-06 -0.007611540905 0.001273018497 0 -10.0432012 -2.496480331 992.5088129 0.002015095457 +2.4988701e-06 0.006313509559 -0.0147379303 0 -13.15917264 5.242549472 942.1257756 0.002122858807 +2.496392501e-06 0.002601399943 -0.006227285124 0 -24.50898506 -14.78032869 1064.947076 0.001878027599 +2.497814087e-06 0.00288253238 -0.009751058738 0 -19.87876557 -9.735792353 1058.28457 0.001889850856 +2.499977785e-06 -0.005030869851 -0.0126680341 0 1.691142114 1.000574114 932.2263366 0.002145401735 +2.499329891e-06 -0.005967355743 -0.01092209933 0 10.44897796 4.898669421 996.7470651 0.002006527102 +2.497774987e-06 0.002691760687 0.001086592551 0 -19.86494363 -10.07945315 1055.618631 0.001894623627 +2.494420626e-06 -0.004745665491 -0.0004462748626 0 -24.21924261 -18.58147032 913.0608807 0.002190434441 +2.497385291e-06 -0.003319354053 0.001890569315 0 -11.49814611 -20.44129459 1025.192809 0.001950852544 +2.49457595e-06 -0.008952993741 0.01038072767 0 16.07569891 27.37924516 963.1873317 0.00207643927 +2.497067064e-06 0.009118036618 -0.01288502773 0 18.89616267 -15.34289798 1004.559198 0.001990922987 +2.499749622e-06 0.009798441594 -0.009890611873 0 -2.429532969 6.072275251 924.2012098 0.002164030926 +2.497951304e-06 -0.001072889795 -0.009645769112 0 7.339658296 -20.34298719 1068.070686 0.001872535242 +2.497878182e-06 -0.007944064192 0.01306470711 0 10.56086376 -17.30161184 983.6688947 0.002033204476 +2.497009007e-06 -0.003156798766 0.01284599294 0 15.1448153 16.48294838 914.7958671 0.0021862801 +2.494483031e-06 0.008461496425 -0.009856793589 0 -16.23524657 -26.88238838 944.6427918 0.002117202415 +2.497782949e-06 -0.008821871714 -0.0139704448 0 14.77146955 16.14605045 1038.893805 0.00192512458 +2.499744535e-06 -0.004025346804 0.002849295137 0 -3.674905448 6.273174567 1017.083748 0.001966406409 +2.497400744e-06 -0.006476994902 -0.009164701514 0 -1.313995209 -21.55761591 946.8845242 0.002112189975 +2.499995286e-06 -0.001102847024 -0.005737778787 0 -0.01530624199 -1.021132033 1051.746911 0.001901598169 +2.496492957e-06 -0.003977476866 -0.01103515136 0 -25.86979102 4.524645099 991.1098818 0.002017939723 +2.499913508e-06 -0.004959478443 0.002197807766 0 -3.468696399 -1.194458355 882.0450678 0.002267457835 +2.499176967e-06 -0.006413682941 -0.01313248472 0 13.68134789 -0.6485655102 1067.428994 0.001873660929 +2.496913531e-06 0.0008700869884 0.003245201341 0 13.33317007 -21.29527215 1010.782395 0.00197866525 +2.498970235e-06 -0.006372445277 0.005199114543 0 -11.26490586 8.721464294 992.5587001 0.002014994176 +2.494054754e-06 -0.006049572811 0.01230984729 0 19.71325162 28.6728056 1008.180276 0.001983772196 +2.498263775e-06 -0.0004728194093 -0.008176071513 0 -17.77432302 6.267499295 1011.137685 0.001977969993 +2.499195902e-06 -0.001822114238 0.01316012819 0 8.560579098 -8.726428741 963.8357543 0.002075042341 +2.496666815e-06 0.004130907869 0.0106009262 0 23.56084191 -6.051585658 941.676252 0.002123872186 +2.498193132e-06 -0.004684073725 -0.006939183155 0 9.487114932 -16.68800273 1009.531076 0.001981117816 +2.498182037e-06 0.005712517183 0.00128917991 0 17.74050655 1.555607627 933.6911339 0.002142035977 +2.497700178e-06 0.004469791385 0.007564342206 0 11.82643331 -17.04719907 967.0751643 0.002068091575 +2.499917485e-06 -0.002105827462 -0.01301048169 0 4.196679681 -0.7950438843 1051.418177 0.001902192717 +2.497125875e-06 -0.002061076751 -0.003257596556 0 18.14970983 -17.88962084 1062.472907 0.001882400941 +2.496825483e-06 -0.007845391631 0.003421413505 0 5.237214153 23.35511408 949.4558538 0.002106469713 +2.499849265e-06 -0.005148078552 4.730522633e-06 0 0.6989561093 4.805346808 884.380612 0.002261469748 +2.498225375e-06 -0.00382778327 -0.01347123586 0 -16.12676813 -4.526491303 888.8537129 0.002250089043 +2.497969382e-06 -0.005165806636 0.006439165408 0 6.080000279 19.21118006 999.5873894 0.002000825562 +2.498987412e-06 0.00521022799 0.0102402629 0 11.52918469 -9.067052617 1030.520583 0.00194076667 +2.499798614e-06 -0.007273849891 0.01137149728 0 6.663231087 -1.299372561 1069.661565 0.00186975027 +2.496124895e-06 -0.007381777163 0.004167480085 0 15.98718094 19.85794566 915.2152996 0.002185278154 +2.499194085e-06 0.002232173495 -0.01438317306 0 5.033405967 11.48587454 987.6378974 0.002025033674 +2.498661892e-06 0.009430373274 -0.008749999066 0 -11.79004916 11.6835259 1014.42723 0.001971555909 +2.497957558e-06 0.007269441248 -0.01373589878 0 19.99342434 -7.875916513 1062.890507 0.001881661363 +2.495170853e-06 -0.002812034977 0.001204501614 0 22.74452795 21.42475207 1004.694465 0.001990654941 +2.497706737e-06 -0.003358103153 0.007902672761 0 10.7631204 -15.41649597 877.6298577 0.002278865039 +2.499432999e-06 0.005141802663 -0.01418692539 0 10.44688657 -3.333750625 1029.677183 0.001942356336 +2.497556169e-06 -0.007572823446 0.008006633548 0 -9.52600016 19.62682344 986.447487 0.002027477414 +2.493358512e-06 -0.0009564021463 -0.005748789387 0 -24.79044758 -27.62603414 1017.434724 0.001965728073 +2.497888817e-06 0.009568598638 0.006290608663 0 -1.077707794 -21.30321091 1037.730546 0.001927282575 +2.499630175e-06 0.002113811397 0.01170465746 0 -8.028674537 -0.487851915 935.2054911 0.002138567426 +2.497628946e-06 -0.001292690067 0.005393689277 0 19.02406305 3.149213999 885.183675 0.002259418081 +2.498008292e-06 0.004816623698 -0.008097681992 0 15.93901773 -8.346388977 901.2047703 0.002219251457 +2.496852096e-06 -0.006228523147 -0.01250913589 0 -25.41162797 -0.9226684788 1012.949205 0.001974432666 +2.496545757e-06 -0.008989525596 0.007914582873 0 -22.33354392 -13.30699233 988.5822183 0.002023099306 +2.498946241e-06 0.001748289359 -0.00847956338 0 10.15340367 11.76592488 1070.360377 0.001868529555 +2.496482078e-06 -0.005669306698 0.0004802859295 0 -21.20367711 -17.57783316 1037.796446 0.001927160193 +2.497329719e-06 -0.001095327451 0.01127222953 0 -13.91881298 -16.92552179 947.8651495 0.002110004784 +2.498124689e-06 -0.008947633607 -0.01147980459 0 11.40518588 -16.9869656 1056.194822 0.001893590045 +2.497499589e-06 0.009028197341 0.006362493918 0 -6.293443491 -21.70571495 1010.22609 0.001979754848 +2.496257792e-06 -0.0004137189314 -0.01436092307 0 20.71239127 -20.03010715 1052.617625 0.001900025188 +2.495723972e-06 -0.004624196095 -0.00446370593 0 17.36461803 -21.26314968 938.1477679 0.002131860319 +2.499939062e-06 -0.003373570279 0.009855328063 0 -3.299633694 1.70454158 1063.819934 0.001880017413 +2.49802922e-06 0.001777311149 0.005923426808 0 16.88909321 -5.340925864 891.9511157 0.00224227535 +2.496723464e-06 -0.007447619382 0.001057442701 0 5.197801577 22.57554427 904.5207689 0.002211115619 +2.49601748e-06 0.006582897236 -0.01332677194 0 28.47360444 -2.570704037 1012.398879 0.001975505942 +2.496163897e-06 -0.005338037768 -0.00436378856 0 20.04633764 -20.05980001 1023.259228 0.001954538933 +2.497788128e-06 0.008944069073 0.001818287889 0 2.016126521 19.40349311 927.1982836 0.002157035917 +2.495817542e-06 -0.0057039301 0.001195133168 0 16.96485462 -23.86478657 1011.746311 0.001976780125 +2.499398686e-06 0.0001114237215 0.006107857211 0 -6.959381494 9.302754358 1059.303522 0.001888032994 +2.498888312e-06 0.008217241624 -0.01399225101 0 -14.92962468 -0.8360084191 1002.651276 0.00199471147 +2.499903167e-06 0.009783908082 -0.01187589345 0 1.848047319 3.828677422 966.0400085 0.00207030763 +2.497901245e-06 -0.001680560368 0.0026146444 0 21.23607911 -0.6890338297 1036.740711 0.001929122662 +2.498768685e-06 -0.003130551502 0.00020480067 0 -6.648724462 15.22705436 1058.592322 0.001889301441 +2.4924996e-06 -0.00958919473 -0.01351526598 0 -26.0745487 -31.61162662 1056.821764 0.001892466704 +2.499224952e-06 0.00341352019 -0.01459733526 0 8.583757262 6.833968952 881.1599662 0.002269735436 +2.498896316e-06 0.009614206776 -0.004640049005 0 -14.57270165 1.285587124 984.496762 0.002031494746 +2.499120883e-06 0.001890214155 0.01339643685 0 -2.005963398 -13.81832144 1052.902359 0.001899511367 +2.499595105e-06 -0.009596283529 0.0100076582 0 3.844202784 -7.441607085 930.7175613 0.002148879621 +2.499042595e-06 0.004009418734 0.01173650185 0 -10.388149 -8.850950429 986.112226 0.002028166721 +2.497955849e-06 0.007905318248 -0.004237398359 0 -6.539867591 -16.84728466 893.5194442 0.00223833965 +2.498846937e-06 0.007027143459 0.00590902885 0 7.72528368 -11.24701946 898.3478405 0.002226309131 +2.497794241e-06 0.00640546151 -0.01444240674 0 -4.162586707 -20.27302575 985.0261814 0.002030402885 +2.499358956e-06 -0.002161010755 0.003936095713 0 11.75036796 1.380619531 1044.787409 0.001914265029 +2.496343603e-06 -0.003239960647 0.00201284565 0 -24.74059836 -12.48389479 1024.200481 0.001952742687 +2.496451182e-06 0.004513141522 0.004400483596 0 18.29981566 -15.91934832 909.9437128 0.002197938149 +2.495607474e-06 0.001745993295 -0.001030079518 0 23.31368453 -18.34337194 1000.194693 0.00199961069 +2.498061826e-06 0.006201243517 -0.007914196355 0 1.245007673 19.20844928 977.3834209 0.00204627985 +2.497830773e-06 -0.00112001495 -0.01286587049 0 -5.405206588 -18.32030533 916.7442846 0.002181633454 +2.498737032e-06 -0.008461749586 -0.007316835104 0 14.60530858 8.307466597 1057.022484 0.00189210734 +2.495972131e-06 -0.005405112035 -0.005155093661 0 21.45601609 17.49941612 974.9141957 0.002051462589 +2.494151642e-06 0.000902133286 -0.009170385262 0 17.43330841 -28.55275683 977.31965 0.002046413372 +2.498619558e-06 -0.009406054839 0.01145901073 0 -8.474352392 14.71066692 1021.519675 0.001957867331 +2.49833618e-06 -0.003056570366 -0.005099675939 0 -10.61129955 12.33719147 891.8406688 0.002242553037 +2.499222048e-06 0.004740606034 -0.01059513638 0 11.42385071 -4.205422202 975.814402 0.002049570078 +2.498858355e-06 -0.002480997634 -0.004103150012 0 4.527356847 -13.73230382 956.7403535 0.00209043132 +2.499084624e-06 -0.001420023842 -0.003372291564 0 12.20226663 4.290223792 955.8183877 0.002092447714 +2.499639416e-06 0.003207585397 -0.005425356673 0 8.446957734 -2.521847763 1038.004252 0.001926774381 +2.498563493e-06 0.008495899113 0.001552949636 0 -9.408633461 11.55684938 879.0129452 0.002275279347 +2.496067708e-06 0.006442138283 0.007274399155 0 24.04181584 13.78511881 987.6367189 0.00202503609 +2.496645246e-06 0.001703257188 -0.003868895948 0 -21.89412617 9.306349404 917.9714744 0.002178716938 +2.497465932e-06 0.004622043548 0.01479450142 0 18.54568874 12.17654031 985.1134591 0.002030222998 +2.49539605e-06 -0.001520152041 0.001554939758 0 19.744827 21.94004788 972.0406088 0.002057527208 +2.495764691e-06 0.003299275064 -0.00441058265 0 13.10019966 -25.48843401 984.0355516 0.002032446893 +2.498124926e-06 0.001533251558 0.003915803879 0 -15.83357286 8.513494629 928.0619425 0.002155028569 +2.497907475e-06 0.008397320751 0.002863046145 0 16.59259098 -8.02193408 900.6146822 0.002220705524 +2.495676452e-06 -0.009837384555 0.01467169023 0 -29.40280516 -9.421124276 1049.285851 0.001906058295 +2.499104561e-06 -0.0008218795713 0.007066486683 0 7.677838246 -10.89697701 995.965075 0.002008102543 +2.49688934e-06 0.002461790345 -0.0008097516582 0 4.009219768 22.30482813 908.1544367 0.0022022686 +2.498640442e-06 -0.009057331583 -0.01033595946 0 4.738122995 -16.35072184 1032.15204 0.001937699024 +2.498792799e-06 -0.002667245376 -0.01337301652 0 5.116322296 12.74794093 883.8676566 0.002262782199 +2.49777103e-06 0.007840923867 0.002218025553 0 -6.054111987 -17.52680884 877.9436033 0.002278050654 +2.498945158e-06 0.003397649112 -0.006205610661 0 -3.377641646 -14.5994216 1031.526839 0.00193887345 +2.498846709e-06 -0.002200619751 -0.002086513541 0 6.452131548 14.05119735 1017.886621 0.001964855377 +2.498969257e-06 -0.005892264373 0.003766212871 0 6.126244214 -13.02634087 1002.431574 0.001995148648 +2.497204078e-06 -0.009043913269 -0.005833557481 0 -22.9026328 6.867205504 1010.695283 0.001978835792 +2.497966675e-06 -0.006159406258 0.0002057834342 0 -16.33313651 13.00463833 1034.995678 0.001932375218 +2.49878618e-06 -0.001696066498 -0.01270290409 0 15.15090663 -2.665254669 987.1550403 0.002026024199 +2.498704473e-06 0.003816076927 -0.007722661297 0 14.07573211 1.640920885 880.196388 0.002272220186 +2.497071045e-06 0.00829628848 -0.01415896445 0 22.52220301 11.80654925 1050.196158 0.001904406129 +2.495575384e-06 0.005313445791 0.007310135092 0 23.98109239 -13.92376963 931.5620279 0.002146931648 +2.49790768e-06 0.005574126928 -0.008269930019 0 -0.921754498 -21.8857641 1070.486371 0.001868309633 +2.498201782e-06 -0.005810183571 0.01105541297 0 -14.58351262 11.35574206 974.3740045 0.002052599916 +2.498899086e-06 -0.007520188061 -0.003189722733 0 6.408386065 -11.55857123 890.5189481 0.002245881465 +2.498114474e-06 -7.268772926e-05 0.004424845108 0 -17.51547011 8.032091081 992.0005774 0.002016127859 +2.496861844e-06 0.009388983422 -0.002080989035 0 19.62350033 16.13937485 1013.705665 0.001972959281 +2.496691222e-06 -0.008059095633 -0.008696828806 0 -24.01721935 -12.25568106 1047.638064 0.001909056256 +2.497133124e-06 -0.007528055962 -0.01110381437 0 -20.98341845 -13.00594262 1030.542025 0.001940726289 +2.497183753e-06 0.005302847181 -0.01380345219 0 18.67995411 11.82310991 931.1058137 0.002147983581 +2.498487179e-06 -0.006747859782 -0.003441060274 0 13.99236859 7.689566741 917.6794544 0.00217941024 +2.496837116e-06 0.009156400487 -0.01408926327 0 -17.19522061 -14.50553577 894.0244822 0.002237075203 +2.498849763e-06 -0.006144421538 0.01442931079 0 -3.089977008 15.87913797 1066.385221 0.001875494859 +2.498791088e-06 0.007925865748 -0.014418264 0 9.549059918 -12.65496956 1019.373775 0.001961988869 +2.495994476e-06 -0.006827011425 0.006726958598 0 -17.88657959 20.03245973 948.2674201 0.002109109685 +2.496688776e-06 -4.718965385e-05 -0.01212409975 0 8.422215859 -24.60197998 1009.972637 0.001980251669 +2.498904418e-06 -0.001307294075 -0.0002076056949 0 -5.968951285 -12.2539635 920.6616464 0.00217235073 +2.498873618e-06 -0.006492966302 0.01350028391 0 5.525062727 12.24111486 894.6483789 0.002235515145 +2.497994147e-06 -0.001907856078 0.008291262249 0 -11.90178539 14.58851335 939.7209822 0.00212829131 +2.497521203e-06 -0.0006209960254 -0.005924589455 0 22.0230778 -2.95047477 997.5710961 0.002004869636 +2.498095664e-06 0.0099717391 -0.0002186938352 0 5.96919761 -19.93474216 1065.971946 0.001876221985 +2.497790198e-06 0.004549808209 0.004959005071 0 -20.7657127 -8.47102873 1066.440624 0.001875397424 +2.499117476e-06 -0.001482504867 0.005403112569 0 -11.77274967 7.277764384 1041.646853 0.00192003652 +2.498225132e-06 0.00814385077 -0.01234566687 0 -6.139485626 -17.03883553 961.0218019 0.002081118239 +2.499387306e-06 0.005000209156 0.005030605879 0 -11.22226223 -3.283631713 1056.188775 0.001893600886 +2.495908435e-06 -0.009693173137 -0.01380998609 0 -25.84751812 0.3113595068 903.075136 0.002214655149 +2.499456285e-06 0.008508115928 -0.002595464559 0 9.159091257 2.255666437 904.4880009 0.002211195724 +2.497128056e-06 0.004497583299 -0.0008758714353 0 23.7602702 -5.61241895 1018.242148 0.001964169333 +2.495819792e-06 0.008485886692 0.009882623996 0 25.44378318 7.501213928 916.8392498 0.002181407483 +2.496719855e-06 0.009836492916 0.01399489019 0 25.43286389 -8.284467043 1043.802287 0.001916071679 +2.497625074e-06 -0.007041853247 0.00399149739 0 0.06427244278 20.48938863 939.8018342 0.002128108211 +2.497620782e-06 0.00771600089 0.01239059867 0 -16.02908776 -13.61335987 963.7164454 0.002075299233 +2.49994828e-06 0.003625116949 0.002732296733 0 2.16096286 2.506544819 1028.986467 0.001943660159 +2.498717791e-06 0.008752404135 0.002035510554 0 -0.942522576 -15.28755201 956.2773344 0.002091443484 +2.499566138e-06 -0.005970419711 -0.005321866055 0 9.272927424 -3.202155024 1053.079096 0.001899192575 +2.49553045e-06 0.001701639546 -0.01372400319 0 3.093321504 -29.09212017 977.8636782 0.002045274862 +2.495388433e-06 -0.006070560664 0.004937415705 0 21.66812588 -22.4879426 1027.567383 0.001946344379 +2.499021679e-06 -0.004573963075 -0.009446979524 0 -11.38815124 6.448880323 935.4735271 0.002137954674 +2.497425674e-06 0.006706072683 0.01422740016 0 -12.52907087 20.49835783 1058.360711 0.001889714896 +2.497810222e-06 0.00865438757 0.01439802413 0 13.2664146 14.58433564 941.7809331 0.002123636113 +2.498280029e-06 0.008135485295 -0.01134638357 0 14.56952434 8.858117323 919.099951 0.002176041896 +2.496713336e-06 0.0002188872546 0.01320103687 0 10.74349039 24.27465684 1034.879 0.001932593085 +2.499559558e-06 -0.008713922021 0.001179442629 0 -3.230395677 8.622606762 981.0040161 0.002038727637 +2.499035351e-06 -0.000500902487 -0.01262420034 0 12.00221339 -3.468696193 899.3277376 0.00222388337 +2.499390518e-06 0.007164762332 0.0009765844932 0 6.04117094 -9.696353867 1034.653904 0.001933013535 +2.49707032e-06 -0.001485879654 -0.01159605694 0 -18.30463872 14.08544857 953.7504362 0.002096984624 +2.497541718e-06 0.003031413504 -0.002965647723 0 16.23061151 10.87470789 880.7760369 0.002270724811 +2.498614741e-06 0.006038195132 0.01184817669 0 -17.05597827 -4.410238839 1058.180582 0.001890036571 +2.497435557e-06 0.004771789568 0.01119217407 0 19.90100258 -3.377771108 890.9706696 0.002244742805 +2.49949101e-06 0.004771332201 0.009605030974 0 3.548335248 -10.1061728 1061.517625 0.001884094954 +2.499600194e-06 0.00236319493 0.01323276259 0 -2.82025273 -9.137107482 1069.309643 0.001870365627 +2.496009327e-06 0.008085572589 -0.005278387244 0 16.83933775 -18.95564559 896.9467943 0.002229786664 +2.499471054e-06 0.009984333059 -0.01459859805 0 -6.663127366 7.332263752 963.1872681 0.002076439407 +2.492600571e-06 -0.00645921703 0.01036705726 0 -28.49602601 27.02295265 1019.72364 0.001961315716 +2.495752292e-06 -0.004912374946 -0.008330969552 0 -19.12156983 17.8155104 896.0859157 0.002231928842 +2.499953249e-06 -0.002149961977 -0.01499373281 0 2.749889459 0.4963427512 913.823695 0.002188605976 +2.499021808e-06 -0.001810785551 -0.004177702668 0 12.49804204 2.318951777 908.6591856 0.002201045267 +2.494347883e-06 0.004258257258 -0.01241449454 0 27.99748195 -20.87434443 1037.812925 0.001927129592 +2.496568076e-06 -0.003455188456 0.005468888415 0 -7.873361594 23.86330446 958.65195 0.002086262903 +2.497856109e-06 -0.006014799261 -0.004570329662 0 5.716191295 -20.14506417 1010.946103 0.001978344833 +2.497568845e-06 0.003608436328 -0.01262871532 0 21.90689284 2.428127884 999.2001437 0.002001600993 +2.498512067e-06 -0.008167479956 0.005253558769 0 -15.83697763 3.758216553 943.3335457 0.002120140865 +2.499230985e-06 0.001829086584 -0.004743980316 0 11.24592533 -2.651067649 931.5506034 0.002146957978 +2.495315011e-06 -0.007408663486 -0.006192095554 0 -20.42526726 -23.5729385 1018.248425 0.001964157225 +2.499638472e-06 -0.0005346132023 0.0007480103918 0 0.9306702894 -8.208566489 971.4746871 0.002058725797 +2.498568733e-06 0.00969910102 0.01370745298 0 17.22957219 0.3693715034 1018.370074 0.001963922596 +2.496717708e-06 0.007091151662 -0.01353794102 0 21.71500977 -8.131623675 904.5618889 0.002211015105 +2.496998888e-06 -5.95279457e-05 -0.00577287246 0 -12.12022548 22.78720529 1053.019637 0.001899299812 +2.498179179e-06 -0.004053865396 0.003883706324 0 6.477054281 -18.95046684 1049.165669 0.001906276633 +2.499609423e-06 0.0035565656 -0.0130011362 0 -6.846720776 -5.290767647 978.9473534 0.002043010784 +2.497821946e-06 -0.009284372902 -0.009038424608 0 -20.75663985 -6.546269267 1042.453363 0.001918551056 +2.499198556e-06 0.002139739268 0.00464314885 0 13.21095552 -1.491880307 1049.982654 0.001904793372 +2.49684636e-06 -0.005445140447 -0.005791895748 0 -25.49092959 -7.633795615 1059.032119 0.001888516849 +2.498734387e-06 -0.007245767987 0.01227058721 0 -1.215229346 14.64237307 923.3241121 0.002166086614 +2.498262267e-06 0.005330096749 -0.01131040887 0 18.40807888 2.140378545 993.8133249 0.002012450377 +2.497659316e-06 -0.003730194401 -0.0022650705 0 12.36251718 -19.02534529 1048.282822 0.00190788207 +2.49612062e-06 -0.008066053619 0.01063354545 0 7.397759405 26.02400718 970.7319154 0.002060301066 +2.49795944e-06 -0.009856943469 0.003389795003 0 -7.371458795 -17.04502511 918.9794565 0.002176327214 +2.498161144e-06 0.000786985904 0.008736894624 0 8.044512012 -14.96209807 885.5709725 0.002258429942 +2.499722941e-06 0.004251719578 -0.01300304306 0 7.694128274 1.054095945 1043.224668 0.00191713258 +2.495036661e-06 -0.003268561838 0.004477711602 0 20.07253625 25.91250389 1039.561676 0.001923887776 +2.497734089e-06 -0.00646242484 -0.01446082451 0 -22.05968447 2.257868691 1041.305601 0.001920665747 +2.496835346e-06 0.003085595979 -0.003227389881 0 22.17583179 -8.208087781 939.454924 0.002128894052 +2.499480413e-06 0.009735803455 -0.01292433406 0 0.7621688092 -10.3571444 1018.67268 0.001963339196 +2.499891931e-06 -0.005184853324 0.007227687954 0 -4.626947927 0.7029174188 1006.643827 0.001986800045 +2.498661912e-06 -0.0072369507 -0.006958014148 0 -11.15454777 12.40047407 1019.367182 0.001962001559 +2.498072513e-06 -0.005474764062 -0.008238556834 0 -17.04415793 -9.919750309 1004.119172 0.001991795453 +2.497294895e-06 0.004116304517 -0.009019651401 0 -12.48123561 17.1700372 912.2378845 0.002192410591 +2.497440667e-06 0.00479593595 0.0006042153924 0 -9.283443915 18.28842751 906.1804548 0.002207065921 +2.497899972e-06 -0.0009685812751 -0.008895354189 0 -19.95453396 -4.58988914 998.7859605 0.00200243103 +2.499339024e-06 -0.002379271518 -0.004794422595 0 -2.000284334 -11.39910283 1006.480177 0.001987123091 +2.499138317e-06 0.001779054808 -0.004209314638 0 -2.561553065 12.67853719 985.1717053 0.002030102965 +2.495384299e-06 -0.00939965568 0.007153116292 0 -17.53001966 24.37756897 987.5619717 0.002025189363 +2.498343276e-06 0.00165063282 -0.008174788789 0 18.83235545 2.993490056 1047.309352 0.001909655438 +2.49982982e-06 -0.005193927339 0.01253942276 0 2.33210247 -4.992563285 944.5006231 0.002117521102 +2.497390425e-06 -0.009466018593 -0.01380979741 0 -16.67351893 15.80374021 1005.194532 0.001989664623 +2.496744778e-06 -0.003619385855 -0.01337210868 0 -1.93253111 -24.11013674 947.4860459 0.002110849029 +2.499182929e-06 -0.003004476568 0.007008988315 0 -13.04057537 1.772308588 1029.373385 0.001942929581 +2.496805386e-06 -0.009661504934 0.003766002087 0 14.03427282 20.34035808 977.1883903 0.002046688254 +2.499060914e-06 -0.00893257672 0.006041807276 0 -7.645362548 -12.25372917 1053.741308 0.001897999048 +2.499338047e-06 -0.007760670176 -0.0004732583603 0 -11.6786129 3.627037529 1062.710182 0.001881980651 +2.495413656e-06 -0.009171925606 0.005292062606 0 14.47122579 23.32004834 905.5650717 0.002208565748 +2.497741258e-06 -0.001510554594 -0.005685183951 0 1.863010752 21.1606449 999.1025317 0.002001796549 +2.498581785e-06 0.00589774644 -0.0009505746444 0 1.202390275 -15.0418541 895.7895239 0.002232667325 +2.499436543e-06 0.006867982247 0.0147592358 0 -6.163242173 8.038198244 954.0865418 0.002096245898 +2.49653256e-06 0.004645983265 -0.007358469197 0 -13.12097981 -20.19596153 914.0760181 0.00218800183 +2.497522558e-06 -0.006389225437 0.005013349077 0 -18.2888314 10.57879579 948.8118447 0.002107899486 +2.499321115e-06 0.004474385479 -0.008881777846 0 -11.87620753 -1.363516729 1025.8036 0.001949690955 +2.497855746e-06 -0.007469691345 -0.01210470172 0 -21.41036253 4.4047966 1055.195359 0.00189538362 +2.498216268e-06 -0.002524205223 -0.001586010559 0 -16.78752772 7.793125086 979.6441955 0.002041557546 +2.497157626e-06 -0.0008701848146 -0.002042634529 0 25.10277029 -1.917779946 1055.466561 0.001894896602 +2.498187987e-06 0.008478457164 -0.008282562469 0 -17.96556036 4.848735174 977.2253661 0.002046610812 +2.499652877e-06 -0.005684290878 -0.004157116888 0 8.620428775 1.538955052 1050.901747 0.001903127487 +2.497362079e-06 -0.00384505901 0.006176749819 0 8.018678083 21.34253907 992.2055973 0.002015711265 +2.496966042e-06 0.007973215091 -0.002356562954 0 23.8501295 6.774346204 1006.05396 0.001987964941 +2.498690466e-06 0.008840244305 0.01122999494 0 -15.33614429 -7.446277474 1053.227614 0.001898924765 +2.499420448e-06 0.007925274363 0.006403045077 0 -10.76745024 2.565625086 1028.028874 0.001945470648 +2.496805294e-06 0.007061068281 0.01201765701 0 19.26003207 -15.69140658 982.3435382 0.002035947631 +2.498336909e-06 0.009366301005 0.007006251309 0 -14.40031439 -6.98073293 877.2496261 0.002279852781 +2.497869661e-06 -0.001321480838 0.009351653068 0 -18.18114749 -5.939014131 926.3158615 0.002159090741 +2.496714757e-06 -0.006368309879 -0.004669607983 0 1.944745069 -25.26190408 987.9530957 0.002024387604 +2.49589416e-06 0.004038157938 -0.007075361225 0 18.96789637 -18.15197777 915.6145636 0.002184325238 +2.498741901e-06 -0.00101167094 0.005738462303 0 8.210793702 -13.56148128 999.2373039 0.002001526556 +2.499644799e-06 0.003547603982 -0.01207259068 0 4.333720781 7.110397717 987.9004618 0.00202449546 +2.496583455e-06 -0.002350508212 -0.01268638343 0 14.76655111 -17.77220782 883.4859295 0.002263759878 +2.498023048e-06 0.007176053035 0.01241753181 0 -20.05246916 -2.979421095 1019.219198 0.001962286429 +2.498815925e-06 -0.005980725223 -0.01192813658 0 -3.095507561 -15.31180952 1014.946295 0.001970547613 +2.499599141e-06 0.005174228079 0.009790857104 0 -8.942027483 0.4335620073 999.7908012 0.002000418485 +2.496041072e-06 0.005230012373 -0.01252619647 0 -21.85650018 16.68576912 976.6386445 0.002047840326 +2.497791163e-06 -0.005262858886 0.006328494712 0 -18.75734678 7.347523773 958.1381745 0.002087381604 +2.498297713e-06 0.00909430794 -0.009974492965 0 -18.9165167 2.415725086 1033.264825 0.0019356122 +2.499441066e-06 0.005020189732 -0.002180456228 0 9.962570732 5.172605271 1061.618885 0.001883915244 +2.496965032e-06 -0.002431742116 0.01049519887 0 15.84911801 -20.12436478 1039.257491 0.001924450887 +2.498187741e-06 0.001102192826 -0.0104324853 0 19.00082826 -5.892631736 1044.647491 0.001914521423 +2.497164306e-06 0.001977583608 0.0003147234418 0 -17.9005028 16.04409975 1008.961792 0.001982235616 +2.498023263e-06 -0.009741502241 0.007353367503 0 -20.81995253 -0.158537764 1046.824821 0.001910539338 +2.496986056e-06 0.00598165038 0.009088475669 0 22.7359335 -3.856136945 938.8409906 0.002130286193 +2.497843012e-06 -0.000121438643 -0.008470238016 0 -14.20974369 15.02436625 995.322912 0.002009398132 +2.49975229e-06 0.001890403414 0.006068900158 0 -5.923184366 -2.725931693 926.333372 0.002159049928 +2.499607489e-06 -0.0060195632 0.01479631501 0 -6.510379231 -5.228682041 942.3777458 0.002122291203 +2.493980898e-06 -0.002776151942 0.00737528326 0 -21.41527442 27.76877791 1009.786459 0.001980616774 +2.497543118e-06 0.007125515393 -0.002197806439 0 17.93325428 -14.45204519 1038.628736 0.001925615891 +2.49814107e-06 -0.0007620585384 -0.004343184535 0 18.29932272 -7.865393189 1032.713051 0.001936646388 +2.499291535e-06 0.003595051174 -0.00134392207 0 -6.277381355 9.109454523 929.2838518 0.002152194936 +2.499084614e-06 -0.0006336472649 -0.001451464263 0 12.49208609 -2.193419983 937.2417542 0.002133921148 +2.497540108e-06 -0.005807351642 -0.01471582749 0 22.19323236 -5.055511218 1025.823202 0.001949653699 +2.498458136e-06 0.001614820189 -0.01193640081 0 -2.931756906 -17.22485781 994.7602614 0.002010534676 +2.499940082e-06 0.009081215011 -3.063485026e-05 0 -0.2518720382 3.565794123 1032.617631 0.001936825346 +2.499369688e-06 -0.006345458278 -0.01259592748 0 -4.793496924 10.89375495 1059.928685 0.001886919402 +2.498691361e-06 -0.009653372848 -0.01174034562 0 -5.66866194 -14.36542351 954.40616 0.002095543893 +2.495273887e-06 -0.005838482776 -0.0144591808 0 -22.70095775 15.89937442 900.8248469 0.002220187428 +2.499282208e-06 0.006773167504 0.01068315686 0 -6.728755297 10.4356407 1036.217797 0.001930096169 +2.498476984e-06 -0.00406789022 -0.0007836496783 0 7.422485669 -13.8103467 898.1340351 0.002226839115 +2.499557602e-06 -0.0051456135 -0.0003560881619 0 -8.968807321 -2.76902153 997.8255905 0.002004358296 +2.499783355e-06 -0.005682859137 0.008300572329 0 6.340457293 -1.530819859 990.8765856 0.002018414835 +2.49800081e-06 -0.001406281441 0.002342249639 0 -19.97563602 -7.10024014 1059.896027 0.001886977541 +2.498000009e-06 -0.007218459365 -0.01397427246 0 -11.92113431 15.69366766 985.1056728 0.002030239045 +2.498833265e-06 -0.00957029955 0.0143491787 0 -4.483852835 15.01386852 1025.574816 0.001950125889 +2.496709408e-06 0.005820763726 0.003151370615 0 22.18703068 -13.39104587 1009.680069 0.001980825473 +2.496477017e-06 -0.003820053888 -0.008728998355 0 -18.34013261 -14.53725923 881.1877223 0.002269663943 +2.498464161e-06 0.002266382324 0.003291822772 0 -4.122420897 -17.65989433 1034.479156 0.001933340066 +2.499682874e-06 -0.001505277273 0.008961829485 0 1.049281763 7.458828065 945.7459143 0.0021147329 +2.498632287e-06 -0.008530572122 -0.008716127488 0 -12.12804693 11.70923624 1019.077246 0.001962559764 +2.496503532e-06 -0.00823216307 0.0007242183317 0 10.2226134 -23.83627091 980.2644188 0.002040265832 +2.497676067e-06 0.008736468754 0.009712127235 0 -13.2476062 17.79157582 1028.541056 0.001944501863 +2.499635435e-06 -0.007436431493 -0.00146021659 0 -0.4271178438 -8.910378004 1044.643235 0.001914529222 +2.498969871e-06 0.006720971279 0.01352021737 0 -1.856134407 13.23986134 931.2835837 0.002147573559 +2.499112869e-06 -9.651764762e-05 -0.01478161509 0 -6.250702595 -11.74803525 998.9121682 0.002002178033 +2.499762521e-06 0.008963884679 0.007627076854 0 -1.835840553 6.504594927 980.6648088 0.002039432824 +2.49296294e-06 0.004967717803 -0.01433075217 0 -20.07361584 -32.44459749 1015.901642 0.001968694525 +2.499683833e-06 0.004956556289 0.01214566064 0 -1.180100772 7.472034265 951.2510006 0.002102494503 +2.499046264e-06 0.009563070885 -0.01311363221 0 -7.563556566 -12.36402125 1049.294491 0.0019060426 +2.499234282e-06 -0.006515661776 -0.002727805967 0 -0.7103385566 11.97673102 969.396905 0.002063138421 +2.499602919e-06 -0.006539082131 -0.007775691699 0 -2.149306142 -8.457686651 979.1746945 0.002042536445 +2.496749222e-06 -0.009854682074 0.005743515843 0 14.36065854 17.14397635 876.6518804 0.002281407301 +2.499756656e-06 0.008719225801 -0.01215934666 0 4.858779344 -4.48536138 947.8281565 0.002110087136 +2.499415405e-06 -0.006427491731 0.008760469202 0 -7.214392134 7.356264113 952.805482 0.002099064329 +2.499634728e-06 -0.00942774056 -0.003799241153 0 4.338311924 -6.406901981 905.2219841 0.002209402815 +2.498312284e-06 0.001895685154 0.008668280889 0 -14.55309579 -8.29877677 911.6274564 0.002193878635 +2.499290875e-06 -0.0007136701047 -0.005377914004 0 -7.142641525 -8.62247599 940.0792952 0.002127480108 +2.497403046e-06 0.004320241893 -0.005292635683 0 9.038676303 20.77163334 993.5948283 0.002012892925 +2.498029094e-06 -0.001894133422 0.001941778958 0 18.4419634 -6.10692321 978.1937081 0.002044584813 +2.497920639e-06 0.009433498029 0.01442659682 0 -13.89202184 11.52780954 884.9372336 0.002260047294 +2.495860025e-06 -0.006830710224 -0.01412841908 0 12.97138001 -24.02381671 948.224259 0.002109205687 +2.495145909e-06 0.0021073385 0.001700494476 0 20.39308008 20.14799857 919.3963809 0.002175340301 +2.49827467e-06 -0.004606318385 -0.005853059229 0 18.61672488 3.212913905 1016.747131 0.001967057432 +2.499920386e-06 -0.0008714951621 0.01262447365 0 -3.55915855 -0.2214503313 893.6554485 0.002237999 +2.496781842e-06 0.002640852095 -0.008456390987 0 17.55831031 -13.74227944 878.441611 0.002276759178 +2.498999668e-06 -0.009833861962 -0.01180411676 0 -5.974636179 -12.79457519 998.1768439 0.002003652972 +2.499037507e-06 -0.007751858393 -0.009719980415 0 -12.8891324 1.297836454 933.5501666 0.002142359427 +2.496614285e-06 0.002061052839 0.008204462989 0 16.90488689 -19.25402801 984.1336921 0.002032244212 +2.498292796e-06 -0.007219947879 -0.005802893525 0 18.40919373 -3.81185498 1017.142922 0.001966292009 +2.499016917e-06 0.004397451282 0.005420709529 0 -11.33555664 -5.829364889 908.9098651 0.002200438214 +2.497391282e-06 0.006696282104 -0.007536304872 0 -7.507405872 -22.88627602 1054.068626 0.001897409667 +2.498455562e-06 0.008172325399 0.003606376285 0 -6.400368077 -14.28656728 890.5223483 0.00224587289 +2.496889443e-06 0.003778924216 0.001006724343 0 -21.9038028 -12.00651741 1000.995556 0.001998010869 +2.499874068e-06 0.006804611171 -0.008213410699 0 4.478753982 0.8755523218 909.3049553 0.00219948213 +2.496350426e-06 -0.008292719522 -0.009033249174 0 -24.8592118 1.916763025 922.3600897 0.002168350542 +2.498072784e-06 -0.003881005002 0.01343635788 0 -16.39278485 10.61289903 994.397702 0.002011267721 +2.498326417e-06 -0.0004561989615 0.004575943323 0 6.805580084 -15.0570978 902.9406519 0.002214985 +2.498194039e-06 -0.0007599167246 0.005557415492 0 -19.18806417 3.567341312 1026.651361 0.00194808099 +2.498278452e-06 0.00426236046 0.002205345535 0 13.65218404 -12.10469707 983.0460962 0.002034492592 +2.499973777e-06 -0.005022781114 0.01366359205 0 1.906647203 0.7761059021 898.8814191 0.002224987587 +2.497522841e-06 0.009608690487 -0.01170699181 0 -6.442116432 -21.95394676 1027.531724 0.001946411924 +2.49823933e-06 -0.006645097388 -0.01184788669 0 -20.01474648 1.325176601 1068.639597 0.001871538361 +2.497886212e-06 0.007085485426 0.01449268589 0 -14.37638089 14.09744382 978.9673385 0.002042969077 +2.499359026e-06 -0.002867090846 -0.01128531511 0 -11.83299475 1.378352009 1052.068844 0.00190101628 +2.497803819e-06 0.008052947861 0.01366538621 0 -12.93087984 -16.91062682 1015.410707 0.001969646356 +2.497522598e-06 0.001506445296 -0.01007324307 0 -22.99218567 4.913112788 1055.847507 0.00189421293 +2.498774928e-06 -0.00690641467 0.01048309836 0 14.70159042 -4.871033954 989.2514481 0.002021730677 +2.497214558e-06 -0.00799350508 -0.0029254494 0 13.8488294 20.48739556 1047.280396 0.001909708238 +2.493772021e-06 0.00534002332 0.01264413501 0 23.63749607 20.00017913 876.5068183 0.002281784874 +2.495237095e-06 0.008115017912 -0.007929281141 0 11.67951211 -28.59555329 1000.09032 0.001999819377 +2.497617034e-06 0.004058832307 -0.01018312699 0 -19.63836558 11.35070222 1038.640038 0.001925594938 +2.497749224e-06 0.009606748465 -0.01496686357 0 7.315752622 -18.32215111 929.5452169 0.002151589792 +2.499168674e-06 0.007952551995 -0.01115920721 0 6.410472025 11.607533 1028.230407 0.001945089336 +2.497671898e-06 -0.004084484125 0.003981999408 0 20.46332922 -9.678201263 1048.681028 0.001907157607 +2.496760372e-06 -0.009520891039 -0.00833917584 0 -15.23640115 20.23869326 994.7412165 0.002010573169 +2.497847213e-06 -0.002785111098 -0.007393300608 0 1.224331403 21.83008305 1053.371434 0.0018986655 +2.496736462e-06 0.001646998278 0.01099721722 0 11.61633772 23.04117158 1009.511395 0.001981156439 +2.499192888e-06 -0.001427902142 0.005512345259 0 -11.98290008 -5.04421241 1023.181361 0.001954687679 +2.498844668e-06 -0.007718767612 -0.003957580933 0 9.34171136 -13.15050647 1060.993579 0.001885025545 +2.496700195e-06 -0.008459249693 -0.01037607291 0 6.655070207 -23.69030961 957.393115 0.00208900604 +2.49808071e-06 -0.001800241456 -0.0004798991955 0 -20.90851986 -1.171305171 1068.546131 0.001871702065 +2.497638915e-06 0.007696545972 0.002720655373 0 8.983172492 -16.96546611 883.0970207 0.00226475682 +2.499518062e-06 -0.001974879196 0.01214619161 0 -9.605951577 -1.527085163 990.6447791 0.002018887135 +2.498094363e-06 -0.001609979891 0.001401920181 0 -12.60079263 -15.33799771 1016.500729 0.00196753425 +2.499853451e-06 0.0008486777451 -0.00404849072 0 4.530776556 3.127611896 1016.896822 0.001966767873 +2.495025388e-06 -0.005435257661 -0.01391460758 0 -7.858740437 -31.64229041 1032.872013 0.001936348333 +2.498181286e-06 -0.0007992006931 -0.01039560099 0 -15.01403349 8.561758151 905.9828291 0.002207547357 +2.498976641e-06 0.004204440024 -0.01239206947 0 -13.21845728 2.692281365 942.7822815 0.002121380555 +2.496742466e-06 0.0005273951776 -0.01037303973 0 19.94255242 -18.56416232 1066.90987 0.001874572592 +2.498137987e-06 0.0007684510481 0.009043369631 0 13.76200842 14.39123839 1031.559296 0.001938812444 +2.497234604e-06 -0.0009284103196 0.0024918532 0 20.96297985 -7.072501402 940.3460284 0.002126876638 +2.499257709e-06 0.004821565435 0.003265031653 0 7.731746461 9.279828984 991.2197565 0.002017716038 +2.496130354e-06 0.003879326335 0.002697724875 0 -14.64735169 21.49960259 934.5879207 0.002139980579 +2.499887308e-06 0.003307807022 0.006342622857 0 2.775043236 3.8479945 999.3056599 0.002001389645 +2.497606919e-06 0.001134888469 -0.01147368705 0 11.9618114 -17.27145195 959.9765341 0.002083384259 +2.498903252e-06 0.00858984652 -0.009630271378 0 -7.487634707 -12.94696337 1009.675996 0.001980833463 +2.498737758e-06 -0.002700747945 0.01457177036 0 -11.58350321 11.37000275 1021.372645 0.001958149173 +2.496207641e-06 0.005769031206 0.00286644706 0 22.29280472 15.02806134 975.653637 0.002049907799 +2.497248118e-06 0.004763352075 0.005398034581 0 17.59233349 16.92315828 1040.091132 0.001922908424 +2.499377712e-06 -0.003229176803 0.01065466206 0 -1.618042865 10.25504622 930.5208009 0.002149334005 +2.498596946e-06 0.007817683606 0.01480296059 0 -5.113133729 -15.27245641 961.2464552 0.00208063186 +2.498095448e-06 0.001425815676 -0.003824223422 0 -19.41216399 2.998690063 1006.141776 0.00198779143 +2.49876531e-06 0.00120183141 -0.004569789427 0 -10.02239564 13.45356849 1067.391812 0.001873726197 +2.495968155e-06 0.002141450364 0.0110746589 0 7.721605022 23.86726544 882.8533694 0.002265381851 +2.4993478e-06 -0.009557403345 0.01463463635 0 8.861344115 -5.106370314 895.394976 0.00223365113 +2.499328831e-06 -0.0003968973132 0.0008896961971 0 0.622838972 -11.5335474 996.8290728 0.002006362028 +2.497844592e-06 0.009160779472 -0.0006095288903 0 -8.155285815 -17.90475156 947.2947355 0.002111275324 +2.499917961e-06 -0.003141602487 0.00450759514 0 3.039458414 2.42288282 959.5838822 0.002084236758 +2.498666608e-06 0.003716526218 0.008454243403 0 14.50581396 6.460613008 972.2000279 0.00205718982 +2.496214671e-06 0.009363577524 -0.00719787502 0 -1.633648868 -28.42407194 1034.162603 0.001933931854 +2.496661691e-06 -0.009160347944 0.005651836493 0 -25.90771139 -8.140079966 1050.452496 0.001903941405 +2.498813414e-06 0.005425502607 -0.002266271885 0 10.27854943 12.45941936 1048.294312 0.001907861159 +2.499962239e-06 -0.009631622951 -0.01485054851 0 2.129758976 -1.162276445 882.8700506 0.002265339048 +2.499678424e-06 -0.00258622705 0.001240172605 0 -6.915529261 -3.369004558 959.1580051 0.002085162183 +2.498099286e-06 0.007519960771 0.001133589351 0 -13.86171214 11.9256596 937.595218 0.002133116681 +2.496186412e-06 -0.003282966856 -0.006577431802 0 -23.3674211 -9.383147862 911.258296 0.002194767399 +2.498676514e-06 0.001404393883 -0.002454983261 0 4.249999106 -15.49061922 987.1140218 0.002026108388 +2.495013628e-06 0.007322984892 -0.001421315277 0 -20.32091387 -23.421351 981.164918 0.002038393305 +2.495453242e-06 0.008011163357 -0.01195358931 0 -1.229466263 -31.278809 1037.344648 0.001927999537 +2.498107385e-06 -0.009640967497 0.009052588956 0 17.69247835 -3.823128322 930.0988214 0.002150309144 +2.497562266e-06 0.004396482478 -0.003832416062 0 -17.63190435 -8.36389806 883.4939769 0.002263739258 +2.498474798e-06 -0.008285980681 0.0005431866576 0 17.31271605 -3.888330594 1015.718187 0.001969050103 +2.494419967e-06 0.002669697832 -0.006775244968 0 19.94588526 -26.51662918 992.4084902 0.002015299163 +2.496941226e-06 0.002511103777 0.005745697541 0 -22.0841279 -9.785603688 976.1576611 0.002048849361 +2.495738131e-06 0.00530142406 -0.0008078677836 0 -15.83076853 -20.26888824 880.3445025 0.002271837893 +2.497248859e-06 0.003931942037 0.01472960024 0 -14.43399732 19.59528277 1037.112364 0.001928431353 +2.495728539e-06 -0.0005093847029 0.007707793631 0 -20.61353698 23.19537962 1061.008126 0.001884999701 +2.495760076e-06 -0.00114760038 -0.008461022275 0 -2.335320037 -30.86044615 1062.115302 0.00188303473 +2.499868504e-06 0.0008771897852 -0.007184101262 0 -1.903405596 4.611198845 972.7460152 0.002056035151 +2.499492202e-06 -0.0002074906137 0.005898485687 0 6.174836675 -8.029640931 1005.051279 0.001989948216 +2.498994997e-06 -0.0003464663401 0.0059215605 0 -5.840670622 -12.18499095 952.9527698 0.002098739899 +2.498357995e-06 -0.005303254421 -0.0020939064 0 14.47151796 12.24948454 1045.983587 0.001912075892 +2.497309169e-06 0.004966986119 -0.002848005148 0 22.51770399 3.967345872 985.20989 0.002030024282 +2.496150579e-06 0.005292441077 -0.002348584891 0 25.87441391 7.584362806 971.1938553 0.002059321102 +2.497532499e-06 0.002465506732 0.005380490357 0 22.42201022 -0.4229467644 1009.130448 0.001981904326 +2.496466905e-06 0.007730076672 0.01215279882 0 10.27143164 23.85071956 976.3884872 0.002048364996 +2.497727262e-06 0.008902318957 -0.0004392665369 0 3.743572791 -21.93901643 1043.54596 0.001916542324 +2.496866533e-06 0.003162003523 0.003004518973 0 3.102395299 24.67658687 993.0216057 0.002014054869 +2.497412608e-06 0.007714573103 -0.011362907 0 -19.4185515 -13.30118124 1034.286291 0.001933700579 +2.49847281e-06 0.006141199656 0.008033501299 0 15.3219213 6.746529144 957.7070362 0.002088321297 +2.492870936e-06 -0.008252640283 0.01418793434 0 -18.78163648 28.55503798 904.1722709 0.002211967857 +2.498475628e-06 0.003016049922 -0.003472168618 0 2.73923312 17.83837915 1033.37157 0.001935412254 +2.499527559e-06 6.00085035e-05 0.01354372047 0 -5.246301105 8.887662718 1061.657034 0.001883847547 +2.493976974e-06 -0.004673974188 -0.01089197034 0 20.59854876 -30.10002949 1049.932957 0.001904883532 +2.498363434e-06 -0.008962985817 -0.002689479492 0 -13.09172092 -10.3913484 923.6426234 0.002165339656 +2.496425487e-06 -0.00740856553 0.008413635499 0 19.05222902 -21.03408572 1060.852036 0.001885277053 +2.497447693e-06 -0.002508946145 0.0003766262415 0 -0.6800293922 -21.17482525 937.3372531 0.002133703737 +2.495781627e-06 -0.005087258047 -0.01198197494 0 -22.49138202 16.64361049 962.6820558 0.002077529116 +2.497572576e-06 0.004511976303 0.003843261993 0 4.834567858 19.48451061 910.787081 0.002195902908 +2.499842031e-06 -0.009599589859 0.0003732086462 0 3.366934139 -4.570106547 1009.870823 0.001980451315 +2.498615623e-06 0.001379228402 0.01065082734 0 8.723579012 15.51618311 1069.538517 0.001869965381 +2.498270465e-06 0.003041487252 -0.0005192837957 0 17.72813905 -0.8355514448 954.0093908 0.002096415422 +2.496530888e-06 0.006750823697 0.01217841586 0 23.27665208 9.814532275 958.5249789 0.00208653926 +2.496233211e-06 -0.0033185365 -0.01494875165 0 -23.75091194 -14.36049432 1010.62982 0.001978963969 +2.49890471e-06 0.007348180604 0.006796214597 0 2.129610451 15.43351965 1052.470181 0.001900291367 +2.495517541e-06 0.009992591105 0.0134790759 0 22.22735083 14.43420963 884.5600572 0.002261010978 +2.496779908e-06 -0.007238014392 -0.0126317927 0 -24.78633551 -5.963701137 1004.09232 0.001991848718 +2.499371791e-06 0.007961669439 -0.01215369863 0 -11.4313719 0.115644371 1019.794607 0.001961179227 +2.498222034e-06 -0.008082844047 -0.008209084128 0 -19.12295702 -6.363155352 1068.477103 0.001871822984 +2.499427353e-06 -0.008545580963 -0.00822162882 0 -0.575380251 -9.365564896 876.7103276 0.002281255207 +2.499954789e-06 0.0001780918892 0.001280831478 0 -2.848620747 -1.34015753 1046.918344 0.001910368666 +2.49756633e-06 -0.004213283714 0.01329819793 0 -15.09738974 14.7130995 955.1811768 0.002093843606 +2.497436111e-06 0.0065992219 -0.003208512843 0 23.69738031 3.119319298 1055.11268 0.001895532144 +2.496057871e-06 0.001611869098 0.01080184064 0 -0.8251673134 26.37988934 939.3943165 0.002129031403 +2.496057761e-06 0.001785240779 -0.01350081735 0 -2.198547007 -26.31215458 939.774595 0.002128169894 +2.494498176e-06 -0.001430041166 0.008171578094 0 -21.78259929 20.74336304 906.0280817 0.002207437099 +2.499733097e-06 0.003630228271 0.007314418894 0 2.623742184 -6.814662217 999.4258783 0.002001148903 +2.498326107e-06 0.009165514396 0.01339508336 0 -16.58165459 4.769580635 942.7609151 0.002121428634 +2.496403582e-06 -0.000853172075 0.007740237918 0 -12.89192823 24.26912437 1024.104426 0.001952925844 +2.498059339e-06 -0.007557228953 0.004319730971 0 13.39456038 -13.9236869 980.3991527 0.002039985443 +2.498391145e-06 0.003831018042 0.01015518174 0 7.050829879 -16.62850492 1006.648786 0.001986790256 +2.499357064e-06 -0.005404182742 -0.01184085418 0 -5.813853648 10.45051298 1054.505385 0.001896623791 +2.495790289e-06 0.004409157527 0.005296354671 0 -10.92367308 25.35717144 950.9354142 0.002103192257 +2.496132455e-06 -0.009045306831 0.001255772102 0 -24.16052051 12.31233535 974.4390053 0.002052462996 +2.497351327e-06 -0.002159331972 -0.005994687066 0 -24.16246554 -3.583934745 1060.877114 0.001885232487 +2.499764349e-06 -0.006324330722 -0.003513764169 0 -1.249625253 6.09649787 906.4680463 0.002206365694 +2.496488302e-06 0.00643270656 -0.01328490748 0 -13.73702495 -19.93693935 913.0945634 0.002190353639 +2.497938147e-06 0.007128384314 0.01458815583 0 20.82306617 -5.409210485 1059.123145 0.001888354541 +2.499747019e-06 0.002329759123 0.003014724262 0 -5.231193693 3.449981354 880.9320839 0.002270322578 +2.497970846e-06 -0.002052373183 0.01398947615 0 20.80370153 4.653236101 1057.880588 0.001890572549 +2.4992184e-06 -0.001484338809 0.003772635036 0 12.55398283 2.496372611 1023.632966 0.001953825313 +2.49552779e-06 0.007362573873 -0.00140994929 0 25.80669421 -17.10139971 1034.464387 0.001933367669 +2.497842451e-06 -0.005412552217 -0.008311177231 0 12.030236 -16.9137602 998.8558032 0.002002291015 +2.49940609e-06 -0.001905236375 -0.01137574595 0 9.150091655 -3.371538527 894.6576267 0.002235492037 +2.499199619e-06 -0.003751482242 0.002199419397 0 6.882821256 11.63104471 1068.069476 0.001872537363 +2.498802355e-06 -0.006498969113 -0.00897827276 0 15.35960884 5.428429665 1052.401388 0.001900415586 +2.49983775e-06 -0.004549909527 0.01136375551 0 0.4939387261 5.942839504 1046.81756 0.001910552589 +2.49508344e-06 0.00693333325 -0.004569546185 0 23.0173148 -19.82796421 968.103198 0.002065895458 +2.498668593e-06 -0.002278586566 0.01499926365 0 -10.49746936 -12.52171517 1001.129944 0.001997742663 +2.496973742e-06 -0.0002580896532 0.00396217386 0 21.71109885 11.10161478 990.7262994 0.002018721014 +2.49578113e-06 0.002412308622 -0.01109634641 0 -8.941729463 -26.63409919 966.5873291 0.002069135338 +2.4967156e-06 -0.006204312826 0.0002776957769 0 21.91260935 14.89780935 1033.343296 0.001935465211 +2.498034163e-06 -0.001663939864 0.005881787965 0 17.49753705 6.938763361 949.019291 0.00210743872 +2.499020868e-06 -0.006874811719 -0.0114747507 0 11.06331927 7.608655468 959.3668953 0.002084708165 +2.498357031e-06 -0.008127120403 -0.01417051029 0 -12.39097127 -11.90768262 947.7992882 0.002110151405 +2.499972982e-06 0.009098815033 -0.0112814462 0 0.8959933072 2.005637756 944.9827049 0.002116440851 +2.495607928e-06 0.00667363632 -0.006264377679 0 23.77255424 18.57164943 1017.171793 0.001966236198 +2.498691394e-06 0.006933082952 0.009712654401 0 -14.24438425 1.358222437 884.3094597 0.002261651708 +2.499518307e-06 0.0007845014986 0.01119611707 0 -9.258944333 -1.630018859 957.7627808 0.002088199751 +2.49436093e-06 0.006450286205 0.007171934447 0 22.45900588 25.54620881 1012.006208 0.001976272462 +2.497698535e-06 0.00943021053 0.007409706165 0 -8.004825629 -20.50645541 1025.701375 0.001949885267 +2.496059202e-06 -0.004127846044 -0.007472894532 0 8.269232508 -26.35061342 983.1569932 0.002034263107 +2.498275631e-06 0.008699730365 0.01324892823 0 -17.63814662 8.648406533 1057.53422 0.001891191757 +2.496317892e-06 0.002127723815 -0.01374035554 0 -10.97688085 -22.93257069 936.3660023 0.002135916933 +2.496479959e-06 0.00460522755 0.01400945236 0 -20.03857563 -12.79393716 895.558689 0.002233242806 +2.49793426e-06 -0.001489916621 -0.006402351921 0 -11.39327332 15.8551783 960.2519686 0.00208278667 +2.498334122e-06 -0.008131181053 0.01005009108 0 -6.546654537 -15.51424639 922.2954835 0.002168502433 +2.499068523e-06 -0.004748034677 -0.009983493746 0 -5.709583191 -12.02029 974.835244 0.002051628737 +2.498460967e-06 0.005664529982 0.01425435641 0 -16.34911802 -6.909321048 1011.435951 0.001977386702 +2.494810426e-06 -0.00962822122 -0.01479116861 0 8.711919706 -29.2145115 945.5372749 0.002115199531 +2.496750684e-06 0.0008420702443 -0.002629669723 0 2.941550416 -25.23785567 996.2302289 0.002007568072 +2.498344704e-06 0.007798777828 0.009830716022 0 13.48996409 -10.45384622 937.7374785 0.002132793075 +2.498991317e-06 0.00432982632 -0.0009861211921 0 6.256036715 12.40826504 978.219696 0.002044530496 +2.496842185e-06 0.006315610255 0.006736098379 0 24.31872124 -0.01218894397 967.22294 0.002067775605 +2.498476625e-06 -0.007813527416 0.007298581142 0 -17.16098835 -3.783501828 1006.540002 0.001987004983 +2.498658135e-06 0.003671011743 -0.001708805098 0 4.901010152 16.23494823 1034.981685 0.001932401344 +2.499166789e-06 -0.002724731108 -0.008339805664 0 -11.67913517 3.522497996 944.8645717 0.002116705462 +2.495955686e-06 0.00504201801 0.01000355353 0 24.81106712 -14.58516283 1011.339468 0.001977575348 +2.499941681e-06 -0.005134572042 0.001810736312 0 -2.809559878 -1.042721485 877.4768275 0.002279262469 +2.496394417e-06 0.004821307096 0.000818508456 0 -11.73361685 22.21012303 934.9011033 0.002139263707 +2.496113589e-06 0.0008422902878 0.010602653 0 24.72219976 16.62069583 1067.88745 0.001872856545 +2.493768816e-06 0.004586182144 -0.003455344706 0 24.35798961 -23.67276787 961.2624119 0.002080597322 +2.499780702e-06 0.002819285118 0.004645820616 0 6.563456023 1.594895149 1019.866897 0.001961040216 +2.498144885e-06 0.004380150079 0.01310363099 0 17.7282686 7.743926942 1004.073124 0.001991886799 +2.498934359e-06 -0.003124435311 0.001151722488 0 14.36441471 -6.014012939 1066.523235 0.001875252161 +2.498177608e-06 -0.0005589295365 0.005596699971 0 -0.681818665 -18.20181523 953.8159443 0.002096840603 +2.499388313e-06 -0.002532445271 0.01016451031 0 8.828193095 4.556923078 898.1416084 0.002226820338 +2.496302626e-06 0.002138802852 -0.007370549496 0 21.91721001 -12.20935791 922.0870022 0.002168992725 +2.498797007e-06 0.001402745368 -0.009051033177 0 -8.418221008 -13.76362287 1039.956567 0.001923157239 +2.49578441e-06 0.006368991435 0.007811857865 0 -18.3171565 -18.06819503 885.5288856 0.002258537279 +2.499692182e-06 -0.003179619582 -0.005882918118 0 -0.1543910082 7.860247578 1001.930598 0.001996146244 +2.496470001e-06 -0.005622990271 -0.00957436078 0 -21.68021898 -12.47028654 940.7953119 0.002125860933 +2.499605266e-06 -0.009755759994 -0.009460464686 0 -5.928613193 5.974831782 947.2576018 0.002111358089 +2.499588416e-06 -0.0009793821909 -0.01100694254 0 -7.787499492 -1.96093289 885.0677095 0.00225971412 +2.4994698e-06 -0.00761730093 0.01118349419 0 -9.43405602 4.050047552 996.9191551 0.002006180732 +2.497671125e-06 0.005254457095 -0.01277141343 0 -18.76120008 3.302620678 882.3636733 0.002266639097 +2.49654342e-06 -0.005806953744 0.000587912437 0 -27.1399918 4.167639536 1043.77565 0.001916120577 +2.498209776e-06 0.002510186289 0.003782417178 0 -11.46577318 -16.05640939 1042.416818 0.001918618316 +2.495035413e-06 0.003828691193 -0.01093607146 0 22.94432494 -21.08886832 988.2574987 0.002023764052 +2.499941081e-06 -0.005324288141 0.006358993503 0 3.644420148 -0.2804959642 1064.7897 0.001878305171 +2.499228879e-06 -2.592451405e-05 -0.01081145058 0 11.34589591 5.88072608 1028.923356 0.001943779377 +2.499037488e-06 -0.009885687153 0.002449209576 0 7.957606337 -11.07356125 982.6842872 0.00203524166 +2.497197749e-06 -0.001724427002 -0.009886051272 0 24.62187214 0.9666848977 1040.409571 0.001922319879 +2.498300171e-06 -0.007695416701 0.007188636248 0 2.061464986 -19.21775327 1047.993489 0.001908408804 +2.499266327e-06 0.009976061378 -0.001193976221 0 -3.503112358 10.97817862 951.2010876 0.002102604829 +2.498540467e-06 0.002697937074 -0.009966083604 0 0.554664739 -15.52962727 909.3285065 0.002199425165 +2.498925694e-06 0.009877993683 0.01110967976 0 -0.1046050276 14.20921465 969.243287 0.002063465414 +2.498765036e-06 -0.008508129655 0.01455518575 0 4.348654035 -15.59811818 1030.157751 0.001941450227 +2.496421171e-06 -0.001530202269 0.003347356974 0 19.74447203 -18.89473461 1020.938163 0.001958982506 +2.498387047e-06 -0.005528236651 -0.008425492693 0 8.083175505 -13.5671161 879.0651194 0.002275144305 +2.494968482e-06 -0.002379200212 4.273391794e-05 0 18.54286856 22.63394028 921.6756313 0.002169960811 +2.499513833e-06 0.00288486009 -0.008105352859 0 -6.026299894 -7.355769108 964.2768429 0.002074093156 +2.499163566e-06 -0.007174709588 -0.01454495184 0 13.68675501 -1.799217805 1067.175225 0.001874106476 +2.49577687e-06 0.008355328166 -0.004191384728 0 24.05083607 18.25220901 1038.224448 0.001926365734 +2.498027007e-06 0.001386811933 -0.006061312566 0 -2.072071626 -19.21248181 972.4970842 0.002056561436 +2.497315862e-06 0.001311378786 0.008717815317 0 9.777495229 19.57124271 943.8629799 0.00211895163 +2.499361456e-06 0.005299234618 0.01453641572 0 2.241438109 -10.36771391 938.5349775 0.002130980782 +2.497606478e-06 -0.009209304084 -0.008096798938 0 4.373567935 -21.84791268 1018.010263 0.001964616736 +2.496934026e-06 -0.002768527158 -0.01118701142 0 20.94993013 -10.17485633 940.0949329 0.002127444719 +2.496854934e-06 0.003471979457 0.003839407631 0 2.958518424 24.11150282 968.1314439 0.002065835185 +2.49777516e-06 0.007674550833 0.009575613462 0 18.55184092 -1.743206439 883.0523762 0.002264871319 +2.499388388e-06 0.003438227074 -0.001716554062 0 9.855335802 2.518073583 919.6252144 0.002174799004 +2.498693922e-06 -0.00303874536 0.01294255885 0 11.39475676 -12.59269427 1050.57075 0.001903727093 +2.495897261e-06 -0.002401881772 0.007975256124 0 -22.65383451 20.28433883 1060.887668 0.001885213733 +2.497439039e-06 0.006378614199 0.008949398473 0 2.534238612 21.21176915 943.5634778 0.002119624219 +2.499745767e-06 0.003529866473 0.0001108503272 0 -6.504924506 -1.522123345 936.8514244 0.002134810225 +2.496905389e-06 0.00237250342 0.002264384972 0 -8.137710618 -25.17533536 1063.00524 0.00188145827 +2.498052414e-06 -0.00722196504 0.01317098455 0 -17.98121853 -0.3222371407 910.9584448 0.002195489829 +2.492839979e-06 0.008614802486 0.01443466602 0 26.04620181 23.77403593 930.8995079 0.002148459617 +2.496751265e-06 -0.0003107821243 0.003972275387 0 -11.43660647 21.45194405 953.2420218 0.002098103057 +2.494260957e-06 0.009174113176 -0.003706282857 0 26.42078658 18.94579153 958.8015137 0.002085937466 +2.496958727e-06 0.007459049844 -0.002047138754 0 17.04347506 -15.12578492 923.5393883 0.002165581702 +2.498757123e-06 0.009795150911 0.003852482471 0 -6.908738116 -12.39053973 899.6313623 0.002223132812 +2.497734557e-06 -0.003010095353 -0.00515477028 0 -19.6276565 9.983258544 1034.169087 0.001933919729 +2.496599989e-06 -0.008967133295 -0.01437593328 0 -24.15750333 3.567872821 935.9679338 0.002136825342 +2.497497534e-06 0.008884881018 0.002594330998 0 -9.08527975 19.50053787 961.259591 0.002080603428 +2.499010375e-06 0.003343383758 0.005511427252 0 -13.31041078 -0.8864940453 948.0643389 0.00210956147 +2.496759737e-06 0.005552761322 -0.003000043966 0 -20.62375524 13.54830766 968.8470436 0.002064309339 +2.492539978e-06 -0.004998622718 -0.0142957765 0 -27.94938406 -30.1783129 1063.690987 0.001880245321 +2.499907184e-06 0.007165384223 0.01273011642 0 -3.363788901 -2.386519489 957.253052 0.002089311699 +2.498385875e-06 0.005134368502 -0.007143934972 0 9.806274278 13.76959716 940.6231543 0.002126250019 +2.498211736e-06 -0.0006954803411 -0.008337225434 0 12.4022512 -15.37148665 1044.094433 0.001915535546 +2.495736624e-06 0.002706157202 0.004651531794 0 22.29211091 -21.48419848 1059.566748 0.001887563954 +2.499605623e-06 -0.003715402866 -0.004111714661 0 -2.107371861 -9.068387617 1048.225657 0.001907986115 +2.494420917e-06 0.001179005806 0.002457060311 0 21.43819766 20.78441316 893.1448559 0.002239278418 +2.498320557e-06 -0.008435370591 0.005208491958 0 17.9326697 -4.022224771 1002.527762 0.001994957222 +2.498463978e-06 0.003037566976 0.008807153525 0 -4.850320937 -15.64868165 934.5079597 0.002140163686 +2.492872297e-06 0.003386219461 0.004389489843 0 26.58301598 27.18387537 1005.94053 0.001988189104 +2.497216009e-06 0.001411615666 -0.00368673153 0 19.67826622 15.34033003 1056.964051 0.001892211942 +2.499922673e-06 0.0006233835733 -0.01479266758 0 4.043009164 0.153338819 1028.797355 0.00194401744 +2.49847614e-06 0.001858260343 -0.001291785683 0 0.2444676931 -18.36129503 1051.610796 0.001901844302 +2.49808783e-06 -0.004541872521 0.001830508369 0 18.51819469 -2.271289929 953.7577967 0.002096968441 +2.497619471e-06 -0.004978122613 0.009752948899 0 -12.86752165 -16.36956788 953.9061232 0.002096642375 +2.499476562e-06 -0.002285931343 -0.005310023851 0 6.335184909 7.124141082 931.6900126 0.002146636728 +2.496389669e-06 -0.004275097889 -0.007591528895 0 23.08268109 -16.60391618 1057.587256 0.001891096918 +2.499391276e-06 0.002815684951 0.01245263598 0 -4.881109009 -10.75807623 1070.577157 0.001868151199 +2.496099687e-06 -0.00650123565 -0.006305503584 0 -28.68683157 5.707923285 1046.633828 0.001910887978 +2.498910021e-06 0.005111194984 0.011598965 0 -7.32781165 12.1500705 960.8367081 0.002081519142 +2.497402594e-06 -0.009929184392 -0.001016603576 0 12.76484974 -16.88551321 928.3565521 0.002154344681 +2.497432714e-06 -0.008735198737 0.003497684081 0 12.71839708 20.28086558 1056.050802 0.001893848284 +2.499079682e-06 0.009326860402 0.01194195389 0 11.32196079 -8.573021063 1046.62562 0.001910902965 +2.497578173e-06 -0.002429964906 0.009463210758 0 -15.03598285 15.50722279 981.085693 0.00203855791 +2.494270847e-06 0.001935209595 -0.01368478308 0 22.84516767 -25.25596154 1005.197123 0.001989659495 +2.498432445e-06 0.005840200526 0.01012905 0 -8.230095786 -16.17900547 1024.933583 0.001951345954 +2.499556623e-06 -0.0002424848918 0.01052919707 0 1.412802965 -9.670630945 1037.792078 0.001927168305 +2.492123511e-06 -0.008770610155 -0.008524464662 0 -28.7493419 -29.86269712 1043.169724 0.001917233557 +2.49625066e-06 -0.007994259219 -0.006613422835 0 2.389069255 -27.17432211 995.6204929 0.002008797543 +2.499688911e-06 -0.008592569847 -0.003056696362 0 -1.216185638 -7.076178837 910.2122107 0.002197289793 +2.495103485e-06 0.002412180891 -0.004370156256 0 -21.83791701 -21.04430379 968.4089828 0.002065243131 +2.496641274e-06 0.00117800443 -0.008929866725 0 22.54986628 -14.24151132 1028.514482 0.001944552104 +2.49859754e-06 -0.009923627954 -0.01188001351 0 17.04178959 -4.485838692 1051.988288 0.00190116185 +2.498228239e-06 0.002531700134 -0.004924952576 0 7.476884591 -16.42580406 958.4801293 0.002086636894 +2.495326826e-06 -0.001980581237 0.01297225741 0 -19.23309722 19.14739791 887.0967484 0.00225454552 +2.498252325e-06 0.007023086194 0.009274888099 0 -14.72688431 -12.41546939 1030.012124 0.001941724718 +2.498694827e-06 0.006634838362 -0.002062978931 0 8.342191737 -12.63875929 937.1234036 0.002134190644 +2.496882347e-06 0.005229945849 0.01142715731 0 -17.13424638 14.73015262 904.4638123 0.002211254859 +2.498663505e-06 0.004808279527 0.009986708381 0 -13.26481889 -9.425579011 995.1093924 0.002009829286 +2.496097078e-06 0.007716118456 0.003749184462 0 25.9835273 7.11177789 963.652653 0.002075436615 +2.498621643e-06 -0.008857977022 0.01233723054 0 -6.726404738 14.32967338 953.2153765 0.002098161705 +2.4974006e-06 0.004492277065 0.01150258195 0 23.58287276 6.134148183 1068.29615 0.001872140043 +2.494590066e-06 -0.001193892774 0.01407492918 0 -22.77821514 23.44550245 992.9591157 0.00201418162 +2.495853908e-06 0.001505184625 0.0130487504 0 0.5629742287 25.64611466 890.2693653 0.002246511088 +2.497711125e-06 0.005599171836 -0.01150193657 0 10.87342293 18.49966756 1002.593881 0.00199482566 +2.49943058e-06 0.002043498796 -0.008411289796 0 0.425884102 11.0909869 1039.972474 0.001923127823 +2.498709807e-06 0.009924726621 0.01373173904 0 -0.1263255697 17.11776866 1065.44865 0.001877143493 +2.497214038e-06 0.007407604158 0.004958732575 0 -8.901732667 19.33024489 901.1904418 0.002219286743 +2.498334524e-06 -0.001067313552 -0.006531885657 0 3.62183853 -16.82368757 942.6841499 0.002121601387 +2.498229946e-06 0.007536564516 -0.003293311719 0 9.147788271 17.69115896 1058.242271 0.001889926394 +2.499482439e-06 0.003864919697 -0.008346286586 0 -7.211778285 6.37871369 946.2482936 0.002113610152 +2.497446875e-06 0.004008240788 -0.005744047067 0 -19.89643499 -9.73967136 979.9491772 0.002040922169 +2.495806026e-06 0.009361192565 -0.01254032821 0 26.70443629 15.60805271 1067.321547 0.001873849549 +2.498617859e-06 -0.001930096913 0.01470626079 0 14.85579551 1.34626454 896.9965282 0.002229663033 +2.498903851e-06 0.003394298516 -0.01429946335 0 14.09909509 -0.6172735984 952.9846157 0.002098669766 +2.497659323e-06 0.003830842255 0.004408147156 0 -12.95551762 -18.25902827 1034.387989 0.001933510464 +2.497576715e-06 -0.007250217586 -0.00698729282 0 5.745080848 -19.07618917 904.6262 0.002210857921 +2.499240444e-06 0.00472746131 0.0119428057 0 -1.058815834 -12.66918424 1031.373117 0.00193916243 +2.49552027e-06 0.004419585122 0.01048894722 0 20.31322702 22.2939803 1006.940629 0.001986214422 +2.498188095e-06 -0.001960816421 -0.006150152951 0 18.61303402 -7.719049887 1058.223991 0.001889959041 +2.498202641e-06 0.008908747053 0.01144049939 0 18.54654814 5.456140154 1019.383371 0.001961970399 +2.499879342e-06 0.003818115513 -0.01172224849 0 -4.887124147 0.9585141549 1013.79305 0.00197278922 +2.497207583e-06 -0.002774883122 0.003041366176 0 18.67767656 9.162243698 879.9493638 0.002272858056 +2.49799531e-06 0.007394144186 -0.005322575904 0 17.83328919 -2.297973849 897.7145246 0.002227879738 +2.498976012e-06 0.005976654538 0.01301289255 0 14.81079587 -2.326601987 1047.472873 0.001909357323 +2.496765e-06 0.005486438209 -0.007488256437 0 2.705045605 -26.67040428 1053.389507 0.001898632924 +2.495874981e-06 0.009736823151 0.01345056999 0 22.81079529 17.331902 996.7874065 0.002006445895 +2.497426614e-06 -0.008514946578 0.003365440944 0 -8.192459233 -18.90082418 907.6759163 0.002203429621 +2.499405468e-06 -0.004566601464 0.0003974449052 0 5.210877437 -8.017007088 876.7844158 0.002281062441 +2.499090596e-06 0.005022888198 -0.01467966536 0 7.040184687 9.701704085 888.702369 0.002250472228 +2.498580963e-06 -0.00736076443 0.01358227107 0 -15.45668857 2.887372898 933.169338 0.002143233729 +2.498806434e-06 0.004362177891 -0.0001980934851 0 -3.343891553 -14.63770927 971.635629 0.00205838479 +2.499498877e-06 -0.004954696642 0.01375545377 0 -6.519298485 6.6434954 929.6779207 0.002151282671 +2.499852137e-06 0.003668066799 0.01177243961 0 -0.9632315503 -4.832057675 906.0234575 0.002207448365 +2.498050143e-06 -0.003933626711 0.006207722139 0 18.18671345 6.27879327 974.0089122 0.002053369302 +2.499492998e-06 -0.007438439517 -0.008173728946 0 10.46121061 -0.7792724263 1041.671675 0.001919990769 +2.499862356e-06 0.0003417878831 0.006182877619 0 -1.405428786 -4.622395009 920.7986248 0.002172027571 +2.497664962e-06 -0.006997321853 0.009984608868 0 -4.832773323 19.56856308 932.3970354 0.002145008965 +2.497542167e-06 0.006504400684 0.006525525993 0 2.798480012 23.33618267 1059.690383 0.001887343729 +2.496631232e-06 0.00669336482 -0.006900124443 0 25.63379703 3.587159437 996.6761999 0.002006669769 +2.498977195e-06 -0.002908911644 -0.01256849438 0 -9.203344555 12.11779481 1063.74422 0.001880151226 +2.498250807e-06 -0.00658324542 0.004469553593 0 -19.31675563 -1.153577712 1034.330556 0.001933617825 +2.499646913e-06 -0.009855206911 0.005659277171 0 1.481726213 -8.636637136 1042.714063 0.001918071378 +2.498687331e-06 0.002842530916 0.007542669796 0 0.9024459553 -15.11085185 934.0797105 0.002141144891 +2.495153838e-06 -0.00021443957 0.0002225296595 0 -22.57618701 -20.25758943 973.5914287 0.002054249802 +2.499151235e-06 0.005948470864 0.014609532 0 12.19643179 -3.277038583 969.1822073 0.002063595457 +2.495125259e-06 0.003835670827 0.0007082414115 0 27.09833321 16.49075086 1015.190292 0.001970074 +2.499464317e-06 0.004701140397 -0.01089594218 0 0.9170066954 -9.808000159 951.6264228 0.002101665057 +2.496672462e-06 -0.008123404863 -0.01232698899 0 -12.41330755 -19.73368608 903.2538252 0.002214217028 +2.499353513e-06 0.005453131292 0.01493467671 0 9.207047297 -6.746017638 1003.689683 0.001992647761 +2.496061714e-06 0.009768136209 -0.01086034365 0 24.04534802 6.210736368 884.3616515 0.002261518234 +2.497477766e-06 0.006018899274 0.01273749505 0 -18.78042534 -14.19743949 1047.826189 0.001908713507 +2.497533634e-06 -0.002558038775 0.007897852804 0 -11.37402158 -20.13343234 1040.782735 0.001921630647 +2.499254467e-06 -0.008256795169 0.002319154989 0 10.41611647 7.883370405 1069.663343 0.001869747163 +2.499089517e-06 -0.00634820329 -0.01230911724 0 12.9314976 -2.675357182 978.4522463 0.002044044569 +2.498662667e-06 -0.00433835132 -0.004385721178 0 2.966850173 15.90660976 989.1941651 0.002021847753 +2.498236803e-06 -0.007304729722 0.01452507832 0 -12.94424497 -12.00738919 939.960525 0.002127748929 +2.497919875e-06 0.00314024243 -0.006537231195 0 17.93948567 2.325662103 886.6124818 0.00225577695 +2.499219702e-06 0.001136777294 0.01482270661 0 -13.34096084 0.9445755198 1070.475664 0.001868328322 +2.49388054e-06 -0.009428363796 -0.01331079412 0 -29.47522846 -21.37570018 1039.809017 0.001923430138 +2.499881739e-06 0.003117591548 -0.00214088263 0 -4.525586266 -1.089310758 957.1103997 0.002089623099 +2.495939501e-06 -0.006912944131 -0.008234624856 0 -21.53649663 21.323632 1062.855945 0.00188172255 +2.497038404e-06 -0.0004155598162 -0.0051369221 0 -20.53537507 -9.789982573 934.3364095 0.002140556634 +2.498802031e-06 -0.00414183619 0.004048502769 0 -12.74755404 -5.017084441 884.8771567 0.002260200735 +2.499407283e-06 0.006516833669 0.002405300138 0 6.927672452 -7.78395099 956.9796687 0.002089908559 +2.499351716e-06 -0.007693056352 -0.002983996009 0 -10.34395667 -1.338992692 915.9150847 0.002183608539 +2.499140617e-06 0.002823667051 -0.009578036838 0 1.892274884 12.67196047 977.1658124 0.002046735543 +2.496907227e-06 0.005487048789 0.007443889179 0 5.565807239 21.51847478 893.2704542 0.002238963564 +2.49903257e-06 -0.000666352869 -0.002951559022 0 -1.803759238 -14.69457865 1064.184144 0.001879373989 +2.498846929e-06 0.002198643121 -0.004175863035 0 11.08455251 -11.32020709 1043.11233 0.001917339046 +2.499927145e-06 -0.003338925554 -0.0008132920205 0 0.6365373164 3.604315516 958.830031 0.002085875427 +2.498279373e-06 0.008759733215 0.01319560152 0 10.81131238 13.29340078 923.4360621 0.002165824015 +2.496850906e-06 -0.002647808315 -0.000970723643 0 -21.74360979 14.25535677 1035.524047 0.001931389237 +2.496359931e-06 -0.007464147964 0.001111314381 0 -27.22494581 -7.732719569 1048.352124 0.001907755948 +2.499655214e-06 0.006885818895 -0.009594540191 0 -3.270233146 -7.122565417 943.7600857 0.002119182651 +2.497291487e-06 -0.008616308989 0.0008733401773 0 -5.813584377 23.58293772 1043.161585 0.001917248516 +2.497771416e-06 0.009593317825 0.003910849616 0 -20.0585935 6.319677071 995.8103389 0.002008414576 +2.494572344e-06 0.006619516774 -0.005888469089 0 26.6038236 16.01499165 941.7122714 0.002123790951 +2.497363474e-06 0.005011154544 -0.00958315707 0 15.73721717 -15.14038249 950.6197306 0.002103890689 +2.496441084e-06 -0.008578717103 -0.01190293762 0 20.56645452 -19.07424079 1050.818911 0.00190327751 +2.498452562e-06 0.003700831174 -0.009915535329 0 -17.18430532 4.547343397 1010.197746 0.001979810397 +2.499518918e-06 -0.009655466913 0.0120579478 0 1.261079551 8.534936138 879.4963738 0.002274028705 +2.498223892e-06 0.002338933796 -0.01462633256 0 -18.08038961 -8.78508416 1066.270116 0.00187569732 +2.498111809e-06 -0.00567426017 0.01175870755 0 10.33272869 -16.78731123 1014.095111 0.001972201599 +2.495307654e-06 -0.009174600723 -0.009251707213 0 -25.79708287 -11.67335862 923.6455587 0.002165332774 +2.49766375e-06 -0.009900227888 0.008976643758 0 -7.960409664 -20.58026798 1020.469182 0.001959882802 +2.496406713e-06 0.003594686342 -0.01323936161 0 10.14734616 -25.47280822 1022.269447 0.001956431356 +2.497348338e-06 0.008355138935 -0.003912857173 0 21.62876917 -7.452091701 992.9879589 0.002014123114 +2.496499282e-06 -0.004907080061 0.006067996197 0 -22.6641644 -12.94054087 985.8042374 0.002028800368 +2.496743158e-06 -0.006724516959 -0.003422379736 0 -17.60070525 14.50164307 893.1212996 0.00223933748 +2.497687887e-06 0.007906652698 0.01038536451 0 21.54970738 -6.920770197 1052.171152 0.001900831434 +2.496998043e-06 0.0004164282093 0.004238431742 0 -18.18481983 17.08126173 1017.751757 0.001965115743 +2.495265336e-06 0.002953217058 -0.005291946691 0 23.75395784 15.59857289 922.8278963 0.002167251346 +2.496215383e-06 0.007041465389 0.003302789759 0 15.13608051 -19.5936161 899.4175309 0.002223661349 +2.499004143e-06 -0.004359134063 0.001767017366 0 -1.937697475 -14.06410341 1005.812375 0.001988442428 +2.499283878e-06 -0.003545110258 0.009565958027 0 -11.45492714 -4.423744213 1025.944087 0.001949423975 +2.496540424e-06 -0.002028457858 -0.006367817866 0 12.93329871 -21.38792943 949.7046604 0.002105917854 +2.496876762e-06 -0.007384498152 -0.01332514376 0 19.80778362 -17.08383035 1046.097471 0.001911867732 +2.499979707e-06 0.006525728055 -0.00498778363 0 1.438192962 -1.175783015 922.0918656 0.002168981286 +2.498803248e-06 -0.005358429058 -0.0007966825529 0 -6.295904141 -13.63386776 970.5057923 0.002060781106 +2.498895555e-06 0.005432499843 0.0121490749 0 -0.4262690684 13.77815001 927.3415418 0.002156702693 +2.498669523e-06 0.001654000641 0.004196087925 0 15.05139682 2.606255171 936.2386076 0.002136207569 +2.497204352e-06 0.007790615819 0.01286474393 0 20.25504851 -12.94544255 1016.17764 0.00196815982 +2.499115775e-06 -0.003951127129 -0.006026604627 0 8.456338668 10.94934586 1040.194653 0.001922717054 +2.499762285e-06 -0.00492879766 0.01402946719 0 -1.45790957 -6.39767981 951.6056137 0.002101711015 +2.499178035e-06 -0.003303953228 -0.004021320823 0 -4.682747489 -11.29203263 953.3128066 0.00209794727 +2.499795619e-06 -0.0007427427499 0.01458948713 0 5.506166476 0.9915099081 875.045337 0.00228559586 +2.497081361e-06 -0.009880742384 0.008123075219 0 17.40832439 -14.44572344 935.8893078 0.002137004861 +2.499084015e-06 -0.006559324716 -0.009856810116 0 -8.945677414 -8.540025 913.6210969 0.002189091306 +2.493410426e-06 -0.0007978850277 0.01217725026 0 -20.28772421 24.86802916 883.1762592 0.002264553626 +2.499750062e-06 0.002015007813 0.01452057933 0 -3.768599103 6.001860941 1002.330121 0.001995350592 +2.498306409e-06 0.0001336919935 -0.002646304804 0 -16.10713892 -9.75030533 1022.7832 0.001955448622 +2.49695772e-06 0.003544763522 -0.009426179621 0 21.04442156 -6.377087686 891.0478936 0.002244548261 +2.498915829e-06 0.00784517887 -0.01153976476 0 6.607566069 -12.67685189 970.6577804 0.002060458423 +2.498863193e-06 -0.004516926897 0.01256938563 0 14.67831068 -2.226674159 984.4282302 0.002031636171 +2.495466376e-06 -0.001184756216 -0.005246028942 0 18.99317883 18.87154298 888.563904 0.002250822919 +2.499598814e-06 0.009807621315 -0.009902939382 0 -6.710358843 6.05407115 1008.894622 0.001982367591 +2.494447967e-06 -0.002834287887 -0.00200179592 0 24.91494205 -25.29313244 1064.554337 0.001878720448 +2.498311322e-06 0.008542844318 -0.0007995945029 0 -16.91865994 7.777590563 1012.974397 0.001974383564 +2.499563811e-06 -0.001570699164 0.0007975789625 0 8.729811173 -0.1234565055 934.6898988 0.0021397471 +2.499805555e-06 0.003301213142 0.001194909622 0 -5.476904565 0.7763011139 887.0097634 0.002254766613 +2.496565707e-06 -0.008892135387 0.002353597598 0 16.92571831 -21.96206999 1057.432483 0.001891373712 +2.497278752e-06 0.004976116093 0.01207398205 0 -8.066305157 20.58424427 947.2806881 0.002111306633 +2.499212185e-06 -0.001689340714 -0.004548808301 0 -0.8155821729 12.67731266 1011.918889 0.001976442996 +2.499032141e-06 -0.004393523973 -0.01354545435 0 13.50841426 5.522367287 1048.766749 0.001907001726 +2.499936757e-06 -0.009475981835 0.01456726202 0 -0.7090295999 3.641200183 1043.038034 0.00191747562 +2.495850721e-06 -0.000745057161 0.0005141176726 0 22.38573078 15.24428363 939.5738335 0.002128624626 +2.494436059e-06 0.003647535797 0.00893955399 0 24.09041767 21.53761401 967.8906908 0.00206634904 +2.499635334e-06 -0.006195051619 -0.006517730383 0 -5.581967174 5.962786169 956.3555658 0.002091272401 +2.498694521e-06 -0.00687980386 -0.004048799495 0 15.24498539 6.43457137 1023.863855 0.00195338471 +2.49630097e-06 -0.005135698644 0.00787991141 0 -4.112700219 24.61255261 916.930841 0.002181189584 +2.499997605e-06 0.00890738592 0.01070995413 0 0.1951672882 0.6487581804 978.8803365 0.002043150654 +2.499027823e-06 0.009388584639 0.001801678813 0 11.43714385 5.424460292 907.6640032 0.002203458541 +2.498139217e-06 6.419977173e-05 -0.0002899726457 0 18.85772264 -5.894744967 1023.88106 0.001953351886 +2.499218791e-06 0.004612478241 -0.007018339962 0 9.925291589 -8.322916137 1036.152411 0.001930217966 +2.495781929e-06 0.005270253662 -0.01104517084 0 -3.129372311 -28.74618451 994.9277565 0.002010196205 +2.499274266e-06 -0.0049937031 -0.00156890308 0 -11.35720624 -0.9087616854 945.5977736 0.002115064201 +2.497683979e-06 -0.001029888284 -0.00740617167 0 -11.98582728 -17.268827 976.3629297 0.002048418615 +2.499151666e-06 0.003891702602 0.01121033465 0 -10.11272686 -6.168115881 909.2747212 0.002199555265 +2.496896615e-06 0.005434284369 0.01102907769 0 24.39286473 7.14653244 1019.787356 0.001961193173 +2.498669362e-06 -0.005727027813 0.01223924957 0 3.293102815 15.36500392 963.0600202 0.002076713764 +2.499744982e-06 -0.001003161175 0.01359685211 0 2.904852348 -6.030029887 937.1725125 0.00213407881 +2.496911479e-06 -0.005692332028 -0.008686405902 0 -20.26354289 14.57717306 1003.896774 0.001992236705 +2.498103751e-06 0.009619200528 -0.002387255912 0 7.757646764 19.34381105 1069.893833 0.001869344358 +2.495602753e-06 -0.009949956774 0.01322927505 0 -0.8796330891 28.05060317 945.7220534 0.002114786256 +2.498312523e-06 -0.0009440562734 -0.005085206071 0 -1.308120616 16.91289796 923.1435152 0.002166510372 +2.494152528e-06 -0.00178358722 0.01243063895 0 22.60616136 25.78230022 1001.797494 0.001996411463 +2.499822648e-06 0.009980268022 0.001130083837 0 3.277966678 4.588654664 946.8350891 0.002112300255 +2.499090733e-06 -0.004600448599 -0.004340025082 0 -2.39158499 -12.50841889 944.2324514 0.002118122499 +2.498127962e-06 -0.009521385138 -0.002936822358 0 -12.90660088 11.89682262 906.905337 0.002205301831 +2.496301393e-06 0.00531100105 0.0137169937 0 -11.82588194 25.35379738 1028.047447 0.0019454355 +2.497887416e-06 0.009409276741 0.00678843573 0 -14.95691816 -14.56977336 1015.494108 0.001969484593 +2.497017102e-06 -0.008053604742 0.00926804459 0 -4.617957825 24.12175985 1005.070552 0.001989910058 +2.498318891e-06 0.001391066601 0.007286929884 0 -15.61344945 -4.581469375 887.1798439 0.002254334354 +2.49664772e-06 0.009049525131 -0.01433028588 0 25.12759777 2.081121329 973.2663995 0.002054935834 +2.49938566e-06 0.009862370477 -0.01322162604 0 -9.491283429 6.231008118 1024.197362 0.001952748634 +2.499953694e-06 -0.008963882327 0.01035971632 0 3.122303162 0.5213400179 1040.181328 0.001922741685 +2.499193625e-06 -0.001617588191 0.009388742403 0 7.767720364 8.188088031 888.6248702 0.002250668496 +2.499322368e-06 0.003920325609 0.0003552528284 0 -10.21907517 6.868203008 1057.537915 0.00189118515 +2.498447811e-06 -0.001247819336 -0.01323045161 0 14.21335775 8.172761279 930.3303344 0.002149774038 +2.498761372e-06 0.001694649323 0.005327970246 0 10.923941 -11.71079128 1017.317538 0.001965954508 +2.499425276e-06 0.008740723589 0.005076292071 0 4.999161367 -9.249970862 980.6278695 0.002039509647 +2.499916891e-06 0.006198713616 0.001621634848 0 0.3273728513 4.05573372 998.0107367 0.002003986457 +2.499910851e-06 0.007516388968 0.003260984248 0 -3.172063498 2.1876932 912.5459269 0.002191670513 +2.499174298e-06 -0.005190631594 -0.002217977811 0 11.03154197 -4.438102236 925.1909162 0.002161715993 +2.498475237e-06 -0.007061178102 -0.001183502949 0 1.082446884 16.85660409 967.0483621 0.002068148893 +2.498293998e-06 0.006268933993 -0.01233996396 0 -18.85634324 -4.106199446 1044.484537 0.001914820114 +2.498389772e-06 -0.003641281989 0.007338067135 0 12.19139322 -12.61667876 977.4131787 0.00204621755 +2.499961347e-06 0.00806455018 -0.006993921516 0 -0.3942028116 -2.802141705 1017.73806 0.001965142189 +2.499265576e-06 -0.007095804019 0.00341586208 0 4.39098673 9.919145679 894.9464974 0.002234770465 +2.498907043e-06 -0.002158263256 0.004286305157 0 11.44503781 -10.48559448 1049.696142 0.001905313281 +2.494688222e-06 0.002110699443 -0.01133019155 0 16.51439707 -27.59835511 985.9656457 0.002028468242 +2.497668585e-06 0.00942602512 0.01045429149 0 -9.963839513 20.68228732 1062.779218 0.0018818584 +2.499061667e-06 0.008603477841 0.002637663698 0 6.979870524 11.01741451 951.9193906 0.002101018237 +2.495638947e-06 -0.004970595539 9.124875069e-05 0 -15.56392752 -23.01716771 940.2014674 0.002127203657 +2.498371256e-06 -0.000776778399 -0.007842362509 0 17.23788567 0.9700165304 956.3634742 0.002091255108 +2.497942975e-06 0.002973744483 0.006191738506 0 18.992935 1.942030649 940.9828711 0.002125437201 +2.494680757e-06 -0.004611559617 -0.0111735188 0 -15.87521135 -28.02940888 986.8312289 0.002026689004 +2.499229593e-06 0.006493260073 -0.002976304865 0 11.87947402 -5.617553889 1058.50838 0.001889451267 +2.495339749e-06 -0.001424743333 0.01099285702 0 20.29179647 20.86077397 952.5767284 0.002099568403 +2.497849219e-06 0.003429906857 0.0009116971842 0 6.286700112 20.8184045 1048.200809 0.001908031346 +2.497824323e-06 0.007430395214 0.01273848297 0 -10.50004758 17.79707675 990.2692205 0.002019652796 +2.497799535e-06 0.001807655464 0.007357086008 0 -10.900618 -16.73329308 951.6481396 0.002101617096 +2.498472912e-06 -0.00138865314 0.01391899532 0 18.33267833 2.564986385 1058.983295 0.001888603918 +2.494352606e-06 -0.001211964446 -0.01055398156 0 18.85563765 -26.81885786 974.66129 0.002051994904 +2.49868112e-06 -0.003308344134 0.01014363805 0 -16.20298048 -0.7056775219 998.3961285 0.002003212896 +2.499240615e-06 -0.004474091153 0.008476959437 0 12.63246954 2.189814419 1040.212075 0.001922684853 +2.497646575e-06 -0.001501866872 0.004095971666 0 18.77687857 5.525693412 901.861836 0.002217634587 +2.49976274e-06 -0.005194808897 -0.002337959998 0 -6.624604843 1.859278242 998.8069918 0.002002388866 +2.498929476e-06 -0.006191654331 -0.01235062194 0 -10.8746569 -10.19994167 1018.788055 0.001963116854 +2.49885072e-06 0.006603913051 -0.01011899289 0 9.793836967 9.258805971 888.8094186 0.002250201177 +2.499423843e-06 -0.001316061015 -0.001940781057 0 -7.695356042 -7.619567748 1008.746648 0.001982658386 +2.493888468e-06 0.001541875419 0.01208820835 0 16.44261439 28.84441919 948.7966264 0.002107933296 +2.496940685e-06 0.003605254199 -0.006870447469 0 10.92417727 -23.97593083 1064.658798 0.001878536113 +2.498758445e-06 -0.002054143553 -0.0120438031 0 13.05426987 -6.058894674 913.1383491 0.00219024861 +2.496514794e-06 -0.005453757341 -0.0007687624334 0 11.30016763 23.00430283 970.2652071 0.002061292093 +2.498730187e-06 -0.003778725876 -0.01009482024 0 12.02662342 -10.81830045 1014.877885 0.001970680444 +2.498533462e-06 -0.006224606913 0.003207572142 0 -17.62887608 -2.944842503 1043.383273 0.001916841157 +2.497335726e-06 -0.003718016325 0.007942152719 0 -11.4121864 -18.2504896 932.0981601 0.002145696758 +2.498228061e-06 -0.006445820257 -0.003600600706 0 -17.30782368 -0.08193076398 919.1628484 0.002175892992 +2.498064005e-06 0.0005280050868 0.01299636122 0 -10.79023296 14.03897607 899.5818417 0.002223255192 +2.497876835e-06 -0.004584313026 0.01150647988 0 -17.969944 8.896986309 972.7660588 0.002055992787 +2.498005094e-06 -0.0005141436122 0.002405582105 0 -16.17628686 -10.43761227 963.5092548 0.0020757455 +2.496306195e-06 -0.008144258698 -0.005575980647 0 -23.85363384 15.52398154 1046.518687 0.00191109822 +2.499609642e-06 -0.001568263401 0.008124932433 0 -5.494655114 6.716730267 982.0695019 0.002036515742 +2.493672131e-06 -0.005379299736 0.01154936474 0 -17.73226908 25.97968573 883.333225 0.002264151221 +2.499867234e-06 0.001753220828 0.007329328945 0 4.562440338 -0.824409259 899.718149 0.002222918369 +2.497174256e-06 -5.041655619e-05 0.001299717918 0 18.47683957 15.45696346 1012.896162 0.001974536063 +2.497741543e-06 0.004086410613 -0.005489307751 0 -11.68019906 -14.94915721 892.3299556 0.002241323389 +2.497612222e-06 -0.007531003705 0.008856750189 0 -21.78704946 -2.900386191 1005.41508 0.00198922817 +2.498256184e-06 0.009671822321 0.007924180948 0 -18.79924364 2.556346549 1015.640533 0.001969200652 +2.497939209e-06 -0.004012594433 -0.003515605435 0 -0.2470258927 20.68093554 1018.438808 0.001963790052 +2.498017303e-06 -0.00733061072 0.008616608691 0 -4.57545567 -17.36508726 901.5289593 0.002218453417 +2.495854559e-06 -8.456492331e-05 -0.01098470688 0 -22.32001829 20.24617726 1045.90936 0.001912211589 +2.49930349e-06 -0.009191487846 -0.01213830119 0 -3.489605716 10.47829657 935.6341778 0.002137587582 +2.498714028e-06 -0.004188144961 -0.001760170574 0 15.09875851 7.218965966 1043.352543 0.001916897613 +2.498952441e-06 -0.003781105233 -0.007051232681 0 -13.02751124 2.859647768 921.3141921 0.002170812104 +2.498292118e-06 0.003826522981 0.009442662431 0 2.153661053 19.23199732 1046.827866 0.001910533781 +2.498270952e-06 -0.003311138437 0.001060196108 0 16.65774016 3.810041713 918.6662404 0.002177069225 +2.498950902e-06 -0.004201586898 -0.0008543486847 0 -13.54690829 5.272420191 1003.404157 0.001993214784 +2.496749584e-06 -0.002125065811 -0.01115791042 0 19.494132 -17.33473197 1022.638688 0.001955724953 +2.499179741e-06 -0.003833621405 0.01115936362 0 0.283334727 -11.22632431 876.661462 0.002281382366 +2.499637424e-06 -0.001441895999 0.006896422149 0 -8.908940792 0.9842404901 1052.500888 0.001900235927 +2.496856018e-06 0.002014923911 -0.003646381809 0 9.747559985 20.41198361 901.6386122 0.002218183619 +2.49530279e-06 0.002295630407 0.002341667844 0 -18.92947133 -22.7695469 965.3912588 0.002071698891 +2.494906914e-06 -0.006449330766 0.01045627761 0 -25.44176719 -18.44618528 983.8772256 0.002032773956 +2.49849844e-06 -0.004021186056 0.002859311721 0 -15.31710586 5.883868552 946.6304534 0.002112756877 +2.496287469e-06 -0.007260597078 0.006254677107 0 1.842572787 25.76285987 947.3488473 0.00211115473 +2.499263555e-06 0.005195867186 0.004085481071 0 -6.834495182 9.449040444 960.7885745 0.002081623422 +2.495735931e-06 0.009660324999 0.01059056267 0 26.99591225 10.60613102 992.5728931 0.002014965363 +2.498110275e-06 -0.007751042941 -0.01072909093 0 -17.06771141 -11.17042036 1048.947192 0.001906673677 +2.498391621e-06 0.004686335642 -0.01343990756 0 1.759186837 15.92520707 893.1097534 0.00223936643 +2.499895538e-06 0.007961363504 0.01037791627 0 4.03625111 1.370954028 932.5830635 0.002144581087 +2.493938022e-06 0.001487907283 -0.008220055362 0 23.98023711 -23.9144308 971.7511045 0.002058140187 +2.494767642e-06 -0.007823278429 0.003039913431 0 -24.48379491 14.76479442 883.1349996 0.002264659425 +2.498531466e-06 -0.001082330756 0.01096809465 0 12.65161815 -10.32929368 952.8090563 0.002099056455 +2.499853269e-06 -0.006400763565 0.009868651126 0 -5.199654023 -1.686295691 1009.031955 0.001982097783 +2.499258972e-06 0.004838622506 -0.006557940021 0 -7.286988977 9.353101278 973.8282892 0.002053750155 +2.498133685e-06 0.008807686102 -0.004560992159 0 -9.657713469 15.67132282 952.5378351 0.00209965413 +2.498498193e-06 -0.008498462774 0.006987441292 0 -13.37345943 -11.15412482 1004.593678 0.001990854656 +2.497138475e-06 0.002234265571 -0.004826705949 0 -20.03973599 12.53762707 987.6916375 0.002024923492 +2.495706049e-06 -0.001294385563 -0.01332867261 0 21.48725721 -16.35150716 920.7936402 0.002172039329 +2.499105986e-06 0.00734740234 0.002076473851 0 -10.40185995 -9.008195533 1028.923064 0.001943779929 +2.498543051e-06 -0.00667581345 -0.003117174183 0 -0.8003604015 -15.84837034 929.4062064 0.002151911604 +2.497929134e-06 -0.005604584208 -0.004888874211 0 17.91338179 0.5082353678 880.2911476 0.002271975591 +2.49890652e-06 -0.004270396475 0.009866544125 0 14.56560083 4.444695334 1029.603491 0.001942495356 +2.49719604e-06 -0.002042498984 -0.002878455478 0 20.02368833 -7.227785351 898.5784472 0.002225737782 +2.498021292e-06 0.007567990031 -0.009120196402 0 11.66173607 -15.62296491 979.7126912 0.002041414813 +2.498370662e-06 -0.004358970309 0.010525131 0 11.98507998 13.89135327 1016.10341 0.0019683036 +2.497331507e-06 -0.00248856253 -0.005696808575 0 15.64261829 -16.98227103 999.0286852 0.002001944518 +2.499196048e-06 0.001389643978 0.007258871491 0 -12.15862435 -2.333325598 976.2371946 0.002048682442 +2.499043466e-06 0.00892185125 -0.004374247121 0 -13.14207938 4.288363872 999.3273833 0.002001346139 +2.499599396e-06 0.00797268901 0.006363952991 0 -9.268178073 0.2287563165 1035.685596 0.001931087976 +2.496269622e-06 0.0030222958 -0.012550531 0 -14.42932791 -22.34618859 973.2990528 0.002054866892 +2.49685881e-06 0.006434846134 -0.006635695305 0 -19.67896956 -12.82277475 936.6534135 0.002135261529 +2.496168675e-06 0.0001020159665 -0.01005709642 0 21.75357352 18.20194974 1024.074622 0.00195298268 +2.49609008e-06 0.00423300101 -0.002965072996 0 26.05693783 12.20158138 1028.300509 0.001944956735 +2.492944476e-06 0.002143487763 0.01476804481 0 -19.12938305 32.27272915 997.6507665 0.002004709531 +2.496951476e-06 0.004846002269 -0.007415991467 0 20.01606708 -17.08922689 1065.391631 0.001877243956 +2.497056654e-06 0.002061566995 -0.005822724171 0 1.172063201 -24.14060642 995.7077938 0.002008621417 +2.499698995e-06 0.0002462434163 0.00497046154 0 5.354710074 6.195837427 1055.39363 0.001895027546 +2.49773948e-06 -0.001551379724 -0.01369375617 0 5.325714897 -18.23005306 892.9052343 0.002239879355 +2.498857864e-06 -0.001650953065 0.007234326568 0 -13.78806736 1.957879237 921.276417 0.002170901114 +2.496161723e-06 0.007154571041 0.01372997653 0 8.237554237 28.10075865 1056.297422 0.001893406117 +2.497578941e-06 0.005094127315 -0.01039128731 0 17.46590379 -14.0167621 1017.353488 0.001965885037 +2.499593887e-06 -0.006585349268 0.005500812193 0 8.074529035 3.275284648 966.7829989 0.00206871656 +2.499714115e-06 0.007735339049 -0.001153680068 0 4.409546564 5.549193126 937.3144744 0.002133755591 +2.496785213e-06 0.0003253398882 -0.002534695014 0 3.985560847 -23.50096442 939.5985734 0.002128568579 +2.497452899e-06 0.004340799008 0.002740137144 0 -15.61462134 -16.87833394 1018.352883 0.00196395575 +2.499495251e-06 -0.0004563360848 0.003269180688 0 -4.347446934 -8.291298914 931.7092132 0.00214659249 +2.499621645e-06 0.00673472411 -0.01286353777 0 8.921665794 1.26476028 1035.803606 0.001930867964 +2.499358425e-06 -0.0007010689843 0.005241922843 0 -10.35379583 5.821311382 1048.493082 0.001907499472 +2.499173574e-06 0.006744799716 -0.006699548559 0 5.625031326 10.79426722 946.6523484 0.002112708011 +2.498697944e-06 -0.008540651063 0.001015612883 0 16.20862901 -1.09855306 1006.530116 0.0019870245 +2.499671738e-06 0.002025777982 -0.007954549149 0 6.755675273 3.373739647 931.9054344 0.002146140505 +2.496144088e-06 -0.002528842515 -0.01274915513 0 -8.287520922 -23.09701519 883.1292588 0.002264674146 +2.496333159e-06 0.006306319842 -0.005291298113 0 -20.09588085 15.13397988 928.4557476 0.002154114512 +2.49677624e-06 -0.006026298851 0.0001102257427 0 12.9291443 -18.49712442 888.3479254 0.002251370148 +2.497172338e-06 -0.004549238184 -0.008972934466 0 -17.10611793 -13.28750668 910.4484317 0.002196719694 +2.499670729e-06 0.001324916855 0.008770990432 0 5.652767476 5.218950106 948.0160049 0.002109669024 +2.49862362e-06 0.003302238178 0.0140988314 0 -15.44396154 -3.227035525 950.7458307 0.002103611644 +2.499867474e-06 -0.009975987449 -0.01404688072 0 2.283655229 -4.160326168 921.8112247 0.002169641621 +2.496606842e-06 0.002445866163 -0.005495316689 0 18.29663602 16.05801008 934.0118123 0.002141300542 +2.498703005e-06 -0.001678212099 -0.01373161484 0 -8.265594183 13.2648567 970.2242092 0.002061379196 +2.499924433e-06 -0.001051407419 -0.01335751525 0 -1.172716272 3.207882903 878.5571148 0.002276459852 +2.497335053e-06 0.006845544958 -0.004961646781 0 1.128479584 -22.85734497 990.8808297 0.00201840619 +2.499346412e-06 -0.001915154983 -0.01339018335 0 9.486040663 -5.954571029 979.5165385 0.002041823615 +2.497161766e-06 0.001641731556 0.01238049211 0 23.09723262 7.682546943 1021.224989 0.001958432296 +2.4966985e-06 0.004802816813 0.003478282643 0 -16.98545475 -19.62372427 1009.517731 0.001981144005 +2.495890392e-06 -0.003805545913 -0.01288729182 0 7.087232069 -26.93991478 971.056202 0.002059613023 +2.499876103e-06 0.006769278534 0.003763669634 0 3.29161818 -3.308809272 937.5747797 0.002133163182 +2.497302264e-06 0.007700167047 0.003440916874 0 11.98379572 17.98626971 930.0845746 0.002150342081 +2.495864472e-06 -0.002806807724 0.003533696285 0 12.75659529 25.64715587 995.3850686 0.002009272655 +2.498558647e-06 0.002683287649 0.00613944435 0 16.56202097 -3.260062029 993.971215 0.002012130703 +2.497321235e-06 0.000385945607 0.008901267559 0 -11.11020969 17.23397624 885.5203436 0.002258559066 +2.496136678e-06 -0.00944010416 0.008512960926 0 -26.35178849 -12.56156322 1049.605019 0.001905478692 +2.496278006e-06 -0.002581248828 0.01251868417 0 17.42625599 16.8405413 887.720988 0.002252960138 +2.499629492e-06 0.006715450003 0.001307451201 0 -8.013065769 -2.058552719 961.0339351 0.002081091964 +2.49740391e-06 -0.001604795144 0.0011592359 0 -4.633086841 -20.48239653 921.238937 0.002170989436 +2.495618793e-06 0.00653517474 -0.0003776426171 0 16.94209509 20.51114555 898.1313845 0.002226845687 +2.498688527e-06 -0.004081280846 0.001645476006 0 13.65606258 -4.096168219 880.1422988 0.002272359825 +2.497077861e-06 -0.006320688273 0.001058195655 0 3.289316108 -21.47530115 898.2947874 0.002226440616 +2.499791111e-06 0.004493182749 0.00946912725 0 0.08908102511 -6.047673645 935.727014 0.002137375506 +2.499309868e-06 -0.007583000022 0.01433864245 0 -10.36467723 1.511886745 891.4594701 0.002243511979 +2.495986577e-06 0.001294362792 0.01113037301 0 -11.45271336 22.55294815 892.2530799 0.002241516499 +2.49532298e-06 0.005215820563 0.009398595057 0 10.53790204 27.74743017 969.7847138 0.002062313389 +2.497153958e-06 -0.002758054594 -0.01255480021 0 -15.92250901 -18.96267806 1037.403769 0.001927889661 +2.496670185e-06 -0.006903539514 0.01244878472 0 -6.383561882 25.95850644 1035.350921 0.001931712195 +2.495875319e-06 0.003902884061 -0.005844004664 0 23.25967246 19.94548289 1066.143088 0.001875920806 +2.496940466e-06 -0.0003666477092 -0.002649919374 0 -12.00286818 -22.59920914 1033.974889 0.001934282951 +2.498272438e-06 -0.008947811648 -0.006893945835 0 -12.88985335 11.79940398 939.8787684 0.002127934014 +2.499744054e-06 0.006833115234 0.003922470699 0 -1.365318156 -7.114501129 1012.492567 0.001975323142 +2.499390077e-06 0.003575039231 0.01307303792 0 -4.997387154 9.058016755 936.5769078 0.002135435951 +2.499688629e-06 -0.003743475731 -0.00352337342 0 3.957726605 7.117164561 1031.9058 0.001938161409 +2.498198538e-06 0.004543334004 -0.00389323293 0 14.10154851 -11.74880252 966.7136137 0.002068865041 +2.495236916e-06 -0.008650654876 0.01326205307 0 -8.190815217 31.20269058 1044.46179 0.001914861816 +2.498712838e-06 0.006625044444 -0.006595175334 0 7.868066778 12.83936196 938.347156 0.002131407323 +2.497517694e-06 -0.002700068853 0.0005241500842 0 22.71523604 5.396145732 1047.451068 0.00190939707 +2.495879137e-06 -0.009368864275 0.009628048372 0 -19.07915334 18.82774537 933.1147682 0.002143359068 +2.497228914e-06 0.009940758776 -0.005857295932 0 20.79057406 3.645081053 896.2313563 0.002231566644 +2.497070194e-06 0.001603746293 0.004255991159 0 20.16253023 15.8968535 1060.218991 0.001886402731 +2.498516475e-06 0.003106618566 0.004205911118 0 13.30728054 9.601157043 952.4269362 0.002099898611 +2.497756752e-06 0.008756920416 -0.006220455193 0 -19.80395191 9.298253015 1032.549852 0.001936952484 +2.495721382e-06 -0.003755933945 0.0004932703497 0 -22.08516031 -17.17484455 955.7849006 0.002092521025 +2.499831334e-06 0.006283362471 -0.006837663269 0 5.080687111 -0.230586488 875.6479066 0.002284023047 +2.497712393e-06 0.006946609234 0.006154243019 0 12.64487889 -15.70053357 942.1539948 0.002122795223 +2.496024902e-06 0.00495899064 0.007164804214 0 16.82297758 18.81067044 894.4825057 0.002235929699 +2.498274161e-06 0.001752369385 0.01341461346 0 -15.70953301 4.695990687 882.3090862 0.002266779331 +2.498889433e-06 0.005032367827 -0.006556259596 0 2.127134394 -14.72429663 998.0679458 0.002003871589 +2.497149718e-06 0.006970695872 0.00716821657 0 20.54346167 7.914066132 921.6725873 0.002169967977 +2.498960101e-06 0.005130510898 0.01310025518 0 12.87871462 -1.934494938 902.8988234 0.002215087613 +2.498471262e-06 0.001409595823 0.004749396199 0 -8.35233823 15.9159378 1027.715771 0.001946063354 +2.499687423e-06 -0.003770076637 -0.002051528462 0 -1.820055238 -8.203852565 1062.764417 0.001881884609 +2.498008504e-06 0.005756876054 0.001431723735 0 -16.55061754 8.891295802 941.1078999 0.002125154831 +2.498226053e-06 -0.008676125971 0.01429153048 0 16.37131533 -5.68855041 919.8864497 0.00217418139 +2.499541359e-06 -0.009249809347 -0.001299547541 0 5.471914453 6.928374428 921.7444848 0.002169798717 +2.49867876e-06 -0.008615666116 0.009499345897 0 15.60472819 7.074345646 1053.785056 0.001897920253 +2.498689857e-06 0.00233363172 -0.005239526681 0 7.592972712 13.04898271 932.4816638 0.002144814292 +2.495996348e-06 0.003720760904 -0.007300632326 0 20.33612592 16.7187974 929.7931005 0.002151016176 +2.494686704e-06 -0.002603474017 0.002214734294 0 -25.89850751 -20.51544469 1012.724987 0.001974869807 +2.499148608e-06 0.003783127824 0.00588251353 0 9.795614141 8.544215026 995.9872489 0.002008057836 +2.497423918e-06 -3.402816132e-05 0.002334410744 0 20.76543731 0.03505525655 914.4900249 0.00218701128 +2.495859325e-06 0.008938881848 0.002895280849 0 28.21783091 -0.6837379548 980.2357728 0.002040325456 +2.497501356e-06 0.0006600851519 -0.00533620015 0 3.284033658 22.26882098 1006.558755 0.001986967964 +2.497884356e-06 0.001315890979 0.00722076138 0 -4.320567192 -20.20141785 1003.968443 0.001992094486 +2.497227671e-06 -0.005449056285 -0.01055577609 0 -17.87418893 15.5521968 1005.776964 0.001988512435 +2.496819607e-06 0.007216021195 0.012640901 0 -20.05136123 15.05114564 993.6249061 0.002012831993 +2.495602471e-06 0.00849379255 0.01041708356 0 9.847566356 27.08870711 971.2589673 0.002059183047 +2.49868769e-06 -0.003459854955 0.004518661166 0 14.43240914 -1.463656024 895.2451556 0.002234024934 +2.498141642e-06 0.008206893858 0.004081380616 0 -13.5436601 10.50686254 888.8808007 0.002250020473 +2.499954293e-06 -0.002791277082 -0.01454587854 0 -1.915075649 2.573111449 1060.879426 0.001885228379 +2.497775912e-06 -0.006198902358 0.004416884214 0 13.98218687 -12.08681917 876.0288916 0.002283029726 +2.497023589e-06 -0.001478100936 0.003619419741 0 -23.93186987 -5.623552538 1007.144831 0.00198581171 +2.496337975e-06 -0.005750426902 -0.004497664198 0 -18.28568374 17.55127374 936.0368066 0.002136668116 +2.499542142e-06 -0.009455188815 0.0135154523 0 8.566491417 -4.985995491 1035.725611 0.001931013368 +2.49609312e-06 -0.003971052226 0.005567002175 0 -15.89560591 21.46856611 955.0660839 0.002094095931 +2.498496216e-06 -0.005694758203 -0.01237849783 0 8.336288088 -13.91508224 935.1339336 0.002138731072 +2.499963227e-06 -0.006030515563 -0.007172121077 0 0.0782493223 -2.504020514 923.7782565 0.002165021731 +2.497566873e-06 -0.006455317969 -0.006029886429 0 -12.98815813 -19.70242166 1069.360085 0.001870277401 +2.499900285e-06 -0.006583718914 -0.004119115532 0 2.075853837 3.676366735 945.3895131 0.00211553013 +2.499110634e-06 0.004638157263 0.009864565926 0 13.3630809 1.577436393 1008.784513 0.001982583965 +2.49444087e-06 -0.009445818625 0.008374223902 0 20.26555786 28.52968461 1048.630592 0.001907249337 +2.498345374e-06 0.008971625851 -0.01062825401 0 1.812059278 16.49642267 912.0560001 0.002192847807 +2.499897696e-06 -0.008543314799 0.006311013023 0 3.064385757 -2.866896354 927.6988852 0.002155871945 +2.498782275e-06 -0.005918081058 0.003542546772 0 14.86021066 5.869102987 1023.606071 0.001953876648 +2.498624012e-06 0.004200537498 0.008719115874 0 -16.09813896 3.651878192 994.8563972 0.002010340392 +2.497761941e-06 -0.004722532863 0.01332374414 0 18.37560765 9.766185699 983.2592892 0.002034051467 +2.498467401e-06 0.0009407300875 0.003540119233 0 -15.8698507 -6.856323007 987.2012894 0.002025929283 +2.497422818e-06 -0.005015684683 -0.005143673534 0 11.14893764 -20.43434939 1024.916869 0.001951377775 +2.494732185e-06 0.001393983685 0.009332690137 0 -14.16494669 27.35690619 948.3527408 0.002108919934 +2.497312732e-06 0.003768333048 0.001084962019 0 17.49138994 12.44882176 925.6953229 0.002160538085 +2.495862094e-06 0.009882383458 -0.01379974943 0 29.40035277 -4.203602851 1031.743557 0.001938466189 +2.495294152e-06 0.006319332402 -0.01015118298 0 25.56013898 13.08299035 935.299525 0.002138352417 +2.499827549e-06 -0.009873426948 0.006843812484 0 -5.23817342 0.04191147929 891.9371317 0.002242310505 +2.498394607e-06 -0.005926420405 -0.009952743407 0 18.61694816 -0.9240198411 1039.998003 0.001923080617 +2.495621656e-06 0.004037817363 0.01163471509 0 22.44593807 20.1296198 1018.196885 0.001964256647 +2.498344326e-06 -0.001277050534 -0.01231592621 0 5.151688379 -16.24690732 936.4059002 0.002135825927 +2.498304582e-06 0.002618645551 0.005861035658 0 3.563045486 -18.88495682 1043.391915 0.00191682528 +2.497947926e-06 0.003915488012 -0.0004977870081 0 4.160343031 -19.55874661 986.7449387 0.002026866236 +2.497157917e-06 -0.003786745663 -0.008226123699 0 -8.955354969 -21.69833633 984.1550507 0.002032200108 +2.498363685e-06 -0.008426487637 0.008738850926 0 12.66840134 -11.06545233 929.5791752 0.002151511193 +2.499843376e-06 0.0058947518 -0.01316553458 0 4.912529994 1.781910081 933.6677198 0.002142089694 +2.498313126e-06 0.005780511694 -0.003558283523 0 5.820381323 17.24659936 990.7381966 0.002018696773 +2.499212627e-06 0.005105447508 0.01248238434 0 -10.43386111 5.877057245 954.170496 0.002096061457 +2.498900343e-06 0.002042598599 -0.004901861404 0 5.61931939 13.28168981 972.2895296 0.00205700045 +2.498774729e-06 -0.007371093058 0.007484141949 0 14.37805765 6.524183816 1008.427302 0.001983286249 +2.499223272e-06 0.0007243040856 0.01000604277 0 9.832401577 -5.860329894 918.2648905 0.002178020766 +2.499204584e-06 -0.008206166602 -0.01059146258 0 -12.31761304 -3.709037537 1019.787131 0.001961193605 +2.498780416e-06 -0.007666263934 0.01286167039 0 -13.21387389 -3.863844078 881.3436008 0.00226926252 +2.499719909e-06 -0.005852780147 -0.002244394454 0 4.423579593 -5.943212941 989.835814 0.002020537115 +2.497520904e-06 -0.0006683155848 -0.006711048956 0 19.41010589 -5.423764108 904.7536662 0.002210546445 +2.498462007e-06 -0.006277529504 -0.0006322036218 0 -8.712709965 15.01657603 989.6591895 0.00202089772 +2.498853551e-06 0.008158427514 -0.0005464798934 0 -1.628737417 -14.54918639 966.6650586 0.002068968959 +2.496371764e-06 0.008574167481 0.001057775386 0 -12.31026177 25.54377464 1052.049164 0.001901051841 +2.499459745e-06 0.002271042387 -0.00385713398 0 -8.702368381 -4.937869403 962.4924683 0.002077938338 +2.499577444e-06 -0.006458848729 0.0003345126472 0 -8.197898814 -2.313792623 926.5342754 0.002158581774 +2.496774641e-06 0.006691753967 -0.005250238536 0 -15.89465756 18.89504751 971.6964404 0.002058255971 +2.493362331e-06 -0.007746721553 0.01153236446 0 -25.99293747 24.13849919 972.6047002 0.002056333883 +2.497331889e-06 0.004379361472 -0.002446617878 0 12.35496524 -19.74572838 1007.916579 0.001984291201 +2.497963601e-06 -0.008821626264 0.007962328058 0 8.67504253 15.60266093 884.3241788 0.002261614064 +2.498346489e-06 0.006996699781 0.003073300514 0 -3.369816683 15.66123452 880.6987194 0.002270924161 +2.496178117e-06 -0.009976729425 0.008433303796 0 -22.95029696 -14.50797773 981.4973053 0.002037702997 +2.499170535e-06 0.004432867072 -0.01327871899 0 12.21879775 1.173472022 952.9145972 0.002098823972 +2.497792578e-06 -0.004139492507 0.006463362635 0 7.069186406 20.80643402 1045.486704 0.001912984633 +2.49795499e-06 -0.002159606027 -0.01103808878 0 -20.09548798 -6.38643505 1042.308242 0.001918818176 +2.498199033e-06 0.008704653964 0.003714848862 0 8.58351557 -16.65582879 987.0203277 0.002026300719 +2.498082412e-06 -0.0004933976708 0.01091105296 0 6.977644327 -15.93689465 888.1138317 0.002251963576 +2.49767569e-06 0.007182434406 0.005189039879 0 16.48444584 10.9731313 918.1438209 0.002178307967 +2.498194898e-06 -0.002748240549 -0.002980678165 0 14.64804421 8.100660192 880.7236224 0.002270859949 +2.498492811e-06 -0.004193886053 -0.007166148901 0 -9.246029932 -13.45524408 940.108914 0.00212741308 +2.499048379e-06 0.004467819966 0.01162261257 0 -12.23712334 6.303055831 997.625741 0.002004759819 +2.499249698e-06 0.001053650323 0.0133819154 0 12.74798272 0.2207541585 1040.697729 0.001921787608 +2.49739695e-06 0.003243970759 0.01492161072 0 15.80465477 -12.25316781 876.1220295 0.002282787024 +2.496457191e-06 0.002937747994 -0.0006580962846 0 23.1100924 -8.131381708 919.8704462 0.002174219216 +2.497513434e-06 0.001605164935 -0.004778064145 0 21.46401275 -5.444045651 992.595356 0.002014919764 +2.495548305e-06 0.009599895012 0.006279186958 0 -11.15141513 26.93041293 976.2018314 0.002048756656 +2.499189277e-06 0.0007517029531 0.009303056085 0 3.405660304 -13.07746309 1061.129429 0.001884784217 +2.496529114e-06 0.008317440837 -0.007316802959 0 -12.91277177 -22.73433038 991.8278132 0.002016479044 +2.497368551e-06 0.0009109204076 -0.007980953262 0 -18.91958227 7.348563953 884.3808251 0.002261469203 +2.498512189e-06 -0.002225598725 -0.01146485566 0 14.4067198 -5.352645612 890.7547112 0.00224528703 +2.498179884e-06 -0.003366218926 0.006435118862 0 13.75154649 12.89262635 987.7104193 0.002024884987 +2.49808225e-06 -0.00629160705 0.008987930808 0 11.48429721 -14.82560609 957.287939 0.002089235557 +2.499895902e-06 -0.007672725799 -0.01047308615 0 -4.008902824 1.446889529 934.0539066 0.002141204042 +2.499115214e-06 0.002534903237 0.01114131752 0 7.774977519 9.913941695 946.992582 0.002111948961 +2.497580467e-06 0.002505569668 -0.01439078906 0 -16.64818477 -11.09499826 909.1451557 0.002199868731 +2.497635482e-06 0.006625668597 0.01345832577 0 21.46174265 2.656079037 994.0889116 0.002011892474 +2.498266007e-06 -0.002327037975 0.006438844723 0 -13.69344011 13.98044184 1050.574408 0.001903720465 +2.499154624e-06 0.002261508685 0.0003028114652 0 9.189918824 -9.755055948 1030.569233 0.001940675052 +2.497525622e-06 0.003383069765 -0.001907344668 0 -15.25777624 13.71305137 921.8347269 0.002169586306 +2.496943097e-06 -0.006737183505 0.005342295624 0 10.03325425 23.16598284 1020.532273 0.001959761638 +2.499442807e-06 0.004977559904 0.006525547625 0 7.843157255 -6.015009413 936.2314928 0.002136223803 +2.498938501e-06 0.00368735319 -0.009511784529 0 -2.710480029 -14.50132332 1012.326456 0.001975647271 +2.496166014e-06 -0.007147927312 0.01070326444 0 -26.33686848 8.859812177 1002.891916 0.001994232845 +2.495504189e-06 -0.009619372124 0.008397945687 0 -15.56750578 24.85268062 977.3223805 0.002046407654 +2.496588256e-06 0.0079096585 -0.004425801651 0 25.49374475 -6.767238233 1009.238226 0.001981692675 +2.49284229e-06 -0.009811076438 -0.01341681238 0 -28.30361967 -27.04961851 1033.642828 0.001934904345 +2.499583696e-06 0.005863755262 -0.0005217895447 0 4.961609941 7.304914896 967.7035065 0.002066748737 +2.498961681e-06 0.006580375228 -0.003807930259 0 8.668253544 12.58231782 1060.11262 0.001886592011 +2.497597673e-06 -0.009681329899 0.01175675826 0 -21.33134476 5.81004763 1008.255014 0.001983625147 +2.496342243e-06 0.005064703785 0.0016457814 0 19.46414359 19.40999531 1015.746482 0.001968995253 +2.498268019e-06 0.004888399695 0.01268871523 0 -15.43631329 -5.756026148 884.9420343 0.002260035033 +2.498186408e-06 0.007981375996 -0.000974062148 0 -17.17531696 -2.508893712 911.1429257 0.002195045304 +2.496588414e-06 0.00938168426 0.005358167086 0 -14.98108438 -22.26526691 1026.841627 0.001947720025 +2.498908173e-06 0.00348818433 -0.002158823891 0 -10.12381806 12.16231389 1070.69542 0.001867944855 +2.497338804e-06 0.0007225712435 -0.001144387862 0 5.385058893 -21.41027192 956.5666265 0.002090810974 +2.498427556e-06 0.00850723255 0.00745300665 0 12.44809907 -11.7369903 964.5290155 0.002073550892 +2.495329344e-06 0.008313839738 0.01074554723 0 13.52200995 29.64044496 1065.20022 0.001877581287 +2.49956784e-06 0.0005880872486 -0.009789951243 0 -8.072538791 -3.490118335 945.9228797 0.002114337271 +2.498421305e-06 -0.006558202603 0.003900311119 0 -14.19582807 10.48139476 992.8399547 0.002014423362 +2.499774159e-06 -0.007597101312 0.01136153126 0 3.59469512 5.098323008 928.1657207 0.002154787615 +2.498446264e-06 -0.003313041506 -0.006539288261 0 14.86115403 5.258019746 894.0440257 0.002237026301 +2.49648333e-06 0.005298154675 0.003113935688 0 3.60057074 26.9748135 1025.61225 0.001950054712 +2.49972818e-06 0.003839172432 0.01404084167 0 4.650013503 6.341878897 1066.518886 0.001875259808 +2.499129708e-06 0.0005365966586 0.01470276515 0 3.844967741 -11.26557414 902.1441036 0.002216940722 +2.496359384e-06 0.0007748734672 0.005953934239 0 24.36362708 8.91426999 960.9130319 0.00208135381 +2.498214874e-06 -0.008867374086 -0.001788128901 0 -8.185852434 -14.51553506 881.716935 0.002268301674 +2.498087396e-06 -0.007864543125 -0.007898066891 0 -16.1400887 12.75996994 1051.675634 0.001901727049 +2.498497402e-06 -0.008837511148 0.01146216639 0 15.59163616 -2.105917603 907.3673191 0.002204179011 +2.497133608e-06 -0.002435012273 0.006293257247 0 16.70523932 -16.80333774 989.1752224 0.002021886471 +2.498436313e-06 -0.004042008598 -0.0009076946718 0 -9.097713236 16.00679074 1040.875885 0.001921458676 +2.497309557e-06 0.001976912683 0.01364620638 0 16.47453114 -13.05059826 905.6812108 0.002208282535 +2.49924036e-06 -0.005151071744 0.0123554923 0 -11.79371439 -3.559800362 999.3459316 0.002001308993 +2.49716271e-06 0.0082387998 -0.009144321112 0 25.44802668 0.6540935313 1068.18312 0.001872338144 +2.495900289e-06 -0.003495867113 0.009055596376 0 -7.66233588 25.26750642 921.5243422 0.002170317059 +2.496227729e-06 0.002375097969 0.01199671373 0 24.84769106 14.35456327 1044.141187 0.001915449774 +2.497102576e-06 0.003306859685 0.001353115223 0 20.80752752 -8.016076023 925.8920688 0.002160078985 +2.494183242e-06 -0.00261509947 -0.01194831163 0 -24.6918276 -26.07625101 1051.967478 0.001901199459 +2.497021168e-06 0.009581371392 0.01310090345 0 -15.08130152 -16.44451716 913.7446078 0.002188795406 +2.498509987e-06 -0.002605681797 0.004351003384 0 1.786568088 -15.94192705 929.0602576 0.002152712898 +2.499192802e-06 -0.008579566893 -0.007246265619 0 6.966409323 10.3386563 981.056619 0.002038618324 +2.497308487e-06 -0.000802735039 0.009238169678 0 16.26646976 17.94429312 1043.471871 0.001916678404 +2.497944046e-06 -0.001890688608 -0.002062026174 0 19.15273377 -0.5845027118 944.6636173 0.00211715574 +2.498259862e-06 -0.00286897528 -0.008701900709 0 10.32761904 13.605873 915.3921464 0.002184855974 +2.496513761e-06 -0.006689357315 0.01111483291 0 -24.16439502 9.376070244 981.0890448 0.002038550946 +2.49622338e-06 0.0038582838 0.01054762889 0 -9.050772085 24.50797012 950.0723025 0.002105102943 +2.499028087e-06 -0.003487753132 0.009135804267 0 -5.013465471 12.06685959 937.0883958 0.002134270373 +2.496873862e-06 -0.005780672403 -0.0002569796168 0 -26.39851926 1.141971037 1056.240159 0.001893508766 +2.498484769e-06 0.003163133827 -0.0139064366 0 -1.999777669 16.45560085 952.0156549 0.00210080579 +2.499742436e-06 0.001930176932 -0.005257940262 0 4.922040112 -4.522339478 931.2632177 0.002147620524 +2.499907336e-06 -0.004952659169 0.003782039392 0 -2.802811399 3.553553696 1051.295154 0.001902415313 +2.497227903e-06 0.004338148939 0.01401052104 0 10.0971305 21.61090221 1012.627742 0.001975059459 +2.497570016e-06 0.005553842089 0.005437116895 0 -17.13804548 15.80272415 1057.061369 0.001892037736 +2.498786838e-06 -0.0006225176621 -0.01392755114 0 9.625814669 12.30521819 1002.78539 0.001994444693 +2.49849369e-06 0.003380566193 0.0005001502996 0 -5.514056573 -16.12893323 981.834036 0.002037004144 +2.496949958e-06 0.003044120399 -0.01246206146 0 -21.29281981 8.734801046 931.4090537 0.002147284259 +2.497821466e-06 -0.003587170388 0.01146637979 0 -4.163315182 20.87325984 1019.348162 0.001962038168 +2.497877808e-06 -0.008676863238 -0.0037360395 0 12.53403818 -17.2398041 1034.265328 0.001933739772 +2.499621929e-06 -0.009753919612 -0.006281798354 0 -1.276123316 8.302553898 965.9518947 0.002070496482 +2.498115414e-06 0.0004427355342 0.005795533061 0 -15.23061583 8.090603241 888.0681377 0.002252079447 +2.499214971e-06 -0.0006738574849 0.01141613334 0 -5.11079102 -11.44287969 1000.053872 0.001999892262 +2.498455362e-06 0.001167915808 0.006068611268 0 -15.22618014 10.9152832 1065.643869 0.001876799612 +2.499713536e-06 0.006833318938 0.001215213616 0 2.889124925 6.420135416 930.0783637 0.002150356441 +2.498723795e-06 0.004178666295 -0.004989004524 0 14.61582111 -2.565815513 928.6581218 0.002153645085 +2.49709299e-06 0.008895672956 0.003286739008 0 -10.20795842 23.48132091 1061.410609 0.001884284916 +2.494298901e-06 -0.003717679856 -0.0117925923 0 -20.90232964 -26.07545481 988.8462591 0.0020225591 +2.49770235e-06 0.001752954312 -0.009712469657 0 9.83712697 -19.97765218 1038.43598 0.001925973327 +2.497233762e-06 -0.00914883472 -0.001955630612 0 -22.60897476 -1.754071998 963.7045357 0.00207532488 +2.499635758e-06 -0.00426154078 -0.01230049299 0 -6.638604234 3.762833335 894.0047825 0.002237124498 +2.492454089e-06 -0.009708372615 0.007147315037 0 -25.94852168 27.22312427 967.0006286 0.002068250982 +2.495291618e-06 -0.004323287266 0.01162979022 0 -6.776631329 31.64949904 1054.005153 0.001897523929 +2.49682387e-06 0.007268471713 -0.004472697722 0 0.3610185179 -24.82533744 984.6228064 0.002031234689 +2.495991571e-06 -0.005671610679 -0.0005815604911 0 -20.5360671 -16.90176999 938.7914008 0.002130398721 +2.498514203e-06 -0.004502494908 0.008678560385 0 16.26871277 4.098760957 973.027571 0.002055440215 +2.499560057e-06 0.009662240939 0.006334238194 0 -1.482618327 -8.177159641 885.8990141 0.002257593663 +2.498212879e-06 -0.001401711139 0.003237396749 0 -19.43184163 -4.746670938 1057.768709 0.001890772513 +2.497558186e-06 -0.007951221331 0.009165420667 0 -20.71185805 6.874736186 987.1516925 0.00202603107 +2.499631469e-06 0.001658046544 -0.0006033245008 0 2.799881193 7.279376014 908.4020973 0.002201668189 +2.497318186e-06 0.001313177021 0.0147258921 0 -23.57962547 -6.365545001 1054.163494 0.001897238912 +2.494499041e-06 0.009821461006 0.01199188997 0 18.20127715 28.18389223 1010.654337 0.001978915962 +2.496898964e-06 -0.009084355929 0.01135147851 0 -20.43442123 -12.14406346 954.0487567 0.00209632892 +2.498887616e-06 -0.005939878016 -0.002753981268 0 -1.886926934 -12.97131297 878.650904 0.002276216858 +2.497978094e-06 0.001332104425 -0.01380547004 0 9.463574189 -15.82383145 916.6048444 0.002181965339 +2.497555197e-06 -0.0001766294101 -0.006550646047 0 4.832774989 22.0907894 1022.272274 0.001956425945 +2.497943855e-06 0.002711689938 0.01086801941 0 19.3757007 2.848720076 965.4403837 0.002071593476 +2.497009189e-06 -0.001747337896 -0.008753937744 0 14.27995047 16.89017451 903.9336906 0.002212551674 +2.498552085e-06 0.00531971042 -0.0006426156359 0 -14.99013887 -6.985096333 971.6157093 0.00205842699 +2.49898798e-06 -0.008751965533 0.01411768436 0 3.316553954 -13.59613089 983.5376623 0.002033475765 +2.496199029e-06 -0.001156841801 -0.01475829982 0 3.783430457 -24.83845045 910.7414663 0.002196012891 +2.49572998e-06 0.009803818446 -0.01395555574 0 27.85537772 -13.56985097 1059.598923 0.001887506636 +2.499583269e-06 -0.008773162924 -0.01049124504 0 4.036255031 6.948837699 880.179861 0.002272262851 +2.495941593e-06 -0.003587913518 0.008712468187 0 15.00053017 20.82545995 900.3090332 0.002221459439 +2.4994364e-06 -0.009029693399 -0.01038014135 0 -4.736432822 8.550770126 920.6125905 0.002172466487 +2.497001219e-06 0.004960429929 -0.008324730762 0 -15.93292904 19.30067994 1021.490169 0.001957923885 +2.497925064e-06 0.003553428063 0.01403736805 0 20.77633405 0.1488336864 1019.59462 0.001961563901 +2.49792791e-06 0.009641415081 -0.00683799003 0 20.05223705 1.042558757 986.0403032 0.002028314658 +2.498718251e-06 0.005020397091 -0.01406393809 0 14.07652859 -7.398408461 993.028415 0.002014041058 +2.495014976e-06 0.005283974954 -0.01111345785 0 22.57177272 -21.30999619 982.3696371 0.002035893542 +2.49324885e-06 -0.007371794092 0.007338320967 0 -24.92960617 24.02713421 941.2978123 0.002124726068 +2.499723873e-06 0.0008760972088 0.002334249504 0 1.149617249 6.411827431 876.5263713 0.002281733973 +2.497328675e-06 -0.00632223519 -0.002999405642 0 20.62180607 11.10214705 1012.843552 0.001974638625 +2.498889277e-06 0.003443960166 -0.00504034959 0 12.17356085 7.354038155 954.0772793 0.00209626625 +2.499670909e-06 0.007441478306 0.001984852888 0 -1.530588011 7.456426589 938.206719 0.002131726366 +2.493853243e-06 -0.007168572592 0.01254090422 0 -16.34010902 30.84005883 994.4983965 0.002011064077 +2.499687163e-06 -0.009676544182 0.000833670299 0 6.800706837 3.139957809 946.9388787 0.002112068735 +2.497990576e-06 0.002978043682 0.0001034047385 0 -2.807503076 -17.32298873 875.126881 0.002285382889 +2.497290436e-06 0.009550260417 -0.006644641359 0 -2.992849672 -21.98911022 952.9105758 0.002098832829 +2.499022976e-06 0.002613913198 0.01493554221 0 -10.17494285 -9.953808557 1018.114891 0.00196441484 +2.499719298e-06 -0.007974954611 0.009175261147 0 -6.024639418 4.655640568 1016.133125 0.00196824604 +2.498991374e-06 -0.005094878925 0.004133098398 0 -0.3078350425 -14.55981213 1025.196081 0.001950846318 +2.498856841e-06 0.008172619944 -0.005551745764 0 7.839033954 12.03283539 949.605583 0.002106137575 +2.493369401e-06 0.006723136106 -0.01490864597 0 -20.75070011 -30.00041178 1000.696927 0.001998607117 +2.499785256e-06 -0.009970008391 0.01033899334 0 0.2777290323 5.963323861 910.8980364 0.002195635428 +2.498817675e-06 0.004611550868 0.003391431577 0 12.32079554 9.971589094 1030.574239 0.001940665625 +2.498207681e-06 -0.009441979462 0.007357356981 0 19.15647534 4.897812705 1044.061755 0.0019155955 +2.496700285e-06 0.009704612941 -0.009526613241 0 26.25694755 -4.558253974 1036.868205 0.001928885455 +2.494939281e-06 -0.007356647556 0.01094552143 0 14.45777831 30.6941937 1065.65574 0.001876778705 +2.499030518e-06 -0.002928375015 -0.01062335674 0 -13.9230479 -4.168162488 1043.576869 0.00191648556 +2.499368787e-06 0.000755685335 0.004870747493 0 -9.307082204 7.140789927 1043.963377 0.001915776017 +2.499139482e-06 0.00166109581 -0.01412384474 0 -9.065805889 7.975682906 920.2977005 0.00217320982 +2.49581415e-06 0.0008306406066 -0.008504136668 0 -25.85209929 16.46801946 1058.704707 0.001889100886 +2.498342236e-06 -0.003801831268 -0.001833262942 0 19.36261372 -1.356832702 1065.720292 0.001876665026 +2.497533799e-06 0.009841682119 -0.0008619283489 0 -1.418906923 21.2190286 957.2036133 0.00208941961 +2.496399317e-06 -0.001737364982 0.01440924696 0 19.22431243 18.25026229 987.2478609 0.002025833713 +2.496835035e-06 -0.006763546467 0.0103332718 0 -18.52719462 -16.84568687 994.8093421 0.002010435483 +2.4990496e-06 0.005747027383 -0.01098491605 0 12.58110145 -3.17557494 941.0229327 0.002125346716 +2.49976096e-06 0.00444191867 0.0007302082004 0 -5.702736823 2.787098182 917.9694595 0.00217872172 +2.495969123e-06 -0.005416502305 -0.004126880472 0 -27.02990735 -11.49097509 1033.812728 0.001934586358 +2.49995955e-06 -0.005283194524 0.005977460013 0 0.02768624734 2.627727811 923.9047225 0.002164725378 +2.496872834e-06 -0.001869835281 0.004903636978 0 -15.92139859 21.17994971 1059.008321 0.001888559288 +2.499897618e-06 -0.008845612356 -0.003759929852 0 4.079495932 1.356741447 950.063513 0.002105122418 +2.497243278e-06 0.0008889904572 0.005085932573 0 7.382401499 22.33260989 1001.308006 0.001997387406 +2.495450688e-06 0.006056707841 0.01186519028 0 -17.71315436 23.79775146 982.8308634 0.002034938131 +2.494389098e-06 0.004458006383 0.01128911508 0 22.20107303 27.17563454 1046.653269 0.001910852485 +2.497481638e-06 0.003326572278 0.0119166247 0 16.43256222 11.13191652 884.0597697 0.002262290479 +2.498034727e-06 -0.000690512741 0.007396095917 0 18.92416676 5.2966112 990.9217626 0.002018322814 +2.496866757e-06 -0.002134398739 0.003600810708 0 -11.6281579 22.91819524 1026.13917 0.001949053362 +2.499449346e-06 0.004629942053 -0.01009532236 0 1.592287733 9.928255121 958.0701454 0.002087529822 +2.499889814e-06 0.000728433216 -0.001254295281 0 4.695306802 0.4278398231 1004.326339 0.001991384595 +2.497933048e-06 0.0006087992853 0.01393558163 0 18.93100579 -5.174933823 964.9555166 0.002072634402 +2.498548214e-06 0.001242044913 -0.005248043002 0 15.30638176 -2.582141029 910.7624963 0.002195962183 +2.497459672e-06 0.0008877292927 -0.006759356449 0 -18.69269976 -9.104244333 922.0815122 0.002169005639 +2.494906052e-06 0.000277231303 0.01140248241 0 19.33167382 23.25684772 946.7599818 0.002112467825 +2.498515715e-06 0.005338823572 0.003448655102 0 14.96448515 4.859201252 912.9753255 0.002190639708 +2.496803465e-06 0.001310944804 0.002624010199 0 22.98867689 13.91073913 1062.189154 0.001882903806 +2.492739112e-06 -0.007769983532 0.01254498378 0 -24.46730601 31.57407534 1047.067298 0.0019100969 +2.49677874e-06 -0.008183715031 -0.008715390021 0 -11.42053454 -22.81729981 1004.782211 0.0019904811 +2.49664296e-06 -0.007720224801 0.0130434073 0 -21.47788195 8.493183709 890.8982753 0.002244925212 +2.498344522e-06 0.004859017543 -0.01062992576 0 -19.29128559 2.568584635 1069.28255 0.001870413017 +2.496168165e-06 0.00669258567 -0.007752023872 0 -13.5089096 -25.86662431 1053.519888 0.001898397955 +2.497779549e-06 0.009802082907 -0.009397572102 0 19.68364037 -9.111523085 1028.924634 0.001943776963 +2.498696676e-06 0.008882758422 0.01211057199 0 -11.22075598 9.48838163 909.9869753 0.002197833655 +2.498169539e-06 -0.006214395808 0.005049393168 0 -17.04105552 8.54896798 996.1555768 0.00200771852 +2.496641708e-06 0.0007402790058 0.005495794988 0 -6.393707802 26.25674626 1042.212813 0.001918993871 +2.493172392e-06 0.003589103199 -0.009591951747 0 26.68926277 -28.55925348 1056.719285 0.001892650232 +2.499234325e-06 0.007704676082 0.008768308782 0 -11.45217794 -2.943626832 955.417807 0.00209332502 +2.496335929e-06 -0.005805379413 -0.008241434572 0 10.34210645 -26.93094389 1065.092062 0.001877771951 +2.495219126e-06 -0.004276928017 -0.0004598398134 0 -23.04119071 -17.29041413 930.9378596 0.002148371107 +2.499410042e-06 0.001995136095 -0.000543574586 0 6.34270707 -9.443808095 1047.198849 0.00190985695 +2.499591882e-06 0.007288335543 -0.008894846658 0 1.992207288 -8.836824312 1002.598218 0.001994817031 +2.49601723e-06 0.00701186154 -0.01006239741 0 13.87362518 -22.44950606 934.501826 0.002140177734 +2.496694153e-06 -0.006825041133 -0.001074832266 0 17.08308539 15.18236508 888.3889257 0.002251266244 +2.496788569e-06 0.009684646148 0.006438034968 0 11.70328864 24.17469351 1059.276253 0.001888081597 +2.497460929e-06 -0.00243347459 0.006838158395 0 -4.657055012 20.87195031 948.6264885 0.002108311358 +2.499496591e-06 -0.008424979076 -0.002741021211 0 -5.708178511 -8.105812034 987.9635459 0.002024366191 +2.492140639e-06 0.004431912741 -0.01152363013 0 22.87873065 -27.29411899 897.2380048 0.002229062957 +2.498178713e-06 0.009275832963 -0.00743259606 0 17.53093791 -4.235700498 944.7186245 0.002117032467 +2.498580274e-06 0.005631414615 -0.0003007317684 0 16.29065842 -5.623516379 1022.528354 0.001955935981 +2.499958574e-06 0.005974332667 -0.0009760191198 0 -2.743162133 -1.289196121 1053.011463 0.001899314557 +2.498090719e-06 0.006055991105 -0.002409605705 0 4.844284536 -19.2564861 1015.845625 0.001968803085 +2.499009856e-06 -0.000474222051 0.01029788809 0 -5.007415032 -11.28071811 876.9248142 0.002280697236 +2.495480273e-06 0.006268428527 0.01299690381 0 15.27860255 22.30875371 898.7262757 0.002225371678 +2.497263676e-06 -0.001529269735 0.01204107159 0 -19.73095201 14.24034043 1039.727716 0.001923580539 +2.498712305e-06 -0.00974210829 -0.0106991734 0 -0.9279506833 17.117583 1068.007548 0.001872645941 +2.495029141e-06 0.004710618793 -0.01486601226 0 8.430129804 -30.67470133 1008.176034 0.001983780542 +2.499880569e-06 0.00202698552 -0.006224973018 0 -1.309895439 -4.672440788 992.867936 0.002014366591 +2.499704532e-06 -0.001530297548 -0.01269664484 0 -6.741918333 -1.145237672 889.5513349 0.002248324432 +2.499779756e-06 -0.0006407087389 -0.01387922216 0 -6.525837625 -1.808329047 1020.280556 0.001960245138 +2.496381384e-06 -0.004919550996 -0.001669944199 0 -22.14881716 -14.26758251 978.8125959 0.002043292054 +2.498053302e-06 -7.091585547e-05 -0.01319914918 0 16.07487186 8.474866561 920.6906354 0.002172282331 +2.499858727e-06 0.000173337427 0.008525131631 0 -4.333208187 -3.586372747 1058.170983 0.001890053718 +2.494061264e-06 0.0001143891504 -0.01346181563 0 17.51697717 -31.11096383 1035.048998 0.001932275673 +2.498362978e-06 -0.005905161686 0.006146738143 0 -16.24411106 -9.674925223 1044.657993 0.001914502176 +2.497958203e-06 0.006969878972 0.008121882097 0 3.520277996 -20.44094845 1026.108538 0.001949111547 +2.49703156e-06 0.006696220883 -0.0008578549465 0 7.5670948 -21.99594097 954.2432439 0.002095901661 +2.497404471e-06 -0.003590594381 -0.006710891635 0 -21.30880038 3.491405563 947.3589333 0.002111132254 +2.496334919e-06 -0.003353146762 0.004775062809 0 17.03143938 18.68604907 933.3310836 0.002142862308 +2.498440358e-06 0.006713628825 -0.0003637360618 0 -7.454634077 14.8617286 941.1815663 0.002124988495 +2.496529521e-06 -0.007874941858 -0.008040910335 0 4.985113915 -24.32812766 942.11577 0.002122881352 +2.496803629e-06 -0.0009830006771 0.0129461588 0 19.94351023 -11.97350046 919.5814066 0.002174902609 +2.496546145e-06 0.004799401285 0.006106125056 0 -19.78140505 17.74353768 1010.537295 0.001979145164 +2.495752291e-06 -0.000229646801 0.007825877443 0 15.26927532 20.52405564 877.0981856 0.002280246423 +2.497037535e-06 -0.002031921078 0.0003513220232 0 -17.23351687 15.64522156 955.8100325 0.002092466005 +2.499988626e-06 0.005652848152 -0.01245739299 0 0.1115727533 1.50249203 998.9066805 0.002002189032 +2.497881045e-06 -0.001868498069 0.003526020083 0 6.716210137 -20.95851222 1068.742775 0.00187135768 +2.497675802e-06 -0.007017492745 0.0001738437521 0 -15.5089885 14.64033818 988.8712 0.002022508088 +2.498805969e-06 0.007675029989 0.002816141797 0 -10.44218068 -9.623200973 918.7415217 0.002176890837 +2.499626122e-06 0.008332624617 0.01224320139 0 -8.112096138 -4.295667277 1061.459592 0.001884197961 +2.497223619e-06 0.009750123825 0.005251844544 0 12.86485797 -18.22043649 946.1417738 0.00211384811 +2.494510704e-06 0.007061901721 0.006288115089 0 18.59894926 24.70116273 932.4234571 0.002144948183 +2.496350672e-06 0.007426862987 -0.0004666348197 0 -18.61910499 20.98933618 1037.98148 0.001926816652 +2.498482284e-06 -0.008117591599 -0.005525284347 0 6.430023026 16.08642706 994.1160576 0.002011837536 +2.498836638e-06 0.001033457131 -0.003235375586 0 -2.81386677 -15.52009033 1033.877557 0.001934465051 +2.497059592e-06 0.00831756081 0.005223602133 0 -10.02066985 22.6028158 1019.100815 0.001962514376 +2.498762133e-06 0.006373401326 0.00363467505 0 -5.146727029 -14.11142548 954.4590727 0.002095427722 +2.498594835e-06 0.002514362624 0.003318730022 0 14.63752705 5.98788349 943.1852836 0.002120474137 +2.499374156e-06 0.003235277361 -0.008842727593 0 10.6386151 -4.238229824 1023.489606 0.001954098985 +2.495322335e-06 0.009851118741 0.01038745869 0 30.1491859 -11.26145501 1051.482607 0.001902076161 +2.499944994e-06 0.001218422917 -0.01407592083 0 0.3741710338 3.165368306 960.976341 0.00208121669 +2.498320431e-06 0.005463526826 -0.01080007899 0 17.21215858 -5.719915422 989.3698293 0.002021488771 +2.495554865e-06 0.009858196997 -0.004832276569 0 14.42142747 -28.38589269 1067.124926 0.001874194812 +2.496313814e-06 0.004028662662 -0.004286784972 0 -13.41079335 -23.84353932 1006.960484 0.001986175258 +2.497596283e-06 -0.002035155394 -0.01136637365 0 20.68043642 0.480995621 943.1131151 0.002120636399 +2.499590002e-06 -0.008076116261 0.009427423447 0 -3.087060787 -8.782386392 1027.962927 0.001945595457 +2.497699036e-06 0.00848519126 -0.008408174899 0 8.223679508 18.26673059 933.5036147 0.002142466262 +2.499240159e-06 -0.002772209975 0.005623268522 0 4.646262728 12.14247199 1054.514478 0.001896607436 +2.497384739e-06 -0.005159697626 -0.007440704524 0 17.61041201 -13.40984136 967.4602648 0.002067268365 +2.49870899e-06 -0.004395088935 0.002141244665 0 16.9612062 -2.44904898 1066.285412 0.001875670413 +2.498387804e-06 -0.009621506543 0.01036244958 0 16.57004327 -3.501215008 942.9298809 0.00212104849 +2.497624839e-06 -0.004372094106 -0.004956999819 0 15.29789584 -13.97488349 950.3328758 0.002104525741 +2.497288067e-06 0.002555707395 -0.003328516334 0 -9.776442916 17.90863289 875.7313575 0.002283805396 +2.496874614e-06 -0.001836523954 -0.01315699664 0 18.39367155 -13.21140537 905.3831793 0.002209009451 +2.497788591e-06 -0.006805730057 0.01214217243 0 -18.56113212 12.30227763 1058.489577 0.001889484831 +2.498403326e-06 -0.002549695633 -0.004621388479 0 0.4604176966 19.13621933 1070.913958 0.001867563668 +2.498472695e-06 0.006675158376 -0.003938242332 0 -7.629486806 13.99815025 911.9558246 0.002193088685 +2.499521066e-06 0.001510124323 0.01078332325 0 7.501196167 -4.201990293 878.436875 0.002276771453 +2.49598251e-06 -0.004263690091 -0.01249860319 0 -23.49835824 -19.18659618 1069.571926 0.00186990697 +2.496871727e-06 0.0002583122114 0.01447624424 0 -23.56729228 -6.214481704 973.9474581 0.002053498865 +2.499009641e-06 -0.004391848976 -0.002598439597 0 13.75192129 -2.73603747 996.1328624 0.002007764301 +2.499062329e-06 0.003333302066 -0.001616342131 0 -8.105922139 10.64206356 976.7331604 0.002047642162 +2.497689399e-06 0.001029229802 -0.008400567044 0 -15.81589997 16.14718172 1051.063359 0.001902834861 +2.497505119e-06 0.006949429512 0.009179009423 0 12.7910965 -19.3601356 1038.39105 0.001926056663 +2.496434505e-06 -0.00907412149 0.004285125348 0 16.91345916 -22.5603998 1055.325023 0.001895150742 +2.499445347e-06 0.006445100564 7.4194232e-05 0 -8.719230289 -4.076209354 913.7736785 0.002188725772 +2.497720446e-06 0.007879146342 0.01242479645 0 17.20906616 14.47864239 1052.91569 0.001899487317 +2.497579231e-06 0.0006604709942 0.0005700519145 0 1.075005746 -23.06387413 1048.9483 0.001906671663 +2.49780075e-06 -0.006020089351 8.685116423e-05 0 -8.091486144 18.15087184 947.2451233 0.002111385903 +2.497889651e-06 -0.002995668678 -0.001375193009 0 -21.06243729 -0.7291116765 1025.507946 0.00195025305 +2.498585752e-06 0.0004389473889 -0.003487071467 0 -6.155605539 16.22564327 1031.646349 0.001938648843 +2.496979209e-06 -0.007757983133 -0.01396641846 0 -20.52255463 7.629976189 890.3751807 0.002246244104 +2.497876125e-06 -0.00965684168 -0.01387008378 0 2.839563665 -19.71693722 966.2272512 0.00206990643 +2.499479531e-06 -0.00403432054 -0.002303051879 0 -6.133582221 -8.441894928 1022.682091 0.001955641951 +2.495112921e-06 -0.008547600065 -0.01172413769 0 12.03991512 -30.85383023 1058.59259 0.001889300963 +2.49727383e-06 -0.001854697689 0.007192883617 0 20.84755597 -1.48052453 894.7020109 0.002235381139 +2.495390778e-06 -0.003398611895 0.006046388315 0 -18.63311417 25.83301125 1048.346164 0.001907766794 +2.499308779e-06 0.005028177919 -0.00524057636 0 -8.778835133 5.391081403 876.1009101 0.002282842053 +2.497748786e-06 0.008465412529 -0.0036101885 0 9.734057768 -16.42901827 899.6562702 0.002223071262 +2.499297007e-06 0.004004881657 -0.002238550871 0 -12.38406793 -1.820998509 1055.534007 0.001894775524 +2.496896248e-06 0.004677863126 -0.01153364826 0 -15.98126915 18.3567304 976.4182323 0.002048302596 +2.499009423e-06 0.004231443768 0.002902995916 0 10.53082714 -9.646003389 1014.451962 0.001971507844 +2.49933877e-06 -0.006880948958 -0.00644335316 0 4.749147479 10.25691276 982.7903618 0.002035021992 +2.498586647e-06 0.002882604506 -0.004199070388 0 -15.15245033 4.067981909 932.9606661 0.002143713098 +2.497971914e-06 -0.004438564116 -0.006806936071 0 -9.376299409 -17.25054509 974.5851289 0.002052155261 +2.497677055e-06 -0.00622366285 -0.01394136668 0 13.18570945 -16.05356629 963.4845972 0.002075798623 +2.497584482e-06 0.006653434699 0.007345124865 0 10.91247469 -19.32942773 1009.526344 0.001981127103 +2.498522055e-06 -0.00359708095 0.008778298111 0 3.879164575 17.17945626 1024.159406 0.001952821005 +2.497532221e-06 -0.006085813991 0.009214645294 0 -14.8119 18.42261388 1063.637082 0.00188034061 +2.49530216e-06 0.0008653026726 0.007381438252 0 -13.42560813 28.26213245 1020.046169 0.001960695565 +2.496711903e-06 0.007334781042 -0.00434979507 0 3.620980902 -23.10748932 911.6304888 0.002193871338 +2.497515742e-06 0.006825216813 -0.01324088744 0 -8.558350216 -22.20850325 1067.358926 0.001873783928 +2.495990248e-06 -0.009007662125 0.006178827903 0 -27.45809503 -10.93782896 1043.0784 0.001917401415 +2.497028813e-06 -0.003405961231 -0.01456559921 0 -11.4504685 -22.47793763 1034.383384 0.001933519071 +2.497827465e-06 0.001671669651 -0.01332606594 0 -16.68832581 -7.541850095 878.2708399 0.002277201871 +2.499589971e-06 -0.005580152352 0.006658996639 0 -7.994481065 3.070704391 945.6366107 0.002114977336 +2.498028226e-06 0.003456852403 -0.01350047477 0 -17.18827161 -9.384795898 985.8636278 0.002028678149 +2.494634483e-06 0.006011605444 0.013438218 0 23.57705689 18.49261597 913.9707617 0.002188253808 +2.497844985e-06 -0.006201950535 0.006486158785 0 16.61016241 9.885546272 930.7549674 0.002148793259 +2.497098377e-06 -0.0008724676771 0.007943814697 0 -16.28792686 -19.55989591 1056.147854 0.001893674255 +2.496845599e-06 0.00454839801 0.000600064618 0 20.18755282 16.69093791 1042.37132 0.001918702061 +2.49931392e-06 -0.005194258955 0.0117667612 0 11.62628895 -4.28838004 1057.774503 0.001890762156 +2.498543433e-06 -0.00114917106 0.00540100853 0 8.211275852 13.38240486 919.6985868 0.002174625501 +2.499745809e-06 0.002783264224 0.004949817988 0 6.776124539 2.952299906 1036.600287 0.001929383992 +2.498090326e-06 -0.001529581021 0.01145052627 0 16.57150838 -7.513441853 930.7619738 0.002148777084 +2.498234226e-06 -0.00271815055 -0.00994976376 0 0.5642765424 -16.50585614 878.605701 0.002276333966 +2.493875005e-06 0.009085752657 0.008399060396 0 28.41349689 24.48045116 1070.584483 0.001868138416 +2.498137233e-06 0.009333600118 -0.0020721344 0 17.65202717 -5.474210941 957.2349944 0.002089351112 +2.499591473e-06 0.005305591519 0.01085329008 0 3.110277594 -8.447605585 995.8329987 0.002008368876 +2.498237631e-06 -0.006326200357 -0.001232088322 0 13.5401032 -12.58147231 984.2340093 0.002032037078 +2.496694742e-06 0.0005109306565 0.002073133753 0 20.68672815 17.55502285 1054.729319 0.00189622111 +2.496490738e-06 0.001381544168 -0.002980386678 0 23.05430929 12.68312344 992.6935964 0.00201472036 +2.498876746e-06 -0.008333163192 0.001175075001 0 1.18063704 -14.74938719 987.0378158 0.002026264818 +2.499489267e-06 -0.007738441508 0.0007179488009 0 -5.873379143 -9.011269294 1064.193928 0.00187935671 +2.497382686e-06 0.001549608419 0.002731736151 0 -0.560947321 -21.39243123 934.9661223 0.002139114939 +2.499198002e-06 0.0013826882 -0.01358356731 0 6.312502422 -9.980303664 932.3131967 0.002145201856 +2.498809549e-06 0.006975086494 -0.01449028773 0 14.85352626 -5.058686851 1016.743138 0.001967065157 +2.495982194e-06 -0.002208956508 -0.008271391403 0 6.682186685 -24.37940846 891.212915 0.002244132649 +2.499602306e-06 -0.00729483312 0.01225348747 0 -3.043446437 8.160498533 976.5181538 0.002048093005 +2.498200233e-06 -0.002068794467 -0.001709936473 0 17.68482275 1.29786206 934.3868706 0.002140441034 +2.498855916e-06 -0.005368087878 -0.009043128358 0 -11.91907391 -9.946099362 1026.077946 0.001949169659 +2.498150345e-06 -0.006234614351 0.006379797526 0 -14.91224475 11.18884696 969.0302859 0.002063918981 +2.496676512e-06 0.00868372486 -0.005290121755 0 17.69707932 -19.74624193 1027.969044 0.001945583879 +2.49815937e-06 0.001544973874 0.01207472855 0 -10.8541487 16.48696205 1028.512148 0.001944556517 +2.497742595e-06 0.0006371836551 0.002617401977 0 20.73824982 3.099804079 986.5141934 0.00202734032 +2.493130771e-06 0.008254927327 0.01376207113 0 24.55012841 26.98178234 983.1667055 0.002034243012 +2.49972751e-06 -0.007447488476 0.003513661546 0 -3.777641045 5.613491319 916.5132584 0.00218218338 +2.499555663e-06 5.458214786e-05 -0.01001254173 0 -2.228048807 8.451163702 927.0597811 0.002157358178 +2.498981975e-06 -0.009277091357 0.008848222657 0 11.06101978 -7.006934772 917.4864751 0.002179868646 +2.495538699e-06 0.009764618208 0.006286841109 0 15.03547539 25.12554216 979.5904785 0.002041669498 +2.499998437e-06 0.0054091497 0.006003458777 0 -0.4147761677 0.2686486249 883.750251 0.002263082808 +2.498402341e-06 0.000503567718 0.01065318832 0 4.38897054 18.10435439 1041.892329 0.001919584149 +2.499783817e-06 -0.004106030324 -0.01260085812 0 0.2435510023 6.737574307 1025.290611 0.001950666454 +2.497969235e-06 0.001271286476 0.009487261944 0 17.81240613 6.528234878 941.0518103 0.002125281497 +2.497036219e-06 0.002702836995 -0.008651657067 0 -19.93479104 10.60079536 926.9517205 0.002157609675 +2.497676697e-06 0.004071949599 -0.01391823428 0 -16.65782104 -15.38003262 1051.415046 0.001902198382 +2.498115562e-06 -0.009901329223 -0.007916680835 0 -14.46893327 -10.53690788 921.7253713 0.002169843711 +2.499167365e-06 -0.0003819440445 0.002342990006 0 10.16214228 -7.385644482 973.3748251 0.002054706932 +2.499134177e-06 -1.301143318e-05 -0.0140437907 0 -7.558231958 11.30423351 1033.230465 0.001935676567 +2.497150242e-06 -0.001606139326 -0.01478486991 0 18.58464091 -13.95667387 973.1135853 0.002055258533 +2.499923308e-06 0.006794547033 0.006407573142 0 2.981232435 -1.7106162 877.6119433 0.002278911557 +2.49961085e-06 0.006194162634 0.01232541638 0 9.366699231 0.1117366919 1061.741616 0.001883697473 +2.498561858e-06 -0.003159048273 -0.01486184498 0 -11.93601934 10.41243847 933.7483358 0.002141904755 +2.49618287e-06 -0.001705440721 0.007196871433 0 25.23267225 14.26060837 1048.385426 0.001907695348 +2.49988498e-06 0.002982258792 0.004078722477 0 -3.870461109 -1.727731399 883.7107343 0.002263184006 +2.497547228e-06 -0.009992209524 0.005092846008 0 -18.05744211 -7.139083733 876.3729497 0.002282133424 +2.496986539e-06 0.00924413044 -0.002896095598 0 -20.69227983 14.30632074 1024.243476 0.001952660717 +2.49951732e-06 -0.002464234647 0.006699359512 0 10.25604414 1.783286722 1059.428272 0.001887810674 +2.498095599e-06 0.005969093428 0.01022819919 0 19.35409546 4.455141318 1017.340498 0.001965910139 +2.49915211e-06 0.004522842788 -0.007171877814 0 5.922921261 -11.37480009 984.6900152 0.00203109605 +2.498543396e-06 -0.00773090845 -0.009832862844 0 -12.25442555 -13.34292083 1061.186206 0.001884683375 +2.498594089e-06 0.009194065314 -0.00154880401 0 13.96635738 -9.245935229 998.6580781 0.00200268745 +2.4975283e-06 -0.007153970874 -0.002496173854 0 -7.521203512 18.95644895 916.9138713 0.002181229953 +2.498539573e-06 0.007284602565 -0.009257960427 0 13.29926436 -7.853721212 903.5264907 0.002213548823 +2.498271237e-06 -0.006829850422 -0.003574231148 0 13.66618669 9.869137428 906.3367329 0.00220668536 +2.493258314e-06 0.002579977834 0.01373629167 0 -18.60983749 30.08332297 962.3816742 0.002078177561 +2.497915252e-06 0.0002373583335 -0.01038282563 0 11.09504345 17.19490892 1001.860937 0.00199628504 +2.497713508e-06 0.00636852107 -0.008043241762 0 20.49763578 -8.203762095 1032.091814 0.001937812095 +2.496981459e-06 0.009808766423 0.00335668958 0 -17.18366402 14.12080907 904.7944686 0.002210446758 +2.498900776e-06 -0.005475859395 -0.01033389301 0 -5.481337073 12.50092512 920.4453096 0.002172861309 +2.497933827e-06 0.009125634655 -0.009336349976 0 -16.90798129 5.87800809 880.3069032 0.002271934927 +2.495432147e-06 0.009061140236 0.00413372674 0 23.64979958 -21.40139965 1054.539116 0.001896563123 +2.499873709e-06 0.004745626482 0.009085609107 0 -3.49741474 -3.165787994 938.6345102 0.002130754813 +2.494155533e-06 -0.007765618651 -0.01437741166 0 -16.29191331 -28.75204122 965.7480651 0.002070933479 +2.495671703e-06 -0.003860771265 -0.008032437789 0 -25.49199618 18.19859996 1063.862799 0.001879941664 +2.499070104e-06 -0.0091429736 -0.004591469716 0 1.512835918 -12.58163097 929.0973807 0.002152626884 +2.499770172e-06 0.007604827532 0.0117310596 0 5.63904027 -3.584129559 985.4928601 0.00202944139 +2.49681389e-06 0.008229815313 -0.009302247567 0 3.246291073 -26.15700998 1043.648469 0.001916354079 +2.4982107e-06 0.008895842847 -0.008861842901 0 4.141242493 -16.9860442 923.9684515 0.002164576071 +2.495668936e-06 0.005216727913 0.01182938685 0 21.71642169 18.17259399 961.5034293 0.002080075784 +2.498146709e-06 0.005122919842 -0.006219715308 0 14.00246635 -10.91450904 921.8970371 0.002169439666 +2.499372282e-06 -0.002908863858 -0.007986748733 0 0.7018972835 10.05451701 899.4530992 0.002223573416 +2.498644881e-06 0.007383818473 0.01471082752 0 -2.33967209 -16.51562306 1013.019112 0.001974296415 +2.496998801e-06 0.0006336696493 0.004635245651 0 -21.90419429 -5.321067212 919.6440902 0.002174754366 +2.498692333e-06 -0.008950951402 -0.008696942443 0 1.52181048 16.64466683 1033.317941 0.001935512701 +2.499574443e-06 -0.0006590865692 0.0060511628 0 -4.912744735 -6.818650502 910.8990364 0.002195633018 +2.497746457e-06 0.002362596849 0.01465064104 0 21.54303721 -4.972487431 1041.07805 0.001921085551 +2.495649026e-06 0.002801360572 -0.0133732633 0 -15.87272601 -25.58715084 1020.062806 0.001960663587 +2.498599576e-06 0.001444600727 0.003135554872 0 -12.58436692 -8.800577435 917.3838559 0.002180112487 +2.498402439e-06 0.001035502153 -0.006241788038 0 -12.12881335 -10.31440647 890.5060856 0.002245913905 +2.495843693e-06 -0.009293612801 0.01015450287 0 -24.17124613 -8.239477252 885.1768407 0.002259435525 +2.498471683e-06 -0.006344166975 0.008112516815 0 11.1017757 -11.84372417 928.2994438 0.002154477215 +2.498377369e-06 -0.003882607082 0.01197239606 0 14.03976966 -9.765546807 949.1137173 0.002107229053 +2.498774441e-06 -0.006294237794 -0.00880039609 0 -10.90638932 -9.945496873 942.6036024 0.002121782682 +2.498250142e-06 0.006533191982 0.01341111721 0 -17.23471807 1.848247535 926.3108074 0.002159102522 +2.498249546e-06 0.0009464938985 0.005114577224 0 18.45058861 2.169710988 992.6315746 0.002014846244 +2.498747084e-06 0.007101228274 -0.00508526355 0 -6.608148544 15.61908161 1071.160424 0.001867133956 +2.497997834e-06 -0.0037077168 -0.0005796816666 0 16.1183917 13.4674959 1049.326031 0.001905985309 +2.497086239e-06 1.170937438e-05 -0.01224093223 0 -3.739154205 -22.61022756 948.925294 0.002107647475 +2.498324118e-06 0.005230182563 -0.01277228893 0 5.074548679 -16.42041111 938.5239588 0.0021310058 +2.499556381e-06 -0.001187153538 0.002716723778 0 -7.841174374 3.295778577 902.9397953 0.002214987101 +2.499508478e-06 0.002523557427 -0.01165141823 0 -6.258586549 -7.94419501 1019.946058 0.001960888013 +2.496958949e-06 0.0008918400621 -0.008169769489 0 -19.11924972 -11.56450163 905.6251381 0.002208419263 +2.498058668e-06 0.0009772703331 0.01415910514 0 -2.860669305 20.2497788 1037.575717 0.00192757017 +2.498390293e-06 0.008181171711 -0.006009060885 0 -7.882109942 13.91134612 890.906986 0.002244903263 +2.494828848e-06 0.0085820542 0.007246074372 0 13.92142872 26.05933477 917.9841345 0.002178686891 +2.497498807e-06 0.006676155161 0.002248145356 0 12.06373675 15.61629623 881.9576704 0.002267682529 +2.499440175e-06 -0.006719397497 -0.0005349757732 0 -8.758709881 -4.881752922 947.5585549 0.002110687503 +2.498280267e-06 0.005133722611 -0.01279189187 0 14.00770455 8.645395678 887.3479423 0.002253907295 +2.497892293e-06 -0.009175698357 -0.01052228463 0 19.66680644 9.531719736 1064.122112 0.001879483546 +2.496449372e-06 -0.0007285268791 0.01437389286 0 -21.31902614 18.72015039 1064.103936 0.001879515648 +2.497757306e-06 0.003804529202 -0.001663922982 0 15.63225032 14.36265089 1002.016652 0.001995974814 +2.498726999e-06 -0.004011021066 -0.002528277787 0 -8.687366653 -11.63078055 909.6339321 0.002198686669 +2.499390276e-06 0.009867233895 0.01491069162 0 3.839867202 -9.805888974 953.5519167 0.002097421194 +2.499954584e-06 0.009996182919 0.001402968995 0 3.154309139 0.39498576 1054.770895 0.001896146366 +2.498744852e-06 0.002887744927 -0.0007843655418 0 -3.293446628 -13.87193503 899.7052417 0.002222950259 +2.494658781e-06 0.007120701657 0.00752392821 0 -17.52434477 30.25028375 1068.770663 0.001871308849 +2.498511469e-06 0.0009737258498 0.01035914954 0 17.77946554 -0.7753898889 1031.193945 0.001939499364 +2.496524682e-06 0.00624944733 0.0116590218 0 -13.82165693 23.68221634 1039.530105 0.001923946204 +2.498826625e-06 0.003857784411 -0.005351055893 0 14.16338909 -1.727689091 931.246567 0.002147658924 +2.49553606e-06 0.001668651844 0.01365304307 0 -11.75367762 26.05903487 956.1034465 0.002091823858 +2.498717858e-06 -0.006920736842 -0.001893099449 0 -13.6648633 -5.347001485 916.1667246 0.002183008776 +2.496086366e-06 0.001508961669 0.01272855543 0 21.33245457 -17.36160248 982.5256698 0.002035570226 +2.499596655e-06 0.003780826083 0.007795084189 0 -4.983452609 7.445462196 997.4616164 0.002005089687 +2.498258294e-06 0.008793153297 -0.0002933966531 0 16.85693062 -0.1800271355 902.9992732 0.002214841207 +2.499648209e-06 -0.004504854325 0.00616436701 0 7.065322734 3.850516783 959.2327339 0.002084999739 +2.499223913e-06 -0.004225228238 0.002076364048 0 -10.84224997 3.378496124 911.425781 0.002194364085 +2.499008476e-06 -0.009628465096 -0.009757849644 0 9.521164747 -11.68584425 1070.246759 0.001868727921 +2.498533791e-06 0.006671196437 0.01241847817 0 -13.88216206 -6.985367294 907.3167537 0.002204301851 +2.498111511e-06 -0.008630782869 0.00702937061 0 10.87216427 15.00070577 953.0029773 0.00209862933 +2.497985924e-06 -0.003062679069 -0.01122918385 0 -5.32762709 -20.18057939 1039.631513 0.001923758539 +2.495532317e-06 -0.002594811101 0.01141658342 0 -18.06055065 23.19940704 982.8989957 0.002034797074 +2.497805593e-06 0.006595647172 0.004111015534 0 18.10743585 -10.10718226 989.5437452 0.002021133487 +2.498198566e-06 -0.008924247632 0.009709514659 0 -13.43413198 12.76039663 975.8827118 0.002049426612 +2.496654668e-06 0.003118999433 0.001166440453 0 -14.32821551 -22.75557028 1039.083978 0.001924772243 +2.496995093e-06 -0.009721681508 0.003357180019 0 13.88686509 -19.02456981 960.3592215 0.002082554064 +2.496607752e-06 0.0028045918 -0.008134800307 0 15.10753795 -22.42906651 1037.691095 0.001927355848 +2.494731864e-06 2.116914839e-05 -0.007144450368 0 -16.52956532 -29.24437632 1034.084659 0.001934077624 +2.499458272e-06 -0.008161298977 0.01053043206 0 -3.831631661 -9.559564228 989.3468407 0.002021535742 +2.498267103e-06 0.005820388445 4.092756193e-05 0 -16.58510992 -3.145340878 906.5190327 0.002206241599 +2.499014893e-06 0.004027796513 -0.01067809208 0 -10.06032124 9.987545409 1009.799359 0.001980591473 +2.495001715e-06 -0.004392715483 -0.01462169284 0 18.78009623 -26.57382246 1028.413778 0.001944742517 +2.499171708e-06 -0.001533790315 0.01371116732 0 -10.78643784 -8.137176835 1049.646905 0.001905402656 +2.497273111e-06 -0.00733734237 0.001415898472 0 -23.59426595 0.7564933615 1010.422765 0.001979369496 +2.497643411e-06 0.004166964213 0.01413428382 0 2.081294515 23.16780833 1071.074988 0.001867282891 +2.499468753e-06 0.001308043646 -0.001015922134 0 -8.82397287 -5.608654517 1014.264252 0.001971872711 +2.494946749e-06 0.009580082293 -0.01026545496 0 14.15075669 -24.19525471 881.0201119 0.002270095737 +2.496277942e-06 0.005921446038 0.01195756705 0 22.84803182 6.956099451 874.8792458 0.002286029769 +2.49739899e-06 -0.004332591551 0.01274326145 0 13.54552524 17.67517842 975.9746336 0.002049233588 +2.495807192e-06 -0.001695130537 -0.001108049287 0 -16.89286286 19.87661248 900.2368879 0.002221637468 +2.496660671e-06 -0.006259960169 -0.004406631142 0 -17.35629822 -17.09493582 942.1933117 0.002122706641 +2.499150763e-06 0.004876588541 0.009651424396 0 -11.39801086 -0.7572404991 876.3966679 0.002282071661 +2.497993714e-06 0.005154519831 0.00846404759 0 -12.77457457 12.44910919 890.199842 0.002246686537 +2.498803049e-06 -0.005324217957 0.003673060464 0 -7.22332258 -13.20533416 972.6526378 0.002056232536 +2.498209662e-06 -0.004576383722 0.01463635342 0 -13.83134748 11.13454619 938.1060668 0.002131955086 +2.497248548e-06 0.003686947455 0.002382471075 0 17.35154866 -12.84118256 919.8238929 0.002174329255 +2.496833204e-06 0.002311308421 0.01040279567 0 22.98546061 -8.660085267 975.5407825 0.002050144941 +2.499954841e-06 0.002352008857 0.01312265679 0 -3.085119763 0.7683803485 1057.910509 0.001890519078 +2.498759924e-06 -0.007872963035 -0.01190928946 0 -11.97577747 -10.81512936 1024.44612 0.001952274464 +2.498351822e-06 -0.001489641671 0.008345906474 0 4.765628147 17.22654523 984.2087367 0.002032089256 +2.49838296e-06 -0.001423599762 -0.001579895276 0 -8.673047632 13.63649027 898.4328667 0.002226098437 +2.499076208e-06 -0.006724840477 0.01008604139 0 0.5697707456 14.25203527 1049.207622 0.001906200411 +2.499587549e-06 0.008310929756 0.008418099526 0 -6.747512355 -4.667093158 903.2626782 0.002214195326 +2.498283414e-06 0.0002995677944 -0.002170914451 0 -18.86397665 4.665818736 1048.497984 0.001907490555 +2.497137718e-06 -0.004505397202 0.01256672986 0 23.54565742 -8.87298865 1051.206377 0.001902575977 +2.496238757e-06 0.004457619181 -0.0009892094135 0 23.23812157 15.12662053 1010.387231 0.001979439109 +2.499165696e-06 0.009055711762 0.01068356305 0 -6.234828404 10.1202575 920.0858213 0.002173710271 +2.498530447e-06 -0.007333472981 -0.01069138788 0 12.33561326 -12.06376811 1006.207107 0.001987662368 +2.49672522e-06 -0.008251196141 0.0009616515948 0 -25.40356717 8.977667483 1052.2787 0.00190063716 +2.498422818e-06 -0.001466673198 -0.0101989963 0 10.89095952 -13.90629883 994.2998557 0.002011465644 +2.496175667e-06 -0.009793647658 -0.0005486825528 0 -29.26033736 -0.5406839484 1057.57527 0.00189111835 +2.499996507e-06 -0.009035089649 0.01245346932 0 0.7873447603 -0.2649396075 993.835814 0.002012404838 +2.499961028e-06 -0.004148451248 -0.003821042629 0 1.242803118 2.476355656 992.4267189 0.002015262147 +2.498369329e-06 -0.007185002719 0.005784657688 0 -12.28420716 -10.78012079 904.7798965 0.002210482359 +2.498125197e-06 0.006404824229 0.0119742318 0 -9.858272572 -17.58164 1040.658531 0.001921859995 +2.497597821e-06 0.004552273024 -0.006595038702 0 12.52742682 17.51655388 982.1442254 0.002036360799 +2.498836437e-06 0.005247552078 -0.001041675336 0 8.790706583 -13.25798705 1042.600576 0.00191828016 +2.494745123e-06 0.007607486784 0.005457707488 0 23.40350186 20.93475546 967.8250075 0.002066489277 +2.499775789e-06 0.008182114251 0.006318400805 0 0.9476788523 -6.861799021 1034.385784 0.001933514586 +2.499015033e-06 0.006329216701 -0.002642354658 0 -5.28310568 11.1744991 880.529938 0.002271359455 +2.499347344e-06 0.00509659803 -0.003267971976 0 -6.051663887 -8.321278223 900.490279 0.002221012316 +2.498227333e-06 -0.008825717079 0.01203374048 0 10.87581367 -13.34972087 914.2544811 0.00218757473 +2.498558405e-06 0.001714136587 0.01072555376 0 -16.62330865 7.156497137 1065.634221 0.001876816605 +2.498693226e-06 0.004544064333 0.006755067338 0 -5.521407514 -14.17619993 940.8681371 0.002125696387 +2.498405111e-06 0.008521427712 -0.001504959085 0 3.210215847 15.45461547 883.5820775 0.002263513544 +2.499435109e-06 -0.001555092665 0.001529571684 0 9.738145923 5.593053913 1056.445706 0.001893140356 +2.496026456e-06 0.0001406349055 -0.001410895956 0 19.26849438 -21.59068738 1025.916276 0.001949476821 +2.495999816e-06 -0.006438596514 0.005461518578 0 20.46872931 -17.83787157 959.3226408 0.002084804335 +2.497194467e-06 -0.001168930423 0.001510330159 0 24.05982124 3.250107775 1024.50388 0.001952164398 +2.499834984e-06 -0.003265667791 0.009909183634 0 -0.2125189022 5.10498705 889.3675181 0.002248789122 +2.498238934e-06 0.009576403056 -0.0103359635 0 -14.79335013 13.44740108 1064.967399 0.00187799176 +2.49811758e-06 -0.002097317521 -0.007815020951 0 -7.753856609 -16.91062928 958.5166043 0.00208655749 +2.497513736e-06 0.005532060005 6.799478782e-05 0 -20.81415056 -5.446391549 964.4710161 0.002073675586 +2.499747545e-06 -0.002817573384 0.005297439687 0 -7.332867319 -1.802940093 1062.664231 0.00188206203 +2.496569046e-06 0.006207039454 -0.008672744224 0 20.38793953 -10.69420096 878.4272187 0.002276796481 +2.497284299e-06 0.006771343905 -0.01342402424 0 -19.8937235 -14.2029352 1048.407347 0.00190765546 +2.496472604e-06 0.001106387689 -0.004789213969 0 15.91502792 -22.57475193 1039.355033 0.00192427028 +2.498345648e-06 0.00229932203 0.008686485901 0 1.722636095 -18.47235173 1019.684203 0.001961391571 +2.499864539e-06 -0.003103833417 0.01208428448 0 -2.149352149 4.770022797 1005.146199 0.001989760298 +2.499176353e-06 0.004875931963 -0.01239277777 0 2.231923507 -12.37088416 979.3032464 0.002042268324 +2.496781566e-06 0.005676329066 0.006395381314 0 -14.21743535 20.98880302 998.7236186 0.002002556025 +2.49602799e-06 0.002610128894 0.009314351091 0 8.147049788 26.99796348 999.9463403 0.002000107325 +2.49855235e-06 0.00339090596 -0.00110567396 0 11.14731335 -10.53922014 901.3731582 0.002218836873 +2.496025976e-06 -0.008239068477 -0.008548190435 0 2.616463159 -27.80629996 990.0749836 0.00202004902 +2.497371266e-06 0.00122594038 -0.001748783235 0 -22.11180167 -9.463381929 1048.545566 0.001907403994 +2.496465899e-06 0.003535062806 0.004324245919 0 -17.01716517 21.69563994 1036.581096 0.001929419713 +2.498830111e-06 0.00435318016 0.003341519153 0 -6.590783203 -13.92524308 1007.005327 0.001986086813 +2.499560117e-06 -0.008269596277 -0.0005474678124 0 0.5048011444 9.269909205 989.7064242 0.002020801271 +2.499458274e-06 -0.003124269145 -0.001440488524 0 -2.256039894 9.683073966 955.106179 0.002094008021 +2.498924538e-06 -0.003492149217 0.01100764554 0 -8.048860273 10.2319778 887.5104552 0.002253494579 +2.498919192e-06 -0.001692779432 0.005545156191 0 -10.50875893 -7.696667929 885.8217897 0.002257790476 +2.498730298e-06 0.0001595983049 -0.0009812507615 0 -3.926716072 14.47200014 940.8176378 0.002125810486 +2.496062138e-06 0.009388495088 0.01255453201 0 -12.90822822 25.41884072 1015.251924 0.001969954405 +2.4991643e-06 -0.0003571615089 -0.002584402438 0 -2.861137809 -11.57004185 921.7834091 0.002169707092 +2.497165591e-06 -0.003601235906 -0.002163832609 0 -15.05656009 -14.48933407 877.2657184 0.00227981096 +2.499278284e-06 -0.0002619575104 -0.01228471052 0 12.36802721 0.504455573 1030.187429 0.001941394298 +2.49933853e-06 0.001515714382 0.01375352743 0 2.884429031 11.19981005 1005.409123 0.001989239956 +2.49649331e-06 -0.008012230443 -0.005159277495 0 3.895297182 -23.96241677 916.2247203 0.002182870595 +2.497729562e-06 0.001891431701 0.001010014534 0 16.40466954 -15.55710037 1060.597725 0.001885729106 +2.496674282e-06 -0.004829656384 0.01358012811 0 20.84895468 11.73694524 927.2322248 0.002156956959 +2.499403702e-06 0.008928629649 0.01237953664 0 3.297248952 -10.35414376 994.9539073 0.00201014337 +2.497893428e-06 0.007214164282 0.00855571846 0 -5.521057617 -17.48951609 893.233765 0.002239055529 +2.496344088e-06 -0.009178083525 0.01340450229 0 -12.30698034 22.31559222 941.9347324 0.002123289365 +2.498629065e-06 0.008996722107 -0.005444680823 0 8.823719157 -13.05444534 951.3824538 0.002102204 +2.495656812e-06 0.003786285985 -0.003220679888 0 23.20893132 -18.68199186 1010.23776 0.001979731979 +2.498862511e-06 0.002982919062 -0.008036907446 0 -12.62972092 -7.48013078 973.0225876 0.002055450742 +2.498653741e-06 -0.003022319674 0.007507769871 0 8.930601761 -14.23818007 1024.065855 0.001952999399 +2.496897568e-06 -0.002438250929 -0.009180650879 0 8.010391638 -22.01580637 940.076705 0.002127485969 +2.49733557e-06 -0.003068074044 -0.007893351261 0 -21.27330673 -11.42211863 1045.563291 0.00191284451 +2.499191662e-06 9.743254632e-06 0.003925381182 0 11.73778887 -4.543595778 989.7845031 0.002020641861 +2.499068837e-06 0.005747098248 0.0004392125853 0 -3.923272045 11.51963637 891.621122 0.002243105228 +2.49750739e-06 -0.008521591597 -0.01215143054 0 -19.71192917 -6.741814213 932.7093303 0.002144290761 +2.498963488e-06 0.003080232521 0.004934521001 0 12.24901304 -4.803589747 913.6816144 0.002188946312 +2.495089086e-06 -0.005368791069 0.003786655557 0 -21.84799447 20.0453018 945.3984294 0.002115510178 +2.498196433e-06 -0.006033093161 -0.002407849689 0 17.38363792 -5.228763227 955.5410416 0.002093055047 +2.499533393e-06 0.003338709003 0.002940397952 0 -3.17982862 -7.937127778 885.0451968 0.0022597716 +2.496789841e-06 0.005173971653 0.004965021817 0 24.99085969 5.134074813 1006.399012 0.001987283351 +2.4958997e-06 -0.005458400985 -8.544774726e-05 0 -29.07193462 -8.062999193 1052.872459 0.001899565311 +2.498156585e-06 0.00862835004 0.01197962605 0 15.50595972 -11.31354886 999.3819695 0.002001236825 +2.496409102e-06 -0.009007631075 0.01280622025 0 -27.18764317 5.838832973 1037.079634 0.001928492215 +2.499373757e-06 -0.004264219645 0.001691410169 0 4.43715019 -10.92040759 1053.154657 0.001899056313 +2.499967174e-06 0.007183088767 -0.008430828836 0 -2.410667917 -0.09872845408 941.6256837 0.002123986245 +2.496494301e-06 -0.0001541832369 0.01214039173 0 15.81988622 19.45023355 946.3451311 0.002113393871 +2.4983047e-06 0.007619689805 -0.01029362775 0 -10.05586246 -13.8197285 927.9423334 0.002155306346 +2.499766981e-06 0.002052484946 -0.00313054227 0 6.292156378 -1.297280956 941.0503747 0.002125284739 +2.49775649e-06 -0.002488716571 -0.005822346588 0 -15.51679233 -11.70476917 917.2547221 0.00218041941 +2.499213176e-06 -0.009923913828 0.009229094535 0 2.44822201 12.93954655 1049.66737 0.001905365506 +2.497455069e-06 -0.009200589103 -0.000491927932 0 -20.79158063 5.598482717 954.0435771 0.002096340301 +2.499153978e-06 0.006527027139 0.001830052498 0 -0.2073775251 -11.39532844 876.0681851 0.002282927327 +2.497029905e-06 0.006275059143 -0.0004913197341 0 24.42151587 -0.5601046859 1001.827684 0.0019963513 +2.493776428e-06 0.006794916922 0.01408917806 0 -15.05944169 28.25448032 906.6567265 0.002205906537 +2.499422448e-06 0.005663817148 0.001407221965 0 1.234349624 -10.28191944 963.4592999 0.002075853127 +2.499599547e-06 -0.004206869053 0.005793492123 0 0.7991462754 -9.268330025 1039.424102 0.001924142413 +2.498442322e-06 0.009553599418 -0.01092813305 0 -18.61449121 0.7414796411 1055.212953 0.001895352018 +2.493197973e-06 0.00720622485 0.01290620592 0 19.73316403 31.07151701 996.9323398 0.002006154199 +2.496589872e-06 -0.0008189407038 -0.01025637999 0 24.33895045 -11.97671779 1038.16177 0.001926482036 +2.499814927e-06 0.009395938492 0.004830430252 0 -2.958852019 5.605498679 1041.80652 0.001919742257 +2.498941989e-06 0.009741025167 0.00210802156 0 -1.833704363 -13.47649729 934.8275228 0.002139432089 +2.496337303e-06 0.007276941603 0.00108550546 0 24.83702943 14.3031317 1058.371877 0.001889694958 +2.496614698e-06 -0.007493365239 0.00843072284 0 -16.85737193 -19.6575259 994.7041591 0.002010648072 +2.499281636e-06 -0.007094587525 0.004859315932 0 2.7035724 11.82618476 1011.981584 0.001976320549 +2.499784867e-06 0.009162899288 0.003299823375 0 4.878955399 -3.100344033 881.2463784 0.002269512873 +2.498615274e-06 0.00914074955 0.01113712253 0 16.36430173 1.718902494 988.537423 0.002023190982 +2.49267064e-06 -0.007915907912 0.01257097764 0 -22.47328546 27.88259846 934.3304283 0.002140570337 +2.499726644e-06 0.004912360432 -0.009101061746 0 -0.1701499887 7.715529466 1043.695931 0.001916266933 +2.493707238e-06 -0.008712974028 0.003033160062 0 -28.15502284 -21.14672221 991.6202335 0.002016901161 +2.494052804e-06 0.000999648259 0.00928876631 0 20.9855041 29.41915554 1046.869025 0.001910458665 +2.494841843e-06 0.005141957495 -0.009495308481 0 23.86463627 -24.26743217 1058.854059 0.001888834428 +2.497825909e-06 -0.004228087845 -0.007744408452 0 -4.896593947 21.76619456 1069.565598 0.001869918035 +2.494685964e-06 0.003769433266 0.009435481054 0 16.99905416 26.8958823 975.1982923 0.002050864953 +2.496535905e-06 -0.003855166957 0.008929614988 0 -0.49482437 26.98491938 1024.845544 0.001951513584 +2.499627423e-06 -0.003350716378 -0.007997996472 0 -3.931609101 6.452527735 875.2719946 0.00228500399 +2.4995467e-06 -0.006446031835 -0.005098043731 0 -8.102139007 -3.572551719 929.9122547 0.002150740556 +2.498701339e-06 0.007124197846 0.007751135307 0 -1.030586364 -15.78047258 981.0624406 0.002038606226 +2.495039301e-06 0.009795636465 -0.001378704999 0 30.30341192 -11.91201295 1032.957746 0.001936187619 +2.498330761e-06 0.003816225217 0.00296706395 0 -13.42890615 -11.07607799 952.4650414 0.0020998146 +2.497302945e-06 -0.001980050947 0.00314060872 0 14.40793656 16.4716454 941.8644513 0.002123447803 +2.498720255e-06 0.007075394997 0.006798256603 0 -11.53837375 -8.354202684 890.2448986 0.002246572829 +2.494994942e-06 -0.007158880602 -0.006897114927 0 -23.92816243 16.05529671 910.0794588 0.002197610308 +2.496990174e-06 0.009497067714 0.008488410779 0 -13.77285818 22.33829272 1069.129507 0.001870680761 +2.497457726e-06 -0.00318239281 -0.005542781116 0 -8.810763175 -21.70225402 1038.347871 0.001926136756 +2.497934673e-06 0.000478869956 -0.01316599842 0 9.971395276 -15.00051937 885.9843247 0.002257376281 +2.494605726e-06 0.008343834709 0.00907294146 0 21.09426859 21.99441698 927.0640812 0.002157348171 +2.495559495e-06 -0.006218689447 -0.009759517894 0 -25.4992704 -12.76573227 956.250724 0.002091501685 +2.497614918e-06 -0.007513576248 -0.01257081084 0 -21.27310249 8.586588848 1049.987179 0.001904785164 +2.499757501e-06 0.004686829471 0.01289265339 0 6.416096417 -0.2960316559 922.246615 0.002168617339 +2.498809709e-06 -0.008206715663 0.01124643677 0 14.18453275 6.154358005 1001.958632 0.001996090394 +2.499711998e-06 0.006746631577 -0.01491322345 0 -7.254184282 -2.563266344 1013.691083 0.001972987662 +2.499438546e-06 -0.00297148345 -0.005284483046 0 -9.647072188 -0.8423425387 913.7682435 0.002188738791 +2.497574903e-06 0.009760119426 0.007926855837 0 -6.136334841 20.32314365 963.6044491 0.002075540438 +2.496224206e-06 -0.009198598755 0.001043643616 0 16.8816433 -20.38814731 962.6986043 0.002077493404 +2.499673596e-06 0.0008197224606 -0.01070149463 0 -7.235373394 2.023533898 929.8217176 0.002150949975 +2.497374696e-06 0.0002309979266 -0.001842143952 0 18.80910451 -14.16002715 1027.05133 0.001947322341 +2.49614083e-06 0.004367107982 -0.001017777007 0 16.31527024 -19.5240451 915.3029923 0.002185068788 +2.499342342e-06 -0.009361167802 0.01038914481 0 -3.852036651 9.810004484 918.8592267 0.002176611979 +2.496989867e-06 -0.008790433016 0.0102492886 0 -17.02764573 -19.38828402 1051.194191 0.001902598034 +2.499496252e-06 -0.004982930087 -0.009336896196 0 -3.856500402 8.20794121 903.4304853 0.002213784052 +2.495347145e-06 0.001691198284 -0.01067378946 0 8.671579389 -31.4403148 1068.388912 0.001871977496 +2.49786052e-06 -0.007258746005 -0.01330876478 0 17.69993671 -10.35588673 991.0396057 0.002018082818 +2.496974182e-06 -0.003923656922 0.01364899707 0 0.5007552694 21.6859671 881.3753623 0.002269180744 +2.497158577e-06 0.001943870517 -0.008364039722 0 20.75173945 -3.890672375 885.2954696 0.002259132763 +2.497100229e-06 0.0004161415761 0.0002750003943 0 -19.1276525 -16.97035699 1061.344939 0.001884401505 +2.497025926e-06 -0.009843288972 -0.005768384705 0 10.01934149 -21.95176151 988.9545719 0.002022337584 +2.495821582e-06 -0.009884533403 0.008899705242 0 8.076600338 28.79452084 1033.860235 0.001934497462 +2.497531054e-06 -0.008314068639 -0.01295429627 0 13.60721094 -14.18194906 884.1411275 0.002262082305 +2.49436191e-06 -0.008660497582 -0.006278892299 0 -19.55108112 -24.10307287 923.4432891 0.002165807065 +2.498369405e-06 -0.002000831719 0.004379955819 0 14.38823564 12.02887272 1038.248141 0.001926321774 +2.497839608e-06 -0.009620146789 0.00543513593 0 -3.792198997 19.23473749 942.8545163 0.00212121803 +2.498347129e-06 0.007089358205 0.002580321499 0 -17.2627742 3.952567645 973.7868438 0.002053837565 +2.495382176e-06 0.002576188133 -0.002554187381 0 -19.96310918 21.66836224 968.8042385 0.002064400547 +2.498853831e-06 -0.005252049225 -0.01179774979 0 -1.880699043 -13.69426349 912.8135279 0.002191028002 +2.493684651e-06 -0.009902661438 -0.0141040928 0 -27.77321744 -20.76718377 974.8549694 0.002051587223 +2.499132118e-06 0.007491823677 0.006992969429 0 1.284574236 13.64121526 1039.844235 0.001923364994 +2.498289624e-06 -0.007368038306 -0.01303562999 0 4.25368407 -17.60017625 978.7503683 0.002043421964 +2.497615612e-06 0.001881659338 -0.01492907917 0 -12.76535843 15.87284611 932.424469 0.002144945855 +2.499962599e-06 -0.0008199549792 0.006142092962 0 1.557296767 2.030930101 935.7395275 0.002137346923 +2.498998637e-06 -0.00254461694 -0.01450642547 0 10.52715822 -7.084811658 896.5160421 0.002230858017 +2.495028067e-06 0.006998694749 0.004945288806 0 23.97443205 21.70797269 1024.86345 0.001951479487 +2.49830186e-06 0.0008934754878 0.00656696073 0 18.05156844 5.860054432 1029.577693 0.001942544029 +2.498697661e-06 -0.009097322426 0.00761342075 0 5.27004701 -13.46659679 895.856844 0.002232499549 +2.497394773e-06 0.003729427578 -0.001359079694 0 -6.909308264 -21.82010885 1002.30115 0.001995408267 +2.495882613e-06 0.004823448416 0.001263226499 0 18.85234291 -22.24003883 1015.366703 0.001969731717 +2.497286959e-06 0.00683758351 0.001919667721 0 8.093533673 19.39728166 901.9305865 0.002217465546 +2.498868903e-06 -0.003078504368 -0.01216208307 0 6.412763158 11.74294871 889.4317055 0.002248626834 +2.496394598e-06 0.002676180978 0.005472471016 0 20.33103063 -14.1852428 922.6977372 0.002167557066 +2.499117916e-06 0.005193408425 0.003034487574 0 10.19639274 -7.69146724 961.4637689 0.002080161588 +2.49954701e-06 -0.007424537973 0.00290311598 0 -8.453533287 0.5249228212 889.7849908 0.002247734026 +2.499313238e-06 0.00239062801 -0.01199249348 0 10.126295 3.850226599 924.2904166 0.002163822067 +2.498728479e-06 -0.0002959763911 0.003876945265 0 -2.226427444 14.12240357 896.3551005 0.00223125857 +2.495047443e-06 0.002885014601 -0.001516009618 0 -19.42538659 -19.65231972 877.3415851 0.002279613817 +2.499014512e-06 0.005462794947 0.006590218053 0 9.591791741 11.25611718 1053.227206 0.0018989255 +2.499936878e-06 -0.009298317861 -0.001310014527 0 -2.974270862 1.413376086 926.7952184 0.002157974017 +2.495670447e-06 0.002421571268 -0.005904701797 0 23.38159541 19.27244056 1029.040231 0.001943558609 +2.497421241e-06 -0.009378594039 -0.009513429904 0 -21.59222051 -6.406218286 991.35317 0.0020174445 +2.499070665e-06 0.008658852363 0.004093501442 0 1.333733583 13.04156426 961.4511109 0.002080188974 +2.495555167e-06 -0.008924294212 -0.006282668507 0 -27.31900082 -9.949102894 974.487107 0.002052361684 +2.497724167e-06 0.005727672731 0.004312986368 0 9.59610735 -16.57295603 897.326415 0.002228843336 +2.499075156e-06 0.007609544592 -0.009884308262 0 7.713288283 12.34300689 1070.037905 0.001869092666 +2.497447294e-06 -0.004131654012 -0.009360768087 0 -23.82168629 -0.7101394928 1054.347195 0.001896908353 +2.497996895e-06 -0.007953201691 -0.002007406536 0 -11.65938005 -15.96682276 987.4717277 0.002025374442 +2.495600698e-06 0.008332684143 0.01333799087 0 3.95278657 28.48243858 968.7816422 0.002064448698 +2.499668081e-06 0.009948749943 -0.0005071544414 0 -6.377138841 -4.343580908 946.9602085 0.002112021162 +2.499514131e-06 -0.003196654897 0.01372527147 0 -5.884101176 6.976697414 925.7811411 0.002160337807 +2.496213686e-06 0.003061672738 0.005397124698 0 -9.226349898 27.43376679 1051.196019 0.001902594724 +2.49759434e-06 -0.0051526456 0.003821395165 0 4.413401551 22.88650264 1062.231147 0.001882829368 +2.499444542e-06 0.009774969011 -0.009562663359 0 -6.554538702 -9.12523411 1065.878898 0.001876385773 +2.497170821e-06 -0.00616313891 0.002216013602 0 -14.11502236 -20.04725996 1030.275345 0.001941228633 +2.498888978e-06 0.0006444778154 0.009846467155 0 -11.00636412 10.9014104 1039.057181 0.001924821883 +2.496833994e-06 0.007728956095 -0.01327142469 0 14.23675098 -22.42020915 1054.934178 0.00189585288 +2.498182173e-06 0.009134937176 0.0146563049 0 13.0317218 11.34797891 906.0181003 0.002207461418 +2.498468547e-06 -0.0003293561144 0.0128053645 0 -15.79499037 -1.577762759 906.7940447 0.002205572491 +2.499515054e-06 0.001953691118 -0.003042858895 0 9.523922322 2.837272266 1008.990154 0.001982179897 +2.497784012e-06 0.007355242865 0.001609883825 0 19.58346188 -10.87708779 1063.73181 0.001880173162 +2.497564131e-06 -0.001809965041 -0.005774869784 0 -6.602617209 -19.87155692 948.3548804 0.002108915177 +2.499503676e-06 -0.001814753106 0.01302331177 0 -8.585963013 -5.629554981 1030.415009 0.001940965516 +2.494630408e-06 -0.00660186979 -0.005434573463 0 -22.87230345 -25.75266819 1050.193177 0.001904411535 +2.496591321e-06 0.001894870857 -0.004927478281 0 17.53060609 -18.19217374 967.1068123 0.002068023898 +2.498999866e-06 -0.005469983779 -0.006827322675 0 -11.03703119 9.119556156 1012.159622 0.001975972917 +2.498654754e-06 -0.008665080308 -0.003538286446 0 0.6241100303 -16.33252171 996.2459167 0.002007536459 +2.4980932e-06 -0.007003231444 -0.008424573219 0 -18.17529489 8.474688084 1026.617075 0.001948146051 +2.497697806e-06 0.00328524983 -0.0108096125 0 19.28055929 -10.48823321 1022.519678 0.001955952578 +2.497913468e-06 0.009541577743 -0.01252606492 0 19.98906955 -2.04939349 983.3310196 0.002033903091 +2.496090099e-06 0.001668961318 -0.01238355941 0 24.50904307 11.75373747 971.4567223 0.002058763869 +2.496848003e-06 0.001403469238 -0.01024930965 0 -10.11086867 -19.95368737 890.5049265 0.002245916828 +2.499640038e-06 -0.00289256766 0.0007090147678 0 -7.593448464 3.718940713 996.4576971 0.002007109791 +2.497629038e-06 -0.007209974406 -0.001176378785 0 0.275842501 19.25907938 884.1953265 0.002261943645 +2.497080908e-06 0.004706503106 0.01464422647 0 23.37785573 2.187977153 971.33562 0.002059020547 +2.499907058e-06 -0.003173761819 0.01329269285 0 3.390281522 -2.374016017 959.954488 0.002083432105 +2.497543839e-06 -0.0004324866738 0.01455893661 0 13.3413608 -16.25188255 948.3408681 0.002108946337 +2.498541636e-06 0.005413665143 0.0003157065762 0 2.258400241 16.7200528 987.6900177 0.002024926813 +2.499849544e-06 0.001725525241 0.00379891319 0 -4.612213931 -3.539286767 1059.79811 0.001887151885 +2.497937964e-06 -0.00558985542 -0.01191471276 0 -5.633571259 -17.33074809 897.0811393 0.002229452736 +2.494930462e-06 0.007429795889 0.002030076887 0 24.88063384 14.45798443 903.0383798 0.002214745292 +2.498748479e-06 0.0001360767847 -0.01059159153 0 -13.85866071 -1.194328116 879.0475571 0.002275189759 +2.49662907e-06 -0.001802034839 -0.005325157761 0 14.3466098 -22.16178029 1016.242494 0.001968034217 +2.496522866e-06 -0.001487434749 -0.00967148162 0 -18.62866797 -19.87051776 1032.309737 0.001937403019 +2.49958315e-06 0.006957401535 -0.007404274279 0 4.793094808 6.730589453 904.8939933 0.002210203642 +2.497465213e-06 0.008442768692 -0.006058376923 0 7.579342999 21.56939212 1015.00719 0.001970429392 +2.497338939e-06 -0.006668233383 0.004783668369 0 18.48671963 10.79393778 927.5639224 0.00215618563 +2.498124812e-06 -0.00650645541 0.00724196594 0 -16.70243764 5.648336922 910.1928058 0.002197336638 +2.498921795e-06 -0.007505279505 -0.002923069757 0 7.651624171 11.64613569 948.7812253 0.002107967513 +2.493980325e-06 0.001428654534 0.01463070445 0 19.13078527 27.10382043 955.2596463 0.002093671608 +2.497062553e-06 0.002688509678 -0.008294714629 0 -7.424551788 -22.40402669 973.3324226 0.002054796443 +2.499087712e-06 0.003654261031 0.01115443963 0 -9.792926718 8.696154317 969.4439462 0.00206303831 +2.499112802e-06 -0.009989272202 -0.004742917127 0 -9.068019461 -7.511898118 883.8708394 0.002262774051 +2.498512214e-06 0.007711931495 -0.003328374177 0 -12.71061766 -9.013034382 903.1031228 0.002214586518 +2.495988663e-06 -0.0003751446865 0.01165509786 0 -0.3823370159 29.23021183 1031.449692 0.001939018467 +2.496550325e-06 -0.002143504811 -0.01113287634 0 -2.986283904 -23.64305616 906.8000876 0.002205557793 +2.498852449e-06 -0.006508035297 -0.000542865484 0 8.220939038 -12.9600447 1012.890715 0.001974546682 +2.496175343e-06 -0.007786847516 -0.0008502490749 0 16.13461715 23.52315379 1030.770866 0.00194029543 +2.497177301e-06 -0.008340721773 0.005903570952 0 -23.08663684 -5.828947754 1001.725073 0.001996555796 +2.499293755e-06 -0.005929083698 -0.01219095709 0 -5.851636472 -8.624801932 876.867147 0.002280847226 +2.495945417e-06 0.008329481268 -0.004332839046 0 25.64739834 -5.159214061 918.1309924 0.002178338403 +2.493537227e-06 0.008107008105 0.01101586706 0 22.0661441 23.26191778 890.9580794 0.002244774526 +2.499223596e-06 -0.002274667621 -0.01108113323 0 3.178600453 -12.72874962 1052.718095 0.001899843852 +2.497232214e-06 0.008199784113 -0.00479454801 0 17.72032275 -15.67870117 1005.233666 0.001989587166 +2.498884242e-06 -0.006201164061 -0.01442180716 0 0.2640460444 14.02587991 938.9326107 0.002130078322 +2.499490221e-06 0.009931513434 -0.01431100744 0 1.667675843 9.110436287 917.18518 0.002180584732 +2.499511631e-06 0.007268729336 0.009609644799 0 -9.475091887 0.7740653698 961.848861 0.002079328761 +2.499599776e-06 0.008989117527 -0.001289152515 0 -8.184399532 -1.84168605 937.6055363 0.002133093207 +2.496121382e-06 -0.005884203087 0.003044875846 0 -18.90935799 -17.1743838 916.6249279 0.002181917531 +2.498808345e-06 -0.00789506197 0.0007001054962 0 -10.19746929 -11.49345726 995.1052974 0.002009837557 +2.49684987e-06 0.009530190746 0.006943608786 0 -12.79771418 19.38713671 925.0570597 0.002162028795 +2.49887403e-06 -0.009862060314 -0.0118409891 0 7.208502545 11.8860787 926.1863043 0.00215939276 +2.498397089e-06 0.009008240695 -0.007098373552 0 15.92493061 -3.462622167 909.9852384 0.00219783785 +2.499464517e-06 -0.007807625486 -0.01107186129 0 -1.492523027 9.428539263 922.3501074 0.002168374009 +2.498786573e-06 6.982423831e-05 -0.004274681588 0 15.60743916 3.220964082 1022.792362 0.001955431105 +2.494248142e-06 0.002179584871 -0.009069589404 0 -19.26386107 -26.26478647 959.5117398 0.002084393465 +2.49795119e-06 0.007867415156 -0.0100511421 0 -8.147452251 18.74261579 1009.288898 0.001981593182 +2.497507952e-06 0.002794101983 -0.003852014865 0 19.79512701 -5.898101647 924.8524435 0.002162507126 +2.49748713e-06 -0.003477703803 -0.009004928735 0 9.809360445 20.07870435 996.4393627 0.002007146722 +2.498141368e-06 -0.0002035390725 -0.003831255783 0 -9.396713382 17.89578367 1048.078126 0.001908254691 +2.496900846e-06 0.002748330873 -0.0004463309376 0 24.14068848 -8.925981563 1033.324295 0.001935500801 +2.498190616e-06 -0.00405329572 -0.009520801173 0 17.18788929 -7.051396793 976.3443215 0.002048457656 +2.497743274e-06 0.005704372707 -0.007219773747 0 6.972379957 -19.81933487 988.6090273 0.002023044444 +2.498664224e-06 0.009954198352 0.005114304512 0 -7.590318763 12.15132524 876.3777522 0.002282120918 +2.498248829e-06 -0.002036853167 0.01200078441 0 12.14116389 12.32646767 924.263963 0.002163883999 +2.497868758e-06 0.002131974259 0.01077099669 0 -16.22408086 14.48637653 1053.161802 0.001899043429 +2.499667129e-06 0.007738545891 -0.009009458309 0 7.558077689 -3.560144336 1023.883968 0.001953346339 +2.496984685e-06 0.004611510504 0.01048056121 0 18.44296547 -11.84586837 892.1833896 0.002241691589 +2.499679528e-06 0.006219609464 0.00623876977 0 5.310801149 -4.637611718 880.6434668 0.002271066641 +2.496103063e-06 -0.004456117461 -0.01412910885 0 -25.30835595 -10.26196246 977.6570007 0.002045707235 +2.498207242e-06 -0.002705076043 0.004240635121 0 -6.494378666 -18.20664971 1020.575308 0.001959679001 +2.497713767e-06 -0.003276112657 -0.008307910105 0 -6.448857637 20.99270005 1026.658335 0.001948067757 +2.498354211e-06 -0.004199358774 0.006110791373 0 16.01445539 -10.9222194 1068.180342 0.001872343012 +2.49712346e-06 0.005171767944 0.01054854982 0 -21.66350075 9.18197028 980.5428672 0.00203968645 +2.496519194e-06 0.003342832271 0.003831469864 0 24.33761613 -8.385677292 975.1169559 0.00205103602 +2.499444231e-06 0.003784710681 -0.009512739074 0 0.7575477299 -10.64571415 1012.215672 0.001975863499 +2.497116297e-06 -0.008589859148 -0.006470228664 0 19.06570505 12.92923728 958.8100275 0.002085918944 +2.49540154e-06 0.008021381716 0.0006940912502 0 22.36774394 -23.22460694 1062.509077 0.00188233686 +2.499318588e-06 -0.0008934554551 0.009599950004 0 10.33143591 2.588621576 912.2584061 0.002192361273 +2.499872698e-06 0.0008972832514 0.0002405710984 0 -3.302528792 3.326927678 929.0205935 0.002152804807 +2.49952468e-06 -0.009009247278 0.001395579097 0 -10.01296166 2.667691728 1062.7094 0.001881982036 +2.498757047e-06 0.00355195744 -0.004504114841 0 -15.68343125 0.3638422567 994.7972329 0.002010459955 +2.496698977e-06 0.002911375817 -0.01427973618 0 -17.59739435 -18.78597739 1001.302043 0.0019973993 +2.497769625e-06 -0.002706303224 0.01492681407 0 -17.61718377 -12.90816629 1033.721291 0.001934757481 +2.497666758e-06 0.006111435895 -0.002881553443 0 6.633185887 -18.91812274 927.7033043 0.002155861676 +2.495984207e-06 -0.004512282661 0.01146666191 0 -16.85472361 23.38876003 1016.642637 0.001967259613 +2.495263197e-06 0.004039466651 0.0008326549223 0 -20.39578265 21.67347017 966.2366194 0.002069886361 +2.497905846e-06 0.009355898774 -0.007241122546 0 -6.723159656 18.30954301 952.7685396 0.002099145718 +2.497181486e-06 -0.005972141665 0.01141289318 0 19.13358751 9.249272636 894.7236722 0.00223532702 +2.497515971e-06 0.003604504117 -0.01454531736 0 23.09867004 1.972764955 1039.704532 0.001923623432 +2.498185504e-06 -0.007589829764 -0.01139067756 0 -6.896327635 17.02594005 964.0250944 0.002074634791 +2.49690167e-06 0.001386425355 0.01429958865 0 24.56910585 6.136045887 1016.827225 0.00196690249 +2.497359139e-06 -0.006870436622 0.01110197476 0 -5.993439166 23.8443445 1069.372445 0.001870255783 +2.495418597e-06 -0.0008157694666 0.007825596188 0 21.96547838 -17.64266561 930.0960166 0.002150315628 +2.49968285e-06 -0.007124358802 -0.000822859467 0 6.88192962 2.665512442 926.6040284 0.00215841928 +2.497731e-06 -0.004029057599 0.007634737096 0 -21.05077399 2.515626471 994.8716686 0.002010309534 +2.499545796e-06 0.002225486534 0.008238288194 0 -7.659807342 6.495943148 1053.68458 0.001898101233 +2.498927022e-06 0.006964410031 0.004892929508 0 13.07286785 0.4541611077 892.7966189 0.002240151853 +2.499643896e-06 -0.001890990655 0.006328651747 0 2.344680597 8.646389004 1061.491818 0.001884140759 +2.49563381e-06 0.008864626773 -0.0004868894094 0 18.52256491 -22.12438461 975.7990909 0.002049602237 +2.499612771e-06 0.005371579342 -0.003089937901 0 6.139602443 -5.236247517 916.8736228 0.002181325703 +2.497347748e-06 0.002310204045 0.0006569745275 0 1.064771179 -24.06737484 1045.581947 0.001912810378 +2.49397487e-06 0.009923965973 0.006347954103 0 24.54254054 -18.55270584 885.4788081 0.002258665009 +2.496333208e-06 0.005680720299 -6.766547682e-05 0 24.47514711 1.388122498 904.7436432 0.002210570934 +2.491460147e-06 0.00473761322 0.01446130404 0 26.47355478 30.53771081 976.6725927 0.002047769145 diff --git a/mcstasscript/tests/test_data_set/mccode.sim b/mcstasscript/tests/test_data_set/mccode.sim index 5891d96b..fcbe76de 100644 --- a/mcstasscript/tests/test_data_set/mccode.sim +++ b/mcstasscript/tests/test_data_set/mccode.sim @@ -88,3 +88,25 @@ begin data xlimits: 0.7 1.3 variables: L I I_err N end data + +begin data + Date: Fri Aug 27 12:51:34 2021 (1630061494) + type: array_2d(8, 12000) + Source: event_test (event_test.instr) + component: monitor + position: 0 0 2 + title: Intensity Position Position Position Velocity Velocity Velocity Time_Of_Flight Monitor (Square) + Ncount: 12000 + filename: event_dat_list.p.x.y.z.vx.vy.vz.t + statistics: X0=0; dX=0; Y0=0; dY=0; + signal: Min=2.49999e-06; Max=2.49999e-06; Mean=0; + values: 0 0 0 + xvar: List + yvar: p + xlabel: List of neutron events + ylabel: p x y z vx vy vz t + zvar: I + zlabel: Signal per bin + xylimits: 1 12000 1 8 + variables: p x y z vx vy vz t +end data diff --git a/mcstasscript/tests/test_functions.py b/mcstasscript/tests/test_functions.py index cd10f340..f13e4b34 100644 --- a/mcstasscript/tests/test_functions.py +++ b/mcstasscript/tests/test_functions.py @@ -9,11 +9,11 @@ from mcstasscript.interface.functions import load_data from mcstasscript.interface.functions import load_metadata from mcstasscript.interface.functions import load_monitor -from mcstasscript.data.data import McStasData +from mcstasscript.data.data import McStasDataBinned from mcstasscript.data.data import McStasMetaData -def set_dummy_MetaData_1d(name): +def set_dummy_MetaDataBinned_1d(name): """ Sets up a dummy MetaData object for a 1d dataset @@ -32,7 +32,7 @@ def set_dummy_MetaData_1d(name): return meta_data -def set_dummy_McStasData_1d(name): +def set_dummy_McStasDataBinned_1d(name): """ Sets up a dummy McStasData object for a 1d dataset @@ -42,17 +42,17 @@ def set_dummy_McStasData_1d(name): name : str base for filename, .dat will be appended """ - meta_data = set_dummy_MetaData_1d(name) + meta_data = set_dummy_MetaDataBinned_1d(name) intensity = np.arange(20) error = 0.5 * np.arange(20) ncount = 2 * np.arange(20) axis = np.arange(20)*5.0 - return McStasData(meta_data, intensity, error, ncount, xaxis=axis) + return McStasDataBinned(meta_data, intensity, error, ncount, xaxis=axis) -def set_dummy_MetaData_2d(name): +def set_dummy_MetaDataBinned_2d(name): """ Sets up a dummy MetaData object for a 2d dataset @@ -70,7 +70,7 @@ def set_dummy_MetaData_2d(name): return meta_data -def set_dummy_McStasData_2d(name): +def set_dummy_McStasDataBinned_2d(name): """ Sets up a dummy McStasData object for a 2d dataset @@ -81,13 +81,13 @@ def set_dummy_McStasData_2d(name): base for filename, .dat will be appended """ - meta_data = set_dummy_MetaData_2d(name) + meta_data = set_dummy_MetaDataBinned_2d(name) intensity = np.arange(20).reshape(4, 5) error = 0.5 * np.arange(20).reshape(4, 5) ncount = 2 * np.arange(20).reshape(4, 5) - return McStasData(meta_data, intensity, error, ncount) + return McStasDataBinned(meta_data, intensity, error, ncount) def setup_McStasData_array(): @@ -97,20 +97,20 @@ def setup_McStasData_array(): data_list = [] - data_list.append(set_dummy_McStasData_1d("A_1d_thing")) - data_list.append(set_dummy_McStasData_2d("A_2d_thing")) - data_list.append(set_dummy_McStasData_1d("Another_1d_thing")) - data_list.append(set_dummy_McStasData_2d("Another_2d_thing")) - data_list.append(set_dummy_McStasData_2d("A_third_2d_thing")) + data_list.append(set_dummy_McStasDataBinned_1d("A_1d_thing")) + data_list.append(set_dummy_McStasDataBinned_2d("A_2d_thing")) + data_list.append(set_dummy_McStasDataBinned_1d("Another_1d_thing")) + data_list.append(set_dummy_McStasDataBinned_2d("Another_2d_thing")) + data_list.append(set_dummy_McStasDataBinned_2d("A_third_2d_thing")) - hero_object = set_dummy_McStasData_2d("Hero") + hero_object = set_dummy_McStasDataBinned_2d("Hero") hero_object.metadata.dimension = 123 hero_object.plot_options.colormap = "very hot" data_list.append(hero_object) - data_list.append(set_dummy_McStasData_2d("After_hero_2d")) - data_list.append(set_dummy_McStasData_2d("Last_object_2d")) + data_list.append(set_dummy_McStasDataBinned_2d("After_hero_2d")) + data_list.append(set_dummy_McStasDataBinned_2d("Last_object_2d")) return data_list @@ -124,20 +124,20 @@ def setup_McStasData_array_repeat(): data_list = [] - data_list.append(set_dummy_McStasData_1d("A_1d_thing")) - data_list.append(set_dummy_McStasData_2d("A_2d_thing")) - data_list.append(set_dummy_McStasData_1d("Another_1d_thing")) - data_list.append(set_dummy_McStasData_2d("Another_2d_thing")) - data_list.append(set_dummy_McStasData_2d("Hero")) + data_list.append(set_dummy_McStasDataBinned_1d("A_1d_thing")) + data_list.append(set_dummy_McStasDataBinned_2d("A_2d_thing")) + data_list.append(set_dummy_McStasDataBinned_1d("Another_1d_thing")) + data_list.append(set_dummy_McStasDataBinned_2d("Another_2d_thing")) + data_list.append(set_dummy_McStasDataBinned_2d("Hero")) - hero_object = set_dummy_McStasData_2d("Big_Hero") + hero_object = set_dummy_McStasDataBinned_2d("Big_Hero") hero_object.metadata.dimension = 123 hero_object.plot_options.colormap = "very hot" data_list.append(hero_object) - data_list.append(set_dummy_McStasData_2d("After_hero_2d")) - data_list.append(set_dummy_McStasData_2d("Last_object_2d")) + data_list.append(set_dummy_McStasDataBinned_2d("After_hero_2d")) + data_list.append(set_dummy_McStasDataBinned_2d("Last_object_2d")) return data_list @@ -197,7 +197,7 @@ def test_name_search_read_duplicate(self): data_list = setup_McStasData_array_repeat() # Adds another dataset with a name already in the data_list - hero_object = set_dummy_McStasData_2d("Big_Hero") + hero_object = set_dummy_McStasDataBinned_2d("Big_Hero") hero_object.metadata.dimension = 321 hero_object.plot_options.colormap = "very hot" @@ -229,7 +229,7 @@ def test_name_search_type_error_not_list(self): Check error is given even when data list is just single object """ - data_list = set_dummy_McStasData_2d("Last_object_2d") + data_list = set_dummy_McStasDataBinned_2d("Last_object_2d") with self.assertRaises(RuntimeError): name_search("Hero", data_list) @@ -272,7 +272,7 @@ def test_name_plot_options_duplicate(self): data_list = setup_McStasData_array() - hero_object = set_dummy_McStasData_2d("Hero") + hero_object = set_dummy_McStasDataBinned_2d("Hero") hero_object.metadata.dimension = 321 hero_object.plot_options.colormap = "absurdly hot" @@ -307,7 +307,7 @@ def test_mcrun_load_data_PSD4PI(self): os.chdir(current_work_dir) # Reset work directory - self.assertEqual(len(results), 3) + self.assertEqual(len(results), 4) PSD_4PI = results[0] @@ -342,7 +342,7 @@ def test_mcrun_load_metadata_PSD4PI(self): os.chdir(current_work_dir) # Reset work directory - self.assertEqual(len(metadata), 3) + self.assertEqual(len(metadata), 4) PSD_4PI = metadata[0] self.assertEqual(PSD_4PI.dimension, [300, 300]) diff --git a/mcstasscript/tests/test_plot_interface.py b/mcstasscript/tests/test_plot_interface.py index 9a52ac63..94e41ccf 100644 --- a/mcstasscript/tests/test_plot_interface.py +++ b/mcstasscript/tests/test_plot_interface.py @@ -9,11 +9,11 @@ from mcstasscript.jb_interface.plot_interface import OrdersOfMagField from mcstasscript.data.data import McStasMetaData -from mcstasscript.data.data import McStasData +from mcstasscript.data.data import McStasDataBinned import ipywidgets as widgets -def set_dummy_MetaData_1d(): +def set_dummy_MetaDataBinned_1d(): """ Sets up simple McStasMetaData object with dimension, 1d case """ @@ -30,21 +30,21 @@ def set_dummy_MetaData_1d(): return meta_data -def set_dummy_McStasData_1d(): +def set_dummy_McStasDataBinned_1d(): """ Sets up simple McStasData object, 1d case """ - meta_data = set_dummy_MetaData_1d() + meta_data = set_dummy_MetaDataBinned_1d() intensity = np.arange(20) error = 0.5 * np.arange(20) ncount = 2 * np.arange(20) axis = np.arange(20)*5.0 - return McStasData(meta_data, intensity, error, ncount, xaxis=axis) + return McStasDataBinned(meta_data, intensity, error, ncount, xaxis=axis) -def set_dummy_MetaData_2d(): +def set_dummy_MetaDataBinned_2d(): """ Sets up simple McStasMetaData object with dimensions, 2d case """ @@ -61,21 +61,23 @@ def set_dummy_MetaData_2d(): return meta_data -def set_dummy_McStasData_2d(): +def set_dummy_McStasDataBinned_2d(): """ Sets up simple McStasData object, 2d case """ - meta_data = set_dummy_MetaData_2d() + meta_data = set_dummy_MetaDataBinned_2d() intensity = np.arange(20).reshape(4, 5) error = 0.5 * np.arange(20).reshape(4, 5) ncount = 2 * np.arange(20).reshape(4, 5) - return McStasData(meta_data, intensity, error, ncount) + return McStasDataBinned(meta_data, intensity, error, ncount) def fake_data(): - return [set_dummy_McStasData_1d(), set_dummy_McStasData_2d(), set_dummy_McStasData_2d()] + return [set_dummy_McStasDataBinned_1d(), + set_dummy_McStasDataBinned_2d(), + set_dummy_McStasDataBinned_2d()] class FakeChange: diff --git a/requirements.txt b/requirements.txt index a28ff210..dd4a1c13 100644 --- a/requirements.txt +++ b/requirements.txt @@ -2,3 +2,4 @@ numpy matplotlib PyYAML ipywidgets +mmap From 104cc69ab05ed7600d0daa4ae00c334a49a1ee00 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 31 Aug 2021 13:39:39 +0200 Subject: [PATCH 161/403] Removed old McStasData class as it has been split into a binned version and an event version. --- mcstasscript/data/data.py | 142 ++------------------------------------ 1 file changed, 4 insertions(+), 138 deletions(-) diff --git a/mcstasscript/data/data.py b/mcstasscript/data/data.py index 218b307a..5039535b 100644 --- a/mcstasscript/data/data.py +++ b/mcstasscript/data/data.py @@ -317,142 +317,6 @@ def set_options(self, **kwargs): + "given: " + str(self.right_lim)) -class McStasDataOld: - """ - Class for holding full McStas dataset with data, metadata and - plotting preferences - - Attributes - ---------- - metadata : McStasMetaData instance - Holds the metadata for the dataset - - name : str - Name of component, extracted from metadata - - Intensity : numpy array - Intensity data [neutrons/s] in 1d or 2d numpy array, dimension in - metadata - - Error : numpy array - Error data [neutrons/s] in 1d or 2d numpy array, same dimensions as - Intensity - - Ncount : numpy array - Number of rays in bin, 1d or 2d numpy array, same dimensions as - Intensity - - plot_options : McStasPlotOptions instance - Holds the plotting preferences for the dataset - - Methods - ------- - set_xlabel : string - sets xlabel of data for plotting - - set_ylabel : string - sets ylabel of data for plotting - - set_title : string - sets title of data for plotting - - set_options : keyword arguments - sets plot options, keywords passed to McStasPlotOptions method - """ - - def __init__(self, metadata, intensity, error, ncount, **kwargs): - """ - Initialize a new McStas dataset, 4 positional arguments, pass - xaxis as kwarg if 1d data - - Parameters - ---------- - metadata : McStasMetaData instance - Holds the metadata for the dataset - - intensity : numpy array - Intensity data [neutrons/s] in 1d or 2d numpy array, dimension in - metadata - - error : numpy array - Error data [neutrons/s] in 1d or 2d numpy array, same dimensions - as Intensity - - ncount : numpy array - Number of rays in bin, 1d or 2d numpy array, same dimensions as - Intensity - - kwargs : keyword arguments - xaxis is required for 1d data - """ - - # attach meta data - self.metadata = metadata - # get name from metadata - self.name = self.metadata.component_name - # three basic arrays from positional arguments - if not isinstance(intensity, np.ndarray): - raise ValueError("intensity should be numpy array!") - if not isinstance(error, np.ndarray): - raise ValueError("error should be numpy array!") - if not isinstance(ncount, np.ndarray): - raise ValueError("ncount should be numpy array!") - - self.Intensity = intensity - self.Error = error - self.Ncount = ncount - - if type(self.metadata.dimension) == int: - if "xaxis" in kwargs: - self.xaxis = kwargs["xaxis"] - else: - raise NameError( - "ERROR: Initialization of McStasData done with 1d " - + "data, but without xaxis for " + self.name + "!") - - self.plot_options = McStasPlotOptions() - - # Methods xlabel, ylabel and title as they might not be found - def set_xlabel(self, string): - self.metadata.set_xlabel(string) - - def set_ylabel(self, string): - self.metadata.set_ylabel(string) - - def set_title(self, string): - self.metadata.set_title(string) - - def set_plot_options(self, **kwargs): - self.plot_options.set_options(**kwargs) - - def __str__(self): - """ - Returns string with quick summary of data - """ - - string = "McStasData: " - string += self.name + " " - if type(self.metadata.dimension) == int: - string += "type: 1D " - elif len(self.metadata.dimension) == 2: - string += "type: 2D " - else: - string += "type: other " - - if "values" in self.metadata.info: - values = self.metadata.info["values"] - values = values.strip() - values = values.split(" ") - if len(values) == 3: - string += " I:" + str(values[0]) - string += " E:" + str(values[1]) - string += " N:" + str(values[2]) - - return string - - def __repr__(self): - return "\n" + self.__str__() - class McStasData: """ Class for holding full McStas dataset with data, metadata and @@ -642,10 +506,12 @@ def __init__(self, metadata, intensity, error, ncount, **kwargs): else: self.data_type = "Binned" + class McStasDataEvent(McStasData): """ Class for holding McStas event dataset with data, metadata and - plotting preferences + plotting preferences. Usually data the first one million events + is plotted. Attributes ---------- @@ -698,7 +564,7 @@ def __init__(self, metadata, events, **kwargs): self.Events = events self.data_type = "Events" - # Intensity for compatability with plotting routine + # Intensity for compatibility with plotting routine data_lines = metadata.dimension[1] self.Intensity = self.Events[0:data_lines, :] From d93dfce3f148d178b6f08ab1663b94cd534d190d Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 31 Aug 2021 13:56:48 +0200 Subject: [PATCH 162/403] Update of documentation to include Event data. --- McStasScript_documentation.pdf | Bin 594931 -> 595674 bytes 1 file changed, 0 insertions(+), 0 deletions(-) diff --git a/McStasScript_documentation.pdf b/McStasScript_documentation.pdf index 27fc59c8e322e55dbdd5a9fe36e16bfd238a3a85..f20483e67d2047373eb89c29664efd8b194731df 100644 GIT binary patch delta 50712 zcmZsCW0WS%vTob9ZQHhO+qU2CY1_6rZQHhO+uhSWJ$>if``mlaS^NBmsFfL+QIV0k zs-DVx>ZzP;^Cy`DxssR!Ju?G440+#M(H|HVRwg1QB1aP&7(PBCMmcK-b7L24A9FJz z=D#H(c5ZeKPBtP&DI#4W7A8(kA{GvAB7Gu8MIsi~zt!SI+#KA@97K!?M9f@7jB0<| zvoW!-5(x;vm^+yL<22bA#5y?)5;5@<4VWWY85J`b1z3dV?>$+VnE!Dk?O@?Z#K!zL z1QjAi6-P(6zm8e{T~hrU1`!+U-#C<9%su|?nk_jF7z4n`ZDP!3%FM#f!DPnFVQkFB zYRYb5!o+FJWz50B&1x*b$Hi^J&c)8k%Fe~fWzNmcY|d(I!OqNX!oFW=8v#MkYo^T+k#N@qtpK5=;}Y82KNMzo0*OQFOhenKY2 z1d$j$P=pexAlSvtTS8Ebe)HoP^}xjxA5%rfo9Xe~J7AHA<3Ix?FvFd;-625Vfh9YE zmm57ClEqNG{ z41|j{`4W-{m^Hm27nlg3O2o{~{jX_YXZkx&<_?x_R)42}`G1be$ms8o_7lvFjE#&o z28gDCz>PRyrBZ@QgMxyPOQM85vx21|bm@mi!K~rS>=BR!)kd((8JT8`1M>M?LGMt? z?jV1&a;akRVF1ZrTisPyF)$+L8KY=`Y7fy8y{k3Z@<8P~c+6}7qk$Y*L7lP1L|G#c z4e$^tneMOWf|PUwW?<5>qz2^&35zF)O1`zaMEnlr*q|xpC(%UH@Txsl1EPH&?$7Xw z0>%S5^aXaEl!Z^q=f0Jy5Uu;*{3 zZ2PtLWoV>80G&$(pTb0`7?ZT1VIIj)ny&APb$$mr6tum5z4g4o`R8X*n&1>`ta^E7Nr3f(um~H zqE?^x88cN}#R9uB2ZS_v9KiJbXTGSDBo;RV=J4tl6wVZhM@-)J`xL}I#>65^Enf%k zy5*@lSyt~&7_*Y2*fnKM%p^-aB3SLsTg*jOfS{(Ypef`YNI5Fa(>a1@zFn(MT0Mv? zL|Ev+td+f&ak)2NqR9}LUdimC@t6}mAv67be)|aHwyz&r{ ztA(UCrhjB1yx~P71qVuO+x1OHd$^&|N}_ZkX81s>h5xPUG+iD-&nM-`h?63okiQbv zb$$_C%g1J~P5(-16hJx!={#8oyU6@ z8FVthw-I)c<Asli5>%XAn42LYJ=Doui;~zbacJ28ZgKkGc?6NfV^QZzPpd? zgpQ~|5>51|_2Tx+sZh9{vj2(}WTz4r4+etwq%xwfuY<;gqAX%)B^Y!;TjF3wL<`Xk zVxux9F7efr_m?YdG3AnAKb-<0 zJ(bgr0elq_X;x(Ggq&Pa2J8V=zb}2{fmvMXV{$NWXfFg|C)IKG<8#n@ekER|E!FDZ z4fC)RJhD;0r%&{=%H*2Sz;M#MiGV2+(IHME)r8qdfr^Wcm8Fe=28R2YE3n)wl~SC3 zIq_U`{oo4_o$6<9JX~mg_b9{jUVc1BJLT8UVt*nIfJPh4NIDOn?vwkVCc($91r66u9Ge@nH@|^wnDszJFjL zB0v0XB1Rh={+P*PnJ#4Hz4qsQqdR$$MQY?E{V-Q8>@iyR7CKb|ov>*B^9nUR6&w8) zbKBq^+lfskwhitBw1u?AVT9+yTNg@xRtUz;6{>8m4N`}kh23zPz$*Fpg!|98P6U-2 z0QuVAo{#I4Md6;BXnd;lcthp6Z=T>CG+>O)uZbO{(oZ%M=h@e001;~3Wq#(JenQD6 z3oYO){Q!4UmVD{G`eozSPihj{!!^d-qN98!j{5;%BkUO9Um_kG(d^|eCH+c&pDABuYOctMqvXk%d z=KZA;+ICz+{Z9gFw7lE>+r{C2%$(aUK6cv4cSKEs2aJn4fVe~z(5Is{XubO~K>*^a zw?-rRLC5c|`={A#6h13k8$yf>{+2e>(&)9$DnV$cHl9rp4;`3+TiH-g1PQB9fH=-~ z#MF>3*O{F}pkDqx`jpQI%+1EWp^F%=lrZ$T?M*WTKZz zB8Py>dAM;FIkXa)1n9dzypR#z0nxLQUb(Faf zjypaKS$W+9NN)Edg@rlRp8qU6MdXvY{s1B6>dgArV%CrX@h-r_ZiWLWoOw6WG3zU{ z6gwh4`9Q=0k17le5K8bupp#w+4f+V^(_iMGGtO$GUlmcSiUi6o{H6*+mRr&pb7GiM zyH}BkdIy4l5X)@Tm(c+Q%7NTR?=1qS7f*XP5D)yJCPSOVhc7fWejow@WSEx_L5%6O zP^?c@E|qixQXD2pz%2lH+U#-JwN9cv%5D2D7x6v&nwd8x_Y#cn(=K1+{DZMkh2pU? zNM89hIc^(AeJ`=VR2|mEs=Ye!ZEla6qfMR*(7T zss9fP!9jQVE}N`sfDb8m-^)xR7u>pgP`r4|5S+?uc)@F|JHs31P|7TLcnsJSxfQFQ zdNH$0hXHeT-2HF;_rY55sn^1Gc`pY3vqL$q=l48Ag@G@kks$qdNytws#~i+VY+5+B zJzJRa)6-l1m;r2cNIfF~E-dz^MM?R74i8Ob@2!W7@1=7Km<*=VeklC7gDe*^a7$=b z0~+9!7=p9jz9e)mhU)3S1nE=mg#!o!OJXOx3mGq&Zj_0iC%Li%_#xH^iOJU}>?q`a zpfiQL(b_;zLsq^)@P`n||BX@h*=U-aP@RdBRlR7MVA-WalR*|~n*zK-w9_$2fvKBl z7cZ64Tg8BB+k{AgJ&A#t|3PjPZM$N?=lJQ*uE4}#Y;4?2|3G4Z0ueV05u=2)i>n*a zU)1{Ffl5w`o_+FGEApRR!-4o$H#!up?pZe;)UBRj=W8D4tdfiOV866En_K!M2Ir5f zF2({e6k7b;GFA+5kmwzM56o!tiYE8k3!E!IRJwrBQK7-Rb*-a&+^x(o*CU=itv&Wx z&;UU8s4w1ID|FsRVI;(vkzovWpMP@Bz}@_@&{qSqepzHC^D2pCzB0;WYoTpS^g61X zsUO06eJnIIIi!^w%eX-Ms9ErDkX^SxIM79Gp|If{54I3gx}}2OQt)OlKxwx)QY8k> z>r!lB5yiy>YhFu*I18KvNWHOz55&rfc76a7e-j%JvXszqkRcg;R9>}hk~%0d+6@XH z6_^W?qKo&)%H2$RH#4=Ms4w$_FSOs6zv1ar~wQw{)d z1>%i;Qn3JA`whs8w~JO0#$-Rx{kjOYm8?x7uQI<~q9FVx0o){zQ0zDp1PBfR65S~J z2Q1uVzmmwBkstP0uP`R=8OsYe0z_62i(V_VF4YjOq^oimWDIpb6w9vZa!_eSBvtY} zZa&CMVaz;sktnv6(K1Ync*41AJr#hI>lsfg1({C=MJWzCv3^5tAe;qQNn%_`IE2MS zazXeM|9PX1quS8PZ5nn*@bu(5LX&S|D&D(;no;mDRRQn_V`|_$ zSv?)#;u@Yzm|4cJ>)6Vxz{PjJ;^IX~!tA9G8AF;F`cAZ%{cvp%nzyTPVO&zQQ@zfL zg5JYhxhyumT((PyY9c9OWELJdzRS>)z=Vz>*<{SJ6=SJ5v|yQQ0QBmUwqb1ZV&tYj zb=`2y^f+*I;^FQQoVs@S z!-@os=AmZzPg)Lx1XoBg95IodfcVjd#Q5>bQX5=kG2?L()da{2fA-i9ZHIVQw&4 z$Z`^B97#%vHK9BQk^ec(RufU2KP zREYPv76)hhCWB1=#x!{=m5B7q>F*bt@W(Ap#kmAz^52}pM}`@+M)-~(XO9Um+WM*{UwM`ai^bt>Nd8lX;S z(BM{dVoqJ~si+rC6wV_96GLCc_KsvC!w!d8N~MR%d6SOt;(U4`4uYvEOS%ift7}P7 zwvdDIpyVjnlZ?gnOQi9u!{LZI?{{urPnUtAk>-^qIb@z}%5^-o99 zLf9t=t*ZjiKxOLq@2P6GJT?T}#1PAL(vV_<-+r_{-klf#3aDmC*Qd$3TcDo$W> z=K6tuV(jL|=_gM`HyVnE<0W6bv0!uN7J^&DJ<|B<9oR$TuiBC*SCsk}xcJ>cpn)QM zu3E#N>A{W#S;PRr{fe%0W7IO8J(eAaY%09AYlsFkPnnFPxR;$XWg=6+$->Q^W4ghi zkz__fQ-K@vg%5`vmw;vFh~oM+Hh+PSxn3MCL&@6f-1bj`|fw3FTye+#OIQH#w(^9Co zz?;x?Lc<@zVzxe}?v}IfRNc=HLuM6N*$=AS1e#~F3qppV2cm5IzU|+lbiqqj{XpL?6W37YZi;PqUp*UPF0O!!C45Z8M^2QEl@H%_CI> zO6lV?Z_Y%wAlVO!8?n!J&gODRJwTz-B)cyIFa$q=Cy8jd!7)xglhG@=(E z`~D%Epzs{}Sol->v&4V%&(E*!uOk1|fQ^8aUMs^^fTLl{UUS`+;})QKuVt@IuzBj$ z-gmdxR`cfb^$X|w>&MURE_vUD0IRhd#T#?q6@xa;o0*rY9(za4?3bCY*E5eLhpn3r z)2<#p2f^kpk2m8cot7>`$IY(S^w%}OtLdliXMVW6ETS*1fGL^#978(hR#^@qUx42e za(*g-w-v#Hatbri${$>8L0!Yzd*tpMI;FX(la(r-B=1&TgW5U4u3jM)GuK1`O}+bGmnL0~oU!&_5b z^kGMHo}67PU2W+iL!OJrT>AQepW^v9m+31nU(Q>9EL%D<&#cy7;%=MwTk$m@Z~E0341~ibXhi*%YdkF^oOHZ@*4tsKlSK z`8K&Am21;c2!;He+v{Wh;Fm$m7YIAHOYkxiXYyGi|mEX=hBMH zTcLk+wY*3c#;#2tn5;;bj^UoYrO4b&vE1FS3w*g@$xLQ9Rq^Nd@vm`)5Q@*Cr6o4* z+*%EU4oQ_+^9`9l{8X9%hc|99o7A21HS%@_8U4kTL{-SyW3BIqm%(zdcs$!|Hm)^{ z@&!e<AEGGx2tQI(UPMAWF24uGLR=bL&0xX(Ook(#snl#3trPdq?#51d;G&=R&{XuaGC~+ zYLo3>u+cC>5ol#Xi&*0+>)Pc|Ziw7NE1(3BY%4=U6gJPupX@%%Ro%1Qh)Q`tjZPp) zD3s#x&4ekKK}P{@;!!e!J|wn&3CgW9f|n^zcwDRU2ggTF5gBQg^m9vrCYrcbLZTsY zOcJX63xOP@OZ{{JrKJo|PdwBF+LQ!Px6p>D_`ub4j1nVjA}UZJP-$!;-?aK(#H4&9 z9`ML+;Hd1tZs07EWB58StOU;PLkc2Cu+UUe-&q~$+H8@>F=ph3h2O{H_{ypw+lgq9 zJT8)p774t~Ct^_xv+R&+8G(;G&`QVgHN%~x05ft;-e*X_7g9aJI9tIxo_cr*82N=c zuOMVHr>fim7X?XcZc(QsK&!ao_JH^sp^3nWt>7ZApr(~Wn)#z+6HiH5Xd;=Z%x04_ z{zufX=7b{^Vx!56)K}E$xj=abqw4p76=^9^-XxOmqJuF-L=A|w+%3c^e$4!c{qi)2Tc6156 zIvdJ8pU_<0uu|#7GC;fU1UBLWju%JdP!~9aJbZ)h#Py@S=TLQlaT-Rp1RkAFmvUqx zqyP*qZod;o1AibDT?l`m1zinOnXCeX_+_winX3fw6SQeI4)vqJCnBn&;8HZGk|*L& zFMwL`d z^oO>&oPr>cdWZ_Q1DfOGCaZ)qC8K~T+PX5}mCdx0=hh=ZT zg_s2Ovjla9RfG{0Ix2kPNbq6wa7&Rg3@%R5m}O}rGJdS!ixGc8D2%ax3Ks>ZOrl&L zX%Vuzs)`zQl5#kkTZI2E0Woxx)cveJ3h)Xr(ZqQU*_(Fr{iZ@qu_n!6S(-mF=?qgGuIuqBE0= zQoFN?$+tsgS0i;;7OteW?zEuRM3mjmRFSdRu=+#vwf~BYsS# zP7@k^6k?S+I6{uCtYnE@Ssd6B%r@r8-l+Q7mfoU#b!TqBjIeJH>JmHUS>z9}C!cFD zPKA+jYqFS?d1@8GP#`vSsZLQM5VPuW=}u1M;rF53MiXsttWjx>@L8Rm_!3ai)a6T* z2-&2OIdm_YBDZLnJiA&)z8Fc`Dlmb4KU43PP z`LueT5}G0=VGp4(?e0oLZ%_(AbV$dnMmR;5wgq9H zVT8G|C_+lMYy}@i0@j}?85V~k@x%CY=D+I04Y`Jm5&Nu}h6s2TZ{vD7k+bG$&)9a} zue)#`k5#YOt_#;7Jt_nRdl1!+?puNp;v$!#78v^UbMIC;*Hr7?jsOm1sR-|3ZxvSG zaX;=VT`t39lm=84qQaAa;yRnki<;Yee7E*AbT;AmSRWinZ zRv2wRWsh?@u?fOSaqByeRXFObDOzScswO`G31+nq^=FVPHjPPm-yXaD{EifZcFX?g z1CBZA`t5AGL1uq@wGY7VbKgJD8>fyQNt`b-b(7WM`+2BJt;NKr}%h-QgsHG zn7D5xbEAUBn&ibhuc2`m?^!}T9R(>owx+Vimca;1ax3f>4gZqK@il1$%;&<;Mf|(+ zSc{4pJ%*QB$@^K29;UP?&}AN^G%iquUC7%LOanTl>W3t**?DBfV-d8>1TeXEpt=!W z(q*DJ$B8~s$|A^Q2h20zT}K74pT8kM&zI@DEA5ML7bIu(kgct}nqC2T{hJf`8=T|P zASnI76&UsJ3EgBD6fr0(C+9zVJLybrz!ZSnMFTgkJ4s|PDf@Q$#Bk$s@udP-Z40|q zj7pW1#NYmNr7_DWW202s&9Jr>6+^6V&Zo1fu@7Vu8A4&)1C^m~dR8*3xoL77_uj z(+3me_r|v`VM|T;42g>MtFkb5Et+T~UfpFC551gd`0;6n@7sw<3&w{B2}jaI>{+Lz z)YX}!#y{@l1DE1@pzb#taDg3sTLrP?_QCop{Y;oLg3XySM9r8ol0y=Kr=jz*fKF5D zty44S z5ZX%$Lj)o6zQ;3UOun!DLEKhIgJ}5sQ9+KWwIb?rjv^j`7Xh_D7z7U0W zfZ-s>JR507-Ub;#?!HU|E-ZDE8S7etCF3NJOE*)CGOZ?wE+QiGFhXwt_Oh=W# z8@Q4|48f}a8q9qjG=RrGvOmsj!t@EDJL*PpKHcbnN@9$RoB>;Jag+dAotYxI4t#<= zZ8(Gx?WctidGfW-2S_kq(2bZOLEPi_l~`fMuetm+@AgwETrF4iMfI(=_-yX3@2h`f zaDk`z^6d@Kk2GK%7zb|K0?^;vUCfUW@Y+D|_v|33MDVP1=Wc;F#%rt49J+q>NGs(y zS(YFli1e50(en73Z`NefTWijlakS8UF+er%X zi@OFrJ#y$ZSiY$r>h66P>CIja#!UBY@-Q%5^kIKlx(kfYUh(VE0q~35QXZG%_hYuP zvqzin?X1{sMbTVd^{u_wXxTT|AWy*TaY*PffM znZAj8j#2+fhvwLs`LKY{^%l4z3Qmii`RthbGv)IOn{C-c)PKR9Qw^ZA>aR*#AFk@2 z!v^};l6{OhobUC11=x_S+VwYB_2O`7_jYsQhnreKRCiy2Tf2e<#;so3$Zk86-1}bb z_WrK&;TI&dsDAR^qYD?US9vjAGaRf!T*p|+f8)c!v}t!)zDK=`$?Qa=F-}Q)226U8i&E*cUnC=5^Wh ze0s{7sZoemtoQt~UeB5JON}_vj*Dn@L%cduWhWQQG2M1Bx6;EKtaNEcR_GLAt7RU@ z6(Z)5LN1{e2Xs+^+;*`va|o}SII!XTVBEETHZ7uB`U@jtHEyoN3SSe3pK0!$1V(e7 zu;~nOSt!HdG$eyYtKq7ZFq?{|jmYC_=#Rv!>Dr~~1|_I#sE~ZMY&6e?r=jN z*K54n>9A`344o@u4_4O`nDVk0d2loDes?B)UsJ$dHG?@L)dHUg(^Jnfc?cF0Qy;Bf zC=xRq$IX#?1gM?w5J(Q(5Z^ft3;3Y1XvM$s=q9jgWrr|V!9~kXo54P!O@;1Se#YTp zJj_h;8V19kd)O1#$)0nsE$S({*KUA*u|!ctM%+KWgW5kdmKLH5|bw_rk@7O zhB|n~;>#}cgCRLsM10?%8!9@g|9g>Yu!!Wo@4aljery2_`H`9_Ll;Ud`MIP(8y|F0W+;ea$EgK#pX)6s#5qWq_ybVMIug7kbk5NZGu6Zd~VZ`ho{ z)sM$*d-w_nH7e*Q*e_1sGYb?Tlh-Q|4&vaLhonUGUEH<4TB&W+(e423{VEX9(D3uL zuz5cab4km=MhMSAe4O0)s>%8Ks**eLbgVPzNeiGTjaaSP*y_rR8wBTlGJrJ)YRu@N z4e0LbRR*l0A2p6f(Q90V5#QCNGG2!7w7`f9(qU=Azip}S9F!-1a^n73e1Wd797|Vv zIw2^h)p#=AdRX)B(^1zSY_;7?8`zTPKNv#KZn&&9Z>R`-u5$kQdn~!Vt#NK<6di&9 z+sC@+Oe;lS;i8H>lo5HK?+lXNuz0HzU?rU zvb}8;8ZeoStjjBVuGs4urX{eGtV@!ag{TlppPQpZL>IwXf^5)dbJzYsIZrolsH%VH zj|CL|v4>@KggEX>5pU@Sw;L_Ht4iy#8};cqxHRFtSDPxK*7|k!dq&IN%L}xaS1Gvl zClWXej+MV=8-LX?!@{|j(U&jyj^-5y@#Wp(n^>FnK>>Yn(XZ5{$OjlINtmBO^A;0s zflO|FG{RO*U-4P+Z%wS@b7MVkDZPT-Js*G@8Id;^3Pj!}I1y29Lw(}yNuqA)D|Xz= zjh&UgeDR}oOyl2@`0+FOOVWiwIT5?OJX9rA!kK(3uSqAQ+Az>Z)oaEW;%-qNlEw#o z(mG%?IMTQGyth}i%Oi$`Ovrt*_)%HW$gp!iwWcZi^K?NO3;Rh-WI@vCF`H9VwPgTT zVoDJ0nj#=?MAM#qX-(jMA>x=kVHpc7S85 zzHRI>V1-i{@UuRUUpypxg3%EWZj|f2s6_l_`{2Ua+q|}ex`^sh=>h^h4vZVR!Ibyj zt(*|8g1f|Q`D$_{KOx=4`!G4ib#|-{vem^kw zPv-DC0|)#kU$K;Jcw6{Y2M2;R@t{&+FEXt9>4W|4NVo!D+Qkqx4}tNGWP=r9V;cx= ztGvI)(aI5M-xow^;2pHl_Ai(#0q|=W-5rQCMG}2*mt7XlhVgokZ4Q9DMdhxG45qls zHzJ1bE`7n6^Dk4-AE_T{NK12{vc1gj;gi8ND5Q?*=U6!287%D)uwdh8qx*f>Uuz)$5N=_P(}!jXqjeWF9gq%Rue(6%2I0NzEuQ> z41*a=oOq?Bp;9@TpYs6tY|pQI$UG;>ypDxy?F7o+!64~%T(0zP&5`&BsA+C#2!3`b zARHJKq^Lwh5$aaa{wka`d%@Njdcb-enZGQGync0vvtSDY@+Fqs0|-d}jby&y!_$rU zoWM&^s%PR62o?9CQwU0k9}?=1Q#3W9lQb`xd3k+Gr~FC(ztkjpSUD|7x&1~WBYk-E za~Xa+fmn}YnbgkMmpd#WTf~sC;iJS0$Xa^p+mFDSwe-{NI_uo|sVAlp4_?D%SO;}# zBSW~aEHt~sL%csZMW6Jw4T&(%y{Cvf-FuBS?ea?llg2#j1s6z}t&;eIm$lgG(2#{? zN_4R}@1lV8Fit?Z&uG0f_wtGfDaDf<qjpU(dU7= zerju0?Bu#*Wqq3Su-13*C2R*8CHhNCXUkt2z*mA8YU^fkgMUXf?H%26VxDc4Amv1Y zD)TWIfksYHe7QWdM=EvRx4g5oE`t=cjvYB8608#we8YYu94Fbrj5HJg=_Vo~{!EL` z3pxT@cLE03p!eHv6h75LL4k*cqwE;jt!(4;ZC?i3f-JnOHS$oHv=RvrNJ&GrPkJRW za4Ux6={!N-XCMHxq#z8~p^qwu{css8OgmDVa;`YxYWBp-7G}02DxJ`i0g@sW93o9U z4i^|BWKZMo791dCUma@99Q#t{V=ip@%%E1sK{f~cR&7@?5A5vd$0(h8F*f8|!AxU- zIXPU$4rsdeoPZS|lbINicT3Xjo+B1@7q7i9+NjyOJh(8ZB^Ul-P9({hP;5INY`yi& ztzF~VTbcx7R?48guMSSLQI^X>*^7}LtOgl%r^o!-t$tBvvCEBmR7pAkMV3mwRNT~BL zP$!>G(1$$_1rCZl9hBD8eJZu=h{e6#oYSI>STm9-iL>Pn8TN~xb7GUVvMa=O?)VoP zL*=2FBNjEC9W*@dTjFtPstgtX4(<{=hrv1kMZvyqm^o0-QL^*1-;99a#OJPUJgMNp-8!7)&P69R%QVeLmP^=vdb1P-PZsy-85cB@#g?S%IgmuQFSR+4 z#Fj+H`oL^eLVdrE_u@$@kn5=gnqs_??n}ccIA<~&5{tOJiK7aH_PBXQ6nJr(wG8Gu zfz_K9By9X7Qx*QN-uOpr=Z1p-hBGadjWfns&2iuor&ufgYFF)#p94rICP2og*lO?| zP35}7ac)8#?P?T z{%Xt0Q05HLscgv6d+*ofK>SA<18j@deuqApMu_ZlC@^{CN9|I$F_8)s9PGi@V3V#UuwHN9%`b%d!CDMd~fpJa*IWO>#B+lHs!FN-KUQe?m2R$736B=d<|& zAraZ;(pV+qxwc2rReGnBGP2w3N8QPwc=~=k7U1cHPf0%nAIsi% zgcjD)BHj;Q#fvg{`Pu=qpOU4^XT5;unog%hqOQp#65*>nU0H_FGZS}AG3bvM_;V<` z+$7KReG)w%R2Yf5b45N6Hxb^h?>`~c(-+46q{XPnP}@|~yqC{?%q~&juXo=-97@&` z|Dr6VbMS(Yfp9Yai!uFopK8GyiZQ&K7v!&i{uQvl0{&MZ{t9GUH!l>L0NQ^s)c^mt z3p3ZhY1L^yP*eaGPLBVn+h5;lwe%s`URqk6IRd3o zMnOhf1~QlZ?(IuwECeFfj;hMb2#(tJ((T0`8L&r!1OQMO^8^ihyx){9f{>KUTHtD1 zg_Fc7R)Sij$!1FWAq=DOaz^9}uaKF&x3hn{vM>C2Rk_EpT3 z?NA}!2nXdJ=}}Cs3-F#GbuT^5i4fE!8`|d#A5)%31IvrG;&^Zakbz0eoQ6 zJTMo-!fEap#k4qD3>j?$KGHuq>bm@QG1zl&y&rgET|d0L58@Hf*KMvw2c<&WaR2M06o7R*%2J- z!AFb9WP|T+_ZgHZ;zC-mGzZQ&zb%UMt~g_~WnmNQg;N{bh2mU}g}Cda%gu4d{1_2G z4|HNVXy|U=&=F49Y2lQ6Whz6Vq5UaTVx!DzGL{WD*rGaVeH~F*q~+i9wazK-w4c4V z;vkYso!_^N+Xzpi?d5W70h{;dgzqSnRw{V<4Y`Q+SIt!FujKEl5>{WYT)FF$6-1$s z@J8}I5=r`$7j5#cShade833Oxgq8QNU{WRwlHqkTm+sFDN52q*fN5e0A+$ zL&oF}INM@11&W#p0W)i#2CS1FE3y~MBAbt5j3-TG_RcJ?2<|Ax*Cbe_2h5#a;ZTaP z?13(jOixaxV@{?9xDH4bQuJ;(+F#vnA+aT^bC(%WjcoAEGQ>8{w@ydY>d`ZA^5>rpbaG!crGSM7A zV4`hdaO)~L=oMSgRnOpze}vC+3)gV<3`Zpk*1-{3z7ER{lc}RQ%~S1r{j8)#^f!Tp zV>^4P+D`on1R$MII(E_>MJNJs<%BG$%VpGhHK(WAjp-t;kV}mPfNMo|hijFb8P6$# z9Os3EK}1j?#0$1rd$_T{>ko3c$m)9HL3{nsadg6#VDOLS4O(1EW(p(8g9l5w2K#mG z#8?TnhZ3K~KCQgIY(Cerp_lDuLXs>5-W(OeLYWz?0f6e51i|>-_sGx{a0ljJX}XRJ z=W$9g89<;cJva-NB~H;!TMeUuKJ(+GQLxbpUG9UpRuH7lUD64holM0zXSe19QknzU zkUZ%uSPP93_9+XMtdUG+zqsEe&Fjs{@MJ9xYPQXAyQ~8(fo5m9M)#@X+@CYdod7gE zP=_Yf5zu94xs#*4cG?jZt%xAdusptoy3z2aGuU&Nn}!sU+6Y6s*|PzidPPvL7NDwMrc7{gqm^9h^9g~h`Y>2N0JYQ#}6rqcX5 zlqHNT=GQ|i0Zq*KjKy)9QihTN2^^iz$fAkpIiCEZwrKJ=SW`!#yfr#fdE`w_hwrHF z1Ax@hq}E#_#&=Ps#D?efBhU{B3wfzWZj9Ot$1eyv>)z3|`s;vpyqRM>ujzh2fcI^y zYj5=H)&Tf^#7cD=R9dJ3EX4z*|0s)ar2Y+af7S$a#49x=#U~Z(93I}?cLi6<2Q&T5 zL2cCwCKdks z&3%AA6uP?HWQ$C&O#5mO*Twp+X6G$rkZ=dV5ZeIn%&+zS6B&}>CS%z2u#t)LoX7An zz4vsiD4q?=8LEudavRIpCJI=lvUmK8mVu1YWL!+LrtKsFlqExy*CDnZQd=pm3eb2@ zsaf^$(jsH05ywO+bih;^6A80xyoX6}5@zuDLclKa3hA(Vb)PP}^}*BZgVl*YqBPHE z(#k-5Gh(Pcb#b!3=m}&#n)y>Ds0%8Up1ex^|Lgg!k6uhvYwcN*W5b= zPw5T~yPbq*bj$9h(LgWlq26>Dk(92~X;}+=>boPa`2VbWf1jcrjj34v@@i|L()B3wphc+g)M=v*ci7NgB zO&n{@Nikf4cNtNqP`pt|wrCV{^s|Ej;RY2h^bIPQkuWR6H2zkl2t(K{w}mgyQf+IT z=rli6xnCvtmolX2#yhltWcu3MjDrnA?ST}$RUOd7yocvbqQkD-J0KD0x4h=aD>O7& z%1s5>E-AM*NF|7zcxcSGlg_|gKYxWAF$kd$<0ztcShl_^bId}XRwI$csEY3HuJe-h zN`-h*KWZ_O{B@*Xsnlk3u(*N$VEXj)k2>CYHor{2;e<>Uu!4soMKPN`A8`p)=Gbdi zRLVvYl9Uhx4L&!KF95o9gV6}?!LiBu)1TxUHSZ057G8LDdDjLmleC#2Lg{*^z_7JjpZRYXQ) zfd!gfA4Pl?b(4q%U6S*I%Fv*kVtsuhyqxsXNSEqgvTG(PCfnag$L$LS_Tl%!eT*Cm z?A_23&Tto3T4x09l!U<#wLLmQ3JxC1Wa zX!4_P{Q&6h8XdZzmh4(RmmDBJo9Z27U5@3_>Pk9|>PCChEq`hLHE_Qb^k*l4UG>*a z3Fy@82*c{-%tl+6kD=CZHGl)%H|QgR#S8nx-FxC&@>D8NU@Gk5KGii>d_z7~c$JVz30#U@r~K+51`7y& z5)zv`Waw&LxY&=BzK|N{-MD@I{TB|#+7)3F!B`qsQ%RRWxGWk1p!p_t=2k1*0gTR{ zSpaCZ+z6K>g;PXa@sMpX*;-ZmWIVFz8|8tanLC$7T#8Wy=U2;SojuUpVwq**3swrv zL^mkR;bY4B1nE2md4u+%;0lH$Ca^KgZnSJ`Hf( z3~eb8A7S^}7h1snYRm*YI1y~<3q|IIz69)|9`D9oKVm9jj0VdC)(%^!V2{*iOUf^h z*3>bebfwa3=qT9!)HWh*Lvk8Wxg3pVrb_2UFk;43S2eeA&y(k@Kq}=@nHydh1iW za>4&x*;nS^ZxQV)x~N)lhE-tbOt8CLReT8G&YuqCbTE)VAEbJIyt(T#%L)CXJTuG1 z>vDJmWoX^!Z&_At442C;AJb^bG}b`nNLXG=%A;g+3FsLq+dsGn5vt zOa!%HZw~A!S*H<)-P!&>Po60wc0O&H7~X^xVb`I#VhJ+`sW0H5_rga~*Q4ML=Z4*o zkBRNTP8|}!xTcNs@0^hZ#s;q4U{O~B?#*QN^%Z-`7WI{yxUN>(S6U;<4V5b|&e%C) z&YxDC^7K9ME~dC(PbwZ`7K#=iv5Gy#I=VM$N`dxR*IGz*Mo1j)O;>{66`h~V@OO@< zb`w>V2>7E&LP;WQaGbssS3*xakftw4HT#SaY+_}A0#P`LW_x#B5V#5+Tc4JnqG+Hx zFf=B|zy|i0H(5kbG4}3ix+`WX(KdT=0x25~Emfd-?wLmgL%dN9O5rAbw?X10Q5d9L z#tb4Q5L(OxE^s|W;>q+qP|U$96i#PIheDwr$(C zv18wy^ZxIxdha=3y1MGut9y0T(wuXQ@mP)0u5J6*SjduJCM1e4muGeqeuBy(Tt8Fj zYN76j_u!Nw=N5eHURbgb#cWR))YG5o?@m<&Na)@jgK+BU;$b+97IpR5-L+@d@INr?+G zW$R=?^`FQW1?;jbs9?bGvLzQjp>h7^9Rs1fT>w+44~6+)9YYb~JWXLoirQ{tMN$v> z7(zpmpGDvR4j#F07DYlR!Z3j_y2N7LKLHOOP7!)+N>*f7}peK(p*O{xpw?Ii~QFc`KH;d~MnpDmuJ*htA(9FJHA*yZvx6 zLDWpa%iVX0FW>1YSezXrB*X#1t!#nkCXPh9k5Ck;YM}Ry@R`xdlf#@HUf1W~y+aNo zzZ9LwohdfKPOh4vP#>s5&rS;yqMy&{An=nWy6HHE9C1tlH_6c^;%=FzVej=h_j*gs zBD0T<`u79AOG#afR>S$dVnS=n?j@3jJW%~|l6Uhej+iITG`51+9pnH)cIC3mcgp^S z#B9RF=K@QTycnrtCS0p`2U8s5ltlAJ{4hG(=IV6?N5MT@3~LLn1CqDwKNiw8y{`&? z7oK`65t8{BPk7Q1iw)zORU@2%n`&wENaY2|hL7_?&*U>CK269S39`vrE7Z0st%{M= zeIf2=6LAQQd#DdqY%u^%Wp6hlqLZ6uiv59Vte<-a4)IJz1x~dmwd`qDJb0;bJvih-mRjXNc}e9xNh7P#pP$A0C9aT4Y4Xb)Qj-8#FoeM#cK|0` z_nlvCoQN)7-oPFJX2H>%|euYz(^ z2`=jFDHJ99O?zD(v^-#J;`Qe#9($-@$SB}y{F?t5O^yO!fuU0|bpoA&!7(2MSv0d~ z3%GqhLd$d@Utx^Z$lnFiWcm92h@%`fLUQ(I%RBAzc+C49I;Yc-Nzyl+I$ z2Z5?o(+37z{YM!Uzmj~lC7~qrj}EP6eW_9?82yW{gxt`n$u=SlIUm0Pg9$_p_*xF- z@%LtdJ?$yrU&<~2Th^*SK1%W->Rv~Ktn3Y?48it;9i_xJq(*%KhT5e^@$ucS-zYvy z!=``K6vf-u_ z9i4{K>`N7NQkD2a5jt^rg#z6+#T^oSr^aH!I7&VN6Drx9me4$u5w?Flx!s+|aTBw# zs%4NlcAhf$H!tibpz&{$LT17uTZ&tvD!h8Ku?A4fh+XEI?c8c-UZXsP3>43tYx%C1 zJeojksvBxFE?{dPQ*JT@G%jKw-zds_?FJro6z>W8ZrBvc0Mf&dU@YS*QArdougGRe zjNBW5oes-4uocC`0`bnMyH$+@;zFh(78cwUXdW|j(%&pWnnqy9*d9$#7Coq)9a7C# zc(w?$)Mc`e8xKAMsM9KKIc&Vz58ui{mRM{Z*^d9}94i4jzhUIRq5^~QVByB}9?PT4~+{J#$bZg^=}K!`=*lhjWT{`)>?y2nxN7yR3pXSmBO#tgky5SDSOp z?i}G9(f5pcK0Af8-GG9*y07C^R;KKRPh8-u_jRD$bqzf=n~I%3{5Kyi-;`f7_`EEo z1bcjXdg-PaGgoNWkz5I3W_#%u5)#wilJQ&!TTr~zzj?Elp$n9`B4KWs(*nV+$OfW-!+4m=;k4v=Sz zO%r!WnnSD(m?Ap0*jSek=r?&$BpBp)DLPeb`O)zNakWw@tJZ1Ks{5)H9$k8oTL1(S z5EFZ{sVI+Rr({w1+qIyyB`+-Qm)62^j%s%Ejt$R|YhmSjJJ)abuoy|@Z_aq-Gc6|=imWFX z{8n0Q-)(x!7wz^O7xy_k0KikrvqY=2kY$;|VAdls`OxO44)um@fIxw-n)^zJT7x)w z9yo-{65>6;-M8zr`T8PHMq`0=njtZplo{#n!l?-W8JeQc2`ygIP<2A`g)mV{j5H8c zJ0&h$98*o4m`d@M8Ab~2iir-?(j6HboSqbYO4u57Tu;28QqfLNoH)QKC9W1Zu_G$@ zK6g`$U)CG;XALAbM#+pcA5DFo8AWMTRh-y!&lnk+r0O=$G6kzh?ADC55pC{Qd^qtM zu>!zc7HK{)4k)(RC60o{f4-5L1ekGZR2U`VEh!dCXjN03n0rqcE5eiziqZ*0UD)LS zMv4^K77O~9Xj)sX|DtK!S_9CcY8+(kZJD~*_AH1zOMR?pu%8*~9e!g+lxS`4*3Yg? z6J6g>#F1LM6GcF+>!GJhGsIIV+e2!~odcLr{Ff4cepFLVMnjw!I%`~Vl~9(JWG}Ne zZxn~yKKTCYNGe9ci7RwL-Gu(cYvZehtH)tFwR~rbo(d7Qd`eAz-thVu_3O|E-sgbb zwP(mBI_VeSFT+b@uc*78o$ZPUmjp4#)RTe;2ZcaZMY-MsN84GkRgL|$Yo(V*8GsQS z47FWReKlb3@z~E8N>*vsaH_XcfXEcG_!$}6v$it4DnJoG+DYvh0xaiTg|p8ec~Q0a z6ZoCvUIk^;IKRMym+Wsi_cfwNTcwpA|MBG}nHe_6N5^1r!QZ8pDYY)0=5%kxFy%E>b&1Wp9qNrq}- z=houGW59rR{c40aueoQh{yn&zQ^SE9XQEu7H>C}#lfCVII3Y2uD-#9PmGP=i%asOJZQ>!nS zG#F0iyj!kQ3#{i1u3K|5mAujXSsY|ezQ?@sF@>zpMhJZ-L2v1JGlo|em>6dYe)|>S zi#DKoxd3e2+c+Aq$hbtf-RT^hjd zUuZr9KlNo@;?S`p660+Thv~edOjY~53l}bjG8fB8dsZhs`U94rqAp2I$)OkRJq$${ zgYPMVXvmjJv?-pmw&Mbuz5PWbl6|MvqJ@`L2W(-uCHPC!)f6&N1puGhSdvZ@Ub#X$#FJnl*R;W|wcRMDbZs~y%W~rkUkOb` zv+KvG=l46_sHc8!vy$1LkcVCpAr(CvUchTvZw5ho`#P(Iui!>0sNCpCs(kel?OX`G zuhQCFgK#tj&T$1}1Mm{Vy{(pqLH9RcPZY-g!NDvMXoc;81D2tqQwn45D?N5((Fk9&?Trsv>}Atnkj@~Af>$I!<*7~pQl{Y8h^Y0A#7JK!ue z6bp(?tT}%lxvQie5IjC3j@2l{MD@0Ldm^sB+pH?Nlry)lPB6_7U$ecyQt1!RsUc&L zf{hLiJ=*%rKmT6)jX(KhO<2ZOm3+LH+k6D#U99>URWSV9UkEW_H>8tqqH6nlz-Z2b^VvxCkWRH^!PLLDTOeVeK$M^>c({pKe*D%8wP|zp0BYXQS zvAT`apk{BVO2f8CL;K3z3o-jdHjSGxYi`1|1MH@)Br86}@fv_!lLX0FYUP9WYElVDp69Rchx%Z*f znm&SII-p1<0L;13vODwLAvGUt>Pz|~EFoH6Gy8!+XqA!sNg&^z(85sCx=yggNYbpf z*?xny2M0%o-jFY!3F%)D-P|JOm^pRXD5f;CvgSq4>bYik;vLj2jTT-89JmDOPb>EE zI*~g-{HB}@V|7929J(nwlE$vGjr{}!UL`i@1Rw*f!4zjqIuGkNjL|bN<4=&|m4>^V z8);Ml!1db=2z?|>d9l2O?Mru5c@{VV0uB!XTIWV`XMK+dz~ExLT_sLubhQOc5n;EM z(g-)7RrGeDxKckGNW^L)$z?_W~ZfHHFV;LP5ZNlt|C1V6}VVlqG z(A>DhxR$7?7#9Y^&?<1zI}Sk(sRV+x8@GvZ6n<#9El;2MIiM z*_y5^a|V&@e8Ur5+81QGtuR~QaQZ2j>q$;L5NEoA?^Hx`yjvwo2s332V6T~g;+JY) z@kNRvrl;$#d|{c`1LAO9J8%Oy9ya&HPWy1(c*X=6(bW-ZOt7_+;|-j)R7OAW8qRQEx;{?Vu7GN}WiF zqcrMlMEnDt7Sz$_KmdeqQx3IIg%Nom0kR#Y!Wc{eB2-Q#F(S{^)EJDWz*wB@!E`GK zL!#*8XPWDSh8%b+WqCWrWwSp-Z1NGc0Mu%7Z@$HG5d^oodf;an3*fOq;NEr0<)}08`2on^d3lpe_N-&pqgQliZjy~9E!}<9+7YganD`p zn@&9US+M8x)H^a}?U(W`b(rS~Dh;e}6vw8M6YuO;b(h^38qN&wW|QhVjLLWs!fysD*+(Pl-0r6f0 z`oZindBem2RJoD8Px;N%6FF#|9sVI!bUgi0M-^~kPNeHNd6!2e|JR=og}>=c9tbrl zmCC3NE65>{mTI{(0E;p^*;Wre=C88X)x9Tp*Kubq(aj0`4rmr4GeGQkq#N{*YpJ<2 zvS&d2-eH3;%C2j<6Lyh}XmuP<9>Z{!mzJ}5+P%&`pt9)p@Yg(-cs^2|g}GIgG?+pz z79K%)bnfkrCs_rEoahP6*9_>Gxwsq;sBr!rq{Cb%DGp0YW4Q#3H2E=*-byfafp(aZ z++F2U_dOse0L~9oL4IzF_`^FEFd{$kVtfSa?9D3U>-W_0O!`R+PMRZcZ!Tw4V-sP9d$T$QUwvsEY zC{VWH@@_?Yz61$UpX?Et{%*dn?keOo^V-{O|E$v50cS}hpCo`UJ7ZdI=lNJQc>)p& zoKY%tMX>uZVrZMkK79k_da&!KEEfM?OGYNH|CEe+B~VlV7FMSJpJ7W!#(9$+<)>z> zeG*mEV$}y59l-BYyBpR?TCA?pVTVi~h)azcg&vEz{CNAshM$flkxmw_qJf0R2W!Xq zE8YVXamtM{Ctwhv_;ql;l;J)vrcCacUVi!;=Zv>b3!AG1)oivQ!tYOw-TBu(K-rAE zyDBsTT@Ay&^`LtDO1P>b>`w(a#yf1%kO5=f-V-2%wS&>Ll?tNTw!HiDTmj#5DaK%+ zwz;Fa=Asyi^Sqd#eZY1J>5%bzc4dl913)Q&Aoh*C`y}GzXq9L>59ofwNcN_ZGmbhU zn+t55OVzVwF!fn=Y}i&VvjkrRY`SaO{N6VxciPSFfQ{99;4LTkV^_+)S&D{V4I&V39ZDqdK->R{r*Y$RlB-#^hT9_qgdKe|8oFH*@RgvR|J_nIg zdn$UO<#GbKEzT{)61GnN_Hr&j`(*KgJJxky>oP9cLi(#L+#NRDIm49jhD;HM2&Ld3 z*6)2H7DvPDNyM@t$&9~~fHd6k!365*=+`KhGC^i?9y(OIhk`+eZ*UKyh=Ki3gvK;1lVGvRF3#eow! zVJ%F>rHbGwY1o@SNF3R6QH7xYmV6axT>4;DVShQPj#LP$)bS)Yl2&|$D4$&Pa)Et3t8 zsS)a?7yiZzhdXu#kp1E+t~L=v*y*hb$PJNMzA8`lBP(T)ClmOh+Rt}{6}ga z72+t>9sg&MT-dxquon{54G*dWr7ivsoZUZZ>Uvrwr!31p9Q6zNaAXIo6(ys>K#fiW zuue^qtDn6!zT`$)CqI*>rli-B5-VqPP0BH&-Bj;D5lwCdlqfN|XA?w#+f2tHLVDV2 zytR_H5IvYn^lYh#q4oz=M9L0r5e?SxO9&d>$URyT_A0S~KNA^piap^^P*s?pZKB!^RX1?`Wji~0WORk;_D zRQsJPGI>Z_5{^QPci20TNOVtV@fyQ%Qx63q6UQ=q67fV$9)4XUb4FV~nAd&xIKEOx zBh7OQK#M}Z!&?+gSE2aD217$xCstMDVGv(16wH+v^K<-Exx1N{pbc;VP1$u1@{xS? z5A`l?I#e7POC=BzE1rvm*K<3zWuZ3l-9ZdRM-Vst{+n_{m`Qb1iR29_#mQFJH>Z$l zeb6(-qG^y3&ol0UjqxpcHpA(=Z9`Vi>3NL?5YoxDg3M-PnwVJ@@3q11>296uWtkD0 z;wjZ!R@HT)z_fDxa5r4K<8h(N$xW8_k}p_t7J}0#q*iH5h4i_XKSEB#i3(YnPBAqg zE!>-r-ATCDFOC4?ESrD1I(~+Q)rCLlbYRSFOIhp;_s5Jb#kql%6f4r|WM~gqR6o}Q z$Q4*)_WXKJr#V_g^AbJ%V5J^d%qq6g>`9Seo2C*KD7E*TY(8z>e>{TTOWnPOyv{!E zwEzo!55}sp|Ni`9i^;G26qfI@_w83Kt_{veFU_Zc{jCt+!1w$T3BpC~cmOf4Fh5TR;kuaakh%`)PZ*!<&H$vU2P85$ zm-)l5pYZIAFd%{4YDuWTc47uaK+&)@9JSW^Mt4nDf|MSqkLvvK%Q$6`DnXG8cdR|5 zlF=|q=dlOLaopWo`Pb@?%6@G#tZ>0H7`*InR6+!^U6MH?_q``vAlWc%JYkLsciWL` zzv<@}8Ysag8lS*$iB~NJ?u4trTje+UmZcfhnFKvWOPXf;2TBt<0KbG z7)}jwq_-TW+^*9JETwGHL%&feM@$HGC8h z1{($rJvy$Qw80U==s!`(uKpsIS`aV!2S0IRcB# zZG_O%&Q90Aat){2AR~4l0ciHc3mBTDWqOdm_;t+B?wY@zm%pzm_@;u{%W-OWgME@^ zviMhul9M+XJp3oc(ZDfUVCkjp@*?yD`Lqcik}WQwUj&?)9OkCNsV#PX(`(bGpD=u6 zN6N$b%;x!xPWXHF2`%2*GzJDG2#l>UI)pZ|G3?nOQCck|O%KZ;0a&?lSpFCuVa(3s z5kBpc)l#=#5Y}ZH>s{@e8b-dO<4+@pTP&LFcJ6tDtZ%Hqj4F_f9SNZ2LR^X3G<{>qoOO_~Ny()S0_pJq)NUKxNo*C%PU=L8-C z#j5a>;(lbxF{ys8;kHjgMKJcYrKrkgxB3ow=+gC^tCA~Szu4Vboo8s~N2>(BvXXc1 z%8g8rKA`0RN_Ncwm<#F&TAfbZ8AEqYL$nfSi-0GuIg>RTOe5^l^;3#a`j@D-B=(D~Ik*U92;TeylsS9Pr%nJLAP? zufv~-kS;qhVp-@`N@SE>8@;VLSKlS%!hjXOzvWWirrQ;Pn!lb6-_@5hXdJ!UBY_d~ zUC6jOZAAy8MSr@OFa~q4nZ_QPEu~!LyhD_# z6A{kA3W+XnGMp%F2QRB(qRk%25$5|u9-_f>V*QrGO)!WwCXLB5mJm%M7_y>AFj7Wz))dde*KZXb`u}v9$Q&_ zo|8gjz-T`qWEMlN?Jh(Aha8bHJ~?}8VkxeuR~&_w@2h0|ZuMbC!5~PW4+Jvn5$_3b z^=$0kSW@syw^7Fewuv3NEqWK6+yQ4fgg=?r-JjVZCD6C4%fV;9%=I6c15Jjfgm);<2geMc0Ub5q*ZFyO@P6jF-DH3&5&^}{0?>xT zV6jbmc;zO@J-#4ilzA114~vC53m5TxY-B0O6>2i?WNU)lIF>Pt^WpxJn7v< zO0lo~zgB9@|1;cssfD5eaQ*jeZ%9+ld4nCP>s{kka!M8IP7Ze=V!?_$tvF&GcOKUg zx_(u$P*~Y5(_lvrC{c9GZ7@Aew~>$^9nqcu-9P@6TRMM-J|6P2rXkXTf$T3OnYc9i zR5CJ$Xc6;#Ix2atIkImQLyygUMrExTPnuKOAi(zMN0vHPvQ`l}u{M+f3xl5k<-;U~ z(w7BEWXWn^;Pa6v3Tx@}i!3;UwcS;31(||*Ns&7L83V8l8Okg;@NRgFn%bsqpGk$h zKozXoyXb@qWhIRw|Bjih&=_Tr9o+fwH1*+|!B%3JDjjZm;BO?2BpuUxXtuCyw@qI; z1JGx7=Cm2d{K;}cYs{EMjUbiha;25;6?O@c+HbPeNV3+HEv8aK4CX2#m7AA@g=_J! z(E@=={4{&Kn^TQPBO{rGLA=2eeluZb0yz!MSv!i{CXTsc(olgJEtSnPG`xGGQiiA~ z#TOgjl~&}_9XAm?E%XWB+X|K{{Ly}>0pMA4imbD9PaH@0B1n}V0OY24oc48CZ&Xl%pTZQ!^HXsligxne+wM%%*r?jo7R{bm;H zaN$uD2e_Ij-^KAWZLQc)y{*oMyQr|B7;#U!T1sryML_P zMOv;6KMMZK66XoB-r{kF@ zAe>$dv2y;wuAsq`C!(+?Dk>x}05Z`WM1(bz!4xOf*X`YM9fYVswmtdwx(5>$j&Lvh zy4T1lJ~^Fpq~@b8J(_lDCte*gbx4aQCb? z|G15S_65*kId1mnQppAgI1wRXKbhI3YjdR=9Dp~I3qmd!9M~u|5uL7t0Sh7j&H?xQ ztSdXqp4K}`@KnoXC&>I=x`AnLj{IDy-m0hyR5HI2*Cgp>Ob#E zvlPJt4F+>i)iSa1_`Zn_obqtIMP7;i5QtRB(3H5Gc~nYg*Sb44OtRc+f{+V$c#2>U z=)|JZChx8)re@2>YMu(c0B#?&%0!brnU}8}pu%#ySb<_fHeLI>P6!`GkpxqTBI{|4 zJh~C>PVTHZaBJ%fy6f7~12eWf$Eyj-h0abtk1br$VJf`(>umuC-?31@ZmT+}n$2$V z`r>OqVNCO{e6?N81kpJPyNbkG{=s}0H275shj68}AE9^%c%z&uGh7H^)Pj;B$pLw@!I^l~+obk9yuu$e^?i#gy zXDBugqK6QdGi5ES9ZReIOZw1u#l^N(3>vqMLoc2vTdSsq9RYoF2$}Z-NOoj7C*mMY^CAPJQ(^YYb8MFVwuAIGMC>u<|l)l6sERZ5lZ`f;Av0IcFwH7r%6 z?XsOUj`~V<{T4brPnFeuK9tNDFnsu+J0(WmK>0d4?9M^?1Xnd=CLb&a_X)F~K5Np= zKdjd}w}mN93+Kw$OM!|af)3j!@AaA!|IY0|&JYsq%h8`ZXz=zZ4VfNkOATd|%4bx6>`6GHl?C9`U~ zWcFhdqUefh$Vr7xhd}$~PC9JeOs}dA3>ZeFz3`y>-|~iM6S#u>-Lc}G9e2lO=rw&v zfGe$kuRZy@pPv@xGjlN9A)lJ?ko~_4HBR(8ljEP^b02S59{k?w)OaVm0>{1@#%s0b zRif`fbAHX3Pne47XMmQLC-K0X_RA&vjT0~alv#>QJ6s@7Yo@o=m3%_@UXIe7Ds_Is zZB$A73b=gFH_#Wo&S?r#3lstD|Hr>#;rI{!>i_U*GyeyFg_APc0R^AZnFWjsU}9uq z`!BVLtNKLz&p2soM#ICZJTS=YwU4<>T6v89^12K5FI{b5Tm)$tkpZA%$rh1x5~4}_ zle?;bJ>xLeCZ0h7M_=GNdmDhhL7JjPL=$)UBvm(6UMzdwJ{k-rm-3OIo~BuKubX(* za@I-x?*Y3}rwS0+E_;Rfz!L7sJ%1DT@OA_jDA~la-t6_bbG`9CCtCc&o5KBLRi z4SC9;c9Azn_G%EC01!?pbF*<@DA!&Kkxgz+XC34}=udzyy?S8s0M91J+5Mmg+DUZr zEW{xEXL3F9X4LqktF%%fc{OvD$l>|{U4;0Zp6}Re{9uqQ|Y|k%ohdt(FoM=`x!muaR53m&~;-* zWs&+g_cj28whA92p58oJo6S=$-_6b?+qC-ZnDv3y!_~M9Phrz&!hcnVt65R6ga;iF z2#lc?ZIKPZi)`%7jaTztM<7t7jVK^wGh1{#pq(j}QR^NRJF#R|SZnd@*)KCRdOEgF z`%WBwApA(*5+@@13#?crfJ9(8ESj&l?vfv4p0i$921eQ3hQlw+WQUb9793}URD<0e(qcH}SWhqQynkzBA`o>~| zO6&H-yvff zwF5~i3~{@ra%&_*sGFr!_lXRYVtmw)xv(X?0@UGqSFfeV=@Ha%j9^~;-e|xT8EWz% z@g^;;cIGIgoN3$j+z+z?q!dELvIEX5aXX)p3<&Xcy)KPF8Fx%&ea>qVi|2N**$4qN z8Faq2dz~camh3m4Hb$sFP#xpR8w4t{7EyM;8^q!r9hK4Zm$lxy(ScVs5nN?*!G>Myxvi}05l_+W?K|G< zW1itppE7vtu?)q9|BleQXLR3K9RuaHoM%@$x{t;h^d8%;;G)s>(s>cuIn{eCxR!THgB>c(xTl* z;9PbIKKyz1cjb*7PyMyygbq8j!bci31Q!wVEV6HWO%$*;6T|{0DQTE(B;R@)%omKN zA;xToa6k=F%O?VIFXRXgun6Ov1HS(`*I%_I4ZDp1#8dB3V@Ajt_+ZwVmEyPOFgp^W zPI_#{C^Geg@l24g7%hx}$iv88U@$}k;=7p7j370>=daiAH%DXlD>d7r1A!X|#!VA3 zb`QC2)?{NPZSsc+oLzMIeaM;0zEG$ ze?R&v!c20A03$CGH9d}x%~18WC0IhA=Qk+~0+CDG2zBZMUiWH;R|Rq)C4ppX8<}j| zO$r$;KNfMFLk(!2EQ=|G35gB$!=`Pwxo#N+o`TU04W5c&o|+b&f-H+h88&(&_c-V6 z<*w1Q4kcY_#SA*Yd_yqavI~Z%+D2}@YOS9=PQ~zr1;+yMP4<*|oV(Wj7t;+S_!-V( z?t6gxiBLt*khfP*#%6LRKilaU9X0^E1EEegXnM)+*F}SC#a7g?*wAFTTIiPTP9+Ta zD%(aK?K^=97M`}t7Ird>=mMS580tbkf=l#9m5(xj)%R{pDj8b|bmdUE(1z(oyDFddO&}LL_N1^-D4u4e z%m=Ztm<;J0O2$89q4y6#HfS`%El{m^l{q;%8KVG9mg(G+$qNo2jbzH(4Wt;;YP*3T zC@F&F%l;YvgTV#oPge>%9Q6NOZJ3!^{$J|V58L%W)GH3I|9UjZoYIt2Amu>nI?;GZ z)!lSU5-9pLPY)G{_M`c#l}ZGa;iie-!eYhBzwDXu2BlS>@seRUJBV>-&n1m_ zw_>kpXu!UYHTC+r!QU9uS3mx-aK)n^+|;$-o#_P|3I^{{WD@DyplmeMJj?{=mo5Y! zjJN7j0Hw=S3{~r`f~#bO5R)l+ei?A6H?;hVD;RkTX=wHU#l#%EY&ASu-RR%OpGi8`1mL;M40|6>tFPe50I!SI;kgN0xGubu=&WQ20(5rij zMjVH2bY^JhfI=x&u1?lCxyN2mu#bt}a$)*z@;g`Gbftl4B~yokXstM@ z-o^oG401l2Zo!Bs;d839)wRjzHZpcKq3X|*+0PwHGxS>TaQS9#DrV>Xi;m?pM{pL{YyO!uvDrnbT{Eh!$U7tLOqxssmEilV^zoLg`;4e@f-Num;*u^$%b_%5+&29LvOm_W5ZGxn#O$;J z&Nk&JCL)i_OM0}b{n9iH5BHFn?6^rkizBC7?6_SQ)_jH<1hpT)n}n*@Fie$q@h1Lm zrel->zua#;U(9ecWOR4ve?&W*EckV4(ykyP;2A#^yv|%yyj~u{udP&UcpfYaojcu) zOdb8!*Y)+o^s3k1-u^(0=7FB!yw3Iq+$b>mci0#R8GuDK)ZJ{tz4sEmAXObq1D%BP z%~qoJfmzIeSi#{g$~3#B0IP#h9`D%)E}hu5-<949U0oHmhnG~n${63USg_gt?M-T^ugnN8t5brwJO z!hXUg|EWC zXcB;x>^9l5^wd_1+YkGG5BsYs>c#|CC^SR4_ffI=Os2In_kOH13H*htJwDCol0@gk z`j*4eDwMcjZbd)ivSw1|`GEJH?cx4mVgCJuj;rwDEWM*Re zU%c)A&2eTXWa9XtKBp*=0HXnzet3ZYt@ns}23OSGSoV+HzsBx#gua${plIb`y}m}@ z+zRRtiQT=X@7ux)hcmOa z1yY_?2O>uYLgnE=h2$V1@lT73yATL%M%V;G2E}kT@u%ez9AAbwg_5ARu|ByrwEKPh z5O*SA0IVv$2t-a#kFege1su362$x`&woNTzxEW4kVUKGTR4k3HMTA=ARkBcDqwGHxLJ!I5mm) zU8Gpg=IF%c00hDhrhY6gh%y2EdvH`SRriBKIo( z4t;NVHVBxs{c>YxWUg;&W~p`LXkh|RP1OMg02>UMo@Q-kS^`6`4+F5UHM!RPUT|75 zQ+2Q~{V+fD+JOaS6@d+J=k|Kuomrh2Tb!K=-C0}SDkMUC`h9R4O8?f?RyDEB4v!&U z*Sv{N;`xgcoLo=e-b^$#*10y_eITZ#ZeV77EQQuJ;068p+t$URsC>A?PC(o$z^sxB zK=uC{7Z;b11`E^(3A7b8iTNd+dua#xp)>Z7@=^e4ufU_j<3A>WBWUl8x;rAksUQK0 zLD)Oihjn`Osxb78f{TjUySh0FZ3xB6))MfJ`Y8g(`icSA>rb~K(pZT zlL>~+S4|oAtw9A1EGxTv^H-0y6h%;sEm9-XXR0MPxw@D5GGJ^9Z)kGMfB4_Aytw&y zdOBcC?Q5Nb#u+EKv#Q|LKp_>8L45eT;9ZlMWFn>{{9wfLs|v*La`yZ9R})h`+n4oP z>e?zW1OfuYwL=sE>d@pc#I5NYU{%^AcVlM&&M>#7&h^a!*yrICp0Uo=|NX*vZ4C%6 z5D@Vth6@C-Col+Yi1aF=3j{IujRHyHFLa5>n49+O|N#q6; zG)eF_O8*|lUqA7g7jtRwEt5&GcJw_f!9OJM5T|g4=zFO0B|@-O{*f00xGV>pl60*9 zY*GDXu>UrT^^u2|wMXz)I(gbN_!f6_0B!j>@>Zi`#`p#4m-*|K;606nSDI;$(d&F45T%1P0S zmaBo48?fA(hja`OJMu5!&xnKsaA4Y6J;sJE=~8tEw`!62$-DE3K`oGg)j1RGZ%USp zr(P#4x>CTaI`;M*Q-0Qi+%Xg2+z64Uy73FmFxjU?;$gv=R;^b~Cs!aT?;sWBMnP-{ z(<=?k;9%KABS&v+6^I8KeR?JilB(x`ps~9O6UtuU&_z+BVQuS{d5Sk*shwhR>d7nLHo3OuZSHjOzTi7=ZE%hm z(FUO3RWJH}reUeJe5*F2b-^$w7Wt|yWI7TEM2RBi$B3N$i8uQx;_xdq{|wBa5dwu0 zr4ie1-+pFR+ymxU{mav)>Q_CB!AV(0=cu8BFO>9_Lj(yVI9F!gW+{XY4Vgg_NX$^z zKT^kDN2BUr$Hw%-&}_!zUa$3r^-8Uh?A`$LNl?EUW@Nrb*eVf<;&l5eI;u*i1qE0Uy2Ajf z!InKeS>mSqb%_ZtVr8k24a4e6GLz2v`$_`43^y{)0cO_uhNx@2}$d0%m)NNumEQ8bTl>AOJ4 zRLTOVP)gJb_(E`-#p!tGWON+?^o6Tay8=6;e-0?-?&`R+SUu^A=$vb}G%a@d6BzJU z`^}04!g$U_lop!;Q>&6Gr?m|tPzF=+Oyt?D@f3ukWNqg*iVT^*h|v16mjtVQaLjus z=t?V0R|zi%FOebr^oq4F=LCB7s+;1PZD~3E)5D5g6@!2{eg90^9o(y#U%J+f{F@MM+E! ze8FrQQ-2MTQh`Ew7N|oBcs1d|5Cd}HlaocjuC}3qO`S~y429Vk!gD9@T$YQRJaAU! z$-;|@?6HFCGQO~}Lg#(MV{Ni8EE(S^e~=^`4AiNNs^`hp)Qad%Z7f*Zm$XKx^F&>m z)54o*_Z_jazvQKn=m&Y6Co!qUlrnOD*GJ5#;6#NxnD)@he#(MDiWh;EnoCT(}#NNCk^xjg?uZUcQ2=^keDJZzIJLnuRg_ zP-7YRu3v|~<%>Y1?JNbdqoSq>ClGT+=o~ki(i(jdTJ$vA7GahY-8g+!yOWm7uBBly z7bJHI2tX=@hk!3{?xnYNL)hvi9ijkLYB3W5A-OJR^9-`V9f-Iq2_xt6r03%fTdMZf z5ln~)JbG%XR53?*;0w8XEuiQ2-=24MfxLKUhX>>J55u&1+`;e>P@SFnf9!WW92%KY zvCJ8FQ=Ym6138K7(+K+fo*J3Rg?d>bQ5QyCCO*cZ zEI7$x#LHtzv<1+9A;}oHZ1Kf}t0UnG&iMt=3ZW*%QRbJ<|T$N!XX3 z*6c(cv=o)jnl~^DCi0lcMqW9etpKpVJex^SOI#CG^Wc=>Hw5*{Sf2^az(y?;Tr0wc zGhUa{yak4*L={O|7EFYUM0`L%@A;%AA2w32@nG8A#C#KD554S7RFyG{%_}Uc?y=OO zy8VjhZGR=>fXOCFfAOGe{{z0|Aasv>bP_P=I{Nxi6q`qKedhWTf}h8ieZtcfoM6Sq z=0d@p%K6=P((J^tF*USvT$YQiQ&jH=);8>f8e|xYFeS`r9J7|ri6t{ia8Fd$LoL_q z;^BjD{Dt<~CGYjmj<;!ertq{H6Sou6uUP6^Ah=Uk3p%E@e~Oo`K5?Lu!{&A+ZR)Ig zaCd?y?9_dJdbM$Ad!TDV6xMaBDz|kjd{V{f7~x#a9+plB9FY(UHy}1hVGMGgoiQo5 z48J*$DgR=H;;5!ynM2o(s*+@sGUH#TPFMIgSECiDLsAPq^o+0=i-fogC0i`~4WDRo zr$6anWjr|XfA+@(p~~sA9ns6gt^Wj)^S~&4i)Gg@&oT&`apcfLIdDo-EHg7lK(V(R zZgRqd=?l#p`VXhJ>;>&&h7b!p)?>TIFv_kPta0X!+w2!iB8Eau&)HwAo@|zdH9IqF z*-zI&M5T5W@4lacU)Qqa$q@vEr^fCuQ}JQB)_l7Ke^qbnJhHF1hQ-l(CH=@X)s3p8 z;7%$X2;2tH&!0^-xs$}W)w!RzNJi0 z{tbf`f83Q^s68xJKA#KK@wV&HI-s?zSiXh0!V0MqM95e5Ef{*0`cPCqFKJ?QJnJB; zL_?BT>b}s#hWnFRzRs`y6w3)4Nz$GO3zDO7pq_dMq8%c5gCuY!S7zXmr9@Ae+(f5b{uhOfGj!u++z#i7&(zBVsc3B z17RwKd5yu))^I=GZ>uqcDRE9QbY516DQ2(r)51g40^kQ#fKK6)ukd5wOjC<=%D$F;fS_8u$L54u80Y2XH}wSC5ApkIC?=g z#D==yZsQ#M8wXgO0tc~4$aR^+aH{2k@udloT}MJbYGx&^-Oe3@XKmv77cH`j%ea8ugh4e>{WrVj_lWXx$fWQ)&W)`!?#@Bwf! z_KnyVRX@Sk@&)aUzvVmkAEb@4RSEq*>qqT62+bTHESEBvrpB7-+<@iV)uIeCe?cr& z^!~oD^AOAnCb!+5gXIx3<^OAen)Hm(zG?KbHB6j^Ibw*?A{Y>8N@2SE+77&(U+K96 z6^wkUw!tze%;krWd`{6;1TSkC$t(zR_{n1XXOX6@`GIKWaH0`9M zhpx&Z4Qa-eM3Q+*RurBaYmi83{k^!I{=$1Wh>P%PN29jjXeD_P%qNx3TkaMBJ{7$NqHH6lF5L;J6le*hky_+2pPqrFN- zI*bk+{5A!9mR4Z_lEKkxNBMpsmmu`tD;vP<7(?Bs+d!ZBa_Y3?Y)#0b%yl;nA z44gYnHKf4g+K+hAnXCo|y-tfbi%(8; z>(5~{Ce@A3w-iU@KX>EQQ5136!lX~v=Sqp*p|O103A)0+*$d@GXM#j7RMr=C<5G!o z;|EYY!F_EUxqY2HjoYVxR#i{<^3`a5ML#F6gd%Q0PY9|Kf7j_HE8=U6sp6YW9Nllj zc*kRE+RwwDhbq>~{*!2EP_lh+Rm+b$bR=Oenshv zblo)+`9+GlfAV`3?dxg!54NUPzQs>e(+DemP>cBN+rrQoF@0j)kk_FwS5hz6*UeH1 z0rT+sNrJt_#ek#<#%HwIVWA&p_(O-RXdUKD>WnwFX!N8W*_A363okCD@q>A3BMIGDM()`+eP}EI~{qa>oA@b>(zFwu3_*RQ;f=>UfhHruQdf^%wG<} zEZZNys>7cJn`caG0+tTPN3PR#rnxh3vMYO%E%}+Si9?hO!xTc>&%a{F z-^3zg99`&UcfK5Jv#z{X%2~@(!>Aub-PPc3f2`$o`nLLdkL#han%SC(;UID)2x`joQj zO+$xRa;!B|`7V$FZy)biO7t0-uhc&>gire>L48G_s0+C~@pvTBr1;Fe=Wgd}6>T%c zo|?kn(5pDHnHGE=yW^FX5^pF(dAOzte~LeEjjtup=Ce!vR_guX$qfGcEnEU+VOb5y zqeaqA?U3G?105o0%8sjrSs^KHt*j0-PJRciE}6LiG>-roqD@zD;>6Wqd^}$+_cDF% z7Ed&Ccs<5_?qPA^w->?o{>qi9eNut7n#yQlvttSkf(bjlj5HJ;m<}RK1b>jMf33>x zDx_mQDk6^54hP4;TaO{w+U+DNZQ*s|J_IP){oK>)xqA@C{HD(l8vN%Q#NdG7AGirI zv;}69$?YAn_8z~Eoi0%!MB*=PzG5mM;Fbf8T@AR_AcB&bJ0nrk1nJMh2;o zIL5s_M&Uq#7~_6Y*1l;H1H(tP*(&4&fBZGD8G6!*6p2I}`fczYPbv_O|Erv4PAD8) zu>ogA8p$CWs0{#Cb7g5t%9t2pD{gb;aPY-2l3kx~a4wnQCEqR$ zzcOE;;Ay=;`4VFE01;4)vqkRgi0goj&OX^fT60Z|nVlE#OT`6_fBuN>OGK+$5W(;9 zI#FZ$79CL4q7*a5N_rFHwc2P~QwJ6|9IKVcmx%kPrsz|9EXV%F%~etZ_ao4xr!w=i zMOK(vYgZYOfJzDt(6KqzFMCYUy%(-D{a@c!XFB_#Y57_{x1p?dIFIcc>g0zr zo4G`w`tTZ?6i9r{em{9T^_XKG;{91v_C;oFlKVI;v<6t6mzj8^SCs;ORhN!!|Ae^$E``7YVk-gc>~GT>h+|aX{_yTJF`b6Jv?-HC#c>jyp(50wNtCfO7%$fEA7E6*tnn>T)QzaVoM(=2Mdem_^1MVzp@u zzVqCBhtrE|@XI7YGtps3!)2m19V&R6Y@g_xidyO`qg#?6MAos?(ZpwlZI;KxNnz?p zYR@)tOf$yR7a54ncelRAgjwX`SHvf@Q&_osr23B;f1**i9*E=q(h05F?y%c%WVLZ= zF3}@n)=e)=9N355t8I@ezKnUbP-v^BrXW2e{JsHW{~mZ3O5K^!V_3UG@E&;INaS;V z2pY)sihFe0n7&_ACHu_`U!Su@O0|Ws_7-;|C{J{E>{!S!*DDHpth8CBKHgwvT+a(M zqZ_bvf5HjCknyRUX;Kw+J9iClaP4nHwlp`%=R`K`3Usr^p^EE{>B)xUZ(D~6R%dUH zBw68gQ_#kaml)sWYP39k3TE}PxwyU0U@dzwbDXIBg^PS0S&uaAL+IVSkYxg}86*bZ zMhkJlbqp@6dra(&kabO4Q?HM(Xvi8MXZ$Qnf8_kuT*e3rx{*3`Y#S>?Q=3qvzeQ|X zk;w3xntl!ue7`7K!$614nKSM%L-F0IfHVxD`Db;!^PQiEkOU<_YhjUe4S(aRnmErb z{Zk6w%qQ223nD{t$2hL@vv^0EQuHvym(=O_1|8gx`=1KOTSJ&bWcoORWWlhrP#kksNph`6wsV|&Fe}Z|h4QB4iC|r9RtPLC_GuOsqkCnnzC|)(+ z{imc~FU7udWpgLGw38e|hJLXKf99cj{mq#xA5fLg+uAJ^i<2x^Jl^D)#Byg`y=007 zvc&THWbOpVzFvGGwZgNVyafytC9D>$qA)@I{s0aV54rrux|(xP(!~H|{Jj))0svNh z#P;~h`rA-LM%%LU&#FuI{&+Z7e?h1*y?v__71fXj&Ans_RUat0VXFs-<$hUONDPl?=I4Y@Zzkm2M`pRs_a?-<0`T+Wgs?S|q;pUi%N1D`D<5dy)2Pelw;co8MFw*id_&vm z_@4Y*p7Fj@8Y;&NLir%~4H<&HWcLS7GjIu#1;k!AuX^k({EZ^)e-r{z(y5bh5W@P- z7M+&X*Nf~K2rQ6DH`Cn0_VGc4(OV?5rH8U(pm^oA5mbyo%^<6++&1iTr`m*5eKytj z-QaexZWd8W6ZeKoM z!8)!dt_V}`0CuZA#x!dE*V$hV;<^K!An<4<#lZB9iaXWD5V%bPu--_355KJ2<^Fik z)AT4uGZW2S;hqR=je<0+8*O5wolwZ{$YC|xtOwYY&fRi@f6IsbDLgoOF>vlY`Q(v< z&#DMEr)o88c+}R&Bi)4jkJ*V9U36Qgp!^5xP;EAy0joo6b%`)ahM8+bh&oIBJFim# zObLnxOzJ66-c#76yvwlqK(9}0fLiqn_lSkq^#ByKp;K_Ui@3n$39q>AZ*1v)@x?YalYO&gjRc)$t-Q+QM&lGzV1D&l#%MgwOSHn7 z+U%8-UneM!Ge+WzQw;HYTRC!$4a-y=moHwm>f<(vjz(QYs?nB;e<+>ELbjV;J3CXD zRfNZae|BeZ`&9DO!wTkTQ)&faoU$9o)CO$e^?5_3-Ar7a(uvunjj#f48ZXjn@o|ox zQg4GP*JDew97_jBMcHJUpnl8jdml*Y;%>5Mzg_QP1n5PdV(XpvxvT!?Kt)6GvH3~r zY)YmB&fxEzn@9;GzUPok6`*cjLEZ_yBdr9hfAr&a0VVnO%G7BsSS&kH}{B$h0+4WWa-m^@}r4wNDbqSTl>kFQ(+BF zvIS&lI@oOEa2)>FN+(Lm#gy4TT4n~w_Hwb)^kGCeowjO4rxSk@QjPv$UU{70L@bXn?l;p`j z8BedZt;wYmhnjm~08$G?CQT8s8 zT%;uGJ0Eb4PF5~#hGB8g?QyGdxEB-Oo)WyD$Jx3B0*OG--f_4StwK0D!oL6|Zz2#Kn`{>ftNC<3thSsIb>x@RPvf6(V| zntc=FktHnuSRW&0ZYP02@A}l8u}WE0e@wpJ*3#GYE3LwH-I95GMM9%7NY%yki@pkL zngcMAMJuT6yFElp{joF)c1o45K*wrXLT|}F9XpRx51feLJ9Rp-b(CWCNIM;ZyTO~j zBd|p79Cf^S*i>S_(AQ#-B=`Ige-2GyBrDw9Ij~PA9wj}~*Tj0MqNF>`PdKwm56?Iy$~fJT(68?t7}%Wk~EVj5oH<R%^x5*d7ML84RGHA}1&z!IG0pqdN=o(P%1RBFx7pa(#agEmPOe=W4$rEC3` zHzYu6QhL~vX2V4y%!72cY=wB#04v0zGRmw6*_mOYtm~@lgho}&Ry5*_oT@>qDMQyy zbh6Pa!M<|}KR>rLq$2}z5!9hAxHoyZU0Lsut}PIt7PFCI+qyI~zCP%@G%}TSMcz;>pI8i&h=Y-V?gtOF?_H%5yqd8S;lx-0DtHq0b?;37DV6e=sBS_nU0bT>E#C zhNfu(J`WVtHVgJUgfZ9?CND7EY^~Ti*}i&0-`7X>OazJF`*;Pqx>CM#7Pj-F@SCj~ z&WF7&RQl_dS-e_^#BJZ^8^p{%^0gy+c*W3p(!?Z*rSwikR$Xt-_xBY3j-Ui)5cW3U z%*y{PG%$U=oG~j!e_JPkX|q;C;ugdvFx+nk%jZgByJ{q#E$FxRZByW|L!x~2ytaGL z$}W%b+F{ z&Z6h9;|Epq|FW5)(j=f%g8Pmkc37v(odrc?M(ejY(PIWGx_>*Q0lt_xU>Fb_WIhtq z=pkcvvN&JN{epufFY>D(MBMx}8*$MGJ=^yDb60pI9D?!CDjJiQ4O83|E}6Il?|cH- ziI!VMLsiHge@6rt<2p;?2(4NqWyX6-wi^QvZ2VR&8N*NZPwWkk)e~kwZv<&D68`=d zvBg%Z@98|(Zcw5Y7f|U}Yny>h8&tw(7rlJqmGXo4If@7@5z_--Fd*EX!8#ArhbxZC zB#l&Yx_5oN=21kwbBpONotE7KFp7lXj`HF2(`}r7f11D_BHI-$Cq--q=BRFGqxV3# zlV!cRIj1c??S6S~TkoPu+fXw^7WkCrkDlrWHS(P=a>0r1r@WzB({X7kI7EeTvJF$S zJZHJy;RLv%QRl-qTwK@1Xd>Xv#ExWtwNyK*O&+m zbQoF4*qXKn)Hg<7<~A!4oxGC^qXIB3YWMRAlCt_VU>YHfr-ZV^hAg!$z8)O@_9^83 z22E3vJa^lY9exO=F}K>G{_(>Y+$3e6DBw(~f6LCX|4v@nHE-pTp79Fy32%2es;Ie5 z{Hp&DZK2k&j(-9Sf&S&!=Yqjq^8--)>7bjRe%;@f>Y?w9sxQHl%m+ImJDno7XkyBobe@IGERr0&VW)V zUQ<*6tLpEPF|i!4C)Gpt83Gf{LP+SV36|LplVQi4Yb@hM~HfKgV5@eM= zFDF4TL5c{D5p#c^|X351~@+y9-r?J|7}D8yHsjz6GLGwyAtT zG$HYDS`4e7Bxd{j`G{BvwCHEE&&hTDto;%VNHifPHz&z4R-{7M;a@gvj3B3afABpa zgl*+rxK!%an{}uphD-yU(imZjG;24eQY>MLx-cz-z|Rm%9H{hcE0%I|8(OekXiUWs z%=(xa7`}MVFSt9uhtL!)N=%Z|1xkRHMvL-b^D#1AOs5AM zYY!VR z&3lF-%%T*_WUw+bA);mkf8 zzSPrAw*wS%{IvQMNJ^{{jhxFs<>`B`gyWlEEHmnpLRqT$+Q%_dK=AZ>e|(S;0tAHc z##PJt0lhR6LyV~*U1oxU+Ja|$eJ{rZBhDn*k;@6tRKO)|y2v>!AGf{ot(iNkpJ432 zo9R_H{;;Srl_Bg9^g(1_Ua)aqAw$G{Ix2aHdiz2?xmOSSD!D6wdYkcHNOAdfh;kcS z9S6#}l;b7TvI#q~6EPNXe>C;6nEK)eELi_3ZN(JjJ&O(YQ2Xhrd*nfRooDA~#rY;i z7nZJBs5vpOIBlVgvksCFyk^$9FJ}1Iz7|ySaUB?cI3X0m2vjd_ywf7>y^w9N3t^_$}z zcA#$^xP$F{n9ES*diF;^9L?c#OOGuTEZ*Njc8e>;yVUo>io`wyCyFD$cxDlX7(nw% z@i;M~5{cwiT+iazs>K4kz^O|#mI#4qz%ukco+=YIq7NKm7Q$C?QzHh<7;j z&3#8v(xT=hE_%7uc^>0bvWd;guhoxhdhbrMZ51!#18s(X*BOT}9Gx1Ct zpoeUz)1vE*e~hl}%;UpZsyDI(Iv&9znc@98gBYAkPpBQzHtlzBgv9Yn+iA7(`0>jI z4>oX6$g@VEam&E?tCom;^?6-|$Rn2xHi5j9?gDSa(0THyZ;EVZ-DG*p3`#54hOmus z{+a#T3uv)<2(6)XGn}~YX1SK7d{Zw6p=swPDjgG0e_bT;3r;YFp_fY+@3s(Mlih+G z#+bAgMOtieB2XZHLA!4t8Tze=TcH~X7BQ3TqHp$Cx8T9TeeIP%^n@1i`H>)@xkAn< zWhonfxERMNf_*WxC8sAF5$5a(-AN=(e2QkjGJoh9lyaSm9fSM|P24s$q3=e3X_pXU zki{f*e`=`30>q!k4sWQ7My0l8q<(W*AQgQqnN;O}?Woc}Uea#!P$2ro0JUyv`s95ux&UB5FpYzD zNKaYLjza#qLk3N`7PN#qxE>OiH9i26Gy`goknX)?5-3)#Z;POoyOWlS7Br}_4vrc-R zY9m1MJCa%9c`aT_&W})b@Z%|loq-wd2jJJ0LS=#Nzywe(>nP8!?^x2+5d$N;^b7^a ze_ls8g>*jRb_xvTGyGWhd@7wjS@kS8DsEDQrhFDIS^_T@ zz*;jq(HpnOrs8Mf)A2P`0S}UMjVTa$p|JHE+;0tYCzw!V-J#6VoFN`E>a}+;lyd2` z9L^V>-}7^PKyq3PxebJuF`I%fW=((ke{kfm%z7gcM^cEIVQ#>!AK}gnCA5PCp$W|p zh~3CVzT92gZNcrUu^WV@VgtU{fkv;T&?#e=wi(=yDP_Y=UAz6#73y)!dCCgZCmmI) zDez-v47GK3P0t0Sk3>d9wo;&pLlhry2f0WPO zR=Q)%LD{xpB&Oc$I>%Q27??4*qphg?+YdC|O{U*M%I_S^?8k-$0yw8Z=OmoS=qfL6A~F3&ApK4 zW4nwIP9(oMPr@jEo7j%)e^HY58wRI`3khJqK+*J9jet7pv(=jIB7=*zCTO^UT(u%B z=Z!Q_=3ze?~`K6f~}3m5-Zh zIZ9}>o>lHqz4A0&90o(TCR`~%HOe@1jNES*ZUpAm*M%VV<}@OEdZsZ=Y0lF@%Av3n z&s4k-tylc(@B%;PLe$N&%EkPQJEk*KVxB$9Bc<>}Y_cJHH*t4odN-HE_}rU`Qc-$E z|3PWdm*B&^t1E|Ve{0`RNlT90^dVBIbhJoR+dlHkkY?z0hh+lwkW5+y_eTc9xKXE$ z;ibLrNq$MaNRVfDS{ce^~Q+b9(Y!Vl*UivI#8B z4|%SaF8OxvA99ibqq7FyPFflF-`SgoQN$8-T2iUcaYYRHf~Vpi?-#pXKIy^iBsh46 zu+*w!KUVcgfz_I}AB*WpEuj@b$Le9-3Vt3X9`QIYWmVQ!L@FwEPTSAsjZS}odNCRulJKl6pW>F zOPmuHirIj-=GzRykZ`NI;#vHO_8ZZpm&8axL!E^GC-PF*5#m4(6*tVibVXRmCQMFA z+P<_jZC0rgD5^4pweguQ5#ts6?7VN+xR)FZQ+6LJ@^vke^?O7HLm=PdH zU;6K$!dW%tL#T2-%Lt8wvO@0U%~ere%EnmQP#dH-|HjF2$<y918p6X@qAX?(7w_{$R_f3a3o*Y8R53ZXti?6}g1WXhcR@tf8D^8TEj z1;#Oilu@jgkg^L!X+gw7LUxGNusWQL6zPi%rG`CQzJ)RJKA!k2uJoK{%A+oJ%Jn1%&B#}l!S}2>3UJ9+S&##fAA4R zaaB`Bzi#ozV15_{k+Q0*GnTo17T`tG$+#lTgx4{f-B{TYbuO+JLKB_e$0ob}C5Sw| z^f*Hl13Yn-I?%q1wI|&xinohn^=~df?DGDv1-DM?T{A! z%(}hHaGC<$)hJ3Cjgc)OS-O$d2E6>k_YfE{Sy(r}wz?_CaF>x?Avs@4f9CfEd=`Et zWzC8p#X(dhcs|kU^7i{Rf+er~!C1*aMe*_2%MbgVA%B5BUR}*kty^=IZu!eJ$7jWWs62i)*<&%9y z$3Ei>m^oQqn0ZhN+K7QCU}Y$_2#MiQ{nP6jB{LmUe;z|4M>1$QhXm+1 zXDxrN^7_q;2=xZ2h}KNBMu73U_>&JPV;xj1kd6Y)`m-ST`6fm8vp{1QCKW%K4HaAA zPp03D^gzk|4KlC7g*LTx)gy}+_Jv%f;Fk;p^Z9R>sgfuvhH!VWw^SE|d)D-*v13BZ z>Qf|GB?R^mccyQvfBu<~Ev6t37Tq*&c31Av)pr>8H6dgqq_F8=_6$}1-NdkxcCkJa zIG0AuYoeoC%|Xz{IO`sXo2rRL`BKAMjpmYa?7$MLm2{g)t+GJWbt|ybS||4J6*xH- zV1zyLh_rN$f4m5c{Z#xVKue+e)J|AD zL%Og~$#-#HINk3?bP={I^Aonv!}9GbvprSMSGKjuxvr8`#(-H>>@j&uMn3^dD?6?2 zALl3vR$Q`a&Dq;26CuP8=xz%7ySbUGepZ9#wC&Op>FGzpA~+ZkQ_r_$ziWS+Tf08Qe?~%+&NZwk6?^jXvK(--~0d+wEI|G zcLUkP%BR`m+YB*iSYO0{UvhByf`wfKB}>(unq*i=tW4V}3p41k(_V0Rfbfm~Fl%18@ zRm`=XV!c;#=ubqKASf%D2_+977<7Gyh~@2@<1qs=j8FTVtwnr_H0iYdrHwayHKuLv zj_E+M^KikLvuSQ;90IR{!E3SXl8u|$A1^N7)t!&y< z%tjJRe=9zSc!3%>vwr!6(;?6iKZdZQ_x{w444Nxh4c7H$t59VEvGfea4M6$cm&(C3 z?p^E+lGMDd3ujh=hDWhY3c^f|gDdsgYfX6j{O z$+?u`RE*41VkBFKD?N|`djt(e;tH81zqHH1$2z64d$BKs^|l7yL7SwbaU}$)AHPtJ zfA*uz#^}bANkM~tO@MZ9juP9$6>5Q^WK5*=@oa~=TU^|e-$CgVOX`K+(j#4rF&IdrMp|Zyw^~X z_g#cIY|>w#Hv4m@FH}(3!{0lE%P|2ne@5xP!7xs!j$|5)Y)KT#x2`S`M&D&b@HMMu zrj52HnRRy$L=v8S13OiGtfaCaLTl?jw-2$1Atbc5uNgchAO>x2>X*dsyUb-=)#acP zRh`p52qj@Df2?!Ez8atm{%Q!a`GWqmZv3{*;>|O$zAE)*TocM)j4tDDLc=!Ze>M$d zIjI%WLASb0F0^;@{1M|8%XUPr)Azk_XFs)T}< zXh5u&ULv>J^JG;KYRg0;XM2KLBSjf3WyaRj&d6O((a0>KoyhI!mdCT$kfHb+AJNOjV&h>0%jp zuU3Cu9AW=_@xY}po4#-CFA@p@6K9%0o%ua7aaVlIuFWo*qG2Y0db$^8NZ%P;pfr59 z5t7wf5RFgWFxfp%s{-!JVS{4qSbJ6;OIq=n5t$vg!-A<0V2Rj%dUJ!qGZ}Ykk?8}aW z<-`>h_E_#_Gi}J4jcx_~uX-zFL)A<^R03ybCTY9f8bzXsqe_-h1_LDO(odcGT$xCE zaROX*Iz>;;a$=(+e~L2t<89p87>Ep(G&kLd5|QjbgHJ->-ACG_AqzjV2Wb#=8#l8^ zoTV#)n1Q$R%alt$GBaHntzVhgIqB4eq=)zj-$N#xU$D4Q5#6v!I)d+&t%jeNCYQ@^ zsSPisoxbGd99;nwJ`qRCZ{@SX!)zcAY2z$x$6VSCkiLeGf5?jKYb3%VL>(sN3jhW) zO6{fE<3)Z%S^J?NA+n2pMKWqopRn}nJka;r6c=Y5qzoXGD1nP-xZO;_UqO7YH`L`H zz_7W8(}TE&FqndJP1K`n?FyQd=Ou5scN6FWN72jU}jSWoo{QCKc zd*=4!v&&c0ecjvm@*xyP>PYf@+d-$$jG8U|;uylj-qLje4X>gQ{ zJP&Jri0yT6!9Az;MnFO{2T!ZJ)%rZ53;FOi;MEy7E=k+^n<6|*WunMCRt3@X@C18V z`M@cB!QfmS{cYFS43|(^6l*TX!gL#QSw?zjzJFxIe|#9#HCeRh?kkSI5eBxc*V_Xh z3Gyj?N}}TP{vna*%>f^nlw`1Jy}c8bD6+s2IQa%B-%+5{6J-}OFX(q0W8J(aUfg*v zPAF5yROW2(m4b2#B#)elA;F>45!6it4Mh-a_#;dhZv%cc52Cv(>KN;{!(sReaYmT` zC;A2jfBDqd!(F)98XiI7K{s7n9Xe?;8n@w94^6bq1Wg}vqsLLY#=>JM@Tssi)7cXe zgW-`hl{BZY1FKk*9W4No^v)oTf%q%)-ip+KtPTgl8RJIxjvLQc2KA#(6I*(Yk(T+! zOT`YL2tx&#L3pjQtdW{!1I(e4%Vwc>)K>QJe?s{0_ZRZA)=sMa4y4!6-l(zVcD|-6AFAN?^Y4sm7-u3|H=axqPo$3=xFp+CqBSq7mX&(YUZ)f+)x< zZVWWXHio~{?IO|{5peBOcotj6{uCp(zAJMw%kI3vP5Xn(zfyXOtR0Q@RP8gJz7;6n ze>Pq>>I^H$rXh#W{MI$&PHegTzfSs^6$%lY1Hy>z@xP?g7o*PL5^A z*w5kZvYuuRDCA(5)b#lyXw9L$_k+I1d)5#>n=DU}=QxJZWON>d!Rx5uR`}0?&A&>{ zU#Zs8HR4Gg7z=EfzrKGUMrej{AHPn+f3-MVdY{BYey%LXwi9eHJy(uk#oS7e0|1pc z+8Cp_&&d=i^~h9GLM!!|U67aSw7)9c+_}23xa2XZK|A9ktCa7t`Z;vO@#B~tHzwG7 z%BxmreLz=HrJXwwf-VVkb&%@#?tvlgE@X2J-wE66t*ONbx(WvcDQf`4{3gEHf60lL z8p+ma!&&f1{=};$-;HotM=Wmkf^xKxN&ABcPPwqGFPnvuN&L=4vAtDd_{^uRFQs+B zXo-22jGuxs6fU&{q^6TH4}Y*GVm<~qnB5R+qe%^|UU4M#S62PeMY#4?5;DuWe-+z60^vcXE;Ov)bs>xK)SRNDpq!SHD=%XH=Ge=0 zoC)(5cW~m6EQMc%V{pmMc!olY?H$>OK$AF#_C==m_2zOo%0ORkB}b!T6S%??{li&q zH0<(2BR$F)pH{29KzvEBt113?6sp!KZpvn=|4A3@{V&o!y-t#r8smAHfBgRscf)*B zmUIg|wu^K&1(y*tOcWR{>>=x}C_n7-`q|t4lbhIXf#yvzA>o<_@a2$HuOSL(E{c}Y zkE&P?JoEYE^)38Fw9Vk?!!q#2xqJ?hNq;Yu$L`*A3$>Cw_Bk0qvp^C)#(nvOBtJt{ zyy&tkn_gkcfeRo>Ws_|Bf75SurQ^}xwTgX=FxI#QvN|F`P$gUmfNuXk*rSuw32s(} z?$sfi084n>g!&sZ&i`RhPRPC4~fE5?L*SyZ6To%&B0f1#u3-0j-~+-K@=(l$f9k{ z9YgmKPKXK2?}}b{3-o6n{d83;L4Of@J&bblHUWY%DhgVM{#!((qR1(eBL+{wb&V9k zcHpdshnbPh@c?u@e`BU$txZ1(ihn^z^XqqpTOX#ccq4o3udY`UA3^q#6NS|&JusO* zT!H)OEOdR+G1%poF+^vMJ`n@b*%(e)#sQ4C@$lvh4DC#RS=366K)Y#(rHKq)x10ek zM*GwvLT@W36X%(S8sIMJu8SwEn-=y0gFdf;Q{2wN&oV9UfA~>MYo6~+SOhW%%Lyss zfYhD20q--0(XE$Rf4e*+X?nCR^t*y<*(>2@fF1B(Vwz~;wyXmr`_+ZZ3|ZtwG(lKG zXEAM~-yBS&+tgyc*M3T6$BjYldc;+RF7Bo&!tJpc#TnTleXHJK>FBHC$1PxiCBUWf zR+0W4!)~1Ae_Pd}rW!d};80N%4P9-;BwF+(Xv%cTKZ0eIyPG0r!{o~uzne_C2Ei?7 zSi}VKqSzPn{p+1E`!hej2on@BR~FsQI$k%2+d37p*>rq#)I|V8+AS)Yy0vwXpJU6| z1rDVPLaB6mJm^_vqicM#@sp?CN{(g!x?T2rZO{yW39aiH&4YM%i0Pa3;Bj;HhHxM z?|AjIgu(+iDX4L5ssEIJUTvk|{?Il#Nm23rd>?YXEVySnPva_{!O$ zlFcjfCtRA|@F8B{WNXkHt?7r7?CcyH-bM*V={ilSc#*1YE^?8{!%a$Y+RU=|#~yut zJjJKgZY>w^_$0K0lnkeP@^ET%S{MTlP%H`QzOu^ zbCZP_E$f3bt5Ow=j13g@JzW%{ZOko`5>1i~jZDpe=kJ>(CR!LLo2Dfhm?v5!nweP| zC)(LqSSFbQPhv7QwJ^6xwKO$MHBL-3H8f2!urxPFPE9qoi$y+JcTRE=1EZSTu~nKp zK0G`J_`^172T#Nvo-=+dn@>Bc+&5P^sWF!&j8jbT zPx}PXIm~J0%^q@j2D^DZHqG>B+x*o*MVsHrcDunL8Aeu>=q~~}_m*;)MN2oGeZ*mw zD>~x}`_5CJ=-qjAzWZERx)jg7`O8mqBwv$1XC<>0+{?>OhjT;KY} z(-TxL8%0-UCt+?*gz4sLUEb}l1sULG?}BVKM}Qxgtz&QCUTA^lJD5S^SI&5Udi z-7`##O$|4H7#bTI@*q$wF9u2vNP>o;aI+C9n)m&r`?Y~Hh4A8%{@>VO!~Od4r~{;V zt9b)Fk>w*lygmZ&*g(daReW_|zeU2oU9$$Qw=57znq}aelIKi)bv0MmA%xzEddBm1?Kus zcXNC?L*C5xhx1P$D-Y=ZK7yg)r~R9ohK5FlhPp$*F$fq#E+pwh|3ZI%e~f}~(Zz1j z19&T`-U6g;BY7_5ETTjgf_y?}rD`65N)2>HlUg3b%I;gFl31tx$W)y1y*<>rbp2VS za}Yu~fc2ZAKYn?-zLQ2TkBB$n5bTZyJT07LDy9t)dI`wh8VhPhPh<=UH+7^74LfOX zYP!9Gm;#)u&?q}Cz3V3?H6#}TX9z<^fRE({@@r?gCxA$SkuFF8%wT^8(ElHJqPDhn z&Q70E#?A%$&lq6m`mb2{47RU!w$5g@pIA2b-NqkI)#0u!!n2K`9s!?$tYwwBvcc{RpklK@;RPI^`DVnpWn~#+6e8oa zojW56lEUItm|aw5asF{nvs}g8>1rx~?M`Y0o5wrP!G63RRL*%E$~_qZtg@22zo}ai zeP!q6(<|a>-dCb0TocY5%oC}_@TN8PWmHV%pL^GIX>j&&T(7l?RI7p7k`zh>LmY@J zVzk2&xHjw_MnEoIa#LLJhFxOlKOP7y3~r~hmE6w5FY#=n(i_xHTrXrh^9DeofLzNe+9%|GI_Pt0<;#ZMY--Jt>Wajm%V%{C$A-Hl07@ zHSb=US6&GCA8~myl~bkM@SjcV=4*f9Xw@<^A~#A{^&;_)?}T9!(QHz<;G*#dTRnwZ z_*MblgMC;R+bYT6wTp=2(>H~c$G#`v@1&Fv8q>-kLYtV_8 zVj8nZY6mdNV+4&ONm`h|ZM{5gdN{;!|1@?{NCBExhSat26fx>b4`_IV&|Z*j-4s)q zE#0|>)oNMck1y%v6ky|Uo;4vJ^h`7C@65mMM1I7+jU3`z2sb7OH-S7IcM^xI!x$Wa+n9w_Aj$G?`0cdXE7wGKK&)1jP`I; zKTw(~el#INOL#!`03Sq{>ixtR6sBlH-gvAR@&8*e<`l?ZARcc{F$3h~m(pho`0@DM zN)eFB9X~WGUW|E39JE;!Yc)hKw7YwnOHy)Hs{XEZ2!oYLE#bR=&8(nCqk{;EGAa=3 zmoS7Fcr9KA%)#(eQMoQD0QngjZ{mMLZegdB{p-y`;z}$^D&A?fiLZV2Q^%WMEn2|R z!x`}=i&+UD&>X8(q4e`!~snE9o?!&8?&f(nP) zc_x7k)emfnVG%-PYgHRvBc;e{vrAOXx?jwuBL7Ux!h_+?kT?uh^bopY2+<{GPXfRU{#(Xvxy6BvEjVYr#T=mQ<%T zQtmK;w7)HC_wCcYNV#~?e#A1AO?;cc;Kv3cMi7`GpuH*zZcuLkK?nxgqd8GPH~bxM z1q$4CkrHgzC`s|#j$SR$SBdEn0MJHlA?TzgkX1v@V#TtMW;(=fcWCa=wF?-d(()2*kx3ZKM)N{y_I#_fQLfvr#zfg{&*S zcg=IY($S=*1DtC}=?*E%kuUj_UQTqwSAeS(cgP$(+>s74#_1C6u+7-BpHWBT++8md z2GHoy0K%bYqO!L8aanwaG_*9O_ zr==x>`!pSJj)lZUN{3Q0rp6NP=opjNq`T>uR3oTR;WCbQe@d?!O7uL|UmovB@PId2 z_`dA8z@Do9=!?mU0M7=S#^FE6?@Yv}^hNXg`j*r3(ia&rpv{aqMf^FkIG*M4?s}Pv z3P>?J5*7<;Fh_?RVb|Z$bPCMIlX);)+vhAX9N8f{c0#}di_eb&2gX0c{}%ZN z3gP6*xuL{KqmAc>`k#m*c?1Bn#7#cFBuK%Eq_>$-ty_+sej5rOAKh%kmEHmc!k*Mm z^D!K^9$S0c3kQIxN?##;?F_+08G?iW;q4(t5v;c<5#t({K_SzK6iGT$|R1wrch)D{n# zF4>mP+x$Q+*pvTZ)eI0dq{HIChwQXyPv*@;%m$^q{V|=Bx|t9I!uSw6%q~~AGy$d| zV@uW>DTV$G54rnoaY&Rro(k?-tg$lS3#!u7@BRL`3iUGT{_7^obCyxz=_qRVb%A?y z8)Uc$BZSL}$}YW37O=v-(7a}Vtj32&%!bLBoHKr@9yKtu=h<(~*K^~xh1816xEiv} zwbgu^5y8GSwd3W>3-b_&4d=S0L~@$n=5Xz8{s%PWT}7Xfmfq^d3ajyh*xvtX({OG~ zj*Jtqx}-0$XESK>u9TlnZ`hLpMd{2FY&8;xok2b3UJCt<-819mT~=fB?;kcOF`Co^ z@em^S%%HBC!Y^C&SF%)1Np8$AZZ;QkGzlM=oS5WoBG*V)s%wby=o%kL_O7T||8ZGK z=tiKe^T%=`Ptd`luOs1<`I>Oc!B7|L9;BUM?*64tWadyg0egm_NtF`dPM%Cp31Dct z6$k8*B#(##kdv330XWbcY`pCMaS~AunA5V`&=SeFVip zLzKa?>4$3H|-Gy4aei+~DV#!p9=(U4ad3QKXq%Ke&K+6zk`(>@L0oWk@^!Ahe5pep^0 zn8+m@<_=>tRuegi-KOWF7f++*q>sy0v#mX1)D?s>nk*V#r#QDxCnmWQNnqEe;IA)} z*`>VIJ>Y{*9G>Y`B};3Oqrx{LnDsdRYCHbgqJsVx-Z;DLo` zP!5KvrGMVYX+myPhNUPHO7tK5c^LgFa|qEOG8vB?$Og=5F*Sl(Rwf&X zcbd1ID>>4>WMqs+?K}Q6W!7u%ZQdSkesyO~nNSCt3br)&ccaPA3TfLl@+;EIKU(s> zs*CR@Q1ohhpjTses8e1Grn?G*BS zN2vsR)=cF`?7?#5yao}+Xs*_cKfj%u_l9}e@tCuvu&-z~*|~z-405Tw37_I?6ka^v zT-|E+-b8-CKZj&zdA|h|uI4(MU?15skg$(19+98SkhS~1ziuhfy=|dkU1?z032DD# z%nEzl_q$bn$9x1~N0%4klG5}{KirrOn$&^~1i<&yL>)wkgOS=uAxe^@(SP4gq|m_L z!7~PLJh&V5GbT9B|KyK+>GWqHbe@-=&l;aJO+*dDbPJiF#B=(_CPVgcUcPnZeP^E3 zTqRsCCo|}L4iGzDEoK*E@F_F0;e#26r%{6l$BIO*sl}{#qjEP8etXgU$g#e9Jz4@g zhz9-5Vd?29U&$z0c>S3ws^C?cC2wWPe(E)s zA3j-Jh#O5fJ!v=ib&ZW0Y=efNsYh9)U1?I9|aTuF($It|T>o+58a)f?U- z9muDFMhov8Z-~Pv*#d83M=|F+SJsC;cfRqD)Ex?bEY>iX@RU zlgVAS1_T9X9+T}j`g>=-rWr6^7K9vFxQW`?Jsc~nhv^I|d1u46i#5e)gRf#M<43AP z4gn=Zo!@oAMgZr&dl)(dGqKuIt{WM^2FhExx0CcDUEp! z_OB~qOrrP%OjAeH7D}3kgrdz9mO2zxVHve7auRO|$KVBgifiVno?7rW?fd>N$1TfU zbX%5x-VAYD&(3|Dm|NDZee^0Eb5U4Ofqs^cPEVvYy~8z}8Uy&}PUBBqdCag1w_O5< zCYQ|zZ{vqhguDaku!22#-$dUm{(DO4m0Xuii2DSA(KR^2b81`A;K%i8L$1;^e{9_z zz2GmlocZU!;n7&cwm9IwQvT2=AUsmo;WUy<>CrDl71QH>Y)xmTJI4n!%sKo; z%%|YT3`xJiie8p9$u)>>F6*6)M`ThYUOlDaEra7WSf&{VGSDhveHJTr;g*mU`jU4vhtupHh=GhMf2na={2>Q zrg-FG-g0rxO4yF9A!fC+$)Mh#QE3%iZ_qHgigzZwntaB6R(`*F-+KRY@AC4s)q11; z$Jwgue23LW#nlGbZmFgDU;V+EM5`^>f@QV*zNOv5u2S>t<^IjGuES&XeZ_Xgrd1#O zvnhG>lgP>qFMYo3-<$93dShopXA{|q@XE)Uole=brZ=bfu~4&KmR-8zsn_G>K2*{Y zng9pd;d?iJxV`h?q!_riLvL%iG()oVp#R!ZJ+mPDJPDk9Qa4#O8JCV~)jB`_;7lUO z_y9*6bRS|2T9bQtAd+H4{2GyEr!o4^k{u0;6oXW&l25M;L?9f*!F!BME(ofG3pzPq zmNyhaoIN<}#iUibkGnqo`RBE7`r5os;Ki(=Rj+;Z?hIu-%E-BKJ>%c^_EtTgpOd!C zc9mBiE)C$_L*uKn`{eSy^E{ux zas{wh8t%GfC$yYctB%2j?GLfZ@j&?t{i9=nZ54Cq_BK31$=k=G+acy(JMXu*914oX z<-fn4$0a&xH^zgl_7D#+N;O@xHL?w1RF4xXqjUIJuHfsVbMvM$G2nxDsIZpz9D-!=~Lq3?W zHb8i~UmGBeVi%PsOpt{Ih8M25rg)i}@6!BV2+bq(S9 zklLCKaMxcofYisD*iskG{?n4OqC5?(XWFenslZyq0@hZd6d#eTGZGF&n<=OmWV-sV zL@@psyfsByxf$0BS$GWg@7O%%ZVPi_{@vOzTp*tEE?C$fI7^DVbI=PDnX-Xj7b*ud zihG73s_4S8u}^R$;sXA*gSW{FfVO1c5V!Bc55$GRmOF&k!H8KE3EQTAlVw_Znz?H9 ze`^D_?Fu$m5X&OyFuz5_dTxEQB)(qo*Zwhx09FuN67=0CP0$Gun^C%oUm`4%F`2{@g0*3ojZI7kpVHDGA zd|yIGATwO@$XXj8PJ|Vs-1a*)XVYwarnJ_i3(-WYksl^vIbl0d-d!zfaYXW4NTU9w zcG1H6HEhChHO?oQnD3-zk;TSJ|J4}XsmyfH{3Pf1(c>R5Rn$m(e1jAKrbMg32=hYo zR;VO>dDT1=+BWJ_uyzfVos+f$;)UET?Ilh>lEkzyyaYz?NUCkppcqc5g9@4Yz-f^h z@Ny&{PaY>IIg2%%+vAL&ut*efSjCc1Wio|Vw?Sdn{+AkcQZ-S&76(#c@HlCZmI>5% z#es!ov`A%3>%7bwCu7VqM5Na+ZT0zGaVyo&2!UN(YLtuU)nX0jqxVvk*- zXP7kfSNfDtaa^=;7R=;u$x^FO@!}ta)fgmEO*cTXpz018;yR*2$s%D|itsXe`m(tp z>D<5;RZ7Yru;Q_76ytHKHYeNlJ}ZwK#Sg?L6-3k6dQ3~3jDp{Uge)?loNP^-5v(>0 z9b2h^qfD>R8g3MYAZ|LBSlvtdRz;%dNHkf39V+dCmAB{!w0vyay!0@q_`>pIOt)hm zhEqxQA`F+~s4kiF1!cKog%Rs`&)<;JbL<|9VW&KMU{o(f;{@o6L}f+QLRAJ{nNV4Y z9Uk%(MbXS4)ls7};5cvP{E*_=#u!TJLbe;J^qu9l4OC*(-RLr}b%n2NF!W{qs-PJ3i&ukKu(>%{&3j&nmlmWBA=3P;^u3i8F8 zetvE`@L(VvrKO2Dfy$`ixZwglP|+&hdHZMYSk9jmDuxAI#XRFP<8{K!+CKLm&iXd6 z8e=X__ZHs^AJ$nWHEDZdQZq2Gy*FL-GnZ=*_43E^oTAw3Cf<;WzLWF#mQynR`~DKf za&J0o@K+j*)|LG<*IBDp58*s>!yz8EZj^%L1dd?%fejvvV@l0{F1h#3)`2l zVUIU@Lm=|z;Xn6D374Jwdxej>kq9UuI&ewtMZUzM!NtALx58WXci)+pSA+M$3t&01 z71&rJwgMyidta264FE(a)Nt$kYq?xMYPVO~Epo(!)_>_kP@KNOx*1qYJ!a!j%p_{7 zc9BQ`Ug`=u|E9=zllZZz!9b|%*u+%2Vy-*d{B0d{FOv(l0AXliwlO`eCEeP{wKVJn zMUBhgaA&m7+HDmO|a(iP%W`AHwJ1 zVnzJ)%Dg|zaD(E9bM*Q}N@;WS>O@K@y6F5>=dA+01#r|16Ct5STB)iLBflaF)+W(7 zB|}3~7m76-_^WD($b=hSgx>9}tUl8I)Q(;C)`^&{6Z~%D0N?fA>HLBBLV2WTmON+- zV25U9=Vtqlbci6>+=7KKqxpt80HPG7iT)aNTK|*KnS3;Ie1$?io-MxfqB${6XJ!eX zI>MEF{AA%oIKYr1E*WJ=a zJNTtEwcvrFWo7tPK4DDy)f*E-Yv*@p+eO0^1D`xREN>QmF713ya3eJ81?Z}pgzRhy zQF+ z^U1~?03x)QcoO6shdq-7$`QgCh9Vonm<%ia*f1OZ7(FXKj~PBPD+3#kLp^W3GR%1w zbZY?$&6FQH&ZsAmbyY8#u&(*RrtTi^<`4v@L?Q?rM$ESxx}8Ga{Aa(bORs!61{wrM z)3vNoC&kg_S)1LR5QltkjS#5)ug?(I1b%e^w2xbJS_x`XX=%nvFer*>u9v5^J=3gIfwy5=#?g>Wl_g1E znCt8}ew9^C#<-oi=3O+hE^}aFJfF=F&+$sk_spl9?Pcvm002x{q2NU)ZRhtu-BoEkr6{odqAY-kOlsWrvx_&_&l+1Ne9F zz<$*a7Kyv_o7#bOD*JX9d%@_@t&p-7%Yl>mpkLARN2lYfH~AM}tMxXpdV5xOOx>3E zI``-m`k%b#niH1XdALvsvmdEavtm_v!V!q^6NWfe$7bh1ro*{btH?K?&oC zRm=l26`BfOHxm80k{33;238@%m7ULEM0JyRgmD^e3n*@wFU^@haSFt=8E0+_tOjM4 zv9NV)rB8-(1~7F_-vU~rTMcsh(Ft!njUI#1&+!~um@YF=c+Xm&JjN|GiU(<9^}&RT z#q0*u+s;XpZ53<1&rjbJ5HJq#Gs}^qih!BSQbb3IU&QmHWX`XH4s%SEi?GkYdB}%u zWd#rRFdHSV#h5Sq+)x zkK7Tt7)+JFvj2uw=an7Mq}2QZmb4a$7&YHwULX*2Jx~RPG|c?yP3y*#$wsk)EpPTt zx?1_QeKg{Jt}Bd+Sp5;52gT?VWUHNbVyX)cN201=Kn-y4hQ;>Z?H~VNDWB)Rh4W4UO8*x$FYkYGV{8I)=&}C?H!H_~vu`3mN@DzP`2W_f zP6Szp0m;RajK~D}^?#w`2K|Q~2{6}Z8^Zt5F0wMNtNqzZfa#lUV1!)lM=1SeTLE?{ zB%^h?A9mT)&qw+?r*Y5rY$%>`c$WRc_aw)3bmtah0(HN8pS(uE`?wq4@VVx(7(I^1F>D!|p=*ZzqOiLQAf4gW8KG%|-Ccl66}-$fWjP$9~$P z=8V~V>&us;y2=fEv*is^SM`V(Nm~Q7*Mc+Se&wia(Fq(Zh4iz9x7@wr6WgXQtI}s3 zwuF^J$nybc=_n@4-@~lc#1=c-p9c>%2psrunXGMp2j|X!I`+9nuMmGDofOkd-E`QN zW$|Zth)it$n{NOokv|0K=_6%Y**q2YDmQ(aBzy8_7y3&Y;tfwq$4FIW!^86AJkLN8 z@T(zlf9O-q&I2^94<~V&!=~83fqO=>KYT~A;{K^Fi|;z{K3<3AD2t~lEfZypZ5Cyt zm~4Cx`xppEdLs{1x7ygDC>~pr(2iiuDu?@voR7RAS86csxO6?X+uhtpdge|HdT0>}BKq|NbOgidsP_=c2JC|c2OXVLB+|f~%hN^xobU%F^ zF~5qLc5$yjHD|MPvt-xan~W+SKA_16H^2^LqOT8#4(30H;|tzrK}27%d`>8TcXiRY znRPf5ECio5RegVb7ZbTLrr!Up?QTf-XQ35O%kI}?X7o+Naryjxe`ogmU=7p4RSY3% zgm8bRn5dhF{lttU`88zXFhVLG!-!NhHbwtr=S_Jm+?P_HA(T^El?V|Ds9}=#L3%r+ z-)}gWB$v&~LghRJtPXmJ%bqIB4y6b5W2^{Tm?Gf4E(C==)uf)KH93VfIWy&y&R2~; zT$kuHf|}h`=cPxs)Hj<@yJ_>2K<)V6qv~Hc&B&hgA!jllLRNq0^bC7@>*?>vmoB*$ zgLG!!?$^yoG$iY$6}=gtGi=*boVm2mmy}A1?&U9=raG# zIQ%lZKL}JdGqR+D<9JiLHtGai;QKVbOrX_Ug~$Du(?{d zlEekmY@d2{Tc|PGlKJA=kqF2}j|GOOE{bH#Q-n5xZpc4Aj8C48DYiUp7PT4Gpuix!?dXOTo#jH4GuO&@>s{GQ@koxW$g24!yDV5kI@<<33KPF0FevkQIS^SjnuNYQHvk&l6m zFitA^v0UW_5iY30kP+Glr%b?TLIUxjzC!}3=l@a{f`bx^i)b=$H|laX1fT4VW5_X< z2>A`yub;<6_+AsXYc1VVjhr#?)u$cYTp>9DRhEuU^7|x-f55G*G<^1h^!`E;`a=uC zpshV67uSqYrs_{# zECsKfM6HcljorKF66BnIKEh8udr z^?A?JZLN=qd_m(>f)SWe3Zv2vggQk0md$BvFn=KCVq%4_Z}ub%$yU3@R=aEg1*i5} z6bNEj{lC<$uIYhJUj_PCa?6atE_k!Uv^((tnn)NLd!1@ygL~>j*?Bay1QK4g0dtc( z+_xWlIr&1@?xxQq2j@d)o`HWflLyw$EV9sddGU>%wCu`Il1C1!?4E6v5F5j6QH7%? z-T(($NC=(=SAnkoNVGKcina{RNl|fs^2{mB=As(icaUCCpin4eX?d4}58(cBb$ri0 zCRmJe^HH}Aex2dz>>Hmmty}ceAS=yAp@?dHs-yBVktmI z_aA!{H4z+O#($)A#;A0@mn1*Qy^~=V57ecxMKX@>dfn zU8%QofP&g+vUKan)mbib;6to`0X^w0c|IlK748(E!DBRnDZo;Nwr0s%7U$u~YU|%0 zhF7-dju71xF98$Q!AotYCa_txjdNDlZ*k__)91l^?&GGKOHc)Q{&?kj=_gX5n3ul#)(`)}zGm6?y| z?%#;A;Xa@R!ue?u!RH%4WO4b>D7?`tO#!D6bl_|zJ|@kZ7Iy|*T&~@jU~2sLr^?nC zI(H#j>QJJWuo8DZvEb9_oXaB8dxfX-Bf7;{U^g53)E%@lCq+t8SWJFD-+``loYfA^ zo^QR^B}0Y~ukU_2;PhlSLpz<|Z2O8_C8BuZv1IpowG1i??8U{cwV~++k_;ecG{=9D zG>KwDciAjYc!GIAF~wM$K_n~2Frd}KreJi;s-!=R4vKhp#XkpAg^Gi-0Y3FPIKuR-x!k6Jm(@e)mt5IjEh3#=SUpyl zjat!voTR{SU|Eiy$fpGg8T_mmK)=4`(Rx#LdhD)kPbYs!x=IzHpaAt|f3swfZhvA3zCz`$z?WDtK%+^< zJ~SeL%EB5E2Jm+%rN9V&O4CH05COeNfe7BZzuKb+tgH-FNG@0w3*^uz#Dgt3k|0Eg zEm9&1g|T=p;A9{UWv41_f;cr1n_<8K^byS5@LNl>eeMfKDx`Hv zFd?Q_7`jolGr1@YL#@+z z)eXU)A3=4)&_5~`R3aG`xa$7ovg~Gv$Z-nnC7)}9%yUH-dZ8+WQ4zs67}uc|sykRI z{w51pb$^l`wFGQT!w~B?MS!v0pyT3nX#;r2JfEEOWb2 zn>oD7ro)u#ia)Ul7El2G-A^VkEdQ=)ysuUDSLX2?%l}-rMQhY#o^85583HZ4Pmb*y%|Nur}&W#HofX{K;)AKF-Q0FHd_|lBq+2G)ESn#+@qMXLezl= z-59Pg;U}Ya$dOI)+ypZFtGP_N*i}YOjO;6;B%g!JE``ebT7@snBnNAHhGW}z zkxJ4}R`<I(!N87cOu6(tYYwBQpZVndr zBFuP>|EyHz>j^JJML?gNMLmAA)kC+n+7r&a{AR&hSpjmlj*=N14qAmXqLxTcn9R{r zO)MK1Y*8xSE@|FLN-)9*#WT4>B@S(hoVPkiQibmzHEw3xsM1tB&nB*>x$>l++WTfN zP4Mn^YcTWSPP%jdfrNQSjCJmC8ZLH={ZH?5o?rl+E|Bp3FE(8nYsV6+sn#lTb9ui?;zy3GF^*o2bH+JUlDRV*S>hDX?KEslz> zg(=D)PaQ$@)1OXer6x(*^+U%OFHB-L$$dYar$HMEOSzKhoJ9Z2rK)5QhqNZjJZg7H_2F3 zHt*$f+rPO?d%2k)o+6;O9lz=xhB}O5K zcU2Sfpk>`JdfMO?3w-xWm{a7mXTr`I0@6;mUP`O3R*EIP(2%MEn>eHc(g2_$Aj6*! z4IaNuA9G?1O@0MsqT%-OY5W>-f-n-@z16M~w0?wxmyTe-CtKO_*VbKmWk&Wf*>P3S6H-Qo0_Zjk3AY`yQ#;}v~YAL<9% zT$PSCeqdPN>@-Wiz0AI|Vn@p4XEi2kIVNjA`|n)2tKht{YBMrDK~8E3)8Xx&xC{FB z5VCsZxcDM3_QK5ugo_8K+Q^nWzKem8uYBJcEtw^}+L<7)p_XSDX#YEgBWY8Vq|f=EWWJe=M9=2 z&0_^K-v&9@UQ|`*IKgzWxciOn8&zSw#)Twl+Iv7`W6<$>kdn*3Z=1nh!j6LjW1av! z=!&sH9YZ}~;$i7zFP6Ig!&*wD+oxD6BAac_2T^YEC;cRdeRN%gz5}ogkH1{Qu#3>{ zb}hQFwgQCVh0BM>-xM(`7BIrFZarq z*l|g}swuu~&fH|9jn|&avhNorEfr48&E4uh2zu3gkDuhN-b=mcKyhcND9O$#{Kmif z)&0T-HBuv;KJIt>nfpi+PE`$B-dZdLlTousR%XoD^?z{5>K@EC^uhXa za1J*#TXns+Lhr(Va9`#krECS7YV>lf?5n3^vl-a1`VQk*}l_4?h`OM$_!&sl> z5q)LY+|sUz_9UzSpyQz#megeHD-c|D@Hg`EG^E9p?*;y( z%WOdG3JI5Cbc_3hU5m@sFs>RzP_vRDmO&scWpX`19wzkOgZt(23N9t|*7hn)=pXYX z6k3Dl73rZwT{>zKlpspo&GJ9EJ{P)hP+Iz>Msz2_m)Z}|IK|hWA^1*srC@iMJZ7Qq zPByijV}jt5#>6qX$hR@P7>#c`&y!6(4o~};mueUuHo45u@Un0LGZLcB-Wz!T zbTJ)AVrJwW*My?eMb}AfAmOe7d(dhS$EAWfjx=}PXk%ch{`Rp#pmfg-sHC-p*Z-S6 zQnnssF*>pRG4ITNWmTH~1G3D)$XOcyQZM4@TDi$y@N8%c?1s*a-3eP_D>cs5Y!1yk zoW#Q{0PfE+2+os!g-xS{nXbf4{dSLmLsA{8At%tGAIi3b+_vmnYb8s>Qjl{k@-wFR zZs=X(GZdKfTXTfr{n_IzyjKoPsCJ?E{bGwy{SJr2cVb+PqbEx}IiqcP2pA(r09G4r z??tYby4>lv`t07x`E%P1O0m+q&Wlyt7SV%_XyK3=(M}h&MU;t6HT(wvWkB$~aAo}n zqVf~BOKP@hEI~e>p@<2tWZIg=6IC%{x>MnP8z0!fZql)67t$H_h>Kz(Iugnz3OWvX z=fxXO13K6mS$g=TwPguMIwGX?Cw>MxugSYu;8%rx8+^Tg5GYZ1T-P#&?M0}!R6@lK zxeX8=6Ix63xtV`h9#M0!nW_&Pb%KL!wf%lOhpVlqFT2v3Vo#uRRNQlER@-E!l#X%Y zDUE{@KGQiz@JUk+IEMTJ;tVdfr)Ks6Oar1QWA?TYx@?-tZ%+TPr8y}{>NhlXO@rQC zbJ$g=r<_Sva&9V*AIjs-c61oiTP*xL3=yR;0~v+@U@B*9&fDcii0^8|X5wT`yiP)n zROHb^s0Op&t;9~ohe|GMFQoBBp;p*d^Q6FBCFSWufO!QZT@Piao!Y@^=k#hbr9Xhh zX0>Xqfjym_Cv|}59o{5GFBVXG zD0?)ut{Jl2xy0l^Pf2as^yKVu;eVxOU|qfggE?gZOT#VUUbw zdCm1O%`O#;UZ#2ZV<#`>{QuB!e?T!Ri=!HD4O%w+F%lj~)pY0-lJci}Ja&A8N1#gK zClpUYr$~iXbO`AG75P(i%FkQ*JQNzN5)@B8g{teWd*{R!`Ak}DY6Pm2uqj_f;cYE; z<4nf%Ryl-QH(F^U*0M=6w6H3^!Te4(ZUtq+kYC^pB4^J;hk(iU;3D6BNsu$G*YU$h z9-aF)3}rDbg=z%R-yUjSC0$WkcAOD zrEj8C{2v@F%%Re+psUc{`T|2&E~XFrQ3VYPK0*HUEU|-^(6@6kMa08n82J%DvE;Cp zU)?mYgV06@1aCf5tF$(Fs6vsg$U3L*(Vl{bjmB>LhaS~nKFDcm4u^9re=ba) zaL%B^?3xSd$FQ?|ik|FSh(yO`&;buba6aMq`+fRR5T_s~f<9B%CI)2;A3+v5(oSjJ!LI5tr`wVG9I9q2#9_%bK<- zLv;UgAcyy4G7ZHuj)X)?`j^Kr+0m*>Ja%DKt**nd3Q9q6$*G;939Q)V=miz$=M*`? zoBnC~wlPzelhk_g9or7(x3g_MPK&kVoDk-FvWbG8R=N;x{&&AxJX3_Yj7y%lva3jB_kWdq?nR056@Pi z4w(w7*SwjYg?kk&nMO{eFdKU@K;k++7`WRPhoA2@YEIN+Q0=%?z*tXNiU0cI%Y93b zF_yX#=`dM}#)l7%*B5rvE#7h@L;=MtELZK-UUaNqWz6Av1MeyhWh~rL!7S4W+ts4J zkR#2ff&;8|O=xc67^Vyq);5^8k*prj?5H)AV=zYRs&CO*oDGJi^X^k5i<|joRss%~ zB|OzjLB<4#b4m<{v^cl3TUe%4lE?Z#W1_M^Jx+3yYPDehqqQd_d4kXkest!+1e*E~ z|N2|K8LavkzpX5%qLRr4$1%aC!yZVJK(tInNPFU->4S=w1Y)tfBt~Qt%gnZ^`JLipWFcREk+S~fEdKt5Pi9i2sVKVCRVcs^Z9`il+ z=@*NskpC4<%zCwjfMb8M;ggXKN6b|ryaZ_SG6P5S&+7HV+fOeTdhb`Mh8}kE=gQ_DlLVfXtJb`;@;xwVU6o=Mq0*JFV4%D^OnQ&c7h?@~ zfhW~TBGZiN2bGDeYM0%y1&m^A5&~-ynZ{`LIXbaz)GXfMrt3tGTj!$izy>9<1Yz3X zu2L~4cdoNmzrUywSm6mXQ&X&yFu_LnB0PD%;@;ew#d&GSmQ?s`e@zW|D!!x{Ce@en zTLge*s_}2BlO#5~Q_-C~y#R~D&Ij+hZmpdscQ{1BO z-4HeT*H}I~G8=!j>`Hy7xPeub=)2ryj<2byW@zfs4~EmkgHf)cOxEd@Xboob%nz%T zEUt1uspX)BQkJNTUAgj2xsW7LgyvGr02eU*i%%<(Cu9R!){9|9FE+eZbqhWYK@Fb8 zFPB-{5N7g+BT(?eVlf+Xl8uYh(bp~+Y^1LSXl5kR9pk&z>;+T}TY>oDhb_m!JxFwX z>6dE%l#!uy!j=2}LcP}89;^ESLACQCE45*%o%5CH&WX#e&5;CyX6w_XTGH?;fI@I& zb3ZgAD#gAZ?+Bn*LMwA7ncOxYU1J&o>}@ivNW*rcd_N+NU$m5|-1X zBa7i#RwVn?cvoKmx^*Jr&uV>T;^V82rPku0S+E9>PHxHwZ(3+k?-iyJz zhpy4fUsPK{hNVvQ%)CBT+x5rPk{&~*wzPe5X2t?6Ta$>Ik4BR4 zj>^rXC%#UpsFER*h|+|Lx=dIWU(zY@W~WbQ2gZx9#uYzPx!Gh}EdT4C098qTfE^sQ zZhh0sS@(f?HC9ZiZatG33m6<-3JW(cI6mOK>^wX&zk_80B)v`Gb;-D<3AP{sc3Io! zcR&O{*Ays;OvTeBL3DR*%40%DOgIuk%g4^pqh|mB+0flzTApJe{MqBaT&Adr7;clu zK?A-QDna>|!cEZli;$SkiqOUJD>u*sIr1xIfZh||2;oiWEd*eG^@9uMInWjNh;8l%OYbAd!PAlVBm&Na4&KG2u_sV8wV1&pFUnl%E|C;q(2P zXGOFCW0|l$HF~VSVIfgIQR{wIvCv`x4K~&@%n8KoKW0SW?QNYY;M)XJ3Wlj3W95td zAt+IZH13lXwl!H|X`6wYnl6L+rqzMWlk%2*Q;cq0F8tP7C;bt;t>bB5S|biZ2*hNbfNw|TR^}9 zgcQh^Cxj2|;2<%}bYuF9*)&-J<9@vK3m!yry0dr2@EQX5S9dkMdgjjl&9y5|<3K#d z4aF*q&mNaPiGTffZ}s#ch3gvn+ygpfH0Q3px&>a+D2h1O#7=a>Z#0xU3_ zW`d*Kx}v@@y!igb;Fa4W|GqA79C?N4%&F&?sgH0Wy8WTsl{C+xWl^U-|AtG8{q6!Y z7me9ZyW_93GZF-h<2BBLJ ziMvtSAZyaKRGu$MG!vX&8Ph~YO^T-ae%S*HUZq%$*Dv7yh=9x=q!k1+YLf_4wz*xW zZc%WnF8$;3XcLR5RnIBcyK3mnydzP7Q=z6ZrA`PqQ(|g$1^@Low<}vO_wu(H@~>eV z2R$r3%jR|s{R1=@Jr~FzmIM?Q_4G=*CCz?w-k*_lp@G#G_Z2qekG0N9vX#N(pDfi^ z3ISeqZjU;)=&7Mwag6NA&Jy2RH2clsl09y7z+(z7?s`=KD3>3Ifbrs16@yGSZ`8KU z+H|TVih|X5_Er(C>b8lh$P3-3Lu>e`J7(YPbz_`&k%9Yt52psH6Ncxd%vw#)X~RwW z%G}z-rBHM%k|9Qc)|8np)B=7B?q}=d{tBCFI}HtcptH{d9MgaM9%2tV+B4VmE004rq=#KTyw z;>y$Zvu1{0<#Fm|444>Utrj=Cge@|EU;JTDI#vq1crPbrE93NR*UgDe>1o+u&w9s| zjdntP>p$jSviI##Yd_Y=Pg$+R?dg#lgP$0GDM#Q&b+nu=4Vat!+`5#tRy&f5#j`bd z>Y$(l=FGdfUbTMM5n1T!>&adh6v4aU(S2JfRV>@tNz*b-`_Rm0zHI-Z8X5G(k zh9{s+>lq`Fp?4no)49$6sH5a883x`cL$lDw(Y19Wg@nK7H+N$h{I}2Idt-DapvUO% zLzjKF9UBQYYM>PFXdFP@hE>hgnuGy_#GS*tO~2P%aP+bw@1Du z_jqm1tA)|f+sfJIpf}~Yoc*HL_3wuEAdOP!QOf?IvA|Z;2Ys!y0P9w5KB#N2*0eni z9l;b;gfPB?6W@}0n-@_W0h%j6;3`@wI}#E%on|eIlr|@W9GlxPU~b+O*+J4eFv{jW zH-RnzXMT@jKn*pbq;oa#uI_jRk+qeY^(L|oPMFOEHXAO)hAF)F~5Pf!VpNp+hK(ne>$l!qo zZmWcbyTO6sc^MxQ=XscY&71jq5G}YNjJixONBrmVKkxY58mqqDwzl^+vEIh3eHU4) z%Ggm9+U8^=G=Dp&e`Pvnc1B5hm6w`*s5sN)!G`SV3D!X6zL6Ohjw<3w- z=|iZkTYl=)ceJ17N^G2n!1ylso+?8<5sfQ{$vx_?UD3ZiCQd8KSyG^z6g^Ne>nhR) zmnIV+^92wnhO-^5^renGR}H?bwjl*Z>wnak$^?X0TkYCaoiu%5RzP`gZ7mRXY24^*E(iOF_+{7G3? z&E6Q~pFfNu=?qr+rbT%AD2pc@1k(m`o2OnXa}1T-7DzCpy8*Vi>j`$c80!L}&Qv+F z?>Nq+&!qd(&V|x~*{Q(BbLjG}5d@woGMvN2jgyhVENKa|W8JJQn$!&AA_OtEB4&Xs z@Hn(T(r}+h(=yq~1~6myr0q9SEaUPBb!sZbgET#WLDGYdpiyCCXG<3vg8H4Z!TEEg zC=~1F1?-m37Jz{EGxst;iZdcNOZ5JPjpkb42?0hBREryB{Q0P2(5`rhXWa>@(9?2J^K&19b#uBB4tOCmtK+-9`wo9~D5?{-q z$q*B~(AI1PkaY%&3MHZ{MTaH1qQU0zrbq;?^U3Q`30c!gU+z}$je$}1S_M*Si$ZdJ z#gu4BYbEl7*zs3vXc_^oWeJWXgifDaurosK=+a#ASB*u~tZix1dsUzn%n1@;wO=tM z8At_e>4MbG)Yop!MDdN`V5?lrk}3;0SeA!FL@_W7M(cD@&O;R(->KUavbYcT4uaF&kRMR+sIRF-o5MR@;y=F9rf+&kPf?! z^lqoayljdDqWO`PJG&e?v}vvlMnWwl?NBEB>JJ`}z+#d@Up217cCjh~tC8Q9RS%Qm zv_HVa!?%^MIBj|roaOOTXTfdC_u$Uc(&W|-b$Tmok1Q2tuqUmZ?WgF7ntW!xH>M_m%7wX-{={0bc_aIn>u z0u$1d@$Lu}AKM_&_hoC=mncb2=hkMJO+f&H^K~ZyKZvJ&r<-j1+5D_+u(j< zskNf~bQfO=ZR9yyRy7dxmSawxceej#uuuIp($dWrwW`|@egZQ4>A@48_abZp6oezu zI$Gr~c-ZLVm1oEB%@by1MDRz~jXP+5V2+7dF02FeN^d%R=N$_@gR1sJye@F_ z{@lNQ$=8|Fjj}R4OAysOF&*NAwpBe?8yX+Ad#PX!T$YoK?(UH|Gfk43JPp0i4;44$ zeKXg&!Bi5d^NE%s>a%w}nBXz@2U@Z<7Z*>PD|?#S^achfQ&= zeu!>(@I%0Y|HM4n%ZheytzAz$mi?>vq8yCTigkI6CP1Og3il}8KT-+vU65}h$VFk- zs7-M-t~=pOR;-rA7eTL$F8k z+d@bUGv_alg01QP^`p8zpYNSh-Utr+Pa!C~$Azjl3&?}tn1~Fc^dgl(ZD@>=(k`2| z(ulrw^c@M~eF{L^@!|P9;q)m_8hDm-c$j^vP=ywC+lv$@?V{>5J}~)=IsP`WYrP$j z6P6a&Af0B%$jJy$e6K#CmJ|Y*T%CqvSdE=(NsTxu--L{u;z`wUvxI4&-~{txcU`cv zd-sIP7%g6237a{yw@>i!F?;%q6ni?2ZugO-mMK9LUmXSDhdR=~4_2fH*BMsA9xiib zqd@KUA4gIJYx{uj@Tf2BcXO-3Oi*-5?kJFea|!`+2vo<$^{<5^ z%!`YcAf*usg->4-RD zP8dXV zEJVTrTBf!{xqzInDH*W+RhwVNPQIHZ%%LSfBmi+Q%;XafKW;KaRLg2Oa;!m-Yco3- zzhn?fC`ZMx;-punfv0XZ=0c=Lig&Ot9wF9*x%gx&a5pr+qf}Zkx&K%J=n6@535ss z*4VU?kO?AHBMfl!U4vi@jcrbgJe4hZM>&TvODdmqyqf15Rde&aW0-V!6LMeUrh=Y= z^q2SNKTHfEFoks*jYm>WD^MJO=0=h#FGgrvWWo~KXtc)QV@0L6^{13z+zYaE5GP6iX6g$< z0hz!~q~`g}5T3hoqY!NGjyTAfjAeq05~_d)1DIj8xx8W0JJIJAyxIS5ntyTqzS`#w z#%X_(U}P}+)$mqL}F7?@5Wf_m|&YXE~Dr^&v)j3--R$_AsCA0!H$}ZykUEi|r z3qKn5)h2%1X-u5fcnEI2{k0Dl9LZoh`|*~M=tWNod>)A~o|!#vFgMz9dW!Vym92&~ zuPHdBG^PVkYaTO?iKVl{&0A$<+?=7*`uhFc&;vv7%w%z}=ER8%(o?;C&*dB)9i7!CJ2Qc%I63Xc7|s09rT z4V&9Gr}Y_07d^H{>iQlfo3-9#Inz*>mW@eOWYgtrCht+fvx3ubn?T1=<%3yu#d`)E zV+I-p)|4oIYlJPGG3Zmtu9Emb(Lwqx8`Qm39g=!w-$9y=k=$*V+^7QpmI5Hx{o8YR zxdv`N7ypzbPHMY_{E{`xNRa$-D-iwqe6y`P+^I&c@mQ$X?-%A-MV+dqMdx1LRJWo# z8c-{Vra0j*KC$@T`u0IksXpVs89C2Vb8(fNuK_73fo8cpU z7r>8^^(rJ&(Y=|yb(V-VxQ^nGSVL@tZ0@yACp~ zDr#6t4{}dg(nPp0x3omlTWt}mEcB^<$d#5vx%#CWqt6_>uIv=}{@x#m&eWV})^Dye zdUX6_0!ToTqNI_zY7w~UI)GKhO?4ufnC0~(X3dk~SALVrJh;o=z`)o#be^!NbOgFn z^dWy_TLi-M&6+eJs3Jn2-qs;TRb~u^`y(112<=?`l9qIt7r>^@#E85ave%i}Uzk8g zy1J>3L@YZ(Ob64i8|L|ucYlw0hrbbDYe=C~pF?nNo&y4Dt|!^t-!9`lsPEZip#G0) z%2xHW+lJ#Y8}awnT){y`eiwWP%>m#A1L@Oy=>-v@7s$FIBBvjYunT$P8hq2}bVnbY zwvrSmeOxn`3&K`sWz!YMGV&exv03uXh@C#XZ!1p6-3B|2$AX03Cw^{>zl^Ve31Qh# z#42KuBS_A4&Euyqmo_)Qy)fDi+ZNcv>FAKbx%~W*WtQdkQt`oreanZg<~{IpVcBze zeWI_vK-XcublWZKB&Mq>*tDCjFUF+*m($(1cq9%Xj)tTTZw-1(Rpmcp0$raS(s<9~ zQi6H*iTr<*@!qTaeN75jfB3+zVEG_F1$?^p0+~14Rm^7oPgnHWn1fR!jg)e6DH-A` zpWm0(a%BynnY$7ut%+Vzi->_PP}h3_EFttT1NVVvFOoQj@G~@12S)Ly5?-`RGlSO_ z$IIneha&&+aR-SWL?H#N*LY1A^Afn92oYuar9W zQcxIHvbZRGMp&_Z!%miwa|5!D1Hr0&Q~g&JMRn(%qeu5uE_k*-Hp`e5m| z-8N{U!c7tlygR^^$zBa{W%^`K@Ub$6p7B5nA`Pa?zly_7NEIk&n^-A2`z;ypqbd=k zyC{cx%ec_h^kuiK<&{ zRci>L*gSRLet%8U3~8vl>zgh-BJ2YgOqGA=Y<2vk70V%Ji@{M(;Nc^;cpcRa8z62x zLn=it73bzkLIcIr?l}1`!Rx!!(XY>=!hU3F0-Z~G!ss|<$>i_}Ezo)REsDJNI2z=7QFy!JO z%!Tt0;H8w3ClC_-4Uk`$LLmk(54g}I!1JR?jdq3N4*L555CJ0be(>LMqzRo*%w*%( zhd9C_&O=N3r$=`8VLLr!<@W(<}e9>}h3;oifv9QJGJ;Nq9>~CvGDX{O1E5SXj-}} zPGo!w?)b3nK1_-5^64)4u#wzR%3QKKy&AlU!GOipMC)kZJ&u7;%G`Z~{+2Z>yq~mH z(mg@Ihqbci!~x-kd>0)@$3Y(lvi9CdF)7Nswexk-faA^O02TC1?%R5^z&<=Ra>eO* zLbp<+I&HoIIQqs+5O-SX{y(o;(3x!Pgew$gq*G@&A?0e@Ue!guO&Z=oy$yjliK1%b z3}8=^CN%dKdD8E5vwVV*`lZEpl1F3)TwG4K8R;n0(2vHuUWlR!?PkyI(lllbXIYxP zJO8m}{XY%OF8@+1IK&xLz#LQdNCm1)(jXBMvS#X30PAMENUs&T6r@YppDO%+=G3ov za6az-1Pe{5=DJ^#(-HmNEJQ>#Q}*dH%>@ca`&yDFi=vxmm%Ce+4|&KK^{Jc9=&+L%LS1 zsf0+*!gb+v3DQmfXpa!zhcxe6dmdzR2ethnmB>D$1Rf60@k<&@U+jOLe{Tp&#|3^| zHb|*W8k@+cNm9>Ls@=vq*E2s;h{v;8uWQBk4)EuopO&Q0f{e~{Y=V3pPWh!ROmi9~ z`@Kw{&dD$DMjuYr%u6i89ktYkjf!UQ{w9|KIw*JFy0tX3I7}($yGYoYHao002g9^K zu@S%vZo3lO7Ty3aSUc;p=U z)ALjBLY(Ex4@A8*^q(I*1}-OMel%BJ6l*Qu(?%7w(L&$VzbsfNsqwR=lv@% zP+Tf2p{TF}z+FCgWsA(5ilAP$b0i72aw$*c#(m+BG|mlA&NP?D9w>dkIM5=WX+EyL zOC8xhv7*#+yjU6=MqkojIUU07z`?vOvOH_v@UvqoZk_*RjXr=2Gw-?V%vRa1^=!W6S2B`p^s- zvKI{E%C8glNw`GBW~qOocYxYWyVLWWoI7ESC8D7=y$r!N~v4RxMbU0;Nyn1p!;*Xz2LDJH0nu z`m9HLR5>;?ij>pMr?+q`=CU(fO#&%Ze?Kb-ZQI}!m!vntGKhm}r!O!twv=1h@M0wfz#{M~pW?9?5Yr9Ipt85!63A5W45F^+tLd)-jItLU(S zJd)Mgeyg?XAYUK4*p=7vVE*%f4jbE@D+D)8+4-B;mA1*|2fX2sY)M*dA(r7>9> z^2t~BFvP8-th29bX8MBasTP|5m@m`WqSQnMc_TA0fXrP86s;OCTFQL-xZHkZ9^#k` z(hN0Zb;xNI#*E+TqA)1ePx@v0(k$8gjgceK8b6^YQVryt#U2ki`9l3Ce zvSFx0QLtRZEwUat$eJoT!dce6EhgJp?`{C| z^d=Qy-!g;ehuu0#8O~qRFEv~^WPkpS2P1TxmBLgY;OS*ZKCii=lfx=8KmDx!# zBK^J>R4~2djGV;TIEDc27Dc=|0#kH$9TW;HX-J?fCHEaRq7gKYsQ@<7K3)d_j+5C+ z2+hU^B&~67LS6ZrDGi+?vR9;77Hd> z!~Dw;(@oWNhgIi@!T1kCmnVr0O;A?gxAQF5k-&2PT27)Jz z<{b$W>POpgd?$QE$v_0u4{1!EW(GfoNFKk9Cr?o;?9TG*u2k}nbvnG3lixEg1D&*g zB%o7Oas{ULCY`a^@I$GgZMBNZ2u+;yOyFLB9wc0GZ`u@nRG(|O=0Ly?I zCf?`+UFDdffhsW0Q@TlW^UVPHen+e=!#5W4y#CToSDoRJSBL+y4@{x!AB%DofMBJuZqTnk>#B#QV8$J|Io|2aVSJxusxT@n!p?M%y)bM1=}rW zGat?A&4bo7@ zxD1eUw}v-Bv#x_lzWYBKp#y1WqAfy+f?HfeHW>OfNt3t}PRWw8>OoY+|jKYG*=1}W_9 zv;vAGOlY`w4me!@M3Qi0o`P4V7H4;tQpVsBe?dNA3M+Oda^TgA>SG15p=<16<6pk^ z5fvJv-YY&W2NYwH5R=wMAR@C*`Y~K4{}i;13`QPQvlWdXkOqriq*gJJA4{N(1NnN@1b!n z*`WD=ISNlbuC+kKa^TOg1u97;@nn23-jF5SPUSP5R@1NMJ~Lv)_oz($O-&%q_Tx%W z6Trv`5r!!HgW-y)Zy=K+e=JQ*#)HfR@%|In`#pEmgdK-Wn4b9ddvQ{@ZN!O5l+}BK zQl{fC3Zwco@mG^`&AjH){W||+qn~Jmq(3=;aMhWkTMU$+gha-kXxq8iwp!m97)yJH z2EcO(_IN@j;i8DswtH#e5e81#624wx)g9LIk;(fCJ2r{hw!R@JY|cnCGqq}(3n4;s zj~)7`Pg=8(PExv)M7+m!YBP#W%o8yjs5QuL@p_Q(N=zqHn`jd+p4Bpk#S6Jq80Q02 zD&$|`9(QMZtv#zHNFYXdUwTaMxb(*$2A8t>bp}03biT8z(YJrhQ)Md@9S%?tDCc0fyqF`{`Nrwu>OFx;Y9t#+YLFzAGxFHI7JTp7;LPd zWL@g{enzLtUvX-fz7^kMQ1RF>fcXgwo($U`8S@Q015x8!o~*~;uo#M>4`=px@0(W= zHwba|d;AziFg=g-o=$Dfl7z$HP+2xknNA5-Cem70luENVsVfWJPSqz;x!DW zHgAv{KT0O1;;WkmCeRI;qH(}uw|&a_f0heA760zT51m(Ts|z+S7T z)|=0B?>=%z$7`8sM|hMQnuT#4FWvkl&$ek)q11AO6lRC@tzimg;6~(3R&_LIhgdC-wScA@WfqZGb$*5_SDA`3rkQ*S5n!+T_k&v|ZAoi=e z<>wPq`w!FsSY%yYf@;f-L%12lm>)^R<$+pdB*=lq#yQ8r|J)|;KHKH?%Y(|E5cTy; z6YLe6bxNfl0(E|?LrE?#T=64nyaTM|gyGjzIhFgJ`7ODrS!62nh#Gb7)v2)$2^w|$ z+4i^^;z4XjqX?zOq3w8?kz7yungY}nGV14tGR4{tD-Q&9d_}&=JRw+BbP0EI6IVhO zVfxyckiHbdS=7nH=dCD3w-Wd7g*pUs`@W$2(mz&d$}XO@j_a)2$-`YGa)3ZFE*F9r znWy%)olcNHTqGQCbkn!m_>?pMnm7q^d1%1Xh7(*PVeTLZ1+)?M!%0i6TyS6R^l>lA z`p}odV#UEcd3cG5XN$}6t--0#Nhs|;e8R;CV!3TJliE_62-e%weHr7BpF90@udt8Uss`TbtPC&iguQ@H`7s@VB5${QKAi1{jxvyK&n7083$kq{G1|pAs8$8 z0|L5d#58MQP^C;Y_Gz~R;%3U#;1Wqzh`+d&YcvQJ8%B81V_4~(kcQ{BO(uzKJ~Mp( z-nOtEYG-=;(ZycyTmf*6C3*t40nXiy@0 zAx-nb3JJx8izKL^Oii7}O=UUF10cd%5`wJZPUKc6vK5L*VyMQV8Hm58i#$&TWI}k^ zwyk;e@iww#1{1MEC|psnAPp@w@BeC$bl*TxNeo=fCyy^94gpp5LCmHy!dhVkYTdPc z7nK8*$tdz{k8O2j+!Ji8oj?^WxjBE|RFJdJ= zy;*lg^apy^btT*Mv0%tE5hO%6ge(7{>5BEppRti>Nb8T<6x=&a6bQt#q%bP{LD-x} zMqYZEMSYq2P_Rx6Aw9=mXyn@E0N{X_i90h`b*f^KEn!WDk6aweR86}FR*l{XGvw~q@ zzP=(^4ZgG2z@K^iUjhD&#dVmTr4moE;YDti(ua99BH5k4ogKp`)!PH);zAS_rUqRk z;31|4)mVY#Pl;k&+iLP#uJRLB>nYcLq!!X4Ck4xA8a&+M2`X9uo?5^~Q$aqPVkY}$*zrf~-ir`{eX(^1Fel;c{$0!SWt{yIT# zv7YC$?XyS#ohT>%SEYq?526Vht9H}WeyJ>igjc69d$TA4(H>pmghP?_g~JDls3mG( zL|OaB?gcZ9(?_SbuSHbuWjfw{hqpYC)ENnEz(XBRCVrv-eZ0MbpphJk&<(a{+TI1A zIUg7$$Is#M+A};r)m&pU;>VdoB2geJ0F!X_6Mgm1&z034XhGTQZ=tk#ap!Xu@|3iM zACB@h6~dtr1LVVoW0_$ilpDsQbB4%V0}D`T-D@v=X8#S%SBgQQS5k*ZT$)&LG~J+K zl(-v1n=h{ftcrSp-DlQ;-^1PaRu=$kj?9}Y`V^DU%#a}`bxh=w$HPdInkLXkcx%H_ z9Of5v6t||Bn9qZ3;*@>_GD2V2j&E* z%`))uuqXeTbJ}oxIX1)i;kEFwqlmmLVDd>Y#@O>Qyztsz(wtk}dQ;J3(EUcIAtC7b z1JPzvBf(?xs#O|Nw%p?x_j;}DmHw`J5o=DpznyvMq1N`PN?f177wfU(;DI%&)8w(i zy3?;}8@DQNm61@V|B9q+TL7pWwdzQckx_ai?9=L3xU7%rB=Jp@q|xeVnNiTOBj#zQhUvg5p zO`zN_=c=&!lu;TYlLP4AnC~|cDwWYICRzFF$N36bFf%Sya2JrsK^1=_cSK3-susTf z!+sMs4Nf};5^kpk#DE?$xraJdqJP1SCT~A()*5Q~3!3)WE`pX-!y>#J=kCk$IAKt@y=88ax_cZa0NvJ z{|}n)zfL2T|9u*9{m)P}drC{*0iP40>sa$-MZa+`ObiwV;Q-tn9K+J^IG$tlyHkts znknbXn)vmINgfpO2Qg;wlW}v&Em8RZ`h#)LC8d=c+XC!0Zb;HbR!G{dBc-Gka<$H)ulc-{8E&># zp|)TRBSG*aY;bekF(#2=9g;@4_Jla?9a75WUM7p>oxLO6bQHIkFbzFbKA7cJkI<~J zBpf~2`{h||Iy`Vo!mftB?`p?G{FVyQ(A(KK69Gx8CXj*a{>l_Uzjp=7hJlSCqg7cV zPPP&`%oIDZ2Hzf>d5WGAjD2^%^V4@4IxM2XerKm^6j;1AsMM(pe-~YJHpEoklCM>U zn3|ObY`wDDl9!OiS}cs(16@kTM_xAH9V7Rj<6NR!58#jmhvxU78Gk;~>(j z6Y}|BV=4~N#)p(R<6<%bZ?GRjfgmAN8pZEtcLQNJ01rNaUeF_mExY9LPozmqJgQtU ztfCWEZfFIxHih;C@{ug}xaEqdSx7lBles5_5e0sYtL9yoT)XAoc8lWaW@Y}G4j)$x z%o)z}`-VeEs4v5mpZJ)Jseu05CN&MTf-+b_dd&a~)DFd5+FjLmV#QjSmhMeiKDU{n zHN8qYfVnS1nD3E^Io=s(_5C_1%397j>9LAl^qu_cr3*{W=rWDKMkwj2>GX<7@FW-7MM4XNlOYZUZ0vUOu* zGuG_QJZq@XhQH|Ni;a9-jTJa4ZZ$8d8@U69Zzk*0L4IG#RF((hM%{x?eq9kDAF#HM)I& zU36ICY=5(C`eC5U{QyxUsP}RE;p6r5Zl%h=mLYAk3@hu)a!0Uhl}__GuckfMb}20n z_<&v~DC4#D@OcSg_t(L*lljD!i@vmP42tQc9%36W1La6E6it5s6NgbToR7-BLdp9Q z3{m)Ewtly3Y>lrr=q>js^5mBR+0O1Y(sr~-q|5d7xwrp2sQP(`>;OEv?fK^Uiq(&) zFY9c)SQBnKxb+`0oce0zr0=;%E*QoDtw+5ydP zW=qb$=i;PY4AtPcy*0vF#h;d1)CU_i=dvi0~Jv z*hHa;-Ol4}VPwf2KBv$YRs%_)BlDmd)NA2cpd3Z^58FyEJ7?bOm51}j^K(A2e&5Q) zWs+`TF-@%pz~8^8H;Omy)&zob1+@j`p*&|(H*DX5-`GFFkH;GwazNlI=z197CKa5B zQPl)y4B_gF_GcjBz+xZ;wq^mq2-@4z9s_~yVw`^8XT8~#xMk13ED|o27C+8U_%PY( zEpCSWhQ_332Um|n{+x@)%r4VwXI`(F(p}wEk-j>KmaRzH5^wEx+cvTF-NCo3!}{|v zZ}&F$cg%f_i8QLJ9uK4rx9;JlcL5#7c{f|<0gtpC^{M6h;`66(3LcXLJaJx(OIv9^ zP>^LOF|i?orA$%$H@#|Tjg0`nw@t63pPzA$HoSIc#vy+c!*{q zBOAw@UZVI+7>F;=}RjP+%exaepF=#WX*f&U5;>#}cv^1O1OhZPCX% z0kNUUo~4ngA$&ZuBL`>Q-)KuyLqw%|)_NwVrG0f3H1$Sm-5@T!6%*v5Rau+_TPzdmp}ve(vfFuk$8@VbHfm-~bD z?lklR%g3e%mPXeXV&|qt@0u~L0R4U26iM^2h&u-dMf0=*6L3gryK8Cu&~{De`YE7G ztHaBwQ}Y@BE2OIK)W8h8V`bsj$`7vAbSaq6^&?e?dr5P1U=P8tpsdWo;s7L_3q)=s zX7cm{F8{*F;jSfdm+{sDQ9%F6{Rw1YhDFYYPEK9`Fzn1m(3J<7j%A<_(En6>W9(yM z0*R)N&IS#oFvo0W0yI7`veG}I1ZTGA`U&#IKUe(_K>qaze7=|6uNn=zH!l$alb-^{ zJmiS%pd>#(hqpH>G~%1kz-T{+p<%uSSZ&=bxX*_Nffslba4h^eqS?Rn z2dVeA##Qk7RFJykqXT;Mlb;yF|5HzP>8im+9^?SP)yv8a**dw8+WmCt_`JOPteN=y zaroIZ_vs)}$gs2ooR58)-Fy~t*4EWNy|fHj9Jd2pfI>j@<}uyMhk+`45)e}z9Z?q& zHTAhD!-eOg5aeIAY9YD6#I!Ka`YCI_OJ==mZ%pT~Yis&ZQ~fth_prvRp}Celp~a>C z*7|>);@JW^_YNsz#|ZBZx~Mv&y!$<&F$p2x40lc}cR)oySCymb z=s*C*(3xLs98RAd8KAC>&F<5A4E{5?z96OUu}lB~9WA`S!VcqHPdK6wL&x!gW#b0Y~o=*;hjIlhMiN4B=z8Z2AV- z*WCQU!1yEj*$aH_t?uJo?KJu`AkW+E4*5-P>jC*g922-{z*Id4uz~tj!5h}}zk)Xn z?ZC@CkZSQ4`K_|=jOaysP*C%uvi}H~#plTO75Qy)^-3`&uQ|_QUGPty_WCClkRbrR zn#JYUjWGSm^mlS&m*^#KHUq-&**hbn`?ZJFws#Xz z!LH4(+Z4|?a6#7RH@r`a-_g4G1cD2num4{0+dgl$uQMVdIwDXf?+SBJHEYd$9bZkV zKw|Nxw#Z0X-*(&v>66#0VZP>vzod33&kKmE!Uv22SAX9}%jlEQhv(zWY293Z(r(IM zKS(J&91goXstyoXUt3}19-~uQVGaBKs%DV)rO+{9eTd479I$VBbHTv=gQV#Vza2N& zDh+4|s%01mC9>zt_Xo&HNQxNOH?Z~vKzP9TT$f{3qNitFClkB39|3uMvV-XSKV^up zO-%ptx2h;0+ScX7y7(YCFuJ|Ir*mG`rhU_q0dScl>(^-m|Ds6}dae`V3)!ErRS&+a zDl?~Q@XXD$Uam}eXp%6@>Sssf(3}xJ((EeJS}qEmJe%56iX%q7({m17pu=TI8o%3i zmm>7t%9pN^D~0?qt^&Bl{yiThZ7WFr0sSMMyhke-WTrjA${R>@VyeUOlFCsTc5K4! zT@4|iyTq7j7du*@>d_y!+TrKJJTBRTC7^0t0s>cs3fX3SJwFb|VKl`Vbe&0mN;!%( zeIpn?IlCtZYH$**52@K)I=v~15$#TevAGr_)GUJ@NEctOk_jBLD!PEl)<{YF!Ev$W z@%`8hoOV#dyyi*?QZtLyy3cIbrKI{$C&m%+p#$+JRy%-1JzCoa-4cXQ51`4Feh~dD z3?m$_G9iuf0A>|jq(mKb-YZQ=%u3rLHFqJ85ONu%c@!&;!cNwE1h%Un@JECEwiLsM z?kI;b05THMtq5Qu@@BqOCvEPGqr{_ujtFwB@K_?bv5o=#tP^zvXQ8gSOhJmf9w#6x zP!G(}ejB|-DfYCxqj8ziW6K^!hT&R+7LB;xoIGf0_qrd5-MwYYpws4|?WoQH*q(6S z%zYH%?|#;rf$jzot}tFmXr=w2a4k`(n!o76Ew$FGqXKGTE0L(0q$ZzE_G&39T|`zV zRcrGT^w@lw?%OFVBz#CZVC<390nXn zm7Im}6#y&r#%vq+^X&>CYlTgxdffyhl4S76ZWr7STL|K6PmjFg8n1z4jJ3?x_T);P&gH1W#HoEjYuLIaf3c;f%dWZ6p{8J)%?yIziec(hm zJsNBAc%hBxebuR(A9o;&6T*@4kW=BHXDq`6SJ-gBsP3%hu&p|!9dlYy(f)%6->STH z-|59vAi+*UY6z)srjqxg%3<*sV4cVwe(l}`s13I>-840C>;NL1s?SB>U2mi9mT!s505WIQf z>QS}{leL$*1IOqAw_N+%$ka1W@lJH8pw1^n^;;Sg%s>j&i(19L?X=h&I3 z0o~+H_H(bqc$wwphKzS|n**<<*2q4j2!l?RP2(8*pC?=eYivn>poHuodz3LW@i42? z=0Ru>TyWpKM{1CELc&4_8te+GTWr>3c?=U|s<%_my4~$i?u>bh+m9!{TPH|188yK8 z04_Xb_393{>$;ucmn zl@P(2VAYqji1H;}Xqju!FUz!tWhMon50ADzUR@eOe<(3$avCru#O@k;-+2~59G}=u zvEU9(gyW2g^-00B>hZqW4GUeIm1Uc`&QQ9fi`;w_TU{O^E8S8N<7RPv3o2xpJl?%+ zQf_oEYfWN$1llvn{~rKdK%&3;7rgrPf55aau63;!L-=y&kB=VbE?G?mpF%ex?7yFc z^Y^ypBypjns&v)9gIF?<#7;GF%ld8yf&}N=P61nCo2puTOC5QKQ?H8iozx6&(n7+v z{`%vL+qEoziS9W`MS_|M4K6bY7ZBKYKBdWnfzW3>ls-SX*i7F`D{~uNZOml*e+JF0 zdo1}&-C@=1ZlH>O&~%HiWXNsc5!Y%6vR6JP*(Bs9=H^KRgG*v#_68Hq-;;m;>**@i zH^ruwB7vQ%#oZ2~oTTz`HI#E~ri<-UWS>apc8tVYL@3K}CA1hU^VY7(Wpgr6FJ$IJ zEw`JJk%J)KA_wi#kH#0LyL22ge^_db$-7CZH+1!FAnfVuB^@(6#Y;EecwmVU3;WV` zb!I)7dw~;Hihh5+x_Fd5;B`S#n|f81yZTig$&!pO5gaX^R?cv2QD95AK(+|sbh1<~ zXk^=lL5{@A3(OE~HMFbqsM^uh67-Vhyc-l53PJO=TJbuBb)ds9aKGXZf8bXjWJ-jB zaPg;h29gg}C%z@!HC%jEIeoFmf1SJwm_%?H9D{AO>R#|F2eX|(3_FwsB{M@eH+KS* z_{d_XBtDwGQof@$IJf64X_wH2TH-Jt+c$-ib=RU#Fm~SMyrSXL6={0SEv$L5SQXXo z%&zA=--O_o*;jt}VSamCf6taDf#VaJ9=}IR!-eKp_v;Z*y|wqux!E2OL+O+7C(%?l zs+NQ~sdB_~A4ENWG1HLEdv!EzG;+h<^-Znn2ofykgA&Xug&-w$o+fA>RrZ*;y8y%1{6 z9a%=o6%@+1?vx_!5z&gpJc!QsUC*{btrf+JZTMAYaGj8^Jk>$pAlE1kMfCHNC&wnT z528yoBnTuQicD=eG1Urm76wwSCT%5%dLu0fk0J!W3AzTjF0b@Wx4Vcwh{-3Ax>)HtE+>L&EM5tOI?2u{#?DfqUhE=5v=~l$P zf3x6D6o0P&7v?HJT@IOtcI@KOJpBX*Cm|3El6h}fA5a1Vv2}fv^6UT9+K$k zgNAK`ZL=eZJ=+|_b@G}|2Z?vLig5I9;Y*UE<^tUjbwzL=5x8tI1IW&rc<*W~ZKzPp zl1!*AMdAJCIcN|YNWB6ZfobSXx#LKh)spe0DZXsn`Ql06LzDJ{-55;@>u#6CXz4AH zqMJ58h|o~xfAMdJi)Vb}?aP;kZJ?`U`KmCV2~_zv;XNtqk1W6ivZQYe)P@IQnY#cyLV2n4U}g>jlK-5ThG5 z5GK~43FD&rC+K>CfP-;Rfy=-_`WQ>K;MLgxa`!>lfA@)@3Q2<*3iR2oO=zB7EwT_( z_%cPGtbLuwZ`>fVzdLf#J!7W>7M3W8&gdPQ$1dB##h4f)hsi9z0fNm)%~swzOzsv} zd+&h-qMmDP(G807c)=uIQneL9%YTd(WDc=EMctw!WNlU@B4)Z|1aC2uId?^N2LN{J zi5)Bme^Xz~?&d|Rxv(Xsx5k@t$csLDzHbj!A+U$r`@n_OPmT69bWrFLIv$tKo{c`w zI4kL)sxnD|n{y-+em^BHj>wBMNFuYzD(RrT@EHl=`1-t~QCE1hnlc6An?_?H`1%}? zbVo^bV%)jyAE1t*7(9k60j~*l9T-(I$|NdUeb6=_-q@9F9CPYhnNO7o5Wqx)T)_BjGQju3?QP-b@U#8d(k`r>r3}E`B+zYLvAuO!SHGC(5wH??Ko zf9Kn)h>?B{+%r&P&O^p_siw7m$>?|sjy4aY#AYQYD)p&Qws z2t#1h@E*GQ*S{#4c4U&;Oe~7i!Ta2Ee+$e6gQx6~h2Y}&ZQxCph!>2(KK0oN}(Q0 z@axoyh4G-Q0q2`qZ%7cC&Hh2BH=-$f&}5ugEMi0$`TfYNtaTg2g$YQ~_G0EDe?JB2 zmL&?f*Xpaw-5IuYA(xhKx-mF8p}hkNaH-Rc`7-PnO_v>dj- zEM&eD^CjMN#V)~ha1UK^e@It8pgbXXh}DK#%6VCLTyQXLRPU9^LLasnskpl$?|9PX z%~5>zZLwC2thhPxO5r;x(Q8$QaKB5J6ZcI0mlwrGwH@mlD4eELqjHE>cR}zQO+IOh z*TZnDjwd;F*t2gInur?WyHH1B&oo)5xS_4@4al2ie*26R9fdCpfBK%){WlatgP6Qe zNv3=V1#rJjLXmhdG_L55AA;S^e^n3-HDAolK)Ibh_;bY+#atr|;i6>)*g>)?Sc^EZ zF#4z4?`U=9!5Li;pBjRfN6Sw%3`7<(bviw9oNh48pZO49I}mQm&xTJPB4rw;ezl`o zh?{s9jf!=0rJ38|e?Qh{Uj3+&wUMWQQa^~kuf^V6&+qbU^YfX|Lt!?zGZ)2z=SURN zQ6~$t_hWHV2V}`;AcOWU_q&b)LQtBh6YeLRe;356rJ!;Q9#cJsO3e3@ zD(6=7A52L_zG8}oKfki;v(csq0PL)lAqkFee7!13}sDD^3fg~0iEh+yry0+T0hjuR6FvU!&o z^LIERQ6n3%9`ldCmae?i#G+Ni0F6}32}e^SDkveHURLEwPsz%xbihRE2d z+^vB-H6p`fN$#+*4Zimpf~?<7AyXIKB<+I%6FcaV50pXeeZ3I{0M9>FCbe=v$wpJ!-3<}1vE4JXsnO1wsj6a|up zxoLx0(S-SG(Sy7IV&M9!5m~zuz6u5nSiE?h^ zI(E0Cg|7dMmnFV1_d1t-U}IBApXa-!zz9*idr2+V@u7FsB_ff2_yAd*%WhU!zJSOj zf4EqBJ#MxwEc2d6uzAR4?&O3I^SouD#oqK%SQdq#fOYTL4L_UUV@a0zSC2?LAi)7c z)4|^@+WW_G>=>zHN{HD^2|eGd#$u!V!|!D`ei*A$H+tbP^9PZtl+l(AF`!wKX3KX- z!LBY=DtOr}k-df*J%R<+U~QAQIAJ?tf1t8XwG!3d5TNDc2QH|%!q6Vk@JF_(h2ULH z)QcE9wCVt>7N?pkR?(Uouh+%cnK?4KV_C08y+%GfH^-bhpgRpTZLJX*cpL#IKbKpa z{bGiyvvHFa4y+>803M%b=HFw8>AP^F9FTioo9!Baq~>X*YDZe@bQuj$LETz@f6^(4 zU^I7)ME2!2HZ2sF`%WyO)48UUHZM!!q&tM*s_|n`ymFWjWCGt}s6CAcgnI*(%_biC zOZSlCYsd@|SQxe?MPZB8eIL-l!+}LTO`v*OfCS;pwTvJxTsS>a9FCf2N&QLtLg` z7C-<>akr!ZOYa_&PA@lYOM3sO9$SJFiJrpu<>&aTKTQ9wZ)XdV@Nh~BO- z^uhJu6G1Dc!7H5%$v}e<1M?lF`B1^f^!JIrnTVCXGO88HK~z0cJ!Qi8@U4p2cu6!J z3GKONwi)`^#$p4}#h$jef7o!#Jlx8J#12wx56`rKaYGbRw*xWk1)Z?!-<|fGPRzEh zEv0(IjJg>`NrU^)dvzVrC6}>pmJ01P6r@ClU$Zu$96o~Y!zj8kdkyP$@IHbcn(%$k z4}pU@-ms5On=_HNGDj9s2_m*;cVBpQP;bXfvLCU(sV*PCb zv&tm8x3r9Nux}5)L~7}1FxYb^9A`=>YU0mQBiaEt|oS!8)QI?^G!@s7@B>d394t@Bke{j4#j5bWHk2OS0kR)5c zVpfSqo(M5dlw1}ep$cemo-QKz+M6idF5mN84e>t1(i5luho>>B9*gPQ%ok7t&-!C% zlL0yQN;p~p?7Rt0WyGxO#f=w|MoJGeXl*M%{0pM{1%nMM=Eg|qNC?i+*I2VzpUz8^LQjuPM3$K#HbB2-A< zG(Q5SrQR+@vp8}%lUzFpkHN$EEhApI$ltEm^W+1o3%J{QB;&AB1WG2Fy^@*kjcb<8 z(1Dhju1@ApupAo2W|XTzeNhEh#X?l8&FQl-z_wcqf4~&VWQOyKLAp9i^N7Bx6~tP3 zoFgCA#hGXWDrubsRC3UEWrY`Gt>)?T^i=d8PrI*UxCf;g6FbtPxcmp(VvZ4gInLpy zzhJ90`*PQgqIj~%t{g=wZ3aa?tP?fzu+Xu1ilkRwVmDWkm>~xlFfwncUVTd-1;c}c zhwN7je`F~quACzPAEkU~M3(xt0mtKY*Ctp!uQk1b_+{|a6X*eWQBWY+3_X@G1p{AW z{W#0YA~0C2rNTtkbqd$IXKf1y?kJ{{^ZPDQ+R)6;amjvljJu0Qqo%UDvYZxK8s*x% z-Z>bs&ALl|!wlbPty@}SSkTIkh!!!%v}GT2f4k8W0-^D3B2dOU5_$);G(U0O^d=ZkHdGQOvyaC?T)2w*DB_jx_S ze-O3@ewOCuNAIHx&Wo^|uJUR?NLv`!tu}!p?bEHK-+c&GPF()I%SY-NRzaa8&V3 z;rQ9*4^KU0l?h|zpFFwIl*=6*DM@wDj)fk8=Qwy^OMIP236*Iq!glaeejUy?LU$o5 z!EVGuIQ2-UhgGTq8r1QZx@LuFP}1fv-CkA(vHYG)R}cN4#{SL^(o`$@KO3h7f5L2D zs15mgX?QdpxOdy}tqjhPohRvdvZBRuyBe|~<3gEDE@}ivX$l<}>@nV2o8<2!*|4xF*HtRr9$7N* z+gso=S&^eN!QQnizr~~7^iJP~e??_nt-1l8t7AQl9Gs;X)GBii$5?M^!c z_`Owh2e%XLbqT?bd}~}b2eK7bF21k7Xia9L$te^S93}l)Mm_^ZXRwS!%pvOfw8I|b z>H}lA4^!5ES@qpB!q0cXe=jjn9&f_@;lw2q+pVGm{}!esvvOamVTqE)*2`FKG+pQl z5*p-1>#4nh*Ar^p>d3BRVs5|TZmV&K&`NguDwaKMhZ3OeetX4<;mze&IHaMNT141# zJ{fk~{|=RY+hZ?z6b(uyiNdqOdc2VB1^AGrW|WLDj;mkD?D8zff3HI>T1^7#)}<%d zW;nk8;nC`S%f1|0)OE%)dl~s#B1FR7i{uWMT;sR5S^(bO`KG_?NsAJFjF*|3=69-G z*Glf$2~=?dnA(kB(qF!Jr_?TvNzB?D)Pt&;_lMa5F3>1_TWJ;P}?eVoxW7tixYrer886^8r2VhJo^&DQc-p% zdz)KXZo)GyzdI2?(WZvdesGK;6x&Ybr{yo2seUxca2i0Ce^0IYRX*YRc|oIq@-n{3 ziP0fFAd0b`=x>c{{LOUvJNDoOJ!ApFcUm|t_??A9KUUe&nNn}oFj5GT z{Z=iNsmjFzfAH?4IAk3`90GDSS2$1mh*D9DS9n2dHn+)X07J+^cYC$tKaavF_0nU9mafHVUjWp%;J zP*AUtIX_R$Lj&Ks8pTCCaoOd=SXQN3OGa?A<{T0+e@ra|@Eog-uh@RY-qy%)!t~YEbN0uprq#97$2IwAwo$GgSlx$>;gRJ=KvJgd+WKHP0 zRpAPIm)D-RU6JKaexNZLmfV!O5-&CDjIwX z*9L-;(COGBb$!C&tr)mDIru6I7ZPp`pYH_Ve+h@ioi8_6_KxB-iCM(p2ufP9KrMuN za$@__l;a*whbfR-3B9{&)E zD;{97ztJ{-#yV^(j6b6<2%MUeMEls6xXxkd>u?Gns*GPQx{nb~VMOjtvSm6D9BWT_ zfBqVbmw3(7@$(TsAkCCPSVRPWeVi{p3ofUldn7W-EULO{l&VeS8+ZQ_00Wtb58tYU z{*Fc=t1s1pIo#tHZ>_>;pi$T!vgN7|%FZr9XdeP+4=ZXtgCo40iTB;Mr|{{l$u-{W zwD7R0KLQN_>s(VU=iOQPkawU;258uDe<_gw{fD1mL2RFO;)p1!MBUbFQxp#UpvP$J zSiJ~>3I3GNvJTlvtt`MXPZo4O-{hC_Y1f&wG}{`;nEO{i;*ZREM*aD5 zkkF{ZngHWoycOSq_z4ZMhn8FaW#0%aG9pM()kVt?b?nwB!rc=@iC{Sg5O!)ae|F|H zmz5pFPynMf!JTt3^IGQe!f4%ah_h08Gr_{>4;gV})X|np7I6)iN|apiN181qa;1zf zScpL?&lF0!39ZTZbNtz>M@=<+^y{A*kS@s;hwEqaiK4|;Mh*_ z0Ug10ix4zJcKPxg?$;^|(3n}tf6fUv&62cody3KHVyJ}qJ@3Al1yO8kU;%LFSQZG6 z2pWR+m`0^^iDW}cFvs4r^Fa1hgUI=^T2OnwkWSJlylecT$R6q1;>oSbas5Gr$W&)J z^CRaB4B6CX(vY>ofs6_iyNF15N4&IMoc_(;p+DI7+_!d#~~-Sf}7ThsG7UDXYaLK6wX{(kmB2;5eZaOn#4iUIm+@O#RJ zcN*tx#8xG)YH74XWUp|y{mrxq>g1yHSY1b^B9&wqi%V?pa}`z~eo}6>#59ZqAFsO^ zH*WUnD+98tpg#0i{Aa@>e~Wo;{&y)MxntXKq;B=dTdn&Yl>9fdoEyKYy@v^I^H`O= zP%*|i;Z1&D7>SRmA>cw$zwJO7K`vC9yaYozfVSOehMgd%md+*L;{6Kj)3K4xhYoVnx+WO&|5W}ufVczpSb0H2)y!tNml^P>oK(_0%-qE)-8TS5R$^nAG)J#ty9O<?nQWn3jkUrxxD`33Cy}7Hs4t>ge=2hk%|mv&FC@TqMT zufEgZL23G(V-ci9n581Y6YL`@Bpw*m;{HpW0lJJ=r!$)g8Jjyk;f`W*+j`Y-cB_;# z-AvCYcdUu7b}J=1AYM>W&~sAPA}f&{Ig;RvK5<=OBav{m9^|hq*8&v{c)AKqS@xG` z=vpo?WR?DJq@yvv5)c zPEo&3VJ`NQ_`%@Y%nHk5Infl~sB@yBQD`v7Xa%2N}NMOkGbwnh1|DJ@qnf0+K3mw<3TD-_2FAldFnEDR8LQP`_oJ@E@ zfkp=n%KP-xd%8Rd->6U*Jbel0F_fDS6puh$RNLk;5K^){_?Yd`OBy-3C2!2#2@85m%GP<#Hl}9tJlvrN?p%gJtBcxKh`sGH6QdBGQ`@M7n!dFoqjkvdH!Wo?CRpUc%YKl{k1 z3v-a~^HvApo3+&s!&tu}&-clje}S*;p8MshzH`2RQ!M|iEWbL zK?Yr>K5a5{0!R9unmm%#Un`$G{`$mGEbr=T&V#DEep=@-L7Y~=9|Dm2*$ms(GeXsZ z?*}jvL-=l;W-Gz~2F6fTgnzUp>5e^FuzP=ms{`jXX?W=WupaanMcCt>e;>!+)v&tw zRCkr^mvPKQdKkq3a%{`kYwFC%B4qU(8 zq%-%;)H*d^=e+kgym3qh#`QK%KJ$f-Hx){3L9dj*;XTDG<+3WKrWrGLl-E%{Z1E~0 zKikcNm3VtA_o%D@a|)lQf07Z7??*jYGvPT*!Dhq_1+W_jo&F(dd))gk?<^#3^{jQ_ zA(}$wwbJ_4k%pA}?SrZw!_>5VI5J49vEo2YP44_x9TcC=Q!`PQYof^l7rwL^dM5D> z7u}j=Js@DyC?r=Z9985^Bpu1P%ZO3_kjH+_bL`EJ=RvbCt}~M4e|)#9eJfI<;%JtY z;#yV#2BTe1Y2R8$M*}IMmCIc-;%ro(K`;U_8R#WinTw3+Oz(YM_@W!FzGF8|s1`E+ z;)P3bcU@Uy6~3t$5?2VHo3M9Il;B{8)UPrVuW|d>Hm+Skvm&VfmcD1THUMT5J4o$o zI_R;nLYm_A3rxqLe=o|Nfn1Ohk!tZ`Nmu)3DGs!V*gvvWE2~}2K=_>PWxV~aE|2F9 zEDuzKIN*xH(E-N<>f=k7%}p;=t0~*fAphRP-uyL@i1f6_Boy0 zo1P0K+_U+{ti;~p^SX~?>XCvX2)qCD_bDTjL6Dl2dxjy^sj4phmyw12%REyR$0k1U z!d_fuKe?}4=Y+BbOAEi;HL8hn9vw_k(Au0q@qh|-_~i%vO1!QjO%CeUZf+K{9icvW z=)cN&tc@w=e+z*d6xCqwO*d-S(qJpCAXj;yBP7oio0 zp5vcisYHtDKTsdO()z@0%ld;VtyoHg&IMXBV_mRkogF@*-;A7X+`|!;6uOB|b~wHD zfy9c^7}1mgJc_$4UXfyh^3%&sIkv@q%(3Fm=B$OBCgQ>aWgNpF)#Tyz-YFgb<}WcY zNTRVke}Vv&T=yPa-#<7d6FGOQ#cxMZp~a8&8l6T7+B|hFUg!$iIpi05JQ#j3f2!XA zDxZY#rNd(Hy;&buA`KanXHU0$QwIW@u71z5R|zgx3CME(nS$f5Z`8~Z_j2}#IaUY- z4tM{va?FUg2Oqa!XY7?H;hy(e%TusdM$8kNf4kb*T#-pFiX_lWQgI}hw;~`IU)-k< z)q%Scs~V0+8zNz{DyB;ygHqWi^v2a|e*`4^CbcIT{*`sjAX5vA;w;FV#V2G+1KcRf z+hcZ9%$XYpWzix^sZaI(wX9e~p_DpUR(Qoeb$d5#)?A|KW69aVRf&Ttk1f2HF(^uX zaQ9{PTZ6qdY6m47IMiw+ld+5a*fBE{gGTrDAO){0isc~Z+AHvyED?(GA>zwd`rgpQ z6t(o98$2R!!Th&Zde}J5My;-UAN%Ixe`1?DIF1PwT1e-tRF9#20r8SK3Qy8+enof* zrU{a*xu^2kh${O7PefI)pdP2=+&`F@+x3QK$JvMJ_?wAEv1eOBmhB-d4;N%AeMCSo zbx+c*0flq|*)19yFn2G5Uk7NL@A&3?>Anl4&HV=y5pS|u;#?2%G$f6=12 z1H8j!HYRJUXtZ{7=Uw5yeBhT0=n2fP`xO$+3tNnADR2p5g=LU_&EyIRQ$e-pXqDO8 z(gq9lj2dW)#Z4|X#64xC$Wg_9d=IU`3<{0%Mxk+pP8v`xiF)KsD9PbQbTskOE??w9^99O5HOX476`8A&-@IYe~`}T_~vSfcqFsh%# zYnb2ArmDNNL)@;tvbT@I5(ycqDh@;t=NKqM?x|cLVyhkuqvjs3UE}mze~u78n<5mv z)h1q5TG5oJv-x{aP#W1JvyDIjGpP_vqWwc*@r8#h9{VJqWm%CV-0^;$FH_=}^WHrZ z-Weimc!9Cit9{@1#N8N-_Aaz|k()!NeAa>@0StrU+5y}WpO$unG+vmd?yPde2+D+# z9j!Wpolep|%|1g_Ep(6G zaw=n)ovE^O9NQvZzO;vuS&L#Z`@l?!s^MeXVn?KYQWn{OBP9tmM|2~Np>6GXH0xH> zo#+cxc~4O3o*L;OG#a^5j0|o2Hf{M-P?O9A1Y9Qh6s{6~77`o7e;anr=5G{zp(60{ z7Q#kr*?1xwjy%dAhYS^>B62UejDjumj6VN-Jb+2+di&R=$Qq-pj z4Yiv=%P~X~g`{X1e<%0SOtJ+B0WLFg;p_DXX<%9I9w5~>5i+OUUvQmUpLDoN06M5i0cWil4fN}mnxS``#M$E0$!ieu0mBox07dQ%8G(@kiw(A+zOy;NXS)_YNYz5bXtF65Q- zcqklfVK1p*3;gk;-K$5rz{t&!?ZC^>j+Ybe#n=_BHc2i80tO2_Bp2$mTamPz=0F}} zqt+d`ne_6>f3jzeuFZx()F-b#3NX7`$`>}MJg_kig9EdV zgc#IY$etaXTy)reGM$TrcU)OnAnHtcHc-O5HgOI9@NGA3Ue{AW?aR;GE;70k0G`#C zXwWRgg%gTxxc>p{SVg6G``xeIza4$MdgWF#ksYL<#67SMj1M2Ar3p(s8ib2beRfkg zFdWPKe<^&_4-wrGeViFv!M&1WP62Ww9m!bl2QkeFYa%ttC{U#A%B84z_ufu>Hs^{d zbERrK-*ll~1tEJ!GU+nc`tm3LjE@rYru{IsGMZCNIG-YxlU@}i&~N% zfBi!wbz>*Je=7|YAN79abXl8GKEzpPRft13>aKZ;i`-OrACs@$xNeP5>tw-3u`Dvo zp6MAX@8lv=D=5CbrrvKR>pIpr@-E2TQRjA+ye^AFiS+LVrzTCQM0#@{YuW8T6y-B_T+)mpH0SwpNr6^xdcoX7E4ZUC>XQ^f%Nq9vzBSDkbV@ zZD@o12*&e$=_oxp_Vr<{%U_IV$Z@cle0A~dR=1_0YQHLOc+MxgkUQ_44sn;EwtY)$ zYdl7A|BW;UZWcNSW-RBc{M{vsf0ttLA^@kSMD;q+g@sG1fK^w*-n$96RlM+;ycp;y zWXgQp@JN9B;IKP?Q2pAscK-U4&&VdKr?;X;5g;CN! zqvP5KmQoTg%eXn$!E%yzrW+{_nwlqE1>$aioMKLT-!$y$>U56X@>iMc%)qbOc!J_UMy9}_^}rh z#3UlsHuKk6BMsE1Prr#gza*EHEOTykz{+%QSdcx$m0D+nGHQ^Ly~do*D~d!|K2!Bw zw_15uqd9fzYlvFBaH;t6;c?Y~1&)@56Uvx7wBB3NJ{!5M=XqEQe_SVMe+c7$8vzo! zg{*?rsaXFaNTQ`r=|{Gu0G_wRP#O@xO?dPgaMW2ubAeZ8IRqv^y}5@=MdQMW^eUEp@k`y8KkbT=bg+Y`V- z#*79Pg5Sr2{40mzf6Pa%2Akj{fFplXr)jG#0+7YQQ&m(mU0CxSUr->)3#M9kpOCp# zDzY6z^!ZX_7yeAVGUhI5*Q(RZ_z0`@P7QgFoJ17*;})Mgy=4g3ncXrEg+b~U8|6Ci z&ms8nW6@?|WqK!GqIYmPrG|{DC|iOiVYj#WpDdt@bqdwof2D`&j>@#ff{GZa5Ti-d ze#I@-n>T&d*8QtBI5;ikpxas|Bu!eNWy!dZgu*S@D?RpV*T?hMgTM0F$W*t2g*0!G zjMHpZluG=prlbjcF&V5`0!qB1uOlrfux*f73|kw?Emk3=@YW%>YIq`+zyxY^#`V-A zamnU?l(M5;f4{$S%bGdosZgMSZS}1nUp{fD_dba2f_mPALENb`j`C+#ob0*8+9k16 z>Fgyk#Z`(Ss6-@-^HYiBANySD4Q31Qbx3!xmq!}upCW6qu_T1y&`u@K1NL-EnPe&Y zAs?vV zF+|z563J9c0g`LZ_z1;ISd_|qI1eWRMKD#I`K`QCz$ruSin9x&FeJ})8@UU5$iB?| z2%HK#Imyc=Dkms-9>Umnxl{!$rPbdzde(JiExPh*5`>ZiyBte&h1^yS)+f7$V$-kbFXN5Mpa#9SxTiK747#FrpE$_n5If<&ovpYzJVRKN^T1!MKWJbQ>U zbm?g0a~XsUfxanpL4SDt;*-M?m)1aeT#29$s*4hvqGP#+z(S`8wsFqCZcIfp5Q)%M zw*B36B{1q^L5xuSY2QbI-UghgR>sKT*;Iy$e<00PBCfQ!US#G40XY=; ze{eQUE`jal`^|5mFN&MxU(M@(@B%A`>NO}yTXU+OsJVZsN4LwEB1r&MXu(6-)dae4 ziqKeTlLyhiqC`H+9W@kJyW@ONZuK_z>$JvenAf#S)vV{67w;Fs9tOl2O4So3u3O*3 zGGTI0yFXPF8q>~53$1ml1{B}wHphnXf6ZJHv1U{O`#Gl=tuH0`P2yiXY@#E3)53N7 zrD!e*$YF{kHJ41=O#u z8M?5oX6L)xid+dtco=h$e*vx7v}xJh6^dqBZ62*tug8UEL(v1dFCmtWvdnP*oHm7v$31CM6rFkbSFA&i(y(N(`&> zOM2iNPNcNjla@!<6CQ%S1kOnh)cLL%wd$gY(2H{)RVbpe&k4IXyS7uqcY4awB@~rJ zFM-?WZBoJXi>2It@L3dd@3c2ce9?lDe_O`iZu@Z3^ofqZ0I)!s`P0-W->zi_gsKI>wCIN zdS0?aTjb>+3yS08Fop1Y0Nsss9HM3sI8yj~QTx}#057@pF#UF!So)>B-qwVE2NYg} zKn+H8B>H2-E{-=3e^s1!wuUlCH6Z@VEnxuSkO2gTYbfuNfrMhIQIDpI)R%wVS42Il zPriAhHou+Q zkw^=k#>t2?w3NJQ@$5`Yf5}!Z7kwV9`uKA#Vi0os zI(3+{ED3ec8Ovg?gv}6+aaHg0H`utmPU&r057Fg#>NnLu4#fIK?i2&iJxmq;tciWr zI+*U*`4%nCGIuHdSi(>Ycd^?$;4$e$uG|B0&g}~B-%icT6#4 zzHj{~#By^^f4zDNYywh@C~D~POPR2N&HlM4=(ih{vMS=*&5b=EI^0ZeqJbSDf4CoR zp_IJfPufYO;p|LDK4XQTc^;}fQ6D3K_JC=?n32G$bnh}=W#_^Vz(l<)!{@8KSJJTU zq-8S-<9}QOs>cdTArN_>rbtJ+p*L0U;coQOFRmd}e~vh>^X7T$HAZp)kiB5jJ87}p z-SL^rMg1r!e|`>NV_Zn-rNFL|n3AX8lM~z$;Eq@g7v5-mp4h?{hsxu9`b(tM-pR!^YNs_PbH~Nz1P>oe|%s;DDGctgCUty-_sSjbo!msqvccY zsdDboy?-+2X3hSEWOE@*6)JN(k+0h@29wgCrClEG$WLWvn=Jllm zai%T36_@b-H!C+ic^@9z2w9s&pScgUp^0KL}S!nF5M*IyWrage?lPJ=pdb|UsCn6_xfRQ$NYZ|)F+e$>EKQ9cEoWJ)$0M_oZoK`J0xfOyL^De z(;4VcUs=+C!0jLmNNrB$c_c=ZyZtp5e|w<}3o|oe+Vbq`_=OMZL(=1VYafZM*aY)p zpqJKuoEY(w@K(kK3;q$!KkltOhmBO|yuKnFKQdX)PVALFrS~`hx+weKmmFE|1Ij64 z$I6>E4~oSWC1!XneFxCE?jI2=F+--E#A8K9xWib3Q8m%V5526*_sSRPfvoY-e@9%x z>%X?xBZz8RgLRB$#FC6^Jh)0k2`#KGKBlT6dq`IErts6$QD&jysYAWu zooTjp;M5t{XW_$E*7ALtgLIS4EX7zm?8<5ZmNPhX$yGZl=i00ml;y$dJ%>d~fNs`- zKnpUgyNCs8`Wr)$$u)LPvivsKf2`w#7jYjCWln%J6jZVv3^HF*S!vMO{b@tf926yH z0kly*tYiYE0t4E*p4wK%k$G~t}K_(ThJ7<*_Ni!kKn)&qwt zPik@P31eOOt#Dv!mfA3~25zr=wblZCnKShRuS~wbbvC!ui)}06ODk@%HmAup>`(&N z?b4UBBOXg+a)zAQKhaS`OCE#+mr7q5ZSOGHyf0nqO4M51|b>_L5 z)nsM%W3Pd^j=&%AfTYGu@Xbr!2_$Ll8tqM~)KTsOWiO+Hv4dmBws?pxy^&JSd{T#f zUJv(q7t&t8Nm|)dZ-ie_Yg2+`bvpAg#o@Oax|f8`NO`)TrfI7Cx+3wnS-&qC(JSpb zY8mew^g3riSSmI%e^!s*EFr)`x?utuun?L>3Z9+9BSn=%@}W!vPt19k^ME6l7|K~5 ze#B9uuuPX81~uAnb)CpJs9f#br0%JN*1OAzhjH%lKw|5i)x9|BRcdEV$^M#v4|I7; z%0s`uOI2reSUgWI(=x14uF6;=uHrs0T{u`vXTef2i@ba?5M4Cb@zw16y!h zpRQH!bc`Q8asdziZ*)5p<37C8e^eN&?fB8C4uXLtN^aY?smRBGf?z~Caxu51D5NwGxiX=MxN-8y1 z9Uj5o=Vl02f8IChz~K4ko&6M(R&o!NU#*jP`%0tx%~>A@+u(GD?M?@o5HJDOL0Dl$ z6c)Vyq0Lva02#nKTA$Akf{uR#2kDa__S}AB0L*ZbSFAqn?LsFux}Whh^`==Qf$2pr zemMrOZ`Et~KUfrnuGKa?Q8z*)xPal7@O=&YlNZS+$EidO zQD!cZB^EgfmkPlM9+x!_2_OkJF*Y$WH8C(bmtGGENC`GEHZd|aF)%rouMY{j0Wgu< z9s@BoF_-al0T-8|5D7njGC3eGNkkx9JZ3RsH8L|eI5ROZHf1qnH#In7Fk~`jF*0E{ zH#Ih8I6gczWHmQ6Ff}wcW@a-sVK+HAWi??rH)3RCG-fq8Gcjg9T_8R_3UhRFWnpa! zc${Nm00AaO#>(vsObiT+r65u;7DO_D*+RAmwm>A9T>=)rfe`0^mjUZ71G5tmY`$+m zl2JMdEK&|O`5#ypm@PC1%-+ELI}@hz^eld&;mLP$N5O-;23~x5LJWHZq&q5yy!$fp1R From f862e95f6a83bebe53d58b32e478bc486c0c3bed Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 31 Aug 2021 14:04:37 +0200 Subject: [PATCH 163/403] Updated version. --- setup.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/setup.py b/setup.py index edd37717..444d20e6 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ setuptools.setup( name='McStasScript', - version='0.0.31', + version='0.0.32', author="Mads Bertelsen", author_email="Mads.Bertelsen@ess.eu", description="A python scripting interface for McStas", From cc3b91dd48f520d4facaf5da46286973b50cbacb Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Fri, 3 Sep 2021 17:33:25 +0200 Subject: [PATCH 164/403] Small update adding knowledge of the data location to McStasData. Retrieve it with get_data_location() --- mcstasscript/data/data.py | 7 +++++++ mcstasscript/helper/managed_mcrun.py | 4 +++- 2 files changed, 10 insertions(+), 1 deletion(-) diff --git a/mcstasscript/data/data.py b/mcstasscript/data/data.py index 5039535b..2824377a 100644 --- a/mcstasscript/data/data.py +++ b/mcstasscript/data/data.py @@ -367,6 +367,7 @@ def __init__(self, metadata): self.plot_options = McStasPlotOptions() self.data_type = None + self.original_data_location = None # Methods xlabel, ylabel and title as they might not be found def set_xlabel(self, string): @@ -381,6 +382,12 @@ def set_title(self, string): def set_plot_options(self, **kwargs): self.plot_options.set_options(**kwargs) + def set_data_location(self, data_location): + self.original_data_location = data_location + + def get_data_location(self): + return self.original_data_location + def __str__(self): """ Returns string with quick summary of data diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index 9e24db5a..0185b1b7 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -288,7 +288,9 @@ def load_results(data_folder_name): results = [] for metadata in metadata_list: - results.append(load_monitor(metadata, data_folder_name)) + result = load_monitor(metadata, data_folder_name) + result.set_data_location(data_folder_name) + results.append(result) return results From 1d4a76f7a5fa57e637132739b49acfabe57b0d7a Mon Sep 17 00:00:00 2001 From: mads-bertelsen Date: Tue, 21 Sep 2021 09:17:41 +0200 Subject: [PATCH 165/403] Updated link to McStas windows installation --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index b5a3e254..9c20d1c2 100644 --- a/README.md +++ b/README.md @@ -35,7 +35,7 @@ On a Mac OS X system, the paths to the mcrun executable and mcstas folder are th ### Notes on windows installation -McStasScript was tested on Windows 10 installed using this [guide](https://github.com/McStasMcXtrace/McCode/blob/master/INSTALL-McStas/Windows/README.md), it is necessary to include MPI using MSMpiSetup.exe and msmpisdk.msi located in the extras folder. +McStasScript was tested on Windows 10 installed using this [guide](https://github.com/McStasMcXtrace/McCode/blob/master/INSTALL-McStas-2.x/Windows/README.md), it is necessary to include MPI using MSMpiSetup.exe and msmpisdk.msi located in the extras folder. Open the McStas-shell cmd (shortcut should be available on desktop) and install McStasScript / jupyter notebook with these commands: From 86a7c49b29a0a6fe6e7d8e9672040f6e461cc94d Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Fri, 24 Sep 2021 09:57:11 +0200 Subject: [PATCH 166/403] Fixes to GUI system. Fixed problem with colorbar axes being visible when they shouldn't. Fixed problem when switching between runs with and without mpi. Fixed problem with use of depricated keyword in plotting. Removed live mode as it was failing. Still some issues with plotting in simulation widget, since it is working with the plotting interface it is most likely from threading. Added ipywidgets to requirements. --- mcstasscript/helper/plot_helper.py | 2 +- mcstasscript/jb_interface/plot_interface.py | 64 ++++++++++++++----- .../jb_interface/simulation_interface.py | 33 +++++++--- 3 files changed, 75 insertions(+), 24 deletions(-) diff --git a/mcstasscript/helper/plot_helper.py b/mcstasscript/helper/plot_helper.py index 3e317510..697f102e 100644 --- a/mcstasscript/helper/plot_helper.py +++ b/mcstasscript/helper/plot_helper.py @@ -94,7 +94,7 @@ def _plot_fig_ax(data, fig, ax, **kwargs): ax.errorbar(x, y, yerr=y_err) if data.plot_options.log: - ax.set_yscale("log", nonposy='clip') + ax.set_yscale("log", nonpositive='clip') ax.set_xlim(data.metadata.limits[0] * x_axis_mult, data.metadata.limits[1] * x_axis_mult) diff --git a/mcstasscript/jb_interface/plot_interface.py b/mcstasscript/jb_interface/plot_interface.py index 3247375c..1254ba3f 100644 --- a/mcstasscript/jb_interface/plot_interface.py +++ b/mcstasscript/jb_interface/plot_interface.py @@ -113,20 +113,29 @@ def update_plot(self): #self.ax.xaxis.set_ticks([]) #self.ax.yaxis.set_ticks([]) self.colorbar_ax.cla() - self.colorbar_ax.xaxis.set_ticks([]) - self.colorbar_ax.yaxis.set_ticks([]) + #self.colorbar_ax.xaxis.set_ticks([]) + #self.colorbar_ax.yaxis.set_ticks([]) # Display message if not data can be plotted if self.data is None: self.ax.text(0.3, 0.5, "No data available yet") + self.colorbar_ax.set_axis_off() + self.ax.xaxis.set_ticks([]) + self.ax.yaxis.set_ticks([]) return if len(self.data) == 0: self.ax.text(0.25, 0.5, "Simulation returned no data") + self.colorbar_ax.set_axis_off() + self.ax.xaxis.set_ticks([]) + self.ax.yaxis.set_ticks([]) return if self.current_monitor is None: self.ax.text(0.3, 0.5, "Select a monitor to plot") + self.colorbar_ax.set_axis_off() + self.ax.xaxis.set_ticks([]) + self.ax.yaxis.set_ticks([]) return # Get monitor and establish plot options @@ -140,11 +149,18 @@ def update_plot(self): #print("Plotting with: ", plot_options) monitor.set_plot_options(**plot_options) with HiddenPrints(): - #plotter._plot_fig_ax(monitor, self.fig, self.ax, colorbar_axes=self.colorbar_ax) _plot_fig_ax(monitor, self.fig, self.ax, colorbar_axes=self.colorbar_ax) self.colorbar_ax.set_aspect(20) + # Show colorbar if something is present, otherwise hide it + if self.colorbar_ax.lines or self.colorbar_ax.collections: + self.colorbar_ax.set_axis_on() + else: + self.colorbar_ax.set_axis_off() + + #self.ax.set_axis_on() + plt.tight_layout() self.fig.canvas.draw() @@ -297,6 +313,7 @@ def __init__(self, set_current_monitor): """ self.set_current_monitor = set_current_monitor + self.last_monitor = None self.data = None self.widget = None @@ -310,21 +327,34 @@ def set_data(self, data): data: McStasData list Data returned by McStasScript simulation """ - self.data = data - monitor_names = [] - for data in self.data: + lock = threading.Lock() + with lock: - # Ensure data names are unique - original_name = data.name - index = 1 - while data.name in monitor_names: - data.name = original_name + "_" + str(index) - index += 1 + self.data = data - monitor_names.append(data.name) + if data is None: + self.widget.options = [] + return - self.widget.options = monitor_names + monitor_names = [] + for data in self.data: + + # Ensure data names are unique + original_name = data.name + index = 1 + while data.name in monitor_names: + data.name = original_name + "_" + str(index) + index += 1 + + monitor_names.append(data.name) + + self.widget.options = monitor_names + + # Go to the last set monitor if possible + if self.last_monitor is not None: + if self.last_monitor in self.widget.options: + self.set_current_monitor(self.last_monitor) def make_widget(self): """ @@ -348,7 +378,11 @@ def update(self, change): state change of widget """ # can do input sanitation here - self.set_current_monitor(change.new) + lock = threading.Lock() + with lock: + self.set_current_monitor(change.new) + if change.new is not None: + self.last_monitor = change.new class LogCheckbox: diff --git a/mcstasscript/jb_interface/simulation_interface.py b/mcstasscript/jb_interface/simulation_interface.py index deaa9f10..6d57011e 100644 --- a/mcstasscript/jb_interface/simulation_interface.py +++ b/mcstasscript/jb_interface/simulation_interface.py @@ -54,6 +54,7 @@ def __init__(self, instrument): self.ncount = "1E6" self.mpi = "disabled" + self.last_mpi_on = None self.thread_data = None self.thread = None @@ -106,6 +107,7 @@ def run_simulation_live(self): if self.live_widget.value: sim_parts = self.sim_steps + #self.plot_interface.set_data(None) else: sim_parts = 1 @@ -114,10 +116,22 @@ def run_simulation_live(self): run_arguments = {"foldername": "interface_" + self.instrument.name, "increment_folder_name": True, "parameters": self.parameters, - "ncount": part_ncount, - "force_compile": False} + "ncount": part_ncount} if self.mpi != "disabled": run_arguments["mpi"] = self.mpi + mpi_on = True + else: + mpi_on = False + + # McStas does not recognize if the instrument was compiled with or without mpi + # Ensure it is compiled when switching to and from mpi + # This also ensures the instrument is compiled at the first run + if mpi_on == self.last_mpi_on: + run_arguments["force_compile"] = False + else: + run_arguments["force_compile"] = True + + self.last_mpi_on = mpi_on self.run_button.icon = "hourglass" #print("Running with:", run_arguments) @@ -137,19 +151,21 @@ def run_simulation_live(self): print("McStas run failed.") data = [] - self.progress_bar.value = index + 1 + with lock: + self.progress_bar.value = index + 1 - if plot_data is None: - plot_data = data - else: - add_data(plot_data, data) + if plot_data is None: + plot_data = data + else: + add_data(plot_data, data) - with lock: sent_data = copy.deepcopy(plot_data) + # This happens in a thread, maybe it should be in Main? self.plot_interface.set_data(sent_data) self.run_button.icon = "calculator" + def make_run_button(self): """ Creates a run button which perform the simulation @@ -234,6 +250,7 @@ def make_live_checkmark(self): Makes widget for choosing live simulations on / off """ widget = widgets.Checkbox(value=False, description="Live results") + widget.layout.visibility = "hidden" return widget From fac5063cee1488e88221a77edc69612fe1f5851c Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Fri, 24 Sep 2021 10:00:17 +0200 Subject: [PATCH 167/403] New setup.py now added. --- setup.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/setup.py b/setup.py index 444d20e6..3e3309e5 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ setuptools.setup( name='McStasScript', - version='0.0.32', + version='0.0.36', author="Mads Bertelsen", author_email="Mads.Bertelsen@ess.eu", description="A python scripting interface for McStas", @@ -13,7 +13,7 @@ long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/PaNOSC-ViNYL/McStasScript", - install_requires=['numpy', 'matplotlib', 'PyYAML'], + install_requires=['numpy', 'matplotlib', 'PyYAML', "ipywidgets"], packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", From fc495085bcbd3c83fa09ffd0496418f75ab55f17 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Mon, 29 Nov 2021 09:45:33 +0100 Subject: [PATCH 168/403] Updates for reading parameters from mccode.sim file. Added a metadata field. Added unittests. Also added __repr__ to configurator class. --- mcstasscript/data/data.py | 3 +++ mcstasscript/helper/managed_mcrun.py | 9 +++++-- mcstasscript/interface/functions.py | 15 +++++++++++ mcstasscript/tests/test_ManagedMcrun.py | 35 ++++++++++++++++++++++++- 4 files changed, 59 insertions(+), 3 deletions(-) diff --git a/mcstasscript/data/data.py b/mcstasscript/data/data.py index 2824377a..36d0c306 100644 --- a/mcstasscript/data/data.py +++ b/mcstasscript/data/data.py @@ -87,6 +87,9 @@ def extract_info(self): if "component" in self.info: self.component_name = self.info["component"].rstrip() + if "Parameters" in self.info: + self.parameters = self.info["Parameters"] + # Extract filename if "filename" in self.info: self.filename = self.info["filename"].rstrip() diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index c791d43d..60ececbf 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -346,8 +346,13 @@ def load_metadata(data_folder_name): if in_sim: if "Param" in lines: - parm_lst=lines.split(':')[1].split('=') - instrument_parameters[parm_lst[0]] = parm_lst[1] + parm_lst = lines.split(':')[1].split('=') + try: + value = float(parm_lst[1].strip()) + except ValueError: + value = parm_lst[1].strip() + + instrument_parameters[parm_lst[0].strip()] = value if in_data: # This line contains info to be added to metadata diff --git a/mcstasscript/interface/functions.py b/mcstasscript/interface/functions.py index 58010fcf..7a98fa13 100644 --- a/mcstasscript/interface/functions.py +++ b/mcstasscript/interface/functions.py @@ -352,3 +352,18 @@ def set_line_length(self, line_length): # write new configuration file self._write_yaml(config) + + def __repr__(self): + string = "Configurator:\n" + config = self._read_yaml() + if "paths" in config: + string += " paths:\n" + for key, value in config["paths"].items(): + string += " " + str(key) + ": " + str(value) + "\n" + + if "other" in config: + string += " other:\n" + for key, value in config["other"].items(): + string += " " + str(key) + ": " + str(value) + "\n" + + return string diff --git a/mcstasscript/tests/test_ManagedMcrun.py b/mcstasscript/tests/test_ManagedMcrun.py index d7debc10..fd5c57a2 100644 --- a/mcstasscript/tests/test_ManagedMcrun.py +++ b/mcstasscript/tests/test_ManagedMcrun.py @@ -1,5 +1,6 @@ import os import unittest +import unittest.mock from mcstasscript.helper.managed_mcrun import ManagedMcrun from mcstasscript.helper.managed_mcrun import load_results @@ -407,6 +408,9 @@ def test_ManagedMcrun_load_data_PSD4PI(self): self.assertEqual(PSD_4PI.metadata.xlabel, "Longitude [deg]") self.assertEqual(PSD_4PI.metadata.ylabel, "Latitude [deg]") self.assertEqual(PSD_4PI.metadata.title, "4PI PSD monitor") + expected_parameters = {"wavelength": 1.0} + self.assertEqual(PSD_4PI.metadata.info["Parameters"], expected_parameters) + self.assertEqual(PSD_4PI.metadata.parameters, expected_parameters) self.assertEqual(PSD_4PI.Ncount[4][1], 4) self.assertEqual(PSD_4PI.Intensity[4][1], 1.537334562E-10) self.assertEqual(PSD_4PI.Error[4][1], 1.139482296E-10) @@ -443,6 +447,9 @@ def test_ManagedMcrun_load_data_PSD(self): self.assertEqual(PSD.metadata.xlabel, "X position [cm]") self.assertEqual(PSD.metadata.ylabel, "Y position [cm]") self.assertEqual(PSD.metadata.title, "PSD monitor") + expected_parameters = {"wavelength": 1.0} + self.assertEqual(PSD.metadata.info["Parameters"], expected_parameters) + self.assertEqual(PSD.metadata.parameters, expected_parameters) self.assertEqual(PSD.Ncount[27][21], 9) self.assertEqual(PSD.Intensity[27][21], 2.623929371e-13) self.assertEqual(PSD.Error[27][21], 2.765467693e-13) @@ -479,6 +486,9 @@ def test_ManagedMcrun_load_data_L_mon(self): self.assertEqual(L_mon.metadata.xlabel, "Wavelength [AA]") self.assertEqual(L_mon.metadata.ylabel, "Intensity") self.assertEqual(L_mon.metadata.title, "Wavelength monitor") + expected_parameters = {"wavelength": 1.0} + self.assertEqual(L_mon.metadata.info["Parameters"], expected_parameters) + self.assertEqual(L_mon.metadata.parameters, expected_parameters) self.assertEqual(L_mon.xaxis[53], 0.914) self.assertEqual(L_mon.Ncount[53], 37111) self.assertEqual(L_mon.Intensity[53], 6.990299315e-06) @@ -514,6 +524,9 @@ def test_ManagedMcrun_load_data_L_mon_direct(self): self.assertEqual(L_mon.metadata.xlabel, "Wavelength [AA]") self.assertEqual(L_mon.metadata.ylabel, "Intensity") self.assertEqual(L_mon.metadata.title, "Wavelength monitor") + expected_parameters = {"wavelength": 1.0} + self.assertEqual(L_mon.metadata.info["Parameters"], expected_parameters) + self.assertEqual(L_mon.metadata.parameters, expected_parameters) self.assertEqual(L_mon.xaxis[53], 0.914) self.assertEqual(L_mon.Ncount[53], 37111) self.assertEqual(L_mon.Intensity[53], 6.990299315e-06) @@ -553,6 +566,9 @@ def test_ManagedMcrun_load_data_Event(self): self.assertEqual(mon.metadata.title, "Intensity Position Position" + " Position Velocity Velocity Velocity" + " Time_Of_Flight Monitor (Square)") + expected_parameters = {"wavelength": 1.0} + self.assertEqual(mon.metadata.info["Parameters"], expected_parameters) + self.assertEqual(mon.metadata.parameters, expected_parameters) self.assertEqual(mon.Intensity[12, 1], -0.006163896406) self.assertEqual(mon.Events[12, 1], -0.006163896406) self.assertEqual(mon.Events[43, 4], 22.06193582) @@ -561,7 +577,6 @@ def test_ManagedMcrun_load_data_Event(self): self.assertFalse(hasattr(mon, 'Error')) self.assertFalse(hasattr(mon, 'Ncount')) - def test_ManagedMcrun_load_data_L_mon_direct_error(self): """ Check an error occurs when directory has no mccode.sim @@ -638,6 +653,9 @@ def test_mcrun_load_data_PSD4PI(self): self.assertEqual(PSD_4PI.metadata.xlabel, "Longitude [deg]") self.assertEqual(PSD_4PI.metadata.ylabel, "Latitude [deg]") self.assertEqual(PSD_4PI.metadata.title, "4PI PSD monitor") + expected_parameters = {"wavelength": 1.0} + self.assertEqual(PSD_4PI.metadata.info["Parameters"], expected_parameters) + self.assertEqual(PSD_4PI.metadata.parameters, expected_parameters) self.assertEqual(PSD_4PI.Ncount[4][1], 4) self.assertEqual(PSD_4PI.Intensity[4][1], 1.537334562E-10) self.assertEqual(PSD_4PI.Error[4][1], 1.139482296E-10) @@ -666,6 +684,9 @@ def test_mcrun_load_data_PSD(self): self.assertEqual(PSD.metadata.xlabel, "X position [cm]") self.assertEqual(PSD.metadata.ylabel, "Y position [cm]") self.assertEqual(PSD.metadata.title, "PSD monitor") + expected_parameters = {"wavelength": 1.0} + self.assertEqual(PSD.metadata.info["Parameters"], expected_parameters) + self.assertEqual(PSD.metadata.parameters, expected_parameters) self.assertEqual(PSD.Ncount[27][21], 9) self.assertEqual(PSD.Intensity[27][21], 2.623929371e-13) self.assertEqual(PSD.Error[27][21], 2.765467693e-13) @@ -692,6 +713,9 @@ def test_mcrun_load_metadata_PSD4PI(self): self.assertEqual(PSD_4PI.xlabel, "Longitude [deg]") self.assertEqual(PSD_4PI.ylabel, "Latitude [deg]") self.assertEqual(PSD_4PI.title, "4PI PSD monitor") + expected_parameters = {"wavelength": 1.0} + self.assertEqual(PSD_4PI.info["Parameters"], expected_parameters) + self.assertEqual(PSD_4PI.parameters, expected_parameters) def test_mcrun_load_metadata_L_mon(self): """ @@ -715,6 +739,9 @@ def test_mcrun_load_metadata_L_mon(self): self.assertEqual(L_mon.xlabel, "Wavelength [AA]") self.assertEqual(L_mon.ylabel, "Intensity") self.assertEqual(L_mon.title, "Wavelength monitor") + expected_parameters = {"wavelength": 1.0} + self.assertEqual(L_mon.info["Parameters"], expected_parameters) + self.assertEqual(L_mon.parameters, expected_parameters) def test_mcrun_load_monitor_PSD4PI(self): """ @@ -738,6 +765,9 @@ def test_mcrun_load_monitor_PSD4PI(self): self.assertEqual(monitor.metadata.xlabel, "Longitude [deg]") self.assertEqual(monitor.metadata.ylabel, "Latitude [deg]") self.assertEqual(monitor.metadata.title, "4PI PSD monitor") + expected_parameters = {"wavelength": 1.0} + self.assertEqual(monitor.metadata.info["Parameters"], expected_parameters) + self.assertEqual(monitor.metadata.parameters, expected_parameters) self.assertEqual(monitor.Ncount[4][1], 4) self.assertEqual(monitor.Intensity[4][1], 1.537334562E-10) self.assertEqual(monitor.Error[4][1], 1.139482296E-10) @@ -764,6 +794,9 @@ def test_mcrun_load_monitor_L_mon(self): self.assertEqual(monitor.metadata.xlabel, "Wavelength [AA]") self.assertEqual(monitor.metadata.ylabel, "Intensity") self.assertEqual(monitor.metadata.title, "Wavelength monitor") + expected_parameters = {"wavelength": 1.0} + self.assertEqual(monitor.metadata.info["Parameters"], expected_parameters) + self.assertEqual(monitor.metadata.parameters, expected_parameters) self.assertEqual(monitor.xaxis[53], 0.914) self.assertEqual(monitor.Ncount[53], 37111) self.assertEqual(monitor.Intensity[53], 6.990299315e-06) From bd94ebc6cac290c3c9662871df40d76edbe4a44e Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 1 Dec 2021 11:50:53 +0100 Subject: [PATCH 169/403] Update of version number and now default configuration is mcstas 2.7.1 on OS X. --- mcstasscript/configuration.yaml | 4 ++-- setup.py | 2 +- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/mcstasscript/configuration.yaml b/mcstasscript/configuration.yaml index 457fa45b..008534d1 100644 --- a/mcstasscript/configuration.yaml +++ b/mcstasscript/configuration.yaml @@ -1,7 +1,7 @@ other: characters_per_line: 85 paths: - mcrun_path: /Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin/ - mcstas_path: /Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5 + mcrun_path: /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1/bin/ + mcstas_path: /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1/ mcxtrace_path: /Applications/McXtrace-1.5.app/Contents/Resources/mcxtrace/1.5/ mxrun_path: /Applications/McXtrace-1.5.app/Contents/Resources/mcxtrace/1.5/bin/ diff --git a/setup.py b/setup.py index 3e3309e5..385e622c 100644 --- a/setup.py +++ b/setup.py @@ -5,7 +5,7 @@ setuptools.setup( name='McStasScript', - version='0.0.36', + version='0.0.37', author="Mads Bertelsen", author_email="Mads.Bertelsen@ess.eu", description="A python scripting interface for McStas", From 48a99b48b68b45d3888ccdace6b931e887f38ea9 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 2 Dec 2021 16:37:49 +0100 Subject: [PATCH 170/403] Use of libpyvinyl Parameter class and CalculatorParameters class. Use these as baseclasses for the appropriate classes in McStasScript, and have made all required changes for the package to be functional. Unit tests are updated and everything seems to be in order. Am using direct access to underlying attributes a lot, so it is hard to change the underlying implementation in libpyvinyl without breaking this implementation. Will probably need a better contract with libpyvinyl to be more confident in the features I use will not be changed. --- examples/calibration_sample.ipynb | 856 +----------------- mcstasscript/helper/mcstas_objects.py | 161 +++- mcstasscript/interface/instr.py | 100 +- .../jb_interface/simulation_interface.py | 25 +- mcstasscript/jb_interface/widget_helpers.py | 7 +- mcstasscript/tests/test_Instr.py | 56 +- mcstasscript/tests/test_Instr_reader.py | 20 +- mcstasscript/tests/test_instrument.instr | 2 +- mcstasscript/tests/test_parameter_variable.py | 17 +- .../tests/test_simulation_interface.py | 8 +- requirements.txt | 1 + setup.py | 2 +- 12 files changed, 260 insertions(+), 995 deletions(-) diff --git a/examples/calibration_sample.ipynb b/examples/calibration_sample.ipynb index a47af077..c521a8d2 100644 --- a/examples/calibration_sample.ipynb +++ b/examples/calibration_sample.ipynb @@ -10,7 +10,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -43,7 +43,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -79,7 +79,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -107,7 +107,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -119,7 +119,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -139,49 +139,16 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " ___ Help Union_cylinder ____________________________________________________________\n", - "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", - "\u001b[1mmaterial_string\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [] // material name of this volume, defined using \n", - " Union_make_material \n", - "\u001b[4m\u001b[1mpriority\u001b[0m\u001b[0m [1] // priotiry of the volume (can not be the same as another volume) \n", - " A high priority is on top of low. \n", - "\u001b[4m\u001b[1mradius\u001b[0m\u001b[0m [m] // Outer radius volume in (x,z) plane\n", - "\u001b[4m\u001b[1myheight\u001b[0m\u001b[0m [m] // Cylinder height in (y) direction\n", - "\u001b[1mvisualize\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // set to 0 if you wish to hide this geometry in mcdisplay\n", - "\u001b[1mtarget_index\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m\n", - "\u001b[1mtarget_x\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m\n", - "\u001b[1mtarget_y\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m // Position of target to focus at\n", - "\u001b[1mtarget_z\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m\n", - "\u001b[1mfocus_aw\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [deg] // horiz. angular dimension of a rectangular area\n", - "\u001b[1mfocus_ah\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [deg] // vert. angular dimension of a rectangular area\n", - "\u001b[1mfocus_xw\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // horiz. dimension of a rectangular area\n", - "\u001b[1mfocus_xh\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // vert. dimension of a rectangular area\n", - "\u001b[1mfocus_r\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // focusing on circle with this radius\n", - "\u001b[1mp_interact\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [1] // probability to interact with this geometry [0-1]\n", - "\u001b[1mmask_string\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [] // Comma seperated list of geometry names which this \n", - " geometry should mask \n", - "\u001b[1mmask_setting\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [] // \"All\" or \"Any\", should the masked volume be simulated \n", - " when the ray is in just one mask, or all. \n", - "\u001b[1mnumber_of_activations\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // Number of subsequent Union_master components \n", - " that will simulate this geometry \n", - "-------------------------------------------------------------------------------------\n" - ] - } - ], + "outputs": [], "source": [ "Instr.component_help(\"Union_cylinder\")" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -191,23 +158,9 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "COMPONENT base_cyl = Union_cylinder\n", - " \u001b[1mmaterial_string\u001b[0m = \u001b[1m\u001b[92m\"Al\"\u001b[0m\u001b[0m []\n", - " \u001b[1mpriority\u001b[0m = \u001b[1m\u001b[92m100\u001b[0m\u001b[0m [1]\n", - " \u001b[1mradius\u001b[0m = \u001b[1m\u001b[92m0.04\u001b[0m\u001b[0m [m]\n", - " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.02\u001b[0m\u001b[0m [m]\n", - "AT [0, 0, 0] RELATIVE sample_arm\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "# We set the parameters and confirm this looks appropriate with the print function\n", "base_cyl.radius = 0.04\n", @@ -226,21 +179,21 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# We define a string containing the names of the materials we wish to add\n", "Instr.add_parameter(\"string\", \"material\", value='\"Pb\"',\n", " comment=\"Material choice for extra material sample\",\n", - " options=[\"Cu\", \"Ni\", \"Ti\", \"Pb\", \"Fe\", \"Al\"])\n", + " options=['\"Cu\"', '\"Ni\"', '\"Ti\"', '\"Pb\"', '\"Fe\"', '\"Al\"'])\n", "\n", "sample_strings = [\"Cu\", \"Ni\", \"Ti\", \"Pb\", \"Fe\", \"material\"]" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -279,7 +232,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -316,7 +269,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -333,7 +286,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -345,7 +298,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -357,7 +310,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -379,54 +332,11 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": { "scrolled": false }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Al_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", - "Al_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", - "Al Union_make_material AT (0, 0, 0) ABSOLUTE \n", - "Cu_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", - "Cu_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", - "Cu Union_make_material AT (0, 0, 0) ABSOLUTE \n", - "Ni_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", - "Ni_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", - "Ni Union_make_material AT (0, 0, 0) ABSOLUTE \n", - "Ti_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", - "Ti_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", - "Ti Union_make_material AT (0, 0, 0) ABSOLUTE \n", - "Pb_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", - "Pb_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", - "Pb Union_make_material AT (0, 0, 0) ABSOLUTE \n", - "Fe_inc Incoherent_process AT (0, 0, 0) ABSOLUTE \n", - "Fe_pow Powder_process AT (0, 0, 0) ABSOLUTE \n", - "Fe Union_make_material AT (0, 0, 0) ABSOLUTE \n", - "source Source_div AT (0, 0, 0) ABSOLUTE \n", - "sample_pos Arm AT (0, 0, 1) RELATIVE source \n", - "sample_arm Arm AT (0, 0, 0) RELATIVE sample_pos \n", - " ROTATED (rotation_x, rotation_y, 0) RELATIVE sample_pos\n", - "base_cyl Union_cylinder AT (0, 0, 0) RELATIVE sample_arm\n", - "Cu_cyl Union_cylinder AT (0.03, 0, 0.0) RELATIVE base_cyl \n", - "Ni_cyl Union_cylinder AT (0.02427, 0, 0.01763) RELATIVE base_cyl \n", - "Ti_cyl Union_cylinder AT (0.00927, 0, 0.02853) RELATIVE base_cyl \n", - "Pb_cyl Union_cylinder AT (-0.00927, 0, 0.02853) RELATIVE base_cyl \n", - "Fe_cyl Union_cylinder AT (-0.02427, 0, 0.01763) RELATIVE base_cyl \n", - "material_cyl Union_cylinder AT (-0.03, 0, 0.0) RELATIVE base_cyl \n", - "logger_space_zx_all Union_logger_2D_space AT (0, 0, 0) RELATIVE sample_pos\n", - "logger_space_zy_all Union_logger_2D_space AT (0, 0, 0) RELATIVE sample_pos\n", - "logger_space_xy_all Union_logger_2D_space AT (0, 0, 0) RELATIVE sample_pos\n", - "calibration_sample Union_master AT (0, 0, 0) ABSOLUTE \n", - "PSD PSD_monitor AT (0, 0, 1) RELATIVE sample_pos\n", - "PSDlin PSDlin_monitor AT (0, 0, 1) RELATIVE sample_pos\n", - "EPSD EPSD_monitor AT (0, 0, 0) RELATIVE PSD \n" - ] - } - ], + "outputs": [], "source": [ "Instr.print_components(line_length=117) # Show nice overview" ] @@ -441,671 +351,18 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "6d7fbe54d8a84ca48c37cb9eb9d0168a", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "VBox(children=(VBox(children=(HBox(children=(Label(value='energy', layout=Layout(height='32px', width='15%')),…" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "Instr.interface()" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n", - "\n", - "INFO: Using directory: \"calibration_sample_20210602_123159\"\n", - "INFO: Regenerating c-file: calibration_sample.c\n", - "CFLAGS= -I@MCCODE_LIB@/share/\n", - "INFO: Recompiling: ./calibration_sample.out\n", - "In file included from /Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../contrib/union/Incoherent_process.comp:62:0:\n", - "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../share/Union_functions.c: In function ‘write_tagging_tree’:\n", - "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../share/Union_functions.c:1377:82: warning: passing argument 4 of ‘qsort’ from incompatible pointer type [enabled by default]\n", - "qsort(total_history.saved_histories,total_history.used_elements,sizeof (struct saved_history_struct), Sample_compare_history_intensities);\n", - "^\n", - "In file included from mccode-r.h:41:0:\n", - "/usr/include/stdlib.h:165:7: note: expected ‘int (*)(const void *, const void *)’ but argument is of type ‘int (*)(const struct saved_history_struct *, const struct saved_history_struct *)’\n", - "void qsort(void *__base, size_t __nel, size_t __width,\n", - "^\n", - "In file included from /Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../contrib/union/Incoherent_process.comp:62:0:\n", - "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../share/Union_functions.c:1381:3: warning: passing argument 1 of ‘printf_history’ from incompatible pointer type [enabled by default]\n", - "MPI_MASTER(\n", - "^\n", - "/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../share/Union_functions.c:1207:6: note: expected ‘struct dynamic_history_list *’ but argument is of type ‘struct saved_history_struct *’\n", - "void printf_history(struct dynamic_history_list *history) {\n", - "^\n", - "INFO: ===\n", - "Warning: 17 events were removed in Component[33] PSD=PSD_monitor()\n", - "(negative time, miss next components, rounding errors, Nan, Inf).\n", - "instrument definition parsed\n", - "reading particle data...\n", - "\n", - "Component Al_inc AT (0,0,0) 0 m from origin\n", - "Component Al_pow AT (0,0,0) 0 m from origin\n", - "Component Al AT (0,0,0) 0 m from origin\n", - "Component Cu_inc AT (0,0,0) 0 m from origin\n", - "Component Cu_pow AT (0,0,0) 0 m from origin\n", - "Component Cu AT (0,0,0) 0 m from origin\n", - "Component Ni_inc AT (0,0,0) 0 m from origin\n", - "Component Ni_pow AT (0,0,0) 0 m from origin\n", - "Component Ni AT (0,0,0) 0 m from origin\n", - "Component Ti_inc AT (0,0,0) 0 m from origin\n", - "Component Ti_pow AT (0,0,0) 0 m from origin\n", - "Component Ti AT (0,0,0) 0 m from origin\n", - "Component Pb_inc AT (0,0,0) 0 m from origin\n", - "Component Pb_pow AT (0,0,0) 0 m from origin\n", - "Component Pb AT (0,0,0) 0 m from origin\n", - "Component Fe_inc AT (0,0,0) 0 m from origin\n", - "Component Fe_pow AT (0,0,0) 0 m from origin\n", - "Component Fe AT (0,0,0) 0 m from origin\n", - "Component source AT (0,0,0) 0 m from origin\n", - "Component sample_pos AT (0,0,1) 1 m from origin\n", - "Component sample_arm AT (0,0,1) 1 m from origin\n", - "Component base_cyl AT (0,0,1) 1 m from origin\n", - "Component Cu_cyl AT (-0.03,0,1) 1.03 m from origin\n", - "Component Ni_cyl AT (-0.02427,0,0.98237) 1.04854 m from origin\n", - "Component Ti_cyl AT (-0.00927,0,0.97147) 1.06708 m from origin\n", - "Component Pb_cyl AT (0.00927,0,0.97147) 1.08562 m from origin\n", - "Component Fe_cyl AT (0.02427,0,0.98237) 1.10416 m from origin\n", - "Component material_cyl AT (0.03,0,1) 1.1227 m from origin\n", - "Component logger_space_zx_all AT (0,0,1) 1.1527 m from origin\n", - "Component logger_space_zy_all AT (0,0,1) 1.1527 m from origin\n", - "Component logger_space_xy_all AT (0,0,1) 1.1527 m from origin\n", - "Component calibration_sample AT (0,0,0) 2.1527 m from origin\n", - "Component PSD AT (0,0,2) 4.1527 m from origin\n", - "Component PSDlin AT (0,0,2) 4.1527 m from origin\n", - "Component EPSD AT (0,0,2) 4.1527 m from origin\n", - "Opening input file '/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../data/Al.laz' (Table_Read_Offset)\n", - "Table from file 'Al.laz' (block 1) is 26 x 18 (x=1:8), constant step. interpolation: linear\n", - " '# TITLE *Aluminum-Al-[FM3-M] Miller, H.P.jr.;DuMond, J.W.M.[1942] at 298 K; ...'\n", - "PowderN: Al_pow: Reading 26 rows from Al.laz\n", - "PowderN: Al_pow: Read 26 reflections from file 'Al.laz'\n", - "PowderN: Al_pow: Vc=66.4 [Angs] sigma_abs=0.924 [barn] sigma_inc=0.0328 [barn] reflections=Al.laz\n", - "Opening input file '/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../data/Cu.laz' (Table_Read_Offset)\n", - "Table from file 'Cu.laz' (block 1) is 19 x 18 (x=1:6), constant step. interpolation: linear\n", - " '# TITLE *-Cu-[FM3-M] Otte, H.M.[1961];# CELL 3.615050 3.615050 3.615050 90. ...'\n", - "PowderN: Cu_pow: Reading 19 rows from Cu.laz\n", - "PowderN: Cu_pow: Read 19 reflections from file 'Cu.laz'\n", - "PowderN: Cu_pow: Vc=47.24 [Angs] sigma_abs=15.12 [barn] sigma_inc=2.2 [barn] reflections=Cu.laz\n", - "Opening input file '/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../data/Ni.laz' (Table_Read_Offset)\n", - "Table from file 'Ni.laz' (block 1) is 19 x 18 (x=1:6), constant step. interpolation: linear\n", - " '# TITLE *Nickel-Ni-[FM3-M] Swanson, H.E.;Tatge, E.[1954] [carcinogen];# CEL ...'\n", - "PowderN: Ni_pow: Reading 19 rows from Ni.laz\n", - "PowderN: Ni_pow: Read 19 reflections from file 'Ni.laz'\n", - "PowderN: Ni_pow: Vc=43.76 [Angs] sigma_abs=17.96 [barn] sigma_inc=20.8 [barn] reflections=Ni.laz\n", - "Opening input file '/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../data/Ti.laz' (Table_Read_Offset)\n", - "Table from file 'Ti.laz' (block 1) is 72 x 18 (x=0:5), constant step. interpolation: linear\n", - " '# TITLE *-Ti-[P63/MMC] Pawar, R.R.;Deshpande, V.T.[1968];# CELL 2.950800 2. ...'\n", - "PowderN: Ti_pow: Reading 72 rows from Ti.laz\n", - "PowderN: Ti_pow: Read 72 reflections from file 'Ti.laz'\n", - "PowderN: Ti_pow: Vc=35.33 [Angs] sigma_abs=12.18 [barn] sigma_inc=5.74 [barn] reflections=Ti.laz\n", - "Opening input file '/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../data/Pb.laz' (Table_Read_Offset)\n", - "Table from file 'Pb.laz' (block 1) is 41 x 18 (x=1:9), constant step. interpolation: linear\n", - " '# TITLE *-Pb-[FM3-M] Bouad, N.; Chapon, L.; Marin-Ayral, R.-M.; B[2003] [to ...'\n", - "PowderN: Pb_pow: Reading 41 rows from Pb.laz\n", - "PowderN: Pb_pow: Read 41 reflections from file 'Pb.laz'\n", - "PowderN: Pb_pow: Vc=121.29 [Angs] sigma_abs=0.684 [barn] sigma_inc=0.012 [barn] reflections=Pb.laz\n", - "Opening input file '/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../data/Fe.laz' (Table_Read_Offset)\n", - "Table from file 'Fe.laz' (block 1) is 17 x 18 (x=1:5), constant step. interpolation: linear\n", - " '# TITLE *Iron-Fe-[IM3-M] Swanson, H.E.;Tatge, E.[1954] [Iron alpha phase];# ...'\n", - "PowderN: Fe_pow: Reading 17 rows from Fe.laz\n", - "PowderN: Fe_pow: Read 17 reflections from file 'Fe.laz'\n", - "PowderN: Fe_pow: Vc=24.04 [Angs] sigma_abs=5.12 [barn] sigma_inc=0.8 [barn] reflections=Fe.laz\n", - "---------------------------------------------------------------------\n", - "global_process_list.num_elements: 12\n", - "name of process [0]: Al_inc \n", - "component index [0]: 1 \n", - "name of process [1]: Al_pow \n", - "component index [1]: 2 \n", - "name of process [2]: Cu_inc \n", - "component index [2]: 4 \n", - "name of process [3]: Cu_pow \n", - "component index [3]: 5 \n", - "name of process [4]: Ni_inc \n", - "component index [4]: 7 \n", - "name of process [5]: Ni_pow \n", - "component index [5]: 8 \n", - "name of process [6]: Ti_inc \n", - "component index [6]: 10 \n", - "name of process [7]: Ti_pow \n", - "component index [7]: 11 \n", - "name of process [8]: Pb_inc \n", - "component index [8]: 13 \n", - "name of process [9]: Pb_pow \n", - "component index [9]: 14 \n", - "name of process [10]: Fe_inc \n", - "component index [10]: 16 \n", - "name of process [11]: Fe_pow \n", - "component index [11]: 17 \n", - "---------------------------------------------------------------------\n", - "global_material_list.num_elements: 6\n", - "name of material [0]: Al \n", - "component index [0]: 3 \n", - "my_absoprtion [0]: 1.391570 \n", - "number of processes [0]: 2 \n", - "name of material [1]: Cu \n", - "component index [1]: 6 \n", - "my_absoprtion [1]: 32.006800 \n", - "number of processes [1]: 2 \n", - "name of material [2]: Ni \n", - "component index [2]: 9 \n", - "my_absoprtion [2]: 41.042000 \n", - "number of processes [2]: 2 \n", - "name of material [3]: Ti \n", - "component index [3]: 12 \n", - "my_absoprtion [3]: 34.475000 \n", - "number of processes [3]: 2 \n", - "name of material [4]: Pb \n", - "component index [4]: 15 \n", - "my_absoprtion [4]: 0.560640 \n", - "number of processes [4]: 2 \n", - "name of material [5]: Fe \n", - "component index [5]: 18 \n", - "my_absoprtion [5]: 21.297800 \n", - "number of processes [5]: 2 \n", - "---------------------------------------------------------------------\n", - "global_geometry_list.num_elements: 6\n", - "\n", - "name of geometry [0]: base_cyl \n", - "component index [0]: 22 \n", - "Volume.name [0]: base_cyl \n", - "Volume.p_physics.is_vacuum [0]: 0 \n", - "Volume.p_physics.my_absoprtion [0]: 1.391570 \n", - "Volume.p_physics.number of processes [0]: 2 \n", - "Volume.geometry.shape [0]: cylinder \n", - "Volume.geometry.center.x [0]: 0.000000 \n", - "Volume.geometry.center.y [0]: 0.000000 \n", - "Volume.geometry.center.z [0]: 1.000000 \n", - "Volume.geometry.rotation_matrix[0] [0]: [-1.000000 0.000000 -0.000000] \n", - "Volume.geometry.rotation_matrix[1] [0]: [0.000000 1.000000 0.000000] \n", - "Volume.geometry.rotation_matrix[2] [0]: [0.000000 0.000000 -1.000000] \n", - "Volume.geometry.geometry_parameters.cyl_radius [0]: 0.040000 \n", - "Volume.geometry.geometry_parameters.height [0]: 0.020000 \n", - "Volume.geometry.focus_data.Aim [0]: [0.000000 0.000000 1.000000] \n", - "\n", - "name of geometry [1]: Cu_cyl \n", - "component index [1]: 23 \n", - "Volume.name [1]: Cu_cyl \n", - "Volume.p_physics.is_vacuum [1]: 0 \n", - "Volume.p_physics.my_absoprtion [1]: 32.006800 \n", - "Volume.p_physics.number of processes [1]: 2 \n", - "Volume.geometry.shape [1]: cylinder \n", - "Volume.geometry.center.x [1]: -0.030000 \n", - "Volume.geometry.center.y [1]: 0.000000 \n", - "Volume.geometry.center.z [1]: 1.000000 \n", - "Volume.geometry.rotation_matrix[0] [1]: [-1.000000 0.000000 -0.000000] \n", - "Volume.geometry.rotation_matrix[1] [1]: [0.000000 1.000000 0.000000] \n", - "Volume.geometry.rotation_matrix[2] [1]: [0.000000 0.000000 -1.000000] \n", - "Volume.geometry.geometry_parameters.cyl_radius [1]: 0.007000 \n", - "Volume.geometry.geometry_parameters.height [1]: 0.019000 \n", - "Volume.geometry.focus_data.Aim [1]: [0.000000 0.000000 1.000000] \n", - "\n", - "name of geometry [2]: Ni_cyl \n", - "component index [2]: 24 \n", - "Volume.name [2]: Ni_cyl \n", - "Volume.p_physics.is_vacuum [2]: 0 \n", - "Volume.p_physics.my_absoprtion [2]: 41.042000 \n", - "Volume.p_physics.number of processes [2]: 2 \n", - "Volume.geometry.shape [2]: cylinder \n", - "Volume.geometry.center.x [2]: -0.024270 \n", - "Volume.geometry.center.y [2]: 0.000000 \n", - "Volume.geometry.center.z [2]: 0.982370 \n", - "Volume.geometry.rotation_matrix[0] [2]: [-1.000000 0.000000 -0.000000] \n", - "Volume.geometry.rotation_matrix[1] [2]: [0.000000 1.000000 0.000000] \n", - "Volume.geometry.rotation_matrix[2] [2]: [0.000000 0.000000 -1.000000] \n", - "Volume.geometry.geometry_parameters.cyl_radius [2]: 0.007000 \n", - "Volume.geometry.geometry_parameters.height [2]: 0.019000 \n", - "Volume.geometry.focus_data.Aim [2]: [0.000000 0.000000 1.000000] \n", - "\n", - "name of geometry [3]: Ti_cyl \n", - "component index [3]: 25 \n", - "Volume.name [3]: Ti_cyl \n", - "Volume.p_physics.is_vacuum [3]: 0 \n", - "Volume.p_physics.my_absoprtion [3]: 34.475000 \n", - "Volume.p_physics.number of processes [3]: 2 \n", - "Volume.geometry.shape [3]: cylinder \n", - "Volume.geometry.center.x [3]: -0.009270 \n", - "Volume.geometry.center.y [3]: 0.000000 \n", - "Volume.geometry.center.z [3]: 0.971470 \n", - "Volume.geometry.rotation_matrix[0] [3]: [-1.000000 0.000000 -0.000000] \n", - "Volume.geometry.rotation_matrix[1] [3]: [0.000000 1.000000 0.000000] \n", - "Volume.geometry.rotation_matrix[2] [3]: [0.000000 0.000000 -1.000000] \n", - "Volume.geometry.geometry_parameters.cyl_radius [3]: 0.007000 \n", - "Volume.geometry.geometry_parameters.height [3]: 0.019000 \n", - "Volume.geometry.focus_data.Aim [3]: [0.000000 0.000000 1.000000] \n", - "\n", - "name of geometry [4]: Pb_cyl \n", - "component index [4]: 26 \n", - "Volume.name [4]: Pb_cyl \n", - "Volume.p_physics.is_vacuum [4]: 0 \n", - "Volume.p_physics.my_absoprtion [4]: 0.560640 \n", - "Volume.p_physics.number of processes [4]: 2 \n", - "Volume.geometry.shape [4]: cylinder \n", - "Volume.geometry.center.x [4]: 0.009270 \n", - "Volume.geometry.center.y [4]: 0.000000 \n", - "Volume.geometry.center.z [4]: 0.971470 \n", - "Volume.geometry.rotation_matrix[0] [4]: [-1.000000 0.000000 -0.000000] \n", - "Volume.geometry.rotation_matrix[1] [4]: [0.000000 1.000000 0.000000] \n", - "Volume.geometry.rotation_matrix[2] [4]: [0.000000 0.000000 -1.000000] \n", - "Volume.geometry.geometry_parameters.cyl_radius [4]: 0.007000 \n", - "Volume.geometry.geometry_parameters.height [4]: 0.019000 \n", - "Volume.geometry.focus_data.Aim [4]: [0.000000 0.000000 1.000000] \n", - "\n", - "name of geometry [5]: Fe_cyl \n", - "component index [5]: 27 \n", - "Volume.name [5]: Fe_cyl \n", - "Volume.p_physics.is_vacuum [5]: 0 \n", - "Volume.p_physics.my_absoprtion [5]: 21.297800 \n", - "Volume.p_physics.number of processes [5]: 2 \n", - "Volume.geometry.shape [5]: cylinder \n", - "Volume.geometry.center.x [5]: 0.024270 \n", - "Volume.geometry.center.y [5]: 0.000000 \n", - "Volume.geometry.center.z [5]: 0.982370 \n", - "Volume.geometry.rotation_matrix[0] [5]: [-1.000000 0.000000 -0.000000] \n", - "Volume.geometry.rotation_matrix[1] [5]: [0.000000 1.000000 0.000000] \n", - "Volume.geometry.rotation_matrix[2] [5]: [0.000000 0.000000 -1.000000] \n", - "Volume.geometry.geometry_parameters.cyl_radius [5]: 0.007000 \n", - "Volume.geometry.geometry_parameters.height [5]: 0.019000 \n", - "Volume.geometry.focus_data.Aim [5]: [0.000000 0.000000 1.000000] \n", - "\n", - "name of geometry [6]: material_cyl \n", - "component index [6]: 28 \n", - "Volume.name [6]: material_cyl \n", - "Volume.p_physics.is_vacuum [6]: 0 \n", - "Volume.p_physics.my_absoprtion [6]: 0.560640 \n", - "Volume.p_physics.number of processes [6]: 2 \n", - "Volume.geometry.shape [6]: cylinder \n", - "Volume.geometry.center.x [6]: 0.030000 \n", - "Volume.geometry.center.y [6]: 0.000000 \n", - "Volume.geometry.center.z [6]: 1.000000 \n", - "Volume.geometry.rotation_matrix[0] [6]: [-1.000000 0.000000 -0.000000] \n", - "Volume.geometry.rotation_matrix[1] [6]: [0.000000 1.000000 0.000000] \n", - "Volume.geometry.rotation_matrix[2] [6]: [0.000000 0.000000 -1.000000] \n", - "Volume.geometry.geometry_parameters.cyl_radius [6]: 0.007000 \n", - "Volume.geometry.geometry_parameters.height [6]: 0.019000 \n", - "Volume.geometry.focus_data.Aim [6]: [0.000000 0.000000 1.000000] \n", - "---------------------------------------------------------------------\n", - "number_of_volumes = 8\n", - "number_of_masks = 0\n", - "number_of_masked_volumes = 0\n", - "\n", - "Generating children lists --------------------------- \n", - "LIST: Children for Volume 0 = [1,2,3,4,5,6,7]\n", - "LIST: Children for Volume 1 (temporary_list) = [1,2,3,4,5,6,7]\n", - "LIST: Children for Volume 1 (permanent_list) = [2,3,4,5,6,7]\n", - "LIST: Children for Volume 2 (temporary_list) = [2]\n", - "LIST: Children for Volume 2 (permanent_list) = []\n", - "LIST: Children for Volume 3 (temporary_list) = [3]\n", - "LIST: Children for Volume 3 (permanent_list) = []\n", - "LIST: Children for Volume 4 (temporary_list) = [4]\n", - "LIST: Children for Volume 4 (permanent_list) = []\n", - "LIST: Children for Volume 5 (temporary_list) = [5]\n", - "LIST: Children for Volume 5 (permanent_list) = []\n", - "LIST: Children for Volume 6 (temporary_list) = [6]\n", - "LIST: Children for Volume 6 (permanent_list) = []\n", - "LIST: Children for Volume 7 (temporary_list) = [7]\n", - "LIST: Children for Volume 7 (permanent_list) = []\n", - "LIST: True children for Volume (post mask) 1 = [2,3,4,5,6,7]\n", - "LIST: True children for Volume (post mask) 2 = []\n", - "LIST: True children for Volume (post mask) 3 = []\n", - "LIST: True children for Volume (post mask) 4 = []\n", - "LIST: True children for Volume (post mask) 5 = []\n", - "LIST: True children for Volume (post mask) 6 = []\n", - "LIST: True children for Volume (post mask) 7 = []\n", - "\n", - "Generating overlap lists ---------------------------- \n", - "LIST: Overlaps for Volume 0 = [1,2,3,4,5,6,7]\n", - "LIST: Overlaps for Volume (pre mask) 1 = [0,1,2,3,4,5,6,7]\n", - "LIST: Overlaps for Volume (pre mask) 2 = [0,1,2]\n", - "LIST: Overlaps for Volume (pre mask) 3 = [0,1,3]\n", - "LIST: Overlaps for Volume (pre mask) 4 = [0,1,4]\n", - "LIST: Overlaps for Volume (pre mask) 5 = [0,1,5]\n", - "LIST: Overlaps for Volume (pre mask) 6 = [0,1,6]\n", - "LIST: Overlaps for Volume (pre mask) 7 = [0,1,7]\n", - "LIST: Overlaps for Volume (post mask) 1 = [0,2,3,4,5,6,7]\n", - "LIST: Overlaps for Volume (post mask) 2 = [0,1]\n", - "LIST: Overlaps for Volume (post mask) 3 = [0,1]\n", - "LIST: Overlaps for Volume (post mask) 4 = [0,1]\n", - "LIST: Overlaps for Volume (post mask) 5 = [0,1]\n", - "LIST: Overlaps for Volume (post mask) 6 = [0,1]\n", - "LIST: Overlaps for Volume (post mask) 7 = [0,1]\n", - "\n", - "Generating parents lists ---------------------------- \n", - "LIST: Parents for Volume 0 = []\n", - "LIST: Parents for Volume 1 = [0]\n", - "LIST: Parents for Volume 2 = [0,1]\n", - "LIST: Parents for Volume 3 = [0,1]\n", - "LIST: Parents for Volume 4 = [0,1]\n", - "LIST: Parents for Volume 5 = [0,1]\n", - "LIST: Parents for Volume 6 = [0,1]\n", - "LIST: Parents for Volume 7 = [0,1]\n", - "\n", - "Generating parents lists (ignoring masks) ----------- \n", - "LIST: Parents for Volume 0 = []\n", - "LIST: Parents for Volume 1 = [0]\n", - "LIST: Parents for Volume 2 = [0,1]\n", - "LIST: Parents for Volume 3 = [0,1]\n", - "LIST: Parents for Volume 4 = [0,1]\n", - "LIST: Parents for Volume 5 = [0,1]\n", - "LIST: Parents for Volume 6 = [0,1]\n", - "LIST: Parents for Volume 7 = [0,1]\n", - "\n", - "Generating parents lists ---------------------------- \n", - "LIST: Parents for Volume 0 = []\n", - "LIST: Parents for Volume 1 = [0]\n", - "LIST: Parents for Volume 2 = [0,1]\n", - "LIST: Parents for Volume 3 = [0,1]\n", - "LIST: Parents for Volume 4 = [0,1]\n", - "LIST: Parents for Volume 5 = [0,1]\n", - "LIST: Parents for Volume 6 = [0,1]\n", - "LIST: Parents for Volume 7 = [0,1]\n", - "\n", - "Generating parents lists (ignoring masks) ----------- \n", - "LIST: Parents for Volume 0 = []\n", - "LIST: Parents for Volume 1 = [0]\n", - "LIST: Parents for Volume 2 = [0,1]\n", - "LIST: Parents for Volume 3 = [0,1]\n", - "LIST: Parents for Volume 4 = [0,1]\n", - "LIST: Parents for Volume 5 = [0,1]\n", - "LIST: Parents for Volume 6 = [0,1]\n", - "LIST: Parents for Volume 7 = [0,1]\n", - "\n", - "Generating intersect check lists -------------------- \n", - "LIST: Intersect check list for Volume 0 = [1]\n", - "LIST: Mask intersect check list for Volume 0 = []\n", - "LIST: Intersect check list for Volume 1 = [2,3,4,5,6,7]\n", - "LIST: Mask intersect check list for Volume 1 = []\n", - "LIST: Intersect check list for Volume 2 = []\n", - "LIST: Mask intersect check list for Volume 2 = []\n", - "LIST: Intersect check list for Volume 3 = []\n", - "LIST: Mask intersect check list for Volume 3 = []\n", - "LIST: Intersect check list for Volume 4 = []\n", - "LIST: Mask intersect check list for Volume 4 = []\n", - "LIST: Intersect check list for Volume 5 = []\n", - "LIST: Mask intersect check list for Volume 5 = []\n", - "LIST: Intersect check list for Volume 6 = []\n", - "LIST: Mask intersect check list for Volume 6 = []\n", - "LIST: Intersect check list for Volume 7 = []\n", - "LIST: Mask intersect check list for Volume 7 = []\n", - "\n", - "Generating grandparents lists ----------------------- \n", - "LIST: Grandparents for Volume 0 = []\n", - "LIST: Grandparents for Volume 1 = []\n", - "LIST: Grandparents for Volume 2 = []\n", - "LIST: Grandparents for Volume 3 = []\n", - "LIST: Grandparents for Volume 4 = []\n", - "LIST: Grandparents for Volume 5 = []\n", - "LIST: Grandparents for Volume 6 = []\n", - "LIST: Grandparents for Volume 7 = []\n", - "grandparents_lists[0]->num_elements = 0 \n", - "\n", - "Generating grandparents lists ----------------------- \n", - "LIST: Grandparents for Volume 0 = []\n", - "LIST: Grandparents for Volume 1 = []\n", - "LIST: Grandparents for Volume 2 = []\n", - "LIST: Grandparents for Volume 3 = []\n", - "LIST: Grandparents for Volume 4 = []\n", - "LIST: Grandparents for Volume 5 = []\n", - "LIST: Grandparents for Volume 6 = []\n", - "LIST: Grandparents for Volume 7 = []\n", - "\n", - "Generating grandparents lists ----------------------- \n", - "LIST: Grandparents for Volume 0 = []\n", - "LIST: Grandparents for Volume 1 = []\n", - "LIST: Grandparents for Volume 2 = []\n", - "LIST: Grandparents for Volume 3 = []\n", - "LIST: Grandparents for Volume 4 = []\n", - "LIST: Grandparents for Volume 5 = []\n", - "LIST: Grandparents for Volume 6 = []\n", - "LIST: Grandparents for Volume 7 = []\n", - "\n", - "Generating grandparents lists ----------------------- \n", - "LIST: Grandparents for Volume 0 = []\n", - "LIST: Grandparents for Volume 1 = []\n", - "LIST: Grandparents for Volume 2 = []\n", - "LIST: Grandparents for Volume 3 = []\n", - "LIST: Grandparents for Volume 4 = []\n", - "LIST: Grandparents for Volume 5 = []\n", - "LIST: Grandparents for Volume 6 = []\n", - "LIST: Grandparents for Volume 7 = []\n", - "\n", - "Generating destinations lists ----------------------- \n", - "LIST: Destinations list for Volume 1 = [0]\n", - "LIST: Destinations list for Volume 2 = [1]\n", - "LIST: Destinations list for Volume 3 = [1]\n", - "LIST: Destinations list for Volume 4 = [1]\n", - "LIST: Destinations list for Volume 5 = [1]\n", - "LIST: Destinations list for Volume 6 = [1]\n", - "LIST: Destinations list for Volume 7 = [1]\n", - "\n", - "Generating reduced destination lists ----------------------- \n", - "LIST: Reduced destinations list for Volume 0 = []\n", - "LIST: Reduced destinations list for Volume 1 = []\n", - "LIST: Reduced destinations list for Volume 2 = [1]\n", - "LIST: Reduced destinations list for Volume 3 = [1]\n", - "LIST: Reduced destinations list for Volume 4 = [1]\n", - "LIST: Reduced destinations list for Volume 5 = [1]\n", - "LIST: Reduced destinations list for Volume 6 = [1]\n", - "LIST: Reduced destinations list for Volume 7 = [1]\n", - "\n", - "Generating direct children lists ----------------------- \n", - "LIST: Children list for Volume 0 = [1,2,3,4,5,6,7]\n", - "LIST: Direct_children list for Volume 0 = [1]\n", - "LIST: Children list for Volume 1 = [2,3,4,5,6,7]\n", - "LIST: Direct_children list for Volume 1 = [2,3,4,5,6,7]\n", - "LIST: Children list for Volume 2 = []\n", - "LIST: Direct_children list for Volume 2 = []\n", - "LIST: Children list for Volume 3 = []\n", - "LIST: Direct_children list for Volume 3 = []\n", - "LIST: Children list for Volume 4 = []\n", - "LIST: Direct_children list for Volume 4 = []\n", - "LIST: Children list for Volume 5 = []\n", - "LIST: Direct_children list for Volume 5 = []\n", - "LIST: Children list for Volume 6 = []\n", - "LIST: Direct_children list for Volume 6 = []\n", - "LIST: Children list for Volume 7 = []\n", - "LIST: Direct_children list for Volume 7 = []\n", - "LIST: Allowed starting volume logic list = [1,0,0,0,0,0,0,0]\n", - "\n", - "Generating start destinations list ------------------------------ \n", - "LIST: Starting destinations list = [1,2,3,4,5,6,7]\n", - "\n", - "Generating reduced start destination list ----------------------- \n", - "LIST: Reduced start destinations list = [1]\n", - "LIST: Start logic list = [0,1,1,1,1,1,1,1]\n", - "\n", - "Generating next volume list ------------------------------------- \n", - "LIST: Next volume list 0 = [1]\n", - "LIST: Next volume list 1 = [0,2,3,4,5,6,7]\n", - "LIST: Next volume list 2 = [1]\n", - "LIST: Next volume list 3 = [1]\n", - "LIST: Next volume list 4 = [1]\n", - "LIST: Next volume list 5 = [1]\n", - "LIST: Next volume list 6 = [1]\n", - "LIST: Next volume list 7 = [1]\n", - "\n", - " ---- Overview of the lists generated for each volume ---- \n", - "LIST: Children for Volume 0 = [1,2,3,4,5,6,7]\n", - "LIST: Direct_children for Volume 0 = [1]\n", - "LIST: Intersect_check_list for Volume 0 = [1]\n", - "LIST: Mask_intersect_list for Volume 0 = []\n", - "LIST: Destinations_list for Volume 0 = []\n", - "LIST: Reduced_destinations_list for Volume 0 = []\n", - "LIST: Next_volume_list for Volume 0 = [1]\n", - "LIST: mask_list for Volume 0 = []\n", - "LIST: masked_by_list for Volume 0 = []\n", - "LIST: masked_by_mask_index_list for Volume 0 = []\n", - " mask_mode for Volume 0 = 0\n", - "\n", - "LIST: Children for Volume 1 = [2,3,4,5,6,7]\n", - "LIST: Direct_children for Volume 1 = [2,3,4,5,6,7]\n", - "LIST: Intersect_check_list for Volume 1 = [2,3,4,5,6,7]\n", - "LIST: Mask_intersect_list for Volume 1 = []\n", - "LIST: Destinations_list for Volume 1 = [0]\n", - "LIST: Reduced_destinations_list for Volume 1 = []\n", - "LIST: Next_volume_list for Volume 1 = [0,2,3,4,5,6,7]\n", - " Is_vacuum for Volume 1 = 0\n", - " is_mask_volume for Volume 1 = 0\n", - " is_masked_volume for Volume 1 = 0\n", - " is_exit_volume for Volume 1 = 0\n", - "LIST: mask_list for Volume 1 = []\n", - "LIST: masked_by_list for Volume 1 = []\n", - "LIST: masked_by_mask_index_list for Volume 1 = []\n", - " mask_mode for Volume 1 = 0\n", - "\n", - "LIST: Children for Volume 2 = []\n", - "LIST: Direct_children for Volume 2 = []\n", - "LIST: Intersect_check_list for Volume 2 = []\n", - "LIST: Mask_intersect_list for Volume 2 = []\n", - "LIST: Destinations_list for Volume 2 = [1]\n", - "LIST: Reduced_destinations_list for Volume 2 = [1]\n", - "LIST: Next_volume_list for Volume 2 = [1]\n", - " Is_vacuum for Volume 2 = 0\n", - " is_mask_volume for Volume 2 = 0\n", - " is_masked_volume for Volume 2 = 0\n", - " is_exit_volume for Volume 2 = 0\n", - "LIST: mask_list for Volume 2 = []\n", - "LIST: masked_by_list for Volume 2 = []\n", - "LIST: masked_by_mask_index_list for Volume 2 = []\n", - " mask_mode for Volume 2 = 0\n", - "\n", - "LIST: Children for Volume 3 = []\n", - "LIST: Direct_children for Volume 3 = []\n", - "LIST: Intersect_check_list for Volume 3 = []\n", - "LIST: Mask_intersect_list for Volume 3 = []\n", - "LIST: Destinations_list for Volume 3 = [1]\n", - "LIST: Reduced_destinations_list for Volume 3 = [1]\n", - "LIST: Next_volume_list for Volume 3 = [1]\n", - " Is_vacuum for Volume 3 = 0\n", - " is_mask_volume for Volume 3 = 0\n", - " is_masked_volume for Volume 3 = 0\n", - " is_exit_volume for Volume 3 = 0\n", - "LIST: mask_list for Volume 3 = []\n", - "LIST: masked_by_list for Volume 3 = []\n", - "LIST: masked_by_mask_index_list for Volume 3 = []\n", - " mask_mode for Volume 3 = 0\n", - "\n", - "LIST: Children for Volume 4 = []\n", - "LIST: Direct_children for Volume 4 = []\n", - "LIST: Intersect_check_list for Volume 4 = []\n", - "LIST: Mask_intersect_list for Volume 4 = []\n", - "LIST: Destinations_list for Volume 4 = [1]\n", - "LIST: Reduced_destinations_list for Volume 4 = [1]\n", - "LIST: Next_volume_list for Volume 4 = [1]\n", - " Is_vacuum for Volume 4 = 0\n", - " is_mask_volume for Volume 4 = 0\n", - " is_masked_volume for Volume 4 = 0\n", - " is_exit_volume for Volume 4 = 0\n", - "LIST: mask_list for Volume 4 = []\n", - "LIST: masked_by_list for Volume 4 = []\n", - "LIST: masked_by_mask_index_list for Volume 4 = []\n", - " mask_mode for Volume 4 = 0\n", - "\n", - "LIST: Children for Volume 5 = []\n", - "LIST: Direct_children for Volume 5 = []\n", - "LIST: Intersect_check_list for Volume 5 = []\n", - "LIST: Mask_intersect_list for Volume 5 = []\n", - "LIST: Destinations_list for Volume 5 = [1]\n", - "LIST: Reduced_destinations_list for Volume 5 = [1]\n", - "LIST: Next_volume_list for Volume 5 = [1]\n", - " Is_vacuum for Volume 5 = 0\n", - " is_mask_volume for Volume 5 = 0\n", - " is_masked_volume for Volume 5 = 0\n", - " is_exit_volume for Volume 5 = 0\n", - "LIST: mask_list for Volume 5 = []\n", - "LIST: masked_by_list for Volume 5 = []\n", - "LIST: masked_by_mask_index_list for Volume 5 = []\n", - " mask_mode for Volume 5 = 0\n", - "\n", - "LIST: Children for Volume 6 = []\n", - "LIST: Direct_children for Volume 6 = []\n", - "LIST: Intersect_check_list for Volume 6 = []\n", - "LIST: Mask_intersect_list for Volume 6 = []\n", - "LIST: Destinations_list for Volume 6 = [1]\n", - "LIST: Reduced_destinations_list for Volume 6 = [1]\n", - "LIST: Next_volume_list for Volume 6 = [1]\n", - " Is_vacuum for Volume 6 = 0\n", - " is_mask_volume for Volume 6 = 0\n", - " is_masked_volume for Volume 6 = 0\n", - " is_exit_volume for Volume 6 = 0\n", - "LIST: mask_list for Volume 6 = []\n", - "LIST: masked_by_list for Volume 6 = []\n", - "LIST: masked_by_mask_index_list for Volume 6 = []\n", - " mask_mode for Volume 6 = 0\n", - "\n", - "LIST: Children for Volume 7 = []\n", - "LIST: Direct_children for Volume 7 = []\n", - "LIST: Intersect_check_list for Volume 7 = []\n", - "LIST: Mask_intersect_list for Volume 7 = []\n", - "LIST: Destinations_list for Volume 7 = [1]\n", - "LIST: Reduced_destinations_list for Volume 7 = [1]\n", - "LIST: Next_volume_list for Volume 7 = [1]\n", - " Is_vacuum for Volume 7 = 0\n", - " is_mask_volume for Volume 7 = 0\n", - " is_masked_volume for Volume 7 = 0\n", - " is_exit_volume for Volume 7 = 0\n", - "LIST: mask_list for Volume 7 = []\n", - "LIST: masked_by_list for Volume 7 = []\n", - "LIST: masked_by_mask_index_list for Volume 7 = []\n", - " mask_mode for Volume 7 = 0\n", - "\n", - "Union_master component calibration_sample initialized sucessfully\n", - "Detector: logger_space_zx_all_I=4.24506e+09 logger_space_zx_all_ERR=7.73168e+08 logger_space_zx_all_N=40 \"space_zx.dat\"\n", - "Detector: logger_space_zy_all_I=4.24506e+09 logger_space_zy_all_ERR=7.73168e+08 logger_space_zy_all_N=40 \"space_zy.dat\"\n", - "Detector: logger_space_xy_all_I=4.24506e+09 logger_space_xy_all_ERR=7.73168e+08 logger_space_xy_all_N=40 \"space_xy.dat\"\n", - "Detector: PSD_I=4.38373e+10 PSD_ERR=2.93556e+09 PSD_N=223 \"PSD.dat\"\n", - "Detector: PSDlin_I=4.38373e+10 PSDlin_ERR=2.93556e+09 PSDlin_N=223 \"PSDlin.dat\"\n", - "Detector: EPSD_I=2.75212e+09 EPSD_ERR=7.35534e+08 EPSD_N=14 \"EPSD.dat\"\n", - "\n", - "\n", - "Top 20 most common histories. Shows the index of volumes entered (VX), and the scattering processes (PX)\n", - "267\t N I=5.248679E+10 \t V0 \n", - "4\t N I=7.863190E+08 \t V0 -> V1 -> V0 \n", - "3\t N I=5.316424E+08 \t V0 -> V1 -> V5 -> P1 -> V1 -> V0 \n", - "3\t N I=5.228126E+08 \t V0 -> V1 -> V6 -> P1 -> V1 -> V0 \n", - "3\t N I=4.435212E+08 \t V0 -> V1 -> V5 -> V1 -> P1 -> V0 \n", - "2\t N I=3.931595E+08 \t V0 -> V1 -> V5 -> V1 -> V0 \n", - "2\t N I=2.714067E+08 \t V0 -> V1 -> P1 -> V0 \n", - "1\t N I=1.965797E+08 \t V0 -> V1 -> V2 -> V1 -> V0 \n", - "1\t N I=1.965797E+08 \t V0 -> V1 -> V7 -> V1 -> V0 \n", - "1\t N I=1.656375E+08 \t V0 -> V1 -> V4 -> V1 -> P1 -> P1 -> V0 \n", - "1\t N I=1.448487E+08 \t V0 -> V1 -> V4 -> V1 -> P1 -> V0 \n", - "1\t N I=1.323150E+08 \t V0 -> V1 -> V5 -> P1 -> P1 -> V1 -> V0 \n", - "1\t N I=1.289778E+08 \t V0 -> V1 -> P0 -> V0 \n", - "1\t N I=1.107849E+08 \t V0 -> V1 -> V3 -> P1 -> P1 -> P1 -> V1 -> V0 \n", - "1\t N I=1.023142E+08 \t V0 -> V1 -> V3 -> P1 -> V1 -> V0 \n", - "1\t N I=6.676574E+07 \t V0 -> V1 -> V6 -> P1 -> P1 -> V1 -> V0 \n", - "1\t N I=5.751379E+07 \t V0 -> V1 -> V6 -> P1 -> P1 -> P1 -> V1 -> V5 -> V1 -> V0 \n", - "1\t N I=5.535036E+07 \t V0 -> V1 -> V3 -> P0 -> V1 -> V0 \n", - "1\t N I=2.879975E+07 \t V0 -> V1 -> V4 -> P1 -> P0 -> V1 -> V0 \n", - "1\t N I=2.387658E+07 \t V0 -> V1 -> V4 -> P0 -> V1 -> V0 \n", - "\n", - "starting particle parsing\n", - "ended particle parsing\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "Instr.show_instrument()" ] @@ -1120,23 +377,9 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[\n", - "McStasData: logger_space_zx_all type: 2D I:4.46932e+09 E:9.78589e+06 N:334938, \n", - "McStasData: logger_space_zy_all type: 2D I:4.46932e+09 E:9.78589e+06 N:334938, \n", - "McStasData: logger_space_xy_all type: 2D I:4.46932e+09 E:9.78589e+06 N:334938, \n", - "McStasData: PSD type: 2D I:4.35683e+10 E:3.58426e+07 N:1.47764e+06, \n", - "McStasData: PSDlin type: 1D I:4.35683e+10 E:3.58426e+07 N:1.47764e+06, \n", - "McStasData: EPSD type: 2D I:4.64794e+09 E:1.1707e+07 N:157656]\n" - ] - } - ], + "outputs": [], "source": [ "data = Instr.get_interface_data()\n", "print(data)" @@ -1144,31 +387,9 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "842a963bb6c6401a9393877978ba1c10", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Plotting data with name EPSD\n" - ] - } - ], + "outputs": [], "source": [ "if len(data) != 0:\n", " EPSD_data = functions.name_search(\"EPSD\", data)\n", @@ -1185,24 +406,9 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "31522898410542958ea06e8ab06e057d", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "HBox(children=(Output(layout=Layout(width='75%')), VBox(children=(Label(value='Choose monitor'), Dropdown(layo…" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "plotter.interface(data)" ] @@ -1294,7 +500,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.8.8" } }, "nbformat": 4, diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index 61de5a0d..05203bed 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -1,8 +1,11 @@ from mcstasscript.helper.formatting import bcolors from mcstasscript.helper.formatting import is_legal_parameter +from libpyvinyl.Parameters.Parameter import Parameter +from libpyvinyl.Parameters.Collections import CalculatorParameters -class ParameterVariable: + +class ParameterVariable(Parameter): """ Class describing an input parameter in McStas instrument @@ -66,9 +69,10 @@ def __init__(self, *args, **kwargs): sets comment displayed next to declaration """ + if len(args) == 1: self.type = "" - self.name = str(args[0]) + name = str(args[0]) if len(args) == 2: specified_type = args[0] allowed_types = {"double", "int", "string"} @@ -79,38 +83,40 @@ def __init__(self, *args, **kwargs): + str(allowed_types) + ".") self.type = specified_type - self.name = str(args[1]) + name = str(args[1]) - if not is_legal_parameter(self.name): + if not is_legal_parameter(name): raise NameError("The given parameter name: \"" - + self.name + + name + "\" is not a legal c variable name, " + " and cannot be used in McStas.") - self.value = "" - if "value" in kwargs: - if not isinstance(kwargs["value"], (str, int, float)): - raise RuntimeError("Given value for parameter has to be of " - + "type str, int or float.") - self.value = kwargs["value"] - - self.comment = "" + comment = None if "comment" in kwargs: - self.comment = kwargs["comment"] - if not isinstance(self.comment, str): + comment = kwargs["comment"] + if not isinstance(comment, str): raise RuntimeError("Tried to create a parameter with a " + "comment that was not a string.") - self.comment = "// " + self.comment - self.options = None + unit = None + if "unit" in kwargs: + unit = kwargs["unit"] + if not isinstance(unit, str): + raise RuntimeError("Unit has to be a string") + + super().__init__(name=name, unit=unit, comment=comment) + if "options" in kwargs: - self.options = kwargs["options"] - if self.value != "": - if (self.value not in self.options - and self.value.strip("'") not in self.options - and self.value.strip('"') not in self.options): - raise RuntimeError("When giving both options and default, " - "the value has to be an option.") + options = kwargs["options"] + + self.add_option(options) + + if "value" in kwargs: + if not isinstance(kwargs["value"], (str, int, float)): + raise RuntimeError("Given value for parameter has to be of " + + "type str, int or float.") + + self.value = kwargs["value"] def write_parameter(self, fo, stop_character): """Writes input parameter to file""" @@ -120,7 +126,7 @@ def write_parameter(self, fo, stop_character): + "a string.") fo.write("%s %s" % (self.type, self.name)) - if self.value != "": + if self.value is not None: if isinstance(self.value, int): fo.write(" = %d" % self.value) elif isinstance(self.value, float): @@ -128,9 +134,111 @@ def write_parameter(self, fo, stop_character): else: fo.write(" = %s" % str(self.value)) fo.write(stop_character) - fo.write(self.comment) + + if self.comment is None: + c_comment = "" + else: + c_comment = "// " + self.comment + + fo.write(c_comment) fo.write("\n") +class ParameterContainer(CalculatorParameters): + def __init__(self, parameters=None): + super().__init__(parameters) + + def show_parameters(self, line_limit=100): + + """ + Method for displaying current instrument parameters + + line_limit : int + Maximum line length for terminal output + """ + + if len(self.parameters) == 0: + print("No instrument parameters available") + return + + # Find longest fields + types = [] + names = [] + values = [] + comments = [] + for parameter in self.parameters.values(): + types.append(str(parameter.type)) + names.append(str(parameter.name)) + values.append(str(parameter.value)) + if parameter.comment is None: + comments.append("") + else: + comments.append(str(parameter.comment)) + + longest_type = len(max(types, key=len)) + longest_name = len(max(names, key=len)) + longest_value = len(max(values, key=len)) + # In addition to the data 11 characters are added before the comment + comment_start_point = longest_type + longest_name + longest_value + 11 + longest_comment = len(max(comments, key=len)) + length_for_comment = line_limit - comment_start_point + + # Print to console + for parameter in self.parameters.values(): + print(str(parameter.type).ljust(longest_type), end=' ') + print(str(parameter.name).ljust(longest_name), end=' ') + if parameter.value is None: + print(" ", end=' ') + print(" ".ljust(longest_value + 1), end=' ') + else: + print(" =", end=' ') + print(str(parameter.value).ljust(longest_value + 1), end=' ') + + if parameter.comment is None: + c_comment = "" + else: + c_comment = "// " + str(parameter.comment) + + if (length_for_comment < 5 + or length_for_comment > len(c_comment)): + print(c_comment) + else: + # Split comment into several lines + comment = c_comment + words = comment.split(" ") + words_left = len(words) + last_index = 0 + current_index = 0 + comment = "" + iterations = 0 + max_iterations = 50 + while words_left > 0: + iterations += 1 + if iterations > max_iterations: + # Something went long, print on one line + break + + line_left = length_for_comment + + while line_left > 0: + if current_index >= len(words): + current_index = len(words) + 1 + break + line_left -= len(str(words[current_index])) + 1 + current_index += 1 + + current_index -= 1 + for word in words[last_index:current_index]: + comment += word + " " + words_left = len(words) - current_index + if words_left > 0: + comment += "\n" + " " * comment_start_point + last_index = current_index + + if not iterations == max_iterations + 1: + print(comment) + else: + print(c_comment.ljust(longest_comment)) + class DeclareVariable: """ @@ -242,6 +350,7 @@ def write_line(self, fo): fo : file object File the line will be written to """ + if self.value == "" and self.vector == 0: fo.write("%s %s;%s" % (self.type, self.name, self.comment)) if self.value != "" and self.vector == 0: diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 848d5fb1..af2a6104 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -9,6 +9,7 @@ from mcstasscript.helper.mcstas_objects import DeclareVariable from mcstasscript.helper.mcstas_objects import ParameterVariable from mcstasscript.helper.mcstas_objects import Component +from mcstasscript.helper.mcstas_objects import ParameterContainer from mcstasscript.helper.component_reader import ComponentReader from mcstasscript.helper.managed_mcrun import ManagedMcrun from mcstasscript.helper.formatting import is_legal_filename @@ -55,7 +56,7 @@ class McCode_instr: executable_path : str absolute path of mcrun command, or empty if it is in path - parameter_list : list of ParameterVariable instances + instrument_parameters : ParameterContainer contains all input parameters to be written to file declare_list : list of DeclareVariable instances @@ -277,7 +278,7 @@ def __init__(self, name, **kwargs): + " installation as keyword named " + "package_path or in configuration.yaml") - self.parameter_list = [] + self.instrument_parameters = ParameterContainer() self.declare_list = [] self.initialize_section = ("// Start of initialize for generated " + name + "\n") @@ -338,7 +339,7 @@ def add_parameter(self, *args, **kwargs): Comment displayed next to declaration of parameter """ # ParameterVariable class documented independently - self.parameter_list.append(ParameterVariable(*args, **kwargs)) + self.instrument_parameters.add(ParameterVariable(*args, ** kwargs)) def show_parameters(self, **kwargs): """ @@ -353,78 +354,7 @@ def show_parameters(self, **kwargs): else: line_limit = self.line_limit - if len(self.parameter_list) == 0: - print("No instrument parameters available") - return - - # Find longest fields - types = [] - names = [] - values = [] - comments = [] - for parameter in self.parameter_list: - types.append(str(parameter.type)) - names.append(str(parameter.name)) - values.append(str(parameter.value)) - comments.append(str(parameter.comment)) - - longest_type = len(max(types, key=len)) - longest_name = len(max(names, key=len)) - longest_value = len(max(values, key=len)) - # In addition to the data 11 characters are added before the comment - comment_start_point = longest_type + longest_name + longest_value + 11 - longest_comment = len(max(comments, key=len)) - length_for_comment = line_limit - comment_start_point - - # Print to console - for parameter in self.parameter_list: - print(str(parameter.type).ljust(longest_type), end=' ') - print(str(parameter.name).ljust(longest_name), end=' ') - if parameter.value == "": - print(" ", end=' ') - else: - print(" = ", end=' ') - print(str(parameter.value).ljust(longest_value+1), end=' ') - if (length_for_comment < 5 - or length_for_comment > len(str(parameter.comment))): - print(str(parameter.comment)) - else: - # Split comment into several lines - comment = str(parameter.comment) - words = comment.split(" ") - words_left = len(words) - last_index = 0 - current_index = 0 - comment = "" - iterations = 0 - max_iterations = 50 - while(words_left > 0): - iterations += 1 - if iterations > max_iterations: - # Something went long, print on one line - break - - line_left = length_for_comment - - while(line_left > 0): - if current_index >= len(words): - current_index = len(words) + 1 - break - line_left -= len(str(words[current_index])) + 1 - current_index += 1 - - current_index -= 1 - for word in words[last_index:current_index]: - comment += word + " " - words_left = len(words) - current_index - if words_left > 0: - comment += "\n" + " "*comment_start_point - last_index = current_index - - if not iterations == max_iterations + 1: - print(comment) - else: - print(str(parameter.comment).ljust(longest_comment)) + self.instrument_parameters.show_parameters(line_limit) def add_declare_var(self, *args, **kwargs): """ @@ -1458,10 +1388,11 @@ def write_full_instrument(self): fo.write("DEFINE INSTRUMENT %s (" % self.name) fo.write("\n") # Add loop that inserts parameters here - for variable in self.parameter_list[0:-1]: + parameter_list = list(self.instrument_parameters.parameters.values()) + for variable in parameter_list[0:-1]: variable.write_parameter(fo, ",") - if len(self.parameter_list) > 0: - self.parameter_list[-1].write_parameter(fo, " ") + if len(parameter_list) > 0: + parameter_list[-1].write_parameter(fo, " ") fo.write(")\n") fo.write("\n") @@ -1524,12 +1455,11 @@ def _handle_parameters(self, given_parameters): required_parameters = [] default_parameters = {} - for index in range(len(self.parameter_list)): - if self.parameter_list[index].value == "": - required_parameters.append(self.parameter_list[index].name) + for name, parameter in self.instrument_parameters.parameters.items(): + if parameter.value is None: + required_parameters.append(name) else: - default_parameters.update({self.parameter_list[index].name: - self.parameter_list[index].value}) + default_parameters.update({name: parameter.value}) # Check if all given parameters correspond to legal parameters for given_par in given_parameters: @@ -1751,7 +1681,7 @@ class McStas_instr(McCode_instr): executable_path : str absolute path of mcrun command, or empty if it is in path - parameter_list : list of ParameterVariable instances + instrument_parameters : ParameterContainer instance contains all input parameters to be written to file declare_list : list of DeclareVariable instances @@ -1975,7 +1905,7 @@ class McXtrace_instr(McCode_instr): executable_path : str absolute path of mcrun command, or empty if it is in path - parameter_list : list of ParameterVariable instances + instrument_parameters : ParameterContainer contains all input parameters to be written to file declare_list : list of DeclareVariable instances diff --git a/mcstasscript/jb_interface/simulation_interface.py b/mcstasscript/jb_interface/simulation_interface.py index 6d57011e..0eef0b4c 100644 --- a/mcstasscript/jb_interface/simulation_interface.py +++ b/mcstasscript/jb_interface/simulation_interface.py @@ -62,7 +62,7 @@ def __init__(self, instrument): self.parameters = {} # get default parameters from instrument - for parameter in self.instrument.parameter_list: + for parameter in self.instrument.instrument_parameters.parameters.values(): if parameter_has_default(parameter): self.parameters[parameter.name] = get_parameter_default(parameter) @@ -73,7 +73,7 @@ def make_parameter_widgets(self): returns widget including all parameters """ parameter_widgets = [] - for parameter in self.instrument.parameter_list: + for parameter in self.instrument.instrument_parameters.parameters.values(): par_widget = ParameterWidget(parameter, self.parameters) parameter_widgets.append(par_widget.make_widget()) @@ -322,7 +322,7 @@ def __init__(self, parameter, parameters): if parameter_has_default(parameter): self.default_value = get_parameter_default(parameter) else: - self.default_value = "" + self.default_value = None self.name = parameter.name self.comment = parameter.comment @@ -333,17 +333,22 @@ def make_widget(self): """ label = widgets.Label(value=self.name, layout=widgets.Layout(width='15%', height='32px')) - if self.parameter.options is not None: + if len(self.parameter.options) > 0: par_widget = widgets.Dropdown(options=self.parameter.options, layout=widgets.Layout(width='10%', height='32px')) - if self.default_value != "": + if self.default_value is not None: if self.default_value in self.parameter.options: par_widget.value = self.default_value - elif self.default_value.strip("'") in self.parameter.options: - par_widget.value = self.default_value.strip("'") - elif self.default_value.strip('"') in self.parameter.options: - par_widget.value = self.default_value.strip('"') - else: + + if isinstance(self.default_value, str): + + if self.default_value.strip("'") in self.parameter.options: + par_widget.value = self.default_value.strip("'") + elif self.default_value.strip('"') in self.parameter.options: + par_widget.value = self.default_value.strip('"') + + if par_widget.value is None: + print(self.parameter.options) raise KeyError("default value not found in options for parameter: " + str(self.parameter.name)) diff --git a/mcstasscript/jb_interface/widget_helpers.py b/mcstasscript/jb_interface/widget_helpers.py index 7e6637ca..1bc5595d 100644 --- a/mcstasscript/jb_interface/widget_helpers.py +++ b/mcstasscript/jb_interface/widget_helpers.py @@ -24,7 +24,7 @@ def parameter_has_default(parameter): parameter: ParameterVariable The parameter to check for default value """ - if parameter.value == "": + if parameter.value is None: return False return True @@ -39,7 +39,7 @@ def get_parameter_default(parameter): parameter: ParameterVariable The parameter for which the default value is returned """ - if parameter.value != "": + if parameter.value is not None: if parameter.type == "string": return parameter.value elif parameter.type == "double" or parameter.type == "": @@ -50,4 +50,5 @@ def get_parameter_default(parameter): raise RuntimeError("Unknown parameter type '" + parameter.type + "' of par named '" + parameter.name + "'.") - return None \ No newline at end of file + + return None diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index d564f70b..1e18f0d0 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -399,8 +399,9 @@ def test_simple_add_parameter(self): instr.add_parameter("double", "theta", comment="test par") - self.assertEqual(instr.parameter_list[0].name, "theta") - self.assertEqual(instr.parameter_list[0].comment, "// test par") + parameter = instr.instrument_parameters["theta"] + self.assertEqual(parameter.name, "theta") + self.assertEqual(parameter.comment, "test par") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_show_parameters(self, mock_stdout): @@ -409,9 +410,9 @@ def test_show_parameters(self, mock_stdout): """ instr = setup_instr_root_path() - instr.add_parameter("double", "theta", comment="test par") - instr.add_parameter("double", "theta", comment="test par") - instr.add_parameter("int", "theta", value=8, comment="test par") + instr.add_parameter("theta", comment="test par") + instr.add_parameter("double", "par_double", comment="test par") + instr.add_parameter("int", "int_par", value=8, comment="test par") instr.add_parameter("int", "slits", comment="test par") instr.add_parameter("string", "ref", value="string", comment="new string") @@ -420,11 +421,11 @@ def test_show_parameters(self, mock_stdout): output = mock_stdout.getvalue().split("\n") - self.assertEqual(output[0], "double theta // test par") - self.assertEqual(output[1], "double theta // test par") - self.assertEqual(output[2], "int theta = 8 // test par") - self.assertEqual(output[3], "int slits // test par") - self.assertEqual(output[4], "string ref = string // new string") + self.assertEqual(output[0], " theta // test par") + self.assertEqual(output[1], "double par_double // test par") + self.assertEqual(output[2], "int int_par = 8 // test par") + self.assertEqual(output[3], "int slits // test par") + self.assertEqual(output[4], "string ref = string // new string") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_show_parameters_line_break(self, mock_stdout): @@ -436,9 +437,9 @@ def test_show_parameters_line_break(self, mock_stdout): """ instr = setup_instr_root_path() - instr.add_parameter("double", "theta", comment="test par") - instr.add_parameter("double", "theta", comment="test par") - instr.add_parameter("int", "theta", value=8, comment="test par") + instr.add_parameter("theta", comment="test par") + instr.add_parameter("double", "par_double", comment="test par") + instr.add_parameter("int", "int_par", value=8, comment="test par") instr.add_parameter("int", "slits", comment="test par") instr.add_parameter("string", "ref", value="string", comment="new string") @@ -456,23 +457,20 @@ def test_show_parameters_line_break(self, mock_stdout): output = mock_stdout.getvalue().split("\n") - self.assertEqual(output[0], "double theta // test par") - self.assertEqual(output[1], "double theta // test par") - self.assertEqual(output[2], "int theta = 8 // test par") - self.assertEqual(output[3], "int slits // test par") - self.assertEqual(output[4], "string ref = string // new string") - comment_line = "This is a very long comment meant for testing " - self.assertEqual(output[5], "double value = 37 // " - + comment_line) - comment_line = "the dynamic line breaking that is used in this " - self.assertEqual(output[6], " " - + comment_line) - comment_line = "method. It needs to have many lines in order to " - self.assertEqual(output[7], " " - + comment_line) - comment_line = "ensure it really works. " - self.assertEqual(output[8], " " + self.assertEqual(output[0], " theta // test par") + self.assertEqual(output[1], "double par_double // test par") + self.assertEqual(output[2], "int int_par = 8 // test par") + self.assertEqual(output[3], "int slits // test par") + self.assertEqual(output[4], "string ref = string // new string") + comment_line = "This is a very long comment meant for " + self.assertEqual(output[5], "double value = 37 // " + comment_line) + comment_line = "testing the dynamic line breaking that is " + self.assertEqual(output[6], " "*33 + comment_line) + comment_line = "used in this method. It needs to have many " + self.assertEqual(output[7], " "*33 + comment_line) + comment_line = "lines in order to ensure it really works. " + self.assertEqual(output[8], " "*33 + comment_line) def test_simple_add_declare_parameter(self): """ diff --git a/mcstasscript/tests/test_Instr_reader.py b/mcstasscript/tests/test_Instr_reader.py index 85ae5d21..ced82f17 100644 --- a/mcstasscript/tests/test_Instr_reader.py +++ b/mcstasscript/tests/test_Instr_reader.py @@ -72,20 +72,22 @@ def test_read_input_parameter(self): enablePrint() setup_standard(Instr) - self.assertEqual(Instr.parameter_list[0].name, "stick_displacement") + parameter_list = list(Instr.instrument_parameters.parameters.values()) + + self.assertEqual(parameter_list[0].name, "stick_displacement") # space in type inserted for easier writing by McStas_Instr class - self.assertEqual(Instr.parameter_list[0].type, "double") - self.assertEqual(Instr.parameter_list[0].value, 0) + self.assertEqual(parameter_list[0].type, "double") + self.assertEqual(parameter_list[0].value, 0) - self.assertEqual(Instr.parameter_list[1].name, "test_int") + self.assertEqual(parameter_list[1].name, "test_int") # space in type inserted for easier writing by McStas_Instr class - self.assertEqual(Instr.parameter_list[1].type, "int") - self.assertEqual(Instr.parameter_list[1].value, 3) + self.assertEqual(parameter_list[1].type, "int") + self.assertEqual(parameter_list[1].value, 3) - self.assertEqual(Instr.parameter_list[2].name, "test_str") + self.assertEqual(parameter_list[2].name, "test_str") # space in type inserted for easier writing by McStas_Instr class - self.assertEqual(Instr.parameter_list[2].type, "string") - self.assertEqual(Instr.parameter_list[2].value, "\"hurray\"") + self.assertEqual(parameter_list[2].type, "string") + self.assertEqual(parameter_list[2].value, "\"hurray\"") def test_read_declare_parameter(self): diff --git a/mcstasscript/tests/test_instrument.instr b/mcstasscript/tests/test_instrument.instr index bbe65f75..307a993d 100644 --- a/mcstasscript/tests/test_instrument.instr +++ b/mcstasscript/tests/test_instrument.instr @@ -15,7 +15,7 @@ * * %Identification * Written by: Python McXtrace Instrument Generator -* Date: 09:22:00 on January 28, 2021 +* Date: 16:27:39 on December 02, 2021 * Origin: ESS DMSC * %INSTRUMENT_SITE: Generated_instruments * diff --git a/mcstasscript/tests/test_parameter_variable.py b/mcstasscript/tests/test_parameter_variable.py index c2d32bd2..468a3081 100644 --- a/mcstasscript/tests/test_parameter_variable.py +++ b/mcstasscript/tests/test_parameter_variable.py @@ -51,7 +51,7 @@ def test_ParameterVariable_init_basic_type_value_comment(self): self.assertEqual(par.name, "test") self.assertEqual(par.type, "double") self.assertEqual(par.value, 518) - self.assertEqual(par.comment, "// test comment /") + self.assertEqual(par.comment, "test comment /") def test_ParameterVariable_init_basic_value_comment(self): """ @@ -64,7 +64,20 @@ def test_ParameterVariable_init_basic_value_comment(self): self.assertEqual(par.name, "test") self.assertEqual(par.type, "") self.assertEqual(par.value, 518) - self.assertEqual(par.comment, "// test comment /") + self.assertEqual(par.comment, "test comment /") + + def test_ParameterVariable_init_options_initialize(self): + """ + Initialization with value and comment + """ + + par = ParameterVariable("test", value=2, + options=[1, 2, "horse"]) + + self.assertEqual(par.name, "test") + self.assertEqual(par.type, "") + self.assertEqual(par.value, 2) + self.assertEqual(par.options, [1, 2, "horse"]) @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) diff --git a/mcstasscript/tests/test_simulation_interface.py b/mcstasscript/tests/test_simulation_interface.py index 17f5af05..b93a8c6d 100644 --- a/mcstasscript/tests/test_simulation_interface.py +++ b/mcstasscript/tests/test_simulation_interface.py @@ -168,19 +168,19 @@ def test_ParameterWidget(self): parameters = {} # get default parameters from instrument - for parameter in instrument.parameter_list: + for parameter in instrument.instrument_parameters.parameters.values(): if parameter_has_default(parameter): parameters[parameter.name] = get_parameter_default(parameter) parameter_widgets = [] parameterwidget_objects = [] - for parameter in instrument.parameter_list: + for parameter in instrument.instrument_parameters.parameters.values(): par_widget = ParameterWidget(parameter, parameters) parameterwidget_objects.append(par_widget) parameter_widgets.append(par_widget.make_widget()) self.assertEqual(parameterwidget_objects[0].name, "theta") - self.assertEqual(parameterwidget_objects[0].default_value, "") + self.assertEqual(parameterwidget_objects[0].default_value, None) # Parameter does not exist in parameter dict yet with self.assertRaises(KeyError): parameters[parameterwidget_objects[0].name] @@ -198,7 +198,7 @@ def test_ParameterWidget(self): self.assertEqual(parameters[parameterwidget_objects[1].name], 227) self.assertEqual(parameterwidget_objects[2].name, "choice") - self.assertEqual(parameterwidget_objects[2].default_value, "") + self.assertEqual(parameterwidget_objects[2].default_value, None) with self.assertRaises(KeyError): parameters[parameterwidget_objects[2].name] diff --git a/requirements.txt b/requirements.txt index dd4a1c13..9f879ef5 100644 --- a/requirements.txt +++ b/requirements.txt @@ -3,3 +3,4 @@ matplotlib PyYAML ipywidgets mmap +libpyvinyl diff --git a/setup.py b/setup.py index 385e622c..cb570994 100644 --- a/setup.py +++ b/setup.py @@ -13,7 +13,7 @@ long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/PaNOSC-ViNYL/McStasScript", - install_requires=['numpy', 'matplotlib', 'PyYAML', "ipywidgets"], + install_requires=['numpy', 'matplotlib', 'PyYAML', "ipywidgets", "libpyvinyl"], packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", From e1ae499e97bb1db2c784838a05e6266395daee9d Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 8 Dec 2021 11:11:59 +0100 Subject: [PATCH 171/403] This commit breaks backwards compatability with scripts. Syntax for running simulations have changed. Instrument class now based on libpyvinyl calculator. Jupyter notebook example available in example folder. Still todo: Update doc strings Update unit tests Update documentation --- examples/libpyvinyl_example.ipynb | 479 ++++++++++++++++++ mcstasscript/interface/instr.py | 111 ++-- .../jb_interface/simulation_interface.py | 8 +- 3 files changed, 564 insertions(+), 34 deletions(-) create mode 100644 examples/libpyvinyl_example.ipynb diff --git a/examples/libpyvinyl_example.ipynb b/examples/libpyvinyl_example.ipynb new file mode 100644 index 00000000..33698151 --- /dev/null +++ b/examples/libpyvinyl_example.ipynb @@ -0,0 +1,479 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "thirty-runner", + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter" + ] + }, + { + "cell_type": "markdown", + "id": "deluxe-scroll", + "metadata": {}, + "source": [ + "### Calculator is what I call an instrument object" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "earned-ribbon", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The following components are found in the work_directory / input_path:\n", + " Union_sphere.comp\n", + " Union_cone.comp\n", + " Union_box.comp\n", + " Single_crystal_process.comp\n", + " Union_logger_2D_kf.comp\n", + " Template_process.comp\n", + " PhononSimple_process.comp\n", + " Union_conditional_standard.comp\n", + " Union_logger_2D_space.comp\n", + " Union_conditional_PSD.comp\n", + " Union_master.comp\n", + " AF_HB_1D_process.comp\n", + " Union_logger_2D_kf_time.comp\n", + " Union_cylinder.comp\n", + " Powder_process.comp\n", + " Union_make_material.comp\n", + " Incoherent_process.comp\n", + " Union_logger_1D.comp\n", + " Union_logger_3D_space.comp\n", + " Union_logger_2DQ.comp\n", + " Union_mesh.comp\n", + " Union_logger_2D_space_time.comp\n", + "These definitions will be used instead of the installed versions.\n" + ] + } + ], + "source": [ + "calculator = instr.McStas_instr(name=\"demo_instrument\")" + ] + }, + { + "cell_type": "markdown", + "id": "inappropriate-impossible", + "metadata": {}, + "source": [ + "### Can define parameters (libpyvinyl parameter object and collection)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "parental-albert", + "metadata": {}, + "outputs": [], + "source": [ + "par = calculator.add_parameter(\"double\", \"source_energy\", unit=\"meV\", comment=\"Source mean energy\")\n", + "calculator.parameters[\"source_energy\"].add_legal_interval(3, None)\n", + "\n", + "calculator.add_parameter(\"double\", \"source_height\", unit=\"cm\", comment=\"Height of source\")\n", + "calculator.parameters[\"source_height\"].add_legal_interval(0.01, 0.2)\n", + "\n", + "calculator.add_parameter(\"sample_height\", unit=\"cm\", comment=\"Height of sample\")\n", + "calculator.parameters[\"sample_height\"].add_legal_interval(0.0, 0.05)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "incident-nitrogen", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "double source_energy // Source mean energy\n", + "double source_height // Height of source\n", + " sample_height // Height of sample\n" + ] + } + ], + "source": [ + "calculator.show_parameters()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "subjective-battle", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " - Parameters object -\n", + "source_energy [meV] Source mean energy L[3, inf] \n", + "source_height [cm] Height of source L[0.01, 0.2]\n", + "sample_height [cm] Height of sample L[0.0, 0.05]\n", + "\n" + ] + } + ], + "source": [ + "print(calculator.parameters)" + ] + }, + { + "cell_type": "markdown", + "id": "weird-dependence", + "metadata": {}, + "source": [ + "### Can add components to the simulation as usual" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "accomplished-twelve", + "metadata": {}, + "outputs": [], + "source": [ + "src = calculator.add_component(\"source\", \"Source_div\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "foreign-developer", + "metadata": {}, + "outputs": [], + "source": [ + "src.xwidth = 0.12\n", + "src.yheight = \"source_height\"\n", + "src.E0 = \"source_energy\"\n", + "src.dE = 3\n", + "src.focus_aw = 3.0\n", + "src.focus_ah = 4.0" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "champion-knife", + "metadata": {}, + "outputs": [], + "source": [ + "sample = calculator.add_component(\"powder\", \"PowderN\")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "wrong-retailer", + "metadata": {}, + "outputs": [], + "source": [ + "sample.set_AT(1, RELATIVE=src)\n", + "sample.reflections='\"Ni.laz\"'\n", + "sample.radius = 0.01\n", + "sample.yheight = \"sample_height\"" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "anticipated-tampa", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here are all components in the monitors category.\n", + " Brilliance_monitor Monitor_Sqw Pol_monitor\n", + " Cyl_monitor Monitor_nD PreMonitor_nD\n", + " DivLambda_monitor PSD_TOF_monitor Res_monitor\n", + " DivPos_monitor PSD_monitor Sqq_w_monitor\n", + " Divergence_monitor PSD_monitor_4PI Sqw_monitor\n", + " EPSD_monitor PSD_monitor_TOF TOF2E_monitor\n", + " E_monitor PSD_monitor_psf TOF2Q_cylPSD_monitor\n", + " Event_monitor_simple PSD_monitor_psf_eff TOFLambda_monitor\n", + " Hdiv_monitor PSDcyl_monitor TOF_PSD_monitor_rad\n", + " L_monitor PSDlin_diff_monitor TOF_cylPSD_monitor\n", + " MeanPolLambda_monitor PSDlin_monitor TOF_monitor\n", + " Monitor PolLambda_monitor TOFlog_monitor\n", + " Monitor_4PI PolTOF_monitor \n" + ] + } + ], + "source": [ + "calculator.show_components(\"monitors\")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "experienced-arizona", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Cyl_monitor _______________________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[1mnr\u001b[0m = \u001b[1m\u001b[94m20.0\u001b[0m\u001b[0m [1] // Number of pixel (radial) columns\n", + "\u001b[1mfilename\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [string] // Name of file in which to store the detector image\n", + "\u001b[1myheight\u001b[0m = \u001b[1m\u001b[94m10.0\u001b[0m\u001b[0m [m] // Height of detector\n", + "\u001b[1mradius\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [m] // Radius of detector\n", + "\u001b[1mrestore_neutron\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [1] // If set, the monitor does not influence the neutron \n", + " state \n", + "\u001b[1mthmin\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m\n", + "\u001b[1mthmax\u001b[0m = \u001b[1m\u001b[94m360.0\u001b[0m\u001b[0m\n", + "\u001b[1mnowritefile\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [1] // If set, monitor will skip writing to disk\n", + "-------------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "calculator.component_help(\"Cyl_monitor\")" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "wooden-helicopter", + "metadata": {}, + "outputs": [], + "source": [ + "cyl = calculator.add_component(\"cyl_monitor\", \"Cyl_monitor\")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "preliminary-training", + "metadata": {}, + "outputs": [], + "source": [ + "cyl.nr = 200\n", + "cyl.filename = '\"cylinder.dat\"'\n", + "cyl.yheight = 0.2\n", + "cyl.radius = 0.5\n", + "cyl.restore_neutron = 1\n", + "cyl.set_AT(0, RELATIVE=sample)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "official-withdrawal", + "metadata": {}, + "outputs": [], + "source": [ + "mon = calculator.add_component(\"acceptance_horizontal\", \"DivPos_monitor\")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "colored-policy", + "metadata": {}, + "outputs": [], + "source": [ + "mon.xwidth = 0.2\n", + "mon.yheight = 0.2\n", + "mon.maxdiv_h = 30.0\n", + "mon.filename = '\"acceptance_h.dat\"'\n", + "mon.restore_neutron = 1\n", + "mon.nh = 300\n", + "mon.ndiv = 300\n", + "mon.set_AT(0.1, RELATIVE=sample)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "based-torture", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "source Source_div AT (0, 0, 0) ABSOLUTE \n", + "powder PowderN AT (0, 0, 1) RELATIVE source\n", + "cyl_monitor Cyl_monitor AT (0, 0, 0) RELATIVE powder\n", + "acceptance_horizontal DivPos_monitor AT (0, 0, 0.1) RELATIVE powder\n" + ] + } + ], + "source": [ + "calculator.print_components()" + ] + }, + { + "cell_type": "markdown", + "id": "august-words", + "metadata": {}, + "source": [ + "### Could set parameters with a syntax like this" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "smooth-cholesterol", + "metadata": {}, + "outputs": [], + "source": [ + "calculator.prepare_run(parameters={\"source_height\": 0.03, \"sample_height\": 0.04, \"source_energy\": 300}, \n", + " ncount=5E6, foldername=\"path_to_output\", increment_folder_name=True,\n", + " force_compile=False)" + ] + }, + { + "cell_type": "markdown", + "id": "dependent-garlic", + "metadata": {}, + "source": [ + "### Run with backengine" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "daily-louisiana", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/McStasScript_tests/path_to_output_13\"\n", + "INFO: Using existing c-file: ./demo_instrument.c\n", + "INFO: Using existing binary: ./demo_instrument.out\n", + "INFO: ===\n", + "Warning: 24259 events were removed in Component[4] acceptance_horizontal=DivPos_monitor()\n", + " (negative time, miss next components, rounding errors, Nan, Inf).\n", + "INFO: Placing instr file copy demo_instrument.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/McStasScript_tests/path_to_output_13\n", + "\n", + "Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Ni.laz' (Table_Read_Offset)\n", + "Table from file 'Ni.laz' (block 1) is 19 x 18 (x=1:6), constant step. interpolation: linear\n", + " '# TITLE *Nickel-Ni-[FM3-M] Swanson, H.E.;Tatge, E.[1954] [carcinogen];# CEL ...'\n", + "PowderN: powder: Reading 19 rows from Ni.laz\n", + "PowderN: powder: Read 19 reflections from file 'Ni.laz'\n", + "PowderN: powder: Vc=43.76 [Angs] sigma_abs=17.96 [barn] sigma_inc=20.8 [barn] reflections=Ni.laz\n", + "Detector: cyl_monitor_I=0.030668 cyl_monitor_ERR=0.000134901 cyl_monitor_N=134610 \"cylinder.dat\"\n", + "Detector: acceptance_horizontal_I=0.744367 acceptance_horizontal_ERR=0.000360233 acceptance_horizontal_N=4.72627e+06 \"acceptance_h.dat\"\n", + "PowderN: powder: Info: you may highly improve the computation efficiency by using\n", + " SPLIT 19 COMPONENT powder=PowderN(...)\n", + " in the instrument description demo_instrument.instr.\n", + "loading system configuration\n", + "\n" + ] + } + ], + "source": [ + "calculator.backengine()" + ] + }, + { + "cell_type": "markdown", + "id": "talented-poison", + "metadata": {}, + "source": [ + "### Get data" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "global-loading", + "metadata": {}, + "outputs": [], + "source": [ + "data = calculator.data" + ] + }, + { + "cell_type": "markdown", + "id": "engaged-syria", + "metadata": {}, + "source": [ + "### Plot data" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "retired-brick", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plotting data with name cyl_monitor\n", + "Plotting data with name acceptance_horizontal\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5YAAAHuCAYAAADk5ZP7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeZxN9R/H8ddnRiOyZc0USbIVWaaUakIiirIUIVmHiKxZijFEihCRnRSRNX4RCRFSRJQtpNRYImsjk5nv7497R0OjxB13Zu77+Xicx733nHvP+dxTzrmf+X6/n6855xARERERERG5XEH+DkBERERERERSNyWWIiIiIiIickWUWIqIiIiIiMgVUWIpIiIiIiIiV0SJpYiIiIiIiFwRJZYiIiIiIiJyRZRYiviIma0wsz6JXjszq3CF+/zXfVx43Cs83mQzm+yLffmKmRXwnocC/o5FRORymVkFM/vHOd4u5T3JwcyamNneRK9T3L0gUOkeKKmJEksRLzMraGZTzGy/mZ02s+1mNtjM8lzmLvMCa3wZ40XUBgZfheP4yz4853If/P0HkIiIL3n/WOe8yykz+9LMqvpg12vwXMsSjtPHzFb803v86AXvIv6ne6CkGkosRQAzKwasB7IBTwJFgBZADqD15ezTOXfAORfrqxgvZGYh3uP85pw7lVzH8TfnXJz3XMb5ap/mcY2v9iciac4beH7MlwG+Bj40s0JXskPnXKxz7sCVvudqcM4dd84dT679J9y/5N/pHiipiRJLEY+RwPfA4865z51zP3kfmwJvmtm9ZvaHmWVL/CEz22xmHZLaYeJurAndm8ysopltM7OTZjYn8f7MLKuZzfa2lu40s0cu2F/CPh4xs23AaTO7NokuuLnNbKqZHfUeZ4WZhXq3NTezb8wsxsx+NLN+ZpbuUk+St3vUO2Y2yMyOm9lPZvaYmd3sPc4pM1tkZtkTfSajmY1LFM8HZpYziX0O8L7nFzNrn2j7uW5A3vM5Cbg5UYtCwjkOM7M13v9OP5lZxyT+ezTzthD8ATx0qd9bRALOKe+P+Z3A80AcUBnAzKp4r/1nzOx7M3s64UPea/I4MzuUqOfLE95t57q5mlkTIBJ4MNG1rIAl0RXWzDp5r2l/eK9xZRJta2Jme82snvfxqJmN/7fEzXucbd4Y/wfkvGD7ua6wZvammc2/YPutZhZvZvm8rwua2QLvPSDazEaYWYZE799rZl3M7EMzOw00M7P0ZjbB+5l9ib5Lk0Sfu5T9djTPvTPGzLaa2YMXxFrFzL7ynr/9ZjbwUvefxHnTPVDkHyixlIDnvcBXAIY45/42tsU5d8w5txb4EXgq0efuBIoD7/+Hw70MPAtUAkoDPRJtGwYUAyp639PvH/bRDCgJJNUiOgfIB1QHygLvAgnJYxDQGbgdT0tsMyDiP8QPUAs4BYQBc4HJwGjgVaA8cMsF3+sNIByoATwI5Pd+5sJ9ApTD872HmdntSRx7DdAB+BlPa0JeYI2ZZQIWAlvwnNfuwCtmVveCz/cBhuM5z+sv9QuLSOByzp0F/gRCzCw/MB/PdbYE8CYwxczu8r69PZ5r46N47g8dgRNJ7HYGnmvjWv66lu278E1mVg+IArrhubZ9Byw0s+sSvS030ADPNbaOd2l+se9jZlnxXLuXevf5P+ClfzgFHwBVvJ9L8BSw1jm3z5vELga247nnPA7cDbx+wX66Ax/iuf/MB3oCVbzvfxRo5P0uCXFe6n67AfOAO/Gcz6nmbY0zs+LAAuAjoBRQE9j7H/d/Id0DRS7GOadFS0AveC7kDij1L+/rCaxM9HoQsDDR6xVAn0SvHVDB+7yC93WZC/b3hfd5Fjw/XCon2l7lIvu474K4zh0XT1J6Gshzid+9C7As0evJwOR/eP9kYFOi13m8Mb2QaF03YJ33eWY8yW+VRNuLej9TONE+N19wnJ1Aa+/zAt73F/C+bgLsveD9rYCfgOBE6wYCay747/GSv/9/06JFS8peLrimXoPnR3o8nh/srya+rnjfMx2Y5n0+Ahh/kf1W8PzsOve6D7DiX96zFhiQ6HU6PAlohPd1EzytqTkTvWcsMP0fvt9zeP5Qmvh6OS3xdTXxvQAw7/W1caLtGxOu+0BjvPeyRNvLAzGAeV/vBcZd8J5DQJNEr2/1Xqeb/Mf9Dk+0PdS7j6Le1+8Acy5yHv51/0l8ZjK6B2rRctFFLZYil+5doLy3y0sQ8LR33X+xJdHz/fz119mCeH4wfJlo+xcX2cfGf9j/HcAO59zBpDaa2T1mttjb1eYU8Aqe1s3/4rtEzw95H7desC6X93lBPD/Mzn0X59x24Biem2uCxOcFzj83l6IosN6dPwZl7QXHgH8+dyIiCXp6r5GngReBts65jXiuKRdemxNfa94FnjSz9d6ujaWvMI7zjuc8rafrOf/adsA5dzjR63PXTzPr6e2eecr7fcBTQ2DDBdfLi91vcM45YBae+gOYZ6xpSWCm9y0lgLIXHOcTIAPnFyI6d/01zzCQXMCGRMfZDRxN9P5L3e+F91X46/5xB7DyIl/tUvd/Id0DRS7iksdWiaRhu72PRYBNF3uT83T5WQE0BNbhaWWc918O5Jz7M/FL/uqObonW/ds+Yv5hs11sH4m6ykzHM7bnN6Ae/9Bl6iLOfQfnnDOz89aR9Pe65H0msY9LcanH+adzJyKSYDSeLoOn3PnFdP7xWuOc+9LMbsHTtfMRPN0UezjnhiVbpP98/RyNpytrYkndJ/7tGjoDWOntDvsUsNo5F+3dlglYDrRJ4nOHEj1PfP29lHvepe43qXtS4nvQxY5xqfu/kO6BIhehFksJeN6/9K4AOpj3DpHYBeNK3sEzDqQRMMs5d9pHYewGzuIZ35Gg3GXs51ugqJkl9ZfOosD1wIvOuS+cpyjFTZdxjP8i4Xvdk7DCzIriqb67/TL3+ScQfMG67UCYmSVef+8VHENEAttvzrld7u8VWreT6Hrmdd61xnkqdb/rnGuI5494zS5yjKSuZRfawfnXz3R4xvZd0rXNG8uuhCXRPst6e94kuDuJjyfezzo8rWhP4EksZyTa/A2e+8tPiY/lXc5eZH9HgV/xjG1M+G4F8dyjLnu/SfgWz7jGpPhi//9G90AJKEosRTyex3ODWWJmlb3V18qb2XjOn8trNp5krCH/vRvsRTnnTuAZ4/KmmZUzs3uA/pexn2V4Wl1nmaeSbSEze9ZbcOInPDekdt5KeBF4ijwkG+fcSWAiMMLM7jdPNcPJwCJvYns5fgTymFlZM8vpLdIwFcgIjDKzouap0tgOT0EkERFfeRtPUtbHzAqb2fN4rqNvApinQumTZnabmZXAM1b+Yte6H4HCZlbEey1L6jfZm3iu2fW9CcnbQHo894vLNQ1PAjfUe+wIoNolfO4DPOPyS+C5FyaYimec53RvZdJCZlbTzP6tCM7bQF/zVEsviad19TR/tTBe7n4Tex14zPvfq4iZlfF+X1/t/x/pHiiBRomlCOCc+w64CziI5wK9HU9J79/w3OwS3heDpxrgATytnL7UAc+UJ595Y+hzmfupjSe+xXjmX2sC/OmcO4SnAmwbPH/FfQQYcCUBX6LOwOd4Kg+uxFPN7tkr2N9qPD+MPsXzF+/7vDfv6niqAn6D58dEb+fchV3AREQum3PuRzytdnXwXEc7AE29LXoAvwO98FyHVuC5hzx/kd3NwTOufj2ea1n+JI73PtAXGOzd5x1AdXcFcxc7547hqUL6iHeftfAUJfo3M7zHX5m4Jdd7/a2AJ0lb6t1nP/4a73gxA7zv/x+eYRpTgZPAmSvc7znOuW/x/Pd6AtjsPVYBX+3/EukeKAEjoaqWiFwiM1uIpypcT3/HIiIikhaYWV7gF6Ccc+4rf8cjIv+dEkuRS+Qda1kBTyW8Is65H/wbkYiISOpkZoXx1BJYC2THMz1GXqC4049TkVRJXWFFLt2HwHtADyWVIuJPZjbPzL4xs41mtsrMSnnXFzaztWa20/t4m59DFbmYeDzjADfh6Qp7As98j0oqRVIptViKiIikMmaW1Tl33Pv8cSDSOVfGzJYBE51z75lZI6CZc66SX4MVEZGAoBZLERGRVCYhqfTKCsR7pxkqA7zvXf8+UMbMcl34eREREV9L5+8ARERE5L/zTodUBc/k6I8A+YBfnHNxAM65ODOL9q7/1W+BiohIQEjTiWXOnDldgQIF/B2GiIikUhs2bDjsnEuRLX7OuRYAZvYMMAjPNBeXxDuXXwTAddddV7Zo0aLJEqOI+MaGDdF/vcgYCtdBxvyniNngyFjWiNmaiWuL/84fm6+DwpDh2t+5mb1s33A9IWWzcwue0hBHuZ5DG7LBjddS5IZtHOV6TpCZP365DrLBtdf9zi3sZdue28lX8Ef27b2Zsrk2eGKIKQvZ4slzzUEOnswLOz0xlS0bepXPhu/5+lpfyMzF+GpnXvthsXPuER/v1qfSZGJpZjWAGoUKFWL9+vX+DkdERFIpM/vR3zH8G+fcu2Y2Fs/8eDeaWbC3tTIYCAX2JfGZscBYgLCwMKd7pUjKZRZ1/oqYGnT+fSFvLHkZ3oNcU7bz45Ci/PEtsGEFpb69lhgycgPRhLODsU++wPdv/Q5ArTzzmB1dF7qnp8qUQYzI0pVXT3Skx5Ch9OzUm9wc5IUu2/lkfQYe7nKYjwbfyWNjPfVYvo4oTpmuWzm4F5jlicm5yKt3IpKRr6/1MUArX+4Q6AM5fbxLn0uTYyydcwuccxFZs2b1dygiIiI+ZWaZzCxfotc1gN+AQ3gqbD7t3fQ0sNE5p26wIqnU35JKSRUMT+udL5fUILXEKSIiIh7XATPN7DogDk9SWcM558ysNfCOmfUGjgKN/RiniPhCtUhYtAjGVAOgcMRm3uj6MncPWsmXVcP58aaiFB6wmTnU5q5hX5GbVSwJr8nOVSUp4bbQbuYgRvzUEYDZexrAUsO9aFhXB19Aj1FD4S0YUKAv99Zezos9BxG7MgtEw8/kZHZEdQAqxi7jw0FVedzK++1UpBYGXOPvIPxAiaWIiEgq4pw7CNxzkW3b8Uw6LyJpxN0LVxLMtaz1tl4WiSjOjjvvxF5zcAvwP9h5f0luv2s33XK9Rp+CA+EH4DkYUbwr1bbOge7en/yDz8Cm9Ni1Dq4HjsGvbTKTa+NJ+B7WtqlIpsGHid0PmcYf5ibbBwMzALC/WzbyrjkGpK1usOI7SixFRERERFIYdYNNvRK6wgaaQPzOIiIiIiKpwIN8aXmBX+ANTwvhmvhfyFz7V6gMzIM6Jacye11DSuT6knBWwTz4vmQ+DpOTxVTlCDmoNm0OAOGsoseDQ+lXrwsvj3kDe8QRcjQWxkPWMwc43vYGTj6Ti5qzP2AjpTnVMSfuZgNgI8XgPrVWysUpsRQRERERSXEyU8WdYIl9Rh93mj72GQBHOjengxvP7jW3UoC95OYgs5s2JHZrekb17sTnfcO4beU+qAP9fu3CiFFdydDoKACLOtTmjYlt6bxsJLNb1YVckOWzWBjjOeL+cdnIHPMrB87kIdOMOP7sY6zMcjcAzZgIzPLHiUh1AnWMZZqsCisiIiIiklqZfqFLKqT/bUVEREREUohzYyuv78SSJ2tCi0hiCeFLN4sv3SzoeBPDWnbnVnYz5rdWzKAepbZ+QQWWw1LozquwFhr8OpFeQYN5u01TTs+6ntOzroe9sI98MAvepz7Fam+kRaW34LEzpA+JZTBd+CLjPRRNv4OnGr9Dzmv3U/bMesqeWc9u87RWqhvsvwvU6UaUWIqIiIiIpCBV4ufDE8AGWDLuAcbEt+LuOVu4e84W3h7SFOJg2Nbu/EFWvv2pNJteu4ex614g5H8nOEQeXu3WkWmjmpHp1GFCiKVNsyG0aTaECcsaMqxrd+4dtZxir+0ljmAmTGnLz6E3cmhifnJyhPq8z89DClGEnXwRcg/70ufjuvRxOBeppPISJXSF9eWSGiixFBERERERkSuSWlpWRURERETSNLMTkC+SPIwjw7CjnM5xPdk4xv+CHmNv7QIAPB06Fz53tCs4mB704dvsRbnj4V18UKYmT0XPJIpIWsaM46k27/DBa8/SvNhUitXcCMDIJZ0ZM6gVa5+syLaZBSgWvYNtjQuwgbIQBuNpwa7hd7C9080Um7+XEjW3AFDUXycklQrU6UbUYikiIiIi4meJ5618t1lLTve7HjrAKNqylwKs4gFW8QBkg7IF11CCLewjH3f03AVloWrcYjJlO8kubuXUCzmZdbAuFADSQRcG04XBTK/yBF82CGftzNIUm7iXsaEtGUVbhtIRDsBX3IX1c8SRDo7BU1Pm8yTz/XNCJNUJxGRaRERERCQFOs1nPz3Mg+vW8UcJo2XGscyNfYJSIRsZtbkTAE9snc683vWh7ximjWoGFYA/YGFwdU4tyEmvB/pD1BluybOX3btvh6LQfPNUAE4VCabUtC8YTBe4H2own3Ks8ySWeyH7kzG0+XUI6TkDz3oT3cYaV/lfBep0I0osRURERET8KHFrpaR+6gorIiIiIiJ+EeGyQd48PPjTahgPkzI24QcKMCSks6dFMecZyHmGM4Twv76VCSaO2W2qw3tw65DviCEjlAaWpuft0Nbsji5Eu56DoBB0LvkKnUu+QtH0OzhJZhbHVKV54ZHcwxcspwKLqcrbEU15auY7jGrTiVnU5VV3TFVg5T8x55y/Y0g2YWFhbv369f4OQ0REUikz2+CcC/N3HMlJ90oR/zOLgjcjoRQ0Dx/JBGuL22PYWke3BlFk4DR9bhvoeXMv6NO4O33aD6TB8Im8QScOkYc7bR5MKMa9zZazJaYEb2VsSxObwR3uK2byJAD7CaVmzHxqZpzPtPbNoDVkuOkoMZuyQ3qwXxxc6zmMq+6XU+EXvr7WFzJzr/tqZ151IMXfj9RiKRKATsfGcTo2zt9hiIiIBDx1g5W0IhC7/4oEvPIDP8XM+LrXw/4ORUREJOC97zbxdBv4o4Vx7W2Op9w72FhPr8LXdkZCC+AJz3uz1j9An60DeXV4R3oEDeXu+HV0KDiGdm4QcSxi/G8teD17V5rMmUFZt5r/8SgzqAfAKsLJmDGGUmwi7/BXWEFFQonGdjncj8aXUSW42+p6DqRusJctmYr3ZDWzscAC59wC3+/+yimxFAlAebNmICSdOiyIiIj4XelIlvMmfAHXPua4+/uVLDhRE+4ARkOfiO70WdWc2StfAKDO1oXcVHwXPaYNhfGwmKqwF7ZQghWbH+FUkWAyDYkjpMkJTpKZVYRThJ0AdFg2hu8r5aPQyp+xbx3L2pQnhoy80uxlbIoDGwKAc538dDLSjmRIso475yJ8v1vf0S9LkQD0x5/qCisiIuJv5k3kRNICJZYiASgmNo6YP8/6OwwREZGAZVO8TzZGMbb9C9AF6iybytaY4lTNspjC5Tfz9pSm9Ok9ED68jTpfL6TO1wt5pvg4VnMf7oDRrVkUi3bWplf8S6xY+AhPlXyHTD3i4GeI/T4LO4eUJA8HefTg/3j04P9oV2kQ+8iHfex4tU1HasbMZymVPRVln90L1FZrpQ8kdIX15ZIaqCusSACKiT1LSLz+riQiIuJfFSjrTrMh+gzcmJ5sDY4RlnE988bWp1jERp6rPYkMk4+yPUtRbjm4B4B37SbezXcQ9o3n7U6rCcl5gn7t+/PG8LZ0HjWStUNKs5XivMwrHCyQmzOEsDxPJQAKsJcXeJNTkcGki4mnx5ahtCg3nkosAyZ5Y9LYSrk8+mUpEoBO/xlHjLrCioiI+IUqwaZthqf1zpdLaqDEUiTA/BkXz59xjtN/xpGW57EVERFJ0Z5dCvzJhoz3war0MBsmLGtLNo7BH7DNvqDdnEGcbn09x8hG3TyzqJtnFhFuJ9wE/PIMz82YROysLLhCRmRMFN+0KULpmE00t8JsjytK3K+ZqDJnFVsowRZKcPOMg2ylOJmuncnIjG3gerij9i4Omae10qkSrE+oK6yIBISElkrn4I8/48kQEuzniERERALD+S2Vq3nKFeADuxHqH4J8ZaA1lK20nnkvhEDp5xjRE0gH6wnjg5XPej72uWfde6ENaZR5FtwGHcu8yqk2Obmzy3Z4xQg68Du1g8P4NORRKAAHyQPAe/XqMp4W7Gxam87LasP78MactgB0YuTVPBWSBqnFUiTAJK4GGxOrAj4iIiJXX1HgKT7o+Sz3uu+hRBnY9zYMhV6jBkPH2jT5ejRcC7y7lDWUp2z4asqGr4acwCoYSkeYC7eW+Y44gqEy9CwYyR9vGQ3zTOPT4Y/CdlhWpjy1mEst5tLIZrHCHoEmwC7gGHS23HS23H48F2mPusKKSEBInExqnKWIiIiI+EJqSYBFxEcSJ5On/1RiKSIicjWYRfGQCwPgU3sUiILHIllr39LTLWc+Nfi2E7zXpi6Nas5isjUA+vOGi6az5aaDWwVAiYgttIgYz0kyEz0ulHk8wYiJXeEVGFyhC/2/7Ufm8JO8174uwcRRacoanmg8HYBXXUd6bB4KK/Ascz1dczW20rcSxlgGGiWWIgHmjz8Td4VVYikiInK1fGrrvc++o4HLx7RKADUYULsAFACKwhQaw4LT0DELXw6Zzgja85kbz4ND1gHQptMQ7n9yPW1mDmFU/k4wHrgdZu+pTkVWMDq8CaO6dmLU4k5U2zwHcsK8BvUB6D2tL6VKVqTaiOVKKpNRQlfYQKOusCIBJkZjLEVERETExwIxmRYJaOd1hVWLpYiISLIzi+JmV48fsxf1rDg6mVa8zbTllWBDAeqUmcrszQ1hF2ylOIzMAAfg7vxboC3c2m23p5APMKp3J9rNHMR6wiAT8DmU7buaOssWcnellYRwhtmDqlMn70K6MphFRWvh3vS0JVVnNvsJ9c9JCCDqCisiAeH0nyreIyIicrX9+GRR6OB5vqz3WNZQnibuYyb3bU3bMiOZna0eLErHz/MKwbtRUDoS9p3mvW7P0GjULF5t0xGAHmOHMmJNVxgKPArv9a1LNo6xrlI5wljPaFpRp+9C8vb+gUoL18AB4EfPcTtGDaXKylUwAbBIXLwfToSkWUosRQKMWixFREREkk+gjrFMNd/ZzO4HmgLpgWPOuef9HJJIqqR5LEVERK4eMyBvJBwEanjWrSeMAuylR+OhUAAqtVzDq+M60mLceML4ih+7RLK/ZDbG0JrMnKRUmy/oMWQoAIU7baYUG8lW/hhNmcw932zCPnLc1HMXGYlhUe/afNO3CAupTrnq66i0ZzU22QGQ4cRRGA3UBzfNH2dD0rJkTSzNbDBQB0+dqxLOuW+96wsD7wA5gCNAY+fc9/+0L+fc58Dn3s9/aGaZnHOnkjF8kTQpcYvl72qxFBERSX77oUL0x6xY9wgAwcTxdNe5TJ5Sj9foTnuG89yaSYwu34of7VoIg5e/6s+E+W0Juf8Eb2V/nog/7gFg58qSBIfHkYeD3PvaRsZ2awxH4OeChWi1Zww97hlKS8YRTBzdJw/j5iY7yNj3NADbbP5fMU1TNdjkEqhjLJO7Kuw8IJxzPbvPGQ2MdM4VBkYCYxI2mNmtZrb0gqVrou2PAtuUVIpcnpjYOK4JNoJMXWFFRESSk1mUv0MQP0hILH25pAbJ2mLpbWXEzM6tM7PcQBngYe+q94G3zCyXc+5X59xuoHJS+zOzJkAB51z3ix3TzCKACID8+fP74FuIpC2nY8+SMSQdZ+PiVbxHREQk2b1OA5eTafYo7PZ0Se3x26sUG7SRI+QklGjmUgtWwY83FYIP0/F9zXzc9uQ+Xp3Zke4rh1Ei/Ev69ewCQK81gxlHSw6Sm27dXmMTpbi50nb2zi8GkfB9VD5u67mPfgO6QAkoyRYWVHrSG4unxVJzV0py8Mc8lvmAX5xzcQDex2jv+osys8eAV4AbzGy0meVK6n3OubHOuTDnXFiuXEm+RSSgxcTGkTEkmAwh6c6rECsiIiK+E8ZqSrmqwI1Mu6sZVMyDOxqEOxpE7MdZKM8aOq8bSXG2svjXx/mmWxGYlw4ywUZKw9PQw9rwU3huvt15F+mIIx1xnCobzP22njr2IWNoRXG2ko447ISjQNQ2KvMJswdU5+UJb1Cu7Ge8F9cIluNZiFRSeZWk8/GSGqSWOHHO/Q+4yd9xiKR2p/+MI8M1wVwT7NRiKSIikow21b6HPa42FSnL9RzD5ntaLDkFEyq1pcOygQzr2Z2FA6qze93thDQ6QWzdLCysVJ1qtedwzF3PzRMPUqfZVPqe6A1A9yXDYCC81e05KrCCO4J28ecxI911UJMPWLCnLi8X7M/1zY8xkycZHNyFNm5Ioqg6XfXzIIHBH4nlPuBGMwt2zsWZWTAQ6l0vIsnsdGwcGUKCiYtXYikiIpIczKIo65Ic2SUBwIBrfJ1lpYJOZlc9sXTOHTKzTcDTwHvex43OuV+vdiwigSihK+zZeKfiPSIiIsmkI0Np1OI+GjKVHzcX5ccmwLWebQ3WTGRrRHHiCObeActZ+3BFqAWxH2bh9WXtOUMIk6Obwrfp4SbIwWGmZ6kPQM7aP/N+UC2enjYXV8T4LL4cNZnNoo9rw3HgwYPsPnIrFdetZXm1e+lnIcBJdYG9iswgnRJL3zKz4UBt4AZgqZkdcc7dDrQG3jGz3sBRoHFyxiEif4n5M46sGa4hLj5e81iKiIgki8p0oilMgrXpKnqqhDSBvO1/ACCaUAqzgxFTukIhzydytP6FdkEj6LpuBBPLNeCPbNdyLQ6u9RTg6YunK+zYoJbU3rCIjA2qkvHEb5RgC18uC4ffIW/4D2R0MXwXcwe2z4G3Kq2SSrkakrsqbHugfRLrtwPlkuu4ZlYDqFGoUKHkOoRIqnU69ix5s1zL2fggjpyK9Xc4IiIiaYpnihF1gw1kZnBNsL+juPr8URU22TnnFjjnIrJmzervUERSnISusBlDgjn9p7rCioiI+ErCvJVPuV0cqpmfyTPrwQHgCeBdiN5fkOj9BQklmg+GP8vXjYvDKuBTOPNHevqsHEjGYr/RvPZUri3k+LBKVdgPz9vL1GMG9ZhBHOmwXY7qJ5YQcu0ZBtGVLyuV4Ne+manMUjJzkmtfcCyJeIAlbqlaK+WqSTVVYUXEN1S8R0REJDnV4AO7kW9dIe4ov4uH1nzEpzsfpXOnV+jIqwAspyKEQZnhW3m9W3tePDOcU1ty8np4e16sOZyb5u+iNBt5fMhiinXaSM1689nnnZnvxZrD+X5+PvKzhxJs4VZ2c2f8NwAc2RtKr4Iv02LceKrYswA455+zEMiSZYxlKhCAX1kksKl4j4iIiEjySZaqsKlAAH5lkcAVH+8881iGpCM+3hETexbnHGbm79BERERStYRusNQoQ8T8NxlFG8quWU1mTtK88EjGxLTm1LCcANzUcxcflq/Kk0Vn8uLW4VAVXi/XnhenDYfW8MOJ20j3Gdg2x7aJpdn2R2mo4Nn9h/OrMpz27G9zC41HTaER7/FN0J2soAJTCzag38T+0DwK+EXdYOWqSpNjLEUkaX+c9bRQZrgmmAwhwcQ7OHM23s9RiYiIpBEtIrl5/nbG2guMmtaJIuxg3vD6TFjWltg/Qs697efGhVhKZWLnZaFf8S78Wcx40YbTocFAjldNT9ssw7AYR5txQ3ivWV0eavMRXOvgWsd8ajIppimEQTde41V6ADCLuizqVJusjQ7469tLAgOCfbykAmqxFAkgCV1fM4YEE+8ddHE6No5rA7F0mYiIiA8940LJR28yc5IdrgiTu7Zm2h/NaNB+ItO+bkbs9Cw06TkagALspc+ygVAIyrGOoVnawQQYNqM7eeodZOy6F5hcrx4vxL5JcEgcS7c/xndFbwVgBvU4NSwnH/asyhha0f29YZRr9BlfRpeDeXB86Q1QIhK32Y8nQwJSmmyxNLMaZjb2+PHj/g5FJEVJKNaTwVsVFjzzWoqIiMjlM5vs7xAkJTE8zXe+XFKBVBLmf+OcWwAsCAsLa+nvWERSkoTpRTJ6u8GCZ15LERERuTLvjmoJ1wLHwB03Jh9pzevN2vNi+eF0WDOQYeu7M+XgMwCE51nFQ5U+4hmm8PA3n7PzziIsalaRUmxkIY/SudwrNLlmBsyAEYe7MiuiLmGsB2BB9Se5e+FKGsZM5dSBHNRotICX6M/J0MzM3VOL2bbLG5HGV/pNQmIZYNJki6WIJC0mUVfYjN7ur5pyRERE5AotbgLrgUfO0K7TID6Keog3JrblxTXDYSAMm9adCRENiTuaibijmfgw7nGqspgmNhyiIRvHqNZyOcPoCEBlPoXPwN1rcD+8yQs0YBoNmAb3QxcGc/KLXDgLohkTqbloCY2umXUuqVTRHvEHJZYiASTG2zqZ4Zp0f3WFVWIpIiJy2c5VgxVJTF1hRSQtu1jxHhEREbl8TaqMZvIjrWkzcSTtGc5ta/Zxa/nvPK2Yp4HuK2gePJWF9aoDMLtMQ2gCrIaj5TPQNvYteo17if4HexK/4TqyVj4AB8AOOMrWXs27PEMv+noOFgav0Y15lZ5gJeEMoiuh1fbA2RFAdpxr55+TIAFPiaVIAImJ/fsYy981xlJEROSyPeTCmNz3UZgFo9Z0IqZ8RngBSny1haj2kcygHuW7raHHqArMntEQgNe/bs8s6hJLCNd/c5rjYTfQb0J/cjT6hferP0Ll3z4nrjI8muVDDpGbBVufpFTxTQAMq9KKDmPHsPHxUsTvuI6n18+Fzt8Dj+Dcbf47EfKXhOlGAoy6wooEkNNJVYVVi6WIiMh/ZhaFZfR3FJIiBWhV2DSZWGq6EZGk/TXGMpgM3sRSXWFFREQu36djH/UUYM0J7IXJA1pT46uZ5OAIjXrPogRb6DFkKHe0+Ype9V6iV72XeLHncL6cE86mZfdgfzh6/fkSNzfezpFBN1LltlUEfeG45nA8x8jGpj3lmF28OhmJISMxdCg+hvcjanE4Ty5ID006jQameRcR/0mTiaVzboFzLiJr1qz+DkUkRTn9ZzwAGUNUvEdEROSKnZ4M3wNvALuA8RDU/HeCiWNCz7aM7duY/tP7UaXTfGoxj1U8wCoegKzAIqAb3FRuFxmJ4cf8RaEY0A5cYYMmRg4Ow7dGnQELOUwODpOD97fW4umxczlJZiaXq8eC+BrkiGuhSrApSYC2WKaSMEXEF07HnsUMrr0mCKd5LEVERP4zVYEVSVqabLEUkaTFxMaR4ZpgzIygICPDNcFqsRQREbkMz7hQ6NGEuwethG+B5sANcCJbFtZRDj6BMbTCbnHk5DANmMoPFOAHCtCg20R4Eph9lp9nFKLHuqFQAF6v2Z632rfglUKdoRQs6l0b8oArbbzx9cu88fXL9KU3ERFvkn/dITJzkiPBn3Ak+BO/ngtJQrCPl1RAiaVIAIn5M+5cF1jwVIeN+VOJpYiIyKUwi4LFkbA4knfvagk54ct14bSbOAhqQNlpq3k+/Uj2l7yFXl+9RBtGwRiYVrwZxXru5UfbwI+2gWkzmnmS0XvSwXfAaqA+vGjVOElm0hHHHcO/olffl+AMWHMHnwCfwBFyMHblC+Qp9yN1rAJwCOea+O+kiHipK6xIADkdG3euaA94qsOqeI+IiMilq1DlYwBWzHuEGp1msqDxk4wY2RUWbKMeMyjOViYXaU0ODjOYLvSc2Js1lOdNXuDOTDs8O1kHZAI3xBhUvx07KMKEZm3hx4fpUbsaNIJXa3ek+4Zh9NvfnyXRDxBNKAAjaM+hBydxqHIkVH4Rp8bKlCdhjGWACcCvLBK4YmLPkvGav/7ZXxeS7lylWBERERHxASWWIpLWxVzQYvnzsRgOnDjtx4hERERSB5sCkI4VNR8BoMn80Uxe2ZrPppRjIN1YlKc2L/YcTpUB82HW23QoOAYegm0zSvPUiXe4M3wHIfNOALA9e1Fu2bcfy/85ZL8PXgHyAM3T8eMnebi590GO1c6GmeOmertYyKMM3dUDgB6FBsKOSCiSUERI1WAlZUiTiaWZ1QBqFCpUyN+hiKQom346htlfr4PMiHf+i0dERCR1KQCfe55Nfrg1FIMHH1wH1eDehcvJx08cIg9Qhlf3dKRH+FB4DD6wGwGIzTEUgIK0hS9eopjbyLavgelnoG56CIObhxyEJo6TZGZYmVYAdBg1hmGZunsOXBhwbwO5ce65q/nl5b9IJQV3fClNFu/RPJYiSSuUJxN35st27nXxvFkoljeL/wISERERkTQhTbZYikjS4h1YoibLIDPOxsf7MSIR+a/MLAfwLnArcAbPtOytnHO/mllh4B0gB3AEaOyc+95vwYqkEefmriwWyfdb8wHQlIl8HvQw77taZOYk42nBaTISQ0bgF3pYNpa4B8jJEcq8/w1uk2HfeLoJNWg8kWnVYdui+Tzj1vPuypY8s2YcxdlKdRZy50/fUZYNrKAC2TgGS2HynHoANHl2BvDcufmoJQXSGEsRSfOcIyhxV9ggcCoKK5LaOOB159wKADMbBAzEM4veaGCkc+49M2sEjAEq+StQkbSlMtSF4bQH4PNRD/NtfCHuaLmLz8eFEUwcc2c9jU1zwAnud5kZRRHmlanPM24cpVkL93r2VLbxBt6Z3pzILL0ozwzeDH+B7C1jmDyuHndO3EHWRgdovnMqHIA94aEEz4mjib3njWOR97Ha1T4BcqmSJ7HMamZjgQXOuQU+37sPpMmusCKStHjnudYlMIx4/clTJFVxzv2WkFR6fQHcbGa5gTLA+9717wNlzCzXVQ5RRER877hzLiKlJpWgxFIkoDgcQYm6wpp5mj5EJHUysyDgOWA+kA/4xTlPPwTvY7R3vYhcJrMouCWSGi6a+/t+QgWWU4HlkAme5y1KjfuC+8euJ5RobLODykC+LKz6oQqZOUnI0hMUZyub2t9Dh5iBdIgZyHDacU3WhcylFo9ZFNl7xkBXKMRujj+bnnEhEZDOMSG8IQUrRVOR5cBQ77IF59RamaIltFj6ckkFlFiKBJD4eM6rCmuqCiuS2o0ATgFv/ZcPmVmEma03s/W//vpr8kQmkobU2DOTBeueJIwN1Cm/kDrlF8LLsCL8EUqxCa6FEVm64h41bm6zHQaCFezDu5VaEptjKMupCA1hWPHuDCvendNkhB3VeICVfO/qw6vfQwu4/7X1TAtuwAzqwRfGVoqRY+kv3u63pxMtIimPEkuRAOK4sHgPaPS/SOpkZoOB24B6zrl4YB9wo5kFe7cHA6He9edxzo11zoU558Jy5VJPWZGLOVe0R+S/CvbxkgqkkoZVEfEF59wFYyxRi6VIKmRm/YGywKPOuTMAzrlDZrYJeBp4z/u40TmnJkmRK7SgzJNQAE7OyQzZvCvXRsG+SNZRDrYDOSHnXT9TnjX82DAUWkRy77jlnKQ6S+wuuBc+2FoTgC2U4IHCK3l41uf0rtuT710lPqI6HfqO4blRk3CVjNENlvLcuklkKHaUT7OuB8C5SH98ffmvArQqrFosRQJIvDt/jGWQGU6jLEVSFTO7HeiJpzVyjZltMrO53s2tgXZmthNo530tIpchobXyCVeEO77+CvrAhMZtYTCepWIk5IVtQ0pz94CV8MNe7g5ax4L8T3KH2wHjT1OajbRnBBAFa+fwVPv5PNV+PkfIQZWtq7DfHP1y9ee2zd6OBdthdpvqrC5alud6TmJJuQeommUxT7giSiolxUuTiaWZ1TCzscePH/d3KCIpinOeKUYSmHnGXYpI6uGc+845Z865Is65Ut6llnfbdudcOedcYe/jDn/HK5Kafe1mMG9Gfb61VTQoORG6w+zi1ZldvDoPLfsI9kfRpNNovmwQDnkLMIVn4TEox5dQKwOjJnaiPGuABqx1/aAQUAjmUxMmQc+I3gR9+ztZix7gJJn5dloh6lht7h++Hl7dTJXwVcyzHcwz/VNOVVS8J+1wzi1wzkVkzZrV36GIpCjxzmEkrgpraq8UERERkSuWJhNLEUmap3jPX689tXuUWoqIiCSW0A22zM6tUD+KDi6WxfFVYTvUsWrUsWoUYC/kjGRym9bw/m+QE3LddpIKoz5mQsu29JzTG5pP5jW60cR9yr3zN8IKYAXk4SCshgEr+9I1z2COv3ID+8jHYqrSzh2lefuRwAJY9T3QQN1gUxtDxXtEJG1z7sKqsEa8EksREZEk1IB7gLBIjjGamUFPUqlO1XNb58W3gN8hYtSbjH27ChU2f8nyldV4iV48MW4ux7ge3mjCu0OAw8CvwNyvAdhQ/j5YG8Wr4cfoGDOM136OZMyEDlgxB3OBwVEwMhLaJlSlVWKZqqh4j4ikdc45zxQjXkFBmm1ERERERK5cAObSIoEr3nHBdCNqsRQREUksoRtsMWdsC4caK2cyeVlrdlW6lQluMs2tKQC5gw5x5J4b2U8oUIwVJYuR8fPfOG3D4ZfhcOMsGriJRBNKbg7ywU8NqTDuEADliOK1BpH0GAIFOu0l6NXfscUOrsUzUdCxSE/l2VsicXv8chrkSgVglhWAX1kkcDnOn27EDBXvERER+ZvMbLP5POF2MM+igc30dn2pYj1hemUAtr0GEcveZKwVZLKrxyrCWUh1Tl8fCeOBag3JzUCmLWsGS+FUZDCZmsUBsKLRI7i+hr3meLrSXM8Yul7wdZnizKcmfTYMhGzgvvbX9xf575RYigSQ+Pjzx1iambrCioiIeCW0VopckYTiPQFGiaVIAHHOnVcVNshUFVZERCSxwq4WOy0PfJqHeXscs92jvEhVqty1CqZCUIXfARiZ53la75/M9a4PTbLPgOfhg741eWrpfHgbOiwcyLD53WEeMA9eHtAfGnmOUarSF1hPx7Jx5ak0YA3khEXhFSkzZyt/Vjb6bMzgjUZFe1KlAC3eE4BfWSRwOTiveI/hGXcpIiIiAD3ZaV/Dp3lgO/DQBOrUWgjPA/cCRSH+0+sAeO7sJKIbh1KHWQyc0IfqtWbT6Lf34GXgYxj4Zg+GZetOprcOk3niSYI5y9uVPOMzW3eZjJV0VOq6hvsHfcKGE2FUy7iczjGvcB+fcbeDdYT76ySIXBYlliIBJN45jPOnG3EaZSkiIiLiO2qxFJG0zjnPFCPnmGfcpYiISKALYzWfuxe4P3w9PLSCp9yPVG/zCcO4g02N74E+jm8L3kZkGc84zFd4iU+pzN0Ft7B/TzYqsoIj2XOSY+FhFq2szcGMuWE9nEqfk1PX56Rj4WHcNPEwAJGDo3ALjKmD6lCYHdx9YAuTY+rR5OEZsNQ7ztOpxVJSlzSZWJpZDaBGoUKF/B2KSIri6fZ6fouliIhIoDOLoqyrzP1j10MHoG4FPugEH7R+FgYCN0Gfgj04SWaqshiAk2Tm+eHjKbZnI3kXHoPleKYIGQOchZuPHaROp6lspTgtGE/muJOcauip6NKMiViMg+gz5A49CF2gSeUZ8AtQLBK31R9nQXwqTWZZ/yzo39+S+jjnFjjnIrJmzervUERSGHfeGMsgQ/NYioiIABtC76NbRBTccwZXy2AE8ApQAPYMCKXP1wPZQWHiCCaOYN6lMXvah7Lt4dI8Vf0dcg/6CVpAv4guuFrGtpoFWMUDbN1fhmwcY1XwA9yT/gvuSf8F5fgSDgLb03Nw+81wCk8Cuy3Ks4ikQgGYS4sErnh3fiulYUosRURERHxJ042ISFoXf+F0I0FoHksREQlo5+au/Bhe6x3JsL6tsK0O1sGtZb5jd5nb6du7N+4Xw4Y5eOWs5/1/pGPEH10Z9kkrVlCRQ/YNROXn5SFvYKUc7+etxdu0ZmXeu9lJYVZQgW/73gXAyx0KEVTvd+K+zISNcrAX2O+JwzlNMZLqqXiPiKR1zl04rtI03YiIiEi+SM98k5ugJFtgKFARdte7HXadYPKy1kye35q3pzTluTaTAGgwaiI/cAuzqMvnVhI+y8OS8Adoz+vk5Qee7j0X6kO34lG8NjySz9uHsbR3ZQD2f30LWe84QFiNz5ldozr7h4cC0Jbxfvn6Ir6gxFIkgFzY7dUz3lKZpYiIiIjPBGiLZZos3iMiF3HhGEtDLZYiIhKwzGbwvRsPTWBY71aQCSptXcNT496Bw8CbwDdZaFBpIuSF55ZMgj+BPyETJ1nTrxK3sBcy5OGp8HcozSbGn2jBHGozu2919hfPRgvGc6qVp+DPOFoyjpY8U2Ycx9ffQBF2UGfKQp63fDxv+fx6LkSulBJLkQDytzGWZjgNshQRkQA2iC7c3/cTjpATboDmxUeyhvvgXSAHkO0s06IbsqTvA9xUZRdkA7LB2CUvcLRXBt6d1hI+hy2UJNeMk5xecT15OEidsQvJ+5Nn3spMI+MIIZahdGQoHXl3a0t+K5+RH7gFnt0GPKWxlWlNsI+XVCAAG2lFApeD86YbMdRiKSIigedcwR6K+jUOSaPUFVZE0jpPi2XirrBqsRQRkQCWtx5je79Aa8bQb2F/Ioa8yYTqbZlKQ5766h3ylvsBt+AaWJGeJ2Nn0p7hcAue5VvYSwEmNGjIG2XasnVCGSbXq0eOx36hJh/yTMQ47si/kWDieKjTR1Q6sYwhdGIIncha6ABrKM/aiRWBD7yLSOoWgLm0SOCKd5zXFdZM042IiEhg8bRWZgbg3ujlHCI3jebMgkWQufpJ6ABnCOGDms/iBhhnmgIHHMc/v4ExlVpBAc9+PqxelcF0YdqSZrxfpRY5m/7Mm7zAkS9u5EiBnKQPjWXL9rsBWBNanuB0cWyhBACFQnYzjQbQXFOMpEkB2mIZgF9ZJIBdULwnyEw1YUVEJPDU6gTA2iVwU5Vd5K39A9SGwXN7EVU9koL8QNn5q2nBW0yY2BZ3uzGkUhuW8hDFq28FIAMxTJvfjJtq7qLZiYl8keUeHuYTlpR/gId3fU4BtsEZqHXn+8zkSSbRlLKsB2BD9fvYMPA++AZcSb+dBRGfUmIpEkDinSPxLJZB9vcpSERERETkCgRoi6XGWIoEEE/xnvPHWCqxFBGRQGEWRRVXGloALaBalTn8/FMBSrGRl+hPvlrfszh9VT7mEZ5gLhPmtOWmZrv4qNxDxBHMVBpRmB0UZgePn5jP5zXDyMxJSmTZwp0rd3Dop1CqNFgFR2AlD1Lgzm08wCrWE0Y3BrKfUPYTykMLP4I7ozyLpE2qCisiadmF041ojKWIiASaWEIYW70xAHN5Ahd7Dcu5l+4MpAuD2Ec+ptGQGDLQpvYQRh9sRWieaAqwl5wHfyUuNhMArfON4SOqU4hdvMXzPBL+Me/QmBemDedNIthCSeZSm3WUo9O+UVTN9yGhRAPwqe0HbsS5Fv46DSI+p8RSJIA4x/lVYTElliIiIiK+pK6waYeZ1TCzscePH/d3KCIpRsK0IheOsXQq3yMiIgHAegNdIlkRXZGtFGcrxVk4vQ6jCzWhK4P4ckA45VlDPvbRitFspTgjV3ZmaZ6HOUY2+tKLPHkOUSjftxTK9y3rCWMV4fRkANnijlGVxcSSnsos5YW7xpKZk/TnJQ6Sh/n5qrD4m8fZSwH2UgD4xbuIpB1pMrF0zi1wzkVkzZrV36GIpBjx3vzx/DGWf60XERFJ6zJFHaZf6EsMa9ydYY27M73+EzzAKnrTl3Y9B3HXhm/ZSRGqPLmKcFbxcXgFKi5by0Hy8MG6Z6nLLIKJI5g4QommIst5nreoHTyHoet6sJDqlGMdvb/qydDGPZi1oRHF2UonhvB70SBW2PWssOuBRzTFSFqW0GLpyyUVSCVhisiVSmixDErUZBlkdm69iIiIiPhIKim440tKLEUCRELL5HnFe1CLpYiIpH1mUfBNJJUzLqUkW3hmyjgAxtOCg+Tm2zV30bn8K9j18bDSKDtzNW0YxWkywFk4Qwh/FjMeZhETaQbAUiqzhRKcJDMzeZLQcnvoyFAOkodWjIEmQFZ48tsFvHvHM2RaFwefgQv333kQSU5psiusiPxdwlhKu2C6EUCtliIikuaNLdmYedPq8/i0xVTFsywd8xiHyEO78oMowRZCsp2kQ/hAMnOSaPJSn+lMr/IEmTlJzHUhvE5X7yjJvZwmA+VZQ2WWspiq7N95C9VZSBjrufG5I3Sv1AdGw0935GY9YfDg155F0r4A7QqrxFIkQLikWizt/G0iIiIiIpcjleS/InKlXBLFexKeK68UEZG0yjIClSOJ5AfeaNCW4bQjAzEAVG31IQcn3Eyt5u9zkNx8nv0+YknPpNgmTAtpyMFvbuanO3OTf+Qh+Ay2flCcLykHQF6iGUNrtu4rA/MhW9tj3L5oNzWrfUCGt2OoyhK4BzoxhP0lb4ESt+A2+/FEyNUToNONBOBXFglM8ReZbiRhW/B5W0RERFI/syjIEMn/PqlMEXawgyLs3V6MAkW3AVCZT/mieSk2Uoo8HOIY2aiSfxU3/7Sd3vTFMsfDTsPVNqzGnxAdxx/ZrgVgYMZu9KYvofn2sP+2W5hAQ+pVm8z8DU+Rr+z31GU2beu+QTShsCXKG5EqwQYEQ8V7RCTtSmiVDEpijGW8+sKKiEha9QQMpBsNmcZw2jOm6C4q8ykA4357HjsO8295nIa8B8CinypSio3MoxY/FryBlozjAFm5n+VMohk7KAxAIXYBMIfa7K1SgK0UZyA9GFi2A+0ZzmKqkp4znCQTd7jqbOEuv3x9katFiaVIgDjXYqkxliIiIiLJR11hRSQtc/Gex/OqwpJQFdYfEYmIiCQfsyhYHUnh8pvJzEnKsp587CMHRwhjPQCjsjenQvYV3Ll5B5NL1mMnRSjMDh7jIzoylJNk5iX604/eDKQHw2nPGsoD0IXBZOMY9+zbxJp85ek7awA8CN0ZBtHA9/BL3RyMsnaegJxaLCVtU2IpEiASphsJStRimfDcqXyPiIikRccgOiaUvX8UYH66Oiw5Vh0Op2PKjc+ce0utPPPIWvQA79KY9gynyteraFJmNC/xCj9+XZRSZb5g07R7WNegHBVYzoc8DkDmuJMAhObbw/dnCtGi7ltsoCwbv72XA3dm5YafjnNTzcNQA9x8f3x58asAzLI03YhIgIhPmG4k0Tqz87eJiIiIiFyOAMylRQKT8/Z3DQpKYroR9YUVEZE0xCwKvomkW8kodlCEeR/Xp2/tnnye5R6K5N/BYXIA0I/elGIToSHRzKAe+djH+2VqsZ6yfME9vFDmTQCKN9hKN14jlGgm0RSAGsHzOUlm3qItndIPISMxtGEUve/oSQvGY8EOFqgabEDSGEsRScuSarG8cJuIiEhacWvJ73itaySLBlXkgdqrKM5WpvAM+8hHPvZ53sNuZlCPcbSkHjMoPXkbjzb5iKos5n5W8wCrCCWaB1hFX3rzEv15hikA3DDrOOXrLqMjQ6nMp/SlF8Onv8hP9XPTn54wEHggErfSjydB/CNApxtRV1iRAJEwjjJx8Z5zU48osRQRERGRK6AWS5EAkdDb9fx5LD2PmsdSRETSChsObIikLO+wO9/trKAC5VnDs7xDN15jzDcdmHpnHQC6MohPeJgiJ3ZzzQHHG03ako1jTNr3HN3z9aEJk5hFXYI5y6wljdhe5WZG0B6AuLrBTKQpRff/SFTebmyJvJshUW04RjbGLnsB+oCr5L/zIH6krrAikpYlNY/luTGW/ghIREQkmbQrM4h6zOCD08+SgyPMpRZfU4Ybfz0C6aHh3NkAnKmVni2U4PYfdrP2ztIs5SFe4SWi8nWjAdMo+viPTP6wKb3KD6bGmpnsoAgVWA5AEXaSh0N8kvd+FlOVxlFT6LznLdhkUMc7ttJpbKUEDnWFFQkQf7VY/rUuSC2WIiKShphF/fubRK6GdD5eUoFUEqaIXKlzLZaJy/d4WyyVWIqISJoxAta3D2M9YbzXrS5Lqczk6KZM/qMV7xV8kvG5WpCvqKd4z7vrWpKh2FGe/nguk++sRznWUaXrKrgXFtauTuMPp9CRobSf+yYbKc1EmlKI3QDcfuI7Wlw3ntjg9OThIDFkhGtjoc5AAJxaKwOXiveISFqWkDtaEi2W6gsrIiJpxZ7vQ/nkTGXmU5OHWEosITA+PWMLPktxthJKNCfJzEkyM7ZcY2J+zw6ZYQNhxJKe9wbVxT1gNGAqy6nI83vGEX8mPSXYTB4OsZcC7KUAH2V5lCzzY3ls4VJKsYmtFGd2aC1/f30Rv1FiKRIg/kosExXvIaHF0h8RiYiI+NYyt5iCc6LpkX4gudacJI50TNvZjD69uxNDBh7lI6qzkHnRtZgXXYtOMUOonPd/vNWmBZk5ybPx75CZk7AROmwdQ1UW4+KDGJa/LR/9VoeS3+wkL9HkJZqK09fSsNYEKAQvnXiNIuygjkUCj6i1MtAlFO8JsK6waTKxNLMaZjb2+PHj/g5FJMVImG4kqTGWTk2WIiKSypl97+8QRAJamkwsnXMLnHMRWbNm9XcoIilGfBJdYf+abuTqxyMiIuIrCUV7xtOCz2qX4yC56VX+JWZQj2KFNzIivh0v/DCWFownH/v4M9O1/JnpWkZnbM2nCx8lA6epzkLeD6rPQLrTuMpYFhWvyDQaYPGODqPGMCt7DUbe2Zw40hFHOqrW/5CjZKNO4ak8nGURd67ZAXzsXSSgBWiLZSoJU0SuVEKBnvPnsfRON6LiPSIiksr1cRPoM3Eg8+vXJDjdWT6Y/izc73AZgqiXdzJHb8nAcioAMCtLXc8jdelXvQvTaMAWSvA6XcnJYZ5gLs/zFmdID9eeJaLNSGLIQFk20INXARhCJ8r89jVvZ3+O5gOmwmggXyTuJz+dAElZVLxHRNKqpMdYnr9NRERERORyKLEUCRDu3HQjfwk612Lph4BERER8wCwKro9kGg2ggqNuxlkUCtlNprqH4YBhDR0bCGMVDzCVRuzmVkYebMPIg214hZcJZxXHyMZbPE8o0ZwhPUPpSAix7Ft9G+7ENeykCM8u+oCHYz4hH/s8S9w+WmUfwyzq0K9nFyiCZxFRV1gRScsScsfzu8J6HjWPpYiIpGrNYWfLklANZuSsx4dZapI54ynql3+fI//LSWF28PicxfA/uHfictbnuQuA+dRkBO3YtPIewsLX05ferIkpz6mbcsIwsC2OvIN+oCqLIR+kv/aMp3ssEB2clxFbu+J+NuxaB73AhfvxHIj4mRJLkQCRkDyeP4+lt8XSHwGJiIiIpEUJLZYBRl1hRQJEQqNkUJJVYZVaiohI6mIWda4aLA/AQ+M+4tfamRmUpStV9qxkN7fSllGcGpyTFScqkqHyUSImvkko0ZT+dRulf91GIXaxccK9dAuP4pbu+5lxop5nf9Mha/0DuDZGZZZSlcW0v+N1Pgt6kE2UYhOlKLZkL+56w15x8LJaKyWRAO0Kq8RSJED8lTyqKqyIiKQdD7kwQu4/wadfP8poWpGB03DMaNRpFq3ixkBlaJplEqcnX8/o3zowe0hDNuYqxsZcxWgUNIsCzbexlMocHZiBGlnmkyPjYbZVKcCxT/My55ZqbKEER8jBYqrSiSG8SndepTtfVinBF3lLwaoozyIS4FJJ/isiVyqpFsuE58orRUQk1dndG4Bx3MjC7NVZnz2MXi0Hk3vcTywp8wA7yxThELlhF8SUzwjlIGi046GeH3GMbJ59zIK9I4sRXPcU2W84ACOzwB2wLrwcj1X7iGPx2fgw6HHycJD+vERTJvHw3M8BsJsd1AVuAbfHP6dAUjBNNyIiadVfiWXi6UY8z+OVWIqISCpyrgusiKQYarEUCRBJF+/xPDqV7xERkVTiXFL5P89NrGCeaMgMY6s3Ztwbz3HNfEe6mnE8v3U8S4o/wPGG6RlPC+4v9wmrzlTByjvKr1kDQLfaUZyIC6F88Bq6u9eYRV22UpxhdKQUmxgS1ImbRx3kxzZ5iN5ekFeKdsY96Dl8k+yjYQ9MorU/ToOkZAFavCcAv7JIYPrH6Ubir348IiIil+tuV5Evl3meZ73/AE1DJhOxbgoR46cAUPGutbxfvBYvMJwGwVMJYwPF2YplczAU+vXsD0C1AXMYE9yKVd9UYdydz3CEHHw5P5yfa+bk9thveTjkE0Lqn6A+04ktGsIrvEzQ59476kDPw6Q1V/vbi6RMSixFAsS54j3nVYVNmG5ELZYiIiIiPqEWSxFJy5IeY3n+NhFJ+cxsMFAHKACUcM59611fGHgHyAEcARo75773V5wiySGhG+yXm8P5sFJVAEbTilhC+KOE0WncG1RlMZ9wP09vnUvP4r0ZQXsAjv2Wjckl69Fk4QzGDmgMQMT8KcTWTE+5O9cRsXAKHIbPG4exiVJMCXmWx6ct5u4GK4kjmLrMYjFVGVazFQAdHg/1RhV5dU+CpA4q3iMiaVXClCKJGizPJZlKLEVSlXlAOPDjBetHAyOdc4WBkcCYqxyXyFXxlCsAs2A5FVlORRatrE02jtEp4xuMGtuJtoykdsxcJhevR//n+tGC8XRhMPmy76NJ+Awo6ijHOsqxDs5CKTaykgfoV70LrpqxnAqMpA1l2UCVBvP5ckg4cQTTY/NQWjCeDhZKB/Mklc4pqRRJoBZLkQDxj2MslVmKpBrOuc/hr67s3ue5gTLAw95V7wNvmVku59yvVz1IEZFApq6wIpKWxXvnFDl/HsuEMZYiksrlA35xzsUBOOfizCzau16JpaQJZlHkdY3JzEKOR6Yn67ozAHwYXpXHFy6GTEBr+PmGQtxdcyXpiINasIUSLOj6JDUGzWT3TbfDJqNmwQ8BcHcZlfkfB8nNxhN3UyvX+9RlFiNoz20nvufjLI8Q1SmSe7duhFNwhy0CpvnvJIikYEosRQLEubkqzyvek7BNqaVIIDGzCCACIH/+/H6ORuTS7R9+CxN2tSXn8MPgyQ0JKRcL64FGjlfjO3GQPAxb051GkeGU+yQfH/72FFsGFSaOYOaHPsXU2nVoNH8WACtr3k0XBlNt5XLuCl/LOzzLnVN2wHgImvk7zbJMpBd9cR8bXTr14w0qApVx7j6/nQNJBQK0xVJjLEUCRELl1/O7wiaMsVRiKZLK7QNuNLNgAO9jqHf93zjnxjrnwpxzYbly5bqKYYqIBICExNKXSyqgxFIkQCQx28i5brHKK0VSN+fcIWAT8LR31dPARo2vlDSlSyQ8cRbSw63s5oMBNflgQE3Sc4afe+fE7QpiPC2YFNsEJsG3nxSiNaMJ+sIxhWcos3IrZ3tD29i3IOwMhJ3hwT1f0IyJVAufwzIqcefWHZRtvBrX0KibZxa7e99OHOkI7bSHN6a9DFPvU2ulyEWkkvxXRK7UuelGghJPN+J5Hq/EUiTVMLPhQG3gBmCpmR1xzt0OtAbeMbPewFGgsR/DFPEpsyiecEVowDRCB0Vz/5D1ZH3+AADHJ98ABaBUlS/YPeV2GAGvftWRO/Z8z/0Fl1Kh+seMiWkNP0PMfSG0CB7PvtB8AHwaX5nvzxRiRPr2PMpHkOksg+iKfeP4hiLs7XsLzaZPo/nTLYEpnmAaqBKs/DsXgNONKLEUCRDxSU434nlUV1iR1MM51x68E/Odv347UO7qRyRydZRnDYfITQF+wOU3DoRkBWBwRBfe6PoymwqVI2v9A0xt3IjHZiyFdfB5vYfhDPQL70Jcg3RkWRlLtvBjvDHxZQByN/uJJ9PPZNHm2lQpOZ+387fkKNm4f9Qn3Pn1Dl4v057Q+nvg6ZNALZwr6cczIJKyKbEUCRDnavdY4uo9nge1WIqISEplFuXvEET+E2cQF4BZVgB+ZZHAlNBimfR0I8osRUQkJbuZF2+LhKZwa8/v2B16O4uoCMAKKtJu0CBGWFdGuucpwRYK19tM73p9ycc+Hhy1DsKhjw0kjztIUyZzullGAPpP74dlcdxf/RMK8APPLZtEm0pDyM8+uBZOkpki7GA/67xxqMVSLoESSxFJyxK6u543qfq5bX4ISERE5BJUcaVZF3s3xwcCg2H3Q7czoXxDqm1eDsD+ktnYQglw0DByNtb8T3gkHQe35qFuzGxIB3k4BF/AA6wiZ8wRBuzqC0CF+st5m6Zk4xhF2MGRSjkZtaST5xfyQ1DPzaCfZQTS4dxLfjsHIqmBEkuRAHGueE/iFssgO2+biIhISmIWRRVX2t9hiPwnzuBssK8n34j38f58T9ONiASI+HPTjfyVWQadG2OpzFJERFKmJS1rcvy+G3i/dy14D/gQmq+bCuuB9bCBMKpMWcWI+V3J9tJ+eC8dVIBOv45idMYImA4RLafwZzHjjuq7uP7sb7hVhltlVNm5igLs5enGczlIHrZQgtertIcCjqxnDnDH17uAs95FJLCYWS8zG25mQy/l/UosRQLEX11hE69NmG5EiaWIiKRQNeD1r9qzigeYUL0hvQa8BKuhbLPVlG22msemLeW9xnUhE4wOeY5qPefATLA//6DDw2Pos6w7Lr8RfBaoC6ezDmdc22cY1/YZSOeodttyeAIe2bWCvb8VYDkVmFywPse/vQHKegoHOacpRuTSOTPi0qXz6XIpzGywmf1gZs7M7ki0vrCZrTWznd7H2y5hX48Bd+D5q8rBSzm+usKKBIhzLZbnFe/xPCqtFBGRlEbVYCU1iwv2y0SW84A3gVUXrB8NjHTOvWdmjYAxQCUAM7vV+zqxxXgaIL9zzvU1s4Fmdr9z7vN/OrhaLEUCRkJV2ETFexKqwqrFUkREUqLpkbANhtKRXvQlJ4fp16A/3AgHycNB8uC+NJZTkTsqfcXT9g51mQ2fQpXQxbz3SV36NBiIrXRMy14HcgIbIjlJZk6SGZ43vv8+H+5GY2Sh5sQey0xTJtM5fghsB6ZGqrVSUoqcZrY+0RJx4Rucc5875/YlXmdmuYEywPveVe8DZcwsl/czu51zlS9YBgE/Ake8nzkMZPm3ANViKRIg/rHFUnmliIikNIsjiajyJmPzv8D+w7eQ9+ljnvaYx+CzeuUYSkcALN7BEKDzOpq4aTS3wjRxoynPGhqNnQXv/wm1rqFuzGya3X+CV7K/TOcnRwKQdd4BNlKa+uWmU4QdvF2wGU+tnO85fkNvi2kDJZby3ziMOHzeYnnYORd2GZ/LB/zinIsDcM7FmVm0d/2v//C5OcAoM3sDyI6nJfQfKbEUCRB/zWOZeLqRhDGWfglJREQkSWZRsFgJnYi/OOdigRb/5TNKLEUCRFLTjdi5FktlliIikjKcG1tZ9TdKu00M+6kVoeznqYXziej7JmM3v8CDS9bxRJXpnveN2AyLS7LfVSVv+DH4FCbVMQbNbgdAOzeM3BxkB4WZmfFJ9pGPPTNDAdhKcerHTOfk77kYlKsdu7iVUuFfUIEV4NIzlO5X/wRIqucwzvq+xfJy7QNuNLNgb2tlMBDqXe9TqSaxNLPiwAtAMJ64mzr9Gha5ZH9Vfk08xjJh29WPR0RE5B/VzU4cwcSRjnd5htnVq1P720WEl1xFiZJbuHPlDgDucF+Rk4/Ju/kYdIf7K32C3eBgBgQ9/jsZiaFX7cGknxPLiwOGw0Bwuz03wPtyrWZjxtLMzFiDMbTi67gyvDHjZTY1XAzAUN0f5TLFpZA0yzl3yMw2AU/jmbDnaWCjc+6fusFelmQt3uPLkrfOua3OuVbOuRbAdd5FRP6joPPGWCa80J1TRERSiEKR8HQkVITnQ8dTgs3sohCl2URwrlP8QAFKH/waPgY+htJsYkWDR/i5ZE6KVd/I5y0fhgNAPog/fh0l2ALBEEo0vPQ1/ztRmY25irExVzHeoTG3LdnHVorzCi+T9eAJ9jQIZY8bo6I9kup455z8GbgJWGpm33k3tQbamdlOoJ33tc8ldyo9Dx+VvHXODTKzinj6+h4GYpIzcJG0Jv7cPJZqsRQRERFJLslUvOffj+tce6B9Euu3A+WS+/jJmlgmzHVy/g/ZcyVvH/aueh94y8xyOed+dc7tBipfZH/LgeVmNgIoBXydfNGLpC1JjbEMOjfdiB8CEhERuYBnfGU76JGdkCdOEHs4C1V+Ws6i/A/TiSGUzrOJXncNhjHw+gDP7+cX1wynw7SBHCEH2yaWpvC4zexcWJK7K63ky4fDadRrFsNmtiKGjPBmGR6bs5QGtScCMPXX5lDIEbnsNcZVeoaeof0p2DcaANfbX2dBJHXyR+ffyyp5a2YVgLp4BohdA3x7kfdFABEA+fPn92XcIqnauelGEo2xDDrXYqnMUkREUoYa7lNKsIUBD/eFpb9B1ezUzjaHd7I8ywOsJO/UY7AdypVZB0Cb8kMYNrE7w97rzp5loWTjGNk3xRBdPRTeOQOr0nOM63k5pj9kgmq15/AE8wAon2sZdDbenBLBXm5h2DWeYj3uTz99eUkT/NVi6W8pY1TpJXDOrQBWXML7xgJjAcLCwvRrWcTrr66widfaedtERET85Vw1WBFJlfyRWF61krcikkhCV9igv7dYioiIpAy1qEN/FlCTtz9pyioeYFrvZpzOl5Gnhs2HMIio/iaFCu9mMVUBGNWgE69Pa0/XO0dgYx3shQ8HVOVxK88b7hCd73qLUKIpn3ENS76tyaJ1tdlarjgAp+IzEz/MWMXdtI4Zy7CzZ7xxqHCPXBm1WF4FV7PkrYj85VyLZaJ1CeOf1WIpIiIpwetuPC/Tn9XcR9ET2zl94HoW9a1ItU7LYehBMv0ezNjsLxC/ywg64Ll3vTqtI8upwIvXDOfuiJVkJIaGMVN5y3Wn64lBsMKImD6Fn3vmZMyQVlRmKQ828HSjJRtMGfUUVVnMtdfNB8C5Gn769pJWpLB5LK+a5J5uxK8lb0XkLwmpY5D9vcVSeaWIiIiIXInkrgrr15K3IvKXpMZY2rkxlv6ISERExMMzvvI+uh+8l/p5ZvAa3ciXZR87N13PscLZ4DC4z2/APnbwNpzMGkKN7DMB6FFwKHSHbyMKcUfQLs9kd5ngaKVsvJ2lNXHN0rGKB1hMVfrN6E+/DP3BW5yn56jeNBkyAx4DSBjjqRZLuTKe4j0+T7OymtlYYIFzboGvd+4LqaZ4z39hZjWAGoUKFfJ3KCIpRkKr5HmJ5bkWS2WWIiLiZ/0rMzpPYyI2T4H/wanOwWSaFcfTOedy75TlLOdeXqUj5VlDNHlZYN6uhk3h1YiOBHOWe+OXk5EYPv36UXrtHAxPANuWktsVJpRo3qtXl4arZ7N85r0AVPhtLQM+7wudASLVg0dSsuPOuQh/B/FP0mRi6c3iF4SFhbX0dywiKYU7N8Yy8byyCdv8EZFI2mNmhy7hbQeccyWTPRgREfEbFe8RkTQrobtr4kqwCeMtHcosRXzkV6D6P2w3YP5VikUkxftripHWcAoi+k6Bm+C9nnWZRkPaDB/C6IOtGE1rZlEXgPBlX/JSpV64LXUAaHjHBHrsGcKOgkWYQmNycIS5ZWrR/LWpvLW1Bc+vGc+hiVC12WIOk4PMpX9lEF0B+CH7Ld7J7BLiUDVYuXKax1JE0rSEFsvExXsSnmqMpYjP9HbO/fhPbzBN1icCXDBv5fV5mDCgIc3bTIX7oVH1WbAXeB4YDWc2h1CZpSynIva2I6LSm9gy782rPfRZ1p0+vQeSre8xhjXoDn/ChJkNaV57Kg3mTGRH+SLUjP2QT0Ie5tTgnET29hz70M78cNTz3DkllSJXIlmrwopIyhGfxBjLcy2WSixFfMI5N9sX7xEJFDe7etzs6sF4GEE72o0aBJ8DhaDd1kG4ogb14e6WW3iw/Drm8QQTZjb0fHi6d+kOI+Lb0bnvKwzr250a02ZCaWg+cSp0g9wcYkP4fcSdTcct7IWc0JP+9KQ/TxSezhOuiJJK8SkHnCXYp0tqoBZLkQCRkDtaki2WyixFfMnMXk9i9XFgrXNu2dWOR0REJLmlycRSVWFF/s79w3Qjqgor4nN5gAfwTHwA8DiedpinzOwD51x/fwUmkhKYRcHUSH68zfN6z/ehFFwYTfnqa6AqxN9mRNKTjyo9BF9BxLg32UAYG9bcR7byfQllP2zy7uxzyFblGPsJhRvgVnZDAaDhePi0BQBVVs6nNBvZSCkoBR1sjOezYd59fHW1vrkEhmSZbiTFS5PfWFVhRf7OnSve81dmmVDIR2mliM+FAmWdc0cBzKwfMAW4H1gHKLEUaXiQb1w4AAVnRNOk3miycQzugaAdDnfcsC2OZ7qNowg7qc8MlpavTJ01C2lXfhDLYsoDUGnsGnYvvJ0a1RdQJ2IqvenL+CdacCpnC+gDWyqVYDr1yfXTUR7Kv5S3yzclxmUEoLPl9gajrrDiO4FavEdjLEUCRPy56Ub+ktAtNl7Ve0R87caEpBLA+7yAc+4kcMZ/YYmIiCSPNNliKSJ/l5A6qsVS5KrYamZjgUl4/ok1AXaaWXogzp+BifibNfM+yZyHMbQCIHe9n5gc2pq3olvwqutICLHMoRp7bgmlYONo3k0P/cZ1oeeZ/gy4IYoRU7qyq/GtAGRtcoDKIZ8ybE53MlQ+yvXvn+bUvTlhMbxRpi3lWEeu6idps3AIVXquotqAOSyyLefiUeEeSQ6B2GKpxFIkQMT/wxhLNViK+FwzPH3r3sLTUWA50A1PUlnNj3GJpAwdI6EyNGAaAKNGdeLt6KY813ISHAFawDfVi7CSB4iY8iZjd75ALOnJ/vtR9hS8kdI3fc2i3rUBeKtvC9r8NgHL1AjWQ55WPzKMVrywYSyjacIRcvDqwo4Mpz3DBrSiQ/YxcH1t3G9+/P4iaZASS5EA4ZKYbsSCErYpsxTxJefcCaDzRTb/ejVjERGRqytQx1gqsRQJEAnJY+KusHZumx8CEknDzCw3MATI75wLN7OSQHnn3Gg/hybiV5YdOBpFTxdHZk4ylI4AuCcNm+IoPG4zO8eWhLNwp+3gVdeRMDZQqHB7Xnx4OM98Mo7WjGZjSBke7fsRAGdIT9/s3ThUJTejrAyd3RROkxFr6aAFfNimKj22DsWNNT4eVgGORnmjURdYSR4OSzVzT/pSmkwsNd2IyN8ldHdNXLwnIcl0GmUp4mvjgEVAG+/r7cB7gBJLkRaRzGIzYaynCDsAGJfrGTgMt7KLMxEh/LiyKHwBPboOhXVQbeUcun0SxWsGZGhJwe41cQ089zCLdvDgEMjZiQzHj9KFJ8h54jjZvj7GGUJ4fM1iZpevjh1yYEMAcK6Tv769SJqVJqvCOucWOOcismbN6u9QRFKMpKYbSXiqMZYiPnejt3UyDsA5FwvE+zckkRTg6F74FHbeVpJMnGTA2L4MGNuXFr+9C8cgI6f5sWdRGAZPlXsHPgXqQ2/68dq6SJq7nHSLiYIKULrQWkoXWsu94ctp4LLBbGiVZQw5Txznmn6OLZSgw7QxuNxGRPw4uBHgpHcRSV5xpPPpAmQ1s7HeBrQUKU0mliLyd0kV7znXYqnEUsTXziZ+YWbZOL/DgEjAMYv69zeJyMUcd85FOOcW+DuQi1FiKRIgEnJHS7LFUpmliI/NNrMxQGYzawIsASb6NySRFKBpARrsmQgdITMn4Q7gDrDX4cO+VTlIbjoPeAVawIzpTeBlcNWMzJzkm3JFmDCqLSsJhz9g07R72DTtHtZmrEgpNlEtfA5D9/XgmmGO1we1Z1TLTrRrMAiXHY58dSO0Ows/vqTpRSTZJRTv8eWSGqTJMZYi8nfOufNaK+Gv6UZUFVbEt5xzg8ysIZANqA4Md86959+oRPwtO5SCXvSlXZsRVDqxjITfy5bfwWb4sWQeptGAV6t35CdyE/LbCaZmr0MMGZnCM+Ru8xNre1fk7b5Nea78JM+Hd51hH/kIZxUv5evF2N6NOUhuqAGDYl4kOnsOmAqQDjfcT19dAoqqwopImhbv3HnjKwGCvC+VV4r4nnNuKt6fsyKBztMNNru/wxCRZKSusCIBwrm/EskECd1iVbxHxDfMbKaZfXCxxd/xifjDubGVFdvBC1GMoTX3lt9IqSyb4J4TniUTVCs5h5u7HqTHlKHsoAg37zlA7CdZaPTaLCqynDwc4i2eh1Lw3MRJ0ALPMj091VnIQfJwkDxE7JxCY96FwzAoY2du+ukAjIjyLCJXyVmCfbqkBkosRQJEvPur62uCcy2Wmm5ExFf+B3wE/ArcAqz2LjcDP/gxLhG/CjnSEZafgMWRvBv/DK6+sXZZRSiRxbPMgmNcDxuApRBLCPHZglhbrzTFum3ktj0/EUsIayhPu9qDCHniBO83q8X7zWrBXlhDeSbFNiGUaJgMw2kH2aDXzsFUyz/fv19eJECoK6xIgHAkMcZSLZYiPuWcewfAzJ4Bwp1zp72vxwL6dSsiEgA8YywDL81Kky2WZlbDzMYeP37c36GIpBjO8bfEErzrNMhSxNduAs4keh0L5PNTLCJ+YxYFGSKJbZSFnm4wVN1L4aCdUAOOP5ge5jnPsgBqMZfvl+XjiSnTycERgrY7OjGEbXeV5pmC44kmlKGLerCV4sR+nIUi7KAIO+g8/BVCiSZzyCnm8gRvD2jKwBO96FX7JfgZFtkWAFWDFUlmaTKxdM4tcM5FZM2a1d+hiKQYLoniPeCZWE8tliI+9xmw0MyeNrOngQXedSKB50agFAxY2Zdh7lXWlq/I6lvKknX1GXoWjKRnwUgech/x4pTh1GQ+pdjECOvKhPIN2fBbWSK+epN3d7akHOuw9I7yrMHdZOQlmrxEE0c6DpKHWEJozwieGzWJXVluZjFVYZOfv7sEJE03IiJpmmeM5d8FmWmMpYjvPQ+0Auri+af3ETDWrxGJiMhVk1qSQV+6pMTSzD4G3gI+cprwTiRVSmq6EfB0hVWLpYhvOef+xHPffMvfsYj4i9mfAPT5vjt9Rg2EP6DDkjGwNorwg5/BgzBgR18A3GmjeOOv2Za/NMd+WkxP15vmvadCAXip2QDevaExo/Z0hA7Qr1B/ss05Rnpvb/NhDbrDdeCKGcENT8EfUGzJXo4/lJ7BnbpAJ+hLfz+dBZHAcaldYccCHYDdZtbNzHIkX0gikhwuPsbSNMRSxEfM7EVfvEckzegYyV4K0KTNaCgAHAVqRBJ/Jj0TXEPKFl5N2cKrsXWObZ1KQ1vIxjHOEALvAwfgZmvD6V3XM6xga27d/B0chmjyEhkfRWR8FD2n9ebVcR15s1ME8R2v45tORWAXtAweSz8LoZ+F+PccSMBxWEBON3JJLZbOuTnAHDMrArQFvjOzJcCbzrkNyRmgiPiGc+5cFdjEgsyzTUR8IsLMtpB0z/MEzwKvX6V4RPxoAFWGlGYf+QhjPRQ5QdYzMRy//gbokI7mc0fAR9k9b50O1ZbN4TQZPa2bL8PPv+XkNbpRtudWFjCVkmzhh4MFoAIMPdiRuXlqA/D4kMVQGd4rWRe6wDQa8FSbd1hwoiYZjkNMluv9dgZEAsnljrGMBf4AppjZx865zj6MSUSSgeOveSsTM4x4JZYivvIz8G8tktuvRiAi/mT2tb9DEPGbQJ1u5FLHWNbGU4ggDzASKO6cO2Vm6YBdgBJLkRQu/h9bLP0QkEga5Jyr4O8YRFKMppEsqQ6upWFFHG+5FmymBKWrbOK5DpOgcnao731vB1g0pzYdag9kuatGrd/e56bbDvPU9++wkyLM7tSQ6kMWsjTPw1S8fy021VG9xRIAnuk0jnfvakmOr44QUeZNXmsWyWcTy/FB1r2efWuaEfEDFe+5uObAa865xYlXOufOmlk734clIr7m3EVaLM1UvEdERHzrgTIsmliRaguXU7f6ewQd/J3nXxsPB+H9IbX4fms+SsdspGnGSQCMPNiG+nlmEEcwVsJBM+CzM3xw27MEff47Tw15hxVUoN6Z6Qyp0oanqrxDSTytott+KsGtX33HuzzDtJ7NqDNxKg9Gr4RfwIWm9+NJEAksl1q8Z/qFSaWZNQLPnJE+j0pEfM6TPCZdFVbTjYiIiK+YRfk7BBG/SqZ5LLOa2Vgzq+Hv73cxl9pi2RF494J1nYD3fBuOb3hPeI1ChQr5OxSRFMM5d5ExluoKKyIiPrZqKsfIBpugfPU11M0zi07dhvA1pblh7nFeqtWL3hn70nXICAAydoohL9F0mDOGnrV7Uz18IaNow7R3mhH3WCboDYQBC6Hz8ZG83qk9TZkMQLXHlrO76u3UGzSD3AN+YvaAhvCSN7lVN1hJO4475yL8HcQ/+cfE0szCgHJATjNrk2hTViDF1m72tqIuCAsLa+nvWERSCk9X2CTGWAaZqsKKJBMzy+Wc+9XfcYhcdW82ZB37cPkNW+nIUOoop0tdz7E92bjj8e94g07cwl4sp+f+czcrKcc67q/9Cf3v7cfotU2YtrUZ3LcCm+6g5lRquBAWZHqSD5tXpea+JXTP18dzrNbQr00XyrGOaEKZ/NJBAJySSvGThBbLQPNvLZY34vn70HXAXYnWnwCaJFNMIpIMPMV7/r7eQGMsRXzMzMoBH+AZcpLP+4faiJT+12ZJ2aKSuoinSH38HQCQms6XXI7I1t4nb6fMHzGpZe5JX7JLaakwsyrOuSVXIR6fCgsLc+vXr/d3GCIpQpeZ37B29xFWd6903vqy/T6hWokbeOWJEn6KTCTlMrMNzrmwy/jcaqAlMNU5V9q77jvn3O2+jvFK6V6ZsigZErk0vkwsL/dafzH5w3K5zutr+2p3AHSwsT6NMTn8W1fY+5xzq4F0Zlb9wu3OuYXJFpmI+NTF5qpUVViRZBHinNt6wRQ/sf4KRkQkLYhMyNVmp+wfLprHMmlNgNVA1yS2OUCJpUhq4SAoiTrQpnksRZLDGTPLhOdeiZkVB/7wb0iSknxEZdbbp/4OQ0TEZ/4xsXTOtfQ+Vrw64YhIcol3DktiupEgQ8V7RHyvP7AECDWzycAjQCO/RiR+k1T31jD3kB8iEUk9IlPxbxMV7/kHZhYOfO2cO2VmzfEU8nnNOfdDskYnIj7j4CLTjdhFu8mKyOVxzi0ysx1AVTw1sl5xzu3yc1iSjP7r2Ei1Vop4pOYE8p8osby4t4A7zex2oDOe+SsnAJX+8VMikmLEX2y6EXWFFfE5M8sF/Oyce9v7+hpNPSIigSqtJo9yvktNLM8655yZVQPeds6NMLMnkzMwEfGteOdIoiesiveIJI//ARX5q2BPCLAAuMdvEYlPqGqriPwbhwXkdCOXmlimM7P7gLpAc++6wDtbIqnZRVoszcChzFLEx9I752ISXjjnfjeza6/Ggc2sMPAOkAM4AjR2zn1/NY6dZtxvRK32dxAiqUvkfd4nn+s3RaC61MSyFzASWOac+85709JYEZFUxFO85+9UFVYkeSTu+mpmuYEk6jIni9HASOfce2bWCBiDhq6IiI+pe+vFabqRf+Cc+xD4MNHrnYBvZ/30ITOrAdQoVKiQv0MRSTHcRcdYmqrCivjecGC1mU3xvm4MvJrcB/UmsGWAh72r3gfe0vjOi0uqa+u5lhcRkcuk4j0X4e2+0xC4NfFnnHMvJlNcV8Q5twBYEBYW1tLfsYikFPHOkdTQIAONsRTxMefcRDPbA1TH88+shXNu5VU4dD7gF+dcnDeOODOL9q4P6MTyv4yNVDdYEQ+1Ssp/calttDPxFB5YB5xJvnBEJLk4PIV6LhRkphGWIsnAObcCWOHnMJJkZhFABED+/Pn9HI2I+JsSSN/SPJb/rJBzrliyRiIiycr9wxhLzWMp4ltmVgR4mb/39Lk7mQ+9D7jRzIK9rZXBQKh3/TnOubHAWICwsLA0cwFQxVYREf+51MRyj5llds6dTNZoRCTZxDsISqJ0iHnKwoqIb03H09tnEhB3tQ7qnDtkZpuAp/HMOf00sDGtja/87RpjxFl/RyGSekRGJ3qRVzf9q0Etlhd3HFhvZouBPxJWptQxliLyd865ixTvUYulSDIIcs4N8NOxWwPvmFlv4CiewkEiEkDUtVX84VITyx3eRURSqXhH0l1hMSWWIr631sxKOuc2X+0DO+e2A+Wu9nGTw8W6trYLvCr+IpKKOIyzvm+xzGpmY4EF3kKlKc6lTjcSldyBiEjyuljxHs1jKZIsygFNzWwH5/f0Se4xlqnSfx0bqW6wIh5qmUyZkmkey+POuQhf79SXLnW6kdzAECC/cy7czEoC5Z1zo5M1OhHxGXex6UbMNN2IiO918HcAKZGK64j8d0oeJbW41FR6HLAIaON9vR1PUQAlliKphHNcdIylqveI+JZz7jMAM8uV1grniIjvhbmHAHiUpX6ORHxFxXsu7kbn3GgzawXgnIs1s/hkjEtEfCz+H6cbuerhiKRpZlYO+AAIAvKZWRgQkdK7MflETiPqiL+DEBGRq+1SE8vzRjOYWTaSrgMiIilU/EWrwhpO3WxEfG0IUA2YCuCcW29m7/g3pGRU2Ij63vM0Mod/QxFJ6dS1Ne3zjLFUi+XFzDazMUBmM2uCp0vsxGSLSkR8zjmSHmOJWixFkkGIc27rBQWzYv0VzNWk1koRDyWQgSuZqsKmeJdaFXaQmTUEsgHVgeHOufeSMzAR8S3nICjo7+vNTCMsRXzvjJllwjuA2cyKk6g6rIiISFpzqVVhKznnpuLt0pNo3bJki0xEfMrhCLK/Z5ZBhrrCivhef2AJEGpmk4FHgEZ+jSg57XRE+jsGSXZ2DdAOPhhSk6esLIyMJL6+EbTecw+5t8py1i6rCAUcIdlOErspC8yCZ0aN493yLeE+eGtQC6bQmC+fDOezmeV40OoAMMF9Q/NRU6EC8DOwC95o05ZD5OYkmYkhI5PtIADO6f82SfmSYbqRFO9Sv/FgoMwF6wYBZX0bjogkl/iLdYU10zyWIj7mnFvkncOyKp4e568453b5OSyRK3M2CvdIH2yrg8+AdGC/Q58q3QHo8/VAelbqzYDol3gi+1zSV4pl7j21OEwOqAyd+77CPvKxbsGDRM3sRkvGkdtlAyCMCXASyHQWvkjH+71rMYVnWNSpNnWGTGW25QEK4Vxlf317EfkX/5hYmlkhoDCQxcyqJ9qUFciYnIFdCTOrAdQoVKiQv0MRSTHcRYv3eAr7iIhvOef2AG/7Ow4RXzCL8ncIIqmGivck7T6gCZAH6Jpo/QmgSzLFdMWccwuABWFhYS39HYtISnGxAj2GKbEU8TEz+5W/TxB7HFgLvOicO3D1oxK5PH8llQ9iex1vVGlLHMF0nTsC6+LgRs9W95zRm55wKj0fTHsWPobXp7SnCDsY2fd5Cs6IpnC9zQy9ryO96MvOviV5tXdHAI6Rjbu7raQF42nZ9F0q8z+WH6xAnyHdidz3GkYfbwxqsZSUT4llEpxz7wDvmFkT59zkqxOSiCSHi7VYmqGusCK+NxJP755JeLrCNsaTWBowFqjpv9BE/rtqrgSLilfgvYi6NOo6i2GDWsE94GYYtshzE7F5jm2VChBcOI6chQ9za4PdVJu4HK6DN+q1pVu9KHJziM45eoODkOdP0GPlUABeD2/PF789SFCYI2LeFLLmOcBPeW7mptcO0yffQEAtpiIp3aVWhZ1sZrcCtyb+jHNuYXIFJiK+5fB0e72QGcTHX/VwRNK6as65coledzazz5xzD5rZd36LSuRydIxkUTi8vbUpNeIW0HnQK3RYOIYB1V/i0PD8VGs/B4BFC2uzgopErnyNzeGFeZSP6NesC+/SmOp8xGSa0rn9SJgKvfYMgrpGn6894zP3kY+D2bPCIzC7ZHWe/m06N+X4CEoAw4BPI3GV/HYGRP4ztVhehJkNAFoC24A472oHKLEUSSXincOSHGNpxKHMUsTHrjez7M653wDMLAdwg3dbQMxnKSIigeVSq8I+BdzqnDuRnMGISPJx7h9aLNUVVsTXhgPfmNlCPH+IrQ687p3bcrVfIxP5D8yi4LtICPO0Kq4JLs8ba17mg+o1OUlmnmv0NiXZAkCh6rt5rs0knrthEn3Cu/OzFSK9iyWM9RTd8CPjS7eAG2FbgwLMoxY9jg0lJ4cB6LNkIMOXvUjIKydITyyx72WhidvIcrICsJeifjsHIv+VwzirFsuL2q+kUiR18ySPSbdYah5LEZ97F8+EDBXw/MMb5Zzb7N32vL+CErksQ6HsuNVUZil3n1kHL8BTteZDfQffGplqngTgtb6Rnl+WLc7QJ9dAqAhdl4zAqh5gtdvGkTY38syocVRiOfvX3YKba7xCZwDer1KL9lVepycDyMYxOrd/hTesLDDDE4PmrpRUxFO8R/NYXsxaM3sfmAn8kbBSYyxFUg9P8Z6kt6nFUsR3zNPnfKVz7k7wNuWIpEKaYkRE/otLTSzv8j62S7ROYyxFUhHnPN1eLxRk9rc5EUTk8jnnnJntMbPrnXNH/R2PyBVJF0nQK78zkWaEEs2M9PVp89UQ5lOT7gykyY2TyNTSU34jx5hfOLI3FPfNtWz/9WaKNduLtXaUcl+wqc098CBk4xgHD+bm83JhzKEaL//wBgBv3hJBBZZTZ/hChrY+wPEvbqCJG83ki/xBVCSlU/GeC5hZce/TtlchFhFJRvEXmW4kyFBXWBHfOwVs9I6xPJWw0jn3ov9CErkMMyDz9Se5c90OuOcgFMtD1k0HqBiygrxEk6l/HDzteeuRDjfi/jReersXzzAF9gLDYNOce3hq1DvM+60WJ8lM/ITruP/W9TxV7x2O3JITgA5txsB2YDm0aD+eN2a9zK7wW7nf3coqHvbTlxeR/+LfWiw/8j5e+KvTvOsK+jwiEUkWnulGkprH0jSPpYjv7fIuIqmSusGKXD7PGEu1WJ7HOXfL1QpERJJXvHNJ1e4hyLzbRMRnnHP6VS6pX5dI3q9di4PkJme5I2x1xZlLLbaNLc28QvWZt7c+Gboc5cMsNQGo0mUVL33diwFj+9IiYjxPLJvOvJ71KTXgC2ZMboKFPkvvKn2Z/FIt6rilfLD1WT5o9CwAf3xupO8MPy3Lzc2VDsLyP/l8RAWcu8afZ0BE/oPAK1ckEqhc0i2WYCreI+JjZpYbGALkd86Fm1lJoLxzbrSfQxO5RLXoM6g7myjFa/Mj4WPoN6oL2xaWJkP9o5zedj1/1DeuXe+osn4VADW+nkkwcXAPvMCbtGIM0QNCAbDVjvvHfULBJ6PhM5i9syGshz1fe7a3ZCxTmkSwgBqw/E9ggDcOVYOV1CdQpxsJ8ncAInJ1xDuXVIOlxliKJI9xwOdANu/r7UAbv0Uj8h+oG6zIlYsjnU8XIKuZjTWzGv7+bhejxFIkQHjGWP59vRkaYyniezd6WyfjAJxzsUC8f0MS+Q++KEmfXAMJIRY6wIejqnILe6HUGU4XuB7uiaJxxsm0CR8C/wP+BwuGP0m/4f35tmQhFix7knKs48ux4Xxp4bQbN4gj5GTszMYwHXgLmAyTaMokmjLxRAT2qWMjpeG5a+C5SJzmrhRJ7LhzLuL/7J13eFRl+obvb2pmUknoHURU1oJlZQFl7YUVdlUU17ZWUFFWsTcQ7GtDVBS7WFbsCyvWVRcRxZ/YFxTpYCCkt+kz3++PM+dkkswkEwwEkve+rlyaqd+czAzfc573fV6t9YK2XkgqRFgKQgchpjUqaSqsQsvAEUFobSKJvyil8kja5SwIOxemW3nWsCfgHLj1vNvJ+rGEP099jxlMJbdzOVwKcBwHsYxHfrwS12tVuF6rgr2BLbD3S6ugBqMU8Fngf/BS7HRe5jQm3D+XO2dfwZ2zroChcOvS27l16e04T9PMvGEiT509CR6dbvwIwi6KGd7Tmj+7AtJjKQgdhFRzLJVCeiwFofV5XSk1B8hWSp2DUQb7dNsuSRDS5OVpuHgExgHvwbXeuzh2xnscfMoPcAVwjuaSGZ9xL1exZO8RTI/3QdqPiHLJyEfY6u7GexzLbCbx3ZI9DFcydA77ffEz902ZxM8M5vHv/87m+/Po/o9KAL5fOJh9167k8ueNnktxKwVh10OEpSB0EIxQ2FTjRkRZCkJrorW+Ryl1BkaP5Whgltb6hbZdlSAIgrAjkHEjgiC0a2JaJ++xRHosBaG1UUr11Vq/CLzY1msRhHSwAns+mwZZMJb5DBu2lAnRuVzEHLrcUM1ur/6P1WuGwCeK2Zum8JdRL/PmR39ljyO+A2AffuBE95sEcXPRhc9y0BOLuVXdDn2AEjjd9zSjeZsrFz4Ci6HHkRUcUvwBAFOZgdr6MyAlsEL7oCOmwoqwFIQOgk4xbsTosRQEoZX5XCm1AqP89Q2tdaCtFyQIaXEb6D8rVOcAgbwMLnQ/zzfsBc/C6prfwWnw6HnncvH3z7CUYagKzQr6A7DX1et4Lf9MuADU9TFQv8JzkDWuBHdGkJc2nM1L/QaipyrUBTE23dGFh7gMgGOO/hQ+/BoYg9YHtNnLFwRh25HwHkHoIBjhPY0vtynjOkEQWpW+wEzgJGBjPCJ+eNsuSRAEQdgRGKWwrT5uZKdn11ilIAi/GQ1JU2GNHssdvx5BaM9oraPEhzAopfKBOzHmWna82ihhp0cdAK7SKwCYmH8P07kW/V0GapyGdXBz4Y28UjiWKHb+uvJNLi58DABfyEOPk9byRxYZD7Q7qE0aHVDYMn2M0j8ymNcZx2v8h6O4+9lpMOAw1BANu/3CSL2YP7EQgDUf9GSgmhhfkTiWgrAr0i6FZXxw6JhBgwa19VIEYadBp3AslTiWgrBdiAvK04G/AbnA1LZdkSCk5vT8lwC4lrvpPb+EW769C64DVkEFefzAPvjwcPPgG7n1/dvhMej5xmZWPL0//zhvMgDXfDGLF54eh3pDwyb4hOO4avK9HLPhY3jXwZVTb2PqjbfyO/v/2JgzGDVPM3v3PQGYfaATAK0va5PXLwitSUcN72mXpbBa6wVa6wm5ubltvRRB2GkweiwbX64Qx1IQWhul1BvAT8B+wBVa68Fa69vbeFmCIAjCDkLmWAqC0G6JaZ103IhNIeNGBKH1eQM4Q2vtb+uFCEJTqKnAD9CTQgDe41goAZ4HesNZU57goalXk3VdCVO9M8ijAr6Cy9+4iwJK2Hzex1wzYhYAuZ9s4U1OhKEaBinY7zNO6P0huSds4YwJL7GUYeT8GGLT0EGolzWDx3/PyrH7xldS1gavXhCE1kSEpSB0EGKpHEtlXCcIwm9HKeXWWgcxhKVSSnkTr9da+9pmZYKQmsfDZzPh67kA6BzF+bwIjwDl8PyaC2AQ1HzbmY0j+nDN/bPgxulEb/By0/33oYZquNR4nEp3Ia9/cYbx+1nA/0ai71JsOSmXa7iHxXcczf03XMJ/9TD+ePdSVo7dlwnzH4yvIo85/L0NXr0gtD4dtRRWhKUgdBCMHstU40ZEWQpCK/E5RvJIDfHMrAb/7Xg7DUEQBKFDIMJSEDoIWtNEeM+OX48gtEd0fACf1rpdZhgI7QulpnOltjPh67nceYCRCqvu1/BPqPzCTe6FQRgeZbezf2Yic7jm61ncOuUqrpj0AFlnR+k5txBy4NGqcwG4+MdnGDPsVRbscwqcoHl44IXcP/cSpvxjNs+Pu4DFNxzEIT2/okfhWmMBDnhcnWytZ478WyS0EzQQ6YDnEUVYCkIHQWO4kw2RcSOC0Ho0LH1tiJTCCjsLSk0H4D51E/wLrntoJgDXXTkTFdDkPhWEZ+ZR8OQhrP7+d1xTMQu9uyIvtJmbl97L6XOf5rpFM7m++jou7vKM8aAlZSxwnMLlT9/FzO+vY9JPT3Huno/CXsBixYi8ZfAAnM1cll87hAVqOQBaT2uDIyAI2xO1y8yebE063isWhA6KEd7TGIWE9whCK2KWwKai453CFnZezpoGBwFDIxw79l+AIfq67r2BiczhyQkXUEAhpVf2gtXw9pojGcaXnDvqGf6qJvDS9RpXaRWhQBCAF3pOYC39uXnNPRy277tsoCvPTr6I22bdxDscjiqGruM3cPfSaXA4wPQ2e+mCILQ+IiwFoYOgNdiSpPcYPZaCILQGZgmsUupGIAQ8jnH+5oL474IgCEI7R8J7BEFo16RyLG3KuE4QhFbleK31IQm/36uUWgzMaqsFCYKJUtM5Ru/P03Sm99gSWOXg/RPGAvDDMftwLO8xh4lsVWvYfN9h5L69hamuWznhkg/ZPDuP2UziLL2J5y+EB/P/ThHdAFjIaF4qPAPWKT7ZbSl9f9gKP8JLnE412bzWZRwA5wx7jGf3vAiYhv66rY6CIAitjQhLQeggGOE9yXssY5LeIwitTYFSapDWehWAUmo3oKCN1yQIFu8PGUuvh0t5av4ZuAka8ysBO1GmMw0XIT7Rh1ES2kLlk90pvaSAf88+ih7zKqATkAvsBfdyFatf+h0AY05/FQ5xw7twn95KH37hrI+e4JqXZsG7UDbXy43czv6hr+EbswxW+iuF9ok4loIgtFs0OuUcS5GVgtDq3Ah8oZRaFv99f2BCG65HEARB2EFolKTCCoLQfomlGjeCpMIKQmujtX5DKfUp8AeMHsvPtdbFbbwsQbDSYBkHY494hQNZxkuczs9r9wPgfwN240ku4KnCCziy54esvvF3XHnPbdyhroL1XtaP70a/p4vgJ2AxrL7yd/Cy8ZDzF5yKelfzj8GTmVI8myvPf4S1843RIkPnfkH+Uh9cCpwLPDINfckOf/mCIGxHRFgKQgdBa5103IhNSSqsIGwP4kJyQVuvQxAaYttyFZO63cOTVRewoGQczFSokca/A/8YMJkZm+/g1k9v5z9Ff2L4PR9zOJ/g0FHKyWM1u/HCeeM485LX4OEg/d5Yy59YaDzwZ8BjMPf+s7jmzVkMnv89qxnEDadPJY8Kvs3+A3iAl0EvarOXLwjbHd1Bx43IAGdB6CDENMnHjSjjOkEQBEEQBEHYVjqelBaEDojpSCYL7zHGjYiyFARBaO8oNR1P5WRuy7mGK5c8wmUj7mHWZ9eQfVcxNWd2BuCa/87imkdvg9UazlScMflFTlj6ITiBH2HO4ZfTs88a+CPM7DmZQazmhI8+BODgI5Zy6sjneOWNv3HfhEmczou8x7FspA/XdJnFlcW3cd+n0fhqJLRHaN90xPAecSwFoQNgVrom67FEHEtBEIQOwxU5D3Dl1Ec4f8QjLGUYavQt5HkreOGNcbzwxjjGzH4V/W0uPQau49El53IkH3LlsNsgCxgEE/vMBODK8bdx+aI5fMqhHH/EGxx/xBucc8o85i09BxywgDHs7lvFQSzj5qfv5cDiz7hPHQ4chdYiKgWhPSKOpSB0AMw5lcl7LCUWVhAEoWNwMHdMPZ53ZhzORvrw5KpLYQUoNY0zHnsdgGMnvscV+93J5scHcPG/n4EaoBq4Cu4cfwXXf/0APAzDnv4S195V3H3KNHgtHgjU6SSuePVOOBp+OGEfpnpn8AznEDhNkTFVA+aIkZFt8NoFYcdh9Fh2PMdShKUgdABM3Zhs3IhN1QlPQRAEoX2iTmnrFQhCx0GjiMY6nrCUUlhB6ADEmuixVCgxLAVBEDoA/9DvcOuMqzj+/o+5cOPzdBu0HvWU5mC9iMhfIfJXGMlnzJxyHRwXgQvgko/uh9vh4fEXcP2iB3j4gAvgmRWcuuZfXJY/i8qX3Zyle3KW7gn/hrOZC+dCH9tGCunJffvexGTvTLi1CLhIymAFYdvJVUo9rpQa09YLSYUIS0HoADTVYymOpSAIQgfgbRjKN9y88F5sZ9SidJhzeQay4ctFo5iUM5NJOTN5kL/DCTC071eQB7MLJ3HWMU8wn7HsPer/yKOCCfp9+ERx3903kft20HqKzSPymMvZ8AUcyqfMLruEp74/gxBu4JP4jyB0ADREIvZW/QEqtdYTtNY77RgrEZaC0AGwhGWygSNKIbpSEASh/aJGtPUKBEHoCEiPpSB0AMxxIql6LMEYSZKsVFYQBEHYdVFqOgyfBsfBSb430T8p1L2aOz+6ghuLbuOfU0/kTf7CnEcuN25fo2EpXHLEbCY4/sCangM4iTf4dtEf4GU4c9xrcCfw4Sfw9mHwFTz/2oUAPP/jhRz59dvwI0xkDofmf8qpY+fDgkeBMrS+uI2OgiDsWLRWRCMdT2aJYykIHYBYE6WwpospI0cEQRDaKX+Af75xIj29hTASAv9WXD/7AWLLMrmJ2xjGl0ycNJOJk2ZyyLUfwLUwiFV8PWIIH3M4QdzcMuo66A06U8FQeEo/ge3AWj6fuj+Mw/h5Fpb6hnHYR++y95pfWMIIJsx/ENga/xGEjoEhLO2t+rMrIMJSEDoAuslxI/VvIwiCIAiCIAgtpeN5tILQAWnKjTS1pjiWgiAI7QulpgNdCd+i6BzazCLXH1FOzd7e/4ND4Jd9+/AkF3DlKY+Q9VwJAE97z2PIsOUcsXIJBw7+jGV3jOTKG27jltl38cIN47iKW7ll2HUU0oNHul1KCBcYd+X1saM5+YiFfHLpcYw56VU+5VCWqQ8BJA1W6FhodhmXsTURYSkIHYCmHEuzr1LL0BFBEIT2x4kX45x5MXtN/YZJPIy+QfHEu2dx4b+eZ+q+N/ANRilrzXWdAfhk1mE8nv933i87lAe4Ar2PQq2JgQPO/P1rcCJUXuumU0kZsXWZnDXsCf573jAA/qiWwl/BdVgVC244BQ4C+LDtXrsgCDsUEZaC0AEwq1yThfcoVf82giAIgiAIwrajtSISFsdSEIR2iDmnMlnqq+liirAUBEFoPxhlsKdie7QWhzNKKQWsmLs/arCGU+Cihx8ldmEm5zzxGBPGP0jN+GwAZm+YzMllL3LM8k+hGlSxZv3Abvxpwr/58affw5uw/IYhxH7NpMewtRTRjUUcCsCzejznXDiPf+f/ifPueIbOlIA+lm/4QxseCUFoCxSxaMeTWRLeIwgdAFMzNjVuJCbKUhAEoX1x/V7E7s4k9EEOG3z90P0VBTN/5dFXz+W0bvP4+okhVJPN41//nUP5lEP5lJl9JzGO1zh4yCI+H7Y/Q8/7guUM4QOOhq+AqyCPcu484ApKywo4nRdZxwDWMYDZTOLmJ27kmLmfsum8QXyr3uNb9V5bHwVBEHYQIiwFoQNgicZkPZaYPZaCIAhCu2HMNPR3ikPu/wA9SOEKwLujDuNr2wHMZwwvfX0eY5nPawvOhE3gIoSLEJd/PQeAg/iKPmykK1s57p1P6NG3Ag6BmeMnstf763ARoiC/lHPUjfRnLf1ZywU8SX/WwWvAM9MBCe0ROigaiNhb92cXQISlIHQE0uixFMdSEAShfWCUwQqCIOxYOl7xryB0QMxRIqY7mYiVChvbkSsSBGFbUEqdCVwDDAEu11o/nHCdF3gGOBCIAFdprf/dJgsV2pzF8w+iD7/wIJP54sChLGAMhfTkwejfWW0fxKMHnMtrjENt1vAYnJ/1IgCDj/iePmxk9v1TmD1uMgQc9Dx+DV9u2IeDL/mB1xhH+A8KxwI4fMzHHPDicm5edC8AK0b1Z6+r18FhwII2e+mC0PZotcu4jK2JCEtB6ADErHEjja8zL5NxI4KwS/AtcBpwXZLrrgKqtdaDlFK7A58qpQZprWt25AKFnYD/TOMUzmbz1AGcdOw77DPyS1aW7UHo2RyeWXExDz8xiWPe+BROns4NeimuCSFumXUXACsz9uWQaV9Bf9DLnKi1ms2DBnBw3g+8P/tQNtKXR3ImMHvMJFYu2Rd6Y7wjgSWFI3nhnnGcqfYHHGh9Y1sdAUFoWzQQSbLpaufscqWwSqnnlFJPtvU6BGFXoi68J1mPpUFMdKUg7PRorX/UWi8HktUYjAcei9/uF4yoleN34PKENkap6VIGKwhCm7FdHUul1L3AyUB/YB+t9Y/xywcDzwEFQClwdvwfweYe71LgPeCI7bVmQWiPxOpqYRths5njRkRZCsIuTl9gfcLvG4A+bbQWYQfTUFBOZQZHzfiQ7xnMj3f/ntOvfZryKXkM4798+dIo9jr9G37echV3vJHJ8JM+hr/7jTt+4eHxD87GRRB1t+aGa6cyyzeZmkM6s8/XP3D02sXwE1y+dg56pOKb/fZiXuF4ANbRnxEs4R39Icfx8Y4+BIKwcxFp6wXseLZ3KexbwIPApw0ufwx4RGv9QrxfZA5xsaiU2i3+eyLvAR8BXuDfiLAUhG1CHEtB2LlRSn2NIRCT0U1rHW2l55kATADo2zfV0wm7HMcbCaxZfyjh4uXP4Opexb/y/0zZtV7yX/JBZwwfuzvcw9Wc8N2HvH7SaE7+aCG8bDyEa/cqHuAKRrCEodd+wSzfZIZ6v2Hc168xm0l0G1DEpSuehAiof2moNHorAfaavQ4mPQvIbGRB6IhsV2GptV4M9YeyK6W6AgcAR8cv+ifwsFKqi9a6WGu9Gjiq4WMppaZinHm9HThAKXWo1rqhYJV/LAUhCWaPZbJqfyu8R3osBaHN0Vof8BvuvgHoBxTHf+8LyW0jrfXjwOMABx10kHz4BUEQWhONOJY7iD7Ar+ZZV611VClVGL+8ONWdtNYzAJRS/YGbkonK+O3kH0uh3TPmoU+xK8Vblx6S1u3NM8e2JF3V5nkfObssCLs8rwITga/i4T2/B/7atksSdgRKTQfPNA5Z+AEAz3Aeu1+3kXfnH0cBpYzlX/zz9BOZwv28fMxpnMbLnHD3h3S9dgN3cKOxG6w1Hiv0Sw4rSvenYnQeE5nDh94jOYhlXD52DvSGfrN/gich9+UtfOM6gIFLC9nrjnXGnd+F+tXYgtBBEWG5a6C1Xgdc0NbrEIS2ZNXWWjKc6Wdv1TmWjT1Lszy2JcJy7MOLicU0/558aPp3EgThN6OU+itwD9AJ+LNS6jrgmHigzz3As0qpVUAUmKC1rm671Qo7lOtgf74FoI9vE/owxdscyWuMYyV7cNojb7Fq0m6Muv9LCocNZP9rP+ebXsN57tdTOXzUSRw36l0AVqhOeCpz2bx8AMcOeY8ljGABY+CxIPzoZv3UPcEOX7j+wCwmG+/ELfE1fPos0A+tz9nxr18QhDanLYTlRqCXUsoedyvtQM/45YIgpEEwEiVJu2RKrOyeJsaNxFqgLNeX+ghHZfClIOxotNb/xGghSXZdLXDKjl2RIAiC0AgNhNt6ETueHS4stdZblVLfYpTnvBD/7zda65RlsIIg1FETjBDT4Ha0ZFqQOccyWXiPSrhFegTDUUIiLAVBEHYSDuC/U4dxdJlRCvtV/kGEprhYtmEYbHLAu/DujMO4eda93Nz/XiNa0QGqXHMZ99CTQsYzD4Bblt3F9JzJuIYEGb78G2YOmcg6BtCn50YG9VzFwccsZSV7sNfKdfAsfHnHPhz8zx+MZXQ+B9nNCULHZbvOsVRKzVJKbcIYn/uhUup/8asuAi5TSq0ELov/LghCGmytCgBQ7gvjD6UXENmUY2leFkszFjYW08S08ZhVgQ54Ok4QBGEn4hEu4FRdxoHBr8jLryAvv4KzmcsFPIkOOfnviGF0nbGB4xd9jD5G8c+TToTh8MKwcXAGPFl1AesYwFa6spWuvHLAWIaxlMtnz0FnKy7/aA5ugtiJ8Oen3+M9juWPK5fCh3DOHY9x8JrvoWR63Y8gCMbZ+mgr/+wCbO9U2MnA5CSX/wQM217Pq5QaA4wZNGjQ9noKQWgztlYHrf/fXOlnYJesZu9jhfckcyxb2GO5tTpouZWbKwLkdHemd0dBEARhu/Bi1TkszDmG/zIKgGxqGMli5g0az6F8ysNcyml7/JOx3V5hwfxT+OdJJ/LX+W/ylyde5q0LT2NCdC4vPD0OMGZRAtx5yRWoIZqhy7/g7qXTOGzYu/Q4by3nzJ8H/eHmS25kLmfBuwoemYa+pI1evCAIOw3b1bFsK7TWC7TWE3Jzc9t6KYLQ6hTFHUuAzZWBJm5ZR1PjRswey3THjWws91n/X1jpT+s+giAIQuujlDiEgrDTEmnln12AdiksBaE9U5zgWBZWpCfstFUKm8yxNP6bZiUsmxKE5eaK9IStIAiCsH249P0ncftr+PPs9+hMKZ0ppdfGUubzZ4axlFtn3c4pmxcQizpYcPcp4ID+rCN8mGIPfubAJz6DVbCQ0SxkNOOZx9X8g+vffwDuhSK68fqw0XzyxnG8yBkwCE7d9zlufeN21l+9J0yabvwIglCHOW5EhKUgCDszRVUBXHbjo9tixzJpKqxZCpumY1nmj98PtohjKQiC0GY8rleDA2KrM9H5iiBugrg5sc8/OY+nuYyH+Mvkl1nVo7dxh//B+6MP5RMOY2nOgczlbJYtHMmzi8bTn3X0Zx1X8w+u4250leKV0WPZPHoADqLoLEUJnblvyCSu4l44OQz3GoJS62lteBQEQdhZ2OXmWApCR2drdZBuuW78oSib0xR2TfVYmrTEseya7camFIVpCltBEAShdVFqOo+3JM5bEIQdh+lYdjBEWArCLkZRVYBu2RkEIzEK0yxF1da4kcbX1YnN9B3LPvleYlqnLWwFQRCE1sPsrXySC3j8iLO5m2tRdk1XNgDwa1U/qnM85M/18e+zj2L3WRu5dvJ0vp+7D1vpRgV5rKM/mxcN4P3Rh3KMep9/6GsBmDfrHBgDKl9TGXWzfmE3di/7hYePuZQK8hjNQuYxnof1xVyq+rTVIRAEYSdEhKUg7GJsrQ6yZ/dsIlHNutLatO6T1riRdB3LCh8H9O1EJKpZsbkqvTsJgiAIrcoYPYS1ePiQI1l14968evsYZmNEszpLYryQcwr/PXsYL3I6H00eQTXZHMYn/J0H+fn9/bjnmMvgQziaxXynh7LvxpUAXDH5TuYxnn8MmMzRfMAlPMIF+U9y4U/Pc8+el/G7Vau5YNCT9FMrANA6v82OgSDstHRQx7Jd9lgqpcYopR6vrKxs66UIQqtTXBWka3YGPfM8aYfnaKvHsrGytLVg3EgkarikfTp56ZGbQWGlP+3eTEEQBEEQhA6BhPe0H2TciNBe8YUiVAcjdM1x0yM3g+pghOpAuNn7WY5lkutslmPZvEDcUhUgGtP07uShR56HQDhGha/55xcEQRBaB6Wmk1U7CR9evgj+gU8ZBUHYh+/ZSB820gcds5FNNYs4lHUM4CsOAuD40z/mac5DrdP8zB7cMGMq+4/6nP2+/pmj+vybo/r8m5lrrqXwp4HcHrqBLxeNYgDrmP39FNQGzTUb7qfzwE28xjjgofiPIAiCgZTCCsIuxNYqY9RIt+wMnI66ZNjsDGcz9zR7LJNJy/QdSzMRtk++l0q/ISgLK/10ynQ1f2dBEAShVajZUsBVA+/l9+6vGMdrTLx3JnPevJzdTlwNQPkgD13Zyk2X38eImX+iK0WU0JncZ7ewkT7wLXzKofy8dj/sA6IcdsAnPPDy9QB8c9pe8A+o6NqDQef8yHk8DRF4+JgLmMFUruABrlQnAqD1UW11CARh52cXcRlbk3bpWApCe6Woyih97ZrjpmduBpDeLMumeixb4liaMyx7d/LQI/78MstSEARBEARBEMdSEHYhtlbHHcucDDLdxsc3nVmWsVhqx1K1oMdy5odGuEOPXA8ZTnv8+SUZVhAEYUeg1HQ4aBp/Gfgy05jO/8oO4Pf5i7mKe3n3xMM4lEUAFNKTkUWLcc8I8QJncHLhm2TlVfOwdxJzOQt9vUJ9r1FfaDhK84+Bf2fsaa8AsJwhBK9x8yqncC13M2H5XB494FzmMJGj+JDr338A3gN9TBseCEHY2dFAB+wUEmEpCLsQlmOZ7SYrLiwf/ugX/npw3ybvZ2rGpnosdRrjRoKRGC67DZfDRucsNw6bzLIUBEHYkQz/v495c9FfoRYmH/8PCiilJ4WcxssUFXUF4KJuc5jf7c8EcdGTzdzccwaH8zEfczjZVPNgnwm83+dQjvF/ypEDF7KcIYxhAQDjmccZxa9DBPJ6lKNXK9QWTc1IO/e6r4Zji4yF6G5tdQgEYedHA9FWf9RcpdTjwAKt9YJWf/RWQISlIOxCFFcHcTls5HqcKKVw2hXBSKzZ+8WaSIVtybiRUCSGy2HcwW5T2GyKV/5vI9cet2f6L0IQBEHYNjpP4zH24ONRw+lBIcsZwkF8xQ/sw1C+4YluEwAYyWd8wNHcy1WcxVwWMpo5TORf/BmACjpx9NrF6L4K3gEOAq+7DICzcuZS0qWAyzc8wjEspGJMHh8xgie5gFuuvguuAn1PWx0AQejQVGqtJ7T1IpqiXfZYyrgRob2ytTpI12y3JRBddhuRaBqKMH4TW9I5lmYpbPOPE41p7La6rw233UYo2rywFQRBEH4bSk1v6yUIgpAuMm6k/SDjRoT2yn9WFNUb72G3KSJpWI114T1JHMsGt2mKrjkZ/HFwF+t3p10RFmEpCIKwY3gRRvo+w06UPT9bz4d3nsAlzGbS2qeI4qBv0Xr6Fq1nGEs5go+YzxiWM4QXOIOi4n5cyOPM+O4ORvM26gPNbT2uROVr1KeaN3JO4o2ck3AQZQ4X8X7fw/mWoXy5YQRHfL+EaaHpcG/8RxAEIQlSCisIuxDhqCbDWXc+aMRunVlTUtPs/bQ1bqTxdXWBPs0ryyp/mOyMuq8Nu00RTUeRCoIgCL+NztOIHaS43XslU7ifrxyHUDvFRhQ7xw74F+N4jee6nQ1A9zmV1J5j40n3BZzme4Uib1fe7nIk05nGi/udzFKG8a8Jx9KVrdxcCbqfImiEfnNc5Sds6NGV5QzhKD7kZfd4Xtz3FP560ptw4jT0G214DARhV8F0LDsY7dKxFISdnfFzPmf8nM9bfL9oTONIUIc5HgdV/ua/uZoaN5Juj6XWmqpAmBxP3czMMfv1wu2wN/v8DdnW1y8IgtARUQe09QoEQWgRUgorCMKOotwXwhdq+bdEVGtsicIyw0l1oPk8a91EeI8tzXEjwUiMcFSTk1EnLLMyHNQEI9Y4k3TZXOln1dbmnVZBEATB4ODiRRTmF+DFz1C+5ZFh5/O8+2xchHhv6Z/x4WEFQ1jBEN6YeDz9nBs4iGW4/wnn8TRefDzJBRRQym6sYuyq93mLv1B5pJsXDzyZn72D+dk7mOd6nMqFPMHxhe+ygT7EijKZwVS4HONHEAQhBSIsBaENWFtSy+ri2rQCcxKxKTj5gN7W79kZTmpDUSLN9DmaT5Ns3EidY9n0Wqr8hoDN8dSVwmbHR57UtlAkF1eHqEpDEAuCIAhQ8NWvLP3sj/R6wRgt8ljVpUx65ylWsRu9FpUyfdi1/H3p49iJYifKVrpRXpzHyAXLGHf+CxzEV1zNPRzFf3iAK7h8wyMMGvQj+/ADR9g/woeXbxjKNwzlec6mmmwW9xzJp28ew/n7PsKKsfvDvaBHtfWREIRdCHEsBUHYEURiGl8oypdry9K+TyjuGHpddaWnpsirCTb9jWOKRlvS8J70HEtTCGY3cCzTef5EKn1h/OGo9GYKgiCkgRrd1isQBEFIDxGWgrCDCUdjloi76IVlafcamqWzXleCYxgXec31WWpr3EiyUljzNk0Lvcr4c+QkhPdkxR3LmkD6wnLZBkNMxzQiLgVBEJrAHDHyqO1iHhl5PoyE5QzhlJx/MuL4jxjAOoaM+pqrgvfQc9gaPPjw4ONeruLFbmcyfsyzTOIRljOEr948hJ8ZzHzfn/lH3yms2rw3FeRxIF/xJn/hnKXzOGfpPB5mEifyJg9wBU+feDpPzZsEC6YbP4IgpEcH7bFsl6mwSqkxwJhBgwa19VIEoRG1cXevc5aLkpoQgXA0vfuFjNtluhMcy7jIa66sNGb1WDa+zuy7bE7jmc+RGN5jOpbVLXAs/29dufX/taFIvZ5NQRAEoT5dF27Ai48Idg4d8D6fFh/DT136kU0N73Esb/Mnog4HhXcO5LnrTwVgMSP5I4u4h6s5MLoMuz3KohMPZjrTyPhKo7sq9tnzS378+ve8cMA4zvjpddQy4x+BecNO4zrf3WRcN4tXbzmT8899ETzT0L62PAqCsIshqbDtB5ljKezMmGWj544cgAK2VgfTup+/KceyGWFpasZkwtJyLJsZN1IdMB3LOiGYvQ2O5f8llP/WtkCQCoIgdDiem8YHHM2fVv2HH9iXC3iS/bt8zp4b1/N7/o/zLn6Jq7mHgWoN715/GPvyA/vyAxfzGCNYQg8KWW3fjeUMIYqdBYxFD1Dcs+dluAnR9YANFFDKhj27okcq9EjFD+zDSO9i9AjFn/JfB/9040cQBKEZ2qWwFISdmdqg4Tz2L8jE7bQRTNexDCZxLOM9ls2XwsYdyyTxPemOG7HCexJLYVvYYxkIR/l+UyXdczKAutckCIIg1Edd0tYrEARhm9FAuJV/dgFEWArCDqYmaHw7ZLrtOG02Imn2GdYmcSxN97C5kSNWj2WST7yyxo00kwqbrBS2hY7libM/IxSNcfieXQBxLAVBEJpiwtkPchGPofPhqQ0T+ZJhfPPOcMb2eYXCkwey6NGDOZRF/Nt2ArO5hAe4gge4greuPo0iurKAsey/cQWfMZJZTGbC8rlkFxRTSE8K6UnR+/3YSB/63V3E+P2eZfx+z/Laj2fSlSKU0ryjTgKmofW0tj4UgiDsArTLHktB2Jmpibt02RkOhg0sYFN5eo0rPtOxTCIsq5oRdjFr3EiyVFiDZlNh/RFcdhtuR506zXbHhW2aAtEsp/3j4C7888uNIiwFQRBScZVmzlOXw2L46Zl+6M+c6CwYffzrdKaU2pdsjKj6kpKcAvqzlkJ6UkApAP3u+YlubGXGU3fwf+fvjR8vbz19GrqLQr2rOXHKm1STDRnwEqdTcPWvvPLR3wAYe8QCFi49GfWgBswSWBGWgtAiNNABi7LEsRSEVmT8nM+bTXk1xVSm20Enr5MKX3r1DZZjmVAKa5aimmWqqagbN9L4OjMptvkeyzA5HoflcEJdWW66AtEXiuJ22OjdyQu0bEyJIAhCR0Cp5P3wgiAIOzviWArCDsYsG810OeiU6aLcF7KuM0XpvInDG93PF2rsWNptiiy3w3ICU1EX3pNs3Eg8FTbW9LqrAo0TXB12Gx6nPW2BGI7GcNlt1ixOUywLgiAI9Tlw4BJ6DlzD9POnMYb5fD9mMN8wlIVXnQwD4MZJN3Ou+xm6sZXu51by0ZNHsKf9JwAmMoexzEd10lzLdOZyNv8671gu4GF4H07hVYpe6McbZx7Px8XH82KXk7n6iHsAOPOj13jviCfgc8OtlDJYQdhGOuAWRxxLQWhFvt9UyeZKf5O3MUVYlttBntdJMBJLa+SI6Qp6XPZ6l+dkOJpPhW1y3Ej8Ns08f5U/THZG43NRWRnNC1uTcDSG066s3szmwnvScYAFQRDaFesjsD5CV4ooXDqQhYxmBUOYwv0s4yD4O/xv0m68yYlkUY0XH98/M5ib7LdRWDyQwuKB3LL8LnpQyDsnHc7dL03jVU7hbUazkT64DqriCS5kyJlfc9Kid6AUCiglm2qyqebUI57j+SMubOujIAi7Nh10jqUIS0FoJUKRGP5wtFmxVL8U1gVguZYbynyU1CQfP2I6lt4GwjI7w9lsKawV3pNEWdalwjYf3pMY3GM9v9uRtmPpdtg5Yb+eZFrCchf5phQEQdgBKLWurZcgCIKwzYiwFIRWoqzWEIehaNM1pTWhCC6HDZfDRievIdTKaw1huLU6SHmKnktfKIrLYcNpr/+xzfE07xjGrHEjjTEDfZoP7wk3KoUFw7GsSeGYJjqOoUiMSn+YzlluvC47SjUvLKv84WYdYEEQhPaAUkbp6eC+yxncdzmj+BTl1LgIcnBwKYX0ZDzzuKvP5YwMLeZBJvMQk+nDRlaxG0sYwRNdzuKJLmdBBZTSmVlcxnen78HIzct4fMMkXuQMLsh/kj8PfI/PGMlto65k9J6vs47+vMxpvMxpZFMDH0sZrCD8JjqoY9kueyyVUmOAMYMGDWrrpQgdCNNpDEeaEZaBiFUKmusxHMsKX4hAOEo0pommGD/iC0XIbOBWgpEMu6Uq0ORzNuVYmiNImhs3Uh2IWHMzE8lK07EsrTWOT+csN0opMl0OKyE3FcU1QUuwC4IgtHeO1P/jVU4BIH+5D7oH2YOV3O2+jj5s5FMOJZtq/ufam+XshYsQ05jOi6HTqXyyOxNOGAZAvxE/MYvL+DI2jP0O+ZmzljxBTdDND+zLI9OuZPa7UziaDziKDxnAOvKo4GyeA+DHKb+nLg1WEAQhfdqlY6m1XqC1npCbm9vWSxE6EKawtCeLXk2gNlgnLDtlxh1LX5itVcb9UwnL2mC03gxLk+w0ehxjTfVYxh3L5sZpVgXCZCdzLJsIDyr3hSzRW1JtCMTOWYaY9rrszTqWkagmpsEf6oCZ3YIgCIIg7JpoINzKP7sA7dKxFIS2oLTGEE61oSg1CeKxITXBqNVjmNhjWVRtCLAeuRlJ7+cLRazxHonkeJxphPcY/00mLG1WeE9qZRmMRAmEY+SkCO9J5VhurQ5aKbim8O6c7Tbu53Y0mwobiUfVltYG6e3yNnlbQRCEXRWjDPYAKsjjbq4FYK8h35BHBbcuuh39g4I/wtN7nw7AAsYwhOV8y1Cei/6NC1xPcvgFH1G5qjsA697fi++PGcwetpVsXdKV/qyje7SIRYwieC14IuW8wBmcxzPYibCEEfxYuK+xmAekDFYQfjMyx1IQhN9CYuhOUROlqTXBMFlxgZgX77Gs9Nc5lqlEWm2oaceyqVJWUzQ2Hd6T8u6WI5ksvKepUthoVBOJaXyhCMXx49MlyxCWmW5Hs45ll2xDZEs5rCAI7Z1/6Yf56sZDKKIbRXRjxez9WUd/Dhn1AbwPo/d+nR/Yh2N5j4vef5bzeJq3lp5Gr+CvLOJQKhb3gAqgAnoes4ZSCjiRN7l7zVR6Usgb3hN5jXHc472SG3JuZ6+n17EyNpjFOUfzzbLh0Otn44cTRVQKgrBNiGMpCK1EQ2G5W5espLerDUYpiJeDuh12vC475bUhPE5DbNakKCv1BVM4lhlOojGNL1TnhDYk1oRjac62bEqYmqmzScN73A5q4sK24ZzMSPyJN5X76xxLS1jam03QNdNyTTdYEAShfXINYx/xctDti/lq0SEAfHvJUPbhB4awnIP+tZgSCujGVvx4yDtsM/P5M6MGfsmr3jGc+sZ8Ll88h/vunwTApxzK1dzDskUjoTv0Zx3TmI4PL3vwMxXk8fp5o+nDRjpVVaAu0dTvq9x3xx8CQWhv7CKBO62JOJaC0EqU1oQs4VZcnXxkCNTvsQSjHLbcF2Zr/D41oQixJPZhKsfSdBGbKodtctxIg9sko86xTF4KG4lpgklCi7LipbMby3yUVIfIdNmtOZzNhf5EY5rKuKAtFcdSEIR2ivp9W69AEAShdRBhKQitRHFNkIGdM4HmSmHrC8tcj5MKX4it8ftoTdLeQ18o0miGJRilsECTAT5NjRsxxWZTPZamaE0W3pPtTv78Wmsq46NTNpb5KK4JWv2VAF5X0z2Wlf6wJXZLU8z2FARB2JUxR4zoB72oGs0e/IxyaJRDU04eg/mZ659+gNEspNTXmWcXXcQ37E9P12bu5Sre7nIk73Es7AkcBSFchHDxcegwls0YiW2PWi4ZfD9BXLgI8v6G0Tw042qe//5CTp68kDlcxFccBI9+BhyF1tOkDFYQWgMZNyIIwm+htCZE/4JMNlcGKKpKLYRqgpF6JaudMp2U+0L1HL+aYKSRiPOlcizjtzPLVZNhSsaGpapQJyxjTUxJqfJH6j1XIqYrWROM0CVBOPrDUWum58ZyPyXVQasMFswey9SlsGYZLEiPpSAI7ZivqlBXaDjE+J59f8ShAByz4WOG9V0K/WEJI5jvHUveqAr2/3EFpxQu4LNjDmQuZ/HU7Em8cMk4zlz1GtePfcB4zNvgsqn3kE01PrwMYjUn8havcAanTn2OV176G/1m/cRSDmY5QxiuQyzh8DY6AILQDjFTYTsY4lgKQitRUmMIp245GSkdy1i8FzLRsczzuqjwhSmqClgJrcncR18w+RxL07FsuhS2iXEjVipsaszHTj7H0hCbDXtDK3x169lY5osfH1fC/ZoeN1KRICxLpMdSEARBEARhp0aEpSC0ArGYprQ2REGWiy7ZbqtfsiFm6Wf9HksnFX6jx7JPvjFSo6GwjMU0vnAUb5JwHrPHsslS2Fg6qbCppWV1oOnwHoDqYH1hawpLm4o7ljWNHUt/OJpybmd5rXF/u01RViulsIIgtC+Umg6/XscmPRC2wIq+g/iefazrv+67LxV0Agf8Z9GfOGLWEo7jXdQ/NGqVZh7jmXPr5Uy45EHOPOk17hx7BVfOv40r59/G6fs+zRJGUE02M+deR6+qX/nr3De5vO+9jGAJvAnrb9iTPVjJ518fzudfi1spCK2KOW6kNX92AaQUVhBagUp/mGhMW47lD5sqkt7ODKvJbBTeE0JrOLBfJ9aX+hqF2gQiUbSmaccynVLYJNepNCzLZz9bB9Bkj2cjx9JvuIy7d81mQ2kttaFoPWFpCtLaUCSpYDVLYfsVeCW8RxCEdsnMnpNZzl6QAXvNW0eP8Ws55qVPAdjr9G94mvPAAZeNuAdGwUNXX81ec79hCMt5aPTVfLjwKFYs35/X3xhNBZ24gCcBOIj/Y92ivVCLNRwJ/pI8Xjh7HA9wBTNHXcf5ix7hqbMn8frkM+CheBqs9FYKgvAbEcdSEFoBa5RGtptu2W6KqoJJx3fUWsKyTqDleV1WSM1uXYzwn+oGZa1mL2JSxzIuyuYsWpNyfbEmUmFtaTiW0ZjGYVNJezRNgdhQDJvBPXv3yqU2ZKy/YXgPkLIc1nQ8d+uSJeNGBEEQBEHYdZDwnvaDUmoMMGbQoEFtvRShg2D2AHbOdNEtJwN/OEp1sLETVxMXiKbLB5DnqbuNOfuyofvni5fQJnMsM5x2lCJlSSkk9FgmOZWk4j5mE3cnEtPYbcn8zvrhPYlUxB3UfXrl8PrXxmVdEnosTXGdKsCn3BfCYVP0y/ey+JeS1IsTBEHYxVCqCDpN45qyKn7J351nLxnP34pfQb2vGXP6qwB8WHUUw7/9Bi6CJ7+4gP4562A4rPh6f1Z03gd9mULtq+FYOPnwhQDcOfoKANav2YPHRp0DH0LNUDt/ds9nCSMooJQfFw1iZGgx/507jMOLPoIbryLaLbONjoQgtGN2ETHYmrRLx1JrvUBrPSE3N7etlyLsYoyf8znj53ze4vslOpZdcwxXbmuSZFjLsXTVT4U12a1rXFg2EGmWY5kkFRbArlQzwtL4b/JxI/HbNFELG21KWKZwLE3HcZ/edZ/DpKWwKRzLcl+YPK+Tztlu/OGoJa4FQRDaA/8uO4rd8lfTb3YRfdlIMBP6HfMTC+adwoJ5p+B7Mh9+Ah4G/xedWHHJ/qw4qT/XHjCd+/r+HdVN8/r3o2Ec3DB6Kv8afSwb6cNG+oAjykJGc+qM5zja/SH/mfsnZqspDGIVe9+9ikq34o9LlhJbnSmiUhCEVqNdCktB2NGYwrIg00XX7AwALn3p60a3MwN2MhukwpoMiM/BrErlWLobO5YADrsi0pSwJHV4D1YpbMq7E47FcKQQlm6HDaddJe2xdDls7N4t27qsYXgPNCEsa0PkeV3kZxrHR8phBUEQBEHYJTDHjbTmzy5AuyyFFYQdTWlNCLtN0cnrolvcsQxHGw+GNEVUVoPwHgCnXVGQ6SLL7Wgk0swexWThOdC8Y2lelUxXWmKziR7LSFSTkULUKqWMNSfpsczzOMnJcGK3GetL7LFM5XSalPtCdPI6KTCFZW3ISs0VBEHYVenDKlylXTnh/Q8pOOpXii/JpsvcanqfvYoNZbuj9jNu9/T400GF4WUnD4+/gElVT9GfFay/e084K8gNB0zl5NMX4nq4io30wU6UIroZd37NwQJO4dYpV/HK1L+BH/gfzJ49BfpDQTRCMGC2GHRug6MgCEJ7RBxLQUjAH4paozlawrz/24hNgc2m6JpjOJahSBJhaY4byag/bgSMXkelFNkZDmoajO7wx++XshTWll4pbNJxI/H/NtljGdU47MkdSwBfKMrCHzbXu6wiXsoKhqtpU/V7RE2R7Asl77Gs8IXp5HVREHc5ZeSIIAi7OkoZCawF+aXobxWP2y6ky8pqGAQH8RWqDNRHGvWR5vwlLzJUL4NaiGDnqnG3MpYF8CTc2fM67pg6Az1aEToqh+ffv5CFjKaIrhTRleIp2bwyZSw3q3vhL8DRcPKQF43S2q+g1F5FTWYx1V4RlYKwXZBxI4LQsQlGovxYWEn3uDBsCeFYDKfdOE+T5XZgU8kdS7MUNtGxNAN+nA5lXddwJqXZY5mZQljabIpIEiFr0lTiqyk2k6XYgnFcolpz5rB+KR8jmbCt8IfI8xhuY4bTTkzreqmy6TiWQ/vkWY5lyTaUwpr9svMmDm/xfQVBELYHm84eBGfCB9ccwskLF6IXKdRqzXt7H8sHgw4Bm/FdOmHgLD5lFL3PW8XlhbO4vOcDPKR86P8qBvEjXBTkup63wMGAQ7PslJG8/upoAB5hErfccBe8BxwY5iz9LM+fdyGHPP0Bi1ceDfe+El+NjBgRhO2CmQrbwRBhKQhxCisCxHRdmmlLCEfr9yCmchBrgxHsNoXbUVcsYLMpHDaFyxSmGY3LSs0eS2+KctTmw3tS91ial6W6e3mtcTzyExJd03n+Cl/YKl3tm+8lGqsvfJvqsdRaG45nppOC+POWySxLQRAEQRCEnRYphRWEOJvKfYBRmllc3bKyy0hUW44lxIVlEqFWG4yQ5XY0mgfZNdttOXPZGc7GjmWoacfy2L2713NBG1JXCpvkSisVNjmltXXBRKmw2xqHB1X6w9YoFbfD1qiM1+syxqQkE5a+UJRQNEYnrwuvy0GG0ybCUhCEXRql3gEg67ESeBeOef9T3hl9OGqIhovBX5LHMYs+hYCCgOLx9//OihH7s+nqQbCnm5lXX8fpug9vjDqe1af8Dn5yc/cp0+ALuHngTeS+uIWTcxZycs5CbrHdxSV33A/vApc5ef79C+FlWOw8mqGDv2CoPhatxa0UhO1GB51jKcJSEOJsLPNb/3/a4+mPHdFaE47G6gvLFA5iTTCaVAD2yfdavYTZbgfVgfquqS8YQSnIcCb/yCYLz0mkLrwnmWNZ9zqSYQq6/Ex30ushRSlsQo9lMpRSZLoc1mzPRMp9xnOa/acxDW98vSnlY6Via1WA7zdVpnxtgiAIO5Jn9XJqfurMl/fvA5vguEc+4fWzRxMbqjhn4Bxwg6d3OZ7e5fzjmMkwFIrvyYbb4OR7XsSDn5XsAa/B10cMQZ+uoAJuff92KjO682XVPnxZtQ9cBLOvngJnAj8Cx/4CVwGR6Xyr3uNb9V6bHgdBENonUgorCHE2lftQGCKp0h+uNxqjIYm9e+W+MDFNvfLWVKWwH/1URCCcuhcSkovE2lCUTFdjp9Mk0+UgGIkRicZw2BuLz7pxI43vq6wey+TrqROWTTuWia83EI7iD0etUSqpehwz3fak8ynNGZjm/Z02RTiqG4n95nonq4MR/OEoNcEI2RmpRa4gCIIgCEKrYY4b6WCIsBSEOBvL/fQt8LJv7zze/XFz2i5XYYXhdLoShOWwgQVsLPM1um00pkmi++qRndF43IgvFEk5agTq5lvWhqLkeho/QTqOZaqAH3N+ZFOlsI54KayOB/RUxftUcz1Ni7lKf5j3lxdx18n1L69zLM1RLLakYUjNEYwHGpXWhERYCoLQZig1HcZN45yTjocCOHj6VzAT1AkapsINM6by7NkXwSrw53UCYMzC+cybPZ5RLGLM5FfpRhGzL5wCXQB+oQ8bmXriDfA+fHTMCD6OHc5sJgFw/uxHeEqdB/dWkVVrpybzJVyXX8G1M4zv1hnc3jYHQhCEdo0IS0GIs6ncR+9OHg7dvTMLvivEH04v2/nXuLBMdCwzXXZrtEgiUa3rhfyYJDpvWRkOakPRuAg1blsbjDYjLOuCcJKKOa2TzrAEY8wJNBHe4wthU02LRHOdvlCUTLfDCkBqqhQWjJLhxPEupiNZUmP0deZnGvd32BU1wRiRWP3j11zqqznypaQmSP/OmU2uRRAEYbviBH2r4uk9T+f8gS/C3nDLHddxy9y76MNGeP5DePAobpl8HQAOojzI3znk6a/wnedhQf4p/Fg2iL3VKqAaVzTEp/ZD4U9wxClL4Fu4fPldAMxUffiX/gujq97H+QcNx08jVLCCWzFO1s2Q7gBB2P7sIiNCWhPpsRSEOBvL/PTO83Lo7sZcr0p/8p5FrTVrimupiLtqyRzLTLcDX5LewWhMJ01mTSTZGI5FvxSztYlAoaYSVsEQjameVVnhPSkcy9oQnbwubEmTfwwuOXwQAFXx3lCrlNWT2uUEIxE3WcmwGQRklsLmZ7qIxDT/K6yk0h+mpCZoHf9URKIxy7E0haogCMKOxpxdKQhCB6KDhveIYykIGD2BJTVB+uR76JHrwaYgFEl+qml1cQ3FNUFLiBVW+HE7bLx+8QjrNqnCdGKxOncvFeZcy5oE9zEW09ibEKRZ8VLYVAE+MZ1a0FrCMlWPZU2oyf5KqHMzq/wReuRiib5mHUubslzFRCLxSF0zVbaT18We3bNZtbWGn7ZUW7frnuOmb3ykSUOKEoR48TbMwBQEQWg1Dp0GNaD+oeEZ4C7gMLhFXQovwqSih/mLXsAeTOeWIwzXceJHj7H7hRvBCXuct5L1eXvyN55jve5GvwOKuNT+MJ8MOY4jw2/zn3l/4qmXzuD8uS8CMFx/zAymsjRnGPQHFtSJW0mDFQRheyHCUhCATeWG69i7kyFSHDZbo/EZJh/9tBUAf3wESGFlgF55nnr9i5nuxmE60Vjj9NhkZGUYH0sjGdZj3FdrHLbU9zPHkNQmcUnBOHGWSljarPCe1KmwzQlLUwybjuVd7/wENN9jmSw9V2uNL2TM+0wMIsr1ONmnVy41wQgZThtbq4NsqQqm/Dv9Wl6X8lvSwvExgiAIrYHhVu4DDnA9W0WoIAfOhb9c+zLn8gxouJHb+HHf3/NW1mkwEu786AoA/srL3PDEVBYyGjsRhq75gmUDR/LSmtNhNyikJwyCPCrgQfh2/FB+PNuoHnmAK3hq9iSWZY00hOXNhpjUM9rkMAhCx8N0LDsYIiwFAdgYn2HZJ98Qcg5747mMJh//VAyAPxxFa01hhZ8eeRn1blNXmhol12uIo8IKPxrIcDQjLM1S2IQAn1gMbKlbLOueL0lfJ8SDeVL2WJq3SX59aW2QPbpnN7nmHI/x/GZoTyRmuJDpOJaJwjIW06wuqaXcF6Z7Tkaj27scNvIdhsjtX+BAa9haHSQQjpLhrH+Afq2oC0+SUlhBENqKvfQAVsyG/+b/kT9s+Bb1seY2bmLvyatgM3A08MN0uH4aulgxnWsB8OBjI304kg+5b8RNfL1kCAewnOvvfwBeh9u4if/0/xMLysbQe8kqhvJtvP8S9AZF6SUFvKUUMAx4zljMDHErBUHYfrTLHkul1Bil1OOVlZVtvRRhF2H6/P8BdY6l3aaIRhsrrZMfXcIXa0px2BQxDVuqAhRW+OmZ66l3O6s0NUHobYinxLqdTShEjFRYMEZlmERjyUN/6p6v6R5LdPJRI5DoWCa/viWOZaUpLOPHLtnMzkQS02QBNlX4KasN0aeTh775dcd03sThSQN6zGO1vrRxAu+m+FzSvvleK9lWEARhR6DUdOmtFISOjDlupDV/dgHapbDUWi/QWk/Izc1t66UIuwjBSAyloEt8dqUpeBpS5Q+jgcuO2B2AnzZXs7U6SM+8+sLSGy9N9QUbC8vmHEtLWCY4llGtmwzP8ZrjRprosVQpLEuzQjbZuJFoTFPhD5OfmXqmJ0CO1WNpOpaGEE41d9PEYTeuN3tDA+EoHqedng1Ki1PhiYv0tSU1ja77tcJP5ywXvfI84lgK7Qal1CNKqZ+UUt8ppT5TSh2UcJ1XKTVPKbUqfpsT2nKtAsANjOM1+AmGq28IFgB/+4R7uQp6YZSp/hv0f2+BOxeglmpuueEubrnhLnqymedfupD7VJQ7l1zB/nNWoJ9UsAkqw26GL/wGPd74nhzGUs6/+0Vu0ddxi76Oe/pcxlF8yIG6N6ZbKb2VgrAD0RipsK35swvQLoWlILSUYCSG22GzxNsxQ7pbAi+RCl8Iu01x6u97A7B4VQlaQ6+8ho5l42TX9aU+FPXTY5Nhzlt84P2fAaPnMHH0SDLqni9Fj2UTjqUp4JIZlhW+EFpDfjMlreaxqoqL4UhMW6KxKcy+UTNFtuE4kVSYDqZZ/rq6uLbRbX6t8NMrz0PnbLcIy+3A+DmfW+NehB3KO8A+Wuv9gDuBeQnXXQVUa60HAWOAJ5VSWW2wxg7Pw3ojD+uNAPzAPpw16wnW6J5M897CffpV7mcK3A0MB26Eq0bdyn36XZgJ3Pk93Pk9T50yCR4AveEWrh/9AOo9jbpKQ2/IHRPkkNEfoA6ZT2hQDldxLwdfu4hb1Incok5kPmO4VO3HMvVh2x0EQRA6HNJjmYTmZuMJ7Y9gOFpvDmWe12mVdSZS4Q+T63HSPSeDnAwHi1Ya/ZYNHcvEHkuTjWU++nfO5JWLRtAUpkiMxh1Ec55mU6mwHqcdm2pm3EgT97ep5OE9ZbVGCWl+VtOOpdNuw+uyW45lONJ8SBHUJeRW+sP0wSihzXDaUn72Gl5utymcdsXakiTCstzPXj1yKMh0USKlsB2W9vZ9rrX+d8KvnwO9lVI2rXUMGA/8LX67X5RSXwHHA6/u+JV2XJSazsMyJ1IQhNYP78lVSj0OLNBaL2j1R28FxLFsAjkj33EwHMu63sdcr5NgJEYgXCcMqwJhwlFNpsuOUordumbxy1ajBLNno/CexuM/1pfVphyNkYjXZdzXLMU1H2PiH3dLeR+lFJkuR5PhPU1VliqlkvZYlsaFZUEzPZZg9FmaqbDppN8C3PaXvYGE3sxYLC3H0mTexOEc2K8Ta4rrl8Ke+tgS1pbW0quThy7ZbmqCkXp/S2HnQ75vt4lLgbfjohKgL7A+4foNQJ8dviqBS99/kkvff5J/6Ct5s/ivFFDKQPUTdqJM+Wg2z3AunAacDPwPVrIHV579CLcccR0P61k8rGdx6qvPcfP/3cgVfe6Ei+DWN66i99eroAIuWXg/i3c/mlN1GSvK+nMeT/PlKaPg9WHw+jBGsoTLdMBaj5TBCkK7oFJrPWFnFZXQzh3LNcW1jJ/zebs5Uy38dpK5F4FwlEhM1ytRNcdkVPrDVrmlOb7CdDYHdcnimw0VQGPHsmGYjtaa9aU+9u/Tqdk1KqXqpaWa6bDNBeFkuh2pw3tIPW7EuC55j+VNb/0I0Gx4DxjHrMpvPH8oGiMvjVLYPK/xuPVKYdMQpIkM6JzFuz9urndZOKqtEuUMp/F4JTVBK5xJ2HmcvFRicmdZ345GKfU1hkBMRjetdTR+u9OA04FR2/g8E4AJAH37pno6Ydv4I7qv8f2n1sS4ZsssuBW66g10pYhHjjifK8c+wmHz3+WTvOM467wnKKEAnr+fW266i66DNwCwVfUAnLAX8As8Gz6Xx7iIj2ccRgg3XX/ZwCuj/sbqRYNYMXl/46lP3gTA3ZwKvAKIqBSENkHGjQjN0XADtKtteDrqRq05zP67RIctz1MneLrFx17UCUtDaO7W1WhdcthUo1EXZniP6SBW+sNUByL0K0hP2CTOdzTLaZsTll63PeUcy2YdS1TScSORqGGEpOVYehxUBcL4QhFimrQcS3McSYU/hD8URWta5FgC7NYlk3JfmJNmf8Ybl4wEIBQx1m3MFzVuV1ITaiQs5TMh7GxorQ9o7jZKqROB24EjtdZFCVdtAPoBxfHf+wIfp3iex4HHAQ466CAp3Gwl3uYo4Ka2XoYgCG2NmQrbwRBhuROwqwvWnZHmBEPi9Wb/nTPBYTMdywpfXW/erxWGsHQlOJaJvyeS1aDH8ownlwLQJ41SWDDSUk1hWR00vpkymxGWWW5HvdLbRIzwntSCTSnQSeJ7wvGxIZ3SLIXdUhWgpNo4ZpOP3L3Z+yQ6w+XxY33J4YOavV8iAzpnAtQrdQ1GjP/vne8hEDZEZkm1BPgIqdlVTjLEk17vB47WWq9rcPWrwETgK6XU7sDvgb/u2BUKX+tLeIPjjV+uVnBvGffpm9mfbzii7xJu3nAjl8+/i5ne6+jtW8XzZ18Iq4C3gT3gCv0AANfzBz7SDzKV6Sy+4WiGsJyPOYz7NlzHl33356GFV3Pkorf5z+l/YsVL/dlr4DpO1f8B4JUpf4MH2ub1C4LQcRFhKXR4SpM5lt76cxnBEJZK1QlQ07F0JxGWGU5bvTCdYFz0pO1YJow7McVpspTaRDJdqUthjXEjqVEq+RzLSCwWD8hp3n3M8ThZubWardVGX0/XnIxm7gEZTjtuh41KX52w7NRMAm1D6oRlzLosmOBYmn9DSYY12NX7GLdVAO4qwjENngFCwGsJgVxHaq1LgXuAZ5VSqzDC6SdoravbZpkdkx/Yh8OCH3O7+0bjgqdgsT6Go6s+wP9CJ3gBbn3pdkNIPgYTeYzQXDe37ns7XAS8DN8wNP5ovXmSC+hMKfwb7r9jCrsP2Qj94eAff+DIDW/zn8l/gn+W8dpL4+ixZi378y0ArzywDpAyWEFoM8xxIx0MEZbtkHa0gdohWKWwtiSOZaKwLPfTv6Au1bVPJw82Rb3QHxOlFJkJDmIgLnTSCe8BoxzUFEc1aTqWmW6H5ao2RNNcKqxKmgobiaY3/gMgJ8NBlT9CcdwZ7NJMkqxJntdJhS9MZbzP0uy7TJc++V4U9R3LQNgIAcrOcFqiuC2E5a74WUx3zRW+kDW/VNhxaK27NHFdLXDKDlyOkIBS07lTiooFQejAiLBMgi8UobQmRJdsd6PeuWS0dPP4WzebqRyHHbF53RU3ys1RVwqbEN4Td82qGjiWifMqHXYbQ3rkJHUswShNTXQsnXZl9V42h92miETNVNj0eiyz3PaUjqVutseSpD2WRrprmsLS46Q6EKaoynAsu2SnJyxzPc54KawpLFsmVpx2G26nzRrLAuALR/DE03UznHbsSvH8F+u59Ijmy3OF5vl5SzU/F9UwqGvqEYnt8btCEFJxFG8DYCdK1rIoOmB8b95Y9jMfchRX5dzLvEvGs1L1hi/y4V7Q0xVqsma3Wf9Dv6FQF2tuGD/VesxjdCdeuuE8bH+v5ZzvH2MyD8JQ0H9UnLjwn7zlPI2Z4Ylc/uwcblZTOVh/y/UDzfrX6Tv4CAiCUA8J7+k4NLfhKaoKsrU6SGFlgO456W2OhZ2faEyzsqgaj9NOrzwPtrgTV1ITJMvt4NWL6+ZLZrsd2G3KSisFQ1gesUfXeo/ZlIuY6a4b/xFoMM6kORytnAobixnJr6mwpRg3Em1BSmtOhpOYhnWlPmwqvSRZMIKSKvyhhFLYljmWYIhHsxQ2FtP4Q9F6wtZhV1a/aCK1wQjlvlBceLcsNKgjY84NNcOdWsJvLWVtKUVVAXIynNaJBkFobZSazpH6ILh5GtdcCF2f2IB6w/i+0ccpHnn3fLqylW4Ucel3T8KVMOHrB1H3a3DAWTyPmqI5/4NHeI9j+Td/AqCH+hEug8ndHmKmOhNUb8gC9c+NzJx4K28dehqXq1Hspv/HalXMl+oH4Kv4qrLRekrbHBBBEAxEWApg9GdlOG14nHa2VAWpDoTJzpCSr12d0tog5b4w5YQprQ2xZ/ds4/KaEAVZ9cWMUoqcDIfVnxcIRymuDtKrk6fR46Yi01WX0hoMx5rtkUzktIP7MvPDX4jGNLXBCHabssZmpHy+psJ70KgmuixVinEjUa1xp1sK6zFe3+riGgqy3NjTvF+u18nGMp8VlNRSxxLA47RT6QsTCEfZWhUkpsGbUG3gtNsIJxFBxTVBiqqCVAcj5HSgz7jWGn84iieNioxkbCr3AXWzVhNpqQD0h6LUhiKEIjHrZEAwEmV5YVWLPm/J1hGOxlhX6iPX47Q+7w3XKY6q0Br8R7kZrj9mycYjuII76XaSEda7x0nfsXL2vnCchssVm+fn0SOvgseX/x0Ww+Vv3MUt+XdBHjw1dhIcBzddcrvxoFf0psf9a5mpgvBZb/4y4mXG8Rpnzn2Ny7vMYU1xTwa+X8hq9Q70OB42/xeQvkpBENqOdi0sI7EYhSl6zpoiGDE2XJ2z3JT7wqwr8bFP71yKq4NsKvfTJ9+T1vgFYeeivNYQid1y3GyNu9JgOJadk/QD5nldVo/l5kqjvLNXXguEZdxBDEdjhKKxZoVhIqbIqQ6EqQlGyHTZm3XUMl0OgpEYkWiskcsY0007lqkeOxrT6QvEeL/dmuJauqZZBmve73/+MBW+MF6XvUXOrkmW24EGvttYYZ0M8CSUHTvtql6prIk/ZFy2tSrYoYRlUVWQ9WU+9mogttJlU3z0TiSJC5yKZIKzwhfi+18rG12+emst1cFIk3NZ08E80VLpD/8mIS0IgiAILULGjbQ/YjHNrxX+FpW5aa0JRmLkeVyWEFhTUsM+vXOp9IcJRWOsLq6lwhdu9fK5UCSWdPPbWoSjMTaW+/GHortsWVg6LkM4GkvqdpTWGkKyk9dFhS9sheOU1oSSprXmeJyWi3bxC8sAWuZYuh2U1fqsnsNkY0lSkTiGoyYYScsxz3Qbf9PaYJRcb/3n0rq58J4UjmWsJeE9xhp/rfCze7fUvXcNyfM4qYj3WOZtYxhMTtwNvvKV76zLvK76jmV1oLFIMT9vW6sD9foF27ObVRuMsKHMcBy39fvGFJbRWMtLYRMxT9j0K/CyuSJgrWd1cU388ZsXrk39rcwycgVsrQrQryAz5ePUBiMt+owKAhhlsLAn0I/Pp+zO9/cPZubj16HDxvdmZJKdaSdPJzY8Ey6HbmWVkA38DvDAzEuu4/iyN3in50mEX1CMyvmIpx6fZDx4NWzuOQAYCd01fdjImZNfgxXwXfEejGIRnAHcdzx8DrzWBgdAEAQhgXYtLJUyhr6X+8Jp93sV1wTRGtxOGxlx52RdSd0mLNfjIMNpt/owuyUZqdDSTWksptlQ7mNrtfHcmyv99Mjd9hKwVJT7whRXB/mxsJLf989v9cffWSitCVEdjNQbFQJQVls3rzLDabNGgJTUBDmwf6dGj5OXICwTx1ck0tTfOCveY1lYEReW9vTFvJm2WeWPUBOIWKKxKazZmaGIFT5k0mx4j1KNhGU4GiOmwZ7myZPEhNB0E2HBKH31haJsrQ60OBHWxGG34XXZqQqEcdht9Mn38FpCz6zLbiMS0/hCEStAqcIXsvoui7fTjEutk00HbTt8oQi/bK2xSoPN93U6JH6vNVUK2xLMpF6vy47HZbcc5FVbDWGZ7GRHS07o1QQjxmM77RRXh+jdKXkqczSmWb65iq7ZzY/IEYSG3KK/YdpTp0EAXmUMXARK321ceelxsNqL59tyuuYUcTT/5pCnP+Dsp59nI324vegG3jnvJI4vfAPnQg2bgHXxB74Mip/Ipou3mnMGPsZDX1/N6bOexoOf/Ub/DP3hmOL5nMsz/FUNBaQMVhB2GjrouJF2fXrW3HuYm6B0MM/Eux02bDaFy25j7ufrOPWxJfjDUbwuhyVSlxdWtco6zT6vrPiGd0Np+utNRbJQDXMcgymwTMbP+XyXn22XSHXAEJQNN83l8dftsNlwO+wEIzGiMU2ZL0TnJCce8rxOqxQ2FDGOXffc9DeemW6jx/LXCuPvmSo9NhmJjmVtKNJscI/xfHFhmaR8UGME9KTClmSOpenwpVsKm1hKmm4iLNS91vWlPjplbns5anaG0WNaG4ywR7f6JZ5m9YEZOgPwS1y8gFEKuz2o8IdZtr7cGqXS1ny2qpRgJMaAzl5cDhuhBp+RLZUBvt1YgS+UugRVa82vZilsKwlLp92GJ57se+pjS3j+i/UANPwaC4SjfL2hwipjbwqtNTVB47PTLcdNVGtrZm1DCiv8xDSEtiGMSBAEQRAEg3btWJob6Y1lfvbtndfo+mTO4say+iIgw2kjEI4SjMTQ2ggJMUvsbv7Xj/T6b/POYnMOpuma9O+cyQ+/VqacRWgSicUoqQ6R63XicRpn+QORutMilf4wP2+pprDCT88Ehy2VsPwt7Iwlg1WBuhEfiZSawtKucDsMB2t9aS1aQ+ckQsgcgwGGSHXZbfVGkjRHpsvosbQcyxYISzMIpyoQpjoQSSv4xxSfyQJ8Ys04lqAajRsxBfrkI9Mb0WGuGVooLOMu5a8VfvbpnZv2/Ro9f4aToqogwUiMPbo3FJbGZ3ZNcS2/62k8xy9FCcKyOrDNz9sUvlCUmIaN5T5yvdv+2hqyrZ+7nzYbJ8OyM5y4HTaCkfqfkW83lhOMxJKWDZuMe3QJ1fH3WDqlqk1Rao76sSk8Trsh7iIx67sq0bHUWrO6uJZITFPhC6U8GWZe7g8bxz7L7SDL7cBhU9SGkp8+XldqnHBIFvAkCKlQajocPo1b5sItj90FX02H/afBv4GCawB4fNjZTFg6F/+6Tqw/qhMXxeZwIF9x9FOLUUpDMdz39CSunPUI3ARXVt3GfVffZDzBKpi172S4F55ddBE8C4ueHsVBfAU/AY9FeH/yWHrOKgSK2ugoCIKQFBk30v5I5VhW+Y3NesN+ufFzPrdEnRkgkuG0U1obwhffkHhc9rjjZbMu84eiLRpZUOUPs7HcTygSw+WwEYnFsCtFRlx4mK5pqs1jeW2Y9WU+KDNK/Myz7L8UVbN7t2x8oSg6/jiJwtL/G4VlVSDMmuIa+uQnLyfbkTS1sW7KsbTbFDalLKHxzYYKAAoyk4T3xIVlLGb03bbEcQTDQQxGYmwo9eGwqbSdP2jgWAYj9EjDKTVPeJhJtIlo3bxjSYOiTVNcZKWZZpvoqrZEWJp9ldGY3uYeS6Ce+N6je0696xKFJRjvn3WltdiU4Zal44BtC6ZQ2V6lti3lp6Jq3A4bdpvC7bBT4a//XbA2XvZvjm5Jhvm5sqnUjmU4Got//zT9vi2uCaIwXHGz79sXjlrfVdEEYVlYGaAm3gdZHYg0+32bOP9VKWU4tCmEo+lki7AUWkrXjzaw9by+nP9/j/DUwGkcNuJdbuMmXBif+T5s5PFhZ1NNNldmPcIqBnH94w8wfMLHcAnYptVy5cJHcJ1ZxW2Tb+K6ojutx778pLtYyjC4FzgNOAQ2jR7Epu6D+PeaozjhvA/hmTDPPhQG8tH6sjY5BoIgJEGEZftDYWzmTaFmUlQVoMwXpmuOu5EDFYrE6omADKedaExbYsVMFfS67Fa5WGGln5KaUMqey4ZUByPUBCMUVQXok+8lEtU47AqbTeG0K6vMLBWRWF2/X20oQieH4dRsLPexe7dsq7zN7A8cP+dzI5QovlksTyEsUzkApnhbuqaM4ppQvV66tiaZwDQFUSSmqQqErRLN0toQfTp5mDdxOCfM+hSArzeUA9A5q3EpbI7HidZwymNLCEViaZWjJmKWpq7cWt1iUWquuSoe3tOSUtiUjmUT91XKmHWZiHkc0x2T4rDb4iFAtKhXLTfh/bQtMyxNjHJKO/5wtNFoCbvNEBZrSupcSn8oyt69cg1h2Uwp7LY6hA17ONvS4R8/53O+21RhnYBwO2yEo5pAOGoJ73VxgRWIpG4MMYVlpsthnVxLJBSJsWJLFYGw4fInfq/EtKaoKmCdyCmtCeG021BKWd+tRjBa/PZx4RoIR/m13E8nr5M8r5O1JT4C4ViTIWQNx/Q47Y1Lf83jUudY7kwdscLOjBHaIwiCICTSrnsswdg8bYw7lmYvoVkOVeVv3PcUCEf5Xc8ca+NnbkrKfWFc8TP9AF6Xg0A4Fi/LMh7n7KeWptWraJaPmQPhE0c6uBy25kth45ufXnkZ7NEtm57xoB+z5NI8K1+R8PqCkZjlR5X5ts2x/DV+HJNtJncUZbWhZsvvEsv4zNJmMI632R/70oQ/AAmOZYpxIwCBSMyabdoSsuKBO78U1XDI7p1bJCa8LjsOm7JSYTPTEJam+EzWH2ekwqa+r00pGsbMmCdTWjKGw2EzjlGLHMuEoKFtmWEJhlCbN3E4OR4HNgUDOjdO//Q4bVbaKBgO/u5ds+ma7aY4Re/db8VyLLfT47eEWEwTCMfqhGX8/XzqY3U91mvjAiuYhmPpdduJal3v8xgIR1mxuYpQJIbTruqd5DBLWTeU+a2y9JKaIE678cZ02G047cr6XrQrZTmWlf4wGuMkRLY7Poon2HTfqnFCpm5Mj6vBLNNQJGaV2poObTSmrTJcQWiOA/VRbFWfwjNFfMJh8E/4ZOlx7MHPHLzmew5e8z2vM44LNz7PanaD6kfpw0Y4SvP52MM5cPZnbOjWD1bBuPzXuGbhLM7t9iz6EoW+RDFzynW8X3gsrJ0OucCdcPDCRZz69HOccPSH8EwZ9HACZfEfQRB2GsxxI635swvQIYTlF2tKrY1TJFaXhFgZFyCJ4TWhSIzeCaWe5ln0YCRWb+B6ZnxzVlwdsMrB0hVcEUtYhq01mSMd3A57s2FDkfgICHPD5LQrFFgzO82z8omBIYmbpVSOZXOYgtffRsJybUktv2ytaeRAN8QURFBfWJbW1AnLnAwnnbxOftpi9JwlSzE1yzJNN6ulblqig9izBfMvwUhpzYmX4tYG0+uxNJ9v1n9+aXSdRjdZCqsgSY9lyxxLMPpXoaWlsHXHdVtTYU1653n4Xc+cRpUI8yYO58T9e7O8sIpTH1tCJBojHNXs3i2LrtlutlbV77EMRqKNLkuHhkFYqUph0w3MammwVlO3N8tLzfmeZs+v2Wc5fs7nfBN38AORqOUWNiQYiWJTMHHUbkD9E3Q/bakmEIkxoHMmeR4nNUGjZFVrzbpSn1WGb4ZhmY6licdpt1xDr9tuueiJQVIZThsOm2qyDzQQjuILRcly152ocMUd2lAkRiym+eHXSuu7JPH7sWQnOAkg7ApcwzdFQ3lFz+Ng/TOrl/6Ogt//ii5UlFDAfQMv5b6Bl3J11T2oTzU+vPDzxdyi7oKhir/Mf5ll74/kBP7NtZOn89LC8zh19HM8VXgBNw64mRsH3MzN99/I8T3f5lG9Dk7RsBd8qUp4pcvfwAPcnA+bDedU0mAFQdgZaJelsEqpMcCY7J6DcDvsxtnueD+OL953Y7epRo6lOcOyd7z3ct7E4YSjMXa/8R2AemVX5ln/zZUBq0coXWEZjdYvSY3EdL3ytMKKQMpNHTQeWq+Uwmm3WTPh6hzLOgHpD5vla3bK4oKzpUmwprD0haNtkiK7Ih48UlwTpHcnT8qexaoEYXnHwhU889k65k0cTrkvxL4J4TB98718t6kSRf3gGRNzZEdJbbBeaFO6JLqMDceUpEOux0lRVYCYpkWOZTJHNxZr2rFUSiVJhTWOYzozNE2MHta6Ey/pkChcO22jY2nisNtwpAhYGtglk5g2yh1NMbV71yyiMU1VIFKvJLSoKsjmygCbyn0pR1Skw/YeZ9IciaW35veTeYLMbQnLOrcuHNVW3/ZJj35m9ZonYvQb2+v1AXeKn7Axy/i9LjuxmKa4JkQwYlR2bK0O0j0ng0p/mED8OUtqgtbJCDC+Y6sCERw2xTFDuvPFmlKgLunYHj+hlp3haFJYbol/Lyee4HA5jOfZWh3AppRVbdK7k/G9b7Q3RCmpST2WRBDALIO9pq2XIQjCzk4HLIBpl46l1nqB1nqCw+HA7bAR03UuoVkG2y3bTTASq5ccGo4axYB9EjYVTrvNCtWZcvRgq5zRLIsNRzXZGUbqoLlxi0RjVn9jMiINSmEj0boh9GbAxMmPLmni/rF6mzEwBamfWEwTtnos6zuWxtl+e1LHUieZF9cQc9MYim8UdzQ/bakGjA1waROua3XA6K2y25RV4qa1pqw2ZG2AAfrGh6U77CppCIjpWGoNBVmutGfnmWS6fpuwzMlw8Gu8vDmdHkuzVDeZsGzOsbTZGr8HrPCeFvSWOmzK6plLF1tCT/NvdSybYmDnLMBw7kzXffeu2Zb4SBR/5vXnPvN/23wSJRCOWn+L1hKWqRzJdJxNXyiKUnXvk9cvHonDpixhabp2ZjlyYoBPTGs2VwYIRWKE4kFWicLSxKy2cDlsVuhTTTBCaU0IhVG+746POdFaU1oTYtyBfazvVbNCxOOy1+tjN0tqzZmq2RnOeHptmE3lvnqOYzgaY2tNkM5ZLtwOm1Um7YqfcNhSGbB6Kv3hKDUNnPmdJWhJ2Ll5WF/GF93+wDr6s/THPzJh2IOUntOLSSfex91cRyE9KKQH/lWdeOr0M9iHH+AJ2Et/A3nw1u9Pg+vgZF7jch5g6OgveOX+v8Enbu54aQZ3vDSD9ziWd2afxMXqccgIwR7A9JM4sPgzGAr9ZvzUxkdBEIQm0a38swvQLoVlImYfkdkz5AtFcNoVBfGwlqqEs96mi9G7QVqs6WIMTpiNp5SyHKw8rxOPy04gHCWmNZsq/PxcVFPPOUvE6rGsNZJkzdJWSHQRUp/mMIRo/T+dy2E4liW1Qeu9l9hjGQhH8TiNHqaGqbA1wQhfrS+vt0FMxqZyv9UP1bActuHGtrVnY46f8znPf76ODKcR0FJUFUgphqsDRorqnt2zrU1zTTBCOKopSBSW+cbfOdUIkcRQmWRzLpsj013n9rS0FBaM8CCzvDkdcaeUqteXlkhz5wEUqtF3Vk0wgttha9GYlF55HvoXNO5vbA7z/f9bHcum2K2rsa5AOEqZL4TDpujdyWMJy4nPf2Xd1hcXKslmgqZLYknlju6xTPb584UieJx1PYd2m6JnnscqnTddRPOESuJJt0p/mA1lPqPUNRzF7bRZIV6J33O/Vvix2xQOm/E5tSnj81hWGyLX48Rht+F22giGY1T5I4SiMSs4a97E4dx50r5AfKyT226drGs4U9UUgcs3V/NrRaBequ+WygBaQ4/c+p858328pSrAupK6Evmi+H1NZ15KYYWmUKOAcdN4mfH8fvOPzGM8Q/b+mtUMYre5/8OHl2eXXsT+fMv+fMtfDniZ2VzCAsbgur6K03kRvUzBv4KwEW5eci89NpTw7cA/cPyUN2AdcMY6OGMdX540isqJbrjdyWE9P+bWe65i8dSDqCYbvoX1ah4gZbCCIOw8tGthObBLJg/99QCgTqjVBqNkuhx4nHXhKCamCGk4TsMUloO6ZtW73Cz36+R14XXZ0RiCyxRuRZXJe7RMt6/MF7LOxDvsinkTh1vrDUVi1AQiLN9c1UjEJQpRE0NY+q0AH6jfY+kPRzn2dz048w/9qAlG6gnXstoQMQ2ri2tSxu37Q1FKa0PWptMfjhAMR/mxsHKHhV34QlG8LmPYuS++nmRUB8JkZzjpm++1Xqf5N0nsk+wb/zunEpbmxjk7w4Hb2bIyWKgvBhuOtkmHnIQ5mum6hjYbScuo0xk3EmsgSKsCkRaVwYJRsrstATyOHeBYds/JwKaMvr5Kv3HywWZTdI0LS7NstToQtsRWbZIgpHQxnS+3w5bSBdvWEzAxrSmuDjZZMt8QfzjaqJy7dyeP9RkxP8fZHidK1QlNMPooVfw2MU0TjqXfOjmmlCLL7aC0JkQoGrNO5rkdNqJaszqe0Ns5ob95z+7ZqHgptddpjOuJRGP1SmHBuD7P46RrthuX3VavnLeoOkin+Mm+REzH8h/v/sxDH/2CwnjfmRUc2W5xLIX0OOTVD9iDlag7NQWUsj/f8G1sKKvm7E0UO38Z9jIFlFJAKT0pZNmSkXyy5lgez7+Qm0ffi9qo4Uc3HxWP4LIR99Cv7yr4Cyz86GTIAx7pD4/059Y3ruJ39v9xyw3X8ckNx3Hzwns5RL3FysI9GDr/C4bqY0VUCoKwU9GuhSXUbeiD8cAGc3OllCI3YU4h1G2sGpYt9sjNYHC3LKvPzSyt6paTQf8CLxkJ/Xdbq4PWBrUoHvpS5Q+zYnOVJdrqUmHDVrmq6UAmrndLVYDquLhMpGGPJdQFU/z4ayVgBPqYPZZm79TALplWKWhimWyFL0yG00YkpllTXJu0lNLc/GZnOLEpQ2huqQpSG4zukDP80fgsSa/TTucsNx6nndXFtfy8pZpIAzFsCCIHffK9RhpuvAwWsDa3UHcCwWlPLrgynHa6Zru3qYwV6voilaKeU5ouiY5pOj2WYGy8k01MMHqMU99PKZUkvCdMTguCe34LZml37nYcZaPi80ur42MousZHA5mjUULRWD2h57QraoNRK3wmcS5qOoKwpMZ4zx2xZ1dqghF8oQj+cJTVxTXWyKBtpbg6yJqSWv5vXXpJkCU1xveS12W3vr/AFJZ1pbBOu+L1i0ewW5eseieMKv3GZ2pgF8P19TgdKUthE0frZLkdROPvPfOkgdm3ecXL3wL1hWWnTBf79cqlS7bbcvx94WhdKWz8e08pxR7dsxnQOROPy2a5q4UVfmMeapKTG2b/bygSq+e6agyB+eakkeR5neJYCimRESOCIAhN0y7DexLJcjusPiKzvM3cpHfNdlNaG6KwMkC3HDdFVUGyMxyWQ2nicthwORoLgwyn3bpthtOOov7Z7qJ4qmSFP0xVIEJxdZAeuRl1PZa1IWtTdt3xe1rrtdsU/nDU6sFcXVzDgf06AYYblcyxdMfPxs/8cCVghGeY4tHcIA5MGMFgCq1gxBhG3jffg1KK9aU+lq0vN46b3eiXqw6ELVfDHS9FrQnWDTEv94Xp3anpv0PDTbi5sU0116/h7esSLe3YbYq9e+VQVBVgQ5m/0XD76kCEXnkZ9Mn3ouNhLebrzc+s28T2i5dspnIsIfnYinQxXUZ3C3sOTRLHfKSbzOq02awe20RiuplUWJW8x7IlibC/BYfNZvXFbk88TqO8snuO2/oMmaLfPG5mhUDnLDebKwMEIzFKa0IUVvqp9IfTFr/md8GQHjm88+MWSqpDlNWGKKkJoZSq93lsKeZne1VxDcMGFjR7+6VrDAHqddX/e/bu5CUc1dYoEvP7rH+B1+qpDkdj+MNRCrI8dM5yk+dxYrepRsLy1MeWsGprjeUAQ913bZ7H2ajc3xSLBQ1myLoT+izB+Hsk9lg2/O5wO+zUBo3P95r4HM6MJKFDZshZKBqzXmuux0lZbcjqO+2c5WbBd4X8vKW6TWaNCrsAh8EZvMShfMroWW9zOJ+wnCF8bDuc0RNf5z9lR9Ejv9AYLwKMZiGDR/zM5ffPoe+UjZy18AnmLprAxGNmMpez2YcfmM40/Pd7UXdryIazLnkCgGlF03mz20n8eeV78AfgBODXLpzVcy7Pq0JjPfoPbXIYBEEQktHuHUswNjLBSF05leku5nic5Ge6KKz0szru1A3Yhv4wMMoMPfFyWHPDtSUuLM2yutKakBUeBPUdy8TNqtths8pTAR74YKW1iaoJ1ZXOmsybOJz7xw81rg9EcNlt/GVoL6sU1hSW/QrqHEuz/Ksy4fm752QwpEc23XMzjLLecJSt1UHe/XGL9RrcDhtel52aYMRwBjxOfKFo0sHjrYkZ4mH+7WxK0SPXg9OuLNFpYjhtTvpY7m9deXJ+Qqll95wMcjIcaYmnRJcnXcwNdEt6FBPZFscyw2lLOtxeY5S7pkJB0lTYrB0kLPMzXXTPSX9ESSqa+ztlxk80dYu7lWCEBzntyqoo8IWNcRrmaJrqQIQt8XTeFQ2qB5rCFJZ79sgxfq8JWD2DxdXBZnuaIZ5U3eD9HY1pKuN9jWuKa9N6jMc/XYPbYWvkQJv95MGo4eKZgqxfQSbBiOHWmunZ5vvRET9RkuG04bLbrNcRiWliGlwJoi47w4HLbrNcYaj7PJhisXOSUT9QF35VG4xQE4ygSJ5s7HYY1RZVgTDrTGGZpHR93sTh7N83j1AkRjASJcNhIzd+PMzbd8lyWxUngtCIfaYxdMYXXLz0GZYzhDlcRKcFfg658Cv+xVjO4CWuyr+X9ZP35NILn+TSC5+kgjwOYhlkwAjf5+zDDzw26hweX/53nqi6mCuXPkJnSrl46TM8eu25sBbmh8YwPzSGe7pdwxm+Fzlw8GfQGdD3w11unlcXAtOkDFYQhJ2Odu9YgrHxKPeFqfSHcdltvDVpJEopxs/5nL75Xip8hnPYKy+jUV9OSzDj6rtkuagJRqw5eGapWUltsN7Z+fLakFWumthb5nbY8IWiOGwKRwPhZArBSw/fnVN/38e63AyHCURi9Mn30CnTRXUwQjgas8aP9OrkwVFl7MzK4m5oRfyYmGmM2RlOq69Oa83XGypYvKqEYCSGAl67aATPLlnHbW+vwOO00yffQ8WvYcp9oXqbdZPWCvDxhYzNvruBSPM47Y16UE2nzeyhDIRj1mzH/ITjb7cp9opv+rcHSikcNpV0ZEM6JI5ASbfHMsNpJ1wToiourk1imibnjdiUQjeI76kJRuoJgu1JfqbLEnLbk+45brpmuxuXkttthOKCwh+KWqmkCthU4beqDK597Xu656Y+JtWBCJvKfYx7dAkbynzkeZ30zDNuf93rP+ALRcj1OAiGY6wtqWXfXrnYkih+83NT4Q+zsqiG1cU17NbF6PE2xicZJwNWF9fUu19tMMKmcj/94iX65ppWbKmmf4G3kXNuPuaa4loiMW05d/0LvNZolkq/UTrccISMOWvVFJ6JJ5+gcVWCiSNekmp+L6YKbDJPIvlCRnKrOWqkIabDubHMx9qSWmwqdXl795wMvlxbRkwbnxW3006P3AxLNHfOdqfsMxc6NkoB+7T1KgRBEHZuOoSwzPO6CERidPK66JJdf2yE22GjX0EmZbUheuZuWy+duYE64t5PqPSHyfO6cFUErB7LRMeyMsfYhPXJ97C1Kmg5lok9QebGLD/TZQRXhOqnM0JdsIxJJ68zXs4IPXI8VshOld8IIrEpY3xFOFrnWMa0ptIfpnOWO+mGzexD/WxVCVobToPDbmPP7oYY65Zj9Dq6HTYqfOGkwrKlpBzuHt/sv3LRiHq387rsbI2HmNhsCq21Fd7Tu5MXmzIEkt2mULRsvmJrsFuXzKTuSTokOpYtEZYAa4tr2a9PnnW51rppx1JBw7a/HVkKu6MwknMbX26WSIIhZDp5ndjiyc+1IaMvOxSJWc55Ksp9IaoCkXgKcYwuWW4rdTYYiRIIxyjIdNEj18lPW6oprgnSLScjZUl4ld94vv8VVlkisMIXwm5T5GQ4+Hx1qXXfUCTGyqIaQtEYsZLaeBCOYnNlgIJMF12SOIP79cmjf4GXTfGyV6sUNl6mW1QVoDLea5vsOyLX47C+k4INhGUqlDJOtvjD5smz5Lc3y3Z9oSi1wQjdczOSutHmOKjLX/6WrdVBoy0hxUmUbrkZViWI+Vr7JoS1GY6lCEshOX/5/mXeWnkaY4a9yinHLaDPuxvZMKYrV465jYM3fMOBfZeybMZI6AVnXWuUsxbSkzNXvga3wY2X3Mp9H90EmTB02Bfsy9dsHpZHjyMquPOjK7hY3coY/SrzV50KwImD/slH3sP5D0ex7G8j4fUpcPJS4N34isSxFISdFw00X5nU3mhfu8YUdMl21xuU3ZCu2e56fUG/5Xk6x+cdOu2KouoAkQTHsLQmaJ3d71+QycYyP1viybH1S2GNDU9BpouqQJgyX9hK7DTv3zCcwtis2QiEY3TPzbAc0Ap/mGAkhsthlK+ZgvOx/64hJ8NBTDcdmJLrcbKmpBaHTVlu7ojdChjUNSsuZhV5Xidbq4NJQ39aA611fLPf2NHyOO3ENJw4+zMynHaeOuf3xHS8BM9hhHNU+MPkZjhSzqvcnvyWlNNEx9F0kprD3CyvKampJyy/21jR5MiRZI5l9Takwu6qOB02SwxGYhpPXNRkuh3UhqJ0z8mgpCZolbI2xBR3Zrl9dSBMOKrpnOWmIN7Xa4pEr8tBToaDTLedLZUBumbXndhpeGLFLBddtdVwJrXWlPvC5HmcZDiNSgwzfGzl1moisRjdst0UVQcpqTFOHlX4w0w5ejCfrSpJuvZuORl0znJT6Q9b7uFB/fLJyXBQGP9+6pHipFGOx8niX0oYP+dzS1i+cMGwJt/38yYO54Ln/o8PV2xtsr/ZGw/vqQ1FqA5GUp5cSRzRFAhHmywbT3wdGUkEcOdsFzGdfBas0LEJVypyqsrQToX6XqMGa/gevtt3D+7bcB2X9X0AF0EumTqbKaH7OJ2XAFjNbrg6V3Fn4fVcqaZysn6RarJ5f8NouNJBj30qmPnRRL5kGCzrzYJ5p/DY+HMAeOuG03jrrdPgUuj6ywa2KhumqJQyWEEQdkY6hLDckZgbRJfDRlFlwJqRBlBaG7LmZvYr8PLpL7C2tJYMp62eq1WQ5cKmDHFkilKzT7LC37gn08RlN4Rlj9wMcuMbxApfmFA0ZkXtO+xGSEokFrNmwzWV/Gk+TySmrQ2czabqpZzmeVwUVQWpjvd9aa2p8Blz61IJuZaUyPrDxma/4agESAj4CEeNxM/4GkxB1MnjpMJnhCc1tYndGTGPfaoSwGSYAnRtGr13iTRMhY3GNDXBljuWu0rgScN1uu1Gn976UmO+4e0n7s2hu3fh+JmLjFEZmS58oShF1YF4wm7jv4fW2qouqA7EHct42a3Trqx5j2YqdY9cD6u21lDuCyctA45pbY07MUtea4NRIg1STwORKLVB42dQl0zyM13UhiJWkE1OhoNzRvZPKSzBeI8lrsHjsrNXjxxqgxEqfGE6ZycXirkepyXCghGjXD2dcKPenZpOZIa6Ulh/vBQ21XvR/E7zh2MEIzEKslJ/zs0yZkXy3mfT1RXXUkhE3Q/hC9p6FYIg7FpoYNtHlu2qiLDcTrjsNrZWB9lYVjeIu6SmLrDDHCK/triWPE/9TZvTbrNGIZi9j/6wsdGpbEpYxjdK3XMzLGey0h8iFIlZvwM4bYpIVBMIGwPTU5WimY85uFsWK4tqUpa4mQEvtaEo4+d8TlUgzM9FNfQv8LZKeeymch821Tg9EhKOTyhKJ2/dIHVzE5rndUGpj2AktsNGZ7QWZrmzvQUuqy3uXL+wdANL15bVE1BNPUrD8B7TKWtvpbCp6JrjpjYUsWaj7tEtGzD+Bubfweuyo7XxWUx2kiMUiVmjgMzjZ1ZKOO02wtH6fcL5Xiduh43NlYGkwtIfilq9lB+t2Mr4OZ9THaz7/Jsl9v5wjEp/GEdcHCqlGNA5i3UltXTNcVOQ6arnfreETLejSQcw1+O0+k9DkRhuR+oy1MT3ohka1NTJnsTwntpQpMkeXLfDZlVzmAFEyU5ydI+3O7idtkZl9WD0WIIIS8FA5cf/5yb4IWcv/FM6ce79j/IC47h61j0cyiL+zoPc2fdqDuQr3uNYzt/wHGf1fYb+rAXg+As/ZsITD3Ll1EdgGbw+6wyunTyd9zb+GXWZ5vRRT3P58jlwk/E83A4XFz0DgP6zYvwdz/LKvL8xjKUs+O8pwDT0qLY4GoIgtIyOWQq7a1k4uxDOeFLhNa99D2ANZjc3P+aoi3WltU0OlDedzEDcCWlKWJob1h4JpbDF8bmaiWfnHXYb4WiMmmAkrdTPQ3fvAtRPe0zEYVNkOGxWGWBNXNylM2jc2DynLjurCoQp94XpmedJugl12G31kmHrHEtHfM02SwRsi2O5LWmwrUWiY5ku8yYOZ/huBfVmEILx9daUsrTZ6o8b6WjC0mm3MbhbNnt1z2ZAZ691YieRujAZY3TQNxsq6vVcmm5llyw3MW0EJpmJp+Z7z+OqE15KKbrnZFATjFifnUTMv0Ge10kgntBaE4jgdthw2uuqHPyhKBX+MHneugoBr8vOkJ45KfunW4tEYRmMxJrtrzSpE5ZpOJZhw7Fsqs/YTP6G5ImwJt3jf9dk40gg0bGUUlihjsFTvmce4/nl/j48e/ZFnPn+a0xmFq8s+huLig7l+jX3c8y8T/mEw/my7/7sxmoW8icW8ifoAWNZwGUz7oFhYBtfy927T0Ndrzls1LuczGsE+is4CDgWPIvLDZMjAupFTR82wtswlG/hj9ONH0EQhJ0UEZbbgXkTh3N9fC6luTnMdDsora1zLM3ACF8o2mTpmN2mcDlslnCq9Idx2lVSx8QUj91y6hzLn7fUxK+ru73DrqxxIdluR7Pi6Yg9uwLgaaLPz+t2WP1n5ia5NhTFF4qgtTFHctXWGr7bWFF3fTDC979WUu5rfEZHa6MUc32pD5fdZm0Ik2HOJgSsUuPE3kCzb8yRZBPblsKxOUxR19LZjgM7G8PtmxLsDVlbXMuy9eXW7w1LijsKOR5nyiRcTzwltiYYYWO5j1A0Vm/8iCkyuyWMTalzLE3BV18cGT3ZUFzT+CRMTTCCw6bI87rQ2hBuNcGoJbDsNoXLbqOkJmiN/tmeJPusmKWwWusWCkvj+6+pagmv5VhGqU5Slp24nkQx2VQ/cpdsN0qlFp9dxbEU4ij1YlsvQRCEXRqzFLY1f3Z+OoYdsZ1oSpCYJaA1gUh85ISNsvgYiCy3g84JZZ2pHEvz8feb/n49YZmqd7GT10UgN8bevXKxxa9/bdlGAKvHEoxSWLOfLh1HauSgzuzTK6fRpjiRTJedstoQkaix+c3JcFAdiFBcHcJmg8KKAA6bIqo1W6uDDHA7KI+PPGno1vhDUVZsqbJcg0FdMhuJq8RRBmYyrJEI27hvNM/r4teKAA7bjj+P8ltEq9Nuw6agpUbrwC6ZxDRWfy4AuslpI+ZNrLLAq47dA9hxjuWOEve/5XnMWbVm2jPAla98Z33Wa4NRPE67McYi7qAllsICjU4IOew2OnldlNaE6JvvtT63YAjLLLfDOqFT5Tf6pRNLUzOcNutkSjq9ja2N+ZxmGbA7zZCpAZ0zyXDamnQhM5w2lDIEe20wYpXGNmTexOE8/8V6bn7rRxw21WRlgt2m2Kt7dkphaZbbirAUAB4tOxeAi2c8w89TlzPos028M/dwpjGd6+c/wNCxX/DNsuEoj2av8d+wbOVIFgwey1zOYmtVNwBemTGWE+Z/SMEJv3JY+F0+fup4HvxlApe/NId/cDV3cx0n/7AQgJOLX6SUApZPGQLA1q/7ct+Um+B5uPV5470poT2CIOzMiLBMg23ZjJqbzVDU6Mdy2m2U1IYsYZi4CWzYY9kQj9NGdcBIf6z0hRuNGjFx2m30zfdaGyu7TVlOXsNSWMASvOmQSlSax+a4mYsAI1woFI3RPdcILTHCTowSswGdvawqrqWsNkT/Ai9ltYYrljinMxrTrNxajdbGqI6cDGfSkI1EPC4jGTYYiSV12jJddnrlZdQLHNpVcNhs9cRGOgyMj4oIhOs2x5qmeywbXnnjmz8AHc+xbA5zVm0nr5OqQKReSmxtKGL1MmZnOAjWhKwTSOZn8p5x+3HwgPz6fX1ZLspqQ1QkhPhEYjEC4RidM91WH3FxjXEiJiteZQAw7I4PqYoH2zTl/m0vzO+irXHH1ZPmaJ1Mt4P9euclvS7x+9brtFMdP85Nle336VTXO9nc93VT72mH3YZdKUmF7eAo9T0MOoOLFpwJwMVHPcNfeJPvRw7m+IUfc/DoRfAkfLNkOOPvepbLuYuZT1/HreddxbG8x63qcFylPQHIphq9SLFqbG9GsQgqIYoDvoBnTz+XE3mT1888A+6D15adCV1B3WO8/w6Z9QGL3z2ag/Ui4HCWIs2VgrDr0DF7LEVYJtCarknieBOjJ0oRisQorPBbm0C7zdjA5DbRYwlG2ZY5UmNtSS27dc1Kaw0Om0o6W84Rd/+yG8ymSzXQPB1MJ2ZrvK8yy+0gw2k3RiN4nQzobAxnz/c6KasNUVITsgSl+V+tNWtKagmEY+zZPTstB2bexOEsW1/GyY9+jj8cbRTeA0Yvm1l6t6vRKy/DGgCfLgPj8w4D4Wjaf0vjXVC3mTY31h2lx7I5zM/GYfd8TGlNiD6dvKwtrbVSW8PRGOGoJjM+IqOT1xCL5vsu1+Mgz+Nkn165jR471+PEYVOU1AQtYVkZLw/Pin9XOOKBQA1nsZrOWzplsK31/Zb4OKaQ3lwRIMvtaHXX1Ot2WGXCTbmbZmtBqt7JFrFjJxIJOyt/AfvBRitJcbdszuNpvmQY146ezt1vTCP2rEJdq/mIEbzMePQIBZtBrdVwF4TuNB7m+AEfc8y98+nDRm7kdp6YchazuAw9XtGHX5itpvAPPZlrrp5Ft3vWs1WthKOM+y5WRwPw5Y0fGxdIao8g7EKIsOxw/BYh1RzO+GYwEtP8eWgv9u2dy5RXvmNtSa0V3OM0hWUzmzGz9K02FG1RL5XDpghiOJeJpaSme5Jqo7YtG1Cn3YbLbrOEndflwKZgz+7ZZLvrBGye14VN1bI+npabn+mivDbEKY8tIRCOUlYboleep0Ub1N3jCZ6+YJS5S9bFn78VNpg7AclCZJqjW44bm6rvBGutUU32aqp6qbCWsGxiM98R6ZrtppPXhcthIzOhBNss5zbLNfMzXeR5O1nvY6/LwR7ds63xOInYlKJzljGyp7QmiNNhY01JLR6n3Tr+Hpfh3HlddmwJf8ecDIeVBtsWmK9PA33zPUlL9H+LoPW67BRXNS8se3XyYLepJhNsBSEdlJoOnNjWyxAEQdglkX+FtyMuh41IKEqvPA8F8bTBoqog+8ZLwBx2BZHUPZYmxtw7o18zkoYQNTHDagZ1yaq3uTNLS1OV1G4rmW47IZ9R+msK2YZrtdsUuR4n5b4wHqedPI/hYAbDMatXrEuSsSJNkZNhDIuvDUVwxZ1gc4O7PU8e7KwopfA47dQGDWEZicXwhaItGv1S51hKKWwiSilcjrognpgOEoiP+1DAvIuGk5PhZPycz1tUwtw9N4OqQIRV8fmjGU4be/XI5tWLjZEYB9/+IdWBxinOXpeDA/t1sn7flvf7b/mMmN9d+Zmu7fJe8bocFFUHAJoshXU77OzXO9eqxhCE38Ir+iZOXTqf2GrjJPAD3a4ggh07Ue66+BYKHi3F1kXDHDhi5RJwaBx7RimhAMrBc3E5/hOMz+Vl99zDQy9dTe/TV/HU7pPgamAiqM803AB44CC+giiMZx7n6mc4QP0LgL/oZbylfgakt1IQdk12jcCd1qRDCMvmzphvr+AQl92Gjyg98zz1+vvM8jEjTCbabI+lTSkyXXZqgy0UlvGwmh559QVFToaD/XrnNhnL3xzJjlmmy0G5L5wyZMMkP9MVHwrvtBwcc6SA066a7alMRqbLQVUgTE6GUzaXGKWYmyr8BCPGcdVAfmbq903DIxaNaRRNJ2x2dExXvDYUoaQmRJ7Xmfa8yIZizu2ws3fPHEpqQlT4QvQt8NYLoTE/q025dm3B4G7Z9MrzWGmqrU2my87aEqMcsbnXvi3jhGDHBUcJuwoncurcaex19jes+H5/AK6N3s0B9q95Z/ZJHProp1STTdfiDWyd39e4ywuK2e9O4YYlU+FlGDJjOctePgiAnhQSPkHxez5nk2cQvAxcAXwBHASDfd8zl7PhInjo9Kt5aNzVHKbfBeCtlacBMl5EEIRdh51rl9LOcMYFUs+8DGueHUCOxzjspqPY0LFMKtrcDoqrg8R0+umPpmvYIz4U3EQp9ZtEZSq8bnPz2/Rj53td1ORE6JqdYa3R7I/MzkieeNscWW4HpbVG32ZLx3O0RwqyDGFZWhOiNhTFaVdNb8wVRLUxNkIpo4Q70fkVGmOOHymsCBCJ6Xp91duCUoou2e6kj5PrceBx2tMWrttCw++ddJxMu01ZMym3Bx6X3Qqh2tlEtdD+UGoesFdbL0MQhHaB9FgKv5GGGzNXXDj2yvOQ561zJU1haDqK6QjFLLfDGnOQ602vVNQUrj1yk5dAtuaZ+nkThxMIRzni3k+a7fey2RT9432mYDi7lfE02VQ9fc2t1QxN8YWiEjiD4XBluu2U1IQIRqIUZLmbFIkuu43S2hDfbKygS5abUDTWoQR6KhHV1PvOHD/iiwv37TlH0utysG/vxsE/7Z3E6oemSmEF4bdi9FbuCefuC2/B2LPns7r3bgDk/DfE6od/xytvjOXU7+dz1r5P8CgX4R4bYhW7cfmgOZy65DnumD+D3jNWseyjkXCksaG8/r4H8E3x8u3kP8AmeOX7sRzEV5zGy3y5dBQrJ+/L/bOm8Oyki7C9UMtd3a7nGnWbsaifgZ+noQe3ySERBEFoMfIv9Xakc5YbW9yFUEpZKbCm6+BM4VgmI/FsfYtLYVMIy9Ymw2mnTzydsSV9W4mz+LZVFGa6HCiM80MdSRA1RUGmmw1mSFIz77GBXTLJz3RRXBOksNLoaWsvAUgtoaUnW8zxI52bEe7bm1Trbo2TR21ZKpr4HhTHUtj+VKOHGtkH2b5ipucbfY1nH/E4XAWnrpyPp385z8+9kBePPZ0nuk3g8o/mQBa8Yvsb+gnFBTzMU4FBXKIfAmD291P4igM5f9YjXDHrAf7Ev1l/x56wCQ6Z/QGL/3o0Jzz0Icfo+byvhlGkuwI5xnL2iJfBSn+lIOyCaKTHUmhVMpx2eubVJSU2TIHN9TipCUbSClVxOxLGk7QgFRagZ972K1VrDTwuO1WBCDa17WLGZqtzj6TH0qAg08WGMh821XxQk00ZyaL5mS58oQi/VgQ6pLBMF1Ns/fGejympCdEla/v0GKZ63ta63c6O1y3CUhAEQdgVkVJYYTvjsNsgErM2+ZluB4O7ZacVOqGU0SNX6Q+nLSyz3A68LjtDeuT8pnW3Jg2dzHkTh/P8F+u5+a0fyXI7fpPrk+V24Asl77FsLxvtluBy2Oic5cJhs7UoodTrcrB7mrNSOzpds93kZDiSjhERfjuJpbAySkTYXtzFFfxDR7l61i08Mfks1tGfg/iK66c+AID+vWL81/NYR38e4ArGn/0A2VRzvnoW3obPx+7PcL0ANUBzCB/An8J01VuNB78S9vhgJW6C7H3EKlgFQzd8wbdqCYsfHWME+TwGPzMY6MZ9p9xEYmCPpMEKgrArIf9S70DM0tecbSz3zHLbqfSHU5bONhRPHpedfXrl0qmNZtyly6AuhohJVgbbEkGY6XZAdRB7Owqc+a2CeLcuIhC3Jzal8DaTgtwUHXEcTkswBbtNbXvqqyA0hVL3c6eGhYxmxgVTqXm6M++fdyi3X3Ur3e5dH7+Nj/v0VZzLM1x63pPccdgMOERTGckg1/Eaw6/6BhTsdsT/WFw4Cq53csvpdxlPUAszH7+O0yc8zYEffcayhSP5duofcJUOoUd+IeufBh6D9WP3ZLj+mM/VIkAEpSDs+kgprLCdMTdGuWn0VCajINONLxSlb7yPcUfyWwVOU/ffr08ueV4nBZnutG6fCjONVnosBaF9YDqWLXHcBaGlXK/yYNlx8C6cc8NjHDPrU/gOrsQI0ZmsH6LfjCKu3PsRrnz6Nu594WYuGPgwuW8E4V/An6dzju5Gf9Zxy493wZ2fcIn+GoDZT0/h9POe5qWnzwPAM64c/5+WceyMchYccQqHfPQBk5jNX+96k89VADgYrY9vmwMhCILwGxFhuQOpcyy3TVh6XHYGd8veLqNC2hKvy8Ee3bJ/8+N4nHZ65WU0m0orCNvKtp5g6Yil2M2RzjExHcvWPFnU3PN6XXaO36dHqz2fIAiC0BGRHkthO5PldpDhtFGQ1XGEz47aUEtJYX2S9bIKO44d/b7fGdgea8mUKgRhO2KMGAH+O41HDziXi7s/xrMbLuAfkyfz5OQL6MlmAPrNKoKHoKzYS6fNfuxH1xA7LxMOw9hF7TONZ23AJ8BXAOuY7ZwCwI/hQey94Sc4yLje/1onjtRBsqmGj+ex+KTxLH7zVxL7KkEcS0HY9emYpbDStLIDyfO62K93Hm5HyxzHeROH71QbyO1JR3qtQvuhtd+38jkw8DiNc5/pCEs5ZsK28I7+hOGjPmYGU3m259lU9srkmo9mcQUPMIvLmMVl/DK5D/pdxXXcifpcc3W3e2ELXHb2PfAM8MT/t3ffcVJV5x/HP18WIaKACqigLkWaighILEg1tvBTbChWQAUsUYIFxRIplmgENAjYUBHsJaBG7LKKImuQKgiGFkU6JoiBgMLz++PejZN1yyzTdu4+79drXjv3nlue55yZuXvmnnsHntt5ZtDJHAdn2K8gH8iHFlctgecqw4NAC2A81GMVz554KVzZg+v/cics7p3BGnDOueTxM5YVkP/z5Vz54mfci+ZnLF2q+GW7zrnU8qGwzrkKyjs25UNxX/qU5y+DUhlbwR13o3SnZ1eOXDuYi3b2YeOpB3DUlI/oPfIFerUQc09qxgoa0JAVADSp9w2MhyP5BK6Gi8+aSN0pqxhw7yO0f/ddPn7nRJZwMBwHXAu12Ajtw30cB3PHNuOINouhA7ABJk7oC2thz1c3MIh7GTHotv+G5HeDdc5lM+9Yuowoz/8oV2TewXTlSbUU3LzHucCb2M1d0RCj85S3eGvLb5l9XSs0z3iVk5nEmeQtOzlYdMZPzMptSet3vuS+VddQj1UMWDUKToSPJT6zw/mGgxhhv+PunbdwAu/x+Mu/C9b9GI4YthiGAD8QdD57bQXe43fVZlFn1GYYAAwYjHXMQDU451KkYl5j6R3LFKqInaeKmHMUeTu68qDg50a8Y+mSKbhpz1GZDsM5F2k+FLZck9QAeBP4EFhnZrdnNiLnyj/vILpsloqfG3EO4DO7EWkIf7RreYOurKpWl/1Yi/USOs8YcNM9vNjodADOXfgarW/9kr0Gr+YgvuHGr0fyaO6lbKm3O5VtB52+/4iuNabwysgL4Rg4f8UkaB7s54y7n2fyo+dxVbeRbKAWtS/YyObHqjPxtb5UYQb8PrgbrA+Bdc5FQUo7lpKGA2cDDYDDzeyLcH5T4CmgFrAR6Glmf49jk5uBqsCylAScZv5Pv3POFW/vartRc/fKVK+aNd+Buixwk8F2qrJz4xDm05Sb772fY26awbp5ufSe/TAHs4BxW/rwwD2DAGg1bAbUg00r9mfT6P0ZMmoQ/dpMgAFwZM9PuKrGGO5fey01r17D9v9UZWve3rx4QTcADmUhVfptY+yo66A2VPrNv9l5yB7s+93X3PvdTcD9masI51yK+VDYZJsM/BmYVmj+w8AYM3ta0kXAI8DxAJIODqdjvQ0MN7OjJAl4SVKema1IZfDZzjuuzqWWv8dSq3JOJZrvXyPTYbiIkIbCP27lptxMR+Kcc9GU0o6lmX0MoJg7+knaF2gDnBjOeg4YLamOma03s6XACSVs0yStA6qnLHCXdv4PunPOuXQ4iG+4i1sYuM9w7uJWvrupGrlbvqZm8zVMWHsxL+13DmeveYObhgXDVDuTx159V/NKla48O+pCptMOe0V81PAo3uZk7h47jNFX9eHqVWPgnqrwHJxb+7VgZ2uAfwH3P8gIW8T1T4yBPWFdfi4c48NgnYsuv8YyXQ4CvjWzHQBmtkPSqnD++uJWktQZ6AnsADab2fxilusH9APIzY3W15Le+Sqd15FzzrnCghv2DKZ+7iKasph8jqbLok9p0Lwv02nHD4tqw0qo320RZz3+Jn+97ESu4GEA7v/uWgDOeu1NqvfezBxao8EG7aF+v0Vcc9V9bKMq/L4qdV9azuoLG0J+sN8Db1/Cyq6N4eJruF4j4UxgA/BJRqrBOZc2FbNjWSnTAcTLzPLM7FIz62tm15Ww3KNm1tbM2tapUyedITrnnHOunDrbnuFo8jnp66lMfKIv9Zovo/Hav/Mkl3BwmwX07vYwK8YcwhOXXUAOOziTSZzJJI7aJ5/tD9Tgz737cVLuNM5kEgdPWABr4Dxe4MGWA6nFBl596WRO5m3Ig4/7t+Xj/m1ZeW9jaA6HTJgNf74OJg2FVsD1frbSORc9mThj+Q1wgKSc8GxlDlAvnO+cc845lxTBmUrnnEs3/x3LtDCzdZLmAOcDT4d/Z5tZscNgo8KHaTrnnHPp95CtoDNPspHaLM1tzO6XbuHj6Sfyp3b9mUJXGrCCS3gStTW4Begds3Ie8B4M6P4IP/w9hz21g/b2Lptvr85mqkN7yKML44ddAYPfhG+3UY0tAHx8U1vaXzeTLkzly1+1pua23VKJBgAAFAJJREFUy9n0MPBp2qvAOedSLqVDYSWNkrQSOBB4T9KCsOgK4BpJXwHXhNPOOeecc0l3ZcsnOYeXaD9vJp9/cBy12cix7abSh3H8iYFM+64DnUbm8+Mh4qS7X4Ml8HjTC3m86YVU6f49jIcLWj7BjsqVoS0MZDizaAPA6LF9qMcqaAC/ta1U+dU2fiKHn8hhLfvSdOQ8xs66jt79HmZT1c3+25XOVQgF11gm81H+pfqusP2B/kXMXwQcncp9O+ecc67i8mGwzrnMqZhDYbPm5j1lIek0SY9u2rQp06E455xzLmN6Ab24bN4Y5o85irktm/HH469l8hPncSt3sfetW8mjC+32mc7q6/aiW41XWMrB1O26nMuWPc1ly55me4saHNx0Ac/qUjbm1KLK298zj8M5cNl6xta4juU04O67h0GvL6nKdrYPr0E9VlOP1Zx96BS+GtkSesN4bQGeBfxspXMumiLZsTSz182sX82aNTMdinPOOecyoe1gVlsrVlsrXtjSA7U2+vIYXZnC+kurc+o573H0XR9y46xRnMbrPMuFDGQ47ZhOTybAGgWPO2HpbocB3/MNB7H9+Ro8sPNaeF7wLozoeBuVLvs3jDiEyV93hz+O48CFGzhw4Qa+WNgYO18wPx/YnOkacc6lTcUcChvJjqVzzjnnKi71zXQEzjlX8XjH0jnnnHORUXBtZYu//Y05tGYOrflhRW14Eu5jIC3HfMVimsEfoB3T4T9wOPO4e+ctfERHJr7Ql3s+HwJfAF9Ai0v/xoAf72H3TTvo1C2fPXtvYOO4A2AqkA9MG8rOE/eA94Dmldm5sS8XH/oYFx/6GC3aLEGvG/DWf+PzYbDOVQQF11gm81H+ecfSOeecc9HyAnyR+2tOWZ7HKcvzGH9oDzgfLuQZ1MHYThXGt+zBA6MGwWg4aeA0Xq10OoMX3QvVQdsMZgAz4Gg+44GRg9h6yt7w+if8MK42o/v1gS7ABuDKwQyYdw9cBPSGSjOMiWrIRDWE9sDlI6m1ow+1dvTxTqVzLtLS/juWzjnnnHPOORddBddYViyR7FhKOg04rXHjxpkOxTnnnHNpIA3FZg7hHWvPSXcP5rtbqjGDVgDsxzrYA1ZOaAxtoctHn3Jfx7YwGewqoS3GOPowtXlnDmy+hO68TE67YOjZiNdug4eAzsD642A+dCaPF2/pxqEspMWjS3hAtTnEZvPlba1hAHD+CUFQD/7IvtaddRoXTPsZS+cqCP+5kcjwu8I651w0vHD5sbxw+bGZDqPckHSrpHmSZkuaI6lHTFk1SS9IWiJpkaRTMxlrplzEM9Ad9p60lWOPn82xx88OCnYHJgOvQ4+O47nhuwep/8EimA9UhZe3dKcaW1l5VmMW05QR79zGiHdug9PzscfFuY89BRcDp0EL5TGOPrTQZ9AYjrRD6MobsPwhmA08Fz4u3o11PXMxG+zDYJ1zkRfJM5bOOedcRI02s7sAJNUDFkl6x8z+CdwAbDazxpKaANMkNTazHzIZcNp0GMydR25m3YRc6vZcjsYbdT9YDsD/rf0rbAAbIO7pOICbVZcXWxvvzOqAmhl/6HErdzx7F9dPGgMHw5sdz4JpwTC2Vmaom1G343IYPBTOH8yHdjadlM8yq0ejdqvYMT2HEboNzgTqQmcLbtaTp/wgtgneqXSuYqmYQ2EjecbSOeeciyIz2xQzuSfBfy8Fx/IewMPhcn8HZgK/TWuAGaKCoabOOecyxjuWzjnnXBaRdIWkRQSDLvuZ2cawKBf4R8yiXwMHpTu+jGkAe/Mv1veszuquDWE9rBrTiFVjGrHznD3gZFAnYwvVgK0w+0He5wTOuOB57rjgLj64oB2zXjoUagPThlLfllLfljKUwfAFrFZD9rVL4Lk36fTrfFrZDBrlrmLI9EHsxb+AHyEPzu34FHnK//lspXOuAqqYPzciM8t0DCkjaTOwONNxpFBtgpudR5Xnl72inBt4ftmuLPnVN7M6qQwmlqRZBB3EouxnZjtilj0ceAboYmYbw2NeIzNbH5aPBZaY2cgi9tMP6BdOtiD41cbyKhtej+U9Ro8vMR5fYsp7fADNzKx6sjYm6S2CvJNpg5mdkuRtJlXUr7FcbGZtMx1Eqkia6fllryjnF+XcwPPLduU5PzNrU4Zl50taRXC/0lcIzlDWB9aHi+QCU4tZ91HgUSjf9QHlPz4o/zF6fInx+BJT3uODIMZkbq+8dwBTxYfCOuecc1lC0iExzxsCrYGF4ayXgMvDsibAr4G30h2jc865iinqZyydc865KBkq6TCC2w3uAPqb2Zdh2X3AeElLwrJ+ZrY5Q3E655yrYKLesXw00wGkmOeX3aKcX5RzA88v22VtfmZ2bgll/wbO2YXNlvf6KO/xQfmP0eNLjMeXmPIeH2RHjOVepG/e45xzzjnnnHMu9fwaS+ecc84555xzCYlkx1JSU0mfSvoq/Nsk0zElStIKSYskzQkfJ4fzsy5XScMlLZdkklrEzC82l2zKs4T8imzDsCyb8qslaYqkxZLmSfqLpDphWVa3YSm5RaX9JkuaK2m2pGmSWoXzs7rtCpSQXyTaL16Sqkl6QdKSMO9Ti1nuAElTJW0q6q6IkvqG21gqabSkSvGUJSu+kvYjqX9Me86R9L2kkWFZZ0lbYsrK9KOSSYqvxBgSqb8kxni6pM8lfSFpgaTrY9Ypcx3G816SlCNpTBjLEkl9Ei2LVxLi+0NYT3PDeov9HBkiaV1MfY3JQHzFxpCM+ktSjBMKvW93SupWWvxJju8kSTMlbZM0vAyxJ6UOI83MIvcAPgAuCp9fBHyQ6ZiSkNMKoEUUcgXaE/xo9//kVFIu2ZRnCfkV2YZZmN8+QOeY6fuAx6PQhqXkFpX2qxnz/HRgVhTaLo78ItF+ZaiH24Fx4fMmwBpgz6LqC+gInArMLFTWEFgJ1CH4IvptoGdpZUmOL679ALsB64C24XTnwvmkqP5KqqNiY0i0/pIY49FAvZjXwhKgw67WYTzvJaBnGEOlMKaVQINEytIY38lAtfD5EcC/gN3D6SHA8ATft4nGV2wMyai/ZMRYaLkjgI1A1TTXYWOCO2rfWXh/qX4NRv2R8QCSnhDsG77Rc8LpnHC6TqZjSzCvFRT6pyjbc43NqaRcsjXPwm1WVBtGpB3PBt6LaBueDbwX1fYLD5Izo9h2sflFtf1KyX0BYScrnP4rcE4Jy3fmlx3LgcDomOnuwBullSUzvnj3A5wFzCspn1TUXyl1VGwMidZfKuowLHudn/8pL1MdxvteAt4AusdMjwYGJlKWrvgKLSdgE3BgOD2EBDpFSaq/YmNItP5SVIejgFEx02mpw5L2l8rXYEV4RHEo7EHAt2a2AyD8uyqcn+2eUTA8b6ykvYhWriXlEqU8C7chZHF+4XCqK4HXiFgbFsqtQCTaT9I4SV8DdwG9iF7bFc6vQCTaL065wD9ipr+m7DmVtI1Etx/v+vEudynwRKF5TSXNkpQvqVcR66QjvuJiSHX7lHk5Sc2BYwjO+BQoSx3G+17a1ddVonWWjPhi9QSWmtnKmHnnhZ8x70g6tgyxJTO+4mJIxmsuaXUoqQpwAb9836ajDkuSytdg5EWxYxlVHczsCIIfvBbBtyQuu0SxDR8EfiAauRRWOLfItJ+Z9TGzXOAWguG+kVJMfpFpP4Dwn/0NxTxyKlJ8kuoCxwNPx8yeBRxkZm2A84DbJZ2Q5vhKjKE0GajDV4HfmdmqZMQfZZI6AXcA58fMfhhoaGYtCT53XpVUK82hlYcY4nUG8LWZzYmZl03xuyJEsWP5DXBAwYdu+LdeOD9rmdk34d9twFjgOKKVa0m5RCLPYtoQsjS/8IL3JkAPM9tJhNqwiNwi134AZjYR6EJwnUgk2i5WQX6SakWt/cysjZnVLuaxg+Cb9Poxq+RS9pxK2kaJ209ifPEs1wuYYmYbYvb/vZltCp8vBybzc5unJb5SYih1++mqQ0n7ElzOcJ+ZvRiz/xLrsAjxvpd29XWV6Gs6GfERnkV7GjjDzBYXzDezNWb2Y/j83XCdFsQv4fhKiSEZnwlJqcPQL0YZpLEOS5LK12D07eoY2vL8APL43wt3p2Y6pgTz2YPwhhQE37TfBUzK9lz55TWIxeaSjXnyv9eQFtuG2ZhfGP9UwpsYRKkNi8otKu0H7ElwBqJg+jTg2zCnKLRdcflFov3KWBdDgMfC502AtUD1EpbvzC+vsWzEL2/60qu0smTGF89+gEVA10Lz6vLzb3XvA8wHTk9nfCXFkGj9JTHGWsBc4Moi1itzHcbzXgJ688sboDRKpKwMdZZofL8m6FwcXcR6B8Q8b0VwU5r90xxfsTEko/6SEWNYfiDwb2CfTNRhofdQ4WssU/oajPoj4wGkJCloDuQDX4V/m2U6pgTzaQTMBuYRXKz/ElA3W3MluFh7JfATwV3sFpSWSzblWVR+JbVhFuZ3GGDAYmBO+JgUhTYsLreotB+wHzCD4B/EOQTXUrWJQtuVlF9U2q+MdbFHmOeS8PV8ekzZMOCK8HlO+Hm1HtgePh8Ss+zlwNLw8RDhTTFKK0tWfHHEcBzBlwc5hbZ/ddjWc4AvgBtTUX8lxVdaDInUXxJjvA/Yys+fd3OAS3a1Dot7LwFT+PmOvTlhDAXx9ItZf5fKylBnicb3N4L3Smx9HR6WPRXW09xwua4ZiK/YGJJRf8mIMSy/FXi+iG2nqw7bE3zWfQ9sDp+fnI7XYNQfBd9EOeecc84555xzuySK11g655xzzjnnnEsj71g655xzzjnnnEuIdyydc84555xzziXEO5bOOeecc8455xLiHUvnnHPOOeeccwnxjqVzKSRpvKSrw+fDJPWIY508SaemIbb/xiOps6STYsrqSZqa5P3lSVomaVAx5b0lvZzgPrpLWihpQ+lLO+ecK28kmaR5kk7YhXUnSFojaXgqYnPOlaxypgNwLptIqmxmP+3KumZ2e7LjSUSheDoT/Lj8O2HZKqBLCnbb38z+moLtAmBmL0uaCcxM1T6cc86lXDsz+6GsK5lZT0lDCI5nzrk08zOWzpUi/PZ0oKQ8YLCkwyVNkzQrPDs2IGbZAyS9L2mupMlA7Ziy2LOXv5H0qaTZkuZLOi+OOBpI2iBpuKTPwvU6xJT3DOfNkzRJ0r7h/HZhrHMkLZB0fmw8kg4HrgB6hssMKthXzLZPCWOdF+bXOJzfOVznkbBsrqRD4qzXKuF6iyV9ABxVqPzGMM9Zkl6XtH84v6akVyQtCmOZ4N9OO+dc+oTHxSGSpoef4WfHlBV3vGgWHvfmSvpC0g1x7mt8eKz4QNI/JN0v6fjwOLxC0u9Tladzrmz8jKVz8alkZp0BJFUHTjCzbZL2BD6T9LaZfQmMAj4ys6GSGgFzgbeK2N4soL2Z7ZC0H/B5uI1/lhJHLWCemd0gqRPwnKSDgSbAPcCRZrZa0h3Ag0AP4CbgfjObKElAzdgNmtl8SQ8De5rZDWGODQrKww7qRKCTmS2UdBnwDHB0uMhhwCVmdrmkW4HbgAtLyQPgcqAh0ALYDfgIWBHu8yKgMXCMme2UdCUwItzu7cA/zay5pH2Az4FX4tifc8655NlpZu0kNQOmS5oWzi/ueHEVMMXM7gCQtHcZ9nUY8Bsgh+A4URPoBNQFFkt6fFfOcDrnkss7ls7F56mY59WAhyQdAewE6gFHAF8SDB/tD2BmyyS9X8z26gBPSGoC/ATsAzQDZpQSx3bg6XD7H0raGq7XieCAvTpc7hGCTi3AVOBmSfWBd80sP76U/+toYK6ZLQynnwTGhh1sgMVmNjt8PgM4Lc7tdgGeMrMfgR8lPQ20D8u6AW2BWUFfmMrAppj1rgEws+/CM8POOefS63EAM1ssaRZwDGAUf7z4CBguqQrBcaks1/FPNrNtAJIWExzvdgLfSvoncCCwKBlJOed2nQ+FdS4+sd+E3g2sAVqb2RHAZ8Cvyri9h4A84HAzawWs3IVtAIjgQF7wN5YBmNkDBJ299cCDku7cxX0U5z8xz3cQ/xdWKqXsTjNrFT5amNlxccbjnHMuvUo6FgFgZq8AxwFLgUEEZzbjVfg4s6vHHedcCnnH0rmy2wv4xsx+ktQC6BBT9gFwCYCkhgRDd4rbxgozM0knEgz7jEcV4IJw+x0IOqOLgfeBrgXXIQJ9gffC5Zqa2VIzewT4M4WuZQx9T6EhsjE+BVpJah5O9wJmm9nmOGMuzvvAxZIqS9q9IK/Qa8BVBUOlJFUNzxBD8C13r3D+3sDpCcbhnHOu7AqOdU2AVkA+JRwvwmst15jZeGAoRR+LnHNZzL/hca7s7gQmhtcBLiUY3lPg98AESecQdPjeLWYbgwiGBw0C5oWPeGwEmkjKJxiSe76ZbQcWSLoZeFeSAcsIrmEE6C+pC8Ew2m2Ew0gLmUTQyZsDPB8+ADCz9ZIuBp6VVJngzOdFccZbkkeBlsACgjO2HxJcc0l4PWht4MNwKGwlYCzB8N5hwJOSFhBca/MJPw+Tdc45lx7bJH1CcJO6y81sHUAJx4tzgQslbSc4q+k33XEuYmTmI8qcywbhDXVmmlnt0pYtjxTcVXd4oj83Imk3IMfM/iOpBvAxcJ2ZFZyhbUAW15NzzpV34ReY1VNxw5xEt63w50YKbkbnnEsfHwrrnEuX74D7wrO0idgb+CQ8u/oZ8HJMp7I78DqwNsF9OOecy4y1BJ/xJ5R1RUkTCM6Qfp/0qJxzpfIzls4555xzzjnnEuJnLJ1zzjnnnHPOJcQ7ls4555xzzjnnEuIdS+ecc84555xzCfGOpXPOOeecc865hHjH0jnnnHPOOedcQrxj6ZxzzjnnnHMuIf8PxXIDKannODEAAAAASUVORK5CYII=\n", + "text/plain": [ + "

" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plotter.make_sub_plot(data, log=True, cut_max=0.011, orders_of_mag=1.5)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "affiliated-british", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "pleasant-machine", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index af2a6104..92e0dad8 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -6,6 +6,8 @@ import subprocess import copy +from libpyvinyl.BaseCalculator import BaseCalculator + from mcstasscript.helper.mcstas_objects import DeclareVariable from mcstasscript.helper.mcstas_objects import ParameterVariable from mcstasscript.helper.mcstas_objects import Component @@ -17,7 +19,7 @@ from mcstasscript.jb_interface.simulation_interface import SimInterface -class McCode_instr: +class McCode_instr(BaseCalculator): """ Main class for writing a McCode instrument using McStasScript @@ -26,7 +28,8 @@ class McCode_instr: The class also holds methods for writing the finished instrument file to disk and to run the simulation. This is meant as a base class that McStas_instr and McXtrace_instr inherits from, these have to provide - some attributes. + some attributes. Inherits from libpyvinyl BaseCalculator in order to + harmonize input with other simulation engines. Required attributes in superclass --------------------------------- @@ -198,7 +201,7 @@ class McCode_instr: Returns data set from latest simulation in widget """ - def __init__(self, name, **kwargs): + def __init__(self, name, parameters=None, dumpfile=None, **kwargs): """ Initialization of McStas Instrument @@ -221,6 +224,17 @@ def __init__(self, name, **kwargs): Work directory, will load components from this folder """ + super().__init__(name, parameters, dumpfile, **kwargs) + + # If no parameters given, initialize parameter container + if self.parameters is None: + self.parameters = ParameterContainer() + else: + if not isinstance(self.parameters, ParameterContainer): + # Need to convert McStasScript parameters + # todo + pass + # Check required attributes has been set by class that inherits if not (hasattr(self, "particle") or hasattr(self, "executable") or @@ -228,8 +242,6 @@ def __init__(self, name, **kwargs): raise AttributeError("McCode_instr is a base class, use " + "McStas_intr or McXtrace_instr instead.") - self.name = name - if not is_legal_filename(self.name + ".instr"): raise NameError("The instrument is called: \"" + self.name @@ -274,11 +286,14 @@ def __init__(self, name, **kwargs): elif self.package_path == "": raise NameError("At this stage of development " + "McStasScript need the absolute path " - + "for the " + self.package_name + + + "for the " + self.package_name + " installation as keyword named " + "package_path or in configuration.yaml") - self.instrument_parameters = ParameterContainer() + + self.current_run_options = None + + #self.instrument_parameters = ParameterContainer() self.declare_list = [] self.initialize_section = ("// Start of initialize for generated " + name + "\n") @@ -339,7 +354,7 @@ def add_parameter(self, *args, **kwargs): Comment displayed next to declaration of parameter """ # ParameterVariable class documented independently - self.instrument_parameters.add(ParameterVariable(*args, ** kwargs)) + return self.parameters.add(ParameterVariable(*args, ** kwargs)) def show_parameters(self, **kwargs): """ @@ -354,7 +369,7 @@ def show_parameters(self, **kwargs): else: line_limit = self.line_limit - self.instrument_parameters.show_parameters(line_limit) + self.parameters.show_parameters(line_limit) def add_declare_var(self, *args, **kwargs): """ @@ -1388,7 +1403,7 @@ def write_full_instrument(self): fo.write("DEFINE INSTRUMENT %s (" % self.name) fo.write("\n") # Add loop that inserts parameters here - parameter_list = list(self.instrument_parameters.parameters.values()) + parameter_list = list(self.parameters.parameters.values()) for variable in parameter_list[0:-1]: variable.write_parameter(fo, ",") if len(parameter_list) > 0: @@ -1455,7 +1470,7 @@ def _handle_parameters(self, given_parameters): required_parameters = [] default_parameters = {} - for name, parameter in self.instrument_parameters.parameters.items(): + for name, parameter in self.parameters.parameters.items(): if parameter.value is None: required_parameters.append(name) else: @@ -1496,19 +1511,9 @@ def _handle_parameters(self, given_parameters): default_parameters.update(given_parameters) return default_parameters - def run_full_instrument(self, **kwargs): + def prepare_run(self, **kwargs): """ - Runs McStas instrument described by this class, returns list of - McStasData - - This method will write the instrument to disk and then run it - using the mcrun command of the system. Options are set using - keyword arguments. Some options are mandatory, for example - foldername, which can not already exist, if it does data will - be read from this folder. If the mcrun command is not in the - path of the system, the absolute path can be given with the - executable_path keyword argument. This path could also already - have been set at initialization of the instrument object. + Sets parameters and options for McStas run Parameters ---------- @@ -1528,6 +1533,7 @@ def run_full_instrument(self, **kwargs): executable_path : str Path to mcrun command, "" if already in path """ + # Make sure executable path is in kwargs if "executable_path" not in kwargs: kwargs["executable_path"] = self.executable_path @@ -1562,19 +1568,59 @@ def run_full_instrument(self, **kwargs): kwargs["parameters"] = self._handle_parameters(given_parameters) - # Write the instrument file - compile = True - if "force_compile" in kwargs: - compile = kwargs["force_compile"] - if compile: + if "force_compile" not in kwargs: + kwargs["force_compile"] = True + + self.current_run_options = kwargs + + def backengine(self): + """ + Runs McStas instrument described by this class, returns list of + McStasData + + This method will write the instrument to disk and then run it + using the mcrun command of the system. Options are set using + keyword arguments. Some options are mandatory, for example + foldername, which can not already exist, if it does data will + be read from this folder. If the mcrun command is not in the + path of the system, the absolute path can be given with the + executable_path keyword argument. This path could also already + have been set at initialization of the instrument object. + + Parameters + ---------- + Keyword arguments + foldername : str + Sets data_folder_name + ncount : int + Sets ncount + mpi : int + Sets thread count + parameters : dict + Sets parameters + custom_flags : str + Sets custom_flags passed to mcrun + force_compile : bool + If True (default) new instrument file is written, otherwise not + executable_path : str + Path to mcrun command, "" if already in path + """ + + if self.current_run_options is None: + raise RuntimeError("Need to prepare run first!") + + if self.current_run_options["force_compile"]: self.write_full_instrument() # Set up the simulation - simulation = ManagedMcrun(self.name + ".instr", **kwargs) + simulation = ManagedMcrun(self.name + ".instr", **self.current_run_options) # Run the simulation and return data - simulation.run_simulation(**kwargs) - return simulation.load_results() + simulation.run_simulation(**self.current_run_options) + + # Load data and store in __data + data = simulation.load_results() + self._set_data(data) def show_instrument(self, *args, **kwargs): """ @@ -1646,6 +1692,9 @@ def get_interface_data(self): return self.widget_interface.plot_interface.data + def saveH5(self, filename: str, openpmd: bool = True): + pass + class McStas_instr(McCode_instr): """ Main class for writing a McStas instrument using McStasScript diff --git a/mcstasscript/jb_interface/simulation_interface.py b/mcstasscript/jb_interface/simulation_interface.py index 0eef0b4c..05add7a5 100644 --- a/mcstasscript/jb_interface/simulation_interface.py +++ b/mcstasscript/jb_interface/simulation_interface.py @@ -62,7 +62,7 @@ def __init__(self, instrument): self.parameters = {} # get default parameters from instrument - for parameter in self.instrument.instrument_parameters.parameters.values(): + for parameter in self.instrument.parameters.parameters.values(): if parameter_has_default(parameter): self.parameters[parameter.name] = get_parameter_default(parameter) @@ -73,7 +73,7 @@ def make_parameter_widgets(self): returns widget including all parameters """ parameter_widgets = [] - for parameter in self.instrument.instrument_parameters.parameters.values(): + for parameter in self.instrument.parameters.parameters.values(): par_widget = ParameterWidget(parameter, self.parameters) parameter_widgets.append(par_widget.make_widget()) @@ -146,7 +146,9 @@ def run_simulation_live(self): for index in range(sim_parts): try: with HiddenPrints(): - data = self.instrument.run_full_instrument(**run_arguments) + self.instrument.prepare_run(**run_arguments) + self.instrument.backengine() + data = self.instrument.data except NameError: print("McStas run failed.") data = [] From 502b0179c8101c1424150abe0fbbc81e219fc594 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 8 Dec 2021 13:41:12 +0100 Subject: [PATCH 172/403] Allows return of parameter from add_parameter. Allow components to use parameter objects for input. Updated example to show the new use. --- mcstasscript/helper/mcstas_objects.py | 4 ++++ mcstasscript/interface/instr.py | 4 +++- 2 files changed, 7 insertions(+), 1 deletion(-) diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index 05203bed..eccf4efd 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -143,6 +143,7 @@ def write_parameter(self, fo, stop_character): fo.write(c_comment) fo.write("\n") + class ParameterContainer(CalculatorParameters): def __init__(self, parameters=None): super().__init__(parameters) @@ -872,6 +873,9 @@ def write_component(self, fo): + " not set.") else: continue + elif isinstance(val, ParameterVariable): + # Extract the parameter name + val = val.name component_parameters[key] = val diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 92e0dad8..f156374b 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -354,7 +354,9 @@ def add_parameter(self, *args, **kwargs): Comment displayed next to declaration of parameter """ # ParameterVariable class documented independently - return self.parameters.add(ParameterVariable(*args, ** kwargs)) + par = ParameterVariable(*args, ** kwargs) + self.parameters.add(par) + return par def show_parameters(self, **kwargs): """ From 5e6af8ccf8bf1db8de61283c1bb25ca147a34e85 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 8 Dec 2021 17:10:09 +0100 Subject: [PATCH 173/403] Using iterators from CalculatorParameters to simplify syntax. --- mcstasscript/interface/instr.py | 8 ++++---- mcstasscript/jb_interface/simulation_interface.py | 4 ++-- 2 files changed, 6 insertions(+), 6 deletions(-) diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index f156374b..54ac3f4c 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -1405,7 +1405,7 @@ def write_full_instrument(self): fo.write("DEFINE INSTRUMENT %s (" % self.name) fo.write("\n") # Add loop that inserts parameters here - parameter_list = list(self.parameters.parameters.values()) + parameter_list = list(self.parameters) for variable in parameter_list[0:-1]: variable.write_parameter(fo, ",") if len(parameter_list) > 0: @@ -1472,11 +1472,11 @@ def _handle_parameters(self, given_parameters): required_parameters = [] default_parameters = {} - for name, parameter in self.parameters.parameters.items(): + for parameter in self.parameters: if parameter.value is None: - required_parameters.append(name) + required_parameters.append(parameter.name) else: - default_parameters.update({name: parameter.value}) + default_parameters.update({parameter.name: parameter.value}) # Check if all given parameters correspond to legal parameters for given_par in given_parameters: diff --git a/mcstasscript/jb_interface/simulation_interface.py b/mcstasscript/jb_interface/simulation_interface.py index 05add7a5..ecaf6e3b 100644 --- a/mcstasscript/jb_interface/simulation_interface.py +++ b/mcstasscript/jb_interface/simulation_interface.py @@ -62,7 +62,7 @@ def __init__(self, instrument): self.parameters = {} # get default parameters from instrument - for parameter in self.instrument.parameters.parameters.values(): + for parameter in self.instrument.parameters: if parameter_has_default(parameter): self.parameters[parameter.name] = get_parameter_default(parameter) @@ -73,7 +73,7 @@ def make_parameter_widgets(self): returns widget including all parameters """ parameter_widgets = [] - for parameter in self.instrument.parameters.parameters.values(): + for parameter in self.instrument.parameters: par_widget = ParameterWidget(parameter, self.parameters) parameter_widgets.append(par_widget.make_widget()) From e07a8c725895e4d6306f6f4f26c60c15459cf4d8 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Fri, 10 Dec 2021 11:21:48 +0100 Subject: [PATCH 174/403] Figured out how to dump McStas instrument with BaseCalculator dump method. It was required to register dynamic classes to globals. Avoid overwriting loaded classes by checking if attribute already defined. Updated example to show dump and load from dump. --- examples/libpyvinyl_example.ipynb | 174 ++++++++++++++++++++++++------ 1 file changed, 144 insertions(+), 30 deletions(-) diff --git a/examples/libpyvinyl_example.ipynb b/examples/libpyvinyl_example.ipynb index 33698151..97b492bd 100644 --- a/examples/libpyvinyl_example.ipynb +++ b/examples/libpyvinyl_example.ipynb @@ -30,24 +30,33 @@ "text": [ "The following components are found in the work_directory / input_path:\n", " Union_sphere.comp\n", + " Texture_process.comp\n", " Union_cone.comp\n", " Union_box.comp\n", " Single_crystal_process.comp\n", + " Union_abs_logger_2D_space.comp\n", " Union_logger_2D_kf.comp\n", " Template_process.comp\n", " PhononSimple_process.comp\n", " Union_conditional_standard.comp\n", + " Union_abs_logger_1D_space.comp\n", + " Union_abs_logger_event.comp\n", + " NCrystal_process.comp\n", + " Union_abs_logger_1D_space_event.comp\n", + " Union_abs_logger_1D_space_tof.comp\n", " Union_logger_2D_space.comp\n", " Union_conditional_PSD.comp\n", " Union_master.comp\n", " AF_HB_1D_process.comp\n", " Union_logger_2D_kf_time.comp\n", " Union_cylinder.comp\n", + " Union_abs_logger_1D_space_tof_to_lambda.comp\n", " Powder_process.comp\n", " Union_make_material.comp\n", " Incoherent_process.comp\n", " Union_logger_1D.comp\n", " Union_logger_3D_space.comp\n", + " IncoherentPhonon_process.comp\n", " Union_logger_2DQ.comp\n", " Union_mesh.comp\n", " Union_logger_2D_space_time.comp\n", @@ -74,14 +83,14 @@ "metadata": {}, "outputs": [], "source": [ - "par = calculator.add_parameter(\"double\", \"source_energy\", unit=\"meV\", comment=\"Source mean energy\")\n", - "calculator.parameters[\"source_energy\"].add_legal_interval(3, None)\n", + "source_energy = calculator.add_parameter(\"double\", \"source_energy\", unit=\"meV\", comment=\"Source mean energy\")\n", + "source_energy.add_interval(3, None, intervals_are_legal=True)\n", "\n", - "calculator.add_parameter(\"double\", \"source_height\", unit=\"cm\", comment=\"Height of source\")\n", - "calculator.parameters[\"source_height\"].add_legal_interval(0.01, 0.2)\n", + "source_height = calculator.add_parameter(\"double\", \"source_height\", unit=\"cm\", comment=\"Height of source\")\n", + "source_height.add_interval(0.01, 0.2, intervals_are_legal=True)\n", "\n", - "calculator.add_parameter(\"sample_height\", unit=\"cm\", comment=\"Height of sample\")\n", - "calculator.parameters[\"sample_height\"].add_legal_interval(0.0, 0.05)" + "sample_height = calculator.add_parameter(\"sample_height\", unit=\"cm\", comment=\"Height of sample\")\n", + "sample_height.add_interval(0.0, 0.05, intervals_are_legal=True)" ] }, { @@ -152,8 +161,8 @@ "outputs": [], "source": [ "src.xwidth = 0.12\n", - "src.yheight = \"source_height\"\n", - "src.E0 = \"source_energy\"\n", + "src.yheight = source_height\n", + "src.E0 = source_energy\n", "src.dE = 3\n", "src.focus_aw = 3.0\n", "src.focus_ah = 4.0" @@ -179,7 +188,7 @@ "sample.set_AT(1, RELATIVE=src)\n", "sample.reflections='\"Ni.laz\"'\n", "sample.radius = 0.01\n", - "sample.yheight = \"sample_height\"" + "sample.yheight = sample_height" ] }, { @@ -326,13 +335,21 @@ { "cell_type": "code", "execution_count": 17, + "id": "defensive-phrase", + "metadata": {}, + "outputs": [], + "source": [ + "calculator.set_parameters({\"source_energy\":350, \"source_height\":0.025, \"sample_height\":0.04})" + ] + }, + { + "cell_type": "code", + "execution_count": 18, "id": "smooth-cholesterol", "metadata": {}, "outputs": [], "source": [ - "calculator.prepare_run(parameters={\"source_height\": 0.03, \"sample_height\": 0.04, \"source_energy\": 300}, \n", - " ncount=5E6, foldername=\"path_to_output\", increment_folder_name=True,\n", - " force_compile=False)" + "calculator.prepare_run(ncount=5E6, foldername=\"path_to_output\", increment_folder_name=True)" ] }, { @@ -345,7 +362,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "id": "daily-louisiana", "metadata": {}, "outputs": [ @@ -353,22 +370,27 @@ "name": "stdout", "output_type": "stream", "text": [ - "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/McStasScript_tests/path_to_output_13\"\n", - "INFO: Using existing c-file: ./demo_instrument.c\n", - "INFO: Using existing binary: ./demo_instrument.out\n", + "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/examples/path_to_output_0\"\n", + "INFO: Regenerating c-file: demo_instrument.c\n", + "CFLAGS=\n", + "INFO: Recompiling: ./demo_instrument.out\n", + "mccode-r.c:2837:3: warning: expression result unused [-Wunused-value]\n", + " *t0;\n", + " ^~~\n", + "1 warning generated.\n", "INFO: ===\n", - "Warning: 24259 events were removed in Component[4] acceptance_horizontal=DivPos_monitor()\n", + "Warning: 23922 events were removed in Component[4] acceptance_horizontal=DivPos_monitor()\n", " (negative time, miss next components, rounding errors, Nan, Inf).\n", - "INFO: Placing instr file copy demo_instrument.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/McStasScript_tests/path_to_output_13\n", + "INFO: Placing instr file copy demo_instrument.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/examples/path_to_output_0\n", "\n", - "Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Ni.laz' (Table_Read_Offset)\n", + " Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Ni.laz' (Table_Read_Offset)\n", "Table from file 'Ni.laz' (block 1) is 19 x 18 (x=1:6), constant step. interpolation: linear\n", " '# TITLE *Nickel-Ni-[FM3-M] Swanson, H.E.;Tatge, E.[1954] [carcinogen];# CEL ...'\n", "PowderN: powder: Reading 19 rows from Ni.laz\n", "PowderN: powder: Read 19 reflections from file 'Ni.laz'\n", "PowderN: powder: Vc=43.76 [Angs] sigma_abs=17.96 [barn] sigma_inc=20.8 [barn] reflections=Ni.laz\n", - "Detector: cyl_monitor_I=0.030668 cyl_monitor_ERR=0.000134901 cyl_monitor_N=134610 \"cylinder.dat\"\n", - "Detector: acceptance_horizontal_I=0.744367 acceptance_horizontal_ERR=0.000360233 acceptance_horizontal_N=4.72627e+06 \"acceptance_h.dat\"\n", + "Detector: cyl_monitor_I=0.026388 cyl_monitor_ERR=0.000115993 cyl_monitor_N=140247 \"cylinder.dat\"\n", + "Detector: acceptance_horizontal_I=0.621105 acceptance_horizontal_ERR=0.000301518 acceptance_horizontal_N=4.75183e+06 \"acceptance_h.dat\"\n", "PowderN: powder: Info: you may highly improve the computation efficiency by using\n", " SPLIT 19 COMPONENT powder=PowderN(...)\n", " in the instrument description demo_instrument.instr.\n", @@ -391,7 +413,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 20, "id": "global-loading", "metadata": {}, "outputs": [], @@ -409,7 +431,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 21, "id": "retired-brick", "metadata": {}, "outputs": [ @@ -423,7 +445,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5YAAAHuCAYAAADk5ZP7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeZxN9R/H8ddnRiOyZc0USbIVWaaUakIiirIUIVmHiKxZijFEihCRnRSRNX4RCRFSRJQtpNRYImsjk5nv7497R0OjxB13Zu77+Xicx733nHvP+dxTzrmf+X6/n6855xARERERERG5XEH+DkBERERERERSNyWWIiIiIiIickWUWIqIiIiIiMgVUWIpIiIiIiIiV0SJpYiIiIiIiFwRJZYiIiIiIiJyRZRYiviIma0wsz6JXjszq3CF+/zXfVx43Cs83mQzm+yLffmKmRXwnocC/o5FRORymVkFM/vHOd4u5T3JwcyamNneRK9T3L0gUOkeKKmJEksRLzMraGZTzGy/mZ02s+1mNtjM8lzmLvMCa3wZ40XUBgZfheP4yz4853If/P0HkIiIL3n/WOe8yykz+9LMqvpg12vwXMsSjtPHzFb803v86AXvIv6ne6CkGkosRQAzKwasB7IBTwJFgBZADqD15ezTOXfAORfrqxgvZGYh3uP85pw7lVzH8TfnXJz3XMb5ap/mcY2v9iciac4beH7MlwG+Bj40s0JXskPnXKxz7sCVvudqcM4dd84dT679J9y/5N/pHiipiRJLEY+RwPfA4865z51zP3kfmwJvmtm9ZvaHmWVL/CEz22xmHZLaYeJurAndm8ysopltM7OTZjYn8f7MLKuZzfa2lu40s0cu2F/CPh4xs23AaTO7NokuuLnNbKqZHfUeZ4WZhXq3NTezb8wsxsx+NLN+ZpbuUk+St3vUO2Y2yMyOm9lPZvaYmd3sPc4pM1tkZtkTfSajmY1LFM8HZpYziX0O8L7nFzNrn2j7uW5A3vM5Cbg5UYtCwjkOM7M13v9OP5lZxyT+ezTzthD8ATx0qd9bRALOKe+P+Z3A80AcUBnAzKp4r/1nzOx7M3s64UPea/I4MzuUqOfLE95t57q5mlkTIBJ4MNG1rIAl0RXWzDp5r2l/eK9xZRJta2Jme82snvfxqJmN/7fEzXucbd4Y/wfkvGD7ua6wZvammc2/YPutZhZvZvm8rwua2QLvPSDazEaYWYZE799rZl3M7EMzOw00M7P0ZjbB+5l9ib5Lk0Sfu5T9djTPvTPGzLaa2YMXxFrFzL7ynr/9ZjbwUvefxHnTPVDkHyixlIDnvcBXAIY45/42tsU5d8w5txb4EXgq0efuBIoD7/+Hw70MPAtUAkoDPRJtGwYUAyp639PvH/bRDCgJJNUiOgfIB1QHygLvAgnJYxDQGbgdT0tsMyDiP8QPUAs4BYQBc4HJwGjgVaA8cMsF3+sNIByoATwI5Pd+5sJ9ApTD872HmdntSRx7DdAB+BlPa0JeYI2ZZQIWAlvwnNfuwCtmVveCz/cBhuM5z+sv9QuLSOByzp0F/gRCzCw/MB/PdbYE8CYwxczu8r69PZ5r46N47g8dgRNJ7HYGnmvjWv66lu278E1mVg+IArrhubZ9Byw0s+sSvS030ADPNbaOd2l+se9jZlnxXLuXevf5P+ClfzgFHwBVvJ9L8BSw1jm3z5vELga247nnPA7cDbx+wX66Ax/iuf/MB3oCVbzvfxRo5P0uCXFe6n67AfOAO/Gcz6nmbY0zs+LAAuAjoBRQE9j7H/d/Id0DRS7GOadFS0AveC7kDij1L+/rCaxM9HoQsDDR6xVAn0SvHVDB+7yC93WZC/b3hfd5Fjw/XCon2l7lIvu474K4zh0XT1J6Gshzid+9C7As0evJwOR/eP9kYFOi13m8Mb2QaF03YJ33eWY8yW+VRNuLej9TONE+N19wnJ1Aa+/zAt73F/C+bgLsveD9rYCfgOBE6wYCay747/GSv/9/06JFS8peLrimXoPnR3o8nh/srya+rnjfMx2Y5n0+Ahh/kf1W8PzsOve6D7DiX96zFhiQ6HU6PAlohPd1EzytqTkTvWcsMP0fvt9zeP5Qmvh6OS3xdTXxvQAw7/W1caLtGxOu+0BjvPeyRNvLAzGAeV/vBcZd8J5DQJNEr2/1Xqeb/Mf9Dk+0PdS7j6Le1+8Acy5yHv51/0l8ZjK6B2rRctFFLZYil+5doLy3y0sQ8LR33X+xJdHz/fz119mCeH4wfJlo+xcX2cfGf9j/HcAO59zBpDaa2T1mttjb1eYU8Aqe1s3/4rtEzw95H7desC6X93lBPD/Mzn0X59x24Biem2uCxOcFzj83l6IosN6dPwZl7QXHgH8+dyIiCXp6r5GngReBts65jXiuKRdemxNfa94FnjSz9d6ujaWvMI7zjuc8rafrOf/adsA5dzjR63PXTzPr6e2eecr7fcBTQ2DDBdfLi91vcM45YBae+gOYZ6xpSWCm9y0lgLIXHOcTIAPnFyI6d/01zzCQXMCGRMfZDRxN9P5L3e+F91X46/5xB7DyIl/tUvd/Id0DRS7iksdWiaRhu72PRYBNF3uT83T5WQE0BNbhaWWc918O5Jz7M/FL/uqObonW/ds+Yv5hs11sH4m6ykzHM7bnN6Ae/9Bl6iLOfQfnnDOz89aR9Pe65H0msY9LcanH+adzJyKSYDSeLoOn3PnFdP7xWuOc+9LMbsHTtfMRPN0UezjnhiVbpP98/RyNpytrYkndJ/7tGjoDWOntDvsUsNo5F+3dlglYDrRJ4nOHEj1PfP29lHvepe43qXtS4nvQxY5xqfu/kO6BIhehFksJeN6/9K4AOpj3DpHYBeNK3sEzDqQRMMs5d9pHYewGzuIZ35Gg3GXs51ugqJkl9ZfOosD1wIvOuS+cpyjFTZdxjP8i4Xvdk7DCzIriqb67/TL3+ScQfMG67UCYmSVef+8VHENEAttvzrld7u8VWreT6Hrmdd61xnkqdb/rnGuI5494zS5yjKSuZRfawfnXz3R4xvZd0rXNG8uuhCXRPst6e94kuDuJjyfezzo8rWhP4EksZyTa/A2e+8tPiY/lXc5eZH9HgV/xjG1M+G4F8dyjLnu/SfgWz7jGpPhi//9G90AJKEosRTyex3ODWWJmlb3V18qb2XjOn8trNp5krCH/vRvsRTnnTuAZ4/KmmZUzs3uA/pexn2V4Wl1nmaeSbSEze9ZbcOInPDekdt5KeBF4ijwkG+fcSWAiMMLM7jdPNcPJwCJvYns5fgTymFlZM8vpLdIwFcgIjDKzouap0tgOT0EkERFfeRtPUtbHzAqb2fN4rqNvApinQumTZnabmZXAM1b+Yte6H4HCZlbEey1L6jfZm3iu2fW9CcnbQHo894vLNQ1PAjfUe+wIoNolfO4DPOPyS+C5FyaYimec53RvZdJCZlbTzP6tCM7bQF/zVEsviad19TR/tTBe7n4Tex14zPvfq4iZlfF+X1/t/x/pHiiBRomlCOCc+w64CziI5wK9HU9J79/w3OwS3heDpxrgATytnL7UAc+UJ595Y+hzmfupjSe+xXjmX2sC/OmcO4SnAmwbPH/FfQQYcCUBX6LOwOd4Kg+uxFPN7tkr2N9qPD+MPsXzF+/7vDfv6niqAn6D58dEb+fchV3AREQum3PuRzytdnXwXEc7AE29LXoAvwO98FyHVuC5hzx/kd3NwTOufj2ea1n+JI73PtAXGOzd5x1AdXcFcxc7547hqUL6iHeftfAUJfo3M7zHX5m4Jdd7/a2AJ0lb6t1nP/4a73gxA7zv/x+eYRpTgZPAmSvc7znOuW/x/Pd6AtjsPVYBX+3/EukeKAEjoaqWiFwiM1uIpypcT3/HIiIikhaYWV7gF6Ccc+4rf8cjIv+dEkuRS+Qda1kBTyW8Is65H/wbkYiISOpkZoXx1BJYC2THMz1GXqC4049TkVRJXWFFLt2HwHtADyWVIuJPZjbPzL4xs41mtsrMSnnXFzaztWa20/t4m59DFbmYeDzjADfh6Qp7As98j0oqRVIptViKiIikMmaW1Tl33Pv8cSDSOVfGzJYBE51z75lZI6CZc66SX4MVEZGAoBZLERGRVCYhqfTKCsR7pxkqA7zvXf8+UMbMcl34eREREV9L5+8ARERE5L/zTodUBc/k6I8A+YBfnHNxAM65ODOL9q7/1W+BiohIQEjTiWXOnDldgQIF/B2GiIikUhs2bDjsnEuRLX7OuRYAZvYMMAjPNBeXxDuXXwTAddddV7Zo0aLJEqOI+MaGDdF/vcgYCtdBxvyniNngyFjWiNmaiWuL/84fm6+DwpDh2t+5mb1s33A9IWWzcwue0hBHuZ5DG7LBjddS5IZtHOV6TpCZP365DrLBtdf9zi3sZdue28lX8Ef27b2Zsrk2eGKIKQvZ4slzzUEOnswLOz0xlS0bepXPhu/5+lpfyMzF+GpnXvthsXPuER/v1qfSZGJpZjWAGoUKFWL9+vX+DkdERFIpM/vR3zH8G+fcu2Y2Fs/8eDeaWbC3tTIYCAX2JfGZscBYgLCwMKd7pUjKZRZ1/oqYGnT+fSFvLHkZ3oNcU7bz45Ci/PEtsGEFpb69lhgycgPRhLODsU++wPdv/Q5ArTzzmB1dF7qnp8qUQYzI0pVXT3Skx5Ch9OzUm9wc5IUu2/lkfQYe7nKYjwbfyWNjPfVYvo4oTpmuWzm4F5jlicm5yKt3IpKRr6/1MUArX+4Q6AM5fbxLn0uTYyydcwuccxFZs2b1dygiIiI+ZWaZzCxfotc1gN+AQ3gqbD7t3fQ0sNE5p26wIqnU35JKSRUMT+udL5fUILXEKSIiIh7XATPN7DogDk9SWcM558ysNfCOmfUGjgKN/RiniPhCtUhYtAjGVAOgcMRm3uj6MncPWsmXVcP58aaiFB6wmTnU5q5hX5GbVSwJr8nOVSUp4bbQbuYgRvzUEYDZexrAUsO9aFhXB19Aj1FD4S0YUKAv99Zezos9BxG7MgtEw8/kZHZEdQAqxi7jw0FVedzK++1UpBYGXOPvIPxAiaWIiEgq4pw7CNxzkW3b8Uw6LyJpxN0LVxLMtaz1tl4WiSjOjjvvxF5zcAvwP9h5f0luv2s33XK9Rp+CA+EH4DkYUbwr1bbOge7en/yDz8Cm9Ni1Dq4HjsGvbTKTa+NJ+B7WtqlIpsGHid0PmcYf5ibbBwMzALC/WzbyrjkGpK1usOI7SixFRERERFIYdYNNvRK6wgaaQPzOIiIiIiKpwIN8aXmBX+ANTwvhmvhfyFz7V6gMzIM6Jacye11DSuT6knBWwTz4vmQ+DpOTxVTlCDmoNm0OAOGsoseDQ+lXrwsvj3kDe8QRcjQWxkPWMwc43vYGTj6Ti5qzP2AjpTnVMSfuZgNgI8XgPrVWysUpsRQRERERSXEyU8WdYIl9Rh93mj72GQBHOjengxvP7jW3UoC95OYgs5s2JHZrekb17sTnfcO4beU+qAP9fu3CiFFdydDoKACLOtTmjYlt6bxsJLNb1YVckOWzWBjjOeL+cdnIHPMrB87kIdOMOP7sY6zMcjcAzZgIzPLHiUh1AnWMZZqsCisiIiIiklqZfqFLKqT/bUVEREREUohzYyuv78SSJ2tCi0hiCeFLN4sv3SzoeBPDWnbnVnYz5rdWzKAepbZ+QQWWw1LozquwFhr8OpFeQYN5u01TTs+6ntOzroe9sI98MAvepz7Fam+kRaW34LEzpA+JZTBd+CLjPRRNv4OnGr9Dzmv3U/bMesqeWc9u87RWqhvsvwvU6UaUWIqIiIiIpCBV4ufDE8AGWDLuAcbEt+LuOVu4e84W3h7SFOJg2Nbu/EFWvv2pNJteu4ex614g5H8nOEQeXu3WkWmjmpHp1GFCiKVNsyG0aTaECcsaMqxrd+4dtZxir+0ljmAmTGnLz6E3cmhifnJyhPq8z89DClGEnXwRcg/70ufjuvRxOBeppPISJXSF9eWSGiixFBERERERkSuSWlpWRURERETSNLMTkC+SPIwjw7CjnM5xPdk4xv+CHmNv7QIAPB06Fz53tCs4mB704dvsRbnj4V18UKYmT0XPJIpIWsaM46k27/DBa8/SvNhUitXcCMDIJZ0ZM6gVa5+syLaZBSgWvYNtjQuwgbIQBuNpwa7hd7C9080Um7+XEjW3AFDUXycklQrU6UbUYikiIiIi4meJ5618t1lLTve7HjrAKNqylwKs4gFW8QBkg7IF11CCLewjH3f03AVloWrcYjJlO8kubuXUCzmZdbAuFADSQRcG04XBTK/yBF82CGftzNIUm7iXsaEtGUVbhtIRDsBX3IX1c8SRDo7BU1Pm8yTz/XNCJNUJxGRaRERERCQFOs1nPz3Mg+vW8UcJo2XGscyNfYJSIRsZtbkTAE9snc683vWh7ximjWoGFYA/YGFwdU4tyEmvB/pD1BluybOX3btvh6LQfPNUAE4VCabUtC8YTBe4H2own3Ks8ySWeyH7kzG0+XUI6TkDz3oT3cYaV/lfBep0I0osRURERET8KHFrpaR+6gorIiIiIiJ+EeGyQd48PPjTahgPkzI24QcKMCSks6dFMecZyHmGM4Twv76VCSaO2W2qw3tw65DviCEjlAaWpuft0Nbsji5Eu56DoBB0LvkKnUu+QtH0OzhJZhbHVKV54ZHcwxcspwKLqcrbEU15auY7jGrTiVnU5VV3TFVg5T8x55y/Y0g2YWFhbv369f4OQ0REUikz2+CcC/N3HMlJ90oR/zOLgjcjoRQ0Dx/JBGuL22PYWke3BlFk4DR9bhvoeXMv6NO4O33aD6TB8Im8QScOkYc7bR5MKMa9zZazJaYEb2VsSxObwR3uK2byJAD7CaVmzHxqZpzPtPbNoDVkuOkoMZuyQ3qwXxxc6zmMq+6XU+EXvr7WFzJzr/tqZ151IMXfj9RiKRKATsfGcTo2zt9hiIiIBDx1g5W0IhC7/4oEvPIDP8XM+LrXw/4ORUREJOC97zbxdBv4o4Vx7W2Op9w72FhPr8LXdkZCC+AJz3uz1j9An60DeXV4R3oEDeXu+HV0KDiGdm4QcSxi/G8teD17V5rMmUFZt5r/8SgzqAfAKsLJmDGGUmwi7/BXWEFFQonGdjncj8aXUSW42+p6DqRusJctmYr3ZDWzscAC59wC3+/+yimxFAlAebNmICSdOiyIiIj4XelIlvMmfAHXPua4+/uVLDhRE+4ARkOfiO70WdWc2StfAKDO1oXcVHwXPaYNhfGwmKqwF7ZQghWbH+FUkWAyDYkjpMkJTpKZVYRThJ0AdFg2hu8r5aPQyp+xbx3L2pQnhoy80uxlbIoDGwKAc538dDLSjmRIso475yJ8v1vf0S9LkQD0x5/qCisiIuJv5k3kRNICJZYiASgmNo6YP8/6OwwREZGAZVO8TzZGMbb9C9AF6iybytaY4lTNspjC5Tfz9pSm9Ok9ED68jTpfL6TO1wt5pvg4VnMf7oDRrVkUi3bWplf8S6xY+AhPlXyHTD3i4GeI/T4LO4eUJA8HefTg/3j04P9oV2kQ+8iHfex4tU1HasbMZymVPRVln90L1FZrpQ8kdIX15ZIaqCusSACKiT1LSLz+riQiIuJfFSjrTrMh+gzcmJ5sDY4RlnE988bWp1jERp6rPYkMk4+yPUtRbjm4B4B37SbezXcQ9o3n7U6rCcl5gn7t+/PG8LZ0HjWStUNKs5XivMwrHCyQmzOEsDxPJQAKsJcXeJNTkcGki4mnx5ahtCg3nkosAyZ5Y9LYSrk8+mUpEoBO/xlHjLrCioiI+IUqwaZthqf1zpdLaqDEUiTA/BkXz59xjtN/xpGW57EVERFJ0Z5dCvzJhoz3war0MBsmLGtLNo7BH7DNvqDdnEGcbn09x8hG3TyzqJtnFhFuJ9wE/PIMz82YROysLLhCRmRMFN+0KULpmE00t8JsjytK3K+ZqDJnFVsowRZKcPOMg2ylOJmuncnIjG3gerij9i4Omae10qkSrE+oK6yIBISElkrn4I8/48kQEuzniERERALD+S2Vq3nKFeADuxHqH4J8ZaA1lK20nnkvhEDp5xjRE0gH6wnjg5XPej72uWfde6ENaZR5FtwGHcu8yqk2Obmzy3Z4xQg68Du1g8P4NORRKAAHyQPAe/XqMp4W7Gxam87LasP78MactgB0YuTVPBWSBqnFUiTAJK4GGxOrAj4iIiJXX1HgKT7o+Sz3uu+hRBnY9zYMhV6jBkPH2jT5ejRcC7y7lDWUp2z4asqGr4acwCoYSkeYC7eW+Y44gqEy9CwYyR9vGQ3zTOPT4Y/CdlhWpjy1mEst5tLIZrHCHoEmwC7gGHS23HS23H48F2mPusKKSEBInExqnKWIiIiI+EJqSYBFxEcSJ5On/1RiKSIicjWYRfGQCwPgU3sUiILHIllr39LTLWc+Nfi2E7zXpi6Nas5isjUA+vOGi6az5aaDWwVAiYgttIgYz0kyEz0ulHk8wYiJXeEVGFyhC/2/7Ufm8JO8174uwcRRacoanmg8HYBXXUd6bB4KK/Ascz1dczW20rcSxlgGGiWWIgHmjz8Td4VVYikiInK1fGrrvc++o4HLx7RKADUYULsAFACKwhQaw4LT0DELXw6Zzgja85kbz4ND1gHQptMQ7n9yPW1mDmFU/k4wHrgdZu+pTkVWMDq8CaO6dmLU4k5U2zwHcsK8BvUB6D2tL6VKVqTaiOVKKpNRQlfYQKOusCIBJkZjLEVERETExwIxmRYJaOd1hVWLpYiISLIzi+JmV48fsxf1rDg6mVa8zbTllWBDAeqUmcrszQ1hF2ylOIzMAAfg7vxboC3c2m23p5APMKp3J9rNHMR6wiAT8DmU7buaOssWcnellYRwhtmDqlMn70K6MphFRWvh3vS0JVVnNvsJ9c9JCCDqCisiAeH0nyreIyIicrX9+GRR6OB5vqz3WNZQnibuYyb3bU3bMiOZna0eLErHz/MKwbtRUDoS9p3mvW7P0GjULF5t0xGAHmOHMmJNVxgKPArv9a1LNo6xrlI5wljPaFpRp+9C8vb+gUoL18AB4EfPcTtGDaXKylUwAbBIXLwfToSkWUosRQKMWixFREREkk+gjrFMNd/ZzO4HmgLpgWPOuef9HJJIqqR5LEVERK4eMyBvJBwEanjWrSeMAuylR+OhUAAqtVzDq+M60mLceML4ih+7RLK/ZDbG0JrMnKRUmy/oMWQoAIU7baYUG8lW/hhNmcw932zCPnLc1HMXGYlhUe/afNO3CAupTrnq66i0ZzU22QGQ4cRRGA3UBzfNH2dD0rJkTSzNbDBQB0+dqxLOuW+96wsD7wA5gCNAY+fc9/+0L+fc58Dn3s9/aGaZnHOnkjF8kTQpcYvl72qxFBERSX77oUL0x6xY9wgAwcTxdNe5TJ5Sj9foTnuG89yaSYwu34of7VoIg5e/6s+E+W0Juf8Eb2V/nog/7gFg58qSBIfHkYeD3PvaRsZ2awxH4OeChWi1Zww97hlKS8YRTBzdJw/j5iY7yNj3NADbbP5fMU1TNdjkEqhjLJO7Kuw8IJxzPbvPGQ2MdM4VBkYCYxI2mNmtZrb0gqVrou2PAtuUVIpcnpjYOK4JNoJMXWFFRESSk1mUv0MQP0hILH25pAbJ2mLpbWXEzM6tM7PcQBngYe+q94G3zCyXc+5X59xuoHJS+zOzJkAB51z3ix3TzCKACID8+fP74FuIpC2nY8+SMSQdZ+PiVbxHREQk2b1OA5eTafYo7PZ0Se3x26sUG7SRI+QklGjmUgtWwY83FYIP0/F9zXzc9uQ+Xp3Zke4rh1Ei/Ev69ewCQK81gxlHSw6Sm27dXmMTpbi50nb2zi8GkfB9VD5u67mPfgO6QAkoyRYWVHrSG4unxVJzV0py8Mc8lvmAX5xzcQDex2jv+osys8eAV4AbzGy0meVK6n3OubHOuTDnXFiuXEm+RSSgxcTGkTEkmAwh6c6rECsiIiK+E8ZqSrmqwI1Mu6sZVMyDOxqEOxpE7MdZKM8aOq8bSXG2svjXx/mmWxGYlw4ywUZKw9PQw9rwU3huvt15F+mIIx1xnCobzP22njr2IWNoRXG2ko447ISjQNQ2KvMJswdU5+UJb1Cu7Ge8F9cIluNZiFRSeZWk8/GSGqSWOHHO/Q+4yd9xiKR2p/+MI8M1wVwT7NRiKSIikow21b6HPa42FSnL9RzD5ntaLDkFEyq1pcOygQzr2Z2FA6qze93thDQ6QWzdLCysVJ1qtedwzF3PzRMPUqfZVPqe6A1A9yXDYCC81e05KrCCO4J28ecxI911UJMPWLCnLi8X7M/1zY8xkycZHNyFNm5Ioqg6XfXzIIHBH4nlPuBGMwt2zsWZWTAQ6l0vIsnsdGwcGUKCiYtXYikiIpIczKIo65Ic2SUBwIBrfJ1lpYJOZlc9sXTOHTKzTcDTwHvex43OuV+vdiwigSihK+zZeKfiPSIiIsmkI0Np1OI+GjKVHzcX5ccmwLWebQ3WTGRrRHHiCObeActZ+3BFqAWxH2bh9WXtOUMIk6Obwrfp4SbIwWGmZ6kPQM7aP/N+UC2enjYXV8T4LL4cNZnNoo9rw3HgwYPsPnIrFdetZXm1e+lnIcBJdYG9iswgnRJL3zKz4UBt4AZgqZkdcc7dDrQG3jGz3sBRoHFyxiEif4n5M46sGa4hLj5e81iKiIgki8p0oilMgrXpKnqqhDSBvO1/ACCaUAqzgxFTukIhzydytP6FdkEj6LpuBBPLNeCPbNdyLQ6u9RTg6YunK+zYoJbU3rCIjA2qkvHEb5RgC18uC4ffIW/4D2R0MXwXcwe2z4G3Kq2SSrkakrsqbHugfRLrtwPlkuu4ZlYDqFGoUKHkOoRIqnU69ix5s1zL2fggjpyK9Xc4IiIiaYpnihF1gw1kZnBNsL+juPr8URU22TnnFjjnIrJmzervUERSnISusBlDgjn9p7rCioiI+ErCvJVPuV0cqpmfyTPrwQHgCeBdiN5fkOj9BQklmg+GP8vXjYvDKuBTOPNHevqsHEjGYr/RvPZUri3k+LBKVdgPz9vL1GMG9ZhBHOmwXY7qJ5YQcu0ZBtGVLyuV4Ne+manMUjJzkmtfcCyJeIAlbqlaK+WqSTVVYUXEN1S8R0REJDnV4AO7kW9dIe4ov4uH1nzEpzsfpXOnV+jIqwAspyKEQZnhW3m9W3tePDOcU1ty8np4e16sOZyb5u+iNBt5fMhiinXaSM1689nnnZnvxZrD+X5+PvKzhxJs4VZ2c2f8NwAc2RtKr4Iv02LceKrYswA455+zEMiSZYxlKhCAX1kksKl4j4iIiEjySZaqsKlAAH5lkcAVH+8881iGpCM+3hETexbnHGbm79BERERStYRusNQoQ8T8NxlFG8quWU1mTtK88EjGxLTm1LCcANzUcxcflq/Kk0Vn8uLW4VAVXi/XnhenDYfW8MOJ20j3Gdg2x7aJpdn2R2mo4Nn9h/OrMpz27G9zC41HTaER7/FN0J2soAJTCzag38T+0DwK+EXdYOWqSpNjLEUkaX+c9bRQZrgmmAwhwcQ7OHM23s9RiYiIpBEtIrl5/nbG2guMmtaJIuxg3vD6TFjWltg/Qs697efGhVhKZWLnZaFf8S78Wcx40YbTocFAjldNT9ssw7AYR5txQ3ivWV0eavMRXOvgWsd8ajIppimEQTde41V6ADCLuizqVJusjQ7469tLAgOCfbykAmqxFAkgCV1fM4YEE+8ddHE6No5rA7F0mYiIiA8940LJR28yc5IdrgiTu7Zm2h/NaNB+ItO+bkbs9Cw06TkagALspc+ygVAIyrGOoVnawQQYNqM7eeodZOy6F5hcrx4vxL5JcEgcS7c/xndFbwVgBvU4NSwnH/asyhha0f29YZRr9BlfRpeDeXB86Q1QIhK32Y8nQwJSmmyxNLMaZjb2+PHj/g5FJEVJKNaTwVsVFjzzWoqIiMjlM5vs7xAkJTE8zXe+XFKBVBLmf+OcWwAsCAsLa+nvWERSkoTpRTJ6u8GCZ15LERERuTLvjmoJ1wLHwB03Jh9pzevN2vNi+eF0WDOQYeu7M+XgMwCE51nFQ5U+4hmm8PA3n7PzziIsalaRUmxkIY/SudwrNLlmBsyAEYe7MiuiLmGsB2BB9Se5e+FKGsZM5dSBHNRotICX6M/J0MzM3VOL2bbLG5HGV/pNQmIZYNJki6WIJC0mUVfYjN7ur5pyRERE5AotbgLrgUfO0K7TID6Keog3JrblxTXDYSAMm9adCRENiTuaibijmfgw7nGqspgmNhyiIRvHqNZyOcPoCEBlPoXPwN1rcD+8yQs0YBoNmAb3QxcGc/KLXDgLohkTqbloCY2umXUuqVTRHvEHJZYiASTG2zqZ4Zp0f3WFVWIpIiJy2c5VgxVJTF1hRSQtu1jxHhEREbl8TaqMZvIjrWkzcSTtGc5ta/Zxa/nvPK2Yp4HuK2gePJWF9aoDMLtMQ2gCrIaj5TPQNvYteo17if4HexK/4TqyVj4AB8AOOMrWXs27PEMv+noOFgav0Y15lZ5gJeEMoiuh1fbA2RFAdpxr55+TIAFPiaVIAImJ/fsYy981xlJEROSyPeTCmNz3UZgFo9Z0IqZ8RngBSny1haj2kcygHuW7raHHqArMntEQgNe/bs8s6hJLCNd/c5rjYTfQb0J/cjT6hferP0Ll3z4nrjI8muVDDpGbBVufpFTxTQAMq9KKDmPHsPHxUsTvuI6n18+Fzt8Dj+Dcbf47EfKXhOlGAoy6wooEkNNJVYVVi6WIiMh/ZhaFZfR3FJIiBWhV2DSZWGq6EZGk/TXGMpgM3sRSXWFFREQu36djH/UUYM0J7IXJA1pT46uZ5OAIjXrPogRb6DFkKHe0+Ype9V6iV72XeLHncL6cE86mZfdgfzh6/fkSNzfezpFBN1LltlUEfeG45nA8x8jGpj3lmF28OhmJISMxdCg+hvcjanE4Ty5ID006jQameRcR/0mTiaVzboFzLiJr1qz+DkUkRTn9ZzwAGUNUvEdEROSKnZ4M3wNvALuA8RDU/HeCiWNCz7aM7duY/tP7UaXTfGoxj1U8wCoegKzAIqAb3FRuFxmJ4cf8RaEY0A5cYYMmRg4Ow7dGnQELOUwODpOD97fW4umxczlJZiaXq8eC+BrkiGuhSrApSYC2WKaSMEXEF07HnsUMrr0mCKd5LEVERP4zVYEVSVqabLEUkaTFxMaR4ZpgzIygICPDNcFqsRQREbkMz7hQ6NGEuwethG+B5sANcCJbFtZRDj6BMbTCbnHk5DANmMoPFOAHCtCg20R4Eph9lp9nFKLHuqFQAF6v2Z632rfglUKdoRQs6l0b8oArbbzx9cu88fXL9KU3ERFvkn/dITJzkiPBn3Ak+BO/ngtJQrCPl1RAiaVIAIn5M+5cF1jwVIeN+VOJpYiIyKUwi4LFkbA4knfvagk54ct14bSbOAhqQNlpq3k+/Uj2l7yFXl+9RBtGwRiYVrwZxXru5UfbwI+2gWkzmnmS0XvSwXfAaqA+vGjVOElm0hHHHcO/olffl+AMWHMHnwCfwBFyMHblC+Qp9yN1rAJwCOea+O+kiHipK6xIADkdG3euaA94qsOqeI+IiMilq1DlYwBWzHuEGp1msqDxk4wY2RUWbKMeMyjOViYXaU0ODjOYLvSc2Js1lOdNXuDOTDs8O1kHZAI3xBhUvx07KMKEZm3hx4fpUbsaNIJXa3ek+4Zh9NvfnyXRDxBNKAAjaM+hBydxqHIkVH4Rp8bKlCdhjGWACcCvLBK4YmLPkvGav/7ZXxeS7lylWBERERHxASWWIpLWxVzQYvnzsRgOnDjtx4hERERSB5sCkI4VNR8BoMn80Uxe2ZrPppRjIN1YlKc2L/YcTpUB82HW23QoOAYegm0zSvPUiXe4M3wHIfNOALA9e1Fu2bcfy/85ZL8PXgHyAM3T8eMnebi590GO1c6GmeOmertYyKMM3dUDgB6FBsKOSCiSUERI1WAlZUiTiaWZ1QBqFCpUyN+hiKQom346htlfr4PMiHf+i0dERCR1KQCfe55Nfrg1FIMHH1wH1eDehcvJx08cIg9Qhlf3dKRH+FB4DD6wGwGIzTEUgIK0hS9eopjbyLavgelnoG56CIObhxyEJo6TZGZYmVYAdBg1hmGZunsOXBhwbwO5ce65q/nl5b9IJQV3fClNFu/RPJYiSSuUJxN35st27nXxvFkoljeL/wISERERkTQhTbZYikjS4h1YoibLIDPOxsf7MSIR+a/MLAfwLnArcAbPtOytnHO/mllh4B0gB3AEaOyc+95vwYqkEefmriwWyfdb8wHQlIl8HvQw77taZOYk42nBaTISQ0bgF3pYNpa4B8jJEcq8/w1uk2HfeLoJNWg8kWnVYdui+Tzj1vPuypY8s2YcxdlKdRZy50/fUZYNrKAC2TgGS2HynHoANHl2BvDcufmoJQXSGEsRSfOcIyhxV9ggcCoKK5LaOOB159wKADMbBAzEM4veaGCkc+49M2sEjAEq+StQkbSlMtSF4bQH4PNRD/NtfCHuaLmLz8eFEUwcc2c9jU1zwAnud5kZRRHmlanPM24cpVkL93r2VLbxBt6Z3pzILL0ozwzeDH+B7C1jmDyuHndO3EHWRgdovnMqHIA94aEEz4mjib3njWOR97Ha1T4BcqmSJ7HMamZjgQXOuQU+37sPpMmusCKStHjnudYlMIx4/clTJFVxzv2WkFR6fQHcbGa5gTLA+9717wNlzCzXVQ5RRER877hzLiKlJpWgxFIkoDgcQYm6wpp5mj5EJHUysyDgOWA+kA/4xTlPPwTvY7R3vYhcJrMouCWSGi6a+/t+QgWWU4HlkAme5y1KjfuC+8euJ5RobLODykC+LKz6oQqZOUnI0hMUZyub2t9Dh5iBdIgZyHDacU3WhcylFo9ZFNl7xkBXKMRujj+bnnEhEZDOMSG8IQUrRVOR5cBQ77IF59RamaIltFj6ckkFlFiKBJD4eM6rCmuqCiuS2o0ATgFv/ZcPmVmEma03s/W//vpr8kQmkobU2DOTBeueJIwN1Cm/kDrlF8LLsCL8EUqxCa6FEVm64h41bm6zHQaCFezDu5VaEptjKMupCA1hWPHuDCvendNkhB3VeICVfO/qw6vfQwu4/7X1TAtuwAzqwRfGVoqRY+kv3u63pxMtIimPEkuRAOK4sHgPaPS/SOpkZoOB24B6zrl4YB9wo5kFe7cHA6He9edxzo11zoU558Jy5VJPWZGLOVe0R+S/CvbxkgqkkoZVEfEF59wFYyxRi6VIKmRm/YGywKPOuTMAzrlDZrYJeBp4z/u40TmnJkmRK7SgzJNQAE7OyQzZvCvXRsG+SNZRDrYDOSHnXT9TnjX82DAUWkRy77jlnKQ6S+wuuBc+2FoTgC2U4IHCK3l41uf0rtuT710lPqI6HfqO4blRk3CVjNENlvLcuklkKHaUT7OuB8C5SH98ffmvArQqrFosRQJIvDt/jGWQGU6jLEVSFTO7HeiJpzVyjZltMrO53s2tgXZmthNo530tIpchobXyCVeEO77+CvrAhMZtYTCepWIk5IVtQ0pz94CV8MNe7g5ax4L8T3KH2wHjT1OajbRnBBAFa+fwVPv5PNV+PkfIQZWtq7DfHP1y9ee2zd6OBdthdpvqrC5alud6TmJJuQeommUxT7giSiolxUuTiaWZ1TCzscePH/d3KCIpinOeKUYSmHnGXYpI6uGc+845Z865Is65Ut6llnfbdudcOedcYe/jDn/HK5Kafe1mMG9Gfb61VTQoORG6w+zi1ZldvDoPLfsI9kfRpNNovmwQDnkLMIVn4TEox5dQKwOjJnaiPGuABqx1/aAQUAjmUxMmQc+I3gR9+ztZix7gJJn5dloh6lht7h++Hl7dTJXwVcyzHcwz/VNOVVS8J+1wzi1wzkVkzZrV36GIpCjxzmEkrgpraq8UERERkSuWJhNLEUmap3jPX689tXuUWoqIiCSW0A22zM6tUD+KDi6WxfFVYTvUsWrUsWoUYC/kjGRym9bw/m+QE3LddpIKoz5mQsu29JzTG5pP5jW60cR9yr3zN8IKYAXk4SCshgEr+9I1z2COv3ID+8jHYqrSzh2lefuRwAJY9T3QQN1gUxtDxXtEJG1z7sKqsEa8EksREZEk1IB7gLBIjjGamUFPUqlO1XNb58W3gN8hYtSbjH27ChU2f8nyldV4iV48MW4ux7ge3mjCu0OAw8CvwNyvAdhQ/j5YG8Wr4cfoGDOM136OZMyEDlgxB3OBwVEwMhLaJlSlVWKZqqh4j4ikdc45zxQjXkFBmm1ERERERK5cAObSIoEr3nHBdCNqsRQREUksoRtsMWdsC4caK2cyeVlrdlW6lQluMs2tKQC5gw5x5J4b2U8oUIwVJYuR8fPfOG3D4ZfhcOMsGriJRBNKbg7ywU8NqTDuEADliOK1BpH0GAIFOu0l6NXfscUOrsUzUdCxSE/l2VsicXv8chrkSgVglhWAX1kkcDnOn27EDBXvERER+ZvMbLP5POF2MM+igc30dn2pYj1hemUAtr0GEcveZKwVZLKrxyrCWUh1Tl8fCeOBag3JzUCmLWsGS+FUZDCZmsUBsKLRI7i+hr3meLrSXM8Yul7wdZnizKcmfTYMhGzgvvbX9xf575RYigSQ+Pjzx1iambrCioiIeCW0VopckYTiPQFGiaVIAHHOnVcVNshUFVZERCSxwq4WOy0PfJqHeXscs92jvEhVqty1CqZCUIXfARiZ53la75/M9a4PTbLPgOfhg741eWrpfHgbOiwcyLD53WEeMA9eHtAfGnmOUarSF1hPx7Jx5ak0YA3khEXhFSkzZyt/Vjb6bMzgjUZFe1KlAC3eE4BfWSRwOTiveI/hGXcpIiIiAD3ZaV/Dp3lgO/DQBOrUWgjPA/cCRSH+0+sAeO7sJKIbh1KHWQyc0IfqtWbT6Lf34GXgYxj4Zg+GZetOprcOk3niSYI5y9uVPOMzW3eZjJV0VOq6hvsHfcKGE2FUy7iczjGvcB+fcbeDdYT76ySIXBYlliIBJN45jPOnG3EaZSkiIiLiO2qxFJG0zjnPFCPnmGfcpYiISKALYzWfuxe4P3w9PLSCp9yPVG/zCcO4g02N74E+jm8L3kZkGc84zFd4iU+pzN0Ft7B/TzYqsoIj2XOSY+FhFq2szcGMuWE9nEqfk1PX56Rj4WHcNPEwAJGDo3ALjKmD6lCYHdx9YAuTY+rR5OEZsNQ7ztOpxVJSlzSZWJpZDaBGoUKF/B2KSIri6fZ6fouliIhIoDOLoqyrzP1j10MHoG4FPugEH7R+FgYCN0Gfgj04SWaqshiAk2Tm+eHjKbZnI3kXHoPleKYIGQOchZuPHaROp6lspTgtGE/muJOcauip6NKMiViMg+gz5A49CF2gSeUZ8AtQLBK31R9nQXwqTWZZ/yzo39+S+jjnFjjnIrJmzervUERSGHfeGMsgQ/NYioiIABtC76NbRBTccwZXy2AE8ApQAPYMCKXP1wPZQWHiCCaOYN6lMXvah7Lt4dI8Vf0dcg/6CVpAv4guuFrGtpoFWMUDbN1fhmwcY1XwA9yT/gvuSf8F5fgSDgLb03Nw+81wCk8Cuy3Ks4ikQgGYS4sErnh3fiulYUosRURERHxJ042ISFoXf+F0I0FoHksREQlo5+au/Bhe6x3JsL6tsK0O1sGtZb5jd5nb6du7N+4Xw4Y5eOWs5/1/pGPEH10Z9kkrVlCRQ/YNROXn5SFvYKUc7+etxdu0ZmXeu9lJYVZQgW/73gXAyx0KEVTvd+K+zISNcrAX2O+JwzlNMZLqqXiPiKR1zl04rtI03YiIiEi+SM98k5ugJFtgKFARdte7HXadYPKy1kye35q3pzTluTaTAGgwaiI/cAuzqMvnVhI+y8OS8Adoz+vk5Qee7j0X6kO34lG8NjySz9uHsbR3ZQD2f30LWe84QFiNz5ldozr7h4cC0Jbxfvn6Ir6gxFIkgFzY7dUz3lKZpYiIiIjPBGiLZZos3iMiF3HhGEtDLZYiIhKwzGbwvRsPTWBY71aQCSptXcNT496Bw8CbwDdZaFBpIuSF55ZMgj+BPyETJ1nTrxK3sBcy5OGp8HcozSbGn2jBHGozu2919hfPRgvGc6qVp+DPOFoyjpY8U2Ycx9ffQBF2UGfKQp63fDxv+fx6LkSulBJLkQDytzGWZjgNshQRkQA2iC7c3/cTjpATboDmxUeyhvvgXSAHkO0s06IbsqTvA9xUZRdkA7LB2CUvcLRXBt6d1hI+hy2UJNeMk5xecT15OEidsQvJ+5Nn3spMI+MIIZahdGQoHXl3a0t+K5+RH7gFnt0GPKWxlWlNsI+XVCAAG2lFApeD86YbMdRiKSIigedcwR6K+jUOSaPUFVZE0jpPi2XirrBqsRQRkQCWtx5je79Aa8bQb2F/Ioa8yYTqbZlKQ5766h3ylvsBt+AaWJGeJ2Nn0p7hcAue5VvYSwEmNGjIG2XasnVCGSbXq0eOx36hJh/yTMQ47si/kWDieKjTR1Q6sYwhdGIIncha6ABrKM/aiRWBD7yLSOoWgLm0SOCKd5zXFdZM042IiEhg8bRWZgbg3ujlHCI3jebMgkWQufpJ6ABnCOGDms/iBhhnmgIHHMc/v4ExlVpBAc9+PqxelcF0YdqSZrxfpRY5m/7Mm7zAkS9u5EiBnKQPjWXL9rsBWBNanuB0cWyhBACFQnYzjQbQXFOMpEkB2mIZgF9ZJIBdULwnyEw1YUVEJPDU6gTA2iVwU5Vd5K39A9SGwXN7EVU9koL8QNn5q2nBW0yY2BZ3uzGkUhuW8hDFq28FIAMxTJvfjJtq7qLZiYl8keUeHuYTlpR/gId3fU4BtsEZqHXn+8zkSSbRlLKsB2BD9fvYMPA++AZcSb+dBRGfUmIpEkDinSPxLJZB9vcpSERERETkCgRoi6XGWIoEEE/xnvPHWCqxFBGRQGEWRRVXGloALaBalTn8/FMBSrGRl+hPvlrfszh9VT7mEZ5gLhPmtOWmZrv4qNxDxBHMVBpRmB0UZgePn5jP5zXDyMxJSmTZwp0rd3Dop1CqNFgFR2AlD1Lgzm08wCrWE0Y3BrKfUPYTykMLP4I7ozyLpE2qCisiadmF041ojKWIiASaWEIYW70xAHN5Ahd7Dcu5l+4MpAuD2Ec+ptGQGDLQpvYQRh9sRWieaAqwl5wHfyUuNhMArfON4SOqU4hdvMXzPBL+Me/QmBemDedNIthCSeZSm3WUo9O+UVTN9yGhRAPwqe0HbsS5Fv46DSI+p8RSJIA4x/lVYTElliIiIiK+pK6waYeZ1TCzscePH/d3KCIpRsK0IheOsXQq3yMiIgHAegNdIlkRXZGtFGcrxVk4vQ6jCzWhK4P4ckA45VlDPvbRitFspTgjV3ZmaZ6HOUY2+tKLPHkOUSjftxTK9y3rCWMV4fRkANnijlGVxcSSnsos5YW7xpKZk/TnJQ6Sh/n5qrD4m8fZSwH2UgD4xbuIpB1pMrF0zi1wzkVkzZrV36GIpBjx3vzx/DGWf60XERFJ6zJFHaZf6EsMa9ydYY27M73+EzzAKnrTl3Y9B3HXhm/ZSRGqPLmKcFbxcXgFKi5by0Hy8MG6Z6nLLIKJI5g4QommIst5nreoHTyHoet6sJDqlGMdvb/qydDGPZi1oRHF2UonhvB70SBW2PWssOuBRzTFSFqW0GLpyyUVSCVhisiVSmixDErUZBlkdm69iIiIiPhIKim440tKLEUCRELL5HnFe1CLpYiIpH1mUfBNJJUzLqUkW3hmyjgAxtOCg+Tm2zV30bn8K9j18bDSKDtzNW0YxWkywFk4Qwh/FjMeZhETaQbAUiqzhRKcJDMzeZLQcnvoyFAOkodWjIEmQFZ48tsFvHvHM2RaFwefgQv333kQSU5psiusiPxdwlhKu2C6EUCtliIikuaNLdmYedPq8/i0xVTFsywd8xiHyEO78oMowRZCsp2kQ/hAMnOSaPJSn+lMr/IEmTlJzHUhvE5X7yjJvZwmA+VZQ2WWspiq7N95C9VZSBjrufG5I3Sv1AdGw0935GY9YfDg155F0r4A7QqrxFIkQLikWizt/G0iIiIiIpcjleS/InKlXBLFexKeK68UEZG0yjIClSOJ5AfeaNCW4bQjAzEAVG31IQcn3Eyt5u9zkNx8nv0+YknPpNgmTAtpyMFvbuanO3OTf+Qh+Ay2flCcLykHQF6iGUNrtu4rA/MhW9tj3L5oNzWrfUCGt2OoyhK4BzoxhP0lb4ESt+A2+/FEyNUToNONBOBXFglM8ReZbiRhW/B5W0RERFI/syjIEMn/PqlMEXawgyLs3V6MAkW3AVCZT/mieSk2Uoo8HOIY2aiSfxU3/7Sd3vTFMsfDTsPVNqzGnxAdxx/ZrgVgYMZu9KYvofn2sP+2W5hAQ+pVm8z8DU+Rr+z31GU2beu+QTShsCXKG5EqwQYEQ8V7RCTtSmiVDEpijGW8+sKKiEha9QQMpBsNmcZw2jOm6C4q8ykA4357HjsO8295nIa8B8CinypSio3MoxY/FryBlozjAFm5n+VMohk7KAxAIXYBMIfa7K1SgK0UZyA9GFi2A+0ZzmKqkp4znCQTd7jqbOEuv3x9katFiaVIgDjXYqkxliIiIiLJR11hRSQtc/Gex/OqwpJQFdYfEYmIiCQfsyhYHUnh8pvJzEnKsp587CMHRwhjPQCjsjenQvYV3Ll5B5NL1mMnRSjMDh7jIzoylJNk5iX604/eDKQHw2nPGsoD0IXBZOMY9+zbxJp85ek7awA8CN0ZBtHA9/BL3RyMsnaegJxaLCVtU2IpEiASphsJStRimfDcqXyPiIikRccgOiaUvX8UYH66Oiw5Vh0Op2PKjc+ce0utPPPIWvQA79KY9gynyteraFJmNC/xCj9+XZRSZb5g07R7WNegHBVYzoc8DkDmuJMAhObbw/dnCtGi7ltsoCwbv72XA3dm5YafjnNTzcNQA9x8f3x58asAzLI03YhIgIhPmG4k0Tqz87eJiIiIiFyOAMylRQKT8/Z3DQpKYroR9YUVEZE0xCwKvomkW8kodlCEeR/Xp2/tnnye5R6K5N/BYXIA0I/elGIToSHRzKAe+djH+2VqsZ6yfME9vFDmTQCKN9hKN14jlGgm0RSAGsHzOUlm3qItndIPISMxtGEUve/oSQvGY8EOFqgabEDSGEsRScuSarG8cJuIiEhacWvJ73itaySLBlXkgdqrKM5WpvAM+8hHPvZ53sNuZlCPcbSkHjMoPXkbjzb5iKos5n5W8wCrCCWaB1hFX3rzEv15hikA3DDrOOXrLqMjQ6nMp/SlF8Onv8hP9XPTn54wEHggErfSjydB/CNApxtRV1iRAJEwjjJx8Z5zU48osRQRERGRK6AWS5EAkdDb9fx5LD2PmsdSRETSChsObIikLO+wO9/trKAC5VnDs7xDN15jzDcdmHpnHQC6MohPeJgiJ3ZzzQHHG03ako1jTNr3HN3z9aEJk5hFXYI5y6wljdhe5WZG0B6AuLrBTKQpRff/SFTebmyJvJshUW04RjbGLnsB+oCr5L/zIH6krrAikpYlNY/luTGW/ghIREQkmbQrM4h6zOCD08+SgyPMpRZfU4Ybfz0C6aHh3NkAnKmVni2U4PYfdrP2ztIs5SFe4SWi8nWjAdMo+viPTP6wKb3KD6bGmpnsoAgVWA5AEXaSh0N8kvd+FlOVxlFT6LznLdhkUMc7ttJpbKUEDnWFFQkQf7VY/rUuSC2WIiKShphF/fubRK6GdD5eUoFUEqaIXKlzLZaJy/d4WyyVWIqISJoxAta3D2M9YbzXrS5Lqczk6KZM/qMV7xV8kvG5WpCvqKd4z7vrWpKh2FGe/nguk++sRznWUaXrKrgXFtauTuMPp9CRobSf+yYbKc1EmlKI3QDcfuI7Wlw3ntjg9OThIDFkhGtjoc5AAJxaKwOXiveISFqWkDtaEi2W6gsrIiJpxZ7vQ/nkTGXmU5OHWEosITA+PWMLPktxthJKNCfJzEkyM7ZcY2J+zw6ZYQNhxJKe9wbVxT1gNGAqy6nI83vGEX8mPSXYTB4OsZcC7KUAH2V5lCzzY3ls4VJKsYmtFGd2aC1/f30Rv1FiKRIg/kosExXvIaHF0h8RiYiI+NYyt5iCc6LpkX4gudacJI50TNvZjD69uxNDBh7lI6qzkHnRtZgXXYtOMUOonPd/vNWmBZk5ybPx75CZk7AROmwdQ1UW4+KDGJa/LR/9VoeS3+wkL9HkJZqK09fSsNYEKAQvnXiNIuygjkUCj6i1MtAlFO8JsK6waTKxNLMaZjb2+PHj/g5FJMVImG4kqTGWTk2WIiKSypl97+8QRAJamkwsnXMLnHMRWbNm9XcoIilGfBJdYf+abuTqxyMiIuIrCUV7xtOCz2qX4yC56VX+JWZQj2KFNzIivh0v/DCWFownH/v4M9O1/JnpWkZnbM2nCx8lA6epzkLeD6rPQLrTuMpYFhWvyDQaYPGODqPGMCt7DUbe2Zw40hFHOqrW/5CjZKNO4ak8nGURd67ZAXzsXSSgBWiLZSoJU0SuVEKBnvPnsfRON6LiPSIiksr1cRPoM3Eg8+vXJDjdWT6Y/izc73AZgqiXdzJHb8nAcioAMCtLXc8jdelXvQvTaMAWSvA6XcnJYZ5gLs/zFmdID9eeJaLNSGLIQFk20INXARhCJ8r89jVvZ3+O5gOmwmggXyTuJz+dAElZVLxHRNKqpMdYnr9NRERERORyKLEUCRDu3HQjfwk612Lph4BERER8wCwKro9kGg2ggqNuxlkUCtlNprqH4YBhDR0bCGMVDzCVRuzmVkYebMPIg214hZcJZxXHyMZbPE8o0ZwhPUPpSAix7Ft9G+7ENeykCM8u+oCHYz4hH/s8S9w+WmUfwyzq0K9nFyiCZxFRV1gRScsScsfzu8J6HjWPpYiIpGrNYWfLklANZuSsx4dZapI54ynql3+fI//LSWF28PicxfA/uHfictbnuQuA+dRkBO3YtPIewsLX05ferIkpz6mbcsIwsC2OvIN+oCqLIR+kv/aMp3ssEB2clxFbu+J+NuxaB73AhfvxHIj4mRJLkQCRkDyeP4+lt8XSHwGJiIiIpEUJLZYBRl1hRQJEQqNkUJJVYZVaiohI6mIWda4aLA/AQ+M+4tfamRmUpStV9qxkN7fSllGcGpyTFScqkqHyUSImvkko0ZT+dRulf91GIXaxccK9dAuP4pbu+5lxop5nf9Mha/0DuDZGZZZSlcW0v+N1Pgt6kE2UYhOlKLZkL+56w15x8LJaKyWRAO0Kq8RSJED8lTyqKqyIiKQdD7kwQu4/wadfP8poWpGB03DMaNRpFq3ixkBlaJplEqcnX8/o3zowe0hDNuYqxsZcxWgUNIsCzbexlMocHZiBGlnmkyPjYbZVKcCxT/My55ZqbKEER8jBYqrSiSG8SndepTtfVinBF3lLwaoozyIS4FJJ/isiVyqpFsuE58orRUQk1dndG4Bx3MjC7NVZnz2MXi0Hk3vcTywp8wA7yxThELlhF8SUzwjlIGi046GeH3GMbJ59zIK9I4sRXPcU2W84ACOzwB2wLrwcj1X7iGPx2fgw6HHycJD+vERTJvHw3M8BsJsd1AVuAbfHP6dAUjBNNyIiadVfiWXi6UY8z+OVWIqISCpyrgusiKQYarEUCRBJF+/xPDqV7xERkVTiXFL5P89NrGCeaMgMY6s3Ztwbz3HNfEe6mnE8v3U8S4o/wPGG6RlPC+4v9wmrzlTByjvKr1kDQLfaUZyIC6F88Bq6u9eYRV22UpxhdKQUmxgS1ImbRx3kxzZ5iN5ekFeKdsY96Dl8k+yjYQ9MorU/ToOkZAFavCcAv7JIYPrH6Ubir348IiIil+tuV5Evl3meZ73/AE1DJhOxbgoR46cAUPGutbxfvBYvMJwGwVMJYwPF2YplczAU+vXsD0C1AXMYE9yKVd9UYdydz3CEHHw5P5yfa+bk9thveTjkE0Lqn6A+04ktGsIrvEzQ59476kDPw6Q1V/vbi6RMSixFAsS54j3nVYVNmG5ELZYiIiIiPqEWSxFJy5IeY3n+NhFJ+cxsMFAHKACUcM59611fGHgHyAEcARo75773V5wiySGhG+yXm8P5sFJVAEbTilhC+KOE0WncG1RlMZ9wP09vnUvP4r0ZQXsAjv2Wjckl69Fk4QzGDmgMQMT8KcTWTE+5O9cRsXAKHIbPG4exiVJMCXmWx6ct5u4GK4kjmLrMYjFVGVazFQAdHg/1RhV5dU+CpA4q3iMiaVXClCKJGizPJZlKLEVSlXlAOPDjBetHAyOdc4WBkcCYqxyXyFXxlCsAs2A5FVlORRatrE02jtEp4xuMGtuJtoykdsxcJhevR//n+tGC8XRhMPmy76NJ+Awo6ijHOsqxDs5CKTaykgfoV70LrpqxnAqMpA1l2UCVBvP5ckg4cQTTY/NQWjCeDhZKB/Mklc4pqRRJoBZLkQDxj2MslVmKpBrOuc/hr67s3ue5gTLAw95V7wNvmVku59yvVz1IEZFApq6wIpKWxXvnFDl/HsuEMZYiksrlA35xzsUBOOfizCzau16JpaQJZlHkdY3JzEKOR6Yn67ozAHwYXpXHFy6GTEBr+PmGQtxdcyXpiINasIUSLOj6JDUGzWT3TbfDJqNmwQ8BcHcZlfkfB8nNxhN3UyvX+9RlFiNoz20nvufjLI8Q1SmSe7duhFNwhy0CpvnvJIikYEosRQLEubkqzyvek7BNqaVIIDGzCCACIH/+/H6ORuTS7R9+CxN2tSXn8MPgyQ0JKRcL64FGjlfjO3GQPAxb051GkeGU+yQfH/72FFsGFSaOYOaHPsXU2nVoNH8WACtr3k0XBlNt5XLuCl/LOzzLnVN2wHgImvk7zbJMpBd9cR8bXTr14w0qApVx7j6/nQNJBQK0xVJjLEUCRELl1/O7wiaMsVRiKZLK7QNuNLNgAO9jqHf93zjnxjrnwpxzYbly5bqKYYqIBICExNKXSyqgxFIkQCQx28i5brHKK0VSN+fcIWAT8LR31dPARo2vlDSlSyQ8cRbSw63s5oMBNflgQE3Sc4afe+fE7QpiPC2YFNsEJsG3nxSiNaMJ+sIxhWcos3IrZ3tD29i3IOwMhJ3hwT1f0IyJVAufwzIqcefWHZRtvBrX0KibZxa7e99OHOkI7bSHN6a9DFPvU2ulyEWkkvxXRK7UuelGghJPN+J5Hq/EUiTVMLPhQG3gBmCpmR1xzt0OtAbeMbPewFGgsR/DFPEpsyiecEVowDRCB0Vz/5D1ZH3+AADHJ98ABaBUlS/YPeV2GAGvftWRO/Z8z/0Fl1Kh+seMiWkNP0PMfSG0CB7PvtB8AHwaX5nvzxRiRPr2PMpHkOksg+iKfeP4hiLs7XsLzaZPo/nTLYEpnmAaqBKs/DsXgNONKLEUCRDxSU434nlUV1iR1MM51x68E/Odv347UO7qRyRydZRnDYfITQF+wOU3DoRkBWBwRBfe6PoymwqVI2v9A0xt3IjHZiyFdfB5vYfhDPQL70Jcg3RkWRlLtvBjvDHxZQByN/uJJ9PPZNHm2lQpOZ+387fkKNm4f9Qn3Pn1Dl4v057Q+nvg6ZNALZwr6cczIJKyKbEUCRDnavdY4uo9nge1WIqISEplFuXvEET+E2cQF4BZVgB+ZZHAlNBimfR0I8osRUQkJbuZF2+LhKZwa8/v2B16O4uoCMAKKtJu0CBGWFdGuucpwRYK19tM73p9ycc+Hhy1DsKhjw0kjztIUyZzullGAPpP74dlcdxf/RMK8APPLZtEm0pDyM8+uBZOkpki7GA/67xxqMVSLoESSxFJyxK6u543qfq5bX4ISERE5BJUcaVZF3s3xwcCg2H3Q7czoXxDqm1eDsD+ktnYQglw0DByNtb8T3gkHQe35qFuzGxIB3k4BF/AA6wiZ8wRBuzqC0CF+st5m6Zk4xhF2MGRSjkZtaST5xfyQ1DPzaCfZQTS4dxLfjsHIqmBEkuRAHGueE/iFssgO2+biIhISmIWRRVX2t9hiPwnzuBssK8n34j38f58T9ONiASI+HPTjfyVWQadG2OpzFJERFKmJS1rcvy+G3i/dy14D/gQmq+bCuuB9bCBMKpMWcWI+V3J9tJ+eC8dVIBOv45idMYImA4RLafwZzHjjuq7uP7sb7hVhltlVNm5igLs5enGczlIHrZQgtertIcCjqxnDnDH17uAs95FJLCYWS8zG25mQy/l/UosRQLEX11hE69NmG5EiaWIiKRQNeD1r9qzigeYUL0hvQa8BKuhbLPVlG22msemLeW9xnUhE4wOeY5qPefATLA//6DDw2Pos6w7Lr8RfBaoC6ezDmdc22cY1/YZSOeodttyeAIe2bWCvb8VYDkVmFywPse/vQHKegoHOacpRuTSOTPi0qXz6XIpzGywmf1gZs7M7ki0vrCZrTWznd7H2y5hX48Bd+D5q8rBSzm+usKKBIhzLZbnFe/xPCqtFBGRlEbVYCU1iwv2y0SW84A3gVUXrB8NjHTOvWdmjYAxQCUAM7vV+zqxxXgaIL9zzvU1s4Fmdr9z7vN/OrhaLEUCRkJV2ETFexKqwqrFUkREUqLpkbANhtKRXvQlJ4fp16A/3AgHycNB8uC+NJZTkTsqfcXT9g51mQ2fQpXQxbz3SV36NBiIrXRMy14HcgIbIjlJZk6SGZ43vv8+H+5GY2Sh5sQey0xTJtM5fghsB6ZGqrVSUoqcZrY+0RJx4Rucc5875/YlXmdmuYEywPveVe8DZcwsl/czu51zlS9YBgE/Ake8nzkMZPm3ANViKRIg/rHFUnmliIikNIsjiajyJmPzv8D+w7eQ9+ljnvaYx+CzeuUYSkcALN7BEKDzOpq4aTS3wjRxoynPGhqNnQXv/wm1rqFuzGya3X+CV7K/TOcnRwKQdd4BNlKa+uWmU4QdvF2wGU+tnO85fkNvi2kDJZby3ziMOHzeYnnYORd2GZ/LB/zinIsDcM7FmVm0d/2v//C5OcAoM3sDyI6nJfQfKbEUCRB/zWOZeLqRhDGWfglJREQkSWZRsFgJnYi/OOdigRb/5TNKLEUCRFLTjdi5FktlliIikjKcG1tZ9TdKu00M+6kVoeznqYXziej7JmM3v8CDS9bxRJXpnveN2AyLS7LfVSVv+DH4FCbVMQbNbgdAOzeM3BxkB4WZmfFJ9pGPPTNDAdhKcerHTOfk77kYlKsdu7iVUuFfUIEV4NIzlO5X/wRIqucwzvq+xfJy7QNuNLNgb2tlMBDqXe9TqSaxNLPiwAtAMJ64mzr9Gha5ZH9Vfk08xjJh29WPR0RE5B/VzU4cwcSRjnd5htnVq1P720WEl1xFiZJbuHPlDgDucF+Rk4/Ju/kYdIf7K32C3eBgBgQ9/jsZiaFX7cGknxPLiwOGw0Bwuz03wPtyrWZjxtLMzFiDMbTi67gyvDHjZTY1XAzAUN0f5TLFpZA0yzl3yMw2AU/jmbDnaWCjc+6fusFelmQt3uPLkrfOua3OuVbOuRbAdd5FRP6joPPGWCa80J1TRERSiEKR8HQkVITnQ8dTgs3sohCl2URwrlP8QAFKH/waPgY+htJsYkWDR/i5ZE6KVd/I5y0fhgNAPog/fh0l2ALBEEo0vPQ1/ztRmY25irExVzHeoTG3LdnHVorzCi+T9eAJ9jQIZY8bo6I9kup455z8GbgJWGpm33k3tQbamdlOoJ33tc8ldyo9Dx+VvHXODTKzinj6+h4GYpIzcJG0Jv7cPJZqsRQRERFJLslUvOffj+tce6B9Euu3A+WS+/jJmlgmzHVy/g/ZcyVvH/aueh94y8xyOed+dc7tBipfZH/LgeVmNgIoBXydfNGLpC1JjbEMOjfdiB8CEhERuYBnfGU76JGdkCdOEHs4C1V+Ws6i/A/TiSGUzrOJXncNhjHw+gDP7+cX1wynw7SBHCEH2yaWpvC4zexcWJK7K63ky4fDadRrFsNmtiKGjPBmGR6bs5QGtScCMPXX5lDIEbnsNcZVeoaeof0p2DcaANfbX2dBJHXyR+ffyyp5a2YVgLp4BohdA3x7kfdFABEA+fPn92XcIqnauelGEo2xDDrXYqnMUkREUoYa7lNKsIUBD/eFpb9B1ezUzjaHd7I8ywOsJO/UY7AdypVZB0Cb8kMYNrE7w97rzp5loWTjGNk3xRBdPRTeOQOr0nOM63k5pj9kgmq15/AE8wAon2sZdDbenBLBXm5h2DWeYj3uTz99eUkT/NVi6W8pY1TpJXDOrQBWXML7xgJjAcLCwvRrWcTrr66widfaedtERET85Vw1WBFJlfyRWF61krcikkhCV9igv7dYioiIpAy1qEN/FlCTtz9pyioeYFrvZpzOl5Gnhs2HMIio/iaFCu9mMVUBGNWgE69Pa0/XO0dgYx3shQ8HVOVxK88b7hCd73qLUKIpn3ENS76tyaJ1tdlarjgAp+IzEz/MWMXdtI4Zy7CzZ7xxqHCPXBm1WF4FV7PkrYj85VyLZaJ1CeOf1WIpIiIpwetuPC/Tn9XcR9ET2zl94HoW9a1ItU7LYehBMv0ezNjsLxC/ywg64Ll3vTqtI8upwIvXDOfuiJVkJIaGMVN5y3Wn64lBsMKImD6Fn3vmZMyQVlRmKQ828HSjJRtMGfUUVVnMtdfNB8C5Gn769pJWpLB5LK+a5J5uxK8lb0XkLwmpY5D9vcVSeaWIiIiIXInkrgrr15K3IvKXpMZY2rkxlv6ISERExMMzvvI+uh+8l/p5ZvAa3ciXZR87N13PscLZ4DC4z2/APnbwNpzMGkKN7DMB6FFwKHSHbyMKcUfQLs9kd5ngaKVsvJ2lNXHN0rGKB1hMVfrN6E+/DP3BW5yn56jeNBkyAx4DSBjjqRZLuTKe4j0+T7OymtlYYIFzboGvd+4LqaZ4z39hZjWAGoUKFfJ3KCIpRkKr5HmJ5bkWS2WWIiLiZ/0rMzpPYyI2T4H/wanOwWSaFcfTOedy75TlLOdeXqUj5VlDNHlZYN6uhk3h1YiOBHOWe+OXk5EYPv36UXrtHAxPANuWktsVJpRo3qtXl4arZ7N85r0AVPhtLQM+7wudASLVg0dSsuPOuQh/B/FP0mRi6c3iF4SFhbX0dywiKYU7N8Yy8byyCdv8EZFI2mNmhy7hbQeccyWTPRgREfEbFe8RkTQrobtr4kqwCeMtHcosRXzkV6D6P2w3YP5VikUkxftripHWcAoi+k6Bm+C9nnWZRkPaDB/C6IOtGE1rZlEXgPBlX/JSpV64LXUAaHjHBHrsGcKOgkWYQmNycIS5ZWrR/LWpvLW1Bc+vGc+hiVC12WIOk4PMpX9lEF0B+CH7Ld7J7BLiUDVYuXKax1JE0rSEFsvExXsSnmqMpYjP9HbO/fhPbzBN1icCXDBv5fV5mDCgIc3bTIX7oVH1WbAXeB4YDWc2h1CZpSynIva2I6LSm9gy782rPfRZ1p0+vQeSre8xhjXoDn/ChJkNaV57Kg3mTGRH+SLUjP2QT0Ie5tTgnET29hz70M78cNTz3DkllSJXIlmrwopIyhGfxBjLcy2WSixFfMI5N9sX7xEJFDe7etzs6sF4GEE72o0aBJ8DhaDd1kG4ogb14e6WW3iw/Drm8QQTZjb0fHi6d+kOI+Lb0bnvKwzr250a02ZCaWg+cSp0g9wcYkP4fcSdTcct7IWc0JP+9KQ/TxSezhOuiJJK8SkHnCXYp0tqoBZLkQCRkDtaki2WyixFfMnMXk9i9XFgrXNu2dWOR0REJLmlycRSVWFF/s79w3Qjqgor4nN5gAfwTHwA8DiedpinzOwD51x/fwUmkhKYRcHUSH68zfN6z/ehFFwYTfnqa6AqxN9mRNKTjyo9BF9BxLg32UAYG9bcR7byfQllP2zy7uxzyFblGPsJhRvgVnZDAaDhePi0BQBVVs6nNBvZSCkoBR1sjOezYd59fHW1vrkEhmSZbiTFS5PfWFVhRf7OnSve81dmmVDIR2mliM+FAmWdc0cBzKwfMAW4H1gHKLEUaXiQb1w4AAVnRNOk3miycQzugaAdDnfcsC2OZ7qNowg7qc8MlpavTJ01C2lXfhDLYsoDUGnsGnYvvJ0a1RdQJ2IqvenL+CdacCpnC+gDWyqVYDr1yfXTUR7Kv5S3yzclxmUEoLPl9gajrrDiO4FavEdjLEUCRPy56Ub+ktAtNl7Ve0R87caEpBLA+7yAc+4kcMZ/YYmIiCSPNNliKSJ/l5A6qsVS5KrYamZjgUl4/ok1AXaaWXogzp+BifibNfM+yZyHMbQCIHe9n5gc2pq3olvwqutICLHMoRp7bgmlYONo3k0P/cZ1oeeZ/gy4IYoRU7qyq/GtAGRtcoDKIZ8ybE53MlQ+yvXvn+bUvTlhMbxRpi3lWEeu6idps3AIVXquotqAOSyyLefiUeEeSQ6B2GKpxFIkQMT/wxhLNViK+FwzPH3r3sLTUWA50A1PUlnNj3GJpAwdI6EyNGAaAKNGdeLt6KY813ISHAFawDfVi7CSB4iY8iZjd75ALOnJ/vtR9hS8kdI3fc2i3rUBeKtvC9r8NgHL1AjWQ55WPzKMVrywYSyjacIRcvDqwo4Mpz3DBrSiQ/YxcH1t3G9+/P4iaZASS5EA4ZKYbsSCErYpsxTxJefcCaDzRTb/ejVjERGRqytQx1gqsRQJEAnJY+KusHZumx8CEknDzCw3MATI75wLN7OSQHnn3Gg/hybiV5YdOBpFTxdHZk4ylI4AuCcNm+IoPG4zO8eWhLNwp+3gVdeRMDZQqHB7Xnx4OM98Mo7WjGZjSBke7fsRAGdIT9/s3ThUJTejrAyd3RROkxFr6aAFfNimKj22DsWNNT4eVgGORnmjURdYSR4OSzVzT/pSmkwsNd2IyN8ldHdNXLwnIcl0GmUp4mvjgEVAG+/r7cB7gBJLkRaRzGIzYaynCDsAGJfrGTgMt7KLMxEh/LiyKHwBPboOhXVQbeUcun0SxWsGZGhJwe41cQ089zCLdvDgEMjZiQzHj9KFJ8h54jjZvj7GGUJ4fM1iZpevjh1yYEMAcK6Tv769SJqVJqvCOucWOOcismbN6u9QRFKMpKYbSXiqMZYiPnejt3UyDsA5FwvE+zckkRTg6F74FHbeVpJMnGTA2L4MGNuXFr+9C8cgI6f5sWdRGAZPlXsHPgXqQ2/68dq6SJq7nHSLiYIKULrQWkoXWsu94ctp4LLBbGiVZQw5Txznmn6OLZSgw7QxuNxGRPw4uBHgpHcRSV5xpPPpAmQ1s7HeBrQUKU0mliLyd0kV7znXYqnEUsTXziZ+YWbZOL/DgEjAMYv69zeJyMUcd85FOOcW+DuQi1FiKRIgEnJHS7LFUpmliI/NNrMxQGYzawIsASb6NySRFKBpARrsmQgdITMn4Q7gDrDX4cO+VTlIbjoPeAVawIzpTeBlcNWMzJzkm3JFmDCqLSsJhz9g07R72DTtHtZmrEgpNlEtfA5D9/XgmmGO1we1Z1TLTrRrMAiXHY58dSO0Ows/vqTpRSTZJRTv8eWSGqTJMZYi8nfOufNaK+Gv6UZUFVbEt5xzg8ysIZANqA4Md86959+oRPwtO5SCXvSlXZsRVDqxjITfy5bfwWb4sWQeptGAV6t35CdyE/LbCaZmr0MMGZnCM+Ru8xNre1fk7b5Nea78JM+Hd51hH/kIZxUv5evF2N6NOUhuqAGDYl4kOnsOmAqQDjfcT19dAoqqwopImhbv3HnjKwGCvC+VV4r4nnNuKt6fsyKBztMNNru/wxCRZKSusCIBwrm/EskECd1iVbxHxDfMbKaZfXCxxd/xifjDubGVFdvBC1GMoTX3lt9IqSyb4J4TniUTVCs5h5u7HqTHlKHsoAg37zlA7CdZaPTaLCqynDwc4i2eh1Lw3MRJ0ALPMj091VnIQfJwkDxE7JxCY96FwzAoY2du+ukAjIjyLCJXyVmCfbqkBkosRQJEvPur62uCcy2Wmm5ExFf+B3wE/ArcAqz2LjcDP/gxLhG/CjnSEZafgMWRvBv/DK6+sXZZRSiRxbPMgmNcDxuApRBLCPHZglhbrzTFum3ktj0/EUsIayhPu9qDCHniBO83q8X7zWrBXlhDeSbFNiGUaJgMw2kH2aDXzsFUyz/fv19eJECoK6xIgHAkMcZSLZYiPuWcewfAzJ4Bwp1zp72vxwL6dSsiEgA8YywDL81Kky2WZlbDzMYeP37c36GIpBjO8bfEErzrNMhSxNduAs4keh0L5PNTLCJ+YxYFGSKJbZSFnm4wVN1L4aCdUAOOP5ge5jnPsgBqMZfvl+XjiSnTycERgrY7OjGEbXeV5pmC44kmlKGLerCV4sR+nIUi7KAIO+g8/BVCiSZzyCnm8gRvD2jKwBO96FX7JfgZFtkWAFWDFUlmaTKxdM4tcM5FZM2a1d+hiKQYLoniPeCZWE8tliI+9xmw0MyeNrOngQXedSKB50agFAxY2Zdh7lXWlq/I6lvKknX1GXoWjKRnwUgech/x4pTh1GQ+pdjECOvKhPIN2fBbWSK+epN3d7akHOuw9I7yrMHdZOQlmrxEE0c6DpKHWEJozwieGzWJXVluZjFVYZOfv7sEJE03IiJpmmeM5d8FmWmMpYjvPQ+0Auri+af3ETDWrxGJiMhVk1qSQV+6pMTSzD4G3gI+cprwTiRVSmq6EfB0hVWLpYhvOef+xHPffMvfsYj4i9mfAPT5vjt9Rg2EP6DDkjGwNorwg5/BgzBgR18A3GmjeOOv2Za/NMd+WkxP15vmvadCAXip2QDevaExo/Z0hA7Qr1B/ss05Rnpvb/NhDbrDdeCKGcENT8EfUGzJXo4/lJ7BnbpAJ+hLfz+dBZHAcaldYccCHYDdZtbNzHIkX0gikhwuPsbSNMRSxEfM7EVfvEckzegYyV4K0KTNaCgAHAVqRBJ/Jj0TXEPKFl5N2cKrsXWObZ1KQ1vIxjHOEALvAwfgZmvD6V3XM6xga27d/B0chmjyEhkfRWR8FD2n9ebVcR15s1ME8R2v45tORWAXtAweSz8LoZ+F+PccSMBxWEBON3JJLZbOuTnAHDMrArQFvjOzJcCbzrkNyRmgiPiGc+5cFdjEgsyzTUR8IsLMtpB0z/MEzwKvX6V4RPxoAFWGlGYf+QhjPRQ5QdYzMRy//gbokI7mc0fAR9k9b50O1ZbN4TQZPa2bL8PPv+XkNbpRtudWFjCVkmzhh4MFoAIMPdiRuXlqA/D4kMVQGd4rWRe6wDQa8FSbd1hwoiYZjkNMluv9dgZEAsnljrGMBf4AppjZx865zj6MSUSSgeOveSsTM4x4JZYivvIz8G8tktuvRiAi/mT2tb9DEPGbQJ1u5FLHWNbGU4ggDzASKO6cO2Vm6YBdgBJLkRQu/h9bLP0QkEga5Jyr4O8YRFKMppEsqQ6upWFFHG+5FmymBKWrbOK5DpOgcnao731vB1g0pzYdag9kuatGrd/e56bbDvPU9++wkyLM7tSQ6kMWsjTPw1S8fy021VG9xRIAnuk0jnfvakmOr44QUeZNXmsWyWcTy/FB1r2efWuaEfEDFe+5uObAa865xYlXOufOmlk734clIr7m3EVaLM1UvEdERHzrgTIsmliRaguXU7f6ewQd/J3nXxsPB+H9IbX4fms+SsdspGnGSQCMPNiG+nlmEEcwVsJBM+CzM3xw27MEff47Tw15hxVUoN6Z6Qyp0oanqrxDSTytott+KsGtX33HuzzDtJ7NqDNxKg9Gr4RfwIWm9+NJEAksl1q8Z/qFSaWZNQLPnJE+j0pEfM6TPCZdFVbTjYiIiK+YRfk7BBG/SqZ5LLOa2Vgzq+Hv73cxl9pi2RF494J1nYD3fBuOb3hPeI1ChQr5OxSRFMM5d5ExluoKKyIiPrZqKsfIBpugfPU11M0zi07dhvA1pblh7nFeqtWL3hn70nXICAAydoohL9F0mDOGnrV7Uz18IaNow7R3mhH3WCboDYQBC6Hz8ZG83qk9TZkMQLXHlrO76u3UGzSD3AN+YvaAhvCSN7lVN1hJO4475yL8HcQ/+cfE0szCgHJATjNrk2hTViDF1m72tqIuCAsLa+nvWERSCk9X2CTGWAaZqsKKJBMzy+Wc+9XfcYhcdW82ZB37cPkNW+nIUOoop0tdz7E92bjj8e94g07cwl4sp+f+czcrKcc67q/9Cf3v7cfotU2YtrUZ3LcCm+6g5lRquBAWZHqSD5tXpea+JXTP18dzrNbQr00XyrGOaEKZ/NJBAJySSvGThBbLQPNvLZY34vn70HXAXYnWnwCaJFNMIpIMPMV7/r7eQGMsRXzMzMoBH+AZcpLP+4faiJT+12ZJ2aKSuoinSH38HQCQms6XXI7I1t4nb6fMHzGpZe5JX7JLaakwsyrOuSVXIR6fCgsLc+vXr/d3GCIpQpeZ37B29xFWd6903vqy/T6hWokbeOWJEn6KTCTlMrMNzrmwy/jcaqAlMNU5V9q77jvn3O2+jvFK6V6ZsigZErk0vkwsL/dafzH5w3K5zutr+2p3AHSwsT6NMTn8W1fY+5xzq4F0Zlb9wu3OuYXJFpmI+NTF5qpUVViRZBHinNt6wRQ/sf4KRkQkLYhMyNVmp+wfLprHMmlNgNVA1yS2OUCJpUhq4SAoiTrQpnksRZLDGTPLhOdeiZkVB/7wb0iSknxEZdbbp/4OQ0TEZ/4xsXTOtfQ+Vrw64YhIcol3DktiupEgQ8V7RHyvP7AECDWzycAjQCO/RiR+k1T31jD3kB8iEUk9IlPxbxMV7/kHZhYOfO2cO2VmzfEU8nnNOfdDskYnIj7j4CLTjdhFu8mKyOVxzi0ysx1AVTw1sl5xzu3yc1iSjP7r2Ei1Vop4pOYE8p8osby4t4A7zex2oDOe+SsnAJX+8VMikmLEX2y6EXWFFfE5M8sF/Oyce9v7+hpNPSIigSqtJo9yvktNLM8655yZVQPeds6NMLMnkzMwEfGteOdIoiesiveIJI//ARX5q2BPCLAAuMdvEYlPqGqriPwbhwXkdCOXmlimM7P7gLpAc++6wDtbIqnZRVoszcChzFLEx9I752ISXjjnfjeza6/Ggc2sMPAOkAM4AjR2zn1/NY6dZtxvRK32dxAiqUvkfd4nn+s3RaC61MSyFzASWOac+85709JYEZFUxFO85+9UFVYkeSTu+mpmuYEk6jIni9HASOfce2bWCBiDhq6IiI+pe+vFabqRf+Cc+xD4MNHrnYBvZ/30ITOrAdQoVKiQv0MRSTHcRcdYmqrCivjecGC1mU3xvm4MvJrcB/UmsGWAh72r3gfe0vjOi0uqa+u5lhcRkcuk4j0X4e2+0xC4NfFnnHMvJlNcV8Q5twBYEBYW1tLfsYikFPHOkdTQIAONsRTxMefcRDPbA1TH88+shXNu5VU4dD7gF+dcnDeOODOL9q4P6MTyv4yNVDdYEQ+1Ssp/calttDPxFB5YB5xJvnBEJLk4PIV6LhRkphGWIsnAObcCWOHnMJJkZhFABED+/Pn9HI2I+JsSSN/SPJb/rJBzrliyRiIiycr9wxhLzWMp4ltmVgR4mb/39Lk7mQ+9D7jRzIK9rZXBQKh3/TnOubHAWICwsLA0cwFQxVYREf+51MRyj5llds6dTNZoRCTZxDsISqJ0iHnKwoqIb03H09tnEhB3tQ7qnDtkZpuAp/HMOf00sDGtja/87RpjxFl/RyGSekRGJ3qRVzf9q0Etlhd3HFhvZouBPxJWptQxliLyd865ixTvUYulSDIIcs4N8NOxWwPvmFlv4CiewkEiEkDUtVX84VITyx3eRURSqXhH0l1hMSWWIr631sxKOuc2X+0DO+e2A+Wu9nGTw8W6trYLvCr+IpKKOIyzvm+xzGpmY4EF3kKlKc6lTjcSldyBiEjyuljxHs1jKZIsygFNzWwH5/f0Se4xlqnSfx0bqW6wIh5qmUyZkmkey+POuQhf79SXLnW6kdzAECC/cy7czEoC5Z1zo5M1OhHxGXex6UbMNN2IiO918HcAKZGK64j8d0oeJbW41FR6HLAIaON9vR1PUQAlliKphHNcdIylqveI+JZz7jMAM8uV1grniIjvhbmHAHiUpX6ORHxFxXsu7kbn3GgzawXgnIs1s/hkjEtEfCz+H6cbuerhiKRpZlYO+AAIAvKZWRgQkdK7MflETiPqiL+DEBGRq+1SE8vzRjOYWTaSrgMiIilU/EWrwhpO3WxEfG0IUA2YCuCcW29m7/g3pGRU2Ij63vM0Mod/QxFJ6dS1Ne3zjLFUi+XFzDazMUBmM2uCp0vsxGSLSkR8zjmSHmOJWixFkkGIc27rBQWzYv0VzNWk1koRDyWQgSuZqsKmeJdaFXaQmTUEsgHVgeHOufeSMzAR8S3nICjo7+vNTCMsRXzvjJllwjuA2cyKk6g6rIiISFpzqVVhKznnpuLt0pNo3bJki0xEfMrhCLK/Z5ZBhrrCivhef2AJEGpmk4FHgEZ+jSg57XRE+jsGSXZ2DdAOPhhSk6esLIyMJL6+EbTecw+5t8py1i6rCAUcIdlOErspC8yCZ0aN493yLeE+eGtQC6bQmC+fDOezmeV40OoAMMF9Q/NRU6EC8DOwC95o05ZD5OYkmYkhI5PtIADO6f82SfmSYbqRFO9Sv/FgoMwF6wYBZX0bjogkl/iLdYU10zyWIj7mnFvkncOyKp4e568453b5OSyRK3M2CvdIH2yrg8+AdGC/Q58q3QHo8/VAelbqzYDol3gi+1zSV4pl7j21OEwOqAyd+77CPvKxbsGDRM3sRkvGkdtlAyCMCXASyHQWvkjH+71rMYVnWNSpNnWGTGW25QEK4Vxlf317EfkX/5hYmlkhoDCQxcyqJ9qUFciYnIFdCTOrAdQoVKiQv0MRSTHcRYv3eAr7iIhvOef2AG/7Ow4RXzCL8ncIIqmGivck7T6gCZAH6Jpo/QmgSzLFdMWccwuABWFhYS39HYtISnGxAj2GKbEU8TEz+5W/TxB7HFgLvOicO3D1oxK5PH8llQ9iex1vVGlLHMF0nTsC6+LgRs9W95zRm55wKj0fTHsWPobXp7SnCDsY2fd5Cs6IpnC9zQy9ryO96MvOviV5tXdHAI6Rjbu7raQF42nZ9F0q8z+WH6xAnyHdidz3GkYfbwxqsZSUT4llEpxz7wDvmFkT59zkqxOSiCSHi7VYmqGusCK+NxJP755JeLrCNsaTWBowFqjpv9BE/rtqrgSLilfgvYi6NOo6i2GDWsE94GYYtshzE7F5jm2VChBcOI6chQ9za4PdVJu4HK6DN+q1pVu9KHJziM45eoODkOdP0GPlUABeD2/PF789SFCYI2LeFLLmOcBPeW7mptcO0yffQEAtpiIp3aVWhZ1sZrcCtyb+jHNuYXIFJiK+5fB0e72QGcTHX/VwRNK6as65coledzazz5xzD5rZd36LSuRydIxkUTi8vbUpNeIW0HnQK3RYOIYB1V/i0PD8VGs/B4BFC2uzgopErnyNzeGFeZSP6NesC+/SmOp8xGSa0rn9SJgKvfYMgrpGn6894zP3kY+D2bPCIzC7ZHWe/m06N+X4CEoAw4BPI3GV/HYGRP4ztVhehJkNAFoC24A472oHKLEUSSXincOSHGNpxKHMUsTHrjez7M653wDMLAdwg3dbQMxnKSIigeVSq8I+BdzqnDuRnMGISPJx7h9aLNUVVsTXhgPfmNlCPH+IrQ687p3bcrVfIxP5D8yi4LtICPO0Kq4JLs8ba17mg+o1OUlmnmv0NiXZAkCh6rt5rs0knrthEn3Cu/OzFSK9iyWM9RTd8CPjS7eAG2FbgwLMoxY9jg0lJ4cB6LNkIMOXvUjIKydITyyx72WhidvIcrICsJeifjsHIv+VwzirFsuL2q+kUiR18ySPSbdYah5LEZ97F8+EDBXw/MMb5Zzb7N32vL+CErksQ6HsuNVUZil3n1kHL8BTteZDfQffGplqngTgtb6Rnl+WLc7QJ9dAqAhdl4zAqh5gtdvGkTY38syocVRiOfvX3YKba7xCZwDer1KL9lVepycDyMYxOrd/hTesLDDDE4PmrpRUxFO8R/NYXsxaM3sfmAn8kbBSYyxFUg9P8Z6kt6nFUsR3zNPnfKVz7k7wNuWIpEKaYkRE/otLTSzv8j62S7ROYyxFUhHnPN1eLxRk9rc5EUTk8jnnnJntMbPrnXNH/R2PyBVJF0nQK78zkWaEEs2M9PVp89UQ5lOT7gykyY2TyNTSU34jx5hfOLI3FPfNtWz/9WaKNduLtXaUcl+wqc098CBk4xgHD+bm83JhzKEaL//wBgBv3hJBBZZTZ/hChrY+wPEvbqCJG83ki/xBVCSlU/GeC5hZce/TtlchFhFJRvEXmW4kyFBXWBHfOwVs9I6xPJWw0jn3ov9CErkMMyDz9Se5c90OuOcgFMtD1k0HqBiygrxEk6l/HDzteeuRDjfi/jReersXzzAF9gLDYNOce3hq1DvM+60WJ8lM/ITruP/W9TxV7x2O3JITgA5txsB2YDm0aD+eN2a9zK7wW7nf3coqHvbTlxeR/+LfWiw/8j5e+KvTvOsK+jwiEUkWnulGkprH0jSPpYjv7fIuIqmSusGKXD7PGEu1WJ7HOXfL1QpERJJXvHNJ1e4hyLzbRMRnnHP6VS6pX5dI3q9di4PkJme5I2x1xZlLLbaNLc28QvWZt7c+Gboc5cMsNQGo0mUVL33diwFj+9IiYjxPLJvOvJ71KTXgC2ZMboKFPkvvKn2Z/FIt6rilfLD1WT5o9CwAf3xupO8MPy3Lzc2VDsLyP/l8RAWcu8afZ0BE/oPAK1ckEqhc0i2WYCreI+JjZpYbGALkd86Fm1lJoLxzbrSfQxO5RLXoM6g7myjFa/Mj4WPoN6oL2xaWJkP9o5zedj1/1DeuXe+osn4VADW+nkkwcXAPvMCbtGIM0QNCAbDVjvvHfULBJ6PhM5i9syGshz1fe7a3ZCxTmkSwgBqw/E9ggDcOVYOV1CdQpxsJ8ncAInJ1xDuXVIOlxliKJI9xwOdANu/r7UAbv0Uj8h+oG6zIlYsjnU8XIKuZjTWzGv7+bhejxFIkQHjGWP59vRkaYyniezd6WyfjAJxzsUC8f0MS+Q++KEmfXAMJIRY6wIejqnILe6HUGU4XuB7uiaJxxsm0CR8C/wP+BwuGP0m/4f35tmQhFix7knKs48ux4Xxp4bQbN4gj5GTszMYwHXgLmAyTaMokmjLxRAT2qWMjpeG5a+C5SJzmrhRJ7LhzLuL/7J13eFRl+obvb2pmUknoHURU1oJlZQFl7YUVdlUU17ZWUFFWsTcQ7GtDVBS7WFbsCyvWVRcRxZ/YFxTpYCCkt+kz3++PM+dkkswkEwwEkve+rlyaqd+czAzfc573fV6t9YK2XkgqRFgKQgchpjUqaSqsQsvAEUFobSKJvyil8kja5SwIOxemW3nWsCfgHLj1vNvJ+rGEP099jxlMJbdzOVwKcBwHsYxHfrwS12tVuF6rgr2BLbD3S6ugBqMU8Fngf/BS7HRe5jQm3D+XO2dfwZ2zroChcOvS27l16e04T9PMvGEiT509CR6dbvwIwi6KGd7Tmj+7AtJjKQgdhFRzLJVCeiwFofV5XSk1B8hWSp2DUQb7dNsuSRDS5OVpuHgExgHvwbXeuzh2xnscfMoPcAVwjuaSGZ9xL1exZO8RTI/3QdqPiHLJyEfY6u7GexzLbCbx3ZI9DFcydA77ffEz902ZxM8M5vHv/87m+/Po/o9KAL5fOJh9167k8ueNnktxKwVh10OEpSB0EIxQ2FTjRkRZCkJrorW+Ryl1BkaP5Whgltb6hbZdlSAIgrAjkHEjgiC0a2JaJ++xRHosBaG1UUr11Vq/CLzY1msRhHSwAns+mwZZMJb5DBu2lAnRuVzEHLrcUM1ur/6P1WuGwCeK2Zum8JdRL/PmR39ljyO+A2AffuBE95sEcXPRhc9y0BOLuVXdDn2AEjjd9zSjeZsrFz4Ci6HHkRUcUvwBAFOZgdr6MyAlsEL7oCOmwoqwFIQOgk4xbsTosRQEoZX5XCm1AqP89Q2tdaCtFyQIaXEb6D8rVOcAgbwMLnQ/zzfsBc/C6prfwWnw6HnncvH3z7CUYagKzQr6A7DX1et4Lf9MuADU9TFQv8JzkDWuBHdGkJc2nM1L/QaipyrUBTE23dGFh7gMgGOO/hQ+/BoYg9YHtNnLFwRh25HwHkHoIBjhPY0vtynjOkEQWpW+wEzgJGBjPCJ+eNsuSRAEQdgRGKWwrT5uZKdn11ilIAi/GQ1JU2GNHssdvx5BaM9oraPEhzAopfKBOzHmWna82ihhp0cdAK7SKwCYmH8P07kW/V0GapyGdXBz4Y28UjiWKHb+uvJNLi58DABfyEOPk9byRxYZD7Q7qE0aHVDYMn2M0j8ymNcZx2v8h6O4+9lpMOAw1BANu/3CSL2YP7EQgDUf9GSgmhhfkTiWgrAr0i6FZXxw6JhBgwa19VIEYadBp3AslTiWgrBdiAvK04G/AbnA1LZdkSCk5vT8lwC4lrvpPb+EW769C64DVkEFefzAPvjwcPPgG7n1/dvhMej5xmZWPL0//zhvMgDXfDGLF54eh3pDwyb4hOO4avK9HLPhY3jXwZVTb2PqjbfyO/v/2JgzGDVPM3v3PQGYfaATAK0va5PXLwitSUcN72mXpbBa6wVa6wm5ubltvRRB2GkweiwbX64Qx1IQWhul1BvAT8B+wBVa68Fa69vbeFmCIAjCDkLmWAqC0G6JaZ103IhNIeNGBKH1eQM4Q2vtb+uFCEJTqKnAD9CTQgDe41goAZ4HesNZU57goalXk3VdCVO9M8ijAr6Cy9+4iwJK2Hzex1wzYhYAuZ9s4U1OhKEaBinY7zNO6P0huSds4YwJL7GUYeT8GGLT0EGolzWDx3/PyrH7xldS1gavXhCE1kSEpSB0EGKpHEtlXCcIwm9HKeXWWgcxhKVSSnkTr9da+9pmZYKQmsfDZzPh67kA6BzF+bwIjwDl8PyaC2AQ1HzbmY0j+nDN/bPgxulEb/By0/33oYZquNR4nEp3Ia9/cYbx+1nA/0ai71JsOSmXa7iHxXcczf03XMJ/9TD+ePdSVo7dlwnzH4yvIo85/L0NXr0gtD4dtRRWhKUgdBCMHstU40ZEWQpCK/E5RvJIDfHMrAb/7Xg7DUEQBKFDIMJSEDoIWtNEeM+OX48gtEd0fACf1rpdZhgI7QulpnOltjPh67nceYCRCqvu1/BPqPzCTe6FQRgeZbezf2Yic7jm61ncOuUqrpj0AFlnR+k5txBy4NGqcwG4+MdnGDPsVRbscwqcoHl44IXcP/cSpvxjNs+Pu4DFNxzEIT2/okfhWmMBDnhcnWytZ478WyS0EzQQ6YDnEUVYCkIHQWO4kw2RcSOC0Ho0LH1tiJTCCjsLSk0H4D51E/wLrntoJgDXXTkTFdDkPhWEZ+ZR8OQhrP7+d1xTMQu9uyIvtJmbl97L6XOf5rpFM7m++jou7vKM8aAlZSxwnMLlT9/FzO+vY9JPT3Huno/CXsBixYi8ZfAAnM1cll87hAVqOQBaT2uDIyAI2xO1y8yebE063isWhA6KEd7TGIWE9whCK2KWwKai453CFnZezpoGBwFDIxw79l+AIfq67r2BiczhyQkXUEAhpVf2gtXw9pojGcaXnDvqGf6qJvDS9RpXaRWhQBCAF3pOYC39uXnNPRy277tsoCvPTr6I22bdxDscjiqGruM3cPfSaXA4wPQ2e+mCILQ+IiwFoYOgNdiSpPcYPZaCILQGZgmsUupGIAQ8jnH+5oL474IgCEI7R8J7BEFo16RyLG3KuE4QhFbleK31IQm/36uUWgzMaqsFCYKJUtM5Ru/P03Sm99gSWOXg/RPGAvDDMftwLO8xh4lsVWvYfN9h5L69hamuWznhkg/ZPDuP2UziLL2J5y+EB/P/ThHdAFjIaF4qPAPWKT7ZbSl9f9gKP8JLnE412bzWZRwA5wx7jGf3vAiYhv66rY6CIAitjQhLQeggGOE9yXssY5LeIwitTYFSapDWehWAUmo3oKCN1yQIFu8PGUuvh0t5av4ZuAka8ysBO1GmMw0XIT7Rh1ES2kLlk90pvaSAf88+ih7zKqATkAvsBfdyFatf+h0AY05/FQ5xw7twn95KH37hrI+e4JqXZsG7UDbXy43czv6hr+EbswxW+iuF9ok4loIgtFs0OuUcS5GVgtDq3Ah8oZRaFv99f2BCG65HEARB2EFolKTCCoLQfomlGjeCpMIKQmujtX5DKfUp8AeMHsvPtdbFbbwsQbDSYBkHY494hQNZxkuczs9r9wPgfwN240ku4KnCCziy54esvvF3XHnPbdyhroL1XtaP70a/p4vgJ2AxrL7yd/Cy8ZDzF5yKelfzj8GTmVI8myvPf4S1843RIkPnfkH+Uh9cCpwLPDINfckOf/mCIGxHRFgKQgdBa5103IhNSSqsIGwP4kJyQVuvQxAaYttyFZO63cOTVRewoGQczFSokca/A/8YMJkZm+/g1k9v5z9Ff2L4PR9zOJ/g0FHKyWM1u/HCeeM485LX4OEg/d5Yy59YaDzwZ8BjMPf+s7jmzVkMnv89qxnEDadPJY8Kvs3+A3iAl0EvarOXLwjbHd1Bx43IAGdB6CDENMnHjSjjOkEQBEEQBEHYVjqelBaEDojpSCYL7zHGjYiyFARBaO8oNR1P5WRuy7mGK5c8wmUj7mHWZ9eQfVcxNWd2BuCa/87imkdvg9UazlScMflFTlj6ITiBH2HO4ZfTs88a+CPM7DmZQazmhI8+BODgI5Zy6sjneOWNv3HfhEmczou8x7FspA/XdJnFlcW3cd+n0fhqJLRHaN90xPAecSwFoQNgVrom67FEHEtBEIQOwxU5D3Dl1Ec4f8QjLGUYavQt5HkreOGNcbzwxjjGzH4V/W0uPQau49El53IkH3LlsNsgCxgEE/vMBODK8bdx+aI5fMqhHH/EGxx/xBucc8o85i09BxywgDHs7lvFQSzj5qfv5cDiz7hPHQ4chdYiKgWhPSKOpSB0AMw5lcl7LCUWVhAEoWNwMHdMPZ53ZhzORvrw5KpLYQUoNY0zHnsdgGMnvscV+93J5scHcPG/n4EaoBq4Cu4cfwXXf/0APAzDnv4S195V3H3KNHgtHgjU6SSuePVOOBp+OGEfpnpn8AznEDhNkTFVA+aIkZFt8NoFYcdh9Fh2PMdShKUgdABM3Zhs3IhN1QlPQRAEoX2iTmnrFQhCx0GjiMY6nrCUUlhB6ADEmuixVCgxLAVBEDoA/9DvcOuMqzj+/o+5cOPzdBu0HvWU5mC9iMhfIfJXGMlnzJxyHRwXgQvgko/uh9vh4fEXcP2iB3j4gAvgmRWcuuZfXJY/i8qX3Zyle3KW7gn/hrOZC+dCH9tGCunJffvexGTvTLi1CLhIymAFYdvJVUo9rpQa09YLSYUIS0HoADTVYymOpSAIQgfgbRjKN9y88F5sZ9SidJhzeQay4ctFo5iUM5NJOTN5kL/DCTC071eQB7MLJ3HWMU8wn7HsPer/yKOCCfp9+ERx3903kft20HqKzSPymMvZ8AUcyqfMLruEp74/gxBu4JP4jyB0ADREIvZW/QEqtdYTtNY77RgrEZaC0AGwhGWygSNKIbpSEASh/aJGtPUKBEHoCEiPpSB0AMxxIql6LMEYSZKsVFYQBEHYdVFqOgyfBsfBSb430T8p1L2aOz+6ghuLbuOfU0/kTf7CnEcuN25fo2EpXHLEbCY4/sCangM4iTf4dtEf4GU4c9xrcCfw4Sfw9mHwFTz/2oUAPP/jhRz59dvwI0xkDofmf8qpY+fDgkeBMrS+uI2OgiDsWLRWRCMdT2aJYykIHYBYE6WwpospI0cEQRDaKX+Af75xIj29hTASAv9WXD/7AWLLMrmJ2xjGl0ycNJOJk2ZyyLUfwLUwiFV8PWIIH3M4QdzcMuo66A06U8FQeEo/ge3AWj6fuj+Mw/h5Fpb6hnHYR++y95pfWMIIJsx/ENga/xGEjoEhLO2t+rMrIMJSEDoAuslxI/VvIwiCIAiCIAgtpeN5tILQAWnKjTS1pjiWgiAI7QulpgNdCd+i6BzazCLXH1FOzd7e/4ND4Jd9+/AkF3DlKY+Q9VwJAE97z2PIsOUcsXIJBw7+jGV3jOTKG27jltl38cIN47iKW7ll2HUU0oNHul1KCBcYd+X1saM5+YiFfHLpcYw56VU+5VCWqQ8BJA1W6FhodhmXsTURYSkIHYCmHEuzr1LL0BFBEIT2x4kX45x5MXtN/YZJPIy+QfHEu2dx4b+eZ+q+N/ANRilrzXWdAfhk1mE8nv933i87lAe4Ar2PQq2JgQPO/P1rcCJUXuumU0kZsXWZnDXsCf573jAA/qiWwl/BdVgVC244BQ4C+LDtXrsgCDsUEZaC0AEwq1yThfcoVf82giAIgiAIwrajtSISFsdSEIR2iDmnMlnqq+liirAUBEFoPxhlsKdie7QWhzNKKQWsmLs/arCGU+Cihx8ldmEm5zzxGBPGP0jN+GwAZm+YzMllL3LM8k+hGlSxZv3Abvxpwr/58affw5uw/IYhxH7NpMewtRTRjUUcCsCzejznXDiPf+f/ifPueIbOlIA+lm/4QxseCUFoCxSxaMeTWRLeIwgdAFMzNjVuJCbKUhAEoX1x/V7E7s4k9EEOG3z90P0VBTN/5dFXz+W0bvP4+okhVJPN41//nUP5lEP5lJl9JzGO1zh4yCI+H7Y/Q8/7guUM4QOOhq+AqyCPcu484ApKywo4nRdZxwDWMYDZTOLmJ27kmLmfsum8QXyr3uNb9V5bHwVBEHYQIiwFoQNgicZkPZaYPZaCIAhCu2HMNPR3ikPu/wA9SOEKwLujDuNr2wHMZwwvfX0eY5nPawvOhE3gIoSLEJd/PQeAg/iKPmykK1s57p1P6NG3Ag6BmeMnstf763ARoiC/lHPUjfRnLf1ZywU8SX/WwWvAM9MBCe0ROigaiNhb92cXQISlIHQE0uixFMdSEAShfWCUwQqCIOxYOl7xryB0QMxRIqY7mYiVChvbkSsSBGFbUEqdCVwDDAEu11o/nHCdF3gGOBCIAFdprf/dJgsV2pzF8w+iD7/wIJP54sChLGAMhfTkwejfWW0fxKMHnMtrjENt1vAYnJ/1IgCDj/iePmxk9v1TmD1uMgQc9Dx+DV9u2IeDL/mB1xhH+A8KxwI4fMzHHPDicm5edC8AK0b1Z6+r18FhwII2e+mC0PZotcu4jK2JCEtB6ADErHEjja8zL5NxI4KwS/AtcBpwXZLrrgKqtdaDlFK7A58qpQZprWt25AKFnYD/TOMUzmbz1AGcdOw77DPyS1aW7UHo2RyeWXExDz8xiWPe+BROns4NeimuCSFumXUXACsz9uWQaV9Bf9DLnKi1ms2DBnBw3g+8P/tQNtKXR3ImMHvMJFYu2Rd6Y7wjgSWFI3nhnnGcqfYHHGh9Y1sdAUFoWzQQSbLpaufscqWwSqnnlFJPtvU6BGFXoi68J1mPpUFMdKUg7PRorX/UWi8HktUYjAcei9/uF4yoleN34PKENkap6VIGKwhCm7FdHUul1L3AyUB/YB+t9Y/xywcDzwEFQClwdvwfweYe71LgPeCI7bVmQWiPxOpqYRths5njRkRZCsIuTl9gfcLvG4A+bbQWYQfTUFBOZQZHzfiQ7xnMj3f/ntOvfZryKXkM4798+dIo9jr9G37echV3vJHJ8JM+hr/7jTt+4eHxD87GRRB1t+aGa6cyyzeZmkM6s8/XP3D02sXwE1y+dg56pOKb/fZiXuF4ANbRnxEs4R39Icfx8Y4+BIKwcxFp6wXseLZ3KexbwIPApw0ufwx4RGv9QrxfZA5xsaiU2i3+eyLvAR8BXuDfiLAUhG1CHEtB2LlRSn2NIRCT0U1rHW2l55kATADo2zfV0wm7HMcbCaxZfyjh4uXP4Opexb/y/0zZtV7yX/JBZwwfuzvcw9Wc8N2HvH7SaE7+aCG8bDyEa/cqHuAKRrCEodd+wSzfZIZ6v2Hc168xm0l0G1DEpSuehAiof2moNHorAfaavQ4mPQvIbGRB6IhsV2GptV4M9YeyK6W6AgcAR8cv+ifwsFKqi9a6WGu9Gjiq4WMppaZinHm9HThAKXWo1rqhYJV/LAUhCWaPZbJqfyu8R3osBaHN0Vof8BvuvgHoBxTHf+8LyW0jrfXjwOMABx10kHz4BUEQWhONOJY7iD7Ar+ZZV611VClVGL+8ONWdtNYzAJRS/YGbkonK+O3kH0uh3TPmoU+xK8Vblx6S1u3NM8e2JF3V5nkfObssCLs8rwITga/i4T2/B/7atksSdgRKTQfPNA5Z+AEAz3Aeu1+3kXfnH0cBpYzlX/zz9BOZwv28fMxpnMbLnHD3h3S9dgN3cKOxG6w1Hiv0Sw4rSvenYnQeE5nDh94jOYhlXD52DvSGfrN/gich9+UtfOM6gIFLC9nrjnXGnd+F+tXYgtBBEWG5a6C1Xgdc0NbrEIS2ZNXWWjKc6Wdv1TmWjT1Lszy2JcJy7MOLicU0/558aPp3EgThN6OU+itwD9AJ+LNS6jrgmHigzz3As0qpVUAUmKC1rm671Qo7lOtgf74FoI9vE/owxdscyWuMYyV7cNojb7Fq0m6Muv9LCocNZP9rP+ebXsN57tdTOXzUSRw36l0AVqhOeCpz2bx8AMcOeY8ljGABY+CxIPzoZv3UPcEOX7j+wCwmG+/ELfE1fPos0A+tz9nxr18QhDanLYTlRqCXUsoedyvtQM/45YIgpEEwEiVJu2RKrOyeJsaNxFqgLNeX+ghHZfClIOxotNb/xGghSXZdLXDKjl2RIAiC0AgNhNt6ETueHS4stdZblVLfYpTnvBD/7zda65RlsIIg1FETjBDT4Ha0ZFqQOccyWXiPSrhFegTDUUIiLAVBEHYSDuC/U4dxdJlRCvtV/kGEprhYtmEYbHLAu/DujMO4eda93Nz/XiNa0QGqXHMZ99CTQsYzD4Bblt3F9JzJuIYEGb78G2YOmcg6BtCn50YG9VzFwccsZSV7sNfKdfAsfHnHPhz8zx+MZXQ+B9nNCULHZbvOsVRKzVJKbcIYn/uhUup/8asuAi5TSq0ELov/LghCGmytCgBQ7gvjD6UXENmUY2leFkszFjYW08S08ZhVgQ54Ok4QBGEn4hEu4FRdxoHBr8jLryAvv4KzmcsFPIkOOfnviGF0nbGB4xd9jD5G8c+TToTh8MKwcXAGPFl1AesYwFa6spWuvHLAWIaxlMtnz0FnKy7/aA5ugtiJ8Oen3+M9juWPK5fCh3DOHY9x8JrvoWR63Y8gCMbZ+mgr/+wCbO9U2MnA5CSX/wQM217Pq5QaA4wZNGjQ9noKQWgztlYHrf/fXOlnYJesZu9jhfckcyxb2GO5tTpouZWbKwLkdHemd0dBEARhu/Bi1TkszDmG/zIKgGxqGMli5g0az6F8ysNcyml7/JOx3V5hwfxT+OdJJ/LX+W/ylyde5q0LT2NCdC4vPD0OMGZRAtx5yRWoIZqhy7/g7qXTOGzYu/Q4by3nzJ8H/eHmS25kLmfBuwoemYa+pI1evCAIOw3b1bFsK7TWC7TWE3Jzc9t6KYLQ6hTFHUuAzZWBJm5ZR1PjRswey3THjWws91n/X1jpT+s+giAIQuujlDiEgrDTEmnln12AdiksBaE9U5zgWBZWpCfstFUKm8yxNP6bZiUsmxKE5eaK9IStIAiCsH249P0ncftr+PPs9+hMKZ0ppdfGUubzZ4axlFtn3c4pmxcQizpYcPcp4ID+rCN8mGIPfubAJz6DVbCQ0SxkNOOZx9X8g+vffwDuhSK68fqw0XzyxnG8yBkwCE7d9zlufeN21l+9J0yabvwIglCHOW5EhKUgCDszRVUBXHbjo9tixzJpKqxZCpumY1nmj98PtohjKQiC0GY8rleDA2KrM9H5iiBugrg5sc8/OY+nuYyH+Mvkl1nVo7dxh//B+6MP5RMOY2nOgczlbJYtHMmzi8bTn3X0Zx1X8w+u4250leKV0WPZPHoADqLoLEUJnblvyCSu4l44OQz3GoJS62lteBQEQdhZ2OXmWApCR2drdZBuuW78oSib0xR2TfVYmrTEseya7camFIVpCltBEAShdVFqOo+3JM5bEIQdh+lYdjBEWArCLkZRVYBu2RkEIzEK0yxF1da4kcbX1YnN9B3LPvleYlqnLWwFQRCE1sPsrXySC3j8iLO5m2tRdk1XNgDwa1U/qnM85M/18e+zj2L3WRu5dvJ0vp+7D1vpRgV5rKM/mxcN4P3Rh3KMep9/6GsBmDfrHBgDKl9TGXWzfmE3di/7hYePuZQK8hjNQuYxnof1xVyq+rTVIRAEYSdEhKUg7GJsrQ6yZ/dsIlHNutLatO6T1riRdB3LCh8H9O1EJKpZsbkqvTsJgiAIrcoYPYS1ePiQI1l14968evsYZmNEszpLYryQcwr/PXsYL3I6H00eQTXZHMYn/J0H+fn9/bjnmMvgQziaxXynh7LvxpUAXDH5TuYxnn8MmMzRfMAlPMIF+U9y4U/Pc8+el/G7Vau5YNCT9FMrANA6v82OgSDstHRQx7Jd9lgqpcYopR6vrKxs66UIQqtTXBWka3YGPfM8aYfnaKvHsrGytLVg3EgkarikfTp56ZGbQWGlP+3eTEEQBEEQhA6BhPe0H2TciNBe8YUiVAcjdM1x0yM3g+pghOpAuNn7WY5lkutslmPZvEDcUhUgGtP07uShR56HQDhGha/55xcEQRBaB6Wmk1U7CR9evgj+gU8ZBUHYh+/ZSB820gcds5FNNYs4lHUM4CsOAuD40z/mac5DrdP8zB7cMGMq+4/6nP2+/pmj+vybo/r8m5lrrqXwp4HcHrqBLxeNYgDrmP39FNQGzTUb7qfzwE28xjjgofiPIAiCgZTCCsIuxNYqY9RIt+wMnI66ZNjsDGcz9zR7LJNJy/QdSzMRtk++l0q/ISgLK/10ynQ1f2dBEAShVajZUsBVA+/l9+6vGMdrTLx3JnPevJzdTlwNQPkgD13Zyk2X38eImX+iK0WU0JncZ7ewkT7wLXzKofy8dj/sA6IcdsAnPPDy9QB8c9pe8A+o6NqDQef8yHk8DRF4+JgLmMFUruABrlQnAqD1UW11CARh52cXcRlbk3bpWApCe6Woyih97ZrjpmduBpDeLMumeixb4liaMyx7d/LQI/78MstSEARBEARBEMdSEHYhtlbHHcucDDLdxsc3nVmWsVhqx1K1oMdy5odGuEOPXA8ZTnv8+SUZVhAEYUeg1HQ4aBp/Gfgy05jO/8oO4Pf5i7mKe3n3xMM4lEUAFNKTkUWLcc8I8QJncHLhm2TlVfOwdxJzOQt9vUJ9r1FfaDhK84+Bf2fsaa8AsJwhBK9x8yqncC13M2H5XB494FzmMJGj+JDr338A3gN9TBseCEHY2dFAB+wUEmEpCLsQlmOZ7SYrLiwf/ugX/npw3ybvZ2rGpnosdRrjRoKRGC67DZfDRucsNw6bzLIUBEHYkQz/v495c9FfoRYmH/8PCiilJ4WcxssUFXUF4KJuc5jf7c8EcdGTzdzccwaH8zEfczjZVPNgnwm83+dQjvF/ypEDF7KcIYxhAQDjmccZxa9DBPJ6lKNXK9QWTc1IO/e6r4Zji4yF6G5tdQgEYedHA9FWf9RcpdTjwAKt9YJWf/RWQISlIOxCFFcHcTls5HqcKKVw2hXBSKzZ+8WaSIVtybiRUCSGy2HcwW5T2GyKV/5vI9cet2f6L0IQBEHYNjpP4zH24ONRw+lBIcsZwkF8xQ/sw1C+4YluEwAYyWd8wNHcy1WcxVwWMpo5TORf/BmACjpx9NrF6L4K3gEOAq+7DICzcuZS0qWAyzc8wjEspGJMHh8xgie5gFuuvguuAn1PWx0AQejQVGqtJ7T1IpqiXfZYyrgRob2ytTpI12y3JRBddhuRaBqKMH4TW9I5lmYpbPOPE41p7La6rw233UYo2rywFQRBEH4bSk1v6yUIgpAuMm6k/SDjRoT2yn9WFNUb72G3KSJpWI114T1JHMsGt2mKrjkZ/HFwF+t3p10RFmEpCIKwY3gRRvo+w06UPT9bz4d3nsAlzGbS2qeI4qBv0Xr6Fq1nGEs5go+YzxiWM4QXOIOi4n5cyOPM+O4ORvM26gPNbT2uROVr1KeaN3JO4o2ck3AQZQ4X8X7fw/mWoXy5YQRHfL+EaaHpcG/8RxAEIQlSCisIuxDhqCbDWXc+aMRunVlTUtPs/bQ1bqTxdXWBPs0ryyp/mOyMuq8Nu00RTUeRCoIgCL+NztOIHaS43XslU7ifrxyHUDvFRhQ7xw74F+N4jee6nQ1A9zmV1J5j40n3BZzme4Uib1fe7nIk05nGi/udzFKG8a8Jx9KVrdxcCbqfImiEfnNc5Sds6NGV5QzhKD7kZfd4Xtz3FP560ptw4jT0G214DARhV8F0LDsY7dKxFISdnfFzPmf8nM9bfL9oTONIUIc5HgdV/ua/uZoaN5Juj6XWmqpAmBxP3czMMfv1wu2wN/v8DdnW1y8IgtARUQe09QoEQWgRUgorCMKOotwXwhdq+bdEVGtsicIyw0l1oPk8a91EeI8tzXEjwUiMcFSTk1EnLLMyHNQEI9Y4k3TZXOln1dbmnVZBEATB4ODiRRTmF+DFz1C+5ZFh5/O8+2xchHhv6Z/x4WEFQ1jBEN6YeDz9nBs4iGW4/wnn8TRefDzJBRRQym6sYuyq93mLv1B5pJsXDzyZn72D+dk7mOd6nMqFPMHxhe+ygT7EijKZwVS4HONHEAQhBSIsBaENWFtSy+ri2rQCcxKxKTj5gN7W79kZTmpDUSLN9DmaT5Ns3EidY9n0Wqr8hoDN8dSVwmbHR57UtlAkF1eHqEpDEAuCIAhQ8NWvLP3sj/R6wRgt8ljVpUx65ylWsRu9FpUyfdi1/H3p49iJYifKVrpRXpzHyAXLGHf+CxzEV1zNPRzFf3iAK7h8wyMMGvQj+/ADR9g/woeXbxjKNwzlec6mmmwW9xzJp28ew/n7PsKKsfvDvaBHtfWREIRdCHEsBUHYEURiGl8oypdry9K+TyjuGHpddaWnpsirCTb9jWOKRlvS8J70HEtTCGY3cCzTef5EKn1h/OGo9GYKgiCkgRrd1isQBEFIDxGWgrCDCUdjloi76IVlafcamqWzXleCYxgXec31WWpr3EiyUljzNk0Lvcr4c+QkhPdkxR3LmkD6wnLZBkNMxzQiLgVBEJrAHDHyqO1iHhl5PoyE5QzhlJx/MuL4jxjAOoaM+pqrgvfQc9gaPPjw4ONeruLFbmcyfsyzTOIRljOEr948hJ8ZzHzfn/lH3yms2rw3FeRxIF/xJn/hnKXzOGfpPB5mEifyJg9wBU+feDpPzZsEC6YbP4IgpEcH7bFsl6mwSqkxwJhBgwa19VIEoRG1cXevc5aLkpoQgXA0vfuFjNtluhMcy7jIa66sNGb1WDa+zuy7bE7jmc+RGN5jOpbVLXAs/29dufX/taFIvZ5NQRAEoT5dF27Ai48Idg4d8D6fFh/DT136kU0N73Esb/Mnog4HhXcO5LnrTwVgMSP5I4u4h6s5MLoMuz3KohMPZjrTyPhKo7sq9tnzS378+ve8cMA4zvjpddQy4x+BecNO4zrf3WRcN4tXbzmT8899ETzT0L62PAqCsIshqbDtB5ljKezMmGWj544cgAK2VgfTup+/KceyGWFpasZkwtJyLJsZN1IdMB3LOiGYvQ2O5f8llP/WtkCQCoIgdDiem8YHHM2fVv2HH9iXC3iS/bt8zp4b1/N7/o/zLn6Jq7mHgWoN715/GPvyA/vyAxfzGCNYQg8KWW3fjeUMIYqdBYxFD1Dcs+dluAnR9YANFFDKhj27okcq9EjFD+zDSO9i9AjFn/JfB/9040cQBKEZ2qWwFISdmdqg4Tz2L8jE7bQRTNexDCZxLOM9ls2XwsYdyyTxPemOG7HCexJLYVvYYxkIR/l+UyXdczKAutckCIIg1Edd0tYrEARhm9FAuJV/dgFEWArCDqYmaHw7ZLrtOG02Imn2GdYmcSxN97C5kSNWj2WST7yyxo00kwqbrBS2hY7libM/IxSNcfieXQBxLAVBEJpiwtkPchGPofPhqQ0T+ZJhfPPOcMb2eYXCkwey6NGDOZRF/Nt2ArO5hAe4gge4greuPo0iurKAsey/cQWfMZJZTGbC8rlkFxRTSE8K6UnR+/3YSB/63V3E+P2eZfx+z/Laj2fSlSKU0ryjTgKmofW0tj4UgiDsArTLHktB2Jmpibt02RkOhg0sYFN5eo0rPtOxTCIsq5oRdjFr3EiyVFiDZlNh/RFcdhtuR506zXbHhW2aAtEsp/3j4C7888uNIiwFQRBScZVmzlOXw2L46Zl+6M+c6CwYffzrdKaU2pdsjKj6kpKcAvqzlkJ6UkApAP3u+YlubGXGU3fwf+fvjR8vbz19GrqLQr2rOXHKm1STDRnwEqdTcPWvvPLR3wAYe8QCFi49GfWgBswSWBGWgtAiNNABi7LEsRSEVmT8nM+bTXk1xVSm20Enr5MKX3r1DZZjmVAKa5aimmWqqagbN9L4OjMptvkeyzA5HoflcEJdWW66AtEXiuJ22OjdyQu0bEyJIAhCR0Cp5P3wgiAIOzviWArCDsYsG810OeiU6aLcF7KuM0XpvInDG93PF2rsWNptiiy3w3ICU1EX3pNs3Eg8FTbW9LqrAo0TXB12Gx6nPW2BGI7GcNlt1ixOUywLgiAI9Tlw4BJ6DlzD9POnMYb5fD9mMN8wlIVXnQwD4MZJN3Ou+xm6sZXu51by0ZNHsKf9JwAmMoexzEd10lzLdOZyNv8671gu4GF4H07hVYpe6McbZx7Px8XH82KXk7n6iHsAOPOj13jviCfgc8OtlDJYQdhGOuAWRxxLQWhFvt9UyeZKf5O3MUVYlttBntdJMBJLa+SI6Qp6XPZ6l+dkOJpPhW1y3Ej8Ns08f5U/THZG43NRWRnNC1uTcDSG066s3szmwnvScYAFQRDaFesjsD5CV4ooXDqQhYxmBUOYwv0s4yD4O/xv0m68yYlkUY0XH98/M5ib7LdRWDyQwuKB3LL8LnpQyDsnHc7dL03jVU7hbUazkT64DqriCS5kyJlfc9Kid6AUCiglm2qyqebUI57j+SMubOujIAi7Nh10jqUIS0FoJUKRGP5wtFmxVL8U1gVguZYbynyU1CQfP2I6lt4GwjI7w9lsKawV3pNEWdalwjYf3pMY3GM9v9uRtmPpdtg5Yb+eZFrCchf5phQEQdgBKLWurZcgCIKwzYiwFIRWoqzWEIehaNM1pTWhCC6HDZfDRievIdTKaw1huLU6SHmKnktfKIrLYcNpr/+xzfE07xjGrHEjjTEDfZoP7wk3KoUFw7GsSeGYJjqOoUiMSn+YzlluvC47SjUvLKv84WYdYEEQhPaAUkbp6eC+yxncdzmj+BTl1LgIcnBwKYX0ZDzzuKvP5YwMLeZBJvMQk+nDRlaxG0sYwRNdzuKJLmdBBZTSmVlcxnen78HIzct4fMMkXuQMLsh/kj8PfI/PGMlto65k9J6vs47+vMxpvMxpZFMDH0sZrCD8JjqoY9kueyyVUmOAMYMGDWrrpQgdCNNpDEeaEZaBiFUKmusxHMsKX4hAOEo0pommGD/iC0XIbOBWgpEMu6Uq0ORzNuVYmiNImhs3Uh2IWHMzE8lK07EsrTWOT+csN0opMl0OKyE3FcU1QUuwC4IgtHeO1P/jVU4BIH+5D7oH2YOV3O2+jj5s5FMOJZtq/ufam+XshYsQ05jOi6HTqXyyOxNOGAZAvxE/MYvL+DI2jP0O+ZmzljxBTdDND+zLI9OuZPa7UziaDziKDxnAOvKo4GyeA+DHKb+nLg1WEAQhfdqlY6m1XqC1npCbm9vWSxE6EKawtCeLXk2gNlgnLDtlxh1LX5itVcb9UwnL2mC03gxLk+w0ehxjTfVYxh3L5sZpVgXCZCdzLJsIDyr3hSzRW1JtCMTOWYaY9rrszTqWkagmpsEf6oCZ3YIgCIIg7JpoINzKP7sA7dKxFIS2oLTGEE61oSg1CeKxITXBqNVjmNhjWVRtCLAeuRlJ7+cLRazxHonkeJxphPcY/00mLG1WeE9qZRmMRAmEY+SkCO9J5VhurQ5aKbim8O6c7Tbu53Y0mwobiUfVltYG6e3yNnlbQRCEXRWjDPYAKsjjbq4FYK8h35BHBbcuuh39g4I/wtN7nw7AAsYwhOV8y1Cei/6NC1xPcvgFH1G5qjsA697fi++PGcwetpVsXdKV/qyje7SIRYwieC14IuW8wBmcxzPYibCEEfxYuK+xmAekDFYQfjMyx1IQhN9CYuhOUROlqTXBMFlxgZgX77Gs9Nc5lqlEWm2oaceyqVJWUzQ2Hd6T8u6WI5ksvKepUthoVBOJaXyhCMXx49MlyxCWmW5Hs45ll2xDZEs5rCAI7Z1/6Yf56sZDKKIbRXRjxez9WUd/Dhn1AbwPo/d+nR/Yh2N5j4vef5bzeJq3lp5Gr+CvLOJQKhb3gAqgAnoes4ZSCjiRN7l7zVR6Usgb3hN5jXHc472SG3JuZ6+n17EyNpjFOUfzzbLh0Otn44cTRVQKgrBNiGMpCK1EQ2G5W5espLerDUYpiJeDuh12vC475bUhPE5DbNakKCv1BVM4lhlOojGNL1TnhDYk1oRjac62bEqYmqmzScN73A5q4sK24ZzMSPyJN5X76xxLS1jam03QNdNyTTdYEAShfXINYx/xctDti/lq0SEAfHvJUPbhB4awnIP+tZgSCujGVvx4yDtsM/P5M6MGfsmr3jGc+sZ8Ll88h/vunwTApxzK1dzDskUjoTv0Zx3TmI4PL3vwMxXk8fp5o+nDRjpVVaAu0dTvq9x3xx8CQWhv7CKBO62JOJaC0EqU1oQs4VZcnXxkCNTvsQSjHLbcF2Zr/D41oQixJPZhKsfSdBGbKodtctxIg9sko86xTF4KG4lpgklCi7LipbMby3yUVIfIdNmtOZzNhf5EY5rKuKAtFcdSEIR2ivp9W69AEAShdRBhKQitRHFNkIGdM4HmSmHrC8tcj5MKX4it8ftoTdLeQ18o0miGJRilsECTAT5NjRsxxWZTPZamaE0W3pPtTv78Wmsq46NTNpb5KK4JWv2VAF5X0z2Wlf6wJXZLU8z2FARB2JUxR4zoB72oGs0e/IxyaJRDU04eg/mZ659+gNEspNTXmWcXXcQ37E9P12bu5Sre7nIk73Es7AkcBSFchHDxcegwls0YiW2PWi4ZfD9BXLgI8v6G0Tw042qe//5CTp68kDlcxFccBI9+BhyF1tOkDFYQWgMZNyIIwm+htCZE/4JMNlcGKKpKLYRqgpF6JaudMp2U+0L1HL+aYKSRiPOlcizjtzPLVZNhSsaGpapQJyxjTUxJqfJH6j1XIqYrWROM0CVBOPrDUWum58ZyPyXVQasMFswey9SlsGYZLEiPpSAI7ZivqlBXaDjE+J59f8ShAByz4WOG9V0K/WEJI5jvHUveqAr2/3EFpxQu4LNjDmQuZ/HU7Em8cMk4zlz1GtePfcB4zNvgsqn3kE01PrwMYjUn8havcAanTn2OV176G/1m/cRSDmY5QxiuQyzh8DY6AILQDjFTYTsY4lgKQitRUmMIp245GSkdy1i8FzLRsczzuqjwhSmqClgJrcncR18w+RxL07FsuhS2iXEjVipsaszHTj7H0hCbDXtDK3x169lY5osfH1fC/ZoeN1KRICxLpMdSEARBEARhp0aEpSC0ArGYprQ2REGWiy7ZbqtfsiFm6Wf9HksnFX6jx7JPvjFSo6GwjMU0vnAUb5JwHrPHsslS2Fg6qbCppWV1oOnwHoDqYH1hawpLm4o7ljWNHUt/OJpybmd5rXF/u01RViulsIIgtC+Umg6/XscmPRC2wIq+g/iefazrv+67LxV0Agf8Z9GfOGLWEo7jXdQ/NGqVZh7jmXPr5Uy45EHOPOk17hx7BVfOv40r59/G6fs+zRJGUE02M+deR6+qX/nr3De5vO+9jGAJvAnrb9iTPVjJ518fzudfi1spCK2KOW6kNX92AaQUVhBagUp/mGhMW47lD5sqkt7ODKvJbBTeE0JrOLBfJ9aX+hqF2gQiUbSmaccynVLYJNepNCzLZz9bB9Bkj2cjx9JvuIy7d81mQ2kttaFoPWFpCtLaUCSpYDVLYfsVeCW8RxCEdsnMnpNZzl6QAXvNW0eP8Ws55qVPAdjr9G94mvPAAZeNuAdGwUNXX81ec79hCMt5aPTVfLjwKFYs35/X3xhNBZ24gCcBOIj/Y92ivVCLNRwJ/pI8Xjh7HA9wBTNHXcf5ix7hqbMn8frkM+CheBqs9FYKgvAbEcdSEFoBa5RGtptu2W6KqoJJx3fUWsKyTqDleV1WSM1uXYzwn+oGZa1mL2JSxzIuyuYsWpNyfbEmUmFtaTiW0ZjGYVNJezRNgdhQDJvBPXv3yqU2ZKy/YXgPkLIc1nQ8d+uSJeNGBEEQBEHYdZDwnvaDUmoMMGbQoEFtvRShg2D2AHbOdNEtJwN/OEp1sLETVxMXiKbLB5DnqbuNOfuyofvni5fQJnMsM5x2lCJlSSkk9FgmOZWk4j5mE3cnEtPYbcn8zvrhPYlUxB3UfXrl8PrXxmVdEnosTXGdKsCn3BfCYVP0y/ey+JeS1IsTBEHYxVCqCDpN45qyKn7J351nLxnP34pfQb2vGXP6qwB8WHUUw7/9Bi6CJ7+4gP4562A4rPh6f1Z03gd9mULtq+FYOPnwhQDcOfoKANav2YPHRp0DH0LNUDt/ds9nCSMooJQfFw1iZGgx/507jMOLPoIbryLaLbONjoQgtGN2ETHYmrRLx1JrvUBrPSE3N7etlyLsYoyf8znj53ze4vslOpZdcwxXbmuSZFjLsXTVT4U12a1rXFg2EGmWY5kkFRbArlQzwtL4b/JxI/HbNFELG21KWKZwLE3HcZ/edZ/DpKWwKRzLcl+YPK+Tztlu/OGoJa4FQRDaA/8uO4rd8lfTb3YRfdlIMBP6HfMTC+adwoJ5p+B7Mh9+Ah4G/xedWHHJ/qw4qT/XHjCd+/r+HdVN8/r3o2Ec3DB6Kv8afSwb6cNG+oAjykJGc+qM5zja/SH/mfsnZqspDGIVe9+9ikq34o9LlhJbnSmiUhCEVqNdCktB2NGYwrIg00XX7AwALn3p60a3MwN2MhukwpoMiM/BrErlWLobO5YADrsi0pSwJHV4D1YpbMq7E47FcKQQlm6HDaddJe2xdDls7N4t27qsYXgPNCEsa0PkeV3kZxrHR8phBUEQBEHYJTDHjbTmzy5AuyyFFYQdTWlNCLtN0cnrolvcsQxHGw+GNEVUVoPwHgCnXVGQ6SLL7Wgk0swexWThOdC8Y2lelUxXWmKziR7LSFSTkULUKqWMNSfpsczzOMnJcGK3GetL7LFM5XSalPtCdPI6KTCFZW3ISs0VBEHYVenDKlylXTnh/Q8pOOpXii/JpsvcanqfvYoNZbuj9jNu9/T400GF4WUnD4+/gElVT9GfFay/e084K8gNB0zl5NMX4nq4io30wU6UIroZd37NwQJO4dYpV/HK1L+BH/gfzJ49BfpDQTRCMGC2GHRug6MgCEJ7RBxLQUjAH4paozlawrz/24hNgc2m6JpjOJahSBJhaY4byag/bgSMXkelFNkZDmoajO7wx++XshTWll4pbNJxI/H/NtljGdU47MkdSwBfKMrCHzbXu6wiXsoKhqtpU/V7RE2R7Asl77Gs8IXp5HVREHc5ZeSIIAi7OkoZCawF+aXobxWP2y6ky8pqGAQH8RWqDNRHGvWR5vwlLzJUL4NaiGDnqnG3MpYF8CTc2fM67pg6Az1aEToqh+ffv5CFjKaIrhTRleIp2bwyZSw3q3vhL8DRcPKQF43S2q+g1F5FTWYx1V4RlYKwXZBxI4LQsQlGovxYWEn3uDBsCeFYDKfdOE+T5XZgU8kdS7MUNtGxNAN+nA5lXddwJqXZY5mZQljabIpIEiFr0lTiqyk2k6XYgnFcolpz5rB+KR8jmbCt8IfI8xhuY4bTTkzreqmy6TiWQ/vkWY5lyTaUwpr9svMmDm/xfQVBELYHm84eBGfCB9ccwskLF6IXKdRqzXt7H8sHgw4Bm/FdOmHgLD5lFL3PW8XlhbO4vOcDPKR86P8qBvEjXBTkup63wMGAQ7PslJG8/upoAB5hErfccBe8BxwY5iz9LM+fdyGHPP0Bi1ceDfe+El+NjBgRhO2CmQrbwRBhKQhxCisCxHRdmmlLCEfr9yCmchBrgxHsNoXbUVcsYLMpHDaFyxSmGY3LSs0eS2+KctTmw3tS91ial6W6e3mtcTzyExJd03n+Cl/YKl3tm+8lGqsvfJvqsdRaG45nppOC+POWySxLQRAEQRCEnRYphRWEOJvKfYBRmllc3bKyy0hUW44lxIVlEqFWG4yQ5XY0mgfZNdttOXPZGc7GjmWoacfy2L2713NBG1JXCpvkSisVNjmltXXBRKmw2xqHB1X6w9YoFbfD1qiM1+syxqQkE5a+UJRQNEYnrwuvy0GG0ybCUhCEXRql3gEg67ESeBeOef9T3hl9OGqIhovBX5LHMYs+hYCCgOLx9//OihH7s+nqQbCnm5lXX8fpug9vjDqe1af8Dn5yc/cp0+ALuHngTeS+uIWTcxZycs5CbrHdxSV33A/vApc5ef79C+FlWOw8mqGDv2CoPhatxa0UhO1GB51jKcJSEOJsLPNb/3/a4+mPHdFaE47G6gvLFA5iTTCaVAD2yfdavYTZbgfVgfquqS8YQSnIcCb/yCYLz0mkLrwnmWNZ9zqSYQq6/Ex30ushRSlsQo9lMpRSZLoc1mzPRMp9xnOa/acxDW98vSnlY6Via1WA7zdVpnxtgiAIO5Jn9XJqfurMl/fvA5vguEc+4fWzRxMbqjhn4Bxwg6d3OZ7e5fzjmMkwFIrvyYbb4OR7XsSDn5XsAa/B10cMQZ+uoAJuff92KjO682XVPnxZtQ9cBLOvngJnAj8Cx/4CVwGR6Xyr3uNb9V6bHgdBENonUgorCHE2lftQGCKp0h+uNxqjIYm9e+W+MDFNvfLWVKWwH/1URCCcuhcSkovE2lCUTFdjp9Mk0+UgGIkRicZw2BuLz7pxI43vq6wey+TrqROWTTuWia83EI7iD0etUSqpehwz3fak8ynNGZjm/Z02RTiqG4n95nonq4MR/OEoNcEI2RmpRa4gCIIgCEKrYY4b6WCIsBSEOBvL/fQt8LJv7zze/XFz2i5XYYXhdLoShOWwgQVsLPM1um00pkmi++qRndF43IgvFEk5agTq5lvWhqLkeho/QTqOZaqAH3N+ZFOlsI54KayOB/RUxftUcz1Ni7lKf5j3lxdx18n1L69zLM1RLLakYUjNEYwHGpXWhERYCoLQZig1HcZN45yTjocCOHj6VzAT1AkapsINM6by7NkXwSrw53UCYMzC+cybPZ5RLGLM5FfpRhGzL5wCXQB+oQ8bmXriDfA+fHTMCD6OHc5sJgFw/uxHeEqdB/dWkVVrpybzJVyXX8G1M4zv1hnc3jYHQhCEdo0IS0GIs6ncR+9OHg7dvTMLvivEH04v2/nXuLBMdCwzXXZrtEgiUa3rhfyYJDpvWRkOakPRuAg1blsbjDYjLOuCcJKKOa2TzrAEY8wJNBHe4wthU02LRHOdvlCUTLfDCkBqqhQWjJLhxPEupiNZUmP0deZnGvd32BU1wRiRWP3j11zqqznypaQmSP/OmU2uRRAEYbviBH2r4uk9T+f8gS/C3nDLHddxy9y76MNGeP5DePAobpl8HQAOojzI3znk6a/wnedhQf4p/Fg2iL3VKqAaVzTEp/ZD4U9wxClL4Fu4fPldAMxUffiX/gujq97H+QcNx08jVLCCWzFO1s2Q7gBB2P7sIiNCWhPpsRSEOBvL/PTO83Lo7sZcr0p/8p5FrTVrimupiLtqyRzLTLcDX5LewWhMJ01mTSTZGI5FvxSztYlAoaYSVsEQjameVVnhPSkcy9oQnbwubEmTfwwuOXwQAFXx3lCrlNWT2uUEIxE3WcmwGQRklsLmZ7qIxDT/K6yk0h+mpCZoHf9URKIxy7E0haogCMKOxpxdKQhCB6KDhveIYykIGD2BJTVB+uR76JHrwaYgFEl+qml1cQ3FNUFLiBVW+HE7bLx+8QjrNqnCdGKxOncvFeZcy5oE9zEW09ibEKRZ8VLYVAE+MZ1a0FrCMlWPZU2oyf5KqHMzq/wReuRiib5mHUubslzFRCLxSF0zVbaT18We3bNZtbWGn7ZUW7frnuOmb3ykSUOKEoR48TbMwBQEQWg1Dp0GNaD+oeEZ4C7gMLhFXQovwqSih/mLXsAeTOeWIwzXceJHj7H7hRvBCXuct5L1eXvyN55jve5GvwOKuNT+MJ8MOY4jw2/zn3l/4qmXzuD8uS8CMFx/zAymsjRnGPQHFtSJW0mDFQRheyHCUhCATeWG69i7kyFSHDZbo/EZJh/9tBUAf3wESGFlgF55nnr9i5nuxmE60Vjj9NhkZGUYH0sjGdZj3FdrHLbU9zPHkNQmcUnBOHGWSljarPCe1KmwzQlLUwybjuVd7/wENN9jmSw9V2uNL2TM+0wMIsr1ONmnVy41wQgZThtbq4NsqQqm/Dv9Wl6X8lvSwvExgiAIrYHhVu4DDnA9W0WoIAfOhb9c+zLn8gxouJHb+HHf3/NW1mkwEu786AoA/srL3PDEVBYyGjsRhq75gmUDR/LSmtNhNyikJwyCPCrgQfh2/FB+PNuoHnmAK3hq9iSWZY00hOXNhpjUM9rkMAhCx8N0LDsYIiwFAdgYn2HZJ98Qcg5747mMJh//VAyAPxxFa01hhZ8eeRn1blNXmhol12uIo8IKPxrIcDQjLM1S2IQAn1gMbKlbLOueL0lfJ8SDeVL2WJq3SX59aW2QPbpnN7nmHI/x/GZoTyRmuJDpOJaJwjIW06wuqaXcF6Z7Tkaj27scNvIdhsjtX+BAa9haHSQQjpLhrH+Afq2oC0+SUlhBENqKvfQAVsyG/+b/kT9s+Bb1seY2bmLvyatgM3A08MN0uH4aulgxnWsB8OBjI304kg+5b8RNfL1kCAewnOvvfwBeh9u4if/0/xMLysbQe8kqhvJtvP8S9AZF6SUFvKUUMAx4zljMDHErBUHYfrTLHkul1Bil1OOVlZVtvRRhF2H6/P8BdY6l3aaIRhsrrZMfXcIXa0px2BQxDVuqAhRW+OmZ66l3O6s0NUHobYinxLqdTShEjFRYMEZlmERjyUN/6p6v6R5LdPJRI5DoWCa/viWOZaUpLOPHLtnMzkQS02QBNlX4KasN0aeTh775dcd03sThSQN6zGO1vrRxAu+m+FzSvvleK9lWEARhR6DUdOmtFISOjDlupDV/dgHapbDUWi/QWk/Izc1t66UIuwjBSAyloEt8dqUpeBpS5Q+jgcuO2B2AnzZXs7U6SM+8+sLSGy9N9QUbC8vmHEtLWCY4llGtmwzP8ZrjRprosVQpLEuzQjbZuJFoTFPhD5OfmXqmJ0CO1WNpOpaGEE41d9PEYTeuN3tDA+EoHqedng1Ki1PhiYv0tSU1ja77tcJP5ywXvfI84lgK7Qal1CNKqZ+UUt8ppT5TSh2UcJ1XKTVPKbUqfpsT2nKtAsANjOM1+AmGq28IFgB/+4R7uQp6YZSp/hv0f2+BOxeglmpuueEubrnhLnqymedfupD7VJQ7l1zB/nNWoJ9UsAkqw26GL/wGPd74nhzGUs6/+0Vu0ddxi76Oe/pcxlF8yIG6N6ZbKb2VgrAD0RipsK35swvQLoWlILSUYCSG22GzxNsxQ7pbAi+RCl8Iu01x6u97A7B4VQlaQ6+8ho5l42TX9aU+FPXTY5Nhzlt84P2fAaPnMHH0SDLqni9Fj2UTjqUp4JIZlhW+EFpDfjMlreaxqoqL4UhMW6KxKcy+UTNFtuE4kVSYDqZZ/rq6uLbRbX6t8NMrz0PnbLcIy+3A+DmfW+NehB3KO8A+Wuv9gDuBeQnXXQVUa60HAWOAJ5VSWW2wxg7Pw3ojD+uNAPzAPpw16wnW6J5M897CffpV7mcK3A0MB26Eq0bdyn36XZgJ3Pk93Pk9T50yCR4AveEWrh/9AOo9jbpKQ2/IHRPkkNEfoA6ZT2hQDldxLwdfu4hb1Incok5kPmO4VO3HMvVh2x0EQRA6HNJjmYTmZuMJ7Y9gOFpvDmWe12mVdSZS4Q+T63HSPSeDnAwHi1Ya/ZYNHcvEHkuTjWU++nfO5JWLRtAUpkiMxh1Ec55mU6mwHqcdm2pm3EgT97ep5OE9ZbVGCWl+VtOOpdNuw+uyW45lONJ8SBHUJeRW+sP0wSihzXDaUn72Gl5utymcdsXakiTCstzPXj1yKMh0USKlsB2W9vZ9rrX+d8KvnwO9lVI2rXUMGA/8LX67X5RSXwHHA6/u+JV2XJSazsMyJ1IQhNYP78lVSj0OLNBaL2j1R28FxLFsAjkj33EwHMu63sdcr5NgJEYgXCcMqwJhwlFNpsuOUordumbxy1ajBLNno/CexuM/1pfVphyNkYjXZdzXLMU1H2PiH3dLeR+lFJkuR5PhPU1VliqlkvZYlsaFZUEzPZZg9FmaqbDppN8C3PaXvYGE3sxYLC3H0mTexOEc2K8Ta4rrl8Ke+tgS1pbW0quThy7ZbmqCkXp/S2HnQ75vt4lLgbfjohKgL7A+4foNQJ8dviqBS99/kkvff5J/6Ct5s/ivFFDKQPUTdqJM+Wg2z3AunAacDPwPVrIHV579CLcccR0P61k8rGdx6qvPcfP/3cgVfe6Ei+DWN66i99eroAIuWXg/i3c/mlN1GSvK+nMeT/PlKaPg9WHw+jBGsoTLdMBaj5TBCkK7oFJrPWFnFZXQzh3LNcW1jJ/zebs5Uy38dpK5F4FwlEhM1ytRNcdkVPrDVrmlOb7CdDYHdcnimw0VQGPHsmGYjtaa9aU+9u/Tqdk1KqXqpaWa6bDNBeFkuh2pw3tIPW7EuC55j+VNb/0I0Gx4DxjHrMpvPH8oGiMvjVLYPK/xuPVKYdMQpIkM6JzFuz9urndZOKqtEuUMp/F4JTVBK5xJ2HmcvFRicmdZ345GKfU1hkBMRjetdTR+u9OA04FR2/g8E4AJAH37pno6Ydv4I7qv8f2n1sS4ZsssuBW66g10pYhHjjifK8c+wmHz3+WTvOM467wnKKEAnr+fW266i66DNwCwVfUAnLAX8As8Gz6Xx7iIj2ccRgg3XX/ZwCuj/sbqRYNYMXl/46lP3gTA3ZwKvAKIqBSENkHGjQjN0XADtKtteDrqRq05zP67RIctz1MneLrFx17UCUtDaO7W1WhdcthUo1EXZniP6SBW+sNUByL0K0hP2CTOdzTLaZsTll63PeUcy2YdS1TScSORqGGEpOVYehxUBcL4QhFimrQcS3McSYU/hD8URWta5FgC7NYlk3JfmJNmf8Ybl4wEIBQx1m3MFzVuV1ITaiQs5TMh7GxorQ9o7jZKqROB24EjtdZFCVdtAPoBxfHf+wIfp3iex4HHAQ466CAp3Gwl3uYo4Ka2XoYgCG2NmQrbwRBhuROwqwvWnZHmBEPi9Wb/nTPBYTMdywpfXW/erxWGsHQlOJaJvyeS1aDH8ownlwLQJ41SWDDSUk1hWR00vpkymxGWWW5HvdLbRIzwntSCTSnQSeJ7wvGxIZ3SLIXdUhWgpNo4ZpOP3L3Z+yQ6w+XxY33J4YOavV8iAzpnAtQrdQ1GjP/vne8hEDZEZkm1BPgIqdlVTjLEk17vB47WWq9rcPWrwETgK6XU7sDvgb/u2BUKX+tLeIPjjV+uVnBvGffpm9mfbzii7xJu3nAjl8+/i5ne6+jtW8XzZ18Iq4C3gT3gCv0AANfzBz7SDzKV6Sy+4WiGsJyPOYz7NlzHl33356GFV3Pkorf5z+l/YsVL/dlr4DpO1f8B4JUpf4MH2ub1C4LQcRFhKXR4SpM5lt76cxnBEJZK1QlQ07F0JxGWGU5bvTCdYFz0pO1YJow7McVpspTaRDJdqUthjXEjqVEq+RzLSCwWD8hp3n3M8ThZubWardVGX0/XnIxm7gEZTjtuh41KX52w7NRMAm1D6oRlzLosmOBYmn9DSYY12NX7GLdVAO4qwjENngFCwGsJgVxHaq1LgXuAZ5VSqzDC6SdoravbZpkdkx/Yh8OCH3O7+0bjgqdgsT6Go6s+wP9CJ3gBbn3pdkNIPgYTeYzQXDe37ns7XAS8DN8wNP5ovXmSC+hMKfwb7r9jCrsP2Qj94eAff+DIDW/zn8l/gn+W8dpL4+ixZi378y0ArzywDpAyWEFoM8xxIx0MEZbtkHa0gdohWKWwtiSOZaKwLPfTv6Au1bVPJw82Rb3QHxOlFJkJDmIgLnTSCe8BoxzUFEc1aTqWmW6H5ao2RNNcKqxKmgobiaY3/gMgJ8NBlT9CcdwZ7NJMkqxJntdJhS9MZbzP0uy7TJc++V4U9R3LQNgIAcrOcFqiuC2E5a74WUx3zRW+kDW/VNhxaK27NHFdLXDKDlyOkIBS07lTiooFQejAiLBMgi8UobQmRJdsd6PeuWS0dPP4WzebqRyHHbF53RU3ys1RVwqbEN4Td82qGjiWifMqHXYbQ3rkJHUswShNTXQsnXZl9V42h92miETNVNj0eiyz3PaUjqVutseSpD2WRrprmsLS46Q6EKaoynAsu2SnJyxzPc54KawpLFsmVpx2G26nzRrLAuALR/DE03UznHbsSvH8F+u59Ijmy3OF5vl5SzU/F9UwqGvqEYnt8btCEFJxFG8DYCdK1rIoOmB8b95Y9jMfchRX5dzLvEvGs1L1hi/y4V7Q0xVqsma3Wf9Dv6FQF2tuGD/VesxjdCdeuuE8bH+v5ZzvH2MyD8JQ0H9UnLjwn7zlPI2Z4Ylc/uwcblZTOVh/y/UDzfrX6Tv4CAiCUA8J7+k4NLfhKaoKsrU6SGFlgO456W2OhZ2faEyzsqgaj9NOrzwPtrgTV1ITJMvt4NWL6+ZLZrsd2G3KSisFQ1gesUfXeo/ZlIuY6a4b/xFoMM6kORytnAobixnJr6mwpRg3Em1BSmtOhpOYhnWlPmwqvSRZMIKSKvyhhFLYljmWYIhHsxQ2FtP4Q9F6wtZhV1a/aCK1wQjlvlBceLcsNKgjY84NNcOdWsJvLWVtKUVVAXIynNaJBkFobZSazpH6ILh5GtdcCF2f2IB6w/i+0ccpHnn3fLqylW4Ucel3T8KVMOHrB1H3a3DAWTyPmqI5/4NHeI9j+Td/AqCH+hEug8ndHmKmOhNUb8gC9c+NzJx4K28dehqXq1Hspv/HalXMl+oH4Kv4qrLRekrbHBBBEAxEWApg9GdlOG14nHa2VAWpDoTJzpCSr12d0tog5b4w5YQprQ2xZ/ds4/KaEAVZ9cWMUoqcDIfVnxcIRymuDtKrk6fR46Yi01WX0hoMx5rtkUzktIP7MvPDX4jGNLXBCHabssZmpHy+psJ70KgmuixVinEjUa1xp1sK6zFe3+riGgqy3NjTvF+u18nGMp8VlNRSxxLA47RT6QsTCEfZWhUkpsGbUG3gtNsIJxFBxTVBiqqCVAcj5HSgz7jWGn84iieNioxkbCr3AXWzVhNpqQD0h6LUhiKEIjHrZEAwEmV5YVWLPm/J1hGOxlhX6iPX47Q+7w3XKY6q0Br8R7kZrj9mycYjuII76XaSEda7x0nfsXL2vnCchssVm+fn0SOvgseX/x0Ww+Vv3MUt+XdBHjw1dhIcBzddcrvxoFf0psf9a5mpgvBZb/4y4mXG8Rpnzn2Ny7vMYU1xTwa+X8hq9Q70OB42/xeQvkpBENqOdi0sI7EYhSl6zpoiGDE2XJ2z3JT7wqwr8bFP71yKq4NsKvfTJ9+T1vgFYeeivNYQid1y3GyNu9JgOJadk/QD5nldVo/l5kqjvLNXXguEZdxBDEdjhKKxZoVhIqbIqQ6EqQlGyHTZm3XUMl0OgpEYkWiskcsY0007lqkeOxrT6QvEeL/dmuJauqZZBmve73/+MBW+MF6XvUXOrkmW24EGvttYYZ0M8CSUHTvtql6prIk/ZFy2tSrYoYRlUVWQ9WU+9mogttJlU3z0TiSJC5yKZIKzwhfi+18rG12+emst1cFIk3NZ08E80VLpD/8mIS0IgiAILULGjbQ/YjHNrxX+FpW5aa0JRmLkeVyWEFhTUsM+vXOp9IcJRWOsLq6lwhdu9fK5UCSWdPPbWoSjMTaW+/GHortsWVg6LkM4GkvqdpTWGkKyk9dFhS9sheOU1oSSprXmeJyWi3bxC8sAWuZYuh2U1fqsnsNkY0lSkTiGoyYYScsxz3Qbf9PaYJRcb/3n0rq58J4UjmWsJeE9xhp/rfCze7fUvXcNyfM4qYj3WOZtYxhMTtwNvvKV76zLvK76jmV1oLFIMT9vW6sD9foF27ObVRuMsKHMcBy39fvGFJbRWMtLYRMxT9j0K/CyuSJgrWd1cU388ZsXrk39rcwycgVsrQrQryAz5ePUBiMt+owKAhhlsLAn0I/Pp+zO9/cPZubj16HDxvdmZJKdaSdPJzY8Ey6HbmWVkA38DvDAzEuu4/iyN3in50mEX1CMyvmIpx6fZDx4NWzuOQAYCd01fdjImZNfgxXwXfEejGIRnAHcdzx8DrzWBgdAEAQhgXYtLJUyhr6X+8Jp93sV1wTRGtxOGxlx52RdSd0mLNfjIMNpt/owuyUZqdDSTWksptlQ7mNrtfHcmyv99Mjd9hKwVJT7whRXB/mxsJLf989v9cffWSitCVEdjNQbFQJQVls3rzLDabNGgJTUBDmwf6dGj5OXICwTx1ck0tTfOCveY1lYEReW9vTFvJm2WeWPUBOIWKKxKazZmaGIFT5k0mx4j1KNhGU4GiOmwZ7myZPEhNB0E2HBKH31haJsrQ60OBHWxGG34XXZqQqEcdht9Mn38FpCz6zLbiMS0/hCEStAqcIXsvoui7fTjEutk00HbTt8oQi/bK2xSoPN93U6JH6vNVUK2xLMpF6vy47HZbcc5FVbDWGZ7GRHS07o1QQjxmM77RRXh+jdKXkqczSmWb65iq7ZzY/IEYSG3KK/YdpTp0EAXmUMXARK321ceelxsNqL59tyuuYUcTT/5pCnP+Dsp59nI324vegG3jnvJI4vfAPnQg2bgHXxB74Mip/Ipou3mnMGPsZDX1/N6bOexoOf/Ub/DP3hmOL5nMsz/FUNBaQMVhB2GjrouJF2fXrW3HuYm6B0MM/Eux02bDaFy25j7ufrOPWxJfjDUbwuhyVSlxdWtco6zT6vrPiGd0Np+utNRbJQDXMcgymwTMbP+XyXn22XSHXAEJQNN83l8dftsNlwO+wEIzGiMU2ZL0TnJCce8rxOqxQ2FDGOXffc9DeemW6jx/LXCuPvmSo9NhmJjmVtKNJscI/xfHFhmaR8UGME9KTClmSOpenwpVsKm1hKmm4iLNS91vWlPjplbns5anaG0WNaG4ywR7f6JZ5m9YEZOgPwS1y8gFEKuz2o8IdZtr7cGqXS1ny2qpRgJMaAzl5cDhuhBp+RLZUBvt1YgS+UugRVa82vZilsKwlLp92GJ57se+pjS3j+i/UANPwaC4SjfL2hwipjbwqtNTVB47PTLcdNVGtrZm1DCiv8xDSEtiGMSBAEQRAEg3btWJob6Y1lfvbtndfo+mTO4say+iIgw2kjEI4SjMTQ2ggJMUvsbv7Xj/T6b/POYnMOpuma9O+cyQ+/VqacRWgSicUoqQ6R63XicRpn+QORutMilf4wP2+pprDCT88Ehy2VsPwt7Iwlg1WBuhEfiZSawtKucDsMB2t9aS1aQ+ckQsgcgwGGSHXZbfVGkjRHpsvosbQcyxYISzMIpyoQpjoQSSv4xxSfyQJ8Ys04lqAajRsxBfrkI9Mb0WGuGVooLOMu5a8VfvbpnZv2/Ro9f4aToqogwUiMPbo3FJbGZ3ZNcS2/62k8xy9FCcKyOrDNz9sUvlCUmIaN5T5yvdv+2hqyrZ+7nzYbJ8OyM5y4HTaCkfqfkW83lhOMxJKWDZuMe3QJ1fH3WDqlqk1Rao76sSk8Trsh7iIx67sq0bHUWrO6uJZITFPhC6U8GWZe7g8bxz7L7SDL7cBhU9SGkp8+XldqnHBIFvAkCKlQajocPo1b5sItj90FX02H/afBv4GCawB4fNjZTFg6F/+6Tqw/qhMXxeZwIF9x9FOLUUpDMdz39CSunPUI3ARXVt3GfVffZDzBKpi172S4F55ddBE8C4ueHsVBfAU/AY9FeH/yWHrOKgSK2ugoCIKQFBk30v5I5VhW+Y3NesN+ufFzPrdEnRkgkuG0U1obwhffkHhc9rjjZbMu84eiLRpZUOUPs7HcTygSw+WwEYnFsCtFRlx4mK5pqs1jeW2Y9WU+KDNK/Myz7L8UVbN7t2x8oSg6/jiJwtL/G4VlVSDMmuIa+uQnLyfbkTS1sW7KsbTbFDalLKHxzYYKAAoyk4T3xIVlLGb03bbEcQTDQQxGYmwo9eGwqbSdP2jgWAYj9EjDKTVPeJhJtIlo3bxjSYOiTVNcZKWZZpvoqrZEWJp9ldGY3uYeS6Ce+N6je0696xKFJRjvn3WltdiU4Zal44BtC6ZQ2V6lti3lp6Jq3A4bdpvC7bBT4a//XbA2XvZvjm5Jhvm5sqnUjmU4Got//zT9vi2uCaIwXHGz79sXjlrfVdEEYVlYGaAm3gdZHYg0+32bOP9VKWU4tCmEo+lki7AUWkrXjzaw9by+nP9/j/DUwGkcNuJdbuMmXBif+T5s5PFhZ1NNNldmPcIqBnH94w8wfMLHcAnYptVy5cJHcJ1ZxW2Tb+K6ojutx778pLtYyjC4FzgNOAQ2jR7Epu6D+PeaozjhvA/hmTDPPhQG8tH6sjY5BoIgJEGEZftDYWzmTaFmUlQVoMwXpmuOu5EDFYrE6omADKedaExbYsVMFfS67Fa5WGGln5KaUMqey4ZUByPUBCMUVQXok+8lEtU47AqbTeG0K6vMLBWRWF2/X20oQieH4dRsLPexe7dsq7zN7A8cP+dzI5QovlksTyEsUzkApnhbuqaM4ppQvV66tiaZwDQFUSSmqQqErRLN0toQfTp5mDdxOCfM+hSArzeUA9A5q3EpbI7HidZwymNLCEViaZWjJmKWpq7cWt1iUWquuSoe3tOSUtiUjmUT91XKmHWZiHkc0x2T4rDb4iFAtKhXLTfh/bQtMyxNjHJKO/5wtNFoCbvNEBZrSupcSn8oyt69cg1h2Uwp7LY6hA17ONvS4R8/53O+21RhnYBwO2yEo5pAOGoJ73VxgRWIpG4MMYVlpsthnVxLJBSJsWJLFYGw4fInfq/EtKaoKmCdyCmtCeG021BKWd+tRjBa/PZx4RoIR/m13E8nr5M8r5O1JT4C4ViTIWQNx/Q47Y1Lf83jUudY7kwdscLOjBHaIwiCICTSrnsswdg8bYw7lmYvoVkOVeVv3PcUCEf5Xc8ca+NnbkrKfWFc8TP9AF6Xg0A4Fi/LMh7n7KeWptWraJaPmQPhE0c6uBy25kth45ufXnkZ7NEtm57xoB+z5NI8K1+R8PqCkZjlR5X5ts2x/DV+HJNtJncUZbWhZsvvEsv4zNJmMI632R/70oQ/AAmOZYpxIwCBSMyabdoSsuKBO78U1XDI7p1bJCa8LjsOm7JSYTPTEJam+EzWH2ekwqa+r00pGsbMmCdTWjKGw2EzjlGLHMuEoKFtmWEJhlCbN3E4OR4HNgUDOjdO//Q4bVbaKBgO/u5ds+ma7aY4Re/db8VyLLfT47eEWEwTCMfqhGX8/XzqY3U91mvjAiuYhmPpdduJal3v8xgIR1mxuYpQJIbTruqd5DBLWTeU+a2y9JKaIE678cZ02G047cr6XrQrZTmWlf4wGuMkRLY7Poon2HTfqnFCpm5Mj6vBLNNQJGaV2poObTSmrTJcQWiOA/VRbFWfwjNFfMJh8E/4ZOlx7MHPHLzmew5e8z2vM44LNz7PanaD6kfpw0Y4SvP52MM5cPZnbOjWD1bBuPzXuGbhLM7t9iz6EoW+RDFzynW8X3gsrJ0OucCdcPDCRZz69HOccPSH8EwZ9HACZfEfQRB2GsxxI635swvQIYTlF2tKrY1TJFaXhFgZFyCJ4TWhSIzeCaWe5ln0YCRWb+B6ZnxzVlwdsMrB0hVcEUtYhq01mSMd3A57s2FDkfgICHPD5LQrFFgzO82z8omBIYmbpVSOZXOYgtffRsJybUktv2ytaeRAN8QURFBfWJbW1AnLnAwnnbxOftpi9JwlSzE1yzJNN6ulblqig9izBfMvwUhpzYmX4tYG0+uxNJ9v1n9+aXSdRjdZCqsgSY9lyxxLMPpXoaWlsHXHdVtTYU1653n4Xc+cRpUI8yYO58T9e7O8sIpTH1tCJBojHNXs3i2LrtlutlbV77EMRqKNLkuHhkFYqUph0w3MammwVlO3N8tLzfmeZs+v2Wc5fs7nfBN38AORqOUWNiQYiWJTMHHUbkD9E3Q/bakmEIkxoHMmeR4nNUGjZFVrzbpSn1WGb4ZhmY6licdpt1xDr9tuueiJQVIZThsOm2qyDzQQjuILRcly152ocMUd2lAkRiym+eHXSuu7JPH7sWQnOAkg7ApcwzdFQ3lFz+Ng/TOrl/6Ogt//ii5UlFDAfQMv5b6Bl3J11T2oTzU+vPDzxdyi7oKhir/Mf5ll74/kBP7NtZOn89LC8zh19HM8VXgBNw64mRsH3MzN99/I8T3f5lG9Dk7RsBd8qUp4pcvfwAPcnA+bDedU0mAFQdgZaJelsEqpMcCY7J6DcDvsxtnueD+OL953Y7epRo6lOcOyd7z3ct7E4YSjMXa/8R2AemVX5ln/zZUBq0coXWEZjdYvSY3EdL3ytMKKQMpNHTQeWq+Uwmm3WTPh6hzLOgHpD5vla3bK4oKzpUmwprD0haNtkiK7Ih48UlwTpHcnT8qexaoEYXnHwhU889k65k0cTrkvxL4J4TB98718t6kSRf3gGRNzZEdJbbBeaFO6JLqMDceUpEOux0lRVYCYpkWOZTJHNxZr2rFUSiVJhTWOYzozNE2MHta6Ey/pkChcO22jY2nisNtwpAhYGtglk5g2yh1NMbV71yyiMU1VIFKvJLSoKsjmygCbyn0pR1Skw/YeZ9IciaW35veTeYLMbQnLOrcuHNVW3/ZJj35m9ZonYvQb2+v1AXeKn7Axy/i9LjuxmKa4JkQwYlR2bK0O0j0ng0p/mED8OUtqgtbJCDC+Y6sCERw2xTFDuvPFmlKgLunYHj+hlp3haFJYbol/Lyee4HA5jOfZWh3AppRVbdK7k/G9b7Q3RCmpST2WRBDALIO9pq2XIQjCzk4HLIBpl46l1nqB1nqCw+HA7bAR03UuoVkG2y3bTTASq5ccGo4axYB9EjYVTrvNCtWZcvRgq5zRLIsNRzXZGUbqoLlxi0RjVn9jMiINSmEj0boh9GbAxMmPLmni/rF6mzEwBamfWEwTtnos6zuWxtl+e1LHUieZF9cQc9MYim8UdzQ/bakGjA1waROua3XA6K2y25RV4qa1pqw2ZG2AAfrGh6U77CppCIjpWGoNBVmutGfnmWS6fpuwzMlw8Gu8vDmdHkuzVDeZsGzOsbTZGr8HrPCeFvSWOmzK6plLF1tCT/NvdSybYmDnLMBw7kzXffeu2Zb4SBR/5vXnPvN/23wSJRCOWn+L1hKWqRzJdJxNXyiKUnXvk9cvHonDpixhabp2ZjlyYoBPTGs2VwYIRWKE4kFWicLSxKy2cDlsVuhTTTBCaU0IhVG+746POdFaU1oTYtyBfazvVbNCxOOy1+tjN0tqzZmq2RnOeHptmE3lvnqOYzgaY2tNkM5ZLtwOm1Um7YqfcNhSGbB6Kv3hKDUNnPmdJWhJ2Ll5WF/GF93+wDr6s/THPzJh2IOUntOLSSfex91cRyE9KKQH/lWdeOr0M9iHH+AJ2Et/A3nw1u9Pg+vgZF7jch5g6OgveOX+v8Enbu54aQZ3vDSD9ziWd2afxMXqccgIwR7A9JM4sPgzGAr9ZvzUxkdBEIQm0a38swvQLoVlImYfkdkz5AtFcNoVBfGwlqqEs96mi9G7QVqs6WIMTpiNp5SyHKw8rxOPy04gHCWmNZsq/PxcVFPPOUvE6rGsNZJkzdJWSHQRUp/mMIRo/T+dy2E4liW1Qeu9l9hjGQhH8TiNHqaGqbA1wQhfrS+vt0FMxqZyv9UP1bActuHGtrVnY46f8znPf76ODKcR0FJUFUgphqsDRorqnt2zrU1zTTBCOKopSBSW+cbfOdUIkcRQmWRzLpsj013n9rS0FBaM8CCzvDkdcaeUqteXlkhz5wEUqtF3Vk0wgttha9GYlF55HvoXNO5vbA7z/f9bHcum2K2rsa5AOEqZL4TDpujdyWMJy4nPf2Xd1hcXKslmgqZLYknlju6xTPb584UieJx1PYd2m6JnnscqnTddRPOESuJJt0p/mA1lPqPUNRzF7bRZIV6J33O/Vvix2xQOm/E5tSnj81hWGyLX48Rht+F22giGY1T5I4SiMSs4a97E4dx50r5AfKyT226drGs4U9UUgcs3V/NrRaBequ+WygBaQ4/c+p858328pSrAupK6Evmi+H1NZ15KYYWmUKOAcdN4mfH8fvOPzGM8Q/b+mtUMYre5/8OHl2eXXsT+fMv+fMtfDniZ2VzCAsbgur6K03kRvUzBv4KwEW5eci89NpTw7cA/cPyUN2AdcMY6OGMdX540isqJbrjdyWE9P+bWe65i8dSDqCYbvoX1ah4gZbCCIOw8tGthObBLJg/99QCgTqjVBqNkuhx4nHXhKCamCGk4TsMUloO6ZtW73Cz36+R14XXZ0RiCyxRuRZXJe7RMt6/MF7LOxDvsinkTh1vrDUVi1AQiLN9c1UjEJQpRE0NY+q0AH6jfY+kPRzn2dz048w/9qAlG6gnXstoQMQ2ri2tSxu37Q1FKa0PWptMfjhAMR/mxsHKHhV34QlG8LmPYuS++nmRUB8JkZzjpm++1Xqf5N0nsk+wb/zunEpbmxjk7w4Hb2bIyWKgvBhuOtkmHnIQ5mum6hjYbScuo0xk3EmsgSKsCkRaVwYJRsrstATyOHeBYds/JwKaMvr5Kv3HywWZTdI0LS7NstToQtsRWbZIgpHQxnS+3w5bSBdvWEzAxrSmuDjZZMt8QfzjaqJy7dyeP9RkxP8fZHidK1QlNMPooVfw2MU0TjqXfOjmmlCLL7aC0JkQoGrNO5rkdNqJaszqe0Ns5ob95z+7ZqHgptddpjOuJRGP1SmHBuD7P46RrthuX3VavnLeoOkin+Mm+REzH8h/v/sxDH/2CwnjfmRUc2W5xLIX0OOTVD9iDlag7NQWUsj/f8G1sKKvm7E0UO38Z9jIFlFJAKT0pZNmSkXyy5lgez7+Qm0ffi9qo4Uc3HxWP4LIR99Cv7yr4Cyz86GTIAx7pD4/059Y3ruJ39v9xyw3X8ckNx3Hzwns5RL3FysI9GDr/C4bqY0VUCoKwU9GuhSXUbeiD8cAGc3OllCI3YU4h1G2sGpYt9sjNYHC3LKvPzSyt6paTQf8CLxkJ/Xdbq4PWBrUoHvpS5Q+zYnOVJdrqUmHDVrmq6UAmrndLVYDquLhMpGGPJdQFU/z4ayVgBPqYPZZm79TALplWKWhimWyFL0yG00YkpllTXJu0lNLc/GZnOLEpQ2huqQpSG4zukDP80fgsSa/TTucsNx6nndXFtfy8pZpIAzFsCCIHffK9RhpuvAwWsDa3UHcCwWlPLrgynHa6Zru3qYwV6voilaKeU5ouiY5pOj2WYGy8k01MMHqMU99PKZUkvCdMTguCe34LZml37nYcZaPi80ur42MousZHA5mjUULRWD2h57QraoNRK3wmcS5qOoKwpMZ4zx2xZ1dqghF8oQj+cJTVxTXWyKBtpbg6yJqSWv5vXXpJkCU1xveS12W3vr/AFJZ1pbBOu+L1i0ewW5eseieMKv3GZ2pgF8P19TgdKUthE0frZLkdROPvPfOkgdm3ecXL3wL1hWWnTBf79cqlS7bbcvx94WhdKWz8e08pxR7dsxnQOROPy2a5q4UVfmMeapKTG2b/bygSq+e6agyB+eakkeR5neJYCimRESOCIAhN0y7DexLJcjusPiKzvM3cpHfNdlNaG6KwMkC3HDdFVUGyMxyWQ2nicthwORoLgwyn3bpthtOOov7Z7qJ4qmSFP0xVIEJxdZAeuRl1PZa1IWtTdt3xe1rrtdsU/nDU6sFcXVzDgf06AYYblcyxdMfPxs/8cCVghGeY4tHcIA5MGMFgCq1gxBhG3jffg1KK9aU+lq0vN46b3eiXqw6ELVfDHS9FrQnWDTEv94Xp3anpv0PDTbi5sU0116/h7esSLe3YbYq9e+VQVBVgQ5m/0XD76kCEXnkZ9Mn3ouNhLebrzc+s28T2i5dspnIsIfnYinQxXUZ3C3sOTRLHfKSbzOq02awe20RiuplUWJW8x7IlibC/BYfNZvXFbk88TqO8snuO2/oMmaLfPG5mhUDnLDebKwMEIzFKa0IUVvqp9IfTFr/md8GQHjm88+MWSqpDlNWGKKkJoZSq93lsKeZne1VxDcMGFjR7+6VrDAHqddX/e/bu5CUc1dYoEvP7rH+B1+qpDkdj+MNRCrI8dM5yk+dxYrepRsLy1MeWsGprjeUAQ913bZ7H2ajc3xSLBQ1myLoT+izB+Hsk9lg2/O5wO+zUBo3P95r4HM6MJKFDZshZKBqzXmuux0lZbcjqO+2c5WbBd4X8vKW6TWaNCrsAh8EZvMShfMroWW9zOJ+wnCF8bDuc0RNf5z9lR9Ejv9AYLwKMZiGDR/zM5ffPoe+UjZy18AnmLprAxGNmMpez2YcfmM40/Pd7UXdryIazLnkCgGlF03mz20n8eeV78AfgBODXLpzVcy7Pq0JjPfoPbXIYBEEQktHuHUswNjLBSF05leku5nic5Ge6KKz0szru1A3Yhv4wMMoMPfFyWHPDtSUuLM2yutKakBUeBPUdy8TNqtths8pTAR74YKW1iaoJ1ZXOmsybOJz7xw81rg9EcNlt/GVoL6sU1hSW/QrqHEuz/Ksy4fm752QwpEc23XMzjLLecJSt1UHe/XGL9RrcDhtel52aYMRwBjxOfKFo0sHjrYkZ4mH+7WxK0SPXg9OuLNFpYjhtTvpY7m9deXJ+Qqll95wMcjIcaYmnRJcnXcwNdEt6FBPZFscyw2lLOtxeY5S7pkJB0lTYrB0kLPMzXXTPSX9ESSqa+ztlxk80dYu7lWCEBzntyqoo8IWNcRrmaJrqQIQt8XTeFQ2qB5rCFJZ79sgxfq8JWD2DxdXBZnuaIZ5U3eD9HY1pKuN9jWuKa9N6jMc/XYPbYWvkQJv95MGo4eKZgqxfQSbBiOHWmunZ5vvRET9RkuG04bLbrNcRiWliGlwJoi47w4HLbrNcYaj7PJhisXOSUT9QF35VG4xQE4ygSJ5s7HYY1RZVgTDrTGGZpHR93sTh7N83j1AkRjASJcNhIzd+PMzbd8lyWxUngtCIfaYxdMYXXLz0GZYzhDlcRKcFfg658Cv+xVjO4CWuyr+X9ZP35NILn+TSC5+kgjwOYhlkwAjf5+zDDzw26hweX/53nqi6mCuXPkJnSrl46TM8eu25sBbmh8YwPzSGe7pdwxm+Fzlw8GfQGdD3w11unlcXAtOkDFYQhJ2Odu9YgrHxKPeFqfSHcdltvDVpJEopxs/5nL75Xip8hnPYKy+jUV9OSzDj6rtkuagJRqw5eGapWUltsN7Z+fLakFWumthb5nbY8IWiOGwKRwPhZArBSw/fnVN/38e63AyHCURi9Mn30CnTRXUwQjgas8aP9OrkwVFl7MzK4m5oRfyYmGmM2RlOq69Oa83XGypYvKqEYCSGAl67aATPLlnHbW+vwOO00yffQ8WvYcp9oXqbdZPWCvDxhYzNvruBSPM47Y16UE2nzeyhDIRj1mzH/ITjb7cp9opv+rcHSikcNpV0ZEM6JI5ASbfHMsNpJ1wToiourk1imibnjdiUQjeI76kJRuoJgu1JfqbLEnLbk+45brpmuxuXkttthOKCwh+KWqmkCthU4beqDK597Xu656Y+JtWBCJvKfYx7dAkbynzkeZ30zDNuf93rP+ALRcj1OAiGY6wtqWXfXrnYkih+83NT4Q+zsqiG1cU17NbF6PE2xicZJwNWF9fUu19tMMKmcj/94iX65ppWbKmmf4G3kXNuPuaa4loiMW05d/0LvNZolkq/UTrccISMOWvVFJ6JJ5+gcVWCiSNekmp+L6YKbDJPIvlCRnKrOWqkIabDubHMx9qSWmwqdXl795wMvlxbRkwbnxW3006P3AxLNHfOdqfsMxc6NkoB+7T1KgRBEHZuOoSwzPO6CERidPK66JJdf2yE22GjX0EmZbUheuZuWy+duYE64t5PqPSHyfO6cFUErB7LRMeyMsfYhPXJ97C1Kmg5lok9QebGLD/TZQRXhOqnM0JdsIxJJ68zXs4IPXI8VshOld8IIrEpY3xFOFrnWMa0ptIfpnOWO+mGzexD/WxVCVobToPDbmPP7oYY65Zj9Dq6HTYqfOGkwrKlpBzuHt/sv3LRiHq387rsbI2HmNhsCq21Fd7Tu5MXmzIEkt2mULRsvmJrsFuXzKTuSTokOpYtEZYAa4tr2a9PnnW51rppx1JBw7a/HVkKu6MwknMbX26WSIIhZDp5ndjiyc+1IaMvOxSJWc55Ksp9IaoCkXgKcYwuWW4rdTYYiRIIxyjIdNEj18lPW6oprgnSLScjZUl4ld94vv8VVlkisMIXwm5T5GQ4+Hx1qXXfUCTGyqIaQtEYsZLaeBCOYnNlgIJMF12SOIP79cmjf4GXTfGyV6sUNl6mW1QVoDLea5vsOyLX47C+k4INhGUqlDJOtvjD5smz5Lc3y3Z9oSi1wQjdczOSutHmOKjLX/6WrdVBoy0hxUmUbrkZViWI+Vr7JoS1GY6lCEshOX/5/mXeWnkaY4a9yinHLaDPuxvZMKYrV465jYM3fMOBfZeybMZI6AVnXWuUsxbSkzNXvga3wY2X3Mp9H90EmTB02Bfsy9dsHpZHjyMquPOjK7hY3coY/SrzV50KwImD/slH3sP5D0ex7G8j4fUpcPJS4N34isSxFISdFw00X5nU3mhfu8YUdMl21xuU3ZCu2e56fUG/5Xk6x+cdOu2KouoAkQTHsLQmaJ3d71+QycYyP1viybH1S2GNDU9BpouqQJgyX9hK7DTv3zCcwtis2QiEY3TPzbAc0Ap/mGAkhsthlK+ZgvOx/64hJ8NBTDcdmJLrcbKmpBaHTVlu7ojdChjUNSsuZhV5Xidbq4NJQ39aA611fLPf2NHyOO3ENJw4+zMynHaeOuf3xHS8BM9hhHNU+MPkZjhSzqvcnvyWlNNEx9F0kprD3CyvKampJyy/21jR5MiRZI5l9Takwu6qOB02SwxGYhpPXNRkuh3UhqJ0z8mgpCZolbI2xBR3Zrl9dSBMOKrpnOWmIN7Xa4pEr8tBToaDTLedLZUBumbXndhpeGLFLBddtdVwJrXWlPvC5HmcZDiNSgwzfGzl1moisRjdst0UVQcpqTFOHlX4w0w5ejCfrSpJuvZuORl0znJT6Q9b7uFB/fLJyXBQGP9+6pHipFGOx8niX0oYP+dzS1i+cMGwJt/38yYO54Ln/o8PV2xtsr/ZGw/vqQ1FqA5GUp5cSRzRFAhHmywbT3wdGUkEcOdsFzGdfBas0LEJVypyqsrQToX6XqMGa/gevtt3D+7bcB2X9X0AF0EumTqbKaH7OJ2XAFjNbrg6V3Fn4fVcqaZysn6RarJ5f8NouNJBj30qmPnRRL5kGCzrzYJ5p/DY+HMAeOuG03jrrdPgUuj6ywa2KhumqJQyWEEQdkY6hLDckZgbRJfDRlFlwJqRBlBaG7LmZvYr8PLpL7C2tJYMp62eq1WQ5cKmDHFkilKzT7LC37gn08RlN4Rlj9wMcuMbxApfmFA0ZkXtO+xGSEokFrNmwzWV/Gk+TySmrQ2czabqpZzmeVwUVQWpjvd9aa2p8Blz61IJuZaUyPrDxma/4agESAj4CEeNxM/4GkxB1MnjpMJnhCc1tYndGTGPfaoSwGSYAnRtGr13iTRMhY3GNDXBljuWu0rgScN1uu1Gn976UmO+4e0n7s2hu3fh+JmLjFEZmS58oShF1YF4wm7jv4fW2qouqA7EHct42a3Trqx5j2YqdY9cD6u21lDuCyctA45pbY07MUtea4NRIg1STwORKLVB42dQl0zyM13UhiJWkE1OhoNzRvZPKSzBeI8lrsHjsrNXjxxqgxEqfGE6ZycXirkepyXCghGjXD2dcKPenZpOZIa6Ulh/vBQ21XvR/E7zh2MEIzEKslJ/zs0yZkXy3mfT1RXXUkhE3Q/hC9p6FYIg7FpoYNtHlu2qiLDcTrjsNrZWB9lYVjeIu6SmLrDDHCK/triWPE/9TZvTbrNGIZi9j/6wsdGpbEpYxjdK3XMzLGey0h8iFIlZvwM4bYpIVBMIGwPTU5WimY85uFsWK4tqUpa4mQEvtaEo4+d8TlUgzM9FNfQv8LZKeeymch821Tg9EhKOTyhKJ2/dIHVzE5rndUGpj2AktsNGZ7QWZrmzvQUuqy3uXL+wdANL15bVE1BNPUrD8B7TKWtvpbCp6JrjpjYUsWaj7tEtGzD+Bubfweuyo7XxWUx2kiMUiVmjgMzjZ1ZKOO02wtH6fcL5Xiduh43NlYGkwtIfilq9lB+t2Mr4OZ9THaz7/Jsl9v5wjEp/GEdcHCqlGNA5i3UltXTNcVOQ6arnfreETLejSQcw1+O0+k9DkRhuR+oy1MT3ohka1NTJnsTwntpQpMkeXLfDZlVzmAFEyU5ydI+3O7idtkZl9WD0WIIIS8FA5cf/5yb4IWcv/FM6ce79j/IC47h61j0cyiL+zoPc2fdqDuQr3uNYzt/wHGf1fYb+rAXg+As/ZsITD3Ll1EdgGbw+6wyunTyd9zb+GXWZ5vRRT3P58jlwk/E83A4XFz0DgP6zYvwdz/LKvL8xjKUs+O8pwDT0qLY4GoIgtIyOWQq7a1k4uxDOeFLhNa99D2ANZjc3P+aoi3WltU0OlDedzEDcCWlKWJob1h4JpbDF8bmaiWfnHXYb4WiMmmAkrdTPQ3fvAtRPe0zEYVNkOGxWGWBNXNylM2jc2DynLjurCoQp94XpmedJugl12G31kmHrHEtHfM02SwRsi2O5LWmwrUWiY5ku8yYOZ/huBfVmEILx9daUsrTZ6o8b6WjC0mm3MbhbNnt1z2ZAZ691YieRujAZY3TQNxsq6vVcmm5llyw3MW0EJpmJp+Z7z+OqE15KKbrnZFATjFifnUTMv0Ge10kgntBaE4jgdthw2uuqHPyhKBX+MHneugoBr8vOkJ45KfunW4tEYRmMxJrtrzSpE5ZpOJZhw7Fsqs/YTP6G5ImwJt3jf9dk40gg0bGUUlihjsFTvmce4/nl/j48e/ZFnPn+a0xmFq8s+huLig7l+jX3c8y8T/mEw/my7/7sxmoW8icW8ifoAWNZwGUz7oFhYBtfy927T0Ndrzls1LuczGsE+is4CDgWPIvLDZMjAupFTR82wtswlG/hj9ONH0EQhJ0UEZbbgXkTh3N9fC6luTnMdDsora1zLM3ACF8o2mTpmN2mcDlslnCq9Idx2lVSx8QUj91y6hzLn7fUxK+ru73DrqxxIdluR7Pi6Yg9uwLgaaLPz+t2WP1n5ia5NhTFF4qgtTFHctXWGr7bWFF3fTDC979WUu5rfEZHa6MUc32pD5fdZm0Ik2HOJgSsUuPE3kCzb8yRZBPblsKxOUxR19LZjgM7G8PtmxLsDVlbXMuy9eXW7w1LijsKOR5nyiRcTzwltiYYYWO5j1A0Vm/8iCkyuyWMTalzLE3BV18cGT3ZUFzT+CRMTTCCw6bI87rQ2hBuNcGoJbDsNoXLbqOkJmiN/tmeJPusmKWwWusWCkvj+6+pagmv5VhGqU5Slp24nkQx2VQ/cpdsN0qlFp9dxbEU4ij1YlsvQRCEXRqzFLY1f3Z+OoYdsZ1oSpCYJaA1gUh85ISNsvgYiCy3g84JZZ2pHEvz8feb/n49YZmqd7GT10UgN8bevXKxxa9/bdlGAKvHEoxSWLOfLh1HauSgzuzTK6fRpjiRTJedstoQkaix+c3JcFAdiFBcHcJmg8KKAA6bIqo1W6uDDHA7KI+PPGno1vhDUVZsqbJcg0FdMhuJq8RRBmYyrJEI27hvNM/r4teKAA7bjj+P8ltEq9Nuw6agpUbrwC6ZxDRWfy4AuslpI+ZNrLLAq47dA9hxjuWOEve/5XnMWbVm2jPAla98Z33Wa4NRPE67McYi7qAllsICjU4IOew2OnldlNaE6JvvtT63YAjLLLfDOqFT5Tf6pRNLUzOcNutkSjq9ja2N+ZxmGbA7zZCpAZ0zyXDamnQhM5w2lDIEe20wYpXGNmTexOE8/8V6bn7rRxw21WRlgt2m2Kt7dkphaZbbirAUAB4tOxeAi2c8w89TlzPos028M/dwpjGd6+c/wNCxX/DNsuEoj2av8d+wbOVIFgwey1zOYmtVNwBemTGWE+Z/SMEJv3JY+F0+fup4HvxlApe/NId/cDV3cx0n/7AQgJOLX6SUApZPGQLA1q/7ct+Um+B5uPV5470poT2CIOzMiLBMg23ZjJqbzVDU6Mdy2m2U1IYsYZi4CWzYY9kQj9NGdcBIf6z0hRuNGjFx2m30zfdaGyu7TVlOXsNSWMASvOmQSlSax+a4mYsAI1woFI3RPdcILTHCTowSswGdvawqrqWsNkT/Ai9ltYYrljinMxrTrNxajdbGqI6cDGfSkI1EPC4jGTYYiSV12jJddnrlZdQLHNpVcNhs9cRGOgyMj4oIhOs2x5qmeywbXnnjmz8AHc+xbA5zVm0nr5OqQKReSmxtKGL1MmZnOAjWhKwTSOZn8p5x+3HwgPz6fX1ZLspqQ1QkhPhEYjEC4RidM91WH3FxjXEiJiteZQAw7I4PqYoH2zTl/m0vzO+irXHH1ZPmaJ1Mt4P9euclvS7x+9brtFMdP85Nle336VTXO9nc93VT72mH3YZdKUmF7eAo9T0MOoOLFpwJwMVHPcNfeJPvRw7m+IUfc/DoRfAkfLNkOOPvepbLuYuZT1/HreddxbG8x63qcFylPQHIphq9SLFqbG9GsQgqIYoDvoBnTz+XE3mT1888A+6D15adCV1B3WO8/w6Z9QGL3z2ag/Ui4HCWIs2VgrDr0DF7LEVYJtCarknieBOjJ0oRisQorPBbm0C7zdjA5DbRYwlG2ZY5UmNtSS27dc1Kaw0Om0o6W84Rd/+yG8ymSzXQPB1MJ2ZrvK8yy+0gw2k3RiN4nQzobAxnz/c6KasNUVITsgSl+V+tNWtKagmEY+zZPTstB2bexOEsW1/GyY9+jj8cbRTeA0Yvm1l6t6vRKy/DGgCfLgPj8w4D4Wjaf0vjXVC3mTY31h2lx7I5zM/GYfd8TGlNiD6dvKwtrbVSW8PRGOGoJjM+IqOT1xCL5vsu1+Mgz+Nkn165jR471+PEYVOU1AQtYVkZLw/Pin9XOOKBQA1nsZrOWzplsK31/Zb4OKaQ3lwRIMvtaHXX1Ot2WGXCTbmbZmtBqt7JFrFjJxIJOyt/AfvBRitJcbdszuNpvmQY146ezt1vTCP2rEJdq/mIEbzMePQIBZtBrdVwF4TuNB7m+AEfc8y98+nDRm7kdp6YchazuAw9XtGHX5itpvAPPZlrrp5Ft3vWs1WthKOM+y5WRwPw5Y0fGxdIao8g7EKIsOxw/BYh1RzO+GYwEtP8eWgv9u2dy5RXvmNtSa0V3OM0hWUzmzGz9K02FG1RL5XDpghiOJeJpaSme5Jqo7YtG1Cn3YbLbrOEndflwKZgz+7ZZLvrBGye14VN1bI+npabn+mivDbEKY8tIRCOUlYboleep0Ub1N3jCZ6+YJS5S9bFn78VNpg7AclCZJqjW44bm6rvBGutUU32aqp6qbCWsGxiM98R6ZrtppPXhcthIzOhBNss5zbLNfMzXeR5O1nvY6/LwR7ds63xOInYlKJzljGyp7QmiNNhY01JLR6n3Tr+Hpfh3HlddmwJf8ecDIeVBtsWmK9PA33zPUlL9H+LoPW67BRXNS8se3XyYLepJhNsBSEdlJoOnNjWyxAEQdglkX+FtyMuh41IKEqvPA8F8bTBoqog+8ZLwBx2BZHUPZYmxtw7o18zkoYQNTHDagZ1yaq3uTNLS1OV1G4rmW47IZ9R+msK2YZrtdsUuR4n5b4wHqedPI/hYAbDMatXrEuSsSJNkZNhDIuvDUVwxZ1gc4O7PU8e7KwopfA47dQGDWEZicXwhaItGv1S51hKKWwiSilcjrognpgOEoiP+1DAvIuGk5PhZPycz1tUwtw9N4OqQIRV8fmjGU4be/XI5tWLjZEYB9/+IdWBxinOXpeDA/t1sn7flvf7b/mMmN9d+Zmu7fJe8bocFFUHAJoshXU77OzXO9eqxhCE38Ir+iZOXTqf2GrjJPAD3a4ggh07Ue66+BYKHi3F1kXDHDhi5RJwaBx7RimhAMrBc3E5/hOMz+Vl99zDQy9dTe/TV/HU7pPgamAiqM803AB44CC+giiMZx7n6mc4QP0LgL/oZbylfgakt1IQdk12jcCd1qRDCMvmzphvr+AQl92Gjyg98zz1+vvM8jEjTCbabI+lTSkyXXZqgy0UlvGwmh559QVFToaD/XrnNhnL3xzJjlmmy0G5L5wyZMMkP9MVHwrvtBwcc6SA066a7alMRqbLQVUgTE6GUzaXGKWYmyr8BCPGcdVAfmbq903DIxaNaRRNJ2x2dExXvDYUoaQmRJ7Xmfa8yIZizu2ws3fPHEpqQlT4QvQt8NYLoTE/q025dm3B4G7Z9MrzWGmqrU2my87aEqMcsbnXvi3jhGDHBUcJuwoncurcaex19jes+H5/AK6N3s0B9q95Z/ZJHProp1STTdfiDWyd39e4ywuK2e9O4YYlU+FlGDJjOctePgiAnhQSPkHxez5nk2cQvAxcAXwBHASDfd8zl7PhInjo9Kt5aNzVHKbfBeCtlacBMl5EEIRdh51rl9LOcMYFUs+8DGueHUCOxzjspqPY0LFMKtrcDoqrg8R0+umPpmvYIz4U3EQp9ZtEZSq8bnPz2/Rj53td1ORE6JqdYa3R7I/MzkieeNscWW4HpbVG32ZLx3O0RwqyDGFZWhOiNhTFaVdNb8wVRLUxNkIpo4Q70fkVGmOOHymsCBCJ6Xp91duCUoou2e6kj5PrceBx2tMWrttCw++ddJxMu01ZMym3Bx6X3Qqh2tlEtdD+UGoesFdbL0MQhHaB9FgKv5GGGzNXXDj2yvOQ561zJU1haDqK6QjFLLfDGnOQ602vVNQUrj1yk5dAtuaZ+nkThxMIRzni3k+a7fey2RT9432mYDi7lfE02VQ9fc2t1QxN8YWiEjiD4XBluu2U1IQIRqIUZLmbFIkuu43S2hDfbKygS5abUDTWoQR6KhHV1PvOHD/iiwv37TlH0utysG/vxsE/7Z3E6oemSmEF4bdi9FbuCefuC2/B2LPns7r3bgDk/DfE6od/xytvjOXU7+dz1r5P8CgX4R4bYhW7cfmgOZy65DnumD+D3jNWseyjkXCksaG8/r4H8E3x8u3kP8AmeOX7sRzEV5zGy3y5dBQrJ+/L/bOm8Oyki7C9UMtd3a7nGnWbsaifgZ+noQe3ySERBEFoMfIv9Xakc5YbW9yFUEpZKbCm6+BM4VgmI/FsfYtLYVMIy9Ymw2mnTzydsSV9W4mz+LZVFGa6HCiM80MdSRA1RUGmmw1mSFIz77GBXTLJz3RRXBOksNLoaWsvAUgtoaUnW8zxI52bEe7bm1Trbo2TR21ZKpr4HhTHUtj+VKOHGtkH2b5ipucbfY1nH/E4XAWnrpyPp385z8+9kBePPZ0nuk3g8o/mQBa8Yvsb+gnFBTzMU4FBXKIfAmD291P4igM5f9YjXDHrAf7Ev1l/x56wCQ6Z/QGL/3o0Jzz0Icfo+byvhlGkuwI5xnL2iJfBSn+lIOyCaKTHUmhVMpx2eubVJSU2TIHN9TipCUbSClVxOxLGk7QgFRagZ972K1VrDTwuO1WBCDa17WLGZqtzj6TH0qAg08WGMh821XxQk00ZyaL5mS58oQi/VgQ6pLBMF1Ns/fGejympCdEla/v0GKZ63ta63c6O1y3CUhAEQdgVkVJYYTvjsNsgErM2+ZluB4O7ZacVOqGU0SNX6Q+nLSyz3A68LjtDeuT8pnW3Jg2dzHkTh/P8F+u5+a0fyXI7fpPrk+V24Asl77FsLxvtluBy2Oic5cJhs7UoodTrcrB7mrNSOzpds93kZDiSjhERfjuJpbAySkTYXtzFFfxDR7l61i08Mfks1tGfg/iK66c+AID+vWL81/NYR38e4ArGn/0A2VRzvnoW3obPx+7PcL0ANUBzCB/An8J01VuNB78S9vhgJW6C7H3EKlgFQzd8wbdqCYsfHWME+TwGPzMY6MZ9p9xEYmCPpMEKgrArIf9S70DM0tecbSz3zHLbqfSHU5bONhRPHpedfXrl0qmNZtyly6AuhohJVgbbEkGY6XZAdRB7Owqc+a2CeLcuIhC3Jzal8DaTgtwUHXEcTkswBbtNbXvqqyA0hVL3c6eGhYxmxgVTqXm6M++fdyi3X3Ur3e5dH7+Nj/v0VZzLM1x63pPccdgMOERTGckg1/Eaw6/6BhTsdsT/WFw4Cq53csvpdxlPUAszH7+O0yc8zYEffcayhSP5duofcJUOoUd+IeufBh6D9WP3ZLj+mM/VIkAEpSDs+kgprLCdMTdGuWn0VCajINONLxSlb7yPcUfyWwVOU/ffr08ueV4nBZnutG6fCjONVnosBaF9YDqWLXHcBaGlXK/yYNlx8C6cc8NjHDPrU/gOrsQI0ZmsH6LfjCKu3PsRrnz6Nu594WYuGPgwuW8E4V/An6dzju5Gf9Zxy493wZ2fcIn+GoDZT0/h9POe5qWnzwPAM64c/5+WceyMchYccQqHfPQBk5jNX+96k89VADgYrY9vmwMhCILwGxFhuQOpcyy3TVh6XHYGd8veLqNC2hKvy8Ee3bJ/8+N4nHZ65WU0m0orCNvKtp5g6Yil2M2RzjExHcvWPFnU3PN6XXaO36dHqz2fIAiC0BGRHkthO5PldpDhtFGQ1XGEz47aUEtJYX2S9bIKO44d/b7fGdgea8mUKgRhO2KMGAH+O41HDziXi7s/xrMbLuAfkyfz5OQL6MlmAPrNKoKHoKzYS6fNfuxH1xA7LxMOw9hF7TONZ23AJ8BXAOuY7ZwCwI/hQey94Sc4yLje/1onjtRBsqmGj+ex+KTxLH7zVxL7KkEcS0HY9emYpbDStLIDyfO62K93Hm5HyxzHeROH71QbyO1JR3qtQvuhtd+38jkw8DiNc5/pCEs5ZsK28I7+hOGjPmYGU3m259lU9srkmo9mcQUPMIvLmMVl/DK5D/pdxXXcifpcc3W3e2ELXHb2PfAM8MT/t3ffcVJV5x/HP18WIaKACqigLkWaighILEg1tvBTbChWQAUsUYIFxRIplmgENAjYUBHsJaBG7LKKImuQKgiGFkU6JoiBgMLz++PejZN1yyzTdu4+79drXjv3nlue55yZuXvmnnsHntt5ZtDJHAdn2K8gH8iHFlctgecqw4NAC2A81GMVz554KVzZg+v/cics7p3BGnDOueTxM5YVkP/z5Vz54mfci+ZnLF2q+GW7zrnU8qGwzrkKyjs25UNxX/qU5y+DUhlbwR13o3SnZ1eOXDuYi3b2YeOpB3DUlI/oPfIFerUQc09qxgoa0JAVADSp9w2MhyP5BK6Gi8+aSN0pqxhw7yO0f/ddPn7nRJZwMBwHXAu12Ajtw30cB3PHNuOINouhA7ABJk7oC2thz1c3MIh7GTHotv+G5HeDdc5lM+9Yuowoz/8oV2TewXTlSbUU3LzHucCb2M1d0RCj85S3eGvLb5l9XSs0z3iVk5nEmeQtOzlYdMZPzMptSet3vuS+VddQj1UMWDUKToSPJT6zw/mGgxhhv+PunbdwAu/x+Mu/C9b9GI4YthiGAD8QdD57bQXe43fVZlFn1GYYAAwYjHXMQDU451KkYl5j6R3LFKqInaeKmHMUeTu68qDg50a8Y+mSKbhpz1GZDsM5F2k+FLZck9QAeBP4EFhnZrdnNiLnyj/vILpsloqfG3EO4DO7EWkIf7RreYOurKpWl/1Yi/USOs8YcNM9vNjodADOXfgarW/9kr0Gr+YgvuHGr0fyaO6lbKm3O5VtB52+/4iuNabwysgL4Rg4f8UkaB7s54y7n2fyo+dxVbeRbKAWtS/YyObHqjPxtb5UYQb8PrgbrA+Bdc5FQUo7lpKGA2cDDYDDzeyLcH5T4CmgFrAR6Glmf49jk5uBqsCylAScZv5Pv3POFW/vartRc/fKVK+aNd+Buixwk8F2qrJz4xDm05Sb772fY26awbp5ufSe/TAHs4BxW/rwwD2DAGg1bAbUg00r9mfT6P0ZMmoQ/dpMgAFwZM9PuKrGGO5fey01r17D9v9UZWve3rx4QTcADmUhVfptY+yo66A2VPrNv9l5yB7s+93X3PvdTcD9masI51yK+VDYZJsM/BmYVmj+w8AYM3ta0kXAI8DxAJIODqdjvQ0MN7OjJAl4SVKema1IZfDZzjuuzqWWv8dSq3JOJZrvXyPTYbiIkIbCP27lptxMR+Kcc9GU0o6lmX0MoJg7+knaF2gDnBjOeg4YLamOma03s6XACSVs0yStA6qnLHCXdv4PunPOuXQ4iG+4i1sYuM9w7uJWvrupGrlbvqZm8zVMWHsxL+13DmeveYObhgXDVDuTx159V/NKla48O+pCptMOe0V81PAo3uZk7h47jNFX9eHqVWPgnqrwHJxb+7VgZ2uAfwH3P8gIW8T1T4yBPWFdfi4c48NgnYsuv8YyXQ4CvjWzHQBmtkPSqnD++uJWktQZ6AnsADab2fxilusH9APIzY3W15Le+Sqd15FzzrnCghv2DKZ+7iKasph8jqbLok9p0Lwv02nHD4tqw0qo320RZz3+Jn+97ESu4GEA7v/uWgDOeu1NqvfezBxao8EG7aF+v0Vcc9V9bKMq/L4qdV9azuoLG0J+sN8Db1/Cyq6N4eJruF4j4UxgA/BJRqrBOZc2FbNjWSnTAcTLzPLM7FIz62tm15Ww3KNm1tbM2tapUyedITrnnHOunDrbnuFo8jnp66lMfKIv9Zovo/Hav/Mkl3BwmwX07vYwK8YcwhOXXUAOOziTSZzJJI7aJ5/tD9Tgz737cVLuNM5kEgdPWABr4Dxe4MGWA6nFBl596WRO5m3Ig4/7t+Xj/m1ZeW9jaA6HTJgNf74OJg2FVsD1frbSORc9mThj+Q1wgKSc8GxlDlAvnO+cc845lxTBmUrnnEs3/x3LtDCzdZLmAOcDT4d/Z5tZscNgo8KHaTrnnHPp95CtoDNPspHaLM1tzO6XbuHj6Sfyp3b9mUJXGrCCS3gStTW4Begds3Ie8B4M6P4IP/w9hz21g/b2Lptvr85mqkN7yKML44ddAYPfhG+3UY0tAHx8U1vaXzeTLkzly1+1pua23VKJBgAAFAJJREFUy9n0MPBp2qvAOedSLqVDYSWNkrQSOBB4T9KCsOgK4BpJXwHXhNPOOeecc0l3ZcsnOYeXaD9vJp9/cBy12cix7abSh3H8iYFM+64DnUbm8+Mh4qS7X4Ml8HjTC3m86YVU6f49jIcLWj7BjsqVoS0MZDizaAPA6LF9qMcqaAC/ta1U+dU2fiKHn8hhLfvSdOQ8xs66jt79HmZT1c3+25XOVQgF11gm81H+pfqusP2B/kXMXwQcncp9O+ecc67i8mGwzrnMqZhDYbPm5j1lIek0SY9u2rQp06E455xzLmN6Ab24bN4Y5o85irktm/HH469l8hPncSt3sfetW8mjC+32mc7q6/aiW41XWMrB1O26nMuWPc1ly55me4saHNx0Ac/qUjbm1KLK298zj8M5cNl6xta4juU04O67h0GvL6nKdrYPr0E9VlOP1Zx96BS+GtkSesN4bQGeBfxspXMumiLZsTSz182sX82aNTMdinPOOecyoe1gVlsrVlsrXtjSA7U2+vIYXZnC+kurc+o573H0XR9y46xRnMbrPMuFDGQ47ZhOTybAGgWPO2HpbocB3/MNB7H9+Ro8sPNaeF7wLozoeBuVLvs3jDiEyV93hz+O48CFGzhw4Qa+WNgYO18wPx/YnOkacc6lTcUcChvJjqVzzjnnKi71zXQEzjlX8XjH0jnnnHORUXBtZYu//Y05tGYOrflhRW14Eu5jIC3HfMVimsEfoB3T4T9wOPO4e+ctfERHJr7Ql3s+HwJfAF9Ai0v/xoAf72H3TTvo1C2fPXtvYOO4A2AqkA9MG8rOE/eA94Dmldm5sS8XH/oYFx/6GC3aLEGvG/DWf+PzYbDOVQQF11gm81H+ecfSOeecc9HyAnyR+2tOWZ7HKcvzGH9oDzgfLuQZ1MHYThXGt+zBA6MGwWg4aeA0Xq10OoMX3QvVQdsMZgAz4Gg+44GRg9h6yt7w+if8MK42o/v1gS7ABuDKwQyYdw9cBPSGSjOMiWrIRDWE9sDlI6m1ow+1dvTxTqVzLtLS/juWzjnnnHPOORddBddYViyR7FhKOg04rXHjxpkOxTnnnHNpIA3FZg7hHWvPSXcP5rtbqjGDVgDsxzrYA1ZOaAxtoctHn3Jfx7YwGewqoS3GOPowtXlnDmy+hO68TE67YOjZiNdug4eAzsD642A+dCaPF2/pxqEspMWjS3hAtTnEZvPlba1hAHD+CUFQD/7IvtaddRoXTPsZS+cqCP+5kcjwu8I651w0vHD5sbxw+bGZDqPckHSrpHmSZkuaI6lHTFk1SS9IWiJpkaRTMxlrplzEM9Ad9p60lWOPn82xx88OCnYHJgOvQ4+O47nhuwep/8EimA9UhZe3dKcaW1l5VmMW05QR79zGiHdug9PzscfFuY89BRcDp0EL5TGOPrTQZ9AYjrRD6MobsPwhmA08Fz4u3o11PXMxG+zDYJ1zkRfJM5bOOedcRI02s7sAJNUDFkl6x8z+CdwAbDazxpKaANMkNTazHzIZcNp0GMydR25m3YRc6vZcjsYbdT9YDsD/rf0rbAAbIO7pOICbVZcXWxvvzOqAmhl/6HErdzx7F9dPGgMHw5sdz4JpwTC2Vmaom1G343IYPBTOH8yHdjadlM8yq0ejdqvYMT2HEboNzgTqQmcLbtaTp/wgtgneqXSuYqmYQ2EjecbSOeeciyIz2xQzuSfBfy8Fx/IewMPhcn8HZgK/TWuAGaKCoabOOecyxjuWzjnnXBaRdIWkRQSDLvuZ2cawKBf4R8yiXwMHpTu+jGkAe/Mv1veszuquDWE9rBrTiFVjGrHznD3gZFAnYwvVgK0w+0He5wTOuOB57rjgLj64oB2zXjoUagPThlLfllLfljKUwfAFrFZD9rVL4Lk36fTrfFrZDBrlrmLI9EHsxb+AHyEPzu34FHnK//lspXOuAqqYPzciM8t0DCkjaTOwONNxpFBtgpudR5Xnl72inBt4ftmuLPnVN7M6qQwmlqRZBB3EouxnZjtilj0ceAboYmYbw2NeIzNbH5aPBZaY2cgi9tMP6BdOtiD41cbyKhtej+U9Ro8vMR5fYsp7fADNzKx6sjYm6S2CvJNpg5mdkuRtJlXUr7FcbGZtMx1Eqkia6fllryjnF+XcwPPLduU5PzNrU4Zl50taRXC/0lcIzlDWB9aHi+QCU4tZ91HgUSjf9QHlPz4o/zF6fInx+BJT3uODIMZkbq+8dwBTxYfCOuecc1lC0iExzxsCrYGF4ayXgMvDsibAr4G30h2jc865iinqZyydc865KBkq6TCC2w3uAPqb2Zdh2X3AeElLwrJ+ZrY5Q3E655yrYKLesXw00wGkmOeX3aKcX5RzA88v22VtfmZ2bgll/wbO2YXNlvf6KO/xQfmP0eNLjMeXmPIeH2RHjOVepG/e45xzzjnnnHMu9fwaS+ecc84555xzCYlkx1JSU0mfSvoq/Nsk0zElStIKSYskzQkfJ4fzsy5XScMlLZdkklrEzC82l2zKs4T8imzDsCyb8qslaYqkxZLmSfqLpDphWVa3YSm5RaX9JkuaK2m2pGmSWoXzs7rtCpSQXyTaL16Sqkl6QdKSMO9Ti1nuAElTJW0q6q6IkvqG21gqabSkSvGUJSu+kvYjqX9Me86R9L2kkWFZZ0lbYsrK9KOSSYqvxBgSqb8kxni6pM8lfSFpgaTrY9Ypcx3G816SlCNpTBjLEkl9Ei2LVxLi+0NYT3PDeov9HBkiaV1MfY3JQHzFxpCM+ktSjBMKvW93SupWWvxJju8kSTMlbZM0vAyxJ6UOI83MIvcAPgAuCp9fBHyQ6ZiSkNMKoEUUcgXaE/xo9//kVFIu2ZRnCfkV2YZZmN8+QOeY6fuAx6PQhqXkFpX2qxnz/HRgVhTaLo78ItF+ZaiH24Fx4fMmwBpgz6LqC+gInArMLFTWEFgJ1CH4IvptoGdpZUmOL679ALsB64C24XTnwvmkqP5KqqNiY0i0/pIY49FAvZjXwhKgw67WYTzvJaBnGEOlMKaVQINEytIY38lAtfD5EcC/gN3D6SHA8ATft4nGV2wMyai/ZMRYaLkjgI1A1TTXYWOCO2rfWXh/qX4NRv2R8QCSnhDsG77Rc8LpnHC6TqZjSzCvFRT6pyjbc43NqaRcsjXPwm1WVBtGpB3PBt6LaBueDbwX1fYLD5Izo9h2sflFtf1KyX0BYScrnP4rcE4Jy3fmlx3LgcDomOnuwBullSUzvnj3A5wFzCspn1TUXyl1VGwMidZfKuowLHudn/8pL1MdxvteAt4AusdMjwYGJlKWrvgKLSdgE3BgOD2EBDpFSaq/YmNItP5SVIejgFEx02mpw5L2l8rXYEV4RHEo7EHAt2a2AyD8uyqcn+2eUTA8b6ykvYhWriXlEqU8C7chZHF+4XCqK4HXiFgbFsqtQCTaT9I4SV8DdwG9iF7bFc6vQCTaL065wD9ipr+m7DmVtI1Etx/v+vEudynwRKF5TSXNkpQvqVcR66QjvuJiSHX7lHk5Sc2BYwjO+BQoSx3G+17a1ddVonWWjPhi9QSWmtnKmHnnhZ8x70g6tgyxJTO+4mJIxmsuaXUoqQpwAb9836ajDkuSytdg5EWxYxlVHczsCIIfvBbBtyQuu0SxDR8EfiAauRRWOLfItJ+Z9TGzXOAWguG+kVJMfpFpP4Dwn/0NxTxyKlJ8kuoCxwNPx8yeBRxkZm2A84DbJZ2Q5vhKjKE0GajDV4HfmdmqZMQfZZI6AXcA58fMfhhoaGYtCT53XpVUK82hlYcY4nUG8LWZzYmZl03xuyJEsWP5DXBAwYdu+LdeOD9rmdk34d9twFjgOKKVa0m5RCLPYtoQsjS/8IL3JkAPM9tJhNqwiNwi134AZjYR6EJwnUgk2i5WQX6SakWt/cysjZnVLuaxg+Cb9Poxq+RS9pxK2kaJ209ifPEs1wuYYmYbYvb/vZltCp8vBybzc5unJb5SYih1++mqQ0n7ElzOcJ+ZvRiz/xLrsAjxvpd29XWV6Gs6GfERnkV7GjjDzBYXzDezNWb2Y/j83XCdFsQv4fhKiSEZnwlJqcPQL0YZpLEOS5LK12D07eoY2vL8APL43wt3p2Y6pgTz2YPwhhQE37TfBUzK9lz55TWIxeaSjXnyv9eQFtuG2ZhfGP9UwpsYRKkNi8otKu0H7ElwBqJg+jTg2zCnKLRdcflFov3KWBdDgMfC502AtUD1EpbvzC+vsWzEL2/60qu0smTGF89+gEVA10Lz6vLzb3XvA8wHTk9nfCXFkGj9JTHGWsBc4Moi1itzHcbzXgJ688sboDRKpKwMdZZofL8m6FwcXcR6B8Q8b0VwU5r90xxfsTEko/6SEWNYfiDwb2CfTNRhofdQ4WssU/oajPoj4wGkJCloDuQDX4V/m2U6pgTzaQTMBuYRXKz/ElA3W3MluFh7JfATwV3sFpSWSzblWVR+JbVhFuZ3GGDAYmBO+JgUhTYsLreotB+wHzCD4B/EOQTXUrWJQtuVlF9U2q+MdbFHmOeS8PV8ekzZMOCK8HlO+Hm1HtgePh8Ss+zlwNLw8RDhTTFKK0tWfHHEcBzBlwc5hbZ/ddjWc4AvgBtTUX8lxVdaDInUXxJjvA/Yys+fd3OAS3a1Dot7LwFT+PmOvTlhDAXx9ItZf5fKylBnicb3N4L3Smx9HR6WPRXW09xwua4ZiK/YGJJRf8mIMSy/FXi+iG2nqw7bE3zWfQ9sDp+fnI7XYNQfBd9EOeecc84555xzuySK11g655xzzjnnnEsj71g655xzzjnnnEuIdyydc84555xzziXEO5bOOeecc8455xLiHUvnnHPOOeeccwnxjqVzKSRpvKSrw+fDJPWIY508SaemIbb/xiOps6STYsrqSZqa5P3lSVomaVAx5b0lvZzgPrpLWihpQ+lLO+ecK28kmaR5kk7YhXUnSFojaXgqYnPOlaxypgNwLptIqmxmP+3KumZ2e7LjSUSheDoT/Lj8O2HZKqBLCnbb38z+moLtAmBmL0uaCcxM1T6cc86lXDsz+6GsK5lZT0lDCI5nzrk08zOWzpUi/PZ0oKQ8YLCkwyVNkzQrPDs2IGbZAyS9L2mupMlA7Ziy2LOXv5H0qaTZkuZLOi+OOBpI2iBpuKTPwvU6xJT3DOfNkzRJ0r7h/HZhrHMkLZB0fmw8kg4HrgB6hssMKthXzLZPCWOdF+bXOJzfOVznkbBsrqRD4qzXKuF6iyV9ABxVqPzGMM9Zkl6XtH84v6akVyQtCmOZ4N9OO+dc+oTHxSGSpoef4WfHlBV3vGgWHvfmSvpC0g1x7mt8eKz4QNI/JN0v6fjwOLxC0u9Tladzrmz8jKVz8alkZp0BJFUHTjCzbZL2BD6T9LaZfQmMAj4ys6GSGgFzgbeK2N4soL2Z7ZC0H/B5uI1/lhJHLWCemd0gqRPwnKSDgSbAPcCRZrZa0h3Ag0AP4CbgfjObKElAzdgNmtl8SQ8De5rZDWGODQrKww7qRKCTmS2UdBnwDHB0uMhhwCVmdrmkW4HbgAtLyQPgcqAh0ALYDfgIWBHu8yKgMXCMme2UdCUwItzu7cA/zay5pH2Az4FX4tifc8655NlpZu0kNQOmS5oWzi/ueHEVMMXM7gCQtHcZ9nUY8Bsgh+A4URPoBNQFFkt6fFfOcDrnkss7ls7F56mY59WAhyQdAewE6gFHAF8SDB/tD2BmyyS9X8z26gBPSGoC/ATsAzQDZpQSx3bg6XD7H0raGq7XieCAvTpc7hGCTi3AVOBmSfWBd80sP76U/+toYK6ZLQynnwTGhh1sgMVmNjt8PgM4Lc7tdgGeMrMfgR8lPQ20D8u6AW2BWUFfmMrAppj1rgEws+/CM8POOefS63EAM1ssaRZwDGAUf7z4CBguqQrBcaks1/FPNrNtAJIWExzvdgLfSvoncCCwKBlJOed2nQ+FdS4+sd+E3g2sAVqb2RHAZ8Cvyri9h4A84HAzawWs3IVtAIjgQF7wN5YBmNkDBJ299cCDku7cxX0U5z8xz3cQ/xdWKqXsTjNrFT5amNlxccbjnHMuvUo6FgFgZq8AxwFLgUEEZzbjVfg4s6vHHedcCnnH0rmy2wv4xsx+ktQC6BBT9gFwCYCkhgRDd4rbxgozM0knEgz7jEcV4IJw+x0IOqOLgfeBrgXXIQJ9gffC5Zqa2VIzewT4M4WuZQx9T6EhsjE+BVpJah5O9wJmm9nmOGMuzvvAxZIqS9q9IK/Qa8BVBUOlJFUNzxBD8C13r3D+3sDpCcbhnHOu7AqOdU2AVkA+JRwvwmst15jZeGAoRR+LnHNZzL/hca7s7gQmhtcBLiUY3lPg98AESecQdPjeLWYbgwiGBw0C5oWPeGwEmkjKJxiSe76ZbQcWSLoZeFeSAcsIrmEE6C+pC8Ew2m2Ew0gLmUTQyZsDPB8+ADCz9ZIuBp6VVJngzOdFccZbkkeBlsACgjO2HxJcc0l4PWht4MNwKGwlYCzB8N5hwJOSFhBca/MJPw+Tdc45lx7bJH1CcJO6y81sHUAJx4tzgQslbSc4q+k33XEuYmTmI8qcywbhDXVmmlnt0pYtjxTcVXd4oj83Imk3IMfM/iOpBvAxcJ2ZFZyhbUAW15NzzpV34ReY1VNxw5xEt63w50YKbkbnnEsfHwrrnEuX74D7wrO0idgb+CQ8u/oZ8HJMp7I78DqwNsF9OOecy4y1BJ/xJ5R1RUkTCM6Qfp/0qJxzpfIzls4555xzzjnnEuJnLJ1zzjnnnHPOJcQ7ls4555xzzjnnEuIdS+ecc84555xzCfGOpXPOOeecc865hHjH0jnnnHPOOedcQrxj6ZxzzjnnnHMuIf8PxXIDKannODEAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5YAAAHuCAYAAADk5ZP7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeZxN9R/H8ddnRiOyZY0QESUkppTih0QUZSmFZGsIyVaWYowtsiZkD6HIFqVIiFLKFpJECREhWyPDzPf3x7nD0CjVHXdm7vv5eJzHvffce8/5nFPOuZ/5fr+frznnEBEREREREfm3QgIdgIiIiIiIiKRsSixFRERERETkP1FiKSIiIiIiIv+JEksRERERERH5T5RYioiIiIiIyH+ixFJERERERET+EyWWIn5iZivMrFeC187MKv7Hbf7tNi7e73/c32Qzm+yPbfmLmRXwnYcCgY5FROTfMrOKZvaXc7xdzmeSgpk1MbNdCV4nu3tBsNI9UFISJZYiPmZ2o5lNNbP9ZnbKzLaZ2WAzy/UvN5kbWO3PGC+hDjD4CuwnUPbgncs98OcfQCIi/uT7Y53zLSfN7Eszq+aHTa/Gu5bF76eXma34q88E0HO+RQJP90BJMZRYigBmdguwFsgCPAoUBVoA2YBW/2abzrlfnHMx/orxYmYW5tvPEefcyaTaT6A552J95zLWX9s0z1X+2p6IpDpD8H7MlwbWA++aWeH/skHnXIxz7pf/+pkrwTl3zDl3LKm2H3//kr+ne6CkJEosRTyjgO+Bh51znzrndvsemwKvmtndZvaHmWVJ+CUz22Rm7RPbYMJurPHdm8yskpl9a2YnzGxuwu2ZWWYzm+NrLd1uZg9ctL34bTxgZt8Cp8zs6kS64OY0s+lm9ptvPyvMLI/vveZm9rWZRZvZT2bWx8zSXO5J8nWPmmJmg8zsmJntNrOHzOwG335OmtkHZpY1wXfSm9n4BPHMMrPsiWyzv+8zP5tZuwTvn+sG5DufbwA3JGhRiD/H4Wa22vffabeZdUjkv0czXwvBH8B9l3vcIhJ0Tvp+zG8H2gKxQBUAM6vqu/afNrPvzeyJ+C/5rsnjzexggp4vj/jeO9fN1cyaAJHA/xJcywpYIl1hzayj75r2h+8aVzrBe03MbJeZ1fc9/mZmE/4ucfPt51tfjO8B2S96/1xXWDN71cwWXPR+ITOLM7N8vtc3mtlC3z1gn5m9ZmbpEnx+l5l1NrN3zewU0MzM0prZRN939iQ4liYJvnc52+1g3r0z2sy2mtn/Loq1qpl95Tt/+81swOVuP5HzpnugyF9QYilBz3eBrwgMdc79aWyLc+6oc+5z4CfgsQTfuw0oBrz1D3b3EvAUUBm4HeiW4L3hwC1AJd9n+vzFNpoBJYHEWkTnAvmAGkAZ4E0gPnkMAToBt+K1xDYDIv5B/AC1gZNAODAPmAyMAV4GygEFLzquIUAFoCbwPyC/7zsXbxOgLN5xDzezWxPZ92qgPbAXrzUhN7DazDIAi4DNeOe1K9DXzOpd9P1ewAi887z2cg9YRIKXc+4scAYIM7P8wAK862wJ4FVgqpnd4ft4O7xr44N494cOwPFENjsT79r4OeevZXsu/pCZ1QeigC5417ZvgEVmdk2Cj+UEGuBdY+v6luaXOh4zy4x37V7q2+Z7wIt/cQpmAVV934v3GPC5c26PL4ldDGzDu+c8DNwJvHLRdroC7+LdfxYA3YGqvs8/CDTyHUt8nJe73S7AfOA2vPM53XytcWZWDFgIvA+UAmoBu/7h9i+me6DIpTjntGgJ6gXvQu6AUn/zue7AygSvBwGLErxeAfRK8NoBFX3PK/pel75oe1/4nmfC++FSJcH7VS+xjXsuiuvcfvGS0lNArss89s7AsgSvJwOT/+Lzk4GNCV7n8sX0XIJ1XYA1vucZ8ZLfqgnev9n3nSIJtrnpov1sB1r5nhfwfb6A73UTYNdFn28J7AZCE6wbAKy+6L/Hi4H+/02LFi3Je7nomnoV3o/0OLwf7C8nvK74PvM2MMP3/DVgwiW2W9H72XXudS9gxd985nOgf4LXafAS0Ajf6yZ4ranZE3xmHPD2XxzfM3h/KE14vZyR8Lqa8F4AmO/62jjB+xvir/tAY3z3sgTvlwOiAfO93gWMv+gzB4EmCV4X8l2nm/zD7Y5I8H4e3zZu9r2eAsy9xHn42+0n8p3J6B6oRcslF7VYily+N4Fyvi4vIcATvnX/xOYEz/dz/q+zN+L9YPgywftfXGIbG/5i+8WB75xzBxJ708zuMrPFvq42J4G+eK2b/8Q3CZ4f9D1uvWhdDt/zG/F+mJ07FufcNuAo3s01XsLzAheem8txM7DWXTgG5fOL9gF/fe5EROJ1910jTwEvAG2ccxvwrikXX5sTXmveBB41s7W+ro23/8c4Ltif81pP13Lhte0X59yhBK/PXT/NrLuve+ZJ3/GAV0Ng3UXXy0vdb3DOOWA2Xv0BzBtrWhJ4x/eREkCZi/bzEZCOCwsRnbv+mjcMJAewLsF+dgK/Jfj85W734vsqnL9/FAdWXuLQLnf7F9M9UOQSLntslUgqttP3WBTYeKkPOa/LzwqgIbAGr5Vx/j/ZkXPuTMKXnO+ObgnW/d02ov/ibbvUNhJ0lXkbb2zPEaA+f9Fl6hLOHYNzzpnZBetI/Lgue5uJbONyXO5+/urciYjEG4PXZfCku7CYzl9ea5xzX5pZQbyunQ/gdVPs5pwbnmSR/vX1cwxeV9aEErtP/N01dCaw0tcd9jHgM+fcPt97GYDlQOtEvncwwfOE19/Luedd7nYTuyclvAddah+Xu/2L6R4ocglqsZSg5/tL7wqgvfnuEAldNK5kCt44kEbAbOfcKT+FsRM4ize+I17Zf7GdLcDNZpbYXzpvBq4FXnDOfeG8ohR5/8U+/on447orfoWZ3YxXfXfbv9zmGSD0onXbgHAzS7j+7v+wDxEJbkecczvcnyu0biPB9czngmuN8yp1v+mca4j3R7xml9hHYteyi33HhdfPNHhj+y7r2uaLZUf8kmCbZXw9b+LdmcjXE25nDV4r2iN4ieXMBG9/jXd/2Z1wX77l7CW29xvwK97YxvhjuxHvHvWvt5uILXjjGhPjj+3/Hd0DJagosRTxtMW7wSwxsyq+6mvlzGwCF87lNQcvGWvIP+8Ge0nOueN4Y1xeNbOyZnYX0O9fbGcZXqvrbPMq2RY2s6d8BSd2492QnvVVwovAK/KQZJxzJ4BJwGtmdq951QwnAx/4Ett/4ycgl5mVMbPsviIN04H0wGgzu9m8Ko3P4hVEEhHxl9fxkrJeZlbEzNriXUdfBTCvQumjZnaTmZXAGyt/qWvdT0ARMyvqu5Yl9pvsVbxr9uO+hOR1IC3e/eLfmoGXwA3z7TsCqH4Z35uFNy6/BN69MN50vHGeb/sqkxY2s1pm9ndFcF4HeptXLb0kXuvqKc63MP7b7Sb0CvCQ779XUTMr7Ttef23/L+keKMFGiaUI4Jz7BrgDOIB3gd6GV9L7CN7NLv5z0XjVAH/Ba+X0p/Z4U5584ouh17/cTh28+Bbjzb/WBDjjnDuIVwG2Nd5fcR8A+v+XgC9TJ+BTvMqDK/Gq2T31H7b3Gd4Po4/x/uJ9j+/mXQOvKuDXeD8mejrnLu4CJiLyrznnfsJrtauLdx1tDzT1tegB/A70wLsOrcC7h7S9xObm4o2rX4t3LcufyP7eAnoDg33bLA7UcP9h7mLn3FG8KqQP+LZZG68o0d+Z6dv/yoQtub7rb0W8JG2pb5t9OD/e8VL6+z7/Ht4wjenACeD0f9zuOc65LXj/vR4BNvn2VcBf279MugdK0IivqiUil8nMFuFVhese6FhERERSAzPLDfwMlHXOfRXoeETkn1NiKXKZfGMtK+JVwivqnPsxsBGJiIikTGZWBK+WwOdAVrzpMXIDxZx+nIqkSOoKK3L53gWmAd2UVIpIIJnZfDP72sw2mNkqMyvlW1/EzD43s+2+x5sCHKrIpcThjQPciNcV9jjefI9KKkVSKLVYioiIpDBmltk5d8z3/GEg0jlX2syWAZOcc9PMrBHQzDlXOaDBiohIUFCLpYiISAoTn1T6ZAbifNMMlQbe8q1/CyhtZjku/r6IiIi/pQl0ACIiIvLP+aZDqoo3OfoDQD7gZ+dcLIBzLtbM9vnW/xqwQEVEJCik6sQye/bsrkCBAoEOQ0REUqh169Ydcs4lyxY/51wLADN7EhiEN83FZfHN5RcBcM0115S5+eabkyRGEfnv1q3b53sW6nu8FjgEQPYyaTi0LidwDG7MDD+cAtIB+8hUJj3HN2aBq4A/or1vljnFb+tCgYxAKDnL/MLBdRmBa7yvcX5X+Yr+xJ4tN3BdcW//v+zP403KFnsIiDn30TJl8iTFYV9R/r7WFzZz0f7amM9+WOyce8DPm/WrVJ1YFihQgLVr1wY6DBERSaHM7KdAx/B3nHNvmtk4vPnxrjezUF9rZSiQB9iTyHfGAeMAwsPDne6VIsmXWRTMiYS6UResv9NV4kv7AjjFfS6cjxc9CA9GAQ9Qxp1lnR2gudvPRAvBN30nvxWsDuvOEHc4jBOZw8ic4zQQBdwD91SBpjCuQWMaR79Jm/QjmXhTG34xb3+zfq7FY1YGeAFvmmxw7p4rcg6Smr+v9dFAS39uEOgF2f28Sb/TGEsREZEUxMwymFm+BK9rAkeAg3gVNp/wvfUEsME5p26wIimUWdTff0iSHcNrvfPnkhKklDhFRETEcw3wjpldA8TiJZU1nXPOzFoBU8ysJ/Ab0DiAcYrIfxCfVN7g6vOTfUsRVxuA8qxi4r4WfGkD8IZXX8/HNpEiLh+t3T7a24fkoyjrqMFEOw5M5BF3LQDzzWudDMnmKOM+g9/O8Igrynw7A0uBXRAxeyoR81ryipuJW2LYjb0AeKz3Atxuo3O+UIZYrC/K1NFi6W+G1wM52CixFBERSUGccweAuy7x3ja8SedFJJX4acHNwAG22xgAtpOT9m4Ys11D9pqDDnlhWCTbLYr2BcdSxn3GfIOf3E08zttABVrQD4D5LPWyHhfFujqR1HXTmVO6IdQDZgM7vofYm5jsRtCk/0xeeHEI7mAYAPZRJO/nu+9cUulc5BU/F5K8KbEUERERERHxk/iusMEmGI9ZRERERCTZumBs5cNRVHW3s2Srr4XwVhhu3wPT4bNIuCcKaADkpPgPX7HOTgGfcYO15oh7kKzWhZmuPgCfunDutQYMd/tob0uZvb8Rv3/emAyVYr3WS/sfhEITm4lbZNRz05hEA2+/L8FDDcsDaq2UxCmxFBERERFJhpq77Ex8vg2H+QxujU82m8PHN8F9WeGeKMa5nURcdROczcuWO9JRyH3D0bgWHA5NR1a7h7tdKFvxurPe23otZdxntLcTQEZYABlabQCimGNA9oaQA/Z+nx270fHyDx1oXnK6t9sfvf0rqfx7wTrGUlVhRURERERE5D9Ri6WIiIiISDIR3w22tcvIhCNPwuD1rKt3D+crsEZRqnI1NvIst7gNRFgeCrlvyMgJvoi+m0osY2doGBXdZlbUeoBTfEERvgNg3eubWPf6QeApvnflsQYObgGylISrYfiylrS34eStcIglP5TngQMfwma1VP5TwTrGUi2WIiIiIiLJSk1G2wliWmSCa0szuWx90h37jXTHfqOqu52NthJ4nW8tlMfch4znaTamv4urr+nF5/YbcYeLkId98AEUYBeznn6KWU8/BWmeoborQXv3NjfV2kOTGWPgVuBz4Bdo33EsZE8Ha6ER04m7bneAz0PKFN8V1p9LSqDEUkREREQkGbigaI9ICqPEUkREREQkWVnIY64AzIuCD6CJFeNU5vGcyjyeg+QETgHVWeZaMct2Ubnkau6MXklVdzvUq4N9CzNsDzwD8+07ao5/h5rj3+GRM2/zgW1mePqukAYmZ22FK2JQE97aWhuWwru/VsN9aRyskB+YBagb7D8V3xXWn0tKoMRSRERERCTACvMNGX5v43v1FLPMca8rx91llwM34yWTp+jMYOBZqrv1VA5ZTSlXjfs2vU8Yp1l64D6YPRNr4qBSJE1GjIGMkZRhHWVYx/wKj0OLSD6NDoej4J41hvZrTZ8FnXnC5uEGGg/3XEz2YnthlVpP5Z9JKQmwiIiIiEiqdvKaUd6clQZwhE+3N/HGQKYDTnmJXqOSsynkvuEDuwqawgky8jLdeGDNCuyuBRR3N7LlRmD5LrJwFM5Cr2YDvB2smgwFmjCbety9bDl2o2NOVA1OkBGqgLV0fLK7LP+rseZcTGqt/OeCdboRJZYiIiIiIiJ+oqqwIiIiIiJyxZlFsbPnrcDNLAmpBUyBjB3JXeRHap55Bx4AaA40p/qmuey86VY+dVHknbSDnd1vpbpVxHY6qFSTLXYHZAP4gFDOwh/ALt9CE1gKC6nJ5wMr8fIPHahbeRFPfTaLZR+VgwzwYPT78MFrQFa1Vso/osRSRERERCTQ+kQB22AwUD6STsf7UoBdrIwpz31z36e1m0VrN4tY0kAPuNcGs7ddYXgYSBdJnwad4S7gVaj71XSmuY8ZsvUlesS9iMtuuOwGY8G1N5ZRGX6H3sd7Ejb7OOlLHKHy6tUwG06+lB06PItzzwb2fKRgmm5ERIJGdMxZTsXEBjoMERGRoKcpRiS1CMbuvyJB754ByzAz1ve4P9ChiIiIBK1zSeXXkXBbFKSJ5JOOZZnesQEfU4WNdhIyXsfHJ7JTwO0CYMm+apAWmrtvmNixIkRBhkOH6DF6MFwNnIJsHKLh/jk0egr61O5H2KzTALj9RrXc77Kkfy1ocZYPMz1Anbi5fBRyP6fLpeV5XoGhsAr9PvgvVLxHRIJG7szpCEujDgsiIiKBVtGVJZT3+ThNJDwBb9CUfOxh4/13cadbSQ260qvBACauKet9YTawE4rW/w6GfQYD7uFkq+xQBULq/s7ZqzIQMs4xrtVz8DncUHYbg2M6A9Bj+WAy1/uF9d2L8SDv879Fa+A6KL1xK281q82nttrbh1Ni+V8FY5IVjMcsEvROnYklNs4FOgwRERERSSWUWIoEod9Pn+WMWixFREQCJr4b7Aq7GmpXJOeZ3Rwslp9QYinALm75aANHyUKv9AOgL5y5xQC4ao2j+cpRvNB7BDwBPbq8SJ+b+kF7iKt9DSF9HeQFGgE/w08rbz7/i78QRIVF8iMFyMUBatRYxERrwzJXjsrWAwDnql/pU5HqqCusiASNUzFqsRQREQm46pFwBu6cu5Ive1fg2a2DeK3y80zc04bM3/zCsQnXwRbHyBuf5qpavvt2K5jYvw1UgT49OxNDWngeKAMjXQvafD0R+9BBE3A5Dcv6B1vy3ApA8a07KMlmirCdDZF382NUbjq4YRQfuAMGgOsSsDMhqYASS5Eg45zj95iznIlTi6WIiIiIvxnBmWTpl6VIkDl9No44B3+ciSNOrZYiIiJXnFmUVwk2C/AMfDmwAoyBME6Te9mPPPb9FBqHvQmHIOLGEQyjA7QH2kOhBt9AqLedHuMG06dGP0ZGtIB1MJ2GFLjtW2Z1qQXXQK7iP8H1adlJIXZSiA+KVaIUG3mUdygXtYwb9/1I8fU7oGuUt4hfaB7LZM7M7jWziWY2zcxGBjoekZQqOsH8lafOaC5LERGRgPgAjr2ZFr6HZ7sMosG+SbTjNfaPLkhaYnit9/M82XM8R8nCzpm3euMm88LOJbcS0eVV2AN5I3ZAFngxpi8cgs+3VuKnGjfz6J6FNC87ijKs5djZtPxGFn4jC4upxgJqsjm6BIXZQfE8m6AlEB6Jc5EBPiGS0iVpK62ZDQbqAgWAEs65Lb71RYApQDbgMNDYOff9X23LOfcp8Knv+++aWQbn3MkkDF8kVYqOOXvu+e8xZ7kmbTB21hAREQmsZ7sMInOd07ARNncpwYpmD/D+mBrMal2Lx+5fQOb3f+EEGZlf63GeXDCeN/s/7X3xARg34jnua/c+hdjB9hlFWbH+AfgFXq/alMhFUYQeOMm1cUf5IOQBToRmJOLIeAAyZjlBu5ARTLgmB49PcXAUWBvfUqnE0l+CtStsUh/zfOBVYNVF68cAo5xz08ysETAWqAxgZoV8rxNa7Jwb5Hv/QeBbJZUi/86phC2WMWqxFBERuVLiK8GKpEZJmlj6Whkxs3PrzCwnUBqIn3n1LWCkmeVwzv3qnNsJVElse2bWBCjgnOualHGLpGa/J0gmfz+txFJERORKSJhUnvyjNxm6x9Jnbmd6TB3MPvLALjiW9jpKuE1U/2guH4yuw/x7H6f7gp4MPtKZ7t17AlCNxawuXY4xtKQcqxn7SnuWv3A3A0p3JQ/7mMJT9MvVnUG8QCOmU4gdxHyRCYBlNe5gAF3o4IbhFhr2VC8AdYP1M003cuXkA352zsUCOOdizWyfb/2vl/qSmT0E9AXeM7MxQA/n3J8+b2YRQARA/vz5kyB8kZQtYVfYU2fO/sUnRURExK/Kewlchm6RUA96hAwGt4btm8vSY9mLZOEoT/A2G38oyw+t8/AGTemTpx/Z9v5M/5W9AeiftjcRZV/laEwWosPSMfSF1nSsO5rKx2tx9KMs7CEfy6jETgpTg0UcJhvraxQDIAtHOUx2HuUdompGMsetoQ6LAnY6Uit1hU3mnHPv4Q1b/rvPjQPGAYSHh6vkpchFohO0UkarK6yIiIiI+EEgEss9wPVmFuprrQwF8vjWi0gSiz6jrrAiIiJXklkUpVw1XqUsALVi3uXY0utgPvSotYD0vM0CalGQH+lOfx7bsoA81+2nSvqlbN5Xgiospe3SCQAU7/0V4/a1grfTMr9jbV6mGxvm3MK7VKNxzBTSpInlaMi1PLR1KWWKfcYJMnLXkS8ASJchmixhR/np+ZupyyK8Cibib+oKe4U45w6a2UbgCWCa73FDYt1aRcT/TqkrrIiIyBW30fZRYfeXABw7cR0ujWFvO/qk6QfXQViB43w+vxIzVjSjydQxdGQIoyd15LFmU2i7dQJ9encG4KUdQ7D+jtcnNaUEm3k47l1KhGxm+ZbqvFP8UcrGfkmOI7/yfbF8LKcSocTS7NsZXhDzwB51MHiu93pQnUCcCkmlknq6kRFAHeA6YKmZHXbO3Qq0AqaYWU/gN6BxUsYhIuclbKVUi6WIiEjSUiXY4KMxlknAOdcOaJfI+m3g6wuQBMysJlCzcOHCSbULkRTr1BlNNyIiInJFpYuEztA5Xx8A2jOAocVaQ7UztJ86hHzsoQA/8sQjbxOTPRObKcG6/vcwsnsL2rabAF1P02PNYAAqlF1Ftgk/c5ow7vl6HYfIy9DbWmNxjvUU47rffyFmcCZu+n4Ped/ZQR72EX7PWgCy3XMY7DhQBecyBepsSCqVKpNp59xCYGF4ePjTgY5FJLn5/fRZQgziHPweo66wIiIiSek+F87HOSBbr5+JIS0AOyjE8BldYQgM29YNsoG94sgQdYiXa7Wh48LRTOn+GH3oyd4R2RlMZ4Z/6M2292CJ92mXfgQvRfcj420nab5vEpljfmNOyRq8Tw0+ynQ/93f9iNaZRnGY7GylGLdN/e58QFPAqa9gkgrWMZYhgQ5ARK6s6JhYrkmbhrRpQtRiKSIikoRse6AjkECITyz9uaQEqbLFUkQuLTrmLOnDQkkTYppuREREJImYRcF3kXyc40Hy/rqDvfY9r/3UwXtzYxrYAWQAlxNCtngz5J3sm52j/bNQtObXbF9SEr6ApT3voyjfQXbvq0XTf0e/H/tQqOBO8rEbtqWlVuWFFGYndacu4r3GVciZ6QBrKMsuCjKKNjw8oYL35VW+8Z6NI6/syZCgoMRSJMhEx8RyTVga0oTEqSusiIhIUiq6CzjD3kw3UcidJto3u97RLFmoVmsx8ys/TgiOuh2nM2dpQ0gDfZb1gxWQs/duulQdSJOhMynU8RuyPfQzAOsevYcx7zThNGHsoiCMhLWVw7lt63c0bzyKiqeXkyftfj7tfT8shMivoryymQCtInENAnEigk8wJlnqCisSZE7FxJIuLJT0YaHqCisiIpKU6hVgnOuDW288ywhycYBcHOCTTBXIwz6KLNtEr45dmdO4IbwHZIchldtQt/d0Do7Ozz5yw13wCPM4XO16Dle7nrfeqc0zq9+g/dSx7KIAb82tzbfrb4cvYMKPbbk17TfsIR9Fem7i66+KUpfZ0DDq/CKSRIIxmRYJar/HnPVaLEPj+F2JpYiIiN9pipHgZsBV/s6yUkAns1SZWGq6EZFLOxUTS5b0YYSeNU6pK6yIiEjSmT2XiDpTieg7lScZz8a5dwFw58bNcAoYPJRTLh2UAvqeZUj+5+h0xyi4H3r178p2isB1jnDWQXVvk0/8MJeJ5RrSfMJ0FjeuRv/RvaEKTGzWEOvpcFUMfgdL6yhZcDu3PTYYwsF9FaiTEHzMIE0QJpapsiusc26hcy4ic+bMgQ5FJNn5PSaWa9J6XWFVvEdERMT/MvzehntdOahZx+uqWqwA2TgMjfCWPgfgNNziKjHQYGTHFrAlDR1/HQ23gHvW6LVkADM6NoPBxgFywh94yy6j+bjpUBF60hvaQM4iu2n+9HQ4C+UrLKFc9WU0qTwGa+4go5JKuTJSZYuliFzaqZhY0l2VhtCQOCWWIiIifmYWRYbf2wQ6DAkgM7gqNNBRXHlKLEWCzO/x042cNaLVFVZERMTvTl6TnVMuPWSHJyrPgxPAWvjWFQDglkm7eKVZO15oPYI73QnOMp1fa2TEVjp483voBOnu+o1TGa5lXLnGRNw/lS8/KgHAnc9vhsGQ1+2g1tdLcD8YtsTx+fjbuXvNBgbQjYfj3uXz0DLAcZzLFLDzIMFFiaVIkImOiSV92lDShBrRp9ViKSIi4nf14G0e56a8e6AAfNKzLP9btIZbBu7y3v8ZXug5AurBstOVOJU2PfOozQ8V8jDP1caaOegK9IVKi5bz7kfVuLP/Zu+7g+EtV5snVs7Dujqqrl7A+oLF6MoAfiqbixtWHvCNx4svIKQ5K6+0JBljCZnNbByw0Dm30O9b9wMlliJB5GxsHDFn40h/VRrShMQSfSYW5xxmFujQREREUjyzoYEOQZKBJKkKC8eccxF+36ofKbEUCSLRZ7wWymvSel1hY+McMbFxpE0ThAMBRERE/MibYiQjpVw1NtaBm+rsgbLQvssAdlAYWuG1QgKuncFusOGODNfEeo2L1wMFgffA9TKsvcM9bPSlEz0sI3zsfXeyq89YWhJW/DjLVldmMJ3pyFCW76+ObXZQ2EGh3gE5BxLcUmViqelGRBJ3ylesJ11YKKEhXitl9OlYJZYiIiL+UKUjL1OJ6muX8+zuQby2/XkOk43mS6bDXhjeuiUAVs7B50BtCLvpOBnfO8HhCdfzbMQgyndfhY12jFzUAlvvqMt0+KbhuV/taYhl2ZHqhGx0PHDXh5xslR2qgFU8w7Kq5ag8bjVQEwDnSgfkNAQ9A4Lwp5WmGxEJIr+f9or1XBOWhvRh3hUvvhVTRERE/oub6fRRX3rTE7rCazOfh6IwdVQEy6qWg+FQi4XUYiGtVw+li4vi5bkdiPklE4fbXk+XiChCieVNnoQ/oM20iXA1zB7VCFrB50Vu5/Mit1OMrbTKOpyT94RSLf1iKACfNg6HNLFUbrzaaxW9trSSSrniUmWLpYgkLjrRFktVhhUREfkvvG6wNwc6DEkujKDMsoLwkEWC1ylf62T6sFDSxCeWmstSRETkX/OSSuCb+gxZAKwFzsIHrSuxqH4NbLuDHMBAuHHEPgC+bFeCOytv5vVlTdlSrDDFv9/BsCMdiPkiE5/XuJ2Fux4lS9v9jAxrQd9inbihzTb+d+QTAKZkfYqPqUKGz2IZV7kxG3uX4uG4d2FtWrgLuAtc60CcCTlHiaWIpHbxXWHTh6UhTUict05zWYqIiPxnS4qVp+qhVbiHja5lejGT+uRjDxRdDx1KE/bIcT7Neg8Ad6bfTN3o6RRiB0fJwrsfVeNF+tKmxmgaMY3XRzSl1crJ2NsO19F4rXA7emT1CvI8MXAePHmarysXJYzTPP30m1gLxyu12vGCZfOCaa0pRuTKU2IpEkTii/ckbLE8pRZLEREREf8KwiwrCA9ZJHj97ksirwnz5rEEdYUVERH5t851g50TSVoWAdC5TB/2kI9ZjZ+Cu+BJNx5Yx2Kqcee+td7nh3tFeV5tE8FrtGNn41uhMFTpuZSOx4fSgsnYAMd7i6pQi1kAvLRtCACju7ShNvM4QUbu6bOdPON/IOzIcV6wigA4V+fKnQCRBJRYigSRU75ur+nCQgkNjR9jqa6wIiIi/1YZV4VDbON/M9ZAdthPHrZSjLem1uaJgfM4ShbeP1CD3bluYH6eRwBoywRytfmJkbSlATPo82Y/Mvx+iMIr93Iq7bWMLduc9xZV4aFNS/m2ZAHWEQ4Dvf0dGJCTDbluZ3TWjmTYe4gpNCZ71sPgoAJrAnci5LwgnW4kVSaWmsdSJHHnWizThpLmjIr3iIiIiPidivekHs65hcDC8PDwpwMdi0hyEp9EXp0mwXQjSixFRET+MbMobnD1qc9oSrGBrQ2K0b77WBZXqcbh967niYXzoBLUYBHLM1ZiJvV5gyYAfB+Rj9nU4zleZf/QgrDTcXJ2duo1nsYHVGIgXejAMN4tWY1nGMPyPtXZ/UZOAIqxlc+3ViLD3kPkS7+Huq0Xwetel1znAnU2RCAk0AGIyJVzKuYs6a4KJSTECAsNITTE1BVWRETkX/rJZvJCzxFMpikNmQFfweG819OnVmeKj/8KPoRnRrzByb3Z6bRsFFum3sGWqXdw0+o9dGswjP3LCsIu4OoYOjXuSxtG8RJ9eYR5PNx/MXvIx4pxD1CvxzQycoKMnOBDqtOlWBQnh2dnGZVgG1ApEudUCTbZiG+x9OeSAiixFAkiv8fEck1ar9O/mZH+qlC1WIqIiIjIf5ZC8l8R8YdTMbGkCzs/mjx92lCiTyuxFBERuVznKsHyFI+4L5hvu3i292tMpTG8CncWW0mPrYPhQ8g84ReOzb6OIkU2sf1kSdpXHgDA8Eld4XH4tHI4925cC/XScnh1dpZTiQPk4rmF46jQfRW3L/yWHyMKMGT9S5QvvRKAWizkRwrABsg9+ihNlo3xxdPqip8L+Qsq3iMiqdnvp89yTdj5f/bpw9IQfUaJpYiIyD9WqQCnWQ8TC7CQmvTv3hsKw5e3FqeHe5E+GaKIPZsGBkDNBgvIV3oUM2jofXcCvLe6CoupxqyOtWjbcSQL42pyaHNe+qzpR4GIb9k17RbKNVrG6lGViWoRyTXT4gDY0OgWmlgTtruibLQtTG6TBudaBPBEiHiUWIoEkVNnLmqxDAsl+rTGWIqIiFyuW1wtAL6dCesI54dmebhxyT7m9K/BOsLpf29v+h3oTkja0/yYviCLN1Wj0ejZTGzdkBq+uS7rr57JQ0uWQi+gMxx7OC2RoVFeK9dX0CpiLAsaVSUfu/mwTUWql17OmRVe0b3ST2+lupvLxkV3wft34WoE5jzIX1BVWBFJ7TbsPoqvGCwAPx2OZs+R6MAFJCIikoKYRZ1LLEUuSYmliKR2N+XKQIa05//Z35onUwCjERERSTnix1Z+W+x2AG7ZuoFvd5dgev4GsA3WVQ2nEDshjSNuzjVkaHKIHONOUDViAVSE5nOn07rOUADSEw1pvO6wDy1aSuavT+NOGaPuaU7N8e/QbcYwvm+Qj368xE0L9lBk/SYqsAyAkL6/83bsE2R+sLsXmKrBSjKhxFIkiMQ5rxpsPDOIiwtgQCIiIilIcVeDLTm859/a7TRwk1hNOTgEb9CU/XMLwi/ANjg5OzutI4aSjz0sebsWS3qXpxHTATg4Iz+uktGT7nSpEcXAJZF8WLUibadOIEO9Q7g7jYzRv5Ix/QmyPfQz3628jWIV1gMQuyoD9ujbADhXPxCnQS5HEBbvSZXTjZhZTTMbd+zYsUCHIpK8OHdBV9gQMxyaTVlERERE/ptUmVg65xY65yIyZ84c6FBEkpU45yWT8ULMiFNeKZKimFk2M1tkZt+Z2SYzm2tmOXzvFTGzz81su+/xpkDHK5IaeN1gn2VL1jugBN7CLn4jCx9MqkOT3mPYv7Ugr9RpBxuAApCh3iGqsZhujw7jyd7jqWrjqMds6jGbsAeOY4Mc6YmmCNthPlR/fjldGkdxYkgOGAjl0q9m/5qCvBPyKGmLH2MAXRlAV2y0g0r11VqZnMWPsfTnkgKkysRSRBIX5xwJGiy9rrBOmaVICuOAV5xzRZ1zJYGdwADfe2OAUc65IsAoYGyAYhRJhbJCI/hkWVk+WVYWbi9APvbQvNkoCrEDfoEXOo6AnfBKx3ZEn0jHw9sXw06Y+lkEsJ7Rd3Rk9B0dqZl1IeSFJ3mTfeSGx+GDQZUY2D2SKT0e4/3x99GXF/mgbCUq919NzNuZKMZWirEVlkd5iyRfSixFJLVzfxpjaSivFElZnHNHnHMrEqz6ArjBzHICpYG3fOvfAkrHt2aKyL9jMwIdgUjKkELyXxHxhzjnSJBXYoBTZimSYplZCPAMsADIB/zsnIsFcM7Fmtk+3/pfAxelSCowPRLehkIjvuF/NtlbFwXj1jzHnLI1WEUFclbeTcXKyynBZo6ShQG5uvHC9BHMWl+LNgyBNA1xd3k3Ydv3B0U6bmIRNegxdTAchaMVssA70KTiTIZXbclD7ZbiHjF43MFJYyqNAejhYuhNv4CcBrlMmm5ERFI757ioeA8aYymSsr0GnARGArdf7pfMLAKIAMifP3/SRCaSShRv8BVbNt3Bewuq8NDUpVR0HwKwYugtMBtWla1AG0YRQxijN3VkVlegBVAcmAZlO67hsSULuOHMNsymeRv9MC1vf/84E2hBhnqH+Dnt9VRmGX98beRKs5987GHciMZYOwf1oG6F6Qw80uVcTL2zXvHTIPK31BVWJIg43J+K96gqrEjKZGaDgZuA+s65OGAPcL2ZhfreDwXy+NZfwDk3zjkX7pwLz5FDPWVFRPwu1M9LCqDEUiSIePNYnn+teSxFUiYz6weUAR5xzp0GcM4dBDYCT/g+9gSwwTmnbrAi/5LZZ2ypfAdUhIfuXwrtYYWdYYWdgU5HIB8Mt65k4zBHyQJpoNOivt6XRwIbjnPDwAM8VnUKP824Ge5uCHc3ZNz3jZlKY0bf2JE86feR+Y7TfBddlFvTb6Ff2EvUbbeIiB+m8PKIDhSq8A1zrmpITK5MnM7qLZLMqXiPiKR2zrk/F+8JYDwi8s+Z2a1Ad7zWyNVmttHM5vnebgU8a2bbgWd9r0XkX/CmGAGWA2Wg+Uej4ARQviaUr8kt7ifv/SdhMJ2ZYU/yWLEppCGWnHV2Q1po4GbDFJhlT/FKg3ZsWV2YLasLUz92JgOiu8GHUJY1tF4/lJ/TXs/OobdSiJ24+obbG0I1FrNzza3wKbgzgToTIpcnheS/IuIP7k/zWKp4j0hK45z7Bi6YOSjhe9uAslc2IpFUrMo9sPRb3PPFaMw46p6ZTg0WAdDcasGQ27lz6kr6L+sNt8Csjk/RZWgUQ+nImkFlea3c81AFyAIv2EBeqDICgP0fZWFV+vJMLNKQhtEzuPqXODbdWILPO97OCipS/bvlMBjybt0Bd/kSXBcZmHMg/1yQFu9Ri6VIEPnTPJaY5rEUERERkf9MiaVIEHFcVBU2BM1jKSIichGzKBgSCUuBsbdgN58hG4eZM64h6yjDOsrAN/Vp0nEMY2jF3ZWX03rrUN4aWpuVVGAl5Xmt4/PsX50FV8CgF3R3L/PrRxn59aOMLKQWD9lSmrebTsn0X9Pnxuf5tMb9HCQn3VYP4/VmTeER2FujMFSPxKm1MmUxVLwntTCzmmY27tixY4EORSRZibt4jKVaLEVERBL3EHRyfekT0RkapWEXBeAdGL2mI6PXdIRbD7CcioQSSy4OMLp7R3ZRgLKsYZw1haOQ+/mj2CHHt1ULkI5ocsw8QY6ZJ4hYNJVS7gtIAx0YRlnWsGxROR7euhgKnOYZa+VNJFQY3KIAnwf551S8J/Vwzi10zkVkzpw50KGIJCsukaqwyitFRERE5L9KIfmviPjDn4v3qCqsiIhIQmZRcEskpYp8wZDuL1G8/1f0WPkifewlmrtRvEg/ALq6l5llT/Goe4cpPEXT/m/wsDWDbvVhCDToOIkZDZrBUbil9S64GvjDt5MqsHHqXTDsFZ659w3cXsO+cPSY8SJ9GvSDdGXhNV/RnhHqBpsiBWGWFYSHLBK8/lS8x1BXWBERkYulgWwcJsNLh9iS/g62nDrGXpePvLaKiZQHYI7rCg5m3f8Ud2fcwA9z80BUfTr17EtBdvEdRWkwYxIzNjXzpgv5w3i1YwQAe8hHB4Zz/c+HsetegDgIGfY7fRr3g7eWQngVIBL3VQDPgcg/pMRSJIgk2mKpvFJERETEf+KL9wQZJZYiQcQr3nP+tVosRUREzqvEhwDcu+kjPr7jQVgL1ANmVyHv3EPQAijhfbZus0XwOLD0OAzJRDMm8W7Pajxca7FXTTYcuq/sCQOAJmCfOqjg29EpGFLzJV7u2QHmgi1wzKpXi8dOLQD+B2t93WBRN9gUSfNYikhq5+BPVWGVV4qIiCTwSSQxpIX7YaRrAU8DPfCSxQkzYQewA+6b9D40AZ7JBPXOsnxZdR5utpgGCybBYKAU9B/aG+bD61WbciwyLc1XjqL5ylG8/lVTQlr+Trfew9hbJzsUhse2L4A5UNPNp6YrpilGJMVRYikSRJxzF85jad46ERGRYGcW9fcfErkcmm5ERFK7uESmG4lTXikiIkEuPqncRx7uq/A+X9pymvcfRVvrBR8BfT6DLcCo+pQZ8RllRnzmVYctAOyFIfmfo3blt+CN1zhNWkgDXUZEQSdoHz2AMGLI3OE04awlnLXkYw/f5bqZzF1/IW+5Q3AdMBxoAgttKwtta2BOhMh/kELyXxHxB6/F8sLiPRpjKSIi4tluBwl3ByA8khbczsQn28D9sH/Qg9zGJg4OzM86ywjAINeZ3Kt/ZP+jBemUYxQcBSrBnHbAa8cZ+EckS1x5MnKS7yjCuBGNiVgw1dvRCmDYZ/DZdby+uinP1HqDexd8xKe2AUiHcy8E5PjFj4IwywrCQxYJXnGOi6Yb0TyWIiIi51SvQjRvU/Ord7h7xgZ4E3gQcttYsPzUjZvOnGsbAtCUl3jMKkJu6PNrZ3qUHEyG9w5x8ubsEJUJ96hh9jVkLMndx5fTjhF8Xut2AO5++EuKuIxszwP1980k44ITNLISATtsEX9QYikSRLyqsAmK92iMpYiIiIh/Bel0IxpjKRJM/jSPJaoKKyIiQc0sCp6IZLjbB8D8+x9n4YxHIRLquumwE6AW1IU5jzb0pg8ZACfIyK/uBrrv68kuClJ901y+T18YqgAToG/uTnR3s+FEFE15g1BiWUV5VlGeT93d1GYebpnxBk1p1Hj2uXhUDTYVCNLiPSkkTBHxh4vnsdQYSxERESgyYxPtbSxLXHmqll4F7wE7opgzLhJOwpNuGlk4ymrKnfvOaspxOxvo/3RvKAgMgzS/PkXEpFcZt+k5TpKRgdsjYQpENANawntlqwBwr70Ko+5hUN3OxC27Bt5cD9TEudKBOHwRv1BiKRJEHFww3YihqrAiIhK8NMWIJIn4FssgkyoP2cxqAjULFy4c6FBEkpU/j7E0jbEUEZGgdq8rxz3MYyDzWENZaq5/h/rMpNGvs/kyogQzaMiwbd2wcY4uQ6NozWgAbqhzgInt28DH8PIPHeiWfRg5ip2AerC3d3bu4gvuLfIRq05VxZ5ax92TjvHQyqXeTj+BMhU+Y53lBG4CFvqiUYulpFypcoylc26hcy4ic+bMgQ5FJFlJbB5L5ZUiIhLMvjxSloHtImnusjOaNiwc/SiNes+GR2EO9ThKFmyIg5thYINIbih9gBtKH+DkW6FwEgiFbo8Oo1NEX7geuvfuyXweYW+7wpRlDekLHoFupfn8/koUqvANhSp8A3/Auhn3QIubgNeBnBpbmdqE+nlJAVJli6WIXMKfivdouhEREQk+6gIrSUpdYUUktYtz7oJ5LEMMFe8REZEgFkmHrFEMHBnJ5hElaMlYehUeAEeBjV7l18mbWvHT+Fzk//UglIEsJfYDkGFbLO1rDOBEjYyUYBORMVEU+ugbWjCBB3kfV9/4glJUyLSKTf1LcDsb+Y6iAMyo2oB1998DsUClZ3DLAnX8Iv6jxFIkiHjFey4cY6nEUkREgknC1spH3NsMtBcIO3ycL3tWILp3OnpV7cqJqhkYMvUlGjCDfCX38Cjv8E6OR7lh/AF43/flMZBl31F2Uoj2y8ZCFjhwc26uzusoc+Qzpt9Tl4a/zoGT8PCXi2EnzOleA4CPuJ9rx52iRcGRvo21uaLnQJKYWixFJLW7eLoRjbEUEZGgVNAbzzjfjrPEVaVqhVW8vLID3R4dxvJ3KtOPFynV+AvuLbnWG0c5HKgF07rXo9mRSQDEFM3EmzzJzpW34koYUTm6cPUIx+Qj9WmyZiaNPruHAR2/YkCObrg9xvv17+Px6LcBOHk0IzkLHuCgvQHABN2LJRVQYikSRJzjgqqwIWZKLEVERET8KUhbLFNlVVgR+bP4aUX+PI+lMksREQkOtgDgBmiLt7ybiUh6c2x5WrJwFKrDMDowfE1XGjCDnJt2QxnoUetFbih5gIqsIF2GaNJliKZQ/W94l4dhMBTI8S3ZOQS74Kkts6CRt78ty+7goR8+Ivu9e3lo3/uc3Jydk5uz80qe58+1VqoabCqlqrAiklrF+fJHQ1VhRUQkiKVpgqvt3QunF6xLI5vNtb8cIW7sNZTq+QX9p/bm2caDGEYHDs7IT8133qH3nv5M2NSCvFsP0adYZwB6TB1M8QI7aLBgEjO2N6NtmvEUH/oVtsnBs/BJu7I8yjscrJyf9ctKk3//QeLvui/kGQG5we0L2FkQ8TslliJBItEWS1WFFREREfGvIO0KG4SHLBKc4lssQ0IurAqrvFJERIKBWRRD3EE6PTIKuzEGgJfdC3RyfRky4yXYBa/wPFV3rGLskZbEZNuM63kjtvsMGOxfUhDWwktfDvE22ARePDKEa44fYWKRhpwiHTk5SO+SPehQcjgl2ExPetN2zASOkoXZZerRi64A9NqfzheVusFK6qExliJBIrGWyfgc0ym7FBGRIJCeaE5OC4VvroJvrqLbgmGkJYYmDcZAAag6cxV7e2f3PjzqHigITEuDzXO0rzqA/d2zYNsdtt0xn9qszVqc0DSxNPtxBguoxaNfL2TLD+FUYzFbKUbb3WN4t0g1xtKS29lAL0tHL/OSSo2tTMXiWyz9uaQAKSRMEfGXC+ax9I23jHMQapf6hoiISMqWcO5KkSsihRTc8Se1WIoEifgWy4TzWKrFUkREgkVxV4M87CPDxljCrjtO2HXHeazWFPpX7k0e9kGTs7gPjbv4gpi9mbil9QY4Dku6lydDi0Osojz/YyXuacM9bawbeA93btpM+vTRfFOwEMXYSp7bfiBz3gPkXXCIgXSBP9JQa/8SZlOPyt1XB/oUiCQptViKBIn43PHi4j1wfvyliIhI6vQUWwYW4OFbFkNeyJjlBAAVWEWuZQfpv6Y3fAYZR/1KNg5BKdjapjR0hxjScvJoRmqmX0ivZQMgs7fFZ7sMYivF+PiHGrS9cSQrVj/AD+XyUODkfu6o9SkL1j3Gb2XSwWQ4uCw/vOm1mqoLbBAI0uI9arEUCRJx56rCXli8J+F7IiIiIiL/RhDm0iLBKbFWyYRJpoiISGpkdgZ23sCdN67ky31lKZNnLS2YAEA9ZpNj2QnyVt7B3sWFaZr+DcqyhnRx0d58lLuBE+D6GoWnbuGVyu04HhsGwNgjLbkz6xo+v7E0d/ffwLPdBzGCdgz7thuv39OKrmV6cYBcLGxcE8KAByJxDQJ3HuQKUouliKRq57rCJmyx9B7VYikiIqlRfNEe96v3k7dJnjcYz9NMpwHTaUA4X0EW2Lu9MO5p47WVz1OGteyiIB+UrMSZWwz3jdFm6hAKsZOXjvRlZ2ghdoYWYlLWZny6rwJv0IQ+3TtzgJzeTn+EfOwhKroX31GU3CH7oGGUt0hwMLziPf5cUoAgzKVFgtNfF+8JQEAiIiJXwsdX8XbZRwjjNJPXt6J86VXMow4ADZlO4dI76cIAdpOTnLl3c4r0FOBH0hPNU5kmsqN2YdYs+R8fVq3IlKyNacR0AIbSkQZ5pnOQXNRiIe1iX2NraDEqNfqA5W9Xh4MwqV1TbrGmgMZWSuqnxFIkSCQ2xjJEYyxFRERE/EtdYUUkNYtPHUMSGVapqrAiIpLaeN1gm0MaGEYH3qAZxUt/xTrKkGP9CXKsP0FaTpOFo+TiIL3pyYEfbyCSKPKxhweOf0gT3qAUG3Dh8MDKFZwkI0t/fIilPz7ELgow/eHmzFv3BEfJQtvQkRSL3UoWjsI9QB54hjEBPgsiV06qTCzNrKaZjTt27FigQxFJNs61SibSYokSSxERSYUKuWPcUmEDfXmRtYSzZe4dlGcVHAIOwQZuZxcFuJ+POEEGphesS00Wcu+Rz5iUqRl7yM98ahPyoaNEhS8peXwTPQt2p2fB7mTkBLne/YnfyqSjCN8xNTICgALsYlu+G2hTbwgrMj0AGSPVDTYYpfHzkgKkysTSObfQOReROXPmQIciknz85TyWyixFRERE5N9LlYmliPxZfHdXQ2MsRUQkdTOLooirTQ968+322zlBRkbQjrx1djCWlrhshstm5GMPsYRShaX04yUKsZN+dOf0qMw8sWQeAAfm3UDxBl+x+bM72ZbpZnq/3J/eL/dnFG2owlLeoCl3vLKFKVGPkWlfDOVZyc1rfuJ9anDD8W244wE+GXLlxY+xDLIWyxQSpoj8V+eL95xfF6KesCIikkqFs5b0nOK9IlVYSzgHyUktFpCOaIqW+RqA04RRgVWsoSyP8zbr9oXDjrTYfsfXVYtygJz8VjsdA+gGB+FB3mNrs2IAxK25BnfE2F09J+NfeJKnP3sTy+jIm28H3cpGU5LNvkhuDtAZkICJn24kyKjFUiRInC/e8+e+sGqxFBGR1CJ+7koRubLUYikSJOLO94U951zrpfJKERFJRTKfbskaDhNKLG9ufxpWQLYWP1MzZCGrKM+m6NsAWJ3+bkKJ5QQZKcVGiub5jlfzPEeFCisZS0tKsZH0nGIsLXnILeV1mtJq5mQARrVrTi1mUYLNlGAzXA2PlZzCYbJTjtUA9KZfgM6ABJSmGxGRYJD4PJaBikZERMT/0oedYueSW8nCUWoWeYeJEQ05NDAvh8lG/zW9SXsM0h6DAXRlKVVozSgi9wzkSd7kBBmJIpL7WEpt5lHuyDoqsgI3zogmPcvb3c3ydndzJ2voTn9mU4+1lIH+0JM+vMpz9LEw+lhYoE+DyBUVhLm0SHCK7+6acBpLu+g9ERGRlEzdYCXZCMIsKwgPWSQ4xbdKhiTopxDfYqm0UkREUo1+keybZ2yofQuP8g5TeIqH495lYLcuVGQ595V9n1/wpqRrwHSKsp1VlGdhvlpUYzHD6ABALKHU2fYBrIWO4aOZ8uFjVGI5I2gHQBSR5G9wkPIzVlGYnbw/5z4OkY0mj86EeuDeCdgZkEAL0uI9SixFgoQ7VxU2YfEe7yFOfWFFRCSFi2+tPNI9Pa8SQSVWsGNdcQqX2UKXkIFMoAVHycJhspF7+1EAHisyhRjSMoEWfBV7Bw+EfkgtFtBt3wDYlpbRV3dkb6Ps5N16CDfUqNFxDm0YDUD+PQehFkx4uS3UhEPFMxBNepgd32oaGYCzIBI4SixFgkRiueO5FkvllSIikgp0cqHsogB94nqSJ2Q/L5XpSxG+A6AGi6jHbHrTky5FvOTvRwowm3p8N+I2PmxXkVG0IQtHKZNnLff/+Cm7y+UkPdGMLNYC0kFt5rOIGgA8uORj6jWfxvToRixIX5OxtORj84oCOZc3MCdAkgcV7xGR1O3PLZbn57FUZikiIiIi/14Q5tIiwencbCN/nsZSVWFFRCRFi+8Gu4oKZOEo34fcxGKqsZVizKUOt/2wjUI3bmXY191od9sIRtEagD3k4x0eJUur/XxDcd7kSWqykKr7lvLyPV1ZTTlKsZHVlKPNlok8neZNlufbAUCl5h9wgoyk/QRmVG/AacK4133LKu4P2HmQZEItliKSmsUlMsbyfFdYZZYiIpKyTXZb+XJgBR5kEVlnRrOWMpRnFdGkp/iNa9m5/Vba3DaEA+SiNvOpzXwOk52bt/zE0S9yM5jO1GQhoZzlZLb0FGAXd7KG3n36U4LNtKk5hKh8XcjACTJwgnrMpgxrKVD9W+btf4JP77ifT+9QUik+oX5eUoAgzKVFglN87hhyQYul5rEUERERkT8zsx5ADiDWOdfh7z6vFkuRIHF+rsrzmWX8M7VYiohISmUWxXC3j/nUxjU22vEqX9YvwUFysY887CM3uTgI86AiK2jefzr96E4/uhPGaQoX38LuCjkZPqIrt36wk4Pkok/anrSKeZ1WjIX/wWZKMOrHTsQQxh1fb+GOr7fQ5u2JHCQXaYilXO5l3P3VctxXgT4bkizEd4X153I5uzUbbGY/mpkzs+IJ1hcxs8/NbLvv8abL2NZDQHHgLHDgcvavFkuRIJFYi6XmsRQRkdRgD/lYcKAmk3I3YNVnVSEbTN0YQePHx1E3/yLm7K5B6y6jqLtpEa93b0opNgJwinRU/uEzht3YgVLtvmAHeZlNPaqxmPfDalCBlURXSMdPq2+mTbkhhBJL1G1dAKhw20om0Yw95OO2JV7lWaoG6ASIeOYDrwKrLlo/BhjlnJtmZo2AsUBlADMr5Hud0GK8BshvnHO9zWyAmd3rnPv0r3auxFIkSJxPLBO0WJ4r3qPUUkRERMQvAlS8Jz7xswt+61lOoDScqyr1FjDSzHI45351zu0Eqly8LTN7HMjme3kIyPR3+1diKRIk4pNHu6DF0ntUXikiIimNdYx/9gJDnk9H5n6/cJhsWME/uDvPalbmqcyCmJpk3vELdWcuokv9KPaXzELuoUfJ2XE3AAcX5If5sHTSfWTkJIU/28t39xSlHKs5RXrKs4rDZOOnq29mKVXYvrsY3fP3BqDy+tWEXP87Z6/KANW8qrS4yCt+HiQZSprEMruZrU3wepxzbtxlfC8f8LNzLhbAORdrZvt863/9i+/NBUab2RAgK15L6F9SYikSJOJzxwtbLOOL9yizFBGRlOkxN4vFMdUYGtaJLPzGe3ke5KE7lnJVbceZtkaaTpBr/E8MfDqS+uNnUrfjdFZRHoAPalWiW62X2TjjLggFK+AoxRccJhs7fi1Olsz7yRV2kAalJxFFJLXyL6D/7p4AuHcNu94R0nK799r97bA1kf/ikHMu/ErtzDkXA7T4J99RYikSJM4ljwmrwvoelVeKiEiKs9F7mLXkKcgAlIMqsR+Tec1pqAhLupfnDj5n4zN3MZIWDBvfgVaM4UMeYDHVzm/mh7L81CAXkUTRgOlspRgjaEfr0ImUCNtMLg7yGeV4kPd5h0dZnb8cAO9H3QfdgW434fpf6YOXZC/5TBGyB7jezEJ9rZWhQB7fer9SVViRIOH+ch7LgIQkIiLyr5hFBToEkRTBOXcQ788wT/hWPQFscM79VTfYf0UtliJBIvF5LL1HdYUVEZEU5y7fY3ZgLTRfOp3sPQ/BSag+aC5VrQq8fxfv1ajCPvJwKCYb0WHpqcW7HCTXuc2sv/FWckUf5I1+z2AlHV/WL0H7NWNZW7Y4XRlICTaT/+uD/HZbOh7gQ2J9TVHr9oXDy74Et7/GVkoCASreY2YjgDrAdcBSMzvsnLsVaAVMMbOewG9A46TYvxJLkSARd64n7J9bLJVYiohIShJ2uAMxb3vPe5XuSovSE8hb+RA12y6B6+CDrXUY5+bzfMwvPLTvfXggLXU3Tacai4khjBNkBLxpSqJJz/vpq7OwXy1K8QWnSA9AH3qyYNljNKw8kTW3leUVngdg7Qf3AmA1egHgVLBHkgnnXDugXSLrtwFlk3r/6gorEiTOd4U9vy6+xVJppYiIpBTqBivJXnyLpT+XFCCFhCki/1V8i+UFxXvOjbFUaimSUpjZYKAuUAAo4Zzb4ltfBJiCN+/YYaCxc+77QMUpkpRifsnEs60HAdBr+wB6bRsALaFf1k4wGZp0HENZ1jA17CkePrmY7zfl46bWe1gzuiyxhPIyXQE4Sygv0Zflz1TniX5vEzM4Eyv7l+flsh3o+vZwbLtjcuX6TN/WnKI3f81H3E/T6q/7ojgQmIOXlCH5FO+5YtRiKRIkEi/eE/9eICISkX9pPlAB+Omi9WOAUc65IsAoYOwVjkvkyng/knuLfUQUkUQRCV2BAXBf/feZQAtcbWNynVZUiPmEMbSEAVCJ5Qwf3ZK9NQoTExfGU/tn8dT+WeTiIDVZSNTrXWiZdSzZ+v5MjyWDGRDThY8evxd3o9GHnlgJx5NM5YYZB5hsNzPZbgb+p26wIgkosRQJEonNY3l+jGUAAhKRf8U596lz7oIy8WaWEygNvOVb9RZQ2sxyXOn4RJKS2cJAhyDy99QVVkRSs/gCPZbIPJYq3iOS4uUDfnbOxQL45irb51vv95LyIoFg+b3HcTUaU4AfGUxnb8Vgx+s3NuOZGW/AWfiicSm6z+1JNg7T4choWk0azrj+z9G+wFg4Coffvh4r5N33suX6mUPb82K9HWEjj/Nk1jcpVnUrnRaNInuNw4xq1JwdS4rT9Mzr9Jg5GJ4C0lTEnQnIKRBJ1pRYigSJxKcb0TyWIsHIzCKACID8+fMHOBqRy9fFrafFkTfpnbULR8kCgIsJ4TPKcOYhI/QsxB6HxZmq0WnlKI5WyMK40s+Rd/0O9i4ozLurqwFQa8cSAAqEfMvQm1vz+oymtDkwkjcONCE2JgOFa+zg9j3f8mi+d6hfdSaTV7eCq4Cz8YWD1AVW/kKAphsJNHWFFQkS51slz2eW56rCKrMUSen2ANebWSiA7zGPb/2fOOfGOefCnXPhOXKot6yIiF8FaVdYJZYiQSKxFkuNsRRJHZxzB4GNwBO+VU8AG5xz6gYrqYJZFOyHge0imZG1LqGcpRqLqcZiLM6xkVLMzvQIY7M2YV6mmmynCMyHPvt6wvyztGME5IVaPy5hMdUYX/hJxhd+kljS0PGV0Twz9A025bqNkrk2YxscocRi8xwfcT+96ckH5SrBFiAqUgV7JFAym9k4M6sZ6EAuJYXkvyLyXzn+oiqsZrIUSTHMbARQB7gOWGpmh51ztwKtgClm1hP4DWgcwDBF/K7umemkJ5pG62fTp3Rnau33urPyCxwolou2P4zngxsrU4oNPM8rUBwq5lnOI8yjveXhBreNryjOyCOdWJi1KgD7DuRm+gt1WUJ5bl2yk6/uupurFjoenPIxn8+5ne8oymurnydfuT0Q6esG21OJpfw95//pRo455yL8vlU/UmIpEiTi4rzHC4r3+J6rxVIk5XDOtQPaJbJ+G1D2ykckcmXM6diQJ4eOx+U2bIajx3ODAejx64vMpD45b9zDgwfeI+66a+AzIDu8wvPcuWkze112drKIOsxj78kC0Mj7CfzeoipspgQNx87hq5bFyc5h7h3/EbbMEXLgd+Ieuob9X2VhBZV4y+3hceYF7gSIJHMpJrE0s2LAc3jTjaYBmjoNDBO5bIlNN3K+eI/+KYmIiIj4gzOITTFZlv8k6RhLMxtsZj+amTOz4gnWFzGzz81su+/xpr/blnNuq3OupXOuBXCNbxGRy5TYlCIhqgorIiLJnFkUdV1heADKsJao3F14tsEgWAwsht4r+9OOERz48QYG5OqG+9ZgBeSttYMZNMR9aNwcvY2jZCEfeyiSfyvZ3vuZbO/9zEMVltLth6HYUceduzfwEn35dOv9lKr8BQBullGdD3nCSvGElQrkaZCUxJdY+nNJCZI6zPnAq8Cqi9aPAUY556aZWSNgLFAZwMwK+V4ntNg5N8jMKgEtgENAdFIGLpLaxLdKXtBi6XvUPJYiIpKczcnfkOG7W3KQXORhH71aDyBi9KsAWAMHGaDt9xNgM6ypVZZC3b+hB71psmwmw//XFepB7TfmEp0xA6FnYXCm9gB0qzIMNyyESa81oHnr6WwdXYzvi+VjK8V4+P7F2IsOHgZK3IXbFLjjF0kJkjSxdM59Cue72/me5wRKA/f7Vr0FjDSzHM65X51zO4Eql9jecmC5mb0GlALWX/wZzc0lkrhzVWET9FNQi6WIiCRnZlF//yGRZMYZnA31d8fQOD9vz/8CMd1IPuBn51wsgO9xn2/9JZlZRTMbaWajgLR4RZ//RHNziSQuvkCPJTKPpVosRUQk2ZoTCVmg/b4RlGUNGTgBjWDc3OcYN/c5bpmxgU9Lh8NSuKXWBhozlZ1P30pZ1tC68lAYC+ne/o24969hQfqaDMjUid7He9L7eE+cGZ+9VoYTZOCW0RvYuOku3qY+D29dTKFN38BO4HHUWilyGVJIj11wzq0AVgQ4DJEUK+5cV9jz61QVVkREkrXckbAX7t30ER+efoAMDWIZOaMFvAcR/b2usKOOt+eq+xxDvmrDYDrzcJ3FMA8mj2/KAXJBAZiS6SnaNhtJvSMLuSPrpyzLVBmA6T3q0nDeHO5Nu5ZZNWqRvmQ0BdjFS6eGwNeQq/tPvkDUC04unzMjNo2/06wYP2/P/wKRWO4BrjezUOdcrJmFAnl860UkicTnjgmnGzk/3lKZpYiIJC9mUV5iKZICxYb6fyLL5O6KJ5bOuYNmthF4Apjme9zgnPv1SsciEkzii/dcOObZe1SLpYiIJEtfnIUVaXiQRRxOmx2ywAZuh4owIro9ALMzPcLkr+rTxKZBiavotakrlVhOGDGUOL2JOcUbkoXfeJeHCanv4Hm4++wGAFx+o0XtkbAdYgllMyV49Pg75Cmzj50VboVVvjGeTgmuyN9J0sTSzEYAdYDrgKVmdtg5dyvQCphiZj2B34DGSRmHiCQo3pMgsVTxHhERSa5KuWoUYyqdGw9mJeXpyFDuG/0+E5e04Y97jau7ejevJiPGUIgdsDMNcVmM/HzPsJj2HN2cG8txhrCKx6k6bhUTIxrS46MX2UwJ8vk6yh2PDaM+b7O0yH3Ujp7P1Q87qn80lw+sDqQD0kXiNA+B/EMOI5bga7FM0uI9zrl2zrm8zrk0zrnrfEklzrltzrmyzrkivsfv/LlfM6tpZuOOHTvmz82KpGjxYywT9IQ9N95SxXtERCQ5UTVYkZQnxRTv+SeccwuBheHh4U8HOhaR5CIukRbL+DRTiaWIiCQ3G0ffxcbIu5gxsBnjmjWmCktpNXsyFuPYkL4Ub42oDcAuCtB1z3B6TBtMyZ5f0pUBtH1vAlF1upCXXez59SaWR9xN5UWrvT5z88Gl990L00DVsOVwKA2hhaHTR33ZQz54FngtPrlVN1j5ZxzG2SBssUyViaWI/Nn5MZbn1yWsECsiIpIceK2VtaFNFC+7owyO60xEx6nsH5qFovW+JuzIcSbQgok3tfG+8AQM7tWZ9T2LMZjOtB03ATLD4OjODEjflUE5nmUV5fmjopFp4zFeyfo8h8gAwBs05RY2E50/Hb3pDkAJNjPLl1Q6ja2Ufyk2CNOs4DtikSAV3yhpF0w3ohZLERFJhsqXpMzKE7SOrczR0CwMHNac3I8cxRU0bIajb5cXmTjNSyynla1HWdbwIn2ZNekpmkSMoRyrifhhCm2/mECTBmNYuPJR0oZCxrtP0P6HMRS8cRcAL+QfwZzdNVhMNUqxgWs5SuVMqyEjuOMBPH6RP8tsZuOAhb7emcmOEkuRIOGIn8cyYfEe7zEuLhARiYiIiKQ+SVS855hzLsLfG/UnJZYiQSIukRbLc1VhAxCPiIjIxcyi4LtISONYd/89RH4URTlW85bbyOOfzeebfIUY2aUFuWce5a363hjLWEK5afsemA38BpNntiJX/QOw13irQW1OkJHJ17WiaZHXeYvHqbpiFWVuXAfA3t3Zuf6Dw9Qt+j55btxPWk7DCY2tFPk3UmViaWY1gZqFCxcOdCgiyUZ8d9cLi/dc+J6IiEig1S0ynTmZGsJwGN6xK/OGbuMU6Zl3zyMUZTt92vXDVTKsu+/eVRyKNNhEje6LGL69K0uKlKfq6FW80rod9Y/MxxZBaKNYmj8/nfqDZjKkWRuaMQmAeszmuXte5b1M9/MdRelkfQBwLmuAjl5SA003koo45xY65yIyZ84c6FBEko3ExliGxPeFVV4pIiIBpilGRFK2VNliKSJ/dq4qLImMsVSLpYiIJANFXG1ysRTGAPPAvWLYCEf7dgPYR26GRXfg5KBQbLjjvf5VAHj0+Dt8t+M2BhV+liFF2lD1h5UUab2J9EQT8qmje6Oe9F/Tm0KDvqF6s+VwL/Cpt78l99bivWZVWEBNhp7uSMs/xnBN2tiAHb+kHsHYYqnEUiRIxKeOCacYsXPzWF75eERERC62fVxJPomoQJEG39HtoQG4szCkXRsG05mRtGFW56fIFHkcZsJDtywFoEetF7FPHcTB5CL1ob6xvV9J2lbLR7pjv9F/SW+yVfmZnatvhSbgQo13mtUEoNGRaYRxmna8RoarewLne/iI/FvBOo9lquwKKyJ/FhcXP4/ln1ssnfrCiohIAKkbrEjKpxZLkSAR3yqZsMUSu/A9ERGRgOkQSZeIKK5beIz2tXpDi2u5bvxPHFh4A4drZuMguag7ejpzujckw6eHGJ/+aQDaxo2keY1RTHi7LVkK7KfMV5/xMl2pShV6ZupNt2nDOFsxFLLAkmLlsaEOvvbt8w9Y1bECXU4PCNhhS+rjFe8JvjRLLZYiQSI+d7ywxTK+yVKZpYiIBE5O15TWQ4cy6EBnKA70yMXw8S3pzGBa1BxJTg5QhrWkJ5ou/aM42SI7rWJep1XM6xz6OS8Th7bBzDEo7AXWjbiHqktWMdFtpxA7yTDmEMc+vQ7+B90YAA+c32+GVofo07EfOU4fIt2xdjinKUZE/q1UmUpruhGRPztXvCeReSzVYiniH2Z28DI+9otzrmSSByOSAsR3gc3pmgY4EhH/UvGeVMI5txBYGB4e/nSgYxFJLhKbx9Iuek9E/rNfgRp/8b4BC65QLCIpRjqiSUc0cbFpsBcd384owF0xX3Bsy3V0KR3Fa7QjIyfpwDBKV95KkWWb2N7a+/vMi6N7MKdjDQ6TnYjVU3E1DXvLMaxqe7ZsugOXw3i1cgSRP0exrvE9ZJv8M4f/uB6AE4dzUGzoer413z9LtViKHwTrPJapMrEUkT87N49lgnXxSabyShG/6emc++mvPmCqUiICXFiwZwEPU+j0Dt7M05iDV+fnlq276FHsRfqU6cfAKpG8+1E1DpGd0v23wgTH9udL0mP0iwD0WdkPNuIte8BedfTq3pVeowfAI6cZmrs1nVaP4mSZUO6fupSWjOFw6exeDAMdxAL9bsd1v9JnQCR1UWIpEiTOF++5YL4R33vKLEX8wTk3xx+fEQka5rUQ3nW8HQ0yzeBgu/zQHoiEqLH96TO2HxkaHWI15ZgQ14Jp3euxjzy8cPsI+mzt523jU2CkN+dl40bj6E4/btm0y2u5fNvRqeIoWAtPlZtKCTaRnz00WTATgO+75OMma+Ftp7taK8U/HATldCNKLEWCRPyUIheOsfS9p7xSxK/M7JVEVh8DPnfOLbvS8YiIiCQ1VYUVCRLnusImUrxH81iK+F0uoB7eH3DTAHWBIsAwM3sxkIGJJAfnusHO95ZTda9l4qY2TBzRkGdLDoJbIDYNDI9oydvpH2fgzEjWh5RmKVV4YegI3K1GhgKHyFDgEK93bwrh8GqjCEqwmUiiyFlyN43zjcMdM9wsI0OLQ1RiOWNnt2c29eAX4Be4qf8e6BeparDiZ950I/5cUoKUEaWI/GdxcYkU79E8liJJJQ9Qxjn3G4CZ9QGmAvcCa4B+AYxNJFlo7rIzcZz3fMlH5cnOYdYSzoTjLeAojM3UnFbR47g1/RZ+qp+Lggd+IO50WsgABW77lpMh3jjJBXE14VvIzmFqsIgXrCzcnp/u6/thHzmKr/6Kk/2z03bABGocX8ToBh1pMmPMuTjeoFUAjl5Ss2At3qMWS5EgcW4eywTrVLxHJMlcH59UAvieF3DOnQBOBy4sERFJoTKb2TjftIrJklosRYJEotONqHiPSFLZambjgDfw/q7TBNhuZmnxalCKBC2vG2wrJk7NRdUIb5qPqiNWcUO7bXzIA5xqci3j5jbm6Ylvwh/Qpc1AZlOPQ7lykD96N2Uj1vDxpgeZFVcLgMeWLaD79z3ZRx4yHj/FZLeAgRTjGcbw1uraFOU7QrvHclvF79hFARh8msl24Fw8b+gWKEkgCVosjznnIvy9UX9KlS2WZlbTzMYdO3Ys0KGIJBuJjbE04lssdVcV8bNmwAlgJDAa+N23LhaoHsC4RJKHUbl4rPEUmvIGTXkDnovip9U3c8vAXbgGxj7yYHc4TjeFaNLRceFosmaK5uTG7IQSS0TJV89vqyX0t27soBBXbXTsJw/f9r+dFasf4Ilm80hHNLcN/Q6GwT7ywPWTgJw4p7GVIv6UKlssnXMLgYXh4eFPBzoWkeQiPnm0BJmlqsKKJA3n3HGg0yXe/vVKxiIiIldWsI6xTJWJpYj8WZw7n0jGi08yVbxHxL/MLCcwFMjvnKtgZiWBcs65MX/zVZFUzSwKKkVCmyMMav0CNzTzuqRmPv0LQ8Ma0pzpvFiuB50ZTNGS3zGCZ3mh9wjanx3Ly8c7cJq0dI0eyNVtHeOqPedttDq8NaIB9Y/MZ2zB9hRjPWfaGle955g1qRa39N7FLT038G3j2zlNWpjyTADPgAQDh2keSxFJvRzugtZKOJ9oaoyliN+NBz4AWvtebwOmAUosRa6Die5ZhtGB9yZVAeChoUtpXnw6HIL+23pDMzhKFiYcaQF3AVdDeVaxh3xcvffCe1ZYr+M8zyCeGD4PHoe6TGdEptZQCB7rv4A+PTszgRbQCprnmA6AU78BEb9LlWMsReTP/qrFUmmliN9d72udjAVwzsUAcYENSSQZqB0JN3tJYyk28OCSj3lwycccey4tfap2Zk6DGlAAwohh9MqOjMzaFq6GORVqsIsCLKUKI4u0oNSkL3DXGu5a49Wsz7HXbuBMZ4MTMD26EZ1GjIKd8EH3SmTnMD89fTOdyvWFQ1HeIpLEgnEeSyWWIkHCOf7UYgleMR8V7xHxu7MJX5hZFi6c7Uck6JgtDHQIIpKEUkb6KyL/mXMu0V+1IWYq3iPif3PMbCyQ0cya4HWJnRTYkESSgeLQuudQtlKMPOyjRNUvAajAKsqzioi48TxWeYpX+KQR9N7dk+EVWlJ39CIoACfvC+XRtO9QjK2Mr/okAM8seoM+rjNXrXQcqZCe07FhUBY4DdWXLIcPgdwwJMdLkF3dYCXpqXiPiKRqcc5dMIdlvBDTGEsRf3PODTKzhkAWoAYwwjk3LbBRiQRaYXgdFveuxs6ttxJ23XGKZP0OgNFzOzK7Tj0Ot7yeWb8/RacZfaEJ7M1UmNXHy0FeoPhZXkvbjkXb6mLpzxCWP8bbbF7o0W4wpUZ8wbVfn+Kj2+7FZTOWF76bA+RicNXOrBt4T4IusJpiRJKWEksRSdVcImMswZvLUlVhRfzPOTcdmB7oOESSA7Mo4LFAhyEiSShVJpZmVhOoWbhw4UCHIpJsxP3VGEuV7xHxCzN7h7+oh+Wc0y9rCV5v30L7+gMYbl0JO3ycmPcyseWp3733hsDByvnptKwvRdlOFo4yq3ctHqu3gFosZNaqp6BVGtgH9q5jfZdi3P7rtwAsKlmDg4/npzOD6Xlbd1ZTjqrHH2QONXhiwTx+rZWRMV1aQhd4icEBPAESTIJxupFUWbzHObfQOReROXPmQIcikmx40438eb1XvOfKxyOSSr0HvA/8ChQEPvMtNwA/BjAukYD7vP7tvBn3JOSGkVnbUqTxJviiorcA45Y1ZkJMC4ryHY9OXMhjHRfQuuRQjpKFZwcNgue8arF8AqV7b8VyfoHl/IKmvIHLZzR6dDZ9pvZjbUwZeAgi4sbDLsjR/wQ9LCM9LGMgD18k1UuVLZYi8mfOJV6SMsSMOPWFFfEL59wUADN7EqjgnDvlez0OWBDI2EQCxesGKxI8vDGWwZdmBd8RiwSpOOcISWSQZYiZOsKK+F9e4HSC1zFAvgDFIhJwXRzc3XoD7mZj274buGX9LvgD2Oi9f7JNKBlWxkInWPtVOP+7Yw30g9G/dOT1GU15bcnznHnGuJ6foBG4u40sXfcDEBXdC9JA7nd+ZCgdaXZ8Eu5F49WQCPK120PdOxZBeCTuqwAdvEiQUGIpEiS84j2JjLFEVWFFksAnwCIzm+J7/aRvnUhQGhXdhrdG18bsIyheBa4BdsDE1g0ByHBTLEyDkPd+p030aNoUHs3VvRyukNGZPpAXrprm4AEHhcC+deQtuAOA2WF1mZC+BfufL8jSQVU4NfhaaArt04+FCcBaVYOVK0tVYUUkVYu7xDyWGmMpkiTaAi2Benh/v3kfGBfQiEQCQN1gJVgpsbwEM/sQGAm875x+goqkRJeqChsSYuiftYh/OefO4N03RwY6FpFAiU8qW7uMjB6YnSdKzINPwN1kWCfHkzPG0+ztGQCEfn+WJv1nMr57BFfXcZyZbHRq3JcvKMWbNIZ7gZEw68aHefTEQuyEYwytAHho9VI6levL3EF1mEdtyvdeSVd60Tp6KHvIBw2KsYBHA3UaRILG5VaFHQe0B3aaWRczy5Z0IYlI0rhEVVjQPJYifmJmL/jjMyKpRV7XkHzs4fMut0NecPuM3blzwltHeHPB07R5fAhtHh9Ck0kzcU8a9WJn8+Tc8YSehXDWUYe5tGa016W14mnCWYuVcnAVPLRmKQ+tWcrL5TowZMZLLKUKzUtOZz95OE1aRtstLLStLLStgT4NEmQcxllC/bqkBJfVYumcmwvMNbOiQBvgGzNbArzqnFuXlAGKiH/ExUEitXt8xXuUWYr4SYSZbSbxIszxngJeuULxiARUFJE0HzqdiR0bwl4Y83gTnpn0BkNcGwrwI7so6H0wHPgWMn9/mpGVW1An61uUYS371xRkX9nc8Ba8Uud5FlCTX11GRtCOPiP6AdDt2mFke/xnokkHXaHb3GGwAnK7H4Gb2Re/D5GULbOvwvhC59zCQAeTmH87xjIGr5bXVDP70DnXyY8xiUgScLjEi/eYWixF/Ggv8HctktuuRCAiIhIYSTTdyDHnXIS/N+pPlzvGsg5eIYJcwCigmHPupJmlAXYASixFkrm4S8xjaaYxliL+4pyrGOgYRJIDb3xldzYzBLJDdg4xskYLarCIdPV+Yw/52EUBFlATgLolp2MTHJNH1KeJzYTp0LfBS/S4KyPhbifjasML3UcwrX89bmcD7RgBGbx9NSgyiRk9m9Gk0UxcUeP9Mvfx0FtL2W9TvQ84VYOVKy8Yi/dc7hjL5sBA59ytzrnRzrmTAM65s8CzSRadiPhNnHOJF+9RVVgREUkKi6+iBROY2LghD/dezAkycsNVBziV+RAjDjxLMbZSks2UZDNzRjeEcFhCNV52Hbi7wXKe41V+cGN5ev+b1GzwDoyBjgylMVOpz0yKN/uK4s2+4jeyMLl3fXIX+ZFRZZozm3owez1QE6ekUuSKudzE8m3n3OKEK8ysEUBy7ONrZjXNbNyxY8cCHYpI8uG4RPEe0zyWIiLiN5piRIJd/DyW/lxSgsvt/NsBePOidR2Baf4Nxz98ye7C8PDwpwMdi0hyEecSH2OpFksREfG39i4tHcjFDc8fgJpAUW+9227YKUdcB5g3o7bXpRVY+MujxLU3ok+HsCdtPrqVHgYPwI0374OTUKr1F3x6JJx7V6+l7819eC7rK2xZfwcAo0q3ZRE1GMTz7CEfkze1gq/BlQzQwYsEqb9MLM0sHCgLZDez1gneygyEJWVgIuJfjsSrwpqZiveIJBEzy+Gc+zXQcYhcUR9Hspn3yV/3IO3nDGD4+q5Urz+XATFd6LZhGBwFHod87OF0/M/JPmdY2vtedlKY3vTk8/W3s5FSNIidQeZ3T7Ox3V0sH1GRHuVeJOR5B9Xh7srLAfjfuDXE1TNC5ju+bVaAbl8M87apxFICJL7FMtj8XYvl9XgFoK8B7kiw/jjQJIliEpEkEOdIdIylGSreI+JnZlYWmIU35CSf7w+1Ecm9op8kb1GJjWdIjj5OHveUFHO+5F+J7O170iN5/P92sZQy96Q//WVi6Zx7F3jXzKo655ZcoZhEJAl4xXv+vN6bx1JE/GwoUB2YDuCcW2tmUwIbkqQEqSEZ6nWfdwxRQBbrRi+6AV4XuIttjv8OYaw2gE9pyWS8wh4bGQb08tU0j30NQoFe9IfB57dRDejd0vvczObnPy8iV9bfdYW9xzn3GZDGzGpc/L5zblGSRSYi/nXJ6UZQ8R4R/wtzzm29qJdATKCCERFJDTL6Hjsm898tSTSPZbL3d0fcBPgMeD6R9xygxFIkhbh08R5T8R4R/zttZhnw7pWYWTHgj8CGJMnJ+1RhrX0c6DBERPzm77rCPu17rHRlwhGRpOIciSaWarEUSRL9gCVAHjObDDwANApoRBIwiXVvDXf3BSASkZQjMgX/NlHxnr9gZhWA9c65k2bWHK+Qz0Dn3I9JGp2I+M2lxlgamm5ExN+ccx+Y2Xd4w78M6Ouc2xHgsCQJ/dOxkWqtFPGk5ATyryixvLSRwG1mdivQCW/+yolA5aQKTET861JVYb3iPanzoi4SKGaWA9jrnHvd9/oqTT0iIsGo1+LzvzFc1QAGIknuchPLs845Z2bVgdedc6+Z2aNJGZiI+Ju7xDyWEBd35aMRSeXeAypxvmBPGLAQuCtgEYlfpIaqrSKStBym6Ub+6nNmdg9QD2juWxd8Z0skBfNaLP+8PsRMYyxF/C+tcy46/oVz7nczu/pK7NjMigBTgGzAYaCxc+77K7HvVGOlEfW/QAchkrJE3uR7sv3C3xSRVz4UCZDLTSx7AKOAZc65b3w3LY0VEUlBLlUV1jSPpUiSSNj11cxyAiFXaNdjgFHOuWlm1ggYi4auiIifpdaxkf6g6Ub+gnPuXeDdBK+3A3WSKigR8T93qXksAaebg4i/jQA+M7OpvteNgZeTeqe+BLY0cL9v1VvASI3vvLTEurZGfhKAQEQkVVHxnkvwdd9pCBRK+B3n3AtJFJeI+JlXFTaR4j0hqgor4m/OuUlm9gNQA+/vNy2ccyuvwK7zAT8752J9ccSa2T7f+qBOLP/J2Eh1gxXxqFVS/onLbaN9B6/wwBrgdNKF4x9mVhOoWbhw4UCHIpKsJFa8R2MsRZKGc24FsCLAYSTKzCKACID8+fMHOBoRCTQlkP6leSz/WmHn3C1JGokfOecWAgvDw8OfDnQsIsnFpVosDa+wj4j4j5kVBV7izz197kziXe8BrjezUF9rZSiQx7f+HOfcOGAcQHh4eKq5Aqhiq4hI4FxuYvmDmWV0zp1I0mhEJMnExSXeYqniPSJJ4m283j5vALFXaqfOuYNmthF4Am/O6SeADalufGV2I+pwoIMQSTnC3X3nnj/I0gBGEjzUYnlpx4C1ZrYY+CN+pcZYiqQcDoclUr7HTMV7RJJAiHOuf4D23QqYYmY9gd/wCgeJSBDI6HvsqPu6BMDlJpbf+RYRSaE0j6XIFfW5mZV0zm260jt2zm0Dyl7p/SaFS3Vtjcx2hQMREfkHHMZZ/7dYZjazccBC37C/ZOdypxuJSupARCSJOQhJpC9siKkqrEgSKAs0NbPvuLCnT1KPsUyR/unYSHWDFfGo6E7ylETzWB5zzkX4e6P+dLnTjeQEhgL5nXMVzKwkUM45NyZJoxMRv4lzjjSJFu9Ri6VIEmgf6ACSIxXXEfnnlDxKSnG5qfR44AOgte/1NryiAEosRVKIOOcISSyxVIuliN855z4BMLMcqa5wjoj4XVOXE4D8HAhwJOIvKt5zadc758aYWUsA51yMmcUlYVwi4meOS4+xjNV8IyJ+ZWZlgVlACJDPzMKBiOTejckvihhR3wc6CBERudIuN7E8m/CFmWWBRMpLikiy5RXvSbzFUl1hRfxuKFAdmA7gnFtrZlMCG1ISuteI+sx7GnlTYEMRSe7UtTX188ZYqsXyUuaY2Vggo5k1wesSOynJohIR/3Mu0XksQzSPpUhSCHPObb3ojzkxgQrmSlJrpYhHCWTwSqKqsMne5VaFHWRmDYEsQA1ghHNuWlIGJiL+FecS72agFkuRJHHazDLg9ULHzIqRoDqsiIhIanO5VWErO+em4+vSk2DdsiSLTET86tLFewwNsRTxu37AEiCPmU0GHgAaBTSipPSpIzLQMUiSMvNmnivlqrFx7l1QNwrGRvJuRDXKswqArNujYQNwE+wtnZ3RtGYrxZj39hNkf2wvh9NcDxPA3W/Ytw7Owv4aWQC4bugxrIrjSMn0ZP3hd2hiHFuelntCP6Upk+kUMgrcXACcqxOIUyDyjyTBdCPJ3uUe8WCg9EXrBgFl/BuOiCQV5y5VvAeVhRXxM+fcB745LKvhdRbo65zbEeCwRP6bbpFs3H0WV8SwLxwMhK0Rxc69Pa1IPU4XSUvzGdOJKR1G/0d7Q22w5Y/z9eNFua3XdxAOt+f7HM448t64k2ujjwFQtuMnsBJG0RpnIdhJx+LQatRmPtGkI2/cDqAkeygcoIMXkb/zl4mlmRUGigCZzKxGgrcyA+mTMjAR8a845xIv3gNqsRRJAs65H4DXAx2HiIhcWSrek7h7gCZALuD5BOuPA52TKCYRSSKXLt6jzFLEn8zsV/jTP6xjwOfAC865X658VCL/jlkUPBtJj/4vcoKMpD1yDF4CjkI6ollNOQAGTO7Fz02y0b7BAMKIYfI79RlLKz7PUInBdKZLzygG3h9JjY8WseGju/mwZUWuHuz9M6nY80NGVmhBm5cn8k63mnAzPDZ1AWyE9kMHsNd8o7GcOl1L8qfEMhHOuSnAFDNr4pybfGVCEpGkEOcclkj5HjMjTrPSivjbKLzePW/gdQxojJdYGjAOqBW40ET+ubojptN7Xn/stjim3fgojarM5sjo9KSPPkXaw95nPmpyL/cv+5QClX8k74JD5Ky1m4PP54dYaFlrLPfOWAtDoP/unnRoOYxGcdPgbe+7K+56gO+qFmVDt9s5ShaoAu82rsbaxuFUYSm1HVRgTcCOX0T+3uVWhZ1sZoWAQgm/45xblFSBiYh/xTkICfnzelWFFUkS1Z1zZRO87mRmnzjn/mdm3wQsKpF/IcJloTBrIBzG5XuKUbShR50Xuf74z/TM1JvT6dMCcIp0VN2yincrV6NPrc5U4WPunr+B5t+PYi1lYAPkbbCDfQdyk6POCfgFGODt4/WqTSnLGkoP3QpVgOtgLeEspCZ9LAxQOQBJWdRieQlm1h94GvgWiPWtdoASS5EUwl2ixTKx7rEi8p9da2ZZnXNHAMwsG3Cd772gmM9SRESCy+VWhX0MKOScO56UwYhI0rlUVVjD1GIp4n8jgK/NbBHeH2JrAK/45rb8LKCRifwDZqf43E3m7qkbyNL4KDVYRGF2UHnGaoY0aEOnkqMYuakFAG3nToCFkK3dYa7lKFn4DWrCxIFtCHv6OOl6/MaeHTdRrPB6vq14O2SAt2rVBuAEGelNT29dydrsKlmAmiykT41+wOIAngGRf85hnFWL5SXtV1IpkrJdah7LkBBVhRVJAm8CnwAV8cZVjnbObfK91zZQQYn8G2/QhHcbV+PhOovJPfdH9i8oCPeepVONUTDf0XbfKABertOBbiOHce+ktZRp9hltZ06A7MAnkPH5E3QP6c9ZoAA/Uq3dYoZt64bN9W5Aw+u0ZP7Qx2EvrKEswxd1JXeNfTDmLPAiLn/wzQkoKZdXvCf4/p+93CP+3MzeAt4B/ohfqTGWIimH4xItlmY4tViK+I158/qsdM7dBmwOdDwi/5ZZFPBCoMMQkRTichPLO3yPzyZYl2zHWJpZTaBm4cKaRFck3qVaLA0VRBDxJ+ecM7MfzOxa59xvgY5H5L9Y5u5jOZX4jSwsm1uOymtWw9XgYq+i3aJXmE09vj/t/d7KsCgWTkChZt+wbuY9sAuydf2Zwx9eT4uQCcymHgcz5eSDO+qw9attFL55B6z09tN+61imdazHciox/Icu8Dg0OVEM6IfTFCOSAql4z0XMrJjvaZsrEIvfOOcWAgvDw8OfDnQsIsnFpcZYevNYioifnQQ2+MZYnoxf6ZxT84+kHDUjqbSnF5Xz9+ADt5p95IHnIffKH7Gtjldox/7WBXltdDvv88XPcu9Xy6nHbA7Wz0X//r05vON63GnDGjtumbqBgR0j4QC0YAKHyE6fCG9a9D5HelKDRdSLnsPEQrcC68nwe4r6+SkS9P6uxfJ93+PFvzvNt+5Gv0ckIknCOS4xj6WmGxFJAjt8i4iIBBlvjKVaLC/gnCt4pQIRkaTldYX98/oQU1VYEX9zzkUFOgaR/yLtkePwYiY25LsFhlTnKOMYQBeYdpbWjKJwsZ2EcZpnRw9iAbW8L61Iw6dr72dd33CiMkXSoPskZtRoxoBF7eFbaMB0elx9O6/vbsouCjDsSAeWZa0MwMGsucjaLhrCYbhrSXt7iJPXfI5zNQN3EkTkH0lkunQRSY0uOd2IaYyliL+ZWU4zm2ZmK32vS5pZq0DHJfKPfOxVaM3d8UeeKDaPLcvu4PX8T9Nj6GDSE80JMvJahef5vH8lPu9fiZGNW8BJiF6SlV0UYMaMZpAGum0fBsuhh3WHLVCeVeRjD6ePZGYNZVlDWdITzbMjBpG38Q7alxsLUTW9RSQFip9uxJ9LSqDEUiRIXLp4jymxFPG/8cCnQBbf621A64BFI/IPeNVgReS/iCWNX5eUQImlSJDwphtJZB5LQ9ONiPjf9c65MUAsgHMuBogLbEgily+mRSa6d+/JM2veYP/ufAzZ2gY+wOsOWwoezr+YJqtn8uzKQTAAGABtS0+gz6TO/F4zhNGLOnJvg4+gM3xQpBKUhy3uThhzmp0Uou3ACVg3R6eVo+i0chQl2ExODlCNxfB5FERG4XoG+iyIyD+hxFIkSDjnLlkVNk55pYi/nU34wsyyQCLVs0SSGbMo+DqS4XNbkpMDvFW2NmxMw0vH+0JN6Ekf7//uPesZWa4Frw19HsYAY+DMCqNHucFk+CwWPoVPe98PK+CBUSt4pOfbRJOOJ/NM5eHRixnXpbFXInKjt9SLnsNRsjCxgirBSsoXX7zHn8v/2Tvv8KjK9A3f3/RMekINRdSAgoCiKIplragormBBsawFQcWKuiquIPaKiqBiXwsr9kUX64I/C4i6iqCIiNJ7ejK9fL8/zpzJJJlMEg2EJO99XbmAmTMz35zMHM5znvd93tZA6/BVBUH400Q1ScN7JBVWEHYIbyqlZgGZSqkLMMpgn2vZJQlCIzkGztk+m46/VzBjj0sgDOOzZvGI8yau9j4KHwMj9sdBkGET51IWq/i2qy08pCdgJcw1VbO455Rr+ZbBqOM0L0wYzUEvLuPG86fCCZpxm57GstpDNGKcik50P8Qv7AWfG2W4MrtSEFofIiwFoZ2gta5n3IjMsRSE5kZr/YBS6hyMHsvhwHSt9cstuypBEARhZyDjRgRBaNOkciylx1IQmhelVE+t9SvAKy29FkFoDGqi+beDYCp0OLaK+Z8cytFzFqL3VajvNO8NOZbnuZDCB1Zx37wpjBv4Imcu/ScfzTXGjeRHNnLdfTPhDA2fws3vPMyY556DMriPm3jo/Alcd/dM6A7ZZ5XyquNsThy6AIDHT5/IiImvA+JUCm2DHZDkmq2Uegp4V2v9bnM/eXMgwlIQ2glGj2Xy8B7psRSEZmeRUupnjPLXt7TW/pZekCA0hv/Tt3EJ3Xj18lM5e/LbvHD7aP7JmXARjHrwLQKBbAAOGr6YyHAbZ14yl1ufvgWAO+bcheOSCt7KG8XJWz6BY2H2wotgJPy8dBDXPTaTe56+lj35jXcZwVY6sXlhDgD/4C6eVUXAVCmDFYTklGutx7X0IlIh4T2C0E6ob46lRSlxLAWh+ekJPAKMAtYrpZ5SSh3SsksSBEEQdgZGKWz7GzfSOlYpCMKfpv45luJYCkJzo7WOAO8B7yml8oB7MOZatr+mG2GXR6mpcLbhEs5iPCtXDuRs1+v8cPtenMHrrLx9IPxDEzwsC5WjGbHwdea+fCaqt4YT4Y6FdxlP1BXuybuZkzf9B64GDp4Ks6bACrhu0p08dOE/uOndR2AJbLu1E9voTFd7GQAZ5UXAzBZ494IgNBciLAWhnaBJPutAiWMpCDuEmKAcA/wNyAZkKp+wy3L/7KsAuGHmY7wSuRi1RnPGtNdZ+dRACMO4Pabz1DNXo/0KdaBGzdA8NGQC1y2daVwyASynecihjHsKbuIW6508p5cziwWcMm4uN098mFun3UIpaeQt99KHpaxcPBB+Mf7/qUp/EchE64n1rFAQWg8S3iMIQpsmqjWWJOk9RilsCyxIENowSqm3gMOAfwPXaq2/aOElCYIgCDsREZaCILRZovX0WMocS0HYIbwFnKO19rX0QgQhFWo+HKmHsJ5lxg3HQI+9f+XfHM+RkU/J7hKADDiH2Tz149WwETp9s45tt/ckf0gRGwZ2YI/uvwPgsWVTyM88z0U404JcMHcOFMKafr24ddot3HHfXdwevBu6wZEsYOXWgdwzxHAob47NwhQEofUiwlIQ2guapHMsLQqZYykIzYRSyqm1DmAIS6WUcifer7X2tszKBKF+Pp14Ap8OPgGAa8c8zFieoYgOnGt9me6nrGL9D71ZwCFQBJwN2+w90TMU13MH7zCS4HtZAHx/fn/WLt+bCf1mcmPWfdy26l4eOmUCTgJccdEzPPLceCbwENdwL/kUwTtw81/3ia9D67Et8O4Foflpr6WwkgorCO0EI7yn7u1KKXEsBaH5WBT7swqoTPKnIOwyKDW1pZcgCEIbQhxLQWgnaFKVwu705QhCm0RrvX/sT7lwK7QOPoHLp03j8cVGSWoEK1Pevo/JIyfx7vlnGJ3Cn8LRZy1k2KS5lJIG/4SiMRk89NY/wA8UGk910JhlfDT7cB5nAoWsgn/BVWMf5x9Zt8Gp8AIXskQdDOcBZcC3ABt3+lsWhB2NBsLt0LEUYSkI7YT6xo1YlNTCCkJzUbv0tTZSCivsKsTdynue4dS73+ZxDGHZ+7P1/N/IIbjxkv3MFv7jOBn1sob+msP5jLxLvFz+9DQ6/l4BBwfgHSdMiT3pCBh20eewBea9PBxmQJeMDfxKbzgFhjOPxXoIEawMYBknq3OB3dD6gpbYBYKwA1GtZvZkcyJXVAWhnaC1UfZaG2OOpShLQWgmzJLX+n4EYdfhwilcriv4L8fCT8BP8O8jjucvkxbTg/U4HUEWMhTuhYwuxfxj+0N0enodo5nDHXvcwJUF07n88mkwABgAV171AOwHTIHgt1n8e8jxFG/oTN4ZXm7kPlZRyN9Pmc50rmICM4C1sR9BENoC7U9KC0I7xJxTmWyOpUUpMSwFoZkwS2CVUrcAQeApjK/e2Ni/BUEQhDaOhPcIgtBmMXsok5fCimMpCDuAE7XWD2ity7XWZVrrB4EzW3pRggBGGexuejRPPHch3zKYpQzAcpIHy0ke/jr5Q067+xXOnfYG29YVsIo9oQoK3asIO+FKpvOXSYu59YwHKSafqUwBF+CCxybdAENg2JC5OAZXkE8xV/Z8GHIgd5qPiw98BTbA5rt3Z62aA4DWU1KuVRCE1oM4loLQDog7lsksS6UQXSkIzU6+UqpQa70KQCm1J5DfwmsShDhrfuzLgv6HMIMJHDRnGd1HrwLgltvvYmzFC9iOOZcLez7BYP7H6cMOpzPbsP+seWTIeBzXV+BwBZn93EXMnnERnBt70pNhUp/J5FDG8XkfclzFx/jW5HLP09fyKOP4euIADnIvg++B06egX2+xty8IO5z26FiKsBSEdkC1Y1n3PvM2rXXSHkxBEP4QtwBfKaX+F/v3IGBcC65HEARB2EloVLtMhZVSWEFoB0TjjmWy8B4V22anLkkQ2jRa67eAvsAMYCawj9b6nRZdlCAQS4O9dwpqnaaIDhw0bRl4YEPvQjb0LqSMHGxPAk4oJp9xH73Icc9+wb5n/AJnw99LHiDwcja3uO+CIzVffzeAtLGlpI0thb1e4O7bb8dBgDX0YmTW24R6KW6e8zCD+R8HvbiM7d5MeGOq8SMIQptCHEtBaEckMyRNxzKqNdak8T6CIPwRtNbbgXdbeh2CUIcDwbKPh8UcRNrYUp7IupTfLjKGUT7MtfT4+3qGsJgj+ZQZw67gac7joYsncB838gMDUV9pWAVcAQeu/hHf97kAvKbf4g0UOZQxnHm8zanMzBrHfqO/4rDl38J+0DGvEnJBl7Tc2xeEHY2WcSOCILRVTMcyaXhPTFlKn6UgCIIgCILwR2l/UloQ2iE6RY+liSTDCoIgtG2UmgqzprDn0T+x6of+qB80Zw77J397/zXUW8b/AX2f/h6Ao1jAhrsLyZ9UxDIG0Is1jOUZuqr/8G99PKf88BH8BE+OvIArd38AgMUcxGuf/Y3MI6p4tucEOBa4ABz9K8APvAGUmiWwkgYrtG0kvEcQhDZJvMcySalrMhdTEARBaFsoZQi6X8f1YDW9UF9qdLnin8PO5MkTL+CHE/cCYBV70pltbFhYyEOTJvB3HuBlzmHYpk/YUNCNxXoIq+nFVfveT799l3NZ1vPoc4z/R0554jW2H5FJx/sq4RF4edTpnDvnDQL+bO4cdh23HnAxcCZa922hvSAIwo5EhKUgtAPMYJ6GeiwFQRCENkyPKRRuv43eV6+Hk0Edq2EehA5TOH1VALze+QwOW/4t9wy9luvmzYRCuKLPTM4reJFPOZL/bjqW//qHc8we85jHcHgH1BfG/x/78RWvMAZ6w6RRkzl34huQAw9MvpI5jAZeiy1E3EqhbWP0WIpjKQhCWyQuLJOkwsaF5U5cjyAIgiAIQhtFo4hE25+wlPAeQWgHVIf31L3PLIXV4lgKgiC0aW5ddwtqvkZ3UujDFT/2KcRxcAX2nzVfdT6YrzofzGlvzaNrv9XcG7wRVgBfwKqte1JGDuvpwakFb8MTivN4kVXr+8NtwH7Gz7/5K1dvfwodVNw9+3bun3YVhOHvL07nR3UgMAWtxa0UhLZKq3MslVL/BEJa67EtvRZBaC2YkjFVP6U4loIgCG2Yu6YwnEH0GL2ewtE/ciSfMp4neS7vIgqGbOKgOcsAeG30KVwWfYIejvWUX+dmT72e377bh3ffPIPzLn+JHqznnUFnccFzc+hwUTH3fHYtCxkKwDOMZUnH/Xj37I78qAvpP2kVF989k2cfnwBIaI/QjtAQDotj2awopR5USq1WSmmlVP+E2/sopRYppVbG/uzdyOe7Avhwhy1YENoo8fAecSwFQRDaHWZwjyAIwo5kRzuW7wCPAp/Xuv1JYKbW+mWl1LnALOBoAKXUnrF/J/IhMB9wA++Z2wqC0DiqhWWyVFjjT9GVgiAIbQ9TVL45aTiHDP+e/vO+IYcyLuR5DnpxmVHG+g68N/lYAIaX/JeLXM8x2X0H/9MHcO+Pt8FUUGM0hawin2IeGTOeaxbP4uS3PqHrqNV8wAkAfMjx9OEX/qVn0/+UVdwx93pufetBrrn8XrjcycPc1CL7QBB2NlorIuFWVxj6p9mh71hr/QXUPJlVSnUC9geOi930L2CGUqqj1nq71vo3jMlHNVBKTQZ6AHcB+yulDtda1xasKKXGAeMAevbs2bxvSBBaK2Z4T5K7zO+npMIKgiC0UXpMYRk3cci8BSxaehTY4LBvvwUbXDxwJh8OPJ5LeRKAe/NuoqKkIze7b+M8XjIePxZYAIMO+Bnl1dw68Bb8AxQPD7mGAE72XfiLsd0WYDxs3p7DQ3MnMHHz49z6zoM8cloAgIflvxmhnWAIy/ZXCtsSUroHsFFrHQHQWkeUUptit2+v70Fa69sBlFK9gH8kE5Wx7Z4CngIYPHiwHMIEger+yWQ9lnHHcieuRxAEQRAEQWhbtDqPVmu9BuPamSAIjSRVKiziWAqCILRJjDLYM9lt3Qpue+teODgAW+DKYQ+woN+RlJHLs3MnwBrQI2L/QfwK6ibNe98dy3SuZK/+K3H393LHiOtRv0c5cuAHPMNYHuZaqr7rAN/CE+MuBOCyOc9z8faZdC4px5kX4Kaut0EhMHUKenIL7QRBaAk04ljuJNYD3ZRS1phbaQUKYrcLgrADMCVj8vCe2DaiKwVBENocx+jf+W/Hk3h5++mMrniTD4cdQwQr01/9O2PPmsFLh3UicEg2KuQH4MhhC/h62AAOWmykxH405HCWMIgINtbu0YWeP27j3v7XcPOnD7No+CB+2b8PF1wyB4D7n74KKxFyMzZTPqYL/Osu4mmwkyUNVhDaOjtdWGqttymllgBnAy/H/vxea11vGawgCH+OaDRVeI+ZCrtTlyQIgiAIgtAm0VoRDolj2awopaYDo4AuwCdKqWKt9T7ApcA/Y4E8pcD5O3IdgiAYJK2Ejf0ppbCCIAhtB6WmQocp/HchLNo+iAhW7KdqOBeOueg/3HDWAzzK1TjzAqh1IU7t+QYACxnKgS/8CF547fJTuIKZTGMiCxlKMfl83v9wbp7+MHqE4mnOY9z8F5nxtNGhdMX5z8BLIUbodxgwexl3/8s4sdZa3EqhvaGIRlpdx+GfZkenwl4FXJXk9hXAkB31ukqpEcCIwsLCHfUSgtCqqO6xTOFY7tQVCYIgCDuay7dP43E1kUPe/J5Joybz5vzh5FKGgyCVZHLiiwvIP3cjm3t2oOv0MgB+vaoHmWdu5xD3As68YS4MgJP9n8BhMKffaFa93Z9zt4AKaf7FSOgOV0x6xnjB/YCz7Ly78AzePXR5S71tQRBaiDYppbXW7wLvDh48+JKWXosg7ArEU2Etde8ztaZZLisIgiC0AbpOIcBMvtCDOey7b7lbHc1+ejirvIVU9e/Av34fyaLzBxmbzi9Dn2H8Z6A2+eETJ1+efDQDH/iapSUHkW4r4des3nSfV8TMkRczY+RYiujA1TzKy31O59yDDbeTb4ENcNjwj/kCw6WUYhihXaKBdhjek+Q0UxCEtoaO/c+ukhTDKumxFARBaFMYabCCIAg7lzbpWAqCUBPTjEyZCivFsIKwy6OUOhf4O9APuEZrPSPhPjfwPHAAEAau11q/1yILFVqc6I+K5ezJPp/9xhNHXMgNngfI4HtmuCfw0u/n04s1HLLyezgLuA2u73oHAA8xkcLzV3EFD/Hj0gN5ZuB5+D7K5bJhT+A4uILRzKHjpiJmFEzgO/an25XFrHrsJgBuq7oXvoIv9jiOeBos0l8ptEO02hGOZbZS6ing3Vh15i6HCEtBaBfUnwobL4UVXSkIrYElGFLgpiT3XQ9Uaq0LlVK9gc+VUoVa66qduUBhV2ASe+eNZGuwExuHdOOy35/joz2OIJMqDnnreyOT/y3QpYoHvruSISzmL98tBiDaS/FJ3mE8/tlEXjhiNONKnoYiGMNs3n3jDBaOG8ppBW9wxcpn2LPPb7zz2J7ctvJeAP41ZiQPj7mWr/sfAUxBj2u5PSAILYoGwskiE/8U5Vrv2t8qKYUVhFbMiMe+4NQZXzS4XbzHMqljqWLbiLIUhF0drfWPWuvlQDTJ3aOBJ2Pb/YrR8XbiTlye0MIoNVXKYAVBaDHapGMpqbBCeyAcibJiSwUZzoa/xqlSYaXHUhDaDD2BtQn/Xgf0aKG1CC2I/sKBmqe5cfhUvmYIh+zxKcd99gWkwx2jrueFURfyybSTKZz4I09wKSdUfEDf/b8H4GjeZ2HJUL4+YgAHzV7Gs2PO4eItr3D2nLfpP+4bDmIxf138ITOGjGUAy/CSxj19rgXgbPU2Z+p/8vX4BcZCxkkZrNCOCbf0AnY+bVJYSiqs0B747NfthCKaYDiZcVETUzSmmmOpG6EsRz3+JVEN70w4tPELFQSh0SilvsMQiMnorLWONNPrjAPGAfTsWd/LCa2Oaw0hd9Oh8DUDqCKTDzme8TyJ8mt0geKmioe4dcuDfDVxP357ax/WjNqdL7MOZf/PjPEgy79UfHXzfhw0fxkzxoxlKF/CsdB34PdEsNH191LKBzvJWhFE3aphBHBB7PWnwmvKBhSi9TktsQcEQWhBpBRWEFopb/5vIwDpTXAsk/VYNmWO5eoiD79sqWz8IgVBaBJa6/211h3q+WlIVK4Ddkv4d09gfT2v85TWerDWenDHjh2ba/lCCyIlsIKwC6ExHMvm/GkFiLAUhFZIuTfExz9vxW5VFFUFCEdSu5a6EamwjemxDEai+EIR1hV7m7pkQRB2PK8D4wFi4T0HAh+06IqEnUJcVI41fsYwmwPH/MjRVy1kP5bwPwaj0xXqM81JWf8GPxy8YgmOIyu4nckcXPIV3Y9YRfcjVvHKzadxyEXf0+fopVy19VHc+Dhk4AKG8x82Bbui37CQvdbP1L1v5LbXb2L++UN5KDqBh6ITYA3AqtiPILRjRFgKgtBa+OvMLwiGo4wa1J2ohmJPMOX2Oh7ekyIVtuGKWjplugD4dOW2Jq1XEITmQSl1tlJqA3AGcIdSaoNSql/s7geAHKXUKuA9YJzWWkoM2gn629vQpQpdqigjh+tn30HGvUXMYjxzGcFXh+5H14tWcxQL2D4wk//sfQzBNVksZSCBSDbr1/dm/frevMj5zH9uKCsXDiT6Qzo97zGO9yN5h7sc/0BVaZ7a429soiuZVPILe3HdVTO57qqZ8LwhcLWW3kpBaI+IsBSEVkixJ0ia3crRfTsBsLXCn3L76vCeuvfFw3saUQxb5jUE7IIVIiwFoSXQWv9La91da52utc6N/X157D6P1voMrXWh1novrfW/W3q9giAI7RINhJr5pxXQJsN7BKGtEwxHyXDa6JJlOIjbKgIptzclY7JS2OrwntSvGY1qyn0hLAoW/V6MPxTBZW/24b+CIAhCE1BqKpYt1zO380JuZzIA3758GPeeeyPPuS/ikuBTlK/owsGfL8E9wctNix+h85C1jGcWj+w/nkF8x7cdD6SIfABGM4fzeRG9VaF20+Rct5kcyljMEO6OToIT4JLNLzHW+RJZru1UPdYBjo0t5tgp6FNaaEcIgtDitEnHUik1Qin1VHl5eUsvRRB2CJGoxmpRdI4Jy62VjXMsU4X3NNRjWRUME9VwaGEH/KEoX/1e/EeWLgiCIDQzr3c+gwUcRRH5FJFP4bk/sjA4lDN+eJdCx2/0Hfg9QyfMZwyzGT/kEXIoYzn9uEZdxKuczRSm8hc+4y98hpUw43mSf448k0f2H8/bjlF0oJg3OJ0bLfdBETzQ9UosT2pOd7/BiBtfh79Orf4RBMG4oh9p5p9WQJt0LGXciNDWsSjFqP270yHDgVKwtSHHMsUcS4vF3Cb1a5Z7jTqMYf068+WqIm58cymLJx2b+kGCIAjCDuV+Xcw/uIuPOY4JzATgHF7hUcfVfLnvAezHEsbzJIMqfuSMrH/xzkdnsWjYID7hGNboXhzy3ffk77eRbywHArDH+ZvgzjDf9RzI/tOXw97w0bDDKaYDV0RnoA9RPMCV8D288NGl/N+wIVyv4QgWt+RuEARhF6BNOpaC0JYJhqMEI1EynFZsVgsdMpxsa6DHMvUcy8Y5luU+Q1h2ynKR4bRR6W8lEWWCIAhtFBkxIgi7MO0wFbZNOpaC0JbxBIyjizm/snOWsxHhPcafqVJhG4ruKYs5ljlpdhw2CwERloIgCC3OcvrxKmfR7bNi9jriBwCKo/mcE36ZCx0v8OzyCYzs9zbfZtmYwRXsOWwVh6z7Br3Czq3fPkjfSd/zW8me7B7ZDMAPL+7F5xzOenqgRyrG9pjBSvYiDR9DLQvZ2Ak+14dDJlwz7F7+ooYDDVe9CEK7whw30s4QYSkIrYyq2sIy08Xm8oYcS7PHsu59ptjUjXQss912ThrQlbe/39ikdQuCIAjNS389nCDL+JDj2bfLL5zIWwCs3LIXvxfsThH5ePulcU7wZcomdOWBp6/kmeBYvus5kH49v6PPsKXcwl2cc+GbdP73WgBO5w2GspAPOR5vDzeD+J63GclWOlHIb+yv17J1xW6ogzX78T0vaPgbc1pyNwiCsIsgwlIQWhmmsMyICctOWS5+2FCW8jGmY5k0FVbV3KY+ynzGqJGcNAdZaXaqAmGiUY0l2QwTQRAEYYcymC8BR0svQxCEZIhjKQhCayBZKWxRVZBQJIrdmrxtOmV4T9yxTP268VJYt51Ml42oBk8wTKbL/ofehyAIgvDnyKSKfIrJp5g7+lzPYP4HwPqCHqyhF0efv5AfXyxkpWMvTn/6Za7lYco+7MrrI0bw82eDOPOIf7KAo3j73yPZun43AH7qsSdTMHo39+IXBm/9hoGdlzGVKaxkL57mEtSLmjfvHs5paggAf5MyWEEQEGEpCK2OOo5lpjFyZHtlgIKctKSPic+xTHKfeVtD4T0VvhAOmwWX3UpWTExW+kVYCoIgtAT/e/xQOl2+jlc4h93f3kzRyAyWMQCAb70H4SrzM+zFuezz9m8MHbmQ4/mQHMroNeJnir0d2POIn/iNQoYzj3N4hfE9Hok/95NcShH57L15LdO7Xs3tTGbU5vdh3fscNeR92BdOs8wDBTraQjtAEHZl2qlj2SZTYWWOpdCW8QSMYUYZCY4lkDLAxxSNycpWVSPnWJZ5Q+SkGSIyM0FYCoIgCDsX1bOlVyAIQkpMYSmpsK0fmWMptGWqS2GtAHTOMhzLVLMsU40biWvNhuZY+kLkuE1haRw6Kvyhxi1aEARBaBaUmgo9pjDj8rH8wl7MYTRdR27Ch5tNFACw1D2AW923czpvoA4IcTGzOOLdr/lsxEGsubIvPz22J1bCRLCRTxEdKso5avUiAD7Y90jyS6rocEsVXAD9ui5n60278fq9IziDd5nKFP5ylvE6Wg9sqd0gCMIuSJsUloLQ2hg9y/gPfc74Qxrctm54j+FYbqts2LFUSceNmI5l6tct8wXJjjmWWWmmYynCUhAEYWdzwbonKSWH6Sv+zoq9d+M+buJG7mUlewHQj+UAhLHye8+e7P7RZlaP6MrzXMgR/b/mPm7kfm6gy/3lnP73l3kg6waO2nc+ABFsuPO8/HLBvkwY8hAz11/HOfc+y578xjNdx/JpyZEwNqul3rogtB5aicvYnLTJUlhBaG00NOojkdrhPfnphrB88tPfUjy/8WeyAFdLfI5lw6Ww2WlGAmHcsfS1w6OmIAiCIAiCUAdxLAVhF+CnTRVxN7AhqgJhHDZLPAHWalHYrYpQpP4EBVM0JncsjT8bciwrfCFyusUcS5c4loIgCDsbpabCv6cwu6QCjy2bD/Y+krc5leffv4zCE39k1fz+ACw9ug/7TvyFr6cN4EOGMnvYOdzLTYxnFqePf5l+LGchQ3nh7xfyScWxjM6aw9rFewPg6F3BN3kHMnTIfIbzHwjDo1zNGbzOgtUnYnVXYbnTQ6RzekvuCkHYtdFAOzxFEmEpCC3MumIvnmCk3lEhtakKhONlsCZ2q4VQpH5lGI1pzmSOZaPDe3yhuPit7rFsnGPZlFJfQRAEoX66n7KKVziHZfRlOleSSSWjT3yBfizn46MPA+Ds6KuMmPY6f+NFgjg4gG95hXMYydsAjGcWx/ExBWxiZNbbWAlTMsQNwA08wF7elTzqvooDV/wI6dBhcxX3d70B9bGG8bGFyIgRQagfDURaehE7HxGWgtDCfPlbEQChaOMy2z1JhKXNoginsByrx43UP8cy1UlCMBzFG4zEU2FddisOm6XR4T0bSn1U+kNorZO6poIgCELj+IqDWUkfBv3vZwYdsIQIVrqyibu5hVImA1D8TTe6DtnEnfyD2YzhGh7mBS5kGQN4Y/659Dv6O57mEpbTj4e5luX0I5cyAJ79bgLP5F7BP3a/i4K9N3E8H3IkC9hMQeyscWpsJVNa4u0LgrALIz2WgtDCfLHKEJY5sf7FhqgKROL9lSZWiyKSQlhWh/fUva8xcyzLfYaANFNhAbJctkb3WFYFwlT4w3y7trRR2wuCIAg1UWpqwxsJgrBr0E7HjYiwFIQWJBrVLIwJy6KqQKNCfAzH0lrjtmP7dq4h+mpjPq8libK0NCIVttwXBKrTYMGYZdnYHkuz//OlRWsbtb0gCIJQl1P1XlgJs4CjOPyAj7iS6RzO59wRncyvkd5kUkkmlWgUd/EPBn60km8ZTJfDyrnp3Ud4hrFQAJO5nRt4gEu2v8TPm/rx/RuHsCe/sSe/gR9u2f1WJnM7Lyy81Bhn8lYZd3ELnBCAjTehtbiVgiDURYSlILQgyzdXUOoN0bdrFoFwND5KJBWeYLiOY5mVZqfCV7/Ii8+xTNpjaW7TGMey2lXNctmobGSPpdmb+e4Pmxj1+JeNeowgCIJQzRN6DY9yNW9yOqOZQy5ldFlfTgQr+1mW8Ix1LLmUkUsZ64Z0osP2KoYM+z+GsBj1mh/S4Voe5su9D+Csbu9wE/dyeseXOazgMwpO/5019GINvRgx9HWKyCeHMn4cWsh6epBxQhHF5EO3e40fQRBSI45l20EpNUIp9VR5eXlLL0UQUnLZy/8D4K/7GcOmi6qCDT6mKlBXWGa6bHiCEcL1JMNG4+NG/lgqbJk3JixrOZaN6bHUWlPsCXJcv85oYFtloMHHCIIgCNVIGawgtDJEWLYdtNbvaq3HZWdnt/RSBCEl5b4QaXYr/boaw6aLqhoWXVX+MBmOWo5lbPxHfY5n9biRuvdVi836laUpLBNHomSlNc6xrAqECYajHNgrlyyXjeJGiGdBEATBwBSVl332PLczmQBOLuFpDudzdDqsopBP1p/MEBbjxY0XN8vpB354hXOYWnEHRxYsoPPRa5mw6lnW0IsPNh7JKZs/wkqYLyYfRwQrl/A0l/A0c1efyRIGsc/q37iEp/nfZ4dyp/sWflNvAEgZrCAI9dImhaUgtBZ8oQgZTisdMpwAFDXCzfMEwmS46jqWQL1hOtWOZd37GuNYJgvvyXSmLr81MYVkXroTp91KuJHpt4IgCIJBV30+Vx7xAM+sv4KJ1zzOwhVH8zmHc0XeQ5zOG3AdnMPLXMV0rmI6L3EeA3p8zcNci20uWImwdfVuqE2ac1a8yVY68X3XvozkHTgY7ucGflmxL7+s2Bf1tWbxl3/hy90PYHmwLzOOGMs1HWe19C4QhNaHOJaCIOxMotpIdO2QafQuNuRYRqMaT7BuKqwZqlNfaaqOp8KmCu9J4Vj6QihllL9Wv2bjHMtijyEs8zMcWBUp02sFQRAEQRCE1okIS0FoQaJRY65jntuBUg33WHpDxrTd2qmwcceyXmFp/JlsgqRF1dwmGXO+WYdFKawJlmemy44vFIknvtZHcUwsd0h3cvoBPWKvlVpcjp61iNGzFqXcRhAEob0wmduZywgqChwc+8h7bNw7n3eXnsHMVddRRg7PvTaGQSyJl8K+svliflx8IP1YzuvnjiCAA3d+Cc8ecQ637H0r93ETYazMYTTjhj/KI1zLT3vvyU9778mpo19l8qGTuI8budDxAiN4F4qMclwpgxWERtJOeyxtDW8iCMKOIByJooGzD+qJzWoh1+1o0LH0xHoo6ziWMSexPgcxmmLciCk3UzmW4YjGVquO1hSzlf4ween1z+AsiTmWeRkO0hxWohoC4Sguu7XexwiCIAiglsJa/Tg9Z21j/fgeZG0K4u7h5Woe5caBUxnLDApZxU3PPsL/Lj4g/rjhXd9E366gHCqOceC2elmcNYSLPpsNfeGuL+7AM9zC2+vPZkLhQ0xjItO5EoC33z4b9zElfJl1KEsZwG5qKQBad26RfSAIrRJTWLYzxLEUhBbCHzacvrSYwOqQUS0s63PszHCejHqEZX09j9EU40aS9V3WJhytKywbek2TeClsugO3w3ivvmAk5WP8oUi8r1MQBKE9cw4v89n4g7jr1Tu4qsf9dGUTE5jJtwzGSYALeB7nyHIWMpQ3OJ03OJ0INno98TMshjOsr7OYIbzNqXQ+Yi3/7HgmFac4eNB5A98U9udDjud7BvHUugk8tW4Cn408iI1Z3dh/4XJe4nzgydiPIAhCakRYCkILYYorl934GnbIcDZYCht3LGunwqZVu4fJ0Ckcy8b0WIYjUWzWmoeLRMcyFcVVQTKcNlx2a1xYmiW99bG22Mtv26tSbiMIgtCWkREjgtCK0UComX9aAVIKKwgthD9kCkvTsXTyw4YyACr9IezWutd9qvzJS2FNB7PBHstUqbApWiXDUY3LXsuxTDPLbxtyLAPxUlnzvfqC9YvRqkA47lZqrZMGDgmCILQHDhv4MTfwIHMYzStnjaEfy/kvx7Inv9GLNVzJdI5mAQPylnEl0/nb6tcAmLn7xYyveJbBt37BP/kbbrwArKEX6+nBYutBfMIxOAkwgneZuPlxgj2N43Q/llNGDkcO/YD/5p0EuSehS1psFwiC0IoQx1IQWghTWKbFXLz8DAdFlQEiUc0vW6vYUOqr8xizFDaz1rgRm9VCusNav2NJw6mwqeJ07FYLp+xXUOO2hgKDTIqrguRnGCcs7pjT6gvWr2I/W7kdHVuPPySjSQRBaKf8dwrPcxELGWqMFAHeYSRjeYZlDOBzDsdGhAEsJYcyLlg8h5xum8nptpnvGcQnWUfyi3cv+vdexaU8ybuM4KU5l3Dr/Ac5I/g6/VjOKgp5ZO5NDO76BWl4ScNLxz0q+ZDjOY+XoHSq8SMIQtPQQKSZf1oB4lgKwg6gdn/knPGH1NnGZzqWtmrH0hOM8L+1pUSiOum8R08wuWMJRkprQz2Wqfop6yuFDYQjVAXC5LlrBvTEeywbKoX1BOmW4wKoLoVN4Vh+9NOW+N8r/aG48BYEQWgPxEtg/ysJrIIgtC5EWApCC2H2WJrCqWOGE4D3lm4CjCTW2lQFjMekO+uKrVRzJVOlwlpiarO+ESBlXkOs5qbXIywbCu+pCjCwWzZQ/V7r67E848mFfLeujCyXjQp/mAp/iE5ZrpTPLwiC0FZI7Kvc7egVDKxYypb0LmT9GuSVvc8hhzL68AtHs4AZTGAKU4lgo4wcDhjyJf/77FAARh/xKj1Yj9vtpdev3/DRpuP5qOBYBoxeRv/oT1SWZfLUsVdz2Hcf8/Mpvei7/xr+d7rxWI6EeQznXbUckBEjgvCHkVTYtoFSaoRS6qny8vKWXorQTtlWGeDXbVX8tKkiPm6jNmYqbLzHMtMQbvOWbQYgPyY0E/HUkwoLMcdyB8yxjI8LqSUsM1KE95iptlprSjyJpbCpU2Er/WEiUc2IfY2y24bcUEEQhDbHgCkwYApX8RjeuXn8z3oAQ/b+P/qxnFN5GxsRxjOLzmzj1a2jefP2c3iPk7iS6Yw44nVGHPE6e7GSw6Jfsu3xniwtOYiXC85hEwUEcVK8oTP3590AB8DnM4dRTAc4FcZNepRxkx6Fs6APv7T0XhCE1k07nWPZJoWl1vpdrfW47Ozsll6K0A7RWrOm2EOFL4QnGK5XWCZLhQXiybBl3rqP8wTCWFT1iJJEslz1O5amG5msx1LF51gmfz+l9QhLq0WR4bSl7LGs8IUJR3X8sW67IUa99QjLMm8QpWD4gK5Aw4mzgiAIgiAIwq6BlMIKQjNT4QujNRTkuijxhAhFkgfQxMN77GZ4T7VD2btTBr9uqyIS1VgTGiOrAmHSHbakAjHTZef3Ik/S1zI1Y6o5lrqe+J4Sb3JhCRAMR3n3h01MGbFPjdvLfSEC4ShFHmMupyma0xypU2ED4Sgum5VOmcb2DZXZCoIgtBWMMthucKnx7+sumcl1583kTYbz9VNHsHVcJ57kMo7gMzZt3wM1X3P/6KsYM3k2/+VYDmUhzzAWgN4lvxJ8LwtWgOVlTfRcheVkDU/CrQNvIYKN954+FrXJT360CPoTDwiKDLPx0PJ/wE+g+7XQzhCE1o7pWLYz2qRjKQgtybZKP2AkqTqsimBDwtJMhU0Qbif07wLUFVaeQDheglqblD2W0fp7LJVqnGOZ664rLK0WRSTJAzeX+1lT5OH37YbQNUth4z2W9TiW4ajGZlVkusxRJu3wqCwIQjumAj1CGT8FiheOGM3feYCXx53O2nWFnDh7AcGoAz4EnoE9WUX35UWsphdn8Dpf3HccX9x3HMElWdALXpg+GnxguV7z48JCLh84jXkM57obZjKUhfCgkycsl8EXMItLmcWl5FDKdf3uFFEpCEKTEWEpCM3MtkrDpXNYLZyyXzfsluRfs9qpsC67FatFkWa3smfHDADKagnLqkA4aSIsGGE6Fb5Q0hCeVKmwKt5jWY9j6THWkOO217mvPmEZikTRwIuL1gDVbqfpzvrqCe8JRzQ2iyIrzezfFMdSEARBEIRWhgZCzfzTCpBSWEFoZkzHcsY5+/PhT1uoDITxBsPxGY4mvlqOJUCu247bYSM7JuKMPsv0+P1fripOOoYEjFLYcFTjD0XrjOiIl8Imie+Jz7Gsz7H0Bsly2bBb6wpkmyW5I2uW/37+axFQXQprtSicNku94T3pTivD9ulCWkxkNzQjUxAEoS2g1FT43xR0leKDHkcC0G/qcorpwJ78xk3cS373rdw55h+spwc3nXsberDieu6Ad8DXz80xfMLYG58B4IpLnoELYTMFcCD0v/Eb+q9cxYg+r3M8H/LAAzcwh9H8PK0XfTf9woxpY43HADxjJNM+mGq4sSAIqTHnWLYzRFgKQjOzrcJwLDtlOumc6Yrf1qtDza+bP2SIL6etWrCZTmV2WkxY1nIsI1GNNVmjJMRdvooksx/j4T1JzFPz2eqbY1niCSbtr4SYYxmq+bhIVBOJanLddkrNUSUJZbRuhzVpKWw0qin1hshzO1BKkZkijEgQBKGtYI4YmbH/WFbTlSXsB8CoirfwXpfHdQNmcuRVH/DpkhO49NMXYDio7zT3bZmCDigKJm3mumkzsZzjYWznmDg8D1gPz3Mhtx19E3MYzXd9+rH/gcu59ZvbmcdJ7MUv9FVL+T99BH/JWwyl1aNOZMSIIAh/BCmFFYRmZltlgDS7lQynjU5ZhlO3tcJfZzt/KILLbkkaxJMTE5bl3iTCMlk9KyT0JdZ1+VKPG2mgx9IbrDPD0iRZKWyxJ0BUw3kH7xbfxpEgnt0OW1JhWeEPGYI09lpmaa8gCELbZwA3ee9lj7mbuPnuh7n57ofxFufhfqgEjoQZXIHuqHhg4pU4O5XTfcwqbpt4E+paTT+WQxmc3vkNnARxEqTvEd8zY/RYVn42kNtuuJd+LGfQuz/DJeDDzRL24+zJb4PK4i+jFsMFLfz2BaEt0g7HjYhjKQjNzLbKAJ2ynCil6JxlOJZbY32XifiCkTpjQ+aMPwSonh1Ze+RIKmGZFQv1KffVPfqYbmTS8J6Y5qu/xzJIl9j7qI3VoojUepzp2PYryCbHbScYrlkqm+aw4gvVXaP5ns0QI3EsBUEQBEEQWg8iLAWhmdlW4Y+Py6guhU3uWCabRwnVIjFZKaztDziW1eE9yeZYGtTbY+kJ0rdrVtL7xhzUk4c+XkkwHI27kttjIrpjppM9O6ZTuyU0zZ68FLY0JqITHUsRloIgtGWUmsrlOpNPKGTlmA78e/bxWE8xjo/OknKuz3qQnIFlAOh0+PuY6fSf/Q3LXj4ItU6jL1KwHvRAxQp2o2/BGmPbaYrnzhrDbUfcRNkROSxhP84Z8SxMg7/csJjLH5gGpwJLgK+At+8H0tD67zt9HwhCm0TGjQiC0BxsrwzQKSYos9JsOG2WeFJsIr5QBFc9wtJmtZDpslGWUAobiWoiun7HMjveY1n3SGbOqEw+x1LV2KY2Jd76eyzN0SeeQPVrmuFFnTKd2CyWGmWwYDiWyYRlcVVsXqa72rGU8B5BENo6j0+cyFSmwPWQTzFWIliJ8F7eSdy9/Hb+ft909vnxN97OOxHuDXMVj5Fz5mZwwepzu6KWaU45/TX6nrEGBgOD4cKzngBgDqN55PGb+HThCcyecxG8Bzc+MJXHJ0+EA6YZ229eDPhiP4IgNAs7JhU2Wyn1lFJqxE58J01ChKUgNDPbKgN0jDmWSik6ZTlT9FgmF5ZgjPcoT3Asq2KC8aLD9ki6faN6LFMIy2Q9lr5gBH8omnSGJRAffVKVICwTHctkuB3W+AzPREzHMi/DFJbiWAqCIAiCIMQo11qP01q/29ILqQ8RloLQjHiDYaoC4XhoDxjlsMmFZRSXvf6vYE6ao0aPpenemYmxtcmKCcsnP/2tzn3xVNgk8T2m2EyWCltiir305K+ZmURYbqsMkJ1mx2W3Mmf8IfG+UZP6UmGLPTUdy6w0cSwFQWi7mGmwAEeyAIxQcM6Nvsy50ZdZxkC+7jeAF24cjdqkiWADW4Q19KL87S5sn5jJHpM3sX14Ju9azoC+cOvcW7h17i28oC7l4lNe4efFgzjv8qfhU/jX6JFwKtyngF7AtRPpO/l74ANAkmAFoVkxx400508rQHosBaEZqR41Uh120znLxc9bKups6wtF6owFSSTHba/RY2m6l2b/ZW1cdgsK6qS0QmKPZd3HmcIyWY9laUzs1edYmqWwNYRlRaBetxIgzW5LOsey1BPEZbfE90mmy05VIEw0qrHUU/4rCILQqjlqCrpSoeZo9N6KVzmVeyw3AzBu0ot0v3sVGxYW8q9hIzlz9lweGTOeiVunQTF0vKQSPoQO51dBBvz79uN5m5HG854NjhkVBM/Note8NYyZ9Bxnz30bgDG6B4dzIcvpx2PK21LvXBCENog4loLQjJi9lJ0ShFXHTGdccCaSLBU2kew0e41xI6Z7l1WPY6mUwmpRhJMKyxSpsDEXM1kqrJnUWm+PpelYJpSsbq8K1Hj/tTEcy2SpsCHy06sfl+WyoTVUJdlWEARBEARhl8UM75FxI62fWFPriMLCwpZeyk5h9KxFAHVKDoU/T1P3bTy4JrEUNstFVSCMJxCO9yQC+MMRnA30WCY6lhWxMSJmyWsyks2VhIZ6LI0/k/VY1k5qrU1mzLGsrBXec0DP3HrXWF8pbIknQG5Cya35Pit8oZTvWRAEobURL4NdAOqFELwM6kHNe98cy9luw1lkb9iQUQh7w1nPvsPZH8A1a2bB98B/4GLvTJbTDzVJw50QwEkBmwB4ZPZ4ltOPgnmbuU2lwf9dBKtg7cTOHMxXzJ5/EdwIYKxDymAFYQfQSsRgc9ImhWWsqfXdwYMHX9LSaxHaF8lLYQ2ROebpr/j3FYfFb/c34FiaPZZmKWi1Y1n/19ZWj2MZ77FMoizjqbBJhOW0j1YC1X2PtclwGoLPdCy11g2WwrrsVgLhaJ2ZnCXeUI2S27hobUSAj1xcEQSh1TFoCowFdrsPZt6CnqdQR2hCW4zj4rysYfx19odw2q+ovhr2hosnzeTZxyfw3ev92P+q5ZAB7999FJ9yJBd5n6PqnQ4AHDPmP/x35Umw11ToMQWeBGzQu+RXbsy7j8FHf8tfvx0KiKgUBKH5aJPCUhCam/qES+3bn/78dxSQ66522DpnGSIzGK450NGXYo4lGI5lNFYKmuWyU+FLXQoLxpiScCRa5/aoTu5WQurwnnBsCGV9r1l73EiFP0wgHK0hrGvjjvVQ+kKReCktGD2Wu+e74/82XzNRWIqAFARBEARhl8ccN9LOEGEpCEkwBUxTCUWi2K2WGs6g2W8YrCX4GkqFNdNfy72huLBUCjIc9X9t7VaFL5jEsUQn7a+Eahcz2RTLUERjs6h6Z2e6Y8LYLIU1R40klgLXeYwpLIM1hWWJJ1ij5NZ0LCt87fDILAhCm0WpJ2DwFNgI711+LCdV/ReVcwv8F+7/7Cps643t/vrIh/Aq6K/6oH7S4IdnH58A18Piy4dQMt1NXkcvJwz8lBP6f8p9Y6bEk2ULxmwy3Morp0B/WDRuEDdwP6fwLn8vmA4vg1kGKwiC0FyIsBSEeohENT9vriDNYaVnnhu7tX4RaArRYDiK3VZThHWKOZahBGGptW6EY2mIrDJviB55hhuY6bSlTEi1WSxxlzGRqE6eCGuiVPLwnnAkis1a/wMtFkWG0xYvhTV7TFOmwsaEcWIybCAcoSoQrlFyG5/LGQg1KPS9QePx4mgKgtAaeOKbC7nsquc5+a1POO/vT4MC9YOGy4HHjW0OmbyARU8exdghM+DgqcD+wEHARi5TD7FAH8mv23ug+mk4AVgWgmuN4+ZL6hKO1B/w6Rlw2PSPOWTa93BdiC9uPY5Om9bRizWgj2IxR7TI+xeENo85bqSdIamwglAPm8p8eIIRiquCLN1QXiP51KS2GAtFNI5aAjTLZcOiIBiu3jYQK4t1NTBuBKDMZwToVPhCKctgwXAso5o6qataJ59haWJRKmkpbCiqsVlSHyYynDaqAoareOs7PwI0mAoL4A1Vr7Esln6bl1EtLLOS9FiGo1EC4bpH6q0VflYXeeIptoIgCLsqX+hnuey558EHdIABLEOvU9w/8CoogwAOAjg4ng/hCnh29gSe0r8xSX/D5foVsgMFkJvHnPkX0PuM9fAOXD5tGhxu58Rpb3HitLeAn3mUq6EYvrjkOI6Z+B/oYefU219lmwrwtVrA12pBy+4IQWjLtNNUWBGWrYjRsxYldW601vhD7fCyyA4kEIqwucJPfrqD/t2y0NoYo1GbHzdVsHJrJZGopioQJhCO1HE2lVLYrZYapbDm78tlSxXeExOWMdFV4W84HfXKY3oDUFxVU2BprevtsQTDzUwW3hOO6JSOJRh9luYcS9OV7Ziix9KcU5mYDGuuN5ljaZbClnkNgf/Tpoo6gt4Um2uKPTV6TOv7zgiCIOxslJqKkkhBQRDaMFIK2wRaqsyuoRPjMl+IlVur2FDqpXuuO+W2QuNYV+pDAT3y3DhtFtIc1jrivdwXwhuM4A1G+HFjOYFYf2WXrLqiymmz1Ajv8cWeKy2FY5kdcywf+ugXRuxbQIUvnDIRFiA/1qNY7AnSI6/6sxBtQFgqVNJxI+FolAxL/WsE07E03k8oYryO6TYmwyz/TSyFnfjaEqDmvEyHzYLTZqHSH2ZbhZ/VxV4syijr3VzupyAnLb5tIBQlzW7FF4qwrkQGfguCsOuygCPhfWAAkAN/V/n8nfV01SGenX0OQYzj4JjIbJZNGsCbZ5zDuKIX4Um4bvmdDHUsZN4bp6Eu0NAL2Gsq0zy3sfyzfrxvGQXAPfpaNlEAx8L8SUM5uuNC1m7vzG5LtwJ3ATa0vqUl3r4gtA9Mx7KdIcKyDeAPGYJlfYlPhGUz4A2GKfEE6Zrtwmkz3EeX3UJ5rRCZjaU+wCj7LPYEyXDa6N0pI2kvpsNmic+hhGpRlarH0gzvMceHVPhD9MxL/fs1hVmJp6a7qjX1hvdAih7LqMaWorcUjJCdqtgolGA4iqNWeFFt3EkcS9NlzKs1LzMrzU6FP8TmCj/pTis9ct2s2FLJL1sr48IyGtUEwlG6ZLvIjNrYVhmI9YZKQYYgCLsWG57uQPfhReiZCnWM5qPJh/OwvpZ5d/RA3ae5uPcr8Imx7WU8D7thCNBvgUPhofv+wQU3Pokar7ln3bWMZg57XL4JV/r+/Kwvpa9eDMDNkx6GDsAtazj63oVYfvWwm7oOCewRBGFHImdebQCz/NAs1ZTyvz/H2mLD8UpPcBNddiuhiI6P1QCjBxOMoJr9e+TQt0tmvQE/TptRCmv+rsyLAalSYZ02KxZVLboqfKG42KyPDhlGb2NRrVLYaAPC0qJUnVRYXzCC1sZszFSkO2qWwqYKOYJEYVm9L0Mx8ZxbS1hW+kO8/f1G/KEoHTOc8d/Jr1sr49tsqwygMfaxef+WCn/KNQiCIAiCIOwwzHEjzfnTChBh2QYwxUpRZd0eQKHprC32AIaYnDP+EOaMPyTuLK4u8sS32xgTlk6bBYtFpXTpzECfrTHBY5bCulI4lmCmvJqOZbjB8J5qx7JWjyU6RXSP4VhGa9XClnqN57j8qMKUr5nhqk6FDUaiOGypDytmKmxiabEpnnNqvT+rReEPRVEY781mtWC3Kn7ZUhXfZkOpcSHgtlP2wRHrWTXd5EhU+o8FQWh51OWwnz6e3hW/QhX8c/czuf/3qzhu8Re8v3wUSmvG3PgcG0Z1MBJeT4AZj4/l1htvYfvkTLgA/I8q9JmKF1QxpMHzXMilPIk+R/GDvp6XOB8+7Gz83POr4VhO7cVuFSu4qfN9/KCfja9H6ykttSsEQWjDiLBshdR2JEMRQxAkC5cRms7qIkOoOBNE34wx+wPwey1h6bBZePOyoQ0+521/7Q8YvYFQLapSlcKCUUIbCEcJR6JUBcINhve4HVacNktdYalpILynrmNpCstcd+rXzHDaqAyE0VrHSmFTO5zm7MvEUlhzXmbt8lXTLc1Ks2O3Wpgz/hAO3iOfX7dVO5brY8Kye647Xrq8qdwQlpvLfSzbWF6jv1UQBKElyKEM75I8uAAumDuHG959jFeGnAb7TIWTYQZX8AanxRMgr1j8DHc8dRcd51bCdnD9RaO2ae7RRdy4dCqVZPLhR39l+KFvArCQofw4rJAfhxVyiN4ALwH3wtrhe3O3sjJo63ct+fYFof0RaeafVoD0WLYizBN3Zy0xEi+FFceyWVhb7DFETkIJ6G75bpSC1dsThGWpj245aTWcyvqCnQqyjUAfs3zW30jH0uztNEtNGwrvUUqRn+6gqNZFhqjWKedfqtg2iZhptDluR5JHVJPpsuEJhKnwhYlqGuFY1hWW/lAk6eOssVEnU0b0Y9T+3QHo3SmTf329jmjUeE/rS4x92j03Lf4cpmPpDUaIavhtexV9u2alXJewY9lVZ4zuqusSBEEQWjHtNLxHHMs/QEv0MEaimpVbq1iyobzOjMJ4Kaw4ls3CmmJPHcHnslspyE7jxUVr4r/7DWWGsATiJbP10TW23aaymqWwqVJhwRhHEopotlYYv9uGHEuA/AxncscyxWNUknEj1Y5lamGZ4bQR1bA6VkJ8/fF7p9zeabNgUdUBRlprvMFIjZ5WE5tFoRQc169z/LY+nTPwhSKMfPxLwCiF7ZjpxGW38sZlQ8lPd8TLlM39/MuWyjrPLbRtpNdc2FUYz6PwxBrG8gyDjljERxcdzq2n3IJar7k6+ig8OoX797+K2YzBRgR+xPiZA/QHnoEbR0+l6gsrrAErEZ6JjmXz/rujXtc4CfIGp/Pp8BN4lxG8ywgG8T3sB5wKF8x7kvt1MdEuDwJSBisIwo5DHMsmEAhHqPKHyc+of/j7H6GhK+bhSJQVWyrxBCMoDGdyt3zjVxeJ6upSWHEsm4U1RV6O36cLD525b43b9+iYzndrS+P/3lTm4+i9OjXqOTOcNrJctrhj2ZhUWKgO91m2sRygwR5LMHoRawvLqNapw3ssqk4qbGnMsWywFDY2WmTVNqPvMdm4lUSUUqTZrXHHcntlgHBU43bUPRwV5LjokOGIz7QE6NMlE6jeh+tLfPTIrR490i03jQ2lPsKRKIFYSNLPWyo4lW4p1yUIgtDcKDWVcToH7u3FZxzOkjMOZthdn3NPn2u54/LrGcQSNl1VQCWZXPHcMzx70TncP/kqAJYxgJfmX0KfuUv5kqFkXBbhiecu5LI5z8NdcM/Sa1nMEPqxnNmM4Yt5gzns7m8BGDZpLvwEhGBOxWh82dMBEZWCsNNop45luxaWTS2B2lTmZ1tlgAyXPd7LtTMo8QbxBCMUdsqguCpAUVX1jMJEAZEoLMPR5u0p+6PlYq2tzMwXjLClwk+v/LpjPfbokM7CVcVobQTCbK8M0C1B0DREQU4am2O9f/5Yz58zRSoswMOjBzFixhcs3VAGpJ4PaZKf7oiLPBNN6h5LoxS25m1lsc9WQ6WwGc6mCUswAnx8IeOI+9PmCqA6LTYRp82K01bz9t6dMgDwhiKMnrWIJevLOH6fLvH7u+Wk8cvWSjaW+eJ9oys2i2PZWqjtMraWY4cg1MdLFefT9cbVPKWy4X/AKtizz2+cOW8u7K3hE8X/jRuCPkDhLCknuMQo23/q6POZdvRE/sNw/vb+a6g1mrmMgEeh69LV3LzpXrjCyTtW2PB6B7rPLeKpSecD8ClHctC8z/j6oiN4K2sUJ3Jky+0AQRDaDe1aWDYW80TH7HMr9wXplOmqc/+OOgEyHclctx2LMpwkc6aiKSb37JjOmmIv0aim3Bfily2VbCj1ylzLJnLmrIUA7NYhvc59u3dIJ6I14aiOh/CYpbCNoSAnjY2xUlh/Ix3L3ToYv78fNjTNsSyuM8dSp0ytNcJ76jqW6Q5rgz2TtYVlp6yGHX23o9qx/DmFsExGpsuOw2qJjUMxZlj2yEtwLHPSWPDLNn6P9cM6bRYW/lbE6FmLRKS0AFKOKgiCILQ7zHEj7QwRlo0kEtXxE+Eyb6iGsPyjNPaEKxyJYlHGyX92mh2bRcUFpZkE268gm9+2eyj1Bqnyh9EYLo0Iy6ZhzpfcPT+JsOxoOGW+YCQeDtM0x9LFZyu3M3rWIg4t7AA0HN6T5bKTn+7g502G+GqMsMzPcOIPRfEGw/Hy0mgUUo2jVErVdSx9wQbdSqgWlr9vryLXbW/wPYFxQcTcF79uq6J7bhpvXn5og48zSXNY8YUi8bTXHgmf8265afhDUb5dWwIYQntzuT/eiywIrRml1EzgGCAAVAFXa62/jd3nBp4HDsAowrpea/1eS621PaOmGX/er4u54e08Pht5EH95ZTE8Ao5HKjiz41ye3X4OV1TM4OVx5/AX9Sn/0mP4gBNYffTuAFx83ytU3jiB8YEnUW9puAneHziK95cexfNcwJzABahzNTpDcTz/5sRT3mLcZy8aL/yXL/lR/43+zz/Gic8fCUgZrCDsVDStJsm1OZHwniQkC30w3UqnzUjprJ2guSMJRXR86LxFKTpkOCnzhijzBuMCs29Xo+9se1UgHliytsS709bYVjDTWk2nMJE9Yi6mPxzh1n//CDTdsQxHdXy2os2i4r/XVPTqkE4wJooaWwoLUFxVXSZtzLFMkQqrqNNjWeYNkdNAfyVU91iuLfHSuRFlsABWi3GxBsAbDDc5sTXTacMbjLA19vlPvIBi/k4+/7WILJeN+04bCFT3ZCajPQW9NPW9tqd900p4Hxigtd4XuAcj4sXkeqBSa10IjACeUUpltMAahRhTKqbyzcj+eHHz3Zh+cJvmyrzpPLX9fC6+6BU2ZnXjtOnzeE+P4Gx1P0erhVysXuFi9Qo8CBNffZyTnf+BZ3xcM+xeOB1OHLMAJ0HUxRqegZwjN/PRqFM4gs/BifFz76Gcxb+Axv8fJQiC8GcRYdlIzAHw3XLSiGqo9O+8jtxwNIotYTZgjtuOxiiPNJNgzRPzospgXFiuK/bUeS4hNf5wFJtFJU1fLchJw6KgwhcmGDb2cZfsxjvXBdnGf/DBcBRfKNJgGaxJrwT3ND1JwE1t8kxhmdB/G9WpHUtLPamwDSXCAmQ6jX0ViepG7w9LzCE1RHaUfvUIy/rSdrtmu3A7rPGS5BqlsDEXeemGcnbvmMHesYsu3hTCUtjx+IKRnXpBrrGsLfbGWwtaA1rr97TW5oIXAd2VUub/5aOBJ2Pb/Qp8C5y481fZvlFqaksvQRCEXYFwM/+0AkRYNpKqQJg0u5W8dAeK6hl/O4NQRGO3VP+qzLEMt7y9jBe+XI3bYY2Lj8n//jHuuq0Tx7LJBEKReks5rRZF5ywXxZ4gZb4QDqulUY6jSUHMSQuEo/hDEVyN7CncPeaeWi0q5SxKk/wMQwz+/Y0f4rdFG+ixVKikcyyb4lhC44J7wEihjWodvwjSVMfSYlH07pQRF8tds6uFZfecavdyzw7pdMxwYrMoEZYtSKU/xNKN5TVc9B1NmTcYL5VOxdYKf50U5VbEFcB/tNbmG+0JrE24fx3QY6evSoBnjJ/vsgZx0CnLOPH8BZzCXLhTsTtr6MxW2A96etfBGjh54ifwn97otxT/p4fwf3oIXA9vnXUiQ1gMx6bxyEc3Gc97AtzPDbAEqIIif1dYAzePepj5Q4Yyf8hQuAl+XHog8H+AlMEKgrBzkB7LRqC1pjIQJs/twGpRZKXZKPPVPRHZUSE+4YjG7agWBTarBafNgjc2fqRjppMOMTHhCYbjvXK7QilsuS/UqPLNlsb83flDUbLS6l9v12wXWyv8eAKReG9hY+kac/OCkQj+UDQ+SqQhdotdNLA1QlQC5Kcb4TnhSIJQ1KlTYS2qbipsYx3LdGe1QG6sY2lVikA4yrYKw3Gsz7FMhctupXenTKoCoRoBQ1lptvj72b1DOkqpWFhQK7nc1wzsjDTmprzGhlhPsnnRa0cTikT5ZWsVBTmpP4+hSBQN8VLzXQGl1HcYAjEZnbXWkdh2ZwFjgCP+4OuMA8YB9OxZ38sJf4S1+nE28Q4AfaevYf7coXRiG/0fXwX7wfF8SOH6Ddx21U3cdrdR3nrl0Ad4bOINnDLtNTKJpVhPhdMOnAdheOLjC7ls6fOGJ70fzOJSSkrc5E3yMjDrOygDtsDzXGg8VgH7th4nXhDaHDJupO2glBoBjCgsLEx6v3lC5AmE472TqfCHokSiOu7MZLrslJf6qAqEmywuklHuC7GtwggXqe2Aaa0JRY3bzRO40bMWke6w4gmEcdosdMhwkuG0xcs0wQhU2VDiIxLVWBspSJqbFVsqWLGlMj4eYlcnGI4SjERThs/YrRa6ZrvYWOZv8sgZU3QFw1F8wcaXwu4e6+1s7O8xL3aRITGspqE5lkqpGqWwkVi6cEMzLMEYCaJipbSNdSw7ZDio9IfZXhXEqhTdmxCClEiO217HVVVK4bQZ4T67dzT2ndthZVtloEW/D+2Vcl+IiljrwM4ScKVe48JfqAHH0hS6u1Kwk9Z6/4a2UUqNBO4CjtFab024ax2wG7A99u+ewIJ6Xucp4CmAwYMH73o1yq0UdSCs/aalVyEIQovTTlNh22QprNb6Xa31uOzs7JTbbSzzsTY2oiMVlTHxmRkTkaag2Bwbdv9n8AUj/Lq1ihJviC2xfrFEvMEIWtd1q9xOG4FYr17HDCdKGUEwZmlhjttOMBLltCe+/NNrXFvs4bt1pU12G7ZWGP2fzeFS7IwAETNh1wy/qY8u2S7sVlXDqWsM9pjTXBWIsOj34niybEP06tA0xzLdYQi9cMLnusE5lrXCeyp8IbRueIaliTX25J0b6VjmuB3s1yObwk4Z7NkpvVElvk3B/I7u0cG4qJHmsBHVsKG05V38P8PO+B4052tordlQ6sNhtZDusBJoRGnq9soAG0p9bCj1NqqUNRlmq0IokvrYbqZAN7TdroRS6mRgGnC81npNrbtfB8bHtusNHAh8sFMXKLDbfVupJINKMrCM9nDUR4voP2kV+lAFn8K3DObpHudx2/n3stukFTw0dAKP3XADXB/g3VFnsICjWMBRWFZ74D04aNhnXPbd8zi6V8AAuG7gnaynB3mzvVAFP2cNgtVPwCKwEsFKhPOiTwN3A1IGKwjCzqNNOpaNQWtNRWwsR4k3SIcMZ70nU95AGIsiXrponrRuKvfTu3MmgXCECl+YjpkNz+9LJByJ8svWSiKxE/pyX6hOM4zZ+1PbyTT7LEMRHX9du1URCBsCxHRSzROnRJpaJrdkfRmhiG6Uu5tIWcw1aMzJZEujtWZ7ZYBMl63BcRk2i4X9euSkyFitnw4Zjrjb2dB8SJMMpw27VTXaaVNKYbdYajmWpHQsjTmW1ZiOT256w44lGG5qOKob7Via62xIxNdHonufDHPf9or1p7pjv9OVW6vipcWJaF17imfT2Bmlp7sqqd77hlhlR888d6MqRDaW+fi9qDp07I+6y6Wx42Yo2njHsqFZr7sQzwNB4I2E9R6jtS4GHgBeUEqtwgi6H6e1rmyZZbZP9vvmK5aMOphhcz83bsiApcP60GnYOk7hNciBs597m9cuOgXeh91ZwwCWwk/AJ064Ai7keQAetF/Pc9NO59y73+ChSRO4buhMKISH+v8DngA9WKFsGk6G82bb2MR/eOHFS43XXQHcDPrultgLgiC013Ej7VZYeoKR+LiD7ZUBOmTULwp9oQhpDiuvXToUgFNnfgHApphjubUiwOZyP+lOa3xuYGMo8gQJhKN0z01jQ6kvfpU98UTNTPa85aS+NR6bnlCCWy0sLYBRYmmK3+YQdRtj77Op7oF5cpe4htpCYFc5Ea/0h+O/i8aQSqSlomOGk41lfgLh1CW3tdktz91oIQrGRYZEFyaqdUohbPQkVm9fGvssNtqxjAmApgjLHUnnLCduR/X3Mc1hCstKjuvXuc7226sMlywYjjZpPzeWXUV4hiNGX2uHRlwEGz1rEaFIlFXbquLl2ObtjcWsAkizWwhHLJR4oinLkVduNTRQ3y6ZrNhS+YedxHgpbAOPNys8tDYqU5KlQe9qaK07prjPA5yxE5cjJKCyYL+Kll6FIAhCy9FuhWVFQrz8tsoAfbtW31fqCVLsCcavYPtCEXISBtM7Yu6hKSwDsZOToqogPfMav0tNRynXbTeEZZJAIFOc5dZyduxWS1w8mKLYdDVPGtiVO0/tT+9b3o+v7c9gBm80VaSa4iQQ3nmXbGqfwDf2hH57VQCrUg2G1TTklDWE024lO81OuS+UcvxHbfJTXPhIhsNmqelWNxDeo2LjP0xufmspQKPCe8AQlkrRqBTZnYHbYatxkcdqUTislrhwqU2lP0wootlQ6mWPji3fE7yjhOii34tZXezF3kjxbPZHNqVaocaFsVgKrM1qOPQa2Fbpr5Him8iqrVWAcSHAZlU1A6iagHnsCTfgRCaW6W+vDLQKYSnsmig1FTKncD0PMvetEcz58QLj9jw/g7Z+x7edD2T/u5fDnQG2F3Sg4+RK9AeKzqxl2OTP4Rp4YtiFXPrjC6iesSqm1U6ypgUpmzSWVxkNe8PXzw1gPT145umxFPIjfVjKynkDeemtS4yU2HtiCwrHRp7cLWWwgtAiSHhP+6LcF8JqUUSiOp5MabKlwk+FP8zIx7/EqgzxlpYwGkIp4yTVdPL8McFV7AnSI8HxaujkMBzR2CwKW2yUSLIRJqZjmaxkMN1po8wbqlEKC1DYKSN+Iudvghisb72msGxq8IZZChsM79plZv5QhBKPUQ69M4JdOmU6Y8Jyx72Ww2ah3BeK7/eGw3tq9liaJ/SNCe8Bo8fSYbXssr9jMMTKx8u3MnrWojqfcdO5WltsCMvGCrvm7nfc0f2T8e9yI48L5rzeP+oclngMx9JuVfEqiotf+IZMlz3pRZrft1dhtxr94jaLhXADpaz1YTqWUW1Up9QXsuYL1hSWe+4CFxWE1sv8iqFM5yqe4FIO7/8RAJczk1UU4sXNuEmP8kLJhQxkKXwBe93+A1tKdmPx7ftxQvB9Llv5PJd99jyHrfsYgOwxAS6Y/SQvTLqUW+++hcHP/Y+D3lrGxaNm4sPNb5sK4VgnTyy/kAhWrgg9w2mhV2KrKeQNzmmhPSEIAiDCsr0QjRr9gvnpTrZXBeLlWmBc4TZPpjyBSFys1U7wdNgsbCrzobXGHzK2C4ajTbqyH45EsVkVtthrJBvSbZ6Y5SUIS/OE7NB7/1tLWBonbnvGUlhddmuzOJYbY4EnTS2FLYkJ5ag2BHKqcuOWZMn6MqKaGq70jiTHbW9Sj+UfwWmzENVGSnC2245uyLGEGqmwZvBPTlrjHMuuOa4muUt/1vmt/TyNwe2wsqUiVENAgyGo/UHjs726yMNRCfe1dOl2czuXm5pY1m4eC8N/MDW1KOZY2i0WIjZjvwfCUTLr2d4bqk5Ltv8ZxzJhLmVxVaB+YZlwfCxK+H9AEJrMXVO4nSH8k7/xV+YynHkA9GA9M1+9DnaHw9K+5b2Bx3IpTzJ//lDOiL7O3/Ke4sXV4yjXndFpisLLf2S9mbZwGLjxwjtwx1/vgnKgCJ59fALnXf40vOeEGXDZvOdhC/S5aClvqlXVa2o9mVSCILQR2pWwNE/SKgPGrMfcdDvFngDbKqpPKMp9ofixuCoQxhU7+a8tLJ02C5vK/GyvChDV0C3LxcYyX/xEqjGEohq7xYJFKSyq2uFLpMQTwm5VSU+Mct0Oyrwh9oyNVMh02UizW9m3e058jU0N3KmN1jruzDa1FDbx/Wwo9e2SwnL0rEXxdNZMl22nCAeLUgzolt2kUtim4rAZn9cNZV6y3dkNOpaWmKtpYgqJzEbOIP2jJYQ7U6il2a1oXTfQaltlIB6gtbbYk+yhrQ5fMMLyzRWsLfbUCCuK90s3QiiGItG48ApH64rxYk+QnDQ7Nmv9F0hKPEEsCiwWYwQM1C9qtdb4gpH4hTKbReFNcWEsleguTaj+KKoK1NgHiY9L/CxsrxRhKfwxDudj4LiWXoYgCLsS7XTcSLsSliZmf2Wmy47DZqlxQlHmC2GzKBw2C55AGK2tWBR13CWHzcL6Ei9/e/ZrwHBDct0OSjxBznxyYaNKAsMRHU+atVksSUthSzwB8tIdSZ8v3Wmjf7dsMmMn9W6HjYHds+PupstuMeYRekNkpyhpTOUaFXuC+EPReD9nU2Z3lnqDOKwWgpEo17+2pMl9gjuLykCINLs15Qlybf6oIGoup64h4snFZX72KcimgYk6RipsLcfSZlHNPgakpZgz/hCWbijjlBlf1nCpRs9aVKNSYHVx6nEkLR3C4wmEWbGlks3lvnr7FAE8wTDhqGbphvIaoiqZY1n7PfmCEVx2C1X+6otStec8bq8KsrrIQ4bTRt8umfV+Tko8wXglxRuXDWXfqR/FL1DV/g4EI5qorr6IZ7NaCPv/2IWxxItaqS721e6xFISmotRUDtNDOWDSl9zDzex20Vb0GYq9TvwBgAI2MeWsqWxYWcivfXrQ+6n1zB83lKOfWkjaWaU8mnU1j+4+jrV0Qc3WXD5mGp3YBsDKy/vwPYPYbfkK1s7Zm3GjH2UNu3M6bzDuoxehCq45+l4eWXkT3AkrL34bkPEigiC0HO1SWJZ6Q2S6bNgsRi+PeUKhtabMGyLHbceqVLxE1mW31hF2zlgQhTnj0mW3kuO2U+wJ4gtFkqbD1j6BC0ej2KzGdjaroqxWKezoWYv4ZWtlyhPIVLhiDsFvRVXs3zM3/vqRqGZrhb/BBMzRsxbFHc8sl/HeNpf56N25vkK2mpR6Qvxlr458vHxrg25nqpLDSn+I79eVsUfHumMi/ixaayr94V3STf0zVAtLc1Zmwz2WNRzLqI6XaLcVCmMl4ol9dVBdDpnptP1hxzIc1VT5d/ylyaqAIRiXbShPeVwwheDGWrN2G0p4/mVLJUs3ltMjN41w1EgSdjutNRzLqNZsjM2mrAqE+W17VXzf1qaoKlDjc9QtJy3hM1kTX9A41sSFZWyETTSqm3yBozRWyfHbdk88QCjpa8Z+9xYlpbDCH+eLTUfQp+AXDnnqe0KPKIZnvclPFfsCsDDrILbSmc59ttJ77nqOHPcBI4NvkT92I1MtU5jJ5RTTgWLySTu5lKEs5Nx5bxhPPANunXcLd7x1F/SGp+Zdze/DCziJ/0ChhlsUj7x/k5EDvOjnltsBgiDURcaNtD1+3+6pE9ThC0bwhSLslmnMt7NbLWyrNMJ7zJO2nDQ7UQ1bKwNU+sM1+htNTEFW4QuhME/kjd1Z6Q83OHZEa00oorHHTpisFkV5zLGMRDWV/hA5bgfhiCavkbMEa2MGDq3YXMn+PXPjtxdXBVhf6uPLVUUctXenlM9h9mhmumwUe4JcMfs7ctyOep23xH1d5g3SM89Ndpq9hrA0ZwamEjqJInxDqY9gJJq0B7Wp1F6vNxghqhtf8tlSNNUhe+PSoew9+YP4SXxUgyWFIatqzbEMhqPYUz1gFyfZ/nI7bDhtljrllf5QBKtSZLpsrC32csaTC5sUrKS15rftVZR5Q2ws89Et549dCGoM5vdobS1ntfZFK1M4mmXeYBxXtpQbx7pgPWmpa2LCekOpD7vVQrrThsNasyR1W0WAYCTK3l0y8QbDrCvx1Sg9TaTEE6zxOSrISWN1UXLx7ouVpZrHLbOCoNIfTllxkWwflHqCFHbK4LftnpSC0XQsC3LS+OinrawtrhvsJAiCIAhC49i1z6Z3ACXe6vEdc8Yfwu3vLueFhasZPWtR3DHMdtsJhY3TbA1cdNjuTDiqMP4cc8Yfws+bKzjx0c+pDIRx2Iw0TKfNgs2iqAqESZyUl6zssSJW4mWzKuaMP4RLX/pf/ISrqCrAmmIv/QuyCEWi5KX/MTfNabNgVYrlm8uTvvat7/xItwbmNponsqbwCtZTxlb3cRE8wQi5bjvdc9PYWOojFImycmtlXMz17dJY59P4nXmDqS/9BMNRVmyppFtO9SzFUk8wpWg090VmGxszYLEoCrJdbIgJS601KsUkS0V1Kmw0qvEGw3RsYy4uGG5YHccyGMHlsMTnigabOGN0W2UgXsa+cktlUmFZFQizptiDJxAm3WlrMBQoFIlS4Q+T57bXEH/m929tSWpnNRgLvdlQWi1Ai6oChGLl9/6QcaGm9pxSMyHbalEEI1HyMxxEojpekuoPRdhU7iPTZSPLZSPdaWNdia9GSWkixVXBeAAaQPfctHrdUl8wEq8iAcOxBOOYne22N6kMudQbpHOWiyyXjVcWr+XLVUVJH2c6lj1y3fywoazB5xWERJSayst6GfuxD/1KfoPT4eGsy5nMHdhi/+0GshwEcfCX7xaTf/JGPj36BC6eP5OjWMC5b71B/1Hf0IFiHp52M75/5XLuyDe4cZIxKiQ83Mod0+/CP1ZxlfsRgjjZ4/xNcDpwDRzz+3/476ST4AGA1wApgxWEXYZ2Om6k9VoSf5BST5B0pzVeKtgpy0lUG1fzPYEIbocVm8WCy26IMoDeScq8CmJlaFoTPwlVSpHhsjUqMMcUS+aokRy3PT7H0hRzZb4Q4ahOOmqkMSilcDusvPP9phonsvHU22DydY6etSi+fSAcJctl4+3LD8WiINDIdEjzRDvH7aB7bhqBcJQtFX6qAtXhHJWNDBYyLwZ461mvya/bKin3heIXCIqrAqzcVsW2FL1Tlf4QTpsl/nnYWcwZf8gOd0YKEsoOo5qUYUEWC/E+zDXFHqLa6OFta6Q5rPhDESIJpZ2+UITj9+nC/acPBAzxVOYNsnxTRYMuuT8UYV2JN953/Ou25HMyy70hPIEIK7aknp6utTH+aOmGclZtq2Lltqoaa63PsaxNKFy3FPbC541+8MzYWjeV+es8bmssyGzPjhkojOOSzVpdkvrTpgpCEU2XLBdKKWwWZYjQ2Ov5QxF+3VaFLxRBa02JJ8hpB/SIf9YLclxEtE46RsQXitQY62QK0tJaoWaJx6dkRKKacl+IXLedDpnOlKNS/LGLDN1y0+r0kQpCYziGT9hGJyy3adSjcCyfcPD7S1Dva9T7mncYyVAWQhEUbe3OmPnPsYZeOAjy8qjTGcz/+HT/E1C9NHqu4v5JV3Hf4inct3gKD03/B/SCme7LOYl5vKC2Qi/gJej++ypGMBc+gNN+fYXTdKGISkHYlTCFZXP+tALa3pljCgIhw0VLnDXZKSZyQpEonkA4PrdPKUW600qFP5y0pzArzYZFGSfjZgAPQEZstmQ4EiUQjlJUFaRnXlqdkjNTLJknT9lp9rgYM0/SSjxBIlHd6CH1yXA7rWyvDMTL3gKhCMFIFAV1BHAgHGV9iZde+e54GVowHKV7rvHvLlmuRo8pME8Gc90Ouue6CYQjbKuIkuO20ys/nRJPsF6XozYlMREeimhGPf4ldqslqShbta0qvmaA9aWp02zN/soct71Nlr91y0njnSUbGT1rUdxVr4/V2z1sKPExetYiimOlg25H41271rL/XLHe6K0VfgpyjD7CUERT2CmDXh2MHl5/KEqRJxATgpXkuu247FZcNgv5sVmnprDZXmmkQvfulMGPm8r5dWtV0tf1h43P+u/bPRywW1696yv3hVhd7I05gnY2lvlYsaUy3g8diD3PupLUwtJMfd1Q6ot/983vRYbLxvaqINfM+b7OsWVrhR+7VZHjtjO4Vy4WpfAGjNes8IfiFyoSj3lOmyV+wemnTRWUeIJkOK1UBsKG65lwYaxbjtGCEAxHsTks8XTZSNRIhM3PqC6zP2n650DN0SGNocIXMsYHuR10SHemDOXxh6Ok2a10zHQSjug6o2gEoT6UmtrSSxAEQdjlaFeOpTlXMbFn0nTPzP5Kd4JLk5Vmx2ZRNYSoiVH6apx4X/qXPeMnQ6ZzYZS+eWMuXd3LDObJ0n2nGw3+2W6jD9EfE35QXfqZl/EnhKXDRlRXiyuz9DM/w0EoomsIxQ2lXoo9wfh+AuNx3WPvvyAnrdEjR0o9xnOYpbBRbQScdM0yylRddmuThSWkLoddubUyvmbz/UD9QSWmI7yz5lfubApy0ghFdDyUp6G2QfOU2hOMoKCGe9RWMHujN8QuOpifwT07ZpCf7sCijCRkT8C4AFWQ7aIqEGZLuZ/VxV5+2FBWwwGvCoRJd1hx2Cyk2a3M+3FzUjfNHGuxpoFwILPPsE+nDLrnptEr301VIMy3a0oIhqOEIkagjtkLmgytNcFIFIsyvi+nPWFsZ34vnj5/MJD8e7G1MoAjdlHJ7DOdOKwPYOyXzeW+2H6s/mw4rJbqizkxwesLRSmJheYkHm8LYmXq5lq2Vgb4bbuHNcVeIlrXcMmfOOcAgHr7N+sjflEr3R47ztV/zPIFDZe0Y4bTuLjcUHyyICQycgoH8i37sYTTpr8Cm+AsXiXzL9vh5ACcHODxlRPZfdpmLPt6mNn1YhwEuZ4HOXPhXM6d9AZPV1xG9ldbGDfqUdRqzd+fmg5rMH6OBWww8cfH+etzH8IAw5FMe7aUDXMKueaiWdzx3fW8qVbVnF8pCELLY44bac6fVkC7ciy9wTAOq6VG/1SnTONEx3QL0xNOprtmu+ic6ax3DIXDZsEXitArIc7fFJYby6oFZbEnWKeHzxRLeTHHwBxEX+YNxXq8LPGT0T9aCpv4fjzBCC674SJYLYqOGU6KqoJ4gmEcNge+UCQey1/hC9Ep04nWmkA4Eu/DLMhJY9nG8npfC6p7Ly8Y2st4XzHHEgwHzOx3TLNbKfYEkwaI1KbUEzR6ADFOBLOTCMHRsxYlEZapZ/ZtKffjsFrI/RP7d1fG7PUz3a6UgTQKTGnpCYRxO6xNCrBpLZgXgzaWeYG8eL9lYacMlFK47FaqAmEsyqhmsFkt9Mhzo7UxamddiY/VRR4yXTZcsTmx5sWpNEd1dUBtTAG7pqiBEtZIFKWMHkcwHP81xV5WbKmMf48ynDbDDazngkmFL4zWdbcLRqJYLYrdO2TUKF9NZFuFv05StOlqlnqCbCrzY7WoeP8jGMdBs6zdLNH1hyIUx45x+QkXxvbokIFSsL7Eh0Up1pV4yU6zs0eHdMLRaI15wTmx0LJkjmVUa1ZsrqRrQj+1iSlEc90OOmQYTiRUH5u8wXD8PfpCEVw2S/x3KOWwQuOZxHtvHYuVCHmTvHACqLHn8B7H0s+9nIEsBaBytQvVTfPvzseziQIGsIxnGAt/hbXbOzOLiynv14XZ357DE0Mv5LL1z3PB6CcB6MF68vsVoa7SfD19AO9edAp3XHQXvttyOXPaP1kyehC3KqOiSspgBUHYFWhXwjIQjtbppTNLYc1eKrfDViPx1JJi5IL5XLvlu+O3WS1GX2NVwBCxboeVEk+Q3fLcNQRU4lV1MHqZzNuDkSidM10UR42wjT9TCmueqHmDYfLTHVT6Q2Q6bXFnwBOIkOs20iMtyjgZrfCH0FobfVWa+Alt1xyjFLZRYjDBHU53GmsoyHbFH+eyW4lENac9sRCbRVHqNXod3Y66o12KPUEcNmMmZyrH0hQJwXCUcCQadyyTuayeQJgKf5geuWltUkAB8QsCwXCUZRvKU86yVBhzLLXWeIKRP3UxY1fG/M5uTHAsFdAzz/iMu+xWvMEI+ek1Lygppch02SnsaGHJhnLKvEGyXEZ6tNmzmGa3EtV1L2RU+kNxJ+z3ehJRTYLhKA5rddmy3WqIuCc+/Y3Xv10PGGX4lYFw/MJTbbbGUq4zXMZ25uffPP5ZLYpOmc6kF1yMUtiax0jTcSzxBNlY5os7mibO2HfTEwjHQ4X8oQg3vWmcWOcnhI9lu+3s1TmTX7dWsWJLJTaLYo8O6ThsFhy1CmgynbbYsaGusKzwhagMhHF56l7Cvfkt43Vz3Q7yMxyx45gxbsfsE+2a7Yqv0+WwxscNperHFAQTowx2UksvQxCEXR0ZN9K2CYajcUfRJMdtR2GUQKXZrXGnoDEYQT8qLrxMMpw2vMEI3XJdWJWibHuISr9xldwMzinxhLBbVXw9ZjnmmiIPWhsnazlpDrZXBWpc8W8qFosiLXayHIpE8YeidIz1iaXZrXiCYar8YYo9Qbpmu3DaLKwp9uIPR+OhIabz1S0nzXD2IxqHrWZSZYU/RF66Iy7SzJPBHLcdl93F/j1zapywpsV6tPyhCEopfo31R9osim45aXTOcsZPrku9xpB1p63+AJ9oVOMPR7FbFaGIZmtlIC4ezJPedKctPm6h3B+Ku1JtlYLY7y0QjqIhRSZsNYHY7/3qY3tzzpDdduj6WgJLzG0zQ218oQhOuyX+2TR7BztnJf9cOO1W0uxWSr2h+OczI8GFh5pzMkfPWoQn5uY5rBZ+2VLBmU8urPfCTCgSrfE9MQO4vMEwgbDxOlkuOxvxx/sta7M1luya6bSxGeLbmaIVjGqMVduqCIaj/F7kYfcORh90qTdE91qptqajX+oNsqnMV+finOn+bS73sS7mWIYiOi5oa5fyZ6fZ6VeQyeoiL91yXPXO0lVKkeN2JBWWZsWHNxSuU3psOpSmY2ne5rApPMEwUV0tIP2hSLzH0li3OJZC4/g/fRivMIanFl7Nv+4eyUKG8thnN+DGyy/sxffuQQCoORo6wF83zYXBTn7fVMCxfMIt2+9it35buW75nXAwVE3pwGXPPs89Jddy8yUPA6AHK6aNvxzGwkEHLgNgv2++YsmLB/PavL/Bk8CIgei5LbUXBEFISTu8VtmmhWUkGo2HTUSiRj+hI73mSYxSRrx9MBJtUlgJGKKkQ4azzolRhwwnUa3pkOFEa7AoDxvLfHiDEcJRzbpiL6WeILluR/wE05zT9vMWo5zTYbOQ4bIRCEfibkptGhuY4nZYqfCHWBNzS7JiIjbdaaXMG+IXfyVOm4WCbBehmJis8BkplgoY1DMHqE7CrQqEybM5CIQjrC/xUeIJojHEXadYD+VLi9ZiUdWJubVdEPN2XygaP5nbPd9NsSfI2hIvxZ4AfWKhSSWeEDarwmWzsC1Walh79IA5NiAnzc72qiAbS33xUlgwTnoznHbWJoSedM6qv8y5LWC6MvGSx4YqYanuYR3QLXsHrqxlcdos8c+GLyYsTDpnunA7bCkTcXPcdjaX+7Eqhd2q4mLN7En1herOyTQft63SqEKwWY2yd4uixvEjGKlZDgrG93dbZSAuEN+ecCh9J3+APxStI6pGz1oUD6t5+m+DOerBT2s4luaFrK7ZaSzfXMHmch/lvhDl3hCjnzSey17reGaW6xd7DGFZ+3hnCs0Jr3zH70UebBYjRbbSb7iJydxvt8PGPgVZyXZvzddOt8f7tU2iWscrInzBSJ0KCjNxNjfdToeYqA1FjHLwqlgQkXnRzBcyWgREWAqNRamp0GEKs+jB7N8v5OuhA8ikkruYxKQjJrMfS5jCVB6bfQMA86cP5ei7F5KRU0nVk04e5lruCdzE350P4P9W4ZqvOey5j/nis+N46oHzGffdi9zz9LXGa32kOYAv4UEY982j3MR9TOcqlrx7MPQGLmi5/SAIgpCMNi4sNRvLfESjmqKqABqSjpWw2xTBCPGSzcailCJZpWymy0amKzaiRBlip8QbivclXfzPbyiqCtA5q7o/yJwn99KiNYDhbmQ4bfTtmtXomXr1CU23wxoP5emZlxY/uUx32CiqCmKzKPbukonNasFq0ditiu1VRipm5yxnfJ2De+XitFlYta2KjplOiquCaDSds5yUekMUe4JxYRmORuOjVJLhtFlQGCfdVbGevk5ZLjpmGr2fvxd54j1aJZ4AdouKBREF4kmOicSFpdthCMsyLxtKfaQ7rHiCETaV+dEYTk5hx3SsFkvK+ZZtAZfdcNQD4SiNsSyj2ijbVBAX9W0Rp80Sn6saCEXjwgkMkZdvS10hkBsTlmU+w6WvLls15tj6gjXFiT8m7LLTDGHpD0XweiI1LnKsL/HSI89NKKLJTqv5vTE/9xU+o5/TSKi11nAsA+EIa4q87NExPV7i2jnLhdNmJRiOUhUIE4nq+PGva7aLQDgaDyLyJoz6cNQ6qKU5DJf2hS/XUOoNxcPMzOPNqTO/AMyLRMZ4pGJPMN6r2pSZoLXJcTv48reiOuOSwlFNrttOqTeEPxSN97dmumzxgKMMpy2hxNXYJ2bfuyks/SHjWJLlsqGUlMIKjeO67Xfy0OR/cPHtMznoqmV0n76KDXMKeXH038hb7KX7kFXx0QBH374QToa33CO57JQnGc48ypy5PD5xIsdM+4TtR2fScW4luo+iB79yyP4LuHmo4VhuX5jJQoby170/xI2PTCrpx3Keff0cZjMGgE84qaV2gyAIQh3arl2DIfyiGjZX+OOlbw6bpc4MQdNxSHf8OaFR32zCgpw08tMd8Sv03mC4Tu+kWQprOkb1lYf9kfXkuO24bBZ6d8qga3ZajdvTHVb27pJZYxZnlsuOJxDBoqgx7D3H7aB/QVbceXE7rQzols1u+el0yHBQ4a8OCglHNLYU/alKKZx2C56AUYprBvIopeiQ4UAp4v2cpZ4Qow7ozvSzB9XYR4n4YkmmWWnG7/C+91fgC0Xi4nFTmY+VMTc4K81OjtvepLLn1kqa3XCrI1qn1JUWi3HSvaUiQJrD+qfEwK6O025ldbGH0x5fiKbpwicj1vtn/h2qv2tpDmsdxzIQimC3qniQlj8UocQTJM1uZY/YiJNV26rwBY35mrXdfbOSojIQjn8fnQnhXmCUhpb5QpR6goTCUbLTjBEpTpuFQLi6csMUll2yXWhtXEywWxXeYIRgTFQ9ctagOsexvHRHfO5t7WOTefw0HUrzuxyK1H0vTSXP7YiXtkaiOj4b06KqHXlvMIw/FOH3Ig8bSn2Eo8axRylFfq3eSbMs2ex59cVCzYyUb0ujk6qF9omMGBEEQUhNm7ZszH6/i1/4hnDsinVSxzJ28tPUUtjGku60UdjJcDBddkusJDZaI4bf7bCiqA6asacQZU3F7bCxb4+cOre77Fb6Jyl5zEqzU+wJ0iXLVefE0GY1BKo3GKkRtJOf7mRjmZ8ST5Au2S7j5C6FcJsz/hDGvfgtHy3farxmQmpu4kmeJ2iMX8lzO+jTOROrRVHmDcbL60wnw+yVe/OyQzngjo/jY1WmjNiHy2d/x2PzfyUQ68H8sye7rYnueWn8vDkmqFM4tLvlpVPpDxGlOoymLTJn/CH8c+Eapsz9iYqYEGrqWBWj989OUVWwjuvttlspqpV27A9FcdmtsVmixsgfUySaoV1rij3s0dEQmbXDcRLdeTOQyWWzUOELxV/H/LyXxULIzB5RZyyx9bkvVhvrc1SXwgJkp9lw2KxxQWo8tm7Sam66nU3l1RfnEnnt0qEceu98tsR6O9Mc1YI21cWlxpCbbiccjRKORlmyvtwYnaONvk/zQmCiKC71GgncZrWE2Z8ejhol9+bxtdqxjMT7ap02a6PHKQntlzf1Yi4KPkf321exhl58NP1wHmcC946+iQUcxWFDPubzmcP4coIxLucMXudRrmbYtM9hPzixagEzThkL1wc47fF54IeXJ56OukjDkTD1/CmMXvgqAB1HVdLnraWwCh454yb2e/17xs1/EWYA18cWNLQl9oIgCEJy2u4ZJIYLA7E+nFgHbTIn0OyT3Bn9dukOW7wszUyEhVhZbaw3qWu2i9cuHZp0Ht7OID/d6J80Tz5ro5Sq04OW5rDGSm4DMWEZjZ/EJpLohOzRMQPYioI6J+hmCV/iLDyHzRIvfzNTHk3MeXRgnHwv3WCMRdktP91IwAxHjW1quVON7VNtrWS57BRku9gUCy2qjzSHtU3OrUyG6fqZSdC1PxNAjWToZHTOchHVdS9GuRxWIpWabZXVpe7+cIScNLsxzsRmjZd456Ubc3ItyhjTYZal2q2qZjK1RcXHD3WPO5bWeAiN3Uo8FKzCH8Zls8Rf20xTfvWb9RRku+K/475dM7Eoo2/aG4ywParxBMMojFLf2uS6HZhTVJxJjpMFOa54VYjLZsFlN4SlPUU5fGPIjTmW5T7jmJmf7iCiNV2yXDWCySLaKLuNaqM/3AxUynTasFsVJZ4grtioGTPFFqrDe8C46FfpDzUq9Vpop/Sdwqh3FbuPOJr9X1zOhg6F/DfnJPz7KVyXavq8uJSVzw1EHafhhthjZsKZ3841zraqgL8uZsKmZ7lixTPwLfzfc0NYwFHwOeipCjVXx8to5781lB6sp/eR62EVXPDcHOgAvD0V3pYRI4Ig7Hq0aWGpMMZ/+EIRYzacUkn7/oyeSNtOERlmvyNQo7cLwGY1hGWX7LqOwc7EalH0yE0eGJSK/HQH60t9+EMRoxS2gVJT06HJdNnqlKU6bUaZbIm35pD1/HQHRVVByr2heFqlmQhruhPdcqqFZbfcNLpmp/H79ip8oUibToGtj265aVT4wzjbcHlrUzBdv3Kfkcz8R0qiM5w2enfKqHPMcMUuXK0t9tI5y0UkqglFNBccujsTjipk0O0fxQJjLKTFSjBdditrij1sqzCEZbKLX26HDX8oGF+7O/a7rPCHSIuN7slJs1PmC+EJRuLzec3f+cDu2TWqNfbomMHg3XJrCKhyXwi7rXrUSeJ7Swzgef2yoXVcfyOBuNSYcRmbFVzuC//pyotctwMNlFQFsFoUe3ZMr7Fmt8NKuS8UvyBXVBULR4r9TpUyUrtXF3lYHwtsynLZ48cVX0JvqdNmiPUSTzBeQisIJkpNhb4i5ARBEFLRxmsCFWl2o6QyEBsS39IkOhy5tdISTdHbtYWEZX09oo0lP9YbubbESziqGzyp3DMmLM2U2kScNgvhqGZ9LODE3FdZaYbLU5wwNN0s/zP73UxHympRZKfZKchxURUwxgyk/ck+2taIRSn6dc1k9/ymXyxoi5jiLKqTu5WJ1P5ONPQdMfs11xZXz3ME6JWfXuP+vIREaJfdyle/FXP/BysA+OdFQ+q8nnncMJOZM102XDYLWyv8cbeye251hUGXbEMYZTptZKfZefSsQXXmtZqvbwqrUETXKcM1Mb9/DqslaSm5OdrGFethv/zIQoA/XQUSH3XiC5Edc30TcTus8X7JXLcjLoATLyB2zHDgjvW+uh1W7DZFJKqJRnU8FRaqR82c9+zXLVYtIuyaxHsr34B1IzpxhPczCMMxw//D5qE57O7+nfdfPIqVvw9g/kVD2bPPT+Tft5H8+zay1tsZPoFrrroXbgNsQ1BXaSz7eDjouc84YvPXFJPPm78O5/weT1FyipuHRk3goVETOPq+hfSeuJ5rzr8XwjDsorkcdMpnLbkrBEFoNBoINfPPrk/LK60djMtunFAEw1EO2TN/p5Y+JjsJTSwPzasjLI2Tpi5ZyUtQd3WcNis9ctMoi40CSJUKCzCwew4F2a6kLqLprtz1n5+BasfEohS56cZsO7OcrcRjJNuaAtUUDtUJmGnENm1QSLRVlFJS3hcjy1Ud3NTY8t/GXnRxJDiWUJ0I26uDIerNz1/id98V60c0e4CTlaJmuWwoYK8uRlqvUorOWS6qAhG2Vvpx2iykO23xgKDEUti9u2SyeywkKBl2qyV+Eai+i0FmdUV9F+cKEkp0gfjrNcaxTLVvzX2hdXXAWSKm4LZZFBlOa9xpTOztVEqxW2xkU2LwUlUwHO9/BeKlsvXNBxXaOc9OoXu/VfScso357qM44KIvWVgxlH9wF28xihN/n49eZeFFzudyHqeTZRudLNvo7N3G2qs688jvN3Lid29BeCpcD9GT03mUq1F7aj7ncE67ah4BHORd4uW622dy3e0z6XPjUngVttGJDXd34KMxp/C1WgBIGawgCLsmbd6+SbNbKaoKEolGKMhpmhO4I0So3aric95yk5TCQss5ls1BlywXxZ4gnkCkxsldsn1pt1roUc+MTvME1UyiTHR389MdbK8MGCVrMZGZn+GMOzLx5MzYSXBBQrJte+kjFFLjtBkhWlccVch5h/Rqtue1xIKnzFEivliCsSm0OsTcs8QeZZfdisZI5e2U6Up6ASDTZWdwr9wa35cOmQ7Wl3rxh6J0jJWBZ6fZa5TCNha3w0a5L1SvcDS/f8nCzwC6xY6t5v17d81EqaZdyEl2jEj83mcnFZbGfjRnAqc7rBTkuOq0GWSl2SnsmE6G0xbvrS2K9bSaazTXnpi2KwiCIAh/DE28Ybod0eaFpXk1OqprCoyWQimF22Glwh+u37FsxcJSKcUeHTJYta0qaXhPfdQOSzFP8jwBI1AkMak0y2XD7bCyvtSLRhPVNXvAajuWBdnV7k1DfZ9C+8ARE5Z7dsyocXtzXExy2izM/3kro2ctwhs0wnTM70Ky4CunvfqzbqZHJ6N2KavNYqFDhpNtlQEyY6nKeekOtlT42btL0+aQmr2K9SUmm9+v+oRn91hPtnm87ZTp4oCeufzZr5t58c3tsNZ5bfN3deQDC2qMK6qvP9x0M687Yg+umP0922PC0iyBtVgUDqtFHEshTuJ4kUUXDeKQ2d+z9XZ4Z+pI7uQfnHjvAp49dgJHHb0AqhSqi4ZJxvb6stiHfxvs9slWSIP3r94fWAYXwgXLn6RfZDnneZ/mJbUJ/ncwr435GywBzjIe+jLncNB7y5h9/kXMfmk98CVwLFofuvN2giAIfxCzFLZ90eaFZY2o/l1AWIIxfqTCH97leiz/DInC0O2wMrB73TEmTXmeM59cGE95tFtrlnEa4jWdnzZVsKbIa5TBJqTK9sxzY1HV/ZRdc6oDTxpK+xTaB+ZFh1RC7o/islspifUAJ6YV17t9rARTUz0mpLEUZLsIRaLxsSXpThuDd8ulV4rS12SYx8kGeyzrEZa9O2VQ2CmD3ARXsb5QpKaIdzOQK1l5sEmy8SipMEX49qqajiXUnQ8qCABH6iEcctUUOAs6b4O7j7gd/aZi/t1D2UpnXuQ83h94FCeevwCugYv3n4maZvRfTJo4Gd1JoSZortGv8ki/KVy3/E4+5wiy/x2AXsBPwN/gym8e4LExN8CUaQAcdOoyRuz/Ou++dAaQB3yH1le2zE4QBEFoBG1eWDrtFhTGSVtzO5Z/1N3IT3cQikTpUuuEyOxHMh23lh6F0ZKvb8yyNPpjk/VqpjttsREHfvLSHTWEZ6bLzn49cuLupOlYJp7gt/S+3Vk0Vki3l/1hkp9ujM/ouANSgs3gqWA4Gksrrvsaib8Xu1XFL6I0tYTVabfSp3NNd/KP9NJmuYyxHOnO5CJ4jw7pWC0qHpBVG6VUjaqB5iLLZadf18wmVT80hDnayEzhTTwuuGyWeBiY0L5JdCsFQRCajpTCtjn26JjO65cOZe9b38cfiu60Utj6TtITTyb37JhR54p+foYTh81a7/zIHb2upjyHKVR2lCCZM/4QLnrhG+av2FZvAEhBTlrsZLzuiXtiSV/HTCc9ctPqlB4L7ZdMl51MV92U0ebALActjY20qD3rMhHz+9Nv8gd4gy0zDqcxFx86ZbkYvFvuzlpSDUyHsdmeLyaOzbmhTluiY2klVFUdDCa0c34yAnLGcjqfHnwC/xo6kpzgZjgS1Pua787vR1+Wc/akt3k/exSORyoIfpXFUSxg6kTjsd0/KuKuTXfATfBS9Dz4+QXKyKWQVXy96AhYBK89cApnPjsXKxFIBwZPNF7fBSN4lxxdxktq/5bZB4IgCE2gTQtLkzS7FX8oSuddfIah1aLiJW3NSXMIypagR8y5TRxZUGNwvFL0rCf8JxGl1C7RXyu0D8wy28YIy8THeIORJpd1Ck0nXgpbWdOxnDP+EN5buokrZn8vfZbtHHUcwCQ+6nc4AEd4v2D6mM84e93r8IwNCkF3V1zLPXzKkeTfuZHisd04Ju8TXj3+bLLPCPDa66cAEDpYoS7QdH9rFUNYzJvHXsCzxwFpwCegFynUi5rfzy9gj4mbuOfpa1lNLwCeslzNuJdfhHMATAdV+isFoXUgPZZtlrx0R3xwd0uwqwu4P8LOeE9mIIgE7vx52uJncFfFdCwrfGEsqv4k1bqPCdGxiT2WJo1xHdv6Z6CxZd9mKWyyHsvd8ozeVOmzFNLKq1jCIACGffI5up9iUOEiXr/9DHp/tx7Vxc8FPM+SSw5m0dODsD4Xpowc9raugMvgF/oA8GHWMZABG+YWsuHeQp5aeD7/4E62Le4JB4PaT8NY2GPzJngHbj73YfjYWMOV0Qd4TN0APwBMQQ9skV0hCMIfQoTlLo1SqhfwPvB/wDat9eTGPrZDhpMOSfqchF2bHnmGy9iYWXiCsDNpqAqgcNI8wlFNusPWqHJbM5m0dt/1jqStC836cDusWC2KbRV+oHrfA/TMNy5miWPZflFqKhwrMyIFQRD+CDtUWCqlHgROw8g9G6C1/jF2ex/gn0A+UAycr7X+tRFPWQk4gd93yIIFYNc54Yw7lo1wmneVNQsCGA5kVSDcqDJYgPx048JXY8eEtMd04+b6jitlhBAVJXEss9PsWBQEw+JYtmf2+/grlpx/MCNffBuAZacM4GMO45uKQ5iZNQ6AvgXLOZ8XeeHsSykjhxNXLuBffUay+cXd2X5+JlvpDEB/tQp9nkJ11vRf+A1e0pjKFCb2ncbwIfPYa9Iv9GM55z7+BlwB1+x/L4+suAmAx9ZdC7wP+4LWJ7bIvhAE4c8g4T3NzTvAo8DntW5/EpiptX5ZKXUuMAs4GkAptWfs34l8CDyotT5IGZf/X1dKfaq1XtMcixRR0nw09YQ31b7v0zmTDhkOcpIMRheEXRmnzUJVoG5/ZX2fd6tF0SnTtUPChIS6ZDhtbCr3AdWlyybyO2jvTGHJJOj/4jdcwtMADGAZv1FIj6z1/Jdj+W7/ftzEvRz1wyLopZnFePDD2Yvfhk9h8PnfsOb+vgC8pk9BLdTcOGQq9+0/hWv2PpBbZ9/Ciqy9eZhrubvgdmZsGsutl99CP5ZzRXQGfBVbyns24OvYP0RYCoKw67NDhaXW+gug9gzCTsD+wHGxm/4FzFBKddRab9da/wYcm+I5tVJqG9C0CeBCq8Nhs9QZYC8IrQGzvPKBM/blwF55f/r5/ujFL7lolvxiV6bLhi4z/l5bWArtF6U2AN1behmCILQJ2mePZUuk2fQANmqtIwCxPzfFbq8XpdSRSqnnlFJPA36t9bJ6thunlPpWKfXt9u3bm3vtgiAIDZKd5iDDaWOfgqyWXoqQhKyEESZpjSxXFto28bmVv2k63b2OrwIHsyw6gGXRARSwiUv/9wLFdCCMlYt4jg9X/ZVb9r2V/9vjYJbTD4qAy4DbwjgJog7TqMM0g/kW7oXxzIJrIP/ljeRTxH3cyGjmwAy44vFnuGPUXfzCXhTv140jp3/AkdM/gH8Za9Jaej4FQWgdtJrwHq31p8CnjdjuKeApgMGDB8swshZiRzsl7bHHTGg9ZLoMUel2tJpDbKul9rGmMcceMxkWwNWI1F6hffCevoBMKvnLJYs5+ukF/MC+AHRft4XTD3iD5fTjUmbx1zkfQhHcfdnt3PXcHaz8dSBsAf2m4tGe4wji5O9F0wHY/cfN3DH3eva4bxOMhOJju/H1/CGUksNv7MmwUXMpZBWPV07ktkvuhf7wqdo7tqK90bpXy+wMQRD+JBrpsdw5rAe6KaWsWuuIUsoKFMRuF4RmQUoAhfbIrvS535XWAjXXYwpLu7XlxlAJgiAIbZn2WQq704Wl1nqbUmoJcDbwcuzP77XWUrcq7DB2tZNcoWVpK5+HXel97Ki17IjnzYyVwkalpkUAlHofmMLtfMbiL/9C2kOljOEVup9fBMBDL06gcPsGej/xIkz5lY/04TzJBVw+YZpxSbwMvh4zALUuBFfZIAeITQ5SH2gcd1Zw4o1v8f78UfSd/z178hvzGM4bnM5HvU/how81l984jcc/mkjfYd/z87/mJqxOymAFQWg97OhxI9OBUUAX4BOlVLHWeh/gUuCfSqnJQClw/o5cx67GrnQy2NqRfSkIO4e29F3LiDmWFgmAbfcYvZUHUR52kn13gLmThmH1RrjmuVm8/OLpAJx73xsMuvF73pt8LCcP/oRh8z/nx6MLGcpCXu1xKkyHeaNO4qGeV3Odc6YxcfsV4/kf6jOB6+6eyft7j+LiUTOZXTGGO+64i/0e+IrD+Zx3OIvz9niG8czi8eMP5Wc1BNQgtEy8EYRWTvsshd2hNUBa66u01t211jatdZeYqERrvUJrPURr3Sf25y/N+bpKqRFKqafKy8ub82l3OHPGH9KmTt4EQRB2RTLjwlKUpQC/64v5q/Xf6ArFUgYw1v0M+gDFuW+9wblvvQHnBTj6qYXczmTeH34Uhxy9gCkYwTrr6cH8B4Yy5aT7sBKGQ8DxYQVsADZghPf0AnqBkwC+ohw6PbCOJbMP5l1GwJvw0qhLeIaxQDfQU40fQRCEVkibbC7RWr+rtR6XnZ3d0ksRBEEQdjHMUlgRloIgCMKOweyxbM6fXR+JLBQEQRDaVbVElulYtslLq0JjMcpgT2CPgVPACf2++Y4LeZ5+LEeN1fCmUcbWv2ApU8dNYQ278zf+yXucxLm8wsNcy3DmkU8xyqlhDFw+exr/YTgXHn03AH+5bzFX3vgAjy29gUoy4QXFtnN78vKY0zn38TfgE+DtL4lgpY8uAUbyCwNbbJ8IgtBcSCmsIAiCILR5pBRWiPPQEI5c+gHdv1nF4XzGDSseMwTgLGCDDTbYmMoUTntrHtO5ksnczqccxcpTBvLC8ktZ/v/t3XucVHX9x/HXWy4moiigBpooiYqiIpH3CxZeIhVTSi1FM8VLRWUqhCUgappohoaGUopo2U8UpTAV8YYphNxUFAJEQfAC3otU4PP745yVcWV3Z5nZ2Z2z7+fjMY+dOd9z+Xy+35k5+53zPeewG3u/MYNx9/Ri7Q1iBxbzTSYypO+VDOl7JQxcyvUzLmTyngfQi4mceunNcAG8zA7wD9j5njnQ/UBG6gPm6153Ks2srDWKI5aN6Zd4Mys//o4qrZYbeyhsY5ccrTQzqyu+3YhZg+N/uM2s2Dar5qqwLZo34Rt7tCtxRFZKFZ3K82IzmnMll3AprSf+lwt7DYdTYcS/fgxL4YRjk0u7Hv/UAzxw/GEcNfUxNDugKbS7/2WWz9+RCRzD2mc35YQ2E+m37+9YRQvGPNWPNmNWAjCs7eUs6taejl9bxqLJ7bmLExl9//fYm5n8aovhzNfbfD3+ziP+jcPMMsAdSzMza1Q8FNYAVtOEkVsNZN5bOzOj1250+ucSxv2rF6/M35W3jt2MXde+lMzYEY58+zFWdwa2CrbuuITlV+3IDQPO5IdLRvOzXr/muk4DmfXvvZn68qH8p/tGDOt/OQCLRrRnx2eXw6NTmUgvxk88iY96NecHGsARcT8P3b6KR7Qd0JOIA+utLsys2BrnOZaZ7FhKOgY4ZqeddqrvUMysEfKR9oat4qqwTXwjSzMzqxMeCpsZETEBmNC9e/ez6jsWMzNrWFpuXPVQWGsETh0MfWDUXcBT8MjbPfl+61vpcsC/OGHERA7q/zB38F3GbnQKAHo64HUYct5ABm0+mD14jpPvvpcvDViCLg3YAtgEpqkLr0Ubfsllyb0rgY6Tl8F1AEP50Rm3wAfwwDePh0fgId1Lu+gLwDJ2LHk1mJkVWyY7lmZmZlVpspFovWnzT49cWuMyYMxQTuV2pvMVTp96Fx9fvTkP3nwkzz/xVZgOU2YczpTph0PFrbCnA6Nh8CFXoVEBi+Ggfz3MExzMz2++jOHLf4XWBIvmdGG781Zw6siboUe67Hi47/4jacIajm4PvA78DLgMTo323K4xyXwxuKR1YGal0PiGwvp2I2Zm1uh02rolrTdtXt9hWKkt8WFqM7O64iOWZmZmlnnSBOJVaMcypvMVTnvir5y++C42ueYdDuYJzj7kJvZZ/Bx/69aTo78wiXgy6YRq+Gw+/N/e/GzjXxMbCRFMGXE4U249HLrAxmM+5qBrH6Zjp2VwJtze+ixIRtES5wkp2DnmwPJVwFNwS0/44A1u17JkHh+tNMsgn2NpZmZmljnJLUa6oe2vgT7nw7lwbveb4G64oO9wTteNcHJrjrvzLxzdfxJcvxRdHgB88p5otnfAN+G6aQPhaWDC+3SOhcyd3Y0+jOVqLmL/BRM4bsAUmgxYwzi9D8ABIybDJtCVmcxnNXTuSYe5L/GK7qq/yjCzEnDH0szMzCyTHohrmUVXBn5H6NZg1S1bwrbQnmVAa3gGxvc6CTYFeI0fD/ozAM10M1+OF1jYbXeYuYp4pAVHfu0+Hup4LH0WjWWcFrAyfg0nb8cK2jBlzuGfbnMVz8CqF/mrFsPfT2NAr6FcpU0+LffRSjPLkkx2LH27ETMzM0uOVJqZlVrjvI9lJi/eExETIqJfq1atap7ZzMzMMie3U3lebMY39GPupg96PuBFGHbnBXA43M8xsCX0W/Q7eAu4eyjwONfvdiHX73YhtD2Thc12hy/AEfEw+voQNuYjblh0JlvwLgA/47fE5WKKWrD/no8yIIYyIIYySx+COgODOKHXHVwlgFWAj1aaWcMmaR9JN6WPpZI61bRMJo9YmpmZmcGhAIw8pAfcBs/qerjmQPgz/Kr/cH4+4jKuafFLaAqjRvwEpi8GToNrduDn518GwDU6iyHxW3rxd/bp9RzwNg++fSRzW+/GQu1Oh3iJ3i0Gw6qpfPLefjTTEJ5+5WIAfhWDeZDmTJtzCOO0gB9EWwBu4YelrwozK6H6OcdS0nDgBJK76e4REc+n03cGbgPaACuBvhHx7+rWFRHTgGmStgLa1zQ/ZPSIpZmZmZmZWf2oGApbzEdexgOHAK9Umn4T8PuI2Bn4PfCHigJJX5Y0qdLjwpxlzwFG5bNxH7E0MzOzTKkYBhsPHpa8vjLgH3BMfJEJWsyg+CP/5ACu6fRLWPU+tN2cIf0HMuTnV/KDT37PKjbhGq1J1zaBWXRlyPlXct/EI+nd8UH2aP0Uz+opoBWvfG1XWDUUHh9Ms1ZD4JWLocONAEyMXjx7/oHw2wkAjNYKAG6JUtaGmWVEW0nTc16PiojPdPgiYgqAtO6evZK2BroBFVcW+zNwg6StIuKtiFgI9FzfBiU1S5e7PJ8A3bE0MzOzTNKRaQ+uMwyYPJSrth8M3eENtuFgnuSxU4+CxzaHNvAcqo34awAAEnlJREFUezDgk6FcpaZAR2BJupZujL+iG9+49h56t3iQg/77MFO0GjgKGM3Ok7/FfJ3DcYf8henxPZYuasJ3Y1MA7tQkYBL3xT95hy04XbuVvA7MrD7UyVDYFRHRfQOW+xLwWkSsAYiINZKWpdPfqmHZE4FxEbE2nw25Y2lmZmZmZmafERFjazO/O5ZmZmaWGckw2A7MiN8wiZUAXNRxBFftNhiWvMiwV0czn10Ypj2BOwB4b/UZ/InTmcg3+WnM5bqtvgErKkaGXQEXT+DKQXfywKrjefT9I2h2cMCTS4GmzNe9/CZWcpG6AXcQi4ZwE6cDcOfJf4KfQO+cK9T6arBmjUGDut3IEmBbSU3So5VNgPasG5ZRNJnsWPo+lmZmZo3X43Ejc9mNi44fkUx4F/gKfDizCy33XAPP3Qg6kQFrh3ICd9NKg0hOMZrEQwcPpt9bv+NNtgFgvGCfOIy9BHBreh7laugwmnbRl+V6nos0g66xK7ME6jhkXSD7A/u5U2lm9Sci3pQ0CzgZGJv+nRkRNQ2DrbVMdiwjYgIwoXv37mfVdyxmZtbw3HX2/vUdgtWB3HtXmpnVn3q73cgI4Hjgi8AkSSsjYneSK7veJukS4B2gb11sP5MdSzMzM2tcPu1UNh3MoRoE9zUjBidXRtS910C782m5yRqIoXDyYPjzUK5ST65iEPFic9R5M/aJw5imfzNKzZkRlwIwnhOZpuXAgRwR/+UhvQId5gJHsVwzafXRAby38Se8/PEOwINABz690v/TL5a2EsysgaifobAR0R/ov57pLwH71vX2fR9LMzOzMiHpYklzJM2UNEvSiTllLSTdJWmBpJckHV2fsdabrjAsfgG9H+CSvQZxyV6D6BdNGDumD8Qc4oohHHfnX+gXW0DnA4FmqPNK4AOm6RlgAbAJ3+IevsU9wCbsHJ2BOTzU4lgAWn20NbTdF145lndntgOe472NK24Ll3v7uL9++szDYM0s69yxNDMzKx83RMSeEbE30Au4WdKWadkFwAcRsRNwDHCLpJb1FWj9GAwLoS0rgWkMU3OGqTk7sZCvMwl22hMNep3xx57EqE4/gXPg1LiZ5dER+C7wHWAaz8dlNGUNTVkDfIv5msDzMRK2SLayRfN3ue6ts6HD5Wi/Kem2L4Jxg/lbPJnEwbqOpDuVZo1NxVDYYj4aPncszczMykREvJfzsiXJfy8V+/ITgZvS+f4NTAe+UdIA64nPrTQzq38+x9LMzKyMSDoH+CnJza3PiIiVadH2fHYc5qvpPI3DloMZ/fb3OOOlO9HIgO4kXWtgMdeyihbc+O/vc+7mf4IJnwBXwO2DGdD/Kn7BlYyNX3BKi7vp/N9j6aJdgbvTFQ8GVtOb++i67BlmCXZjLj/VpTwUfXiMNVyhS9kuFrBUd3A0kwBfCdascWtQtxspGUVEfcdQZyR9AMyr7zjqUFtgRX0HUYecX/nKcm7g/MpdbfLrEBFb1WUwuSTNIOkgrs82EbEmZ949SG7EeFhErEz3eR0rLiEvaSSwICKuXc92+gH90pddgOeLmEaxlcP7saHH6PgK4/gK09DjA9glIjYr1sok/YMk72JaERFHFXmdRZX1I5bzIqJ7fQdRVyRNd37lK8v5ZTk3cH7lriHnFxHdajHvc5KWAT2AcSRHKDsAFfcm2x54tIplRwGjoGHXBzT8+KDhx+j4CuP4CtPQ44MkxmKur6F3AOuKz7E0MzMrE5I65zzfEdgbmJtO+j/g7LSsE/BV4B+ljtHMzBqnrB+xNDMzy5KhknYnuUTgGqB/RFTcLPFq4FZJC9KyfhHxQT3FaWZmjUzWO5aj6juAOub8yluW88tybuD8yl3Z5hcR36mm7D/AtzdgtQ29Php6fNDwY3R8hXF8hWno8UF5xNjgZfriPWZmZmZmZlb3fI6lmZmZmZmZFSSTHUtJO0t6WtL89G+n+o6pUJIWS3pJ0qz0cWQ6vexylTRc0suSQlKXnOlV5lJOeVaT33rbMC0rp/zaSJooaZ6kOZLukbRVWlbWbVhDbllpv/GSZkuaKelJSV3T6WXddhWqyS8T7ZcvSS0k3SVpQZr30VXMt62kRyW9t76rIko6K13HQkk3SNoon7JixVfddiT1z2nPWZLel3RtWtZD0n9zyqbmG1sR46s2hkLqr4gx9pb0rKTnJb0g6ec5y9S6DvP5LElqIun3aSwLJJ1ZaFm+ihDfr9J6mp3WW+73yBBJb+bU1+/rIb4qYyhG/RUpxjGVPrdrJR1bU/xFju8ISdMlfSRpeC1iL0odZlpEZO4BTAZOSZ+fAkyu75iKkNNioEsWcgUOIrlp92dyqi6XcsqzmvzW24ZlmF9roEfO66uB0Vlowxpyy0r7tcp53huYkYW2yyO/TLRfLerhEuCW9Hkn4HWg5frqCzgEOBqYXqlsR2ApsBXJD9EPAn1rKityfHltB2gGvAl0T1/3qJxPHdVfdXVUZQyF1l8RY9wXaJ/zXlgAHLyhdZjPZwnom8awURrTUmCHQspKGN+RQIv0+V7Au8Am6eshwPACP7eFxldlDMWov2LEWGm+vYCVwMYlrsOdSK6ofVnl7dX1ezDrj3oPoOgJwdbpB71J+rpJ+nqr+o6twLwWU+mfonLPNTen6nIp1zwrt9n62jAj7XgCMCmjbXgCMCmr7ZfuJKdnse1y88tq+9WQ+wuknaz09d+Ab1czfw8+37G8ELgh53Uf4O81lRUzvny3AxwPzKkun7qovxrqqMoYCq2/uqjDtGwC6/4pr1Ud5vtZAv4O9Ml5fQNwYSFlpYqv0nwC3gO2S18PoYBOUZHqr8oYCq2/OqrDEcCInNclqcPqtleX78HG8MjiUNgvAa9FxBqA9O+ydHq5u0PJ8LyRkrYgW7lWl0uW8qzchlDG+aXDqc4F7idjbVgptwqZaD9Jt0h6FbgcOI3stV3l/Cpkov3ytD3wSs7rV6l9TtWto9D157t8vvOdAfyx0rSdJc2QNFXSaetZphTxVRVDXbdPreeTtCuwH8kRnwq1qcN8P0sb+r4qtM6KEV+uvsDCiFiaM+2k9DvmIUn71yK2YsZXVQzFeM8VrQ4lNQe+y+c/t6Wow+rU5Xsw87LYscyqgyNiL5IbXovkVxIrL1lsw+uBD8lGLpVVzi0z7RcRZ0bE9sAgkuG+mVJFfplpP4D0n/0VVTyaNKb4JLUDvgaMzZk8A/hSRHQDTgIukdSzxPFVG0NN6qEO7wN+GBHLihF/lkk6FBgGnJwz+SZgx4jYk+R75z5JbUocWkOIIV/HAa9GxKycaeUUv61HFjuWS4BtK75007/t0+llKyKWpH8/AkYCB5KtXKvLJRN5VtGGUKb5pSe8dwJOjIi1ZKgN15Nb5toPICJuBw4jOU8kE22XqyI/SW2y1n4R0S0i2lbxWEPyS3qHnEW2p/Y5VbeOatdfxPjyme80YGJErMjZ/vsR8V76/GVgPOvavCTx1RBDjesvVR1K2prkdIarI+KvOduvtg7XI9/P0oa+rwp9TxcjPtKjaGOB4yJiXsX0iHg9Ij5Jnz+cLtOF/BUcXw0xFOM7oSh1mPrcKIMS1mF16vI9mH0bOoa2IT+Ax/jsibuP1ndMBeazKekFKUh+ab8cuLfcc+Xz5yBWmUs55slnzyGtsg3LMb80/kdJL2KQpTZcX25ZaT+gJckRiIrXxwCvpTlloe2qyi8T7VfLuhgC3Jw+7wS8AWxWzfw9+Pw5lh35/EVfTquprJjx5bMd4CWgV6Vp7Vh3r+7WwHNA71LGV10MhdZfEWNsA8wGzl3PcrWuw3w+S8DpfP4CKB0LKatFnRUa31dJOhf7rme5bXOedyW5KM0XSxxflTEUo/6KEWNavh3wH6B1fdRhpc9Q5XMs6/Q9mPVHvQdQJ0nBrsBUYH76d5f6jqnAfDoCM4E5JCfr/x/QrlxzJTlZeymwmuQqdi/UlEs55bm+/KprwzLMb3cggHnArPRxbxbasKrcstJ+wDbAMyT/IM4iOZeqWxbarrr8stJ+tayLTdM8F6Tv5945ZZcC56TPm6TfV28BH6fPh+TMezawMH3cSHpRjJrKihVfHjEcSPLjQZNK6/9R2tazgOeBi+qi/qqLr6YYCqm/IsZ4NbCKdd93s4Dvb2gdVvVZAiay7oq9TdIYKuLpl7P8BpXVos4Kje9fJJ+V3PraIy27La2n2el8veohvipjKEb9FSPGtPxi4C/rWXep6vAgku+694EP0udHluI9mPVHxS9RZmZmZmZmZhski+dYmpmZmZmZWQm5Y2lmZmZmZmYFccfSzMzMzMzMCuKOpZmZmZmZmRXEHUszMzMzMzMriDuWZnVI0q2SfpQ+v1TSiXks85iko0sQ26fxSOoh6YicsvaSHi3y9h6TtEjSwCrKT5d0d4Hb6CNprqQVNc9tZmYNjaSQNEdSzw1Ydoyk1yUNr4vYzKx6Tes7ALNyIqlpRKzekGUj4pJix1OISvH0ILm5/ENp2TLgsDrYbP+I+FsdrBeAiLhb0nRgel1tw8zM6twBEfFhbReKiL6ShpDsz8ysxHzE0qwG6a+nF0p6DBgsaQ9JT0qakR4d+2nOvNtKekTSbEnjgbY5ZblHL78u6WlJMyU9J+mkPOLYQdIKScMlTUuXOzinvG86bY6keyVtnU4/II11lqQXJJ2cG4+kPYBzgL7pPAMrtpWz7qPSWOek+e2UTu+RLvOHtGy2pM551mvzdLl5kiYD+1QqvyjNc4akCZK+mE5vJWmcpJfSWMb412kzs9JJ94tDJP0z/Q4/Iaesqv3FLul+b7ak5yVdkOe2bk33FZMlvSLpt5K+lu6HF0v6SV3laWa14yOWZvnZKCJ6AEjaDOgZER9JaglMk/RgRLwIjACeiIihkjoCs4F/rGd9M4CDImKNpG2AZ9N1vFNDHG2AORFxgaRDgT9L+jLQCbgS+EpELJc0DLgeOBEYAPw2Im6XJKBV7goj4jlJNwEtI+KCNMcdKsrTDurtwKERMVfSD4A7gH3TWXYHvh8RZ0u6GPgl8L0a8gA4G9gR6AI0A54AFqfbPAXYCdgvItZKOhe4Jl3vJcA7EbGrpNbAs8C4PLZnZmbFszYiDpC0C/BPSU+m06vaX5wHTIyIYQCStqzFtnYHvg40IdlPtAIOBdoB8ySN3pAjnGZWXO5YmuXntpznLYAbJe0FrAXaA3sBL5IMH+0PEBGLJD1Sxfq2Av4oqROwGmgN7AI8U0McHwNj0/U/LmlVutyhJDvs5el8fyDp1AI8CvxCUgfg4YiYml/Kn9oXmB0Rc9PXfwJGph1sgHkRMTN9/gxwTJ7rPQy4LSI+AT6RNBY4KC07FugOzEj6wjQF3stZ7scAEfF2emTYzMxKazRARMyTNAPYDwiq3l88AQyX1Jxkv1Sb8/jHR8RHAJLmkezv1gKvSXoH2A54qRhJmdmG81BYs/zk/hJ6BfA6sHdE7AVMA75Qy/XdCDwG7BERXYGlG7AOAJHsyCv+5gqAiLiOpLP3FnC9pMs2cBtV+V/O8zXk/4OVaii7LCK6po8uEXFgnvGYmVlpVbcvAiAixgEHAguBgSRHNvNVeT+zofsdM6tD7lia1d4WwJKIWC2pC3BwTtlk4PsAknYkGbpT1ToWR0RIOpxk2Gc+mgPfTdd/MElndB7wCNCr4jxE4CxgUjrfzhGxMCL+APyOSucypt6n0hDZHE8DXSXtmr4+DZgZER/kGXNVHgFOldRU0iYVeaXuB86rGColaeP0CDEkv3Kflk7fEuhdYBxmZlZ7Ffu6TkBXYCrV7C/Scy1fj4hbgaGsf19kZmXMv/CY1d5lwO3peYALSYb3VPgJMEbSt0k6fA9XsY6BJMODBgJz0kc+VgKdJE0lGZJ7ckR8DLwg6RfAw5ICWERyDiNAf0mHkQyj/Yh0GGkl95J08mYBf0kfAETEW5JOBe6U1JTkyOcpecZbnVHAnsALJEdsHyc555L0fNC2wOPpUNiNgJEkw3svBf4k6QWSc22eYt0wWTMzK42PJD1FcpG6syPiTYBq9hffAb4n6WOSo5q+6I5ZxijCI8rMykF6QZ3pEdG2pnkbIiVX1R1e6O1GJDUDmkTE/yRtDkwBzo+IiiO0O1DG9WRm1tClP2BuVhcXzCl03UpvN1JxMTozKx0PhTWzUnkbuDo9SluILYGn0qOr04C7czqVfYAJwBsFbsPMzOrHGyTf8T1ru6CkMSRHSN8velRmViMfsTQzMzMzM7OC+IilmZmZmZmZFcQdSzMzMzMzMyuIO5ZmZmZmZmZWEHcszczMzMzMrCDuWJqZmZmZmVlB3LE0MzMzMzOzgvw/nE/nhUez0XgAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -438,21 +460,113 @@ "plotter.make_sub_plot(data, log=True, cut_max=0.011, orders_of_mag=1.5)" ] }, + { + "cell_type": "markdown", + "id": "relevant-employer", + "metadata": {}, + "source": [ + "### Store in dump file" + ] + }, { "cell_type": "code", - "execution_count": null, + "execution_count": 22, "id": "affiliated-british", "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "data": { + "text/plain": [ + "'dump_file.dmp'" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "calculator.dump(\"dump_file.dmp\")" + ] + }, + { + "cell_type": "markdown", + "id": "integrated-theory", + "metadata": {}, + "source": [ + "### Load from dump file" + ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "id": "pleasant-machine", "metadata": {}, - "outputs": [], - "source": [] + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The following components are found in the work_directory / input_path:\n", + " Union_sphere.comp\n", + " Texture_process.comp\n", + " Union_cone.comp\n", + " Union_box.comp\n", + " Single_crystal_process.comp\n", + " Union_abs_logger_2D_space.comp\n", + " Union_logger_2D_kf.comp\n", + " Template_process.comp\n", + " PhononSimple_process.comp\n", + " Union_conditional_standard.comp\n", + " Union_abs_logger_1D_space.comp\n", + " Union_abs_logger_event.comp\n", + " NCrystal_process.comp\n", + " Union_abs_logger_1D_space_event.comp\n", + " Union_abs_logger_1D_space_tof.comp\n", + " Union_logger_2D_space.comp\n", + " Union_conditional_PSD.comp\n", + " Union_master.comp\n", + " AF_HB_1D_process.comp\n", + " Union_logger_2D_kf_time.comp\n", + " Union_cylinder.comp\n", + " Union_abs_logger_1D_space_tof_to_lambda.comp\n", + " Powder_process.comp\n", + " Union_make_material.comp\n", + " Incoherent_process.comp\n", + " Union_logger_1D.comp\n", + " Union_logger_3D_space.comp\n", + " IncoherentPhonon_process.comp\n", + " Union_logger_2DQ.comp\n", + " Union_mesh.comp\n", + " Union_logger_2D_space_time.comp\n", + "These definitions will be used instead of the installed versions.\n" + ] + } + ], + "source": [ + "from_dump = instr.McStas_instr(\"\", dumpfile='dump_file.dmp')" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "specified-study", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "source Source_div AT (0, 0, 0) ABSOLUTE \n", + "powder PowderN AT (0, 0, 1) RELATIVE source\n", + "cyl_monitor Cyl_monitor AT (0, 0, 0) RELATIVE powder\n", + "acceptance_horizontal DivPos_monitor AT (0, 0, 0.1) RELATIVE powder\n" + ] + } + ], + "source": [ + "from_dump.print_components()" + ] } ], "metadata": { From 5c912d1731e14cbbf9917213f0edcc20afd419c1 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Fri, 10 Dec 2021 14:07:16 +0100 Subject: [PATCH 175/403] Allow to add parameter object with libpyvinyl origin at initialization. McStasScript use a parameter class that inherits from the libpyvinyl parameter class as more checks and methods are needed. When importing from libpyvinyl versions, all attributes are included and the checks are made. --- mcstasscript/helper/mcstas_objects.py | 40 +++++++++++++++++++ mcstasscript/interface/instr.py | 57 +++++++++++++++++---------- 2 files changed, 76 insertions(+), 21 deletions(-) diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index eccf4efd..0fad8030 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -146,8 +146,48 @@ def write_parameter(self, fo, stop_character): class ParameterContainer(CalculatorParameters): def __init__(self, parameters=None): + """ + McStasScript version of libpyvinyls CalculatorParameters + + Expanded with ability to import standard libpyvinyl parameters to + McStasScript and show parameter method. + """ super().__init__(parameters) + def import_parameters(self, parameters): + """ + Imports libpyvinyl parameters to this ParameterContainer + + There are further requirements for parameters in McStasScript which + need to be checked on import, and a subclass of Parameter is used + to store these with additional functionality. + """ + if isinstance(parameters, ParameterContainer): + for parameter in parameters: + self.add(parameter) + return + + if not isinstance(parameters, CalculatorParameters): + raise RuntimeError("Uknown parameter class given.") + + # Code for loading from CalculatorParameters + for parameter in parameters: + try: + mcstas_par = ParameterVariable(parameter.name, + unit=parameter.unit, + comment=parameter.comment) + except: + raise NameError("Imported parameter did not have McStas " + + "legal name") + + # Ensure strings get appropriate McStas type. + if isinstance(parameter.value, str): + mcstas_par.type = "string" + + mcstas_par.__dict__.update(parameter.__dict__) + + self.add(mcstas_par) + def show_parameters(self, line_limit=100): """ diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 54ac3f4c..5ece9732 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -7,6 +7,7 @@ import copy from libpyvinyl.BaseCalculator import BaseCalculator +from libpyvinyl.Parameters.Collections import CalculatorParameters from mcstasscript.helper.mcstas_objects import DeclareVariable from mcstasscript.helper.mcstas_objects import ParameterVariable @@ -232,8 +233,14 @@ def __init__(self, name, parameters=None, dumpfile=None, **kwargs): else: if not isinstance(self.parameters, ParameterContainer): # Need to convert McStasScript parameters - # todo - pass + if isinstance(self.parameters, CalculatorParameters): + mcstasscript_parameters = ParameterContainer() + mcstasscript_parameters.import_parameters(self.parameters) + self.parameters = mcstasscript_parameters + + else: + raise RuntimeError("Given parameters object not" + + " recognized.") # Check required attributes has been set by class that inherits if not (hasattr(self, "particle") or @@ -290,28 +297,28 @@ def __init__(self, name, parameters=None, dumpfile=None, **kwargs): + " installation as keyword named " + "package_path or in configuration.yaml") - - self.current_run_options = None - - #self.instrument_parameters = ParameterContainer() - self.declare_list = [] - self.initialize_section = ("// Start of initialize for generated " - + name + "\n") - self.trace_section = ("// Start of trace section for generated " - + name + "\n") - self.finally_section = ("// Start of finally for generated " - + name + "\n") - # Handle components - self.component_list = [] # List of components (have to be ordered) - self.component_name_list = [] # List of component names - # Read info on active McStas components self.component_reader = ComponentReader(self.package_path, input_path=self.input_path) - self.component_class_lib = {} + self.component_class_lib = {} self.widget_interface = None + # Avoid initializing if loading from dump + if not hasattr(self, "current_run_options"): + self.current_run_options = None + + self.declare_list = [] + self.initialize_section = ("// Start of initialize for generated " + + name + "\n") + self.trace_section = ("// Start of trace section for generated " + + name + "\n") + self.finally_section = ("// Start of finally for generated " + + name + "\n") + # Handle components + self.component_list = [] # List of components (have to be ordered) + self.component_name_list = [] # List of component names + def _read_calibration(self): """ Place holder method that should be overwritten by classes @@ -592,9 +599,13 @@ def _create_component_instance(self, name, component_name, **kwargs): input_dict["category"] = comp_info.category input_dict["line_limit"] = self.line_limit - self.component_class_lib[component_name] = type(component_name, - (Component,), - input_dict) + dynamic_component_class = type(component_name, (Component,), + input_dict) + + # add this class to globals to allow for pickling + globals()[component_name] = dynamic_component_class + + self.component_class_lib[component_name] = dynamic_component_class return self.component_class_lib[component_name](name, component_name, **kwargs) @@ -1120,6 +1131,10 @@ def print_components(self, **kwargs): Maximum line length in console """ + if len(self.component_name_list) == 0: + print("No components added to instrument object yet.") + return + if "line_length" in kwargs: line_limit = kwargs["line_length"] else: From 41e82c49260a4b8b675d88654b8df609ac7d095c Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Fri, 10 Dec 2021 17:15:17 +0100 Subject: [PATCH 176/403] Have warning for using run_full_instrument. Now use output_path from BaseCalculator for folder name Set increment_folder_name to True as default. --- mcstasscript/helper/managed_mcrun.py | 14 +++--- mcstasscript/interface/instr.py | 70 ++++++++++++++++++++++++++-- 2 files changed, 72 insertions(+), 12 deletions(-) diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index 60ececbf..b696ea79 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -56,7 +56,7 @@ def __init__(self, instr_name, **kwargs): Name of instrument file to be simulated kwargs : keyword arguments - foldername : str, required + output_path : str, required Sets data_folder_name ncount : int, default 1E6 Sets ncount @@ -68,8 +68,8 @@ def __init__(self, instr_name, **kwargs): Sets custom_flags passed to mcrun executable_path : str Path to mcrun command, "" if already in path - increment_folder_name : bool, default False - If True, automatically appends foldername to make it unique + increment_folder_name : bool, default True + If True, automatically appends output_path to make it unique force_compile : bool, default True If True, forces compile. If False no new instrument is written run_folder : str @@ -86,7 +86,7 @@ def __init__(self, instr_name, **kwargs): self.custom_flags = "" self.executable_path = "" self.executable = "" - self.increment_folder_name = False + self.increment_folder_name = True self.compile = True self.run_path = "." # executable_path always in kwargs @@ -96,11 +96,11 @@ def __init__(self, instr_name, **kwargs): if "executable" in kwargs: self.executable = kwargs["executable"] - if "foldername" in kwargs: - self.data_folder_name = kwargs["foldername"] + if "output_path" in kwargs: + self.data_folder_name = kwargs["output_path"] else: raise NameError( - "ManagedMcrun needs foldername to load data, add " + "ManagedMcrun needs output_path to load data, add " + "with keyword argument.") if "ncount" in kwargs: diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 5ece9732..6fdf9210 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -5,6 +5,7 @@ import yaml import subprocess import copy +import warnings from libpyvinyl.BaseCalculator import BaseCalculator from libpyvinyl.Parameters.Collections import CalculatorParameters @@ -1528,14 +1529,14 @@ def _handle_parameters(self, given_parameters): default_parameters.update(given_parameters) return default_parameters - def prepare_run(self, **kwargs): + def settings(self, **kwargs): """ Sets parameters and options for McStas run Parameters ---------- Keyword arguments - foldername : str + output_path : str Sets data_folder_name ncount : int Sets ncount @@ -1578,12 +1579,17 @@ def prepare_run(self, **kwargs): + "directory: \"" + str(kwargs["run_path"]) + "\"") + if "output_path" not in kwargs: + kwargs["output_path"] = self.output_path + + """ if "parameters" in kwargs: given_parameters = kwargs["parameters"] else: given_parameters = {} kwargs["parameters"] = self._handle_parameters(given_parameters) + """ if "force_compile" not in kwargs: kwargs["force_compile"] = True @@ -1598,7 +1604,7 @@ def backengine(self): This method will write the instrument to disk and then run it using the mcrun command of the system. Options are set using keyword arguments. Some options are mandatory, for example - foldername, which can not already exist, if it does data will + output_path, which can not already exist, if it does data will be read from this folder. If the mcrun command is not in the path of the system, the absolute path can be given with the executable_path keyword argument. This path could also already @@ -1607,7 +1613,7 @@ def backengine(self): Parameters ---------- Keyword arguments - foldername : str + output_path : str Sets data_folder_name ncount : int Sets ncount @@ -1629,8 +1635,19 @@ def backengine(self): if self.current_run_options["force_compile"]: self.write_full_instrument() + parameters = {} + for parameter in self.parameters: + if parameter.value is None: + raise RuntimeError("Unspecified parameter: '" + parameter.name + + "' set with set_parameters.") + + parameters[parameter.name] = parameter.value + + options = self.current_run_options + options["parameters"] = parameters + # Set up the simulation - simulation = ManagedMcrun(self.name + ".instr", **self.current_run_options) + simulation = ManagedMcrun(self.name + ".instr", **options) # Run the simulation and return data simulation.run_simulation(**self.current_run_options) @@ -1639,6 +1656,49 @@ def backengine(self): data = simulation.load_results() self._set_data(data) + def run_full_instrument(self, **kwargs): + """ + Runs McStas instrument described by this class, returns list of + McStasData + + This method will write the instrument to disk and then run it + using the mcrun command of the system. Options are set using + keyword arguments. Some options are mandatory, for example + output_path, which can not already exist, if it does data will + be read from this folder. If the mcrun command is not in the + path of the system, the absolute path can be given with the + executable_path keyword argument. This path could also already + have been set at initialization of the instrument object. + + Parameters + ---------- + Keyword arguments + output_path : str + Sets data_folder_name + ncount : int + Sets ncount + mpi : int + Sets thread count + parameters : dict + Sets parameters + custom_flags : str + Sets custom_flags passed to mcrun + force_compile : bool + If True (default) new instrument file is written, otherwise not + executable_path : str + Path to mcrun command, "" if already in path + """ + warnings.warn( + "run_full_instrument will be removed in future version of McStasScript. \n" + + "Instead supply parameters with set_parameters, set settings with " + + "settings and use backengine() to run. See examples in package.") + + self.prepare_run(**kwargs) + if "parameters" in kwargs: + self.set_parameters(kwargs["parameters"]) + self.backengine() + return self.data + def show_instrument(self, *args, **kwargs): """ Uses mcdisplay to show the instrument in web browser From 0e940b34d607fd2906a34677c6bd0410b5f9730b Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Fri, 10 Dec 2021 17:18:34 +0100 Subject: [PATCH 177/403] Updated example to new use of settings. --- examples/libpyvinyl_example.ipynb | 141 ++++++++++++++++++++++++++---- 1 file changed, 125 insertions(+), 16 deletions(-) diff --git a/examples/libpyvinyl_example.ipynb b/examples/libpyvinyl_example.ipynb index 97b492bd..ab21f99d 100644 --- a/examples/libpyvinyl_example.ipynb +++ b/examples/libpyvinyl_example.ipynb @@ -84,7 +84,7 @@ "outputs": [], "source": [ "source_energy = calculator.add_parameter(\"double\", \"source_energy\", unit=\"meV\", comment=\"Source mean energy\")\n", - "source_energy.add_interval(3, None, intervals_are_legal=True)\n", + "source_energy.add_interval(3.1, None, intervals_are_legal=True)\n", "\n", "source_height = calculator.add_parameter(\"double\", \"source_height\", unit=\"cm\", comment=\"Height of source\")\n", "source_height.add_interval(0.01, 0.2, intervals_are_legal=True)\n", @@ -124,7 +124,7 @@ "output_type": "stream", "text": [ " - Parameters object -\n", - "source_energy [meV] Source mean energy L[3, inf] \n", + "source_energy [meV] Source mean energy L[3.1, inf]\n", "source_height [cm] Height of source L[0.01, 0.2]\n", "sample_height [cm] Height of sample L[0.0, 0.05]\n", "\n" @@ -335,11 +335,11 @@ { "cell_type": "code", "execution_count": 17, - "id": "defensive-phrase", + "id": "premier-eleven", "metadata": {}, "outputs": [], "source": [ - "calculator.set_parameters({\"source_energy\":350, \"source_height\":0.025, \"sample_height\":0.04})" + "calculator.set_parameters({\"source_energy\": 320, \"source_height\":0.025, \"sample_height\":0.04})" ] }, { @@ -349,7 +349,7 @@ "metadata": {}, "outputs": [], "source": [ - "calculator.prepare_run(ncount=5E6, foldername=\"path_to_output\", increment_folder_name=True)" + "calculator.settings(ncount=5E6, mpi=2, output_path=\"path_to_output\")" ] }, { @@ -370,27 +370,33 @@ "name": "stdout", "output_type": "stream", "text": [ - "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/examples/path_to_output_0\"\n", + "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/examples/path_to_output_4\"\n", "INFO: Regenerating c-file: demo_instrument.c\n", "CFLAGS=\n", "INFO: Recompiling: ./demo_instrument.out\n", + "mccode-r.c:1880:1: warning: non-void function does not return a value in all control paths [-Wreturn-type]\n", + "} /* mcsiminfo_init */\n", + "^\n", "mccode-r.c:2837:3: warning: expression result unused [-Wunused-value]\n", " *t0;\n", " ^~~\n", - "1 warning generated.\n", + "2 warnings generated.\n", "INFO: ===\n", - "Warning: 23922 events were removed in Component[4] acceptance_horizontal=DivPos_monitor()\n", + "Warning: 12132 events were removed in Component[4] acceptance_horizontal=DivPos_monitor()\n", " (negative time, miss next components, rounding errors, Nan, Inf).\n", - "INFO: Placing instr file copy demo_instrument.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/examples/path_to_output_0\n", + "Warning: 12144 events were removed in Component[4] acceptance_horizontal=DivPos_monitor()\n", + " (negative time, miss next components, rounding errors, Nan, Inf).\n", + "INFO: Placing instr file copy demo_instrument.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/examples/path_to_output_4\n", "\n", - " Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Ni.laz' (Table_Read_Offset)\n", + " Simulation 'demo_instrument' (demo_instrument.instr): running on 2 nodes (master is 'CI0021617', MPI version 3.1).\n", + "Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Ni.laz' (Table_Read_Offset)\n", "Table from file 'Ni.laz' (block 1) is 19 x 18 (x=1:6), constant step. interpolation: linear\n", " '# TITLE *Nickel-Ni-[FM3-M] Swanson, H.E.;Tatge, E.[1954] [carcinogen];# CEL ...'\n", "PowderN: powder: Reading 19 rows from Ni.laz\n", "PowderN: powder: Read 19 reflections from file 'Ni.laz'\n", "PowderN: powder: Vc=43.76 [Angs] sigma_abs=17.96 [barn] sigma_inc=20.8 [barn] reflections=Ni.laz\n", - "Detector: cyl_monitor_I=0.026388 cyl_monitor_ERR=0.000115993 cyl_monitor_N=140247 \"cylinder.dat\"\n", - "Detector: acceptance_horizontal_I=0.621105 acceptance_horizontal_ERR=0.000301518 acceptance_horizontal_N=4.75183e+06 \"acceptance_h.dat\"\n", + "Detector: cyl_monitor_I=0.02597 cyl_monitor_ERR=0.000114161 cyl_monitor_N=136619 \"cylinder.dat\"\n", + "Detector: acceptance_horizontal_I=0.620813 acceptance_horizontal_ERR=0.000300875 acceptance_horizontal_N=4.73624e+06 \"acceptance_h.dat\"\n", "PowderN: powder: Info: you may highly improve the computation efficiency by using\n", " SPLIT 19 COMPONENT powder=PowderN(...)\n", " in the instrument description demo_instrument.instr.\n", @@ -445,7 +451,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5YAAAHuCAYAAADk5ZP7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdeZxN9R/H8ddnRiOyZY0QESUkppTih0QUZSmFZGsIyVaWYowtsiZkD6HIFqVIiFLKFpJECREhWyPDzPf3x7nD0CjVHXdm7vv5eJzHvffce8/5nFPOuZ/5fr+frznnEBEREREREfm3QgIdgIiIiIiIiKRsSixFRERERETkP1FiKSIiIiIiIv+JEksRERERERH5T5RYioiIiIiIyH+ixFJERERERET+EyWWIn5iZivMrFeC187MKv7Hbf7tNi7e73/c32Qzm+yPbfmLmRXwnYcCgY5FROTfMrOKZvaXc7xdzmeSgpk1MbNdCV4nu3tBsNI9UFISJZYiPmZ2o5lNNbP9ZnbKzLaZ2WAzy/UvN5kbWO3PGC+hDjD4CuwnUPbgncs98OcfQCIi/uT7Y53zLSfN7Eszq+aHTa/Gu5bF76eXma34q88E0HO+RQJP90BJMZRYigBmdguwFsgCPAoUBVoA2YBW/2abzrlfnHMx/orxYmYW5tvPEefcyaTaT6A552J95zLWX9s0z1X+2p6IpDpD8H7MlwbWA++aWeH/skHnXIxz7pf/+pkrwTl3zDl3LKm2H3//kr+ne6CkJEosRTyjgO+Bh51znzrndvsemwKvmtndZvaHmWVJ+CUz22Rm7RPbYMJurPHdm8yskpl9a2YnzGxuwu2ZWWYzm+NrLd1uZg9ctL34bTxgZt8Cp8zs6kS64OY0s+lm9ptvPyvMLI/vveZm9rWZRZvZT2bWx8zSXO5J8nWPmmJmg8zsmJntNrOHzOwG335OmtkHZpY1wXfSm9n4BPHMMrPsiWyzv+8zP5tZuwTvn+sG5DufbwA3JGhRiD/H4Wa22vffabeZdUjkv0czXwvBH8B9l3vcIhJ0Tvp+zG8H2gKxQBUAM6vqu/afNrPvzeyJ+C/5rsnjzexggp4vj/jeO9fN1cyaAJHA/xJcywpYIl1hzayj75r2h+8aVzrBe03MbJeZ1fc9/mZmE/4ucfPt51tfjO8B2S96/1xXWDN71cwWXPR+ITOLM7N8vtc3mtlC3z1gn5m9ZmbpEnx+l5l1NrN3zewU0MzM0prZRN939iQ4liYJvnc52+1g3r0z2sy2mtn/Loq1qpl95Tt/+81swOVuP5HzpnugyF9QYilBz3eBrwgMdc79aWyLc+6oc+5z4CfgsQTfuw0oBrz1D3b3EvAUUBm4HeiW4L3hwC1AJd9n+vzFNpoBJYHEWkTnAvmAGkAZ4E0gPnkMAToBt+K1xDYDIv5B/AC1gZNAODAPmAyMAV4GygEFLzquIUAFoCbwPyC/7zsXbxOgLN5xDzezWxPZ92qgPbAXrzUhN7DazDIAi4DNeOe1K9DXzOpd9P1ewAi887z2cg9YRIKXc+4scAYIM7P8wAK862wJ4FVgqpnd4ft4O7xr44N494cOwPFENjsT79r4OeevZXsu/pCZ1QeigC5417ZvgEVmdk2Cj+UEGuBdY+v6luaXOh4zy4x37V7q2+Z7wIt/cQpmAVV934v3GPC5c26PL4ldDGzDu+c8DNwJvHLRdroC7+LdfxYA3YGqvs8/CDTyHUt8nJe73S7AfOA2vPM53XytcWZWDFgIvA+UAmoBu/7h9i+me6DIpTjntGgJ6gXvQu6AUn/zue7AygSvBwGLErxeAfRK8NoBFX3PK/pel75oe1/4nmfC++FSJcH7VS+xjXsuiuvcfvGS0lNArss89s7AsgSvJwOT/+Lzk4GNCV7n8sX0XIJ1XYA1vucZ8ZLfqgnev9n3nSIJtrnpov1sB1r5nhfwfb6A73UTYNdFn28J7AZCE6wbAKy+6L/Hi4H+/02LFi3Je7nomnoV3o/0OLwf7C8nvK74PvM2MMP3/DVgwiW2W9H72XXudS9gxd985nOgf4LXafAS0Ajf6yZ4ranZE3xmHPD2XxzfM3h/KE14vZyR8Lqa8F4AmO/62jjB+xvir/tAY3z3sgTvlwOiAfO93gWMv+gzB4EmCV4X8l2nm/zD7Y5I8H4e3zZu9r2eAsy9xHn42+0n8p3J6B6oRcslF7VYily+N4Fyvi4vIcATvnX/xOYEz/dz/q+zN+L9YPgywftfXGIbG/5i+8WB75xzBxJ708zuMrPFvq42J4G+eK2b/8Q3CZ4f9D1uvWhdDt/zG/F+mJ07FufcNuAo3s01XsLzAheem8txM7DWXTgG5fOL9gF/fe5EROJ1910jTwEvAG2ccxvwrikXX5sTXmveBB41s7W+ro23/8c4Ltif81pP13Lhte0X59yhBK/PXT/NrLuve+ZJ3/GAV0Ng3UXXy0vdb3DOOWA2Xv0BzBtrWhJ4x/eREkCZi/bzEZCOCwsRnbv+mjcMJAewLsF+dgK/Jfj85W734vsqnL9/FAdWXuLQLnf7F9M9UOQSLntslUgqttP3WBTYeKkPOa/LzwqgIbAGr5Vx/j/ZkXPuTMKXnO+ObgnW/d02ov/ibbvUNhJ0lXkbb2zPEaA+f9Fl6hLOHYNzzpnZBetI/Lgue5uJbONyXO5+/urciYjEG4PXZfCku7CYzl9ea5xzX5pZQbyunQ/gdVPs5pwbnmSR/vX1cwxeV9aEErtP/N01dCaw0tcd9jHgM+fcPt97GYDlQOtEvncwwfOE19/Luedd7nYTuyclvAddah+Xu/2L6R4ocglqsZSg5/tL7wqgvfnuEAldNK5kCt44kEbAbOfcKT+FsRM4ize+I17Zf7GdLcDNZpbYXzpvBq4FXnDOfeG8ohR5/8U+/on447orfoWZ3YxXfXfbv9zmGSD0onXbgHAzS7j+7v+wDxEJbkecczvcnyu0biPB9czngmuN8yp1v+mca4j3R7xml9hHYteyi33HhdfPNHhj+y7r2uaLZUf8kmCbZXw9b+LdmcjXE25nDV4r2iN4ieXMBG9/jXd/2Z1wX77l7CW29xvwK97YxvhjuxHvHvWvt5uILXjjGhPjj+3/Hd0DJagosRTxtMW7wSwxsyq+6mvlzGwCF87lNQcvGWvIP+8Ge0nOueN4Y1xeNbOyZnYX0O9fbGcZXqvrbPMq2RY2s6d8BSd2492QnvVVwovAK/KQZJxzJ4BJwGtmdq951QwnAx/4Ett/4ycgl5mVMbPsviIN04H0wGgzu9m8Ko3P4hVEEhHxl9fxkrJeZlbEzNriXUdfBTCvQumjZnaTmZXAGyt/qWvdT0ARMyvqu5Yl9pvsVbxr9uO+hOR1IC3e/eLfmoGXwA3z7TsCqH4Z35uFNy6/BN69MN50vHGeb/sqkxY2s1pm9ndFcF4HeptXLb0kXuvqKc63MP7b7Sb0CvCQ779XUTMr7Ttef23/L+keKMFGiaUI4Jz7BrgDOIB3gd6GV9L7CN7NLv5z0XjVAH/Ba+X0p/Z4U5584ouh17/cTh28+Bbjzb/WBDjjnDuIVwG2Nd5fcR8A+v+XgC9TJ+BTvMqDK/Gq2T31H7b3Gd4Po4/x/uJ9j+/mXQOvKuDXeD8mejrnLu4CJiLyrznnfsJrtauLdx1tDzT1tegB/A70wLsOrcC7h7S9xObm4o2rX4t3LcufyP7eAnoDg33bLA7UcP9h7mLn3FG8KqQP+LZZG68o0d+Z6dv/yoQtub7rb0W8JG2pb5t9OD/e8VL6+z7/Ht4wjenACeD0f9zuOc65LXj/vR4BNvn2VcBf279MugdK0IivqiUil8nMFuFVhese6FhERERSAzPLDfwMlHXOfRXoeETkn1NiKXKZfGMtK+JVwivqnPsxsBGJiIikTGZWBK+WwOdAVrzpMXIDxZx+nIqkSOoKK3L53gWmAd2UVIpIIJnZfDP72sw2mNkqMyvlW1/EzD43s+2+x5sCHKrIpcThjQPciNcV9jjefI9KKkVSKLVYioiIpDBmltk5d8z3/GEg0jlX2syWAZOcc9PMrBHQzDlXOaDBiohIUFCLpYiISAoTn1T6ZAbifNMMlQbe8q1/CyhtZjku/r6IiIi/pQl0ACIiIvLP+aZDqoo3OfoDQD7gZ+dcLIBzLtbM9vnW/xqwQEVEJCik6sQye/bsrkCBAoEOQ0REUqh169Ydcs4lyxY/51wLADN7EhiEN83FZfHN5RcBcM0115S5+eabkyRGEfnv1q3b53sW6nu8FjgEQPYyaTi0LidwDG7MDD+cAtIB+8hUJj3HN2aBq4A/or1vljnFb+tCgYxAKDnL/MLBdRmBa7yvcX5X+Yr+xJ4tN3BdcW//v+zP403KFnsIiDn30TJl8iTFYV9R/r7WFzZz0f7amM9+WOyce8DPm/WrVJ1YFihQgLVr1wY6DBERSaHM7KdAx/B3nHNvmtk4vPnxrjezUF9rZSiQB9iTyHfGAeMAwsPDne6VIsmXWRTMiYS6UResv9NV4kv7AjjFfS6cjxc9CA9GAQ9Qxp1lnR2gudvPRAvBN30nvxWsDuvOEHc4jBOZw8ic4zQQBdwD91SBpjCuQWMaR79Jm/QjmXhTG34xb3+zfq7FY1YGeAFvmmxw7p4rcg6Smr+v9dFAS39uEOgF2f28Sb/TGEsREZEUxMwymFm+BK9rAkeAg3gVNp/wvfUEsME5p26wIimUWdTff0iSHcNrvfPnkhKklDhFRETEcw3wjpldA8TiJZU1nXPOzFoBU8ysJ/Ab0DiAcYrIfxCfVN7g6vOTfUsRVxuA8qxi4r4WfGkD8IZXX8/HNpEiLh+t3T7a24fkoyjrqMFEOw5M5BF3LQDzzWudDMnmKOM+g9/O8Igrynw7A0uBXRAxeyoR81ryipuJW2LYjb0AeKz3Atxuo3O+UIZYrC/K1NFi6W+G1wM52CixFBERSUGccweAuy7x3ja8SedFJJX4acHNwAG22xgAtpOT9m4Ys11D9pqDDnlhWCTbLYr2BcdSxn3GfIOf3E08zttABVrQD4D5LPWyHhfFujqR1HXTmVO6IdQDZgM7vofYm5jsRtCk/0xeeHEI7mAYAPZRJO/nu+9cUulc5BU/F5K8KbEUERERERHxk/iusMEmGI9ZRERERCTZumBs5cNRVHW3s2Srr4XwVhhu3wPT4bNIuCcKaADkpPgPX7HOTgGfcYO15oh7kKzWhZmuPgCfunDutQYMd/tob0uZvb8Rv3/emAyVYr3WS/sfhEITm4lbZNRz05hEA2+/L8FDDcsDaq2UxCmxFBERERFJhpq77Ex8vg2H+QxujU82m8PHN8F9WeGeKMa5nURcdROczcuWO9JRyH3D0bgWHA5NR1a7h7tdKFvxurPe23otZdxntLcTQEZYABlabQCimGNA9oaQA/Z+nx270fHyDx1oXnK6t9sfvf0rqfx7wTrGUlVhRURERERE5D9Ri6WIiIiISDIR3w22tcvIhCNPwuD1rKt3D+crsEZRqnI1NvIst7gNRFgeCrlvyMgJvoi+m0osY2doGBXdZlbUeoBTfEERvgNg3eubWPf6QeApvnflsQYObgGylISrYfiylrS34eStcIglP5TngQMfwma1VP5TwTrGUi2WIiIiIiLJSk1G2wliWmSCa0szuWx90h37jXTHfqOqu52NthJ4nW8tlMfch4znaTamv4urr+nF5/YbcYeLkId98AEUYBeznn6KWU8/BWmeoborQXv3NjfV2kOTGWPgVuBz4Bdo33EsZE8Ha6ER04m7bneAz0PKFN8V1p9LSqDEUkREREQkGbigaI9ICqPEUkREREQkWVnIY64AzIuCD6CJFeNU5vGcyjyeg+QETgHVWeZaMct2Ubnkau6MXklVdzvUq4N9CzNsDzwD8+07ao5/h5rj3+GRM2/zgW1mePqukAYmZ22FK2JQE97aWhuWwru/VsN9aRyskB+YBagb7D8V3xXWn0tKoMRSRERERCTACvMNGX5v43v1FLPMca8rx91llwM34yWTp+jMYOBZqrv1VA5ZTSlXjfs2vU8Yp1l64D6YPRNr4qBSJE1GjIGMkZRhHWVYx/wKj0OLSD6NDoej4J41hvZrTZ8FnXnC5uEGGg/3XEz2YnthlVpP5Z9JKQmwiIiIiEiqdvKaUd6clQZwhE+3N/HGQKYDTnmJXqOSsynkvuEDuwqawgky8jLdeGDNCuyuBRR3N7LlRmD5LrJwFM5Cr2YDvB2smgwFmjCbety9bDl2o2NOVA1OkBGqgLV0fLK7LP+rseZcTGqt/OeCdboRJZYiIiIiIiJ+oqqwIiIiIiJyxZlFsbPnrcDNLAmpBUyBjB3JXeRHap55Bx4AaA40p/qmuey86VY+dVHknbSDnd1vpbpVxHY6qFSTLXYHZAP4gFDOwh/ALt9CE1gKC6nJ5wMr8fIPHahbeRFPfTaLZR+VgwzwYPT78MFrQFa1Vso/osRSRERERCTQ+kQB22AwUD6STsf7UoBdrIwpz31z36e1m0VrN4tY0kAPuNcGs7ddYXgYSBdJnwad4S7gVaj71XSmuY8ZsvUlesS9iMtuuOwGY8G1N5ZRGX6H3sd7Ejb7OOlLHKHy6tUwG06+lB06PItzzwb2fKRgmm5ERIJGdMxZTsXEBjoMERGRoKcpRiS1CMbuvyJB754ByzAz1ve4P9ChiIiIBK1zSeXXkXBbFKSJ5JOOZZnesQEfU4WNdhIyXsfHJ7JTwO0CYMm+apAWmrtvmNixIkRBhkOH6DF6MFwNnIJsHKLh/jk0egr61O5H2KzTALj9RrXc77Kkfy1ocZYPMz1Anbi5fBRyP6fLpeV5XoGhsAr9PvgvVLxHRIJG7szpCEujDgsiIiKBVtGVJZT3+ThNJDwBb9CUfOxh4/13cadbSQ260qvBACauKet9YTawE4rW/w6GfQYD7uFkq+xQBULq/s7ZqzIQMs4xrtVz8DncUHYbg2M6A9Bj+WAy1/uF9d2L8SDv879Fa+A6KL1xK281q82nttrbh1Ni+V8FY5IVjMcsEvROnYklNs4FOgwRERERSSWUWIoEod9Pn+WMWixFREQCJr4b7Aq7GmpXJOeZ3Rwslp9QYinALm75aANHyUKv9AOgL5y5xQC4ao2j+cpRvNB7BDwBPbq8SJ+b+kF7iKt9DSF9HeQFGgE/w08rbz7/i78QRIVF8iMFyMUBatRYxERrwzJXjsrWAwDnql/pU5HqqCusiASNUzFqsRQREQm46pFwBu6cu5Ive1fg2a2DeK3y80zc04bM3/zCsQnXwRbHyBuf5qpavvt2K5jYvw1UgT49OxNDWngeKAMjXQvafD0R+9BBE3A5Dcv6B1vy3ApA8a07KMlmirCdDZF382NUbjq4YRQfuAMGgOsSsDMhqYASS5Eg45zj95iznIlTi6WIiIiIvxnBmWTpl6VIkDl9No44B3+ciSNOrZYiIiJXnFmUVwk2C/AMfDmwAoyBME6Te9mPPPb9FBqHvQmHIOLGEQyjA7QH2kOhBt9AqLedHuMG06dGP0ZGtIB1MJ2GFLjtW2Z1qQXXQK7iP8H1adlJIXZSiA+KVaIUG3mUdygXtYwb9/1I8fU7oGuUt4hfaB7LZM7M7jWziWY2zcxGBjoekZQqOsH8lafOaC5LERGRgPgAjr2ZFr6HZ7sMosG+SbTjNfaPLkhaYnit9/M82XM8R8nCzpm3euMm88LOJbcS0eVV2AN5I3ZAFngxpi8cgs+3VuKnGjfz6J6FNC87ijKs5djZtPxGFn4jC4upxgJqsjm6BIXZQfE8m6AlEB6Jc5EBPiGS0iVpK62ZDQbqAgWAEs65Lb71RYApQDbgMNDYOff9X23LOfcp8Knv+++aWQbn3MkkDF8kVYqOOXvu+e8xZ7kmbTB21hAREQmsZ7sMInOd07ARNncpwYpmD/D+mBrMal2Lx+5fQOb3f+EEGZlf63GeXDCeN/s/7X3xARg34jnua/c+hdjB9hlFWbH+AfgFXq/alMhFUYQeOMm1cUf5IOQBToRmJOLIeAAyZjlBu5ARTLgmB49PcXAUWBvfUqnE0l+CtStsUh/zfOBVYNVF68cAo5xz08ysETAWqAxgZoV8rxNa7Jwb5Hv/QeBbJZUi/86phC2WMWqxFBERuVLiK8GKpEZJmlj6Whkxs3PrzCwnUBqIn3n1LWCkmeVwzv3qnNsJVElse2bWBCjgnOualHGLpGa/J0gmfz+txFJERORKSJhUnvyjNxm6x9Jnbmd6TB3MPvLALjiW9jpKuE1U/2guH4yuw/x7H6f7gp4MPtKZ7t17AlCNxawuXY4xtKQcqxn7SnuWv3A3A0p3JQ/7mMJT9MvVnUG8QCOmU4gdxHyRCYBlNe5gAF3o4IbhFhr2VC8AdYP1M003cuXkA352zsUCOOdizWyfb/2vl/qSmT0E9AXeM7MxQA/n3J8+b2YRQARA/vz5kyB8kZQtYVfYU2fO/sUnRURExK/Kewlchm6RUA96hAwGt4btm8vSY9mLZOEoT/A2G38oyw+t8/AGTemTpx/Z9v5M/5W9AeiftjcRZV/laEwWosPSMfSF1nSsO5rKx2tx9KMs7CEfy6jETgpTg0UcJhvraxQDIAtHOUx2HuUdompGMsetoQ6LAnY6Uit1hU3mnHPv4Q1b/rvPjQPGAYSHh6vkpchFohO0UkarK6yIiIiI+EEgEss9wPVmFuprrQwF8vjWi0gSiz6jrrAiIiJXklkUpVw1XqUsALVi3uXY0utgPvSotYD0vM0CalGQH+lOfx7bsoA81+2nSvqlbN5Xgiospe3SCQAU7/0V4/a1grfTMr9jbV6mGxvm3MK7VKNxzBTSpInlaMi1PLR1KWWKfcYJMnLXkS8ASJchmixhR/np+ZupyyK8Cibib+oKe4U45w6a2UbgCWCa73FDYt1aRcT/TqkrrIiIyBW30fZRYfeXABw7cR0ujWFvO/qk6QfXQViB43w+vxIzVjSjydQxdGQIoyd15LFmU2i7dQJ9encG4KUdQ7D+jtcnNaUEm3k47l1KhGxm+ZbqvFP8UcrGfkmOI7/yfbF8LKcSocTS7NsZXhDzwB51MHiu93pQnUCcCkmlknq6kRFAHeA6YKmZHXbO3Qq0AqaYWU/gN6BxUsYhIuclbKVUi6WIiEjSUiXY4KMxlknAOdcOaJfI+m3g6wuQBMysJlCzcOHCSbULkRTr1BlNNyIiInJFpYuEztA5Xx8A2jOAocVaQ7UztJ86hHzsoQA/8sQjbxOTPRObKcG6/vcwsnsL2rabAF1P02PNYAAqlF1Ftgk/c5ow7vl6HYfIy9DbWmNxjvUU47rffyFmcCZu+n4Ped/ZQR72EX7PWgCy3XMY7DhQBecyBepsSCqVKpNp59xCYGF4ePjTgY5FJLn5/fRZQgziHPweo66wIiIiSek+F87HOSBbr5+JIS0AOyjE8BldYQgM29YNsoG94sgQdYiXa7Wh48LRTOn+GH3oyd4R2RlMZ4Z/6M2292CJ92mXfgQvRfcj420nab5vEpljfmNOyRq8Tw0+ynQ/93f9iNaZRnGY7GylGLdN/e58QFPAqa9gkgrWMZYhgQ5ARK6s6JhYrkmbhrRpQtRiKSIikoRse6AjkECITyz9uaQEqbLFUkQuLTrmLOnDQkkTYppuREREJImYRcF3kXyc40Hy/rqDvfY9r/3UwXtzYxrYAWQAlxNCtngz5J3sm52j/bNQtObXbF9SEr6ApT3voyjfQXbvq0XTf0e/H/tQqOBO8rEbtqWlVuWFFGYndacu4r3GVciZ6QBrKMsuCjKKNjw8oYL35VW+8Z6NI6/syZCgoMRSJMhEx8RyTVga0oTEqSusiIhIUiq6CzjD3kw3UcidJto3u97RLFmoVmsx8ys/TgiOuh2nM2dpQ0gDfZb1gxWQs/duulQdSJOhMynU8RuyPfQzAOsevYcx7zThNGHsoiCMhLWVw7lt63c0bzyKiqeXkyftfj7tfT8shMivoryymQCtInENAnEigk8wJlnqCisSZE7FxJIuLJT0YaHqCisiIpKU6hVgnOuDW288ywhycYBcHOCTTBXIwz6KLNtEr45dmdO4IbwHZIchldtQt/d0Do7Ozz5yw13wCPM4XO16Dle7nrfeqc0zq9+g/dSx7KIAb82tzbfrb4cvYMKPbbk17TfsIR9Fem7i66+KUpfZ0DDq/CKSRIIxmRYJar/HnPVaLEPj+F2JpYiIiN9pipHgZsBV/s6yUkAns1SZWGq6EZFLOxUTS5b0YYSeNU6pK6yIiEjSmT2XiDpTieg7lScZz8a5dwFw58bNcAoYPJRTLh2UAvqeZUj+5+h0xyi4H3r178p2isB1jnDWQXVvk0/8MJeJ5RrSfMJ0FjeuRv/RvaEKTGzWEOvpcFUMfgdL6yhZcDu3PTYYwsF9FaiTEHzMIE0QJpapsiusc26hcy4ic+bMgQ5FJNn5PSaWa9J6XWFVvEdERMT/MvzehntdOahZx+uqWqwA2TgMjfCWPgfgNNziKjHQYGTHFrAlDR1/HQ23gHvW6LVkADM6NoPBxgFywh94yy6j+bjpUBF60hvaQM4iu2n+9HQ4C+UrLKFc9WU0qTwGa+4go5JKuTJSZYuliFzaqZhY0l2VhtCQOCWWIiIifmYWRYbf2wQ6DAkgM7gqNNBRXHlKLEWCzO/x042cNaLVFVZERMTvTl6TnVMuPWSHJyrPgxPAWvjWFQDglkm7eKVZO15oPYI73QnOMp1fa2TEVjp483voBOnu+o1TGa5lXLnGRNw/lS8/KgHAnc9vhsGQ1+2g1tdLcD8YtsTx+fjbuXvNBgbQjYfj3uXz0DLAcZzLFLDzIMFFiaVIkImOiSV92lDShBrRp9ViKSIi4nf14G0e56a8e6AAfNKzLP9btIZbBu7y3v8ZXug5AurBstOVOJU2PfOozQ8V8jDP1caaOegK9IVKi5bz7kfVuLP/Zu+7g+EtV5snVs7Dujqqrl7A+oLF6MoAfiqbixtWHvCNx4svIKQ5K6+0JBljCZnNbByw0Dm30O9b9wMlliJB5GxsHDFn40h/VRrShMQSfSYW5xxmFujQREREUjyzoYEOQZKBJKkKC8eccxF+36ofKbEUCSLRZ7wWymvSel1hY+McMbFxpE0ThAMBRERE/MibYiQjpVw1NtaBm+rsgbLQvssAdlAYWuG1QgKuncFusOGODNfEeo2L1wMFgffA9TKsvcM9bPSlEz0sI3zsfXeyq89YWhJW/DjLVldmMJ3pyFCW76+ObXZQ2EGh3gE5BxLcUmViqelGRBJ3ylesJ11YKKEhXitl9OlYJZYiIiL+UKUjL1OJ6muX8+zuQby2/XkOk43mS6bDXhjeuiUAVs7B50BtCLvpOBnfO8HhCdfzbMQgyndfhY12jFzUAlvvqMt0+KbhuV/taYhl2ZHqhGx0PHDXh5xslR2qgFU8w7Kq5ag8bjVQEwDnSgfkNAQ9A4Lwp5WmGxEJIr+f9or1XBOWhvRh3hUvvhVTRERE/oub6fRRX3rTE7rCazOfh6IwdVQEy6qWg+FQi4XUYiGtVw+li4vi5bkdiPklE4fbXk+XiChCieVNnoQ/oM20iXA1zB7VCFrB50Vu5/Mit1OMrbTKOpyT94RSLf1iKACfNg6HNLFUbrzaaxW9trSSSrniUmWLpYgkLjrRFktVhhUREfkvvG6wNwc6DEkujKDMsoLwkEWC1ylf62T6sFDSxCeWmstSRETkX/OSSuCb+gxZAKwFzsIHrSuxqH4NbLuDHMBAuHHEPgC+bFeCOytv5vVlTdlSrDDFv9/BsCMdiPkiE5/XuJ2Fux4lS9v9jAxrQd9inbihzTb+d+QTAKZkfYqPqUKGz2IZV7kxG3uX4uG4d2FtWrgLuAtc60CcCTlHiaWIpHbxXWHTh6UhTUict05zWYqIiPxnS4qVp+qhVbiHja5lejGT+uRjDxRdDx1KE/bIcT7Neg8Ad6bfTN3o6RRiB0fJwrsfVeNF+tKmxmgaMY3XRzSl1crJ2NsO19F4rXA7emT1CvI8MXAePHmarysXJYzTPP30m1gLxyu12vGCZfOCaa0pRuTKU2IpEkTii/ckbLE8pRZLEREREf8KwiwrCA9ZJHj97ksirwnz5rEEdYUVERH5t851g50TSVoWAdC5TB/2kI9ZjZ+Cu+BJNx5Yx2Kqcee+td7nh3tFeV5tE8FrtGNn41uhMFTpuZSOx4fSgsnYAMd7i6pQi1kAvLRtCACju7ShNvM4QUbu6bOdPON/IOzIcV6wigA4V+fKnQCRBJRYigSRU75ur+nCQgkNjR9jqa6wIiIi/1YZV4VDbON/M9ZAdthPHrZSjLem1uaJgfM4ShbeP1CD3bluYH6eRwBoywRytfmJkbSlATPo82Y/Mvx+iMIr93Iq7bWMLduc9xZV4aFNS/m2ZAHWEQ4Dvf0dGJCTDbluZ3TWjmTYe4gpNCZ71sPgoAJrAnci5LwgnW4kVSaWmsdSJHHnWizThpLmjIr3iIiIiPidivekHs65hcDC8PDwpwMdi0hyEp9EXp0mwXQjSixFRET+MbMobnD1qc9oSrGBrQ2K0b77WBZXqcbh967niYXzoBLUYBHLM1ZiJvV5gyYAfB+Rj9nU4zleZf/QgrDTcXJ2duo1nsYHVGIgXejAMN4tWY1nGMPyPtXZ/UZOAIqxlc+3ViLD3kPkS7+Huq0Xwetel1znAnU2RCAk0AGIyJVzKuYs6a4KJSTECAsNITTE1BVWRETkX/rJZvJCzxFMpikNmQFfweG819OnVmeKj/8KPoRnRrzByb3Z6bRsFFum3sGWqXdw0+o9dGswjP3LCsIu4OoYOjXuSxtG8RJ9eYR5PNx/MXvIx4pxD1CvxzQycoKMnOBDqtOlWBQnh2dnGZVgG1ApEudUCTbZiG+x9OeSAiixFAkiv8fEck1ar9O/mZH+qlC1WIqIiIjIf5ZC8l8R8YdTMbGkCzs/mjx92lCiTyuxFBERuVznKsHyFI+4L5hvu3i292tMpTG8CncWW0mPrYPhQ8g84ReOzb6OIkU2sf1kSdpXHgDA8Eld4XH4tHI4925cC/XScnh1dpZTiQPk4rmF46jQfRW3L/yWHyMKMGT9S5QvvRKAWizkRwrABsg9+ihNlo3xxdPqip8L+Qsq3iMiqdnvp89yTdj5f/bpw9IQfUaJpYiIyD9WqQCnWQ8TC7CQmvTv3hsKw5e3FqeHe5E+GaKIPZsGBkDNBgvIV3oUM2jofXcCvLe6CoupxqyOtWjbcSQL42pyaHNe+qzpR4GIb9k17RbKNVrG6lGViWoRyTXT4gDY0OgWmlgTtruibLQtTG6TBudaBPBEiHiUWIoEkVNnLmqxDAsl+rTGWIqIiFyuW1wtAL6dCesI54dmebhxyT7m9K/BOsLpf29v+h3oTkja0/yYviCLN1Wj0ejZTGzdkBq+uS7rr57JQ0uWQi+gMxx7OC2RoVFeK9dX0CpiLAsaVSUfu/mwTUWql17OmRVe0b3ST2+lupvLxkV3wft34WoE5jzIX1BVWBFJ7TbsPoqvGCwAPx2OZs+R6MAFJCIikoKYRZ1LLEUuSYmliKR2N+XKQIa05//Z35onUwCjERERSTnix1Z+W+x2AG7ZuoFvd5dgev4GsA3WVQ2nEDshjSNuzjVkaHKIHONOUDViAVSE5nOn07rOUADSEw1pvO6wDy1aSuavT+NOGaPuaU7N8e/QbcYwvm+Qj368xE0L9lBk/SYqsAyAkL6/83bsE2R+sLsXmKrBSjKhxFIkiMQ5rxpsPDOIiwtgQCIiIilIcVeDLTm859/a7TRwk1hNOTgEb9CU/XMLwi/ANjg5OzutI4aSjz0sebsWS3qXpxHTATg4Iz+uktGT7nSpEcXAJZF8WLUibadOIEO9Q7g7jYzRv5Ix/QmyPfQz3628jWIV1gMQuyoD9ujbADhXPxCnQS5HEBbvSZXTjZhZTTMbd+zYsUCHIpK8OHdBV9gQMxyaTVlERERE/ptUmVg65xY65yIyZ84c6FBEkpU45yWT8ULMiFNeKZKimFk2M1tkZt+Z2SYzm2tmOXzvFTGzz81su+/xpkDHK5IaeN1gn2VL1jugBN7CLn4jCx9MqkOT3mPYv7Ugr9RpBxuAApCh3iGqsZhujw7jyd7jqWrjqMds6jGbsAeOY4Mc6YmmCNthPlR/fjldGkdxYkgOGAjl0q9m/5qCvBPyKGmLH2MAXRlAV2y0g0r11VqZnMWPsfTnkgKkysRSRBIX5xwJGiy9rrBOmaVICuOAV5xzRZ1zJYGdwADfe2OAUc65IsAoYGyAYhRJhbJCI/hkWVk+WVYWbi9APvbQvNkoCrEDfoEXOo6AnfBKx3ZEn0jHw9sXw06Y+lkEsJ7Rd3Rk9B0dqZl1IeSFJ3mTfeSGx+GDQZUY2D2SKT0e4/3x99GXF/mgbCUq919NzNuZKMZWirEVlkd5iyRfSixFJLVzfxpjaSivFElZnHNHnHMrEqz6ArjBzHICpYG3fOvfAkrHt2aKyL9jMwIdgUjKkELyXxHxhzjnSJBXYoBTZimSYplZCPAMsADIB/zsnIsFcM7Fmtk+3/pfAxelSCowPRLehkIjvuF/NtlbFwXj1jzHnLI1WEUFclbeTcXKyynBZo6ShQG5uvHC9BHMWl+LNgyBNA1xd3k3Ydv3B0U6bmIRNegxdTAchaMVssA70KTiTIZXbclD7ZbiHjF43MFJYyqNAejhYuhNv4CcBrlMmm5ERFI757ioeA8aYymSsr0GnARGArdf7pfMLAKIAMifP3/SRCaSShRv8BVbNt3Bewuq8NDUpVR0HwKwYugtMBtWla1AG0YRQxijN3VkVlegBVAcmAZlO67hsSULuOHMNsymeRv9MC1vf/84E2hBhnqH+Dnt9VRmGX98beRKs5987GHciMZYOwf1oG6F6Qw80uVcTL2zXvHTIPK31BVWJIg43J+K96gqrEjKZGaDgZuA+s65OGAPcL2ZhfreDwXy+NZfwDk3zjkX7pwLz5FDPWVFRPwu1M9LCqDEUiSIePNYnn+teSxFUiYz6weUAR5xzp0GcM4dBDYCT/g+9gSwwTmnbrAi/5LZZ2ypfAdUhIfuXwrtYYWdYYWdgU5HIB8Mt65k4zBHyQJpoNOivt6XRwIbjnPDwAM8VnUKP824Ge5uCHc3ZNz3jZlKY0bf2JE86feR+Y7TfBddlFvTb6Ff2EvUbbeIiB+m8PKIDhSq8A1zrmpITK5MnM7qLZLMqXiPiKR2zrk/F+8JYDwi8s+Z2a1Ad7zWyNVmttHM5vnebgU8a2bbgWd9r0XkX/CmGAGWA2Wg+Uej4ARQviaUr8kt7ifv/SdhMJ2ZYU/yWLEppCGWnHV2Q1po4GbDFJhlT/FKg3ZsWV2YLasLUz92JgOiu8GHUJY1tF4/lJ/TXs/OobdSiJ24+obbG0I1FrNzza3wKbgzgToTIpcnheS/IuIP7k/zWKp4j0hK45z7Bi6YOSjhe9uAslc2IpFUrMo9sPRb3PPFaMw46p6ZTg0WAdDcasGQ27lz6kr6L+sNt8Csjk/RZWgUQ+nImkFlea3c81AFyAIv2EBeqDICgP0fZWFV+vJMLNKQhtEzuPqXODbdWILPO97OCipS/bvlMBjybt0Bd/kSXBcZmHMg/1yQFu9Ri6VIEPnTPJaY5rEUERERkf9MiaVIEHFcVBU2BM1jKSIichGzKBgSCUuBsbdgN58hG4eZM64h6yjDOsrAN/Vp0nEMY2jF3ZWX03rrUN4aWpuVVGAl5Xmt4/PsX50FV8CgF3R3L/PrRxn59aOMLKQWD9lSmrebTsn0X9Pnxuf5tMb9HCQn3VYP4/VmTeER2FujMFSPxKm1MmUxVLwntTCzmmY27tixY4EORSRZibt4jKVaLEVERBL3EHRyfekT0RkapWEXBeAdGL2mI6PXdIRbD7CcioQSSy4OMLp7R3ZRgLKsYZw1haOQ+/mj2CHHt1ULkI5ocsw8QY6ZJ4hYNJVS7gtIAx0YRlnWsGxROR7euhgKnOYZa+VNJFQY3KIAnwf551S8J/Vwzi10zkVkzpw50KGIJCsukaqwyitFRERE5L9KIfmviPjDn4v3qCqsiIhIQmZRcEskpYp8wZDuL1G8/1f0WPkifewlmrtRvEg/ALq6l5llT/Goe4cpPEXT/m/wsDWDbvVhCDToOIkZDZrBUbil9S64GvjDt5MqsHHqXTDsFZ659w3cXsO+cPSY8SJ9GvSDdGXhNV/RnhHqBpsiBWGWFYSHLBK8/lS8x1BXWBERkYulgWwcJsNLh9iS/g62nDrGXpePvLaKiZQHYI7rCg5m3f8Ud2fcwA9z80BUfTr17EtBdvEdRWkwYxIzNjXzpgv5w3i1YwQAe8hHB4Zz/c+HsetegDgIGfY7fRr3g7eWQngVIBL3VQDPgcg/pMRSJIgk2mKpvFJERETEf+KL9wQZJZYiQcQr3nP+tVosRUREzqvEhwDcu+kjPr7jQVgL1ANmVyHv3EPQAijhfbZus0XwOLD0OAzJRDMm8W7Pajxca7FXTTYcuq/sCQOAJmCfOqjg29EpGFLzJV7u2QHmgi1wzKpXi8dOLQD+B2t93WBRN9gUSfNYikhq5+BPVWGVV4qIiCTwSSQxpIX7YaRrAU8DPfCSxQkzYQewA+6b9D40AZ7JBPXOsnxZdR5utpgGCybBYKAU9B/aG+bD61WbciwyLc1XjqL5ylG8/lVTQlr+Trfew9hbJzsUhse2L4A5UNPNp6YrpilGJMVRYikSRJxzF85jad46ERGRYGcW9fcfErkcmm5ERFK7uESmG4lTXikiIkEuPqncRx7uq/A+X9pymvcfRVvrBR8BfT6DLcCo+pQZ8RllRnzmVYctAOyFIfmfo3blt+CN1zhNWkgDXUZEQSdoHz2AMGLI3OE04awlnLXkYw/f5bqZzF1/IW+5Q3AdMBxoAgttKwtta2BOhMh/kELyXxHxB6/F8sLiPRpjKSIi4tluBwl3ByA8khbczsQn28D9sH/Qg9zGJg4OzM86ywjAINeZ3Kt/ZP+jBemUYxQcBSrBnHbAa8cZ+EckS1x5MnKS7yjCuBGNiVgw1dvRCmDYZ/DZdby+uinP1HqDexd8xKe2AUiHcy8E5PjFj4IwywrCQxYJXnGOi6Yb0TyWIiIi51SvQjRvU/Ord7h7xgZ4E3gQcttYsPzUjZvOnGsbAtCUl3jMKkJu6PNrZ3qUHEyG9w5x8ubsEJUJ96hh9jVkLMndx5fTjhF8Xut2AO5++EuKuIxszwP1980k44ITNLISATtsEX9QYikSRLyqsAmK92iMpYiIiIh/Bel0IxpjKRJM/jSPJaoKKyIiQc0sCp6IZLjbB8D8+x9n4YxHIRLquumwE6AW1IU5jzb0pg8ZACfIyK/uBrrv68kuClJ901y+T18YqgAToG/uTnR3s+FEFE15g1BiWUV5VlGeT93d1GYebpnxBk1p1Hj2uXhUDTYVCNLiPSkkTBHxh4vnsdQYSxERESgyYxPtbSxLXHmqll4F7wE7opgzLhJOwpNuGlk4ymrKnfvOaspxOxvo/3RvKAgMgzS/PkXEpFcZt+k5TpKRgdsjYQpENANawntlqwBwr70Ko+5hUN3OxC27Bt5cD9TEudKBOHwRv1BiKRJEHFww3YihqrAiIhK8NMWIJIn4FssgkyoP2cxqAjULFy4c6FBEkpU/j7E0jbEUEZGgdq8rxz3MYyDzWENZaq5/h/rMpNGvs/kyogQzaMiwbd2wcY4uQ6NozWgAbqhzgInt28DH8PIPHeiWfRg5ip2AerC3d3bu4gvuLfIRq05VxZ5ax92TjvHQyqXeTj+BMhU+Y53lBG4CFvqiUYulpFypcoylc26hcy4ic+bMgQ5FJFlJbB5L5ZUiIhLMvjxSloHtImnusjOaNiwc/SiNes+GR2EO9ThKFmyIg5thYINIbih9gBtKH+DkW6FwEgiFbo8Oo1NEX7geuvfuyXweYW+7wpRlDekLHoFupfn8/koUqvANhSp8A3/Auhn3QIubgNeBnBpbmdqE+nlJAVJli6WIXMKfivdouhEREQk+6gIrSUpdYUUktYtz7oJ5LEMMFe8REZEgFkmHrFEMHBnJ5hElaMlYehUeAEeBjV7l18mbWvHT+Fzk//UglIEsJfYDkGFbLO1rDOBEjYyUYBORMVEU+ugbWjCBB3kfV9/4glJUyLSKTf1LcDsb+Y6iAMyo2oB1998DsUClZ3DLAnX8Iv6jxFIkiHjFey4cY6nEUkREgknC1spH3NsMtBcIO3ycL3tWILp3OnpV7cqJqhkYMvUlGjCDfCX38Cjv8E6OR7lh/AF43/flMZBl31F2Uoj2y8ZCFjhwc26uzusoc+Qzpt9Tl4a/zoGT8PCXi2EnzOleA4CPuJ9rx52iRcGRvo21uaLnQJKYWixFJLW7eLoRjbEUEZGgVNAbzzjfjrPEVaVqhVW8vLID3R4dxvJ3KtOPFynV+AvuLbnWG0c5HKgF07rXo9mRSQDEFM3EmzzJzpW34koYUTm6cPUIx+Qj9WmyZiaNPruHAR2/YkCObrg9xvv17+Px6LcBOHk0IzkLHuCgvQHABN2LJRVQYikSRJzjgqqwIWZKLEVERET8KUhbLFNlVVgR+bP4aUX+PI+lMksREQkOtgDgBmiLt7ybiUh6c2x5WrJwFKrDMDowfE1XGjCDnJt2QxnoUetFbih5gIqsIF2GaNJliKZQ/W94l4dhMBTI8S3ZOQS74Kkts6CRt78ty+7goR8+Ivu9e3lo3/uc3Jydk5uz80qe58+1VqoabCqlqrAiklrF+fJHQ1VhRUQkiKVpgqvt3QunF6xLI5vNtb8cIW7sNZTq+QX9p/bm2caDGEYHDs7IT8133qH3nv5M2NSCvFsP0adYZwB6TB1M8QI7aLBgEjO2N6NtmvEUH/oVtsnBs/BJu7I8yjscrJyf9ctKk3//QeLvui/kGQG5we0L2FkQ8TslliJBItEWS1WFFREREfGvIO0KG4SHLBKc4lssQ0IurAqrvFJERIKBWRRD3EE6PTIKuzEGgJfdC3RyfRky4yXYBa/wPFV3rGLskZbEZNuM63kjtvsMGOxfUhDWwktfDvE22ARePDKEa44fYWKRhpwiHTk5SO+SPehQcjgl2ExPetN2zASOkoXZZerRi64A9NqfzheVusFK6qExliJBIrGWyfgc0ym7FBGRIJCeaE5OC4VvroJvrqLbgmGkJYYmDcZAAag6cxV7e2f3PjzqHigITEuDzXO0rzqA/d2zYNsdtt0xn9qszVqc0DSxNPtxBguoxaNfL2TLD+FUYzFbKUbb3WN4t0g1xtKS29lAL0tHL/OSSo2tTMXiWyz9uaQAKSRMEfGXC+ax9I23jHMQapf6hoiISMqWcO5KkSsihRTc8Se1WIoEifgWy4TzWKrFUkREgkVxV4M87CPDxljCrjtO2HXHeazWFPpX7k0e9kGTs7gPjbv4gpi9mbil9QY4Dku6lydDi0Osojz/YyXuacM9bawbeA93btpM+vTRfFOwEMXYSp7bfiBz3gPkXXCIgXSBP9JQa/8SZlOPyt1XB/oUiCQptViKBIn43PHi4j1wfvyliIhI6vQUWwYW4OFbFkNeyJjlBAAVWEWuZQfpv6Y3fAYZR/1KNg5BKdjapjR0hxjScvJoRmqmX0ivZQMgs7fFZ7sMYivF+PiHGrS9cSQrVj/AD+XyUODkfu6o9SkL1j3Gb2XSwWQ4uCw/vOm1mqoLbBAI0uI9arEUCRJx56rCXli8J+F7IiIiIiL/RhDm0iLBKbFWyYRJpoiISGpkdgZ23sCdN67ky31lKZNnLS2YAEA9ZpNj2QnyVt7B3sWFaZr+DcqyhnRx0d58lLuBE+D6GoWnbuGVyu04HhsGwNgjLbkz6xo+v7E0d/ffwLPdBzGCdgz7thuv39OKrmV6cYBcLGxcE8KAByJxDQJ3HuQKUouliKRq57rCJmyx9B7VYikiIqlRfNEe96v3k7dJnjcYz9NMpwHTaUA4X0EW2Lu9MO5p47WVz1OGteyiIB+UrMSZWwz3jdFm6hAKsZOXjvRlZ2ghdoYWYlLWZny6rwJv0IQ+3TtzgJzeTn+EfOwhKroX31GU3CH7oGGUt0hwMLziPf5cUoAgzKVFgtNfF+8JQEAiIiJXwsdX8XbZRwjjNJPXt6J86VXMow4ADZlO4dI76cIAdpOTnLl3c4r0FOBH0hPNU5kmsqN2YdYs+R8fVq3IlKyNacR0AIbSkQZ5pnOQXNRiIe1iX2NraDEqNfqA5W9Xh4MwqV1TbrGmgMZWSuqnxFIkSCQ2xjJEYyxFRERE/EtdYUUkNYtPHUMSGVapqrAiIpLaeN1gm0MaGEYH3qAZxUt/xTrKkGP9CXKsP0FaTpOFo+TiIL3pyYEfbyCSKPKxhweOf0gT3qAUG3Dh8MDKFZwkI0t/fIilPz7ELgow/eHmzFv3BEfJQtvQkRSL3UoWjsI9QB54hjEBPgsiV06qTCzNrKaZjTt27FigQxFJNs61SibSYokSSxERSYUKuWPcUmEDfXmRtYSzZe4dlGcVHAIOwQZuZxcFuJ+POEEGphesS00Wcu+Rz5iUqRl7yM98ahPyoaNEhS8peXwTPQt2p2fB7mTkBLne/YnfyqSjCN8xNTICgALsYlu+G2hTbwgrMj0AGSPVDTYYpfHzkgKkysTSObfQOReROXPmQIciknz85TyWyixFRERE5N9LlYmliPxZfHdXQ2MsRUQkdTOLooirTQ968+322zlBRkbQjrx1djCWlrhshstm5GMPsYRShaX04yUKsZN+dOf0qMw8sWQeAAfm3UDxBl+x+bM72ZbpZnq/3J/eL/dnFG2owlLeoCl3vLKFKVGPkWlfDOVZyc1rfuJ9anDD8W244wE+GXLlxY+xDLIWyxQSpoj8V+eL95xfF6KesCIikkqFs5b0nOK9IlVYSzgHyUktFpCOaIqW+RqA04RRgVWsoSyP8zbr9oXDjrTYfsfXVYtygJz8VjsdA+gGB+FB3mNrs2IAxK25BnfE2F09J+NfeJKnP3sTy+jIm28H3cpGU5LNvkhuDtAZkICJn24kyKjFUiRInC/e8+e+sGqxFBGR1CJ+7koRubLUYikSJOLO94U951zrpfJKERFJRTKfbskaDhNKLG9ufxpWQLYWP1MzZCGrKM+m6NsAWJ3+bkKJ5QQZKcVGiub5jlfzPEeFCisZS0tKsZH0nGIsLXnILeV1mtJq5mQARrVrTi1mUYLNlGAzXA2PlZzCYbJTjtUA9KZfgM6ABJSmGxGRYJD4PJaBikZERMT/0oedYueSW8nCUWoWeYeJEQ05NDAvh8lG/zW9SXsM0h6DAXRlKVVozSgi9wzkSd7kBBmJIpL7WEpt5lHuyDoqsgI3zogmPcvb3c3ydndzJ2voTn9mU4+1lIH+0JM+vMpz9LEw+lhYoE+DyBUVhLm0SHCK7+6acBpLu+g9ERGRlEzdYCXZCMIsKwgPWSQ4xbdKhiTopxDfYqm0UkREUo1+keybZ2yofQuP8g5TeIqH495lYLcuVGQ595V9n1/wpqRrwHSKsp1VlGdhvlpUYzHD6ABALKHU2fYBrIWO4aOZ8uFjVGI5I2gHQBSR5G9wkPIzVlGYnbw/5z4OkY0mj86EeuDeCdgZkEAL0uI9SixFgoQ7VxU2YfEe7yFOfWFFRCSFi2+tPNI9Pa8SQSVWsGNdcQqX2UKXkIFMoAVHycJhspF7+1EAHisyhRjSMoEWfBV7Bw+EfkgtFtBt3wDYlpbRV3dkb6Ps5N16CDfUqNFxDm0YDUD+PQehFkx4uS3UhEPFMxBNepgd32oaGYCzIBI4SixFgkRiueO5FkvllSIikgp0cqHsogB94nqSJ2Q/L5XpSxG+A6AGi6jHbHrTky5FvOTvRwowm3p8N+I2PmxXkVG0IQtHKZNnLff/+Cm7y+UkPdGMLNYC0kFt5rOIGgA8uORj6jWfxvToRixIX5OxtORj84oCOZc3MCdAkgcV7xGR1O3PLZbn57FUZikiIiIi/14Q5tIiwencbCN/nsZSVWFFRCRFi+8Gu4oKZOEo34fcxGKqsZVizKUOt/2wjUI3bmXY191od9sIRtEagD3k4x0eJUur/XxDcd7kSWqykKr7lvLyPV1ZTTlKsZHVlKPNlok8neZNlufbAUCl5h9wgoyk/QRmVG/AacK4133LKu4P2HmQZEItliKSmsUlMsbyfFdYZZYiIpKyTXZb+XJgBR5kEVlnRrOWMpRnFdGkp/iNa9m5/Vba3DaEA+SiNvOpzXwOk52bt/zE0S9yM5jO1GQhoZzlZLb0FGAXd7KG3n36U4LNtKk5hKh8XcjACTJwgnrMpgxrKVD9W+btf4JP77ifT+9QUik+oX5eUoAgzKVFglN87hhyQYul5rEUERERkT8zsx5ADiDWOdfh7z6vFkuRIHF+rsrzmWX8M7VYiohISmUWxXC3j/nUxjU22vEqX9YvwUFysY887CM3uTgI86AiK2jefzr96E4/uhPGaQoX38LuCjkZPqIrt36wk4Pkok/anrSKeZ1WjIX/wWZKMOrHTsQQxh1fb+GOr7fQ5u2JHCQXaYilXO5l3P3VctxXgT4bkizEd4X153I5uzUbbGY/mpkzs+IJ1hcxs8/NbLvv8abL2NZDQHHgLHDgcvavFkuRIJFYi6XmsRQRkdRgD/lYcKAmk3I3YNVnVSEbTN0YQePHx1E3/yLm7K5B6y6jqLtpEa93b0opNgJwinRU/uEzht3YgVLtvmAHeZlNPaqxmPfDalCBlURXSMdPq2+mTbkhhBJL1G1dAKhw20om0Yw95OO2JV7lWaoG6ASIeOYDrwKrLlo/BhjlnJtmZo2AsUBlADMr5Hud0GK8BshvnHO9zWyAmd3rnPv0r3auxFIkSJxPLBO0WJ4r3qPUUkRERMQvAlS8Jz7xswt+61lOoDScqyr1FjDSzHI45351zu0Eqly8LTN7HMjme3kIyPR3+1diKRIk4pNHu6DF0ntUXikiIimNdYx/9gJDnk9H5n6/cJhsWME/uDvPalbmqcyCmJpk3vELdWcuokv9KPaXzELuoUfJ2XE3AAcX5If5sHTSfWTkJIU/28t39xSlHKs5RXrKs4rDZOOnq29mKVXYvrsY3fP3BqDy+tWEXP87Z6/KANW8qrS4yCt+HiQZSprEMruZrU3wepxzbtxlfC8f8LNzLhbAORdrZvt863/9i+/NBUab2RAgK15L6F9SYikSJOJzxwtbLOOL9yizFBGRlOkxN4vFMdUYGtaJLPzGe3ke5KE7lnJVbceZtkaaTpBr/E8MfDqS+uNnUrfjdFZRHoAPalWiW62X2TjjLggFK+AoxRccJhs7fi1Olsz7yRV2kAalJxFFJLXyL6D/7p4AuHcNu94R0nK799r97bA1kf/ikHMu/ErtzDkXA7T4J99RYikSJM4ljwmrwvoelVeKiEiKs9F7mLXkKcgAlIMqsR+Tec1pqAhLupfnDj5n4zN3MZIWDBvfgVaM4UMeYDHVzm/mh7L81CAXkUTRgOlspRgjaEfr0ImUCNtMLg7yGeV4kPd5h0dZnb8cAO9H3QfdgW434fpf6YOXZC/5TBGyB7jezEJ9rZWhQB7fer9SVViRIOH+ch7LgIQkIiLyr5hFBToEkRTBOXcQ788wT/hWPQFscM79VTfYf0UtliJBIvF5LL1HdYUVEZEU5y7fY3ZgLTRfOp3sPQ/BSag+aC5VrQq8fxfv1ajCPvJwKCYb0WHpqcW7HCTXuc2sv/FWckUf5I1+z2AlHV/WL0H7NWNZW7Y4XRlICTaT/+uD/HZbOh7gQ2J9TVHr9oXDy74Et7/GVkoCASreY2YjgDrAdcBSMzvsnLsVaAVMMbOewG9A46TYvxJLkSARd64n7J9bLJVYiohIShJ2uAMxb3vPe5XuSovSE8hb+RA12y6B6+CDrXUY5+bzfMwvPLTvfXggLXU3Tacai4khjBNkBLxpSqJJz/vpq7OwXy1K8QWnSA9AH3qyYNljNKw8kTW3leUVngdg7Qf3AmA1egHgVLBHkgnnXDugXSLrtwFlk3r/6gorEiTOd4U9vy6+xVJppYiIpBTqBivJXnyLpT+XFCCFhCki/1V8i+UFxXvOjbFUaimSUpjZYKAuUAAo4Zzb4ltfBJiCN+/YYaCxc+77QMUpkpRifsnEs60HAdBr+wB6bRsALaFf1k4wGZp0HENZ1jA17CkePrmY7zfl46bWe1gzuiyxhPIyXQE4Sygv0Zflz1TniX5vEzM4Eyv7l+flsh3o+vZwbLtjcuX6TN/WnKI3f81H3E/T6q/7ojgQmIOXlCH5FO+5YtRiKRIkEi/eE/9eICISkX9pPlAB+Omi9WOAUc65IsAoYOwVjkvkyng/knuLfUQUkUQRCV2BAXBf/feZQAtcbWNynVZUiPmEMbSEAVCJ5Qwf3ZK9NQoTExfGU/tn8dT+WeTiIDVZSNTrXWiZdSzZ+v5MjyWDGRDThY8evxd3o9GHnlgJx5NM5YYZB5hsNzPZbgb+p26wIgkosRQJEonNY3l+jGUAAhKRf8U596lz7oIy8WaWEygNvOVb9RZQ2sxyXOn4RJKS2cJAhyDy99QVVkRSs/gCPZbIPJYq3iOS4uUDfnbOxQL45irb51vv95LyIoFg+b3HcTUaU4AfGUxnb8Vgx+s3NuOZGW/AWfiicSm6z+1JNg7T4choWk0azrj+z9G+wFg4Coffvh4r5N33suX6mUPb82K9HWEjj/Nk1jcpVnUrnRaNInuNw4xq1JwdS4rT9Mzr9Jg5GJ4C0lTEnQnIKRBJ1pRYigSJxKcb0TyWIsHIzCKACID8+fMHOBqRy9fFrafFkTfpnbULR8kCgIsJ4TPKcOYhI/QsxB6HxZmq0WnlKI5WyMK40s+Rd/0O9i4ozLurqwFQa8cSAAqEfMvQm1vz+oymtDkwkjcONCE2JgOFa+zg9j3f8mi+d6hfdSaTV7eCq4Cz8YWD1AVW/kKAphsJNHWFFQkS51slz2eW56rCKrMUSen2ANebWSiA7zGPb/2fOOfGOefCnXPhOXKot6yIiF8FaVdYJZYiQSKxFkuNsRRJHZxzB4GNwBO+VU8AG5xz6gYrqYJZFOyHge0imZG1LqGcpRqLqcZiLM6xkVLMzvQIY7M2YV6mmmynCMyHPvt6wvyztGME5IVaPy5hMdUYX/hJxhd+kljS0PGV0Twz9A025bqNkrk2YxscocRi8xwfcT+96ckH5SrBFiAqUgV7JFAym9k4M6sZ6EAuJYXkvyLyXzn+oiqsZrIUSTHMbARQB7gOWGpmh51ztwKtgClm1hP4DWgcwDBF/K7umemkJ5pG62fTp3Rnau33urPyCxwolou2P4zngxsrU4oNPM8rUBwq5lnOI8yjveXhBreNryjOyCOdWJi1KgD7DuRm+gt1WUJ5bl2yk6/uupurFjoenPIxn8+5ne8oymurnydfuT0Q6esG21OJpfw95//pRo455yL8vlU/UmIpEiTi4rzHC4r3+J6rxVIk5XDOtQPaJbJ+G1D2ykckcmXM6diQJ4eOx+U2bIajx3ODAejx64vMpD45b9zDgwfeI+66a+AzIDu8wvPcuWkze112drKIOsxj78kC0Mj7CfzeoipspgQNx87hq5bFyc5h7h3/EbbMEXLgd+Ieuob9X2VhBZV4y+3hceYF7gSIJHMpJrE0s2LAc3jTjaYBmjoNDBO5bIlNN3K+eI/+KYmIiIj4gzOITTFZlv8k6RhLMxtsZj+amTOz4gnWFzGzz81su+/xpr/blnNuq3OupXOuBXCNbxGRy5TYlCIhqgorIiLJnFkUdV1heADKsJao3F14tsEgWAwsht4r+9OOERz48QYG5OqG+9ZgBeSttYMZNMR9aNwcvY2jZCEfeyiSfyvZ3vuZbO/9zEMVltLth6HYUceduzfwEn35dOv9lKr8BQBullGdD3nCSvGElQrkaZCUxJdY+nNJCZI6zPnAq8Cqi9aPAUY556aZWSNgLFAZwMwK+V4ntNg5N8jMKgEtgENAdFIGLpLaxLdKXtBi6XvUPJYiIpKczcnfkOG7W3KQXORhH71aDyBi9KsAWAMHGaDt9xNgM6ypVZZC3b+hB71psmwmw//XFepB7TfmEp0xA6FnYXCm9gB0qzIMNyyESa81oHnr6WwdXYzvi+VjK8V4+P7F2IsOHgZK3IXbFLjjF0kJkjSxdM59Cue72/me5wRKA/f7Vr0FjDSzHM65X51zO4Eql9jecmC5mb0GlALWX/wZzc0lkrhzVWET9FNQi6WIiCRnZlF//yGRZMYZnA31d8fQOD9vz/8CMd1IPuBn51wsgO9xn2/9JZlZRTMbaWajgLR4RZ//RHNziSQuvkCPJTKPpVosRUQk2ZoTCVmg/b4RlGUNGTgBjWDc3OcYN/c5bpmxgU9Lh8NSuKXWBhozlZ1P30pZ1tC68lAYC+ne/o24969hQfqaDMjUid7He9L7eE+cGZ+9VoYTZOCW0RvYuOku3qY+D29dTKFN38BO4HHUWilyGVJIj11wzq0AVgQ4DJEUK+5cV9jz61QVVkREkrXckbAX7t30ER+efoAMDWIZOaMFvAcR/b2usKOOt+eq+xxDvmrDYDrzcJ3FMA8mj2/KAXJBAZiS6SnaNhtJvSMLuSPrpyzLVBmA6T3q0nDeHO5Nu5ZZNWqRvmQ0BdjFS6eGwNeQq/tPvkDUC04unzMjNo2/06wYP2/P/wKRWO4BrjezUOdcrJmFAnl860UkicTnjgmnGzk/3lKZpYiIJC9mUV5iKZICxYb6fyLL5O6KJ5bOuYNmthF4Apjme9zgnPv1SsciEkzii/dcOObZe1SLpYiIJEtfnIUVaXiQRRxOmx2ywAZuh4owIro9ALMzPcLkr+rTxKZBiavotakrlVhOGDGUOL2JOcUbkoXfeJeHCanv4Hm4++wGAFx+o0XtkbAdYgllMyV49Pg75Cmzj50VboVVvjGeTgmuyN9J0sTSzEYAdYDrgKVmdtg5dyvQCphiZj2B34DGSRmHiCQo3pMgsVTxHhERSa5KuWoUYyqdGw9mJeXpyFDuG/0+E5e04Y97jau7ejevJiPGUIgdsDMNcVmM/HzPsJj2HN2cG8txhrCKx6k6bhUTIxrS46MX2UwJ8vk6yh2PDaM+b7O0yH3Ujp7P1Q87qn80lw+sDqQD0kXiNA+B/EMOI5bga7FM0uI9zrl2zrm8zrk0zrnrfEklzrltzrmyzrkivsfv/LlfM6tpZuOOHTvmz82KpGjxYywT9IQ9N95SxXtERCQ5UTVYkZQnxRTv+SeccwuBheHh4U8HOhaR5CIukRbL+DRTiaWIiCQ3G0ffxcbIu5gxsBnjmjWmCktpNXsyFuPYkL4Ub42oDcAuCtB1z3B6TBtMyZ5f0pUBtH1vAlF1upCXXez59SaWR9xN5UWrvT5z88Gl990L00DVsOVwKA2hhaHTR33ZQz54FngtPrlVN1j5ZxzG2SBssUyViaWI/Nn5MZbn1yWsECsiIpIceK2VtaFNFC+7owyO60xEx6nsH5qFovW+JuzIcSbQgok3tfG+8AQM7tWZ9T2LMZjOtB03ATLD4OjODEjflUE5nmUV5fmjopFp4zFeyfo8h8gAwBs05RY2E50/Hb3pDkAJNjPLl1Q6ja2Ufyk2CNOs4DtikSAV3yhpF0w3ohZLERFJhsqXpMzKE7SOrczR0CwMHNac3I8cxRU0bIajb5cXmTjNSyynla1HWdbwIn2ZNekpmkSMoRyrifhhCm2/mECTBmNYuPJR0oZCxrtP0P6HMRS8cRcAL+QfwZzdNVhMNUqxgWs5SuVMqyEjuOMBPH6RP8tsZuOAhb7emcmOEkuRIOGIn8cyYfEe7zEuLhARiYiIiKQ+SVS855hzLsLfG/UnJZYiQSIukRbLc1VhAxCPiIjIxcyi4LtISONYd/89RH4URTlW85bbyOOfzeebfIUY2aUFuWce5a363hjLWEK5afsemA38BpNntiJX/QOw13irQW1OkJHJ17WiaZHXeYvHqbpiFWVuXAfA3t3Zuf6Dw9Qt+j55btxPWk7DCY2tFPk3UmViaWY1gZqFCxcOdCgiyUZ8d9cLi/dc+J6IiEig1S0ynTmZGsJwGN6xK/OGbuMU6Zl3zyMUZTt92vXDVTKsu+/eVRyKNNhEje6LGL69K0uKlKfq6FW80rod9Y/MxxZBaKNYmj8/nfqDZjKkWRuaMQmAeszmuXte5b1M9/MdRelkfQBwLmuAjl5SA003koo45xY65yIyZ84c6FBEko3ExliGxPeFVV4pIiIBpilGRFK2VNliKSJ/dq4qLImMsVSLpYiIJANFXG1ysRTGAPPAvWLYCEf7dgPYR26GRXfg5KBQbLjjvf5VAHj0+Dt8t+M2BhV+liFF2lD1h5UUab2J9EQT8qmje6Oe9F/Tm0KDvqF6s+VwL/Cpt78l99bivWZVWEBNhp7uSMs/xnBN2tiAHb+kHsHYYqnEUiRIxKeOCacYsXPzWF75eERERC62fVxJPomoQJEG39HtoQG4szCkXRsG05mRtGFW56fIFHkcZsJDtywFoEetF7FPHcTB5CL1ob6xvV9J2lbLR7pjv9F/SW+yVfmZnatvhSbgQo13mtUEoNGRaYRxmna8RoarewLne/iI/FvBOo9lquwKKyJ/FhcXP4/ln1ssnfrCiohIAKkbrEjKpxZLkSAR3yqZsMUSu/A9ERGRgOkQSZeIKK5beIz2tXpDi2u5bvxPHFh4A4drZuMguag7ejpzujckw6eHGJ/+aQDaxo2keY1RTHi7LVkK7KfMV5/xMl2pShV6ZupNt2nDOFsxFLLAkmLlsaEOvvbt8w9Y1bECXU4PCNhhS+rjFe8JvjRLLZYiQSI+d7ywxTK+yVKZpYiIBE5O15TWQ4cy6EBnKA70yMXw8S3pzGBa1BxJTg5QhrWkJ5ou/aM42SI7rWJep1XM6xz6OS8Th7bBzDEo7AXWjbiHqktWMdFtpxA7yTDmEMc+vQ7+B90YAA+c32+GVofo07EfOU4fIt2xdjinKUZE/q1UmUpruhGRPztXvCeReSzVYiniH2Z28DI+9otzrmSSByOSAsR3gc3pmgY4EhH/UvGeVMI5txBYGB4e/nSgYxFJLhKbx9Iuek9E/rNfgRp/8b4BC65QLCIpRjqiSUc0cbFpsBcd384owF0xX3Bsy3V0KR3Fa7QjIyfpwDBKV95KkWWb2N7a+/vMi6N7MKdjDQ6TnYjVU3E1DXvLMaxqe7ZsugOXw3i1cgSRP0exrvE9ZJv8M4f/uB6AE4dzUGzoer413z9LtViKHwTrPJapMrEUkT87N49lgnXxSabyShG/6emc++mvPmCqUiICXFiwZwEPU+j0Dt7M05iDV+fnlq276FHsRfqU6cfAKpG8+1E1DpGd0v23wgTH9udL0mP0iwD0WdkPNuIte8BedfTq3pVeowfAI6cZmrs1nVaP4mSZUO6fupSWjOFw6exeDAMdxAL9bsd1v9JnQCR1UWIpEiTOF++5YL4R33vKLEX8wTk3xx+fEQka5rUQ3nW8HQ0yzeBgu/zQHoiEqLH96TO2HxkaHWI15ZgQ14Jp3euxjzy8cPsI+mzt523jU2CkN+dl40bj6E4/btm0y2u5fNvRqeIoWAtPlZtKCTaRnz00WTATgO+75OMma+Ftp7taK8U/HATldCNKLEWCRPyUIheOsfS9p7xSxK/M7JVEVh8DPnfOLbvS8YiIiCQ1VYUVCRLnusImUrxH81iK+F0uoB7eH3DTAHWBIsAwM3sxkIGJJAfnusHO95ZTda9l4qY2TBzRkGdLDoJbIDYNDI9oydvpH2fgzEjWh5RmKVV4YegI3K1GhgKHyFDgEK93bwrh8GqjCEqwmUiiyFlyN43zjcMdM9wsI0OLQ1RiOWNnt2c29eAX4Be4qf8e6BeparDiZ950I/5cUoKUEaWI/GdxcYkU79E8liJJJQ9Qxjn3G4CZ9QGmAvcCa4B+AYxNJFlo7rIzcZz3fMlH5cnOYdYSzoTjLeAojM3UnFbR47g1/RZ+qp+Lggd+IO50WsgABW77lpMh3jjJBXE14VvIzmFqsIgXrCzcnp/u6/thHzmKr/6Kk/2z03bABGocX8ToBh1pMmPMuTjeoFUAjl5Ss2At3qMWS5EgcW4eywTrVLxHJMlcH59UAvieF3DOnQBOBy4sERFJoTKb2TjftIrJklosRYJEotONqHiPSFLZambjgDfw/q7TBNhuZmnxalCKBC2vG2wrJk7NRdUIb5qPqiNWcUO7bXzIA5xqci3j5jbm6Ylvwh/Qpc1AZlOPQ7lykD96N2Uj1vDxpgeZFVcLgMeWLaD79z3ZRx4yHj/FZLeAgRTjGcbw1uraFOU7QrvHclvF79hFARh8msl24Fw8b+gWKEkgCVosjznnIvy9UX9KlS2WZlbTzMYdO3Ys0KGIJBuJjbE04lssdVcV8bNmwAlgJDAa+N23LhaoHsC4RJKHUbl4rPEUmvIGTXkDnovip9U3c8vAXbgGxj7yYHc4TjeFaNLRceFosmaK5uTG7IQSS0TJV89vqyX0t27soBBXbXTsJw/f9r+dFasf4Ilm80hHNLcN/Q6GwT7ywPWTgJw4p7GVIv6UKlssnXMLgYXh4eFPBzoWkeQiPnm0BJmlqsKKJA3n3HGg0yXe/vVKxiIiIldWsI6xTJWJpYj8WZw7n0jGi08yVbxHxL/MLCcwFMjvnKtgZiWBcs65MX/zVZFUzSwKKkVCmyMMav0CNzTzuqRmPv0LQ8Ma0pzpvFiuB50ZTNGS3zGCZ3mh9wjanx3Ly8c7cJq0dI0eyNVtHeOqPedttDq8NaIB9Y/MZ2zB9hRjPWfaGle955g1qRa39N7FLT038G3j2zlNWpjyTADPgAQDh2keSxFJvRzugtZKOJ9oaoyliN+NBz4AWvtebwOmAUosRa6Die5ZhtGB9yZVAeChoUtpXnw6HIL+23pDMzhKFiYcaQF3AVdDeVaxh3xcvffCe1ZYr+M8zyCeGD4PHoe6TGdEptZQCB7rv4A+PTszgRbQCprnmA6AU78BEb9LlWMsReTP/qrFUmmliN9d72udjAVwzsUAcYENSSQZqB0JN3tJYyk28OCSj3lwycccey4tfap2Zk6DGlAAwohh9MqOjMzaFq6GORVqsIsCLKUKI4u0oNSkL3DXGu5a49Wsz7HXbuBMZ4MTMD26EZ1GjIKd8EH3SmTnMD89fTOdyvWFQ1HeIpLEgnEeSyWWIkHCOf7UYgleMR8V7xHxu7MJX5hZFi6c7Uck6JgtDHQIIpKEUkb6KyL/mXMu0V+1IWYq3iPif3PMbCyQ0cya4HWJnRTYkESSgeLQuudQtlKMPOyjRNUvAajAKsqzioi48TxWeYpX+KQR9N7dk+EVWlJ39CIoACfvC+XRtO9QjK2Mr/okAM8seoM+rjNXrXQcqZCe07FhUBY4DdWXLIcPgdwwJMdLkF3dYCXpqXiPiKRqcc5dMIdlvBDTGEsRf3PODTKzhkAWoAYwwjk3LbBRiQRaYXgdFveuxs6ttxJ23XGKZP0OgNFzOzK7Tj0Ot7yeWb8/RacZfaEJ7M1UmNXHy0FeoPhZXkvbjkXb6mLpzxCWP8bbbF7o0W4wpUZ8wbVfn+Kj2+7FZTOWF76bA+RicNXOrBt4T4IusJpiRJKWEksRSdVcImMswZvLUlVhRfzPOTcdmB7oOESSA7Mo4LFAhyEiSShVJpZmVhOoWbhw4UCHIpJsxP3VGEuV7xHxCzN7h7+oh+Wc0y9rCV5v30L7+gMYbl0JO3ycmPcyseWp3733hsDByvnptKwvRdlOFo4yq3ctHqu3gFosZNaqp6BVGtgH9q5jfZdi3P7rtwAsKlmDg4/npzOD6Xlbd1ZTjqrHH2QONXhiwTx+rZWRMV1aQhd4icEBPAESTIJxupFUWbzHObfQOReROXPmQIcikmx40438eb1XvOfKxyOSSr0HvA/8ChQEPvMtNwA/BjAukYD7vP7tvBn3JOSGkVnbUqTxJviiorcA45Y1ZkJMC4ryHY9OXMhjHRfQuuRQjpKFZwcNgue8arF8AqV7b8VyfoHl/IKmvIHLZzR6dDZ9pvZjbUwZeAgi4sbDLsjR/wQ9LCM9LGMgD18k1UuVLZYi8mfOJV6SMsSMOPWFFfEL59wUADN7EqjgnDvlez0OWBDI2EQCxesGKxI8vDGWwZdmBd8RiwSpOOcISWSQZYiZOsKK+F9e4HSC1zFAvgDFIhJwXRzc3XoD7mZj274buGX9LvgD2Oi9f7JNKBlWxkInWPtVOP+7Yw30g9G/dOT1GU15bcnznHnGuJ6foBG4u40sXfcDEBXdC9JA7nd+ZCgdaXZ8Eu5F49WQCPK120PdOxZBeCTuqwAdvEiQUGIpEiS84j2JjLFEVWFFksAnwCIzm+J7/aRvnUhQGhXdhrdG18bsIyheBa4BdsDE1g0ByHBTLEyDkPd+p030aNoUHs3VvRyukNGZPpAXrprm4AEHhcC+deQtuAOA2WF1mZC+BfufL8jSQVU4NfhaaArt04+FCcBaVYOVK0tVYUUkVYu7xDyWGmMpkiTaAi2Benh/v3kfGBfQiEQCQN1gJVgpsbwEM/sQGAm875x+goqkRJeqChsSYuiftYh/OefO4N03RwY6FpFAiU8qW7uMjB6YnSdKzINPwN1kWCfHkzPG0+ztGQCEfn+WJv1nMr57BFfXcZyZbHRq3JcvKMWbNIZ7gZEw68aHefTEQuyEYwytAHho9VI6levL3EF1mEdtyvdeSVd60Tp6KHvIBw2KsYBHA3UaRILG5VaFHQe0B3aaWRczy5Z0IYlI0rhEVVjQPJYifmJmL/jjMyKpRV7XkHzs4fMut0NecPuM3blzwltHeHPB07R5fAhtHh9Ck0kzcU8a9WJn8+Tc8YSehXDWUYe5tGa016W14mnCWYuVcnAVPLRmKQ+tWcrL5TowZMZLLKUKzUtOZz95OE1aRtstLLStLLStgT4NEmQcxllC/bqkBJfVYumcmwvMNbOiQBvgGzNbArzqnFuXlAGKiH/ExUEitXt8xXuUWYr4SYSZbSbxIszxngJeuULxiARUFJE0HzqdiR0bwl4Y83gTnpn0BkNcGwrwI7so6H0wHPgWMn9/mpGVW1An61uUYS371xRkX9nc8Ba8Uud5FlCTX11GRtCOPiP6AdDt2mFke/xnokkHXaHb3GGwAnK7H4Gb2Re/D5GULbOvwvhC59zCQAeTmH87xjIGr5bXVDP70DnXyY8xiUgScLjEi/eYWixF/Ggv8HctktuuRCAiIhIYSTTdyDHnXIS/N+pPlzvGsg5eIYJcwCigmHPupJmlAXYASixFkrm4S8xjaaYxliL+4pyrGOgYRJIDb3xldzYzBLJDdg4xskYLarCIdPV+Yw/52EUBFlATgLolp2MTHJNH1KeJzYTp0LfBS/S4KyPhbifjasML3UcwrX89bmcD7RgBGbx9NSgyiRk9m9Gk0UxcUeP9Mvfx0FtL2W9TvQ84VYOVKy8Yi/dc7hjL5sBA59ytzrnRzrmTAM65s8CzSRadiPhNnHOJF+9RVVgREUkKi6+iBROY2LghD/dezAkycsNVBziV+RAjDjxLMbZSks2UZDNzRjeEcFhCNV52Hbi7wXKe41V+cGN5ev+b1GzwDoyBjgylMVOpz0yKN/uK4s2+4jeyMLl3fXIX+ZFRZZozm3owez1QE6ekUuSKudzE8m3n3OKEK8ysEUBy7ONrZjXNbNyxY8cCHYpI8uG4RPEe0zyWIiLiN5piRIJd/DyW/lxSgsvt/NsBePOidR2Baf4Nxz98ye7C8PDwpwMdi0hyEecSH2OpFksREfG39i4tHcjFDc8fgJpAUW+9227YKUdcB5g3o7bXpRVY+MujxLU3ok+HsCdtPrqVHgYPwI0374OTUKr1F3x6JJx7V6+l7819eC7rK2xZfwcAo0q3ZRE1GMTz7CEfkze1gq/BlQzQwYsEqb9MLM0sHCgLZDez1gneygyEJWVgIuJfjsSrwpqZiveIJBEzy+Gc+zXQcYhcUR9Hspn3yV/3IO3nDGD4+q5Urz+XATFd6LZhGBwFHod87OF0/M/JPmdY2vtedlKY3vTk8/W3s5FSNIidQeZ3T7Ox3V0sH1GRHuVeJOR5B9Xh7srLAfjfuDXE1TNC5ju+bVaAbl8M87apxFICJL7FMtj8XYvl9XgFoK8B7kiw/jjQJIliEpEkEOdIdIylGSreI+JnZlYWmIU35CSf7w+1Ecm9op8kb1GJjWdIjj5OHveUFHO+5F+J7O170iN5/P92sZQy96Q//WVi6Zx7F3jXzKo655ZcoZhEJAl4xXv+vN6bx1JE/GwoUB2YDuCcW2tmUwIbkqQEqSEZ6nWfdwxRQBbrRi+6AV4XuIttjv8OYaw2gE9pyWS8wh4bGQb08tU0j30NQoFe9IfB57dRDejd0vvczObnPy8iV9bfdYW9xzn3GZDGzGpc/L5zblGSRSYi/nXJ6UZQ8R4R/wtzzm29qJdATKCCERFJDTL6Hjsm898tSTSPZbL3d0fcBPgMeD6R9xygxFIkhbh08R5T8R4R/zttZhnw7pWYWTHgj8CGJMnJ+1RhrX0c6DBERPzm77rCPu17rHRlwhGRpOIciSaWarEUSRL9gCVAHjObDDwANApoRBIwiXVvDXf3BSASkZQjMgX/NlHxnr9gZhWA9c65k2bWHK+Qz0Dn3I9JGp2I+M2lxlgamm5ExN+ccx+Y2Xd4w78M6Ouc2xHgsCQJ/dOxkWqtFPGk5ATyryixvLSRwG1mdivQCW/+yolA5aQKTET861JVYb3iPanzoi4SKGaWA9jrnHvd9/oqTT0iIsGo1+LzvzFc1QAGIknuchPLs845Z2bVgdedc6+Z2aNJGZiI+Ju7xDyWEBd35aMRSeXeAypxvmBPGLAQuCtgEYlfpIaqrSKStBym6Ub+6nNmdg9QD2juWxd8Z0skBfNaLP+8PsRMYyxF/C+tcy46/oVz7nczu/pK7NjMigBTgGzAYaCxc+77K7HvVGOlEfW/QAchkrJE3uR7sv3C3xSRVz4UCZDLTSx7AKOAZc65b3w3LY0VEUlBLlUV1jSPpUiSSNj11cxyAiFXaNdjgFHOuWlm1ggYi4auiIifpdaxkf6g6Ub+gnPuXeDdBK+3A3WSKigR8T93qXksAaebg4i/jQA+M7OpvteNgZeTeqe+BLY0cL9v1VvASI3vvLTEurZGfhKAQEQkVVHxnkvwdd9pCBRK+B3n3AtJFJeI+JlXFTaR4j0hqgor4m/OuUlm9gNQA+/vNy2ccyuvwK7zAT8752J9ccSa2T7f+qBOLP/J2Eh1gxXxqFVS/onLbaN9B6/wwBrgdNKF4x9mVhOoWbhw4UCHIpKsJFa8R2MsRZKGc24FsCLAYSTKzCKACID8+fMHOBoRCTQlkP6leSz/WmHn3C1JGokfOecWAgvDw8OfDnQsIsnFpVosDa+wj4j4j5kVBV7izz197kziXe8BrjezUF9rZSiQx7f+HOfcOGAcQHh4eKq5Aqhiq4hI4FxuYvmDmWV0zp1I0mhEJMnExSXeYqniPSJJ4m283j5vALFXaqfOuYNmthF4Am/O6SeADalufGV2I+pwoIMQSTnC3X3nnj/I0gBGEjzUYnlpx4C1ZrYY+CN+pcZYiqQcDoclUr7HTMV7RJJAiHOuf4D23QqYYmY9gd/wCgeJSBDI6HvsqPu6BMDlJpbf+RYRSaE0j6XIFfW5mZV0zm260jt2zm0Dyl7p/SaFS3Vtjcx2hQMREfkHHMZZ/7dYZjazccBC37C/ZOdypxuJSupARCSJOQhJpC9siKkqrEgSKAs0NbPvuLCnT1KPsUyR/unYSHWDFfGo6E7ylETzWB5zzkX4e6P+dLnTjeQEhgL5nXMVzKwkUM45NyZJoxMRv4lzjjSJFu9Ri6VIEmgf6ACSIxXXEfnnlDxKSnG5qfR44AOgte/1NryiAEosRVKIOOcISSyxVIuliN855z4BMLMcqa5wjoj4XVOXE4D8HAhwJOIvKt5zadc758aYWUsA51yMmcUlYVwi4meOS4+xjNV8IyJ+ZWZlgVlACJDPzMKBiOTejckvihhR3wc6CBERudIuN7E8m/CFmWWBRMpLikiy5RXvSbzFUl1hRfxuKFAdmA7gnFtrZlMCG1ISuteI+sx7GnlTYEMRSe7UtTX188ZYqsXyUuaY2Vggo5k1wesSOynJohIR/3Mu0XksQzSPpUhSCHPObb3ojzkxgQrmSlJrpYhHCWTwSqKqsMne5VaFHWRmDYEsQA1ghHNuWlIGJiL+FecS72agFkuRJHHazDLg9ULHzIqRoDqsiIhIanO5VWErO+em4+vSk2DdsiSLTET86tLFewwNsRTxu37AEiCPmU0GHgAaBTSipPSpIzLQMUiSMvNmnivlqrFx7l1QNwrGRvJuRDXKswqArNujYQNwE+wtnZ3RtGYrxZj39hNkf2wvh9NcDxPA3W/Ytw7Owv4aWQC4bugxrIrjSMn0ZP3hd2hiHFuelntCP6Upk+kUMgrcXACcqxOIUyDyjyTBdCPJ3uUe8WCg9EXrBgFl/BuOiCQV5y5VvAeVhRXxM+fcB745LKvhdRbo65zbEeCwRP6bbpFs3H0WV8SwLxwMhK0Rxc69Pa1IPU4XSUvzGdOJKR1G/0d7Q22w5Y/z9eNFua3XdxAOt+f7HM448t64k2ujjwFQtuMnsBJG0RpnIdhJx+LQatRmPtGkI2/cDqAkeygcoIMXkb/zl4mlmRUGigCZzKxGgrcyA+mTMjAR8a845xIv3gNqsRRJAs65H4DXAx2HiIhcWSrek7h7gCZALuD5BOuPA52TKCYRSSKXLt6jzFLEn8zsV/jTP6xjwOfAC865X658VCL/jlkUPBtJj/4vcoKMpD1yDF4CjkI6ollNOQAGTO7Fz02y0b7BAMKIYfI79RlLKz7PUInBdKZLzygG3h9JjY8WseGju/mwZUWuHuz9M6nY80NGVmhBm5cn8k63mnAzPDZ1AWyE9kMHsNd8o7GcOl1L8qfEMhHOuSnAFDNr4pybfGVCEpGkEOcclkj5HjMjTrPSivjbKLzePW/gdQxojJdYGjAOqBW40ET+ubojptN7Xn/stjim3fgojarM5sjo9KSPPkXaw95nPmpyL/cv+5QClX8k74JD5Ky1m4PP54dYaFlrLPfOWAtDoP/unnRoOYxGcdPgbe+7K+56gO+qFmVDt9s5ShaoAu82rsbaxuFUYSm1HVRgTcCOX0T+3uVWhZ1sZoWAQgm/45xblFSBiYh/xTkICfnzelWFFUkS1Z1zZRO87mRmnzjn/mdm3wQsKpF/IcJloTBrIBzG5XuKUbShR50Xuf74z/TM1JvT6dMCcIp0VN2yincrV6NPrc5U4WPunr+B5t+PYi1lYAPkbbCDfQdyk6POCfgFGODt4/WqTSnLGkoP3QpVgOtgLeEspCZ9LAxQOQBJWdRieQlm1h94GvgWiPWtdoASS5EUwl2ixTKx7rEi8p9da2ZZnXNHAMwsG3Cd772gmM9SRESCy+VWhX0MKOScO56UwYhI0rlUVVjD1GIp4n8jgK/NbBHeH2JrAK/45rb8LKCRifwDZqf43E3m7qkbyNL4KDVYRGF2UHnGaoY0aEOnkqMYuakFAG3nToCFkK3dYa7lKFn4DWrCxIFtCHv6OOl6/MaeHTdRrPB6vq14O2SAt2rVBuAEGelNT29dydrsKlmAmiykT41+wOIAngGRf85hnFWL5SXtV1IpkrJdah7LkBBVhRVJAm8CnwAV8cZVjnbObfK91zZQQYn8G2/QhHcbV+PhOovJPfdH9i8oCPeepVONUTDf0XbfKABertOBbiOHce+ktZRp9hltZ06A7MAnkPH5E3QP6c9ZoAA/Uq3dYoZt64bN9W5Aw+u0ZP7Qx2EvrKEswxd1JXeNfTDmLPAiLn/wzQkoKZdXvCf4/p+93CP+3MzeAt4B/ohfqTGWIimH4xItlmY4tViK+I158/qsdM7dBmwOdDwi/5ZZFPBCoMMQkRTichPLO3yPzyZYl2zHWJpZTaBm4cKaRFck3qVaLA0VRBDxJ+ecM7MfzOxa59xvgY5H5L9Y5u5jOZX4jSwsm1uOymtWw9XgYq+i3aJXmE09vj/t/d7KsCgWTkChZt+wbuY9sAuydf2Zwx9eT4uQCcymHgcz5eSDO+qw9attFL55B6z09tN+61imdazHciox/Icu8Dg0OVEM6IfTFCOSAql4z0XMrJjvaZsrEIvfOOcWAgvDw8OfDnQsIsnFpcZYevNYioifnQQ2+MZYnoxf6ZxT84+kHDUjqbSnF5Xz9+ADt5p95IHnIffKH7Gtjldox/7WBXltdDvv88XPcu9Xy6nHbA7Wz0X//r05vON63GnDGjtumbqBgR0j4QC0YAKHyE6fCG9a9D5HelKDRdSLnsPEQrcC68nwe4r6+SkS9P6uxfJ93+PFvzvNt+5Gv0ckIknCOS4xj6WmGxFJAjt8i4iIBBlvjKVaLC/gnCt4pQIRkaTldYX98/oQU1VYEX9zzkUFOgaR/yLtkePwYiY25LsFhlTnKOMYQBeYdpbWjKJwsZ2EcZpnRw9iAbW8L61Iw6dr72dd33CiMkXSoPskZtRoxoBF7eFbaMB0elx9O6/vbsouCjDsSAeWZa0MwMGsucjaLhrCYbhrSXt7iJPXfI5zNQN3EkTkH0lkunQRSY0uOd2IaYyliL+ZWU4zm2ZmK32vS5pZq0DHJfKPfOxVaM3d8UeeKDaPLcvu4PX8T9Nj6GDSE80JMvJahef5vH8lPu9fiZGNW8BJiF6SlV0UYMaMZpAGum0fBsuhh3WHLVCeVeRjD6ePZGYNZVlDWdITzbMjBpG38Q7alxsLUTW9RSQFip9uxJ9LSqDEUiRIXLp4jymxFPG/8cCnQBbf621A64BFI/IPeNVgReS/iCWNX5eUQImlSJDwphtJZB5LQ9ONiPjf9c65MUAsgHMuBogLbEgily+mRSa6d+/JM2veYP/ufAzZ2gY+wOsOWwoezr+YJqtn8uzKQTAAGABtS0+gz6TO/F4zhNGLOnJvg4+gM3xQpBKUhy3uThhzmp0Uou3ACVg3R6eVo+i0chQl2ExODlCNxfB5FERG4XoG+iyIyD+hxFIkSDjnLlkVNk55pYi/nU34wsyyQCLVs0SSGbMo+DqS4XNbkpMDvFW2NmxMw0vH+0JN6Ekf7//uPesZWa4Frw19HsYAY+DMCqNHucFk+CwWPoVPe98PK+CBUSt4pOfbRJOOJ/NM5eHRixnXpbFXInKjt9SLnsNRsjCxgirBSsoXX7zHn8v/2Tvv8KjK9A3f3/RMekINRdSAgoCiKIplragormBBsawFQcWKuiquIPaKiqBiXwsr9kUX64I/C4i6iqCIiNJ7ejK9fL8/zpzJJJlMEg2EJO99XbmAmTMz35zMHM5znvd93tZA6/BVBUH400Q1ScN7JBVWEHYIbyqlZgGZSqkLMMpgn2vZJQlCIzkGztk+m46/VzBjj0sgDOOzZvGI8yau9j4KHwMj9sdBkGET51IWq/i2qy08pCdgJcw1VbO455Rr+ZbBqOM0L0wYzUEvLuPG86fCCZpxm57GstpDNGKcik50P8Qv7AWfG2W4MrtSEFofIiwFoZ2gta5n3IjMsRSE5kZr/YBS6hyMHsvhwHSt9cstuypBEARhZyDjRgRBaNOkciylx1IQmhelVE+t9SvAKy29FkFoDGqi+beDYCp0OLaK+Z8cytFzFqL3VajvNO8NOZbnuZDCB1Zx37wpjBv4Imcu/ScfzTXGjeRHNnLdfTPhDA2fws3vPMyY556DMriPm3jo/Alcd/dM6A7ZZ5XyquNsThy6AIDHT5/IiImvA+JUCm2DHZDkmq2Uegp4V2v9bnM/eXMgwlIQ2glGj2Xy8B7psRSEZmeRUupnjPLXt7TW/pZekCA0hv/Tt3EJ3Xj18lM5e/LbvHD7aP7JmXARjHrwLQKBbAAOGr6YyHAbZ14yl1ufvgWAO+bcheOSCt7KG8XJWz6BY2H2wotgJPy8dBDXPTaTe56+lj35jXcZwVY6sXlhDgD/4C6eVUXAVCmDFYTklGutx7X0IlIh4T2C0E6ob46lRSlxLAWh+ekJPAKMAtYrpZ5SSh3SsksSBEEQdgZGKWz7GzfSOlYpCMKfpv45luJYCkJzo7WOAO8B7yml8oB7MOZatr+mG2GXR6mpcLbhEs5iPCtXDuRs1+v8cPtenMHrrLx9IPxDEzwsC5WjGbHwdea+fCaqt4YT4Y6FdxlP1BXuybuZkzf9B64GDp4Ks6bACrhu0p08dOE/uOndR2AJbLu1E9voTFd7GQAZ5UXAzBZ494IgNBciLAWhnaBJPutAiWMpCDuEmKAcA/wNyAZkKp+wy3L/7KsAuGHmY7wSuRi1RnPGtNdZ+dRACMO4Pabz1DNXo/0KdaBGzdA8NGQC1y2daVwyASynecihjHsKbuIW6508p5cziwWcMm4uN098mFun3UIpaeQt99KHpaxcPBB+Mf7/qUp/EchE64n1rFAQWg8S3iMIQpsmqjWWJOk9RilsCyxIENowSqm3gMOAfwPXaq2/aOElCYIgCDsREZaCILRZovX0WMocS0HYIbwFnKO19rX0QgQhFWo+HKmHsJ5lxg3HQI+9f+XfHM+RkU/J7hKADDiH2Tz149WwETp9s45tt/ckf0gRGwZ2YI/uvwPgsWVTyM88z0U404JcMHcOFMKafr24ddot3HHfXdwevBu6wZEsYOXWgdwzxHAob47NwhQEofUiwlIQ2guapHMsLQqZYykIzYRSyqm1DmAIS6WUcifer7X2tszKBKF+Pp14Ap8OPgGAa8c8zFieoYgOnGt9me6nrGL9D71ZwCFQBJwN2+w90TMU13MH7zCS4HtZAHx/fn/WLt+bCf1mcmPWfdy26l4eOmUCTgJccdEzPPLceCbwENdwL/kUwTtw81/3ia9D67Et8O4Foflpr6WwkgorCO0EI7yn7u1KKXEsBaH5WBT7swqoTPKnIOwyKDW1pZcgCEIbQhxLQWgnaFKVwu705QhCm0RrvX/sT7lwK7QOPoHLp03j8cVGSWoEK1Pevo/JIyfx7vlnGJ3Cn8LRZy1k2KS5lJIG/4SiMRk89NY/wA8UGk910JhlfDT7cB5nAoWsgn/BVWMf5x9Zt8Gp8AIXskQdDOcBZcC3ABt3+lsWhB2NBsLt0LEUYSkI7YT6xo1YlNTCCkJzUbv0tTZSCivsKsTdynue4dS73+ZxDGHZ+7P1/N/IIbjxkv3MFv7jOBn1sob+msP5jLxLvFz+9DQ6/l4BBwfgHSdMiT3pCBh20eewBea9PBxmQJeMDfxKbzgFhjOPxXoIEawMYBknq3OB3dD6gpbYBYKwA1GtZvZkcyJXVAWhnaC1UfZaG2OOpShLQWgmzJLX+n4EYdfhwilcriv4L8fCT8BP8O8jjucvkxbTg/U4HUEWMhTuhYwuxfxj+0N0enodo5nDHXvcwJUF07n88mkwABgAV171AOwHTIHgt1n8e8jxFG/oTN4ZXm7kPlZRyN9Pmc50rmICM4C1sR9BENoC7U9KC0I7xJxTmWyOpUUpMSwFoZkwS2CVUrcAQeApjK/e2Ni/BUEQhDaOhPcIgtBmMXsok5fCimMpCDuAE7XWD2ity7XWZVrrB4EzW3pRggBGGexuejRPPHch3zKYpQzAcpIHy0ke/jr5Q067+xXOnfYG29YVsIo9oQoK3asIO+FKpvOXSYu59YwHKSafqUwBF+CCxybdAENg2JC5OAZXkE8xV/Z8GHIgd5qPiw98BTbA5rt3Z62aA4DWU1KuVRCE1oM4loLQDog7lsksS6UQXSkIzU6+UqpQa70KQCm1J5DfwmsShDhrfuzLgv6HMIMJHDRnGd1HrwLgltvvYmzFC9iOOZcLez7BYP7H6cMOpzPbsP+seWTIeBzXV+BwBZn93EXMnnERnBt70pNhUp/J5FDG8XkfclzFx/jW5HLP09fyKOP4euIADnIvg++B06egX2+xty8IO5z26FiKsBSEdkC1Y1n3PvM2rXXSHkxBEP4QtwBfKaX+F/v3IGBcC65HEARB2EloVLtMhZVSWEFoB0TjjmWy8B4V22anLkkQ2jRa67eAvsAMYCawj9b6nRZdlCAQS4O9dwpqnaaIDhw0bRl4YEPvQjb0LqSMHGxPAk4oJp9xH73Icc9+wb5n/AJnw99LHiDwcja3uO+CIzVffzeAtLGlpI0thb1e4O7bb8dBgDX0YmTW24R6KW6e8zCD+R8HvbiM7d5MeGOq8SMIQptCHEtBaEckMyRNxzKqNdak8T6CIPwRtNbbgXdbeh2CUIcDwbKPh8UcRNrYUp7IupTfLjKGUT7MtfT4+3qGsJgj+ZQZw67gac7joYsncB838gMDUV9pWAVcAQeu/hHf97kAvKbf4g0UOZQxnHm8zanMzBrHfqO/4rDl38J+0DGvEnJBl7Tc2xeEHY2WcSOCILRVTMcyaXhPTFlKn6UgCIIgCILwR2l/UloQ2iE6RY+liSTDCoIgtG2UmgqzprDn0T+x6of+qB80Zw77J397/zXUW8b/AX2f/h6Ao1jAhrsLyZ9UxDIG0Is1jOUZuqr/8G99PKf88BH8BE+OvIArd38AgMUcxGuf/Y3MI6p4tucEOBa4ABz9K8APvAGUmiWwkgYrtG0kvEcQhDZJvMcySalrMhdTEARBaFsoZQi6X8f1YDW9UF9qdLnin8PO5MkTL+CHE/cCYBV70pltbFhYyEOTJvB3HuBlzmHYpk/YUNCNxXoIq+nFVfveT799l3NZ1vPoc4z/R0554jW2H5FJx/sq4RF4edTpnDvnDQL+bO4cdh23HnAxcCZa922hvSAIwo5EhKUgtAPMYJ6GeiwFQRCENkyPKRRuv43eV6+Hk0Edq2EehA5TOH1VALze+QwOW/4t9wy9luvmzYRCuKLPTM4reJFPOZL/bjqW//qHc8we85jHcHgH1BfG/x/78RWvMAZ6w6RRkzl34huQAw9MvpI5jAZeiy1E3EqhbWP0WIpjKQhCWyQuLJOkwsaF5U5cjyAIgiAIQhtFo4hE25+wlPAeQWgHVIf31L3PLIXV4lgKgiC0aW5ddwtqvkZ3UujDFT/2KcRxcAX2nzVfdT6YrzofzGlvzaNrv9XcG7wRVgBfwKqte1JGDuvpwakFb8MTivN4kVXr+8NtwH7Gz7/5K1dvfwodVNw9+3bun3YVhOHvL07nR3UgMAWtxa0UhLZKq3MslVL/BEJa67EtvRZBaC2YkjFVP6U4loIgCG2Yu6YwnEH0GL2ewtE/ciSfMp4neS7vIgqGbOKgOcsAeG30KVwWfYIejvWUX+dmT72e377bh3ffPIPzLn+JHqznnUFnccFzc+hwUTH3fHYtCxkKwDOMZUnH/Xj37I78qAvpP2kVF989k2cfnwBIaI/QjtAQDotj2awopR5USq1WSmmlVP+E2/sopRYppVbG/uzdyOe7Avhwhy1YENoo8fAecSwFQRDaHWZwjyAIwo5kRzuW7wCPAp/Xuv1JYKbW+mWl1LnALOBoAKXUnrF/J/IhMB9wA++Z2wqC0DiqhWWyVFjjT9GVgiAIbQ9TVL45aTiHDP+e/vO+IYcyLuR5DnpxmVHG+g68N/lYAIaX/JeLXM8x2X0H/9MHcO+Pt8FUUGM0hawin2IeGTOeaxbP4uS3PqHrqNV8wAkAfMjx9OEX/qVn0/+UVdwx93pufetBrrn8XrjcycPc1CL7QBB2NlorIuFWVxj6p9mh71hr/QXUPJlVSnUC9geOi930L2CGUqqj1nq71vo3jMlHNVBKTQZ6AHcB+yulDtda1xasKKXGAeMAevbs2bxvSBBaK2Z4T5K7zO+npMIKgiC0UXpMYRk3cci8BSxaehTY4LBvvwUbXDxwJh8OPJ5LeRKAe/NuoqKkIze7b+M8XjIePxZYAIMO+Bnl1dw68Bb8AxQPD7mGAE72XfiLsd0WYDxs3p7DQ3MnMHHz49z6zoM8cloAgIflvxmhnWAIy/ZXCtsSUroHsFFrHQHQWkeUUptit2+v70Fa69sBlFK9gH8kE5Wx7Z4CngIYPHiwHMIEger+yWQ9lnHHcieuRxAEQRAEQWhbtDqPVmu9BuPamSAIjSRVKiziWAqCILRJjDLYM9lt3Qpue+teODgAW+DKYQ+woN+RlJHLs3MnwBrQI2L/QfwK6ibNe98dy3SuZK/+K3H393LHiOtRv0c5cuAHPMNYHuZaqr7rAN/CE+MuBOCyOc9z8faZdC4px5kX4Kaut0EhMHUKenIL7QRBaAk04ljuJNYD3ZRS1phbaQUKYrcLgrADMCVj8vCe2DaiKwVBENocx+jf+W/Hk3h5++mMrniTD4cdQwQr01/9O2PPmsFLh3UicEg2KuQH4MhhC/h62AAOWmykxH405HCWMIgINtbu0YWeP27j3v7XcPOnD7No+CB+2b8PF1wyB4D7n74KKxFyMzZTPqYL/Osu4mmwkyUNVhDaOjtdWGqttymllgBnAy/H/vxea11vGawgCH+OaDRVeI+ZCrtTlyQIgiAIgtAm0VoRDolj2awopaYDo4AuwCdKqWKt9T7ApcA/Y4E8pcD5O3IdgiAYJK2Ejf0ppbCCIAhtB6WmQocp/HchLNo+iAhW7KdqOBeOueg/3HDWAzzK1TjzAqh1IU7t+QYACxnKgS/8CF547fJTuIKZTGMiCxlKMfl83v9wbp7+MHqE4mnOY9z8F5nxtNGhdMX5z8BLIUbodxgwexl3/8s4sdZa3EqhvaGIRlpdx+GfZkenwl4FXJXk9hXAkB31ukqpEcCIwsLCHfUSgtCqqO6xTOFY7tQVCYIgCDuay7dP43E1kUPe/J5Joybz5vzh5FKGgyCVZHLiiwvIP3cjm3t2oOv0MgB+vaoHmWdu5xD3As68YS4MgJP9n8BhMKffaFa93Z9zt4AKaf7FSOgOV0x6xnjB/YCz7Ly78AzePXR5S71tQRBaiDYppbXW7wLvDh48+JKWXosg7ArEU2Etde8ztaZZLisIgiC0AbpOIcBMvtCDOey7b7lbHc1+ejirvIVU9e/Av34fyaLzBxmbzi9Dn2H8Z6A2+eETJ1+efDQDH/iapSUHkW4r4des3nSfV8TMkRczY+RYiujA1TzKy31O59yDDbeTb4ENcNjwj/kCw6WUYhihXaKBdhjek+Q0UxCEtoaO/c+ukhTDKumxFARBaFMYabCCIAg7lzbpWAqCUBPTjEyZCivFsIKwy6OUOhf4O9APuEZrPSPhPjfwPHAAEAau11q/1yILFVqc6I+K5ezJPp/9xhNHXMgNngfI4HtmuCfw0u/n04s1HLLyezgLuA2u73oHAA8xkcLzV3EFD/Hj0gN5ZuB5+D7K5bJhT+A4uILRzKHjpiJmFEzgO/an25XFrHrsJgBuq7oXvoIv9jiOeBos0l8ptEO02hGOZbZS6ing3Vh15i6HCEtBaBfUnwobL4UVXSkIrYElGFLgpiT3XQ9Uaq0LlVK9gc+VUoVa66qduUBhV2ASe+eNZGuwExuHdOOy35/joz2OIJMqDnnreyOT/y3QpYoHvruSISzmL98tBiDaS/FJ3mE8/tlEXjhiNONKnoYiGMNs3n3jDBaOG8ppBW9wxcpn2LPPb7zz2J7ctvJeAP41ZiQPj7mWr/sfAUxBj2u5PSAILYoGwskiE/8U5Vrv2t8qKYUVhFbMiMe+4NQZXzS4XbzHMqljqWLbiLIUhF0drfWPWuvlQDTJ3aOBJ2Pb/YrR8XbiTlye0MIoNVXKYAVBaDHapGMpqbBCeyAcibJiSwUZzoa/xqlSYaXHUhDaDD2BtQn/Xgf0aKG1CC2I/sKBmqe5cfhUvmYIh+zxKcd99gWkwx2jrueFURfyybSTKZz4I09wKSdUfEDf/b8H4GjeZ2HJUL4+YgAHzV7Gs2PO4eItr3D2nLfpP+4bDmIxf138ITOGjGUAy/CSxj19rgXgbPU2Z+p/8vX4BcZCxkkZrNCOCbf0AnY+bVJYSiqs0B747NfthCKaYDiZcVETUzSmmmOpG6EsRz3+JVEN70w4tPELFQSh0SilvsMQiMnorLWONNPrjAPGAfTsWd/LCa2Oaw0hd9Oh8DUDqCKTDzme8TyJ8mt0geKmioe4dcuDfDVxP357ax/WjNqdL7MOZf/PjPEgy79UfHXzfhw0fxkzxoxlKF/CsdB34PdEsNH191LKBzvJWhFE3aphBHBB7PWnwmvKBhSi9TktsQcEQWhBpBRWEFopb/5vIwDpTXAsk/VYNmWO5eoiD79sqWz8IgVBaBJa6/211h3q+WlIVK4Ddkv4d09gfT2v85TWerDWenDHjh2ba/lCCyIlsIKwC6ExHMvm/GkFiLAUhFZIuTfExz9vxW5VFFUFCEdSu5a6EamwjemxDEai+EIR1hV7m7pkQRB2PK8D4wFi4T0HAh+06IqEnUJcVI41fsYwmwPH/MjRVy1kP5bwPwaj0xXqM81JWf8GPxy8YgmOIyu4nckcXPIV3Y9YRfcjVvHKzadxyEXf0+fopVy19VHc+Dhk4AKG8x82Bbui37CQvdbP1L1v5LbXb2L++UN5KDqBh6ITYA3AqtiPILRjRFgKgtBa+OvMLwiGo4wa1J2ohmJPMOX2Oh7ekyIVtuGKWjplugD4dOW2Jq1XEITmQSl1tlJqA3AGcIdSaoNSql/s7geAHKXUKuA9YJzWWkoM2gn629vQpQpdqigjh+tn30HGvUXMYjxzGcFXh+5H14tWcxQL2D4wk//sfQzBNVksZSCBSDbr1/dm/frevMj5zH9uKCsXDiT6Qzo97zGO9yN5h7sc/0BVaZ7a429soiuZVPILe3HdVTO57qqZ8LwhcLWW3kpBaI+IsBSEVkixJ0ia3crRfTsBsLXCn3L76vCeuvfFw3saUQxb5jUE7IIVIiwFoSXQWv9La91da52utc6N/X157D6P1voMrXWh1novrfW/W3q9giAI7RINhJr5pxXQJsN7BKGtEwxHyXDa6JJlOIjbKgIptzclY7JS2OrwntSvGY1qyn0hLAoW/V6MPxTBZW/24b+CIAhCE1BqKpYt1zO380JuZzIA3758GPeeeyPPuS/ikuBTlK/owsGfL8E9wctNix+h85C1jGcWj+w/nkF8x7cdD6SIfABGM4fzeRG9VaF20+Rct5kcyljMEO6OToIT4JLNLzHW+RJZru1UPdYBjo0t5tgp6FNaaEcIgtDitEnHUik1Qin1VHl5eUsvRRB2CJGoxmpRdI4Jy62VjXMsU4X3NNRjWRUME9VwaGEH/KEoX/1e/EeWLgiCIDQzr3c+gwUcRRH5FJFP4bk/sjA4lDN+eJdCx2/0Hfg9QyfMZwyzGT/kEXIoYzn9uEZdxKuczRSm8hc+4y98hpUw43mSf448k0f2H8/bjlF0oJg3OJ0bLfdBETzQ9UosT2pOd7/BiBtfh79Orf4RBMG4oh9p5p9WQJt0LGXciNDWsSjFqP270yHDgVKwtSHHMsUcS4vF3Cb1a5Z7jTqMYf068+WqIm58cymLJx2b+kGCIAjCDuV+Xcw/uIuPOY4JzATgHF7hUcfVfLnvAezHEsbzJIMqfuSMrH/xzkdnsWjYID7hGNboXhzy3ffk77eRbywHArDH+ZvgzjDf9RzI/tOXw97w0bDDKaYDV0RnoA9RPMCV8D288NGl/N+wIVyv4QgWt+RuEARhF6BNOpaC0JYJhqMEI1EynFZsVgsdMpxsa6DHMvUcy8Y5luU+Q1h2ynKR4bRR6W8lEWWCIAhtFBkxIgi7MO0wFbZNOpaC0JbxBIyjizm/snOWsxHhPcafqVJhG4ruKYs5ljlpdhw2CwERloIgCC3OcvrxKmfR7bNi9jriBwCKo/mcE36ZCx0v8OzyCYzs9zbfZtmYwRXsOWwVh6z7Br3Czq3fPkjfSd/zW8me7B7ZDMAPL+7F5xzOenqgRyrG9pjBSvYiDR9DLQvZ2Ak+14dDJlwz7F7+ooYDDVe9CEK7whw30s4QYSkIrYyq2sIy08Xm8oYcS7PHsu59ptjUjXQss912ThrQlbe/39ikdQuCIAjNS389nCDL+JDj2bfLL5zIWwCs3LIXvxfsThH5ePulcU7wZcomdOWBp6/kmeBYvus5kH49v6PPsKXcwl2cc+GbdP73WgBO5w2GspAPOR5vDzeD+J63GclWOlHIb+yv17J1xW6ogzX78T0vaPgbc1pyNwiCsIsgwlIQWhmmsMyICctOWS5+2FCW8jGmY5k0FVbV3KY+ynzGqJGcNAdZaXaqAmGiUY0l2QwTQRAEYYcymC8BR0svQxCEZIhjKQhCayBZKWxRVZBQJIrdmrxtOmV4T9yxTP268VJYt51Ml42oBk8wTKbL/ofehyAIgvDnyKSKfIrJp5g7+lzPYP4HwPqCHqyhF0efv5AfXyxkpWMvTn/6Za7lYco+7MrrI0bw82eDOPOIf7KAo3j73yPZun43AH7qsSdTMHo39+IXBm/9hoGdlzGVKaxkL57mEtSLmjfvHs5paggAf5MyWEEQEGEpCK2OOo5lpjFyZHtlgIKctKSPic+xTHKfeVtD4T0VvhAOmwWX3UpWTExW+kVYCoIgtAT/e/xQOl2+jlc4h93f3kzRyAyWMQCAb70H4SrzM+zFuezz9m8MHbmQ4/mQHMroNeJnir0d2POIn/iNQoYzj3N4hfE9Hok/95NcShH57L15LdO7Xs3tTGbU5vdh3fscNeR92BdOs8wDBTraQjtAEHZl2qlj2SZTYWWOpdCW8QSMYUYZCY4lkDLAxxSNycpWVSPnWJZ5Q+SkGSIyM0FYCoIgCDsX1bOlVyAIQkpMYSmpsK0fmWMptGWqS2GtAHTOMhzLVLMsU40biWvNhuZY+kLkuE1haRw6Kvyhxi1aEARBaBaUmgo9pjDj8rH8wl7MYTRdR27Ch5tNFACw1D2AW923czpvoA4IcTGzOOLdr/lsxEGsubIvPz22J1bCRLCRTxEdKso5avUiAD7Y90jyS6rocEsVXAD9ui5n60278fq9IziDd5nKFP5ylvE6Wg9sqd0gCMIuSJsUloLQ2hg9y/gPfc74Qxrctm54j+FYbqts2LFUSceNmI5l6tct8wXJjjmWWWmmYynCUhAEYWdzwbonKSWH6Sv+zoq9d+M+buJG7mUlewHQj+UAhLHye8+e7P7RZlaP6MrzXMgR/b/mPm7kfm6gy/3lnP73l3kg6waO2nc+ABFsuPO8/HLBvkwY8hAz11/HOfc+y578xjNdx/JpyZEwNqul3rogtB5aicvYnLTJUlhBaG00NOojkdrhPfnphrB88tPfUjy/8WeyAFdLfI5lw6Ww2WlGAmHcsfS1w6OmIAiCIAiCUAdxLAVhF+CnTRVxN7AhqgJhHDZLPAHWalHYrYpQpP4EBVM0JncsjT8bciwrfCFyusUcS5c4loIgCDsbpabCv6cwu6QCjy2bD/Y+krc5leffv4zCE39k1fz+ACw9ug/7TvyFr6cN4EOGMnvYOdzLTYxnFqePf5l+LGchQ3nh7xfyScWxjM6aw9rFewPg6F3BN3kHMnTIfIbzHwjDo1zNGbzOgtUnYnVXYbnTQ6RzekvuCkHYtdFAOzxFEmEpCC3MumIvnmCk3lEhtakKhONlsCZ2q4VQpH5lGI1pzmSOZaPDe3yhuPit7rFsnGPZlFJfQRAEoX66n7KKVziHZfRlOleSSSWjT3yBfizn46MPA+Ds6KuMmPY6f+NFgjg4gG95hXMYydsAjGcWx/ExBWxiZNbbWAlTMsQNwA08wF7elTzqvooDV/wI6dBhcxX3d70B9bGG8bGFyIgRQagfDURaehE7HxGWgtDCfPlbEQChaOMy2z1JhKXNoginsByrx43UP8cy1UlCMBzFG4zEU2FddisOm6XR4T0bSn1U+kNorZO6poIgCELj+IqDWUkfBv3vZwYdsIQIVrqyibu5hVImA1D8TTe6DtnEnfyD2YzhGh7mBS5kGQN4Y/659Dv6O57mEpbTj4e5luX0I5cyAJ79bgLP5F7BP3a/i4K9N3E8H3IkC9hMQeyscWpsJVNa4u0LgrALIz2WgtDCfLHKEJY5sf7FhqgKROL9lSZWiyKSQlhWh/fUva8xcyzLfYaANFNhAbJctkb3WFYFwlT4w3y7trRR2wuCIAg1UWpqwxsJgrBr0E7HjYiwFIQWJBrVLIwJy6KqQKNCfAzH0lrjtmP7dq4h+mpjPq8libK0NCIVttwXBKrTYMGYZdnYHkuz//OlRWsbtb0gCIJQl1P1XlgJs4CjOPyAj7iS6RzO59wRncyvkd5kUkkmlWgUd/EPBn60km8ZTJfDyrnp3Ud4hrFQAJO5nRt4gEu2v8TPm/rx/RuHsCe/sSe/gR9u2f1WJnM7Lyy81Bhn8lYZd3ELnBCAjTehtbiVgiDURYSlILQgyzdXUOoN0bdrFoFwND5KJBWeYLiOY5mVZqfCV7/Ii8+xTNpjaW7TGMey2lXNctmobGSPpdmb+e4Pmxj1+JeNeowgCIJQzRN6DY9yNW9yOqOZQy5ldFlfTgQr+1mW8Ix1LLmUkUsZ64Z0osP2KoYM+z+GsBj1mh/S4Voe5su9D+Csbu9wE/dyeseXOazgMwpO/5019GINvRgx9HWKyCeHMn4cWsh6epBxQhHF5EO3e40fQRBSI45l20EpNUIp9VR5eXlLL0UQUnLZy/8D4K/7GcOmi6qCDT6mKlBXWGa6bHiCEcL1JMNG4+NG/lgqbJk3JixrOZaN6bHUWlPsCXJcv85oYFtloMHHCIIgCNVIGawgtDJEWLYdtNbvaq3HZWdnt/RSBCEl5b4QaXYr/boaw6aLqhoWXVX+MBmOWo5lbPxHfY5n9biRuvdVi836laUpLBNHomSlNc6xrAqECYajHNgrlyyXjeJGiGdBEATBwBSVl332PLczmQBOLuFpDudzdDqsopBP1p/MEBbjxY0XN8vpB354hXOYWnEHRxYsoPPRa5mw6lnW0IsPNh7JKZs/wkqYLyYfRwQrl/A0l/A0c1efyRIGsc/q37iEp/nfZ4dyp/sWflNvAEgZrCAI9dImhaUgtBZ8oQgZTisdMpwAFDXCzfMEwmS46jqWQL1hOtWOZd37GuNYJgvvyXSmLr81MYVkXroTp91KuJHpt4IgCIJBV30+Vx7xAM+sv4KJ1zzOwhVH8zmHc0XeQ5zOG3AdnMPLXMV0rmI6L3EeA3p8zcNci20uWImwdfVuqE2ac1a8yVY68X3XvozkHTgY7ucGflmxL7+s2Bf1tWbxl3/hy90PYHmwLzOOGMs1HWe19C4QhNaHOJaCIOxMotpIdO2QafQuNuRYRqMaT7BuKqwZqlNfaaqOp8KmCu9J4Vj6QihllL9Wv2bjHMtijyEs8zMcWBUp02sFQRAEQRCE1okIS0FoQaJRY65jntuBUg33WHpDxrTd2qmwcceyXmFp/JlsgqRF1dwmGXO+WYdFKawJlmemy44vFIknvtZHcUwsd0h3cvoBPWKvlVpcjp61iNGzFqXcRhAEob0wmduZywgqChwc+8h7bNw7n3eXnsHMVddRRg7PvTaGQSyJl8K+svliflx8IP1YzuvnjiCAA3d+Cc8ecQ637H0r93ETYazMYTTjhj/KI1zLT3vvyU9778mpo19l8qGTuI8budDxAiN4F4qMclwpgxWERtJOeyxtDW8iCMKOIByJooGzD+qJzWoh1+1o0LH0xHoo6ziWMSexPgcxmmLciCk3UzmW4YjGVquO1hSzlf4ween1z+AsiTmWeRkO0hxWohoC4Sguu7XexwiCIAiglsJa/Tg9Z21j/fgeZG0K4u7h5Woe5caBUxnLDApZxU3PPsL/Lj4g/rjhXd9E366gHCqOceC2elmcNYSLPpsNfeGuL+7AM9zC2+vPZkLhQ0xjItO5EoC33z4b9zElfJl1KEsZwG5qKQBad26RfSAIrRJTWLYzxLEUhBbCHzacvrSYwOqQUS0s63PszHCejHqEZX09j9EU40aS9V3WJhytKywbek2TeClsugO3w3ivvmAk5WP8oUi8r1MQBKE9cw4v89n4g7jr1Tu4qsf9dGUTE5jJtwzGSYALeB7nyHIWMpQ3OJ03OJ0INno98TMshjOsr7OYIbzNqXQ+Yi3/7HgmFac4eNB5A98U9udDjud7BvHUugk8tW4Cn408iI1Z3dh/4XJe4nzgydiPIAhCakRYCkILYYorl934GnbIcDZYCht3LGunwqZVu4fJ0Ckcy8b0WIYjUWzWmoeLRMcyFcVVQTKcNlx2a1xYmiW99bG22Mtv26tSbiMIgtCWkREjgtCK0UComX9aAVIKKwgthD9kCkvTsXTyw4YyACr9IezWutd9qvzJS2FNB7PBHstUqbApWiXDUY3LXsuxTDPLbxtyLAPxUlnzvfqC9YvRqkA47lZqrZMGDgmCILQHDhv4MTfwIHMYzStnjaEfy/kvx7Inv9GLNVzJdI5mAQPylnEl0/nb6tcAmLn7xYyveJbBt37BP/kbbrwArKEX6+nBYutBfMIxOAkwgneZuPlxgj2N43Q/llNGDkcO/YD/5p0EuSehS1psFwiC0IoQx1IQWghTWKbFXLz8DAdFlQEiUc0vW6vYUOqr8xizFDaz1rgRm9VCusNav2NJw6mwqeJ07FYLp+xXUOO2hgKDTIqrguRnGCcs7pjT6gvWr2I/W7kdHVuPPySjSQRBaKf8dwrPcxELGWqMFAHeYSRjeYZlDOBzDsdGhAEsJYcyLlg8h5xum8nptpnvGcQnWUfyi3cv+vdexaU8ybuM4KU5l3Dr/Ac5I/g6/VjOKgp5ZO5NDO76BWl4ScNLxz0q+ZDjOY+XoHSq8SMIQtPQQKSZf1oB4lgKwg6gdn/knPGH1NnGZzqWtmrH0hOM8L+1pUSiOum8R08wuWMJRkprQz2Wqfop6yuFDYQjVAXC5LlrBvTEeywbKoX1BOmW4wKoLoVN4Vh+9NOW+N8r/aG48BYEQWgPxEtg/ysJrIIgtC5EWApCC2H2WJrCqWOGE4D3lm4CjCTW2lQFjMekO+uKrVRzJVOlwlpiarO+ESBlXkOs5qbXIywbCu+pCjCwWzZQ/V7r67E848mFfLeujCyXjQp/mAp/iE5ZrpTPLwiC0FZI7Kvc7egVDKxYypb0LmT9GuSVvc8hhzL68AtHs4AZTGAKU4lgo4wcDhjyJf/77FAARh/xKj1Yj9vtpdev3/DRpuP5qOBYBoxeRv/oT1SWZfLUsVdz2Hcf8/Mpvei7/xr+d7rxWI6EeQznXbUckBEjgvCHkVTYtoFSaoRS6qny8vKWXorQTtlWGeDXbVX8tKkiPm6jNmYqbLzHMtMQbvOWbQYgPyY0E/HUkwoLMcdyB8yxjI8LqSUsM1KE95iptlprSjyJpbCpU2Er/WEiUc2IfY2y24bcUEEQhDbHgCkwYApX8RjeuXn8z3oAQ/b+P/qxnFN5GxsRxjOLzmzj1a2jefP2c3iPk7iS6Yw44nVGHPE6e7GSw6Jfsu3xniwtOYiXC85hEwUEcVK8oTP3590AB8DnM4dRTAc4FcZNepRxkx6Fs6APv7T0XhCE1k07nWPZJoWl1vpdrfW47Ozsll6K0A7RWrOm2EOFL4QnGK5XWCZLhQXiybBl3rqP8wTCWFT1iJJEslz1O5amG5msx1LF51gmfz+l9QhLq0WR4bSl7LGs8IUJR3X8sW67IUa99QjLMm8QpWD4gK5Aw4mzgiAIgiAIwq6BlMIKQjNT4QujNRTkuijxhAhFkgfQxMN77GZ4T7VD2btTBr9uqyIS1VgTGiOrAmHSHbakAjHTZef3Ik/S1zI1Y6o5lrqe+J4Sb3JhCRAMR3n3h01MGbFPjdvLfSEC4ShFHmMupyma0xypU2ED4Sgum5VOmcb2DZXZCoIgtBWMMthucKnx7+sumcl1583kTYbz9VNHsHVcJ57kMo7gMzZt3wM1X3P/6KsYM3k2/+VYDmUhzzAWgN4lvxJ8LwtWgOVlTfRcheVkDU/CrQNvIYKN954+FrXJT360CPoTDwiKDLPx0PJ/wE+g+7XQzhCE1o7pWLYz2qRjKQgtybZKP2AkqTqsimBDwtJMhU0Qbif07wLUFVaeQDheglqblD2W0fp7LJVqnGOZ664rLK0WRSTJAzeX+1lT5OH37YbQNUth4z2W9TiW4ajGZlVkusxRJu3wqCwIQjumAj1CGT8FiheOGM3feYCXx53O2nWFnDh7AcGoAz4EnoE9WUX35UWsphdn8Dpf3HccX9x3HMElWdALXpg+GnxguV7z48JCLh84jXkM57obZjKUhfCgkycsl8EXMItLmcWl5FDKdf3uFFEpCEKTEWEpCM3MtkrDpXNYLZyyXzfsluRfs9qpsC67FatFkWa3smfHDADKagnLqkA4aSIsGGE6Fb5Q0hCeVKmwKt5jWY9j6THWkOO217mvPmEZikTRwIuL1gDVbqfpzvrqCe8JRzQ2iyIrzezfFMdSEARBEIRWhgZCzfzTCpBSWEFoZkzHcsY5+/PhT1uoDITxBsPxGY4mvlqOJUCu247bYSM7JuKMPsv0+P1fripOOoYEjFLYcFTjD0XrjOiIl8Imie+Jz7Gsz7H0Bsly2bBb6wpkmyW5I2uW/37+axFQXQprtSicNku94T3pTivD9ulCWkxkNzQjUxAEoS2g1FT43xR0leKDHkcC0G/qcorpwJ78xk3cS373rdw55h+spwc3nXsberDieu6Ad8DXz80xfMLYG58B4IpLnoELYTMFcCD0v/Eb+q9cxYg+r3M8H/LAAzcwh9H8PK0XfTf9woxpY43HADxjJNM+mGq4sSAIqTHnWLYzRFgKQjOzrcJwLDtlOumc6Yrf1qtDza+bP2SIL6etWrCZTmV2WkxY1nIsI1GNNVmjJMRdvooksx/j4T1JzFPz2eqbY1niCSbtr4SYYxmq+bhIVBOJanLddkrNUSUJZbRuhzVpKWw0qin1hshzO1BKkZkijEgQBKGtYI4YmbH/WFbTlSXsB8CoirfwXpfHdQNmcuRVH/DpkhO49NMXYDio7zT3bZmCDigKJm3mumkzsZzjYWznmDg8D1gPz3Mhtx19E3MYzXd9+rH/gcu59ZvbmcdJ7MUv9FVL+T99BH/JWwyl1aNOZMSIIAh/BCmFFYRmZltlgDS7lQynjU5ZhlO3tcJfZzt/KILLbkkaxJMTE5bl3iTCMlk9KyT0JdZ1+VKPG2mgx9IbrDPD0iRZKWyxJ0BUw3kH7xbfxpEgnt0OW1JhWeEPGYI09lpmaa8gCELbZwA3ee9lj7mbuPnuh7n57ofxFufhfqgEjoQZXIHuqHhg4pU4O5XTfcwqbpt4E+paTT+WQxmc3vkNnARxEqTvEd8zY/RYVn42kNtuuJd+LGfQuz/DJeDDzRL24+zJb4PK4i+jFsMFLfz2BaEt0g7HjYhjKQjNzLbKAJ2ynCil6JxlOJZbY32XifiCkTpjQ+aMPwSonh1Ze+RIKmGZFQv1KffVPfqYbmTS8J6Y5qu/xzJIl9j7qI3VoojUepzp2PYryCbHbScYrlkqm+aw4gvVXaP5ns0QI3EsBUEQBEEQWg8iLAWhmdlW4Y+Py6guhU3uWCabRwnVIjFZKaztDziW1eE9yeZYGtTbY+kJ0rdrVtL7xhzUk4c+XkkwHI27kttjIrpjppM9O6ZTuyU0zZ68FLY0JqITHUsRloIgtGWUmsrlOpNPKGTlmA78e/bxWE8xjo/OknKuz3qQnIFlAOh0+PuY6fSf/Q3LXj4ItU6jL1KwHvRAxQp2o2/BGmPbaYrnzhrDbUfcRNkROSxhP84Z8SxMg7/csJjLH5gGpwJLgK+At+8H0tD67zt9HwhCm0TGjQiC0BxsrwzQKSYos9JsOG2WeFJsIr5QBFc9wtJmtZDpslGWUAobiWoiun7HMjveY1n3SGbOqEw+x1LV2KY2Jd76eyzN0SeeQPVrmuFFnTKd2CyWGmWwYDiWyYRlcVVsXqa72rGU8B5BENo6j0+cyFSmwPWQTzFWIliJ8F7eSdy9/Hb+ft909vnxN97OOxHuDXMVj5Fz5mZwwepzu6KWaU45/TX6nrEGBgOD4cKzngBgDqN55PGb+HThCcyecxG8Bzc+MJXHJ0+EA6YZ229eDPhiP4IgNAs7JhU2Wyn1lFJqxE58J01ChKUgNDPbKgN0jDmWSik6ZTlT9FgmF5ZgjPcoT3Asq2KC8aLD9ki6faN6LFMIy2Q9lr5gBH8omnSGJRAffVKVICwTHctkuB3W+AzPREzHMi/DFJbiWAqCIAiCIMQo11qP01q/29ILqQ8RloLQjHiDYaoC4XhoDxjlsMmFZRSXvf6vYE6ao0aPpenemYmxtcmKCcsnP/2tzn3xVNgk8T2m2EyWCltiir305K+ZmURYbqsMkJ1mx2W3Mmf8IfG+UZP6UmGLPTUdy6w0cSwFQWi7mGmwAEeyAIxQcM6Nvsy50ZdZxkC+7jeAF24cjdqkiWADW4Q19KL87S5sn5jJHpM3sX14Ju9azoC+cOvcW7h17i28oC7l4lNe4efFgzjv8qfhU/jX6JFwKtyngF7AtRPpO/l74ANAkmAFoVkxx400508rQHosBaEZqR41Uh120znLxc9bKups6wtF6owFSSTHba/RY2m6l2b/ZW1cdgsK6qS0QmKPZd3HmcIyWY9laUzs1edYmqWwNYRlRaBetxIgzW5LOsey1BPEZbfE90mmy05VIEw0qrHUU/4rCILQqjlqCrpSoeZo9N6KVzmVeyw3AzBu0ot0v3sVGxYW8q9hIzlz9lweGTOeiVunQTF0vKQSPoQO51dBBvz79uN5m5HG854NjhkVBM/Note8NYyZ9Bxnz30bgDG6B4dzIcvpx2PK21LvXBCENog4loLQjJi9lJ0ShFXHTGdccCaSLBU2kew0e41xI6Z7l1WPY6mUwmpRhJMKyxSpsDEXM1kqrJnUWm+PpelYJpSsbq8K1Hj/tTEcy2SpsCHy06sfl+WyoTVUJdlWEARBEARhl8UM75FxI62fWFPriMLCwpZeyk5h9KxFAHVKDoU/T1P3bTy4JrEUNstFVSCMJxCO9yQC+MMRnA30WCY6lhWxMSJmyWsyks2VhIZ6LI0/k/VY1k5qrU1mzLGsrBXec0DP3HrXWF8pbIknQG5Cya35Pit8oZTvWRAEobURL4NdAOqFELwM6kHNe98cy9luw1lkb9iQUQh7w1nPvsPZH8A1a2bB98B/4GLvTJbTDzVJw50QwEkBmwB4ZPZ4ltOPgnmbuU2lwf9dBKtg7cTOHMxXzJ5/EdwIYKxDymAFYQfQSsRgc9ImhWWsqfXdwYMHX9LSaxHaF8lLYQ2ROebpr/j3FYfFb/c34FiaPZZmKWi1Y1n/19ZWj2MZ77FMoizjqbBJhOW0j1YC1X2PtclwGoLPdCy11g2WwrrsVgLhaJ2ZnCXeUI2S27hobUSAj1xcEQSh1TFoCowFdrsPZt6CnqdQR2hCW4zj4rysYfx19odw2q+ovhr2hosnzeTZxyfw3ev92P+q5ZAB7999FJ9yJBd5n6PqnQ4AHDPmP/x35Umw11ToMQWeBGzQu+RXbsy7j8FHf8tfvx0KiKgUBKH5aJPCUhCam/qES+3bn/78dxSQ66522DpnGSIzGK450NGXYo4lGI5lNFYKmuWyU+FLXQoLxpiScCRa5/aoTu5WQurwnnBsCGV9r1l73EiFP0wgHK0hrGvjjvVQ+kKReCktGD2Wu+e74/82XzNRWIqAFARBEARhl8ccN9LOEGEpCEkwBUxTCUWi2K2WGs6g2W8YrCX4GkqFNdNfy72huLBUCjIc9X9t7VaFL5jEsUQn7a+Eahcz2RTLUERjs6h6Z2e6Y8LYLIU1R40klgLXeYwpLIM1hWWJJ1ij5NZ0LCt87fDILAhCm0WpJ2DwFNgI711+LCdV/ReVcwv8F+7/7Cps643t/vrIh/Aq6K/6oH7S4IdnH58A18Piy4dQMt1NXkcvJwz8lBP6f8p9Y6bEk2ULxmwy3Morp0B/WDRuEDdwP6fwLn8vmA4vg1kGKwiC0FyIsBSEeohENT9vriDNYaVnnhu7tX4RaArRYDiK3VZThHWKOZahBGGptW6EY2mIrDJviB55hhuY6bSlTEi1WSxxlzGRqE6eCGuiVPLwnnAkis1a/wMtFkWG0xYvhTV7TFOmwsaEcWIybCAcoSoQrlFyG5/LGQg1KPS9QePx4mgKgtAaeOKbC7nsquc5+a1POO/vT4MC9YOGy4HHjW0OmbyARU8exdghM+DgqcD+wEHARi5TD7FAH8mv23ug+mk4AVgWgmuN4+ZL6hKO1B/w6Rlw2PSPOWTa93BdiC9uPY5Om9bRizWgj2IxR7TI+xeENo85bqSdIamwglAPm8p8eIIRiquCLN1QXiP51KS2GAtFNI5aAjTLZcOiIBiu3jYQK4t1NTBuBKDMZwToVPhCKctgwXAso5o6qataJ59haWJRKmkpbCiqsVlSHyYynDaqAoareOs7PwI0mAoL4A1Vr7Esln6bl1EtLLOS9FiGo1EC4bpH6q0VflYXeeIptoIgCLsqX+hnuey558EHdIABLEOvU9w/8CoogwAOAjg4ng/hCnh29gSe0r8xSX/D5foVsgMFkJvHnPkX0PuM9fAOXD5tGhxu58Rpb3HitLeAn3mUq6EYvrjkOI6Z+B/oYefU219lmwrwtVrA12pBy+4IQWjLtNNUWBGWrYjRsxYldW601vhD7fCyyA4kEIqwucJPfrqD/t2y0NoYo1GbHzdVsHJrJZGopioQJhCO1HE2lVLYrZYapbDm78tlSxXeExOWMdFV4W84HfXKY3oDUFxVU2BprevtsQTDzUwW3hOO6JSOJRh9luYcS9OV7Ziix9KcU5mYDGuuN5ljaZbClnkNgf/Tpoo6gt4Um2uKPTV6TOv7zgiCIOxslJqKkkhBQRDaMFIK2wRaqsyuoRPjMl+IlVur2FDqpXuuO+W2QuNYV+pDAT3y3DhtFtIc1jrivdwXwhuM4A1G+HFjOYFYf2WXrLqiymmz1Ajv8cWeKy2FY5kdcywf+ugXRuxbQIUvnDIRFiA/1qNY7AnSI6/6sxBtQFgqVNJxI+FolAxL/WsE07E03k8oYryO6TYmwyz/TSyFnfjaEqDmvEyHzYLTZqHSH2ZbhZ/VxV4syijr3VzupyAnLb5tIBQlzW7FF4qwrkQGfguCsOuygCPhfWAAkAN/V/n8nfV01SGenX0OQYzj4JjIbJZNGsCbZ5zDuKIX4Um4bvmdDHUsZN4bp6Eu0NAL2Gsq0zy3sfyzfrxvGQXAPfpaNlEAx8L8SUM5uuNC1m7vzG5LtwJ3ATa0vqUl3r4gtA9Mx7KdIcKyDeAPGYJlfYlPhGUz4A2GKfEE6Zrtwmkz3EeX3UJ5rRCZjaU+wCj7LPYEyXDa6N0pI2kvpsNmic+hhGpRlarH0gzvMceHVPhD9MxL/fs1hVmJp6a7qjX1hvdAih7LqMaWorcUjJCdqtgolGA4iqNWeFFt3EkcS9NlzKs1LzMrzU6FP8TmCj/pTis9ct2s2FLJL1sr48IyGtUEwlG6ZLvIjNrYVhmI9YZKQYYgCLsWG57uQPfhReiZCnWM5qPJh/OwvpZ5d/RA3ae5uPcr8Imx7WU8D7thCNBvgUPhofv+wQU3Pokar7ln3bWMZg57XL4JV/r+/Kwvpa9eDMDNkx6GDsAtazj63oVYfvWwm7oOCewRBGFHImdebQCz/NAs1ZTyvz/H2mLD8UpPcBNddiuhiI6P1QCjBxOMoJr9e+TQt0tmvQE/TptRCmv+rsyLAalSYZ02KxZVLboqfKG42KyPDhlGb2NRrVLYaAPC0qJUnVRYXzCC1sZszFSkO2qWwqYKOYJEYVm9L0Mx8ZxbS1hW+kO8/f1G/KEoHTOc8d/Jr1sr49tsqwygMfaxef+WCn/KNQiCIAiCIOwwzHEjzfnTChBh2QYwxUpRZd0eQKHprC32AIaYnDP+EOaMPyTuLK4u8sS32xgTlk6bBYtFpXTpzECfrTHBY5bCulI4lmCmvJqOZbjB8J5qx7JWjyU6RXSP4VhGa9XClnqN57j8qMKUr5nhqk6FDUaiOGypDytmKmxiabEpnnNqvT+rReEPRVEY781mtWC3Kn7ZUhXfZkOpcSHgtlP2wRHrWTXd5EhU+o8FQWh51OWwnz6e3hW/QhX8c/czuf/3qzhu8Re8v3wUSmvG3PgcG0Z1MBJeT4AZj4/l1htvYfvkTLgA/I8q9JmKF1QxpMHzXMilPIk+R/GDvp6XOB8+7Gz83POr4VhO7cVuFSu4qfN9/KCfja9H6ykttSsEQWjDiLBshdR2JEMRQxAkC5cRms7qIkOoOBNE34wx+wPwey1h6bBZePOyoQ0+521/7Q8YvYFQLapSlcKCUUIbCEcJR6JUBcINhve4HVacNktdYalpILynrmNpCstcd+rXzHDaqAyE0VrHSmFTO5zm7MvEUlhzXmbt8lXTLc1Ks2O3Wpgz/hAO3iOfX7dVO5brY8Kye647Xrq8qdwQlpvLfSzbWF6jv1UQBKElyKEM75I8uAAumDuHG959jFeGnAb7TIWTYQZX8AanxRMgr1j8DHc8dRcd51bCdnD9RaO2ae7RRdy4dCqVZPLhR39l+KFvArCQofw4rJAfhxVyiN4ALwH3wtrhe3O3sjJo63ct+fYFof0RaeafVoD0WLYizBN3Zy0xEi+FFceyWVhb7DFETkIJ6G75bpSC1dsThGWpj245aTWcyvqCnQqyjUAfs3zW30jH0uztNEtNGwrvUUqRn+6gqNZFhqjWKedfqtg2iZhptDluR5JHVJPpsuEJhKnwhYlqGuFY1hWW/lAk6eOssVEnU0b0Y9T+3QHo3SmTf329jmjUeE/rS4x92j03Lf4cpmPpDUaIavhtexV9u2alXJewY9lVZ4zuqusSBEEQWjHtNLxHHMs/QEv0MEaimpVbq1iyobzOjMJ4Kaw4ls3CmmJPHcHnslspyE7jxUVr4r/7DWWGsATiJbP10TW23aaymqWwqVJhwRhHEopotlYYv9uGHEuA/AxncscyxWNUknEj1Y5lamGZ4bQR1bA6VkJ8/fF7p9zeabNgUdUBRlprvMFIjZ5WE5tFoRQc169z/LY+nTPwhSKMfPxLwCiF7ZjpxGW38sZlQ8lPd8TLlM39/MuWyjrPLbRtpNdc2FUYz6PwxBrG8gyDjljERxcdzq2n3IJar7k6+ig8OoX797+K2YzBRgR+xPiZA/QHnoEbR0+l6gsrrAErEZ6JjmXz/rujXtc4CfIGp/Pp8BN4lxG8ywgG8T3sB5wKF8x7kvt1MdEuDwJSBisIwo5DHMsmEAhHqPKHyc+of/j7H6GhK+bhSJQVWyrxBCMoDGdyt3zjVxeJ6upSWHEsm4U1RV6O36cLD525b43b9+iYzndrS+P/3lTm4+i9OjXqOTOcNrJctrhj2ZhUWKgO91m2sRygwR5LMHoRawvLqNapw3ssqk4qbGnMsWywFDY2WmTVNqPvMdm4lUSUUqTZrXHHcntlgHBU43bUPRwV5LjokOGIz7QE6NMlE6jeh+tLfPTIrR490i03jQ2lPsKRKIFYSNLPWyo4lW4p1yUIgtDcKDWVcToH7u3FZxzOkjMOZthdn3NPn2u54/LrGcQSNl1VQCWZXPHcMzx70TncP/kqAJYxgJfmX0KfuUv5kqFkXBbhiecu5LI5z8NdcM/Sa1nMEPqxnNmM4Yt5gzns7m8BGDZpLvwEhGBOxWh82dMBEZWCsNNop45luxaWTS2B2lTmZ1tlgAyXPd7LtTMo8QbxBCMUdsqguCpAUVX1jMJEAZEoLMPR5u0p+6PlYq2tzMwXjLClwk+v/LpjPfbokM7CVcVobQTCbK8M0C1B0DREQU4am2O9f/5Yz58zRSoswMOjBzFixhcs3VAGpJ4PaZKf7oiLPBNN6h5LoxS25m1lsc9WQ6WwGc6mCUswAnx8IeOI+9PmCqA6LTYRp82K01bz9t6dMgDwhiKMnrWIJevLOH6fLvH7u+Wk8cvWSjaW+eJ9oys2i2PZWqjtMraWY4cg1MdLFefT9cbVPKWy4X/AKtizz2+cOW8u7K3hE8X/jRuCPkDhLCknuMQo23/q6POZdvRE/sNw/vb+a6g1mrmMgEeh69LV3LzpXrjCyTtW2PB6B7rPLeKpSecD8ClHctC8z/j6oiN4K2sUJ3Jky+0AQRDaDe1aWDYW80TH7HMr9wXplOmqc/+OOgEyHclctx2LMpwkc6aiKSb37JjOmmIv0aim3Bfily2VbCj1ylzLJnLmrIUA7NYhvc59u3dIJ6I14aiOh/CYpbCNoSAnjY2xUlh/Ix3L3ToYv78fNjTNsSyuM8dSp0ytNcJ76jqW6Q5rgz2TtYVlp6yGHX23o9qx/DmFsExGpsuOw2qJjUMxZlj2yEtwLHPSWPDLNn6P9cM6bRYW/lbE6FmLRKS0AFKOKgiCILQ7zHEj7QwRlo0kEtXxE+Eyb6iGsPyjNPaEKxyJYlHGyX92mh2bRcUFpZkE268gm9+2eyj1Bqnyh9EYLo0Iy6ZhzpfcPT+JsOxoOGW+YCQeDtM0x9LFZyu3M3rWIg4t7AA0HN6T5bKTn+7g502G+GqMsMzPcOIPRfEGw/Hy0mgUUo2jVErVdSx9wQbdSqgWlr9vryLXbW/wPYFxQcTcF79uq6J7bhpvXn5og48zSXNY8YUi8bTXHgmf8265afhDUb5dWwIYQntzuT/eiywIrRml1EzgGCAAVAFXa62/jd3nBp4HDsAowrpea/1eS621PaOmGX/er4u54e08Pht5EH95ZTE8Ao5HKjiz41ye3X4OV1TM4OVx5/AX9Sn/0mP4gBNYffTuAFx83ytU3jiB8YEnUW9puAneHziK95cexfNcwJzABahzNTpDcTz/5sRT3mLcZy8aL/yXL/lR/43+zz/Gic8fCUgZrCDsVDStJsm1OZHwniQkC30w3UqnzUjprJ2guSMJRXR86LxFKTpkOCnzhijzBuMCs29Xo+9se1UgHliytsS709bYVjDTWk2nMJE9Yi6mPxzh1n//CDTdsQxHdXy2os2i4r/XVPTqkE4wJooaWwoLUFxVXSZtzLFMkQqrqNNjWeYNkdNAfyVU91iuLfHSuRFlsABWi3GxBsAbDDc5sTXTacMbjLA19vlPvIBi/k4+/7WILJeN+04bCFT3ZCajPQW9NPW9tqd900p4Hxigtd4XuAcj4sXkeqBSa10IjACeUUpltMAahRhTKqbyzcj+eHHz3Zh+cJvmyrzpPLX9fC6+6BU2ZnXjtOnzeE+P4Gx1P0erhVysXuFi9Qo8CBNffZyTnf+BZ3xcM+xeOB1OHLMAJ0HUxRqegZwjN/PRqFM4gs/BifFz76Gcxb+Axv8fJQiC8GcRYdlIzAHw3XLSiGqo9O+8jtxwNIotYTZgjtuOxiiPNJNgzRPzospgXFiuK/bUeS4hNf5wFJtFJU1fLchJw6KgwhcmGDb2cZfsxjvXBdnGf/DBcBRfKNJgGaxJrwT3ND1JwE1t8kxhmdB/G9WpHUtLPamwDSXCAmQ6jX0ViepG7w9LzCE1RHaUfvUIy/rSdrtmu3A7rPGS5BqlsDEXeemGcnbvmMHesYsu3hTCUtjx+IKRnXpBrrGsLfbGWwtaA1rr97TW5oIXAd2VUub/5aOBJ2Pb/Qp8C5y481fZvlFqaksvQRCEXYFwM/+0AkRYNpKqQJg0u5W8dAeK6hl/O4NQRGO3VP+qzLEMt7y9jBe+XI3bYY2Lj8n//jHuuq0Tx7LJBEKReks5rRZF5ywXxZ4gZb4QDqulUY6jSUHMSQuEo/hDEVyN7CncPeaeWi0q5SxKk/wMQwz+/Y0f4rdFG+ixVKikcyyb4lhC44J7wEihjWodvwjSVMfSYlH07pQRF8tds6uFZfecavdyzw7pdMxwYrMoEZYtSKU/xNKN5TVc9B1NmTcYL5VOxdYKf50U5VbEFcB/tNbmG+0JrE24fx3QY6evSoBnjJ/vsgZx0CnLOPH8BZzCXLhTsTtr6MxW2A96etfBGjh54ifwn97otxT/p4fwf3oIXA9vnXUiQ1gMx6bxyEc3Gc97AtzPDbAEqIIif1dYAzePepj5Q4Yyf8hQuAl+XHog8H+AlMEKgrBzkB7LRqC1pjIQJs/twGpRZKXZKPPVPRHZUSE+4YjG7agWBTarBafNgjc2fqRjppMOMTHhCYbjvXK7QilsuS/UqPLNlsb83flDUbLS6l9v12wXWyv8eAKReG9hY+kac/OCkQj+UDQ+SqQhdotdNLA1QlQC5Kcb4TnhSIJQ1KlTYS2qbipsYx3LdGe1QG6sY2lVikA4yrYKw3Gsz7FMhctupXenTKoCoRoBQ1lptvj72b1DOkqpWFhQK7nc1wzsjDTmprzGhlhPsnnRa0cTikT5ZWsVBTmpP4+hSBQN8VLzXQGl1HcYAjEZnbXWkdh2ZwFjgCP+4OuMA8YB9OxZ38sJf4S1+nE28Q4AfaevYf7coXRiG/0fXwX7wfF8SOH6Ddx21U3cdrdR3nrl0Ad4bOINnDLtNTKJpVhPhdMOnAdheOLjC7ls6fOGJ70fzOJSSkrc5E3yMjDrOygDtsDzXGg8VgH7th4nXhDaHDJupO2glBoBjCgsLEx6v3lC5AmE472TqfCHokSiOu7MZLrslJf6qAqEmywuklHuC7GtwggXqe2Aaa0JRY3bzRO40bMWke6w4gmEcdosdMhwkuG0xcs0wQhU2VDiIxLVWBspSJqbFVsqWLGlMj4eYlcnGI4SjERThs/YrRa6ZrvYWOZv8sgZU3QFw1F8wcaXwu4e6+1s7O8xL3aRITGspqE5lkqpGqWwkVi6cEMzLMEYCaJipbSNdSw7ZDio9IfZXhXEqhTdmxCClEiO217HVVVK4bQZ4T67dzT2ndthZVtloEW/D+2Vcl+IiljrwM4ScKVe48JfqAHH0hS6u1Kwk9Z6/4a2UUqNBO4CjtFab024ax2wG7A99u+ewIJ6Xucp4CmAwYMH73o1yq0UdSCs/aalVyEIQovTTlNh22QprNb6Xa31uOzs7JTbbSzzsTY2oiMVlTHxmRkTkaag2Bwbdv9n8AUj/Lq1ihJviC2xfrFEvMEIWtd1q9xOG4FYr17HDCdKGUEwZmlhjttOMBLltCe+/NNrXFvs4bt1pU12G7ZWGP2fzeFS7IwAETNh1wy/qY8u2S7sVlXDqWsM9pjTXBWIsOj34niybEP06tA0xzLdYQi9cMLnusE5lrXCeyp8IbRueIaliTX25J0b6VjmuB3s1yObwk4Z7NkpvVElvk3B/I7u0cG4qJHmsBHVsKG05V38P8PO+B4052tordlQ6sNhtZDusBJoRGnq9soAG0p9bCj1NqqUNRlmq0IokvrYbqZAN7TdroRS6mRgGnC81npNrbtfB8bHtusNHAh8sFMXKLDbfVupJINKMrCM9nDUR4voP2kV+lAFn8K3DObpHudx2/n3stukFTw0dAKP3XADXB/g3VFnsICjWMBRWFZ74D04aNhnXPbd8zi6V8AAuG7gnaynB3mzvVAFP2cNgtVPwCKwEsFKhPOiTwN3A1IGKwjCzqNNOpaNQWtNRWwsR4k3SIcMZ70nU95AGIsiXrponrRuKvfTu3MmgXCECl+YjpkNz+9LJByJ8svWSiKxE/pyX6hOM4zZ+1PbyTT7LEMRHX9du1URCBsCxHRSzROnRJpaJrdkfRmhiG6Uu5tIWcw1aMzJZEujtWZ7ZYBMl63BcRk2i4X9euSkyFitnw4Zjrjb2dB8SJMMpw27VTXaaVNKYbdYajmWpHQsjTmW1ZiOT256w44lGG5qOKob7Via62xIxNdHonufDHPf9or1p7pjv9OVW6vipcWJaF17imfT2Bmlp7sqqd77hlhlR888d6MqRDaW+fi9qDp07I+6y6Wx42Yo2njHsqFZr7sQzwNB4I2E9R6jtS4GHgBeUEqtwgi6H6e1rmyZZbZP9vvmK5aMOphhcz83bsiApcP60GnYOk7hNciBs597m9cuOgXeh91ZwwCWwk/AJ064Ai7keQAetF/Pc9NO59y73+ChSRO4buhMKISH+v8DngA9WKFsGk6G82bb2MR/eOHFS43XXQHcDPrultgLgiC013Ej7VZYeoKR+LiD7ZUBOmTULwp9oQhpDiuvXToUgFNnfgHApphjubUiwOZyP+lOa3xuYGMo8gQJhKN0z01jQ6kvfpU98UTNTPa85aS+NR6bnlCCWy0sLYBRYmmK3+YQdRtj77Op7oF5cpe4htpCYFc5Ea/0h+O/i8aQSqSlomOGk41lfgLh1CW3tdktz91oIQrGRYZEFyaqdUohbPQkVm9fGvssNtqxjAmApgjLHUnnLCduR/X3Mc1hCstKjuvXuc7226sMlywYjjZpPzeWXUV4hiNGX2uHRlwEGz1rEaFIlFXbquLl2ObtjcWsAkizWwhHLJR4oinLkVduNTRQ3y6ZrNhS+YedxHgpbAOPNys8tDYqU5KlQe9qaK07prjPA5yxE5cjJKCyYL+Kll6FIAhCy9FuhWVFQrz8tsoAfbtW31fqCVLsCcavYPtCEXISBtM7Yu6hKSwDsZOToqogPfMav0tNRynXbTeEZZJAIFOc5dZyduxWS1w8mKLYdDVPGtiVO0/tT+9b3o+v7c9gBm80VaSa4iQQ3nmXbGqfwDf2hH57VQCrUg2G1TTklDWE024lO81OuS+UcvxHbfJTXPhIhsNmqelWNxDeo2LjP0xufmspQKPCe8AQlkrRqBTZnYHbYatxkcdqUTislrhwqU2lP0wootlQ6mWPji3fE7yjhOii34tZXezF3kjxbPZHNqVaocaFsVgKrM1qOPQa2Fbpr5Him8iqrVWAcSHAZlU1A6iagHnsCTfgRCaW6W+vDLQKYSnsmig1FTKncD0PMvetEcz58QLj9jw/g7Z+x7edD2T/u5fDnQG2F3Sg4+RK9AeKzqxl2OTP4Rp4YtiFXPrjC6iesSqm1U6ypgUpmzSWVxkNe8PXzw1gPT145umxFPIjfVjKynkDeemtS4yU2HtiCwrHRp7cLWWwgtAiSHhP+6LcF8JqUUSiOp5MabKlwk+FP8zIx7/EqgzxlpYwGkIp4yTVdPL8McFV7AnSI8HxaujkMBzR2CwKW2yUSLIRJqZjmaxkMN1po8wbqlEKC1DYKSN+Iudvghisb72msGxq8IZZChsM79plZv5QhBKPUQ69M4JdOmU6Y8Jyx72Ww2ah3BeK7/eGw3tq9liaJ/SNCe8Bo8fSYbXssr9jMMTKx8u3MnrWojqfcdO5WltsCMvGCrvm7nfc0f2T8e9yI48L5rzeP+oclngMx9JuVfEqiotf+IZMlz3pRZrft1dhtxr94jaLhXADpaz1YTqWUW1Up9QXsuYL1hSWe+4CFxWE1sv8iqFM5yqe4FIO7/8RAJczk1UU4sXNuEmP8kLJhQxkKXwBe93+A1tKdmPx7ftxQvB9Llv5PJd99jyHrfsYgOwxAS6Y/SQvTLqUW+++hcHP/Y+D3lrGxaNm4sPNb5sK4VgnTyy/kAhWrgg9w2mhV2KrKeQNzmmhPSEIAiDCsr0QjRr9gvnpTrZXBeLlWmBc4TZPpjyBSFys1U7wdNgsbCrzobXGHzK2C4ajTbqyH45EsVkVtthrJBvSbZ6Y5SUIS/OE7NB7/1tLWBonbnvGUlhddmuzOJYbY4EnTS2FLYkJ5ag2BHKqcuOWZMn6MqKaGq70jiTHbW9Sj+UfwWmzENVGSnC2245uyLGEGqmwZvBPTlrjHMuuOa4muUt/1vmt/TyNwe2wsqUiVENAgyGo/UHjs726yMNRCfe1dOl2czuXm5pY1m4eC8N/MDW1KOZY2i0WIjZjvwfCUTLr2d4bqk5Ltv8ZxzJhLmVxVaB+YZlwfCxK+H9AEJrMXVO4nSH8k7/xV+YynHkA9GA9M1+9DnaHw9K+5b2Bx3IpTzJ//lDOiL7O3/Ke4sXV4yjXndFpisLLf2S9mbZwGLjxwjtwx1/vgnKgCJ59fALnXf40vOeEGXDZvOdhC/S5aClvqlXVa2o9mVSCILQR2pWwNE/SKgPGrMfcdDvFngDbKqpPKMp9ofixuCoQxhU7+a8tLJ02C5vK/GyvChDV0C3LxcYyX/xEqjGEohq7xYJFKSyq2uFLpMQTwm5VSU+Mct0Oyrwh9oyNVMh02UizW9m3e058jU0N3KmN1jruzDa1FDbx/Wwo9e2SwnL0rEXxdNZMl22nCAeLUgzolt2kUtim4rAZn9cNZV6y3dkNOpaWmKtpYgqJzEbOIP2jJYQ7U6il2a1oXTfQaltlIB6gtbbYk+yhrQ5fMMLyzRWsLfbUCCuK90s3QiiGItG48ApH64rxYk+QnDQ7Nmv9F0hKPEEsCiwWYwQM1C9qtdb4gpH4hTKbReFNcWEsleguTaj+KKoK1NgHiY9L/CxsrxRhKfwxDudj4LiWXoYgCLsS7XTcSLsSliZmf2Wmy47DZqlxQlHmC2GzKBw2C55AGK2tWBR13CWHzcL6Ei9/e/ZrwHBDct0OSjxBznxyYaNKAsMRHU+atVksSUthSzwB8tIdSZ8v3Wmjf7dsMmMn9W6HjYHds+PupstuMeYRekNkpyhpTOUaFXuC+EPReD9nU2Z3lnqDOKwWgpEo17+2pMl9gjuLykCINLs15Qlybf6oIGoup64h4snFZX72KcimgYk6RipsLcfSZlHNPgakpZgz/hCWbijjlBlf1nCpRs9aVKNSYHVx6nEkLR3C4wmEWbGlks3lvnr7FAE8wTDhqGbphvIaoiqZY1n7PfmCEVx2C1X+6otStec8bq8KsrrIQ4bTRt8umfV+Tko8wXglxRuXDWXfqR/FL1DV/g4EI5qorr6IZ7NaCPv/2IWxxItaqS721e6xFISmotRUDtNDOWDSl9zDzex20Vb0GYq9TvwBgAI2MeWsqWxYWcivfXrQ+6n1zB83lKOfWkjaWaU8mnU1j+4+jrV0Qc3WXD5mGp3YBsDKy/vwPYPYbfkK1s7Zm3GjH2UNu3M6bzDuoxehCq45+l4eWXkT3AkrL34bkPEigiC0HO1SWJZ6Q2S6bNgsRi+PeUKhtabMGyLHbceqVLxE1mW31hF2zlgQhTnj0mW3kuO2U+wJ4gtFkqbD1j6BC0ej2KzGdjaroqxWKezoWYv4ZWtlyhPIVLhiDsFvRVXs3zM3/vqRqGZrhb/BBMzRsxbFHc8sl/HeNpf56N25vkK2mpR6Qvxlr458vHxrg25nqpLDSn+I79eVsUfHumMi/ixaayr94V3STf0zVAtLc1Zmwz2WNRzLqI6XaLcVCmMl4ol9dVBdDpnptP1hxzIc1VT5d/ylyaqAIRiXbShPeVwwheDGWrN2G0p4/mVLJUs3ltMjN41w1EgSdjutNRzLqNZsjM2mrAqE+W17VXzf1qaoKlDjc9QtJy3hM1kTX9A41sSFZWyETTSqm3yBozRWyfHbdk88QCjpa8Z+9xYlpbDCH+eLTUfQp+AXDnnqe0KPKIZnvclPFfsCsDDrILbSmc59ttJ77nqOHPcBI4NvkT92I1MtU5jJ5RTTgWLySTu5lKEs5Nx5bxhPPANunXcLd7x1F/SGp+Zdze/DCziJ/0ChhlsUj7x/k5EDvOjnltsBgiDURcaNtD1+3+6pE9ThC0bwhSLslmnMt7NbLWyrNMJ7zJO2nDQ7UQ1bKwNU+sM1+htNTEFW4QuhME/kjd1Z6Q83OHZEa00oorHHTpisFkV5zLGMRDWV/hA5bgfhiCavkbMEa2MGDq3YXMn+PXPjtxdXBVhf6uPLVUUctXenlM9h9mhmumwUe4JcMfs7ctyOep23xH1d5g3SM89Ndpq9hrA0ZwamEjqJInxDqY9gJJq0B7Wp1F6vNxghqhtf8tlSNNUhe+PSoew9+YP4SXxUgyWFIatqzbEMhqPYUz1gFyfZ/nI7bDhtljrllf5QBKtSZLpsrC32csaTC5sUrKS15rftVZR5Q2ws89Et549dCGoM5vdobS1ntfZFK1M4mmXeYBxXtpQbx7pgPWmpa2LCekOpD7vVQrrThsNasyR1W0WAYCTK3l0y8QbDrCvx1Sg9TaTEE6zxOSrISWN1UXLx7ouVpZrHLbOCoNIfTllxkWwflHqCFHbK4LftnpSC0XQsC3LS+OinrawtrhvsJAiCIAhC49i1z6Z3ACXe6vEdc8Yfwu3vLueFhasZPWtR3DHMdtsJhY3TbA1cdNjuTDiqMP4cc8Yfws+bKzjx0c+pDIRx2Iw0TKfNgs2iqAqESZyUl6zssSJW4mWzKuaMP4RLX/pf/ISrqCrAmmIv/QuyCEWi5KX/MTfNabNgVYrlm8uTvvat7/xItwbmNponsqbwCtZTxlb3cRE8wQi5bjvdc9PYWOojFImycmtlXMz17dJY59P4nXmDqS/9BMNRVmyppFtO9SzFUk8wpWg090VmGxszYLEoCrJdbIgJS601KsUkS0V1Kmw0qvEGw3RsYy4uGG5YHccyGMHlsMTnigabOGN0W2UgXsa+cktlUmFZFQizptiDJxAm3WlrMBQoFIlS4Q+T57bXEH/m929tSWpnNRgLvdlQWi1Ai6oChGLl9/6QcaGm9pxSMyHbalEEI1HyMxxEojpekuoPRdhU7iPTZSPLZSPdaWNdia9GSWkixVXBeAAaQPfctHrdUl8wEq8iAcOxBOOYne22N6kMudQbpHOWiyyXjVcWr+XLVUVJH2c6lj1y3fywoazB5xWERJSayst6GfuxD/1KfoPT4eGsy5nMHdhi/+0GshwEcfCX7xaTf/JGPj36BC6eP5OjWMC5b71B/1Hf0IFiHp52M75/5XLuyDe4cZIxKiQ83Mod0+/CP1ZxlfsRgjjZ4/xNcDpwDRzz+3/476ST4AGA1wApgxWEXYZ2Om6k9VoSf5BST5B0pzVeKtgpy0lUG1fzPYEIbocVm8WCy26IMoDeScq8CmJlaFoTPwlVSpHhsjUqMMcUS+aokRy3PT7H0hRzZb4Q4ahOOmqkMSilcDusvPP9phonsvHU22DydY6etSi+fSAcJctl4+3LD8WiINDIdEjzRDvH7aB7bhqBcJQtFX6qAtXhHJWNDBYyLwZ461mvya/bKin3heIXCIqrAqzcVsW2FL1Tlf4QTpsl/nnYWcwZf8gOd0YKEsoOo5qUYUEWC/E+zDXFHqLa6OFta6Q5rPhDESIJpZ2+UITj9+nC/acPBAzxVOYNsnxTRYMuuT8UYV2JN953/Ou25HMyy70hPIEIK7aknp6utTH+aOmGclZtq2Lltqoaa63PsaxNKFy3FPbC541+8MzYWjeV+es8bmssyGzPjhkojOOSzVpdkvrTpgpCEU2XLBdKKWwWZYjQ2Ov5QxF+3VaFLxRBa02JJ8hpB/SIf9YLclxEtE46RsQXitQY62QK0tJaoWaJx6dkRKKacl+IXLedDpnOlKNS/LGLDN1y0+r0kQpCYziGT9hGJyy3adSjcCyfcPD7S1Dva9T7mncYyVAWQhEUbe3OmPnPsYZeOAjy8qjTGcz/+HT/E1C9NHqu4v5JV3Hf4inct3gKD03/B/SCme7LOYl5vKC2Qi/gJej++ypGMBc+gNN+fYXTdKGISkHYlTCFZXP+tALa3pljCgIhw0VLnDXZKSZyQpEonkA4PrdPKUW600qFP5y0pzArzYZFGSfjZgAPQEZstmQ4EiUQjlJUFaRnXlqdkjNTLJknT9lp9rgYM0/SSjxBIlHd6CH1yXA7rWyvDMTL3gKhCMFIFAV1BHAgHGV9iZde+e54GVowHKV7rvHvLlmuRo8pME8Gc90Ouue6CYQjbKuIkuO20ys/nRJPsF6XozYlMREeimhGPf4ldqslqShbta0qvmaA9aWp02zN/soct71Nlr91y0njnSUbGT1rUdxVr4/V2z1sKPExetYiimOlg25H41271rL/XLHe6K0VfgpyjD7CUERT2CmDXh2MHl5/KEqRJxATgpXkuu247FZcNgv5sVmnprDZXmmkQvfulMGPm8r5dWtV0tf1h43P+u/bPRywW1696yv3hVhd7I05gnY2lvlYsaUy3g8diD3PupLUwtJMfd1Q6ot/983vRYbLxvaqINfM+b7OsWVrhR+7VZHjtjO4Vy4WpfAGjNes8IfiFyoSj3lOmyV+wemnTRWUeIJkOK1UBsKG65lwYaxbjtGCEAxHsTks8XTZSNRIhM3PqC6zP2n650DN0SGNocIXMsYHuR10SHemDOXxh6Ok2a10zHQSjug6o2gEoT6UmtrSSxAEQdjlaFeOpTlXMbFn0nTPzP5Kd4JLk5Vmx2ZRNYSoiVH6apx4X/qXPeMnQ6ZzYZS+eWMuXd3LDObJ0n2nGw3+2W6jD9EfE35QXfqZl/EnhKXDRlRXiyuz9DM/w0EoomsIxQ2lXoo9wfh+AuNx3WPvvyAnrdEjR0o9xnOYpbBRbQScdM0yylRddmuThSWkLoddubUyvmbz/UD9QSWmI7yz5lfubApy0ghFdDyUp6G2QfOU2hOMoKCGe9RWMHujN8QuOpifwT07ZpCf7sCijCRkT8C4AFWQ7aIqEGZLuZ/VxV5+2FBWwwGvCoRJd1hx2Cyk2a3M+3FzUjfNHGuxpoFwILPPsE+nDLrnptEr301VIMy3a0oIhqOEIkagjtkLmgytNcFIFIsyvi+nPWFsZ34vnj5/MJD8e7G1MoAjdlHJ7DOdOKwPYOyXzeW+2H6s/mw4rJbqizkxwesLRSmJheYkHm8LYmXq5lq2Vgb4bbuHNcVeIlrXcMmfOOcAgHr7N+sjflEr3R47ztV/zPIFDZe0Y4bTuLjcUHyyICQycgoH8i37sYTTpr8Cm+AsXiXzL9vh5ACcHODxlRPZfdpmLPt6mNn1YhwEuZ4HOXPhXM6d9AZPV1xG9ldbGDfqUdRqzd+fmg5rMH6OBWww8cfH+etzH8IAw5FMe7aUDXMKueaiWdzx3fW8qVbVnF8pCELLY44bac6fVkC7ciy9wTAOq6VG/1SnTONEx3QL0xNOprtmu+ic6ax3DIXDZsEXitArIc7fFJYby6oFZbEnWKeHzxRLeTHHwBxEX+YNxXq8LPGT0T9aCpv4fjzBCC674SJYLYqOGU6KqoJ4gmEcNge+UCQey1/hC9Ep04nWmkA4Eu/DLMhJY9nG8npfC6p7Ly8Y2st4XzHHEgwHzOx3TLNbKfYEkwaI1KbUEzR6ADFOBLOTCMHRsxYlEZapZ/ZtKffjsFrI/RP7d1fG7PUz3a6UgTQKTGnpCYRxO6xNCrBpLZgXgzaWeYG8eL9lYacMlFK47FaqAmEsyqhmsFkt9Mhzo7UxamddiY/VRR4yXTZcsTmx5sWpNEd1dUBtTAG7pqiBEtZIFKWMHkcwHP81xV5WbKmMf48ynDbDDazngkmFL4zWdbcLRqJYLYrdO2TUKF9NZFuFv05StOlqlnqCbCrzY7WoeP8jGMdBs6zdLNH1hyIUx45x+QkXxvbokIFSsL7Eh0Up1pV4yU6zs0eHdMLRaI15wTmx0LJkjmVUa1ZsrqRrQj+1iSlEc90OOmQYTiRUH5u8wXD8PfpCEVw2S/x3KOWwQuOZxHtvHYuVCHmTvHACqLHn8B7H0s+9nIEsBaBytQvVTfPvzseziQIGsIxnGAt/hbXbOzOLiynv14XZ357DE0Mv5LL1z3PB6CcB6MF68vsVoa7SfD19AO9edAp3XHQXvttyOXPaP1kyehC3KqOiSspgBUHYFWhXwjIQjtbppTNLYc1eKrfDViPx1JJi5IL5XLvlu+O3WS1GX2NVwBCxboeVEk+Q3fLcNQRU4lV1MHqZzNuDkSidM10UR42wjT9TCmueqHmDYfLTHVT6Q2Q6bXFnwBOIkOs20iMtyjgZrfCH0FobfVWa+Alt1xyjFLZRYjDBHU53GmsoyHbFH+eyW4lENac9sRCbRVHqNXod3Y66o12KPUEcNmMmZyrH0hQJwXCUcCQadyyTuayeQJgKf5geuWltUkAB8QsCwXCUZRvKU86yVBhzLLXWeIKRP3UxY1fG/M5uTHAsFdAzz/iMu+xWvMEI+ek1Lygppch02SnsaGHJhnLKvEGyXEZ6tNmzmGa3EtV1L2RU+kNxJ+z3ehJRTYLhKA5rddmy3WqIuCc+/Y3Xv10PGGX4lYFw/MJTbbbGUq4zXMZ25uffPP5ZLYpOmc6kF1yMUtiax0jTcSzxBNlY5os7mibO2HfTEwjHQ4X8oQg3vWmcWOcnhI9lu+3s1TmTX7dWsWJLJTaLYo8O6ThsFhy1CmgynbbYsaGusKzwhagMhHF56l7Cvfkt43Vz3Q7yMxyx45gxbsfsE+2a7Yqv0+WwxscNperHFAQTowx2UksvQxCEXR0ZN9K2CYajcUfRJMdtR2GUQKXZrXGnoDEYQT8qLrxMMpw2vMEI3XJdWJWibHuISr9xldwMzinxhLBbVXw9ZjnmmiIPWhsnazlpDrZXBWpc8W8qFosiLXayHIpE8YeidIz1iaXZrXiCYar8YYo9Qbpmu3DaLKwp9uIPR+OhIabz1S0nzXD2IxqHrWZSZYU/RF66Iy7SzJPBHLcdl93F/j1zapywpsV6tPyhCEopfo31R9osim45aXTOcsZPrku9xpB1p63+AJ9oVOMPR7FbFaGIZmtlIC4ezJPedKctPm6h3B+Ku1JtlYLY7y0QjqIhRSZsNYHY7/3qY3tzzpDdduj6WgJLzG0zQ218oQhOuyX+2TR7BztnJf9cOO1W0uxWSr2h+OczI8GFh5pzMkfPWoQn5uY5rBZ+2VLBmU8urPfCTCgSrfE9MQO4vMEwgbDxOlkuOxvxx/sta7M1luya6bSxGeLbmaIVjGqMVduqCIaj/F7kYfcORh90qTdE91qptqajX+oNsqnMV+finOn+bS73sS7mWIYiOi5oa5fyZ6fZ6VeQyeoiL91yXPXO0lVKkeN2JBWWZsWHNxSuU3psOpSmY2ne5rApPMEwUV0tIP2hSLzH0li3OJZC4/g/fRivMIanFl7Nv+4eyUKG8thnN+DGyy/sxffuQQCoORo6wF83zYXBTn7fVMCxfMIt2+9it35buW75nXAwVE3pwGXPPs89Jddy8yUPA6AHK6aNvxzGwkEHLgNgv2++YsmLB/PavL/Bk8CIgei5LbUXBEFISTu8VtmmhWUkGo2HTUSiRj+hI73mSYxSRrx9MBJtUlgJGKKkQ4azzolRhwwnUa3pkOFEa7AoDxvLfHiDEcJRzbpiL6WeILluR/wE05zT9vMWo5zTYbOQ4bIRCEfibkptGhuY4nZYqfCHWBNzS7JiIjbdaaXMG+IXfyVOm4WCbBehmJis8BkplgoY1DMHqE7CrQqEybM5CIQjrC/xUeIJojHEXadYD+VLi9ZiUdWJubVdEPN2XygaP5nbPd9NsSfI2hIvxZ4AfWKhSSWeEDarwmWzsC1Walh79IA5NiAnzc72qiAbS33xUlgwTnoznHbWJoSedM6qv8y5LWC6MvGSx4YqYanuYR3QLXsHrqxlcdos8c+GLyYsTDpnunA7bCkTcXPcdjaX+7Eqhd2q4mLN7En1herOyTQft63SqEKwWY2yd4uixvEjGKlZDgrG93dbZSAuEN+ecCh9J3+APxStI6pGz1oUD6t5+m+DOerBT2s4luaFrK7ZaSzfXMHmch/lvhDl3hCjnzSey17reGaW6xd7DGFZ+3hnCs0Jr3zH70UebBYjRbbSb7iJydxvt8PGPgVZyXZvzddOt8f7tU2iWscrInzBSJ0KCjNxNjfdToeYqA1FjHLwqlgQkXnRzBcyWgREWAqNRamp0GEKs+jB7N8v5OuhA8ikkruYxKQjJrMfS5jCVB6bfQMA86cP5ei7F5KRU0nVk04e5lruCdzE350P4P9W4ZqvOey5j/nis+N46oHzGffdi9zz9LXGa32kOYAv4UEY982j3MR9TOcqlrx7MPQGLmi5/SAIgpCMNi4sNRvLfESjmqKqABqSjpWw2xTBCPGSzcailCJZpWymy0amKzaiRBlip8QbivclXfzPbyiqCtA5q7o/yJwn99KiNYDhbmQ4bfTtmtXomXr1CU23wxoP5emZlxY/uUx32CiqCmKzKPbukonNasFq0ditiu1VRipm5yxnfJ2De+XitFlYta2KjplOiquCaDSds5yUekMUe4JxYRmORuOjVJLhtFlQGCfdVbGevk5ZLjpmGr2fvxd54j1aJZ4AdouKBREF4kmOicSFpdthCMsyLxtKfaQ7rHiCETaV+dEYTk5hx3SsFkvK+ZZtAZfdcNQD4SiNsSyj2ijbVBAX9W0Rp80Sn6saCEXjwgkMkZdvS10hkBsTlmU+w6WvLls15tj6gjXFiT8m7LLTDGHpD0XweiI1LnKsL/HSI89NKKLJTqv5vTE/9xU+o5/TSKi11nAsA+EIa4q87NExPV7i2jnLhdNmJRiOUhUIE4nq+PGva7aLQDgaDyLyJoz6cNQ6qKU5DJf2hS/XUOoNxcPMzOPNqTO/AMyLRMZ4pGJPMN6r2pSZoLXJcTv48reiOuOSwlFNrttOqTeEPxSN97dmumzxgKMMpy2hxNXYJ2bfuyks/SHjWJLlsqGUlMIKjeO67Xfy0OR/cPHtMznoqmV0n76KDXMKeXH038hb7KX7kFXx0QBH374QToa33CO57JQnGc48ypy5PD5xIsdM+4TtR2fScW4luo+iB79yyP4LuHmo4VhuX5jJQoby170/xI2PTCrpx3Keff0cZjMGgE84qaV2gyAIQh3arl2DIfyiGjZX+OOlbw6bpc4MQdNxSHf8OaFR32zCgpw08tMd8Sv03mC4Tu+kWQprOkb1lYf9kfXkuO24bBZ6d8qga3ZajdvTHVb27pJZYxZnlsuOJxDBoqgx7D3H7aB/QVbceXE7rQzols1u+el0yHBQ4a8OCglHNLYU/alKKZx2C56AUYprBvIopeiQ4UAp4v2cpZ4Qow7ozvSzB9XYR4n4YkmmWWnG7/C+91fgC0Xi4nFTmY+VMTc4K81OjtvepLLn1kqa3XCrI1qn1JUWi3HSvaUiQJrD+qfEwK6O025ldbGH0x5fiKbpwicj1vtn/h2qv2tpDmsdxzIQimC3qniQlj8UocQTJM1uZY/YiJNV26rwBY35mrXdfbOSojIQjn8fnQnhXmCUhpb5QpR6goTCUbLTjBEpTpuFQLi6csMUll2yXWhtXEywWxXeYIRgTFQ9ctagOsexvHRHfO5t7WOTefw0HUrzuxyK1H0vTSXP7YiXtkaiOj4b06KqHXlvMIw/FOH3Ig8bSn2Eo8axRylFfq3eSbMs2ex59cVCzYyUb0ujk6qF9omMGBEEQUhNm7ZszH6/i1/4hnDsinVSxzJ28tPUUtjGku60UdjJcDBddkusJDZaI4bf7bCiqA6asacQZU3F7bCxb4+cOre77Fb6Jyl5zEqzU+wJ0iXLVefE0GY1BKo3GKkRtJOf7mRjmZ8ST5Au2S7j5C6FcJsz/hDGvfgtHy3farxmQmpu4kmeJ2iMX8lzO+jTOROrRVHmDcbL60wnw+yVe/OyQzngjo/jY1WmjNiHy2d/x2PzfyUQ68H8sye7rYnueWn8vDkmqFM4tLvlpVPpDxGlOoymLTJn/CH8c+Eapsz9iYqYEGrqWBWj989OUVWwjuvttlspqpV27A9FcdmtsVmixsgfUySaoV1rij3s0dEQmbXDcRLdeTOQyWWzUOELxV/H/LyXxULIzB5RZyyx9bkvVhvrc1SXwgJkp9lw2KxxQWo8tm7Sam66nU3l1RfnEnnt0qEceu98tsR6O9Mc1YI21cWlxpCbbiccjRKORlmyvtwYnaONvk/zQmCiKC71GgncZrWE2Z8ejhol9+bxtdqxjMT7ap02a6PHKQntlzf1Yi4KPkf321exhl58NP1wHmcC946+iQUcxWFDPubzmcP4coIxLucMXudRrmbYtM9hPzixagEzThkL1wc47fF54IeXJ56OukjDkTD1/CmMXvgqAB1HVdLnraWwCh454yb2e/17xs1/EWYA18cWNLQl9oIgCEJy2u4ZJIYLA7E+nFgHbTIn0OyT3Bn9dukOW7wszUyEhVhZbaw3qWu2i9cuHZp0Ht7OID/d6J80Tz5ro5Sq04OW5rDGSm4DMWEZjZ/EJpLohOzRMQPYioI6J+hmCV/iLDyHzRIvfzNTHk3MeXRgnHwv3WCMRdktP91IwAxHjW1quVON7VNtrWS57BRku9gUCy2qjzSHtU3OrUyG6fqZSdC1PxNAjWToZHTOchHVdS9GuRxWIpWabZXVpe7+cIScNLsxzsRmjZd456Ubc3ItyhjTYZal2q2qZjK1RcXHD3WPO5bWeAiN3Uo8FKzCH8Zls8Rf20xTfvWb9RRku+K/475dM7Eoo2/aG4ywParxBMMojFLf2uS6HZhTVJxJjpMFOa54VYjLZsFlN4SlPUU5fGPIjTmW5T7jmJmf7iCiNV2yXDWCySLaKLuNaqM/3AxUynTasFsVJZ4grtioGTPFFqrDe8C46FfpDzUq9Vpop/Sdwqh3FbuPOJr9X1zOhg6F/DfnJPz7KVyXavq8uJSVzw1EHafhhthjZsKZ3841zraqgL8uZsKmZ7lixTPwLfzfc0NYwFHwOeipCjVXx8to5781lB6sp/eR62EVXPDcHOgAvD0V3pYRI4Ig7Hq0aWGpMMZ/+EIRYzacUkn7/oyeSNtOERlmvyNQo7cLwGY1hGWX7LqOwc7EalH0yE0eGJSK/HQH60t9+EMRoxS2gVJT06HJdNnqlKU6bUaZbIm35pD1/HQHRVVByr2heFqlmQhruhPdcqqFZbfcNLpmp/H79ip8oUibToGtj265aVT4wzjbcHlrUzBdv3Kfkcz8R0qiM5w2enfKqHPMcMUuXK0t9tI5y0UkqglFNBccujsTjipk0O0fxQJjLKTFSjBdditrij1sqzCEZbKLX26HDX8oGF+7O/a7rPCHSIuN7slJs1PmC+EJRuLzec3f+cDu2TWqNfbomMHg3XJrCKhyXwi7rXrUSeJ7Swzgef2yoXVcfyOBuNSYcRmbFVzuC//pyotctwMNlFQFsFoUe3ZMr7Fmt8NKuS8UvyBXVBULR4r9TpUyUrtXF3lYHwtsynLZ48cVX0JvqdNmiPUSTzBeQisIJkpNhb4i5ARBEFLRxmsCFWl2o6QyEBsS39IkOhy5tdISTdHbtYWEZX09oo0lP9YbubbESziqGzyp3DMmLM2U2kScNgvhqGZ9LODE3FdZaYbLU5wwNN0s/zP73UxHympRZKfZKchxURUwxgyk/ck+2taIRSn6dc1k9/ymXyxoi5jiLKqTu5WJ1P5ONPQdMfs11xZXz3ME6JWfXuP+vIREaJfdyle/FXP/BysA+OdFQ+q8nnncMJOZM102XDYLWyv8cbeye251hUGXbEMYZTptZKfZefSsQXXmtZqvbwqrUETXKcM1Mb9/DqslaSm5OdrGFethv/zIQoA/XQUSH3XiC5Edc30TcTus8X7JXLcjLoATLyB2zHDgjvW+uh1W7DZFJKqJRnU8FRaqR82c9+zXLVYtIuyaxHsr34B1IzpxhPczCMMxw//D5qE57O7+nfdfPIqVvw9g/kVD2bPPT+Tft5H8+zay1tsZPoFrrroXbgNsQ1BXaSz7eDjouc84YvPXFJPPm78O5/weT1FyipuHRk3goVETOPq+hfSeuJ5rzr8XwjDsorkcdMpnLbkrBEFoNBoINfPPrk/LK60djMtunFAEw1EO2TN/p5Y+JjsJTSwPzasjLI2Tpi5ZyUtQd3WcNis9ctMoi40CSJUKCzCwew4F2a6kLqLprtz1n5+BasfEohS56cZsO7OcrcRjJNuaAtUUDtUJmGnENm1QSLRVlFJS3hcjy1Ud3NTY8t/GXnRxJDiWUJ0I26uDIerNz1/id98V60c0e4CTlaJmuWwoYK8uRlqvUorOWS6qAhG2Vvpx2iykO23xgKDEUti9u2SyeywkKBl2qyV+Eai+i0FmdUV9F+cKEkp0gfjrNcaxTLVvzX2hdXXAWSKm4LZZFBlOa9xpTOztVEqxW2xkU2LwUlUwHO9/BeKlsvXNBxXaOc9OoXu/VfScso357qM44KIvWVgxlH9wF28xihN/n49eZeFFzudyHqeTZRudLNvo7N3G2qs688jvN3Lid29BeCpcD9GT03mUq1F7aj7ncE67ah4BHORd4uW622dy3e0z6XPjUngVttGJDXd34KMxp/C1WgBIGawgCLsmbd6+SbNbKaoKEolGKMhpmhO4I0So3aric95yk5TCQss5ls1BlywXxZ4gnkCkxsldsn1pt1roUc+MTvME1UyiTHR389MdbK8MGCVrMZGZn+GMOzLx5MzYSXBBQrJte+kjFFLjtBkhWlccVch5h/Rqtue1xIKnzFEivliCsSm0OsTcs8QeZZfdisZI5e2U6Up6ASDTZWdwr9wa35cOmQ7Wl3rxh6J0jJWBZ6fZa5TCNha3w0a5L1SvcDS/f8nCzwC6xY6t5v17d81EqaZdyEl2jEj83mcnFZbGfjRnAqc7rBTkuOq0GWSl2SnsmE6G0xbvrS2K9bSaazTXnpi2KwiCIAh/DE28Ybod0eaFpXk1OqprCoyWQimF22Glwh+u37FsxcJSKcUeHTJYta0qaXhPfdQOSzFP8jwBI1AkMak0y2XD7bCyvtSLRhPVNXvAajuWBdnV7k1DfZ9C+8ARE5Z7dsyocXtzXExy2izM/3kro2ctwhs0wnTM70Ky4CunvfqzbqZHJ6N2KavNYqFDhpNtlQEyY6nKeekOtlT42btL0+aQmr2K9SUmm9+v+oRn91hPtnm87ZTp4oCeufzZr5t58c3tsNZ5bfN3deQDC2qMK6qvP9x0M687Yg+umP0922PC0iyBtVgUDqtFHEshTuJ4kUUXDeKQ2d+z9XZ4Z+pI7uQfnHjvAp49dgJHHb0AqhSqi4ZJxvb6stiHfxvs9slWSIP3r94fWAYXwgXLn6RfZDnneZ/mJbUJ/ncwr435GywBzjIe+jLncNB7y5h9/kXMfmk98CVwLFofuvN2giAIfxCzFLZ90eaFZY2o/l1AWIIxfqTCH97leiz/DInC0O2wMrB73TEmTXmeM59cGE95tFtrlnEa4jWdnzZVsKbIa5TBJqTK9sxzY1HV/ZRdc6oDTxpK+xTaB+ZFh1RC7o/islspifUAJ6YV17t9rARTUz0mpLEUZLsIRaLxsSXpThuDd8ulV4rS12SYx8kGeyzrEZa9O2VQ2CmD3ARXsb5QpKaIdzOQK1l5sEmy8SipMEX49qqajiXUnQ8qCABH6iEcctUUOAs6b4O7j7gd/aZi/t1D2UpnXuQ83h94FCeevwCugYv3n4maZvRfTJo4Gd1JoSZortGv8ki/KVy3/E4+5wiy/x2AXsBPwN/gym8e4LExN8CUaQAcdOoyRuz/Ou++dAaQB3yH1le2zE4QBEFoBG1eWDrtFhTGSVtzO5Z/1N3IT3cQikTpUuuEyOxHMh23lh6F0ZKvb8yyNPpjk/VqpjttsREHfvLSHTWEZ6bLzn49cuLupOlYJp7gt/S+3Vk0Vki3l/1hkp9ujM/ouANSgs3gqWA4Gksrrvsaib8Xu1XFL6I0tYTVabfSp3NNd/KP9NJmuYyxHOnO5CJ4jw7pWC0qHpBVG6VUjaqB5iLLZadf18wmVT80hDnayEzhTTwuuGyWeBiY0L5JdCsFQRCajpTCtjn26JjO65cOZe9b38cfiu60Utj6TtITTyb37JhR54p+foYTh81a7/zIHb2upjyHKVR2lCCZM/4QLnrhG+av2FZvAEhBTlrsZLzuiXtiSV/HTCc9ctPqlB4L7ZdMl51MV92U0ebALActjY20qD3rMhHz+9Nv8gd4gy0zDqcxFx86ZbkYvFvuzlpSDUyHsdmeLyaOzbmhTluiY2klVFUdDCa0c34yAnLGcjqfHnwC/xo6kpzgZjgS1Pua787vR1+Wc/akt3k/exSORyoIfpXFUSxg6kTjsd0/KuKuTXfATfBS9Dz4+QXKyKWQVXy96AhYBK89cApnPjsXKxFIBwZPNF7fBSN4lxxdxktq/5bZB4IgCE2gTQtLkzS7FX8oSuddfIah1aLiJW3NSXMIypagR8y5TRxZUGNwvFL0rCf8JxGl1C7RXyu0D8wy28YIy8THeIORJpd1Ck0nXgpbWdOxnDP+EN5buokrZn8vfZbtHHUcwCQ+6nc4AEd4v2D6mM84e93r8IwNCkF3V1zLPXzKkeTfuZHisd04Ju8TXj3+bLLPCPDa66cAEDpYoS7QdH9rFUNYzJvHXsCzxwFpwCegFynUi5rfzy9gj4mbuOfpa1lNLwCeslzNuJdfhHMATAdV+isFoXUgPZZtlrx0R3xwd0uwqwu4P8LOeE9mIIgE7vx52uJncFfFdCwrfGEsqv4k1bqPCdGxiT2WJo1xHdv6Z6CxZd9mKWyyHsvd8ozeVOmzFNLKq1jCIACGffI5up9iUOEiXr/9DHp/tx7Vxc8FPM+SSw5m0dODsD4Xpowc9raugMvgF/oA8GHWMZABG+YWsuHeQp5aeD7/4E62Le4JB4PaT8NY2GPzJngHbj73YfjYWMOV0Qd4TN0APwBMQQ9skV0hCMIfQoTlLo1SqhfwPvB/wDat9eTGPrZDhpMOSfqchF2bHnmGy9iYWXiCsDNpqAqgcNI8wlFNusPWqHJbM5m0dt/1jqStC836cDusWC2KbRV+oHrfA/TMNy5miWPZflFqKhwrMyIFQRD+CDtUWCqlHgROw8g9G6C1/jF2ex/gn0A+UAycr7X+tRFPWQk4gd93yIIFYNc54Yw7lo1wmneVNQsCGA5kVSDcqDJYgPx048JXY8eEtMd04+b6jitlhBAVJXEss9PsWBQEw+JYtmf2+/grlpx/MCNffBuAZacM4GMO45uKQ5iZNQ6AvgXLOZ8XeeHsSykjhxNXLuBffUay+cXd2X5+JlvpDEB/tQp9nkJ11vRf+A1e0pjKFCb2ncbwIfPYa9Iv9GM55z7+BlwB1+x/L4+suAmAx9ZdC7wP+4LWJ7bIvhAE4c8g4T3NzTvAo8DntW5/EpiptX5ZKXUuMAs4GkAptWfs34l8CDyotT5IGZf/X1dKfaq1XtMcixRR0nw09YQ31b7v0zmTDhkOcpIMRheEXRmnzUJVoG5/ZX2fd6tF0SnTtUPChIS6ZDhtbCr3AdWlyybyO2jvTGHJJOj/4jdcwtMADGAZv1FIj6z1/Jdj+W7/ftzEvRz1wyLopZnFePDD2Yvfhk9h8PnfsOb+vgC8pk9BLdTcOGQq9+0/hWv2PpBbZ9/Ciqy9eZhrubvgdmZsGsutl99CP5ZzRXQGfBVbyns24OvYP0RYCoKw67NDhaXW+gug9gzCTsD+wHGxm/4FzFBKddRab9da/wYcm+I5tVJqG9C0CeBCq8Nhs9QZYC8IrQGzvPKBM/blwF55f/r5/ujFL7lolvxiV6bLhi4z/l5bWArtF6U2AN1behmCILQJ2mePZUuk2fQANmqtIwCxPzfFbq8XpdSRSqnnlFJPA36t9bJ6thunlPpWKfXt9u3bm3vtgiAIDZKd5iDDaWOfgqyWXoqQhKyEESZpjSxXFto28bmVv2k63b2OrwIHsyw6gGXRARSwiUv/9wLFdCCMlYt4jg9X/ZVb9r2V/9vjYJbTD4qAy4DbwjgJog7TqMM0g/kW7oXxzIJrIP/ljeRTxH3cyGjmwAy44vFnuGPUXfzCXhTv140jp3/AkdM/gH8Za9Jaej4FQWgdtJrwHq31p8CnjdjuKeApgMGDB8swshZiRzsl7bHHTGg9ZLoMUel2tJpDbKul9rGmMcceMxkWwNWI1F6hffCevoBMKvnLJYs5+ukF/MC+AHRft4XTD3iD5fTjUmbx1zkfQhHcfdnt3PXcHaz8dSBsAf2m4tGe4wji5O9F0wHY/cfN3DH3eva4bxOMhOJju/H1/CGUksNv7MmwUXMpZBWPV07ktkvuhf7wqdo7tqK90bpXy+wMQRD+JBrpsdw5rAe6KaWsWuuIUsoKFMRuF4RmQUoAhfbIrvS535XWAjXXYwpLu7XlxlAJgiAIbZn2WQq704Wl1nqbUmoJcDbwcuzP77XWUrcq7DB2tZNcoWVpK5+HXel97Ki17IjnzYyVwkalpkUAlHofmMLtfMbiL/9C2kOljOEVup9fBMBDL06gcPsGej/xIkz5lY/04TzJBVw+YZpxSbwMvh4zALUuBFfZIAeITQ5SH2gcd1Zw4o1v8f78UfSd/z178hvzGM4bnM5HvU/how81l984jcc/mkjfYd/z87/mJqxOymAFQWg97OhxI9OBUUAX4BOlVLHWeh/gUuCfSqnJQClw/o5cx67GrnQy2NqRfSkIO4e29F3LiDmWFgmAbfcYvZUHUR52kn13gLmThmH1RrjmuVm8/OLpAJx73xsMuvF73pt8LCcP/oRh8z/nx6MLGcpCXu1xKkyHeaNO4qGeV3Odc6YxcfsV4/kf6jOB6+6eyft7j+LiUTOZXTGGO+64i/0e+IrD+Zx3OIvz9niG8czi8eMP5Wc1BNQgtEy8EYRWTvsshd2hNUBa66u01t211jatdZeYqERrvUJrPURr3Sf25y/N+bpKqRFKqafKy8ub82l3OHPGH9KmTt4EQRB2RTLjwlKUpQC/64v5q/Xf6ArFUgYw1v0M+gDFuW+9wblvvQHnBTj6qYXczmTeH34Uhxy9gCkYwTrr6cH8B4Yy5aT7sBKGQ8DxYQVsADZghPf0AnqBkwC+ohw6PbCOJbMP5l1GwJvw0qhLeIaxQDfQU40fQRCEVkibbC7RWr+rtR6XnZ3d0ksRBEEQdjHMUlgRloIgCMKOweyxbM6fXR+JLBQEQRDaVbVElulYtslLq0JjMcpgT2CPgVPACf2++Y4LeZ5+LEeN1fCmUcbWv2ApU8dNYQ278zf+yXucxLm8wsNcy3DmkU8xyqlhDFw+exr/YTgXHn03AH+5bzFX3vgAjy29gUoy4QXFtnN78vKY0zn38TfgE+DtL4lgpY8uAUbyCwNbbJ8IgtBcSCmsIAiCILR5pBRWiPPQEI5c+gHdv1nF4XzGDSseMwTgLGCDDTbYmMoUTntrHtO5ksnczqccxcpTBvLC8ktZ/v/t3XucVHX9x/HXWy4moiigBpooiYqiIpH3CxZeIhVTSi1FM8VLRWUqhCUgappohoaGUopo2U8UpTAV8YYphNxUFAJEQfAC3otU4PP745yVcWV3Z5nZ2Z2z7+fjMY+dOd9z+Xy+35k5+53zPeewG3u/MYNx9/Ri7Q1iBxbzTSYypO+VDOl7JQxcyvUzLmTyngfQi4mceunNcAG8zA7wD9j5njnQ/UBG6gPm6153Ks2srDWKI5aN6Zd4Mys//o4qrZYbeyhsY5ccrTQzqyu+3YhZg+N/uM2s2Dar5qqwLZo34Rt7tCtxRFZKFZ3K82IzmnMll3AprSf+lwt7DYdTYcS/fgxL4YRjk0u7Hv/UAzxw/GEcNfUxNDugKbS7/2WWz9+RCRzD2mc35YQ2E+m37+9YRQvGPNWPNmNWAjCs7eUs6taejl9bxqLJ7bmLExl9//fYm5n8aovhzNfbfD3+ziP+jcPMMsAdSzMza1Q8FNYAVtOEkVsNZN5bOzOj1250+ucSxv2rF6/M35W3jt2MXde+lMzYEY58+zFWdwa2CrbuuITlV+3IDQPO5IdLRvOzXr/muk4DmfXvvZn68qH8p/tGDOt/OQCLRrRnx2eXw6NTmUgvxk88iY96NecHGsARcT8P3b6KR7Qd0JOIA+utLsys2BrnOZaZ7FhKOgY4ZqeddqrvUMysEfKR9oat4qqwTXwjSzMzqxMeCpsZETEBmNC9e/ez6jsWMzNrWFpuXPVQWGsETh0MfWDUXcBT8MjbPfl+61vpcsC/OGHERA7q/zB38F3GbnQKAHo64HUYct5ABm0+mD14jpPvvpcvDViCLg3YAtgEpqkLr0Ubfsllyb0rgY6Tl8F1AEP50Rm3wAfwwDePh0fgId1Lu+gLwDJ2LHk1mJkVWyY7lmZmZlVpspFovWnzT49cWuMyYMxQTuV2pvMVTp96Fx9fvTkP3nwkzz/xVZgOU2YczpTph0PFrbCnA6Nh8CFXoVEBi+Ggfz3MExzMz2++jOHLf4XWBIvmdGG781Zw6siboUe67Hi47/4jacIajm4PvA78DLgMTo323K4xyXwxuKR1YGal0PiGwvp2I2Zm1uh02rolrTdtXt9hWKkt8WFqM7O64iOWZmZmlnnSBOJVaMcypvMVTnvir5y++C42ueYdDuYJzj7kJvZZ/Bx/69aTo78wiXgy6YRq+Gw+/N/e/GzjXxMbCRFMGXE4U249HLrAxmM+5qBrH6Zjp2VwJtze+ixIRtES5wkp2DnmwPJVwFNwS0/44A1u17JkHh+tNMsgn2NpZmZmljnJLUa6oe2vgT7nw7lwbveb4G64oO9wTteNcHJrjrvzLxzdfxJcvxRdHgB88p5otnfAN+G6aQPhaWDC+3SOhcyd3Y0+jOVqLmL/BRM4bsAUmgxYwzi9D8ABIybDJtCVmcxnNXTuSYe5L/GK7qq/yjCzEnDH0szMzCyTHohrmUVXBn5H6NZg1S1bwrbQnmVAa3gGxvc6CTYFeI0fD/ozAM10M1+OF1jYbXeYuYp4pAVHfu0+Hup4LH0WjWWcFrAyfg0nb8cK2jBlzuGfbnMVz8CqF/mrFsPfT2NAr6FcpU0+LffRSjPLkkx2LH27ETMzM0uOVJqZlVrjvI9lJi/eExETIqJfq1atap7ZzMzMMie3U3lebMY39GPupg96PuBFGHbnBXA43M8xsCX0W/Q7eAu4eyjwONfvdiHX73YhtD2Thc12hy/AEfEw+voQNuYjblh0JlvwLgA/47fE5WKKWrD/no8yIIYyIIYySx+COgODOKHXHVwlgFWAj1aaWcMmaR9JN6WPpZI61bRMJo9YmpmZmcGhAIw8pAfcBs/qerjmQPgz/Kr/cH4+4jKuafFLaAqjRvwEpi8GToNrduDn518GwDU6iyHxW3rxd/bp9RzwNg++fSRzW+/GQu1Oh3iJ3i0Gw6qpfPLefjTTEJ5+5WIAfhWDeZDmTJtzCOO0gB9EWwBu4YelrwozK6H6OcdS0nDgBJK76e4REc+n03cGbgPaACuBvhHx7+rWFRHTgGmStgLa1zQ/ZPSIpZmZmZmZWf2oGApbzEdexgOHAK9Umn4T8PuI2Bn4PfCHigJJX5Y0qdLjwpxlzwFG5bNxH7E0MzOzTKkYBhsPHpa8vjLgH3BMfJEJWsyg+CP/5ACu6fRLWPU+tN2cIf0HMuTnV/KDT37PKjbhGq1J1zaBWXRlyPlXct/EI+nd8UH2aP0Uz+opoBWvfG1XWDUUHh9Ms1ZD4JWLocONAEyMXjx7/oHw2wkAjNYKAG6JUtaGmWVEW0nTc16PiojPdPgiYgqAtO6evZK2BroBFVcW+zNwg6StIuKtiFgI9FzfBiU1S5e7PJ8A3bE0MzOzTNKRaQ+uMwyYPJSrth8M3eENtuFgnuSxU4+CxzaHNvAcqo34awAAEnlJREFUezDgk6FcpaZAR2BJupZujL+iG9+49h56t3iQg/77MFO0GjgKGM3Ok7/FfJ3DcYf8henxPZYuasJ3Y1MA7tQkYBL3xT95hy04XbuVvA7MrD7UyVDYFRHRfQOW+xLwWkSsAYiINZKWpdPfqmHZE4FxEbE2nw25Y2lmZmZmZmafERFjazO/O5ZmZmaWGckw2A7MiN8wiZUAXNRxBFftNhiWvMiwV0czn10Ypj2BOwB4b/UZ/InTmcg3+WnM5bqtvgErKkaGXQEXT+DKQXfywKrjefT9I2h2cMCTS4GmzNe9/CZWcpG6AXcQi4ZwE6cDcOfJf4KfQO+cK9T6arBmjUGDut3IEmBbSU3So5VNgPasG5ZRNJnsWPo+lmZmZo3X43Ejc9mNi44fkUx4F/gKfDizCy33XAPP3Qg6kQFrh3ICd9NKg0hOMZrEQwcPpt9bv+NNtgFgvGCfOIy9BHBreh7laugwmnbRl+V6nos0g66xK7ME6jhkXSD7A/u5U2lm9Sci3pQ0CzgZGJv+nRkRNQ2DrbVMdiwjYgIwoXv37mfVdyxmZtbw3HX2/vUdgtWB3HtXmpnVn3q73cgI4Hjgi8AkSSsjYneSK7veJukS4B2gb11sP5MdSzMzM2tcPu1UNh3MoRoE9zUjBidXRtS910C782m5yRqIoXDyYPjzUK5ST65iEPFic9R5M/aJw5imfzNKzZkRlwIwnhOZpuXAgRwR/+UhvQId5gJHsVwzafXRAby38Se8/PEOwINABz690v/TL5a2EsysgaifobAR0R/ov57pLwH71vX2fR9LMzOzMiHpYklzJM2UNEvSiTllLSTdJWmBpJckHV2fsdabrjAsfgG9H+CSvQZxyV6D6BdNGDumD8Qc4oohHHfnX+gXW0DnA4FmqPNK4AOm6RlgAbAJ3+IevsU9wCbsHJ2BOTzU4lgAWn20NbTdF145lndntgOe472NK24Ll3v7uL9++szDYM0s69yxNDMzKx83RMSeEbE30Au4WdKWadkFwAcRsRNwDHCLpJb1FWj9GAwLoS0rgWkMU3OGqTk7sZCvMwl22hMNep3xx57EqE4/gXPg1LiZ5dER+C7wHWAaz8dlNGUNTVkDfIv5msDzMRK2SLayRfN3ue6ts6HD5Wi/Kem2L4Jxg/lbPJnEwbqOpDuVZo1NxVDYYj4aPncszczMykREvJfzsiXJfy8V+/ITgZvS+f4NTAe+UdIA64nPrTQzq38+x9LMzKyMSDoH+CnJza3PiIiVadH2fHYc5qvpPI3DloMZ/fb3OOOlO9HIgO4kXWtgMdeyihbc+O/vc+7mf4IJnwBXwO2DGdD/Kn7BlYyNX3BKi7vp/N9j6aJdgbvTFQ8GVtOb++i67BlmCXZjLj/VpTwUfXiMNVyhS9kuFrBUd3A0kwBfCdascWtQtxspGUVEfcdQZyR9AMyr7zjqUFtgRX0HUYecX/nKcm7g/MpdbfLrEBFb1WUwuSTNIOkgrs82EbEmZ949SG7EeFhErEz3eR0rLiEvaSSwICKuXc92+gH90pddgOeLmEaxlcP7saHH6PgK4/gK09DjA9glIjYr1sok/YMk72JaERFHFXmdRZX1I5bzIqJ7fQdRVyRNd37lK8v5ZTk3cH7lriHnFxHdajHvc5KWAT2AcSRHKDsAFfcm2x54tIplRwGjoGHXBzT8+KDhx+j4CuP4CtPQ44MkxmKur6F3AOuKz7E0MzMrE5I65zzfEdgbmJtO+j/g7LSsE/BV4B+ljtHMzBqnrB+xNDMzy5KhknYnuUTgGqB/RFTcLPFq4FZJC9KyfhHxQT3FaWZmjUzWO5aj6juAOub8yluW88tybuD8yl3Z5hcR36mm7D/AtzdgtQ29Php6fNDwY3R8hXF8hWno8UF5xNjgZfriPWZmZmZmZlb3fI6lmZmZmZmZFSSTHUtJO0t6WtL89G+n+o6pUJIWS3pJ0qz0cWQ6vexylTRc0suSQlKXnOlV5lJOeVaT33rbMC0rp/zaSJooaZ6kOZLukbRVWlbWbVhDbllpv/GSZkuaKelJSV3T6WXddhWqyS8T7ZcvSS0k3SVpQZr30VXMt62kRyW9t76rIko6K13HQkk3SNoon7JixVfddiT1z2nPWZLel3RtWtZD0n9zyqbmG1sR46s2hkLqr4gx9pb0rKTnJb0g6ec5y9S6DvP5LElqIun3aSwLJJ1ZaFm+ihDfr9J6mp3WW+73yBBJb+bU1+/rIb4qYyhG/RUpxjGVPrdrJR1bU/xFju8ISdMlfSRpeC1iL0odZlpEZO4BTAZOSZ+fAkyu75iKkNNioEsWcgUOIrlp92dyqi6XcsqzmvzW24ZlmF9roEfO66uB0Vlowxpyy0r7tcp53huYkYW2yyO/TLRfLerhEuCW9Hkn4HWg5frqCzgEOBqYXqlsR2ApsBXJD9EPAn1rKityfHltB2gGvAl0T1/3qJxPHdVfdXVUZQyF1l8RY9wXaJ/zXlgAHLyhdZjPZwnom8awURrTUmCHQspKGN+RQIv0+V7Au8Am6eshwPACP7eFxldlDMWov2LEWGm+vYCVwMYlrsOdSK6ofVnl7dX1ezDrj3oPoOgJwdbpB71J+rpJ+nqr+o6twLwWU+mfonLPNTen6nIp1zwrt9n62jAj7XgCMCmjbXgCMCmr7ZfuJKdnse1y88tq+9WQ+wuknaz09d+Ab1czfw8+37G8ELgh53Uf4O81lRUzvny3AxwPzKkun7qovxrqqMoYCq2/uqjDtGwC6/4pr1Ud5vtZAv4O9Ml5fQNwYSFlpYqv0nwC3gO2S18PoYBOUZHqr8oYCq2/OqrDEcCInNclqcPqtleX78HG8MjiUNgvAa9FxBqA9O+ydHq5u0PJ8LyRkrYgW7lWl0uW8qzchlDG+aXDqc4F7idjbVgptwqZaD9Jt0h6FbgcOI3stV3l/Cpkov3ytD3wSs7rV6l9TtWto9D157t8vvOdAfyx0rSdJc2QNFXSaetZphTxVRVDXbdPreeTtCuwH8kRnwq1qcN8P0sb+r4qtM6KEV+uvsDCiFiaM+2k9DvmIUn71yK2YsZXVQzFeM8VrQ4lNQe+y+c/t6Wow+rU5Xsw87LYscyqgyNiL5IbXovkVxIrL1lsw+uBD8lGLpVVzi0z7RcRZ0bE9sAgkuG+mVJFfplpP4D0n/0VVTyaNKb4JLUDvgaMzZk8A/hSRHQDTgIukdSzxPFVG0NN6qEO7wN+GBHLihF/lkk6FBgGnJwz+SZgx4jYk+R75z5JbUocWkOIIV/HAa9GxKycaeUUv61HFjuWS4BtK75007/t0+llKyKWpH8/AkYCB5KtXKvLJRN5VtGGUKb5pSe8dwJOjIi1ZKgN15Nb5toPICJuBw4jOU8kE22XqyI/SW2y1n4R0S0i2lbxWEPyS3qHnEW2p/Y5VbeOatdfxPjyme80YGJErMjZ/vsR8V76/GVgPOvavCTx1RBDjesvVR1K2prkdIarI+KvOduvtg7XI9/P0oa+rwp9TxcjPtKjaGOB4yJiXsX0iHg9Ij5Jnz+cLtOF/BUcXw0xFOM7oSh1mPrcKIMS1mF16vI9mH0bOoa2IT+Ax/jsibuP1ndMBeazKekFKUh+ab8cuLfcc+Xz5yBWmUs55slnzyGtsg3LMb80/kdJL2KQpTZcX25ZaT+gJckRiIrXxwCvpTlloe2qyi8T7VfLuhgC3Jw+7wS8AWxWzfw9+Pw5lh35/EVfTquprJjx5bMd4CWgV6Vp7Vh3r+7WwHNA71LGV10MhdZfEWNsA8wGzl3PcrWuw3w+S8DpfP4CKB0LKatFnRUa31dJOhf7rme5bXOedyW5KM0XSxxflTEUo/6KEWNavh3wH6B1fdRhpc9Q5XMs6/Q9mPVHvQdQJ0nBrsBUYH76d5f6jqnAfDoCM4E5JCfr/x/QrlxzJTlZeymwmuQqdi/UlEs55bm+/KprwzLMb3cggHnArPRxbxbasKrcstJ+wDbAMyT/IM4iOZeqWxbarrr8stJ+tayLTdM8F6Tv5945ZZcC56TPm6TfV28BH6fPh+TMezawMH3cSHpRjJrKihVfHjEcSPLjQZNK6/9R2tazgOeBi+qi/qqLr6YYCqm/IsZ4NbCKdd93s4Dvb2gdVvVZAiay7oq9TdIYKuLpl7P8BpXVos4Kje9fJJ+V3PraIy27La2n2el8veohvipjKEb9FSPGtPxi4C/rWXep6vAgku+694EP0udHluI9mPVHxS9RZmZmZmZmZhski+dYmpmZmZmZWQm5Y2lmZmZmZmYFccfSzMzMzMzMCuKOpZmZmZmZmRXEHUszMzMzMzMriDuWZnVI0q2SfpQ+v1TSiXks85iko0sQ26fxSOoh6YicsvaSHi3y9h6TtEjSwCrKT5d0d4Hb6CNprqQVNc9tZmYNjaSQNEdSzw1Ydoyk1yUNr4vYzKx6Tes7ALNyIqlpRKzekGUj4pJix1OISvH0ILm5/ENp2TLgsDrYbP+I+FsdrBeAiLhb0nRgel1tw8zM6twBEfFhbReKiL6ShpDsz8ysxHzE0qwG6a+nF0p6DBgsaQ9JT0qakR4d+2nOvNtKekTSbEnjgbY5ZblHL78u6WlJMyU9J+mkPOLYQdIKScMlTUuXOzinvG86bY6keyVtnU4/II11lqQXJJ2cG4+kPYBzgL7pPAMrtpWz7qPSWOek+e2UTu+RLvOHtGy2pM551mvzdLl5kiYD+1QqvyjNc4akCZK+mE5vJWmcpJfSWMb412kzs9JJ94tDJP0z/Q4/Iaesqv3FLul+b7ak5yVdkOe2bk33FZMlvSLpt5K+lu6HF0v6SV3laWa14yOWZvnZKCJ6AEjaDOgZER9JaglMk/RgRLwIjACeiIihkjoCs4F/rGd9M4CDImKNpG2AZ9N1vFNDHG2AORFxgaRDgT9L+jLQCbgS+EpELJc0DLgeOBEYAPw2Im6XJKBV7goj4jlJNwEtI+KCNMcdKsrTDurtwKERMVfSD4A7gH3TWXYHvh8RZ0u6GPgl8L0a8gA4G9gR6AI0A54AFqfbPAXYCdgvItZKOhe4Jl3vJcA7EbGrpNbAs8C4PLZnZmbFszYiDpC0C/BPSU+m06vaX5wHTIyIYQCStqzFtnYHvg40IdlPtAIOBdoB8ySN3pAjnGZWXO5YmuXntpznLYAbJe0FrAXaA3sBL5IMH+0PEBGLJD1Sxfq2Av4oqROwGmgN7AI8U0McHwNj0/U/LmlVutyhJDvs5el8fyDp1AI8CvxCUgfg4YiYml/Kn9oXmB0Rc9PXfwJGph1sgHkRMTN9/gxwTJ7rPQy4LSI+AT6RNBY4KC07FugOzEj6wjQF3stZ7scAEfF2emTYzMxKazRARMyTNAPYDwiq3l88AQyX1Jxkv1Sb8/jHR8RHAJLmkezv1gKvSXoH2A54qRhJmdmG81BYs/zk/hJ6BfA6sHdE7AVMA75Qy/XdCDwG7BERXYGlG7AOAJHsyCv+5gqAiLiOpLP3FnC9pMs2cBtV+V/O8zXk/4OVaii7LCK6po8uEXFgnvGYmVlpVbcvAiAixgEHAguBgSRHNvNVeT+zofsdM6tD7lia1d4WwJKIWC2pC3BwTtlk4PsAknYkGbpT1ToWR0RIOpxk2Gc+mgPfTdd/MElndB7wCNCr4jxE4CxgUjrfzhGxMCL+APyOSucypt6n0hDZHE8DXSXtmr4+DZgZER/kGXNVHgFOldRU0iYVeaXuB86rGColaeP0CDEkv3Kflk7fEuhdYBxmZlZ7Ffu6TkBXYCrV7C/Scy1fj4hbgaGsf19kZmXMv/CY1d5lwO3peYALSYb3VPgJMEbSt0k6fA9XsY6BJMODBgJz0kc+VgKdJE0lGZJ7ckR8DLwg6RfAw5ICWERyDiNAf0mHkQyj/Yh0GGkl95J08mYBf0kfAETEW5JOBe6U1JTkyOcpecZbnVHAnsALJEdsHyc555L0fNC2wOPpUNiNgJEkw3svBf4k6QWSc22eYt0wWTMzK42PJD1FcpG6syPiTYBq9hffAb4n6WOSo5q+6I5ZxijCI8rMykF6QZ3pEdG2pnkbIiVX1R1e6O1GJDUDmkTE/yRtDkwBzo+IiiO0O1DG9WRm1tClP2BuVhcXzCl03UpvN1JxMTozKx0PhTWzUnkbuDo9SluILYGn0qOr04C7czqVfYAJwBsFbsPMzOrHGyTf8T1ru6CkMSRHSN8velRmViMfsTQzMzMzM7OC+IilmZmZmZmZFcQdSzMzMzMzMyuIO5ZmZmZmZmZWEHcszczMzMzMrCDuWJqZmZmZmVlB3LE0MzMzMzOzgvw/nE/nhUez0XgAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5YAAAHuCAYAAADk5ZP7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzde5xN1RvH8c8zI2pcc42QNKEpcplSKiFRinIphST3KCEixRgkIuSWOwlRLjVKkSSklNtPkiSJIkKuoxlm1u+PfYahUcoZZ2bO9/167dfM2fucvZ+9y97nmbXWs8w5h4iIiIiIiMh/FRLoAERERERERCR9U2IpIiIiIiIiF0SJpYiIiIiIiFwQJZYiIiIiIiJyQZRYioiIiIiIyAVRYikiIiIiIiIXRImliJ+Y2VIz653stTOzKhe4z3/cx9nHvcDjTTGzKf7Yl7+YWTHfdSgW6FhERP4rM6tiZn87x9v5vCc1mFkzM9ue7HWaexYEKz0DJT1RYiniY2bFzWyqme02s+NmttnMBptZgf+4y4LASn/GeA71gMEX4TiBshPvWu6Ev34BEhHxJ98f65xvOWpmX5lZTT/seiXevSzpOL3NbOnfvSeAnvEtEnh6Bkq6ocRSBDCz64DVQC7gIaAk0BLIA7T9L/t0zv3mnIv3V4xnM7PMvuMccM4dTa3jBJpzLsF3LRP8tU/zXOKv/YlIhvMq3pf58sBa4D0zC7+QHTrn4p1zv13oey4G59wh59yh1Np/0vNL/pmegZKeKLEU8YwCfgAecM6tcM7t8P18AnjNzG41sz/NLFfyD5nZBjPrmNIOk3djTereZGZVzew7MztiZnOT78/McprZHF9r6RYzu+es/SXt4x4z+w44bmaXptAFN7+ZTTezP3zHWWpmhXzbWpjZ/8ws1sx+NrO+ZpbpfC+Sr3vUG2Y2yMwOmdkOM7vfzK7yHeeomX1oZrmTfSbMzMYni+dtM8ubwj77+97zq5l1SLb9VDcg3/WcDFyVrEUh6RpHmtlK33+nHWbWKYX/Hs19LQR/Aned73mLSNA56vsyvwV4CkgAqgOYWQ3fvT/OzH4ws0eTPuS7J483s73Jer486Nt2qpurmTUDooA7k93LilkKXWHNrLPvnvan7x5XPtm2Zma23cwa+n7+YWYT/ilx8x3nO1+M7wN5z9p+qiusmb1mZjFnbb/GzBLNrIjvdXEzm+97BuwysxFmdlmy9283sy5m9p6ZHQeam1kWM5vo+8zOZOfSLNnnzme/ncx7dsaa2SYzu/OsWGuY2de+67fbzAac7/5TuG56Bor8DSWWEvR8N/gqwBDn3F/GtjjnDjrnvgB+Bh5O9rkbgQjgrX9xuBeBx4FqQDng+WTbhgHXAVV97+n7N/toDpQBUmoRnQsUAWoBFYA3gaTkMQR4FrgeryW2OdD6X8QPUBc4CkQC84ApwBjgZaAScPVZ5/UqUBmoDdwJFPV95ux9AlTEO+9hZnZ9CsdeCXQEfsFrTSgIrDSzbMAC4Bu869od6GdmDc76fG9gON51Xn2+Jywiwcs5dxI4AWQ2s6JADN59tjTwGjDVzG7yvb0D3r3xPrznQyfgcAq7nYV3b/yC0/eynWe/ycwaAtFAN7x727fAAjPLmuxt+YFGePfY+r6lxbnOx8xy4t27F/v2+T7wwt9cgreBGr7PJXkY+MI5t9OXxC4ENuM9cx4AbgZeOWs/3YH38J4/MUAPoIbv/fcBTXznkhTn+e63G/AucCPe9ZxuvtY4M4sA5gMfAGWBOsD2f7n/s+kZKHIuzjktWoJ6wbuRO6DsP7yvB7As2etBwIJkr5cCvZO9dkAV3+9VfK/Ln7W/L32/58D74lI92fYa59jHbWfFdeq4eEnpcaDAeZ57F2BJstdTgCl/8/4pwPpkrwv4Ynom2bpuwCrf79nxkt8aybaX8n2mRLJ9bjjrOFuAtr7fi/neX8z3uhmw/az3twF2AKHJ1g0AVp713+OFQP//pkWLlrS9nHVPvQTvS3oi3hf2l5PfV3zvmQnM8P0+Aphwjv1W8b52nXrdG1j6D+/5Auif7HUmvAS0te91M7zW1LzJ3jMOmPk35/ck3h9Kk98vZyS/ryZ/FgDmu782TbZ9XdJ9H2iK71mWbHslIBYw3+vtwPiz3rMXaJbs9TW++3Szf7nf4cm2F/Lto5Tv9RvA3HNch3/cfwqfmYKegVq0nHNRi6XI+XsTqOTr8hICPOpb9298k+z33Zz+62xxvC8MXyXb/uU59rHub/Z/A/C9c25PShvN7BYzW+jranMU6IfXuvlvfJvs972+n5vOWpfP93txvC9mp87FObcZOIj3cE2S/LrAmdfmfJQCVrszx6B8cdYx4O+vnYhIkh6+e+Rx4DmgvXNuHd495ex7c/J7zZvAQ2a22te1sdwFxnHG8ZzXerqaM+9tvznn9iV7fer+aWY9fN0zj/rOB7waAmvOul+e63mDc84Bs/HqD2DeWNMywDu+t5QGKpx1nI+ByzizENGp+695w0DyAWuSHedH4I9k7z/f/Z79XIXTz48bgGXnOLXz3f/Z9AwUOYfzHlslkoH96PtZElh/rjc5r8vPUqAxsAqvlfHdf3Mg59yJ5C853R3dkq37p33E/s1mO9c+knWVmYk3tucA0JC/6TJ1DqfOwTnnzOyMdaR8Xue9zxT2cT7O9zh/d+1ERJKMwesyeNSdWUznb+81zrmvzOxqvK6d9+B1U3zeOTcs1SL9+/vnGLyurMml9Jz4p3voLGCZrzvsw8Dnzrldvm3ZgE+Bdil8bm+y35Pff8/nmXe++03pmZT8GXSuY5zv/s+mZ6DIOajFUoKe7y+9S4GO5ntCJHfWuJI38MaBNAFmO+eO+ymMH4GTeOM7klT8D/vZCJQys5T+0lkKuBx4zjn3pfOKUhT+D8f4N5LO65akFWZWCq/67ub/uM8TQOhZ6zYDkWaWfP2tF3AMEQluB5xzW91fK7RuJtn9zOeMe43zKnW/6ZxrjPdHvObnOEZK97Kzfc+Z989MeGP7zuve5otla9KSbJ8VfD1vktycwseT72cVXivag3iJ5axkm/+H93zZkfxYvuXkOfb3B/A73tjGpHMrjveM+s/7TcFGvHGNKfHH/v+JnoESVJRYiniewnvALDKz6r7qa5XMbAJnzuU1By8Za8y/7wZ7Ts65w3hjXF4zs4pmdgvw0n/YzxK8VtfZ5lWyDTezx30FJ3bgPZCe9lXCa41X5CHVOOeOAJOAEWZ2u3nVDKcAH/oS2//iZ6CAmVUws7y+Ig3TgTBgtJmVMq9K49N4BZFERPzldbykrLeZlTCzp/Duo68BmFeh9CEzu9bMSuONlT/Xve5noISZlfTdy1L6TvYa3j37EV9C8jqQBe958V/NwEvghvqO3Rq49zw+9zbeuPzSeM/CJNPxxnnO9FUmDTezOmb2T0VwXgf6mFctvQxe6+pxTrcw/tf9JvcKcL/vv1dJMyvvO19/7f9v6RkowUaJpQjgnPsWuAnYg3eD3oxX0vsA3sMu6X2xeNUAf8Nr5fSnjnhTnnzmi6H3f9xPPbz4FuLNv9YMOOGc24tXAbYd3l9x7wH6X0jA5+lZYAVe5cFleNXsHr+A/X2O98XoE7y/eN/me3jXwqsK+D+8LxO9nHNndwETEfnPnHM/47Xa1ce7j3YEnvC16AEcA3ri3YeW4j1DnjrH7ubijatfjXcvK5rC8d4C+gCDffu8AajlLmDuYufcQbwqpPf49lkXryjRP5nlO/6y5C25vvtvFbwkbbFvn305Pd7xXPr73v8+3jCN6cARIO4C93uKc24j3n+vB4ENvmMV89f+z5OegRI0kqpqich5MrMFeFXhegQ6FhERkYzAzAoCvwIVnXNfBzoeEfn3lFiKnCffWMsqeJXwSjrnfgpsRCIiIumTmZXAqyXwBZAbb3qMgkCE05dTkXRJXWFFzt97wDTgeSWVIhJIZvaumf3PzNaZ2XIzK+tbX8LMvjCzLb6f1wY4VJFzScQbB7geryvsYbz5HpVUiqRTarEUERFJZ8wsp3PukO/3B4Ao51x5M1sCTHLOTTOzJkBz51y1gAYrIiJBQS2WIiIi6UxSUumTE0j0TTNUHnjLt/4toLyZ5Tv78yIiIv6WKdABiIiIyL/nmw6pBt7k6PcARYBfnXMJAM65BDPb5Vv/e8ACFRGRoJChE8u8efO6YsWKBToMERFJp9asWbPPOZcmW/yccy0BzOwxYBDeNBfnxTeXX2uArFmzVihVqlSqxCgi/rFmza7TLzIXgrxACFieBNyRUNi2C8gD7Acuw8rmIFPoSYqyg9/Jx+E1sQCEVchB7JpQ4A+gAHkqHGD/mjByVzjOgT154QhcEb6L39ZcASVD4PvfqHDjr14M/7sWrsoBP/8JWS71TQwDFSpcvOuQWvx9rw83c7H+2pnPbljonLvHz7v1qwydWBYrVozVq1cHOgwREUmnzOznQMfwT5xzb5rZOLz58a40s1Bfa2UoUAjYmcJnxgHjACIjI52elSJpl1k0fBsF10d7K+pHwVvR3O4q0Z7RPGpJf1P6gbfcTB6tNA/3RTQnLIof3S9QpDDeNKQQu6YY8BHwMK3dIhLIxETbx4EaUazoH8ntD61m9xHD2AWVgO+jeXD9EQDWWHbcuN5YAwdHvFici7qIVyL1+PteHwu08ecOgd7enxPSNI2xFBERSUfMLJuZFUn2ujZwANiLV2HzUd+mR4F1zjl1gxURuYgMr/XOn0t6kF7iFBEREU9W4B0zywok4CWVtZ1zzszaAm+YWS+8vm5NAxiniFwgM69lsErER4x0bwJwS2x7jr6VnxW2khX0BMrDQshfIy+ZeQO+OA5EcXvix3RnIEPpxCe22bfHe7338znj7BngBCcOZeaSKlGM7t8OZn+HlXZehjD5BNSNoqdt8D7apQwdaoTBkQ1AXZwrczEvRbpiwCWBDiIAlFiKiIikI865PcAt59i2GW/SeRHJKD6LYqlFcwOP+VaMAuAGV4uNdgIGADVfYS+3EenWAK/wsxvNLXzJ/RYN/AJ1vS6rn82tyJ31VvHs3BW8arfxsyvMJdabQyezkLNPHL1dd3pbJ04cuoKFOe7ivv99Qqe5LwMwzOZRc9ByRpA0elCJpZxJiaWIiIiISBqT1Fop6U9SV9hgozGWIiIiIiJpiK31flZxFeHOaOBOILdv6QRcxkYrCeEVofsPUPc54ABX2evUd+EUnbKXUBK41cUD18E8YB7cabXgdnjV7gbWMp/awMPsD83DY73GE85W2rnpjM3Rgvs7L2bDjSUYNq47w8Z1x33Zm/vtDiDjFO0R/wrGZFpEREREJM2LIwvMiSLktmMkDq4CQO1B7zDfHobIHLD6FS+pnAeE1ybnt78RykJsieOqZpspwB6+ch24eeA3vh1GwbMngO9w7zyB9XG4XUZ3evPmyla8ObIVlIK3e9Xh2SH9KLNqC7RZDICxHwDncl/8C5HOBOsYS7VYioiIiIiIyAVRi6WIiIiISBpxemzl41RkJl98WJXEWzLBWG/t/MFFIbwY5IMV7m1ut6fh0csgEg5lGcvbANdBB0bwbJ9RvLv5EbjCt8uhh2FUDlzYE7AHqAIfF7ydATt706zSZBZUuo/RtKPBgfk8nCeGcm49P7vGABRlz8W8DOmaxliKiIiIiEjAdXRZgKVkIQ6i46BBFjiCt0RXZOIPjeF2uL3RanjsMtbOiODQM1mAp2nkiuA+M3ZSBP6ECjM+h9l4yxs5IApea9YaG+jgKNTYtJw3ijzMnSyjHOtoxAyq5f6Q9111mgyZzVXWjqusXSAvR7qT1BXWn0t6oMRSRERERCQNUCVYSc+CsZVWRERERCRNGud+pHXRqVRxHzGwTjPqx0xnztDGsND3huVQmg3c1eMDcnGQPOyjPaOoGzqPFu4tJhZtz4yPmjMnXy3C+sfShcGU2+GVmd16+DoWNK3BA4sWkm3zPo68lo/sVX6n2a6p8Gdmqn74BSfbh9J31UusLh0Jz04BrsK5ZgG6GulTsHaFDcZzFhERERFJU8yiye+eoHW9ouTZ/itL+98D++AbSsMtB3jQLQLg3aKP8BDv8HNEKWpsiqENY8hEAs/NGA7FoN2OIYxu3pmxk9qyqFod+n9aklvdbgAW5riLnygGq+Ho+LwUeOdnSvMNX7xblf81KsnH7W+nRtfluAqGFTwBPzfBFVW6IOdH/6eIiIiIiKQBe3MUhSN7aBcymr7XvARlYQidWeyqU8BXPGffjjysiLmbxzaNZw8FqFF+Of9bW5LR2TrDZhj9YmfeXlKHhyvHcOJ945LvHF/45sXsXj4bG+vdBL8BV0IuDhJDHT5tVJWuDGLh/AcYNqgN1tzBo940I7jqAbkW6VmwTjeixFJEREREJIA0tjJjCdausCreIyIiIiISYNe4BjQ6PAkYQ197iXsbzoUGcP/cxVRnMbk4SC4OEs6PsB3ejGnFoql1oAvcaIOZWKcxbAdehIetAi2WjeKKbL94O9/uLS2ZwKK5dzByZUtcdaM033CQXDy87T1COcm3ta+hY9OxMHkWsB+n1kr5F5RYioiIiIgE2I82myosZY5bBb/GsZMiNKo2Cd6F+xcsJobaxFCbIuykRocYrquzDm6AZo3GwPe1aREzHR4BLgWioyjAHvKE7GdbxUJQCigF2TlKvdh5ZOMI/do8y6SE5nxKVd4vfjfvxD3EQmrCUaBuQ5xrGNDrkZ5puhERCRrH4k4SG38y0GGIiIgEPXWDlYwiGLv/igS92wcuwcxY2/PuQIciIiIiE6PgICxnPC/zPA8XmsnbQx7nYOfLoSz0rdWF0bQH4MO768F1wIjjJO43ZlCf+BKZWRhek/0zr4R5MPKdljw1aQJvN6/DN5RmSUQlAEbRniPH8mHbHW6A8drU1tTlXW7ia2pmWcibD7WCUHDvBOxKZAgq3iMiQaNgzsvInEkdFkRERAKvNLwMXAILOtaidsh83m73OHQ/yS+Fwum56wUeYRblWA/AI+/N5OgjeXE7wqiZ+z3qEMOMqc3p0bQXqxtFEtFoE5N5ghrNY3h4Uwz8Caz2HeoKWFZnONflW8f0qfV5MfYlntkxjsyl4omJrw1xAboEGVAwJln6ZikShGLj1RVWREQk0NQNVjKSYEymRYLesfgETiS4QIchIiIStJKSyoKuHLvrwJSYhjSzWfRxPXl49BsUYjdZdsVRku/pwGss2F0fgB0Fi5K7SywW5aAJtK82ileadmAVFYmJfYDZYfWZT226MJhFB+twtEIo2bIlAHBXiQ+4c+0qyOWoUHw1R7/My6/V8vBL5XBC3jlGyPhjJBTIGrBrklGoK6yIBI3YuJOcVFdYERGRgMoZ14bdHa6gSsxHNMs3C96DyixnJ0UYtqg739UoxpOMoRIr6VKwLwBriCR/5R3sPViU/NV20J5RjKI9hdjFydAQmiyYTZVaH7GJCNgI/Su9cKor7Cdj7sM9bYy/+jGaM5mnqw3iRfpRYdnnAKzmtkBdCskAlFiKBBnnHLEnEjiRqBZLEREREX8zgjPJSjfnbGa3A08AWYCDzrmnAhySSLr054lEnIP4k4mcTEgkU6haLkVERC4ms2jecytpT2MOvQ8Hh+eixO8b2DK6DAupyY+rridP9V+5rvN2bh/yMe0YTeF2+wDoO7oLS3dUp2+dLvRcMJgPa1VlF4Vo0Ws6vA8nlhqZNkOlUkv4s4lx6bZEb25LgJYw6epGtF4wlTm1alG/6QLoCFTxbT988a9FRhSsXWFT9RulmQ02s5/MzJnZDcnWlzCzL8xsi+/ntf+0L+fcCudcC+dcE6CImWVLzdhFMqpjyYr2xJ5ICGAkIiIiwcUs+tTYygcWLaQLg6AJrG93C7VYwIp2kfxw4Ab4Fva/fyU0gRVD7uYZXvOSw0uha+yrvF60FT2bD4Zf4N4+n/LU4ZHc1ecDXl3bnkuWOpaVupkEQrk0ysHvRuF6WylcbyvfRRRjDRVIvMVIIBMfTq0K1YFM4JRUygVK7aaKd4HKwM9nrR8DjHLOlQBGAWOTNpjZNWa2+Kyla7Lt9wHfOeeOpnLsIhlSbFxCir+LiIjIRfJZFLSEjjeNhaPw9OhBDNvRhWJsJyp3D0o03wDboXf57vAyfENp6BIHXeKoGraEthunQBNwvxrTejWgS47B9ONFavEBee7/lTtbreKrIZX5blAxhlVsQzyZiSczmUhgFRW5O/f7PLwqhvv2vA9/RHuL+E1SV1h/LulBqsbpnFsBYGan1plZfqA8kDQz+1vASDPL55z73Tn3I97fTv7CzJoBxZxz3c91TDNrDbQGKFq0qB/OQiRjiT1xusXymKYcERERuSg0tYhkdIEYXFUE+NU5lwDg+7nLt/6czOx+oB9whZmNMbN8Kb3POTfOORfpnIvMly/Ft4gEtWNqsRQREQmsg0ABGPl1SzgITzAZMiVQeNI+ahPDliVlIBL6H+hBs9/HsKVaGcYVasW4Qq34IqIq1t9BqTi6R/emycrZlOR76jGX/eRlZMhTbBtfiAc7z6TUqp+ZQEv2jL2KPWOvYjWRrN54O5+svA8+gT/y5ubQyf44FxXgC5KxJI2x9OeSHqSXllWcc+8DhQMdh0h6FxuvFksREZGLzbkobLj3+yt1OvDcAw15qs8EWk96jfJNN3HX1A+IbR7GzY2+ofWM15iT2ID9Va5kyr62MBNWUdH78C0wbFIbcnGQr6jIxEqNWcYddGEwt09djfvRaBo9jip8iuFoxhgqtVkCQFU+5dGwuZAZeCGanC/0UFKZCoK1KmwgWix3AleaWSiA72ch33oRSWVntFgqsRQREbko1BVWMrqLnkw75/aa2XrgUWCa7+c659zvFzsWkWB0PPkYS3WFFRERSXWnkspnvJ/P9R4O4dCjVy/6V+7DzcuWMZL2XDd6O1/MKMetxddxYr1xyQAH62FkmZY81WoCAK0nvUbHDmMZN7wpR8hOi+bTYTlM+6EB05o2wGIc7Ipj1qUNmVaxAU16zcY94dU7mX51fXjfYEAgrkLwCNbpRlI1sTSz4UA94ApgsZntd85dD7QF3jCzXsAfQNPUjENETkueTB6PV2IpIiJycVwJtAQg52+/caj7FawmkhbLRgFw3YbtvNeuJrc+tI7W216jPcPoWekF+u58iaeWTYCq3l4KsBf2Qashb5K5cxxvNmkFDaArg/iYu2E2HK0ZRrbnE2jcbg7r+vTD1joALsvzx6nkFlA3WPGr1K4K2wHokML6zZDUUdz/zKw2UDs8PDy1DiGSbmmMpYiIiEjqCdYxlhnynJ1z84H5kZGRrQIdi0hac+YYS7VYioiIpKbssfso6JpSmxjGhXnrymVeT78hLzKBloQRywi7nx6uFx9QC4rAuHbPQC5o138ILIYa42MYhDete5lWW8g8I45JNKLF3dNJnGVkzXSA3VOv5s4mn/Hd1GLcwpe4+oYddtAVNg7yGltusMfgMa+V0k0NxNWQjCxDJpYicm6x8Se57JJQTiYmcixOLZYiIiKpbbdtJpNL4LvYYgCs5DaG0ok5DzWG2dHAZfTf9QLdCg3g5SGd2EMB9pOHnyiGK2RYU8eiF+t4O9sObHP8Ujwf739cnSZM5I/Y3Fy6z/FWyCNct2A79WtNxwY63oupyc3lV1Fw1UHvs58Dt/m6wk5VN9jUojGWIhIUYuMTCMscyokEU4uliIiIiJ8psRSRoBAbn0BYllBOJoSoxVJERCQVmb0CHGeY20XHWWMZ/Vlnb8MUuCH2a/LM+pWaIUWY0bQYrIapdZqyu9bV3jf0+dDMjcHWOcbFNKV1f1/f1VzwevHmFG63D96Hnjte4NL1DrfX4Ce4qtZm5sQ0xr1g/MFllGIzvOE77OiG4OBxZl30ayEZXyDmsRSRADoWd5KsmTMRljlULZYiIiKpxLZ4P+9ykdTlXVgND49+g4dHvwFtYeOym/jtaGGm920Bb74CJ6EQu+AWWBsTgdtrZOcIh+ZlofWkqfAp3tIJ2hyYQrbB+3h9xxPMoBE3V1rGxwNu546rF/EC/SlY5ycoDlce/pW9ZYrCl8CX0Kz8LCWVF0kmPy/pQYZMLM2stpmNO3ToUKBDEUlzkrrCZs2S6YwKsSIiIuJvx/mkx30MpBt8AAe5nINcDrOBj+CSZg7b4ajtrmZivcas21MWBkP5tZuwvo4Rm7oSG3oZVZp/xLiPmzLu46aQF7rm7kuvsD482XUyDZjNV40qM5sGrNhwN61tLLuXXM2xHCEcf/ZyfthQBNZFn15EUkmGTCydc/Odc61z5swZ6FBE0pzY+JOE+Vosj6nFUkRERMSvDLgkk3+X9CCdhCki/hIbn0DebFlISAxhz5E/Ax2OiIhIhmMWDWuioEgUhMNBcsHiOBbZOgAedLG8W+kRpqxsSLMFs2jHaO7N8Sn1D0/nne1NuDzbbroPH8jz1o6CVx/k923ZicJrbXy6xCDuYwHVlqzEXW/YEAc3wqz4hnAU7nUf0paxZNsVC1XhWmsJgHOqAnuxmEEmf2dZ6aCTmRJLkSBzLP4kWbNk4mSiI3afWixFRERSxS9QcMdPvEx3ml0yi94nutPGjQGg4KaDUAr60guKQQH2wLsQwSYm527EoQVX8HzLoTRzY5gy7lryhR2hRmwMAIu21KFQiV24/EaRaj9wFZvZvvU6+BLCK29kO1ezlXBuLrSKr8ZUhjuicMsCdhUkiCixFAkysXHeGMuTCY5jGmMpIiLiV6F7jgU6BAkwM7gkNNBRXHxKLEWCTGx8AlmzZOJEQiKxcWqxFBERSQ0P13mDkmyh2U2zyHZoH70fGsDkd5oB8H5EdRZOqskRsjMpojkF2QUHYSE16cJgWA98BFOWtIUrwHUwSvI/AOaUqEUYxwnNd5QvuYWbd6wjNPtR5lWuRxxZKM03NGUq5VhHteU1fdGoG6ykvgxZvEdEUpaQ6Dh+IoHLLgkla+ZMHIs/iXMu0GGJiIhkGIlXDIbPoijEbvpaLdp9PYRKYSv56p3S/Dy6FD+PLsX92z5mxNSuTHmoLQupSfHDP/F6vSf4alll3uQxeMTBm8AU6FhnALSELdtKs2Vbaep3WMBBcjGzwKM8yRjWFi1DwtZsxJGF7ByhHy+Sb/QRqpmXVGps5cWXNMbSnwuQ08zGmVntAJ/eOWXIFkvfBa8dHh4e6FBE0pTjJ7wWyqxZQjmZ6Eh0EHcykUuDsb+GiIiIn5mtCnQIkgYkVYX1s0POudZ+36sfZcgWS003IpKy2DhvTGVY5kxkzezd8WI15YiIiMgFM/Oqtmbe3wn+hGE7utDMfcPokM4smlWHm4d8Az/hLSuM3U1zQQMoxnZip+QmO0doUXkU84c/xIPFZzFxUGPyT93B0I3PUyz8O9hu3tIWSvI9TQ5MY/Wq25lAS6rf9j5deYXvOpTjAd6D9l4saq2UiylDtliKSMqS5q3MmsUr3gNwLO4kubNmDmRYIiIiGUINt4dFRSty645P+SJfVaasasPR46FkK5wAC4GkWb6WwkC6817DmtQZsogvO5clM/FMGPIUNTsvZDl3EE9mxtOKIjf8QHtG8Wm1qgCspyztGUX8+zmw5Q5+hZH1WvLUkAksGV6JoXTix0BdAPEYEISdwZRYigSRWF8V2MsuyURCqPOtU4uliIjIhbuMRV3r0G1HNAM7RLH29wjmUZcZNIZbYVz5piylCgAzCjdlPWVZQC2u6fwjCYTyyJ63KN35eqryKQ9XjiHn4t84GFOQ2Q0+pfvuYbwQ0g+AmQUeZRMRfHF7FfI02cX+pVcyiC581bk0TZjOFrsWuB/nLgvcpZCgpMRSJIjExp85xhLQlCMiIiIi/mQEZZaVIcdYikjKjqU0xlJTjoiIiPxnZtEsoyJQGwZ/R2biYcTnlF+5iQXUYiDdyDn7N1ovmsrCxJosTKwJfTPxPSWpyCpu6LGV4TxN4gdZuSX+S1ZSCbJBZOY1vNagNVP/1xpzf7KvQD72FcjHQ5vnU4A9sN2IPRrG+9WqczA+FzcV2Mjn3Aa84lskYJISS38u6UA6CVNE/CE2pTGWarEUERG5cG9cx7SmDWiyajbfuWJc12s7a0Jvg1+BftB7bXd6jxsAwK3jPyWezJTmG7gR3h7+ODnb/sah3lfwQIOFnJhphB6AHJf+ToEb91KQXVRjCQB3lVrMq1tepFu1aHZRiPuXLMa9ZdjeeLD+gIr2SGAosRQJIqcSy8yZTnWFPa4xliIiIiL+FYRZVobsCmtmtc1s3KFDhwIdikiacqp4T+ZQsmb2ypWpxVJEROS/MYvmWRdKH3rBYphASzgGy6kM1wOfw7Z6hVixNpJQTkIkEAlfjK7KZcTyXMRwbm/4MW6XAZCn369QAbrn6Mvl2XbzWtgzPMNrNGA2eyjAHgownzqcuMLYSjg/UYxp1RqwY3x+QK2VElgZMrHUPJYiKTsWd7rFMiyLxliKiIhcqFcfepFYwuDNz1la7R74HabyGGyHkMbHKL5pF7d3Xk3PVYNhAt5yBazodTdPbxrEipV3k6vPbiIyf8f+llfCGng15kXCM/9IaTbwMs+Tnz3040X68SJbNpRhQY4adGIoNVlIk3azWUz1AF8FOUPSdCP+XNKBIGykFQlesfEnMYNLLwnB1xNWLZYiIiIi/hSkVWGD8JRFgldsfAJZM2fCzAj1JZiax1JEROTfM4uG66JgO3yxtip8BmwFLoemvEmZbt/QiaEsLFCTpw5OoELFz3ms4lQAOm4bQ41685lFQ3JG/sahjVewt/x+XDPDfnBQENZsuo1vIsrQfOMMlt1wM0XY6R34F6izZRF1G7zFu70e4c/BxqU2GgDnngzItRCBDNoVVkRSFht/kssyn+5PkTVzplNTkIiIiMi/dCle1dffoFnlMfA6PFzjDcqyjtHtOhNFNIPowrBJbVjz0G10nDWWjrPGwhRjUY467K1XlEObr6Bb+Wh60oeYyjVwxYzPKleErfAj11DphiXsIw/Fq+2ieLVduL3GugbXMYnmkAkuzdoPOKCkMi0J0ulGlFiKBJFjcQmnivYAhGUJVYuliIiIiFywdJL/iog/xMafJCzz6X/2WTNnOlUpVkRERP6ZWTQAc9wq6tsIuO5putWKJhcH4Ri83eNx3i78OLw+nRn3N+fBWjOJio+Ge4H3Tu+n5+EX6BvzErvL5OKKUYdgCVgBx5TRDWk2dRbc7ohgEy2ZQFWWwBTveW1/Or6iNLl7xVKjTwyLovQcT5PSScEdf1JiKRJEYuMTyJrl9J3ulz+Os+vg8QBGJCIikn7YNnfq9/r5FsDzQCYYsLE3VW/4EIrBe/1rsow7yNtuPwfZShxZeCnzizyVdQLXzPgWgGZMZiE1cRFGIbYR/2RmottHwRJo9tAs3AMGR8C6OvoO6sLPw0tRo0MMAIv33MXNQ76B47DI1gGaYkTSBiWWIkFkwy+HCLHTryMK5cDO/XYRERE5y4OuJACZeYO3mz8Okw9jlzroBL9/nJ0X6EdbxlJ+2Sb+jDQuHeGY2K0xLRqOYgDdARhMF1YsuJvutXrTkgn0nfAS17T+0Ruz+STYVgcjgaehZ8xgunWIZjJPAPBOgYeo99CHWFEHROFcynFKAKkqrIhkdOH5s5H90tP/7EOMU9OOiIiIiIgfKLHMOMysNlA7PDw80KGIpCkOCLHTbZQhZiQkJgYuIBERkXTCLBrqRvFu6CMAVHjnc36flJ17Jn3EmuG3QRzkm3EEGm/gXVcXjsKlWeN51vWjRfPpcD+E19sKwMCHouB7GHhfdnq6/dAmmnvzfgqlgMeh8NdbGdO6LY/EziSsTCwDLYr3XE0AhtKJ+pMXANG+yNQNVtKGDJlYOufmA/MjIyNbBToWkbTEOXdGV1hTi6WIiMj5awuM8X5dU+Y28hU7wsMxb3BNh628vf5xOAiULsPeesB64MdMvLrqRWpMimFRnzp0TxwGwPMFh8LsuVCuM31j4DtXjIEUoAqfkvB1JvKyj/uXLYYv4Oit8IvLS+G5+7wD/wJEeUmlxlamYUFYvEfTjYgEkUTnsLNaLJ0GZ4iIiIjIBcqQLZYikjLnOKPFEtRiKZLemFke4E3gGiAO2Aq0cc79bmYlgDeAPMB+oKlz7oeABSuSQdgmqO0i6Elpbq75DQDXuXUU4yf2UoClth++B0rOB2pDXqAjUMUgHMKWxDKyV0saMgWAGg1iaDl8Cg93rkezOmO47trtEA1TtrYlz4u/sv/rK3mrcl0e/XMeaytHULjePujixeKuMa819EY9wNOsIB1jqRZLkSDiJZFqsRRJ5xzwinOupHOuDPAjMMC3bQwwyjlXAhgFjA1QjCIZzny7i9G0p7Z7h9ruHTb9Xp54srC0/D1AdVaUiCRPQnkec+O9f4kN4qABfLGkHLGE8VTnCbw943HenvE44WylHOsgL0zZ9YQ3bclWeKtXXfbXvBLWwEC68XaNOpQfuAnXxyAbkA2sbG+sbO+AXgv5B0mJpT+XdECJpUgQOXuMZYh531BFJP1wzh1wzi1NtupL4Cozyw+UB97yrX8LKG9m+S5yiCIiEoTSSf4rIv7gdYU9nVmaGYlqsRRJt8wsBHgSiAGKAL865xIAnHMJZrbLt/73wEUpkr6ZRQPPUcOtYMpDbeGYb/1vDrJBu7VD2Ecebh+9mtvbfcxWwuEk0DYLjDzJra3W8eD4mdw+5GNWTL0bgNH2NMXcdtylhr3vcBUNe8vxaLV5TFnSkC2UpH//PiT0COXlbp3IFb/7dL+E6Chcr0BcCTlvQdoVNghPWSR4ecV7Tr8OMTSxskj6NgI4ijeVernz/ZCZtQZaAxQtWjR1IhPJSH4NoTQbWPRjHR5e+wYAxwnjMd7k4VkxMBt6vNOL/sX70G1bNLki/oAY+ORAdSqNX0kYsZRjJytmeonlEncn1Ras5LkPhxMy7RijCrTg6PuhzMryCPFkof+mPvAHPLpyHs9W6se8zPWoFlXzdDy9VA1W0h51hRUJImfPY+m1WAYuHhH578xsMHAt0NA5lwjsBK40s1Df9lCgkG/9GZxz45xzkc65yHz51FNW5Fy81kqR/yDUz0s6oMRSJIic3WJpoOI9IumQmb0EVAAedM7FATjn9uLVinzU97ZHgXXOOXWDFblQV45jPeV4bO146jCfOsznD3LxcKsY8jfcAXdAf+tD622vsZMilOEbhtCZ+DwHKMQuruFHRizqinvBcC8Y1eaupEetXrD4OInHwijGdrLdm8A3lKb1qqkwG+YMqgWPwKsxLzKdxrRweXEuSnNXpgcq3iMiGZ1zpDCPZQADEpF/zcyuB3rgtUauNLP1ZjbPt7kt8LSZbQGe9r0Wkf/ALBryRtHTxbPIvc0e8pOZeGbTgNk0YIXlgAkbaMkEOAnZju2jDvOZsbI5A5tHUWrmz9CzGDM2NWc9ZSEbNLhtGg1umwb19wAw0j3NyOKtuL/SYt5aUpdhuzrxasX28BtsoSQMAx7Yw0Tbx0TbF8jLIfKP0kn++++YWW2gdnh4eKBDEUlTzq4Ka4aK94ikM865b0k+b9CZ2zYDFS9uRCIZ1w2/f01fywx8wK1uDce5jHe7PgLANe5bfqx3PZ+yn/qdpzPHGnP/zMXQCth4Ervqf/AY8BFER0Qxf/lD3FFpGQBz5jQmFwd5qtIE/reyJK1XvsZTiSNhcxae/XMk2Qbv43nLBa+CN3cJaqlMT4K0eE+GbLF0zs13zrXOmTNnoEMRSVMS3ZnfRkNUFVZERERE/CBDJpYikrJE584q3qN5LEVERM6WK/43AMI4Ts64NjA2B19YVWaMbg5POnjS8eMl18Nv8A4P0ZBZ1HAx8AE8fXgQnAxlhWsOx4FMUH7gJkZ2a0kka4hkDfwJCYRCViizcQvjJj3D/m5XwlKgunF0Ql7oFEXHzgPo6LKotTK9MYKyeE8QNtKKBK+zx1iaxliKiIikLG8UX00F3oUSczfwfY4b+eCRu5hHXQAmTmvP7Q0/pnDTfdw19QOuYSt9p3ah56zB3N7wY24fvhpmA3fAY93G81SfCRzoFebtezZsbRTOoo/vgInwcotOlGU999qn8Cjk77CDva2KMqxVd9z4QF0A+c/UFVZEMjqX4jyWyixFRERE5MIEYS4tEry8eSxPvw7RPJYiIiJnMIuG96JY8nslThLKlKZPMKNrc6ycg2rQcckAAG5uuIwVQ+7mrqkfMIiulG+6CfICsyGy4RpWFL6bwm4rHRjOc5OGE9LmGLnLxwLw3tqaPFB0IROrtGfk1JY8P24oG1uH86Cbybt3P8LeVUVhgm8OzfHqBpsuBWGWFYSnLBK8/jLGElWFFREROdvDdd5gOB1IIJRcHISxEPLDMRL7ZWXYlu7em0oCM6EQu+hDL36ZmpfCs/bBCBhWuTssP84vrOC5vMMZ93tTWq+dSse1XlKan71s3BHODcu2chnHcTkMs9/giQKw+AdY/FnAzl3kv1JiKRJEEh1ndIXVGEsREZHTzKIDHYJkBEnFe4KMEkuRIHJ28R6NsRQRETnbbRznD+bbQ5RwG9jStAxLDleiWshKuAEY5HtbA1jSsBLVGq2EJvBu20d4bMd4VjWsyJZKZejp+jGbBhxhK63tGrgDhjXwWjuHFetOszpjGFe5KS3KTKfF1unkjPuNhplfI2LSJjpaIUBzV6ZbQVq8JwhPWSR4OefOmMfSDI2xFBER8XnYFeNtO85lxEJe2BJWhnGxTalWZyW41+Gbe6mxYQMAiy6pQ3cGwP3AfUPo7fbSu84AKAZUgb65X6LHgV5k5wjF3HYezQ209R1oJoys2Z4FWe6DLrC2aQTl62xi3AvPwC1DAHCu88W/ACIXQImlSBA5e4xliBlOM1mKiIiI+I9aLEUkozu7KqxaLEVERDze+Mr88NjjvB0CuMPwfQ5at5tKs5gxHCEHs5ddDct87y/iGEl7ZjVqyKubX6QWpVkTU4E7WE5tYrju9+30X9CH1rVe4/nhQ/nzFyPLd95nOzR6haybE3m4fAw0g8oNlvFyTCeeXzkUOBKYCyBygTSPpUgQSUx0Z4yx9Ir3KLMUEZHgllS0Z5z7ghumfg1fwINuAa1LvMbbo+tQk4XEchmWxWF5veW6beu46YWN7KUAd/X5gNG0Z/7oh3hu0XDCOM6JV412tYaQl/206zCEtmGvw5fAlzCiaVcqlvqMKrEf8d7omjwRNpnnhw+F27w4NLYyA8jk5yUdUGIpEkQcZ1aF9Yr3BCwcERGRtGNUFKuoyEwehVEQwSbGhT3Dw+Ni+IbSfNiqHvUrTuexiPE8FjGeJ5jMjpfy82afVvTjRaa0a0vvdt3hHig6di+VcyxhJ0Xov6wP0+MbUZd52LcO+9YxbGobNsVGsHTWPTxyeCabiKBRh0k0ckWUVEq6lU7yXxHxB+c4ax5L0zyWIiIiIv6k6UYyDjOrDdQODw8PdCgiaUriWVVhQwyV7hERkaBWgB1wdRS0/46J+9ozMaog21whis/YBf2gWesx9DvQl/75+jDHwuGTit4HP4SuLUZAONy6bB0VRn/OaNpBR7B7TzCRx3mel3GfG29UfpgHtizk/dHVAbi/12JyvvgbrIJpDRtTf0cMXPUSANP1YE7/grR4T4bsCuucm++ca50zZ85AhyKSpjgHISFnjrFMVPUeEREJcge2hcHl18FM+MwNpHjELn5oVAROwC4K0Tb3MLb1LwRrKsIveEsr6F6qN1wDrIA1M25jb5+itBgyigNFc9Bi+HQuIxZ7/E9KsgXeh8bx02gcPw2awKF9l0MVSCDTqaRS3WAlPcuQiaWIpOzsFkvTGEsREQliSUV7RPwqqcVSxXtEJKNyjjOqwnrzWIqIiASvvZuKsoqK9DjQC6rAnXevosWmUQAM69aGRWvrUJItFL9kF/wAHPWWq0pspgJr6FuxCzm7/IYraYzs1ZKJU9tz+ezjsBR+nluKtwo9wq1L1uE+NzZkvpENmW+kbIkvSbz0UtxO4+FVMQE8exH/SSf5r4j4g8OdOY8lqHiPiIgEr3JRcH00q10F9pEHujhYb9RkIaNozzB7FqIhtvxlcB30btid3o0GANC23Vh+5Bp6VhpMj5W9GFThafKwnxJNN/ARVaA45C+/g0f7zINMMHfOvdSftcA7bj4ImeZgO/CUphjJkFS8R0QyskR31nQjIaoKKyIiwedUF9hySuYkFQRp8Z4gPGWR4OWcO3O6EY2xFBGRYLZuKdSOomcdeDamH78Uz0dY8Vhyz43FXWUM+7I7cyrWov61C6AgRM0cyMAx3QB4vt1QTgwwuo8YhvVw8FQcVxX6ie1PXIc97Th0YxbWU5ZNvSKYQEueZAzsT3bsSKAwcHsUrk8Azl3Ez5RYigSRxLPGWBqmxFJERIKK11pZ13vxWBmoAhSDhsyicNd9cBDyj99BF/rSkxdYTmWYA6wGC3PwnffRPwcbs8Lqk73CEfgMQkJPso7y8Ap8ka8cOWfFQRG4qtJmfo4pBXnxjgVsjAhnFg3pa5m9FX3UcpqhBGmLpYr3iAQJ58sg/zqPpTJLEREJMj+Whh9LU2Hq5zAYuGsxm4iAPdBjfC/21ivKq6tepCTfMzm+GRyHx5qPZ0mdSgyr2IZhFduwM6wwTWbN5oEdH8AjcYRlP85wOtAw3xT2k4cVDSPJc8uv7I/Ny4kqhttvcAQ4AjcM30pm4ujrjmhspWQYQZhLiwSnpJbJkLOqwmoaSxERERE/UouliGRkSUV6khfvMVNVWBERCR4WAVSPonbx2dQuPps15W9j2KY25Em4jucYxGUj/+AafoSOQD5Hk3Gz6Z55IH0rduHNla3Iz17ysp+87OdTqsIeYH0m5hSqS1hYLL23vcykuObsoQC3r1rN/n5XcnRFXo7kuAyLcZDPt0yBnpadnpY9oNdDUlGon5d0IAhzaZHglHiqxfL0OjONsRQRkeByzcffsoqK3ouW0DFiLEyD1uVfI2+O/YylDZlvOMyk3M2Ja52F5xJfYf9veZlSqSFjaUMoCQAM3/O0V4AnFOLJwp7/XYXNcmR7IIEVFSPhcnA/Gft6ZeNTqvD2+DoMpRMAYWtjgUgWc19gLoJIKlBiKRIkksZS2hldYX3bnDtjvYiIiIj8R0HaFTYIT1kkOCW1TJ7RFdZXyifRQajyShERycBqEsOKTX24fcZqyjb6EoBC7XYxqV1zyi35DjbCgBs6UosFFMq9i+YHJlEi9/fs730lVIe8hfbzDaWpyUIAhhd4htIFvmEfeag/dQEJTRvAn3DiOqMqizhQIgzr5HiaQTRkFoPpwhczqnrBNPbNo+nUYikZhxJLkSCRcvGepG2OM+vFioiIZDzzeBBXxrAt3kNxZImW3MNHzK1Wj7a8TlWWUpFV1OIDHsw9j+1czfA+zzCPuhwkF42YQRixAOyhACupREF2sbFpOOspy4nrjBdz9Gb5yzWw+xxPlxnEQmpSiF0MoTPvNv7+VCyqBpuBqcVSRDKypCI9IWcV7/G2BSAgERERkYwqnRTc8SclliJB4lRV2GQtk0njKlUZVkREMjILgesSizCIrlhYIlWKfwRAfvZSkVXM40E2bovkePEwirCTlVSiEitZShU6JQylbsJcMmeOI4zj9FnVH4AGFacxZ1cD3OZLIQaaDJvGghy1mB7VAurA2jIRLKQmJfmeLoeHUTXHImBlAK+CSOpSYikSJJJSx+RjLENUsEdERIJEP17gxiHfM6VzQ5bijXXsyivcxkoKsJd7i88jgk0UYzvPzRjO941K8hhvkuPzeA4WKshv4TmZwhPYr94T1b1gtHlpH78WysOL1fqRn728SmeGRLdjIN2owGrG8CTddw+D/rBipAG34Vz1wF0EuTiCtCus5rEUCRIu0fuZvPrr6a6warEUEZGMySw60CGIBAUlliJBIqUxlqeL9wQgIBERkYvkf4klqb92AURCIXYxecmTTF7yJHWYz4wtzUkglMs5SCeGEcEmNjYK5wjZabFqOlwLEeFruWLnIUJJ4Jd6efmlXl5ee6k14xY9w2SaMWVtW6KJ4isq0pBZfEZlYg7XZzl3sK7gdXw5oizwuW+RDC+pxdKfSzqgxFIkSCTljmdWhdUYSxERybjMouHHXty46HtWlI9kXOWmLOA+jt0WwrHbQhixqwN9S3ShEivZQRHe5UFu2LKVN3mMUBJ4q2JdOhR8hUqspGmRcZTkewpv2UfhLfvIy37cGqMiq6hd/h2OkI06uxdx5ef7eY5BTMjRjFASaMV4brV5wOOqBBssDK94jz+XdCBDJpZmVtvMxh06dCjQoYikGaeK96QwrFJVYUVEJKMaV/xxVtSI5HHeYBeFCOUk8VmyEJ8lC+8Xuo+VVOIguejACIqxnSolPuJTqrIlsQTzeJCF1GTi8PYcJBcVWMMrJTrwSokO7KIQ459/jFk8QkF2cffnK6hT8G2YB5mJ57G4qTQ88C5rLBOwB+eKBfpSiKSqDJlYOufmO+da58yZM9ChiKQZSY2SlkKLJUosRURERPxDXWFFJCNzfzuPpTJLERHJWLyiPVFsIoIEQunGQCqyiui4KAbThcF04SVeIBMJLKQmdQ/P546E5ewjDy2ZwGMhb7Kdq7mGraztEMErdGU7xQgjljBi6bp1BMu5gw4MJ5I1sBHuYDl5X/mFiqzi/iwfsDB3FeAj3yKSsaWT/FdELlRSd9fk81hqjKWIiGRka10E+8gDQCgJ3LfnfRoXmMEqKgIwnlZUnv8VdWq/TdUci4gnCxtn3ETLe97k+txriaEO13bdSclBW5gc34zqmT+hF30AeCe8NlOfbg294L58H5CnzT6WcwebQ0qR58BR7si9nFtzrIPs4A4H7BJIoARhlqUWS5Eg4fibqrABiEdEREREMg4lliJB4lSLZfLiPWqxFBGRDMhsAve60pRb9B17KcBUmtJ88wwSYrNRhJ18v/FGvt94IwfJRZvaw8hMPMtn12DVmjtp1mgM9h1UYiXhO38hW/Q+cnGQ8Mw/Mnt3E3JxkFwcpBzrKDDiZ3rl68HOnddSb8qHxGx9mFG0x1bDrXPXwZFob5HgEqRjLNNJmCJyoRITk6rCJu8K6/1UXikiIhnNhyvrUazGd4RxnO8WlGNCuacYUrAd1/AjDW6YBnhzWjblTcrGraNNg2EkkImtXMOg257mBV6ifZFXuYNlRD05kO2vF6NBwWnM/r0JAB/nu51ibGcyT5C5SBwvRr5Kv/BnWUoVVtW4GWwuUBrn6gXwKkhAJE03EmTUYikSZFKax1KJpYiIiIhcCLVYigSJU/NYJltnZ20TERFJ78yWwr0tmVKpIXnZz2SeoGWtCWygBAXYA8Cc4Y0BuKHD12wigkFZurKA+2jAbNYcjqR7joFcPWU30xs1okHmObR//VVycZDaxNA9X28AyrKebgygHOtZSE24FLJzhDd4nPKJa8mTAPtCrgzQVZCASuoKG2SC8JRFglNS7hiSrJ/CqRbLAMQjIiKSWm5esIzlVOYguVhwuBa1ciygzNYthIXHMoDutO7wGgBLqcri4fdTqcMSPqUqt/E5sd/kptxtXxDTrDYHpxVkepP6DKYL63bfSs2C71GaDQDEEsYjQ97lZEto+90UWAXP3DAODsD+hyZ4gbioAF0BkYtPiaVIkDjdYnm6zfLUPJaJSi1FRERE/CYIsyyNsRQJEilVhTWNsRQRkQzELBo+q0ICoaynLDVZSOz+3FRmGd+GX8MgulCEnYz9vSNjf+9Iab4hpkMNjpCNk4TyNTfR4bZXWLfxVkYd7sj4Jo/xKVWJJoo2BYex8PYHKMRuCrGb5dwBj8LiHFUYVbEF3AlDqrXDRjuoGoVTa2XwSire488lHQjCXFokWCXNY5lCVVh1hhURkXTOzDetxxeQvfIRPn3gXvLO+4XOBYZwB8uYF1ufvWEF2EsBGuabAkA8mWnFeF7mebJzlFk0JBcHibmhBpcRywRaMoDuTKUpe8jP4c8yU451gDeeslPBlxm65HlYv5TXOrfm2W0j4dOk6UWUWEpwUWIpEiRSbrE8c5uIiEh69p2bzHW7upOdI3z0XhVepTNrwiKJoTaDwp5lJZUowfeUZAsAb296nLIRX9Iwbiajs7TnuSXD+aFaEbozgPWUpTTfMIr2VGIlvZjHytBK3LN5KQC7ShWiNN+wr1o29lXLwzeUgfUGc6LQDCNBLkiL96grrEiQSBpjmdJ0I6oKKyIiIiIXIghzaZHgdKoqrMZYiohIBuN1g32Y6/pHQV6Y/8tDhPZJ4N3mj3BofBZiQmtTk4X03DaIisVXnarsem/EXJYerkq27xI4FJmF534bzgC6M7tjEygKYS0PELs6N02rjaMAe3iJF9hUyqv4+gSTGUU75lGXWTSkF32YWH+fF5DGVwY3tViKSEZ2ulUyWVVY30+nzFJERNK5kN+KQllo13oIBfv8RCNm4HoaOdvGMZnmxJOFacUfYn6jhzhOGMcJYz3l+DXHleyumIucs+P4sFFVivETpYd9BTWgUY4ZFKq2jSeYzFA6MZ3GNGA2DZjNPXzE5RykJgtZHV+BO+1FoLyK9ohHxXtEJKNKqcVS81iKiIiISErMrCeQD0hwznX6p/crsRQJEu5U8Z6/VoXVGEsREUmvkqrBdi8wkIRaoQza04U/8uYm589/MqX4I3w1vjRNmE5Jvqcs62k2YwwrqQTArp3FYQrQ8jgrGkZy+7jVcH8c3QoNoOINn9GFwUSymkeYya+Hr6JrjpcZOv95AFblvpOvb7uBR5jJoWZXwKO1cTMCdBEkbQlQV1gzGwzUB4oBpZ1zG33rSwBvAHmA/UBT59wP/7Cv+4EbgF+BvedzfCWWIkHidPGe0+tOVYVNDEBAIiIifnKzq8qAPRVI3JMVjsLQAp3gSyNv8f3cvOUb2Arfv3MjeSf+wr6lhRlQrSMA0UW6saVnCR7jTZokTuPl1p2YzBMMWNQbivfmo/AqDKUTe1cW5ZLfHCeqG7/WzgPA87zMK3TlCNngLd8UIzPUDVYC6l3gNWD5WevHAKOcc9PMrAkwFqgGYGbX+F4ntxBvyOS3zrk+ZjbAzG53zq34u4MrsRQJEkltksmrwp4q3qPOsCIiIiL+EaAWy6TEz878rpcfKA/c7Vv1FjDSzPI55353zv0IVD97X2b2CF4LJ8A+IMc/HV+JpUiQONXdNXmLpe+nesKKiEh6k9QFdo5bxQLykr3AEd4p8BCD6ULvBQMo0WgDedgPK2BY8zbkqr6bxiEzqFrtQ1bHRgJwdHte8kfsYBMRRIdEsZCafEZl7ArHgfAw7m31Kb+Mz8uVb+/HmjpG5WjNM7+PA2BfvjxcseYQRSrspIgrzQI0eaX4pE5imdfMVid7Pc45N+48PlcE+NU5lwDgnEsws12+9b//zefmAqPN7FUgN15L6N9SYikSJJzmsRQRkQxoPeWYuKo9N1dcxpWHf6VhjllwEEryPbeuWkfIfcfo2GMsVfp/RH72MnpXe9iXxftwrpP8jzJcG7uVTWER/EEurtzzK3PK1GIhNVkxPpIrl+wHwC00CIOZpR4E4HIOYubAl+DilFhKqtrnnIu8WAdzzsUDLf/NZ5RYigSJFKvChpy5TUREJL3pu+ol8lfcwXQac+3WnSwoX4t7G83lJ4pBdmhZYAJjW3XEJjmW/nIPH/aqSpZCcQDcc+AjshDP0X25iCi6ifzs5bt8EeymEAXZxSoqElFtE9dW+YElIdWIIzOPLpgHwJxatZhRpTlkj8IdDuAFkLQp7UwRshO40sxCfa2VoUAh33q/0jyWIkEi8VRP2OTzWKrFUkRE0p+kbrAi8vecc3uB9cCjvlWPAuucc3/XDfY/UWIpEiTc31WFVV4pIiLpTlugLS0qjiIXBwGYVr4Br9CVd+IeogFzYDKM6/EMA67uyKvN21Ol10fc8/RSFlKThdQk/qMclGMtBYvuZCdFiFoykH1NCrOQmhwhOwCtGM9jIW9SZuMW77CDvWU07eFItLeIJJc0xtKfy/kc1my4mf0CFAYWm9m3vk1tgafNbAvwtO+136krrEiQOJU8Ju8Ke2q8pTJLERFJR96I4q6mHwBwB8tYQwWu3bWVE9kuZVWOChzJkp0sxEEc0ACeXzAUMsHRO0Oxpx0s8HZzb6O5LD1cleo5FjOThuyrlpcXqr1EzO6HsZcdrqfxRL7JXHHgN4rd8BPlWE/IW8cA+MRXR8U5TTEiaYNzrgPQIYX1m4GKqX18tViKBImUiveoxVJERNIbdYOVNC9ALZaBlk7CFJELldI8lkm/a4ilSPphZoOB+kAxoLRzbqNvfQngDbx5x/YDTZ1zPwQqTpFUdRQ+2XIfAJ+cvI/XI54gtFACl2xxuO8Mdy28dOkL5Bz8G4fGXAFfQosZo8jWNQE6xXFVrZ8AKMd6PtxXl/nfPQRF4pi4tT0TM7VnY6Vw3hpelxfoSS0W8E7uh2jLGLJzhMT9WQN55pJepJ3iPReNWixFgkRSgR5LcYylMkuRdORdoDLw81nrxwCjnHMlgFHA2Iscl8hF4X7oDYXhvRI1ea9ETULyHGMdZWm9diqsg7w3/YLthKO/5OXQ6is40cxwfYw2jCHxeYPZWfh5WSl+XlaK/s37cFfxBfABbCt0NYUrb+XBSjNPjdmsyUIWU50Htn3E7v5X8+3hG+H6aG9B3WBFklOLpUiQSExhuhFVhRVJf5xzKwDsjG7tlh8oD9ztW/UWMNLM8qVG5T+RQDGLRu3wkuYldYUNMkF4yiLByZ1qsUzeFTZpYwACEhF/KgL86pxLAPDNVbbLt16JpWQISWMrrYyjRewoHli2EID3KtdkExEsKn8HNY4up0dIf5bdeDPUg2vmfssllRwMgGyF9vFB7vt4rMN41lEWgPaVR5OdI9Tqs4BiB3YTkXsT31Ca9ZSlK4M4nngZ+2deSeZ7DjOuRyui6Bmo0xdJ89QVViRIuFPzWJ6WlGSqeI9IcDGz1ma22sxW//678k5JT+6EP6EWH7Co8h0sqnwHk3mC56sNpUbn5Qyr3IY7WEYMtRk3tyk/xlyP62CElDzG0dV52UUh3pzRio0Db2LjwJtoeXgKP1GMzg+PJselv1OJlfy46nruW/QJ4WxlY8j1dGsUTfyUHDSbMYv+5g2ccy5K3WDl3FS8J20zswjgGbyhsJmAJ5xT/z2R8+X4a1XYEI2xFMkodgJXmlmor7UyFCjkW/8XzrlxwDiAyMhI3QBERPxJXWH9z5+V65xzm4A2vs+/A2QFjqZa8CIZTGKi9/PM4j2+qrABiEdE/Mc5t9fM1gOPAtN8P9dpfKVkFKemGHmvCo3qTKJ+0wU8OHUmABFsImzJJFZRkWc2j2NzqauYQWOiiYKyJwnNcpTEX7PCSbiD5SxqdAdbKAnAZB6jZ7XBRCzZxNFKeWmwcjaVKn5OOb5gRdxtZP0pkYFro5jTuRb1r10A4VEa4ymBktPMxgHznXPzAx1MSlI7l34XeA1Yftb6pMp108ysCV7lumoAZnYNf61kt9A5N8jMqgItgX1AbGoGLpLRJP7tPJZKLUXSCzMbDtQDrgAWm9l+59z1QFvgDTPrBfwBNA1gmCJ+95grxJsxUImVrJ4aSRU+BSCM4+RhPzN2NKVBqWksOFyLHjleIoFQWhQdy8SH2sNBoCC8WK0fs2MbcGR/PgAsylFwyU98RUUWrbyDxdxFXd7lGn7klixfUqDUXlwew1Y62Jo0f6a6wMo/c/6fbuSQc6613/fqR6maWP6XynXOuR+B6ufY36fAp2Y2AigLrE296EUylqTUMXmL5akkU3mlSLrhnOsAdEhh/Wag4sWPSORiaMGblQpTf+V0ptOYusyj43BfO0Rh4AoIueYYCw7X4viwy+n54GB+KFOEJ6dO5tl3+rGS2+jOAGIJY8qAtthG34NvsKMfL/INpQEowF7KxP+PIpl38s38m6lY+zPsGwcjgbpRuLkBOXmRdCEQvX//U+U6M6sCNMDrtXwJsPEc72sNtAYoWrSoP+MWSddOVYVFYyxFRCT98LrBtgh0GCLnzRkkaIxl2uWcWwosPY/3qSCBSApOzWOZrBb06XksAxCQiIjIebrV/UAn2vFw/xhoFscX26viYrxn2KTFjbian6i27XOmFXiIqF7R5OIg9/EBZIFXF71IiRobuIYfmUwz/uxutAobB3hjLrdQghd4iUi+5ucNpShRZgMbN9zEp7Vv5auplb1vn/PUDVb+BSWWF82/qlwnIv6R1CiZ0hhLFVgWEZG0LJSTPLwlhmwd99Ev7AU6HhyLdfY9uyYBveH1HU9Qf9wCCrfeysZtkfCOUbjbVtozinYJo5kfWpuXYnsyOawZUz/3hqpZgqNG5Rhu43M+pRpXZ9/NIJ5mYZma3HPgI8o2/ZL1jxtwD86pp7nI37noiaUq14kERuKprrCnnS7ec/HjERER+SenqsGKpCPO4GRoyD+/8V9J9PP+/M/fZ3wGMxtuZr/gDatebGbf+ja1BZ42sy3A077XIpKKThfvST7G0jfdiFosRUQkraoexY+EQ2/IE7aPZ4aP462Iujgzb7nbuGvHBzy5awx8Cb+sDadF8dG4MsYQOvP8rKHk/CyOJkVnc+lmx5NrJ3tNG9OAwo6mTCWaKDYRgY1w7CE/OynCK7m7EsEm4CPfIiJ/J7Wrwgakcp2Z1QZqh4eHp9YhRNKdU8V7UqgKq7RSRETSogddSd61z9nd6DY+nFGV+/a8T5sOw+jOQOzGPwFwdilF2EnfQi8QPykLq6jIEbIRce9avltWDrLD29XqUGDHHl6gH7exkkGvPw1Ab56nyabZsBX61ulCwSE/UYSdbOlQhuXDKzPHtnrHcBpbKefPmZGQyd9pVryf9+d/qdpiGSjOufnOudY5c+YMdCgiaYbmsRQRkfRE3WAlPUsIDfXrkh4EYb0ikeB0unjP6XUhGmMpIiJp2LszHuE6t46aDODeWZ9yoGEYl//vOJNubETipZcCYB87VjSMpNKBNYTkcfA90Bimfd2ArpUHsbvH1STUCuUafmQQz7GX/DxgbwHQzY2ALvDDgiI0ZSq7NhenX6lnIRPMadoYUHIrcr6UWIoEiaTkMfk8lqYxliIikpYVhtJsIDtHoCDktt5w73P8sKAIIVN8z65SkIuD3vQOP58k5xX7OHTrFTTpMRtePsz7rjoVWM0VMw/R5JFp9KIPFdx3ANRkIdct2MQmIujOAKqW+pBaLOCtIXV51MoC6gYr/57DSCB9tDL6U4bsCisif5WYwhjLpF+VV4qIiIjIhVBiKRIskrrChqRQFVble0REJA2xVlDFVWRR5TuYvacBfZb1hyww0m3hspl/sJCaHOgcxoHOYXAE5vEgN+X4AgZkYl7menAFvNe/JvwvB60Yz7WxW7Fljq2EU/WnL0gglARC+YNcNJs7i/aMAmDpjuq8FN+DR2fMg+lRaq2U/8RhnCTUr0t6kCG7wqoqrMhfpTSPZVJimZj2p0YSEZEgYZO8n0tb3cPSO+6BkzCo+dO8zhM8uXIyDIan7p9Anub7Afi5YQGumrSHPx8xLr3fUa3RSmgLD/RZCNUhO0fYPf9qfhmdl6F05FihEJoxGcCbxgQYRXse2PGB14026xVw0je2spESS/lvEjJmmvW3MuQZO+fmA/MjIyNbBToWkbQiqU1SVWFFRCStqz9+OnPmNmZOvVpUYiUFmx+EK4Bi8Ozcfrw68EWvVRG4tdGnlG3+JZdGOA5sCiP3b7GwGV7u1YmKrKLappWUbfglpWI3MzKsPdkeTaDwXG8akSzE8X696iygFrcWXc7nB6oRcrcDonALAnX2IinKaWbjgPm+XCfNUVdYkSCR4hhL3+9KK0VEJC3QFCOSESQV7/HnAhxyzrVOq0klZNAWSxH5q1NVYc9ILFUVVkRE0pZsj+yjFgtY+mAVItjEcirTbNIYVlKJNozl2bmjoCBw+0kA2jOK1USyZ1MBbuJr3m5eh0Ls4ilGkof9sBp6RvSh/ogFXN7tINwPW2OvBaB72MscJBej53aGE3Dp3Yfgw6TkVt1gRf4NJZYiwcKXPCbvCqt5LEVEJG3JzsywR1hFRWqFLGAWj9C7xwDW9o9gSu62PLtiFGQD/oSjBbIAkK1RApeN+YOaORZSiZUAlOR7MhPPJiLo2HQAR8jOK9068MCqhbhKxrKwmwEYNrc7/AZkg6ebDmKExQKaYkQujKYbEZEM7fQ8lqedqgqrxFJERERELoBaLEWCRGIKLZZ21jYREZFAsQ2AdWYBMHpTZ3ZH5KLgrj3QDKbSFB4EBgNl4d4Oc9lPXgBcD6NAjp9ZcKAWD+aex0Mfzsc+dFAWvipcmZdrdGIg3dm0tTzPfTCckn3+x/d9bwRgWs8GNNk0mz+LGTN5GIgIwJlLRhSMLZYZMrHUdCMif5WUO55ZFVZjLEVEJA2ZALsoxLSIBhRceZBulaIZuCWK+dSGFx3jij9O69xTieiwiYXUBGD/DXnox4u03jiVZg/OolmLWfAgPFutH4XYzbN1RsFJiFlQA26BzMQxt+e9ADSInUPj40bokaMkZh0MqBusXLikeSyDTYbsCuucm++ca50zZ85AhyKSZpxqlUzWFzZEVWFFRCQNUDVYkfQvQ7ZYisi5haRQFTZR1XtERCTQcp3kleadea7pcN7t8gichLtYzOwSDcjOEfoW70rrSVNhArw65EUY6X3s9W1P8BI94M7j9HbRFOMnmlkEb7on6MFL9Ix5gQLs4YFtH/FerZo8sGEh9bN94H340nh6V4gi0QYH7rwlw/GK9wRfmpUhWyxF5K9Oz2P516qwSitFRCSw8nNV0a3UJgbKwpwytWA1jKADPenD+qm3UJFVsBQ4ASGNjzFyW0tGbmvJkzvG04ER9HAv05IJfENp8rsn2Nu5KHnZTwKhnCSUvsW7sotCuIMGL/sWoPclA8gZ14accW3UDVbkAgRfKi0SpBJPjbE8vc58/WLVYCniH2a29zze9ptzrkyqByOSDpzuAps/oHGI+JuK94hIhpVi8Z6QpG3KLEX85Heg1t9sNyDmIsUikn4UfJLt84y6dd+CbFB/3AKoAhVYQ7M6s+AFqNFoOSfGGJfMdlQusJynmk/wPtsEnt08iu9qFKNw0X302NGLvauKcvuQjwHoP7wPf7Y0hoZ1ZDWRDKkcBot9x308C9wLh7KM9V6rxVL8QPNYikiGltKUIprHUsTvejnnfv6bZTugKiUinFWwZ/diPq9bgfzsgWxATmAKhHISboNXK7aHF6FejrdxhY1KrISaeMsUeLDGTDozhJ47XmA6jWAWDOI5Gv8+B1fXuDTKsYtCtGcUg+kCkXjLTfBgzEwedCXVDVbkAqnFUiRIOM1jKZLqnHNz/PEekaBRxJfMjYShdGL2/CZ80qg6Py66nmwD9tFzw2De71ad+x9azJR3GlKdT+Ba6N+oD3hTUdJ66mvUZCF7KcBlxFKH+dQa8iSdGULlfMsYOCuKVwZ14LmHhjPrnYbExobBA0kBHODdl7/3ftWjUPzEQVBON5IhE0vNYynyV6dmGzljuhGNsRRJDWb2SgqrDwFfOOeWXOx4REREUluG7AqreSxF/ioxpTGWp6rCKrMU8bMCQAO8P+BmAuoDJYChZvZCIAMTSVN8/0Ja1BlFOFshEtoxmrU1Ihgf1grehfuXLebZd/qxnMqUit3MmKub0W1GNOwD9sETTGELJanFAvZSgFVU5F4bwE6KEEoCvAfPTRoOr8Wxd2VRjq7Iy0TXmImuMZAd6KFusOJn3nQj/lzSg/QRpYhcsKTk8cx5LH3blFeK+FshoIJz7g8AM+sLTAVuB1YBLwUwNpE04SrXkJ/zeb9PbNoeukPZiPU822EUi4bf4Y2jXA3MhldLvogbbkzs0J4XZ/XjyMHsuGreQ8yGO27v8DHzqMtXzStDOPAtLKMQV/+0mztmLGc9ZSnB99T/cgHv1avJA4UWBuy8JeNLpeI9Oc1sHDDfOTff3zv3hwzZYikif5V4qits8nksk4r3KLMU8bMrk5JKAN/vxZxzR4C4wIUlkjacUbhHRM7HIedc67SaVIJaLEWChnPujPGVoDGWIqlok+8vy5Px6jg0A7aYWRYgIZCBiQRaUlJZk4WM+6QUAG6tMSaiGZGshsbQivH83LkUJWI2cAfLmbijDVZoDrXdO8yf9BC0+I4OzhvKPPLelpTmG/aRh/ov3sGhqy4l50txbO11DVfP283Qzp3owHD2kQc2wwNDFsLu04mtusFKagjG6UaUWIoECefOHF8JqgorkoqaA1HASLx/ap8C3fCSynsDGJdImrDILeYpRhFS4BgAuRrt5tDoK+AeBxPg5+yl6DYkmoFro3is/FRc/CVYdkfMT8aO5vm56rc9jLDrvJ21BC4DygK3wLWhP9Cs1xhqjFvOw53foDqLuX/gYhZ1uwOOAi94SaUSShH/UmIpEiQSneOsBkuNsRRJJc65w8Cz59j8+8WMRURELq5UGmOZ5imxFAkSiSm1WGqMpUiqMLP8wBCgqHOuspmVASo558YEODSRgPK6weamRvnl8A10O+G1Hg7cEkW2Zvs4OiUviQO9Z1PIJEf+5jvouW0Q28Ov5q3DdbGmjnZTh8CX8IvLC0Dhh/bBQ8A+yFPqV9oxmrzsY8r9cbRnNHduWMW2boUo3n+X/qwjF4XDNI+liGRcDsdfmizxqsRqjKWI340HPgTa+V5vBqYBSiwl6FVx19KGujw6ZB4DZ3jdUYc1akMW4vmmXWlaMZLJe5rxWfOKrKMsCcUz8eyiUSyvcQevT32ClVSCLlCetQC8/s4TfE9Jhs5+HiZDgRY/05BZvF/oPi4jFg5CcZsHREP2KMgehTscuPMXyaiUWIoECW+M5V/Xh5hpHksR/7vSOTfGzNoAOOfizSwx0EGJpAXjacW11hLegx51egHQccNY+A3IBM9W60di16zc+eYKePoSfh+enYgam7h31afUqriAJ+05eA/2bL0KgE7hLzOsc3cG9X6ewTk6sveSorx8tDufZKnO40yF+ZB5/3XET6sIzyQV7dH4Skld6WXuSX/KkNONmFltMxt36NChQIcikmY45/7SFRa8cZZqsRTxu5PJX5hZLlLsMyASPDTFiEjGliETS+fcfOdc65w5cwY6FJE0IzHlnrCYmarCivjfHDMbC2Q3s2bAImBSYEMSSQN6RnHtth3Ud+FwEuZRl3nUheMwrEYb2OxNQ8J24NtLIBvka3SEeyd9ytMVB3HV3D0Mc8PoVica6+WwXo5hlpXXhzzBfTne4/khQ3nlRAdezPISq6jId53LQUGYlLs5vAtUjVI1WEl1ScV7/LmkB8HXRisSpBLP0WIZYqCesCL+5ZwbZGaNgVxALWC4c25aYKMSCbxufaLJw36ee2g4095pwE6KeBsqTmU7V/N2uzpUTPgKjsNlhf9gZv9HeGDHBwwr2p6OU8dSoukGCrGbjteO5ZUfOgCwaUYET0ZMpsamGCgGzy0bDrkgf5kd0BZcdsNsP6BusHJxqCqsiGRozp2eXiQ5Qy2WIqnBOTcdmB7oOETSAnWDFcn4lFiKBAnn3KnpRZILMc1jKeIvZvYOf9MHwDn38EUMRyRNSEoqK7jqlGUw31CaExONSzo7SgzZAMDn3EbenUdZVuRmhoZ2glzweo62PNB/Ibt75KLg2oPMaVqL+sMXsL5DWQr/sJWxtAGgJROYuKkxLSKm8/um7ORrfoS3J9Xh4btj4Cb4qX9B+DY3EIWLCNBFkKATjNONZMgxliLyV46Uq8J6YywvejgiGdX7wAd4s+VdDXzuW64CfgpgXCIBdiXvcx+PVptHAqFcMszBPfD97hv5fveN5Kt0hO5FelOab5hFQ6Z83JAGcbNp1mMMl8ce4rvyxVhPOQD6b+jDL1PD+XHc9fw47noaMJvjXEbmFYfJ1+sIXAol+Z4SH2+AFVB80S64PtpbRCTVqMVSJEgknqPF0qsKq8xSxB+cc28AmNljQGXn3HHf63FATCBjExGRi8MbYxl8aVbwnbFIkEr8m3ksRcTvCgNxyV7HQ1KVEpEg9FhLbki8l55LXiCezIzr1ZTWA6fyQo2eAExc2ZgINnELX9KIGeylAJkSEinLOi49+Cevh7WlOovpe/AlGAYvT+pEMbYDcG2fnbiHjeGlOrAlsgzD6rRhNg3YMq4MtAVqHgeew7nLAnX2IkFBiaVIkPCK96jFUuQi+QxYYGZv+F4/5lsnEoRy897UmmwlnGcXjYI/4OWGnXi1W3u2UwyAFrWmQ0voXa87s6nPxrtvYuvH1zBu5TN0rDSAtjunMLfIvdAA3B+GDXRwibf3z3pV5HBCZrYsKMO4Ok2ZT22+p6Q3Zck9AK/44lA1WLk4VBVWRDI051yK81iGaB5LkdTwFNAGaIA3hewHwLiARiQSAF7hntyBDkPkolNieQ5m9hEwEvjAOX0DFUmP/m4eS/2rFvEv59wJvOfmyEDHIhJwpZ/mgfJPk7jYeLZmL1hTgOe3DOX1Ek8w4qauAEz5uiGPb30bu8lx4Osw7vv4A5ZSFabBwUq5aFNkGB0YAevBGvfmZdeJF/b0A2AhNckfugdXzrCbHO5ZY98j2ejcfwhvhrWCy6JwsQE8f5Egcb5VYccBHYEfzaybmeVJvZBEJDW4c4yxBFWFFfEXM3vOH+8RyQjMomFiFHQB3j1JyFLHMNcLd9B4tUR7nlw2GWrjLcBr4a2hAdzE13wxoyoVWQUHYYo1IpI13LB2K8wEvo1icGIX2hcYTfsCo3lpZ1+uW7QdK/Qb5AK7OZG8Hx7lzRytIBNKKuWicxgnCfXrkh6cV4ulc24uMNfMSgLtgW/NbBHwmnNuTWoG+F+YWW2gdnh4eKBDEUkzEs8xxtJLNpVZivhJazP7BlLseZ7kcU4P+hLJ2AbDgU1hDKcDxYr+RLNWs+iYayy8DEQD8723belVkv439aH3192JJzP9b+jDmz1a8fOMAjADnudljl4fSo7xh0n8MSvRIVF0jx0AwIiVXcl892HiyxWAONhW/EqspIOuATtrkdSQ01dhfL5zbn6gg0nJfx1jGQ/8CUw1s4+cc8/6MaYL5rvY8yMjI1sFOhaRtMLhSKkAbIgZiYkXPx6RDOoX4J9aJDdfjEBERCQwUmm6kUPOudb+3qk/ne8Yy3p4hQgKAKOACOfcUTPLBGwF0lRiKSJ/5VWF/et6VYUV8R/nXJVAxyCSFphFQ+koyAV96MWwh7rDQAdzgPrgXjesg4Ox3vt7xfZl+Gcd6B0zgN51ulO4zFZ+uXE/ZXr/j4OfFKTnvX3I9nMCr5TowHO/DuepPhN4u1cdAFY2rMSwgd3pvbY7B8lF8ea7eP3EEzxpxbyd91c1WLn4VLzn3FoAA51zC5OvdM6dNLOn/R+WiPjbuYv3mDrCioiI312z4Vt+tNkMs9K87p7gyUKToRhQHex5R88FL7DTN73r95Tg6Nq8sBh6bx/Aex1q8kDLhdyXeRK2wXHiNuPlEp14btZwXGajQ69XeLhpDABuoFGy2/cA9LZOrHURlLeG3janpFLkYjnfxHLm2UmlmTVxzk1Lq318ReRMXvGelId9qcVSRERExD80j+Xf6wS8eda6zsA0/4YjIqkl8VzzWIZouhEREfEfs2iIjOJrwsh9WSy0hIMsZ+SulrTfORFOgs12zKIhedgPwI32slc9NhwOtc9Czs5x/DC+CNdu2cmr3drzKbfzfKOh9JzxAmyE2sRQbOp273j5nPfZY8CTUL7OJqgNLiZQV0AkOP1tYmlmkUBFIK+ZtUu2KSeQOTUDExH/OtcYyxAzND2tSOows3zOud8DHYfIRfc95F4SCxsdrxR/hueWDKddtSGwA7beVhiyw5Y+ZajfazoA77mpPHK4KiNzPEUTphHS7RjXNt+Jq238UeIyFlMdmkHfdi/RbegAirDzdHGUNSd5tqhXIXY+ddhi83xBqBusBIZaLFN2JRAJZAVuSrb+MNAslWISkVTgSHmMpYHmsRTxMzOrCLyNN190Ed8falun9Yp+krZFn2M4Q9rTO9ABAOnpesl/sdgtAmA5dwc4kpSll7kn/elvE0vn3HvAe2ZWwznffz0RSZcSE8/dYqkxliJ+NwS4F5gO4JxbbWZvBDYkSQ8yQjLUm95wpDfc5b2OBXozAvCmroRf6J00OMPXqLgO6EZudgIVmEEF376iJwMcB+af+szg1wF+9i3Qm0tOHbsRPVPhjETkfPxTV9jbnHOfA5nMrNbZ251zC1ItMhHxq3O2WBqqCivif5mdc5vszH9z8YEKRkQkI2jr+1nAuTTd0TmV5rFM8/7pjJsBnwNdU9jmACWWIunEubq7msZYiqSGODPLhu/vNmYWAfwZ2JAkTdlpRBcNdBAiIv7zT11hW/l+Vr044YhIanHnnMdSVWFFUsFLwCKgkJlNAe4BmgQ0IgmYlLq3Ru0IQCAi6UhUOv5youI9f8PMKgNrnXNHzawFXiGfgc65n1I1OhHxG+e8qUXOZmiMpYi/Oec+NLPvgZp4NbL6Oee2BjgsSUX/dmykWitFPOk5gfw7SizPbSRwo5ldDzyLN3/lRKBaagUmIv7lzWOZ8hhLVYUV8S8zywf84px73ff6Ek09IiLBqPfC018yXI0ABiKp7nwTy5POOWdm9wKvO+dGmNlDqRmYiPhXovO6vZ7Nm8fy4scjksG9D1TldMGezMB84JaARSR+kRGqtopI6nKYphv5u/eZ2W1AA6CFb12avVpmVhuoHR4eHuhQRNIMh1eo52xmqHiPiP9lcc7FJr1wzh0zs0svxoHNrATwBpAH2A80dc79cDGOnWEsM6LvDHQQIulL1LW+X7ac+Z0iLVdvFf8638SyJzAKWOKc+9b30EqzY0Wcc/OB+ZGRka0CHYtIWuGc0zyWIhdR8q6vZpYfSGGUc6oYA4xyzk0zsybAWDR0RUT8LKOOjfQHTTfyN5xz7wHvJXu9BaiXWkGJiP85x7mrwgYgHpEMbjjwuZlN9b1uCryc2gf1JbDlgbt9q94CRmp857mlWLH1swAEIiIZior3nIOv+05j4Jrkn3HOPZdKcYmIn3nFe1JgpuI9In7mnJtkZtuAWnhVYVs655ZdhEMXAX51ziX44kgws12+9UGdWP6bsZHqBiviUauk/Bvn20b7Dl7hgVVAXOqFIyKpJfFv57HUg0PE35xzS4GlAQ4jRWbWGmgNULSo5r0QCXZKIP1L81j+vXDn3HWpGomIpCrnOOcYSz1PRPzLzEoCL/LXnj43p/KhdwJXmlmor7UyFCjkW3+Kc24cMA4gMjIyw9wBVLFVRCRwzjex3GZm2Z1zR1I1GhFJNc5BSAqlQwxUvEfE/2bi9faZDCRcrIM65/aa2XrgUbw5px8F1mW48ZU7jWg1tIqct6g+yV701DP/YlCL5bkdAlab2ULgz6SVGmMpkn4kOkcm+2tmqRZLkVQR4pzrH6BjtwXeMLNewB94hYNEJIioa2uGlNPMxgHzfTNgpDnnm1h+71tEJJ1ypFwVFlOLpUgq+MLMyjjnNlzsAzvnNgMVL/ZxU8O5urZG7bjIgYiI/AsO46T/WywPOeda+3un/nS+041Ep3YgIpK6Es85jyUkJl78eEQyuIrAE2b2PWf29EntMZbp0r8dG6lusCIetUymTZrH8m/45sUaAhR1zlU2szJAJefcmFSNTkT8xivek1JVWCMBZZYiftYx0AGkRSquI/LvKXmU9OJ8U+nxwIdAO9/rzXhFAZRYiqQT7hzzWJqheSxF/Mw59xmAmeXLcIVzRMTvoib7fmmmB3JGoeI953alc26MmbUBcM7Fm5maOETSkUTndXs9W4iZxliK+JmZVQTeBkKAImYWCbRO6+Nj/EGtkiIiwel8E8uTyV+YWS5IsfFDRNIoh0uxeI+pKqxIahgC3AtMB3DOrTazNwIbUurZQQEm295AhyGSLqhra8bnjbFUi+W5zDGzsUB2M2uG1yV2UqpFJSJ+l5hIisV7DK+brIj4VWbn3KazxjXHByoYEbn4lEAGr1SqCpvmnW9V2EFm1hjIBdQChjvnpqVmYCLiX15V2JSK93hTkYiIX8WZWTZ8/7zMLIJk1WFFREQymvOtClvNOTcdX5eeZOuWpFpkIuJ3KY2xNI2xFEkNLwGLgEJmNgW4B2gS0IhSUVH2EKXbSIZmFk3OuDYcynUFd8V+wCe97oOywHaY1rkBADHU5pPE6rwV8ggruY0EQul790v0+LgXw2M7cGR/PrJkPUR8nhy4lsaQ8e2oxQcAXFdvOxQGRuyhrxtET2vBNNeTJk1n02NqL/q36wOve7PfORcViEsg8q9oupFzGwyUP2vdIKCCf8MRkdSS6ByWwtBozWMp4n/OuQ99c1jWxOtx3s85tzXAYYlckENZMsN0WPz7/VhWB7fEkfP+P2gyZDYA2dru42jLvMyfUYcRS7rSrNoY+n7chU5xQ+k/rQ/2teO68evYtKI82cv9zpFW+agz/m0AXp/7BE8OmQwTC5CX/XDrdTTpMxvaQv+BfVg0+g5qtFweyNMXkX/wt4mlmYUDJYAcZlYr2aacQFhqBiYi/uUchIT8db2ZqSusSCpwzm0DXg90HCIicnGpeE/KbgOaAQWArsnWHwa6pFJMIpIKztViqeI9Iv5nZr/z1+HLh4AvgOecc79d/KhELkxZt4X1G26hU76XoTR8WOge7lm2FLvF+199blhdnpkxnBGbutKi2igm3tSeaV83IFNCIoQD7aHb+AFYbcfrB54gYvxavrupHADzv30Ijo/gWXeIJ3tNpt3KIYy2zrTrNYTRuTpTw6oD0eoGK+lCsCaWKbRfnOace8M5VxV42jlXNdnygHPug4sUo4j4gXMpV4XVPJYiqWIUXl2C6sDdwJu+5UdgXADjEvnXbIv3sxIrYSmEsxVWw1OMZGblB+Ep4CmocfdyNs0rz8aIcCbWas8rX3dgK+EMCOsGE4CboNmCWdQ/MJ22H06hJRP4/evs/P51dl6NbQ/Zn6Yhs3AljFASYA6MXtCZnOH6O4xIenC+VWGnmNk1wDXJP+OcW5BagV0IM6sN1A4PDw90KCJphoMU57EMCUHzWIr4373OuYrJXj9rZp855+40s28DFpXIf5U3itE94NX+7Xks4U3adJxIHebw6Nx5XiUOgGkwpG47Oi8bjeto2CLHWzXq8mijebw+4wnaHJhCyNETzOnVGHu3MeSEZ7ONAmBimcYUPryVN2nKzUu6wiXwWMPxvFmpFYcuvQI+icJVC9zpi/xbwdhieb5VYfsDrYDvgATfagekycTSOTcfmB8ZGdkq0LGIpBXedCN/XW+oxVIkFVxuZrmdcwcAzCwPcIVvm+azFBGRDOd8q8I+DFzjnDucmsGISOpJdC7FFksztViKpILhwP/MbAHeH2JrAa/45rb8PKCRifwLZtH0dPH0bfYSNIDOS0ZjvzkmNmrMgt/rY1c4nq3UD4BXf3mRZ1eN4mDlXPQNeYlXE9vz6JJ5MDiOJ7dN4mDxXLjVl9ClT19q9lnIJiLovGcIAC06T6fnkBcowk5unrSMiqxiRExX+CIa7tIUI5K+OIyTarE8p91KKkXSN+dIoXSPqsKKpJI3gc+AKnj/9EY75zb4tj0VqKBE/ou+m17iaL9QRmdpj1VyfLWyNDNozDv5asOb8Oq8F703roeJHzemCDugIzy7bBSUioMvszCtXgOa1JrN8yOHQFfj1XIvck2jb0l8Lav32SaQnSPUJobW9aZSeu430DdQZyxyYbziPZrH8ly+MLO3gHeAP5NWptUxliLyV17xnnPMY6kmSxG/Me8f2jLn3I3AN4GOR+S/MosOdAgiko6cb2J5k+/n08nWpdkxliLyV845Qs5RFVZ5pYj/OOecmW0zs8udc38EOh6RC3GVa0hLupCtVwJz+tTi5pXLeI5BLO11D0MbGZSFEp29xvhODGU9ZWlhJXjZdQLgpdgXONovC43LzKHJPcBTRo8Fveg/ug8/1rmezFO8DnGf5b6TW5uu48jU7Eyb24BNRJDz89+ANhzMfEXKwYmkYSrecxYzi/D92v4ixCIiqSjxHNONGGqxFEkFR4F1vjGWR5NWOueeC1xIIv9S9igq8gY9Cw3mrV11qT9kATwSB0uzwBVgtRzkgblf1wPghqZbcY8aDV0Fbl+2mpy3/EbLsAlsX1uMUbQgW8t9tOkwhl0U8vbfEeLicgJQgJ9ZMrUS1WJWwkm4td6nHMoy1nufxleKpAv/1GKZNFfl2d86zbeuuN8jEpFUce7iPWqxFEkFW32LSLpkFg3ZldCJ/BfeGEu1WJ7BOXf1xQpERFKX49xjLJ0ySxG/cs5pcJqkfyWhE8OovusTBtKN3p2703vby9D4F1q7OVRs9xVjaUMB9gDQY2ovzP4HlOFl14libGcllXidtlwbu5UOYcPp37UPTw8ahKtmWH/Hx1Nv9z7LS1SbtZKQKsdILJeVTfdfR86469QNViQdCQl0ACJycbhzzWNpXjdZEfEfM8tvZtPMbJnvdRkzaxvouETO172uNDSAhdSk7Z7XWbf7VsLZCkcNehbmzcNNaTF1Ot8cLk3RwzsoengH/Qf2gZfKsNvl4vn+Q6nESkZ07krBGQc5+mVeHmMqJQZtYMSSrljYCagCkawhkjXsphBLGlYi4dts0B0OZRl7uiusSDqTNN2IP5f0QImlSJBIdJyzeI/GWIr43XhgBZDL93oz0C5g0Yj8C6oGK3LhEsjk1yU9SB9RisgFc85hKcxkqXksRVLFlc65MWbWBsA5F29miYEOSuR8fdirHmv7RLCMO0gclZVyfb5gfcwtlK3zJes73kLsTbmxWxzH37+cpxsNAqBSt5Xk4iBZiKdFj1HMoBH8BvwJr1TrwFA6seWmMrAH6J0JikHu4bHeAavAvjJ5oRoUrPYTdGjKLjQiSyQ9UWIpEiTO1WJpGmMpkhpOJn9hZrkghb/siKQxXmvl4xzoE0butbHwFhQc9BNtGMtldYYSTxZaV78Fu8bBYijY7idGDOkKQEznzfzcuRTMBr6Mg6gs/DIjL08xkjzsZyidcAsMe8fxSvMOPLdrEH/ecikAq8MqUPHwGjrneIXdNtULRtVgJZ1S8R4RydC8MZbnKt4TgIBEMrY5ZjYWyG5mzfC6wU4KbEgi5+det5bcFss415TWH08lktU8uW0SHDTYCJnbHqZY7u0siajGYu6iauelAFxVaQ/kBbfAOJYnhGyrEihceR81lsXQotB06A7UgHbthvDc8OFM6dCQSzd5D6CvIkpzybuOsk2/pKyDddwSuAsgIv+JEkuRIOHOOY+lxljK/9k77/CoyvQN39/0mfQCgUhTEBXFgigLdtbKLu6qKK6u/KygoqjYWAsI9kURWUVBbFixL9hwFTuIawUXFRCRHkidmUyf8/3+OHNOJslMMsFAIPnu68qFmfrNycz4Ped53+dVtDZSyqlCiHPReyyHATOklM+27aoUCoVCsTPYQY5lnhBiNrBASrmgtR+8NVDCUqHoIKSbY2lRqbAKRasjhOghpXwOeK6t16JQZEJyYM/bi86AVcB7sPbGXtwlzuPf8mT+Mm8hlEPkvlxWvngg3W4rhz5AtX4/OU4gCiVimoR3gavgkRsvYBOlHLfpQ/4huiJmSeQPgpn7jieCk239cgB4gGtgM3wnFiYeTDmWit2bHZDkWiOlHN3aD9qaqFRYhaKDIEnXYylUj6VC0fosEUK8L4Q4RwjhauvFKBSZcquMIG6RiL2/pvj4DWyiFB7fm7O9L3L5yGngBzlYIN8WvDpqGF2H/ApfAF9An7N/gKlw+BOfMHzTy3x/4z6MLXuIEsp4hRFYtoxlyehDEHdJXjjxNEbPm8u3HMy3HMxd109Bu0SgVdyGVL2VCsVuiRKWCkUHQUvTYylUj6VCsSPoAUwHTgfWCyFmCyEGt+2SFAqFQrEz0Eth1bgRhULRTtHS9FiqOZYKResjpYwDbwJvCiEKgbvR51p2vJhAxS6PEJPpJs8F4PZlfXhp8amc9dp8Kt6Fp8ovhRAENxRwa78pzDxpPMIuYSX8dd8XGc58jp/yAQBnPTFfL4edL2E6HL5oKdr1WbwydwSbKEVbm8Xgsm9hBExhIrwPJ278VF9EDliKbgPUyU6FYndFCUuFoqMgSTnH0iJQcywVih1AQlCeA/wfkAdMbNsVKRTp2fB2HwCuHDaV9XTny9P78xHHccPzM/BfZOVfznEUBGqgk0TLt2A5X/LG38/mbu819GMFAEsuPIQLeISHuBhOhSumzeHGuZN5kgsYwSs8bLuWqQdeyQ2xGfw45RC4DHghsYD7ACYpUaloF6hxIwqFol2jh/c0vlwox1KhaHWEEK8BRwL/Bq6RUn7WxktSKFKSHNqjUChaDyUsFQpFu0UP70ndY6lSYRWKVuc14FwpZbCtF6JQNEdvOYKb0Eth7+M6xjGDhZzErU/cx+wLR5G9Ms6VfadyrudZGCSwXCN5fNm5XLj+eb7gYA74ZDUAzx49gqdWXspTdwB9YL+J3+Ijh485mg84HlEhka8Lblg+g0UThzB02mLemXocAKcM/7CtXr5CoWgllLBUKDoIenhP48sFqhZWoWgthBBOKWUYXVgKIYQn+XopZaBtVqZQpOeXm/bnkqtmAxDflo1YIzn01M+hF4x+bS5vnn48a+nFEBYzbNvbXPTac9zLjWzq3pVbv7mPzUfnA7CSfaAKeAa4Dn4cfwj9pq1gPd1ZRn/oBsKlgYSh/RZz+4rr9NRZ4PGjz+VCNZ1H0U5QpbAKhaJdIyUpU2H1OZZKWSoUrcQSYADgRz9lIxr82/F2GgqFQqHoEChhqVB0AIw5lal6LC1CKMNSoWglpJQDEv+qcV6KXR4hnoKPJ/HHo9/ig7l/0i8rlsjBgj78QN6RW5jsmMSFPMHWNd2RPgslB/3G3adfwz/ueoBb/3gfXQf9yjxGAnD17FlwANwmJ3DbkHvgNnh15bm8+tO5dDt1NZf3m8bBfEfFXkX846sH8BDkItHXXM+F6n9GinaCBGId8DyiEpYKRQfA6KFMlQorlGOpULQaDUtfG6JKYRW7CnpoT094Fz7gT/BF4or/gjhBIv8nEBdJLj1+Nms9ezJ9+gSKp28gHHCy3NMfvoAzbnqOfKq56hW9jHbm6LFczBzK6MzgxR9yDxM4Zt3n3H/qVVx7+sMsfm0IP7MPH5zzJ9gA14rTAJDy+LY5CArFDkPsNrMnW5OO94oVig6I1oRjKYRQ8e4KRethlMCmo+Odwlbsstwk13DXe3Dw0V/wXf4f9As/gt53/Q/eA0LgOkBy65qbOXzGJ4xkHp96juKPfMDh85eylj2Z/toEnCPCAKz85kBu+GgG948fy/G8zzHiMbrK9Vw7/2G4GL5dMBixRPLI8xfwCiP4QHyVWIkSlgpFe0AJS4WiA2AIx1ThPYbYlFKm7MFUKBSZY5TACiFuBiLAbPT+yosTvysUCoWinaPCexQKRbvFcCxTCUejPFaTYFW6UqFoLU6RUh6Z9Pt9QojPgBlttSCFwkCIyTB4EmMo4asTB3IdU/noQH3sh3tFgFtW34+YLrny7anM6HkD4kIJLvjykaO5XE7jojXPcvleDzDzm/HIwwQv8lcAXh9wGpv9ezKPkZzEQnj6QKq9VfAKPD73XHgH7r9rLA9wDSuHHAiD/4Rc3IYHQqFQtCpKWCoUHYhUcywNx1KTEmuKHkyFQrFdFAkh+kgpVwMIIXoDRW28JoXCJPv9cnqeU4a8X5CTt43nPPocy1O/fw8Rlwx++0Nm/HQD1AAuoAvwHJRRArcJfHNz4Fm4eNpDPH7hWP1B+8DdN12DmwAlbIXVcFLuQt64+mwu2vs5LvrgaaYzlpViI7ARKU9po1evUOx4lGOpUCjaJXWOZePrLAllqfosFYpW5WbgCyHE14nfDwFGt+F6FAqFQrGTkIgOmQqr4tAVig6AkQqbKryn7jZKWSoUrYWU8jVgP+Ah4GFgfynlG226KIUCEHtBTzkS/yvFcBD06foD/gXFjIo8zajI0zx30Blgg5u5E/G4ZOrRV3L1zHtgNXDuZK7jPq6dewdzXxnN5dOmMYil9H7if/R+4n/QGy6Pz+Tqe2fxOn+FOTC/bDhyieC2VRPgKxtXj5oF2BM/CoWiPaEcS4WiA1A3xzJVKawqf1UodgRSym3AgrZeh0LRkN+m7ct744/iRHE7V974Ale7ZxH065NyDi78Dp6CTdNK4TLJK4xg6SfHEJnroNfcCi7kCZ7gQvqP+JIRvMrouXPZNioHgBkjx/E+f+SpG0dSyiZeuur/uKfkH4juksF8qJfTVgN8nliJSoNVtE9kBx03sts5lkKIp4UQc9p6HQrF7oTWhBkpknosFQqFQqFQKBSK7WGHSmkhxH3AGUAvoL+U8ofE5X2Bp9GDDCqAUVLKVRk83hXAQmDojlqzQtEeadqx1P9tSnwqFAqFYvdHiMlcLnPoy8+cOORTbpU3E8RDt1NXM4F7ADgi8hlXT7uHk1jIO3sN5ZSlHyIPgIf/eS2ij4Q+MPjab+Fh+E/fE5hy0q10OtoHwNWf3MNHHMcQFnPCw58hRwleZjjY4BC+Zcktx8GHkwGQclKbHQeFYmegwntanzeAB4FPG1z+KPCwlPJZIcTfgVkkxGIiOW9Wg9svBBYBHuBNlLBUKFpE03MsjfAepSwVCoWivTNz/nikVzBo8ZdcxiN8t24gcpsdUab/P+CdYcdx8nsfccGJj/B85TnwClw/9Xbuz76F3qf/j1/22p9Va7rT54cNzOdEtI+yzIrWEsr4x/MPMPKcgdRebCH773Huf3ksVw6byjhmMPPg8XDwJOS0NjwACoVih7FDhaWU8jOoPztPCNEZGACckLjoBeAhIUQnKeU2KeUvpCi6F0JMBLoDdwIDhBBHSSkbClaEEKNJJO/16NGjdV+QQrGbojXhWNbdZmetRqFQKBRtweNyJVZGwp8g8ncHATxQbUO8L/njjW8BsJCTGH/iNHLw8VDhFYweOJf7p9zCwRO/4J9cz/I1B7L3vevZdmMOh7OUmhFO8haGAZiwaDr/4AHeZhh/sf+bvOe2cO3Kh9nQt5huPcphve5WMk25lYr2jd5jqRzLnUF3YKOUMg4gpYwLITYlLt+W7k5SyikAQohewC2pRGXidrOB2QADBw5UW2WFAjA+CKlSYZVjqVAoFO0fIebwuPqaVyh2ChJBXOt4wnK3C++RUq6VUl7c1utQKHYntCZqYQ2xqXSlQqFQtG+O40PeZhiPvXUex4xfyiKGwlNQeaOHo/iUo/iU6SsmMJEpLJ1xDEWU887I48AJ360ZxF3czDOcx+03XkenNV728v5K7roI2ceWk31sOWKbhHy4a+YUzrC8QlmsK1wM3caXM3rdg4yW+aq3UqFox7SFY7ke2EMIYU24lVagNHG5QqHYAcgm5lgapeoqFVahUCjaMwPYS/zGInkMmyilcpqHwkUB7p82lsLFAeSP+v8LbjtlMjMYR3icg/MvnwcXw6033kwv1lJCGX9+733OP/FJcEV4K/dPiLzv4ZpiAEJ3COZ6zmP05XOZfe9VOG+McNYnT/PSsP9j9idXATDr6DY7AArFzkNCLKYcyx2OlHIr8B3wt8RFfwO+Tcz7UigUO4A6YalSYRUKhaKjIcTktl6CQqHoAOzocSMzgNPRR+K+L4SokFLuD1wKPJ0I5KkCRu3IdSgUHR3DjUwZ3WP0WKKUpUKhULRXrpVvc/+4AQx9bTFdT/+VRxnDU0NH8n/bXmLkkHn68DfgodKxhHFy/nvzYF/gBfANyOGivZ+DfFjz31Ke4xyk3YUYKuFreHOAnrnoKfOTY/Mhxwic3WuYyBROZT6844V3QMrcNnv9CsXOREpBPNYWhaFty45OhR0HjEtx+U/AoB31vEKI4cDwPn367KinUCh2K5pKhVU9lgqFQtHOuXIS9/0qGDJjMadf/Q4iX3Lz0DvxEIRrYf85P1BT1EW/7TdwzoAn8B9j5YETr+FVRnAcH/LRqmM5lK/5E2/Rn2WM6PQs7jeqCL5TwNgBDwGgTc6i5q9Z3HzirfRjBZ1W+Lit3wSW8EliIaq/UtEx0IWlKoVtF0gpF0gpR+fl5bX1UhSKXQJTNDaZCrvz1qNQKBSKnYPYu61XoFAoOgrtUlgqFIr6NNVjaVyiwnsUCoWifWH2Vh4Ah+y5hDOWvQ3nwVlDn+aKc+YwhVthDFTP78qXQ/rz5ZD+cB88P/9CbndO5Nab7uMm7uJs74v0Yi3H8SErnh1Af5ZzMN8SWFdI15G/8tvKfflt5b7IwwU3njiZa3iAXyO9OK/fY9wm3AAqDVbRsZAQj1lb9Wd3oOMV/yoUHRCjf7KpOZZKWCoUCkX74+5V1/Az+/BQeCyF3aoYVTibeY+fz0vR/2MqNyC6asi9LJzO6wBc/fw9TB83gXt7TYIRcNa4+ZANgbs8/P2bV/j7GmBdDL6ycfTpn1JRWQR6JSzdZ6ziAp5kChOJhJw847wEWNZmr12hUOxclLBUKDoAWvoxluZlSlcqFAqFQqFQ/H6kFMSiu4fL2JooYalQdACaCu8RqsdSoVAo2h1CTIaLJzHFW8Wy3APpaV/H7MJLACi56DdmXzSKU4Z9iONZL0MKF7FhsR54OG/ISK6cMZWFnMR/44eRVxyG4+FFzubMAS+zdN9BPOq5lL/f/gqzTh9D/8LlLL+tPwDrX9+b2B/BXq7BQwLQS3FVGayi4yHQ4h1PZrXLV6xSYRWK+kjTsWxqjqVSlgqFQtGu+Bt8k3sIe69Zx6K9juArBnLDazMo+utGxoem8dnbA5nFGJ5ZegmvDhkGwHccwnq6cxN3krcwzL8nnkQ5xVzIE1zOw/g8OfRiLY57vTz3+UUMOWIRNxbeC4B4XfL4aefC+QKK2vKFKxSKtqBdCksp5QJgwcCBAy9p67UoFDuCkbOWADBvzOCMbi+bmGNppsK2ysoUCoVCsWtwGuwb5msG0m2vXwAYyFfwEXx2+hF87RnIanrzLQfz0KCL8ZEDwHDms5Y9KaEMfoK/lC9E5gguKnmON8rP5u5Tr+HIZV8x+8BReP/g4MPAUFyf6f8HeWfucRRRDrcAhyq3UtGBkcBuErjTmqhUWIViN2TNNj8bqgIZ315rKhV2OxzLU//1GX+e8WnGt1coFArFzkMIb1svQaFQtD55QojZicrMXZJ26VgqFO2d6mAUTYNQNI7L3vwZMSMVNnV4j9FjmZmw9Iai/LjFi92qzkspFDsbIcTfgRuAfsDVUsqHkq7zAE8ChwIx4Dop5ZttslBF27PwQD4rHci5PMtpvM49TOC9A0/l1WXD2O+utcgLBI91PY+TWMgVl8zhs8cGArCWPamgiAe4BqJw3qjHEGILP8pefMDxXLFoDr8NLaHUu5W3c0/kL+8vBJf+lKd88yG3D7gOBrXh61YodgWk2BGOZY2UcnRrP2hrooSlQrGbIaVESohLyX9WlDH8oNJm76Np+r+pxo0YF2VqWN799k9E4xLQMruDQqFoTb4DzgYmpLjuOsAnpewjhNgb+FQI0UdK6d+ZC1S0PUfKpfyo9ePI177indOPYwHDeW/uqXy8bBD5VCMvEPAjlHQtIwcfHAVHLvoKgBeGnsbDXM7xfMCSU46jHyu4UW7iGD5h64oekAVX8SBvHHw2cr7Af5KVhc6TADjj9Le59dj7IPYI0BkpL2vDo6BQtCESiKVqQGrfKMtBodjN8AZjxBK1ra9/uzGj+9Q5lqnCe4w5ls0/zinTP+GFL9eR47IR1yRaJndSKBSthpTyBynlClKf2RkJPJq43SrgK+CUnbg8RRsjxGQ9DVahUCjaAOVYKhS7GeW1YQD2yHfz8cptlPvDFGc7m7yPmQqb4jrDxZQZxPds9oawWwWXH9uHe9/9iepglMIsR0uWr1Aodhw9gN+Sfl8HdG+jtSjakHfDJ3OZ81EWnn4Sp3g+5PDAJzw1aiRHb/6St7r+kZ+77kN113ze548czad8P2of5jESgLmcxyie4SQWsvzA/lwTmI7rZMkpn7zGL/2q+XnbQbAexPSzKT1gDY9yKR9xHACjX3uQQXzJRVf1bcuXr1DsGsTaegE7n3YpLNW4EUV7psIfAeDCI/fk9jdXcMbMxXx8w3FN3qfpOZaJ22RQ2RqLS9x2K90K3ABU1oaVsFQoWhEhxDfoAjEVJVLKeCs9z2hgNECPHumeTrHbcZ2ewJq9cSJ991rO1nWl8AZ8+fbRXDfsPsQ7EnmKoLbQQvYvcaRPgA0+PHQwd267HQDxo+SdDaez/pypfDD0T4xd9BAHf/IFT3AhXS+pZtxj/2Q482EVfMEf6Ck2IL/T/z/w60Fd2UssBkDKXm1xBBQKRRvSLkthpZQLpJSj8/Ly2nopCkWrU+HXHcshvYtw2Sx4Q9Fm71M3x7LxdcIshW3eseyS5+LIvYspSojJ8oTIVSgUrYOUcoCUsjjNT3Oich3QM+n3HsD6NM8zW0o5UEo5sFOnTq21fEUbIsRrbb0EhUJhINEdy9b82Q1ol46lQtGeKa/VxVxRtgO7zWL2WzZFU45lqsvS4QtFyXHaKUqU3lYoYalQ7Eq8DIwBvkqE9xwG/K1tl6TYmbw59XgAxvIQb/En3D2CXNbjEf7J9fwh8gX0Ad6Gpy66ALJjvNbvFM6wv0236Go2/J9e5XXA2//lhycO419nXs9fF73ICvrxV97gDU7jvMceIwcfizmC24deR8+5ZfxbnsRY7gdg5pnjYQTIl9vqCCgUuwiGsOxgKGGpUOxmlPvCCAGFHgd/2KuI9ZXNz7PUmnIszds0L1C9wRi5bhtF2bpjWZHo91QoFDsHIcTfgKlAAfAXIcQE4MREoM9U4CkhxGogDoyWUvrabrWKnclTch7lFAHwLieziVIcRFhYeRLz/3QWNU93ga/gkPFLOI9n6NxjE5fxKHKTQIySeqYw8MM3hyFPEYy98H6sxDme97k48DgFsUruzp3A1VNmMXjihyxeP5QvRw3iL7MXQnliEa8YwUGTdvrrVygUbY8SlgrFbkZFbZgCjwOb1UKuy44vlMkpsSZSYRMF8c0Zn9G4RjAaJ9dlp8DjQAhVCqtQ7GyklC8AL6S5rhY4c+euSLErIMRknlIh3QrFroMEmu9UancoYalQ7GZU+CNmj2Ou24Y32Pw3lyEaU8+x1C+UzTiWhoDNdduxWgSFHofZ76lQKBSKtsEYL1JBMc9wHgBV5FPCVr5872j2O/Fb+i/5kumM4aq82TADnht3BlsX90B+JhDbJBwJPwxNlMKK1Zwk/817M07lyHH/4Vg+5A+eJQQuK+S5R87gjInPcQc3k1+ymf9xAAsOOhPuTSzmtElI1eqpUHRYlLBUKHYzKvwRsxQ112XHF44R1yTWVKoxgTSFZROpsM2c7TYEbI5L/9ooynaoHkuFQqHYFbhnEtc+AY9feC4AfVgNwAMnXkMOPp55/hKuPvcw+shf+NOEDzj3p1f5ewis/+eHcAyetXGM9jEA8kfBqbwEB8D13EcZJSwr68+yR/qymCG8+sm5vNrtHLK7VNDt7HK4EXg9eXamKoNVKJDoDQkdDCUsFYo2ZOSsJQDMGzM44/uU14bZr2suoLuHAP5QjDyPPe19jP7J1HMsjUubVpZG+myuS3+eoixni3sst+f1KhQKhaIJ9psEcZCHCgbyGQAnsZA5XIybAGtn7MfCcSexlR4cFf8UcbTk8n2n8dC+FzMhcA/+77NgA9xt+QcAvfb9EScRvhnajzu5mV/ozXElH3HQNz/j39/KHUffwi3cQV9+5oY5U4mMyIXjJiEXteVBUCgUuwLtctyIEGK4EGJ2TU1NWy9FoWiS6kCEYKRlp7Qq/BGKjVLYhHvY3MgRU1j+DscyuRQWts+xjGuSaDyDgZkKhUKhaBajDFahUOyCqHEj7QMp5QJgwcCBAy9p67UoFE2xpryWPHd6p7EhkZhGTTBqjvswRF5NMEr3pu7YRCqs4VhqzSjLhqWwxdlOylvYY7muMoA/vJt8OyoUCsVugLxUIE6WsAyGHLQYgOEsYAiLmcUYxLGSP/IWvnPW8jbDeGTYBXzFQAJ48F9RjDxRwNnAs/rjWf8eZyV9OZX5APgi2Vzp+BeXD3iYG5jK5cxk5pnjeeTlC4jckgsfqiRYhaIRatyIQqHYmUgpicb1n0ypCtTNsIS6stTmHUv936Z6LJtbhVkKaziWWQ68oRiRmIbDllnxQzAaJxiJo2kSSxM9oQqFQqHIgIGT+GTc2zzOubzcdzjDeBuAKdzKerrzHH/nwQOvYjn9ycHH0LcXQzdw96riidwL4WJ4Ysg53MIdDOQrAAJ4WBoYhP+rYohBt6GruWjcc8yeMYqf2Yc/BL6ATnDZvU/CI7qolFKJSoVC0U5LYRWK3QFvorS0R6En4/ts8+kOYVGW4VgmSmGDTZ8WM0phm0qFbW6OpVkKm3AsCxPitrI283LYSExDApUBFfqjUCgUvwdVBqtQ7MIYjqUqhVUoFDuD6oS4aokwq0jctriFjqUhGVOXwiZuk0EqrBCQ5UikwibEbUVtmC55rmbXLqU0n39LTYjiRDmvQqFQKFqGISrzPt/CMSuWcka/51hQOZx3C08GwEacH5YdxkFv/szHNw0ihpUySuCAGDJup3/ulwxhMe8NOQobcUooY8E3iRGofv0ndKzgTM9LADw8Yyyr6cNkJnFk+RecN/Mx7uAW9jx/TVu8fIVCsYuiHEuFoo2oCkQT/7ZAWCZ6Ghv2WDY3y7Kp8B6jJLVZYRmKkeO0mbc3xG2mAT41wSihqB7cs7kmlNF9FAqFQpGa3nIE7zpO4Yx++lzJ8Po8VtCPFfRjPd0558An4GY4esGXvMoIljKIV3ucysN7XsTybYdzFQ9y4oxPOe77JcSwMnjAhwwe8CGyVNBz2E+85TmF9XTnr7xBGSVce9PDDK1chIzbeWb8JfQUl6N1uY94SVZbHwqFYtdDOZYKhWJnUpVwHwOROKFoHJfd2ux9DBFniLocpw0h6spq09JUj2Xi3+ZKYb2hqClkoU7cZjpyZIu3TkxuqQlmdB+FQqFQKBSK3Q4V3qNQKHYmyU5lZW2E0nx3s/cprw3jsFnIduofXYtFkO20Ze5YprjOcDGbFZbBGDmuZGHZMsdyS5JLqRxLhUKh2H7+KSu4PHwgM51jmcwknET470EHcMVdcwD4600v8tysi3hu1UWU9lnDIo5jKB+ymCHczJ2s69QZHzlYRtbyYslfGck887GFI0pNPItjrB9zHffx93mvwOAYL9x1Gn+b9jpioOTEafN574G2evUKhWJXRQlLhaKNMEphIXNhacywTC5pzXXZd1oqrBHcA7pb6rBaKM9QWJYlHEuH1VJPZCoUCoWiZdxw7wzm3ngeyxcczsjhTzFv6fkEBnkYfdODAMx+/ireHTOLIsr5Kb4vX1sP5QkuxEmYGFYu5AniWNFqPRzLh6ymN09xAQAn9nibtfTiTf7MHtsqWDjyMUbwCqvpw0PjL2bs+sfZh+/pK3vxMwe25WFQKHZtOqBj2S57LIUQw4UQs2tqatp6KQpFWqobOJaZ8P6KMmoauJO5bnuzqbDS7LFsfJ0hNmUGqbDJpbCGuH316/XNrhvqXMr9uuYox1KhUCi2E/FJW69AoVAoUtMuhaWUcoGUcnReXl5bL0WhSEuymMxUWEbjGjZr/Y9trsuWsWP5e1Nhc1z1ixxsVpHxHM4yb4jibAfdCz31+i0VCoVCkRlGGuzHNw4in2pKh6/haD5FhCUllLGVErZSwh/PeYvurGcrJbxiHcElPMZ3HEwRFRRTweU8zEdPnMyJey3gPq5jT9ZyE3dxE3fxGJcwgbtZyuHc0elannntEtwEiODgivfmIK6SrDz9QOVWKhRNIYFoK//sBqhSWIWijagORCnKclBRG8lYWMY0icteXx3muu1sqGo6DEeacyxThfcYPZZNP7deCmuvd5ndaiEa15pbNqD3WJbkuuia5+I/K8oS40dSdX0qFAqFIh1rji7lbF7kUS6ld/wX8q4P03naOopv9pNzpw+Ahd6TuCr3QS7nYe7jOhYxlLN5kQAehjOfv1W+yPcX7kMRFZzOa9w/7xbOGfkEAF9zKO8sOp2BQ7+mF2vpefpPjGcaEZzwBnBP2712hWK3QQLxtl7EzkcJS4ViBzBy1hIA5o0ZnPY2VYEIPYo8VAejGQvLuCaxWhoIS5cdb9Db5P2ammNpXNZUeI+mSfzh+qWwAFaLIBzLzLHc4g1Tmueia56bcEyjOhClIMuR0X0VCoVCAXATDv7Fu5xMjjeI7SuQQwQ8DqPunM0/uR6AJxiN7Wv476EHUEQ5VuL4yGYEr/AVA3G4Ihz4w0qmHnAll/MwS6uPoQq9z/9PvMVFQx/mU45iFHNxEqGaAqZyPUtnDgLgASa02RFQKBS7Lu2yFFahaGuica3ZlNWqQJSiLCcFHjuVGcyy1B0+GHFot3qX57ozKYVN71jW9Vimv78/EkNK6oX3AFiFIN6E1Tly1hJTZG+pCdIlT3csQSXDKhQKRUsQYjephVMoFB12jqUSlgpFKyOl5IeNXjZVN12eWlUbocBjp8DjMGdaNkU4phGNS7IbiLtclx1/OIbWhMCTZips4+vMVNgmlKUxzqRhKezwg0px2ZqfvxmKxqkKROmS66JLQlhu8apZlgqFQtESnpJ/J4ibgn8G8eW6eXroWYwdcT/9LvqGG7mXnLCPnLCP9bld4TuYxaV86D2ROFaWrz6c+QzHRzZFnnI+OeBwxgX+xRwuZsSYZ5nDxczhYhZ/PpQgbtwE+ISjeYixrKvcm7/d9DrTRZjpIrPZxQqFouOhSmEVilamsjZCJK4RjjXde1gViFCQ5aAw0WfZHL6Qfroqx9lAWLrtSAm+cIy8BqWqBnXuaXrHsqkeS+O5c931nzvLaaU2EkvbL+kLRQnHNLZ69Y1ISaIUFpRjqVAoFC2hp/yFOVzM/816iQtueIQcfMSxMoZZHMx3zOFixjgfBcBJhOMueoej+JTFuYdzzGtLOf/0R3lq2aUMP/Bl/sTbHP36lzx62vl89skJfHN0Pw6Z9CMA4yb/k4uZw3G/LgEXeDs7sDwkOfaud/no7rY8AgrFboThWHYwlGOpULQyv5bXAjRZIhqMxAnHNPI9dgqzMnMs/WH9G6qxY6n/7g2mL5PKyLFsYpKl8dg5DRxLj8OGJiEUTS2iN1WHWLOtlq/XVQLQJddFpxwnVotQsywVCoUiQ4SY09ZLUCgULUGVwioUitZgTUJY7tc1N+1tqhI9lYUeBwVZjozCe3yJPsocZ31xZwTqNNVnaYjGVK6ixQzvSf/cXsOxbCAss516GWxtJPU3XiSuIYEbX1kOQNc8F1aLwCoEL3y5Lv0TKhQKhQKoGzHy25p9GMUzEIa3GcblPExXNnELdxDHyjhmJIaJFLPnO5uZyBTmMZJSNnHR6Q/jIcCRB/6HIip4hRG8ddofOZSvkN0FK+jHoMkfM2jyx3zIsSxlEM68GnLytnGg9Xv6TlzGR2IpAFJOasvDoVAodmGUsFQoWhnDsTQcxlQYQjLf46Aoy0FVINJkjySAP5TOsUwIy2D659MShmJqx9II70n//IaobVgK63Hov9emea1GOXAkMZKkJNFf6bBZiDRRKpwc+qNQKBQdnssuZsNenTie97l53K38m7+wlEHcuvg+Ylj5loN5jnMoopwiyul+yiqy8VGhFeEmyOPzxnIw3/HpjBPxkcNkJvEwl2MjTvme2cxlFPlUk081R/MpffmZcGUe/uoc7uEfrJx2INw/SYlKhaIlKMdSoVD8Xn7dpgtLoy8xFdUBXagZ4T2ahJpgtElB5TNKYRv1WCZKYZtwLJtKhTUuaSoVNl0pbJbhWIYbD2vyh2PENclZA7slnruuP9Rhs5hiMxVSymZTdRUKhUKhUCgUuw5KWCoUrYzhWDYlLI1S2IIsB0XZ+izH5kaO+NKUo9Y5lk2VwqanLryniR5LIzjI1TC8R/89kKIUdnMiFffIvTtRlOXA47CZ7qjN0vSYko3VQX7Y2PRsToVCoWjvCDEZiifx75kncQP/ZM8XNzOXUdzCHRzPB8jlglI2sydrOZ4PuIoZXMUMfgrvw595i3csJ7OWXuw38ltmcjkl434jBx8zGMfXDCSAh0P4lmG8xcLNf2Hh5r9wFJ9SQDX9+nxDZWkBK+gH107WfxQKRWZ00B7LdpkKK4QYDgzv06dPWy9F0cHQNMnaCkNYphd61Yaw9Dgo8OjCssIf4X+bvOS5U38s/YnHa1QKa/ZYpv/WMcpcLSlqYTOZY/n80nVYBNit9c9FmaWwkcaO5caEsCzNc9G7U1Y9cWttRlgGI3GC0Tg1wWjapFuFQqHoCMh/CI7nTd6/+c/cc+fV/IfjeZ5z2URXis+rYM7dVzDmH9OZzzTi6FUkVzlncBILOfyb5fQdsIyTWIiDME4i3FN2I6Ulm+nOeo5Y8DXLhh9I4aYq5pReDMB8/sL+3v8xLncGhZuqYA+9H17KvdvsGCgUux0dNBW2XQpLKeUCYMHAgQMvaeu1KDoWm70hwjGNPfLdbKwOEolpOGyNCwMqa3WRaKTCAsz/fqNZPpoKo2fTKD81yHHaEOL3p8I25VjGNYk1xZ3rSmEbf3tuqtZTX0vz3Qgh6g06sQqBJiEa1xqJVYBo4hisKvMxsFdh2nUpFApFu2bWJEaNLuWDZX/ikDuX8O3Xg/Ee7KDEWsZd3IzPk8OL/zibm7mLTzmKo/gUgBx8hHEwd+FoThrwbyoowoF+QvPsknmMZB4PcA1CSqYzhsNLl3I87wOwmt7k5Pq4d9EkXh06jDMYlFiM6q9UKBRNo0phFYpWxOiv7L9HHpA+1KYqECHHacNutZjC8rkv9LPCwWg8ZfCPLxzDYbPgtNUXlhaLwCIE8/6bPmXV0KoixRxLc9xIE45lTNOwWRp/XWQ1Ed6zuSaI1SLonONsdN1FR+2Z9n4ApYlZl6u2+tMvSqFQKNoxRhqsQqHYDZFAtJV/dgPapWOpULQVv5brQqh/tzze/d8WfKEYBQnhmEx1IGJebghLiR7M4w/H+H59NUf0Ka53H18oZs6sbIjVIog1UVpaF97T+DqzFLaJTsz0jqXRY5m6FLYkx4nNamHemMH1rjMCiHyhGPmexsfH6DddWeZLuyaFQqFojyQLys2j8+myqIZfh/bi069PhCkw499XUkExk5nEuTyLOxzgPud1PMe5rJ+gl6t+eM9gnuQC5u49mslMIo6V03mN/3IYPReX8cigy8AKH/U5maten82Xpw3iFUYAcNc5U/A/aWXS0Mmc4Xkb3CADbXIoFArFboZyLBWKVuThD1djEdC7UzYAvnDqU0wf/ryNCn8YAJfdikXo6axvjD0CgG/XVTW6jz8Ua5QIa2BrRlia1zRZCpv27sRlamHpcejuaSqHdXN1iNJ8d8rHM15HqvtJKalKjGNZVaYcS4VC0THpLUcwj5H8Z+iR7MNKRh06G4bBRxzHLO8YAnj4YelhzHJeytU8wIZP+sC1wLVw3NdLsBLn5RHDWU5/zuVZyl7pyQn8hyVDDmGP8EbmMgps8Nppp/D8sgtZOe9AVs47kI+fH8R6Z3f2ZC0EJ+s/CoWiZUgg3so/uwFKWCoUrUgwquGyW01nMV0ybCyuYUvqLXTbrRRnO+nTOZs+nbP5Zl11o/v4w7FGwT0GNosgHm9CWDYxbiSTVNh0jqXTZsFqESlTYTfVBOmaTli60pfQ+sIxUyQrx1KhUCgUCoVi90CVwioUrUgoGifLaTPnPfrTCUtN4rLXCbV+pbmmmXhI93ze/7EMKaU5ngP0lNkcZ+qEVKtFEIymP52lab9vjmW+28ExfTs1vq8QZDmsjeZYappkc3WIkw9wpXw8sxQ2hbA03Mp9SnL4ucxHTSBKnkclwyoUivZPchlsX37mLm7mSmZQQRFvzDubufuN5lEu5bncc1lPd/oOWsZI5jGJyTx+9LmITXpo2u2H3sxihhDAzRuVpzG78BJeHPFXiqjgU45iomcKHgJM7Xs9h0S+wdHNS3iZng3wK135hKO4YvEc+BzkkDY5FArF7o9KhVUoFNtLXJNEYhpFWRbTkUtXChvTJLYkBzBZ8A3oWcDLX2/grw9/zr+vONK83BeK0b3Qk/LxTj6gK/9ZUZZ2bYZmTFEJa4pX2YSybMotzXLaGjmWFbURInE9HTcVxjzMVMK7MiEsB+1VyM9lPlZu9XGYSoZVKBQdhfP09NWFZbXMKLmKse88zoOnjCZnpI/ruJ2xzORe7418k3sIr3E6a+nFIL5kMUPoW/ozALd+ch93H30NndlKsNDD/814CYZCrwPW0p317LGoAu8xDvL+HebE0+cztvBh8s/aDEDN7C4cO/pdOCIhcqVKg1UoWkwHHTeiSmEVilai3B9GAg6bpUnhJKVES1NaCjCgRwHQuIzWH46Rk6bHMt9jpzoQSSsONXPcSKpS2MS6Ut5Tdx/94fT9nZ4UjuWmxAzLrnnpeiwTjm4qxzIR3DNozyJAlcMqFAqFQqFQ7A4ox1KhaCU21+glSA6bpclSz3BMQ0I9YZmcmtqnczYW0Vh0+UIxU7A2pMBjJ6ZJaiPxlALQEJwixakkw7HU0qT31CbcyHTPne20mbcxuO7l7wEozU9dCmvMv0ztWOou7/6luVgEzPhgFecO6pnycdIxctYSgEZptAqFQrFL457EH+e+BcAmShn78OMMG/sq+7CSMA72YSVX8SCLcoeymVIcRDjym6+4bcAE7uBmpnMNAPf26sc/Nt3D8NL5xLDy9LizKGErbzOMfy2+nnOGPsEmSpEbBFO5kr78zJ6OtQDkj/6Oj8TJwMlNtkgoFIom6KCOpRKWCkUrsTnh0j0w8mCcNgt2q0gZ3mMIxtFH75XycawWgdNmJRrXzMuklE2Wo+a79ZEdVbWRNMJS/zeVR2ppJhXWWG9WWsfSRqCBYxmO6WsvTeNYGvMvUzqWiVLYomwHbruVYIpRJgqFQtEu2bfuP2/kHoaNfZW3l54BS4Gh8NMBPenFr+TgY/CKbzmx33x+HNCLfT//jYePuIjruA+AOd0u5jzLMzxw2T8QV0p+6deHlUsPpOiwjcgyQR9+wEcOF4x7BB853PD2DHoP+x8A2fgAo9dTlcEqFIrMUcJSodgODEfMYN6YwaZj2TXPjRCCHJc9pSNnXJZOqEEi5TVJ6YWiGnFNmiWkDclPhNvUBKN0T3G91kQqrNljmWYtxnrTlcJmOa1sqg7VuywSi2MRdetqiMUizJmdDakMRLBb9evdDis1wd1kKrBCoVD8Dn6lFNjU1stQKBStgQQ64PZFCUuFopXY4g3htFkoSIipbKcNX6jxt4ohptIJNQCrVRCJ1TmWxuOkdSw9Cccy0Z/YEDO8p4k5lun6M41y3paE90TiEofVUi/VtiHZTltK4V1VG6HA40AIgcdhpdwfoToQMV9jJvhDMSVIFQrFbsMwXuNh4KJvHqaafPPyd246HbGvZPq4MQDM4WKe4EIOWLkad7cqFi79CwMHfcZfj3id6do1WC16hUfFs3twwagnEf0l/+53EuvpzouDRvLZshOYeNpN/HLJ/nAYlI7exJNcADYoj+h97b84XwFAqtAehWL7MeZYdjCUsFQoUpBpj17ySJBN1UG65rnM33NcqR25TITl0H0689/fKs3fDXGX20SPJUB1ILWYasqxbG6OpTFrMl1wkMdhozbSeNxIunAig+w0x6eyNkJhli4i3Xa9F3NlmZ/D98w8GXarP8w2X7jRvFCFQqHYVSmjhMfFX+DVbgC8esC5HHrX53w97wiuWjCbQ4Yv4YcVh7HPPivhWHh505k8OGg0Xz9xBOUXFrEx1A3XT/r3+EOjLuZbDsZxtpe/nLkQXlnLs/I6phw4iaEzFvPbYyX07FHGXd2mwFo49vJ3+WjiyfpCbp2EnNI2x0ChUOzeKGGpUGwHv2zz4w3GiMY1eiRGgGypCdElry6sRncsGwun2mYcQIBctx1vsO6+zZWj5pnCMo1jafRYpnIsG9ymIeZzp3MsHVbzNRnEpcTSjLDMctpSz7EM6I4lgNthCEtfi4RlODHTsyoQpVOOM+P7KRQKRVvwjljOIHkSg+UqlizWheXgvh9yDxP40/C3EP+SHDz8Cy7vN40reAiugK8YyG1P3AOAjTgrPPvBC/rjXTFmDvwDzjv9MQa9vJQwTv7+zSsMHvAhN42bSM9RZTAVnh02gv4s505ugtvrZmgyRbmVCsXvpgOG97TLU/lCiOFCiNk1NTVtvRRFOyQa1yj3632ANqugOlFyubkmVC+sJseVWlg2F4YDujPpC0XNpNbmXE4jvCedY2mmwqaI76lzLFOvxdfMc3ucNgKReL1UWU2TKd3RZHKcNvwpSoWTHcvXLz+CLIeVVS0cOWKEB6UrDVYoFIpdBSEmN38jhUKh2A1ol8JSSrlASjk6Ly+vrZei2A3RNMn3G6rZ5gunvN5ILe2U4yTPbScQiRHXJGXe+o5ljsuestTTEJvpSktBdyw1WTfqw+ixzHGlDsNx2CxkOaxUpS2F1f9NZSKaPZZp4nv85npTP3d2YnRIMFpXDlua72ZI76KUt6+7n63R/EvQXcaCLHtibYI+JTms2upv8rGSicQ0U1hW1iphqVAodl0MUZldO5ZJ6+9lDI+a1y256ziOmbYUgJ43/sR37/2BrmyiHyv4+KZB3DbxHl668FQYCKv/eQDfcgjnTX2M86Y+Bl2BgyXPlZ3DhMA9XHvgw8weMIolex3HXSunQAyuHDmVbzmYg4b8zEsiCuyBlJNUb6VC0RoY40Za82c3oF0KS4Xi97DVFyYU1VIG7wBs8+uC02614HHYiMYlP272EtMkXfPrHMt04T21GTmWurDyhgxh2fQsSdADfKqDTZfCpk6FrX+bhtQ5rNaU13sSo0OSZ1kGInGzjDUdqXos45qkOhChMCmop2/nbFaWZS4sNyXGvoASlgqFYjfg4kl4Q514rfspnD9tHmcNeZqzhjzNszeNoO/4Zfg3FFPCVk48cT63rryP5fTnmBOW0nfKMp7kfLgWJt9wIxete5pnLryEZy68hIvmPwz3CeLfZONfUMw/l43DRw78+j4yR8B/4F9Dr+dTjmb44peBjYkfhULRKhipsK35A3lCiNlCiOE78ZW0CCUsFYoGrK8KABBKSmVNpsKvixW7VZCVEE/v/1gGQNfcZMdSF04N01b94RhCgKcJ4ZXr1sWaN1Fmm0ngT77H3mx4T6rqVLMUNk0trD8cw2W3pA3BMQRnsvsYisabfH2QWnh7g1E0CQVZScKyJIdyf9h0ipvjt8qA+d9KWCoUCoVCoWgn1EgpR0spF7T1QtKhwnsUigZsSAjLcDSNsKzVHcuHzhlApxwn/W97jw9+3ApA1/yk8B6X7maGYxoue53I8odjZDttTY7iMB3LhLD0NROgA1DgcTQR3mMIy/Q9lunmWPpCsbTzMwGyDMcy3MCxtDcvLA3hbayrMrH+wiRhuXdJNgDnPPYF71x9dJOPCbAuSVhmKkYVCoViZ2OUwU5/bAyWiZKPpwziy/H9OXzucgBOG/UGayt7wWPw0NSxFFCNr+8EDvn+R55/v5YvuJHCTgF4Dm6bcg+cDc8+MQKAv697EY6BCafcBm/DfIbz2dwTWCW7wzvAm8At8OVrR8PdwECQ/22Lo6BQtFPUuBGFQgGwvlIvpYzENSIxDYetvlNnOJbFOU5yXHZ6FnlYvlEPiupaL7xHF2O+UKy+sAzFmnQeQe+xhLpSWMM1tDcxOiPPY69XBpqMJLVbCXWpsE2NG2mqBNco6Q0kRo5omiQYjeN2NP0as102NKn3ZhrltIYQLPDUdyyhfg9nU6yrqMVhs2C3CCqUsFQoFLsyH0zi6k/g1SnDOK5sEdq8LB4fdy4Af5v3OuwNjIDvOISFnMSrYjWOimt4RF5FwfogG7YVs5z+TDlxIkvePo6/P6TPoOSvQA7cO3ES3AefHXECAK+MGoHvlBzkr4Ix/5nO7IlXwSmo8SIKhaJVUKWwCkUD1ic5XhtTCLVt/jAOq8UM39m/NBfQhZsxTxLqwnka9hHWRjIQlg0cyze+3Ug8XWxrggKP3UyobYgm06e0Ghene3jDYU2HUfJqOJZGcE4mjqXx+Ab/eE0/U5/sWHbNc2EREIxkKCwrA/Qo9FCU7VSpsAqFYpdEJcEqFO2cDhreoxxLhaIBG6qCOKwWInGNdZUB9izOqnd9hT9CUbbDLN/cvzSPt5dvwWG11Cs1NYRTwz5CXyjWZHAPJPVYJu4b0yTWZsZ35Lv1UlhNazxDUpOpE2FBL48VgrTpPc05rMZrMcJ7Aol/m+uxNFxQfyhGZ92UJJZQt8k9lkII3A4rgQwdy98qAvQs9FBeG1E9lgqFYpflDNmHV34VPLbnedzCnXQvWc9vt+3LRa7n9BuUAz9D3oQtjJ4xF0qAz+GFwmFcGHmCyx54EqrhvCceY/G2odw87Fbu2pKwHouB/Bi4bIye8iCz51/FI6dewGVnPgn5cFftFHghiLumKrGagp398hWK9s9uIgZbEyUsFYoGrK8KcEiPfJb+WlmvX8+gwh+mKLtO+BiOpbNByWyycBo5awkA88YMbra0FOpEqTeofyvFNYk1nTJMkO/RR5T4wjHy3PV7IqVMPcPSQND0HMtuBe7UV5JUCpsI7zFKYptLhTV6M5Mdy1hcdzuTU2EBPHYblYEIoWi8XllxQ856dDEry3z8Ya8iJFDmDTW5BoVCoWhLSvb8jXyqWTn7QDg5huXHWvqU/ALANTzAJCZzFJ/yy7jevMmf6fZJOf9iHKsde3PEtM8J4+CZyy+hemY+C0adCd30x+174TJWXn8g8gSB8EiIQjjq4OqX72H67AkwFujvJnikG7ms7V6/QqFoX6hSWIUiiVhcY3NNiEN7FuCwWeqVxRpU1EYoznaav+9fqs9LbdiLaQTtGH2SBv5wzBRV6bBZLWQ7baZjmZmw1MVYqgAfPSAn/X0tQqTtsfSHo007lgkBaQjEUMJZbLYUNkl4G8Q0iUU0FqVF2Q7immTYg5+aIj0VMU2iSehZ5KHA41DhPQqFQqFQKHY+O2bcyC6PEpYKRRKba0LENUmPQg/dC9ysq0jlWEYoyqoTlp1ynBR47I1cQqNP8p/v/lTv8tpwvMl017r726gJZi4sjf7OqhQjRySpZ1gaCJE+Fba5UlgjeCdglsLGE5dn1mPpS3IsIzEtZUBRrsuG225lizfUaHxLMqFEkm+PQg+FWXYqaiP1bj9y1pImhalCoVDsaPT+yot4dea5/JPrWbn4QG4bPQHW2tA2ZtGb1fRmNdcHpjKGWfRhNTdxF91mlHPW0U/z0eKTKV7v524mcCe3wJ9hwdtncvfca+DuyXD3ZAbyFZSB+ErCHnB49BNy0OcBy9MExL6B5ZP1H4VCoWgllLBUKJIwZlh2L/TQo9DTqBRWSsk2f5ji7Pqlmn1Lcuq5mFAnnBqG7vhCTTuABrluuxneE42nFlzJ5CeEZSrHUtOadixFE45lc0LYYbPgsFqojbSsFDYnhWMZisUblRQb6yvJdRKIxPGHY2kFYjimP3fPIg+FWU7CMS3jNFnF70OJdoWieczQnl/2gCK4zPsorw4ZxvG8z6tHD+O9AUfxTuHpvFN4Or7aTpTRmXsvnMQcLua3cSVEcCJfEHzS/XCGsJgZjIODw1w+bBpDWMxtMshtMsjz8y7k8rnTeOimizlj1XMsCh/Hcvoz3T4BcY7kcOnncHkcUk5q2wOiULRXjHEjrfmzG6B6LDsAyf197em5dgQ3v/4DAN0K3PQo9PDJynLOenQxL106BNDLPSMxrV6PZToMMRaNa5T7w2Q7bUgpm01ZNch12fGGotSGY8Q0mVJwJWOUwt7+5gqO3adzvev08J70ytIiSGlZhmNxInGt2fV6nFYCLS2FbRD6I6UkFNUoykp9bIuznayvCrK5JpR2Dqgxe7Rbge5YAlTWRkxXVbHj+b3fAdt7/939u0fRcbhc5vDwTxbE05JgrwJ+GdSH0yrfYU7heZz+/Tu8WXk8ABO5idlDrmLz4ny6vFNDzjHb8PcsRhx1NoyC8+Y+xpf9jkY+KRBHSsJrnDy+eCwA54x8gpnzx8MC4ALYZ8jPxLGCG3g6zJfiQ30xsvnZwAqFYjswUmE7GMqxVCiSiCQcr655broXeohLaSaVQtIMywbuZCrsVgsWAZtqQvyyrZZN1UFCUQ1N0mwqLOjJsN5gjA1V+siTZoVlohQ3Fm+sECWyiegePdgnlWNpuInNhQ0FwnHeWr5Z/2+zFLbp+2SZqbn6c1QFosQ1mVaQWi2CLrlOqgJRVm31m0E/yUTiGjaLwGW3UpgoV1bJsL8P5UQqFAqFQqHIBHUaH3WmW1H3HghFNRxWCw6bhe6FHqBuLiNARW0YgKIMhCXoLqKmSYLROOGYhi+sl7Zm1mNp56eQjw2J8lyHrWkH0OjxjGmNBZeUNBPekzoV1gjkac6xtFqEWfKb6bgRp82C3SrM5/i1XO//cdkbC2jjs3nWo4uxWgTrK4P8uMXX6HYxTWKz6i802bE0/r5N9WcqWob63lQoWoZeBpvDzJvGM/NuH53lOrbO7AGDwFIi+Wd0HFUHuRlW+QEAfy55H06AOVzMrdH7WOMp5bhti3iYK3if45n+/AT4MUr+IZs5Z80THMK3cMRHADw/+UKYA2QDc5bylRzIe/NP1VNj97gHQJXBKhQ7EuVYtj/WbKtVZ9oVLSIS03AmhE0PQ1gm9eht8+nuV8NyzXljBqfcYO/dOZt9uuSQ7bQRjmnUJkZy5LSgx9JwLFMJrmRsVgtWi6jnsBposvFsy2QsQqQcY2m4ic05rBZLnTA1SmGbGgsCet+klPDq1xsA/fMKMOu8gU3ep2uemz0K3AQicWoaBBXF4hp2i36cChKlwVVJPaeba0J8u76aSKyx+G4Ndgd3b3dY446ko79+RVszHnmOgD0nUfZJTzgYbhCXsS2aww2iiDI6YymSWIokG6LFcCQ8xQXwV11glrCV7qznF3rDK/Cb7EbNzV14XgzmdU7jJrmIm+QimLQB1m+g54qfADfviWPhCkBpSYVCsQNRjqVCkUQoFjedP8OxDKVwLDMphU3GYbMQqdXMMJ6MSmFdNnzhGOsqAzhtFl69bEiz97FZROpSWEmTpbAIUpfCJtzE5oSwVSQ7lpmlwkJ9p3NtRS02i2hyZqaB8dirt/k4tGeheXk0Lk0BbiT3GuXLcU2yKZH6+936ag7fs5D2RlMuohJTCoVCoVDsJIxxIx2MDiks23s4xO6yzl2NmmA0IUx00ZLt1EdceINR85huTLiHhWkCZtLhtFmQwK/lteZjN0eu246U8NMWL90K3CnDahpis4iUpbCalM2E94iUZaJGj2VzpbtWiyCaCM4JZhjeY9wvnnjeX8tr6VHowdZM+m3yY68q89cTljFNw2bR15rjsmG1CNOx3OoLmyL2mnnf0q3Aoz4jrUggEsNtt2b0Pt0VUN+Tip2JEO8DOXAUPH3AWcgXBO8OOpaHuJgiWUEnMRlyxrOUFdTE9JNieWeGOeDl/3Iab3D7H+/krn5T4Ec46MGfuXzcNDgSeop5wDd8LC/DTYDDD1wOwA+yD/sv/QVeAXG/hGu/oWhtCRXWOYAqg1UoFDuGDiksd1d+z0ZoZ/SWVfjDLNtQQ9+S7B3+XK1NOBZn9VY/LruFLrku8/ICj51NNSFicQ2b1UJU07BaBI5mgnQaYgTv/Fym9wVmmgoLsGKTlwO75Wf0PHarhUiKUBtJ0z2W6eZYGomtza3XluQ8BiP6yJCmSm8NrEKgaZKRs5awfGMNg/cqavL2yb2WQsDqrX7zOuM9PmJgNwAsFoEAXv5qAz2LPGypCZHjsqFpEm8wBgXNLi8t7UmUNHQyt+c1bawOsnyjl8IsB306Ze024lKh2Jn0lcezcgZcFXmQ88vmsYZS5jGSp+ZdCiP02/zf6y8hPtW/y5a8fAiDF3/LD+sP4+r/3MP0aROoucrJP6x3M7PfePgJ+Nux8MKdHDNkKewL6Blq7P/JL4hrJVf/9x5OZD4Dx3/FXeK8tnjZCkXHZTcZEdKaKGG5G/B7S9h8oRg/bfGysTrIHvnNlxluL6u3+glG42Yp5O6ClJJVW/1ICX0752BNEkQFHgebakJUB6MUZzuJxiV2a+abZmOTvrLMx4kPfMLKROBMRuE9bv02VYEo3Qsz+7vZrYLaSKrwHtnkZt+SZo6lL2PH0mI6pYFIPKMyWP1+gmhcS4waidOrOCuj+7106RBOefBTVm+rE5b+cIxoXFLoqXOT7VZLYtxLhEhcY89iD95QjC2JklhF61DmDQF6UNKvQrBnsWenPr+Uko3VQQoSs1wVCoVCoWhTVHiPwmBHhzvs7PCImmAETcLyDdXb/Rjp1px8ueFupRIouzJl3jC14Th7FLhwNxBEWU4rdqugKjGyIpoUDtMSShOC3nAss5zNCy/DsQR9LmMm2K0WYnGJ1kA0aVpiVmUa0qXCzvr4FwBynE1v2G1WgSb14J5gNJ7x3EgjbCgSl2gS9sxQWAL06Zxdz7GsqtWbGQqSypRtVkE4prGhKkCW00qe206e244EfKG2a35obwEyNYne4Xy3nW3+MFWB7Tu2cU3yyzY/teGW/d94Y3WQDVVBtnrD2/W8CsWORIjJYDueldcfyO3jrqPm3S58fOogjuYTHgqPhTDwylqogDGnTYcXgRfhD2d9x6tDhsHZ7zNdTIAfIe+tMDN7jIcQ3K5dBy/8CHvezPmLH+XgJ76AvwF/AzFB8s5/j2P6lAm8J77lLmEFngdUGaxCodhxtEvHUggxHBieU9qn3uU7eyO3s8rl0j2Pcbk/kUT6SyJ1c0dhJJ7ubkbQLwnXK5UYEkJQ4HFQ7g+jaZJoXMOTQe9gQ7KdNvLcdjPhtTmhBnqPpUEmgTagC0uJvtFPFlj6HMumJ1mmOh9guHrNJtImVKs3GCUYiTd7e4Mcl42K2og5UqUlwnLvztks+H4TIx5ZzCuXDaEy0UuZ7FrZLMJ0XfuW6CWa2U4bAqgJtp9TiTvqu21LTYj/rq1kvy659S4PRfXSccNJN0Kpuhe6qd4YNU8ypVpjU9+HW30hyv2RjPpzkx+3wq8LykyqJeKaxCJQ5bqKnYIQiZMsOUAF3PL1/dx7/ASOEc8yXU4l+5o4/Ac4pRe3vn0z+VSzZlMpADdzK2WUcLlcxkxxDHxnZ81jpez1lzFcJIu5Nfc+mAx8Bw+Fx5LdNQ5VZQBYtmRzKY/AM+CouIauhZsAWMu+O/0YKBQdkg7qWLZLYSmlXAAsKOy53yWZ9BZu9YUp9++4M91t2Y8lpTTP/q/Z4cKy9RzLnXnMDNcr1WZ23pjBfPjzVi548r+sraglEtPqOYktYY98NzXBKBbRvFCD+o5l9wwdS2OGY7k/XE9YarJ5xzLVZyUuJVaLaHYTbgTuVAWiBCKxjB3LzjlOKvwRyhPJrS11LKFuvInhKie/bntiXZ1znGQ7beb76cDbFuLdAY6lPxxjfWWAUDTe7LiVHYGUkto04ioQieEPxQjHNNNBb4412/xokkbH6sfNXipqI2aCsuFY2q0WXDYLoe0shzdOArS0TNlIL66NxBL9tyLld4eUku83VFPgcaR9r7Wn/lnFrsH9civjzxBseSIPsUhyo2cy+8kVnP/8PPgv3L3qGsop4va5d1I5ysN4pgHQnfUs5CQ2lXWFV+1wxmTiWIFJPC6C/CD7cBc38Uc+oEugjEWVQ9iPFQB0nVbNneNvIbzKyUWnPsdvCx7QF6PcSoVCsQNpl8LSIBLTWLaxptnbVQci+EIxyv3hlGMkdpQb0NwGpjWeNxzTzLmGa8r9zdz692Fs7nZGUFBrbv5+2ebHIkjbOzmkdxE2i2CbP4LDaiF/O/u49ihws2KzV3fMMnBLjB5LyNyxvP0vB3DOnKWU+yPsXVJ3uZZBj2U6x9KawVonn7o/585ZSnUgQjAab1RSnA4hBHt1ymJ54nOaHJzUHIawNFJoKxPCMrnH0uOw4rBa6N7g+OW4bGysDm23AJRSpgw78gajeEP6iJi+JTktftzfS1Ugyqqtfr5dV8UhPerSib5bX83yjV7zd7fDmtH3S0XimIai9YWiMcLF6Ks15olaLQKXw0owun1zQg3nM97C7xB/UrVEOKal/ZtW1EaIxiVbfWEKsxymMAY1jkXRuggxOfFfN7XpOhQKRRuhxo20P4SAUFTj9Jmfm84F6APTvUllcEb51Koyf5PzCdNtJnc14pqk3B+mU47TFHvZThvLNtRw1qOLeenS5uchbg9mKeyOmT2/w/hlmx+3w5rW5XDarBzcPR8BGSWdpsMITgpluOk2klgtIvPxJsU5+vu3kQMvm0+FTeU0xzVZL8woHcYGvTpRCpvvyXwci8tuZa/iLIJRrUXHt1eR7jgFE59fY6xIsmNZkuuic46zkah22nThsaUmlHFgUDKVgSi/ltcSjNQX0dFEIu+WmhB9S3J+92gjg0xPPhnievVWfz1h+c1vVQDsX5rLj5u9+EOxjGaxGo8XbCgsE/Nco4mZqYYTbxECt91KTSDapHOYju1xLDUpqY3EyHHqc18DkfQnC4xSdCH0Co7+3fIyfp5dBSHEw8Af0Tvz/MBVUsqvEtd5gCeBQ9GLsK6TUr7ZVmtVANzF+FEzEVM1WCY4eOgX3LvuZlhiw3Gyl8ibufzjhAfgOPjnTeN4nnO4g1sAsBLjNF5nwAcrOOecJ+grg+z92nq4GJjj5l5u5HkxkOf3uxB+fI1Rci7n8pz+tPfB3z97BULw5tvHA/An3m+jY6BQdEAkKhW2vWHM7asNx8yNrpSSdZUBU3AKoZ/hBli91cfg3unHHWzxhthcE0LTJBaL2GElU7/3zHllbYS1FXrPWigaTwgTO+sqY6Z7uSMI7KbhPau3+pvt6cpEXDWH4Tpm+lg2qwWL0EVQpv1gRQlR1VBYZjLHMtVbI1NhaYi56kCEQCROaX7LXMCiDEROQxw2Cy67pZ5jabUIchsk2KY6dsa4mE3VwYyEZcPPeiASI65JKgMR9nDUuaGRhNDaUhNq8ev5vWhSUp1w/NYnBJSx7m4FHuxWvb80OyHAzPtpEpGm57DCFJZaPaFYbjqWdcLSeJ+47FYkTTuH6TBKbpOFZXPfs4FIHCmhU44zISxjaU/EGL28vYo8/FoeoKwN/k6twDvA1VLKqBDiz8A8oHfiuusAn5SyjxBib+BTIUQfKeWOLVdRNOb7RMnpoyBenAQlMH3qGH6hD98t+QMUwI2F93L7fRN5p/Rk+rOcY/iYX2bszxXr9VmTLITey/7HrefczO3CAafdw3mvPcbc3qO5+bFbueuEKcCPfLxiEMesWMqGUrjXn3jeYuD1ycAR/FkcBZCyKkWhUChak/YtLBMmpT9JWPrCMdMx8odjZugIwEOLVvPmss1pH6/cr5dR+UIx8lox1r65jZOmScp8IWqCMaJxDW8o2mSfnzHHcGN1ELvVQpbDZgqnhiVtrYnf7LHcYU/R6vhCUcq84UalkjsCw7FsiUi1WSzmDMxMKPA4sFqEWapokNkcy8Z/uJgmM5rZmW84loFoi0phfy9uu9UUllWBCAUeR0qB1PCzZRzTTdspLAynrmF6qelYene+YPGFYqYgW18ZqHfdis1es+8122ljU2LcSiga54dNXgTgtFsauayVCWcyrkmicYnDph9bsxQ28Xq9oSi2xBeuO9E/HMywzDj5+bzb4Vj6E/fJc9tx2S1NBvgYjmVhlpNN1aFGTuzuQAMHcgnQTQhhkVJqwEjg/xK3WyWE+Ao4BXh556+04yLEc/D9uW29DIVC0dao8J72hUAvyzL6bwC2esP6UHYp8Ydi5qbZYbU02mQkO4fhpPmMlYFISmHZEgezubmCyWyoDrK5JoTDaiES1xjxyGIKPA7zeaSU9TZTkYQDG41LovE4XXJd5gZve3qfpJRUBSKmeEimNhwzZxYam+wT+pU0ut3OJtO/xdmzvwDglj/346T9u+zQNe1hOpaZ36dbgTsjYWdgsQgKsxwpHEuadCyFSH02O6ZJPBkIYY9DH8tilMJmmupp/H2216V3261UBaKEY3GqaqMUZmV2wseR+CNsrg5u1/MaAtK/ncIyGI2zoTLAiEcWY7W0rFw0HZW1ESxC759clyQsNSlZvdVnlr5mu2xQo39eKwMRhICSHBdbvCGqaiO4k4J9jFJYY83Ge9EohU12LG1JjiVs30ms7emx9Idj2K0Ch82Cx2FrclTJhqoANovAZhHm9+luzhXAWwlRCdAD+C3p+nVA952+KgVcrf/z0qJTOfPWBYipkquHzYI5YfgfXDvlDuZwMbeX3swp4mZulJ8zmUl8O+5g7p+pl8LWfOsk7+0w64d152P5JFMYyDPiWJ45T8L+EH1VYL9dcsxNSxl814d037SOl8RpAMjFeYj+vwJP67+r0B6FQrETaNfCEvSz81WBCFJKYonStc7Zeu+hLxzDrVmxWgR5bps5e80bjFIViNKj0G2Kv+S5bFWBCHvS8r4sA71UtZb9S3PNXq90RGIaZd4QxdkOehVl8dVvVfhDMQo8DnMzXu6PsKa8ll/La9mzOItwTMPj0F+XLxQj22XDabMg2L7N3qeryllZ5mffLvXDSH7YWMMPm7zsl7jcSKMMx36/C+ANRc0ewx2J0Z/Xu1P2Dn8u07FswZiDTjktLxEtSiksZZOOpSVxsqUhsbhWz9VPhxCCPLeD6kCUQCRunmzY0RjO6JpttVQmHMtMsCTExfY7lvo+vrFjqR/D5kosawJRKgNRioLRemWb2yuwjZM/eW47Nouo51gGI3GicUlW4lgZnytfKEaFXz9mPYs8VAcjeEMxSpMet7I2gtNmIRzTCEbjZi+t8f6KmT2WMQbtVcSc/xvIyFlLsFkEwUh90RaJaWkDsgy2p8fSH46Zr8njsFJZGzGd1IZsqArWnUy0WRqdGNgVEEJ8gy4QU1EipYwnbnc2cA5w9HY+z2hgNECPHumeTrFdHHcuHKz/51nj5sMrMHzTywxnAaPvmgsnw32jbmXq9FuxvCHhVbjn1xMQVZLRAx7k2svvACDvzDDyOsE4/snbDOODUX8CPoKP9mbV3O7cwm1wH1wupzFz2XiGHHgHV8uZAIxhehu8cIVCYaLGjbRPsp1Wtvkl4ZhGZW0EKaFzrhN8sM2nzyb0OKy4HVa2+SNE4xobq4N4QzE65zjNjWtVIIJAf59U1UaafE6D6kCE3yoD5LntdErqIfOHY0Tjkt8qmk+O3FwTRJO6KLFaBB6HtdFmyAgtWVXmY8/iLCIxDafdwh75btZW1PLSmMEUZjnY79Z3U5Z+NRcUsmKzniYZbbBZ+y3RxxlpsMnONJwmHT9v8fHjZh+9O22/eG8O4zWHonEE0LMos3Eev4fCLAcW0Tr9mk3RKcdp9sCZSJqZYtnYsYzGNTSJWeLYHAUeO1W1RirszvlqMQTsz1t8VNVGzKTYTHDYLGzaTscylqIUNhSNm4KoOcfS+Mx4GwjL7cUb0r9TCjwOInGNDVVB86SJUc1glMIaI0G2eEPENElxtv78uS475f5wvWqKytoIHoeVaFyrN0KkYSqsNxilX9e6WZduu7XeSaxyf5jv1lc3+5n2peixbEhyNUJNMEo4ptE5cQLGEM+pymFHzlrC9xuqTTfdYbMQqdXMnvldBSnlgOZuI4Q4DbgT+KOUsizpqnVAT2Bb4vcewIdpnmc2MBtg4MCBu1EDw66NEJPhOOUOKhQdHpUK2z7JSpzJrgpE2FQdIs9tw+OwkeOMU+YNUxuJU5LrNDcb3lDM7POpCkRwO9zE4hrekB4IUVkbqVce1hRVgSjhqMbWWJgyb9jsjQybPWFRKmsjaTeWkZhGmS9Mp2yHWV6W47SxLWnzJ6U015ss9HLdekjHAaV55uMnB520hJ+3+IA6N8agLLF5NjaBxia7KccykxErxqa84fMlE4zGcbWgRLSpx3HaLfVSg1PRGqWKQgh6Fnp2uOgqznbya3n9maWZhffUP97GbEJbMy6TQb7Hbv7tWjLgHrb/+LrsVgTw0xaf3mPZ4LPU1OM6bRY219QXlpmWUNeVwta917f5dBdPiLrPRnP3r2mFWZrRuMYv2/w4bRYKsxzmiaazZi3B47ASiMRw2631Zqdmu2yU+yPYLMJ0IXNdNrb69O9EwwGsrI1gt1pwO6z1vjvM8J64REpJTTBqPs68MYP5x2vLePmrDebt11UGkDQuHW5IS3ssf9mWmEHrsDJvzGC21IT4w90fpBSWUkoiMY18t/4ecdgsSKC8NkznHBdS6v3zVYEoRdm/X+zvKBKBPdOAE6SUaxtc/TIwBvgqEd5zGPC3nbtCBUDfacsA2BQo5aEZY7nM+yjzt57FpRc9Qk6Bj9fmnsIZQ9/WZX93EPtIzvrP0zzjHcV1ufcBIM8RiDMl3AEHj/qC8+Y+xtwTRzP27/dzCY9xE3dyU+wuruefWEpqCeJhphivL+A6AH3kiSqDVSgUO4t2Lyw9DisWAesr9Q1kz8SIguyk5EiP3Wo6k4aDYbcKqgJRSvPdZtJip2wnlbURqgOZbQYDEb0MtUuui1Vb/fy6rZaDuucTjmnkumyma5nntjdysTQpWZ3YNCUPM8922SjzhQlE4mQ5bfjDdYEdaytq8YWixDVp9pAl47JbqQ5Eica1ZoUU1G2yjc1eQ8dyq69+n1VdKezvcyybK4fb6g2xfEMNPYs8LU7mbejOBqOZ9wO2Bp1bMKdxeynKcjQK72lOWOrhPfUx3ufjT9wno+fNcztYvrEaYKeVwlqEwGW38tMWL1WBaL0Zlk0xb8xgbpv/P179ekPzN25AbThmBlQlO5bbEuWhHoeVcn+EcCxOOBpnizfc6DNn9EGHolrKEzG6WItRlZgLWh2IpBzhIqVk9VY/cU2yb2kOVoswy+vDMb0kuTYSZ9+uOfV6urOdurAsynaY74vchDD0BvUydE2TVAWiXHZMbzbXhJj//UZADxOrrA3jslsIRTW8wRj+cKzeTMjenbKJadL8ztiaENrNndgyHEtNNk4kTlUmvHprQlgmPsMluU4sIvV3UEyTaLIuuMlp9tmG6Jzj4sctPvO7p/GnYZfiSSACvJL0N/2jlLICmAo8JYRYjR50P1pK6WubZXZM+srTWNkDVs49EICnRo3k/GHzkLcLxFIJb0LNpCxmDboUywu1xG/J5o7HrmUmY3npif/jrAufxoN+knjdaZ0hCDwK3/X6A9/96w88wyXQA6RV0O+IbyiylvPZXScw+qYHuZg5zPxbQlje5wWuQcrc1AtVKBQ7lg46buT3Wz67OEIIshw2JFCa76org7JazH4fj8OGIzHaIZAIHumc48IfjhGJaWyqDuG0Wchz2xDo4T2gb3xSBUWMnLWEsx5dbPaaGW6j4SKFEjH8exZ7EmVr9RMcpZT8Wl6LLxRjr+KsesmKhpNgnPk3RK/LbuG3igCbE71dqQJf3IkxAOsaJEY2hZSSXxKbt4Z9S1vTOJa/J3lWdw2aLof7aYsPSZ2jlgkjZy1ptDGNxDTCUW2nCsudQXGOk2A0Xu+9KZudY6m738nUBPX3earQplTke+yma7czj6nHYeXTVeXENdnIsWyKrnkufOGYOeKiKaSUZqVBcv9qsgNnvPbTD+kG6EFh2/wRtnhDnPqvz+q9/6JxaTru3mCs0ftzizfMz2U+tvnD+EIxRjyyOKWwqg5G8YZi9CzKwuOwMW/MYOZedDgA4ahmBnsll6mC/jd12S1mCSkkSmTtFvNEUk1QP0lVmOWgT+dsonFJTNOoDkbRJOxVrJcdG98nue66k3VGz7LxXWCMXwlE4ik/iwbepM90baT55pRftvr1RNvEsRRCYLdaGp0Egzqxeeuf+zFvzGDzO3JzTZDyxHE2hOmujJSyk5RyDynlwUk/FYnraqWUZ0op+0gp95FS/rut19uRmJBwCBUKhaKj0u4dS9B72zQpKc2rc/6EEOQ4bVQGorx06WCynDb2n/gutZE4hVkOCjx2NlYHWbXVTzAaZ+/O2QghsFmF2WO5xRtiY1WQ2nDMLLk1CMX0/jSPw2aWoE1d+BPPfLGWuCZx2izkuOx0znGyxRumONtpbraqAlHK/RH2yHc1GmLutFmwWQT+cIwS9BCQbKcezvNbZa3puKYaUWG4SCs2eTMOqwlFNbMfLNpA6JX59M2i0W/mN0th6zZ1LXUUwzHNLIFNJywNl8IbirUoXTcZKSVrymsRYvsCcnZljPfMOY99wb+vOBLQHaCmjpNFgNZgL244lvkZjtYp8NhNJ29njRsxnsuYt5hpKixA10QlwLmPfcGCK49q8rZl3jDrqgJ4Q9F6wrI2hbDsv0ceAGOe+cq83huKmo4g6OXqRVkO4oEINcFovfdgOBpnQ1WAfLedPp2z+WZdFb5wLOWsT+Pxi5IEdVGilzccixOOacQ1Sb/SXO48rX+9+6YSd8l9lsYxLcp2mP2ZoYhGReL19+mczYrNXtZW6CfMkh3LvRK9lEYKdVni2BjiNF3fbp1jqI8RyXXZCURiuOzWRo77yFlL+LnMp5dDJ11ns4omhaWRzmwIy7vf/sl8vxZ4HI37kxWKDBBiMjdKOIfnue2kA7l2lB7A4yGInCYQiySzLx/FL5f35t51N/Mc50IJiI8kTAH2AbrBvNXnM7LPUwD8w/MAowMPMvuKqyAEjlleYlEr2t+yOHXRS/z4ySFoBwgsd0hm31zMYvk0vJAo7/9COZUKRZuiwnvaH3t1ymLemMGMnLWELnmNSxC75rnJdtlMUehOlI0VZTlw2S04rHpqYK7LRkFic22zWMwepnA0jkRPpOzfLa/eYxs9PlkOfUPktOllY+HERsuZcHS6F7ipCkT4tVxPiRVCUBOMYhF1KaLJCCHIdtnwh3Q3tTYSp1u+G4lkfWWQSfP/B6RxLB1WhIA73/qRZ7/4rdH1qQgkXAObpfFmrcxrlMLWOSP6cdn+UlhjYylIP3LAKBGOa9IsCU4mlug569JE2ek2f5iaYJSeRZ4WD3HfmWxP76HRH1b/7yWbDO+xCNFojqUpLN2ZuYDJpZo7qxR23pjBfPBjGRc9/RVAxqmwAHvk6++PSAal275wDCnh1221bPPVCY+GwlII6Feaaz6ucbLFG4xBgX47I+THYbOQ67JTE4zW65lem+iV7lXkwWoRZDtt9QQX1InC2kSFRXLJqBB6OWw4pplp1gN6FGR0TJL7LI3vucIsBz0K9XCrQDRulvwaQUlryxsLS6N83yjzTe45DUY0clyphaU3FCUr8T3sD+sltj9s9LJHvtsUhMkEU3z+7VZLyu8gw3E2HsdmEYgGZbM7632raF8IoTuV914yiR8e68Nt4XuYwL0AjOUhzho9n+mfjGEOF/Ol6MpD8lLmMZIAHjgBfptYQs9Lynj1sWEIsYWr5ZP6A0+C2cuu4pHKC7ASZ/RNcyEP+PAbFpx5JqwFy0ZJdnk5/unn8sMJAJX6ff/wT/1f1V+pULQdSlh2DJJn5yX3WnbOceK01fVbFmTZKfOG6VnkMc+I646lvlkznLxVW33075ZHTJMEIzFyXHYCiQ2lURKo9yPFzU2MUQZns1rolu/m14qAKZJqE/H56RymHKeN6kCUb9dXA5DnsZsJkMYGNFWPpUWIRM9V5u/0QDSORUCOy9YoECO5FNZwRgBCv2PciC8Uw2oRuGwW4g0tNPS/2YrNXnMEgjcUrbexHDlrCf5wjHJ/JG0faTga57eKALkuGyXtzK0EzATi5PAjTUJz4a4NDWKjzDrVzNZUJAuLnVkKu0/SGJyWJKx2TVQwNCUsDQFnfJ5/La81xaJ+4ikpvMcfptDjoFtCuPjDMWKaNCsMjM/H1sQJGYfVgsNtoaI2Ygbm1ASjVAf1UUfGyaccl42N1XqCa0OXMRCOk+Nq/DXuTAR11Ybj5Dht7Nc1M/fC+D6sDcfMPt3CLAfdCzyJVoG6y01hmRDCyX9/u9WCw1Yn8LZ6w9gsQv+OjNatORrXWLPNb57484Vi7JHvZtVWP75QjK3ekBmwU5rvqvedqEn9e6c4u/4b22614A81/o4LxzSsFkGuS1+nEAJnYpZlPPF3ymS0jkKRkmsmIbsJSlkDR8KpzAfARzZvfnI8f173LsyxwedQRAWbKKWUTfwwsw97V67Cca+XjzgO+V0X8iObAfjsxoGspjfnvzaP206fAMfDoqFDeO7GcwnyHc+fcCGj//sgs8VVwGQOkMMAWM5hgBKUCoVi59PueyxbQo7Lbm4KQR9Of0BprlkGNm/MYI7sU2z2WEZi+kZx6sKf9TTTmiArNvsIRGJmr6YRY++yWesFdSSXqhpOjzcURUu4cE3NcCzOdlKS46Rbvpu9O2eT5ahLfPSFonTJdfHSpUNS3jc7MUC8YT8d6Bu1hq5kMBKnV3EWTlv9vqVgJG72YsU0Wa/X7Hc5luEoOU4bVotIWwobjMTJdek9Yt5g4w2kIa7TJUOuSTgsexVnbVcZ7e9h3pjBrZIw2xTFprCs+ztkkgrbqMcyENFPKmQ4TzS5ZHZnlsLuke82Z4O2xLE0+gvDKcomk/sAY5oklBCfv5bXmsKqW4HbdCxHzlrCO8s30ynHSZ7bjhB1s29Lcl31ElGNEnK71UKBR7+tUV671acLsJIktz0nIYQaiqVoXC9Tz3I2PtauRIVEJK7RNUW1RjocVgtWiyAQiZvp10VZTiwWgcehn1y6b+HPQJ2w/C1FKSxgnvwBvW0gx2XDIupmx4Je7bHNH6EqECUW1whE4maJcm04ZpbjhqJao+Afo3+zYcWBw6oL2IbfH5GYVu97d96YwQzoWUAkFicYjeFxWHf694FCoVAo2inGuJHW/NkN6JCOZabYLBZszvrauyDLQbUpLPVNk7HhMQTN5poQgUh9J8FltxKXEn/CkUsuXXPY9Lly3mCMbGcMCY3Ku5Jx2Cz0Kq4/D87YXEXjkq756TeSWU49VTYY1cyyr3AszqqtfgJhvbR3xSavWc4XiMQZ3DuH5Rtq0KS+KXQ7rGz11ZW2xTVJIFwnmJsaN2KMCUnVe1lZGyEU1eiU7dSDk1II1GhcI6ZJ3A4LQtT1gyVjhP8EIrFGDs9WXxhvKMaeRR7TEWpvGK5dLMmxlM3NsRSN51hWJ0ZIZDrjr6BeKezO+2oRQuBOzHdtSXiPzaqXuyc7lpqUxOKyXil5IOmkya/lteS57eR77OR57PXc/0hco1OOEyEEDqsuqgR6Uumm6qAZNmWUhTpsApvVQoHbToU/Qmmem+pAlJJcV72TAHWBXdF64r3hfMpkjGRYl93SbI9swxMdB0xaSDASZ+ZHqwG9ckN/Hr2XNcepH69eiYTt3yobO5agi9vqpNdsBJklC0RDlEZimvn9WZoQwv5wzCzFB2OmZt1rNfo3G7rjtkSlQkVijIhBOKbVG7kCumv937WVxDXZ7nqtFTsHowy287R19OJHJjKFy/xP8gu9ATiY74hj5cseh3C4fznuA6r424rXubvfNdzHdYxkHn8sfJ+BfM3tQ+/kXx+eyRJ5CgDzGMn0GROgD9x2yT1wAQwV1wG9IGcA3Axv8ydgAzCJHxJrQR6204+DQqFQgHIsW0yBx05VIIo3FDV7AIOROFJKasNxBPrw8Ehcq9evY2xoakIxnDZLozPjuW47vlDMdDWSHUvD5Urnds0bM5hXLxtiphmWpujNNDAEa3Jv2FZvmNpwnM65+sbqm3VVQF2J6z4luVw5dG9A36xBXX9l7066m+lPChFJ51iuKvOxbEMNlWnGtRjJkS67lRP6laTs7TM2pW67lVyXDU3WjTkB3ZE01hKN1zmwNcEoP5f5WJsY79KeN5EOm+46NXQsm3Jj1pbX8vVvVfUuqw5EU464SEdblcJC3VihrBY6pQ5bfWFZ5g3x/YbqegnItaaAs7K2opZyf5iiLAfZiXE/BtG4NMuQDWHqdlixWy1kOW1m+qzx2XnmokGA7jDHNMkv2/xIoFNO/WNutegl7A37LA3Rlaov0Pi+6ZrrarEL53FYCUTjxOIaFlEnUj0Oq56EHYljs4hEj6jNDC3KbeRYWonGJVW1EXyhGA6rBbfdWs+xTJ69a7w+o0TZH4qZQTouu14yLKXEm0irDUVSO5ZGCXx5ohfWSOkOx+KNQs1K811E4/oYEk87PdGk2Ak8OImt7/XgE47hAa6BfWGjtycbvT1ZGjmcMko4fN5ylkw7hMCvhbzabxg/sw9/5H3+yPt0Zz0RHNy4aDIs7MUrnMErnEE1+XA8fDmsP488dgGDh3wIx5/OsXIrl3un8dKNp7JhYh+4phtqZqVCsYthjBtpzZ/dAOVYtpACj4O4JllVpo8Gc9kshGJ6CVdcSvbId7MxkcxaX1jq/x3XJEftXcys8wbWc9NyEqEZW31hvfcqRfhOU4jEPL9AJG6e8U8lQt12faxKbSRGJ5xm+mOuy0bPQg/l/ggzPljFgu83mSJuny7ZZopjhT9CtwIPN72mD3/eu3MOa8prTZewMDt1quLIWUvMnsyaQLReiqWBsfHWA0vs5mMmY2wm3UlJkMkbbiNV1jgBEIjEcdklP23xYbcKuua56JpXt9ne0WWpbYXdKsweYNDdyOaMx0ZzLJOG3mdCW5XCgl4OW5TlaLGIctgs9U6y+EL6jMrqYNQsKa4Nx7BbBTkuG//b6OXXbbX0K80ly2Ez3UeZKCM3TlgYPc7GCaJct41N1SHOeGQxm6qDOGwW89jmeezYLAJvKEaW05rSgcxJCLjkkubacDwxNqnxd0We206fTlkt6jk18DisbPXpAjL5sY3vM18oaorNgiwH3lAMIRoLPGdC3I6crX/PXX18X7Z4Q0xd+LM5+/a3yjrH0vj8lyYqLnzhmFn+W5Lj4rfKAMs3eglG4+S5bVgtFvMkSjLGGKnk9N5AJG6mdCfTNSkpfGe/ZxUKhUKhaG90KGGZqYhIDvdpiLFRW7FZF5Z5bjshX9jcxBRlOQhF41TURnjm4kF0znExctYS3aVE37x3L/A0elwjUCIU1cwE2pbisln0HqW89I6lEIKsJKelNqIHCpXmuxFC4EmIU6jr6erfLd8UhYZjGUmUWfYtyebd/+k9VPrrdxKJe4lrEiklG6qCdMl1YksKOkk3N9CYYWez6Jv42ki80ZD0YCJMyJFwfW0WUa+0zhCZJbkuU1gavVj7dcntMJtHt91KbTjOWY8uRgjBj5u9jcJ56pFCj1UHIi0SJm2RCmvgsLX8ZAzopdtVAc08TrWJ92h1oE5YGqFaLptezh6IxinOceKyWc3b6+/3utE1xlqMCoFcl51NhPCFokRiGiW5TlMEW4SgMMvBVl/YdDwbkuvSg8SqA1HzbxKIxPEk+isbfrcJIVKOJ8kE4zPiD8XMx4c6UabJOvGW73HwW0UgZeiN4Q4an8kueS6zPcA4QWQ6lknCMtmxrKjVe06Lsh2srwqgSUnnHCdbEy5pntve6LUboj5ZWPoS33e5DYKOktsG3DuxfFvRfugtR/DLXXD7iddR6t3KabmvM/XQ3tivTnzhjoHRf5iL/Fgg1kW56KBZvKH9lYoNJbzU43QOn7ccrgc+i3FGj3lwHZQu08N77nv9Vo467VMOn7gcugD7An+DjwaczEcvnszMfc6nt/wfv5y+f1u9fIVCkQ41bkSRCUYf2b8+WAXo5V9lvjDl/oieZmq30LPIQ2GWw+zvMTY++976DqGoRo+ixsLSYbMkkmM10+VoqZum9wxGzTP+6chy2CjzhdCkpMIfQQCFCTHrcVrZ5tP7Fn1hvXxtj3w3WkKVGMEl0biGENA9MYZgc40hLPXjE4lprNrqY2N1EKtF3ywa/WjhmJYoS6svPowwIGtCWILeZ5XsmgWjGi671Qwn6n/bwnqldUaqbK7Lht0qCEZiROP63NCG/VXtmTy37tiGYppZltpkjyW665bc+1odiLJXg17epshyWM2TJ7vyCJdk3HYrUuoizWHTE0KF0B1LTepiMRiNU5hlN98/cU0veW1Ydg00cixnnjuA/brmcuYjixFCHzsSjWuU5NQ/rl3zXMQ02UgMGt8BZz26GLfdyrrKgO4MJ62rtTFKQiVgT4oStlqEGchjOJnJY5gaYny+Tdcx14nNoovGQFTvf/4ukWwd06RZ6ZDvseO2W/GHo1T4I9isArvVwkHd8rFZhfle3eaP4E7xmbalEpaJUtyGJx+MkU6OxHxghaKlHMx3rD7kANgGIzs9xbzLzmf+I6eS/0Q1AH1YzUOxK+hn/YY3OZlq8nn83bFsGFbMPEbywsjT+HnkPtx24D28esW5cCSMXz8TgGmnXc693MhTU0aygFPpxwpuF0fC16fAu/CmPIs/X/I+vK7KYBWKXY4OKiw7zk67lTDCQQyRZPQVxTSpb6yFvglK5fQYm23DsWzYM2m4lk0lwjaF8fhN9ViCPlJASj2RsaI2rJfiJTZjHrsVTerizx+KmeMHjNmIRkpjJKbhsNaV821OlP8axycUjZsbyupA1Jw5aWxEU6W5Go5lsrBsWA4bTKTtGrgTYSBGgI+RKiuESGxO43hDeuhJR0p8NP4uxjFtyqzUaXxsqgORFvVYCiH0jb+gUXnirkquW3+feUMx033snOMkrulBW0YfY5bDVk8sF2c7TOffKIOFulEvRdkO9iz2sG9iFIolMY/SG4oSiWv1Ul9B/+zu3Tk7rbgRQtCzyEM4prG5OmQ6djsiJMkINYI6Z9LAcKKNy40Tban+3vbEe8GfOIadc130KPTo41dCcXNciPFYq8vqqkCyXbbE2KCwKW4dNgsWIRBC0Ksoi07ZzpSu7CuXDsZps5i9n1JKfKEoOa7GI5yMxFyP3Wp+H3scVk7p37Wlh03RwRBiMiWsa+tlKBQKxS6FcixbSGFiIxWMxCnOdvDqZUPY95Z3CMW0ZgWhy6Y7it0LUwu/4mwnoWjjgd8Zry1L7/88oDQv5fXJ7kfXPBdbvCGkpF6/oyfx3NUBfQNsjJrwOGy47Bae+nwtH/60lWhcdy0MYb2xOuFYJgRoOKaZ5We+UMwUiMXZTnyhGN5QlE45znoOmVEKp5fCJkYsJPW/BSIxInGtkbCMa5LTZ+qOUCiqmSWMHofNLNFtGATUXnsrDZw2C06bhZpgtE7EtEDrxTWJNxRrUY8l6AIjxSSbXRanzZpIZI6aJye65rnY6g1TURsxewGfvuhwOmU72fvmd5Do7+OK2ogZcGUKy4Rjabda6JxTPzgnz2VnQ3UQITCDstKR6v1ppNFuSOrhfuWyIS3+G2WC22ElEtTME04GHoeNqkDUvDzfdCwbv7mE0B3OUFQzx9YIoQtsXzhqhibluuxU1EZYWeYH9H7SHKcNX0gfN2KzNn5si0WwV6fUbroQguJsJ699s5FlG2rMvutU8z5zEmOLGgYPKRSZ8nR4FKK3JC9vC91ZT79HvmEiU3iecwB4Zt0FPFJyKT/+fAh//r/3eem/p8Jy6LahHIqh8+nruJF7eW/ZUZxY+CkcCuJX/Xvnke4XMJEpnH/qPA6d/znjmAESjuIuBg74msLrA3AlMKcND4BCoUiNMW6kg9EhhGU6EdHSnkuoi97XJOZQb5fDqgvLFBuXZPI9dvzhmFk+2pAcV+aDzFNhs+jhNM2NhxBC0KPQQ0mOk6pgtJ67aog2Y9Ze8msqynKao0QicQ2P3VrnWNYEE7cxhGXcDEWRwKZEqWy200aOy2aWvSbjDcawCMzNJ9QP5llfqT9Hckmr0Q8WjMbNuXVGH5XhrlhEnTPVURBCkOu2U+nXkzSR+kiRtLenvqtpOJ3NjapoiM1iQdO2f45pW5Dr1sfWCGEIciu5brvpCu6R7zL7/pyJcvWibKc5o9Efjpk9x8VN9DXmum1QrQcpNXQsM6VXoYcNliCFWQ7y3fbfJSqb+v7zOKzUBKONBGNLHMt5Ywbzf098yccrt+Gw1iVhZ7tsVFdFzZNGuS4bFbURPlq5Vb/eaTMdywp/OGU4UXN0ynGyZpsuVI3vkFTCEuCgbvkp5/oqFE1zDVs/yWXfo3/mt74l9Ji2ldPGv8BSBnGh9wkG5S4FQK62I2Ialf08FM6r5az585l94yhmMYav3zuCzzkCgHN5jpsqJ3Lni7cjyvX342XznuT2kdehPSWwvCc55qOl/HBXHw64dzX+q638deqLvCH0ubKqDFahUOwKdKzddiuQ7bSZm/Auufpm02O3Uk20WccyL7ERbNhb2JDtEbzbg9NupUuDXjijT9RwGZJDWIqzHaxNhG1EYxK7O6kUtiaE3aqnuYLuHDZM2zR6nHKN/r9ovF55oTcUNXu1zB7LJGG5KSFek/ukDCEcjOohPRahB6bMGzOYHzbW8Od/fabPYuxAZbAGeW4723xhvVyTZgxLoY8kMajeTmFptwri2u51rHMTiczVgahZqt05R68e6FXkqVcO7LJbE664w5xLWRuOmT3HTR2vLKcNi9BPSpWkcSyb+0w77VZ6d8rO+LVtz3fEvDGDef3bDVwz7/t6om7emMFU1kY46t5F5nedUfqeylUEzOoMe9Jn1qiCMHoqc9x13xkWoZfiZjttVAeiVAejZsp1SyjOdrIyUVpr9F03NQKnI5XJKxQKhWInsZuMCGlNlLBMouEmLNWmzOgji8al2Z/TJc9Ftsu2XWfWd0U8DhuhaIRsp62eICvKdrJqq5+4JolLiSOpFLayNkK+x24mQYZjcTMFNs9tpyYYJSuRMJmXKHOtCUbrC8tg1HQ+DGGZnCC7udoYLF93nO1WgdUiCEbi+MOxemveuySbLKe1Xc+sbArDua2sjSKbkZa5Lhsbq0Ns9YbonOviiue+ARqXEDdHtwI3sfju5f4Y72FJXSl4YZYjdZ90opy9ONtpjhrxh2Nmz3FTAsUi9N7hmmCMkgbBXqkSqNuSQ3sUIkTjERyFWQ4O2KOu1L6giVJYqOsndyR9Nxql/jXBKBahp1lbLYK4Js0TS9lOGyvLfEgJlx7Tm/MG92rRMeqU4zDLk5P7rhWK34sQk4Hh8MUAvhnUj65s4lVGcM7453lj6dnIWsHTQ8/iQJYD8MnQw7GUBSi8UD8py0A4iYWsoB9fVx3B3ut+5e4e1/Pl0KOJLHIw6OyldGM1AP/hePZ7ey13HXkznARF8Y3MYgzY4XTn67w34FQ4BOQ3bXQwFApF0+xe26FWQQnL7cBmsRCNx81SWLvVYpaEbQ8t3VzuqP5A43GPvGcRlTQOESrKchCL1wWV2K0WshxWc1OYHHASjtU5loUeXVgaj+ey6wmtlbWReiWB3lCUA/bIZd6YwfU27QZGuW3yJtUI6fGFYgSjcboV1PWvOm3WRv2m7b23Mhm7VR9gb/SZNhy1kMwe+W784ThrKwI47VazNDCvhY7ljgiTyYTf83e1Wy1mCFRWM+vP99ipDcfokudibYU+g7E2HCcS1zI6sZTrsuvCcjtcuJ1JjyIPh/UsaFaM1ZXCpn7tRtl/8skgq0WQ5bBSG9GToYUQOKwWglrcPLGU7bKZjub2jE0pznYSjUtC0TihqEbnDnpySbHjOGXQawyYsYLR4x7kYe/V9MhdQ89BP8ErsJ7ubKUEgBmMw2aPY51exTW5D9Cd9dzLjcycMp7PJg7kyE2f849vHoDbYBFDKVwZ4Ky+TwOw35S1MMnLv+Wp/CL7UE4Rv9AH/HAq83nv228Tq1FlsAqFYtdACcvtwGYVEK1LFDTYVd2H5mi4KTecxYY9SYXZugtglAC67LpDk+vSAz2ynFZzKHooqjuIVougIMvBNn/E3IQKISj0ONhUEzJDgEDvsTSOaV0qbFIpbHUokTRZf7PrtlvZlhgtkE48dSRBCXWvd8Qji6kORKgJxshros9UCEGfzln8b5OXtRW15hiG/A4SapLnthGMxnn+kkEUZTvTfoaNcna71WI6b0YpbCaiunOuC5vV0qIxLttDa7zfM3H4jM90c45lQ9FtzKl12S3MGzOYUU98yScrt9UJy6STWkUtmKVqYPS6GieoCn/HiT+FIpnRMp95kVI+8u7JD+P6EMeKvVyDHwRHDvkPb434I7esvx8q9dvfUDMDyz61fFM4gAPmr+bGUyfz8IvXMrPXeI64/Ws4wskjQy9gCIu5lxthKpQ8pvcbcwCcJV9nKYOooJjp4yYwfMbLHD7xE67wzAEmt9lxUCgUilS0j9rNnYyxieqyi7sO20ue284+JTmNgkGKs5xIYH1VkBynzdz8GbfbVB1MlApCOKrpwjIxfmX/0lzcjrpIf6PMsCoQMR/fG4qaZYluu+6EJo8b2VwTNEttDeaNGcyYY/YCMPsrFXVYLYKibCd7dcpq1vmxWSx0zXMTimpUB4wey46xIS/Nd9O3JLtF7pjRK1hXCtu8ELNZBJ1znO2mLHOfLjl0y3ebJbEN6dsl2wwaSqauekH/vuiaqFywpRKW2+FYGuXv23wRsp3WxIxfheL3oZfBKhQKhSIdahe+HRhn342kyPaGEIJ8j72R62GMEolrkp5FHnNzbAhLixB1jmUiFTbdPEOPw4rTppfDdk70m3mDUdNxNJJhk8N7NteEcKQIPtq7RJ8V2LAnVNFyCrPsrK3Qe2ah6fLZ9kBylUFLy9mNkxhl3hCabOzKpXue9oTVItijIP33oNOmz+dsSI7LjkgKBzNO0iWXwhoUZ2+/YxmXksIsVQaraD1mT7yKwVM+5B7HBPb/6Ree2PccDt/rU6x7xXES4ezAi/itORx60FcAvMnx/HnF+1ACZMO9T0zi3mMnIr8XiM2SG4dOxk2AHHzcO24STA7zr3uvB0DaBddwN7deeB88GeRL2Z8TIv+h5tsu8B3AJGTftjoSCoVC0Zj2vWvcQRhR+13SjAxor2WXhnPQKTEc3sBwGa0WURfek3As9+mSw7wxgxttqIUQFGY52Jwoh9U0iS8cqzdPLjsxyw70IeebqoMpN//7JISlmkX3+7FZLBR6HFTURrBaRKM5hoo6jM/AmnK919Jh23HHqr0JU4fNwiHd802HsjS/vrA03GCB3pfaUpLFqFFK216/lxU7j3/LxfSjO2N5mHmMZNS+T3M8H1BGZ9ZesB/Fj29go3MP8kIh+rECgD/99AF5fbbwDOehHSywuCSd91rPPnt9D06wEucW7mQykzhnxhM8f/2FTJ86BoCRPMVLp/8fWIGf3UxiMjX3dYGbdedUjRhRKBS7GkpYbgedc1xkOWyNEhPbO4f2LKAkx9nIoUgWlg3De5oawWIIS28wij8SQ8r6m8gclw1fIrznjEcWE45pKTfvXfJc7Nslp9lxL4rMKM7WhWW6vjmFTlbi82/MS/w9qdAdUfQkH68uieqPho6lzSrMubwNj1FTIrs4UQqb47TtUMGv6DgIMZl/d8CER4VCoWgJaie+HThsFhy23bf3bHvdj2ynjV4pQkcMMWgVdY6lEd7T1KgPd5II9SYCgXKTAmZyXXazxzKSGEbfsMfS4PcMilfURw+nEdslLDuSQLJZ9XTjNdsSjmWDmY+KzDFCu+p6LPXPcyblxanIcdoo9NhNgalQ/B6M3sq/zF8Ij4L/dSsLnScx8+jxPD5hX2SR4Iknz6Hi1D3IGxHmzVHHYzUG2OVBzVNduPfPE7h3ziSYAznrfFzDAwSGeVjISWy4vg8XvfWcviO7DSZF9Oc71/E88p8CsfevHPzyFqZyA+/c/GPbHASFQtFCJBBt9lbtjd1GWAohegHvAB8DW6WUE9t2RbsebbWZNXssLQKnLdmxjJsbxFRYLfoMSl1Y6s5ksmOZ7bKx1aenOhrCcuqZB3Fw9/y0j6k29L8fIcQOTy1tL8Tikq0+PZHYvhOcsfbw/k51YqtHoQeXvS5p16g+2F7XXAhh9l4rFK3CPZMYfOqHLPEfx2ZnKac//A5cDdnHliPel5zBc8jrBDjhQUZz9dJZAPwwqA9rRpeykJO47M9P8sLE0/iOgwng4Tg+ZPwrM5k29XJKp25iH35mwIUrmHb6tQBc5HmOmWePh6chn5+Ywq3AWkCVwSoUil2THSoshRD3AWcAvYD+UsofEpf3BZ4GioAKYJSUclUGD+kDnMCaHbLgNmZnbxpb6/nyUvRYGo5ltrPpcmGnzUIkruENGY5l/VLYz1f7GTlrCeHE7MzSdprE29Y03Ox3lDTY5mjuM2K1CGKaJMth5dXLhuykVbU/XHYrB3XLN383xg39nvJihUKhUCjaDgnEmr1Ve2NHO5ZvAA8Cnza4/FHgYSnls0KIvwOzgKEAQojeid+TWQjcJ6U8XOhRpC8LIT6SUq7dkYtXZIZRvmoVej+Uw2oxU2GbG//hsFqIJJfCuuqH98Q1vaklEtMQ1KU9KjKjvYW+7CwyPeli9ASWpAnyao/sjBNghmNpz2CEy++lPbjAih2DEK/p/3HZJKRb0J8vkYcLTuLf3DH2ZhgH/uxiZETg8Vby8NEXcRILmcPFyB/19+6jg87nsm+ehFcg77YtDGIp6+nOVjrzMGNZPGIIP/Y7hMdXnMuARSvgALho/nP68w4EvoObnpjIXeJg4HDgcKTcb+cfDIVC0UJUKWyrI6X8DOoP2hZCdAYGACckLnoBeEgI0UlKuU1K+QtwfBOPKYUQW4GUdU5CiNHAaIAePXq0xstQNENyKSyA027BF4rpTk5zwtJmwR+O4U2kvyb3WOa47PWEpcNmMZ8jU9SmUUcdh9ah4XG0Jr7bOueqEx6tSV14j3IsFW3PqpndEZtCbKMYnLCJrpSymc9mDGQF/ejFj7zLyZzLczzKGJZ/fTiPnX8eAJf+9BQnDVjIXj9s4nXH6ew1cxOjL3+QBZzKEBaz1tsL9oeZXA5/hW+8/XiSCwD4l+16cOnJsYNlAUvES4kVqTJYhUKxa9IWPZbdgY1SyjiAlDIuhNiUuHxbujsJIY4FRgFxwCelXJ7qdlLK2cBsgIEDB+6UDLdMN+3tdXOfXAoL+uy6Cr/ed5YuqdU4Fkfeu4iYJinz6r2UDVNhJaBpkkhcqxeOotgxKIezZbTUsdydvgPacq1FWQ56FLopzFIl2Yq2QQ/s6d/Wy1AoFLstqhR2l0ZK+RHwURsvQ5GCPYuzsAhw23Xh57RZqPBHAJp1LI2ezCc++xWo661K/u+4lERimhonothhbK+IsnTAUtidgRCCrnnu5m+YAbuTmFfsWrhrjgNg7/nrOfLU//AWw7il+518wR9YyuFUUMxaerHVW8IxryyFI+GOviN57NDzGD1/LgD/+PPd9GItfApDr14MF8Hs966CXvB6XmeWlRzEAa98Q3fW8/UEGDBshZ5KAXAMkA0VFLFEfAKo0B6FQrFr0xY79fXAHkIIa8KttAKlicsVuwCZbMSSb9OtwMNhvQrN3112C5W1urA0xGC6xzRcyEAkjkXUL30zhGVM04WlI0s5lopdC7MUVo21UCjaDcZ4kcDExP/XLoCXGc5Zb8+HJ6Hi5SLOEG8zXY7hrkVTeHboCKZcOJGV1x+IbWqc8++aa4rDRZahHDhrJRMfu4mLH5tDTzEfigfx5Yn9OXz2cg7othrLllremH023Pw5F8nvKKEMgJ/Zh1fF4czkeOD1nX8gFArF76Bj9lju9J26lHIr8B3wt8RFfwO+lVKmLYNV7F44bVYqGgjLdDiSUmRtlvpvR2NUiT8UQ5J+hqVC0VYY50E6smM5b8zgJk9GNXe9QrFLsnAS90y/mnumX03JQb9x5u0LkHsJDn/5E3LwwT1w9cxZ3Dr0Zj7kOFZOPJArp07l70tfYfpNY+An4Cc4aOXP/G9Mb5YyiJ7jy+gts+EUqKAYOVzA66Dtl8X00WMYLCM8Pm0s6+nOerrz6oXnAlsxRKVyKxWK3QlDWLbmz67PDt2pCyFmCCE2AN2A94UQ/0tcdSlwpRBiJXBl4ndFO8Fpt1CTSHnNambciCEsJXX9agaGY/lbZQCbRah+K8UuR0dMhVUoFAqFQqFIxY5OhR0HjEtx+U/AoB31vEKI4cDwPn367Kin6LBk4jy4bHVisjnH0iIEdqsgGpeNhqEb941rkj6ds5ucaacckdZFHc/MqBOWqhS2paj3mGJXRIjJsHAS/Af+cc8DAFy76A7EEVLPm58Oe5VvgslwW2ACt11+DzwCfA7/Gn898gSBsEie1UYAsJghHHDvapgAx8p38ZED98H4udPo1/VkDn3sc75eegRXvTObq4eVwsYhPCM2AfCj7MV+T14OuJHyhjY5HgqF4vegwnvaBVLKBcCCgQMHXtLWa+mIOO11ArC58B7QXctoPN7IsSxIOJRFWQ6KlFup2AXJc9spzo6zR37rBM0oFIq256ETL2Zs5eO8PHU4ACfFF1I8tAL30ABXj58Fy+HxwLn6iJBqoBgYAf/cNA4xTdJXW8bfL3kFgD8+9hZ8BbPlKKrJ54bxM2AC/HjvIcy6cQxfH3YEnZetQxwtuVbewf0DnLqwBfYT+6LX1CoUCsXuQbsUljsadaa9aZJ7IbNdTb/F5o0ZzOXPfc3by7c0EpZ75Lvp2zmbXLc9zb0VirbF47DRu1O2mre4C6K+pxUtxQjtUSgUit9PxwzvUcJS0eq47HWlsFmO5t9ipYmxAjaraHRdgXIqFQqFQrGTkC/fRhVu6A5nvrMAAOsAP9rnWbAH8B38tqiEavIZzgJGPj+PMjpzv7iFG6bNgHxYaT8QntYf7wPxFefJTczlPErZxInT5hPHygf7O1l+Y3/u/+9YPuJYrJ8s5v7DbqHvN8vYFCgFwJ9wK1Voj0Kh2F1QwlLR6hiOpdtubeRCpqJroowwk9sqFIr2iXIYFbsC4m0Ji+HaaXdw/0236BcWAu/A/Y+N5drYw6ylF8vpz7+0K6l4Yw/YAnwMHKOXvHouDLCc/gDc+9AkfuU/fLboBDgJmAfckuifPGwtx/73IxbMPVMvqb0MVq7pD70Xt8VLVygUrYpE9VgqFK2A4Vhm0l8JUJqnJ2o2DO9RKBQKhWJnIERZWy9BoVC0K1QpbLtBpcK2LYZj6Qtl9oEqNR1L1aemUCgUip2L3lt5KVwwic1P5FNBMQdYVuuD0gB6gSwV8DBc8MmTFN4UgA3w49xe7Fe8Vi+RzQF+kSxmCE9dfymHTv0cgFsX38wglvLn0AkwC5gD/AH2e28tANce9jDcCnwK5AMXTam3NlUGq1Aodifa5U5eSrlASjk6Ly+vrZfSIXEmxo1kWtq6X9dcOuc4yVMhPQqFIsG8MYNVeaxih2ME9uSFJRwL/9/efcdLUZ1/HP98aTZsgA1FUcEGWLGjghILseQnVkIQjaJBxRKNJEYRWzQoKiAiligiiYkFRcWCQiwoBumoKEQiiA0sgBKJ8Pz+mLm6XrmN3duG7/v12tfdnfo85+zu3LNzzszeTGQtvoW74ckPOvLkBx1hLvyrb2toB89yBPtfP5b3hjVjPAey/cEz4XGgHjy+3ZGM+LwLdS75mmbMoxnz2JcJHMB4uncaAufBf57eDF6Hzoc/CPfA/v8aCw1JGpwf/hBXRB83Ks1qtaKusIV81HyZbFha9Vo7vd1IeRuWDerVYdsm6/3oarJmZmZVYUY8wFdjNicOEKfzF1p9PpM/nHEldVlBXVbw6+tvZ5+Lp/PMbu05pf9IhtGNhTTh1wvuZc7VraArjN6hAw/Shcsa3cjKr9Zj5LunMPLdU1ifJVzAbVzELez1zavsuXISjWd8yEG8RI9db2Nb3ocxAHfDXydVd1GYmeUlk11hrerlnln4/oylPGbSzMzMzNY0HmNpVhBrVfCMpZmZWVWT+sJFfWi9Sx8ue6svk9mZCezLh422pMXy9xjWoBsAZ3I3f+9/LEcNHcv5F/fjZQ5iykP7wSdAn/nEb5rx9bd1OOrOscTh4sudNmLgsEsBOKT7BBqOWcgDr5wF4+Ck6++nBXO4cOid8AV0v2wIbAWtYzdmKLm9ibvAmmWBrwprVhBrV3CMZXl4rJWZmRXa6P4dWNJ/fU469Al+8eJInpt2LMN27caXi7bg4y2S6zRs8cFCWFqP93o0o0Wf+eiwgAfhkSc60bbXm2hAQEd4pFcn7qULA++9FOYm2z9m/D+YRzOOOPx2BuzXi14MpF23ifALaHDCYu4bdg5cAjPO3RvYm4jqKgkzs/y5YWkFV3TGso67wpqZmZnZGsddYTPDtxupXhW9KqyZmVlVUiNg5z4cOfUqmrSZz9LRddly+YfEEtGCGfx22SAm0QqAHlvfztD+F3DpLv3YtO8nXMHlXDP3OjoPexrWAtaGdrs8zwrqsYSGyQ6OTP6Meu5E+A6mXLsftIV2wyfCF6NZZ9B+/GqDYdTrtoLBUy6GW/qmkbkbrJnVXplsWEbEKGBU27Ztz6ruWNZEhRxj6S6wVpP5/WlWe53/Vj90VvDkXR3ZfMUnLO3TBFrBOgd+w17bjWfPR98CIJqIbS+ey184nXk04xJu4sJuN3Drsb158omOHP3iGF5ZcDCLmjbh7Z57cOHgG7i1W+9kH8P6sS8T2KjTlxz93Jiki+wrR7HsYRi63gVwyttA0qj02EqzLFkzx1j6/g5WcEW3Danrd5eZmdUwRfeuNDOrPEVdYQv5qPn8r78V3Nr1fbsRMzOreb5vVI6Gpiyg+11DuJorWTJ9E7r3G0Kb7m/wKZuxC2/RoP1iGrRfzP0Hn0TvP9/Kuy/uypuTDuSsb+5iI75khyemcfQZY7j50HMZ1PRc3m65BzwPzXmfw4Y9xWHDnuIgXqbrcw8zl+Zccfjl0Bq4ARgOe538KrAz0MdnK80sEzLZFdaq1/ZNGtJwrbqst5bfXmZmVrO8koyW4efLn2Rmg9ZsdcBC3h+/BRPZixkv7Q3Nv+OBpWfB7GT5p4/tRPe1H4JxMOjqM5nMHlx17A3JOMoToBvDaDJ8KX1m9eXROsdzSNMJ8NFiAF449efwX5h8+B7c/ep5XNPwOvgv3PziudzIZRR1g/XYSrMsWvO6wvo/fyu4DdetT6umG1Z3GGZmZmZmVkXcFdbMzMwyT1rG6BhHu6ETGUNHujV4gIfpDEfCN6zLl2xMfCVYWo/GO32Y/PReD/7+3Gm07/UMdA+aMY9RHEOdu77mqJ6P0qPTbWzSdAmvdt2LRUdsySdsBm3hiriRK+JG6AosTM5q6tKgce8PYW24hYv4VBtVc4mYWeVZM8dY+oylmZmZZVoytvJ3HKWx9Ijb6MUAprA767AMjoYT+QfzJ7RA3wSxRGhccFmnpJvqgMW9+Ja1GL7diTRjHp/euDX3XXYy77IjC2jKnxZcxJdsBM3hpGlPQHu4pv91AHS++EGWd2rAIZ0mwDmwqOuWHDbiKV5QM+AWwFeDNcsm38cyM3wfy9rHt20wM7PK9FFswW5MY2j/Cxi63wV0PuBB6vIdh+35FPdyBts8+wk9r+yP3g0e3/cI3mIXAJaN2ZjXWnRgx11n0Ybp0Aa6d3kIzoQ6rb5m5W3rwWfw27uuBeDmL//IZQcnjdIbe/WBu2H/b8by2qMd4K/wyYhNgccANyrNLFsy2RU2IkZFRI8NN/Q4PzMzMzMzq0pF97Es5KNqSdpH0pD0MV9Sy7LWyeQZSzMzM7Oi24tsHyewzecXsXzhBjS+8EMWProVvfgzAwdfCu/Dgn5NYXNoxjx4HZ7d4QgGv3UxAO2Pf4Zx9x7Jkl3XT67keg5c2gHgUgAAFIxJREFU+MEN3DqiNys3Wo9J1+/Cfp+/zs36LTyyDnR+jxvvT89EtgZGwmtNO0AToC3M0NOAz1aaWeFJugnoDDQH2kTEjHT6DsD9QGNgEdAtIt4rbVsR8QbwhqRNgKZlLQ9uWJqZmVnGzTmgFfPHN2Gr+QvpW6cPQ07ozsARl3Jzz3NZwvocx+P8qcdFXP7JtfBrGPzwxfBlsu5bL+3CVmfMphnzuPWs3rAVfMqm8Ap07zKEp+jE8rYbwD1wzPH/YNQJJ3Jrt7MBuFBN2Sc68MZVB8PZi2H/DaqvEMysClXbGMuRwG3Ay8WmDwFuj4jhkroCdwKHAkjaPn2d69mI6Jc+PwcYWp6du2FpZmZmmVN0ttLMrOoVdYWt4r1GvAIg6ftpkjYF9gR+lk76KzBI0iYR8VlEzAE6rmp7kuqn611Xnv27YWlmZmaZ8n2jsk3S3fSO8afzKZsyaNczeZ/m3Dz0j7AbPMCvmKLG0GFrfn/CLfyp50Vs/785nDhhFJobAHz8+TZc3OhP/B+PseCuLVhEE85nII0HL2KgvmFqjOKKU27ixTMO4NAu46EZzCG5eODucRAb8Sn8C6i3AbyWxOVusGa2GppImpjzemhElOdMYjPgw4hYARARKyQtSKd/Vsa6JwOPRMTK8gTohqWZmZllz/l9YHby9OLF/Vn2t43p0uNeruBqbv7vHxm075mc+9E98DRcctQ13HziHxnbswO/n3AL7Pc23WMIAHWuD5gMt77QO7kv5cD5TPx2NF812ZzO8SC7DZgFr8ChvcbDUmAIvNz/IAD2YQJrsZwFd/2LGXd7bKXZmqNSusIujIi2hd5oaSJieEWWz+RVYc3MzMzMzIx5wJaS6gKkf5um0wvKDUszMzPLjI48BcDQAd1g9GgYPZp+G1wKa0N7xrHT1P9AQzhv6N3ojuBvR/2CDoxj6fC6PKfJ8CZwz840Y15yldjZwMN9YT94ZUBb9ol/89WFm9N58YM80vOXcEFfeLkvzw04CG4AlvVlip5lip5lqC5goM5jxi57V2eRmFmVqzm3G4mIT4EpwKnppFOByRFRVjfYCnPD0szMzDKnx+BhNFh0IA0WHchGfEnsKXqMGIaOCrqccS9Te+wI38GpTR9jNtvTY627uCqW0bnng/DrvkynDdNpA38B6AOjF3MOd/DGLgfDJcECmsIdD8H+fTgs2nJ4/Zeh1aNAH06K5pwUzdk9XodZ68DbHltpZpVP0gBJ84GtgDGSZqazzgHOl/QucH76uuAyOcZS0jHAMS1atKjuUMzMzKyKSH05rGqHIJmZrUL13G4kInoBvVYx/R1g38refyYblhExChjVtm3bs6o7ljXVQ2fvX90hmJnZGuiF9KKJw3ueQFfdC0CDWI46BYyEKxZcziIasz5L4E8TaBeLuVC70y6aMUKnkvwzOIaROgaAv8b/ceqCv0HHDZihp4HtOWy713hBE9k9jmCK+vKC9kz3Ph2Yzt9VdOX+Z9OHz1aarVmq53Yj1c1dYc3MzGoJSZdLmiZpsqQpkk7OmbeupIckzZb0jqSjqzPWqvaj+1be04euVz4M3ALcwkl7PwFtYdCeZ3LNxdfxDeuyXc8FsPG+vHL8z/hDfMQK6gHv0SUeBo6CNvWhTX1O1Qgua3oDcauo8/EloEZcydVAR6Zo3XSH68NMaBcHpK/HpA8zszVHJs9YmpmZZdSgiLgOQFJT4B1Jz0XEF8AlwJKIaCGpJfCypBYRsbQ6A65SHfrAWKA5DD2jG2d1ewAAHdUH6sN5asefoxe/0/HQEbp8fi8jdjmD63UhrNMI6MuIOn2AxTB9dLrR+tzYsg93zzqTlfXWY5+VL3EWdwHrACPSZf4JrXbllaL7mxTjs5Vma5rq6Qpb3XzG0szMrJaIiK9yXjYk+e+l6Fh+MjAkXe49YCJwVJUGWE1+dLbSzMyqhRuWZmZmtYikcyS9A0wGekTEonTW1sB/chb9AGhW1fFVm/37wNhXoQ2MPrQDPdQa3RjoxoDT4dbxZ8MV3fmdDgTqE73EiKZnJFdsXacRLOsLXJRubDR7xWbsFZsBk2D2MhbVvZvtV87kDR3Mu3V25YezlQfSYNFFbBpL4ZLf/CQsn600WxPVnNuNVCVFRHXHUGkkLQFmVXcclagJsLC6g6hEzq/2ynJu4Pxqu4rkt01EbFKZweSSNImkgbgqm0XEipxl2wAPAh0iYlF6zNuu6N5kkgYDsyOi/yr20wPokb5sDcwoYBqFVhvejzU9RseXH8eXn5oeH8COEbF+oTYm6RmSvAtpYUQcWeBtFlTWx1jOisjudcclTXR+tVeW88tybuD8aruanF9E7Fn2Ut8vO13SAqA98AjJGcptgKKbXm9NMuJwVesOBYZCzS4PqPnxQc2P0fHlx/Hlp6bHB0mMhdxeTW8AVhZ3hTUzM6slJO2c83xbYA/grXTSP4Cz03ktgb2BZ6o6RjMzWzNl/YylmZlZlvSV1IrkcoMrgF4R8XY6rx9wn6TZ6bweEbGkmuI0M7M1TNYblkOrO4BK5vxqtyznl+XcwPnVdrU2v4g4qZR5XwMnrsZma3p51PT4oObH6Pjy4/jyU9Pjg9oRY42X6Yv3mJmZmZmZWeXzGEszMzMzMzPLSyYblpJ2kPSapHfTvy2rO6Z8SZor6R1JU9LHEen0WperpJskvS8pJLXOmV5iLrUpz1LyW2UdpvNqU36NJT0taZakaZIelbRJOq9W12EZuWWl/kZKmippsqSXJe2eTq/VdVeklPwyUX/lJWldSQ9Jmp3mfXQJy20paaykr1Z1VURJZ6XbmCNpkKQ65ZlXqPhK24+kXjn1OUXSYkn903ntJX2TM29CeWMrYHylxpBP+RUwxuMkvSlphqSZkn6bs06Fy7A8nyVJdSXdnsYyW9KZ+c4rrwLEd0VaTlPTcsv9HrlK0qc55XV7NcRXYgyFKL8CxTis2Od2paRjy4q/wPEdLmmipG8l3VSB2AtShpkWEZl7AC8CXdPnXYEXqzumAuQ0F2idhVyBdiQ37f5RTqXlUpvyLCW/VdZhLcyvEdA+53U/4J4s1GEZuWWl/jbMeX4cMCkLdVeO/DJRfxUohyuBu9PnLYGPgYarKi/gYOBoYGKxedsC84FNSH6IfhboVta8AsdXrv0A9YFPgbbp6/bF86mk8iutjEqMId/yK2CM+wJNc94Ls4GDVrcMy/NZArqlMdRJY5oPNM9nXhXGdwSwbvp8N+BLYJ309VXATXl+bvONr8QYClF+hYix2HK7AYuAtaq4DFuQXFH72uL7q+z3YNYf1R5AwROCTdMPet30dd309SbVHVueec2l2D9FtT3X3JxKy6W25lm8zlZVhxmpx87AmIzWYWdgTFbrLz1ITsxi3eXml9X6KyP3maSNrPT1k8CJpSzfnp82LC8FBuW8PgF4qqx5hYyvvPsBjgemlZZPZZRfGWVUYgz5ll9llGE6bxQ//FNeoTIs72cJeAo4Ief1IODSfOZVVXzFlhPwFbBV+voq8mgUFaj8Sowh3/KrpDIcAAzIeV0lZVja/irzPbgmPLLYFbYZ8GFErABI/y5Ip9d2DyrpnjdY0kZkK9fScslSnsXrEGpxfml3qt8AT5CxOiyWW5FM1J+kuyV9AFwHnEb26q54fkUyUX/ltDXwn5zXH1DxnErbRr7bL+/65V3uDODeYtN2kDRJ0gRJp61inaqIr6QYKrt+KrycpJ2A/UjO+BSpSBmW97O0uu+rfMusEPHl6gbMiYj5OdNOSb9jnpO0fwViK2R8JcVQiPdcwcpQUgOgCz/93FZFGZamMt+DmZfFhmVWHRQRu5Hc8Fokv5JY7ZLFOhwILCUbuRRXPLfM1F9EnBkRWwN/IOnumykl5JeZ+gNI/9lfWMKj7poUn6QtgEOB4TmTJwHNImJP4BTgSkkdqzi+UmMoSzWU4ePAuRGxoBDxZ5mkQ4BrgFNzJg8Bto2IXUm+dx6X1LiKQ6sJMZTXL4APImJKzrTaFL+tQhYblvOALYu+dNO/TdPptVZEzEv/fgsMBg4kW7mWlksm8iyhDqGW5pcOeG8JnBwRK8lQHa4it8zVH0BEPAB0IBknkom6y1WUn6TGWau/iNgzIpqU8FhB8kv6NjmrbE3FcyptG6Vuv4DxlWe504CnI2Jhzv4XR8RX6fP3gZH8UOdVEl8ZMZS5/aoqQ0mbkgxn6BcRf8/Zf6lluArl/Syt7vsq3/d0IeIjPYs2HPhFRMwqmh4RH0fE/9Lnz6frtKb88o6vjBgK8Z1QkDJM/aSXQRWWYWkq8z2Yfavbh7YmP4Bx/Hjg7tjqjinPfNYjvSAFyS/t1wGP1fZc+ekYxBJzqY158uMxpCXWYW3ML41/LOlFDLJUh6vKLSv1BzQkOQNR9PoY4MM0pyzUXUn5ZaL+KlgWVwF3pc9bAp8A65eyfHt+OsZyO3560ZfTyppXyPjKsx/gHaBTsWlb8MO9uhsB04HjqjK+0mLIt/wKGGNjYCrwm1WsV+EyLM9nCejOTy+Asl0+8ypQZvnGtzdJ42LfVay3Zc7z3UkuSrN5FcdXYgyFKL9CxJjO3wr4GmhUHWVY7DNUfIxlpb4Hs/6o9gAqJSnYCZgAvJv+3bG6Y8ozn+2AycA0ksH6/wC2qK25kgzWng98R3IVu5ll5VKb8lxVfqXVYS3MrxUQwCxgSvp4LAt1WFJuWak/YDPgdZJ/EKeQjKXaMwt1V1p+Wam/CpbFemmes9P383E5864Gzkmf102/rz4DlqfPr8pZ9mxgTvq4g/SiGGXNK1R85YjhQJIfD+oW2/55aV1PAWYAv6uM8istvrJiyKf8ChhjP2AZP3zfTQFOX90yLOmzBDzND1fsrZvGUBRPj5z1V2teBcos3/j+RfJZyS2vNum8+9Nympou16ka4isxhkKUXyFiTOdfDvxtFduuqjJsR/JdtxhYkj4/oireg1l/FP0SZWZmZmZmZrZasjjG0szMzMzMzKqQG5ZmZmZmZmaWFzcszczMzMzMLC9uWJqZmZmZmVle3LA0MzMzMzOzvLhhaVaJJN0n6bz0+dWSTi7HOuMkHV0FsX0fj6T2kg7PmddU0tgC72+cpH9L6l3C/O6SHs5zHydIekvSwrKXNjOzmkZSSJomqeNqrDtM0seSbqqM2MysdPWqOwCz2kRSvYj4bnXWjYgrCx1PPorF057k5vLPpfMWAB0qYbe9IuLJStguABHxsKSJwMTK2oeZmVW6AyJiaUVXiohukq4iOZ6ZWRXzGUuzMqS/nl4qaRzQR1IbSS9LmpSeHbswZ9ktJb0gaaqkkUCTnHm5Zy8Pk/SapMmSpks6pRxxNJe0UNJNkt5I1zsoZ363dNo0SY9J2jSdfkAa6xRJMyWdmhuPpDbAOUC3dJneRfvK2faRaazT0vxapNPbp+vcmc6bKmnncpZrg3S9WZJeBPYpNv93aZ6TJI2StHk6fUNJj0h6J41lmH+dNjOrOulx8SpJ49Pv8M4580o6XuyYHvemSpoh6ZJy7uu+9FjxoqT/SLpF0qHpcXiupAsqK08zqxifsTQrnzoR0R5A0vpAx4j4VlJD4A1Jz0bE28AA4KWI6CtpO2Aq8MwqtjcJaBcRKyRtBryZbuOLMuJoDEyLiEskHQL8VdL2QEvgBmCviPhI0jXAQOBk4DLgloh4QJKADXM3GBHTJQ0BGkbEJWmOzYvmpw3UB4BDIuItSb8GHgT2TRdpBZweEWdLuhz4I/DLMvIAOBvYFmgN1AdeAuam++wKtAD2i4iVkn4D3Jxu90rgi4jYSVIj4E3gkXLsz8zMCmdlRBwgaUdgvKSX0+klHS96Ak9HxDUAkjauwL5aAYcBdUmOExsChwBbALMk3bM6ZzjNrLDcsDQrn/tznq8L3CFpN2Al0BTYDXibpPtoL4CI+LekF0rY3ibAvZJaAt8BjYAdgdfLiGM5MDzd/j8lLUvXO4TkgP1RutydJI1agLHA7yVtAzwfERPKl/L39gWmRsRb6eu/AIPTBjbArIiYnD5/HTimnNvtANwfEf8D/idpONAunXcs0BaYlLSFqQd8lbPe+QAR8Xl6ZtjMzKrWPQARMUvSJGA/ICj5ePEScJOkBiTHpYqM4x8ZEd8CSJpFcrxbCXwo6QtgK+CdQiRlZqvPXWHNyif3l9DrgY+BPSJiN+ANYO0Kbu8OYBzQJiJ2B+avxjYARHIgL/qbKwAi4laSxt5nwEBJ167mPkry35znKyj/D1YqY961EbF7+mgdEQeWMx4zM6tapR2LAIiIR4ADgTlAb5Izm+VV/DizuscdM6tEbliaVdxGwLyI+E5Sa+CgnHkvAqcDSNqWpOtOSduYGxEh6Wck3T7LowHQJd3+QSSN0VnAC0CnonGIwFnAmHS5HSJiTkTcCdxGsbGMqcUU6yKb4zVgd0k7pa9PAyZHxJJyxlySF4BfSaonaZ2ivFJPAD2LukpJWis9QwzJr9ynpdM3Bo7LMw4zM6u4omNdS2B3YAKlHC/SsZYfR8R9QF9WfSwys1rMv/CYVdy1wAPpOMA5JN17ilwADJN0IkmD7/kSttGbpHtQb2Ba+iiPRUBLSRNIuuSeGhHLgZmSfg88LymAf5OMYQToJakDSTfab0m7kRbzGEkjbwrwt/QBQER8JulXwAhJ9UjOfHYtZ7ylGQrsCswkOWP7T5Ixl6TjQZsA/0y7wtYBBpN0770a+IukmSRjbV7lh26yZmZWNb6V9CrJRerOjohPAUo5XpwE/FLScpKzmr7ojlnGKMI9ysxqg/SCOhMjoklZy9ZESq6qe1O+txuRVB+oGxH/lbQB8ApwcUQUnaFtTi0uJzOzmi79AXP9yrhgTr7bVnq7kaKL0ZlZ1XFXWDOrKp8D/dKztPnYGHg1Pbv6BvBwTqPyBGAU8Eme+zAzs+rxCcl3fMeKrihpGMkZ0sUFj8rMyuQzlmZmZmZmZpYXn7E0MzMzMzOzvLhhaWZmZmZmZnlxw9LMzMzMzMzy4oalmZmZmZmZ5cUNSzMzMzMzM8uLG5ZmZmZmZmaWl/8HkhOad0IPY5kAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -462,7 +468,7 @@ }, { "cell_type": "markdown", - "id": "relevant-employer", + "id": "applied-florence", "metadata": {}, "source": [ "### Store in dump file" @@ -491,7 +497,7 @@ }, { "cell_type": "markdown", - "id": "integrated-theory", + "id": "rotary-military", "metadata": {}, "source": [ "### Load from dump file" @@ -550,13 +556,14 @@ { "cell_type": "code", "execution_count": 24, - "id": "specified-study", + "id": "experienced-reminder", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ + "demo_instrument\n", "source Source_div AT (0, 0, 0) ABSOLUTE \n", "powder PowderN AT (0, 0, 1) RELATIVE source\n", "cyl_monitor Cyl_monitor AT (0, 0, 0) RELATIVE powder\n", @@ -565,8 +572,110 @@ } ], "source": [ + "print(from_dump.name)\n", "from_dump.print_components()" ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "talented-cheese", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/********************************************************************************\n", + "* \n", + "* McStas, neutron ray-tracing package\n", + "* Copyright (C) 1997-2008, All rights reserved\n", + "* Risoe National Laboratory, Roskilde, Denmark\n", + "* Institut Laue Langevin, Grenoble, France\n", + "* \n", + "* This file was written by McStasScript, which is a \n", + "* python based McStas instrument generator written by \n", + "* Mads Bertelsen in 2019 while employed at the \n", + "* European Spallation Source Data Management and \n", + "* Software Center\n", + "* \n", + "* Instrument demo_instrument\n", + "* \n", + "* %Identification\n", + "* Written by: Python McStas Instrument Generator\n", + "* Date: 17:07:30 on December 10, 2021\n", + "* Origin: ESS DMSC\n", + "* %INSTRUMENT_SITE: Generated_instruments\n", + "* \n", + "* \n", + "* %Parameters\n", + "* \n", + "* %End \n", + "********************************************************************************/\n", + "\n", + "DEFINE INSTRUMENT demo_instrument (\n", + "double source_energy = 320,// Source mean energy\n", + "double source_height = 0.025,// Height of source\n", + " sample_height = 0.04 // Height of sample\n", + ")\n", + "\n", + "DECLARE \n", + "%{\n", + "%}\n", + "\n", + "INITIALIZE \n", + "%{\n", + "// Start of initialize for generated demo_instrument\n", + "%}\n", + "\n", + "TRACE \n", + "COMPONENT source = Source_div(\n", + " xwidth = 0.12, yheight = source_height,\n", + " focus_aw = 3, focus_ah = 4,\n", + " E0 = source_energy, dE = 3)\n", + "AT (0,0,0) ABSOLUTE\n", + "\n", + "COMPONENT powder = PowderN(\n", + " reflections = \"Ni.laz\", radius = 0.01,\n", + " yheight = sample_height)\n", + "AT (0,0,1) RELATIVE source\n", + "\n", + "COMPONENT cyl_monitor = Cyl_monitor(\n", + " nr = 200, filename = \"cylinder.dat\",\n", + " yheight = 0.2, radius = 0.5,\n", + " restore_neutron = 1)\n", + "AT (0,0,0) RELATIVE powder\n", + "\n", + "COMPONENT acceptance_horizontal = DivPos_monitor(\n", + " nh = 300, ndiv = 300,\n", + " filename = \"acceptance_h.dat\", xwidth = 0.2,\n", + " yheight = 0.2, maxdiv_h = 30,\n", + " restore_neutron = 1)\n", + "AT (0,0,0.1) RELATIVE powder\n", + "\n", + "FINALLY \n", + "%{\n", + "// Start of finally for generated demo_instrument\n", + "%}\n", + "\n", + "END\n", + "\n" + ] + } + ], + "source": [ + "with open(\"demo_instrument.instr\", \"r\") as f:\n", + " instrument_file = f.read()\n", + "print(instrument_file)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "collectible-patrick", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { From b392bb8d7b7be14c3c4a3a346cab9dfb82049eb3 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Mon, 13 Dec 2021 19:38:44 +0100 Subject: [PATCH 178/403] Bug fixes that ensure unit tests run. Fixed unit tests. --- mcstasscript/helper/mcstas_objects.py | 10 +++-- .../test_complex_instrument.py | 2 + mcstasscript/interface/instr.py | 21 ++++++--- .../jb_interface/simulation_interface.py | 16 +++---- mcstasscript/tests/test_Instr.py | 45 +++++++++++-------- mcstasscript/tests/test_Instr_reader.py | 2 +- mcstasscript/tests/test_ManagedMcrun.py | 40 ++++++++--------- mcstasscript/tests/test_parameter_variable.py | 2 +- .../tests/test_simulation_interface.py | 4 +- 9 files changed, 83 insertions(+), 59 deletions(-) diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index 0fad8030..8c9ca946 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -109,7 +109,7 @@ def __init__(self, *args, **kwargs): if "options" in kwargs: options = kwargs["options"] - self.add_option(options) + self.add_option(options, True) if "value" in kwargs: if not isinstance(kwargs["value"], (str, int, float)): @@ -125,7 +125,11 @@ def write_parameter(self, fo, stop_character): raise RuntimeError("stop_character in write_parameter should be " + "a string.") - fo.write("%s %s" % (self.type, self.name)) + if not self.type == "": + fo.write("%s %s" % (self.type, self.name)) + else: + fo.write(self.name) + if self.value is not None: if isinstance(self.value, int): fo.write(" = %d" % self.value) @@ -913,7 +917,7 @@ def write_component(self, fo): + " not set.") else: continue - elif isinstance(val, ParameterVariable): + elif isinstance(val, (ParameterVariable, DeclareVariable)): # Extract the parameter name val = val.name diff --git a/mcstasscript/integration_tests/test_complex_instrument.py b/mcstasscript/integration_tests/test_complex_instrument.py index 24537e93..3fd6d1d9 100644 --- a/mcstasscript/integration_tests/test_complex_instrument.py +++ b/mcstasscript/integration_tests/test_complex_instrument.py @@ -210,6 +210,8 @@ def test_complex_instrument_interface(self, mock_stdout): os.chdir(CURRENT_DIR) + print(data) + intensity_data_pos = functions.name_search("PSD_1D_1", data).Intensity sum_outside_beam = sum(intensity_data_pos[0:50]) sum_inside_beam = sum(intensity_data_pos[51:99]) diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 6fdf9210..8538f9d5 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -61,7 +61,7 @@ class McCode_instr(BaseCalculator): executable_path : str absolute path of mcrun command, or empty if it is in path - instrument_parameters : ParameterContainer + parameters : ParameterContainer contains all input parameters to be written to file declare_list : list of DeclareVariable instances @@ -305,6 +305,10 @@ def __init__(self, name, parameters=None, dumpfile=None, **kwargs): self.component_class_lib = {} self.widget_interface = None + # Ensure output_path field exist + if not hasattr(self, "output_path"): + self.output_path = None + # Avoid initializing if loading from dump if not hasattr(self, "current_run_options"): self.current_run_options = None @@ -407,7 +411,9 @@ def add_declare_var(self, *args, **kwargs): """ # DeclareVariable class documented independently - self.declare_list.append(DeclareVariable(*args, **kwargs)) + declare_par = DeclareVariable(*args, **kwargs) + self.declare_list.append(declare_par) + return declare_par def append_declare(self, string): """ @@ -1423,7 +1429,7 @@ def write_full_instrument(self): # Add loop that inserts parameters here parameter_list = list(self.parameters) for variable in parameter_list[0:-1]: - variable.write_parameter(fo, ",") + variable.write_parameter(fo, ", ") if len(parameter_list) > 0: parameter_list[-1].write_parameter(fo, " ") fo.write(")\n") @@ -1693,7 +1699,10 @@ def run_full_instrument(self, **kwargs): + "Instead supply parameters with set_parameters, set settings with " + "settings and use backengine() to run. See examples in package.") - self.prepare_run(**kwargs) + if "foldername" in kwargs: + kwargs["output_path"] = kwargs["foldername"] + + self.settings(**kwargs) if "parameters" in kwargs: self.set_parameters(kwargs["parameters"]) self.backengine() @@ -1807,7 +1816,7 @@ class McStas_instr(McCode_instr): executable_path : str absolute path of mcrun command, or empty if it is in path - instrument_parameters : ParameterContainer instance + parameters : ParameterContainer instance contains all input parameters to be written to file declare_list : list of DeclareVariable instances @@ -2031,7 +2040,7 @@ class McXtrace_instr(McCode_instr): executable_path : str absolute path of mcrun command, or empty if it is in path - instrument_parameters : ParameterContainer + parameters : ParameterContainer contains all input parameters to be written to file declare_list : list of DeclareVariable instances diff --git a/mcstasscript/jb_interface/simulation_interface.py b/mcstasscript/jb_interface/simulation_interface.py index ecaf6e3b..3a35d9fd 100644 --- a/mcstasscript/jb_interface/simulation_interface.py +++ b/mcstasscript/jb_interface/simulation_interface.py @@ -113,7 +113,7 @@ def run_simulation_live(self): part_ncount = int(float(self.ncount)/sim_parts) - run_arguments = {"foldername": "interface_" + self.instrument.name, + run_arguments = {"output_path": "interface_" + self.instrument.name, "increment_folder_name": True, "parameters": self.parameters, "ncount": part_ncount} @@ -146,7 +146,7 @@ def run_simulation_live(self): for index in range(sim_parts): try: with HiddenPrints(): - self.instrument.prepare_run(**run_arguments) + self.instrument.settings(**run_arguments) self.instrument.backengine() data = self.instrument.data except NameError: @@ -335,22 +335,22 @@ def make_widget(self): """ label = widgets.Label(value=self.name, layout=widgets.Layout(width='15%', height='32px')) - if len(self.parameter.options) > 0: - par_widget = widgets.Dropdown(options=self.parameter.options, + if len(self.parameter._options) > 0: + par_widget = widgets.Dropdown(options=self.parameter._options, layout=widgets.Layout(width='10%', height='32px')) if self.default_value is not None: - if self.default_value in self.parameter.options: + if self.default_value in self.parameter._options: par_widget.value = self.default_value if isinstance(self.default_value, str): - if self.default_value.strip("'") in self.parameter.options: + if self.default_value.strip("'") in self.parameter._options: par_widget.value = self.default_value.strip("'") - elif self.default_value.strip('"') in self.parameter.options: + elif self.default_value.strip('"') in self.parameter._options: par_widget.value = self.default_value.strip('"') if par_widget.value is None: - print(self.parameter.options) + print(self.parameter._options) raise KeyError("default value not found in options for parameter: " + str(self.parameter.name)) diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index 1e18f0d0..28410aa2 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -399,7 +399,7 @@ def test_simple_add_parameter(self): instr.add_parameter("double", "theta", comment="test par") - parameter = instr.instrument_parameters["theta"] + parameter = instr.parameters["theta"] self.assertEqual(parameter.name, "theta") self.assertEqual(parameter.comment, "test par") @@ -1687,7 +1687,7 @@ def test_write_full_instrument_simple(self, mock_f): my_call("DEFINE INSTRUMENT test_instrument ("), my_call("\n"), my_call("double theta"), - my_call(","), + my_call(", "), my_call(""), my_call("\n"), my_call("double has_default"), @@ -1745,7 +1745,8 @@ def test_run_full_instrument_required_par_error(self, mock_stdout): executable_path = os.path.join(THIS_DIR, "dummy_mcstas") with self.assertRaises(NameError): - instr.run_full_instrument(foldername="test_data_set", + instr.run_full_instrument(output_path="test_data_set", + increment_folder_name=False, executable_path=executable_path) def test_run_full_instrument_junk_par_error(self): @@ -1757,8 +1758,9 @@ def test_run_full_instrument_junk_par_error(self): pars = {"theta": 2, "junk": "test"} - with self.assertRaises(NameError): - instr.run_full_instrument(foldername="test_data_set", + with self.assertRaises(KeyError): + instr.run_full_instrument(output_path="test_data_set", + increment_folder_name=False, parameters=pars) @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) @@ -1779,7 +1781,8 @@ def test_x_ray_run_full_instrument_basic(self, mock_sub, mock_stdout): os.chdir(THIS_DIR) # Set work directory to test folder instr = setup_populated_x_ray_instr_with_dummy_path() - instr.run_full_instrument(foldername="test_data_set", + instr.run_full_instrument(output_path="test_data_set", + increment_folder_name=False, executable_path=executable_path, parameters={"theta": 1}) @@ -1787,13 +1790,14 @@ def test_x_ray_run_full_instrument_basic(self, mock_sub, mock_stdout): expected_path = os.path.join(executable_path, "mxrun") - expected_folder_path = os.path.join(THIS_DIR, "test_data_set") + expected_folder_path = os.path.join(THIS_DIR, + "test_data_set") # a double space because of a missing option expected_call = (expected_path + " -c -n 1000000 " + "-d " + expected_folder_path + " test_instrument.instr" - + " has_default=37 theta=1") + + " theta=1 has_default=37") expected_run_path = os.path.join(THIS_DIR, ".") @@ -1822,9 +1826,11 @@ def test_run_full_instrument_basic(self, mock_sub, mock_stdout): instr = setup_populated_instr_with_dummy_path() - instr.run_full_instrument(foldername="test_data_set", - executable_path=executable_path, - parameters={"theta": 1}) + instr.set_parameters({"theta": 1}) + instr.settings(output_path="test_data_set", + increment_folder_name=False, + executable_path=executable_path) + instr.backengine() os.chdir(current_work_dir) @@ -1836,7 +1842,7 @@ def test_run_full_instrument_basic(self, mock_sub, mock_stdout): expected_call = (expected_path + " -c -n 1000000 " + "-d " + expected_folder_path + " test_instrument.instr" - + " has_default=37 theta=1") + + " theta=1 has_default=37") mock_sub.assert_called_once_with(expected_call, shell=True, @@ -1867,7 +1873,8 @@ def test_run_full_instrument_complex(self, mock_sub, mock_stdout): instr.add_parameter("A") instr.add_parameter("BC") - instr.run_full_instrument(foldername="test_data_set", + instr.run_full_instrument(output_path="test_data_set", + increment_folder_name=False, executable_path=executable_path, mpi=7, ncount=48.4, @@ -1886,7 +1893,7 @@ def test_run_full_instrument_complex(self, mock_sub, mock_stdout): expected_call = (expected_path + " -c -n 48 --mpi=7 " + "-d " + expected_folder_path + " -fo test_instrument.instr " - + "has_default=37 A=2 BC=car theta=\"toy\"") + + "theta=\"toy\" has_default=37 A=2 BC=car") mock_sub.assert_called_once_with(expected_call, shell=True, @@ -1915,7 +1922,8 @@ def test_run_full_instrument_overwrite_default(self, mock_sub, instr.add_parameter("A") instr.add_parameter("BC") - instr.run_full_instrument(foldername="test_data_set", + instr.run_full_instrument(output_path="test_data_set", + increment_folder_name=False, executable_path=executable_path, mpi=7, ncount=48.4, @@ -1936,7 +1944,7 @@ def test_run_full_instrument_overwrite_default(self, mock_sub, expected_call = (expected_path + " -c -n 48 --mpi=7 " + "-d " + expected_folder_path + " -fo test_instrument.instr " - + "has_default=10 A=2 BC=car theta=\"toy\"") + + "theta=\"toy\" has_default=10 A=2 BC=car") mock_sub.assert_called_once_with(expected_call, shell=True, @@ -1963,7 +1971,8 @@ def test_run_full_instrument_x_ray_basic(self, mock_sub, mock_stdout): instr = setup_populated_x_ray_instr_with_dummy_path() - instr.run_full_instrument(foldername="test_data_set", + instr.run_full_instrument(output_path="test_data_set", + increment_folder_name=False, executable_path=executable_path, parameters={"theta": 1}) @@ -1977,7 +1986,7 @@ def test_run_full_instrument_x_ray_basic(self, mock_sub, mock_stdout): expected_call = (expected_path + " -c -n 1000000 " + "-d " + expected_folder_path + " test_instrument.instr" - + " has_default=37 theta=1") + + " theta=1 has_default=37") mock_sub.assert_called_once_with(expected_call, shell=True, diff --git a/mcstasscript/tests/test_Instr_reader.py b/mcstasscript/tests/test_Instr_reader.py index ced82f17..390c8ec3 100644 --- a/mcstasscript/tests/test_Instr_reader.py +++ b/mcstasscript/tests/test_Instr_reader.py @@ -72,7 +72,7 @@ def test_read_input_parameter(self): enablePrint() setup_standard(Instr) - parameter_list = list(Instr.instrument_parameters.parameters.values()) + parameter_list = list(Instr.parameters) self.assertEqual(parameter_list[0].name, "stick_displacement") # space in type inserted for easier writing by McStas_Instr class diff --git a/mcstasscript/tests/test_ManagedMcrun.py b/mcstasscript/tests/test_ManagedMcrun.py index fd5c57a2..caac66ce 100644 --- a/mcstasscript/tests/test_ManagedMcrun.py +++ b/mcstasscript/tests/test_ManagedMcrun.py @@ -30,7 +30,7 @@ def test_ManagedMcrun_init_simple(self): os.chdir(THIS_DIR) # Set work directory to test folder mcrun_obj = ManagedMcrun("test.instr", - foldername="test_folder", + output_path="test_folder", executable_path=executable_path, executable="mcrun") @@ -55,7 +55,7 @@ def test_ManagedMcrun_init_defaults(self): os.chdir(THIS_DIR) # Set work directory to test folder mcrun_obj = ManagedMcrun("test.instr", - foldername="test_folder", + output_path="test_folder", executable_path=executable_path, executable="mcrun") @@ -79,7 +79,7 @@ def test_ManagedMcrun_init_set_values(self): os.chdir(THIS_DIR) # Set work directory to test folder mcrun_obj = ManagedMcrun("test.instr", - foldername="test_folder", + output_path="test_folder", executable="mcrun", executable_path=executable_path, run_path="test_data_set", @@ -110,7 +110,7 @@ def test_ManagedMcrun_init_set_parameters(self): "string_par": "\"Car\""} mcrun_obj = ManagedMcrun("test.instr", - foldername="test_folder", + output_path="test_folder", executable_path=executable_path, executable="", parameters=par_input) @@ -136,7 +136,7 @@ def test_ManagedMcrun_init_set_custom_flags(self): custom_flag_input = "-p" mcrun_obj = ManagedMcrun("test.instr", - foldername="test_folder", + output_path="test_folder", executable="mcrun", executable_path=executable_path, custom_flags=custom_flag_input) @@ -158,7 +158,7 @@ def test_ManagedMcrun_init_invalid_ncount_error(self): """ with self.assertRaises(ValueError): ManagedMcrun("test.instr", - foldername="test_folder", + output_path="test_folder", mcrun_path="", ncount=-8) @@ -168,7 +168,7 @@ def test_ManagedMcrun_init_invalid_mpi_error(self): """ with self.assertRaises(ValueError): ManagedMcrun("test.instr", - foldername="test_folder", + output_path="test_folder", mcrun_path="", mpi=-8) @@ -178,7 +178,7 @@ def test_ManagedMcrun_init_invalid_parameters_error(self): """ with self.assertRaises(RuntimeError): ManagedMcrun("test.instr", - foldername="test_folder", + output_path="test_folder", mcrun_path="", parameters=[1, 2, 3]) @@ -195,7 +195,7 @@ def test_ManagedMcrun_run_simulation_basic(self, mock_sub): os.chdir(THIS_DIR) # Set work directory to test folder mcrun_obj = ManagedMcrun("test.instr", - foldername="test_folder", + output_path="test_folder", executable_path=executable_path, executable="mcrun",) @@ -229,7 +229,7 @@ def test_ManagedMcrun_run_simulation_basic_path(self, mock_sub): os.chdir(THIS_DIR) # Set work directory to test folder mcrun_obj = ManagedMcrun("test.instr", - foldername="test_folder", + output_path="test_folder", executable_path=executable_path, executable="mcrun",) @@ -266,7 +266,7 @@ def test_ManagedMcrun_run_simulation_no_standard(self, mock_sub): os.chdir(THIS_DIR) # Set work directory to test folder mcrun_obj = ManagedMcrun("test.instr", - foldername="test_folder", + output_path="test_folder", executable_path=executable_path, executable="mcrun", mpi=7, @@ -303,7 +303,7 @@ def test_ManagedMcrun_run_simulation_parameters(self, mock_sub): os.chdir(THIS_DIR) # Set work directory to test folder mcrun_obj = ManagedMcrun("test.instr", - foldername="test_folder", + output_path="test_folder", executable_path=executable_path, executable="mcrun", mpi=7, @@ -344,7 +344,7 @@ def test_ManagedMcrun_run_simulation_compile(self, mock_sub): os.chdir(THIS_DIR) # Set work directory to test folder mcrun_obj = ManagedMcrun("test.instr", - foldername="test_folder", + output_path="test_folder", executable_path=executable_path, executable="mcrun", mpi=7, @@ -388,7 +388,7 @@ def test_ManagedMcrun_load_data_PSD4PI(self): os.chdir(THIS_DIR) # Set work directory to test folder mcrun_obj = ManagedMcrun("test.instr", - foldername="test_data_set", + output_path="test_data_set", executable_path=executable_path, mcrun_path="path") @@ -427,7 +427,7 @@ def test_ManagedMcrun_load_data_PSD(self): os.chdir(THIS_DIR) # Set work directory to test folder mcrun_obj = ManagedMcrun("test.instr", - foldername="test_data_set", + output_path="test_data_set", executable_path=executable_path, mcrun_path="path") @@ -466,7 +466,7 @@ def test_ManagedMcrun_load_data_L_mon(self): os.chdir(THIS_DIR) # Set work directory to test folder mcrun_obj = ManagedMcrun("test.instr", - foldername="test_data_set", + output_path="test_data_set", executable_path=executable_path, mcrun_path="path") @@ -506,7 +506,7 @@ def test_ManagedMcrun_load_data_L_mon_direct(self): os.chdir(THIS_DIR) # Set work directory to test folder mcrun_obj = ManagedMcrun("test.instr", - foldername="test_data_set", + output_path="test_data_set", executable_path=executable_path, mcrun_path="path") @@ -546,7 +546,7 @@ def test_ManagedMcrun_load_data_Event(self): os.chdir(THIS_DIR) # Set work directory to test folder mcrun_obj = ManagedMcrun("test.instr", - foldername="test_data_set", + output_path="test_data_set", executable_path=executable_path, mcrun_path="path") @@ -589,7 +589,7 @@ def test_ManagedMcrun_load_data_L_mon_direct_error(self): os.chdir(THIS_DIR) # Set work directory to test folder mcrun_obj = ManagedMcrun("test.instr", - foldername="test_data_set", + output_path="test_data_set", executable_path=executable_path, mcrun_path="path") @@ -611,7 +611,7 @@ def test_ManagedMcrun_load_data_L_mon_empty_error(self): os.chdir(THIS_DIR) # Set work directory to test folder mcrun_obj = ManagedMcrun("test.instr", - foldername="test_data_set", + output_path="test_data_set", executable_path=executable_path, mcrun_path="path") diff --git a/mcstasscript/tests/test_parameter_variable.py b/mcstasscript/tests/test_parameter_variable.py index 468a3081..6266c5e1 100644 --- a/mcstasscript/tests/test_parameter_variable.py +++ b/mcstasscript/tests/test_parameter_variable.py @@ -77,7 +77,7 @@ def test_ParameterVariable_init_options_initialize(self): self.assertEqual(par.name, "test") self.assertEqual(par.type, "") self.assertEqual(par.value, 2) - self.assertEqual(par.options, [1, 2, "horse"]) + self.assertEqual(par._options, [1, 2, "horse"]) @unittest.mock.patch('__main__.__builtins__.open', new_callable=unittest.mock.mock_open) diff --git a/mcstasscript/tests/test_simulation_interface.py b/mcstasscript/tests/test_simulation_interface.py index b93a8c6d..96983c00 100644 --- a/mcstasscript/tests/test_simulation_interface.py +++ b/mcstasscript/tests/test_simulation_interface.py @@ -168,13 +168,13 @@ def test_ParameterWidget(self): parameters = {} # get default parameters from instrument - for parameter in instrument.instrument_parameters.parameters.values(): + for parameter in instrument.parameters: if parameter_has_default(parameter): parameters[parameter.name] = get_parameter_default(parameter) parameter_widgets = [] parameterwidget_objects = [] - for parameter in instrument.instrument_parameters.parameters.values(): + for parameter in instrument.parameters: par_widget = ParameterWidget(parameter, parameters) parameterwidget_objects.append(par_widget) parameter_widgets.append(par_widget.make_widget()) From 8c41b1d50637464a9ec1269531eaddc086769c5e Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 14 Dec 2021 18:03:06 +0100 Subject: [PATCH 179/403] Update of the documentation for areas affected to libpyvinyl transition. Still work to do on documentation, need to ensure all doc strings are up to date, handle README and the pdf documentation. --- mcstasscript/helper/mcstas_objects.py | 10 +- mcstasscript/interface/instr.py | 177 +++++++----- mcstasscript/tests/test_dump_and_load.py | 335 +++++++++++++++++++++++ mcstasscript/tests/test_instrument.instr | 4 +- 4 files changed, 447 insertions(+), 79 deletions(-) create mode 100644 mcstasscript/tests/test_dump_and_load.py diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index 8c9ca946..7c89b58b 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -13,7 +13,8 @@ class ParameterVariable(Parameter): cast. If two positional arguments are given, the first is the type, and the second is the parameter name. With one input, only the parameter name is read. It is also possible to assign a - default value and a comment through keyword arguments. + default value and a comment through keyword arguments. Inherits from the + libpyvinyl Parameter. Attributes ---------- @@ -26,6 +27,9 @@ class ParameterVariable(Parameter): value : any Default value/string of parameter, converted to string + unit : str + String descrbing the unit for this variable + comment : str Comment displayed next to the parameter, could contain units @@ -165,6 +169,10 @@ def import_parameters(self, parameters): There are further requirements for parameters in McStasScript which need to be checked on import, and a subclass of Parameter is used to store these with additional functionality. + + Parameters: + parameters: ParameterContainer + libpyvinyl ParameterContainer for conversion """ if isinstance(parameters, ParameterContainer): for parameter in parameters: diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index 8538f9d5..b0d40bd2 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -58,6 +58,9 @@ class McCode_instr(BaseCalculator): input_path : str, default "." directory in which simulation is executed, uses components found there + output_path : str + directory in which the data is written + executable_path : str absolute path of mcrun command, or empty if it is in path @@ -91,6 +94,12 @@ class McCode_instr(BaseCalculator): package_path : str Path to mccode package containing component folders + current_run_settings : dict + Dict of options set with settings + + data : list + List of McStasData objects produced by last run + Methods ------- add_parameter(*args, **kwargs) @@ -192,9 +201,17 @@ class McCode_instr(BaseCalculator): show_instrument() Shows instrument using mcdisplay + set_parameters(dict) + Inherited from libpyvinyl BaseCalculator + + settings(**kwargs) + Sets settings for performing simulation + + backengine() + Performs simulation, saves in data attribute + run_full_instrument(**kwargs) - Writes instrument files and runs simulation. - Returns list of McStasData + Depricated method for performing the simulation interface() Shows interface with jupyter notebook widgets @@ -213,6 +230,12 @@ def __init__(self, name, parameters=None, dumpfile=None, **kwargs): Name of project, instrument file will be name + ".instr" keyword arguments: + parameters : ParameterContainer or CalculatorParameters + Parameters for this instrument + + dumpfile: str + File path to dump file to be loaded + author : str Name of author, written in instrument file @@ -310,8 +333,8 @@ def __init__(self, name, parameters=None, dumpfile=None, **kwargs): self.output_path = None # Avoid initializing if loading from dump - if not hasattr(self, "current_run_options"): - self.current_run_options = None + if not hasattr(self, "current_run_settings"): + self.current_run_settings = None self.declare_list = [] self.initialize_section = ("// Start of initialize for generated " @@ -1537,19 +1560,25 @@ def _handle_parameters(self, given_parameters): def settings(self, **kwargs): """ - Sets parameters and options for McStas run + Sets settings for McStas run performed with backengine + + Some options are mandatory, for example output_path, which can not + already exist, if it does data will be read from this folder. If the + mcrun command is not in the path of the system, the absolute path can + be given with the executable_path keyword argument. This path could + also already have been set at initialization of the instrument object. Parameters ---------- Keyword arguments output_path : str Sets data_folder_name + increment_folder_name : bool + Will update output_path if folder already exists, default True ncount : int Sets ncount mpi : int Sets thread count - parameters : dict - Sets parameters custom_flags : str Sets custom_flags passed to mcrun force_compile : bool @@ -1563,8 +1592,8 @@ def settings(self, **kwargs): kwargs["executable_path"] = self.executable_path else: if not os.path.isdir(str(kwargs["executable_path"])): - raise RuntimeError("The executable_path provided to " - + "run_full_instrument does not point to a" + raise RuntimeError("The executable_path provided in " + + "settings does not point to a" + "directory: \"" + str(kwargs["executable_path"]) + "\"") @@ -1581,64 +1610,32 @@ def settings(self, **kwargs): else: if not os.path.isdir(str(kwargs["run_path"])): raise RuntimeError("The run_path provided to " - + "run_full_instrument does not point to a" + + "settings does not point to a" + "directory: \"" + str(kwargs["run_path"]) + "\"") if "output_path" not in kwargs: kwargs["output_path"] = self.output_path - """ - if "parameters" in kwargs: - given_parameters = kwargs["parameters"] - else: - given_parameters = {} - - kwargs["parameters"] = self._handle_parameters(given_parameters) - """ - if "force_compile" not in kwargs: kwargs["force_compile"] = True - self.current_run_options = kwargs + self.current_run_settings = kwargs def backengine(self): """ - Runs McStas instrument described by this class, returns list of - McStasData + Runs McStas instrument described by this class, saves data in + data attribute This method will write the instrument to disk and then run it - using the mcrun command of the system. Options are set using - keyword arguments. Some options are mandatory, for example - output_path, which can not already exist, if it does data will - be read from this folder. If the mcrun command is not in the - path of the system, the absolute path can be given with the - executable_path keyword argument. This path could also already - have been set at initialization of the instrument object. - - Parameters - ---------- - Keyword arguments - output_path : str - Sets data_folder_name - ncount : int - Sets ncount - mpi : int - Sets thread count - parameters : dict - Sets parameters - custom_flags : str - Sets custom_flags passed to mcrun - force_compile : bool - If True (default) new instrument file is written, otherwise not - executable_path : str - Path to mcrun command, "" if already in path + using the mcrun command of the system. Settings are set using + settings methods. """ - if self.current_run_options is None: + if self.current_run_settings is None: raise RuntimeError("Need to prepare run first!") - if self.current_run_options["force_compile"]: + if self.current_run_settings["force_compile"]: self.write_full_instrument() parameters = {} @@ -1649,14 +1646,14 @@ def backengine(self): parameters[parameter.name] = parameter.value - options = self.current_run_options + options = self.current_run_settings options["parameters"] = parameters # Set up the simulation simulation = ManagedMcrun(self.name + ".instr", **options) # Run the simulation and return data - simulation.run_simulation(**self.current_run_options) + simulation.run_simulation(**self.current_run_settings) # Load data and store in __data data = simulation.load_results() @@ -1801,22 +1798,16 @@ class McStas_instr(McCode_instr): origin : str, default "ESS DMSC" origin of instrument file (affiliation) - executable : str - Name of executable, mcrun or mxrun - - particle : str - Name of probe particle, "neutron" or "x-ray" - - package_name : str - Name of package, "McStas" or "McXtrace" - input_path : str, default "." directory in which simulation is executed, uses components found there + output_path : str + directory in which the data is written + executable_path : str absolute path of mcrun command, or empty if it is in path - parameters : ParameterContainer instance + parameters : ParameterContainer contains all input parameters to be written to file declare_list : list of DeclareVariable instances @@ -1846,6 +1837,12 @@ class McStas_instr(McCode_instr): package_path : str Path to mccode package containing component folders + current_run_settings : dict + Dict of options set with settings + + data : list + List of McStasData objects produced by last run + Methods ------- add_parameter(*args, **kwargs) @@ -1947,9 +1944,17 @@ class McStas_instr(McCode_instr): show_instrument() Shows instrument using mcdisplay + set_parameters(dict) + Inherited from libpyvinyl BaseCalculator + + settings(**kwargs) + Sets settings for performing simulation + + backengine() + Performs simulation, saves in data attribute + run_full_instrument(**kwargs) - Writes instrument files and runs simulation. - Returns list of McStasData + Depricated method for performing the simulation interface() Shows interface with jupyter notebook widgets @@ -1967,6 +1972,12 @@ def __init__(self, name, **kwargs): Name of project, instrument file will be name + ".instr" keyword arguments: + parameters : ParameterContainer or CalculatorParameters + Parameters for this instrument + + dumpfile: str + File path to dump file to be loaded + author : str Name of author, written in instrument file @@ -2025,18 +2036,12 @@ class McXtrace_instr(McCode_instr): origin : str, default "ESS DMSC" origin of instrument file (affiliation) - executable : str - Name of executable, mcrun or mxrun - - particle : str - Name of probe particle, "neutron" or "x-ray" - - package_name : str - Name of package, "McStas" or "McXtrace" - input_path : str, default "." directory in which simulation is executed, uses components found there + output_path : str + directory in which the data is written + executable_path : str absolute path of mcrun command, or empty if it is in path @@ -2055,7 +2060,7 @@ class McXtrace_instr(McCode_instr): finally_section : str string containing entire finally section to be written - component_list : list of Component instances + component_list : list of component instances list of components in the instrument component_name_list : list of strings @@ -2070,6 +2075,12 @@ class McXtrace_instr(McCode_instr): package_path : str Path to mccode package containing component folders + current_run_settings : dict + Dict of options set with settings + + data : list + List of McStasData objects produced by last run + Methods ------- add_parameter(*args, **kwargs) @@ -2171,9 +2182,17 @@ class McXtrace_instr(McCode_instr): show_instrument() Shows instrument using mcdisplay + set_parameters(dict) + Inherited from libpyvinyl BaseCalculator + + settings(**kwargs) + Sets settings for performing simulation + + backengine() + Performs simulation, saves in data attribute + run_full_instrument(**kwargs) - Writes instrument files and runs simulation. - Returns list of McStasData + Depricated method for performing the simulation interface() Shows interface with jupyter notebook widgets @@ -2191,6 +2210,12 @@ def __init__(self, name, **kwargs): Name of project, instrument file will be name + ".instr" keyword arguments: + parameters : ParameterContainer or CalculatorParameters + Parameters for this instrument + + dumpfile: str + File path to dump file to be loaded + author : str Name of author, written in instrument file @@ -2198,7 +2223,7 @@ def __init__(self, name, **kwargs): Affiliation of author, written in instrument file executable_path : str - Absolute path of mxrun or empty if already in path + Absolute path of mcrun or empty if already in path input_path : str Work directory, will load components from this folder diff --git a/mcstasscript/tests/test_dump_and_load.py b/mcstasscript/tests/test_dump_and_load.py new file mode 100644 index 00000000..37dbe3d4 --- /dev/null +++ b/mcstasscript/tests/test_dump_and_load.py @@ -0,0 +1,335 @@ +import os +import os.path +import io +import unittest +import unittest.mock +import datetime + +from mcstasscript.interface.instr import McStas_instr +from mcstasscript.interface.instr import McXtrace_instr +from mcstasscript.helper.mcstas_objects import ParameterContainer +from mcstasscript.helper.mcstas_objects import ParameterVariable + + +run_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '.') + +def setup_instr_no_path(): + """ + Sets up a neutron instrument without a package_path + """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + instrument = McStas_instr("test_instrument") + + os.chdir(current_work_dir) + + return instrument + + +def setup_x_ray_instr_no_path(): + """ + Sets up a X-ray instrument without a package_path + """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + instrument = McXtrace_instr("test_instrument") + + os.chdir(current_work_dir) + + return instrument + + +def setup_instr_root_path(): + """ + Sets up a neutron instrument with root package_path + """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + instrument = McStas_instr("test_instrument", package_path="/") + + os.chdir(current_work_dir) + + return instrument + + +def setup_x_ray_instr_root_path(): + """ + Sets up a X-ray instrument with root package_path + """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + instrument = McXtrace_instr("test_instrument", package_path="/") + + os.chdir(current_work_dir) + + return instrument + + +def setup_instr_with_path(): + """ + Sets up an instrument with a valid package_path, but it points to + the dummy installation in the test folder. + """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + dummy_path = os.path.join(THIS_DIR, "dummy_mcstas") + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + instrument = McStas_instr("test_instrument", package_path=dummy_path) + + os.chdir(current_work_dir) # Return to previous workdir + + return instrument + + +def setup_x_ray_instr_with_path(): + """ + Sets up an instrument with a valid package_path, but it points to + the dummy installation in the test folder. + """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + dummy_path = os.path.join(THIS_DIR, "dummy_mcstas") + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + instrument = McXtrace_instr("test_instrument", package_path=dummy_path) + + os.chdir(current_work_dir) # Return to previous workdir + + return instrument + + +def setup_instr_with_input_path(): + """ + Sets up an instrument with a valid package_path, but it points to + the dummy installation in the test folder. In addition the input_path + is set to a folder in the test directory using an absolute path. + """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + dummy_path = os.path.join(THIS_DIR, "dummy_mcstas") + input_path = os.path.join(THIS_DIR, "test_input_folder") + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + instrument = McStas_instr("test_instrument", + package_path=dummy_path, + input_path=input_path) + + os.chdir(current_work_dir) # Return to previous workdir + + return instrument + + +def setup_instr_with_input_path_relative(): + """ + Sets up an instrument with a valid package_path, but it points to + the dummy installation in the test folder. In addition the input_path + is set to a folder in the test directory using a relative path. + """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + + current_work_dir = os.getcwd() + os.chdir(THIS_DIR) # Set work directory to test folder + + instrument = McStas_instr("test_instrument", + package_path="dummy_mcstas", + input_path="test_input_folder") + + os.chdir(current_work_dir) # Return to previous workdir + + return instrument + + +def setup_populated_instr(): + """ + Sets up a neutron instrument with some features used and three components + """ + instr = setup_instr_root_path() + + instr.add_parameter("double", "theta") + instr.add_parameter("double", "has_default", value=37) + instr.add_declare_var("double", "two_theta") + instr.append_initialize("two_theta = 2.0*theta;") + + instr.add_component("first_component", "test_for_reading") + instr.add_component("second_component", "test_for_reading") + instr.add_component("third_component", "test_for_reading") + + return instr + + +def setup_populated_instr_with_dummy_path(): + """ + Sets up a neutron instrument with some features used and three components + + Here uses the dummy mcstas installation as path and sets required + parameters so that a run is possible. + """ + instr = setup_instr_with_path() + + instr.add_parameter("double", "theta") + instr.add_parameter("double", "has_default", value=37) + instr.add_declare_var("double", "two_theta") + instr.append_initialize("two_theta = 2.0*theta;") + + comp1 = instr.add_component("first_component", "test_for_reading") + comp1.gauss = 1.2 + comp1.test_string = "a_string" + comp2 = instr.add_component("second_component", "test_for_reading") + comp2.gauss = 1.4 + comp2.test_string = "b_string" + comp3 = instr.add_component("third_component", "test_for_reading") + comp3.gauss = 1.6 + comp3.test_string = "c_string" + + return instr + + +def setup_populated_x_ray_instr(): + """ + Sets up a X-ray instrument with some features used and three components + """ + instr = setup_x_ray_instr_root_path() + + instr.add_parameter("double", "theta") + instr.add_parameter("double", "has_default", value=37) + instr.add_declare_var("double", "two_theta") + instr.append_initialize("two_theta = 2.0*theta;") + + instr.add_component("first_component", "test_for_reading") + instr.add_component("second_component", "test_for_reading") + instr.add_component("third_component", "test_for_reading") + + return instr + + +def setup_populated_x_ray_instr_with_dummy_path(): + """ + Sets up a x-ray instrument with some features used and three components + + Here uses the dummy mcstas installation as path and sets required + parameters so that a run is possible. + """ + instr = setup_x_ray_instr_with_path() + + instr.add_parameter("double", "theta") + instr.add_parameter("double", "has_default", value=37) + instr.add_declare_var("double", "two_theta") + instr.append_initialize("two_theta = 2.0*theta;") + + comp1 = instr.add_component("first_component", "test_for_reading") + comp1.gauss = 1.2 + comp1.test_string = "a_string" + comp2 = instr.add_component("second_component", "test_for_reading") + comp2.gauss = 1.4 + comp2.test_string = "b_string" + comp3 = instr.add_component("third_component", "test_for_reading") + comp3.gauss = 1.6 + comp3.test_string = "c_string" + + return instr + + +def setup_populated_with_some_options_instr(): + """ + Sets up a neutron instrument with some features used and two components + """ + instr = setup_instr_root_path() + + instr.add_parameter("double", "theta") + instr.add_parameter("double", "has_default", value=37) + instr.add_declare_var("double", "two_theta") + instr.append_initialize("two_theta = 2.0*theta;") + + comp1 = instr.add_component("first_component", "test_for_reading") + comp1.set_AT([0, 0, 1]) + comp1.set_GROUP("Starters") + comp2 = instr.add_component("second_component", "test_for_reading") + comp2.set_AT([0, 0, 2], RELATIVE="first_component") + comp2.set_ROTATED([0, 30, 0]) + comp2.set_WHEN("1==1") + comp2.yheight = 1.23 + instr.add_component("third_component", "test_for_reading") + + return instr + + +class WorkInTestDir: + """ + Simple class that enables working in test directory + """ + def __enter__(self): + self.current_work_dir = os.getcwd() + os.chdir(os.path.dirname(os.path.abspath(__file__))) + return self + + def __exit__(self, exc_type, exc_val, exc_tb): + os.chdir(self.current_work_dir) + + +class TestDumpAndLoad(unittest.TestCase): + def test_dump_simple(self): + """ + Test a simple instrument can be dumped using with environment + """ + my_instrument = setup_populated_instr_with_dummy_path() + + with WorkInTestDir() as handler: + dump_name = "test_McStasScript_dump.dmp" + + if os.path.isfile(dump_name): + os.remove(dump_name) + + # Ensure dump file does not exist + self.assertFalse(os.path.isfile(dump_name)) + + # Write dump file + my_instrument.dump(dump_name) + + # Check it was written + self.assertTrue(os.path.isfile(dump_name)) + + # Delete dump file + os.remove(dump_name) + + def test_load_simple(self): + """ + Test a simple instrument can be loaded from dump + """ + my_instrument = setup_populated_instr_with_dummy_path() + my_instrument.add_parameter("check", comment="for testing") + + with WorkInTestDir() as handler: + dump_name = "test_McStasScript_dump.dmp" + my_instrument.dump(dump_name) + + loaded_instrument = McStas_instr("", dumpfile=dump_name) + os.remove(dump_name) + + self.assertTrue(loaded_instrument, McStas_instr) + self.assertTrue(loaded_instrument.name, my_instrument.name) + + self.assertEqual(len(loaded_instrument.component_list), 3) + self.assertEqual(loaded_instrument.component_list[0].name, "first_component") + self.assertEqual(loaded_instrument.component_list[2].name, "third_component") + self.assertEqual(loaded_instrument.parameters["check"].name, "check") + self.assertEqual(loaded_instrument.parameters["check"].comment, "for testing") + self.assertEqual(loaded_instrument.parameters["has_default"].value, 37) + diff --git a/mcstasscript/tests/test_instrument.instr b/mcstasscript/tests/test_instrument.instr index 307a993d..145148d7 100644 --- a/mcstasscript/tests/test_instrument.instr +++ b/mcstasscript/tests/test_instrument.instr @@ -15,7 +15,7 @@ * * %Identification * Written by: Python McXtrace Instrument Generator -* Date: 16:27:39 on December 02, 2021 +* Date: 10:17:47 on December 14, 2021 * Origin: ESS DMSC * %INSTRUMENT_SITE: Generated_instruments * @@ -26,7 +26,7 @@ ********************************************************************************/ DEFINE INSTRUMENT test_instrument ( -double theta, +double theta = 1, double has_default = 37 ) From b01637aed968f783eabaf3dc4f77978f563bbd83 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 14 Dec 2021 21:06:10 +0100 Subject: [PATCH 180/403] Update of README to new run syntax. --- README.md | 15 +++++++++++---- 1 file changed, 11 insertions(+), 4 deletions(-) diff --git a/README.md b/README.md index 9c20d1c2..eb351968 100644 --- a/README.md +++ b/README.md @@ -114,11 +114,16 @@ A monitor is added as well to get data out of the simulation (few bins so it is PSD.yheight = 0.1 PSD.nx = 5 PSD.ny = 5 - PSD.filename = "\"PSD.dat\"" + PSD.filename = '"PSD.dat"' -This simple simulation can be executed from the +Settings for the simulation can be adjusted with the *settings* method, an output_path for the data is needed. - data = my_instrument.run_full_instrument(foldername="first_run", increment_folder_name=True) + my_instrument.settings(output_path="first_run, ncount=1E7) + +The simulatiuon is performed with the *backengine* method. After this call, the data can be retrieved from the data attribute. + + my_instrument.backengine() + data = my_instrument.data Results from the monitors would be stored as a list of McStasData objects in the returned data. The counts are stored as numpy arrays. We can read and change the intensity directly and manipulate the data before plotting. @@ -170,7 +175,9 @@ Here is a quick overview of the available methods of the main classes in the pro ├── append_initialize(str string) # Appends a line to initialize (c syntax) ├── print_components() # Prints list of components and their location ├── write_full_instrument() # Writes instrument to disk with given name + ".instr" - ├── run_full_instrument() # Runs simulation. Options in keyword arguments. Returns list of McStasData + ├── settings(kwargs) Settings as keyword arguments. + ├── backengine() # Runs simulation. + ├── data # Data attribute, contains list of McStasData objects ├── interface() # Shows widget interface in jupyter notebook └── get_interface_data() # Returns data set from latest simulation performed in interface From 6d4098b6749653f2f5b093371f93f4e997f4f585 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 14 Dec 2021 21:07:30 +0100 Subject: [PATCH 181/403] Fixed typo in README. --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index eb351968..6c2678da 100644 --- a/README.md +++ b/README.md @@ -118,7 +118,7 @@ A monitor is added as well to get data out of the simulation (few bins so it is Settings for the simulation can be adjusted with the *settings* method, an output_path for the data is needed. - my_instrument.settings(output_path="first_run, ncount=1E7) + my_instrument.settings(output_path="first_run", ncount=1E7) The simulatiuon is performed with the *backengine* method. After this call, the data can be retrieved from the data attribute. From 1cd7c6cff68935a8968a0a7f535d00147a216998 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 15 Dec 2021 14:36:48 +0100 Subject: [PATCH 182/403] Update of tutorials and examples (still lack union tutorial) Ensured declare and parameter variables print nicely in component print --- examples/McStasScript_demo.ipynb | 432 +++---------- examples/calibration_sample.ipynb | 99 +-- examples/libpyvinyl_example.ipynb | 123 +++- mcstasscript/helper/managed_mcrun.py | 5 + mcstasscript/helper/mcstas_objects.py | 20 +- mcstasscript/interface/instr.py | 32 +- .../McStasScript_tutorial_1_the_basics.ipynb | 571 +++++++++++++++--- tutorial/McStasScript_tutorial_2_SPLIT.ipynb | 56 +- ...tasScript_tutorial_3_EXTEND_and_WHEN.ipynb | 26 +- tutorial/McStasScript_tutorial_4_JUMP.ipynb | 18 +- 10 files changed, 778 insertions(+), 604 deletions(-) diff --git a/examples/McStasScript_demo.ipynb b/examples/McStasScript_demo.ipynb index d4be9e59..2c5b5a3d 100644 --- a/examples/McStasScript_demo.ipynb +++ b/examples/McStasScript_demo.ipynb @@ -10,7 +10,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -26,88 +26,34 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Here are the available component categories:\n", - " sources\n", - " optics\n", - " samples\n", - " monitors\n", - " misc\n", - " contrib\n", - " union\n", - " obsolete\n", - "Call show_components(category_name) to display\n" - ] - } - ], + "outputs": [], "source": [ "Instr.show_components() # Shows available McStas component categories in current installation" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Here are all components in the sources category.\n", - " Adapt_check Monitor_Optimizer Source_div Virtual_output\n", - " ESS_butterfly Source_Maxwell_3 Source_gen \n", - " ESS_moderator Source_Optimizer Source_simple \n", - " Moderator Source_adapt Virtual_input \n" - ] - } - ], + "outputs": [], "source": [ "Instr.show_components(\"sources\") # Display all McStas source components " ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " ___ Help Source_simple _____________________________________________________________________\n", - "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", - "\u001b[1mradius\u001b[0m = \u001b[1m\u001b[94m0.1\u001b[0m\u001b[0m [m] // Radius of circle in (x,y,0) plane where neutrons are generated.\n", - "\u001b[1myheight\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Height of rectangle in (x,y,0) plane where neutrons are generated.\n", - "\u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Width of rectangle in (x,y,0) plane where neutrons are generated.\n", - "\u001b[1mdist\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Distance to target along z axis.\n", - "\u001b[1mfocus_xw\u001b[0m = \u001b[1m\u001b[94m0.045\u001b[0m\u001b[0m [m] // Width of target\n", - "\u001b[1mfocus_yh\u001b[0m = \u001b[1m\u001b[94m0.12\u001b[0m\u001b[0m [m] // Height of target\n", - "\u001b[1mE0\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [meV] // Mean energy of neutrons.\n", - "\u001b[1mdE\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [meV] // Energy half spread of neutrons (flat or gaussian sigma).\n", - "\u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [AA] // Mean wavelength of neutrons.\n", - "\u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [AA] // Wavelength half spread of neutrons.\n", - "\u001b[1mflux\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1/(s*cm**2*st*energy unit)] // flux per energy unit, Angs or meV if flux=0, \n", - " the source emits 1 in 4*PI whole space. \n", - "\u001b[1mgauss\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [1] // Gaussian (1) or Flat (0) energy/wavelength distribution\n", - "\u001b[1mtarget_index\u001b[0m = \u001b[1m\u001b[94m1\u001b[0m\u001b[0m [1] // relative index of component to focus at, e.g. next is +1 this \n", - " is used to compute 'dist' automatically. \n", - "---------------------------------------------------------------------------------------------\n" - ] - } - ], + "outputs": [], "source": [ "Instr.component_help(\"Source_simple\") # Displays help on the Source_simple component" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -116,48 +62,35 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Lets add a parameter to the instrument to control the wavelength of the source\n", - "Instr.add_parameter(\"double\", \"wavelength\", value=3,\n", - " comment=\"[AA] Wavelength emmited from source\")\n", - "source.xwidth = 0.06; source.yheight = 0.08;\n", - "source.dist = 2; source.focus_xw = 0.05; source.focus_yh = 0.05\n", - "source.lambda0 = \"wavelength\"; source.dlambda = 0.05; source.flux = 1E8" + "wavelength = Instr.add_parameter(\"double\", \"wavelength\", value=3,\n", + " comment=\"[AA] Wavelength emmited from source\")\n", + "source.xwidth = 0.06\n", + "source.yheight = 0.08;\n", + "source.dist = 2\n", + "source.focus_xw = 0.05\n", + "source.focus_yh = 0.05\n", + "source.lambda0 = wavelength # Can provide a parameter object, in this way spelling is checked\n", + "source.dlambda = 0.05\n", + "source.flux = 1E8" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "COMPONENT Source = Source_simple\n", - " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.08\u001b[0m\u001b[0m [m]\n", - " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.06\u001b[0m\u001b[0m [m]\n", - " \u001b[1mdist\u001b[0m = \u001b[1m\u001b[92m2\u001b[0m\u001b[0m [m]\n", - " \u001b[1mfocus_xw\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", - " \u001b[1mfocus_yh\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", - " \u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[92mwavelength\u001b[0m\u001b[0m [AA]\n", - " \u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [AA]\n", - " \u001b[1mflux\u001b[0m = \u001b[1m\u001b[92m100000000.0\u001b[0m\u001b[0m [1/(s*cm**2*st*energy unit)]\n", - "AT [0, 0, 0] ABSOLUTE\n", - "ROTATED [0, 0, 0] ABSOLUTE\n" - ] - } - ], + "outputs": [], "source": [ - "source.print_long() # Verify that the information is correct" + "print(source) # Verify that the information is correct" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -167,102 +100,34 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " ___ Help Guide_gravity _____________________________________________________________________\n", - "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", - "\u001b[4m\u001b[1mw1\u001b[0m\u001b[0m [m] // Width at the guide entry\n", - "\u001b[4m\u001b[1mh1\u001b[0m\u001b[0m [m] // Height at the guide entry\n", - "\u001b[1mw2\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Width at the guide exit. If 0, use w1.\n", - "\u001b[1mh2\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Height at the guide exit. If 0, use h1.\n", - "\u001b[4m\u001b[1ml\u001b[0m\u001b[0m [m] // length of guide\n", - "\u001b[1mR0\u001b[0m = \u001b[1m\u001b[94m0.995\u001b[0m\u001b[0m [1] // Low-angle reflectivity\n", - "\u001b[1mQc\u001b[0m = \u001b[1m\u001b[94m0.0218\u001b[0m\u001b[0m [AA-1] // Critical scattering vector\n", - "\u001b[1malpha\u001b[0m = \u001b[1m\u001b[94m4.38\u001b[0m\u001b[0m [AA] // Slope of reflectivity\n", - "\u001b[1mm\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // m-value of material. Zero means completely absorbing. m=0.65 glass/SiO2 \n", - " Si Ni Ni58 supermirror Be Diamond m= 0.65 0.47 1 1.18 2-6 \n", - " 1.01 1.12 for glass/SiO2, m=1 for Ni, 1.2 for Ni58, m=2-6 for \n", - " supermirror. m=0.47 for Si \n", - "\u001b[1mW\u001b[0m = \u001b[1m\u001b[94m0.003\u001b[0m\u001b[0m [AA-1] // Width of supermirror cut-off\n", - "\u001b[1mnslit\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // Number of vertical channels in the guide (>= 1) (nslit-1 vertical \n", - " dividing walls). \n", - "\u001b[1md\u001b[0m = \u001b[1m\u001b[94m0.0005\u001b[0m\u001b[0m [m] // Thickness of subdividing walls\n", - "\u001b[1mmleft\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // m-value of material for left. vert. mirror\n", - "\u001b[1mmright\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // m-value of material for right. vert. mirror\n", - "\u001b[1mmtop\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // m-value of material for top. horz. mirror\n", - "\u001b[1mmbottom\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // m-value of material for bottom. horz. mirror\n", - "\u001b[1mnhslit\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // Number of horizontal channels in the guide (>= 1). (nhslit-1 \n", - " horizontal dividing walls). this enables to have nslit*nhslit \n", - " rectangular channels \n", - "\u001b[1mG\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m/s2] // Gravitation norm. 0 value disables G effects.\n", - "\u001b[1maleft\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // alpha-value of left vert. mirror\n", - "\u001b[1maright\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // alpha-value of right vert. mirror\n", - "\u001b[1matop\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // alpha-value of top horz. mirror\n", - "\u001b[1mabottom\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // alpha-value of left horz. mirror\n", - "\u001b[1mwavy\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [deg] // Global guide waviness\n", - "\u001b[1mwavy_z\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [deg] // Partial waviness along propagation axis\n", - "\u001b[1mwavy_tb\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [deg] // Partial waviness in transverse direction for top/bottom mirrors\n", - "\u001b[1mwavy_lr\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [deg] // Partial waviness in transverse direction for left/right mirrors\n", - "\u001b[1mchamfers\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Global chamfers specifications (in/out/mirror sides).\n", - "\u001b[1mchamfers_z\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Input and output chamfers\n", - "\u001b[1mchamfers_lr\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Chamfers on left/right mirror sides\n", - "\u001b[1mchamfers_tb\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Chamfers on top/bottom mirror sides\n", - "\u001b[1mnelements\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // Number of sections in the guide (length l/nelements).\n", - "\u001b[1mnu\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [Hz] // Rotation frequency (round/s) for Fermi Chopper approximation\n", - "\u001b[1mphase\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [deg] // Phase shift for the Fermi Chopper approximation\n", - "\u001b[1mreflect\u001b[0m = \u001b[1m\u001b[94m\"NULL\"\u001b[0m\u001b[0m [str] // Reflectivity file name. Format \n", - "---------------------------------------------------------------------------------------------\n" - ] - } - ], + "outputs": [], "source": [ "guide.show_parameters() # Lets view the parameters available in our guide component" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "guide.set_parameters({\"w1\" : 0.05, \"w2\" : 0.05, \"h1\" : 0.05, \"h2\" : 0.05,\n", - " \"l\" : 8, \"m\" : 3.5, \"G\" : -9.2})" + "guide.set_parameters({\"w1\" : 0.05, \"w2\" : 0.05, \"h1\" : 0.05, \"h2\" : 0.05, \"l\" : 8, \"m\" : 3.5, \"G\" : -9.2})" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "COMPONENT Guide = Guide_gravity\n", - " \u001b[1mw1\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", - " \u001b[1mh1\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", - " \u001b[1mw2\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", - " \u001b[1mh2\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", - " \u001b[1ml\u001b[0m = \u001b[1m\u001b[92m8\u001b[0m\u001b[0m [m]\n", - " \u001b[1mm\u001b[0m = \u001b[1m\u001b[92m3.5\u001b[0m\u001b[0m [1]\n", - " \u001b[1mG\u001b[0m = \u001b[1m\u001b[92m-9.2\u001b[0m\u001b[0m [m/s2]\n", - "AT [0, 0, 2] RELATIVE Source\n", - "ROTATED [0, 0, 0] RELATIVE Source\n" - ] - } - ], + "outputs": [], "source": [ - "guide.print_long() # Verify the information on this component is correct" + "print(guide) # Verify the information on this component is correct" ] }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -272,43 +137,28 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Set parameters corresponding to a copper cylinder\n", - "sample.radius = 0.015; sample.yheight = 0.05; sample.reflections = \"\\\"Cu.laz\\\"\"" + "sample.radius = 0.015\n", + "sample.yheight = 0.05\n", + "sample.reflections = '\"Cu.laz\"'" ] }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Here are all components in the monitors category.\n", - " Brilliance_monitor Monitor PSD_monitor_psf_eff TOF2E_monitor\n", - " DivLambda_monitor Monitor_4PI PSDcyl_monitor TOF2Q_cylPSD_monitor\n", - " DivPos_monitor Monitor_Sqw PSDlin_diff_monitor TOFLambda_monitor\n", - " Divergence_monitor Monitor_nD PSDlin_monitor TOF_PSD_monitor_rad\n", - " EPSD_monitor PSD_TOF_monitor PolLambda_monitor TOF_cylPSD_monitor\n", - " E_monitor PSD_monitor Pol_monitor TOF_monitor\n", - " Hdiv_monitor PSD_monitor_4PI PreMonitor_nD TOFlog_monitor\n", - " L_monitor PSD_monitor_TOF Res_monitor \n", - " MeanPolLambda_monitor PSD_monitor_psf Sqq_w_monitor \n" - ] - } - ], + "outputs": [], "source": [ "Instr.show_components(\"monitors\") # Monitors are needed to record information" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -318,46 +168,37 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "COMPONENT PSD_4PI = PSD_monitor_4PI\n", - " \u001b[1mnx\u001b[0m = \u001b[1m\u001b[92m300\u001b[0m\u001b[0m [1]\n", - " \u001b[1mny\u001b[0m = \u001b[1m\u001b[92m300\u001b[0m\u001b[0m [1]\n", - " \u001b[1mfilename\u001b[0m = \u001b[1m\u001b[92m\"PSD_4PI.dat\"\u001b[0m\u001b[0m [string]\n", - " \u001b[1mradius\u001b[0m = \u001b[1m\u001b[92m1\u001b[0m\u001b[0m [m]\n", - " \u001b[1mrestore_neutron\u001b[0m = \u001b[1m\u001b[92m1\u001b[0m\u001b[0m [1]\n", - "AT [0, 0, 0] RELATIVE sample\n", - "ROTATED [0, 0, 0] RELATIVE sample\n" - ] - } - ], + "outputs": [], "source": [ - "sphere.nx = 300; sphere.ny = 300\n", - "sphere.radius = 1; sphere.restore_neutron = 1\n", - "sphere.filename = \"\\\"PSD_4PI.dat\\\"\" # filenames need printed quotes, use \\\"\n", - "sphere.print_long() # Verify that monitors have filenames that are strings when printed" + "sphere.nx = 300\n", + "sphere.ny = 300\n", + "sphere.radius = 1\n", + "sphere.restore_neutron = 1\n", + "sphere.filename = '\"PSD_4PI.dat\"' # filenames need printed quotes, use both ' and \"\n", + "print(sphere) # Verify that monitors have filenames that are strings when printed" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Add PSD monitor to see the direct beam after the sample\n", "PSD = Instr.add_component(\"PSD\", \"PSD_monitor\", AT=[0,0,1], RELATIVE=\"sample\") \n", - "PSD.xwidth = 0.1; PSD.yheight = 0.1; PSD.nx = 200; PSD.ny = 200\n", - "PSD.filename = \"\\\"PSD.dat\\\"\"; PSD.restore_neutron = 1" + "PSD.xwidth = 0.1\n", + "PSD.yheight = 0.1\n", + "PSD.nx = 200\n", + "PSD.ny = 200\n", + "PSD.filename = '\"PSD.dat\"'\n", + "PSD.restore_neutron = 1" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -366,79 +207,43 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Since the wavelength is an instrument parameter, it can be used when setting parameters\n", - "L_mon.Lmin = \"wavelength - 0.1\"; L_mon.Lmax = \"wavelength + 0.1\"; L_mon.nL = 150\n", - "L_mon.xwidth = 0.1; L_mon.yheight = 0.1\n", - "L_mon.filename = \"\\\"wave.dat\\\"\"; L_mon.restore_neutron = 1\n", + "L_mon.Lmin = \"wavelength - 0.1\"\n", + "L_mon.Lmax = \"wavelength + 0.1\"; L_mon.nL = 150\n", + "L_mon.xwidth = 0.1\n", + "L_mon.yheight = 0.1\n", + "L_mon.filename = '\"wave.dat\"'\n", + "L_mon.restore_neutron = 1\n", "L_mon.comment = \"Wavelength monitor for narrow range\"" ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "// Wavelength monitor for narrow range\n", - "COMPONENT L_mon = L_monitor\n", - " \u001b[1mnL\u001b[0m = \u001b[1m\u001b[92m150\u001b[0m\u001b[0m [1]\n", - " \u001b[1mfilename\u001b[0m = \u001b[1m\u001b[92m\"wave.dat\"\u001b[0m\u001b[0m [string]\n", - " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m]\n", - " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m]\n", - " \u001b[1mLmin\u001b[0m = \u001b[1m\u001b[92mwavelength - 0.1\u001b[0m\u001b[0m [AA]\n", - " \u001b[1mLmax\u001b[0m = \u001b[1m\u001b[92mwavelength + 0.1\u001b[0m\u001b[0m [AA]\n", - " \u001b[1mrestore_neutron\u001b[0m = \u001b[1m\u001b[92m1\u001b[0m\u001b[0m [1]\n", - "AT [0, 0, 0] RELATIVE PSD\n", - "ROTATED [0, 0, 0] RELATIVE PSD\n" - ] - } - ], + "outputs": [], "source": [ - "L_mon.print_long()" + "print(L_mon)" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Source Source_simple AT (0, 0, 0) ABSOLUTE ROTATED (0, 0, 0) ABSOLUTE\n", - "Guide Guide_gravity AT (0, 0, 2) RELATIVE Source ROTATED (0, 0, 0) RELATIVE Source\n", - "sample PowderN AT (0, 0, 9) RELATIVE Guide ROTATED (0, 0, 0) RELATIVE Guide\n", - "PSD_4PI PSD_monitor_4PI AT (0, 0, 0) RELATIVE sample ROTATED (0, 0, 0) RELATIVE sample\n", - "PSD PSD_monitor AT (0, 0, 1) RELATIVE sample ROTATED (0, 0, 0) RELATIVE sample\n", - "L_mon L_monitor AT (0, 0, 0) RELATIVE PSD ROTATED (0, 0, 0) RELATIVE PSD\n" - ] - } - ], + "outputs": [], "source": [ "Instr.print_components() # Lets get an overview of the instrument so far" ] }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "double wavelength = 3 // [AA] Wavelength emmited from source\n" - ] - } - ], + "outputs": [], "source": [ "Instr.show_parameters()" ] @@ -453,51 +258,21 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO: Using directory: \"jupyter_demo_13\"\n", - "INFO: Regenerating c-file: jupyter_demo.c\n", - "CFLAGS=\n", - "INFO: Recompiling: ./jupyter_demo.out\n", - "INFO: ===\n", - "Warning: 509477 events were removed in Component[5] PSD=PSD_monitor()\n", - " (negative time, miss next components, rounding errors, Nan, Inf).\n", - "Warning: 509083 events were removed in Component[5] PSD=PSD_monitor()\n", - " (negative time, miss next components, rounding errors, Nan, Inf).\n", - "Warning: 510047 events were removed in Component[5] PSD=PSD_monitor()\n", - " (negative time, miss next components, rounding errors, Nan, Inf).\n", - "Warning: 509125 events were removed in Component[5] PSD=PSD_monitor()\n", - " (negative time, miss next components, rounding errors, Nan, Inf).\n", - "INFO: Placing instr file copy jupyter_demo.instr in dataset jupyter_demo_13\n", - "\n", - "Simulation 'jupyter_demo' (jupyter_demo.instr): running on 4 nodes (master is 'CI0020872', MPI version 2.1).\n", - "Opening input file '/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/tools/Python/mcrun/../mccodelib/../../../data/Cu.laz' (Table_Read_Offset)\n", - "Table from file 'Cu.laz' (block 1) is 19 x 18 (x=1:6), constant step. interpolation: linear\n", - " '# TITLE *-Cu-[FM3-M] Otte, H.M.[1961];# CELL 3.615050 3.615050 3.615050 90. ...'\n", - "PowderN: sample: Reading 19 rows from Cu.laz\n", - "PowderN: sample: Read 19 reflections from file 'Cu.laz'\n", - "PowderN: sample: Vc=47.24 [Angs] sigma_abs=15.12 [barn] sigma_inc=2.2 [barn] reflections=Cu.laz\n", - "Detector: PSD_4PI_I=42440.9 PSD_4PI_ERR=25.8046 PSD_4PI_N=8.59445e+06 \"PSD_4PI.dat\"\n", - "Detector: PSD_I=35456.6 PSD_ERR=24.9783 PSD_N=4.48913e+06 \"PSD.dat\"\n", - "Detector: L_mon_I=35456.6 L_mon_ERR=24.9783 L_mon_N=4.48913e+06 \"wave.dat\"\n", - "PowderN: sample: Info: you may highly improve the computation efficiency by using\n", - " SPLIT 8 COMPONENT sample=PowderN(...)\n", - " in the instrument description jupyter_demo.instr.\n", - "\n" - ] - } - ], + "outputs": [], "source": [ - "# With increment_folder_name enabled, a new folder with incremented number is created\n", - "data = Instr.run_full_instrument(foldername=\"jupyter_demo\",\n", - " parameters={\"wavelength\" : 1.5},\n", - " mpi=4, ncount=2E7,\n", - " increment_folder_name = True)" + "# output_path specifies the foldername, if it already exists an index is added\n", + "Instr.settings(output_path=\"jupyter_demo\", mpi=4, ncount=2E7)\n", + "\n", + "# Input parameters are set with set_parameters\n", + "Instr.set_parameters(wavelength=1.5)\n", + "\n", + "# The simulation is performed by calling backengine()\n", + "Instr.backengine()\n", + "\n", + "# The data is retrieved from the data attribute\n", + "data = Instr.data" ] }, { @@ -511,21 +286,9 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[1.494, 474.8222215]\n", - "[1.495333333, 474.7230047]\n", - "[1.496666667, 465.981932]\n", - "[1.498, 476.3501473]\n", - "[1.499333333, 470.3317335]\n" - ] - } - ], + "outputs": [], "source": [ "wavelength_data = functions.name_search(\"L_mon\", data)\n", "wavelength_intensity = wavelength_data.Intensity\n", @@ -545,32 +308,9 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "number of elements in data list = 3\n", - "Plotting data with name PSD_4PI\n", - "Plotting data with name PSD\n", - "Plotting data with name L_mon\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG5CAYAAACUWkuzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOy9e3xeV3nn+12yLOm1LEuWL1Js2RaOHF/i3IzTkAslgKGZkFCgYbgMPaUMpZdDaTvTc6CdTqHTy4E5nWk7B1pKKaUt5V7oIZRyCTQlJpDGcRziOHEsu7ItC8mWbCmy/EqyrTV/PM+jtfbW++piKbZir9/no4/evffaa6+99tprP7/13Jz3noSEhISEhISEhISEhEuNikvdgISEhISEhISEhISEBEjkJCEhISEhISEhISFhniCRk4SEhISEhISEhISEeYFEThISEhISEhISEhIS5gUSOUlISEhISEhISEhImBdI5CQhISEhISEhISEhYV4gkZOEhDmAc+43nXMfv9TtSEhISEi4+EjfgISEuUMiJwmTwjm3wTk37Jz7VLTv7c658865086555xze5xz9+ixO51znZPU1+GcK+q5Pc65v3LOLdZj1zrnvumcO+Wc63fOPeacuzuqd0zPO+2c63TOfd45d/Pz3QfTgff+D7z37wRwzrU657xzrvJStyshISFhPiF9AxISEqZCIicJU+EjwKMl9n/fe78YaAD+Evi8c65xmnXeq+duA24Gfkv33w98C2gCVgLvAZ6LzuvS8+qAlwDPAA855145s1ua30gftISEhMsc6RswCdI3IOFKRyInCWXhnHsz0A98u1wZ7/0Y8AmgAKyfSf3e+2PAPwFbnXPLgRcBf+G9H9W/73nvd5Y4z3vvO733vw18HPhQmfbb6tXPOueO6mrcLzjnbnbO/VBX5j4cla9wzv2Wc+6wc+64c+5vnHP1ubp+xjl3xDnX65z7L9G5H4i0S9/V//26wnfrNOv+j865I8B3ZtKPCQkJCS9EpG9A+gYkJJRCIicJJeGcWwL8N+A/T1GuEngncBo4MMNrrAHuBh4H+oB24FPOudc555qmWc2XgG3OudpJytwCbADeBPwx8F+AHcC1wL93zr1My71d/16OEK3FwIdzdd0BbAReCfy2c25ziev9uP5v8N4v9t5/f5p1vwzYDPzEJPeSkJCQcFkgfQPSNyAhoRQSOUkoh98F/tJ7f7TM8Zc45/qBbuAtwOu99wPTrPsf9NydwL8Af+C998ik3QH8D+BHzrnvOuc2TFFXF+AQ87Ky9+K9H/befxMYAj7jvT+uq3YPATdpuf8A/E/v/SHv/WngN4A351Tsv+O9L3rvnwCeAG6Y5j1Pp+4PeO+HvPfFadaZkJCQ8EJE+gakb0BCQlkku8aECXDO3YisKt00SbEfeO/vuMBLvM57/0B+p/e+E3i3tmEN8DHgb4BbJ6lrNeAR87Ny6Il+F0tsL9bfq4DD0bHDyDsSr+B1R7/PROdOhenUXY4IJiQkJFxOSN+A9A1ISCiLpDlJKIU7gVbgiHOuG/h14Kecc7svVgNUY/MRYOsURV8P7PbeD83BZbuAddH2WuAc2Q/ZdOAvsO5S5yUkJCRccUjfgISEKxeJnCSUwseAq4Eb9e+jwD/yPNrBOueWOud+xznXpo6Dy4F3AD8oUdY551Y7596P+Lv85hw14zPArznnXuQktOUfAJ/z3p+bYT0ngDGyAQLmqu6EhISEyw7pG5CQkGBIZl0JE+C9P4OoqwFwzp0Ghr33J57Hy44i2poHgOWIg/0/A78clVmlbXHAAPAwcKf3fsLH6wLxCUT1/l2gBvhG7vrTgvf+jHPu94HvOecWAnfNVd0JCQkJlynSNyAhIQEAJz5oCQkJCQkJCQkJCQkJlxbJrCshISEhISEhISEhYV4gkZOEhISEhISEhISEhHmBRE4SEhISEhISEhISEuYFEjlJSEhISEhISEhISJgXuCyidTnnfGJZE1GJBFG/krEQOPs81u944QSmXwCcv9SNuAQYg17v/YrZ1HHXXXf53t7esscfe+yxb3jv75rNNRIuDpxb5CdPJp6QkHDl4kez+l60OefPTFHmR5C+F1PgsiAnFUBhDusam6O65gMWlti3iChO8DRR7pw6YHCGdZXq4wupJ4/1wCEmttUG+UyJynwbC/VI7MzpYCuwd5bXqwZGZlnHfMBQNivzBaG39wS7dj1S9rhzC5fP9hoJFwsNwM9f6kYkJCTMS3xgVt+LM0w9u3xAQmUnTIKkcMhhPgmjF4IKsiloS2GmxGSycwYpTYAmQ6k+noqYTOcag8j9l2vrdImJLZk8n2PB7mfjNMo26f8Bshm9JkMpYnJrmbLlxsvlQEzmFucm+aPeOfcx59y9l659CQkJCQmXErZYPtlfwtRI5GQeo77Evgr9qwNaov0LEY1BHTAc7d9SotyFINZx5gdNuTrryuxfNMl14rrbot9nCYL51jLnnicQisZJrtE0yTGQ1L4weTtnAmtLNZKBCwJR2l+i/EL9q9BzeqJjhya5zlSk9Ptl9tsy0YWOjSsDY8ibVe6PAe/9u7z391+yJiYkJCQkXFIkcjI3SORkHmOAiQL+GCJErgI6dd86RNitBaoIwuw6YB9BK7EKWEOWrBgBqiYQkBVMFO5jQT2vUTBNRf4cu67dg10rr8Foi47Fdcfp6BcCR7Xte3P7DSdL/K5mInqYfODbsVgDU537vwghfqXOzddtbRkBuqe49nqkHxcifbEE6Z88cchrUBqBrqhtLUxE3Bel2vB8+ua88OGZQnOSkJCQkJCQMAe4YsjJC/VGB8kSgxsQIbeDsFI+jAj3KwhmQm0EYbNG//cjK++dBOF1GLgFEYL7ESF3CCExJmi3EFbXjYDU67ViQmJC+CqywrORHmuHtcsISTtZwdiE6Ni/4qz+GeFZEe0vh4UE06S8tmSM7JhYmDsWb6/Xeur0/zqEuBzLteXW6NxY62No0uN2bSNtdQjRWYE8nxpgQ9SuE4T7bAO2E/rSnuMQMk4atW1GXO26qxDiathUon1z8Y5cvtqXRE4SEhISEiZH0pzMDV6oMvuMMR3/gfnaGWcIguwT+n8E0ZRsRITaGmRVficiwLYTiMMyPT/WwowgwvQIIvyuQgTgBj1vEHgZ2X6rIJiM1SImSVYeRAi26xwlkI9DiNDan7uvmHzEWooaSpu0xeecKHM8Rkxcekocj+/NyjbmttcT+uc8QpyGkT5fjZCDE9E5i5A+PRTVZ+RjGOmjLYRYQVuQvu4DRvU6JwnP2c43wtaudQ/pvjH9vxp5zoNaZyNCOm8AmhGtSkzQ9un/2Odltj42z3dktEsLzxRmXQkJCQkJVzgSOZkbXBbRuuYKz5cDdCNZk6MLgWkMFhJ8K/oRYbgbWWk/i2g8ziLE4ySyyt+BCKxPah1bgIMIITDtyBNa9yFE8G5GzKdWAK16vS6tfw1B+O4g9NsKPWc/QRA+G/1NF9ONSPV8IP+c7D5jh30jOifI+nns0v+NCMFahGicziLPyO5rX3SO/V6o1zDTrBUIYdmLPMtO5LntQwhFnbZ1GNF6rQF263nDes0+hMzcipCoLv1v93iG0j4vM0Ec0ezyJSYg5ORKDMSckJCQkDBdzGX02CsZiZxcBMyWmDQRBOKzBJOhBQRfk7OIIL0FEVxtFb9bt08ghGOF/q5CyMoaRICt1/qGERGsUc+1627U+hoQUjSErPKbMA1ZX5BSmorLEaViDp5E+m8YIY1Hkf6CLPHaoscGEQJoz7MCITc3EEhINUJMKoBHkGdeQyCdTyLP7WXAN/SYkYZDyPNoQkhOPJ7ysPExXbzQo9tNH+YQn5CQkJCQUBqORE7mAvPVkmlOcdpf+jR5selTOZSz188Lku2I0LoREUgrkFXyGxDB9Twi8B4GbkYIxaDuP4EIwiAmS6ZlWQ3chqymLyAQqvUIGdmr7diNkJYzZIlJQhYn9c8CEpjviznR34H048sQsmlalhVIv65GCMeXEWJjQQrGEFK4Uc87qOeuB7YBBxBtziIts5Hgt9SAkNDJiGOemJQKKFBq35WBi+dz4pzb7Jz7qHPui865X5zzCyQkJCQkJMxTXBGak8XOXeomjAv7kwmGMzGLGUNW3WujfQuBexCycpSg/egA7gUeQvwSDiIkaZm25wwicD6ECM0LEfJzHjEZOo8IzG16vZ0zaGdCQEw+9yN9/C1EowVCVP4FuAl5bpsQwnFG/9Yhmq4mgpnZaoSYdCMakrqovsMI0TTn+n2UHmNmCmZ1xkksF+j/2HzrytGWxJi95sQ59wnkFT3uvd8a7b8L+BOkuz/uvf+g9/5p4BeccxXAX8zqwgkJCQkJFwVXulmXc64W+FPEjfZB7/3fXUg9V4TmZL4in0cjH5p2I+W1KcPIanwTIRRvq5YfAH6CIHDejYwSIx03IkLqKCLwnkfI0xZklb4WEWxrEMLyBCIUP45oZhIuDGcRgrAK0VB0AS9B+tvCG9+EPNc1iObkAPAcQlJqEC3WIEJuqsgGKahBCE0FQkia9Nw6Pa8c+TV/FxCSGgdOsGAMpYIHXFmYk2hdnwTuinc45xYAHwH+HfIKvsU5t0WPvRZZC/j2rJufcAViJmuPlbny+e1ydZY7L95fWebYVOeWKjNVuZlcazr3PZ068/dZrq58manaNFU/lMJU93Uh69GzOffKw1w4xDvnapxz/+qce8I595Rz7ndKlNnonNsT/T3nnPtVPfZret5e59xnnHM1E68yPTjnPuGcO+6c25vbf5dzbr9zrt05977o0BuAL3rvfw547YVe95KNNufcRuBz0a71wG8j1ic/R7Aw+U3v/dcucvMuCs4QkicOIIKooYLJnZWNaPQjgu0ten4NIVrWFq33CYSE3IYIxMMEgbOWkFfjK4iEdBRZhTeBdZAQPerKFEznFmYOdxbRlNQjZGQ/8iz2EfLOmF/PGPIcGhETu+2E6GodBGL6XFTWQil3EUIP1xP8Xiy6VmyeN0I2clpc/sqGReuaRQ3ef9c515rb/WNAu/f+EIBz7rPATwL7vPdfAb7inPtH4NOzunjCCwCVZImubdtnOv5NVDb/GZ+MLOfLFoDiJMcro3KGYq5MPuRLXGcdMhtV5soTnbNSf+evUYh+VzIxk1axTPlSsDblr12qzfn99v9kVGaya20gfM2LhOUeu8ZkfVmqjYXc/3xf5+sqRXjyKPVcS7Wn3Ln5MVZq35UJx5yE1B8BXuG9P+2cWwjsdM79k/f+B1bAe78fWWu2Ra5jwJedc6uB9wBbvPdF59zngTcji2Ohnc6tBIre+8FoX5v3vj3Xlk8CHwb+Jipni2qvQlxZH3XOfcV7vw+Ju2Pxly44iswlIyflOhb4WeCPvPd/eKnadrFQjYzABQh5OEpwVo5Xqk2ItE9ABSKgvh4RZJsJEbtGtWyTlj2hv5sRgjGEaGRWERywzZH+JoL4FUenSnh+MaB/tyDP8SZEK3ISIQrm9G6+JguQ5/koQmw3EMIFL0LGSzsyptYjBKOTic7u5nxvfixdum3Pvp40DgJMc1IWy51zu6Ltj3nvPzaNilcjr76hE7jFOXcnsgJVDVyWizNXJsoREBBBMX7j8mSEqByIIHmOiQJqKcGzkZCZqZGphez4GrHgHp8bl4v/FwlhW+Lz4zKFEufEbVlNEMIbSxwnOn49Qgby97uIbMan1ZO020hB3C/LCEs1x0rUX4oYFPWcDYgnaHwNqyNPeGLSsZqJzybfxnw/Fktsn8ztK9XOeF9jiTJ2frxdR3aMxYjHXakvR0yyS21fHpimWdek3wvvvQdO6+ZC/ZvMefqVwEHv/WElJ5VAwTlnsZFKuQi/DPhF59zd3vth59zPIWLl3XGhmS6qEVLp7WEW1lnzRU8Xd+ylbstFgzlJnySEBzZtCIhW4yRBW7EqOnYDQirWIISjXo/t13KmlVmBjJRuhKQs1GOWq6NO93URVtn3k/UxmI8wonYL4qS/COkLy0kygBC1TkQb9A3kfqYK62yE8VLgEYRMnEHa2IV84oYRzYeZ7PXrsVZkbJj/0QGCtsUitR1DPpGDSH9AIMBxX3QhY8GiikHSmGQxpc/JWWQo3u+9v38GFZea8Lz3/kHgwRnUc0VDF7h2Ace89/dc6vYISmk58sdjAhJrG8jts/L5GayOiUQi3jYhv0AQzvNEIYaldTWhvjH3v5jbtrrNsw1kxlkUlbc2LcuVsWuVWr0vRsfz5Y0A3BIdi4lHfJ18u+2YedZZO+Pf+bZAIA12TSMadrxFf1s7O5E+KRL60rJR2Tl9BBKF1reIQGrsWPw8+wh93UeWWBgZi8dAY66MaX/i558nJnkyGvcDTCQsdjwmd5Np6CrJEpgrUhPT673fPlkBndMeQ5j+R7z3k1nVvxn4DID3/phz7g+BI0inf9N7/838Cd77LzjnXgR81jn3BeAdiCZkOii5qKa/vwR82Dn3GmAm38IM5gs5Ge9Yxbudc/8H8rH5z977U/kTnHPvAt4Fpb/uLzTUIsLgUUTKWUgw0VpFyEGyDBHAn0BGwkI9dxhZbd+BCKXLCL4kqxDB/SFkRC1ChNAFBPXjQrL5Ny4WMbkBuZcKbU+FtnUF0vb1SJ9Yssd9wHW6/SQicJskYuZqZxCytgTpkxpkCXofwYxuNcGHw6JhnUGm+2ZE0L8Uwvkh5NO2BTHD6yOMAXNwX4+0vRV51icQsmGkZAAZE4sIIrWJ1QMEzVqP1nUIIWVDBA2M7b8QXJ6mYFNqTga89++6gIo7kSFvsJQ0CTPDrwBPI6/9PEEpDck5wurzVJqSQcTkKV7tzps7ldNk5H/nt5eRXdm3Y2f0WCyUbiBLiFpK1EWu/IHo2Bndb1mhjjNRYI7rLGX6ZIvBhuNRfSvJCr+D0fkro3PseRih2hSVi7U05Mqh1yrqdW07b3K3To/bNVcCzyAeg9amvKbMtCfk9oHM4DEZbUT60sjOLYQxAYHQxWQtT8Ly2hnIPr+TZLU+Nk7ymrNy2phYCxbfW57QlNO+GMqR+XLH5g/myiHee38euNE514CYa2313u/Nl3POVSG+Hb+h20sRLcaLEBHnC865t3nvP1XiGv9dtR5/BlztvT+dL1MGJRfVtM4hxAJqVrjk5CTfsUgn/S5yo78L/A+E0WWgKrCPASxwblzdFUcaeiHBpJFmRAhdhoyqVsSnwLQgFm72BEHorEWkmz3IZ28ZImiuQQhKFeKL0IoItYcQKj6o5RuYfS6WmWArwW/Cwhk3IYJ3jbarm+Ckv0r3DWh7hwn5W04SSEaN1mX19yH3eV739yMC/1nEPMqypjcQtEVXI329DAnDPKzbR3XfHp5/zUqn3tcrCD4hjQiRM1O8IUJENnNaX6FtfRLptwPIeBrWtpvfkIkCIOt/67QOc9IHGXMXisuPmMA0fE7qnXMfY+aak0eBDbqCdQxZqHnrBTfzCoRzrgV4DfD7wH+6dC3Ja0omc4aOhWebfdeRFejyWhIz6cmvapfTWhTIahzsnB8iAupqZMidydUR+3fEgjxMJEQryRKdQUQYNwF9GcErzr7MLdG9xnXE6Iv22T0b4bled0V94xrBxxoJu7Zdo1PqcHqfvpOspqSobY81Icug7nq9rZNa747onAOhvvE6K/Vc057s0HabNuwcIZh/K9In23LtjoX44wSisVL/jNDWaR1P67aRo1gbcozss4VAQCGrWbPtAmHM9OXq20DWVA6C1JU3R4vHSp5AlyIu5Xxx7F2KzcHmL0GZ6zwn3vt+59yDSDCVCeQEMQ7Z7b3v0e0dwL95708AOOe+hIg+E8iJc+6liMj0ZeD9wLun2aznfVHtkpMTch0bdTDOub8AvjqTyvLEJJ8ocC6ytT+fMJ8S8zPpRoTO84SEf/0EJ/aa6Ph6RDA0Af9fEIG2FgkfXIOIVzfoORZ+1pzrLxZqCZHJ+pEp1Z6LmbWtIkypgwiBOKpttShkq6I60GMLkHsyLQCEzPbrCZqILj3PNDSNiCahmhAkwCJhmUjaj3yiTciH5288nUE0Xa9Cpn4jmY8StEPrEVK1juDwvhuZmUzrNIJ8Gi0EsSXRHNHzDutfHULkzBNuPpv0mcmhudpeHMxec+Kc+wxwJ2Jv3Am833v/l865dyOWhwuAT3jvn5qbNl8x+GPg/+biTmMlEI8P044YYgGsmNsXaylOkl29zzuB23kQVsnj+vJmQKXquIWs/wkEUeA4IiyboBybjdk18s7rZwhvYqv+V+HXNco1fAnh1KkA7A8gArYJ6TqjuugavoD4lujxYiMs17Yb/zpq5ZfB8gL0xpdsySmllkFdIZLzG+XxxZZ1g8WQ1Gkwb7pGdtufhLoWGIwJTwsy+8ZmVybsx1Bh320o0U8xzCQsb962Wbc7kFn9GcLN3ot8FWy7kaw/j5FIu65peeLycSCAA2TJ6LLo/Dy5yG9bP5QaQ/nfeXPGFw4qHBSmSgY2RWwV59wK4KwSkwLyWf9QmeJvIWt5dAR4iXNuEdKRr0SskPLXuAkJU/8a4N+ATznnfs97/1tTtB4uwqLafHjqmY51zl3lvf+Rbr6e0kyxJGJ/ARNg8lRuLoSZ59MvwdpXg0x9x3SfZQlfgwjRw4iwbpnfz+rfKi07qOcPIqPyFqQvhvTcQ1r2gP7NlZBnpCp2vt6BTJm2om5C/1m9h/UEx/5+/V9N8Kk5q+Xz92n3f5u2/wTyTelDyI+ZxZ1EiFir9sFGQmSz2J+nWetZgAjxZwlC/wrdN4zkgjGfn0OUX+ecC5gWBIJTe63eVw3SP0uQflsEvJSgJTqDfK569J4G9c/MBquRvqhB+icfomM+Iu7jPDmpJuRlmXvt6RhTvPVTak68928ps/9rJKf3C4JzzvLGPKZBBMqVGzcDFsPDuUI5v5IiwYQLygti8Yi2Feo8qTAB8AAimNroLpIVFONrgyylmAmVXbNO64hnqnXR721kzc1agU4oKDEoFkXQH9daGDOIBWaUlKDEw1bio/sutEQCWgsUClGdSmhs8i0iE50t2C9uzL74PneLlQV5VZcDvdqe5QWZFJu0zOmCTOi23Y+4H1sdTQghyT+2yuh4O8FF2ciN/Qe5P78hDIHT2nYTXIeAomm3rK5Y0/VDAiGDicTV/EsMlob3dkJnHUDIS+xDdJLwzBcx0ccpdv6PNSroeRY30spb58cau07CuDX/m87oePw/r40rReLNzgOukDAtVwF/rX4nFcDnvfdfBXDOfQ14p/e+SwnIq4CftxO99484576IsNJzSBaIUsFZFgFv9N4f1Hp/Bnh7vtClWlRz/hJmT9eOPQqs994P6L6/RaJ4eUS2+vmIrJTEAud8/Iq2IAJZHI0oRt4m3spcSpOwfJtMuF9H0AZsROazJYTIXjcj7TYfA1sFH0Je4TFkRbwL6Y8TiLB7Qus4j0wZ+czg5TAdR/l1BKd8My0bROZqM9EyZf912g7Lr9Kk97CBENLYTNCMLBihsCnKHMbzyQSHCNoVtIw5ftcQghA06X/TSPUg5GMnQkQOId+xIT1vCNFixP2xT4/FfjtzhXui624kkJRRwr3egDjUb0KIxwOEyF2H9R626rnxeDmA9Nlqrc/em4uJfBSxGBYxbKxE2fwxgxFk+z8Ej03lfDgVtm9f53ftem/Z4879n7O+RsLM4Zz7f4CfRj7CNcj0+CXv/dvKn7PKR9/yOUK5db68eRQEQc+E8VgIi8kHZB2kW8iuKEN25dyEuNjkCmQl/abctWzV39oVC45xW+2a8X00BovzxYjJU50eN+1DbMVURCZ6W/0Y1vOIylQShPYCQR1uaIp+H0Q+IK26/Zg2s0G3f6R1VEe3sVfP2RyVMVU5iCgYX9PISmxtVoiuUdS6no7KNyCkqBqR7+2+TXoZ0TJ56zPrC7ueaXzMdK2gfVuJaHPsphxKaGKhvpEsMTiAdLCNBRtzcTCC2EzLnr8972fIRnqLgyqAPOhz0XErE2+btigfGtmQ16LE9Vv5vGlY3t9nLvGBWc3lL650/geLJy9TNTD7b9LljkuqOfHex8aPtu+nZ1rPAoLQUkcQsGxlNS9QL8idb8fsk3BxzUUEeTt9W88wTYFlD79Bj69C7nkR4X7M7MlMgEwTcJJgDmWr5JZZ/vEZtnMyYlKBaEnMDGs98kxshd9MqmyKOo9MYQ16bg0yfxuJGtYy7Yhg3hNdZz3TW+k/XGb/IkIELLvWVkJfxRqWBsRnZwnBx8fu0dqznWCO1o/0cd4yd6YwDZ091waEZKxABPOd+rsZGT/XEWIG3qrtfFjratT77NNzn0GexWqEUF2o8/uFwEiDoVSMHEP+veif5BiEPpv7d3jKaF0X6nOSMAt473+D4Ah6J/DrkxGT5w+mJYn9AWCiHX4pa/RY4IvNfuzc2PcCguBYh8xw56Ly8Qx7XLfvRWajZwi+Hua/YaZh6uhdd3vONMmup+WXb8iaSw0ixMRu2yGT/VFte0EFy2IhvD6vRFamYi1FD0GILyKTrx3fhUx+tr1Zy14VdU9DdP5VyETQT+jCO/S3kZFWArmJEZOgmLz0k5W3NyIOiFZ+s9b/PWQ1bXWuzUR1xQrYEcLjMzcVi8LcD9RGmpI+VMOk24uRfjfzN1+Q/q9pCWXc9WoqpkyocD0U4y/TAUQ7EzOmllCedWRFNBvXNsbMBPCHZE28YphWJW/OaNuxmRm5MvG1XhghiJ2DhVOZdSVMiflg1jVrnEcEr0WEOdJ8TfKCEAShtNwK8XB0vFTSuouBw4R574ReeyvBiRtEYD+BiE236L5+QkQny/Ju0ajQ/buQe5xghHiBuJUQutdMuswK2fw39unvEcKaXSsixJufzGGC9ueEHiulyRpj9iZIFsksRhcyFTfr8fPaRiMi5jhvPjp9hHwxJ5Ap9klCbJvZRLyC8A07Ssj4voBgrriC4Mxumikjq2cJeVLMvG0wOmYmcuf12DpmYD9ZAjPROto7ZAYGeQJZ7j2riPabNq2HECThLNJnFhBhbsNhP2/RuhIuG8S2+nlTldh8Ky+8LYr+H2Cib4MJqHkn7sNMJBoW4cva0xKdZ07ty5Q0AEUzFbNTctcfX/nXfb3afrNVMI2IaakZEwQAACAASURBVFKuRshBrx5vAxqisiATWiui6tXqMkGqmgjEA+BagiYEgqbByMhmshqJVi3zLQJB6ND9sWVQASEYILYasb12TGSszgaCC/A5wkcB5MPbhlhUrUE+rj2I2nunlrHrxdqaDoIhzU69d2tDP1kicwdZEtaRa+MIolkZLoTn4fXChZZwX3Xx87YxGgUbGPcrAfnKxWaDppmzMbmbENDAvBiNIMeawmNMjIgWvwexXV4pclNk6jwq8wS20powK1wW5ATkHY2FIxM084LPCuRVayCYh5gTNMh8YD4Nlk3dBC8TjC5GDpBFyNzWgnwWOqK2nkDa/7i24w6CkFmBaE32EnKYWPSpHoJ52GEmBguYKaqRb9FhhBxZth+bmuxzbDlV7Hg38u7uJ5hB5Ve6n++gBeW8B4zQHULGwlYtu4qw8NeEaFFMGLYUqCcQQmLma2sQE7oZRXQogZMIST6hdZ7U/wv0+rGZWSthDI9G92JaqyZCdLMV+nsRsyMmEPLqTEbe7dtv71OsBWkifIvPligLMtbNZNPIaTUyzg4TFhL2RuUtbPbsMfsM8QnPLy5Nbpg4V0ksXOXNo4qEEK7xsQIh1OsZQhStR5CZfyWi1WhEpPDBqI6Veu0NhE/5BsTWaCXBX6ExmmA1qlKxoIL6Bm1itNq+nGBaZeZQhegYBRHmH0EE8g7kI9QRlTF51ITpViTCh5lP3axNfZQQltIUP2YKtoGQXXgYeBtir2pxgm7U449qOyxDwwFElW2hCr+l7YPgONir9W5HiMRirdP427e0rZVaj5kc2BSwPHoMi7VNvYgH7S6t18reo/1YBH6doFp/lBD7/6get4kwXsF7Wq/zNOJUeK/2Q9787RziW2N9HCsqerU9jqCpypiIXR9M9AobVLsSa1CM1VloaBuvFlp5NdkQNkYobCAUECnhAIHcXK/123GTGPL+JtZOkxCMqMxPzQmOLGlMuCBcFuTEkRU2F5LNdG0wR2wLtQvBdn+B/jfS0RUd78zVYWY9MSazm78QnCGr5a3RP1uoMZe0RuSe+rVdcdvqCP4eo8j7sgh5/fuYHTHZgsxxtXqNNdoGSxRoK/q2Un+CEAq5Q8vGBG8+rYPsj36b2ds+pP9eRUh0CXK/NtdbEM8GhADaqv6rkX74p1m0aRfSp0b6BvW6RlRrCQEOziB9XYUI7PEYN2d6I79jzJ02cKp6mrUNHbo9Rshv04Pcl7XH3ud4wWEhwWTTiMgIMqbsXbH9q5DnMXeazik1J8ms64rEudx/mGh+ZTDTFlt6MWd2IyiWX8RyTRhiTcg6gqZjN9loWicJxCRGJ5xuESf1FnXIPoj4OFgYv3i13gQrU9E3EEygOgjqbyMPOwhOkK9CBPvN+reYIGyb+t4Iw6sQkmJysAnadxBix9sHrx6ZQN6m51tQ1GatJ16prkEs2JqR1aWthI/nTv1tEYGHo+PLo3r6EYJhqyAdwEu0XrtuDYHMPKi/TxOUEDfrec1al9VjqeveqNcZ1rbdGG2j+7oJGqcm3fcQIZrJiuh6G5APwn7Cs+vQcr3RvZl5WkFN7RYXQrQUzkgktHFJwcZkHiZ9WHS4vqghtyP2bdY5xwhO8ZYDJw7kkPfBMt8rIzK2L69RSbiccVmQE3Ppt1CoJrxYaNpBPdZD8CewLOKxAzWIsFSnx7YQ5glLBmgr0rFWxkL5ToWZalxszrZM7j3I3NRHMDXqQb4bY4S5x8IRH0WEUVvRNkf688zO3Oi1+r+KoJnpIJhANQHfR/xjqrWNJ3XfCxkjiBakCem/6whaiPPIdGtO+YcJY+Vq5JtxH/DFC7y2JVS8Dnnug4QIZ+ZXNKTHTEtlJn+W8+YMwal/ETKG7dlcaJvKmXLFYYlB3kfTbtg7YP5Ra7StcTtWaVvNpHIFQSOE7o9NLm0BIQ6GsBp5V/K+tReGKX1OklnXFY3YnAuyYVPtv4X9jfOOmD2+nRObWRWYEPHLtWg+DQgJGmOfgGKob7lecnGLCM0gH4A6sg7pHQTyYSpLIwV3InzHyIsJynb8QG7/TmSiM5OtVkSofzC6Rg2yiG786wDhYwwycewgrGLYQrzZIZvqfbluW5hH0448QFAh20dxGJkkjCTYxG39shXRZFh5Ix9t0fZ2su4O3VEb7tG6+hHtSXwf8X3FxMicKC3m/YN6r/fqtkVkiacd879B2zIcbe8lmJ/Z8zDlnN1HB1m/GtO+WD8sbpExsLkxlD9KzuIqn/gzPwbvR4iJSUgFsok8jWjYAHgEGfP2HnQiX5ZyWe1hfi1n5uC4TCTrS4vLogsrkMWBBYjAMkwQWgb1mDkSdyGvgflGjObqGiMIXPu07mrCKqyZSh0mBNXrIyRJnEx7ciGmYGsIeS0qkPlwAUFT0UjW4dyyvjcQ3CXP6/nmYH6UC0+U16R1mf+D5RZZRljFtxwURwlrey+EMLXThX1TLMoYBKLSQ1jgsohRh5A+akGI3Vcu4JqdWsfDwE/ovmUEjVqFllmIjIXDyNjYTciHE4/fYWb/TCbzMbG667XdcaQ2CGtu5hd2npDPZRlZrV49EpDgbLQ9EF3f7vkQ4R0bYK6TQU6pOUm4IlHOOTfvSAEh8lVsw7+NYBoDE5MhthCk9NZc8sBczgwLz1sTHfZFqC6UNzOxcLom4I4gpkNGBPrJRqmy/ebkaLypNfq/H9FwgBCPSkQrYALyUbLRuwxGLm5EVnGMo72UrEkVeo936u9uaV+h+RQAxU1LpcuWE7QUJqxbHZqTcZx0PYp0vRGFTYiGIjavijUlz+hvK9+h7d+jZVt0Ow4e8BKEcNiQsXDHNinu0PK2mvIasjBTs9fp9j+QDQxwH2Go2H236DU3RvW0EqKMFQkmdSAftGqCL06eAxTQMWY+SxrOeHkj9BpBsRDWNjZtidjIhi3t5nPt2IweR/aKjx+LjiezrssdlwU58YgwY+9RPTIX2Txq76m98xYx2/JngAx/c2w2YW8E0TyMEgSdUYJW5jAyBlcxs3C8M8H3tW3bCMK/+R1sQhyw15M15TITLzMBGiP4HzRy4eZFtyJzteVSsVC8PcjcdxL5bB4imJP1E4T52SIfbvlSw/KcmKiwhuAveYYQ4asG+f6fRZ6LRV6bqSbtBDKuzTfDzLsqEIG+nqBVWYSQ5UOEsWNaLpMN9jL3AR7qkfs17V38vIxg1yPfQPOlGdRzVmmbhgmmco1RXfa7OTrH9h3S3+f1mtUEzd5F8jlJZl1XNOxTmg+1Gq8w95F14ICwjABhxrZkhAf0nJXR+RF5cY1qNqDqi+Iy2WfDdDETc3VsRMiDCU/tiMO5TdINZCOlNGjZxdH5INoJkFX+boK5k01S3dHtbUKE5lhh1B7KFN53iuIDS8fbXbF6iLHttYEIWF1GkDYhZU2A7gfuhOJXl4ZyDVruRi1TiXykjUxY4iwTCjZFZYCVrzjC8ZZVsFeea2H7KYq7lmY1Sj+I2lSjfXRaf3dCyyva6dzVFu6jRq/RGm0PEwhebFJm97GdoG7/DeDPCFqO1yH9/T3dfoBgYmfDZK/2gQ3DDv1vbejXfZujbTN3sDZkNCv6f3xYq9lXr4VfgUDKYwf2c9FJ55hophUHbi2SzTifj3hnElxc3zxCcoifE1w25MQEsjOIcBLPr6YgNG0JWsYSGhqPt/naTMC6CCQFRNAxR+hVBGdjU7KbP8p5QrTxucAaZN5pQ+ayLoJDv9nxVyDzjZnJWGZ5M20bQj5h+TDKM0Gr1jlACMHbiAiYFt1qJzLXLWB2Pi2lMJ+ISYwzyHjbhRCPJmR8WC4RizJlhHgVokHZycxMqkwTM0JIzGh+Prp4SAPS/6uRMbweIbBmbnYGeY5nkXE/lxotM4c0rZGFZjZTsgVkTbXsHFsLtrW1k4gcY0EFHkFI3KDuM5+gcTNpRdyXI8x1otQUrSshj7wTfOxP0kiWFSyKysU5RvJ29McIZMQEuDjB4QFxWIZAQup0+xwy6cQRpOy3hdYdIRtCd4SQbApCrjzTcjQQiAfIC2uO6CAfpiLBVCk21bLzW7S+tnBO/Tu7GWgXplDcu1QmCxWAxx6rlTYa+WglCPhAy5Z2Op9tG9+uuHqIsb7acSJSaDlFVc0IA3ubYbm8syvXdnG8cy31W6XhddtO07mvDdr0nd5bCR2w8peOAHD802tpeWs7naflOsWdS1l59xFGRiX0yEB7s2hC9Blc/dan6B1dxkBbs7TnYC2dR1rlA2330UyW/G0nhHcEeT7LCaZn/fr3bt3uAH6R0PcmANvwWK7XqouOWRSzjtB/bEW0MBDsX808zchKq24/RXZNpgl5TuOJJRtDSOOMeeIywti2eJJxNvo44pdJS3F5mEhKbLuSie/NPELSnMwJLgtyYihnZmKrsJAVZk4g7/UJxD9iCBGoDyECVCPBft8ybJtJzDJE6DRUI/NBHHZ4rjLJDyLCqM05RgosrLCF8LWM6vZ5HNY2nkCEug2EvBczxa16TfO7MdOxWmSF+iwyZ5r521xpS15o6CM4qptWYiEy55/UYxb29xbkGT4xzbrPatl+gkO+hcWu1TpPIgQ6ds4/j4xfI6a2fmsJKefCejcOlIq2yaJm2T036HWNaKD/LV/PQt2uJ4RAPkrwuTpEyGV08S2OPXNNdxJe6IhXgwu5YycJWhTIZv4+hkjbRbLO6yawma3+Zj3HFHHqjFDUay4vZC9tkZ5s5T2fWNBWwS0bq6EmqqMbkQps1WIrIlSbn4I1zc5/M7LKYsKqRcKyyFkWyapD69wK3AkDHzcVBiLkfzls1v9aNwN7m6l4peg8xx6rFYH/27V66baM5DL27VoqXjnEjzc9BMCD++6iOKxtGa6kvrWbKkYzq9mdf9rGyl86wvHda2VHKxTuODW+vfmtj/P07pvGyU3Fi0c4/om1QWh/FFa+9wiDz8mNH3z4WgpbT0ENjB2rDYQpht2yDYNu4PXAB3X7Hu2rmHxsirb3RucZ1gHvjLY/hZCbjwLv033Deh0QMtkA/LJuP4Ss9nxdt2vJJpe8VsubD9Exsr7sLajpmmpL6ojCURejQnGQhwcIRvF2buyTUgqxz4l9beax38kVDOdcLfCniGj6oPf+7y6knsuKnJRDXlA2c5rYDKsLIRNbCPN5MzKnmuAH4Z2MrYZN8zKGCFKNyPwxwtyZIp3Xujq1LWaqcgZZHTdtjf1/GPk0mqbIBOKZJl2sR6aNbcg9mq/LOkRwNL+Bw8iizXzVblws7CWYUq0j+Fs0I/21gGzyRjMlnK6WyfwfTTN2iBC1cgFBS7YaGbu237QZdt063Tdb7Zb5s9hnpQm5T4vieRZ5LxYi78wIol16BnkvqwhaNwvqsw9ZZD3JxM+VJSW9+Eg+JwmlYKu/x8kSDdtvq8kW7tf0g3FIYBPiNhEEORgXxgpGSpAkiMaRewlqfpAXbznio2HbIBOEDd2tyMtnmo5qslGxOhCyYCvpZmdpPhs3I7KlHe+FwgdPUWxXk6oarcO0BZsQf444TO8w2chXy8/BzZXjbTCNytj3asfbPHasNpCVv68NpmIAnbDxrc/y4MN3AbDytiMcf3gt9EP9dpHk+55bBg/B6FZd0r4TenuWUbFa6xyppqpmhKKaLT195DqZZDtERKreMQj3jYr5GcC9cPzIKgoNQUAu7tJj3TDWrW1vJWv6tfUc9FeGY+0EX5tWOXd8++uESRzkme3JbT8T9XUnIQjAfQSC2UAww9uh5eycOoTcWJ0W+tNW/r+t7WnVbdO6GME6ijzbYkE+POfQUMTxzG3misZo1zFR8xHn1znGxKXm2A/FNC/l/L0uMebArMs5VwN8F3kSlcAXvffvn24Z51wD8HHkiXngHd77C4pJ5Jz7BEKdj3vvt0b77wL+BBExPu69N5r9Bm3L/c65zwFXLjlZQFY7ApOvrpay8z+BPOHY3XAUXXyJzllAWNW1hahhAkE5QdBUDCCLDMPMbs31EEISzGF4I0FAM0fnZdF2N/J9GtK29kTtmemq8zZk7qlFvoO1BP+JMYKz9w9I68qGM8hiokVTM+1bLSGC1wZEWF+CjKHpkoRYa9Wsf5aDZwHy7OsI/klm/ncC+c41IAR83wyuWQ4WRtk+GZY3x0zIzKTaEqTWIOP0ST3H/JQsF84GRDO0kInmZuX8uaZK/riOkEtndkjkJKEUbPTHJl62PzbtslwOfQSfkmNkTVSKwG4obAub8X/09Kv1d3VUBQiB2BqVLWiZeNhapCsTPuvIRiy5Q39bndsRudGSNRmpuS/UV/yzpVkfBwvNi5CDgYZm+UCYOVMRWt7bTudOMZlqWdtB51fbghAPQj5slXCX1FfdJuFrivdUw87KIADeo2RCt4/vXjtuWjXwR6queBWwgkCidsJYS1azMVATaXP6lSyZO0/z0jChgYYIrqTYq/Utl3ZWvFKuO97uVsa1LwxXUmgYpHijnqM+IoU71JH/U0vl42z+HXeQ1XztQQjpPbptTvlWxlauLDwyhOdtAQy+jjxT88XZo/W02n3rf9OEvZns5NtJUL1Lq6GzINPjuKkXZMMPWwS6WF0XH7dcPbEWMj5uJl/x+xX/jgNKzAPMjVnXCPAK7/1p59xCYKdz7p+89z+YZpk/Ab7uvb/POVdFNnurNNO5lUDRez8Y7Wvz3uc/v58EPgz8TVRuAfAR5M3qBB51zn3Fe78PedhPatHpBLIticuCnFQjAvQNBDORBcgrYdGk1gOf1/J5ImOIcyvY2pblYqgmLGxYZLAO5JXqJ/is1BAypK9DCIKZ2RjBuZAkjlVa5ypksaIBEXItf4WZDkHWxOcGQn4Xc1KfLl5N0ARZ/WcIK/cg972PRExK4asIqbwZGTOWFNAIyjKk77YQkghPBwcIY3w98u0wjZllfX8OGQfHCNHdbHaqJeScuVAYUT5DNifPCuQ9WEDIUI+2zchxE0H7Vx/VaeZtU2lGLCreekIYb/MBrUP61Jz+TRMze0wZSjg5xF+RiEMFHyM4VhhpMYHMzFZuJ+ivLapRrHFZGQ0zCyYf+bFYCFwQ85sOAmF4iJDnAkQIXY4Ioqbp+Lo2wV620wQfB21S4W2nKHYvHS9f+MVIM7JHr2dEoh2Z4KxN6kfx6vdKTMJvfue1sBMKv3oqaB1aofNrbePX7fxEG9xzTggHkf+G2UENA1/UKFzWhu0EIf6LQEtlJmLY2FO10lemRaqBwn2ngnZjq96DiXp3ErQLdh97CBFOHtLfvdFxJU3Wb9wYaXsgJKZUolBRPyR9YO28C9gJxZcErVNsalaxeoixjqi+Ttj6B4+y9zs3y/ZevQcz97qPECjAxpAlurK++lWykc+6c/97tb0mnr4G+EeCWV+d3pcJ3yMFucdewn1ZBmjDuQ1Q/CFB3WJfBZNGbGn3ZG7bkJer46hd8xAmME6O5c652DX6Y977j9mG994TnprFsvFR+bJlnHNLgB8H3q7lTFTM42XALzrn7vbeDzvnfg4xALw7d53vOudac+f+GNDuvT8E4Jz7LPCTyOfWJq49ZL0fZoTLgpyADPMTyCeghyD0rEAEZ8uMfpJg6jSZX8QQQeBu0O2FiLnMc4jwVUXIIg/Bjn+AkOehWq9npi2mcZgpTFth5MtebwsR3EUwIzpPCFW/HxmVDczM+Xm73s/VyL2fIJAgo8I1iKCcLD/LYwwxsWtESEE9QjArCOGo4+hU5RAT2gV6bish94eRadNQmG+Sfdr6yPpxlLPunUoTYWgmaAhPIuNvPTLWuhDCZf4hZo64Ve/RrESOkQ3/a+9MOTQi47iGsEBgJnMNhCSVrfq3iLnKcQLJIT6hNOK8JrHnlakSbIk5duq9XX9b6u8N0bEC+N26rSGUCrqKbF/rW/X/HuQDY+ZbI4SPG8iEYFV/Pdq/JmpOJSJMmslVBxRZGoTuNih+cmmQK3Wl3hzLB77VLGVNQL4H6IZvPqvZsLoJK/3mJN+NmHXZy1kDDFeOv/wHv3Nt1izmISh84JQ4zoO88OcIH963EcyUQAjHMNnXdTkU9ywNfbUG0Rjcqdt7CGF3IQQTMDJiYRINH9Vr7Ij2PaP7LC/IAcRNaJc8uLHmynAtkL58CWJ8o/fR27Ns/Dpje9TJX03NCjtOsfdPbw6+Kzu0TW/W481CvipeM8TYMZ35dyJjwshpB9LPJiDdgayi2fM3zYuRzyfIRu+yvvmR/jZXqvzkPRhdcxCou14z0lsjKpEZG2TcG9O2E2zJC4LmxN6t1bo9zzQmM0Ov9377ZAVUO/EY0rsf8d4/Mp0yzrkbkc/vXznnbtDjv+K9zwSu9N5/wTn3IuCzzrkvAO8geItNhdWEtwnkIZl+7kvAh51zryE4zM0YlwU5MafvjQS7fpujlyFDfj3yzh0iaBYseEkpxPtPIsLWYQJJGEGEdIuGtQqZc9fp/5OIMHaIkLHbypfDZP4p+wnkw/KI2EizuaqOsFptzvMnCaZfCye5dh6rojYv0GvYanw30t9mnpNQHkbcdiP5ScwPw6JljRCE9VrKJ8eMCa0FHz1K0N6fR565+XAsJITHNsJissFkZHI6xAStsw4Zl+t13xCBfFtIbmv7Rt23Qss9QjYhI4Rvm5F4wy3ImNtA+GZaujprh2mNGvU6w4ip+w3TvJ+pMWUo4YQrDvHnMxacIGTENgFsNyKAWUZB9P9msgTnAMHs64dQuD5c5jSSt6RDz29ChGwTwlsJHzYQjYY5f91OdtXMJo5+REC9I4pa1U0wwdoKV7/nKf6tpxVATJbaYGCnfnVWQGHrKYrLlTh8FhGWTWG0CVZuU8fxt+g1esUkq+Ja9fd4plaEaBWyx03DPqnb9WQ1Dub0HzuOmz8HwAOV0KSO9eZ4b2TDRC+z1461JZVQ8V5t0z+q5iU2f+olPKoGRPjWSbX+nm4GPtUsa9U22V5HCO8L8CBU/NQQY59T4vAQ8ozMRG4x1C0dZKCmdrzvCm2nxkMkF9uXBkIC1O/oprpqNEQQ62iGBvHPGSdZ96hpXbcyheFKISI2OX9L+8EUfu0IybIxZ/a2Rk4soaONsTu0T/YTyAjaV0PROYNEnbeZrG3YAbLRuiypo20vIhvdy6Lc1UXl55HJrWNOQgl7788DN6r/yJedc1u993unKoM8vW3ALytZ+RMkPMJ/LXGN/65ajz8Drvben86XKQNXqsla5xDws9OspywuC3KyACEP6xBBycK2diPDfg2SV2Ib8k5tIqxk34LMH3XIIkG5leOjhHwnFimrBuH2ceLD84i24TmymoZBRFCyT1jeAhMmdya3jN/mbGz+LpZd28K2GgkxUx+L3mVZxKeD+5DFEougtCD63UGIDDZXoZKvBLQjY9SIZCOBtA4RzLOmixWEpKIWoti+0RYyuplgajiETPfn9VrdlCdC5RC/G8vIhjG2/S3RPQ0TCNNCQjb6OkIOlHyUL/RethD01I0EzdIGRONylBCe+Kzeszn9mwniDuYynHXyOUkoBRsT5th+LLdtWpANyErvOsKKbz5Ro4YJNg7ccr0I5LHN545CiJx0I1mu8yPkhTdtSSchyZJFZ+kkK0SeQEyfNJ8HTyKGHSaU90Pv6LJxP4rxKFSWe+M+KPbXhZUFjTj14ldI8o3Hnr2d419aG/KIEOod61ch/E4kO7p1ZTPwWaj4lRCti36C8/oztdJHJqbtQj5MqqGgCahDyEJnVGe8tvCMnmcag0qgV53tre86CBO2hdg1Z/VupO/VwmqgvVmzyp+DTdoOc3Y3EvUSGPtk7XhwgYoXawQyI4b/UEn1e0bHNSv175QTi/YsmsmY9Q18UbRW9ffoBXqRc88RTPWegYH+5qzDOwTheYX2gfZl4X2nxPfF8GW9z1/Q7Z1ax9tCkXF/pCIyCV9Fdk29gAgiR2MjXwjLZSCD9kB0QpHw8OLs8/HxOO/JPML0zLqmDe99v3PuQcQQcO80ynwK6Iw0LV8kxG7LwDn3UkR8/DLwfkLg6qnQSTB6BPn0z2n2iMuCnFQggn8XYYU/TtLWjaxan0SM6Q4h7/cJZJ5vQ4Saf4e8U6ZhsVVds3gcIazKWqZt8085ipCdBfp7lda5hkCQuggLVxci2LfqvW4i+J3EmektxL2FGo7JzHeQhI5T4Ra9xgaCU/MBQsja/Ug/7i9XwRxhun450zVDmi3m4jpPIPfURCCu9qxqEdKwiOk9p0e0jo3Ic9qCjKmzyDgxgd98r1YABwmRKXcxc8QE5CDyjp0nLAYMI0TkqJbdStD47SWM/XwcF5D7fhnSHzcjCwGWgPQs8r7Wa90nkPFhAQEsYIzlfztB0JjGs+fsMKXPScIVh3NkV28hG+40TiwHsjzWSfAxOU4Qsg6EsmZZ3ou84LFlWB3BTOpRhLHbyvtmhHjYqvZy5CUwR+4GRGhq1jLNhOhbVkczsBNa3iFso/NLbQyeqhu3uBkzQ9HmUL6ieoSxVhEl7tzydR58+C4ee/b28S7a/IbHefrZm0Tzs/xcIELx6vKdBP+P00iErqf0Wl+Vex77c91uI5P3hBptj1kB7dR+aiWQjHrEwMQmop0EJ1IIJl5GkPYiAv6Ho/Y1IevLIBOL9SNazx5geaVMSPcC28/BP1SGHC+79DwlcmNbqyWXytdUbbED0TApGRn4o+Zx8gNyvYplQ+EZ1Ei7B/bqw2g5J9HF2gkq5h3nhLQ1E5JhxX5LEMI9Ejnlm+nIvchz+axut2j7jYzuIEQdg6CheilitdiHfNyq7WQIYVDiSHd9hHfnsP6O86b0Rdt9lF7WmidwzFqyds6tAM4q6SggPf2h6ZTx3nc754465zZ67/cDr6SE66Vz7ibgLxDPon8DPuWc+z3v/W9No4mPAhvULOwYovd86wXfcAlccnLinOsgyDnnvPfbnXONwOeQYd8B/Hvv/alydVQj79Z6RBhagwhPzYSwqv16kScJkY7M1GuYkOV8A8ERfkj354XSQb3GcagFeAAAIABJREFU+eh8M+0aQ4SpIcKil/kZxFm6LyQcqiWzO4u8puZPcILg94a2x+zzTxDCDR8iazpaigCc1/PMP2EQ6T/zJWgmhGF4PjFdv5z8s5mr3DJTXedCYFNplf63cWDCdx3ZXFmTwaJ/NSMEZAAh5RB8W4aR57eMkIB0PTJL3UJYgM0jPy7y2xYdzjK425hagYwT8wnZR/Dz2krW7yqPGuSTZGP4JCHL/VltwxJCniELwzxE+P7dgjyn88j71sJcJ+pNmpOEGHGkrUYmRhSKs8GbNxQEIasOGb2qSRnXmkRE59vAi3XzOsQUyKq5SvfFq/u9BPMoCFoXMy0ykmIvRjNs/u3HJdoVwHAlL37H93jsiJqPt8JYXy2FezSiVH+dmE1ZfYvPiSZFhdsHj+yABvF/AEleuH/ZNWy+5nEGlch19rYFzYu2gUrC63UXYtJlpmfmF2FtrgF+L7qnf0DM1uI15Z26bauA8bpCO+OC/bhPSZx7BK1vJDrej/S9cdGHgJ8mLPab2YOZie0HbqwUwf+r2p5mZNvuo7dSIpaZYN8splsVV6uGqL+Wza94nP0918j2Y7WMVdaycpsmivzSWja/4XEW6ddphCqKb13EwWevDX25q5Ktb3iUvc/eLGS1Xe6l5Q1y0a6eq8SErVXLfxH4LcKHaBhZ+TUy2KL77tTtv0WEph1ko8rZx2Wx9mPGodL8s0yruFIrjgl+nnjEyVXIXSwePPMAcxOt6yrgr9WnpAL4vPf+qwDOua8hAaCXlyuDZLL5O43UdYjSZlaLgDd67w9qvT+DOtFnbse5zyBPfLlzrhN4v/f+L51z7wa+gXyKP+G9f2rWdx3hkpMTxcu9973R9vuAb3vvP+ice59uv7fcyWcRoesksjbVQXjX1hEEFnNMN7t/0yrE2hBzmF9EyEHxCGF12BSIRkNbCML/KMGu3uq/CZkju5F5wcy/zJF5JmhHMoubzwd6XSMmY9p+I2U12h9deiwvYOcJwDpEmDSzG/NdGEamhr3aF5cql4nl57DvsT2zCoIfn4VuNlhyyEbdP0DQQl9sDCImvtsQTcdqwnNaRyCe08lFc4Yw3mqRfrAki/2EHL0LCd/TBuRzUIMse5RDflzE2wt1exRZwH2Y4PxuZl5Gapdo27oITvN5tBBCVRsJOoqMvRpCLpYure+oXq8BkQ/uQZ7rGu2TCuRdsPrmLidKitaVUAqxo7s56kIw3N0WHe8EridIzGaeEoUOdkBdRHCWEVZbbFXIVr1fhUworbrdSkiCaNhOWDWH8dX+ittVAH6qlq62q+C0igLPwL62LePb9277AvvYQu+oqG+Ke5ey9R2PUlSCdfDZa2FxlLujtxIWw6ol8rYfbF/KWGstTz91U2j3VkSYtezspytFI2BO3B/VezQN0R7khTey0oloV4x4LUcmgL+KurVF6zAJZ6/W94WoTBNZn2sTtEEmtDXRNR+K+tj60fZBVvSzaaIbEfbtvusJviuGTYyTy6u3PUWBMyEaVxvs77mGHU3fBqD67hHu/9AbGfk1Wd6quH2IUaroGr1KjldpQKbT4qsCEtxg77M3U1Gvz7tZE1kekRupb+5l9L7REMXsg1Df2h18ipZrnxiZNEHmnbp9s+57GhGn5aIinJt/z2eRcZyxvjrAeMCHcYbXQhb25TLNih3/IVnNyTwz65oDeO9/iIiPpY5ZNK2uScpYTLvJrvG93PZZRJOSL/eWMud/DfjaZNeYDeYLOcnjJwnc/K8Ri9Sy5KQCGabnEWHPVm1bCaF9LdqUhdW1TNS2kGQO72aiZcLeKsQk7BFKB2zu1HrM98uIzzG9bqe2xwjMMULo45na/EMwVzMnYEvgtxohVLaSbE7zRoI6KB1LLsYWQiZxW9wZJgiMD3PxFamvJZvc0pTB5uxt5kS1SN/YyvxCginWOoLW6kZkIagf6f+FSP9diJnThWAEIUgnkfnatF9jhLFayh+pHBqQMV1P0ORBMMlbQxjPlkl+CCF4081MH8PGXh2ySFhB8AvpI2hoFhCCnZfTOrUh47Ze67McKeaXYj41ixCtyArk2XXrPdyNPPNtBJ8TsyowX6nZhEvOIkXrSsjjHBM1J2aDZb/NvySOrapCljnOFjvD/jg4qMlitgp7M0JGDHsR8xlzZjZTJWuSmfEPE4TqBsT8R7HyFbIKX98m7GW0pZotS/bxmEYUu3/fG3n1lq9QpYLv6B3VLKcPW8W++pqDDFJH9VphUO20MTi6eNyBvvD2U+xY8gDfbXspdVVyY109VzHWWxt8RLpFaB4nTDW14tPwqehe7yB8lPYAHyCYXNUghMaymt+IkJDNBGJwD/DHwOt0+7SWtxX9OwjJqayfasjkZuEqQuyhN5KN4GXl4pXDOlj5pSMcf6tmoX8CMZ/7uh7vRyZ6FSEP7rtW7s3qbIGxgVr2NW0BoPPTbfCWc4wOy4BY3tTHwWevHddSDXQ0U1E/RMu2dgZHJcRXVVs3W6qepl9vrKPQykixirGBEKK42F8XghOMVDPwweYg1u6SdoxrTpZrmz+o21uR16CVoPbuRJ7Bt6IyZhoAUQb52APXTBsNx8kGjlhE9qs4jzUnc5CEMWF+kBMPfNM554E/11jPTd77HwF473+kyWIycM69C3gXiHBjQtMZRPhbrfss8zsEwcmyY/fovg2IMNNJICcW/cv8CbcQwoPnhS0Thk27Uk8gTEOIhtcEONNwTsiIM010aXsXaD1bdHtU79OEddN4DCNCa7wAVw4bkf6JHY1N03OYuQzLOjWa9Lq3EQhSBSF8Ltq2k4Ts4w3R/jMEvw4LrxxbBdQh/bYIGS+36O9/fv5uaRz7CNG1mgmk0gT8tyLf3alMyY4i/XMA0SrY+OpD7nmQoE1ZgSx4GWEtR0wmMzm0EMjm7D6IRDW1RJz2/tk70sjEfCpNyLM0Py+Tv3q0vmY9p4+QS9tMKM38rZasP9Uhvbblb9mv55lGam7gSdl8ErKoJCtAFXPbJwn+Jba0EgtYLZpJW98CSwJkAnMvIgyag1+BbMSpfmRCNHOmTVqVOVAbmqPf3UB/JXU7ZPn++O61VKweYmPTswB0DLdyHU9ydIt4a+3gAT69+x3cuk1mxmL7Utq3tXGT6nfv3/1GCm2nxjUlXT1Xia+IrpLcePe/cv8n3kj927ppQIToLq7K5tpQrchYnwrMz+h9mNbiHLJybwRgI/DzBD+ZBxBh2uRV669Yfu1AzN36o2MNUdl2RGgwzcqNemyjbu9CXn/TDuzVOo0Y2mqQxU9XWfn4a9eKmZqd88dRu0270yGb9fd1M9DfTGFrMImjHequUc1AK9y79svc//AbAVh2Wx9XX/MUB//XtQBsfY/ow4/TxJqqo3qbi3ik58eIsbypj5GlUufAR5u59T3/zPePaEKY9sowriBo68xU8MvIc7FQxAN6D1sJmqw4ohmIYNJLWIkbtISL9oUz4mHE3pYU82Zedjy/RDqPiAnMlVnXFY/5QE5u9953KQH5lnPumemcpCTmYwAvcs5bUjiDRcgaJoRSheCvYeF2q/W3CUxdhIR1NtdYtCPLdZJHAzJv7SPY1q8i+H4cQOa4xxHhrpELy3WC1ltPEMie0bbeTFBumlBnpi0DTC8SlIUpNhOwCsL08cws2jwTvAyZlsxB3ByfTSMFwYRrQI+bOZBpx4YIYXmtr81kyrQTFib5LJJscgB5tuuROfb5dvjfjxDLNdrmfoK2awz5NkyVPNDG5xYCCV1ACMzQhzy3WuTbux4Zi02EPss7+ueJiZkythFy7FhIbCMWpu0wZ/8lhGheec3FMr3mBr2uabzs3bJnt0TLWQQuCyJgz7SRoN00E7ZRROZp0rqNWM8NUrSuhBj26TQB6iRZs644CpeVOwcsg0Ih7LIcJiCr+U2EiXw78mGJBZ0NBH+Al+jv2B+ghmC3Wo04NN8PvF78QFbd1kUVo+KgDty57eusoot/HBVLkaqaET733JtoXSIX+WzPm9i67dFx4bXQdooGTvHdUdl+8bbv8dju26naJuXrlg7y46/4Gvc/KwL0cVbS8o52qhkZNwUb+/NaaatpiJYjmhB7WS1bggm75tRuRGG/9o35NYzoPcaJyXq1nBG1zyCPwwTkq7Sc9fV1SLQza8MeLW/XWI1MynHo4eUE4X0z0vev1zKVWrc55oPYgvwW2WhpzYz7nAzsbYaWc9y9RCxl/n7rm6C7kgZlVPXbu2mnjZbb5ITB0cVUV41w63uEOH7/2Zdz5zVfZzl91OmN7WMLdUsHM2Tl4MPXsvI20Zi9+D3f4/vPvjwQ3AbgnVBoEYJU9WsjDHygOUQpG0AEECPQTxKcJe2DUENw7gX5yPUjjsBov1YW4JyeUCwiA9t8UOyrY8T+cYJm0iqALPucR0iakznBJScn3vsu/X/cOfdlJPNkj3PuKtWaXMUU2XbOEQSs88jYGEWEmnqCRiPO0D2EOCYv0XPtm2BCjdnMWyb4VQSn9jE9bsKjJUBcQVjN3klY+GnV/7cS5sIegrnZdGGr2l0EAezq6Jj5mpgPgJGNIabnaG1ZvI2YGdl7gskTBM4GK5C230NYIa/V65sJnq3UQ8hjY+Zqg4SM6yOIU3gDIipsIKQnrSX4EVnGe1uHWUHWP8M0Ns8wvchZ00EpR/0va5uuI2hz+vX3diYnJ/XIt3cDIcKkha02x/QVyBi3RT3TqJkPEpTWzsTaExuvljvIHOCt/2u1HS2EMN7Wtvz6Vp2Wq9L6Rglkw4JUDBG0K0ZILRKq+ZMsIDxjonszky4z4TN/nLlBitaVEOMcEzUnln/BthsJhHZQy3dCMQq/NVwI0bks67iZ1PQjQq8m4aOTrIlWNzKxmxBoUajs/K1a3+s1O3n3Ug7uXSqCaY20q4pRPtvzpnHNCYhmo00l5qdHruN6nuT8WhEVFnGG9tGrx4Xdx569HTpgdJv4QSyv6uNxbhqv/+D/ujaYZNnrY45i5rOxiTBJgUzynyUI8Q0IMbGu3q7dujg6vifqlyc7gRY5fw+S/K+uIOeY/XUHMHgS6hrD9rmojh5kdceeTStiXG5pbCxitE3qlXoPf6RlTWBvIJDFZsTXxnxjPgT8IUHw3wn1v9DL33/nPwBQ2H6K4h1Lx02ytlQ9zfd3v3zcIb66apRB6rhapf7/es1/4Yvcx9PP3kTLNfL86hBicgv/CsA3+Al+6bb/ySPKAHto4qeu+TseaH0lIM/v4JGN1C2Rmf/419aKi3Ss8HuEoP0ZJuvTtBeZ5K+Kyg8ixMTIiyWpHOcWtmF2X1bw6eh4gYnGzjFJmUcLR0lzMie4pOTEOVcLVHjvB/X3q4H/BnwF+BnEsvFngP9/snoqECFvhOCMa6ZJcRI6E2BMO2BpgMxpfhgR9sy5txsR9syM6kn9bQ7FFhoVRJDcpHUOE/xMbJXZ8jPU6v91TDStmSo4ngmMdQRy008Qus3kxRzA2xFC1UUw7ykHSzq8ikBK7Fuyv0Rb5wIVyDR0L+EZ2XOsR56DBR08j8xpuwnrKpMRphUl2txGSE7ZipAhE+KX6DVsRd6ObdF6ZuuTUsogqA6ZyxuQsWORrizAgz27UhhAhHbI+gctJPgWHUXu2Qhwn+6bimjmtSdGeiCYkLUiz8ryplikzC3IuzFC0Mqs0LbdqnUbMbEFtQbCwoHBNCWD2ub1iBbGTPQ2IHJGc9ReM+GzMN6WkHLuMI8+gAmXGHnNiZERQ6fu05C6cahgF5XzRXCRhiVWtpgTlV1iO9nkgxZFqTs6Z3vk7H6sVqNDnWNspBpqzlG/vZfenmVsXitL/lvYx2hTFe1qn9RGO/9v1f/FpzUq6KvXfo0fch0vV4PXf+blrKk6Sp2qPe695gs8cs0tdD23ChDNy6qqH3HrWmEej7xJTIrGBmrHTcO+/2ldqf8FfZ8+UCkThGVY2IRMuq263UGWhJlJlmUpt0nEtBiFFvHj6Y30woMaOc1Sxy1GnsOgfXH167sryuS0vBDIzJOdcuHT6jF/NfKBtVjlD2kb4uhpT+bavQmZJM15/uMIWbHjW5FkiSqbV9WMUNXazajGd/z+sy9n67YQjGCEarawj2r9uvwVP8uP8122XLNvnHzcxsMcZQ0PcxsATfSwjy2MaJ1b2Mc+trClSojAcVaK6dh3RPNFM9koaPcQnHUhCFVGrM2/BALHeBQJZvtt3S6Vvo9OcBvCpjfPQxAJwFLuQlZbmXC54lJrTpqQrJbWlk9777/unHsU+Lxz7j8CRxD3s7IwYey8/l5EsF83ge0QIrQ0IHO5rQLHviLnkZX3fkQYMtOvJ7ShCxFBaSEi+MSvxgCyoLCIoK1YQ/Cd6EOE/GHEgXdQ2xObvUznVTuv116vda5ChNM+QpSwZt020zbL3D2ZpsaEdtNEWDb4LuZawAvYgCzAVBGmnSqk/3oI0ags90xP9BfDrBkOIX3bgFgG/H6unBFJM2kyHz0L52vhcc2h2gKRrGd6Qv1MYfGza/W/JSXsQAiAOYSXQ4+eO0owXYvN3+y7Yv4ha7TMVmamETIiMIaIXJZ13Rzt7fqNyBg3Imaf+eeie6lFZI5jBD8iS2hqddjzABnf5lu0Su/D+guCz5AtKKzRaz2JPLclM7jPyZE0JwkxjKiaAGWEwyQyYxk/1P9mZ98Y1N3tSkxsdf4xss6BbYh5kslslp/ChF+bkExToqtnY4+JvnDl3UdYRh9PH7mOq9eKoerBZ6+lon6IjudaATi6ZA2r6BoP8/vr/CF/zs8zoku/fSzjPfx/nNflrT/d/Z949baviN8I8EjPjzE2Us2da8XeaRVdfHrfO8Z76Ve3fJA//tD74FUE34ftUPHKKFP6uxHnd1sBaiHrG23RLuw+/5Zs8CbL3D6+kP5DKFwv/63zCgUoHgCv25a8shgTyg6CKVEn9C6LiKSGuvW6et/eEj7wELQ3RxGVOIiJl02SIPlCWgnTSD/yUXq7bteco9AwyLIlEmygiR4eO3ILbWtFM3LnNeJJ3xOJbVvYN27C1cty9rORfc9t4U+W/AoAn+atvInP8Yf8OiCar6OsGde2jFLFAs5xVFmWkZeWV2iemyOtQOV4AsxVTT+i85m2cA/bCcKWrZI16J+FhOxBxrSFxO4gkD6D2xDeg3HfrPjZtBDeJQjGvSAPfx5F7EqakznBJSUn3vtDBFkn3t+HcO1pwfJGmNOzcW6zXzciYH4UZjI0RJg3TEA6iwi4Q4R8H3XR/qOEHAwvI8xDhjOIQGuaTnNMP0PQypjpGIT8I5Mh9pE8hAhfZq5m2xu1H0xLMqp123mTmY/VEczALKkjBD+bvVx4bpZSWISEY7M8VlZvBSK0Duh1jyLmuybk1iEa8AZE8zSG3LeZHB2L6hsC/hLpDyOkIN+Dfyab46MOWcBqRLT2FkJ5TOtr1b89wDdnf/sZ7NO230bIbN6KzN8btP2TPbtnkHF4jGwI4fN6bj2BuEK4j1KIx5nByIG9G40EUmWBB4z815U4f73+mZ/QIqTvtxB8msxxfoxs33cRzLZtf6v2x/not0Uss+hkphE9SzBznj0urs+Jc+51SHKslcBHvPdzPfQSZo3YrOsY2QhEpoM1i2SNb+sIqyRrCtmM7X3IxBWb0lteCQiJAm0y24FMkCYUvkrC0R7c97/Ze/f4qKqr//99EpjcmBAzISEhCcGEW4w2AWq8EK2KtWL1K9ZWpbaVVqutrb3Zp9evtj71eWxrb/bpU7W2+G2VamvFX1WsFq1ysUbApIIBNJFAQiAhAyEDuQyQ8/tj7XX2mXFyAWKllvV65TU5M+ec2bP3Pnuvy2d9liRIdzQU0xmKra79oWkPEibkKaNtFHAFD9FpGnEnN9NCEUWmxHeAKF1ksZQF8ivK9rCIxdzGLdKEvGdJoZ8GhFGqtruaivI1NHVLJOae7uup+NoaNjz3XgbGGWNklaG0bTaN0rBro+9Yq6qCeIk0OgLCUNaIr+DWG7Fed6ZC72pkxza1MXpDWCsPYDX0zsRChaYij5qO30GpO6NjkQN0pkGOsYg6kQVznfl8LgLB6zXtM7fgS9jq6t9DlHldgK9FNte7zXHJGEpvajRsaPD86x9g9rTVtBsLqIRmwoQ8Q7KKOh7hcg+Cl0MndVQxL3M5P+FLACRzkDu5mQt4GoAWxBhtQyJdIcJseP29LJz2GwCejM4nJxD22L5KizfT1HmSRN6A1tfLbIQEbOh/LXaeTkTGVokb1iDjp1UwMnhrusg4rH0RzIaIv4DpmchE94/fG76bHGO5J8dzTkZF3unIyahIP6Lk7EbWNE2EVbYqzdOYjE0anoAowa9gva2qCIWxRkkqolwdItaIUNav9yPKrl9x9xtBfViGrS7Ttm5sPos/wV4pZOPhXX6FT73gmtyt9L8TsIxPmpy8m5HVeihDmBv7sPCwdESxe8GcM1qGSTZwFTI+BeY9pcBtQSJJa7BbxnREcU9CouKqZGuuisJ8QBRxf4FDsEU185A1sQuJvO9EvPxvIOvqUsTZodEcpS9ON/cswEbRNDdpNERpmrWmh+ZyKLR5uJykEmSP1vmbjhimGoUB2wddWBKARJIoMqS1ZRTyVoDMs1asYV+AZSwdT6wPqwj7LKoRotGeVN8xWKhaBpbiW2sPZWIjehpdAdkH9bepQyDDtKkLO19GRQ4dXQzRcZzfIMCIDtd1K3zvfwD4GTKd73Nd9w7XdR8DHnMc5wQEmX7cODkmRVdqpW3y47IOYp/CNJsIr6c2Izav1pYLIQqdJopHzJ/qZB9ElEHF+2vOhipCO6FpyUlehCFt4h76ewMUFjd7kZAGyokS8IyPflJoZooHHQoQ5Wd8wTNGXuQMgkQoNxlwwcwIT3OBx9ZVw0ru41rv/oHUfqp5mZZUMX7KAk3iqT/3Ne+c1s4yUdBNPyTN3k/OijAdnyy2/VKNwJ5AHuLTsDS+/cD6Xqgx/dk1Va7RfiOMWApp4PhqZ7h+JVbhdjo+ryI1aIyUFUpkSwen08C8tEaJg4yLGic5yEZSgsDNSsx7q7DRlTEI61gJ9ncWYtm8Ug+y4ZX3UjHLhBz2wbpt1SSlSCjtTw9/lKQr9pOTFzbdkMI8X4b+ek7mEv4MwMWms7rIIosuzxjVY5UIQSqmrZE8IWS8ekgXeBkQzUohadJ+BlbLKl14WSOtXy+B+43qOBdb4drvAXwDSx6gMDzt/jMRiJc/B0UjWWCgdv6ijG+YD/VBUerhY8woUUni3zpyYlI0/hfZ5p93XffBI7nPu8I4cbDKqJ8+VQ15hZ6oqJGRjii+quyr0qNJ1BotmIg8P6rwqMGi3BKzeGu1bX+0ZgLiIddCe5r4jLn/ZEQpV4V8KHjXXt+9lSHsXGzyO1jlT+8/VME9TBsVcqNQt10khlAdjVyO7JvJiBKrxAJvIsvPLmJzO76C9LN6zFXB9RPYxBeE9EeL1fhLN399SL8NmPuWY4s0tiHIgg3I2FQiziFVnicg6+vVyH4zWHX1I5FGLPxOx06Zsa5CiGYGk11I6FHzVDQaoZA+JThQIgCl7B2JxNNdv4L0fRmW4lcNHoW++So2EDC/4RVk3DWCqDTdOg+UDlpZvw5goyEKR9RnWeF4+lw1I89nCAvt0nHXCMyoiMto4BvvR1iif6tvmOq+v0DU0lZgjeM4f3ZdV/kQvm0+Py7HtGg83W+czMTik3YbXapQFGsQZTfFd0kXslibGnz0Ig+ZPlQTkYfPz2dZ4fu/BHlQ9tm3UtKitLXnEzTUsa07S6gorvO88dXUet50gCJauIubCBuv9Rm8yDLme5GVRSxmCQtZyBJA8hwCRMkzO0VVoI4OcmNzGHicXz93IzPPNeVlc2DmZ+vYuEwU4oEvZdAxI8NuilcDv8QmVZcgim6zOa4BdqTZTaCXWEpl0qEoWxYkzyCJy2kIAZ1+7JgWxzTe+njIHcYwUY/MQSRpX5PyG5H2XIPNnTkZWcguNsdrEQWg0HfsT1xtHAMVeDklX5x1Bw2UexC6jpvy6GwPeQZJgCjJHGJJt+QHVWfWEiDKSmpi2LrKaSDfBxBuoYhcE9FrpIxkDnrjDQLlqyiWsWrqLiN4QoTgZZLg07qsjLS5e+i90hRt7EQ20FXYoplrgc8gtMkgi30XNkLYbPrNn9/ur3ANxBoeaUhUyzeWsTg+3m3iOE4Rsk9MRLaxe13X/VmC874AXIeowb9yXfenvs+SkdHY7rruB+OvPYy2jNipZj66DHjEdd3HHcd5GPj3Nk40+V2hLUofnoU1CNTBlIdsIwqx0rwU9cK3YxmDFNKlERjFxu/EJt1HeGvhPIWW9SEQY6W+nYDNeYDhE9XjRWtj9GApj8O+79Pf0GM+U5hPY6KbGXkPVmkHa+BtQpTHI60Ir78zBYl6KDV6umlTGJs8XUusD/KDyH6jdS+U9EAha2AJC1T8xRh3mu9UqJ/mAoFNGp+A9NN+RLlehCjSz2CrrkewxTx1blVj4W6jJX3Y/KRdWEVdCyyqkREfsdGx9xsSh5Dx3G1+p7/GCwnukUjSkd89HkNsg2XljCAGtTp2MffX+Z+N7MvKaDcXMb4VHqaFG8E+U/r8qVHRgmXQU0THfmTeKBxzF2IA7USe2aA57sbmT2l07qjFZbjwYY7jOH7b+l5Dd25v4borHMcpibvuVKDRQFxxHOch4P84jrMRIQR5ynXdVzgux6j4cxLCxOLk/XTCPshXjnlP2aD0lDORiMIu3yX+ZPcuYmtQBIG5B2G52cY3YWnvgN61J5B0klReL8prIIUoLcVRvsV/sdJgj/pJIUrAi5yECHMHX+dhrvC+djqbPeW1hzSCRHjcaNwLWEot1SzrFirilswicmn3EubT6OFpLogt/t0JGw/6Ksa/BzE41NjoQgy0Nb7ja7ALzPPmVT1E05FFysvlyYYWjXooCYHmNBhFtvMNYulpif3fSQPXl+OQZmrSHMy2p5acIxEMAAAgAElEQVRhDaiNCOPHL5FxXI01PH5nzvmu+Q36u9cANxz0IiMpc6P09wa8yMbjXEwpTbREJeoRDOyjPK/Bi0Dl0kED5SzMFEOxg1y6yKLGV7q+iBZm0kDUXNNMkGQOeUn0l/BnIgR5xITjymgkSoCLTOHvxZmLKKLFi7zQB707T4ileS5EIls6b/X3qZr8HWSB1oLwzYhxV+g7/6C///UZUo1gK2Kc+CMn8UUZjzE5es36IPAV13VfcRwnCKxzHOevPqcVjuNUIIbJqchW/xfHcZ50XVet7i8gMzNh6qUp39Hrum7E916Z67rx6uL9HJ5TrRALujxil967wjjZj30uNAqilKkTff+rIpSMnfa7sF58VXq0RokaHmoQaGLvm1gDRhmBlP5WR1WT7LVGisJL/JCvFCzV60hyOlKw7EVzkL3IDw/T+6ril2zak6g2i19KsHh/ZWB6AxulOVJRY+BkRKGfiq1UHkH63m9Sz0XyJxRmp4xNanTqmrcL2w9qKCYjMLRd5vvUZaAFOrUSecC0QevApJrzlRHxRORJa0DmjCZEJWH3faUlzsKu0Ucrajz1mDYp5GkXtp5LIqNit/ktmpOhuYlKt5uFpevNRPpgKBYwv/QhSHr1qWlER+FjDb77hn3X7UbGJIRlzlLihjxEl+jHsocqrEujMEGs8ZFnXjXqokaiRpbasAbNLmzxRTXYRi1NcvjISafrunOGPCOxTAKDsRFpRR6XzyNZBePNhnF3oouPyzspB7GWRSuxUZMg4uooMccmGd5BvM1FyAOShoUK1SIeAF3otJC2HucR62EOAhvGeFS0udO2EfBhBFLK+8mii5K8ZqIE2EIJRbTwVX5oYVpEKKWJDpMIHiHIk8z37tFIGfm0UWLCFmuZQyNlnMGL9nvo55uZQj9STxUrqfFyTq7PvAeAgmlt3B79JgWBHVB4kNziNjq+Z2Bc15rfqN1XiURKlBhgDbLQKhyuk1gjTV0Cen4NsLIVzyAMZvsWAlWATc0ZPS4CWn2RlVSAU0wNDiNp2cICBmKs1GDHbiYC59LNRNMkItjciwiimKtX60vAvjEM7BM1rLy8nsbUUtZtE6atzxbfRT5tzAtIpOQerieFKHebJBZl5AqZRqTQzwpqKGAHVdR5cyFKimd8LDBZsmqcVlJPE6XefKijinks9/JaAOraKz0oGTshbd4eektM5KQSGZtChDJ5OjaCohTKWchYac6Q/q/9oL749fF1gdT4yEUmxyxzvJrYZy2NYyohfhRgXaYIuRYijxhn1SRiKwzMBF5yXbcHwHGcFxAahh84jlOI5CzeDnx5kK85G/iM4zjzXdftcxznOnP9fP9Jh+NUM+1Tk7UeC0Q6bHlXGCepiKJehBgC05Hd3g8HAVHYNA9FPzuArGmHsHh8pbXNwhZy1HNVQdIcPoW3qHGhydw9SOmgMmw9DsXrZ2GjO/1YZq/t2PU1UV0MPc7GeqIVDrMfmQVahPCQee0iFuoUHz1Nx9YT0d+tNMupHNkjH6/8noFAqDQvQhP53zTtfw+ihRUhxoGyd/X42q+1Nf5h2uqvhRUvg/lTxiLrYBGi/ZUi/ayKvbK5fQV4DjGcVpnv/CCy1VVgoW8XmPuOhoGyCgzZox1HsD6koeBJquT7lXed30EsEYNG1EZimEzFGrtRZFXUuiHKMjcXa+T7E8+rsFTDe31t0sgQWDY4Ncx1zDU6dghbgFGpuDV3JRNbK0XzdFIRgygdiZilIqqhP4XyqGT4yMl4x3HuBR53XffxIc+MlUTEmq7runcBdx3Gff4tZaTwh7dHxhCbAO/HwedirQ/kVSvANyGLlEKCdJMqRCazKuERLB4SbPKxKnPKiW5qinS8WEzpGTa3AySJuo0CcuhkCs2U0kQJWwgbjE0ldSzjIs/bnks7zzKPkHE3XM4jtJPLek4GxJj5GncwxRgr93A9EYLkGZhQkAjV1PKhzEcA+A9+yHe5lVqqKQvIKjGzeD1RAnQY+FPuGdsk30ThUA9ga4Jg+ioLC2frxHpeQIyEtVg4Wz0QnGpyF14xm1gaBM+EiI5HruQAjUmz93TV1YMZxt1449drGKSCJi/lILFwhGZskUj1aD2CREvUrTAVWTivNsfLkY3F5NYEl0QoD2yko1gMxUbK6CGdah+I+Gbu5AMIa9fnuYv5PEkzUwBIIco0NlNPFZUm6/4ubqKHdBYaN+AUmlnGfC/nqIss+knxjM8gkRiIVzkNFOS1eTkpRZ9tYd1zZ9pQ/EvmNQsbWm/EUFib43nImOimnYI8A/o1vYjyo7CvTjUodfXeaE7Suica8TpGE+IdRpIQP2yk3budGAZVvBVNvgG43XEctbLnY031nwL/AT4rM05c1/2j4zhTgIccx/kj8EmsKT2cDOZUA3gU+B/HcS7CZoodtrwrjBMQhUUrYUeQZ2UvthL3fkQhUmNjK7LGB811mlOShe1xTa7dbd5Px9YR0fso9a2yFcUnMGvxR40A6PO4G6uw9SHKmN8YGUoZ1fyBVETRPBFbPFAVVO2DdmKrnccbG3NNP00093gDm4R8OAUi/eJXfvOwSrd+t9YvWYP4Qj6OjWipUajRkv8PSz37ANLfEWKhcZAAsppADiAGYx1SSOfrWEIBNQbSkXlwMhYq244YKGpQhrDJ29kkNiQPVw5hC2vqb88a8gr7m1SZTzdtVWMEbI0Y7d+uBPdIJP9AVkONyuxGxkHZ4TRfpw9ZIf2wMq16rzVH0pFnRq/VXBRMO0vM//52KoFFFzK2SYixodEjhWrqPE8ybRpA9ISgue+o0mC/PZzardhqCSAq6kjsx+MiMiz84e0R3Tr9HtwQMmvBxhgVy9ILKWkyof3FA7uwxkYWsdVyg8Bj2NztOcQuyqbGRFqhrHyh4nBM5ERuKU+8sjNdw2Je9nQI8aqfzKukmSergzxKaCZgVrQusgiT4923hC1ESfHYubLoYjnzvM9T6OcaFnO/KebxXW5lJTUEiNLjWyU6oyHGzxHMWsejxRT+ppHWZcYqS0VCvOplqjD/q6f9SuBWJOIC4hsuw9Y90aTElGzoNxaOh0HV8SqU/nN9kRCyrSoXQRRkTWZvNHVs1O5TWNJfzXElstFejB3fIgTcYhLeCy9rJHpZgI4XTcRoHtAMX1vyXQDujl5PZE+Qr+bd6fVTgKhnGF7M49RS7Rke3+Z2fsZN3rn9BOgnQCmNVBrCguuNZdRkLN5e0qmlmuuRiNad3EyIsBc5qaSOx1jg5ayEYmLi0p6kk/Yz8KyJd58mDG69jSdYquc+xDCb6LuwD2u8gGzoJV7DRfSr0jTSpW/0Is9Rh+84nWPWOBlZ5GREkXbHccYBfwK+6Lput/8z13U3Oo7zfWQW7kO27YOO42h+yDrHcd431P1d1/2BiXr8Eih1XXffUOf7m5boduae+7HVfI5YBjVOHMdfKWpQGXBdd6T6ztsmA9jIxXhsuasJiHK0HnFmtCJzRpV7jWjsxtYIeRM7rxRWox5crRdyornmbMTIUbrWsea9F7BJ7gHzWZZ5LcFWeFeY1nYsXFahR0MZBs3EVvzWSuFgjSaNXijdayJRL7UmJ0dMv+1k5Eps/P164o7fg/WSR02b/oG4ANoQ096fdK7sZppL8SY+oCN2HYs33o4kwnMHooC/F9lHJiPraRYyjiciTGwvIQZNM/AtbCJ3MuKqmISsxSM15uIhfEnIXHkTMYr8bHElw9xLGbJUqVfyB83R0HOykD4eaY6TFuVUiuksZDzysNT9Gabd/nFXdi81kCdgqbWzsWxqakjrfNPK7/qdSmDQbq6rxeZFvYGMVYNpg9J1+yvC95jz/ZD9o5LhIyd7Xdf99BHceQ0w1XiwtiOq18IjuM+/pYwQ/vA2iFaIV1F2IV2JxvCW/JNO5AFXJVrBD34p8d2iCOuNB/G8FRLjtUir2OP9n8UeOsjzmJoeiX6IQ4FkUuj3vO8rOYsIQU/5nM5mnuYCz7MeIcgNG+6ne6Y8qU3JpfyCG7mZHwLwPOewhIWcZ9zgIcJ8k9s97301tTzOJZ4xdBc3ESFINbVsfEW87x+a9SCb90xjSl4zAHsnTqT1+2WkfUZ+S2/ZCeJlV0NhAxI10X77CVL5TD3x70M2LP38IKL4L22FoOlgBzEaVPVyzV+a+bzPnKNs4ScjioPHHt4bW5TxJKxyALI5zDWvXzQXZY2JCfG3/q/Q8Ob+Riq8d7xSTOH8RhYbPS6yJ8hFecs8soKl0UtZFLg/pkBmgCg5BsZ1C7cx79CzfDJZaIDnsZyV1HAxj1NvIh1V1FNHpWesVPMyafR4xsjN3EkjpaQY4/Ln3EQRLZ4BtJIaogQ8woO6aCUD2zNIOs/iMUoym9m48wQbLWhGIkLrfccTfccgT6j6+ItM/6tRtw/jeQr5LojHQ/QQE5U8lmBdoySO44xFDJMHXdd9NNE5ruv+GqmagOM4/4V01JnAJY7jzEdGJdNxnAdc1706/nrHcWoQ838pYvJ/Lv6cQeRtd6oNFTlpM38J63kaSQaKR7NBRyJjsN7TLMTBWYYolqnIc6EGSD22foRCtYJYJq1Uc71i/YPmXM1F2Y2t7RBBvLX+CKUmfWtxxQbznnp5w4hRokpfyHymyt1Iks8nYRm/VOmLYgtQKgwtPnchXrT2isJuMrDe8COhyo2/5oNInE8LVu5E+kNpez+FjVykElts8UVkXT/S6M1IRSMpBQhg8j3YqHwRcIn5DX9FYF4vIOxommg9AZk7H2HklErxOq7W9FDIVQE2EhhmaNGChRpxUQKHABaiqMnmOkfiJX5+pGBhg6r8K3QwlVgqX4UYqmiksQRL3KA5UZoPdQBLRqGRQ52DSl4ANhl+JzYSqsaPkgaoY0INIM3NmYg862oMHbUMn3MyLKzLcZzfI6pUjuM4rcCtruv+2nGczwFPI131G9d1X0t0/b+iOI7TPdwpwA7XdaeNwneVkBj+gOM4nwaM8Tg+/uMjEH+NE7BUtOrFDRLr3U2T09djPcw1wF+IzSkpQSj6QDD7m7EeihsOCqOTnj8DehtPIHeWKLu9pFNKE03G1ZUTCFNLNXm0exGUHtK5mD97xsla5pBHu5e/ECTCkxXneZGTW7mN+TzJ85wDQCchqqn1anEkm4fCzw4lyq0ow2FyWM48UuincJbgoNooYCCcQdNeqcdCs/RF7waTx3Cf+c3qJUzBQthAHvwZSChd+60Jy6xVhmweaYWxOmuM/robcrJjaZw7sRpRIwal5+POLEmz1MEa2m40n5dlWy/QY2PEmJph/kTPJ/ez2+hYUkxHg6hMaWV7aGvP92qIVBTXUUm9lx9yeeBPTGcz9Sbk0EUWEYKcaqb3det+x/dmf8UzNNYyh0rqCdHpwfYAcgh7FeGVyUvHVw0T/Y5SmggTYrOxijUZXg2myJ4gubO20fG6/IbcadvY+HqV9Jc/AqgYbD2eiH1cxiFP6MnmeId576Dv84gWYgRL8aw30AiKjs0xFjkZhSKMjlQm/zWw0XXdHw9xXq7ruh2O4xQjLFmnu667B/iG+fx9wM2DGCZVwK+Q3JQtwAOO43zPdd1vj6CJb7tTbSjjZKPrulVDXew4Tt1oNuZIRetkaN5IFqIwnYilBs5CFL8axEOt25PmbbyCrV2iCpImu2t9lL3YCu2qGDVjc1YU2lWFKLzvwSpRm3333oWFUSnT0HTzmT7PiUThQy8iWUtZiLKplKlaj0KVQC2imEghBVnDpyLrcwY29+QNjt4EvhCBbCmMp8G0W/MzrkccTeph7zLfuwGJQvyz/SBtSFzzdCQeqfmqGknRPv49MqcuwCZ7T+XwWdcSyXZiHaWagD6U7MKywmliuhq8u5D5osZEF7GGhP8eftHolBruSViK3lRkvmpV+Pj7nY3MwRSsATMWG9nbhc0NU6IGZU07YO7bgzxXWnF+OjaHSgkJNiHRRs0Tm4g8f0o9vYtYfeaoZRQiJ67rXjXI+8vA0OO8+6Tpn7GPDAV/ADB47nvl3AI3/vMjEz+dqeabTPYd9+CFRjxK4N3QbCIqm5EtXT3K5yMKty6SM8yr6pmrxsTkWqQV7iGYGfGgN1ECBImwiMUA1FPJCs6ihGZOZr2XBB0mx/Osa8TkZNOINvIJEvEiH9/lFu5nEf+X2wBYwkfJp80zSh7hcuax3FN2U4hSToMXDSijkXIa6CXNq8Fxd/v1nF7+N8+I6hwfYqApw0YZLkcWHM3VuNIcKyXvSwiSXaMW1yKVgJQ5S+tqpGBqlZjx0OgJwL5sWejUq7hfTvEiK4WItyzNjNUYZLw0OpCPgeCZ8a9BxlGTv2dg2dNK5JRIdxAq4eLyPwKwvHseA+sySJotUYguTmApl3rGRglbWEkNl5ok9mVcRBV13th9ffZ3OJVa73gey+kii2VcxBU8DGCqwTfSxQlmfPopPdTEw8nCxpZHByE6PeNSxz3gAyrXUeVFTsgTqmGtVt9AOeNLdrL3AxNtJKQLMfRO8x33YefxesRFoy6cMnOOKvSdANm273uVNc2/G/pdodlYg+UYkNEpwngm8DFgveM4xrzlm67rLnMcZxlwreu6bcCfTM7JAeBGY5iMVNKBD7uu2wTgOM4nEF68GHmnnGpDGSenD/HZ4ZzztstYbEXsCqwXPoBsFcmIoa4U8UXINNfIgiZ/78UWflPYiX6WYY4DWDiWYuIN9JdqREGaiDjH9FndhSjiqgSqkqfKo0ZksngrJbFfdLlQSBfI2tqOLdqXjIXZaF2WwaIxWoxwsvldmnx+tAUGJyDKqCr0Tea+6ueYa9qmkRrNMWhBDJh3MkD7d2Qcta8nIP1dgCAFfo9ET96DtF8pdceTmOp3JKL5MxuQSFIQa4hORCJQT8Rdo4VGlU5XoYBa5FMjfUnIs9FiPhusho6yXmpkQ39XFJljygynlL3p2HpB/nyfJKTPWpE+UUrmPqyRoxEVfT+AXcsPYAMUPYixswnLKKeiOS/KyNVsvncT1oBRtrFRk1ErmvJvJR8apXMGlZHAH0ZfDiIzWI2TEG9VkkxVeLAlNPKzbeQjH1HQNC1lDbaoHciC04LF7vfB+Hk7ieyxOa4dLxYTOEPcT2exglqqPSOkh3SmsIVkDtFJiBpWkkYPp7DeMwyaKKOdXOabTMsyGllBDVfsfgyA9dnT+AH/4Z1fEOe2uoOv8yTz+dbuHwGwOXsyj3MJtxhjpod0zu1+joLMNtq6RfG9I+8b/Mfrd/Gf024GIJyXw09Xf520LxpY19oT5IG/yHxJI7H5C1lIKFtzGH5BbPErzZVuBeaY8VnbC6E0SbYGm0/ih2X5mdO0pol+3mrGRqFj+qqFNTU5UQ0oDQOvwUPf35R5F9/fdCuPN39Y3iiBmfPrvArvdVQxh3We4RclhYUsYYlxSGsUQ6Ng5xlWrVJzfYSgB8dKNztRCv3M2LCVj1bcAgiMK5xsa6Xcyc3UsNKLrIghk8VKzvKu98vGbSczs3i9F0nRCMrF0/7I43xY+k2Vk0fMqyaS6rzOQqJJCgrKJ3b8OnshmAYRvyaUhg2tKBfjuzdy4rruKgZBLbmuO9/3f80w93keS74d/9nquOMDSCQl/rx3xKk2qHHium4fDJp7EnFd94Ce805LJ5KXcA6ixM3A1il5E1F81ROuMBOQZ0WVZLBwKMXRq9Kkxo9WJR/AVmr3JwJrIUelOAVR8hSuk43sNerZVopXhbT0YR83ZfZKZFioMZGHTdDWxGWtgq75KEMNUDOiZA8gSqhSMh8t+9Q5WNpgXUKeQPr1QoSsJAtLy7wTSXx/haFhbfFJ8G+X/BQxCNKxOUYh893nIHDBZ4D3Y39jJgLWXMLhs6/rb/JDu3TdDuOhAmJEoVFg6X7HYmHaOp5q+KqhOpjx66fABhvJCJo2TMUaIAp7VINC36/CGskKmezDRjAPYeHF2Vi4lx6rsaP1a/S50PyZQ773lY1LdZaAafMk89lzWOKFUZFRgHX9O4pSTao4jpOJb99xXXd3/DmHIyOFP7w9El8ozsfuRC6knWJPqTCnK5NRsznOx1bP1gRqP1pMObcBZsDe5RM9Nq/yvHraz8jzlNsVnEU5DV6yejkN5NFOPm2U0UQdlUQpoIkyQoQ9ythv7f4Rm7Ml4lPLqQSJeMdaoFE96jfsuJ+/5s+lyqxKOTv2UZmyEcfosC0U0U9AapsgSdrVmbVcw2Ku6XqQ3OI2NjOdpPH7eZlqGiinnxRmX7aada9I5n/huY20fr/M9kMZssjoU3UysWwhvchmqJGTdUhYNQ2JdugClYZAuToR5bGdWJpBf82ZHOQ8NVbiFexmJGKjbcpCQrwViGH1hGnTPLzIyfefuxVSoXB+I61LyqBP2NAUxjWP5SxiMZ9EckiuYTErqeHz/ByAh7mCDnJ5P0+bJoYNZEs04TzaaaGIRT33syJ9Lmf1rOLu9E+zoqKGB5/6FK9eOI12csmii4Iesa6uTb+P0kNNfCP5vwHJIfIboGn0ejkuIExrbdF8qgIy/m0lO9nbOJHHty2w/XYQGwWbiMzfTViZYPpRmXqasQxeADVp+Eq1YGsI+aJgb9nFxuBLEHpnZXQiJ//2MhK2rleQZXMPYsllATscx+kArnNdd91QF/8z5CCi5PzNHDci60I7EiHWgovjsQrORPOqWPVdWNrSCKJQRbFKj3qqVdlJRTzUISxFcRJWYZxu/t9q2lKEhdwoI5gmMquipzAviIVVxbNBaRuUBlkVP63VognMB4hVzuKV+0os/GvA/FY/N9yRSAXi1R6PpWJejvRDNeIJz8bS9z+NKKUvjODeiQyT0WDKSiRPION/PpZ1ajwCB08FnkKWzIlYiN50ZE88mtJQzdiclyAyNmczeInVbGL36d2mnf1IfylBghodAWRuD6UNag0Xnf97sfTEGuEbQCCI2v/KdNeHLZao5A76fOi+HsKybGkUsRkb/dQ6J1vNe+VIVElZ5NSg6UF0OWUhU2NksByro5K3LyH+30Icx7keuA3RMBRW5SLT8WhkUPjDUd53BKIGCVjaYB/Mq/dVcAxevhnL/NRsXrMQBa0CgRv1IQujWtyN5j1dlOceJHdWG53tgkUKEqGhu5yUTFkBy2gkhX6vongP6UxjM2FyuICnKaWRKCn8mYvJpZ1XOZkoKVSnvsyMdQLQnDJzK4E+iZgAXPTcs/zs3E97UKMV+afSRJlXZLElv580eryclSk0U0YT7aZuiuaepBDFHTsWdsAt+d8kJy9MJznk0kFt+6m0bi/zckjmzVrOsq8F6PimSWfVaJLmKDQjEQo/HO4h7AKjhqBKEMhKk34swy6YjdgT09Kkr1Uj6kU8HTqcWQiTrW42lUhxRY16dQLfR0rVTUcWxr2mjcaYTDppPwNNGeTRTt7Cdta9eCa3t3+TK/MEgrWceVRT6/V1ClH2ActM2YlFLKadXMqMFl9LNSU0e2xeVT31NKSXU5t+KkH2UZdeyRca76WzbBybLpxMgH6KaGHKAztQ33tVeCP/r+gjfMxUiqzeXc9d2Z/2IiYLWMpy5nl1TwJEae4r4fmdwoI2u7iW9vJ9kjujxUArzZiZ+jusItZLqga4YpizEGjLeea41nzeZ6KOrt8oAQGAH5d3u4zEOPkLsNR13acBHMd5P0KO9wfgf8HHS3gMSTuiZD2C7H47EaVmItYjq/+/ga1VojS1LcizM4CFxmikNop4q5UBCXP+ZnOfA8j6WY0o3e1Y/PshrJEUQRQ5TQjeYK6Pjx7EK99hrFc/BZvw7K8bocrbTixzl1+5LzDnKeRWFcOjVfTnYxXVXcTmxS1AmLGykd/eZj4fiWEymLwdhonKM0iuzCewRSRLEGrkVebzZCT/RCFKcxnZ7xkMAqYFQnV8g1jaXb+kYJPPdV5q3tAEZA7pvALLZhVleOMpGZnP/norB7DJ+mrAg+1/LUnQhy20mYGl8B7ARne0YGg7lvUsE9mzNA9FKbHDiCHlL8ao/bKLxJRMbwt94PCRk+MytNwMnOS6buewZx6GDAV/eHtlDFaDBZmx8dXhC03tDCCSLYvHSVjleDWST+GvY/JBLIOXsnmVmOPOMXQ0FkOZeIiff+UDzJxV58F8NG9Aq3vXUWUMkgBL+CgA81lGNbUeO1M/AerSK6maKXZdbfqpdKaHuGzpUwCsWHAqX2i8F9f8tHD2OIpo8TzvkfRxNFLmJciftfpl/nrmXI8d7Nt8jyJaeJoLuCf/evkZhKikPqaeRu6sbQRnSfuXRi9l708mWuVWE9wrsJJKbP3LK7Eh//W9UJZmsdZgN2cNEQeRPJF6c5N9xBo1/eZPDSL1pmh0Zo75+4k5/hKy6Vditap++Z7xJeJy3PvERAova/Rqisw/YxkNlNNpkjEi0XEQwIuEbGY61dR6+UAvcgZp9HD+Dvmhi/PLaaCc+Wa8O9NDXPTrZ3noU5dy5Q6B5W0py6edPLIQyNyM1VthJkTGC4wrnB0ihzDlh2QlvS/7YxTR4hlAjZTSRKlnfJbSxPzMZWzOFON1Pss82Jk3Xj9FlCtdiOciwCIdiyxkPE0aC2lYKmYQb3Mf1oVBGvjminUEqJHSwTFVFWMUYF3HZWQjOsd13Rv0wHXdZxzH+S/Xdb/sOM4xOwT+itotWJrgCDaqkYpMc42aKKxrIqLUb8Vi91sQJUorqWdgjRtlE8pGlMKdiLe3AetX0wiNGiURrCNWFVslHYmX+Boes7AsYsoapdET/c0TkZBXJomT29uwcBmtUq90yUcqhYiyGTL3y/B99weRvUHhPPuRPlk6wnvH0+/+sySC5MFMxuaiFiFj8IL5fCd2nijL1WBtVeKZweBrmjei8KxEBozOBzUMlKVLI3J6jc7nZCyJw0hgTn4q6gAyZjp/e7DkD35pM78rCauiKRFFn+9V2eRA5nsAMZi6scUwlXhC+6DA/N4i7Hx6YYjf4u/794CvlvVRyNtXhBVMrdgAACAASURBVPHfRZo4+nS2Y1Di8e7BuPf1adgNvdm2ei+IcrsSqwBrIrjW87gWUXg1nD4RKBRWJ4Apxc0s755HZaYYFgGizGO550lfZGBBNaz0EpzzaGclNVx/SOpcLE8+jzw62JIuMK6zlr7MQwsu5aUFktBx1nMvs+XcfK+OSZgQPaQTTJcdKWfdPhbPruGrqwV69OiZFxImx6urcTN3spQFMRXlS2gmQtBjiBpYl0FHSQaRQpNz8sgJlo4SSBq/n4GHMmyC/BNYeASmj8qwMsewaoWwUapOc456ZiJIJEQ1mCxiiyqOiXuvF/GsqQH0dyRi8w1zvMbcfww28lUJPAB7r5E3KpasYUPDe2mtl8auXLiNAFGiJt9jXuBZVlLjRU4iBCmgjce4FIB82ljUcz8v5SuzViNX9vyBSLpk+Yd276PzU+O4cvVjXt9M2bGDKY/ukPA70H1agHByiNAhMSaDRCinwUuQn85mFrPIa0MWXRTR4h23UEQdVV5OSz2VtHUXMLA9wyMbGP/TnexdNdH2lZbn87N3+XOr1pp+U+Ollzg8uhbH3Oh7rxX7jB1DhgmIcXKMNelfUUbShbsdx/kaEjgFuALY4ziO6urHpPgblmRe/4EYDcrG1YVl+vF7qrXeh0JilAlPoy2qQGoVei3MqMXwUrH5JypaCV5hq0WI3a9sQ5o4rMxWKpp875e/I8oxvntpTYlUbCL/BAavpD6ZWENC+2jtIOePRM7H1osZizhGXkBYEy7HRpUOIE6SZw7j3kdqmCTKUzkcQ2cvAhdUmNwFyB70FUTbWoWMwWfM+eWITvHLQe6nDjlV3OMV7H8glMbKvtZDLJk4vNWBr3NoJzanIx0Z4xexdMDhBNcmknRkruZhIyYaDdGojl/KzGdq9AeRebXftEfhWWqYJmOfoV3Y8VHYVgQLo1QWvj7TN0rNPdJckqHY7w5bhu6847CuoeUbwIuO49TiC3i6rnvT4Jf8K0g8W5fvOC0Nev1F/rCMTiCL+0zfcT3CiaPGSB9iqFzu+7aJe7yoxxZKCGWGPQhOlAB3cRPnGIDzEhYSIEqEIHOMW7qLLIJEyGyTe1wUeoqUu6H7C6Ig91+AKLcacs2FKet20G/gS5OeDrNiwankPGdorcbDV5/6OT+88PMAXMyfeZxLPGW2jQIKaOPjPb+jPV2gXv932x0sLP6t5/HfPH86Lb5VrnWuqXNi4GwD38iAL2INjWrE26WL7HTEyLvZHD8PvIaNcoAsgkpZq1KC9d63Ig4INXKasIxf4KMWNscfxuJRQcLqqxCl+wnT9qlY1i6gob2cheW/YXO54Jkausvp3XACHzpDQLuLWMw9XO9RBb9MNW0UcDNSlHEpC3go/SNc2fMHAE4L18Na2LJAogo5y/bB1bDlzHym/EIiWytuPJWiG1uYss5EupKD9BMg8yUZ/5fOLCfCOHrMvO0nwPv4GxtN3lI1tbzIGZ5xGiBKFXUezOvJ9vkMhDMg5yDsE3Vy7xMTZe5qpEu9d2q0dRHL8DKHWKM9i1hygt5sJMyonZ+LLSsP9pk7RmqdOOAes277fx0ZiXGyECnO8pg5XmXeS0bKOxyROI5ThOSxT0T0k3td1/2Z4zjfAa7DwsaPGj+cgeyGE5DpvAtRDjMQZVMLFaq3X6Ma/iR4NSD2m/fCWOreAqxCuNV3HJ8Tpdj7LGSPKkcUPy1Cp9CxFNMhmlOSSLqwhRP9gAI1DBQyVkQC0n/zuXqtFbY2XE2NoWQ6ogyHzP12I4yPKxHFfTIWErQGydmIZ6B6OySR9Xwkhs5SLEogE+n7a4HvIGNei8DWxiNjqTlPQ7UrUTsOIPuaVqPXIoZXIUxh8Fb3sxrTasxo/pFCv3Yhfa/QPxgaDjcDm7s01rRlN5ZWON4wmIrMM/0erRWUgWXf1G1DnwlN0NfnzR99DGKflUOI3nAIO4/9zGD+Aqwq6lAdqv8PW4aPnByXoeUehKdgPcewU+vwxJ9zkm2OLZMWvb14GK1JWM+Uf4KWYHNK3ossmpp0thMxTJrNcRkEMyNepfWNDVWUlr9GqYm3HzIgTGVSChJhIUs8JqZaqsmlnRsa76ezTLT0nJZ9NvwOpNQhOGhdbK6CTfmTmdFiSMPHS3Tl1QUC6zllw+tsunAyX10qkZPOBXJfVV5XUsN8lvFk+oWcZbKcLy5eSiX13NotldFDmWHC3SFKMs0PXYssQga+RucYyUfR+jBBxAj4b18/KlQIRKvpQ4wRZc9aTiyeVWkuWwxNbdEpogzrwjjb9Ps63/FrSIYT2FJ3psn8Eck5metry9cPwhNjPMzrwLoMOufnsG6Z3OSa+XcTOSPoRU76CfA9vk2jYUZT0oHl5gbXNf4O2uFXZ35Mjtt+B/vxaIK3X72PnJ4wOb/fR92NYk2ete5lVsw+lfbZMieqeuqZ1Bb2aimU0Ug/KV4RzSgppBD1DCQQummFdVVSx53cTDUvA1Cd9zIdebkekxhAZ1lIiBs0+lGJbPZ6vJ5YO17f0+dCM8d6458tNU42Is+V/wbHEJXwcRkVGdY4MRjhzzuOMy5BafvGRNeMUA4CX3Fd9xXHcYLAOsdx/mo++4nrunce7g3jlRRlJtIpHp8k+x5EOc/GYtoDWGjTLkQpSkd202ws+5R60hXmpZAaf1G8XViK1vFYw0SZkNrM/WZgYTOqbG1l8GRvreyebs7x4/A1/0DzWsYmuB5fP/m1hKOhXrsQ2dOSsDU1FHp0MbIXaK2KHt728s1viyibmlLVnojMoX+Y93UuFCCOvV8Pc7/B/Dy7sdEO/1xKJGMR/UbrhmhOlEbQkrDRFI1IxM8phbi3Y4lUJmB1KZ37mo/lN7rViCry3UPztwLmHqlYRjGlEFZGvCwEIlZi2v0PpF8j5t7Npg8S5d3o3I23GdQoiYdDHpUcZ+s6Wjnouu6X3+lGjL74Iyf+StWF4KTZh0XxurOxD6DSLapsQBRefZhKEGNlnijpSSn9dLxeTH+JKLNJof10RkOUBLYAYoys5xS6TCim1DB0AV6V9tJDTd4xQKAgStuV+cx4yhgfufKdv/qyUYCX/o4ZP9vKiudPBeCsjpfpPjvgJby/VJFOHu30CzkXLRRxgWGTAqmX0UgpN+2+l4ezBZ5URxX9pFCQKSDNampZkXkWG78v9TrSPrOH3sYToNWoJ80w/o6d7L3PuN47EeXfMPLShXi8lN73NYSZZDvWYOky72X5ztkP1JxiP2/B6r9rkYOTzfimIflCqrNfiyS0nm+OS8y9lyKL1TxgwxholOKLAB1Limkjn9PnS2SrkjoeY4FH/xslxTCqidu9inoiBNliko4eLbuQsrImPt4jyetkACHYjBiKpzXWs6LsVAKfilKkFm8KnPXjlzHDRefV4whk78ORKUM/KUQYx3U7zD0Pwt1F19BsvlNheZpTdD+LmMezHl11F1kEiNJIGa2vl1E67TX2rp1oFREQw2Qn1rh8A/FoqbY3BxlTfRb6MfVm/ElFM7E5JuouU5fsdo4lti43CaLH2bqOWoY1ThzHOQOp2ToOKHYc5z3A9a7rfvZovth13R2Y5cR13YjjOBux2YWHLYkoUlsZnJmoAFGEupAIxlgEKvWGacSbyB6h0C9Vjvp5a6SiFVHa8hCDYzxvrca91/xpnoo6CVRp1CR9pQTW7/KLKlua9L4XW6BuQtx9lGFsE4mhTdVYD7dSsyYq0DdSyTT3SDbtfhO8LUo97nuRPv+fuO/SpeZYl78j80Phc1MRI+QfiEtY82rgyIv/jUf2zC4s1FCZ3BKJP09IjUKFCGq0TyMQQRJHE/zPTQT5XbuQuayV4cdiDfP4HKZZ5ruysMZwCNky9PvV6M9G5qYSArxirlG0ixYFTTXf86Zpwx8QlIDC8RNJ/DwfVZ7z42xdRyt/M1XaHycW1vWv8OgnkHhFSJ8O3RlagalW2XWwyrEqYb3m//ea4z5ksiuc5QlEcWuUbXogawyzZ632Iifn5C2hhSKvCF8RLV70BET57SCPC3iaBsppo4DKvRvpnhJgygbR5F+tmMYpja/T/X4xeDI3RqENrnvOKKtzgNvFA69tzPxjlPIrBf8/aUMYHoAVd4jxkkUXPaR7yms1tbxMNQ9nX+oZNEW0UECbFzGQ6/bQavqhMrOehoqZlAfkO1rOKKL1N2UCeQP4NrY6LlgmL3WV+mFCeb5zurCRjhygpRV6jWsmz1yjSZAXA3/3eeaVqUshdn0IUPGL5vhaZNF/BJJ+IivywGsZUIZXJDOwMEpDeznz8p4FpBhmgKhHHgDC0DXFNLJk9w7qs7PoNeN9CuulQGa64NWmfHMHnT8dxyc2CMxre0WIUproIJdJ68J6Q7q/ECDzBauNOL/Hy0EJHooIkYLZRJ4sO49K6sk1O0UdlQTo99pwDYt5mWqvzY2UUUAbD3dfQeE0icKQY/rZD+uah617osQEWqFjPQLB0yKNmtzZooZhIfS+ggWztyK7i3/p8DsG3lkZSHLoTxnMLawyWGns46IyEljXTxD0058BXNf9h+M4Z41mIxzHKUHKJNQivqPPOY7zcWR5+Uqiqpdmo/s0yI8YjIFosOmqnuit5u8j2MrtukeEsXkSClNJwhZfVCrUCUhCr/7fY15DiFIWQZSmXYixMANbNK8M67HW2hW6d40nNnFaf8uAuSbPvKeUs/qqhsJebBJ/vOi6rt5+sMrjSLUFvzKoBt5YZC1qQNbyamyOwk5kHYo3gv7Z2snReNRfxNbRSUX2wXmIg06Z0Q6YV42aHY7omClxAtjK6IO1uw8xqPU8rcujc0nVlUQ00fHjnWTuk4KMWzYyD5UwIh0770CM493IszLJfKYRPIWF6fdgzlUdPx15pqJY9jg1xjQfZwJiFEKsYeKPkqpjIn6eK2PcqMlxtq6jEUPp46UQw+hQCb9DMoZYWEkYmYm6paYZtiHzdFVke297opuIYvFLkMlfaY6bkUVFWZD2QWO0lOqAGAp/4xyqqfVYr2qp5nru9iInLRSxnlOoptarXeHsh6bsUqpCoviHCMPTkFlglKX9sP3GEJO+bpVbbga0tOWb0H+JMUqATRWTmXLLVs+7/4kNfxBvfr5487PoYiYNMRXHz2IFIGxUIN77i1gG5+K1O7InyN+3nyNvrEIMOcVSvA9ZXDVB/lIEdK7K8BqsYaKRkyCxtVA2AEWF1lujm67mnNQjY6Pe/kbznuZFfNRco2O10hx/EAZWG/BsKpR+9jU2LhHjcebCOgbWlRGZH/R+Zw6dniFXRxV3cwOntLwOwKNFF7KMizgZgZ6VHmoiuDdKfbZAttxbdpDz9X1sv0PGf9Kvw1AAk/rCtt0/gshPg2TulfHK2bBPIHIm0qW5R5vKhBChmlqvpo38rLNM98mKv5npdJHlRd7m8yQ/5ybmZS7n8QYJZaUV7qF3zglWKWvFVq0G6fNerBJyEHlsGn3n+3ODPM6JV8zrGKybC44OwDP64uIQTQ4Mc9a71zhxHCcDYfKNAs+7rjtYJYQhZUScAq7rtkitK09GbZt2HGccUt33i67rdjuO80vgP5Gl/T+BHwGfTNCme4F7AZIdxyOdi1e24pWTwaBSydi6IEVYmJVSlmoeimL4U4hV/AJYxa0deb7UwPF7q5VZSVmNDviO95v7p5rr9zJ47kK5aWPYtGeqed+fVLyT2KR8v5RhWZmU0QkGNxQS1Y7wK4Oq0A4ge6rS6S4wv6cFsTz/GXkmw8nR+FceRIyTeUifTELyQZ5DvPwnI2OQjRSb/A6WktefezGUPIHoI9nIXC1BDLqhYGATsGxcasSoUaFQL/9cON20N35uTcUSOozFRk8GfO/726FEQ5ORMdYoj35vF2Isp8S1DWwRUs0rOdH83mRkG1K4nMocRDeIn4uDOSZG1TA5nnNyVOK67pR3ug2jKwcRnPvkBO8bKQJazVO3A7vxlPhOD2K9+UoVqbrWBxFvloKpu2DvzhyCxUZRbJ9Gct5BFph00BCdPMMFMUX7vsutdJBLeY8YI68WTZMK5C/JLSedHJZwsCJmroVJLWEPBhRTBBKgHgIz8TwdM+q3wtlQlS7QpEcrLqSalz0Y0Ck7Xqcuv5J5h57l6uQHTLe0UMNKL0ehlmpS6KehXZKw5+U9S+veMnJnCRwqOCtCU8NJNizdghgdHzDHajCssf3kvaqS3o4Yhmp8NCPjoPkNIEM3yXdtFrbIYiWy6GtxwNWIp1+V6GYkudJf0GkiNC05STYM8IzIv79ujK5pcDc38BO+BMCP+TIFtPFqkRh2ZTRxE3dxyjoxVjpnj8Npi1L1goxl9yUBmu8o8SJp0U8FmNKyg86iceQsNZPmEpj0kTCcZtq0BUjBo4Z22sTA1Jyi/hC0pBd5pAuV1DGFZh7mCtMtWeTSwZNRUyglIEnyWyiBcTL3g5kRgeXpvNG8KWXvmoMlfdDjlVjygRBiRCpMr7MXmZDq5vSzdkFsPso7Ly6ORwc9uMRnSMTKYDnZCc5rRrbUQwh0ds5Irx2pOI7zG2Q16nBdt8L3/geAnyFb9n2u695hProMeMR13ccdx3mYwcu0DSkjMU5aDLTLdRwnANzEW2fHEYnjOGMRw+RB13UfBXBdt933+a8YgT6bZP6UTWgoCSEKV3x+ShhL4ToWUZRasJ5fTZZXVistLqe5H+ql1ihLhflfI5iqKKUiStl433drm1WB9SMrExkmJyJBzUzfedp2LVKHefUnw6tSpxGZEl8/7AdTLiuxDKfoaS6NJuiD7AMl2PyTlkF+Dwxe9+OfIYcbSVmJRIQUxpSBLXjYhYVg6TgMMHgCfCLRPCKNPIzFohMSiS7ZSsag1yjsVw0Fvy/n7yQWP6W2nr8L66dSY0LrCGkiu0YbNSFfYWT6/2ZkLiQjz5/OpzbkGSnHMsw9h0Vh+EV1EP9c1OfU37fl5lrNfzri8uN+cRkujft4zskQ4jjOjcg632WOTwCucl33f9/Zlh2NBLGhkBCiQBXaj1ta7XE/8hD7YV0KY1EK1QnYCvJgoyhGgZ69cDX9BDyv9Q1599BFlud5DyHMXfdxLQBX8BD3cD2V1NGZLorxWT1GQzTerC1l+UxJ3WGjDp9DNoj/Mcc/QkDdypayATZnT2Z6tSizzv3gZuAp0Kfc9zqbfjmZix4Q6FLn1eO4sucPdKaHWMgSABoo5xEu9zz0RbSQRReL8u4H4Nd33UjSFfvp2Cafh4rXizHlZ3sCG7VolXZ5nvi1vXBxmuiranz0IwurLiIpca/9yHgo1OgRRB0zhSG5CmEH08/VBv2cec2SHKCB7RmyKFYcJLe4jY7nij0lvWNJMacv/Bt/3yY3mc5mvs/XSDOK9WNcynd7vkNXuvyQ5cxjIQ+yfbaMXcHuMKRC3YKZXr+d8tTrbL/QRE4+HoZrIOeZfbimYLvzNQTCpX01Hng/OKrBdUNORZh+U0ZEIWOaB1PLqWyhhEuNAbyZaTRRxuWBP6ESJEIRLTSkiHEZ6Q7GLuD6v47PE1jPFdiok36uz4jnRTY1gzxL8UwkYeXYMUjeBkmYk+26bqJ03XPi6keN6FrHcXKBXtd1I773ylzXjQ9F3Y+sCL/1nZcM/ALJumoF1jiO82fzHYXYEqlHHMgYiXFyA2IdTTKNeAa48Ui/UMWRUMyvgY2u6/7Y936+yUcBcbwPBTMHREk6BVF0Qrw12Xo6tr6P4uXjFeFnEEXnAizlr+aHaJK7Mlspo5DKTqwCqNEXVSw1sXcX4mNTSlV/rod6tHX913trTlW84v4m4vnuRgwUf22SLNPOLPNbpyLGzl6sUrcXWaOUpazFfEei3BQYnnr3dCxxQDsCfUpFzOfJiJL7BkMXJ3wnCyAcbiTlH0jfZiOGSQFwO/KkakRFIX5a7+ZwRJ2V6njSZPtqEjOvBbCRO01mx7StC5kDO0n8O/1jrkauFnRUY1YN9h7Tlq2+88uRMd+KjHWz+exEbLV6zY3qwdZ50c+zsQn9Wum9COkzLYAaNL+hAZlnWpFec1Igdo52I/rdZuQZHjXjZOhI/PGck6HlOtd1f6EHruvucRznOiT8/y8qfraudN97IP67WdZTvx15UK7FPsSpyATVY+WrV6VtBtAHSefJCq8sXIfMth0mRAFt1Bh3fpgQ+bR5NL4gnu8oKRT53kvZixf5mJK6QxRXVba/hgC4daQukTb3rzbXngkz3reVuudFQa66aiPODeY6c/4SPsrlVz9i2pxLUXoLOYQ9aFAD5TF5FotZxPOvf8A7TrpiP/PynqXB0NlufKWKpIv2M3CPgUsVQtKH9jNwvzneBFyElQlpAvPqxYZ2u7D9D1Ld3a8QlyDj0OI7XoPNc1lrzn/NHN+KbASGJphWGCjMsPfbMIaO3xdDDRSeYXS9M6CDXK4pvg8QmuWoz9hcs3sud2Z/3ktGP5n1BNknRgmSZJ2CFLEEqNqwEbcaJv1YPt/y23ymPLUD3gBHc2euQpjEdPO9BFk81Tg5W+qjtGXLPfsJUE4DwUMyVlXJ9dzFTd6caqKUBso9hrgmSlnePY/SzEam5DXLew0nUXhuo+QJgWhwFVgDOMX0nYkosYZY2ud+ZMPwpshuZPcwtGceW9dgMfN3VgZIismnGkRyHMfxV26416CBgCFzsodVJw7j2rOBzziOM9913T6zHi9Aamn777fCpF745VSg0XXdNwEcx3kIqYLQgC0fW4/15x+2jJSt66NH+gVDyJnAx4D1juOof+ObwFWO41Qi6kAzcP1wN0pBFJoJiJKm9RlSkWdADZN4JT9eGU/CGiAqfs9wO/Jcq9KnBohCsZQdK4hdsxQmthlR4BSvrwaJ5hdokTzNIQFrrCRS3NUT7jdMNJITxsJwEtUtUQVUGZVONPeJN0xUsRzO41+ELST5Jrao5enIfvsGEoU/moT7Y0FUAW5HnD06F9KRJ1+V5RCWUrgMuyLE5xD5JX4uKqEBWCM1kWECtg6IQhqVMEGN0S5znChB3P+du5E9QY3xQ8g8LkLmSDa2GCnI3tKOrQrfb84LmfOysAQOCm3Tyu/N2Dm4xtwrCekrf/2bAXP9ZmKfg/ik/ApEn1DmunYsk9qoybuEAPcdkiTHcRzXdV3wPG/D7uDHroxBnhh/hfiNWC2/ROyUdt/p70PgQM3mvQpi4S1ZyIOgwZdm+XxgkyjhbeflMyWvmWTzHUEiNFLm0b62UEQNK708gY/zW4IGPjJj3Va2zw7RkD6TqraNXti9e0qAzB9FZecFUWSLsYvFC8DZkKLsJnuBD0PVc6Lddp47jpzx+7wIxKYLJ3Nby3/hGruhJzudGTu28lJ+pUdH20wJt3AbZ0Wtuyp32jYvcbycBjYzjdYGo9yatpTeIpZB03MnMfBwhrUDS4AnsYbBHIRZKx7tMx3rzz0dGRM1RmrN5/W+z3f4xqIPyw4GsqGtRqIrAF2QdP1+BtZlWOPyZHk/3C2Kf3VmLeU0eEZXO3mU0+DlA30j+ztczz2sMOGZT7T8gVeLphEcL4ZC5g+idH5jHOdXmejXaeBMte2a8twOyQ26wfc77gYuwEZSbkC8N4vN523g1MMk1TZmhuEgrCgSgoMV1DCfJwmbMF8NK2knj0XmBjdwN9WZtVRSz0+3SaGZwvJGWpeVWfhiKkLyoEimePhEEJt3AtASxzPsZBscmjoCNMvx2OTSEFjXsEtbp+u6c4Y7Cd6Sk/3Wr4NnHEltuMdv4Ax3reu6f3QcZwrwkOM4f0TSJ86PP28QmURsGquW2gSZhf/jOM5F2HDXYcugxonjOD/HpPQlkqMtnuW67iqEwyRejqimiXqqI9jobwsyKhFEUfPHquJzT7LN528iHv8DvnsqVEo9ywoN3o+s1eqxVppUkLW/GzFNNZcQ5LnUXJY286cGymTzuRbg07yBRAqt1rQYS2xtCT13qPwGhSP1YUkAEuXhDKZIq6iyPtX8hr0IJKcd+Di2wONmRllJfJtkOGiZ30j7LRI1OBEZC4VDrzXva/5NJYZJgqH7M17v3WTuPRznh7YrHWtI6rhMwNIIDzA0NExFYXkada82x43Ib/JHEDXqp/V2usx3aG0gTcovQXSwkPldGjFRIgitHxTCol/8+5fmoaj4DbkJiC6iRACbkf5vMe2ZjE2jPCoZ4N2cw/jPkKeBPziOczeyr9wA/OWdbdLRil/7nUoszCtNdlddhMuwnvoSBELUiCSXqYFSQSysq898buydqrx6D7oFkEsHpTTxstEJrmExHb6nvGrHRp7MP0+U/hSYtC7MpPFhWZAMrjjzxKg0Xb1YbyDRhRd8x7lIrgLIgnY//PVGydI/v3GVeOc1B+UXW+EWcMyGUn6ogZ/lf5pLeJwgEZop4fPcxW3cwt0BKV37VX5INbWe8bKSGvqjAXLLDQXvXcUE50Ro+s1JctPTELiVGiOpvv9BDId+ZPFrQbzy+eZ9jWRpMrsOl3bbx8zrTnONYqwx39Fs/m9GZrAqFSUw8GyGjN0GPCWh9IzXKKKFUppY3H4N7Xl5ZBnr5UE+ysNcwRU8DMDtfItHuNz7nG1wypjXbej3Tci5bp+NYl0FnA1bigx717YdMhb3YRP0ZgIF4Nzj66uZwCJz/H7kGqOk9J8mtW4qC8S6CSRHaaaEEvPDowTIo52v8kNpA/2U0MxKasgtbiNAlLb2fCiTgqEAvatOkP7WvBdth3pwS0x/q0FcliaGna4OLmYgdLCykedOo5VvcKzQCINJiB8252RkEp+TneCUM13XbTMQrb86jrPJdd0VI7wW13V/YKIevwRKE5QLGbRpiW5n7rkfO8OOWIaKnOhydSay3z9sjj+MLU10TIgq85sRZeQA4vDQRPE3kWdB1xG/YaKKnNrgSmU6Hlu7JDPunInYfBQ1HjKwCcyaHD7JtOF8ZI9SxS8JUb60IJ4ygTViHzfd0wYzTPZiIzyatDwVG4XZb9qWiH71dCwETdnE9jO4apNR1AAAIABJREFUDAb3UmV9srle83LARlM09yHe030sSiLDZLB8lANYqJwSGoD0v+Zm9MGIl6j4Pm4nNm+ji8FpsQ8h83EiFjKo+UepyLo/wPB+phRkzmsUTPNeDiDzaACJGO0135OKHfPtyCKRiq0PNBZroKqxAjYSNN3Xbs3bUp1ICRs0cK/X+p/dKiyhhNIWF5rryhBXkRJFjIocj5wcjXwNYVf8DLKxPYOoUf/C4qfe6jV/M3zHadZrATJ5m7E4hJVI2FChR6nYiQ+QBbOnrWbdK1K0b92LZzLzjDovsbqSegpo4xrjxa6nimpqPa/tX/PnUkojM1q28mjFhQBc9txToozqgtyG7OjqQclFRuXDvuMXsA+twZye/9Aqe/3vgFvM518xr5p+ezt8lCU0UkYldVRSR5gcqqnl23wPgEv4M7VUe7Cvjc9VUXquLS75zNxi6e3LjbL7xAnCNqLZqHOIhQnswCbDa/2MeiSBXiMnXVgqZz3OwrJ7pfjeBzFUmomFfVVgC0HWIEbdQTxjM/eMbTRtm055cQMd5FKVJ+Ol+Ry38l0qqWetsUa/xe1k0eXVpuk+LcCS5IWU5ovmcv6WVRLFmmm+8wtAGKbsUBQ8MlYVsOVT+fApmNK4Q9wCOqeqTV+ojzsFGTtDLZzSBpvOtAny6UU9NFDusa11kEcEWzgyRNiDpXW8bsZp4h5K8xrY0CDc0Emz9zNAhq1rogu4bqxrEWNdj/ORcVLtNAfonIp1BHTID495/uBYqXXi4sRQeh+pJMrJfst3uW6bee1wHGcpArdaMZJrzXfUIDN5KQJW/Nxg58ZJK7GrWyGjrOYNapy4rvv/ABzHuQZJuDlgju8mFnnxjksSothoBCMLUaAqEI+9GgQnIs5PP1IxHrK0GVtfIowo78p6lIFAkzTyoTh8ZdrS4nfqyNGaKc2IXqPK726sIeGvNTIWi7uHWMXYr5TpOhPAKsWaM5Ic145Es2WraU/I/EY1jgaToXSy92NzHsLI2qi5FhoROqJQ2DEiQ+WjvIis8RqpOxGZP+qiSEXGX6mGh5L4PtZomBoIQRJTAYPMlxnYeaO1STDXa/REiWYGixD1Ywkb8rDjp3CuA8ierIbTWF+7A9hnSSMWyho3FZvjqH3kj0AGkWfFn8fVFtfGfmKjiBWITrfbtGe8+a50xFDRCOpIIk8jkuNsXUclrusOICCTu4c7919LThnk/TSBsWTFvZ2CrfeQL6d58JdWRP9SQyDL5JkYRqj3zfoLtd3VhDIt/KmDXJpMOKDUuN8uMUiKfgLUU8UMtnoVvRmPLNR+lqrvA7eZ/x9AlF6VfgSBfoM5vgHxgOvGooaJRlbawL0KHJOVmlkf5dXZJaTQT7p5ooPso4Fyr1jjpSwlRNgzusrPbWAlNTzz4iXS5Dk7SQlE2fuEWWl1IdRoxypEmdVk9V5kEVyP1V/VO6iGYAnivVBYVgqxFeDB1tVUUcYuvV8JGKItyYF5NoOk8/Yz8EGxbEKEKSpu8WiWg+zj8W0L6C+Wz+eZXUEV2Vc5mQLaKDNGWeaiKDdcdb9Xg4YpyPgIrwDdpwXIvDtq80fuRsamHqb8nx3eNc//DN5X7OurFuw1HUgkxYibLRBAZWsL0M/Nh+5kefJ5gFBDl9AcA8FbzCJChHn/NLFwV3bXCJzQbEgDmzJkTmsy5C5k8dexWIks1rpBnY48N43GGDmYhjwc6rrtRXThsO/42DBMRksGy8mOOycDSDJ5JRmIOnbbSK4111cBv0IytrYADziO8z3Xdb89giauAaYaWNh24EosXfyoyEgS4guwjliQpbJg8NPfGVFK3F1YrHsqtvJ0K5apyi+JFLU6bM0GNUC0MF4BVglSeIrCYPT7tRievqevKv5kauWA6/O9pxXi/eKHXR3C1mBRhiyleNUaE4fM9yTylmthgTDWs63tO9yCiFnY6uHq1a9A1iGFAf0rVoMfidQiSnUB0gdzEbjXm4hxppS68XTOwxEMgC3OmWH+wogj8O9Iv2YSy1qlUQ+l7E3BRhs0B0OT13t818TD+RS+GF80cYBYNjydZwr/imKjPFrrJehrexAxdpqxxr+iciPIfFF0i+aKaNK7Spa5R7Y5RyNU+4llz5uFRCH3Y7ezo5bjFeKPSBzHuXc4ooCRnHPsyUFEKdInQp9yX5KDv2bJDuThq8Bi71WfajbHJeYcVbLHQeuLZaRVSMSggXIWZC71WK5qqaaKOs9zra9T1oli+qXZ/80iFvNo0YX/P3vvHp5Vdeb9fzYhBwIJgYQkBBKChFMMNigaq4KHolYcnepoq1antmOnTm1r39p5e/y10/l1enrbvtOzTm11Wmu1WunIiNWirSDWeCKjGE4BAoFAQhJzAHKAsN8/7vXdaz8PCQSIQi33deXKs897r732Wvfp+725+vHH7ZyV2AAlb9QezOBw1MK02rofmC7Kx7di0ZBfu+3NmBojE/MqoMRobcEKNAaN0OsmmXRMSW+gOKpkbtiY5Xybfwbgc3yDvWRGVc2r+84iPa0vYjPr2JnHO0tW0LzTNOwRN+/hwGOjvbILNnhIue3FBuaL8WkD17vfUoiXYZ4leSonYgOM8knPwxR5gbh3Y4PyA7HtsWjNgVLDmhzoTYcWU6vW7J7LP5T/iJ894iy1CvjojO9yT6dlvORlt/BxfhAZZbm0UkATuf2mdG//RS7LeFdUlHFBxgtmVDi8UHZzn3nCZBheDTyFGZpKqlkKF9yCN+g2kOjvfgZafjKGvJ9Zpwz2QO9sWJc5I7qn+pTSKHVQ62RYPcj7yKOFFvKi/te9bRwby6cxdp6N6B3LCi0iqJQ6eerkTRPKQaD4Me4+A2cZ9kAiAD4f64iSE6uM89CohA8rA2KywzBcGgTBUixOlwEsdmU+RgL3h2H4+yAIzhvs2KRrZALXhmG4ESAIgg8ANyffSBAEv8YQc3lBEGwDvhyG4c+CIPgYFpdLAX4ehuHrycceiwzFOPkGsCoIgj+65fOx8g0njPTiIwFNmGc2Cxt3N2GeWxkvE/BdfAReUYsb9ZCYSz8e+44E/JViNgGfXiXvtgC8Oe76u7B5oAxP1atq2vqcijDlqgefHgXe65usRB5w55QCmInPyU8lUVkbqD5JPVG9qyjSJMWwDfN6yzga6Pi4TMfasA+fNqcK5WDtdzjsChxbYcTB0s7ebJEzTgUTpZ7UYs7GFHdvuUnHDcUBL6VcEbFcbCQagfWF+DtJw8+pwoGICrgLzzCXHHkZCGe0F5+GlYG9O9Uu2YDvZ0pjBDMUavGG/D7MERYnlkiJ3VM/nolrV2x7NZ7IJd4Gki1YKtgpbpvDm5LjzrkHz5yX6tYP9IxHJScrxB+tvCcIgoG4GCQBcOFbdTPDL5pBRnEQlfBI4E/u90ysQ+6O7aKQZ71bzsPnJWLpMbkzWsnBjJMsdrOKuRS4r30qmymlPlIUH2MRl7OUV88wxXI+y+knhSJ2+LolNdhHJifzeGwC0iD9Tfv3cVcgnne57d9yy1cAvwH+3S3nAw9B9zwDZGV/CcJLYgD6OTBpcSuT8lspO9dmiLzVu/lqxR3UOMvt97ybD/PTSLn9RNoPqKGS5aVm8HS9kWW1QVxE6cDK0cbe9WFnYZ3r2tVVmKfeLa/F0zWvwAYDTVLC+yjVSIXLpFO+iBmUcfzPsyS8Xj7r/sAU7gpg2UjP9HX9fmqoZPLVdtEy6miigKpswyZfwhOsYH5klLWQy9kra6LnzN7aygem/yYy9F49YwYz71xPunJfizHDRG1dhEW9ajD6SKDzPMhuwKIuYO/rVsxYA7gNM0xcU24unsjUHTsoyrTRt4ss+kmJSBc2UkYXWSxzIaRS6lnGQrrIitLyZpevsrSvNKcF5Fhf7m53yxkjbYJQBDEH+3yuccsP42ucgLVHN3hXUzOJGJRuTqSoiWFOjo3r4xCYbMIwjLNpveNIjk3ab2XS8j4skpK83/XJ69z6pbyJiTFDYeu6JwiCx/FZip8Nw3DnoY55q2UUphxNwKIdu/ARX3l2lWoS9+LHFVopSVJ078NKGQv4LmVsF6YoKnIij3C8qjZ4rIUoXuNpU+/AMyjp2tn4KvFaL+NFClame542vFKm/ZUWJv2pL7aOpG29eJyEKtfHncLxqM3h6puIQrgdn0o0D2+cDKbPJfs6jqUwot7jUCISwy3PYXNcLj47Q8U3R2DvKPMo7q0+9jsNU4FUDBESDVYZJPG+AD4ipj5wOE4/3bfS1GR0jcX6wRx8mncjnh2rFnvO0di3oGfe4v7r/jOwfnnArd/kztGPZWAcqs5vJjb37sEb92vd8SIEyMDeg6JVYq4bNjlZIf5o5J+HsM+Kw+9yookqxGsUkwvC5csEp4v31WQdFrVoJ1HBFbc22AeQ5zd1rx5H1jn10XJ101ksKFgRpdSk0Uct5RHGpI90fsUNLHDNuYAV5L2823S5YotmpK/BRxbAPpBKPNirBksNUhGts/HhSdxxH4O7r7bFW34JNEKBUsF+bYX9ImrhHqvLMfdHa8g7xbzzP624iVu5izWOtSqFfopoZBVWSX0pi9hLpkVPgI7XR3PFRQ+xvFQhJej4l0JvOFS7dpMJ/A6MCllMGWCpS/GKaddhXkoZNLuwKIjOGacZBntH8Xe1NrYfeHxLHlxx0UMs4Vq4cyR8DbZtLQUgvaSX+awg13WKqdTTTk70/pop4D/PfW9EavDpqT+genwlZzeY8/u0R9bbPV4ae+5KfBChFYsOFRO93+wr3DoZXTdhaXjCBv0ai4J9xxaL9u4gTIe8lfaues9NZzOlUVHGYhrIpYX7HXCqmAaqqKaW8oioYSPTSKOP5ldcLtnk/XTfN85PkLtc2yuKVefuOV6DRgYL+G8oykVTYrwIqERMcWIYKAcYMRS2rpNyGDkUW1ehjBD3/78Otc/xlD4sMrEXT1cK5imehC+GuBPzur4DM84H8qoeiP2/DzPmRYXaiB+vxDCkvHtFMoQZScGmKzFjSYFsw5SymW7dHvy4V+v+K4pTDmyM3efe2LOdgs/9L3LXlIKa6551D977rChLFx5zqeunMzhLVXJqTbKIUaodH32ZjsfPrB3kOE3pA6UWHa0cD0jAOjzjmdLlGjBHpLAexUdxb+XYuyrG+nd/7PyQ2GZx1jVF31QUUu98LwczOI7A3u82zAApcNfrx/flfvd/NOYMVFTtMned+H0Il6UUQ/VjnWMXiXWDit09aHvy82/HO3SVUrbQXb/cHbcJz1yne0gnsc7QsMhJzMlRibCLbz9JBiRo2fW4sA1ax/tUllL8x6JUo4X4VC+wD7ELz2o0BtZsnUNFicXcywtqyaIrUgKLaaCRoshj3Uo6ZWxklPsaVlFJ8RkNFPXvIPshxx/UgdW6kGgicJGVziXOLlH+8wYSc6HPB16D90pJzwVmQ68zTmq+B1XXY1gUt/86ZlJ8WwN5j5vCu3DiMr7MV5jtXIX3u1R11T6ppoo+0mi+3ym35+1nySPXMu1qyxpp6cuFDBj1SQeQrxuHw9ab/BJLjcvAIiOvY8bIzXhiU7FxKOnlPBIMQy7GJjWFm6djA5gU5Xdj70vL9TDtu6+z8blTWXL/tVxxw0MsKbyWXtK4oMQiW9PYSC3lUR2TAppJp4+7HKDnC/wblz/9FLddZJZC8CSUXVfna87kYwq9dPTZwPXQ2ehS6r7QB89D0/VQIIKCU7AUr3h0RUXdcOfKJTJO03MhrILN5zoGsB07yJrYRZ4ziNcxkz7So3eVQzv3uByy365/P2fMWMnGn5/KZz70FRor7Bwd/11ofVp9JgNTwKRMXY4N6jLaldb1kkuRzNJ3JnBMK8bBmAyIPylvJzlU5GQplr59KBnKPm+6jMRXpm7DlDRRqQooL+9uFjamVJJI/DwXS7uKK8tK5RIuQ9GXvXi8Rkbs2srBL3bbd+ExIeAVcgHg9W2KEUmgZ+lAtVi46jUONh6Ef4nfh5RFKZ3rko7RfSjdSBEh3Q8cnCJ1KMNkIb6ieBs2752HNxBTGLwivGTY0m6Ok+zC44zGY4i0J7E5vBxfB2UoNTfifW8VNr/KUOgh8V3oPWXiqXsVVZBirlQqGSjJ+IvR+BTHDmz+VZ8XnkNsV/1YBspr2LxWiL1b1T8BM6JEHiGDvRYzekQgEceupMZ+J7OQ1ZIIkO/ASI72uWu8hid8mElihGgvFq0ZHjJHJ4fHnJyUvyoR3kR1ThSKkAI13vqMBsAcLKd+B5YaJepUgcuqsQG1BevYyzBluXIkq9ebe79ixosH3cVM1pHpcC637v0ajZkTI8wCKTCzbQtdY9PMqbwaUxJX471OYzFlvhEYCdt7YNQzkKo0IHnplRa2FaiBbFd97JVFcPrtRKlGVVcCJbG6Gr1w3X2/o/dqWH7ZWayikhzamcNrrGMmlawiiy4aKCaHdpooYFttGVeUP8SSDMf+lNNF6dX1rHnFIiuMsfbsvnecLT/v2lcT6rX4CVs4hlL3nO9065e599CEDRR/wJQCGSs6VgD4FdjErvCuBk7tX2jFB2efs4o1k+ew5P5roRJWb51LfokVyqzmLPIc/iaNPv6Nz/MJfsBc1wbFNPCfF72XW0Ri9wykXdtHyzeMESHvgd0+LQ/3/0rIfsZxnN8IPAkFN+FZ1zLcO26z83EzlgpWae8pCviN9ucM9sDUXsur2jxxIgv2PsudmZaxqkiJarM8xiLKqKOXdC6Y8Xv+tP7d/N2HfsVyFlCc1kBtU7lXLtrxjGcyisEUFaXNgQ3ovXijZD8uOKJGn04iQfyJVSl+OKmE/5rlUMbJO4IgGJAb2UmAJyY6rhLi00ekoO3FvknhRuZh32c/pswlVysXHkTK4QT3JzatHmwaisMfpcgJXzIJrySlYYrYHrzyKInjMZQSNhpT7orc/nKuDVZ4Tx7o3Ng1ujBFUGxIGYMcm4Nn2FLkRukvR4LdmIBP59HzKGshE2vLt4s+NxjDlYgAlPMoJXsfZkB04rEih5O4oTYWn0aYhb3n+PWF2diLKfKX4aMnmVg/VDphH55sIY4hSo4qbHH7TcEbQl1Y39Bxbe6vGjO+2jA9q9ztvwufNtiJGS+iV+7H40xyYvuLRnigVL84/kntI9KIFOx72YSPJOq6u7A5Lo6ZPSY5GTk5KQOKemwVpiS5kTRwJvtMt7kJ06mmk6DQsgHr5FV4HMRI4N0uT/+lcYw41XKqTuM1usgiLVZwJ58mTnP8uOsyZ9BEPu0p9nVF9TLAU9iswewn3UMHlhbkPOmzKzDPimb2VW5/2V77MYPFeeJP/wxmDEgXOxuYBa3jTaHuIoveG9OYdd8WFox+gQW8wPKrzmLBjhdYNdEMuZeYx+LOq1iUbenr08pfp4ssPnP1VwD45qe+zJp546IUrfzTt9LcUuJD9bswI0Ifu4DrZdjgOxmLmMx328a4/w/jo1ZN2ADzTt9kdOMjQGdiCr3SxFSfRlGlOcCtsOazc6FiP5y3nxHpNmLd4Oi1frv1fXyr5FNR1OFRrmQRSyPMUC9pXM7SKBIx90tryH5XH9ze59u+Ap/+VIMNhmJay8fe0x2wL0YIm6p3ej72rl9y52klMnA2X+YiJU/vsD7hBtuisTtYnnlehIt5gSoWsCKqSVNAM8U0sIIFLG+az4ixe6hxBmg3mUwtqGdj2anWl7/hjMnJmLGotIoMzLASC/cSzIhXn+qCxFom0lbimJMTR4ZYhPGkHEYORSV87ETNb5GoGvr/YGP8FnxEQ9gQpWRJIRPd97akc8VrPGzAlKCZ+Lodjdg4LwUrFR+9EHZjAh6E3OqOyXLXrHb3Kw933L5WGs3hcB4z8RgEPZfSuqRgiuJ4IEC7lNc4JiXZkBmo+KNYuaSjieZWRgnAOe7/aGx8+x+OH2B9OOVQxRkbsefLweavOjwRgKIK5XgDeCjtMQFPuqBIV7LoHONj1x+BT73eh089VATvUH1LuI1t7rpi1dJAUIQ5vvZiuoy263c2ZgjFjXTdi2qWqE+muX1TMGN6MK4VGSaZeGzTBPz76MD0hXWx7SmYDjgUIoYhy8nIyUlJELlz9YW3YdqhU5hCLPKhgTEd+wAW4pXqyW5ZHbWUxHodfwP5F20l34VfWsjjya2LuKTElPhM9lLJKn7B3wNQySr+vu03NI43d/hGpjF1zw6ye/tYdZEZAnPr1tjgLMzB+fjCXmBKejORd6JpAxRcSRQQCv83BO/Cp4blYzVN4uRJVRjWBcid6qjJconCsMuZT9XYF3gMw/Vm0UV5di2/XWo4hgsW/Z5VfZVUpZkSf8Z3V1JEI0seseIrLU25NqCI9ekKjHhAumsZpnw/i0+rq8ciITLK0rGBOgYM5zESIycz/XOzzW2TV+U+bOARFXEh5C/fSvNScfbCgY7R5M/YGlWEv7nEIiJNDlNSTi0/4ONMdI19KU+wisrImOEpCB+BQGlcDdi7EgT5HhK9rMrNLYJUh/mp/jzMvg+yBX3+pTtOxuYpwFSY+l6LlPTeC73pacYEhv3uI52rdzi2t4mwjIVRrZalLHJMbDO5rsBK4W1mqlFcP2dFMyefU8e22jLyv+aKaj5SYhHC+OTwLP5bmY/1Q9kcWUBXnK1rC74QwoknBxhxMnIyDDIUtq4TXvqx7voOrB+L7rcLU5AmY0pUPZ55qBMzONTdBaSX8VLhtqkGiKIu4JVy8PUUhCOpx1MMq/aDWLtEt9qOKWmi2hXbl6IfUv6FC0tOjVqHn9NS8SlaYhLDPafy/CGRDUug5fbY+mQv+kCKXTuJSrXqSKTiIwaFmJLag2EGXuPQinhyNfBjkeNlBG3C9I1izPH2MN7A1bvMju0/lHtswBvdit5NGWTf0XgKYUV45CgVEF9Ri8FEQ6kMnU63rgHPJreTRGxHFp6yV2mU4A2EPfjvIwsPuN+L9Usx243AjLdO/PeYTCBQhDf8GzA9bo9btxNPoy/gvaSAYZKTkZNjkiAIZmDg+CnE5p0wDC8a9KATWkaS6LEdhWnHSp7cBq2TvTKbg3mD6/FKWB32cSgkWIEBu9wgnptt1eDbMY9zHq3cXHJ3xGr1Ry6klPoIg1JEI0vHvyvyzC9oeIHtxbm0kuujKE9A561pZF/rvPEPYQrq/3b38C3M8HDK6/YNUJBPNMAH38IMGung6dhH7CiTt38jl0lfb7X8VpxifR9wB/yhzKrKf3HHd/jqxDtYwQIAGplIO+O4YtFDgKUO1aWVcWef5Y517Mzj5W0joyjHgd5087pLue3GwKFfdssyTnb6+2IWBogvjb2PUnyKwi53nhvdslh0RPs8GZvMBKBP9uYtg+adJUxb9HpCUcKuziyysm12NbxGGq86JHgVL1BJDVft/R0AmzOnUEwDk35kSnd4PQT34qM3d2CDpGidfwmPPwqXfS12H6dgaVu/scWqW/G5xmAG1mx8LZsaoBHW/sZml1krt5Be0BdNCNmNfTQUF9My0SJhfaSTRi93cwtgfa6cWl5jThTR+/NWR1zgjPDWzlzYCc3trtO8lNR+ccY6sL7Xgq85c1CRsHwORrOeGGB4OBk5GS55Wxgn6dh4LtpeAW9liOx1/5W+lIspi10kVt2W0piJeblT8bUbRse2S0cRYLkHm3GllI1w2+rxleV1PzICJsTO04YHCOuaYHPWYIr7vti+GXiKVrGTqWq4JJ5W1oUf10WFK4lHTJJTmZKV6hH4MUbXmoy9D3nNDxcFOpRhMlgq1WByvKIzSvtTOh/YO9W6VI48vagXr8jjztGIzbvJrFadeEVfIsNI2A8ZT4oiSoRzUSqWwPMF+O9GfToeSu3DU0hPxkfoerFvYZ+7L9U8EVBf6Za5+O9nV+wvfk+48+oecPefHXuGsfh6KqptNAGbumTIDJu8hR0sCIJTgC8AY8MwvOZw+/8FyEMYL9BPeVvEoJRSEmfryvebg8mJHOICVMcZoMAUL3n3d2J1Q5wy1kcaObwRKbsNFFualBtlvsoXWMrlESC+jI20k0Neg2nUm4snMrVhB5NojaIxnbemkf18n6/gfiumrErhPR+q74Aqx950+k1YVEQfZCumNWiw+aY7hzNmJu1oNYPAefsfufEyrh77OI+UXcZVbeZ9f3XiDKqopsaxc/2Kf2YVlXybTwPQSzrbasu8/vmsu0aGU0BF1ysw+hbXZqVuud0d04WPQsnY0D71JKYtiJhAxsqSbige5d9XKcZ0JXt0DmasOBjQqH96g+66cWzcOpMzSqppJ4eFM37O/Y98iMXnvgeAuQU1PND0Pi4vsNBHN6NoIp9PZVpj59JKObXMutTixUG1tX2vi3qk34Hlpytl60a47BH8u5yNGSbnu3sFey9L8ZGt0W6/NbHt6TDryy5GfQlwt0XIJJXUUOc6aRGNrGMm73MFXx7kOmayjpmsi/rpJSVLaWQi3SVmqG9cf6r1FwHe5wE/IdGbtQuvDFS43/VuOQBCaW7ENsSdA8dSjOCknIjytjBO5MVVbr9SjVLxCo9y90XtK4VxkzsmriSPxtdrKMIMGI3FHfgohWoZjcC+r1z3X3n+cghscNvigOhNeMByvE5DDwcXYEyWd+DTbdrc9Ua4Z9sVa4N48b942swuPI5ABpP0rnjE5HAaRHFsHymPB0hkTTsW/8GRGCbHU1QbpAeibHBFx9QPj7QYYJwCWmlZGRxsmKjuSQMe3xGncVa0RFG0ZGMxjnPR8C5DQ4a5+ntcZuG/IRWLHI/1H11D/SsF6xfCpmifDKzNXsH3z+Q0RBVSjGNKxuJZPdPcsQXYdyOa7Ql4g2VYZBjSuoIg+DmWCNIchmFFbP27MRUjBbg7DMNvhGG4CfiHIAgeHvhsf3GyPwzDnxzvmxg+6SaRsWu8W+eAuuFCU56l3ErpVXEesKjJPLySLI+y8/Y3P1dCV0UW5dnGapVFFy3k8j4sfWYJV1LJqqjSOljKTXWx4QEqqWFqxw7zY109AAAgAElEQVRaKsaQO3o3wfeg9apcspt3WP0SMEX2DnwkRBOd0n6aMUVWnvbrMRNTrFejMZC80sLuhT987jwuftzQzVe1PU5YBFevfjwabE5rW8/zZZmUO7auJ7iUZSyM6GpbyeWM8pWklTtPfOmF1pY7R/p2q9gPL7nleSRiMRqwCIeIBcCMixw8xgS37VT3ez4GeheLTNkoSwO73C03Ad/G0r/AojBTiJSA7ofHWe2VjtGsaqpkbkEN99d+CCrgwMuGyly4aBk3FfyC32FsAR/hLmop513uJpspMEPT9YfnL6vk7Ok1tGSaUj5pequlcSkadKV75lvc8qNYRfjPwwUiMugBemGfM0ZSZTjKI3sr5gLRc7n3Gjjq6FeLZ1BGHctdZdAidpBGL085pgBRIc+mNqFQYzvjooge+2HUeW/Q/azDnBTiaYTBlKQ5+E9pN9YGWg7BLBsZI/r24sbJiYM7OQmIHx4ZknHiKk5OdzVPJgBjwjDcfLjj3ioRfW8OppyINUiUuoqeyPZ+DlOSxKiVXCcjrhytw7AiO/EYkxwsZUmgeSnRm/BF8/bhvbvT3fLpeEKKXXjweyH2fRZiBkwxB7MXgVcQN2FzSk/S9cFHM5QWNJCoHpgK7ImxK1kOx6Ql3IoUc/CMaMI49A18aBQVOR61SYZbarFnySERk7kXj58cqpKs9tCfIlPJVeYlB7B3XYFvRxXghIMZ6wZr69Sk/VXfJw2Pp0rOZNiJGSmb8KmOxfiyCAfwqWaK3DTi+1sqpsrFzyujSO0lQ1dGWoo7phgfLToldn9iN5MzYNimiOFJ67oX+CHwC60IgiAFIwu9GMtqezEIgkfDMKwd8Ax/ubIkCIKPAouJDS1hGJ44pZ2PSuKg3ClJy9ugabrftRQb6Gfh2aTkndJ2UT4CI87YQ/fOcVFOaBZdVFHNRufFPofneI5zIrauBooppoFFDpTQTD5rK6aQRyvBryG8HaYu3mGK4GJ3ze9hSq6Mi+eh6lJ81fFKd49xrEYjvo50MZa21ev3v/jpZyN8SfAk8Ays/cmUyDv/06/cRBGNVDoUXg1z6SKLn/MhAM7ufJ7K7JqIEYo8A5cfyHPUK7uBb4z0AOrfYZqM2jELi89JidcgUIaVlAYDxZ9LotdlDj5tayc2CMlT2MPBOci9+EjMMjjw2Ghmf2gVa56byyoqYcx+6BnJJYseBYzZ6jRei/AaooFWBOkGfsUTXApPPgVA+c219BbBpE86bMW1mDIisoIrMQICvZvzgdvhgvOJimkyDxgNqWoDGTfCHH3MPdujbvl6EqijT3t8PVRAerHN5F2MoYjGyBCpZBVrKGcU3VEhxlrKyeGNqF4L7dDdMw7H22DtthMjFQD7JlYAKmPzknsXBxW+kgGib0yhmG2caMZJ/0Hk+H89EgTBaODHmPr3pzAMf3U05zmscRIEwZexLj4Tg1KlYsPRuYc67q2WUhILEIL191l45UYRjjPxit+ZGEg9mSlIosKxhXiP7HZ8xGECpoilYJ+KziFg/V68kaRITKO7n2y3PhWfejMBn1uf7OWWwiblT9TDhXiK1jj9/GApU1L4NAYJNH0kopQypZfJuFGNiRGY8TcYKDmOXXg7iMgQxCQlR6nebXI2R1w05w1kqHXh+2YRA0sZPk0qPtdm4GuCbMD6+jMkYnPixtAkfEq8AujxYqbxtLE+7JsTlkr9VulnAsvvwxvBa/EkDCKSGO/2j7Ny6ftVetcEfJRuL/77fZHEKvFd+HbeiQ1Yqh03LHLoyEleEAQvxZb/IwzD/4jvEIbh8iAISpOOOwuoc5ESgiB4APhbEuvFvh3kA+5/vChjSGL5nr8wSXYZtCWuK5tukwWYh14KvDxUeZiiKB0rydNzoDedM2asjNK46igj37EjAdzDB8mii1K8n3Am66jmLMCiFa9WzCDv5d2svc1hCkq22AcpquA17k8D1o1QfzeU/tAtj8W8D0oLMlgI1Y7ttuoRYDrsc4xRqWMxT8m9trz2F1PgOvOkc7Z94Vl0RelBADVUchWL+T6fAKB75zj+vPNCJs9w2um2kRxgpP+4n8cXIAMzNL6OT2VqxxRb4SskpfjISQ72PhTF6sJS6qQQt2D67s7Y8vfwVc1FBa3yoel2/jWvzOWSc0zTf/L7VzL5E3VRtfDVT5/Jwoueiti5VjCfm7mHWXXWLsvLzrICmq4LdaVkkf1Eq49qlQAPQeftrq5Jep9fD/Ye90DnB2GUM0ZS34u9b2UcZmD4EykK57t20PY5sL0sl0kPOIPoXGgpHkOa67xLuZxSNkfRu1rKmU1tZGDFK8VLRlW8QfeycT7VZDWW/vH72H3PibW1ipeqSnwe0BJjwmMk9q1JizhxDBMYHsxJEATFmBNL6t1/hGH4vQH2G3I0/hju5UivcTXwcBiGS4IgeBB4c4wT7JOdi4tXh2HYGARBcpbHcRWlccWxJgew/q6CcFJspLCIflSfkdJwkqMN2/AKXxqmSMkbnoNPI96JjSmaW0ZjCp7AxTKGZJiUYgqcvtc2dx7VpUgn0WCKY0GEZziA99Rn4ClZZSxpXoyL8DnxApKKPB2JCAcgb7baUbTC8XWDyYkaNTlaYH0anjELrE3TSHCGRhKPDui/2mICiRTE/e68g3GT6F77SMQi1eKjFVvwSn/82eLFOZ9xxxbg09DUv9vdvmXYtyNDQIa0GOpE76s+qMKgMqK78Ox1E7C+LCNbIoNEKYr12HebhY/G9OPr7IDH98hflYGPwgyLHD5ysg8bI5eEYbjkkHsmyiQSH38bUBUEQS7wb8DcIAg+F4bh14/shk8sCcNw6uH3+kuTNhK9uF2x5VGJg2oOBzt8MzAFem3SfmKA6hlJOzkRmD2N3XQzilbnOlBtDMlznEMV1bS47Z2z06yafAeRAhzVyXCTya8egvf/kKgHVn8MqvJh3xdsOfVK21b/vC2XzgZugSoZWm1AL6Qq7esWTPl1mIVZ390CldByUWsUTWmgmPu5IYrwACzmKv5eAcUZP+JnT99GwQxzrzVOm8iB1tFcUu6U/j9daW346Vh7XosvorgCG8Ry8GlZvyKx8F+Z26/ULRcD/xeLX4K9u+7Y/pPxhgjABZj2JKPub2yf/BlbWdbkcubWOjC4i3zNvmgVy6J8OihlMytYwMNlZhlUUc2CT66JinBOuq/VRxGA3lxIvxOy17iRXPnm17oTZgPPw8oeuOynbt1KaLoTxjtPZOr1GK5ELF+VmGGiiXsDTHqpNVJM1hZPYVbdFurLpkb3mOtLttNLGr/jKr7LpyLjspd0suhi9VYzWPJLGunOGOe/B9Ew632pYKZEgZBSt/w6HFz0FBIjKSeOgTJMbF37gTvCMHzF6dsvB0HwhwEi6vdylNH4IAjyge4wDLti68rCMEyOWR3pNUQfAceQDD0U46QvDMMwCILQ3dTowx0wHHIkll+IKUyT8SkpUuzHY+NuCuad7cHGZRU+TGVg2lxJvF6H2KnAvrNUbLxtxYN0czElMA5+V2FIpfHuix2viIf+ety1kimOk+9PVKyiBQZPndxPopdbojYZ4e6zE1/dPVkUVRmsXVREL55+pGtLDhfYPBENEzg6w6QVP76WY8aA3qVwG3GJG24DYWt68VGGDhIJFJIlA28M9OMxIBOwESLL3ZMjqIxS6tTvdS9jsbmqz62PG9wyRIWbUu04RWs2uPOWxrbp/SvKtwuPUxFjXHJbSOIsc/Oxb0sYsXkk4smUdjbaXbvU3c+wQiQPjznpCMPwH4/izMFAVwvDsBVc6ei3gQRBkAr8EziKJiN/vSsMw2MeBobTS3hkEqcS3oa56Z2SFOALL4INsqOwD/KK2Clmxn7LU1XoVwlgDZZSs4q5EVYjjxYWsiwhLSgLX827NSWXqT/awdrbpjDrPmecpGMKtaMCfv8cEiIpVdOBsyE1HqZ9Akofcb/XkhjCvRvCxxyLF8BD0HsrdGW6woEZu+EhyDp7d6QAX8oTVLKKpc5ykKddlMgzWccZF62k1AGfV1HJ7PJVPFnrbno1Nuhd566Zg+FHZChkYYbEKHyhsFJMQdAkHAfHgxkBs/GDeBmmHta7ZenGdbHti/FpYIV2/a5C7w6Z/OM6tr1SxjWn3wXA/dxAFl0RcDydPp7jnCi9rZw1PPDv7+G6OmPv2l6Wy8M3/h23P20B2PTvYYaL7JsvwSsb4HRnzNBpz7twLN746IBRGZCqfSowRjZ12/1Y5MVxDYRVEGyGR864DDDM0PayXPY6w0CpdjKA1zOTSmpYzFXRc3UxhmbyGZVj77W5tsTaNdavWY1XUt5h9x29D+n1ijCGJEkXvvgpHKwt/UXIISPtYRjuwMWOwjDsCoJgDfbQCQbGMUbjzwf+KQiCRWEY9gRB8GEsGLHoGK+xDfvaahhaibcBZSjGyW+CILgLyHE3/yEso/NNkyPNwy4+4wwee+n/48PBeyjGGx+NmFImxqIDmH6RjjlWZKAU4pVwKTRx5iJ5h5U3vwmfZhL3io/HlEopZaIgltGhm8/ERxb2uXspxLAw0zm8QhU3AhrcvfThK8QrclOYdJyiMPHUr52uXZKDkEOpESHA9V6sreOVwuN4ibdKdn8N+NznABgTvPWO5h5sflA9kxT3l8aRpc1J6e7HV4EXliJZBLpvI7HYpwovZmF9YhfWt17C3lecNV6iSKCwRKqnk4mlndUm7avvpxHDU41118rER0lktG7CRzFk7DTh56d0rB/vI5EQogPPyNWDx3+l4Nn49mHzmrICdmKOiK+GvwP+lv8MBtL/j1AOHzkZGwTBf3DkkZNteLUU7NU0DrLvX7L8BOueP3bLN7l1twx6xBDk+GJ24t5aJVaeboshpsgqj34H5gGfSCJArxrzwoMvMiTZDfkzGi36gUUcyqml3mlxt3A31VRF1MF9pHMPH4wiElNX7+CR2y6jihd8etPdwJeI0q6ie1FYdjbsezRWIX46VDdDlYukMNbte75bXgnBYjz7022Q/k1Iv9Jx8HZA+BGozZxNdabhFG5deS93nntOlBp0N7fQRVbEAHU3t7C69syosuuB1tEUFDRRP/kNa/XzXEHGf3HX/BfXlsJezMKz0ZS6dTuxPFDlOqdjhoUG2xzsdao9WvDFAsHTQOuV12Ffbb1bdvih+dkreLJ9EaweCYvgitMf4t8f+SwAFVe/yOUs5VFnGXYzimIauL3OdNL/U/ZxPsg9SBoo5vaVsczQWcAv4RFHLXz1rXD6rRhBAVhEpNmB3lf7ddkNePxNLzYxzIsuYlqgSw0LngT2wOWzjVmtcXwuk15u5cIz/gRAaX89NSmVpLsO8x4WU8NcaqikwQ1jF/JH6ihjY51jG8jbDzkxVfNZfIoLGLC3EO+tmo71T+UW57j2jhp/JDZLnJiUOUNM62oJw3De4XYCcIbBXAavyZ0sA0bjk3cKw/ChIAimAg8EQfAQpttfnLzfUVzjEeCHQRBcjqfOOGI5rHEShuG3gyC4GNO7ZgJfCsPwD0d7wSHKEeZhmyosoLpqbEzClDpFAUbgFRhRnBaSqAzFU20EfpeClYWNy5mYA6YIryTtxX/3wpGI0ldMSXMwh4aK2Z3urtPkjpvJ0JT6vfh0GQHQBYKOF1UdyMhR8kGfexYxhh1pWpdA/7jrF+Cr1oM9d2Ns37eEhXUyJLoij1yOJaVLmBOdJwczGNWHkkUMogfh/pz8D76opYztZFHkTTpDAfYO9sb+K80rzhaXbJhMxvqAqLHVLzOx76PI/b2I6QwN2BwyFk9NvQfP3iWc7wZ8dfpnsYi+oiqZ2Heg4qR1+HSy+HuowzIYCtwzTMdjuDa5e8iInVOMcbZWX/wwyJsTOXkRmO4mie2YP/iGozjPiS5nhmH4jtjy00EQ/M+gew9djiNmJ55mso3IMAGgzarES2mfjSm86RheAnzdDSnVI92f0rzO208afdQ4zbKSGsqppdGFLqqpojXG3pXJXjNg+u3Rt1fkcvXjj/PqZTOYVNRqA8h+7L8mijV4xRXY94wZJq+4e2qqgctuwXurOo35KVXHnIINDDe75UexD9RhUxgLQT7kj2+OFLa1504hn6boPvtTUmghz9cHoYDJ5XXR/rPLV/GnV97tW/1v3qD778b5duxxbSZv3GpMj23HK+nXkDgctAB/wEex4uwuuOM34I2ZG932/+WW67B3VRo7/rz9NDIRdo+Eiv3k8AZLll5L/tVbo+d6jEVc6dDnvaQzhi7WlhkeKI1e8h7fTecl9txnv1xjSoUMy0bgDrha/vYKzNiMM9dc4ZbVp6rdvQsztAGLmqlfXoJFzeS5TIe1101h1s9MK5pU2cqrZ8yIolvfT/k45dRG0blqqiKWNck9nR8kLaPXt+VLI32NA7DJph5vIC3GjHj1+9XY5Kj968C+L2k0pe63LOoTJ6ULhpetKwiCMcBvgU+GYdh5uP112IC3NdDKMPyWGzN/AkwLw3D3QPsdyTXCMNwDfHCI5xlUhsTW5YyRN9sgicthLb8gCP4R+EeAkhIL8XXiazNkY9+AKmer7oPoTpW33oZ18YFSQBSP6nH7KS0FbEzOwdegkqimSTs+5Uq0v4oo1wEXuvNJmRNrVnyMzcJXpU+WJjx7mBTDyZiypjF2oLQqYWjULkoBG4wNajBRgUCN6RrDhYGRwqx9hyLHbMQcABuZj54he6DrHyrtTyJck/pCqfvfj43DyZETFSg+lJyCB3ur4KAkjtdpwD4OGTBirRLFsdIby/EGSjLeR5EVsWsJU5KCN0bWYe3wCuZiUWqYQPMT3PXSsD62iSjNnLWYoaWUs3jUMe4O0jPqPYzH+sUGdz+j8U4F4bNUALLO/ZexMqwyDJGTIAh+jfnJ84Ig2AZ8OQzDnwVB8DHgCay5fx6G4evDeesniPQHQTAtDMONENVxGY56J0PyEsbniwQ6oqOW/RyMOdlPZPYH0w2orc1rsEFhFPBJt+4aTIm8wC3nAOfttzoewKicLratL2PaDOsOT25dRF9JGnNdbDaLLvpI4zUHSpjJOq6JENsmnZekcdrX19vCzRB+E4K4cXI+7LsDUh1uIfWHUH8TnL7VbX8G+A4J1K+p1+LThoowmpzPxPafQxQPe7VsBqf9aD19FWkR5XEt5WTRxV0pVmSxjzSmsjlK8/o8/8aDXBcByV9ef6aB4I29lu7V40z10VtXtfY4G9RkfH0BsJDxGryiX+baW+dYR4KRxkRsgFJRxv92xwgnUeO2K+5XCtw5ko2fLTOWrt0jWb30TG5edCf3rvfZmfkzmqLISRXVpNMbpeXl0A4VkP09U/ZXfWo2c1ev8RXhn0+6x2osgqV38yiwGjrvheyb3bps1z7q8j2uHUR4cF/SOYGZbVt86l4+nPbAelZdZw33if4fUJ1ylrGRAQU0004Oo+iOsFG52a2WXniOGQ8bnz6V/Iu20vxcib9IBT5t6wr3bHHXxR+IGV3dePcwHOxaG8/ACNvjI2acHHsRRpcK+1vgV2EYPnK4/WMy5Gh8EATzsbexGCtj+rGB9juWaxytDKrFBUHQxSDWFkAYhtmDbRsGOazl5/Lz/gNgchCEHw7ezdPYrKTia72YYrMFn8aV4dZ34hWweJ0PySlYd9+FT1lSagn4ituq0p6CT2ea4M67BTN85E2Pg3O7MMVtDz79S9TAKbF9uhi4GKE88gICi3xEBkcag9Oo6ll17ThuZaiiQouqYSEsgaI5jRweczLYfR213A184BMMd/meoaS4qe7GPiw68CyeqSsDT58vORxNM1g7puGxUQLIHyBRT1asSJgTGeEp+FQvsYmluv2T3coq+LkLyx6Q4X0A68NKY1ShRfXVBmz+a8f6UzHeoBLFr+qdiAxin9u3lINHs3i7qOBkYex598TOqSijcDkzsb6slPQvB+8evtFyGDAnYRheP8j6pRBDB7895Z+BPwZBsAkb36cwDN41hugljM8XQVA06Lw2dBmJr20CZnWMJLJGxgBdbZDj3D6zselbtI8tmBf/Gnx9jgqgZWTkner+73FMvsG7MC4psS6yyimzU9nM3/Fw5NVeyiLWMZPSFGPvyqOV9JReNn8ul6kNO+BeCK7Ap9R0ABsg9WYiJbvzTCj9Dlb7wi5ionv8EqaYK61rJIlF/hqxFCHniesvS4kMghUsYB4vcfnex2nMnEity9tqIY88WrjK8Rvfxa20kkvzVqch78YME6eTjpr3hlEsyyNWink/NMHK474fXzem3t2rmnMJ9qpkN2SRaKxMxwwRRYBuAR7DM0x9EsO5uEjM2IU76bimkO72LPJLGmneWsS0Reu497lbGTtvJx078zijpJpFLGWau4m51PB/+V+scLl/t3A324tzmVRpSv3cn62xCUSUyeMxFVKm99VYAo0m72aLfGXfiBkjY4Gn3PPPju3za0jV+7qWqBAjWHv1ZUDjZQaW6iKL0+atp7LNQi0Pjn8PafTG8CVZ1DOVPFooopFGiugjjfrOUoueADdc9HMWd17FiGmGvDzw4Gj7bGQUrXVtv9ItT8aMQ7F1pY+Clji+ayWJjoG/cDbyASQIggD4GbAmDMPvHuHhQ4rGB0EwF4NoXI6Rh98XBMFXwzD84nBd41hkUC0uDMMsgCAI/hX7BH+JTQTvZxhJcAaRI7LK9mMKykXYje3EDH/VdxAmowvPylWKV3QGUorjdUbEdSnQupRv4UPkqZaxoDSpZHrV5BwGebWz8OD2FMxwilfJHs/Bxsk+t58Mrn3uHLpWPJohkWIYj5bsjZ3jSEQsjFPw2AN53GUwjefIq7wfC4PXmGeBQPXOTYYVFH0IUdQgFes7imjJsNA9HMnz9eD7hCJhA/VVvTvRZasAocgKduGjKCJjiJ+nHDNWivCV4YUJycQMJEXk4gx3St2SMZSNN1o0XYi5S0Z7Bv7b6iHxI4fE99XkrteAZQDEK8gL+K9z9uMjNadjo+UmfLTymOXNw5z8VUgYhk8FQTAdsyEDYG0YhkOx0Q8nxwmzI4S0EuM1Jbqe3wXkTfZO3krMY3Ej9tGI4rEBH3pciwGenXI99pqdZNFFY58pivPTVtBKbgSIr6WcVvK4n/cD8BHu5OIdzxI6RbNxfC55K3eTNXc3m4snwudg6o92sPm2iUx9bYd9tI6FS6xW2VIYZZSMxQwRRUrSMW/FfW75dszIEcForwHiN2daqlIO7Wy/KJcusiJsTPomWFaxkFYXhvgE32cF8yMj6+d8iK/xebpKrE1bSnKpbSonb4Yp7c1Pl9gELs97Bd4jAjYgKLVrO/AAVvhgFD6Xdh42ACnaouPidM8F+LSvZe4aYloT85czHDq+UQjpMOLmXoppoLikgZefPpePXvRdmiiAEkuBWsZCvt/3cQDmptXwXT7Fq7Gw1KS61ugeNv/DRJYznw98/Te2ognj73uv29lVkOcStzzdRejjxsgsjD1NxuQXIDUf9l1ti6mfwVLyfu22V0F6I5SON8ugcXwfj5W9K0olXMRSvshXucGxw9Ywl1rKWcBy0ullKpspp5ba7HKqm4zS+gHex4HedMPhgI+axMkK4hiUl7B+pvcZBUVedf/1rZ2YaV0HGEHvsad1nYvh8l4LgkBJep8Pw3BpEARLgVscc+6xROMzgWtj0ewP4BM0IzleEf+huJgvDcMwHib/SRAE1Rjnw5slR2SV7cNT64qRSoqilLPXMCUsA1+bpIODZ7G4chSn8u3CF3ZUscV4mlg6Ns/oe1J9B+X9C6AeB6WLMKQBnwrT5X7HZ+1tSfdSRGLql7zHArhrOSvpOOlWqSQWQezj6KIWUpZTsPEmrgjqvvYytHQt1UcZbojbkRomR2vMKELSg+9To7Fnl5EBA+u3Mk7j71yREpEw5LhzpCftp/SpcndMG9aODXiHmiJ+igBtI7GeWC0eq9KLT1ErxBvwRe6cMixS3bYeLK9GxrEcw/oOwNNbp7nnkYHT47ZNwRcNVdtPcf/1bI34CvHgQfI7SXQCpOOJLGT8DBVFeEgJOVwnPlrMydtagiC4KAzDp4MguDpp07QgCDjCdIWB5DhhdqT5SlvdgmmC8uZm+nA2WCrNPA6mF46zFI3ClDanQHfUFZJX3kpxmrnzF/e9h7lpNZHXej7LqaYqUhTzaGX5xLOi009jI6+eO4M5bespkhv6Upj69R1eoe3FBgYpr4swb5+K8pVgH388P3M2UcSh8zzIFg0gdp7Fme/hurnGOMUP7RqTZrealx/gFCit2BzVZ/nbzkfJyu5iGhvtOR3zU7sbRdY1zeDA9tE0u0rrlGLV2hUyXo1NPtLxN7h9ZIiAL3ipjHoxySikPZPEwmICcyrSImYRDWw9wE9hxO0uGtAzGnIga1wXq5rMwrvgot/z4/Wf4owZFhLoI42FLCMvzah4P8/X+Daf5gqHGZ67cg0/PfcmFpZZHZSivTv4wKO/4dXPzQDgtL9fb0ahqrk3A0XQ60jM0q93z3QKEeZk3786+mBhTKbbvad+yS2vwd636IhXQ+9cSHesLg3nFrOo7SmWjvcUyJWsigziApr4CHfyAz4RPXfWuC7K0jZSVLAjOqarbwwdqwuja5BHImNPIcbfBzaIx+2NkZg7I4zRdDMKr9l0cyIZKMOR1hWG4bMMHBUmDMNFsd9HHY0Pw3Bl0vI+BiC7Ol4R/6EYJ/1BELwf8z+EWA3R4cgVHlTCMNx/JFaZ6kvswqaIPfjCcHuxCEMVPkVKSpVSkeIi5Sgd3/WVKnXAHduFKXPteGVJ6UyFwEZ301IK0zElK86ptgEbQ/rdvSq1azwejB9XZOOBy0Z3XAa+DgWxa2TiIzIDBTw1P8YxMQOxSQ1WmFIiT30P1u69+MrgMhaJ/T9U1GA4XKjHKmK+OhrRsx3A19LRO5KhOph0kdg3ZDgqCiFDdicHt5MMiX1YH9I7V3FDRfAKsT67i4MLHeOWM9xxArAr7VHGfudBg5sAACAASURBVLxf7sLmQRlWGdh3qGil7k3pW0orE9027jxz3Lo2Ets+TlIhoH2mu7cNrr1ETyxaYuG9FDksGuA5j1pCSMJ9npShyfnA0yQS6EpCvMp6VHKkc8Xwyni8N/c0zFBp9dvq8BOE8odL8ZGSxzA/ZZxQ9DwiBqixZZYztHq98dVOm/E6afRF1adbyaOdnCiSksVu1jGTRf2mL9SmlFNAE8Ee6Bpv1L7pPbthAajqTHA9FhU5113/EbcsjMKl7r+A5V/CPPFO2c1+FsupEJj5Erjugd/540uAO6Dz12mkf9A+oF9kWoX4apef9Ins77OKuVH9llrKKaOONestfW32jFWs+crcCP9xRvlK+Dm8/CndNKaryhtzpmvv+li7no2lcmkA7cYGB72L6ZiH7Z7YMVV446UFSy3Tc+YAN7kUJYB2mPal1ymnlvICex/fXPrlBANpGhtJo5eznLvk23yaj3AnBcqJWwvvO/tBX8ek1+6rtN8epOUXY8j7+m4fFckFnrBIB2ARk7HYO3TUwak327pOVxMm+9tYt30odsxKfLe9FNJVRR44e3UNvacQRb2+zyfIpSXqc+XUUks5M1lHboGvxNUajfImHS8VekVlLd5YVNtKedJy3IjfD4RxA6SbREC8djoxxNi6hgcQ/9csQzFObsA45L+HTSYreQs8U0dilcUVXjFHidtBiprSXArwbEH9JCpBqrweTwxSXv14t38HHreVEtsm2YgpaRnut9J7BC6WCNDbjqXDKE2ly51vCoMDptXtVUgxXkeiE6+kKgqdDB+Lk5LIMBmIretwmZxKD0rBFNVad94+THkcT2Kl+xO1rolkqNGjgYws4UBUPHEX9vzy9mdx6AjSBLwireiRojFq58EKDKn/bMf6lVjDBCCXASqJK+zxSJHIGeLROBnxqVif1DxYjPX90/EEOIqc1GPzZgfW//a4ZaV2bce+L6VeyuBPTmVsw+badre9EB/51P2KpEJ4l014R8Euhrn8+KE7yMm0rgEkDMMvu5//Gobh5vg2F+0YjmscR8yORv9RGFWEY+wKMNxJPITYjg3q9W75cixdSJgCpScpVWhZIR1lhYwttS+sl3TSY/n+BTSRQztLHMB6GnUJ1bnPXlwDcyAcjym1uHPPc/S/YB/pZnwhprOxQUwTxFSMqlbGhmpkKM0rH/u4VWH8eeyjc2lCnflpZDf0kd7bx//JvAOwCE8jRVExv99xFXWURZXTX95aBSVwxQzToJesv9aKHLpJ6uVaZ5SI7Wm1azv5fD+OpV2VYkB2u4gZF5roet32MW75RTx7GrH9ZDiqaKOMTUGI9aU/CBtvOJWNC09lidKTKuGjM77LE87Cy6eZF6jiZmcBLeQpPsYPeY/D2qT9w8MU9e+gc7Z53etTSpm5dz3pvWasZN/Tx/bP5TJpsVPK12LeHaXmiRK4CP/+GoGxsXS9TkwJ0vKVRNgjwIzRuF6dYSl61TGOiQWsiGrSAFF/lAGzlEXUdpYzLds0mNVPu2Iwuiex6MgYqXRtq+TMZL2+BwhGWUeOZA0+SnnigOHBjJP+I0bcnpRkGQqVcD1GzXjCygF8dfgebJw5H89oJY+qmH3AphGlxEj68UqTlLACbKxtddcZ4bYl5+crlKRxaazbX+z360j0DHdh36LwCLnY/DALGyekoA7k5VbdinISo0FK2xR712i8YRJX/JSOpcBjBiT5OQaWuKGB+y3PvDz/bXgv/rAzJsVkKAxaMDSMR7LRcLhjkreV443XLgxbJMrcYuxd1DI4ZgQG9vCPxadaxWuYJEsWnqVOIHHhPGQsab9k6cIbsIr0qAI8bjnH/W/AfxsNmLGyCW/Uy9BJwdp0Mt45sA/r1wKy78QbELMw/SIeFVK0ZJfbNgnfxrnu/EqHVLRO9ypjah+JNE7HJIePnJxM6zq0/JZErl0wFfKM43AvwyTdeOOkG/si3IgbTj84DFuKRSjudsuzSCwE+CymcNfb4tiFO+moK6Sj3rS4uTN+z2ZKyXK5STm0MyeK3Bh71/28P/KCLTr/KVrHjyHvcWeY3IilBS0l8qxTiaVwxamFN8E+58xPFdhdjulvY6locTOzmMhzsvYfpjCrYUtURyV7ax/80hTcL+74jq1shbUVU1jh6nEuYilp9PKUo+P6u5IHKaaBf//xZwH4zEe/wj0zPmjF/IDJ5XVse6QssWDiv2NGCfjK7xXAEudtP3WUvSLpszmY9qMJTYOP2LjaMTesIivgw9hgBttCeOcf/gjAn795oZEblMKosjfo/u9x5Jdv5Y9cyOamUgAaRxWRld0V1aHZSBkf4a6oPkgzBcx6ckukpM8pWk/1+ErOrrMcrT/cdh4Xf/dZbxiejRkmt8eeYSuwIRYpqYSmh6DApX6xFYus3OmWn8fjioDeIugqG0PeDl+nZmbbFma1mRv3gbL3kEM781kOwFMsJI0+VjE3ImroI42i7Eaa1Xg9MOKMPRzocJ1kHn6ijMsK9/8mbEKUdzaKmiiFcgOJFTVVIf7EiZ6clGOXwxonQRDcw8DsJx96U+7oKGQkvr6B0pz+iDkBNuBrjbTjQcLKe4+nLknZjSvVuXijpQ9fU6QR7xHWMZ1um4rW9eBz/4uxb08K1xRMgdqLr3AdrxEh42ggpTUVz4qkZ9jnzqNoqViWJMnpQIqsyKhKrmA+kOxKWpYyCF7B1Hw8wm2fknTcsQDe4zIUw4QhXivZYDjS++vk4GrniloorUsYpYFEht1A96HaHTsZ3Dhpx/qAjleamMDxB9zxg2Ev4pG1dhKNXhUu7cEX2wTrf4oKiSRCDjFi20S6MMGdu9X9LnfnVe0gtYOeYTSJEbft+HS3Auw72xL7LUdnKv7by8KnmB2zHB5zclIGkCAIZgGnYpGlOO4km7e+Tuswyyh8D+vGRuAYai6PRGW4DPNSCRtRiGEDRN75MAmFAzuWFTLqvDfobje3QhMFEXgcjDo4Lq3kMY06FrU9BcCK8WdRTAN5HbsJPwLBXVgkpBJrfTBj5Wy8l64GGOlwClqeh6eWbcYUXE0ot2MD//dscda8LdBBhJPIpZVJP2olvayPP0w8D4CNE8sopoE0d5KlLGIRSyP2ro1bZ/JkyYWs+Kg95z18kOb1JUwrfz3azjZ8itUs17byzE/AqGi7gTmjrD13uPVKT0vHBg014QXY+9JAIn3Y0RdTjeFVNCi5Ohx/vvhCW3ZsYhVXv0g/I6n/G7iCJWxkGuuwtuhePY7uvHEsm2EnLaaBGiq5AQPtLFj9As9fVsnZ95kx0ncKlPfXsr3MtIyLX37WDAlFShTN0sA+GtgDTd+EAgHcH4GCSqIJvulOKPgMlpoH9m5/SEQtnL4G0pt3e4xREawbP4WpGWacpNFLLeWRQZVGH+n0kkM7XYwhnT4KaKKBYppfKYna6sBvk+L+vfh+/21sQlHkZKdre6XEvaaPSDOVZtk4BuXthTk5KUNL6/rv2O8MrLz9CVXBOMD0Bnnw2/A0pv2YIrTL/Y3Gxp8iTLmRZ1f1HfaSGE0pwMYvGQOiTVWqjsC4yvsX85UqdoNFaVLxEQ/cOSbhAeOqoi0nlJT4gSIESsWScidCABlPqnExWDREOAUplTs5uJr8UFi2GvFpQHIqyzjKxWMEwLfxkUYx3io5FlYvV8iYNrwxOZZEg+RQrFGD1VZpiJ27kMGjAIX4vr3RLRdi7yRevPFM/DxW5o6J960ubJ7f6c4lY1803AWxczXgUxMb3XlENJGFZ3DTNyFDOBubYvowHU1FUw+FsZK/TBGcOiy1UoZ1P4mGfTvmND3AkRcXHVROsnUdrczEknJySMSddAEfPi53NKwi0zoXCztM8Zta8PpTN/bRCOcwH89ech8+536Wo8qtGwc7IS2jl/KSWpooIIX93M0tzHcu5nXMZCbrqHR1TwpopobKCLxcSQ2TXm6l89o0sp/pI/wI1I+fyNSndxjmQDiLXMwIWeV+34Jtv8XVzMiH+l9C6e1YROQ7GM4EzCipxNfNcHSVp610tVWWw+bPTaRo7w7aM3NIoZ9y1nAXH6GRItKdsltFNdfwMA0UU1zSwIe4h23PlTHtnNfp6sxi2ozX2ficVRyfds7rbHz3qYn1VeNmbo9r3wbMMKl363djg8epGFXtyNj7WIPVxp6FGT292ED2K3z1+By8Yfka1qsFsB9p91DbVE5VwQuUZtfTTg7Lm+azoGAF1Z1VTDunltv4MYu5iiy6WMgycmmlizG0ksfyirNIczNpy41jaCGXmW1byF7q+pjStZ5y1/xXjJggTrrQAQVnA2OhaREUXIopQ5thzROuOz6BGSWLsCja+a6tngfuwIxP1bmZDe2MoyvT7iGPVqqpilK4Wslz1MJjOI3XeJU51PVZztjYip0sSFtBLeVsbDnV+tgszAjvwYySUventC5RMIoOFLe+YRRkuZmgqxmbReKA+BNHhomt669ehpLW9dv4sqMVW/am3dFRSIDPkU/BcGzP4NOVlNZVjincAs1qbFMXT1bGC/DFCvdgymYn3igQHiATr7QJ+zEBS+URKUiycroX7yRTKk4pZqBU4PWgZMNEynubu69OEtOohFtR6sxAxk2cWlbP0pO0z+EMExWfVL0XGUJPY2M22PuoxJw0g+FXkpXSozVMhprmNZgcC93wJLxxI84/YYwEsj9SwH8XpoCnYG3USaLRLBmBqUfvwN73LBLxIuBr2QhflUkinikO5m/F3mknnv1OTF+Krundt2PfSC++DpCIIya464ngQdsaMGOjjkQge5xhI9lAbcRTNae447uw77wWi5wopa4ITwih73PY5M2pEP+2ljAM/wv4ryAI3hmG4Z+P9/0Mr7SRSAmVj4+ktEHxeN8BJ2KaYQXeI7Qay/+UN38e8Cx0Z4yz5Z2QntYXean7GUltZxkLs236baDYKHr7XwDgQyk/p5JVtLjROJ1ewxs82QfZEKyBqeywAVnsTDXY4JmPpRo8jymmPcAPIbsK6IBSGSMZmHEivEcJpiQLw3C7O6c7f8vnxlDatoNgM8zNNxT99uLchIjB+3iQXtL4FN+NnhPginMMc7Jx26lszk2L0uFa5uUyYuweDhTGvPGFsVfRgym7E117V2DGVjfG5abnWI1n/GrCJmlRI16DvTs9ZyU2Yde75V5MP5bnxKVsHOhNj1jGfvvc+6k450UDyWfXUkcZjRRR3WeMauVptSxkGV1kkUYv09jIjdzHH8+/jLyG3eQ9s5veqyFdbduMvTsB4p8hkeZZ768K+J4zTK7FjJFNMHs6Zqg0YQP6r4G52ICu+jRgfcFFZcJ0S9NK6zejqTGliEpWRdTCRTTSSxozWU8O7SxgBX9Mu5Ac2mkm3wyTp0/1Oef1rk1/Ai4A6FNLWtzyNvd7dGwZoEspjG1Yhugrbnk7J1JK18nIyfDI0VSrm47vxieEKJ/9FPd7Gb6yeiYeICzq0tF4inRJEV6xl0zAe/4VYUnBg3vB1xMpxuYbGQ2t+PSxdndMHLORiXmR+7BxQo4fKZmDiZQ2sYDFU4ek5MlAKsYr7DPxEWzR1CpNKP57qNKLta884/IXajzpwQPzDyXDBZI/FsPkWOUUTElvxb9fGQQyGOuP4rwHsP6xE+ufLw6wj/qjDOJ2PO5CfVkRHPWruOEZxyIV4IkjZBTJMNd5xMqmbYpWiGhCKdqqkSJMVtxQ2ov1R5E35GDz1CscXBB1BNa+q/AV7HWttW6b3v1494xqD9VVGxY5fOTkpAwgQRD87zAMvwXcEATBQZSUYRh+4jjc1jDJJBK9tlv8cnCaWeIiA40VuYs6pRilpFSXxfYBmAUtTbksLDBXeR9pFGc3sMzlGt3C3eTQTm2KxVc/yD3k0koObwCYQtlhVeKzOky5DKox5VMpUc1YOPUJt3ypu75YujRAKA0ITCFWfZAMLFVMRf2mYxgWByRfVVzJ3PE15K3ZzR+KLa3r4rpn+VbZP9PtDLnP8g1WdM6nMttcO9VNZ7Gw4KkoipBfvpWWplwwCAod9YXkz9hK8zw329yOhYXlMu3BG4Ia9EqxqIdimjn4KvBgA1IviVXmF+IH7iXuGno3Dlw/9rN2gY5bC20QaxnJmmcNezHthtfZ2FlGQ4YZl+lpfZRTy/vTzCi7nxuYz3LmOpdWVn8X30u5na8WG3HAFyu/Q/omWFVh1sjcxY4iTdrX1zDFR+ldWzGA+0pocu+zoNi2NznvaP0GqLodjxl6HqOVVkh9Kmy/Kpe8vRYpacycSDENLE1Z5B57GY+xKMKT1FDJWVRTQyX5rhMU00At5RE5w4hTHd4kju+5GG+Ul2EGlSaib7j/mngEpA1lCY7COnAy3/CJYaCcZOsaHhkK5qSLRMzJTuAzb9odHYWkYEqKWLGUTpTi/ktRB1+EUMq6PO4yZOJyCp5hSxiNeOpKGqaQ5uBTS8AUJ9W4kAdblMGSHHwV9QJ8vr6Yi+DgmhbxVCt5nMfjMQtxRTKZ2WkdHszcg8ckgE+rAQ+8Hkre3q7YM2m+XefWF+IxB28nSU53Eztcm1uviEQG1q+EQTrSqqXCcICn4o37YtQ3VF9E5x9PIgC+3d3XFLctzk4Hvn8JYL4Pi77E+6xosRWtqMZjYUT8IONIhRMFjE91953u9pGhFf/esjAH5DMcTAAhWmrcMXoG9S8ZxlvcNXLxFe3XcnC64lHL4SvEn5SBRRUWXjrkXn+RohEYTCvfTpSsH+JqM7jNAmDHqRIn43MQwbzFk4kwBe/86B9pJp8aF5aYzwp+u/V9/KTEsuGWsihSBIGI/arMjULLUt5F2RkbOa1hvU/TabUiienCJDyKebJlNq519+eMk313QOq1eKV9DmbIyHjpwLSBW91ys9vmQsgXL36WzivToJlICd9cNpEVLKDJUXwtZBmN2RP5iENp5xW0sKT22ghjUk4tf3rw3R7/8SdoXlZiOBGAD2KV26Wrzo89h7zxqlmixMIlru0n4qUeT1BQ7/aX8ZKHDXYaXHts345vuBHG0RyPKnuD7rXjOOOGlby8/lxumPFz1rnwzC3czbf5NM9ERWUMUK6aIVekPMoCVnANDwPQewqkfx7m9rpP6A7MMFQaxufdPQnJ9ShmsOxxuBKwQfMJKHCRrAIZmlIUbscmAdW9GQuTHmil5boxrtm6WB6FOIyZayr19Dnl+wbuZxWVdJHFBa5QSQ2VNDZN5EBrLKo4Zj+c6dRNRVDq/eYofQ6MNKKeRKUi7ManUDa73ycm5uSkDI8MJa3rSPWqt1xCTDFah69dIhzGTjwd8ARsjLoPU3rS8V5XgdMlYvKag41P6XhvtDzTUkx3Yd+32I5G440AgddfwXuEVfBO357uVVgVKWfJqUDx+xNgWV5uKZM9+BSq5GhIY+xY8NENMR2Bp2YFr0QOBmLfhLX5NHcPMvi2YE4mSFTK4+k6R1o5/khluID3kGgkJt/zPEwBzsFHNubi+1on9j5Wc2Si96p3m4kZBqplE48uqJ6I0ptEkKCoRo477lDU0KKEno7HVvXhnV2TSKzurn5SjKf33YenGM7E5lDRboMv5JgRu04OhpPRdbI4mARCUX1hoybg30lq7Jxp+PpGwlQNG+L6ZOTkqET4mzAM/1PrgiAYAYwJw7DzuN3YsIkUpDbMTO726zMwfAMkFsWS5LhDhFvII6FS9p/XX0jFjBcjj/Rv17+fK2Y8FEVOyqllFXOZGHMlraKSOqYBRvk6c+96+xDlKd/qDJNZbvlsPCgazCs/lihVKHUs1N8Npc4Yqf4lVF2Jx5zchJmfzqBqmTiGtP6+qFZHeD5kb+6D6UR0tEU0Mp/l3OUsmoUs4xbu5v/HKgNeyhP8uvwq3t9kZeg3dpyawGIG2OD2Rfe7EJ9epbbWwCfjYjIGkl/iRpOFk+18el3p2MQsE/o6PHsU2Lu5Gz+xvYgZOrqnduBG6N45jrHX7OTl+89l1N+8wTQ2styxkt3W9EOuK3iQd/M4YOlsc6kh1ynd65hBXt1u8ra6DrEGwi9BIEPiGWwSEPjwa9h7EFtXB/YeYjnaTb+E8WMhVXnX12KGoxSfX/L/2Hv78KqqM+//s0jIIcETQhIICQSCCW8xaCLUWCWoGEdF7UhLq7W2VetTbW1rp4/P03baqW1/7bSdOm316Yu2tlrHMlqp2qpYFa0StERQUsUgmkAgEAgkmHAgIQfC+v1xr3uvfQ5JCCEq7XhfF1fY5+y9z9prrb3W/fb93gJMd6TePRUQWUXA8Lb2wllU9z4tY4gYlgCznbVay2nsJcpilgbRgiKaeKn9TK9d7oX0STG6d7h0xZXIYq7pavuR6IkqJh3uX5ghuDAdmkPvVgL5xPFlmBxixP/otC5jzGjg58h2/Ky19ndDuc9gIidPW2vPPdJn77ZsxANuO/BRk5fxdUeaSWSOCiv/B0isCXIKnvdSaVp1bxmNZ8bSAopKjaqA/Ij7XaWC3Yx/95T1SFOhlEq4F+91TmbGCotGS9QYOYAH1Stz0248ZiBZKQ0bQ6rEHkj6HryjuC+dbAy+wvwepG+mIMZJHF9zY2bomkN4o0GXlSMVehyqDKceORBeZBoy/r34yLhG78IscUcSVbZLEIddHn6+qXGie5TioLTfcpB5n4HHt6hxrbS7irfdzOGU0Cqb8ZjELnxdETUAFNeBe64CfCQyBZ8SNtJdq/NMo4/7kf7aQyIL2SjEwNVnD/eJ1o/BfbcfcR6Owtcv0iKRvcgc7EKwKNMYZuNk4MjJe4D4AcQYswTxr/cCLyH99SNr7Q/f3ZYdi6T3cayRlFdg9Mk+l1ZB8B34VKMYouzqOVmh8wDWwLpRFXxo8v0AlE1fTQ7tZLjVM0aUCtZS4iqrV1LLUhYHrSmkmcgq6DkdIp3Qc74onmwSJRQg8iQSVVFsRU5wscg/QZFiG4DKs5AcS03juhOISDQGIPcre+Vcp/wuz55HabZ4/tVouujxp3nwwgsDLE0NVcSIBkD/6WxgCVewKO9hAOJ5aTRML2H9EtfoIuTFDpOVLcYbWApyW4M3WvYDPwDudh+04sfD9XWAM5HGCrZDU8Xehyj2Te54GqI9XRu6PvcgrEylc+sExizeQeytKPWZpcTiEoUoyNvOJqYyAyEL2EuUFgq4g+sAuLf3Sh4rOZeLFPH+HJhZYF3gxMyCZ+fC2RrFuhV5o7Ta+yx8cUVnXObdiWCEdPN4gATjk39HImFuo46sgk0LfDip4qH1vL5oCneViHWaQTcFtLAMSfOSlK4KMuii270PtVQypmRHQIEN0P3oWK8M6DvQRKJo6omyD6kERRl1MNe7BocLnB8fKV0wfGldxpjfIBDendbasn7OyULewjJkl7rGWvtXY8y/ILPTInHPq621ydDiY2qHMeYCZBamAHdaazUh74PAUmvtI8aY+5G42FFLv8aJMWYUoj/kGmPG4rNnM/HEgseFKKBclZ0MZG3MQNYUrda9BlGM9B0Ie2hPRJQ5VRJVeU9BlO2NeAyBpnapr0wVLFXGdAZoSlcHiUpSHrIPZeExeBrh6UKA+4kkkbLlKU2q4lrUw61pYVotGxKV42RR5rIcvKHT16vUX3XtcOpNA+LMGYXfz/6EdzDpvVXBTzYajsYw6Ssakpz69k5KARJZ01QqHXc1WJQVrS+WreRn6UGeRZVzpegldO+w4q79lodnblPGOJ1rhYgRrPgPnfd9GSbhYoWKTxyJBM978ClYo/D0v114bIdiujSlUlMWFUyveJYNeHppNWhBjIlkx3LyuI5BnAcb8VTNTe6Zi5D3QQ0VTUPrjz75qOXIkZP3APEDS6m1do8x5mMIR9CXESPl79Q4UWVI30RFZKn5nupTilSWIxb4QUTP0ijJPPf9BHeO4kGqD8L+1KDI3botFcyfXBN42jWvX5X8GFFKqQ++X041VQtqmPizdljn1nhn1Ucc9S9PIilJmnynpGMPuuNvu8+eC52/BM+z1gJ2rWATANK+H2fize2BMXPeSyuhAH6V/3HmO+PjqQvnsZM88twuUk4dS1lMk8upqqGKtngOnY865bYDxly5wyus8w7C3akezD4OYYDShe9sRF3bjiwUPa6PH8bXMdnu+lrHaC4SRdB0hiYkjewqd/wovrAXiCET1oc7gL2plF2xmnUvvI/OlROYtWAty+PnsijNGVmk0UJBkIanRSc/5NK4MlviVOc8zZ6p4nXPnByH/4TYGHfcGefslbCpTPp6as52WRTVTVyGjN0aZEGfhiyGN+CNzh+4vhkfugZwZUvgSpi6bnvQl/YsmNm8me5CGbvx7GQpHwrwQM0UkkcrObTz3fi/Upkm5AwFaduJTxCtonvpWJnLdzt1M4I3MEHm+yj8xjQOMbSUXYZuiIXTuqIk4LuCz46F1mb4ZBgB8XcjJvc9A5xzK/Bna+1iY0wakGGMmQh8AVlzu40xv0digXeHLzTGjAe6rbWx0Gcl1trk+t+HtcMYkwL8DEEPbQVWG2P+ZK2tR1Y3NaGHnAw9UOTkOuCLiA72cujzPa5Rx42oEaC5/arEq0J2AFk7tDCd1m4Iy0Z8GlMEea+10FwxvqihYkwOhO6tLGGK5ZiAKFv6G8nFHke7f1rULoa8m8qW1BdjVbISr2xQ+huF7lijNuDxNsmiLGaayrYf71jpL5Khn2vfquxAIkQ97r4RfDqRPmsV/dO7HY1x0ZduONyGSX/pZn31Sx7eODiAOBSz8YakVi7fzOHGyJGeJfz/XkTB7ysCo/M+BVkhypA5rGxy4eKcA0Xj1DDPRua7ZkZAYgFIpQ5ehxhmWfhUKn2uWOh8LRA5Cp9y9jK+/opGVjKR1LG19E8nrZkISmE9DV+8tJHEOa1RzFL6JhIYkryHOTkWGWmMGQlcCvzUWnvAGHNY/ay/LwlX9ct2xxpvf1OOo+77IuQFCwPiixClWo+vcp+5F29EpIeCyU0B5mTO5Fpub72O6/Pu4rTa4AAAIABJREFUAKQI4yzqA3aoHNpoIycwZspZy8QGMRRW3SD3OH1dHbYAjIKqO/EbEcgG9A18LY1lJBYwehBRgF3EwF4l9VOmsh0Qdi56YNsCT2Q/8Zl2qvJXMMMV8qvLnkUhzTzEIkCMrAJaKHDpaT2k0bljBsw9GDx3Q7zY655tqWJkqCf+ddfdumiegCyEYY/bSvecGpVKR/AmGjF6FXg/3kgDSetS6uC5eAIDEAX//lA/5cp33aUZjD9DAD7rX6iALLgn5+MALMp7mCKagiKMPaSxnYLAy15TOJ9KaoOUKT4Fp2+vI57iFN3JcbaV5FC0W/qaD7vnPtO1YQsynv+ONybr3P9vd8cfQMZOizI+7/ppvjteA/ctujQYixhRirMbeMV1RJQYbzAjALtHiBMnzj18nMVpf3Cf9bAiXhXU56EcWJfqCR9uJ5GsQEU3ka146m1ABqs96eTk4+MrtWsQkmuMCePwfmmt/WX4BGvtCmNMUX83MMZkIiN3lTs/DsRdWlUqkG6M0TJrfcGIzwI+Y4xZaK3db4z5X0ipkIWDaMdpQIO1dqNry31IsfZ6PI9dHR7afNTSr3Firb0VuNUY83lr7f8b6g+8E6K1RXKQtUPX/0LEU5uNzHNVOrUIYljZDFeFL3J/C/HK2AF3nwl4o0AVWVWwtPCgvjYpiCK/D0+piruuHVGcwlWz2xElTROxB/IFbMOnSe3C15RQXEyz+6sg4RZktvS4PgrXSekIPXu4T8IKtX6erFSvdM9QgPRbDzI7NyPOmyz3nP0ZJ+9W1KM/6Q8H05fBdhbSt2q0gsyPifi50IyM1dGkmc1AxkrTppVYQaUMj2HpQvajKDLWXXi8ikZSlNZ6IOMEPLHDHryuohkSG919VI/KwIPgw/O2HB+tU4MonIIGvtDyRmSOqCHSXzHKsKh/eiTS92rU6zuvTrm/ufZk9nmXIch7mJNjlTuQpedvwApjzBT8Uvd3KKkkGidaLV79eKdKrkGyd/3N0CW5iHdDlbI1iLfevWSHXhrN1qISARMDPRPSONQTCSpxR+ihm/TAi11KPTvJC5iUZrCBtpITWEFVAEbnOTAFkuIFEPkwgjlQQPRu10bFA9Qii5imL9UhinxSvuSmrzpvfvN2fvv9j/DJht8D0FZyAtsW5DC1azPGLfbj2clyzqXQaZ9zWcOdwQ/AybxKfaSUQ+1C69JKHp0NE4J+G3/qFnZeNRm+6S4oR8LKGoFajhguu/ChU02X2x5q9HY8Le82PN0zyFhV43En6XiGL5Cx+zJ+7KqB/dBDhJ3PiOVXtmA16+rfx4w8SeOKk0YTRUERzfHsZCfjOd9RpX2Lm4mTxtSXpJF2KmzKz2dqs2v0fph4dntgWGz7Ug4TV7X7zUCJDDbijabvIkk2utGWI9EWjUpci6Q6uEhKz/mwsHcZ7SliXKYhVNZa12QJH2MhyyilHoBbuInpLs/jCceSECVGblo7nW0S+RpTtoPO3Fx42KmbZSR6vybgFSEQA3Ef3nBcA7LahwsyKGH88SeHMPQcOXLSZq2de6STjiBazu8uY8wpSCT6RmvtNmPMLYi52g08aa19Mvlia+0DxpipwH3GmAeAa5BIyGBkIolJIVvBgcrEhfFTY8xFeH68o5aB0roWWGufAbYlVfYFwFr7YB+XvStyEFGqWvAKkUYhoshu+LfQ+WHWohF4ADvIGpONKGcaaVEMwW582thud102nlK1132uBoUWsPtb6PciJBZ81DVesSlaJ0KNB/ApZ2FRsLR6yFVR1BQgBeH3uH5QKvNDeGxKmHq2l0QDTdsUjmz0F1XYgRh7GcCFyN7wBL5Ox4mIst3J8RJ47VuOpgBkAbL/jUEiB9ovM/BMboodSo6RDnTPFsSgnkYi09kufLpUGFyvRq2u90rnuwsZO43oFSLzThm5VHT+xxBDehzeKAePmcl2z9qBx2YV4NMpe/E4rGn4VEdl7GrHk0ik4GuS6HyYgMyTMG1/X1E1NdIOIA5T1W5Pdb+p6WIxZE72ldY4JHmPreuYxFp7G3Bb6KPNxphz3q32DI9kk2ic7Mbny+wGmy1bOMiL0Y3kuyoAPguxpMMeZDVgAM6D9Em+QjxINEXTuKpZThNFAVajnlLmUxN4uSua13Nf4aWuyKGk2/ABsKMhohuKGiaqpJ+F4BLUG78ISerwBFPy4jrjpSb7NOavfZGpF4gCvfbPs7iIZQE7WO6qvVC+F3Lg9XxJ4owQp4AWqcMCfGbLr/ji5Fv4yZabAGidnCeGifZLKRSXvkbj68IusPPlyZIBX+S+/yLilb/XHf8Z6fdL8Lmiza5v9RqtFq+RkpOQ8fmYO16Or5UCYshUh65XlUshPutg/DVb2PpGCelzhcq5OV4IHZDiLNRHXvgw7z/jL8F4pdDLfFZwrnPd1XIaEeLE5kij11JOhDhpLqVq4pp2mV5uik38dbuMgz53CxL12gn3PXspAJf/88Myvprr8itEsVH2tufglRumB0UzI9+GyIfjNLk2dJDlonGCmylnLUu4gtOcsRIlRg3z6SU1iKaczxPcsec6VDrXTPCgd/Ba50Pubxs+vQxk3O4DXgt9loDvykYGTnfIMHL+eBAT1Op5myUV2fo+b62tNcbcCnzFGPMjJIoxFZn1DxhjrrTW3pt8A2vtf7ioxy+AYmvt3uRz+hHTx2fW3XMfwqF3TDJQD56F1NS7pI/vLD4r9V0X9bjuwytj+5EUkVJwNr6XcL6+5sSDrLkzQudpFEL/KlPQCOS1CBv/IEqeKl4KUtcUFFW0NP1pFL7+iSpyERJB7hqP66v4noLwNdc/C1HMVGEMg6H7Yv3SdiplbdhAC0tP0nV9STNiMucgUfDHkRTdD7i2zAYWMHDiZF9yJGOhP2D3UOVoCkCW4o1BrfkSQRTiMfhUw3D7jvQ82v/KMqURASX66Y/xq8j91VSpVny0UCN2IRKgw9oTNhgPIeMcx4PhlQZYsVtKU/0qsjdq3ZE38UZCCr6KPO5eE/BzOcP9U5KK0Ui/Vbj7anpYsnTiI3q73LMqzb/6qqbhMS/DZpzA0CuEvicYY8YAN+MTSJ5DEA3vZomiY5RwEcZ0RGtU0G67FGHUHNgYspOuxiu8JRzuQd6LTyV6Cro7xjLiJEm6jaTFqc57mGV7JOuiKbOIUuqDCvFxIrRQwMkuLWhF4WkU0UQ5awNDoK3wBJZTTWW2KJdTb9wO4+GAcz+O/AZimLiCh3wYecm1DsoHEO+FO3/+jS/CR2HVIrFWIvSQ+8zeQIH+7YKPMJ8a7uJqvt387/JZ4UdYwseocO2eNflVruYuftImhUyik2NilDUJu9PWZSVMWtjgF8CVyMal0YESPOgsfNwQGo5RiEdFgZF37Ya52T5C1IosdK2h49l4TMo2JO4XNiSr8GO3A3a+MRnaoHvlWIqveY1NrUXQBOtGCQKz7IzV/PXlc4idqjS9e6l0gHKQFKoWCvhZ1+cAqM2o5JO//j2vf8oh80a1y3OoIbkTMS6VCOAR1yfNcHmn4Fz2PAmZU/HG5U1IZXZl+BoDRb1NbDtTIiUTaadtzgkBs1oHWVzXewd3pIixkUYP6XTzhtOUOsiSQqDUcvcbwopQOr2eaGaM7hMcO5cqZOG+WxcaizXuWMPy6xFDMVB/kyMkm/Gk8SDv3vHj9nwHizBuBbZaazU+uBSpBlQNbLLW7gIwxjwInIE3YwMxxlQhpuFDyPr8uaP47cLQ8SQGV4Fi0DJQWtfN7r/fttZuCn/nQkHHjaTiIwDrSATcJhsm4UriyYBvjbFpYcOXESU0jrweWktlJL4Kthov6sHW4ntahX0CnmoYPNWxKoavIyOsUYxdJNZb6c8g2IGv3l3gfjvMkFSCvPNhfUrbWUIiW5dico4mchAWzS4eifSvRlg2IP03hqExKBypLcdimBwLfC6KZBAU4I28HYhiro5STa1qCl032L5V5rgDSGQgmdggOaLQjvSxstKpYZSCzP8id46SH+g499cenYP7kTmVHE3TYyWd0K2jwF2TjX8/9uDxJrtcO5UkYj8yd5SYQfExpwB/SWpTBThVxou2v9N993732cvu9wrpn9ThqOXIaV3vsXUNLL9BluePuOOPA3fhqzT8nclBfJQEREHaiffmTkoswpiLKF2zQpcsR17OcJH5brySdp7UzYhmykqVRpwmikgb5d/+LjIC5TZKjCpq2OTcFdW9T9OYUkwtla6C91vMbN7M5Vse9oX8DgI9MNIRRPEA4mlS5fVJJPUnjN9Yh3jgAe4F+3+hcrfkCRllj3KekGqeJk4aC1nGrYWeL6Ka5QGWJo9W5sefY0yZaK/n8wQ/WfcV0udJBKJ761i2/mtJAE5Pn/AW3WvGQonLmVuTKguKZvBvd/36bKjN5chirM9xSbZ40NRjcwGykCtFcpXrG00DOwkxdorc8TRkE/iiOy4DlsOYa3fQuXwCjb85SUDgEBgwUfYy6dQGcp1SXU4dzRQGwPgCWlhONZFvy/kd38+i56Mw83uSd/EvX/0ePy78qkCggad+NY/z1q9kj6v/kvkrxEN0I0H4OVPHKewC+A/E6ASYC5l1cTK3OEV/MjRQEmBOZrCBxpRixruVtI4KcmmjzTELvMJsCthOOzmMny7hmBqqaGvNYdJ0yRnYerAkcXy2yu8mFMQsQ6ieQaKL6fjNM5ZNYj5kDHlRFGdyfOFNDjHiHSnCaK3dYYxpNsbMsNZuQKgR6pG42OnGmAykc86ljzpTxpgK5E2+CCEbv9cY8x1r7deTz+1DVgPTnC2wDQHcXzEcz6UymNjTH/AoP5WlwJzhbMixSAeihCxHFJ1kgyQs4Xc0jKlQelKQPSWKKFIbkb0jBY/p0JSrFLxCBZLfvt9dswuJwrSQWI1eDYFRyLuX4+6zDlHkJiJpsmpEJRelU1HDQsH4mSRmnSj98QzXHjVCQNZYPTdOoqd+KPIyYpZnIOvMAmTd1xRqjahU0z/25J2WoRomY5C9exo+Y+AAnrpWvfj7kLEPrwhHaxBF8el6GnFIjoQpg5ymCKrRqRGxImSM09w9BoPx0dSpmXg80UjkGSe4Z1AsyubQ95redQh5/nF4+uKIa7tGFCciK5r2lzoTtP3h9C5ITMvsD2FX6377FDwQf9gia0dO63qPrWtgKbbWfih0/C1jTF2/Zx/3kkpiEUb9vybw5rgX3ilObekSMWnCK7hlyGQNL/CbCSIn6fPEMFFMSSW1LNuzkIJMBY5HaKKIYpc42kQRMaKBYnl/ymUsZBmf3P57Hst3lE49m7GzwDiPQs8HIXJ78OvY/4tgQ5SN68PIy6s+11UI1kKzzSshPgoi6sT+qLBJac79TvICzMvVvXcDcHPKt2ikOFBwI/RQkLY9APLf1vp5RhTvo6fbeZ/VS+I20u6ssbLBtIXUl7uRVC8QL0UHwtqlaVvbETVNoytNiMqmPmc1PBQwPwqJYoWNyUfxHswdwE8IqtbzYxjx4310/niCGC0rJQUvcnGM7gaJIMQ4gSixII3r3565hS8v+FZAJXwatXz9pf+kx1EDF9JM2n4Co6yctawtm8X4XwmP83mPr+T1L01hZrmbc52I0bmKRKB/WEm5Ehl/XVzXwSsXTidnjgxgOzmc/ngdT10oAJ75973IqsvLWdQrkZg/pCzmXJYHc3IqTRTTSCPFXMIjPMvZ9BAhkh5n6zPO6lYee8UErUQ2xhBlNlvxFJ+P4g30QKbh3WA78W5A8IbK8UMnPBxijPlvZBbnGmO2Ajdba39tjFkGXGutbQE+D/zOMXVtRCiD3zLGLEVUs4OI7+6XffxEBvBha22j+71P4vnpBtOOzyEx1RTgN9ba15KvPRYZCHMyE/EXjEnCnGRyjOUDjDE/RILccYRo52prbYdjBFiPZ9JdZa29/kj3i+OVl6NRRsLGSbhgnNKx7scbB1PwAOPRiOKThoxKJ6KgdeCjH0X46EE4/WgusoV1klibQilYY/hihtC/MqtA9v3IPjEDrxRqPn8viZTE4chIzP2+KoRaUHIonuaVSCwwBVlTKhHF8jkkJbcIWVqqkUjR1j7v8vchKQjmUIsP7kZWgLsQkpTRoXOTCx8ejWEyGhnLPGTMdE9NNiDVKFE6Y8UU6Vzdg0837M8wD0s7QY1rmvA4q5n4d0Ije2qQqaG+FZmHymynRngeHvwOsq1ohD/mzgsHwZVSO/zehJ9bDSw19pQESZ9vMIbMUct7gPhjlW5jzDxr7UoAY8yZHG8uz6MSjZzoI+QgM1K9u+0QmyTF43CnNeCLMp6AvDBP4SGoO5CiiO5l7350LN1zx8IoUbq2UsSsya8GGIY4aZRSH3jiQfAc6uWuoI56ZlGbH+WDzY/zWOG5vF4yhaldm4mVnEDuz/YSOR3vIQBMLeJV+U/3QTnC2HWDO74WeblVuR3jDJM/yaH9KOT0trMsRVLPekjjau7mDq6jIaWY+dQEKS+5LmcqjThXsITrW38BQGXei/x1SxWzJkt62vrHXH2TsHIblkmI31az5ZvcuTtcn38G2eBb3Xf5iGckC2/QPAq82g25IWzDPrwOPBtZAzSNayYSZdKF+Wo49NhoGcsd8vuHfjCa7qzRnP2NP1NACyuYTwkNPOxYyr684FvUU0qxq1OznQIenHNhUH29iCY2ZE8JgOY3Pu/0S10AN8LM5zd7A6sSNi3KZ+rN22lbdAK5N+9lzzfSyLw97jW2e8GU4Y2uWXDy828EdW8mtrSz7cIcmlxVxrWXt9NODktSxCn+IZbyCB+gJISkrKGKIpp4hEu4hEf49ZbrGD+5hYIFLTQ+4yZ8HYlYK0jMia/DG1Qz3DjFVFOYhLxAepwOvEJi5OT4MUyGK63LWvvRfj5fGPp/uOfC59yMpGkNdP/nk44P4GOig2nHMnDUc2+DDBQ5mYG8ulkk4k5ieL/KUOUp4KvW2oPGmB8AX0X8MQCN1try/i89XJSPUuleB0pPUqVMz81D1pd/xheUU1YrpSVVmt5xiAKk3t04nh61w52jqVwdJLJUqaKlqU7qaT6ANxAUgxKmQAindYUVSk3n6sTXuMjAe6c1ejQF78sL90kzHpOikZOB0mDCv92XYquFGBWfo0ZXk/tshGtvMe+8cTKc1eIVh6nRMwW9q0Gr0ZQYON/S0Uk2nhJb8VMgynt/kRc1PJTiGvy8wt1jN14HmcTh46ypeFoEVN+hMmQuHcCnNWra10jE2ByHRM6UIU5rpCiVcRSPPRmNLxgadffV/V9B/5oGNhcBvSVHe7QfNJDR08c5OubDChN5DxB/LPIZ4LcOe2KQKfnJd7dJQ5H+tszxiIIUrmLdDc1O2b0EcbvpRN2LvLDn4ZW2VDwORWXUQcZPlkhIIc20kkf7HkmkLcps4gXOCADyFawlj8YAmLyWckpopImpvFI4nUKamdq1mZaMfKLEaLvhBKJde4mMQepfQFDQr+1CwUXkPrOXTZ/KD+iKx7OT3K72IGml5ywxTlbccBoghkacNGY4t1jF9vV8Jf+b3MQt1FNKjCg9REgjzh/qBX1+dumf+fTP7+FDn5VabfWUwqOprG8QjXnEl/dx6LXRnp2rGg/GI6nLVR5FDKtqxDDRxTDP/W1yY6GGTjlQl+7HZwYCyNZ71iALkpIVFAH/gmc7yXLfP0oAkp/1o7VsaJ3Os7ddIB+UQOHCZr7nwi3XcBe/42N8he8D8ML2BTyWfy5TXT5TOl3UUxowrd135qUs6nqYiDMEt92QI2OhBTHHw9THt8O1kHuzTKrMz8Ul+qUZiOXAFinMCbApYwozN25mU4bgWnaWSAcpO1cHWdRSGcypSmpppITlSC7ZX7dUMWdyLTGijKeVWk5j/OQWdtZPZqfW61HAo278D7h+VRD8JMTDpPieHu13dYNpjZMw+YR7v4LjVI4XA8VaQ0/8f26F+OGSgTAnfwT+aIyZb61dEf7Oeb2GLEm0ZqsgVNb2GESNjf4U7EnunAN4xqxW4Bx8upYqd8pQpIxcMTxlazveiFADQ7Eou5D3cBriwQ2n5IDsPZo2owUetQr2IRILp6rCqCleYQVbmcFGumceha9I34tPmxlInxqDB+gng/uT5Ug1OnYjCughxPg6HwHAPwp8FOnHaQhxyAv49J/hlP6U9+F0eBfia5l0IeO11H2nGCCdX48P4f6KbYLE9MFG+o+86BiHFXZNFxyFrwqfDfwVv0eE8VcaqdiAj8IV4muYjHRt60CMTDV4T8RjnQrdX03p6gq1eT8eV9WLzFVNg4wicz6Kf4ezkbl5HjKHwqL37A+PRVIbh0Xei5wckzgP3ymOmx9r7d8pjXCyApQe+jysIO2G9En+NJ3E8/CpRvnukiZ3XI0sJqqkXQ/sTxWgNbCTyZRNX01JpmjEreRRSHMQgdDifvq3iE1U9z5NfUppUJgx0g6xjChTf+RrZeyZmkbkVnGlbMiYzoycN4IUq9wn9zJ12nY2OejrxIZ2z68PRFqAVVB6pbjDVlDFB+97nBWXi7HysfxfcwVLWEt54I3vIItCmvls6Y+C4zmffT6g2N25bDIUwWc/K9///I0vkT73LbpXhwDWqxFzF6S4YhOhIo2IEVGHT6HbgCwsOlwXI4xQxe64CRk6h9/gWWQTVSssy107L3T+A/io1+WI8TSTAOuy/pEKMUrdPeeUPs9OxnMNdwFwNXcFlda1r7Lo4FrHRtDBWBbtfpzabPHVLuxdRqQTrKN9nrjO0Qi7NtoCMGNgbeEsKsa4SVaHoAlUOiW6osbGzHWb2XZmDo0O+HTR9qe5Nf/TAb3xcqqpp5SrXZtv4wuk0BtQCedObqOFAhopDnAWsT3OEtS+byIxTes8fN4xyCbag8f3KGGEGvakI9qQog6z8UwHkIg/effl0KERxPe//ZiTf3QZDObkJxyOOfl/fXw2VLkGKWekMtUYsxZxxn/dWlvT10XGmE8Dn4ZETrPd9M/i1EViukgXMsVnIwbEFDyQWZWxKL4eyD5k/Zvo/mbg029GIuufUvt2uPuF8+YVkwGytitlqwblFawcJdEY6YvORqmHNe8/XC9iFGJ0pbln6ytSsdXdI+7uv8ed2x8j1JFEFeAJSH/NQJ5/A2LEFSHPXo44nP5jiL8zkISV96GC+48kWniwC5kfy5BnVJyDShMeOD4Q1qQveuZx+KiJUmIn40zC18Twc1aVfdUfNOVwFGIUgjfCdV7pHNc53YzHm2ThmeGUcWsfvtbKWtcn7fiUR61tokaKphnq/dSgj+ON4jR3D/U31eOLKp6DB8ir8yF5fJNJAjaTaHwNh7wXOBm6GGNykDSDeYA1xqxEyFaSq6n9nYjWOdHEzVcQmquQ+777TYIkSYNsNsrcAgKSfxWfe1+D0ARoFfPliGfeHY9ZvIPmeCHr1khy/qfO+BnNFCbUOcmhPTBOMujmlpSbKKAlUIJbC8dTSS2bviQrUowoObST+d8yDCdPfQNqoei6cEEQmPq8HAesTj1y/uslU5i5f3NgzFzU9TibLs9n/r1CXbzhyhksZTFX8Lsg+nI1d1FDVZD68gqziRAPFN60hXHO5wl+nvEl+fE7ofiKBtZNc6CENciic7drXCT0D3z0oinUl9rX6rlsQmZiOEoVBmlXuXM0Z+TOpPtdiSyGmi71FYIqD2OulaTVzpUTxDhwYeOXms5k0sIGbuKHAPwXn6CcusBQOJtnWcIVQSRlEQ9Rkt0QjF08JY3C/GZfhPFrsO2PvthlOzl0ZWdwekMd274knxdc1Y75Ir5g5SYXXdG6JrOkSGbjAmlDW/4JVPJikFpWTAPFNATROWUU08hKN+k0xIspSWukfo/Mu+6OKCNy9nFom0ty3o+MWTj5qC7UptWIghCmbe4AjHuX7G5kxwuT64ffvXAU5d0Xe8h4vNR7MmQZCHPyfiRbY5wx5kuhrzIZBEOnMWY5PpsjLF9zURmMMV9D/BW/c99tByZba9uNMXOAh40xJ/XlZXPVNH8JkGKMDSsifRkmY/ApXxnglm95X9Srq4bJNuS9accrQOrt7cVHTpTKV69TT3U9nv5V2xJ1vzEa7yjrDV2jf5V1KzlSEhaN8uh1I5D9LlzFW4HSI/u6gWuDgq0P4PEnQ1Xqf4FYsVr3RdN5f4YoyTmuTXlIn38U+O8B7nesqVhvh2FyNWJwRZFnegKfFVCJZ+5qJNHbPxDWJNkwKUPUGaX/zUaU+H0DXKNGdQvSx+GihtqPo5E5vY7DlewYvnaJzocmvIGkKXspyJwpRCIwIEbxq67NhXi81QF8pfZxyLtXGPocd6wYnXp85GkX4gDQOZ7tfv9PeN0ieXz7qsUznIbJe4GTY5b7gBWAguI/hjilqvu94riU8JYZVpZykDdJjROXkqKHqciLUYenr21AFgs1TrIQLIouKtXATKl1AlCRVkeMKC9NEg3518tuYNbCtYGS30QRN3ELTc5l/Sxn8088QS7tpLk3ZC5raCOHBhcyqN69ErMeelxWeU8kjczOOMbVoHjq+/M4796VARVtu7s2MkcMooteepqn5sxjfpc0em1GOe3kcNuVXwDga3yXekqpYX5gwDRRRCt5XOKAKjm0s4QreOkFl5DxKNx1Yz7pOxxbV0eUdT9/nw9KzXN9pxGmuYhhp0ZfI7Io5ePTrrqRRSISOmcuvhihVm81oeMInr1rKxIZ0eOlbpwUEK8pXaOg8ysCii/+4Gs01p8UFNFkfypb3yjhiyvvAOCqa26nltOkLoyTKmoCgoMOsmihgEWuIEgPEWJEqckWQyHtj3Ey6ArG9uR1b7CtLAc6XQ0UgC3w4D0X8sEGieM/9aV5nHfzSjGCgZaMfKaO8WQEy6mmnLU8i5QgGk8rJTRyvSsxX8FasugIDOBGilmU9jBrmOPr8exN5dDy1MRoySQ8qUIWiYU805ENZHXo+4bQWJCOp/gBAcSHfRq7OV5Sut6T4ZOBIidpyFKZSqIXUJuXAAAgAElEQVRTeA+DSMOy1g646ThmgIuBc621WrwlSB+31r5kjGkEptMHDVqyqCKSrECciC/EqNGPHcj+cCoeo6HF5MKsR7vxQOBDJNLvbsMXrwsDhTXXPxuvSCn+ohRv8Kh1ty/0N+6uVcWvP1Gvdw/eKx4W9UBrjZW+JJbUjpGIUTSSoVVtz0b6Vel1xyHb9RQEW/kTZM1RXMYpCJ6gvxS840kRHIEo0iX41KQW93cz8oxTkDmgxUCHSvi9DtFJNLWrr/skR2L+hngRepH5qymJmuqrERU1VPsy3LYie3EDUkhTjWoFnIcLhr4auk4B58pSNxt5N8LMZTqW7fgUMTWQtG2FyHui2Rd6Tbb7vRykHtxy1yZ1RiRHkZSla6jkDv3JO12D0RgzGvg5siw8a6393REuOd4l21r7/4WOv2OMufRda82QRZUgZesKp57sxntwxwM53tPejCizl+IV5iL3N+y934pX6t4EdkD3TElnepYLGDNvB3Mmi9e6a3IGcdJY0SrWzaK8h3mIRYFXO40eIsRpoYACWiinjhgn0MRcrt0tWnZ79glEK/ZKehawqSSfzFGbgyjAefetFJC+0xROfv4Nes9MobRL0oZenzOF855fyYozJY2rlkoqqQ3aAIJTmMGGgOL4aaqppJZrWn8DQHRsjMVpf6CxQ8DTs/59LevfqKD7aXFdjFm8QyrEq+d9Jb7qLEhUI4L3vM9D3Jzb8KlDOcgmG3awK5UzCBi+Ix1Xa1BA5hrqx907OYejHG+cfA4f5fo+cDs0TjhJFs1V0nnpi4V9radIjMmz+Qv377mMtkyZJM0Ukk53YIy0kcNayvlk8+8B2FOQRmZLHByMue3yE6inlLWukdGyP7CUD3FjwS95fY5gSKZ2beaDLz3u+6EEXv/WlMC4+GDz42ya49O8imngCc6nxpUjitBDFh0+qkWcfFq8cVJ/Eo2pJzFizD7Y6iZJFkKjvMYdz0SMQH119iMbheJ3GpDxVMVDPbt6frdGSdQZsBlfKQv33fGDOcEaDvW8l9Z1rDIQ5uQ54DljzN3W2mFN3zbGXIAA4M+y1naFPh8H7LbW9hpjTkR0nL5qEPYpir8IpzFtJDFaooqP1mQYg6ccnYKsX8rEVIhP2VKjQzElGjEZ4e7zJr7OhL4yqrh14eubKK1rL94zrMZRf1GOsGhkY5y7xw5EkdXfGIlPxdGISl+iAVEFsGtEKIuhKXW7ESX5xNBvTkFohe9CGK1GI32oAOirwQWw33k5GlrfQ0ikpxwPPl+N5+abh39mJT0YCA8xkKixqfVzFBy+Bj8Pk9s9G09RramD+vv7kXmgRsZAonuDkiXswRsBU/AYpyg+0tLgzilF5vUOd+1+1wYtEqpU3Gvd+Zrupe9SF9LPiuXRNLAD7r5qXJ2CzKUwVkZlDP1HVo5VhiNyYoz5DeKQ2WmtLQt9fgFSvSAFuNNa+32k/sdSa+0jxpj78dHlv1f5izHmcuD37ngx8Ni72J5jlIOIQaLGyVbkrQhRYqRP8979dGSiv8rhxQL1nCzkRddd+XMI40STOy6SVKEGh3uYn1ZDG7lU5tW6y+XGmoKjxkkltTzkGKLS6GEua2jKFk2+gWLms5I9U0Vhntq1GTbCigvF2Cgsa2bqvdvpcXydm86cQsUz69m2QNKGaphP/MxaqnZLGtf8nhf5l/zv8QVuc/cv4bLdD/Ph7HvJc29nPaW0Bsh0uCntFv7thVsYv1DqZKy/rYL0q96iGzHKOu+dkFgLRnNM1WV5Eonl4NYgi3WrG5J5yPCsxym6SMpQHt5QJD1xs9RFVseiA4/DBtkAegiMOFYihslMpEL99TCmaAedd05g1mcFK9ESz6etNYdP5IlhuISPBaQGAItZSjlruZNrAaEWbqSEFYUyFmsp5/zCJ3j2colqnM1fqOx6kfkbpe/byk5gMX/g9fwpFPRK6lekBV8IDaEf7jkLZraISndfyaX0kJZAohAjGhgjBbQQIxpE4wDWU8pOlxdWVrqaKHv56wvnQG6oBk1TqvdwKd2jjqF6uTSvZjZiKOqU6EY2q8M2aNWsNI3rOM0IPWRg/ztSIf4fWgbDtNlljPmhMWaZMeYZ/XeMv/tTZBV/yhhTZ4xRpvX5wCvGmL8hgdPrrbXJ5UH7lQMkGib6cIeQ96DA/Z2G2N5K06qsQln4YnExRIHS4oFKz6r5/CPdNYo90HP24NOkVHGagqydOxBPuEZInnT30WrcSgs8kJESVrq0wnsKopipZ3cHnkp2IIUqjvdCZyGGxewBzj+S/A1fa0IV6xnuu28iaVDadzmIt3/RMfzeschgDZMTkTpblch8eBXJCNAI9fuRfVCNnRjHVstF06M0JasXUcaTowlh0Tk1DtkvU1x7NE3vAH6tz6NvCc85Tf3SVEPw0RJNJVQjIA8xFFqQ92GXa0sz3sjCfZaBzAeN1imWZQQ+dU0xM2ogRfCpZlmub+Yh46Hvt0ZolLCiAF83ZbhEIyf9/Ruk3I2UewvEGJOCZD9eiNh4HzXGlCJqlRL3/SPAXa4DluDJ1e4DvmSMiRlj/g7B8Ro50WiJGirZ7u8sh9Ptln+5iBGSJV9Rjrwgf0WU5lx8LY6ZiNGyEolanI4PO0+AzoYJRNLirIhX0UgxG9wqW08pDZRwy56bglSqDcxgOdVEibGcahop4U6u5S6uppZKCmkm0g7tKTnEUqKsyJhHz9Uw/94Xmf/4izRQzIorT6M+YxaRVY66dpYYQEu4grms4eTtb3BB9h8xdUC7FFi8kVtpoJjlnMvN2f9KFSu4jPuZzatUUks7OUTHxjjUE6GdXJh0kJ3LJgtw/9KDdH9zLMVXvOZTfBTIOcr1YxPyJl2ALxD+KlLnusj16QzXnyvdtW3A3HQoSRcgfAOy4FyAeMqeB2K75fpL8It5DbLQ5bt7d7v/R5CIQB2yKM1EjMkO4M/QefsEmADrf1BB054iOnfkcugzo7n75esDZV8peSsc2DtOhGYKmc4GmilkMUu5gZ9yD5+gkGae5RzS6aKHNBop4Z6Mj7Oi7DR6ToQWCpi4vZ2Zz2+Wwoqb4qwoEcPmqbJ5vF42hQcvvJDHMi7k9pKr6CkQY/WTz/yeCurIpZ351FBIM3WUEyVGE0X0kEYO7USJESPKK8ymlHpa9hTQSyqNFMv8PQjdO8bK8xch6YrT8DVq8hDDsQMx7jqQVLhmN79fc5+lIyuEwRk06XJz1iMaXrZMtATMyXEmB4/w7z05ogzGvPsdkht8McIf8kmOsbaZtbakn8//gBR9PCoxScdKU6o57SXu70Zk7itzlNYF6UL2ig3IO6JRlQJk+u9DFCUF72ru/ajQcRri6Q1XjVfNQgHrylAVdW2Z4e67G5++k8nhBlayF1hB90rFqoqxRksy8ZHR/pRRrWJfiE/FVYamoUoLYpyUuvsote2JyPPWufaUI/1UhCiZuzicuv54kHl4jVFJXd4E/rf7fyUSGcpDxr8eMSQGKwUcnraldL0pyHhqNCwczUq21jPc7+9DxlEZwxRorlGT0QwujW4MYjRoHR+NkmQgc7nQtXND6H5/AT6AN0iUia4XD6TfjMzPCfgUryJ3fhGe8VPfUaVpVsNb/+Ug4zEOX8n+OXf+FMS40ojgcMkgIie5xphw+ukvHS7O38PaFa6WU1hOAxqstRsBjDH3Iczm6oqvYxjLtbxbYq0dTlvxOJJkkK7yur4JnEygODX7/wY4h0q8t/5VpAhdET4FJ4IsjCX4zcbRs+58fTJlH1xNL6m8tKWSl6ikbPJaCtjOwkzBMJRSTw1VfIJ7AtB8Ozmk08UndmsACzYV5jO1WTztBaNX0pKdw0TaoV3StP5P139KLZNp8HrhFGau20xJfgMlNJD7s71844Z/5Qp+x28XfISpNNFMIb9wVFr1lLKdKCU0chuCQ4kRpYgmetIiMBmWcAW0pZI+7y2a9hTBylQogcb5rkbGYsRImIkYGNWIMqwpVdciIfhcZHFqcuc1AtZFSjrS5fs1LpcoOk3Obe4Wg4ZuMI6H8VV3D4MPN0eRxU6xKR0I69Td7vsOREPSAoMAtwB/hhFXuYKSK1Ol7fvh2RcugFyYNX0t5zi6j3ZyeIRLKKeOdnKpZjl3cTU38HMZc/LIooMOsogQ56LtT9OWfwIrqOKxjAsppZ5V+eWc/mAd226QyFYWHbySP53znpEd9tkF53A2f6GERjZkTGcnefxwweeDNLyfcQMReljocDB1lDOenWKAAFFidDCWBlIpymzyUZbpsPMaYZVjnusjpRJuxhuW8xCDJOL6MwvP1JXqPgsW7t0uspWOtzhjJObm7eZ4AsO/J8MngzFOclw1yBtDqV7PHfGqd1DCO7eyCE3DRxQ6EUXrFETZ0YKpyry1B1/xemToe/XyK32wFqrVdJR29xs78FEMTfdqxSueBa4dWsV9Az7tspnEFC9Nw9Q6En2BemOuzZmuDa/iaY/V0FD2o/7Si7rwuJrw9no0tTn6Mpxa8ExLWhCwElnrN7t/0/Dg51PxRuNQmcLeDtFsgELkWUDaqP0ZQRT0bKSvRyApzvsYvPSFJ9G0v/CcVmO3P+U4rLTrnFVw/puIcbWPwWm4GkXrxJNFNCAGWAzRk5I9E+GaIqqBNuErx8dD7RqHzEvFmmgqpBrc+v4cwBsmSrCA+40ReHyTpl1muedUvNYBDq8yf6xyhPBFm7X2sGJYg5CJJJY22oq8MrcBPzXGXITnEHpPjjtRiyMHT90AXoly3xtEOW7F4xxq3f911oRrZoAs5uP88ZwznqeDLNrisiKte/B9jP/gFv5psgdUF4RWFTUC7ucypru6I+3kUs5aNmQLJqGOChZ1PYx1zBSmBSbua5fq6fgq5bcXXgUIJqGmbH4Awv7kWb8nRjQAdT/EIopp4N/5VwC+1/tVvpryPRoopt2tpPWUsrz1XCLpjmUss562iTl0L3dUwROAeQch5tSTVMRACXPdL8fjQW4hsfotrk/XACe5/m9Coh09jj0t1g2RUFqeMkOFTWiLX9BrkLF62h0XI4uQImu3ItiXxXil/HagBI8/aIM5X3iel+oF+P9P0/9EC/k0uHynXNrYxNQgPe9+LgN8ut4jXMKHWBocg6TNKZi9g7FUdNXx1A3zgs9KaOTk7W+waoF0VqFbajT173yeIEaUH7gyc1XUkE4XdVQEv7GUxQkYovmsoDbIZ4MVrVUceno06T9xBAbrxoqRpmy/YY56aVRiSaANSDRRjfYoUvvHqmayFXm/wviurSRGTI4jA0UByv9DZbjwkoMxTlQn2u42yhYSSabfdRmLeG3fRJRd9T7PJlGZbEYeZob7vAlROKfh2YRa8KDaVrzRoIqf4kw0FUu9vJCIH2nCUxZrakyHu7YUUdJ3IPNYq3iHsQL6ty9a5LPwlK1j8O+BKomZ7p7qWe5PWhBnHcg+mIesv4MFE/eV178bUQiLEOUxildyH0LWoQ5kDdfaG2oEjIbQEvjuSSXSvgJkLqmC3QH8mzvnEvedUuHvRuq6HCsuoQhRgiP4jNraI9y3CJkLWjRUdZsRSP9qytU4joy12Y/MzRnudzXFTGUzMp+z3DkbQm17051bi0SUlM63yLVLGcVG4Fm9RuCLWRbitXQ1ZjT6pg4B/UzxX2nuufSdKEf6Td/Nj4KrGnBsMojIyRhjzC+BR6y1R2NMJAd+Aay1dh+SbPKe9CPGmB8ir2Ic8ZNfba3tGPiq4ZKD+Mo8ICvtNrzCNB6Jo2op7mzRp7QyPMAc91dzJvNJxD10IJuEO/+lUWfKxqIUrHMPkkN7oGiu3zKb90+uYT6+LFk9pcRdWg6IchonQrfbGapZTn3GLGozRNlcnL00oWp5BXXcmf3xgEGq3SH8tVDgprJ8CmhhqePI6SGNOJHAGLo/5bIAY1LutM96SomkxynIbPFtSC+lO0t20uIFr0llcd2cfoI3UECiIvvxdTEuxmNAQBYRrcunw9HWDW3pIX02XXJyNQdX7ciYcw+WTJOxaAtdvy9dCA1ADKhfIEgx8LigR5AFqRq/cStQvAzq95RSXPoaAE/Wf4BJpQ2se0YedNICiUZ1ubE5nyeoCywwSKebKDFu5v8A0JBfHFD+Alze9XvaMnKop5TruyRoW5txGr/N/0hgPJ6+vY4H8y8MMCWt5JFHa2Dw9JBGD2kUueIoUWI8Fl9INC3mHrOINOI0bhFL458mLyOel0bs4rhgTXB9OgnvbdyPLPYb3HEMGSs1Ropc/+nGVOL+ryujnYRQdW9zH3ThCSjgeKsQP1zGSX8YxdD3hYjaoSXmfmmtvdV9l4VsfWXI9nWNtfZIXEtH1Y5+sJIwTHjJwRgn33FVff83Ut8kE0nDP24kFQ9g1+rshXigu24bKUjaRyt+7kTxoPJRiEKqaTIj8HUXVPkb4c7TyEMK3vBR7+/fCOHs8MUaFR+iRoqChdUAeZnD6zXs4nADZR+i0GkaTxY+fQe8EZXMtB1U9XV/W5E1YaJr30b39wxcpHuI0oBET3qR8ZiIGI29CB3sPa7NpyIKbik+na4UMW4GzYIwzJIN3ID31quHvwHvEJuL7Gvab4o1GcfRs3SFIyKVyBzKcPcZ6X4jmY0tWTrwTF2a5jQKT10dVqrDhklf0Rg1Ugvc9U34eXoAMfjr8fissGxw113r/q9OgiZ3fgce56VGz37XpgmIhpmCT/vS9qrhorgYfZez3PWvIvubEjpkIeM4ksMdqkMVyxFB9p3W2k8P4dZbScymnMTQyd6OOzHGLAM+a61tehtu/xTwVWvtQWPMD4CvgnMBv+2iW6dqu114NxdJ3+HSi9IT82ybkIVEizJWIZuRygT3Tz97ikSQXlsqGyLTKcgTLb1s8lp2Mp61Ia93Lm0U0xh40muppJrlrHHhmhjRIOULhCHqDq7jNOcmKqSZekr5RJeAuOszZrGBGYHnfDytLA7K0Mr9l7GQfDeFY0Q5l+UU0sxO9/A7txTw/sk11MfFcPvBypvlRXabcuM1JwkZwHfcTS9FeOfV7HwEeWNcEIR1JNaPmY3oqw14BZh0j/tRCbsQcpEFJNfdVFO4XGYZr6V75jWQ1KRL8Kll1yPGU4f7txz4unuGs905rwsmozJTdtfGE2awdVkJI+ZIeKaEBmJEg7F6gvMD9iyAcodLuYz7AGE9+xY3k+JW4hUZ84gT4Qu7f4lxm3x9Rikp9Abj1ZxfSCn1AdvW01Tzcf6L2c5C3sAMIvTQ5h62ltOYn1bj58+eSnIy25k0uQmQVLS21hwOPT/aj89iJHLS5I4V+F5Eouj3WSQGPhrdX6sfJOd3HERcYeGK8ceRWIYrcnI3gs++p5/vDwL/21r7sjEmCrxkjHnKWluPGA1/ttYuNsak0Yef2hgzHui21sZCn5VYaxuSTj2sHSGs5HnIHrbaGPMn99uT8C6XIeMlj2icWGu1ZEMnUg8NY8xxZZwo7kI93Iod7MB7WnXt6wr9P8Udn+jOVZrTTDwLYdiRpSDzUaF7aHX3AuRdyyQRXFzi2qbFGrUqdhFSFC9co6IU72wIGynJkRNNe9HXtcO1twhR5HSd3oZnQOrgcIpgVfK077IQQ2rQDAT0n260EekTJRSYhvTPDPfdy8jbot58pb4tdX9f5p2PopQiqX9FeC99BzI2ryNpzYvdeSn4VKleRGFXg+Jooifhc/Pwhq8yX3bgHU5hUSyKsrSBj0iciMyzXaHP85BIxsfwbgz97XCkTCmwFVCfhsyLKch28Bw+jSyMR1E5hN9z/oaM7xh8xFKxUBsRl85m95yvkwjgV8dCFJk7HcjcVOeCRrQ0nbIdz7K3y52j7+twiOWIKY9DjZysBqYZY6Yir+TlwBVDbObxKHcDTxpjfgv8h7V22FjCrbVPhg5XMQiK++ETzUsJK0jbks4pcjgGpJBcbrq30HGXNoVuoQWDdNPZgbwkF7vj/cBKoaRV6d46lq3tkha0tQ7KrlgdpHbl0UoreUTooZlCTqM2AFyrp1yNFY1q1FHBb7o+RUuGsHl9ne9wHXdwc8Y3AbiM+1nU9TArMoQyLJd2HmJREL1ZyDJ6SAsMkXZyaCWPdnIDRigeTaXuyvIgchJZEGfnG5OFNQXg+wfh9lQfIXoUCYGG837b8NrLdiRApZGUbryiHHOKa66LmqiBsQ/x/OjC14Z46sMEUDOANW51S58kC52OXR5i+GgkRYHeWXhcxY2IMfls6J5rYMmV18j/l0L6F9/iukype7Kcc+klNTAEAJqYGhxn0E2cCOe4G7aTSxs5Ae1vPaV8gdu4I/sqepxr8gM8EvwfJO0vhd6A1rmKGl5ldpDuVUMVVdQEBm6EeEJ7yjPrKKWeZ53F9dLLZ0IHjDhzH4f+4FxBq/CePBBv3i/wkbA2ZIw0zUs3+nBK3V5CXrls6A7vMtsQ7eFoNJV3UAYXORkqRjH8/XbcrLfWxowx64GJxpitCLnUVe67OH1vX2cBnzHGLLTW7jfG/C9kxi4cRDv6w0rWM0x4yaHynX0JCbYeF5KKB3hriki49ohiRbIRxij1b2Xj8+Inhs5txwN0FWSuzEU78KkzmpYFMvJFiDKkpqLiKgpdmzrx+IVdyLu5y7WllES6+4FqjTQjUQfwSnSR+91svHc8C1EMC+n7Ne5EDKQJeCayCYhB1YQojirJER2V/jSNWjzD2enus3JE2c1AHCsKgl/g2p2CRA/y8DVFnhjgN4ZLKpAU4mrXDp0H+xCDYzXiIgCZL5PwrFVdyDzQ+lFDbaum+2nalc6nJvquIh9mYutExlmjCTFkvPW4Hb/u1/fxu4r1BD9PclwbtAjky3hGN8VbHXBtDG8bq5CYrhpE2k/K3qURPU3LiiLjrMVENc0exBDRCvfb8AQCasCqKqgMXzuQ91WfoQA/LsMhxxo5Mcb8N+JHzXUbyM0Oz/c5ZKqnAL+x1r42LA0+DsRa+3tjzGPAN4A1xpj/ItSV1tofDdNPXYMQt/QpxphPA258xvR32hBEZ9s0Ej2464GTwb4Z+h4fQlS4w3YSizA+QFAgLwjZqswE1uDTZz4HY0p2UJgmimVH6VjWbang5MnitFRv+UPxS6lIq+NFKgMjRKu1F9NAGznkOq28hzTWZpQTcwU/ruMO2sgJoivf5WvclHEL93M5IJGRqPP3gyjYdVQE0ZR6SjmfJ7iNL/DX+nMYU7KD4s++RuO3T6LxYnmOT536M5ZMuILuavdcF6eKF0XjiZMQE/dyd7wDMWS+6Y7bSKyEVoIYK93A8m4oyYYGNzbpzhLUyIoahlE82B2EOWpNN0EG+2hEydZN61ISN8RuvFHiDMr0xW8Je5Ve0yCfB5Gwi6XA5M5MoeVtjhdSmraeKpeWV0Edy1gYGAfPcjazqA8MwThpNDE1MEarHBbkEv5EDfOJEmMt5TRTSIkLRzRQTIQ4bU4TiRKjkOYgLe80alnD3MBYiRJjA9ODx4wQ5xEuYeczDvxechA6Ujl0x2hPCKBGtcq9SDTrAXdchI8wgRiQ6aHIVBviDQoMks1ugDTEmINn7YLj1kgZWIaKUexTnPFQgaheJyLb613GmFOAl4AbXapwINbaB5xT7D5jzAPIGnreIH+yP6wkwIMMA15yqMZJX3nS75oo/W8HopCoIqfKkMpGxHhXb3c5osg1I+u+eqE19aowdH0MUYyU0lWVvB34yEgT4uVWpX43nvFrFL6gnFKj7nfXKV4s+RXrr1r7BHdti7t2BKJIK0VrNr5uibIeQd8GRhbe266FIDXaos+R3UfbBiO1SN/ORp5f62EoyHklEo3IQtarSe5ZTkT6vhAx4OrducPJvjQCOD/0u6VItEGNg93IfGnCGybVyJqrxAZKrrAcXMB96HIqvhbIPmSMm/BRhP6wIqfgU6U0nUvJHRRU3uueJ4tEhxbuOtV/wkaQFvJUim3Ffijroxqzq93v70cMiXHIO3GG+80O93khYuzPwDuVDiFGkW4xWXisjdY50az+LHd+ODqlc3eca2c4hS3i2ngqx0btrHKIY4+cWGs/2s/nyyBUJvofT3RaR5AhHXQZGmPMcnxiSFi+Zq39ozvna0goo9/cZueV/KWcX2D7O2/okpxaMg2ZwSF4Zhuy4LQiC3EH0mrd4puRNC9NiLgEWQR0AjcgCrD2Rgd0Lp0QxIsq015k6/4SNjEVgNrW05ia10RJWmNAA7uBGeTSFtQZKaWep6mmylUYLKCFFvIpcGGIh7mUy7g/8M6r0jrXWQP1lHIRywImrq/x3UCBBXiF2UF9k0mlstK0xXN4/zf+Qm2r0Nz++uc3yGa81z2Xgsx/7P5e7bpXc417gJvw2ksVorcqPKPW9eFcgGzP+JSLYEcAoukyGzXNS1lv2kJGjJ4DYuysx9M2LnftVNszHYkOfAYxUIDulWNlvJWbdDHivdF2joIrJt/DknoXSdkPsVObedp1QB0V1FHO+TwBCD5EDRY9rqWSW7kREIOzihp+wFeCa2qYzxe4LTBGl7KYM3ghMCbz2MkjfCAgK2hyc+fXW64DJFUwl/YgDawnnkZhWjM7S1xOxMpUIS/ISiXI7pvk+lX77mJEddUimR3IOxB4tdJlrGpUy8h2G566cnciL4rm8W1DJoSef5Djqwgj7ygg3hhzAsJy+0Vr7R5jTCqy9X3eWltrjLkVSUD8t+RrrbX/4aIevwCKrbV7k8/p72f7+EyLqQ8LXnKoxsnbsLgPXeLIXB+HNwj+hig96klW4Kx6cRUDoc6SDOSdacLXSVCmrhREAVP2q2b3mwqeD4N2w9EG9Var0gheydLoygjX9hQOl/52cDUkxrhnnIBnPYrgE9ZHI4qhpv30FfnQ6uIxfIX7U0j0VA9kmPQXUQHpqwakX3OQZ87AR+uzkP3mcfw6r66EHDx702z3fTOynmn/D8UgmIHs7xql0Er2WuxQCx42A3eEnq3aXZeGTx/cgYz3X4bQjom79H8AACAASURBVGSZho/YZLp7azQBEg2TcCpVM5LtUIgvuKg0xJoupVG2CLK3hiMdYQlHZ5QgYhwyfimufTl4kogMfFRQ5+pWfJRRmcx0/qmxpHNV76PRkJh7hl58+lcBMoc73Pen4LMntI2aoqkGeh7eMTecUbe3CXPyDy0ONPkjBG52arjo7mDEWls90PfGmE8i6s+51tp3eF8KF2FUxFdYdoa+nyST9TX8rrsXj0UBUd5S8R7lpYhCq6lEGxBFN5z2NRc6d7gK45MLKZ7+WqD0V+a9SIQen06FVGuvo5wM97bXUkkacRqc1p1BNz/mXwJ620t5iHS6Au98D2n8Fx+nx2meUWLUUslCV0+zjRzu5zL+yD8D8M/8kT/xAda/XMGYMg+oqY/P4tA2SQNKv9KxPN0yVhvpK7SDbCJVeIUvC/HGq5Lf5D5TfMleRHVaE+r+7q2wbxJB3lZsktQ00dUwlg1mEgEZ/OgzZfFX46UbOdYQc7lrl7axDhkrVThAFIs1eOPkKWQOaDtPhyUvXBP0SXrZWxSwnVz3o1l0kEVHYEiW0MASrmC8o6vWejFaxLGYBrLooJy1iWxaVAXsWy0UUEktd4V0xzN4ITAma6hiNq8GmJJc2nn2mQt4/wKZD3999Bx527TI4EwE8K+58yA2QjgN5HnXB5p2p+ldapRXue9KnJuq4U0ZnyDHTg0P1ajC753KcLouj1HeQbYuY8xIxDD5nbX2QffxVmCrtVYT5pbi0VHJ11chPteHgJsRtNdg5G3HSvZrnBhjYvRthBiOs6o3qfi0FqUW1V5Tml7wEXUF6irgfSSeVWsmnu1ngrvfAUQRGo2n6wYPDu5A5mOy8hJz12rNB92VNcLTi6x3Gzly9W6lYD2EOIVOweNe9rv7a7V7rcnS5dqvNSn6khY8IcABvFI7DSkSeSQZKP1M5VFEuc/Be90nut+rRpxQWs0+Dxk7HUeNAmkULMe1dRs+pUqL74WXp3MQo+EUd6zECGqYzMQrx0ofPRIfMXnBPZtGe+biFfP9+EKdTwzi+QcSNe40g1bB56PxinuyhI2LkUj6k9be0XQwnRfhFMZOBkcVrf0QZrYbhY8AjkD2FU1bLMLXJNnlvjsFb7xH8Qb6LsRY2u2uUeA6ePpsjf6AT3Gbhoy1pmh24JnINIqj47UBeV+mMHx7xNvI1vWPLl8DPvx2pKo5w+fLwFlHa/Qcu6Tiqiy643Q8KB5kRs7Cu9Yn+VonsdAlJemJilwTXumehiiyRe44C1G8Nfw5wVXkXidK/fo2MQAOtYvS/9f2cxhfukXogN2bX0c5XWQEIOoaqjiX5eQ5hbeV8aRwkHNduKaREh5mUcC+lUUHFdQFym8jxfxky018efJ3AXiRSrrIYNoeee6CzBba4jnMOfX5APuw7uX3kV7yFi5zTFKf1oSeMx3vwQJ58SeEvv8vxGhQJV9rZsRCRflK0p2DXccnw6UJuUhWIdCWDd1OAY5OcpEbofmlHWmf6sPKFKJjtd59psZJHmKs3I3XjooQpTxEET3i3H2SAgWy0D0FZV+W5NMZvMEf6j8WaGVzpj/PS2+cScF0Ty5QTl3A4FVKPS0UBGlfd3A9hTRzGfcHn1XzNLdwE2FpZTwz3HhKkcVIwM4GsIyFAZtXEU2ULVgd1DmhDDofnRAoQSPm7ONQ52hRbee5G6zEb+S4538EHzlRLLv63mvcccBeomlbKuqOez70Pfh37zgDxL9DxokxxgC/BtaH02OttTuMMc3GmBnW2g0IMXhyRjfGmArgV8BFwCbgXmPMd6y1Xx/Ez7/tWMl+jZO/p6JZBl8/QxWdcSRWzVZQ+AS8otqFKGyqIO12n8WR6R+m+G0isXbENGS0RyCe6yYSPc+quKkyrmxOuxClSWsL57ljTQ/TfSsZWB0GxRe6dk9y56hxocZQB97IKCAxHbcvUep9VYpH46MKx1Rt08lf3L3eh8cwaDraKNdOjT68ilT51IoBE93/s/HpO1of5XQ8c5k+u+KCTkTStlLweJaRoX96L8036cSzGd7r/la4NmtfRJC+3ey+/y3915EZrPTgyQim4aMHajC/cITrT8GvhQoo18TSHDwWI4Yo7oetUH3IAXwf4dr1Oj5CONJ99gIyv/Q7jfIcQhyf45BxSEPeJT1nV+g+avhoRFONDwXGqyF4yP3WIfc8WXhms0PIuCiS4ER3Ly2eOhyiFeIHkPciJ32ItbbqyGcNWX6KvJZPyT7NKmvt/8/e+4dXdV53vp8tBELIQkICpIAABYRxZBwDwbFj40nSkN5e18k4v27SNG3T9EfSNNN2On2apu20nc50mtt2mrS3t+1N0zRP6+bHxInTOON0Uuq6MXbiGmNssDBGOAIEFkLCEkIcSYD2/WO937PevTn6AQgjw1nPo0dnn7N/vPvde797fd+1vt/1kct4vMg0kxs7SI14nFn/NaJ3mwMM7rRV4bPJ4AOxZnz0wuoKy+uwh21VWG4O/JPgILds6qT7UCuva5cTBzexm32sK6b1dNLGCg5TCB70PdzPl3lfUX74VRzlj/nlIvho4wB38gjbQqrRnXyHTtYUHeTX8zj/eeVvF9OCTrOAW3mcsYXzwtnX8ofzfpVP8R+twCLACNQuHKLwzUXFZcDTueZjwOOnw/If4Woa6pc7cHDShCk8LQ4z7/1EXB1dn1BFUsuH90LtJlfn6idEsTRb3+L5sWDXaRgP7e/C+l3Lj2DO98MYHH8Um3XbjM88Pgzj62tctmEX8DbY8+cWStjTegvvuuvv+eqf/6h1x/XbuPX6x4vX4i1s4xH+HUeLMjPajV2L9/JltrGV3dxUTM/qp5EVHKYq3FSvoYOv847i/bCUXnpZyjPcBMCt/Btb2VY8xv1j91A7zzN96lp7GDzVXOTNjB+pMRCnLEawe7gHv4/3hr7Rva5ibGui5T48SlXdAIVYnasbe96UIqlrFItRXH1pXZNwFB/Eno7VGENtd5Ikehp+PaQJ/wfg74NS1wuUTrNagE0cHQjH+wkCiX6a7bisXMmLTeuaVTYHc1w0UyruSB2eciJ5VqVUHcOj5YqaKIUFvFaJoiVy1E/gaVXik1SQdVJVX2I+Xg9FKS2EY6/CZVJHsOczjkJMNkurlJnusO0WXLVoDh7B0ez7VFpuY/g4rAKU88N+L0VSOLb/iT0hb8TGrlo8EnEr9g7eib1T/nP4bgHwgbCOHG2l7lVg/T+E97+SKkbISkHrGoBzGHqidfdgzvMe7H2yHouWNGPvRKVXzQnncBz4m5nolGCKDAloNeAqcCsm2Q4sBUwRB9XgOY0D6dM4d2QOHpWaTh0bnes5rD8UxVmAgZxb8WibAJXsGAYgB8kqcO3HAJ/OS/LcJ3FRB6Vk6T5UXxzGBRXAI0JKOVNk5xx2bzQyc8H+aUROyvYyW5qmbVOvdTktVusCu8P1JpAjnJvjGzoB64Lj9STmb+mlsw4bxLXLPdggL6LwQczZjQtnzacYSenuaqPijmGefN5m/yvqhjnctMKkXgdreM31T1HLUBGYgHESfpy/pSuEJYaopZ/FxTSgfhbTQXsxretX+cOMdPAuNtJPY/H3x7mVN/FwkZsyjzF+9vm/Zen1h4rqXAe2LaK3fqX3SWs4Bw3Kt4W+0GH6sIFf3JtjGB9HSSsDQNoN/cF5VarcYiw6AsHhPeHqaS2b4PAJGNL1agkdH0aXFCC6VkoR00yfZh7lUCuC8knspbkVqzJRiaut/QpZAtx64CPwmu9YgvLe5zfy4Mm7eNdHjTr1l2MfZnBbM2vuMp/vv/Mb1DJULIh4lGU00p8pkFjFKA/wNv4DfwrY9ZNaG8AaDjBKFa8J01QCMa8NRKcDrKGD9mIq4LJ5L7L30E1eq0WDcmt0HjvCd8ppX4WHsMEG/Cfw+zrv7ORr0iwGDj+DsxEPhp0+E5arOT9aMkuAyQzaJBxFqWkdZQL+d5qmu3DoPNH+H80tn8EiKdNtx2XlSl4V4GQuFgXWmC3CuZx/KQNJQUj1GDQzuyxaVyki4pvU4yRg8TLGw/JjmHOYr2y+Ovwfxx2m+WF/crxqcXnXCw1RyQFVathxLMWsKne+SgNVsbwhShdY/CY21oxhTqP4NsvwQrszYTtwp1QiAnXYtVsSzuE57J0jtS8pOt2FA0ilCRHaKS5LnBK1ABv/ROgW/0DCCd3AP2Ccm9iWYe8SCRXoeldgzvq9TMzZuFjbFI4l4rrsHNOr9yJwLRAsrscBPP1JTvsSplc1/Qw+4bcEj/zpfluF3VNN2DXUvV2HARIwLtESjONbj4NMARBVtdd9q/eVagDV4mIAVWF7ARNFQwnfDePpbYdxzrAmmWfCpgD55bSua9IiTgkF/K6Ut6XY3ekQbGnIDqganLQr5eeDF6NrjtbtxiMMGuDl1B+GcWpgszlqqsBeVT3GmqYO9jx/CyuuP8wY84ppPI30sYPNxbSdO3mEXWwoSg1/gffzYf6/YkX4/8Jvs4FdfIw/AywyM0RtcX/zGGMZR/nr53/e2jT/LK+5/im6TrbSuNBmvFt+q5PunW3uOu3B9f/BHPjPAu+JznMHnqN7CksTag3LBWBxiwOFpNr2NQpFDkmh1Tr4OvVVt8kDF2JwecKuD/isRnytClHfj4Zl/d4W/v4SAx3bsLlrKBLkuY3s9aqC133nUZ783B3F8xytm1eMOg12GjA50GHFVj7Y/pcMUVuMakgpzWuS3MoyjrKBXcVimZ2sobUYerN1drGheL2XcZR5jBX32Ucjvc+vZKjZeEB3LnyEvdxE3WZr9GDPYiqqRj01rQebxRwI5y2Z1O34bOworkyn5bhCfN4O51muSzFPSZGTBmyaKy/dPUss5WrESi+7XRXg5CxOJh7BHdG1mLMip6IGV7iS07uAbC5+I84nmIcrKD2BO8Zzw34Wcr6jJyCwEXsGJeMrR7sJTzE6Gn7PO8iTmVJbVINDKU/P4WO16q6IcxKT4kvNmMeF6lS7RbPODSXWvxR7LBxDhPRRPHIwH+sPFel7GntvKd1NKl434xyLefj1VarQPCwCI5AqGVtd13MYMHF6pq3bFvYvSWVVNRcZ+wzTAyYXWutEc3eSvq7HQMkwk0vhKu1qCLveqt4uYYPleJRwLFp/uul6qoFTi0VK1ob9rw1tlXKd0rRUQHEQT7Uew+7/xtCOlrCtUsFGwm8CzQI5DThIHsbljpeEbRRdOowDmaNhX824nxNHcy7FphE5Kad1XdMmZS45Vt24xBP2uVAwx1llAKqxAe467CHuwh5azcL34brlYDd2AeecSL1LHJUeqN4S5GuBQuciajcN0biwn3NUsv76J4pKXB20c5RXUWAB7XQU1bo6aOdWHi/OtL+NB9jFhiIHZZR5fJ17orooxmEZC3ySxqDsVNcanNltzeyrup7FTf3s/d2NtPxWJxt5iu7FrfD14H7sCuemwe5OrG80A/VdfIYDzGvp7A4EdqyGDFh0BIxbUtC1CJWSqrHIyVAh9P9aWy6OvifsoMVQq96skXrXCI5FH8f2VRu+GMD4Jo1YbvKPYMpcirDch83CbcFox+F6PvnrdxRBWss7O6nnpSLYAEu7am9XlKOVRvqLBPl6BhilqhgJa6SffaxjHmPcyuNsYyu72EAfjazjebayjafYyDr2FY/xFBuLamoABRaw9PpDxcjXAdZAdyW1K08V2zz4zeYsgBZfaACP8ul6KqlzN5zHVNacv4p6FflBDWFlPTtLyU7b7ad4vYo2ywjxs4wG80q0qwKcqMSQOAdx6scCzAkVoAd3dsbxtBMw52oEc3hU+E2ppVpHfBVJpuZtPzZbq1x6RTYVwRgMx+/BHOF+nHMgwBQ/ZvFMNGHfcn5rwjnMx55vgbPacA7LcOWkyRS3hjBneCse1VH6aD0zxz0BczC/hY1Vm7DxehXubCpifADrrz3Ye2APHqGqxYDK5qhdd+KCASNY/7RgDvs+LG1oXjhunIJ3azi2amfo2soBPo45vQ8xfXWwCwEmdcD/SZYArjREpWVNZMexa6xIUn3YTild4NLYJ8N3ArWryCrLwfnS1UpSEZgU8OvCZYOVLiblLu2zE4t2DGKTaALnROstjM6vH+eDCYhURMcUwBd3Rup2SsVswGsSKVV/jCzX+FJsGpyTsl1Tln91alZXDtMqPFUIzCGutpQj8Rz6AqH+VIM5anGdDZnURGQDeIixC5+tBuq29jC4vdmbMgK9HSupa+uhe4d5k0tvP8QAi2ijk8X0M8opjrKsSJjvDxXiDxyyCnlvWPkIB1iTKcR3J48UOQsdJ9tZtvBoEazcx7up5yUGOy3cs/SuQ/Qda6T3ayvhfdD9fBv9zY0GTBQ50UOq81T6miSV34opXanLD4f+FgH7xQYDKyOaSpNQwenw/5kAVsAdXnWgtAxbsoCokRCJCW/Cytfa/4fD70PAndW+uwHbRRFA/RMGqMBeZL+BDWqdeB2bh7E0sJDq1f3nbXRvgNfdbtk2S9sP8d3H3uwO/yn4wU3f4OiYMcv3dm7k/e2f4ztB5rmWIRZwmh28jhUcppYhOmmjiWN00E4H7byfvy/WQAGKEbKHD1nnV1SNsrjJAVD3820svf0Q/SctAli4d5GxDxQbHsRTC5tDnwk81+OFRcFn9uZjIFxUlmFyzry4P7rgvXgiO5wfMZllSCBlekpBZZvUrgpwchZPnxrCnBTNrMs5E4VKNSpExl0Q/R/B01eGcWdqBza+iGNyNKynsVO2AH+3iLjdEva/L+xPRHkBFT1uOlYe/w/mlqWiJGCjCMcNmDMm+V9JrSo9ayrbjTnqS7CxfwU+66xikTNp3eGvA3v3iNuhY4orJxByFOs31c7oIhtx+gbe13kgFkcyBITW4lGB5Tg/SJM4c7E+6cSA5KXWMZnI4gKUOv9aDCx+b4ptG6L/p7H7WvwOAa2F2Pm04mIASifMm4CJwKiUxPS+Vb2ReeGYTdj1U6RJKWWHw2eNz3OxCKOyGg7jxP3VOPBQFERRtAVY/zdhz+DmqI0x6FA6XMwtUhRqOtya6doUUsLltK5rylRbQdZPdia3N/wtDcuvpXinFx2XkAamVKMj4W95WG7FHEHd1I+QrSA/gkVNumxx8N5mc3Tf7dsvbT9kwCA8MHfebmlbT41ZuOVH532Bb/B2TofpvHdzn0VPVhqPoY/FtNNRBCfzGONv+EmOHjMH+dVNXbTTUSRtN3GM0yygotFkOXq/tpKWd3ZS+84h4y4QHNxK3Oluw9qntKzN4dweCcvV2EsirimS4GlCnVgURRl0fUFqNmlxvdHqBijsxMFIDBqDFSRqAPTpegZQMhQAz5A8ibXWPs3+vwVLyWvC09H2YOAlZG2xm2xaVyuWBiaQdgOs2fQsHSetpkhhoBZazhZle+vW97CLDYyNWMLt+nYLNSny0XGynfaFHbyW3fzesV8HTE56gPriOv/MVt7CtmItFUlNL11pfCCBlgPPWypZXWsPvc+vdPKpFOQkB/wEDj40e6jiUzF3asC7ln7sPte1KZLHIzECWiAoyHmURFPOa8nmMMwycFK2GbGrApxoVlO1SlSZfC6erqvZ6B7MudqHjQ01OGiQypUiCcvCd+14le1zmCNYioexDnsmn8aetyXYc7kAS0USd2U+5jQNl9iHTCAjb9qXQJiiBOKZHMRrp0gVrB+bYMtzY2KTTKsiJ3LwB0Kbla4209aJvYvF/VmGy85KtlaKaZLabcLBxTmMbC9C9GnsWm4K330Lq+NyEhsbK7B74may0TQ57sOYwy2FqOeYvN8uxVaTBU5z8MjEEqYGRFI0O4iDg2PYtZJUr5St5MxLqreUCYzEqcLLwjb7wzH2YyB2X/hTpFJqcwujtuke0vntx/pdXB5w/pdSyI5jkZEl2P1fh6uzDZCNiirtbm441/6wHynkHYvWvVRLmVKGuZzWdc3ZctwxkjyDPLB8bLLb1q1eG30XcueHwncJrgMPXqhRy3diD7esGUsXUorNdox0LSL5CPTuWgm3GUgBuP/YPby6qYtl88yz/xfeXAQUYGlanbQxJyTN73n+Ft5w/b8UIyMqxrexyZZVCLD3a0Zwf9M7/5EnO+6gri2kdbXWUMUo/TTyhpWGNr7Lmw10xeTwzug8mrEXrNS6tpENQmm9XdFyZyQTzAKbXTtcMF4JhMskYBJs6yafvVA/D0XS0DG4WRwAjwj2N2FgQ4PpPkzn6Ab8enVjQOWzvsviTA5YpGg7VN8d6rx0L+LAzhuLYHXp9YfoPbSsqDw2VFdLe9O/FQfZAerZxtZi1Gvrwm100M6Xjr2XH24ynvIQtTRxrAg6/texu+hoaqfvmN2n40/W8Ka7/tGOA2xY+SDfPnSXp+X1LLbz0CxpzCkhdPm92KCr81oR/QYeEXwYt+UQqReHztKzIzASu6exMp5AzCwFJS9jnZOr2a4IOEmS5HeAn8H9IMmfkSTJJ4CfwvyLX0jTdMpSEnPw4ojLMGDRjD0Tz+EE6Zg4rMhADx4tqMFnguVcaaJjYfh9O+bg5osPrsI5DcuwR01k5ptwrksPrjw1Gdk5BibKx1ctENV2EPdkBHP85EiewUnMw9h4OVWVbL0HlVYmcvVqnKtwOcAJ2Kz6E9irYzPW13HdGAGXBuw9NI4NT5JL/nmcOC2Rg4ZwHj+PV7wfx67bOObkjod9nAvbSbVsHzNTVXwqW4X3rdLvCO14pOQWbhV4SlMrThZX5EQFJVVrRD6PuFid5+2xdCRa92EsxyzRhSV4xEn1YVaH8zp83p68LZAl2KtejYClQGZco6gKj3oqsqfxfwEuXtGA1zmpm+CcLsZSLqCsedmuETvC+Yn0scxpXCyuF9gUeA7RNslad4DT/QZeFBkZwG58ZbH0Rd+DSRnuwB9mOY4fCMv3YuoeA9C7M6hjjcBoU1VxZvwHr/8GB1jD0ZPmnDYtPMYczrKZJwHoqGvnuzvfzIFNFsuexxj1vFR0djvH1vCOeV/n/rvvKf6+pv1Zvn+s1Y63+CxD1NL74Ep6O0MbFmMPvEjDu7AULT3Qn8T7QF1J9J3+q85gF3BnSwRWGky6tjWqIaM+isvSuMiVgZLF1VAVDjbcYu2JdYqO4y/B3digE06TJqz/K3HnoCscT8T472GzMxqUtgN3GyiBsO18eNf1ptb11Y4fhQfgbR//CgAPPP8exprmFVPqDjx2I6+5PTuF1TfWSFX1WBFEvo0HQuFGQ2HjR2q4s+nrjDVZMvwD699BJ228a+WX7ZiH3gtQTMuraBxmfH6lA8IR7D5cH5Y1+wXOGVqBDdKxw3AYj5QNUeIFFPO1qvHnSHY2990sBSZQBiczZFcycvKpNE3/KP4iSZJ2rJjLjZg/ui1JkuvTNJ003XsMc1JFhG3G6yM04Spbcl7B1ZwEKIaxcV58A21/GJO//S72aJQCFOtx+WJJnyp9aBh75I5g49ix8PuFpEmJsK56DipgKKdabR4P5yKQIQnkxzGAMlWKizgGSj3TPubjssuXy05jY/V2TEygFZ+HrMOvm2pi6HMTTvyvwftFZOs4bU/RpnP4NZ6HvdPmY+PlI1x+J7QCA6w1ZLR8iul4x5lapUvyuhJ1GAnbK1qolC+9U3Qdwd6r4jKtnsaxxOMg7PsFvM6IhBj0bKmae3tYT5wu9aneVzdjgLoe56ZU4NdIUROp5IkHth9PBRMwnxP9fwEXrRhkZoswTqeAZdmuFcu/OiPyNGDTUwtwz3opnoqSlxnR9y32MMUzE5uxtyFYnv9WHOF/GnPqu8KyIg6hadW/9hKFTy4yv28rcBaq216iiWMcrbO0rG8//3bL/Q85pH0fbaTjWDsDTeYwV1WP0bjpRboftJFk/V1P0HGsnWVNFnlpm3eAHbyOoZesUf1NjXz/WCvj/yu8tW4LwGg3PhNDaLNm1gu2HvIG9mIPvsjU67Dow2vCcj1BbjYsvyrsQ05yJzbAfh0f9JQ6JglC1drQPrdVW98/GZZTrO//KVr/TXjK3O7wnVLLVmDXpxp7KW0N27dG59mMpacJRI2Efgigs+K9w7Q3dbBt7C32xcPQ8vFOHngs5IkttjoyUu+i3qrEf/55K+3Tf30jy+a9yK3zHmcHrwPgb8Y+yNhIFb09BgyXbjrEVzt+tBjZWrNyHwceupH+zeFNNFJpt2ObIcfxZ2ugBSp+2PI8xh+t8ZcK2Av7BjzcTzgf9S9Yv6/AXyICKX3hvk9agqhBnNaVBx/7ySLL/PM2iwjxM1Tn5Fq32ZbW9e+BL6VpOgp8P0mSTuD1GDaY0KTuNIQ5JMqXhywHQQT1Kjy3XU6bZHYbsejJCmwsUTQl78Bphld8jmUYCNB74xyuFDYPSw3eidd12MjkaTtyqskdux5PB1O0QCk1Sj3TzHMPLh87HTAkArFm3SU/qxTSNzDFhZghewrvmy3Ye2YMT4mbjxcprML6tx4HMAIgEgJQGl0s1XsCP7chXp5IiawGVx5TVKgHLwj5TSYGknG6lDIExONYgV+z02SFHuaEYyh1Tgkn05EqlpSyCPWKNL6A+Q3nsFeHuCjiBglEqL6QTClh67BrW4sDEdWgWYIXxnwBe8crcUaiFEplU0RU9z94JGYmC2GUOSdlc8tzTnR3yhbklg9i5INunDyhqEnwXmsxcCHnrRVz8nQTP4v5ZUqfUaTk18JyJ/bAhIhE4S8W2czZDZjDuBgK2xbxZM8d1P10SNsZrKG67SVaN3UBcI5KFjf1szGMwJ0LLcWrf4ulHg2wiHVNzxf5I20rO+kc21AEI0/edgd0QcuHbGq8+6E2Wn6gk+6RtuwMx3U4JhvE3vxvDcv/hayv+ThZJ//vsDonWudR4B48ItGHDVBvCf2htIB6HMC0YI61LuFiDJgoItAUtlWbNMhq/TtxkEG0/7eFffwFdq0GcI5JM/Bx4BO57X7IPi5repE9f3qLCwPcgKmghTZXN7/E7TxGXZH8cQAAIABJREFUU7u9HUapYh/rqKgL/J7/eyXzPj5GP43sOWR1atavfIoDI2284Xorc9zLUtrb/5GHO+ygg5XNUB/4LeEYBRZ5XZO2s7CjkvH7aoptYjGe63wKv2efwMBeCwba9BJT9eLY+uG8pFulPBZ2ki2wUAjrav39ZG2WRVHKkZOSliTJakwaoi5N03dPtf6VBCcfS5Lkx7Fb+z+lafoSFhSIecDdOD0wY0mS/Czws+C1SFZgEQopTB3GnoE6zIHqwMaH5zDHSSmjgxgnYQPmCPXgTlgHpbkfMel6T1i3CR//RK4/gVfmXoHPvsaVumMgIiul0qR6EKpbIQd9Nc4rqA3HqMN5GR0T7C9vT2PjohxcOWM63nQc2Zm27Xh6kngkC7G+OIg5uCoyOI6fr6qYi0cD3v6jmFP7OOcrVL0ctjq0TUUXj2PtrAj/fwD44gTbxvfdOPb+vAFP96vHrrWeBRU/nItdx4N4HZ4LMVVon4MDi304j2o5njqpVKyD4ZiS686bQOHN2DV9GrvGUux6HHtel2F91UQ2GnYGf+8LvCp1LQbWM2GKVE1iZc7JNWdxsYZqzCubKvXkxMS/DxVgRYNHBORIS3nlRuwG1wzRj2EPxKfD8gg2sx+rQmwL+2kNze2G6g++VCRV02e1NfZ2mzO7tP0Qvc+v5AFspr2ibphXN3UVa5R0P99mDmlwvg6vDASDrYaI1q98ioH2RXR3BETVDN1fa7MHWQOxclHFjflA+E4OXTfm4H8pLN8TzklEz38+Cz9V6TP1m+04RdC2BfNfb/KuZRS7PDGPeivex4fDdlKQWoyT4MAI4BvwqJYUOgQc9+BpavUYAPk0llYnfsaWsN8QlWBHJeyHpe80PlB3Rxvcc5bqekNdte1DRkYP/TJv/ih//dDPU73ZgOKyhUc5enIZP970dwB8/k6LoDzw/HuKgKXAAgo7FvH4ja8HYHywhr7WRqpbAs9lR0gpC65goW+RpQMqVWKw0tqtfhI5Vf0oID2AR6FUt0YzxH1k6yYOQeY5kBR0QaBDwERRx+XY20xejKboZhkomWFLkuQ/YsyrFBsFfjJN0/NgT5Ikc7A78kiapneH734I+BPslf3ZNE0/eQnt+Bx2J/emabo++v6CjpGm6QvATyVJct9k68kuGzhJkmQbPlzE9hvYvMJ/xTr9vwL/A/gQpatdpiW+I03TzwCfAXhVkqQ12PgiXsdpzHFbho1LJ/E0FNVcULV4pdkcCb+/EXOsNLsemzgLmiFegI2jQ9g4pme2AnMQV4X2NITvBIbiXPjpAIeKsM0S/NGcF85FEYKWsO+4orZkZtuwiZ7JcvD3YP11G+bsCeio1sv/gb3rSoG1y2l6F+cVpjZidVM2YeeqFCmlbX0Nr6CuCMkCsu+nlxuYrMfFTVZg71ABFSnMTQRM8taCnV8PXjRSvI4jOI9FETzdPz1Yuvbj5+8yY3ngpno54jVJKVN9q/RjSf2vwFO9ShX/VOrWt7D7cwNeQPEglhomXk0NFk2rw56XJkzeeQ4GlJTSNx+PHsbRtJmwspRw2c43eaQF7GmONfRO4Gpd1eH3s5AEYnYq/olGpCGoiqItnYEHIXsVlvLUGpYfwF5cchybcTACNtisxyUHAVqgsGdR0clu+Xgn3Q+1UbfFVuj93EpaPtRZVOMaP1LDgUdvLO6z4sZhqprHbB/Agc/dCKeg7iO2/YGTbRS6FxUJ+KNj8xh8zmbn2RL6qq/SHPbgHVSvf4nC1kVFJ733Qyut3VKxEj9BQODzlQYsRLz+S2xA0IB2OPRLXKhxMT6LAx7pUL/cEj4LQKnfFK35ZmiPjjmCOQMCTFvxOjSKKoSISKZO9xCwPbhde6DiF4fp/VMDgnUf6WHwm83Fvi28bxF1rT1UzbMpzd7HVkIXFOpD389fBA/D57caKHnN7U9xdOxVRqR/3vbZ3tTBgfobGf/nEPmYD4OnmqlYHsnxSApY/bIV7/O34jVaCH3UgyvMKXpXH/VFE+ZsiCMVSzRD8PIaHJQANqrrzbgTe24EPsTtitIfM8BkloGUGUjrSpJkOfALQHuapoUkSf4nRnn4fInVfxEbGRaGbecA/y929bqBJ5Ik+UaapvGcOEmSLAUKaZoORd+1pWmaZwR9Hvgz4G+j9SY8RpIkNwG/n9vHh9I07eUC7LKBkzRNt069FiRJ8ld4DdVu/PEHuwun9IXH8JTWHtwh00y5aiVU4RMhSv1Zjo9pc7FZ3H/FHpPHON+5GQ3rHcMceY1vg+Gz0rwGyaaUiReyDyfPl4qYTGTjYR/7Q5uXYWOw0jnn4jK7UrFags9e7wzrlSJCx9aJjUNn8HQe8Nowd2MFDGdSovViTalf37qAbSar93K57WbsvmrHgLM4NRIgGGf6BTkVMZKamRTawNMN9d6diwsInCSryDWZCZhIJGEIr7PzAh7RkmpYDObFFT2Avatqw/ElMyxbgT0rnWEdSQgrVUz9InlnpXC9QDY6chCP2MRjwExViJ9GEcayXXMWvz7jqWHwoox6HxcoenipnKy8wlejAZLqAEhqwn/NKL2IzU5rtroacwDlWoTUrUyldcJh4xoTIxQHi+6H2qAHBncYUmj5UCfdD7ZRtzWkffXXmKMecEXtoiErwtdqy2s+9CwHHrqx6EAP7mimYs0wQydt9rvQs8gBwo7QX63AFpPGBRj8ZDNshd4HA2E+JseDOfcDufOpxiNMP4y5SBo8bwnn+wk8anEYc7I17zuCz6BoOY6+yEmP26G0CzD+yX14rZXtOHjSbbAv7EcJLD14ATWAD8L4aFUR2A1+qtna/r7wezfQaoCxeN5bTMULMIWtDZVFZa29D22k4sZhBr9aw5qPPgvAtpNbqVvfw+BIOLGWs9BXyfhoCGtI5vfucMyu8CfwcW/oM90/e7DbXsBjPw7sxL/ZSlaOdHFYvxDevqmEIgTExc+KE5Z7o45URfgS8s/ArCvHPnNpXZVAdZIkZ7AOOs8XTpKkBXsCfg/45fD164HOEKkgSZIvYYmTHbnN3wj8XJIkd6VpOpIkyc8A7wDuildK0/Q7SZK05rad8Bhpmu7G76iLtiul1vWqNE11K78Dn2v4BvCFJEn+GPOv1gL/NuX+8KrYJzDnrwMDCyuizx1kid0ap5dgjs23o98mcr7rwnY1YZuduEpQAy5fKi5LC/ZukUrXWjzwP11gIluPOWJjZCt294TfVN9FBH8pXA3g8sNT2QvA/8buLPFYJMOs/d+MAYOZrn1ytdsSfCIujvApiL2P80ePiUxgcQBzzJXypjopsbzwMO7Ir8Aetiamf/3i++YEBowUodB9IWAxF+f7nMRfO43YO09FIvUa0oM/F7unKrBI2To8+qcCizH5PQYfZ8L5Kg0zBkMzlYpYLsJYtqktZoRJ+1YO1QnsLo3hcj7PqBHoh5owSgjvaLZfHAbZixj3QWlfks+LijBSj73lNXu/GwtRyqnuwZze4HR3L26Dehj8y+DMbg6/hfUHO5thszuDfWONLP2BQ0UHuuKHhxnvr4GWkMDcGarWb1/kbe+y8xgMSKDiw8OM/3MNFW8JpOvP12QJ1dtCt8ndOUyW73E3RlwXsNiNOcw7or6DbDFLsMuhNklFS32n1KTrouX8PrbggKSVbF9uwdLSeqJ2PQHcFPFxHmsDKovAkFuwa7bH9znY1ezr72yDHdB7NpDb2w/R27mSwW0BWN7VSfehVthKsYgmI5UUzkb9Nb/S2hdqp1AZzllyx2p/nPOyHZ/VXIy9ENSvXaEP4wrw94Xv5F32hc+1AYwMFchWeNdzoM7XMxE/O7Gpzsksi5jIUqaDlxYnSRJXpPhMyAayXaTpkSRJ/gg4hJ3ot9M0/XZ+J1jy4K+SJeksJyuY2Y1r23kz0/QrSZK8GvhSkiRfwbKX3ppfbwKb1jFiS5KkEQNRG5Mk+USapvnoSsauFOfkD5Ik2YBdxi7gwwBpmj4bwlcd2OX9+amUusDGFJGLz2Fj0gIst74HT+dpwcajWszhrsOclwGmlsldjYMKVcSWfK9M1d/rcb5DnOb1XGhr3VQnNIH9C5ZKMw93TM+Fz6dxVa8lGICRHGsNFu/La8RMZEqlUfqMZJrnYP28BrtAFxL5udZNNXDmkVV9EtA9iU/KTcduw0G1AKqWB/GUPEU8JAU8gl3DiwWWQ9jzpWKLK7B7fgh7RoYxsDCAAXWlGp7En5VOsvVdiD5L7lmRvxfweTNNCNSHzwNhX1Ll08SBlOskdDETVo6clG1qO4FTJKV7KB3gamwK4TQeKckTe/dD7Wt9xjkWL5IVyM6wRVEQ6jEnW46RnPS4UJNC+HLKFWXR8in7XJzN/6Vmqj/5UjHVyNJ6KotO+mBXs20T9jM+WgXPQeG64Ctth8L8RQZQ7g37aCXDLB1/toa6d/cU5Wupxl6UyuNdhSt3gQ08mzGQBZaiNopHKDTTfzcePpailGa0d2AAQtnv+8hK5HZi5yjgt96WxfconosG0u0Yd+bPwv/t2PVow9XU1uIcHMLvT/i51W22tK6KO+wGWNb0ImPMo/sLtv6a9z/L0KZaeh8ycLKm/QC9rCwChe7nw367cdDUGT7rOu/CXh5qkzgkwsyKvKmfdgM/iUdKzuIyoGCD9RPYffbFaB9VZNXTanGwOdSPeQ9xvRIxdMGiJtXRcgNZIN/P+cCkklkTQRlnOripL03TzRP9mCTJIiwS8Wqsx7+SJMkH0jS9N1pHPJAnkyR5U7x5iV1ORI/4gxD1+AtgTZqmp0qtV6qJ0z1GdKx+4CPT3P+VASdpmv7YJL/9Hoaupm2V2PisqMJqzLkZwl4NcsqP4RXTH8frNUzlwDRgTtKqaBvlt3dj74pRzAHVTK2it1W47OnC0MZS5OC85fP9l+CFc4/jEsLtoR0iA4M5gjXYIzwPr+cyXduOz1bX4alDUoZaghU2PIaNXVcyVepC7EqQ38EAZTOefjeAAYUKvFp7D9mUu8naWhv+urB37gh2bw1g12Jt2P5g2L+qr7dj7+R1TB+oTmRDmIulmYPh6JhL8PRHsOexC+e8aOJAhR3zXKJRrC/UH5ouUrt1n0s9TO9VpbMJsD3CzEb3ppglKat1XXMWK3YpTUXAQ6pccdHFRzHFrhiUxE9iCwztxJnFWIqXbvgCxjtRHvIGLGIgx121JeRYaiZ+FZ6+04o9FGqWOARyJOfbn2bjeTcW9Yi5Gs2m6gRQ+PwiezEF5/VdK7/Mg/V3FdWf+KB1U2F7lN4FrnmP8VgG72vOEtp7cGDwVlsuppppRfXLCqh4yzDjXw3Tc63AbaFGx+fDd/XeRsAGzqjd9GBgRPtUhET9NIABrW0BlIxQLKKofmIEKj41bPK7ceRBffdIWF8u6WfDuYZZqbbbD9D4zn/j24+9HYDuI222fgCnR08us/4OL/PvPvdm1nz0WepDoztOtlPYtoi6u3sY3BMa0IZVd49lnJWqBQYsn8M5JX3YPSBAW0tW1WwIU41TOtwxrL/343P3fd2wuMXTERcDfQU4FUdCQpSwaLErmvfs5WHEJebz68wSYDJzthX4fpqmxwGSJPka5nbdG61zB/D2JEnuwq7awiRJ7sW4INOiRyRJcid2N9wP/DbwsWm276IoGBdiV1Kta8ZMxdpU3XsJ9sz0Y+PCPtyh34hxFDQLOtHMv+ooLcHz6QVIRDquwYDGEPZ8bseco37MCazFHLbTeKrZdC3vmI5gKbXK+R8PbdqHOb9KdZFcrgo2qvieit5N176Bxegkibwan4nXd03Y+e7m8lVRn0m7EsBEfAy9n8SdOI1LHA9h/R3bZG1dgPknW/H7+hyuZjUXJ5ufxmuHSDBiHK8Vc7E2P+y/MzrOC9j9MIAnuAxio9jqcPwWvJ5OLMOnqM9ko5uim3HE7g1YHwzgcebNuMTwG5m+wMBkNo3ISVmt65q0uAhjAZ/dLZAFHkpbiVNWCphnqO8+SDbNq9re0JrLrMIGWjmWO7BBIHa6Y0L88fD7QXwGqwd7YHWY9WQcYP4IqzKvNKAtZ+FUpc9ubYG61h7jiYRlnqM4U//VnT9qgCk4qhXvGjaZYSlh9RjXZHCguUjCH+xqtgdYDnIX2dm0xWehq9JTzVrC728Kvw/A+JdrnItTb+0f/2aN7VPdvh4HH/diKVs6z3eH47ZGfdtsdUEAev98pe1fPnAXNtgq1SzMDo4/WWNRoh0G6Fo2ddL9u23e7phz8puh78Lyk4/dkeUq1JuyWuHTgSDfvMja/JHQiK9XWjFNzeL0WB8PfrbZJUO3noXqyM3bgK2v43SR4RQVi37FInRKVyNsN4rzf1rDPqqi5d0Fe9EV78v9QCOk8U77ceT3DBYticUjFC+XLYiW9czN4rSuS6/+ewi4LUmSBdiJvgWXHLDDpOknCMLUIXLyK2mafiBJkkpgbUjZOoKxmN6fP0CSJBuBv8I4K98H7k2S5L+lafqb02jfE9M5xqXYVQNOXsDG7RZ8prUKG5NqMXDwNBPXFlmGO0ZS064If8fxoooHsedT0rUqJqfkO0VhVLfhIC4lfCmWz7sXTNX/GAhJiEQqSrXYMHDyAo85gPWbiMjgxQxXhWOVeScT28bwfy1+PRThUoqTZIQvxFqx66LaIyKFq1DhMHatm6N1zmAAYSCsJ+L5xablDeEqcHo3qt7McQwUxylkR8iqyr2AF4JcH9bVfqaKcMVtHsRI9zU40OsK26/jfNB3sVbmnJRtaivgjpPAh1BAY1gu4LG+3vBZ64hEHzlxQ5ED1leA6gZ/UGrIFp5qxR5AOczfxF560uaWDeJIX4RF7bMZe4CUMvXpSgMWcou2mNpTcfa/JzoumHN7jKLfOf5ojaURnaIIBAZ/pxnuhsGegCY6oe6nexjcHsCHohJymHdUUr31JZe9bTsL2yrh4fD7fOCes86jCERymvEISABmLe8MJ/rOIAYg4NeG80aAlt/qpPtrbfR+L5DR34R5S5qFC0Bn6e0ROV1yvNtDOwewlCylm42QJc7fi11uOf4D9psI7oN7minc51Gr6vUvwXqvKF/x3mHGj9Q42BnBwMsNuORxd6WBKoGJ7aG/dH13hL/50T7m47hhD3Y/1Ee/r8fJ7xByh8O9vxvbuBADh7AzJQKl/RgqU0TkLFkgX8DeGBOlP+rZikHKLIqcTC+ta1JL0/TxILm7Ezu5pwjqtEmSPAj8dJqmJefy0jQ9myTJxzD68Bzgc2maPlti1QXAe9I0PRD2+xPYDEnGkiT5IvYELE6SpBv47TRN/3qax7hoS9J00jSxV4TNSZK0eurVprT1eKFGgQ8wACJ1ornYs3gTXvzwIOb8VYXtWzHAEBf9u1iTA7cZe3xVy2IYm23W7PNqvFK4okejeARF7fwcFwbqW4D34kR7cV00lMhJ/ReuTB2U2WqrsWtwK3YNpMuj6ucNOLjrwbMDprImLFujHYtkLcRJ6PsxPtBIOKau+f0YGJoftlkRvp+uMthEpugi2LPTgWXVi5MCdt/EamGScl5GNq1yCLvX54Rtp1KVuxAbhicny++dji1LkvRnJvn9d2fgGGV7eSxJlqWB5niJFue51+Z+UwVreXlxSovgdUvp7apDGKMQ1q8OT1OhO1TT1rpBaliO5jFssO8Ky8r7j3N+qzHnWLPaAzg5Xk06izuzbfiLUbaNYoRh6W8dsqiCumFx2OebwrK6qMsI2wD9JxtNxStsU93ykqVLBWCw5qPPcuD5G91Jvzeog8U8iBXRciuexwmWBrb4LHXNfVkZ3l14X0mxRn01H3vJ6jzk6Kvbml+yNgucKIKl9K3FIaIUp6fpOLGIwSkc2NWH1DOlozWT6eeldwWhAYEXpV8p2iM+iWx+2P/3cFDWSjElDcL63VGbNJMpfKzimDE3Xfnpoc1U48BQfKNCCUJ7EpZTDJikj+rMcB1R8DdVDNqj/RQ9/djjj4ueXpBC7TTsdy5pLE8WbE5p2zH5SruT8vtiCrsqIifTtdiZAru1hzEHvwvP2Z+DvVLkeHdhztQ+3MHU7PNpPJqwPOxDTp9y7vPHvRATP2U+TnQGe5THcS6IoihSK+vGHMIVZKvVX2g7uoFPAT8XlkX4H8EA2VDYdzs27u3h5a+DMl2bDr/oUmwJFrG4E7teTXiNjoZwbBVIPIzNDe3jfM7FZKaUPUnqnsR8khEsIXUAc/LHsWs9hL0LdbzlOD9r1QUeO2+6l5RtUocBJAk+qK/PROvHk3xLcKlq8Mjg/LDPRnySYIjStVJeLitHTsp2vsWck7zlp6W68Zi8OCVnsSdQMdbgZBV9sP2QxLPQC0JtCDll1faAyFmtD9sqcvIE9tDFD80o5tyLpzJANnT7j9iAURn93o2nTEFGEaz3/SszvAnqyWanbadYb6VYmPG6s7DHoxj9JxthBJZ+1KIQB3beCCMw+I9BheoXTIVq6Up7s/SuX2ZRkjiXuB6WfvxQcbH3oZUMfr3Za42AVzfXOcT/W8mqe4kUHgBToXORyw2H9avbXnJuzZ5KBu9vhrfa9xAKHMag7jasX79ki9W/9BKFby7y3zdnU+h6/3Rltt/VRl0bkVC3R8tKj9PsznYshCwQo4JU+v2XMCq0Clb+HXaPaP0XcUIt2L32qqhNwiN9LX4fpcETKYLoE0E+WPe9uCbyZhRRjEGJNB61fqzudSL3fxaR4WFGIidlu8rAyUTpIEvwVBMV5DuNp0+Cq/tI1Wgf5iAtwR6VGrxwnWpIjGNO+TkMOCjnPj4mXHr64To8VUVpO6tDe89gj/hwOJ7kYytCW86Fde/Hxq6bufAZ8xqcSA3WbxpWdHwpfCkDYDZGUS4nMAHjPygasAzrpwbsuo1jwOAANtQq++FCgdytYV9SjxsNnyUGIZleOfn92LVoDH+P4cVBDzMzNoqd8yAO+JtDO5bgEUTdM2Ohff1hm1VhWX2n9uq5UpRIqmPtTB5puhwqcmW1rrJdmOVrMhSwO7MBd8IkNawZZaV0KY2lMdRE0fq1ZOpDVGPARfVQjmDOrKqGgQ3K63Dn8xHsxdYVljXTJCe6JXwXRxhG8LSud2OREzm3t5FNJevEQIPa8LFwrPuJ6LOVsAEv9PiocUN6vxBSqDZgYEdZWkHdqnckFCts7TH53dawu+uA+WeLhQfXXP8svduh7tdM/QrIKGABdP9pm4EmFYYcqXTp5fi8JSC2PqSVxWABDEwQ5JLbFsEpiqT0glSsNuS2+aAds7AnB3g6K7P8ji3YQCcQdnf4Tn17A55WB9b3XRj4fE/4bh02QEtEoZWsKpn2pev7M+E7Rc7yIgxDQF8EkE8RQEicZkX4XTtRROS56Ld4Wfd0zLc6Ha2nabXY449lu2cRMCnbjNlVBU5qON8BbcALHirtKS58J8fuZiwtRQ6IOCijuPOkR0kOpWpFxLwL/RbrUFyqxZWvNTmhKuhy9FQhfD8OjDRjvy+cT5xucyE2hI1N4pkIwAmYKMK0LBz3DeH7S00beqWYwOE87N5qwmf7BSBVa2QcI2jfzoWLCEgqtw6bFG3FQOgc7J0qBS1dkzEMAK3A7oEmnCw+D7uWM6VgFj93ozjwGcbujdVhuQJ7hzbhUSCpiqkuSVV0DuvxftLrSClgg/g9J66LxAYkVSywNBN2JQQVyjabrZTCUMw5iWd7G/Bcea0rSVXNEOdTvAi/xzPOESelphoK1f6yEeldKldtmN9WHb47hodzNfutaIGc7j7sgdUDLAK3nPb7MGdbM+adWBpRa9TkSjxV7JucTwS/AdgG49d51fJMbY3vYUTuvtC/A7D+B55gz2O3AEGtqx5/IbcCpypZs8lS3o+eXEbFh4cZ3NHMD77TWGff/sLbqXjLsNUKAbjnLGtW7uPA1270fbRAy/WGurq/1mbtlDaSyPRP2GLFB4eNWxLaXNi2yKMpPYsMFL0j9GeQTa7+QCC311d6P8UpYD1QfXck27w49J2iGF2hvyUWsAd4AANAYNe2h2zxSV07+e9KfdOtO5/s9f0KBmQFVkbDb5qZPAYcjryIFOw+j9O6RGYXyloQGi+QMoTf++DPhJb7OV9KWOvJ4sjkLIycXDoh/pq3qwacaOZeBdgGMWflBF4oTrn+h/FnURySOBVLgKYOn8lVqgx4esmxaFkpO7KZcmRU0LEW531U4eBgCHPwevDIj2au5biK0C4gFpP/L8QGcKBUj/WjeDhKyZFAYBM2y9/DpaUOzXZrwPqzBlfLGsD6V9wO1YrpwSNZj3DhM/Gt4b/SB2Ohglas30WAP4ldo1UYMFmB3UvHMNByInyn52OmIg16ZczB6wmNY8+QAIMU7VSHRGBXal7dYT/HcdUxqc6pTK7SHfuxZ1/38yrs/d0efovn4i7FUrL1acpWNrM85yQm6eZJvnLI8qR5oQvxVGSxshdkSfVAX3XI5Q8/L8drSoBNON+I8x6aMBlY8ULABxWdhojOekGuwl6OcojnY2Ff+aEDZIjkrMNVxPS79iXTDNvWcNDtleZMy5dtw4jcUUrUno5bPNqD1QRZ3G79duD5G+EsHPhCABrB4a/b0sO3d5osLzeEauyhKv2yeS+y99BNxQjCa65/ir0dG71WSGtop+g/9wUg8iPW5vHRqkzal9YvdC9yjo/km98U9rEjyC7HSmRx//SF48T9tIds1fotZPkid0b9ORrW7cQ5RYuxftsbtXMABx+tYbuuaFkABpzDpNtSMz1Fcjt4CWqB8W5sZI/v5VgcogW7l6XOtZPzlewgG3WMIyWKOF7uXIiLtJRyWtcM2FUBTirJOt0CDbqdJdsqCVPw2/wMPpmk9BTVQ9FM7gKytUniNFK4vHnwNdhYLcliMId3BZ6z34kRkSXKImAkjorSvESo13YX6rh9G8uOPoqNh5rzG8ElbPsxR/MmnNewDJup38X0arzMZpMq2hLsPdAQ/itCIC7FHKyfVC9N3KUX8KjKhVgd1p8inq8OfHjEAAAgAElEQVQiW9ejiywwWBiOMY4XM1yFAdsx7H6XqMLlUFyrwM55XliuxdXulBI5LzoPAZf4nlR0ROlpipSI+1GBPbNxZER98HTYvoWpC6xOx1JmR+QkSZLVwG8AdWmavnuq9ct2OS3mnOS9kVISLSo814hHUsBQhD6fxSMlcsr0VHTjgEYWOW2deYnVBr/567EX1WLceVZYsh53Xt8QPsth3hYOKXL4AOb4/kVYvpNsCFjE8j3R+g/jaleaqe/ClMC24rOFarZI20o5yhHFGbE6LMXK6or8yInfA9xz1oj03aE984HnKhkcaIbbYPC5ZgNDYb97H9pIxY3DlmKmffb47zRjjvu2yGWKhQaUHtcVLYtwvw3v7/lhX9txoKG+qiJ7aQ+GdQVmtpOtOC9Sv8BJHRYhW4tdr9bw/Vewa78htKcaBy9K29J5dGGDql5celHkb/M03HNJg39mJ+aJnCBb/0elrxUhBLtvd4bPEo3Q76fJikns53x1LqJjzKKoCZQjJzNkVwU40cSRZlbzKVBEn5WKNRdzjqQUVCxeGv6fwcYBFSAUqJGuBOG3uVy++1D8GDnEyuEXuKjAVRtPhnMQYX0Yd2iVWrQj7LMd4x5cjD0VjnMUcxQ34/VgjuPk+4N4PRbN0N+CO6Zw6fLKV8JuxoViJMc7jPM8GrF7ZQmeeXAsrDeRjPV0bBADfCKGn8HTDZXS1YBHI+rxaM1BDJCcDm2twa7BgvB/jJkHjaO5/3rOwJ8ZpXRVcL4JMGnuWYIQ4M/yOFmS/BKy6ZQCNjNhMxE5SZLkc1jmeG+apuuj738I+BPs0flsmqafnLAdafoC8FNBZrJss87ys8Wy5ZhzpdiyQIpqPoADjb257eWUVYbP4qD0h5dfeDvVNsDQCfsPJu96qtoQupxRpWwtxqMkserTNqy0m+gCSvdqDf93YQ9dzGGRHCS4MlQs0SsVLKUa3Yyncn2WYuHHot2Pa/YT/ZcD3Re6Ri/t5/BwPuH77ZVeACmuyVGJpVkpAhTNzIw/V+PtiAGDbAfZivPxejvC/h/AuTV9BD5MWO4iq6bWg0WalJ6mftAxmqPfZPtxSlKpqFSsDrYfu11G8YjJAUzSUde1G1d0A7sXNgM78oIO+XTFcM+m1eGE5EruxCOAcd2SWFGrgNU20ej+OPDa3O/V0YmWCkPkQXrZrja7KsDJODb+KrpwmmxGYuz8nMaB7Sg+Oxt/lrqWOCxKl9GMtz7PJEAulft/DnMgVWBSM/UncEf3Znz8VGrVSDhPcRHOYK/BFdi4968ljnUhpr6bj9WReDMeSTkX2jGA9ds4TqA/g42RY7njz3aQUoWd02bcyZakMjinUX0wH3v/z8El45/j4tOnarFrp30dxFP0xMEQ2ND1Pxra3YpNprXjaYBK5ToX1nu5iN6rsQjOwtB2gY1xnGMyF59YGCEbVQEvOgkuRwwO5OfiRVhhZqOaMxA5+TzwZ8Df6oskSeZgFX3firkKTyRJ8g3s9vn93PYfStN0pnUzy3bRFue651+lBbIkXqVjKZ8enEOiGeIjZEeIVZxfwyG+/AfDtiGyMlSAFWvhcJT+kpJVvqjFAEx/cAy3YE56V/hdIOWO8P/R8F2sCDaKpwVVhSbsyW2v/RWwAWgUd4gPYoOnTus42dn8SjwSQVj3e7iveguu2Q82+FbhA4ryoLfhIKoel7/VNlqX6Fjzo/VjPsh2spGS58jOfmpfa6N9SOlM0xA9ufXF79H6Ao5yKhQViS+/KrKDjRjbcZApQYQn8SCEQvq6Da8DOiN5am0X1yXZUQ1t4ffOPEDOV2uvxqdsBUbAon9xWpbkgyFLdgfrtDjtqxpDSXmGbB74z7KIiSxl1jbtlWRXBThJyaaDiCQrKd84nSuurQA2nsXOD3jNknMlfoNLd1LWcX6qSal9akJjGBuvVCO1Ga843445e424Q/oC5ghKSlbAYACf1V8Y1i91ftO1p7F30Tew6LwcaEIba8N5xly6JrKz9EPYVPK/YtetiysbEa3CXArV3JDalNKjVKsjFilQIcS52HtAQ/BzYV+Pc2m2BE/fOoy5NCLHSznuKPbOEpg9jUUGvxfacBzrV3FkxOdYF/b5cqTbScGtVBqZUrXOcL4Ia/7ZFEAfxqMZp6PfY0Ayl5mxaah1LU6SJBa3/0yapp/J7CNNv5MkSWtuu9cDnSEiQpIkXwL+fZqmv49rIJVtVtrZEp/jdJY4XQvOl0QVcTgm/MapL8rFj20p/oSswmagBW4KAZh0heVWssRi/MWnVJxdDdb0QljefRp2t7hTP4KBCwGLASwqomZuwbkV4ECkNSx34UUaRdQ/TLaw32uwYJFI+lXYCyQGVfH63QQnO/r9Onxg0exGDBS2YS+rGFAo5QsMfLXiACLmk8jm46lmH8j9JkUz7Ydo3/8U/t8U2qxLGhMGtd6xaDtJQatv12F9oFFGMr+ymqidMvnzfdF3NPj1rm4wYFIb7smhgvFJOnXP9IedqNF7yQo3dHF+elUtnrIli6W0Ve1K972iiHGdlDb8Ap/NHXOWW8qFV1Yu23l2VYCTvIkcGzsTikwswUnwmsnVejFQuZwO8nRy4CVH+1T4XIdX+h7AHOe2sHwEO79hzMmTwqDUtKReBB79riX7+F+sdWKvyK7QXkX56zEgsg4DUXrXKb24MbRbw9XbsXfc28L3KjY5gvVXTJe7GNP1V3SM8FnvO4kJqG7N6rBeE3aP1GKveHGXzuCTXufw1KlG7J2zOxxvJgjZw+F4S/DITAf27hWvQ1kGun/nYPfJ2zDBmQbsOu3Awa74VUvCthfDhblYUxRJtVaOUboeUKzWJYsnFmpx4H4aT5UWQJmpqNA06pycwd7ID6Rp+sAF7Ho5WTesG9OSKGlJkjQCvwdsTJLkEwHElG1WWgxM4hnofFG5mOh7OrdNDNXF2orBTJz+MoSBl1KOXB4kaRORi7XPBtt8d7RZJU7sKmDOq5a/GNqguil7sQdS4fxjnA8+XsQjMNpG2UFgzvo/4fvsDJ9jtS+pSoE73trfrrA/zYqp3SN4upnSmf6fsCyajxz7R0J7FZUQL+Pd0fZqD3ihws14kUrpo8cpU/X45VIURAPcPrIgrpWMCAArot+0/Tp8sJOPr8/gt5tuiaH4XiNETAowFN0T6QIcXCzF3jR7o+1iOWyi9TQy12Ije5yTphRG8Hyz+DmII4pwPrB/haVxvfJrm8+4XShf8qoEJ3mLU6biiEqpWhyKmlxpPtMCbJyqwB7z+Vh7T2BtVArPc1j0RFKxc/HZ5LhwnQpFPo2nJ63AnNhhLs2JVqRAk0JzsPF5S2jPCmyMnY+9VzRxVotNkCkVT4Rt8TZW4ET+Wiyafzjs8yBeU+ZcaH88YbY/nPM8XMFKkZ3joV/EOarCZXhb8dShYSzqcQPG6RnHnd0FuPqWov0vhPbNlEKU7I04N0MqW8vx9Kw52NC+HHdtlOY0jqX+vYABE6nO6R5Zjb0GIHp/zXD7S5naGSu5lQISem9LOa87t57aqv3FUZMmZi6taxqRk8E0TX/2InadlPhuwldbmqb9wEcu4jhXrSVJ8ivAHwJL0jTtm2r9y2NTyZkKSOgPslGU2GJVo+poWSR6OZhyCGOHszfaZyNGgngbTipW3DGetY7kidkJp+7INmsokonV3SrPIam2QVWz+YUTcFNExFe1eRUIhKA1XoCt4SC7cNUvQlPqKRYr5MawD4ENpVjFACoGCsM42NAAUBW202m24uRw/d6HR4gEKGIO9iPRfl/EeRxgg432J15JE1klLO1HzsVA2I/UsRJcuEC/Ky0LrEDm4ugcEmBHAdpCI1OystI6Ht1QFa7f2QYo7CebltWPg407bP3idFcvdu/oLaFUxXi5l6zSnOr2xAT307ljnojW17Z50P4KAiOXyULa7w7gSJqmd+d+W4GlCDdjr/XPpGn6J+G3afMYp9GGS+ZKwoXzJa86cBLPkMe1JuL5qFJOhgDJbAAmYHfbftzRrsGcckUQxjBQ0o7XYjmN5+3XYOfZiY3pcqKVUjYXc+7HMY7cTFk3rtCk2h/j4diazVdbBEqkxnQGL+QHnjIl538e5phLZWoZBgZuwIZI1RJRupOiCCqg2YEBihq81s1cLMVNfCWBoflhvRrMyT8Z1qsNv41h7yYVvzzB5VFtq8OAhYo5ijcicLQEA6grsNdFLdZP3eG3XVi/KxpE2F9L2Ne5sL/BsN4yZkbd6mJsonRJSYMPcmF1WWb6ekwROalLkuQzXHjkpJuoPB12aS5G6fuatPCCfitwaKp1X36LFYbyMsH53+B8ZywmzYODEL3NlmJPfbz9Khyyd+HF8DTFcwJDDPmCeIphL4X0GSgoVSyk9eSFkoozGCdgpMGd4eoG2F2A6rCBwstx1dTrsHPaFkBXdYuBF62TBvCk2RKlOgl27sLSjxaHYwgMqI33YC/NXeFU2/CohPahz/KAHicLNgbIAgnNbsluAb6Op1INYyDqRZyoPoBJN8vicyT0S5y68LrQTkV3hqJ+hMh/D/dBmuOFVFc7d6TIIemCxZugLwa84PdQLPWjfTeSFWWoxmuU9JK9dyXSoFoncXqW2tCCdfCJ6PvlueX43leURGB/Kec/G7FS3lVN8PhF7GIsLPHbWeA/pWm6M0mSWuDJJEn+CbuLzuMxpmmaofcmSbIUKKRpOhR915amaT6h5vNMkyuZpmlHkiQ3MQN8yasOnEghahBz7GByErIc4Ly60JW2w3jtFvAq203YTPgAXgAydqJbsddJTNwewjgdK3DOgbZX9CKfq38pppoWIu0/jg1tUrnSuTWH9U7igEbKYpKFjoHKOTx1aiH2PlDNj5hHpHS2RlzSdl/4TiDpHPZaH8Wc/JtwtaftmCM/H697UxGOcxKvMdPD5ZORbghtXE62yKbkiSXdrAKEceqeVOQqMHArfonuC/C0ucN4ChtcHlnhS7U4kiNgMhFXKhYdmMnISRw1m8AuNnLyBLA2SZJXY7fk+4D3X8R+rlX7FPCrwD9c2WbkHaSh3H9FLWInSxGMI9E6cYoVeApMvI2W92J3fDzTvJMsbyU+rkjHMeABAypaXkq2av0qWy48Gv0OznOphnRndFqbwvpRmwpyNsVrCNvF7Xyk28+jeq1tf0rrnwiF/5QPFY4toKGIh16WX+yGxSpQgkVYVmDRGllnv4EipTktboDd3VAbthvqtt/jy9UHHA5tqF1rg3Jf2L4tRIuGAJ6x/4cb7ByT6ugcowTlQszlAHYETlIi5ar9UIjvmUarbXNeetSCaH8CFQITldC3E79uUsmSnxiDW7D7Jya2QxY8VOeWe/18itfzGbL3sfglR6J96HP+OGCdV0lWvzi+EGdz/2ebjTONqM+UHMUkSVqAH8bSeH85v4M0TV8kJB6maTqUJMlenDJ7Ho+R87WH3gj8XJIkd6VpOpIkyc9gpUPvyh1n2lxJoCNN093MAF/yioCTJEm+jAdp64GBNE03hA7Yi0/efi9N0wtKYYjBxSBT8ypmYxmfClyJaARXx9KM/mHsFfVGzFEWd/AGPAJxHC/KexQDNHI8X8Ac+9XYsFYb1p1JRzvvyB3EU7GOhb9xPDVZUsTLcSK53jUifSvVS5GCE5gDr9QwKTOewIbmbgxMKAqiPlRQO64w3oX33a1YH+3HSe9PkS0DdblMkYGRcC6qZ3Mc82JrsBFGvB7N5kvZ7TjWHwuwFL4lWL9IVlo8q3FcmlrKWVIAEw9kNttEQCGeiJhtkZMkSb6IVXxYnCRJN/DbaZr+dZIkHwP+N/Y4fy5N02dLbV+2rCVJ8nYs3eHpJCmVHZdZ92eBAB7rJl334kxpXbHDVMv5YATOL8Ioy0dQ8jPM+W3y4YzTJb7PAyJJGStSsjy3j97c+gfJAhmpMj0TlkVW1jpyTLUs8nOeP7Afr3D4jDnk6TO+nJGWjbcDH8Gj8+wTcTus15dLmTusfKdG/58BHiFPQVELClCIABNrQzpUAEanyDoPnQVc3OC1vg/6IQ2jafUdYXdxZGG/g5E0HCcVCNO1jonicT+WmoiW4y/A8FYMcMT3VJz6l4/KKU0r6gfA7604ahJ/n7++cfphPp1R+8hHS2SVue+GyLqqsz1iMi1w0pem6eYp1vk0NvEypRpA8J03YnPBP8g0eIxpmn4lTIp9KUmSrwAfwm6Y6dgFcSVDGy+IL3lFwEmapu/V5yRJ/gdZsaADaZpumKljXSrh++U21VqNScCKIigFR06lhEHmY16NakaNYOlecUqbSNJzcQde0ZYh7C4T2fpyOuBxvopgfBPmMLdjDvgmXOZ+Ew7GRJCfhz2BA9iT1IU51qvCb1LXknIVuByziOWSNz6M9ceZ0J5W7BWzLxy7Fngo7ONyAxPwyEA7fj31cEiaWKZrPY47zvVY360LfzuxqNA/kE3ZasD65BheR6cD75NYOKBs0yrCOGXkJE3TH5ng+weBBy+2bVezJUmyjayoq+w3gF/HXsRTWpiV/Iztc9lloKuWkhQuNdsbA5Y836RUrn086mi2uSFajqdMGnLbxHySifIHjmB+hsBGY7Rd3JY4rWco11aljIHH7EXO2IvPxHdFx63EHeheSB+N1guz8cXifmfJkWCi89P6tWSd+Oew6bq4r2Oeg0CWHPFN4ZhE68cz9mpLaHMq0KBzUPHM/dG6LWH/m2yxsDOct44Z+i7VPk6Ev/j35Tg5XZyi+P6Iz0HryIsAUxZoLNEPsWxvgWzUIwYg6gOBWMhGWxT9U9vjbWJOSam3Zym+Vbz+ZFPHsxWYgL0pLqZogFuSJOJ4PJkkyZumWPc64KvAL6VpejIpPVNTcsxL0/QPQtTjL4A1aZqeKrVeqcNO9xjRsS6IL3lF07pCJ/5fwA9cyXbMBtOMuR5xFX+UPgu4s9iCOeG1mFN/OzZcrMamX2/FHo0dWORI5OcVmEM/ggt/tOKpXQ+F/y+HEx6bZri/G/5/K/yfG9pUi4G1djxCPxdzuo9g5yOxgFr8FdiIDevNOCl+X1hWROUoBgKkXhWnBMefXy6La8U0Y+2VIIIKLtZjPCG1983YNVYBRtVgGcdeKQexe+LbGDCrwwCIPL5hDLhIHllpkWVzm4kijGW7cEvTdGup70Ne86sBRU1agJ1Jkrw+TdO8COzLaDFIKeVA5XkneZnUatwpkyNbG60fz0jH3+lzfjZaaVwTzeQq1Uv7OE1WAawany6CrFML1u2xY6rf9kbLO7GIQ5zWk7f4vAsYuIid23j2X6lnsRMfCwfE4En71LpxClNvtLwXlyaDoK+M930X2b6OQQRhvf1kORlDoU0CXdpfDMIKZM8jbuOREscUgT22eP2Y7A4eudJ3eWDcGH7vj37PX5+olg4tZFOy4ghIHH2ZLGII50dDYg7JCUpzSuLnaSoBiitpKdOInExldwBvT5LkLuy1vDBJknvTNM2IWCdJMhcDJn+fpunXwtfT5jEmSXInJop5P/DbwMem2b7LzpW80pyTO4FjaVqMYwK8OkmSpzD/8TfTNH2k1IZxmH7ygP7stwo89eg4nuq0ABeO1Cw32F1RgSG6CsxRPY1FUiSKMoKTnsGGngE8OtKFDWNzomPV4gqRM5mvf7F2hmx6kSItuTmskvZdDJgphSy2icDXlUzxk9JYA3bej2Bg7Cb8fjiOARelboGNKh0YMD0dfte+FE1rxemvx3Ep4R7sOs/B+rIJr30yB3sFlUGK2xSRk4slxJftIizkNReT45Mk6QI2Xzm1rryVcpzyr1s5YHnAEq+XTw2DrIMZgxXNOMcRlnw0ZqKUGjmOmhWP035ioAHu0IKzvCZK0ZFT/DDOUxH/QLPLR6Lf9HtcF0NgSesoSVgO9VrOB0cNZKVsJS7wXLS8gPOBHrnlPJ8iPm/tR3YitCXW9NVbXPvLS0PHwEDyNxHHJAM28qlpp8N3inrFoCB+O7bgYBOy11vAJR9JEWBamttWaXt5gBJf8zyfRPd5DLrzVgpslKojNNHy1WVpmn4C+ARAiJz8SglgkgB/DexN0/SPo5+mxWNMkmQj8FcYr+X7wL1Jkvy3NE1/cxpNvOxcycsGTiYLx6dpKvLijwBfjH57EViZpml/kiSvA76eJMmNaZqezO8kDtPPSZJXnKp0TOhVWo6GHtVtkFN9AndQBWRO4+BChRWXhHXnYMPh3LDOrXiUpTUcT5EHVZOvwyMScpAJvw0zI9WxX3Z7JaT06Xo2Ya+IWuwaPIb1eT/2yhoCNmCgZQU2i68IyU3h/xLsuivKMoCBln/FlclEqge7z6Tw1oDfb4fxKI04KVOdwyvx/rgQm0bk5GIJ8WW7ZqyUQzUViMmnhuWBTJz+kp+NjtftJUswljMpABM7zTFfo5TccczF0Oc4IhFHcFTpO45sCJTEM+oxZySexddyKRCh/7FDr/3luRQCAvltG6JtFpAFG9V4qtiJcBylN+WjF1o/bouAY6l1431o/WfInofOO8/ViKNasSy0Puf7Iz8dlwdhpSIhsXpXnucUX+98tC62UqmO8fdXK8CYFufkoi1JkgeBn8Ze7z8G7E6SZFf4+dfTNH1wmjzGBcB70jQ9EPb7E8AHSxzvinAlkzS9Mn59kiSV2FPxujRNS06CJ0nyMIYYd5T6XTYnSVINLZeW6ffyWV5tSDn+E5GR67BUruPYcDmIzZqLJL4fi5qIDH8aC8bvx2bCVcT3DE703ow5oq147ZGF2JC4DJcjFi+lbDNrUtSqx5Qpn8DVtSSZfBpXKjuNSyTvxMn6Ai8CGHF6l6ItO8gCWx0fsvdhQzjuQhyUvNLBxzA8OQ3y4aR2XZKkN0/y+2Pmhf0L5cjJrDfjnHz4SjdjBmyiSEwpp3AiRzFPqs8pa5V0smKwUioSM9m6sjxXJp9OFDvdE3F08uvmo0PghSnz+yhw/jHzEaSJ0s/iY5SKtuRT9eLj5InicT+UamOpY0x1bfLXEqYGCrHF65Q6fn6biQjqk30/m4HJ71zS+yJJ2lMrfTyZve6S30lXu13JtK6twHMxMEmSZAlwIk3Tc6Ga5FpK10osaa8UYAJZh7AKT58pBUw0fFWE5W6s81SlfAhT4xKpewmW0vQY5sxuJ1uvdQvOT5ETew4vUtiCqVP9IC5dK+e4bBdveSe/HQOMPdhNfhMGOqS61YVFS0TwX4KBSIHGO3EezSpc7rYWA67/GrZ5Aa9vE19DVT2IFe2G8NQxAWi1+ZUOUi7FLmMRxrKV7SJtqkjMdCI1+WmnvARyKZtom+msK+st8Tm/bl6NarLjTLZu7wTf55enc16TrT/ZtqX6dajEetM5xnSPW2q96YCCeJ3pTEtOtM8L/f5qscsbOblWrGLqVS6bvY9sShfAvwOeSZLkaeA+4CNpmuZjkq84mzvF71PVVjmB129ZEr7bjTmfxzAn9jFcOlapOrXhuyGsDNedGNrbgSUqqhhhK+ac1mMRlqN4BGcIL+S4MXzfEp2TqrSXbWJTX40Db8DAXgMGLA9i12Ad9jDKAZaa2DkMVKjuyZ7wmySBn8Cu+TgWETuJ68XUYPdFc9jXxly79GDF6W8xGDmDZ1bDtQtMZOcm+Stb2cpWtrKVrWwzY1cscpKm6QdLfPdVTHngstipNOW6KfTwL4ed4dJrZMhpVe2P1RioWIAX1BvCnNHbMcf0u2E9RUy+hzmqdZhD9QIWKRnAnOYOnHhfhc3k9wBvB75BttDhm7EclrJjNrk14UWSl2CpeWeweyGmVN4f1q3AEjhVNFKKXbuxvt+MXe9l2DVfjQHPHwnHORd+l/T0QpzYfjHVHaa6vtdKNGUakZOyla1sZSvbNW/lyMlM2JVW63pZ7UoAE9lMhX9UPf1xbMZ9OPr+CJaadQwDGk04cVoO5AnMUb4FU/kaxEDGEgzsqCr7AJZCNA/4ZthWCmCjGLBZhYGgtXgF8mtZ3akBAxyNeBRLsryDGPCrx1XoO7F0vI7w/+mwH1V/l0iCpH5b8er1O/Br0Y7dD0NY5GQ5Fj25GbvWkkRW7Ru1ZTrO9lRRvWsBmICBk0stwli2spWtbGW72m1GpISvebuSaV1lCxZfhIlSwOL0miGcOC3C9AvYjPs4rtI0hDm+CzHwUIOBl0FM9WlhWKctbPN0aMs+DOA0kp0ZV9X1KsyxXYellG0Px58ImDTh9MAlud+24OW9Xqmm8l8nsGvyNE7lFHcDrH+2Y6BEqVRHsT55Gu+HUax/T+Plt3qwa9mO9bV4SgvC9+ew69iIq0p9Cwcmd2PRl5qwXH9JZ3ztmSInE/0ROCdlYFK2spWtbNeyqQjjZH9lm8rK4GQKa5h6lUu2ePZ5otlsOZVV2Gz4PmxmXHVN6nA1p+NYSlcPBkD2Y+exD5tZBwMpmgnuDMe9mWxNkI7wfXuubd2YU/3tsLw+/H87zkFpCv9r8SrkkHXWa7EZ/1IiANOxCia/gWOgV0GWHxNf16rocwvZ9KdVZMFTHkiqaGJ32KfA14no85moLTFfB+zaqW3noja2hf834MOZBA+qMBAyH68GP4Jd86NYtEvS0mDXb2fYh2qbTCUPXLasKXJS5pyUrWxlK1vZJjaldU32V7aprAxOprArycZfgjvRcvZH8Znxw9hs+Ciuvt6FzYo34fyS+dh5NGEqXKqHIe6C9q20Ih1bhOzDmFM9B1cCA3fqVTfjG+FzFU7oXh3tTyaQMxx9biILCiaTbZWNh79lUZtkb8C5Plp3OPpdxSdXk01d6iYrAqlyXzKdh9Kiasiq9guk1OFFI2vDukNYalbcrhVhm4GwL/VlJ9aPu8O6Tdh1VHuVRncrBjrVthbsHngaAyC12PXTfse58sU1X4k2jchJ2cpWtrKVrWxlmwErg5NZalVkK4HvCf+bMIcWzBluxGbGO7AIhtKujmFOdSdOYh/HnPgOzHkew5zWY1gEIAYHcmwH8fJVY+GvE3OEVcQvD+BGw3bncFoZp9AAACAASURBVMDzNB4VUCQijhgdI5sWFgOl2GrxSI7saGhTHJH4bjifuG3a/xLsxl9A6cjYZJXnJUigaEg+ArEqHHMQBzmxGKPSrNSuuPzVcTx9T3wSRUw6w+9K6QIDWAJA/z97dx4mV1nm///96TUrWUhAyGIAg6yyhQAGZRUBGQIzKOACKIqOgCgwA4x+lQH1p6KCKKKoCDjIqkhElH0RZAs7CUtCUIjEhLBkIaTTy/374zzVqXR6qU6qq6q7Pq/r6qurznnq1F1PV9c5dz1bbj2aV1ldryNSDGPTY3Lx5HcRzFeKVsL+rIeWkxGSLpH0b+WKz8zMys0tJ8VQVQPi+5Pct/lvddi+kDW/+a4nu0AdzuoEpquZyV9jdbeqjuNDOvsGOPdte67lIJf45BKn7tSzds/Kjsfr6nEd48if6Sw3jqYzHR/X1RiY/Nhnkr2engZ+5+SXq2HtFdT/kbcv93fIrTHS3fFyXbdyiUN+grQxa/5Nc4/J/5vlErPcAPtcgphfB7kxRvl/l/z67vhes9W8zomZmfWsumfrkjQU+CnZd9l3R8SV63Ict5wUIL9FodQVlhsw3ZXcxXD+xWtPM2Z1dpFVaPeUJgq7kF/Xri6dPa6vu9YV8no6m4a3ia6TtPxWofzEZHjHgh10NlRubifbOsolrI/T9evpLNZmVr+2apl5a114zImZmfWsOC0nkg6U9LykuZLO7E2ZQh5bKEmXSlok6ZkO27t6jn8Hro+Iz5ENRV4nTk4KkH+x35sLuJ4WXyyUBy+vbeOei3Srt3+bYk2RXMh6u8Xy3gLLlXP650I/gBp7LtKnPObEzMx6FkBLDz/dk1QLXAQcRNaT/WhJ2xRSppDHpsdvJGl4h20dh+8CXAYc2Iv4xpMNdYX1+O5uQHTraoPFb6/7pE/dGQMs7oPjrg/HRDb2ohuuI1ZPQ9yFflVHb3e2sXDrPVt1G9yyLIuvK5VWl9alBYvh7L44X3RUif9j68uvqX8YaK+plK9nPc8XC26Bs7s7VwAMkjQz7/4lEXFJ3v2pwNyImAcg6WpgOmv2au+qzN0FPBZgL+A/JR0cESslfQ44HDg4v1BE3CtpUofHdhfffLIE5QnWowFkQCQnEdFdz6d1JmlmREzpi2OvK8fUs0qLByovpkqLByozppyIOLDnUtYf9NX5oqNKfj+vK7+m/mGgvab+9HqKdK4Yx+rWB8gu+HcrsEwhjyUirpO0GXC1pOuAzwAfKkJ8vwd+IukjwDqv+zUgkhMzMzMzswFAnWyLAssU8thsY8T3UqvHxcAWEbF8feOLiLeBTxd4nC55zImZmZmZWWWYz+pVIyDrJvVqgWUKeSwAkj5AtgrFDcA3ihzfenFy0r1Lei5Sco6pZ5UWD1ReTJUWD1RmTGbraiC+n/2a+oeB9poG2uvpySPAZEmbSWoAjiJb57qQMoU8Fkk7Ab8gGyvyaWC0pG8WMb71oohOW3vMzMzMzKzEJB0MXEC23vKlEfGttP1m4LMR8Wo3ZTrd3uH404ClEfF0ul8PHBcRv+hQ7ipgb7JJCRYC34iIXxXyHOv1+p2cmJmZmZlZJXC3LjMzMzMzqwhOThJJH5U0S1KbpCl52ydJekfSE+nnZ3n7dpH0dFoh80JJnc1gUNR40r6z0nM+L+nDeduLtipoAfGdLemfefVycN6+TuMrhVLWQTcx/D29L57IzWUuabSk2yTNSb9H9XEMa63q2lUMylyY6uwpSTuXMKaKfB+ZFZOk0yWFpJ7WP6h4ks6T9Fz6rLhB0shyx7QuKuFcUUySJki6S9Kz6drhlHLHVCySaiU9LummcsdipeHkZLVngH8H7u1k34sRsWP6+ULe9ouBE4DJ6aeYayF0Go+yVTiPArZNz/fT9I9b0KqgRXZ+Xr3c3F18fRwH6bnLUQdd2SfVSy6xPBO4IyImA3ek+33pMtZ+P3YVw0Gsfg+fQPa+LlVMUGHvI7NikjSBbP2Al8sdS5HcBmwXEe8DXgDOKnM8vVZh54piaQFOi4itgd2BEwfAa8o5BXi23EFY6Tg5SSLi2Yh4vtDykjYBNoiIByIbuHMFcFgJ4pkOXB0RTRHxEjCXbLXO9hU7I2IVkFuxs9S6iq8UKqUOOjMduDzdvpwivlc6ExH3Am8UGMN04IrIPAiMTO/vUsTUlXK+j8yK6Xzgv+lirYH+JiJujYiWdPdBsmlE+5tKPlesk4hYEBGPpdvLyC7mx5U3qvUnaTzwEeCX5Y7FSsfJSWE2S02K9yibFxqyf/r5eWXmU5oPgs5W5hzXzfa+dFJq2r80r5tSOeLIKedz5wvgVkmPSjohbds4IhZAdhIBNipDXF3FUO56q7T3kVlRSDoU+GdEPFnuWPrIZ4A/lzuIdTCgP18kTQJ2Ah4qbyRFcQFZct9W7kCsdKpqhXhJtwPv6mTXVyPixi4etgCYGBGvS9oF+IOkbenFKpxFjqer5+0s0Vyvb+q6i4+s68+56TnOBX5AdqJa73pZD+V87nzT0jR/GwG3SXquDDH0RjnrrRLfR2YF6+Fz8n+AA0ob0for5Nwk6atkXYmuLGVsRTJgP18kDQN+B3w5IpaWO571IekQYFFEPCpp73LHY6VTVclJROy/Do9pAprS7UclvQhsSfZNS35zdq9XyFyXeOh+Zc6irthZaHySfgHkBqr1+cqh3Sjnc7eLiFfT70WSbiDrQrBQ0iYRsSB1mVpU6ri6iaFs9RYRC3O3K+h9ZFawrj4nJW0PbAY8qWyulPHAY5KmRsS/Shhir/X02S/pWOAQYL/on+sRDMjPF2VrVfwOuDIifl/ueIpgGnBomihlELCBpP+LiE+WOS7rY+7W1QNJY3MDcSVtTjZoeF7qFrNM0u7KzjzHAF21dhTTDOAoSY2SNkvxPEwJVuzM12FMwuFkA/i7i68USloHnZE0VNLw3G2yb02fSXEcm4odS2neKx11FcMM4Jg0a9fuwJJc96++VqHvI7P1FhFPR8RGETEpIiaRXRDvXOmJSU8kHQicARwaESvKHc86Kvu5otjSdcivgGcj4ofljqcYIuKsiBif/n+OAu50YlIdqqrlpDuSDgd+DIwF/iTpiYj4MPBB4BxJLUAr8IWIyA3q/U+yGYgGk/W7LVrf267iiYhZkq4FZpM1qZ8YEa3pMScBt7B6xc5ZxYqnE9+TtCNZU/jfgc8DdBdfX4uIlhLXQWc2Bm5I35TWAb+NiL9IegS4VtLxZLP2fLQvg1Deqq6S5gPfAL7TRQw3AweTDTpfAXy6hDHtXWnvIzPr1k+ARrIuqwAPdpjFsuJVyLmi2KYBnwKelvRE2vY/uRkQzfoTrxBvZmZmZmYVwd26zMzMzMysIjg5MTMzMzOziuDkxMzMzMzMKoKTE6sqkkLSe8rwvHunQeAVRdJESctzM9KZmZmZlZOTE+tzks6SdHOHbXO62HZUaaPrG+VKgnorIl6OiGF5M77dLemz5Y7LzMzMqpOTE1snkpb3ovi9wLS89WLeBdQDO3fY9p5UFkm/lLRNuv0/6xDfJEnP9FxyjfLv5E3B2HH/2ZJO720c6bFbAL8ENl2Xx/cXaZ0Uf6aY2VokTZD0kqTR6f6odP/dffR8X5B0TLp9nKRN8/a1n1/W8znOlvRPSecU4VgfkDS7N+cts4HKFxJWCo+QJSM7pvsfBO4Cnu+w7cXc6urA28AtkpYC50r6AICkTVMSMTp3cEk7SVqcVsdF0meA24GtJd3S1ckvLfD3fUkvpxjfAfZI+/aWNF/SaZIWAacBu+Y9dkNJf5S0VNIjkr4p6b60795U7MmUxE0BPpv2nSZpkaQFkrpcTyS1YHxT0t9St6s/pue8Mu85J+WVf3/atiT9fn+HY50r6X5JyyTdKmlM2jcptfLUSfoW8AHgJ+k5f1Lgsb8l6X6yNVI27+o1mVn1iohXgIvJ1lsi/b4kIv7RR8/3s4i4It09jrwvhyLisxExu0hPdX5EfH19DxIRfyVbb8qs6jk5saKR9G5Jd0h6Kv2emHZdArwBXC9pHtkif38F7gN+JGkW8F2gUdIR6TEHkJ1QLgYE3KlsEb8GssUw/yM95+lki4JdD7xP0kvARcA9wLPpea6SdJ6yhRAhW2mW9JxbkiVIe5Mtmph/ktkEOAt4GngUODx927cF2Urm09K+s8lWXB8k6UGyRTkBSF2mrslVETACGAccD1wkaVQ3VXoU2aJa44AtgAeAXwOj02v7RqqD0cCfgAuBDYEfki3cuWHesT5OVu8bpTpcqxUoIr6a6uukFPdJBR77U8AJwHCgTy40zGxAOB/YXdKXgT2BH3QskL4weU7S5elccr2kIWnffpIel/S0pEslNabt30mtDk9J+n7adrak09M5ZQpwpaQnJA1OX6pMSeWOTsd7RtJ38+JYnr54eVLSg5I27unFSRom6dfpeE9J+o+8Y31X0qOSbpc0NcUwT9Kh612rZgOMkxMrpp8AV0TE+4AryS5oc5YATwCHAPuSXQQHWVeu7cm+dR+dV34hsCQizkj7lrP6G7clwNF5ZbcDfkt24b4QOIksGQL4NrALQETkWj6OlLQZ8DngKxHxBllLzWusTly2JEsmNgMOB8YDTcB7yZKtMWStLKeStapcTtZq8KO85+nMORHRnFbtXZ6O15VfR8SLEbEE+DNZy9LtEdECXAfslMp9BJgTEb+JiJaIuAp4Dvi3Dsd6ISLeAa5ldYtVTwo59mURMSvtby7wuGZWZdLnw3+RJSlfjohVXRR9L1mryvuApcAXJQ0CLgOOjIjtyb5M+s/0BcrhwLap/Dc7POf1wEzgExGxY/oMBLKWeLIvqfYl+0zcVdJhafdQ4MGI2IGsu/HnCniJ/4/svLV9iuXOvGPdHRG7AMtSjB9Kca93lzCzgcbJiRXTHmRJAsBvyL4Zy/lDur8AqI+IOWTJyGCy1oStyBKWnPHAdZKWkH2wjyBLCCBLTvZIJ5ZcN6IngZHABsCPgM8DW5MlKXVkCUluPMlIsm/ShgCPSnoLeAqYBIxNZd4HLI+IZRGxFJgBNKcY3p+OeS3wc7IWllfIWg6u66Z+IiUWOSuAYd2UX5h3+51O7uceuylrt1j8g6zFJedfvXjefIUc+5UCj2VmdhDZeWC7bsq8EhH3p9v/R3bueC/wUkS8kLZfTtYdeCmwEvilpH8n+3wr1K5kScNr6bP5ynRMgFXATen2o2Tnh57sT9ZyD0BEvJl3rL+k208D96RE7ekCj2tWVZycWF+KvNuzyBKME4C2tK0ZeCtte5V0UlE2vmQicCYwiqxVYwlZS0bu4v5W4GNkScbTaV+QXSh/nuxk9mxEjCRLjD4XEbnWgn2A35Fd4G+byrwvle/por0mxdwCfDR9E7c1MKHgWim+V4GO42omAv9ch2NFh/uFHLvjY8zM1iJpR7IWg92Br0japIuiHT9Tguwzfu2CWVIxlewz/TBWJwEFhdTNvuaIyMXRSvaFVCHH6+zzMP9YbWSt8EREW4HHNasqTk6smP7G6m5RnyAbU5Kziqxp/VSyD3rS/ra07WGycR+QtUAEWRJQB9SStYhA1nqwEVlLxrFkXZuejoi3yBKYe8jGiXwJQNIIYDFZ8399OsYkshabXwDnS9ooba+T9OF0+0myMSSDJQ1ndTemFcBLKd6zJQ2RNB04hqy5/j9SuaWU7v/rZmBLSR9PA9uPBLZh9bd+vbGQNQe1F/PYZlalJIlsDOGXI+Jl4Dzg+10Unyhpj3T7aLJzxXPAJK2eov1TwD2ShgEjUlfZL9N5l9VlZOeVjh4C9pI0RtnMkUeTnUPW1a1k3YqBbEay9TiWWdVycmLraoiy2axyP6eSJQSflvQU2YnjlA6PuYcsscglJ78D5qRtW5CdKJYAt5B1x/odWReiB9NjzkpN4ecA/0M2VmU5q7s7fRo4EmgkSya2Jhu4Xg/MBh5L5b5JlvScAcxNx881r+fGgMwha1l5IsWR3+XsE2TdCA4hO+n9FMiNxThV0sNkfZQbJL0l6WOFVOi6iojXUyynAa8D/w0cEhGL1+FwPwKOkPSmpAuLfGwzq16fA16OiNvS/Z8CW0naq5OyzwLHpnPJaODiiFhJ9hl/naSnyb7Y+hlZ0nFTKnsP8JVOjncZ8LPcgPjcxohYQPZl1l1kX0g9FhE3rsdr/CYwKg2uf5Ksld7MekmrWxrNSk/SsIhYnmZ/ehiYFhH/6ulxfRDHJOCmiOiuH3R3j/8u2TiMT0VEKFtM8uiImJ5XZnkB3cbMzKrW+n4Wl5Kks8nGJnbVAtTb402in7x2s77kvo5WbjdJGkk2ve255UhMklZghKQn8samdEnSVmQxP002qPJ4smkxn0jdF94CPpPKbkHW+rKw86OZmVk/tBw4QdIG67vWSRpr+VOybshmVc0tJ2brQNKuZF25NgUWkc3a9Z3wP5RZUUi6lKxL4aLOvklOXwL8iGzhuhXAcRHxWMdyZmbWvzg5MTOziiPpg2TfTF/RRXJyMHAyWXKyG9kaQ7uVNkozMys2D4g3M7OKExH3snox1c5MJ0tcIiIeBEZ2MzWtmZn1EwNizMmYMWNi0qRJ5Q7DzKxiPfroo4sjYmzPJfuNcay5AOj8tG1Bx4KSTiBbT4mhQ4fustVWW5UkQDOz/qjc54sBkZxMmjSJmTNnljsMM7OKJekf5Y6hyDpbQK/TfsoRcQlwCcCUKVPC5wszs66V+3zhbl1mZtYfzQcm5N0fD7xapljMzKxInJyYmVl/NAM4RpndgSVpUT0zM+vHStKtS9LfyVbSbgVaImKKpNHANWSrcv8d+FhEvOnpIc3MTNJVwN7AGEnzgW8A9QAR8TPgZrLzxFyyc8WnyxOpmZkVUynHnOwTEfmLC50J3BER35F0Zrp/BnAQMDn97AZcnH6bmVmViIije9gfwIklCsfMzEqknN26pgOXp9uXA4flbff0kGZmZmZmVaZUyUkAt0p6NE3pCLBxrn9w+r1R2t7V9JBrkHSCpJmSZr722mt9GLqZlUJbW9Da5kVhzczMqlmpunVNi4hXJW0E3CbpuW7KFjQ9ZMepIYsTppmti4ggGy6Wmf6T+1je1MIp+29JjUCI2hoxemgDG2/QyMTRQ9rLt7YFNz31Kmf87ilWtbRx7mHb8fGpE9c4npmZmVWHkiQnEfFq+r1I0g3AVGChpE0iYkHqtrUoFff0kGb9yOxXlzL9ovsYNaSBu07fm7+9+DpP/3MJbQFfuurxTh8zckg9t31lLxYseYejLnmQFataGVxfy7DGOr56wzN8/5bnmfm1D1Fb4wTFzMysmvR5ciJpKFATEcvS7QOAc8imgTwW+E76fWN6yAzgJElXkw2E9/SQZr3w4fPv4e2mVn545I7sOGEkDXVd99486IJ7aYvglq/stU7P9daKVXz+/2bSFrBoWRM7nnMrza3BDuNH8K3Dt2dQfQ0RWdPnqpY23lyxirN+/zT/fOsddv//7qC1LaivFVuMHcptKYZp372TBUtW8sLCZWy9yQbrFJeZmZn1T6VoOdkYuCF10agDfhsRf5H0CHCtpOOBl4GPpvKeHtKsB4dc+FcWLFnJ0VMnMmXSKKa9Zwz1tTU8OO91Xli4nAA+9vMHqBF85H2bcuC272KniSPZZMSg9u5St876F8/9axkB3PXcIvbZaiMO+OE9zH/rHXYYP5I5i5axqqWNlc1tbDC4jrtO35vhg+r5yIV/Zek7zZyy/5b84fF/snBJE9d/YQ9WtbRx7K8fZoNB9Vzz+T0YVF/baez3nbEvcxYu4z8u/huD6mu57dS9GDG4vn3/tw7fjs9cNpOmlrYS1KSZmZlVkj5PTiJiHrBDJ9tfB/brZLunh7SqdMTFf+OtFav4/YnT2GBQ/Rr7lq5s5q23mxk/ajD3zHmN2QuWIsTF97xI611BY10NX/3I1vzg1hfYfOxQfn3cVI6//BHeWtHMn59ewB+fzHpG1tWI4YPqOHrqRH7x13nsMGEkza1tnPTbxzjm/ZN4YdFyBtXX0NTSypJ3mmmorWFoYy2Ll6/ikB/fx5YbD2fWq0sBOP26JwH4zr9vz04TRwHw3LkHFfRaJ288nKfO/nCn+xpqs6RmlZMTMzOzqlPKdU7MqtqSFc001NUwuGHtFoWXX1/B7AVLWbGqlT2/cyef2XMzth83ghqJW2cv5JpHXqYtoEbQFrDtphtw6XG7Mqyxjr/OeY3zb5vD12+cRV2N+ONJezJxwyHcdmrWTaqltY0n5y9h1qtL+PEdc1i6soWf3v0iQxtrueL4qaxoauUD37uTi+9+kf233ogLj96JIQ1rfjQ88vc3+MQvHuKVN1Zw6oe25BO7TWTZyhYC2GzM0KLWU2N91g3NyYmZmVn1cXJiA9ri5U2MGdbYq8csWrqSMcMaqUmDsdvagnmLl3PCFY/S1NIKQF1NDbd85YMMqq+lqaWVKefeTl2tuO+MfRnaWMeBF9zL68ubiPT4oYPqeOWNd4AswaivraG+toa6bCorlq1sYWhDLd8+fHvuen4RF9w+pz0eCY6cMoEdJ4zkgttfAMQ1n9+DYY3Zv++B223Ch7Z5Fx++4F4G19cyccMha7yeutoadnn3KHZ59yiO2WNSe72MHtJATY3YYFA9W79rA5asbObnn5rS6SD0XSeN5slvHEBLWxvDU6vOhr2s10I11GbJSa6uzczMrHo4ObEB67L7X+LsP87mXRs08rcz92tPNiKCfb9/N6tag7tO37t9wPiiZSs57y/Pc92j89lwaAMzv7Y/za3B1G/dzlvvNK91/DN/9xTnH7kjF94xh2VNLQB89GcPMHWz0Tz3r2XU1ihLPoDdt9iwfULs5tY2mlsj/W4jgGGNtcw4aU/eveFQPr7bRF55YwVvvL2KlrY2thg7jJFDGgA4aurETl9rbY24/dTCB7V3TNhmnLxnj4/JWnw6H0dSTLm/h1tOzMzMqo+TExuQbp31L/73ptlMGD2YV954h1OueYLPf3BzWtqCH9z6PC+9vgKAIy95gDMP3Iq/zPoXl//t70TAByaP4a9zFvPD217gH6+v4K13mhk/cjC//vSubD52GDWCi+6ay/dvfYHBDbVc88grfHSX8Rz8vk04/rJHmL1gKcfs8W7OOmjrTrtwFWLC6CFMGD2k54IDUHty0urkxMzMrNo4ObF+67VlTdwy6198/5bnaayv4c+nfJCRg+s54Px7mLf4bd43bgRXn7AHlz/wd77z5+faB4XXCL552HaMGtLAyVc9xpGXPEh9rRg1pIFxowZzxWem8t/XP8WP75wLwBkHbsV/7r3FGs/9xb3fw9P/XMJVD79CQ20NXztkG0YMrme7cSNoaW3jnOnblbo6BozGuly3LicnZmZm1cbJifVLcxct44Dz76UtsovZt95pZtdv3U5DbQ3vNLcypKGWXx67K4MbavnCXluw53vGsGDJSppb29hhwkjGjRwMwCX3jmDpO81c84U92Gj4oPbjfyuN/Wisq+ULe22+1vPX1IgffGxHHj3vLjYa3tg+Fe6Mk3ruHmXda3ByYmZmVrWcnFhBWlrbqKvtejG/t5taeHPFKsaP6n1XpIhg/pvvsOnIwQWtCL6yuZWTr3qCGoltNhnOH0/ek7mLlnPEzx6gubWNC47ckX/bYdM1jrXduBFsN27EWse6sYtkoqGuhplf+1C3cQxrrOuxjPVeo6cSNjMzq1pOTqxHe513F6+8sYKLPr4zB22/CQBvvr2KEYPrqakRrW3Bbt++g7dXtfCbz+zGnpPH8Mbbqzj8p/ezwaA6/njyB9Y43gHn38PbTS1c/MldGNpYxzdunMV9cxczqL6G/z10W1Y2t3H+7S+wqqWN1rZsFHltjaivreFL+01mzsJlPLtgKZceN4V9t9oYyNbNePIbB5S2YqxPeEC8mZlZ9XJyYms55MK/EgF/OuUDPPevpbz8+gok+OJvH+Pkfd7DvMVvc9NTCxg1pJ6Hv7o///fgP1je1MKYYY189opHOHnfyfz6/pdYvHwVADv+761sOKyBS4/blV/8dR4vLFwOwKE/uR+A4YPqOGmf93DHc4s443dPA1lXrcENtdSm1cxb24KVLa2ce9NsAN61QWN7YmIDi5MTMzOz6uXkxNby0utv83ZTK+f8cTZ/e3ExGw5r5MaTpnHuH2dz4Z1zqZX4yPab8KenF/C5K2by0Lw32Pu9Y/n+R3fgA9+9i/NueZ5tN92An35iFx6c9zoX3jGHt95pZq/z7gbg8x/cnM9+YHOO/PkDNLW0csOJ09ho+CBOO2BLHnv5TTYc2sikLhb2e/n1FXzmsocZNbShhDVipZSbgtnrnJiZmVUfJye2lk1HDGbh0pVcev9LAFx63BTGjRzMRZ/YmfvmLmbniSMZPqiene97iXNvmk2N4NuHb8+YYY1svclwlrzTzB9OnEZ9bQ1TNxvNifu8h2cXLOXEKx9jSEMtZx28NQB3nr73Gs8riV3ePbrb2CZuOITbT9u72zLW/zXU1bjlxMzMrAo5ObG1NLW0sf/WGzN7wVJWtbS1d5+qrRF7bTm2vdzxe27GVQ/9g7raGjZNs1/9/ovT1jpebY3YbtwI7vnvfUrzAqzfa6yr8TonZmZmVcjJia2lqaWVxvoa/vLlD/ZY1q0Y1hca6mpoanZyYmZmVm26nhvWqlZTSxuNdeu2srlZMTS45cTMzKwqOTmxtTQ1t7XPmGRWDg21HnNiZmZWjXwFamuIiKxbl5MTK6PGulqvEG9mZlaFfAVqa2hpC9oCJydWVg11NZ5K2MzMrAr5CtTWkPu22mNOrJw8lbCZmVl1cnJia8hdEDbW+61h5eOphA1A0oGSnpc0V9KZneyfKOkuSY9LekrSweWI08zMisdXoLaGXFcad+uycmp0y0nVk1QLXAQcBGwDHC1pmw7FvgZcGxE7AUcBPy1tlGZmVmy+ArU15NaWcLcuK6dszImTkyo3FZgbEfMiYhVwrj1/tQAAIABJREFUNTC9Q5kANki3RwCvljA+MzPrA05ObA2rx5z4rWHl46mEDRgHvJJ3f37alu9s4JOS5gM3Ayd3diBJJ0iaKWnma6+91hexmplZkfgK1NbQ3q3LY06sjBrrap2cmDrZFh3uHw1cFhHjgYOB30ha68MrIi6JiCkRMWXs2LF9EKqZmRVLya5AJdWmQYs3pfubSXpI0hxJ10hqSNsb0/25af+kUsVoq1tOGmrdrcvKx1MJG1lLyYS8++NZu9vW8cC1ABHxADAIGFOS6MzMrE+U8uvxU4Bn8+5/Fzg/IiYDb5KdZEi/34yI9wDnp3JWIu1jTtxyYmXkqYQNeASYnL7IaiAb8D6jQ5mXgf0AJG1Nlpy435aZWT9WkitQSeOBjwC/TPcF7Atcn4pcDhyWbk9P90n790vlrQQ8W5dVggZPJVz1IqIFOAm4heyLrWsjYpakcyQdmoqdBnxO0pPAVcBxEdGx65eZmfUjdSV6nguA/waGp/sbAm+lkw+sOdCxfRBkRLRIWpLKL84/oKQTgBMAJk6c2KfBVxMvwmiVoLGuhubWoK0tqKnxdxPVKiJuJhvonr/t63m3ZwPTSh2XmZn1nT7/elzSIcCiiHg0f3MnRaOAfas3eIBjn1jl2bqsAjSk959bT8zMzKpLKVpOpgGHppV7B5HNSX8BMFJSXWo9yR/omBsEOV9SHdnc9W+UIE7Ds3VZZWiozd5/TS1tDKp3K56ZmVm16PMr0Ig4KyLGR8QksgGNd0bEJ4C7gCNSsWOBG9PtGek+af+d7kNcOu7WZZUg13LnQfFmZmbVpZxfj58BnCppLtmYkl+l7b8CNkzbTwXOLFN8VWn1CvFuObHyySXH7tZlZmZWXUo1IB6AiLgbuDvdngdM7aTMSuCjpYzLVvNsXVYJcmNOmpq91omZmVk18RWoraGppY0aQV2t3xpWPh4Qb2ZmVp18BWpraGpp83gTKzuPOTEzM6tOTk5sDU3NrZ6py8quvVuXkxMzM7Oq4qtQW0PWcuK3hZVXbipht5yYmZlVF1+F2hrcrcsqQYO7dZmZmVUlJye2hlVuObEKkEuQ3a3LzMysuvgq1NbQ1OIxJ1Z+q8eceCphMzOzauKrUFuDu3VZJfBsXWZmZtXJyYmtoanZ3bqs/LzOiZmZWXXyVaitoamltf3C0Kxc3HJiZmZWnXwVamvwVMJWCbzOiZmZWXXyVaitwWNOrBJ4nRMzM7Pq5OTE1tDU3OqWEyu7utoaamvk5MTMzKzK+CrU1tDU0uaphK0iNNTWeEC8mZlZlfFVqK1hlbt1WYVoqKuhqdnrnJiZmVUTJye2Bg+It0rRUOeWEzMzs2rjq1Br19YWrGp1y4lVhsa6Gs/WZWZmVmWcnFi73LfUXufEKkGDkxMzM7Oq46tQa9fUnF0IuluXVYKG2hrP1mVmZlZlfBVq7ZpassHHnq3LKkFjnZMTMzOzauOrUGuX60LjMSdWCRrrap2cmJmZVRknJ9auveXE3bqsAmRjTjyVcDWTdKCk5yXNlXRmF2U+Jmm2pFmSflvqGM3MrLh6dRUqaXRvn0DSIEkPS3oynTz+N23fTNJDkuZIukZSQ9remO7PTfsn9fY5bd2s9JgTqyCeSri6SaoFLgIOArYBjpa0TYcyk4GzgGkRsS3w5ZIHamZmRdXbq9CHJF0n6WBJKvAxTcC+EbEDsCNwoKTdge8C50fEZOBN4PhU/njgzYh4D3B+KmclkLsQbKx3ty4rP485qXpTgbkRMS8iVgFXA9M7lPkccFFEvAkQEYtKHKOZmRVZb5OTLYFLgE8BcyV9W9KW3T0gMsvT3fr0E8C+wPVp++XAYen29HSftH+/XiRCth48W5dVkgYnJ9VuHPBK3v35aVu+LYEtJd0v6UFJB3Z2IEknSJopaeZrr73WR+GamVkx9OoqNCUat0XE0cBngWOBhyXdI2mPrh4nqVbSE8Ai4DbgReCtiGhJRfJPOu0npLR/CbBhJ8f0yabIPObEKklDrdc5qXKdfSkVHe7XAZOBvYGjgV9KGrnWgyIuiYgpETFl7NixRQ/UzMyKp7djTjaUdIqkmcDpwMnAGOA0oMuBiBHRGhE7AuPJmuq37qxY7mm62Zd/TJ9siix3IehFGK0SuOWk6s0HJuTdHw+82kmZGyOiOSJeAp4nS1bMzKyf6u1V6APABsBhEfGRiPh9RLRExEzgZz09OCLeAu4GdgdGSqpLu/JPOu0npLR/BPBGL+O0deCphK2SeCrhqvcIMDlNntIAHAXM6FDmD8A+AJLGkHXzmlfSKM3MrKh6m5x8LSLOjYj5uQ2SPgoQEZ0OXJc0NtfMLmkwsD/wLHAXcEQqdixwY7o9I90n7b8zItZqObHia2p2ty6rHNlUwk5OqlXq1nsScAvZOePaiJgl6RxJh6ZitwCvS5pNdk75r4h4vTwRm5lZMdT1XGQNZwLXdth2FnBdN4/ZBLg8TQtZQ3aCuSmdTK6W9E3gceBXqfyvgN9ImkvWYnJUL2O0ddTecuIV4q0C5KYSjgg8J0Z1ioibgZs7bPt63u0ATk0/ZmY2ABSUnEg6CDgYGCfpwrxdGwAtnT8qExFPATt1sn0e2fiTjttXAh8tJC4rLnfrskqSa8Fb1drm96SZmVmVKLTl5FVgJnAo8Gje9mXAV4odlJWHZ+uyStKenLQ4OTEzM6sWBSUnEfEk8KSkK/Om/7UBZlWL1zmxypGbNa6ppY3hZY7FzMzMSqPQbl3XRsTHgMcl5Q9OF1m33/f1SXRWUk0tbTTU1bh/v1WEhtrVLSdmZmZWHQrt1nVK+n1IXwVi5dfU3OZWE6sYuYkZnJyYmZlVj4KuRCNiQbq5GHglIv4BNAI7sPaiWNZPNbW0OjmxitFQm40zWdXq5MTMzKxa9PZK9F5gkKRxwB3Ap4HLih2UlUeTBx5bBWkfc9Ls5MTMzKxa9DY5UUSsAP4d+HFEHA5sU/ywrByy5MQtJ1YZGtqnEm4tcyRmZmZWKr1OTiTtAXwC+FPa1tuFHK1CNTW3tl8QmpVbY95sXWZmZlYdenslegrZivA3RMQsSZsDdxU/LCuHppY2GuvdrcsqQ4OTEzMzs6rTq1aPiLiXbNxJ7v484EvFDsrKwwPirZJ4KmEzM7Pq06vkRNKWwOnApPzHRsS+xQ3LymFVSxtDG91LzypDLlE+7y/P8eFt31XmaMzMzKwUensleh3wM+CXgEepDjBNLW2MHupuXVYZcjPHtUUPBc3MzGzA6G1y0hIRF/dJJFZ2nq3LKkluzMlnP7B5mSMxMzOzUuntlegfJX1R0iaSRud++iQyKzmPObFK0j6VcIsbac3MzKpFb1tOjk2//ytvWwD+anMAaGpuo7HeyYlVhsb2dU48IN7MzKxa9Ha2rs36KhArP68Qb5VkdcuJkxMzM7Nq0auvySUNkfQ1SZek+5MlHdI3oVmpuVuXVZK6GiF5nRMzM7Nq0tsr0V8Dq4D3p/vzgW8WNSIri4hgZXMbNz31arlDMQNAEg21NW45MTMzqyK9TU62iIjvAc0AEfEOoKJHZSXX3JrN1yr5z2mVo7Guxi0nZmZmVaS3yckqSYPJBsEjaQugqehRWck1pRmRjnv/pPIGYpanoa7WA+LNzMyqSG9n6zob+AswQdKVwDTg08UOykov13XGY06skjTW1dDU7OTEzMysWvR2tq5bJT0K7E7WneuUiFjcJ5FZSeW6zjQ4ObEK0lBX45YTMzOzKtLb2bruiIjXI+JPEXFTRCyWdEdfBWel09TecuKphK1yNNbVeBFGMzOzKlJQciJpUFoJfoykUXmrw08CNu3hsRMk3SXpWUmzJJ2Sto+WdJukOen3qLRdki6UNFfSU5J2Xr+XaIXIjTlxty6rJA0eEG9mZlZVCr0S/TzwKLBV+p37uRG4qIfHtgCnRcTWZN3BTpS0DXAmcEdETAbuSPcBDgImp58TgIsLfjW2znL9+r1CvFUSTyVsZmZWXQq6Eo2IH6XV4U+PiM0jYrP0s0NE/KSHxy6IiMfS7WXAs8A4YDpweSp2OXBYuj0duCIyDwIjJW3S+5dmveFuXVaJGuudnFQzSQdKej61pJ/ZTbkjJIWkKaWMz8zMiq+3A+J/LOn9wKT8x0bEFYU8PnUD2wl4CNg4Ihakxy+QtFEqNg54Je9h89O2BR2OdQJZywoTJ07szcuwTrhbl1Wihtoalq1sKXcYVgaSasla5j9Edh54RNKMiJjdodxw4Etk5xUzM+vnejsg/jfA94E9gV3TT0HfVEkaBvwO+HJELO2uaCfbYq0NEZdExJSImDJ27NhCQrButHfrcsuJVZAGTyVczaYCcyNiXkSsAq4ma1nv6Fzge8DKUgZnZmZ9o7frnEwBtomItZKF7kiqJ0tMroyI36fNCyVtklpNNgEWpe3zgQl5Dx8PvNrLOK2X2rt1ecyJVRAvwljVOmtF3y2/gKSdgAkRcZOk07s6kFvazcz6j95eiT4DvKs3D5Ak4FfAsxHxw7xdM4Bj0+1jyQbX57Yfk2bt2h1Ykuv+ZX1nVau7dVnlyaYSdnJSpbptRZdUA5wPnNbTgdzSbmbWf/S25WQMMFvSw0BTbmNEHNrNY6YBnwKelvRE2vY/wHeAayUdD7wMfDTtuxk4GJgLrMAr0JdEruuMF2G0SuKphKtaT63ow4HtgLuz78B4FzBD0qERMbNkUZqZWVH1Njk5u7dPEBH30fk3YAD7dVI+gBN7+zy2fjxbl1Wihtqa9skarOo8AkyWtBnwT+Ao4OO5nRGxhOwLMwAk3U02o6QTEzOzfqy3s3Xd01eBWHl5ti6rRO7WVb0iokXSScAtQC1waUTMknQOMDMiZpQ3QjMz6wsFJSeSltHJjFlkLSIRERsUNSorudWzdTk5scrRWFfDqtY2IoLUdceqSETcTNbVN3/b17sou3cpYjIzs75VUHISEcP7OhArr6aWNmprRF2tkxOrHA11NURAc2vQUOfkxMzMbKDzlagBWbcut5pYpclN0ODphM3MzKqDr0YNyFpOnJxYpclN0OBxJ2ZmZtXBV6MGZGNOPFOXVZr2lhMnJ2ZmZlXByYkBWbcZrw5vlaYhjYHydMJmZmbVwVejBmQXfw0eDG8Vxi0nZmZm1cVXowakbl1uObEKkxsH5VXizczMqoOvRg3IDYj3mBOrLJ6ty8zMrLo4OTHAUwlbZcolJ7lFQs3MzGxg89WoAZ5K2CpTo1tOzMzMqoqvRg3wVMJWmbzOiZmZWXVxcmJA6tblAfFWYdq7dXkqYTMzs6rgq1ED3K3LKlNuemu3nJiZmVUHX40akF38NTg5sQqTa81zcmJmZlYdfDVqgKcStsrU3nLiAfFmZmZVwcmJAZ5K2CqTpxI2MzOrLr4aNVrbgubWcMuJVRwvwmhmZlZdnJxYe39+z9ZllSbXravJY07MzMyqgq9GrX2aVnfrskojiYa6Gg+INzMzqxK+GrX2b6XdrcsqUWNtjdc5MTMzqxIlSU4kXSppkaRn8raNlnSbpDnp96i0XZIulDRX0lOSdi5FjNUsN9jYLSdWiRrr3XJiZmZWLUp1NXoZcGCHbWcCd0TEZOCOdB/gIGBy+jkBuLhEMVat9m5dHnNiFaih1smJmZlZtSjJ1WhE3Au80WHzdODydPty4LC87VdE5kFgpKRNShFntcp168oNPjarJA11NZ6ty8zMrEqU82p044hYAJB+b5S2jwNeySs3P21bg6QTJM2UNPO1117r82AHsvYxJ/Uec2KVp6GuxuucmJmZVYlK/KpcnWyLtTZEXBIRUyJiytixY0sQ1sDl2bqskjXW1brlxMzMrEqU82p0Ya67Vvq9KG2fD0zIKzceeLXEsVWV1bN1OTmxyuOphKuXpAMlPZ8mSDmzk/2nSpqdJk+5Q9K7yxGnmZkVTzmvRmcAx6bbxwI35m0/Js3atTuwJNf9y/rG6tm63K3LKk+DpxKuSpJqgYvIJknZBjha0jYdij0OTImI9wHXA98rbZRmZlZspZpK+CrgAeC9kuZLOh74DvAhSXOAD6X7ADcD84C5wC+AL5Yixmrm2bqskrnlpGpNBeZGxLyIWAVcTTZhSruIuCsiVqS7D5K1tJuZWT9WV4oniYiju9i1XydlAzixbyOyfO7WZZWssa6m/T1qVaWzyVF266b88cCfO9sh6QSyqemZOHFiseIzM7M+4KtR8wrxVtE8lXDVKmhyFABJnwSmAOd1tt8TqJiZ9R8laTmxytbU7G5dVrk8lXDVKmhyFEn7A18F9oqIphLFZmZmfcRXo+ZFGK2ieSrhqvUIMFnSZpIagKPIJkxpJ2kn4OfAoRGxqJNjmJlZP+OrUWsfbOwxJ1aJGj0gvipFRAtwEnAL8CxwbUTMknSOpENTsfOAYcB1kp6QNKOLw5mZWT/hbl1GU0sbDXU1SJ118TYrL8/WVb0i4mayGRzzt3097/b+JQ/KzMz6lL8qN5paWt1qYhXL65yYmZlVD1+RGk0tbZ6pyypWY10NbQEtHndiZmY24Dk5MZqa29xyYhWrIb03PSjezMxs4PMVqWXdujyNsFWoXHLi6YTNzMwGPl+Rmrt1WUVzy4mZmVn1cHJiKTnxW8EqUy5x9oxdZmZmA5+vSI2m5tb2b6fNKk17ty4nJ2ZmZgOer0iNVa1uObHK1VCbS048nbCZmdlA5ytSS7N1ecyJVabcZA3u1mVmZjbwOTkxz9ZlFa2x1smJmZlZtfAVqXlAvFU0z9ZlZmZWPXxFap5K2Cqa1zkxMzOrHk5OjKbmVrecWMVqn0rYLSdmZmYDnq9ILWs58ZgTq1Dt3bo85sTMzGzA8xVplYuILDmp9VvBKtPqdU48lbCZmdlA5yvSKpfrKtNY7zEnVpkaPFuXmZlZ1XByUuVyF3wec2KVKtfl0CvEm5mZDXy+Iq1yTU5OrMK1t5x4QLyZmdmAV7FXpJIOlPS8pLmSzix3PAPV6uTE3bqsMuWSE08lbGZmNvBVZHIiqRa4CDgI2AY4WtI25Y1qYGpqzgYZe7Yuq1Q1NaKhtsYtJ2ZmZlWgrtwBdGEqMDci5gFIuhqYDszurPDyphYO+tFfSxjewJGbAanBs3VZBWuoq+GaR17h7udfK3co/dLUSaPKHYKZmVlBKjU5GQe8knd/PrBbfgFJJwAnAGwyYRLjRw0uXXQDzHabjmDKpNHlDsOsS1/Ya3OenL+k3GH0W2OGNZY7BDMzs4JUanKiTrbFGnciLgEuAZgyZUr84pgppYjLzMrgpH0nlzuEfu9L5Q7AzMysAJXal2c+MCHv/njg1TLFYmZmZmZmJVCpyckjwGRJm0lqAI4CZpQ5JjMzMzMz60MV2a0rIloknQTcAtQCl0bErDKHZWZmZmZmfahSW06IiJsjYsuI2CIivlXueMzMrLR6Wu9KUqOka9L+hyRNKn2UZmZWTBWbnJiZWfUqcL2r44E3I+I9wPnAd0sbpZmZFZuTEzMzq0Tt611FxCogt95VvunA5en29cB+kjqb7dHMzPqJihxz0luPPvrocknPlzuOAowBFpc7iB44xuJwjMXTH+LsDzG+t9wB9FKP613ll0ljFZcAG9Lhb5G/LhbQJOmZPom4f+kP79lScD1kXA8Z10OmrOeLAZGcAM9HRMUvdCJpZqXH6RiLwzEWT3+Is7/EWO4YeqnH9a4KLLPGulj94W9VCq6HjOsh43rIuB4y5T5fuFuXmZlVokLWu2ovI6kOGAG8UZLozMysTzg5MTOzSlTIelczgGPT7SOAOyNirZYTMzPrPwZKt65Lyh1AgfpDnI6xOBxj8fSHOB1jkXW13pWkc4CZETED+BXwG0lzyVpMjirg0P2qHvqQ6yHjesi4HjKuh0xZ60H+ksnMzMzMzCqBu3WZmZmZmVlFcHJiZmZmZmYVoeKSE0mXSlrU0zz0knaV1CrpiLxtx0qak36Ozdu+i6SnJc2VdOH6LtK1rjFK2lHSA5JmSXpK0pF5ZS+T9JKkJ9LPjusT4/rEmba15sUyI2/7ZpIeSnV8TRqoWvIYJe2TF98TklZKOiztK2pd9hSjpL0lLcl7vq/n7TtQ0vPpvXdm3vaS1mNXMUqaIOkuSc+m9+UpeY85W9I/8x5zcDliTPv+nv6Hn8if4lDSaEm3pXq8TdKo9YlxfeKU9N4O78mlkr6c9pW0LvPifCL9Xe/J216S92S5dfU68/Y3ptc5N73uSaWPsu8VUA+nSpqt7Jx0h6R3lyPOvtZTPeSVO0JSSBqQ08kWUg+SPpbeE7Mk/bbUMZZCAf8XE9O58fH0v7Fen9mVqIBznZRdM89NdbBzyYKLiIr6AT4I7Aw8002ZWuBO4GbgiLRtNDAv/R6Vbo9K+x4G9iCbE//PwEFlinFLYHK6vSmwABiZ7l+WK1fuukzbl3dR/lrgqHT7Z8B/livGvP2jyQbDDumLuuwpRmBv4KYu4n4R2BxoAJ4EtilHPXYT4ybAzun2cOCFvBjPBk4vdz2mfX8HxnSy/XvAmen2mcB3yxlnh7/9v4B3l6kuRwKzgYnp/kalfk+W86e715lX5ovAz9Lto4Bryh13mephn7zPzv+s1npI5YYD9wIPAlPKHXeZ3g+TgcdZff20UbnjLlM9XJL7DAS2Af5e7rj7oB56Oo8cTHbNLGB34KFSxVZxLScRcS89z1N/MvA7YFHetg8Dt0XEGxHxJnAbcKCkTYANIuKByGr7CuCwcsQYES9ExJx0+9W0b+z6xNIXcXZFkoB9gevTpsspU112cATw54hYsT6xdKXAGDszFZgbEfMiYhVwNTC9jPXY2eMWRMRj6fYy4FmyVbeLbj3qsTvTyeoPilCPULQ49wNejIh/rG88nSkgxo8Dv4+Il1P53P9Oyd6TZdbp6+xQJv+9cz2wX6qHgaTHeoiIu/I+Ox8kW09moCnk/QBwLtkXHitLGVwJFVIPnwMuStdR+Z8dA0kh9RDABun2CNZeY6nfK+A8Mh24IjIPAiPTNXWfq7jkpCeSxgGHk32zl28c8Ere/flp27h0u+P2csSYX2YqWcb+Yt7mb6Wms/MlNfZljCmG7uIcJGmmpAeVuksBGwJvRURLul8RdUn2redVHbaVtC6BPSQ9KenPkrZN27p6T5a8HruJsV3q1rIT8FDe5pNSPV5ajC5T6xFjALdKelTSCXnbN46IBZAlWsBGJYixuzhzOntPlrIutwRGSbo71dkxaXulvSf7Slevs9My6XUvIauHgaSQesh3PNk3pQNNj/UgaSdgQkTcVMrASqyQ98OWwJaS7k/n/wNLFl3pFFIPZwOflDSfrNfGyaUJraL09vOjaPpdcgJcAJwREa0dtnf2jVd0s70vdRUjACnz/A3w6YhoS5vPArYCdiXrpnRGH8fYU5wTI2IK2TewF0jagsqty+3J1kLIKXVdPkbWfWcH4MfAH3LhdVK2XO/JrmIEQNIwstapL0fE0rT5YmALYEeyLog/KGOM0yJiZ+Ag4ERJH+zjWLrTU102AIcC1+VtLnVd1gG7AB8ha1X+f5K2pLLek32pkNcz0F5zZwp+jZI+CUwBzuvTiMqj23qQVAOcD5xWsojKo5D3Qx1Z1669gaOBX0oa2cdxlVoh9XA0cFlEjCfr3vSb9D6pJmX7jOyPFT0FuFrS38m68/w0fbM/H5iQV248WTPcfNZsps5tL0eMSNoA+BPwtdRMBrR3r4mIaAJ+Tdbs2Ne6jDN1OyMi5gF3k32jvpisWS+3eGdZ6zL5GHBDRDTnNpS6LiNiaUQsT7dvBuoljaHr92TJ67GbGJFUT5aYXBkRv897zMKIaE0J9C8oXz3mvx8XATfkxbIw18ycfvd5F4Tu4kwOAh6LiIV5jylpXZK99/4SEW9HxGKyfvQ7UEHvyT7W1evstEx63SMofrfDciukHpC0P/BV4ND0uTnQ9FQPw4HtgLvTuWZ3YMYAHBRf6P/FjRHRHBEvAc+TJSsDSSH1cDzZODwi4gFgEDCG6lLQ50df6HfJSURsFhGTImISWT/hL0bEH8i+OT9A0qjUZeIA4JbU1WOZpN1Tf+JjgBvLEWP6RvUGsj58+d+qkneBJbK+3t3OXtXHcY7KdYVKF13TgNlpzM5dZEkCwLGUqS7zihxNh+4zpa5LSe/K9VVP3fVqgNeBR4DJymZBaiDr6jOjHPXYVYxp26+AZyPihx0ek9+39HDKVI+ShkoanrYPJfvfzsUyg6z+oAT12F2ceUW6fE8mfV6XZPXwAUl1koYAu5GNJ6qY92Qf6/R1diiT/945Argz1cNA0mM9pO5MPydLTAbi+ALooR4iYklEjMk71zxIVh8zOz9cv1XI/8UfyCZJyJ3/tySbYGggKaQeXiYbO4ikrcmSk9dKGmX5zQCOUWZ3YEmuG3WfiwqYMSD/h+ykvgBoJsvajge+AHyhk7KXseYMU58B5qafT+dtn0J2MfAi8BNA5YgR+GR6zBN5PzumfXcCT6c4/w8YVq66BN6fYnky/T4+r9zmZLOfzSXrttJYxr/3JOCfQE2HckWty55iBE4CZqX6ehB4f95jDyabAetF4KvlqseuYgT2JGumfSrvPXlw2vebVI9PkX1IbVKmGDdP255M+/PrcUPgDmBO+j26r/9vevh7DyFLVEZ0OGZJ6zKV+S+yGbueIeuuV9L3ZLl/OnudwDlkF52QXWxcl17vw8Dm5Y65TPVwO7Aw7/9/RrljLkc9dCh7NwNwtq4C3w8Cfpg+O54mzeA30H4KqIdtgPvT5/wTwAHljrkP6qCnc52Ai1IdPV3K/wmlAMzMzMzMzMqq33XrMjMzMzOzgcnJiZmZmZmZVQQnJ2ZmZmZmVhGcnJiZmZmZWUVwcmJmZmZmZhXByYn1K5LOl/TlvPu3SPpl3v0fSDq1yM+5vJjHS8fcUdLBeffPlnR6AY9rlfSEpE3ztu0kKSR9uJPyh6d9W+Vt2yIdo+ivy8zMzGx9ODmx/uZvZOuwIKmzYhTkAAADtklEQVSGbMXWbfP2v59sbvJKtyPZPOu99U5E7BhpxfTkaOC+9Luj3L6jchsi4sWI2HEdntvMzMysTzk5sf7mflJyQpaUPAMsy1vVfmvgcUnDJN0h6TFJT0uaDiDpu5K+mDtYarE4Ld3+L0mPSHpK0v929uSdlZE0SdKzkn4haZakWyUNTvt2TWUfkHSepGfSirTnAEemFowj0+G3kXS3pHmSvlRIZaSVyo8AjgMOkDQob98wYBrZwkpHdXoAMzMzswri5MT6ldRi0CJpIlmS8gDwELAHMAV4KiJWASuBwyNiZ2Af4AfpQv5q4Mi8Q34MuE7SAcBkYCpZq8Yukj6Y/9w9lJkMXBQR2wJvAf+Rtv+abLXVPYDW9BpWAV8HrkmtINekslsBH07H/4ak+gKqZBrwUkS8SLaqcX5rzGHAXyLiBeANSTsXcDwzMzOzsnFyYv1RrvUkl5w8kHf/b6mMgG9Legq4HRgHbBwRjwMbSdpU0g7AmxHxMnBA+nkceIwsUZjc4Xm7K/NSRDyRbj8KTJI0Ehj+/7d3/6xNRlEAxp9DRRBaFMR/SGk/gE46OOiguClOXaqbfgAHQQRXwc+gg4OgOFicHHRxkjp0kSq4KYiIRSqtXYqU43BvNIbQJibRt/D8loT73tx7EwjkcM7Jm5mtMz3c4n09zcz1zPwKLAEHevgsZikBF/VxtsdrkiRJjbPjfx9A+gutvpOjlLKuj8A1YBW4V+dcAvYBxzLzR0R8AFolT48ppVAH+f3jPYDbmXlnk327zomIaWC9bWgD2FXn96NzjU2/nxExRsnQXIiIm3W/vRExAewEzgBHIiKBMSAj4npmZp/nkiRJ+ifMnGg7egmcB5YzcyMzl4E9lNKu+TpnN7BUA5PTwFTb6x9RejBmKIEKwDPgcu3TICIOR8T+jn17mfNLZn6j9MOcqEPtfR/fgYl+3nQXZ4HXmTmZmdOZOQXMUcq5ZoD7mTlVr00C74GTA+4pSZI0MgYn2o4WKf/S9apjbKWWRAE8AI5HxAIli/KuNTEz31ICg0+Z+bmOPaeUXc1HxCIlaPkjeOhlThdXgLsRMU/JbKzU8ReUBvj2hvh+zQJPOsbmgItbXJMkSWqksMJDGp2IGM/Mtfr8BnAoM68OsN5aZo4P6WxDW0uSJGkYzJxIo3WuZkfeAKeAWwOut9p5E8Z+tW7CCHwZ8CySJElDZeZEkiRJUiOYOZEkSZLUCAYnkiRJkhrB4ESSJElSIxicSJIkSWoEgxNJkiRJjfAT1eEK17wsGKgAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Adjusting PSD_4PI plot\n", "functions.name_plot_options(\"PSD_4PI\", data, log=1, colormap=\"hot\", orders_of_mag=5)\n", @@ -595,7 +335,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.3" + "version": "3.8.8" } }, "nbformat": 4, diff --git a/examples/calibration_sample.ipynb b/examples/calibration_sample.ipynb index c521a8d2..c0ca65fd 100644 --- a/examples/calibration_sample.ipynb +++ b/examples/calibration_sample.ipynb @@ -74,7 +74,7 @@ "metadata": {}, "source": [ "### Describing a simple instrument\n", - "Now we start describing an instrument, we start with the source. We would like to control the energy and energy spread at run time, so this will be described using input parameters" + "Now we start describing an instrument, we start with the source. We would like to control the energy and energy spread at run time, so this will be described using input parameters. These are added with the *add_parameter* method, which return a ParameterVariable object that can be used to refer to this variable." ] }, { @@ -84,8 +84,8 @@ "outputs": [], "source": [ "# Since we want to change the energy and energy range at run time, we add these as instrument parameters\n", - "Instr.add_parameter(\"energy\", value=10, comment=\"[meV] Energy of source\")\n", - "Instr.add_parameter(\"delta_energy\", value=8, comment=\"[meV] Energy spread of source\")\n", + "energy = Instr.add_parameter(\"energy\", value=10, comment=\"[meV] Energy of source\")\n", + "delta_energy = Instr.add_parameter(\"delta_energy\", value=8, comment=\"[meV] Energy spread of source\")\n", "\n", "# Add a source to the McStas instrument\n", "src = Instr.add_component(\"source\", \"Source_div\")\n", @@ -93,8 +93,8 @@ "src.yheight = 0.11\n", "src.focus_aw = 0.1\n", "src.focus_ah = 0.1\n", - "src.E0 = \"energy\"\n", - "src.dE = \"delta_energy\"\n", + "src.E0 = energy\n", + "src.dE = delta_energy\n", "src.flux = 1E13;" ] }, @@ -113,8 +113,8 @@ "source": [ "# Now we want to set a position and rotation of our sample\n", "# The rotation should be adjustable, so we add instrument parameters for controling the rotation\n", - "Instr.add_parameter(\"rotation_y\", value=180, comment=\"[deg] Rotation around vertical\")\n", - "Instr.add_parameter(\"rotation_x\", value=0, comment=\"[deg] Rotation around horizontal\")" + "rot_y = Instr.add_parameter(\"rotation_y\", value=180, comment=\"[deg] Rotation around vertical\")\n", + "rot_x = Instr.add_parameter(\"rotation_x\", value=0, comment=\"[deg] Rotation around horizontal\")" ] }, { @@ -126,7 +126,7 @@ "# We add arms at the sample position, and a second arm with the correct rotation\n", "sample_pos = Instr.add_component(\"sample_pos\", \"Arm\", AT=[0,0,1], AT_RELATIVE=\"source\")\n", "sample_arm = Instr.add_component(\"sample_arm\", \"Arm\", AT=[0,0,0], AT_RELATIVE=\"sample_pos\")\n", - "sample_arm.set_ROTATED([\"rotation_x\", \"rotation_y\", 0], RELATIVE=\"sample_pos\")" + "sample_arm.set_ROTATED([rot_x, rot_y, 0], RELATIVE=\"sample_pos\")" ] }, { @@ -237,21 +237,21 @@ "outputs": [], "source": [ "# A few Union loggers are set up for display of the scattering locations\n", - "space_2D_zx = Instr.add_component(\"logger_space_zx_all\", \"Union_logger_2D_space\", AT_RELATIVE=\"sample_pos\")\n", + "space_2D_zx = Instr.add_component(\"logger_space_zx_all\", \"Union_logger_2D_space\", AT_RELATIVE=sample_pos)\n", "space_2D_zx.filename = \"\\\"space_zx.dat\\\"\"\n", "space_2D_zx.D_direction_1 = \"\\\"z\\\"\"; space_2D_zx.n1 = 1000\n", "space_2D_zx.D1_min = -0.05; space_2D_zx.D1_max = 0.05\n", "space_2D_zx.D_direction_2 = \"\\\"x\\\"\"; space_2D_zx.n2 = 1000\n", "space_2D_zx.D2_min = -0.05; space_2D_zx.D2_max = 0.05\n", "\n", - "space_2D_zy = Instr.add_component(\"logger_space_zy_all\", \"Union_logger_2D_space\", AT_RELATIVE=\"sample_pos\")\n", + "space_2D_zy = Instr.add_component(\"logger_space_zy_all\", \"Union_logger_2D_space\", AT_RELATIVE=sample_pos)\n", "space_2D_zy.filename = \"\\\"space_zy.dat\\\"\"\n", "space_2D_zy.D_direction_1 = \"\\\"z\\\"\"; space_2D_zy.n1 = 1000\n", "space_2D_zy.D1_min = -0.05; space_2D_zy.D1_max = 0.05\n", "space_2D_zy.D_direction_2 = \"\\\"y\\\"\"; space_2D_zy.n2 = 1000\n", "space_2D_zy.D2_min = -0.05; space_2D_zy.D2_max = 0.05\n", "\n", - "space_2D_zy = Instr.add_component(\"logger_space_xy_all\", \"Union_logger_2D_space\", AT_RELATIVE=\"sample_pos\")\n", + "space_2D_zy = Instr.add_component(\"logger_space_xy_all\", \"Union_logger_2D_space\", AT_RELATIVE=sample_pos)\n", "space_2D_zy.filename = \"\\\"space_xy.dat\\\"\"\n", "space_2D_zy.D_direction_1 = \"\\\"x\\\"\"; space_2D_zy.n1 = 1000\n", "space_2D_zy.D1_min = -0.05; space_2D_zy.D1_max = 0.05\n", @@ -273,7 +273,7 @@ "metadata": {}, "outputs": [], "source": [ - "master = Instr.add_component(\"calibration_sample\", \"Union_master\", AT_relative=\"sample_pos\")" + "master = Instr.add_component(\"calibration_sample\", \"Union_master\", AT_relative=sample_pos)" ] }, { @@ -281,7 +281,7 @@ "metadata": {}, "source": [ "### McStas monitors\n", - "At the end we add a few McStas monitors to view the transmitted beam, including a PSD / energy monitor to see the Bragg edges of the different materials." + "At the end we add a few McStas monitors to view the transmitted beam, including a PSD / energy monitor to see the Bragg edges of the different materials. Notice in the EPSD monitor we use the input parameters in a small c expression to calculate the minimum and maximum energy simulated by the source." ] }, { @@ -291,7 +291,7 @@ "outputs": [], "source": [ "# Add position sensitive detector for transmission measurement\n", - "PSD = Instr.add_component(\"PSD\", \"PSD_monitor\", AT=[0,0,1], RELATIVE=\"sample_pos\") \n", + "PSD = Instr.add_component(\"PSD\", \"PSD_monitor\", AT=[0,0,1], RELATIVE=sample_pos) \n", "PSD.xwidth = 0.1; PSD.yheight = 0.1; PSD.nx = 200; PSD.ny = 200;\n", "PSD.filename = \"\\\"PSD.dat\\\"\"; PSD.restore_neutron = 1" ] @@ -303,7 +303,7 @@ "outputs": [], "source": [ "# Adds 1D position sensitive detector for transmission measurement\n", - "PSD = Instr.add_component(\"PSDlin\", \"PSDlin_monitor\", AT=[0,0,1], RELATIVE=\"sample_pos\") \n", + "PSD = Instr.add_component(\"PSDlin\", \"PSDlin_monitor\", AT=[0,0,1], RELATIVE=sample_pos) \n", "PSD.xwidth = 0.1; PSD.yheight = 0.1; PSD.nx = 200;\n", "PSD.filename = \"\\\"PSDlin.dat\\\"\"; PSD.restore_neutron = 1" ] @@ -315,7 +315,7 @@ "outputs": [], "source": [ "# Add energy position monitor to see Bragg edges\n", - "EPSD = Instr.add_component(\"EPSD\", \"EPSD_monitor\", RELATIVE=\"PSD\")\n", + "EPSD = Instr.add_component(\"EPSD\", \"EPSD_monitor\", RELATIVE=PSD)\n", "EPSD.xwidth = 0.1; EPSD.yheight = 0.02; EPSD.nE = 300; EPSD.nx = 200;\n", "EPSD.filename = \"\\\"EPSD.dat\\\"\"; EPSD.restore_neutron = 1;\n", "EPSD.Emin = \"energy - delta_energy\"\n", @@ -361,7 +361,9 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "scrolled": true + }, "outputs": [], "source": [ "Instr.show_instrument()" @@ -413,69 +415,6 @@ "plotter.interface(data)" ] }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, { "cell_type": "code", "execution_count": null, diff --git a/examples/libpyvinyl_example.ipynb b/examples/libpyvinyl_example.ipynb index ab21f99d..478d98bc 100644 --- a/examples/libpyvinyl_example.ipynb +++ b/examples/libpyvinyl_example.ipynb @@ -90,7 +90,10 @@ "source_height.add_interval(0.01, 0.2, intervals_are_legal=True)\n", "\n", "sample_height = calculator.add_parameter(\"sample_height\", unit=\"cm\", comment=\"Height of sample\")\n", - "sample_height.add_interval(0.0, 0.05, intervals_are_legal=True)" + "sample_height.add_interval(0.0, 0.05, intervals_are_legal=True)\n", + "\n", + "source_energy_spread = calculator.add_declare_var(\"double\", \"source_energy_spread\")\n", + "calculator.append_initialize(\"source_energy_spread = 0.02*source_energy;\")" ] }, { @@ -163,7 +166,7 @@ "src.xwidth = 0.12\n", "src.yheight = source_height\n", "src.E0 = source_energy\n", - "src.dE = 3\n", + "src.dE = source_energy_spread\n", "src.focus_aw = 3.0\n", "src.focus_ah = 4.0" ] @@ -335,7 +338,60 @@ { "cell_type": "code", "execution_count": 17, - "id": "premier-eleven", + "id": "virtual-cleaners", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/mcstasscript/interface/instr.py:1693: UserWarning: run_full_instrument will be removed in future version of McStasScript. \n", + "Instead supply parameters with set_parameters, set settings with settings and use backengine() to run. See examples in package.\n", + " warnings.warn(\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/examples/run_full_instrument_path_3\"\n", + "INFO: Regenerating c-file: demo_instrument.c\n", + "CFLAGS=\n", + "INFO: Recompiling: ./demo_instrument.out\n", + "mccode-r.c:2837:3: warning: expression result unused [-Wunused-value]\n", + " *t0;\n", + " ^~~\n", + "1 warning generated.\n", + "INFO: ===\n", + "Warning: 9688 events were removed in Component[4] acceptance_horizontal=DivPos_monitor()\n", + " (negative time, miss next components, rounding errors, Nan, Inf).\n", + "INFO: Placing instr file copy demo_instrument.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/examples/run_full_instrument_path_3\n", + "\n", + " Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Ni.laz' (Table_Read_Offset)\n", + "Table from file 'Ni.laz' (block 1) is 19 x 18 (x=1:6), constant step. interpolation: linear\n", + " '# TITLE *Nickel-Ni-[FM3-M] Swanson, H.E.;Tatge, E.[1954] [carcinogen];# CEL ...'\n", + "PowderN: powder: Reading 19 rows from Ni.laz\n", + "PowderN: powder: Read 19 reflections from file 'Ni.laz'\n", + "PowderN: powder: Vc=43.76 [Angs] sigma_abs=17.96 [barn] sigma_inc=20.8 [barn] reflections=Ni.laz\n", + "Detector: cyl_monitor_I=0.0552829 cyl_monitor_ERR=0.000384292 cyl_monitor_N=54838 \"cylinder.dat\"\n", + "Detector: acceptance_horizontal_I=1.32373 acceptance_horizontal_ERR=0.00101418 acceptance_horizontal_N=1.89423e+06 \"acceptance_h.dat\"\n", + "PowderN: powder: Info: you may highly improve the computation efficiency by using\n", + " SPLIT 19 COMPONENT powder=PowderN(...)\n", + " in the instrument description demo_instrument.instr.\n", + "loading system configuration\n", + "\n" + ] + } + ], + "source": [ + "old_data = calculator.run_full_instrument(parameters={\"source_energy\": 320, \"source_height\":0.025, \"sample_height\":0.04},\n", + " ncount=2E6, foldername=\"run_full_instrument_path\")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "closed-promise", "metadata": {}, "outputs": [], "source": [ @@ -344,7 +400,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "id": "smooth-cholesterol", "metadata": {}, "outputs": [], @@ -362,7 +418,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 20, "id": "daily-louisiana", "metadata": {}, "outputs": [ @@ -370,7 +426,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/examples/path_to_output_4\"\n", + "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/examples/path_to_output\"\n", "INFO: Regenerating c-file: demo_instrument.c\n", "CFLAGS=\n", "INFO: Recompiling: ./demo_instrument.out\n", @@ -382,11 +438,11 @@ " ^~~\n", "2 warnings generated.\n", "INFO: ===\n", - "Warning: 12132 events were removed in Component[4] acceptance_horizontal=DivPos_monitor()\n", + "Warning: 11956 events were removed in Component[4] acceptance_horizontal=DivPos_monitor()\n", " (negative time, miss next components, rounding errors, Nan, Inf).\n", - "Warning: 12144 events were removed in Component[4] acceptance_horizontal=DivPos_monitor()\n", + "Warning: 12035 events were removed in Component[4] acceptance_horizontal=DivPos_monitor()\n", " (negative time, miss next components, rounding errors, Nan, Inf).\n", - "INFO: Placing instr file copy demo_instrument.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/examples/path_to_output_4\n", + "INFO: Placing instr file copy demo_instrument.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/examples/path_to_output\n", "\n", " Simulation 'demo_instrument' (demo_instrument.instr): running on 2 nodes (master is 'CI0021617', MPI version 3.1).\n", "Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Ni.laz' (Table_Read_Offset)\n", @@ -395,8 +451,8 @@ "PowderN: powder: Reading 19 rows from Ni.laz\n", "PowderN: powder: Read 19 reflections from file 'Ni.laz'\n", "PowderN: powder: Vc=43.76 [Angs] sigma_abs=17.96 [barn] sigma_inc=20.8 [barn] reflections=Ni.laz\n", - "Detector: cyl_monitor_I=0.02597 cyl_monitor_ERR=0.000114161 cyl_monitor_N=136619 \"cylinder.dat\"\n", - "Detector: acceptance_horizontal_I=0.620813 acceptance_horizontal_ERR=0.000300875 acceptance_horizontal_N=4.73624e+06 \"acceptance_h.dat\"\n", + "Detector: cyl_monitor_I=0.0553181 cyl_monitor_ERR=0.000243053 cyl_monitor_N=136639 \"cylinder.dat\"\n", + "Detector: acceptance_horizontal_I=1.32423 acceptance_horizontal_ERR=0.000641726 acceptance_horizontal_N=4.73644e+06 \"acceptance_h.dat\"\n", "PowderN: powder: Info: you may highly improve the computation efficiency by using\n", " SPLIT 19 COMPONENT powder=PowderN(...)\n", " in the instrument description demo_instrument.instr.\n", @@ -419,7 +475,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 21, "id": "global-loading", "metadata": {}, "outputs": [], @@ -437,7 +493,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 22, "id": "retired-brick", "metadata": {}, "outputs": [ @@ -451,7 +507,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5YAAAHuCAYAAADk5ZP7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzde5xN1RvH8c8zI2pcc42QNKEpcplSKiFRinIphST3KCEixRgkIuSWOwlRLjVKkSSklNtPkiSJIkKuoxlm1u+PfYahUcoZZ2bO9/167dfM2fucvZ+9y97nmbXWs8w5h4iIiIiIiMh/FRLoAERERERERCR9U2IpIiIiIiIiF0SJpYiIiIiIiFwQJZYiIiIiIiJyQZRYioiIiIiIyAVRYikiIiIiIiIXRImliJ+Y2VIz653stTOzKhe4z3/cx9nHvcDjTTGzKf7Yl7+YWTHfdSgW6FhERP4rM6tiZn87x9v5vCc1mFkzM9ue7HWaexYEKz0DJT1RYiniY2bFzWyqme02s+NmttnMBptZgf+4y4LASn/GeA71gMEX4TiBshPvWu6Ev34BEhHxJ98f65xvOWpmX5lZTT/seiXevSzpOL3NbOnfvSeAnvEtEnh6Bkq6ocRSBDCz64DVQC7gIaAk0BLIA7T9L/t0zv3mnIv3V4xnM7PMvuMccM4dTa3jBJpzLsF3LRP8tU/zXOKv/YlIhvMq3pf58sBa4D0zC7+QHTrn4p1zv13oey4G59wh59yh1Np/0vNL/pmegZKeKLEU8YwCfgAecM6tcM7t8P18AnjNzG41sz/NLFfyD5nZBjPrmNIOk3djTereZGZVzew7MztiZnOT78/McprZHF9r6RYzu+es/SXt4x4z+w44bmaXptAFN7+ZTTezP3zHWWpmhXzbWpjZ/8ws1sx+NrO+ZpbpfC+Sr3vUG2Y2yMwOmdkOM7vfzK7yHeeomX1oZrmTfSbMzMYni+dtM8ubwj77+97zq5l1SLb9VDcg3/WcDFyVrEUh6RpHmtlK33+nHWbWKYX/Hs19LQR/Aned73mLSNA56vsyvwV4CkgAqgOYWQ3fvT/OzH4ws0eTPuS7J483s73Jer486Nt2qpurmTUDooA7k93LilkKXWHNrLPvnvan7x5XPtm2Zma23cwa+n7+YWYT/ilx8x3nO1+M7wN5z9p+qiusmb1mZjFnbb/GzBLNrIjvdXEzm+97BuwysxFmdlmy9283sy5m9p6ZHQeam1kWM5vo+8zOZOfSLNnnzme/ncx7dsaa2SYzu/OsWGuY2de+67fbzAac7/5TuG56Bor8DSWWEvR8N/gqwBDn3F/GtjjnDjrnvgB+Bh5O9rkbgQjgrX9xuBeBx4FqQDng+WTbhgHXAVV97+n7N/toDpQBUmoRnQsUAWoBFYA3gaTkMQR4FrgeryW2OdD6X8QPUBc4CkQC84ApwBjgZaAScPVZ5/UqUBmoDdwJFPV95ux9AlTEO+9hZnZ9CsdeCXQEfsFrTSgIrDSzbMAC4Bu869od6GdmDc76fG9gON51Xn2+Jywiwcs5dxI4AWQ2s6JADN59tjTwGjDVzG7yvb0D3r3xPrznQyfgcAq7nYV3b/yC0/eynWe/ycwaAtFAN7x727fAAjPLmuxt+YFGePfY+r6lxbnOx8xy4t27F/v2+T7wwt9cgreBGr7PJXkY+MI5t9OXxC4ENuM9cx4AbgZeOWs/3YH38J4/MUAPoIbv/fcBTXznkhTn+e63G/AucCPe9ZxuvtY4M4sA5gMfAGWBOsD2f7n/s+kZKHIuzjktWoJ6wbuRO6DsP7yvB7As2etBwIJkr5cCvZO9dkAV3+9VfK/Ln7W/L32/58D74lI92fYa59jHbWfFdeq4eEnpcaDAeZ57F2BJstdTgCl/8/4pwPpkrwv4Ynom2bpuwCrf79nxkt8aybaX8n2mRLJ9bjjrOFuAtr7fi/neX8z3uhmw/az3twF2AKHJ1g0AVp713+OFQP//pkWLlrS9nHVPvQTvS3oi3hf2l5PfV3zvmQnM8P0+Aphwjv1W8b52nXrdG1j6D+/5Auif7HUmvAS0te91M7zW1LzJ3jMOmPk35/ck3h9Kk98vZyS/ryZ/FgDmu782TbZ9XdJ9H2iK71mWbHslIBYw3+vtwPiz3rMXaJbs9TW++3Szf7nf4cm2F/Lto5Tv9RvA3HNch3/cfwqfmYKegVq0nHNRi6XI+XsTqOTr8hICPOpb9298k+z33Zz+62xxvC8MXyXb/uU59rHub/Z/A/C9c25PShvN7BYzW+jranMU6IfXuvlvfJvs972+n5vOWpfP93txvC9mp87FObcZOIj3cE2S/LrAmdfmfJQCVrszx6B8cdYx4O+vnYhIkh6+e+Rx4DmgvXNuHd495ex7c/J7zZvAQ2a22te1sdwFxnHG8ZzXerqaM+9tvznn9iV7fer+aWY9fN0zj/rOB7waAmvOul+e63mDc84Bs/HqD2DeWNMywDu+t5QGKpx1nI+ByzizENGp+695w0DyAWuSHedH4I9k7z/f/Z79XIXTz48bgGXnOLXz3f/Z9AwUOYfzHlslkoH96PtZElh/rjc5r8vPUqAxsAqvlfHdf3Mg59yJ5C853R3dkq37p33E/s1mO9c+knWVmYk3tucA0JC/6TJ1DqfOwTnnzOyMdaR8Xue9zxT2cT7O9zh/d+1ERJKMwesyeNSdWUznb+81zrmvzOxqvK6d9+B1U3zeOTcs1SL9+/vnGLyurMml9Jz4p3voLGCZrzvsw8Dnzrldvm3ZgE+Bdil8bm+y35Pff8/nmXe++03pmZT8GXSuY5zv/s+mZ6DIOajFUoKe7y+9S4GO5ntCJHfWuJI38MaBNAFmO+eO+ymMH4GTeOM7klT8D/vZCJQys5T+0lkKuBx4zjn3pfOKUhT+D8f4N5LO65akFWZWCq/67ub/uM8TQOhZ6zYDkWaWfP2tF3AMEQluB5xzW91fK7RuJtn9zOeMe43zKnW/6ZxrjPdHvObnOEZK97Kzfc+Z989MeGP7zuve5otla9KSbJ8VfD1vktycwseT72cVXivag3iJ5axkm/+H93zZkfxYvuXkOfb3B/A73tjGpHMrjveM+s/7TcFGvHGNKfHH/v+JnoESVJRYiniewnvALDKz6r7qa5XMbAJnzuU1By8Za8y/7wZ7Ts65w3hjXF4zs4pmdgvw0n/YzxK8VtfZ5lWyDTezx30FJ3bgPZCe9lXCa41X5CHVOOeOAJOAEWZ2u3nVDKcAH/oS2//iZ6CAmVUws7y+Ig3TgTBgtJmVMq9K49N4BZFERPzldbykrLeZlTCzp/Duo68BmFeh9CEzu9bMSuONlT/Xve5noISZlfTdy1L6TvYa3j37EV9C8jqQBe958V/NwEvghvqO3Rq49zw+9zbeuPzSeM/CJNPxxnnO9FUmDTezOmb2T0VwXgf6mFctvQxe6+pxTrcw/tf9JvcKcL/vv1dJMyvvO19/7f9v6RkowUaJpQjgnPsWuAnYg3eD3oxX0vsA3sMu6X2xeNUAf8Nr5fSnjnhTnnzmi6H3f9xPPbz4FuLNv9YMOOGc24tXAbYd3l9x7wH6X0jA5+lZYAVe5cFleNXsHr+A/X2O98XoE7y/eN/me3jXwqsK+D+8LxO9nHNndwETEfnPnHM/47Xa1ce7j3YEnvC16AEcA3ri3YeW4j1DnjrH7ubijatfjXcvK5rC8d4C+gCDffu8AajlLmDuYufcQbwqpPf49lkXryjRP5nlO/6y5C25vvtvFbwkbbFvn305Pd7xXPr73v8+3jCN6cARIO4C93uKc24j3n+vB4ENvmMV89f+z5OegRI0kqpqich5MrMFeFXhegQ6FhERkYzAzAoCvwIVnXNfBzoeEfn3lFiKnCffWMsqeJXwSjrnfgpsRCIiIumTmZXAqyXwBZAbb3qMgkCE05dTkXRJXWFFzt97wDTgeSWVIhJIZvaumf3PzNaZ2XIzK+tbX8LMvjCzLb6f1wY4VJFzScQbB7geryvsYbz5HpVUiqRTarEUERFJZ8wsp3PukO/3B4Ao51x5M1sCTHLOTTOzJkBz51y1gAYrIiJBQS2WIiIi6UxSUumTE0j0TTNUHnjLt/4toLyZ5Tv78yIiIv6WKdABiIiIyL/nmw6pBt7k6PcARYBfnXMJAM65BDPb5Vv/e8ACFRGRoJChE8u8efO6YsWKBToMERFJp9asWbPPOZcmW/yccy0BzOwxYBDeNBfnxTeXX2uArFmzVihVqlSqxCgi/rFmza7TLzIXgrxACFieBNyRUNi2C8gD7Acuw8rmIFPoSYqyg9/Jx+E1sQCEVchB7JpQ4A+gAHkqHGD/mjByVzjOgT154QhcEb6L39ZcASVD4PvfqHDjr14M/7sWrsoBP/8JWS71TQwDFSpcvOuQWvx9rw83c7H+2pnPbljonLvHz7v1qwydWBYrVozVq1cHOgwREUmnzOznQMfwT5xzb5rZOLz58a40s1Bfa2UoUAjYmcJnxgHjACIjI52elSJpl1k0fBsF10d7K+pHwVvR3O4q0Z7RPGpJf1P6gbfcTB6tNA/3RTQnLIof3S9QpDDeNKQQu6YY8BHwMK3dIhLIxETbx4EaUazoH8ntD61m9xHD2AWVgO+jeXD9EQDWWHbcuN5YAwdHvFici7qIVyL1+PteHwu08ecOgd7enxPSNI2xFBERSUfMLJuZFUn2ujZwANiLV2HzUd+mR4F1zjl1gxURuYgMr/XOn0t6kF7iFBEREU9W4B0zywok4CWVtZ1zzszaAm+YWS+8vm5NAxiniFwgM69lsErER4x0bwJwS2x7jr6VnxW2khX0BMrDQshfIy+ZeQO+OA5EcXvix3RnIEPpxCe22bfHe7338znj7BngBCcOZeaSKlGM7t8OZn+HlXZehjD5BNSNoqdt8D7apQwdaoTBkQ1AXZwrczEvRbpiwCWBDiIAlFiKiIikI865PcAt59i2GW/SeRHJKD6LYqlFcwOP+VaMAuAGV4uNdgIGADVfYS+3EenWAK/wsxvNLXzJ/RYN/AJ1vS6rn82tyJ31VvHs3BW8arfxsyvMJdabQyezkLNPHL1dd3pbJ04cuoKFOe7ivv99Qqe5LwMwzOZRc9ByRpA0elCJpZxJiaWIiIiISBqT1Fop6U9SV9hgozGWIiIiIiJpiK31flZxFeHOaOBOILdv6QRcxkYrCeEVofsPUPc54ABX2evUd+EUnbKXUBK41cUD18E8YB7cabXgdnjV7gbWMp/awMPsD83DY73GE85W2rnpjM3Rgvs7L2bDjSUYNq47w8Z1x33Zm/vtDiDjFO0R/wrGZFpEREREJM2LIwvMiSLktmMkDq4CQO1B7zDfHobIHLD6FS+pnAeE1ybnt78RykJsieOqZpspwB6+ch24eeA3vh1GwbMngO9w7zyB9XG4XUZ3evPmyla8ObIVlIK3e9Xh2SH9KLNqC7RZDICxHwDncl/8C5HOBOsYS7VYioiIiIiIyAVRi6WIiIiISBpxemzl41RkJl98WJXEWzLBWG/t/MFFIbwY5IMV7m1ut6fh0csgEg5lGcvbANdBB0bwbJ9RvLv5EbjCt8uhh2FUDlzYE7AHqAIfF7ydATt706zSZBZUuo/RtKPBgfk8nCeGcm49P7vGABRlz8W8DOmaxliKiIiIiEjAdXRZgKVkIQ6i46BBFjiCt0RXZOIPjeF2uL3RanjsMtbOiODQM1mAp2nkiuA+M3ZSBP6ECjM+h9l4yxs5IApea9YaG+jgKNTYtJw3ijzMnSyjHOtoxAyq5f6Q9111mgyZzVXWjqusXSAvR7qT1BXWn0t6oMRSRERERCQNUCVYSc+CsZVWRERERCRNGud+pHXRqVRxHzGwTjPqx0xnztDGsND3huVQmg3c1eMDcnGQPOyjPaOoGzqPFu4tJhZtz4yPmjMnXy3C+sfShcGU2+GVmd16+DoWNK3BA4sWkm3zPo68lo/sVX6n2a6p8Gdmqn74BSfbh9J31UusLh0Jz04BrsK5ZgG6GulTsHaFDcZzFhERERFJU8yiye+eoHW9ouTZ/itL+98D++AbSsMtB3jQLQLg3aKP8BDv8HNEKWpsiqENY8hEAs/NGA7FoN2OIYxu3pmxk9qyqFod+n9aklvdbgAW5riLnygGq+Ho+LwUeOdnSvMNX7xblf81KsnH7W+nRtfluAqGFTwBPzfBFVW6IOdH/6eIiIiIiKQBe3MUhSN7aBcymr7XvARlYQidWeyqU8BXPGffjjysiLmbxzaNZw8FqFF+Of9bW5LR2TrDZhj9YmfeXlKHhyvHcOJ945LvHF/45sXsXj4bG+vdBL8BV0IuDhJDHT5tVJWuDGLh/AcYNqgN1tzBo940I7jqAbkW6VmwTjeixFJEREREJIA0tjJjCdausCreIyIiIiISYNe4BjQ6PAkYQ197iXsbzoUGcP/cxVRnMbk4SC4OEs6PsB3ejGnFoql1oAvcaIOZWKcxbAdehIetAi2WjeKKbL94O9/uLS2ZwKK5dzByZUtcdaM033CQXDy87T1COcm3ta+hY9OxMHkWsB+n1kr5F5RYioiIiIgE2I82myosZY5bBb/GsZMiNKo2Cd6F+xcsJobaxFCbIuykRocYrquzDm6AZo3GwPe1aREzHR4BLgWioyjAHvKE7GdbxUJQCigF2TlKvdh5ZOMI/do8y6SE5nxKVd4vfjfvxD3EQmrCUaBuQ5xrGNDrkZ5puhERCRrH4k4SG38y0GGIiIgEPXWDlYwiGLv/igS92wcuwcxY2/PuQIciIiIiE6PgICxnPC/zPA8XmsnbQx7nYOfLoSz0rdWF0bQH4MO768F1wIjjJO43ZlCf+BKZWRhek/0zr4R5MPKdljw1aQJvN6/DN5RmSUQlAEbRniPH8mHbHW6A8drU1tTlXW7ia2pmWcibD7WCUHDvBOxKZAgq3iMiQaNgzsvInEkdFkRERAKvNLwMXAILOtaidsh83m73OHQ/yS+Fwum56wUeYRblWA/AI+/N5OgjeXE7wqiZ+z3qEMOMqc3p0bQXqxtFEtFoE5N5ghrNY3h4Uwz8Caz2HeoKWFZnONflW8f0qfV5MfYlntkxjsyl4omJrw1xAboEGVAwJln6ZikShGLj1RVWREQk0NQNVjKSYEymRYLesfgETiS4QIchIiIStJKSyoKuHLvrwJSYhjSzWfRxPXl49BsUYjdZdsVRku/pwGss2F0fgB0Fi5K7SywW5aAJtK82ileadmAVFYmJfYDZYfWZT226MJhFB+twtEIo2bIlAHBXiQ+4c+0qyOWoUHw1R7/My6/V8vBL5XBC3jlGyPhjJBTIGrBrklGoK6yIBI3YuJOcVFdYERGRgMoZ14bdHa6gSsxHNMs3C96DyixnJ0UYtqg739UoxpOMoRIr6VKwLwBriCR/5R3sPViU/NV20J5RjKI9hdjFydAQmiyYTZVaH7GJCNgI/Su9cKor7Cdj7sM9bYy/+jGaM5mnqw3iRfpRYdnnAKzmtkBdCskAlFiKBBnnHLEnEjiRqBZLEREREX8zgjPJSjfnbGa3A08AWYCDzrmnAhySSLr054lEnIP4k4mcTEgkU6haLkVERC4ms2jecytpT2MOvQ8Hh+eixO8b2DK6DAupyY+rridP9V+5rvN2bh/yMe0YTeF2+wDoO7oLS3dUp2+dLvRcMJgPa1VlF4Vo0Ws6vA8nlhqZNkOlUkv4s4lx6bZEb25LgJYw6epGtF4wlTm1alG/6QLoCFTxbT988a9FRhSsXWFT9RulmQ02s5/MzJnZDcnWlzCzL8xsi+/ntf+0L+fcCudcC+dcE6CImWVLzdhFMqpjyYr2xJ5ICGAkIiIiwcUs+tTYygcWLaQLg6AJrG93C7VYwIp2kfxw4Ab4Fva/fyU0gRVD7uYZXvOSw0uha+yrvF60FT2bD4Zf4N4+n/LU4ZHc1ecDXl3bnkuWOpaVupkEQrk0ysHvRuF6WylcbyvfRRRjDRVIvMVIIBMfTq0K1YFM4JRUygVK7aaKd4HKwM9nrR8DjHLOlQBGAWOTNpjZNWa2+Kyla7Lt9wHfOeeOpnLsIhlSbFxCir+LiIjIRfJZFLSEjjeNhaPw9OhBDNvRhWJsJyp3D0o03wDboXf57vAyfENp6BIHXeKoGraEthunQBNwvxrTejWgS47B9ONFavEBee7/lTtbreKrIZX5blAxhlVsQzyZiSczmUhgFRW5O/f7PLwqhvv2vA9/RHuL+E1SV1h/LulBqsbpnFsBYGan1plZfqA8kDQz+1vASDPL55z73Tn3I97fTv7CzJoBxZxz3c91TDNrDbQGKFq0qB/OQiRjiT1xusXymKYcERERuSg0tYhkdIEYXFUE+NU5lwDg+7nLt/6czOx+oB9whZmNMbN8Kb3POTfOORfpnIvMly/Ft4gEtWNqsRQREQmsg0ABGPl1SzgITzAZMiVQeNI+ahPDliVlIBL6H+hBs9/HsKVaGcYVasW4Qq34IqIq1t9BqTi6R/emycrZlOR76jGX/eRlZMhTbBtfiAc7z6TUqp+ZQEv2jL2KPWOvYjWRrN54O5+svA8+gT/y5ubQyf44FxXgC5KxJI2x9OeSHqSXllWcc+8DhQMdh0h6FxuvFksREZGLzbkobLj3+yt1OvDcAw15qs8EWk96jfJNN3HX1A+IbR7GzY2+ofWM15iT2ID9Va5kyr62MBNWUdH78C0wbFIbcnGQr6jIxEqNWcYddGEwt09djfvRaBo9jip8iuFoxhgqtVkCQFU+5dGwuZAZeCGanC/0UFKZCoK1KmwgWix3AleaWSiA72ch33oRSWVntFgqsRQREbko1BVWMrqLnkw75/aa2XrgUWCa7+c659zvFzsWkWB0PPkYS3WFFRERSXWnkspnvJ/P9R4O4dCjVy/6V+7DzcuWMZL2XDd6O1/MKMetxddxYr1xyQAH62FkmZY81WoCAK0nvUbHDmMZN7wpR8hOi+bTYTlM+6EB05o2wGIc7Ipj1qUNmVaxAU16zcY94dU7mX51fXjfYEAgrkLwCNbpRlI1sTSz4UA94ApgsZntd85dD7QF3jCzXsAfQNPUjENETkueTB6PV2IpIiJycVwJtAQg52+/caj7FawmkhbLRgFw3YbtvNeuJrc+tI7W216jPcPoWekF+u58iaeWTYCq3l4KsBf2Qashb5K5cxxvNmkFDaArg/iYu2E2HK0ZRrbnE2jcbg7r+vTD1joALsvzx6nkFlA3WPGr1K4K2wHokML6zZDUUdz/zKw2UDs8PDy1DiGSbmmMpYiIiEjqCdYxlhnynJ1z84H5kZGRrQIdi0hac+YYS7VYioiIpKbssfso6JpSmxjGhXnrymVeT78hLzKBloQRywi7nx6uFx9QC4rAuHbPQC5o138ILIYa42MYhDete5lWW8g8I45JNKLF3dNJnGVkzXSA3VOv5s4mn/Hd1GLcwpe4+oYddtAVNg7yGltusMfgMa+V0k0NxNWQjCxDJpYicm6x8Se57JJQTiYmcixOLZYiIiKpbbdtJpNL4LvYYgCs5DaG0ok5DzWG2dHAZfTf9QLdCg3g5SGd2EMB9pOHnyiGK2RYU8eiF+t4O9sObHP8Ujwf739cnSZM5I/Y3Fy6z/FWyCNct2A79WtNxwY63oupyc3lV1Fw1UHvs58Dt/m6wk5VN9jUojGWIhIUYuMTCMscyokEU4uliIiIiJ8psRSRoBAbn0BYllBOJoSoxVJERCQVmb0CHGeY20XHWWMZ/Vlnb8MUuCH2a/LM+pWaIUWY0bQYrIapdZqyu9bV3jf0+dDMjcHWOcbFNKV1f1/f1VzwevHmFG63D96Hnjte4NL1DrfX4Ce4qtZm5sQ0xr1g/MFllGIzvOE77OiG4OBxZl30ayEZXyDmsRSRADoWd5KsmTMRljlULZYiIiKpxLZ4P+9ykdTlXVgND49+g4dHvwFtYeOym/jtaGGm920Bb74CJ6EQu+AWWBsTgdtrZOcIh+ZlofWkqfAp3tIJ2hyYQrbB+3h9xxPMoBE3V1rGxwNu546rF/EC/SlY5ycoDlce/pW9ZYrCl8CX0Kz8LCWVF0kmPy/pQYZMLM2stpmNO3ToUKBDEUlzkrrCZs2S6YwKsSIiIuJvx/mkx30MpBt8AAe5nINcDrOBj+CSZg7b4ajtrmZivcas21MWBkP5tZuwvo4Rm7oSG3oZVZp/xLiPmzLu46aQF7rm7kuvsD482XUyDZjNV40qM5sGrNhwN61tLLuXXM2xHCEcf/ZyfthQBNZFn15EUkmGTCydc/Odc61z5swZ6FBE0pzY+JOE+Vosj6nFUkRERMSvDLgkk3+X9CCdhCki/hIbn0DebFlISAxhz5E/Ax2OiIhIhmMWDWuioEgUhMNBcsHiOBbZOgAedLG8W+kRpqxsSLMFs2jHaO7N8Sn1D0/nne1NuDzbbroPH8jz1o6CVx/k923ZicJrbXy6xCDuYwHVlqzEXW/YEAc3wqz4hnAU7nUf0paxZNsVC1XhWmsJgHOqAnuxmEEmf2dZ6aCTmRJLkSBzLP4kWbNk4mSiI3afWixFRERSxS9QcMdPvEx3ml0yi94nutPGjQGg4KaDUAr60guKQQH2wLsQwSYm527EoQVX8HzLoTRzY5gy7lryhR2hRmwMAIu21KFQiV24/EaRaj9wFZvZvvU6+BLCK29kO1ezlXBuLrSKr8ZUhjuicMsCdhUkiCixFAkysXHeGMuTCY5jGmMpIiLiV6F7jgU6BAkwM7gkNNBRXHxKLEWCTGx8AlmzZOJEQiKxcWqxFBERSQ0P13mDkmyh2U2zyHZoH70fGsDkd5oB8H5EdRZOqskRsjMpojkF2QUHYSE16cJgWA98BFOWtIUrwHUwSvI/AOaUqEUYxwnNd5QvuYWbd6wjNPtR5lWuRxxZKM03NGUq5VhHteU1fdGoG6ykvgxZvEdEUpaQ6Dh+IoHLLgkla+ZMHIs/iXMu0GGJiIhkGIlXDIbPoijEbvpaLdp9PYRKYSv56p3S/Dy6FD+PLsX92z5mxNSuTHmoLQupSfHDP/F6vSf4alll3uQxeMTBm8AU6FhnALSELdtKs2Vbaep3WMBBcjGzwKM8yRjWFi1DwtZsxJGF7ByhHy+Sb/QRqpmXVGps5cWXNMbSnwuQ08zGmVntAJ/eOWXIFkvfBa8dHh4e6FBE0pTjJ7wWyqxZQjmZ6Eh0EHcykUuDsb+GiIiIn5mtCnQIkgYkVYX1s0POudZ+36sfZcgWS003IpKy2DhvTGVY5kxkzezd8WI15YiIiMgFM/Oqtmbe3wn+hGE7utDMfcPokM4smlWHm4d8Az/hLSuM3U1zQQMoxnZip+QmO0doUXkU84c/xIPFZzFxUGPyT93B0I3PUyz8O9hu3tIWSvI9TQ5MY/Wq25lAS6rf9j5deYXvOpTjAd6D9l4saq2UiylDtliKSMqS5q3MmsUr3gNwLO4kubNmDmRYIiIiGUINt4dFRSty645P+SJfVaasasPR46FkK5wAC4GkWb6WwkC6817DmtQZsogvO5clM/FMGPIUNTsvZDl3EE9mxtOKIjf8QHtG8Wm1qgCspyztGUX8+zmw5Q5+hZH1WvLUkAksGV6JoXTix0BdAPEYEISdwZRYigSRWF8V2MsuyURCqPOtU4uliIjIhbuMRV3r0G1HNAM7RLH29wjmUZcZNIZbYVz5piylCgAzCjdlPWVZQC2u6fwjCYTyyJ63KN35eqryKQ9XjiHn4t84GFOQ2Q0+pfvuYbwQ0g+AmQUeZRMRfHF7FfI02cX+pVcyiC581bk0TZjOFrsWuB/nLgvcpZCgpMRSJIjExp85xhLQlCMiIiIi/mQEZZaVIcdYikjKjqU0xlJTjoiIiPxnZtEsoyJQGwZ/R2biYcTnlF+5iQXUYiDdyDn7N1ovmsrCxJosTKwJfTPxPSWpyCpu6LGV4TxN4gdZuSX+S1ZSCbJBZOY1vNagNVP/1xpzf7KvQD72FcjHQ5vnU4A9sN2IPRrG+9WqczA+FzcV2Mjn3Aa84lskYJISS38u6UA6CVNE/CE2pTGWarEUERG5cG9cx7SmDWiyajbfuWJc12s7a0Jvg1+BftB7bXd6jxsAwK3jPyWezJTmG7gR3h7+ODnb/sah3lfwQIOFnJhphB6AHJf+ToEb91KQXVRjCQB3lVrMq1tepFu1aHZRiPuXLMa9ZdjeeLD+gIr2SGAosRQJIqcSy8yZTnWFPa4xliIiIiL+FYRZVobsCmtmtc1s3KFDhwIdikiacqp4T+ZQsmb2ypWpxVJEROS/MYvmWRdKH3rBYphASzgGy6kM1wOfw7Z6hVixNpJQTkIkEAlfjK7KZcTyXMRwbm/4MW6XAZCn369QAbrn6Mvl2XbzWtgzPMNrNGA2eyjAHgownzqcuMLYSjg/UYxp1RqwY3x+QK2VElgZMrHUPJYiKTsWd7rFMiyLxliKiIhcqFcfepFYwuDNz1la7R74HabyGGyHkMbHKL5pF7d3Xk3PVYNhAt5yBazodTdPbxrEipV3k6vPbiIyf8f+llfCGng15kXCM/9IaTbwMs+Tnz3040X68SJbNpRhQY4adGIoNVlIk3azWUz1AF8FOUPSdCP+XNKBIGykFQlesfEnMYNLLwnB1xNWLZYiIiIi/hSkVWGD8JRFgldsfAJZM2fCzAj1JZiax1JEROTfM4uG66JgO3yxtip8BmwFLoemvEmZbt/QiaEsLFCTpw5OoELFz3ms4lQAOm4bQ41685lFQ3JG/sahjVewt/x+XDPDfnBQENZsuo1vIsrQfOMMlt1wM0XY6R34F6izZRF1G7zFu70e4c/BxqU2GgDnngzItRCBDNoVVkRSFht/kssyn+5PkTVzplNTkIiIiMi/dCle1dffoFnlMfA6PFzjDcqyjtHtOhNFNIPowrBJbVjz0G10nDWWjrPGwhRjUY467K1XlEObr6Bb+Wh60oeYyjVwxYzPKleErfAj11DphiXsIw/Fq+2ieLVduL3GugbXMYnmkAkuzdoPOKCkMi0J0ulGlFiKBJFjcQmnivYAhGUJVYuliIiIiFywdJL/iog/xMafJCzz6X/2WTNnOlUpVkRERP6ZWTQAc9wq6tsIuO5putWKJhcH4Ri83eNx3i78OLw+nRn3N+fBWjOJio+Ge4H3Tu+n5+EX6BvzErvL5OKKUYdgCVgBx5TRDWk2dRbc7ohgEy2ZQFWWwBTveW1/Or6iNLl7xVKjTwyLovQcT5PSScEdf1JiKRJEYuMTyJrl9J3ulz+Os+vg8QBGJCIikn7YNnfq9/r5FsDzQCYYsLE3VW/4EIrBe/1rsow7yNtuPwfZShxZeCnzizyVdQLXzPgWgGZMZiE1cRFGIbYR/2RmottHwRJo9tAs3AMGR8C6OvoO6sLPw0tRo0MMAIv33MXNQ76B47DI1gGaYkTSBiWWIkFkwy+HCLHTryMK5cDO/XYRERE5y4OuJACZeYO3mz8Okw9jlzroBL9/nJ0X6EdbxlJ+2Sb+jDQuHeGY2K0xLRqOYgDdARhMF1YsuJvutXrTkgn0nfAS17T+0Ruz+STYVgcjgaehZ8xgunWIZjJPAPBOgYeo99CHWFEHROFcynFKAKkqrIhkdOH5s5H90tP/7EOMU9OOiIiIiIgfKLHMOMysNlA7PDw80KGIpCkOCLHTbZQhZiQkJgYuIBERkXTCLBrqRvFu6CMAVHjnc36flJ17Jn3EmuG3QRzkm3EEGm/gXVcXjsKlWeN51vWjRfPpcD+E19sKwMCHouB7GHhfdnq6/dAmmnvzfgqlgMeh8NdbGdO6LY/EziSsTCwDLYr3XE0AhtKJ+pMXANG+yNQNVtKGDJlYOufmA/MjIyNbBToWkbTEOXdGV1hTi6WIiMj5awuM8X5dU+Y28hU7wsMxb3BNh628vf5xOAiULsPeesB64MdMvLrqRWpMimFRnzp0TxwGwPMFh8LsuVCuM31j4DtXjIEUoAqfkvB1JvKyj/uXLYYv4Oit8IvLS+G5+7wD/wJEeUmlxlamYUFYvEfTjYgEkUTnsLNaLJ0GZ4iIiIjIBcqQLZYikjLnOKPFEtRiKZLemFke4E3gGiAO2Aq0cc79bmYlgDeAPMB+oKlz7oeABSuSQdgmqO0i6Elpbq75DQDXuXUU4yf2UoClth++B0rOB2pDXqAjUMUgHMKWxDKyV0saMgWAGg1iaDl8Cg93rkezOmO47trtEA1TtrYlz4u/sv/rK3mrcl0e/XMeaytHULjePujixeKuMa819EY9wNOsIB1jqRZLkSDiJZFqsRRJ5xzwinOupHOuDPAjMMC3bQwwyjlXAhgFjA1QjCIZzny7i9G0p7Z7h9ruHTb9Xp54srC0/D1AdVaUiCRPQnkec+O9f4kN4qABfLGkHLGE8VTnCbw943HenvE44WylHOsgL0zZ9YQ3bclWeKtXXfbXvBLWwEC68XaNOpQfuAnXxyAbkA2sbG+sbO+AXgv5B0mJpT+XdECJpUgQOXuMZYh531BFJP1wzh1wzi1NtupL4Cozyw+UB97yrX8LKG9m+S5yiCIiEoTSSf4rIv7gdYU9nVmaGYlqsRRJt8wsBHgSiAGKAL865xIAnHMJZrbLt/73wEUpkr6ZRQPPUcOtYMpDbeGYb/1vDrJBu7VD2Ecebh+9mtvbfcxWwuEk0DYLjDzJra3W8eD4mdw+5GNWTL0bgNH2NMXcdtylhr3vcBUNe8vxaLV5TFnSkC2UpH//PiT0COXlbp3IFb/7dL+E6Chcr0BcCTlvQdoVNghPWSR4ecV7Tr8OMTSxskj6NgI4ijeVernz/ZCZtQZaAxQtWjR1IhPJSH4NoTQbWPRjHR5e+wYAxwnjMd7k4VkxMBt6vNOL/sX70G1bNLki/oAY+ORAdSqNX0kYsZRjJytmeonlEncn1Ras5LkPhxMy7RijCrTg6PuhzMryCPFkof+mPvAHPLpyHs9W6se8zPWoFlXzdDy9VA1W0h51hRUJImfPY+m1WAYuHhH578xsMHAt0NA5lwjsBK40s1Df9lCgkG/9GZxz45xzkc65yHz51FNW5Fy81kqR/yDUz0s6oMRSJIic3WJpoOI9IumQmb0EVAAedM7FATjn9uLVinzU97ZHgXXOOXWDFblQV45jPeV4bO146jCfOsznD3LxcKsY8jfcAXdAf+tD622vsZMilOEbhtCZ+DwHKMQuruFHRizqinvBcC8Y1eaupEetXrD4OInHwijGdrLdm8A3lKb1qqkwG+YMqgWPwKsxLzKdxrRweXEuSnNXpgcq3iMiGZ1zpDCPZQADEpF/zcyuB3rgtUauNLP1ZjbPt7kt8LSZbQGe9r0Wkf/ALBryRtHTxbPIvc0e8pOZeGbTgNk0YIXlgAkbaMkEOAnZju2jDvOZsbI5A5tHUWrmz9CzGDM2NWc9ZSEbNLhtGg1umwb19wAw0j3NyOKtuL/SYt5aUpdhuzrxasX28BtsoSQMAx7Yw0Tbx0TbF8jLIfKP0kn++++YWW2gdnh4eKBDEUlTzq4Ka4aK94ikM865b0k+b9CZ2zYDFS9uRCIZ1w2/f01fywx8wK1uDce5jHe7PgLANe5bfqx3PZ+yn/qdpzPHGnP/zMXQCth4Ervqf/AY8BFER0Qxf/lD3FFpGQBz5jQmFwd5qtIE/reyJK1XvsZTiSNhcxae/XMk2Qbv43nLBa+CN3cJaqlMT4K0eE+GbLF0zs13zrXOmTNnoEMRSVMS3ZnfRkNUFVZERERE/CBDJpYikrJE584q3qN5LEVERM6WK/43AMI4Ts64NjA2B19YVWaMbg5POnjS8eMl18Nv8A4P0ZBZ1HAx8AE8fXgQnAxlhWsOx4FMUH7gJkZ2a0kka4hkDfwJCYRCViizcQvjJj3D/m5XwlKgunF0Ql7oFEXHzgPo6LKotTK9MYKyeE8QNtKKBK+zx1iaxliKiIikLG8UX00F3oUSczfwfY4b+eCRu5hHXQAmTmvP7Q0/pnDTfdw19QOuYSt9p3ah56zB3N7wY24fvhpmA3fAY93G81SfCRzoFebtezZsbRTOoo/vgInwcotOlGU999qn8Cjk77CDva2KMqxVd9z4QF0A+c/UFVZEMjqX4jyWyixFRERE5MIEYS4tEry8eSxPvw7RPJYiIiJnMIuG96JY8nslThLKlKZPMKNrc6ycg2rQcckAAG5uuIwVQ+7mrqkfMIiulG+6CfICsyGy4RpWFL6bwm4rHRjOc5OGE9LmGLnLxwLw3tqaPFB0IROrtGfk1JY8P24oG1uH86Cbybt3P8LeVUVhgm8OzfHqBpsuBWGWFYSnLBK8/jLGElWFFREROdvDdd5gOB1IIJRcHISxEPLDMRL7ZWXYlu7em0oCM6EQu+hDL36ZmpfCs/bBCBhWuTssP84vrOC5vMMZ93tTWq+dSse1XlKan71s3BHODcu2chnHcTkMs9/giQKw+AdY/FnAzl3kv1JiKRJEEh1ndIXVGEsREZHTzKIDHYJkBEnFe4KMEkuRIHJ28R6NsRQRETnbbRznD+bbQ5RwG9jStAxLDleiWshKuAEY5HtbA1jSsBLVGq2EJvBu20d4bMd4VjWsyJZKZejp+jGbBhxhK63tGrgDhjXwWjuHFetOszpjGFe5KS3KTKfF1unkjPuNhplfI2LSJjpaIUBzV6ZbQVq8JwhPWSR4OefOmMfSDI2xFBER8XnYFeNtO85lxEJe2BJWhnGxTalWZyW41+Gbe6mxYQMAiy6pQ3cGwP3AfUPo7fbSu84AKAZUgb65X6LHgV5k5wjF3HYezQ209R1oJoys2Z4FWe6DLrC2aQTl62xi3AvPwC1DAHCu88W/ACIXQImlSBA5e4xliBlOM1mKiIiI+I9aLEUkozu7KqxaLEVERDze+Mr88NjjvB0CuMPwfQ5at5tKs5gxHCEHs5ddDct87y/iGEl7ZjVqyKubX6QWpVkTU4E7WE5tYrju9+30X9CH1rVe4/nhQ/nzFyPLd95nOzR6haybE3m4fAw0g8oNlvFyTCeeXzkUOBKYCyBygTSPpUgQSUx0Z4yx9Ir3KLMUEZHgllS0Z5z7ghumfg1fwINuAa1LvMbbo+tQk4XEchmWxWF5veW6beu46YWN7KUAd/X5gNG0Z/7oh3hu0XDCOM6JV412tYaQl/206zCEtmGvw5fAlzCiaVcqlvqMKrEf8d7omjwRNpnnhw+F27w4NLYyA8jk5yUdUGIpEkQcZ1aF9Yr3BCwcERGRtGNUFKuoyEwehVEQwSbGhT3Dw+Ni+IbSfNiqHvUrTuexiPE8FjGeJ5jMjpfy82afVvTjRaa0a0vvdt3hHig6di+VcyxhJ0Xov6wP0+MbUZd52LcO+9YxbGobNsVGsHTWPTxyeCabiKBRh0k0ckWUVEq6lU7yXxHxB+c4ax5L0zyWIiIiIv6k6UYyDjOrDdQODw8PdCgiaUriWVVhQwyV7hERkaBWgB1wdRS0/46J+9ozMaog21whis/YBf2gWesx9DvQl/75+jDHwuGTit4HP4SuLUZAONy6bB0VRn/OaNpBR7B7TzCRx3mel3GfG29UfpgHtizk/dHVAbi/12JyvvgbrIJpDRtTf0cMXPUSANP1YE7/grR4T4bsCuucm++ca50zZ85AhyKSpjgHISFnjrFMVPUeEREJcge2hcHl18FM+MwNpHjELn5oVAROwC4K0Tb3MLb1LwRrKsIveEsr6F6qN1wDrIA1M25jb5+itBgyigNFc9Bi+HQuIxZ7/E9KsgXeh8bx02gcPw2awKF9l0MVSCDTqaRS3WAlPcuQiaWIpOzsFkvTGEsREQliSUV7RPwqqcVSxXtEJKNyjjOqwnrzWIqIiASvvZuKsoqK9DjQC6rAnXevosWmUQAM69aGRWvrUJItFL9kF/wAHPWWq0pspgJr6FuxCzm7/IYraYzs1ZKJU9tz+ezjsBR+nluKtwo9wq1L1uE+NzZkvpENmW+kbIkvSbz0UtxO4+FVMQE8exH/SSf5r4j4g8OdOY8lqHiPiIgEr3JRcH00q10F9pEHujhYb9RkIaNozzB7FqIhtvxlcB30btid3o0GANC23Vh+5Bp6VhpMj5W9GFThafKwnxJNN/ARVaA45C+/g0f7zINMMHfOvdSftcA7bj4ImeZgO/CUphjJkFS8R0QyskR31nQjIaoKKyIiwedUF9hySuYkFQRp8Z4gPGWR4OWcO3O6EY2xFBGRYLZuKdSOomcdeDamH78Uz0dY8Vhyz43FXWUM+7I7cyrWov61C6AgRM0cyMAx3QB4vt1QTgwwuo8YhvVw8FQcVxX6ie1PXIc97Th0YxbWU5ZNvSKYQEueZAzsT3bsSKAwcHsUrk8Azl3Ez5RYigSRxLPGWBqmxFJERIKK11pZ13vxWBmoAhSDhsyicNd9cBDyj99BF/rSkxdYTmWYA6wGC3PwnffRPwcbs8Lqk73CEfgMQkJPso7y8Ap8ka8cOWfFQRG4qtJmfo4pBXnxjgVsjAhnFg3pa5m9FX3UcpqhBGmLpYr3iAQJ58sg/zqPpTJLEREJMj+Whh9LU2Hq5zAYuGsxm4iAPdBjfC/21ivKq6tepCTfMzm+GRyHx5qPZ0mdSgyr2IZhFduwM6wwTWbN5oEdH8AjcYRlP85wOtAw3xT2k4cVDSPJc8uv7I/Ny4kqhttvcAQ4AjcM30pm4ujrjmhspWQYQZhLiwSnpJbJkLOqwmoaSxERERE/UouliGRkSUV6khfvMVNVWBERCR4WAVSPonbx2dQuPps15W9j2KY25Em4jucYxGUj/+AafoSOQD5Hk3Gz6Z55IH0rduHNla3Iz17ysp+87OdTqsIeYH0m5hSqS1hYLL23vcykuObsoQC3r1rN/n5XcnRFXo7kuAyLcZDPt0yBnpadnpY9oNdDUlGon5d0IAhzaZHglHiqxfL0OjONsRQRkeByzcffsoqK3ouW0DFiLEyD1uVfI2+O/YylDZlvOMyk3M2Ja52F5xJfYf9veZlSqSFjaUMoCQAM3/O0V4AnFOLJwp7/XYXNcmR7IIEVFSPhcnA/Gft6ZeNTqvD2+DoMpRMAYWtjgUgWc19gLoJIKlBiKRIkksZS2hldYX3bnDtjvYiIiIj8R0HaFTYIT1kkOCW1TJ7RFdZXyifRQajyShERycBqEsOKTX24fcZqyjb6EoBC7XYxqV1zyi35DjbCgBs6UosFFMq9i+YHJlEi9/fs730lVIe8hfbzDaWpyUIAhhd4htIFvmEfeag/dQEJTRvAn3DiOqMqizhQIgzr5HiaQTRkFoPpwhczqnrBNPbNo+nUYikZhxJLkSCRcvGepG2OM+vFioiIZDzzeBBXxrAt3kNxZImW3MNHzK1Wj7a8TlWWUpFV1OIDHsw9j+1czfA+zzCPuhwkF42YQRixAOyhACupREF2sbFpOOspy4nrjBdz9Gb5yzWw+xxPlxnEQmpSiF0MoTPvNv7+VCyqBpuBqcVSRDKypCI9IWcV7/G2BSAgERERkYwqnRTc8SclliJB4lRV2GQtk0njKlUZVkREMjILgesSizCIrlhYIlWKfwRAfvZSkVXM40E2bovkePEwirCTlVSiEitZShU6JQylbsJcMmeOI4zj9FnVH4AGFacxZ1cD3OZLIQaaDJvGghy1mB7VAurA2jIRLKQmJfmeLoeHUTXHImBlAK+CSOpSYikSJJJSx+RjLENUsEdERIJEP17gxiHfM6VzQ5bijXXsyivcxkoKsJd7i88jgk0UYzvPzRjO941K8hhvkuPzeA4WKshv4TmZwhPYr94T1b1gtHlpH78WysOL1fqRn728SmeGRLdjIN2owGrG8CTddw+D/rBipAG34Vz1wF0EuTiCtCus5rEUCRIu0fuZvPrr6a6warEUEZGMySw60CGIBAUlliJBIqUxlqeL9wQgIBERkYvkf4klqb92AURCIXYxecmTTF7yJHWYz4wtzUkglMs5SCeGEcEmNjYK5wjZabFqOlwLEeFruWLnIUJJ4Jd6efmlXl5ee6k14xY9w2SaMWVtW6KJ4isq0pBZfEZlYg7XZzl3sK7gdXw5oizwuW+RDC+pxdKfSzqgxFIkSCTljmdWhdUYSxERybjMouHHXty46HtWlI9kXOWmLOA+jt0WwrHbQhixqwN9S3ShEivZQRHe5UFu2LKVN3mMUBJ4q2JdOhR8hUqspGmRcZTkewpv2UfhLfvIy37cGqMiq6hd/h2OkI06uxdx5ef7eY5BTMjRjFASaMV4brV5wOOqBBssDK94jz+XdCBDJpZmVtvMxh06dCjQoYikGaeK96QwrFJVYUVEJKMaV/xxVtSI5HHeYBeFCOUk8VmyEJ8lC+8Xuo+VVOIguejACIqxnSolPuJTqrIlsQTzeJCF1GTi8PYcJBcVWMMrJTrwSokO7KIQ459/jFk8QkF2cffnK6hT8G2YB5mJ57G4qTQ88C5rLBOwB+eKBfpSiKSqDJlYOufmO+da58yZM9ChiKQZSY2SlkKLJUosRURERPxDXWFFJCNzfzuPpTJLERHJWLyiPVFsIoIEQunGQCqyiui4KAbThcF04SVeIBMJLKQmdQ/P546E5ewjDy2ZwGMhb7Kdq7mGraztEMErdGU7xQgjljBi6bp1BMu5gw4MJ5I1sBHuYDl5X/mFiqzi/iwfsDB3FeAj3yKSsaWT/FdELlRSd9fk81hqjKWIiGRka10E+8gDQCgJ3LfnfRoXmMEqKgIwnlZUnv8VdWq/TdUci4gnCxtn3ETLe97k+txriaEO13bdSclBW5gc34zqmT+hF30AeCe8NlOfbg294L58H5CnzT6WcwebQ0qR58BR7si9nFtzrIPs4A4H7BJIoARhlqUWS5Eg4fibqrABiEdEREREMg4lliJB4lSLZfLiPWqxFBGRDMhsAve60pRb9B17KcBUmtJ88wwSYrNRhJ18v/FGvt94IwfJRZvaw8hMPMtn12DVmjtp1mgM9h1UYiXhO38hW/Q+cnGQ8Mw/Mnt3E3JxkFwcpBzrKDDiZ3rl68HOnddSb8qHxGx9mFG0x1bDrXPXwZFob5HgEqRjLNNJmCJyoRITk6rCJu8K6/1UXikiIhnNhyvrUazGd4RxnO8WlGNCuacYUrAd1/AjDW6YBnhzWjblTcrGraNNg2EkkImtXMOg257mBV6ifZFXuYNlRD05kO2vF6NBwWnM/r0JAB/nu51ibGcyT5C5SBwvRr5Kv/BnWUoVVtW4GWwuUBrn6gXwKkhAJE03EmTUYikSZFKax1KJpYiIiIhcCLVYigSJU/NYJltnZ20TERFJ78yWwr0tmVKpIXnZz2SeoGWtCWygBAXYA8Cc4Y0BuKHD12wigkFZurKA+2jAbNYcjqR7joFcPWU30xs1okHmObR//VVycZDaxNA9X28AyrKebgygHOtZSE24FLJzhDd4nPKJa8mTAPtCrgzQVZCASuoKG2SC8JRFglNS7hiSrJ/CqRbLAMQjIiKSWm5esIzlVOYguVhwuBa1ciygzNYthIXHMoDutO7wGgBLqcri4fdTqcMSPqUqt/E5sd/kptxtXxDTrDYHpxVkepP6DKYL63bfSs2C71GaDQDEEsYjQ97lZEto+90UWAXP3DAODsD+hyZ4gbioAF0BkYtPiaVIkDjdYnm6zfLUPJaJSi1FRERE/CYIsyyNsRQJEilVhTWNsRQRkQzELBo+q0ICoaynLDVZSOz+3FRmGd+GX8MgulCEnYz9vSNjf+9Iab4hpkMNjpCNk4TyNTfR4bZXWLfxVkYd7sj4Jo/xKVWJJoo2BYex8PYHKMRuCrGb5dwBj8LiHFUYVbEF3AlDqrXDRjuoGoVTa2XwSire488lHQjCXFokWCXNY5lCVVh1hhURkXTOzDetxxeQvfIRPn3gXvLO+4XOBYZwB8uYF1ufvWEF2EsBGuabAkA8mWnFeF7mebJzlFk0JBcHibmhBpcRywRaMoDuTKUpe8jP4c8yU451gDeeslPBlxm65HlYv5TXOrfm2W0j4dOk6UWUWEpwUWIpEiRSbrE8c5uIiEh69p2bzHW7upOdI3z0XhVepTNrwiKJoTaDwp5lJZUowfeUZAsAb296nLIRX9Iwbiajs7TnuSXD+aFaEbozgPWUpTTfMIr2VGIlvZjHytBK3LN5KQC7ShWiNN+wr1o29lXLwzeUgfUGc6LQDCNBLkiL96grrEiQSBpjmdJ0I6oKKyIiIiIXIghzaZHgdKoqrMZYiohIBuN1g32Y6/pHQV6Y/8tDhPZJ4N3mj3BofBZiQmtTk4X03DaIisVXnarsem/EXJYerkq27xI4FJmF534bzgC6M7tjEygKYS0PELs6N02rjaMAe3iJF9hUyqv4+gSTGUU75lGXWTSkF32YWH+fF5DGVwY3tViKSEZ2ulUyWVVY30+nzFJERNK5kN+KQllo13oIBfv8RCNm4HoaOdvGMZnmxJOFacUfYn6jhzhOGMcJYz3l+DXHleyumIucs+P4sFFVivETpYd9BTWgUY4ZFKq2jSeYzFA6MZ3GNGA2DZjNPXzE5RykJgtZHV+BO+1FoLyK9ohHxXtEJKNKqcVS81iKiIiISErMrCeQD0hwznX6p/crsRQJEu5U8Z6/VoXVGEsREUmvkqrBdi8wkIRaoQza04U/8uYm589/MqX4I3w1vjRNmE5Jvqcs62k2YwwrqQTArp3FYQrQ8jgrGkZy+7jVcH8c3QoNoOINn9GFwUSymkeYya+Hr6JrjpcZOv95AFblvpOvb7uBR5jJoWZXwKO1cTMCdBEkbQlQV1gzGwzUB4oBpZ1zG33rSwBvAHmA/UBT59wP/7Cv+4EbgF+BvedzfCWWIkHidPGe0+tOVYVNDEBAIiIifnKzq8qAPRVI3JMVjsLQAp3gSyNv8f3cvOUb2Arfv3MjeSf+wr6lhRlQrSMA0UW6saVnCR7jTZokTuPl1p2YzBMMWNQbivfmo/AqDKUTe1cW5ZLfHCeqG7/WzgPA87zMK3TlCNngLd8UIzPUDVYC6l3gNWD5WevHAKOcc9PMrAkwFqgGYGbX+F4ntxBvyOS3zrk+ZjbAzG53zq34u4MrsRQJEkltksmrwp4q3qPOsCIiIiL+EaAWy6TEz878rpcfKA/c7Vv1FjDSzPI55353zv0IVD97X2b2CF4LJ8A+IMc/HV+JpUiQONXdNXmLpe+nesKKiEh6k9QFdo5bxQLykr3AEd4p8BCD6ULvBQMo0WgDedgPK2BY8zbkqr6bxiEzqFrtQ1bHRgJwdHte8kfsYBMRRIdEsZCafEZl7ArHgfAw7m31Kb+Mz8uVb+/HmjpG5WjNM7+PA2BfvjxcseYQRSrspIgrzQI0eaX4pE5imdfMVid7Pc45N+48PlcE+NU5lwDgnEsws12+9b//zefmAqPN7FUgN15L6N9SYikSJJzmsRQRkQxoPeWYuKo9N1dcxpWHf6VhjllwEEryPbeuWkfIfcfo2GMsVfp/RH72MnpXe9iXxftwrpP8jzJcG7uVTWER/EEurtzzK3PK1GIhNVkxPpIrl+wHwC00CIOZpR4E4HIOYubAl+DilFhKqtrnnIu8WAdzzsUDLf/NZ5RYigSJFKvChpy5TUREJL3pu+ol8lfcwXQac+3WnSwoX4t7G83lJ4pBdmhZYAJjW3XEJjmW/nIPH/aqSpZCcQDcc+AjshDP0X25iCi6ifzs5bt8EeymEAXZxSoqElFtE9dW+YElIdWIIzOPLpgHwJxatZhRpTlkj8IdDuAFkLQp7UwRshO40sxCfa2VoUAh33q/0jyWIkEi8VRP2OTzWKrFUkRE0p+kbrAi8vecc3uB9cCjvlWPAuucc3/XDfY/UWIpEiTc31WFVV4pIiLpTlugLS0qjiIXBwGYVr4Br9CVd+IeogFzYDKM6/EMA67uyKvN21Ol10fc8/RSFlKThdQk/qMclGMtBYvuZCdFiFoykH1NCrOQmhwhOwCtGM9jIW9SZuMW77CDvWU07eFItLeIJJc0xtKfy/kc1my4mf0CFAYWm9m3vk1tgafNbAvwtO+136krrEiQOJU8Ju8Ke2q8pTJLERFJR96I4q6mHwBwB8tYQwWu3bWVE9kuZVWOChzJkp0sxEEc0ACeXzAUMsHRO0Oxpx0s8HZzb6O5LD1cleo5FjOThuyrlpcXqr1EzO6HsZcdrqfxRL7JXHHgN4rd8BPlWE/IW8cA+MRXR8U5TTEiaYNzrgPQIYX1m4GKqX18tViKBImUiveoxVJERNIbdYOVNC9ALZaBlk7CFJELldI8lkm/a4ilSPphZoOB+kAxoLRzbqNvfQngDbx5x/YDTZ1zPwQqTpFUdRQ+2XIfAJ+cvI/XI54gtFACl2xxuO8Mdy28dOkL5Bz8G4fGXAFfQosZo8jWNQE6xXFVrZ8AKMd6PtxXl/nfPQRF4pi4tT0TM7VnY6Vw3hpelxfoSS0W8E7uh2jLGLJzhMT9WQN55pJepJ3iPReNWixFgkRSgR5LcYylMkuRdORdoDLw81nrxwCjnHMlgFHA2Iscl8hF4X7oDYXhvRI1ea9ETULyHGMdZWm9diqsg7w3/YLthKO/5OXQ6is40cxwfYw2jCHxeYPZWfh5WSl+XlaK/s37cFfxBfABbCt0NYUrb+XBSjNPjdmsyUIWU50Htn3E7v5X8+3hG+H6aG9B3WBFklOLpUiQSExhuhFVhRVJf5xzKwDsjG7tlh8oD9ztW/UWMNLM8qVG5T+RQDGLRu3wkuYldYUNMkF4yiLByZ1qsUzeFTZpYwACEhF/KgL86pxLAPDNVbbLt16JpWQISWMrrYyjRewoHli2EID3KtdkExEsKn8HNY4up0dIf5bdeDPUg2vmfssllRwMgGyF9vFB7vt4rMN41lEWgPaVR5OdI9Tqs4BiB3YTkXsT31Ca9ZSlK4M4nngZ+2deSeZ7DjOuRyui6Bmo0xdJ89QVViRIuFPzWJ6WlGSqeI9IcDGz1ma22sxW//678k5JT+6EP6EWH7Co8h0sqnwHk3mC56sNpUbn5Qyr3IY7WEYMtRk3tyk/xlyP62CElDzG0dV52UUh3pzRio0Db2LjwJtoeXgKP1GMzg+PJselv1OJlfy46nruW/QJ4WxlY8j1dGsUTfyUHDSbMYv+5g2ccy5K3WDl3FS8J20zswjgGbyhsJmAJ5xT/z2R8+X4a1XYEI2xFMkodgJXmlmor7UyFCjkW/8XzrlxwDiAyMhI3QBERPxJXWH9z5+V65xzm4A2vs+/A2QFjqZa8CIZTGKi9/PM4j2+qrABiEdE/Mc5t9fM1gOPAtN8P9dpfKVkFKemGHmvCo3qTKJ+0wU8OHUmABFsImzJJFZRkWc2j2NzqauYQWOiiYKyJwnNcpTEX7PCSbiD5SxqdAdbKAnAZB6jZ7XBRCzZxNFKeWmwcjaVKn5OOb5gRdxtZP0pkYFro5jTuRb1r10A4VEa4ymBktPMxgHznXPzAx1MSlI7l34XeA1Yftb6pMp108ysCV7lumoAZnYNf61kt9A5N8jMqgItgX1AbGoGLpLRJP7tPJZKLUXSCzMbDtQDrgAWm9l+59z1QFvgDTPrBfwBNA1gmCJ+95grxJsxUImVrJ4aSRU+BSCM4+RhPzN2NKVBqWksOFyLHjleIoFQWhQdy8SH2sNBoCC8WK0fs2MbcGR/PgAsylFwyU98RUUWrbyDxdxFXd7lGn7klixfUqDUXlwew1Y62Jo0f6a6wMo/c/6fbuSQc6613/fqR6maWP6XynXOuR+B6ufY36fAp2Y2AigLrE296EUylqTUMXmL5akkU3mlSLrhnOsAdEhh/Wag4sWPSORiaMGblQpTf+V0ptOYusyj43BfO0Rh4AoIueYYCw7X4viwy+n54GB+KFOEJ6dO5tl3+rGS2+jOAGIJY8qAtthG34NvsKMfL/INpQEowF7KxP+PIpl38s38m6lY+zPsGwcjgbpRuLkBOXmRdCEQvX//U+U6M6sCNMDrtXwJsPEc72sNtAYoWrSoP+MWSddOVYVFYyxFRCT98LrBtgh0GCLnzRkkaIxl2uWcWwosPY/3qSCBSApOzWOZrBb06XksAxCQiIjIebrV/UAn2vFw/xhoFscX26viYrxn2KTFjbian6i27XOmFXiIqF7R5OIg9/EBZIFXF71IiRobuIYfmUwz/uxutAobB3hjLrdQghd4iUi+5ucNpShRZgMbN9zEp7Vv5auplb1vn/PUDVb+BSWWF82/qlwnIv6R1CiZ0hhLFVgWEZG0LJSTPLwlhmwd99Ev7AU6HhyLdfY9uyYBveH1HU9Qf9wCCrfeysZtkfCOUbjbVtozinYJo5kfWpuXYnsyOawZUz/3hqpZgqNG5Rhu43M+pRpXZ9/NIJ5mYZma3HPgI8o2/ZL1jxtwD86pp7nI37noiaUq14kERuKprrCnnS7ec/HjERER+SenqsGKpCPO4GRoyD+/8V9J9PP+/M/fZ3wGMxtuZr/gDatebGbf+ja1BZ42sy3A077XIpKKThfvST7G0jfdiFosRUQkraoexY+EQ2/IE7aPZ4aP462Iujgzb7nbuGvHBzy5awx8Cb+sDadF8dG4MsYQOvP8rKHk/CyOJkVnc+lmx5NrJ3tNG9OAwo6mTCWaKDYRgY1w7CE/OynCK7m7EsEm4CPfIiJ/J7Wrwgakcp2Z1QZqh4eHp9YhRNKdU8V7UqgKq7RSRETSogddSd61z9nd6DY+nFGV+/a8T5sOw+jOQOzGPwFwdilF2EnfQi8QPykLq6jIEbIRce9avltWDrLD29XqUGDHHl6gH7exkkGvPw1Ab56nyabZsBX61ulCwSE/UYSdbOlQhuXDKzPHtnrHcBpbKefPmZGQyd9pVryf9+d/qdpiGSjOufnOudY5c+YMdCgiaYbmsRQRkfRE3WAlPUsIDfXrkh4EYb0ikeB0unjP6XUhGmMpIiJp2LszHuE6t46aDODeWZ9yoGEYl//vOJNubETipZcCYB87VjSMpNKBNYTkcfA90Bimfd2ArpUHsbvH1STUCuUafmQQz7GX/DxgbwHQzY2ALvDDgiI0ZSq7NhenX6lnIRPMadoYUHIrcr6UWIoEiaTkMfk8lqYxliIikpYVhtJsIDtHoCDktt5w73P8sKAIIVN8z65SkIuD3vQOP58k5xX7OHTrFTTpMRtePsz7rjoVWM0VMw/R5JFp9KIPFdx3ANRkIdct2MQmIujOAKqW+pBaLOCtIXV51MoC6gYr/57DSCB9tDL6U4bsCisif5WYwhjLpF+VV4qIiIjIhVBiKRIskrrChqRQFVble0REJA2xVlDFVWRR5TuYvacBfZb1hyww0m3hspl/sJCaHOgcxoHOYXAE5vEgN+X4AgZkYl7menAFvNe/JvwvB60Yz7WxW7Fljq2EU/WnL0gglARC+YNcNJs7i/aMAmDpjuq8FN+DR2fMg+lRaq2U/8RhnCTUr0t6kCG7wqoqrMhfpTSPZVJimZj2p0YSEZEgYZO8n0tb3cPSO+6BkzCo+dO8zhM8uXIyDIan7p9Anub7Afi5YQGumrSHPx8xLr3fUa3RSmgLD/RZCNUhO0fYPf9qfhmdl6F05FihEJoxGcCbxgQYRXse2PGB14026xVw0je2spESS/lvEjJmmvW3MuQZO+fmA/MjIyNbBToWkbQiqU1SVWFFRCStqz9+OnPmNmZOvVpUYiUFmx+EK4Bi8Ozcfrw68EWvVRG4tdGnlG3+JZdGOA5sCiP3b7GwGV7u1YmKrKLappWUbfglpWI3MzKsPdkeTaDwXG8akSzE8X696iygFrcWXc7nB6oRcrcDonALAnX2IinKaWbjgPm+XCfNUVdYkSCR4hhL3+9KK0VEJC3QFCOSESQV7/HnAhxyzrVOq0klZNAWSxH5q1NVYc9ILFUVVkRE0pZsj+yjFgtY+mAVItjEcirTbNIYVlKJNozl2bmjoCBw+0kA2jOK1USyZ1MBbuJr3m5eh0Ls4ilGkof9sBp6RvSh/ogFXN7tINwPW2OvBaB72MscJBej53aGE3Dp3Yfgw6TkVt1gRf4NJZYiwcKXPCbvCqt5LEVEJG3JzsywR1hFRWqFLGAWj9C7xwDW9o9gSu62PLtiFGQD/oSjBbIAkK1RApeN+YOaORZSiZUAlOR7MhPPJiLo2HQAR8jOK9068MCqhbhKxrKwmwEYNrc7/AZkg6ebDmKExQKaYkQujKYbEZEM7fQ8lqedqgqrxFJERERELoBaLEWCRGIKLZZ21jYREZFAsQ2AdWYBMHpTZ3ZH5KLgrj3QDKbSFB4EBgNl4d4Oc9lPXgBcD6NAjp9ZcKAWD+aex0Mfzsc+dFAWvipcmZdrdGIg3dm0tTzPfTCckn3+x/d9bwRgWs8GNNk0mz+LGTN5GIgIwJlLRhSMLZYZMrHUdCMif5WUO55ZFVZjLEVEJA2ZALsoxLSIBhRceZBulaIZuCWK+dSGFx3jij9O69xTieiwiYXUBGD/DXnox4u03jiVZg/OolmLWfAgPFutH4XYzbN1RsFJiFlQA26BzMQxt+e9ADSInUPj40bokaMkZh0MqBusXLikeSyDTYbsCuucm++ca50zZ85AhyKSZpxqlUzWFzZEVWFFRCQNUDVYkfQvQ7ZYisi5haRQFTZR1XtERCTQcp3kleadea7pcN7t8gichLtYzOwSDcjOEfoW70rrSVNhArw65EUY6X3s9W1P8BI94M7j9HbRFOMnmlkEb7on6MFL9Ix5gQLs4YFtH/FerZo8sGEh9bN94H340nh6V4gi0QYH7rwlw/GK9wRfmpUhWyxF5K9Oz2P516qwSitFRCSw8nNV0a3UJgbKwpwytWA1jKADPenD+qm3UJFVsBQ4ASGNjzFyW0tGbmvJkzvG04ER9HAv05IJfENp8rsn2Nu5KHnZTwKhnCSUvsW7sotCuIMGL/sWoPclA8gZ14accW3UDVbkAgRfKi0SpBJPjbE8vc58/WLVYCniH2a29zze9ptzrkyqByOSDpzuAps/oHGI+JuK94hIhpVi8Z6QpG3KLEX85Heg1t9sNyDmIsUikn4UfJLt84y6dd+CbFB/3AKoAhVYQ7M6s+AFqNFoOSfGGJfMdlQusJynmk/wPtsEnt08iu9qFKNw0X302NGLvauKcvuQjwHoP7wPf7Y0hoZ1ZDWRDKkcBot9x308C9wLh7KM9V6rxVL8QPNYikiGltKUIprHUsTvejnnfv6bZTugKiUinFWwZ/diPq9bgfzsgWxATmAKhHISboNXK7aHF6FejrdxhY1KrISaeMsUeLDGTDozhJ47XmA6jWAWDOI5Gv8+B1fXuDTKsYtCtGcUg+kCkXjLTfBgzEwedCXVDVbkAqnFUiRIOM1jKZLqnHNz/PEekaBRxJfMjYShdGL2/CZ80qg6Py66nmwD9tFzw2De71ad+x9azJR3GlKdT+Ba6N+oD3hTUdJ66mvUZCF7KcBlxFKH+dQa8iSdGULlfMsYOCuKVwZ14LmHhjPrnYbExobBA0kBHODdl7/3ftWjUPzEQVBON5IhE0vNYynyV6dmGzljuhGNsRRJDWb2SgqrDwFfOOeWXOx4REREUluG7AqreSxF/ioxpTGWp6rCKrMU8bMCQAO8P+BmAuoDJYChZvZCIAMTSVN8/0Ja1BlFOFshEtoxmrU1Ihgf1grehfuXLebZd/qxnMqUit3MmKub0W1GNOwD9sETTGELJanFAvZSgFVU5F4bwE6KEEoCvAfPTRoOr8Wxd2VRjq7Iy0TXmImuMZAd6KFusOJn3nQj/lzSg/QRpYhcsKTk8cx5LH3blFeK+FshoIJz7g8AM+sLTAVuB1YBLwUwNpE04SrXkJ/zeb9PbNoeukPZiPU822EUi4bf4Y2jXA3MhldLvogbbkzs0J4XZ/XjyMHsuGreQ8yGO27v8DHzqMtXzStDOPAtLKMQV/+0mztmLGc9ZSnB99T/cgHv1avJA4UWBuy8JeNLpeI9Oc1sHDDfOTff3zv3hwzZYikif5V4qits8nksk4r3KLMU8bMrk5JKAN/vxZxzR4C4wIUlkjacUbhHRM7HIedc67SaVIJaLEWChnPujPGVoDGWIqlok+8vy5Px6jg0A7aYWRYgIZCBiQRaUlJZk4WM+6QUAG6tMSaiGZGshsbQivH83LkUJWI2cAfLmbijDVZoDrXdO8yf9BC0+I4OzhvKPPLelpTmG/aRh/ov3sGhqy4l50txbO11DVfP283Qzp3owHD2kQc2wwNDFsLu04mtusFKagjG6UaUWIoECefOHF8JqgorkoqaA1HASLx/ap8C3fCSynsDGJdImrDILeYpRhFS4BgAuRrt5tDoK+AeBxPg5+yl6DYkmoFro3is/FRc/CVYdkfMT8aO5vm56rc9jLDrvJ21BC4DygK3wLWhP9Cs1xhqjFvOw53foDqLuX/gYhZ1uwOOAi94SaUSShH/UmIpEiQSneOsBkuNsRRJJc65w8Cz59j8+8WMRURELq5UGmOZ5imxFAkSiSm1WGqMpUiqMLP8wBCgqHOuspmVASo558YEODSRgPK6weamRvnl8A10O+G1Hg7cEkW2Zvs4OiUviQO9Z1PIJEf+5jvouW0Q28Ov5q3DdbGmjnZTh8CX8IvLC0Dhh/bBQ8A+yFPqV9oxmrzsY8r9cbRnNHduWMW2boUo3n+X/qwjF4XDNI+liGRcDsdfmizxqsRqjKWI340HPgTa+V5vBqYBSiwl6FVx19KGujw6ZB4DZ3jdUYc1akMW4vmmXWlaMZLJe5rxWfOKrKMsCcUz8eyiUSyvcQevT32ClVSCLlCetQC8/s4TfE9Jhs5+HiZDgRY/05BZvF/oPi4jFg5CcZsHREP2KMgehTscuPMXyaiUWIoECW+M5V/Xh5hpHksR/7vSOTfGzNoAOOfizSwx0EGJpAXjacW11hLegx51egHQccNY+A3IBM9W60di16zc+eYKePoSfh+enYgam7h31afUqriAJ+05eA/2bL0KgE7hLzOsc3cG9X6ewTk6sveSorx8tDufZKnO40yF+ZB5/3XET6sIzyQV7dH4Skld6WXuSX/KkNONmFltMxt36NChQIcikmY45/7SFRa8cZZqsRTxu5PJX5hZLlLsMyASPDTFiEjGliETS+fcfOdc65w5cwY6FJE0IzHlnrCYmarCivjfHDMbC2Q3s2bAImBSYEMSSQN6RnHtth3Ud+FwEuZRl3nUheMwrEYb2OxNQ8J24NtLIBvka3SEeyd9ytMVB3HV3D0Mc8PoVica6+WwXo5hlpXXhzzBfTne4/khQ3nlRAdezPISq6jId53LQUGYlLs5vAtUjVI1WEl1ScV7/LmkB8HXRisSpBLP0WIZYqCesCL+5ZwbZGaNgVxALWC4c25aYKMSCbxufaLJw36ee2g4095pwE6KeBsqTmU7V/N2uzpUTPgKjsNlhf9gZv9HeGDHBwwr2p6OU8dSoukGCrGbjteO5ZUfOgCwaUYET0ZMpsamGCgGzy0bDrkgf5kd0BZcdsNsP6BusHJxqCqsiGRozp2eXiQ5Qy2WIqnBOTcdmB7oOETSAnWDFcn4lFiKBAnn3KnpRZILMc1jKeIvZvYOf9MHwDn38EUMRyRNSEoqK7jqlGUw31CaExONSzo7SgzZAMDn3EbenUdZVuRmhoZ2glzweo62PNB/Ibt75KLg2oPMaVqL+sMXsL5DWQr/sJWxtAGgJROYuKkxLSKm8/um7ORrfoS3J9Xh4btj4Cb4qX9B+DY3EIWLCNBFkKATjNONZMgxliLyV46Uq8J6YywvejgiGdX7wAd4s+VdDXzuW64CfgpgXCIBdiXvcx+PVptHAqFcMszBPfD97hv5fveN5Kt0hO5FelOab5hFQ6Z83JAGcbNp1mMMl8ce4rvyxVhPOQD6b+jDL1PD+XHc9fw47noaMJvjXEbmFYfJ1+sIXAol+Z4SH2+AFVB80S64PtpbRCTVqMVSJEgknqPF0qsKq8xSxB+cc28AmNljQGXn3HHf63FATCBjExGRi8MbYxl8aVbwnbFIkEr8m3ksRcTvCgNxyV7HQ1KVEpEg9FhLbki8l55LXiCezIzr1ZTWA6fyQo2eAExc2ZgINnELX9KIGeylAJkSEinLOi49+Cevh7WlOovpe/AlGAYvT+pEMbYDcG2fnbiHjeGlOrAlsgzD6rRhNg3YMq4MtAVqHgeew7nLAnX2IkFBiaVIkPCK96jFUuQi+QxYYGZv+F4/5lsnEoRy897UmmwlnGcXjYI/4OWGnXi1W3u2UwyAFrWmQ0voXa87s6nPxrtvYuvH1zBu5TN0rDSAtjunMLfIvdAA3B+GDXRwibf3z3pV5HBCZrYsKMO4Ok2ZT22+p6Q3Zck9AK/44lA1WLk4VBVWRDI051yK81iGaB5LkdTwFNAGaIA3hewHwLiARiQSAF7hntyBDkPkolNieQ5m9hEwEvjAOX0DFUmP/m4eS/2rFvEv59wJvOfmyEDHIhJwpZ/mgfJPk7jYeLZmL1hTgOe3DOX1Ek8w4qauAEz5uiGPb30bu8lx4Osw7vv4A5ZSFabBwUq5aFNkGB0YAevBGvfmZdeJF/b0A2AhNckfugdXzrCbHO5ZY98j2ejcfwhvhrWCy6JwsQE8f5Egcb5VYccBHYEfzaybmeVJvZBEJDW4c4yxBFWFFfEXM3vOH+8RyQjMomFiFHQB3j1JyFLHMNcLd9B4tUR7nlw2GWrjLcBr4a2hAdzE13wxoyoVWQUHYYo1IpI13LB2K8wEvo1icGIX2hcYTfsCo3lpZ1+uW7QdK/Qb5AK7OZG8Hx7lzRytIBNKKuWicxgnCfXrkh6cV4ulc24uMNfMSgLtgW/NbBHwmnNuTWoG+F+YWW2gdnh4eKBDEUkzEs8xxtJLNpVZivhJazP7BlLseZ7kcU4P+hLJ2AbDgU1hDKcDxYr+RLNWs+iYayy8DEQD8723belVkv439aH3192JJzP9b+jDmz1a8fOMAjADnudljl4fSo7xh0n8MSvRIVF0jx0AwIiVXcl892HiyxWAONhW/EqspIOuATtrkdSQ01dhfL5zbn6gg0nJfx1jGQ/8CUw1s4+cc8/6MaYL5rvY8yMjI1sFOhaRtMLhSKkAbIgZiYkXPx6RDOoX4J9aJDdfjEBERCQwUmm6kUPOudb+3qk/ne8Yy3p4hQgKAKOACOfcUTPLBGwF0lRiKSJ/5VWF/et6VYUV8R/nXJVAxyCSFphFQ+koyAV96MWwh7rDQAdzgPrgXjesg4Ox3vt7xfZl+Gcd6B0zgN51ulO4zFZ+uXE/ZXr/j4OfFKTnvX3I9nMCr5TowHO/DuepPhN4u1cdAFY2rMSwgd3pvbY7B8lF8ea7eP3EEzxpxbyd91c1WLn4VLzn3FoAA51zC5OvdM6dNLOn/R+WiPjbuYv3mDrCioiI312z4Vt+tNkMs9K87p7gyUKToRhQHex5R88FL7DTN73r95Tg6Nq8sBh6bx/Aex1q8kDLhdyXeRK2wXHiNuPlEp14btZwXGajQ69XeLhpDABuoFGy2/cA9LZOrHURlLeG3janpFLkYjnfxHLm2UmlmTVxzk1Lq318ReRMXvGelId9qcVSRERExD80j+Xf6wS8eda6zsA0/4YjIqkl8VzzWIZouhEREfEfs2iIjOJrwsh9WSy0hIMsZ+SulrTfORFOgs12zKIhedgPwI32slc9NhwOtc9Czs5x/DC+CNdu2cmr3drzKbfzfKOh9JzxAmyE2sRQbOp273j5nPfZY8CTUL7OJqgNLiZQV0AkOP1tYmlmkUBFIK+ZtUu2KSeQOTUDExH/OtcYyxAzND2tSOows3zOud8DHYfIRfc95F4SCxsdrxR/hueWDKddtSGwA7beVhiyw5Y+ZajfazoA77mpPHK4KiNzPEUTphHS7RjXNt+Jq238UeIyFlMdmkHfdi/RbegAirDzdHGUNSd5tqhXIXY+ddhi83xBqBusBIZaLFN2JRAJZAVuSrb+MNAslWISkVTgSHmMpYHmsRTxMzOrCLyNN190Ed8falun9Yp+krZFn2M4Q9rTO9ABAOnpesl/sdgtAmA5dwc4kpSll7kn/elvE0vn3HvAe2ZWwznffz0RSZcSE8/dYqkxliJ+NwS4F5gO4JxbbWZvBDYkSQ8yQjLUm95wpDfc5b2OBXozAvCmroRf6J00OMPXqLgO6EZudgIVmEEF376iJwMcB+af+szg1wF+9i3Qm0tOHbsRPVPhjETkfPxTV9jbnHOfA5nMrNbZ251zC1ItMhHxq3O2WBqqCivif5mdc5vszH9z8YEKRkQkI2jr+1nAuTTd0TmV5rFM8/7pjJsBnwNdU9jmACWWIunEubq7msZYiqSGODPLhu/vNmYWAfwZ2JAkTdlpRBcNdBAiIv7zT11hW/l+Vr044YhIanHnnMdSVWFFUsFLwCKgkJlNAe4BmgQ0IgmYlLq3Ru0IQCAi6UhUOv5youI9f8PMKgNrnXNHzawFXiGfgc65n1I1OhHxG+e8qUXOZmiMpYi/Oec+NLPvgZp4NbL6Oee2BjgsSUX/dmykWitFPOk5gfw7SizPbSRwo5ldDzyLN3/lRKBaagUmIv7lzWOZ8hhLVYUV8S8zywf84px73ff6Ek09IiLBqPfC018yXI0ABiKp7nwTy5POOWdm9wKvO+dGmNlDqRmYiPhXovO6vZ7Nm8fy4scjksG9D1TldMGezMB84JaARSR+kRGqtopI6nKYphv5u/eZ2W1AA6CFb12avVpmVhuoHR4eHuhQRNIMh1eo52xmqHiPiP9lcc7FJr1wzh0zs0svxoHNrATwBpAH2A80dc79cDGOnWEsM6LvDHQQIulL1LW+X7ac+Z0iLVdvFf8638SyJzAKWOKc+9b30EqzY0Wcc/OB+ZGRka0CHYtIWuGc0zyWIhdR8q6vZpYfSGGUc6oYA4xyzk0zsybAWDR0RUT8LKOOjfQHTTfyN5xz7wHvJXu9BaiXWkGJiP85x7mrwgYgHpEMbjjwuZlN9b1uCryc2gf1JbDlgbt9q94CRmp857mlWLH1swAEIiIZior3nIOv+05j4Jrkn3HOPZdKcYmIn3nFe1JgpuI9In7mnJtkZtuAWnhVYVs655ZdhEMXAX51ziX44kgws12+9UGdWP6bsZHqBiviUauk/Bvn20b7Dl7hgVVAXOqFIyKpJfFv57HUg0PE35xzS4GlAQ4jRWbWGmgNULSo5r0QCXZKIP1L81j+vXDn3HWpGomIpCrnOOcYSz1PRPzLzEoCL/LXnj43p/KhdwJXmlmor7UyFCjkW3+Kc24cMA4gMjIyw9wBVLFVRCRwzjex3GZm2Z1zR1I1GhFJNc5BSAqlQwxUvEfE/2bi9faZDCRcrIM65/aa2XrgUbw5px8F1mW48ZU7jWg1tIqct6g+yV701DP/YlCL5bkdAlab2ULgz6SVGmMpkn4kOkcm+2tmqRZLkVQR4pzrH6BjtwXeMLNewB94hYNEJIioa2uGlNPMxgHzfTNgpDnnm1h+71tEJJ1ypFwVFlOLpUgq+MLMyjjnNlzsAzvnNgMVL/ZxU8O5urZG7bjIgYiI/AsO46T/WywPOeda+3un/nS+041Ep3YgIpK6Es85jyUkJl78eEQyuIrAE2b2PWf29EntMZbp0r8dG6lusCIetUymTZrH8m/45sUaAhR1zlU2szJAJefcmFSNTkT8xivek1JVWCMBZZYiftYx0AGkRSquI/LvKXmU9OJ8U+nxwIdAO9/rzXhFAZRYiqQT7hzzWJqheSxF/Mw59xmAmeXLcIVzRMTvoib7fmmmB3JGoeI953alc26MmbUBcM7Fm5maOETSkUTndXs9W4iZxliK+JmZVQTeBkKAImYWCbRO6+Nj/EGtkiIiwel8E8uTyV+YWS5IsfFDRNIoh0uxeI+pKqxIahgC3AtMB3DOrTazNwIbUurZQQEm295AhyGSLqhra8bnjbFUi+W5zDGzsUB2M2uG1yV2UqpFJSJ+l5hIisV7DK+brIj4VWbn3KazxjXHByoYEbn4lEAGr1SqCpvmnW9V2EFm1hjIBdQChjvnpqVmYCLiX15V2JSK93hTkYiIX8WZWTZ8/7zMLIJk1WFFREQymvOtClvNOTcdX5eeZOuWpFpkIuJ3KY2xNI2xFEkNLwGLgEJmNgW4B2gS0IhSUVH2EKXbSIZmFk3OuDYcynUFd8V+wCe97oOywHaY1rkBADHU5pPE6rwV8ggruY0EQul790v0+LgXw2M7cGR/PrJkPUR8nhy4lsaQ8e2oxQcAXFdvOxQGRuyhrxtET2vBNNeTJk1n02NqL/q36wOve7PfORcViEsg8q9oupFzGwyUP2vdIKCCf8MRkdSS6ByWwtBozWMp4n/OuQ99c1jWxOtx3s85tzXAYYlckENZMsN0WPz7/VhWB7fEkfP+P2gyZDYA2dru42jLvMyfUYcRS7rSrNoY+n7chU5xQ+k/rQ/2teO68evYtKI82cv9zpFW+agz/m0AXp/7BE8OmQwTC5CX/XDrdTTpMxvaQv+BfVg0+g5qtFweyNMXkX/wt4mlmYUDJYAcZlYr2aacQFhqBiYi/uUchIT8db2ZqSusSCpwzm0DXg90HCIicnGpeE/KbgOaAQWArsnWHwa6pFJMIpIKztViqeI9Iv5nZr/z1+HLh4AvgOecc79d/KhELkxZt4X1G26hU76XoTR8WOge7lm2FLvF+199blhdnpkxnBGbutKi2igm3tSeaV83IFNCIoQD7aHb+AFYbcfrB54gYvxavrupHADzv30Ijo/gWXeIJ3tNpt3KIYy2zrTrNYTRuTpTw6oD0eoGK+lCsCaWKbRfnOace8M5VxV42jlXNdnygHPug4sUo4j4gXMpV4XVPJYiqWIUXl2C6sDdwJu+5UdgXADjEvnXbIv3sxIrYSmEsxVWw1OMZGblB+Ep4CmocfdyNs0rz8aIcCbWas8rX3dgK+EMCOsGE4CboNmCWdQ/MJ22H06hJRP4/evs/P51dl6NbQ/Zn6Yhs3AljFASYA6MXtCZnOH6O4xIenC+VWGnmNk1wDXJP+OcW5BagV0IM6sN1A4PDw90KCJphoMU57EMCUHzWIr4373OuYrJXj9rZp855+40s28DFpXIf5U3itE94NX+7Xks4U3adJxIHebw6Nx5XiUOgGkwpG47Oi8bjeto2CLHWzXq8mijebw+4wnaHJhCyNETzOnVGHu3MeSEZ7ONAmBimcYUPryVN2nKzUu6wiXwWMPxvFmpFYcuvQI+icJVC9zpi/xbwdhieb5VYfsDrYDvgATfagekycTSOTcfmB8ZGdkq0LGIpBXedCN/XW+oxVIkFVxuZrmdcwcAzCwPcIVvm+azFBGRDOd8q8I+DFzjnDucmsGISOpJdC7FFksztViKpILhwP/MbAHeH2JrAa/45rb8PKCRifwLZtH0dPH0bfYSNIDOS0ZjvzkmNmrMgt/rY1c4nq3UD4BXf3mRZ1eN4mDlXPQNeYlXE9vz6JJ5MDiOJ7dN4mDxXLjVl9ClT19q9lnIJiLovGcIAC06T6fnkBcowk5unrSMiqxiRExX+CIa7tIUI5K+OIyTarE8p91KKkXSN+dIoXSPqsKKpJI3gc+AKnj/9EY75zb4tj0VqKBE/ou+m17iaL9QRmdpj1VyfLWyNDNozDv5asOb8Oq8F703roeJHzemCDugIzy7bBSUioMvszCtXgOa1JrN8yOHQFfj1XIvck2jb0l8Lav32SaQnSPUJobW9aZSeu430DdQZyxyYbziPZrH8ly+MLO3gHeAP5NWptUxliLyV17xnnPMY6kmSxG/Me8f2jLn3I3AN4GOR+S/MosOdAgiko6cb2J5k+/n08nWpdkxliLyV845Qs5RFVZ5pYj/OOecmW0zs8udc38EOh6RC3GVa0hLupCtVwJz+tTi5pXLeI5BLO11D0MbGZSFEp29xvhODGU9ZWlhJXjZdQLgpdgXONovC43LzKHJPcBTRo8Fveg/ug8/1rmezFO8DnGf5b6TW5uu48jU7Eyb24BNRJDz89+ANhzMfEXKwYmkYSrecxYzi/D92v4ixCIiqSjxHNONGGqxFEkFR4F1vjGWR5NWOueeC1xIIv9S9igq8gY9Cw3mrV11qT9kATwSB0uzwBVgtRzkgblf1wPghqZbcY8aDV0Fbl+2mpy3/EbLsAlsX1uMUbQgW8t9tOkwhl0U8vbfEeLicgJQgJ9ZMrUS1WJWwkm4td6nHMoy1nufxleKpAv/1GKZNFfl2d86zbeuuN8jEpFUce7iPWqxFEkFW32LSLpkFg3ZldCJ/BfeGEu1WJ7BOXf1xQpERFKX49xjLJ0ySxG/cs5pcJqkfyWhE8OovusTBtKN3p2703vby9D4F1q7OVRs9xVjaUMB9gDQY2ovzP4HlOFl14libGcllXidtlwbu5UOYcPp37UPTw8ahKtmWH/Hx1Nv9z7LS1SbtZKQKsdILJeVTfdfR86469QNViQdCQl0ACJycbhzzWNpXjdZEfEfM8tvZtPMbJnvdRkzaxvouETO172uNDSAhdSk7Z7XWbf7VsLZCkcNehbmzcNNaTF1Ot8cLk3RwzsoengH/Qf2gZfKsNvl4vn+Q6nESkZ07krBGQc5+mVeHmMqJQZtYMSSrljYCagCkawhkjXsphBLGlYi4dts0B0OZRl7uiusSDqTNN2IP5f0QImlSJBIdJyzeI/GWIr43XhgBZDL93oz0C5g0Yj8C6oGK3LhEsjk1yU9SB9RisgFc85hKcxkqXksRVLFlc65MWbWBsA5F29miYEOSuR8fdirHmv7RLCMO0gclZVyfb5gfcwtlK3zJes73kLsTbmxWxzH37+cpxsNAqBSt5Xk4iBZiKdFj1HMoBH8BvwJr1TrwFA6seWmMrAH6J0JikHu4bHeAavAvjJ5oRoUrPYTdGjKLjQiSyQ9UWIpEiTO1WJpGmMpkhpOJn9hZrkghb/siKQxXmvl4xzoE0butbHwFhQc9BNtGMtldYYSTxZaV78Fu8bBYijY7idGDOkKQEznzfzcuRTMBr6Mg6gs/DIjL08xkjzsZyidcAsMe8fxSvMOPLdrEH/ecikAq8MqUPHwGjrneIXdNtULRtVgJZ1S8R4RydC8MZbnKt4TgIBEMrY5ZjYWyG5mzfC6wU4KbEgi5+det5bcFss415TWH08lktU8uW0SHDTYCJnbHqZY7u0siajGYu6iauelAFxVaQ/kBbfAOJYnhGyrEihceR81lsXQotB06A7UgHbthvDc8OFM6dCQSzd5D6CvIkpzybuOsk2/pKyDddwSuAsgIv+JEkuRIOHOOY+lxljK/9k77/CoyvQN39/0mfQCgUhTEBXFgigLdtbKLu6qKK6u/KygoqjYWAsI9kURWUVBbFixL9hwFTuIawUXFRCRHkidmUyf8/3+OHNOJslMMsFAIPnu68qFmfrNycz4Ped53+dVtDZSyqlCiHPReyyHATOklM+27aoUCoVCsTPYQY5lnhBiNrBASrmgtR+8NVDCUqHoIKSbY2lRqbAKRasjhOghpXwOeK6t16JQZEJyYM/bi86AVcB7sPbGXtwlzuPf8mT+Mm8hlEPkvlxWvngg3W4rhz5AtX4/OU4gCiVimoR3gavgkRsvYBOlHLfpQ/4huiJmSeQPgpn7jieCk239cgB4gGtgM3wnFiYeTDmWit2bHZDkWiOlHN3aD9qaqFRYhaKDIEnXYylUj6VC0fosEUK8L4Q4RwjhauvFKBSZcquMIG6RiL2/pvj4DWyiFB7fm7O9L3L5yGngBzlYIN8WvDpqGF2H/ApfAF9An7N/gKlw+BOfMHzTy3x/4z6MLXuIEsp4hRFYtoxlyehDEHdJXjjxNEbPm8u3HMy3HMxd109Bu0SgVdyGVL2VCsVuiRKWCkUHQUvTYylUj6VCsSPoAUwHTgfWCyFmCyEGt+2SFAqFQrEz0Eth1bgRhULRTtHS9FiqOZYKResjpYwDbwJvCiEKgbvR51p2vJhAxS6PEJPpJs8F4PZlfXhp8amc9dp8Kt6Fp8ovhRAENxRwa78pzDxpPMIuYSX8dd8XGc58jp/yAQBnPTFfL4edL2E6HL5oKdr1WbwydwSbKEVbm8Xgsm9hBExhIrwPJ278VF9EDliKbgPUyU6FYndFCUuFoqMgSTnH0iJQcywVih1AQlCeA/wfkAdMbNsVKRTp2fB2HwCuHDaV9XTny9P78xHHccPzM/BfZOVfznEUBGqgk0TLt2A5X/LG38/mbu819GMFAEsuPIQLeISHuBhOhSumzeHGuZN5kgsYwSs8bLuWqQdeyQ2xGfw45RC4DHghsYD7ACYpUaloF6hxIwqFol2jh/c0vlwox1KhaHWEEK8BRwL/Bq6RUn7WxktSKFKSHNqjUChaDyUsFQpFu0UP70ndY6lSYRWKVuc14FwpZbCtF6JQNEdvOYKb0Eth7+M6xjGDhZzErU/cx+wLR5G9Ms6VfadyrudZGCSwXCN5fNm5XLj+eb7gYA74ZDUAzx49gqdWXspTdwB9YL+J3+Ijh485mg84HlEhka8Lblg+g0UThzB02mLemXocAKcM/7CtXr5CoWgllLBUKDoIenhP48sFqhZWoWgthBBOKWUYXVgKIYQn+XopZaBtVqZQpOeXm/bnkqtmAxDflo1YIzn01M+hF4x+bS5vnn48a+nFEBYzbNvbXPTac9zLjWzq3pVbv7mPzUfnA7CSfaAKeAa4Dn4cfwj9pq1gPd1ZRn/oBsKlgYSh/RZz+4rr9NRZ4PGjz+VCNZ1H0U5QpbAKhaJdIyUpU2H1OZZKWSoUrcQSYADgRz9lIxr82/F2GgqFQqHoEChhqVB0AIw5lal6LC1CKMNSoWglpJQDEv+qcV6KXR4hnoKPJ/HHo9/ig7l/0i8rlsjBgj78QN6RW5jsmMSFPMHWNd2RPgslB/3G3adfwz/ueoBb/3gfXQf9yjxGAnD17FlwANwmJ3DbkHvgNnh15bm8+tO5dDt1NZf3m8bBfEfFXkX846sH8BDkItHXXM+F6n9GinaCBGId8DyiEpYKRQfA6KFMlQorlGOpULQaDUtfG6JKYRW7CnpoT094Fz7gT/BF4or/gjhBIv8nEBdJLj1+Nms9ezJ9+gSKp28gHHCy3NMfvoAzbnqOfKq56hW9jHbm6LFczBzK6MzgxR9yDxM4Zt3n3H/qVVx7+sMsfm0IP7MPH5zzJ9gA14rTAJDy+LY5CArFDkPsNrMnW5OO94oVig6I1oRjKYRQ8e4KRethlMCmo+Odwlbsstwk13DXe3Dw0V/wXf4f9As/gt53/Q/eA0LgOkBy65qbOXzGJ4xkHp96juKPfMDh85eylj2Z/toEnCPCAKz85kBu+GgG948fy/G8zzHiMbrK9Vw7/2G4GL5dMBixRPLI8xfwCiP4QHyVWIkSlgpFe0AJS4WiA2AIx1ThPYbYlFKm7MFUKBSZY5TACiFuBiLAbPT+yosTvysUCoWinaPCexQKRbvFcCxTCUejPFaTYFW6UqFoLU6RUh6Z9Pt9QojPgBlttSCFwkCIyTB4EmMo4asTB3IdU/noQH3sh3tFgFtW34+YLrny7anM6HkD4kIJLvjykaO5XE7jojXPcvleDzDzm/HIwwQv8lcAXh9wGpv9ezKPkZzEQnj6QKq9VfAKPD73XHgH7r9rLA9wDSuHHAiD/4Rc3IYHQqFQtCpKWCoUHYhUcywNx1KTEmuKHkyFQrFdFAkh+kgpVwMIIXoDRW28JoXCJPv9cnqeU4a8X5CTt43nPPocy1O/fw8Rlwx++0Nm/HQD1AAuoAvwHJRRArcJfHNz4Fm4eNpDPH7hWP1B+8DdN12DmwAlbIXVcFLuQt64+mwu2vs5LvrgaaYzlpViI7ARKU9po1evUOx4lGOpUCjaJXWOZePrLAllqfosFYpW5WbgCyHE14nfDwFGt+F6FAqFQrGTkIgOmQqr4tAVig6AkQqbKryn7jZKWSoUrYWU8jVgP+Ah4GFgfynlG226KIUCEHtBTzkS/yvFcBD06foD/gXFjIo8zajI0zx30Blgg5u5E/G4ZOrRV3L1zHtgNXDuZK7jPq6dewdzXxnN5dOmMYil9H7if/R+4n/QGy6Pz+Tqe2fxOn+FOTC/bDhyieC2VRPgKxtXj5oF2BM/CoWiPaEcS4WiA1A3xzJVKawqf1UodgRSym3AgrZeh0LRkN+m7ct744/iRHE7V974Ale7ZxH065NyDi78Dp6CTdNK4TLJK4xg6SfHEJnroNfcCi7kCZ7gQvqP+JIRvMrouXPZNioHgBkjx/E+f+SpG0dSyiZeuur/uKfkH4juksF8qJfTVgN8nliJSoNVtE9kBx03sts5lkKIp4UQc9p6HQrF7oTWhBkpknosFQqFQqFQKBSK7WGHSmkhxH3AGUAvoL+U8ofE5X2Bp9GDDCqAUVLKVRk83hXAQmDojlqzQtEeadqx1P9tSnwqFAqFYvdHiMlcLnPoy8+cOORTbpU3E8RDt1NXM4F7ADgi8hlXT7uHk1jIO3sN5ZSlHyIPgIf/eS2ij4Q+MPjab+Fh+E/fE5hy0q10OtoHwNWf3MNHHMcQFnPCw58hRwleZjjY4BC+Zcktx8GHkwGQclKbHQeFYmegwntanzeAB4FPG1z+KPCwlPJZIcTfgVkkxGIiOW9Wg9svBBYBHuBNlLBUKFpE03MsjfAepSwVCoWivTNz/nikVzBo8ZdcxiN8t24gcpsdUab/P+CdYcdx8nsfccGJj/B85TnwClw/9Xbuz76F3qf/j1/22p9Va7rT54cNzOdEtI+yzIrWEsr4x/MPMPKcgdRebCH773Huf3ksVw6byjhmMPPg8XDwJOS0NjwACoVih7FDhaWU8jOoPztPCNEZGACckLjoBeAhIUQnKeU2KeUvpCi6F0JMBLoDdwIDhBBHSSkbClaEEKNJJO/16NGjdV+QQrGbojXhWNbdZmetRqFQKBRtweNyJVZGwp8g8ncHATxQbUO8L/njjW8BsJCTGH/iNHLw8VDhFYweOJf7p9zCwRO/4J9cz/I1B7L3vevZdmMOh7OUmhFO8haGAZiwaDr/4AHeZhh/sf+bvOe2cO3Kh9nQt5huPcphve5WMk25lYr2jd5jqRzLnUF3YKOUMg4gpYwLITYlLt+W7k5SyikAQohewC2pRGXidrOB2QADBw5UW2WFAjA+CKlSYZVjqVAoFO0fIebwuPqaVyh2ChJBXOt4wnK3C++RUq6VUl7c1utQKHYntCZqYQ2xqXSlQqFQtG+O40PeZhiPvXUex4xfyiKGwlNQeaOHo/iUo/iU6SsmMJEpLJ1xDEWU887I48AJ360ZxF3czDOcx+03XkenNV728v5K7roI2ceWk31sOWKbhHy4a+YUzrC8QlmsK1wM3caXM3rdg4yW+aq3UqFox7SFY7ke2EMIYU24lVagNHG5QqHYAcgm5lgapeoqFVahUCjaMwPYS/zGInkMmyilcpqHwkUB7p82lsLFAeSP+v8LbjtlMjMYR3icg/MvnwcXw6033kwv1lJCGX9+733OP/FJcEV4K/dPiLzv4ZpiAEJ3COZ6zmP05XOZfe9VOG+McNYnT/PSsP9j9idXATDr6DY7AArFzkNCLKYcyx2OlHIr8B3wt8RFfwO+Tcz7UigUO4A6YalSYRUKhaKjIcTktl6CQqHoAOzocSMzgNPRR+K+L4SokFLuD1wKPJ0I5KkCRu3IdSgUHR3DjUwZ3WP0WKKUpUKhULRXrpVvc/+4AQx9bTFdT/+VRxnDU0NH8n/bXmLkkHn68DfgodKxhHFy/nvzYF/gBfANyOGivZ+DfFjz31Ke4xyk3YUYKuFreHOAnrnoKfOTY/Mhxwic3WuYyBROZT6844V3QMrcNnv9CsXOREpBPNYWhaFty45OhR0HjEtx+U/AoB31vEKI4cDwPn367KinUCh2K5pKhVU9lgqFQtHOuXIS9/0qGDJjMadf/Q4iX3Lz0DvxEIRrYf85P1BT1EW/7TdwzoAn8B9j5YETr+FVRnAcH/LRqmM5lK/5E2/Rn2WM6PQs7jeqCL5TwNgBDwGgTc6i5q9Z3HzirfRjBZ1W+Lit3wSW8EliIaq/UtEx0IWlKoVtF0gpF0gpR+fl5bX1UhSKXQJTNDaZCrvz1qNQKBSKnYPYu61XoFAoOgrtUlgqFIr6NNVjaVyiwnsUCoWifWH2Vh4Ah+y5hDOWvQ3nwVlDn+aKc+YwhVthDFTP78qXQ/rz5ZD+cB88P/9CbndO5Nab7uMm7uJs74v0Yi3H8SErnh1Af5ZzMN8SWFdI15G/8tvKfflt5b7IwwU3njiZa3iAXyO9OK/fY9wm3AAqDVbRsZAQj1lb9Wd3oOMV/yoUHRCjf7KpOZZKWCoUCkX74+5V1/Az+/BQeCyF3aoYVTibeY+fz0vR/2MqNyC6asi9LJzO6wBc/fw9TB83gXt7TYIRcNa4+ZANgbs8/P2bV/j7GmBdDL6ycfTpn1JRWQR6JSzdZ6ziAp5kChOJhJw847wEWNZmr12hUOxclLBUKDoAWvoxluZlSlcqFAqFQqFQ/H6kFMSiu4fL2JooYalQdACaCu8RqsdSoVAo2h1CTIaLJzHFW8Wy3APpaV/H7MJLACi56DdmXzSKU4Z9iONZL0MKF7FhsR54OG/ISK6cMZWFnMR/44eRVxyG4+FFzubMAS+zdN9BPOq5lL/f/gqzTh9D/8LlLL+tPwDrX9+b2B/BXq7BQwLQS3FVGayi4yHQ4h1PZrXLV6xSYRWK+kjTsWxqjqVSlgqFQtGu+Bt8k3sIe69Zx6K9juArBnLDazMo+utGxoem8dnbA5nFGJ5ZegmvDhkGwHccwnq6cxN3krcwzL8nnkQ5xVzIE1zOw/g8OfRiLY57vTz3+UUMOWIRNxbeC4B4XfL4aefC+QKK2vKFKxSKtqBdCksp5QJgwcCBAy9p67UoFDuCkbOWADBvzOCMbi+bmGNppsK2ysoUCoVCsWtwGuwb5msG0m2vXwAYyFfwEXx2+hF87RnIanrzLQfz0KCL8ZEDwHDms5Y9KaEMfoK/lC9E5gguKnmON8rP5u5Tr+HIZV8x+8BReP/g4MPAUFyf6f8HeWfucRRRDrcAhyq3UtGBkcBuErjTmqhUWIViN2TNNj8bqgIZ315rKhV2OxzLU//1GX+e8WnGt1coFArFzkMIb1svQaFQtD55QojZicrMXZJ26VgqFO2d6mAUTYNQNI7L3vwZMSMVNnV4j9FjmZmw9Iai/LjFi92qzkspFDsbIcTfgRuAfsDVUsqHkq7zAE8ChwIx4Dop5ZttslBF27PwQD4rHci5PMtpvM49TOC9A0/l1WXD2O+utcgLBI91PY+TWMgVl8zhs8cGArCWPamgiAe4BqJw3qjHEGILP8pefMDxXLFoDr8NLaHUu5W3c0/kL+8vBJf+lKd88yG3D7gOBrXh61YodgWk2BGOZY2UcnRrP2hrooSlQrGbIaVESohLyX9WlDH8oNJm76Np+r+pxo0YF2VqWN799k9E4xLQMruDQqFoTb4DzgYmpLjuOsAnpewjhNgb+FQI0UdK6d+ZC1S0PUfKpfyo9ePI177indOPYwHDeW/uqXy8bBD5VCMvEPAjlHQtIwcfHAVHLvoKgBeGnsbDXM7xfMCSU46jHyu4UW7iGD5h64oekAVX8SBvHHw2cr7Af5KVhc6TADjj9Le59dj7IPYI0BkpL2vDo6BQtCESiKVqQGrfKMtBodjN8AZjxBK1ra9/uzGj+9Q5lqnCe4w5ls0/zinTP+GFL9eR47IR1yRaJndSKBSthpTyBynlClKf2RkJPJq43SrgK+CUnbg8RRsjxGQ9DVahUCjaAOVYKhS7GeW1YQD2yHfz8cptlPvDFGc7m7yPmQqb4jrDxZQZxPds9oawWwWXH9uHe9/9iepglMIsR0uWr1Aodhw9gN+Sfl8HdG+jtSjakHfDJ3OZ81EWnn4Sp3g+5PDAJzw1aiRHb/6St7r+kZ+77kN113ze548czad8P2of5jESgLmcxyie4SQWsvzA/lwTmI7rZMkpn7zGL/2q+XnbQbAexPSzKT1gDY9yKR9xHACjX3uQQXzJRVf1bcuXr1DsGsTaegE7n3YpLNW4EUV7psIfAeDCI/fk9jdXcMbMxXx8w3FN3qfpOZaJ22RQ2RqLS9x2K90K3ABU1oaVsFQoWhEhxDfoAjEVJVLKeCs9z2hgNECPHumeTrHbcZ2ewJq9cSJ991rO1nWl8AZ8+fbRXDfsPsQ7EnmKoLbQQvYvcaRPgA0+PHQwd267HQDxo+SdDaez/pypfDD0T4xd9BAHf/IFT3AhXS+pZtxj/2Q482EVfMEf6Ck2IL/T/z/w60Fd2UssBkDKXm1xBBQKRRvSLkthpZQLpJSj8/Ly2nopCkWrU+HXHcshvYtw2Sx4Q9Fm71M3x7LxdcIshW3eseyS5+LIvYspSojJ8oTIVSgUrYOUcoCUsjjNT3Oich3QM+n3HsD6NM8zW0o5UEo5sFOnTq21fEUbIsRrbb0EhUJhINEdy9b82Q1ol46lQtGeKa/VxVxRtgO7zWL2WzZFU45lqsvS4QtFyXHaKUqU3lYoYalQ7Eq8DIwBvkqE9xwG/K1tl6TYmbw59XgAxvIQb/En3D2CXNbjEf7J9fwh8gX0Ad6Gpy66ALJjvNbvFM6wv0236Go2/J9e5XXA2//lhycO419nXs9fF73ICvrxV97gDU7jvMceIwcfizmC24deR8+5ZfxbnsRY7gdg5pnjYQTIl9vqCCgUuwiGsOxgKGGpUOxmlPvCCAGFHgd/2KuI9ZXNz7PUmnIszds0L1C9wRi5bhtF2bpjWZHo91QoFDsHIcTfgKlAAfAXIcQE4MREoM9U4CkhxGogDoyWUvrabrWKnclTch7lFAHwLieziVIcRFhYeRLz/3QWNU93ga/gkPFLOI9n6NxjE5fxKHKTQIySeqYw8MM3hyFPEYy98H6sxDme97k48DgFsUruzp3A1VNmMXjihyxeP5QvRw3iL7MXQnliEa8YwUGTdvrrVygUbY8SlgrFbkZFbZgCjwOb1UKuy44vlMkpsSZSYRMF8c0Zn9G4RjAaJ9dlp8DjQAhVCqtQ7GyklC8AL6S5rhY4c+euSLErIMRknlIh3QrFroMEmu9UancoYalQ7GZU+CNmj2Ou24Y32Pw3lyEaU8+x1C+UzTiWhoDNdduxWgSFHofZ76lQKBSKtsEYL1JBMc9wHgBV5FPCVr5872j2O/Fb+i/5kumM4aq82TADnht3BlsX90B+JhDbJBwJPwxNlMKK1Zwk/817M07lyHH/4Vg+5A+eJQQuK+S5R87gjInPcQc3k1+ymf9xAAsOOhPuTSzmtElI1eqpUHRYlLBUKHYzKvwRsxQ112XHF44R1yTWVKoxgTSFZROpsM2c7TYEbI5L/9ooynaoHkuFQqHYFbhnEtc+AY9feC4AfVgNwAMnXkMOPp55/hKuPvcw+shf+NOEDzj3p1f5ewis/+eHcAyetXGM9jEA8kfBqbwEB8D13EcZJSwr68+yR/qymCG8+sm5vNrtHLK7VNDt7HK4EXg9eXamKoNVKJDoDQkdDCUsFYo2ZOSsJQDMGzM44/uU14bZr2suoLuHAP5QjDyPPe19jP7J1HMsjUubVpZG+myuS3+eoixni3sst+f1KhQKhaIJ9psEcZCHCgbyGQAnsZA5XIybAGtn7MfCcSexlR4cFf8UcbTk8n2n8dC+FzMhcA/+77NgA9xt+QcAvfb9EScRvhnajzu5mV/ozXElH3HQNz/j39/KHUffwi3cQV9+5oY5U4mMyIXjJiEXteVBUCgUuwLtctyIEGK4EGJ2TU1NWy9FoWiS6kCEYKRlp7Qq/BGKjVLYhHvY3MgRU1j+DscyuRQWts+xjGuSaDyDgZkKhUKhaBajDFahUOyCqHEj7QMp5QJgwcCBAy9p67UoFE2xpryWPHd6p7EhkZhGTTBqjvswRF5NMEr3pu7YRCqs4VhqzSjLhqWwxdlOylvYY7muMoA/vJt8OyoUCsVugLxUIE6WsAyGHLQYgOEsYAiLmcUYxLGSP/IWvnPW8jbDeGTYBXzFQAJ48F9RjDxRwNnAs/rjWf8eZyV9OZX5APgi2Vzp+BeXD3iYG5jK5cxk5pnjeeTlC4jckgsfqiRYhaIRatyIQqHYmUgpicb1n0ypCtTNsIS6stTmHUv936Z6LJtbhVkKaziWWQ68oRiRmIbDllnxQzAaJxiJo2kSSxM9oQqFQqHIgIGT+GTc2zzOubzcdzjDeBuAKdzKerrzHH/nwQOvYjn9ycHH0LcXQzdw96riidwL4WJ4Ysg53MIdDOQrAAJ4WBoYhP+rYohBt6GruWjcc8yeMYqf2Yc/BL6ATnDZvU/CI7qolFKJSoVC0U5LYRWK3QFvorS0R6En4/ts8+kOYVGW4VgmSmGDTZ8WM0phm0qFbW6OpVkKm3AsCxPitrI283LYSExDApUBFfqjUCgUvwdVBqtQ7MIYjqUqhVUoFDuD6oS4aokwq0jctriFjqUhGVOXwiZuk0EqrBCQ5UikwibEbUVtmC55rmbXLqU0n39LTYjiRDmvQqFQKFqGISrzPt/CMSuWcka/51hQOZx3C08GwEacH5YdxkFv/szHNw0ihpUySuCAGDJup3/ulwxhMe8NOQobcUooY8E3iRGofv0ndKzgTM9LADw8Yyyr6cNkJnFk+RecN/Mx7uAW9jx/TVu8fIVCsYuiHEuFoo2oCkQT/7ZAWCZ6Ghv2WDY3y7Kp8B6jJLVZYRmKkeO0mbc3xG2mAT41wSihqB7cs7kmlNF9FAqFQpGa3nIE7zpO4Yx++lzJ8Po8VtCPFfRjPd0558An4GY4esGXvMoIljKIV3ucysN7XsTybYdzFQ9y4oxPOe77JcSwMnjAhwwe8CGyVNBz2E+85TmF9XTnr7xBGSVce9PDDK1chIzbeWb8JfQUl6N1uY94SVZbHwqFYtdDOZYKhWJnUpVwHwOROKFoHJfd2ux9DBFniLocpw0h6spq09JUj2Xi3+ZKYb2hqClkoU7cZjpyZIu3TkxuqQlmdB+FQqFQKBSK3Q4V3qNQKHYmyU5lZW2E0nx3s/cprw3jsFnIduofXYtFkO20Ze5YprjOcDGbFZbBGDmuZGHZMsdyS5JLqRxLhUKh2H7+KSu4PHwgM51jmcwknET470EHcMVdcwD4600v8tysi3hu1UWU9lnDIo5jKB+ymCHczJ2s69QZHzlYRtbyYslfGck887GFI0pNPItjrB9zHffx93mvwOAYL9x1Gn+b9jpioOTEafN574G2evUKhWJXRQlLhaKNMEphIXNhacywTC5pzXXZd1oqrBHcA7pb6rBaKM9QWJYlHEuH1VJPZCoUCoWiZdxw7wzm3ngeyxcczsjhTzFv6fkEBnkYfdODAMx+/ireHTOLIsr5Kb4vX1sP5QkuxEmYGFYu5AniWNFqPRzLh6ymN09xAQAn9nibtfTiTf7MHtsqWDjyMUbwCqvpw0PjL2bs+sfZh+/pK3vxMwe25WFQKHZtOqBj2S57LIUQw4UQs2tqatp6KQpFWqobOJaZ8P6KMmoauJO5bnuzqbDS7LFsfJ0hNmUGqbDJpbCGuH316/XNrhvqXMr9uuYox1KhUCi2E/FJW69AoVAoUtMuhaWUcoGUcnReXl5bL0WhSEuymMxUWEbjGjZr/Y9trsuWsWP5e1Nhc1z1ixxsVpHxHM4yb4jibAfdCz31+i0VCoVCkRlGGuzHNw4in2pKh6/haD5FhCUllLGVErZSwh/PeYvurGcrJbxiHcElPMZ3HEwRFRRTweU8zEdPnMyJey3gPq5jT9ZyE3dxE3fxGJcwgbtZyuHc0elannntEtwEiODgivfmIK6SrDz9QOVWKhRNIYFoK//sBqhSWIWijagORCnKclBRG8lYWMY0icteXx3muu1sqGo6DEeacyxThfcYPZZNP7deCmuvd5ndaiEa15pbNqD3WJbkuuia5+I/K8oS40dSdX0qFAqFIh1rji7lbF7kUS6ld/wX8q4P03naOopv9pNzpw+Ahd6TuCr3QS7nYe7jOhYxlLN5kQAehjOfv1W+yPcX7kMRFZzOa9w/7xbOGfkEAF9zKO8sOp2BQ7+mF2vpefpPjGcaEZzwBnBP2712hWK3QQLxtl7EzkcJS4ViBzBy1hIA5o0ZnPY2VYEIPYo8VAejGQvLuCaxWhoIS5cdb9Db5P2ammNpXNZUeI+mSfzh+qWwAFaLIBzLzLHc4g1Tmueia56bcEyjOhClIMuR0X0VCoVCAXATDv7Fu5xMjjeI7SuQQwQ8DqPunM0/uR6AJxiN7Wv476EHUEQ5VuL4yGYEr/AVA3G4Ihz4w0qmHnAll/MwS6uPoQq9z/9PvMVFQx/mU45iFHNxEqGaAqZyPUtnDgLgASa02RFQKBS7Lu2yFFahaGuica3ZlNWqQJSiLCcFHjuVGcyy1B0+GHFot3qX57ozKYVN71jW9Vimv78/EkNK6oX3AFiFIN6E1Tly1hJTZG+pCdIlT3csQSXDKhQKRUsQYjephVMoFB12jqUSlgpFKyOl5IeNXjZVN12eWlUbocBjp8DjMGdaNkU4phGNS7IbiLtclx1/OIbWhMCTZips4+vMVNgmlKUxzqRhKezwg0px2ZqfvxmKxqkKROmS66JLQlhu8apZlgqFQtESnpJ/J4ibgn8G8eW6eXroWYwdcT/9LvqGG7mXnLCPnLCP9bld4TuYxaV86D2ROFaWrz6c+QzHRzZFnnI+OeBwxgX+xRwuZsSYZ5nDxczhYhZ/PpQgbtwE+ISjeYixrKvcm7/d9DrTRZjpIrPZxQqFouOhSmEVilamsjZCJK4RjjXde1gViFCQ5aAw0WfZHL6Qfroqx9lAWLrtSAm+cIy8BqWqBnXuaXrHsqkeS+O5c931nzvLaaU2EkvbL+kLRQnHNLZ69Y1ISaIUFpRjqVAoFC2hp/yFOVzM/816iQtueIQcfMSxMoZZHMx3zOFixjgfBcBJhOMueoej+JTFuYdzzGtLOf/0R3lq2aUMP/Bl/sTbHP36lzx62vl89skJfHN0Pw6Z9CMA4yb/k4uZw3G/LgEXeDs7sDwkOfaud/no7rY8AgrFboThWHYwlGOpULQyv5bXAjRZIhqMxAnHNPI9dgqzMnMs/WH9G6qxY6n/7g2mL5PKyLFsYpKl8dg5DRxLj8OGJiEUTS2iN1WHWLOtlq/XVQLQJddFpxwnVotQsywVCoUiQ4SY09ZLUCgULUGVwioUitZgTUJY7tc1N+1tqhI9lYUeBwVZjozCe3yJPsocZ31xZwTqNNVnaYjGVK6ixQzvSf/cXsOxbCAss516GWxtJPU3XiSuIYEbX1kOQNc8F1aLwCoEL3y5Lv0TKhQKhQKoGzHy25p9GMUzEIa3GcblPExXNnELdxDHyjhmJIaJFLPnO5uZyBTmMZJSNnHR6Q/jIcCRB/6HIip4hRG8ddofOZSvkN0FK+jHoMkfM2jyx3zIsSxlEM68GnLytnGg9Xv6TlzGR2IpAFJOasvDoVAodmGUsFQoWhnDsTQcxlQYQjLf46Aoy0FVINJkjySAP5TOsUwIy2D659MShmJqx9II70n//IaobVgK63Hov9emea1GOXAkMZKkJNFf6bBZiDRRKpwc+qNQKBQdnssuZsNenTie97l53K38m7+wlEHcuvg+Ylj5loN5jnMoopwiyul+yiqy8VGhFeEmyOPzxnIw3/HpjBPxkcNkJvEwl2MjTvme2cxlFPlUk081R/MpffmZcGUe/uoc7uEfrJx2INw/SYlKhaIlKMdSoVD8Xn7dpgtLoy8xFdUBXagZ4T2ahJpgtElB5TNKYRv1WCZKYZtwLJtKhTUuaSoVNl0pbJbhWIYbD2vyh2PENclZA7slnruuP9Rhs5hiMxVSymZTdRUKhUKhUCgUuw5KWCoUrYzhWDYlLI1S2IIsB0XZ+izH5kaO+NKUo9Y5lk2VwqanLryniR5LIzjI1TC8R/89kKIUdnMiFffIvTtRlOXA47CZ7qjN0vSYko3VQX7Y2PRsToVCoWjvCDEZiifx75kncQP/ZM8XNzOXUdzCHRzPB8jlglI2sydrOZ4PuIoZXMUMfgrvw595i3csJ7OWXuw38ltmcjkl434jBx8zGMfXDCSAh0P4lmG8xcLNf2Hh5r9wFJ9SQDX9+nxDZWkBK+gH107WfxQKRWZ00B7LdpkKK4QYDgzv06dPWy9F0cHQNMnaCkNYphd61Yaw9Dgo8OjCssIf4X+bvOS5U38s/YnHa1QKa/ZYpv/WMcpcLSlqYTOZY/n80nVYBNit9c9FmaWwkcaO5caEsCzNc9G7U1Y9cWttRlgGI3GC0Tg1wWjapFuFQqHoCMh/CI7nTd6/+c/cc+fV/IfjeZ5z2URXis+rYM7dVzDmH9OZzzTi6FUkVzlncBILOfyb5fQdsIyTWIiDME4i3FN2I6Ulm+nOeo5Y8DXLhh9I4aYq5pReDMB8/sL+3v8xLncGhZuqYA+9H17KvdvsGCgUux0dNBW2XQpLKeUCYMHAgQMvaeu1KDoWm70hwjGNPfLdbKwOEolpOGyNCwMqa3WRaKTCAsz/fqNZPpoKo2fTKD81yHHaEOL3p8I25VjGNYk1xZ3rSmEbf3tuqtZTX0vz3Qgh6g06sQqBJiEa1xqJVYBo4hisKvMxsFdh2nUpFApFu2bWJEaNLuWDZX/ikDuX8O3Xg/Ee7KDEWsZd3IzPk8OL/zibm7mLTzmKo/gUgBx8hHEwd+FoThrwbyoowoF+QvPsknmMZB4PcA1CSqYzhsNLl3I87wOwmt7k5Pq4d9EkXh06jDMYlFiM6q9UKBRNo0phFYpWxOiv7L9HHpA+1KYqECHHacNutZjC8rkv9LPCwWg8ZfCPLxzDYbPgtNUXlhaLwCIE8/6bPmXV0KoixRxLc9xIE45lTNOwWRp/XWQ1Ed6zuSaI1SLonONsdN1FR+2Z9n4ApYlZl6u2+tMvSqFQKNoxRhqsQqHYDZFAtJV/dgPapWOpULQVv5brQqh/tzze/d8WfKEYBQnhmEx1IGJebghLiR7M4w/H+H59NUf0Ka53H18oZs6sbIjVIog1UVpaF97T+DqzFLaJTsz0jqXRY5m6FLYkx4nNamHemMH1rjMCiHyhGPmexsfH6DddWeZLuyaFQqFojyQLys2j8+myqIZfh/bi069PhCkw499XUkExk5nEuTyLOxzgPud1PMe5rJ+gl6t+eM9gnuQC5u49mslMIo6V03mN/3IYPReX8cigy8AKH/U5maten82Xpw3iFUYAcNc5U/A/aWXS0Mmc4Xkb3CADbXIoFArFboZyLBWKVuThD1djEdC7UzYAvnDqU0wf/ryNCn8YAJfdikXo6axvjD0CgG/XVTW6jz8Ua5QIa2BrRlia1zRZCpv27sRlamHpcejuaSqHdXN1iNJ8d8rHM15HqvtJKalKjGNZVaYcS4VC0THpLUcwj5H8Z+iR7MNKRh06G4bBRxzHLO8YAnj4YelhzHJeytU8wIZP+sC1wLVw3NdLsBLn5RHDWU5/zuVZyl7pyQn8hyVDDmGP8EbmMgps8Nppp/D8sgtZOe9AVs47kI+fH8R6Z3f2ZC0EJ+s/CoWiZUgg3so/uwFKWCoUrUgwquGyW01nMV0ybCyuYUvqLXTbrRRnO+nTOZs+nbP5Zl11o/v4w7FGwT0GNosgHm9CWDYxbiSTVNh0jqXTZsFqESlTYTfVBOmaTli60pfQ+sIxUyQrx1KhUCgUCoVi90CVwioUrUgoGifLaTPnPfrTCUtN4rLXCbV+pbmmmXhI93ze/7EMKaU5ngP0lNkcZ+qEVKtFEIymP52lab9vjmW+28ExfTs1vq8QZDmsjeZYappkc3WIkw9wpXw8sxQ2hbA03Mp9SnL4ucxHTSBKnkclwyoUivZPchlsX37mLm7mSmZQQRFvzDubufuN5lEu5bncc1lPd/oOWsZI5jGJyTx+9LmITXpo2u2H3sxihhDAzRuVpzG78BJeHPFXiqjgU45iomcKHgJM7Xs9h0S+wdHNS3iZng3wK135hKO4YvEc+BzkkDY5FArF7o9KhVUoFNtLXJNEYhpFWRbTkUtXChvTJLYkBzBZ8A3oWcDLX2/grw9/zr+vONK83BeK0b3Qk/LxTj6gK/9ZUZZ2bYZmTFEJa4pX2YSybMotzXLaGjmWFbURInE9HTcVxjzMVMK7MiEsB+1VyM9lPlZu9XGYSoZVKBQdhfP09NWFZbXMKLmKse88zoOnjCZnpI/ruJ2xzORe7418k3sIr3E6a+nFIL5kMUPoW/ozALd+ch93H30NndlKsNDD/814CYZCrwPW0p317LGoAu8xDvL+HebE0+cztvBh8s/aDEDN7C4cO/pdOCIhcqVKg1UoWkwHHTeiSmEVilai3B9GAg6bpUnhJKVES1NaCjCgRwHQuIzWH46Rk6bHMt9jpzoQSSsONXPcSKpS2MS6Ut5Tdx/94fT9nZ4UjuWmxAzLrnnpeiwTjm4qxzIR3DNozyJAlcMqFAqFQqFQ7A4ox1KhaCU21+glSA6bpclSz3BMQ0I9YZmcmtqnczYW0Vh0+UIxU7A2pMBjJ6ZJaiPxlALQEJwixakkw7HU0qT31CbcyHTPne20mbcxuO7l7wEozU9dCmvMv0ztWOou7/6luVgEzPhgFecO6pnycdIxctYSgEZptAqFQrFL457EH+e+BcAmShn78OMMG/sq+7CSMA72YSVX8SCLcoeymVIcRDjym6+4bcAE7uBmpnMNAPf26sc/Nt3D8NL5xLDy9LizKGErbzOMfy2+nnOGPsEmSpEbBFO5kr78zJ6OtQDkj/6Oj8TJwMlNtkgoFIom6KCOpRKWCkUrsTnh0j0w8mCcNgt2q0gZ3mMIxtFH75XycawWgdNmJRrXzMuklE2Wo+a79ZEdVbWRNMJS/zeVR2ppJhXWWG9WWsfSRqCBYxmO6WsvTeNYGvMvUzqWiVLYomwHbruVYIpRJgqFQtEu2bfuP2/kHoaNfZW3l54BS4Gh8NMBPenFr+TgY/CKbzmx33x+HNCLfT//jYePuIjruA+AOd0u5jzLMzxw2T8QV0p+6deHlUsPpOiwjcgyQR9+wEcOF4x7BB853PD2DHoP+x8A2fgAo9dTlcEqFIrMUcJSodgODEfMYN6YwaZj2TXPjRCCHJc9pSNnXJZOqEEi5TVJ6YWiGnFNmiWkDclPhNvUBKN0T3G91kQqrNljmWYtxnrTlcJmOa1sqg7VuywSi2MRdetqiMUizJmdDakMRLBb9evdDis1wd1kKrBCoVD8Dn6lFNjU1stQKBStgQQ64PZFCUuFopXY4g3htFkoSIipbKcNX6jxt4ohptIJNQCrVRCJ1TmWxuOkdSw9Cccy0Z/YEDO8p4k5lun6M41y3paE90TiEofVUi/VtiHZTltK4V1VG6HA40AIgcdhpdwfoToQMV9jJvhDMSVIFQrFbsMwXuNh4KJvHqaafPPyd246HbGvZPq4MQDM4WKe4EIOWLkad7cqFi79CwMHfcZfj3id6do1WC16hUfFs3twwagnEf0l/+53EuvpzouDRvLZshOYeNpN/HLJ/nAYlI7exJNcADYoj+h97b84XwFAqtAehWL7MeZYdjCUsFQoUpBpj17ySJBN1UG65rnM33NcqR25TITl0H0689/fKs3fDXGX20SPJUB1ILWYasqxbG6OpTFrMl1wkMdhozbSeNxIunAig+w0x6eyNkJhli4i3Xa9F3NlmZ/D98w8GXarP8w2X7jRvFCFQqHYVSmjhMfFX+DVbgC8esC5HHrX53w97wiuWjCbQ4Yv4YcVh7HPPivhWHh505k8OGg0Xz9xBOUXFrEx1A3XT/r3+EOjLuZbDsZxtpe/nLkQXlnLs/I6phw4iaEzFvPbYyX07FHGXd2mwFo49vJ3+WjiyfpCbp2EnNI2x0ChUOzeKGGpUGwHv2zz4w3GiMY1eiRGgGypCdElry6sRncsGwun2mYcQIBctx1vsO6+zZWj5pnCMo1jafRYpnIsG9ymIeZzp3MsHVbzNRnEpcTSjLDMctpSz7EM6I4lgNthCEtfi4RlODHTsyoQpVOOM+P7KRQKRVvwjljOIHkSg+UqlizWheXgvh9yDxP40/C3EP+SHDz8Cy7vN40reAiugK8YyG1P3AOAjTgrPPvBC/rjXTFmDvwDzjv9MQa9vJQwTv7+zSsMHvAhN42bSM9RZTAVnh02gv4s505ugtvrZmgyRbmVCsXvpgOG97TLU/lCiOFCiNk1NTVtvRRFOyQa1yj3632ANqugOlFyubkmVC+sJseVWlg2F4YDujPpC0XNpNbmXE4jvCedY2mmwqaI76lzLFOvxdfMc3ucNgKReL1UWU2TKd3RZHKcNvwpSoWTHcvXLz+CLIeVVS0cOWKEB6UrDVYoFIpdBSEmN38jhUKh2A1ol8JSSrlASjk6Ly+vrZei2A3RNMn3G6rZ5gunvN5ILe2U4yTPbScQiRHXJGXe+o5ljsuestTTEJvpSktBdyw1WTfqw+ixzHGlDsNx2CxkOaxUpS2F1f9NZSKaPZZp4nv85npTP3d2YnRIMFpXDlua72ZI76KUt6+7n63R/EvQXcaCLHtibYI+JTms2upv8rGSicQ0U1hW1iphqVAodl0MUZldO5ZJ6+9lDI+a1y256ziOmbYUgJ43/sR37/2BrmyiHyv4+KZB3DbxHl668FQYCKv/eQDfcgjnTX2M86Y+Bl2BgyXPlZ3DhMA9XHvgw8weMIolex3HXSunQAyuHDmVbzmYg4b8zEsiCuyBlJNUb6VC0RoY40Za82c3oF0KS4Xi97DVFyYU1VIG7wBs8+uC02614HHYiMYlP272EtMkXfPrHMt04T21GTmWurDyhgxh2fQsSdADfKqDTZfCpk6FrX+bhtQ5rNaU13sSo0OSZ1kGInGzjDUdqXos45qkOhChMCmop2/nbFaWZS4sNyXGvoASlgqFYjfg4kl4Q514rfspnD9tHmcNeZqzhjzNszeNoO/4Zfg3FFPCVk48cT63rryP5fTnmBOW0nfKMp7kfLgWJt9wIxete5pnLryEZy68hIvmPwz3CeLfZONfUMw/l43DRw78+j4yR8B/4F9Dr+dTjmb44peBjYkfhULRKhipsK35A3lCiNlCiOE78ZW0CCUsFYoGrK8KABBKSmVNpsKvixW7VZCVEE/v/1gGQNfcZMdSF04N01b94RhCgKcJ4ZXr1sWaN1Fmm0ngT77H3mx4T6rqVLMUNk0trD8cw2W3pA3BMQRnsvsYisabfH2QWnh7g1E0CQVZScKyJIdyf9h0ipvjt8qA+d9KWCoUCoVCoWgn1EgpR0spF7T1QtKhwnsUigZsSAjLcDSNsKzVHcuHzhlApxwn/W97jw9+3ApA1/yk8B6X7maGYxoue53I8odjZDttTY7iMB3LhLD0NROgA1DgcTQR3mMIy/Q9lunmWPpCsbTzMwGyDMcy3MCxtDcvLA3hbayrMrH+wiRhuXdJNgDnPPYF71x9dJOPCbAuSVhmKkYVCoViZ2OUwU5/bAyWiZKPpwziy/H9OXzucgBOG/UGayt7wWPw0NSxFFCNr+8EDvn+R55/v5YvuJHCTgF4Dm6bcg+cDc8+MQKAv697EY6BCafcBm/DfIbz2dwTWCW7wzvAm8At8OVrR8PdwECQ/22Lo6BQtFPUuBGFQgGwvlIvpYzENSIxDYetvlNnOJbFOU5yXHZ6FnlYvlEPiupaL7xHF2O+UKy+sAzFmnQeQe+xhLpSWMM1tDcxOiPPY69XBpqMJLVbCXWpsE2NG2mqBNco6Q0kRo5omiQYjeN2NP0as102NKn3ZhrltIYQLPDUdyyhfg9nU6yrqMVhs2C3CCqUsFQoFLsyH0zi6k/g1SnDOK5sEdq8LB4fdy4Af5v3OuwNjIDvOISFnMSrYjWOimt4RF5FwfogG7YVs5z+TDlxIkvePo6/P6TPoOSvQA7cO3ES3AefHXECAK+MGoHvlBzkr4Ix/5nO7IlXwSmo8SIKhaJVUKWwCkUD1ic5XhtTCLVt/jAOq8UM39m/NBfQhZsxTxLqwnka9hHWRjIQlg0cyze+3Ug8XWxrggKP3UyobYgm06e0Ghene3jDYU2HUfJqOJZGcE4mjqXx+Ab/eE0/U5/sWHbNc2EREIxkKCwrA/Qo9FCU7VSpsAqFYpdEJcEqFO2cDhreoxxLhaIBG6qCOKwWInGNdZUB9izOqnd9hT9CUbbDLN/cvzSPt5dvwWG11Cs1NYRTwz5CXyjWZHAPJPVYJu4b0yTWZsZ35Lv1UlhNazxDUpOpE2FBL48VgrTpPc05rMZrMcJ7Aol/m+uxNFxQfyhGZ92UJJZQt8k9lkII3A4rgQwdy98qAvQs9FBeG1E9lgqFYpflDNmHV34VPLbnedzCnXQvWc9vt+3LRa7n9BuUAz9D3oQtjJ4xF0qAz+GFwmFcGHmCyx54EqrhvCceY/G2odw87Fbu2pKwHouB/Bi4bIye8iCz51/FI6dewGVnPgn5cFftFHghiLumKrGagp398hWK9s9uIgZbEyUsFYoGrK8KcEiPfJb+WlmvX8+gwh+mKLtO+BiOpbNByWyycBo5awkA88YMbra0FOpEqTeofyvFNYk1nTJMkO/RR5T4wjHy3PV7IqVMPcPSQND0HMtuBe7UV5JUCpsI7zFKYptLhTV6M5Mdy1hcdzuTU2EBPHYblYEIoWi8XllxQ856dDEry3z8Ya8iJFDmDTW5BoVCoWhLSvb8jXyqWTn7QDg5huXHWvqU/ALANTzAJCZzFJ/yy7jevMmf6fZJOf9iHKsde3PEtM8J4+CZyy+hemY+C0adCd30x+174TJWXn8g8gSB8EiIQjjq4OqX72H67AkwFujvJnikG7ms7V6/QqFoX6hSWIUiiVhcY3NNiEN7FuCwWeqVxRpU1EYoznaav+9fqs9LbdiLaQTtGH2SBv5wzBRV6bBZLWQ7baZjmZmw1MVYqgAfPSAn/X0tQqTtsfSHo007lgkBaQjEUMJZbLYUNkl4G8Q0iUU0FqVF2Q7immTYg5+aIj0VMU2iSehZ5KHA41DhPQqFQqFQKHY+O2bcyC6PEpYKRRKba0LENUmPQg/dC9ysq0jlWEYoyqoTlp1ynBR47I1cQqNP8p/v/lTv8tpwvMl017r726gJZi4sjf7OqhQjRySpZ1gaCJE+Fba5UlgjeCdglsLGE5dn1mPpS3IsIzEtZUBRrsuG225lizfUaHxLMqFEkm+PQg+FWXYqaiP1bj9y1pImhalCoVDsaPT+yot4dea5/JPrWbn4QG4bPQHW2tA2ZtGb1fRmNdcHpjKGWfRhNTdxF91mlHPW0U/z0eKTKV7v524mcCe3wJ9hwdtncvfca+DuyXD3ZAbyFZSB+ErCHnB49BNy0OcBy9MExL6B5ZP1H4VCoWgllLBUKJIwZlh2L/TQo9DTqBRWSsk2f5ji7Pqlmn1Lcuq5mFAnnBqG7vhCTTuABrluuxneE42nFlzJ5CeEZSrHUtOadixFE45lc0LYYbPgsFqojbSsFDYnhWMZisUblRQb6yvJdRKIxPGHY2kFYjimP3fPIg+FWU7CMS3jNFnF70OJdoWieczQnl/2gCK4zPsorw4ZxvG8z6tHD+O9AUfxTuHpvFN4Or7aTpTRmXsvnMQcLua3cSVEcCJfEHzS/XCGsJgZjIODw1w+bBpDWMxtMshtMsjz8y7k8rnTeOimizlj1XMsCh/Hcvoz3T4BcY7kcOnncHkcUk5q2wOiULRXjHEjrfmzG6B6LDsAyf197em5dgQ3v/4DAN0K3PQo9PDJynLOenQxL106BNDLPSMxrV6PZToMMRaNa5T7w2Q7bUgpm01ZNch12fGGotSGY8Q0mVJwJWOUwt7+5gqO3adzvev08J70ytIiSGlZhmNxInGt2fV6nFYCLS2FbRD6I6UkFNUoykp9bIuznayvCrK5JpR2Dqgxe7Rbge5YAlTWRkxXVbHj+b3fAdt7/939u0fRcbhc5vDwTxbE05JgrwJ+GdSH0yrfYU7heZz+/Tu8WXk8ABO5idlDrmLz4ny6vFNDzjHb8PcsRhx1NoyC8+Y+xpf9jkY+KRBHSsJrnDy+eCwA54x8gpnzx8MC4ALYZ8jPxLGCG3g6zJfiQ30xsvnZwAqFYjswUmE7GMqxVCiSiCQcr655broXeohLaSaVQtIMywbuZCrsVgsWAZtqQvyyrZZN1UFCUQ1N0mwqLOjJsN5gjA1V+siTZoVlohQ3Fm+sECWyiegePdgnlWNpuInNhQ0FwnHeWr5Z/2+zFLbp+2SZqbn6c1QFosQ1mVaQWi2CLrlOqgJRVm31m0E/yUTiGjaLwGW3UpgoV1bJsL8P5UQqFAqFQqHIBHUaH3WmW1H3HghFNRxWCw6bhe6FHqBuLiNARW0YgKIMhCXoLqKmSYLROOGYhi+sl7Zm1mNp56eQjw2J8lyHrWkH0OjxjGmNBZeUNBPekzoV1gjkac6xtFqEWfKb6bgRp82C3SrM5/i1XO//cdkbC2jjs3nWo4uxWgTrK4P8uMXX6HYxTWKz6i802bE0/r5N9WcqWob63lQoWoZeBpvDzJvGM/NuH53lOrbO7AGDwFIi+Wd0HFUHuRlW+QEAfy55H06AOVzMrdH7WOMp5bhti3iYK3if45n+/AT4MUr+IZs5Z80THMK3cMRHADw/+UKYA2QDc5bylRzIe/NP1VNj97gHQJXBKhQ7EuVYtj/WbKtVZ9oVLSIS03AmhE0PQ1gm9eht8+nuV8NyzXljBqfcYO/dOZt9uuSQ7bQRjmnUJkZy5LSgx9JwLFMJrmRsVgtWi6jnsBposvFsy2QsQqQcY2m4ic05rBZLnTA1SmGbGgsCet+klPDq1xsA/fMKMOu8gU3ep2uemz0K3AQicWoaBBXF4hp2i36cChKlwVVJPaeba0J8u76aSKyx+G4Ndgd3b3dY446ko79+RVszHnmOgD0nUfZJTzgYbhCXsS2aww2iiDI6YymSWIokG6LFcCQ8xQXwV11glrCV7qznF3rDK/Cb7EbNzV14XgzmdU7jJrmIm+QimLQB1m+g54qfADfviWPhCkBpSYVCsQNRjqVCkUQoFjedP8OxDKVwLDMphU3GYbMQqdXMMJ6MSmFdNnzhGOsqAzhtFl69bEiz97FZROpSWEmTpbAIUpfCJtzE5oSwVSQ7lpmlwkJ9p3NtRS02i2hyZqaB8dirt/k4tGeheXk0Lk0BbiT3GuXLcU2yKZH6+936ag7fs5D2RlMuohJTCoVCoVDsJIxxIx2MDiks23s4xO6yzl2NmmA0IUx00ZLt1EdceINR85huTLiHhWkCZtLhtFmQwK/lteZjN0eu246U8NMWL90K3CnDahpis4iUpbCalM2E94iUZaJGj2VzpbtWiyCaCM4JZhjeY9wvnnjeX8tr6VHowdZM+m3yY68q89cTljFNw2bR15rjsmG1CNOx3OoLmyL2mnnf0q3Aoz4jrUggEsNtt2b0Pt0VUN+Tip2JEO8DOXAUPH3AWcgXBO8OOpaHuJgiWUEnMRlyxrOUFdTE9JNieWeGOeDl/3Iab3D7H+/krn5T4Ec46MGfuXzcNDgSeop5wDd8LC/DTYDDD1wOwA+yD/sv/QVeAXG/hGu/oWhtCRXWOYAqg1UoFDuGDiksd1d+z0ZoZ/SWVfjDLNtQQ9+S7B3+XK1NOBZn9VY/LruFLrku8/ICj51NNSFicQ2b1UJU07BaBI5mgnQaYgTv/Fym9wVmmgoLsGKTlwO75Wf0PHarhUiKUBtJ0z2W6eZYGomtza3XluQ8BiP6yJCmSm8NrEKgaZKRs5awfGMNg/cqavL2yb2WQsDqrX7zOuM9PmJgNwAsFoEAXv5qAz2LPGypCZHjsqFpEm8wBgXNLi8t7UmUNHQyt+c1bawOsnyjl8IsB306Ze024lKh2Jn0lcezcgZcFXmQ88vmsYZS5jGSp+ZdCiP02/zf6y8hPtW/y5a8fAiDF3/LD+sP4+r/3MP0aROoucrJP6x3M7PfePgJ+Nux8MKdHDNkKewL6Blq7P/JL4hrJVf/9x5OZD4Dx3/FXeK8tnjZCkXHZTcZEdKaKGG5G/B7S9h8oRg/bfGysTrIHvnNlxluL6u3+glG42Yp5O6ClJJVW/1ICX0752BNEkQFHgebakJUB6MUZzuJxiV2a+abZmOTvrLMx4kPfMLKROBMRuE9bv02VYEo3Qsz+7vZrYLaSKrwHtnkZt+SZo6lL2PH0mI6pYFIPKMyWP1+gmhcS4waidOrOCuj+7106RBOefBTVm+rE5b+cIxoXFLoqXOT7VZLYtxLhEhcY89iD95QjC2JklhF61DmDQF6UNKvQrBnsWenPr+Uko3VQQoSs1wVCoVCoWhTVHiPwmBHhzvs7PCImmAETcLyDdXb/Rjp1px8ueFupRIouzJl3jC14Th7FLhwNxBEWU4rdqugKjGyIpoUDtMSShOC3nAss5zNCy/DsQR9LmMm2K0WYnGJ1kA0aVpiVmUa0qXCzvr4FwBynE1v2G1WgSb14J5gNJ7x3EgjbCgSl2gS9sxQWAL06Zxdz7GsqtWbGQqSypRtVkE4prGhKkCW00qe206e244EfKG2a35obwEyNYne4Xy3nW3+MFWB7Tu2cU3yyzY/teGW/d94Y3WQDVVBtnrD2/W8CsWORIjJYDueldcfyO3jrqPm3S58fOogjuYTHgqPhTDwylqogDGnTYcXgRfhD2d9x6tDhsHZ7zNdTIAfIe+tMDN7jIcQ3K5dBy/8CHvezPmLH+XgJ76AvwF/AzFB8s5/j2P6lAm8J77lLmEFngdUGaxCodhxtEvHUggxHBieU9qn3uU7eyO3s8rl0j2Pcbk/kUT6SyJ1c0dhJJ7ubkbQLwnXK5UYEkJQ4HFQ7g+jaZJoXMOTQe9gQ7KdNvLcdjPhtTmhBnqPpUEmgTagC0uJvtFPFlj6HMumJ1mmOh9guHrNJtImVKs3GCUYiTd7e4Mcl42K2og5UqUlwnLvztks+H4TIx5ZzCuXDaEy0UuZ7FrZLMJ0XfuW6CWa2U4bAqgJtp9TiTvqu21LTYj/rq1kvy659S4PRfXSccNJN0Kpuhe6qd4YNU8ypVpjU9+HW30hyv2RjPpzkx+3wq8LykyqJeKaxCJQ5bqKnYIQiZMsOUAF3PL1/dx7/ASOEc8yXU4l+5o4/Ac4pRe3vn0z+VSzZlMpADdzK2WUcLlcxkxxDHxnZ81jpez1lzFcJIu5Nfc+mAx8Bw+Fx5LdNQ5VZQBYtmRzKY/AM+CouIauhZsAWMu+O/0YKBQdkg7qWLZLYSmlXAAsKOy53yWZ9BZu9YUp9++4M91t2Y8lpTTP/q/Z4cKy9RzLnXnMDNcr1WZ23pjBfPjzVi548r+sraglEtPqOYktYY98NzXBKBbRvFCD+o5l9wwdS2OGY7k/XE9YarJ5xzLVZyUuJVaLaHYTbgTuVAWiBCKxjB3LzjlOKvwRyhPJrS11LKFuvInhKie/bntiXZ1znGQ7beb76cDbFuLdAY6lPxxjfWWAUDTe7LiVHYGUkto04ioQieEPxQjHNNNBb4412/xokkbH6sfNXipqI2aCsuFY2q0WXDYLoe0shzdOArS0TNlIL66NxBL9tyLld4eUku83VFPgcaR9r7Wn/lnFrsH9civjzxBseSIPsUhyo2cy+8kVnP/8PPgv3L3qGsop4va5d1I5ysN4pgHQnfUs5CQ2lXWFV+1wxmTiWIFJPC6C/CD7cBc38Uc+oEugjEWVQ9iPFQB0nVbNneNvIbzKyUWnPsdvCx7QF6PcSoVCsQNpl8LSIBLTWLaxptnbVQci+EIxyv3hlGMkdpQb0NwGpjWeNxzTzLmGa8r9zdz692Fs7nZGUFBrbv5+2ebHIkjbOzmkdxE2i2CbP4LDaiF/O/u49ihws2KzV3fMMnBLjB5LyNyxvP0vB3DOnKWU+yPsXVJ3uZZBj2U6x9KawVonn7o/585ZSnUgQjAab1RSnA4hBHt1ymJ54nOaHJzUHIawNFJoKxPCMrnH0uOw4rBa6N7g+OW4bGysDm23AJRSpgw78gajeEP6iJi+JTktftzfS1Ugyqqtfr5dV8UhPerSib5bX83yjV7zd7fDmtH3S0XimIai9YWiMcLF6Ks15olaLQKXw0owun1zQg3nM97C7xB/UrVEOKal/ZtW1EaIxiVbfWEKsxymMAY1jkXRuggxOfFfN7XpOhQKRRuhxo20P4SAUFTj9Jmfm84F6APTvUllcEb51Koyf5PzCdNtJnc14pqk3B+mU47TFHvZThvLNtRw1qOLeenS5uchbg9mKeyOmT2/w/hlmx+3w5rW5XDarBzcPR8BGSWdpsMITgpluOk2klgtIvPxJsU5+vu3kQMvm0+FTeU0xzVZL8woHcYGvTpRCpvvyXwci8tuZa/iLIJRrUXHt1eR7jgFE59fY6xIsmNZkuuic46zkah22nThsaUmlHFgUDKVgSi/ltcSjNQX0dFEIu+WmhB9S3J+92gjg0xPPhnievVWfz1h+c1vVQDsX5rLj5u9+EOxjGaxGo8XbCgsE/Nco4mZqYYTbxECt91KTSDapHOYju1xLDUpqY3EyHHqc18DkfQnC4xSdCH0Co7+3fIyfp5dBSHEw8Af0Tvz/MBVUsqvEtd5gCeBQ9GLsK6TUr7ZVmtVANzF+FEzEVM1WCY4eOgX3LvuZlhiw3Gyl8ibufzjhAfgOPjnTeN4nnO4g1sAsBLjNF5nwAcrOOecJ+grg+z92nq4GJjj5l5u5HkxkOf3uxB+fI1Rci7n8pz+tPfB3z97BULw5tvHA/An3m+jY6BQdEAkKhW2vWHM7asNx8yNrpSSdZUBU3AKoZ/hBli91cfg3unHHWzxhthcE0LTJBaL2GElU7/3zHllbYS1FXrPWigaTwgTO+sqY6Z7uSMI7KbhPau3+pvt6cpEXDWH4Tpm+lg2qwWL0EVQpv1gRQlR1VBYZjLHMtVbI1NhaYi56kCEQCROaX7LXMCiDEROQxw2Cy67pZ5jabUIchsk2KY6dsa4mE3VwYyEZcPPeiASI65JKgMR9nDUuaGRhNDaUhNq8ev5vWhSUp1w/NYnBJSx7m4FHuxWvb80OyHAzPtpEpGm57DCFJZaPaFYbjqWdcLSeJ+47FYkTTuH6TBKbpOFZXPfs4FIHCmhU44zISxjaU/EGL28vYo8/FoeoKwN/k6twDvA1VLKqBDiz8A8oHfiuusAn5SyjxBib+BTIUQfKeWOLVdRNOb7RMnpoyBenAQlMH3qGH6hD98t+QMUwI2F93L7fRN5p/Rk+rOcY/iYX2bszxXr9VmTLITey/7HrefczO3CAafdw3mvPcbc3qO5+bFbueuEKcCPfLxiEMesWMqGUrjXn3jeYuD1ycAR/FkcBZCyKkWhUChak/YtLBMmpT9JWPrCMdMx8odjZugIwEOLVvPmss1pH6/cr5dR+UIx8lox1r65jZOmScp8IWqCMaJxDW8o2mSfnzHHcGN1ELvVQpbDZgqnhiVtrYnf7LHcYU/R6vhCUcq84UalkjsCw7FsiUi1WSzmDMxMKPA4sFqEWapokNkcy8Z/uJgmM5rZmW84loFoi0phfy9uu9UUllWBCAUeR0qB1PCzZRzTTdspLAynrmF6qelYene+YPGFYqYgW18ZqHfdis1es+8122ljU2LcSiga54dNXgTgtFsauayVCWcyrkmicYnDph9bsxQ28Xq9oSi2xBeuO9E/HMywzDj5+bzb4Vj6E/fJc9tx2S1NBvgYjmVhlpNN1aFGTuzuQAMHcgnQTQhhkVJqwEjg/xK3WyWE+Ao4BXh556+04yLEc/D9uW29DIVC0dao8J72hUAvyzL6bwC2esP6UHYp8Ydi5qbZYbU02mQkO4fhpPmMlYFISmHZEgezubmCyWyoDrK5JoTDaiES1xjxyGIKPA7zeaSU9TZTkYQDG41LovE4XXJd5gZve3qfpJRUBSKmeEimNhwzZxYam+wT+pU0ut3OJtO/xdmzvwDglj/346T9u+zQNe1hOpaZ36dbgTsjYWdgsQgKsxwpHEuadCyFSH02O6ZJPBkIYY9DH8tilMJmmupp/H2216V3261UBaKEY3GqaqMUZmV2wseR+CNsrg5u1/MaAtK/ncIyGI2zoTLAiEcWY7W0rFw0HZW1ESxC759clyQsNSlZvdVnlr5mu2xQo39eKwMRhICSHBdbvCGqaiO4k4J9jFJYY83Ge9EohU12LG1JjiVs30ms7emx9Idj2K0Ch82Cx2FrclTJhqoANovAZhHm9+luzhXAWwlRCdAD+C3p+nVA952+KgVcrf/z0qJTOfPWBYipkquHzYI5YfgfXDvlDuZwMbeX3swp4mZulJ8zmUl8O+5g7p+pl8LWfOsk7+0w64d152P5JFMYyDPiWJ45T8L+EH1VYL9dcsxNSxl814d037SOl8RpAMjFeYj+vwJP67+r0B6FQrETaNfCEvSz81WBCFJKYonStc7Zeu+hLxzDrVmxWgR5bps5e80bjFIViNKj0G2Kv+S5bFWBCHvS8r4sA71UtZb9S3PNXq90RGIaZd4QxdkOehVl8dVvVfhDMQo8DnMzXu6PsKa8ll/La9mzOItwTMPj0F+XLxQj22XDabMg2L7N3qeryllZ5mffLvXDSH7YWMMPm7zsl7jcSKMMx36/C+ANRc0ewx2J0Z/Xu1P2Dn8u07FswZiDTjktLxEtSiksZZOOpSVxsqUhsbhWz9VPhxCCPLeD6kCUQCRunmzY0RjO6JpttVQmHMtMsCTExfY7lvo+vrFjqR/D5kosawJRKgNRioLRemWb2yuwjZM/eW47Nouo51gGI3GicUlW4lgZnytfKEaFXz9mPYs8VAcjeEMxSpMet7I2gtNmIRzTCEbjZi+t8f6KmT2WMQbtVcSc/xvIyFlLsFkEwUh90RaJaWkDsgy2p8fSH46Zr8njsFJZGzGd1IZsqArWnUy0WRqdGNgVEEJ8gy4QU1EipYwnbnc2cA5w9HY+z2hgNECPHumeTrFdHHcuHKz/51nj5sMrMHzTywxnAaPvmgsnw32jbmXq9FuxvCHhVbjn1xMQVZLRAx7k2svvACDvzDDyOsE4/snbDOODUX8CPoKP9mbV3O7cwm1wH1wupzFz2XiGHHgHV8uZAIxhehu8cIVCYaLGjbRPsp1Wtvkl4ZhGZW0EKaFzrhN8sM2nzyb0OKy4HVa2+SNE4xobq4N4QzE65zjNjWtVIIJAf59U1UaafE6D6kCE3yoD5LntdErqIfOHY0Tjkt8qmk+O3FwTRJO6KLFaBB6HtdFmyAgtWVXmY8/iLCIxDafdwh75btZW1PLSmMEUZjnY79Z3U5Z+NRcUsmKzniYZbbBZ+y3RxxlpsMnONJwmHT9v8fHjZh+9O22/eG8O4zWHonEE0LMos3Eev4fCLAcW0Tr9mk3RKcdp9sCZSJqZYtnYsYzGNTSJWeLYHAUeO1W1RirszvlqMQTsz1t8VNVGzKTYTHDYLGzaTscylqIUNhSNm4KoOcfS+Mx4GwjL7cUb0r9TCjwOInGNDVVB86SJUc1glMIaI0G2eEPENElxtv78uS475f5wvWqKytoIHoeVaFyrN0KkYSqsNxilX9e6WZduu7XeSaxyf5jv1lc3+5n2peixbEhyNUJNMEo4ptE5cQLGEM+pymFHzlrC9xuqTTfdYbMQqdXMnvldBSnlgOZuI4Q4DbgT+KOUsizpqnVAT2Bb4vcewIdpnmc2MBtg4MCBu1EDw66NEJPhOOUOKhQdHpUK2z7JSpzJrgpE2FQdIs9tw+OwkeOMU+YNUxuJU5LrNDcb3lDM7POpCkRwO9zE4hrekB4IUVkbqVce1hRVgSjhqMbWWJgyb9jsjQybPWFRKmsjaTeWkZhGmS9Mp2yHWV6W47SxLWnzJ6U015ss9HLdekjHAaV55uMnB520hJ+3+IA6N8agLLF5NjaBxia7KccykxErxqa84fMlE4zGcbWgRLSpx3HaLfVSg1PRGqWKQgh6Fnp2uOgqznbya3n9maWZhffUP97GbEJbMy6TQb7Hbv7tWjLgHrb/+LrsVgTw0xaf3mPZ4LPU1OM6bRY219QXlpmWUNeVwta917f5dBdPiLrPRnP3r2mFWZrRuMYv2/w4bRYKsxzmiaazZi3B47ASiMRw2631Zqdmu2yU+yPYLMJ0IXNdNrb69O9EwwGsrI1gt1pwO6z1vjvM8J64REpJTTBqPs68MYP5x2vLePmrDebt11UGkDQuHW5IS3ssf9mWmEHrsDJvzGC21IT4w90fpBSWUkoiMY18t/4ecdgsSKC8NkznHBdS6v3zVYEoRdm/X+zvKBKBPdOAE6SUaxtc/TIwBvgqEd5zGPC3nbtCBUDfacsA2BQo5aEZY7nM+yjzt57FpRc9Qk6Bj9fmnsIZQ9/WZX93EPtIzvrP0zzjHcV1ufcBIM8RiDMl3AEHj/qC8+Y+xtwTRzP27/dzCY9xE3dyU+wuruefWEpqCeJhphivL+A6AH3kiSqDVSgUO4t2Lyw9DisWAesr9Q1kz8SIguyk5EiP3Wo6k4aDYbcKqgJRSvPdZtJip2wnlbURqgOZbQYDEb0MtUuui1Vb/fy6rZaDuucTjmnkumyma5nntjdysTQpWZ3YNCUPM8922SjzhQlE4mQ5bfjDdYEdaytq8YWixDVp9pAl47JbqQ5Eica1ZoUU1G2yjc1eQ8dyq69+n1VdKezvcyybK4fb6g2xfEMNPYs8LU7mbejOBqOZ9wO2Bp1bMKdxeynKcjQK72lOWOrhPfUx3ufjT9wno+fNcztYvrEaYKeVwlqEwGW38tMWL1WBaL0Zlk0xb8xgbpv/P179ekPzN25AbThmBlQlO5bbEuWhHoeVcn+EcCxOOBpnizfc6DNn9EGHolrKEzG6WItRlZgLWh2IpBzhIqVk9VY/cU2yb2kOVoswy+vDMb0kuTYSZ9+uOfV6urOdurAsynaY74vchDD0BvUydE2TVAWiXHZMbzbXhJj//UZADxOrrA3jslsIRTW8wRj+cKzeTMjenbKJadL8ztiaENrNndgyHEtNNk4kTlUmvHprQlgmPsMluU4sIvV3UEyTaLIuuMlp9tmG6Jzj4sctPvO7p/GnYZfiSSACvJL0N/2jlLICmAo8JYRYjR50P1pK6WubZXZM+srTWNkDVs49EICnRo3k/GHzkLcLxFIJb0LNpCxmDboUywu1xG/J5o7HrmUmY3npif/jrAufxoN+knjdaZ0hCDwK3/X6A9/96w88wyXQA6RV0O+IbyiylvPZXScw+qYHuZg5zPxbQlje5wWuQcrc1AtVKBQ7lg46buT3Wz67OEIIshw2JFCa76org7JazH4fj8OGIzHaIZAIHumc48IfjhGJaWyqDuG0Wchz2xDo4T2gb3xSBUWMnLWEsx5dbPaaGW6j4SKFEjH8exZ7EmVr9RMcpZT8Wl6LLxRjr+KsesmKhpNgnPk3RK/LbuG3igCbE71dqQJf3IkxAOsaJEY2hZSSXxKbt4Z9S1vTOJa/J3lWdw2aLof7aYsPSZ2jlgkjZy1ptDGNxDTCUW2nCsudQXGOk2A0Xu+9KZudY6m738nUBPX3earQplTke+yma7czj6nHYeXTVeXENdnIsWyKrnkufOGYOeKiKaSUZqVBcv9qsgNnvPbTD+kG6EFh2/wRtnhDnPqvz+q9/6JxaTru3mCs0ftzizfMz2U+tvnD+EIxRjyyOKWwqg5G8YZi9CzKwuOwMW/MYOZedDgA4ahmBnsll6mC/jd12S1mCSkkSmTtFvNEUk1QP0lVmOWgT+dsonFJTNOoDkbRJOxVrJcdG98nue66k3VGz7LxXWCMXwlE4ik/iwbepM90baT55pRftvr1RNvEsRRCYLdaGp0Egzqxeeuf+zFvzGDzO3JzTZDyxHE2hOmujJSyk5RyDynlwUk/FYnraqWUZ0op+0gp95FS/rut19uRmJBwCBUKhaKj0u4dS9B72zQpKc2rc/6EEOQ4bVQGorx06WCynDb2n/gutZE4hVkOCjx2NlYHWbXVTzAaZ+/O2QghsFmF2WO5xRtiY1WQ2nDMLLk1CMX0/jSPw2aWoE1d+BPPfLGWuCZx2izkuOx0znGyxRumONtpbraqAlHK/RH2yHc1GmLutFmwWQT+cIwS9BCQbKcezvNbZa3puKYaUWG4SCs2eTMOqwlFNbMfLNpA6JX59M2i0W/mN0th6zZ1LXUUwzHNLIFNJywNl8IbirUoXTcZKSVrymsRYvsCcnZljPfMOY99wb+vOBLQHaCmjpNFgNZgL244lvkZjtYp8NhNJ29njRsxnsuYt5hpKixA10QlwLmPfcGCK49q8rZl3jDrqgJ4Q9F6wrI2hbDsv0ceAGOe+cq83huKmo4g6OXqRVkO4oEINcFovfdgOBpnQ1WAfLedPp2z+WZdFb5wLOWsT+Pxi5IEdVGilzccixOOacQ1Sb/SXO48rX+9+6YSd8l9lsYxLcp2mP2ZoYhGReL19+mczYrNXtZW6CfMkh3LvRK9lEYKdVni2BjiNF3fbp1jqI8RyXXZCURiuOzWRo77yFlL+LnMp5dDJ11ns4omhaWRzmwIy7vf/sl8vxZ4HI37kxWKDBBiMjdKOIfnue2kA7l2lB7A4yGInCYQiySzLx/FL5f35t51N/Mc50IJiI8kTAH2AbrBvNXnM7LPUwD8w/MAowMPMvuKqyAEjlleYlEr2t+yOHXRS/z4ySFoBwgsd0hm31zMYvk0vJAo7/9COZUKRZuiwnvaH3t1ymLemMGMnLWELnmNSxC75rnJdtlMUehOlI0VZTlw2S04rHpqYK7LRkFic22zWMwepnA0jkRPpOzfLa/eYxs9PlkOfUPktOllY+HERsuZcHS6F7ipCkT4tVxPiRVCUBOMYhF1KaLJCCHIdtnwh3Q3tTYSp1u+G4lkfWWQSfP/B6RxLB1WhIA73/qRZ7/4rdH1qQgkXAObpfFmrcxrlMLWOSP6cdn+UlhjYylIP3LAKBGOa9IsCU4mlug569JE2ek2f5iaYJSeRZ4WD3HfmWxP76HRH1b/7yWbDO+xCNFojqUpLN2ZuYDJpZo7qxR23pjBfPBjGRc9/RVAxqmwAHvk6++PSAal275wDCnh1221bPPVCY+GwlII6Feaaz6ucbLFG4xBgX47I+THYbOQ67JTE4zW65lem+iV7lXkwWoRZDtt9QQX1InC2kSFRXLJqBB6OWw4pplp1gN6FGR0TJL7LI3vucIsBz0K9XCrQDRulvwaQUlryxsLS6N83yjzTe45DUY0clyphaU3FCUr8T3sD+sltj9s9LJHvtsUhMkEU3z+7VZLyu8gw3E2HsdmEYgGZbM7632raF8IoTuV914yiR8e68Nt4XuYwL0AjOUhzho9n+mfjGEOF/Ol6MpD8lLmMZIAHjgBfptYQs9Lynj1sWEIsYWr5ZP6A0+C2cuu4pHKC7ASZ/RNcyEP+PAbFpx5JqwFy0ZJdnk5/unn8sMJAJX6ff/wT/1f1V+pULQdSlh2DJJn5yX3WnbOceK01fVbFmTZKfOG6VnkMc+I646lvlkznLxVW33075ZHTJMEIzFyXHYCiQ2lURKo9yPFzU2MUQZns1rolu/m14qAKZJqE/H56RymHKeN6kCUb9dXA5DnsZsJkMYGNFWPpUWIRM9V5u/0QDSORUCOy9YoECO5FNZwRgBCv2PciC8Uw2oRuGwW4g0tNPS/2YrNXnMEgjcUrbexHDlrCf5wjHJ/JG0faTga57eKALkuGyXtzK0EzATi5PAjTUJz4a4NDWKjzDrVzNZUJAuLnVkKu0/SGJyWJKx2TVQwNCUsDQFnfJ5/La81xaJ+4ikpvMcfptDjoFtCuPjDMWKaNCsMjM/H1sQJGYfVgsNtoaI2Ygbm1ASjVAf1UUfGyaccl42N1XqCa0OXMRCOk+Nq/DXuTAR11Ybj5Dht7Nc1M/fC+D6sDcfMPt3CLAfdCzyJVoG6y01hmRDCyX9/u9WCw1Yn8LZ6w9gsQv+OjNatORrXWLPNb57484Vi7JHvZtVWP75QjK3ekBmwU5rvqvedqEn9e6c4u/4b22614A81/o4LxzSsFkGuS1+nEAJnYpZlPPF3ymS0jkKRkmsmIbsJSlkDR8KpzAfARzZvfnI8f173LsyxwedQRAWbKKWUTfwwsw97V67Cca+XjzgO+V0X8iObAfjsxoGspjfnvzaP206fAMfDoqFDeO7GcwnyHc+fcCGj//sgs8VVwGQOkMMAWM5hgBKUCoVi59PueyxbQo7Lbm4KQR9Of0BprlkGNm/MYI7sU2z2WEZi+kZx6sKf9TTTmiArNvsIRGJmr6YRY++yWesFdSSXqhpOjzcURUu4cE3NcCzOdlKS46Rbvpu9O2eT5ahLfPSFonTJdfHSpUNS3jc7MUC8YT8d6Bu1hq5kMBKnV3EWTlv9vqVgJG72YsU0Wa/X7Hc5luEoOU4bVotIWwobjMTJdek9Yt5g4w2kIa7TJUOuSTgsexVnbVcZ7e9h3pjBrZIw2xTFprCs+ztkkgrbqMcyENFPKmQ4TzS5ZHZnlsLuke82Z4O2xLE0+gvDKcomk/sAY5oklBCfv5bXmsKqW4HbdCxHzlrCO8s30ynHSZ7bjhB1s29Lcl31ElGNEnK71UKBR7+tUV671acLsJIktz0nIYQaiqVoXC9Tz3I2PtauRIVEJK7RNUW1RjocVgtWiyAQiZvp10VZTiwWgcehn1y6b+HPQJ2w/C1FKSxgnvwBvW0gx2XDIupmx4Je7bHNH6EqECUW1whE4maJcm04ZpbjhqJao+Afo3+zYcWBw6oL2IbfH5GYVu97d96YwQzoWUAkFicYjeFxWHf694FCoVAo2inGuJHW/NkN6JCOZabYLBZszvrauyDLQbUpLPVNk7HhMQTN5poQgUh9J8FltxKXEn/CkUsuXXPY9Lly3mCMbGcMCY3Ku5Jx2Cz0Kq4/D87YXEXjkq756TeSWU49VTYY1cyyr3AszqqtfgJhvbR3xSavWc4XiMQZ3DuH5Rtq0KS+KXQ7rGz11ZW2xTVJIFwnmJsaN2KMCUnVe1lZGyEU1eiU7dSDk1II1GhcI6ZJ3A4LQtT1gyVjhP8EIrFGDs9WXxhvKMaeRR7TEWpvGK5dLMmxlM3NsRSN51hWJ0ZIZDrjr6BeKezO+2oRQuBOzHdtSXiPzaqXuyc7lpqUxOKyXil5IOmkya/lteS57eR77OR57PXc/0hco1OOEyEEDqsuqgR6Uumm6qAZNmWUhTpsApvVQoHbToU/Qmmem+pAlJJcV72TAHWBXdF64r3hfMpkjGRYl93SbI9swxMdB0xaSDASZ+ZHqwG9ckN/Hr2XNcepH69eiYTt3yobO5agi9vqpNdsBJklC0RDlEZimvn9WZoQwv5wzCzFB2OmZt1rNfo3G7rjtkSlQkVijIhBOKbVG7kCumv937WVxDXZ7nqtFTsHowy287R19OJHJjKFy/xP8gu9ATiY74hj5cseh3C4fznuA6r424rXubvfNdzHdYxkHn8sfJ+BfM3tQ+/kXx+eyRJ5CgDzGMn0GROgD9x2yT1wAQwV1wG9IGcA3Axv8ydgAzCJHxJrQR6204+DQqFQgHIsW0yBx05VIIo3FDV7AIOROFJKasNxBPrw8Ehcq9evY2xoakIxnDZLozPjuW47vlDMdDWSHUvD5Urnds0bM5hXLxtiphmWpujNNDAEa3Jv2FZvmNpwnM65+sbqm3VVQF2J6z4luVw5dG9A36xBXX9l7066m+lPChFJ51iuKvOxbEMNlWnGtRjJkS67lRP6laTs7TM2pW67lVyXDU3WjTkB3ZE01hKN1zmwNcEoP5f5WJsY79KeN5EOm+46NXQsm3Jj1pbX8vVvVfUuqw5EU464SEdblcJC3VihrBY6pQ5bfWFZ5g3x/YbqegnItaaAs7K2opZyf5iiLAfZiXE/BtG4NMuQDWHqdlixWy1kOW1m+qzx2XnmokGA7jDHNMkv2/xIoFNO/WNutegl7A37LA3Rlaov0Pi+6ZrrarEL53FYCUTjxOIaFlEnUj0Oq56EHYljs4hEj6jNDC3KbeRYWonGJVW1EXyhGA6rBbfdWs+xTJ69a7w+o0TZH4qZQTouu14yLKXEm0irDUVSO5ZGCXx5ohfWSOkOx+KNQs1K811E4/oYEk87PdGk2Ak8OImt7/XgE47hAa6BfWGjtycbvT1ZGjmcMko4fN5ylkw7hMCvhbzabxg/sw9/5H3+yPt0Zz0RHNy4aDIs7MUrnMErnEE1+XA8fDmsP488dgGDh3wIx5/OsXIrl3un8dKNp7JhYh+4phtqZqVCsYthjBtpzZ/dAOVYtpACj4O4JllVpo8Gc9kshGJ6CVdcSvbId7MxkcxaX1jq/x3XJEftXcys8wbWc9NyEqEZW31hvfcqRfhOU4jEPL9AJG6e8U8lQt12faxKbSRGJ5xm+mOuy0bPQg/l/ggzPljFgu83mSJuny7ZZopjhT9CtwIPN72mD3/eu3MOa8prTZewMDt1quLIWUvMnsyaQLReiqWBsfHWA0vs5mMmY2wm3UlJkMkbbiNV1jgBEIjEcdklP23xYbcKuua56JpXt9ne0WWpbYXdKsweYNDdyOaMx0ZzLJOG3mdCW5XCgl4OW5TlaLGIctgs9U6y+EL6jMrqYNQsKa4Nx7BbBTkuG//b6OXXbbX0K80ly2Ez3UeZKCM3TlgYPc7GCaJct41N1SHOeGQxm6qDOGwW89jmeezYLAJvKEaW05rSgcxJCLjkkubacDwxNqnxd0We206fTlkt6jk18DisbPXpAjL5sY3vM18oaorNgiwH3lAMIRoLPGdC3I6crX/PXX18X7Z4Q0xd+LM5+/a3yjrH0vj8lyYqLnzhmFn+W5Lj4rfKAMs3eglG4+S5bVgtFvMkSjLGGKnk9N5AJG6mdCfTNSkpfGe/ZxUKhUKhaG90KGGZqYhIDvdpiLFRW7FZF5Z5bjshX9jcxBRlOQhF41TURnjm4kF0znExctYS3aVE37x3L/A0elwjUCIU1cwE2pbisln0HqW89I6lEIKsJKelNqIHCpXmuxFC4EmIU6jr6erfLd8UhYZjGUmUWfYtyebd/+k9VPrrdxKJe4lrEiklG6qCdMl1YksKOkk3N9CYYWez6Jv42ki80ZD0YCJMyJFwfW0WUa+0zhCZJbkuU1gavVj7dcntMJtHt91KbTjOWY8uRgjBj5u9jcJ56pFCj1UHIi0SJm2RCmvgsLX8ZAzopdtVAc08TrWJ92h1oE5YGqFaLptezh6IxinOceKyWc3b6+/3utE1xlqMCoFcl51NhPCFokRiGiW5TlMEW4SgMMvBVl/YdDwbkuvSg8SqA1HzbxKIxPEk+isbfrcJIVKOJ8kE4zPiD8XMx4c6UabJOvGW73HwW0UgZeiN4Q4an8kueS6zPcA4QWQ6lknCMtmxrKjVe06Lsh2srwqgSUnnHCdbEy5pntve6LUboj5ZWPoS33e5DYKOktsG3DuxfFvRfugtR/DLXXD7iddR6t3KabmvM/XQ3tivTnzhjoHRf5iL/Fgg1kW56KBZvKH9lYoNJbzU43QOn7ccrgc+i3FGj3lwHZQu08N77nv9Vo467VMOn7gcugD7An+DjwaczEcvnszMfc6nt/wfv5y+f1u9fIVCkQ41bkSRCUYf2b8+WAXo5V9lvjDl/oieZmq30LPIQ2GWw+zvMTY++976DqGoRo+ixsLSYbMkkmM10+VoqZum9wxGzTP+6chy2CjzhdCkpMIfQQCFCTHrcVrZ5tP7Fn1hvXxtj3w3WkKVGMEl0biGENA9MYZgc40hLPXjE4lprNrqY2N1EKtF3ywa/WjhmJYoS6svPowwIGtCWILeZ5XsmgWjGi671Qwn6n/bwnqldUaqbK7Lht0qCEZiROP63NCG/VXtmTy37tiGYppZltpkjyW665bc+1odiLJXg17epshyWM2TJ7vyCJdk3HYrUuoizWHTE0KF0B1LTepiMRiNU5hlN98/cU0veW1Ydg00cixnnjuA/brmcuYjixFCHzsSjWuU5NQ/rl3zXMQ02UgMGt8BZz26GLfdyrrKgO4MJ62rtTFKQiVgT4oStlqEGchjOJnJY5gaYny+Tdcx14nNoovGQFTvf/4ukWwd06RZ6ZDvseO2W/GHo1T4I9isArvVwkHd8rFZhfle3eaP4E7xmbalEpaJUtyGJx+MkU6OxHxghaKlHMx3rD7kANgGIzs9xbzLzmf+I6eS/0Q1AH1YzUOxK+hn/YY3OZlq8nn83bFsGFbMPEbywsjT+HnkPtx24D28esW5cCSMXz8TgGmnXc693MhTU0aygFPpxwpuF0fC16fAu/CmPIs/X/I+vK7KYBWKXY4OKiw7zk67lTDCQQyRZPQVxTSpb6yFvglK5fQYm23DsWzYM2m4lk0lwjaF8fhN9ViCPlJASj2RsaI2rJfiJTZjHrsVTerizx+KmeMHjNmIRkpjJKbhsNaV821OlP8axycUjZsbyupA1Jw5aWxEU6W5Go5lsrBsWA4bTKTtGrgTYSBGgI+RKiuESGxO43hDeuhJR0p8NP4uxjFtyqzUaXxsqgORFvVYCiH0jb+gUXnirkquW3+feUMx033snOMkrulBW0YfY5bDVk8sF2c7TOffKIOFulEvRdkO9iz2sG9iFIolMY/SG4oSiWv1Ul9B/+zu3Tk7rbgRQtCzyEM4prG5OmQ6djsiJMkINYI6Z9LAcKKNy40Tban+3vbEe8GfOIadc130KPTo41dCcXNciPFYq8vqqkCyXbbE2KCwKW4dNgsWIRBC0Ksoi07ZzpSu7CuXDsZps5i9n1JKfKEoOa7GI5yMxFyP3Wp+H3scVk7p37Wlh03RwRBiMiWsa+tlKBQKxS6FcixbSGFiIxWMxCnOdvDqZUPY95Z3CMW0ZgWhy6Y7it0LUwu/4mwnoWjjgd8Zry1L7/88oDQv5fXJ7kfXPBdbvCGkpF6/oyfx3NUBfQNsjJrwOGy47Bae+nwtH/60lWhcdy0MYb2xOuFYJgRoOKaZ5We+UMwUiMXZTnyhGN5QlE45znoOmVEKp5fCJkYsJPW/BSIxInGtkbCMa5LTZ+qOUCiqmSWMHofNLNFtGATUXnsrDZw2C06bhZpgtE7EtEDrxTWJNxRrUY8l6AIjxSSbXRanzZpIZI6aJye65rnY6g1TURsxewGfvuhwOmU72fvmd5Do7+OK2ogZcGUKy4Rjabda6JxTPzgnz2VnQ3UQITCDstKR6v1ppNFuSOrhfuWyIS3+G2WC22ElEtTME04GHoeNqkDUvDzfdCwbv7mE0B3OUFQzx9YIoQtsXzhqhibluuxU1EZYWeYH9H7SHKcNX0gfN2KzNn5si0WwV6fUbroQguJsJ699s5FlG2rMvutU8z5zEmOLGgYPKRSZ8nR4FKK3JC9vC91ZT79HvmEiU3iecwB4Zt0FPFJyKT/+fAh//r/3eem/p8Jy6LahHIqh8+nruJF7eW/ZUZxY+CkcCuJX/Xvnke4XMJEpnH/qPA6d/znjmAESjuIuBg74msLrA3AlMKcND4BCoUiNMW6kg9EhhGU6EdHSnkuoi97XJOZQb5fDqgvLFBuXZPI9dvzhmFk+2pAcV+aDzFNhs+jhNM2NhxBC0KPQQ0mOk6pgtJ67aog2Y9Ze8msqynKao0QicQ2P3VrnWNYEE7cxhGXcDEWRwKZEqWy200aOy2aWvSbjDcawCMzNJ9QP5llfqT9Hckmr0Q8WjMbNuXVGH5XhrlhEnTPVURBCkOu2U+nXkzSR+kiRtLenvqtpOJ3NjapoiM1iQdO2f45pW5Dr1sfWCGEIciu5brvpCu6R7zL7/pyJcvWibKc5o9Efjpk9x8VN9DXmum1QrQcpNXQsM6VXoYcNliCFWQ7y3fbfJSqb+v7zOKzUBKONBGNLHMt5Ywbzf098yccrt+Gw1iVhZ7tsVFdFzZNGuS4bFbURPlq5Vb/eaTMdywp/OGU4UXN0ynGyZpsuVI3vkFTCEuCgbvkp5/oqFE1zDVs/yWXfo3/mt74l9Ji2ldPGv8BSBnGh9wkG5S4FQK62I2Ialf08FM6r5az585l94yhmMYav3zuCzzkCgHN5jpsqJ3Lni7cjyvX342XznuT2kdehPSWwvCc55qOl/HBXHw64dzX+q638deqLvCH0ubKqDFahUOwKdKzddiuQ7bSZm/Auufpm02O3Uk20WccyL7ERbNhb2JDtEbzbg9NupUuDXjijT9RwGZJDWIqzHaxNhG1EYxK7O6kUtiaE3aqnuYLuHDZM2zR6nHKN/r9ovF55oTcUNXu1zB7LJGG5KSFek/ukDCEcjOohPRahB6bMGzOYHzbW8Od/fabPYuxAZbAGeW4723xhvVyTZgxLoY8kMajeTmFptwri2u51rHMTiczVgahZqt05R68e6FXkqVcO7LJbE664w5xLWRuOmT3HTR2vLKcNi9BPSpWkcSyb+0w77VZ6d8rO+LVtz3fEvDGDef3bDVwz7/t6om7emMFU1kY46t5F5nedUfqeylUEzOoMe9Jn1qiCMHoqc9x13xkWoZfiZjttVAeiVAejZsp1SyjOdrIyUVpr9F03NQKnI5XJKxQKhWInsZuMCGlNlLBMouEmLNWmzOgji8al2Z/TJc9Ftsu2XWfWd0U8DhuhaIRsp62eICvKdrJqq5+4JolLiSOpFLayNkK+x24mQYZjcTMFNs9tpyYYJSuRMJmXKHOtCUbrC8tg1HQ+DGGZnCC7udoYLF93nO1WgdUiCEbi+MOxemveuySbLKe1Xc+sbArDua2sjSKbkZa5Lhsbq0Ns9YbonOviiue+ARqXEDdHtwI3sfju5f4Y72FJXSl4YZYjdZ90opy9ONtpjhrxh2Nmz3FTAsUi9N7hmmCMkgbBXqkSqNuSQ3sUIkTjERyFWQ4O2KOu1L6giVJYqOsndyR9Nxql/jXBKBahp1lbLYK4Js0TS9lOGyvLfEgJlx7Tm/MG92rRMeqU4zDLk5P7rhWK34sQk4Hh8MUAvhnUj65s4lVGcM7453lj6dnIWsHTQ8/iQJYD8MnQw7GUBSi8UD8py0A4iYWsoB9fVx3B3ut+5e4e1/Pl0KOJLHIw6OyldGM1AP/hePZ7ey13HXkznARF8Y3MYgzY4XTn67w34FQ4BOQ3bXQwFApF0+xe26FWQQnL7cBmsRCNx81SWLvVYpaEbQ8t3VzuqP5A43GPvGcRlTQOESrKchCL1wWV2K0WshxWc1OYHHASjtU5loUeXVgaj+ey6wmtlbWReiWB3lCUA/bIZd6YwfU27QZGuW3yJtUI6fGFYgSjcboV1PWvOm3WRv2m7b23Mhm7VR9gb/SZNhy1kMwe+W784ThrKwI47VazNDCvhY7ljgiTyYTf83e1Wy1mCFRWM+vP99ipDcfokudibYU+g7E2HCcS1zI6sZTrsuvCcjtcuJ1JjyIPh/UsaFaM1ZXCpn7tRtl/8skgq0WQ5bBSG9GToYUQOKwWglrcPLGU7bKZjub2jE0pznYSjUtC0TihqEbnDnpySbHjOGXQawyYsYLR4x7kYe/V9MhdQ89BP8ErsJ7ubKUEgBmMw2aPY51exTW5D9Cd9dzLjcycMp7PJg7kyE2f849vHoDbYBFDKVwZ4Ky+TwOw35S1MMnLv+Wp/CL7UE4Rv9AH/HAq83nv228Tq1FlsAqFYtdACcvtwGYVEK1LFDTYVd2H5mi4KTecxYY9SYXZugtglAC67LpDk+vSAz2ynFZzKHooqjuIVougIMvBNn/E3IQKISj0ONhUEzJDgEDvsTSOaV0qbFIpbHUokTRZf7PrtlvZlhgtkE48dSRBCXWvd8Qji6kORKgJxshros9UCEGfzln8b5OXtRW15hiG/A4SapLnthGMxnn+kkEUZTvTfoaNcna71WI6b0YpbCaiunOuC5vV0qIxLttDa7zfM3H4jM90c45lQ9FtzKl12S3MGzOYUU98yScrt9UJy6STWkUtmKVqYPS6GieoCn/HiT+FIpnRMp95kVI+8u7JD+P6EMeKvVyDHwRHDvkPb434I7esvx8q9dvfUDMDyz61fFM4gAPmr+bGUyfz8IvXMrPXeI64/Ws4wskjQy9gCIu5lxthKpQ8pvcbcwCcJV9nKYOooJjp4yYwfMbLHD7xE67wzAEmt9lxUCgUilS0j9rNnYyxieqyi7sO20ue284+JTmNgkGKs5xIYH1VkBynzdz8GbfbVB1MlApCOKrpwjIxfmX/0lzcjrpIf6PMsCoQMR/fG4qaZYluu+6EJo8b2VwTNEttDeaNGcyYY/YCMPsrFXVYLYKibCd7dcpq1vmxWSx0zXMTimpUB4wey46xIS/Nd9O3JLtF7pjRK1hXCtu8ELNZBJ1znO2mLHOfLjl0y3ebJbEN6dsl2wwaSqauekH/vuiaqFywpRKW2+FYGuXv23wRsp3WxIxfheL3oZfBKhQKhSIdahe+HRhn342kyPaGEIJ8j72R62GMEolrkp5FHnNzbAhLixB1jmUiFTbdPEOPw4rTppfDdk70m3mDUdNxNJJhk8N7NteEcKQIPtq7RJ8V2LAnVNFyCrPsrK3Qe2ah6fLZ9kBylUFLy9mNkxhl3hCabOzKpXue9oTVItijIP33oNOmz+dsSI7LjkgKBzNO0iWXwhoUZ2+/YxmXksIsVQaraD1mT7yKwVM+5B7HBPb/6Ree2PccDt/rU6x7xXES4ezAi/itORx60FcAvMnx/HnF+1ACZMO9T0zi3mMnIr8XiM2SG4dOxk2AHHzcO24STA7zr3uvB0DaBddwN7deeB88GeRL2Z8TIv+h5tsu8B3AJGTftjoSCoVC0Zj2vWvcQRhR+13SjAxor2WXhnPQKTEc3sBwGa0WURfek3As9+mSw7wxgxttqIUQFGY52Jwoh9U0iS8cqzdPLjsxyw70IeebqoMpN//7JISlmkX3+7FZLBR6HFTURrBaRKM5hoo6jM/AmnK919Jh23HHqr0JU4fNwiHd802HsjS/vrA03GCB3pfaUpLFqFFK216/lxU7j3/LxfSjO2N5mHmMZNS+T3M8H1BGZ9ZesB/Fj29go3MP8kIh+rECgD/99AF5fbbwDOehHSywuCSd91rPPnt9D06wEucW7mQykzhnxhM8f/2FTJ86BoCRPMVLp/8fWIGf3UxiMjX3dYGbdedUjRhRKBS7GkpYbgedc1xkOWyNEhPbO4f2LKAkx9nIoUgWlg3De5oawWIIS28wij8SQ8r6m8gclw1fIrznjEcWE45pKTfvXfJc7Nslp9lxL4rMKM7WhWW6vjmFTlbi82/MS/w9qdAdUfQkH68uieqPho6lzSrMubwNj1FTIrs4UQqb47TtUMGv6DgIMZl/d8CER4VCoWgJaie+HThsFhy23bf3bHvdj2ynjV4pQkcMMWgVdY6lEd7T1KgPd5II9SYCgXKTAmZyXXazxzKSGEbfsMfS4PcMilfURw+nEdslLDuSQLJZ9XTjNdsSjmWDmY+KzDFCu+p6LPXPcyblxanIcdoo9NhNgalQ/B6M3sq/zF8Ij4L/dSsLnScx8+jxPD5hX2SR4Iknz6Hi1D3IGxHmzVHHYzUG2OVBzVNduPfPE7h3ziSYAznrfFzDAwSGeVjISWy4vg8XvfWcviO7DSZF9Oc71/E88p8CsfevHPzyFqZyA+/c/GPbHASFQtFCJBBt9lbtjd1GWAohegHvAB8DW6WUE9t2RbsebbWZNXssLQKnLdmxjJsbxFRYLfoMSl1Y6s5ksmOZ7bKx1aenOhrCcuqZB3Fw9/y0j6k29L8fIcQOTy1tL8Tikq0+PZHYvhOcsfbw/k51YqtHoQeXvS5p16g+2F7XXAhh9l4rFK3CPZMYfOqHLPEfx2ZnKac//A5cDdnHliPel5zBc8jrBDjhQUZz9dJZAPwwqA9rRpeykJO47M9P8sLE0/iOgwng4Tg+ZPwrM5k29XJKp25iH35mwIUrmHb6tQBc5HmOmWePh6chn5+Ywq3AWkCVwSoUil2THSoshRD3AWcAvYD+UsofEpf3BZ4GioAKYJSUclUGD+kDnMCaHbLgNmZnbxpb6/nyUvRYGo5ltrPpcmGnzUIkruENGY5l/VLYz1f7GTlrCeHE7MzSdprE29Y03Ox3lDTY5mjuM2K1CGKaJMth5dXLhuykVbU/XHYrB3XLN383xg39nvJihUKhUCjaDgnEmr1Ve2NHO5ZvAA8Cnza4/FHgYSnls0KIvwOzgKEAQojeid+TWQjcJ6U8XOhRpC8LIT6SUq7dkYtXZIZRvmoVej+Uw2oxU2GbG//hsFqIJJfCuuqH98Q1vaklEtMQ1KU9KjKjvYW+7CwyPeli9ASWpAnyao/sjBNghmNpz2CEy++lPbjAih2DEK/p/3HZJKRb0J8vkYcLTuLf3DH2ZhgH/uxiZETg8Vby8NEXcRILmcPFyB/19+6jg87nsm+ehFcg77YtDGIp6+nOVjrzMGNZPGIIP/Y7hMdXnMuARSvgALho/nP68w4EvoObnpjIXeJg4HDgcKTcb+cfDIVC0UJUKWyrI6X8DOoP2hZCdAYGACckLnoBeEgI0UlKuU1K+QtwfBOPKYUQW4GUdU5CiNHAaIAePXq0xstQNENyKSyA027BF4rpTk5zwtJmwR+O4U2kvyb3WOa47PWEpcNmMZ8jU9SmUUcdh9ah4XG0Jr7bOueqEx6tSV14j3IsFW3PqpndEZtCbKMYnLCJrpSymc9mDGQF/ejFj7zLyZzLczzKGJZ/fTiPnX8eAJf+9BQnDVjIXj9s4nXH6ew1cxOjL3+QBZzKEBaz1tsL9oeZXA5/hW+8/XiSCwD4l+16cOnJsYNlAUvES4kVqTJYhUKxa9IWPZbdgY1SyjiAlDIuhNiUuHxbujsJIY4FRgFxwCelXJ7qdlLK2cBsgIEDB+6UDLdMN+3tdXOfXAoL+uy6Cr/ed5YuqdU4Fkfeu4iYJinz6r2UDVNhJaBpkkhcqxeOotgxKIezZbTUsdydvgPacq1FWQ56FLopzFIl2Yq2QQ/s6d/Wy1AoFLstqhR2l0ZK+RHwURsvQ5GCPYuzsAhw23Xh57RZqPBHAJp1LI2ezCc++xWo661K/u+4lERimhonothhbK+IsnTAUtidgRCCrnnu5m+YAbuTmFfsWrhrjgNg7/nrOfLU//AWw7il+518wR9YyuFUUMxaerHVW8IxryyFI+GOviN57NDzGD1/LgD/+PPd9GItfApDr14MF8Hs966CXvB6XmeWlRzEAa98Q3fW8/UEGDBshZ5KAXAMkA0VFLFEfAKo0B6FQrFr0xY79fXAHkIIa8KttAKlicsVuwCZbMSSb9OtwMNhvQrN3112C5W1urA0xGC6xzRcyEAkjkXUL30zhGVM04WlI0s5lopdC7MUVo21UCjaDcZ4kcDExP/XLoCXGc5Zb8+HJ6Hi5SLOEG8zXY7hrkVTeHboCKZcOJGV1x+IbWqc8++aa4rDRZahHDhrJRMfu4mLH5tDTzEfigfx5Yn9OXz2cg7othrLllremH023Pw5F8nvKKEMgJ/Zh1fF4czkeOD1nX8gFArF76Bj9lju9J26lHIr8B3wt8RFfwO+lVKmLYNV7F44bVYqGgjLdDiSUmRtlvpvR2NUiT8UQ5J+hqVC0VYY50E6smM5b8zgJk9GNXe9QrFLsnAS90y/mnumX03JQb9x5u0LkHsJDn/5E3LwwT1w9cxZ3Dr0Zj7kOFZOPJArp07l70tfYfpNY+An4Cc4aOXP/G9Mb5YyiJ7jy+gts+EUqKAYOVzA66Dtl8X00WMYLCM8Pm0s6+nOerrz6oXnAlsxRKVyKxWK3QlDWLbmz67PDt2pCyFmCCE2AN2A94UQ/0tcdSlwpRBiJXBl4ndFO8Fpt1CTSHnNambciCEsJXX9agaGY/lbZQCbRah+K8UuR0dMhVUoFAqFQqFIxY5OhR0HjEtx+U/AoB31vEKI4cDwPn367Kin6LBk4jy4bHVisjnH0iIEdqsgGpeNhqEb941rkj6ds5ucaacckdZFHc/MqBOWqhS2paj3mGJXRIjJsHAS/Af+cc8DAFy76A7EEVLPm58Oe5VvgslwW2ACt11+DzwCfA7/Gn898gSBsEie1UYAsJghHHDvapgAx8p38ZED98H4udPo1/VkDn3sc75eegRXvTObq4eVwsYhPCM2AfCj7MV+T14OuJHyhjY5HgqF4vegwnvaBVLKBcCCgQMHXtLWa+mIOO11ArC58B7QXctoPN7IsSxIOJRFWQ6KlFup2AXJc9spzo6zR37rBM0oFIq256ETL2Zs5eO8PHU4ACfFF1I8tAL30ABXj58Fy+HxwLn6iJBqoBgYAf/cNA4xTdJXW8bfL3kFgD8+9hZ8BbPlKKrJ54bxM2AC/HjvIcy6cQxfH3YEnZetQxwtuVbewf0DnLqwBfYT+6LX1CoUCsXuQbsUljsadaa9aZJ7IbNdTb/F5o0ZzOXPfc3by7c0EpZ75Lvp2zmbXLc9zb0VirbF47DRu1O2mre4C6K+pxUtxQjtUSgUit9PxwzvUcJS0eq47HWlsFmO5t9ipYmxAjaraHRdgXIqFQqFQrGTkC/fRhVu6A5nvrMAAOsAP9rnWbAH8B38tqiEavIZzgJGPj+PMjpzv7iFG6bNgHxYaT8QntYf7wPxFefJTczlPErZxInT5hPHygf7O1l+Y3/u/+9YPuJYrJ8s5v7DbqHvN8vYFCgFwJ9wK1Voj0Kh2F1QwlLR6hiOpdtubeRCpqJroowwk9sqFIr2iXIYFbsC4m0Ji+HaaXdw/0236BcWAu/A/Y+N5drYw6ylF8vpz7+0K6l4Yw/YAnwMHKOXvHouDLCc/gDc+9AkfuU/fLboBDgJmAfckuifPGwtx/73IxbMPVMvqb0MVq7pD70Xt8VLVygUrYpE9VgqFK2A4Vhm0l8JUJqnJ2o2DO9RKBQKhWJnIERZWy9BoVC0K1QpbLtBpcK2LYZj6Qtl9oEqNR1L1aemUCgUip2L3lt5KVwwic1P5FNBMQdYVuuD0gB6gSwV8DBc8MmTFN4UgA3w49xe7Fe8Vi+RzQF+kSxmCE9dfymHTv0cgFsX38wglvLn0AkwC5gD/AH2e28tANce9jDcCnwK5AMXTam3NlUGq1Aodifa5U5eSrlASjk6Ly+vrZfSIXEmxo1kWtq6X9dcOuc4yVMhPQqFIsG8MYNVeaxih2ME9uSFJRwL/9/efcdLUZ1/HP98aTZsgA1FUcEGWLGjghILseQnVkIQjaJBxRKNJEYRWzQoKiAiligiiYkFRcWCQiwoBumoKEQiiA0sgBKJ8Pz+mLm6XrmN3duG7/v12tfdnfo85+zu3LNzzszeTGQtvoW74ckPOvLkBx1hLvyrb2toB89yBPtfP5b3hjVjPAey/cEz4XGgHjy+3ZGM+LwLdS75mmbMoxnz2JcJHMB4uncaAufBf57eDF6Hzoc/CPfA/v8aCw1JGpwf/hBXRB83Ks1qtaKusIV81HyZbFha9Vo7vd1IeRuWDerVYdsm6/3oarJmZmZVYUY8wFdjNicOEKfzF1p9PpM/nHEldVlBXVbw6+tvZ5+Lp/PMbu05pf9IhtGNhTTh1wvuZc7VraArjN6hAw/Shcsa3cjKr9Zj5LunMPLdU1ifJVzAbVzELez1zavsuXISjWd8yEG8RI9db2Nb3ocxAHfDXydVd1GYmeUlk11hrerlnln4/oylPGbSzMzMzNY0HmNpVhBrVfCMpZmZWVWT+sJFfWi9Sx8ue6svk9mZCezLh422pMXy9xjWoBsAZ3I3f+9/LEcNHcv5F/fjZQ5iykP7wSdAn/nEb5rx9bd1OOrOscTh4sudNmLgsEsBOKT7BBqOWcgDr5wF4+Ck6++nBXO4cOid8AV0v2wIbAWtYzdmKLm9ibvAmmWBrwprVhBrV3CMZXl4rJWZmRXa6P4dWNJ/fU469Al+8eJInpt2LMN27caXi7bg4y2S6zRs8cFCWFqP93o0o0Wf+eiwgAfhkSc60bbXm2hAQEd4pFcn7qULA++9FOYm2z9m/D+YRzOOOPx2BuzXi14MpF23ifALaHDCYu4bdg5cAjPO3RvYm4jqKgkzs/y5YWkFV3TGso67wpqZmZnZGsddYTPDtxupXhW9KqyZmVlVUiNg5z4cOfUqmrSZz9LRddly+YfEEtGCGfx22SAm0QqAHlvfztD+F3DpLv3YtO8nXMHlXDP3OjoPexrWAtaGdrs8zwrqsYSGyQ6OTP6Meu5E+A6mXLsftIV2wyfCF6NZZ9B+/GqDYdTrtoLBUy6GW/qmkbkbrJnVXplsWEbEKGBU27Ztz6ruWNZEhRxj6S6wVpP5/WlWe53/Vj90VvDkXR3ZfMUnLO3TBFrBOgd+w17bjWfPR98CIJqIbS+ey184nXk04xJu4sJuN3Drsb158omOHP3iGF5ZcDCLmjbh7Z57cOHgG7i1W+9kH8P6sS8T2KjTlxz93Jiki+wrR7HsYRi63gVwyttA0qj02EqzLFkzx1j6/g5WcEW3Danrd5eZmdUwRfeuNDOrPEVdYQv5qPn8r78V3Nr1fbsRMzOreb5vVI6Gpiyg+11DuJorWTJ9E7r3G0Kb7m/wKZuxC2/RoP1iGrRfzP0Hn0TvP9/Kuy/uypuTDuSsb+5iI75khyemcfQZY7j50HMZ1PRc3m65BzwPzXmfw4Y9xWHDnuIgXqbrcw8zl+Zccfjl0Bq4ARgOe538KrAz0MdnK80sEzLZFdaq1/ZNGtJwrbqst5bfXmZmVrO8koyW4efLn2Rmg9ZsdcBC3h+/BRPZixkv7Q3Nv+OBpWfB7GT5p4/tRPe1H4JxMOjqM5nMHlx17A3JOMoToBvDaDJ8KX1m9eXROsdzSNMJ8NFiAF449efwX5h8+B7c/ep5XNPwOvgv3PziudzIZRR1g/XYSrMsWvO6wvo/fyu4DdetT6umG1Z3GGZmZmZmVkXcFdbMzMwyT1rG6BhHu6ETGUNHujV4gIfpDEfCN6zLl2xMfCVYWo/GO32Y/PReD/7+3Gm07/UMdA+aMY9RHEOdu77mqJ6P0qPTbWzSdAmvdt2LRUdsySdsBm3hiriRK+JG6AosTM5q6tKgce8PYW24hYv4VBtVc4mYWeVZM8dY+oylmZmZZVoytvJ3HKWx9Ijb6MUAprA767AMjoYT+QfzJ7RA3wSxRGhccFmnpJvqgMW9+Ja1GL7diTRjHp/euDX3XXYy77IjC2jKnxZcxJdsBM3hpGlPQHu4pv91AHS++EGWd2rAIZ0mwDmwqOuWHDbiKV5QM+AWwFeDNcsm38cyM3wfy9rHt20wM7PK9FFswW5MY2j/Cxi63wV0PuBB6vIdh+35FPdyBts8+wk9r+yP3g0e3/cI3mIXAJaN2ZjXWnRgx11n0Ybp0Aa6d3kIzoQ6rb5m5W3rwWfw27uuBeDmL//IZQcnjdIbe/WBu2H/b8by2qMd4K/wyYhNgccANyrNLFsy2RU2IkZFRI8NN/Q4PzMzMzMzq0pF97Es5KNqSdpH0pD0MV9Sy7LWyeQZSzMzM7Oi24tsHyewzecXsXzhBjS+8EMWProVvfgzAwdfCu/Dgn5NYXNoxjx4HZ7d4QgGv3UxAO2Pf4Zx9x7Jkl3XT67keg5c2gHgUgAAFIxJREFU+MEN3DqiNys3Wo9J1+/Cfp+/zs36LTyyDnR+jxvvT89EtgZGwmtNO0AToC3M0NOAz1aaWeFJugnoDDQH2kTEjHT6DsD9QGNgEdAtIt4rbVsR8QbwhqRNgKZlLQ9uWJqZmVnGzTmgFfPHN2Gr+QvpW6cPQ07ozsARl3Jzz3NZwvocx+P8qcdFXP7JtfBrGPzwxfBlsu5bL+3CVmfMphnzuPWs3rAVfMqm8Ap07zKEp+jE8rYbwD1wzPH/YNQJJ3Jrt7MBuFBN2Sc68MZVB8PZi2H/DaqvEMysClXbGMuRwG3Ay8WmDwFuj4jhkroCdwKHAkjaPn2d69mI6Jc+PwcYWp6du2FpZmZmmVN0ttLMrOoVdYWt4r1GvAIg6ftpkjYF9gR+lk76KzBI0iYR8VlEzAE6rmp7kuqn611Xnv27YWlmZmaZ8n2jsk3S3fSO8afzKZsyaNczeZ/m3Dz0j7AbPMCvmKLG0GFrfn/CLfyp50Vs/785nDhhFJobAHz8+TZc3OhP/B+PseCuLVhEE85nII0HL2KgvmFqjOKKU27ixTMO4NAu46EZzCG5eODucRAb8Sn8C6i3AbyWxOVusGa2GppImpjzemhElOdMYjPgw4hYARARKyQtSKd/Vsa6JwOPRMTK8gTohqWZmZllz/l9YHby9OLF/Vn2t43p0uNeruBqbv7vHxm075mc+9E98DRcctQ13HziHxnbswO/n3AL7Pc23WMIAHWuD5gMt77QO7kv5cD5TPx2NF812ZzO8SC7DZgFr8ChvcbDUmAIvNz/IAD2YQJrsZwFd/2LGXd7bKXZmqNSusIujIi2hd5oaSJieEWWz+RVYc3MzMzMzIx5wJaS6gKkf5um0wvKDUszMzPLjI48BcDQAd1g9GgYPZp+G1wKa0N7xrHT1P9AQzhv6N3ojuBvR/2CDoxj6fC6PKfJ8CZwz840Y15yldjZwMN9YT94ZUBb9ol/89WFm9N58YM80vOXcEFfeLkvzw04CG4AlvVlip5lip5lqC5goM5jxi57V2eRmFmVqzm3G4mIT4EpwKnppFOByRFRVjfYCnPD0szMzDKnx+BhNFh0IA0WHchGfEnsKXqMGIaOCrqccS9Te+wI38GpTR9jNtvTY627uCqW0bnng/DrvkynDdNpA38B6AOjF3MOd/DGLgfDJcECmsIdD8H+fTgs2nJ4/Zeh1aNAH06K5pwUzdk9XodZ68DbHltpZpVP0gBJ84GtgDGSZqazzgHOl/QucH76uuAyOcZS0jHAMS1atKjuUMzMzKyKSH05rGqHIJmZrUL13G4kInoBvVYx/R1g38refyYblhExChjVtm3bs6o7ljXVQ2fvX90hmJnZGuiF9KKJw3ueQFfdC0CDWI46BYyEKxZcziIasz5L4E8TaBeLuVC70y6aMUKnkvwzOIaROgaAv8b/ceqCv0HHDZihp4HtOWy713hBE9k9jmCK+vKC9kz3Ph2Yzt9VdOX+Z9OHz1aarVmq53Yj1c1dYc3MzGoJSZdLmiZpsqQpkk7OmbeupIckzZb0jqSjqzPWqvaj+1be04euVz4M3ALcwkl7PwFtYdCeZ3LNxdfxDeuyXc8FsPG+vHL8z/hDfMQK6gHv0SUeBo6CNvWhTX1O1Qgua3oDcauo8/EloEZcydVAR6Zo3XSH68NMaBcHpK/HpA8zszVHJs9YmpmZZdSgiLgOQFJT4B1Jz0XEF8AlwJKIaCGpJfCypBYRsbQ6A65SHfrAWKA5DD2jG2d1ewAAHdUH6sN5asefoxe/0/HQEbp8fi8jdjmD63UhrNMI6MuIOn2AxTB9dLrR+tzYsg93zzqTlfXWY5+VL3EWdwHrACPSZf4JrXbllaL7mxTjs5Vma5rq6Qpb3XzG0szMrJaIiK9yXjYk+e+l6Fh+MjAkXe49YCJwVJUGWE1+dLbSzMyqhRuWZmZmtYikcyS9A0wGekTEonTW1sB/chb9AGhW1fFVm/37wNhXoQ2MPrQDPdQa3RjoxoDT4dbxZ8MV3fmdDgTqE73EiKZnJFdsXacRLOsLXJRubDR7xWbsFZsBk2D2MhbVvZvtV87kDR3Mu3V25YezlQfSYNFFbBpL4ZLf/CQsn600WxPVnNuNVCVFRHXHUGkkLQFmVXcclagJsLC6g6hEzq/2ynJu4Pxqu4rkt01EbFKZweSSNImkgbgqm0XEipxl2wAPAh0iYlF6zNuu6N5kkgYDsyOi/yr20wPokb5sDcwoYBqFVhvejzU9RseXH8eXn5oeH8COEbF+oTYm6RmSvAtpYUQcWeBtFlTWx1jOisjudcclTXR+tVeW88tybuD8aruanF9E7Fn2Ut8vO13SAqA98AjJGcptgKKbXm9NMuJwVesOBYZCzS4PqPnxQc2P0fHlx/Hlp6bHB0mMhdxeTW8AVhZ3hTUzM6slJO2c83xbYA/grXTSP4Cz03ktgb2BZ6o6RjMzWzNl/YylmZlZlvSV1IrkcoMrgF4R8XY6rx9wn6TZ6bweEbGkmuI0M7M1TNYblkOrO4BK5vxqtyznl+XcwPnVdrU2v4g4qZR5XwMnrsZma3p51PT4oObH6Pjy4/jyU9Pjg9oRY42X6Yv3mJmZmZmZWeXzGEszMzMzMzPLSyYblpJ2kPSapHfTvy2rO6Z8SZor6R1JU9LHEen0WperpJskvS8pJLXOmV5iLrUpz1LyW2UdpvNqU36NJT0taZakaZIelbRJOq9W12EZuWWl/kZKmippsqSXJe2eTq/VdVeklPwyUX/lJWldSQ9Jmp3mfXQJy20paaykr1Z1VURJZ6XbmCNpkKQ65ZlXqPhK24+kXjn1OUXSYkn903ntJX2TM29CeWMrYHylxpBP+RUwxuMkvSlphqSZkn6bs06Fy7A8nyVJdSXdnsYyW9KZ+c4rrwLEd0VaTlPTcsv9HrlK0qc55XV7NcRXYgyFKL8CxTis2Od2paRjy4q/wPEdLmmipG8l3VSB2AtShpkWEZl7AC8CXdPnXYEXqzumAuQ0F2idhVyBdiQ37f5RTqXlUpvyLCW/VdZhLcyvEdA+53U/4J4s1GEZuWWl/jbMeX4cMCkLdVeO/DJRfxUohyuBu9PnLYGPgYarKi/gYOBoYGKxedsC84FNSH6IfhboVta8AsdXrv0A9YFPgbbp6/bF86mk8iutjEqMId/yK2CM+wJNc94Ls4GDVrcMy/NZArqlMdRJY5oPNM9nXhXGdwSwbvp8N+BLYJ309VXATXl+bvONr8QYClF+hYix2HK7AYuAtaq4DFuQXFH72uL7q+z3YNYf1R5AwROCTdMPet30dd309SbVHVueec2l2D9FtT3X3JxKy6W25lm8zlZVhxmpx87AmIzWYWdgTFbrLz1ITsxi3eXml9X6KyP3maSNrPT1k8CJpSzfnp82LC8FBuW8PgF4qqx5hYyvvPsBjgemlZZPZZRfGWVUYgz5ll9llGE6bxQ//FNeoTIs72cJeAo4Ief1IODSfOZVVXzFlhPwFbBV+voq8mgUFaj8Sowh3/KrpDIcAAzIeV0lZVja/irzPbgmPLLYFbYZ8GFErABI/y5Ip9d2DyrpnjdY0kZkK9fScslSnsXrEGpxfml3qt8AT5CxOiyWW5FM1J+kuyV9AFwHnEb26q54fkUyUX/ltDXwn5zXH1DxnErbRr7bL+/65V3uDODeYtN2kDRJ0gRJp61inaqIr6QYKrt+KrycpJ2A/UjO+BSpSBmW97O0uu+rfMusEPHl6gbMiYj5OdNOSb9jnpO0fwViK2R8JcVQiPdcwcpQUgOgCz/93FZFGZamMt+DmZfFhmVWHRQRu5Hc8Fokv5JY7ZLFOhwILCUbuRRXPLfM1F9EnBkRWwN/IOnumykl5JeZ+gNI/9lfWMKj7poUn6QtgEOB4TmTJwHNImJP4BTgSkkdqzi+UmMoSzWU4ePAuRGxoBDxZ5mkQ4BrgFNzJg8Bto2IXUm+dx6X1LiKQ6sJMZTXL4APImJKzrTaFL+tQhYblvOALYu+dNO/TdPptVZEzEv/fgsMBg4kW7mWlksm8iyhDqGW5pcOeG8JnBwRK8lQHa4it8zVH0BEPAB0IBknkom6y1WUn6TGWau/iNgzIpqU8FhB8kv6NjmrbE3FcyptG6Vuv4DxlWe504CnI2Jhzv4XR8RX6fP3gZH8UOdVEl8ZMZS5/aoqQ0mbkgxn6BcRf8/Zf6lluArl/Syt7vsq3/d0IeIjPYs2HPhFRMwqmh4RH0fE/9Lnz6frtKb88o6vjBgK8Z1QkDJM/aSXQRWWYWkq8z2Yfavbh7YmP4Bx/Hjg7tjqjinPfNYjvSAFyS/t1wGP1fZc+ekYxBJzqY158uMxpCXWYW3ML41/LOlFDLJUh6vKLSv1BzQkOQNR9PoY4MM0pyzUXUn5ZaL+KlgWVwF3pc9bAp8A65eyfHt+OsZyO3560ZfTyppXyPjKsx/gHaBTsWlb8MO9uhsB04HjqjK+0mLIt/wKGGNjYCrwm1WsV+EyLM9nCejOTy+Asl0+8ypQZvnGtzdJ42LfVay3Zc7z3UkuSrN5FcdXYgyFKL9CxJjO3wr4GmhUHWVY7DNUfIxlpb4Hs/6o9gAqJSnYCZgAvJv+3bG6Y8ozn+2AycA0ksH6/wC2qK25kgzWng98R3IVu5ll5VKb8lxVfqXVYS3MrxUQwCxgSvp4LAt1WFJuWak/YDPgdZJ/EKeQjKXaMwt1V1p+Wam/CpbFemmes9P383E5864Gzkmf102/rz4DlqfPr8pZ9mxgTvq4g/SiGGXNK1R85YjhQJIfD+oW2/55aV1PAWYAv6uM8istvrJiyKf8ChhjP2AZP3zfTQFOX90yLOmzBDzND1fsrZvGUBRPj5z1V2teBcos3/j+RfJZyS2vNum8+9Nympou16ka4isxhkKUXyFiTOdfDvxtFduuqjJsR/JdtxhYkj4/oireg1l/FP0SZWZmZmZmZrZasjjG0szMzMzMzKqQG5ZmZmZmZmaWFzcszczMzMzMLC9uWJqZmZmZmVle3LA0MzMzMzOzvLhhaVaJJN0n6bz0+dWSTi7HOuMkHV0FsX0fj6T2kg7PmddU0tgC72+cpH9L6l3C/O6SHs5zHydIekvSwrKXNjOzmkZSSJomqeNqrDtM0seSbqqM2MysdPWqOwCz2kRSvYj4bnXWjYgrCx1PPorF057k5vLPpfMWAB0qYbe9IuLJStguABHxsKSJwMTK2oeZmVW6AyJiaUVXiohukq4iOZ6ZWRXzGUuzMqS/nl4qaRzQR1IbSS9LmpSeHbswZ9ktJb0gaaqkkUCTnHm5Zy8Pk/SapMmSpks6pRxxNJe0UNJNkt5I1zsoZ363dNo0SY9J2jSdfkAa6xRJMyWdmhuPpDbAOUC3dJneRfvK2faRaazT0vxapNPbp+vcmc6bKmnncpZrg3S9WZJeBPYpNv93aZ6TJI2StHk6fUNJj0h6J41lmH+dNjOrOulx8SpJ49Pv8M4580o6XuyYHvemSpoh6ZJy7uu+9FjxoqT/SLpF0qHpcXiupAsqK08zqxifsTQrnzoR0R5A0vpAx4j4VlJD4A1Jz0bE28AA4KWI6CtpO2Aq8MwqtjcJaBcRKyRtBryZbuOLMuJoDEyLiEskHQL8VdL2QEvgBmCviPhI0jXAQOBk4DLgloh4QJKADXM3GBHTJQ0BGkbEJWmOzYvmpw3UB4BDIuItSb8GHgT2TRdpBZweEWdLuhz4I/DLMvIAOBvYFmgN1AdeAuam++wKtAD2i4iVkn4D3Jxu90rgi4jYSVIj4E3gkXLsz8zMCmdlRBwgaUdgvKSX0+klHS96Ak9HxDUAkjauwL5aAYcBdUmOExsChwBbALMk3bM6ZzjNrLDcsDQrn/tznq8L3CFpN2Al0BTYDXibpPtoL4CI+LekF0rY3ibAvZJaAt8BjYAdgdfLiGM5MDzd/j8lLUvXO4TkgP1RutydJI1agLHA7yVtAzwfERPKl/L39gWmRsRb6eu/AIPTBjbArIiYnD5/HTimnNvtANwfEf8D/idpONAunXcs0BaYlLSFqQd8lbPe+QAR8Xl6ZtjMzKrWPQARMUvSJGA/ICj5ePEScJOkBiTHpYqM4x8ZEd8CSJpFcrxbCXwo6QtgK+CdQiRlZqvPXWHNyif3l9DrgY+BPSJiN+ANYO0Kbu8OYBzQJiJ2B+avxjYARHIgL/qbKwAi4laSxt5nwEBJ167mPkry35znKyj/D1YqY961EbF7+mgdEQeWMx4zM6tapR2LAIiIR4ADgTlAb5Izm+VV/DizuscdM6tEbliaVdxGwLyI+E5Sa+CgnHkvAqcDSNqWpOtOSduYGxEh6Wck3T7LowHQJd3+QSSN0VnAC0CnonGIwFnAmHS5HSJiTkTcCdxGsbGMqcUU6yKb4zVgd0k7pa9PAyZHxJJyxlySF4BfSaonaZ2ivFJPAD2LukpJWis9QwzJr9ynpdM3Bo7LMw4zM6u4omNdS2B3YAKlHC/SsZYfR8R9QF9WfSwys1rMv/CYVdy1wAPpOMA5JN17ilwADJN0IkmD7/kSttGbpHtQb2Ba+iiPRUBLSRNIuuSeGhHLgZmSfg88LymAf5OMYQToJakDSTfab0m7kRbzGEkjbwrwt/QBQER8JulXwAhJ9UjOfHYtZ7ylGQrsCswkOWP7T5Ixl6TjQZsA/0y7wtYBBpN0770a+IukmSRjbV7lh26yZmZWNb6V9CrJRerOjohPAUo5XpwE/FLScpKzmr7ojlnGKMI9ysxqg/SCOhMjoklZy9ZESq6qe1O+txuRVB+oGxH/lbQB8ApwcUQUnaFtTi0uJzOzmi79AXP9yrhgTr7bVnq7kaKL0ZlZ1XFXWDOrKp8D/dKztPnYGHg1Pbv6BvBwTqPyBGAU8Eme+zAzs+rxCcl3fMeKrihpGMkZ0sUFj8rMyuQzlmZmZmZmZpYXn7E0MzMzMzOzvLhhaWZmZmZmZnlxw9LMzMzMzMzy4oalmZmZmZmZ5cUNSzMzMzMzM8uLG5ZmZmZmZmaWl/8HkhOad0IPY5kAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5YAAAHuCAYAAADk5ZP7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzde5xNZfvH8c81IyKnHDMhMSHhCROlEhJRFJFQknPOxxyKcSiHnBUJSYpSoocaHfzwkCklhJxShEaEnBqZzNy/P9YehoaUPfbM7O/79VqvPXvtvde61ipr7Wvf933d5pxDRERERERE5N8KCXQAIiIiIiIikrYpsRQREREREZHLosRSRERERERELosSSxEREREREbksSixFRERERETksiixFBERERERkcuixFLET8xsuZkNSvLcmVnVy9zm327j/P1e5v5mmtlMf2zLX8ysiO88FAl0LCIi/5aZVTWzi87xdinvSQlm1sLMdiV5nuruBcFK90BJS5RYiviYWVEzm2Vm+8zspJltNbPRZpb/X26yABDtzxgvoAEw+grsJ1D24J3LPfDXL0AiIv7k+7HO+ZYTZvaVmdXyw6aj8a5lifsZZGbLL/aeAOrqWyTwdA+UNEOJpQhgZjcDa4CcQCOgBNAayA20/zfbdM794pyL81eM5zOzjL79HHbOnUip/QSacy7edy7j/bVN81zlr+2JSLozBu/LfHlgLfBfMwu/nA065+Kcc79c7nuuBOfcUefc0ZTafuL9S/6e7oGSliixFPFMAr4HHnLOfe6c2+17fAqYYGZ3mNkfZpYz6YfMbIOZdUtug0m7sSZ2bzKzama2xcyOm9n8pNszsxxm9r6vtXS7md1/3vYSt3G/mW0BTprZ1cl0wc1nZrPN7DfffpabWZjvtVZm9q2ZxZrZT2Y21MwyXOpJ8nWPesPMRpnZUTPbbWYPmtkNvv2cMLPFZpYryWeymNm0JPG8a2Z5ktnmMN97fjazLkleP9MNyHc+XwduSNKikHiOI8ws2vffabeZdU/mv0dLXwvBH8C9l3rcIhJ0Tvi+zG8HOgHxQA0AM6vpu/afMrPvzaxJ4od81+RpZnYgSc+Xh32vnenmamYtgEjgniTXsiKWTFdYM+vhu6b94bvGlU/yWgsz22VmjX2Pv5nZ9L9L3Hz72eKL8UMgz3mvn+kKa2YTzGzhea8XM7MEMyvke17UzBb57gExZvaSmWVO8v5dZtbLzP5rZieBlmaWycxe831mT5JjaZHkc5ey3e7m3TtjzWyzmd1zXqw1zexr3/nbZ2YjLnX7yZw33QNFLkKJpQQ93wW+KjDWOfeXsS3OuSPOuS+An4BHk3zuP0Ap4O1/sLvngCeB6kA5oF+S18YDNwPVfO8ZepFttATKAsm1iM4HCgF1gArAm0Bi8hgC9ARuwWuJbQm0/QfxA9QHTgARwAJgJjAFGA5UBm4877jGAFWAusA9QGHfZ87fJkAlvOMeb2a3JLPvaKAbsBevNaEAEG1mWYEoYCPeee0LPG9mDc/7/CBgIt55XnOpBywiwcs5dxr4E8hoZoWBhXjX2TLABGCWmd3me3sXvGvjA3j3h+7AsWQ2Oxfv2vgFZ69le85/k5k1BgYDffCubd8BUWZ2TZK35QOa4l1jH/EtrS50PGaWA+/avcS3zQ+BZy9yCt4Favo+l+hR4Avn3B5fEvsJsBXvnvMQUBF48bzt9AX+i3f/WQj0B2r63v8A8LjvWBLjvNTt9gE+AP6Ddz5nm681zsxKAYuAj4BbgXrArn+4/fPpHihyIc45LVqCesG7kDvg1r95X39gRZLno4CoJM+XA4OSPHdAVd/fVX3Py5+3vS99f2fH++JSI8nrNS+wjTvPi+vMfvGS0pNA/ks89l7A0iTPZwIzL/L+mcD6JM/z+2LqmmRdH2C17+9seMlvzSSvl/R9pniSbW44bz/bgfa+v4v43l/E97wFsOu897cDdgOhSdaNAKLP++/xbKD/f9OiRUvqXs67pl6F9yU9Ae8L+/Ck1xXfe94B5vj+fgmYfoHtVvW+dp15PghY/jfv+QIYluR5BrwEtK3veQu81tQ8Sd4zFXjnIsf3NN4PpUmvl3OSXleT3gsA811fmyd5fV3idR9oju9eluT1ykAsYL7nu4Bp573nANAiyfNivut0i3+43YlJXg/zbaOk7/kbwPwLnIe/3X4yn5mJ7oFatFxwUYulyKV7E6js6/ISAjTxrfsnNib5ex9nf50tiveF4askr395gW2su8j2SwPbnHP7k3vRzG43s098XW1OAM/jtW7+E98l+fuA73Hzeevy+v4uivfF7MyxOOe2Akfwbq6Jkp4XOPfcXIqSwBp37hiUL87bB1z83ImIJOrvu0aeBJ4BOjrn1uFdU86/Nie91rwJNDKzNb6ujeUuM45z9ue81tM1nHtt+8U5dzDJ8zPXTzPr7+ueecJ3PODVEPjmvOvlhe43OOccMA+v/gDmjTUtC7zne0sZoMJ5+/kMyMy5hYjOXH/NGwaSF/gmyX5+AH5L8v5L3e7591U4e/8oDay4wKFd6vbPp3ugyAVc8tgqkXTsB99jCWD9hd7kvC4/y4FmwGq8VsYP/smOnHN/Jn3K2e7olmTd320j9iIv24W2kaSrzDt4Y3sOA425SJepCzhzDM45Z2bnrCP547rkbSazjUtxqfu52LkTEUk0Ba/L4Al3bjGdi15rnHNfmdmNeF0778frptjPOTc+xSK9+PVzCl5X1qSSu0/83TV0LrDC1x32UWCVcy7G91pWYBnQIZnPHUjyd9Lr76Xc8y51u8ndk5Legy60j0vd/vl0DxS5ALVYStDz/dK7HOhmvjtEUueNK3kDbxzI48A859xJP4XxA3Aab3xHokr/YjubgJJmltwvnSWBa4FnnHNfOq8oRcF/sY9/IvG4bk9cYWYl8arvbv2X2/wTCD1v3VYgwsySrr/jMvYhIsHtsHNuh/trhdatJLme+ZxzrXFepe43nXPN8H7Ea3mBfSR3LTvfNs69fmbAG9t3Sdc2Xyw7Epck26zg63mTqGIyH0+6ndV4rWgP4yWWc5O8/C3e/WV30n35ltMX2N5vwK94YxsTj60o3j3qX283GZvwxjUmxx/b/zu6B0pQUWIp4umEd4P51Mxq+KqvVTaz6Zw7l9f7eMlYM/55N9gLcs4dwxvjMsHMKpnZ7cAL/2I7S/FaXeeZV8k23Mye9BWc2I13Q+rsq4TXFq/IQ4pxzh0HZgAvmdld5lUznAks9iW2/8ZPQH4zq2BmeXxFGmYDWYDJZlbSvCqNnfEKIomI+MsreEnZIDMrbmad8K6jEwDMq1DayMxuMrMyeGPlL3St+wkobmYlfNey5L6TTcC7Zj/mS0heATLh3S/+rTl4Cdw4377bArUv4XPv4o3LL4N3L0w0G2+c5zu+yqThZlbPzP6uCM4rwBDzqqWXxWtdPcnZFsZ/u92kXgQe9P33KmFm5X3H66/tX5TugRJslFiKAM6574DbgP14F+iteCW9D+Pd7BLfF4tXDfAXvFZOf+qGN+XJ/3wxDPqX22mAF98nePOvtQD+dM4dwKsA2wHvV9z7gWGXE/Al6gl8jld5cAVeNbsnL2N7q/C+GP0f3i/ed/pu3nXwqgJ+i/dlYqBz7vwuYCIi/5pz7ie8VrtH8K6j3YCnfC16AL8DA/CuQ8vx7iGdLrC5+Xjj6tfgXcsKJ7O/t4EhwGjfNksDddxlzF3snDuCV4X0ft826+MVJfo7c337X5G0Jdd3/a2Kl6Qt8W1zKGfHO17IMN/7P8QbpjEbOA6cusztnuGc24T33+thYINvX0X8tf1LpHugBI3EqloiconMLAqvKlz/QMciIiKSHphZAeBnoJJz7utAxyMi/5wSS5FL5BtrWRWvEl4J59zOwEYkIiKSNplZcbxaAl8AufCmxygAlHL6ciqSJqkrrMil+y/wFtBPSaWIBJKZfWBm35rZOjNbaWa3+tYXN7MvzGy77/GmAIcqciEJeOMA1+N1hT2GN9+jkkqRNEotliIiImmMmeVwzh31/f0QEOmcK29mS4EZzrm3zOxxoKVzrnpAgxURkaCgFksREZE0JjGp9MkBJPimGSoPvO1b/zZQ3szynv95ERERf8sQ6ABERETkn/NNh1QTb3L0+4FCwM/OuXgA51y8mcX41v8asEBFRCQopOvEMk+ePK5IkSKBDkNERNKob7755qBzLlW2+DnnWgOY2RPAKLxpLi6Jby6/tgDXXHNNhZIlS6ZIjCJy+b75JgaAkHL5AEhYd5CsFbJw4psTwDWEls9C/OkMsMW4quwpQkggF4c5SB7+/MaoELaRTQVKAZCROK7iTzJwmpNk5vg3v5O3QiinycApMhH7Y1byFf2FeEI59E1eilbYwbVHvQ4S37gKcBQ4eAJvSKynQoWwK3k6UoS/r/XhZi7WXxvz2QefOOfu9/Nm/Spdj7GMiIhwa9asCXQYIiKSRpnZN865iEDH8XfM7CTe/HzbgNy+1spQ4BBwk3Pugi2WuleKpG5mgwGo67zkcJEdBX6mpwsljH30tHxADe5ysXxuZanq1rEmNoKILGtYbhWhQC7Yt8S3te951GWhEHsYU/45WLefzm4W/XmBAvYrr7kWbKQM4/P29Wb//B3Y5fvo1cCy2XB3M1jpxeRc5JU6DSnK39f6MDPXzl8b8xkEqf5+pDGWIiIiaYiZZTWzQkme1wUOAwfwKmw28b3UBFh3saRSRFK3xKRS0hbD6xbqzwXIYWZTfdf8VCldd4UVERFJh64B3jOza4B4vKSyrnPOmVl74A0zGwj8BjQPYJwi4icVXTUW2bIka7Ixxo4DkyAbsBwy8RE5Tjl2EE54lh3EkgXIAPvA67wAkJld3Mi7RZ+Enft51H1MLFkYxrN0c2NYTUWmVunK8F+706//OCgDb8+pD0Cb2GmcWNQMHlOy+3cMuMr/mz3qnGvr/836jxJLERGRNMQ5tx+4/QKvbcWbdF5E0pGvrDSUq+I9WbeEgq4I8YSyz76H45mhQkEyulMczfQqR4G9hMO1zeAJqDvrPd4+1RSArFd/zVdDyvPjj2G8wLNk4hST5/SAZsuBk7RyP+KaGXV4H4Z/DzffRJOPF3j7PQFurmEMAtJPN1jxHyWWIiIiIiKpjLrBpl2JXWGDjcZYioiIiIikWpGsdXfBOmAd3Oxy8x6N2Bd2IzS5iWLuKKXd1yw/Vs33/jIQ0YwvDpeDN2EGLcnaO56sveOBcIj8k6J1YujFKG5lPSyDqu4PqFub13p0xOY6Ft/UAKrdBJ2Arb6lNVjYIECtlZI8JZYiIiIiIqlMbVeGt916YDDlbST8fAp+PsUW20n1Y0uhIfAlxJKFTeVv42SOg9R2ZWjhDvDI17O5o8o6nnDTGEEf2k6cQNuJEyBzdgi/ChbvZSR9qctCKANVWQ6DgEXAH0Br+HZpCbgOqOpbTgTkNKRJiWMs/bmkBUosRURERERSEbNXAh2CyD8WjN1/RURERERSJW9sZT5KsJ0m2RdQ173HIrsfSvrarQY04GQOoD5QEJ7idTavLUUF1jCgzWioC0yBtStKUb7oZhgNDPdt/EvgF+B0QfaTj/F0Z3iX7vTdN57IjCOhKXw9uDTbKcEpMnqf/WIRAG5GXeigLrCXIljHWAbjMYuIiIiIpFrFXBXGN7gF2sFxsvGwe58PsjzmvTgUWrgpZOQU6ylHZaIZVmoIH2wpDoWA6cB/ofyczYz/sR1dZ07F1jvvs48DGxcz3H3KXBqzeFgDFvevhtVzjPm6I3eXXkHF7RthF1DrBQq4neyztb6oUu30ialOCk03kuqly66wZlbXzKYePXo00KGIiIiIiIike+kysXTOLXLOtc2RI0egQxERERERuSSJU4z8YLdAVnh41Dss73A/8YR63Vi/BJ6CEmxjqnWgCDt50O6m9ub55DgVxtTdzWEEcARYBt1WvIp95Hjlz6d45c+n4GVgdm36NRjHusV38GL/LhwiNyEf/k6PmZOJJwP5iu/2WiybPMvLdOR9t1pVYP+hxK6w/lzSgnSZWIqIiIiIpCVn5q38YSCwAUrCB7Mew/UzcnOI0mW/pnTZr6k74z36/TiWfG4f5VgPn0Syh0Icfec62lo/KANMAaoBDwJH4OkNr/P0htdhDfAh0AfIB71XvETz/W9QKP8ePmpxLw2Yz/6hN/BW24bw9ioesWdpQFQgToekQUosRURERERShTJQbAg0LAvProUlYA85Zi5tz6bCt7Gp8G0sss0ML9qDUOLpN2scfAYNed9rqSQXRAL3w6am4fzvWCX++1ktbyqRQeCaGLnf+pmQIr9jrzlKVPmWhEbXsI7yPPjpEnJzkPwDfuLxKvOAJb5F/qlgnW4krbSsioiIiIikS2daKyVdUFVYEREREREJjNqRsBiY3QD2QO65+fnt1995LP9c5lRpCQ97b3t4YgkWEMa+GTfyRMtpzNrXFpvrYMtgKrgaFGIZy+Kqctuxrzl5JBsvFu4BVb3P2k5HxkzHmJ3/cXJPPkjNDivhMdhFEdx7hpX+g9phH7F4ZWEgEucCcyokbVJiKSIiIiISYA9HvcMHcx+jc+NRvFSvN4d+vp4co39hwbH6fLiiBhspA0C/+eN4q0FDxrUMZd6xhuwsUMSbZmRwJN+shnaVmvPBmsfgY6CFo/uxl1jSpQYA4exg8o/d6ZTzZcaE9IAb4N4OH9GI93h42gJKs4FZPAnuSfJwPGDnIq3TdCMiEjRi405zMi4+0GGIiIgEPXWDlfRCLZYiQejOEUsxM9YOuC/QoYiIiAS9u1xlPuhxHxmfO8ZqKlF84Qa222mqTPyBRfMaEds0C/3yjgMg36+7edzaQ787uXfYR/zfigcgE3QbOII1VGA6rRlTuSM9d0yieNGNZFgFP9xZDIBPy9aDDxyHNl3PN2UjcOUMa+r4dM7d3Nf3cxgBea0XgLrBXoZgbbFUYikShArkyEzGDOqwICIiEnjX87ndTDc3gkycYuRNkVT9/mO2z76fRbPK4zYYme4/Cv28dx8YWBgozFvDGrKA+uSrspv9m24gZ9w+dmYsSq4VsRyqkhuqnmbH/mJYZgfR3mf/t6ESOylCy/0zmLjqGcJrboK98DRT2Nm9CAk2GkDzVvpBMCZZwXjMIkHv5J/xnE5ICHQYIiIiQc2CsVlL0i01WYgEodi408RqjKWIiEjAJI6tHO6+gycKcoSc3M1Kvv2+BMt/rAXrYEzzjpQZ/RW1cn0Ce4G98OiQN+AjWEME9VlAbGwWBpfuw6SMnbh23knIBG/xOMUKbyPhm2uoUH4V+SrvJl/l3UQymBJsp3f+0Vhmx+fcCW9BO14lYfA18HSkWiv9QPNYikjQiD0Vz1UZNHhCREQkoE7PZwH1IRxm7X+CmRPa8/Kw1vQvGsmwI0MI5TRTeJq7QtYwNaE5AG2jZ9GnzmAWUo/xK/qSsfQx5mZpzJZPyzGl4Wf0ZyCP8xZHEnKyuE41DpGbULwfkz+hFncsXcfb1eszoPyzTKYjxZZ+Rwm2wSu+IkKTlVjKv6PEUiTIOOeI/TOeq9QVVkREJCBUCTZ9M4IzyQrGYxYJanHxCcQnuDNLaIgFOiQREZHg1K8BNRhIw4HzeGbtRKgKk+jIlpblaDtjAt1WvwqH4K6Ez2g7axYALzdvTaem0yECvu1RgnXcynRa81bNhjy+cB6fh9/HV6XKMDKkL48nvMXBQwVpl3c84HV53Vy9FH0ZThZOsmVzOVw2wwoPAlS0x19SqCpsDjObCixyzi3y/+YvnxJLkSCTdP7Kk3/GkzWTLgMiIiJXwrktle3hBGykDItyNYKH4cUZXXim3kRyf/AzzXmTspU2UployhzbQnjzLQBEJgyGa6Bgjx0cIjd5OERrprONElASQnL8TsVPN3q76AbUhKfGzwTgju3rKFh8B3tjCpEvbD/dSo3AsjvIBu7YFTwR8m8cdc61DXQQF6PiPSJB5vckiWXsqdMBjERERCRIlYmEiPxQGnJziJcPt4YHYSF14Xk49Nb1VNn/PzrNnU75pZu5qpVjz/5C7NlfiMYhc6E+PM+zbKAMDw5bwgHyE0Ud3Enj2fzDYDxkvv031m4uRYnx3xLKaUI5DSdgz0M34fZczfFj2Rg/sS8cH+wt4jeJXWH9uaQFSixFgszJuLPJpCrDioiIiIg/pJUEWET8JGky+XucWixFRESutEEb+jJo4ggoCTNLtWfmw8CDEL2/MoyApnNmMGdgS+/NV8MfbxivZ2kBQB2i6FxnIjcP3AVD4SeXnxum7ufDtjWwOxyfx0ZAFORnP0MYSEZO0YR3ANhSvgg2LoF3iz5EH0YyqGtmQGMr/S2FxlimekosRYJM0sTypFosRURErpzBXgI3qChk3XSQE13zMHRzL6J4gC9aViPh42ugPezkRngMb+7KNdAmy1Te7NLG28Z64C6gNDzhplF4xQEYBQ9+vISpsc25y9Zwq/uSsfSgADE8ErMA9+LVAFhxx08d8lN4zwHsnoVwI7gfA3Ae0rlgrQqrrrAiQSY2SSvl70osRUREUpzZYMw2BDoMkRSVLpNpM6sL1A0PDw90KCKpzrktluoKKyIicsX84nssCCc+yMPb0+rTpMoCWHkMMsCgP/syaPMIvphfjUcazOb9I814pP9s3uzdhooTVwDwVUwleDATXAezVrWldZWXoRG8PKw1UdThBreVboyj+uZofiwVBvMyYQ0cAE9Umcb9fMyW4+VgZ2LBHnWD9bdg7QqbLlssnXOLnHNtc+TIEehQRFKdc8ZYnlKLpYiIyBVRoKzXhfUueHtFfQiFRdT11kVkh/+DKOrwYaka3NrgS95v0Aw+htwchP+Dr368m69+vJvSYRsYtLYvLIGBd/bnAPlw3Y0Ywvig92P8NLUkLawUS0tVpmibGLK2PggngBPePJbzqQ+3eEmlxlaKP6XLFksRubCk4ypj/1RiKSIikpLOnbtSgkGwjrEMxmMWCWpJK8FqHksREZGUczapzAa3Qsi9vwPQpM0C+BnmZGsJwwfzhAvjFBl5t/+TzBnWlPVm0B1qD5nPVDsCTYAWBsCmg7exqf1t9Fk4mKEtX4BQoBYM2zyEu0Z9xucb7uNDt5LXeQri4cR/8hDy+e++KI5zsz0FqLVS/E+JpUiQORkXjxk4p3ksRURErow7yRe1mwNLCwPw6LQ3eHfpk9SuPp8ubjm1bQxQnj5uMCNDItnr8vAgH7J4YAMWu5eobZ058UdeAEZm6stQu4sR2QcxslsknAar4OjgxjLpm57YC44HTy/hjoXLODwjC8uoyiPWA4D/bNsG28AVD9R5CA7BOsZSiaVIkImNiyfLVaEkuHMrxIqIiIjI5QvWxDJdFu8RkQuLjYsnc8YMZMkYqhZLERGRFHK2G2wNSrsQDtjr0AJoAe9OfRJaQB4OEUUdeL88w113pie0BvcnBdscZN2vd+BuMJZwLzydi6y948naO54ybIT/1sae+hamAB8AvaA427DfHYvnV4Ne8MX2amSJPckj26OAcG8pMdhbRFKAWixFgkxs3GmuyRRKgnNKLEVERFJSk0h4Gzb1ALe7IhwYBIBNcXTYPZYp+9uR8NQ1PBz1DgfJTeOQuUye1IN7O3yE2U76uDcYs/o5hk/uzjZKAFCNZaytV4pQF89/YjaQOWssv+TPRclRP/J2lfrU3v0Ze6vk4fodh5ifpTZti09gKkfOhKSxlVdGMCZZarEUCTKxcfFkviqULFdlUFdYERGRlLIqEj4EMgNLwG5w7K6Qj90V8sEHMPk+b9wjt0IYMYz59Dl2UgTmwXs0gmpFeIfGPFFpGgAzh7Rn5pD25G1+nHJ7tvCfIdsYFBZJ7IFcFP19LzE7ilKMHbAkA/GEwhb4hgjKsT4ghy/BJxiTaZGgdjIuniwZQ3GoeI+IiIiIvxlwlb+zrDTQFqDEUiTIxMadJkvGDDjUFVZERMTfvLGV5YG1cHMkxTdvoBB7+D+rzg3D9gPw6a93M5fHKMMGur33Kk8Me5PJM3uweEoDaA25qsRCTvhpbUlWlIc3Z7XBNfWmG7EYR5Ych3l/YB0eWR1FWKUYXqYTbIHp4a2p0HIVVfgfYXX38cWPVaHYEEBdYK8kM8igxFJE0rvYuHjyZM2EAw6diA10OCIiIulXDdherywNF86jtZvOMqoCEME31Fy4kj+rGh98X5+NlKHYnO8YTj9iKMAz94+iYa55zBnZkiXl72NK83Z0ZzgAr4Q/xdMxU3jkxAKWVqpM9Q3RcBAe62R8UzeCNZ3vwho5fupbEr4GMkTi/gzcKZDgocRSJMjEJukKe/JPtViKiIiI+JMZXBUa6CiuPCWWIkEmcboRgN9PKbEUERHxlzNTjPxck6w57+BESai6+2PysZ8mDRaQeeZvAEwd1BXWQPaqhzlp19LUzeGH+bfw6MsLuWvpZ0zI1ZV13Aq1IXzBXsLq76Nn1CQActT4hbphC1k0pxGTmnakeNkN7DpcBLrCN3PuxMo5tlQpQvXoZeyz477Iyl7xcyHBR4mlSJA5GXeaLBlDz/wtIiIi/nQnua87SJ+QkTyzZwzdGcc4upNv/m4ORBUG4POxEVTZ/z9OvnMtH7oaDGEgdAIGwWPM5eno1yEnDC3bi3pl32VRy0a4Ab4xlssdi3I0omnTGcxZ2BIKggs1yAX/a1qJe1av5h5WePNmorGVgZAiYyzTgCA8ZJHg5Zwj9s94rvEllrF/xuOcw8wCHJmIiIhI+pAiVWHTgCA8ZJHg9cefCTjHma6wznnrMmcMwoEAIiIifpTYDba2O8biOdfzzJ6J8Bo8tPoTmAQVZ63gYIXcAGTjOCvy38Nde9fw4KdLKFBzJzNjGtPCxhDTNoz+lQfyBLO4ucMu6Hua3NN/5pjL6O0o0ylKh21gGdV4u159KhONZXFk3HuMbAnHORqRiRylTsHNkbjNAToZEpRCAh2AiFw5sb6ur1kyhnJNJi+Z/F3dYUVERPykP5mIg6xQsc8KQh74HfYD98O2uOIktLmGhDbXcGfsKnJzEK6DPjUH8x23cIScPOEWMzG2C6fIyGh602fyYGoWjuLQiOvJvjuO7LvjcDWuZlNMWT7iAXJyhG0UJ8eRX4gbnZ3cIYfIe/RX2DLYWyQwDAj185IGqMVSJIgkzluZOWMoiZ1fT2ouSxERkcv2uVvEXf0jacocPnjoIb76qTKvFX6SVi1mQyc42us6GO8AODE9D3O7PMZbHRpyL0vIZbEUc9/xIQ/w5sw2jG40APvMsaVpEYqznU+vq8eMG5t6O9oMxMBEurCLIiyPvh9Wwvhh7RhJX+JqZYeISNzXgTsXEpyUWIoEkcTE8pqMGUgcVqkWSxERkctjNpjPXaCjkFTDCMosKwgPWSR4Je0Km9hkGasWSxERkX8tcWzlXSvWMGDYszw6ZCG543/m4MaCWF9HvsO7uZuVHCEnd7MSgGxdjhNPKJWJpsDAI9Aafuh9C6+Oas8jHWazigp82vRuJtORNURAOLSaMxsAV9HIE36Q3ByiJTNw7xrLxt9Bb0bxHo24a01dX2SqBhswQZpYaoylSBA5maQr7DW+Aj6xmstSRETkMj1K/yoDGTr5BVgPh567HsvsKD5nAweyFOb9ic2IYA1zaMocmtJz5CSOkJNxdId9wG1QYNROmjOLCXQlksG8SXPmJDTliw7VaFplBoubVmNx02o0DH+L5nFvcIScTKE9EeM/p3r/aOqyiLvMSyo1xUi6lMPMpppZ3b9/a2AEYS4tErwSWyezZAwlxNcXNlZdYUVERET8y/9Z1lHnXFu/b9WPlFiKBJHfz3SFzUCIusKKiIhclsRusDS8maoso0iH5izqUJeKrCYD8VQmmvaxU9hiv1Cxy2p2EA7ArjZFCCOGTuWn89Pa/FThf/zUuyTlOmyh9Y0vs2TSg3APPF+6JwPuH01VltOGaQDUYAlH5heAjTDwhf5UYA2hw+IZdNsIiEBFeyRglFiKBJGTybZYKrEUERH51+pG8sh7s9lIWXoOm0TT/jMYUH40IYt/p3n+N9kysBwuyrDdf3Jz4Y0AxLXOTqeC0+m2dgQruZtJdKLvqOHYCseHN9agXMcvyMpxPq9zH92iRlCHKF6lHQCvr3oaTsPBF7LSlNlE8QBPMZM71jzsC0jdYAMucbqRIKPEUiSInNMVNkRdYUVERET8LkiL9wThIYsEr5N/ni3eE6oWSxERkX8tsRvspoXhlK68g/dbN4OC8Er809y6dj29F7yEbXdk7HaMsbk60ILp7KIIAFseB0ZDfvbzeMxsXgzrTWPmsvGmithmx2ulmtFq6mzcDcbdfEoj3uObkXcCsLNPAYrcvI+SCVu5N2QJ765+Em73YlHRHgkkJZYiQeT3U6fJEGJkDA3BzMiYIUTzWIqIiPxL410MT/IGAINa9qUQe8jR5RQchDVzKtCWCUzN25UeX0ymb/ggZv7odWd9uUFrZjdoRr8V42AfPHNqIgCVmq/GZTBK8C0ul7HilYoMIZLq90XDU94+b0v4moNrChJ7exbeXf4kM+s1BgdPMjcg50CSoRZLEUnvYuPiyZwxFPO1VmbJGHpm3KWIiIj8vTMFe0TkHEosRYLIybh4smQ8O5r8mowZ+F3zWIqIiPxzBSLplhc6/zqKItG7vKqsdwCZ4Ns5JZhLY4aVH0KBX3eS6fBRfqQoI7/2uqqeKpqJLwpXgxbAFnjxvS48wSwKtDnCa9OaMZy+fNTwXtowjX32B5+6u1lNJQBGxvbl+Zo94RjQF1r0nYvbHKiTIBcUhMV7QgIdgIhcObF/xpMl49nfkzJnDOXkn+oKKyIicim81srrveUXoBc0ZQ7ztj5Oxa9XQIT3vs2UYgfFqLh2BbX4hLjc06nOUno2fp6ejZ+nCDuhG3C/l1Q+M3ciBRodgRvhOFnJRBwPdlnCcPpS0f3Kg4c/Ig+HyMMhQjOcZoB1Iyx7DBQB37BNkYBTi6VIEIk9dfq8FstQtViKiIj8E3Vbe48ngN/hjrnrGND4Wb6yTBRwO2nKbJqsXsDnlSKIIYxGqxZRyPVnckJutoeUAGAeDenWYwQAzx1+nu8bF2Jb4xI8aA+Rp/8hHuy/BPekUYn/kZuDFMq1h4XUBeDomuuAvfyQ/RYA3LErfQLkb2mMpYikd7HndYX98eDvwO+BC0hEREQkvVFiKSLp3cafj+KbvhKAUgWy4wIXjoiISJpxpmjPIu/hUfcG8WRgP/lYRlXoV4l9dWBfVBhDK/XirmFrvHF2/4NWUZM4tON68hU/AMCBY/k5kj0nM2e0h/UQXnkvJaptpbObzONN58Fe4Db4alsVZjZtTDWWc0P0fgCWVq5M9Rei6dx/lC+y3lfwLIhcWJpJLM3sLrxCy5mAI865TgEOSSTNCc+XlWxXn/1nH2JGfIJSSxERkUsSHnmmo09D3ufRyQvhIPAm8D5wO8yp05LhUd3hOeiQMJbJB3vQhYm8NqgjzPE+G5Y9hjmHm0Kr2Ux1n/AdxZhEJ57u/Tpj5nTkELmhF+QbvZsWc+fC3aeYWbkxAJk5Cc8O5qVnNW9lqqbiPf5lZqPNbKeZOTMrnWR9cTP7wsy2+x5v+rttOec+d861cs49DhQys6wpGbtIeuTwkslEISGQ4JRYioiIiMjlSekWyw+ACcDK89ZPASY5594ys8eBV4HqAGZWzPc8qU+cc6N8rz8AbHHOnUjJwEXSI+fcOV1hDVNiKZLGmFluvPaRYsApYAfQzjn3q5kVB94AcgOHgObOue8DFqxIOuF1g20PO9Zy2N0FQK7JsVAVeBL6fD+YVVTm8/X3UTFqBf06jINNcJDcDB/VnY68DOvhNavpbbDhTdALoCJtOzRj6ORexJEJfoaesybhshj1Rr8LwK2Nv6QPI2kycYH32a6LgLVX9PjlHwrSMZYp2mLpa2Xck3SdmeUDygNv+1a9DZQ3s7y+z/zgnKtx3pKYVLYAbnPO9b3QPs2srZmtMbM1v/76a0oclkialeAclqTF0gyNsRRJexzwonOuhHOuLPADMML3WuIPt8WBSfz1h1oR+bea5Ic7ypMrLJZcYbHk67AblkD/rwfSmLnEk4GqzT+mDyPgF+hZ6nneHfkkOylCFVbC/fDH78X54/fiHH4vCzdU2spa9xDkhHgyMHTYC1Scs4JWzScxv2FtFs1pxFh6sH7i7TRZuMAb27kIEpNKdYNNxRITS38uaUAg5rEsBPzsnIsH8D3G+NZfkJk9CDwPXGdmUxIT0fM556Y65yKccxF58yb7FpGg5RzntliaoSGWImmLc+6wc255klVfAjf83Q+3IiIiKSmN5L/gnPsQKBjoOETSMi+JTDLG0vCyTRFJk8wsBHgaWEgyP9yaWeIPt+rCI/IvmQ1mqfuE6nYPkB/IDMCBtUVo0WUKw2wIjd1cqrGMjMQRRyZazZ/E9LjWuMyGZXfQGIZO68UaKgAQRgw/WTH2u/z0HzaQcXHd4DR8FV2Fr3ZUYfp/OuGOG1bY8ePuMIrOjYEls30RheNcs0CcCrlU6gp7xewBrjezUADfY5hvvYikoPPHWIaoxVIkrXsJb5r2l//JhzRsROSf6c0onnDfQ+uboWERaFiEquU/Zmbl9vAU/CfLNmIIoxrLKMQe8nCQo59fR+UuS+FBGD6tO5PpSEtm0JIZFJ0aA29cxSFyM2ziEMIz/sCmgeFwGt5q3hBb5bC7HYyHKOrwSuOneMUtwblmSiol1briiaVz7gCwHmjiW9UEWOec051NJIV5XWGTjLFEVWFF0iozGw3cBDR2ziXwD3641bARkUtzZu5KkX8q1M9LGpDS041MNLO9eF1Yl5jZd76X2gOdzWw70Nn3XERSmFe85+xzM1NPWJE0yMxeACoADzvnToF+uBVJKd1cJr656U7uZqX3rTXCWwqxhy3RRfh2Rgn6xA5mZvX23BO2mijqMHJOJFuqF+GLsdXgOehnOVlBFT7jPj7jPm/DWaFrwgQoDR/yAKWjdsDnEE1lKAKchgENniUyYTBPWxGetiIBOwfyD6l4j/8557o45wo65zI4565zzt3iW7/VOVfJOVfc97jNn/s1s7pmNvXo0aP+3KxImnf+PJZmarEUSWvM7BagP15rZLSZrTcz3zwE+uFWxN/GWwitvp9Ej9ix3FB2K936jKBbnxG82aYNN9tT/Me2MbJKJJQGxsEwqw7AzcN2wRpgFzAhknk05BC5OURu3mrbEE7AoZnX424yXqU9w+t0hwUw/XBrOA48Bs2ZxRMhbwbs2EX+iUCMsUxxzrlFzrm2OXLkCHQoIqlKgnNJa/cQYqrdI5LWOOe+c86Zb7qRW31Lfd9rKfrDrUjQeSoSwp/htcIdOfFLbn6aWJIj5OQIOb0aPoMj2evywBqoOXEhPA78X1XIA4P696XznFFwGlwlYxslWEMEa4jgNKFMbd4c1oD95hiUdwQHyc1PX+fnw1wPwGOD4XG46ao9jLdTgKYXSVPUYiki6d55YyxDzHCayVJEROQvNL5S5J9JI/mviPhDwnlVYb2usIGLR0REJDU6k1S+/ifkuQpGQt2i81hEI2aGeT3MM2/9jcbZ51Jw6kG4HT6NqeVNGVK9DHcdXsWg/iMoOGwHzgy7fRDUbc/MRd5n3euGzXI0XTqDnBxh8vs9GGN1GDP7ObjdMd61p1vMKXg2ExCp3kVpjZFmCu74kxJLkSCScG5PWF/xHt2tRERE/ioXueMPcCh0OrQKZ1GrHbzouvBMxEQATubIysyn20ND4EsYGvYsA64dTcU2G6k9bT75hx1g5sL2cD3QK5Lho7qzkTIA2GpH5g9+42E+4NFZC1navDL7XX7WUIEx1Z+jW4tXoRNAYqupusGmKZrHUkTSO4f7a1dY5ZUiIiJnqAusyL+TLnNpM6sL1A0PDw90KCKpSkIC5zRZah5LERGRv3rZ7aFTWCSHQsFtGURYyR/Z17sZsfTlx8phABStEQO/Qu3q88kTe4gtlIJbgWxQhZX0GzuOVj0mMYUWdKgwlmwcZ46vYqwbZjxbaQCN9iyif/OBVC8fDSOA64DngTsHA3cCd+JcjYCcA7lM6TLLurh02WKpqrAiyXPu/BZLVLpHRETkPJ0WTqdYzHcwAL4uWZp99W6Em2A1FSk6N4aic2OgNvR873lm0JI9FGIVlXlraUNoAZ1PTWRoj160YwpPL32duQmN6WTT6ePeoI97g2f7DWDYwCFY4aNUJhrGA9Pg7bL1cdmNR10RYJVvEUkbgjCXFgle3jyWZ5+bmVosRURERPwpSIv3pMsWSxFJXoJzWJK+sKZ5LEVERM7wxlc+Cg8N5gfbxytDnqKirYVO8GLbLuTnAN0aj6Bb4xHc2uNLxtz3HAUmH6ESq/mpbEkebzkP/jOfyEyDGVB2NKVObebt6vXJHHKSzEd/o3/8MPrHD+OFHUP5s5cx3EXy4MgltK0ygXvf+4gmdisNS7/Fu7YL0NyVaVaQzmOZRsIUEX9wDkKS/Jyk4j0iIiLnCb+ZF78/xDO2iqctkrvccj63HTzTcCI933ueMU2f89739lzgRmiSn5EGHdxYJvfuAbMbMKZeA6gEozP1BmBvm3B4AnLsOuV9dhf0GTiYkXkj4f9galRX3PWG9XK8b/OBMjjXIBBHL/KvKbEUCSLenJVJWixR8R4RERFQNVjxoyCdbiQID1kkeHnFe84+V4uliIjIue79/iPqspBnsu2i7bEJTLUjsCqS/pUHMuyqIXz/ZyEAbtq7B1b+CZugrivFZKvFjy6Mort3w4IMcCNE7huJvecoOG0HeweGw9DVALhat2PRDjfK6Ft2ECNCBjGidDf4FmCjLxK1WEraki4TS003IpI8r3jPuWMs1WIpIiLBLrG18lO3hJpzIxnXeIeXVM7pCjWA5TBsyRA6/DmWm3rsAcA9Z8yvWZtPqMXUOl0hHObSmP8VvpMy720kV4dYRhXozNQuzWmz803eGPIomYbEATCbR2ApWKwjH7sZ+UYkWQcfpFvzEdA8E+PoG6AzIX6TLrOsi0uXh+ycWwQsioiIaBPoWERSkwTnsL9UhQ1cPCIiIqlHNsL5AY7C1KZduXfOR/AH8DPwDvAYTDjWkw5jJwPQl0GMDIv0vk1XBRZDvy7joCRwNWyaHE7pKju4a8VntH1kFuwARnt7coWM/bU7crx6NgZFj4BqcOKlPIzv643BHKd7s/xVDjObCizy5TqpTrpMLEUkec7xl3ksNZOliIiIiB+lzHQjR51zbf2+VT9SYikSRP7aYolaLEVEJKh53WAz0NaF8gm1qNv2PRZtbUR9FvB/Rx6AXtCq5SRy8hu9Gc74vL5uqt+eIuOmYzTNNYeZq9vjBhs7bizIaUK5efMuHuK/ZP34IJ+vvY8X13ah96aXztnvEu5l8dgGuCeMVXkrMK5Od+gTzjyaXfmTIP6l4j0ikt45xznzWHrFe5RZiohIcKvqKjB14f3wJdwwbCtZnz/Ib+SEP+CJltOYdrgTL+TqyYA2o+EF7zM9w0ZRhZU8tPYT+D+wFn8wgCFMjOsM86D/wGFky3KceeUfoUvsS/A7FKm0BYCBDGXxbQ3I/H+/8Vn2u6hZZyUs9lWl1W1Z0iglliJB5PyqsN50IwELR0REJKA0xYikCLVYikh6l+BIpniPMksREQleOU61Y3nl6xgU3Zcs9WJ5pvxEqAAD+o2CIlCGjYRMc3AVhDz/Ow/kjwJgTExvxqx5Dk4AOYFdmRg6+gVoAdwOLR+YgzkHvaBZ9Tm8UOlZ4n1fvVuumkPc1xkpxWbWEHGmtdK5yACcARH/UGIpEkQc7rziPaYuNyIiEsSy0TjjXE5EZ2NQnREwHjIuOUbc1uyMKdqJng9P4pk1E3l5bGv2UIgR3w7C/s9342x2jD5uBFk5Tgbi6bd0nLc+A5AVsrx9mP9mr0WdY59y1UBHgSE7mUJ7AOxah3vAsHYOHlJSmS75v3hPqpcuE0vNYymSPK/FUvNYiohIcLOmgY5A0rUg7QobEugAUoJzbpFzrm2OHDkCHYpIquLOqwobogZLEREJaseZE9uMOeVbMj6qHbSAuIPZ+b5yIXpGTYKHgarQafJ09lAI2++gIFAQhrtIxh3uTiH20G/tODJH/MYfzxuvlWqGW2fcnX0l9ffPp1z2r/hqSBmycZzfyMlv5OSOUsuwgQ4OBvTgRfwqCHNpkeDlzWN59nmIxliKiEiQOadgzzuRfJ2lCI+vnU23Nq9yb/RH/F+9B7ip7x64DtgLPABj6nVkG8UhK7xfuQ4Aj8yNgszwf/VqQE5HzuxHuHqhI8f9v1Cq42aaM4sl3MuzDKPi5o0APPnLuwC8Wr095HXwnEGBSFzMFT4JkrLUYiki6V2Cc+dMN4LmsRQRkWDUK9JbboKby+9izb67uHfaR6yOrQSDgDzQqvwkiICmlWbQc+wkuvASHIHlVGM51fi+cSFYAveyhKFFe7Nv7Y1wAmZkbMnrtCAf+5mS/2mafLqAu0p9hstsvFe9Lu9Vr8sXP1alT9Eh9IkZrKRS0o0gzKVFgpfjry2W6gsrIiIi4kdB2mIZhIcsEpycc7jzi/eg4j0iIhI8vG6w90OE93x4+e5UWLuG3eQjjBjeyfIYT976BodGXc+hPrnh4VN8FFeHAT2epcSxHyArFGEXAOG/7mXAxGeJIxOZiGN8+XbMK9+QRyyKzEd/49Wu3ajxel/erVmP42Tj6xtLs5lSALhtIVixQQCM0G04fVJVWBFJrxLzRzuvxVL3MxERCSoNK/Fa42YAtCo/m85rR3GIaN6c1YY3D7ZhbY9SFOmzi7k05qmw19lMKXJziAxvQquOk+i5fRIAvXO8yDs04emEVzi4pCCEwZzSzajoVvDV0irseL0gYcQwju5EL63Osup3UJlVANj3DiaA6xKwsyDid0osRYJEYgJ57jyWarEUERER8St1hRWR9CwxgbSkK81QXikiIsHAbC40jCT33J+pwRIAMi//jV0U4aWJvXH1jfcK1aU9UyjCTpZTjSOHc9I510R2UoT9HfPRkUlUK74MgFk05xsq8G3If6hccymzacZ7NGINFah/6z3YazCw1RDCm+9l2qwnqM8C8g487gUz1FeZtktkIE6FSIpQYikSJBITy5CQc1ssIXF+S0vuYyIiIunHvGMcP5KNlrlmAHDyl2tZlqEaLbpMYQUV6coEnuc5Wm2YzV1lP+Pzvfcx5o/efBF2O99Qgfv5mIEMAWAsPchCLJ14mejh1aERMB0K37iYn9vlZlir/rRmOuVmfcHbPMazPA9rfHHUjsRFBeYUyBUQpC2W6XK6ETOra2ZTjx49GuhQRFKN5MZYJk49oilHREQkPTtn7kqRKyHUz0sakC5zaefcImBRREREm0DHIpJanEks+WuLZYJzhKIWSxERSce+bUzVsh9TiD1MoCsATxZ/g4UrHuW3Kpm5dtNJ8pfeTzWW8WLZLuRjP73LjmYNEfTmRfJwCIBQ4gFYyd2s5G4KsYet/W6g5KKfmDSiFYXYQ3G2sZ/8lFuwhUfqz6MTk2jMXCKimtOGWQE7BSIpKV0mliLyV85XvueceSx9TzTOUkRE0rWISHqWfZ4a/B/VYpeTab+3utiNPzC/Sm0e2R7FmNIdWb/2duaWb0xG4nifhixc9SjF79zGLoqwjltpyDwyEgdADAVYRzm27C5DdOHKZK4by8rVNWEL/N4khPyZ9nOwflYKsYfjZKOtFQOgje656Z+6wopIepaQTFfYs6/pLiciIumTusGKXBlBmEuLBKczxXvOmW5E3V9FRCT9u/XrL4nmThZRj15ZRhNxo1dFpxKrGUd3FhevRktmkLHIMXYQTg2WcDcrKXPnV2zeX4qx+XucaXl8lXYAFGEnG46VZ1fhgsSShfv5mN8qZWZJpRo0Gr6I0/1C6coE8nGA+iygvoO+jAvkaZArJUhbLIPwkEWC09niPWeTSUsyxlJERCS9MRsM10ZyK1OozwKGMJAhDGTv/HAAXmnwFFk4yf1Ll1O3+kKezTWMTrzMY5s+oEjpLex662ZyPrqPA+TnhQVDKVf/C9Z9e4e38R/h4/pV2UgZ1lCBmNVFORaRkUY7F9Gu33hendeNEQ270XfxeO/9tXWvDRpGmim4409KLEWChEtmHsuzxXuufDwiIiJXRDeYObY9pXps5mU6cfvO9ZRr8AUAfeOGc/y3bLSrPp4w9nGcbDzBmzxbegAdmczAx/sTwTc0ZB6D6/chlizYGO+m+eusbMylMd0ZxzZK8FGleynDRl4Pf5h9hFGi4bdUZRnrat8MQLlAHb/IFaLEUiRIJDZKnlO8xxKL9yizFBEREfELdYUVkfTszBjLkL+Oq1SLpYiIpDdmg+GpSJoOnMEr8U+TY+opirfdQKkbNxNDGABHF1zHp43v5iW60JHJPMkbtGY62yhBCbbxwqKhFKm7hXKPbqH8g5txxYzwWZsAyDPxBCW6bCMLsUxf3Imnar9Cbg7xA+HMoCWrqcQsnqC8NQZUgV3SPyWWIkHiTFXYJOvOFO/RzU5ERNKjg7Cf/GQfE4drYvAUTHi97ZnEsnLjaKK5k16Mpg3TiCGMSAYznwZEU5kv697Knv2F+Ojde8l4+Bhv5HqUpswB4Kkur7CffPTdNJ56td/lRXoTRyYmLn2G3+8M4cmr3uDQe9fDO+AaB/IkSEAEYZal6UZEgkTiPJZ2TlVY71HFe0REJD3RFCMiV14Q5tIiwcklM49lYpKpxFJERNKdVZF8WvluMhEHT0GvvEMZXW8AL9GFe1kCwKj4Z8jx6ikG1YCMeY5RK9cnbKMEc2jKGiLo/fRLbHjlP8SSmVMHcmAfOFxl797ZruR4XuA5dpYuwFTaUPTYTmLn52JSi1aEEs+hOddDM1+C2zgyUGdBAkFjLNMPM6sL1A0PDw90KCKpxtniPX9tsVRaKSIi6Y37wwhnEwWI4fM37+OVHk9BYRjAEFo0mAvA1BFdqdlhIfNP1QfgGUYxlTZcG3uUTFFAf3iMt/ny1O38UjIH7v+MOiXfB+Cd+CaMC+3OdorzBG8SuzMXhEFOjrCOW2E0UC4StzYwxy8BFKTTjaTLrrDOuUXOubY5cuQIdCgiqcaZ4j1JB1mqxVJERERE/CBdtliKyF8lnJnH8q8tlmqyFBGR9MJsMJSJpET1+tTiE/JxgJXX1KQW/6XHTWOJ3ZGLiPnfAHAcby7KlplmUI9FTF7dg8lHe/BtzRJsbFiGiXRhBi255lgCh/Jm4ruOxajFJwDcFPo9H/IAkZEj4QlY+J+ajKM7ZdjIS5t7w1vgSgXyTEjABGlX2HTZYikif5XcGMuQMy2WAQhIREQkhdy64Uu2rfgPMYSxnlux+xLozjhit+RiYHh/4shIHBkJZwf1WEgVVrKMarSqNIk/bzee5A1ycoSvNlThtsWbGJi3P4VXHaA9r9CMOTRjDgdWF+YZRsGdcHf4p0ynNf15wUs8b1nkLSJBJAhzaZHgdDaxPJtZJv6lrrAiIiIifhSEWZZaLEWCROJ0IyHJtFgqrRQRkfTANgMTIlk39g7qVHmfaCqzMuFu+MXYQyGmVXqCUOIpt28L5fZt4THeITMnqcsiNlOKbBxnYvYOTKAr8YRSsewKatT+kCLs4o07H2VJbE3yrDpBnlUncDmMMGKYUbMpK9+pyQS6UnPWSmLJwrtuGs7VDfTpkEBJLN7jzyUNUGIpEiQSkqkKm9hkmaC+sCIiksYlzl15a5cveb5HT+qxiMFEcvCngnxYuQa5OcgsnqAyq1hYoCYLC9TkPRpxx5x1dOJlvphbjTk0JYwY5tGQDZQhG8fJyClabZ7NPsLI9CUQ5i3dSw4nhjDCiGHFYxXJyREoAo9aPR61egE8EyKBEYSNtCLB6UzxnuRaLJVXiohIOnC0RCaiqUzt3Z/BwQw8XP4ddt1YhIf5gHF0oxSbWU85nvlxAgDFim4mX9PdVCaapo3nkJ/9jKIXx8nGtRyhDyN4lfZUKLUKgF7Vh9KMOQA0ZTZl2Eh7XqE74wglHu55CQDnOgfmBEjqoOI9IpKeJTfG8uw8lsosRUREROTfC8JcWiQ4uTPTjZyVmGOqJ6yIiKRlZoMZ4OIYwgDG5H2O4r9uoHvhcXQ9PIGmueYwmQ7Ek4GpS7tCyVP0LPoCADeyi82Uot/2cbi9RrXqi/lv/EMcD83GSPrwJLN4j0YcISc7KEZrFnBj7E8AjMjSh83czJ1E8wm12EMh4HAAz4KkGkHaYhmEhywSnJIbY3m2K6wySxERSduGjnyBG/ps5Ytfy7GZUoymFxVzrebRkQuhPtxa/EsyR/zG89mfIzLWG49ZL8tC+jCS08VDKVV8LWHEkH1BHNnzHSK+SihNmc1mSpGRU+ziRjoxiSW7HwQgumRlBjKEIuyi4O5fOFQ4DxUdrKZKIE+DpBZppOCOP6krrEiQSK4qbCK1WIqIiIjI5VCLpUiQSEjwHpMv3qPMUkRE0qbEarBj+nSk54ZJzC3bmHFb+9Ep7GW29CzH+9Pq8MjqKCoTTc7sR6hMNM9m8brCZiSObZTg/YSGFA/ZTkPm8VHDe5lDU1ZQhZ3HbmJJ9qrUXrsMN9qoM+d91pW8GYCneJ1XaUctPqFp4VkAzKZlYE6CpC7qCisi6Vlii6Ul1xU2IBGJiIj4xw2uMT1jbsQ5Yxl38PuNIbyT6TFipoWxnnJkLXOQuQmNCQ2J547odRSsvAOAI7E56ZJlIgenFcSyObI0jeX/Nj8Af8BP5fMTnn0LC2gAB4FGUILt3HnMqxA7P3sDnmAWTzMlgEcuknoosRQJEmeqwiZZd7Z4j1JLEREREb9Qi2X6YWZ1gbrh4eGBDkUk1UhMHkOSm25EeaWIiKQxiV1gH3VFOMJ2aoV9woaw4lQfEs2tA79k3Td3cOzWjOwJLcTQIwPpEzaCKqykcumvuGqud+PL13g3w34cTOZ2sXxFGQ6Qn82lSrFv843cELObd8MaUX7hZv5XrxLruJl5NOTkiSwAFMm+k5ILfqJz/YkAdOXVwJwISX2UWKYfzrlFwKKIiIg2gY5FJLVITB5DkpTsSuwWqxZLERFJq97t8SS0AB6Bqd27Qk5Y3/J26sx4n0PkoTmzeDvsMZrMWsATzacxL3tD3Efe/a9Q4++pWHQlr9KeMPYRTWWm0YZJpTpwiDw0enYRP72Qnxtm7MctMUbN6U2TrQsAyBl2hOfr92SA3QZAV91KJcily8RSRP4q4cw8lmdbLBP/Ul4pIiJpTW1XBoAHaM0LPMuE77vSg7GcTMjMoRHXs/jH+rgPQyjVZS01WAJZIR/7GTPnOXrNGg3A3snh9Oowiq5PT8WudXw1rAxtmUZ/hrGRMkS88DlrvrmL4i03sLXlDWykDHdUXwZAgclHYCvQGdzEAJ0ESb003YiIpFeJuWPyVWGvfDwiIiL/VmI3WBFJPdRiKRIkXDJjLFW8R0RE0qr/O1wDgJVXV+HE8jwcr5ONIuxkREg/OvV/mfVDbue7gcXYMrYcd/dYQc0GCxnz47NwHdyweT8AxTp8R9dJU5n0Sis6MJaTZGH9j5UoV3QdJdhGY+ZCBgglnngyUJVlHCEnANU6LGOY+ZqlJkYG4hRIahWkYyzVYikSJBISq8Im12IZgHhERET+rUddEeJKZCeuRHYWZqkHRyAnv/ECz7GDYmw+XIqQdr+zkrthNOyhEJ+sfojvixbm3er14DRwGn4YewtW909OkYn+DOP+Yx/zVdGy1GMhx8lG6aU7yFToKPnZTySDOcK1TFrVk0mrejKs6RBoEolzSipFQImlSNA4U7xHLZYiIpKGma0NdAgiF5fYYunPJQ1QYikSJM4W7znLzoyxVGIpklaY2Wgz22lmzsxKJ1lf3My+MLPtvsebAhmnSEp6N+YxmA3MhuoroinQdCePrI7ing6raTF5LsVy/cCM/C2pTDSLY6qRhZNwGsbRnUd3z2dq2eZMLducG3psxV11FTk5wi1xmzj55bXcNm8TmxeU50negMehYa55rIu7lcbMpR/DsW8d9q2Dtwd7i0hyQv28QA4zm+qbVjFVSiP5r4hcLnemK6zmsRRJ4z4AJgArz1s/BZjknHvLzB4HXgWqX+HYRFJeeHlYDi83bQ1ALT6hHgtZVSmMbZVKcP+q5eygIOPozlAGUplojpCTGXc2pSHzmJCzJ9mPHQagcvZo7BFHyILfeSz/XDbULEN93uaDhY+xlMpUe+sLJtGKHRnDabR4ESVqb+M/HZueCUXdYOUKOuqcaxvoIC5GiaVIkDhbvOfsusSpRxKUWIqkGc65z+HcH4nMLB9QHrjPt+pt4GUzy+uc+/WKBymSQvKzGygc6DBELk7Fe0QkPUu4SIulxliKpHmFgJ+dc/EAvscY33qR9GUCkBNWU4nVVOJOVlGEnUQymDZMI1u5Xwnft5dtlOCHGbdQiD3EE8ow+lN9bjQTs3cg9vtcxH6fy6vw2gta559OVZbTkcks+LYJ99b7iFiysLX6DWTmJDGE0bH2GK8YkIgkKwhzaZHg5EimxVLzWIoEJTNrC7QFKFxYrT+SdhzoUhhaQ7eyI+jCRADenNuGxYcK80WHcryZpQ3Mg7F1OrCRMuRu8TMPs4BhLYfgShtP9XiFcXSn59FJ3gZ3n2Zmg8ZcyxGycZyD5CHLjYfPJKMP8hH/5SEAJm/vASW8MZXqAisXpRZLEUnPkptuxM6MsVRmKZLG7QGuN/Mm1fM9hvnW/4VzbqpzLsI5F5E3b94rGKbIv2emQjmSRqgqrIikZ4nJ47ldYTWPpUh64Jw7AKwHmvhWNQHWaXylpBdnksolkLv0z4zb1I+w2H2Exe5jU+NwOAgj6UPmX37j8zoR9Mw+iRm05OD2gty2ZxMdZozllx45mFmnPe/w2Jl5LHksAy1mzeUgeai+NprKRJMz+xG2vfMfejOKrcdKU3r+DqbRhruKf8ZdrrJaK0UuQImlSJBIbh5LjbEUSXvMbKKZ7QUKAkvM7DvfS+2Bzma2Hejsey6SfmSIZOnmyvz2a052lC5IpoWQaSHEEwrh8EGHxyiVfTOrqUTtY/Mpxg5mlGxK60IvMzmmIwUmHoGrYTS9cHsMt8d4LboZbzVvSKuFs0koYhScfJCBDKHhY2+xfWRZrtrrmNmgMbU7LONzi+Zziw70WZA0woX6d0kL0kjDqohcruTnsUx87crHIyL/jnOuC9AlmfVbgUpXPiKRlNfUFWLOSLiV9UzJ/zThm/ZiYb6b148O7jrN0KZ9GdBhNEUm72Lx1AaUauslmXsoBPMywZcwdH4vNlKG91p5UwGWYQMZiKdmvYWElHcwHTruf5mET66hWJ/vGEwkj2+fB6+sBeriXPnAnQSRVE6JpUiQSK7F8mzxHmWWIiIiIv7gDOKDMMsKwkMWCU5nWizPmcfSo7xSRERSKysKLX6Mg3jItTaW0uW/ZmPpMvTBG3f5Gznpy0iiqMOtk7+kBNvgHXigbRRjop+DXUAl+LZLCf7z41YYZKye5TXuv0cjyt+2GUbCE2un8Qm12D/2Blb1qMBdG9awv2x+shY8yAkW+aJRi6VcAiWWIpKeJVcV9mzxHmWWIiKSes2c6g0Zfqt8Q/oygpdm9cbd7d3D7FnHzJefIlvO4xzacT3rl98OvaB602gGzHmWoSdeYG+lPDzNK8ws+hhZZp3k0Zj3APgqrBI5Vv1Cs4xzvOlEpsDzY3syYOpoxrTtSEPmsStLEXBZmEjvQB2+SJqgxFIkaCTOY/nXqrAJCQEJSERE5KLMBsONqsIqaYszOB3q7xqpqf/LmhJLkSBxsXksVRVWRERSrbuAPLC3bR4KzjlIn6aDydr8ONbSd++6Bk4dyMHBXFnJs+sEY9t2oOeKSTw65w0AHqk5mzgyci9L+JRazKnSkhxLfgHgifg3ISOMohfFi2+g/tgFjIztyyttn2I/+enEywAspFEgjlwkTVFiKRIkki/e43stAPGIiIj8vf4Mn9WdflHjqM5Ssj58kJHRkSyuXA16+d6S9TS218FtwN2Q9a6DFK+ygXejnuRorUy8GtqO9kxhD4U4kJAPWsDRFtcBMHJOH4bNHcKjjd9g7s4WWKTDvWDYwT/JnPM4J8df6+1jYCCOXdIqZ0Z8Bn+nWXF+3p7/pcvE0szqAnXDw8MDHYpIqpHsdCOoKqyIiKROZoOB/oEOQ+RfiQ9NI5NP+pG/O/+mCs65Rc65tjly5Ah0KCKpxtmqsEnGWIYkvhaIiERERP7O/1hDBK3qTKIXozkRkYfOlUexgId5u1R93i5VH5f5KpgOjIHhY7vzbJYX2F6qLGSF10Nb8EzURCqxmvos4JWQpznRLJSlcyqzdE5lXlg9FG5zvJv9Sb67sRh0g9CMJ+hWeDQnf7kWHgOn1kqRS5IuE0sRubCQ5KrCKrEUEZHU5qdnoXYN3l/RjMpE0y9hODwAL83ozbUcYTOl2Ewp1uW9GX6BPyKMI+Sk74rx3LF5GVOrNCeOTDAaXqUdwz4dQjnWcUum79hAGTZQhjKVvqJi0ZWw3nFPwv8YVL4vCbuuYfzqvlBisLeI/EMOI55Qvy5pgRJLkSCRXIulnfeaiIhIauB1gxWRtCRdjrEUkb86W7zn7Do7M4+liIhI6vJ24UaUidrIHgpR+75l0B3YBuyHT1rWYv3C2wGYW68xBaN28BG1GZk3klGbepGw4hq+yFkNcp6m1dJJ1OEjHqnVgz2uELN4knk0BGAsPdhDYb76uAoHGxXEejpoAYwH6kbiFgbm2CVtcxin00groz8psRQJEgkXqwqrFksREUklzAaDRdKkAXSeP4qX5veGCZC54G+czHotOW7/hfXbb4eS3vu3R5Xlrjqf8ciKKJgNCR9dQ92W77HovkZM/awlbfa9yfwCtXnNvc4SajCXxuz4tDQAH9W8l0LsZmaHxthI7144qHpfBt2b2ReN5tCUfyc+CNOs4DtikSCVXHfXxCRTXWFFRCRV6Qt0OkUpNhNy5+8k7LqGk7uupX+VgQzbPRCeh//OqgXAweJ5aNVhNsUmf0dD5lGEXcQTyhufPUmuWbE89fCbPGKV6O/iyUgcmYmlec2pAHRmIlE8wKCoEXAttJo1ibk0BtRUKfJPKbEUCRaJLZZJ+sKGnGmxDEA8IiIiIulQYvGeYKPEUiRIXGweS003IiIiqYHZYLg5kpuHreM42ThONhJGX8MNo7ay69ebscmO1zo0o/nLcziO1131E2rB5/BD9C2M3HoLXAMFGu9kFs1hH8zO/ig5TrWjMo+zmkqUYDudmQjAcqox8lgfQir8zrF7s/M0U9hiXmulc+oGK/JPKLEUCRKJuaPGWIqISGp26+YvWX/T7TABdtQphjthsAlsgmPMtI7U4hP6Zh/KmP7PAdB52ChoCDwHA5Y+SyVW8xzP8zzPcrJPFh769BN61nyeB/b9Hw/+tgROw7w/HwegYraNcBAeqTybl+jCYCIZ7OBGYgJ4BiStC9YWS003IhIkElssz5nHMkTzWIqIiIjI5VNiKRIkznR3TTrdyJnXlFmKiEhgmQ3mXhdBH0bCHTC8TnfKsZ7KryxlWuknGDqtFxGsYT23Mqblc2c+91LZ3nQeOIr/Lq3FdFpTmWjWb76dms1X8pB9CHthjLXAhjvcV8a+sjmxbx32raN28fkklDTeb96MfqvHUdTaUdTaBfAsSHoRT6hfl7RAiaVIsDjTYpm0eI/msRQRkdSjDlHsogg8ANk4ztO7p1GJ1dRgCaXYTDF+YBsleGtGQ2oPm0/tYfOhFrw0pDePHXuHgQwh5+GTVCy1Am4Bql3FgJbPwncF4XqY3eIRCgw5woCWzzKg5bMsrtOAkCMJjJ/VDm6fC5TU2Eq5bInzWPpzSQuUWIoEicQWy3OK91jia0otRUREROTfU/EekSCRkEyLpWm6ERERSQVsOzR1hfiBbFRlOfwAxfgBWmWAz+B1nmJyQgdmhLSkp1Uh46HaxL2V3fvwJJga25xafEIo8YQcdMzM1ZiBfYbw4P+W0Ji5DCw4jMg+A2i2832aPWDYWu/G93ZUfZoMW0C3e18FBgfs+CV98Yr3BF+aFXxHLBKkEpPHZLvCKrMUEZEAW0ME2+eXZfLtHdnSvwg3b96Fe9L4iHtZTSW2hpQkgq/58+jNXDXUwTbfB/tC2+2z4BcIKfE7TIEWj8/lq/JloC+EEcNVtztyrP+FYYuG4H43PuxXA4AHNy/hj27G1dcMAjTFiMjlUGIpEiTOdHdNtnjPFQ9HJF0yswOX8LZfnHNlUzwYkTTA7Hvvj203BTYQET9LKwV3/EljLEWCzDnTjajFUsTffgVuu8hSMXChiaReGfMcY/vqsnRrMIICYTF8QwQVS63A1joeHLiEKOqQ89gJfipVkqvaOygABRbupMDCnUwd2BzegherdOFU5qwMH9sdV8CouHQjLIJsx05CDfg4Y214+DT2H0dXJtCVCbxfqg5Xv6R7oPhX4jyWwVYVVi2WIkEiscXSkhljqRZLEb8Z6Jz76WJvMDMN5BLBm14kUVyLSMgE4+v35cWmXXi87Dy+2lCGPWMLsZGyRLCG6OwVcR0Nu8PBXbCv6o0ATC/fGtbDEmrwzJaJvFapGfae490u9ThePRtR1OSnifm5YfV+6Ad1l77HkmNeV9hH3omCvl4c6gYrcnmUWIoEiYQzYyzPrktMMlUVVsQ/nHPv++M9IsGioGsGwN6y4PobRR7b4rXOFISHWEjMt0VpUugd4tpl5+336mPrHdQ/hfvhamYXeASAu1nJDQ33s/xwVZgHrWrPpsPhsURRhwnxXcn+ZhyzWzwC1wLXwVTaUCDHjwBscUW4ud1TATp6Sa8cpJkpQvxJiaVIkEi+eE+AghFJ58zsxWRWHwW+cM4tvdLxiIiIpDQlliJBIrlWSbVYiqSY/MDdwAe+5w8BnwOPmtm7zrkXAhWYSGqQ2A12b49wb0VrsFjHw7xD5OHBuInGDJpief+ASpmgAMQQxtBpvRhQdDS8B22umQbAyV3XwpMQ1zk7dALioSrL+YFi5Nh/jLdaNGM0vXDLjHJzvmAOzRjgxgBws3mtleoGK/6l6UZEJAgk12KpvFLE78KACs653wDMbCgwC7gLWA0osRT5NhKW+/7ODwyGCS278tY1zeiVayhj2jwHV0G370cwvk1feraZRL5pu+E5sIhfoPO13mc7QQs3hWLs4FqOkHPsEQ6Qj74rxjOlSjuKs42X6UT3dsNZv/B21n9wO6VnfO3bcdSVP25J9xKL9wQbVYUVCRIJCYnFe86uMxJbLAMRkUi6dn1iUgng+7uIc+44cCpwYYmIiKQMtViKBImEZMZYnq0Kq8xSxM82m9lU4HW8Og4tgO1mlgmID2RgIoGW2A3227IliC5bGYAex8aytXFJbtiwHxYDfaGg28HeluFUYjX9pw1k2G1DOBBVGAZBVbeOe1kCQPdT47iJHVQmG9VYxkS68BEPQBj81KgkFetvpGDTHexdHQ5fAp1gU//bvGD63YYbduXPgaR/wdhiqcRSJEg4vOQxuXksRcTvWgKRwMuAAcuAPnhJZe0AxiWSOnwUSU4m8/SK1wFwMYYddtARCridxHbPTBwZ+WJGOe6IXsfMyo3hCDAOyAoPs4BuUa8CMOC60Qwt34vup8aR9bV4uBXycpw7Ki+DJ4DpsHdKOEeXZSLHz6eoW/49KA8LaRSggxdJn5RYigSJxBbLZOexVF9YEb9yzh0Del7g5V+vZCwiInJlaYyliKRvznF+A2Vii6XSShH/MrN8ZvaWma3wPS9rZu0DHZdIoNlAgEj4BW4YuR/6An0hS53DcCv88btRho0crXodB/oX5o7m63DZjXosYur3zRn+WXcYD10XT4WNwEb4vnwhPqEW8Rky8GGHGrALyAlfjK3GE/WmQTegEuR47RSfN4hgke1kke0M0BmQYOAwThPq1yUtUIulSJBIcH/t+hqiMZYiKWUa3kixDr7nW4G3gCkBi0gktbgWbmi5lbJspG6fRQA8x/O8Urk9U2jLp7vreJVem3qVXtkDT/IGi6Ia0arOJF6s2QVr6bx/VUB4zr2srFMTW+wo1vY7Xm7amk4rprOvR04KtDyC62jYtQ5Ow132JgDO3RyooxdJt9RiKRIkEpzj/BGVZ+exvPLxiKRz1zvnpuAr1OOciwMSAhuSSCoQARUOr+K7U7eQjeO0nT+LtvNn0YHJ7KEQ3aJf5cPC90MEzLT9PLdoDN8VKsbCzo/yYp0uvDanI7k5BIuAEd5SqN339C00iEFt+/LD9lvo+M5r/FgljOs+PcqgGX0ZW6ED+frv9maS5V3fIpKy4sng1yUtUGIpEiQcyRfrMUMTWYr43+mkT8wsJ/zltx2RoJJYDVZE0qe0kf6KyGVLcC7Zr7WGWixFUsD7ZvYqkM3MWuB1iZ0R2JBEAm98vXZUJpqsV5+gmPuR4Q26AzCXxqxvczs8AQ8OXAIR8IQLYzB9eCmhM8+/9BzPTJzIrV2+pBSb4WbgD2+b+dnPCqrQjikMLd6L09dBFVawN7wY9DDGj23HGzxJ7Q+XQbZI3LHAHb8Eh2At3qPEUiRYuHOnGkkUYnZmKhIR8Q/n3CgzawbkBOoAE51zbwU2KpHA6zbkVRgNe10ebuNrGjMXgH4xI6AGfF+lEKOq9OLVBd2waAe/wJgGHXm68ut8Hh3BHgpRKn4zGT84RmgGb0rYNfvuwoY6Sk3eTH0WcNUvjv7ZB7Ki6N18vus+hiYM5NA718PxxBbTyAAdvQQLJZapnJmVAroCoXhxP+Wc+u+JXKoE55LtChtiphZLkRTgnJsNzA50HCKpgbrBiqR/KZpYmtlo4BGgCFDGObfJt7448AaQGzgENHfOfX+xbTnnNgPtfJ9/D7gGOJFiwYukMwnJ94QFU1VYEX/x3Z8u+A/KOffoFQxHJHV5KtKbIuRL2E5x9g25ka4DJwDwR86riWw8iJvsI+q6bVgD5/0s8wf0LDwJboVoKjOaXswJbcqp9TmwXd4/tUItv4f7YW5sY157riM8CMMWDGFmn8Z8/tx9HFpyPQWb7oCmzdhDeMAOX4JLWpkixJ9SusXyA2ACsPK89VOASc65t8zsceBVoDqAmRXzPU/qE1+3ompAa+AgEJuSgYukNy6Z6UbA1z1WeaWIv3zoe6zoWxK7vzYFlgciIJFUIUMkuaf/TJ+QkRwnG/vJz5iBHcnJEQCu/tLBJvivq8VD2z+BV6F006/pyGRWt6zEzC7teWbpRNgFd7cczZTqLc6MWv4u/hZa1pvB+8OacXRUJiaGdobqEEcmhpfvzkbKMMf2eG926gYrklJSNLF0zn0OZ6c08P2dDygP3Odb9Tbwspnldc796pz7Aahxge0tA5aZ2UvArcDalIteJH25cPEeU4uliJ84594AMLMngCrOuZO+51OBhYGMTSRQzAZDBiV0Ejy8MZZpZsSh3wTiiAsBPzvnEuf2ijezGN/6Xy/0ITOrCjTE+2p8FbDpAu9rC7QFKFy4sD/jFknT3AXHWKoqrEgKKAicSvI8Du8+JxKUsh49yKEPrqdug4XcvHYXY8p3pGejSbz9Xn3vDXngcJcsjKM7bYtPoFTxzXSb8ypPn3gdnoUWv05h7rHGnLz3F555biJNY2bQquUkAHIMO8XM/o1Z2f9u5tCU92nIUqrzAB/xzeEKxOUeB4BTa6VIikoz81g655Y75zo55zo659r6JptO7n1TnXMRzrmIvHnzXukwRVItbx7Lv64PMdM0liL+9z8gysyamFkTvOnc/xfgmEQCJvZ4ZjgIeyjE2+XrE0MBBrz3LEfIyRFy8mcRI9eGWLIQy9TeXdlMKb5vWogObcfCbVCIPTyV/XUYfDO1Y+YzZ21LnuUFnuWFMxU33uBJYsnCYCLJ1SaWEmwjblr2wB64BKXEqrD+XNKCQLRY7gGuN7NQX2tlKBDmWy8iKSTBuXO6pZ+h4j0iKaETXsG5xJ42HwFTAxqRSACoGqwEq7SSDPrTJbVYmtnHZvagJfut9J9xzh0A1gNNfKuaAOuccxfsBisil89dZB5LEfEv59yfzrmXnXOPOOcaOOcmOef+DHRcIoFw9PQw4j/LivvcmEdD6sRHMWbOcwxd+wJPz3idp2e8zlVrHDeXXUffnePhCVhPOW6av4dC7IHnYMjWYWyjBByE6LjKuFeMovViKFovBlo7nlzwLpspRc+oSYygL66OEUMY9F0ElFc3WJEr4FK7wk4FugE/mFkfM8t9KR8ys4lmthdvrMkSM/vO91J7oLOZbQc6+56LSAryxlH+NYk0tViK+I2ZPeOP94ikB9YbuDaSHDeewn50ZBp/lFJsJsfsU7AOBpXvi6tiuCoGGaA747CuDv4zn6/yVuHDBjXou2o8bStPgAzwfysegG6Oo1Ouo960d6EX0Av+V/R2bLKj5/ZJ8AcMZiD56//Epx3q4dV5VK1HubIcxmlC/bqkBZfUFdY5Nx+Yb2YlgI7Ad2b2KTDBOffNRT7XBeiSzPqtQKV/F/LfM7O6QN3wcM1VJJLIK97z1/UhpqqwIn7U1sw2coFpY32eBF68QvGIBNSHh2vwYNQS+BDiamWna9RUjjS/llJs5tHtC4kv7n1hfjm8NeHsYObCxhwhJ5FxlXlw4RIoCfSHqUW68kXbctzRYB0Ug4WbHqVdlfEA3DN1Nd0+G0Eh9pCleCw1h63krf4NefyVMoCK9ohcKf92jGUc8Acwy8w+ds719GNMl805twhYFBER0SbQsYikFhebx1J5pYjf7AX+rkVy65UIREREAkPTjVyEmTXAK0SQH5gElHLOnTCzDMAOIFUlliLyV17xnuReMU03IuInzrmqgY5BJDUwGwwRkURRB9bA4snVqB21jO55hzN+bV/Gl28HM6HWsE8AuOu2NYz5uiM9y07i5Q2taZ1xOmOmPEfPqOfJMCyekZsjWcnd0Aleqf4UfAtTN3f1djYNsrU9Ts/VkyheaQOUhNk0pbaDKBoE7iRIUAvG4j2Xmkq3AkY65z5JutI5d9rMOvs/LBHxN2+6keRbLL1XRURE/OfRr99gNZX4dmAJVnI3R2tl8hLNTtDt+lfhKthFEQCGf93d+yL+DhwnG0e4FhbvZczI53ikz2y4BWJcGFWrf8zTVV5n1orm0NK3o7pQjWUMzQzteJXNDUrxmh30XnNKLEWulEtNLN85P6k0s8edc2/5up2KSCp3oXGUIWYkJFzhYERERETSqcR5LIPNpSaW3YE3z1vXA3jLv+GISEpxDkKSqQOtqrAiIuJP3tyV5cnCz7xCe9ozhS8snsj4wXzNbVAEiIDxPdrRlxEA7Nl0ExbtqNl2If2GjfMqefx0GpfZ2EFBwlwMP1CM5XYPi101KrGaa/ufBKB5+FSqb4iGLdCz/ST44jDwUoCOXiR4XTSxNLMIvOqtecysQ5KXcgAZUzKwy6GqsCJ/5VWFTa4rrKkjrEgKMbO8mqdZgtL/6jIv9iAzP27P/xpU4p7XVvNEyAhepR2unhHx2Od0XTCVrmumAmD3OD5tezc1e6zk5rHr2NKhHG8XbkR93qYxcynDRl7a3hu+hOd4nm8+vfPMt9jcRX+GeXA0MhM5vj0FX3hJparBSqCoxTJ51wMRwDXAbUnWHwNapFBMl01VYUX+KsFdeP4DtViK+JeZVQLexZsvupDvh9q2zrm2gY1M0rLByVdgS4UGBToAIC2dL/k3Igf6/hicOr/DpJW5J/3poomlc+6/wH/NrKZz7tMrFJOIpIALFu8J0XQjIilgLFAbmA3gnFtjZm8ENiRJC9JDMjSIQXDPoDPPlwGDMK8UJDAYqNvkLgYn/cwwIzrxfeO8ddtegVv5gG1ntnt2VFbdZPY7bqjv8yISEH/XFfZO59wqIIOZ1Tn/dedcVIpFJiJ+daHpRkLMcMosRfwto3Nus537jy4uUMGIiKQnkan8e4vmsUxeC2AV0DuZ1xygxFIkjXDOYclklgaax1LE/06ZWVZ8c/mYWSm8ciQiANzNZ9SwmoEOQ0TEb/6uK2wb32O1KxOOiKQU5xLnrDyXiveIpIgXgE+BMDObCdwPPB7QiCRgku3eqhFGIheV2lslL0bFey7CzKoAa51zJ8ysFV4hn5HOuZ0pGp2I+E2Cc1hyY0803YiI3znnFpvZNqAWXseA551zOwIclqSgfzo2Uq2VIp60nEBejBLLC3sZ+I+Z3QL0xJu/8jWgekoFdjk03YjIXzmHxliKXCFmlhfY65x7xff8Kk09IiLBKr0mj3KuS00sTzvnnJnVBl5xzr1kZo1SMrDLoelGRP4qwV2gKqypKqxICvgQqMbZgj0ZgUXA7QGLSPwiPVRtFZGU5TBNN3Kx95nZnUBDzhSLDsKzJZKGuQtUhTVMXWFF/C+Tcy428Ylz7nczu/pK7NjMigNvALmBQ0Bz59z3V2Lf6cYeY3DhQAchkrbU9z2W1XeKoHWpieUAYBKw1Dn3ne+mpbEiImnIheaxNLVYiqSIpF1fzSwfEHKFdj0FmOSce8vMHgdeJZUOXRGRtEvdWy9M041chHPuv8B/kzzfDjRIqaBExP8uNI+lmWm6ERH/mwisMrNZvufNgeEpvVNfAlseuM+36m3gZY3vvLDkurZG7g5AICKSrqh4zwX4uu80A4ol/Yxz7pkUiktE/CzBkew8lt4YS2WWIv7knJthZj8CdfCqwrZ2zq24ArsuBPzsnIv3xRFvZjG+9UGdWP6TsZHqBiviUauk/BOX2kb7Hl7hgdXAqZQLR0RSinNO81iKXEHOueXA8gCHkSwzawu0BShcWFmUSLBTAulfmsfy4sKdczenaCQikqKcI7lZLDHNYynid2ZWAniOv/b0qZjCu94DXG9mob7WylAgzLf+DOfcVGAqQERERLq5AKhiq4hI4FxqYvmjmWVzzh1P0WhEJMU43AWK95iK94j43zt4vX1eB+Kv1E6dcwfMbD3QBG/O6SbAunQ3vrKNMXh6oIMQSTsik/57aaWb/pWgFssLOwqsMbNPgD8SV6bWMZZmVheoGx4eHuhQRFKNhASSLd4TohZLkZQQ4pwbFqB9twfeMLOBwG94hYNEJIioa6sEwqUmltt8S5rgnFsELIqIiGgT6FhEUguvKmwyLZZouhGRFPCFmZV1zm240jt2zm0FKl3p/aaEC3VtjWx9hQMREfkHHMZptVgmzzk3OKUDEZGU5c1j+df1XvEeZZYiflYJeMrMtnFuT5+UHmOZJv3TsZHqBiviUctk6qR5LC/CNy/WWKCwc66KmZUFKjvnpqRodCLiN845zP46P7uZ101WRPyqW6ADSI1UXEfkn1PyKGnFpabS04DFQAff8614RQGUWIqkEc5ByF/zSsxMYyxF/Mw59z8AM8ub7grniIjftXa5AbiegwGORPwlPRTvMbMBQF4g3jnX/e/ef6mJ5fXOuSlm1g7AORdnZmrjEElDEpzDkplwxCveE4CARNIxM6sEvAuEAIXMLAJo65xrG9jIUt4GMxYEOggRkSBkZqOBR4AiQBnn3Cbf+uLAG0Bu4BDQ3Dn3/d9s60GgNPAzcOBS9n+pieXp83aUk+SnxBORVCrBJV8V1jCc0+9EIn42FqgNzAZwzq0xszcCG1IKes0Y7CuoUz+wkYikeuramv55YywD0mL5ATABWHne+inAJOfcW2b2OPAqUB3AzIr5nif1Cd4Po98554aY2Qgzu8s59/nFdn6pieX7ZvYqkM3MWuB1iZ1xiZ8VkVTAK96TTItlCLgrNsueSNDI6JzbfF4l5rhABXMlqbVSxKMEMngFqipsYuKX9N7jq5VTHrjPt+pt4OXEoRrOuR+AGudvy8wew2vhBDgIZP+7/Scz4irZIEcBK4BvgDrAROfchEv5rIikDl7xnr+uNzTGUiQFnDKzrHi/6WBmpUhSHVZEROQfymNma5Islzq0ohDws3NeM4LvMca3/mLmA+XMbAxwC/DZ3+3oUqvCVnfOzcbXpSfJuqWX8vkrzczqAnXDw8MDHYpIquFc8i2WpjGWIinhBeBTIMzMZgL3A48HNKKU1MoR2SrQQUhKMvPNPPdlJHwCpQd+zUmy8EPvW862g3wMHIe90/LwAQ/TqfB02DMY6kfy9vz6TKQLXyysxhf1ylGIPRSMOsiLdboA8Mz2ibxbvB6Prl5I50qjeGlIbzoPHEUZNhJDGD9QjGVUA2AP+n4nqV8KTDdy0DkX4e+NXohzLg74R7MGX+oRj8ZrQk1qFFDhn+zsSnHOLQIWRUREtAl0LCKpRYJzF5nHUkT8yTm32DeHZS28mgTPO+d2BDgskcsUya+VspE3/jibfoyAjw1Gr6bVqDUAvLa1I3SF1dMq0qn6dFgCjIqEO6BJmwXwBDAPVteryB32MK+4p9hIGQBCcvzON1TglUpP8fTc1yEcXorpwuGwa8nVP5aXh7XmTYvxwnCRgTl8kbRpD3C9mYU65+LNLBQI8633q4smlmYWDhQHsptZnSQv5QCy+DsYEUk5Xqtk8i2WTl1hRfzOOfcj8Eqg4xARkSsrgMV7/sI5d8DM1gNN8KaLbAKsS4mpsP6uxfJOoAWQH+idZP0xoJe/gxGRlOMu1mKpvFLEr8zsV/hLZ4CjwBfAM865X658VCL/zplusO/DAurTufIoSrGZpzO8Dh9V4nlqAdCwyzxql17GI0uj4GpgL9DP8WjRWbwb/qTXIbwFfEUlprrlxBDG5Ik9vG3vgZEfRMJIWNq4MusoR8/Vk8gT+itkhU5jp8MYcD0CcAJE/qFAJZZmNhFoAFwHLDGzQ865W4D2wBtmNhD4DWieEvu/aGLpnHvDF0QL59zMlAhARK4Md8HpRlDxHhH/m4TXu+d1vH9mzfESSwOmAvUCF5rIv5AnkrcaNOTxOfN4uWlr8rGfV9o+RTyhFFh6BIBB1fvCTKAkFIv6jh+ibmFA0efYRRF4BzrHjuIlC2XOPT2o0PgblnCv13QBvN+lDl1HTaQ746geHQ13vsSLrgvPNJrIW+81BKAZ8wJx5CJphnOuC9AlmfVbgUopvf9LGmPpnJvpm+OkWNLPOOeiUiowEfEvh7tA8R5T8R4R/6vtnEt6E+9pZv9zzt1jZt8FLCqRf6nPr4Np9uv7VGpaiJtC9uA2GxbjYDq4Id69xSY6OAHuHqMMX5G16kGOk403t7fh3cn1eDRqIYwAV8Wwsg4GwRONpwHwyNIovqpehn2EwZfgorpgthD6wePmjcNspnuVpCGppSvslXSpVWGHAW2ALUDijHcOUGIpkkYkXKAqbIjGWIqkhGvNLJdz7jCAmeXG65oEQTKfpYiIBJdLrQr7KFDMOXcsJYMRkZST4FxytXt8xXuufDwi6dxE4Fszi8L7IbYO8KJvbstVAY1M5B/IdPgY/DeSdSykY94xTNnfjrcT6mM9HJSED+fU4Hl6em8uAt/PL8QkWrFpxm1Mbdmc42Tjj4LGJDpAJHAHWFlH019nkI8DROBVlK1QfQ23rdjEwCr14Faw6xyfuwheZzevDQ/U0Yv8Ow7jdBC2WIZc4vv2KakUSeMu2GJpOE04IuJvb+Ilk5uAzcCDzrmXnXMnnHOdAhuayD+0BBozl8lzexB/PCt14qPgCHza9m5uZT0bKcNGyjC8Xncm0oU6RPF9y0L8QDF6rp3E1bscPS0fOVb9Ap9Dxm3HmNOhJQAVWEMF1rCSKkyq0oohe4bxfvU61Cy1kLk05jU7CIDTFCOShnjFezL4dUkLLjXKL8zsbeA94I/ElRpjKZJ2JDiXXIMlIRpjKeJXZmbACufcf4CNgY5H5N8yG0zGQ90DHYaIpBGXmlje5nvsnGSdxliKpCHeGMtkXjBVhRXxJ+ecM7Mfzexa59xvgY5H5HLE1crO0q8rU31uNHwCHzeuSj+Gw3I4SRYKDjkIpb33lmiwnaosI4o6FGEXxfgBOkHCh8YCV5th1ODL5QXonX04iybXZfzAvoy/uq/34ZIwtkEPbJSj9sT5zKYZebMch8zgYgN2+CL/mor3nMfMSvn+7HgFYhGRFHShqrAhZn+dbU9ELtcJYJ1vjOWJxJXOuWcCF5LIv9AP9pMfjsKgGX25f99yhhQ4ydIfvbkmOw8cxSFyAxBLZhqMXYwNdwz6tS/1WEir6EmEWBw3uB/4qX9JoodVBGAwkewZUoiJvpkRirCLG3b/zFcTyxBNZfLOOA4nffNnom6wImnB37VYfuR7PP9rp/nWFfV7RH5gZnWBuuHh4YEORSTVSEgg+eI9qMVSJAXs8C0iaZLZ4L9/k4gkyxtj6fcWyxxmNhVY5Jxb5O+N+8NFE0vn3I1XKhB/8p3sRREREW0CHYtIanKh6UY0xlLEv5xz+lYuaV5nl4V89CInRyjYdgeDZowgf8v9NGcW1XtEQ2n4tWU2r8sqQDhk2XASNkFzZhFFHV6r15FvXQmyEMupYZkoPXEHHbqM5fGW81g7oxSxZAEgI6coU3gD2ynB0ISB0Mr7J6SiPSJnHHXOtQ10EBeTNkoMichlu1jxHlWFFfEvM8sHjAUKO+eqmFlZoLJzbkqAQxO5JAVdM17qEs5/J9biOZ4njowMb9mdfOznkVlRuCVGpueOcpDckPh/dU4YsnUYr85oR9G1Mbj9RqcS0/mPbWKM60bPqEmwHiaX6gFboPztm+EX76PvD6xD79gx9MgyhkONrw/QUYv4h6YbEZF0LcElP8YS83WTFRF/mgZ8DuT0Pd8KdAhYNCL/gLrBily+YJxuRImlSJBwDkKS+RefbLIpIpfrel/rZDyAcy4O0E84kmbsXRgOL/1Jy4QZ7Cc/L9KbfgPHcYD8bGlehOc39CRuV3ZuXr2LR5rP5pHmsyEr/FYyMzVYQp/ygzHn2DcqJ23dZGIowNo6peBh2LQ5nAHuWf58zCByNUSu5pFhUUzM0plC7IGbA330IvJvpI30V0QumzeO8q9JpIr3iKSI00mfmFlOki2fJZL6dHOZGN8B+DmBGSEtWUc5WsyaS8Zux6jBEm6K2UGFsDXwMWRsf4z3yzYDIN+G3eSaG8uLjbuwh0J0rjOKAjH7YXom2AqvTm8PV8OTvEFD5nEke1b4rpK301ugdf/p5GoZC69rfKWkbSlUvCfVU2IpEjRcsvNYhpgpsRTxv/fN7FUgm5m1wOsGOyOwIYlcmvFd+sI1sCWsBI8zm29iIuBWiNuanQcqf4Szq3mHh2my5k4q54pmebf7ATjQpTDcCvvJx0szevNIy9nwYSaI3E/W30OJPx1K55qjKMYOuv461fv5ZYS3zwpuFbk+jYXXvwea4txNATp6Efm31BVWJEgkOEiu12tIiNdNVkT8xzk3ClgBfAPUASY65yYENiqRv6fxlSKXL7HF0p9LWqAWS5EgccHiPZimGxHxMzMr7JybDcwOdCwilyJpQllw4g72DgnnZtvFHW4ZbuvV2F4HH8P20WU59l5GmmxfwND5vQhjH7lbHgLg/bHN+KJlOT6hFuNbtmM0vaEb/OrC/5+98w6Pqkzf8P1Nn0knCUiQjg1FAVEElbUtKi7+FFEUG6KCoouKuioqCPa1o6hgY11FUUQXFBULrgXEgggsoiIgvSSkT5/z/f44c04mycxkAoGQ5LuvK1cg0745mZl8z3ne93m5nYc4hF8pJ4MgTsQTkrUPFHD3q3cCcBNPkHOQD8E90VWoMlhF06YlpsIqYalQtBCkTDzHEjVuRKFoaBYLIX5BL3+dI6X0N/aCFIqU+HYiBXzJpjXd4M8wi0UENsBLp1zMHZc9yI4vO5D1cAC+hgfevBPfJTnwpP43RJ4rEN0lXAj0AUqAJyH//HLOeftNbt/+INo7aZwz5k20WwSZ3p1UbMsFwNElwN1d/qbfjzypEZ64QqHYU1QprELRQkjURykEyrFUKBqeDsCTwBBgoxBiuhCiX+MuSaGIjyp/VSgaFr0UVo0bUSgUzZWEjqUK71EoGhopZURK+b6UcihwCHpZwNeNvCyFIiFHyEEcIQdR2sfJd/MHIC8RsNoG/U5DLJQM4gN2jOzAPQNuh78By8B3ZQ4cD//scgP/7HIDF3d+Cd6DgRPmwjLYNdzDM6OuYufbGbw7+yJy8kvgTXhv7IVYvpU84rmV37t04PcuHbj75UeB/0a/FApFU6RpyF+FQrHH6D2WtX9uEUKF9ygUewEhRCtgOHA5kAVMaNwVKRSJWbnkGACyAgHkwQLxm2TBoBMZyFc8N/AK2i4t4fOX+3PKy4u4dOQL/Pvdq2ES/PO2sdw67WkAnh89gtffuxKGgDhD0q5sMwDXf/sivw9tT9GYdgA47ikjI7uca4e/AiOiC3gO6DMR+f0+fuIKxV5AjRtRKBTNmkSpsPplSlkqFA2JEGIOcALwH+AmKaVyKxX7JaoMVqHYOyhhqVAomi2S+KmwyrFUKPYKc4CLpZS+xl6IQlEXJ8m+nMNoAPIoQngkrAlQRB6sgakDx6B1EljmS3gR/v311WCFB+ffxCtcwSGjfwXgmjUzEGdI2AJrBxTQZcIWOA0uGPgvDpqzkWOf/RIrEb4sOwX7mxLSgC+ii/jBELgqDVahSECWEGI6ME9KOa+xFxMPJSwVihaCJoG4pbAglbJUKBoEIYRTShlAF5ZCCOGJvVxK6W2clSkUiXmBq3mVywC4cek0/IUCV4mf+xkP1z3HysJrseRJeAg4CZgBx2pfcsfVT0Al/N8RHwNw0viPQEyC+yfy6YDT4EKQ5YLHGcPHfzudwczlO/ryQ2ZPsIIcIhCDtkVXcQ1Sttn3T16h2AvspVLYUinlqIa+04akWYb3CCEGCyGml5aWNvZSFIr9hwThPSoVVqFoUBZHv1cA5XG+KxT7DaoMVqFQNCTNUlhKKedJKUdlZWU19lIUiv2GpOE9ao6lQtEgSCl7R79bpJTWmt8be30KRS2GTuSgLhtxEMBBACpglecwZMTFitXH8qD8Dd6ErKu24VhWBp3gHu121tMJBsOomU/x+/j2/D6+PV94zoCpE3lj/LncoT0IK0AcV8rNv01ljeMguvEHi7T+9Pv8J5gFc848E3g+5kuhaB5IIIy1Qb+aAqoUVqFoIWhSIuLVwirHUqFoMGqWvtZElcIq9jsCID8TjOZJAN4YcC5ePHzZ/lj+8tsSWAS5Kzfzd8vTWFuFufu4R1nFYVzBKzw8YyLTV95At/F/AHCwdzm38TAXLX2Xxb17cdew+/hs81lwyHLyfy2HNXDBoH8xq3IEYoTkPNEXAClVX6WiuSGazOzJhqTlPWOFooUiIcm4EaUsFYoGogKSlgA0jdPOipbBSxN5aeTFfMIJTP/8BgCmr76BE8Z8wiH8BjbJg/3H8QQ3sZ5OtGcj0iY4hJ+xEeG1OUM5nY/JfyBa5X0gBC9zkH5oIf0+/4kDT1kDK+El+TAr6MGTb97OWwsv5y335Zw6+QM+a8SnrlAoGh4lLBWKFoCUUk9+jZsKi0qFVSgaCCmlBUAIcScQBKajx2ZdFf2/QrFfIMQkeEk5hQrF3kDNsVQoFM0WQzjGcywFQs2xVCganjOllCfE/P9RIcTXwJTGWpBCYWCE9jw38gqu/PJ17h5wJ2+cci4AF+W9y/3cxdnB/8Atgk5z1lPAFjIo594l93PvmvthDfx23JE4egdx42Xt+AIADi/7H0OZzcee0xl8yjxmMQzfi26WcCzTV93APRNuJ4iDBwZN5jPxA6DKYBWK5oQSlgpFC8CQjfHnWCav21MoFLtFrhCim5RyDYAQoiuQ28hrUihM7pXl/MohyPaCDbTGSkS/wAVnB/9D6bsH8Mycq7hoy5u8X3AWZ239jKevuBXH12Wc3upjXmYk+eIXZpUOw7cmB4A3ep/LdTxDd1Zx5fDXOXrmNwT8Tqa9cSMnX/kFXjyUkA3fNtrTVij2GcqxVCgUzRLDkYxjWIIQSKmXy4o4wlOhUOwWdwLfCiF+jP6/F7Bfzx9TKBQKRcMgEU0mybUhaZbjRhQKRXXMUtg4tbDGj1Q1rELRcEgp5wCHAc8AU4HDpZTvNeqiFAr0MtjX5AruXvoo08pGI36SdHx4Ox9zOh9zOtMPvoySL9rCozCZCXCNk684kc1tc+E+CPqdDGMW+QeVw/0H4vslh9a9N9C69wZW0Z0BfMUDXSYzfuYEfhxzPLd4HsV5bik/cDR38CA3Z06FYr0UV5XBKhTNC+VYKhQtgGQ9lEZ5rNKVCkXDIqXcCcxr7HUoFDV5ntEM7/0yM8eOhGvgzyFt6Lhku35hBCIDrRCGHWvbc87cN3n45YkUjsxD9hOIVyWX9JjN1t+zySsr5YD0Tex4uQMA9+bdD3nACL0M8MlnR3Nj/jTa7lzHozvvZmj+O/S7/idgIvKBxnr2CsXeR7bQcSPKsVQoWgBV4T21HUvjJyrAR6FQKBQKhUKxu7Q8Ka1QtEBk1I+MO8cy+kOlKxUKhaJ5I5YDl07kBTpRQg4fP3k6uZYiHuUW3up7NgBWwgy590Ou7fsKD3YZRxgrrUduZ9qSG5nU9za4HbgfXhx0Fb9kdqdoUTtw6fe/62wPrV71wg/w4K57sJwmabtzHVumdUFsl2Tdvg1WN9rTVyj2KSq8R6FQNEu0qGhMls2jHEuFQqFoAaTr3/ot/Qm2wbYTDmRu5pmcd8p8AG77fBI77m4Ds+COOU/wzyFjOZIVDOs7g3N5j8HybU7nY65b8BI/DTyMmR+NRF6m/3ERcyUcANwDltGS3B82s3VmZ+4bfTPkQ+m2A+DdSdGFqP5KhaK5oYSlQtECkNJwLOOF9yjHUqFQKFoER00CevPxs6fD75B17jZudTzIk5Nv58bPHwJgISezZPVfeHfYubzA1XQcsh16wowJw9hCAfO6n89Jq75AnP4KPDUCVsIL3S4FQN4mEHMk3AHcBEW3tePeR27Bgw/OB55ToT2KloHeY6kcS4VC0QzRkohGMxVWxfcoFApFs0WISXVfSaFQNAgSQURrecJShfcoFC2AZI6l8aNk4lOhUCgUzYDNt/OY/Ih/7HqEGcOGke0o4clVt/P1hD7kUkguhXz3+QB6HbqY4bxOxy0buHLOVJ6bcAUj5sxiBT3gwmjv2KQRcE6Yk+Z8xGDmMpi5PP7OGE6QnzDjgWGM7z8BToYvOJmbp0yF554GWim3UqHYfbKEENOFEIMbeyGJUI6lQtECqEqFrX2ZITZVj6VCoVA0Y16fCN/CtCGjCX6UiW+4hyBOKIdXuIIXV18PwPxTzuI0PuULToaPnFhHhrn281doPWQDCzmJmyfcB8BzE67g2gWv8MV5Z/Do97cA8NiCu+BieGjnHeRQgvuEYj4T7TlVfsBnN+xqtKeuUOxzJITDDe5YlkopRzX0nTYkyrFUKFoAhmgUcR1L1WOpUCgUzRlVBqtQKPYFyrFUKFoAhmaM51gaP5JKWSoUCkWzwxSVC2HBCycycPlXyGMFQqyCbzozvv8Enii7iUcOvRWAxZ6TGeudggcvX4/swwkLfuC7gT3ozHqu4Xk6sx4rEQrJhR/gre/P5gLxrP4Y/wH/nwLX+ZLxb09gfOb9tJcbeZKbGunZKxSNg5SCSLjlyayW94wVihaIWeYaNxVW/650pUKhUDRPTpV9GMvpzOJC5DsCzobScE+cgSBr6IojM0irx736lZ+H/izios/fhWy4dOALHDt+BfQB2sHHPU7nEY8uQi1XVnJB/7m8JfUZmBc8PpcpZ/8dZi/lgasnw8mAH7jyQ+BYpDyzEZ69QrHv0YWlCu9RKBTNkGQ9lkL1WCoUCoVCoVAo9pBm6VhG05IGd+vWrbGXolDsF1QJy8SOpUqFVSgUiuaFUQY7nJlMZBI/beyHOERyxNHf48PDIM98VtCDL5afAUPDAKTnlXBo2WpWntKN+QziH3OncM8Dt9OJdYz46ywqPs3j2vav8NyGK7iuzbM8PXss5WToD1gBw5jFMtmTE3man+jJdHEU4EbKkxrnICgUjYGkRTqWzVJYSinnAfP69OlzdWOvRaHYHzDDe+JcZob3qDmWCoVC0fx4fSKLmIqVCG3a/8mBw9ewctwx0BO4bD5bKKD1kRsYymwAurOKLzmRI8asQY4T/CN7Cj9yNPcseYjhn7zMzIdHwiS4Zt0MhDUEN9sYefVMACITrFzDc0SwsZH27KAN8N/oQk5qhCevUCj2Jc1SWCoUiupUhfcknmOpKmEVCoVCoVAo9hwpBeGQciwVCkUzRNOMcSO1L7OocSMKhULR7NDLYHszavhTfEdfli05Dtla8EnnE7j+8ancxsM8yi30ZQn/Hns1N015AoCDHt7IwNvm0u/ZhUzlSiwZlcybeT4Lhp/IwEVfwe2wS3rgBLjn67vwvO1FjNX/gNw78BY+23UagcosKAXRQ/+5+vuiaHkItEjLk1kt7xkrFC2QqlDYOI5l9LsK71EoFIrmxc/yFmYzlGVfHkd6n0JWezryf2Vz8b2Xw5VHvA4r4Rd/L7Ie3cZBYzcCMGbK47zqvYy5nrM55ctFzBgwjBEfzeLR4beCFfgPtFrihUxozQa6s4pRU54CII8igh9l8tDwG+na/g/AmJ85sVGev0Kh2LcoYalQtACM/sl4qbAWlQqrUCgUzZCJLOEP7l17H/0GLGQLbbmW51ma2YvZlw3lri8fQzwp4RZ41XE5GVPKATjFvgjegbNO+gDHEWWMOHsW383twZnaR6T3KMTaK8xpjs+Y99pgRjMNBwHuXvSo/pBvAkfAHV8+AX/RRaWUSlQqWiASaIHhPWrciELRAtASj7FUPZYKhULRzDDSYBUKhWJfooSlQtEEGTZtMcOmLU75+oYbGT+8R/VYKhRNBSHEJUKI5UKIsBDi+hqXeYQQs4QQa4QQq4UQf2usdSr2A36GLziJ9AOKeJxxvMlFDGMWhy75k5lcDIfBjUsf4p/Dx3IdUzlfe5vztbd5MjQaVoLvxhwcriAr53bj2Jkr6G9ZhLfcTenQA3hn+MV83uoUBjOXQ/hNL5G1wt1T7oTX4J8Dxjb2s1coGhcpdMeyIb+aAKoUVqFogqwvqsRhTf28ULIeS6M8Vo0bUSiaBMuAC4Hb41x2C1AupewmhDgI+EoI0U1KWbEvF6jYD7h7IqyHmfeM5Os5ffiY03mWMZzGp8zuO5RVO3tzYv4C1tOZTQu60W/gQhavPhmAG1+ZxvRHLmMeg5k34XyOOG0NWGGh92S0H9PYNddDq8u8lJANwEyGU9FT3/R2YR2jvnyKyd4JpFdCuSevkQ6AQtHISCAcb8hb80YJS4WiCVJcGUKTkogmscZrnKyBTDrHUv+u1UNXGm7prNH9Ur+RQqHYY6SUKwGEEFqci4cBl0ev97sQ4gfgTODtfbdCRWMinm3sFSgUipaMKoVVKJoYUkpCmkZYkyzdUJzabaLf45XC7k54T1FlkB3lgZSvr1Ao9gkdgD9j/r8BaN9Ia1E0IjdOfgi6QfprhWyhgIk7H2bbro7MXD6SH4JH83j+GM5iPvdxJ/cOvIXF/U9mTPfHGdP9cfgCJjMBKxFKJzr554CxHDxsOas9h/LcoCt4hSvY+WoGZ038jBKyeYobSD83Qvq5EfqziCBOKtKmUpE2tbEPg0LRuIQb+KsJoBxLhaKJURmMmKWtH6/cxjGdWtV5G0M0xg/vqX+P5aZib+pXVigUKSOEWIouEOPRRkoZaaDHGQWMAujQIdHDKZoal455AQAPXuSfAhzgab2L82nF1a2eYUarYVx+71uIoyWjBj3FHUufQLYVBBc5OZEvAXj1v5exaW1X8roUcpb1fS5kFr8NP5ID+xRyzrg3cRDg5gVT+XnSIeRSRMcNm+ES/fHf638h+IFeIJc20kFQKBSNhnIsFYomRlGF7hRaLYKPV20zy1yToUWL5uJVzRo/SuV+ALaW+vCHNEIR1ZOpUDQ0UsreUsq8BF91icoNQMeY/3cANiZ4nOlSyj5Syj75+fkNtXxFI6KSYBWK/QiJciwVCsX+T1FlEIDTDmvNx//bzuCnv+b9sScmvY0RzBM/vMcohU3t8b9ZUwRARJMEwxoOmzo/pVDsJ7wNjAZ+iIb3HANc1LhLUuwLDFH57+VXA7DyyG6ITyRvnXk2V/EifAkvrr0e8Y3k8lPeQuYKPuBU3ut9LmKchBOg55BvARjteZ6CLlvZQWseXjCRHQPb8NLMi7ly7Wu8t+BCZC/BooHHc9SG/+FI93J0hyX8cOQJAHRftJRfxNzoqtT8SkULxhCWDUuWEGI6ME9KOa/B770BUDtChaKJsatCF5YXHqOXrxV7g3XexkyFjXNZfVNhF60pNP+dymMrFIqGQwhxkRBiE3A+cK8QYpMQonv04keAbCHEGuB9YJSUsryx1qrYt/SUp3POkW9yzpFvUkQupY846cMP3MQTnDbgfVgJ6dcUQi5kd9lKAVu4j7uQfxNwHiybfBzLJh/HKrrThx94eO0EHH3KKCcDH25O7TKf1gM3IFZIJjERPtW9iUJyEQskYoE0RaWUSlQqFHuBUinlqP1VVIJyLBWKJseuqGPZrXU6HoeVykDdLVeGsIw/x1L/rsXLmKx1P5Jv/igk3WmjIhCmsCJAm0xXymtXKBR7hpTyDeCNBJdVogtOhUKhUDQmEgg19iL2PUpYKhRNDKMUNjfdgc0iCKdQw5pSeE8KjuUfOyvZXhZgSK92zPlpM0UVyrFUKBSKxsQogy0ng/devRCALZcVUGTNpRPrWeLty/eePtxy5b2Uv5YP/wXPCz56v7oKy+mVlJ+SwT/lWBzo/fuH8Bur6I4st/BUl1HcsGY6fbp9zY9TjkcOFIhOGo9yC6yHoN/JXP6Po26+PrqaVkj590Y4CgqFYn9ACUuFoomxqzKA227F47DRv2seawvrnn1uCMu4jmX0eyrZPVf+63sABvcs0IVlpRo5olAoFI3O6xP5hAJKLssGoM/27xnb5mm8uPlsxVlc3vdVljz+F8Rxkp6XfMuWKV0QnSTftDmBLbTlvMnzoY9+V/8cNJZbf3waUSqhO+xY1YZBzKfH2BV04hceZBy/cgg3TX6CZfRkFsOAXY321BWK/RIJNEiGd9NCCUuFoolRVBmkVZoDgEy3jVJf3bUWhmaM51jWZ45luT+Mw2qhd4ccfS3KsVQoFIpGZbhsz+srBd/SkwK2AFDYJp+FnEQG5Zzc9wsufPA9Vt/RkZe4mCvtr8MvUNrZSTvvZiZ4JuuiMtqN68XDfUffDBvC3LPqLqYxmq1Xd4bz4bmBV3DthFd4Z/IgrmcqW2/tDI/qjqnqq1QoFCq8R6FoYuyqDJKbrgvLLLedMl/dsWNSJkmFtRjXqfuxg2ENl91CpsuGw2qhUAlLhUKhaDTUiBGFYj9GjRtRKBT7O0UVVcIy02XHF4rUOfajKryn9mWC1B3L1plODjsgEyEEuekOc6amQqFQKBqHj7XTWX1ER477v2Ws+09bAI5kOX34gVV05z+cjTha0poNnMRCTg19wAtcyqhFryIPEogSP3KGYNJbtwFwz+MPsXZcAXeHH6Eba/gXlzHwmK+4cuBUrl3wCidN/ggfHkYzDc8jXv7xaG5jPn2FYv9k74wb2e9RwlKhaGLsqgxyUJt0ADLddgDK/CHy0p0Jb6OZ40YSp8KmMmykxBsi26M/Zm66wwwSUigUCkUj0GMi/7V0YyPt+fg/p3M2+hSCQXzA9FU3IEMCsV3yz4FjWUNXItiY7z2Lz5adxb39b6Es4kBucfHQWzcycc3DANxz3EO8y7nIrRZu73IPh2HlnFFv8tKc63hryNlcsHQuX9jO4Jwj3+S9JRfCtyD7NuIxUCgU+w2qFFahaGIUVQbITasqhQUoq6PPsiq8p/ZlZipsHY6lpklKvEFyPPpjt0pzKsdSoVAoGglVBqtQ7McYjqUqhVUoFPsr3mAYf0ijVZruTma69bdwmT/5J46hGeP2WBpzLOuwLMv8ITSJ6VjmpTn4Y0fdibSxDJu2GIBZo/vV63YKhUKhqI38h+B1zmMWw+jJMjq/uxWAaXfeyLJVvRCPS54bdwWn8SmPcAsRrPTwrGBx+GTGRp5mlbU7q9p3546rnyD3hSL9Ti2Sc3kX4ZaURpzMsw7m3SUX0WZIf17kKnDB4O5v8544CoiKWxXco1AoUMJSoWhSGCmshmOZ6UrNsZRJ5lhaTMcy+WMXe/XHMBJpc9Md7KpnKWxdrqhCoVAoUuSWiQjLRDqymgF8xb1L72fSXx4A4KxV7/A445g4bhKvM5zrtj9D5Lt0CgavZeuczsifBRsGtKbf5z9BHrzzwiDu4CEAhnd5hV7BpbzR+1xO4XMGMZ9D+v7M+5zFMTeu5L4nb+buBY9iiEqVBqtQxEH1WCoUiv0dQ8hVjRvRhWVdI0cMOZdsjmVd4T3FXv2xjVLY3HQnvlAEbzCMx5HaR8nGYh8VdbirCoVCoUiOyARGN/YqFApFQlqosFQ9lgpFIzJs2mKzPDQVDGEZO24E9DLVZKTWY5n8sUuiwtIM74mK2/rMsvQGI/hCLXBisEKhUDQQRm/l4kd6cdvwSRzPIv49/2q+692Da1o9yTWtnuQqXmQ2Q5nAZL6e9VeGtplNxqk7yaCcx4ZchzhP8ixjoFsY0iVnl31IBuVkUM7MVSPp5viDVXRnDkM4nY/57fMjuYg36f7kUs5iPi8NvLiRj4JCodgfUY6lQtGIhCNaXBcxEUYKa67RY2mWwiY/LWamwsYthdW/11WmWlypi1fDsTRSaAsrArRv5al78UAoohHWJBFNYo2nchUKhUJRJ3eX3ckSjmUMz3INzyEPFvTgOyZwLwDzOYsXd17PIfk/s3RYd65jKo94buWanTPgA/hjRFdyKSI9r4TPPSdzgLaJ6VwNwJHdV3AxrzN53QPc3vkeFnIy553yOiezEAdBPmAQd9sfBRvI5Oc0FYqWjXIsFQrFvmTV1nI2FvtSvr6Rwtoq6li67BbsVlF3KazZYxlv3IgxxzL5Y9cuha2/Y5lqiq1CoVAoFAqFommhHEuFopHQNIkvFMFuTd2521UZxGGzkOawAroozHLb6yyFNVNh41xmOpZ1TLIs8YawCMhw6R8buVHHsqgytZEjUkrTcS32BsmJltIqFAqFoh5kTORF1rHlii4Me2UG8xecx0cDT2Ihp5A3UU/qzphUzsL8fvRgBbfzEIseP4W54wbCZ3DaiPfJpoSpN97MrblPs+7utnS1/EEbdgBw0Msb4YwAzqxS2rKF9esO48TOC+jBCgbM/g6xRULYGHWignsUirhIoAWeQ1fCUqFoJAyRFYxo9bpNbpqjmvOY6bLXY45lPMfSuE7yxy72Bsn2OLBElajRY1mYomNZEQgTDGvR+2qBn7YKhUKxh4jJwDDYUNaFza/k0ocfmTPwTP7NZfSPLGLopNcA+FfgMmY4r2D2z5ew/KiDuX3cPbRnI30u/JqnuIHurOKpJ0fhJMgP9KEHK1hDVwBkN8GcgjPx4OOMz7/gzVPO4XYeJoNyzh76FgiVBqtQ1IkEWmCkhCqFVSgaie1lfkAXe6mO4fh01fZaZa8ZbnsKpbCYj1WTqlLYulNhc6LBPQAuu5V0py3lUtjY6xlBQAqFQqGoH3K8YHtmLu36FVFELt34g54sY751ELOnXsLsqZcwy3khx7KEm456kCMf/I0ATk7kKzIo5/ipP3I5/2JicBI9WMESjuV2HmIZvVhGL0iDZ7mOMz7/AuvhFTzKLfxtwaf03rCceeJ04CYlKhUKRVyUsFQoGglDWHqDEcpSHMER0rRapbN6KWxd4T11z7GsoxKW4sqQ2V9priei8Z9lm5PfMEpsyaxyLBUKhaJ+GGmwCoWiCWCMG2nIryZAkxOWQoh/CSFebOx1KBR7yvayKqG1tTS1AJ9IRGKzVH/bZrpslKc4xzKesKzPHMvsGsLSbrUQSrGUt1A5lgqFQrFnXAhvdj6H7EAxaxYfiIMgi+jPLYFHWENXXr/uPF6/7jxG3jmTjzmdJzfcAv+FK3iFAA4W/nwmV1z3HD1YQQ/HCjx4KSGHbmdtYlrZaKaVjWbb0VncxkOcfcpbfNDmb2ykPRTD9A4jgTnRL4VCoajNXhWWQohHhRDrhBBSCHFEzM8PFkIsFkL8Fv1+UIr3dz3w8V5bsEKxDzEcS4CtJf4k16wiImWtctbMlEpho45lnPgeS8pzLEPVSmEBbFZBuK7mzCixpbDFSlgqFApFvWgtr2Dnwfq0yRJnDt1WbmLy7AfowQrWOzvTmfUczK8czK+8cP+ldGcVT3a4jjYf/cld3EcJ2aw7qi0r6ME5vMvXs/7K2cxl488H8cIHl9I+cyPtMzfiw8NIXmE8D9CdVfRgBYOHvc1EJtFW/gUpRzT2oVAo9n+UY7lXeA8YAPxZ4+fPA1OllAcDU4FpxgVCiK5CiE9rfN0qhDga8ACL9vKaFYp9wo5yvznLcUuKjqUmoYZhaabCJuvTNLRfzdtCbHhPCj2WNZJcrUIQSVFY7oqWwma4bKoUVqFQKOqBaHL1ZQpFC0cJy4ZHSvm1lHJj7M+EEK2B3sAb0R+9AfQWQuRHb/OHlPK0Gl+PAGcBBwH3A8cLIU7cm2tXKPY228sCHNQ6HatFpOxYWoVgSO8Dq/0s02UnFJH4Q4lLUpOH9+jfk+lDXzBCIKyRXcOxtFpEnYLUoLAiSIbLRusMpyqFVSgUihQxeivdeLmG57l62r9pd0URrIPvhx7B8Wf9yIW8gZUIx6xZyTFrVvIiVwFw44JptGcjViJkUEGXDRvoxHq+oy9fD+vDxpUHMeGo8UxkEroXWk7nJVsZxAcsoj8H7fqdQ/iVedPPZ6t4la3i1cY8FApFSydLCDFdCDG4sReSiMYYN9Ie2CyljABIKSNCiC3Rn+9MdCMp5WQAIUQn4C4p5VfxrieEGAWMAujQoUPDrlyhaEC2l/kpyHZT6guxtbRuYRmOaAQjGm67tdrPM93627jMH8LtsMa7aVV4T5zLqsRmYoFolK7WDO/5v54FvL5kQ51rB31USl66k2yPgxLlWCoUCkXKjNKeYtqHNxL4C/A2PPLp37l169Mct/1bnG8EeYbrOYmF9Oq2GIAT+YpyMjhh4Cd8tXogJx66gFkMI/fA7XRnFafzMYXkMfWIK+nJT5zIl9zPXQCM7vskReTxKe1p3WoHX3IijAaYWGfLhEKhiKHhXcZSKeWoBr/XBqTJFVdIKddLKa9Kcvl0KWUfKWWf/Pz8fbk0haJebC8L0CbTSdssV0rhPb6QPhCpprDMcusuYrI+y6rwnt1zLBMJS7fDhjcYQUuhHLaoIkBumoMcj12VwioUCoVCoVA0MxpDWG4E2gkhrADR7wXRnysULYJQRKOoMkDrDBdts90pOZamsKzhSma6dGFZlkxYpjBuJNmZaMNhrBnekxZdi7G2ZBRVBMlNd0QdS1UKq1AoFHWhl8H+hemX3cD/zuyKsxQu/vQlbl33NDwFY9s8zdGZPzDy9pl8R19O5CtO5Cu205ovOJnXuYTuhy7lU+9A2rORwtEH0pclzOVs+m35lusffpHzls/nOp7lZBZyMguZtvNGerCCCDZ8mpuVDxwDTIp+KRSKlGihPZb7vBRWSrlDCLEMuAh4Lfr9JyllwjJYhaK5UVgRQEpok+nCGwzz6artSCnjOooG/qDeQ1m7FDYqLP2JhaVRChu3x7LGdeKxqzLqWNYI7/E49Y+QymCYNGfyj5OiygC9O+aQ7rSqVFiFQqFIkbVyOFMYy+Gf/8HFp7zEiXzF6M5P0veh71hFdz6I/I2FD/XDjZcf6APAovNO4dt3euLFzS9Le/Fr74O5gleY88KZnLflXZ4ruIZzCt5l0m0TWUEPZjOUSUwEYFL+bfThByJYed1yMfk/lcPQici3G/MoKBRNDENYtjD29riRKUKITcCBwKdCiP9FL7oG+LsQ4jfg79H/KxQtBmOGZZtMJwdkuQmEtTrLQxM7lrqgS1oKa4b31L7MELPJhKXhMNYM7zEcS28guWOpaZJdlUHyoo6lP6ThT8HlVCgUihZNj4ncwFPMZxBlf3HQk2Vc880MxvI0y+hJG7YzxDqH5xnNVwzgBa7mBa7m+XdGsIRjyaaErr3/x4tcRc6XPkrIoW3BFq5d9QrvbRiKgwCXLJ3NfZG72Eh7NtKe7qxiI+2JYCV/cjnMnqR/KRQKRR3sVcdSSjkWGBvn56uBvnvrcaNpSYO7deu2tx5CoUjKsGl6gMKs0f3iXm7MsGyT6SIY1p3IraU+WtVwBGPxBvVTXzWFpdFjWeZLfGrMaIGMP8cy4c1MDNGb7a7hWDps0bUlF4klvhCahNw0Bw6bNXqfQdpmuet+cIVCoWiBCDEJekxs7GUoFIrdQQItME6iMVJh9zpSynnAvD59+lzd2GtRtEx8oQj2JIrNEJatM52Eo6rvplnLzHCceII0UXhPxh72WKbiWM5c8icWAQ5b9SKHNGfUsQwmr/coqtAd2tx0J7bocSmuDClhqVAoFEk4aflH9GQZR/Mjx1i/ZxizkIfBOB7nTS4kZ4GP4oFupjGabErovWspAIHfszit7/s8y3Ws+fsRiKslL/a8inN5l62rOvNd9x4c8/lKTu/wH7r2/h9/0JUHdo0H4NhWS6ggg8HMg4m6UymlErgKhaJumqWwVCgak4gm+d+WMvLTE7uP28v8WC2CvDSnGdlqOJeJ8CcQlg6bBYuA15ds4O+nHhT3toZmjB/eo3/Xkjx8KCKxW2tXzhuOZWUdjmVhhV5Km5vuMF1TFeCjUCgUiblH+viDjXjw0pNlbKQ9z2pjeMJ1E59zMjnzfBwy+Gc+4a+Uk8ES+jK41TwAPup7EufyLq3ZwZ1P3807DKKIPFbRnVHdn2I9nTnluIV8wl/5m/Y+Uy3XEVyZCcCtAx5lO20Y9fCrqMAehWI3kUAL7PhRwlKhaGD+2FlBRJP4Q4mV2qzvN2IVAotFkJvuRAA7ygPsKA+Qn+GMexuj3DTerEqrRRBJogyThfeYqbAJb62LZVscB9Zj9ljGdyyNkuBL+3UEIDfNaa5FjRxRKBSK2lzFVEAf7q1QKBRNCSUsFYoG5ueNJQAEI4mFXiiiYbfpQs1qEbgdVvyhCEIICssDcW/jC8Z3LAFsFotZUhsP45J4wtIgWSlsWJNY4wjLtBQdy0c+/hXQHctwxBCWiR3LunpUFQqFojkixCSulHkAfMFJPMgdLKMn2ZRwE08w1jKFo9b8ykVHvslrgy/ht1VH8kT3m3jyy9vZOSCD/C/LAcgYUM4tPMrha/4gu1sxf9v1AcFtmch8wbr8tnRet5WZnT/Fh5vplquZxTBaD9gAwLEsoe3yEs677XW4rRuzubjRjodC0aRpgamwSlgqFA3M8k2lQO1+xFiCYYnLXnX54QV6CdLmYh9bSv14g2GzzNTAnyAVFgzHMrEw1JLNsTQEYxLLUpMSW7xS2Dp6LDcX+yj2BXFGb5vjcRCKCm5VCqtQKBS16cVPADxfdj0XZ87gND5jGqN55d5r+eTuExhz5OM4CJJHIbd1n0RPliEPElzMSzw34AoArtk5g775/6WkWzbjuZ9vWx3Hr60OIeCFI73LWd75SFbRnS8ZwBKOZf7G85jQXu+x7FK2DgrhHbFGX1CychaFQhEfNW5EoVA0BMs3lQBQ4g2ZLmNNwppWrWfRIgQWIciIjg5ZFnU9Y0kU3gNgs4jkjmWSHstU5lhGNIk1zo1NxzLBuJGdFQEqAxF2eUPYLAKrReCyW3HbrZQkKYXdXubn123lZuiQQqFQKBQKhWL/plkKSyHEYCHE9NLS0sZeiqKFEQxr/LK1nDaZep/kllJf3OtFNBm3LPWt0f0BWPpnca3LjB5LVxxhWZdjKVPosUxyc9KcNs7scUCtn7vsFoSI71hu3OUlENZol+0iN81hJt4C5HjsSXssy/xhSnwhftlannhRCoVC0eyYyGQmMJkJdM78nQF8xatcSns2UjbegQ8PD0buwIubyUzg4S23c+Hq92AHXMq/6ckyerIM8YLkMl4llyK2UsBP9CKAA+czULEsDy8e+rKEHixn/srz8GTt4uFdt/HwrtvIyCyHU0PAeJUGq1DsLoZj2ZBfTYBmKSyllPOklKOysrIaeymKFsbqbWUEIxqnH66LsK0l/lrX0TSJJiG2snTW6H7MGt2PLI+dg1qn82McYekLRXDaLHF7Hf92ZNu4gtN8THOOZW2qKmETK8uKQJg0Z+3KeSEEaQ5b3DmWi/4oBKBVmpNurdPpkp9mXlbiC/HZL9sTPp5RLvv+8i0Jr6NQKBTNjenyMgq351K4PZc7uZ+FnMzrXMIVvELmuiD/t+hjMlcG2Uh7simBCidzDj2Tx48aw5lfLiSIgyAOThr/EWO3P8VQZpNLEf/Q/skD3Emff3zNef1f5/jg1/RkGTcwhTlHnImvJIOg30nQ72THmA7AA9EvhUKhSJ1mKSwVisZi7Bt6b8wZUWEZz7H0h3URdmm/TnHv4+iOOXz5eyEXPL+o+u2Ckbj9lQBZbjtl/hBaAtsxmWNpqM1EjmUoohEMa6Q74rdkux3WuI7loj+KyM9wMvf642tdVlfpriEsX/p6Xa3joFAoFM2RDG9hYy9BoVA0FBIINfBXE0AJS4WiAakMhLFZBEd3ygHiO5aGu+dJIBKP7phDRJP4aowr8QYjcfsrATLddqSEigQhOlqSHktTbCboZ6yMjhKJ51gCpDmstXosL3h+EfNXbKV/11yEEKYja2CzWggnGY/islvJctsJhLU6E2cVCoWiqSOEPi+ynAxebjOSl9uM5HWGU8AW1tMJgHBr6Nr/fzxy1N85jc8Yxixyu22mM+sJ4qDjgNWcvP1zTt7+Od1ZxcttRjKFvzPO+zhFH7XjNh7mx1XHs4IelK45gNGB51kdOIStFMDTNs4s+IAzCz6A5+YBvVUZrEKxJxhzLBvyqwmgUmEVigakIhAhzWnDabOSl+5kaxzH0hswhGX8t9/RHXVRWuGvfnrKF0rsWGa67ACU+ULmv2OpSoWtrSyrwnvi3jUVUWGZnkBYehy2Wo6lL6QRikj6d82Ne5tkPaGhiEaJN8QVx3dixjfr2VWp0mMVCkXzp+KWPB54ZjzHWpYA8AJXs5UCXuUybuER7BV+KLHSvsNGrteeobwkg5taPcFD3MZbV1+ODAu+eeVoAE7Y8C3DOhxPAVu53fMw1377Cn0G/cCM7sOYycWM6T6ViUzisVfvgk0w5pHHeX77aAAs2yDSJi3hOhUKhSIRSlgqFA1EIBzBF4qQ49GFXUG2iy2lcRzLkC7CEjmWnfPSsFkEFTVcQH8ouWMJUOoLcWBO4jXGac+MCe9J5Fjq60joWDprO5ZlUVHcv2te3NtYRWJhaQjJrvnpZLntSlgqFIpmz90yyBLm8vHO/0P49M/PD38YQr8hC1n0+SkUnLIW+ZKLgrvXctGGt5nR4WJG3DOLh9tNROYJ3up3OZUXW8hFL6e9t8Pt/OXZJci3BOJICe3gXc7lns8fIvekzSzYNIj/djiex066HWbb+IleaAc8WrUg5VYqFHtOEwncaUhUKaxC0UCs3VkJVAnGtlkutpbEcSyDiedRgu4q2q0WIjVKRX1JhaUu+sp8iUphEzuWhrBMNNmjwiyFjf/Y8RzLCn8Yh9VC+1aeuLexWgSahHCkdjnszvIAAHnpTtwOK8GwpsaOKBSKZosQvzf2EhQKhaJBaJbCUo0bUTQGv23XR2O4TWHpZmscx9KYbelJkuJqEbVLU71JwnvMUlh//O5uQ5fFcyyrwnuS91gmKoVNc1pr9UGGIhoOW+KPlyuO76Tfd5z+yaKoQ5mX7sButSBJLJgVCoWiKWP0Vt47835+5WDOzn+L7zr04rsOvThiyPcsXnoyIizZuqozPe7+jge5nf90OIsRC2bxxpRzufu2OxFuSduR63jReRWHfbmew75cTwnZ3DPmdoRdMnzKy3C+ZDTPwzaYbrkabrQxlTFQYWPGuGEsFl8CIOVE1VupUDQELXTcSLMshZVSzgPm9enT5+rGXoui5fDb9nIEVXMmC7JdVATClPmr9z3WFYYDuotYU+j5ghHy051xr58VUwobj6pxI/Ecy4TLSGm9HocNb6D6J15Yk0mFpSFSKwJhc+0GhVHHMjfdid2qL66wMkCWx86waYsBqgUBKRQKRZPmg4NYMOhEishjZNnLXJr5bwBWLjiG7wb24JitK2EL3MSDjPhtFk8ePBq5TiDGSTgDvhvegyLyOFNM5255JwD3HnM/8g3BVZ+8yDge47Auy2g7vAQOhfPWfgBfwVsFlzN8y8uMELOASY33/BWK5oiRCtvCaJaOpUKxrxg2bbEpdn7dVsFBbdJ5+5r+gO5YAlz8wrfVbuMLJS+FBejVMYcu+enVfuZPFt7jrgrviUdVKWzty0QdPZZ1h/dY8YaqO4/hiMSWRLEaIrUyUPsUXFGlUQrrYNLZR+g/q1B9lgqFQqFQKBT7M83SsVQo9hRDLBqk4pD9tr2cHgdmmf8vyHYBEAzXHhsCicN7AFw2CztqiLVk40YynDaEgDJ/8lqJeHMsLXXMsUzNsay+VosFzu3VLuE60l1VjmVNCiuCOGwW0p02ctMdABRVBBLel0KhUDRFhJgEtolcOugFruYF/nz5UA4euZyHuU2/wvvwt4EfsGNhB+SRgiefvR3/CMGnnMoLoy+FVvCfx0/nPc7lgZGTYTDcu0F3Hk/6/iOmciW/cghviVNhcz5/n/kIq+jOZw+cxYc7T+bMDguZefVIDLdSlcAqFA2IMW6khaGEpULRAHiDYTbs8jL06APNnxmOZaCGsDSEWqJxI6C7mb4awjLZuBGLRZDutCV2LLXEjuWehvekOawEIxrBsN5X6Q9F8Ic0sj2O+HdITClsHCFcWBEgP92JEMIUloXRvstwRCOUSAErFApFE+O50BVcGniVo5zLcQ8tZgKTOSfwLgBnTPmINuzgna4XI36T7Brj4RVGcO1vr8B64E24LPgvNst2THjmXm73PEhf9FElJWRz7cuvMGPkMHbKyTzEbWRTwtPTbyX9xkLOXLqQ8za8ThG5fPFi4z1/hULRvFDCUqHYA8p8IVx2K+c/rzucB7fJMC9rnaH3Q9Z0LH0pOJZuuxV/KPVxI6D3WSYSloYUi+dYGiQuhY1gtwqctgSpsFGR6AtGcNgsFHt1EZjtqT1P0yA9WSlsRdAUlK081R3LzSU+dpYHCYQjCdejUCgUCoVC0agY4T0tDNVjqVDEocwXotQXijsOw8AfirB6WzlrdlaYYvHgNlV9kTarBbtVEIpUF2zekC7U7NbEbz+X3WreJ+gpq6GITCosM132hKmwZo9lnMuqHMvEqbDJgobSogK5MjpypMSrryEnBceyPG4pbIC8aEiRzWohx2M3eyx9IY2IlHy/rjjhfUP13leFQqHY39DTYCdy7bhXKHHmsObHI3g8cxyTmUD66xHSX4/w9di/8isHIzsIxg+ZwK8cwrWLXkHLE3Bo9PO2tC0TnZO4zDODJ8Ug8/6v+XwGY0Y+zoj5szift3lsyF18xQCWjupOxeo8GArviM18IXSHU5XBKhR7gRaYCquEpUJRg3J/iF+2lbN6Wzk/bigx5yrWZOXmUiRQ7g+ztdSPENAxN63adawWQSROumsygQi6sPSHqkRtKoE/mW5bkjmW+vf4pbD690SlsJWBMGlJynYNx9KYZZmKY5k0vKciSG5alSjNTXeagT6G+7vw1x0J71uhUCiaBK/D8Mdf5i/8l7lHD+Taya8wnvvhUPSvGyUrtxyJKJZMDY7hPc6ha///cX+rm6lo44Rr4PT8//BY/7s4hN94TE7jRa7iRa5CjJA8u3QcowY9pT9WLixYcDZuvDADdq31cKw8rhGfvEKhaI40S2Gp5lgq9oTlm/TXzYE5biyiSjDVZNnGEgAcNove/2i3Yq2RhGq1CCJa7R7LZA4g6KWwwYhGJKoI/cG6hWWW255w3AhSIkRVAmwsVamw8W9aEQgnTISFqnmcldEAn1QcS6Nfs6awlFJSVBkgL6NqrEpumoPCiiBSSgJh/TFeX/JnUkdS02StUmKFQqHYHzBmVyoUimaMMW6kIb8gSwgxXQgxeB8+k3rRLHss1RxLxZ5gCMY2GU52lAcIJ1BcP20owWmz0DHXw2/bK+K6kDaLqHV7b5IQHgO3Qz/n4w9FSHPaqhzL3S6FjV8GCzGOJQlKYYPhhME9AJ7oZUbareFYJhOWTpsVh9VSqxS2zBcmFJHVHMu8dCert5VR6guhSXDaLPhDWlLhuKnEx47yAJomsdQ1qFOhUCj2MSfI/nw9C2bOHwk9A/zfyo/pOGE1I+bMAiNMp5MAl5PzHn+d7bTm4YKJyBmCmwY+SPqBEZ7cOZqLmcnURddxz/kP6YE+PaK33QR8C9NfvIGvn+3D7BeW8eSi2zlsynrkMIHoLeES4LEByHGNcQQUCsVuUCqlHNXYi0hGsxSWCsWe8NOGElx2CzarRReGkUTCsph0p41st50Dc9xkumq/nawWC4FwdfHkC0aSBveAXgoLeglsysIyaXiPTBjcU7djGSHLnaSs1VG9FNZwLJOVwoI+cqSmY7mzwphhGeNYpjsoqgyyqdgHwE1/PZiHPlxNSSJ3Fl3cRjTJ9nK/mc6rUCgUjY3hVn61eiCDhr3Dh4uG0LFgHes3HsaJLODPQw/lnvm3AzBx5cOIHkW8k34xlusqeWzLdRSSzg5ac+XOqdw4ZRpfjD2Zn+gJ2+Gt78+miFz9ti9P4mh+4MP8IZzw3g+8v+U0ZvcfSqf+6xB2CR/o65EDG+MoKBQtgBY6bqRZlsIqFLvLBc8v4otfd5iln/EcR4Bzp37DllI/153cjbeu6U+7bDcZrtpC6vTD25DurP7zykA46agRqBKWhivnTbEUtjIYIRQncEiT8fsrDYRIHt6TnsSxNMtaDceyMojbbjWfQ7Lb1Rw38veZS4EawjLNSYk3xJ9FXgCO75qHy2YxBWxNNpf4zP7Ujbt8SdegUCgU+5x+ExHzJR++PASA63gWcb3k6/F/ZXz3Cdwz7iHuGfcQYpfkP/IiOAC0SWncLIaTf2s57dlIEAfcA6fzMX8OORQugQvGzmU7bdhOG3bM7MCHrYbw3519GbXlKdqzkfJgOl8P+SscBpw+Sf9SKBR7ByMVVoX3KBQtl2BYI6xJbjjtYGaN7hftkawtuIzZjr06ZCe9v0yXnfIa5am+UN2OpbuGsDR7LJOWwkaTVuPMhtSkjNtfaWARYvfDewzHMnpMSnyhOt1K0J3OikD103nGjEpj3Ejsv5dvLgGgXY6bLI9+XGuK6GHTFnPJi0vM/2/c5a1zHQqFQqFQKBSKPUeVwioUMZiCsX02AKcffgCfr66dQFoRCCOA7gWZSe8vw2UjENaqzV30BiMcmJNiKWxQF06ppcLqYq7MF6JVWo3+RlnVSxkPQbI5lnWNG4kmvAaN8J4g2Un6Kw0y4pTCGkIx1rHMM4TlxlLcdis5HjvpThvbywL8tr2cwwuyqt1HqS9EXjRJdoMSlgqFYj/BDO35Hfga/jlnLB68tGULl37/Av8Wl9D9gVVgfMzfDEu+7wsHwDlj3uS9Ay/ksPE/8fApE2HhJCr8VtLPjnDB3H/RjT94YOxk7rn6IQCOfeFLvntoAH/xLOG/3r7MZDiHOH7ju3enmetRI0YUir2ImmOpUCgqAmGEgEMOyAASJ63qYstqisVEGOWxsS6iPm6k7lRYqBKU3hQcS6MPMt56NSkRCeN7oo5lnJ9LKaOlsInXa4hdw7Es9obIScWxdNpMIW9gzA2NvX1uVGSu3FxKuxw3QghzPT9vrJ78LKWkzBfipEPyOSDTxcZiJSwVCsV+xDsTOXXnB9ATHAT4mNM5T8zHSoTb5D+5JHM2Lz1yMS89cjG0hxe5ClbCe/kXcuP4h/jl2V48+PlNwE2kfxOBdHjroMtZRXcWT+kFRUARfCe+5ejl37DTm8FfZi7h4UUT+U5Ygf02TFKhUDQDlLBUKGKoCERId9iwW/W3RqbbTiBcPYE0otUWW7NG92PW6H617i/TXbs8ta6UVaieCgv1dCzjJMPKOhxLRHzH0h/S0CRJHUuHzYLdKqp6LL3BpImwBunOeI6lxGYR2KxVH01GQmx5IExBth7E47TpwUrLN5VUu31lMEJYk5x4UB7tczxsUj2WCoVCoVAo9jV7Z9zIfo8SlgpFlIgmo6KvSkRlxZSXGvxZVIkmqTOAByDDWfv23mDd40ZcNRxLf4rjRvTHitdjScJUWNBFZ7xKWMNRTBbeA/qxiE2FTaXHMt1pqzVuJBTRTFFvkBtTFtsuKiyFEKQ5bcz9eUu1eZaGW3tCtzwObOVWjmUjMGza4qQzRpv74ysU8ejPQuA08MNnQ86CoTCTi5kn+rFAnsgMcSUPT5jIS2UXU0465aTDR7BjUAdYD1mbt/GkuBnWwB1HPsEIOROeBN7Qy2vfExuYzXn8POcQfp5zCBX+O/hRtCN/fjn9hi/EfUQxXHU8MA9QZbAKhWLvoISlokUTuwktqgwgJTjtVW+LeOWlv2wtB6gzgAeqXETDsQxHNIJhDU8dpbA1U2F9KaTCGu7oox+vrnWZJpMMssQI76mtLA1HMZljaaxv/oqtaJqkZA8dS7u1+kIzXTZz6Qfm6MJy1uh+XN6vI95gpFq4UjCsYbMIctOdtM/xsK3MTyDcAvO+FQrFfsexMkLobwKGAodv4rvLBnCPfIaBj3/FM/JaWk/ewJUjX+djTudjTgdfGXz4O1wIpc6Z/Ef+jQ8fPxmGQndW0XXu/6DfRFgDnPwPHhMRjnr1V4569VfS/xqBnE7wLjzE7YzNnFI1H1OhUOwbIg381QRolsJSCDFYCDG9tLS07iunQFM/A97U17+v2FGmz1B0WJMLy9XbyoDk7qFBRjSp1ShP9UaFYp2lsAnGjbiS9HQaa403HgWSO5Z6eE/tn1ekKCwtFtA0SXkgjCbrnmFp3GdNYRjPsRRCYIuKTcOxBDgqGrBUGawSpxFNYo3W/LZv5UFK2FysymH3B9TnkKKlYob2KBSKlkMLHTfSLFNhpZTzgHl9+vS5urHXomg67Cj3A1QTNoZYi52Z+MvWctx2K5akTYs6VY6lfvtUnEeICe8JVpXCuuyWpI/ptlsREHc8ij5uJPHjJRo3UlUKm/yjwioEEaknwgIpO5agC0OjjDcU0UwRGYvdaiEUidAup0pYHnlgtn77QHxh2aGVB4BrX/sxYUptvL7Y5o4h7lricwf1/BWNw+L+J0Me2NdLZiwfRpvhOzhzyUJuCTyCb5yb6299ET4D7oM3IxcBkDkiyLev9KTfnJ/glnGM1Ibxs+UoKm6zUk4Gv3IIf3Q6HFzAOTD88/YEeB2Ad2ZfTL9dC7mT+/lL9yVwH4AucFUZrEKh2Fs0S2G5p7S0jUdLe76JMB1LW5WwSeRYnta9DU9f1KvO+8yoMVvScB7rKqOt6rGsGjdSl0MqhMBqEXEdS03KpI5lovCeVEthrRaBpkmKowI8pR7L6LGpDOjC0h+KoEm4rF+nWtfVxX6kmmOZn+HEYbNUm4UZ0fTwH4D2rfTrBsLVZ10q6kdjfT7s68dVn4OKvYEQk8A2US9//RSuXD6VEbNm8cawc+FhSB8WYcawYdAenlw6mmX0okPwTwDuf+Uuri94kX5bFrLwjFNwnSM58LhCeAj6lS1k8fSTGT9zAg9smAAd1/H3sU/Tr/9PADyz6Cras5G/Df+Ue1fdwt1CTzpXolKh2Ee00HEjSlgqWjSaVuXk7SjXhWU8x9IQluc99w2bin1cdGyHlO4/3WFDiKrwHiPgpq5xI05b9VRYb7BuYQlgs4i4jmVdqbCJeixTDe+xWAT+UITbZv8MkNIcS0OsVvjDkAWFFfrxz605gxOwW/VhKW0yXdV+XrNPM6xJXNEe2TYZLgRKWCoUikZmCdzWexK544r4x8NT4CC4n/G8NmcolzwwmxFDZvHPOWO5rmw6Z2e+w1mO+QC8yTBGbHmeGUdeg2uF5AL5LwBmdRiBeFzCenhAXEpP+QNLi/phEW+Crh+5fsiL8O7v8HeYx9nAwsZ57gqFokWhhGUTYk/PqLeEM/L1eY6BcISfNpbQPlpeub3Mj80iqjl7mTWEpVGaeljbjJTWY7HoMxfLajiWdfVYWiwCl91iCsvPV+8wRWkybFYLwUhtIaVrzTpSYeP8vDJgrDf5R0WG00aJN2Q6s6nMscwwhGVUGBZV6GW0eTEpsAat0hzYLBazzNXAZbOwq1JDSokQglZpDo7rkqs/J4vAabMoYdlA7K/OZUOvqyV8TioUCoViL2OMG2lhKGG5H9AUNjJNYY31Zc2OCsKaNEspd5QH6NY6vdpztFoEGS6bKSy9prDMTPlxMl32qvCeFEthQS+HNcaNaFodpaxR3HYLJb54n2QyqWMphNijUtj8DCebin1sj5YTp9JjadynIV5NxzK99m1zPI6492n0Y1YEwmS47JT5Qmb5MegJv4GYGaRSSsLRclmRwvFsCdQM1Gnq7/Fyfxi3vVnm0gEghJgKnAoEgArgBinlD9HLPMArwNHoRVi3SCnfb6y1tmSE+Kf+jysmQjo8sesmXmt1iZ7suBpWXnYMPV9dxjnj3+S9VRdy64NPc/sd93Aan3HzkKkAfD6nP51Yz4wXroEr4K0xlwPgedbH1/RhMhNYkH02xzIfy12SU+UHfGYU04wAzjkILgfPFC8nyb4s5Ix9fRgUipaLpMkkuTYkSljSPEVTc2Nv/I5+3aaPDfGHq4RlfkZttyzLbY8pZY1gtQgOqFGSmYwMl8108nwplsLq17GaDqkmJdYUhJDLbiVUEaTcHyLDVeUaahp1hPfET4WdsWgdAGl1zOy0Wy3kpDnYVam7jobTm4x007HUj20yxzIRNosuIEq8IdIcNiqC4WqP7bRZKfMH+GNnBVLqznNYkwj0Hk/D6dxd1GdHdcIRjT+LKmmb5a77ynsBfyjCL1vLKMiu/f5sRom0HwI3SilDQoi/AbOArtHLbgHKpZTdhBAHAV8JIbpJKSsaa7EtnStfnspLYhTBSzNxvhqg4/jV/LngUDgCjli1hje6n8t78y5EPCL55Y5OHLZ0Pbyrh+zcyf0sHnsyp075gM9Wn8WIVc8zY+k1zOh+DTPyroGvfoeXYPrnN8D7kP1sCadu+ACAInJZJiK0lQV8IZboi5FKWCoUir1LixSW9d0MSinjJmY2FQLhCH8Weemcl1ZrlENLxhSWUUdrR5mfbvl5ta6X5bZXcyw9Dmu9xEimy26mwhruXCqOpdtuxR8t44xIaYqoZBihP+sLvfQ4MMv8eV3hPSJBKmxE00VnzRLUeLTOcLKrMojNIlK6fpWw1I/JzqhjWT9hqT9OqS9ElseOlPrcS4O8dAe+UIQyXxiJJNtjx+OwUeYLUeILUewN0SpOT+ee0tiCs7Ee//cdFWwrC5ivQ4Nyf4ifN5XQKTdtr65tS4kPSVXoFTQrQQlADQdyMXCgEMIipdSAYcDl0ev9LoT4ATgTeHvfr7Tloo8XaZyTKwqFYj9Chfco4rG9PMCWEl+1UQZNiTJfmGJvCHepn/bREQwK+CUqLEMRiTcYZmd5gDaZ8R3LUl8ITdOvF8/VTEaGy8bWUn2UiTHH0lNHjyVES2ENx1IDS903MYNr1hZWVBOWkrrnWMYL74nI1F/zmS6b+fipYPSZVvirHMs0h7XOUSyxGKWwJd4QOWn6J3hsKWyGy073trXdU6dNLxneVurfK8KyLhpbeKbC7giy4ui4mZp9vr9tL8cf0iiqCJqBWHuDLSX6+8wfajH1R9cDH0RFJUAH4M+YyzcA7ff5qhQYKTovTbmWBfJEBt76FWd/uYDuA/7KTwN7ccEDc3nr7LO5cPsbcFGY1267kMPGrAcXyN/vAWAC41n8t5P5rPdZ8B7MmHAN7luKuWrVizxtuRV6HASHgvuIYnwbc3jny4vh6ejDnwiD5dvMW3o8/DgR2bsxjoFCoWhpKGEZh7CmEYwJ/PAFI4Qiks3FPjrkNj1hZmzytpcFaBunRExKafb+pUpT2BgnY9i0xSzdUGyWgC7bWEJYk7ROUAq7ZkcFG4u9aDI1tzGWTLed33boItYohfXUUVoKVAvvSVXgzb62P4fe/RFrd1ZW+3m8/slYEs2xTLW303gdnDXlK8KR1Ox9c9xIsKrHMjeBW5nodWaNurjF3iC5Pl0gxpYAJ8Jw7reV+ehekHq/bFNnV2WQ1dvK6ZqflvJt/KEITpslJZfemPcaqhGYtK7QC+jOcqrlxxFN7wuuT3XAlhIfAIGQFvdxNE3yv61l9Spl39cIIZaiC8R4tJFSRqLXuxAYDgzYzccZBYwC6NAhtZRrReo8KH8DoC/9Sacc/h5GPC9J71PIBM9keAZmjR+G9k4aPAGX3DEb3gdmgCiKfoYuQvef/wusBn4B35U5PF15Kwdry/lNfAdfXcUn/f/KCVf9ADMgd9ZmAPpbFjFPrMKYXYkaM6JQ7Fta6LgRVRcZhy0lfv63pcx0cIy5gGsLm2abSiiiIdDFiRGuEku5P8zKLWWs3Fy67xfXSIQjGqGINMdifL+uGIDWcTacWW47Jb4Qv2zVxWEqojCWDJeNMl/1VNhURoe4HVZTWIYjWkqlsE6blQNz3KwtrC4skZDs5iLBHMv6uvTpTltKMyyNtdqtoioVtjIQN7gnGS+N6ANAia8qkTYzBWHpiI5z2VZa+/2wPzBs2uK9UsK59M9iSmOOVV3oJayl/LGzMq6jXROjxzZY4+TC+ujrMRjRUkrp9QbDLN1QzIZd3pTWabA5KiwjUppriWVnRQBvMGK+5mLZUe6nxFv7NvsaKWVvKWVegi9DVJ4L3A+cLqXcHnPzDUDHmP93ADYmeJzpUso+Uso++fn5e+vptDj0MliFQtHiMVJhG/KrCaCEZRwqA2E0iTkiIhx1/Gq6QPsabzDML1vLUho7EUswrOG0W8hy29lW6q9VJhaKPr/6buL2N0IRjV+3l+tzEevAEHgTB3cH4Pv1uwCSlsKu3lYGpCYKY8l02akIhE1n2GWvPTYjHu5oKqwvGEGT+izHVOiSl85nv2yvJkw0KRFJx42IuOE9wYi2V/typYR3ftwEQGF5sF79lRAzZ9QbNPtYY0thE+GIHsttpb56PV5TZ3u5XioajvfLjsPOaKBSUWWQ33dU1Ol8G8IsVKMUdl1RpZlKXBo3tbg6W0r8aBK2lQXM+bKpiG3DsQT4s8bnmZTSLEmPff7Dpi3mvOe+YV2hl1+3V/DHzoq4s2D3F6KBPY+ji8r1NS5+Gxgdvd5BwDHAR/t0gS0YU1S+PpEPGMQHDOKURYs45rSVvNbhQt564Gye8txAd1bBabCI/jw5ZjS0B5kv4BIgDB/2PZkP+57MiMue108fLAauA2b/AofBBfP/xW8djmSEDPPMbVfxLGOgBBgNJ1q+4kTLV8wTp5rrksqtVCgU+4hmKSyFEIOFENNLS3fPgTNGPBhnvPe2Y+kNhlmzo4Lzn1+UdONU5gtT5g/XW+CGIhKH1UKbTCdhTfLThpJqlxvPb0eZv95rT0RDOy4RTdbpmPxZ5KXEG6LUn3jjaqzL6HXs2zmXbI+dH/+MOpYZtR3LTLedYFhj2caSlEVhLBkuGxFNF5XeYDhlx9MZFZZFlfrG2paiwOuSn4Y/FKl2vDRJHeNGQMaZZBkIazhte+9jwmqpGnNSVBkgr56OpdNmxeOwVpuhmYqwFEJgtwq2NeBrvimwI1qxEI4RfoneV1rU9ctNc9ChlZtirx52lAzj8mANV/LPokoyXHYcNktCYRn7mWF8FjmsFtYXVsZ1GA1KfSHz+Wwp9ZmBTre+/XO1z6CiyiCBsF69Ea4hfI1QrWyPncKKoClA91NeARzAbCHEsuhXbvSyR4BsIcQa9MLKUVLK8sZaaEtE/n4P/ARfP/5Xvn78r3AX9Pj0Oy4ZOZsLvpzLKg6jgC288eq5bB3bmfV0hoVL4TjIvW8zfw5sw2QmMJkJ5FIIm+C124ZCDxgv34An4a1Bl8NJUMAWrh/yIjPFWdAJfunbifdEFu+JLGApcLwSlQpFY2GMG2nIryZAs+yxlFLOA+b16dPn6vrcbti0xWaJJMCuygCd89LMs+9zl23h9+0VDd5XWOINUVQZpHWGM+mYhqpeST9HtMtKeL2ahCIa6U6b2Ru4trCCfl1zzcuNs/OGM1B7fUHW7qygQyME/wybtphgWOPnTSV0zU9Pet2NUYei5qYxHr7o2JA2mU465qbx88YSgITjRgC+/G0n2bsRPGL8Tsv8IbzBSMqOp9tuJRDSzBMc9hQFbZe8NDSJ+TqGFMJ7BLV6LMv8ISKa3KvC0iIEEU0S0XQRU1/HEiA7WqpcZjqWiX9Hxnt32LTFOKwWtsUpDa8P4YhmVjbsSxL1ONd1Msd4jxsnkzbu8vLDn8WkOWzkpjuq9RiXePXff166g0y3nY27fHiTCDyA4piTccGwhsNm4YLnF7FqSxn5GU4cVgu7vME6TxIZ6+zWOo3V28rZWR4wU4Rjn3txtGe0IEs/IbSlxE+Gy0axN2RWZoQiGiXeEJtLfLjsFpw2ay1H1ahy6JqfxrKNpUS0uj9DGgspZcK6VSllJXD+PlyOQqFQKBQmzVJY1kWJN1jtrHlRRYDCyiAHt0433Ur950FzoDqAPxR/s7GnQTbGJqfcH04qLEMxITyprkNKSTCib/AcVgsWUbukN5GwNO5vSO927KwImv2Ie4NkQ9pLfSE0SbUS4HjP1SjlTaXML3ZsSKdcDz9vLMFqEbXGJABmz6Ae3FP/t4zhoJX7wyxcvSPh66gmbtOx1DfrtlRLYaMCPPa1rElJkkrYaHhP9eO2aZdeVuisZ+lvfbBadGF5/vOL0CTk7kZCa5bHkdCxTPSenDW6H6Ne/YH1RXtW3r6jPMDGYh9bSnwUZFeNF9A0SXkdIiyWvRWGVfN+dxqlsNGTDr9tL0eT+izX9UXeaicRCisC2CyCLLcdIfT3hreOtNXimB7FwooABdluwppEk+CK9tTurAiYI2YSsT3qWLodNr3H2Rs/9OeXrXp5ekUgzAXPL2J9USUHZLpw2CL4QxqaJlmxudSs2uicl0ZhRQB/qPprvSIQxm23ptTHrFDEQy+DvRxxx0S4GpYO1NssHhp3GxFsrLAeS/ZxW+nOL/xV+4Si+9rBVnhi5R1M2fZ3srO2UjrsADrOXg/f6J8lQ/vPhhK45OzZXLr0BR7oPZmVZd24nmcYwSvYiDBizvPMGHIN5ICTIHB8dEVPRL+ftm8PhEKh0Gmh4T3NWliu3VnJsGmLa23WdlUG2VkRxBeM4HZY2eUNUeIN4Q9p5ngH43q+UAQp9Q1wMKKl1HtT302i4SyV+UO0SzL7yrje9nqU7+kpjHoKprE5XFcYX1juTOBYLlmr9x/uToR/Q2yYDScqXuhH7P1XOZbJf0eajI4NibpjHXP1hExHglLT2PEIEwZ3Z+DhB9Rr/YaDduObP+klqSnuXV12C75ghF3RPrdnLz46pdt1ztOfT7Xfl6x73EjNl/amYv141sexrO/v2WoR0SoB/XebV89RLqA7lqW+IGX+EA6bJe7JgXi0zXLx7dqiej9eLIZ4X7uzspqw3FkRYH2Rlz+LKs3X194g0ftLSqnP9oyKQoMqx1I/3kXR11a31un8srXcLGEt8+tzPltnOM3bux1WKgPhpO/pXTGlstvL/BRku83XoctuIc2cXZq8pHZHeUCfnyr032+xN4QvFKl2YmfYtMVVY3yCEcKaPm/YYbPgslnwhyOU+EKEIpJu+Wm0SnMghKDEG6zmWEopqQiEydmLJ84ULYRunZj+9mV8wUlczOsArJrRG3Gk5O0XZlG66gBG/jGTkR1mIsolnAwTjhjPy4zERoSLH38HcaKEr/S7u/nFqaS/WEjF83kEcEAYPHj5Yv4ZfLHiDO6+7U66s4rBc96mByuYyhiqBKXqrVQoGh0lLJsnNTdChkBbV1hJ94JMc+NT6g8RCEXMssCiyqDZM5TutFHqCzXIfLTa69E3ORWBcNJwDON6O8pTF5bGRtIIK3HZrXyzprCa4I7I5KWwS9bpwtIQdqXeEGt2VNBxH41eMUoNa/Zt1cRwLEN1lLFtLvGhySonslP0eSQKx4kVloe1rf9oisyogxbRJJomsaY4PsFdo8eyVYr9hwdkurCI6sJSD+9JjB7eU8OxLNYdy39f2Telx90drBZBICzN92Ru2m4IS48+DqbcHzaPdSq0yXJR5g/Xq++1Job7vK6okhMOyqv185Wby+IKS28wrJeW7sFjx1LT8d9ZEWRdYSUHt0mvJpjMHsvoWYTC6GvLExXjRprrqi1lSEm10m+P3cquymDSpOASbzA6JkczKyuMYzHt0j50ykvjoDvn1zneaEd5wDwZluWxQ5F+kqzmsTKqGMKaND8nnFb95MKuyiC7KoPYLMIUlQA2iyVaKq4HUwXCGmFNku7ae868ovnzjlzCeR1gEPPpwQr6TfkJgLljB/I+p5FLEQ92vwnxpuStwWcz/ajLGHXZq9x7xn383qUD3XZuQmyRjBr7FNfxLAAfczr/OH8KzIbgOCeEoYt4Fe4GToB7B9wPTmj9yQbmjTtfz/8dCvLtxjsOCoWiZdMi634M4bG2sAJNk+YGvMyn98B57FYsQncsjZ6hjOiZ9r0xeDsUkeY8xcokJWKGsNxWj2AJw928/9wegO4aBMJaNRERNh3L2vcbCEXMCH/juX/zRyFFlcG4gRqJQnt2N8zHH4qYgrKuMQUbUnAsy/1htpT4yUt3mKW9pmOZwJkzhKVFQLvsxI5yIgzHMqxJIjK1uZAArmhP7NZSP3arMF+DdWGJlvTGltxqdTyuHt5TnY3FXjwOKzkpjg/ZHdxREWLMP8zPqL9rlO2J9lj6QimNGjFoG+3Lq8/7qSbGe2J9jSqAQFj/+f0frKr2ujfeB0UVQUp8If63pSzu/Uopq7lq9X3/GOE3ZTEl/xFNsrPCCO+JBiZVBLEIPRjKZhEx5fb67Z22KrHljr4efUk+A4srg6b4e/DDXxg2bTH+UAQBHJijv3fcdmu1ypB4bC/zm+9Hp82K2241XyOxeIMR84SQ8Vn9xIU9ufKEzoQ1SbE3SE6MqISqknLj/owS6vQU318KRU2E+LCxl6BQKPY31LiRloOxqfpjRyXbyvxmYmaZL4wvpJfH2q0WXVhGe4YePE8XZr4U++PqQyiimc5AeUyiaexmMqLJmFLY1ANHDIeiTXQ+oyu6UQzEPA+jFLaoMlgr+MZwAdx2qynsftuuhwzWVXLaEBiPnx1NZtUSlCJLKU2HLVGPpaZJ1hZW4LBaqrmtVY5lcmHpcdiw1DMRFiDTXcOxTPE+jJCfzcW+ao5LKtitlhrlfrp4TISI12NZ7KN9jqdej1tfDshyV0tn3R3HMsvtoDTaY5lKIqyB8Z4Y8/rSOq8bT9gVVwbN11pNYWmcDKlMIKCM/st1CRKey/xhlm4oqXW/qVAZCFMZ1MVcqa/q5I/hNkJsKWzAfN3brRYzIMwQ2/aYky1G+FdNt9E4NkaQ0SV9O2C1CELRY+CPhvgYqcYeh+7EX5AkBXtneaDa+zHbY6fcH67WiqBJiS8YITfNgaBKKLbLdpsnizQJrWqUuBqpsaU+/bO9IhDGIuo/RkihgKoRI51Zz1sbzubAswvpd+tPsAxYBidFvuCsbz6j3/CfuOPVJ7hx8kNc8OpcRm15Ac4APhIcNGcjokBCERSwlaMG/MpRA35lJsP1MSKT4L2zL+T3Ve3hzdNoO3kdnAVnfjmHlZ90I5sSmAHMnqR/KRQKRSPRIk/RGhvuVxev58OVWwHIS3eyozxAJFJ1Rr0oWkoFurvhsFka3LEMRsuwPA4b3lAk4eDy2GHfqZbCDpu22Jzr1jo6nzGe62Bs1qSEwoogB2RVjdwo94fI9thx261sK/UTjmj8vl0fuxJJUrYbL2hjdyjzhbBZhOlKFVYEaJ1ZeyTIec8toiIQNsNgjDK3WIoqg/hDGh1beaqFdLRKc9Au25Wwx8pwHI2NdX0xXLSKQJhgRCMjRWFp9ApuKfXRqp6Cy24V+ILVx40k+31YBMRWEA+btpgVm0vp1yU34W0aAptF0D7Hw9qogMrajdTdbI+dYERje5m/XqmybbN0B62uEutEGOOHLEIvhY3FOAkTb+asJiWVUWH5R4IRRoZ4Gznj+7hJxckw+hMPyHSxpdRvPj/jc8NpsxAMa0gpKaoMmg6ew1YlBreV+XUnM+a16rTp4V++YBiovaaSqDuam+4kP91pfs76Q5Fqfa8ehw1NBgiEtYT9sNvL/NXKmrPcdraW+inxhcyAJ18wgkR3GsscYbzBCBahX7dTnn6yyGYR5okdA0PgGm0OFYEw6U7bXj2BomjutKP31auQEwTyaoHIkhw8YDkAL3IVE3tN4q2ZZ3MiX9Jx1wbkXwV5bTZRmHEg/xp+AfM4m4LQFgrYwm27nuSeoQ8B8NOd/RAPS3gOuAcO6rCR4RteZqZIY5Scy/TlN/Dhm0PgW3QBqlAo9h+McSMtjBbnWHqDYTOkxBeKmAKrTWbVRsljOpYBs7wqx+OIlu017KvE6J+zWwWZrtpn5Q2MYB2Pw0phRbBWXH4ighGNDKfNLE9zRR2I2OeRm+4wy8BqBviU+cMc06kVLrsViS7gPl+9A6DaOmMdHV8wwk8bS6qJ4d1BSkmZP0Sm226WxW2KCuWa7pqxkU936hvVeGVz5tiOGr2UQggOzPGYwSI1sVoE3fLTzNLJ+uK0WRDoot0iBG1SFAqxjmV901INx9I4TlLK5HMsEdXmWEopCYQ0s3xxb5KX7iDdadWFy244wobbv6nYVy/H8oDoCYpgiu+lWIZNW8ytb+sbxyy3nXU7K7ng+UWALlTCmsRuFYQispZw9QYj5mdQIscymECY1lUSG9YkhRUBctMctIq+ZozwK6OH+qRD8pHobmphRbCaYxkbEGa852aN7ses0f0QQuC2WxP2R5ZEqzuyPXbaZDoJRvTZs7qwrPpT467hfA6btpihzy1ixeZSSn0hKgLhaIlr1W0yXDacNgvrCivN0SDG7T0OG2nR+3Ta9KTnjq10xzLHY69VAv7I0KOi69XHqfiCkYTvfYVCoVAoFKnTrIWlkYwYi5GCaBUCfyiCPxQxy6AMR+qlEcdw6mFt2FVRFd6T5bbjioap1DWDrT4YQs5utZDhshGR0iw1rXa9iiphGXu7ugiFNfJjRLPRSxXbf1fuD9MlX9+IxbqhgbBGIKzRt3OraoLUEKWJEnJ3lAcIRSRrCytTFuIyOoz9j50VBKK32VziIxSR5qYSdJFVXBlk6YYS1hVWmr8L4zaXHtcJqNrkxlJUUXWs60tuujPltNGaCCFw2Cy47VaOKMhMeRNrPF6xN2SKhFSxWy1I9PJuSG2OZeyvMxLtB22/D2aXCiE4uE0Gh7TJ2K3bGyFMFYFwvXos3Q5rtZLN+uKL9g5mue1Iqk5ubI6WZBsOeE1xaAijNIfVdGojmmR7md98PRtiN1HPtaZJvcKixntwZ3kATULrTBcehxWbRZifgZPnrQIwj3NxZVAvhbXECku93HxrqT9uSrJRxhqPXZX647RKc5Cf4SIY1ghGNHPUiIFxwiRWoJZHZ7wWVwYZPv1bAMYNPNgMGLMIwWFtM7BZBL9sK4teXy9hjU2bNcSw22HlkDbpcV+/xuul2BuksCKApH7JxwqFgRCToN9EciO5vPHCucxpfyZio+5WZlBOBuWMm/YsH3jOwkmAtuNKCD6YycVtXyLbUoJ4QTJiw+v0YAUzteHcceQTzG41WK8ls0HB/WtZ0PtEmAHubsU8uOEmZi4YyXj5P87lPfgU5NWClz6/GKReAquSYBWK/QRj3EhDfjUBmvVf02BE49dt5dVEhjETMN1lQ5P6xttt189yt0pz4LBaaJftJjfdEU2FDZLltmOzWnDa9DTBmqE1Ea2qtK2+FEbFzsNDjyQt6ipe9/rS2imPUSF5/cndALj6Xz/Uui/D4at+DCRtMnRnxnAe3HarKfiklFT4w3SNzj687/1V5m2NDXGvDtk4o45DqS9k+lrxehk1qTsmGU4bSFizsyJp0i3om8rlm0v5fUcFhRVBc2SBMW/TY7fiiG5M//nRai6YtphwdGO9ZmclmpT4o5v6HgdmAcR1SwvrOQ+yIeneNpMjCjLrNRMy1uWpv7DUn6NxQkKTMmmPpT7Hsur/hkjaF44l6KLGvZulxlnuqmNTH8cS9BEzwYi2W+FS/lAEp91iCiXjPWWMaTFCj2o6fOWBMA6rhUy3nT92VHDB84vYUa6PJzHCfKp6NMNxT2TtrAiwrrCSNTuq3l+alGwr9ZPhspmlnZkuG2W+cLUwoIMMYenVS/2N14ojejKi2Btke6k/bpiV22EjFNHvq+YxM/rRczwO2mTqpbDGibzYEmerReC0WaoJVKOXujIYNtdpfG4ZOG1WDmubicNqYfW2coq9IXMWrfHZGSsQsz2OuCeRDGFZ6g2ZwWROm8X8fFQo6oPj/TKK7mvHE9zE6YGPWTmmG4fwKz/8eAI//HgC4kTJX5YsIYNyOAO+fqQP7dnIH58fzs9zD+GNDuczcefDDLPMgifhLu5j5ZhurBzTja2LOjNw5Ff0DH3L6MxpfMzp8AXMZxBnLl0IW0H8Q3KleBH4hxKVCsX+hBKWzQ+HTd+s/ra9whSXhmtlbEB9Mf0/BVkujjowyxSZgbDG5mKfuUE0+vIKK6qLlu1lfv63pcx0BnZVBlmxuZTzk4RTGBiCMT/Dicuu9zDFS1s1rnd4O104BeMkRhZWBPllazm/xzieoYhm9lcaGM4r6KMAwpo0Zx8GYwJ5jM1tQbYbh1Uv5yyOKTGN51iWeEOENUlBtovOeR4qAxEzrTURyzeVxvQ+iqqkzWjfmstu5Z1r+5PpshEMa5T7wwihi55dlUG2lPgIhDVsFmGmthbHK4XdA8dyT3HsRplnbJjI7pTCQtWJC1lHj6U+Yqfq91klLPfNSJk9ITsmtTajHo4l6L+X3e2x9Ic03Har+fnhD+tia3L05IzHoTvtsQE+UkrK/SEyXDazvDwQ1swTQsZrPhjRzNmi/jjrK/GGsAi9r3Ft9ORKUUWQYESrVrKd6db7T9cWVhIMa1gtwgwtWl/kJaxJs+fQCOrZXhZgR3mglmM5a3Q/7j/3CKC2WNbXFFsK6zJP/qQ7bbVOGngc1mpOrpFeWxmMmK+9mp9boAvAw9pm4rDp6dZGib8n6j6ncnIi3WnDZhEUe4NmD7qjRkjRmT3a1nk/ipaNEdqjUCgUiiqadWOJQHDYARn8sq2cP3bqZZPGGfTYYAhjYyiEMF0dwyH6ek0h3Qv02YXGmf2iioApxEDfGErgwmmLyXTbKfEG8QYjVAbCdW50DZGal64PIk9z2qiM01f1Z1El6U4bnXINAVh7s2kkyv6xs5KD2mQgpSQY0cyNZNXztRDWJKXekDkWoVWao9q4AagKOcqPrs1ps5ibXLfdmrAX1G4V5mD2ikCEbWV+3HZrrXUYrNlRYa6hqDJgCst1hZVYRNVxb5fjYWuJj7Cmkeaw0S7bjTcYYWupH6fNitNuMX9vxfFKYQ3H0iKahDMRu0lOdYalgXHMCmMdyyTXX19YaZZwQtW4jPZ7WVgav4fdGUVjUF1Y1t+xjBewY1BzXcb/jd7By/p15PYzD6Xr+Pnm6zYQ0hDR121NARWMaIQiknSXDXfUkfbFhHb9WeRF0yShsEam206pL4Q3EMZls+CN9gJGNEmpP0TrDCcOq4WNxT68Qb1E3223Vps9afz78192EIpoOKwW80SZ8b67eeDB/F/Pdpz51JcArN5WpveIxnEsjyjQT2xVBMK1gpae+XwNoL+PjZ71QFijIM6IHrfDSrE3hKZJNHRB6Yp+vhgi2wjpqvkacdgsHHZAJuuLKslLd5iXn/fsN3ETl+O9140wsHjCUqFIlcXyPY7beg/iEo1yMhjifJePZ/wfp474FPFntL89T3D7gHv4hv7QCc7nbR5nHOed8jqPcgsAQ53v8ezMcVw6/AUmMZEjvXr/Nl/A+Jcn8DrDmbL972iXpMFgeJmRTO49ga691/DYzLvg7n1TWaJQKOqBMW6khdHs/5rarBby0p3RmWYhcyD47Gv7m2Emt595aK3Nh+EQBcKa2StV0wUyMASYcRbfcCgSJbyGI5p5dn9necB0L0A/m66He1QXbcGIJD/Daa4rFK5dimY8nlGKF9EkUkLrjNqOJejuiFGCluGy1RpREQxr2K0Cm1UvE+sbTQh12izYrYKIVl3cBkIRSnwhU4gCdGjlJstt588ib8IN/JodFViFwG4V1dzU9YWVuKJlyqCPEfCHIlQGIqaAaJ/jRsqo82yzmr+rRMLSZhFNJv3RtQeO5YwrjgWqnG4ZHamTjNhXXCDqbmXtxRmWDUV2TClsZj1TZR02i1naCanPizROJnXJT0OI6nNDA+EInfPSeOua/ngcNvwhjaHP6dULxns0w1n1no8dA7KhyEtRZRCJXj4q0D9PtpT6WbmljKKKAGX+EFLqJacF2W4Obp1ORNPLwdtmuaq9vp3R3vGP/7ctmpQszPmtf0SFpTHixXAol28qrfb/WHLSHHgc1mrzMQ2nO6zp5dZuu5XW0TJWi6j92p01uh93nHkYYIhq/b6MNGrDjU02t9Vhs3Bwm4xqJ+5sVkvK7+1sj4MSb5AtJX6sQlRLiVYoUuUvu/6LOFyyq0saLzOSj9f9Hx+MOJX5nEXW37aR9bdtPDVgFA/PmsgMrkDuFHjwctHIdxnKbF6dNop/L7maRzNvRG4T/HvC1RSSy1jPFMZ6pkA2PCCuA0D7MQ3OBwqh1+pfeG/KhazgSLh4Ehw1CXlkox4KhUKhAJq5Y2lg9KqtK6ykqCKIx2HF49A3dt5gxAyuiSW2p62msNxZoxTWSFL0BsNo0ZRBiF/SCrpL+ecuL//3zNdsLPaRHzMiIc1h1YVSMILDZqHYGzSj+/PTnVgswuwLq74GzXQTjdJTo6y15ngOow9pW5nfFJ26sBTV7jcYdTgMOkSDMNwOK/275vLrtqqSWyn1sB6LqF7CJoSga34aSzeUxE1qHTZtMb9sLcPlsJgb9MKKIEOfW8TKzaXVRny0y3aZz9HYdLrsVlpnOtleFsAZLX122S3mYxkiYdboftVm9tVkf3QwY0th6ztuJMfjwGoR5kmQ5ZtKSJC1pFNjPx4IaU0m0MRlt0RLeevvWLZKc7C5xMfO8kBcZ83AF4xQWBHgwBw3QlSVa3eJ9ia77FazzzoY1swSYiOl2HD4Kvx64IzxurZahOmkO2wWNuzymjMknTYLHoeVkpjKgo3FPjJdNl14RZ9rTpqDTLedMn+omltpkONx8OOGYixCkOOxmw6v4VjmRt3wN0YdR/cJHzP7x00APHr+URzVPrvW/WW4bNGQID3xdsXmUg5qnU44opknbozPgFZpjrgu4qEHGH2eIdNNz0t3smGXXp7rtKUuEneHbLedEm+IUEQqt1JRb1QZrEKhSImGHzeSJYSYDsyTUs5r8HtvAJqlsBRCDAYGZxToQTdGIuH6wkp2VQbNjZQRnR9b1moQO6jdKB0zywvL4zuWlcEI3pA+W81mEZT74wdvGMPJy/16UEVejKNopBtWBsJsKwtTWBHEZbfqwjJ6PbtN1OoLM5wQIaqEZVUIRnVRYoirHWV+c4Ob4dJHepTFDFQPhmW1ABlTWNqt5mgUg+1lAcr8YTrnenDaqvc52a0WHNFes3hukC8UMcvqDDHlC+m9VrECv11MkEx6jIBol+2m3B823aocjyNueM+uyiBHtc/izVGNJyLrI2Bd1YRl/RxLi0XvEy4srzoOybbp+mVVr9XKYP0SVveUPRH2QohoGbest7D0OKxkumxsLwvUcvti2Vzio6gySJbHTqbLbqa1GqFXLpuFXZUampQEwlVjWowxPuV+XViWR2cmvnVNfwAOn/gRlYEITpuFdKeNDbu8bC2tCpTxOHURJwR0zvOwrtDLzopgrTEaVouoNoc1tny0VZqdzSU+IlJit1r0BGqnzUyfNj4PPQ499McoxU80XifTZWd7WYDKQJgSbwhN6u+tkCbNz5ZurdPJTXNQkBVfrHdrnU6OR1+XVQjSXTasFr0VoNwfjuuWNiTZHv2EQpk/1GROoCj2M36eSNdWP/HLt71YyEms4Ei6d1jF5dq/+JflcjIc+vvrL2u/BTc8xQ0Im0TOExS8vJYnuImNo9tzJVPpwQpEnqT1uA0cu+En+CL6OXY08FQbjuRL/lx4KE8+MppnuQ4xUnLly1N5cfX18AtwaMMl1SsUigak4d+apVLKUQ1+rw1Is/yLKqWcJ6UcZbNFkwKj4uixT37l89XbTdGYl+7ggEynGQARS2xPW050U29sYBOVwvqCEdOlbJ2hl9/GC94wyt4MYRk7AN1ps5guhtF/uasySChaCgt6iVooUv3VWu4PIaLDwQ1habgq7WokexoCeXtZoKo0L6YU1hx5ENaqnc03ovs9DisZLpt52x1lfjYWe8ly2xMOc09zWOMm54ajPWeGoDSEbKlXT5+NFVftsj3mdWKdR7vVQo92WaY4zYmWudWkqCJIbnr9nD+DPU2M3J3bx/ZY1rcUFvTeWDO8B5IrS6pSYXeU+wlFZJOa7WeUMu6OGG6T6SIY0eIGPoH+fi02w7+CSCkprNSTjw3BbwjaraV+wpo0haXNqruO5X59ZqI3GKkmfo3XfabLjstuYXOJj/s+0MN/XrniWHM+Y0GWm9YZLvM1nu1J/fXgtlvNk0LG+yY7zW7+vWsVc1+tM5zm6yDRe8VYf6kvbKYOl/hChCMSW9SddNqsdGudnjBMRwhBt9bptPLYiUhp9rwbzzdef2dDku3RE3lXby1XjqWiXggxCxjMpUe+wKo3exM6QDDkjA/ZQWtWWbtTdFs71tCVv3y5hL98uQSGCmQXwQ/0gQCIkKQT6/lu6QD+MWsKL3W4jvkM4sHLbmIpvVnZ4VDuvuxO7r7sTmb0HYbcIJg35HzIgBvPn0Z7NsIru4hgRRx2D+Kwexr7kCgUCoVJi/iLaokGzwRCuojJi4rGbI+Djrm13UrQNziGIRDrBNitFjMACHQxqUldbEn0YB+rRZguQEWcPktTWAb0UqzYUlg9Ot9KWbRkLsNlo6hC78GKFZY1S2HL/boT4rZbzWHtlcEI1pik1NjHsFsF28r8Zn9Thstuzj40hpRHpKzmHPTrkktumoMst50Mlx1fKEIoorF6Wzma1FN1Ezk+aU4bgbBGuMa6jX5KYwNquMslPv0YxzqmBdm6g5Ks9wogJ83Ot2t31XJHiyqDuyXQGgtXzIa3ZlBKKuRlOGudBKmLYdMWc8mLSwBIc+7e+I/GwBA0uyMsczx2HFYL28v8cS/fVRnUZzHaLeyqDFIRCOMPVa80yHLbyXLb2RQNQIpN081w2qgIhM33WrqzdnBYpttmOv3l/jB2qyA3zUFumoMDc9wURN3Djrkecjx2WtWj91UIwcDubQBwRE8qGZ9pNoswU2GBap8x8UpYQf8M9DisbC/TT0Bke+yEIvrIJVs9nEZLVFx2yUsz+yvNeZR7eSRQtttOKKInYithqagvm+RA/r3kah658O9syWzNiR8t4NnfxtFPvIscLLhhyXT+O6Av/x3Ql38uHctVRzzDPcsfgkLguACLC04m64htDBw2F56EZxeMYwsFHPhAIUeMX0MRuRSRy4jPZyE0yZlz5sBGoBf8yiH8LPvRk594Um5RI0YUCsV+RYv5i+qyW/BHhVAqZYVCCHNweKu0qk2c3VrdsTT+bWz8KwIR0hxW3HY9/j5egI8x/9Ef0qoJRgNjc9U2y2U6n4ApQO02CxFNokV/HtEklcEIGU59vIFE76/0BsJRgVx7k+aw6RvpWMfS2MztKA+YfV6xm64sj51urdP1UjpXVYmfcQySbdAMJ6KyxpgCX6gqZRb0Ek6HzUJFtNQw1rHskpeORdTt1uR4HGa5sUEoolHqC1Urcd7fsUVHvNgsot6jSkB35M3RODKVUlgdo8wzLY6Tv79izCatbyks6O/1A7KclPnDZr9jbIhPYYXev9s+x0NYk6wr9GIR1cuThRB0yvWYJ6Ni539mRGfmbo+W0MeWcWe6bDisFrLcdvMkSrk/TJtMF5ao6GuX7TZ//267lYPbZNRLwAGc06udHqwT/Z1m1+gbNzD6se225K+3TJdNH1ViEWZStdECUB+EEORnOE3H2XjN7e2RQDlpDtOxVaWwilRRvZUKhUKRnKazc9xDXDYrhf4gmpQpl0ParIJgpLqQsVst1YTljvKquZjby/S5c2nR4eQZThvlgdrldRFNYhGYYSp5NUZJ5KY58AYjHJDlQiAQohIpq7sJoIu02JJUfVOtb+z8Ib3fs+aQcQOH1cKOaF+kEJDuqHJMrnt9qelWJOp1MtIYy/0hM3k0djNYc0SAIZa9wepjCvyhCEJUbe5mje7HpS8t4avfC7GI6hvVLI+dozvmYBEi6ZiKHI+DcI1S4eKoYKjv2I7GxmIRu73Jzk93srM8gJQSSZ2VsOZGuzIQNk+MNBWM10n6bghL0MthiyqDrCusJN1pNd8L+ozJMO2yXWS77ViFwBeKkBsdzxOLy26lXZabzSU+OsdUQqRH3ysl3hBuu7VaAmmGy06vDtkAZglqWJMJ+xt3lyPaZXFMxxzzJJM5m7eGM9i6xmdMIjJcdraVBchNd+C0WUhzWqkMROotLGvislvolOupViViUN/RNMlKz2M/g/Z2P6eimfHrMJbwL67sO5VXuIJOrMdJkH4HL2TxUycj1kuevGw08zkLgI20Z0uwLWyC14YMZVjZO7y7ZTCr6A5AnyE/8MCYyTz90K1893kPju2/gkXoPdj/PaUvf8lbwofnD+Hmt+/jsYK72HRfN47yfQz8C4AbVHulQqHYj2jWwrJLfhqzRvdj2LTFuOxWItGdW6rlkEYvYqwzoTuWVaWwpltn1RNJKwMRMxAn3WWjpDhEmT9UrUQvoknSo+VxWoxgjN04GamJoJdtFXtD5vVy0uxYdwm2lPg4uE06m0t82CyCDJfd7Pcs8eojCRKVM9qtFrMUNt1hw2LRZ+4JdGFhOIXPXXJ03Ntn1nAsLSL5OAu71YLDajHdMANfUB8TEuuqdslL46vfC3HbrWbIiYElhaTInDQHYU0ipTTv15wX2oRKYUE/pjU3/6mSl+4kGNFHXdSFw2qhxBeKut+1ZxTu7zhtVuzW3RfhFiHolp/Ois2l/LGzksMOyEAIwa7oeKK8aCJzTpqdwopgwl7igmwXrTOdZl+2vjaLXoof1hI6qrNG90NKSdfx89EkHJAg9KYukomp2PdYzaRrA1NY1uHiZbnt0R51XQBnux1UBnxxndRUe4sbYqZpqsQK1+mX9TH7xxWK5PSAQ9YzZMOHnDdzPgfetoZyMniea+j28yY8I3ZxW+bDPMqt9Oeb6C2W89i3d8EBcMmC2VzcS3DBMXM5+Pvl/Lb0SPgBOAfYBseesgLQ51QC9PryF1YO6Mazb4/hsVfvgq33w4l3wle6qFRlsAqFYn+jxZyqje3Vy0vgWNYMWDGcBSOef9boflzar1O0x0oXSLFunVHGZXw3yjvX7qys9jgRKbFZLaaLl2g9Bq0znNgswtz82CwWCrJclPhCbNjlpSIQpn0rN9ZoGSnArmjYSKJyRofNQqkvRGFF0HR5LBaB22GlIhA2ezgPSOCcGI5lWdSxtCeYIRd7THVXo3ppsC8Uwe2wVruekdIbWwZbH4z+s7AmzREwRkpsfdNVGxtrdLzM7pCXEZ15GjFEduLrtsl0EtEkW0p8enBPEyqDBb1svEe7rD26D5fdSvtWHsr9YbNke1dlCI/Dar4WC7L0fsfMBAJR71+u/fsyBGV6kv5gIYTplNblWO5pmFR2jaRrA2NMSF2vOatF0DU/3TwuhgO6L/oV9/S5Q9Xzh8SfcQpFLELsl8n+CoVCsV/RtHaPe4Azdth8iuWQxqYrdgC7UbZ64bTFvHf9CaZj+dY1/Tj7ma+JaFUjOgxhOW7WMvIznOZmKKJJrBaBy66XsbZOUK5qkO1xcHRHRzUXqU2mi21lfraVBfA4rOSnV93/wXd9SDCsYRHVBXUsxsbxjx0V1VyUdKeNokp9xEm2x55Q3Bm3KfPpI1FqblDjkea0UewN6f2PsmqkSF569cfobM4GrHuTGs/lMNyiMl+INTsraZ/jZuLclUDipMv9la756btdXmicsPCFIlQGI0nFSrrTRprDytZob21TCu4B/aSIJXmxb1xqvn7y0hxsKPKyqzKIw2qhIhCuFn7ldlh3y93KdNkpqggmFKQGLrsFXyhiOoF7C9OxtNR0LPXHra9ATHPa6N42s8m8bmKF9d7u51Q0ffTeyt7w0hAGj3yb9vyO/J+ggLXc4H2K7p5VdDtqDYfwK//mUk7nYyYwGYCOM7fTcfhq8ijiKl6kGyu59PsXeLlsFK/2Hs4/ev6TouvbwV0B5DYX4jXJu5wLwOQBE3hv/oWwAmgLMI5Lv3yBfy9XTqVCsf8jgfhp882ZFiEsZ43uRyiicdCdHwKkHOCSl+7EYbNU22QZm/WQJhk2bTHrCivJ8eiJqpkufcadsVk9/3m9BNFwNw0i0dCLAzJdOG2W3TpjbqS9ri/y0jHXU80tdNksBMOaXtqawKYyNlOrt5XRq0OO+fM0p5Ud5ZIyf8gM5YhHZo0ey1Q2Z0aAz08bSsz+UqgaIm9wWNsMhGC3x10Ym+Y/o2NXyvxhc3B8U0qFheQOV10Yr1Uj7TTZc9cDbFz8EXXX37n2+ISjIpoztmiQTlFl0EzljQ3v2l3y0h1kumzVTnDFQ3csQw3eY1kT4+RLzTLrIw/MolWaI2m6bqKS1d0JTtoTarqW9XExjb55FdyjSJk3BzN+2ARW0Z25nM3Fr77EcF5nqOcd5jGY+xfcy8sDh3MIv9K37EdmZ56j3y4d/hxzKG8+24tpjOaP3w7nj/RufFpwGltndQY33P3snVzFi/T4x3ewGrZQAMB74kKmy8v4eNDp9OQnMi4rZ9z2x7G0qSTSJvHfZ4VCoWgsWoSwBF1IGX1ONcNyEpHmtNUSN6awjJaKhiJawlJWixC4bBZzpIZxfU2CNVoyV5dbmYw2mS5apTlqiTp9cxqOO5/TwBFNfdRk9Q2hUQLpD2lJBW/NVNi6hOWs0f3wBSOc8PDnUbfWgstmxR1TZmjQOsPF0R1ykvZsJsMQlqHoXL1yf8jse21qvYN7gvG6LPOHcdks5jFIRKs0Bxt3+bBGS6JbKq3SHJQUVrK5xI/TZjErD/YEIQROu7VO8WO49DXfe4nEXF19iYkeL8d07Kq/bzNcdg5qnZ50jc2BqtLdlvs6VygUCsXeRAK1J0M0d1qMsAS9hyoQ1qoFa9QXY3ZdlbCsPS6k2mM6rPhDVaMvjATXhkrcjCfonHYjuj/+pmnW6H6UeIP0nPwJUNUvCfo8TiOxNplrYgjLEm+QXd6gOWcv2cbZ7dCHpqdCfY9P7OPmpFWVubXP8bC2sJJSXwi7dffGdjRVYvtJW6U7ErrXBhYhOLhN8xcVdZGTZkcUQjCicUCmExEnhXhvBdJkexzkByIc1jazXmuub89hz/bZ5KU79rnLuL+gp/MK3CmU2ytaLiI/+o/TJsJ/YdawYfzx+OEMHzeTc3iPC8bM5bHL72JT3zyEXyJXCsRTkq4v/I8/xh4OwDtTBjGk+4eI6ZKsEdvgU/h6zPGc0OEH7t5wJ/dumcC9E+6nx+QVnMt7rBx6DBmUA7BAnsjHnM47sy7mnYcv5oSln6Ad8Ki+JhXco1Ds56hS2GZPutOKPxTZo54ao5wwFB1nkcyxBH0DU+oLIaOJtMaQ9FSE0+6mJBoOS7JS0iy3HSH0EQexm0shBB6HnljbJkmfly06JH1dkRcp9/7cufqQn+HEZdfn/xklfd5gpEGcp6aE1SKwWwWhiEy5BHh3y4+bEzaLhSyPnRJvKO7Yi3g0VKKp02ahS37abgdXpUqGy07X/IY5ibC7z31fpsDWRAjB4QWZ+9XnlmI/5ilgNYznAU4et5DO727lm3OPRo4W5PXYxBDmIDsKfUf1d/g7U3h2ynUAnDdlPg+OvQk+h4ccdzBszCwu5jUWbDiRjXTgsYJxrJrcndMjH3PBQXPpt3YhkyK6aMw6NAA94ME5N3HHhe35WuiCU6XBKhSK/ZUWtYssyHbTNibGf3eSBV12K1YhqpXCJnUs7Rak1OfhQZVjeduZh/Ly1+vq/fipkOOxc3hBZlKRIISeNhpvBEK6U0+GravPK8NlY11hBbB/CUunzcpRB2bH/F9/nqkEDDU37FYLVotscaJ6TynIcmEVosU6eg1BfV3dfc3eFu+Kpo0QkyBPCTiFQrG7qFLYZo9FiDqmxKeG4QJFNIkmk48LMTb0RoCPISwz9qIzJIQg3Wmrc8NmCssaa9EFaSCuYxl7nxkuO+uiYS8PndeDozu22vPF7wUyXDYCFcH9SvzuKzrlerAIUWcZbEunpnuW4bJXKxHf24+b6uWNJcIUihZJ4ST9u2sCMt2CWCAhD3aem8Hxt/+IGOvnOcs1XLvqFfof9Tm38Ai52mZKyGEwcwH4amwJj2q3wGpYRXfu4j6uYRoDM7+ClWFGdHiRDMrJOj/A52v7M5uhZLXX0+ZpB4yA1xkOzAeUW6lQKPZvWpSwbCjsVguhiGa6lsnCgIyz4r6Q4VjqpbD7YtNaF3abBQK115LjcXBgtka/rrlJb5/hsrEmOu8vP33fzILbnY11hksfal8zAbMlkOrrrDHLEhuC/UVw7S/rUCgUu8+/GAbuWQz2vg3AQm8RP3U5jK/pg4MA+V+WQwdYUHAiZ2z/CB6FxaNPZlbfDRRd3457XngI/hW9s/eB1cAzMJ9BnMqnnLt9DswAOn7NjIxr4HrgHDjl1UWwHp7ZchUA1498EV6ElRcegyEsFQpFU0H1WCpSxGYV+EIRU1gmK4W1WQRWi6jtWCYpsavv5nR3N7OOqNAy1hIrLtrluM1h7YmIHUmQl7H/jvEwZgc2RcdSCZXGpTkd/6byXJrKOhXNm4piK+nj9b/bix/oRe9Fqziw/xqG8SbkQdsx6/jrjK/pPGI9f5x0ONwFvT5ZxlsHXA5Pwb3DbwEgONyJlQhWwsznLLrxB9o3afAcwH/JKjyU0rQDODi0nN/OPxIicL0YpC/iIeAjwKc7p8qtVCiaEkpYKlLEbrVQ7g+bAT7JSmGF0JMHfaawNBzL3T/0DeUuGfM5d9c9NZ6DRZB0tElj47RZ6JyXZs6ybImozXpq7O74DoVCoVAoFIqWzv6rBvZj3A4r4XLJukK9vzCRY2lsQvvc9wmlPl1QVgR0xzJ9PwgFMRy83RW5hiDd351AIQStk7jKCoWi/iiRrWiOiEXAa7MYcQL854HTAej3209QAd1ZxUwu5v3up/G3Yz6l7FsHbry8c9kgzvtqPqvozr0TbuHugke5+3l9LMi9y2/h7lWPwuE+sLlZsulYxgx5nGdXjoOMiZQ6Z8DUEfwmDmSTzOOgst/xvbteX8x/gK1LgcFI2bsRjoZCodgzVHiPIgXaZDixCMGWEh9QfV5gPNx2K4UVQSoCYcr9YRw2S51lprHsrQ1cpstOttte75l5Vbff/0tMm3rvoELRVFBCU9Fc+OezY/lHqymsG94JgDcOPpeLvn6X23mIAE4u0V6DWZJLrK/xg/dYxnqepPR5J5nrgoijJCeVfcQXc88A4O4vH2XMgMcZIV9hEf258dlpPLtmHPc8fjun8zEFbKHj+BFwVSumMRpfzxzOk20AeKc30Ks3cmnjHAeFQqGoL0pY7gaGA5af7kCLmeGYaGPljJacbtzlpcwfNgVZY2/EHDYLhxyQQdZulohmug3Hsv6hOErw7Z809muyuaKOq0KhUCgULQnVY6moJ0IIUtFUzmgy7MZdXsr9of0iEbYhyNgNxzLV8QlqI65QNA7qvadoqYhn4ZkxV3H9qy/CDLhh2nQA2o/+HdbAKeJ9+LkVsq2gb5f/Mnf2BcwdOpDp9huwhSI8+9Y4OAm+sJ9RVQH3FAwbMItj+6+AGXDYmJ/4kgHMZigzGc7Tc26FZcCHk7j3xPth3STe6R8N6fkpOu4EFdqjUCiaBs1SWAohBgODu3Xrtkf301AbLNOxLPZREQg3m6HruyMsFQpFYpSoUygal+uPfJGey79l2ZLjOO3s9wHYtKAbpz7wAZ99fxZZh24jz7aJokXtKDs32gbzATw7axz8FfgvyPsF4jY93I+S6B0vXs9jBz/CzQ9MJf+Mcj0V9u4w6WcUUnFeFlw0kdA5glvlg9xJBgD54pZ9+dQVCkWDIlE9ls0EKeU8YF6fPn2ubuy1gD5yxCIMxzJMurNhDntjb0IznLrz6tgP50M29rHZX1DHQZEI9dpQKKrowzfA8Y29DIVC0WxQpbCKvYQQAqfNynvLNhMIaQw4OG+vPt6+2jBme6I9ljblWCqaF0p0NX/U71hhIMQkjpancfCY5RSM2cIXvc/g56WHcNTa1QB0HLiaz9YO4ohPvudxxlFEHhdlv8sr1hE8yq1wRIBzCt7laH7g7j6PItIlPeW3AJzKp6ygBwfLMmYzlHPGv8l7ojvcfyQndFjIXP6PVh974fRJ2NdLeAie/EvAXJuaXalQKJoSLUpYNuZGwmm3EAhpRDTZbHose3XIoXOuZ7fDfxQKhUKh2B/4cc7xdB3yP17jEiYvvZujnv2VxWN6AXAr/2RKlxv4vy1zWVRwPHkUcmr3D2jPRgbxAdPfvwHPKC/zOBvpFWSM2MmD3AHAmQ8s5LHx1/EBZ/EIt9CGHbSXGwmwkOliDK2u9UI2HCgvJsI6cikEOYgVHNOIR0OhUOw5LbMUVllN+wiXzUIgHCGsaft9j+Ws0f1SEuFWi6B1pguL2P9KYRUKhUKhSIXn5Hq0kwSt2UG7eUVMX3ADWVdt47h5yzhu3jJ8eHiXc2G9k984GDc+Ppt1Fh58TLvzRhaP6sVMMZLvVg3AOb6Uihl5ePDiwcuV46dy829TuYxXmTbtRkrI5ulBt/Ie58J/7PA9jHjgefrwA1vFq6wU85WoVCgUTRYlLPcRTpsVTYImIaOBeiwVCoVCoVDsAVPViVGFQrE3MHosG/Jr/0cpnH2EM6YPsbmUwjYlVD+VQqFQKGIRYhLyGVhPJ8TN0P+Vb1g++GAe4zoyKKfb4JUA/JNbeYKbkHME8lCw3CbhWjhzzkIcN5eRoZXzi+zEYc+up+eYZXx3Tl/WoKfS92A5bQ9ex+L+JyO+lWwdnc3TO2/lJp7gjk5PwP0w47Jr4A2ASYkXq1AomhgtsxRWCct9hNMeKyzVYVcoFAqForHpcd13fMSZhJ+C23mYPnzPnyMP5f2XT6M7qwA4khW8ziUUPLqWbEqY8cIwRiyfBe/Df4b8H2e+upDDeq6n9ZgNfLelL5Q4+aOgKwBWIvThB+bd0Jk3Fp1L2w4lvLHhXC7a8Dbp3QqpOGol+ubzm8Y7CAqFQtFAKIWzj3DarOa/lWOpUCgUCkXjIYRyBxUKxd5EjRtRpIhRVjls2uKUb2O1CGwWQViTyrFUKBQKhaKRWSun0XnnPZyb/wbv/nARZ58yl7OYzwcvw1k7P4N8/XoHPb4Rx4gyghUeLuvwKg9zO+8cOYjzjpvPdlrDIZDerZCreBEKoKBgC/dzJwBbp3cm/ZJC7h12Cxe9/C5snMRF89+F5+HsuXOZ+c5IOG+JuSY1XkShUDRllMLZA+rbt+e0WQgHI6TvJ8JS9R0qFAqFokXinsj/t3fncVfO+R/HX+9KxlapMCVtClMi+05MxjLIUghTtilkGxqyTIsxi18xjSVKaLJvhexStkF+SaJtxIREFEOGH8rn98d13ePMrXvrnHs5V+/n43E97nOu77V8Pt/vOee6v+d7Xddpf9gQrn/oJCZO7M0mR7zLDkznYv7IdVPO5679DqcLbwBw0HkTeOy9w3i29R6spD7NWMZRTz7K3H5tuZU+XLzLYCZyBN2ZzHy25HS1hVfbATCu3zGc2OtuZt67HZyyhO8+H0rrRn1YssPGNORb2hw5j3cb7ALsQqx5gxtmGeZrLK2arb1Wff797Uoa1ZGOpZmZ2ZpGHWs7AjPLPp8Ka9WkZGRwtz89DfgaSzMzs9ogDYMOQ4j7hTp/x3j6cPrcW4hpQusGlw1+nzFjz4HHgN7pSndCq+ELGE8fujCLCw67mjEP9WHbT2fxQdNNGU8fPv5+Yx6pdzBXPnopY6IP/dLO64i3BkJvuP/k4+E38MtGD/LhFe3gERi39DSYm1zr6VNgzSwL/DuWNajJOmvR6CcNaLpew9oOxczMbI3UePZH6Obg09aNOIKJ/OriG9G3wfoDl7IdM/n81rVhN2BeOvWGgQxnd17k3JtHc/5Dl9Pv7vF8+2YjNjp5OctoxrLum3LllEthInzFOpz41g2c+NYNvHn1Tgw9chDUB56H3/AXGPQYmz83mwvn+AZCZtm2osBT3ecRyxrUaJ21aLTOWqxV3/15MzOzmuQ7wZqZVS93LC0vvgGQmZkVjflD+OxLUe9XQdN/fMU7W7RkJl1h4DdMWPcI2rGQxnd/A02Apckqzbp+wLkdR8ODQPcVXHnkpTS+6yOearg/Ozd4g8OZyKlTxrKETdht3muc22s0Le79Z7LyOZMZ+uWfmXFjJ7bfew4H/XEqm8ds3lY9rkhD8mmwZlm0Zl5j6aEzMzMzyzRpGLQYwkFbTGC9Bp8y47BOxCdiMt257dNT4K61uYPjOYIJ0AQ2Pvg9opGIRuKv9c6h2fwPYCl0bT2d8ydczucLf8rOR74BM+EQHqH9YYu5m2NgBZx173DupRf30ovDYykXXzyYZiyDtvDOxS15u15n4J7arRAzq2YlHctCTnWfRyzNzMws+4ZCH26lU6M5NGMZm+zxLktebcOAHa6k63kvsy5f8eaYnbi236mcOWUshx2bdP52ZhrLrt0UgJmn7Uq3Oc8Qr4gjJtzJG3Th7as6s+ih5gxhGC+cvSN7vPkquioA2Pjm93hgzrEc0OkJWAHt71gMMYPNoycAC+hcK1VhZlYd3LE0MzMzMzMrGP+OpZmZmVlmSF8kD4YNgcbQ+7iJtLljHg1YyXtftUErAsYD3VZwbuu/MKoBbMzHfN9V1Ns9GXX8+YuTYSRwONAdRp48iJE/GUTsIXRLwOXQ6tKlcB/c9Mtf8vOYDV2T3fbkPkY9fh77dJ6WzLhzGLvF3gC8yL41VxFmZjXAHUszMzPLtiHD2CG689Ux6/IvmnCF9mB5XEmrXRawaH4Hft96EH0/uYdOJ8/hPK7i6Icf4sup9QFYv95K/uf7s7lg8XCYuTZvHbwZHXd6Hx0VjJzRn3M/HE2/G//KmKvP4cHoT4+mT/CzT18DYNQV58HnQAugMzAZXtJzSUzhjqVZdvnmPWZmZmaZ4J8XMbPaU3IqrH/H0szMzKz4bdcIgHdnjKLzVwP4cmFzeBlOjCcYNeY85vZry319evK7USP48owNuOK8IXAgsALGrX1Sso2RcEGnq6EtfPhoE1oM/hfsBhwI5w4ezVs3bkbH8e/T7ezH6fHbJ2i44Avm7r1dsu7zQAfgw2Gw3g8/K+KfGDGzLHLH0szMzLLnrCFwzTgA9uZZvmzcHF6AQ0++l6l048F+B/A03fndHSNYdEZzWu23lHenbEKbbZbAExVe2AAAEiJJREFUGws585QdAHgnWtK++WIAWmgmdIBWby1g0X4dOGPKVXRcvAD6LuSZLw/koOETeEyH8l+XT3YFFvSFBckIqjuVZmsCnwprZmZmVvReo1Nth2BmtsbxiKWZmZllhjSMGQHcCYfGegAMpC9Tv9uXIedegQ4JOAt6jH2CGCseOe5gWk1bCj1hIodz3Kyb+RMX0eawJQC073Q6zP0OGqwFHdrCgiUs0u2MizmcqCM5Ku7j/lOPhwHDeGxAd/aMZ3jhvXTIckEDztpvONfoq9qpDDOrJf65ETMzM7Oit/2sObARTBrVC4CH9juavSe+QveRD8M/4KzBw2k4+Bv4BB7rcyTvjG9J+1378/QZ3Zm0dy/uWHAyNEk3tikw948c991mNORbxmlDoCnNWQYnHcP9GkarWMCisUcDX/OCJoP2T9bdFa556YdOpU+DNbMsc8eyBt3df7faDsHMzCyzfCdYM6sb1sxrLN2xNDMzs2zZdhjwGxiS3BX25jOO4+uL1qEn9/H0U7+kJYu5SJ15Ol7i3PF/pr0GAsuZtH8vXnhuR1ZSn306TQPg4ae6M4BruWNxO9h2ba6NUzlT5zOeRjAd9ozdeUFPAUcCM7gw4C7mAdCOhTyjJCSPVpqtSXwqrJmZmdVhki4BjgFWAgL+FBF3p2XrArcAO5D8RzMwIh6urVhr2gQO5slYzi+uep47zzuC3vqaMZ+cCcApV9+eLHTOp9ACLlIT4Gh24FZGbj8ouYvr1LkweQZXcCGHMomH53QH4BBdA9dtBQOAPySb2S0+4p6WfeHD61nI/nD6/nD9MGAfrtAR3BaXAnAJlwPTarAWzCzDGksaA0yKiEm1HcyquGNpZmZWPK6NiD8ASGoJzJP0ZER8BgwElkdEB0kdgecldYiIL2sz4Jr0C3XntuhJ74MnsnM8x5z07rCnnH0dY399JiI4bvHNrE8TxugaNqA+nAoMuB1YwDsxmvbqzyRGclv0S7c6AQasAC7gwYsPp4cugy67wId3A8tZNKZD0qmcPwS2nAvcwwnqkq57N+DRSrM1T7WcCvt5xH8+mOok/9yImZlZkYiIz3Oerk/y30vJsfwY4IZ0ubeA6cBBNRpgLfG1lWZmtc8dSzMzsyIi6TRJ84DXgH4RsSwtag28m7Poe8BmNR1fbdmQf8FeQzhBO0MH6M9oTmUspzKWm9YdgB4JOALu6HQy6/I1J0YzRmolF54xDNY5HoD26k+8NxSA6xjAdQwALuHJmAzbrUOPbZ4AFsAbn7J5bE232Aa6AQyh2xaP82ycWAuZm1ndU3KNZSGnuk8RUdsxVBtJy4H5tR1HNWoOLK3tIKqR8yteWc4NnF+xq0p+bSJio+oMJpekGSQdxFXZJCJW5izbBbgd2DcilqXHvPYR8UlaPgpYEBFXrWI//YCSU6q2Bt4sYBqFVgyvx7oeo+PLj+PLT12PD2DLiNigUBuT9DhJ3oW0NCIOLPA2Cyrr11jOj4gdazuI6iJpuvMrXlnOL8u5gfMrdnU5v4jYvgrLviFpMcmY2f0kI5RtgE/SRVoDU8tYdwwwBup2fUDdjw/qfoyOLz+OLz91PT5IYizk9up6B7C6+FRYMzOzIiHpZzmP2wHbAXPSWfcC/dOyjsBOwOM1HaOZma2Zsj5iaWZmliXDJHUmud3gSuDsiJiblg0HxklakJb1i4jltRSnmZmtYbLesRxT2wFUM+dX3LKcX5ZzA+dX7Io2v4g4upyyfwO9VmOzdb0+6np8UPdjdHz5cXz5qevxQXHEWOdl+uY9ZmZmZmZmVv18jaWZmZmZmZnlJZMdS0lbSHpJ0j/Svx1rO6Z8SVooaZ6kmel0QDq/6HKVNELSPyWFpK1z5peZSzHlWU5+q2zDtKyY8msm6VFJ8yXNkjRB0kZpWVG3YQW5ZaX9HpD0uqTXJD0vqWs6v6jbrkQ5+WWi/SpL0rqS7pa0IM37kDKW21TSVEmfr+quiJJ+nW7jbUnXSqpXmbJCxVfefiSdndOeMyV9IemqtKybpK9yyqZVNrYCxlduDPnUXwFj7CHpVUlvSpot6fycdapch5V5L0mqL+m6NJYFkk7Nt6yyChDf79J6ej2tt9zPkaGSPs6pr+tqIb4yYyhE/RUoxvGl3rffSzqsovgLHN8vJE2X9I2kEVWIvSB1mGkRkbkJmAKckD4+AZhS2zEVIKeFwNZZyBXYk+RHu/8rp/JyKaY8y8lvlW1YhPk1BbrlPB8O3JSFNqwgt6y0X+Ocxz2AGVlou0rkl4n2q0I9DAbGpo87Ah8B66+qvoC9gUOA6aXK2gGLgI1Ivoh+AuhTUVmB46vUfoC1gI+BHdPn3UrnU031V14dlRlDvvVXwBh3AVrmvBYWAHutbh1W5r0E9EljqJfGtAhom09ZDcZ3ALBu+nhb4F/AOunzocCIPN+3+cZXZgyFqL9CxFhquW2BZcDaNVyHHUjuqH156f1V92sw61OtB1DwhGDj9I1eP31eP32+UW3HlmdeCyn1T1Gx55qbU3m5FGuepdtsVW2YkXY8Cpic0TY8Cpic1fZLD5LTs9h2uflltf0qyH02aScrff4w0Kuc5bvx447lb4Frc573BB6pqKyQ8VV2P8CRwKzy8qmO+qugjsqMId/6q446TMsm8cM/5VWqw8q+l4BHgJ45z68FfptPWU3FV2o5AZ8DrdLnQ8mjU1Sg+iszhnzrr5rq8Grg6pznNVKH5e2vOl+Da8KUxVNhNwM+iIiVAOnfxen8Yne7ktPzRklqQrZyLS+XLOVZug2hiPNLT6c6HXiIjLVhqdxKZKL9JI2V9B7wB6Av2Wu70vmVyET7VVJr4N2c5+9R9ZzK20a+26/s+pVd7mTg5lLztpA0Q9I0SX1XsU5NxFdWDNXdPlVeTtJWwK4kIz4lqlKHlX0vre7rKt86K0R8ufoAb0fEopx5x6afMU9K2q0KsRUyvrJiKMRrrmB1KKkhcBw/ft/WRB2Wpzpfg5mXxY5lVu0VEduS/OC1SL4lseKSxTa8BviSbORSWuncMtN+EXFqRLQGLiY53TdTysgvM+0HkP6zv7SMqf6aFJ+kFsB+wG05s2cAm0XE9sCxwGBJ3Ws4vnJjqEgt1OGDwICIWFyI+LNM0j7A74HeObNvANpFxDYknzsPSmpWw6HVhRgq63DgvYiYmTOvmOK3Vchix/J9YNOSD930b8t0ftGKiPfTv98Ao4A9yFau5eWSiTzLaEMo0vzSC947AsdExPdkqA1XkVvm2g8gIm4F9iW5TiQTbZerJD9JzbLWfhGxfUQ0L2NaSfJNepucVVpT9ZzK20a52y9gfJVZri/waEQszdn/FxHxefr4n8AD/NDmNRJfBTFUuP2aqkNJG5NczjA8Iu7J2X+5dbgKlX0vre7rKt/XdCHiIx1Fuw04PCLml8yPiI8i4rv08VPpOltTeXnHV0EMhfhMKEgdpn50lkEN1mF5qvM1mH2rew5tXZ6AZ/jvC3en1nZMeeazHukNKUi+af8DMLHYc+XH1yCWmUsx5sl/X0NaZhsWY35p/FNJb2KQpTZcVW5ZaT9gfZIRiJLnhwIfpDlloe3Kyi8T7VfFuhgK3Jg+7ggsATYoZ/lu/Pgay/b8+KYvfSsqK2R8ldkPMA84uNS8FvzwW91NgTeAHjUZX3kx5Ft/BYyxGfA6cPoq1qtyHVbmvQScyI9vgNI+n7Iq1Fm+8e1E0rnYZRXrbZrzuCvJTWl+WsPxlRlDIeqvEDGm5a2AfwNNa6MOS72HSl9jWa2vwaxPtR5AtSQFWwHTgH+kf7es7ZjyzKc98Bowi+Ri/XuBFsWaK8nF2ouAFSR3sZtdUS7FlOeq8iuvDYswv85AAPOBmek0MQttWFZuWWk/YBPgZZJ/EGeSXEu1fRbarrz8stJ+VayL9dI8F6Sv5x45ZZcBp6WP66efV58A36aPh+Ys2x94O52uJ70pRkVlhYqvEjHsQfLlQf1S2z8zbeuZwJvABdVRf+XFV1EM+dRfAWMcDnzND593M4GTVrcOy3ovAY/ywx1766cxlMTTL2f91SqrQp3lG9//krxXcuurS1r2t7SeXk+XO7gW4iszhkLUXyFiTMsvAe5axbZrqg73JPms+wJYnj4+oCZeg1mfSr6JMjMzMzMzM1stWbzG0szMzMzMzGqQO5ZmZmZmZmaWF3cszczMzMzMLC/uWJqZmZmZmVle3LE0MzMzMzOzvLhjaVaNJI2TdGb6+DJJx1RinWckHVIDsf0nHkndJP0ip6ylpKkF3t8zkt6RNKiM8hMl3ZfnPnpKmiNpacVLm5lZXSMpJM2S1H011h0v6SNJI6ojNjMrX4PaDsCsmEhqEBErVmfdiBhc6HjyUSqebiQ/Lv9kWrYY2Lcadnt2RDxcDdsFICLukzQdmF5d+zAzs2q3e0R8WdWVIqKPpKEkxzMzq2EesTSrQPrt6W8lPQMMkdRF0vOSZqSjY+fmLLuppKclvS7pAaB5Tlnu6OXPJb0k6TVJb0g6thJxtJW0VNIISa+k6+2VU94nnTdL0kRJG6fzd09jnSlptqTeufFI6gKcBvRJlxlUsq+cbR+Yxjorza9DOr9bus7otOx1ST+rZL02TNebL2kKsHOp8gvSPGdImiTpp+n8xpLulzQvjWW8v502M6s56XFxqKQX08/wo3LKyjpebJke916X9KakgZXc17j0WDFF0ruS/iJpv/Q4vFDSOdWVp5lVjUcszSqnXkR0A5C0AdA9Ir6RtD7wiqQnImIucDXwXEQMk9QeeB14fBXbmwHsGRErJW0CvJpu47MK4mgGzIqIgZL2Ae6UtDnQEfgzsENEfCjp98A1wDHAhcBfIuJWSQIa524wIt6QdAOwfkQMTHNsW1KedlBvBfaJiDmSTgFuB3ZJF+kMnBQR/SVdAlwKHF9BHgD9gXbA1sBawHPAwnSfJwAdgF0j4ntJpwNXptsdDHwWEVtJagq8Ctxfif2ZmVnhfB8Ru0vaEnhR0vPp/LKOF2cAj0bE7wEkbViFfXUGfg7UJzlONAb2AVoA8yXdtDojnGZWWO5YmlXO33IerwtcL2lb4HugJbAtMJfk9NGzASLiHUlPl7G9jYCbJXUEVgBNgS2BlyuI41vgtnT7z0r6Ol1vH5ID9ofpcqNJOrUAU4GLJLUBnoqIaZVL+T92AV6PiDnp81uAUWkHG2B+RLyWPn4ZOLSS290X+FtEfAd8J+k2YM+07DBgR2BG0hemAfB5znpnAUTEp+nIsJmZ1aybACJivqQZwK5AUPbx4jlghKSGJMelqlzH/0BEfAMgaT7J8e574ANJnwGtgHmFSMrMVp9PhTWrnNxvQv8IfARsFxHbAq8AP6ni9q4HngG6RERXYNFqbANAJAfykr+5AiAiRpJ09j4BrpF0+Wruoyz/l/N4JZX/wkoVlF0eEV3TaeuI2KOS8ZiZWc0q71gEQETcD+wBvA0MIhnZrKzSx5nVPe6YWTVyx9Ks6poA70fECklbA3vllE0BTgKQ1I7k1J2ytrEwIkLS/iSnfVZGQ+C4dPt7kXRG5wNPAweXXIcI/BqYnC63RUS8HRGjgb9S6lrG1BeUOkU2x0tAV0lbpc/7Aq9FxPJKxlyWp4FfSWogaZ2SvFIPAWeUnColae10hBiSb7n7pvM3BHrkGYeZmVVdybGuI9AVmEY5x4v0WsuPImIcMIxVH4vMrIj5Gx6zqrscuDW9DvBtktN7SpwDjJfUi6TD91QZ2xhEcnrQIGBWOlXGMqCjpGkkp+T2johvgdmSLgKekhTAOyTXMAKcLWlfktNovyE9jbSUiSSdvJnAXekEQER8IulXwB2SGpCMfJ5QyXjLMwbYBphNMmL7LMk1l6TXgzYHnk1Pha0HjCI5vfcy4BZJs0mutfk7P5wma2ZmNeMbSX8nuUld/4j4GKCc48XRwPGSviUZ1fRNd8wyRhE+o8ysGKQ31JkeEc0rWrYuUnJX3RH5/tyIpLWA+hHxf5IaAS8A50VEyQhtW4q4nszM6rr0C8wNquOGOfluW+nPjZTcjM7Mao5PhTWzmvIpMDwdpc3HhsDf09HVV4D7cjqVPYFJwJI892FmZrVjCclnfPeqrihpPMkI6RcFj8rMKuQRSzMzMzMzM8uLRyzNzMzMzMwsL+5YmpmZmZmZWV7csTQzMzMzM7O8uGNpZmZmZmZmeXHH0szMzMzMzPLijqWZmZmZmZnl5f8BjwxBbX10PUoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -468,7 +524,7 @@ }, { "cell_type": "markdown", - "id": "applied-florence", + "id": "surgical-footwear", "metadata": {}, "source": [ "### Store in dump file" @@ -476,7 +532,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 23, "id": "affiliated-british", "metadata": {}, "outputs": [ @@ -486,7 +542,7 @@ "'dump_file.dmp'" ] }, - "execution_count": 22, + "execution_count": 23, "metadata": {}, "output_type": "execute_result" } @@ -497,7 +553,7 @@ }, { "cell_type": "markdown", - "id": "rotary-military", + "id": "lovely-cigarette", "metadata": {}, "source": [ "### Load from dump file" @@ -505,7 +561,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 28, "id": "pleasant-machine", "metadata": {}, "outputs": [ @@ -555,8 +611,8 @@ }, { "cell_type": "code", - "execution_count": 24, - "id": "experienced-reminder", + "execution_count": 30, + "id": "expensive-tenant", "metadata": {}, "outputs": [ { @@ -564,6 +620,9 @@ "output_type": "stream", "text": [ "demo_instrument\n", + "double source_energy = 320 // Source mean energy\n", + "double source_height = 0.025 // Height of source\n", + " sample_height = 0.04 // Height of sample\n", "source Source_div AT (0, 0, 0) ABSOLUTE \n", "powder PowderN AT (0, 0, 1) RELATIVE source\n", "cyl_monitor Cyl_monitor AT (0, 0, 0) RELATIVE powder\n", @@ -573,13 +632,15 @@ ], "source": [ "print(from_dump.name)\n", - "from_dump.print_components()" + "from_dump.show_parameters()\n", + "from_dump.print_components()\n", + "from_dump.write_full_instrument()" ] }, { "cell_type": "code", - "execution_count": 25, - "id": "talented-cheese", + "execution_count": 31, + "id": "authorized-cigarette", "metadata": {}, "outputs": [ { @@ -603,7 +664,7 @@ "* \n", "* %Identification\n", "* Written by: Python McStas Instrument Generator\n", - "* Date: 17:07:30 on December 10, 2021\n", + "* Date: 12:21:44 on December 15, 2021\n", "* Origin: ESS DMSC\n", "* %INSTRUMENT_SITE: Generated_instruments\n", "* \n", @@ -614,25 +675,27 @@ "********************************************************************************/\n", "\n", "DEFINE INSTRUMENT demo_instrument (\n", - "double source_energy = 320,// Source mean energy\n", - "double source_height = 0.025,// Height of source\n", - " sample_height = 0.04 // Height of sample\n", + "double source_energy = 320, // Source mean energy\n", + "double source_height = 0.025, // Height of source\n", + "sample_height = 0.04 // Height of sample\n", ")\n", "\n", "DECLARE \n", "%{\n", + "double source_energy_spread;\n", "%}\n", "\n", "INITIALIZE \n", "%{\n", "// Start of initialize for generated demo_instrument\n", + "source_energy_spread = 0.02*source_energy;\n", "%}\n", "\n", "TRACE \n", "COMPONENT source = Source_div(\n", " xwidth = 0.12, yheight = source_height,\n", " focus_aw = 3, focus_ah = 4,\n", - " E0 = source_energy, dE = 3)\n", + " E0 = source_energy, dE = source_energy_spread)\n", "AT (0,0,0) ABSOLUTE\n", "\n", "COMPONENT powder = PowderN(\n", @@ -672,7 +735,7 @@ { "cell_type": "code", "execution_count": null, - "id": "collectible-patrick", + "id": "fixed-address", "metadata": {}, "outputs": [], "source": [] diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index b696ea79..7891bede 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -50,6 +50,11 @@ class ManagedMcrun: def __init__(self, instr_name, **kwargs): """ + Performs call to McStas with given options + + Uses subprocess to call mcrun / mxrun to perform simulation of given + instrument file. + Parameters ---------- instr_name : str diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index 7c89b58b..8177a5d5 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -732,6 +732,11 @@ def set_AT(self, at_list, RELATIVE=None): raise RuntimeError("Position data given to set_AT should " + "either be of length 3 or just a float.") + # If parameter objects given, take their name instead + for index, element in enumerate(at_list): + if isinstance(element, (ParameterVariable, DeclareVariable)): + at_list[index] = element.name + self.AT_data = at_list if RELATIVE is not None: self.set_AT_RELATIVE(RELATIVE) @@ -763,6 +768,11 @@ def set_ROTATED(self, rotated_list, RELATIVE=None): raise RuntimeError("Rotation data given to set_ROTATED should " + "be of length 3.") + # If parameter objects given, take their name instead + for index, element in enumerate(rotated_list): + if isinstance(element, (ParameterVariable, DeclareVariable)): + rotated_list[index] = element.name + self.ROTATED_data = rotated_list self.ROTATED_specified = True if RELATIVE is not None: @@ -1067,9 +1077,17 @@ class is used as a superclass for classes describing each unit = "" if key in self.parameter_units: unit = "[" + self.parameter_units[key] + "]" + if isinstance(val, ParameterVariable): + #val_string = val.print_line() # too long + val_string = val.name + elif isinstance(val, DeclareVariable): + val_string = val.name + else: + val_string = str(val) + value = (bcolors.BOLD + bcolors.OKGREEN - + str(val) + + val_string + bcolors.ENDC + bcolors.ENDC) string += " " + parameter_name diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index b0d40bd2..ae847c09 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -254,24 +254,26 @@ def __init__(self, name, parameters=None, dumpfile=None, **kwargs): # If no parameters given, initialize parameter container if self.parameters is None: self.parameters = ParameterContainer() - else: - if not isinstance(self.parameters, ParameterContainer): - # Need to convert McStasScript parameters - if isinstance(self.parameters, CalculatorParameters): - mcstasscript_parameters = ParameterContainer() - mcstasscript_parameters.import_parameters(self.parameters) - self.parameters = mcstasscript_parameters - else: - raise RuntimeError("Given parameters object not" - + " recognized.") + if not isinstance(self.parameters, ParameterContainer): + # Need to convert McStasScript parameters + if isinstance(self.parameters, CalculatorParameters): + mcstasscript_parameters = ParameterContainer() + mcstasscript_parameters.import_parameters(self.parameters) + self.parameters = mcstasscript_parameters + + else: + raise TypeError("Input parameter 'parameters' must be of " + + "type CalculatorParameters or " + + "ParameterContainer, not " + + "%s", type(self.parameters)) # Check required attributes has been set by class that inherits if not (hasattr(self, "particle") or hasattr(self, "executable") or hasattr(self, "package_name")): raise AttributeError("McCode_instr is a base class, use " - + "McStas_intr or McXtrace_instr instead.") + + "McStas_instr or McXtrace_instr instead.") if not is_legal_filename(self.name + ".instr"): raise NameError("The instrument is called: \"" @@ -1564,7 +1566,7 @@ def settings(self, **kwargs): Some options are mandatory, for example output_path, which can not already exist, if it does data will be read from this folder. If the - mcrun command is not in the path of the system, the absolute path can + mcrun command is not in the PATH of the system, the absolute path can be given with the executable_path keyword argument. This path could also already have been set at initialization of the instrument object. @@ -1629,7 +1631,7 @@ def backengine(self): This method will write the instrument to disk and then run it using the mcrun command of the system. Settings are set using - settings methods. + settings method. """ if self.current_run_settings is None: @@ -1776,8 +1778,12 @@ def get_interface_data(self): return self.widget_interface.plot_interface.data def saveH5(self, filename: str, openpmd: bool = True): + """ + Not relevant, but required from BaseCalculator, will be removed + """ pass + class McStas_instr(McCode_instr): """ Main class for writing a McStas instrument using McStasScript diff --git a/tutorial/McStasScript_tutorial_1_the_basics.ipynb b/tutorial/McStasScript_tutorial_1_the_basics.ipynb index c0e80693..4a99ca95 100644 --- a/tutorial/McStasScript_tutorial_1_the_basics.ipynb +++ b/tutorial/McStasScript_tutorial_1_the_basics.ipynb @@ -53,7 +53,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -74,13 +74,13 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "configurator = functions.Configurator()\n", - "configurator.set_mcrun_path(\"/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5/bin/\")\n", - "configurator.set_mcstas_path(\"/Applications/McStas-2.5.app/Contents/Resources/mcstas/2.5\")" + "configurator.set_mcrun_path(\"/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1/bin/\")\n", + "configurator.set_mcstas_path(\"/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1\")" ] }, { @@ -95,7 +95,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -112,27 +112,75 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here are the available component categories:\n", + " sources\n", + " optics\n", + " samples\n", + " monitors\n", + " misc\n", + " contrib\n", + " union\n", + " obsolete\n", + "Call show_components(category_name) to display\n" + ] + } + ], "source": [ "instrument.show_components()" ] }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here are all components in the sources category.\n", + " Adapt_check Moderator Source_Optimizer Source_gen\n", + " ESS_butterfly Monitor_Optimizer Source_adapt Source_simple\n", + " ESS_moderator Source_Maxwell_3 Source_div \n" + ] + } + ], "source": [ "instrument.show_components(\"sources\")" ] }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Source_div ________________________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[4m\u001b[1mxwidth\u001b[0m\u001b[0m [m] // Width of source\n", + "\u001b[4m\u001b[1myheight\u001b[0m\u001b[0m [m] // Height of source\n", + "\u001b[4m\u001b[1mfocus_aw\u001b[0m\u001b[0m [deg] // FWHM (Gaussian) or maximal (uniform) horz. width divergence\n", + "\u001b[4m\u001b[1mfocus_ah\u001b[0m\u001b[0m [deg] // FWHM (Gaussian) or maximal (uniform) vert. height divergence\n", + "\u001b[1mE0\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [meV] // Mean energy of neutrons.\n", + "\u001b[1mdE\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [meV] // Energy half spread of neutrons.\n", + "\u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [Ang] // Mean wavelength of neutrons (only relevant for E0=0)\n", + "\u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [Ang] // Wavelength half spread of neutrons.\n", + "\u001b[1mgauss\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [0|1] // Criterion\n", + "\u001b[1mflux\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1/(s cm 2 st energy_unit)] // flux per energy unit, Angs or meV\n", + "-------------------------------------------------------------------------------------\n" + ] + } + ], "source": [ "instrument.component_help(\"Source_div\")" ] @@ -153,9 +201,17 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "source Source_div AT (0, 0, 0) ABSOLUTE\n" + ] + } + ], "source": [ "src = instrument.add_component(\"source\", \"Source_div\")\n", "instrument.print_components()" @@ -166,16 +222,30 @@ "metadata": {}, "source": [ "## Working with component objects\n", - "The src object created by *add_component* can be used to modify the component. It also holds the information on the component, which can be shown with the *print_long* method. This will tell us for example if any required parameters are yet to be set and the position of the component." + "The src object created by *add_component* can be used to modify the component. It also holds the information on the component, which can be shown by printing the object. This will tell us for example if any required parameters are yet to be set and the position of the component." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT source = Source_div\n", + " \u001b[1mxwidth\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1myheight\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1mfocus_aw\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1mfocus_ah\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + "AT [0, 0, 0] ABSOLUTE\n", + "\n" + ] + } + ], "source": [ - "src.print_long()" + "print(src)" ] }, { @@ -188,16 +258,30 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT source = Source_div\n", + " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m]\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1mfocus_aw\u001b[0m = \u001b[1m\u001b[92m1.2\u001b[0m\u001b[0m [deg]\n", + " \u001b[1mfocus_ah\u001b[0m = \u001b[1m\u001b[92m2.3\u001b[0m\u001b[0m [deg]\n", + "AT [0, 0, 0] ABSOLUTE\n", + "\n" + ] + } + ], "source": [ "src.xwidth = 0.1\n", "src.yheight = 0.05\n", "src.focus_aw = 1.2\n", "src.focus_ah = 2.3\n", "\n", - "src.print_long()" + "print(src)" ] }, { @@ -205,14 +289,36 @@ "metadata": {}, "source": [ "### Getting status of all parameters\n", - "Using *print_long* on a component only show the required parameters and user specified parameters, but it is also possible to see all parameters with the *show_parameters* method. This reminds us to set an energy or wavelength range for the source, as it is necessary to set one of these even though they are technically not required parameters." + "Printing a component only show the required parameters and user specified parameters, but it is also possible to see all parameters with the *show_parameters* method. This reminds us to set an energy or wavelength range for the source, as it is necessary to set one of these even though they are technically not required parameters." ] }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Source_div ________________________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[4m\u001b[1mxwidth\u001b[0m\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m] // Width of source\n", + "\u001b[4m\u001b[1myheight\u001b[0m\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m] // Height of source\n", + "\u001b[4m\u001b[1mfocus_aw\u001b[0m\u001b[0m = \u001b[1m\u001b[92m1.2\u001b[0m\u001b[0m [deg] // FWHM (Gaussian) or maximal (uniform) horz. width \n", + " divergence \n", + "\u001b[4m\u001b[1mfocus_ah\u001b[0m\u001b[0m = \u001b[1m\u001b[92m2.3\u001b[0m\u001b[0m [deg] // FWHM (Gaussian) or maximal (uniform) vert. height \n", + " divergence \n", + "\u001b[1mE0\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [meV] // Mean energy of neutrons.\n", + "\u001b[1mdE\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [meV] // Energy half spread of neutrons.\n", + "\u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [Ang] // Mean wavelength of neutrons (only relevant for E0=0)\n", + "\u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [Ang] // Wavelength half spread of neutrons.\n", + "\u001b[1mgauss\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [0|1] // Criterion\n", + "\u001b[1mflux\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1/(s cm 2 st energy_unit)] // flux per energy unit, Angs or meV\n", + "-------------------------------------------------------------------------------------\n" + ] + } + ], "source": [ "src.show_parameters()" ] @@ -222,19 +328,28 @@ "metadata": {}, "source": [ "### Adding an instrument parameter to control wavelength\n", - "Controlling the wavelength range emitted by the source is best done with an instrument parameter, then this same parameter can be used to for example rotate a monochromator or set the range for an wavelength sensitive monitor. Adding an instrument parameter is done using the instrument method *add_parameter*, and it is possible to set a default value and comment. The current instrument parameters can be viewed with the *show_parameters* method on the isntrument object.\n", + "Controlling the wavelength range emitted by the source is best done with an instrument parameter, then this same parameter can be used to for example rotate a monochromator or set the range for an wavelength sensitive monitor. Adding an instrument parameter is done using the instrument method *add_parameter*, and it is possible to set a default value and comment. The method returns a parameter object that can be used to assign the parameter to a component. The current instrument parameters can be viewed with the *show_parameters* method on the isntrument object.\n", "\n", "The default type for instrument parameters is a double (floating point number), but other types can be selected if necessary by providing a type string before, here we also provide an example of an integer." ] }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", - "instrument.add_parameter(\"int\", \"order\", value=1, comment=\"Monochromator order, integer\")\n", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " wavelength = 5.0 // Wavelength in [Ang]\n", + "int order = 1 // Monochromator order, integer\n" + ] + } + ], + "source": [ + "wavelength = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "order = instrument.add_parameter(\"int\", \"order\", value=1, comment=\"Monochromator order, integer\")\n", "instrument.show_parameters()" ] }, @@ -247,13 +362,29 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "src.lambda0=\"wavelength\"\n", - "src.dlambda=\"0.01*wavelength\"\n", - "src.print_long()" + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT source = Source_div\n", + " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m]\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1mfocus_aw\u001b[0m = \u001b[1m\u001b[92m1.2\u001b[0m\u001b[0m [deg]\n", + " \u001b[1mfocus_ah\u001b[0m = \u001b[1m\u001b[92m2.3\u001b[0m\u001b[0m [deg]\n", + " \u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[92mwavelength 5.0 Wavelength in [Ang] \u001b[0m\u001b[0m [Ang]\n", + " \u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[92m0.01*wavelength\u001b[0m\u001b[0m [Ang]\n", + "AT [0, 0, 0] ABSOLUTE\n", + "\n" + ] + } + ], + "source": [ + "src.lambda0 = wavelength\n", + "src.dlambda = \"0.01*wavelength\" # When performing math use a string and the parameter name\n", + "print(src)" ] }, { @@ -273,7 +404,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -289,9 +420,26 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT guide = Guide_gravity\n", + " \u001b[1mw1\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1mh1\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1mw2\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1mh2\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1ml\u001b[0m = \u001b[1m\u001b[92m8.0\u001b[0m\u001b[0m [m]\n", + " \u001b[1mm\u001b[0m = \u001b[1m\u001b[92m3.5\u001b[0m\u001b[0m [1]\n", + " \u001b[1mG\u001b[0m = \u001b[1m\u001b[92m-9.82\u001b[0m\u001b[0m [m/s2]\n", + "AT [0, 0, 2] RELATIVE source\n", + "\n" + ] + } + ], "source": [ "guide.w1 = 0.05\n", "guide.w2 = 0.05\n", @@ -301,7 +449,7 @@ "guide.m = 3.5\n", "guide.G = -9.82\n", "\n", - "guide.print_long()" + "print(guide)" ] }, { @@ -311,22 +459,22 @@ "## Adding calculations to an instrument file\n", "One of the advantages of McStas is the ease of adding calculations to the instrument. Here we calculate the rotation of a monochromator so that its scatters the wavelengths from our source. We need to declare variables using *add_declare_var* and append C code to initialize using *append_initialize*.\n", "\n", - "For *add_declare_var* the first argument is the C type, usually double or int, the next is the variable name. A default value can be specified with the value keyword.\n", + "For *add_declare_var* the first argument is the C type, usually double or int, the next is the variable name. A default value can be specified with the value keyword. Like when adding a parameter, a *add_declare* also returns an object that can be used to refer to this variable later.\n", "\n", "*append_initialize* just adds the given C code to the initialize section of the McStas instrument file. It is necessary to follow C syntax, for example remember semicolon at the end of statements." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ - "instrument.add_declare_var(\"double\", \"mono_Q\", value=1.714) # Q for Ge 311\n", + "mono_Q = instrument.add_declare_var(\"double\", \"mono_Q\", value=1.714) # Q for Ge 311\n", "instrument.add_declare_var(\"double\", \"wavevector\")\n", "instrument.append_initialize(\"wavevector = 2.0*PI/wavelength;\")\n", "\n", - "instrument.add_declare_var(\"double\", \"mono_rotation\")\n", + "mono_rotation = instrument.add_declare_var(\"double\", \"mono_rotation\")\n", "instrument.append_initialize(\"mono_rotation = asin(mono_Q/(2.0*wavevector))*RAD2DEG;\")\n", "instrument.append_initialize('printf(\"monochromator rotation = %g deg\\\\n\", mono_rotation);')" ] @@ -343,7 +491,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, "outputs": [], "source": [ @@ -352,24 +500,38 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "mono.zwidth = 0.05\n", "mono.yheight = 0.08\n", - "mono.Q = \"mono_Q\"\n", + "mono.Q = mono_Q\n", "mono.set_AT([0, 0, 8.5], RELATIVE=guide)\n", - "mono.set_ROTATED([0, \"mono_rotation\", 0], RELATIVE=\"guide\")" + "mono.set_ROTATED([0, mono_rotation, 0], RELATIVE=\"guide\")" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT mono = Monochromator_flat\n", + " \u001b[1mzwidth\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.08\u001b[0m\u001b[0m [m]\n", + " \u001b[1mQ\u001b[0m = \u001b[1m\u001b[92m\u001b[0m\u001b[0m [1/angstrom]\n", + "AT [0, 0, 8.5] RELATIVE guide\n", + "ROTATED [0, 'mono_rotation', 0] RELATIVE guide\n", + "\n" + ] + } + ], "source": [ - "mono.print_long()" + "print(mono)" ] }, { @@ -382,12 +544,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "beam_direction = instrument.add_component(\"beam_dir\", \"Arm\", AT_RELATIVE=\"mono\")\n", - "beam_direction.set_ROTATED([0, \"mono_rotation\", 0], RELATIVE=\"mono\")" + "beam_direction.set_ROTATED([0, mono_rotation, 0], RELATIVE=\"mono\")" ] }, { @@ -400,16 +562,16 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ - "sample = instrument.add_component(\"sample\", \"PowderN\", AT=[0,0,1.1], RELATIVE=\"beam_dir\")" + "sample = instrument.add_component(\"sample\", \"PowderN\", AT=[0, 0, 1.1], RELATIVE=beam_direction)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -420,9 +582,22 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT sample = PowderN\n", + " \u001b[1mreflections\u001b[0m = \u001b[1m\u001b[92m\"Na2Ca3Al2F14.laz\"\u001b[0m\u001b[0m []\n", + " \u001b[1mradius\u001b[0m = \u001b[1m\u001b[92m0.015\u001b[0m\u001b[0m [m]\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + "AT [0, 0, 1.1] RELATIVE beam_dir\n", + "\n" + ] + } + ], "source": [ "sample.print_long()" ] @@ -439,7 +614,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -461,7 +636,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 24, "metadata": {}, "outputs": [], "source": [ @@ -470,7 +645,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -493,9 +668,25 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "source Source_div AT (0, 0, 0) ABSOLUTE \n", + "guide Guide_gravity AT (0, 0, 2) RELATIVE source \n", + "mono Monochromator_flat AT (0, 0, 8.5) RELATIVE guide \n", + " ROTATED (0, mono_rotation, 0) RELATIVE guide\n", + "beam_dir Arm AT (0, 0, 0) RELATIVE mono \n", + " ROTATED (0, mono_rotation, 0) RELATIVE mono\n", + "sample PowderN AT (0, 0, 1.1) RELATIVE beam_dir\n", + "banana Monitor_nD AT (0, 0, 0) RELATIVE sample \n", + "monitor PSD_monitor AT (0, 0, 0.1) RELATIVE sample \n" + ] + } + ], "source": [ "instrument.print_components()" ] @@ -505,23 +696,77 @@ "metadata": {}, "source": [ "## Running the simulation\n", - "The instrument object has a method called *run_full_instrument* to execute the simulation and return the data. A number of keyword arguments are available to control the execution of the simulation.\n", + "Running the simulation is done in three steps\n", + "- Setting the parameters with *set_parameters*\n", + "- Setting the settings with *settings*\n", + "- Running the McStas simulation with *backengine*\n", + "\n", + "The *set_parameters* method takes a value for each of the parameters defined in the instrument, here wavelength.\n", + "\n", + "Settings adjust settings for the simulations, a few examples can be seen here\n", "- ncount sets the number of rays\n", "- mpi sets the number of CPU cores used for execution (requires mpi installed)\n", - "- foldername sets the name of the output folder\n", - "- increment_folder_name if set to True, automatically changes the foldername if it already exists.\n", - "- parameters allows setting instrument parameters using a python dictionary" + "- output_path sets the name of the output folder\n", + "- increment_folder_name if set to True, automatically changes the foldername if it already exists (default).\n", + "- parameters allows setting instrument parameters using a python dictionary\n", + "\n", + "The *backengine* method takes no parameters and just performs the simulation" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/tutorial/data_folder/mcstas_basics_0\"\n", + "INFO: Regenerating c-file: python_tutorial.c\n", + "CFLAGS=\n", + "INFO: Recompiling: ./python_tutorial.out\n", + "mccode-r.c:2837:3: warning: expression result unused [-Wunused-value]\n", + " *t0;\n", + " ^~~\n", + "1 warning generated.\n", + "INFO: ===\n", + "Warning: 64159 events were removed in Component[7] monitor=PSD_monitor()\n", + " (negative time, miss next components, rounding errors, Nan, Inf).\n", + "INFO: Placing instr file copy python_tutorial.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/tutorial/data_folder/mcstas_basics_0\n", + "\n", + " monochromator rotation = 22.4519 deg\n", + "Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Na2Ca3Al2F14.laz' (Table_Read_Offset)\n", + "Table from file 'Na2Ca3Al2F14.laz' (block 1) is 841 x 18 (x=1:20), constant step. interpolation: linear\n", + " '# TITLE *-Na2Ca3Al2F14-[I213] Courbion, G.;Ferey, G.[1988] Standard NAC cal ...'\n", + "PowderN: sample: Reading 841 rows from Na2Ca3Al2F14.laz\n", + "PowderN: sample: Read 841 reflections from file 'Na2Ca3Al2F14.laz'\n", + "PowderN: sample: Vc=1079.1 [Angs] sigma_abs=11.7856 [barn] sigma_inc=13.6704 [barn] reflections=Na2Ca3Al2F14.laz\n", + "Detector: banana_I=1.35163e-06 banana_ERR=2.28321e-08 banana_N=10521 \"banana.dat\"\n", + "Detector: monitor_I=4.0821e-05 monitor_ERR=2.69721e-07 monitor_N=50009 \"psd.dat\"\n", + "PowderN: sample: Info: you may highly improve the computation efficiency by using\n", + " SPLIT 47 COMPONENT sample=PowderN(...)\n", + " in the instrument description python_tutorial.instr.\n", + "loading system configuration\n", + "\n" + ] + } + ], + "source": [ + "instrument.set_parameters(wavelength=2.8) # Set parameters\n", + "\n", + "instrument.settings(ncount=5E6, output_path=\"data_folder/mcstas_basics\") # Settings\n", + "\n", + "instrument.backengine() # Perform simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 28, "metadata": {}, "outputs": [], "source": [ - "data = instrument.run_full_instrument(ncount=5E6, foldername=\"data_folder/mcstas_basics\",\n", - " increment_folder_name=True,\n", - " parameters={\"wavelength\" : 2.8})" + "data = instrument.data # The data is available in the data attribute" ] }, { @@ -534,9 +779,30 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plotting data with name banana\n", + "Plotting data with name monitor\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAHuCAYAAAALJ/jFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9ebgcVbn9v94+OQkJQ0jAQCBgMEFEAlchCIhI9IZRgYBcJlEmZVR/MnkVFFEhciWAIrPIcEEmEQJ4mczXG8aIJMCFQFASEiRMARLCkOQM3e/vj+quvapOV58ezpizPs9znrOqau9du6urh917r/c1d4cQQgghhBBCCNEIud7ugBBCCCGEEEKI/o8Gl0IIIYQQQgghGkaDSyGEEEIIIYQQDaPBpRBCCCGEEEKIhtHgUgghhBBCCCFEw2hwKYQQQgghhBCiYTS4FKs9ZnadmV3XDe0eaWaLGqg/ycy8+DetQrmxxTJj6z1XmTbPo3NP6qp2u4Luer6EEEJ0D2Z2tpnN7O1+CCF6Hw0uRbdjZjPN7Oxe7ML/V/wDAJjZIjM7sve604HRAH7Ww+c8p3jevkhff76EEKIixc+90g94H5rZ381sDzq+kZndYGZvmNkqM3vZzG40s8HF40dS/XYze9vMZpjZEWZmvffIMpkG4IDSRh/43BdC9BIaXIrVHndf7u7Le7sfWbj7m+7+QQ+f80N3f7Mnz1kt3fF8mdmQrmxPCCGq4AJEP+JtC+ApAHeZ2fjisT8B2BDAFABbAjgWwIcAmqj+4mL9TQFMBnA/gN8AuKkH+l4Txc+UpV3Zpt63heifaHApehUzG2ZmvzOzZWb2gZndZmbr0/HrzOx6M5taLPOamX0v1caXzexFM1tpZvea2Wm8XJWXWRaX7XwcwLXFX4Rnlvanf2VNz5gVl7HOK57nzwDWRwoz+17xF+gVZvakmX2xjmuyiZn9v+Kv2c8A2K5MmclmNrvYl3+a2Qm1XJMq+1Fajru/mT1dfEy3m9kaZnaymb1lZq+b2TdT9XY3s2fNrMXMXjKzQ8u0uW+x/x+Z2V/NbAyVqeb5aiou7X2r+BjvN7NPUBtnF5/TH5jZGwBm1vLYhRCiC/iw+OPhPwF8B0AewGQzGwFgRwCnuvsT7r7Q3We4+/HuvpLq54v1X3f3/3P3aQC+CuAQM9sr66TF98ojzezh4vvj/5rZ+mZ2mJm9UpwF/WGqzkQze7z4ufMvMzu5TJvfLL5flz7fJtDxeFls8f17VwA/LdZbROVOKba/qni+benYkcXP3W8W6yys6WoLIfoEGlyK3uYCAF8EsA+iD6NNAVyXKrN/8f8OAH4B4NdmthUAmNm6AO4EcB+AzyD6NfhHFc53AKJfg7+P6BfhAyqUjTGz4cXzzADwWQB/BnBmqszRAL4L4AQAEwD8N4B7zWyTas5B/DeAZkSP9wcAzkudZwtEj/NSAFsBOAXAz8zsa8Xj66K2a9IZZwI4CcC/I3qu/gzgk0X9GwBXWvEHATPbFMDdAO4AsHXx+H+b2fapNs8GcFrxMa6D6D4oR9bzdRqAI4t/2wNoBTDdzPg9bSKAfyv2+6gaH7MQQnQZ7t4OoA3AYEQzlCsATDGzpooVO7bzKIBnAOzbSdEzAZyL6D12NIA/Inr/3AvAyQCmlgaHZrYWgHsBPIfo8+2HAM4xswNTbf4UwEWIPlfeBvD7jHP/fwBmIczcbl88z8GILCD/WTzP84g+I9ekuhsA+DqA/QDs1sljFEL0Rdxdf/rr1j9Es0Znl9m/NqJBwe6071MAHMAni9vXAXg2Ve+fAI4v6hMBvAzA6Ph/A1hE29cBuI62FwE4srM+cjlEA8ZXADTR8ZtS53kZwJ6pNh4E8MOM6zIpegkm9m1ZfPzjad+xxX1ji9vXADgvVe8MAPdXe01ovwOYlNG/scXjU2jf5QCWAGgubucQfVHaq7j9SwCPp9q5BcBNqTYPoOOHAXizxufrDQDH0vZIRF/Wdi9unw1gOYBhvX3/609/+ht4f/yZgujHwh8CKAD4bHHf4cX3zvcBPIDoB7P1qP6R5d6zi8duBnBfhXM7gO/T9n8CaAcwkvbNA3BCUR8H4F+pz7fz+L282OYptP354r6hxe2zAcws9/hp3ywAU2l7EIBXS+/lxcfsAMb09vOnP/3pr/6/PjdzaWbTzGxhcSnFhM5rVN3ujmb2RHF53/NmdnxXtS3q5hOIPnT/Vtrh7i8CeA/RILPEc6l6bwAYVdSfBPC0uzsdn93lPQW2ADDH3fO0L+538ZffzQD8yaLgDR+a2YcAvoTocdZynmXuPr/ceYpsDeD7qfOcRefp6mvyPOklAF5y9zYAcPcCgHcBfKx4/FNl+jsLyecTSD6n/Hx2SnEWeUMk75ulAP6ROs8/3H1Fte0KIUQXc0bx/XklolUoJ7n70wDg7jcC2AjAEQDmIlqdMdfMNq6iXUM0CKtE+n37LU96Ipcg+b49O/X5Vs37NqiNakh8Png0mzs7dZ633X1xDW0KIfoYg3q7A2WYjmgp3SNd3O4VAH7s7n82s9EAXjKzO939rS4+j6ieaiPetaW2HWFJdzUfstVQKNOfZtLlzsPlS8t6DgbwYqrc+zX0o7PzAMBaAM4HcH1qf+k6ddU1SbeLYrudPR/1tNkd0Q81sBRC9CZXALgYRe9l+qC7v4/IwnCnmf0cwEuIZhHP6qTdTwF4vJMyPfG+DXS9vUrv20L0c/rczKW7P+rur6b3m9kORVP6nOLfV2ptGsDwol4L0Rf+jxrsrmiMBYiW6uxY2mFmnwKwLjoO0LL4B4DPmiVCs3cIgJOiDcmIfEDkH9mQ+vEx3i6eZ7uUp+9zpJcAeBPAJu4+P/W3pMrHUjrPSDMbl3EeAPg/RMuG0+d5hdqo9Zp0FS+Cns8iO6H657MciefLo0iybyF534xENOvbyHmEEKIrWVp8b+40Mnfxfe0NhB8qy2JmuyDykt/dNV0EEL1vTkz5P7v0fbvIP5B83x6EyBuv920hViP63OCyHMUAJVcAOMzdt0MULe3K4v5qOQqRgf1fAJ4GcKK7f9jVfRWZbGhmn+E/RAPLawD81sy+UIwadx0iL8k/q2z3JkRRW883s08Wg+p8BZVn7l4B8AUz27C4xBIAHgZwoJl9ycy2BnA1gJbUeUYAuMjMtjCzYxEFRgBQNE4CUwGcW4x4N64Yfe8MM9u1yscCd3+h2Jffm9m/mdlkRF4c5nwA+5nZz8xsSzPbysyOpqXe9VyTruJyRIPws4vn/g6AryFajVAv5Z6v3wD4uZntVVw+fx0in+mMBs4jhBDdjpltYGYPmNl/mNmnip8pv0BkebiXijYV3/c2MrNtzOw0APcAuMXd7+/CLv0BwDAAlxX7cyii4HS/bqDNVwDsYGYbWxQdF4jet79rZocUf0i+HMAQ9MHUKkKI+ukXg0tExvHNANxnUWqG+1AMegIAZvZOxt+z1MbpAE53900RzeJcUoxsKXqG4xAN6vlvCwCnAngUUQTShxFFBj2i2kbd/T1EEfD2QTSjdyCiD7CWCtV+hujX01cB3FXcdzWiJdl3AvgfRAET4hnH4nn2B7Bn8Tz7Iwpew335LaKgDf+JKFjCPYjutderfTxFvoHo/v47osh8P06dZw6A3RFFQX0K0RLyIxAFvqn3mnQJxdnTKYgGlCUf0VHu/kQDzZZ7vs5HFKToegBPAlgDwH5FD6gQQvRl3gfwLICfIHr/egLRe/rB7v7/qNwYRLOZ/wLwV0Q/aH4fURC0LsOjPMt7I5oR/T8AvwJwlrvf1kCzFwJYD9GPfiWf6c0Afg5gWvE8EwDsrR/6hVi9sGTMj75DMcfRV919bnEJ7H+6e805A4ttrQ/gX+4+jPbdB+Aad/9jl3RY9BnM7ApEy1NrXTrdo5jZJAD/6+7d4TdMn6vsNTEzB/Ald5/Z3X0QQgghhBCrN/1l5vJxAJub2ZdKO8xs+5SnrBLLALRYMaG9mW2IKE/TC13dUdHzFJeE7lBcinoconDmN/Zyt6qmGPH13C5us+I1KS6p1a/FQgghhBCiy+hzM5dmdjGiJX0bAngHwLvuvpVFSdjPR+R7G4xoqcU+1S6DM7PdEeVtair+XezuV3XDQxA9jJmdDeBbiHyGCwH8xt2v6NVOVYGZDQVQCju/zN3f7cK2z0aFa2Jm6yF6LQHAa+6+sqvOLYQAzOyniHL/be3uc3u5O0IIIUSP0OcGl0IIIUR/phic7FwAnwbwFQ0uhRBCDBT6y7JYIYQQos9jZkMAXArgRPRMhGYhhBCiz6DBpRBCCNF1/BzAje6+sLc7IoQQQvQ0g3q7A8z666/vY8eO7e1uCCGE6AfMmTPnHXf/WG/3o4SZ7QRge0QpiSqVOxbAsdFW83aRNbpLekC6mknTdEw8r3CsXJlm0m2pcs0oD4dJyGecL933tUm3k24lvRbp9O/m75NeJ6Mt7ksT6cGptvicQ0gvJz2cNNf/INUW97kV5akQt3AwtZ2ozhZ6Pj8/xvTzs4qqDKV236P969J+fizp683b/HxzJ6mtBO2p7VzGMX5O+assP78AwHHr2jM095HbGoYkH2aUK2RoLpN+XEzWvcdtVXo9Z712qn0/qPV9oyt4o8veu8eb+YquaCjFG8AD7r5nNzS92tOnBpdjx47F7Nmze7sbQggh+gFm9kpv9yHFrgA+BWBhMZj5GAAPmNlR7v5gqVAxmNxVAGC2kUdpgLuCar/MliufrpP19YDLjCK9JFVuFMrDAx8eoFTq+66k3yL9GumdSdPgCAAwg/Rk0ksz9EjSGyMJn3Ms6ftI75VRZmaqLe7zIpQna5AOYGNqOzFPzim++fz8GNOPax4d2obavYP2H0D7Z1Ld9PXmbX6+F5GmthIsTW1zW/zc83PKzxdfewB4LKM+n4f7yG1tW6EtLrcyQ3OZ9ONi+HXAP6RwW5Vez1mvnWrfD2p93+gKzu6y9+4V6Lp3UObsrvvVb8ChZbFCCCFEF+Du57n7Ru4+1t3HAlgMYA8eWAohhBCrM31q5lIIIYQQQgghqiGHjnPnonfR4FIIIYToBoqzl11ApY/qLB9ZNVQqz8smeUnfBxn7P56qn5U6l5cKfpCxP73Edl5GuZEZZTZI1d+H9HzStCzVyKvntMTVNk825bQ9kfbP/hZt8FJWamuz1JLNhbfSBvV59KSg36MiK3npLYAJY4NexH3cks5JfVlEj/Hfk01hDi+F5WW1vBSWK/C156XCQGLp8Qg6/7Ks54vZJrX9BGm+p75OmocW6WXEfIyXIbM3M2u566JUW7yk+imUh/vI16XS8mp+fWctKa7n63p3LZHlpbtpH7EQWhYrhBBCCCGEEKIL0MylEEIIIYQQot+hZbF9D81cCiGEEEIIIYRoGA0uhRBCCCGEEEI0jJbFCiGEEH2anso9x18JOOBI1vl5MVo6bd2ojHJjSVebE3AkysN95GAr6WAxWbkSSfsi2r9lxv5U27OpX7YD1aHAO1tTEJ/nUk0lcj3SY36Pdm9F+t1UQCBOC+58gILNLKR+HZVRFwCWkR5BQXUm0f4736eNsUGOTwXhmb+ofLvg4EiUPzNxHV5KtjWC+r+MAxo9hurga8Ztc0AeDvTD50gvtuT7je/drPyhHDSI77s0WcGsBmWUSVMph2aJSu8htb6/9K0gPloW2/fQzKUQQgghhBBCiIbR4FIIIYQQQgghRMNoWawQQgghhBCi36FlsX0PDS6FEEKIAUn6K0CW9yorsXqlJO9ZnjT2oW2bUaaSB4zbPYg0++E2SNVhv9vYjHNyX9iPl26LPHy70O7ZGWWeI5+fsecQgJN/c2vyLbI3k9tNf4PekPRo0muST3F+W9DX8jVKewDp8S+jft1J/TJ67tjjOT/VFOic/HxzH9/g6z2T9KRkU8uQAfliR4yl8u+nyl1O+oSMtrLujzTse0yfpwTfL+z93TZV7qGM+p8izfd62tOcRdbX+kqvqazXtxD1ocGlEEIIIYQQQogEZjYawBWIfoVZB8BR7r6yUh15LoUQQgghhBD9jtKy2K7+qwYzm25m/2dmT5vZI2b2mVrLmdlXi/ufMbNnzeyAcm1Ui5lNM7OFZuZmNiF17JNmNsvM/ln8v3lWO8TWAB5y92MRhTPerLMKmrkUQgghhBBCiNo4wt2XA4CZ7QfgGnRcA51ZzswMwA0AdnH3uWa2DYDHzGy6uxdKlc1sCIAN3f0V2rcWgHXc/fXUuaYD+A2AR8r04woAl7r7jWZ2OIArAXy52N644jbzAIDfAfi+me0IIA/gxc4uigaXQgghRL+lEb9UtT6sas5X7deJeRma5wp2TdXhFVhjST+Wsb/Siq1FpL9Oupl0hbyB7O97hNvi/IbU1giaGFj2bKox8jMmfIvkARxPHr6xSMKnf4/0G5zPkSptRnphqrERGf1ag9vN6GMHXyq1vTVdi+fIi2lUxkmPTzW1gPQXyMv6yBNBJ3yW7OkFEj5Lnm9JPH5+7vnasUcVSD5JY1Eevvey8qsC2a8XPifXr/Z1Xs9rUj7LeikNGIsMB1Coo1yhuA8A1gXwBg8si0wAcLOZ7ePu/zCz4YiSsl4D4OrUuR4FgGjcGjCzUYgGvrsVd90M4BIz+5i7v+3uC5BMGFyqdwqAq9x9upmdDmBPAPeWe5wlNLgUQgghhBBC9DsMyZ8HupD1zYxDal3l7ld1OL/Z1QB2L3Zlz6zGypVzdzezgwDcZWYfAVgbwFfSdd19jpl9G8C9ZnYkgAsA3OjuV6fLVmATAK+5e77YZt7MXi/uf7tCvXsBTDWz3QBsBOD6zk6kwaUQXcDBV84CANx63E693BMhhBBCCNEg77j7xM4Kufu3AMDMvgHgfAB7V1vOzAYB+BGA/dz9MTPbGcCtZvZpd/8wVf+h4szhwwDOd/eLG3hsVePuLwKoyQeqgD5CCCGEEEIIUSfufgOAL5nZejWU+wyAjdz9seKxxwB8hESunQgz2wDA2QCmAjjQzD5XYxdfBbCxmTUV22tCNBP5ao3tdIoGl0IIIYQQQghRJWa2lpltQtv7IDJsL62h3GIAY8xsi+KxLRFlsF2QamM0gBkA/svdzwRwIIBbzOzz1fbX3ZcAeAbAocVdhwJ42t0rLYmtCy2LFUIIIfottQbjqBQYJOvYxzPaSgc8qQaO2MIBUjh4CQfqSdd5inS5oIzlGJtRJ6v/OwdpqQAxq3jjfZTlUjrfSRTEZ+I2yXKzFwW9kgICTaYAOXxZ1k+dZ23Sh5J+hoIIzaD93Pf0Yj9OSHAz6Q7hPUptUR/HpI6tJAccP8Wb0f6Fi4IeOjboj1JtcUAhdr8N3YHOR/sTgYkALJtJ5xxJB/j7P19k6leHwFBHZpRjzYF7+BxLUm3xay0rCFBWf9NwW1wnfc5q6ve/4D6G6lOHdDFrAvijma2JKIrqUgD7FH2U9wI4y91nVyoH4E0zOwHA7WZWCuJzlLunn/ChAH7i7tMBwN2fMrMpiAaiCczsYkTLWDcEMMPM3nX3rYqHjwdwvZmdBWAZgG92yZVIocGlEEIIIYQQQlSJu78FYMeMY3tXU654/A8A/tDJuV4G8HJq37MA0iGo4e7fA/C9jHZeBLBDuWNdiZbFCiGEEEIIIYRoGM1cCiGEEEIIIfodOfTasliRgQaXQgghxGpNPQnYGfYdPpfRbpq0X60EW4lGZuj0V0Xy9yXaZf/kTNJjU/UXkWaf5T5BGvkBnVaaOZ8bwHjafo48lGwLncsVqEwiRAcAkM9yBJ2fvZTTSXuqOp/zq6RnkmbP5BakH0i1xXX4ej0/NuitqAh7Ocel2nquLeih7LN8KegRZPJkL2h68eCd5GEcQdd+GReiMu+lni++r8bTczF/JpXhe3IS6UWptu4jPY8034eccZE9j+nAnlx/LGm6dniRdLVf1yt5M6uhf/svRd9Ay2KFEEIIIYQQQjSMZi6FEEIIIYQQ/Q4ti+17aOZSCCGEEEIIIUTDaOZSCCGEWO2oxzvFdXgugH2Wa2eUSc8dZHkux5J+KqPMXqltzh3I/rY7SJ9Amn1rAEZQ5P1l5KdM+Cy5AnlMN0t5+OaiPOyn5FyNm5FO+wnn0vmH0H72GR5F57829bjY3/co7eZ8kJwnMuspAZL+zUljg/4b7X+PNNlV8edUW5OpX4tof558luzTnEGPtz11vYfS9rq0nz2Xh1KZW1J94USb87lt8rsmfJJchn2RQPb9/hbKcxjpdE5V9hhn+SyzGJXazvIxZ/kv0+8HjXgr08MI+TSFBpdCCCGEEEKIfoiWxfY9tCxWCCGEEEIIIUTDaHAphBBCCCGEEKJhtCxWCCGEEEII0e/Qsti+hwaXQgghxGoNf9RzwI8l6YJEVvSXD0jzV7p0eQ6M8j5pDuLDwT+4/BOptpZmlNuSNAf34WAtAJZx/UVBOgV7wQGk6Rq9merKBNIc52hD0qeRPpX0eqm2FpNeRfon9Bjvo/0jOPAMkg9/Juk9ST9DmuMkcbtAMiDRG6T58d5Dz+NQCno0JdXWnaR3IT2J9DTS4+nx3pNqi4PlLKRyI6jIzek6zD4Z+/k+4oA8fGH4tZJmLOm/k/44ab7v0sGBsoLwcLAefn3yk50VQCjdbhaVvvrXGpBHAXxER7QsVgghhBBCCCFEw2jmUgghhBBCCNHvMCSTyYjeRzOXQgghhBBCCCEaRjOXQgghRL+FP8bbMzTDPq50MvasY1n7V2ZoIOnH3Jn0DNLse1tEOu11Yz8knyftYyt3biDpV+O+kG8wcX4+XaqtITRHcijtf4k02/Ymk34s1fbx5U+JWaTZCzkuVY4v5ZGkx5Neg/R1pNkvCgCjSU8kzf7Nz9D1Yr/otW3Jtk6ja/QM7b8k4xyPkuZrCgAv0T2yCe2/k865C53vkVT9rDktI+38HG9LelGqEm/zvfO58ufAa6S3TB1Lt12u3bGk+V7P8kMDPe+BTA8j5MEUGlwKIYQQQggh+iEGYGh3jGY0Tq4bLYsVQgghhBBCCNEwGlwKIYQQQgghhGgYLYsVQggh+i2NrN1K57kclHGM92fl50vzCunXMksF2Ee2beoY5/XjJIpnkO6QIJGgfo4nT9v8mUFvPSnoIVQ13fXZ5PXbi/x8N7PvkPafTLu3TrV1C2nOjcm5NdkzmYZ9i9zWr0l/SDrL4wkAC0lzmtGLSOdJ/5L0F1K+xutIs2ezhfRJpDmvZprtSV+ecY3n0u7NUvX5cbHPcd2xQS9jkyx7IzknK5D06/LrgNpKvCa4ftpwy+fhPLBcP8vTXOl1l5Xnsp73iSw/d6Ptdi25HDB0SOflaqb3H1q/RTOXQtTJwVfOwsFXzuq8oBBCCCGEEAMADS6FEEIIIYQQQjSMlsUKIYQQQggh+h05A4ZWWj5eLx91Q5sDBM1cCiGEEEIIIYRoGM1cCiGEEKICnGR+Y9LzSe+TqsPBTDgxPLfFgUw2IJ2OosN1diXNgWQOIH1dsvrobYKe/yztnxQ0B4VxCiA0mfuVOuc5tPsE2j+d9nOcoR+lmqLTg2PKrE36ENLrp+pvSPpm0meT5sA7D5F+NNUWB0Q5lDQ/3ZeS5qfoklRbO5JeRXoH0keRnkH6/0u19S7pzegar0X7n6OLN2mvZP0JpO+h+2gZ3XuTD6a+cPCoVFvggEJ8T3IdfiKZnVPb80hXE7hnPOkXU23xDcNRaBr9is9t8Tk+aLBdsbqjwaUQQgghhBCi/5FD8scR0etocCmEEEJ0EWY2HVFChAKiRBDfdfdnerNPQgghRE+hwaUQQgjRdRzh7ssBwMz2A3ANOiZuFEIIIVZLNLgUQgghuojSwLLIcEQzmL1MNcnQ04wizYnZ2WeZlTAeSHoo30d52CfJHrT5qXLsbyNP2mja/QZ5KUccmaz+xqLybb1Bu40rUN/npLqyjPRPSLNnkyNXzqfH/mf2niLp2Tye9Nak2Wp3f6ov7FU8kvR3g5yw75Ohi3/Yvny7aaZ40N+nC3NLC/WF1iFOSdV/j/Q7pCeSnkz6GdJ0CgDA10j/gTR7ObmxV1P1Z5NPchd6Xh+h/TPo3gH5c8H7gaQfchFpfl75nub79reptvj3Jm6L66S9lSU+XqFfrLP8l5XeA7LK9WGfpUGjmT6Gng4hhBCiCzGzqwHsjuhrz5693B0hhBCix+jWVCRmtsjMXjSzZ4p/e3Tn+YRYHTj4ylk4+MpZvd0NIUSduPu33H1TAGcAOD993MyONbPZZjYbWNHzHRRCCCG6iZ6YuTzQ3ed2XkwIIYRYfXD3G8zsKjNbz93fpf1XAbgKAMw28swGhBBCVMagaLF9DC2LFUIIIboAM1sLwAh3f7W4vQ8iw+LSihW7nSyPVforAJfjLrNBjz1dnOyQ/ZdAMvcft7Vxxn72mrHpMH0eqs+eSW5r2Uup+txn8t2NoN2cD5F5I7X9a9J/I/1cRv3HyI93eOrYNNLnkf4p6dPIhLhj6hv0GNLkQRy1779iPXc38ln+hspPT/WFF28vJp/lFNo/jc4/Cdl8gfSapK8mvQlp9o6m17fxbcF5PseSXsT5TlOMoGNpK28M+yzJI8v5UYHUvbCINN9fnOeSfcdbZp08dYy9x/z65Ndg+u0kKzfmEtKVfJZZ/moh6qMnBpd/MDNDlLL3DHd/jw+a2bEAjgWATTfdtAe6I4QQQnQLawL4o5mtCSCP6JvaPu6u2UkhhBADgu4eXO7i7q+a2RBEv/ddgtRvd7w8aOLEifoAFkII0S9x97cA7Njb/RBCiAFDDskIzaLX6daAPqWlQe7eAuAyADt35/mEEEIIIYQQQvQO3TZzWVwWNMjdlxeXxR6CZDYjIYQQQgghhBB9EDMbDeAKREb6dQAc5e4rK9XpzmWxGwD4k5k1AWgC8AKAE7vxfEIIIYQAkJ0MvVIydT7GkVSyIqFw/cmpYxylhRPGjyU9L2M/nxtIBvR5DWXZZ1LQ6fj0TRlN89ejR0hzoJ9jUm3dTnoK6SdJjyZ9POn1kM2dpP9fkKM2CoGRlsxPxaWYSJoC5yy5hsp9jMpcW+H8N5PejPRaQQ49e1msV95IF+m9VFsUXIhvgzF/CffREIRARQte2Cq7X+eQ5pg2z5Ael109EfSIgy5tRoF+FtL+ERSA6Q0OSgXAKECP70UH+D5uI80dfizVMW6bg/BkBefh12Cl4Dxcv9JrnVlS4VhnVAoK1kP0YrRYM5uO6BVTAPAhgO+6+zNlyn0SwPWI3gXeBfBNd3+ps2N19mkagK8helPdmjN21HmurQE85O4XmtnFxcf7QqUK3Ta4dPeXAXy2u9oXQgghhBBCiF7iCHdfDgBmth+Aa5D8Na3EFQAudfcbzexwAFcC+HIVx1BsewiADd39Fdq3FoB13P311LmmI4oN/Qg6knkuMxtX3GYeAPA7AN83sx0RBap7MetilOhWz6UQQgghhBBCrG6UBpZFhiOawUxgZqMQDThL6wNuBrCtmX2s0rFUMxMA/MXMtii2ORzAgwD2LtOnR0sxb6rtR7HeAnefnPo7H8DRAK5y94MAPIVk4qKyKM+lEEIIIYQQov/Rfcti1zez2bR9VTHDRfL0ZlcD2L3Yk3IDr00AvObueQBw97yZvV7cbxWOvV1qwN3nmNm3AdxrZkcCuADAje5+NaqnUj/erlDvXgBTzWw3ABshWlZbEQ0uhRBCiNWCaj1WWXCdLO9X1v6nUm2tzDjGXrMDSLMn7aFUW/tntEv+uHtQJc8GOXSboI2KTCH9TKr61qT/TPqCjNNNJ53+2sne0HVJXxLkB++vHTYeTdVfRvoo0vR18xs3/S7Wty49ONatk+jaAcB0ygR3P12MCUGuvJ18lmwBpDIAkh7MDYNcfAp5ED9DZXhgwH5XIHKxxR0gzT7LQ0nzcwIAC0jzc3QqFyKf5BjyYo7bAAlmszWNj+2A8nCH90odm0l6LGn2FLNBmF9rSzPOV4lRpBvxWKbpBY9lz/GOu0/srJC7fwsAzOwbAM5HmdnErsDdHzKz0wE8DOB8d7+4O85T5rwvIvlm3SlaFiuEEEIIIYQQdeLuNwD4kpmlQ3e9CmDjYoBTFP9vVNxf6VgCM9sAwNkApgI40Mw+V2MXqz5Xo2hwKYQQQgghhOh/5ACs0Q1/nWBma5nZJrS9D6Jp5cTUsrsvQbQGojTHfiiAp9397UrHUucajSj28n+5+5kADgRwi5l9vvOedt6PatuoFi2LFUIIIYQQQojqWRPAH81sTURRVJcC2Mfd3czuBXCWu5c8m8cDuN7MzkK0oP2b1E6lYyWGAviJu08HAHd/ysymILHwPKKYLuSA4rEZZvauu5fy/VRzrobR4FIIIYQYMFTySGXlueQf4tszyqRzao/MKMdmvTtIs4ftp8mmOG/kG0+UbzdRJtWVfUivtQ3Kcj/prNyIQLL7fLnYD3l/xv7DU229F+Tup9wd6wcv3DfWK+eSCTGVv3PCTSG55tzTt4/1mAtDJ2+4+9uhwjtU+QupvqwKPsstT3w61vOeooxyk8iXOYZ8mZQLEwC2/HyoP5aSSN73MNm2plCF6aTfS/XrQNJ/I83XglOqpm9v7hs/F5yWdQbd3+/QffjG+6nGyKdqpJ3vSb7v2Qi8Zaot8nZiEWm2tt2XUZ/zagLZHkq+QSv5NGv1ajfq7V49cPe3AOyYcWzv1PaLyDDnVjpGZV4G8HJq37NImMjj/d8D8L16z9UVaFmsEEIIIYQQQoiG0cylEEIIIYQQov9h0Gimj6GnQ4gu4LX3VuKjloG7PEQIIYQQQggNLoXoAt5f2YZVbYXe7oYQQgghhBC9hgaXQnQBq9oLcHjnBYUQokvpymAclOQ+EbmmUuCeEpUChuycsZ+DmjyWfY43uF9jST9FZf5O+1MBge5ZRBsbB/kQnX9dKnIj6VSwmkTAmUdIX9IS9JghQd9C+yfSfgA4J8gHX6aoQxyQ6GrS06gtAHMfDkF88FGQix+m68VP42LS6VQLdGzeLRTEZysq8wQF8XmT9n+YbGre+qH+vEOorb9QIQrCM2FbCkz03/SYAOB20nwbcNClW0hPSFbHcxSU57lFQQ/lwE50772xLZ1vbLKtsRTEZ8YTKA+/DjgIzyJkw68vbndJhv54qj6/pkeiPNyv9Ff/rPeNURnn72OrtAzAkE5LiR5EAX2EaJDW9gJa2zVrKYQQQgghBjYaXArRIK+9F/3K7pq4FEIIIYQQAxgtixWiQf61dEVvd0EIIYQQYuCRg5bF9jE0uBSiQf71bmR20cSlEKIx6klOnlWunrayfJYfZLSb5S8DEt5GNtiNODPoZYuozHOk2T8JYP+9gp5O+79A+x9hr1yqK/PZx0Z+zmlHBn3PuVTmu6TfSrZ18uZ0zluDPuLgoP8flXdaIMaXFABOY01+xpPJW7kxfWsek/wGveXPn471vLnkbeSnaBXpK0ivTD2uAzcI+hdtQY8mX+qeVP4LpNdLNoVD7gv6WnpedqFzkEd07v3ks2QvJQBMIv2L64Ief2TQTs/d8XR/AcBs8kk+Rz7L2TOp0AFBHkW7r7082dZ88h1eSr7ek+g+wItBbk1lnku1hcmkbyPNr9VdST9EOu1vzvJKZ1Ht+wH7LNl/yefvY/5L0SfQslghGqQ0c+laFyuEEEIIIQYwmrkUokG0LFYIIYQQohcwdIx+LHoVzVwK0SCvvFuauezljgghhBBCCNGLaOZSiAZwd7xaWhbby30RQvR3GvUvZeW7y8pRxz6qdLkPUB42DvI5Uh6+hA+M8lwmfJbsy+RTpPJU3vkz2qBjj/wM5UnVH01+yDeeDXouF2KvHre7f7Kt6aQfo3YTqTy5/smkOa8ngGVU7kzKXXjtkUE/T+UvSVaftxv5LBNpQsnzuBn5Uk+iMnnyPwJJC+Cl1E/2hV5L3tUJOwQ9Gyn4vqBcpJOoL7+gxz6en9NU/shH6DyHHhn0zRnPEdl7OzD7JdogD+Nmk4K+lts9LNXATUGew/vZb0yey+foXku8tgCAvKCJm2dehmbS5l2GX99rZ9RJ9yXLn83103WEyEaDSyEaoL3g+Kg1j6acIV9wuDvMrPOKQgghhBCiMRQtts+hZbFCNMCqtgIAYI1B0UupoOlLIYQQQggxQNHgUogGaGnPAwDWaG4CAOQ1uhRCCCGEEAMULYsVogFaSjOXzaWZSw0uhRBCCCF6BINGM30MPR1CNMCq9jw2XGcN5Io+S81cCiHqJyuwRrVwnXSi9XLnSAfpyEqUzgFLOHDP0Iwylc7PQXxWkj4+yImpKo/wxqLyzZ5MQWEuSgb62dL3jfU8+79wYOGdQY/mIECk30idZyEFadn5nqCNAgLdT/WnUN2VqWA1m1G5hXRsPgXkmU9BcNLpFjYn/V+kF1OdW2j/NNLpa8zBgjjQEQfIeZGC6xxD+3dJtTWCyo2j/RsGOca/HrrL8X+wAxIcSvrmmUH/hK4dB9e5MxVYah8KXHQUXbBrKYDSL6n8IVz5tWRb59I5z8wIMgW6pzAf2XAEJr4A25Lm1xfda0gFY8oM/MPway391T8riE9WUC8hKqNlsUI0QEt7AZuOHIZSDJ98gzOX7o4331+FtnyhC3onhBBCCCFEz6GZSyEaYFVbHpuMHIa33l8FACg0OHP5xvJVeOXdFVC8WSGEEEKITjAoWmwfQzOXQtRJoeBoyzs+vt4wlEaDjS6LbW2PZizl3RRCCCGEEP0NzVwKUSctxYHgpiOHxTONjS6LbS9EbWpVrBADkXp8lrW2VekcWT7JNtLsA2NPWrou+f5wB+mHUJ6Tg3zkZ9nHcBHpPYNkS1qKeXY3bR1GmpLXv/E+nY4S3F80M9HWlj48tLs9+Sw3oUJvkmY/4KMpP+Gd5K1cQI9lGq1d2Y+uxT7s7QOG3x5OtPLDYbFunUb9P40qjCe9brIr7KE8w8+K9dTtfx4OnEvlTyDNjxdI+iy3J/1ekItHUmd+TGXSvtKT+N4jb+IvaPdRpKen/IjsGd0Z5Tf49ppM13gG+WuBpGc1waIgd6H6j7D/ky8+kPQoP0WavZHULiaTTnss+TX9KdLzM8pUgn2W7L/kfnXl+5RYHdHgUog6aS2OADdad2g8uCw0OChsy0eDU81cCiGEEEJ0Qg4df5QQvYqWxQpRJ6UB4OBBOZQi+jQ8c1kcXCrqrBBCCCGE6G9ocClEnZTGkYNyRjOXjQ0K2wryXAohhBBCiP6JlsUK0SBNueCPaXTGUTOXQoj6qeYjnb1f6Tx8nG+PPVYvkuZcmFyevZgA8AfSlLvvefJibsXeSvZSUs7L9DHOR/kG1f8o5WdkOJ/kKtr/Hml+uBex125Soql5Rvko2au3FukjqF9z6NzXJbs1vOWzsV5/8AuxXrD+VqEQ+SxH3f2vRP0ltiltkX+Tn5ebyQu7T7j27NcEgOUzQxLKqfuSz3JBkJN2vz/WM6eQR5SvHQD8hDT5FAcvDr7W1tnkC2XPZbotNAd5wTZBn0qP9wt0T53Tkqy+8XlBD6Xn4lDKecmpVxO+Ss5ZCWAMnX8ZH7g+yJPYc3lF0JOTflnMYC8pG0P59TmWdCV/M7/us3yWWTls0+WYfpLnUtFi+xyauRSiTrw4uzgoZ12W57I9r5lLIYQQQgjRP9HgUog6KQ3/mrp0WWxp5rKhZoQQQgghhOhxtCxWiDoJnsuuDOijmUshhBBCiKpQtNg+hwaXQtRJPHPZFGYuG/VKtslzKYQAkP3xXG2OOS7HbbGpLe2TRMYxNqVtkC5Ypl0gM4/fVn8PegT50JZRnsmE/xJIeDD5S+REqs+WtLRnc2FG2+zB24zL82NM5To08nY20f5nSPPj2o48mhckfaHLvxJ8jssPDRozqdAj18Vyj0S+UeBp/0ys5w4j3+FErk/exLPp3DvT+YBkns47qQP7TArdOoB8lsF+Ceyaykv6C7r+54Zr2fot8lneSdd1F/Iyrp9sCndS26fS+U+gx8u5PI9Jme/Yo3vPTDpA9/QI8l/iVtK7Jtt6jvpyLrV7NZU5JJ2jtciMjP0Asl+ffJGzvM5A8ubnY1l5a9P1l5Dm3JZZnkvub7XvRxpuDCS0LFaIemHPZXFXo3ku2xUtVgghhBBC9FP0U4IQdcKeS3RZQB/NXAohhBBCVIWixfY5NHMpRJ2Uy3PZ+LLY0sxl48GBhBBCCCGE6Ek0uBSiTrw4d9mUM1gxoE+jy1nbaUC5qj3fUFtCCCGEEEL0JFoWK0SdlMaRTTmL9zU6c9lOOUg+aslj2GC9RIXoL5jZegBuADAOQAuijObHufvbtbdWbaCMaupwAI9XSKffX6pJms5J2ncm/VSqHAf04cTwLwa5jAPUUKCdC1IJ50+lYCgLaf9CCvAymoLlPJAKOrTHS7RBba9Lu88m/UOqPynV1s2hL8PPPS7Wyw+hADm/pvLvUL9+nGwKKynYzl4UoIb6tZN/PNY3PP6lZP3DSXNQm1+QPora/X6Qxzx5aaKp8fS8/sjouZhChWaTnkH6oeTzNXhCCKDUuh49x9ZMpSiIDz2NeAdJDqW2+fpNIz2O+5gKwPTGPNrg5/K5IJdx4BsOqPMQMrmT9MK3ypf5PfX9mEoBfYZm6KzP/1dS29V8T8h47B3qV/Me0JXvTV2AQaOZPoZmLoWok27Jc5kP9Ve2auZSiH6GA/iVu2/h7tsAWADgvF7ukxBCCNFjaHApRJ1wnkvrqoA+FG72o9Zu/KVPCNHluPtSd59Ju/4G4OMZxYUQQog+jZmNNrO7zOwqM7vFzCrlsAKgwaUQDRANJGlVbJfluQSAFRpcCtFvMbMcgBMA3N3bfRFCiNWWUrTYrv7r7LRm65nZvWb2DzN71szuMLOPZZRdw8wuN7OXzOw5M7uKjk03s/8zs6fN7BEz+0w9l4Ham2ZmC83MzWxC6tgnzWyWmf2z+H/zrHaIrQE85O7HIkqKulkn5bVKWYh6cY/e08y6MKBPYnCpZbFC9GN+C+BDAJekD5jZsQCOjbaGI3wU8w9K9SQqz4I9ZY1+7HNfMrxmABI+yxHblC/yZ9Js3zw15U8bQd61ZeyfvCnIVcHbOG735xPVF9y1VdjYjzx5X6d+HUH759D+tAfw5tCXLw2+JdbTjz8klGFv4jmk2VsIAAcHP+SYg4PncTFdu1lTg89y6HeWJaoPfrEl1jsM/nusJ/88GCJ/cNnFocKYIH8/7CRkwlZDfixUH2eSl3I6eymB1uPXoa0ngjyS/KfXcVukb0GSW0m/F+TQX4drsfLGEeX7CwCbHRz0QvZjLiLNHsRdgxx/ZLKt+YtQHvZpHh8k+ywPTfmIb+Z7/BTS5MNNeKX5Nfyp1PnJx5yos4Q0P8b0ewBPRGV5Lteuoky5tkuslj+Wl2wQMwHAzM5HZIM4pkzZXwFYBeCT7u5mxibYI9x9ebGN/QBcA2BbrmxmQwBs6O6v0L61AKzj7q+nzjUdwG8APFKmH1cAuNTdbzSzwwFcCeDLxfbGFbeZBwD8DsD3zWxHAHkkb7iyaOZSiDpxIM5vGVKRNNZmYllsiwaXQvRHzGwagM0BHOzuHd4V3P0qd5/o7hOBNXu+g0IIIRqiWhtEcRD4TQA/cY9mINw9/mWuNLAsMhxAuW+SEwD8xcy2KLY5HMCDAPYu069H3f3VMv0YhWjQenNx180Ati3Ntrr7AnefnPo7H8DRAK5y94MQRW5L/0zWAc1cClEnpZlLRstihRjYmNm5ALYD8BV3b+msvBBCiAbIoaplrHWwvpnxXPhV7n5VuYKd2CDGAXgXwE/N7EuIVrT82N0fpfpXA9gd0dfKDoM3d59jZt8GcK+ZHQngAgA3uvvVNTyeTQC85u75Ypt5M3u9uL9SRPN7AUw1s90AbATg+s5OpMGlEHXi8Hg5bCmgT+PLYsMPVloWK0T/wsy2AnAGgH8CeLz4/rDQ3ffv1Y4JIYSolXei1SVVkWmDQDTW+gSAp939dDPbAcA9Zjbe3d8HAHf/FgCY2TcAnI/yM5IPmdnpAB4GcL67X5wu0x24+4sADqiljgaXQtRJcuYyUg3nuSw4DNGSW81cCtG/cPfn0XFBQ2e1UN6P1JWv/2rbYi/Xa6TZ78XeK/aacS5LIJH3chnnxqTvKDu/T/vJq4Yrkk3NpQngjdnfd0SQ6wW5wAYn63P4idHkp0ykeiTf2XbUrxHsH0Ti2Z2eI58lr447bVLQPAfx/WRTnA9z8Ud0/U4lnyKCT3ElyFsIYCWd5vzPnx7rf3s9eAu3O/GxWM/Znoyt/NQBUciOEuQY2/Klp2M976zPhgPP0/PwXqqt20k/Tz7L+2n/GqRXkT5kZqoxMoDeGX6jWbkPPY/3kJfy9yl/L887TaRjx3A58vGOoPgmu6W6cv3YoHdexAfoHOSt/Anp/Srkufw96WP4idkrXbLIH1Lbo0inn9hypN8P2EOZ5fWupky57dUfskHsU84GgSgxaTuKy1Hd/QkzewfAJ5FyCbv7DcWorOu5+7up82yAKCPvVACHmtnt7v53VM+rADY2s6birGUTopnIDktoG0WeSyEawFKey0ZnLtvyBTQVw89e//giHHzlrIbaE0IIIYRYbTFEP1Z09V81pw42iClZNgh3fwfA/6L4c4WZfRLRLwLzzWwtM9uE2tsH0a95/IsezGw0gBkA/svdzwRwIIBbzOzz1fUUcPclAJ4BcGhx16GIZlMrLYmtC81cClEn7g5DcllswzOXeYdZlN6kwaaEEEIIIUQ3UMkGYWb3AjjL3Uszk8cDuMbMLgDQBuAb7v5ecTbyj2a2JqJIrEsRzYCmvwEORRQQaDoAuPtTZjYFwIZl+nUxoiUiGwKYYWbvunspZPbxAK43s7MALEMUaKjL0eBSiDrhaLElGg/oU0DODG6NtyWEEEIIIbqeSjYId987tf0ygEllyr0FYMcqzvUygJdT+54F8GyZst8D8L2Mdl4Er7XvJrQsVog6Yc9lVwX0aSt6LptypsGlEEIIIYToV2jmUog6cbDnshTQp7E22/MFmEWtNTpQFUKIjlQKxsG5sbOChLDm5Otp+BgH7mkrX3wy5RR/L5Vw/hDeoOApo6ncfA6Yckay/kIK2DKaArbwgrKF/Lg4YMoJyba4Ds83bDgp6Ado/3MhOM+oO0Ynmlqy56Zh406+LhT55mSaZDiTA/0A+Ek49m87/3fYPzTkZZizLgXx+THV3SXZVGJOZUqQ84ZREJ/5HFjpvKA3Sz1fnwlyp0//b6xnfeFL4cAtQU7Y98lYr8THEk0tsM+FDQ7iQ2FQhreEe3V5OrbnWNKX032wGd0HC6nMMrrGl49MtnU5BTGaSA1zSJbZdB/uh+o45nLa4NfNW6QfQzZZr0+O0rQo4xwAsIR0VkCeSu8bvUz3pSIRdaLBpRB1wp7LEvmGA/oEz6VmLoUQQgghRH9Cy2KFaIB45rK0LLbhVCQFGICcmQL6CCGEEEKIfoVmLoWok4Tnsvi/a6LFGppyhvb2BtfYCiGEEEKszpRSkYg+gwaXQtRJIlpsVwX0yReKy2IV0EcI0R1U8kvxVwL2m7EnizxweIr05FRbXH8G6Ywk7zMqJJnP4g2qcyj5/sanyv3iJqrz8ViO8S/EevGF5Od7lPQlqdR1i8jctTP3ec8gLyCf5KlBLnmKPJYAcA5vkJ9vOj0WahYTUkEerwtyjK8X68W8Jo2vBfkccWSyKcwkPQ1lGbrWiliv5PtgQqrgtPDZNcuGhf37UBnyI86dsz1tpM+aD/Ie9iBeEavla9D18tR9tJj9oJQ6cGHGczeZrnGle/Ioapc9l4nX0HdJX5SsP579wufSAX7dkA8ZW5JOv4b4unB6xHmkK/mjmbVJf5BRplr/ZR/2aYpuRctihaiTRJ7LOKBPo8tiFS1WCCGEEEL0TzRzKUSdJKPFRjQa0KcULTbyXGpwKYQQQgiRiQFo6u1OCEYzl0LUCXsu0UUBfdryju3HjsBB22+Cgkezo0IIIYQQQvQHNHMpRJ04HGbR7zMhoE9jbbYXChiUy2HNwdHPcFoZK4RIUuljm31N1Xy8p31QvE0eQHwqo/7XSf8hdWxnlGcd0pz/cn/SdyarnED+tMvJB3cB7T+VchiCPJZAMg8j5bxcvBEZEtnbuC7pjf+RbGto8GMOfvfkWLd+ix7XqYtieYb/T6ynHpbyTG5M+l3S5OHba/c7Yr1+ohDw1tHBk7culsX6tnH0uNYN8oy7zwp9ufXnyb4ECyNuW7FvrA/a7e5Yr1xjRCg0eq9YTrg75KkEgLkHkIfyenrMx1Oh35N+B+XLAMAD5H/lfKfL6Dk9kvazlxEAFpNO5K08LMhdKOflIpQvAwCHUrmUhTKwbcb+VFuJvKycj5LznV6fUSaVfzPhuUwbjkuwF3NJRhkg0xOdoNL7THuGFgOJHpm5NLOfmpmbWdr2LUT/hWYubz1uJwBdsSzWMajJMCweXGp0KYQQQghRlhyiaLFd/SfqptsHl2a2LYAdAfyru88lRE/C0WIjn2QXLIstFNDclMOwwdGvgQrqI4QQQggh+gvdOrg0syEALgVwIorfxYVYXUh4LlGM8NoVM5c5w5pDopnLrhpcHnzlLBx85awuaUsIIYQQQohydLfn8ucAbnT3hWZWtoCZHQvgWADYdNNNy5YRoi8SeS7DfZ0z65KAPoOachhanLnUslghhBBCiAwMwJBOS4kepNsGl2a2E4DtAfywUjl3vwrAVQAwceJEfZMW/YayM5cN57ksoLnJ4oA+jQYIEkL0V7ISkNcTJIPrcHCe+RXqcGARTuD+GOmnSKcDmXBgEApAcijtvjkrKsr+yc3LrytfbFpG9UR0HgCreGNskG9QUJX7KRDMOVR8JgWUAYD1gtx65HOxnsMBjLYO55h6IgXOmZhs6rZTKHDOJ0LgHEwO8r6pB5TvF5B8/BSQZ8uXno71gqXjYn01vhUKHfJEsi0KvHPQZdSXTajMo6Rnt8TyPVCgHwBb3hHOPy/32XDgair0a9J8G26V7FbC+zabPl9PC5++W15D5zuRzgcAl/N9TIGeRtDz/QgH1wmBdwa/uwGY1vWepa1U0KmYvwe5Swh6hDHrJIvdTHo8PcfzLy/bl+RF4tcgkHztcZCsFzP6mGZUxn4O/JMVxEdBe0RHunNZ7K6IPsUWmtkiAGMAPGBmu3fjOYXoUXhCvsm6alls8Fxq5lIIIYQQQvQXum3m0t3PA3Beabs4wPyqu8/trnMK0ZOkZy5zua5YFhvNXA4b3LWeSyGEEEKI1Y5StFjRZ+iRVCRCrI6kPZddEtCnUExFMkSpSIQQQgghRP+iuwP6xLj72J46lxA9QXrclzNryCPp7sgXomWxa2pZrBADnGq9TOyXyvJIMZV8llxnLGlOwD40ozzvB5KeS6p/889Qln3IAzcvdWw++9UosfwbGR64k6ktAJhOenxz0A+cFfQ4auuY4DGd4n9KNnXWIbGeczr5LDmL97pBnnjZhbG+7BOnJNq6/ZSvhY2FdGBMkN8443ehu2fskag/DgtiPev+L8X6A6wd69b1wsVcsuBzsd7OX020NYdslrid9D3Bwzf43bC79cXwnCw+YnyirV/95Xux/sGj5IG8kQodT5q8nGNuSt6fi42NnmNRjnn2VtgYnfRcjvN/xnrBiXRfXD4z6KG0f+MgW9d7KXUmvg+PCHIE9es7VOQXfK+fnGqLfMXz+T7m19FzGfvJwwwAoMeP11CerPcJAGBv6XPonCz/ZfqYGKj02OBSiNUNR8pzmWssz2VbPqrb3GQY2qxlsUIIIYQQFVG02D6HlsUKUSfuDiPXZaMBfdoL0bTnoKYccjlDzhQtVgghhBBC9B80uBSiTtIzl40G9CnNXA7KRY3mzLQsVgghhBBC9Bu0LFaIeimX57KRmcviNGVzUy60p2WxQogEa6e22T9VzUc6e6LSbX1Amr1b7OninHrsqySzGoCkT5M8YieEfIpYTEWmkL4n7cvcmjR53U4bG/QfKB/lRSmv3GabBz2fjo2jPlro1+WFo0J3p16bbOsZ0lNIf4Y05dW87AXyWS5MPq7bDiCv36V0gCyMT1PDS7bfNFH/l0/+KNaz5gbP5eLtqYFDSd8f5JwdyS8KABzHfxLpGcFn2Hpk2D3u7udjPeUvyZyPP7j14rBxCOWZ3J/8rrdQBfIpLj4s6d8E/hDkCOrAMi5D50jlEl1wNCXOvJa8jXdNCno/qsD3x/503wDAnYtog7y/y8hA+gtKOJogndOVc1jOIM3+R0p4ijtIpz2X/FrbOGN/pfeJ5zKOVeOf7AMeS4NGM30MzVwKUQfu3tFzaY0NBtuLdQc1aeZSCCGEEEL0PzS4FKIOwhgyjC5zDc40tpVmLnOauRRCCCGEEP0PTSQLUQelQd9hO4RlSg3PXObTM5c8iBVCCCGEEAkULbbPoZlLIeqgNIhsyiVnLhtZxlqKFivPpRBCCCGE6I9o5lKIOojThtDgsinXWF5KznMJyHMphCjHBxWOVUpuXo6Vqe2Pk55HmoOsLCI9ljQFawGQSPo+lILtXE5BbUZTQJtEEB8O4AMkgwhRIJVpFNxnNPVlQSoozB688RT16+CgV4ZgLycYJbznqG1AFCa8xD23xnJL/2Ss573+6VBmDE+p0OMFgOmk77wu6JOPjOV7u48I+0OcIQDA7fha2Fj4RCx3fzkEYHpw831DGQ6i84VkW4ngSguD3NKfjvW8yz4b671xb6ynY39kwkF8+NadRPrD7H7tflM454NGQW0mHxDLE//y21hf9iAFUAKAPUmfQPchXwvwvUcVxiabwgO0Yzo9l5enA1CVzlehzGQKFjSDA+rwvX416S1Jv1/+fACSgbgYDt6Vft0z9Lqt+F5TIv0+0wcC/IheR4NLIeqg3MxllOey/jbjZbHyXAohhBBCdE4OwBq93QnBaFmsEHUQR3ZNzFw2lueytRjQR9FihRBCCCFEf0SDSyHqIMxchpdQozONHfNcRgF9GhmwCiGEEEII0VNoWawQdVBu5jJnhnxDAX2SbeaKSTRb2gsYOrip7naFEAOdLC/mxqlyS1Ee9nFxAvf5pBel6pBHbOUdKMsbGV61DpDPcjz52OYHzyO+PjbocT/Pbupkqv8Z2n8EPfahk2K53YrHEtXn3Lpz2LgreDbPxIGxPvyc20OZ2VT5uGRXBj8QvHOt1x0Z6z+fMjnWp+P8UGFMsv59lwXfIS4IMmE7HE3VXwrP1+LdUr5U6vJe24bn676H6RwnBV/nb086PexPXqLk7fJqkLc9GfyfB/333eEA356nJZt6cEyoM7zlzVgvPzOUufZ9MqPS5QIAHB/kQZeF++i2x8mv+7dwT5z48oWxvsz4Xgdw0U0oz6eCNPLxss/y0pTfdk/6rjCOfY5PkGafJfskN0id/0XSWV/rK3kpB1U41hm977F0A9oVLbZPoZlLIeogX/RH5rpwWWxbvCw2elkWx5YNDViFEEIIIYToKTS4FKIOykeLbXDmMhUtthSmMN9IlCAhhBBCCCF6CC2LFaIOyua5tMZmLsOAtThzWTqXZi6FEEIIITrgOaBlSHfMlRW6oc2BgQaXQtRBacDXlTOX6TyXpWWxpUGnEEJUTzU+y3S+Oz72YsZ+zme5Dmn2dAFJ/+ZbKMsD5EPbg8uk8vgddQDKMp/6OG1R0ONT/rY8abYakh9v6PJ/i/XK74f9c6wt2dYCeo8/5JVYHr4xmRavC/LEy8jDNzuZg3HvkSFX5GGnBD/fV4fNCIX40i9IduWXhZCP81KcFOtvUX7EF8i3d9vDwWd46l/OSbR1wYU/jvXjEz4fDrzH5/9c+f0vJfuVyJlJKTAPev2PYWNyS9AbPxP09Tsk2zoyyOXLNizb7sqrKRfo88nqw/8n+DRvs0V0hLyN48M5Lzv9lPJlAACHBXkU5am8lry/zj5iusFOSvuL+R7lJ5l9lpxr9q0MDQDkHwX7m9k/ya/PSl/9s471vrdS9B80uBSiDkpLWNMzl/kGxoHxzGVTcuZSY0shhBBCCNGTmNloAFcg+kVjHQBHuXv6V8kOaHApRB2UlsUOauKZy8bShpRmLuPZ0OLUpWYuhRBCCCE64mZoHdId4WIrj6HMbD0ANwAYB6AFUfjs49z97WrLmNkiAKuKfwDwn+7+QCO9NrNpAL4GYCyArd19Lh37JKLw2+sBeBfAN909vfaA2RrAQ+5+oZldDGAzAC901gcF9BGiDtqz8lx2SUAfzVwKIYQQQvRhHMCv3H0Ld98G0cL18+ooc6C7f6b4V3ZgaWZDzOzjqX1rmdlGZYpPB/BFAK+UOXYFgEvd/ZMALgVwZbGtcWY2I/V3OoC/A5hsZrcB+BiSfolMNLgUog7yGXkuuySgT8pzqYA+QgghhBB9B3df6u4zadffAHy81jJVMgHAX8xsCwAws+EAHgSwd5l+Perur6b3m9koANsCuLm462YA25rZx9x9gbtPTv2dD+BoAFe5+0EAngKwZzWd1bJYIeqgNBBs6o6APulosZq6FELUzNqkObAHB9pJL/taQnpr0m0ZmtvaNtUWH+Nk9HSOPThwD+tUv65dFPT4sUFvRkFRQtwWYH4qeMpEKncSrQA7OQRlWTmcvotZCBAzzj+WaGqBPRfrSf56rGca9QvPxuqybShAzAXJbk3f/JCgXwsas6nQVlwjGWDmYewS68WXhUhFZ59E0W4eCsFqBk8I1/iCl89MdubUIPc95Z5Yv7Dvp2M95+GdYz3qi/+K9ZKrN022dTn183kK0PMdWroYLiO+6w/H+reHpQL68FfZt4Pc644QuOa+UyjgU2pOaPmQcL/9yUO/vmYUnGc+VZhG987WqcBQzy0Kmu/JRBCeSSjPEaltvkd5rMH1OaAPv7743OltDtzDgYL49VgpOM8o0ksyS/UlHIY8mrqj6fXNjF+NV7n7VeUKmlkOwAkA7s5qrEKZP5iZAXgUwBnu/l66rrvPMbNvA7jXzI5E9G5yo7tfnS5bgU0AvObu+WKbeTN7vbj/7Yw69wKYama7AdgI0ZLaTtHgUog6KDdz2WQW76+H9nxy5rI0ddlIkCAhhBBCCFEz77j7xCrL/hbAhwAuqbHMLu7+qpkNAfDr4rHDy1V294eKS1UfBnC+u19cZd/qxt1fBJARrjsbLYsVog7ay+W5zDW6LDYZJMji/Y2PLl94/X0seX9V5wWFEHVjZtPMbKGZuZlN6O3+CCGE6F6KAXQ2B3Cwu5f9wpZVprR81d1bAFwGYOdy9YttbADgbABTARxoZp/LKpvBqwA2NrOmYntNiGYjOyyhbRTNXApRB/kyqUiarNFlsdH7Tbwstth0o2PLtnwBH7S0Y9iQblk2IoQITAfwGwCP9HI/hBBiQOAwtKA7osV+2GkJMzsXwHYAvlIcIFZdxszWBDDI3ZcXl8UeAuCZjDZGI/JYnufufzCzPwG43cwOd/fHq3k07r7EzJ4BcCiAG4v/n+botl2FBpdC1EHWzGVDeS7zjpxF7QBdN3P53orII6W4QEJ0L+7+KACYWWdFa4Q/qqtNZv5BFfvTXwHYp5nl9+IE7uw1ey3VFvu92EPJPrbgOxveclyslw9pTjY1cWzQs9PJ6EuQz9BSXrlEnU8FeUvwXGL/bYJeI8gFuYTpMXGamSOpDvksMYL2P0f+w1VJP+G4l54P5zmdzsMuqqNIP5Ks/xybBdeiAw9QuR8H2frIOrE+1c9JtHXBA6HgCwg+y88jfG/9zy/+V6wP2jzYxk586cJEW7dfdmCsJ5FF67ax5Du8M3h3Z4NWHs5FkltIbxWu5ddxU6zzF4b7+MGR+6YauDNWU0E+06H03K+k52483TvPpe615+kYWWST5Y4nfQWyYQ/mzCBHjw36jW9RmXVIX5dqK8vfzLB/Mv265zrcVpb/kuunz1ett7P/Y2ZbATgDwD8BPF5831/o7vub2b0AzkL05le2DIANAPypOIPYhCjFx4kZpxsK4CfuPh0A3P0pM5sCYMMy/boY0VLWDQHMMLN33b30BnM8gOvN7CwAywB8s6GLkIEGl0LUQfBccioSoNDIzGWhgEFNvFI9+oLaSJsAsGxFKwDANboUQgghhGgYd38eYR4gfYyjuGaVeRnAZ6s818sAXk7texaJX7Xi/d8D8L2Mdl4EsEO5Y12JBpdC1EFp+WuHZbENBfRxNFN7pcmPUv7Leln2UXFw2VArQoiuwsyOBXBstDW8V/sihBBCdCUaXApRB6X0IIO6MqBPPjlzGaci6aKZywa6JoToQorh7K8CALON9MoUQog6KSCHVgzu7W4IQoNLIeqgvTsC+hQczU0dZy4bmQ0FgKUflTyX+g4rRP+EvUvp/NuvZZRr1KdJ3kT8nTTnv1xEemyqLc63R7kxn6fdZDNcPuTK7G5xprmTyfd2EXndTiOf40ep+hMy8lyyJY5DMHHXv5pqa2aQ45aSZ/LEcP5Zl4WVbjtd+HSstzwlaACYZ63lz3k/6V+QTtok8SzCOTc7JKyYW35gsGHt9PD/hn7t+6VYX/D66cnGxgT5wvvBc/nqOpvE+ur3gwfwly+dHOvXsVGiqSWbh7yX058gk+oMLhV8uLM2D/1K3F5AKj1kuEiH73Z72P0NKjIlVf/+8NzPSSxOfAll2Yf0RaljWy2ijTaUh28qyqVJHtEIboue/De4zH2kDybN/ksg6Y9mDyR7ojmZZ5osn2SWF5PLVJsLU8ONgYRSkQhRB/lU2hAgGmg2mueSPZzpc9VL8Fw21IwQohPM7GIzW4zoq/oMM3u+szpCCCHE6oR+ShCiDjLzXDYwgmvPe2KwWoo4WW+bB185CwAwYePI06WxpRDdS6VACkIIIbqeKBWJlsX2JTRzKUQdlI0W22BAn2hZbEfPZcMBfRQtVgghhBBC9AAaXApRB9kzl/UP4qJlsR09lw2nIvlIy2KFEEIIIUT3k7ks1syqcem+6e7bdF5MiNWLctFim+JlrEBT2axGlWnLeyrPZUR7owF9VkSBBwpaGCvEasBrqe1qgvVkfdSPT22/mKGZ90lzwJCVqXKPkabAIFtRIJSHKNDOo1T8zLeSTU3cIOhbMrr1AOl3koeGnrcs9HL+5rH2NejHvGncMD328dRHAIPnh8e/wN4OB0J8G+x0DQXuWT/IefumUtqdG+Tvz/h6rJ/BZ2L92/0p8E5LsvrIs1aEjYlBPnV3CMjzBKW0G393COpyw8shOA+AROCcTz/5QqzXw7uxfvBv+8b6hd3DOTq0lRE7ZsKzT8Z67tTtw4EfUyHaDQC4lT63jqOvm3x7fYz0zcm0f7/0a2P98/fPivXKI8N9gDu5k6RPSD73uHwRHaP6c6ncIxRkCnTfduChII3q+x0Z9Z8gvXGqLY4G9RRpfh1xcJ70a5UDefF7RdZ7AJN+b2k0qFjtOAytGNJt7YvaqeS5fBvA3hWOG4C7u7Y7QvQPys1clsaF+YIn9lffZiEZLba4MLbhgD6auRRCCCGEED1ApcHlWe7+SqXKZvazSseFWF3Jl0lFkss1FoCnPe9ll8VqcCmEEEIIIfoDmYNLd/9TZ5WrKSPE6kg8c2kdl8XWOxhsyxcSy2JLLTcyuCy444OWaDmKa1msEEIIIVYjHIY8mnq7G4LoNBWJma0B4OsAxnF5d/9BN/ZLiD5NwR05C7OVQJjFzNc7c1lwrNFMnssumLnkSLOauRSiL2IIH63V+JKq9S5lleOP/UqJ1fcnfQ9pTuDOydvZfwkk/WLs7Zwa5K4VTs/MPj6Wv/TzYv0j2zGUeS4spDrGyegI4PdGJsyTg7/NptCb4miq8MbMoNnOBuCckcEg+IN9Lo71hAvJT7gvGQe3CHLC3aEMAMx9IZQ75qw/hAPPUKExpC9P9gWnkb46yG2nB88kriWP66HNQadse6Oe/Fes5zy+c6xv+3zwWT64Z9C3v3dgqHxLygayIFzXdUe+F+u5l9F1+UKQOxX+N9azXv98oqk/bRTuw0NvDb7Y1vUWhUIfBi/mXp68p3+00UVh442X6Agbc8k/eQ7tTllJgeuDvPww2k/XFbT/UnqtnJRui5hG+lS+4dhYyq+vtFd6EWn2Vi7NOGHac9mIN7JS+e7zWYq+TTV5Lv8IYDAiN3FLJ2WFGBC0FzyRhgQAcqWAPnUOBtvzBQwaEl6SseeykdyZxcBDOdPgUgghhBBCdC/VDC7Hu3v6J0khBjTlgvbEM5d1Di5b86k8l104czl4UK7hfJlCCCGEEH0Jh6FF0WL7FNUMLl82s7Xd/YPOiwoxMEgH3wHCEtm6l8Xmk9FiSzQyuGwr1m1uyqEtn6+7HSH6O2ZWKfp5iVXu/tdu74wQQgixmlLN4HI5gNlm9gCAVaWd8lyKgUy+UEBTaiAY57ks1NdmeyGZ57JrZi6jzgxuyuEjl/9BDGhuBfAkQqyscmwGYGyP9CbGUZs3qVJeuWrqVMp3x36veSjPc6Q/TnrbVDn2e/F5ziBN/kscT5pzaQLYJfg3f7Q9eegSXrMDYvX7keyBA4Dgx/zGhb+L9Q3XfTsUOY+KXz0p6LnJln7w+vkox9xryE/IPsldqIwlZ1eGt7wZ6+W/oOD8E0NuStwzM+hzqV8Ahp9G9WdvGOuzP//DoCfSA2NvX8pPuOTBTVGOU3Bh2Jgd5N/WCX7Xf1v8j2SlcWEuYsnJ1O4kKkO22FkjvxQ2OM8kgK/Nvbdsv7AL5bykx3KfpUyyJ5C+nHzA55Ifkm2a65E+k3NOpmHv8fvli5zECRUOSx28KchT76P9bIblx5LK/ZoJ1+HXHb8e0+8ZWUOBrP36LiEqU83g8h/FPyFEkchzmV4WG/2vd+ayLV9AM6ci6YI8l+3xzKXJcykGOvPd/cuVCpjZ0z3VGSGEEI3jMLRicG93QxCdDi7dXbkshUhRznPZeEAfx6AmHlwWz9VIQJ98AWsNGYRczuAA3B1mlSZuhFht+VwXlRFCCCFEBpmDSzP7D3f/o5mdWO64u1/Wfd0Som9TLlpsowF92gvJPJdxKpIGAvG05R0j1myGF5fq5gvJAawQAwV3b+uKMkIIIYTIptLM5QREaUi2L3NMC+zEgCZfcKTGlg3nuWzLe2JZ7K3H7oRPnHFvg6lIHCOHDcbSj1rj7UHKNSwGMGa2MyKHXSl3swFwdx/Vqx0TQghRMwXk0KJlsX2KzMGlu/+0+P+onuuOEP2DbstzSTOXuZzBrPGAPiPWHIxlK6LBZWu+gDWaNboUA5prAZwJYA6AfhhCudpgGllBfCoF9qgmKDy3O5b0Y6lykzOOcRCfXUlTUJStKak9ADxC7pzNfkoHngryFurLJqmufDXUueETtP+9IC//Zviqc8K614YDRyabGrVRCKyyZAsKVnNMkHt5CARz3+Yh0NCWnrzd5r0+Imw8FALy4NEgBz8QAiW1poILLR8Sfow8xi+N9dn/TUF8Tgryux6CEe2AJxJtHZ67PWzQBP7iOeNjfeq258T633YLoTim/OWWRFv/uGyLWM/b7bPhwEXhnGf4/8R66jk/D2VmIMky6udRFOjoO1QmdAtjPHnvLN6NNvahIDxnvkQHqM7WtHv/A5DgTgpadQEFBzr1iqBvofvzkJOpMgeiqsTYDP0H0vwaBpJBfFhzfX4NVhNuJQ2/hyypo74YSHR6h5nZIADHAvgyohnLvwL4nbtCT4qBS75QyM5zWe/MZZklq4Ny1nBAn5HDBmNhcY2tcl0KgWXu/sfe7oQQQgixOlLNzxeXIvr543pEy4cOB/BvSMYNF2JAkS8TLbY0c1m35zJfQHOZ2dCG8lwWZy5LMXza8nXmSRFi9eEmMzsewG1Iptda0XtdEkIIUQ9RtNghnRcUPUY1g8svAtjKPQoJYma3IpnoSogBR7losaXtevJcFgqOgqNLZy4LHrU5YlhzHCFWg0shsATA7xD9cAoUPZcAtF5cCCGEaJBqBpeLAQxByMbaDODVbuuREP2Ars5z2VYckTY3pWYucxbnqqy5j8UlsCPWHBynNWnTslghfokonftTpR9N+zfVeCuRUWZl6hgncM+qz1Qqw8e4XfKk7ZJRNd2tXagO+y9xRJCH0P7x7MsEsOzWoI88OJYTLnwy1iccFnyW290U/GlzJuycaGrJheSz/D0deK0llq+S6XOvl8h/eWHSwzfmlPmxXvyF4G287eV9Y30KLgxl1iLPIIAJ/q9Y37D0G+EAXZZv+O9i/dtrTg/6U4mmMHzVm7Fe/jfyfx4X5AW/+XHYmBG8kNPtkERbg98N/tnh/0PtDtky1lMtPMnsBf0tQh8BAGuQz3I27f8CyvLu++sld/yENNe/Z2zQo2n/eNJ3Jn2pOJT6cuoiOkBGzUPuoP08D8P+SwDg5/Jy0m+RZv8kv27TcLlqXvdpqqnDPstKQ4csx1w9Pk/RX6mUiqSUgmQhgFnFGUsA+A8AD3d3x4Toy1TKc1nPTGNpINhxwGoo1OnhbC8OWEcOG4xSs+2auRTidXef3XkxIYQQfR2HKVpsH6PSTwmcguRpAJ8s6v9D8icXIQYc7fnsPJf1DAbjwWVq5nJQAzOXbTxzGS+L1cylGPD8PzP7LwC3Ium5fKH3uiSEEEKsHlQaXP7K3ef1WE+E6EeU9Vw2MHMZlsV2nA2tO7VJsd5IBfQRgjm8+P8g2ucAPlGmrBBCCCFqoNLg8mIz2wjAvQDuAvCYewPZ3IVYjWgvFDCkOfnyycUBfRpZFttx5rKR6LMAMGLYYJz5lU/jiGv+Hi+VFWKg4u6b9XYfkhjCR3E1fqV0Gd7O8k5l+R/T+eqy6nOdsaTZk5X+LZqMk3dRHsH9Qg5FrN8c9J2U57JSTsDR5Kd8IyP/5XzOYQjgqOCzxHfC++lcW5faDXLORuSzfIP6CwCPkD6U+r9niFY595Cw8GvunbQI7NBkU4svCwa/MS8H/+VBl90dCp1EftFd2BAIfPHh0JmVI4fFesFPtor1DXd/O7R79PWxfqB1j0RbyycHn+VtDwfP50GzT4l124QvxbrZ6HPpkkRT2GRkCMux4MHQF/YzHvPS87GewTlRT3o22dgt28Rywk3BIzt3X7quZwe58j7KHQoADwT5jWuC//SGS8J1wSIqfyfpx8hjCSS8rFEChRL7B3la6C+msV83dU8fSvfrzbR/6JFBr2TPJ7/WXkN18OuZ689Plct638l6P6gnE2H3ZS90GPLydPYpclkH3H03AJ9HtCT2ewDmm9k1ZrafmQ3NqifEQKBStNi6AvoUB4LpaLG5hgaXUb11hzWjudi31vbKbR185SwcfOWsus4nRH/AzCab2XDaXtfMvtybfRJCCCFWFyoO9d19OYCbEOUFGwzg3wHsB+BCM5vr7vv1QB+F6HO0FzxeBluioYA+xTrpZbGDclbXYBWIlto2maG5KYfmQbniecrPXGpAKQYQ5wPYlrbfBzAttU8IIYQQdVD1PLK7twK4r/gHM9uhcg0hVl8q5rmsK6BPceYy13WpSAoFoNRcKQqtPJdCwNji4e4FM1OOSyGE6Ic4DK2KFtunyFwWW8LMLjCz4WY2yMweMbOPzOxwd3+is7pCrK60F7zDEtYQ0Kf29kpRXMvNXNYb0MfhsGKGy1L+TEWLFQIf8I+jRf1RL/ZHCCGEWG2oZuZysrufamZfQeQiPgTA/wC4sVt7JkQfplBwNHWYZYz+17csNmPm0uqfuXRHHCW2NLhs1+BSiB8AmG5mpYginwZwQIXy3YwjBLvICtxTbTAMLjcqo8wrFcpsQPq5CuVKcFay9KrimUHux2Ea6FLfSQF58LmMcwCYSMFPZi8KmoP47EjlF1EAoVRXsAf9gPfapnSgJVbjNgoBTxacRQFpAGBD0nTOwWNDQKK9R94b6+n/e0goNCX5/nv2J34U61sRgg4NPXxZrFdeS8GIJiS7clkuBNs5u/DDWF/04+/H+oeD/yvWP3qQgsrcn2wLvw7yIAsBhab4LbH+Iv5a9nxnb3Reoql1T3wv1qN2/1esl6wbrvcQut6vt1I0pQf4AgMYzwGYtgj7b6Ey55CekqyOa2fG8oZrXw/79wnywZd3ifXuFCQpcd8AwPxFtMHRfSi4z0wK6DORXk+zT0629TbpC04I+tT0SUs8lbEfACiwVCIID78fcPCuSl/9+bWeDvhVDZWCj4mBQi3hlb4I4A53f83M9A1VDGjaCx4vNS3RyLLYtjjPZWrmsqmRmUseXGpZrBAA4O6zzOzTAHZCFKr1cXdf1kk1IYQQfZACcmjBkM4Lih6jmsHlEjP7HYDdAZxnZoOqrAczmw5gMwAFAB8C+K67P1NfV4XoO1TKc1nPTGPJc1maYeQ265+5LLcsVoNLIYqDyXs7LSiEEEKImujUcwngMADPAzi4+IE8BsAFVbZ/hLv/m7t/FlE0vmvq66YQfYv2QqHDzGVDeS4LpTyXHdusZyYUSM5cDopnLrXoQAxMzOzRrigjhBBCDBTMbLSZ3WVmV5nZLdWko8ycgTSz2wBMB3Cvu/+6tN/dFwG4rpoOFVOZlBiOaAZTiH5PpZnLejyXIc9l8veeQTmr2yfpDpR6GHsuM1KRCDEA2Kr4uVaJjXqkJ5mwR6ke7xL7pdh7tXFGGU6sDgBtpLcm/VYV5057wsaSfoz0VNK7Bjl5UtAz/p5sajbHDySz4C/Jc3nIouy+NJHP80e0f2FIwTTJV8V6ptH5LOW5/HGQp24bzH7TfvmTUOWMv4VCZKfDzORnxtR1z4j1R4Pi1Kv47Drh8c/df/uy5wYQ/YJY5Oxh5HskD+LtpxwY6wd3J2/hWuQtRNIz+n8efIOfui94dO2v4YSzDv1SqMy3F4A5D+4cNujpmvXkZ2M9DCti/frg8LKbPpc8qgAwha7Z6ODxHXUweTlvJe/s8cnqOHRS0GuQvjbc6//R+sewf9eXqPJNybbG0/02n/3CdNLZvJ8Y8dPk9gwq9xYfm0eafczsb07DTwDXX5s0v9ZfS9Xn95pqfJaVFi/2vM+yN6PFmtk0AF9D9Ia3tbvPzSj3VQC/QPS1LAfgbHe/o7NjXd0nM/skIpPwegDeBfBNd3+pXDvE1gAecvcLzexiRCtSX6hUodId8htE1ugfm9nrAO4CcLe7v1KhTgfM7GpES2oNwJ611BWir1LJc1lPXsqp90YfCOlosTmrP8+lu8OKA97mnKLFigHP96soc3t3d0IIIcRqw3RE46VHsgpY9EXsBgC7uPtcM9sGwGNF66BnHXP3ArUxBMCGPAYzs7UArOPuryNJpT5dAeBSd7/RzA4HcCWAL5vZuKJmHnD38wH8HcD3zWxHAHkAL1a8IqgwuHT3xxD93Hh6MfjBfgBuNbPBAO4GcJe7P93ZCdz9WwBgZt9AlLx6bz5uZscCOBYANt100w71heiL5PPlosXWvyy2NH5MR4sd1GRY1VbfbGMioM8gBfQRAxt3v77zUkIIIUR1uPujAOIf8itQQLSCEwDWBfBGMceyZR1L1Z8A4GYz28fd/2FmwwHch8hueHU1fTKzUYimw3cr7roZwCVm9jF3XwBgckbfjwZwlbtPN7PTEU0UVoxZUFVgHnd/AdEU6C/NbDSigea5SA0UO2njhuJ63fXc/V3afxWAqwBg4sSJmlYR/YJyeS4HNTBzWcrpXnbmss6APqBUJKVBa7sGl0IIIYRYTXAYWrpnWez6Zjabtq8qjllqwt3dzA4CcJeZfYRovfJXOjuWamOOmX0bwL1mdiSi2Dc3uvvV6bIV2ATAa+6eL7aZL65M3QTJ5Dhp7gUw1cx2Q2Qd6fSH2mqjvg5DFMinVP5hd7+ikzprARjh7q8Wt/dBZAJZWqmeEP2BfMGRs44DQaDOmcvi/3Key3oD+hTgGGRRe6VBa6uWxQrRT8jyLqU/trNy2THsZuH69XwcLyK9skJb80mz34v7+FCQM9g3ljLO7UL5Ah8hfSmVOXRs0HuSBpK5KTm/45hJsZxpGV65I9Pb4T30gqODCfKCa/cNZR6iXId8GS5PNvXJo/8R65aW8N7/RVrNNvcS8lw6e08BTN4hlgf9JXzfu+3EkIOR/Y+b7P5qrCd9Ppno8on3Q1tbsuf0Abrem1GF7UifluzWL3cPOR1/tMdRsd5pfVrsdidVoMV4J55yYaKty04NuTzZWvje0nWpLXruJqe8jTfPpA2+D0NMkuVDyFvJ9Wfsn2xrfsY9gvdJ0717Ml27i7gMkPAbP0d9HEEm3WXXUXl+rZGnFUDSZ8mxVrJ8lmmvNb92s3zb1ebdXa3yXL7j7hMbbaSYZeNHAPZz98fMbGdEK0E/DWBV1jF3/5DbcfeHijOHDwM4390vbrRv1eDuL6LGXNCdDi7N7CQA5yG6y0rTHg7gE51UXRPAH81sTURrdJcC2Me9zm/KQvQhykWLjT2XDS2L7dhmvQF9QAF9zKwYHKjvzVwefGUUVOPW43bq5Z4IIYQQQnQpnwGwUdFuiOIg8iMAWyIaT2Ude5IbMbMNAJyNKCraoWZ2u7unop9V5FUAG5tZU3HWsgnRTOSrndSrmWpmLk8FMKHWQD7u/haAHevqlRB9GHdHwZEdLbaOsWBYFpvKc9lFqUiAyL8pz6UQZVfjlOwfQggh+hEF5NCKIb3djUosBjDGzLYo+iW3RLSeYgGAwRWOxRQtiQ8COM/d/2BmfwJwu5kd7u6PV9MJd19iZs8AOBTAjcX/T7t7pSWxdVHN4PLNWgeWQqzO5DNzUkb/61kWWxrypX2cTTmLc2DWinvS0N3clFO0WDHgaWA1jhBCCBFTTM1xAKIB4Qwze9fdtzKzewGc5e6z3f1NMzsB0WCw9JlzlLsvLbaReYwYCuAn7j4dANz9KTObguSi/4p9Kh4+HsD1ZnYWgGUAvtkV1yFNNYPLv5jZrwDcgmhtMAD9yisGLqXBXlOZgSBQb0Cf6H9zLj1zmatrsBq16eAeNjfllOdSiDpX4wghhBCMu38PwPfK7N87tf0HAH/IaCPzGJV5GcDLqX3PAni22j4Vj70IYIdyx7qSagaXpVHtf9A+/corBiyZM5fWiOeyuCx2UHqpLeqfuURyWWxzk6GtXTOXYsCj1TgxQ1PbHFSnmfRbpLMSu49PtZVO1F6CA/qcTPoi2p0KynJRRiCVR0LgGmw9Nuj0b/nTSbNZJ6vd5+n8l6SOHUxvqpNo/7kUxGct2v/nIMc8ydF9gLn7hmA9j9/9+Vg/jF1CoTWowqGp74TnhPfzPfBgrG+bGK7L7rvfHestT18U6o5ONjXhlGDvmsvfYfc8OJZ/LoRMBbNPDHFOTms5P9HWWo/nw8bWfBLSFCbl7G1/GPTU85IdmxPkN7b9XaxvOOzbsR7lIWjQknRGiNGTgubnflyQo86n+htRGaPnFADWpW1qFnfeRxtkgduB72O6vwEkg1ZRfMxlXIYD9zxHOv3a4tcqv4Z58otfn8n7MDsoWFUxPyu0JQYqnd457r5ZZ2WEGEjEM5cdZhm7IFpsmZnLelOROAX0KbXdpplLIbQaRwghViPyaOrtLggic3BpZuu4ezp2cs1lhFjdyJq5DAF9ui7PZVOuvplQAHB4wnM5eJA8l0JAq3GEEEKIbqPSzOVMJNe/1FtGiNWKkm8xHS0218jMZbGKWUcfZz2D1VKbyZnLvpmKhFFaEtHdaDWOEEII0X1UGlxuYWaV8qcYgPW6uD9C9HmyZi6B+geDaX9kor2GosWG7UFNOaUiEQJAMXn1lxC99P5aDHLQVW1/EsD1iD4f3wXwTXd/qava7+hpyvoYz/I+8f6NU8fYizUyQw/N0OlFTFuSpiTv+5AP7R6+LORBu4g9nqljiWTyxHOLSF+fOLSXB+PffY9TLvA9qS98iq0oRsbvU767W0ifRpo8jCdue2GsL8MpsV58TcqXek9bLHd/6pFYj9r2X0G/HPSS3TZNVB8+JlynYzaneCDnBLk1xft48NJ9w4H5LYm23sOIsLFZ8FmyT/KrRufYZYNYXvbwiYm28A7p++k8G88K+oFJsTx7GPksVz6RbOtvwWd6w6PBZ4ljglySo+uyT7I6fkj66iD3Ov+OWN9nZAz9CZX/xa3JtpaR53XC2KDvpOd14l5Bn0B1R6R8xMvY7/s50uyzpNdNgvRrgMtleS6ZkantanyW1b7PDMo4Vo9/szoKyKGlb6ciGXBUerb3rnCsRGtXdUSI/kJ7vuS5LDO4NEM947d0ZNdke120LLbJtCxWDHjM7BsA/gvA/xR3nWFm/1mM2NcVXAHgUne/0cwOB3AlgC93UdtCCCFEnyZzcOnuD/VkR4ToL+QL2YPLXA4o1JmKJFdm6rJLA/ooFYkQQDTftK27vwkAZrYhgAfQSSj4ajCzUYisIrsVd90M4BIz+1h3JKoWQggh+hrdN08txGpKe4XBZb0zjdnLYhsJ6KNUJEKUozSwLOm017kBNgHwmrvni23nzez14n4NLoUQootxGFoxuLe7IQgNLoWokeC5zHU4lqvTIxkti82YuaxjJrTUB26zuSmHD9uVg0oMeBaY2c8QLVd1AMcilZy6uzGzY4vnBTAc4aO4ntdnI6/pdL67DJ9kgqdIU57LrfdKFnuuQ27viHtm0gbHA2R/WNIzmYRyW+4/NmjObTk96W+7j3MX7kn6Wvb3bUCafJbsqwQw/M34dwmsP/jdWC/44laxvuyR4LPEuUHOOvqzibZ2Gv902Ngu9GWUh8+WuRZyYfrfkp8RdiB9NpDPkq2wa+PDsPFokJdvxCZT4ISjr431d18OeStXYFisf3/NSaFCuAxYsk3SC/rLZ0P+0h89TPkdL50U9B507R8gL+MeKT/hFkGOupv8p/vSOW+m8imbJF4lTX7Z+66lvJEPkA+X84pOJu8pAOy6KOhfkObXwWzyUm5G9+HCdE7VPVEebpfzWbKnme9VIPt1m7U/7blkst5PsryUlepXW0esbnT8diyEqEilZbFNOatrWWzBu3bmMl7+mpi5VEAfIRCFbtkCwLPFv08BOK6L2n4VwMZm1gQAxf8bIfkVF+5+lbtPdPeJwJpddGohhBCi9+l05tLM7gdwCYD/ca8zJ4IQqxEVo8V2+bLYyHPp7h3SlFSiFHSIuxilItFLWAxs3H0JgEO6q20zewbAoQBuLP5/Wn5LIYToHhyGFi2L7VNUsyz2KgDfB3CxmV0J4Gp3f7dyFSFWX+I8l03lAvrUN3OZuSy2OKAsOFDmdBX6GPXhiM+HlH7NTTm0auZSDFDMbGd3f8zMykZCd/d7u+hUxwO43szOArAMwDe7qF0hhBCiz9Pp4NLd7wBwh5ltAeAkAM+b2YMAfuPuc7q7g0L0NXpy5nJQcUSZL3jZZbhZtBcHkc1N7LnUzKUY0BwJ4DEAp5c55gC6ZHBZzJm5Q6cFhRBCiNWQegL6tAJYBeC/zex+dz+1i/skRJ+mYrTYXL15LlE2z2UpPUmtA9ZyvtBBTbl40JnmjeWrsKotDwfQnDMUCo5cDYNZIfo67v7t4v8v9XZfkjgaC3ZRbXLzcoxPbb9FetuM/c2kFwX53MxUW+lE7yUmk55avshpqYTz0+g8HOznTtp9F9X5VrL6r7b9Xqx/YN8NB4x+A+CF0jdTMKJVFNwHwPK5IXLQ8lVB//rhYNv9aWsI3rL8K6HM4WfcmGhrry/eEevHWz4f6yWcQpwerm2yKlGfY8KMOjgEu7mfDmx7zQuh0PpBvrVtMijMqGtC/Rn0HM37YghC5NeEzwS7jD6Txia79aPDQhCfKTeFKDrTHw0X2e/dMdZDJi6Pdevzk5KN3R/kkqkUxOeetqDfoHuSY+AA0TqCEolbMgQdwh4vBb3L5tRuqq27xga93yI6cEWQozmID79u6HwAAAp0hMNI0zkSAbcmkeZAVOly/JrOCuJDEZ86sCtpzkjYaLCx7osfGkWLHdJt7Yva6TSgj5kdYGZ/BXAHgBcBfNrdjwXwbwC+1s39E6LPUTlabL15Lst7KpuKp6g1YmxbsY/N1MdoWWzHdtryBfxr6Qq882ELln7UiteXr8K/lq6o6XyNIju36CnM7NFq9gkhhBCidqr5KeEYAP/l7g/wTndvN+OfAIUYGPRsnstocJivcTlrqTz3sbnJQhRZoqU92jdmxFAMbsph/tsf9WhU2ZWtebzwxvuY98b7nRcWonGG8UYxomul2PxCCCGEqJJqUpHckh5YmtnhAODu93RLr4Tow+SLA7RynstczurKS5m1LLZkmax95rLYx4TnMoe29o6DxtbiPjOLZ097MvDPqvY82guOG//2So+dUww8zOx0M3sbwAQzW1L6A7AcwCO93D0hhBB14DDk0dTlf6J+qpm5PBnADal9pyAKsy7EgKO9zKxgiSaL/Iq14u6wMstsm4rrYsvNOFai3NLdQU0WL5dlWtrzAKJfmkqzpz0Z+Kd0ve7+v9fxqQ3WltdTdBdXAfgjotRalA0e77v7st7pUldQja9pFOmlpF9Mlfs46b9ntLszaUpE38HHNYk0e7/YZ3lG+f3TUqsYNhsb9LfI03YJlSEP3BhP+sN+8Pr5dCykHF18dCgz/Io3Y738ZurvyqTnEtNJXx3k92+/Mmz8jcqsHeR2mJ1o6rZtjggbbEVdRPq0IH+50Q8T9e8+cd9Yz7o1WIm3PYQ68FpL0O8FX9qr2CTR1h4Icwg3jPx2OHBMkLaEPhcuujWWg9/dK9FW69x1Yj19avBZjjkjeAOHLA0+y71Hhlha0/+SyhK0MWm+xbYmnyWfnp4TAIl7ZJQHX+mSB8m/uceiWJ768DmxvmCjHyfbSvgsyQzLHuFpwW+L8bR/PnlEO/AUaTaN8oO/j3TSLwtsmVGH/dF8fvZoAsn3h4dQnmo9k1nvR434ykV/I/NuMbOJiCLerW9mJ9Kh4YASyoiBS7lgOSWigD5duCy2lIqkxonE0rLWxMxlLld2uWti5rI4f9qTy2JL49gPVrVj6YpWrL+WjPmi63H35YhmKb/a230RQgghVlcq/RSxMYCJANYEsD3tfx9RSHchBiTtFVKR5KzePJfll8WWzlHrsthy6VKam3Jw75jWpDS4zFkY4Lb1wszliGHNePuDFg0uRbdgZje4+zfM7ElEv+ckcPfP9UK3hBBCNIDD0KJosX2KzMGlu98F4C4z293dH+zBPgnRpykNHrt25rJ8tNjSEtFaA/qUBoeDmpLLYqNjBTTlgp+gJR5cGnLx4LLnZi5L1/Pg7TfFFQ8tQEtbvsfOLQYUvy7+P61SISGEEELUT6VlsTu7+2MABpnZ3unj7t4lCaeF6G+U/IjlU5EY6pn064mZy8HFgWZbvoA1mjsOLs0QD3Br9Xg2Qmlw+fUdosHl2x+2dlJDiNpx9znF/7GpyMwGAxjp7m9mVuzzZPmayOyXyJ23JKMMAHBQLW6Xc15mxfHbObVNOf5GkyluR9J3kj+NGbFOcpuTnp1JdbYmT9sbY2O52FLtUu7BxWtQHsCFIb/h8vEhv+Gv/LFY/8AOSLY1hXxs7PmkxdZjlgZP2+JV4Xy3nU4eSwCDZwZv6RnrDY/12ReE9/stP/90rH/0OOdGBHBekMNvJ88oB0R+hGZ0tg/t/t7Ydgzg0oz+jwz9H3U+eRYfOpgqJz2yU74Yclv+44tbxHre1JAz8xtn/C7WD2CPUDlluRz8bmi7dT0yXU6m54EthJT7EwCwRpBLTgw+y3GXPR/rBZODr/aCo8lj+0bIQwoA4HthuwyfJTM/Yz8AgO+FrGDVi0izKTftmeQEnuzfZG8m10n7H/k9oRqfpPyTojKVlsUeCeAxAKeXOeYANLgUA5LYc9lUZubSUGdAn/Key3jmssbBXnu+Y0Tb0sxlOlhPHNDHLB7gtrb33LLYfCFakrvJyGFYZ41BWPqRBpei+zCzWwAcB6AVwP8hiisw1d2n9W7PhBBC1EoBObQqFEyfotKy2G8X/38pq4wQA5FKnsuGlsWWmbuMZy5rnEiM+5hKRQJ0XPKaTEVSqt+zM5e54omHDm7CCs1ciu5lC3dfbmYHAvgroujnfwOgwaUQQgjRIJ3muTSzL5rZWkV9jJldYWabdX/XhOiblGYRy3kuc9ZAnstyM5d1LlNtj3Nxhpd4c8lzWUjPXIaAPvH5ejKgj4cAQ00WDc69jmsoRJWU1tPtCuBed18BoOd+TRFCCCFWY6pJXHMJgH8zs60AnIoov+XvAXy5OzsmRF+ls5nL0kxgLWSlIimdo/ZUJB2DDpUGmm3t5WcuE8tiezIVSSHMXDblDI5owMu+UCG6kBfM7EEAnwLwQzNLJ2jsRbL8TpU+qqvxP7EPa1RmqWS+PPJMZnrCtib9XOoY1XmDvGd3kldtMukZlMdvWcqrNm3/oC9grxuVYUvajFRXbiF9HemF5FUbF+QPbL1YP+RfSDS1a+6JsMFJbdYKcvEXydc5hsqk0ia2XhG8pWdzAOMpQX8PF8f6hOOvTTYQUjLinVWjY72ZBy/p4qnkX32NPmROSDaFKSEf5uKX6WL8OcglOcoNeXyQ37gsmQr983g81mvjg1jPOzN4Lv/7oGNjbUfzj4m3gmn9Fnk7+TNyc9Ls09z1WSRhP2K4Jxc8uVXYPTtcLxxKDY9I+W05FBhnxp3N/kl+O+HXHb+2kn3B1vQcPTeTyiwizT5kzhubhu69RH0+f/q1mvW+k5Uft1p6xpsZRYvVsti+RKczlwDaPZpG2AvA5e4+FcCI7u2WEH2XTvNc1jVzWX5ZbOkctc5clvrYTNFimwflyrbVWi6gT4/OXAKlCdbS4/1glQIGiG7jCACXAdjV3T9C9C3vh5WrCCGEEKIaqhlcDjKznQGU/CkAoCkFMWC5/vFFADKixZrVF9AHlQP61Jo7s+Sr5AFwc66UiiRrWaxRnsse9FwWHE00cwkAH7ZocCm6B3dfCeARAJ8uRkJf5e7393K3hBBCiNWCapbF/gRRkOq/uvvzZvZJdIyDLMSAoTQ0KzO2bGDmsnIqklpnEsPMZTUBfaJosdHMJcqW6U7y7hhcvJjx4FIzl6KbMLM9ENk7nkb0stvGzA5397/0bs+EEELUisPQiiGdFxQ9RqeDS3e/C8BdtP1PAAdk1xBi9aY0dsyauax1XFYKXlMpoE+tA9b2cp7Lps5nLkuky3QnBfd4hrY0g/lBS1uPnV8MOM4F8EV3nwcAZvYpRINNDS6FEEKIBul0cGlmawD4OiK7e1ze3X/Qjf0Sog8TDbzKWC7RlKs9z2VpIGdlRpelAWGt6U3ay3guB3eSioQfT3uPLouN8oMCmrkUPUJzaWAJAO7+opk1V6rQczSatPzjpDkAR3vG/o1T9TkACdcZS3pohk4H/eGgIxwYhIL1cOAdCu4z9E87JlpaOZzSE526iI5cH+R1of5Bf+H+ArcZBWzBTUEuOCtojtszNLR1XiJoEYB1ST8a5JZLn471vMNC4BosDtL/nnyPt3XpfX2fIKd8IgS1OeGwEMTnu8+en6j/WwtpyJvvCm2N2vdfKMeEU56M9XO3fC7Zl1tC/T+dsnesv/YepTSnxeN/2p3KWDLt+e/3OSn05e7Ql0m0+twupMd+HenxFMAHwK/vOC7W37/wynBgLhWaQnrONon6mE76FyFI1fDH3oz18nMoiM8vqPxPkk0lgvhM46BTFHDqqLFBP7dX0LNTQar2p8BUd86kAxxIi4PwvEaag/akj2UtLOR2P546xsGCONjPkoy21ia9MnVMn92iumWxfwQwGMATAFo6KSvEak9pCWu5wWA9y2JLA8dyy2LjmcuaB5cdPZeDioPL9BLbUmRYM4tnUXvUc8kzl/Jciu7nbTM70t2vAwAzOwLA273bJSGEEPVQQE7RYvsY1Qwux7t7OoayEAMWB8qPBFFfQJ+2QojWmmZQnQF9SgPIZlq6G5bFJgeOLe2FeNbSiulI0rkwu5O8J1ORABpcim7lOAB/MLMrEL2cn0G0OkcIIYQQDVLN4PJlM1vb3T/ovKgQqz9ZwXeAOmcuS8tiK6UiqdEDWZq5HEQBfSoti+VZWLOOuTC7i3zB4Y4Og0ulIhHdhbsvALCjma0FwPTZJoQQQnQd1QwulwOYbWYPAFhV2inPpRioOLzsklggCkhT6xLWSjOXTfXOXJbJxVkaaLan+tfSnk/4Lc2sQ5nuYmVbFKm2ZA3NFWdONXMpupNiCpIvA3Az+6u739fbfaof/hh/pca61SZGX0Sa4/nNzCiTbvsg0uRvI58h7glPwcp/J68aAJxA+nI+z55BBpsfbgMntQdwWpB7nR88lPeNpDe+7YIc/j/Bj3ff619BFoPnvx/reU+Rz/Icev+8hH64ez35vvrgGbvE+oQTr4j1fIyL9ak3nRPrC3b7caL+iX5hrC+78JRYL7FNQ6G7gvwZgs/PTky9x09nGTyEU7a9Jezf95BY37o7eSPDw4gYE+SSqaEvH3yHvHrkVx1zyoJYL3YyqQL4/mHks/wbyrNGhgaSFsShG8Ry+adofyK5Hnkjt/opEhyyiDZ2JU2+wz1o97Xv08ZhybbuZA8md2YD0nw+9kWy1xkA2DLelrGfPZdpnyRv8/tJ1udwpd/jqqnf9eSrGs6InqKaZ+MfxT8hBCrPXOZytS+LjT2XFQaXtQ724mWxFNAnKxVJtCyWvgAh+DC7mxWt0YfPt78Yvkw15UwBfUS3YWbnIhrW3ILodv+lmX3e3dPhO4QQQghRI9WkIvlZZ2WEGGhkTFxGM5d1+iMrLYutN1osz0iW/JfpNCPRstiwbdZz0WJXtUbnGdYcfjpuyplmLkV38h8APuvuHwGAmf0aUZhUDS6FEEIIwsxGA7gC0fT3OgCOcvf09HeCMmngOzQ6ysxuNLOHi9vbmNnxXdFhIfoj7l52IAhEM5e1jsva8hWWxdYbLTZfQHOTJZbvNg+qFNAnlMuZ9VieyxVt0SBy2ODk4FKeS9GNvAZgBW2vAvB6L/VFCCFEAxSQQysGd/lfNZjZNDNbaGZuZhMqlFtkZi+a2TPFvz3o2CfNbJaZ/bP4f/OsdhrtU53n2hrAQ+5+LKL8NJt1VqGaZbG/A3AfgBOL2y8iSjh9RWYNIVZjHBVmLnO1+yMrpSKpd+YyX/CE3xIABuVKqUjKBfQJ22Y9l4pkRWvkuVxjcHrmsi2rihCN8gyA+8yslCTxGwAeK/ow4e73ZlXsG6Q/tqv5IYbz2rEvM/3jM+fPe5E0+8Bmkmb/JefaA4D3yx+7gL7LnJqxMGrdlOfy8lBuku8QemJPUKGwH/N5P4BLw7H7/hH6vNPS/431rH2/VLYrO230eGJ71oRQrnW9RbHe0vOx3oKcRP973qRQftWQRFu7X/NI2XMOPTAkVFx7nT+FA1cmPwcuveXUoL8RtM0P5Q7aN+QCvRrfivWvln4v0dYuCH3Z6YWQs/OXnz451tPPDp7LfXFPrG/7VsrjegRd/3PDtR+3TjBAfumOmbH+7b4hX2eHHI43Pxu0UQ5LZw9huD8nfPpJMHM/3D5srKR+vUf3y+VBDt4tPN7W9ZJdwbljgz6T2tqF/KfnUvmJ5JP8DXsmAex8Mm1wwlfOF7szac5ByzlkAWDbjLY4j21Wzspq6R0vZT9gOoDfACj/Yk5yoLvPLbP/CgCXuvuNZnY4gCsRxQSIMbMhADZ091do31oA1nH39I+jlfqUeS4zG1fcZh5ANA78vpntCCCP5IdDWTqduQSwsbtfUWwQ7t4KoOeS4AnRx6g0dqwroE9pWWxG3kyg9sFlW94TaUgAoLkY0Kc1NSvZ0p5Hjoa2BuuxweXK4uAysSzWtCxWdCufATAEwLHFv6GIvsWdjkToFyGEECIbd3/U3V+tt76ZjUL068DNxV03A9jWzD6WKjoBwF/MbItiveEAHgSwd7V96uxc7r7A3Sen/s4HcDSAq9z9IES/cuyZbjtNNTOXiW95ZrYusuOZCLHaU2nmspGAPv+556c6HIsHlzXPhhbQ1JTsZCmgTzUzl7WmPqmXeHA5OLwVKaCP6E7cvfwUlRBCiH6Hw9CCIZ0XrJ31zWw2bV/l7lc10N4fLJpFeBTAGe7+HoBNALzm7qUJvLyZvV7c/3aporvPMbNvA7jXzI4EcAGAG9396hrOX9W5ynAvgKlmthuAjQBcX6EsgOoGl38ysysBrF18QCcCuKaKekKsllTyXNYT0KeUiiQ9GAQamLkseLwMtkRWKpLWfCparEX1e4IVxVQkQweHviqgjxBCCCF6mXfcfWIXtbWLu79aXN76awCXADi8lgbc/SEzOx3AwwDOd/eLu6hvnZ33RSQ9EJ3S6bLY4pTowwDmIJp+vdjdf1NXD4VYTcj2XNa+LLZUPr2MFag/oE8+7xiU8lyW2m9tTwX0aSskosrmYGhr76llsdEgcmhx5vLW43bC/tturIA+QgghhFgtKC1TdfcWAJchGGpfBbCxmTUBQPH/RsX9CcxsAwBnA5gK4EAz+1yN3aj6XI3S6cylmX3Z3f8A4A+pfX/t6s4I0R/oNM9lrTOXxWWq6QA8QJjNrH3mshDPVHLfmnKG9kJqWWy+kPB7mqFDme6inOdy7SGD0NJeQGt7AYMHVWMLF0JUhoP4VBuYg8txkBEOJnIH6VTAkkQdCr5y6lvolG+ktmfsH8uZn6CgLpR8/lcvhQA1P7BUJJaTKHhLiLuDWVyO8tIvHxKCn8z6fWoVNYcy/HHoyzx6uFsvDUFoln9lw3Ag9bP8dkc/FuuTcVGsD7/w9tDWKRTQZlzyPd1Anwv704HvB3nbbiHYzol/uTDWP9goNenxZpBTCrfE+lKcFA5MD/Lwm0Mff3V+MjjQD9althcHOfeLIbjO3D0p0M4UqvznZLf2KoQgQPfZ0lhP8lWxnnlWsIDNtY+SDQzljfuD/DHdE4e8FMtWLn5a6p4+cxFtUEyTRygw1bk/pfJ0r3NsHgCYQ0GytuNOzifNrzUOqpV4UADuJM2v22aUp1JQsKz3h2p/8M0qV81CyfpwWNXRXXsDM1sTwCB3X15cFnsIosBycPclZvYMgEMRBUs9FMDT7v52qo3RiDyW57n7H8zsTwBuN7PD3T0ZdSyDas/VFVTzzW1amX3nd3VHhOgvOJA5uqwnoE/J39hcbllsvTOXhY4zl6VzpNOMtLQV8O9bjsKtx+0EIAoslA76012EZbFhcLnWkOhD6CMtjRVdiJkd19t9EEIIsfpgZheb2WIAYwDMMLPni/vvNbPSktoNAMw0s2cBzAXwSYQMHABwPIDvmtk/AXy3uJ1mKICfFCf74O5PIfpZZq1q+1TDuRom86cEMxuP6AKsUwrRXmQ4gGHd0Rkh+gIHXzkLAOLBVprO8lwWvFgma+1sitLAcVBTmWWxdQb0ac972faac7kOkWBb8wUMGRQGd1FAn56buTQDhtAM5VprRL+2ftjSjhFr9t1fI0W/40AzOwDA0e6ezpshhBBC1IS7fw/A98rs35v0ywA+W6GNF5HIpVS2zMsAXk7texbAs2XKlu1TtefqCirNU+8M4EhEI25OQvQ+FK5dDGAq5rmkmcb0stQsSoO9cjON8eCyxpnE9kKhbHuDmjqmGeHlp7cetxOOv2EOXn7nw5rOVy8rW/MY1tyUGIiXZi7luxRdibvvVpy9nGVmP3H3TiPeCSGE6NsUYGjpw8tiByKZg8viB+/1Znaku1/Xc10Som/jDpQZtwEASpOFefeqHQZh5rLCsti6Zi7LLYvNdUgz0tKeT8wcDmqyHktFsqItn1gSC4TBpSLGiq7G3a80s78CeNLMLkCUs9miQz6qd3uXph6PUq2JztPn4NzYfDlWkuaE7UMzygBJjxgZEifTfs73Dkoq/9t0P6ntxCKw92P1A/tu2H3L5snqLaSPIJ/oCAqAuGxm0PtMCvrRZFPsk5xz59qxPtXvjvUFtm+o8PsgD/p08veM27YJfsiLeP4h2AnxtX3vDRupt/QPV5KdYE4eZVkQ5GUXnhLrWa8nJ1J2uuzpWE+fekjZvuAd0hTn8gdnpfybU0jvF54j/CR4GMecEbyFi28dH8qcmmzqvgPCc3QQ/R5029Hh2mEPqjB6UrKB2fTkTyc/5EnBZ4mj6H7hvtNlAAA8Pzborej8u9D+M8l/uQudb/1UW9vR+bEx6cdI8+uLvcrphRecxoxfw+zZrPTewK/1JWiMRj2bYnWg008vd7/OzMYBGMfl3f3e7FpCrL44HGbl7cq54qizlng4pbQf5WYaczmDWe2ey/aCo6lM9NnmplzCc1koONryngicM7gph9YeXBbbYXC5Rmlw2dYjfRADBzPbHsC1AG5CFE8g4xu5EEIIIeqhmmixUwF8G9FPIKUPYkeUVFOIgUeFaLH1zDTmC6VlseUHrIPqSG/SXiigOTOgTxg4lgaRg3tr5rK1HcOak29DWhYrugMzOw/AfwA4zt1ndFZeCCGEELVTzbqbgwCMc/f3Oy0pxACgYrTYXPBcVktpJjHLo5mrMwJtudQmg5pyiTQjLcV8lhzQJ5rd7KGZy7YC1kjNXK69hpbFim7hYwA+4+4f9HZHhBBCdBWGfDemOhG1U82z8YYGlkIEKuW5bIqXxVY/GCzNEmbNXDbVNXPpGNrc1GF/c1MOre2hrdb2jjOXPTq4bG1P5LgEyHOpmUvRhbj7Mb3dh9qo5/7PqvNx0pUC5fJXgqWkF5FmbyX7KtmLCSQ8YptRcMIZP0NZtqacgvunjs2mPpM9D/Mp5+Vceo/8Qqr+e6TZZzmF9l8bfKGT7g75EGcetieYOduEhIU7+f/G+oKRP4717/3rsT7mlDhFON7DiGS/xgY5jvIbzhlHSRHZ8zgmWX2tC2hV95kzg956UixHvfyvWC95fNNYH44bk41RnktMJj2J9Dkozy9Sz+kv6Jo9FJ777b4Y/IRrI/zGs3gaPamzOwS/jLltJPkc2Qs7gbSzlxHAxjcFPZ48kEPJZ0npLxPXeN1UB7Yiv+5Euo8e4XNSZge+dc7MuO8BJD2PfPH5tcr+ybGp+lkWEvZsct7ZV1Ll+LX+OdJ/z2iXqSdnpljdqWZwOcvMbgbwR9DbnDyXYqASeS7LDy/rSR0SL4vNmLlsyhnaa565LKBpSMeXd3OTpWYuoy8nQxKDy465MLuLFa15bLhOMtHzsMFNMNPMpRBCCCFEf6OaweX2xf8Uik2eSzFwqTRzmbPaZy7jZbEZIWibcoZCrdFiC47mMoPVl9/+CIve+Sjebo2XxbLnMrl0tjtZ2ZbvsCzWzLDWkEG4bfar+PvCpZn5RoUQQggxsHEYWpWKpE9RTbTYL/VER4ToT2Tmuaxr5rLkucwO6FP7zGV5z6VZ0TNapOS5HNyUXhbrcM+eoe0qSnku06w9ZFCPRawVQgghhBBdQ+bg0sw+Xamiu7/Q9d0Rou9T0XNpdQT0iaPFZgf0qWUmFIiixZYbrBoAbiqeuWymwWWxH1mzn13JitY8hg3uOLhca41BePuDljI1hBBCCCFEX6XSzOX/VDjmAD7RxX0Rol9QyXNZT57L9k6WxdaXisTL5800iz2eAKUiaaJoscUlsm35ApozZlO7inLLYoEoqM+by1eVqSGEqB0ODMKBPdIJ07MC/1CwnUSQEOap7NMvvC5oDqpyMpU5aVHQz3HwEgB4Lsg79wn6AvJrj6PgIydQACEAOIT0fNLfKddZYOZGFIllYurglCA/i6fDBsVEOeYTIYgPHg0/kr2KTRJNbXd3CHBzm1GwmjlB/vrg42h3sjM3DPs2bVEApQ+DXHJZCOLDgY0W7LxVoq3B74a4ja3X0fN9XZBTvnlLrKcfFi7qGZ5MFzt1arj+4774fOi/7YxOOXebxObQ7yyL9crhFOznC1RuSpBb3kEPHsA8OyxszKfAO4+FgD67f/7uWD+4+b6hzBupIDzn0r27Bu2fza+PK4K8hMpXhIIDYSZpjkewF2kKLAQg+Zr+FGkOvpUO4pNF1us4KzhP78dGKCCHFgzp7W4IInNw6e6b9WRHhOgvVFrxWhqLfffmp3DXd9IhC8tTWvJabhkrEA1Y60lFUi76bIdlsW0dZy5Lg9LuDuqTLzha2wsd8lwCwFprNNe0tFgIIYQQQvQ+3TstIcRqSMEdGePAOKBPLeOi9nwBg3KWORs6KGc1D7TaC4WyM5dmyeBArfnoF2f2XJbSkrR3s+dxRWv0i2e5ZbFrDxlU84BaiN7EzA43s2fNrN3MMubEhBBCiNUbZR0VokbcwyAyTWn20VFbQJ+sNCRANHNZa0CfrDYNyYFvaeaS81yWZjy7e+ZyZVs0sM1aFqvBpehnPINoAeYPe7kfQggxYFC02L6HBpdC1EC+EA0bM/Nc1hFdtS1jCWuJQbnaA/pEbWZEi+WAPvmOqUhKQXzaunnmcmVrNLgsFy12rTU0uBT9C3efCwBm1s1hjtdObX9AOusjnX1R7LMclSqXlXT9fdKccD3LKwYkfZobBMmex5PI03YL+dMOSfk6h5LfLGkVDIwmn+X9qWOXs3eO/JS/pzrH3Bn0FPLzXU4+PwC4J8jLfkEJ738S6gyeTf7FK8J1mHdkKk7iFeQT25r2k23w+6dcGTYmJKvjx6SvPTh0+aWjYn2CHR/K7EKPN/Xx0PqX0M9fnfK9WP/g4YtjfSIujfX0c8L5ph7980Rbe10TPIH3bR/ukRP9wlhf9uApoQI9JZid7NfKL4wIG/uQnkKFjgnP0Ty7GwlG033FNv4Xg3zwRfJZ7kZl5pNfEwDOpHthIntDr0BZ1id9SMp/eVEbbSwivSVp9j0zI1PbXG48afZcpl/rDL+m+b0iy2dZaeiQ5cfUcGMg0W3LYs1sPTO718z+UVwqdIeZfay7zidET1CKrpq5LDZX+7LYfKFQeebS6p25LOe5tMSsapyKJDG4DAF9upMVpcFlxsxlwQGX71IIIYQQot/QnT8lOIBfuftMADCz8wGcB+CYbjynEN1KS3s0IMpcFlvyXNbQZltGZNcSg5rqmbnM8FwitSy2lIpkUBjglQa6tQ5oa6U0uBxaznO5RvTWpKA+oq9gZk8B2DTj8AbuqZCZlds6FsCx0dbwhvsmhBADFXdDS6uWxfYlum1w6e5LkVwn8zcAJ3TX+YToKirNlpVmLrNWv8YRX2sO6JO9iKCp7pnLcqlIkAzoU2HmsnSsu1hV9FwOLbcsdkhxcKmlsaKP4O7bdmFbVwG4CgDMNtJNLoQQYrWhRxZBm1kO0cDy7jLH4l9wN90060dhIXqOeW9+gDUHl39ptMTLYivnuawloE97FQF9CjXM4Lk72guOprKpSCyZiqQ4E1vOc9lTM5fDylzrtdbQ4FIMRKrxTH6QUSZdLqst3p/OWcmGSPZukUEt4flk3xj7uwCAxuLjyZ82P5U7sMQhvH/r5LGVlOdyNnnXZi8KevTYoCel2n4zI9/gMZT3EPsHyT7Lo5J5FxOwh+8XQbb+gvJ0DqWcj2fw9QUWfCEYSHf/OeVaNPKrzpkU9PTU+emcCOkkMZvzYW4Wzn/Qw9fH+rYXKK8mAIQUlniL/Xl0zt2ve6Rseax8ItHUfd8hn+WT5LPcl3yW95CP91J6vGR9jdomPSnIcUeHB7xgHj1H09iziMxcpjiG+8wexpuCvCt13/DTdyrdI89Tua3oPn6O7q/nxqY6MDXIfaj+Pfya4pyT7HuuBHudX8wok35vqDVXZT25LXs/H6boOXrKYftbRBb1S9IH+BfciRMn6puk6HVa2grIF9rKH4uXxZavW8+y2PaM4DslBuUM7TVEbi0NyJqrWBYbz1w29bzn8rz7oi9g5ZbFauZS9DfM7FAA5wMYAWA/M/shgN3d/YXe7ZkQQqy+FAo5tK4a0nlB0WN0++DSzKYB2BzAPu7ezVH0hGicgjtWthXQni/g61dHv27eetxOAIBVbaVlsVkzl0VRU0Cf8sF34jattjyXpRnHpnKpSIr9LhQcuZyhtb2A5iaLZ1wBTkXSvS/X0rixoudSg0vRT3D3mwHc3Nv9EEIIIXqTbosWCwBmdi6A7QBMcfeW7jyXEF2FI5rdW/Tuig7HSqk7unLmMiv4TolaA/q0xzOX5ZbFFs9ZiB5HS3shEcwHAAYPKqUi6d6BXekxlU1FMqQZANDNXRBCCCGEEF1It81cmtlWAM4A8E8AjxdnTBa6+/4VK4oe5eArZwEIM3MiBLz5x5sdvU0tbZU9l011pSLpxHNZY0Cf9uIAuKnMgLW0qy3vGDIoWhbLwXyAMHPZ3s0zl6XZ2LLLYjVzKYQQQojOcCDf3vF7hOg9ujNa7PPokKZXiL6Nu8cDw3+8VWZwWfRcZkWLDctLqx8URalIshcRDKoxoE88c1luWWzxJVkaOLa05xN+y6heTy2Ljfo5ZFDHxy7PpRiYdFfQCw7Cw0F8spK0A8noJczKjDIHpMq9FeS7Wec4njQnok8H5h1fVmJ+CFCDrSgoyrWpoEHX07Ef0n5+KHMoKMzfaP9JqbZOprYe4f2kL6JrPCPIBSduBWbcZSEozYMH7BsOcLAc7svMZFc4bg+2Cgd/P/6ksH9MkLedGIL4/OmyvRNNfe2+e2N9wVY/jnXb2eFzpHkavR+vpIA2W4egQel+XnZOCOIz/PY3Y738kA1DoT2p3fnZXxsHHxmC2iw4mq7lBC41FQl+TM+XUxCf06jP0ziwE7HfotQOjsVAgXM4iA8Hhtpn86DvSbd1Bh27NehLDw76pA2oPAf3ScMBibhc1lf8kantpVWUW1Lh/EIk6dZlsUL0N3gp6D/e7BidrbNosfUF9Km8LLapxoA+pbLlfJylbpeW97a2FzCkOT247LllsTkr71/V4FIIIYQQov/RU9FihegXtNJs3T/e/AAbrLNG4ning8s6lsV2loqkqeaZy+xlsaVulwagrflCL85clu8jEO23VE5OIYQQQgjGXdFi+xqauRSCKKXmGJQzvLJ0RYeZs9LxzGWxWQcqEM1cZr8Um3K1ei47XxZbGji2tHWcuSwNdGuZLa2HfMErXq+c1TaoFoGDr5wV+6mFEEIIIXoKzVwKQZQGj2sOGYTlK9uwsi0fL9EEOM9lJzOXNZyzs4A+TblcXdFimypFi60wc1nabu0Bz2WlwWU6J6cQAwv+eG7P2J+mPUOzubCjl7w8Hyf9CunJpNnfRR5LAAlP2jL2Zh5GmryJE8kbNzvlc2QWkDcSwUOIGeyb43MAOJv0FNL3kyduJu0/NXjgBr/LZkqgdT0qOHRSaPbJYJScvuiQUOZGqnx5Mn/y3pcFn+N6d9wQ64mYHeuv/jeZNh9FkmlB7vRkeLOcNYzKnEOaLIe/xfeSbc0mG8iPwnPXfGv5N+GD/OlY3zZsm8Sx7U55LNZz1tg51stvJJ/l96nCe/Q5cF3qROQ/bZ1I99SOVOYQSkbAHksAWMn3BXkIp5HPkT2+R6XqM2kvb8zx5Xffw+WPSB7bujno52j/Sdwv9rKOzNgPABeSznqv4P3V+ifr8VlmnVMMJDS4FIKIB5eDm7B8ZRtWtKYGl3G02PL143FaDaOitrxX9lwaapu5LC6LbS67LNYSZVraykSLbeqZaLEFd1SYsNXMpRBCCCEqUzBg1eDe7oUgtCxWCKI1H81MDh3chDWac1jZmvzlrSVeFlt+MJirI6BPvpNosbmc1RTYprSctVIqklXFQXJLvmOey9Jy2loGtPWQL4QASOXImWYuhRBCCCH6ExpcCkFwwJ7NR62NFa35xPHW9s5mLmsP6NNWKFRcFjuo1sFlnIqk48u7NEO67KNWAOXzXDb3lWWxmrkUQgghhOhXaFmsEAQPHrfYcG28mEpH0tKeh6HzmctaaO9sWWzOkK9hkJWvEC22NHB858PIo9LSnu+QZ7LUl+4O6BMti9XMpRDlqdavVKuvKSvnJZD0WLHPclfSnHtvS9KPIcnXSf+KNHs2LwpyNqpjPr0pjGPPJ/nmbGx2/etIsxV1LhcKj+vFkZ9KVP/Eoa+HjZuDh3L69uSz3IQqsOXvJ+SzA/Dbl0+L9e6fuCfWZ3/ivFCIczh+FUmmBzlr/S+FjT2DPOjgkAv0tk2C72/m61QeAM6laJuHhGu85SeeQTlewKdj/d0V5yeOnYWfx/pjM8jj+wUqtGvw6H7D7471DeO+nTzRHuRbPDf4IW8848BYH27fCWVGT0rWX0k+zRF07y6jMpuR93YP2n9I2mPJXl5+LvlG4tcUl6ecrEDSZ5n4Kk6vKb6Pnb+L3JfqF/sx2VN9EOmbSI9K1ec8l1nvJ1leynRbvZAP0wGsqv27l+g+NHMpBNFKy14/teHaaMt7IiVHS3shM1IswAF9ahkMetmclNxmLTOXbXGey0qDy+yZy1IakO5ORZIvOCpM2GrmUgghhBCin6HBpRBEaSloaeYSAFbS0tiW9nzF2cm6lsXmC50E9KnPc1nOx9mUM+QMeDeeuSx0mLk0MzTncvEgtbtwz54BBqLnoJttn0IIIYQQogvRslghCJ65XG/NaJkQB7ZpaSt0mpuxVro+FUkxV2dGm81NuXhZbGt7x4A+URnr9pnLajyXXujePgghhBCiH1MAsKq3OyEYDS4HOG9/0IIVrcpFVKKFPJfDBkeDLl6a2ZqvcllszTOXlZbF1piKJJ65LN/RQU2GdysE9InK5HogFUl2YCRAM5dCCCGEEP0NDS4HOO+taMUHLRpcluCZy6HFwWW+hpnLprpTkVSeuawloE9pIJo1YG1uyuHtD7ID+pTKtHbjstj2fIjKm4WZ1eRdFWJgUM/7NQf84IAbH6TK8VcCrvMQ6XkZ59g2Yz8A7FN+9whKWL/sLTqwMlWQgplMo/eMQw8IeiYVXzNV/SPSPyZ9JiWsvzYEUhn87thYf8LuTzTlvwnnt/vp/SnE5sG4g5+P9YKntgoHnkn1a3Jo68Fv7RvOPzs83taD10EW3304BNL5B7YIbU0IbX1AAZx+9fnvlS0PAL9fdVLYWBz69fqY0bFePmRYrPfyGbH+7bDTE239djJtr08HLiF9Wgiuc8OFFMRnr0RTmPDk3rGee2HYf7jdHjZGUwV6HgAA11EQn+c4ulII4nPqy+fE+gLjCPFHIMFmY4Ne+GzQu2wT9CPpIEBZUNtZ7ToH7uHXYzLQYJKPk55Bml/b6aA7gzJ0Ne81vRDAR/QoZjYawBUA3gKwDoCj3D39Jp1AnssBTt41O8TE0WKBeHDJ1yfyXGbXD+O5GgLwdBrQBzWmIulkWWwuh3c/akV7voCCA4PLnLu5ybp15jKeIa7wDpQzQKtiBzYHXzkLB185q7e7IYQQoq9SWhbb1X9VYGbTzGyhmbmZTainnJlNN7P/M7OnzewRM/tMtQ+9jnN90sxmmdk/i/83z2qH2BrAQ+5+LKJfEzbrrIIGlwOcQsFr8vOt7rTkaeayuTi45JnL9kLFIDT1LItt7yygTy6HfMHhVTaaL1ReFtvcZFj6UStWtkW/0JZbFtvclOtWz2ULzRBnkdPMpRBCCCH6LtMBfBHJ3E21ljvC3f/N3T8LYBqAa9IFzGyImX08tW8tM9uoxnNdAeBSd/8kgEsBXEntjTOzGam/0wH8HcBkM7sNwMcAvNjJY9XgcqCT9+jre3f76/oLpZnL6476HJqbcjCkPJfthU58grUtiy0UHAXPnmUEwlLban8DaKsQLRaIBo75guPrv3sCAMouix3UZGjrxh8dWtqjgW2la2nyXK72aGZSCCFEf8XdH3X3Vxsp5+7LaXM4ornYNBMA/MXMtgAAMxsO4EEAe6cLZp3LzEYh8i/cXNx1M4BtzexjxXoL3H1y6u98AEcDuMrdDwLwFBKZdMsjz+UApzRwWtmWx9oVlmYOFEqDy9JsXi5nCb9jS3snnsvSaKnKQVF7J7OMQBh45gse2q9AvtNosdH+UtqVwWWixQ5uyqGtvRtnLtuKM5foZOZSeS6FqJMsj1WWrzJdLqsOw8nXx6aOzUBZNiN/2sJq/WnEmG06LzM/1e548nayz/KBg4OeHmQr+/ZGJ89nz9B70iQuF+SCkeSzXBbk4HeTXrnWbwU/5XfPCP7J3z5InsWhQY66+1+J+r/NUbnFLUGvG/p434XBl3ofgj7mlEsTbQ3/8ZuxXn7/hkHfGDQmBvlD/FfZdgEAU0jPJj0uyDHnzw9df3x8ODAz2VSe771T6bm7lJ67O6nCG8n6IMslniN9aJAX2HZ0YDLp15JtTSH9CPss30Kn3PXT5PZ+dI8u5ANcjl9fdCOgOdU4l+PXdNZk2qjUdjW+yT4em6N7ure+mfEdfJW7X9UdJzKzqwHsDsBQZvDm7nPM7NsA7jWzIwFcAOBGd7+6htNsAuA1d88X28yb2evF/W9XqHcvgKlmthuAjQBc39mJNLgc4JSWUK5szWPtNdJvWKsnpZmSW4/bqcOxDoPLlO+vpT1fOVpsjTOX8RLWCgP70mC2Wt9lW6fRYqNzlZamZs1c1hKhtlaC57JCQB9EM5fuXnH5rOhIW75Qk09XCCGEEAnecfeJnRdrHHf/FgCY2TcAnI/yM5IPFZepPgzgfHe/uIf69iKQ/gWpMpqqGuCUvn+W/HcDndZ8Hk05i2cIc2aJZbGdzVyGwVKVA8HSLGNFz2X0v9qIsZ0NWOOZy/be9Fx2viy2dJ27c5C7urJ42Uq8+GY6EqgQQggh+irufgOAL5nZeuljZrYBgLMBTAVwoJl9rsbmXwWwsZk1FdtrQjQT2emy3lrR4HKAUwpWs6JVg0ugmPeRBmVNudTgsq2Af99yVNlZzxKG6gP65DuZZYz6kEuU7YzSoDBrCW1zauay7OAy1zMBfSoN1L+xU+Rdb+3G5bmrK635AlrbC6vtsmJ5NYUQQgDo1WixjVIMyrMJbe+DaJ3z0lS50Yi8Bv/l7mcCOBDALWb2+WrP5e5LECVEKi0KPxTA0+5eaUlsXWhZ7ACmtb0Qz69p5jKitb2QGGzlzBLLC1vzBQwp41FkaglEE89cVkpFUhx/1Tpz2ZzhuRxUnJltrbAstnmQYVVbD3guK8xclp6H1vYC1hzSbV1ZLcnno0BdK1rzWHOI3ub7P5Vyz2Uda88ow56sxPcXAJ8iPZ/0+Iz9O5NO+87Gkia/GPssjyJ/2bW0f7OUP41zUx6zKOOc9LhGpOofRXoxefWuo/2cznIZ50NMpnPb8prwWTnPyET4TPBPjloavJFL7NpYt66f6he9pf+WMwZQoP9EDsYcXwgAR5KeQW+Sv6X9sylXooUkkr8/NbXa7y7yVh7C9UlPD3JXo5NXWjjIxy4PcvEBdE99gcqcybkdgdPOuDHWx+zzh1gPPoRygZ60KFSYwSZLIGHiPJmeexo8DG/5bKyXD+E8rmzmBDA/9fyVMDpn4mP65CDZYwkkfcDzKbclFpHme+8e0umcslmeS4Z9lpXyXPZxb2Ufw8wuRrRkdEMAM8zsXXffyszuBXCWu8+uVA5RVt4/mtmaAPKInsx9vOMvw0MB/MTdpwOAuz9lZlOK7VXVp+Lh4wFcb2ZnIXKEf7OrrgWjbx0DmJU0W7lSM5cASoNHHlym8ly25csOxhirIYVGezUzl8WBZ3uVSR9Ly0izZi7NDCPXHIwPVrYBKD9zOSiXQ3u++z5kWvOlZbHZjzseXCqScc2U7oFlK1r75OBSs45CCCH6O+7+PQDfK7N/7yrLvQVgxyrO8zKAl1P7ngXwbJmyZc9VPPYigB06O1+j9L1vHaLH+Kg1DB60LDaiJT1zmTO007LM9PFy5KyGZbFVBPSJU5FUOcYqDVibM1KRAMB6aw7GOx9G0QXLzcQ2N1kcGKg7KM1cVvJclpYnt3TjDOrqSumHiGUftWHMiF7ujBBCCNFdlJbFij6DPJcDGB5QallsRHrw2GQW+1Lb8wW0F7zzZbGoPoVGyddYMRVJ8Vi1y2LbCwWYVY7E+rG1h8QD4LLLYrs9oE/nnsswc6l7s1Z45lIIIYQQoqfQ4HIAk1wWq3X2QMeAPv++5SisO2xwdKw42BrS3Nmy2Oo9l2HmsvMItNUG9GkveMVZSyCauSxRPhVJrptTkUT33mWHb5dZpjSIb1FAn5pY1ZaPfzjQ4FIIIYQQPYmWxQ5geFmsPJcRre1Jz+WwwYOwonidKgXAYXJWy8xlyXOZ3WbNM5f5QqbfssT6a4XgD+VTkVi3RmmtlGOzxBAK6COqZ3nRSwsA761oq1BS9B8q/fiXFaAna386iA8yjm1MmnMgc3AfDn7y9VRbi0hzEKAzgrz2fZRlYSo40GwO0sL5uykoygO0e49U8JSrqdykIIdesSzsXud/Y33fvpTSLfWw5tFlHePhcS0eGQL6LJm6aSh0KJ17crItvBfkqFO2ivWSo8P+C6ZSEJ/pqfq8fQPpliCn+PJQnN5uD/IXE03ddmKwYQ1/781YL5/ZIV5IxAMnBH1+6tifg/zVHcH69YPPZKTlo2BKW3ryfMc8GIL4cLut64frvbsvivWDlrq/N6MgPpNoPwXYWX75rmH/eCq0/TbJtm6mQE8TNw+aAxLxPflIxv0NAPPp2FF0nms5mBTX5yA+ySBTSfi1mhWgi4P7AB0D/JSjnqA/ChQ0UNHgcgDDA8oVWhYLoGO02DWam+KoqWFAVEW02CrPF89cVhgMxjOXNQT0qTQTCgDrdTa4zOWqDiBUDyUfZaXB5WANLuuCB5RLP+rfM5fu3q1Ri4UQQvRzHJXH26LH0bLYAcwKRYvtQGs+ObgcNrgJrfkC2vOFeEDUWUAfqyGgT0hFUoXnsoaAPpUGqwCw/lq8LLZMQJ9B3RzQp7gsttJAvXSdtSy2Nt6jpbDv9aFlseVyUxbc8fYHLbGvOc2yFW149rXlWPD2hz3RRSGEEEI0iGYuBzBaFtuR1vYC1lkjvCyGNkeDn5VteRoQdbIstoaAPu1VLIstBb2pJRVJVvTZW4/bCQDwvy+GZTBZqUi6O6CPWXYuTiBEi9XMZW3wsthlfXxZ7Fvvr8K/lq7EEwuXYqdx63U4XnpfeuZf7+GMO54DEO5hIYQQQvQ9NLgcwJS+uOVMy2JLpJfFDh3Mg8vqPJe1BPRpr2LmsuSfrD4VSaGKmcuwLLbc4xk8qHsHlyVvq1WIFlsKnKQ8l7XxXnFwOShnfTqgj7vjrfcjc9iidz8qO7gs/aAz9/XlHY6J/7+9M4+TpCzy/i/qruq7e+4ZZnoEhvsQBhG8Zlc8VxRPwBOPFVDXVRff3RV1XV133Vc8XhU51gPWg8OD8VhBRXdQEYHhHpgBBqbn7jn67ror83n/yCsyO7Mqq7t6qro7vp/PfCY688nMJ6syqyoy4hdhEaSX6g0xpqPKvrhei2srueYyzWymjZty/Fcxm2vCBgLmda37z2uYfTnTtF3DtJV38Ab3b3VvfwGzv+Jo2vLdjm7u9kGms/zFJtv8zM+ZIBDAZ37wBdveE2GvxcnM/MT9tr0lc5Ztv+OH/+Xa1/e+/Le2ffDLjk7z5O+w7b/sbI89cNMNfxY75sYXX+T88S3HvPWWd7m34S/5Vx3zEy//tG3/+82fdVa8go3/vOf4V95um//nCaazvJSNOcoxl/x0l21vpUG4OJ/Zir3f5Lzfv3nxawPn0nUF049ewvScd7Hr5SVM57idHWMvv6YA4IeO+Thbl+ca31OYzUW2TGsMwHUfPMaXc21kJ7NPYPa9COaxgOX8ft7mWbeG2TsDtp+OZvII6Sx1uHTGQvORtNgFjJUW29uWREEilwCstFgnVdOOXJaYcxmvpbmcTuSydlps2MilFkpz6aTF+h07FiF7brNBsaLX1K5K5HJ6jJvOZSoebWnnciRXtu+pnUM53zHW+i17xbkUBEEQhLmAOJcLmFypAiKgJxN36S8XMt5WJO7IZci0WDL05WFwWpFUSYu1IpdhK9DqqmqaLeA4l0TwjR7GzVYkYZ3keilWtJqvoxT0mR5WQZ9UPIKRbOumxR4YLyARjSAZi2DnUNZ3jOVcPr5vfNauRUEQBEEQGoekxS5gciUNmXgUmURU0mJNigFpsTkWuaxd0IfCO4JmymeoyGXISKKm106LTcaiVduVWFrIsqaQiFXf13QolvWar6NT0EeuzXoYzZcQixBiEWqpgj6cXKmC8UIFR/WkMVGo+EYuK5qOUkVHPErIlTQUyrp9PwqCIAgCAONpvnQ6aSnEuVzA5EoaMskY0onogkqLHc+X7Wigl5InomalxRZKWqj2GQBACF8t1olcVmlFQvX1uSxrqmafS8BwILUAcWjcjKSWtdpO4HQoevqJ+pGMRu2xQnjG8hVEI4RYNIJsSTOjxK3llB0YL4IIWNyRREnTsXMoC6WUK4o+OF6AAtDblsCB8SKypQrSiSg0XWHr/nEs7Uw17wTmBEH9LLn2aq9nXdBPAt7zkmvCuP6y37NNgB7z9aw/4mHWK/CPfFuPHpBzzTX+y3/B7MuPda/7Covgf56tY9pAgPXWXH4JW+7WXHL95sk/Z9rIPzjayGfGnddlVc55vb5Hnr6J65n9gGNu2cR0lvv9xwBw9bk84bUP2fZWOtq2/05dZ9tff+vH/Y/tYezfHG3iv192pW3/5Duvtu033vwrZ4N/C97XCSeyeZ3yXGfFRsc8eKqjN00Mdbu2L7E2lVju1UCaML0rVrlXuXSWN7G+kTex9/vd7Jr47usdOz/gOdDzHPMqtviD/Hpl1/0pTDP5GO9fCbj0m5vZfvl1CN7fdROC4Z4V72HJPwO8OkuO93PAb19hemEKgoGkxS5gcqUKMoko0vEocuWF89jn2cNZ7Bnxb4rkdXoyLHJpFZap9UM9QvWlsALVq8Vajmc9BX3iVdJsLeKR4II6VpruTHSXfq0nLMI4PFLQZ3qM5kqIRcmOXo+2WMXYwbECDk0WsagtiXg0glQsimxJw5CnJ6d1j3an40jEInbq/h+ePoTxwsL5vBIEQRCEuYQ4lwuYXElDOh5FJhFbMK1IJosVFCu6b8ROKTWlz6WrFUk5nObSKOgTbj6VEGmx02lFEiZymYhFEA1wLhOmQztbjl2xotvOYxBS0Gd6jOfLOHNNL/7PK40IVasV9fnKb58CFLCy24g8pszrwKu73D2cM9dHccKyDmSLhkP5o827EYsQujNxCIIgCAscBaAwC/+EaSNpsQuYfElDWzKGVDw6751LK4L28VccB8A/smgUsIF/QR9X5LJxBX0qIdJiY3UW9Kloqmr/SIujetOBabF25DJsuLROiuXaabERUzcozmV9jObLWNPXZjtfrVTUJ1fS8KMHdmNpZ9KuumxFsD/+o0exuCOJWy49Bxdedw/2jBjOZSIWwbFLO7Bl3zjKmo7fPnEAi9oT9kMXQRAEQRBaB4lcLmCyZlrsQiros3W/obnwc6pKPgV7XJHLSri02HoK+lhpp9XSWKN1F/SpXS0WMM4jk/B/vmRrLiuzVC1Wq92KBDDeC9Fc1sdorozuTBy9bUZF4FaKXO4ZySGTiGFFt6NLSsYjiNDUwk1Fs3JzhAgnr+iCpivsHc2jrCks7kh6dy0IgiAIQgsgkcsFTL6kYXF7EpnE/I9cWjxRp3NpOV/5smanutZK56yvoI9xzGpprNG6W5HoSMZndmvb1WJnLXKpIRnCQUjGIhK5rANdVxgvlNGVjqMn01rO5UShjJFcGVe8fB3++PRhe3mECMu70iiUpzqXVnT75JVGYYwD40WcuqrLfugzPyA4X8WN1JIGFeDgBXm8x+MFPIIKgPDPlqCG74CrsMlyVsTnNj6GFVg5jxVreT3cfJfZm7lenjWmv5gt/hxvag/g12zfr2CFVda+yrFfycbf4JifiXzBvS/lFFzZ8l72GcZqG73p6R/b9ve+/LfOivN5ASQgcYNz/qW+rc6K4862zQ0/dwoKbfp3PkkAn3PMrRewYjnnO+bXP+1fxOflH/u5a1e/ef5rnT9esMmxJzfY5hu/yor4/Ilt/IJ7Xfs6UznXwgN/YPP6rlNA6WS1yLa3kFPAqNQHN3cx+5PM/uOjjj3KCiW9y/PeEy8C9BVmv5XNi10TvOiS8uzrS2xfH+TreEGfTY75WLUiOnyO7DpUA2zFg8zmxX3YtQIA6GA2L+ITptCPdxyHf4bw+77FNO86JI21xZDI5QImW6rYabFBOsT5xhP7jC9zP0fNSnvlzqX14zZXcvpcJmoUy7Gru4Z4PctW5LJKpNGOXIZ8f4zI5cxSBq3I50wK+lSjVNHttMhqJMS5rIuJQgVKAV3puJ0W2yoFfYYmS4gQ8J4Xrp2yrn9RBgVv5LLs6HKPW9YB64p+8/qjZnuqgiAIgiBME3EuFzD5koa0mRYLYErkYL6hlMK2wQkAgK6mOn925JI5j5EIIRWPoGCmxSaikcA2JhaWFKwcohiOpWmMVtFIWs5lWOffaEUys1vb6XM5ewV9ajnpgOlcSrXY0IzlDUeyO5Mw056jGMm2RuSyrCskYhHfVOzVvW12qx/AePhT0pzIZTIWRToRBRHw2tNWHLE5C4IgCIJQH5IWu4DJlTRk4lG7aE3OLPAzXymUdRQruqExLWnIlSroSDkVJ4s+abGAkRqbK1WQiEZD9Xy02nsUKzpSNaJzdkGfammxdURCjXF6qII+1eB9LmeDYkWrmV4MGI6+RC7DM5o3HMmutHFd92QS2PjwXjy2dwy3XHpOM6eGiqYHXuf9fRlUdGU/bCn56JtXdKVQ0ZV9boIgCIIgabGtx/z1JISq6LoynMtkzNYvzffIZbZk6ATakzHTudRczqXzg9bt9KTjUeRLOlS8dqVYwKgWC4SMXGohnMs6I5cVLVwrkmo4zuUsFfQJUS0WABKx6JRCL0IwVgqslRLb0xbHnuHW0MdouppSuMpyeO/YMggAdvTSetDz+defgnOONkRYfe2tXcSHiK4G8FIARQCTAP5eKbW5ubOqhfcnANdiHc/skNoxF0wXtv9OtjzgemRDErd81LWqVGB6zld9zLG5tpLpD5HmOjsAFzB7/bGOvZnp9q5hWrsb2Xi+XwDoZtq3zewc2ZS/F2E6y39g2x7n3lVpGzuvtKOzxLsdcxMxneXNnrm8iM+L2ac7pjrkfBfQJufz/DeLmMYSAL7F7PM22OY7vvxftv3nL59r289ETnLGX87mDuAB9hbBtcrRFm75NFv8OLO73ff5BSuck974xxPhy3nMLnje+zuY3c3W7WfXzvlsOdeSjniO8yfU5ksXOvY//GvwOH5/qWvY8v6A8VyvO+5Zx+/bdMByr86SE+QKVAJsQaiOpMUuUCx9k1Et1vhgyc3zoj65koZ4lNBuRmetvnkWfppLwGhHki9XDJ1gqMil8X+4tFjjyz5MQZ/QzqXPj/h6sVqjVGazz2WIarFJqRZbF1ZaLI9czlY7mWpceN09dvsfi2r9V9f0ZQA4D7isBwqretK+41uU2wGcopQ6DcB/ALilyfMRBEEQhCOORC4XKJYjmUlEkU5YRWvm95OpXEnDsUs6bIfJ60w7mku305M2+4DGIpFQRWjILD0SJp2zohkprFSlZ5/tXIZub6I3LHI5G3pHXXfr6aohBX3qY9TSXJrOZXcmYUefLWfP6iNp2UeKiq4C+7nazqX5XlsRzOVdqSMzuQaglPol+/MeAKuIKKKUkgtYEARhtlCQtNgWQ5zLBUquaDmXMaTjTruN+UyuVMGJKzqxZe8YAJ/IpZUWG58aucyVNCRikVBFaOpJi9WqRHMsphe5nKlzWV9vzXqwHNYwmstkLILJ4vx+6NEoLrzuHuwdNdo0dJrOZW8mHrrKcLX9AjNzRDVdVe2/mknEEI8Sinbk0nj4EJthBL6JfAjA/4hjKQiCICw0xLlcoOTKxg92I3JpROPmc6/LUkVHWVM4YXkntpq9LrOeSG1Qq5F0PIrRXAnFSjSUQ2RFIUuVcK1IqrUhAZyCPt/+4w6885z+mvusln4YlkYU9MmVKr7zKPoUawkiEY24qogK1aloCql4xC4k1Z1JQNMVlFJVo+OzzbgZUa2mLU7FosiVjZY/xZAp6EcSInoQwOqA1UuVUpo57iIYTfReXGVf7wfwfuOvLjRPz1TtuFyjdQqzeY+9M5jNe/IBeNGVjs2Vp/kgHZrTd7DU59WHsb9P6WfLeX9B1msxz/oWetn8Q99jgl2aS965y7YPTnre8g8x+/MbHJv373wps09g+33PLnAO9rJ9L2MrLmP2l5j9z+6p4E72HTPKTuAzjklvYmN4Fx82BgBwhWMe/QFHBPk9YhrVtKOzTI86gsT8JT3ufXGd49sd8wPqy7b9Tf5R8LkXOPbFbv3mxu6LnD9Yu1SXBHEDO8f3eT5jLmD2X+APzzlQ/Npxa39xG9Pouq49JtLlGlvXfcNtwKWtJFakTPGeofye4jrLvQhHL7N5z8olnnFBPXGnQwv3wxSOGOJcLlCslFDeimQ+Ry6tlN8Tl3dio/kjO1sMSIudUi02iv1jGtrq1FyGSSmt6HrVNiSA06YkbPzJqMrZoFYkM4h6bT+Yta8tjuXEh06LlVYkodF0Hd3phP13j1nYpxHR7JlgpesGpcUCQFsyisHxIs76tzuRLVWwqC0ROLYZKKXOqDWGiF4P4PMAXqqUOlBlX9cDuN7YZsX8bzAsCIIwW+gA8s2ehMAR53KBYqXFtiWcarHzuaBPwYx+rVvaDisw6dWYBhb0iRtpscWKbr9W1YhQ+B6RlSqpghZW5FKF1VzqqmqEKAxW5PKrv31q2n0FK7qOYsUncln2f539SM4xzWUztIyciq7Q1+48Be8xHbSKphDi0p01RnNGixTruvR7fVb3ZtCVjuOE5Z34+SP70J6aW19PRPQaAF8G8DKl1ECTpyMIgiAITWFufXsLDcNyrBZKWqylO+tKx21nzRu5tPtcetJiU4koCma6XneIHnuWO1UOWdCnliNYb4qrUThlptVije1nElLRdOXrYBcDWr74IQV96qOiK1tvCRjVYo3lOoDmeZdW5DJa5UEKEaE7k8BXL3ou9o3mq6bxWs7prZcFDmkG3wVQAvBjNveXKqWGmjclQRAEQTiyiHO5QLFSYBdKWqyuFCJkOE0R01mbErkMcHoyVuSyrIeKttmay7CRy1ppsRErcllzd8Y+QzistbBSKMNGS70opaAr/+itkxYbQnM5R9NimxXBrGjK9QDEdi5DFGaazTmP5WqnxXKaqQ+dLkqpxc2egyAIwoJDAZi/P1/nJOJcLlCyRacVSSo2/9NiNV3Z6ao/uuxcrLvydkyG1FwafS7DFxmx/LpwrUhq96S002Jr7s1o86Er4LaH9uKKVxxXe4MArCJD0/Qt7TRkXRkR8TTTXhYDqvL6kYhG7QqiQm0qum73uASAbqa5bCbetFghiNkqhuEt4GHR6/k7qOk6L/jB5zjAbE9P0j/yNp8BgijevP4XvNCPNyTN5KuPsWO+vt+xT2b256o0ryd2TH5bsII6B2nU+eMuT0GfbzD7g6z4yutZIZrbNjn2nY5U9+CHPPvKs/MqLHVsVlwHH2Tn8jM2dwA4+j72Bzv+crb4Fz+1zTOVc4wHvsuK6ADABsd85j1O4R78ms/FMfMbWRGfT7p39Xc//aJtf/0NH7ftbx7+GBvFzutyNvdrvgwX57Ft7uTFblhhqdQljq02ubd/4QbHvo1vzwrsKDaXHvYaj/DxgLtSURjOc8y7O92rXsCOqfg9xd8XVg3KVUjLe9/y+7MjYDn/DPAWzOLM9DNIivgIQGuV4xOOGE5abAyRCCEVj9gNzOcj3pYfmWQ0vOYyEYVSwHihHCra9uULTwcAu79gPfPyw4q0qhDupeVEzDTwE49ZabFOj0QrshUGXon38GTRtc7SXEpBn8bA3xtNV7ZDCTiay5lU/a3n+EFYabG3NkmLKgiCIAjCkUEilwsUS19ppcRmErEpztZ8QlduJ64tEQuuFuvTigQAxvLlUNG2etp4lEOmsBIQKnRp9cKcaXzImtN0A15cv3twooijejP23/WkxSZjEZQ1BV1XtpMt+GNFrbszTpXVtkQUEQLGCxUsD2hHUs9DA+82YVNox/JldKRic7lvpSAIgtCKKACFZk9C4IhzuUDJljTEo2Q7QlZF1PkKT4sFDKfaT3Np6TI5lgOuVLhom6VXDJUWG0JzCQCgcGmxZd045owjl9GZpcVWi1wGaVv9sKLIJU1HKtLEcqdzACtqzQv6EBFW9WSwaziHfWMFrOxOB20eyHi+jPZkfV8VXq3uWK7siqhOh2ZV4BUEQRAEITziXC5Q8qUKMgnn7U+bFVHnK5pyt/xoS8aQ9TjTJc2/YE+K9XAIU9CHO0S1CNOKBDAikWEcPU2zIpcz8y6dIkLT8y55VPjQhCct1nQuUyGiwEnuXDazl8YcwHIuvRWNl3UmkS1WsGckjzbzPs+VKqGuu8GxArYOTqC/L1NzLOeJ/RPoYK1ERvNlV/9NIYjZyh4JapJerXk612hxzeREwHKvrrIzwN7pmFxneR7Tut3p1Uwe75jPvMWxj2bjbmPbH+PRJm6/xrEvYstvZvb+px2bTnXslzzq3td6to5r8K56nmOft4HNiw2/zvN5mur2n9eHHHOVeptt76l6G7LX4pfs/Le8wTYfGx53lm8P3lPiKmfc0b3P2PbW7SVn0LscneTR6nHX9l8/1dFZul5jLqV9EZvj89nya7guE4Br1/zhGLuOeNTq6g3u7bku1qVV5PZKx+xji0eYDhYArmBzvmrAsT/V79guve9XHPMFH0UwfC5svy7NJR/j1Uzyn/ITAcsbCf9sqPYZIixUxLlcoORKmqvB/XyPXOo6wANfbckocsWpkUu/VE3uhIeqcFpHWmxF00M1tyeiUJrLeiKXtSJBFDJa6keumubSTj8OVy0WMHWaqWlOZoFQMa+3Lo9zSURYu6gN+bKGpw5M4sRP3wHdjMLXengwMJQF4BRoCkNZ0zFZrLiuwdFcacaRS0EQBEGYgg5Ji20xRACzQMl5KnimE9F53edySkGfRAyTHueyWNF8I5NpFjELlxZrRttCpsWG6WNZt+ayAfJEI1o6PfeSP6iYGrk0NZehqsWGjwK3AoNjBWSLzdEuD2VLIAAnreicsi4aIaxb0o7FHUl86K+PxdLOJIoVHQ/vHq26z93DOQBAqRL+s8HZxnnPRvNlV7quIAiCIAjzE3EuFyi5UgVtLCKXMdttzFe0KQV9pkZqixV9SjEfAEgnnGX1OJfhI5fhbsMwbl6lQWmxABAhmrbm0opcEs2sWqzlgIZx1L3UW+F2phyaKGLncA5bByeOeHGsiq7j8GQRfe0J9LUnfcck41GsXdSGj71sHVZ1p0EAfvno/qr73T1ipDoW63j9dxw2op2lim4/7BjLlaek6wqCIAiC0NoQ0Toi+ikRfZOI/i3MNpIWu0CZErmc92mxnoI+yanVcUsBfSzTcec2SYRIi7UL+jSoFQlgpqiGcPQa1YrE2sd044WW5jIViwZqLsOlGBtjpuNc+lFvldN62LJ3DIAR7d02OIETl0+NIM4WhydK0BWwtDNc7nAsGkF3Jo5fProPa3ozdhVZb6R6z4gZhawjcmw5lwrAgfEClnelDM1ljbRYKdgDhOsxV+1rm28TtC++3Nsvj8N1XQH6NJdwz7uvAcdce7ljr3qVY/+R6dPuZHpAL8dc6NhHs/3ircxmmsntx7q358e/iY1bzsbt/6Fjv5TrP/vd+3o9szez46/neeBsjGKav0tZP0cAKPo/CDpad4SGz9Cks+KBY9wDL2T742/FR5j9R6eXZgmOhrCrOOja1diVTqPP0k+cz66tb38uG+Xsa4Ny9KabyNMP8hTWJ/Mwn8uAY5/f79jvYmN+5t7Vya+937a30FnOiiuY9pX/3B3xaGQvZq/RRrac9TXFDn7tsGvyZo929yKup2QXQlBfVVfPTO8YrsG823971z1YRSTruieDdNDVelvWy2z2yZwGTaoWS0T9cF9V3QA6lVJTPliJaADGLK2Z/qNS6tfmunUAboSh+B0C8E6l1NPefdQxr6sAvBFAP4BTlFJb2LrpHOtvANyolPoZEX2ViM5USj1QbQOJXC5Qpmgu53FabLGiQQFTIpd+rUh802IT9aXFEhES0UjIViRhC/oQwsQuLd1dI5p2EGgGabHGl0oyHsHhyZJrnZUWW1dxpAY5l7PJY6ZzecKyTigFbBucOCIpskopHJgooC0Zrauqa29bAgfGi5goGHM8OFHEQ7tHMZYr22P2DBs/TsqaCiz45b1GLOcSAPaO5jFZrBj9N6WgjyAIgjBPUEoNKKVOt/7BcDR/WGWTN7Hxv2bLrwVwtVJqHYCrAVzn3ZCIkkS0xrOsnYhW+BxnI4AXw1X1qvaxiOhoIrrT8+/jAP4bwHlE9CUYTzL6q5wjAHEuFyzetNh0fP6mxeZMJ/K9L1xrL2tLxpAva3baHhBcLZY74WF0goARvQynuQzZ5zJsKxIrLbYBoUu/aGnYVFMrCv765670jVzGoxQqYmsX9KlD89csHts7hlQ8gvZUDM9Z3IZiRcd9Oxr5tNif8UIFhbKOZSGjlhY9mQRS8QiGsiVkixUMHM6irCk8vm/MHrN7JGdHwfePuR8NK6VwzaZnsHnnCMbzjkO643DWvqb3jOQwZq7rqqOgzy2XniORTEEQBGFOQEQJAG8D8J06t1sC4AwAN5mLbgJwBhEt9gw9GcBvieg4c7suAL8B8GrvPpVSf1JK7a73WEqpZ5RS53n+fVEpNaSU+jul1D8AmATwRK3zmjXnkoiuIqIdRKSI6OTZOo5QPxdedw92D+ddEbnMPI5cWj0XuTNt2Tw1thSguUy5CvqEa4eRiIWLXIbuc4mQrUistNhQe6zOzKrFakjHo1jamUK+rLkieEFVef1I1FEc6Ujg51xbyx7bM2ZfV52pOAjA/QOz71weGC8gFiH0ttUXGYxGCC89YSmGsyU8fXDSdvafPGCUsi9WNAyOF+xo6N4RJ8WqWNGwdXAC/3nHNujKKNhjMXA4i86Us82oGQkVzaUgCILQcKxqsY3+Bywios3s3/urzOK1APYqpR6sMuYHRPSoqV3sNpcdZW6nAYD5/z5zuY2Zhvq3AH5FRC8C8FsANyulvlX9xXER6lheiGglEX2biL4N4FGl1NZaB5rNyOVGBIdlhSajKTWlFUm+rEHXp+tONI5GF2Kx0l/bWMpgJmmcO9eZBqXFZupMiwWMoj7hCvqoUAV9Qkcu62hFUgujoM90+1xW0JaMYpFZXIYX9SlWtNCvoxUpLrZ4tdhSRcfgeMG+xqIRQiYZxf0Dw7NaWEgphbF8GX1tCZemOCznn7oCFV2hVNGxbmk7YhHCk4OGc7l/tACl4DiKozl7u+0Hs8gWK7jqzaehPRm1U2vzJQ37xgrIJGKIRQh7R/N25LI7I2mxgiAIwpzhsFJqPft3fZWx70H1qOWLlFKnATgLxvP/b9Q7GaXUXQA+DuAPADYppb5W7z6mg1Jqr1Lqvea/r9TeYhYL+iil/gQ0Jj1PaDy6rlz9G9OmXazorojmfMCKXFoOJeBELl0RNU1He2rqLRGPRmzFYxidoLVNmAqboQv6hNQ/Oq1IGpAWi3DRUj8MTW8MizsM5/LQRBFr+toAGNViw76OrRa5DMKJjjvXWGcqjkd2j+G0VV2IhHiPp8OhiSJ0BaSmec9uOG4x2pMxLGpPoCMVRzoRtSOXu81iPh2pOIAC9o4aj3JLFR3ZYgXLulJ405mrcNWvt+HARBGlim73xUzFI0jGItjDI5fS5zIE09HoBm0TZrm3AXpHiO33Mps3eT/FM+5Ox9xxDbM9jeltqvxm4UVW8EpmO0VlcAornvLYgHv7Hf3sDyaJ2n+ZYxMv4sOKwtzICscAwLucKD2OYQWBguqtfJQVlPmKp/DN+Wwde7meibCCOGk2/kzP9ut5gSBmr+KD/F/vsaS3Ago7r5+xe/WTbMiLnH1tyrD34XL+ngDYw+yLmM2L+LyNLd/A7Nf91LWrLek32PbL1c9t+zcfe60ziCsCetzv16ofOm/MnggriLQjoAgP56IBzwJeQIpdR69n185tTtGjqUV8OPx65/cOPyYvyMPx1ovhF8le+FPts2UJs72fCfXSnFZczcTUPb4EwDuCxlhpqkqpIhF9E4B1Me8GsJKIokopjYiiAFaYy73HWQrgMwD+HcDFRPRjpdR9dUw19LFmimguFyC6UlBwR+Qs+0i3UDgSWA4kL3binK8nchkQRbScg9ARt1jE1j9Wo6zpdnXZaoStFmsVXWmEL0NE0GdQ0CeTiGJRuxGtckcu/avy+pGcIwV9skUNRO7oeHsyhpKm247nbDAwZDiAqZCvp5dUPIqTVnTaVWYziSieGpyAUgq7zWI+qXgE8SjZabFPH5yAguNIt6fiUAp4/TfvxodvesjebzIWMdJi80ZBJ0mLFQRBEBqOguHTNvpfeC4B8D9KqSG/lUTUZmokQcaT/4sAPAwASqmDpn2xOfxiAA8ppQ559rEcxiOo/1RKXQngTQBuJqJzw04y7LEaQdOdSyJ6v5XPfOhQw89v3jOdlDsr9dWbFgsA773hft9t5jJWWiw/X8vR9GoBgyJqlrMWVisYj0ZQbmDkMkoELYSjZ53rdFIkvcxUc5lJRO3I5Rdu32Zfp0ZabHjtqrFNizuXpQqes6jN9V52mFHw8cLsOZc77Uhh8OtZT3GcTDyKbEnD3tE89ozkEIsQfnL5C3Dqqm47LfbxfUbLCCvzwbqXJgsVuyhYKh5FMh7FntE8RrKGc9kpzqUgCIIw/7gEnpRYIvoVEa03/1wKYBMRPQpgC4B1AD7Ahl8G4O+I6CkAf2f+7SUN4FNKqR8AgKntvABAu3cgEX2NiPbAyGG4k4geZ6vDHGvGNL3PpZnDfD0ArF+/vvmCvwWAJat0p8UaP05DBNvmHDmfgj6ZpFXQx4lcFqs6l0ZibOhqsTEK2YpED9WKJBIhu81INfJl41zDOKy1IBivye7hXM2xXgzNZQy9mQSI4HotihU99OvY6FYkY/kyorOQqp8tVvBXxy3BvlEnjSkejeCYJe047KmW20h2mpHLsGnGtbA+B95zw/0YmixhRXca0QhhZXcaD+8eBQA8sW8cETIimoARXY5HCZPFCoiAJR1JRCOERCyCUkXHs4eySMUjVR1gQRAEQZiLmG09vMtezexnATzXO4at3wZXXrvvmGcBPOtZ9iiAR33GfhjAh6d7rEbQdOdSOPJYETC/yOV00yBbGSs6yVMWrZS+SRa5LFapYmo5a0Fps17i0UioxvMVXYVqRRIh56FANRoZuVzckcSzh7P46y9tQm9bAqt6MqHmChhO++KOJGLRCPraEq4U4WK5nrRY4/0oNagVycDhLOIhj21FWmtF/UoVHWVN4eSVXfjKhae7tj2rvxe3bt497cJItdg5nEMyFmnI+w04zmW+pKFQ0XD8ckODt6I7jV88sg9vufbPAAiZRMyl6+1IxjBZrCAejeCkFZ245dJzcOcTB/C+/96M27cMulr+CDPFGwmfSdNy70+ACWZz/SXXfnG9Fy8ayLRmAIyK9xZMUOjSdLFG9LgtYLl33R3wZZL/0e9ZGdAjfC3TI+5gv9HOZ7q9d3l/u7EK0NvZa3Ee2+bjbPgiZl/r+U33C7bv17PtuQJqM9NZft6z/RZmX+6Y33/Pm2z77a/7sbPiIrYvqvL7kuseydE8YjMbcyazr3FrQf+vEVwBAPyfZ/+fs+IK9jnFa1zy1+v17HiA663/TS/TWY4wHW8PO/n3ujff8wGms/wIW3EB00lewJaP8GvFe02z68Wl8eVjBpj9UWbf7tkXf/03wR9+Px/PbK/A92DAuOEA2/s5Ua/OstrnzEw+j6aJjmB5qtAUZs25JKKvAXgDgGUwwrJDSqmTamwmHAGstFhvKxK+bj6RLVnVYtn52pFLnhYbXMXUTosNG3GLRkL2uVSIhXBYo5FwabHW+TQicrmoPYmOVBwnLO/ETfftQkVTOGbJlAyMgHlodmR8UXsSB8ad4hHFiuaKmlfDjlzWWS1WKYXB8QL6WHsOpRSKmo5Kg69xS1N5ysquKeuet7YHN923yxUhbyS7hrL2NVvLCebrg8bGIhGs6EohV9JQLOs4qicDAFjZk4YCUNIUth+ccD2YAoD2VAzDuTLKmo7nLDYKN63qNYpM5Mua/fBKEARBEIT5zaxpLpVSH1ZKrVJKxZRSy8SxbB0sJ6XNJy12vkYuieD6gWtFLq1IH2A4MNXTYmehz2XIgj4RolCOv+XENKo4aTIWwX+84RSs7E5jKFvCaK4UajuroA9gREC5c1jSwkcurUhxsVyfc7lnJI+dQzlXIaGhbAlKGQ49X14PFU2fco9YkfGTVnROGb9+jRHZmCjOzhPcgaFcw9NN1y3rQLZYQUVXWNVjOIgru42CPxOFMibNNjMcS3epK6DfrAq8stupYBi2l6sgCIIgCHObphf0EY48fpHL+ay5zBY1tHnS+KzImTty2bhqsWHSYnVdQVfhooyRkJVbcyUNEWp8C6AV3Smk41HsOJwLleKYLWp2GvKi9iQq3rTYsNpV0ympN3JpOY+8END+USd6+vSBySnb1ELTFR7dO4bdwzlXIa2JQgXpeNSVdm2xqieNRDRi94FsJKO5EsbyZVv72CiOW9aBgvm6HdVrRi67jf+t4jw88nzLpefgpx94Aawrbu0iw7nsSMXtHplh06kFQRAEQZjbiOZyjlPW9LpT7iznwNWaI25GHlogLbZY0VCqNG4eudLUSEsiFkEiGrFTZo2IVHBhlCjV51wmohGUa5yDlZ4ZD5UWa0SFdF1V7ZmYK1Uapr/jRIiwdlEGT+yfwJ6R6gV+NF0hX9amRC4t3WGxihPvhYiQjIVLMeaMmBFWHvHcy4rtPH1wAucc3VfXPp8cnEBZUxjKlrC6NwMiwki2hPFCBSu6Uq6xPO20LRlFfhbSYq1iPmGj6bWw5vzTB50mdavMtNgVZuRyNF9GNELIeKKlqXgUmWQU2aJmp8Va2z+xfzxU0SphuszkwYW3Xx4njA6L97lMe9YNMJvp3sA1df/ObK6z9PZm5D9V+L6G4cunPH9/7kH2B9PK7fg8W84aL/6Cae1u9vS55H0fu5nNZaW82x3XXOZv8czzQtu85rPvtu3L3/pdNohp8670akfZ67TRyZz4p/d8wVn+Ipal8W62r+96tKQfZed5NnuP+Nu6idn8pfukW7/5f97A/r6KfQ/+hQ1ayezfMvto97Rcxx8ZcOwrmM7ySTbmKu9rxMV47Byv5UPY+/KiCxEIfy9vYy/AeVc6dpad+/6geQDAjcz+BLO5GJXfn7za9vmefd3NbN7nMoyGGnB/hoTRTFbri9mEdnYKwOzVzROmgTiXc5wD40Zz87FcGV0hm5RbQSTucKUSxo+/VkiL3TtawHC2BKVUQyJwk8WKKwXYwvgxbHwQWpGxaq1ICOEjgvEQabGWkx82cgkY+jW/CJlFrqg1RG/pR0cqjiUdSQyOF3FooogP/dD4webV71ntKCznclF7Ako51109rUgA4z2ptxXJ0KTpXPLI5ZjxhUoAnjow4bdZVe4fMH7IljWFyWIFHak47txq/AjtYdpOL4lYpOHtSC687h4MmdHZRkcu1y11foQcZeomO1JxQ/erKxy3pN33AUdHMo5cUbOjnYCh1Xxi/7ikxQqCIAjCAkGcyzmOVYXz/oFhnHei92mvP76Ry4SlmWq+c1nWdGi6wv6xAlZ0e5+GuwlT0TNX0pBJTnVm2hIxW3NpRcaCImqxaKQupy0epZoOUVk31oeqFmuOyZWqO5fZWYpcWixqT+LgRNF2tPywUo2ta8rqdWm1UqmnFQlgRIvrTYsdzlrOpWY/pNg3mgeR8b4/VUdarHWNLe5IImYWVhrOltCRiuPXjx9AIhqxNbx+JKIRaLoydagz+8jlPW0LZlS2UZFLC6toExGwuD1pL0/GIsiVNJy0ohNfNqviclZ2p9DXnnDNx9JdztYDD0EQBEEQWgtxLptM2HYHQViO4n11OJdW6it3UqxiN3X+hp8VLH3eUwcmajqXYQiMXCaitiNkO5cBkcvlXSlX5dFaJENELq3zDJUWa0Uua6RX5koaZjMDsS0ZRYSA+3ZUcS6L7uq8i0wHxXIQ62lFAhjOWb0FfSznUlfASK6M3rYE9o0WkIxFkI5Hsf3gZF33nlIK9w8MoysdN53LMlb1KPzh6UPoaYtXjWhb7+/gWAHPWRyu2m4YChUNSzuT+PHl585oP97zT8WjdjSUn1fCdC5P9ClcBBgPYNo917JVEEg0l4IgCMKsIK1IWg5xLuc4lm7v3meHQm+jKQUit1MTjRAihJboR2dFuJ46MIENxy2pMbo2uVIFSzpSU5ZnkjFbc1ms4VzGo5FQTiAfX9O5NCOXodJirchluXp6Za6k2Y7obBAhQnsyhvsHhl2Rb07WE7lc1mm89qWKobucTlpsvZHLoaxT1Xb3cM5wLsfySEQjSCei2DWcQ1nTA9/TA+MFbNk7hqMXtyOdiKJY0XFgvIj+vgwiRBjNZbF3NI9SRUdvpvpDB+uaGhxvrHNZLOs4Ybm/ozdTlnamDB0Lw3ogEORc+mE7l3XcO0K98PuQP4wL+rUVNkU7SFfF98sb/D3Psz2/Tni/QC5OfGvAvriGDAjUdi5n+rgdTGv3OU8fwGPYuJex5XcwrdwOtvxnzOYSOADYPu7Yn2fneAobcxWzL2H2eo+er98xL3+C6SwvCtj+3ce6t3+fY15w7s22vfHjbAdrHfMz3/knx34F02UCANv1mWc4r/8Dx76AHd8xu64YtO2xkWXufV3M7KPZ9xH/anols7mEcKN7V/y12PCdbba9KdLvrFBMP3qxRyN7M7MvYDbXf17A3pebWD/KK17l3tdVvFcl00PyS9rVz5ILS70P//m96r3e/caUmf0Lz7iVqE1Y74t/PvCLmt+f9fbFBMTdWFjIN/4cRzMdlC37xvGma/7sSpsL3kb5OiDRSLiKpLNNWbcil/VX9PSDVy7ltCejyHk0l/VE1KphOJc1CvrYkcvazqA1pFbxpmyxMuspiB2pGLbuHw/sF2nN0dJcWhq8YtnoMamr+l7nZCyKUqW+gjgj2RKsS3zPiPGlum80j2QsYs+r2mt5zzNDyJY07DN1mla1145UDD2ZOAjA/rECetsS6EhV/9K0Uq15r89GUKhoWNOXqT1wGizrTGGZp0hROm5ErU9aPrWfZxCnrup2veaCIAiCIMxvxLmc41R0ZejAdBW63YGmK18HJErU9MhlxdRbAvUVXeGtIbxkixVfTVwmEcMT+8dx4XX31NRc1ks8WrvCqVPQp/YxIyHTYvNlDS9et3jaadZh6EjFoStgslD2Xe84l4bTlYpHkYhGUKhodoS4Hs1lYhrVYoeyJduh2T2SQ6mi4+BEEW89ew1ufI8RYbEKD/mxdb8RnRiaLKFU0TFRrKAjFUM6HkUsGkFn2iiedd4JS2oWebIjl2ONK2en6QplTc2ac+nH4o4kTl3VFbpwGACs6E7j9KO6XT1mBUEQBKFhWNViG/1PmDbiXM5xNF2hKx1HLEKYCPixP2UbFeBcRprvXI7mjXOIkNGLsBGtUXIlzbeQSlsiap9vaRpOTzWsVE5VJRJspc2GiVzygj7VyBb9z7WRtCdjiEYo8GGGFQ3m1YiT8QgKZd15nWc5LXY4W0IqFkU0QtgzksOB8QKUMgrMLOlIoiMVq+qobx2cQDxKUDDSWScKZaxf02M7kr2m/vaVJy8L3IdFNEKIRqihkcuiGcld09dWY2TjiBA1vHiQIAiCIAjzC3Eum0yxomPXcLjG9H5EiPCmM1fh5JVd9UUufaItkRZwLq0m7e3JGPJlzU5pnC5KKWRLFbT7VIvNJGP2+dqay2hjfjwnTIcxKHUUqK8VifV+WQWIgsiV/KO0jSQaIZy8ojPwerN0rLyIUioWRaGs2U5RkLbVj+kW9IlHjR6Zu4fz2Gf2uFzenQIRYd3SjqqRy237x9GVjqM3E8eB8QIKZR1nrXU0NovbE1i3pB1/FVITnIhGMDjWOOfSqhR7JCOXgiAIgiAItRCFbZMZzhaxf6yAnUPZuot9GD/WdXSm4zh7bS8e2T0aKtLX39eGvvapRUiiEao7/bDRjOSMyGVnKo7xQgVPHZjA6io/oLPFClLxaKCDli9rUMpwJL20JaK2xvTTP9sCoD6npxpWoZhSJbhojKXJDNNg3hpSLdqm6wr5snZE9G1n9ffi0b1jvhpdywFOs3mk4hFUdGX3n6yrWmwsYhcJCkOxomGyWEF3Jo5kLII9IznsNx07q/rwuqXteGT3qG9keWiyiIMTRazuzaA9GcOweU2e1d+LD2wwGrhfeN096GlLgIhqpiDfcuk5eMe378VggyKXulJ2lsKa3iMXuRRaFX5vhJES8M/CaoU5+IMTXqznwYDx456/efp03n8csSoyildFqVYl/AzHHGSLl7N97e93b8L7yu9hNr8lP8rsTcy+wHP4PCviw/f1CmafzOz9zOb1UQBgK7NHHXPVx5yCRHv+dIyz4g735iefe79t/3rcmUDin53XuPRVZ76f2fevCCLR72zzwL+zIj63sEGbHHPsDpa14X27+Ov6ALMfZvY1zP4cs1mRIgCu4kqbzmJVgG5iY97Niviwuk4AgH9g9iZmX8DnwgpOrWVFfK5ihYIAuAtLcfhBWaEf1wtTregOH8dee1ehH75fdg8AcN+T/Di8qnu171D+mcDHbfUOnAGN7fXsQqrFthwSuWwyVgRiLB8upZUzbv7A7EzHcfZzeqFgtN2oRbZY8S1w0wqaS6uFhFUk5amDwT+W8iUNj+8bx47D2cAxk3aKpl8rkhh0ZUQ3LSepUc6ltZ9qFWOtarGh0mKpdlpsoRLsSDeas9b2QinjWvKS84tcmpq7p833s570ymSdmkvrGopHjDTOPSN57DUjlyu6jC/xY5d0oKIrVHQ1Ra+7bdCYYyYRRUcqhvZkDETAqavCF7LxsrQzNeO02GJFw47DWTy4axSD40Wk49G69I+CIAiCIAizjUQum0zBTM0bnY5zmTd+2HemYjhzjfFUazxEauxksYJ2H11eK2guR3JmZCsexYquFL79xx2468lDvtGhvaM5KBjFW5bky3aRFY7dc9Enmme10jAcTGNZIwv6AKiqFaxMIy22Wiqn49Qdmcgl4H+95YoVEMHulQg4kconByddf4eh3oI+lnP5j686AQfGC/iXnz+OR3aPoicTt6Op65Z2GHMtaehKu+diFfOxIsDPWdyGYrm+9ilelnWmcHCiGFhMKwwP7xrFwYkiejJxLOlI+l7vzWQ2i0gJgiAIgjA3kMhlk7G0fuMzjFx2pY0UwGrOh0W2WEG7T/uEVnAuLcfg5vc/H8fW0MXtNvWYRMDO4ZxviqO35yInY+owNX0WIpcsLTaIK28z+kaF6Z9562XnIELVNZeWI52e5YI+gFHQJhWP+EbKsyUNbYmYq4qqFbm0KgDXWy22OA3nsrctgaN6jUjl77cdtFNiAeCUlV0gcsZaXHjdPbj2rmewuCNpvy/peBTdNXpZ1mJpVwqarjA0Of0SdNb1vro3g+5Mwo5mC4IgCMKCRQHQZuGfMG0kctlEShXd/tE8rbTYvKNPBIz0ykqNqpq6rowf/35psRGjOma9Te4byYjZQiIVj+K4ZR34w9OHAiuuWsV+VvdksHM4h4MTU3+4Z02Hq91Xc2ks05SyI5eN6nPppMUGO+vWMcNEsogImUSsalqs5UgficglYDhdBZ9CO7lSxaW3BIxzjEcJTw5OLy12us5lt5k2WtEVlnc5zmVXJo6+tgQOTxraSv4e5Eoa1vf3ohjiQU1YlnUaPSMHxwtY0pmqMdqf3cM5AI17AFINiUIuVIL0mFy7xTSA2IZgmI7NJYja4JjqBrb8vIDjAS692TGsGf32TY7NtY1TNGksyr+ZLV7PbD6VkQHHvqLfvSt+WkzmiWeY/Ulm/xuz13qmxTPl2Vz2fNN5jdNvH7Ht/J4e1+Zb3nqW88dlbMWAY57w2Ydse+sTz3X2+6oRcPJXsX13sxVMV/qWj91o278Yf62z7Ub3vE44lx3zDc4x8Ro2iOtP+evwONzwdXybIfjj3Z7/zSSbuGbAsanfsXfczpYz/aUXxa7JNNPh5rn+kl/32+GG6xm5zpJd32DzcjEQPC/XMfnD3yBd5Uzx/raaRW2lMGcQ57KJ7BnJ2fZobjqRS+Mm7kobb2MsEqmq8QOAXNlytqb+uP/bFz0H//LzxzFZqCDZ3ngHxdK1VfvhOpwroceMEh27pB1KAYUAx2LPSA4EYGlnEiO5EnaP5KfoSe3IpV+1WNMB0mchcmlFvaq9H5ZzGUZzCRgFcgoh0mK9jl0j4e9dIhbBWL4MpZQrSpkrab4ObjIWtbWP9Tjxv9920E6XDoNVNKivLeGKkK7sdjt1SzqSODxZwtBk0Xb4lFLIlzScsKwD//xqo3hDUP/UerCdy7ECTl01vX3sHskhEY3MuYilOKqCIAiCsHAQ57KJ7BxynMtGRC6jEUK+XD2tNVulwI0V3ZssVtDXnqx7Po1gJFuyewget8zQxQVVSN07kkcyFgERYVlnCk8dnMSTByZwxmrnKap1vr6RS3OZpqtZ0FwaDkC1tFgFS3MZ7piZRLRq5NJKmfV7b2eKn4OQjEWgK+MhRxfT//n12rzl0nPwD7c+gp88aDwGryctNkJUtV+ol+FsCdEIoSsdRyRCiEUIFV250mIB45pIx6M4MFHE4g7jes+XdSgAxy/vCH28MCztMvZfq2JstQcwe4bzDYusTwdxEgVBEISWQ8Ed4RaajjiXTWRgyKhymopHpuVcWttYhT1iUaraVxGA3ZuwmrMVpuLsbDGcK6PHdC6PWWK0ZglyLveM5O1Io6Xp2zmUdTmXlg7Rrz1Hm13Qp3bkst4f1vFY7YI+lr8UC1ngJR2v7lxmq5zrdKh1zgkztXXvSN7lXOZKFbT5RIr7WUuZepx4glF0KSxG9NtwLAHDka0UNSz3OJdEhKWdSQwM5ezenHnTQT9+WSeqUe/1sKgtiViEZtTrcvdIri6nXBAEQRAE4UgjzmUT2TmUQ1siiqN6M9NMiy0jEYvYjlUsEoGmK1Q0HbGAH+925NKn6IvV/mMyRMXZ2WI0V7KdkEwihniUUAxw0PaM5G3tnvWje8fhnGuMo0P073MJAAMsgtyotNiklRZbNXJpEKagD2A4jdX6XObLwcWLZgMrirZvNI8TVzjOWLakuZxNizWLnJ6MyXh4B9hKA612XXOGJ53otzHPKLJFbUpaLAD0tSexazhntwnJljQQgKPr7Dlbi0iEsKQjiVs378YDO0fqdk6LFQ2D4wWs6JqeXlNYKITRVfF+ed4+l3wbLnAL6ne3htleTRmHa8o2MZv3DeQPdG71bM+aH3KdJddmpt/g2N6ed3nWrzDP5jnKtnFJENn3sVfbdwmzuX6TS+0uYjZPg+f9LwHgH5nNtI1dX3AaeB6V2G3bW45hGksA4B9Ti/yXb913ovPHqGNqyzyfwVxKe5jZ7CPn1j+/C750u//c+h2ms2Sa0yUn7rLtg1tWOyuuDZgH4NbF8tePa1n5x2KfZ3t+WW5kdrof/jCd5UWeVd8d8N/epbPkQlym30S133hcY8wfgt7H7OOrbM8J6l07nd91YbYRjaUwFXkM3kR2DmWxpq8NXen49KrF5it2SizgRMCqtSMJmxbbLIazjuYSMBwvP91ioazh8GTRdiojREjGItg55O55We18n7O4Hcu7UkjHo3YaZdgoYi3iIQr6WKHLsK0pjII+1d7bI9eKBHCcS0tHaZEvVXznwCOX9aR3WhLDsEV9vNeQdSxvWixg3DOL2g3t5flf/xNGciWkE9FZKZqztCtVV0sVzr7RApSqrxCSIAiCIMx7dBhpsY3+J0wbcS6byM6hHNb0ZdCVjk9Pc1koozPtOE0ffdk6AEb0LwjLcezwaUXS7LTYsqZjolBxRZ1iEfJ1Lq1KsVe8/Dg7CpSMRTBw2ONcljTEo+TrLEQjhNW9GRy3rAOnrOzC8cs6XIVpZoLT5zI40qhPo6BPtbRYK6qZmQXNpR+xCIHIiFxy/DSXALCml0Uu63DerMhlWMdsKFtEX7tzDfW2JbC4PYGlHf5Rv9W9GazuzUBBoVDWp0S5b7n0nIboDZd1pqqmSVfDqhTbTM2lIAiCIAhCLSQttklousLukRxeftIyDGeLeGRP+GqYFuP5sity2WW2XRit4qhmqxR9sdNiZ8G5LFV07BnJ2VUz/bAqgva0uSOXBZ/5WJV2V/U40ahUPOpKcQUwpXrskcLpc1lbLBg+chmt2vfTem/TdaSczgQiQjIawR6PcxmkuezKxO3iOvVE4Cx/P6xjNpx1p8W2J2NoX9xuazC9RCOE5V0p3HLpOXjdN/4UOk25XpbNIHK527zev33JWb4RWEEQBEEQhFZAnMsmsW80j7Km0N+Xgabr04xcuqt0dpv2WBX95qSVOunz499Oi50FzeXd2w9j72jB1of6MZI15t3LUhoTsQjKOX1Kuwsrcrmqx0m1TMUjODhRxEi2ZDuo2aLmq7ecbRIxY67VWpFYRYTq0VxWrxarIRWPhHZWG0EiFpkauSxpge1QrOI6YaO1QH2RS01XGM2X0ds2vWrH1a7PmbKsMwVdGXMMwnudW+weziMeJSydZo9MQRAEQZiXWGmxQssgzmWTsNqQrO7L4PBkEYWyjmJFqyuiM5EvY3Wv41x1m07ZaD44ClqtNUcmEQXR7EQuH9hpVEuo5iAMZ63IpeMwx6MEpYw5dZhR2guvuwe7hnOIR40iKRaWYzAwlLWdy99vO4BCeXrRopkQps9loawhQsCikG1f0vFY1YI+uVLliDvSyVgEe0cc57Ki6ShVpqaWWqRiRlGietKPHc1l8LlbjOZKUMrocVkLK9W1EX0sw7DMLMYTdA8cnixi884RHLtkajGh3SM5rOxOH9EHB8J8Jajghxf+kJJ/J2xjNr/P3+LZ/k5m84JAvQH2poDlXlhxIJ/CYQYDnr/58fsdk3/08ltLsaIs3h+tm5g9ymxeOIYXguHH4EVoAHftlg2OOfaNZY69wbGP/sDjrs2f+c5J/vO6oOjYA2wCbI6l3Z6K2JPw52ZmX+GY6VVOBaT8sm73NgX2Yv6TYx48nRXx+Sobfyazv+Q5/iizP8ns/cw+j9l/5dn+ygHHvqjfsfl58Wd2eTb+u+OenbEHqXnvOot7/cfz624KB5jNr1V+f/ELLOxvtKACX97v53p/84UpHCYsZETA0ySsNiT9fW3oMp3CeqOXY/kyOpl20opcVqs8my1WECH/1EkiQnsiNivO5YO7TOeyirNlpcXylMaPnGfoSA9Puh3mUkXHiu60K9UxFXOcSwtdKYRsI9lQLI1nNWc6W9KQSUTrSovNlSqBPR9zxeCI4WyRiEVxcKJoO365cvV2KH3tCSyus4eq5agfHC/WGAlc8t37AbivoVbBijoG3QOP7B6FroARn/t3z3AOR7EHSYIgCIIgCK2IOJdN4ur/3Q4iI1WuK0Q6qxellFnQx3ly2xnCuZwsGtGtoMhReyrW8LTYiqbj4d2jAEJGLllarBXVOzzpdiyKFc2lt7zl0nPwo8vPAREwwNqRaDoQbVCRnnqoFbnUdYVcQOGbINKJKHQVXDU1e4Qjl7dceg4+cp7xhN/q35iz067959GTSaCftSQJg/Ug5OmDQY/WHSrm692KzqWlNw66B7YNTgBwetFydo/kXSngQutBRFcS0aNE9BARPUxEFzZ7ToIgCPMeBakW22KIc9kkCmUNyVgEEbMFBlBf5LJQ1lHWlKugTzRC6EzFqu5nslC9wE17svGRy22DE7ZWsFrk0qpy251xzsl2Lie8zqWOVd3uH9vJWBQrutKuyKWmq6akEjrVYv2jjLtHctCU8tW+BmFFA4NSY3NVtI6zxUqzuIzVjsQqKhQUuZwO8SghGiE8dWCi5tiyqWdsRedyeXcKkSpp50/sN9Ks8mXN9aApW6xgOFvCUb1SyKfF+YZS6lSl1HMBvBrAfxFRT7MnJQiCIAhHEtFcNolCWbc1gt3TcC7HC8ZY3ooEMHSX1faTLVXQ7tOGxKI91Xjn0kqJ7UzFqlY7Hc6W0Z6MuXSnizoMJ4FHLnVdoawpV+TSYu2iNty59QAuvO4e3HLpOUZabBMil061WH9nestew5GoJ9JoOWy5soYeOFpBSzuYK2l1OauNwKpc+snbtmBxRxKfes2J5lwb99FCREjHo3VFLrnmshFtRBpBMhZFVzqOkVwJuq6mVK/dtn/crqa7eecwXnrCUgDARdcb7/NRErlsaZRSY+zPdhjP0xv0ADesxmkm2ikvXOPFx3E9JNeU3VplX3ybfmY/GDD+VZ6/ub6NadLyXKvGNIRpz/Z5dkzu7g8wm+vujmH2056pPMPsUfizkdkbmL3eM46/xJ9j9nXMfpgdegvTWAJuWSvf952O9CB9AdNGXsVO3lsb7JXM5rLvPv/55gtV9nUVs1cx+2Fmb4Q/v/D8/RNm72D2WmaPBhwbgOva49GolzJ7gNnbVzp2ut+9q/zt7A82Dnczm2mC3Rt7/uaaV65j7gjYnj9crXbf8nttmNlrmL3Ts03Q/oI+T0RnKVRHnMsmoJRCsaKhy3QMu0Kks3oZNx1IHrkEjKhf9T6X2hGPXD6wcwRLO5OIRgjjhQoqmo6YT4XUkVzJVcwHMCrHEgGHmObSSgtd5RPJWdOXwV+eHbL/Dhu5bLQDYmkug9JiH983BgLqijSmTYctX/J/f7LFCnrbjqwDsrzb+FVhvScf/9EjAIC2BkdQ04kotnucS69zDQAVM1LcU0fkkm8/245ob1sCI7kyHto9ijPXOD/OCmUNOw5nsbQzhcGxAu4fGLGdS/t693mYIrQWRHQZgI8AOArAe5RSQ9W3EARBEGZM7a5vwhFE0mKbwFC2BF3BjtBNJy3WiVy6nbGudLx6n8tiBe1VolvtycZqLi+87h7csWUQZ67pwQc2GI+DvcV5LH6/7SCGPeti0Qh6MwkcYmmxVvGYld1THam1i9pQ0ZUdwdJUc9JioxFChPydywuvuwc/uHcX0oloXVHVjBnpDmpHki9rDU1HDUMyFsXijiRK5ntitVfJNLi3aDoexXC2hKHJ6kV9yrqOaIRmrVflTOnOxEEAPvTDB11Vap86MAFdGfdfWzKG+wecJ85Fs9qxFPRpLkT0IBEdDvgXBQCl1LVKqeMBPB/AlUTUF7Cv9xPRZiLaDOT8hgiCIAjCnKQ1f4HNc6ziJ1Z0q3M6zmXecAC7fJzLaoWBssXqRV8aHbksVXQUKzrOWN1jFzQZHPdXSgdFNBe1J11psaUqkZw1fUaxmEJFR0XToRSakhYLGLpLv7RYpRSyxUrdjqCdFhvgXGbrLBDUKFZ2p+3omtXDsdFOrlXU56kD1VNjK5pCvIXbdcQiEXSm4xjOllxVf7eaestMIoqOVAwP7hzBm6/5MwDjYUqEwrVXEWYPpdQZSqlFAf80z9jHAOyDOymSr79eKbVeKbUekIcGgiAIwvxB0mKbwAHTubKiK9EIoaNGIR4vY3ZarFdzWT1yOVms+Pa4tGi05tLa1xlremwd4uBYwUga81DRFdKJqY7B4g63c1ms6CDAt6H82kXGD7VCWcMBM9pZLXI5m2mQiVjEt4BRWVOo6Kruyq7pGgV98qVKw9NRw7CyO41tpnNk+paBzuV0X29rf9sPTuCco32DQQCMSLHfA4pWorctgR2Hs66HBFv3TyAdj+K2D7wAv992EO/7782YNNOfixUdyVi0rt6gwpGHiE5QSm017bUAngvgicbsfaY96vg2XFC4zTswBFzHxfVd3oJbS5h9ArMfDFjONWy8158XPo7r26r1IGT7Gzmb2ey7ktiDWv4M6zHP9+l6No4/3+S9LUeZvZHZ3ueqhwK2uYPZ3cz+oGf7u5jN+zbe4Jj5vwRoI5fBzZ4Qx9/LbP4aed+u7UwLe/dSx34TG/N8Zn+X2d5nxl9lNtelbmY214h2e7bn2sbbBtjyfmaz5cvZ8v0/de+q5w2OPcLX8X1x/WXQ9Q24NcrHMzuonyW/n/g9CLjvQ97Hlm/j1Vlygj5DpJ+lMD3EuawDP43XdLAid4mY82OxKx1vSFpsdzqB0YCCIYAZuQyhuVRKNeTH7EShAiLgpBWddouFAwGRy7KmI+Yz50XtCezc5VSALVR0JGIRX6fRatcwni/jHd+6FxGa6oAfKRLRiG9arFVRtd7iO+kqkUtdV8g1IS0WAFb2pFHUdCil7Mhlo1uixKOEjmSsalEfXVfIlrSWj/D1ZOLYAWCYaaO37h/Hccs6EImQrcWcKFTwzKFJo31Qg9OMhVnhX4noJABlABqAD1vOpiAIgiAsFOQXSxM4YDaD57qw7kydzqU5tsMncqkrYLJUmVLsBzBSJ2s5l0pZlUfd46bjXFt9NZOxKOKZCOJR8k2LLVY06ArBabETzg/xfEmz0yS9pOJRJGIRHJosoVDRcfyyjqb9MI9HIyhXpqrMrV6Qt152btUospdM3Bib8ynoU6hoUKrxWscwrOhKQSkj8pwzqwE3siWKdb29/pt3Y+NDe/Hk4ITvNfjs4UlouqrrNW0G8WgEHakYRrLGPfyWa/+MB3aN4i3rjXB+T1sC6XgUhyeLuOAbd0Mpp+WL0Loopd7S7DkIgiAIQqMgonUAvgBgEMCwUuqTYbZr7fyxecqBsQIWdyTxo8vOtZd1patXefUyXqggFY+42nZY+wHgq7ssVjSUNH2KQ8qx2pQ0IjW2VNGN1ifmj/1IhLCkI2VrTjlWpVzfyGVHEvmyhmyxgkJZq1m4JhOPIhYh3Pz+56PDx8E+UgSlxWZLFaRikbqdIDst1qedixXNbEparBkt3jY4gUMTRfS1Jew2O41k3ZIOV9R2slixI6UA8OCuUQBoeecSMPST+bKG2x/bj5KmQ9MVTlzulKDvSMVQKOtY3ZfBySs758Q5CYIgCMKRR8FIGGn0v9oQ0UYieoSIHiKiPxLR6Z71/UT0MPs3QETDbP0AEW1j618x7ZfB2edVRLSDiBQRnexZt46I7iGip8z/j62xu78BcKNS6gMA2onozDBzkF8sTWBwvGAXt7HoSsd9na4gxvNl38hkd8ZICRzNlXFUr3tdtljbAbF+xE4WK1gaOCoc2wbHoRRcfTWXdfk7l8NZw7H2q/K5qN3o2XV4smin1lZzLo9e3AYF4KQVXTOZ/oyJR8l2LnnUN1vSpuUsVCvoY0VD000q6AMYTm9/XwZLOpI1tpgexy5tR0VXKGs6Hto1gsf3jWN5l3MfPbRrBNEIIRVv3WdmVsT1zdf+GYcmivjEbY/Z9+zxyx1t0PKuFBKxCH582bm45Lv3NWWugiAIgiBU5V1Wj2Mieh2A7wA4w1qplBoAcLr1NxF9FVN9rzcppbYEHYCIkgCWKaV2smXtADqVUvt8NtkI4P8B+KPPumsBXK2U+j4RvR1GV92/JqKj4e6wCwC/Ns/nM0T0YhjC4X4ADwTN1UKcyyZwYLxgawMtDM1l+GjheKE8pVIsYKTFAsBofmoUNFu0tH7V02IBNKQdySO7R419MkdwWWfKrozJsbR0/s6l8eP78GQRzx4ytJfVqqK2SkEXIy3WHbl8dM8oShUd7Z31R/bSVVqR2DrOJkQuj1/WgTW9GXSl4w1Nh/VyzBKjakO+pOGzvzTqpIyYVVeJCA/tGkV7MjYnCt9EiHD04nZsOzCBsbxxTR+3zIlcpuJRrOxOz+rrKcxVvJ/NYYpu8OXTKeLDC4McDBjj/UzmRUcehD9ckjrA7H7POF4MZTtq0+n+s4cX8XmUrTjVMbmCgd92az3fs5vhzyJm82I5o8w+z7MN/znJ68Dcxmzefeliz/a8iA9/ZtvP7PsDtr/I09bpheyh4A72Gr2IvUajbPwqZn/KM6872KPpF7LlihX6uZKl+l/B3q+rPfv6OrP58T/PbJ6ox48BAGn+mJxHozYxe8Ax929gyz1FeEbuZX+cwmz+5vEiU/y69zztd41jx3dVNAq67r3FgYKK9QQV+glLvcXCwm4zf7AcS5MuAP7NzQEQUQLA2wDUG508GcBNRHS+UupJIuoCcDsMx+9bPnP6k3k87/GXwHB8X2YuugnAN4hosVLqGUz9hLL4O3P77yJkkTpxLpvA4HgB6/t7XMu60gmM5UuhC+mM5ytTivkAQHeVtiZWqmvVarHJxqXFPrR7FPEo2S1XACNy+b9PHrTP04rodaXjiEfJtwenFbk8NFHC1v0TiBBaOjpl4U2LVUrhn3/6GOJRwuJpRPciZlQubzqSulLQzbRQy+FshjMSiRCWdU2t3Ntojl1qOF97R/MYL1TQkYxholjB0wcnsbwrhScPTGBF19zRJqYTUfzjK4/H5375BJKxiG8mgiAIgiAI1dDhqhbdOBYZvYhtrldKXe8dRETfAvByAATglVX291oAe5VS3qdtPyDjh/+fAHxCKTXKVyqlHiCivwXwKyK6BMCXAHxfKTXFsazBUebxNXO/GhHtM5cf8tuAiFYC+Kz556Nhi9SJc3mEKZQ1jObKvmmxZU2ZesLab8tYvmxH9Fz7sSKXPprLUJHLBmouH9k9ijZPJGlZZwq5koaJolNwqKLr2PTkIfS1JXwda8sROzxZxLbBcaTjc6Mtg7da7IHxInYO53DMknbEItNzjjOJmO1I7h8rYHCsgIqm20V+5nNV0RVdKUTI0BuftKIT8WgED+8exa+3DOKMNT1GCnadFXibzbvP7cc3fv80krHWf1giCIIgCAuIw0Yv4uoopd4HAET0DgBfBPDqgKHvgRFt5LxIKbXbTH39KoBvAHi7zzHuIqKPA/gDgC8qpb4W+ixmgFJqL4D31rvd/P0l2qJYbTi8PRq7WMQxjHM5XijjOYvbpizvChG5PBJpsWP5Mp45lMUVL1+HD/21oxdeaka4BscKtnM5ki2jpOnoa/OP5vW2JUAEHJooYuv+8VCvTyvAq8UWKzp2j+TwknWL7cjjdEjHo3afy2yxgoqu8OzhrK2nbUYrkiMFESGdiCJb1PDp15yIL//2KbQnY7jmrmfQa+oWb73sXN908VYlEiGsW9pRdcxs9mIVBEEQBGHmKKW+R0TXE1GfUmqIryOiFQBeAuAdnm12m/8XieibAH7ut28iWgrgMwD+HcDFRPRjpVS9BRl2A1hJRFEzahkFsMJc3lDmxq/0FuHAeAGHJouBPSTDYBWz8aYRWlrJsXwZy0Ok9u0dydtOBicZiyKTiPpWnrUckJmmxdZqSXLhdffYzu1pR3W71lkR28Gxgv2jeihbxOreTGDfx3g0gp5MAo/vG8dIrow1vRnfca1GPBZBznwd9o7koQB87nUn4+M/fmTa+8wkonbk0qoau2XvGKxAbrMd79l2hJZ0pFBMaTj7OX0AjJ6Ru0fyUKqEY5a0zxnHstbrJA6lEJ6ZPAisppeq97OkmhaUp6xxHRjXZZ4QsNy7PaOH6QFHBhw73e8eF6SzxNPMZkUTt/O6AJ65rPfs22KC2R9h9gZmP+zZ5nRmX8DsyYAx3/ds/3xm/4XZRzN7L7M3MfsfPNkSPD7Tx14jrq3sZjbXex7jmdceZvcze5DpHz/Ilm9ktldh8buA418VsE3e8/uJb3MMe48f498VZzCbv9/8xQPcJ8rHdQYs53rPsC1v+bXO98XvL6/Gkmui+TZcX83vR6/+czp6TL95NYtZS4utillUp8dyEInofBhvgPcDDAAuAfA/3OkkojYAMaXUmJkWexGmfkqAiJYD+A2ALyilfkBEPwHwYyJ6u1Lqz2Hnq5Q6SEQPw1Bff9/8/yGllG9K7EwQ57IODk+WkC1qeHjPKM5Y3VN7Ax+sHo9+abGAfzqrF6UUKrrybdsBGLrLammx7UegFYm1/amrul3LbefSfB3Kmo6xfAVvf/4abB4YCdzfovYE/vKscU/WE51r5o/0BCvoM1Esozsdx+q+mTnGmUQUubKGiqajWDb2/djeMRy92Ch204yCPkcSbyXa3rYEdo/kkS9rOGN1d3MmJQiCIAjCQqMNwI9MJ1GD4VSer5RSRPQrAJ9WSlmazUsAfNiz/VIAPzEjiFEYxXI+4HOcNIBPKaU2AoBS6kEiugDu0mE2RPQ1AG8w199JRENKqZPM1ZcBuJGIPg1gBMA76z7rEIhzGZLJYsV2zn7z+IFpO5d2WmxXcFpsLazIVTTAuezKJDDqs58Jy7msEt1KxqJIRCOBzmW2WMG+sYLx/2geKwKau08WKzh6cduUSNKSTsM5OGBGcK0WJOeftqKqczk4VrDndPOl51SNULVK1CcRI5Q1HYWyhkJZR2/bVI1svaQTUeRLFSNaZy57fO+4XcgmM481l16s9/mET92BfFnDc6d5TwqCIAiCINSDUuoA3PkDfN2rPX+v8xnzLIDnhjjOswCe9Sx7FMCjAeM/jKmOrLVuG4Cz/dY1EqkiEZL7dgxBAYhFCL95YnDa+xkcKyKTiKLD4wTU41yOF4wxsWhw5HKsakGf6tGttmR0iuZS0xWePjiJLfvGMZoroaTp+PTPtkApNWV7pRSyxcqUlFjAaLEQixC+95ed0HSFQxNFpONRHL+sE7dcek6gY2i1KFnZnZ4zqY9xs6DPM4eMHKdMfOZRRaugzzNm65a2RBSP7xuzHxykG3CMuUZvm3E9TPeBT7Opdt0LgiAIglANBSMtttH/hOmycMIcM+Tu7UMgAlZ0p/DsoSy2H5y0++7Vw4HxApZ1pqZUO7WqvPo5hV52DeUA+PeEBAz9puXQcLLFCpKxSM0+kO2p2JTI5bbBcQxnS1jSkcRRPWkcmizizq0H8bKv/AF9bQnXj+NSRUdZU3iuj3MJmC06Kjo+98snkC1pWLtoamEiL3HTkT5hefXiJ61EImqc55ODhhgnbUaMZ+JIGJFLDc8eNt7fvvYEdg3n8cS+caTikcBo9mzTTOdoWVca6XjU1SdSEITpwO+hicBRDlyr5f05wTWUvPdgkP6S6xz5tl7Y9iO3+2+fH/Bss4HZrFchsQf4im3DNZvLPD0zvTI8i1Fm89qK/Pnr6Z5tHnPMJU/vsu2DL1vtrOC9ML3b896W/OfIYma/j9n3MPtLnoe0f4I/XGb4MLP7mO3tjvc5ZvPemhuZ/Qyzt7PfPes98+Lt2vn58oRA1/N+j9xtP+tBuZ+fDO9NuYHZm5j9Kve+XNtwnSbXU/YGLOfjAfd9EOTI8HOpppn0k/gBwf1pg8YLQmOQyGVI7t5+GB3JmJ3a+O7v3mcXtqmHwfHClEqxgJGqGqFwkct7dxgfDN7op0V3xl9zOVmsVC3mY88lGZ/iXD6w00hZXdGVQiwawbLOFE5Z2YWdQ1lUWLsN6zjA1GI+FoloBGP5Mm748wCWdaam6Oj8sBzpE5Z31hjZOsRjEZQ0hScHJ0BoTG/OTNwo6PPsoSxiEbIr7m7eOYy2OVJFt9HEIoS+9vr7hgqCIAiCIAiNRZzLEBj9FSfQmY4jGYvi1FVdGPGpxurHhdfd43JCB8cKvg3nIxFChAi3bq5dEfi+HcPIJKKBEcjOdByj+fKUlNVssRKqD2JHMjYlLfb+gRHEo4RELIJbLj0Ht152Lr7wxlNQ1hT2jLifuk0WNRABx3uf+JrEYxEoAK86eRlW94Zrem85l0H7bEWsPpdPHphAOhFFpAG9OY1qsRU8c2gS6XgU6YShkR3NlZGe58V8BEEQBEEQhNZmYYY66uTPzxhVSi2t38tPXIqrfjOGUkWvttkUdF3h4IR/5BIwCvRo+lQNI6es6Xhg5wg608FvXXc6gVJFx5uvvcdOk7zl0nMwWdRCOZdtySgOT7qd580Dw+hIxV3pvCet6EJvWwIjnihptlhBWyKGREBj+N5MAkopfOXCsnLufgAAIIhJREFU0/Gu74Rr09OejCEdj+KstXNHVxePkp0W+/ITl+KrF9XUbdcknYghXzYil6m44bAev7wDj+4Zw9BkuAcecxnRJgqCIAiC4KAA1M76E44c88q5rNV/cbr8efthdKRidpuHl5+0DFf95qmq0Uu/lNnhXAllTWFZp38KXyxCqNRwLh/dM4Z8WcOX33IaXnXKct8xVs/Miq5cGrz7dgzBp/7OFNpTcQyYuk4A2Duax/6xgm9/yY5kDMPZkl05tqLpyJYqVVNduzNxdGfiSNVRfCadMCLGSzr8HfNWJBGLIF/WkB/TcFyDIq6ZRBRlTWEoW7Kjviev7MKje8YQWaB5COJwCoIgCIIgtAbzyrnkNNLRvO2hvcgkorj1snMBGNVQk7HIFH2k3zGLZQ2j+TJKFR2DZvsNv7RYwHBGskUNSqkpBX8s7t1hRFGft9Yr6HboNiOsmq6DZz5rugosAsRpT7oL+mweMDWePv0xrb6YD+4awYruNJ48MAFdIVSEdL7DX+vjG1Rshvf4tJzzk1d0AQCiDUi7FQRhIeFtOcUlDvwzPKjJOh8TsgiPy+5n9kCV7XkVHV4Y5UFm80IwG9yb849GxY7vetjKvlPzrDjQjirFT9b2O3aWLV/EbF7s5nDwrg5GWBGfC9iK7cHbgD/DZcWBcDKzNwaM8SpSeK0bvv0NzF7PbF4o6BLPvk5h9s3M5q93UL2oZzx/H81s/loM8P2y96un3729q8MZLyy1gdl8mxcETAxwv2h8AuzhcQ/b7wi/PnlxH8B9H6wMOB6/P5cEjKk2LqjgVrU+5mHHCUIwCyrW4dU/hmHnUBbFio5O1v6CiGwHzK8VBwDoSmHfaB6P7h3DwFAOX//9006Py4C02K50HCVNxzOHsr7rAUNvecyS9qoFTKzKs4PjRdccNaUQCVFNtN3TimTzwAjaElGXY2Ox8YMvQCoesQv+PLx71NyHOJfcuWxUJVOuq7zuHetxy6Xn4OSVxhdbsyrFCoIgCIIgNAcd0oqktZhXHoBSChNVHL7pcMcWo8Z1t6e3YnsqhqFsCXtH81jVY6SLVjQdhydL+PubH8Iju8dQ0nT0ZOIgAN/c9Ax6M0al2aDIpXWMu5465NvmpKLp2DwwgtedvqLqnE9a0YWudByHJoo4NFFENEJ43Tf+hGJFR0eytgPyq8cGkS9rqGg6YtEI7h8Yxhlrenw1pvFoBKet6saDu0YBAI/sHkUsQkgG6C0Bd2R3Pqc0Wq9BRyqG5QHveb1YDn48Sjiqx3iKum5pBwhoSMEgQRAEQRAEQZgu8ypyuW+sgK37J3D59x+sWRgnLP/z2H60JaJT9IFWGxDLqQKAHUM57BzO4S/PDqEtGcVxS9uxbmkH1i5uw5KOJA5NFgEAiwOijhs/9EIcvbgNdz11yF7Go62vu/puTBYrOPs5fb7bW3Sl4zh+WQfOXN2N5yxqQ19bwqx0G6laCMjCioBlixre+M27sW1wAmeuCS6kc8aaHjy+dwyFsoaHd4/ihccuslOIFzLf+8tOAMBxSzsC05zrJR033r9ohOxqwal4FMu6Uugx2+QIgiAIgiAIQjOYN5HLQlnDgfECkrEIfvPEIJKxKNYtdUf/cqUKDk4UUdb0UNrDXUM5PLpnDJ949fF4/4uPdq3b+MEX4JTP/AYP7hzBa09bgUJZw2iuhMXtSdz7ifNc6bexSAT/+cZT8c7v3Id4lAJbiADAS9YtwQ/u3YlCWZvi0E4UDI3n2VX0lpxYNILFHUks7kjie+89O3RKsOVcPn1wwtZentXfi3vMqrlezlzdg2t0hXueHcLTByfx6oBCQzNhLkY4rXe5USmxgBO5THuujdU+xZYEQRAaQ1ADd65H5II+7zZBLaeYVs4lwvPq03hBtAPwpecNjj1yjXudeh/8GfC3aQPbtkoxtuczeyOzL2D2b5nt/QoNSmi5I2D5MZ6/u5l9MbM3VdnGYlXAcgD4KrMnmb2F2X9kNtdoesddwGx+iYwyez3LDNvs2dfIgGNTv2MzEzvY9TLCV3g5m9m3MJtrHu9m9iWe7bmumNfcYMcc+Ve2/CXM9l63PO1yG/zh9xC/17xaSP4bI4zO0vvTvxJgzxWstFihVZg3kcvbHtqLsqawdlEbvvfes1HWdGwdnECuZNwoSinsOJzFgfEifrfVfZMHaTH/57H9AODrLMWiEZy6qgsP7jK0hn95dgi6Anrb4lPGAsCL1y3Gyu4UemtEl15y3GIUKzruZUUEShUdGx/ai0MTJSRjkUDNZqNoT8YQIeBN196DHYeNqrGnH9UdOP65q411N9w9AKWqj11IWNHKRhXzARznsp5Ku4IgCIIgCIJwJGi5yGXYKq98nK4r/Ncfn0UmEUVnKoYXHLMIxy5tx9b9E/ja77bjn151PH756H5MFjUQgB/cuwuvPNlxGHWlECGacuxfPbYfpx/VbWsqvZyxpgf/9YdnUShr+N3Wg4gQ0JmKB84/aD+cs9f2IhmL4K4nD+El6xZj72gee0byeOiWhxGLEI4KGaGyjl9vASPAcGBOP6obLzxmEa7e9IzRhiUZC3xP+tqTWLvISec9bVV33cecj1j1ddYtbZxzaVXn9UYuBUEQBEEQBKHZtJxzWQ3LUbrxPc/DULYEXVcYyZbwluvuwbOHsjhmcZsdLepMxbG4PYFv/fFZ/M0py/Gfd2xDJhFFTyaOPz59GDuHsljT14bH943hgZ0jSMWj6GtLoK/diCzuHMrisb1juPLVweXVz1jdg4qu8MjuUdy59QBeduJSXPeO9YHjw5CKR3H2c/rww/t24vfbDmDPSB69bQnc8O6z8G+/fKJu7d50i+fEoxF87OXHBabCennu6m7sOJxFMhYR7Z9JVzqOld1pnFFFr1ovxy3twFpTRysIgiAIgrCwkbTYVqOlnMtSRccT+8fRkYzh5V+5C+3JGH76gRfgwuvuga4UxvJlDE2WcObnfotsSQMAnPX5OwEYlTnv+MiLXXrGo3ozqOhZvO7qP0FXRnpiOh7F4HgRP7xvFz72snX4h1sfQTRCIAJ2j+SxeySP9924GQ/vNtJdX3XKssD5nmGmg37/3l3YP1bAx162rur5hXXuXrJuMf7w1CEMDOXQnYnj6MVtOHVVd8OKwtRDmNYlAHDmmh789MG90oKEEYtGsKonHUrfGxYiwpKOqQWh5qImVRCEZuPNqpgIWMeX8x9xYXVcXKfJt+f9K3lzRHcPabdeje+LCQpHuIbO25uS6ehog2OrTWwMe5CsfsqW80aVANJMg8m1kfy0rhlgf/QH7sp1yncym/fD3I9geE/Ix5nNJYRc/8hfx2s8Othj2HnxbmgnMXuA2aMBNgDsYPYgs/Ps+Oml/svPZ8sBYLTfsfm57GDbHMO0lNsf9Uxmq7+dvpAdn2/D+1wOePbl/duP5wUcuxprmM3viSB9c9hsqCD9ZCP7XFa774WFSkt5ApquAF1h/1gBasxYtv7ffotiRUe+pKGiK0QjhDefuQoPmy0vXnDMItx4zwBWdKWnFMqJRyP4xKtPwMd//Ci603Hc8ZEXAwAu/d5mfPuPO/Czh/ZhcLyAdUvb0ZNJoFDWcGiiiId2jWAoW0JbMlo1lbWvPYn+vgx+8cg+RAj46+OrNbkNz4bjFuNzvzQq0h67uN1uMXGkHIjpHOesfuND0ErbFARBEARBEARhYdFSnkA6EcXRK7ug6QrZUgXZooaz1/biV1v2oysdR197Al3pOL7wxlPtFNl/fvUJeHj3aOA+33TmKlyz6Rl0sT6Vbzt7DX79+AEMjhfw5jNX4YtvPg2AkXZ7VG8G//3e5+FvvvanULo2q5rqmWt60BfQYqRejl7cjpNWdCIdj+JHlze3pUdYR3Pd0g4ct7Td1pwKs/cwQKKUgiAIgiAIgKTFth4t5VxaRCOEzlQcnak4vvjm07Br2KhYGqQf9PuxzZct9qQRvvCYRUjGIlAK+NT5J/puc+fHXoIwtCdjODxZwnknLK09uA7mYnppd0Z0gIIgCIIgCIKwUGk5D2Y2ojLefUYihBOXd4JYddfp0pNJYDhbwutOX1l7cB3MxejUXJyzIAiCIAiCIAiNoeWcSz9mw2lJxBpTZCURi+CE5Z1Y1jW7vScFQRAEYXoEFemY8A5k8DQzvv1EwHIvvFrNYyHmwov29FeZCy9s8iCzeSEWbyYRe/irxv2Xu7Y5g9mewjcFPi2+L1YQxzX/Ace8ky8HcCc/Z378TY55zAZmuzd3FRTihep54Rs+31OqZFjxl3iUz5EXuznVMXn77/33uvd1Hiuww7c/n23/i01sXxvYcs+81jJ7hG3D36PtQa8j4H4v2Lg8nzM/+WqBAj6OF+tJewea8G4DBzzrvEWn/I6/k9nV7rWge5UTttBOvQV5GlkcaLooSFpsazGrziURrQNwI4A+AEMA3qmUeno2jxmWRjmsEq0TBEEQBEEQBEEAGtcjwZ9rAVytlFoH4GoA183y8QRBEARBEARBEIQmMGuRSyJaAiNv4WXmopsAfIOIFiulDs3WcQVBEARBEARBWAgoTO2NKzST2UyLPQrAXqWUBgBKKY2I9pnLbeeSiN4P4P0AsHr16lmcjiAIgiAsRGZL78S1Zr2edUE6Sz6O6+MOBNiAW8/IdY5cZ8nnwjR/AIAbmM31lHczmxf34z9UPVouxf4+hc1rO98k5A/dtez8+9jyxzc49jNVtuc6y/3MHmX2mcx+gNnKsy/i69j8XTpJNoZLA/dzbSHcOssXnQp/+h1zNGAeU+AHDdLYDXj+DtJD8nH8+rq1yrb82s0HjONj+PXFrzvArbkM0lby3ukHA45djaD73vvTf7Y+H2ZTZym0MrOdFlsTpdT1Sqn1Sqn1ixcvbvZ0BEEQBEEQBEEQhGkwm5HL3QBWElHUjFpGAawwlwuCIAiCIAiCIMwAHVIttrWYtcilUuoggIcBXGwuuhjAQ6K3FARBEARBEARBmH/Mdp/LywDcSESfBjAC4J2zfDxBEARBEEKxxPM313WF0UvxaMFOz7owPy8GmM21anurbMPXnRCw3KuVCxrXH3AMrhc91r2KawIfu4Ed8hK2IqBvondaO5i2dJDpL/O8tySb795XubfnesxuZvOOb5uZlvSYfsfe7tGFqjh8+QXXuA6w/bJzPN+jcb2T6Sz/yFeMw5dqQafBoIH9zOZz3+TZAdf18mvsjBBjvNch7235Fmbza+TzzOZv+H2effF77/iAYwb1wvReSPx1CaOzFC2kMLvMqnOplNqGqcp6QRAEQRAEQRCEGSJpsa1G0wv6CIIgCIIgCIIgCHMfcS4FQRAEQRAEQRCEGTPbmktBEARBEARBEIRZQNJiWw1xLgVBEARhQRJUMKQa0ykMwsfxYiT8+NWK+PBteHEevj0vtuKFFc5BZ8B++wPGs+I4AKBY8ZdjLnHs7bwIz4PMfptj5vl+AVeBnDyby3JWEGeU2d2ezfffwsZdyFbwAjPsGHyO69l+AeBxZqdYgZyROx37PFZQ6E5WEOgXnuJA/JjE5qLYa7+c2ft/yrY9z72rPHstaQPbF38teUEe/v4C7vf1BwHHuZvZvDCV9ydyULGf7QFj+LwGEAzfnt8rvOgPL7bldaTSAesqAXaHZ/uJKnMThPqRtFhBEARBEARBEARhxkjkUhAEQRAEQRCEOYikxbYaErkUBEEQBEEQBEEQZoxELgVBEAShQRDRBgC/A/D3SqlvNHc2taimmeQ/D7iOLKxOk2/D9WJcE8d1a8dU2Rc/ZlCE4gxm3+VZ97wQ23BtJZ8718MBLj3l9n62nNt8jnzufL9emGZ0P9+GzTE/7tmG6SzVAFvO9YhMj0dMZ7nZo//sYfrAkU1sxQsc8xkEMOD5m+ksu9niEaat3M9fC/4+ePe10jEVn9cGZvPl3u35e/G2gHH8+FzTW03Hy7fn13GQvpjbQPB91BEwptrP9SDNZJA+WjSWwlSIKAXgWgDjAHSl1Eemuy+JXAqCIAhCAyCiDgD/CeD2Zs9FEARhYaBgOM+N/lcbIlpHRPcQ0VPm/8fWOy7sPsJCRFcR0Q4iUkR0ch3zfQOAu5RSHwaQI6L1052DOJeCIAiC0Bi+DOCLAA43eyKCIAjCrHMtgKuVUusAXA3gummMq7kPIkoS0RrPsnYiWuFzrI0AXgx36eMwx1oDJyS/A+50jLoQ51IQBEEQZggRvQpAt1Lqx82eiyAIgjC7ENESGDnVN5mLbgJwBhEtDjsu7D4AnAzgt0R0nLnPLgC/AfBq77yUUn9SSu2exnx3wXAwYf7v55yGoqU0lw888MBhIpr2yTSYRZi7T59l7keeuTpvQObeDObqvIHWmvua2kMaAxE9CGB1wOrjAHwBwMtC7uv9AN5v/jkJfObJmc9w2rTS+3mkOQLn/oHZ3X09qClLnPMfCbH9jmkcM8x+m8NCvu6B5p9/Az+79/8a+Myixu3PJkVEm9nf1yulrmd/HwVgr1JKAwCllEZE+8zlh0KOozD7UEo9QER/C+BXRHQJgC8B+L5S6lt1nE+t+f4UwDVEdCqAqFLq/jr27aKlnEullNdTbxpEtFkpNe1842Yicz/yzNV5AzL3ZjBX5w3M7bnPBKXUGUHriOiFAJYDuI+IAOOH2/lE1KuU+qzPvq4HcL13eTNYqO8nsLDPHVjY57+Qzx2YX+evlHpls+dwJFBK3UVEHwfwBwBfVEp9rcH7zwO4pBH7ainnUhAEQRDmGkqpPwFYYv1NRDcA2Nz61WIFQRCEabIbwEoiippRwCiAFebysOMo5D5AREsBfAbAvwO4mIh+rJS6bxbmO2NEcykIgiAIgiAIghASpdRBAA8DuNhcdDGAh5RSh8KOC7sPIloO4E4A/6mUuhLAmwDcTETnNnq+jUAil8G0RMrSNJG5H3nm6rwBmXszmKvzBub23I8ISqlLmj2HOljI7+dCPndgYZ//Qj53QM6/UVwG4EYi+jQMhfE7AYCIfgXg00qpzdXGhVhnkQbwKaXURgBQSj1IRBcAWOYdSERfg9FWZBmAO4loSCl1Uh3HmjGk1FSFtyAIgiAIgiAIgiDUg6TFCoIgCIIgCIIgCDNmwTuXRNRHRL8ioieJ6FEi+qnV84WI1hHRPUT0lPn/sc2erx9E9C9EpIjoZPPvlp83EaWI6BoiepqIHiOi683lc2HuryGih4joYfOaeYO5vOXmTkRXEdEOfn2YywPn2grn4Tfvavdqq8w7aO6e9f9Sz/txJKlyvfjer600d2H6ENHVRLSNiB4horuJaF5UkQwDEb3d/DypENGHmj2fI8FCvmdrfT7PZ2p9hwpCo1jwziWMzk//Vyl1nFLqVADPwOhXBgDXArhaKbUOwNUArmvSHAMhojMAPB9G81OLlp83gP8LoABgnVLqFACfMpe39NyJiAB8D8A7lFKnA3g7jPz1CFpz7hsBvBhTm+FWm2srnMdGTJ13tXsVaI15A8GvedD9CrT+3IPuV6B15i5Mn9sBnKKUOg3AfwC4pcnzOZI8DOAiAD9s8jyOJAv5nt2IgM/nBUCt71BBaAiiufRARG8EcDmAtwJ4CkAfK9k7BODY2aisNB2IKAlgE4y5/i+A1wA4iNafdzuAPQBWKaUm2fIlaP25E4zGw69VSt1NRC8G8C0AL0QLz52IBgC8Rim1pdrrDKMsdsucB5+3z7o3ArhcKXVeK1473rn73a+13o9WmHvQ/WqOa7m5CzODiPoA7AOQVkrpzZ7PkYIWSPsYuWcNqn23LBT4d2iz5yLMLyRyyTCjT5cD+DmAowDsVUppAGD+v89c3ip8FsD3lVI72LK5MO+jYXyZ/QsRbSaiTWQ0IW/5uSvjacxbAPyMiHbCeAr6LsyBuTOqzXVOnIfnXgXmxrz97leg9ecedL8CrT93oX4+BOB/FpJjucCQe1bw+w4VhIYhzqWbrwOYBNDyTy6J6BwAZwH4ZrPnMg1iAJ4Do7/OegD/COCnANqbOqsQEFEMwD8DeJ1Sag2A82GkkLX83OcZc+ZeBebn/UpEnc2dlhAWInqQiA4H/IuycRfBiKxf3rzZNpaw5y4IC4w59R0qzC2kz6UJEV0FIy3wfKWUTkS7AawkoihLHVkBYHdTJ+rwEgDHA9hhZGpiFYBfA/goWnvegKF1qAC4CQCUUvcS0WEAebT+3E8HsEIpdTcAmKmxWRh6tFafu0W1a5uqrGsJvPequXhO3q9E9G4Ymq9WnnvQ/boOhna0lecuAFBKnVFrDBG9HsDnAbxUKXVg9md1ZAhz7guMVv+sFGaZgO9QQWgYErkEQESfB3AmgAuUUkUAUEodhPGj72Jz2MUwnty3hCZBKfUFpdQKpVS/UqofhibqFUqpW9HC8wYApdRhGJqzlwFG5ToAlg7kYbTw3GFqz4joOAAgohNgNKp9Gq0/dwDVr+1Wv+797lVgTt+vv5kDcw+6X7e3+tyFcBDRawB8GcY1OdDk6QiziNyzC5ug71BBaCQLvqAPEZ0EYAsMxyZvLt6hlHo9ER0P4EYAPQBGALxTKfVkc2ZaHU8BjpafNxE9B8B3APQBKAO4Uil1+xyZ+9sA/BMA64nfvyilNrbi3InoawDeAMMBPgxgSCl1UrW5tsJ5+M0bhtbV915tlXmb8/B9zT1jBuAu9tPScw+6X1tp7sL0IaJDAEoAuIPxUqXUUJOmdMQgoosBfBHG9VsCkAXwcqXUE02d2CyykO/ZMJ/P85Vqv3ebNythPrLgnUtBEARBEARBEARh5kharCAIgiAIgiAIgjBjxLkUBEEQBEEQBEEQZow4l4IgCIIgCIIgCMKMEedSEARBEARBEARBmDHiXAqCIAiCIAiCIAgzRpxLYcFCRANEdPIROM5rieiLpt1PRO+fwb4UEbXXuc0NRLTHLMHut34DEW2e7pzMfZxLRA9PZ36CIAjzCSLqJaLdRHQWW3YlEf3kCBz7MiL6qGmfTkRv8ax/mIjSDTxe1e+Xae5Tvk8EYQ4Ta/YEBGG+o5T6OYCfm3/2A3g/gOuP8DS+oJT6xmztXCn1ZwCnE5H0NhIEYUGjlBomog8BuJGIngtgHYAPAHjuETj2tezP0wG8BsCtbP3ps3DYhn6/yPeJIMxtJHIpCB6I6J1E9BgRPUpEtxHREnP5JUT0GyK6hYgeJ6K7iWiZuS5BRNcT0VNE9Cci+gYR/Zht92Nz91cDONF8Kmutdz2d5X8T0RuIaBsR/ZmIPumZ59lE9L9E9ID572/qOMd/I6LtRHQXgL/xrHsXEd1r7vP3RHRcrXMUBEEQHJRSPwPwIIAvALgRwEeVUgf9xpqf+Z8xP+efJKI3snWvJKKHzO+j3xHRMeby44joHiJ6hIi2ENEV5vLPENFVRNQH4LMAzjO/b77GjmV9v5xl7uNR8/+zzOX9RHSYiD5vHvtJInph2HMnoveY83qEiO4noqVsn/9h7nMbEZ1JRP9lHv9e6/tUEIS5jTiXgsAgI032CwBerpQ6FcAWAF9nQ84CcIVS6iQATwD4O3P5pQBWAzgRwHkA1gcc4oMAnlBKna6UelONuSwB8F8AXqeUOhdAia3rBnAtgLcqpc6E8XT6OnN5rXM8H8BrYTzV/msAx7N1LwLwFgAvNvf7RQDfqfMcBUEQBOP74b0Adiqlbq0xVjc/518L4HoiWmJ+B3wPwNvM76MfAviBOf4DAH6llDpNKXUygG/znSmlhgB8GsCd5vfNh/l6IkoA+AmAT5n7/iSAn5jLAaAPwD1KqefCcFL/M8wJE9EGAJ8A8Aql1GkA/grAGNvnn8x9fhvA7wBcbR7/AQAfCnMMQRBaG3EuBcHNX8H4wt5v/n0dDEfK4m6l1G7T/guAo9l231NKVZRSBQA3NWAuzwfwoFLqSfNvnkp7LoC1AG4noocB3A5AATgmxH7/CsAtSqlJpZQG94+S8wGcBuBec79fAHAU267R5ygIgjBf+WsA4wCOI6JkjbHfBgDz8/5BGJ//ZwN4RCn1hDnmuzDSRTsA/AHAe4joc0T01wBG65zbcQBKSqk7zeP+DsYDzOPM9ZNKqV+aNv+uq8XfAPhvpdSgud9J8/vC2uf/mPaDAPYopR42/34A4b6/BEFoccS5FAQ3BMNJ4/C/C8zW4OiW/bYLiwbzXiSilGcuQRCAR80n0ta/o5RSYQrz1Nrvd9g+T1NKrWbrRAMjCIJQAyJaBOD/wXC2NgP413o2h/FZG/iZq5T6CYAXAHgGwD/BiHDWNcWAfVvLimwZ/64Ls98gvPsM+j4VBGEOI86lILj5HYBXM+3H3wK4M8R2/wvg7UQUMx3ECwPGjQPo8ix7Bka6LQC8lS2/B8BziehY8+/3sXV/BnAsEf2VtcDUz1T7Yrf4HYC3EFEbEUUBvJut+wWAdxLRKnOfUSI6s85zFARBWOh8E8B/KaUeAfD3AN5KrHqsD+8GAPPz/nQA98L4DjidiCzpwrsAPKSUmjC1l4NKqRtgOK7P89mn3/eNxTYASes7xPw/DuCp0Gfoj/UdstTcb3uIqK0gCPMIeUokLHTuJKIK+/sUAP8M4LdkVKp7FobWsBbXwkgnfRzAbhgpPhmfcY8CeJKItgDYZuouPwpDL7kfgJWGBKXUQTLalvyCiIbhrvg3QkSvBfBFIvoqgIQ51/NRI7qolPolEZ0D4GEA+2A4jSvNdX8goisB/Nx0PBMAfmSeT9hzFARBWLCQ0f5jHYC3Afbn9QcBfIeIzlRKlXw2KxLR3QAWAbjUKv5DRO8A8EMiigE4BODt5vi3AHgbEZVgfOb/vc8+fwfgCiJ6BMBdXHeplCqZhYO+RkRtALIA3mQun/a5K6XuIqL/gPHdqsOIVp4/7R0KgjDnIKUky00QGgERdZhPlJMwWo/8SCn1rRaY1w0ANjeiVHytczQd8g6l1ORMjyUIgrAQmMufm438fvHZ95x9XQRhISNpsYLQOO40i+A8AuBpADc0dTYOYwA+TI1pcu17jmQ2vQZwAIDegOMIgiAIrU8jv18AyPeJIMx1JHIpCIIgCIIgCIIgzBiJXAqCIAiCIAiCIAgzRpxLQRAEQRAEQRAEYcaIcykIgiAIgiAIgiDMGHEuBUEQBEEQBEEQhBkjzqUgCIIgCIIgCIIwY8S5FARBEARBEARBEGbM/wfJ+hl68sBb/wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "plotter.make_sub_plot(data)" ] @@ -560,9 +826,30 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plotting data with name banana\n", + "Plotting data with name monitor\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA40AAAHjCAYAAACHNfo6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9e5xdVXn//3nmkszkMoQJJNZAGC5RgopyqYjYGhVt0aIWBb7IV6VWRVvbr21ttWorVq3tr1XbeqEi1qhFDVa80EqtqEGLgEKkQQg2EQZkkEAyCZOZzH2e3x97nzmfs2evc/a5nzPzeb9e85p19ll77bXX3uec9ez1fJ7H3B1CCCGEEEIIIUQaHc3ugBBCCCGEEEKI1kVGoxBCCCGEEEKIIDIahRBCCCGEEEIEkdEohBBCCCGEECKIjEYhhBBCCCGEEEFkNAohhBBCCCGECCKjUbQUZjZgZm5mW5t0/Mvi419Wx7a93HM0s0EzG6x1n0oc8+pEfy9r5PHrjZltNzPlHBJCiDbDzLbEv0tXNLsvQiwVZDQuUsj4+lqz+1ILmmE01ZGvA3gvgK81uR+l+Aaifn692R1pFGZ2Rfy52dLsvggh2hv6Hea/yfj37F/M7MSUfX7NzK4zs1+a2ZSZ7Tezu83sM2b2skTd5IPIOTN73Mx+HrfxBjNb1bgzbj7xOGxvdj+EWIx0NbsDQiQYArAZwOPN7kgd+Zq7b212J0rh7t8A8I14hfFlJaq3I68BsKLZnRBCLHp+BuBLcbkPwBYAvwPgt83sme6+GwDM7HUArgYwDeA/AOwBsArASQAuBLAJ6Q/xvgXg1ri8GsBGAL8O4LcBvNfMXu3u36n9aTWVHyGaK+xrdkeEWCrIaBQthbtPA7i32f0Qix93f7DZfRBCLAnudfcrci/MzAB8BsBrAbwLwGVmtgLAPwI4BOBsd7+HGzCzXgBnBdr/T3f/h0T9ZQD+EMDfIHr492x3/5/anE7zcffD0FxBiIYi91QBADCzl5vZD8zskJmNmdmPzex3U+rNa/7M7DfM7BYzO2xmj5rZJ+IfvuQ+q8zsI2b2sJmNm9kOM7swTT+Y1DTmXgM4DsBxaRq7Yi6FoffMbKWZfSjRp1eUGKPnmdk3Y3ehCTO7x8zeYWY1e/gSH+NmGtNPm1l/kfp9ZvZ+M7s37tN+M/uamT09UP9iM/tJXHcovi69tXLp4etnZqfE4zViZvvM7FNmtjKu92IzuzU+zyEz+/NAe0eb2UfN7IHYVeuXcdsDKXUH47/VZvZPcd2J+F4+N6V+gaYxPv/3xC+/R/fZ9sR+lXxWfjs+37FajLMQon1xdwfwifjlmfH/pyJaVfxe0mCM9xl39+1lHGPK3f8ewBWIPCr+Nst+8ferm9kJZvZ2i1xdx83sTjP7zbhOn5l9PP6OHTez75rZkwPt1WVuYQlNY+51/PZzrXCusIX2q+Q3pd/M/tmi+cKsSb4glihaaRQwsz8B8PcAHgPwWQBTiNxarjazp7v7H6bs9jIA5yFylfkhgBcBeDOAfgD/h9ruBPBNAL8G4Pa4/V8B8DkAWdxlDiLS1b01fv0P9N6dGfZfgJl1APh3RC5CO+K+PBHAFwB8O7DPWwD8EyJXmK8DOADgOQA+COCZAC6opC+JY7wIkUvSNIAvxsd6CYAbASxDdF24/lEAvo/IRed78b5rAbwCwAvN7Fx3v4XqvxHAJwHsB/BpABMAXo7I9anWHA/gZkQuU1chcpV6PYA+M/sygK2INJ23IrrX/trMHnb3z1J/j47fPwHRdfkCgCchcit9iZmd4+7/mzhuN4D/QuQCdi2AIwFcAuCbZnamu+8s0uet8f/nIrpPB+PXuf+VflYuBvACRPfNdgAzRfoghFgaWOL1cPz/eDPrcPe5Gh3nIwDegeg3YY27HyxjvzMAXI9orngpohXLcxAZvF2IXG4HEP2O/LuZnezus7kG6jm3SGEQ0VzhPQAeQP77PPdepb8pywF8F9Fv8FcAdAIYKdIPIRYv7t52fwCOAfBRALcAOAzAAQw0uA9rEbmS3AdgHMD9AD4G4Ohmj0/cv4F4XL5Wot6JiIyUIQBPoO2rAPxP3Mav0/bL4m1TAJ5F23sA7AIwB2ADbX9DXP9aAEbbfy2u6wAuS+n31kQ/BwEMBs7hinifLVneA/C63NgA6KDtL4i3J/v0lHiMbgVwBG23+Jo7gFdmuCaXJdum9zrie2gGwK/S9i5ExrUnzx+RYekALklsPwmRJvQu2nYkgFFEE5NjafsKus7by+13kfvOAfxe4jx+El/zRwGcRu9tQGTA7ky09Zm4nb9IbH9NvP27KfeII/ph76btr423fzJRfzvih/4Z76VKPyszAH6tHp9z/elPf637h8DvcPzbsTV+7zPxto74O9IB/DeA3wXwZNBvVEr7ue+Yt5box01xvedn6HOuX7sArKXtr4i3H4h/ezrpvY/G711A2+o9t9gS178i0f9iv2WV/qZcD2BZs+8n/emv2X/t6p56EoCLEH15/aDRBzczQxRZ8lUA/g7RU7G/Q7Si8Y34/XbhUkQT+r9190dyG919FHlXvdem7PcFd7+V6k8geupoAE5PtA8A73Z3p/o/APCfNTmD8vm/8f93Oj3N9ShQQNpK4+WIxugt7v441XcA70T0o1LsCWgWnoNognGdu/+YjjED4C+SleNVxosA/Ie7f5Hfc/c9AD4F4Klm9tR488sArATwz+7+C6p7GMAHqux7Gj8HcCUdZwaRMWcArnf3n9B7Q4gmSadY7OprkR7n/wB4BMD/xw27++cQrTI/z8yOTTn2n3ikjc1xDSLD7cyUuuVQ6Wflq/H9LoRYmpxskVTiCjP7MCKvm9cimsP8NQDEv0UXAvgxgHMQBcS5F8BBi9z8L6xibvHL+P9RZezz1+6+n15/FZFBtwbAnzmtKALYFv9/Om2r99yiLKr8TXmHu0+lbBdiSdGu7qnfd/f1AGBmr0fkvtBINgF4NoDL3f2qeNt2M5tDNFF+EqJoae3AM+L/21Pe+16iDvOTlG1D8f81tO3pAPb7QpcPIFopPq9UB+vA0wEMe4puBJHx8sLEtrMQGYYvNbPfStlnHMDJNegTkP4Q5FYsdGn8VURPpldZep6qzfH/kwH8lNr/YUrdW1K2VctOfkgQk5s4pAVjeASR2896RPfRyYieMN/i7pMp9W9CdF8+A8AvaPtBdx/kiu4+Y2Z7UXhfVsIz4v/bU94r9lm5vcrjCiHamycjbyhNA3gYwL8AeL+735+rFD/we6aZnQngXETuob+G6HfyPADbzOySlO/WUlRibBZ8T7v7nJk9BmAFP3iMyX23P5G2PSP+vz2l7VrMLcql0t+UcXe/u4rjCrFoaEuj0TP6+pvZ8QDej8io7EPk4vBed/9qlV1YFv9P+rUfjP+30wpuX/x/b/INd3/czCapDpOWEiNn2HTSttUAdgeO/WjWTtaYIxDu04JxQKSlMKSs+BEra9AnIGVM4h/rZFjxXHCc58Z/pfq1Ov7/WEqdelyHNM3HTIb3uuP/wfsy5pFEvRyhVC0zKLwvK6HSz0qz7nMhRGvwdXd/edbK7n474odN8eriSwF8HpE++loA15V5/F+J/6d9/4cIfU9n+f4G6j+3KJdKf1PKGTMhFjXtZNyURexicBuiFZY/QvSluwPAV8zspVU2fzeiACR/YWZnWhQd9JkA/hLADe6+q8r2G0nuB2B98g0zOwKRCLwa0fchAEcH3ltXRbtM7iFC2g9K6EcpdOwF44Do/GcB9Li7Bf6OL7/bC/qEtH7FgXuSbkW5a/KBIn0yzweWORT/T7sWtboOtSR4Xya2NzIgQaWflXJXBYQQAkAkg3D3ryMKTAMAzytnfzNbhWjFcg7RHKhR1HtuUbP+JLYn+6TvbyFiFq3RiCighQF4rrv/q7t/y91fhyioyF9V03DsGvJiRC6oP0Y0Ib8NUVCcomkbWpA74/+/nvLecxN1KuF/AKw1syelvHd2Ge3MIvyU8WD8f0PKe6cF+tRvZqekvPeclG0/io/9qyX6WA05V6BfS3nvWVjoFfBjRD9mzyqz/WenvFfOdWgUP0MUHOdZsRYlSe5+rXXesZxOJ+1euzNxbKYWnxUhhAgxGv8v19X0rYgCnn2LNfkN4M74f6O/L+eQ/v3drN8UIRYNi9lo/E1EqR4eN7Ou3B+AbwF4upn1AYCZnZvI5xP6255o/1OIJuxvQvQF+CZEgTb+LV4Zahe+gGii/KdxOGoAUR5DROGrgSglRaXkgrS8j0X8ZvYcRNcoK8MAjjKz5Snv3RH//7889mb2ckQR1pL8a/z/A4n6L8BCPSMQhRefBfBxM/uV5Jtmtt7MNi/crSxuRhSp7QIzmzdO43v2fcnKcWCBfwPwAjN7c0qfOsyM3Va/gSjS8JvM7BiqtwJRcumWItacbEPkVvVH/J6ZXYooIMJ2d3+wxofOhb1PewBR78+KEGKJYmbHm9nvxSuDyfeORpSyCIh091na6zazP0b0AP0wgNRcuHWkWd+Xw0j5/m7ib4oQi4a21DRmZB2iMMqvCby/FpEbwg+RDxpSjMO5gpm9BFGk1HPjiJsA8H0zuw9RjrjzEeUYagVON7Otgff+y92/YGbvRJT49644h14ul9LxAD7h7jdVcfxPI7oGFyHKP/UdRF/aFyMy6l+CvHtpMb6HyCj/upndjCiYwH+4+12IruGPERl8/21mP0QUrOiF8TFenGhrK4BXI8ot9WMz+zYiAf/FiHIdvoQru/tdZvYHiNJr/K+ZfRORgXdkfJznINI7VuyW7O6zZvYmRPkjbzIzztM4hXz0O+bNiMT9n4gDQv0I0dPojYhWD9chEv7D3YfN7G2IDOA7zexLiJ66/nbc71OR7To0kj9D9EDmb8zseYhcq56EqM/7EZ1/rcmFpv+ARcmqDwF40N2/4O576vxZEUIsXY4A8HEAf2dm3wdwD6LfuY2I5hSrEEUcvzZl3980szVxeSWA4xB9d65D9Nvxandv6ApaE78vvwfgQjPbBmAnIsP1C7Ex2IzfFCEWDYvZaNyPKBLl3wbefxiYTzlwb5ltPy3+/+PE9h/F/zejdYzGY5Ee1hqI3Dq/4O7/n5ntAfDHAH4H0Qr0LgAfdPdPVXPwOHLlbyIKSHQRIleZexEZkhsRGUWHgg3keT8iQ/8liIzBDkTC9bvc3eOopv+AKMLc0xFdiy2IDMYCozEOLHM+IjflSwD8v7hPr0IUMKbAaIz3udLM7kQ0Rr+O6EdmGJHx+D5ET1Wrwt2/ZWa/EZ/rqxAZgNcDeBtStCjuvt/Mzo77fyHyuaZ+iWjl8ssp53AQUaLn18f93wbgwwAeRLbr0DDc/VEzOwuRVvilAJ6PqM/XAHgPRx2s4TF/amZvQHSd34Yo6NVNiK9vPT8rQoglzS5E8pbzADwz/utD9Dv9Y0ReO/8SCAT4G/GfI/rdeAzRw9T/APClOM1Fw2nS9+Vb4+Oci+h30RBFIH+wGb8pQiwmrPzIza1FvMLyKQDHc6j9eHXtbADPcPfxGh/zMkRJYl/o7jfS9hchcn99jbt/vpbHXIyY2ecR5Ux8SiD9xaKC7pvfcfetze1Nntgt90YAf+fuf5by/mVowX4LsZQxs/9EZCh8wN3f3ez+CCGEWNy0k/auADN7pZm9ElFUMAA4L96W03H9JSJ3j++b2WvN7Llm9nIze7eZ/UuVh78O0Url58zszWb2vFhX9jlE+X2qTemxqAjoAJ+DKNHublTh1tmmfCbWyW5t5EHNrD+pCY2j2H0gfvn1xHtXm5kjMhiFEC2CmV2CwkTqQgghRF1pZ/fULydefyL+fxOALe7+oEUJcq8A8NeIUg3sR5To/LOoAncfMbNnxW3/GSKN3i8RuRJe0SxXkBbmU2b2REQuoyOIdHg5LeMfVpCouF25E/kAALnXjeT5AK40s/9C9HDjCYhWKp4A4Bp3vzlR/xsAHqLXdzaik0KIMLF27SOIgnlU7RYvhBBCZKHt3VNF62NmrwFwOYAnI1r9fRzALYh0DT9sZt+WEnFgl/chSrtxFCKj/WeIHqJ81N1ni+wuhGgBzOwqACe6+wtiTwC5pwohhKg7MhqFEEKINiB2678RwNPd/WcyGoUQQjSKtnJPPeqoo3xgYKDZ3RBCCNEA7rjjjn3ufnTpmosfM+sG8EkAf+/uP8tQ/40A3ggAK1euPOPkk08uvsM9dxS+PuWMBVVmdxTW6Tx9YZ0C7ky0+YwzFrSTz94b0XFaVGfqjsJ9l50RbZ9ObA/RHdd36oM9Mf/+2C8Sx6UyT4wmqcyP2HsCdfh0uM25QDlUh9ufCNThfs4E2mS4/9zPpIsJv9cZOLYFtvOxud1lVJ6icnegfyG4P1OBOpZhO/eH+z9d5Hg83nyenfRihhrj/nEwgVBuq9DYdSYr5uqfkT+juTvyo9dFO/A9DwBYt/AzCOQ/y574zFr8mcX9hdtnDxQ2O/9d8EDi83lcie+IDNTyd+AkMz9culpZ/BL4lruXk3e8bWmrlcYzzzzTb7/99mZ3QwghRAMwszvc/cxm96MVMLN3A3gdomjT4/G2TCuNmX47T0tMtX+ycG4w0ltYp2+8xPzhqESb+3xBO92JGXHvaFRnMGFNDsRzlaGklRmTfAK+Pq4/vYaO9Vf592/7f4nj8r5U3kNlNig2B+pwP7jN8UA5VGcTlXcH6vRTeTjQJsOGJfdzOFGP9+8LHLsrsJ335XYHqDxI5Q2B/oVYTeWhQJ3uwHbuMx+X+/9okePxePO49K3Ml/eOpffvJCqPBPrHbfLY8XF5jFZ4frQPW/4s1h2Rr8P3PADgDxd+BoH8Z5k/LwDQfTD+jL+qcPtIItzj/HfBGxKfz09Vb2PU8nfgiWZ+eS0aIq4AlszvVFutNAohhBBLDTPbCOBdiPKrLk9EQV4eB8c5JF2yEEKEMcjwqYa2TbkhhBBCLBFOQOSx+K8ADtAfALwtLj+tOV0TQgixFJDBLYQQQrQ2dwJ4Xsr27yEyJD+NQi/JqmH3tZJuqMw/hRRl1bE7dktdUZfWhVgaJN1S53lF+vacu2r3i4u3O1/vwvT3k27lG5okjTOE3ZdFaWQ0CiGEEC2Mux8EsD253aKJ2APuvuC9chkn4dx0wMm1LOMRAP4S8xoqZi9FdulLvJdTafVTJBiuz0Es2IBM6sRyusTBx/PbNn0+X+5HIawV47bWUfkQlXdROaTj4zZZQ8e6OdbTjQS2M9zvkGaO+5nUK6b1Z2/iPZ5Uh/rEdfia8DmzNpT7GtJxZhlH1pUm750cI4E6POF9INBmMfgceP91pGPk82E9JD/R4WvIfWJtZD+9wffwevpcdK/KH42qYJwiM828M1/mz3UvObh3vyBR/spCfeP0N0nfCABkfHJb019O1BOLChmNQgghhBBCiEWNNI3VobETQggh2hB3r48vqBBCLELknlodMhqFEEIIUR6nJuzVnQGXtDhUfzJEf73ZHUjNIYSoM1+iz97/kavqYkJGoxBCCLHEyeVHBMJ5/jLB6SADifdYlwWkayXHSce4iTKgDVH7rKXLktdumnSbSc0grz4MUJ67H5FYjNtlHRxvD2kRWWfH4xvK/cfnw7rKkDaQt4dWUni8BovUL9DZUTmk++R+hPI/8rHXBtrkc+Djcv/GA3VYlxnSRvI4st6QSY5FqF3enzWqrBXleyQ0ppxTcQ/da7wvjxfrBx+l+t3IB5fhYDecNzJ0X4x/M/0zWEybGNQ3fyn9YU2zAt8kkXtqdWjshBBCCCGEEIsauadWh/I0CiGEEEIIIYQIopVGIYQQQjSNinNCCiHm2RXreDf0lKiYQi69xgz5C/d+I1Hp+fnPZjLfY/BzewrVuyeu8/2EC+uvN+4zL/fU6tDYCSGEEKI8kokOc3wuw8TytPz2kXvTm+mlie/4rvQ6rI08RBpI1pjxJGfH48BZOW1VIlAO17uZtGLl5hQM5TgMaQNZM8f1OQclnw8P+6HA9pAOL9SHZJ7CUP+4rfWB7XwOId0gjyOPe3dgO/eH9w3pWHl7aJLL7fA4JvW8p1J5Z6CtkI4zxH4qH6Z7jfvE4/sQl+kenqZ7mPflvKYAsClNT3g25WAMfL4qggPfnKJgVIsNGY1CCCGEEEKIRY00jdUho1EIIYQQQgixqJF7anVo7IQQQgiRSmbtUp2OV2tui136qkorIkQTKfczktMrdr+oHr0pg4vifr8lsf1JdD7/G3+//I5cW1sRGY1CCCGEKI8M4q2Qgck6Rs47Nz6Zvn9oktzdmS9vXpkvT89Sm6TvGqR9k/kUWdfGejLW6IUmTKyn2xOoEzJSQzq2UL7HkI6R+9kdKHOd6UCdJKEclKG2WH/IfWVCOsaQdjGkJeXt04Ht3P4glY+hckh7CRTqGEPXJAQfm/udZVw4ryXvO0A63iy5QjdQHsgCjs8Xu48H8IXoszZOn7Xpl4Q/w5keHvEJnUzljwG4Nt7/SY01DuWeWh0yGoUQQgghhBCLGhmN1aE8jUIIIYQQQgghgmilUQghhFgKvCbFFexzNdIo5sLrP5rYvq+4i2kx6q1vFEJEDMZa3/6MOR4brXWuJTJ8KkdjJ4QQQohUgpPBndXlY8u1u9vS910fmLz20qyli8q7KN/dJtI3svTyVNq+e6ywXdaK7UrkucsR0twNcf/Sdy3oR0gbF9L3cZ6+TYHtawNt7g9snwlsBwr1iqytW5GsmFKf282iuQzliwxpLnnsQjkrQ+6H3P9QLsfkuPAxegNl3md1oM69gToM59FcT/dq78Z8efzBfJnPJ6QBZZ3w+PX5z934qvznbi99FoYngIG0vI6VsDNDOyEj9TO071Y9PGoVZDQKIYQQQgghFjXSNFaHjEYhhBBCCCHEokZ5GqtDYyeEEEIsZibvAO6vsYvXRRnbC+Vbu00uZ0IsFoa785/n/un20TeK8pDRKIQQQiwF3gvg+NpP6EbuL3w9r4Mkg7Hv/yCvUyKDManvO9WLB84J5XVkPdhDpNFivdkgbU8ed4h0jKyPW4f07SGt214qh/R9zEigHMo1yHVY0xbKlchwfZ78JccipLlkfSMfg88/lCOSyyG9Im/n6xkax1C+Q+4naz35vLLkikz2iXWQGwJtcRwoHheuz/k4WZfKxx4eA06PPws7SPfL+/K9lpzM5z5H02tKP5zJGvwmxEwxgWwpsugea4jcU6tDRqMQQgghhBBiUSP31OpQnkYhhBBCCCGEWCSY2W+a2e1mttPMbjWzp1fbpgxuIYQQYqnAGsN7E+/dUiNXsQ+mu8Tlwvz3fie861Dsire6Spc5Idqd7fFnoa9EvXLI5WPklB5JQq7htcrFyC6z3RsTb9bZXXWpuKea2ZEArgHwHHffZWbPjl8/tZp2ZTQKIYQQi5nlZwDH3x4OSlMB0/+VL/cuB7oPxpM9NhifBODPU/LCPStfZT2A9bH+aoi0W4dIY8g6vpB+jvVdpx+RLw9R/sbBwL5AoV7tJCrvQjpcn/PusbyLJ1isjQvlLESG7aF8fDwufCzW9PEYhTSWyWOHcjMeDmznY/PxQvkrQ3kgQ2PE4x46T26Tx4jr87XhfiYNtJC2MqT75O18X4RyUGbJ68n1+dx4382/kd4O6w05H+P0LB2LPmtZ9Y21MiCXCmZ2DIC3AzgTwNMRXb7j3X0wpe6xAD4C4IWI7NwbAbzV3R9M1i3CiQD2u/suAHD3H5rZRjM73d13VHoeck8VQgghhBBCLGpymsZa/mXkJAAXATgA4AfB/pmtAPBdACcDeC2AVwPYBOB7ZlZkfXgBuwH0m9k5cbsvRfQcY6CMNhaglUYhhBBCCCHEoqaJ7qnfd/f1AGBmrwfwokC9NwA4AcCT3X1PXH8nIiPwcgAfjrftAJB07s1xmrv/wswuAPABM1sN4L8B3IPCheuykdEohBBCiKqY1yu+q4KdtyhnoxCtDruYJ+kdLeGumjWv64lxvXLW1NoAd5/LWPWlAG7NGYzxvveb2c0AXobYaHT30zMc8/sAtgCAmS0H8AjCHveZkNEohBBCLAU+UzsdEudI7O7MlwffWVhv4M8X7ttPmsPuZ+TLG54LYPtCfSPrykI6uVNpkjkzk5/EDgdy3CW1ZKwh42PwPiENIesDWYs3RGXWw4VyE2bRQK4P1AnlRAzl8uP+JJce+NxYQ8fthjR9WXIzhnSChwN1Qvkr1wbq8L7ch9D5F9N37g1sD40952MMjRG3eRZpEXd9K71NvuZ9dBIjdBKDtC+Q90HcRTrG0HmGdIz8ua4l3S8CcG3Kd9GJ9X94VKeUG0eZ2e30+ip3v6rCtp4C4Osp2+8GcGE5DZnZr7j7L+OXfwHgu2yMVoKMRiGEEEIIIcSipk7uqfvc/cwatdWPSPeYZBjAkWW29Vdm9muIbL1bAPxulX2T0SiEEEIIIYQQLUCaS0jZy7Du/oYa9KUAGY1CCCGEEEKIRU0b5Gk8gHRP4iORvgLZUGQ0CiGEEIuZB+8A3hw/qL6yPF1jMvhFyYAXCXLaxP6MgS1yycerndjtMAXXEUuX22r0OcrMG+jz9qn4O+L74c/gSC9plhuc87HFDZ+7Eekak5yCKPppU2nxsRNCCCFEqxGa6A1QmYPZDI8BG3xhkJsNFDhnMJCgvJdmKr2crJz7M5a+nYOIcKCVYtEgVhd5LwcHXgklYg8lbueJVygRPdfhdvi4KwLbQ8fi+ocD25Nt8flw8JhQsJlQEvvxQJn35eUVHlM+Bw5+EzqH0L5MKNBOX7JigFBgIz42Xze+p3jfHYkANmn78v08TjvzuR2iMo873/+rAwFvAPo8vyph6H0h3r4hxQAcit97Q4YHNG8B8OtRfTYYC/h5wHhcWg+AvgHg783sBHe/DwDMbADAOQDe0cyOATIahRBCCCGEEIscA9Bda8tnpnQVADCzV8bFM+L/55nZYwAec/eb4m2fQmRif93M3o1I3/g+AL8A8MladblSZDQKIYQQQgghRP34cuL1J+L/NyHOp+juY2b2fAAfAfB5RHbudwC81d1HG9TPIDIahRBCCJEn6aJWo32DbmlCiKYyvSbWQL64+raGu2Md83cy7nA2fS/cUl99oxnQ1aSVRnfP9AXo7g8CeEUVPaobMhqFEEKIxczGM4Arby9dL4XelyKvayqTDZfk92WDcXVPXkPF2znJ+N4J6gO1ub4L6J+O9h2gID3jk/k6/TSJ4wA8g6R7TE5+ttBk+YZv0vGoTkjfx5o4Tu4+FNiXNXCsoWPtWigRO2vm+Lgh3SMzHdh+OPGa+7SfyjxmoWPwuXH9kFaQ2+Hz5/NhDSQC20MBX/g6hcaU9ZDJY/UGyqwhXEdlvj4DVB6kMo8LH4/7yhrIU+ke3kX3MPcndG1Zxzg8kV5nwxHUzjcL35sf1yJ6yPnAN8gbjAAw/IL8Z5XpO5leFGu3DpgB3Z2NPeZioqPZHRBCCCGEEEII0bpopVEIIYQQQgixqKmLe+oSQkMnhBBCiNJcRJKc3Yn3ftK4XGu74xD8x2TM/SiEaA4F6XU8w3fEK+L699WnP3WJnrqE0NAJIYQQLYyZ/QaAtyNK8HwkgMcA/BDAFe5e+4TPFWoYK+EQ6awKtIGkddpBdVgzyPoupjdQhyc8ycnPbQktVw7W2Q1wu1RmrRzrGEPaRdYJMpyDMJTvL4t2MZQfkvVzIQ1cklA+Qz63kLYulJsx1D8+VkivyLo/Hi++TqwH5H1D2ki+p5L5O0Na1IJ7LNAn3h6abHObA4Hj7qR7mDW2of7weQ4ldIybY8ONtYeHxvLaw2SwqvljhHIoJmAN41Aov+LmxOvc980rFCir1ZHRKIQQQrQ2/QDuQBSi/TEAGxEler7VzJ7m7g80s3NCCNEWGAAFwqkYGY1CCCFEC+PuXwTwRd5mZj8CcC+AVwL4UDP6JYQQYukgo1EIIYRoP3Jejlk9DSvjomwuY+Nx+ovel2ZrdjB2XQulShBC1J6cHnhtYvY/vir9c57L3wgA3QfTXVST+/aONs69vWwMsnyqoKFDZ2ZbAHwv5a3H3X1NI/sihBBCtBNm1onIueo4AH8D4BEAX2pYB+6kMmkOxylohX3x/oJd/AsLm+F8cZxHbnWgDmvOOD9eaAIzSGXWerFmrpilzZow1pCx3i2Ud5CPx/o7Ph7nBeRzYF1eyJgOnQOPC49jqA/cT+4PUKhd5HZD+4fGMpR3MHQNQ5pDho/F+SW5nZCOMaSlZP1o8p4KaVF5O98j44E6TOj6JPWUOU6nTg1yDtLAcTf/RqKB/4yMuN2kMRwP5DLt++N8efrjgQ5lJBj4JqSZ/kpge0gbWQkyGquiWUP3hwB+TK9nQhWFEEIIAQC4DcAZcXkPgOe7+6NpFc3sjQDeCAAbN25sTO+EEEIsWpplNO5y91ubdGwhhBCiHXk1ogWMEwC8DcC3zew57j6YrOjuVwG4CgDOPPPMFvYXE0KIBqKVxorR0AkhhBBtgLvnovjfZmY3IPLEfAeAN1XdeFK7eG1t7EzWRAkhGs+u2L2zlhP+QXIZXZ8lX+qGxPfAUJOeYyl6alU0y2i8xsyOAnAQwLcAvMPdH2xSX4QQQoi2wt0PmtkeACfV9UBHUPm5AD61cLLHWjF+lw3G3uUUSINywQ2SdpG1aJynsUADSXVYi8d6s5AekLV6SX3bTOA9niRlyf/H7bDmjuF9Q/0O6e8GqcyaNq4f0jeOB+oU0wexhpCPF9IlhtoKaQtD+RhDOsmQZjTUZois0aP4GKH7KnQOrFHl/vE14bE7jsqss2QdI/eb22dd5chN+fJQ4PPVSwfey/lO/xoYiLWI3R+AEAU02mh8HFFo8JsQfX+fBuCdAG4xs9PStBnSZQghhBCFmNl6ACcDuKbZfRFCiLZAgXCqoqFD5+4/AfAT2nSTmX0fwI8QBcd5d8o+0mUIIYRYspjZVwHsALAT0QPXJwH4I0QLIcrRKIQQou403d529x1m9r8AfrXZfRFCCCFakFsBXATgTwAsA/ALANsBfDAtCE4jGOkt1Cj1jUfPdItpGJP7CCFaj9zntO+MxBv/Xbt1G87t2NC8jlpprIpWGTpDoRRCCCGEEADc/W8B/G1dDxIKfJOiYSyHnI6RDcZDpLMa6EnukSdniO6goBub6P2HqMwau1AOwWLaPZ4McX69QSqHNG0huB0+dkhbydq40OSMdYVZdH+s+2SdXBb9YLKtkIaQydJuMW1pqTaHM9RhQvdC1vMP5abMotHsC2xnHVbo/EPt8PXncSwYI85xmvh85T5TTFcFD3MGQjkYQ1DgGzYYm4IC4VRMR7M7YGZnInK1ua3ZfRFCCCGEEEIIUUhDVxrN7BoA9yPSZhxEFAjnzwEMAfhoI/sihBBCCCGEWCLIPbUqGj10PwVwCYA/QOQ18QiA6wC8x933NbgvQgghhMhIUbeyVwXeS+Z/LIPdJg2kELWkobri36FjjYWrzcPfIcV8yatBRmNVNDp66gcBfLCRxxRCCCFEbenupAAWAYOx+0X5ct/5mNdNznTn6w8H8shxjkPWcfGkZYDKnLNuiMqsB9vyxXz55ktSuwwgrCcLEcqRGNIxhvIahtoJHSuLBnJ/YDvXT+oBQ3o91hPy/usz1AmdZ1ZtYQ6+HqH6fKzQuPC+ofNNEsqLGGqX72GuH7ovQvD9vI7KfI+sDfRhL32+1hfRD6ce9+bC1xvK2z1I74sR1lCLlkb2thBCCCGEEGLxo0A4FdP0QDhCCCGEEEIIIVoXrTQKIYQQou40PdS+EKImhPK0tjzSNFaFhk4IIYQQJRmfLHw9r/8ikVb3i5DXK70hP7EcJz0h0x/II8dBcFjHFsrTt2kl9YGCbrBm7AbSMbKODQhr1EJ6N2431KeQ/q4rUEZgeyjvIvctlMtwdaAOl5O6ur7Ae9wP7l9yLEv1byZQZni8Qjk4+Zqx3jBLH4ppOkOExoz1hOOB7TOBOqG8m5upzJpGboev7S4qn0RlHpdu0jcC6bkW2RjsX7ng7fL4TL796TWFRmbqmH8hYHjWMiCWjMaqkHuqEEIIIYQQQoggsreFEEIIIYQQixutNFaFhk4IIYRYzNx/Rz4tRsgFjKHciiPXl3+4nHaxt0haixANzSMnxBJmOE59M0I+r0l3cSbLZ3Mw4Uqa5gLbdBQ9tWJkNAohhBCiJF1dgYAXlHOtINjN4/niIOkMN9DE9BDprFbTdtY8rSdtFesqd9Nkl9tnzdhmanPXRHqd5Ov+RPn0eOJ7A02IQ3nxWH/GhPI9TgfqsI5vPLCd+xnSHoZ0jCGtX5JqdIChnIehfUN5HUO6UtbrTQfqcDmkpSyW+5Hf4/EOXQeGrwm3e0ygPo8L30f9gTrc/rrE9lPje3aAtu+i+3d9YPbPeVM3HJEvJ/XMQHnBb7oPtqDxKMpGRqMQQgghhBBicSP31KrQ0AkhhBBCCCEWNzIaq0JDJ4QQQiwRapVfjdvpu7CqLrU8N9Yy5L8QDeA2umfPaqKuMKdxXJ9I39E7GvfpVfTZujOx8z1yaW01ZDQKIYQQS4CRr2aseG++2LcJwM7sk7fpWSpfnzdKB0jryPqo3i6gfzqqU5AjjrWIAb3i06jOTaTFYh3bjyaAc+NJ81mn5dvfdmdhvzn/4W4qh3LwbaBySGd2HvXvR9Q/nnixdo3b5Ha4byHdH/dzP5VDfd4bqJM8RgjW+vF4D1KZ8yiOB8rTgfKpVOa8k3xufNxQvkM+1llU5ryGz6XrdF0ilyHvz+MyQGUeS+7rOYVNzQeF2UoG3emJOjkt4nVUh8+N783TAzlObws85OB29tLNsyEQ/IY/p33r0usk4cA3yaA4LYFBgXCqQHkahRBCCCGEEEIE0UqjEEIIIYQQYnEjTWNVaOiEEEIIUZKCdBoZCWmahFhyXFRfd81Gu4MW6Jpj19i9tezDG+p0PrJ8KkZDJ4QQQixmjj8D+MLt6Ds14yQsg4aR87kNfz6vZer7Tv4Ygw/n6+wdy9cJ5e/jnI2s6WMtFmsAdwV0jMlcezmuvzNfXgHgfNJfcQ7GPgDnpQQPYZ3ZHtrO2j3WN96c0Mfl2ryZ2inQX1KZ9Ye8LwflmUnUyZ0P5+Nj7R6PXSiXIVCooeR+DFJ5JFDmsWCt39pAHdbohfJIFmjxUMilKRpAzoPIfdsR2Hd74HokSWo0t6Qc+9JL8nW2fzFf3kLBolgPyhrI0LGGAJwTH2sPX9uJ9PpcZkJa0sGJvJZyiNrnOsMPFuoVkwG10ugFsL5UEJ4vBN6vl8EoqkJGoxBCCCGEEGJxo0A4VSGjUQghhBBCCLG4kaaxKjR0QgghhKg7Oc0Vp9PYE3CxqyXV5Fm8JqPrYhZyboyVnOfV8b4DGdrfXEH77cqVVYzp1gxjWozdrZhSIoUsrqTYULpOsXZybq0LjArWcV6rvIvtjoxGIYQQYgkwft/CbeUYQvMJuQGsDwTFGSGRVn9PPkBGliAdoZx9Id1XaN/uQJ3DRfbPMg7jyOvgrqTzYSOtH8DmFK0bE9IAnhvIOxnKqRjS+vF4bQhsZ5LayL2BcigvIp8P51Hk67A3UIfPn9vhvvJ1C+VgDOXK5HZOojJrPQ9RmbWXQGFfWRP6zMDxtn4RuCy+/t1fzF//rV8ubDdX54bAPRK6H0P5KIeSFWM4lyn3c4C291GjvYFEoKtTcjnmPttDCZ3thpyOsZrAP58iA/PqGhrnWmmsCuVpFEIIIYQQQggRRPa2EEIIIYQQYvEjy6diNHRCCCHEUoXTcGRItbGYuKGIXvHmKvRq29tE6ybqw7b4+h9Tol6xfTcltufuqT60PsPdsXb5txNv/Cp9Ln7cpO8aRU+tChmNQgghxBKANYkACg3GatuKyemcknDwm26atLGxxho11rrxRHmQyqxRG0B6TjgOgrMWwLkBLdmWy/Llm7em9495Mx0rZCRyv1nTxzpDzh34EOkYWWfIEzXW2LHWj40MbjOZjzGnydxGfS6mGeVz4OvD+7C2jq8b6wb5nFlDyO3wefK5JTWXOdgo2x+ow/3hdli7yFq/JJyzkvvEGkIeo1CO0KRWMgdrMfkcQuPC91FfoA5vv4vuqXVc5/h8eRddqA30OV3dFf48MxsoB+XwV+mN71KZjifaFxmNQgghhBBCiMWNAuFUhYZOCCGEEEIIsbiR0VgVGjohhBBiKVBJCHzaZ+T69Coz5Pe3l8onHVH+4arhanK5fH2KqypQXc5GhtNp9Bep12psk95SlEFabtUcWVxXK+ZVuk9bERmNQgghxFLkZDQs4fYwaauS+f5yWkTO5cg6M9bSnbUyX941li+zjo85l4xHNhi7E+8lcypeUCLXIsP6M9ao8QQrlC/xVCoPUjmpjcvl9bs6cQ45bgv0jfvA4859GEjswzpAHnvefzeVRwJlPmfWBj4aOFZIu8d6wIeofDhQJzSx5T5zbk3WEvJxAeD1l+TL276YL4fyIibzV55X4j7ie3Ar1XkI+WvOhj7rFU+nz8IgfRb42q6mMu87TIOxIWEQlpNbFUDBd0jBA5RXJPb/SosE2lIgnIpRnkYhhBBCCCGEWCSY2TvN7GdmNmdmL0+812NmXzOzXWZ2p5l9y8xOKNWmjEYhhBBCCCHE4ianaazlX+vyHQAvBvD9wPtXuvtmd38GgOsBXF2qQRmNQgghhBBCiMVNk4xGMzvGzD5qZreY2WEzczMbCNQ91sz+zcweN7MRM7vOzDaWe6rufpu7/zzw3oS7f4s23Qqg5Epja9vIQgghhKgbI72BHIP1DHKRYFesnQrlRKyE6zO0WSwoTk5H1p3YXqtAOuVyvQLYtCW3Ba5bTr/Yl/pucwl9J4TYmzjHtHypyXYb+f3SIpwE4CIAdwD4AYAXpVUysxWIMlxOAngtAAfwfgDfM7NT3X0sbb8a8AcAvl6qkoxGIYQQYimQCHqTaXLI+yTq5yZ+46vy27soeurw4/lyKOk5B1pJBiHJwYYbB785iQJ4nET9CRlY51IS8hu/HDgYwn3tC5SBfEATPjafG59DQUCSwLHY2OUgMhzAhQO7cACSUPAaDrpzI5UHE8emS1gQbGYTlQ8Fjs0MBI7BSeYXBJ6Jx/HGRFCYtGMdQ2Wuk+TiuM2bqc099H6xIDrXUfCbAdrOY8xjsSFQZwOAs+J+bA3cn33IB2BiLs5ghDH9ADaXCC7F58xBqtKipCbrcH+LQoFvyjVER75aVvXsNC/lxvfdfT0AmNnrETAaAbwB0Yrfk919T1x/J6KP++UAPhxv2wEgtPp4mrv/ImvHzOzPATwJwAtK1ZXRKIQQQgghhFj8NCF6qrvPZaz6UgC35gzGeN/7zexmAC9DbDS6++m16JeZvQ3AKwCc6+6HS9WXplEIIYRoYczslWb2FTN7wMzG44h4HzSz1aX3FkIIUUeOMrPb6e+NVbT1FAA/Tdl+N4BTqmh3AWb2xwAuAfBCdz+YZR+tNAohhBCtzdsAPAjgnYg88U4DcAWA55nZs8t4il1bXiOdXY4bpDmsCbk8lAM1bPOaOrRZb5IurJcFXFRDlOsOWgmNOEbNqY976j53P7NGbfUDOJCyfRjAkeU0ZGbvBvAmAEcDeKqZfQzAme7+iJkdA+BDAO5DpJcEgJlS5yGjUQghhGhtznf3x+j1TWY2DOCzALYgCpxQNn3HJzbcU3xiWhC8ggzGYdIZrgCwIZ7g8qSyl/c/Kr99kDKrc5LxXaSh2kxJzHfTsQYTOqucZo8nNtPIJ1jnifhlz8JCblmofWPN3SCVT6Iya9dYD8kaMiap47s07t+VdFzW7u0PlFmXxjrBXYHjso6RtY5JTSIfY32gXV7ifpTKfP6seQvpO/lasZaS9ZoDgTo8vqH2Ge4/nz/75LFOEghrFPncuouUN6cYe8W0seUwnqIzBAo/R0w3gIGUz2bBoBJJve3pnq5R7O0pHdim3MA3fefTiyL640VK2mCVbaG7+/sRBdFJe++hStqU0SiEEEK0MAmDMceP4/8bUt4TQgiRpHmBcLJyAOmxpY5E+gpkQ2ntoRNCCCFEGs+N/4cWloQQQiRpQiCcMrgbka4xySkA7mlwXxYgo1EIIYRoI8xsA4C/AnCju98eqPNGAG8EgGMtSovR++LG9I9TcBSwob4aqFy6i0onNtsDuRnrjfSQi5fr4msbSkuSJJQH9BrafmmZ+kZmZ07fGXBhLUYmDeNF5NqdcCtNy984vYZS1Ezmtxe4py4tvgHg783sBHe/DwDMbADAOQDe0cyOATIahRBCiLbBzFYhSsI8A+B3QvXc/SoAVwHA6Z2WOsscub/wdVn6qs/lm1z95fzEr5ue4vcuz5e7SZfIT/pZA7d3AtgUTyx7aZI8PZuvwzorzo/HDAW2czCRZC5H1uhNA9iSkneR+8p5/ljfyP0bCNRn2LeYpWV8bjxRYx0ja/pYh8jaO2Z1oE5SY8n94PNhw4fHYiBwPL4OSZ1pDtZMcp/43Pi+HAxs53b4fEIPALh91jcmc3TydeNj8LF7kdcu3kb3S+g+DOUBZY5BPvfnNQFDckegb6G8i6wB7vtt2k65KEcmgFPj43JOh6TBOBPQQdaKketJB1nLhypNdE81s1fGxTPi/+eZ2WMAHnP3m+JtnwLwFgBfjwPZOID3AfgFgE82sr9pyGgUQggh2gAz60H0JPoEAM+NgxkIIYTIQnM1jcmQPp+I/9+EKKAZ3H3MzJ4P4CMAPo+ox98B8FZ3H21QP4PIaBRCCCFaHDPrBvAVAM9ElIj5riZ3SQghREbcPdOSqbs/COAVde5ORchoFEIIIVoYM+sAcA2AFwB4ibvf2uQu1Y29ddD3sU7s3Ix6sO3SGYoyyN0vvSXqlcPVdWizXuR0zMV006x17h2tXJdZFYZWD4TT0shoFEIIIVqbjwO4EMAHAIyZGWcZfKiUm2rHaWeg9/aF8XKqyRFX0A7nYDstYWz9JHpvFxlhBVo00lxx3jmeKA/R9pCujHVsrBMMadqSOj4+Xkh/t5nKw4FyaEwHqMzavZlAHc67yLo6zinI7bBekdlEZdbx8fkn5Wmsp2Qd43hge1eGOny8gmuLdLgOhwcOTVr5HDYn3jvLF+bf5A8M52bk/JBA4f3D7/F9yH3lnJU8FiENLJDXz26j/vE1GAfw+pSHHTym3J9BPi59dp7J+kbSMWYJ/FQszyIbg+PfzBuE6wN1mO6D+XYbEoCq9VNutDQdze6AEEIIIYpyXvz/XQBuSfy9vlmdEkIIsXSQvS2EEEK0MO4+0Ow+CCHEokCWT8Vo6IQQQojFzH135POnXVuFluitCRezf2iSLqkKtkmruOS4Tde8LHbkcjmShbA/JcXGphL6YE7T0S0d4aJARqMQQgghasLIvYWvcxq/zSTSG3oUqfSS5movabFCWifW8SU1ijn2B7YnNYD7AVwcT4KvSxgZF8Tbb6DtrNdjTSNrILnfA1TmsLfTgTJr4FgzxzqxnVReQWXWVY4AOC8l3x9rHZM6vnOoHDo31keyPcE6Pu4r6wb5Wr3+knz5OtLZhcYllI+R67Be8fTAdr42PI7cfrJd1sryuPD14fsipDMN3asXZwzSlGMLlbmffA34OjPdgXKob8XIEtRmera4LrJhSNNYFRo6IYQQQgghxOJG0VOrQoFwhBBCCCGEEEIE0UqjEEIIIerD+vbXk+XcOvtL1GtVpONscV4VXZ/xb+Q33TxWWOXcFNfp09Fk4s920t18Q8DNljWO866qv5rfNvLTfN2+lbXp4gLknloVGjohhBBiMXPCGcC1C/M0lk2GwDcFuiUyGIdJBMZ6uJEJYHM8ydxBE+KTSN94F+kbWbs1QOWQ7nEt8hPurFxA9VkHOJyod6kvzEG5nd7n8xykMmvOkrw+JadgKD8gn3NIu8l6Oz7u7kAdoFDjx1pEHvtQu7w91CduZ0dAx8h5Ck+lMusSWWPI+R55Yst6y7WJfuTui+sTRvX5dP35PR7v9QDOKZH/ESCdIn0WtpKRddklqJj1ZFg9REYmXw/uTy99jlj32k+fNdZhHiqiKx5Yh/ZFlk/FyD1VCCGEEEIIIUSQphuNZvafZuZm9v5m90UIIYQQQgixCMkFwqnl3xKiqYu0ZnYJgKc3sw9CCCGEyMPaoyQ599PpNfk645OBun3p25PsrLPmbju1vyUl/QQAXPrqfHnr5/PlkNsrkNeXba66h3mujNs8tUQ9UT03BO67rbQ96dLK5O6rYvdIrs6WKt05ty8yXer4quh8emv54RF1p2lGo5mtAfARAH8E4AvN6ocQQgghas/ISN7I5CAygzQB5klIgdaN9FRnkXZrZyJASNq+PImvdpKzIfF6S0pAEs5tx5rDkHaR58msk3woUB6g8g4qZwnMw/kbA+kxC/SDSaYD21lDyP3g5wSsm0yOY45BKvNYhNphIy6UU5Dr7KIyXxu+L1h7mjxffi+UdzGU/5HH5RoafD63676Y19DuChiG3Nd+5O9B1gCzlvRcMlB30HFD2tNB+qwx3M/j31yoC/Z9+WOvvj59/wXtxd8FOYMRAMZ35fM8Bp8x1dJgViCcqmime+r/B+Bud/9iyZpCCCGEEEIIUSk5o7GWf0uIppyumT0HwGuwRFxTL/7kLQCAbZef3eSeCCGEEEIIIUR5NNxoNLNuAJ8E8Pfu/rMM9d8I4I0AsHHjxjr3TgghhFgasC4RALoPZkhNcVF5rmI5V7Tp2bJ2qxvVasNuXmTaMiEaxXB3rGNc3uSOLLHgNbWkGSuNb0fkTv2BLJXd/SoAVwHAmWeeWV6yJSGEEEKURd/5pevMUAK87s68Lol1WQOBBN088WA9HeveOHfcLtIxsmaMNVqhHIrM9iKJ0Xd9Pp8vsu/z6YZhKOBJUit2XorukbVxIS1eCD431slNB+oMUPkwlVmTx7q/ZD5F1paF+sqauE1UZv0h95XzJfI4Jq9bDh4vzhXJfeV+cpt8zgyfC48FHyupq+NzGEf+2nL+xhXI53bke4z1lBzY6Dm/ndAHxv9Pp3t2G7Uzg3QGqcz38/aAfnIzfab2kI4xmadzc8pnJ7llsMizk9wxOWdrzmAEosBZ/dNNms5L01gVDR06M9sI4F0AXg9guZnx84blcXCcQ+7eIs8khRBCCCGEEGJp0+hAOCcA6AHwrwAO0B8AvC0uP63BfRJCCCGEEEIsZhQIpyoafbp3AnheyvbvITIkPw1gTyM7JIQQQohFxqsid7htFJ99faBqrbk6di3MkhJDtBe5/J5JN9acu2ooLUcxcvuy623SZZSpe87G9VH7u8nNdVON8ylyLth5N9akXvpaKdJajYYaje5+EMD25HaLPgAPuPuC94QQQghRe4KBb2iyNpiYoA7EeqfQpHZDT/p21j0eCuRpZG3g0EReWzVN9Vm7xn04h/qWMxiTsH4uTSeWmxcnjctz4navCeTFC2kr2Wjk+vxknI0MNkRmAmVunzWgrA3lMZoO1OE+J8cidG1Zl8d6vZ2BY4c0lKx7DOU15DyQrEXkvrEWsTuwfUtgO8P2UHLVYpDKfH0oFWJB/ku+PtwuX4dvf5X0fYE+jQO4LL7vbgx8XkI5QUNa0mHSMfK1WU+f2b5gssRCklrU01N0kAxrGNlgbDjSNFaFhk4IIYQQQgix+FH01IppCaPR3RXDWgghhBBCCCFakJYwGoUQQgjRGuwtopnKuZZ109P6zDkYN5T3fDjpGluKnPvopZeUtds8Oa1YMrXGdcrNKERRUjWKrYjcU6tCQyeEEEKIVAZIvDUSEoUlyE0a2fhc/8T8+6xLC+nYWK8X0t9x/UEqc/Ab3pd1YjsShiCfGrfFfeU+hbSL6wN1QvkLQ9rIUG4+rj8M4PUpeksOqMLt8IQvNO5AWGc4GGgLge3JsU9rk8fo0UAdHtNQTsVQ/sZT3ps3YL7xnnRtIDOdeM1t8fW/K7CdtYKsxeRz6AKwJUWveAyAc1O0gS88Pr/te/fn64fuRz7uAJVDY7eXtI7jE4V11sf94TyLADDQldcplqtRDBqVjQh8I6OxKhqdckMIIYQQQgghRBshe1sIIYQQQgix+FEgnIqR0SiEEEKIJUHSLbXduWGRnc9SIedOHModyu7GOL55GsGkW2rFrM+3k3Rzn3dX/YPEsT7awtrIJYqMRiGEEELMsz6Qc411UFl0TL2U/233w/nySbR9KJA7LpkHLg2u0wfg/LjfHLjm/3Tlz+WOmfz2tPZzejJOns71OIdff6D8QGD7WYF+8ySM8/rdTGXWGCa1cTn42pxM5R9RmfV6rDFMBv7hY+ygMmvo+HiHA22x/nIwsD2kuWRCUtrQcfk8/+k96RpA1piyljKZo5LHYihQbxjApfG9czPdO3xufO/wvufyRQ/wr/fbfPvb6GNX8HmkMufTZH0jjy+P0TEraTsFtZqhE+gqYi2wDjLZr5ZDmsaqCA6dmb2uwja/5u5Zvu+FEEIIIYQQov7IaKyKYkN3NQBHNMRZcQB3IttDQiGEEEIIIYQQLU4pe/sCREZg1rZ2l6wlhBBCiPbglMRz43tK64zKDcHfKuTcWvtL1BMiyXUlNIpZuT6gUd0ab0+6zzaT4Oc8p198QcaGTo3rPzewvZZopbEqig3dLICH3f2BInXmMbOOeB8pV4UQQoglQt/r8+WRq/PloUTOtzRCOfsGSPc4TO2EcjkyF5AmkyckO2gO2g/gdKrHOshQDsNe5LVrDActYa1Y6NweSrSZVoc1hwU59agc0oDuD2wPaQm5HSCcU5LPbW+gTugc+NibAvW5zRB8PULG/Voq83neRmUeU54IJ8eCtYKhseR+sAb0aYm2tqTcO7vo3mHdI2t0t1KdQwtaWNgHvr9Y68nX41QapJGx9DZHaPCevPfxgvce23DEfLm3h4LZrA8Yei8A8IWoTsF3ARuGNwHY6Qu31xhX9NSKCRqN7p7URhfF3eewUE8thBBCCCGEEKKN0SKtEEIIIYQQYlHjBszK8qmYsofOzNYB6Elud/cHa9IjIYQQQogKuZrc+QZoe9Kdkd1Ks2rFrlNeRFEhuVQu7GJ7epH6N7bRvZbTN/YVy7dxVHw+L6p/f0R9yGQ0mlkfgH8EcDGA5YFq8hIWQgghFhOBwDfzGiYgPxlEoY6RDTHW2W2gvHBcnzVXg7SddWkhLVkWWJ82lHiPj30X8trF4UDORoa1fqyn20llnkuzoXAXlY8JtM/7ch9Y0/looA7rB7mfrCVKRjAM6SxDORj52KwJDE0wdwW2c/2QFq8vsJ1zE/L5hALTcI5HPpekxiqZU/PNKfkYQ/rOUO5IBLYfB+DUuH02GI9BPofoDbQ9lL8yy2fkRvpAJlNFboiPNUTHYg1jMUaoU33foTdmF1SNeCrmtY4F7KRttTSetdJYFVmH7uMAXgHg04i+4ybr1iMhhBBCCCGEqCFuwExnR41bnatxe61LVqPxNwD8qbt/vJ6dEUIIIYQQQgjRWmQ1Gg3Az+rZESGEEKJViNNIlU0cSVwIIUSL4WaY7aq1f+pUjdtrXbKO3JcAnA/gxjr2RQghhGgVQjKkYriZPdPdd5Su2t7sJZ3R+rVFKrYpuYA35eomxeLmw/F9cVad2g8Fv9newKA4O+NjLdYcerOdCsFSKVmNxv8C8A9mthrAN5GiB3f379ayY0IIIUQTMUQ6/odKVYzpBPCuunXG7BgAbwdwJoCnI4p3cby7D9brmFnZux9YHwfP6KPJ7WqKs96PfPCcHYGopTwh4YAnHLSG63MgFGYg0CazIfE6FOSGk6l3I59wfVsgQiv3lQOMcDs7AnU4KM5JVOax4CcZHICFz6c7Qx1uM2kc8BhzgBkOYMP94PoceIaT1TOhADHczkDguBxoh9vhMWVDn4PF8L3AwXtC9YHC68PHCPW7F8B58T3CkXb5GDxGfN9xwCeG+90LYEvc/i5qn+87Dqg0SGXuA48jnwuff0FApAlgwNODYg0lDNoNafUoWBa+s/Bt0R5kNRq/Hv8/HsBltN0R/bA6FD01yNTMHOYCHzYhhBAty6fc/UdZKppZJ4B317EvJwG4CMAdAH4ABa4XQoiycBhmZa5UTFaj8Xl17cUi5759Y5iZk8xFCCHaiFcjvFiyAHefNbNXA7ivTv35vruvBwAzez1kNAohRFk4DDMyGismk9Ho7jfVuyOLldk5x6GJaXR11DrErxBCiHrh7tc0Yp8y2q7rk8dccu4cBXkYs3B2ac3V3jrrsm5ogBbr+jZKuC6aw3V1vkdy+sZQDsp6wd8Rw5RHNfl5y7mrblhXfrtlf++IhqIUl3Xmf/cewpwDs3JPFUIIsUhYz79pZDBueBaAW6L3eDI4TpPMk0jruIu2s86OtXhZdIxcfxp5XdmVNIHfHKif4+KU32lO4s76sxXI6xt3BeqwzoxhzRn3Y4DKPBbcJhsKrD/jdnjfAl0alXkci00EQ3pCPgYvx/M5c7us1+NjDwT25XPjffl8uA8I1OFz5us/FKjD/QEiLWradWaNKo9LUht7Qbzv1QF9I9fhIDjnbk5UuieqEwqIw+MV0p6yDZdJG0w7jCTFnkT/ynx5eCy9zghtZ4Ozv2dh3XozK9OnYoIjZ2bfBfB77n5vXC6Gu/sLatu1xcGOBw8AiFYc5+YcHR16SimEEO2Gmf0mgAsBHAsgOdVxd39u43sVxszeCOCNALBx48Ym90YIIUS7U8xnkq2bjvh16E++lwHueODAfPnQZCg2lhBCiFbFzP4MUeTw3wKwEsBs4q/lROvufpW7n+nuZx599NHN7o4QQjSdXCCcWv61Kmb2TjP7mZnNmdnLU94fjN+/M/57fak2gyuN7v48Km+ptNNLnZ88eHC+fGhiGkf0LtbMN0IIsWh5C4BPAniLu882uzONIOeKN7CycHvvaOQmN76K0mY8rWHdqivXkOvfpRkkJVvrnLNPtAZVaRQvkndZJfD3Sy1ZYtFTvwNgG6LUUSEudvc7szYox946Mjw2hfv3jWHl8k6MTc5iZHwGOLLZvRJCCFEmfQC+vJgNRg5AsavMSfL4XXljMkRvT/4Y3H4fgM2+MH8j69VCciqewIT0g2/OGE/gmsA5Dwbqh/IlsqaNdWNc/zCVV1CZE4LyOfO5sS6NtWicT5H7wH1j7R23z/q8JKy/ezRQpzewnekKlAepzI/UWbsZ0rdyfc5ByWPN58xwfR7H5L0Wyh0ZOmdu69IL8+WTFtRcyLl0rya1i1tSjhvKFcnnNkhlvs6sK2aNIZ//eECfCADrAw+TRjhPa2Iwc5//vlMSn7V7Fn/Mj3Ly7JrZsQA+AuCFiLw5bwTwVnd/sJxjuvttcXtV9Z3J7FZqZmvM7L1m9l9mdnf8/wozW1Oz3iwyfhLrGdfEq4uHJqaLVRdCCNGafAvAs5rdCSGEENXRJPfUXJ7dA4jy7KZiZisAfBfAyQBeiyj10yYA3zOzlaH9quBzZnaXmX3OzDaUqpxppdHMno7I0j0CwK0A7kH0IOidAH7PzF7g7ndV0em25+JP3gIA2Hb52fPbdjx4AF0dhr7ebgwdnMDIhDSNQgjRhrwFwFfNzAH8F6If/gLcvV75Gecxs1fGxTPi/+eZ2WMAHlNqLCGEKE4T8zRmzbP7BgAnAHiyu++J6+8EsBvA5QA+HG/bASAU4ew0d/9Fhj49190fMLMuRPbcvwE4u9gOWd1T/wnAfgBnuvsDuY1mNgDgPwF8FPnVcxFzxwMHcMoT++YjCo2Ma6VRCCHaEEfk3fUBAO8P1GnETOTLidefiP/fhCb/BufSa/Qub2Yv8uRSHPAkh1Nd7G9ob4QIs43cB9PSvgAAki6dLUYyz2u1bXQvMtlhGXl2Xwrg1pzBGO97v5ndDOBliI1Gdz+9Bn16IP4/Y2YfAXCFmXW7e9BYyWo0/iqA17LBGB9o0MzeA+AzlXZ6sTIzO4f/+cXjuPhXj8XOhw4CkHuqEEK0KVsBPBuRzuReAFPN6IS7N2TmuIH0TtOz6Qm3pzOoOwcnCl/ndHebAxPjUH49nqiEtGi8PaRvLEZIoxbaHtIcsv7u/MQ+p8bnzYFVWMfIs0DOfRjKkc56w91U5rFj3V9owpdsn32ieNLH+7O+kccolLMwlGsxtD0UMpDHl6/BWiqPB8o81qwl5T4MJI53W6B/PPasv+VZ3jX0iCd0f4auCfeJczaetRnzGsDr6T7i9nlcuG88FnsCeVNHaPte0jT2JTo6MwP0Ty/Mx7qhJ/37ghm5v/B1Wr7Ngu+dGmryokA4LR3O5SkAvp6y/W5EKZ9qQuzq2u3uB+NNlwL4aTGDEchuNO4HMBl4bwJ6aLeAex85hPHpWZy2cQ3ufvhxAJB7qhBCtCdbEEVO3drkfgghhGgtjjKz2+n1Ve5+VYVt9SNF/oDoGUxZoTTN7N0A3gTgaABPNbOPIfIYfQSRxPArZtaJKNjOL5DBKM1qNF4J4E/N7L/cff45hJn1AngbgI+XcyJLgVwQnNM3Hokv3PYgOkzuqUII0absQ+EihxBCiDakDik39rn7mTVsL22ptuzlVnd/PwJyiliDf1q5bQaNRjP7K34J4DgAD5rZNxH9eK4H8GJEK94rFrawtLnjgQM4evVyHHNk5NDQ2WE4pJVGIYRoR/4JUdC3b5WhTWkZ5n5yx3zes1KpMRrBzeRu9rSeIhWbyM4ausTluK0ObYrFRTLVRitTCx1jUc6tffttkKfxAAq9n3McifQVyIZSbKXx3YHtr0nZ9i4Af1l9dxYPOx48iDM2HjmfH6WzwzAiTaMQQrQjRwJ4KoB7zOzbWPjj7e7+nsZ3qz6U0iQVq8MTyYEyDULWXPGsaThQZu1WL4AtGXMyAsCNicn5TiqfS+WTkNcifjSxzx/E2znHI+dLZF1iKJY9n/MglfnceCz40XNIu8j1Q/rB0Pgm9wnp+JL7lOoTn+cAlVlnyBPS0LJ+6Hy4HT4ujyPPwDgPJOfN3JE43gCV02byQOG5hfKLDgK4LL5f2DDkc+Dz5/PZuiu/L8O6ML6/ziKB5w6qFPp87SUdY5q+EFgY4Cqpac7ynVGqbsH2OhiMbcLdiHSNSU5BlLmiqQSNRnfPnMNRFLJvdBIPDh/G/31WPhpuV0eHjEYhhGhP3kXlJ6W87wAWjdEohBCLEQealXIjK98A8PdmdkIujVOcqeIcAO9oZseA4u6plwD4d3c/1MD+LAp2PJDXM+aQe6oQQrQneogqhBCLgeZFT82YZ/dTiPICfz0OZOMA3ocoUM0nG9nfNIqN3JUAPmNmNwH4GoCvu/vDDelVm7PjwYPo7jQ8dcMR89u6OkyBcIQQQrQ8Sa1SyRD6GbVNg3XWa91A7Z8Xu/OxG2qlU8Ub2khnJhYn7NJajht2o8lpp4HqXFgXKSXz7Lr7mJk9H1F6p88jiinzHQBvdffRBvUzSLHv0KMRufa/DJG+8WNxSNmvAfiau++qf/fakx0PHMApTzwCPZSdNNI0aqVRCCHaDTP7LQAD7v6xlPd+H8D97v7NxvcsGx2nnYHe228vXbEGDJM+irVl/Mi0IMfdynz59JUA9kUTy100SU5qF9Pa5zpZSOYJY00Y5yDkfg8E2mIdX0jTxu1w5MCghozKPHNgXRrrJ1mTSWn9CrRxJ1GZJ3DcJpBNExg6z1B+RT4f1iuyKxu3eUygfrKvafVZo7g+WbFEH85J1ONxyqKhZE4NbA/pGJkB5I3DUHAcbp/H5Ta6uUN5GkOfTWb9ysLXHERrut5BcG4kA7PmeRqb456aNc+uuz8I4BV17k5FBF1u3H3a3W9w9ze5+wYAzwHwPUSBcH5qZj8zs781s2c1qrPtwPTsHHYOHcTpG9cUbI/cU6fhLfyESAghRCp/AWBl4L3e+H0hhBBi0ZJZp+Hut7j7O9x9M6LIPlsBPBfAzWb2SzP75zr1sa3Y9csRTEzP4YzjCnNwdnUYpmcdE9NtF61dCCGWOidjYWDFHHeicHFHCCFEizKLzpr+LSUqcvF393sBfBDAB83sCQB+G8BLa9mxdiUtCA4QrTQCwKGJafQuW1o3mRBCtDkdAFYF3luNsIdaa3DfHcBFsWfUteTtclHCW+ra7J4wrF2qJbXK/daInIjXS+soyqDcHIw5PW5zwrYspO55Gd+aaP8fau+Z1wZ5Gluaiu9FMzsF0dPVW9z9SkSBc5Y8Ox48iCf09eCJa3oLtnfFRuPIxDTW9bVoNmMhhBBp/A+ASwF8NeW9S1EoKWt7yg1YwTrG/sTP23xbR+UnhIOcO4725cAZoTyFrEXrS5TPieUftwWC3yRzCF5AcpHraB8+Hl9Y1qKxVi6UgzGkdWRNI+vJQu2H8j1y3/ipBevw+Px5qZzrb0IhvD+PBaX/K8gpyefAbfGxh6jM2rrjqMxa0tD15yX92wLHCuWWHAz0YXWgzeT+rIMdoDJrInksdlOZryfrIYF8DsatdA+yRnMGwLklpE18PqF8lDxGrPsM5f7sTwSyYboDdhd/hvl7AQjrd0X7kMloNLOPAehy9zfFry8AsA1AJ4ARMzvX3Rujsm9x7njgAE4/bs2C7bmVxsfHFQxHCCHajA8B+IqZfRlRSPSHEM3f34jI0+bCJvZNCCFEBhzW6nkaW5qsmsbzAPyQXr8XwL8DeDqAHwG4orbdak+mZuYwdHB8gWsqUOieKoQQon1w968C+H8AfgPADQDuAvCt+PUfuvt1TeyeEEKIjMyiq6Z/S4msZ/sExCv7ZnYMokA4v+vud5nZPwH4dH26116MTkariKelGI1dHZF9rrQbQgjRfrj7R81sK4BnI/LU2wfgh62QO6uesI6J3c2S4fhDDMUudxvWlqhYA3L5FPtL1MuxjdwBW1uUKhYzOzJoHXP6xpDraTuQ+y7pXV64vftguutt3TWUomyyGo3jyAcBeC4id/OcO+ooCl3ClyyjkzNY1tmBp25Y6LmdW2kcGddKoxBCtCPufgjRCmN7ccIZwLUpCpIyAt8kSSbuzhHK07gzkDsu1E5v+uZgfjnWdA0G9i3GNICLU/LiDSCfL491j6zFu4vKrLnkST1r9FhPxufJ48IawJA2kCdefP583MHAsZjdidd8vJC2ko+dJX9haJLI2j0+/0Eqs86Onz1wTsUfBdrndkJjzQwnXrNekcclpCHk7QOBfvA58wOOZF7H0+P77saAUcn78rlxf0L5S7mfwbGYCLyBhdrl3PGT+wzE55DJAKTAN/UyGBUIpzqyuqfuAPD7ZvZUAL8P4NvunssdcTyAX9ajc+3GoYkZPHVDH5Z3Lbwh8+6pWmkUQohWx8x+3cxCEVOL7ZNxDU4IIYRoH7KuNL4LwH8iiiB3EMCb6L2XI/yQZ8kw546xqZlUPSMAdFgUQXVEmkYhhGgHvgfgbGT8fTOzznifX0U4p6MQQogmoZXG6shkNLr7j81sI6IEx7vdnVe8r8JC74Ylx+HJWbgDpx+XbjSaGfp6u+WeKoQQ7YEBeLGZnZyxflbPnYYz95M75vMq9o6mu6Qm8y6G6i1mrgtoIq9TPkbRBEJuqW3FqRnO4RSqc0/9v3cUPbVygkajmX0LUU6qb7j7w+4+BuCOZD13/4869q9tOBQHwUlbadx2+dkAgC1/972Guade/MlbCo4thBCibP6y2R1oNgU5GwM6I9Y3DZGmaRzA5ljTNB2YAHN9fhod0ujxpCWUvzCU7xAI57tjw3AY+RyOofyNrGPkvnIeQdbH9QbKrCcryJFHZR4X3nc8sJ11ldzOWVTmHI+cHxEoHGNui48R0vrx8Vh/+TQq30RlPmfOg8iwNpLHIpSPcoDKg4F9uZ98LkndJx87lHeT6/D+oXyXI8jfX6yf5fEK3bfXBD5H/FngY/EyBfctFPgpdH9tSOZfDTjhc4Cs3hOo/iYAO1M+e6ekn0/B985iMJ4XCcVWGgcB/AWAj5vZ7QC+BuBr7r6ryD5LllwQnCcc0ROss7qnW+6pQgjRHhxf4X4P17QXQgghakLknrq00mTUkuDIufvlAGBmZwN4GYDXAPiAme1GZEB+1d1vbUQn24GxyRmsWl58ybuvt6um7qlaTRRCiPrg7g80uw9CCCFqhzSN1VHS3Hb3WwDcAuAdsbbjtxEZkW8zs0cBfAORG+t33H3JLqPNzDm6u4pLWvp6uvHoyGSDeiSEEEIUMr2m0NUrlCOtVgy2qGvZtkS/ku560jGKerK9zPur1fWNu+P+HaPY0YuastZo3f1eAB8E8EEzewLyBuTXAEwCOKLWHWwH3B1zc47OEh/q1T1dck8VQgjRUDpOOwO9t9++wGBksgS+YZ1RyBjsRT43G9dJ5os7NUOdHKyrY+1iSD/XD+C8uP3bMk62uS3WrrGuK6R941911pYhUCeUL5G1mCOB7b2B7Vl0j6xj5H0HEv0IRTYM5fYLaR03UZlDEHN9Phb3I5QHMcsMKnQNuD+cTzKU7xIATkq8Piu+r/ihwyC9z+MS0nom2ZLSJus7OTclt7mdyqylZUL5MQt0uGsTb+5b+F2QDJQ1PpH/zthN/X5oDNgU0A2nMXJ/4etQzshaopXGyqk42pu7P+LuV7r7bwJYB+CNpfYxs98ws++a2SNmNmlmD5nZtWZ2SqX9aAUmZ+bgADo6iv849fV0K0+jEEIIIYQQDcZhmEFnTf+WEmWrQc1sHYAF0V7cfVuG3fsRRWD9BIDHAGwE8A4At5rZ09pVQzIWR07tLGU09nbj8NQspmfn0N3ZstHZhRBCCCGEEGKeTEajmfUB+EcAFwNYHqhW0tx29y8C+GKi7R8BuBfAKwF8KEt/Wo2xyVkAyOSeCgCHJmbQv3JZ3fslhBBCFIPdzkq5qGbVJw5lqLcjkBOxVmR1SxWiHHIpL2oZf7PV9Iq5zy+7PA+kaBWTLqsLoHQa7Iba3cTFOUVPrY6sI/dxAK8A8GlE6YlqGc0l57rdtmK/0awrjT2R1P7QxLSMRiGEEA0lGfSm5KSvCKHcjKxJSurDcpQr0gjpDTdTHwaQ11zeFtCbAflchcekHOecWIu1lfYfoPf53AYD21lzyTo+APiDuP3rA9o1Hi+esG8JHJcncCFdYUivF9LJAYXav1DuxJD+lCdyuwLbBwJ94jqh3IesXQ1pPbnM5xnKAxqqD4T1kaH8mkkN5JaUfJ9APk8jG4xrkZ5HlO+XFQDOT2mT8zqGxojh8x+nz+/wWHr93oR/Ie+z6RmBg2SguzObnlq0BlmNxt8A8Kfu/vFaHNTMOhGtTB4H4G8APALgS7VouxmMTWV3TwWAkXHpGoUQol0ws2UA/hzAJYhkFUmPG3d3Pb4WQogWR4FwKifrj5wB+FkNj3sbgDPi8h4Az3f3R1MPbPZGxEF2Nm7cWMMu1I7cSmNHRvdURVAVQoi24u8A/D6AGwBch9p62wghhGgAytNYHVmNxi8BOB/AjTU67qsRre6fAOBtAL5tZs9x98FkRXe/CsBVAHDmmWe25Br26ERupbF4PXZPFUII0Ta8EsB73P0Dze5IIxjpLXwAyqk22p2cO2Ba2otyc+cJUYqbK8zHyGlmkmkoWl6ve1Tcv3XZqvP3zWL6rlmMZDUa/wvAP5jZagDfRKELNwDA3b+b9aDunnN1v83MbkDkpv8OAG/K2kYrkT16arzSKPdUIYRoJ1YBuKXZnag15WqJBi5JbPhCtD9PankC2E8P9Kdn09vkoBjTpKcK5UQ8hmYtw6Sr4n4860P58/ren+T7w7+8nKcPKNSEhTR0g1QO6elYx7cawGUpGrVQDkbWbp4eaDOkY8yiH+XrxMdKjsWjgXrcFl8fPjb3j89hkMr82Jw1oDyx5DHiHIShfJeHAmW+rqHH9cMA3pySKxEo1CiGxngz0nMtsm52PfKaWYbHKzQz5PNkjSqP3V1U5j6H7mVuZ4Q+dzzuG0jHOJgQt66nwDiDd+bLAywKfRTzOR9D+ReTD6jqjVYaqyOr0fj1+P/xAC6j7Y7IddWRIXpqGu5+0Mz2YKF+uG2YD4RT0j011jRqpbGlufiT0dxw2+VnN7knQogW4XoAvw4g88NRIYQQrcdSy61YS7Iajc+rVwfMbD2AkwFcU69j1Jv5lBslVhpXL++CGTAyoZVGIYRoIz4K4HNmNoewt819De+VEEII0SAyGY3uflMtDmZmXwWwA8BORKvgTwLwR4hW5dsyRyMQRU81A6zESmNHh2HV8i6MjGulUQgh2oica+oVAN4TqKPH1yLI1TQ/SNNTiuZyZZV5Q7Psn0udcZi2rU+vurg5KoNL6mvq47aqPI3V0eiRuxXARQD+BMAyAL8AsB3AB9OC4LQLo5MzJV1Tc/T1dMs9VQgh2ovXIZJhLG2+UN4QsFaKA3uEdHyspeNfSdZZDRdx1BmI/387oWPM5b67JvE7fWmKxgwoDIizYEk5JpSPsrtIu2mwtoxPbXegPhuc3Dcex5DGkBkM1AcKx346UG9DhjrrAtv53PgcQvdF6N5h7SLfI7wv6/jGA3V436T2jvfn8+R+8P6cXzJ07zDJ452ekiv0IeS1sZzX8YV/kb/Pbn1ffnsoiA7fO9z/UH3Ov7ohkadxejYftGaAti8IooXi9K3EvO5RtD5Bo9HMvgvg99z93iwNmVkHouiql7t76vedu/8tgL+tpKOtzNjkTEnX1Byre7pwSO6pQgjRNrj71mb3QQghRHUoEE51FFtp3ILCh2ClsAr2WRSUYzT29XTLPVUIIdoQizQIpyBaqNgPYJd7GctKQgghmoqMxsop5Z76NTMrJ4nxkvzxLMs9tbcLDx+cKF1RCCFEy2BmrwfwfgBH0+ZHzezd7v7pBhz/WAAfAfBCRA9pbwTwVnd/sN7HFkIIIYoZjZ+tsM19Fe7XtoxNzqKjjJXGeycOla4oWhKl4xBi6WFmlwK4CsB3APwrgEcAPAHApQCuMrPD7v7FOh5/BaJ0H5MAXovoAe37AXzPzE5197Fi++OeO4BT49+oneU/283plPpWJt5oMS1SLkfe2sT2GwMPdUPbqw32sDXQDyFKkcwTmSMXRKelgiitj/o0MhKukpaHMfk9wnVyOsl64TCl3KiC4Heju/9OIzvSzpSraZR7qhBCtBV/BuAad391YvtnzezzAN4OoG5GI4A3ADgBwJPdfQ8AmNlORDFFLgfw4VoejCdu5Sbf5gkhB9IYoEAaw7Sdg5OEAo2EkrizFmaQyqGE6ZVEqkxGw8wlcf9oIBpqaFLFCeo56AMHCuH86dxvHqPeQJnb4THiMeWAJ/2BOkAisAnS4ePtDdTZEzjGqVTmcw4FjuHtT6MyJ7TfRGU+t4eozNefz+uYwHagcCxDQYi4Txw4h5OPc/2RQJnHMfTAYRzA+fE9eGsgYBNfm9Bn4ST6PPLndD19fofpUdRwwkFuYB1S6SZ7bHo2vc7IWP47JvT9Mn5d+r7Vouip1dHR7A4sBspzT+3G6OQM5uZa6wmtEEKIIE9GtMKYxr/G79eTlwK4NWcwAoC73w/gZgAvq/OxhRBCCBmNtSBaacxWt6+nG3Me5XYUQgjRFhxC4YIEcwwKFyTqwVMA/DRl+92IAvMIIYTIwCw6a/q3lNAabZXMzTnGpmaxZkV36cqI3FMBYGRiBqt7su0jhBCiqdwA4K/N7H/d/Qe5jWZ2NiJt4Q11Pn4/gAMp24cBHJm2g5m9EcAbAWCjfmpqxnUZvYqEqBc3x/fgYpzAj6/S56uVaat7bq4FI5sfjp22O8pwTwWAQxPTaDFJsxBCiHT+DMCzAGw3syEAv0QUCOcYRNKtP2tAH9J+AIM/PO5+FaLgPTizyxwPV3bQsgNTUHCcAZoA7iJ91EkBfSNrzljHN4j0OuyvM0BlXvZNTnK2BOYR2+k3PJRMnn+xObk995X7wTo+1q6xXo01dwzr8vicQxpA7ifrJ3cG+sZ6wOMSx+a+crshfSTX576yvo8ZD2znfQepzBq9XVTeHNjOcjvuP481jy+PafL5Ct8/fYlyTlt4dWD+9yMqs74xdA+vBXBu3Gby4cQF8fabaXvo3uQ+8/lw/UH63G0iHWOWzykADD4KDMR96kOAhAHYO7rws8ffL0mDcb5+DR/UKE9jdbSZ0djsHixkbDL6GJaTpxEARsblniqEEO2Auz9iZs8A8DoAv4ZozjkI4CYAW939cJ27cAALY7IA0Spj2gqkEEKIFGQ0Vk4mo9HMnuTu/1vvzpSiFYPHjMZG41vPfRJeftqGErXJPVURVIUQom2IDcOPxX+N5m5EusYkpwC4p8F9EUIIsQTJutJ4r5l9D8A/A/iquzdlmawFvVPnVxpXLs82lPPuqZMyGoUQQmTiGwD+3sxOcPf7AMDMBgCcA+Ad9Twwu4z19iTebLE8jVm4JnZ1S6bfaCu3K9EShPJ8VkNIM3tjK+ZpjLkt0eezajRZLzfdTxaUp7E6sn5Pvg6RoH4bgEfN7F8AfCoO+d0wWlHTODpvNGa7CfvmVxqrs7vdHUMHxzE9O4crvnF3wXYAGNw/hnWrl1d1DCGEWKqY2X0Aftvd/8fM7ke6pjCHu/uJdezOpwC8BcDXzezdcV/eB+AXAD5Zcu9nnAHcfnsdu5fOIOmj2Ld2D+mjeBLMWjfOwcg+PKGYPslcgeelzBeuKTLJn0FeT8awXo37xzq+06kcysc3EKgTOh/WA/IY9Qe2c99Yx8iE8jQmNYb8mvWhIa0gw+fME0w+3gNU5mvLj9LZqOfx4vtie6B91mtyH0J5LZnk9eCxCGkFWa+4N1CHc1YOJI6RpmMM9W+c6m8P3Jt8nnwf8fXjvKm7M+gYK1nmSNMwZq1fD4MRUJ7Gask0cu6+FcBWMzsVUSLh3wPwZ2Z2I4ArAVzv7nN162VMKxqNY5NRIJxVGVcaV89rGqtbabx/3xgeOjCODgOu2xHJuy3+AjEDDh6ebsmV2XZgzj0cXUIIsVS4Cfk58E0objTWFXcfM7PnA/gIgM8jCoDzHQBvdffRZvVLCCHE0qEsc9vddwL4fTP7UwCXIHryeR2AX5rZ1QCudPfkA7+a0YKSxrLdU5d1daCnuwOHJqtbadw/NgUA2LRuNb71R7++4P0nv/sGzLbigLUB9/7yEByO4bEp9K9c1uzuCCGagLv/DpUva2JXcn14EMArmt0PIYRoZxQIp3IqXaMdAHBq/H8KUdLhPwbwJ2b2Gnf/ak16l8BbcOks556adaURiCKoVrvSuH90EgDQ3Zm+JtbVYZiR0Vg27o6xqRnMOXDhP/8Qn/vds7BhTSuqCIQQjcLM/hLA1e6+IHGFmf0KgDe4+181vmdlckrK78U91f9ODJKb3IYjqm6uJtxAfUpzVU1ja7xPMIWAEHXgmhbWKxZjsISmM+Ri2p2w2ebdUo+Sj1erk9nSMbNlAC5E5J56DiK39L8B8Gl332dmRyLKCfVhAHUxGlvTPbW8lUYgiqB6aKI2K43dnR2p73d2mFYaK+Dg4WnMOdC/chkePTSJV175Q3z2dc/Ek9avLr2zEGKx8h4A/wmkZjt8Yvx+6xuNFVBMZ1TKuDrpCKD7YLT/Lppg9gLYHP+ec5s7SEM1gnxOxd20L+vh+Fu5H/kAHDcEJrOskxtJvJd8PX8OVOZcgKHcgbyd21wd2N4bKDOh2QXPIkJ5I3lf1ieG+pB8vYnKu6ncHSiHcmfy8Vh/+DQq3xxok8eOz43bCeUsRKDOeKCc1DTysQcD9fgeeZTKfE0GEu3mdInXJHSJl6boG0PnE9Klcpn7xteAdcUFOVET+RhzDCSCYCXzqw7UeH7etxL5QFvK09gypFscCczsQ4h+LD+L6HvnpQBOdPe/dfd9AODuBwD8Ixbmia0ZrWgD5YzGFclHJ0Xo6+3GyER1K43Do5HR2FV0pbHuMtNFx9DB6Otz7cpluPbyszE757jwn2/BHQ8Ml9hTCLGIKTZrORLAZKM6IoQQojJy0VNr+beUyLo89moAn0akWRwsUu9eAL9T5P2qaMWVxtHJWaxc1omOjuxPQvp6unHw8FRVx90/NoXODkNH4AlMZ0cHZueakhmlrckZjcu6OrD5V/rwlTc/G6/5lx/h0qtvwycuPb3E3kKIxYKZbQHwfNp0uZn9VqJaL4CXIMqjKIQQQixashqNx7h7SSsnXnX8bHVdCtOqK43luKYCkXvqL4YPV3Xc/WNT6CpiqMo9tTKGDkRG4/KuaBH+2P4V+PKbzsbvfObHeMPn7sBx/StwtFKZCLEUeC6Ad8dlR/oD0SkA9wD4w0Z1qtEUC32/N4Pb2FCgDud/rBU5V7/+EvWEaDbbqnC5zOVsXFeiXiPh74m+8daeeyrlRuVkHblxMzvb3X+UfMPMzgDwI3ev+xptSwbCmZopKwgOUCP31LHJoJ4RiNxT5xyYmpnDsq5MXsgC0Upjh6HAID9q1XJ88Y3Pwps+fwf+e88+zLbgfSiEqC3u/l4A7wUAM5sD8Ky038C2ogZBb3ITQjYY2Xl/+HHg9Pg7ciiRd25DvJ0NRtZWbQ4cM5SzkLezLmsYeW0YAnWSuQm7ka4n43oDyAfVCSVhZ4OVf+VvpDKfJ7fPekjWXz6UeqTCY3HYetbVsV6I+8PHSir2Q2IMHnv2YwrlKeR+H0Nl1taFPlAhXSb34VCgDo/dIJUHAn1gfWLyvmBCetVQ/ks+Ht+rvGTQBeDilHv1gsA840a67x5NrVE4FoNU7gvUYe1lQW7RhI6RjcGCsciYU7GUMTme0FPWIzCQNI3VkdWaKHZHdKJB+ataceGs0pXGkfEqA+GMTgUjpwJAZ/zeoSqN06XG0IFxLOvqmM95mWPV8i58+rIz0dfThYcPFvtZEUIsNty9o+0NRiGEEEsGM3unmf3MzObM7OUp77/YzO4ws5+Y2V1m9ppSbRa1dsysA3mDsSN+zfQCOA/AvmynUB2tqGmMjMbynlr09XRjanYOE9Oz6CkjgA4TuacWX2kEgEMTM1i7Su6UWXn48XEs70q/Jsu7OnFEbzdGJmbw+OFpHLEiGWdNCLFYMLONAH7p7tNxuShxHkUhhBAtyhJbafwOgG2IYtIUENtzXwDwbHe/x8yOA/C/Znadu4+GGgwajWb2HgB/Gb90FEZDTvKJDJ2vmlY0GkcnZ7FhTU/pikRfb2RsjExMV2Q0zs05DoxNYV0RbV1nbDRW6wa71MitNIboXRZdr5/vG8XpG49sVLeEEI3nfgBnI/KgG0Rpj5qWn4mkuZHlXMam15BLZpWxYHP525KP1XbE2zevzNbOjip0XznN2EAZ+yhPo2gGN6bc5+wyfGjBuy1AkZyKuc9/f3lT44bRDKPRzI4B8HYAZwJ4OqJFt+PTgoua2bEAPgLghYgW7m4E8NZyH0y6+21xe6ldiv/nPKrXANiPSKcfpNhK43Zq+C8RWapJ1/pJREEA/r3YQWpFC9qMFbmn9vVE9UfGZ7CugvR/IxPTmJlzdBXRNM4bjVW6wS4lxqdmsX9sCsccGfak742N/D2PymgUYpHzOgA/p3IL/gI1hlJapJNocsj52/iRJevkHhrLl9nZn3+tWCfGRhy3eQFFArmBBF6hnIvrkM/luD0xkRoM7BNqi88ni/aqH8Bl8bE/TMfmPIisdeOxCOUj5LHjPjyTyiHdJ+v+khpGNlI4NyMfg2c9vD/3jx8a8PUM6Ru5f6HH3dzvkHYzpNGbCZRDeQ2BwnPgPoU0lEOB8v5Am7xvufC58Tnz56Xg3Ohz2kcPbnZR57g/exIaw1D8eM6pOEj3drlrIpwTdhFyEoCLANwB4AcAXpRWycxWAPguIvvqtYh+d94P4Htmdqq7j6XtVy7uPmtmFwL4mpmNIUoddUGpoKdBa8fdbwJwU3wSDuBqdx8K1W8Ecy0oaqzMaIy+MirVG+4fi65pMU1jl1YayyaXbmN5kZXG5V0dMAA/fyy4ei+EWAS4+2epvLWJXRFCCFEDcnkam8D33X09AJjZ6xEwGgG8AcAJAJ7s7nvi+jsRPb+5HMCH4207AIRkE6e5+y+KdcbMugC8C5Gh+H0z+1UAX48N06DkMFMgHHd/b7MNRqA1A+GMTlYSPTVeaZyobBVwODYai2ka8yuNMhqzwjkaQ5gZero78fNHa/KwRwjRppjZKWb2CjN7YrP7IoQQonVx97mMVV8K4NacwRjvez8iieDLaNvp7n5U4K+owRjzDABPdPfvx+39GNHi+GnFdiqmafwXAO9z9/vjcjHc3X83QyerotU0jTOzc5icmcPKZeVGT401jRUadPtHI8FJ0eipsUF5qELDdCnycIaVRgDo6e7AfVppFGLJYGYfA9Dl7m+KX1+AKMBAJ4ARM3th/KO7qNlFrmftmgvxypyussL9PxrvX0k6gOur0GgK0Wz48795bfn751LwrDuicHv3wZS5/dn1+axEgXBqnqfxKDO7nV5f5e5XVdjWUwB8PWX73QAurLDNNH4B4IlmdkocCOckRC60Pyu2U7GRex6Af4zLz0dxPUeDUm60ltE4NjkLAFjVU6l7amUGXd49tchKY/x5k3tqdoYOjKOzw7CsyLgCUTCcB4YPKwemEEuH8xDnbIx5LyIt/18C+BCA9wD4rSb0qyyKaRN54pYlLjT/eh2ayOdgBAXb2UuaqJMCOd+GaSIa+rViXRYbq4MkatsMYCBljrAtkE8y+et7TOL1uXFbVwdyNia1b1tS6nNfuwNlZgWVOYBEKL8e6wRDOr6QjpFdx5LnwmS5JtwW94PHm8+B+819Dek7uZ09VObk9qzDfCDQt9D1KNDxoRAeb75HuE+hMebzTF7zXE7Qm+l+GaT39xdWn8/lyPcz94cfYnDfOGzGIH0e13J+VDIAOVfieEB7DAA7Eh3M6R0HnpaouHNhztZmU4dAOPvc/cwatdUP4EDK9mFEusPMmNm7AbwJwNEAnho//DzT3R9x971m9gYA2+I8xB0Afr9UsJ1imsbjqTxQTkfrRYvZjBidin52VpWbcmPePbUyg254NHZPLbLSaGbo7DC5p5bB0MFxPKGvJxRpap7e7k7Mzjke2D+GTesriGQkhGg3noB4ThdHwXsKgN9197vM7J+QEtJcCCGEqIA0a6dsq9vd348oiE7o/S8C+GI5bdZ8jbaetN5KY2Q0lhsIp7e7E50dVlUgnNU9XegoYdx0dVjFusmlyNCBcWxYU9rpKBdB9eePjcpoFGJpMA5gVVx+LqIFkpw70igKH+gLIYRoQdogT+MBpHv/H4n0FciGksnaMbNnA+h393+PX68F8DEATwXwLQBvd/fZuvUyptUC4YxWaDSaGfp6uipOh7F/bAprVy4rWa8aw3QpMnRwHM88vn9e2xiih9JuCCGWBDsA/L6ZPQjg9wF8mwIbHA/gl03rWRbuvgM4JX7IeE95P6RpuR1rwim1b/eG+EFqKE1GOdxcpjtdNVpHsfS4rcz7K5kiptXIfU/0bSpRsci+QOn0PtXSxOipWbkbkSdLklMQpThsKlmtnb8B8B3k8zH+HYAXI0o4+WYAjwN4X817l2DOHe5e0n2wUeRWGsuNngoAfb3dlbunjk2iP6PRqDyN2ZiZncMjIxPYsKa3pNHY2WF44hE9+PljiqAqxBLhXQD+E8D/ADiISCeS4+UAftT4LjWeDT2lJ3Wcm21FoE7f8fkyP1JnPRlr47gOJwzfwfqrwLF4Dss5B/cm6rEWjQ2/UMAf1sqxhozbYV0eHy9kWLKOkTVwoXyMIf1glnyKrAdM6vh42ZyPEcr5eCqVQzo+rr8usD2Up5LPh+tnaZ8fIITGvdhMLHSMUH7FcQAXxF5xW2muyvVDbgncD66fzAmZ08/uDOht+Z4NfS4KdKWkTwy1kxy7gs8IfSZHdqd/R2wIeAoGH0o9g8q3pldZpHwDwN+b2Qnufh8AmNkAgHMAvKOZHQOyG42bAfwtAJhZN4BXAniru/+Lmb0VUe6QuhuNADA961jW1VpGY7nRUwFgdU9X5YFwRqdwbP+KknrFyD1VK41Z2HtoErNzjieu6cW2y88uWf/EdauUq1GIJYK7/9jMNgI4GcBud+e56FUotEeEEEK0KHWInpoJM3tlXDwj/n+emT0G4DF3vyne9ikAb0GUM/HdiPSN70MU7fSTjexvGllHbhXyD2yeCWAl8quOxRJM1pzx6dmWiVg5moueWslKY0935Sk3xqbwjGPXlNxfgXCyM3Qger624chszkUnHr0KX779Fy218i2EqB/uPgbgjpTt/9GE7gghhGgvvpx4/Yn4/00AtgDR74yZPR/ARwB8HlEAnO8gWqhr+kpFVmtnCMDTAfwAUejxn7p7Ltj1kSj0KqgrE9OzOKI3S0Dw+pMPhFO+f3RfTzfu21f+9Z+bcxwYm0L/ymW4f19x98iuDlOexowMHYxu4SyBcIBopXFsahaPjEzgV46QikWIxY6ZPQ1Rao3nIvrdGwawHcBfuftPm9i1yjkt8cDrJ5ELWSYd45vzdXb/c37zMStr0TEh2pcr66xvvTGX77BO7deK8VWF3yO9oxn0ir8a71OrBBYJmhkIx90zrTDEaS9eUefuVERWo/GLAP7azLYg0jK+h947HQ10zRmfqnu8ncxUGggHqNw9dWRiGjNzjrWrlpes29lhODQ5g9k5R2eHVsOKMb/SmNVoPDqaGf380TEZjUIscszsVxE9DR5HpDl5BFEajvMBvMTMft3dF6xCtgxPOQO4/fbS9VLo6ytdh3loDNgU65dWk/HJOeKwCzg1rnOIPDV4EjxIZf6G5XYKtif6cVmKhmo3Hev//k3h+//0jsLfyD+I978uoEtjfSDPALgfoUl9SMfH2sCdVOaZQsh3KKS95GPxvpzXMBk4KItukLeHJoB86/Ax+NjcJ24/pEVlQhpN3j4Q2M73znSgDBTqD3mMuS1OWRjSPbJe9XQq76Iyjxe3yeM1gHT4HhkMtMn9D+X45O0DFyQO8hX6zByVmFPuqz6ATd9T6cXtAH4ct/nPtZu/tkH01JYmq7VzBYAJAM9CFBTnw/Te07FwybVujE+3jtE4NjmDrg7D8grcZft6K3NP3T8W5WjMFj016tfoxAyOWNEaq7OtytDBCaxduQy9y7J9mZy0Loq+v+fRQ3jOpqPq2TUhRPP5IICfAniBu8/P4cxsNaKAcB8E8KIm9U0IIYSoO5mMxjidxgcC7728lh0qRasZjSuXd1WkaVvd04WxqVnMzM6hqzO70TkcG41Zoqd2xauLIxPTMhpLMHRwHE/MuMoIAEevWo7VPV2KoCrE0uBZAF7NBiMAuPshM/tbAJ9tTreEEEKUQ4un3GhpmhNCqAomWso9dbaiIDhApGmM2pjBmhWlDcAc+0cnAQBrV2VLuQEAj49P49gK+riUGDpwGJvWlc7PzZFVTzxaEVSFWCKU8r1qsSzCzSWLJrJu+R9rRKvnxROi0RTkU1xZ5L0a5VqcXlP7z2Dkntp2pk/LkGnkzGwZgD8HcAmiSKlJQZ27e0OuQuutNFb2xKIvDuYzMl6m0Tjvnlpa05hbaVQwnOK4O4YOjmPLk8uTlZ+0bhV+sPuxOvVKCNFC3AbgnWZ2Y8I9dSWAt6NdM4n9pPTkbmQkMAm8Mr9t05VUP2EMzu9LRtgA5XVjDdgAldk3hvVwofx9xyzs4QL4WP+d0DCylou1X4OJ8h/HWsdrAkYl69VC+Ru5TV66Zt0bnw/X577xvuOBcihnH/eHNW1AWH/Iv5CPUnmAynzdBqkcyh3J/eBrwFo/rh86Hy5zftAdVH4mlTmxKj8u5usHFJ7nMIDzU3IwDiAdzmvJ1/NRAOfG7bCOldvk+mupPEjlUB5F3p7Uq+bYQo2Ok054iJyndlwHnO7pwbFGxvKf7dADoCyBb/rOT2y4NtqnHgajqJ6sht7fAfh9ADcAuA7AZN16VIKWMhqnZioKggNE7qkAys6jODwaGY1HruwumU+wk9xTRZjhsSlMTM9lDoKT48SjV+Hf7ngIIxPT8yvHQohFyTsRRUp9wMz+HcAvEQXCeQmi+dqWpvVMCCFEJhQIpzqyWjyvBPAed0/VNTaSVoueWq17arkG3f6xKazu6cLyrtI3/bzRqFyNRXn4YPSYLWuOxhy5CKr3PTaGZxy7ptbdEkK0CO7+IzN7FoC/BPAbiB7mDwP4LoD3uftdzeyfEEIIUW+yWjyrANxSz45kZaKVVhonZ7B+dU/piin09cYrjePluY7uH5vKFDl12+Vn4/HD03j6X/0XRuSeWpRyczTmyEVQ/fmjozIahVjkuPtORA9QFw3l6gqDrqc1PEatubHG2sScC6F8S5YmW2t0P+Xuy/0l6jWbZK5FZjA+h/7QNPiUxL73tIb0WyuNlZPVaLwewK8jeqraVFrKPXVytmL31NxK46Fy3VPHJjNFTgWAVbELbLnHWGo8VGaOxhzH9q9Ad6dhj4LhCLFkMLMnIpKBDbn7w83uTz3oLS2ZL5uBnryROUgTb/4FZU0fP+rkOvxrFsqVFyLrNzwbhKxxGwz0g3VprGNjbRmfWyj3IevYWIvHfeCchbxvKNceAnWY5DJ5KOcj95t1gHuovC5QJ9ROSH/J15/Hhc+N9+Vryzo+7g/rGPlYfC35+gHhfJwDgX1CutHBwL5ML4CLYw3htoBxelLgWHxt+Xx4XDhn487EByaXN/UkesjTTbZVd2ehRpE/w8MTwEBKXtQsjFxf+DrXx+6D1F4NH/zIPbU6slo8HwXwOTObA/BNFH6OAADufl8tOxZiYnquEYfJROSeWmEgnHn31DJXGkencGz/itIVEbmnrlreVfZq5lJj6OA4VizrxJoy05J0d3bguLUr8fNHZTQKsdgxs9cAeC+iYHC5bQ8C+At3/9emdUwIIYRoAFmNxpxr6hUA3hOoU3fT3dA6K43uPp+nsRJyq4Dl6g33j02V5QrZ19OlQDglGDowjg1reivKt3ni0SuxR0ajEIsaM3sLgH8CcCOA9yFa8FiPKKL4Z83sCHf/eBO7KIQQogQO5WmshqwWz+vQAnmoOsxaJhDO5MwcZua8YqMxtwpYTjqMuTnHgbGpTDkac/T1disQTgkefny87CA4OU5atwrf2fUopmfn0N3ZUeOeCSFahD8BsNXdX5fY/i9mthXA2wAsPaNxffSgbTflJVhfRObfUH3jqQrZL9qPWmtwa8qrwn3bQf0+vYSrarHvgXrkeyxEeRqrIdPIufvWOvcjE2atEwhnbDIy9iqNngqUvwo4MjGNmTlHf4YcjfljdGulsQRDB8Zx6jFrKtr3xKNXYWbO8cD+w/OBcYQQi44nAPhS4L0vALiogX2pGeVOyvr6StfJAgfOmKYccSwQYA0Ma9S4zt7E9gtyk1UyGHnfkAYu+R4fO5S/kfvBmjY+Hmv6ON8ft8O6N9YxDlD5tkB9hn/lQ4+ixwN1khmKN1OZzy053jlC2kU+Bvc7pD+97Bn58s135sucszF0nllydrKwh8+F+5Y8l34AW+L76joyjDh/JR97OlAO6VL52Hw+fK0A4LIUQ4x1hYOB/oTyYIYekx+izyPfy5svKay3fmW+vGsM6WQMfFMq36NoHcpaGjGzDjN7qpk9N05q3FA6zFrGPXVsMupHpSuNQLQK+J1de3HxJ7MFpt0/FuVozBI9NcfqnvJWM5cah6dmcODwdNlBcHKceHQcQVXBcIRYzNwF4MTAe5sA/LSBfRFCCFEBuUA4tfxbSmQ2Gs3s9wE8AmAnoiiqT463f83M/rA+3SukldxTR+dXGiu/YVb3dGF2LvuT3uGc0Viue6pWGoMMxZFTj6nQPfXEeHVxz6OjuPiTt2R+ACCEaCv+H4B3mNmFZtYJAGbWaWYXAfhTAA35DRRCCCGaRaZlMjN7A4B/BPAvAP4LwLX09g8AvAJRkIC60tHROoFwxqYio7GqlcaebsyUYTTuH50EgMwpN6JjKHpqMR46WFm6jRyrlnfhCX09WmkUYnFzLaJo8F8CMGtmBwAciSgA3CiAaymQlrv7cU3pZYh77si7bO5seniCupFzH7zgaU3uiFhUbG9lnWGN2Bmf49paNBZrnUfIv7Xv/Fo0XBuW2upgLclq8fwxgA+5+9tzT1mJexE9aa07HWYto2nMrTRW655azkpj3j21DE1jbzcOTUzD3SuKDrrYeThnNFa40ggAJ65biZ8/NoaeLgXCEWKR8h20QDC4prM3fQiOoQTgexP6plz+tl30+zNA4hbWbiV1XDlCUkrW3rHubSslHmR920Bifw7YsZf6x9ovPsYglUP5+3jSzbq/UB491o0xfKyBDMfl7VyfzyWkDeX6QOF4s6Yx9CvJ5zYYqM86RtYDsr7zw3emb+fx4uvJ58+PxkO5LDmfJnOYyg8l3uPrz33i3JShfIlAXme7NTD/4n6fSw87rksmz0whlB+T2xykMp9LSOubvB83B4LaTJP+8CTSKGfRPfedD+Da5nydOkzRU6sgq8VzPIBvBd4bA7CmJr0pgVkLrTTWIBBO2e6po5HRWN5KYzfmHBibmq2qr4uVoQPj6OowrFtdJORfCU46ehWu2zGEzb+yWoa5EIsQd7+smcc3sz8G8DwAZyIKyvNed7+imX0SQgixtMhqRezDwodROZ6MwodRdaOVNI1jtVhpjN1TvUR44hz7x6awuqcLy8pY0VpN+SBlNC5k6OA4nnBEDzo7Kjf2Tly3CocmZzA961jWJaNRCFFz3oBoEeBrAN7U3K4IIUR74kq5URVZR+56AH9pZtsBPBBvczM7CsAfIfohK4mZvRJRMuQzEa2mPwjgOgB/7e6Hiu0L5NxT5zJ2ub6MxtFTVy2rxj012jfrYuP+samyIqdGx4icUEYmpvHEoHPJ0mXowHjFesYcuQiq49OzZRn0QgiRkae4+5yZdaEBRuNwd+HDr/7p6EdqnNxQuzL+9A22sPfF9dQ3TSNFPaiVHvKauJ1Q2pd6Efr89lfunAUgWz7G6TX1+e6QprFysn5PvhvA8xGFFb8NkbbjnwCcjCj90F9lbOdtiAzFdyJyHT8NwBUAnmdmz3b3ohZhRwu6p66sKnpq9JHPGgxn/+gk1q7KrmcEotVMAAqGE2Do4DjOPrE66XcuP+PE9CyO6G3E17gQYilR6rexJKecAdx+e416s5CuLqD7YPQ7NkDbecLJujTWPfI35nqakeyknyzONRfSX/UmyueV0JIl9ZMhbWEot10v8nq1m+kYrKfbj3x+vWtY0xk4FjOYoQ8MT+ZC8dLXB+ok8ybye9yPs6jM2r9QvkTWWbLUjdvn68D9431Zr8f9CeUj5HuKj8t95uMOJNrZQt5fnJuR2+Xx5tyOIX0jH4Ov534AF6d5m9FxQ1pf7kMobyRfGx7TDWT0DVJuxqyP0LsTU9/e0fRci+XkYGTjsV4Go6iOTEaju+83szMBvBXAbwD4ebzvxwB8xN1D37dJznf3x+j1TWY2DOCzALYgSuURxFrMPXV5Vwe6OitfWcoZdLNz2eYDw2NTOLZ/RemKfIzevHuqKGR6dg57RyZwTJUrjetWL8eq5V0t80BDCCGEEEIUksvTKCojs0dG7D76vvivIhIGY44fx/+TQacWkFtpbIVIoKOTM1VrBHN6w6zBcPaPTeEZx64p8xiRYXpoUkZjkkcen8CcVxc5FYgeZpx49Ercv2+sdGUhhGgAZvZGAG8EgI0bNza5N0IIIdqdTMtkZnafmT098N5Tzey+Kvrw3Pj/rqK1EGkaAWBypvm6xrHJmaqC4AB5vWEW99S5Ocfw2BTWripT0zgfCEfuqUmG4nQbT6xypRGIguG0it5WCFE9ZvYHdWr3XDPzDH/bqzmOu1/l7me6+5lHH310jXovhBDti8MwO9dZ07+lRFarZwBASEzXA6CiRMZmtgGRHvJGd08VXPDT0qM2HI+VAManZtGTdKhuMKOTs9UbjWWsNI5MTGN2ztFfRo5GIL/SKPfUhQwdiHM01sJoPHoVpmbnykqhIoRoaf7BzC4E8Dp331OydnZ+iMKUaSEOl66SkQfuAN5gGPnX4tVCASnwhuyePRwsZ7FzfUpwkiQ3t3AgIJHODQ2+ZlfT8V6fMZq+qBAHZmaWlqFXS8qxekJ38pkADpZ7YDNbBeDriHS6vxM8qPtVAK4CgBM3n+qziFxUjyz3gDVmbHIGq6oIggPkDboshsb+sShHY7nRU5d1daC3uxMjEzIamYs/ecu80ViTlUaKoCqEWBS8AMCnAPyPmb0HwIc8a36kIrj7YQD3VttOPclFSwVQYDD2XgLgU+mBLdJCgBUEG6HAG0MThfVyCcSHApP1UHCVvYl6F6Rcnsto245E+6fTexxJNRSQhc+nL1BngMrdge2DC3q5EDZEeV8+VjIRfQ7OgfZMKnO+eB7TpNHL+/M58Hg/GmiLJ5XdgTpc5nHkfvBY87E4KA7vmyVY0HigzOebHItQwI5NVE7OrnKBdK4OROcdoHLoaVRoLIB8kKdt1H5oHHm8QhP+ZLCc+c/FUfn2RxLqm+nZIg+ZUiinLpAPrAWgICiQaC5Bo9HM/ghROg0gMhivN7OpRLVeRPfnl8o5qJn1APgGgBMAPNfdQ999yf0AtMbEfHRypmxX0SQ5TWMW99T9o7HRWMEx+3q7cGhC7qlJJmfmcNSq5TVZteYIqkKI9sfdt5vZ0wC8F8BfA3ilmb3O3e9pcteEEEJUgLthdkYJdiql2MjdB+A7cfm1AG4HkAxkMwngHgBXZz2gmXUD+AqiB2DnuvtdJXaZJ5d/vRUiqI5NzmDj2vIimSbp6e6EWbaVxuGxSQBAf5krjUC0oqmVxoVMzszi+HiFsFqOW7sChta4N4UQtcHdJwC83cy2Ifqd22FmXwOQfIDq7v7aevUjjl4+gHwcglPivMcA8M149VIIIUQRIqNR7qmVEjQa3f3riNxHcyt8f+Xu91dzMDPrAHANIrefl7j7reXs3xFbja2wmjM6OYNVy6p/WtHVYWW6p5anaQQi7aQC4SxkanYOG9ZUmaE2pruzA8u7O1piFVwIUXP2ALgTwDMA/BpSjMY6H/8tiB7e5rgw/gOA45HN47Gu5FxL+1dWsPNFtXU/uzHhznZuwKtYekPRamS5J+utucy5nveV+CwPdy/sR5cW8RY1WfM0BjWHZfJxRD90HwAwZmbPovceKuWmOr/S2AIT81pETwWAzg4ryz21kpXGvt5uDI8l5zhLG3fH5MxcTYLg5Ojt7lQEVSEWGWb2UgCfALACwBvc/dON7oO7XwbgsoobOO4M4FO3o+9TFez7qdK/T4dIo7iXtE8bAs/kBmgy2vvifHk11e+jNln3xd/YaTrKYrAeMPnNP52od0GKbqwL+UTsWwN6MoZDwvNs4TIKg3TNrvQ63NeQdo+3s/aOdWyhPnA5qdt7GpVZ78djxLo57lModxq3w/0LtdMVqMPjwswEykxIk8rntReFOljWunI/BqkcOueTAtuTdXIaSDYYeSxYY8vnwNG0dgTqnxT4DA5PlK7DOsbhhA65LzD9XVAvvVrzcGilsQoyWz1mdgKAiwBsRBQxlXF3/90MzZwX/39X/Me8F8AVJfoAoPkugHNzjrGp2aoD4QCR0Tg7V9rQGB6bwuqeLizrypQlpYC+nm48sF/eS8zMnMO9NpFTc/R0d+Lg4WnMzM6hq7P86ySEaB3M7GgAHwPwSgD/AeBN7v5wc3slhBCiUtwNM9MyGislk9FoZi8D8GVEeopHEWkZmUyuOe4+UE7nknS0SCCcw/Hxa7HS2JV1pXFsquzIqTlW93Qp5UaCXK7PDUdWp0tllnd1wAEcODyNo1eX70YshGgp7gUwB+A17n5NszsjhBBCNJOsVs/7AWwHcKm7J4PhNIyce2qzNY1jk5HzQ23cUzswOVNab7h/dBJrV1VmiPT1RoFw3H1+tXapM2801nClMbe6ODw2JaNRiPbnuwB+390fLVmzTUmmzciFxU9uT6vTimwP/L7lXEzX1qCt0HaxeLi+ymt8Tbx/yG01SU6DW7vZSPuQzOvaO1rv7xfD3KyEl5WSdeROAPAnzTQYAVppbLJ76mhsNK6q0UpjtuipUzi2v7JVsb6ebkzPOiam59C7TMvyADA1E91DNTUa46ca+8cmAayuWbtCiMbj7heWrrV0KTAeA8ZniF08Kf9yPk/jXbSdJ9z8Lc2aLq4Tyqe3P1G+OBAUhw0F/vZev7AqgEKtFveJNXc8QzidyleS0PDUwL6DgXZC+RV5X9YPMlyfZxP7E/V+ROUBKvMYdwfKbJhz/dAvLWvx+FjJ3IRp7RwK1AlpQEPawJlAHaDwXmB/LdZ9hsY+eR0uzd17p+TvtRvpXuA+rUU+gBM/qAiNy1lU5nO+izSGfD34fuyjG2OETqbvfCoDwLWl56rJPJdicZHV6rkX5T2kqwt599TmBhup7Uqjxfq64quA+8em8Ixj11R0jL7eqJ8jE9MyGmMmZ+bQYfmxqQXdndH1U9AhIYQQQogWwwEoEE7FZI3W8WcA3hkHw2ka1iLRU0fnjcbqb7zlXR1wR9FANXNzjuGxKaxdVammMXoOeEi5GueZnJnD8q7OmrrrdpN7qhBCCCGEaCHcIqOxln9LiKzLLFcgWmncZWa7sTDqsbv7c2vZsRBRWoNmaxqj49fCPbUvNuhuuW8/Bo5KT4ozMjGN2TlHfwU5GqNjRP18XLka55mamcPyCiLRFiPnniqjUQjRlmyozUO0XM5Gfkw5sC69LgDc1gyd4GnSJorGknMz3bK5RMVE/VZhkNOPcHqc4xMV74ncWEN6RW5nfSV5XUXTyGr1zAL4WT07kpXeZZ1N1zSO1VDT2NPdge5Owy0/349Lnrkxtc7+2AipNHpqX29kmI5opXGeyZm5mlw/xszQ1WEyGoUQbUGB9rCIwVhO8JtDE6XrbF4HYG/U5m0BvRbrsjbTBPVmav8c2v6jxHHPDWgXQ/DxjqMyPyHPoqHjX5WQ1pHbGaQy68FCNja3z30OaQZZ98kzAPZtKqbs53rc795AmZNt82Pq0OyDz2eQyjx2/YHtA1TmfJTc59VIz63J1+McKid1iHwOIT0ht5U8z8tSdIk3BnJz8rGSs5MtKfczB6zaQ/c/X6eQPpf7PPxwXle8g/q5heoMfnnB4WvC3jFgoMzPalU4gJnWMsbbiUyzZnffUud+ZKa3u7Nl3FNrYXSYGfp6unHrffuDusb9o7HRWKF7am41U2k3Ig5PzWB2zmu+0ggAXZ02b+QLIYQQQogWQk53FdN2GciXd3c03WisZSAcIHIfffTQJO7bN5b6/vBYlBazv+KVxqifhyb0SQGAfYcioy6nQawlXR0dGB6V0SiEEEIIIRYPQaun3KA37n5f9d0pTW93JyZawD3VDFhRo0ikOffRW36+HycevWrB+7mVq6MqzdPYI/dU5rHRyAjPRTutJd2dck8VQixOLBFP35PRDcpgd531WteXyH137jPqenjRQlzZxDyItdYl3kjtPbOnSMUy2dUI/eRFgWO8JpeEPbE9Q4qPsnFopbEKii2V7UE0vFlpSAih1nBPncXKZV01i7y5vKsDT+jrwS337cf/fdZxC97PuaceuaKylcblXR1Y1tmBEQXCAQDsmzca6+Ge2oHhwzIahRBtxlD+576vSLU0hhOTvXmN0nrSK5IjzUNU7gewyRcGyGD2BHSSO2g7PxLN8ku3/c7C12xQ3BXYHoLzHHL+O96XNXesodtO5VDuRy5zTkSewLE9z/n49gbqMI8GtgPhsQzlbORjhPbdRGUelwEqsy6R2wnlYGTtXmjsGI5FwzrGUL5PIKytTOog/yBFx8jPV1hbyBpQIK+/tH8q3J42Gb+R7n9uk/WwIZ1kSEtZkPv0+ny5v6dQ28x6yuHdhf3KjRNP1Tnn48CFyBuEr5G+sJ0oZjT+TsN6UQa9yzrnNYXNYmxypibpNnKYGc4+cS1+sPuxVF3j8NgUVvd0YVmFGjwzQ19vl1YaY3JGeFcdjMbuDsOjhyZL5t0UQgghhBANRCuNVRE0Gt39s43sSFZ6ujvx2KHJpvZhdGqmZnrGHGefsBZf/ckQdj86iietX13w3v6xqYpdU3P09XQrEE7Mvjq6p3Z1dmBmzjEyPoMjVnSX3kEIIYQQQtQfRziUryhJbS2fBtAaeRpnap6u4ewT1wKIdI05o/HiT94CAOjssIqD4ORY3dOlQDgx+0Yn0dlh6KjDSmDOEN0/NimjUQixqGEXtbTtfRn9XEPtCNGO3FAHDeXVcZsDNWyzXEJ5GsXSoS2NxmZrGscmZ7ByWW2H7tj+Fdiwphe33rcfr332QMF7w2NTOLZ/RVXt9/V2yz01Zt/oZF1WGQGgqyNq94B0jUKIRQYHvmFDj/VOvH0wIZbLaR03kdZxJCAi40kpayZZV8aP5ZIxeS7IacMs/44/bW1hpZ15jRbn8Cv2uC/X7nVU/yx6/2Yqs9EQ0uINUDmk4zuGyqG8hnxmoXyKDI/XQOK9pM4ux+rAdj5eSOvI/WANaGhWEtJxcv3QsUKzM9ab7gj0LXntQ/0L5Xncm6wYw+fD47s2WTHG/zBfvprutUEAr0/Ja3gDG3SBNhk+z5lEeXNK+0m98fBE6fyKR0z8T/7FlwH3UxdW+lwDczQC0Upjc02ItqbtUm70LuvEeJOjp45OztbcPRUAnnXCWtx6337MzRV+iCL31OpWGuWemmff6FRdguAA+eA6+5V2QwghhBCitZip8d8Sou2Mxp7uTkxMzzW1D5F7au2DxZ594locODyNn+3NP7dzdwyPTVXtnhoFwllid3eAaKWxPrd+V7yCqbQbQgghhBBisdCW7qlTs3OYmZ2rS/TLLETRU2s/dKxr3PwrkTPL7Jxjds7Rv7L6QDiH5J4KANh3aBK9NcqxyWy7/GxMTM/i5L/4z/ncmkII0XTuvwN4Vexe9oV0dzB2Kz1i4or58uM9VxTU47D7of1D7Ixd3E5dV6JiDbhm3p1uf7DO1gp07dcrKrZoADcWuc9yrtFZ3FAr4qio/cHwRwcAaZfPT7xRKr/ihsS5DTXQRVXRU6ui/YzGZZGhODEzh1VNMhpH6xAIBwA2rOnFxv4VuOW+/Xjdc44HAEzPRh+mat1TV/d0YWJ6DpMzs1je1ZCUmi3J1MwcRiZm0NdTnyA1Pd2dWLGsUyuNQohFTTBnG+sPSZc4SNtZxzhE2wdW5ss7KZcja85YG8Zzv/UAzok1VtfQhPtfsRaXzusQqQ8oZIDKIQ1dSLsX0sexjpH1gNz+TipvCtRJagzfHJ8PG7A8I3kmlYcC5QEqJ8eiN1Dm/g0FtnPeRc4dGNL6sb2xI1CHr0EoDyTX4RyMrDHlvvF9NBBoEyjMeXgX0rmNyknVXu6e3BYwAkN5JJkBAOemaGmZ7kB5M30GOd/pevqsDdJnbXNIZIlCDWOWh0SpGkbREMysB8CXADwZwCSij+Cb3f0+qvNOAK9F9BG+wN2/VqrdtnNP7e2ODJ5mRVCdmZ3D5MxcXVYagSj1xm337cdsrGucnotccat3T42+RpZ6BNX9Y/VLt5Gjf+UyHJDRKIQQQgjROuRWGpeGpvFKd9/s7s8AcD2AqxPvfwfAiwF8P2uDbWc09sRGY7OC4YxNRsetl9H4rBP7MTIxg12/jJ79zcQrjVUbjfHK2lIPhrPvUGTM1dO1ee3KZXJPFUIIIYRoJZpkNJrZMWb2UTO7xcwOm5mb2UCg7rFm9m9m9riZjZjZdWa2sazTdJ9w92/RplsBnJCoc5u7/7ycdtvQPbW5K42jU9EdUo9AOABw9glHAQBuvS9yJp+ejVYaj1pVpaaxN7rUSz0Yzr7RaKXxb15xKs447si6HOPIlcsUPVUI0fq8pnyPi5xbWsgNtZncsET0hjn324xpMEUTyV2rrJPtnBtrES/RplFunsakC2tID51jfFVh/d7RBqfjqC8nAbgIwB0AfgDgRWmVzGwFgO8icil9LSIz9/0Avmdmp7r7WNp+GfgDAF+vcN952s9ozK00NsloHJuMjK56rTQ+4YgeHH/UStzy88hozK00HrmiWk1jzj11ia80xkbj0VUa4cXoX7kMu/eO1q19IYQoi+PPAL5we9EqfRdiPmeab6G8cDfl62SZKLJWin+m2cBhHSNrunbTdIi1aw9QmX95Q7kPWUvHcP2klmwImNc+svE5lKj3+hRtGbfF+kDO5cfaOK7PORh3B7aH8giG4pQMUjmkq+TxSuZyDB2P9YEDVGYtIl831mKGogjQ7VXQP+4DX4PQY2++L7g/fP4rAmXWKrIeFAD2UJmv2+svyZdv/mK+zOPK9UP6Ts7NmYWCzxGVN1CZx27XRPp2hvu5i26qDYFcqQDQxx25CcDeMgy8Rga+SdK8QDjfd/f1AGBmr0fAaATwBkQrgk929z1x/Z2Ivh4uB/DheNsOAKHVx9Pc/Re5F2b25wCeBOAF1Z5E+xqNTXJPHa2z0QhE+Rr//X8exuZfWY3puTms7unCsq7q3Cnz7qlLfaUxWgE8anV1RngxIvfUybq1L4QQQgghKqAJ02B3z5or8KUAbs0ZjPG+95vZzQBehthodPfTszRmZm8D8AoA57p7uc8oFtB+msZlrbHSWI/oqTnOPnEtDk3OYGxqFjOzXrVrKsDuqVppXLGsEyuW1e/69a9cjonpuaY92BBCCCGEEA3hKDO7nf7eWEVbTwHw05TtdwM4pZyGzOyPAVwC4IXufrCKPs3TtiuNzdI0zrun1tHoeNbxkYPHyPg0pmfnqg6CAygQTo79o5NYW2X6klL0r4zGev/YJI5ZtqJEbSGEEK3ANRny321fIrpJ0VrkXKbrkyyswaxPfIbKcW2tFkdhfpbasM/dz6xRW/0ADqRsHwaQORCHmR0D4EMA7kOkhwSAGe6nmb0bwJsAHA3gqWb2MQBnuvsjoXbb1mhs1krjaBw9tVYrjdsuP3vBtnV9PTjx6JXYNzqF6VmvidG4YlknOjtsyafc2Dc6VZOV22L0r4zaHx6bwjFHymgUQrQoNwe2b89P4gYCVYbIeOpLRmSJJ4Hj3VSnC+ifjrbvon1PIt3UUEI3NV+Hyqy/SuoNc4R+nc/18OSUczsOI69v5O2sG+N+8PYQA1TmYWedGesYeV7Lx+IAKYNUDukBRwLbi81gZgJl1mWynpKPzbcCH5vPgfvBY8daP87wx/kx+VjcNz4W++0NUvkwgItTclzyeXEuR6Cw33xuV5OOke/PV5yXv8e+cUP+GIcAnJ9ybND2HYl7MMd0oMzXMJTLNDTuPIU+nQcAmP/87kz081T6/OxKvLcZCykV+CbJIgt8Uw1pA1HW0yp3f6jUPu7+fkRBdjLTdu6pueip41NZ3YNrSz4QTn2ip+Y4+8S1ODQRrTQeVYOVMTPD6p4uuaeOTjbAaIyul9JuCCGEEEK0CA5gtsZ/teUA0p0djkT6CmRDaTujsafpK431D4QDRKk35hyYmavNSiMQuagudffUyGisr3vq2vh6HZDRKIQQQgjRGjQpT2MZ3I1I15jkFAD31PxoZdK27qnN1DR2dRiWVxnNtBRnnZB/0JBzd6yWvt6uJZ2ncXbOMTzWAPfU2CgdltEohGh3Lkp4OF1b2oUs57q2PjHDSOZtazSsR1y6v4RLm+uaqA28LaCHvTGDlraRVPM5HUyc40ARl3CRyjcA/L2ZneDu9wGAmQ0AOAfAO5rZMaANjcbuTkNnhzUtMuXY5AxWLu+C1VkMf9Sq5ejt7sT49GzNVsb6erqXdJ7GA4enMOeou9G4enkXujtN7qlCiNbm55VP6FgfNfhofnLIWifO8LQ6kOORdYycF26QtrO+i4091lFtp3IlE5tzAttD+QJ5gj8Y6BPX4VyADGvO+DxDRg3nPjw9sJ2V9KEY+1xnb+I9niVsojLr/fjcQrMKHju+bnw81gmGEtpz+9wO78vHCuWN5DENtZmEj8G5Fvke4/viv0nHyMfg/rEelHWsfP1Zo5k0JrfEnzU2QrkOtxPqcx/tMPgwHYs+gwM9YV3ihgw5W4M0MvBNkublaYSZvTIunhH/P8/MHgPwmLvnUpZ+CsBbAHw9DlTjAN4H4BcAPtnI/qbRdkajmc0bU81gdHK2ruk2mL7eLoxPz9bMPXV1TxcG91WdpqWhXPzJWwCkBwwql32jUe7EehuNZoYjVyzD8KiMRiGEEEKIlqCJRiOALydefyL+fxOALQDg7mNm9nwAHwHweUTBbL4D4K3uPtqgfgZpO6MRiHSNzczTWO8gODnW9C7D3pFJHNe/sibt9fV0L+lAOPtjI67eKTeAKBiOVhqFqJxmSRCEEEKIWuPumVwU3f1BAK+oc3cqoi2Nxt5lHZholnvq1Ezdg+DkWLOiG6dvXIONa2uTtqGvd2kHwmnUSiMQGaYHDstoFKJSdv1ypHQlkYm5n9yB8VXRfGUphrXfltNYlrHPDcrHKMS8RrG/QndU1keWm4KjbkjQXDHtaTQ21T11pmHuqQDQ3Vm7gDt9Pd0Ym5rFzOwcumrYbrvw2KHIaDy6AUbjkSuW4e6HNekVolJ+OvR4s7sggGDgm4GnpVdPap1yE0UOkLE5ue/OqA5PMDeRg82usXyZ53u3UTmkXWP92CCVWWMGANwl1sQlv8Uvi/VkV3OuSXqf9W17qMzaONYJ9gbKrPvjNjlPIesYWcfGOrmRQJ3VgTJQqHcM5WPkx8+cR5GvD48pjwUb73yerAfla8vXk8ear9MAlXl8B6nM/ec+8Ph2I5+jEyjMqTiOfE7F7YH8nTzGoPpbEw8hLktph/t0bjJV/I8Xfg4fpTJfA067yJpZbn+Ydk4ahGmf2TTSjEAOfNPswFepNNc9te1pS8uhmUbj2OQMVi5rS1sbq3uifufShiw19o9NobvT0Ndb/+u3duUy7I9XNoUQ5XOXjEYhhBCiZWhL66enu7OJ0VNnG+aeWmv6eqPndSPjM1izov66vlZj36FJrF25vO6Rb4EoTcrIxAymZ+dqulosxFLhp0NaqRdCCFFDtNJYFW1p/fQu62xa4vTIPbUxgXBqTV+80rhUg+HsG53EUasbYyzncjUeGJvCur5qYlMLsfSYmJ7F/+49VLriEsDMngTg9wE8D8AJiDzRfgzgL9z9fxramePogdsR2XbJaSkXC9dL67jo2UbXOBlR4rom51Tc1YD7L6tbaeizHdRNb6D6Qy2ibxRl0Z5GY3cnHm6Ce6q7z+dpbEfyK41L1WicakgQHCByTwWA4cMyGoUol589cggzc5pUxLwIkcH4WUQyrjUA/gzAbWZ2jrvf0ZRePQ7ggeLXqJuer64njeLORNLCU+P/MxlWAHiy/jT6aj1iovBBsnushDslP1G9cheC3Jh4fWlKUvLrA/oz1uXx9vFAHdY3chKsASqPZNjOw8W6P9bVcR9YD8j9SQ774cB7rP3jtpiC/J2BPvE5sP6S6/MY8YyF2wnl0GT4/DcH6oTyKRarNwzggvgeKWZklmo3pNG97fa87jEEa0ZD15PHuiBPI1eiMusbiwW/6c6wdlKgedzQIg9bHOHEoqIkbWn9NEvTODkzh5k5b1+jsSc2GieW5tr8/tFJPGl9UvJfH46M3X+Vq1GI8pGesYAvAfi4e34GaWbfRTTH/n8AXtOkfgkhRHvhAJTNqWLa0vrpWdaJ8am5hh93LA4g08joqbVk9RJ2T3X3aKWxQe6puVyQytUoRPnc/fDjOKK3u3TFJYC770vZ9riZ/S8KAzcKIYQQdaMtrZ/e7s6mJH4em4yO2bYrjUvYPXVkYgZTs3MNSbcBAP0591QZjUJk5uJP3gIgyof7tA1HYGeT+9OqmFk/gKcC+ExTO7KeXM72Vu5OvCN27xtooZ/W7U3WronFwY0BDeL2DNrE3OeCXUzLyTXaDkyvKRyH7oMNkCUsTWe7mtBCX9HZ6e3uxOjkDC765x/i2jc9u2HHHZ1faWzPQDirl3fBrL3cU2dm52qibcqlv2iUpnFNbzfMtNIoRLnMueNnjxzC7z7nhGZ3pZX5KAAD8A+hCmb2RgBvBICNGzei94EHqj8qaxjXl570Ts+m53LrowlzgUaNvp45N+PTKOjOdeS5vGciX/4Gls3nxGO2k44xpGlL9iNkKIbEDedfSMf7cr7Mv7SsrWPWUpkll6yBY40hP/LlNo8J1OE+h3SVydyCDO/Py9p8bG5rJFDnmVTm/IKca5LHnbWB3G/O93gpzWB30WAPUp2QxpLHiK9TUpPI5xPSJfI+PF7cbuj6dAHYkrtvL8p/LnbQfcQMBtrnsWPDkvu8nsarKzD73ztR+HqTh3M2zudkfEMGvWKrBL5R9NSqaMtcAL3LIqOt0bfg2FR0p7XrSmNHh2HV8q62Wmn8xYFx3P3wCGarNBz3xdrCnNtovenq7MARvd1Ni/IrRLsyPjWL6VnH0zZkDM/ZZpjZuWbmGf62B/b/cwCvAvAWd9+TVgcA3P0qdz/T3c88+uij63Q2Qgghlgptaf30xGGb5hocXS+30tiuRiMQBcP5950PY9cvR7Dt8rOb3Z2SjE/PYmbOcc/DI3jaMZVPIvc1eKURiFxU5Z66OMm5UbbDZ6jdyGnHn7qhr0TNtuWHKL7oleNwcoOZvQnAXwN4t7v/S607JoQQixqtNFZFW1o/vTmjscFLje0eCAeIguEcHmmfT8zkdBTw6L/37Gs7o3HtymXYPzbZsOMJsRgYm5pFX08XNvaHgte3N+5+GMC95e5nZq8G8AkAH3L3D9S8Y0IIIUQR2tL66V0WedXOlchhU2vGFsNKY283hg6G1BWtxdTMHKZmI6Px5j378OYtJ1bc1r7RKZjlA9Q0gv6Vy3D/vrHSFcWiQquQ1TE2OYOnH7sGpiTq85jZbyMKenO1u7+t0nbSknEHE3GXSU7zlMzttjPevja5Qx3ZFsinKEQt2bkEvqPStIxVc1GGNrPUqQTlaayKtrR+8iuNjTUaP/69nwMAVi1ry2EDELmnVqsPbBQ547a70/DjwWFMTM/OuyaXy77RSfSvWIbOjsZ9yfevXI47HjjYsOMJ0Q4UM6rn3HF4anbR6hkrwcx+HcAXAewEsNXMnkVvT7r7T5rSMYqWyhPLYQqkwUFEmD76Ce0D0D8dtTXSm2+HA3sMU/CbU2l7ll/ivQAujucKHMkyGdSEnaE58Mpgol5awvXrqd1Qn7jfHPBmP5U3BY57EpUPUZkf/4aCtCSvQa7/V1Ofk77SHBiH59fcP05Ez2M3E9h+F5X52nK/+dw4WM46KnOgmW/P5K8t34NbqM5/U5mD0XAf+Fz4WEDh9RkI9OM4AKfG/eB7IRlQ6ZxSc9Zr8+8PUzuDiWqvj9vhh0A76fk037/80KTAyWwmH8hmiI61AsCGlDFNPgxiRv618HXfp8J1k3S/CAXnXXeUp7Eq2tL6yRkOsw1O1ZjTUK5s0+ipANDX01XUaGylVZIHhyNJz1GrluOXj09gxwMH8OyTjqqorX2HJhvqmgoA/Su7ceDwFObmHB0NNFaFaFfGp2bhAJ4io5F5PoDlAE4DcHPivQdQOJcVQggh6kJ7Rk9t0krjrDvMosiY7Upfb3dNUlg0gpzRePSq5ejqMPz3ngU5rjOzf2wKR61unGsqEK00zs45RibkCyFEFsamokfAWmnM4+5XuLsF/gaa3T8hhGgrZmr8t4Roy5XGXMqNhhuNc47ONvdhz600eoPHrhJ+MXwYZkBPdweecewa3FyF0bhvdBJPP2ZN7TqXgbWxfnL/2BTWrGiswSpEOzI2OYNOMxy3SIPgNI277wBOqcFvV1JnVCO3spx73OoiLnDVsK2Gusrr4rZOr0FbzeDKuP/dTe5HrdjWInOymzP045q4DruMPpSok+b+vIAa6f3SNM7Fti/gSdn7wa6uAxcWqVhvFD21KtrSaGxWyo3ZOW+oJq4e9PVGPxWzbWA0Prj/MJZ3dcDMcM6Ja/HR7+7G44enccSK8n/umuOeGhmKw2NTOFFp0oQoydjUDFYs75Q7d53o3Qjgntp/9w9k+T0ho3WQRH38bd5HgrJDD+bLvWRMjpNmMuTDcTGJ9LbRsfYjr4FLBjHZhUJyurEbqF4ohBzrBlnHx7o31gmyRpH1Zw9R/3bRcblvIQ0gw8dlQ5kNlGIBgs4/M1+++vZ8OaRRzaqnTDs27ztI5Q1U5rHjc2P4XthJ5dBsYRh5jeFtgbEGCnWcfAzuU3egDpeHAv0IcS59pvgePI8Mrr2kY+T7jvsW0r2uX5kv96/MB8TKajD2HZupWiqDX87wncEPpFrkwYBoe/fUxh531htrNG67/Oyaawv7emKjcbYNjMbhw+jpiq71czYdhTkHbrlvf4m9FjI+NYuxqdkmuKfmjUaxuGiXYFLtgrvjn2/6OcYmZ7G6jaNTCyGEaGFy0VNr+beEaEujsadJmsa5ReCeuronmpC1+kqju+MXw4exvDu6RZ9+zBqsWNZZkYtqM3I0Aq1tNF78yVvmgx6J8rh5zz7c/sAB/HTocWy9+f6WvL7txMT0LP5o2534mxvuRf/KZXjimtC6hRBCCCGaRVs+0m2mprG7jYPgAHn31JkWX2l8fHwahyZncGRseC3r6sBZx/dXaTRqpbEWtFKE3UYzPTuHK75xN5Z1dsABXHH9PXj/f+zC805eh1ecfgyef3IyYLsoxiOPT+Dyz9+O/3nocbztRU/C9//3MeVnrDPTawrHt/vgwt8CdlGbpvD0fecX1uMUGX3jC9NmcPqNgWRehzqQ07ddXINjbW/Sfdis4y5Frmnhsc6SxqWW5HTF/StLVKwx/H0B5L9H6oZSblRFWxqNPV2R4dbolBuz7lje5lqbeffUFnevy0VOXd6VN9LPOekofO9nu/DwwfGyViP2jUZGW6NXGnu6O7FyWSf2jy4uo3Ep86+3PoDdj47iSetW4ciVy/Delz0FX7njIXz1Jw/j2/fsxZErurGsqwMbtFpWkjt/cRBv/NztGJ2cwVWvPgMvesoT8IPdlQe7EkV4yhnA7bcvMBjLZeT6dOMwC6xj5Jxvh8iw3EU6xgGavD5E2i3OfbeDyuwltm1XXhu4NmAY7Em8Pim1Vlivx8cO6e+GAVwQ94MDtnCbrDkboHJIc8jnnwyikgbXCeWKTHrY3Uw6xpA+kvcZpDJr67iv44Fy8jr8QTxe1wWuG49LKB8h6we5nzzufJ34vJKayUEq87lxu/2J8pb4HLbSOVxGWsSbv5wvb0Lp/I0zAM5PyTUa0nfyeW4IBJfizxSHHRvhz1qx3Iy/IAMvw3fB+gYbo0EUCKcqGm40mtkxAN4O4EwAT0d0fx/v7oNZ2+jq7IBB0VMroa83uuStnnYjZzR+9FWn4eQnRF/Vz9kU5Wi8ec8+XHhmdhX2/ia5pwJA/6plGB6bbPhxRe0ZHpvCR779v/i1TUdhMl5+OfkJfXjXS07B23/zZPxg9z58ZcdD+I+dv8T41KzycxZh3+gkLvrkLVi3ejmu+91nz3/GhRBCCNGaNMPX8iQAFwE4AOAHlTbS0WHNMRrb2zsVq6tYaWykDi5nNB57ZP4Z2JPXr8ZRq5aV7aKac0/NuYs2kv4VyzB8eIkppVuISu/ZtP0+/O2fYWxqFn/5W6cscKHs6uzA805eh4+96nQMHPX/t3fm4XVVVf//rMxDkzZJ57QllBZogRZKGctQBRlUQBkVAUEFnH2d3ld9/amv+urrLIoyCwiCgKCAIPM8FUqBYinQKTTp3CRt5nn//jjnJiu39yT3Jjd3yvo8z3lysu8+++x97jn3nHX2+q5VRGN7N39+sXokXc9InHNsrG9l3Y4WDpk5gfu+eIwZjIZhGEbisDyNwyYZ7qnPOOemAIjIZ4CThtNIlkBvAt1TnXP0OtI+5UZfIJwUn2msqW9l4rg8ilUkRRHh6H0m8vy6OpxzUWufdjZ3UlKQ0xdAKZGUF+exo9lmGtOd1VsauW3ZRi46qoq5U4KcgjwmjcunoaWL/3vobY7bdxKzJ41LUC9TnxfW1bFldzuTxuVzy6ePIC8nzd/CpQvvvQqXxunetSC974GJ5v40905KNCGd4Vhy8I+UvzEdCOVe3MON9Xx1zt8W8Kx5SZKui1D0VGNYJNxodM7FxdTLksTONLZ2eu5o6W405mZnkSXp4Z46o2zPBN/HzJnIfW9s9nRlQzy8h9jR3MGkJLimApQX5/PO1qBsWkY64Jzjh/e/xfjCXL564r5D1hcR9p5YzPqdLXztzjf422ePIsd3URjLQYQAbnt5IzlZQlVFkRmMSSD3HOC6oX/7c3IGrvcFy1EGY+lcYOWebelAFnoOeZvOd9gOU/z7d70q19qw1UpbpfP9Van1RUSuozkx4DnhzLBynZx9idKf3aP0Z7p/mjbg1AiaM63dm6HW16h1bShonV2Q0VSt1qvUutYuFgWs6/Z1rKBwbaQ+lnoiJehZW7elx6y1hfrY6cRZVQH7DdIMah1jkE5Snxe6D1o/qdvU+wq/Wwfl4MylX2cY9CKlSq0/ddfAz0K6x6BgPIVEPndPVOfmCtWmPo9KArSIOjCVPl5TBtEuBgWmqVb9rm9XeRfPjzyeAQG1Pha2fmNqP48a/aTtXTsnW+hKYCSc7U3ebFFOVtoesj6ys4SeRE7TDoON9a3MKt/TaDx6jidZfy6GgBl1zR1J0TMCVIzLo66lE5fiKU6MYB5etZUX19fxtZP2Y3xRUKrogeTlZPGjjxzI6zW7uOaZ9aPcw/RgZ3MHj6zaysRxeab1NAzDMBJPKHpqPJcxRMpbQCJymYgsF5HlO3bs6CvPz8mmsztxhk9IY1eQm/KHbEhysrJSeqaxq6eXzbvaIxqNM8qKqKoo4vm1O6PWq+1s7qQiwek2QpQX59HR3ds3U22kF+1dPfz4gdXsP7WEjx8WffAlgNMXTudDC6bx28fe5a3NQfMgY4e/vVpLV49jctBrcMMwDMMwUpaUT7nhnLsWuBZg8eLFfZZOfk4WDS29CYtQWNOXAiLxurh4k50lNLV3852/v8m8aaXMn1bCflNLGZefGqfDll3t9PS6iEYjeKk37n19M/OmlZAVhV5kZ3MHR82uGLLeaFBe1J+rsThFju9I2bK7PWXOldHm+mfXU9vQxm2fOaLPxTQWfnzGgSxbX8/X7nyde7+4ZBR6mB709jr++vJGDq8qxyRe6UcovUbp3LAP5qsv863B8z2Gs22UT4SQu+mSr6iyK/rXlxw5qrs3xgDX++fYZw4aWB5Nrs2glCKakKuzzv674JzIdUeLSLlYYyIKDfSI9xELlnJjRKTtk19+jpdce2dzB5NLR//NdU19KyKQm53+TzxTS/PZ1tTB/W9s5rZl/Ymx9qooorGti5KCXNo6eyjMS46B3Bc5NcBoPGbORP6ybCMtHd190WCD6OrpZVdrV9LcU0MRW+tbOgPHk07UNrSysb6VwtzshKaUSIYWsLO7lz88uY5TDpjK0XMmDvgs2n6UFefxs7MO4tM3L+eKx9YMvUGG8tL6OqrrWvmPE/fl9pc3Dr2BEV/2OhSuWz50PZ8+DSMDH+ga16iHuvmxXfulxVDY7G27LSBnodbcVamnk0b1kKc1aotU7rcp9Lf//DAM0iVHAi9GeGAN0CgGaQ61T0FQTsWqgHb0s6yuH6SK18dLayaD8jcG6SrD76JaN6j3obV/cwPqaIK0hbq+1glWqfVlAXUKA9b1MdJj03dd3b62895U6+E+IaUBn+lz4X7VgI60oI+rPnZB2tWg/J0arY3U+UH1w3zp3v3rq1VCzqqA62WlOscH5Nkc5NG6anrAB/okflv16TRV3gLcObx8ryPGjMYRkdZGI0BNQ1tijMaGVvJzsqKO2JnKVIzLp2JcPn+97Eg27Wpj9ZYm3t7SyOqtjTyxejsNrV0s/eWTfPXEfTn70BnDmmEZCTUNntE4qyKykXXUPhWIwO62oY3G+pZOACaWJMk9dVy/0ZhKdHT1sLGhjd1tXYwvjE6nB/CvN7cC0NbVw2Ort3HSAVNHq4tJZ2N9Kz3O8Z0Pzhu68iCcMG8K5y6ewdVPr2P/qSVDnrOZyG0vb2R8YS6nHDh1UKNxrAYIMgzDMIxUJ20FeqHIe7W+gTHabKxvzQjXVI2IMKOsiA/Mn8KXTpjLHz9xKAtnTmDetBKmTyjkW/e8yalXPMujb21LaCCXjfWt5GYLUwNeBkwoyuPA6eNpbB86bvIOP4BRRXGSAuH4M411KWY01rV0Ut/Syb2vbxq6suKBN7dQlJdNfk4Wf3hybcoH+Glq76KlI/bXio1tXdS1dHLpsXsHvryIhf/34flMG1/I+h0tKZ/uJt7sbO7g4VVbOWvRjKSkvTEMwzAMoD/lRjyXMURSjEYROVtEzgYO9YtO9cuOj7aNkAG3aVfQJH58qalv65vdzHRKC3K553NHc9UnFtHd67j0z8s595oXaWpPzJx+KN3GYOlNlsyZSHN795AP4Dv9HImTkjTTWOYbjQ0pZjSGvst7VkRvNNY2tPJ6zS4qivOYPr6AN2p382wMUWwTzdrtzaze2sRbWxpZXr2nA1VQIKV3tzXx7vZm8nOy+PzSOXHpS0lBLr84ZwHt3b0J+81KFe72A+B8/PDYAgkZKcox4i3DYJMIm0bRW+dfIvxrBO2vFGGlCNVqSdS+DSPRxHo91udK3xJOY6Ek3tV0uFj01GGTLPfUsIw1/NH/+zSwNJoGsrOEnCyhtmH0H8B2t3axu62LWeVjJ92siHDqQdM4cf4U/vpKDVc8toadzR2UF+fR3tUzqjMGNfWtQ+r/jpkzkaufXkfTELONdc2+e2qSNI0l+TnkZktKzTT29jqaOrrJEni9ZhfrdjSzTxQJ6EOuqeXFeeTlZNHW1cuVT67luH0njXaXY6a7p5ev3/UG2eL9Tlxy4yvcftmRHFg5ftDtahtaueiGl8kS2H9qybCCFwW5WB69z0QmFOVS1+ylYMkEV/dIaP2pc47bX97IYVVlzI0yr6qRWgwITKGNxXLgucFf2m1TuRa1U3Y3UBnJS0FdE7XdA+uH0GfRGtW+fv3VSH/eRB2URLfT+PrAXVe3MyT61ZPWxOl9L1U/GSvUDnUotmq1rjVkXQHl+ilHj2Evta51eVqTqPP3Bekqw18HB+U/1PWqA9rS5Tofo95W/6puC6ij9Xpar6ifwroCyoNeb+tz5/mA/uj9wsDzNih/pf4elIQwkA+oHT6qGtLHQo9H92EKMM8/t/VLigW6D6oT+vtbpq4XrUnV5wj051DVBmVh2K2wfjuUd+2pS2y8P3Iwm/AXMFX+31EPfGPElaRMnTnnJGBZGks7+TlZbEqA0RjS2GWae2o05GZnceGRe/H0N5dSOaGA+pZOfv7QOxHrRpsCYyg21rcys2xwA31xVVmfrnEwQjONFUkyGkWE8uI86ls6krL/SKzZ3kxPr6NyQiFZAn+Pcrbxn29u4aDK8RTkZpMlwmXHzeblDfW8EmEWL9lc/fQ63qjZRVVFEftPK6GkIIeL/vQya7c3B25T19zBRTe8TGtnN/tPLRmVFyNlRXl09vSyektQaIvM4sV1XgCc84+YleyuGIZhGGOdUCCceC5jiLT2t8zLyUqIprE/3UZaH64RUZyfw4yyIqaU5POn5zfwwrrRcUvc3dbFrtauwHQbIQpysynJzxlS17izuYOC3CyKkxQJFqC8OD+lAuGEjLzy4jyOmTuJv7+2id4h3Hxr6lt5o2YXHzxoWl/Zxw+fRUVxHlc+sbavLF4vDmIhfJ+rNu/misfXcNrC6VSMyyc/J5tbP3MEWQIXXL+s73rWNHd0c8lNr7BpVxs3XHwYRXmj44RRVuS9M35s9bYhaqY20X7PoQA4px7Yf97ccflRFvDGMAzDSDxmNI6ItLaC8nOy2bSrbdSDcYRSQOTnpvXhigszy4vYe2Ix37xrZVSBaGIl9EA/lNEIUFqYS2tnD5sH0YjVNXcycVx+Ul0BK4rzUso9dXl1PbnZQn5OFmceUsmmXW28PMRs4b/+vQWADymjsTAvm08dszdPv7uDlbW7Rq2/3T297GzuoKund8i6Hd09fP3ON5hQlMcPTz+gr3z2pHHc8ukjaO3s5oIblrG9sX3ANpffspxVmxv54ycWcVhVeaSm40Judhbj8nPS3miMhjo/AM6ZiyotAE6qcpEMXCIQ0ipF0ivpzwarF4k1In3LaPCUSFT58gwj3VgtwupRPLdHqj1eIdK3DEnAb1CsvydGYkjblBvgzfy1d/VS19I5qpq1moZWJhTlkpNlRmN2lvCrcxdy9lUv8KP73+IX5yyMa/s1Q+Ro1FQU51Hb0Mady2v4jxP3jVhnR3NH0vSMIcqK8xIW5TcaXqluoCQ/BxHhpAOmUJyXzd9XbOLI2RWB2zzw5lYOqhy/RyTRC4/ai6ufXscfnlzLNRcuHpX+3rm8lnU7WsjLzuL1ml0cPHNCYN0rHlvD21ub+NPFi/uCEIWYN62Umz51OBdcv4wLb3iZcfnZZGcJX73jdZ5fW8evzlnICfPC1R3xp6wol5W1u9m6u52p40c/XVCyuHuFFwDn/MPNNTVT2KaEYIUxnrpdAesa3eYCJbpaoQR7+hWh1v3pK7cxoI5+HbR2EA3jioBtdFtr1bru01Nq5kGLLLQIQGvrdJtac9gdUEePTevnotFD6mO0KaBO+P96/Hof2wLKuwPKg76ftijKtc6wO6BOUA5N3Wa1Wq9S6/r7CBdrBB17vQ+tJ9UJmlYHlOu8o0HncNBxCTqfg64p/ZC/SF1fm9T5H6SfLInyGi89uH99xUuR61SdE11bo04oeqoxLNLaCgrN/I12MJyN9W1RzXyNFRbNKuPzS+dw16u1PLJqa1zbDs3qRpPmoCA3m/GFufz15Rq6A2ahdjZ3MnFcciKnhkilmcbNu9rYtKutL1dgUV4Opxw4jQfe3EJ7V+QwYCHX1A8t8GYZtXthaUEulxxdxcOrtvHutvjr9Nq7evjd42soyssGgXOufoFbXqyO6F3w6nsNXP30Os5bPJP37x/Z+Fs0q4zrLlrMhp0tvL21iQ07W3nwza389wfncdahMyJuE28mFHnnYybPNnoBcGosAI5hGIZhZAjpbTT6GsPRDoZTW9/KzLIi0+IovnzCXOZPK+Xb97zZF2wmHmys92Z1S6NMgD65JJ+tje08+c6OiJ/XpcBMY3lxHk3t3XR2D+1eOdosf68BgJKC/vePZy2qpLmjm0feimzERHJN1VyyZG+K8rL545NrI34+Em596T22NrazV3kRB00vZcmcify/e1fx1Ttep7Wz/3VtT6/jG3e9wbTxhXz3w/MGadFL13Ll+YfQ0tnDjuYOLj9+NpceNzvufQ+iMDeLvSqKMtpobGzvZsPOFj5us4yGYRhGquCwlBsjIK2Nxryc0Ezj6Ln+9fQ6ahvaonKXHEvk5WTxm/MOpqm9m//++5tx05XWNMQ2q1tWlMuU0nxuW/beHp/19rpRd12OhvJQrsbW5M82Lq+upygv25u58zlydgXTxxfw9xW1Ebd5YOUWFswYH3gNlBXn8YkjZnHfG5sDZyuHQ3NHN1c9tY5j5kyktDCXnOws/vTJw/jaB/bl3jc285E/PM+6HV401JqGVjbsbOEX5yzom0UdjJMOmMq+U8Yxs6yQb52yf9z6HA0iwonzpvDC2jpaOjJTRb+jqYPSgpwBgZOMFOASGbiEc670LyMgVi3SMhGWmf7QMNKKtNUcWiCcYZPWmsacrCxKC3JG1T11W2M7nT29zBxDORqjZb+pJXzj5H35yYNv8/fXok8SPxg19a3Mn146dEUfEeG8xTP5/ZNr98jvuKuti55eR0UKuKeCF5RnSmlyNWyvVDewaFbZgKAyWVnCGYdUcu0z69nR1MGkkn4ju6a+lTdqd/OtUwc3rC49djY3v/gem3e1M3tScVz6euNzG6hr6eQbJ+/HTx9c3dfXL58wl0NmTeDLt7/GGVc+T2lBDtsaO7hkSRVH7zNxQBuDeQaUFeVRVkTEIEmj5VEQavfFdXXc8NwGnl2zg1MOzAzDqrmjm8272mho6aS+pZNPHl1lAXBSnWzgRv+FX4ChWPpRtQ5wW4QXhPNVAIsN/cXlBSoPm6pTrcRegfPt0/tXc5RoTD+0BOXs047yOh+dfr0c/vCzXa3r1046RFhbQJ0giZTeVvdVt6NzGQa12RVQpzugXKP3pY+1Hn94//VnQTq+oLt0UO5EfSx0+9EcR/10EfT9ayf4oO9pslrXx10Tfl40BnwWpBWtVutVAe0EHaO2gDrRfP9B+9VoHe88dZuuVfkby8MeUYLyKA7Izfh6f705sRqRf47cfqkWbG6OrUlj9EjrmUaAGWVFbBokeuZIiSWa51jk08fM5vCqcr5/7yo6ukc2y+TN6rbGfKzPO3wWAtzxSs2A8pDbbLJnGstSZKaxsb2Lt7c2sriqbI/Pzjykkp5ex31vDPx1fvDNwV1TQ0wuLeC8xTPZ2dwx4vMAYFdrJ9c+u54PzJ8SMfDNsXMn8c8vH8ucyePYvLudgtws/vPkxM4YjoTFVWWML8zl0be2D105BWnr6qG6roXP3LycD17xLAv/5xEO/P7DnPSbZ3h3ezMicMGR5ppqGIZhpBCWcmNEZIDRWDiq7qmhwCwzy8xojER2lvDLcxbS6xzrd7SMyE11a2M7XT0u5mNdOaGQ9+03mTuW1wyYQUsVo7FvpjHJwXBWvNeAc3BYVfke+ty5U0o4qHI894S5qD745uCuqZrLj/d0gbUNbRHzPsaSw/GaZ9bT3NHN10+KHBUXvO/9zsuPYlZ5EftOLqEwibk4YyU3O4v37TeJJ97eRs8QOTJTkZr6VrY3dlBT38qU0nxOWziN/zplf3738UOYP62Eg2dOYM5kC4BjGIZhpBCh6KnxXMYQaWs0hh56K8sK2dQwerkaaxrayBKYPsHcU4OYVVHEdz88n8b2bupbh38Fbawb/qzu+UfMYkdTB4+pYC47mz0jbVJJct1TQ5rG+jgGDBoOy6sbyM6SwJQVZy6qZNXmRt7Z2sR517zIGVc+xxu1u4ecZQwxo6yIqeML2NncyZf/+lpM+kZtUG5vauem56s5bcF09p86uKtyXk4W08YXpJXBGOLE+VNoaO1ixcaGZHclJhpaOtnV2sWU0gIe/upx3HjJ4fz4IwfxuaX7cPrC6ZQU5JKbnba3FsMwDMMn6nyJ+4i3xNjuAB31CLXUxuiT1ppG8B5UWzp72NXatUdetnhQU9/KtPGFfUF3jMicu3gm37v339SNwDAaiSvw0v0mM318Abe9vJFTfSNnZ5PXl4ri5M40TijKQwTqkzzT+Ep1PQdML6U4P/Jlf9rC6fzvA6u55zVvtjHU31iCmcwsKyQnS/jnyi1s2tXGdRctjnmm949PrqOzp5evfiB4ljETOG7fSeRmC4+9tY3DqsqH3iBFuO+NzTiS/zLGGAY3DvJy9c6AzyJpGMN5q79O4YTID35BWsdy9TBarXMnPgwL/JfBuUp3HPQaSTt6a0f1NWp9MP2c1pxVEhmtldReafqOpf2edF/1a2etLQzSqGl0Bt0gLZ5GtxOkmQvKzRdeL0jHlxtQrscc9ApZH8cgjWJQrkhdHo1noG4/mvqDPX3o71afI3o8VWo9KNJDUK5J7Zuhj68+LnOU5nC1ul6CcmjqdgbkdeyJXKe+Har8624wQ1HL1QujSW+sfl+iCp6zSf3uxDNIVih6qjEs0t4SqvRnAEcrGI4XXGXszDIOllZksM+ys4SK4jx2tXbR2D682caN9a1kZwnTJkQXLEb3JztL+Njhs3h2zU6qd3qq7rqWDnKyhPGF0aXvGC2ys4RsEf4aprlMJJ3dvbxes4vFewUbJxPH5XP8vpP4x2ubcM5R39LJwihdU0OICNMnFHL1BYtYvaWRj/zhedbEkL9x0642blu2kXMOncHeE/uV+pmY7qa0IJcjZ1fwaJql3rh7Ra0fgTft3zkahmEYhhElaW80zijzDLpNu0ZH17ixPvbALKnOaD2AVxTn44BHVg3vIXhjfSvTJxQM27XtvMNmkp0l3P7KRgB2NnVSMS6PrKzkuzzkZAvdPcnL0/jvzbvp6O7lsAhBcDRnLprBtsYOdjR10NLZM+yUCaccOI07LjuKju5ezvzjCzy7JnIezXB+95g3L/ClE+YOUTMzOHHeFNbvaOlLHTIaxKIlHYo125pYWbs76TphwzAMw4gZC4QzItLeaAwFTRmNmcb2rh62N3VYEJwoKc7PJj8ni/vfGF585JEa6FNKCzhh/8n8bXktHd09PLxqK03tqXFF52Zl0ZXEgCfLq72A54cOYTSeMG8yJQU5vOe7Co8kz97CmRP4xxeWUFlWyMU3vsL2xvZB67d19fC3FbV84shZfR4Eo0kqzF6eMM8LAv/46m1xNe5Gi7+tqCUnS5iY5DQ2xvCQ3D2XWND6pgEuZsPQJK0UYeUQbmerRVht+RsNw4gnY8BoFJECEfmHiKwWkddF5GERmR1Q9xIRcSLykaHaTXv/otLCHMblj06uxlBU1lkVZjRGg4hQXpzHc2t3Ut/S2RcAJlpq6ls56YBonOODOf+IWTzy1jYeXrWNrp7elAnIkZMttHclb6bxleoGqiqKmFwyuOtvQW42H14wjdtfrqE4Lzsm19RIVE4o5K7PHsWXbn+Np97ZQWN7Nze/UM3M8kJmlBVROaGwT2O5qaGNvOwsPr90zoj2mU7MKCti3rRSHntre1xlG6NBT6/jH69tYul+k1LmZYyRemzaPfD/Kv+vzvemjUWtjQqyYSsDfra0pkvn4NP6Rn2mLlLtvBz2Dktr1HQ/gnIEakd//YpLayhzAtY1WksZpGPTdTR6bCUB5UHbBuX+G2wf0bxjiEacEs0rQV1HCxyC+h2kpQzKfRhNnsnwfui7YZDoQp8vQTpZvW1QfkndvwF5LQOuF/09HXFQ//pKleNU0602KM2B8q49X2qXRim1b9sGhc3e9tFk2Q7K/WjEnauccw8DiMgXgeuB9+sKIrIXcCnwUjQNpsYT9QgQET/tRvyNxlC6jRk20xg1FcV59PQ6Hvr31pi2a+nopq6lc8RGynFzJzGjrJDblr1HV68jNzs1nsRzs7MGpANJJM45llfXszjKYCtnLpoBQEWcZpNKCnK5/qLFTC3Np761k+/ft4pP3bSck37zDAd8/2EW/ehR/r1pN3UtnVyypIpJJWPL9fED8yaz/L36pJ0f0fLc2p1sa+zoOz8MwzAMI61IUsoNEZkhIr8XkRdFpNWf2asKqDtTRP4mIrtFpFFE7hGRmBIfO+faQwajz0vAgJlGEckCbgC+BEQVxTLtZxrBm80YjVyNNfWeIZppmsbRpCgvm9mTirn/jc2cf0T053hNw/Ajp2qysoSPHz6LXzz8DkDqzDRmCd29jt5el3CN5bodLTS0dg2pZwxxWFU5+00ZR2kcAwjlZGexV0Uxs8qLuPITi6htaPOXVmob2nhg5RZKC4TLj9sn5raT7WI6Uk6cP4XfPbGWXa1dKW0w3/1qLeMLczlh3mRufqE6sF66fx+GYRhGhpK86KlzgHOBV4FngZMiVRKRIuAJPCPuk3g9/jHwpIgscM61DHP/XwLuDSv7GvC8c+5VidLVKSOMxhllhbzsa7biycb6Vgpzs02/EwMiwmkLpvO7J9awvbGdyaXRRUIN5WiMh370nMUz+M2j79KdYjONALvbRic1zGCE9IzRzjSClyZkNBARJpcUMLmkgEWz+o3Yddu9QDDji5Ib6TYZHFQ5niml+TS0dqas0djY3sXDq7ZyzuIZ5Odkm2FoxM6C1PgtNgwjAr4eue3B/qLC8QOraB1zboypkcPTbIxBF9VnnHNTAETkMwQYjXiuorOB/Zxza/36K/E83y8Hfu2XrQCCZmYOcc71hesXkW8D+wInqLIDgLOBY2MZRIYYjUU0tXezu60rrukVQuk2orXADY/TFk7jisfX8MCbW7hkyd5RbbNxBDkaw5lcUsBJB0zhwTe3kpOVIjONvvFa19KZcKPxleoGyovzmK1SWIwWZkzEjohw4rwp3P7yRnrjHCypo7uHjfWtI37x9eDKLXR093KWuaamNW542ZCGRuVgq4oxQXehCpQ8D+C1PXPErVD6Q60N0wp4rR/Tw9Rax/pBYnHp185Bil2tb9NatCB9W1A+vqA2NfpOGKRLDNo2KB9jNP2B6HIbRqPX1ATlYIzmlIxG96d9zYK+jyAdqj6+4cdFb6P1ikHaPd3XoNe0QfkYg55e9Xiq1TyTbr9UfQmNSlhbFfbePqKxFnDNtu3u1yqGG32FEUOqpAGh6KmJ3q1z0epPTgdeChmM/rYbROR54Ax8o9E5tyiaxkTkG8BZwInOOX2ZHAfsBazxbZypwLUiMs05d1VQe6nxRD1CKkNpN+Ksa8zEdBuJYM7kEuZNK40pimpNfSsl+TlMiNNM00VHVQFQGOvrsFEiP8e71N7ctCvh+36lup7Fe5XZy48U5sT5U+h1DDvHaRB/fbmGLbvbWbO9mfau4fvk3L2iltmTijl45oT4dc6IChEpEZE7RWStiLSIyC4RWSYiFyS7b4ZhGAYTRWS5Wi4bQVsHAP+OUL4KmB9LQyLyNeDjwAecc7v0Z865q5xz05xzVc65KjzN42WDGYyQMTONntFY29DK/OnRxG4aGuccNfWtHDm7Ii7tjQX0LNNpC6fx84fe8Wdrhza8N/r14mXYHDm7gkNmTiAvJzXei4zLz6EwN5urn1rPGQsrE6JrPO+aF+ns7mVjfSsXHrnXqO/PGD5Hza4gS6ChNX5GY2tnN79/Yi35OVm0d/Xy60ff5TsfnBdzO+/VtfBKdQPfPHk/e/GQHPLw3o3/FKgG8oHzgFtEZJJz7jdJ7JthGEb6MDozjTudc4vj1FY50BChvB6ILjAFXuAd4FfAejw9JED3SPuZGk/UIySU0y2eEVQbWrto6eyxmcZhctqC6QA88OaWqOqPxqxuqhiM4LkgTp9QwDvbmnji7e1DbxAnmjq8X8fFUQbBMZJDQW42E4ry2Nnc0adBHSk3Pl/NzuYO9plUzOSSfK57dj2vDKPtu1dsQgTOXFQ5dGUj7jjn6pxz5zvnbnDOPe6ce9A590m8N8OfiqqR9a8OmUexa4IMWKJiivQvAbSNE9rGRf+yoVqEans5YRijQuh61MtgRJsrNebfjmSRpOipw+hlODEdWOdcrXNOnHP7OOcO9pdAg9E5t9Q594+h2s2Imcby4jwKc7PZtCt+RmNIYzfSFBBjlZnlRSycOYH739jMZ4/fpy9peSTNW2+vo6ahjRPmjSxHY6pTUZxHR3cvVz65lhPmTU7IrE1TexcFuVkcMH380JUVpk1MPFUVRbzV0c2nbnqFOy4/innThu81sbu1i2ueXseJ8ybT1N5NUV4O+blZfP3ON/jXV47ty405GOdd8yLOOTbvbmfJPhOZNj6a7GpGAqnDm3VMGKU6w9fygEpK36gfSNvW91fROquuDf3rOsdjm9IfHhEgx96m9F1a9xWkJatW6+FXgNaZBenvtgeUR5PLUNfX+47mCSOoP0EE6S2DdIjhfe4KqKf3HZQXMtZn6KDjFaTF1OXbotg2aD3oOIb7lul962OhxWF6DLpdfey1tlajX8UF5QTV641h60c473qrz+2/1pq0BviHqm8/i9yH6rv616vUAVhdp/rWDvNc5Gs7JwpLYgwGvhkuDUT+CSsj8gxkQkmdqZgR0J+rcei0G+dd82KfATMYNXEMzDJWOW3BNFZtbmT9juZB621v6qCzuzfjDXQR4bPH78PrNbt4cX3d0Bv4RHvORqKpvZuDU8RN947Ljwo0Rgf7bKyQm53F/lNLKMrL4cIbXqZ653Aja8O1z66jsb2br5+0HwDZWcIvz15ITUMrP/3X6qjbaWrvprahjbMOtVnGZCMeOSJS4WtmTgZ+m+RuGYZhpBc9cV7iyyo8XWM484G34r63GEn+k2ScqCwrHJWZxpBe0oidDy+Yjgj8c+XgLqqX3PQyMDYM9LMPncGkknz++OS6Ud9XT6+jtbOHw2JItWEkl/zcbG79zOH09PZywQ3L2Lrbe2Ucy4uDHU0d/Om5ak5fOH3AbOURsyv49JK9ufWljTzz7o6o2trZ3EFxXjYnHzA19sEY8eYLeBM5O4Erga845/4cVFlELgsFZtgRVdpmwzCMMYCL8xJf7gOOFJG++LQiUgUs8T9LKhljNHozjfEzGmsbvDD10bhxGZGZOr6Aw6rKue+NzTgXfGV1dHmRiMeC0ViQm82lx+7Nc2t38nrNrlHdV3OfntGMxnRizuQSbrrkcBpaOrnoT8vY1doZ0/Z/eHItnT29fPUD++7x2TdO3o99JhXzX3evZHdb16DGaE+vo66lkw8eNI2iPPsdjBcicqKIuCiWp8I2vQM4DDgVuB74vYhcHrQf59y1zrnFzrnFk7QTa0jbOITGsbFQ+pZoCOmjQhqoaHRQhmGMjJUirEzUtfY56V8GIeJvx6UycIlElL9N6YqInC0iZwOH+kWn+mXHq2rX4XnS3ysiZ4jI6cC9QA1wTUI7HIGMeRKonFDErtYumju6GRcHQ29jlFE/jcE5beF0/t8//s1BlaWBD54d3d78/vQJBRE/Hy6p6u54/hF78Ycn1/HHJ9dy7UXxCri1J/UtnrGxaNaEUduHMTosnDmB6z65mItvfIWLb3yFnCwhO4qIu7UNrdy2bCPnLp7B3n5eTn0dFORm8+tzD+bMq17gh/cP7unS0NpJr4OzDrXcjHHmBfyUhEMwQG/hnNsBhKaIHxKRIuCXIvIn54bIwDj7ULhz+aAPYrm7+l/sBRqKWhp9AnCbt01QMI3CcIHYe179wmPC6j/nlVeqIBoD9I0tUOW/eNRBcrSmTTtQ6/KgvH7h6HpaW6b1akH6OK0ziybHoe5HUA7GWPM6BmkUg56GdASBTWGfBY1TtxtNAMqgvuryoH7rY1St1vUrUL1t0HerQ39pHWZQ/cEuJH0663p6PHp/c9T6e2o96FyN5hxepB6TqpV2UesKS3L6NYT6eilX2+qcpVXnqDaVvrGQ/usu3FAsvBC4as/JgGhfMo1R7gr7/4/+36eBpQDOuRYReT/wG+AWvAA4jwP/4ZwbXOuVADJqphHil6txY30rM8vMaBwppx44lewsoa45eLako7uXvOws8nNSI6fiaDMuP4eLj67ikbe28e62oDTEI+P1ml1sb+pgckk+JQXxyX1pJJaj95nI7z9+CCtrd/HutiZ6B5mtD/G7x9eAwJfePzewzsKZE/jC0n24e0Vt34sF8NIMvbW5kaufXsfHr32J9TtayM/J4nCbqY4rzrlW59zbUSwbh2hqOTCOgc//hmEYRgriRzONtCwNq7fROXeWc67UOVfinPuIc646Ob0eSMbMNOpcjftNLRmi9uB09/SyeVc7Zyw0o3GkTByXz9H7VPDyhvq+78g5x9rtzby0oZ5l6+uob+nMeDfg8FnPi4+u4rpn13PVU+v4zXkHDxpdNla6enr51t0ryc0Wmy1Pc04+YCo/O2sB3/zbStZsb2Z7YzuTSwfOyIfOnZ+ceRB/e7WWS5bszfQJg2uxv/j+uTy2ejvvbmuip9fxjbve4Jl3d7C9yRO/zZtWytTxBUwuyU9ITlFjWBwPNDMwqKdhGIZhjAoZ86ReGZppjEMwnC272+npdcwstyA48eC0hdN5ds1Oahra+Nytr/Lyhnrq/BmOqaUFlBXlMaU0oZHjk05ZcR6fOGIWf3q+mq+euKf2LERLRzebGtpiMqqve3Y9b29tYu7kceTYA3/aEPTC4JzFM7nyibW8V9/KsT9/kk8csRefXTqbySUDjcdfP/IuhbnZfH7pPkPuKy8ni1+ft5BTf/ss63e2UNfSybFzJ3L8vpM4bt9JTCktGHbEXiO++LrFI4HHgFo8L7lzgbOBbznnYhO9BjF/8FyLAIWnx2VPexByoascJDNQLLkeDWOsE9I5Dj9xk09IfxjpEUT/ZrwV4AlzSeTt9fVc2GzpONKFjDEaJ43LJz8nKy7BcGosR2NcOfmAqXzr7pVs2d1Oluzm+P0mceTeFRwxu5xZ5UV87NqXkt3FpPCZY2dz8wvvcfUze0ZSdc7x0L+38sN/vsWW3e0I8MK6nRy9z8RB26ze2cIVj63hlAOm0hBjABUjdZk6voAJRbnMnVLCzS9W85dl73HBkXvx2eM9A7Glo5tlG+r58vvnUDEuuhcw+08tZf70Upxz3P+lY6PSTBpJ4U3gDOCXeJKuncBq4MPOuQdiaunO6B7OSvem7yFwQK7F+yI/4BXO6l+fFy52ezfCPp/rL9Oaq027lYZKlU9ReRq1LqtU7atLrWuHat0drR8Mf1KIVeOmtWvlAeVBRKOzDNIMBuVN1OgnlyBNYn1AnXCiydmo+1oesK41ekG6z7aAde1/rfuqj922gHLtd6bHr+trrWL4sQjKr6nrBeVgDModqs/DIG1p0Dm8uj2gjqpUq9b1tVMblsVpbgTJQ5u67uZ9JqwT16n6AS+ZBuRjvETV6QZuHFwDHe3vk5E8MsZoFBEqJ0SXq3EoQuk2TNMYH8YX5nJg5XiygH988ZhkdydlmFJawNmLZ/C35bUcML20L5di9c4Wvn/fKp5+dwfzppVSWpDDxvo2Lvvzq/z1siM5MOB1vHOO7/z9TfKys/ifMw7gy7e/lsjhGKNMQW42vzxnIV983xx+98Qabnx+A39Z9h4TCvNo7exmQlEunzlu9tANKUJBw8xgTF2ccy8AH0x2PwzDMNIfx+DhjozByJhAOODnahxiprG1s5ua+lZ6eoPfaNQ0tJKTJUwbH99onmOZwtxs8nPHRqCbWPjscfvQ3dvLlt3t9PY6fvvYu5z022d49b0Gvvfh+dz/xSVMKMpj/6kljC/M5ZN/epkNAUnf//ZqLS+sq+O/Tt2fKaV27mYqVROL+fW5B/PY147ngwdOY2tjO43t3Xzu+H0otaBHhmEYhhGAw5v2jOcydsgoo3FGWdGQ7qk19W1s3t3OXctrAutsrG9j+oRCcrIz6vAYKcisiiJOXzid7U3trNy0m98+toaTD5jK418/nk8ds3ffOZiXk8Utnz4cB1x4wzK2NbYPaGdncwf/++BqFu9VxvmHz4qwJyPTmD1pHL8+72AWVI5nVnkRnzy6Kq7t33H5USmbtsYwDMMwjMSSMe6p4EVQrWvppK2zh8K8PWe11u1oZldbFwL88pF3+fDC6RFzOm6sbx0TieZThbH+YPq5pXP4x+ubEYFbP30Ex8yNrFucPWkcN19yOB+79kUuuuFl7rz8KC67ZTngad5aOrr56ZkH9UW7HOvHNZMY7LsszMumMC+bgmHM5Ns5MkZY9Wq/BikoYMUo0RdEZ3p/Wddg8V4PMVdpw0gEIT2x1j0Oxiald6wMzzSrr9vXAn5jBskTG/HzUdE4mnvqSMg4oxFg065W5kzeM+3Gn57bgAjMnTyOd7c1c9VTa/nmyfvvUa+2vpWTDpg66v01DID9ppawcMZ48nKyAg3GEAfNGM91F3lJ3z918ysI0NTexbIN9XzlhLnMnTKydDOGYYxRAozJqCIbBmwba8TTqoMjlxcqqW6Oyl7Zrd6T1CkvsRnqIXi18ubXztuDOXIHJYRvCihvDCjXfk9BCe11QBYC6uj96sApegz6MVj3Jyh4TWFAefhnut2gV+k68Izetx5bkBOf3rZOret+Bz3i630FBfMJ6nNFQHn4vvT/+rzQ/X5PrQcFy9F9Dfregr4rHfBG19fHtFDFP9MBovS1MxdgpXet6gBUmqri/mu+sbC/TtNA5yY2rYbKUCCdoBc9z6j1Q1WfPogFvUlTMsr/stLPTVYTwUW1oaWTu1fUMrE4n7KiPM44eDrXPbthj8A5LR3d1LV0WroNI6EU5GaTFfAjHs7Rcyby248dzIqNDazZ3syGulb2mVTM5983dKoFwzAMwzCMsYlpGkdCRhmNM/xop5GC4dz28kbau3qZOt57HfOfp+yPAD9/6J0B9Wp8I9LcU41UIZK27IMHTeN/P3IQu9u66Ozu5f/OWkB+jgUaMgzDMAzDiEzIPTWey9gho9xTJ5fkk5stewTD6ezu5eYXqjl27kQ6u3sBb1by0mNnc+WTa7l4SRWLZpUBsLHO0m0Y6cH5R8ziumfX0dsLh1WVD72BkZGYLtEYVcJdz4L0SiE+ZJpEw0hVgtxSNSHtYokFYTfCyCijMStLmD6hkE27BhqN/1y5me1NHfz87AVc9VR/IvXPLd2HO5bX8KN/vsU9nzsaEelzbbWZxvhiD7ajw2T7VTcMYygOOBSWL0/4brt6+tfbNgz8rLzLMz5zg7RVB9NnoGptVbXSVmld2YBE70rHqIUmWpMWjn4Y0sna9fZai6Y1anrfeh9BukE9NxFNkhz9SlD3U4trdDu6D0HbBiWtD0c73wVpJbV2MUjY0xVQJ0ijF3RM9Tij0Q8GPckFfQfh/dcaUt1upVrfFFBfl+vvIUiLqb8T3X41kQk6d3Rgm8Y1/ev16topV48OOepAbt/dv97U3q9bzB1Mn3x6QPm6GHWLCdE5WiCckZBR7qngBcPROkXnHDc8t4G5k8dx/L6TBtQtzs/hmyftx2sbd3H/yi0A1NS3Mi4/hwlFlu/MMAzDMAzDMDIH0zQOl4yaaQTP7fTJd3b0/f/S+npWbW7kp2cehER4o3nWoTO46YVqfvavt7nlhWrWbG9mZnlRxLqGMVrYTKxhGIZhGIaRqmSc0TijrIgdTR20d/VQkJvNDc9toLw4j48eUhmxfnaW8N0PzeP865chAh3dvcwss8ipRnpgxqZhGOlIfe7QL2a1W6phGIkndA0OIw3wQE4Ju5YfSlbKDXNPHQkZaDR6Bt/mXW2ICI+/vY0vvW/OoImvj54zkRPnTeGJt7fhMD2jYRiGYQBDB74J54H++lqXpnM2tnX0lxfm9OsbOaa/TuOr/XWqw3LE9W2r15VGa5OqrzVmQfkXwz/T/Q7S9OnyaB6kCgPW9baDaS4j9SGIGWo9SPcYlCsw/LOg3I5BAh59XIJ0jLqOzkGpdX96v/r7iOZY6ye4oD5ognJihqPHrPWKuq9BeTc1uh96f9vV+oyAdc0AjakaRO7Fqj9XqHK9X6VX1MFxqj6u2v+76nOQbhFo/PnA/0v/J7hu8gml3DCGQ8YZjaFcjZt2tfHoW9vIzcrigqP26vs8aGbmOx/cn8dX+0ZjhRmNhmEYhmEYhmEYkIFG4wx/lnDV5kbuWl7L6QdPjyrC5OxJ45hSms/Wxg5Lt2EYhmEYhmEYGYW5p46EjDMap5TkA/DLh9+hu9fx6WP2jnrbyrIicrKzOGqfitHqnmEYhmGkHueHaY5ui+CWGl5nqPpR0jXB100dOOwmDMOIkW0W8NGIkYwzGnOys8jPyaKju5clcyqYN6106I1C22YJlRMKB9U/GoZhGIYRG1pzlaPyNxbm969ver5/XTsIVRVAaZtnlIYMTIB6lVNOozVjlRf2r7fe0r8erl0L0uhp7dr+an1tQH2tldT90Ho1/eCl5zyCdHxBef0G0yWGiCZPYThB+4tGo6gJevrSfQo6FnpsQbpMTVDeTP196O9c7ytISznYPqrUerVanxJQHqRF1fs7bVb/+vMb+9f1GMLHP8/t+bJG64d1zkaAwmavvjYYC4Epbs/rqzAfcnftmSs1ROg4l562x0d7krTAN+GYpnEkZJzRCJDnG42xzDIahmEYhmEYhpGpmHvqSMhIo3Fcfg69vY6l+05OdlcMwzAMwzAMwzDSmow0GmeVF+GcIyvL/LUNwzAMY9icoe6jxcHVIqFzMZbEuG042m3OMAyPNb6b6RTlzj2Ywiqa/KgDmB+n6+6Q/na6Ngz8KOQCmxjMPXUkZKTRCCDDEPhaonTDMAxjTBJNIJsW4N7hPeA1tfTnY9yu7s86X1yOKm9rj6yzAqWzUvW7VW7GOeP711coHaN+4NE6NhiYX0/rzPZS6/rBvF7tT+sVtX+T1tBVqnWdjzGafIRaJ6cd64LyRgYRpE8M18kFaSWLAuro/gVp94IcAoM0ikHaTV0elEOyLqA/uv/6WOvvPvy8CBqb1rRqzaFuKyg3p0Z/b8uUjrFyj5p7EnRMt7X0r5erc7Zb7SzofBlgwCmDcTDdYuP9A/+PPpJIMjD31JGQlewOGIZhGIZhGIZhGKlLRs402oyhYRiGYRiGYRj9mHvqSEi40SgiM4HfAB8ABHgM+A/n3MZBNzQMwzAMIzVQGqW2NQM/CoX1j5ZI4fx1uU7LAbDCd0stCd/AMIxhEelay50+xEYXxUnvuMBrpzHsdySUZsdIHRJqNIpIEfAE0AF8Es/k/zHwpIgscM61DLa9YRiGYRgJZJgaRujXMIajczBqppzTv651Um0d/etrlZawCVjk9swjl/sd1eZ/9a8H6RZhoOZshnoyWq0mJVarfQfp6XS5Vk7VB5QH9aErYF3r+0oDyoNyEG4KqBOey7F1kM9CBGkXNdHoHtsC6tSq9RkB5VVqXY9NHxfdvtab6u9D1w+fg9LtBmlidbnen24r6FgE6hLVuj4vKgK23abOTYC5/nWhczY2qTrlKjBVl8qbqunaPEiQGmUwlp4D/HmI34nX+j8foGNdkOgAV6ZpHAmJnmm8FJgN7OecWwsgIiuBNcDlwK8T3B/DMAzDMAzDMMYE5p46XBIdCOd04KWQwQjgnNsAPA+ckeC+GIZhGIZhGIZhGEOQ6JnGA4B7I5SvAs6JUG4YhmEYRiI5N8xl7M4YXVQvUdvf6G97yOi4oQXpIQ1jLFMdyt84wvyoTPTa6QqbnMs9PaD+Uep6DBecrUwFjaK5p46ERBuN5UBDhPJ6oCzSBiJyGXAZwKxZs0avZ4ZhGIZhRIfSKA3IQXdJbEbcgETky/pX25T+SuvPCoF5EXSMOm/iWqVj1MFygjSDMFBntTrAe033Y45a13kaq9R6WFyPiOj9NgaUR/OgprfVYwvS1Wlaw/6Ppp7WOur+dQeUay2i1hDqvkajb9To+rrPQc6HQfU1QfkUw9GaRt3uPKXX1RpC/f1oPWG9Mqx0fslFKtfom7v718P1rVURtIs6T+O2lv46Jep6CdIxtnWoADQTB7mW24M/igllSCYmv6MZjSMhGXkaI71qCDwznXPXOucWO+cWT5o0aRS7ZRiGYRiGYRiGYYST6JnGBga+oAlRRuQZSMMwDMMwDMMwjBFieRpHQqKNxlV4usZw5gNvJbgvhmEYhmGMIiFtVdXB8WtTu+IZxlhmdej6Gky7eEaKXS8j1UwbSSPRRuN9wC9FZLZzbj2AiFQBS4BvJbgvhmEYhmGEM5KHuBv7tw0ZjADVr/drqwZol3SAnC/2r+r8ilO+0L/e9quhuxCUE1A/WNeGBemYorRoWh+pH5K03k3rGHUdnV9PUxpQR895zFPra9V6UA5GvW1QbsKSgDo6/2CQvi98e72u9Z3RPEjq/IL6OOo+ae1iUcB6kH6SgDpBBB3HyWH12gLWg77DN9W5o8c5R51fy9S5p9tcoupsVzrGKUClf+3oa0pvq7WR5aqd0pPUvnTfwnKl9ukYFXsEvwnK2ah5MdUNQNM0joREaxqvA6qBe0XkDBE5HS+aag1wTYL7YhiGYRiGYRjGmCDknhrPZeyQUKPROdcCvB94F7gF+AuwAXi/c645kX0xDMMwDMMwDMMwhibR7qk45zYCZyV6v4ZhGIZhKOYr11AV4p+ZYfXirTk6K8U0VoaR4myS0b1mdPqaSK6qAPW5A/tQ3hWhXrheUTPU70h4LtfXRsPV1dxTR0LCjUbDMAzDMDKf8oKh6zAbuHvPvIsQ+eE154r+OoUH95dve75/vVIZwCUdkXfbFvb/2gAtmtZHah2b1vfptroDyrVuULev668O2K/W2WmtY2HAukZrD5vUun5s1jknAd5T63oMQcclSIuox6br6/yVpQHrel+63xqtVw3Km1keUB50vMKdDfW+D1fns9YuVqo6c8/pX+96pH99k9IoBmk6dV5Hfa7pY6fPoylhwW8Km/fUPZZuUJ+r/nergeYEWAJawxhuMI6IpAa+seipIyEZeRoNwzAMwzAMwzCMNMFmGg3DMAzDMAzDyHDMPXUkmNFoGIZhGGmCiHwcuA3Y5JybkZCdnq9c024bwrXsktjd2ELudHu4s2qN06jomwwjc4iXC2k0+sYBLFX7Dc9ZYmQUZjQahmEYRhogIhOA3wBb49LgW1E8EJ4//AfR0o8xIG9jiMYH+9d1TsQB2+4fuVxrw3i+P/djk85fp3SM1QHtV4T9H/QwVB32/xH+/lYEBCbRGkKtXesKKA9aD9JDBuVs1Oh2tPayKaBcaxjDPwvanx6nPpa639p+0PWD8kIGjV+j9X1B/dHfZTT9KQ9YD29rRYDuVWslt98VeX8avY8ZAbrEVnV+tarPq8YTkSaVp1FrHRuVgDQ3e+B6aF+acF1xX58jBb2JxHbgqWG+4EnIiyHTNI4EMxoNwzAMIz34OfAGsAU4Mcl9MQzDSDPMPXUkWCAcwzAMw0hxRGQJcAHwhWT3xTAMwxh72EyjYRiGYaQwIpILXAv8wjm3VkY5Z5thGEZmYu6pI0GcSx9xuYg0Ae8kux9JZCKwM9mdSBJjeewwtsc/lscOY3v8+znnSoaultmIyHeBi4EDnXPtInITcOJggXBE5DLgMv/f/UjOvXMsnrs25rGBjTlx7OWcmxSPhkTkIbxxxJOdzrlT4txmSpJuRuNy59ziZPcjWYzl8Y/lscPYHv9YHjuM7fFn4thF5ETg0SiqPu2cWyoic4A3gY865x7y27iJIYzGVCATv7+hsDGPDWzMxljE3FMNwzAMI3G8AMyLol4oaOLvgCeAl/zoqQB5gPj/dzjngoJNGoZhGEZcMKPRMAzDMBKEc64VeDuGTeYDewENET5rAK4A/mPkPTMMwzCMYNLNaLw22R1IMmN5/GN57DC2xz+Wxw5je/xjeewhPgaEp73/FnAocA5Qm/AeRc9Y/P5szGMDG7Mx5kgrTaNhGIZhjHXSRdNoGIZhZA6Wp9EwDMMwDMMwDMMIxGYaDcMwDMMwDMMwjEBSaqZRRN4nIs+JSJuI1IvILSIyJUK9MhG5XkR2ikiLiDwmIgclo8/DQURmiMjvReRFEWkVESciVRHqRTVOESkQkV+IyBb/2L0oIsclZDDDIJrxi0iJiPxSRJ4SkUa/ztKA9tJm/FGO/QQRuVVE1vnjWSciV4nI5Ajtpc3YIerxHyoiD4nIJhFpF5GtIvKgiBwVob20GX+0133YNtf49W6N8FnajB2i/u6r/PJIy4Swumk1/rGMiOwrIleIyEoRafa/s/tEZGGy+zaaiMjXROR+f7xORH6Q7D7FCxGZKSJ/E5Hd/j36HhGZlex+jSbD+Q1PZ0TkbBG5W0Te839j3xGRn4rImM+dO1ZJGaNRRI4FHgF2AWcBXwGOAx4XkXxVT4D7gFOAL/l1c4EnRSRd9B1zgHPxIt89G6lCjOO8AbgU+B7wYWAL8LCIHDwanY8DQ44fqAA+BXQzdE6zdBp/NGP/LN74f4z3/f8UOB0v5P64sLrpNHaIbvwTgLXA14GT8c7/CcDTInJ4WN10Gn80Y+9DRI4GPgE0BlRJp7FDbOP/KXBU2NIUVifdxj+WOQl4H3AzcBrweWASsExEDk1mx0aZS4HJwD+S3I+4IiJFeGlg9gc+CVwIzMV7PilOZt9GmZh+wzOAbwA9wHfwnkWuAj4HPCoiKWM/GAnEOZcSC/AY3oNijio7DHDA51XZGX7Z+1TZeKAe+F2yxxHlWLPU+mf88VSF1YlqnMBCv94lqiwHeAe4L9ljHcH4Ra2f6NdZGqGttBp/lGOfFGG74/y6n0rXsUc7/oDtSoAO4PfpOv5Yxo73gujfwLeBauDWsM/TauzRjh+o8ss/M0RbaTf+sbwAE/Vvul82Hu/h+8/J7t8ojjvL/5vjn68/SHaf4jSur+AZE3NU2d54L3m/luz+jfb36a9Hff9K1yXgWeQif9zvT3b/bEn8kkpvCo4EHnXOdYcKnHOvAHXAR1W904HNzrknVb3dwP14hlbK45zrjaJatOM8HegC7lD1uoG/AifrWdpUIZrxO+eiFdum1fijHPuOCMWv+H8rVVlajR2iPvcj0YJnNHapsrQaf4xj/yaQDfwq4PO0GjuM6LuPRNqNfyzjnNsZ/pvu38/eZeBvWkYR53M+lTgdeMk5tzZU4JzbADxPmjyHDYcM/j4jEsOziDFGSCWjsQfojFDeARyo/j8A7w18OKuAWRHc99KVaMd5ALDBeQmjw+vl4blTZDJjZfzH+39Xq7KMHruIZIlIrq+TudIvvl5Vycjxi8g+wHfxPCwi/SZCho5d8VMR6fb1UvfJnlruTB9/xiMi5Xj39tVD1TVSjsGeT+YnuC9GYon0LGKMEVLJaHwHb7axDxHZC5gGlKvicjyXlnDq/b9lo9K7xBPtOIeqVx7hs0wi48fvi85/i/cj/Q/1UaaP/U68F0nv4Wl6P+ice0t9nqnjvxq4R3sZRCBTx94BXANcjqeB+wZwEPCCiMxT9TJ1/GOJ3wOC99tmpBeDXX+Z8gxmhCEilcAPgcecc8uT3R8j8aSS0XgFcLiI/FhEJovI/sAtQK+/hBA8f+pwJAF9TCTRjnOsHI8gMnr8IpID3I7nCvIx7b5Nho8d+E/gcDyD8d/AP0Vksfo848YvIhfgabm/MVRVMmzsAM65Lc65zzrn7nHOPeucu45+Pe9/q6oZOf50QUROHCTKrV6eCtj+28D5wBe1i2MqM9IxZyB2/Y0hfO+2e/F0q5ckuTtGkshJdgdCOOf+4huK38B7OHB4epUHGeieWk/kt8iht1uR3n6lI9GOsx6IFOa6TH2eyWTs+P3oZDfjBQL6kHNuZViVjB07gHNuPbAeeEVE/olnOIYiykKGjd+/Kf8a+BnQrlJMZAG5/v8tzrkuMmzsg+GcqxGR5/CM6RBjZvwpygvAvCFrQbj7MCLyWeAnwHedc3+Kd8dGkWGPOQNpIPj5JFOewQwfESnAi+Y/GzjeOVeb5C4ZSSJljEYA59z/E5H/wzsxtzvntonIauA5VW0VXvjucOYDG51zzQnoaiKIdpyrgI+KSFGYvmc+nmtfWrzFHQGZPP6rgfOAs51zj0f4PJPHPgDnXKeIrAQOVsWZNv6JeGkIfuIvmpl4od4/iueinGljH4rwmcWxNv6Uwj/mb8e6nYhcCPwR+JVz7n/j3rFRZLhjzlBW4ekaw5kPvBWh3EhTRCQXuBvP6+dE59ybSe6SkURSyT0VAOdci3PuTd9gPAUvD9DVqsp9QKWIhMS4iEgpXu6n+xLb21El2nHehxee/xxVLwfP2HjEOdeRmO4mjYwcv4j8Ci+k9yXOuX8EVMvIsUfCzwu2GFinijNt/FvxdHzhyza8lETvo/8FWqaNPRA/ENISYJkqHjPjzxRE5KPAjcD1zrmh3K+N1OY+4EgRmR0q8JPcLyGznsPGNL6301+AE4AznHMvJblLRpJJmZlGETkEOBVY4Rcdgxd2/ufOuRdU1fuAF4FbReSbeK4Q38Z7E/3zxPV4ZIjI2f5qKLHxqSKyA9jhnHuaKMfpnHtdRO4Afuu/EdqAl3x1b7zE4ClJFONHRE4FivECYQAcLyIT8Vz0/gXpOf6hxi4i/wV8DfgTsEZEdICoHc65dZCeY4eoxn8NnnvhcmAnsBfwRbygWBeG2knH8Udx3j8VYZt2YJtzru+zdBw7RPXd/wrvZeaLwA5gP7zfvV7U7Gu6jn+sIiLH4WmzVwI3hf2mdTjnXktOz0YXX4NdRf8L+vnqGngwQvTfdOE6vN/ke0Xku3heAD8CavACWWUs0Ty7ZBB/wHsx979AS9h1W2tuqmOQeCV8HOmC5+rwHLALaMMzHi8JqFuO90Bdj6cfeBxYmOwxxDheF7A8Fes4gUI8LdRWoB3vjfzSZI8xDuOvDqhTnc7jH2rseIZDUJ2b0nnsUY7/U3j6oTp/TOuA24CDIrSVVuOP5ryPsE01cGu6jz2G7/4VvJdk3f7YbgP2y4Txj9UF+MEg3311svs3iuO+aZBxVyW7fyMc2yw8t8VGoAnPbT6txxTluGP+DU/XheBnMAf8INn9syXxi/gnhmEYhmEYhmEYhmHsQcppGg3DMAzDMAzDMIzUwYxGwzAMwzAMwzAMIxAzGg3DMAzDMAzDMIxAzGg0DMMwDMMwDMMwAjGj0TAMwzAMwzAMwwjEjEbDMAzDMAzDMAwjEDMajbRBRC4WEScic5Ldl3BE5CYRqVb/V4nID0Rk9ijsq1pEbopTWz/wj6nT/R+kfug7qIrH/gP28Zjq062jtR/DMIzRQETuFJF6EZkaVp4tIstFZI2IFCarf+H49ysnIhersotF5FMR6o76PSCgj9XqvvCDBO53htqvE5ETE7Vvw0g1zGg0jPjwI+Cj6v8q4PtA3I3GUeIoBvY/mXwJrz9bk90RwzCMYfBFvATofwwr/wawCPiMc64t4b0KZgveb+4DquxiYA+j0a9zlL9NonnQ3/f1Cdzndn+fX0jgPg0jJclJdgcMIxNwzq1Ldh9GgnPupWT3IYRzbjWAiHQkuy+GYRix4pzbLiJfBW4WkXOcc3eJyL7AD4BrnHNPJ7eHA3HOdQBR3QOcczuAHaPbo0B2JPpe5ZzrBF4SkYJE7tcwUhGbaTQyChHJFZEf+64snf7fH4tIrqoTcsW5XER+KCJbRGSXiNwvIjPC2isSkatEpE5EmkTk7yJydARXnj73VBFZCjzpf/SocmtZ6n++h3tNJPcgv/wr/hjafbemYwPGvbeI/EVEdohIh4i8LiIjmjkUkdki8oCItPrtXgHkB9S9VETe8Pu5U0RuEJHysDqTROR2EWkUkQYRuVFETtfHxjAMIxNwzv0ZeAi4UkQmATfgGVv/NdS2ygX0OBH5h4g0+/egP4S7tYrINBH5s/+72yEiK0XkgrA6U0XkZhHZ7NfZIiL/FJHJ/ucD7j8i8hRwPLBE3b+eCutblWo/rvfdWBGRhf69uU5E2kTkHRH5tvr8KRF5TkRO8e+NbSLymogcISI5IvITvz/1/r28eCT9MYxMxWYajUzjZuBc4CfAc3huJd/FcxM9P6zut4EX8FxwJgO/Av6Cd7MMcS1wDt4b4uXACX6dwViB58ryB+DLwCt++VuxDEREPg38FrgJuAOYA9wOlITVmwksw3Oj+Sreg8l5wN0i8hHn3H2x7NdvMw94FCj0x7IduBw4M0Ld/wO+DvwO+CZQCfwYOFBEjnbO9fhV7wEOwjvua4GzgN/H2jfDMIw04XJgFd4s3mzgQ865xhi2vxW4E8/N9XDge0AxnusovnHzNFAGfAeoAS4AbhGRIufctX47twB74f0+1wBT8O5lRQH7/by/72x/DACD9Tve992oEZHDgafw7ilfBWqBucCCsKpzgF8A/ws0Az8H7vOXHLxjOs+vsx34z+H0xzAyGuecLbakxYL3o+6AOQGfH+h//oOw8u/65Qv8/6v8/58Oq/cNv3y6//9+QC/wn2H1fufXu1iV3QRUq/+X+nVOjNDPSH2s0m3ieQHUAA+F1TvPr3eTKgu9wa4Iq/so8PoQx/QH3s/AHuWX+vs5UpVl4T0AOaBK9bsH+F7Y9kv8eh/x/z/J///csHr3+eVLI/ShGrg12eedLbbYYstwF+Cn/m/c3TFsE7rXXR1W/t/+7+2+/v9fjPT7CTyGZ/hk+/83A18eZH8D7j9+2VPAc4P0rcr/P6733UH6WK3ve6r8Gf9eWTTItk8BXcBsVXa6v9/HwureA2yI0MZSAu7pttgyVhZzTzUyieP8v+ERN0P/h7/JfCDs/zf9v7P8v0cAAtwVVu9vw+1gDMzwlzvDyu8GusPKTsELELDbd7XJEZEc4GFgoYiUDmP/RwE1TulHnHO9EfrzATxj8i9h+16G92Y69J0cifew8/ew7RNxLA3DMBKO/9t7IZ6xcZiIlAyxSTjhv7d/xfu9Pdz//zhgk3PuqbB6twKTgPn+/68A3/TlDgeJiMTYj8GI9303akSkCO8F5V+cc61DVH/XObde/f+2//fhsHpvAzPifIwMIyMwo9HIJEIauvCoblvDPg9RH/Z/KPBKSPA+zf+7PazetmH1LjZC+x6wL+dcN1AXVncycBHem1S9/ML/vGKY+480zvCyyf7ftRH2X6r2PQ1ocM51DdGeYRhGpvALPNfRD+H9Vv40xu3Dfx9D/1f6f8uJHMU0/J53Hp5Xx38CK4FNIvI9EYnHM2C877uxUIb3HFsbRd2GsP87BynPwXPNNQxDYZpGI5MI3YymAjqaaShXVrixNRShm+BkYIMqnxJ71wbQAeSFlYUbdqF9D9iXP4sXXrcOeBb4WcD+Ng+jj1uAAyKUh489dExPYs+br/58C1AmIrlhhuNIj6VhGEbKISLH47n5f9059y8R+THwQxG5zTn3QpTNTMGTBOj/ATb5f+vxZBThDLjnOee242nTvyAi+wGfBP4HT9ZwVZR9CSLe991YaMCTkFQOVdEwjJFjM41GJhEKY/6xsPJP+H+fibG9ZXhuReeElYf/H4nQ29NICZzfw9OBaD4U9n8tnk7j3LDys9jzZc9DeKL/Vc655RGW4aSueBGYKSJHhgr8t9Lh/XkU76Y9K2DfIWP7Jbw3t+ERXaM5loZhGGmDH+H0ejy30Cv84p8B/wau9wONRUP47+3H8H5vX/b/fxrPlXJJWL3z8TxkVoc36Jx7xzn3HTyDK/w+pOkg8v0rnHjfd6PGd0l9DrggPKqsYRjxx2YajXTkFBEJT/y+2zn3qIjcDvzAn5F7AU+b9/+A251zK2PZiXPuHRG5DfiRbzC9CrwfOM2v0jvI5u/iaQ8/JSL1eDfgd5xzTXi6lO+KyH/jGVPHAh8P23eviPwP3gPGjf42c/Aiz4VHsfse3kPEMyJyJV7AgDK8B4LZzrlICZqH4mbgW8A9IvIdvAeQz+K5nOp+rhORn+GFld8P7wGiHZiJp3e83jn3pHPuERF5DrhWRCbiubOeDSz0mxrsWBqGYaQTP8SLVnqmrwXHOdflR8R+CS+gzfejaOeDIvIL4BE8HeP3gT875971P78J+Are7/R/471s/ATeb+/lzrkeERmPFxjnL3h6vS7gDLx7xCOD7Pst4PMich7eDGKTc+6d8ErOuVXxvO8Og2/g3XdeFJFf4R2D2cDBzrkvjfK+DWNMYUajkY5EStOwCs9I+iSwHi+c93fxXDN/hueKMxwuA5rwtCB5wBN4bj7/BHYHbeScqxORL+Ll5Hoab5btfXhR3H4KTMCLfPctvCA2F+LNbOo2bhCRccDX8IzKf+O9zb01rN5GEVmMFwn1J3gBEOr8+jcPZ9DOuU4R+QBwJV649xbgNrwgBleH1f2OiKzGd3/Cm52tAR4H1qiqZ+J9dz/DC4pzH96DxU0MciwNwzDSBf+3+KvAT5xzb+rPnHOviJfv9lsicqdzblXERvq5AC+d0efwtHbX4RlJofZafDfYnwP/h5eO6R3gQudc6D7RjpcG6lI8Q7bXr/MJ59y9g+z7Z3iur9cD4/DuY0sD6sb7vhs1/jFdgmeo/x4vl/B7wI2jvW/DGGuIcy7ZfTCMtEJEvol3Q6xyzm1Mdn9Ggoj8AO/tdS5e6o2ewbeI+/7/gBfCvTzkRuvP6mbhzUY+55y7ILgFwzCMzEJELsYzeuY659YmuTspgYhU4xmunwZ6QzO4Cdp3Dl4U2MeADzjnHkvUvg0jlbCZRsMYBBH5MN4M5ut4b2iPxXvTe2e6G4xhdOG9na0arR34D0Lj8WaF8/BShXwW+EWY7vIRvMTT4OlVDMMwDOMif/kfPM+aUUdEZuB5zhjGmMeMRsMYnCbgI3hupMV4Uet+qWPvUgAAAJhJREFUR3R6lHTgWjxXW+gP3jNatAD/AeyD50K0AfgO/alBQnyefu3kaEbeMwzDMNKD0/DuGzC8iODDZRtwmPp/D12nYYwVzD3VMAzDMAzDMAzDCMRSbhiGYRiGYRiGYRiBmNFoGIZhGIZhGIZhBGJGo2EYhmEYhmEYhhGIGY2GYRiGYRiGYRhGIGY0GoZhGIZhGIZhGIH8f4rLdKvgN/vGAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "functions.name_plot_options(\"monitor\", data, log=True)\n", "functions.name_plot_options(\"banana\", data, left_lim=90, right_lim=150)\n", @@ -579,9 +866,111 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/********************************************************************************\n", + "* \n", + "* McStas, neutron ray-tracing package\n", + "* Copyright (C) 1997-2008, All rights reserved\n", + "* Risoe National Laboratory, Roskilde, Denmark\n", + "* Institut Laue Langevin, Grenoble, France\n", + "* \n", + "* This file was written by McStasScript, which is a \n", + "* python based McStas instrument generator written by \n", + "* Mads Bertelsen in 2019 while employed at the \n", + "* European Spallation Source Data Management and \n", + "* Software Center\n", + "* \n", + "* Instrument python_tutorial\n", + "* \n", + "* %Identification\n", + "* Written by: Python McStas Instrument Generator\n", + "* Date: 12:59:09 on December 15, 2021\n", + "* Origin: ESS DMSC\n", + "* %INSTRUMENT_SITE: Generated_instruments\n", + "* \n", + "* \n", + "* %Parameters\n", + "* \n", + "* %End \n", + "********************************************************************************/\n", + "\n", + "DEFINE INSTRUMENT python_tutorial (\n", + "wavelength = 2.8, // Wavelength in [Ang]\n", + "int order = 1 // Monochromator order, integer\n", + ")\n", + "\n", + "DECLARE \n", + "%{\n", + "double mono_Q = 1.714;\n", + "double wavevector;\n", + "double mono_rotation;\n", + "%}\n", + "\n", + "INITIALIZE \n", + "%{\n", + "// Start of initialize for generated python_tutorial\n", + "wavevector = 2.0*PI/wavelength;\n", + "mono_rotation = asin(mono_Q/(2.0*wavevector))*RAD2DEG;\n", + "printf(\"monochromator rotation = %g deg\\n\", mono_rotation);\n", + "%}\n", + "\n", + "TRACE \n", + "COMPONENT source = Source_div(\n", + " xwidth = 0.1, yheight = 0.05,\n", + " focus_aw = 1.2, focus_ah = 2.3,\n", + " lambda0 = wavelength, dlambda = 0.01*wavelength)\n", + "AT (0,0,0) ABSOLUTE\n", + "\n", + "COMPONENT guide = Guide_gravity(\n", + " w1 = 0.05, h1 = 0.05,\n", + " w2 = 0.05, h2 = 0.05,\n", + " l = 8, m = 3.5,\n", + " G = -9.82)\n", + "AT (0,0,2) RELATIVE source\n", + "\n", + "COMPONENT mono = Monochromator_flat(\n", + " zwidth = 0.05, yheight = 0.08,\n", + " Q = mono_Q)\n", + "AT (0,0,8.5) RELATIVE guide\n", + "ROTATED (0,mono_rotation,0) RELATIVE guide\n", + "\n", + "COMPONENT beam_dir = Arm()\n", + "AT (0,0,0) RELATIVE mono\n", + "ROTATED (0,mono_rotation,0) RELATIVE mono\n", + "\n", + "COMPONENT sample = PowderN(\n", + " reflections = \"Na2Ca3Al2F14.laz\", radius = 0.015,\n", + " yheight = 0.05)\n", + "AT (0,0,1.1) RELATIVE beam_dir\n", + "\n", + "COMPONENT banana = Monitor_nD(\n", + " xwidth = 2, yheight = 0.3,\n", + " restore_neutron = 1, options = \"theta limits=[5 175] bins=150, banana\",\n", + " filename = \"banana.dat\")\n", + "AT (0,0,0) RELATIVE sample\n", + "\n", + "COMPONENT monitor = PSD_monitor(\n", + " nx = 100, ny = 100,\n", + " filename = \"psd.dat\", xwidth = 0.05,\n", + " yheight = 0.08, restore_neutron = 1)\n", + "AT (0,0,0.1) RELATIVE sample\n", + "\n", + "FINALLY \n", + "%{\n", + "// Start of finally for generated python_tutorial\n", + "%}\n", + "\n", + "END\n", + "\n" + ] + } + ], "source": [ "with open(\"run_folder/python_tutorial.instr\") as file:\n", " data = file.read()\n", @@ -612,7 +1001,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.8.8" } }, "nbformat": 4, diff --git a/tutorial/McStasScript_tutorial_2_SPLIT.ipynb b/tutorial/McStasScript_tutorial_2_SPLIT.ipynb index 706f580d..28abd363 100644 --- a/tutorial/McStasScript_tutorial_2_SPLIT.ipynb +++ b/tutorial/McStasScript_tutorial_2_SPLIT.ipynb @@ -31,7 +31,7 @@ "metadata": {}, "outputs": [], "source": [ - "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")" + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\", output_path=\"data_folder/mcstas_SPLIT\")" ] }, { @@ -46,11 +46,11 @@ "src.focus_aw = 1.2\n", "src.focus_ah = 2.3\n", "\n", - "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", - "src.lambda0=\"wavelength\"\n", - "src.dlambda=\"0.03*wavelength\"\n", + "wavelength = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0 = wavelength\n", + "src.dlambda = \"0.03*wavelength\"\n", "\n", - "guide = instrument.add_component(\"guide\", \"Guide_gravity\", AT=[0,0,2], RELATIVE=\"source\")\n", + "guide = instrument.add_component(\"guide\", \"Guide_gravity\", AT=[0,0,2], RELATIVE=src)\n", "guide.w1 = 0.05\n", "guide.w2 = 0.05\n", "guide.h1 = 0.05\n", @@ -59,25 +59,25 @@ "guide.m = 3.5\n", "guide.G = -9.82\n", "\n", - "instrument.add_declare_var(\"double\", \"mono_Q\", value=1.714) # Q for Ge 311\n", + "mono_Q = instrument.add_declare_var(\"double\", \"mono_Q\", value=1.714) # Q for Ge 311\n", "instrument.add_declare_var(\"double\", \"wavevector\")\n", "instrument.append_initialize(\"wavevector = 2.0*PI/wavelength;\")\n", "\n", - "instrument.add_declare_var(\"double\", \"mono_rotation\")\n", + "mono_rotation = instrument.add_declare_var(\"double\", \"mono_rotation\")\n", "instrument.append_initialize(\"mono_rotation = asin(mono_Q/(2.0*wavevector))*RAD2DEG;\")\n", "instrument.append_initialize('printf(\"monochromator rotation = %g deg\\\\n\", mono_rotation);')\n", "\n", "mono = instrument.add_component(\"mono\", \"Monochromator_flat\")\n", "mono.zwidth = 0.05\n", "mono.yheight = 0.08\n", - "mono.Q = \"mono_Q\"\n", + "mono.Q = mono_Q\n", "mono.set_AT([0, 0, 8.5], RELATIVE=guide)\n", - "mono.set_ROTATED([0, \"mono_rotation\", 0], RELATIVE=\"guide\")\n", + "mono.set_ROTATED([0, mono_rotation, 0], RELATIVE=guide)\n", "\n", - "beam_direction = instrument.add_component(\"beam_dir\", \"Arm\", AT_RELATIVE=\"mono\")\n", + "beam_direction = instrument.add_component(\"beam_dir\", \"Arm\", AT_RELATIVE=mono)\n", "beam_direction.set_ROTATED([0, \"mono_rotation\", 0], RELATIVE=\"mono\")\n", "\n", - "sample = instrument.add_component(\"sample\", \"PowderN\", AT=[0,0,1.1], RELATIVE=\"beam_dir\")\n", + "sample = instrument.add_component(\"sample\", \"PowderN\", AT=[0,0,1.1], RELATIVE=beam_direction)\n", "sample.radius = 0.015\n", "sample.yheight = 0.05\n", "sample.reflections = '\"Na2Ca3Al2F14.laz\"'\n", @@ -104,9 +104,12 @@ "metadata": {}, "outputs": [], "source": [ - "data_low = instrument.run_full_instrument(ncount=1E6, foldername=\"data_folder/mcstas_SPLIT\",\n", - " increment_folder_name=True,\n", - " parameters={\"wavelength\" : 2.8})\n", + "instrument.settings(ncount=1E6)\n", + "\n", + "instrument.set_parameters(wavelength=2.8)\n", + " \n", + "instrument.backengine()\n", + "data_low = instrument.data\n", "\n", "plotter.make_sub_plot(data_low)" ] @@ -134,9 +137,9 @@ "metadata": {}, "outputs": [], "source": [ - "data_reasonable = instrument.run_full_instrument(ncount=1E6, foldername=\"data_folder/mcstas_SPLIT\",\n", - " increment_folder_name=True,\n", - " parameters={\"wavelength\" : 2.8})\n", + "# No need to set settings or parameters as these have not changed\n", + "instrument.backengine()\n", + "data_reasonable = instrument.data\n", "\n", "plotter.make_sub_plot(data_reasonable)" ] @@ -156,9 +159,11 @@ "outputs": [], "source": [ "sample.set_SPLIT(10000)\n", - "data_unreasonable = instrument.run_full_instrument(ncount=1E3, foldername=\"data_folder/mcstas_SPLIT\",\n", - " increment_folder_name=True,\n", - " parameters={\"wavelength\" : 2.8})\n", + "\n", + "instrument.settings(ncount=1E3) # Change settings to lower ncount, but keep parameters\n", + " \n", + "instrument.backengine()\n", + "data_unreasonable = instrument.data\n", "\n", "plotter.make_sub_plot(data_unreasonable)" ] @@ -178,9 +183,12 @@ "outputs": [], "source": [ "sample.set_SPLIT(1)\n", - "data_ref = instrument.run_full_instrument(ncount=5E7, foldername=\"data_folder/mcstas_SPLIT\",\n", - " increment_folder_name=True,\n", - " parameters={\"wavelength\" : 2.8})" + "instrument.settings(ncount=5E7)\n", + " \n", + "instrument.backengine()\n", + "data_ref = instrument.data\n", + "\n", + "plotter.make_sub_plot(data_unreasonable)" ] }, { @@ -259,7 +267,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.8.8" } }, "nbformat": 4, diff --git a/tutorial/McStasScript_tutorial_3_EXTEND_and_WHEN.ipynb b/tutorial/McStasScript_tutorial_3_EXTEND_and_WHEN.ipynb index 3938a566..4ee501ab 100644 --- a/tutorial/McStasScript_tutorial_3_EXTEND_and_WHEN.ipynb +++ b/tutorial/McStasScript_tutorial_3_EXTEND_and_WHEN.ipynb @@ -23,7 +23,9 @@ "metadata": {}, "outputs": [], "source": [ - "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")" + "instrument = instr.McStas_instr(\"python_tutorial\",\n", + " input_path=\"run_folder\",\n", + " output_path=\"data_folder/mcstas_EXTEND_WHEN\")" ] }, { @@ -49,9 +51,9 @@ "src.dist = 1.5\n", "src.flux = 1E13\n", "\n", - "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", - "src.lambda0=\"wavelength\"\n", - "src.dlambda=\"0.001*wavelength\"" + "wavelength = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0 = wavelength\n", + "src.dlambda = \"0.001*wavelength\"" ] }, { @@ -96,9 +98,10 @@ "metadata": {}, "outputs": [], "source": [ - "data = instrument.run_full_instrument(ncount=5E6, foldername=\"data_folder/mcstas_EXTEND_WHEN\",\n", - " increment_folder_name=True,\n", - " parameters={\"wavelength\" : 2.8})\n", + "instrument.set_parameters(wavelength=2.8)\n", + "instrument.settings(ncount=5E6)\n", + "instrument.backengine()\n", + "data = instrument.data\n", "\n", "plotter.make_sub_plot(data)" ] @@ -176,9 +179,10 @@ "metadata": {}, "outputs": [], "source": [ - "data = instrument.run_full_instrument(ncount=5E6, foldername=\"data_folder/mcstas_EXTEND_WHEN\",\n", - " increment_folder_name=True,\n", - " parameters={\"wavelength\" : 2.8})\n", + "instrument.set_parameters(wavelength=2.8)\n", + "instrument.settings(ncount=5E6)\n", + "instrument.backengine()\n", + "data = instrument.data\n", "\n", "plotter.make_sub_plot(data)" ] @@ -227,7 +231,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.8.8" } }, "nbformat": 4, diff --git a/tutorial/McStasScript_tutorial_4_JUMP.ipynb b/tutorial/McStasScript_tutorial_4_JUMP.ipynb index 7f39406e..47b109db 100644 --- a/tutorial/McStasScript_tutorial_4_JUMP.ipynb +++ b/tutorial/McStasScript_tutorial_4_JUMP.ipynb @@ -65,9 +65,8 @@ "src.dist = 1.5\n", "src.flux = 1E13\n", "\n", - "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", - "src.lambda0=\"wavelength\"\n", - "src.dlambda=\"0.001*wavelength\"\n", + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.dlambda = \"0.001*wavelength\"\n", "\n", "guide = instrument.add_component(\"guide\", \"Guide_gravity\", AT=[0,0,1.5], RELATIVE=src)\n", "guide.w1 = guide_opening_w\n", @@ -104,7 +103,8 @@ "start_arm = instrument.add_component(\"split_arm\", \"Arm\")\n", "start_arm.set_AT([0,0, guide_length + 3E-3], RELATIVE=guide)\n", "start_arm.set_JUMP(\"target_arm WHEN (x<0)\")\n", - "start_arm.print_long()" + "\n", + "print(start_arm)" ] }, { @@ -201,9 +201,11 @@ "metadata": {}, "outputs": [], "source": [ - "data = instrument.run_full_instrument(ncount=5E6, foldername=\"data_folder/mcstas_JUMP\",\n", - " increment_folder_name=True,\n", - " parameters={\"wavelength\" : 2.8})" + "instrument.set_parameters(wavelength=2.8)\n", + "instrument.settings(ncount=5E6, output_path=\"data_folder/mcstas_JUMP\")\n", + "instrument.backengine()\n", + "\n", + "data = instrument.data" ] }, { @@ -247,7 +249,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.8.8" } }, "nbformat": 4, From 3b34672b06b065e72b7fdbb4ccafddcf81cda51d Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 4 Jan 2022 12:24:28 +0100 Subject: [PATCH 183/403] Update of how settings are set in instrument class. Settings are now a dict which is updated by the settings method. The settings method contains input sanitation and is used in init. All examples and tutorials were checked for proper new usage. The components can now have parameters set with set_parameters using both keyword and dict argument. --- examples/McStasScript_demo.ipynb | 28 +- examples/libpyvinyl_example.ipynb | 257 ++---- examples/manual_code.ipynb | 276 +----- examples/random_demonstration.py | 28 +- mcstasscript/helper/mcstas_objects.py | 11 +- mcstasscript/interface/instr.py | 241 ++++-- mcstasscript/tests/test_Instr.py | 12 +- .../McStasScript_tutorial_1_the_basics.ipynb | 508 ++--------- tutorial/McStasScript_tutorial_2_SPLIT.ipynb | 4 +- ...tasScript_tutorial_3_EXTEND_and_WHEN.ipynb | 6 +- tutorial/McStasScript_tutorial_4_JUMP.ipynb | 19 + ...n_tutorial_1_processes_and_materials.ipynb | 788 +++++++++++++++++- tutorial/Union_tutorial_2_geometry.ipynb | 46 +- tutorial/Union_tutorial_3_loggers.ipynb | 55 +- tutorial/Union_tutorial_4_conditionals.ipynb | 36 +- tutorial/Union_tutorial_5_masks.ipynb | 31 +- ...ial_6_Exit_and_number_of_activations.ipynb | 31 +- .../Union_tutorial_7_Tagging_history.ipynb | 21 +- 18 files changed, 1252 insertions(+), 1146 deletions(-) diff --git a/examples/McStasScript_demo.ipynb b/examples/McStasScript_demo.ipynb index 2c5b5a3d..76a9b5db 100644 --- a/examples/McStasScript_demo.ipynb +++ b/examples/McStasScript_demo.ipynb @@ -14,10 +14,6 @@ "metadata": {}, "outputs": [], "source": [ - "import sys\n", - "# Path to McStasScript pythoon file\n", - "sys.path.append('/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript')\n", - "\n", "from mcstasscript.interface import instr, plotter, functions\n", "\n", "# Creating the instance of the class, insert path to mcrun and to mcstas root directory\n", @@ -57,7 +53,7 @@ "metadata": {}, "outputs": [], "source": [ - "source = Instr.add_component(\"Source\",\"Source_simple\") # Adds an instance of Source_simple" + "source = Instr.add_component(\"Source\", \"Source_simple\") # Adds an instance of Source_simple" ] }, { @@ -113,7 +109,7 @@ "metadata": {}, "outputs": [], "source": [ - "guide.set_parameters({\"w1\" : 0.05, \"w2\" : 0.05, \"h1\" : 0.05, \"h2\" : 0.05, \"l\" : 8, \"m\" : 3.5, \"G\" : -9.2})" + "guide.set_parameters(w1=0.05, w2=0.05, h1=0.05, h2=0.05, l=8, m=3.5, G=-9.2)" ] }, { @@ -264,10 +260,26 @@ "source": [ "# output_path specifies the foldername, if it already exists an index is added\n", "Instr.settings(output_path=\"jupyter_demo\", mpi=4, ncount=2E7)\n", - "\n", + "Instr.show_settings() # Check settings are correct" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ "# Input parameters are set with set_parameters\n", "Instr.set_parameters(wavelength=1.5)\n", - "\n", + "Instr.show_parameters()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ "# The simulation is performed by calling backengine()\n", "Instr.backengine()\n", "\n", diff --git a/examples/libpyvinyl_example.ipynb b/examples/libpyvinyl_example.ipynb index 478d98bc..5f6c4f54 100644 --- a/examples/libpyvinyl_example.ipynb +++ b/examples/libpyvinyl_example.ipynb @@ -78,7 +78,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "id": "parental-albert", "metadata": {}, "outputs": [], @@ -98,7 +98,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "id": "incident-nitrogen", "metadata": {}, "outputs": [ @@ -118,7 +118,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, "id": "subjective-battle", "metadata": {}, "outputs": [ @@ -148,7 +148,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 7, "id": "accomplished-twelve", "metadata": {}, "outputs": [], @@ -158,7 +158,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 8, "id": "foreign-developer", "metadata": {}, "outputs": [], @@ -173,7 +173,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "id": "champion-knife", "metadata": {}, "outputs": [], @@ -183,7 +183,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 10, "id": "wrong-retailer", "metadata": {}, "outputs": [], @@ -196,7 +196,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 11, "id": "anticipated-tampa", "metadata": {}, "outputs": [ @@ -227,7 +227,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 12, "id": "experienced-arizona", "metadata": {}, "outputs": [ @@ -256,7 +256,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "id": "wooden-helicopter", "metadata": {}, "outputs": [], @@ -266,7 +266,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 14, "id": "preliminary-training", "metadata": {}, "outputs": [], @@ -281,7 +281,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 15, "id": "official-withdrawal", "metadata": {}, "outputs": [], @@ -291,7 +291,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "id": "colored-policy", "metadata": {}, "outputs": [], @@ -308,7 +308,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 17, "id": "based-torture", "metadata": {}, "outputs": [ @@ -332,20 +332,20 @@ "id": "august-words", "metadata": {}, "source": [ - "### Could set parameters with a syntax like this" + "### Old syntax" ] }, { "cell_type": "code", - "execution_count": 17, - "id": "virtual-cleaners", + "execution_count": 18, + "id": "prescription-whole", "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/mcstasscript/interface/instr.py:1693: UserWarning: run_full_instrument will be removed in future version of McStasScript. \n", + "/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/mcstasscript/interface/instr.py:1696: UserWarning: run_full_instrument will be removed in future version of McStasScript. \n", "Instead supply parameters with set_parameters, set settings with settings and use backengine() to run. See examples in package.\n", " warnings.warn(\n" ] @@ -354,7 +354,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/examples/run_full_instrument_path_3\"\n", + "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/examples/run_full_instrument_path_0\"\n", "INFO: Regenerating c-file: demo_instrument.c\n", "CFLAGS=\n", "INFO: Recompiling: ./demo_instrument.out\n", @@ -363,9 +363,9 @@ " ^~~\n", "1 warning generated.\n", "INFO: ===\n", - "Warning: 9688 events were removed in Component[4] acceptance_horizontal=DivPos_monitor()\n", + "Warning: 9658 events were removed in Component[4] acceptance_horizontal=DivPos_monitor()\n", " (negative time, miss next components, rounding errors, Nan, Inf).\n", - "INFO: Placing instr file copy demo_instrument.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/examples/run_full_instrument_path_3\n", + "INFO: Placing instr file copy demo_instrument.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/examples/run_full_instrument_path_0\n", "\n", " Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Ni.laz' (Table_Read_Offset)\n", "Table from file 'Ni.laz' (block 1) is 19 x 18 (x=1:6), constant step. interpolation: linear\n", @@ -373,8 +373,8 @@ "PowderN: powder: Reading 19 rows from Ni.laz\n", "PowderN: powder: Read 19 reflections from file 'Ni.laz'\n", "PowderN: powder: Vc=43.76 [Angs] sigma_abs=17.96 [barn] sigma_inc=20.8 [barn] reflections=Ni.laz\n", - "Detector: cyl_monitor_I=0.0552829 cyl_monitor_ERR=0.000384292 cyl_monitor_N=54838 \"cylinder.dat\"\n", - "Detector: acceptance_horizontal_I=1.32373 acceptance_horizontal_ERR=0.00101418 acceptance_horizontal_N=1.89423e+06 \"acceptance_h.dat\"\n", + "Detector: cyl_monitor_I=0.0559433 cyl_monitor_ERR=0.00038608 cyl_monitor_N=55188 \"cylinder.dat\"\n", + "Detector: acceptance_horizontal_I=1.32435 acceptance_horizontal_ERR=0.00101504 acceptance_horizontal_N=1.89432e+06 \"acceptance_h.dat\"\n", "PowderN: powder: Info: you may highly improve the computation efficiency by using\n", " SPLIT 19 COMPONENT powder=PowderN(...)\n", " in the instrument description demo_instrument.instr.\n", @@ -388,19 +388,27 @@ " ncount=2E6, foldername=\"run_full_instrument_path\")" ] }, + { + "cell_type": "markdown", + "id": "domestic-bearing", + "metadata": {}, + "source": [ + "### New libpyvinyl syntax" + ] + }, { "cell_type": "code", - "execution_count": 18, - "id": "closed-promise", + "execution_count": 22, + "id": "independent-millennium", "metadata": {}, "outputs": [], "source": [ - "calculator.set_parameters({\"source_energy\": 320, \"source_height\":0.025, \"sample_height\":0.04})" + "calculator.set_parameters(source_energy=320, source_height=0.025, sample_height=0.04)" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 23, "id": "smooth-cholesterol", "metadata": {}, "outputs": [], @@ -418,7 +426,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 24, "id": "daily-louisiana", "metadata": {}, "outputs": [ @@ -426,7 +434,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/examples/path_to_output\"\n", + "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/examples/path_to_output_0\"\n", "INFO: Regenerating c-file: demo_instrument.c\n", "CFLAGS=\n", "INFO: Recompiling: ./demo_instrument.out\n", @@ -438,11 +446,11 @@ " ^~~\n", "2 warnings generated.\n", "INFO: ===\n", - "Warning: 11956 events were removed in Component[4] acceptance_horizontal=DivPos_monitor()\n", + "Warning: 11913 events were removed in Component[4] acceptance_horizontal=DivPos_monitor()\n", " (negative time, miss next components, rounding errors, Nan, Inf).\n", - "Warning: 12035 events were removed in Component[4] acceptance_horizontal=DivPos_monitor()\n", + "Warning: 11974 events were removed in Component[4] acceptance_horizontal=DivPos_monitor()\n", " (negative time, miss next components, rounding errors, Nan, Inf).\n", - "INFO: Placing instr file copy demo_instrument.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/examples/path_to_output\n", + "INFO: Placing instr file copy demo_instrument.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/examples/path_to_output_0\n", "\n", " Simulation 'demo_instrument' (demo_instrument.instr): running on 2 nodes (master is 'CI0021617', MPI version 3.1).\n", "Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Ni.laz' (Table_Read_Offset)\n", @@ -451,8 +459,8 @@ "PowderN: powder: Reading 19 rows from Ni.laz\n", "PowderN: powder: Read 19 reflections from file 'Ni.laz'\n", "PowderN: powder: Vc=43.76 [Angs] sigma_abs=17.96 [barn] sigma_inc=20.8 [barn] reflections=Ni.laz\n", - "Detector: cyl_monitor_I=0.0553181 cyl_monitor_ERR=0.000243053 cyl_monitor_N=136639 \"cylinder.dat\"\n", - "Detector: acceptance_horizontal_I=1.32423 acceptance_horizontal_ERR=0.000641726 acceptance_horizontal_N=4.73644e+06 \"acceptance_h.dat\"\n", + "Detector: cyl_monitor_I=0.0551286 cyl_monitor_ERR=0.000242487 cyl_monitor_N=136616 \"cylinder.dat\"\n", + "Detector: acceptance_horizontal_I=1.32419 acceptance_horizontal_ERR=0.000641536 acceptance_horizontal_N=4.7368e+06 \"acceptance_h.dat\"\n", "PowderN: powder: Info: you may highly improve the computation efficiency by using\n", " SPLIT 19 COMPONENT powder=PowderN(...)\n", " in the instrument description demo_instrument.instr.\n", @@ -475,7 +483,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 25, "id": "global-loading", "metadata": {}, "outputs": [], @@ -493,7 +501,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 26, "id": "retired-brick", "metadata": {}, "outputs": [ @@ -507,7 +515,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5YAAAHuCAYAAADk5ZP7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzde5xNZfvH8c81IyKnHDMhMSHhCROlEhJRFJFQknPOxxyKcSiHnBUJSYpSoocaHfzwkCklhJxShEaEnBqZzNy/P9YehoaUPfbM7O/79VqvPXvtvde61ipr7Wvf933d5pxDRERERERE5N8KCXQAIiIiIiIikrYpsRQREREREZHLosRSRERERERELosSSxEREREREbksSixFRERERETksiixFBERERERkcuixFLET8xsuZkNSvLcmVnVy9zm327j/P1e5v5mmtlMf2zLX8ysiO88FAl0LCIi/5aZVTWzi87xdinvSQlm1sLMdiV5nuruBcFK90BJS5RYiviYWVEzm2Vm+8zspJltNbPRZpb/X26yABDtzxgvoAEw+grsJ1D24J3LPfDXL0AiIv7k+7HO+ZYTZvaVmdXyw6aj8a5lifsZZGbLL/aeAOrqWyTwdA+UNEOJpQhgZjcDa4CcQCOgBNAayA20/zfbdM794pyL81eM5zOzjL79HHbOnUip/QSacy7edy7j/bVN81zlr+2JSLozBu/LfHlgLfBfMwu/nA065+Kcc79c7nuuBOfcUefc0ZTafuL9S/6e7oGSliixFPFMAr4HHnLOfe6c2+17fAqYYGZ3mNkfZpYz6YfMbIOZdUtug0m7sSZ2bzKzama2xcyOm9n8pNszsxxm9r6vtXS7md1/3vYSt3G/mW0BTprZ1cl0wc1nZrPN7DfffpabWZjvtVZm9q2ZxZrZT2Y21MwyXOpJ8nWPesPMRpnZUTPbbWYPmtkNvv2cMLPFZpYryWeymNm0JPG8a2Z5ktnmMN97fjazLkleP9MNyHc+XwduSNKikHiOI8ws2vffabeZdU/mv0dLXwvBH8C9l3rcIhJ0Tvi+zG8HOgHxQA0AM6vpu/afMrPvzaxJ4od81+RpZnYgSc+Xh32vnenmamYtgEjgniTXsiKWTFdYM+vhu6b94bvGlU/yWgsz22VmjX2Pv5nZ9L9L3Hz72eKL8UMgz3mvn+kKa2YTzGzhea8XM7MEMyvke17UzBb57gExZvaSmWVO8v5dZtbLzP5rZieBlmaWycxe831mT5JjaZHkc5ey3e7m3TtjzWyzmd1zXqw1zexr3/nbZ2YjLnX7yZw33QNFLkKJpQQ93wW+KjDWOfeXsS3OuSPOuS+An4BHk3zuP0Ap4O1/sLvngCeB6kA5oF+S18YDNwPVfO8ZepFttATKAsm1iM4HCgF1gArAm0Bi8hgC9ARuwWuJbQm0/QfxA9QHTgARwAJgJjAFGA5UBm4877jGAFWAusA9QGHfZ87fJkAlvOMeb2a3JLPvaKAbsBevNaEAEG1mWYEoYCPeee0LPG9mDc/7/CBgIt55XnOpBywiwcs5dxr4E8hoZoWBhXjX2TLABGCWmd3me3sXvGvjA3j3h+7AsWQ2Oxfv2vgFZ69le85/k5k1BgYDffCubd8BUWZ2TZK35QOa4l1jH/EtrS50PGaWA+/avcS3zQ+BZy9yCt4Favo+l+hR4Avn3B5fEvsJsBXvnvMQUBF48bzt9AX+i3f/WQj0B2r63v8A8LjvWBLjvNTt9gE+AP6Ddz5nm681zsxKAYuAj4BbgXrArn+4/fPpHihyIc45LVqCesG7kDvg1r95X39gRZLno4CoJM+XA4OSPHdAVd/fVX3Py5+3vS99f2fH++JSI8nrNS+wjTvPi+vMfvGS0pNA/ks89l7A0iTPZwIzL/L+mcD6JM/z+2LqmmRdH2C17+9seMlvzSSvl/R9pniSbW44bz/bgfa+v4v43l/E97wFsOu897cDdgOhSdaNAKLP++/xbKD/f9OiRUvqXs67pl6F9yU9Ae8L+/Ck1xXfe94B5vj+fgmYfoHtVvW+dp15PghY/jfv+QIYluR5BrwEtK3veQu81tQ8Sd4zFXjnIsf3NN4PpUmvl3OSXleT3gsA811fmyd5fV3idR9oju9eluT1ykAsYL7nu4Bp573nANAiyfNivut0i3+43YlJXg/zbaOk7/kbwPwLnIe/3X4yn5mJ7oFatFxwUYulyKV7E6js6/ISAjTxrfsnNib5ex9nf50tiveF4askr395gW2su8j2SwPbnHP7k3vRzG43s098XW1OAM/jtW7+E98l+fuA73Hzeevy+v4uivfF7MyxOOe2Akfwbq6Jkp4XOPfcXIqSwBp37hiUL87bB1z83ImIJOrvu0aeBJ4BOjrn1uFdU86/Nie91rwJNDKzNb6ujeUuM45z9ue81tM1nHtt+8U5dzDJ8zPXTzPr7+ueecJ3PODVEPjmvOvlhe43OOccMA+v/gDmjTUtC7zne0sZoMJ5+/kMyMy5hYjOXH/NGwaSF/gmyX5+AH5L8v5L3e7591U4e/8oDay4wKFd6vbPp3ugyAVc8tgqkXTsB99jCWD9hd7kvC4/y4FmwGq8VsYP/smOnHN/Jn3K2e7olmTd320j9iIv24W2kaSrzDt4Y3sOA425SJepCzhzDM45Z2bnrCP547rkbSazjUtxqfu52LkTEUk0Ba/L4Al3bjGdi15rnHNfmdmNeF0778frptjPOTc+xSK9+PVzCl5X1qSSu0/83TV0LrDC1x32UWCVcy7G91pWYBnQIZnPHUjyd9Lr76Xc8y51u8ndk5Legy60j0vd/vl0DxS5ALVYStDz/dK7HOhmvjtEUueNK3kDbxzI48A859xJP4XxA3Aab3xHokr/YjubgJJmltwvnSWBa4FnnHNfOq8oRcF/sY9/IvG4bk9cYWYl8arvbv2X2/wTCD1v3VYgwsySrr/jMvYhIsHtsHNuh/trhdatJLme+ZxzrXFepe43nXPN8H7Ea3mBfSR3LTvfNs69fmbAG9t3Sdc2Xyw7Epck26zg63mTqGIyH0+6ndV4rWgP4yWWc5O8/C3e/WV30n35ltMX2N5vwK94YxsTj60o3j3qX283GZvwxjUmxx/b/zu6B0pQUWIp4umEd4P51Mxq+KqvVTaz6Zw7l9f7eMlYM/55N9gLcs4dwxvjMsHMKpnZ7cAL/2I7S/FaXeeZV8k23Mye9BWc2I13Q+rsq4TXFq/IQ4pxzh0HZgAvmdld5lUznAks9iW2/8ZPQH4zq2BmeXxFGmYDWYDJZlbSvCqNnfEKIomI+MsreEnZIDMrbmad8K6jEwDMq1DayMxuMrMyeGPlL3St+wkobmYlfNey5L6TTcC7Zj/mS0heATLh3S/+rTl4Cdw4377bArUv4XPv4o3LL4N3L0w0G2+c5zu+yqThZlbPzP6uCM4rwBDzqqWXxWtdPcnZFsZ/u92kXgQe9P33KmFm5X3H66/tX5TugRJslFiKAM6574DbgP14F+iteCW9D+Pd7BLfF4tXDfAXvFZOf+qGN+XJ/3wxDPqX22mAF98nePOvtQD+dM4dwKsA2wHvV9z7gWGXE/Al6gl8jld5cAVeNbsnL2N7q/C+GP0f3i/ed/pu3nXwqgJ+i/dlYqBz7vwuYCIi/5pz7ie8VrtH8K6j3YCnfC16AL8DA/CuQ8vx7iGdLrC5+Xjj6tfgXcsKJ7O/t4EhwGjfNksDddxlzF3snDuCV4X0ft826+MVJfo7c337X5G0Jdd3/a2Kl6Qt8W1zKGfHO17IMN/7P8QbpjEbOA6cusztnuGc24T33+thYINvX0X8tf1LpHugBI3EqloiconMLAqvKlz/QMciIiKSHphZAeBnoJJz7utAxyMi/5wSS5FL5BtrWRWvEl4J59zOwEYkIiKSNplZcbxaAl8AufCmxygAlHL6ciqSJqkrrMil+y/wFtBPSaWIBJKZfWBm35rZOjNbaWa3+tYXN7MvzGy77/GmAIcqciEJeOMA1+N1hT2GN9+jkkqRNEotliIiImmMmeVwzh31/f0QEOmcK29mS4EZzrm3zOxxoKVzrnpAgxURkaCgFksREZE0JjGp9MkBJPimGSoPvO1b/zZQ3szynv95ERERf8sQ6ABERETkn/NNh1QTb3L0+4FCwM/OuXgA51y8mcX41v8asEBFRCQopOvEMk+ePK5IkSKBDkNERNKob7755qBzLlW2+DnnWgOY2RPAKLxpLi6Jby6/tgDXXHNNhZIlS6ZIjCJy+b75JgaAkHL5AEhYd5CsFbJw4psTwDWEls9C/OkMsMW4quwpQkggF4c5SB7+/MaoELaRTQVKAZCROK7iTzJwmpNk5vg3v5O3QiinycApMhH7Y1byFf2FeEI59E1eilbYwbVHvQ4S37gKcBQ4eAJvSKynQoWwK3k6UoS/r/XhZi7WXxvz2QefOOfu9/Nm/Spdj7GMiIhwa9asCXQYIiKSRpnZN865iEDH8XfM7CTe/HzbgNy+1spQ4BBwk3Pugi2WuleKpG5mgwGo67zkcJEdBX6mpwsljH30tHxADe5ysXxuZanq1rEmNoKILGtYbhWhQC7Yt8S3te951GWhEHsYU/45WLefzm4W/XmBAvYrr7kWbKQM4/P29Wb//B3Y5fvo1cCy2XB3M1jpxeRc5JU6DSnK39f6MDPXzl8b8xkEqf5+pDGWIiIiaYiZZTWzQkme1wUOAwfwKmw28b3UBFh3saRSRFK3xKRS0hbD6xbqzwXIYWZTfdf8VCldd4UVERFJh64B3jOza4B4vKSyrnPOmVl74A0zGwj8BjQPYJwi4icVXTUW2bIka7Ixxo4DkyAbsBwy8RE5Tjl2EE54lh3EkgXIAPvA67wAkJld3Mi7RZ+Enft51H1MLFkYxrN0c2NYTUWmVunK8F+706//OCgDb8+pD0Cb2GmcWNQMHlOy+3cMuMr/mz3qnGvr/836jxJLERGRNMQ5tx+4/QKvbcWbdF5E0pGvrDSUq+I9WbeEgq4I8YSyz76H45mhQkEyulMczfQqR4G9hMO1zeAJqDvrPd4+1RSArFd/zVdDyvPjj2G8wLNk4hST5/SAZsuBk7RyP+KaGXV4H4Z/DzffRJOPF3j7PQFurmEMAtJPN1jxHyWWIiIiIiKpjLrBpl2JXWGDjcZYioiIiIikWpGsdXfBOmAd3Oxy8x6N2Bd2IzS5iWLuKKXd1yw/Vs33/jIQ0YwvDpeDN2EGLcnaO56sveOBcIj8k6J1YujFKG5lPSyDqu4PqFub13p0xOY6Ft/UAKrdBJ2Arb6lNVjYIECtlZI8JZYiIiIiIqlMbVeGt916YDDlbST8fAp+PsUW20n1Y0uhIfAlxJKFTeVv42SOg9R2ZWjhDvDI17O5o8o6nnDTGEEf2k6cQNuJEyBzdgi/ChbvZSR9qctCKANVWQ6DgEXAH0Br+HZpCbgOqOpbTgTkNKRJiWMs/bmkBUosRURERERSEbNXAh2CyD8WjN1/RURERERSJW9sZT5KsJ0m2RdQ173HIrsfSvrarQY04GQOoD5QEJ7idTavLUUF1jCgzWioC0yBtStKUb7oZhgNDPdt/EvgF+B0QfaTj/F0Z3iX7vTdN57IjCOhKXw9uDTbKcEpMnqf/WIRAG5GXeigLrCXIljHWAbjMYuIiIiIpFrFXBXGN7gF2sFxsvGwe58PsjzmvTgUWrgpZOQU6ylHZaIZVmoIH2wpDoWA6cB/ofyczYz/sR1dZ07F1jvvs48DGxcz3H3KXBqzeFgDFvevhtVzjPm6I3eXXkHF7RthF1DrBQq4neyztb6oUu30ialOCk03kuqly66wZlbXzKYePXo00KGIiIiIiIike+kysXTOLXLOtc2RI0egQxERERERuSSJU4z8YLdAVnh41Dss73A/8YR63Vi/BJ6CEmxjqnWgCDt50O6m9ub55DgVxtTdzWEEcARYBt1WvIp95Hjlz6d45c+n4GVgdm36NRjHusV38GL/LhwiNyEf/k6PmZOJJwP5iu/2WiybPMvLdOR9t1pVYP+hxK6w/lzSgnSZWIqIiIiIpCVn5q38YSCwAUrCB7Mew/UzcnOI0mW/pnTZr6k74z36/TiWfG4f5VgPn0Syh0Icfec62lo/KANMAaoBDwJH4OkNr/P0htdhDfAh0AfIB71XvETz/W9QKP8ePmpxLw2Yz/6hN/BW24bw9ioesWdpQFQgToekQUosRURERERShTJQbAg0LAvProUlYA85Zi5tz6bCt7Gp8G0sss0ML9qDUOLpN2scfAYNed9rqSQXRAL3w6am4fzvWCX++1ktbyqRQeCaGLnf+pmQIr9jrzlKVPmWhEbXsI7yPPjpEnJzkPwDfuLxKvOAJb5F/qlgnW4krbSsioiIiIikS2daKyVdUFVYEREREREJjNqRsBiY3QD2QO65+fnt1995LP9c5lRpCQ97b3t4YgkWEMa+GTfyRMtpzNrXFpvrYMtgKrgaFGIZy+Kqctuxrzl5JBsvFu4BVb3P2k5HxkzHmJ3/cXJPPkjNDivhMdhFEdx7hpX+g9phH7F4ZWEgEucCcyokbVJiKSIiIiISYA9HvcMHcx+jc+NRvFSvN4d+vp4co39hwbH6fLiiBhspA0C/+eN4q0FDxrUMZd6xhuwsUMSbZmRwJN+shnaVmvPBmsfgY6CFo/uxl1jSpQYA4exg8o/d6ZTzZcaE9IAb4N4OH9GI93h42gJKs4FZPAnuSfJwPGDnIq3TdCMiEjRi405zMi4+0GGIiIgEPXWDlfRCLZYiQejOEUsxM9YOuC/QoYiIiAS9u1xlPuhxHxmfO8ZqKlF84Qa222mqTPyBRfMaEds0C/3yjgMg36+7edzaQ787uXfYR/zfigcgE3QbOII1VGA6rRlTuSM9d0yieNGNZFgFP9xZDIBPy9aDDxyHNl3PN2UjcOUMa+r4dM7d3Nf3cxgBea0XgLrBXoZgbbFUYikShArkyEzGDOqwICIiEnjX87ndTDc3gkycYuRNkVT9/mO2z76fRbPK4zYYme4/Cv28dx8YWBgozFvDGrKA+uSrspv9m24gZ9w+dmYsSq4VsRyqkhuqnmbH/mJYZgfR3mf/t6ESOylCy/0zmLjqGcJrboK98DRT2Nm9CAk2GkDzVvpBMCZZwXjMIkHv5J/xnE5ICHQYIiIiQc2CsVlL0i01WYgEodi408RqjKWIiEjAJI6tHO6+gycKcoSc3M1Kvv2+BMt/rAXrYEzzjpQZ/RW1cn0Ce4G98OiQN+AjWEME9VlAbGwWBpfuw6SMnbh23knIBG/xOMUKbyPhm2uoUH4V+SrvJl/l3UQymBJsp3f+0Vhmx+fcCW9BO14lYfA18HSkWiv9QPNYikjQiD0Vz1UZNHhCREQkoE7PZwH1IRxm7X+CmRPa8/Kw1vQvGsmwI0MI5TRTeJq7QtYwNaE5AG2jZ9GnzmAWUo/xK/qSsfQx5mZpzJZPyzGl4Wf0ZyCP8xZHEnKyuE41DpGbULwfkz+hFncsXcfb1eszoPyzTKYjxZZ+Rwm2wSu+IkKTlVjKv6PEUiTIOOeI/TOeq9QVVkREJCBUCTZ9M4IzyQrGYxYJanHxCcQnuDNLaIgFOiQREZHg1K8BNRhIw4HzeGbtRKgKk+jIlpblaDtjAt1WvwqH4K6Ez2g7axYALzdvTaem0yECvu1RgnXcynRa81bNhjy+cB6fh9/HV6XKMDKkL48nvMXBQwVpl3c84HV53Vy9FH0ZThZOsmVzOVw2wwoPAlS0x19SqCpsDjObCixyzi3y/+YvnxJLkSCTdP7Kk3/GkzWTLgMiIiJXwrktle3hBGykDItyNYKH4cUZXXim3kRyf/AzzXmTspU2UployhzbQnjzLQBEJgyGa6Bgjx0cIjd5OERrprONElASQnL8TsVPN3q76AbUhKfGzwTgju3rKFh8B3tjCpEvbD/dSo3AsjvIBu7YFTwR8m8cdc61DXQQF6PiPSJB5vckiWXsqdMBjERERCRIlYmEiPxQGnJziJcPt4YHYSF14Xk49Nb1VNn/PzrNnU75pZu5qpVjz/5C7NlfiMYhc6E+PM+zbKAMDw5bwgHyE0Ud3Enj2fzDYDxkvv031m4uRYnx3xLKaUI5DSdgz0M34fZczfFj2Rg/sS8cH+wt4jeJXWH9uaQFSixFgszJuLPJpCrDioiIiIg/pJUEWET8JGky+XucWixFRESutEEb+jJo4ggoCTNLtWfmw8CDEL2/MoyApnNmMGdgS+/NV8MfbxivZ2kBQB2i6FxnIjcP3AVD4SeXnxum7ufDtjWwOxyfx0ZAFORnP0MYSEZO0YR3ANhSvgg2LoF3iz5EH0YyqGtmQGMr/S2FxlimekosRYJM0sTypFosRURErpzBXgI3qChk3XSQE13zMHRzL6J4gC9aViPh42ugPezkRngMb+7KNdAmy1Te7NLG28Z64C6gNDzhplF4xQEYBQ9+vISpsc25y9Zwq/uSsfSgADE8ErMA9+LVAFhxx08d8lN4zwHsnoVwI7gfA3Ae0rlgrQqrrrAiQSY2SSvl70osRUREUpzZYMw2BDoMkRSVLpNpM6sL1A0PDw90KCKpzrktluoKKyIicsX84nssCCc+yMPb0+rTpMoCWHkMMsCgP/syaPMIvphfjUcazOb9I814pP9s3uzdhooTVwDwVUwleDATXAezVrWldZWXoRG8PKw1UdThBreVboyj+uZofiwVBvMyYQ0cAE9Umcb9fMyW4+VgZ2LBHnWD9bdg7QqbLlssnXOLnHNtc+TIEehQRFKdc8ZYnlKLpYiIyBVRoKzXhfUueHtFfQiFRdT11kVkh/+DKOrwYaka3NrgS95v0Aw+htwchP+Dr368m69+vJvSYRsYtLYvLIGBd/bnAPlw3Y0Ywvig92P8NLUkLawUS0tVpmibGLK2PggngBPePJbzqQ+3eEmlxlaKP6XLFksRubCk4ypj/1RiKSIikpLOnbtSgkGwjrEMxmMWCWpJK8FqHksREZGUczapzAa3Qsi9vwPQpM0C+BnmZGsJwwfzhAvjFBl5t/+TzBnWlPVm0B1qD5nPVDsCTYAWBsCmg7exqf1t9Fk4mKEtX4BQoBYM2zyEu0Z9xucb7uNDt5LXeQri4cR/8hDy+e++KI5zsz0FqLVS/E+JpUiQORkXjxk4p3ksRURErow7yRe1mwNLCwPw6LQ3eHfpk9SuPp8ubjm1bQxQnj5uMCNDItnr8vAgH7J4YAMWu5eobZ058UdeAEZm6stQu4sR2QcxslsknAar4OjgxjLpm57YC44HTy/hjoXLODwjC8uoyiPWA4D/bNsG28AVD9R5CA7BOsZSiaVIkImNiyfLVaEkuHMrxIqIiIjI5QvWxDJdFu8RkQuLjYsnc8YMZMkYqhZLERGRFHK2G2wNSrsQDtjr0AJoAe9OfRJaQB4OEUUdeL88w113pie0BvcnBdscZN2vd+BuMJZwLzydi6y948naO54ybIT/1sae+hamAB8AvaA427DfHYvnV4Ne8MX2amSJPckj26OAcG8pMdhbRFKAWixFgkxs3GmuyRRKgnNKLEVERFJSk0h4Gzb1ALe7IhwYBIBNcXTYPZYp+9uR8NQ1PBz1DgfJTeOQuUye1IN7O3yE2U76uDcYs/o5hk/uzjZKAFCNZaytV4pQF89/YjaQOWssv+TPRclRP/J2lfrU3v0Ze6vk4fodh5ifpTZti09gKkfOhKSxlVdGMCZZarEUCTKxcfFkviqULFdlUFdYERGRlLIqEj4EMgNLwG5w7K6Qj90V8sEHMPk+b9wjt0IYMYz59Dl2UgTmwXs0gmpFeIfGPFFpGgAzh7Rn5pD25G1+nHJ7tvCfIdsYFBZJ7IFcFP19LzE7ilKMHbAkA/GEwhb4hgjKsT4ghy/BJxiTaZGgdjIuniwZQ3GoeI+IiIiIvxlwlb+zrDTQFqDEUiTIxMadJkvGDDjUFVZERMTfvLGV5YG1cHMkxTdvoBB7+D+rzg3D9gPw6a93M5fHKMMGur33Kk8Me5PJM3uweEoDaA25qsRCTvhpbUlWlIc3Z7XBNfWmG7EYR5Ych3l/YB0eWR1FWKUYXqYTbIHp4a2p0HIVVfgfYXX38cWPVaHYEEBdYK8kM8igxFJE0rvYuHjyZM2EAw6diA10OCIiIulXDdherywNF86jtZvOMqoCEME31Fy4kj+rGh98X5+NlKHYnO8YTj9iKMAz94+iYa55zBnZkiXl72NK83Z0ZzgAr4Q/xdMxU3jkxAKWVqpM9Q3RcBAe62R8UzeCNZ3vwho5fupbEr4GMkTi/gzcKZDgocRSJMjEJukKe/JPtViKiIiI+JMZXBUa6CiuPCWWIkEmcboRgN9PKbEUERHxlzNTjPxck6w57+BESai6+2PysZ8mDRaQeeZvAEwd1BXWQPaqhzlp19LUzeGH+bfw6MsLuWvpZ0zI1ZV13Aq1IXzBXsLq76Nn1CQActT4hbphC1k0pxGTmnakeNkN7DpcBLrCN3PuxMo5tlQpQvXoZeyz477Iyl7xcyHBR4mlSJA5GXeaLBlDz/wtIiIi/nQnua87SJ+QkTyzZwzdGcc4upNv/m4ORBUG4POxEVTZ/z9OvnMtH7oaDGEgdAIGwWPM5eno1yEnDC3bi3pl32VRy0a4Ab4xlssdi3I0omnTGcxZ2BIKggs1yAX/a1qJe1av5h5WePNmorGVgZAiYyzTgCA8ZJHg5Zwj9s94rvEllrF/xuOcw8wCHJmIiIhI+pAiVWHTgCA8ZJHg9cefCTjHma6wznnrMmcMwoEAIiIifpTYDba2O8biOdfzzJ6J8Bo8tPoTmAQVZ63gYIXcAGTjOCvy38Nde9fw4KdLKFBzJzNjGtPCxhDTNoz+lQfyBLO4ucMu6Hua3NN/5pjL6O0o0ylKh21gGdV4u159KhONZXFk3HuMbAnHORqRiRylTsHNkbjNAToZEpRCAh2AiFw5sb6ur1kyhnJNJi+Z/F3dYUVERPykP5mIg6xQsc8KQh74HfYD98O2uOIktLmGhDbXcGfsKnJzEK6DPjUH8x23cIScPOEWMzG2C6fIyGh602fyYGoWjuLQiOvJvjuO7LvjcDWuZlNMWT7iAXJyhG0UJ8eRX4gbnZ3cIYfIe/RX2DLYWyQwDAj185IGqMVSJIgkzluZOWMoiZ1fT2ouSxERkcv2uVvEXf0jacocPnjoIb76qTKvFX6SVi1mQyc42us6GO8AODE9D3O7PMZbHRpyL0vIZbEUc9/xIQ/w5sw2jG40APvMsaVpEYqznU+vq8eMG5t6O9oMxMBEurCLIiyPvh9Wwvhh7RhJX+JqZYeISNzXgTsXEpyUWIoEkcTE8pqMGUgcVqkWSxERkctjNpjPXaCjkFTDCMosKwgPWSR4Je0Km9hkGasWSxERkX8tcWzlXSvWMGDYszw6ZCG543/m4MaCWF9HvsO7uZuVHCEnd7MSgGxdjhNPKJWJpsDAI9Aafuh9C6+Oas8jHWazigp82vRuJtORNURAOLSaMxsAV9HIE36Q3ByiJTNw7xrLxt9Bb0bxHo24a01dX2SqBhswQZpYaoylSBA5maQr7DW+Aj6xmstSRETkMj1K/yoDGTr5BVgPh567HsvsKD5nAweyFOb9ic2IYA1zaMocmtJz5CSOkJNxdId9wG1QYNROmjOLCXQlksG8SXPmJDTliw7VaFplBoubVmNx02o0DH+L5nFvcIScTKE9EeM/p3r/aOqyiLvMSyo1xUi6lMPMpppZ3b9/a2AEYS4tErwSWyezZAwlxNcXNlZdYUVERET8y/9Z1lHnXFu/b9WPlFiKBJHfz3SFzUCIusKKiIhclsRusDS8maoso0iH5izqUJeKrCYD8VQmmvaxU9hiv1Cxy2p2EA7ArjZFCCOGTuWn89Pa/FThf/zUuyTlOmyh9Y0vs2TSg3APPF+6JwPuH01VltOGaQDUYAlH5heAjTDwhf5UYA2hw+IZdNsIiEBFeyRglFiKBJGTybZYKrEUERH51+pG8sh7s9lIWXoOm0TT/jMYUH40IYt/p3n+N9kysBwuyrDdf3Jz4Y0AxLXOTqeC0+m2dgQruZtJdKLvqOHYCseHN9agXMcvyMpxPq9zH92iRlCHKF6lHQCvr3oaTsPBF7LSlNlE8QBPMZM71jzsC0jdYAMucbqRIKPEUiSInNMVNkRdYUVERET8LkiL9wThIYsEr5N/ni3eE6oWSxERkX8tsRvspoXhlK68g/dbN4OC8Er809y6dj29F7yEbXdk7HaMsbk60ILp7KIIAFseB0ZDfvbzeMxsXgzrTWPmsvGmithmx2ulmtFq6mzcDcbdfEoj3uObkXcCsLNPAYrcvI+SCVu5N2QJ765+Em73YlHRHgkkJZYiQeT3U6fJEGJkDA3BzMiYIUTzWIqIiPxL410MT/IGAINa9qUQe8jR5RQchDVzKtCWCUzN25UeX0ymb/ggZv7odWd9uUFrZjdoRr8V42AfPHNqIgCVmq/GZTBK8C0ul7HilYoMIZLq90XDU94+b0v4moNrChJ7exbeXf4kM+s1BgdPMjcg50CSoRZLEUnvYuPiyZwxFPO1VmbJGHpm3KWIiIj8vTMFe0TkHEosRYLIybh4smQ8O5r8mowZ+F3zWIqIiPxzBSLplhc6/zqKItG7vKqsdwCZ4Ns5JZhLY4aVH0KBX3eS6fBRfqQoI7/2uqqeKpqJLwpXgxbAFnjxvS48wSwKtDnCa9OaMZy+fNTwXtowjX32B5+6u1lNJQBGxvbl+Zo94RjQF1r0nYvbHKiTIBcUhMV7QgIdgIhcObF/xpMl49nfkzJnDOXkn+oKKyIicim81srrveUXoBc0ZQ7ztj5Oxa9XQIT3vs2UYgfFqLh2BbX4hLjc06nOUno2fp6ejZ+nCDuhG3C/l1Q+M3ciBRodgRvhOFnJRBwPdlnCcPpS0f3Kg4c/Ig+HyMMhQjOcZoB1Iyx7DBQB37BNkYBTi6VIEIk9dfq8FstQtViKiIj8E3Vbe48ngN/hjrnrGND4Wb6yTBRwO2nKbJqsXsDnlSKIIYxGqxZRyPVnckJutoeUAGAeDenWYwQAzx1+nu8bF2Jb4xI8aA+Rp/8hHuy/BPekUYn/kZuDFMq1h4XUBeDomuuAvfyQ/RYA3LErfQLkb2mMpYikd7HndYX98eDvwO+BC0hEREQkvVFiKSLp3cafj+KbvhKAUgWy4wIXjoiISJpxpmjPIu/hUfcG8WRgP/lYRlXoV4l9dWBfVBhDK/XirmFrvHF2/4NWUZM4tON68hU/AMCBY/k5kj0nM2e0h/UQXnkvJaptpbObzONN58Fe4Db4alsVZjZtTDWWc0P0fgCWVq5M9Rei6dx/lC+y3lfwLIhcWJpJLM3sLrxCy5mAI865TgEOSSTNCc+XlWxXn/1nH2JGfIJSSxERkUsSHnmmo09D3ufRyQvhIPAm8D5wO8yp05LhUd3hOeiQMJbJB3vQhYm8NqgjzPE+G5Y9hjmHm0Kr2Ux1n/AdxZhEJ57u/Tpj5nTkELmhF+QbvZsWc+fC3aeYWbkxAJk5Cc8O5qVnNW9lqqbiPf5lZqPNbKeZOTMrnWR9cTP7wsy2+x5v+rttOec+d861cs49DhQys6wpGbtIeuTwkslEISGQ4JRYioiIiMjlSekWyw+ACcDK89ZPASY5594ys8eBV4HqAGZWzPc8qU+cc6N8rz8AbHHOnUjJwEXSI+fcOV1hDVNiKZLGmFluvPaRYsApYAfQzjn3q5kVB94AcgOHgObOue8DFqxIOuF1g20PO9Zy2N0FQK7JsVAVeBL6fD+YVVTm8/X3UTFqBf06jINNcJDcDB/VnY68DOvhNavpbbDhTdALoCJtOzRj6ORexJEJfoaesybhshj1Rr8LwK2Nv6QPI2kycYH32a6LgLVX9PjlHwrSMZYp2mLpa2Xck3SdmeUDygNv+1a9DZQ3s7y+z/zgnKtx3pKYVLYAbnPO9b3QPs2srZmtMbM1v/76a0oclkialeAclqTF0gyNsRRJexzwonOuhHOuLPADMML3WuIPt8WBSfz1h1oR+bea5Ic7ypMrLJZcYbHk67AblkD/rwfSmLnEk4GqzT+mDyPgF+hZ6nneHfkkOylCFVbC/fDH78X54/fiHH4vCzdU2spa9xDkhHgyMHTYC1Scs4JWzScxv2FtFs1pxFh6sH7i7TRZuMAb27kIEpNKdYNNxRITS38uaUAg5rEsBPzsnIsH8D3G+NZfkJk9CDwPXGdmUxIT0fM556Y65yKccxF58yb7FpGg5RzntliaoSGWImmLc+6wc255klVfAjf83Q+3IiIiKSmN5L/gnPsQKBjoOETSMi+JTDLG0vCyTRFJk8wsBHgaWEgyP9yaWeIPt+rCI/IvmQ1mqfuE6nYPkB/IDMCBtUVo0WUKw2wIjd1cqrGMjMQRRyZazZ/E9LjWuMyGZXfQGIZO68UaKgAQRgw/WTH2u/z0HzaQcXHd4DR8FV2Fr3ZUYfp/OuGOG1bY8ePuMIrOjYEls30RheNcs0CcCrlU6gp7xewBrjezUADfY5hvvYikoPPHWIaoxVIkrXsJb5r2l//JhzRsROSf6c0onnDfQ+uboWERaFiEquU/Zmbl9vAU/CfLNmIIoxrLKMQe8nCQo59fR+UuS+FBGD6tO5PpSEtm0JIZFJ0aA29cxSFyM2ziEMIz/sCmgeFwGt5q3hBb5bC7HYyHKOrwSuOneMUtwblmSiol1briiaVz7gCwHmjiW9UEWOec051NJIV5XWGTjLFEVWFF0iozGw3cBDR2ziXwD3641bARkUtzZu5KkX8q1M9LGpDS041MNLO9eF1Yl5jZd76X2gOdzWw70Nn3XERSmFe85+xzM1NPWJE0yMxeACoADzvnToF+uBVJKd1cJr656U7uZqX3rTXCWwqxhy3RRfh2Rgn6xA5mZvX23BO2mijqMHJOJFuqF+GLsdXgOehnOVlBFT7jPj7jPm/DWaFrwgQoDR/yAKWjdsDnEE1lKAKchgENniUyYTBPWxGetiIBOwfyD6l4j/8557o45wo65zI4565zzt3iW7/VOVfJOVfc97jNn/s1s7pmNvXo0aP+3KxImnf+PJZmarEUSWvM7BagP15rZLSZrTcz3zwE+uFWxN/GWwitvp9Ej9ix3FB2K936jKBbnxG82aYNN9tT/Me2MbJKJJQGxsEwqw7AzcN2wRpgFzAhknk05BC5OURu3mrbEE7AoZnX424yXqU9w+t0hwUw/XBrOA48Bs2ZxRMhbwbs2EX+iUCMsUxxzrlFzrm2OXLkCHQoIqlKgnNJa/cQYqrdI5LWOOe+c86Zb7qRW31Lfd9rKfrDrUjQeSoSwp/htcIdOfFLbn6aWJIj5OQIOb0aPoMj2evywBqoOXEhPA78X1XIA4P696XznFFwGlwlYxslWEMEa4jgNKFMbd4c1oD95hiUdwQHyc1PX+fnw1wPwGOD4XG46ao9jLdTgKYXSVPUYiki6d55YyxDzHCayVJEROQvNL5S5J9JI/mviPhDwnlVYb2usIGLR0REJDU6k1S+/ifkuQpGQt2i81hEI2aGeT3MM2/9jcbZ51Jw6kG4HT6NqeVNGVK9DHcdXsWg/iMoOGwHzgy7fRDUbc/MRd5n3euGzXI0XTqDnBxh8vs9GGN1GDP7ObjdMd61p1vMKXg2ExCp3kVpjZFmCu74kxJLkSCScG5PWF/xHt2tRERE/ioXueMPcCh0OrQKZ1GrHbzouvBMxEQATubIysyn20ND4EsYGvYsA64dTcU2G6k9bT75hx1g5sL2cD3QK5Lho7qzkTIA2GpH5g9+42E+4NFZC1navDL7XX7WUIEx1Z+jW4tXoRNAYqupusGmKZrHUkTSO4f7a1dY5ZUiIiJnqAusyL+TLnNpM6sL1A0PDw90KCKpSkIC5zRZah5LERGRv3rZ7aFTWCSHQsFtGURYyR/Z17sZsfTlx8phABStEQO/Qu3q88kTe4gtlIJbgWxQhZX0GzuOVj0mMYUWdKgwlmwcZ46vYqwbZjxbaQCN9iyif/OBVC8fDSOA64DngTsHA3cCd+JcjYCcA7lM6TLLurh02WKpqrAiyXPu/BZLVLpHRETkPJ0WTqdYzHcwAL4uWZp99W6Em2A1FSk6N4aic2OgNvR873lm0JI9FGIVlXlraUNoAZ1PTWRoj160YwpPL32duQmN6WTT6ePeoI97g2f7DWDYwCFY4aNUJhrGA9Pg7bL1cdmNR10RYJVvEUkbgjCXFgle3jyWZ5+bmVosRURERPwpSIv3pMsWSxFJXoJzWJK+sKZ5LEVERM7wxlc+Cg8N5gfbxytDnqKirYVO8GLbLuTnAN0aj6Bb4xHc2uNLxtz3HAUmH6ESq/mpbEkebzkP/jOfyEyDGVB2NKVObebt6vXJHHKSzEd/o3/8MPrHD+OFHUP5s5cx3EXy4MgltK0ygXvf+4gmdisNS7/Fu7YL0NyVaVaQzmOZRsIUEX9wDkKS/Jyk4j0iIiLnCb+ZF78/xDO2iqctkrvccj63HTzTcCI933ueMU2f89739lzgRmiSn5EGHdxYJvfuAbMbMKZeA6gEozP1BmBvm3B4AnLsOuV9dhf0GTiYkXkj4f9galRX3PWG9XK8b/OBMjjXIBBHL/KvKbEUCSLenJVJWixR8R4RERFQNVjxoyCdbiQID1kkeHnFe84+V4uliIjIue79/iPqspBnsu2i7bEJTLUjsCqS/pUHMuyqIXz/ZyEAbtq7B1b+CZugrivFZKvFjy6Mort3w4IMcCNE7huJvecoOG0HeweGw9DVALhat2PRDjfK6Ft2ECNCBjGidDf4FmCjLxK1WEraki4TS003IpI8r3jPuWMs1WIpIiLBLrG18lO3hJpzIxnXeIeXVM7pCjWA5TBsyRA6/DmWm3rsAcA9Z8yvWZtPqMXUOl0hHObSmP8VvpMy720kV4dYRhXozNQuzWmz803eGPIomYbEATCbR2ApWKwjH7sZ+UYkWQcfpFvzEdA8E+PoG6AzIX6TLrOsi0uXh+ycWwQsioiIaBPoWERSkwTnsL9UhQ1cPCIiIqlHNsL5AY7C1KZduXfOR/AH8DPwDvAYTDjWkw5jJwPQl0GMDIv0vk1XBRZDvy7joCRwNWyaHE7pKju4a8VntH1kFuwARnt7coWM/bU7crx6NgZFj4BqcOKlPIzv643BHKd7s/xVDjObCizy5TqpTrpMLEUkec7xl3ksNZOliIiIiB+lzHQjR51zbf2+VT9SYikSRP7aYolaLEVEJKh53WAz0NaF8gm1qNv2PRZtbUR9FvB/Rx6AXtCq5SRy8hu9Gc74vL5uqt+eIuOmYzTNNYeZq9vjBhs7bizIaUK5efMuHuK/ZP34IJ+vvY8X13ah96aXztnvEu5l8dgGuCeMVXkrMK5Od+gTzjyaXfmTIP6l4j0ikt45xznzWHrFe5RZiohIcKvqKjB14f3wJdwwbCtZnz/Ib+SEP+CJltOYdrgTL+TqyYA2o+EF7zM9w0ZRhZU8tPYT+D+wFn8wgCFMjOsM86D/wGFky3KceeUfoUvsS/A7FKm0BYCBDGXxbQ3I/H+/8Vn2u6hZZyUs9lWl1W1Z0iglliJB5PyqsN50IwELR0REJKA0xYikCLVYikh6l+BIpniPMksREQleOU61Y3nl6xgU3Zcs9WJ5pvxEqAAD+o2CIlCGjYRMc3AVhDz/Ow/kjwJgTExvxqx5Dk4AOYFdmRg6+gVoAdwOLR+YgzkHvaBZ9Tm8UOlZ4n1fvVuumkPc1xkpxWbWEHGmtdK5yACcARH/UGIpEkQc7rziPaYuNyIiEsSy0TjjXE5EZ2NQnREwHjIuOUbc1uyMKdqJng9P4pk1E3l5bGv2UIgR3w7C/s9342x2jD5uBFk5Tgbi6bd0nLc+A5AVsrx9mP9mr0WdY59y1UBHgSE7mUJ7AOxah3vAsHYOHlJSmS75v3hPqpcuE0vNYymSPK/FUvNYiohIcLOmgY5A0rUg7QobEugAUoJzbpFzrm2OHDkCHYpIquLOqwobogZLEREJaseZE9uMOeVbMj6qHbSAuIPZ+b5yIXpGTYKHgarQafJ09lAI2++gIFAQhrtIxh3uTiH20G/tODJH/MYfzxuvlWqGW2fcnX0l9ffPp1z2r/hqSBmycZzfyMlv5OSOUsuwgQ4OBvTgRfwqCHNpkeDlzWN59nmIxliKiEiQOadgzzuRfJ2lCI+vnU23Nq9yb/RH/F+9B7ip7x64DtgLPABj6nVkG8UhK7xfuQ4Aj8yNgszwf/VqQE5HzuxHuHqhI8f9v1Cq42aaM4sl3MuzDKPi5o0APPnLuwC8Wr095HXwnEGBSFzMFT4JkrLUYiki6V2Cc+dMN4LmsRQRkWDUK9JbboKby+9izb67uHfaR6yOrQSDgDzQqvwkiICmlWbQc+wkuvASHIHlVGM51fi+cSFYAveyhKFFe7Nv7Y1wAmZkbMnrtCAf+5mS/2mafLqAu0p9hstsvFe9Lu9Vr8sXP1alT9Eh9IkZrKRS0o0gzKVFgpfjry2W6gsrIiIi4kdB2mIZhIcsEpycc7jzi/eg4j0iIhI8vG6w90OE93x4+e5UWLuG3eQjjBjeyfIYT976BodGXc+hPrnh4VN8FFeHAT2epcSxHyArFGEXAOG/7mXAxGeJIxOZiGN8+XbMK9+QRyyKzEd/49Wu3ajxel/erVmP42Tj6xtLs5lSALhtIVixQQCM0G04fVJVWBFJrxLzRzuvxVL3MxERCSoNK/Fa42YAtCo/m85rR3GIaN6c1YY3D7ZhbY9SFOmzi7k05qmw19lMKXJziAxvQquOk+i5fRIAvXO8yDs04emEVzi4pCCEwZzSzajoVvDV0irseL0gYcQwju5EL63Osup3UJlVANj3DiaA6xKwsyDid0osRYJEYgJ57jyWarEUERER8St1hRWR9CwxgbSkK81QXikiIsHAbC40jCT33J+pwRIAMi//jV0U4aWJvXH1jfcK1aU9UyjCTpZTjSOHc9I510R2UoT9HfPRkUlUK74MgFk05xsq8G3If6hccymzacZ7NGINFah/6z3YazCw1RDCm+9l2qwnqM8C8g487gUz1FeZtktkIE6FSIpQYikSJBITy5CQc1ssIXF+S0vuYyIiIunHvGMcP5KNlrlmAHDyl2tZlqEaLbpMYQUV6coEnuc5Wm2YzV1lP+Pzvfcx5o/efBF2O99Qgfv5mIEMAWAsPchCLJ14mejh1aERMB0K37iYn9vlZlir/rRmOuVmfcHbPMazPA9rfHHUjsRFBeYUyBUQpC2W6XK6ETOra2ZTjx49GuhQRFKN5MZYJk49oilHREQkPTtn7kqRKyHUz0sakC5zaefcImBRREREm0DHIpJanEks+WuLZYJzhKIWSxERSce+bUzVsh9TiD1MoCsATxZ/g4UrHuW3Kpm5dtNJ8pfeTzWW8WLZLuRjP73LjmYNEfTmRfJwCIBQ4gFYyd2s5G4KsYet/W6g5KKfmDSiFYXYQ3G2sZ/8lFuwhUfqz6MTk2jMXCKimtOGWQE7BSIpKV0mliLyV85XvueceSx9TzTOUkRE0rWISHqWfZ4a/B/VYpeTab+3utiNPzC/Sm0e2R7FmNIdWb/2duaWb0xG4nifhixc9SjF79zGLoqwjltpyDwyEgdADAVYRzm27C5DdOHKZK4by8rVNWEL/N4khPyZ9nOwflYKsYfjZKOtFQOgje656Z+6wopIepaQTFfYs6/pLiciIumTusGKXBlBmEuLBKczxXvOmW5E3V9FRCT9u/XrL4nmThZRj15ZRhNxo1dFpxKrGUd3FhevRktmkLHIMXYQTg2WcDcrKXPnV2zeX4qx+XucaXl8lXYAFGEnG46VZ1fhgsSShfv5mN8qZWZJpRo0Gr6I0/1C6coE8nGA+iygvoO+jAvkaZArJUhbLIPwkEWC09niPWeTSUsyxlJERCS9MRsM10ZyK1OozwKGMJAhDGTv/HAAXmnwFFk4yf1Ll1O3+kKezTWMTrzMY5s+oEjpLex662ZyPrqPA+TnhQVDKVf/C9Z9e4e38R/h4/pV2UgZ1lCBmNVFORaRkUY7F9Gu33hendeNEQ270XfxeO/9tXWvDRpGmim4409KLEWChEtmHsuzxXuufDwiIiJXRDeYObY9pXps5mU6cfvO9ZRr8AUAfeOGc/y3bLSrPp4w9nGcbDzBmzxbegAdmczAx/sTwTc0ZB6D6/chlizYGO+m+eusbMylMd0ZxzZK8FGleynDRl4Pf5h9hFGi4bdUZRnrat8MQLlAHb/IFaLEUiRIJDZKnlO8xxKL9yizFBEREfELdYUVkfTszBjLkL+Oq1SLpYiIpDdmg+GpSJoOnMEr8U+TY+opirfdQKkbNxNDGABHF1zHp43v5iW60JHJPMkbtGY62yhBCbbxwqKhFKm7hXKPbqH8g5txxYzwWZsAyDPxBCW6bCMLsUxf3Imnar9Cbg7xA+HMoCWrqcQsnqC8NQZUgV3SPyWWIkHiTFXYJOvOFO/RzU5ERNKjg7Cf/GQfE4drYvAUTHi97ZnEsnLjaKK5k16Mpg3TiCGMSAYznwZEU5kv697Knv2F+Ojde8l4+Bhv5HqUpswB4Kkur7CffPTdNJ56td/lRXoTRyYmLn2G3+8M4cmr3uDQe9fDO+AaB/IkSEAEYZal6UZEgkTiPJZ2TlVY71HFe0REJD3RFCMiV14Q5tIiwcklM49lYpKpxFJERNKdVZF8WvluMhEHT0GvvEMZXW8AL9GFe1kCwKj4Z8jx6ikG1YCMeY5RK9cnbKMEc2jKGiLo/fRLbHjlP8SSmVMHcmAfOFxl797ZruR4XuA5dpYuwFTaUPTYTmLn52JSi1aEEs+hOddDM1+C2zgyUGdBAkFjLNMPM6sL1A0PDw90KCKpxtniPX9tsVRaKSIi6Y37wwhnEwWI4fM37+OVHk9BYRjAEFo0mAvA1BFdqdlhIfNP1QfgGUYxlTZcG3uUTFFAf3iMt/ny1O38UjIH7v+MOiXfB+Cd+CaMC+3OdorzBG8SuzMXhEFOjrCOW2E0UC4StzYwxy8BFKTTjaTLrrDOuUXOubY5cuQIdCgiqcaZ4j1JB1mqxVJERERE/CBdtliKyF8lnJnH8q8tlmqyFBGR9MJsMJSJpET1+tTiE/JxgJXX1KQW/6XHTWOJ3ZGLiPnfAHAcby7KlplmUI9FTF7dg8lHe/BtzRJsbFiGiXRhBi255lgCh/Jm4ruOxajFJwDcFPo9H/IAkZEj4QlY+J+ajKM7ZdjIS5t7w1vgSgXyTEjABGlX2HTZYikif5XcGMuQMy2WAQhIREQkhdy64Uu2rfgPMYSxnlux+xLozjhit+RiYHh/4shIHBkJZwf1WEgVVrKMarSqNIk/bzee5A1ycoSvNlThtsWbGJi3P4VXHaA9r9CMOTRjDgdWF+YZRsGdcHf4p0ynNf15wUs8b1nkLSJBJAhzaZHgdDaxPJtZJv6lrrAiIiIifhSEWZZaLEWCROJ0IyHJtFgqrRQRkfTANgMTIlk39g7qVHmfaCqzMuFu+MXYQyGmVXqCUOIpt28L5fZt4THeITMnqcsiNlOKbBxnYvYOTKAr8YRSsewKatT+kCLs4o07H2VJbE3yrDpBnlUncDmMMGKYUbMpK9+pyQS6UnPWSmLJwrtuGs7VDfTpkEBJLN7jzyUNUGIpEiQSkqkKm9hkmaC+sCIiksYlzl15a5cveb5HT+qxiMFEcvCngnxYuQa5OcgsnqAyq1hYoCYLC9TkPRpxx5x1dOJlvphbjTk0JYwY5tGQDZQhG8fJyClabZ7NPsLI9CUQ5i3dSw4nhjDCiGHFYxXJyREoAo9aPR61egE8EyKBEYSNtCLB6UzxnuRaLJVXiohIOnC0RCaiqUzt3Z/BwQw8XP4ddt1YhIf5gHF0oxSbWU85nvlxAgDFim4mX9PdVCaapo3nkJ/9jKIXx8nGtRyhDyN4lfZUKLUKgF7Vh9KMOQA0ZTZl2Eh7XqE74wglHu55CQDnOgfmBEjqoOI9IpKeJTfG8uw8lsosRUREROTfC8JcWiQ4uTPTjZyVmGOqJ6yIiKRlZoMZ4OIYwgDG5H2O4r9uoHvhcXQ9PIGmueYwmQ7Ek4GpS7tCyVP0LPoCADeyi82Uot/2cbi9RrXqi/lv/EMcD83GSPrwJLN4j0YcISc7KEZrFnBj7E8AjMjSh83czJ1E8wm12EMh4HAAz4KkGkHaYhmEhywSnJIbY3m2K6wySxERSduGjnyBG/ps5Ytfy7GZUoymFxVzrebRkQuhPtxa/EsyR/zG89mfIzLWG49ZL8tC+jCS08VDKVV8LWHEkH1BHNnzHSK+SihNmc1mSpGRU+ziRjoxiSW7HwQgumRlBjKEIuyi4O5fOFQ4DxUdrKZKIE+DpBZppOCOP6krrEiQSK4qbCK1WIqIiIjI5VCLpUiQSEjwHpMv3qPMUkRE0qbEarBj+nSk54ZJzC3bmHFb+9Ep7GW29CzH+9Pq8MjqKCoTTc7sR6hMNM9m8brCZiSObZTg/YSGFA/ZTkPm8VHDe5lDU1ZQhZ3HbmJJ9qrUXrsMN9qoM+d91pW8GYCneJ1XaUctPqFp4VkAzKZlYE6CpC7qCisi6Vlii6Ul1xU2IBGJiIj4xw2uMT1jbsQ5Yxl38PuNIbyT6TFipoWxnnJkLXOQuQmNCQ2J547odRSsvAOAI7E56ZJlIgenFcSyObI0jeX/Nj8Af8BP5fMTnn0LC2gAB4FGUILt3HnMqxA7P3sDnmAWTzMlgEcuknoosRQJEmeqwiZZd7Z4j1JLEREREb9Qi2X6YWZ1gbrh4eGBDkUk1UhMHkOSm25EeaWIiKQxiV1gH3VFOMJ2aoV9woaw4lQfEs2tA79k3Td3cOzWjOwJLcTQIwPpEzaCKqykcumvuGqud+PL13g3w34cTOZ2sXxFGQ6Qn82lSrFv843cELObd8MaUX7hZv5XrxLruJl5NOTkiSwAFMm+k5ILfqJz/YkAdOXVwJwISX2UWKYfzrlFwKKIiIg2gY5FJLVITB5DkpTsSuwWqxZLERFJq97t8SS0AB6Bqd27Qk5Y3/J26sx4n0PkoTmzeDvsMZrMWsATzacxL3tD3Efe/a9Q4++pWHQlr9KeMPYRTWWm0YZJpTpwiDw0enYRP72Qnxtm7MctMUbN6U2TrQsAyBl2hOfr92SA3QZAV91KJcily8RSRP4q4cw8lmdbLBP/Ul4pIiJpTW1XBoAHaM0LPMuE77vSg7GcTMjMoRHXs/jH+rgPQyjVZS01WAJZIR/7GTPnOXrNGg3A3snh9Oowiq5PT8WudXw1rAxtmUZ/hrGRMkS88DlrvrmL4i03sLXlDWykDHdUXwZAgclHYCvQGdzEAJ0ESb003YiIpFeJuWPyVWGvfDwiIiL/VmI3WBFJPdRiKRIkXDJjLFW8R0RE0qr/O1wDgJVXV+HE8jwcr5ONIuxkREg/OvV/mfVDbue7gcXYMrYcd/dYQc0GCxnz47NwHdyweT8AxTp8R9dJU5n0Sis6MJaTZGH9j5UoV3QdJdhGY+ZCBgglnngyUJVlHCEnANU6LGOY+ZqlJkYG4hRIahWkYyzVYikSJBISq8Im12IZgHhERET+rUddEeJKZCeuRHYWZqkHRyAnv/ECz7GDYmw+XIqQdr+zkrthNOyhEJ+sfojvixbm3er14DRwGn4YewtW909OkYn+DOP+Yx/zVdGy1GMhx8lG6aU7yFToKPnZTySDOcK1TFrVk0mrejKs6RBoEolzSipFQImlSNA4U7xHLZYiIpKGma0NdAgiF5fYYunPJQ1QYikSJM4W7znLzoyxVGIpklaY2Wgz22lmzsxKJ1lf3My+MLPtvsebAhmnSEp6N+YxmA3MhuoroinQdCePrI7ing6raTF5LsVy/cCM/C2pTDSLY6qRhZNwGsbRnUd3z2dq2eZMLducG3psxV11FTk5wi1xmzj55bXcNm8TmxeU50negMehYa55rIu7lcbMpR/DsW8d9q2Dtwd7i0hyQv28QA4zm+qbVjFVSiP5r4hcLnemK6zmsRRJ4z4AJgArz1s/BZjknHvLzB4HXgWqX+HYRFJeeHlYDi83bQ1ALT6hHgtZVSmMbZVKcP+q5eygIOPozlAGUplojpCTGXc2pSHzmJCzJ9mPHQagcvZo7BFHyILfeSz/XDbULEN93uaDhY+xlMpUe+sLJtGKHRnDabR4ESVqb+M/HZueCUXdYOUKOuqcaxvoIC5GiaVIkDhbvOfsusSpRxKUWIqkGc65z+HcH4nMLB9QHrjPt+pt4GUzy+uc+/WKBymSQvKzGygc6DBELk7Fe0QkPUu4SIulxliKpHmFgJ+dc/EAvscY33qR9GUCkBNWU4nVVOJOVlGEnUQymDZMI1u5Xwnft5dtlOCHGbdQiD3EE8ow+lN9bjQTs3cg9vtcxH6fy6vw2gta559OVZbTkcks+LYJ99b7iFiysLX6DWTmJDGE0bH2GK8YkIgkKwhzaZHg5EimxVLzWIoEJTNrC7QFKFxYrT+SdhzoUhhaQ7eyI+jCRADenNuGxYcK80WHcryZpQ3Mg7F1OrCRMuRu8TMPs4BhLYfgShtP9XiFcXSn59FJ3gZ3n2Zmg8ZcyxGycZyD5CHLjYfPJKMP8hH/5SEAJm/vASW8MZXqAisXpRZLEUnPkptuxM6MsVRmKZLG7QGuN/Mm1fM9hvnW/4VzbqpzLsI5F5E3b94rGKbIv2emQjmSRqgqrIikZ4nJ47ldYTWPpUh64Jw7AKwHmvhWNQHWaXylpBdnksolkLv0z4zb1I+w2H2Exe5jU+NwOAgj6UPmX37j8zoR9Mw+iRm05OD2gty2ZxMdZozllx45mFmnPe/w2Jl5LHksAy1mzeUgeai+NprKRJMz+xG2vfMfejOKrcdKU3r+DqbRhruKf8ZdrrJaK0UuQImlSJBIbh5LjbEUSXvMbKKZ7QUKAkvM7DvfS+2Bzma2Hejsey6SfmSIZOnmyvz2a052lC5IpoWQaSHEEwrh8EGHxyiVfTOrqUTtY/Mpxg5mlGxK60IvMzmmIwUmHoGrYTS9cHsMt8d4LboZbzVvSKuFs0koYhScfJCBDKHhY2+xfWRZrtrrmNmgMbU7LONzi+Zziw70WZA0woX6d0kL0kjDqohcruTnsUx87crHIyL/jnOuC9AlmfVbgUpXPiKRlNfUFWLOSLiV9UzJ/zThm/ZiYb6b148O7jrN0KZ9GdBhNEUm72Lx1AaUauslmXsoBPMywZcwdH4vNlKG91p5UwGWYQMZiKdmvYWElHcwHTruf5mET66hWJ/vGEwkj2+fB6+sBeriXPnAnQSRVE6JpUiQSK7F8mzxHmWWIiIiIv7gDOKDMMsKwkMWCU5nWizPmcfSo7xSRERSKysKLX6Mg3jItTaW0uW/ZmPpMvTBG3f5Gznpy0iiqMOtk7+kBNvgHXigbRRjop+DXUAl+LZLCf7z41YYZKye5TXuv0cjyt+2GUbCE2un8Qm12D/2Blb1qMBdG9awv2x+shY8yAkW+aJRi6VcAiWWIpKeJVcV9mzxHmWWIiKSes2c6g0Zfqt8Q/oygpdm9cbd7d3D7FnHzJefIlvO4xzacT3rl98OvaB602gGzHmWoSdeYG+lPDzNK8ws+hhZZp3k0Zj3APgqrBI5Vv1Cs4xzvOlEpsDzY3syYOpoxrTtSEPmsStLEXBZmEjvQB2+SJqgxFIkaCTOY/nXqrAJCQEJSERE5KLMBsONqsIqaYszOB3q7xqpqf/LmhJLkSBxsXksVRVWRERSrbuAPLC3bR4KzjlIn6aDydr8ONbSd++6Bk4dyMHBXFnJs+sEY9t2oOeKSTw65w0AHqk5mzgyci9L+JRazKnSkhxLfgHgifg3ISOMohfFi2+g/tgFjIztyyttn2I/+enEywAspFEgjlwkTVFiKRIkki/e43stAPGIiIj8vf4Mn9WdflHjqM5Ssj58kJHRkSyuXA16+d6S9TS218FtwN2Q9a6DFK+ygXejnuRorUy8GtqO9kxhD4U4kJAPWsDRFtcBMHJOH4bNHcKjjd9g7s4WWKTDvWDYwT/JnPM4J8df6+1jYCCOXdIqZ0Z8Bn+nWXF+3p7/pcvE0szqAnXDw8MDHYpIqpHsdCOoKqyIiKROZoOB/oEOQ+RfiQ9NI5NP+pG/O/+mCs65Rc65tjly5Ah0KCKpxtmqsEnGWIYkvhaIiERERP7O/1hDBK3qTKIXozkRkYfOlUexgId5u1R93i5VH5f5KpgOjIHhY7vzbJYX2F6qLGSF10Nb8EzURCqxmvos4JWQpznRLJSlcyqzdE5lXlg9FG5zvJv9Sb67sRh0g9CMJ+hWeDQnf7kWHgOn1kqRS5IuE0sRubCQ5KrCKrEUEZHU5qdnoXYN3l/RjMpE0y9hODwAL83ozbUcYTOl2Ewp1uW9GX6BPyKMI+Sk74rx3LF5GVOrNCeOTDAaXqUdwz4dQjnWcUum79hAGTZQhjKVvqJi0ZWw3nFPwv8YVL4vCbuuYfzqvlBisLeI/EMOI55Qvy5pgRJLkSCRXIulnfeaiIhIauB1gxWRtCRdjrEUkb86W7zn7Do7M4+liIhI6vJ24UaUidrIHgpR+75l0B3YBuyHT1rWYv3C2wGYW68xBaN28BG1GZk3klGbepGw4hq+yFkNcp6m1dJJ1OEjHqnVgz2uELN4knk0BGAsPdhDYb76uAoHGxXEejpoAYwH6kbiFgbm2CVtcxin00groz8psRQJEgkXqwqrFksREUklzAaDRdKkAXSeP4qX5veGCZC54G+czHotOW7/hfXbb4eS3vu3R5Xlrjqf8ciKKJgNCR9dQ92W77HovkZM/awlbfa9yfwCtXnNvc4SajCXxuz4tDQAH9W8l0LsZmaHxthI7144qHpfBt2b2ReN5tCUfyc+CNOs4DtikSCVXHfXxCRTXWFFRCRV6Qt0OkUpNhNy5+8k7LqGk7uupX+VgQzbPRCeh//OqgXAweJ5aNVhNsUmf0dD5lGEXcQTyhufPUmuWbE89fCbPGKV6O/iyUgcmYmlec2pAHRmIlE8wKCoEXAttJo1ibk0BtRUKfJPKbEUCRaJLZZJ+sKGnGmxDEA8IiIiIulQYvGeYKPEUiRIXGweS003IiIiqYHZYLg5kpuHreM42ThONhJGX8MNo7ay69ebscmO1zo0o/nLcziO1131E2rB5/BD9C2M3HoLXAMFGu9kFs1hH8zO/ig5TrWjMo+zmkqUYDudmQjAcqox8lgfQir8zrF7s/M0U9hiXmulc+oGK/JPKLEUCRKJuaPGWIqISGp26+YvWX/T7TABdtQphjthsAlsgmPMtI7U4hP6Zh/KmP7PAdB52ChoCDwHA5Y+SyVW8xzP8zzPcrJPFh769BN61nyeB/b9Hw/+tgROw7w/HwegYraNcBAeqTybl+jCYCIZ7OBGYgJ4BiStC9YWS003IhIkElssz5nHMkTzWIqIiIjI5VNiKRIkznR3TTrdyJnXlFmKiEhgmQ3mXhdBH0bCHTC8TnfKsZ7KryxlWuknGDqtFxGsYT23Mqblc2c+91LZ3nQeOIr/Lq3FdFpTmWjWb76dms1X8pB9CHthjLXAhjvcV8a+sjmxbx32raN28fkklDTeb96MfqvHUdTaUdTaBfAsSHoRT6hfl7RAiaVIsDjTYpm0eI/msRQRkdSjDlHsogg8ANk4ztO7p1GJ1dRgCaXYTDF+YBsleGtGQ2oPm0/tYfOhFrw0pDePHXuHgQwh5+GTVCy1Am4Bql3FgJbPwncF4XqY3eIRCgw5woCWzzKg5bMsrtOAkCMJjJ/VDm6fC5TU2Eq5bInzWPpzSQuUWIoEicQWy3OK91jia0otRUREROTfU/EekSCRkEyLpWm6ERERSQVsOzR1hfiBbFRlOfwAxfgBWmWAz+B1nmJyQgdmhLSkp1Uh46HaxL2V3fvwJJga25xafEIo8YQcdMzM1ZiBfYbw4P+W0Ji5DCw4jMg+A2i2832aPWDYWu/G93ZUfZoMW0C3e18FBgfs+CV98Yr3BF+aFXxHLBKkEpPHZLvCKrMUEZEAW0ME2+eXZfLtHdnSvwg3b96Fe9L4iHtZTSW2hpQkgq/58+jNXDXUwTbfB/tC2+2z4BcIKfE7TIEWj8/lq/JloC+EEcNVtztyrP+FYYuG4H43PuxXA4AHNy/hj27G1dcMAjTFiMjlUGIpEiTOdHdNtnjPFQ9HJF0yswOX8LZfnHNlUzwYkTTA7Hvvj203BTYQET9LKwV3/EljLEWCzDnTjajFUsTffgVuu8hSMXChiaReGfMcY/vqsnRrMIICYTF8QwQVS63A1joeHLiEKOqQ89gJfipVkqvaOygABRbupMDCnUwd2BzegherdOFU5qwMH9sdV8CouHQjLIJsx05CDfg4Y214+DT2H0dXJtCVCbxfqg5Xv6R7oPhX4jyWwVYVVi2WIkEiscXSkhljqRZLEb8Z6Jz76WJvMDMN5BLBm14kUVyLSMgE4+v35cWmXXi87Dy+2lCGPWMLsZGyRLCG6OwVcR0Nu8PBXbCv6o0ATC/fGtbDEmrwzJaJvFapGfae490u9ThePRtR1OSnifm5YfV+6Ad1l77HkmNeV9hH3omCvl4c6gYrcnmUWIoEiYQzYyzPrktMMlUVVsQ/nHPv++M9IsGioGsGwN6y4PobRR7b4rXOFISHWEjMt0VpUugd4tpl5+336mPrHdQ/hfvhamYXeASAu1nJDQ33s/xwVZgHrWrPpsPhsURRhwnxXcn+ZhyzWzwC1wLXwVTaUCDHjwBscUW4ud1TATp6Sa8cpJkpQvxJiaVIkEi+eE+AghFJ58zsxWRWHwW+cM4tvdLxiIiIpDQlliJBIrlWSbVYiqSY/MDdwAe+5w8BnwOPmtm7zrkXAhWYSGqQ2A12b49wb0VrsFjHw7xD5OHBuInGDJpief+ASpmgAMQQxtBpvRhQdDS8B22umQbAyV3XwpMQ1zk7dALioSrL+YFi5Nh/jLdaNGM0vXDLjHJzvmAOzRjgxgBws3mtleoGK/6l6UZEJAgk12KpvFLE78KACs653wDMbCgwC7gLWA0osRT5NhKW+/7ODwyGCS278tY1zeiVayhj2jwHV0G370cwvk1feraZRL5pu+E5sIhfoPO13mc7QQs3hWLs4FqOkHPsEQ6Qj74rxjOlSjuKs42X6UT3dsNZv/B21n9wO6VnfO3bcdSVP25J9xKL9wQbVYUVCRIJCYnFe86uMxJbLAMRkUi6dn1iUgng+7uIc+44cCpwYYmIiKQMtViKBImEZMZYnq0Kq8xSxM82m9lU4HW8Og4tgO1mlgmID2RgIoGW2A3227IliC5bGYAex8aytXFJbtiwHxYDfaGg28HeluFUYjX9pw1k2G1DOBBVGAZBVbeOe1kCQPdT47iJHVQmG9VYxkS68BEPQBj81KgkFetvpGDTHexdHQ5fAp1gU//bvGD63YYbduXPgaR/wdhiqcRSJEg4vOQxuXksRcTvWgKRwMuAAcuAPnhJZe0AxiWSOnwUSU4m8/SK1wFwMYYddtARCridxHbPTBwZ+WJGOe6IXsfMyo3hCDAOyAoPs4BuUa8CMOC60Qwt34vup8aR9bV4uBXycpw7Ki+DJ4DpsHdKOEeXZSLHz6eoW/49KA8LaRSggxdJn5RYigSJxBbLZOexVF9YEb9yzh0Del7g5V+vZCwiInJlaYyliKRvznF+A2Vii6XSShH/MrN8ZvaWma3wPS9rZu0DHZdIoNlAgEj4BW4YuR/6An0hS53DcCv88btRho0crXodB/oX5o7m63DZjXosYur3zRn+WXcYD10XT4WNwEb4vnwhPqEW8Rky8GGHGrALyAlfjK3GE/WmQTegEuR47RSfN4hgke1kke0M0BmQYOAwThPq1yUtUIulSJBIcH/t+hqiMZYiKWUa3kixDr7nW4G3gCkBi0gktbgWbmi5lbJspG6fRQA8x/O8Urk9U2jLp7vreJVem3qVXtkDT/IGi6Ia0arOJF6s2QVr6bx/VUB4zr2srFMTW+wo1vY7Xm7amk4rprOvR04KtDyC62jYtQ5Ow132JgDO3RyooxdJt9RiKRIkEpzj/BGVZ+exvPLxiKRz1zvnpuAr1OOciwMSAhuSSCoQARUOr+K7U7eQjeO0nT+LtvNn0YHJ7KEQ3aJf5cPC90MEzLT9PLdoDN8VKsbCzo/yYp0uvDanI7k5BIuAEd5SqN339C00iEFt+/LD9lvo+M5r/FgljOs+PcqgGX0ZW6ED+frv9maS5V3fIpKy4sng1yUtUGIpEiQcyRfrMUMTWYr43+mkT8wsJ/zltx2RoJJYDVZE0qe0kf6KyGVLcC7Zr7WGWixFUsD7ZvYqkM3MWuB1iZ0R2JBEAm98vXZUJpqsV5+gmPuR4Q26AzCXxqxvczs8AQ8OXAIR8IQLYzB9eCmhM8+/9BzPTJzIrV2+pBSb4WbgD2+b+dnPCqrQjikMLd6L09dBFVawN7wY9DDGj23HGzxJ7Q+XQbZI3LHAHb8Eh2At3qPEUiRYuHOnGkkUYnZmKhIR8Q/n3CgzawbkBOoAE51zbwU2KpHA6zbkVRgNe10ebuNrGjMXgH4xI6AGfF+lEKOq9OLVBd2waAe/wJgGHXm68ut8Hh3BHgpRKn4zGT84RmgGb0rYNfvuwoY6Sk3eTH0WcNUvjv7ZB7Ki6N18vus+hiYM5NA718PxxBbTyAAdvQQLJZapnJmVAroCoXhxP+Wc+u+JXKoE55LtChtiphZLkRTgnJsNzA50HCKpgbrBiqR/KZpYmtlo4BGgCFDGObfJt7448AaQGzgENHfOfX+xbTnnNgPtfJ9/D7gGOJFiwYukMwnJ94QFU1VYEX/x3Z8u+A/KOffoFQxHJHV5KtKbIuRL2E5x9g25ka4DJwDwR86riWw8iJvsI+q6bVgD5/0s8wf0LDwJboVoKjOaXswJbcqp9TmwXd4/tUItv4f7YW5sY157riM8CMMWDGFmn8Z8/tx9HFpyPQWb7oCmzdhDeMAOX4JLWpkixJ9SusXyA2ACsPK89VOASc65t8zsceBVoDqAmRXzPU/qE1+3ompAa+AgEJuSgYukNy6Z6UbA1z1WeaWIv3zoe6zoWxK7vzYFlgciIJFUIUMkuaf/TJ+QkRwnG/vJz5iBHcnJEQCu/tLBJvivq8VD2z+BV6F006/pyGRWt6zEzC7teWbpRNgFd7cczZTqLc6MWv4u/hZa1pvB+8OacXRUJiaGdobqEEcmhpfvzkbKMMf2eG926gYrklJSNLF0zn0OZ6c08P2dDygP3Odb9Tbwspnldc796pz7Aahxge0tA5aZ2UvArcDalIteJH25cPEeU4uliJ84594AMLMngCrOuZO+51OBhYGMTSRQzAZDBiV0Ejy8MZZpZsSh3wTiiAsBPzvnEuf2ijezGN/6Xy/0ITOrCjTE+2p8FbDpAu9rC7QFKFy4sD/jFknT3AXHWKoqrEgKKAicSvI8Du8+JxKUsh49yKEPrqdug4XcvHYXY8p3pGejSbz9Xn3vDXngcJcsjKM7bYtPoFTxzXSb8ypPn3gdnoUWv05h7rHGnLz3F555biJNY2bQquUkAHIMO8XM/o1Z2f9u5tCU92nIUqrzAB/xzeEKxOUeB4BTa6VIikoz81g655Y75zo55zo659r6JptO7n1TnXMRzrmIvHnzXukwRVItbx7Lv64PMdM0liL+9z8gysyamFkTvOnc/xfgmEQCJvZ4ZjgIeyjE2+XrE0MBBrz3LEfIyRFy8mcRI9eGWLIQy9TeXdlMKb5vWogObcfCbVCIPTyV/XUYfDO1Y+YzZ21LnuUFnuWFMxU33uBJYsnCYCLJ1SaWEmwjblr2wB64BKXEqrD+XNKCQLRY7gGuN7NQX2tlKBDmWy8iKSTBuXO6pZ+h4j0iKaETXsG5xJ42HwFTAxqRSACoGqwEq7SSDPrTJbVYmtnHZvagJfut9J9xzh0A1gNNfKuaAOuccxfsBisil89dZB5LEfEv59yfzrmXnXOPOOcaOOcmOef+DHRcIoFw9PQw4j/LivvcmEdD6sRHMWbOcwxd+wJPz3idp2e8zlVrHDeXXUffnePhCVhPOW6av4dC7IHnYMjWYWyjBByE6LjKuFeMovViKFovBlo7nlzwLpspRc+oSYygL66OEUMY9F0ElFc3WJEr4FK7wk4FugE/mFkfM8t9KR8ys4lmthdvrMkSM/vO91J7oLOZbQc6+56LSAryxlH+NYk0tViK+I2ZPeOP94ikB9YbuDaSHDeewn50ZBp/lFJsJsfsU7AOBpXvi6tiuCoGGaA747CuDv4zn6/yVuHDBjXou2o8bStPgAzwfysegG6Oo1Ouo960d6EX0Av+V/R2bLKj5/ZJ8AcMZiD56//Epx3q4dV5VK1HubIcxmlC/bqkBZfUFdY5Nx+Yb2YlgI7Ad2b2KTDBOffNRT7XBeiSzPqtQKV/F/LfM7O6QN3wcM1VJJLIK97z1/UhpqqwIn7U1sw2coFpY32eBF68QvGIBNSHh2vwYNQS+BDiamWna9RUjjS/llJs5tHtC4kv7n1hfjm8NeHsYObCxhwhJ5FxlXlw4RIoCfSHqUW68kXbctzRYB0Ug4WbHqVdlfEA3DN1Nd0+G0Eh9pCleCw1h63krf4NefyVMoCK9ohcKf92jGUc8Acwy8w+ds719GNMl805twhYFBER0SbQsYikFhebx1J5pYjf7AX+rkVy65UIREREAkPTjVyEmTXAK0SQH5gElHLOnTCzDMAOIFUlliLyV17xnuReMU03IuInzrmqgY5BJDUwGwwRkURRB9bA4snVqB21jO55hzN+bV/Gl28HM6HWsE8AuOu2NYz5uiM9y07i5Q2taZ1xOmOmPEfPqOfJMCyekZsjWcnd0Aleqf4UfAtTN3f1djYNsrU9Ts/VkyheaQOUhNk0pbaDKBoE7iRIUAvG4j2Xmkq3AkY65z5JutI5d9rMOvs/LBHxN2+6keRbLL1XRURE/OfRr99gNZX4dmAJVnI3R2tl8hLNTtDt+lfhKthFEQCGf93d+yL+DhwnG0e4FhbvZczI53ikz2y4BWJcGFWrf8zTVV5n1orm0NK3o7pQjWUMzQzteJXNDUrxmh30XnNKLEWulEtNLN85P6k0s8edc2/5up2KSCp3oXGUIWYkJFzhYERERETSqcR5LIPNpSaW3YE3z1vXA3jLv+GISEpxDkKSqQOtqrAiIuJP3tyV5cnCz7xCe9ozhS8snsj4wXzNbVAEiIDxPdrRlxEA7Nl0ExbtqNl2If2GjfMqefx0GpfZ2EFBwlwMP1CM5XYPi101KrGaa/ufBKB5+FSqb4iGLdCz/ST44jDwUoCOXiR4XTSxNLMIvOqtecysQ5KXcgAZUzKwy6GqsCJ/5VWFTa4rrKkjrEgKMbO8mqdZgtL/6jIv9iAzP27P/xpU4p7XVvNEyAhepR2unhHx2Od0XTCVrmumAmD3OD5tezc1e6zk5rHr2NKhHG8XbkR93qYxcynDRl7a3hu+hOd4nm8+vfPMt9jcRX+GeXA0MhM5vj0FX3hJparBSqCoxTJ51wMRwDXAbUnWHwNapFBMl01VYUX+KsFdeP4DtViK+JeZVQLexZsvupDvh9q2zrm2gY1M0rLByVdgS4UGBToAIC2dL/k3Igf6/hicOr/DpJW5J/3poomlc+6/wH/NrKZz7tMrFJOIpIALFu8J0XQjIilgLFAbmA3gnFtjZm8ENiRJC9JDMjSIQXDPoDPPlwGDMK8UJDAYqNvkLgYn/cwwIzrxfeO8ddtegVv5gG1ntnt2VFbdZPY7bqjv8yISEH/XFfZO59wqIIOZ1Tn/dedcVIpFJiJ+daHpRkLMcMosRfwto3Nus537jy4uUMGIiKQnkan8e4vmsUxeC2AV0DuZ1xygxFIkjXDOYclklgaax1LE/06ZWVZ8c/mYWSm8ciQiANzNZ9SwmoEOQ0TEb/6uK2wb32O1KxOOiKQU5xLnrDyXiveIpIgXgE+BMDObCdwPPB7QiCRgku3eqhFGIheV2lslL0bFey7CzKoAa51zJ8ysFV4hn5HOuZ0pGp2I+E2Cc1hyY0803YiI3znnFpvZNqAWXseA551zOwIclqSgfzo2Uq2VIp60nEBejBLLC3sZ+I+Z3QL0xJu/8jWgekoFdjk03YjIXzmHxliKXCFmlhfY65x7xff8Kk09IiLBKr0mj3KuS00sTzvnnJnVBl5xzr1kZo1SMrDLoelGRP4qwV2gKqypKqxICvgQqMbZgj0ZgUXA7QGLSPwiPVRtFZGU5TBNN3Kx95nZnUBDzhSLDsKzJZKGuQtUhTVMXWFF/C+Tcy428Ylz7nczu/pK7NjMigNvALmBQ0Bz59z3V2Lf6cYeY3DhQAchkrbU9z2W1XeKoHWpieUAYBKw1Dn3ne+mpbEiImnIheaxNLVYiqSIpF1fzSwfEHKFdj0FmOSce8vMHgdeJZUOXRGRtEvdWy9M041chHPuv8B/kzzfDjRIqaBExP8uNI+lmWm6ERH/mwisMrNZvufNgeEpvVNfAlseuM+36m3gZY3vvLDkurZG7g5AICKSrqh4zwX4uu80A4ol/Yxz7pkUiktE/CzBkew8lt4YS2WWIv7knJthZj8CdfCqwrZ2zq24ArsuBPzsnIv3xRFvZjG+9UGdWP6TsZHqBiviUauk/BOX2kb7Hl7hgdXAqZQLR0RSinNO81iKXEHOueXA8gCHkSwzawu0BShcWFmUSLBTAulfmsfy4sKdczenaCQikqKcI7lZLDHNYynid2ZWAniOv/b0qZjCu94DXG9mob7WylAgzLf+DOfcVGAqQERERLq5AKhiq4hI4FxqYvmjmWVzzh1P0WhEJMU43AWK95iK94j43zt4vX1eB+Kv1E6dcwfMbD3QBG/O6SbAunQ3vrKNMXh6oIMQSTsik/57aaWb/pWgFssLOwqsMbNPgD8SV6bWMZZmVheoGx4eHuhQRFKNhASSLd4TohZLkZQQ4pwbFqB9twfeMLOBwG94hYNEJIioa6sEwqUmltt8S5rgnFsELIqIiGgT6FhEUguvKmwyLZZouhGRFPCFmZV1zm240jt2zm0FKl3p/aaEC3VtjWx9hQMREfkHHMZptVgmzzk3OKUDEZGU5c1j+df1XvEeZZYiflYJeMrMtnFuT5+UHmOZJv3TsZHqBiviUctk6qR5LC/CNy/WWKCwc66KmZUFKjvnpqRodCLiN845zP46P7uZ101WRPyqW6ADSI1UXEfkn1PyKGnFpabS04DFQAff8614RQGUWIqkEc5ByF/zSsxMYyxF/Mw59z8AM8ub7grniIjftXa5AbiegwGORPwlPRTvMbMBQF4g3jnX/e/ef6mJ5fXOuSlm1g7AORdnZmrjEElDEpzDkplwxCveE4CARNIxM6sEvAuEAIXMLAJo65xrG9jIUt4GMxYEOggRkSBkZqOBR4AiQBnn3Cbf+uLAG0Bu4BDQ3Dn3/d9s60GgNPAzcOBS9n+pieXp83aUk+SnxBORVCrBJV8V1jCc0+9EIn42FqgNzAZwzq0xszcCG1IKes0Y7CuoUz+wkYikeuramv55YywD0mL5ATABWHne+inAJOfcW2b2OPAqUB3AzIr5nif1Cd4Po98554aY2Qgzu8s59/nFdn6pieX7ZvYqkM3MWuB1iZ1xiZ8VkVTAK96TTItlCLgrNsueSNDI6JzbfF4l5rhABXMlqbVSxKMEMngFqipsYuKX9N7jq5VTHrjPt+pt4OXEoRrOuR+AGudvy8wew2vhBDgIZP+7/Scz4irZIEcBK4BvgDrAROfchEv5rIikDl7xnr+uNzTGUiQFnDKzrHi/6WBmpUhSHVZEROQfymNma5Islzq0ohDws3NeM4LvMca3/mLmA+XMbAxwC/DZ3+3oUqvCVnfOzcbXpSfJuqWX8vkrzczqAnXDw8MDHYpIquFc8i2WpjGWIinhBeBTIMzMZgL3A48HNKKU1MoR2SrQQUhKMvPNPPdlJHwCpQd+zUmy8EPvW862g3wMHIe90/LwAQ/TqfB02DMY6kfy9vz6TKQLXyysxhf1ylGIPRSMOsiLdboA8Mz2ibxbvB6Prl5I50qjeGlIbzoPHEUZNhJDGD9QjGVUA2AP+n4nqV8KTDdy0DkX4e+NXohzLg74R7MGX+oRj8ZrQk1qFFDhn+zsSnHOLQIWRUREtAl0LCKpRYJzF5nHUkT8yTm32DeHZS28mgTPO+d2BDgskcsUya+VspE3/jibfoyAjw1Gr6bVqDUAvLa1I3SF1dMq0qn6dFgCjIqEO6BJmwXwBDAPVteryB32MK+4p9hIGQBCcvzON1TglUpP8fTc1yEcXorpwuGwa8nVP5aXh7XmTYvxwnCRgTl8kbRpD3C9mYU65+LNLBQI8633q4smlmYWDhQHsptZnSQv5QCy+DsYEUk5Xqtk8i2WTl1hRfzOOfcj8Eqg4xARkSsrgMV7/sI5d8DM1gNN8KaLbAKsS4mpsP6uxfJOoAWQH+idZP0xoJe/gxGRlOMu1mKpvFLEr8zsV/hLZ4CjwBfAM865X658VCL/zplusO/DAurTufIoSrGZpzO8Dh9V4nlqAdCwyzxql17GI0uj4GpgL9DP8WjRWbwb/qTXIbwFfEUlprrlxBDG5Ik9vG3vgZEfRMJIWNq4MusoR8/Vk8gT+itkhU5jp8MYcD0CcAJE/qFAJZZmNhFoAFwHLDGzQ865W4D2wBtmNhD4DWieEvu/aGLpnHvDF0QL59zMlAhARK4Md8HpRlDxHhH/m4TXu+d1vH9mzfESSwOmAvUCF5rIv5AnkrcaNOTxOfN4uWlr8rGfV9o+RTyhFFh6BIBB1fvCTKAkFIv6jh+ibmFA0efYRRF4BzrHjuIlC2XOPT2o0PgblnCv13QBvN+lDl1HTaQ746geHQ13vsSLrgvPNJrIW+81BKAZ8wJx5CJphnOuC9AlmfVbgUopvf9LGmPpnJvpm+OkWNLPOOeiUiowEfEvh7tA8R5T8R4R/6vtnEt6E+9pZv9zzt1jZt8FLCqRf6nPr4Np9uv7VGpaiJtC9uA2GxbjYDq4Id69xSY6OAHuHqMMX5G16kGOk403t7fh3cn1eDRqIYwAV8Wwsg4GwRONpwHwyNIovqpehn2EwZfgorpgthD6wePmjcNspnuVpCGppSvslXSpVWGHAW2ALUDijHcOUGIpkkYkXKAqbIjGWIqkhGvNLJdz7jCAmeXG65oEQTKfpYiIBJdLrQr7KFDMOXcsJYMRkZST4FxytXt8xXuufDwi6dxE4Fszi8L7IbYO8KJvbstVAY1M5B/IdPgY/DeSdSykY94xTNnfjrcT6mM9HJSED+fU4Hl6em8uAt/PL8QkWrFpxm1Mbdmc42Tjj4LGJDpAJHAHWFlH019nkI8DROBVlK1QfQ23rdjEwCr14Faw6xyfuwheZzevDQ/U0Yv8Ow7jdBC2WIZc4vv2KakUSeMu2GJpOE04IuJvb+Ilk5uAzcCDzrmXnXMnnHOdAhuayD+0BBozl8lzexB/PCt14qPgCHza9m5uZT0bKcNGyjC8Xncm0oU6RPF9y0L8QDF6rp3E1bscPS0fOVb9Ap9Dxm3HmNOhJQAVWEMF1rCSKkyq0oohe4bxfvU61Cy1kLk05jU7CIDTFCOShnjFezL4dUkLLjXKL8zsbeA94I/ElRpjKZJ2JDiXXIMlIRpjKeJXZmbACufcf4CNgY5H5N8yG0zGQ90DHYaIpBGXmlje5nvsnGSdxliKpCHeGMtkXjBVhRXxJ+ecM7Mfzexa59xvgY5H5HLE1crO0q8rU31uNHwCHzeuSj+Gw3I4SRYKDjkIpb33lmiwnaosI4o6FGEXxfgBOkHCh8YCV5th1ODL5QXonX04iybXZfzAvoy/uq/34ZIwtkEPbJSj9sT5zKYZebMch8zgYgN2+CL/mor3nMfMSvn+7HgFYhGRFHShqrAhZn+dbU9ELtcJYJ1vjOWJxJXOuWcCF5LIv9AP9pMfjsKgGX25f99yhhQ4ydIfvbkmOw8cxSFyAxBLZhqMXYwNdwz6tS/1WEir6EmEWBw3uB/4qX9JoodVBGAwkewZUoiJvpkRirCLG3b/zFcTyxBNZfLOOA4nffNnom6wImnB37VYfuR7PP9rp/nWFfV7RH5gZnWBuuHh4YEORSTVSEgg+eI9qMVSJAXs8C0iaZLZ4L9/k4gkyxtj6fcWyxxmNhVY5Jxb5O+N+8NFE0vn3I1XKhB/8p3sRREREW0CHYtIanKh6UY0xlLEv5xz+lYuaV5nl4V89CInRyjYdgeDZowgf8v9NGcW1XtEQ2n4tWU2r8sqQDhk2XASNkFzZhFFHV6r15FvXQmyEMupYZkoPXEHHbqM5fGW81g7oxSxZAEgI6coU3gD2ynB0ISB0Mr7J6SiPSJnHHXOtQ10EBeTNkoMichlu1jxHlWFFfEvM8sHjAUKO+eqmFlZoLJzbkqAQxO5JAVdM17qEs5/J9biOZ4njowMb9mdfOznkVlRuCVGpueOcpDckPh/dU4YsnUYr85oR9G1Mbj9RqcS0/mPbWKM60bPqEmwHiaX6gFboPztm+EX76PvD6xD79gx9MgyhkONrw/QUYv4h6YbEZF0LcElP8YS83WTFRF/mgZ8DuT0Pd8KdAhYNCL/gLrBily+YJxuRImlSJBwDkKS+RefbLIpIpfrel/rZDyAcy4O0E84kmbsXRgOL/1Jy4QZ7Cc/L9KbfgPHcYD8bGlehOc39CRuV3ZuXr2LR5rP5pHmsyEr/FYyMzVYQp/ygzHn2DcqJ23dZGIowNo6peBh2LQ5nAHuWf58zCByNUSu5pFhUUzM0plC7IGbA330IvJvpI30V0QumzeO8q9JpIr3iKSI00mfmFlOki2fJZL6dHOZGN8B+DmBGSEtWUc5WsyaS8Zux6jBEm6K2UGFsDXwMWRsf4z3yzYDIN+G3eSaG8uLjbuwh0J0rjOKAjH7YXom2AqvTm8PV8OTvEFD5nEke1b4rpK301ugdf/p5GoZC69rfKWkbSlUvCfVU2IpEjRcsvNYhpgpsRTxv/fN7FUgm5m1wOsGOyOwIYlcmvFd+sI1sCWsBI8zm29iIuBWiNuanQcqf4Szq3mHh2my5k4q54pmebf7ATjQpTDcCvvJx0szevNIy9nwYSaI3E/W30OJPx1K55qjKMYOuv461fv5ZYS3zwpuFbk+jYXXvwea4txNATp6Efm31BVWJEgkOEiu12tIiNdNVkT8xzk3ClgBfAPUASY65yYENiqRv6fxlSKXL7HF0p9LWqAWS5EgccHiPZimGxHxMzMr7JybDcwOdCwilyJpQllw4g72DgnnZtvFHW4ZbuvV2F4HH8P20WU59l5GmmxfwND5vQhjH7lbHgLg/bHN+KJlOT6hFuNbtmM0vaEb/OrC/5+98w6Pqkzf8P1Nn0knCUiQjg1FAVEElbUtKi7+FFEUG6KCoouKuioqCPa1o6hgY11FUUQXFBULrgXEgggsoiIgvSSkT5/z/f44c04mycxkAoGQ5LuvK1cg0745mZl8z3ne93m5nYc4hF8pJ4MgTsQTkrUPFHD3q3cCcBNPkHOQD8E90VWoMlhF06YlpsIqYalQtBCkTDzHEjVuRKFoaBYLIX5BL3+dI6X0N/aCFIqU+HYiBXzJpjXd4M8wi0UENsBLp1zMHZc9yI4vO5D1cAC+hgfevBPfJTnwpP43RJ4rEN0lXAj0AUqAJyH//HLOeftNbt/+INo7aZwz5k20WwSZ3p1UbMsFwNElwN1d/qbfjzypEZ64QqHYU1QprELRQkjURykEyrFUKBqeDsCTwBBgoxBiuhCiX+MuSaGIjyp/VSgaFr0UVo0bUSgUzZWEjqUK71EoGhopZURK+b6UcihwCHpZwNeNvCyFIiFHyEEcIQdR2sfJd/MHIC8RsNoG/U5DLJQM4gN2jOzAPQNuh78By8B3ZQ4cD//scgP/7HIDF3d+Cd6DgRPmwjLYNdzDM6OuYufbGbw7+yJy8kvgTXhv7IVYvpU84rmV37t04PcuHbj75UeB/0a/FApFU6RpyF+FQrHH6D2WtX9uEUKF9ygUewEhRCtgOHA5kAVMaNwVKRSJWbnkGACyAgHkwQLxm2TBoBMZyFc8N/AK2i4t4fOX+3PKy4u4dOQL/Pvdq2ES/PO2sdw67WkAnh89gtffuxKGgDhD0q5sMwDXf/sivw9tT9GYdgA47ikjI7uca4e/AiOiC3gO6DMR+f0+fuIKxV5AjRtRKBTNmkSpsPplSlkqFA2JEGIOcALwH+AmKaVyKxX7JaoMVqHYOyhhqVAomi2S+KmwyrFUKPYKc4CLpZS+xl6IQlEXJ8m+nMNoAPIoQngkrAlQRB6sgakDx6B1EljmS3gR/v311WCFB+ffxCtcwSGjfwXgmjUzEGdI2AJrBxTQZcIWOA0uGPgvDpqzkWOf/RIrEb4sOwX7mxLSgC+ii/jBELgqDVahSECWEGI6ME9KOa+xFxMPJSwVihaCJoG4pbAglbJUKBoEIYRTShlAF5ZCCOGJvVxK6W2clSkUiXmBq3mVywC4cek0/IUCV4mf+xkP1z3HysJrseRJeAg4CZgBx2pfcsfVT0Al/N8RHwNw0viPQEyC+yfy6YDT4EKQ5YLHGcPHfzudwczlO/ryQ2ZPsIIcIhCDtkVXcQ1Sttn3T16h2AvspVLYUinlqIa+04akWYb3CCEGCyGml5aWNvZSFIr9hwThPSoVVqFoUBZHv1cA5XG+KxT7DaoMVqFQNCTNUlhKKedJKUdlZWU19lIUiv2GpOE9ao6lQtEgSCl7R79bpJTWmt8be30KRS2GTuSgLhtxEMBBACpglecwZMTFitXH8qD8Dd6ErKu24VhWBp3gHu121tMJBsOomU/x+/j2/D6+PV94zoCpE3lj/LncoT0IK0AcV8rNv01ljeMguvEHi7T+9Pv8J5gFc848E3g+5kuhaB5IIIy1Qb+aAqoUVqFoIWhSIuLVwirHUqFoMGqWvtZElcIq9jsCID8TjOZJAN4YcC5ePHzZ/lj+8tsSWAS5Kzfzd8vTWFuFufu4R1nFYVzBKzw8YyLTV95At/F/AHCwdzm38TAXLX2Xxb17cdew+/hs81lwyHLyfy2HNXDBoH8xq3IEYoTkPNEXAClVX6WiuSGazOzJhqTlPWOFooUiIcm4EaUsFYoGogKSlgA0jdPOipbBSxN5aeTFfMIJTP/8BgCmr76BE8Z8wiH8BjbJg/3H8QQ3sZ5OtGcj0iY4hJ+xEeG1OUM5nY/JfyBa5X0gBC9zkH5oIf0+/4kDT1kDK+El+TAr6MGTb97OWwsv5y335Zw6+QM+a8SnrlAoGh4lLBWKFoCUUk9+jZsKi0qFVSgaCCmlBUAIcScQBKajx2ZdFf2/QrFfIMQkeEk5hQrF3kDNsVQoFM0WQzjGcywFQs2xVCganjOllCfE/P9RIcTXwJTGWpBCYWCE9jw38gqu/PJ17h5wJ2+cci4AF+W9y/3cxdnB/8Atgk5z1lPAFjIo594l93PvmvthDfx23JE4egdx42Xt+AIADi/7H0OZzcee0xl8yjxmMQzfi26WcCzTV93APRNuJ4iDBwZN5jPxA6DKYBWK5oQSlgpFC8CQjfHnWCav21MoFLtFrhCim5RyDYAQoiuQ28hrUihM7pXl/MohyPaCDbTGSkS/wAVnB/9D6bsH8Mycq7hoy5u8X3AWZ239jKevuBXH12Wc3upjXmYk+eIXZpUOw7cmB4A3ep/LdTxDd1Zx5fDXOXrmNwT8Tqa9cSMnX/kFXjyUkA3fNtrTVij2GcqxVCgUzRLDkYxjWIIQSKmXy4o4wlOhUOwWdwLfCiF+jP6/F7Bfzx9TKBQKRcMgEU0mybUhaZbjRhQKRXXMUtg4tbDGj1Q1rELRcEgp5wCHAc8AU4HDpZTvNeqiFAr0MtjX5AruXvoo08pGI36SdHx4Ox9zOh9zOtMPvoySL9rCozCZCXCNk684kc1tc+E+CPqdDGMW+QeVw/0H4vslh9a9N9C69wZW0Z0BfMUDXSYzfuYEfhxzPLd4HsV5bik/cDR38CA3Z06FYr0UV5XBKhTNC+VYKhQtgGQ9lEZ5rNKVCkXDIqXcCcxr7HUoFDV5ntEM7/0yM8eOhGvgzyFt6Lhku35hBCIDrRCGHWvbc87cN3n45YkUjsxD9hOIVyWX9JjN1t+zySsr5YD0Tex4uQMA9+bdD3nACL0M8MlnR3Nj/jTa7lzHozvvZmj+O/S7/idgIvKBxnr2CsXeR7bQcSPKsVQoWgBV4T21HUvjJyrAR6FQKBQKhUKxu7Q8Ka1QtEBk1I+MO8cy+kOlKxUKhaJ5I5YDl07kBTpRQg4fP3k6uZYiHuUW3up7NgBWwgy590Ou7fsKD3YZRxgrrUduZ9qSG5nU9za4HbgfXhx0Fb9kdqdoUTtw6fe/62wPrV71wg/w4K57sJwmabtzHVumdUFsl2Tdvg1WN9rTVyj2KSq8R6FQNEu0qGhMls2jHEuFQqFoAaTr3/ot/Qm2wbYTDmRu5pmcd8p8AG77fBI77m4Ds+COOU/wzyFjOZIVDOs7g3N5j8HybU7nY65b8BI/DTyMmR+NRF6m/3ERcyUcANwDltGS3B82s3VmZ+4bfTPkQ+m2A+DdSdGFqP5KhaK5oYSlQtECkNJwLOOF9yjHUqFQKFoER00CevPxs6fD75B17jZudTzIk5Nv58bPHwJgISezZPVfeHfYubzA1XQcsh16wowJw9hCAfO6n89Jq75AnP4KPDUCVsIL3S4FQN4mEHMk3AHcBEW3tePeR27Bgw/OB55ToT2KloHeY6kcS4VC0QzRkohGMxVWxfcoFApFs0WISXVfSaFQNAgSQURrecJShfcoFC2AZI6l8aNk4lOhUCgUzYDNt/OY/Ih/7HqEGcOGke0o4clVt/P1hD7kUkguhXz3+QB6HbqY4bxOxy0buHLOVJ6bcAUj5sxiBT3gwmjv2KQRcE6Yk+Z8xGDmMpi5PP7OGE6QnzDjgWGM7z8BToYvOJmbp0yF554GWim3UqHYfbKEENOFEIMbeyGJUI6lQtECqEqFrX2ZITZVj6VCoVA0Y16fCN/CtCGjCX6UiW+4hyBOKIdXuIIXV18PwPxTzuI0PuULToaPnFhHhrn281doPWQDCzmJmyfcB8BzE67g2gWv8MV5Z/Do97cA8NiCu+BieGjnHeRQgvuEYj4T7TlVfsBnN+xqtKeuUOxzJITDDe5YlkopRzX0nTYkyrFUKFoAhmgUcR1L1WOpUCgUzRlVBqtQKPYFyrFUKFoAhmaM51gaP5JKWSoUCkWzwxSVC2HBCycycPlXyGMFQqyCbzozvv8Enii7iUcOvRWAxZ6TGeudggcvX4/swwkLfuC7gT3ozHqu4Xk6sx4rEQrJhR/gre/P5gLxrP4Y/wH/nwLX+ZLxb09gfOb9tJcbeZKbGunZKxSNg5SCSLjlyayW94wVihaIWeYaNxVW/650pUKhUDRPTpV9GMvpzOJC5DsCzobScE+cgSBr6IojM0irx736lZ+H/izios/fhWy4dOALHDt+BfQB2sHHPU7nEY8uQi1XVnJB/7m8JfUZmBc8PpcpZ/8dZi/lgasnw8mAH7jyQ+BYpDyzEZ69QrHv0YWlCu9RKBTNkGQ9lkL1WCoUCoVCoVAo9pBm6VhG05IGd+vWrbGXolDsF1QJy8SOpUqFVSgUiuaFUQY7nJlMZBI/beyHOERyxNHf48PDIM98VtCDL5afAUPDAKTnlXBo2WpWntKN+QziH3OncM8Dt9OJdYz46ywqPs3j2vav8NyGK7iuzbM8PXss5WToD1gBw5jFMtmTE3man+jJdHEU4EbKkxrnICgUjYGkRTqWzVJYSinnAfP69OlzdWOvRaHYHzDDe+JcZob3qDmWCoVC0fx4fSKLmIqVCG3a/8mBw9ewctwx0BO4bD5bKKD1kRsYymwAurOKLzmRI8asQY4T/CN7Cj9yNPcseYjhn7zMzIdHwiS4Zt0MhDUEN9sYefVMACITrFzDc0SwsZH27KAN8N/oQk5qhCevUCj2Jc1SWCoUiupUhfcknmOpKmEVCoVCoVAo9hwpBeGQciwVCkUzRNOMcSO1L7OocSMKhULR7NDLYHszavhTfEdfli05Dtla8EnnE7j+8ancxsM8yi30ZQn/Hns1N015AoCDHt7IwNvm0u/ZhUzlSiwZlcybeT4Lhp/IwEVfwe2wS3rgBLjn67vwvO1FjNX/gNw78BY+23UagcosKAXRQ/+5+vuiaHkItEjLk1kt7xkrFC2QqlDYOI5l9LsK71EoFIrmxc/yFmYzlGVfHkd6n0JWezryf2Vz8b2Xw5VHvA4r4Rd/L7Ie3cZBYzcCMGbK47zqvYy5nrM55ctFzBgwjBEfzeLR4beCFfgPtFrihUxozQa6s4pRU54CII8igh9l8tDwG+na/g/AmJ85sVGev0Kh2LcoYalQtACM/sl4qbAWlQqrUCgUzZCJLOEP7l17H/0GLGQLbbmW51ma2YvZlw3lri8fQzwp4RZ41XE5GVPKATjFvgjegbNO+gDHEWWMOHsW383twZnaR6T3KMTaK8xpjs+Y99pgRjMNBwHuXvSo/pBvAkfAHV8+AX/RRaWUSlQqWiASaIHhPWrciELRAtASj7FUPZYKhULRzDDSYBUKhWJfooSlQtEEGTZtMcOmLU75+oYbGT+8R/VYKhRNBSHEJUKI5UKIsBDi+hqXeYQQs4QQa4QQq4UQf2usdSr2A36GLziJ9AOKeJxxvMlFDGMWhy75k5lcDIfBjUsf4p/Dx3IdUzlfe5vztbd5MjQaVoLvxhwcriAr53bj2Jkr6G9ZhLfcTenQA3hn+MV83uoUBjOXQ/hNL5G1wt1T7oTX4J8Dxjb2s1coGhcpdMeyIb+aAKoUVqFogqwvqsRhTf28ULIeS6M8Vo0bUSiaBMuAC4Hb41x2C1AupewmhDgI+EoI0U1KWbEvF6jYD7h7IqyHmfeM5Os5ffiY03mWMZzGp8zuO5RVO3tzYv4C1tOZTQu60W/gQhavPhmAG1+ZxvRHLmMeg5k34XyOOG0NWGGh92S0H9PYNddDq8u8lJANwEyGU9FT3/R2YR2jvnyKyd4JpFdCuSevkQ6AQtHISCAcb8hb80YJS4WiCVJcGUKTkogmscZrnKyBTDrHUv+u1UNXGm7prNH9Ur+RQqHYY6SUKwGEEFqci4cBl0ev97sQ4gfgTODtfbdCRWMinm3sFSgUipaMKoVVKJoYUkpCmkZYkyzdUJzabaLf45XC7k54T1FlkB3lgZSvr1Ao9gkdgD9j/r8BaN9Ia1E0IjdOfgi6QfprhWyhgIk7H2bbro7MXD6SH4JH83j+GM5iPvdxJ/cOvIXF/U9mTPfHGdP9cfgCJjMBKxFKJzr554CxHDxsOas9h/LcoCt4hSvY+WoGZ038jBKyeYobSD83Qvq5EfqziCBOKtKmUpE2tbEPg0LRuIQb+KsJoBxLhaKJURmMmKWtH6/cxjGdWtV5G0M0xg/vqX+P5aZib+pXVigUKSOEWIouEOPRRkoZaaDHGQWMAujQIdHDKZoal455AQAPXuSfAhzgab2L82nF1a2eYUarYVx+71uIoyWjBj3FHUufQLYVBBc5OZEvAXj1v5exaW1X8roUcpb1fS5kFr8NP5ID+xRyzrg3cRDg5gVT+XnSIeRSRMcNm+ES/fHf638h+IFeIJc20kFQKBSNhnIsFYomRlGF7hRaLYKPV20zy1yToUWL5uJVzRo/SuV+ALaW+vCHNEIR1ZOpUDQ0UsreUsq8BF91icoNQMeY/3cANiZ4nOlSyj5Syj75+fkNtXxFI6KSYBWK/QiJciwVCsX+T1FlEIDTDmvNx//bzuCnv+b9sScmvY0RzBM/vMcohU3t8b9ZUwRARJMEwxoOmzo/pVDsJ7wNjAZ+iIb3HANc1LhLUuwLDFH57+VXA7DyyG6ITyRvnXk2V/EifAkvrr0e8Y3k8lPeQuYKPuBU3ut9LmKchBOg55BvARjteZ6CLlvZQWseXjCRHQPb8NLMi7ly7Wu8t+BCZC/BooHHc9SG/+FI93J0hyX8cOQJAHRftJRfxNzoqtT8SkULxhCWDUuWEGI6ME9KOa/B770BUDtChaKJsatCF5YXHqOXrxV7g3XexkyFjXNZfVNhF60pNP+dymMrFIqGQwhxkRBiE3A+cK8QYpMQonv04keAbCHEGuB9YJSUsryx1qrYt/SUp3POkW9yzpFvUkQupY846cMP3MQTnDbgfVgJ6dcUQi5kd9lKAVu4j7uQfxNwHiybfBzLJh/HKrrThx94eO0EHH3KKCcDH25O7TKf1gM3IFZIJjERPtW9iUJyEQskYoE0RaWUSlQqFHuBUinlqP1VVIJyLBWKJseuqGPZrXU6HoeVykDdLVeGsIw/x1L/rsXLmKx1P5Jv/igk3WmjIhCmsCJAm0xXymtXKBR7hpTyDeCNBJdVogtOhUKhUDQmEgg19iL2PUpYKhRNDKMUNjfdgc0iCKdQw5pSeE8KjuUfOyvZXhZgSK92zPlpM0UVyrFUKBSKxsQogy0ng/devRCALZcVUGTNpRPrWeLty/eePtxy5b2Uv5YP/wXPCz56v7oKy+mVlJ+SwT/lWBzo/fuH8Bur6I4st/BUl1HcsGY6fbp9zY9TjkcOFIhOGo9yC6yHoN/JXP6Po26+PrqaVkj590Y4CgqFYn9ACUuFoomxqzKA227F47DRv2seawvrnn1uCMu4jmX0eyrZPVf+63sABvcs0IVlpRo5olAoFI3O6xP5hAJKLssGoM/27xnb5mm8uPlsxVlc3vdVljz+F8Rxkp6XfMuWKV0QnSTftDmBLbTlvMnzoY9+V/8cNJZbf3waUSqhO+xY1YZBzKfH2BV04hceZBy/cgg3TX6CZfRkFsOAXY321BWK/RIJNEiGd9NCCUuFoolRVBmkVZoDgEy3jVJf3bUWhmaM51jWZ45luT+Mw2qhd4ccfS3KsVQoFIpGZbhsz+srBd/SkwK2AFDYJp+FnEQG5Zzc9wsufPA9Vt/RkZe4mCvtr8MvUNrZSTvvZiZ4JuuiMtqN68XDfUffDBvC3LPqLqYxmq1Xd4bz4bmBV3DthFd4Z/IgrmcqW2/tDI/qjqnqq1QoFCq8R6FoYuyqDJKbrgvLLLedMl/dsWNSJkmFtRjXqfuxg2ENl91CpsuGw2qhUAlLhUKhaDTUiBGFYj9GjRtRKBT7O0UVVcIy02XHF4rUOfajKryn9mWC1B3L1plODjsgEyEEuekOc6amQqFQKBqHj7XTWX1ER477v2Ws+09bAI5kOX34gVV05z+cjTha0poNnMRCTg19wAtcyqhFryIPEogSP3KGYNJbtwFwz+MPsXZcAXeHH6Eba/gXlzHwmK+4cuBUrl3wCidN/ggfHkYzDc8jXv7xaG5jPn2FYv9k74wb2e9RwlKhaGLsqgxyUJt0ADLddgDK/CHy0p0Jb6OZ40YSp8KmMmykxBsi26M/Zm66wwwSUigUCkUj0GMi/7V0YyPt+fg/p3M2+hSCQXzA9FU3IEMCsV3yz4FjWUNXItiY7z2Lz5adxb39b6Es4kBucfHQWzcycc3DANxz3EO8y7nIrRZu73IPh2HlnFFv8tKc63hryNlcsHQuX9jO4Jwj3+S9JRfCtyD7NuIxUCgU+w2qFFahaGIUVQbITasqhQUoq6PPsiq8p/ZlZipsHY6lpklKvEFyPPpjt0pzKsdSoVAoGglVBqtQ7McYjqUqhVUoFPsr3mAYf0ijVZruTma69bdwmT/5J46hGeP2WBpzLOuwLMv8ITSJ6VjmpTn4Y0fdibSxDJu2GIBZo/vV63YKhUKhqI38h+B1zmMWw+jJMjq/uxWAaXfeyLJVvRCPS54bdwWn8SmPcAsRrPTwrGBx+GTGRp5mlbU7q9p3546rnyD3hSL9Ti2Sc3kX4ZaURpzMsw7m3SUX0WZIf17kKnDB4O5v8544CoiKWxXco1AoUMJSoWhSGCmshmOZ6UrNsZRJ5lhaTMcy+WMXe/XHMBJpc9Md7KpnKWxdrqhCoVAoUuSWiQjLRDqymgF8xb1L72fSXx4A4KxV7/A445g4bhKvM5zrtj9D5Lt0CgavZeuczsifBRsGtKbf5z9BHrzzwiDu4CEAhnd5hV7BpbzR+1xO4XMGMZ9D+v7M+5zFMTeu5L4nb+buBY9iiEqVBqtQxEH1WCoUiv0dQ8hVjRvRhWVdI0cMOZdsjmVd4T3FXv2xjVLY3HQnvlAEbzCMx5HaR8nGYh8VdbirCoVCoUiOyARGN/YqFApFQlqosFQ9lgpFIzJs2mKzPDQVDGEZO24E9DLVZKTWY5n8sUuiwtIM74mK2/rMsvQGI/hCLXBisEKhUDQQRm/l4kd6cdvwSRzPIv49/2q+692Da1o9yTWtnuQqXmQ2Q5nAZL6e9VeGtplNxqk7yaCcx4ZchzhP8ixjoFsY0iVnl31IBuVkUM7MVSPp5viDVXRnDkM4nY/57fMjuYg36f7kUs5iPi8NvLiRj4JCodgfUY6lQtGIhCNaXBcxEUYKa67RY2mWwiY/LWamwsYthdW/11WmWlypi1fDsTRSaAsrArRv5al78UAoohHWJBFNYo2nchUKhUJRJ3eX3ckSjmUMz3INzyEPFvTgOyZwLwDzOYsXd17PIfk/s3RYd65jKo94buWanTPgA/hjRFdyKSI9r4TPPSdzgLaJ6VwNwJHdV3AxrzN53QPc3vkeFnIy553yOiezEAdBPmAQd9sfBRvI5Oc0FYqWjXIsFQrFvmTV1nI2FvtSvr6Rwtoq6li67BbsVlF3KazZYxlv3IgxxzL5Y9cuha2/Y5lqiq1CoVAoFAqFommhHEuFopHQNIkvFMFuTd2521UZxGGzkOawAroozHLb6yyFNVNh41xmOpZ1TLIs8YawCMhw6R8buVHHsqgytZEjUkrTcS32BsmJltIqFAqFoh5kTORF1rHlii4Me2UG8xecx0cDT2Ihp5A3UU/qzphUzsL8fvRgBbfzEIseP4W54wbCZ3DaiPfJpoSpN97MrblPs+7utnS1/EEbdgBw0Msb4YwAzqxS2rKF9esO48TOC+jBCgbM/g6xRULYGHWignsUirhIoAWeQ1fCUqFoJAyRFYxo9bpNbpqjmvOY6bLXY45lPMfSuE7yxy72Bsn2OLBElajRY1mYomNZEQgTDGvR+2qBn7YKhUKxh4jJwDDYUNaFza/k0ocfmTPwTP7NZfSPLGLopNcA+FfgMmY4r2D2z5ew/KiDuX3cPbRnI30u/JqnuIHurOKpJ0fhJMgP9KEHK1hDVwBkN8GcgjPx4OOMz7/gzVPO4XYeJoNyzh76FgiVBqtQ1IkEWmCkhCqFVSgaie1lfkAXe6mO4fh01fZaZa8ZbnsKpbCYj1WTqlLYulNhc6LBPQAuu5V0py3lUtjY6xlBQAqFQqGoH3K8YHtmLu36FVFELt34g54sY751ELOnXsLsqZcwy3khx7KEm456kCMf/I0ATk7kKzIo5/ipP3I5/2JicBI9WMESjuV2HmIZvVhGL0iDZ7mOMz7/AuvhFTzKLfxtwaf03rCceeJ04CYlKhUKRVyUsFQoGglDWHqDEcpSHMER0rRapbN6KWxd4T11z7GsoxKW4sqQ2V9priei8Z9lm5PfMEpsyaxyLBUKhaJ+GGmwCoWiCWCMG2nIryZAkxOWQoh/CSFebOx1KBR7yvayKqG1tTS1AJ9IRGKzVH/bZrpslKc4xzKesKzPHMvsGsLSbrUQSrGUt1A5lgqFQrFnXAhvdj6H7EAxaxYfiIMgi+jPLYFHWENXXr/uPF6/7jxG3jmTjzmdJzfcAv+FK3iFAA4W/nwmV1z3HD1YQQ/HCjx4KSGHbmdtYlrZaKaVjWbb0VncxkOcfcpbfNDmb2ykPRTD9A4jgTnRL4VCoajNXhWWQohHhRDrhBBSCHFEzM8PFkIsFkL8Fv1+UIr3dz3w8V5bsEKxDzEcS4CtJf4k16wiImWtctbMlEpho45lnPgeS8pzLEPVSmEBbFZBuK7mzCixpbDFSlgqFApFvWgtr2Dnwfq0yRJnDt1WbmLy7AfowQrWOzvTmfUczK8czK+8cP+ldGcVT3a4jjYf/cld3EcJ2aw7qi0r6ME5vMvXs/7K2cxl488H8cIHl9I+cyPtMzfiw8NIXmE8D9CdVfRgBYOHvc1EJtFW/gUpRzT2oVAo9n+UY7lXeA8YAPxZ4+fPA1OllAcDU4FpxgVCiK5CiE9rfN0qhDga8ACL9vKaFYp9wo5yvznLcUuKjqUmoYZhaabCJuvTNLRfzdtCbHhPCj2WNZJcrUIQSVFY7oqWwma4bKoUVqFQKOqBaHL1ZQpFC0cJy4ZHSvm1lHJj7M+EEK2B3sAb0R+9AfQWQuRHb/OHlPK0Gl+PAGcBBwH3A8cLIU7cm2tXKPY228sCHNQ6HatFpOxYWoVgSO8Dq/0s02UnFJH4Q4lLUpOH9+jfk+lDXzBCIKyRXcOxtFpEnYLUoLAiSIbLRusMpyqFVSgUihQxeivdeLmG57l62r9pd0URrIPvhx7B8Wf9yIW8gZUIx6xZyTFrVvIiVwFw44JptGcjViJkUEGXDRvoxHq+oy9fD+vDxpUHMeGo8UxkEroXWk7nJVsZxAcsoj8H7fqdQ/iVedPPZ6t4la3i1cY8FApFSydLCDFdCDG4sReSiMYYN9Ie2CyljABIKSNCiC3Rn+9MdCMp5WQAIUQn4C4p5VfxrieEGAWMAujQoUPDrlyhaEC2l/kpyHZT6guxtbRuYRmOaAQjGm67tdrPM93627jMH8LtsMa7aVV4T5zLqsRmYoFolK7WDO/5v54FvL5kQ51rB31USl66k2yPgxLlWCoUCkXKjNKeYtqHNxL4C/A2PPLp37l169Mct/1bnG8EeYbrOYmF9Oq2GIAT+YpyMjhh4Cd8tXogJx66gFkMI/fA7XRnFafzMYXkMfWIK+nJT5zIl9zPXQCM7vskReTxKe1p3WoHX3IijAaYWGfLhEKhiKHhXcZSKeWoBr/XBqTJFVdIKddLKa9Kcvl0KWUfKWWf/Pz8fbk0haJebC8L0CbTSdssV0rhPb6QPhCpprDMcusuYrI+y6rwnt1zLBMJS7fDhjcYQUuhHLaoIkBumoMcj12VwioUCoVCoVA0MxpDWG4E2gkhrADR7wXRnysULYJQRKOoMkDrDBdts90pOZamsKzhSma6dGFZlkxYpjBuJNmZaMNhrBnekxZdi7G2ZBRVBMlNd0QdS1UKq1AoFHWhl8H+hemX3cD/zuyKsxQu/vQlbl33NDwFY9s8zdGZPzDy9pl8R19O5CtO5Cu205ovOJnXuYTuhy7lU+9A2rORwtEH0pclzOVs+m35lusffpHzls/nOp7lZBZyMguZtvNGerCCCDZ8mpuVDxwDTIp+KRSKlGihPZb7vBRWSrlDCLEMuAh4Lfr9JyllwjJYhaK5UVgRQEpok+nCGwzz6artSCnjOooG/qDeQ1m7FDYqLP2JhaVRChu3x7LGdeKxqzLqWNYI7/E49Y+QymCYNGfyj5OiygC9O+aQ7rSqVFiFQqFIkbVyOFMYy+Gf/8HFp7zEiXzF6M5P0veh71hFdz6I/I2FD/XDjZcf6APAovNO4dt3euLFzS9Le/Fr74O5gleY88KZnLflXZ4ruIZzCt5l0m0TWUEPZjOUSUwEYFL+bfThByJYed1yMfk/lcPQici3G/MoKBRNDENYtjD29riRKUKITcCBwKdCiP9FL7oG+LsQ4jfg79H/KxQtBmOGZZtMJwdkuQmEtTrLQxM7lrqgS1oKa4b31L7MELPJhKXhMNYM7zEcS28guWOpaZJdlUHyoo6lP6ThT8HlVCgUihZNj4ncwFPMZxBlf3HQk2Vc880MxvI0y+hJG7YzxDqH5xnNVwzgBa7mBa7m+XdGsIRjyaaErr3/x4tcRc6XPkrIoW3BFq5d9QrvbRiKgwCXLJ3NfZG72Eh7NtKe7qxiI+2JYCV/cjnMnqR/KRQKRR3sVcdSSjkWGBvn56uBvnvrcaNpSYO7deu2tx5CoUjKsGl6gMKs0f3iXm7MsGyT6SIY1p3IraU+WtVwBGPxBvVTXzWFpdFjWeZLfGrMaIGMP8cy4c1MDNGb7a7hWDps0bUlF4klvhCahNw0Bw6bNXqfQdpmuet+cIVCoWiBCDEJekxs7GUoFIrdQQItME6iMVJh9zpSynnAvD59+lzd2GtRtEx8oQj2JIrNEJatM52Eo6rvplnLzHCceII0UXhPxh72WKbiWM5c8icWAQ5b9SKHNGfUsQwmr/coqtAd2tx0J7bocSmuDClhqVAoFEk4aflH9GQZR/Mjx1i/ZxizkIfBOB7nTS4kZ4GP4oFupjGabErovWspAIHfszit7/s8y3Ws+fsRiKslL/a8inN5l62rOvNd9x4c8/lKTu/wH7r2/h9/0JUHdo0H4NhWS6ggg8HMg4m6UymlErgKhaJumqWwVCgak4gm+d+WMvLTE7uP28v8WC2CvDSnGdlqOJeJ8CcQlg6bBYuA15ds4O+nHhT3toZmjB/eo3/Xkjx8KCKxW2tXzhuOZWUdjmVhhV5Km5vuMF1TFeCjUCgUiblH+viDjXjw0pNlbKQ9z2pjeMJ1E59zMjnzfBwy+Gc+4a+Uk8ES+jK41TwAPup7EufyLq3ZwZ1P3807DKKIPFbRnVHdn2I9nTnluIV8wl/5m/Y+Uy3XEVyZCcCtAx5lO20Y9fCrqMAehWI3kUAL7PhRwlKhaGD+2FlBRJP4Q4mV2qzvN2IVAotFkJvuRAA7ygPsKA+Qn+GMexuj3DTerEqrRRBJogyThfeYqbAJb62LZVscB9Zj9ljGdyyNkuBL+3UEIDfNaa5FjRxRKBSK2lzFVEAf7q1QKBRNCSUsFYoG5ueNJQAEI4mFXiiiYbfpQs1qEbgdVvyhCEIICssDcW/jC8Z3LAFsFotZUhsP45J4wtIgWSlsWJNY4wjLtBQdy0c+/hXQHctwxBCWiR3LunpUFQqFojkixCSulHkAfMFJPMgdLKMn2ZRwE08w1jKFo9b8ykVHvslrgy/ht1VH8kT3m3jyy9vZOSCD/C/LAcgYUM4tPMrha/4gu1sxf9v1AcFtmch8wbr8tnRet5WZnT/Fh5vplquZxTBaD9gAwLEsoe3yEs677XW4rRuzubjRjodC0aRpgamwSlgqFA3M8k2lQO1+xFiCYYnLXnX54QV6CdLmYh9bSv14g2GzzNTAnyAVFgzHMrEw1JLNsTQEYxLLUpMSW7xS2Dp6LDcX+yj2BXFGb5vjcRCKCm5VCqtQKBS16cVPADxfdj0XZ87gND5jGqN55d5r+eTuExhz5OM4CJJHIbd1n0RPliEPElzMSzw34AoArtk5g775/6WkWzbjuZ9vWx3Hr60OIeCFI73LWd75SFbRnS8ZwBKOZf7G85jQXu+x7FK2DgrhHbFGX1CychaFQhEfNW5EoVA0BMs3lQBQ4g2ZLmNNwppWrWfRIgQWIciIjg5ZFnU9Y0kU3gNgs4jkjmWSHstU5lhGNIk1zo1NxzLBuJGdFQEqAxF2eUPYLAKrReCyW3HbrZQkKYXdXubn123lZuiQQqFQKBQKhWL/plkKSyHEYCHE9NLS0sZeiqKFEQxr/LK1nDaZep/kllJf3OtFNBm3LPWt0f0BWPpnca3LjB5LVxxhWZdjKVPosUxyc9KcNs7scUCtn7vsFoSI71hu3OUlENZol+0iN81hJt4C5HjsSXssy/xhSnwhftlannhRCoVC0eyYyGQmMJkJdM78nQF8xatcSns2UjbegQ8PD0buwIubyUzg4S23c+Hq92AHXMq/6ckyerIM8YLkMl4llyK2UsBP9CKAA+czULEsDy8e+rKEHixn/srz8GTt4uFdt/HwrtvIyCyHU0PAeJUGq1DsLoZj2ZBfTYBmKSyllPOklKOysrIaeymKFsbqbWUEIxqnH66LsK0l/lrX0TSJJiG2snTW6H7MGt2PLI+dg1qn82McYekLRXDaLHF7Hf92ZNu4gtN8THOOZW2qKmETK8uKQJg0Z+3KeSEEaQ5b3DmWi/4oBKBVmpNurdPpkp9mXlbiC/HZL9sTPp5RLvv+8i0Jr6NQKBTNjenyMgq351K4PZc7uZ+FnMzrXMIVvELmuiD/t+hjMlcG2Uh7simBCidzDj2Tx48aw5lfLiSIgyAOThr/EWO3P8VQZpNLEf/Q/skD3Emff3zNef1f5/jg1/RkGTcwhTlHnImvJIOg30nQ72THmA7AA9EvhUKhSJ1mKSwVisZi7Bt6b8wZUWEZz7H0h3URdmm/TnHv4+iOOXz5eyEXPL+o+u2Ckbj9lQBZbjtl/hBaAtsxmWNpqM1EjmUoohEMa6Q74rdkux3WuI7loj+KyM9wMvf642tdVlfpriEsX/p6Xa3joFAoFM2RDG9hYy9BoVA0FBIINfBXE0AJS4WiAakMhLFZBEd3ygHiO5aGu+dJIBKP7phDRJP4aowr8QYjcfsrATLddqSEigQhOlqSHktTbCboZ6yMjhKJ51gCpDmstXosL3h+EfNXbKV/11yEEKYja2CzWggnGY/islvJctsJhLU6E2cVCoWiqSOEPi+ynAxebjOSl9uM5HWGU8AW1tMJgHBr6Nr/fzxy1N85jc8Yxixyu22mM+sJ4qDjgNWcvP1zTt7+Od1ZxcttRjKFvzPO+zhFH7XjNh7mx1XHs4IelK45gNGB51kdOIStFMDTNs4s+IAzCz6A5+YBvVUZrEKxJxhzLBvyqwmgUmEVigakIhAhzWnDabOSl+5kaxzH0hswhGX8t9/RHXVRWuGvfnrKF0rsWGa67ACU+ULmv2OpSoWtrSyrwnvi3jUVUWGZnkBYehy2Wo6lL6QRikj6d82Ne5tkPaGhiEaJN8QVx3dixjfr2VWp0mMVCkXzp+KWPB54ZjzHWpYA8AJXs5UCXuUybuER7BV+KLHSvsNGrteeobwkg5taPcFD3MZbV1+ODAu+eeVoAE7Y8C3DOhxPAVu53fMw1377Cn0G/cCM7sOYycWM6T6ViUzisVfvgk0w5pHHeX77aAAs2yDSJi3hOhUKhSIRSlgqFA1EIBzBF4qQ49GFXUG2iy2lcRzLkC7CEjmWnfPSsFkEFTVcQH8ouWMJUOoLcWBO4jXGac+MCe9J5Fjq60joWDprO5ZlUVHcv2te3NtYRWJhaQjJrvnpZLntSlgqFIpmz90yyBLm8vHO/0P49M/PD38YQr8hC1n0+SkUnLIW+ZKLgrvXctGGt5nR4WJG3DOLh9tNROYJ3up3OZUXW8hFL6e9t8Pt/OXZJci3BOJICe3gXc7lns8fIvekzSzYNIj/djiex066HWbb+IleaAc8WrUg5VYqFHtOEwncaUhUKaxC0UCs3VkJVAnGtlkutpbEcSyDiedRgu4q2q0WIjVKRX1JhaUu+sp8iUphEzuWhrBMNNmjwiyFjf/Y8RzLCn8Yh9VC+1aeuLexWgSahHCkdjnszvIAAHnpTtwOK8GwpsaOKBSKZosQvzf2EhQKhaJBaJbCUo0bUTQGv23XR2O4TWHpZmscx9KYbelJkuJqEbVLU71JwnvMUlh//O5uQ5fFcyyrwnuS91gmKoVNc1pr9UGGIhoOW+KPlyuO76Tfd5z+yaKoQ5mX7sButSBJLJgVCoWiKWP0Vt47835+5WDOzn+L7zr04rsOvThiyPcsXnoyIizZuqozPe7+jge5nf90OIsRC2bxxpRzufu2OxFuSduR63jReRWHfbmew75cTwnZ3DPmdoRdMnzKy3C+ZDTPwzaYbrkabrQxlTFQYWPGuGEsFl8CIOVE1VupUDQELXTcSLMshZVSzgPm9enT5+rGXoui5fDb9nIEVXMmC7JdVATClPmr9z3WFYYDuotYU+j5ghHy051xr58VUwobj6pxI/Ecy4TLSGm9HocNb6D6J15Yk0mFpSFSKwJhc+0GhVHHMjfdid2qL66wMkCWx86waYsBqgUBKRQKRZPmg4NYMOhEishjZNnLXJr5bwBWLjiG7wb24JitK2EL3MSDjPhtFk8ePBq5TiDGSTgDvhvegyLyOFNM5255JwD3HnM/8g3BVZ+8yDge47Auy2g7vAQOhfPWfgBfwVsFlzN8y8uMELOASY33/BWK5oiRCtvCaJaOpUKxrxg2bbEpdn7dVsFBbdJ5+5r+gO5YAlz8wrfVbuMLJS+FBejVMYcu+enVfuZPFt7jrgrviUdVKWzty0QdPZZ1h/dY8YaqO4/hiMSWRLEaIrUyUPsUXFGlUQrrYNLZR+g/q1B9lgqFQqFQKBT7M83SsVQo9hRDLBqk4pD9tr2cHgdmmf8vyHYBEAzXHhsCicN7AFw2CztqiLVk40YynDaEgDJ/8lqJeHMsLXXMsUzNsay+VosFzu3VLuE60l1VjmVNCiuCOGwW0p02ctMdABRVBBLel0KhUDRFhJgEtolcOugFruYF/nz5UA4euZyHuU2/wvvwt4EfsGNhB+SRgiefvR3/CMGnnMoLoy+FVvCfx0/nPc7lgZGTYTDcu0F3Hk/6/iOmciW/cghviVNhcz5/n/kIq+jOZw+cxYc7T+bMDguZefVIDLdSlcAqFA2IMW6khaGEpULRAHiDYTbs8jL06APNnxmOZaCGsDSEWqJxI6C7mb4awjLZuBGLRZDutCV2LLXEjuWehvekOawEIxrBsN5X6Q9F8Ic0sj2O+HdITClsHCFcWBEgP92JEMIUloXRvstwRCOUSAErFApFE+O50BVcGniVo5zLcQ8tZgKTOSfwLgBnTPmINuzgna4XI36T7Brj4RVGcO1vr8B64E24LPgvNst2THjmXm73PEhf9FElJWRz7cuvMGPkMHbKyTzEbWRTwtPTbyX9xkLOXLqQ8za8ThG5fPFi4z1/hULRvFDCUqHYA8p8IVx2K+c/rzucB7fJMC9rnaH3Q9Z0LH0pOJZuuxV/KPVxI6D3WSYSloYUi+dYGiQuhY1gtwqctgSpsFGR6AtGcNgsFHt1EZjtqT1P0yA9WSlsRdAUlK081R3LzSU+dpYHCYQjCdejUCgUCoVC0agY4T0tDNVjqVDEocwXotQXijsOw8AfirB6WzlrdlaYYvHgNlV9kTarBbtVEIpUF2zekC7U7NbEbz+X3WreJ+gpq6GITCosM132hKmwZo9lnMuqHMvEqbDJgobSogK5MjpypMSrryEnBceyPG4pbIC8aEiRzWohx2M3eyx9IY2IlHy/rjjhfUP13leFQqHY39DTYCdy7bhXKHHmsObHI3g8cxyTmUD66xHSX4/w9di/8isHIzsIxg+ZwK8cwrWLXkHLE3Bo9PO2tC0TnZO4zDODJ8Ug8/6v+XwGY0Y+zoj5szift3lsyF18xQCWjupOxeo8GArviM18IXSHU5XBKhR7gRaYCquEpUJRg3J/iF+2lbN6Wzk/bigx5yrWZOXmUiRQ7g+ztdSPENAxN63adawWQSROumsygQi6sPSHqkRtKoE/mW5bkjmW+vf4pbD690SlsJWBMGlJynYNx9KYZZmKY5k0vKciSG5alSjNTXeagT6G+7vw1x0J71uhUCiaBK/D8Mdf5i/8l7lHD+Taya8wnvvhUPSvGyUrtxyJKJZMDY7hPc6ha///cX+rm6lo44Rr4PT8//BY/7s4hN94TE7jRa7iRa5CjJA8u3QcowY9pT9WLixYcDZuvDADdq31cKw8rhGfvEKhaI40S2Gp5lgq9oTlm/TXzYE5biyiSjDVZNnGEgAcNove/2i3Yq2RhGq1CCJa7R7LZA4g6KWwwYhGJKoI/cG6hWWW255w3AhSIkRVAmwsVamw8W9aEQgnTISFqnmcldEAn1QcS6Nfs6awlFJSVBkgL6NqrEpumoPCiiBSSgJh/TFeX/JnUkdS02StUmKFQqHYHzBmVyoUimaMMW6kIb8gSwgxXQgxeB8+k3rRLHss1RxLxZ5gCMY2GU52lAcIJ1BcP20owWmz0DHXw2/bK+K6kDaLqHV7b5IQHgO3Qz/n4w9FSHPaqhzL3S6FjV8GCzGOJQlKYYPhhME9AJ7oZUbareFYJhOWTpsVh9VSqxS2zBcmFJHVHMu8dCert5VR6guhSXDaLPhDWlLhuKnEx47yAJomsdQ1qFOhUCj2MSfI/nw9C2bOHwk9A/zfyo/pOGE1I+bMAiNMp5MAl5PzHn+d7bTm4YKJyBmCmwY+SPqBEZ7cOZqLmcnURddxz/kP6YE+PaK33QR8C9NfvIGvn+3D7BeW8eSi2zlsynrkMIHoLeES4LEByHGNcQQUCsVuUCqlHNXYi0hGsxSWCsWe8NOGElx2CzarRReGkUTCsph0p41st50Dc9xkumq/nawWC4FwdfHkC0aSBveAXgoLeglsysIyaXiPTBjcU7djGSHLnaSs1VG9FNZwLJOVwoI+cqSmY7mzwphhGeNYpjsoqgyyqdgHwE1/PZiHPlxNSSJ3Fl3cRjTJ9nK/mc6rUCgUjY3hVn61eiCDhr3Dh4uG0LFgHes3HsaJLODPQw/lnvm3AzBx5cOIHkW8k34xlusqeWzLdRSSzg5ac+XOqdw4ZRpfjD2Zn+gJ2+Gt78+miFz9ti9P4mh+4MP8IZzw3g+8v+U0ZvcfSqf+6xB2CR/o65EDG+MoKBQtgBY6bqRZlsIqFLvLBc8v4otfd5iln/EcR4Bzp37DllI/153cjbeu6U+7bDcZrtpC6vTD25DurP7zykA46agRqBKWhivnTbEUtjIYIRQncEiT8fsrDYRIHt6TnsSxNMtaDceyMojbbjWfQ7Lb1Rw38veZS4EawjLNSYk3xJ9FXgCO75qHy2YxBWxNNpf4zP7Ujbt8SdegUCgU+5x+ExHzJR++PASA63gWcb3k6/F/ZXz3Cdwz7iHuGfcQYpfkP/IiOAC0SWncLIaTf2s57dlIEAfcA6fzMX8OORQugQvGzmU7bdhOG3bM7MCHrYbw3519GbXlKdqzkfJgOl8P+SscBpw+Sf9SKBR7ByMVVoX3KBQtl2BYI6xJbjjtYGaN7hftkawtuIzZjr06ZCe9v0yXnfIa5am+UN2OpbuGsDR7LJOWwkaTVuPMhtSkjNtfaWARYvfDewzHMnpMSnyhOt1K0J3OikD103nGjEpj3Ejsv5dvLgGgXY6bLI9+XGuK6GHTFnPJi0vM/2/c5a1zHQqFQqFQKBSKPUeVwioUMZiCsX02AKcffgCfr66dQFoRCCOA7gWZSe8vw2UjENaqzV30BiMcmJNiKWxQF06ppcLqYq7MF6JVWo3+RlnVSxkPQbI5lnWNG4kmvAaN8J4g2Un6Kw0y4pTCGkIx1rHMM4TlxlLcdis5HjvpThvbywL8tr2cwwuyqt1HqS9EXjRJdoMSlgqFYj/BDO35Hfga/jlnLB68tGULl37/Av8Wl9D9gVVgfMzfDEu+7wsHwDlj3uS9Ay/ksPE/8fApE2HhJCr8VtLPjnDB3H/RjT94YOxk7rn6IQCOfeFLvntoAH/xLOG/3r7MZDiHOH7ju3enmetRI0YUir2ImmOpUCgqAmGEgEMOyAASJ63qYstqisVEGOWxsS6iPm6k7lRYqBKU3hQcS6MPMt56NSkRCeN7oo5lnJ9LKaOlsInXa4hdw7Es9obIScWxdNpMIW9gzA2NvX1uVGSu3FxKuxw3QghzPT9vrJ78LKWkzBfipEPyOSDTxcZiJSwVCsV+xDsTOXXnB9ATHAT4mNM5T8zHSoTb5D+5JHM2Lz1yMS89cjG0hxe5ClbCe/kXcuP4h/jl2V48+PlNwE2kfxOBdHjroMtZRXcWT+kFRUARfCe+5ejl37DTm8FfZi7h4UUT+U5Ygf02TFKhUDQDlLBUKGKoCERId9iwW/W3RqbbTiBcPYE0otUWW7NG92PW6H617i/TXbs8ta6UVaieCgv1dCzjJMPKOhxLRHzH0h/S0CRJHUuHzYLdKqp6LL3BpImwBunOeI6lxGYR2KxVH01GQmx5IExBth7E47TpwUrLN5VUu31lMEJYk5x4UB7tczxsUj2WCoVCoVAo9jV7Z9zIfo8SlgpFlIgmo6KvSkRlxZSXGvxZVIkmqTOAByDDWfv23mDd40ZcNRxLf4rjRvTHitdjScJUWNBFZ7xKWMNRTBbeA/qxiE2FTaXHMt1pqzVuJBTRTFFvkBtTFtsuKiyFEKQ5bcz9eUu1eZaGW3tCtzwObOVWjmUjMGza4qQzRpv74ysU8ejPQuA08MNnQ86CoTCTi5kn+rFAnsgMcSUPT5jIS2UXU0465aTDR7BjUAdYD1mbt/GkuBnWwB1HPsEIOROeBN7Qy2vfExuYzXn8POcQfp5zCBX+O/hRtCN/fjn9hi/EfUQxXHU8MA9QZbAKhWLvoISlokUTuwktqgwgJTjtVW+LeOWlv2wtB6gzgAeqXETDsQxHNIJhDU8dpbA1U2F9KaTCGu7oox+vrnWZJpMMssQI76mtLA1HMZljaaxv/oqtaJqkZA8dS7u1+kIzXTZz6Qfm6MJy1uh+XN6vI95gpFq4UjCsYbMIctOdtM/xsK3MTyDcAvO+FQrFfsexMkLobwKGAodv4rvLBnCPfIaBj3/FM/JaWk/ewJUjX+djTudjTgdfGXz4O1wIpc6Z/Ef+jQ8fPxmGQndW0XXu/6DfRFgDnPwPHhMRjnr1V4569VfS/xqBnE7wLjzE7YzNnFI1H1OhUOwbIg381QRolsJSCDFYCDG9tLS07iunQFM/A97U17+v2FGmz1B0WJMLy9XbyoDk7qFBRjSp1ShP9UaFYp2lsAnGjbiS9HQaa403HgWSO5Z6eE/tn1ekKCwtFtA0SXkgjCbrnmFp3GdNYRjPsRRCYIuKTcOxBDgqGrBUGawSpxFNYo3W/LZv5UFK2FysymH3B9TnkKKlYob2KBSKlkMLHTfSLFNhpZTzgHl9+vS5urHXomg67Cj3A1QTNoZYi52Z+MvWctx2K5akTYs6VY6lfvtUnEeICe8JVpXCuuyWpI/ptlsREHc8ij5uJPHjJRo3UlUKm/yjwioEEaknwgIpO5agC0OjjDcU0UwRGYvdaiEUidAup0pYHnlgtn77QHxh2aGVB4BrX/sxYUptvL7Y5o4h7lricwf1/BWNw+L+J0Me2NdLZiwfRpvhOzhzyUJuCTyCb5yb6299ET4D7oM3IxcBkDkiyLev9KTfnJ/glnGM1Ibxs+UoKm6zUk4Gv3IIf3Q6HFzAOTD88/YEeB2Ad2ZfTL9dC7mT+/lL9yVwH4AucFUZrEKh2Fs0S2G5p7S0jUdLe76JMB1LW5WwSeRYnta9DU9f1KvO+8yoMVvScB7rKqOt6rGsGjdSl0MqhMBqEXEdS03KpI5lovCeVEthrRaBpkmKowI8pR7L6LGpDOjC0h+KoEm4rF+nWtfVxX6kmmOZn+HEYbNUm4UZ0fTwH4D2rfTrBsLVZ10q6kdjfT7s68dVn4OKvYEQk8A2US9//RSuXD6VEbNm8cawc+FhSB8WYcawYdAenlw6mmX0okPwTwDuf+Uuri94kX5bFrLwjFNwnSM58LhCeAj6lS1k8fSTGT9zAg9smAAd1/H3sU/Tr/9PADyz6Cras5G/Df+Ue1fdwt1CTzpXolKh2Ee00HEjSlgqWjSaVuXk7SjXhWU8x9IQluc99w2bin1cdGyHlO4/3WFDiKrwHiPgpq5xI05b9VRYb7BuYQlgs4i4jmVdqbCJeixTDe+xWAT+UITbZv8MkNIcS0OsVvjDkAWFFfrxz605gxOwW/VhKW0yXdV+XrNPM6xJXNEe2TYZLgRKWCoUikZmCdzWexK544r4x8NT4CC4n/G8NmcolzwwmxFDZvHPOWO5rmw6Z2e+w1mO+QC8yTBGbHmeGUdeg2uF5AL5LwBmdRiBeFzCenhAXEpP+QNLi/phEW+Crh+5fsiL8O7v8HeYx9nAwsZ57gqFokWhhGUTYk/PqLeEM/L1eY6BcISfNpbQPlpeub3Mj80iqjl7mTWEpVGaeljbjJTWY7HoMxfLajiWdfVYWiwCl91iCsvPV+8wRWkybFYLwUhtIaVrzTpSYeP8vDJgrDf5R0WG00aJN2Q6s6nMscwwhGVUGBZV6GW0eTEpsAat0hzYLBazzNXAZbOwq1JDSokQglZpDo7rkqs/J4vAabMoYdlA7K/OZUOvqyV8TioUCoViL2OMG2lhKGG5H9AUNjJNYY31Zc2OCsKaNEspd5QH6NY6vdpztFoEGS6bKSy9prDMTPlxMl32qvCeFEthQS+HNcaNaFodpaxR3HYLJb54n2QyqWMphNijUtj8DCebin1sj5YTp9JjadynIV5NxzK99m1zPI6492n0Y1YEwmS47JT5Qmb5MegJv4GYGaRSSsLRclmRwvFsCdQM1Gnq7/Fyfxi3vVnm0gEghJgKnAoEgArgBinlD9HLPMArwNHoRVi3SCnfb6y1tmSE+Kf+jysmQjo8sesmXmt1iZ7suBpWXnYMPV9dxjnj3+S9VRdy64NPc/sd93Aan3HzkKkAfD6nP51Yz4wXroEr4K0xlwPgedbH1/RhMhNYkH02xzIfy12SU+UHfGYU04wAzjkILgfPFC8nyb4s5Ix9fRgUipaLpMkkuTYkSljSPEVTc2Nv/I5+3aaPDfGHq4RlfkZttyzLbY8pZY1gtQgOqFGSmYwMl8108nwplsLq17GaDqkmJdYUhJDLbiVUEaTcHyLDVeUaahp1hPfET4WdsWgdAGl1zOy0Wy3kpDnYVam7jobTm4x007HUj20yxzIRNosuIEq8IdIcNiqC4WqP7bRZKfMH+GNnBVLqznNYkwj0Hk/D6dxd1GdHdcIRjT+LKmmb5a77ynsBfyjCL1vLKMiu/f5sRom0HwI3SilDQoi/AbOArtHLbgHKpZTdhBAHAV8JIbpJKSsaa7EtnStfnspLYhTBSzNxvhqg4/jV/LngUDgCjli1hje6n8t78y5EPCL55Y5OHLZ0Pbyrh+zcyf0sHnsyp075gM9Wn8WIVc8zY+k1zOh+DTPyroGvfoeXYPrnN8D7kP1sCadu+ACAInJZJiK0lQV8IZboi5FKWCoUir1LixSW9d0MSinjJmY2FQLhCH8Weemcl1ZrlENLxhSWUUdrR5mfbvl5ta6X5bZXcyw9Dmu9xEimy26mwhruXCqOpdtuxR8t44xIaYqoZBihP+sLvfQ4MMv8eV3hPSJBKmxE00VnzRLUeLTOcLKrMojNIlK6fpWw1I/JzqhjWT9hqT9OqS9ElseOlPrcS4O8dAe+UIQyXxiJJNtjx+OwUeYLUeILUewN0SpOT+ee0tiCs7Ee//cdFWwrC5ivQ4Nyf4ifN5XQKTdtr65tS4kPSVXoFTQrQQlADQdyMXCgEMIipdSAYcDl0ev9LoT4ATgTeHvfr7Tloo8XaZyTKwqFYj9Chfco4rG9PMCWEl+1UQZNiTJfmGJvCHepn/bREQwK+CUqLEMRiTcYZmd5gDaZ8R3LUl8ITdOvF8/VTEaGy8bWUn2UiTHH0lNHjyVES2ENx1IDS903MYNr1hZWVBOWkrrnWMYL74nI1F/zmS6b+fipYPSZVvirHMs0h7XOUSyxGKWwJd4QOWn6J3hsKWyGy073trXdU6dNLxneVurfK8KyLhpbeKbC7giy4ui4mZp9vr9tL8cf0iiqCJqBWHuDLSX6+8wfajH1R9cDH0RFJUAH4M+YyzcA7ff5qhQYKTovTbmWBfJEBt76FWd/uYDuA/7KTwN7ccEDc3nr7LO5cPsbcFGY1267kMPGrAcXyN/vAWAC41n8t5P5rPdZ8B7MmHAN7luKuWrVizxtuRV6HASHgvuIYnwbc3jny4vh6ejDnwiD5dvMW3o8/DgR2bsxjoFCoWhpKGEZh7CmEYwJ/PAFI4Qiks3FPjrkNj1hZmzytpcFaBunRExKafb+pUpT2BgnY9i0xSzdUGyWgC7bWEJYk7ROUAq7ZkcFG4u9aDI1tzGWTLed33boItYohfXUUVoKVAvvSVXgzb62P4fe/RFrd1ZW+3m8/slYEs2xTLW303gdnDXlK8KR1Ox9c9xIsKrHMjeBW5nodWaNurjF3iC5Pl0gxpYAJ8Jw7reV+ehekHq/bFNnV2WQ1dvK6ZqflvJt/KEITpslJZfemPcaqhGYtK7QC+jOcqrlxxFN7wuuT3XAlhIfAIGQFvdxNE3yv61l9Spl39cIIZaiC8R4tJFSRqLXuxAYDgzYzccZBYwC6NAhtZRrReo8KH8DoC/9Sacc/h5GPC9J71PIBM9keAZmjR+G9k4aPAGX3DEb3gdmgCiKfoYuQvef/wusBn4B35U5PF15Kwdry/lNfAdfXcUn/f/KCVf9ADMgd9ZmAPpbFjFPrMKYXYkaM6JQ7Fta6LgRVRcZhy0lfv63pcx0cIy5gGsLm2abSiiiIdDFiRGuEku5P8zKLWWs3Fy67xfXSIQjGqGINMdifL+uGIDWcTacWW47Jb4Qv2zVxWEqojCWDJeNMl/1VNhURoe4HVZTWIYjWkqlsE6blQNz3KwtrC4skZDs5iLBHMv6uvTpTltKMyyNtdqtoioVtjIQN7gnGS+N6ANAia8qkTYzBWHpiI5z2VZa+/2wPzBs2uK9UsK59M9iSmOOVV3oJayl/LGzMq6jXROjxzZY4+TC+ujrMRjRUkrp9QbDLN1QzIZd3pTWabA5KiwjUppriWVnRQBvMGK+5mLZUe6nxFv7NvsaKWVvKWVegi9DVJ4L3A+cLqXcHnPzDUDHmP93ADYmeJzpUso+Uso++fn5e+vptDj0MliFQtHiMVJhG/KrCaCEZRwqA2E0iTkiIhx1/Gq6QPsabzDML1vLUho7EUswrOG0W8hy29lW6q9VJhaKPr/6buL2N0IRjV+3l+tzEevAEHgTB3cH4Pv1uwCSlsKu3lYGpCYKY8l02akIhE1n2GWvPTYjHu5oKqwvGEGT+izHVOiSl85nv2yvJkw0KRFJx42IuOE9wYi2V/typYR3ftwEQGF5sF79lRAzZ9QbNPtYY0thE+GIHsttpb56PV5TZ3u5XioajvfLjsPOaKBSUWWQ33dU1Ol8G8IsVKMUdl1RpZlKXBo3tbg6W0r8aBK2lQXM+bKpiG3DsQT4s8bnmZTSLEmPff7Dpi3mvOe+YV2hl1+3V/DHzoq4s2D3F6KBPY+ji8r1NS5+Gxgdvd5BwDHAR/t0gS0YU1S+PpEPGMQHDOKURYs45rSVvNbhQt564Gye8txAd1bBabCI/jw5ZjS0B5kv4BIgDB/2PZkP+57MiMue108fLAauA2b/AofBBfP/xW8djmSEDPPMbVfxLGOgBBgNJ1q+4kTLV8wTp5rrksqtVCgU+4hmKSyFEIOFENNLS3fPgTNGPBhnvPe2Y+kNhlmzo4Lzn1+UdONU5gtT5g/XW+CGIhKH1UKbTCdhTfLThpJqlxvPb0eZv95rT0RDOy4RTdbpmPxZ5KXEG6LUn3jjaqzL6HXs2zmXbI+dH/+MOpYZtR3LTLedYFhj2caSlEVhLBkuGxFNF5XeYDhlx9MZFZZFlfrG2paiwOuSn4Y/FKl2vDRJHeNGQMaZZBkIazhte+9jwmqpGnNSVBkgr56OpdNmxeOwVpuhmYqwFEJgtwq2NeBrvimwI1qxEI4RfoneV1rU9ctNc9ChlZtirx52lAzj8mANV/LPokoyXHYcNktCYRn7mWF8FjmsFtYXVsZ1GA1KfSHz+Wwp9ZmBTre+/XO1z6CiyiCBsF69Ea4hfI1QrWyPncKKoClA91NeARzAbCHEsuhXbvSyR4BsIcQa9MLKUVLK8sZaaEtE/n4P/ARfP/5Xvn78r3AX9Pj0Oy4ZOZsLvpzLKg6jgC288eq5bB3bmfV0hoVL4TjIvW8zfw5sw2QmMJkJ5FIIm+C124ZCDxgv34An4a1Bl8NJUMAWrh/yIjPFWdAJfunbifdEFu+JLGApcLwSlQpFY2GMG2nIryZAs+yxlFLOA+b16dPn6vrcbti0xWaJJMCuygCd89LMs+9zl23h9+0VDd5XWOINUVQZpHWGM+mYhqpeST9HtMtKeL2ahCIa6U6b2Ru4trCCfl1zzcuNs/OGM1B7fUHW7qygQyME/wybtphgWOPnTSV0zU9Pet2NUYei5qYxHr7o2JA2mU465qbx88YSgITjRgC+/G0n2bsRPGL8Tsv8IbzBSMqOp9tuJRDSzBMc9hQFbZe8NDSJ+TqGFMJ7BLV6LMv8ISKa3KvC0iIEEU0S0XQRU1/HEiA7WqpcZjqWiX9Hxnt32LTFOKwWtsUpDa8P4YhmVjbsSxL1ONd1Msd4jxsnkzbu8vLDn8WkOWzkpjuq9RiXePXff166g0y3nY27fHiTCDyA4piTccGwhsNm4YLnF7FqSxn5GU4cVgu7vME6TxIZ6+zWOo3V28rZWR4wU4Rjn3txtGe0IEs/IbSlxE+Gy0axN2RWZoQiGiXeEJtLfLjsFpw2ay1H1ahy6JqfxrKNpUS0uj9DGgspZcK6VSllJXD+PlyOQqFQKBQmzVJY1kWJN1jtrHlRRYDCyiAHt0433Ur950FzoDqAPxR/s7GnQTbGJqfcH04qLEMxITyprkNKSTCib/AcVgsWUbukN5GwNO5vSO927KwImv2Ie4NkQ9pLfSE0SbUS4HjP1SjlTaXML3ZsSKdcDz9vLMFqEbXGJABmz6Ae3FP/t4zhoJX7wyxcvSPh66gmbtOx1DfrtlRLYaMCPPa1rElJkkrYaHhP9eO2aZdeVuisZ+lvfbBadGF5/vOL0CTk7kZCa5bHkdCxTPSenDW6H6Ne/YH1RXtW3r6jPMDGYh9bSnwUZFeNF9A0SXkdIiyWvRWGVfN+dxqlsNGTDr9tL0eT+izX9UXeaicRCisC2CyCLLcdIfT3hreOtNXimB7FwooABdluwppEk+CK9tTurAiYI2YSsT3qWLodNr3H2Rs/9OeXrXp5ekUgzAXPL2J9USUHZLpw2CL4QxqaJlmxudSs2uicl0ZhRQB/qPprvSIQxm23ptTHrFDEQy+DvRxxx0S4GpYO1NssHhp3GxFsrLAeS/ZxW+nOL/xV+4Si+9rBVnhi5R1M2fZ3srO2UjrsADrOXg/f6J8lQ/vPhhK45OzZXLr0BR7oPZmVZd24nmcYwSvYiDBizvPMGHIN5ICTIHB8dEVPRL+ftm8PhEKh0Gmh4T3NWliu3VnJsGmLa23WdlUG2VkRxBeM4HZY2eUNUeIN4Q9p5ngH43q+UAQp9Q1wMKKl1HtT302i4SyV+UO0SzL7yrje9nqU7+kpjHoKprE5XFcYX1juTOBYLlmr9x/uToR/Q2yYDScqXuhH7P1XOZbJf0eajI4NibpjHXP1hExHglLT2PEIEwZ3Z+DhB9Rr/YaDduObP+klqSnuXV12C75ghF3RPrdnLz46pdt1ztOfT7Xfl6x73EjNl/amYv141sexrO/v2WoR0SoB/XebV89RLqA7lqW+IGX+EA6bJe7JgXi0zXLx7dqiej9eLIZ4X7uzspqw3FkRYH2Rlz+LKs3X194g0ftLSqnP9oyKQoMqx1I/3kXR11a31un8srXcLGEt8+tzPltnOM3bux1WKgPhpO/pXTGlstvL/BRku83XoctuIc2cXZq8pHZHeUCfnyr032+xN4QvFKl2YmfYtMVVY3yCEcKaPm/YYbPgslnwhyOU+EKEIpJu+Wm0SnMghKDEG6zmWEopqQiEydmLJ84ULYRunZj+9mV8wUlczOsArJrRG3Gk5O0XZlG66gBG/jGTkR1mIsolnAwTjhjPy4zERoSLH38HcaKEr/S7u/nFqaS/WEjF83kEcEAYPHj5Yv4ZfLHiDO6+7U66s4rBc96mByuYyhiqBKXqrVQoGh0lLJsnNTdChkBbV1hJ94JMc+NT6g8RCEXMssCiyqDZM5TutFHqCzXIfLTa69E3ORWBcNJwDON6O8pTF5bGRtIIK3HZrXyzprCa4I7I5KWwS9bpwtIQdqXeEGt2VNBxH41eMUoNa/Zt1cRwLEN1lLFtLvGhySonslP0eSQKx4kVloe1rf9oisyogxbRJJomsaY4PsFdo8eyVYr9hwdkurCI6sJSD+9JjB7eU8OxLNYdy39f2Telx90drBZBICzN92Ru2m4IS48+DqbcHzaPdSq0yXJR5g/Xq++1Job7vK6okhMOyqv185Wby+IKS28wrJeW7sFjx1LT8d9ZEWRdYSUHt0mvJpjMHsvoWYTC6GvLExXjRprrqi1lSEm10m+P3cquymDSpOASbzA6JkczKyuMYzHt0j50ykvjoDvn1zneaEd5wDwZluWxQ5F+kqzmsTKqGMKaND8nnFb95MKuyiC7KoPYLMIUlQA2iyVaKq4HUwXCGmFNku7ae868ovnzjlzCeR1gEPPpwQr6TfkJgLljB/I+p5FLEQ92vwnxpuStwWcz/ajLGHXZq9x7xn383qUD3XZuQmyRjBr7FNfxLAAfczr/OH8KzIbgOCeEoYt4Fe4GToB7B9wPTmj9yQbmjTtfz/8dCvLtxjsOCoWiZdMi634M4bG2sAJNk+YGvMyn98B57FYsQncsjZ6hjOiZ9r0xeDsUkeY8xcokJWKGsNxWj2AJw928/9wegO4aBMJaNRERNh3L2vcbCEXMCH/juX/zRyFFlcG4gRqJQnt2N8zHH4qYgrKuMQUbUnAsy/1htpT4yUt3mKW9pmOZwJkzhKVFQLvsxI5yIgzHMqxJIjK1uZAArmhP7NZSP3arMF+DdWGJlvTGltxqdTyuHt5TnY3FXjwOKzkpjg/ZHdxREWLMP8zPqL9rlO2J9lj6QimNGjFoG+3Lq8/7qSbGe2J9jSqAQFj/+f0frKr2ujfeB0UVQUp8If63pSzu/Uopq7lq9X3/GOE3ZTEl/xFNsrPCCO+JBiZVBLEIPRjKZhEx5fb67Z22KrHljr4efUk+A4srg6b4e/DDXxg2bTH+UAQBHJijv3fcdmu1ypB4bC/zm+9Hp82K2241XyOxeIMR84SQ8Vn9xIU9ufKEzoQ1SbE3SE6MqISqknLj/owS6vQU318KRU2E+LCxl6BQKPY31LiRloOxqfpjRyXbyvxmYmaZL4wvpJfH2q0WXVhGe4YePE8XZr4U++PqQyiimc5AeUyiaexmMqLJmFLY1ANHDIeiTXQ+oyu6UQzEPA+jFLaoMlgr+MZwAdx2qynsftuuhwzWVXLaEBiPnx1NZtUSlCJLKU2HLVGPpaZJ1hZW4LBaqrmtVY5lcmHpcdiw1DMRFiDTXcOxTPE+jJCfzcW+ao5LKtitlhrlfrp4TISI12NZ7KN9jqdej1tfDshyV0tn3R3HMsvtoDTaY5lKIqyB8Z4Y8/rSOq8bT9gVVwbN11pNYWmcDKlMIKCM/st1CRKey/xhlm4oqXW/qVAZCFMZ1MVcqa/q5I/hNkJsKWzAfN3brRYzIMwQ2/aYky1G+FdNt9E4NkaQ0SV9O2C1CELRY+CPhvgYqcYeh+7EX5AkBXtneaDa+zHbY6fcH67WiqBJiS8YITfNgaBKKLbLdpsnizQJrWqUuBqpsaU+/bO9IhDGIuo/RkihgKoRI51Zz1sbzubAswvpd+tPsAxYBidFvuCsbz6j3/CfuOPVJ7hx8kNc8OpcRm15Ac4APhIcNGcjokBCERSwlaMG/MpRA35lJsP1MSKT4L2zL+T3Ve3hzdNoO3kdnAVnfjmHlZ90I5sSmAHMnqR/KRQKRSPRIk/RGhvuVxev58OVWwHIS3eyozxAJFJ1Rr0oWkoFurvhsFka3LEMRsuwPA4b3lAk4eDy2GHfqZbCDpu22Jzr1jo6nzGe62Bs1qSEwoogB2RVjdwo94fI9thx261sK/UTjmj8vl0fuxJJUrYbL2hjdyjzhbBZhOlKFVYEaJ1ZeyTIec8toiIQNsNgjDK3WIoqg/hDGh1beaqFdLRKc9Au25Wwx8pwHI2NdX0xXLSKQJhgRCMjRWFp9ApuKfXRqp6Cy24V+ILVx40k+31YBMRWEA+btpgVm0vp1yU34W0aAptF0D7Hw9qogMrajdTdbI+dYERje5m/XqmybbN0B62uEutEGOOHLEIvhY3FOAkTb+asJiWVUWH5R4IRRoZ4Gznj+7hJxckw+hMPyHSxpdRvPj/jc8NpsxAMa0gpKaoMmg6ew1YlBreV+XUnM+a16rTp4V++YBiovaaSqDuam+4kP91pfs76Q5Fqfa8ehw1NBgiEtYT9sNvL/NXKmrPcdraW+inxhcyAJ18wgkR3GsscYbzBCBahX7dTnn6yyGYR5okdA0PgGm0OFYEw6U7bXj2BomjutKP31auQEwTyaoHIkhw8YDkAL3IVE3tN4q2ZZ3MiX9Jx1wbkXwV5bTZRmHEg/xp+AfM4m4LQFgrYwm27nuSeoQ8B8NOd/RAPS3gOuAcO6rCR4RteZqZIY5Scy/TlN/Dhm0PgW3QBqlAo9h+McSMtjBbnWHqDYTOkxBeKmAKrTWbVRsljOpYBs7wqx+OIlu017KvE6J+zWwWZrtpn5Q2MYB2Pw0phRbBWXH4ighGNDKfNLE9zRR2I2OeRm+4wy8BqBviU+cMc06kVLrsViS7gPl+9A6DaOmMdHV8wwk8bS6qJ4d1BSkmZP0Sm226WxW2KCuWa7pqxkU936hvVeGVz5tiOGr2UQggOzPGYwSI1sVoE3fLTzNLJ+uK0WRDoot0iBG1SFAqxjmV901INx9I4TlLK5HMsEdXmWEopCYQ0s3xxb5KX7iDdadWFy244wobbv6nYVy/H8oDoCYpgiu+lWIZNW8ytb+sbxyy3nXU7K7ng+UWALlTCmsRuFYQispZw9QYj5mdQIscymECY1lUSG9YkhRUBctMctIq+ZozwK6OH+qRD8pHobmphRbCaYxkbEGa852aN7ses0f0QQuC2WxP2R5ZEqzuyPXbaZDoJRvTZs7qwrPpT467hfA6btpihzy1ixeZSSn0hKgLhaIlr1W0yXDacNgvrCivN0SDG7T0OG2nR+3Ta9KTnjq10xzLHY69VAv7I0KOi69XHqfiCkYTvfYVCoVAoFKnTrIWlkYwYi5GCaBUCfyiCPxQxy6AMR+qlEcdw6mFt2FVRFd6T5bbjioap1DWDrT4YQs5utZDhshGR0iw1rXa9iiphGXu7ugiFNfJjRLPRSxXbf1fuD9MlX9+IxbqhgbBGIKzRt3OraoLUEKWJEnJ3lAcIRSRrCytTFuIyOoz9j50VBKK32VziIxSR5qYSdJFVXBlk6YYS1hVWmr8L4zaXHtcJqNrkxlJUUXWs60tuujPltNGaCCFw2Cy47VaOKMhMeRNrPF6xN2SKhFSxWy1I9PJuSG2OZeyvMxLtB22/D2aXCiE4uE0Gh7TJ2K3bGyFMFYFwvXos3Q5rtZLN+uKL9g5mue1Iqk5ubI6WZBsOeE1xaAijNIfVdGojmmR7md98PRtiN1HPtaZJvcKixntwZ3kATULrTBcehxWbRZifgZPnrQIwj3NxZVAvhbXECku93HxrqT9uSrJRxhqPXZX647RKc5Cf4SIY1ghGNHPUiIFxwiRWoJZHZ7wWVwYZPv1bAMYNPNgMGLMIwWFtM7BZBL9sK4teXy9hjU2bNcSw22HlkDbpcV+/xuul2BuksCKApH7JxwqFgRCToN9EciO5vPHCucxpfyZio+5WZlBOBuWMm/YsH3jOwkmAtuNKCD6YycVtXyLbUoJ4QTJiw+v0YAUzteHcceQTzG41WK8ls0HB/WtZ0PtEmAHubsU8uOEmZi4YyXj5P87lPfgU5NWClz6/GKReAquSYBWK/QRj3EhDfjUBmvVf02BE49dt5dVEhjETMN1lQ5P6xttt189yt0pz4LBaaJftJjfdEU2FDZLltmOzWnDa9DTBmqE1Ea2qtK2+FEbFzsNDjyQt6ipe9/rS2imPUSF5/cndALj6Xz/Uui/D4at+DCRtMnRnxnAe3HarKfiklFT4w3SNzj687/1V5m2NDXGvDtk4o45DqS9k+lrxehk1qTsmGU4bSFizsyJp0i3om8rlm0v5fUcFhRVBc2SBMW/TY7fiiG5M//nRai6YtphwdGO9ZmclmpT4o5v6HgdmAcR1SwvrOQ+yIeneNpMjCjLrNRMy1uWpv7DUn6NxQkKTMmmPpT7Hsur/hkjaF44l6KLGvZulxlnuqmNTH8cS9BEzwYi2W+FS/lAEp91iCiXjPWWMaTFCj2o6fOWBMA6rhUy3nT92VHDB84vYUa6PJzHCfKp6NMNxT2TtrAiwrrCSNTuq3l+alGwr9ZPhspmlnZkuG2W+cLUwoIMMYenVS/2N14ojejKi2Btke6k/bpiV22EjFNHvq+YxM/rRczwO2mTqpbDGibzYEmerReC0WaoJVKOXujIYNtdpfG4ZOG1WDmubicNqYfW2coq9IXMWrfHZGSsQsz2OuCeRDGFZ6g2ZwWROm8X8fFQo6oPj/TKK7mvHE9zE6YGPWTmmG4fwKz/8eAI//HgC4kTJX5YsIYNyOAO+fqQP7dnIH58fzs9zD+GNDuczcefDDLPMgifhLu5j5ZhurBzTja2LOjNw5Ff0DH3L6MxpfMzp8AXMZxBnLl0IW0H8Q3KleBH4hxKVCsX+hBKWzQ+HTd+s/ra9whSXhmtlbEB9Mf0/BVkujjowyxSZgbDG5mKfuUE0+vIKK6qLlu1lfv63pcx0BnZVBlmxuZTzk4RTGBiCMT/Dicuu9zDFS1s1rnd4O104BeMkRhZWBPllazm/xzieoYhm9lcaGM4r6KMAwpo0Zx8GYwJ5jM1tQbYbh1Uv5yyOKTGN51iWeEOENUlBtovOeR4qAxEzrTURyzeVxvQ+iqqkzWjfmstu5Z1r+5PpshEMa5T7wwihi55dlUG2lPgIhDVsFmGmthbHK4XdA8dyT3HsRplnbJjI7pTCQtWJC1lHj6U+Yqfq91klLPfNSJk9ITsmtTajHo4l6L+X3e2x9Ic03Har+fnhD+tia3L05IzHoTvtsQE+UkrK/SEyXDazvDwQ1swTQsZrPhjRzNmi/jjrK/GGsAi9r3Ft9ORKUUWQYESrVrKd6db7T9cWVhIMa1gtwgwtWl/kJaxJs+fQCOrZXhZgR3mglmM5a3Q/7j/3CKC2WNbXFFsK6zJP/qQ7bbVOGngc1mpOrpFeWxmMmK+9mp9boAvAw9pm4rDp6dZGib8n6j6ncnIi3WnDZhEUe4NmD7qjRkjRmT3a1nk/ipaNEdqjUCgUiiqadWOJQHDYARn8sq2cP3bqZZPGGfTYYAhjYyiEMF0dwyH6ek0h3Qv02YXGmf2iioApxEDfGErgwmmLyXTbKfEG8QYjVAbCdW50DZGal64PIk9z2qiM01f1Z1El6U4bnXINAVh7s2kkyv6xs5KD2mQgpSQY0cyNZNXztRDWJKXekDkWoVWao9q4AagKOcqPrs1ps5ibXLfdmrAX1G4V5mD2ikCEbWV+3HZrrXUYrNlRYa6hqDJgCst1hZVYRNVxb5fjYWuJj7Cmkeaw0S7bjTcYYWupH6fNitNuMX9vxfFKYQ3H0iKahDMRu0lOdYalgXHMCmMdyyTXX19YaZZwQtW4jPZ7WVgav4fdGUVjUF1Y1t+xjBewY1BzXcb/jd7By/p15PYzD6Xr+Pnm6zYQ0hDR121NARWMaIQiknSXDXfUkfbFhHb9WeRF0yShsEam206pL4Q3EMZls+CN9gJGNEmpP0TrDCcOq4WNxT68Qb1E3223Vps9afz78192EIpoOKwW80SZ8b67eeDB/F/Pdpz51JcArN5WpveIxnEsjyjQT2xVBMK1gpae+XwNoL+PjZ71QFijIM6IHrfDSrE3hKZJNHRB6Yp+vhgi2wjpqvkacdgsHHZAJuuLKslLd5iXn/fsN3ETl+O9140wsHjCUqFIlcXyPY7beg/iEo1yMhjifJePZ/wfp474FPFntL89T3D7gHv4hv7QCc7nbR5nHOed8jqPcgsAQ53v8ezMcVw6/AUmMZEjvXr/Nl/A+Jcn8DrDmbL972iXpMFgeJmRTO49ga691/DYzLvg7n1TWaJQKOqBMW6khdHs/5rarBby0p3RmWYhcyD47Gv7m2Emt595aK3Nh+EQBcKa2StV0wUyMASYcRbfcCgSJbyGI5p5dn9necB0L0A/m66He1QXbcGIJD/Daa4rFK5dimY8nlGKF9EkUkLrjNqOJejuiFGCluGy1RpREQxr2K0Cm1UvE+sbTQh12izYrYKIVl3cBkIRSnwhU4gCdGjlJstt588ib8IN/JodFViFwG4V1dzU9YWVuKJlyqCPEfCHIlQGIqaAaJ/jRsqo82yzmr+rRMLSZhFNJv3RtQeO5YwrjgWqnG4ZHamTjNhXXCDqbmXtxRmWDUV2TClsZj1TZR02i1naCanPizROJnXJT0OI6nNDA+EInfPSeOua/ngcNvwhjaHP6dULxns0w1n1no8dA7KhyEtRZRCJXj4q0D9PtpT6WbmljKKKAGX+EFLqJacF2W4Obp1ORNPLwdtmuaq9vp3R3vGP/7ctmpQszPmtf0SFpTHixXAol28qrfb/WHLSHHgc1mrzMQ2nO6zp5dZuu5XW0TJWi6j92p01uh93nHkYYIhq/b6MNGrDjU02t9Vhs3Bwm4xqJ+5sVkvK7+1sj4MSb5AtJX6sQlRLiVYoUuUvu/6LOFyyq0saLzOSj9f9Hx+MOJX5nEXW37aR9bdtPDVgFA/PmsgMrkDuFHjwctHIdxnKbF6dNop/L7maRzNvRG4T/HvC1RSSy1jPFMZ6pkA2PCCuA0D7MQ3OBwqh1+pfeG/KhazgSLh4Ehw1CXlkox4KhUKhAJq5Y2lg9KqtK6ykqCKIx2HF49A3dt5gxAyuiSW2p62msNxZoxTWSFL0BsNo0ZRBiF/SCrpL+ecuL//3zNdsLPaRHzMiIc1h1YVSMILDZqHYGzSj+/PTnVgswuwLq74GzXQTjdJTo6y15ngOow9pW5nfFJ26sBTV7jcYdTgMOkSDMNwOK/275vLrtqqSWyn1sB6LqF7CJoSga34aSzeUxE1qHTZtMb9sLcPlsJgb9MKKIEOfW8TKzaXVRny0y3aZz9HYdLrsVlpnOtleFsAZLX122S3mYxkiYdboftVm9tVkf3QwY0th6ztuJMfjwGoR5kmQ5ZtKSJC1pFNjPx4IaU0m0MRlt0RLeevvWLZKc7C5xMfO8kBcZ83AF4xQWBHgwBw3QlSVa3eJ9ia77FazzzoY1swSYiOl2HD4Kvx64IzxurZahOmkO2wWNuzymjMknTYLHoeVkpjKgo3FPjJdNl14RZ9rTpqDTLedMn+omltpkONx8OOGYixCkOOxmw6v4VjmRt3wN0YdR/cJHzP7x00APHr+URzVPrvW/WW4bNGQID3xdsXmUg5qnU44opknbozPgFZpjrgu4qEHGH2eIdNNz0t3smGXXp7rtKUuEneHbLedEm+IUEQqt1JRb1QZrEKhSImGHzeSJYSYDsyTUs5r8HtvAJqlsBRCDAYGZxToQTdGIuH6wkp2VQbNjZQRnR9b1moQO6jdKB0zywvL4zuWlcEI3pA+W81mEZT74wdvGMPJy/16UEVejKNopBtWBsJsKwtTWBHEZbfqwjJ6PbtN1OoLM5wQIaqEZVUIRnVRYoirHWV+c4Ob4dJHepTFDFQPhmW1ABlTWNqt5mgUg+1lAcr8YTrnenDaqvc52a0WHNFes3hukC8UMcvqDDHlC+m9VrECv11MkEx6jIBol+2m3B823aocjyNueM+uyiBHtc/izVGNJyLrI2Bd1YRl/RxLi0XvEy4srzoOybbp+mVVr9XKYP0SVveUPRH2QohoGbest7D0OKxkumxsLwvUcvti2Vzio6gySJbHTqbLbqa1GqFXLpuFXZUampQEwlVjWowxPuV+XViWR2cmvnVNfwAOn/gRlYEITpuFdKeNDbu8bC2tCpTxOHURJwR0zvOwrtDLzopgrTEaVouoNoc1tny0VZqdzSU+IlJit1r0BGqnzUyfNj4PPQ499McoxU80XifTZWd7WYDKQJgSbwhN6u+tkCbNz5ZurdPJTXNQkBVfrHdrnU6OR1+XVQjSXTasFr0VoNwfjuuWNiTZHv2EQpk/1GROoCj2M36eSNdWP/HLt71YyEms4Ei6d1jF5dq/+JflcjIc+vvrL2u/BTc8xQ0Im0TOExS8vJYnuImNo9tzJVPpwQpEnqT1uA0cu+En+CL6OXY08FQbjuRL/lx4KE8+MppnuQ4xUnLly1N5cfX18AtwaMMl1SsUigak4d+apVLKUQ1+rw1Is/yLKqWcJ6UcZbNFkwKj4uixT37l89XbTdGYl+7ggEynGQARS2xPW050U29sYBOVwvqCEdOlbJ2hl9/GC94wyt4MYRk7AN1ps5guhtF/uasySChaCgt6iVooUv3VWu4PIaLDwQ1habgq7WokexoCeXtZoKo0L6YU1hx5ENaqnc03ovs9DisZLpt52x1lfjYWe8ly2xMOc09zWOMm54ajPWeGoDSEbKlXT5+NFVftsj3mdWKdR7vVQo92WaY4zYmWudWkqCJIbnr9nD+DPU2M3J3bx/ZY1rcUFvTeWDO8B5IrS6pSYXeU+wlFZJOa7WeUMu6OGG6T6SIY0eIGPoH+fi02w7+CSCkprNSTjw3BbwjaraV+wpo0haXNqruO5X59ZqI3GKkmfo3XfabLjstuYXOJj/s+0MN/XrniWHM+Y0GWm9YZLvM1nu1J/fXgtlvNk0LG+yY7zW7+vWsVc1+tM5zm6yDRe8VYf6kvbKYOl/hChCMSW9SddNqsdGudnjBMRwhBt9bptPLYiUhp9rwbzzdef2dDku3RE3lXby1XjqWiXggxCxjMpUe+wKo3exM6QDDkjA/ZQWtWWbtTdFs71tCVv3y5hL98uQSGCmQXwQ/0gQCIkKQT6/lu6QD+MWsKL3W4jvkM4sHLbmIpvVnZ4VDuvuxO7r7sTmb0HYbcIJg35HzIgBvPn0Z7NsIru4hgRRx2D+Kwexr7kCgUCoVJi/iLaokGzwRCuojJi4rGbI+Djrm13UrQNziGIRDrBNitFjMACHQxqUldbEn0YB+rRZguQEWcPktTWAb0UqzYUlg9Ot9KWbRkLsNlo6hC78GKFZY1S2HL/boT4rZbzWHtlcEI1pik1NjHsFsF28r8Zn9Thstuzj40hpRHpKzmHPTrkktumoMst50Mlx1fKEIoorF6Wzma1FN1Ezk+aU4bgbBGuMa6jX5KYwNquMslPv0YxzqmBdm6g5Ks9wogJ83Ot2t31XJHiyqDuyXQGgtXzIa3ZlBKKuRlOGudBKmLYdMWc8mLSwBIc+7e+I/GwBA0uyMsczx2HFYL28v8cS/fVRnUZzHaLeyqDFIRCOMPVa80yHLbyXLb2RQNQIpN081w2qgIhM33WrqzdnBYpttmOv3l/jB2qyA3zUFumoMDc9wURN3Djrkecjx2WtWj91UIwcDubQBwRE8qGZ9pNoswU2GBap8x8UpYQf8M9DisbC/TT0Bke+yEIvrIJVs9nEZLVFx2yUsz+yvNeZR7eSRQtttOKKInYithqagvm+RA/r3kah658O9syWzNiR8t4NnfxtFPvIscLLhhyXT+O6Av/x3Ql38uHctVRzzDPcsfgkLguACLC04m64htDBw2F56EZxeMYwsFHPhAIUeMX0MRuRSRy4jPZyE0yZlz5sBGoBf8yiH8LPvRk594Um5RI0YUCsV+RYv5i+qyW/BHhVAqZYVCCHNweKu0qk2c3VrdsTT+bWz8KwIR0hxW3HY9/j5egI8x/9Ef0qoJRgNjc9U2y2U6n4ApQO02CxFNokV/HtEklcEIGU59vIFE76/0BsJRgVx7k+aw6RvpWMfS2MztKA+YfV6xm64sj51urdP1UjpXVYmfcQySbdAMJ6KyxpgCX6gqZRb0Ek6HzUJFtNQw1rHskpeORdTt1uR4HGa5sUEoolHqC1Urcd7fsUVHvNgsot6jSkB35M3RODKVUlgdo8wzLY6Tv79izCatbyks6O/1A7KclPnDZr9jbIhPYYXev9s+x0NYk6wr9GIR1cuThRB0yvWYJ6Ni539mRGfmbo+W0MeWcWe6bDisFrLcdvMkSrk/TJtMF5ao6GuX7TZ//267lYPbZNRLwAGc06udHqwT/Z1m1+gbNzD6se225K+3TJdNH1ViEWZStdECUB+EEORnOE3H2XjN7e2RQDlpDtOxVaWwilRRvZUKhUKRnKazc9xDXDYrhf4gmpQpl0ParIJgpLqQsVst1YTljvKquZjby/S5c2nR4eQZThvlgdrldRFNYhGYYSp5NUZJ5KY58AYjHJDlQiAQohIpq7sJoIu02JJUfVOtb+z8Ib3fs+aQcQOH1cKOaF+kEJDuqHJMrnt9qelWJOp1MtIYy/0hM3k0djNYc0SAIZa9wepjCvyhCEJUbe5mje7HpS8t4avfC7GI6hvVLI+dozvmYBEi6ZiKHI+DcI1S4eKoYKjv2I7GxmIRu73Jzk93srM8gJQSSZ2VsOZGuzIQNk+MNBWM10n6bghL0MthiyqDrCusJN1pNd8L+ozJMO2yXWS77ViFwBeKkBsdzxOLy26lXZabzSU+OsdUQqRH3ysl3hBuu7VaAmmGy06vDtkAZglqWJMJ+xt3lyPaZXFMxxzzJJM5m7eGM9i6xmdMIjJcdraVBchNd+C0WUhzWqkMROotLGvislvolOupViViUN/RNMlKz2M/g/Z2P6eimfHrMJbwL67sO5VXuIJOrMdJkH4HL2TxUycj1kuevGw08zkLgI20Z0uwLWyC14YMZVjZO7y7ZTCr6A5AnyE/8MCYyTz90K1893kPju2/gkXoPdj/PaUvf8lbwofnD+Hmt+/jsYK72HRfN47yfQz8C4AbVHulQqHYj2jWwrJLfhqzRvdj2LTFuOxWItGdW6rlkEYvYqwzoTuWVaWwpltn1RNJKwMRMxAn3WWjpDhEmT9UrUQvoknSo+VxWoxgjN04GamJoJdtFXtD5vVy0uxYdwm2lPg4uE06m0t82CyCDJfd7Pcs8eojCRKVM9qtFrMUNt1hw2LRZ+4JdGFhOIXPXXJ03Ntn1nAsLSL5OAu71YLDajHdMANfUB8TEuuqdslL46vfC3HbrWbIiYElhaTInDQHYU0ipTTv15wX2oRKYUE/pjU3/6mSl+4kGNFHXdSFw2qhxBeKut+1ZxTu7zhtVuzW3RfhFiHolp/Ois2l/LGzksMOyEAIwa7oeKK8aCJzTpqdwopgwl7igmwXrTOdZl+2vjaLXoof1hI6qrNG90NKSdfx89EkHJAg9KYukomp2PdYzaRrA1NY1uHiZbnt0R51XQBnux1UBnxxndRUe4sbYqZpqsQK1+mX9TH7xxWK5PSAQ9YzZMOHnDdzPgfetoZyMniea+j28yY8I3ZxW+bDPMqt9Oeb6C2W89i3d8EBcMmC2VzcS3DBMXM5+Pvl/Lb0SPgBOAfYBseesgLQ51QC9PryF1YO6Mazb4/hsVfvgq33w4l3wle6qFRlsAqFYn+jxZyqje3Vy0vgWNYMWDGcBSOef9boflzar1O0x0oXSLFunVHGZXw3yjvX7qys9jgRKbFZLaaLl2g9Bq0znNgswtz82CwWCrJclPhCbNjlpSIQpn0rN9ZoGSnArmjYSKJyRofNQqkvRGFF0HR5LBaB22GlIhA2ezgPSOCcGI5lWdSxtCeYIRd7THVXo3ppsC8Uwe2wVruekdIbWwZbH4z+s7AmzREwRkpsfdNVGxtrdLzM7pCXEZ15GjFEduLrtsl0EtEkW0p8enBPEyqDBb1svEe7rD26D5fdSvtWHsr9YbNke1dlCI/Dar4WC7L0fsfMBAJR71+u/fsyBGV6kv5gIYTplNblWO5pmFR2jaRrA2NMSF2vOatF0DU/3TwuhgO6L/oV9/S5Q9Xzh8SfcQpFLELsl8n+CoVCsV/RtHaPe4Azdth8iuWQxqYrdgC7UbZ64bTFvHf9CaZj+dY1/Tj7ma+JaFUjOgxhOW7WMvIznOZmKKJJrBaBy66XsbZOUK5qkO1xcHRHRzUXqU2mi21lfraVBfA4rOSnV93/wXd9SDCsYRHVBXUsxsbxjx0V1VyUdKeNokp9xEm2x55Q3Bm3KfPpI1FqblDjkea0UewN6f2PsmqkSF569cfobM4GrHuTGs/lMNyiMl+INTsraZ/jZuLclUDipMv9la756btdXmicsPCFIlQGI0nFSrrTRprDytZob21TCu4B/aSIJXmxb1xqvn7y0hxsKPKyqzKIw2qhIhCuFn7ldlh3y93KdNkpqggmFKQGLrsFXyhiOoF7C9OxtNR0LPXHra9ATHPa6N42s8m8bmKF9d7u51Q0ffTeyt7w0hAGj3yb9vyO/J+ggLXc4H2K7p5VdDtqDYfwK//mUk7nYyYwGYCOM7fTcfhq8ijiKl6kGyu59PsXeLlsFK/2Hs4/ev6TouvbwV0B5DYX4jXJu5wLwOQBE3hv/oWwAmgLMI5Lv3yBfy9XTqVCsf8jgfhp882ZFiEsZ43uRyiicdCdHwKkHOCSl+7EYbNU22QZm/WQJhk2bTHrCivJ8eiJqpkufcadsVk9/3m9BNFwNw0i0dCLAzJdOG2W3TpjbqS9ri/y0jHXU80tdNksBMOaXtqawKYyNlOrt5XRq0OO+fM0p5Ud5ZIyf8gM5YhHZo0ey1Q2Z0aAz08bSsz+UqgaIm9wWNsMhGC3x10Ym+Y/o2NXyvxhc3B8U0qFheQOV10Yr1Uj7TTZc9cDbFz8EXXX37n2+ISjIpoztmiQTlFl0EzljQ3v2l3y0h1kumzVTnDFQ3csQw3eY1kT4+RLzTLrIw/MolWaI2m6bqKS1d0JTtoTarqW9XExjb55FdyjSJk3BzN+2ARW0Z25nM3Fr77EcF5nqOcd5jGY+xfcy8sDh3MIv9K37EdmZ56j3y4d/hxzKG8+24tpjOaP3w7nj/RufFpwGltndQY33P3snVzFi/T4x3ewGrZQAMB74kKmy8v4eNDp9OQnMi4rZ9z2x7G0qSTSJvHfZ4VCoWgsWoSwBF1IGX1ONcNyEpHmtNUSN6awjJaKhiJawlJWixC4bBZzpIZxfU2CNVoyV5dbmYw2mS5apTlqiTp9cxqOO5/TwBFNfdRk9Q2hUQLpD2lJBW/NVNi6hOWs0f3wBSOc8PDnUbfWgstmxR1TZmjQOsPF0R1ykvZsJsMQlqHoXL1yf8jse21qvYN7gvG6LPOHcdks5jFIRKs0Bxt3+bBGS6JbKq3SHJQUVrK5xI/TZjErD/YEIQROu7VO8WO49DXfe4nEXF19iYkeL8d07Kq/bzNcdg5qnZ50jc2BqtLdlvs6VygUCsXeRAK1J0M0d1qMsAS9hyoQ1qoFa9QXY3ZdlbCsPS6k2mM6rPhDVaMvjATXhkrcjCfonHYjuj/+pmnW6H6UeIP0nPwJUNUvCfo8TiOxNplrYgjLEm+QXd6gOWcv2cbZ7dCHpqdCfY9P7OPmpFWVubXP8bC2sJJSXwi7dffGdjRVYvtJW6U7ErrXBhYhOLhN8xcVdZGTZkcUQjCicUCmExEnhXhvBdJkexzkByIc1jazXmuub89hz/bZ5KU79rnLuL+gp/MK3CmU2ytaLiI/+o/TJsJ/YdawYfzx+OEMHzeTc3iPC8bM5bHL72JT3zyEXyJXCsRTkq4v/I8/xh4OwDtTBjGk+4eI6ZKsEdvgU/h6zPGc0OEH7t5wJ/dumcC9E+6nx+QVnMt7rBx6DBmUA7BAnsjHnM47sy7mnYcv5oSln6Ad8Ki+JhXco1Ds56hS2GZPutOKPxTZo54ao5wwFB1nkcyxBH0DU+oLIaOJtMaQ9FSE0+6mJBoOS7JS0iy3HSH0EQexm0shBB6HnljbJkmfly06JH1dkRcp9/7cufqQn+HEZdfn/xklfd5gpEGcp6aE1SKwWwWhiEy5BHh3y4+bEzaLhSyPnRJvKO7Yi3g0VKKp02ahS37abgdXpUqGy07X/IY5ibC7z31fpsDWRAjB4QWZ+9XnlmI/5ilgNYznAU4et5DO727lm3OPRo4W5PXYxBDmIDsKfUf1d/g7U3h2ynUAnDdlPg+OvQk+h4ccdzBszCwu5jUWbDiRjXTgsYJxrJrcndMjH3PBQXPpt3YhkyK6aMw6NAA94ME5N3HHhe35WuiCU6XBKhSK/ZUWtYssyHbTNibGf3eSBV12K1YhqpXCJnUs7Rak1OfhQZVjeduZh/Ly1+vq/fipkOOxc3hBZlKRIISeNhpvBEK6U0+GravPK8NlY11hBbB/CUunzcpRB2bH/F9/nqkEDDU37FYLVotscaJ6TynIcmEVosU6eg1BfV3dfc3eFu+Kpo0QkyBPCTiFQrG7qFLYZo9FiDqmxKeG4QJFNIkmk48LMTb0RoCPISwz9qIzJIQg3Wmrc8NmCssaa9EFaSCuYxl7nxkuO+uiYS8PndeDozu22vPF7wUyXDYCFcH9SvzuKzrlerAIUWcZbEunpnuW4bJXKxHf24+b6uWNJcIUihZJ4ST9u2sCMt2CWCAhD3aem8Hxt/+IGOvnOcs1XLvqFfof9Tm38Ai52mZKyGEwcwH4amwJj2q3wGpYRXfu4j6uYRoDM7+ClWFGdHiRDMrJOj/A52v7M5uhZLXX0+ZpB4yA1xkOzAeUW6lQKPZvWpSwbCjsVguhiGa6lsnCgIyz4r6Q4VjqpbD7YtNaF3abBQK115LjcXBgtka/rrlJb5/hsrEmOu8vP33fzILbnY11hksfal8zAbMlkOrrrDHLEhuC/UVw7S/rUCgUu8+/GAbuWQz2vg3AQm8RP3U5jK/pg4MA+V+WQwdYUHAiZ2z/CB6FxaNPZlbfDRRd3457XngI/hW9s/eB1cAzMJ9BnMqnnLt9DswAOn7NjIxr4HrgHDjl1UWwHp7ZchUA1498EV6ElRcegyEsFQpFU0H1WCpSxGYV+EIRU1gmK4W1WQRWi6jtWCYpsavv5nR3N7OOqNAy1hIrLtrluM1h7YmIHUmQl7H/jvEwZgc2RcdSCZXGpTkd/6byXJrKOhXNm4piK+nj9b/bix/oRe9Fqziw/xqG8SbkQdsx6/jrjK/pPGI9f5x0ONwFvT5ZxlsHXA5Pwb3DbwEgONyJlQhWwsznLLrxB9o3afAcwH/JKjyU0rQDODi0nN/OPxIicL0YpC/iIeAjwKc7p8qtVCiaEkpYKlLEbrVQ7g+bAT7JSmGF0JMHfaawNBzL3T/0DeUuGfM5d9c9NZ6DRZB0tElj47RZ6JyXZs6ybImozXpq7O74DoVCoVAoFIqWzv6rBvZj3A4r4XLJukK9vzCRY2lsQvvc9wmlPl1QVgR0xzJ9PwgFMRy83RW5hiDd351AIQStk7jKCoWi/iiRrWiOiEXAa7MYcQL854HTAej3209QAd1ZxUwu5v3up/G3Yz6l7FsHbry8c9kgzvtqPqvozr0TbuHugke5+3l9LMi9y2/h7lWPwuE+sLlZsulYxgx5nGdXjoOMiZQ6Z8DUEfwmDmSTzOOgst/xvbteX8x/gK1LgcFI2bsRjoZCodgzVHiPIgXaZDixCMGWEh9QfV5gPNx2K4UVQSoCYcr9YRw2S51lprHsrQ1cpstOttte75l5Vbff/0tMm3rvoELRVFBCU9Fc+OezY/lHqymsG94JgDcOPpeLvn6X23mIAE4u0V6DWZJLrK/xg/dYxnqepPR5J5nrgoijJCeVfcQXc88A4O4vH2XMgMcZIV9hEf258dlpPLtmHPc8fjun8zEFbKHj+BFwVSumMRpfzxzOk20AeKc30Ks3cmnjHAeFQqGoL0pY7gaGA5af7kCLmeGYaGPljJacbtzlpcwfNgVZY2/EHDYLhxyQQdZulohmug3Hsv6hOErw7Z809muyuaKOq0KhUCgULQnVY6moJ0IIUtFUzmgy7MZdXsr9of0iEbYhyNgNxzLV8QlqI65QNA7qvadoqYhn4ZkxV3H9qy/CDLhh2nQA2o/+HdbAKeJ9+LkVsq2gb5f/Mnf2BcwdOpDp9huwhSI8+9Y4OAm+sJ9RVQH3FAwbMItj+6+AGXDYmJ/4kgHMZigzGc7Tc26FZcCHk7j3xPth3STe6R8N6fkpOu4EFdqjUCiaBs1SWAohBgODu3Xrtkf301AbLNOxLPZREQg3m6HruyMsFQpFYpSoUygal+uPfJGey79l2ZLjOO3s9wHYtKAbpz7wAZ99fxZZh24jz7aJokXtKDs32gbzATw7axz8FfgvyPsF4jY93I+S6B0vXs9jBz/CzQ9MJf+Mcj0V9u4w6WcUUnFeFlw0kdA5glvlg9xJBgD54pZ9+dQVCkWDIlE9ls0EKeU8YF6fPn2ubuy1gD5yxCIMxzJMurNhDntjb0IznLrz6tgP50M29rHZX1DHQZEI9dpQKKrowzfA8Y29DIVC0WxQpbCKvYQQAqfNynvLNhMIaQw4OG+vPt6+2jBme6I9ljblWCqaF0p0NX/U71hhIMQkjpancfCY5RSM2cIXvc/g56WHcNTa1QB0HLiaz9YO4ohPvudxxlFEHhdlv8sr1hE8yq1wRIBzCt7laH7g7j6PItIlPeW3AJzKp6ygBwfLMmYzlHPGv8l7ojvcfyQndFjIXP6PVh974fRJ2NdLeAie/EvAXJuaXalQKJoSLUpYNuZGwmm3EAhpRDTZbHose3XIoXOuZ7fDfxQKhUKh2B/4cc7xdB3yP17jEiYvvZujnv2VxWN6AXAr/2RKlxv4vy1zWVRwPHkUcmr3D2jPRgbxAdPfvwHPKC/zOBvpFWSM2MmD3AHAmQ8s5LHx1/EBZ/EIt9CGHbSXGwmwkOliDK2u9UI2HCgvJsI6cikEOYgVHNOIR0OhUOw5LbMUVllN+wiXzUIgHCGsaft9j+Ws0f1SEuFWi6B1pguL2P9KYRUKhUKhSIXn5Hq0kwSt2UG7eUVMX3ADWVdt47h5yzhu3jJ8eHiXc2G9k984GDc+Ppt1Fh58TLvzRhaP6sVMMZLvVg3AOb6Uihl5ePDiwcuV46dy829TuYxXmTbtRkrI5ulBt/Ie58J/7PA9jHjgefrwA1vFq6wU85WoVCgUTRYlLPcRTpsVTYImIaOBeiwVCoVCoVDsAVPViVGFQrE3MHosG/Jr/0cpnH2EM6YPsbmUwjYlVD+VQqFQKGIRYhLyGVhPJ8TN0P+Vb1g++GAe4zoyKKfb4JUA/JNbeYKbkHME8lCw3CbhWjhzzkIcN5eRoZXzi+zEYc+up+eYZXx3Tl/WoKfS92A5bQ9ex+L+JyO+lWwdnc3TO2/lJp7gjk5PwP0w47Jr4A2ASYkXq1AomhgtsxRWCct9hNMeKyzVYVcoFAqForHpcd13fMSZhJ+C23mYPnzPnyMP5f2XT6M7qwA4khW8ziUUPLqWbEqY8cIwRiyfBe/Df4b8H2e+upDDeq6n9ZgNfLelL5Q4+aOgKwBWIvThB+bd0Jk3Fp1L2w4lvLHhXC7a8Dbp3QqpOGol+ubzm8Y7CAqFQtFAKIWzj3DarOa/lWOpUCgUCkXjIYRyBxUKxd5EjRtRpIhRVjls2uKUb2O1CGwWQViTyrFUKBQKhaKRWSun0XnnPZyb/wbv/nARZ58yl7OYzwcvw1k7P4N8/XoHPb4Rx4gyghUeLuvwKg9zO+8cOYjzjpvPdlrDIZDerZCreBEKoKBgC/dzJwBbp3cm/ZJC7h12Cxe9/C5snMRF89+F5+HsuXOZ+c5IOG+JuSY1XkShUDRllMLZA+rbt+e0WQgHI6TvJ8JS9R0qFAqFokXinsj/t3fncVfO+R/HX+9KxlapMCVtClMi+05MxjLIUghTtilkGxqyTIsxi18xjSVKaLJvhexStkF+SaJtxIREFEOGH8rn98d13ePMrXvrnHs5V+/n43E97nOu77V8Pt/vOee6v+d7Xddpf9gQrn/oJCZO7M0mR7zLDkznYv7IdVPO5679DqcLbwBw0HkTeOy9w3i29R6spD7NWMZRTz7K3H5tuZU+XLzLYCZyBN2ZzHy25HS1hVfbATCu3zGc2OtuZt67HZyyhO8+H0rrRn1YssPGNORb2hw5j3cb7ALsQqx5gxtmGeZrLK2arb1Wff797Uoa1ZGOpZmZ2ZpGHWs7AjPLPp8Ka9WkZGRwtz89DfgaSzMzs9ogDYMOQ4j7hTp/x3j6cPrcW4hpQusGlw1+nzFjz4HHgN7pSndCq+ELGE8fujCLCw67mjEP9WHbT2fxQdNNGU8fPv5+Yx6pdzBXPnopY6IP/dLO64i3BkJvuP/k4+E38MtGD/LhFe3gERi39DSYm1zr6VNgzSwL/DuWNajJOmvR6CcNaLpew9oOxczMbI3UePZH6Obg09aNOIKJ/OriG9G3wfoDl7IdM/n81rVhN2BeOvWGgQxnd17k3JtHc/5Dl9Pv7vF8+2YjNjp5OctoxrLum3LllEthInzFOpz41g2c+NYNvHn1Tgw9chDUB56H3/AXGPQYmz83mwvn+AZCZtm2osBT3ecRyxrUaJ21aLTOWqxV3/15MzOzmuQ7wZqZVS93LC0vvgGQmZkVjflD+OxLUe9XQdN/fMU7W7RkJl1h4DdMWPcI2rGQxnd/A02Apckqzbp+wLkdR8ODQPcVXHnkpTS+6yOearg/Ozd4g8OZyKlTxrKETdht3muc22s0Le79Z7LyOZMZ+uWfmXFjJ7bfew4H/XEqm8ds3lY9rkhD8mmwZlm0Zl5j6aEzMzMzyzRpGLQYwkFbTGC9Bp8y47BOxCdiMt257dNT4K61uYPjOYIJ0AQ2Pvg9opGIRuKv9c6h2fwPYCl0bT2d8ydczucLf8rOR74BM+EQHqH9YYu5m2NgBZx173DupRf30ovDYykXXzyYZiyDtvDOxS15u15n4J7arRAzq2YlHctCTnWfRyzNzMws+4ZCH26lU6M5NGMZm+zxLktebcOAHa6k63kvsy5f8eaYnbi236mcOWUshx2bdP52ZhrLrt0UgJmn7Uq3Oc8Qr4gjJtzJG3Th7as6s+ih5gxhGC+cvSN7vPkquioA2Pjm93hgzrEc0OkJWAHt71gMMYPNoycAC+hcK1VhZlYd3LE0MzMzMzMrGP+OpZmZmVlmSF8kD4YNgcbQ+7iJtLljHg1YyXtftUErAsYD3VZwbuu/MKoBbMzHfN9V1Ns9GXX8+YuTYSRwONAdRp48iJE/GUTsIXRLwOXQ6tKlcB/c9Mtf8vOYDV2T3fbkPkY9fh77dJ6WzLhzGLvF3gC8yL41VxFmZjXAHUszMzPLtiHD2CG689Ux6/IvmnCF9mB5XEmrXRawaH4Hft96EH0/uYdOJ8/hPK7i6Icf4sup9QFYv95K/uf7s7lg8XCYuTZvHbwZHXd6Hx0VjJzRn3M/HE2/G//KmKvP4cHoT4+mT/CzT18DYNQV58HnQAugMzAZXtJzSUzhjqVZdvnmPWZmZmaZ4J8XMbPaU3IqrH/H0szMzKz4bdcIgHdnjKLzVwP4cmFzeBlOjCcYNeY85vZry319evK7USP48owNuOK8IXAgsALGrX1Sso2RcEGnq6EtfPhoE1oM/hfsBhwI5w4ezVs3bkbH8e/T7ezH6fHbJ2i44Avm7r1dsu7zQAfgw2Gw3g8/K+KfGDGzLHLH0szMzLLnrCFwzTgA9uZZvmzcHF6AQ0++l6l048F+B/A03fndHSNYdEZzWu23lHenbEKbbZbAExVe2AAAEiJJREFUGws585QdAHgnWtK++WIAWmgmdIBWby1g0X4dOGPKVXRcvAD6LuSZLw/koOETeEyH8l+XT3YFFvSFBckIqjuVZmsCnwprZmZmVvReo1Nth2BmtsbxiKWZmZllhjSMGQHcCYfGegAMpC9Tv9uXIedegQ4JOAt6jH2CGCseOe5gWk1bCj1hIodz3Kyb+RMX0eawJQC073Q6zP0OGqwFHdrCgiUs0u2MizmcqCM5Ku7j/lOPhwHDeGxAd/aMZ3jhvXTIckEDztpvONfoq9qpDDOrJf65ETMzM7Oit/2sObARTBrVC4CH9juavSe+QveRD8M/4KzBw2k4+Bv4BB7rcyTvjG9J+1378/QZ3Zm0dy/uWHAyNEk3tikw948c991mNORbxmlDoCnNWQYnHcP9GkarWMCisUcDX/OCJoP2T9bdFa556YdOpU+DNbMsc8eyBt3df7faDsHMzCyzfCdYM6sb1sxrLN2xNDMzs2zZdhjwGxiS3BX25jOO4+uL1qEn9/H0U7+kJYu5SJ15Ol7i3PF/pr0GAsuZtH8vXnhuR1ZSn306TQPg4ae6M4BruWNxO9h2ba6NUzlT5zOeRjAd9ozdeUFPAUcCM7gw4C7mAdCOhTyjJCSPVpqtSXwqrJmZmdVhki4BjgFWAgL+FBF3p2XrArcAO5D8RzMwIh6urVhr2gQO5slYzi+uep47zzuC3vqaMZ+cCcApV9+eLHTOp9ACLlIT4Gh24FZGbj8ouYvr1LkweQZXcCGHMomH53QH4BBdA9dtBQOAPySb2S0+4p6WfeHD61nI/nD6/nD9MGAfrtAR3BaXAnAJlwPTarAWzCzDGksaA0yKiEm1HcyquGNpZmZWPK6NiD8ASGoJzJP0ZER8BgwElkdEB0kdgecldYiIL2sz4Jr0C3XntuhJ74MnsnM8x5z07rCnnH0dY399JiI4bvHNrE8TxugaNqA+nAoMuB1YwDsxmvbqzyRGclv0S7c6AQasAC7gwYsPp4cugy67wId3A8tZNKZD0qmcPwS2nAvcwwnqkq57N+DRSrM1T7WcCvt5xH8+mOok/9yImZlZkYiIz3Oerk/y30vJsfwY4IZ0ubeA6cBBNRpgLfG1lWZmtc8dSzMzsyIi6TRJ84DXgH4RsSwtag28m7Poe8BmNR1fbdmQf8FeQzhBO0MH6M9oTmUspzKWm9YdgB4JOALu6HQy6/I1J0YzRmolF54xDNY5HoD26k+8NxSA6xjAdQwALuHJmAzbrUOPbZ4AFsAbn7J5bE232Aa6AQyh2xaP82ycWAuZm1ndU3KNZSGnuk8RUdsxVBtJy4H5tR1HNWoOLK3tIKqR8yteWc4NnF+xq0p+bSJio+oMJpekGSQdxFXZJCJW5izbBbgd2DcilqXHvPYR8UlaPgpYEBFXrWI//YCSU6q2Bt4sYBqFVgyvx7oeo+PLj+PLT12PD2DLiNigUBuT9DhJ3oW0NCIOLPA2Cyrr11jOj4gdazuI6iJpuvMrXlnOL8u5gfMrdnU5v4jYvgrLviFpMcmY2f0kI5RtgE/SRVoDU8tYdwwwBup2fUDdjw/qfoyOLz+OLz91PT5IYizk9up6B7C6+FRYMzOzIiHpZzmP2wHbAXPSWfcC/dOyjsBOwOM1HaOZma2Zsj5iaWZmliXDJHUmud3gSuDsiJiblg0HxklakJb1i4jltRSnmZmtYbLesRxT2wFUM+dX3LKcX5ZzA+dX7Io2v4g4upyyfwO9VmOzdb0+6np8UPdjdHz5cXz5qevxQXHEWOdl+uY9ZmZmZmZmVv18jaWZmZmZmZnlJZMdS0lbSHpJ0j/Svx1rO6Z8SVooaZ6kmel0QDq/6HKVNELSPyWFpK1z5peZSzHlWU5+q2zDtKyY8msm6VFJ8yXNkjRB0kZpWVG3YQW5ZaX9HpD0uqTXJD0vqWs6v6jbrkQ5+WWi/SpL0rqS7pa0IM37kDKW21TSVEmfr+quiJJ+nW7jbUnXSqpXmbJCxVfefiSdndOeMyV9IemqtKybpK9yyqZVNrYCxlduDPnUXwFj7CHpVUlvSpot6fycdapch5V5L0mqL+m6NJYFkk7Nt6yyChDf79J6ej2tt9zPkaGSPs6pr+tqIb4yYyhE/RUoxvGl3rffSzqsovgLHN8vJE2X9I2kEVWIvSB1mGkRkbkJmAKckD4+AZhS2zEVIKeFwNZZyBXYk+RHu/8rp/JyKaY8y8lvlW1YhPk1BbrlPB8O3JSFNqwgt6y0X+Ocxz2AGVlou0rkl4n2q0I9DAbGpo87Ah8B66+qvoC9gUOA6aXK2gGLgI1Ivoh+AuhTUVmB46vUfoC1gI+BHdPn3UrnU031V14dlRlDvvVXwBh3AVrmvBYWAHutbh1W5r0E9EljqJfGtAhom09ZDcZ3ALBu+nhb4F/AOunzocCIPN+3+cZXZgyFqL9CxFhquW2BZcDaNVyHHUjuqH156f1V92sw61OtB1DwhGDj9I1eP31eP32+UW3HlmdeCyn1T1Gx55qbU3m5FGuepdtsVW2YkXY8Cpic0TY8Cpic1fZLD5LTs9h2uflltf0qyH02aScrff4w0Kuc5bvx447lb4Frc573BB6pqKyQ8VV2P8CRwKzy8qmO+qugjsqMId/6q446TMsm8cM/5VWqw8q+l4BHgJ45z68FfptPWU3FV2o5AZ8DrdLnQ8mjU1Sg+iszhnzrr5rq8Grg6pznNVKH5e2vOl+Da8KUxVNhNwM+iIiVAOnfxen8Yne7ktPzRklqQrZyLS+XLOVZug2hiPNLT6c6HXiIjLVhqdxKZKL9JI2V9B7wB6Av2Wu70vmVyET7VVJr4N2c5+9R9ZzK20a+26/s+pVd7mTg5lLztpA0Q9I0SX1XsU5NxFdWDNXdPlVeTtJWwK4kIz4lqlKHlX0vre7rKt86K0R8ufoAb0fEopx5x6afMU9K2q0KsRUyvrJiKMRrrmB1KKkhcBw/ft/WRB2Wpzpfg5mXxY5lVu0VEduS/OC1SL4lseKSxTa8BviSbORSWuncMtN+EXFqRLQGLiY53TdTysgvM+0HkP6zv7SMqf6aFJ+kFsB+wG05s2cAm0XE9sCxwGBJ3Ws4vnJjqEgt1OGDwICIWFyI+LNM0j7A74HeObNvANpFxDYknzsPSmpWw6HVhRgq63DgvYiYmTOvmOK3Vchix/J9YNOSD930b8t0ftGKiPfTv98Ao4A9yFau5eWSiTzLaEMo0vzSC947AsdExPdkqA1XkVvm2g8gIm4F9iW5TiQTbZerJD9JzbLWfhGxfUQ0L2NaSfJNepucVVpT9ZzK20a52y9gfJVZri/waEQszdn/FxHxefr4n8AD/NDmNRJfBTFUuP2aqkNJG5NczjA8Iu7J2X+5dbgKlX0vre7rKt/XdCHiIx1Fuw04PCLml8yPiI8i4rv08VPpOltTeXnHV0EMhfhMKEgdpn50lkEN1mF5qvM1mH2rew5tXZ6AZ/jvC3en1nZMeeazHukNKUi+af8DMLHYc+XH1yCWmUsx5sl/X0NaZhsWY35p/FNJb2KQpTZcVW5ZaT9gfZIRiJLnhwIfpDlloe3Kyi8T7VfFuhgK3Jg+7ggsATYoZ/lu/Pgay/b8+KYvfSsqK2R8ldkPMA84uNS8FvzwW91NgTeAHjUZX3kx5Ft/BYyxGfA6cPoq1qtyHVbmvQScyI9vgNI+n7Iq1Fm+8e1E0rnYZRXrbZrzuCvJTWl+WsPxlRlDIeqvEDGm5a2AfwNNa6MOS72HSl9jWa2vwaxPtR5AtSQFWwHTgH+kf7es7ZjyzKc98Bowi+Ri/XuBFsWaK8nF2ouAFSR3sZtdUS7FlOeq8iuvDYswv85AAPOBmek0MQttWFZuWWk/YBPgZZJ/EGeSXEu1fRbarrz8stJ+VayL9dI8F6Sv5x45ZZcBp6WP66efV58A36aPh+Ys2x94O52uJ70pRkVlhYqvEjHsQfLlQf1S2z8zbeuZwJvABdVRf+XFV1EM+dRfAWMcDnzND593M4GTVrcOy3ovAY/ywx1766cxlMTTL2f91SqrQp3lG9//krxXcuurS1r2t7SeXk+XO7gW4iszhkLUXyFiTMsvAe5axbZrqg73JPms+wJYnj4+oCZeg1mfSr6JMjMzMzMzM1stWbzG0szMzMzMzGqQO5ZmZmZmZmaWF3cszczMzMzMLC/uWJqZmZmZmVle3LE0MzMzMzOzvLhjaVaNJI2TdGb6+DJJx1RinWckHVIDsf0nHkndJP0ip6ylpKkF3t8zkt6RNKiM8hMl3ZfnPnpKmiNpacVLm5lZXSMpJM2S1H011h0v6SNJI6ojNjMrX4PaDsCsmEhqEBErVmfdiBhc6HjyUSqebiQ/Lv9kWrYY2Lcadnt2RDxcDdsFICLukzQdmF5d+zAzs2q3e0R8WdWVIqKPpKEkxzMzq2EesTSrQPrt6W8lPQMMkdRF0vOSZqSjY+fmLLuppKclvS7pAaB5Tlnu6OXPJb0k6TVJb0g6thJxtJW0VNIISa+k6+2VU94nnTdL0kRJG6fzd09jnSlptqTeufFI6gKcBvRJlxlUsq+cbR+Yxjorza9DOr9bus7otOx1ST+rZL02TNebL2kKsHOp8gvSPGdImiTpp+n8xpLulzQvjWW8v502M6s56XFxqKQX08/wo3LKyjpebJke916X9KakgZXc17j0WDFF0ruS/iJpv/Q4vFDSOdWVp5lVjUcszSqnXkR0A5C0AdA9Ir6RtD7wiqQnImIucDXwXEQMk9QeeB14fBXbmwHsGRErJW0CvJpu47MK4mgGzIqIgZL2Ae6UtDnQEfgzsENEfCjp98A1wDHAhcBfIuJWSQIa524wIt6QdAOwfkQMTHNsW1KedlBvBfaJiDmSTgFuB3ZJF+kMnBQR/SVdAlwKHF9BHgD9gXbA1sBawHPAwnSfJwAdgF0j4ntJpwNXptsdDHwWEVtJagq8Ctxfif2ZmVnhfB8Ru0vaEnhR0vPp/LKOF2cAj0bE7wEkbViFfXUGfg7UJzlONAb2AVoA8yXdtDojnGZWWO5YmlXO33IerwtcL2lb4HugJbAtMJfk9NGzASLiHUlPl7G9jYCbJXUEVgBNgS2BlyuI41vgtnT7z0r6Ol1vH5ID9ofpcqNJOrUAU4GLJLUBnoqIaZVL+T92AV6PiDnp81uAUWkHG2B+RLyWPn4ZOLSS290X+FtEfAd8J+k2YM+07DBgR2BG0hemAfB5znpnAUTEp+nIsJmZ1aybACJivqQZwK5AUPbx4jlghKSGJMelqlzH/0BEfAMgaT7J8e574ANJnwGtgHmFSMrMVp9PhTWrnNxvQv8IfARsFxHbAq8AP6ni9q4HngG6RERXYNFqbANAJAfykr+5AiAiRpJ09j4BrpF0+Wruoyz/l/N4JZX/wkoVlF0eEV3TaeuI2KOS8ZiZWc0q71gEQETcD+wBvA0MIhnZrKzSx5nVPe6YWTVyx9Ks6poA70fECklbA3vllE0BTgKQ1I7k1J2ytrEwIkLS/iSnfVZGQ+C4dPt7kXRG5wNPAweXXIcI/BqYnC63RUS8HRGjgb9S6lrG1BeUOkU2x0tAV0lbpc/7Aq9FxPJKxlyWp4FfSWogaZ2SvFIPAWeUnColae10hBiSb7n7pvM3BHrkGYeZmVVdybGuI9AVmEY5x4v0WsuPImIcMIxVH4vMrIj5Gx6zqrscuDW9DvBtktN7SpwDjJfUi6TD91QZ2xhEcnrQIGBWOlXGMqCjpGkkp+T2johvgdmSLgKekhTAOyTXMAKcLWlfktNovyE9jbSUiSSdvJnAXekEQER8IulXwB2SGpCMfJ5QyXjLMwbYBphNMmL7LMk1l6TXgzYHnk1Pha0HjCI5vfcy4BZJs0mutfk7P5wma2ZmNeMbSX8nuUld/4j4GKCc48XRwPGSviUZ1fRNd8wyRhE+o8ysGKQ31JkeEc0rWrYuUnJX3RH5/tyIpLWA+hHxf5IaAS8A50VEyQhtW4q4nszM6rr0C8wNquOGOfluW+nPjZTcjM7Mao5PhTWzmvIpMDwdpc3HhsDf09HVV4D7cjqVPYFJwJI892FmZrVjCclnfPeqrihpPMkI6RcFj8rMKuQRSzMzMzMzM8uLRyzNzMzMzMwsL+5YmpmZmZmZWV7csTQzMzMzM7O8uGNpZmZmZmZmeXHH0szMzMzMzPLijqWZmZmZmZnl5f8BjwxBbX10PUoAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5YAAAHuCAYAAADk5ZP7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzde5xM9R/H8ddnV2RzC5ENuYWExBaphKQoihQhyT1KIpcUa4nINSEkJESEKCIhiZTbjxJShIiQW6vd7H5/f5xZNi2JWbO7834+HucxM2dmzvmcU87Zz3y/38/XnHOIiIiIiIiIXKyQQAcgIiIiIiIiqZsSSxEREREREbkkSixFRERERETkkiixFBERERERkUuixFJEREREREQuiRJLERERERERuSRKLEX8xMyWmVmvRK+dmVW+xG3+6zbO3u8l7m+imU30x7b8xcwK+M5DgUDHIiJyscysspmdd463C/lMcjCzpma2M9HrFHcvCFa6B0pqosRSxMfMCpnZJDPbZ2YnzWyLmQ0ys9wXuck8wEp/xngOdYFBl2E/gbIb71zuhn/+ASQi4k++H+ucbzlhZl+b2X1+2PRKvGtZwn56mdmy830mgJ7zLRJ4ugdKqqHEUgQwsxuBNUA24FGgGNACyAG0uZhtOud+dc7F+ivGs5lZet9+DjvnTiTXfgLNORfnO5dx/tqmea7w1/ZEJM0ZjPfHfFlgHfChmRW5lA0652Kdc79e6mcuB+fcUefc0eTafsL9S/6d7oGSmiixFPGMBH4AHnLOrXDO7fI9PgW8bma3m9mfZpYt8ZfMbKOZdUhqg4m7sSZ0bzKzKmb2vZkdN7NZibdnZlnN7ANfa+k2M7v/rO0lbON+M/seOGlmVybRBTeXmU0xs999+1lmZuG+95qb2f/MLNrMfjazPmaW7kJPkq971DtmNtDMjprZLjN70Myu9+3nhJktMLPsib4TZmZvJYrnfTPLmcQ2+/k+84uZtU/0/uluQL7zOQG4PlGLQsI5jjCzlb7/TrvM7Pkk/ns087UQ/Ancc6HHLSJB54Tvj/ltwDNAHFANwMyq+679MWb2g5k9nvAl3zX5LTM7kKjny8O+9053czWzpkAkcHeia1kBS6IrrJl19F3T/vRd48omeq+pme00s/q+x9/NbNy/JW6+/Xzvi/EjIOdZ75/uCmtmr5vZ3LPeL2xm8WaWz/e6kJnN890D9prZG2aWMdHnd5rZC2b2oZmdBJqZWQYze9v3nd2JjqVpou9dyHafN+/eGW1mm83s7rNirW5m3/jO3z4z63+h20/ivOkeKHIeSiwl6Pku8JWBIc65f4xtcc4dcc6tAn4GHkv0vZuBEsB7/2F3LwNPAlWBW4AXE703DLgRqOL7TJ/zbKMZUBpIqkV0FpAPqAmUA94FEpLHEKATcBNeS2wzoNV/iB+gDnACiABmAxOB0cCrQEWg4FnHNRioBNQC7gby+75z9jYByuMd9zAzuymJfa8EOgB78FoT8gArzSwTMB/YhHdeuwGvmFm9s77fCxiOd57XXOgBi0jwcs6dAv4C0ptZfmAu3nW2FPA6MMnMbvV9vD3etfEBvPvD88CxJDY7He/auIoz17LdZ3/IzOoDUUBXvGvbd8B8M7sq0cdyAQ3xrrGP+Jbm5zoeM8uKd+1e7NvmR8BL5zkF7wPVfd9L8Biwyjm325fELgS24N1zHgJuA147azvdgA/x7j9zge5Add/nHwAa+44lIc4L3W5XYA5wM975nGK+1jgzKwHMAz4GygC1gZ3/cftn0z1Q5Fycc1q0BPWCdyF3QJl/+Vx3YHmi1wOB+YleLwN6JXrtgMq+55V9r8uetb2vfM+z4P3hUi3R+9XPsY07zorr9H7xktKTQO4LPPYXgCWJXk8EJp7n8xOBDYle5/bF9FyidV2B1b7nmfGS3+qJ3i/u+07RRNvceNZ+tgFtfM8L+D5fwPe6KbDzrM+3BnYBoYnW9QdWnvXf46VA//+mRYuWlL2cdU29Au+P9Hi8P9hfTXxd8X1mGjDV9/wNYNw5tlvZ+7Pr9OtewLJ/+cwqoF+i1+nwEtBWvtdN8VpTcyb6zFhg2nmO72m8H0oTXy+nJr6uJr4XAOa7vjZJ9P76hOs+0ATfvSzR+xWBaMB8r3cCb531mQNA00SvC/uu003/43aHJ3o/3LeN4r7X7wCzznEe/nX7SXxnIroHatFyzkUtliIX7l2goq/LSwjwuG/df7Ep0fN9nPl1thDeHwxfJ3r/q3NsY/15tl8S2Oqc25/Um2ZWwcwW+rranABewWvd/C++S/T8gO9x81nrrvE9L4T3h9npY3HObQGO4N1cEyQ+L/D3c3MhigNr3N/HoKw6ax9w/nMnIpKgu+8aeRLoArRzzq3Hu6acfW1OfK15F3jUzNb4ujbecolx/G1/zms9XcPfr22/OucOJnp9+vppZt193TNP+I4HvBoCa8+6Xp7rfoNzzgEz8eoPYN5Y09LADN9HSgHlztrPp0BG/l6I6PT117xhINcAaxPt50fg90Sfv9Dtnn1fhTP3j5LA8nMc2oVu/2y6B4qcwwWPrRJJw370PRYDNpzrQ87r8rMMaASsxmtlnPNfduSc+yvxS850R7dE6/5tG9HnedvOtY1EXWWm4Y3tOQzU5zxdps7h9DE455yZ/W0dSR/XBW8ziW1ciAvdz/nOnYhIgtF4XQZPuL8X0znvtcY597WZFcTr2nk/XjfFF51zw5It0vNfP0fjdWVNLKn7xL9dQ6cDy33dYR8DvnTO7fW9lwlYCrRN4nsHEj1PfP29kHvehW43qXtS4nvQufZxods/m+6BIuegFksJer5fepcBHcx3h0jsrHEl7+CNA2kMzHTOnfRTGD8Cp/DGdyQofxHb+RYobmZJ/dJZHLga6OKc+8p5RSnyXsQ+/ouE46qQsMLMiuNV391ykdv8Cwg9a90WIMLMEq+//RL2ISLB7bBzbrv7Z4XWLSS6nvn87VrjvErd7zrnGuH9iNfsHPtI6lp2tq38/fqZDm9s3wVd23yxbE9YEm2znK/nTYLbkvh64u2sxmtFexgvsZye6O3/4d1fdiXel285dY7t/Q78hje2MeHYCuHdoy56u0n4Fm9cY1L8sf1/o3ugBBUlliKeZ/BuMIvMrJqv+lpFMxvH3+fy+gAvGWvEf+8Ge07OuWN4Y1xeN7PyZlYB6HsR21mC1+o607xKtkXM7ElfwYldeDekZ32V8FrhFXlINs6548B44A0zu9O8aoYTgQW+xPZi/AzkNrNyZpbTV6RhChAGjDKz4uZVaXwWryCSiIi/vImXlPUys6Jm9gzedfR1APMqlD5qZjeYWSm8sfLnutb9DBQ1s2K+a1lSf5O9jnfNbuBLSN4EMuDdLy7WVLwEbqhv362AGhfwvffxxuWXwrsXJpiCN85zmq8yaREzq21m/1YE502gt3nV0kvjta6e5EwL48VuN7HXgAd9/72KmVlZ3/H6a/vnpXugBBslliKAc+474FZgP94FegteSe/DeDe7hM9F41UD/BWvldOfOuBNefK5L4ZeF7mdunjxLcSbf60p8Jdz7gBeBdi2eL/i3g/0u5SAL1AnYAVe5cHleNXsnryE7X2J94fRZ3i/eN/hu3nXxKsK+D+8PyZ6OufO7gImInLRnHM/47XaPYJ3He0APOVr0QP4A+iBdx1ahncPeeYcm5uFN65+Dd61LH8S+3sP6A0M8m2zJFDTXcLcxc65I3hVSO/3bbMOXlGifzPdt//liVtyfdffynhJ2mLfNvtwZrzjufTzff4jvGEaU4DjQMwlbvc059y3eP+9HgY2+vZVwF/bv0C6B0rQSKiqJSIXyMzm41WF6x7oWERERNICM8sD/AKUd859E+h4ROS/U2IpcoF8Yy0r41XCK+ac2xHYiERERFInMyuKV0tgFZAdb3qMPEAJpz9ORVIldYUVuXAfApOBF5VUikggmdkcM/ufma03sy/MrIxvfVEzW2Vm23yPNwQ4VJFziccbB7gBryvsMbz5HpVUiqRSarEUERFJZcwsq3PuqO/5Q0Ckc66smS0BxjvnJptZY6CZc65qQIMVEZGgoBZLERGRVCYhqfTJCsT7phkqC7znW/8eUNbMrjn7+yIiIv6WLtABiIiIyH/nmw6pOt7k6PcD+YBfnHNxAM65ODPb61v/W8ACFRGRoJCmE8ucOXO6AgUKBDoMERFJpdauXXvQOZciW/yccy0AzOwJYCDeNBcXxDeXXyuAq666qlzx4sWTJUYR8Y+1a/ee/wOl8sAmI6zcCbJzmD1r0wFXQ8aMhN74F5ntOABH1mbFm1kNuCoc/jgE1+WgXKa1/JSpAL+vPQVcgzdrWW7fZ8MByFfuZ3YfuB5276XczftY+788AJQrF+7/A77M/H2tL2Lmov21MZ99sNA5d7+fN+tXaXqMZUREhFuzZk2gwxARkVTKzNY65yICHce/MbOTePPzbQVy+ForQ4FDwA3OuXO2WOpeKZKymUV5T6IiASjZ8xtyc4DPLOHfbWbI2BFOroMfb4HCvYFSwCYAJrtNTOApAHJwkJ70oeSt2yEzPLxkGnOsCpCFfS4Pea454uWVR2Dw3nZk5jitHp10ejfpBx0jNscm3ncDAHiUuZfhDCQ/f1/rw81ca39tzKcXpPj7kcZYioiIpCJmlsnM8iV6XQs4DBzAq7D5uO+tx4H150sqRSRlO51USqpieN1C/bmkBqklThEREfFcBcwws6uAOLykspZzzplZG+AdM+sJ/A40CWCcIuJPXoMlcT3T+VornwUyA/3gJBR2GfixpQFwvStBMdKxqERt0lObz0o/4H150x7eH/MkrImilitBLvZDqdyQG/JUPQKZwc0ynir+Jp06joShf8GLvv2/CrGts0CVO3jMygGQhjs+XhIDrvD/ZrOa2VhgnnNunv83f+nUYikiIpKKOOf2O+cqOOdKOefKOOeqOufW+d7b4pwr75wr6nvcGuh4ReQS5fNllEQBURRjK4yMpLDbBwylkwsFdnIfC2Hcaj50K/m5UHEW2Xb4/k2G8yxs2uktHCdjg9/p4WIJJY5uDIBngMXA0lmwYz9242Ym3tsGhgK8D68e9pZq8Gr552Gp14rqXOTZkUryOuqca5VSk0pQi6WIiIiISIqjbrCpV0JX2GCjFksRERERkRTkb0nl7je9x1+6wS/dmGN/4uoYP9pPPOGuZrA9ArzDKKsLfM5DthAyAVU6Qp2nWVHoXuAd4B26u/eol2Umfe7tyxzbSiH7DFpH8ddR41n3I7yQG8iNG2q85+oAd0Op7FAqOyc+CmUHBWjlsqm1UpIUjMm0iIiIiEjK9vNL3JZ/JV/bUqAsPJnB98ZJ5uapDs/X4l2LAt6HtyNhD9zWswLp+ZTODOKhaxbCQejqothBAQB2Ekc51jKpuWFrHdwPPabGkm47vFGyM+k3HCP2s+xYdwc7wd1t0Ne32wMwhg6QTwMr/00yjbFM8dRiKSIiIiIiIpdELZYiIiIiIimEJUwNef0xvn69EovcS1S3SCjjW//d07TjXtoOGcLmIeVZVuh+BjdrxyFy0PfbPlgrx4pV9/Kaa0+XssMZMDYSfvB9dyRMvbYZP/5UGB6fDtfVp+/+7oQViYb74NRfodAUarWfwXaK8A6PMYc6AMymweU9EalYsI6xTJPH7JvTq1aRIkUCHYqIiIiIyEU4Bs9lp/pzXXjCvXW6O+uKj+/lJfpykBxspBQ0hUPkoGd0H+qXnAir/qKk20CX9sPhQcjVahcHxuf3NvkykBeGRHeilGtK5+h7GBjWmaE8D6Ugbk8mLJNj3qRH2dckG3k6HoGhvvGe6gF7wdQVNg1xzs1zzrXKmjVroEMREREREbkgqgQrqVmaTCxFRERERFKlh6KAJyFjASq7T/jZteDdqi05QWZOkBmuhKfXTeAQOSnNJtgC/Sr1plrYIt6f9CR8dgXf2q2wGAb3bseB+flhAd7y0hukf/AYWf48yiSasCSsCiXYTChx3N5+KdXKfUTlZp/gDhp3sxy2A7UiVQX2P0roCuvPJTVILXGKiIiIiKRZNiTh2fXweAEoDi8wiOvX7YfRsGF6Be/te4BeMOz7bnAN0BTYAit+qkbhJt/x4/SbuN5tYefsG7ErHD3+eok+03ylXRc+S2wL6D6rJ3fxBbdO/JYZTWsRwRq2U4TPyj7Ah+vuw3Bgh4GEFlQllvLvlFiKiIiIiKQUTzT15qG8Fh49NgNOwNtlG9F82hTv/S/h/ZW12UpRvqASyw5X5r7sC1l8rBqv8DKPXz2b7cduxDY53DbDVjp+m5QZgCa8w/xSj2CLHGOrN+G+ph8SRyibKMWBsfm5bd1yIoliVcdboCNUYH3ATkNqpjGWIiIiIiJy2WlsZdqirrAiIiIiIhIQIY3+IL5rJK6LYc87KAMNs0wlZ6WDNG84Bd77y/tgtSt4LP9ceux6iYULHsKWON4Z+CTZH47miyV38XP13Fyx3EFjR1iOw4wo2IL8x3YBUD/LdL7KUwZ6QqsTk3DXGbbT8W39ItxU7kcOkolrZh3n9kceBsCpEqz8B0osRUREREQCrHbueUT/FYZtc5ANeDCG6dH1uS9sIVQGrvJ1rswHhz8N4wvu4qkab8JJyL4tGl6FHByiAl9xuFIY2YdEE9c0lHG04GTjqwGImLuGUE6x4q0IKu3/nJq5P+D28kspe3gdX5WrQNm6m2ENkC8Stysw5yEtUFdYEQka0bGnOBkbF+gwREREgp66wUpaocRSJAjd0X8JdwxYEugwREREBODGSOY0bMCisrUZUbQF7Id14bdwon9OVlKRjA1+h6eBp6FWzxlkbxLNQ9MXkoODdK/bEzLFEFLgD/rM6su+EgWpyhLIBF2zD2AEz0AvoBeUYy0TeYo7l6whbkEm6vEB2+KLkiP7Icqu3Ayzgd2otfISJbRY+nNJDdQVViQI5cmakfTp9LuSiIhIivD9SaiQEa6EomyFFVAldgk5ev1CbvbTNstIjpTNBsCoY+34cNJ9LOcuBvd7mT3dc9Jve2/i86aHFnD4cBil2ciHre4jI9FsoAwly37jfZe2vDukJXd2/JSc8XtITyzjQ5oxhYZM/7MQllGDKv0lGJOsYDxmkaB38q844uJ18xAREQmkDIePBToEEb9RYikShKJjT/FXqFosRUREAsUsivSHnmedm8521jKG1qQnhur2LrwOLdKPI5YMvLGtMxt6VYBnvO/1qfgCbRjNvn4F6dH9JXrTg1qVZjBv+qMwEa5ee5LjpTLx0JaFuMxG44JTqMdMAEZu6cS7D7dgJwVpETKOqOheXLndkbX4r9ivDk4mjPeMDMg5SStUvEdEgkZ0TJyK94iIiARYvewzmUttHrtiLrnZz4Ib6sLgAoxo34JibGMutaAedJ0aBUOBodCj4SAvUSwJfTb3Zey655g391G4/RS1as+AcDi65lr+LGLYu46MRBNDBmLIwKlwKFloDaNpQ0ZOkqE3UAaOVr4WGnlJpXNKKuXiqMVSJMg454j+K46/4uMDHYqIiIhImmMEZ5IVjMcsEtRi4+KJi3fExTvi4x0hIRbokERERIKKWRR5XBOmXlMQBgOPQmF+hA/gf6WLcfPyrXStFMXP3YvDRBgwNZKsU34F4GiFa6nFXN7I3RnmgKttfFz7Hmrv/5CmTCAizwoG52lHhobw+dTyHCQH06kPwJNZ3iYbRyjMdh5stph843fDLuA9tVb6U7B2hVViKRJkEneBPflXHFdl0GVARETkctvXtiA8CnwBY6c2oRqLWVm6Ijdv3EqnSq/wO9l4tt9AdpOPOd824NP09wKwbV0xhvI8q8rfQqkyG8kc9xsnLI6vXQW2UYzd5KNTx5H8OLUwK6lIFJGkw7v3T93biGHh7TlOZt4e34hqLPZNRRKJKxqwUyEXJquZjQXmOefmBTqYpOgvSpEg80eixPKP2FNKLEVERC63dJFwLTAant07kJbz3iXDHUf5Les1ZL0nhsFRL0NeGFa7NW/M6sy3TYowirYApCeWBUPqUqLjZlZnuI0Tq3OS123ntgGbeKLrW7xGZ5oWmc4OChBNGDk4RH2mA/Bq+IuEEkfen37jzULNuH7WfnjEV7BHrZV+k0xdYY8651r5f7P+o+I9IkHmZOypRM9VwEdERORyMYvCLOrfPyiSCqmpQiTIRCdusYxRYikiInI5VOPjMy8eB7bAPXs/Jj0x9KzVHQ7DhNCmhHz7B/F5roJQaL9/LEfqXs1wnmVgXBcAsraMgTIwMf4pDi2+DoqfYs/yIqRveYzWjOHOsWuo1XYGDZnK4z/N4s4rv6RM+HoAWjCOHRQgY84jlGEDneq+Ai6UQbx8+U9IGqYxliISFKL/Nsby1Hk+KSIiIv5VFoCGk8YztWUzPhvyAJ91egBeBD6F3d/kI/7tq2C7o2uh3oTYUXg8C+lHHONk9jAA3h9fm6fj3+RQpuugAny45AEaZJtGviy7ycYR+rR6gZd3DIY/YGjJL/h6ZSViwjMA0PHwEJZkr8rgR15m66dFKcUmnvR1kxX/CdaqsOoKKxJkohN1hY1WV1gRERER8YM0mViaWS0zG3v06NFAhyKS4qgrrIiIyOVlFsVnVp3K7goqO18nyQ+gYcfxPOsG0r1fT579ZiBNeBeuha6FepOLAzR1U+F+qJl9Pq/wMq/wMjspwKHQdDAMhi1pzVKqcHLm1Wx96GZm8zDdjg1mfMGGALRnOLkq7uI4mTlOZlZkv4PMHOd/nxbjM6rxGdUCd1LSsISusP5cUoM0mVg65+Y551plzZo10KGIpDjqCisiIhIIr7HMVrPMVrOYatQ4PIup05uRnhj6WR7WEMHNY7fCTTCgYyR7ycPEjW3gE5izuQFHyMYRstGl83CYkpsFrarQYfgYhnXsxqvNnmfahw8DcMUeRyRRZC70Gzk4xC/Hrmfv/jzs3Z+HiTzF/XzCzeFbeTe8JZNoGdhTImlKMHb/FQlq0TFnkkm1WIqIiCQvVYENPsE6xjIYj1kkqEX/lajFUmMsRURELoO7oX9l6PY9ADWZz3YKw1EYPPdl+Aw+Jozsrbfhvs+HrXFsoxitSr/O2L+egzZwc+6tAISM+IP416+iRtul/DQqnILz9mFNHK66YVGOsT80odUVk/jor2rspABXjHMU7vgdAKNWdoRfgRHg6gboVEiapcRSJMicjI3DDJxT8R4REZHLoYY7TDpmkK/rbgBGNewIFeCD9jV5pOJ8/reyGPOpSQ33NRbmGBHdglOE0iZ6LGNjnoNewD07Aag0YwvLXg2Hz0szhtYMyBEJ6cAWOdjel/TEELLnDx7svRgywUcdq/GgzQNgrGsCQEsmBeAsBA9NNyIiQSE6No6wK0I5Fe/+ViFWRERE/EvdYINTsCaWabJ4j4icW3TsKcIypCMsfahaLEVERJLJ6aSySiQLatZlnh2kIVNpyFT4CrgSllGFtiuHcLN1YC/hLLBSUATaLXmbDdxCk7CJjJjbwvv8tAIwrQDLQu7nNTcOlkFXBvBmxadgE7w56Sn4/CWajppO/C9XsaRnRegED1ZaTF73C3ndL+wnF/vJFbiTImmaWixFgkx0bBxh6UM5FRfCH2qxFBERST4WSeUln7Bs6v2w4ACV9n8OQIef+jNsXTfmUoufWxYn0x8HqUkFunw4nGG1W/M6rbiPhTTYPge73cHbMLF2fQAq1f+CQtP3Qkm4eshJnv52At2/6cnT6ybwU6VwdlfKx90/fUU0YeRyu4iLD2WP7QGgBw/iXOVAnY2gEoxJllosRYJMdGwcGa8IJSx9qIr3iIiIJKNc8btYZvdDo2MwMpL4268i/varGDarG6vK3sLPk4pDHTgxKCf54nbDPOgwfgwd9g7n8bKzsTEOPoDfamfmALk5QG4Kzd1L1/pRsAGadBzLY+PfYQ0R8CoUWreXaMJghFEMr9jPodbXAZ8nWkSSRzAm0yJB7aSvxTIu3qkrrIiISDLQ2MrgZsAV/s6yUkEnMyWWIkHmj9hTZMqQjlNxKt4jIiLib6eTysGRHLgBSrpv2BldkBPTgB3eW2/WfYo79q9gcJN2dKo0klXLbyHrozEwM4peb51kGZW5a90X9OnXlw8r3cc1HY/Dw74dHIEBkyKp3PsT1lOGb5vdyrrxJZg1uQ7Z//idGvOX0mnIK8ylNgea5YcJG4E6OFf6sp+LYGUG6ZRYikhadzI2jmsyZSAu1PHrsb8CHY6IiEja879IuPkHbnP7+LpQJRgNND/M964sADe23wkNoEXOcXTqMJLbb1jPqz88zxQaspnNLF1QA/vecbh7GNlXRkMokNO37RWQt/t2lm27n0x5D/Lh+PvoT1fen/MkLo9hKxxtao6hyPI9hI/fC+OhAbMDdCIkmCixFAkyp4v3qCusiIiIiN+ZwRWhgY7i8lPxHpEgEx0bR8b06bgqfTp1hRUREfGj091guwFM5ev8lcjz0w6YCLncCW5stpMbm+2EBUA2yHptDJnuP8jhH8I4TmbuYyHv/9SEb2qUZFjH1mQ7fJKiFTdytH8G2AJsgUwdDrI78gbIFMPxTddQmB95f/OTlKv/JZwCd6tRpNseRlZqzuNWhsetTGBOhgQdJZYiQSY69hRXpQ8lo+axFBER8b+MkRAJPB0J4FVnvRO+ogLcB9wHr/3QHqbBiN9asDysEtmHR9NvSG/GxbaAOcZ8HiCOdMReCTGkJ2ubGCjjoIxjR1hB7BHHe+EN4A/IzX5eK9GetdvuYGnV27Hyf2IVHc9YPgCciwzcuQhSCWMs/bmkBqkkTBHxB+ccJ//yVYV1XldY5xxmFujQRERERNKEZKkKmwqoxVIkiPz5VzzOQcb06QhLn464eEdsXHygwxIREUn1vG6w1/Nw9DR4HbIO+xXaQVcG4AoahdruhRuAG6DL5uFQBJ5ZPY6y4ZvhK3i/Y22OtriWHB1+4SkmsJc8zA2rxfMMxbUxXGwILjaEnK+d4L3SdagVM5dpVR/mJV6hHjNZVPQumjCJcuFr4CvgxUi1VsplFYS5tEjwShhTmTCPJUB0TBwZ0gXhCHMRERG/a8pdtGPauMfJ8D1YRscYWlPjraXkmPkLh165zvvYQeBBICP8tcW4IqvjsR/mUv2bueRjN3fwJS0Yxxha81n+BziwKzcNmQpAyZDt1GAWhTNs5/GWs3F3GJkf+413wprwDRFcO+0o9movbz/9lFgGhOFV8g0yarEUCSIJYyrD0odyVQbvihf9l8ZZioiIXKo8rglcDTX5mCuLOErcvI5e7bsxZ3wDes3qxqER10EGIAN0HR4F9x2DZdA5y6uUdN/AGli0pDZvj21HC8Yxn5q8SjdcP2M3+bj12Dfceuwbbiu6nM2U4LaOm3BPGFWaLiDuVCiV+II8uw5ij/cCNLZSLj8lliJB5EximY6M6b0OCydVGVZEROSSnK4GKwJei2U6Py+pQCoJU0T8IXFX2HjndYX9I0YtliIiIhcrIancV7Eg9xz+mBsH7CTT9oMUYytfcBd7muXkbj4nU4uDnBiWE4BMHMctzIpldYyLbsGIsHY0/XA65ITrq24hjGjeoiWPMoNpjRuwnLt4M0sbAK7mCH15iZ2/30hosRN8yZ0sy1KZ/Md2weh03tjKfgE7HQJnEssgoxZLkSCS0GKZ0TfdSOJ1IiIicrHKQgX4rOMD/Nw1Nycm52TOxgasji5P3vwH+YT7eSmsL7m67yJX9130mDUIe8HBQu/b+dlN3trb4eb99KQPXXYN4ebxWynPaobyPE8xkX2Es49wSrCZI2SjxIR1PJ97KLevW08LxlEqyyZ4NcpbRAIgCHNpkeCVkERelT4dcb4Wy2h1hRURERHxL/9nWVnNbCwwzzk3z+9b9wMlliJBJCGJzJg+FHc6sVSLpYiIyMVI6AZbw/1FGFNowiSut/10cP0ZtqQbJ8rkJOOR3+nMQKqxmHD2AnAgW34oCTV6ziKcfVTdtRxOhcKXRvNJU3A3Ge2aDSaKSGozlyn7G/JSbq9/6xQasW1jadw3RrHm/yPkuj+4gy/ZdkNpKFIJ90PATockr6POuVaBDuJ8lFiKBJGTiarCJoyxPKnEUkRE5BJUY0H7OyAnfDCzEXe6T5kQ25QVVSMo9dcmsn4XQ+XSS3mm7Th40veVI0A6qM90ms6dDqfgkbpTmH3VwyyveDfuMIwc04m7Wi/ieYZCbhjECwCEEoe72viueWG605fY3BloNWQSPA2uY6DOgfxNkE43osRSJIj8kSix9OWV/KGusCIiIiL+E6TFe4LwkEWC18nTVWHTnW6xVFdYERGR/+7MFCN3UGP4LI5wNasiqrCi9r3UmDuL2TzMnVPWQF44Tma6j+pJv6m9AXivYR161+1JGCf5unYpHmUGH2xsBNshrG4012b/mQOZ8/MtRXiID9keWZIDUbkAeGbbOPgCbn30G05uvxoOAp18sXTU3JUSOEosRYJIdGwc6UKM9OlCcM4RYireIyIiciledc/zYsehkBeYCXSDBaPqsuBIXVp1f50D5CYdcfSb3xu2eN/ZTAk2v12W1s2H0ZM+/PxTMWqUnsXXJcsTsf8b4j+7CoANlOHHWTdhjRx/RhsATxR+l9CsJyidZROty47h6SsmQLpI3F+BOX5JglosRSSti46NOz3NiJlxVfp0arEUERH5D860VIpIYprHUiSIRMeeIiz9mdHkGdOHqniPiIjIxYiIhIKRvPjoULgTfuiYj4dXToOSjhvbroc90IJx5GI/hfkRHoiCccA46NO2Lzua5yEdcYyjBR8UeoAF/epyW8hqcuc+wNH6GWjYcDy52M89dT8ma4FfqRT2OZXCPud4aGbeyt2KDT+V56noiXAqylskZQn185IKqMVSJIhEx8ZxVfoz/+yvypDudEEfEREROb/ErZXdv+nJbvJRj5k8tHkhN9gi7nE/cVuhL4gmI3Q7xW0dN8EmGPvsc1R3cynCEABGjffKt456tCNtZwwhNwfo0f0lsnGEbRRjXGgLajGP6mO/gDbAzlOMzl8VgAp8xfHYTPCNcWWDXgA4p7GVEnhKLEWCyMlEXWEBMl4Rerqgj4iIiFwA85K4EtSjX/7evLu7JftcNvJ8fITPwm+kx96X6NO9LxQBigNN4c7Sn9Ka0Twyf763jeJQaOpevp1RhDtiVzCqf0fYANwP5IVOM0dCU7it1XKebzWUAuxkN/kA2D37BuwbB3/Bna7iZT98uQAaYykiaV10bNzfusLuOhzNnt+jAxiRiIiISBqjxFJE0rpNvxwlxM68vik8S+CCERERSUVsEXBXJHcu/xSAxvYqz7qBpCeGN2gPI4CmsJhq5Om3g2k04O6Kq6H1YVa8cC8rnq3CtzWLAFByyXZqNJxFSXsHvrqWTj1fYQ512HssnI+zPED6mrHcsX0tX1KOO3uvgTvBZfBu4LbPwTJgVRQrBqkbrKQcqSaxNLM7gaeADMAR59wzAQ5JJNUpkisTma8888/eDOLjAxiQiIhIKlJu+ZeUZhMAnd0gutGfbBxh1TVVaP7bSN62dqyqUIVOtV/h7iar4U8o47axoUQF2JmOkmwHoNOMVxg86WV4AfqUf4FibKMY22jVbRLtR71OfaYTWyQ9VSutxPUyXqrag+Xc5gUxBVg1HSiOc/UDcyLk36WSgjv+lKxVYc1skJntMDNnZiUTrS9qZqvMbJvv8YZ/25ZzboVzrrlzrjGQz8wyJWfsImmRA0LsTJNliBkOF7iARERERCRNSO4WyznA68AXZ60fDYx0zk02s8bAGKAqgJkV9r1ObKFzbqDv/QeA751zJ5IzcJG0yDn3t66wZhCvvFIkVTGzHMC7QGEgBtgOtHbO/WZmRYF3gBzAIaCJc+6HgAUrkkaYRbHOTaesNWUtbQAY9WJHXuvXniNkY9WAKrw9vB0/uXCG057Bo172/pXmgR2xBcj41e+c/PZqfqjoFeC5oeVuyAbUgG7HBnPFAgc7Ydio1uRjN4+0n8+I4S1wQ43l5W5jIffR79beXjDfARnr41QiIeUK0jGWydpi6Wtl3J14nZnlAsoC7/lWvQeUNbNrfN/50TlX7awlIalsCtzqnOt2rn2aWSszW2Nma3777bfkOCyRVCveOezsFkunzFIklXHAa865Ys650sCPQH/fewk/3BYFRvLPH2pF5CKVLbGZ7u4EVMniLd9Cl9XDmU9NmAhEwEjaMqxfN6gM3V1PGApxp9LxaZZ76VTxFXJwiBwc8ppeMgMj4IphjhH1W0AeaHdsLI+sm8/E4fXJw162l8vLDgrQk96EfPQHIR/9AX/iLZJyJSSW/lxSgWRNLM8hH/CLcy4OwPe417f+nMzsQeAV4FozG52QiJ7NOTfWORfhnIu45pokPyIStJzjby2WoBZLkdTGOXfYObcs0aqvgOv/7YdbERGR5JRK8l9wzn0E5A10HCKpWbzjny2WAYxHRC6NmYUATwNzSeKHWzNL+OFWXXhELpJZFLSI5JG3prCcu6Cpt35Jk4rk4gAlb90OzwNHYLCVgCLQo/tLTKc+r9Vvz3YKM5xneX/Wkwxe9bL35f/F0DR8AhO3tWFi0fp8QSU4BVc86CADPPDpfEbSjoqsJDPHqd1yEf3fetH7bjx0ZngAzoRcsCDtChuIQ94NXGdmob6bXigQ7lsvIsnIOUfiBksz1BVWJHV7AziBN9HBLRf6JTNrBbQCyJ8/f/JEJpKGNH1rNA2ZQvVmX7BqvPdPbSUV6VR1JM9+M5BJsU8Qdyod4a4I21ZDn459oQx0+XO41231XaAOFB24EYBtj5ZmYkwb1s0tQdnxm2nebCTxDxshxR3NK47kmlHHKdP2K3pt7A+ZHCw0yA9uV8BOgci/uuxdYZ1zB4ANwOO+VY8D651z+jVVJJl5XWHPHmMZwIBE5KKZ2SDgBqC+cy6eRD/c+t4/5w+3GjYicmHMogIdgqRWoX5eUoFkbbE0s+FAXeBaYLGZHXLO3QS0Ad4xs57A70CT5IxDRDxe8Z4zr0PMWyciqYuZ9QXKAQ8452LA++HWzDbg/WA7Gf1wK+Ifb0eyhm+YOL4Necdv5/bh6731zy3jYTeNN0I6QwdgaBTbvoyE7dBwyHimbmzmfe5m4Gno1P0VYskAQPoZMVTjM2ZSj7ebNaJ52SlUWbeUVhVfZ+y653ivbR0afDuHFqVHEM5e+uwO8wXz0mU+eLko6grrf8659kD7JNZvAcon137NrBZQq0iRIsm1C5FU6ex5LMFUvEcklTGzm4DuwDZgpW/c9A7nXB30w62I35hFwY89ofACvv2+BnwHe+YUofDc7wDI0T6EOYUaeDfXCOCDSF6t+Dx7K4bzxurO3FZ+OV9PqkQv141e0/sz6Nse1Cz5AQD3sZB6fEBvetCvbW8YBMNpz9fLK0GRGHaTD6vkvE7ujVYD4Fyy/eks4hdpMpd2zs0D5kVERLQMdCwiKUlSLZYaYymSujjnvgPsHO8l6w+3IkGn8NdwdQ0YBNe7Lfx8TXHuYyEAGylF25+GMOqGjtBoJ+77gthcx2u128PT8PXOSvzvcDGKRW8jrn4o1tDBEW+zpedv4vb26+EgPDJ1Ch8MaMSGMmXgboDf6NJ3OOsOlyCaMGgId7AmQCdALkqQtlgGYroREQkQd1ZVWK94TwADEhEREZE0QYmlSBBxzv1tHktvuhFlliIiIomZRcGUSGA7NIYlriI/31AcssFWirGVYqywexlVtyPcBeXcL1gpR/PaI5lLLR5eNw3+hJt7b+XKTY6XovtBceBbbxnQPZJew7sxdmoTPpjfCIDYLVko7L4D3sdVMMqu3MydVos7rVbgToRcHEPFe0QkbYs/qyqsGRpjKSIikpRGU2jqjpODV2jHSGr8MIsFVoTPKj0AgOtkDBz0LJVZykSe4vm/hrKJUrzdpB3phx2Dk1G06pmNfOzmY2rARMBX/uO3fpm5pslxqAf8Cu91rcNqyjNsUjf48ib4uBPd+/YEB33pHagzIBdLXWFFJK2L/8c8lqYxliIiIiJyydJkYmlmtcxs7NGjRwMdikiK8o8xlmiMpYiISGJmUZRx98HCRiymGoMtjpG04ziZcd/fTK7lu8i1fBd2jWM3+bjNFnCQHDSuO5OD5KTGpFnEHM0KN0aSgVh6WGYeCZmPe8/48yNvybnkBK61QSbgU3i86myGLeoGJaFrxSj69+1APwuln6WSPpDyT+n8vKQCaTKxdM7Nc861ypo1a6BDEUlR3D+qwppGWIqIiJxl67Fi8DDssSK0dZkZTnuu5gilin9NfaZTn+mwHXKxHz7Oy/u2E/LC23PbsWBsXWyHo9Xm18nGEaAL3A85b91Dhr2QYS+8VLUH9rPjf1WL8eqM56EcuPwG18YwICwSgFfdEZyLDOBZEPlvUkn+KyL+4M1jeea1N8ZSqaWIiAj4ivaIXKqE4j1BRomlSBCJd+5vxXtCzNQVVkRE5G8iKZblKzZ8UgHunsdKKrKhYgVuXLmed2jCbaU3eR87AmuJ4LWa7ekyZjhLWlVkHC2YWroZdIDODKLIkj30+aAvP9fNTWdew+r6brodoFezbpReu42b790Kf0LmqN84miELa6PLUdXuA6Cb7tGpk4r3iEhaF+/4W1dYtViKiIicbR0xZKB7pZ50devY8GgFyAbf21zSEQc7gZ1Qctc3HCEbXawXlISqHVeyg4I03DgeXoUbrAW200ERmMQTvF/3SU58E8qJb0IZ1qw1mTmOHXIwDlgMU8IakTVzzOmkUt1gJbUJwlxaJHj9s3iPWixFRERA3WDFj4K0xTIID1kkeDnn/jbGMsTQdCMiIiIJWkSy4K0q1AhZyvduLnwYCTP/gmlXkH7y83Qmgu7HegIwl1pUZCVF3VbaMYqRFdvyFBO5vf16WOhoWCgfx5nBvCGP0uPmDrhxRv8MHQB4cflQyABlqn/Fhs0V2FMiJ3nHH4STATx2kUukrrAiQcSbxzJRi6V53WNFRESCmVkU6Q89D6VgDK0pHP8dX7uZ8BXc6ZZRpv5XxA7LQihxDI9uz/Do9ny7+VYKsJN87ObmJlspwWZys59Xhz/P2EJPkonjzGv7KK668YRbwPjmDYkhAzFk4P1KteFq2DC1AuyEoXSA7wG8VlN1g00DgnC6kVQS5n9jZrWAWkWKFAl0KCIpytlVYb3pRpRZioiIxOb4koxHKzAnvAHcASUmb4b7YYX9CW/fy2u929NlyfAzX3gBSq3bxI88DPfDGNqwlgjmx9fk0IbrcM6oPWoeNt/xbMmBdIl/jUPjrgPgo1bVWFC0CjV2LuV/1YtRLHobOQce4sVB2QJy7CL+kCZbLDWPpUjS4uPd38dYqsVSRERExL8Sphvx5wJZzWysrwEtRUqTiaWIJM1xdlVYFe8REZHgZvYm8CRcXYOTi6+GpsCNkKlzHO6A0cn9D5qvo0uT4fARcM90b7kWKgzZQDRhdG/Yk+8r3kIZNpAvZDcMA/vQ8WT8O3AKSrGJV0NehJxATnhwyGLuX7CMydXrcbNt5VRoCC9aNkDdYNOEhOI9/u0Ke9Q518o5N+8yHsl/kia7wopI0pzjb/NYGireIyIiAlDj8CyG8xxD6z7PqEc7wszvsXSOvPW2w3dF+LOA0TFsMJmHHPd9Iwqb7qAS/Lw8N/0G9aZTx5FQDZgDjIaMISfhSmgYM4X5GR7go7rVAHiw+2KW17iNRls+YK9rTyYbCIBzHQNx6CJ+ocRSJIh4xXvO8MZYioiIiIjfaLoREUnrnIOQkLPHWCq1FBGR4OTNXfkYe1wEeR89yA1b65J343b2zchGWdaz65hxRSVHh+X9ubKngxanqJ5/PgAHyAUtgdZw/aL9vFa9PV2GDodIYA1QDUY2bMc9dy8m0zNx3PjWen48XBiAH/rl44bVuzlcPowuY4eTUA1WJDVTYikSRJJssVReKSIiQewe9xMTaMqIGS14psQ49owqQp47j9Cq9OuMydKcN5c/xdNtJ1B91FwWNavNj+O95DAj0dx57FMAVmy7ly6zhjNxRn1OEsZiqrFhVxlq71jEWwWfoNxbXzKeZszN7tVdeYlXcEeN+kyEicDtkbiVgTl+SSahgQ7g8lNiKRJEnCOJqrDKLEVEJLh4LZUiyURdYdMOzWMpkjSH+9s8loZaLEVEJHi5fr0IO3aYzzo8AGXg2c0DeaNSZ7gTxjZ7DgoAJYE3YdGTtfl6fClua7/J+3Jl4FW4/ZulvFr0eV78ZChN753OiE9b8MH0RnALNCr6NlM7NuOjIdW4efxWb3vAbVWXM6N6Ld63J704dC+WNCBNJpa+MrzzIiIiWgY6FpGUJN79fbqREFNVWBERCS6W5czzei9O5mTvq+FK4LkfeOPOzjAthq7h/dk/PjcTS7SBF4BpwBh4tPwMb8oQIMfDv3Do1+tYtbEKq45UIWPT3zl55Gqe2TsSV9VgF9g6B5UhhvTc2exTetIbgHnUZjjPcmZspaYYSVOCtMVS81iKBBHn3N+nGzEv2RQREQkqn0fC55Hk4CAnuobSatTr8PENdCjbH7ZnYEDPSCbtf4JOm1+BxdCj/ku4BsbPo4pD01PQ9BRdQwZAceBXWFXpFnJl2Q+ngJ0ZsNmOb8qV5P2ytXm/dm0yEMsBcnPvvBXcO28FYw63ZoVlAe7XvJWSZgRhLi0SvOLPGmPpTTeizFJERETEb9RiKSJpWUKX18RVYVGLpYiIBBGzKDg+BOYAc2Bs1efItDWOCNbSo+ZLDOvZDTJB096jiX/5KtIRB4NiiDrcD1vmoAwczp+Fw/mz0DZmJPSCRdXv4iQZ+XlbcR7r/Y63o0xwW79N9KYHnXmNB2ctZtvw0t54zZIQuyUL8IlvkTQp1M9LKhCEubRIcEoYShlyVoulGixFRCSYPOvi2MkMAI6TmXrMpOXkdynf+HNW9I7gzrFriCsbSvoBxxgwIBJuh4KVvodr4YmKbzGIFwDoV6M3bpTxKXdSpc8q8vbYzvRXmzKndR3KVVzLEbLxVUwFimfYyv/qFiOcvVgz3033T+DxSNzUAJ0EkWSgxFIkSCRMK2J/qwqr6UZERERE/CpIu8IG4SGLBKf40y2WZ9Z5YyxFRETSPrPF8GEk4479zqdZ7gXg3mOfsmzQ/WztXYzc7Kcw23ms1TusIYKMmaKJaZIVgNE05ekCE5j0ZSus4J8AuCnGjjx5eJJJ/NKuEAXYQaMX3ybmf1nhKNgORybieLbqQFZSkZrMPz3dCJG+arBTVbhH0g4lliJBIqFIj/2jKqxSSxERCRIPHebkO9kZ0KQrACc3XM263iWocPgrYndm4YbiVfgmLIK7WU5U+kim5XmYxxfN5qc84UyuXY93eIxazPW2tRpW5qnI3t2FqJPvPSbxJIN4gZE3NycTx+lQsD8tGMdsHmYcLbwutON8ceSLxO0KzCmQyyBIWyxVvEckSCTkj3/rCmumSZlFRCTNM4v69w+J+FMQFu9Jk4mlmdUys7FHjx4NdCgiKUbSxXsS3lN2KSIiadxn1XjPNYdqMRRlK0XZyu2VlrKf3LyXvQHpCxyjZ1hvHmcapdhEh73DeXzubApX/45bYtcRzl7iSMe8jY8yb+OjMBsm0YRb8q2iO33ZSQGycYTZ1KEanzH0sRdZQzmq8RlxhPIanWF31JlFJI1Jk420zrl5wLyIiIiWgY5FJKVI6PIa8rfiPeZ7D0ItqW+JiIikEdngOV6HP9NTgu8B2ElBNlGKMKKJ/TMD1VhMC8YxiScIDY/jx9qF+XHzTYwt0YTtFKHV1EkUbbgRgLACh/mBGzhOJn6kCGNoTTRh3MUXPMfrHHk/G6HEMY0G3MNiHrHyADincZVpnrrCikhadroqLGqxFBERERH/UmIpEiQSUse/j7H0HuOVV4qISBpVhU/40K2EE3Bgc34mF3qUYmylGFvZQBnu4gvaDXmbr8MjAK9Vcyb1CGcvmTnO4BLtyMFBxtECCsD2/YXZvr8w32W5iftZwIv0p3LMUua+8BhtGUkop4gmI4ufepCPjz3EXsKpzTw+d/PVWhksElos/bmkAqkkTBG5VC7ee/x7VVjvudOkIyIikgaZRVHZlecUoZATchT/hWaHx/N69ucAqM90ptKQyI5RLNz9ED3zdWcIHdlBAR5iLu/QhH68xKb4Upw6FcqSihW9BBMouGUfA4t3YTMluGpNPMTA15Sn/7RebG8wnfsmfEgxtjJ8SxfsxicAVDAvWBippuCOPymxFAkSSY6xPN0VNgABiYiIXAb1mc5mSuAyGmEnDvO/7KX5kSIADKc9m1eX5fXyrRiSry29V/cjovwKnmICe+cVYnStprzAIMqHrGZT+lLsJzdF2eZteBFML17fa9m85TdeuqMvUdG9aN/gNe5jIaNpQ2aOY/0cPAFuUgBPgshloMRSJEgk5I5/rwrra7FUYikiIiLiHyreIyJp2eniPX+rCvv390RERNIKsygKu3o8XXsCfQ73pEjBbzm5/Wo2UZpxtGAcLfgqrgJhNx5mGVXIQAwR5VcQRST3sZB8tX4gB4coxSZmUo+qP31JemLIzX5ysx97MJ44QsnGESLC1hBKHCPD2rKVYgAUXLCPJrwD70Z5i0gaF4S5tEhwSsgdLakWy0AEJCIiksx+bHYTK+ZG0IzxbNtbjN/KZibnaycY0KUrADtDC1Ary1xqMp83aE9Gonlw82JWlIhg95Yb4BCUuuNrbmEDvQq9yNeUZzMlAOheKJInmEQ2jtA6bgxZt8ZQo8Qs5kY/xNKwyjxV400WWFmgLM4VCNxJkMAIwixLLZYiQcKdZ4ylWixFRERE5FIEYS4tEpwSphRJPI+laYyliIikQRkOHwPKwpXe6y+5g+PhmWnDaCp2WUlrxgBQetE2hlTvxGLuIYb0RBHJ+hILKcBOGhV/m1Di2Ly/BN+OvBV3i/F6nVa8ergXABuy38gc6rCYakSErqFWiRlspgTjwpoTTRj1mMlE9vsi0jQjQSVIx1gG4SGLBKeEKUUSt1iGnK4Kq8xSRETSmK9qcX35LdyxfS0fF7mHcPZSkZVUZCUZiAFgYPVnqcxSnnzhfR4YNJ+cq0+QufxxxtGCKQua83uNjDyVewIv9e7Lem4kMjaK+7IvBCAPeynATt6iJQWX74NN0L7da9RkPuHR+7hyg4MvwVUM5EmQgAjS6UbSZFdYM6tlZmOPHj0a6FBEUozTLZZJFu+57OGIiIiISBqSJhNL59w851yrrFmzBjoUkRQjPj6hKmyi4j0hCV1hlVmKiEjaYPYmsXmz4E4Z9ZjJ80VepQ2jycNejpOZ8oc3UDRmK0VjtrKBMjzIx3Qb1IuRtOPUjdCZgUT+NgAyQGk2UjF6FT3pzXEyMzr90xSf/DPFJ/9MDT4hjGgaMYXxlRoyt111etKbgl/u48ppDu6I8hYJPgldYf25pAJpMrEUkXNLPI+lWixFRCQtKhq9kXfueIwMxPIFd7H7pRs4QWaejxvKF9lv46q98Vy1N54XGMR4mtF/Zi8OkYPtWa5nc3QJel7TnS+rlmP3qzdQLWwRewlnJG25iy/Y0TgPOxrnIRcHyMduIlhDsy1TmU0dcr56glOlgOZeQumcxlZK8Egl+a+IXKrT81gmWne6eI8mHBERkTTALArIFegwRIIyy1KLpUiQSOjtGpLoX73Z398TERFJ9eo8zVNMYCUVmU9NXuc5XCf4mJqE/RFLf7rCAeAAZCSaMbRmV71c1GQ+zZjAC2GDaMIk4gjl9xcz8sXa6szhYSqykuvGHOJePuVePmXR5tqsIYLMHOePgiGMjn6anF33cMUGB59HqrUymCUU7/HnkgoEYS4tEpziT89jmWiMpaYbERGRtKRFJH3eeoHFVGMrxYhgDbN5mDHZW9OCcRzPkpEF8+viKngf38AtvMOTVOArqrGYaTTgAT5iA2WoyEoqrf6aF8r3YQTPkH/eAQ62zsT2hiUBKDX1a/rSnZ3Db6RA++95i5Z8y03UqPSJL5gKgTkHIgGixFIkSCQ1jvLMGEtlliIikgbcCj1WD4IrYEnZiuwnN4+vm03zsiNZShWG057uNXvSjDcBWEpluvEqk3iSuxetZk31CEqwmfenP8nA+p1hNzQp/y6lY/9HeK197I7Oxy/vXgdAEX7kFV5mS/vrKcFmVlOe6lYNWKjWymAXpPNYqiusSNA4T4tlQOIRERHxH298pYgEShDm0iLBKal5LBOaLONVFlZERFKx00nlHpjcqh652E80YRwnMznK/EIY0RwhGzMON2ZN9pLcOvJbAJa2u51p1Kdu/Cz2Vc/G40yjBN9ze/2l7CWc7fWK0Dh+Ml+lr8CN23byftHazKcmADspQL643YwLbcHHhx/h2uw/AxMCdAYkRQnSFssgPGSR4HS+MZYiIiKpXS1Xgnn9oNGzHzD6jaYcIRtDeZ6Dw/JSoKM3BrJv9k702DaIwu2+A2D7lyX5/Y5sjPm5A6yFJVVrcF32n2jNGLJxhP50ZXJIY+5lMYOLtqMf3cnISQDSE0uWNbGMK9+CqdkbcsBigIY4d0PgToKkHKmk4I4/qSusSJA4XRU2US6Z8FxjLEVERETkUqjFUiRInEkez2SWdjqxvPzxiIiI+INZFI+4InzQ+VG+H1iAdgxmMyXYTT7ysZtPOlYmM8fZwC18QD1I53iY2QDMuKMWL/MKQws+T52Cc8jNfvZNL0j5+qspvWAblWp8QQRrqMZiCrCDETzDHa+uBWDaiw9jOx0hBf4gfuFV8A64JoE8E5JiqCusiKRlSbdYJkw3osxSRERSr/tYyAeDGnFjvp183r48d1dczYmloXTMMITyrObbR2+l75R8HF1xLdWrzqUJ7wJQl1n8OOAmtlY25pavTu0li4iu34QGse8xqcaT7Cc31/x0jImFGpCbA2TmOFNefASAKTRkVf1buH3IeujkG+PZRNVgJXgpsRQJEmcSy3+Oq1SLpYiIiIifBGmLpcZYigSJhK6wlkSLpSYcERGR1MYsylcNNjuhxPGzy82I9i2otO9r3l7ZiKsOxDO27nNkXx3NbTOWc+T9PPSp+gKLfqrFzcu3cvPyrbRlFB269uet8k/w6OEZvFC1D88de5106eLIxhFiSY9b6f25/DKvkJ4YOjKEjgxhQc+63L5tPewBno/U3JVyRkJi6c8lFUglYf43ZlYLqFWkSJFAhyKSYiSkjolbLDXGUkREUr2czxJJDbLxO8/89BbP/DYOd9QIL/4TOWb+Qv2Q6bx+rBPZHtvH0ZXX8nXFUty2ZxMAHSuPwoY44gsYrQ5OIi57OrZkKc44WhBDekZN70iZxhu4i+WUZzUv0p/JNAIgXe841nMLnYbm8uIYosRSgluaTCydc/OAeRERES0DHYtISnG6eE+SYywDEJCIiMgluM1VAeDr/DCep9hNfkgXB5nTYT0cH8yoyaCQzoya25EdtQuwkZu5/ov97KsYzuBK7QCwjg4yQYXsn9M8+0jmUYuZ1KM1oxlDG7j9FGsoRwk2s5kSzD9ck5js6QFY0LMuGV/4nYxHITrL1QE7D5JCaboREUmrXBLzWCY803QjIiKSmpgtC3QIInKWNNliKSL/lFRVWFOLpYiIpFJf7y0PwF/fGvn5iSPHsrEg/71sohSVZyxlKo2ox0xWnazC/MmPYB86vp1RhPv5hD3NvOFSRcdvZNvq0rRnOI0XzYSXIP3CY+TOfoC7WM68TLXozCC+pCJxhBLzeVZshnfTrDz1EwCWcn9gToCkXEFavCcID1kkOMWf7gmb1BhLZZYiIpKaFOH68B0AXNHTMbh3O7JlOcL9Ty0j94T97CYfTzGBfOwmrH40tvdPCjf+jnv5lH0DCjJsfGsAOswdw3u169Bo/2SqV5/Lomtr82r2FynBZpZSmVLZN3FDs93wSgxjw1tSr85kKB8DwDJb7YXilFiKgLrCigSNM11hz6xLauoRERGRlMyrBCuSggVpVVglliJB4nSLZaJkMkQtliKpjpkNMrMdZubMrGSi9UXNbJWZbfM93hDIOEWS1ZS8FGQnBdkJbWLotHwkaylHzwnduTf+Ux7avJDZ1GEv4YyjBZwKpSbz2XWsEG27DqFDyBg6hIyB7dCX7sRPv4p2jGRB6Sp06jmS7RTmM6oRRSS5xu+C5zLQcvW7fDC2EYXDt1M4fHugz4CkdKF+XiCrmY31zX6RIqWS/FdELpVLYh5LTTcikirNAV4Hvjhr/WhgpHNuspk1BsYAVS9zbCLJrrCrx4/3wvaGvmnl1mSAko5RSzpyY9X1tA0ZRViJaF4cP5Re3/dnxMAWrH3kDob37YJlddxWfjkfxVcDYCUVWUw1/mxhhO0/wcjcz/B171LctmQTearuoA2j2T/7ejbOKMoWrscVMmyW76b5wU24ugE6CRKMjjrnWgU6iPNRi6VIkEh6HsuE4j3KLEVSC+fcCufc7sTrzCwXUBZ4z7fqPaCsmV1zueMTSU5mrwU6BJF/F6RdYVNJmCJyqeKTarE8/d7lj0dE/Cof8ItzLg7AORdnZnt9638LaGQiftaVAbRqMYk9JXwtli9Ar0IvQiGYSkOqsZg2jOanZuHcdOw7nlk9jj7fvIBtdmTM+zsbDpdhbnavN+HYzc/xUYlqLAyrzuiwp2k1fRJcAWPrNqHll+8y+o6m8C3srRPOTgpw490TAHCbA3TwIimYEkuRIBGfxHQjZ1ovlVmKBBMzawW0AsifP3+AoxH5D355jp305b36dXj89hkATM7fgMY1Z0I3mFipPtGEcYRshEfv4+T3V3N7+aW0YQwvTx+MFXMcrZ+BqTT0tpcthmrRn1Ek7AfG8xRF62/kcyqRZ9IRWmWYBD85SvTwssinB0yA7xMKB0UG4OAl1QjS6UbUFVYkSJwZY5nUdCOBiEhE/Gg3cJ2ZhQL4HsN96//BOTfWORfhnIu45hr1lpXUQdVgJdVQV1gRScvc6Xkszwg5Pcby8scjIv7jnDtgZhuAx4HJvsf1zjl1g5U0ISGpbBg+hRwcIhtHqJV/NgCNx84k1/xdDKEjjX+aAcuMEc1aUCnsc94u34hmM6cyul5TckQd4gneojc9GLztZQA+KlqNKixhz8YinCwdxs7DBViWvQqLmtzFBm5hP7motOhr3qr+BDzq4NGeuEKaqkskKUosRYKEI2Eey0Qtlr5HTTciknqY2XCgLnAtsNjMDjnnbgLaAO+YWU/gd6BJAMMU8b/PIpm6BKZe2wy2AAe91Rkb/M4rvEx6YmGaUa77l4ykHZu3l4WsMKteDcbRgieYRFcGsJc8DF7vJZbri5Zh1fgq3NZsObVXLyI2TxiPt5hNh1n9WU15Vu+/jW3VizFv1qPwiK/F1KkbrPw7FxroCC4/dYUVCRLx8d5j0lVhAxGRiFwM51x751xe51w659y1vqQS59wW51x551xR3+PWQMcq4i8hv77AE1XfwuU3mAlHH8oAxYHi8GaWNrQaPokSbIbCsLbzHXy/+hYs3mHzHI9sm8/aJXfwBu0p2XM7c6gDBYAC0GNvXyo3+4SvN1eiTvn36Jq/L2NnNeE4mbmF9cRPv4rNlIBVwAuROCWVIuekxFIkSCRZFdb3XNONiIhISqWxlZLaOIO4dP5dUoNUEqaIXKqE1NGSqAqrtFJERFKy+3IvJAeHsG0O8sIzoSPoUKk/AE/ueJ96rWeyidL8UD8fa+pHkJ4YujCQXEUP8Enc/Uwo2pQOzcbw2vj25GM3ozJ2BOC38Jw0YgqFS3xHT3pzy7zvyV3rZ7JxhG1zS8PDp/jxpxLwtNPYSrlwlnqSQX9Si6VIkDhdFTZR+Z6Q01VhlVqKiEhK1Z0F0+syrHY32ANUdrzbtiWHyMEhcmB/ObIcOcbtG9ezmvI8Pnc2j1SaT1MmsGp8FZ4OfZMOy8fw4fj76DJ1OGsoB92AbtCM8bxEX9bFleUlXqFRrbeZRgO2LrmZorU3wrB08Ip5i4icVxDm0iLB6fQ8lol+TtJ0IyIikpJ53WC7BzoMkf/EGZwK9Xf7Xbyft+d/SixFgkRCo2TSxXuUWYqISAr15RVMrFifprdPwe27ghmFavHYw3PJSLT3/pWniI9Lx8Olp9F4+Uxv3Rf7yc0B+BXejHuauyp9wUjaUabhVwxe8jK3zV8OQH2ms5t8LA2twk4K0pl2TOAp0leNZduA0jQdMpqJtt/b5ngV7hE5HyWWIkHidPGeROsSniuvFBGRFClnJG9XbMQi7mNw/uewxQ7GwMTx9Xnyt/cBuCX/BuIIpS8v0afSC3xNeebOfQwWAd1hN/kYyvN0ZQAZiGFc1RZ0ZQAA86lJHWbTeP5MatScRdW5K0l/5zHefaUlZIOJFdvA7eBWBu4USOrjzIhL5+80K9bP2/M/JZYiQeJM8Z7EYywTivcosxQRkZTFLApyqpVQUqe40OCbyDJNFu8xs1pmNvbo0aOBDkUkxUjo7hqSxHQj8Sm/276IiAShtr8NYTM3MmV7c46QjV7NuuEyGJFEwQBgAMymDs/sGs1L9KXH3EHMy/8otsMxsPqztDj8LiUHbGdbw9I0XzSFUmxi2aj7qTFkKTWGLOWNjZ2p8r9V9KrZjQV7HyBj5d+JfSUL5AZmAifUWilyodJki6Vzbh4wLyIiomWgYxFJKc7MY5lUi6WIiEgK81kkozoDeWDwqy/DFCAv8CbUYQ7W8U8A8rIb1qSj3bS3md2lDm/Vbslw2hNGNCGvONzDRv+uHWjNGLJvjqZo241sm18agIml65Ph8FF+Jj8twsfxI4WpdP/XWCMHBxPmz1Srqfw3DiMOtViKSBp1pnjPP9/TdCMiIpKS2IBARyAi/1WabLEUkX9KmFLk7/NYJlSFDUREIiIi57EA2g4cQi4O0Ktaf1gMrpTxK1kZQxt+CC8CwHDaM79uTayhg2ZQiL10HR/FM7PGQTb4o3wIL44dyosbhjJiVAsOkpNelD69m5iJWTEclAGugqP3ZKD6b3NZpKkr5SI5jFNB2GKpxFIkSJzpCntmXcJzTTciIiIphTd3JTR1uRn5didKNf+akNx/cKppJuxXxw958lGCzdwSvR6AE9Ny8kizKVSeuoxxa5+hRbkRDFgeyWt129PZ3uCWDKvI02oHhdlOUbaymvI0rDkegDBOYt860g86xjfZb+Xm6VvJOjKG9MOOkf5QZWKyZwnYeZDULS4I0yx1hRUJFgldYUM0xlJERFK4hZEcIRv2juPbzbcSv/MqQkY49pTIycfU5LHec8kRdpAcYQdhJ3ywrhGZOc7r5VpRjcXkrbSdLnsHUr7O56zffTv79oazYt293DtmBemJZdr++kzbX5/neJ1c43fxXfab6MgQiIFyk74kNsdQYnMMDfRZEElVgi+VFglSSc1jmZBjaoyliIikBAmtlSKpmYr3iEialpA6hiTqC3t6uhHllSIiklIUieTn6rmZ81N9Wi1/HSbD++VrQ0nIu+tX0hEHyyCcfYSzD+4EPoEibKcJ71Ineg57aheBbzOwet/d2FQHczLAC1Ck9be8PaAdcdszEbc9E/uWFOQVXuaGe3fz2fgHIBustR+A63FO1WBF/gslliJBIj7JeSwTivcosxQRkZTh+h+2cD+fwK9GPnbjmhlrKQePRPFa/o6spCILllRhVVlvcX8Yg7u345nV47j6y5NceeRPmPcXz1YfyMg8zQlp+gfD2raG3fDjxpt4r2sd3I3gbgS+gaE8DyPBXW3wUBTwM841DfBZkNQsocXSn0tqoMRSJEicbpVMnFj6HpVXiohIoKkbrEjqpjGWIsHidItlUsV7lFmKiEgK8GUkDYhiP7nZnK8sNt7R48gganWcweduEH15iVd4idvmbmLyunred+bBi4df5USZUOxzB2vgNdeeLh2Hw1CgCDyXcywdPhhDpiIHefze2az8dCAA7n6jBSP4fvst2GwHIwN36JK2pJZWRn9SYikSJM7MY3nG6TGW8Zc9HBERkX8aARkrnmRiiTbs35yLwc3acYRs9Fnel7lfPkazFwvzNeUhIobGK2cC0OgqI/aZLEyc+hRdq0exkVJ0GT4cikOOuF94L6QBpfiaPOxg39yCvPZpe8LZC8COm/MQS3qW1KxI1WtXAuDKBuzoJY0I1nks1RVWJEjEn7fFUkRERETk4imxFAkSCeMoEyeWCTTdiIiIBJJZFHe6ihAB9ZjJPZs/ZsH4usynJn12RfFmpaewmxzd6cd+cvNqeDe4G7gbbJlj7NQmtOvzNqXYxE4K8ldTo0+rFzg0+TqqZ/mCb3fdwg8xRXi7diO67B14er/zqcm7Q1pS9ZqVUC7KW0QukVe8J51fl9QgdUQpIpfsdPKYKK8MSSgRq7xSREQCLJYMUNlL9hbveJDtzfJyw/zdDKvZmja/TeTpNybQnCmwB/5sanRbNgyAendMZijP0+q6STAVeAGuKONw2YyX+w5m5LHmzKYOxMCPFCZX+H4ajfkAACvjcLUN+9MBkbjugTp6kdRPiaVIkAlJoiqsWixF/MPMDlzAx351zpVO9mBEUgFVgpW0KhiL96grrEiQSEgeTWMsRZLTb8Ct51luC1xoIilXW5eZt2gJwFaKkbvgzxQZvgfyQgcbg413vPdpHTgC6Rsco1rYotNzURZhO9FkZGyzJgxr2Job966n1fzXIQfULziRZxqOIx+7WZshgsosZR1lsSscdoXj9vJLaV/kNZ7tPlCtleI3msdSRNK0+NNjLM+sS3iuFksRv+npnPv5PMtOQE00Ivy9tXJUw47cPGkrbIC7WE4u9mM43JvGjW493AiP95tNySbfcOqvUKrxGSFzHCFzHAPGRxJHOloNmUT7w2P5vuwtAPR/owMVWQmDYijPau7eu5ynGU0XXiNPsx3kabaDlburBujoRdIeJZYiQSLJ4j2nE8vLH49IWuSc+8AfnxEJFt1dHN1dHF2nRuGuNagATdtPpyd9oDJwD3w/9RbIBEe7ZmApVTmWLQubKEWnZq/Qqdkr8BG8TntoEEPv7F1Zsq4iG7iFF6cOpRqfQWQGnr5mAm+HN+MeFjP1p6eIjU9PbHx6bL3jDYvmDYsO9KmQNMQBpwj165IaaIylSJBIqlXydJKpFksRvzKz15JYfRRY5ZxbcrnjERERSW5KLEWChEtiHsszxXsCEJBI2pYbuAuY43v9ELACeMzM3nfO9Q1UYCIpgdcNtiz9htQCYHDHdrxT/TFOxIRy0/DvOEI2+Bas8p/kCt/FZBoxn5oMpz31M0yjP924YdZub2Nt4JEB88nbdTvZ+J2lVOF1nqNuw1lsoAyr3rqF219cR/OKU3htZXsGF3qGTnNHApDjwV8grgUHQ64LyHmQtMpSzRQh/hR8RywSpFySYyx9xXvUYinib+FAOefc7wBm1geYBNwJrAaUWErQe9tNo/lUL7Gsx0yuH7+fH5u9xFwe4uaqW+FPoHEGhsR3pDc9WbH8XnpV6sZTcROZH1oTJvs2dAS4E2JJTzaOEEc6DpCLUOJoXHEm76+sDRuMHCt+IfJYFCePZIad3lcPhY7znrjIy3vwkqYlFO8JNhpjKRIkElolE1eFNY2xFEku1yUklQC+5wWcc8eBmMCFJSIikjyUWIoECUdCV9gz60zTjYgkl81mNtbMbjezCmY2GthmZhmAuEAHJxJICdVgv+AuHm44jYcbTuP6RfthAXSN6U9HhnDnkk/hJigc/x3tYkdQjG0wGno160/W72J4fPNseBh4GN5bUoesL//KW7TkCNkoxUYe6riQzByHm6DB/vd4r24dJoc05uSgq+FIOrgfb9kaiVNrpSSDYJxuRF1hRYLE+Vos1RVWxO+aAZHACLzhzEuBrnhJZY0AxiWSQtzNYvLSjf4AlK++mhzVD9GFgUSwhgHzI+EI/DjqJt5s+xRPt58A2YCS8HPp3OSIOci7JZoAsJMCHO12LemHxNKhyRjICbcNWU5/ulH1rpWEZT7J49tmwydAA2CTF4GrH4DDFknDlFiKBAnnHIlnGoHEYywDEJBIGuacOwZ0Osfbv13OWERE5PIK1jGWSixFgoRzZ81hSeKqsMosRfzJzHIBQ4D8zrlKZlYaqOicGx3g0EQCyiyKXO4pJtOIDMQSTRgAWylKGNGUYQMVWUl0zTCG39qFetdMZjuFoRGMKN+CZ9qP4/re+2necyRvr2znbbQeNN07mhoDluIw7Ijja1tD5UOreK9JHR4fPpu32zdiQNGu1Gc6fW5K732vvrrASvJwWKqZe9KflFiKBIl45zirwfJMi+XlD0ckrXsLWAC09b3eglfDUomlBL0D3fNTvekXvFa0PTk4BMB8HmDRgNrwP3h/am3eWNKZ9lWH88H8RpAOelXvxjN7R0IjcKcMG+/4sNl9ADxUeSETrTmPuXfIzc/cyaes2N2RkGUdoQDwBTTPPQW+gz59ZgNoXKVIMlDxHpEgEZ9Ui+XpqrBKLUX87Dpf62QcgHMuFogPbEgiKcNv/TLTq2g3uiwfTvOaU2hecwqHyEHertvhOXis4lxaVX2dPDF7YQ9wELpFD4BPMsB3YN85VjW7hRgyEEMGXDsDdvJ+xyc5MD8/9ZgJX0KZul/xftnaXnLZGcr1/jKwBy5BJY50fl1SAyWWIkHC8c8xlmeK91z+eETSuFOJX5hZNvhHpwGRoJJQDVZE0iYlliJBwjnOU7xHmaWIn31gZmOAzGbWFFgEjA9sSCKBt8rN4RSh9GrYnx6VXoKcQE7IxhF60hu2Qp+VLzC283Nkej6OPq1e4HDDMK6c5uAqKNpsI2+3asTtnddTgB0UYAcH78iE21WU24Ysh1PwXMOx9IruxoZ+FdhJAUoO/Ibuu3pSi3n0cifVDVaSXULxHk03IiJpknPuPMV7Ln88ImmZc26gmTXCmyChJjDcOTc5sFGJBFZhV48JZCM3BwgZ+ge9F/TjqUkTAJhNHfrSnXJNvmRAdDf+6mFc0ctxgNzMpg40H0cZV5INkyoQ1iSazweWZyqNABja4UV4Btoyknq1Z2JrHH8dM0p038xjnecyeGA7Ou0dAtd5U5tE6p4nyUxVYUUkTYt3/+yHp+lGRJKPc24KMCXQcYikBNYPCncPdBQikpyUWIoEifikWixVvEfEr8xsBucptOyce+wyhiOSomQkmtwcoM/engwLb4+ddDDX92Y3IB303ViPTWGluKK74+Eh0zhOZpo3mULIr3+wfkEmLMJRJ3oODcLeY878BgAM+7IbRwdn4Mkl72MLHBl7/M4XWW6n8eHJTB5Yj8bLZ8LdrwEZca5LoA5fgoymG0nBzKwE8BwQihf3U04Dw0QuWFJjLE3TjYj420e+x9t8S0L314bAskAEJJIivLSRbW2KkS37ET4Mr81DGxeyoG4V2vAmAD+XLAZ/GjsoQP+Zvej/fC/MHNwCvdZ1o1fP/nzZuxzfU4Dcsfs42v1aevR7CYA+JaOYH1qTkVXb4uYa+bL8wF7CmZy9MY/dOxfuAjgZuGMXCRLJmlia2SDgEbxCz6Wcc9/61hcF3gFyAIeAJs65H863LefcZqC17/szgKuAE8kWvEga45w7nUgmZqbiPSL+4px7B8DMngAqOedO+l6P5UzbjEhQ8arB1gl0GCKXjTfGMtW03/lNch/xHOB14Iuz1o8GRjrnJptZY2AMUBXAzAr7Xie20FcIoQrQAjgIRCdn4CJpjTeP5T/Xh5hpjKWI/+UFYhK9jgXyBSgWkYA5PcVIndIMyd6CzscGEn0gO2yHGr2W8sMs75/FDa/u5sO37uOhJQvJXe8ArcZOgh7ATujVvj+cgjvnryFvze20T/8Gffb0JR+7Aaiefz5tYt/kpfT9uGvYIvZsLEKjzB9QquDX3Pjper437zcdVYMVSV7Jmlg651YAf2slMbNcQFngXt+q94ARZnaNc+4359yPQLVzbG8psNTM3gDKAOvO/oyZtQJaAeTPn99vxyKS2jn+OcYSvII+GmMp4nefA/PN7B3f6yd860SCzvtuLXMYzzObx8FQsGwOSgHV4Ia5XnLIo/BQz4WwAVotnoRrZtgQx7BJrdlHODFkoASbycYRHrO5vOqeJ5Q4AI6Tmfrpp9Nl0nDaNhnCijL30i2+F1VYRg4O0YuMATt2CU6qCnv55AN+cc7FATjn4sxsr2/9b+f6kplVBurh/R18BfBtUp9zzo0FxgJERETor2URn/gkxliCr8Xy8ocjktY9gzd8I+G+9TG+e5OIiKR9SizPwcw+AUYAHweqYI5zbhkqfCBy0bziPUmPsVSLpYh/Oef+wrtvjgh0LCKB9uSxd5iVpS5Tb4rHHWjJC9f0YdDsHtgWB+O8z3RdF0X3e/qRNd0qPprbBVvt4M1jdMg2BqrB9VW3MGxzN/aUyAnp4MWxQ+FT3w6eglXXVuG1Ju3p0nk4S+IrcpzMzKYOs6lDXge7KRKw4xcJFiEX+LmxQAfgRzPramY5LmGfu4HrzCwUwPcY7lsvIsnEOfePeSwhoXjPZQ9HJE0ys3+dy+BCPiOSFphFUcbdxydZ7qdx/GRY24L+13RgcKWXvalG/gRKesuAmpFkLRVDJzefB3d9wrPlB8KLWRjRrwUuxvh5eHHYCXnrHoQfT7Go1V24+w13v8EG+KFsPrq0HA7ToWrPlTy0bSETm7RhT/ci7OmupFIuL4dxilC/LqnBBbVYOudmAbPMrBjQDvjOzBYBrzvn1v6XHTrnDpjZBuBxvDLsjwPrnXPn7AYrIpcuqXksIaF4jzJLET9pZWabIMnfcRI8Cbx2meIRCagNoypw9+zV3hwAodBt/jCyLT/C07MmwJUwbFJrADqsHINbb1hpBy9BWP5o2vYbwjNNxvHMneOY3L4ejfZ9gF3p4PpjHHeZsbu8e9f7RWvTjf7c+NZ6vp96C20bDiEXB+j17jMAOJc3UIcvElQudoxlLN7vTJPM7BPnXKekPmRmw4G6wLXAYjM75Jy7CWgDvGNmPYHfgSYXGYeIXCB3jqqwXvGeyx6OSFq1B/i3FsktlyMQEREJDE03ch5mVhevEEFuYCRQwjl3wszSAduBJBNL51x7oH0S67cA5S826AuItxZQq0gRdX0QSRB/jjGWmm5ExH+cc5UDHYNISuBNM/Is6RscI6ZGVt4q+AQtJ75LaPwJ4jdfReW6n1Cx7ko6zPfNMNcfbKCDQ/BnLWMlt1O150r6THqBEmxmHrVp/P1MXBnD/nTU3beAfUWzAXDt2qM0u3E8J+bkhAgYVbEj9Ac+B1cpUGdAgp2K95xbc2CAc25h4pXOuVNm9qz/w7o0zrl5wLyIiIiWgY5FJKVwziVZFRYV7xERkWTQwY1lWM9uGA5XwpjbtDrx264ib4ntLN1dA5vnuLOtV4EnouZadlKAOfnqcOUmB3EwoncLntk8jg9L3Ec1FjPxnub84nJAE8iX5wf2VPI1ILwCTISJbevTdPp0+AG42zd/puauFLlsLjSxnHZ2UmlmjZ1zk31JnIikcA7OOcZSRETEX7zWSpHgFazzWF5oVdjnk1jX0Z+BiEjyij9Hi6WmGxEREb97OpJqLIYWp8jbezuWy1Fn/ywA9gwvwuh8TenaNooV0+9lxfR7AZjTrwE9wnszonwLmAntdrwNmU7xUNuFNLZSvO2akrf2QTgBH/MAvIC3ZAPKQdNHp9Oq/utwUImtSCCct8XSzCLwxkLmNLO2id7KCqRPzsBExL+84j0aYylyOZnZNap6LkHpzSh2j8pH3vw72TO1CL0adqOX1WGPe4C8xQ/ydLUJVC8xF270Pl6RldTvfgu3518Pu3+gh3sJtsCw4u0YOup5ao8Ko/kNUwCY+EN9bt68FXeLd08bn68hzZtNgTowdtRzgJdYOnWDlQAJ1hbLf+sKex0QAVwF3Jpo/TGgaTLFJCLJIP5c81iiFksRfzOz8sD7eD2D8vl+qG3lnGsV2MgkNYtKNUMXegU6ACA1nS+5GJETfE+apsy/YVLL3JP+ZBcyf52ZVXfOLboM8fhFoqqwLX/44YdAhyOSIrSbso4tvx7js06V/7Y+4pXFVL8pN/3qlApMYCIpmJmtdc5FXMT3vgRaAlOcc7f41n3nm3IrRYmIiHBr1qwJdBjio2RI5ML4M7G82Gv9ueSPuMZ1WlPXX5sDoION9WuMyeHfusLe4Zz7EkhnZjXPft85Nz/ZIrsEqgor8k8Od46usF7FWBHxq/TOuc1nTfETG6hgRETSksgU/neL5rFMWlPgS6BzEu85IEUmliLyT/HxnLt4T/zlj0ckjYsxs0x490rMrATwZ2BDkhRltxGVP9BBiIj4z3kTS+dcS99jlcsTjogkl3h3rhZLw5Gyf/kTSYX6AouAcDObCNwPNA5oRBIwSXVvjdwVgEBEUpGU3ip5Pirecx5mVglY55w7YWbN8Qr5DHDO7UjW6ETEbxxgSfxx4xXvuezhiKRpzrkFZrYVuA/vn9krzrntAQ5LktF/HRup1koRT2pOIM9HieW5jQBuNrObgE7AZOBtoGpyBSYi/uXOVRVW042I+J2ZXQPscc696Xt9haYeEZFglVaTR/m7C00sTznnnJnVAN50zr1hZo8mZ2Ai4l/OQUjIP9ebiveIJIePgCqcKdiTHpgHVAhYROIXqtoqIv/GYUE53ciFJpbpzOwOoB7Q3Lcu+M6WSCrmzWN5rjGWIuJnGZxz0QkvnHN/mNmVl2PHZlYUeAfIARwCmjjnNPfWf9HHiOoZ6CBEUpfIG3xPtumvimB1oYllD2AksMQ5953vppVix4okmscy0KGIpBjxzpta5GxmXtIpIv6VuOurmeUCkugzkCxGAyOdc5PNrDEwBg1dERE/U/fWc9N0I+fhnPsQ+DDR622Af2f99CPNYynyT+cq3hOiMZYiyWE48KWZTfK9bgK8mtw79SWwZYF7faveA0ZofOe5JVmxtXcAAhGRNEXFe87B132nEVA48Xecc12SKS4R8TPnXNLzWKIWSxF/c86NN7OfgJp4/8xaOOeWX4Zd5wN+cc7F+eKIM7O9vvVBnVj+l7GR6gYr4lGrpPwXF9pGOwOv8MBqICb5whGR5HKueSzN0BhLkWTgnFsGLAtwGEkys1ZAK4D8+TXvhUiwUwLpX5rH8vyKOOduTNZIRCRZuXOMsfS6wuqGIuJPZlYMeJl/9vS5LZl3vRu4zsxCfa2VoUC4b/1pzrmxwFiAiIiINHMBUMVWEZHAudDE8iczy+ycO56s0YhIsjlXVVgziI8PQEAiads0vN4+E4C4y7VT59wBM9sAPI435/TjwPq0Nr5ymRmfBzoIkVTkdMVWUNXWy0Qtlud2FFhjZguBPxNWaoylSOrhHEmOsfSmG9FNRsTPQpxz/QK07zbAO2bWE/gdr3CQiAQRdW2VQLjQxHKrbxGRVMo5CDnHZAfxuv+I+NsqMyvtnNt4uXfsnNsClL/c+00O5+raevdljkNE5L9wGKfUYpk051xUcgfiT5rHUuSf4p0jnf0zs9R0IyLJojzwlJlt5e89fZJ7jGWq9F/HRqobrIhHLZMpk+axPA/fvFhDgPzOuUpmVhqo6JwbnazRXSTNYynyTw7OXRVWNyYRf+sQ6ABSIhXXEfnvlDxKanGhqfRbwAKgre/1FryiACkysRSRf4o/xzyW3hhLEfEn59znAGZ2TVornCMi/hfZ2/ekh+7IaYWK95zbdc650WbWGsA5F2tmqiMpkorEO7BztFjG69dQEb8ys/LA+0AIkM/MIoBWzrlWgY3sMihqRP0Q6CBERORSmVkP4Bogzjn3/L99/kITy1Nn7SQbJDFvgYikXM4lOY+laYylSHIYAtQApgA459aY2TuBDSkZTTSinvKe/m1aAxH5B3VtTfu8MZaXv8XSzAYBjwAFgFLOuW9964sC7wA5gENAE+fceX8CNLMHgZLAL8CBC9n/hSaWH5jZGCCzmTXF6xI7/gK/KyIpQLxL+tegELVYiiSH9M65zWf1EogNVDCXk1orRTxKIINXAKvCzgFeB744a/1oYKRzbrKZNQbGAFUBzKyw73ViC/F63HznnOttZv3N7E7n3Irz7fxCq8IONLNGQDagJjDcOTf5Qr4rIimDwyVdvCcAsYgEgRgzy4RXNwszK0Gi6rAiIiL/UU4zW5Po9Vjn3NjEH0hI/BL/qOkrwloWuNe36j1gREINAOfcj0C1s3dmZg3wWjgBDgJZ/i3AC60KW9U5NwVfl55E65ZcyPdFJPDi4zln8R61WIr4XV9gERBuZhOB+4HGAY0oOTV1RDYNdBCS3MzGwcIW8Dv8r34xbt64lY9KV+PBnz4FoFWh4Yxd9xx8An92MHqH9WAlFVk6rwYDaz1Ll7nDebb2QN64tTNugGFXOfjSt/EV8N6sOjzeezbpnzlGVPZI8rGbzgxk3/KCsBjo481+51xkYE6AyH+QDNONHHTORVzE9/IBvzjn4gCcc3Fmtte3/nzF5WYBo8xsMJAdryX0vC70iAfhZbqJDQTKXeD3RSTAvKqw5yjeo1JcIn7lnFvgm8PyPryOAa8457YHOCyRS7LEjadqwxaQDkpv3IZrYVhDR5+pLwBwgNzwDLg3DXvS0WfGCywbcj/kgjCi6VC7P8MsBphF66rDyMUuPi9fCYAbi+zkmfgRZO32K0f7X8uLc4ZCf+hVvRubK93IzGL1iO8TwIMXCTLOuVigxX/5znkTSzMrAhQFsphZzURvZQXC/nOEIhJQ5yzeowlHRPzOOfcT8Gag4xDxB7MoluhWIXJBAlW85xx2A9eZWaivtTIUCPet96t/a7G8A2gK5AY6J1p/DHjB38H4i5nVAmoVKVIk0KGIpBjxzmFJjKg0vMI+IuI/ZvYb/OMXm6PAKqCLc+7Xyx+VyMUx87qgPho/AzZA0c0bGU1Tnr53ApSCUbQDYJ+dghfAPnaEjPiDanxGj0xgvzg68QrDSnfjVfc8q4mlGp9RhWXc2GSnt5M7oWjINlaNqMJPPcOZ1LMJaylHMbbShEm8P/FJ6B+J6xqYcyDyX6SkxNI5d8DMNgCPA5N9j+uTY47l8yaWzrl3gHfMrKlzbqK/d55cnHPzgHkREREtAx2LSEoR7yAk5J/rQ8yIU2Yp4m8j8Xr3TMD7/aYJXmJpwFigduBCE/nvHnMFKMYo+szsS32mc5AcvPdpHR5fPZu9OwoB8IvLQV47CKUg/tqruD3veuLrGSFH4glnH8xxrCGCOe0bkG/4bt5Y2flMR7s9sKplFVx+YwhtOUQOQomj2bHxnBx09enxlXTV+EqRczGz4UBd4FpgsZkdcs7dBLTBy+l6Ar/j3ZP87kKrwk70laItnPg7zrn5yRGUiPifO98YSxXvEfG3Gs658oledzKzz51zd5vZdwGLSuSiVCMDm+nTsS+dhrzCPGqxYUkFyAtU+B6L8u4ht/dcCs+Ca2vYIgcDYcKnDeHPWPaSB8YZH/zWiG/fKsIEmvJBxZqUZhMANyzfTa+3uvE7GelUaCQdfupPGTZQL8tMGvcpBahoj6QugWixdM61B9onsX4LUP6f3/CvC60K2w9oCXwPxPlWO0CJpUgq4c45j6VphKWI/11tZtmdc4cBzCwH3i/IECTzWUra4HWD/cdMBCIi/3ChVWEfAwo7544lZzAiknwcJD2PpVosRZLDcOB/ZjYf759fTeA139yWX573myIpTd87qE8kmYccZ0x0G9qFjWTDexVw3Q0zB/29j9XpOZtZw+tgdR13zvqUFVfeS3Mritt7JdvJy75+4Uzd24ibxvxIu9ajKNRzLx/19pLWPpVe4A5W0puecD/kYzedpo6ECICogB26yMVwGKdSyBjLy+lCE8t9SipFUjdvupF/rjczlFeK+N27wOdAZbzOAqOccxt97z0TqKBELsqf8OCti6EUHB4fxgbKsPWtYoTuPwFuPxl/TQ9Al1HDeb7xG1AcqvEZDVpN575WC+lJd/rM74s7YNAU7IhjH9ngFBRjKwAPrlsMy8AdMoZV68ZWitKrYTd6WUZA3WAldfGK9/h9HssU70KPeJWZvQfMAP5MWKkxliKpR7xzSbZYhpg3/lJE/MO8wczLnXM3g28AmUgqlFANVkTkQlxoYnmr7/HZROs0xlIkFXGOpFss+eecCCJy8Zxzzsx+MrOrnXO/BzoekUvxoVvJanrSt0QfKA/tGEw0YeRjN/GPX0UtN5952x4F4Ke24YyhOYX7fUcs6Xlm+Dgea/8OU441pc/OvnACMnGcrl2jmM8D8CfcMMo3ld4e4C+wfI5cdXfx7rEmnMx6EADnbgjQ0YtcvJQy3cjldN7E0sxK+J62uwyxiEgy8or3JNViaRpjKeJ/J4D1vjGWJxJWOue6BC4kkf/og0ge2gbvF62NFXWUKfgVG8ZX4OFm05g4vg2ZPjpIUbbCGu/jY4q25gneJT2xtHzgXQp//COHyMEVB+NhDdiE+XCqBq62Mb5kQ6+qbDuvVfR9t5a95OFryjM1SzOYCdS5OmCHLiL/3b+1WH7sezz7r86ERo5Cfo9IRJKF1xX2n+vNID7+8scjksZt9y0iIhJkvDGWfm+xzGpmY4F5zrl5/t64P5w3sXTOFbxcgYhI8jpnV1hNNyLid845DU6TVM1qAkdgxMoWPLpgHnwBr5Z9kRonllKNxcx9oBa/n7qGK3o6uMn7zkZKUXLbdo4WzsDvH2dkL3lYSwT7Cl3NoPEvUGT8jzzdsQYu3Fe0pziw1SvK89gkvAl5voVMvx7kRKacADj98CmS4KhzrlWggzif4CtXJBKkzlW8x1DxHhF/M7NcwBAgv3OukpmVBio650YHODSRC9cLOh8bSOEaP5Lxjt+ZTn3YALk4wPjczbiin+Pt3o1ovnwKABVZyYI2dWmw5D0W1K5LybnfUIc5tOIt5i15FBdjPJ13Ai9n78Fu8uGijaiiXQE4UDQXedjLy6UG0yRsLLvj8/mCuD8ghy5yKYJ1upGQQAeQHMyslpmNPXr0aKBDEUkxHF7r5NlCNN2ISHJ4C1gBZPO93gK0DVg0Iv+BXRHoCERSvzjS+XVJDVJHlP+Rr9/xvIiIiJaBjkUkpXDnnMcSFe8R8b/rnHOjzaw1gHMu1szUqU9SjdvmL+fripU42etqakxbytvjG7GTAtw4fj2hnKLpgOlwp69La1PvOwd+ys2rS57nxZZD4SS0YQxtD79NyCAHecGecSyKv4t7H1rBNx+WZEa9WtRhNgDzqcmLtw6l3jczWUMEAJu5JUBHLyIXI00mliLyT/GOJIv3hGiMpUhyOJX4hZllgyTKMoukMGZR8GUko2nD8JXtmZi/Dd139fS6u94Pq6JvYTH3QA1YVPou7py/hp9/yg3AVBqSj920fWsI97CY8nxNSI5eMAU4AZ/Hl2cx1Sj24TZu3f4tO4sU5I7oLwHYEVaQF28Yyo0td8I43xBlp8RSUqdkKt6T4imxFAkS7hxjLFGLpUhy+MDMxgCZzawpXjfY8YENSeTC3FPx/+ydd3hUZfqG729qZtILLdJFUVYRFEVQ+alrWXBxLSgKyioiuKisYl0LCDZcFZUVFERlUVEU0ZUV64orCuqqYMOGiJRASCF1+sz3++PMmbRJMsFASPLe15ULMnPOzDeHmeE853nf532dp7mUPHLhdDiKz2AbPOkZyzNczLyZU9HZiiv7P8jwEctZw1AA/vbeQzx48pUsYxQOApw7bSUD9MesHwa3f3Ar/zfmE7gARp75Giv7jOBdTmG2eyoAHd4u58slfTliyg9w9XT0nJY8AoIg7AkiLAWhnRDR8e0Si1J1BwoJgvCb0Frfr5Qai9FjOQKYo7V+tmVXJQiCIOwLxLEUBKFNE9G6nvAecSwFoblRSnXXWj+HUQQoCPs9SlVNyHmK8fS4Lx/9J4U6SbOCM2EZhMdYmZc1FdaHUBs1HdlCBiVcmPeCsWMIbiu7ixFpK3m4983woZ/JzGNip2PJJY+JSx5hFMs4+qNvuO+4mzmbV1jFSca+6+CI08cA0XXMmb5vD4AgNDPtMRVWhKUgtBfqm2OJGJaCsBdYq5T6DqP8dbnW2tfSCxKERCjQDzCHKbx90wmoORoqonc8HOJ9TuSN4pMYvngVhKAj+bzJcFbnngDAmtyhzC+exOm8xcvnjuXA3I1M3PIUXA4uPCyw/JUF7/4VQhAsU9jTP4btA4zHr4Ts8AQACi0H7PsXLgjCb6ZNjhsRBKEu9c2xtCgljqUgND/dgYeBc4CtSqkFSqkhLbskQRAEYV9glMLKuBFBENoomvipsCiIyBAEQWhWtNZh4N/Av5VSWcC9GHMt219tlLDfo9QM6GKUnnaYPZ0np46lnFT+PeUU/sojPFH2F/p138ApvMvrjOC0ca/xOFcwjA94l9+zCyMV9n7PjaRmlTNx3GIeW3wpf1n6NHSAbafl8LvAN7AIHjz5SorIZiGXMEZ/y5Klg41FvApFdy40/q6lDFYQWiMiLAWhnVB/j6VMQBCEvUFUUI4B/gykA9NadkWC0AB/Nf54eOokrip7lH+lnclUZuPBjf0qDYPg2SmjuH3xA3AYHHvkAE5kFZvpxfucCMCNm+fANvA9rkh6W8NAyO6znXf5PaV3deb8mf9k6op5KKfm4NO+YhTLOGu00Z/56gU/AKBFVAptAAnvEQShTRNpoMdSSmEFoXlRSi0Hjgf+BVyrtf6whZckCIIg7ENEWAqC0HbR8d1Ji1KIrhSEZmc5MFZr7W3phQhCQyg1A/47PRbSc81T83l2/ChOG7aaJz8Yy2Vb/slli+cyiM/oSD7PjhvFCawmI1zCqdZ3ePG1P6PXGP+3qIM1dIY57qvRhyvU85prpj7EJZ8s5aeZ3Tib5agdmhcnnslDXMu1PESHvMLoSma1zAEQBKHZEGEpCO2EiNZx51gqGTciCM2GUsqptfZjCEullHJXv19r7WmZlQlC/VwzbBbLGAXAtTxEHrnopYrlDOfe7jfwtw0PsTBTwXJYfuVweizOJ/ui7WwK96bD8QWoZcb/IR1nbWE0S7nxiznc+P0cfFcoklZqFo0YzXm8RDe2UjQxh/N+WcH5t75Gh5xy+Ie5iulykVNoM+ylUth0pdQCYIXWekVzP3hzIMJSENoJ9aXCKqVk3IggNB9rgSMx/B9N1UQf88/2Vxsl7LdUn10pCMJ+T6nWemJLL6IhRFgKQjtBU0+PpQItl4kFoVnQWh8Z/VPGeQmtg/nTSeVWtq3pA8B16+diObeSCV0Wcu7bK+EdIBPUOs3LL43gR/rCAzBh3EIuZwGBw9JYmzcQgCEb1lHeLxXeBN6F/DEdwQY/0pfTeYt7i+/gT1kvooKayUtms4ahMAfWcWzLvX5B2AtoINQOryO2SWGplBoJjOzTp09LL0UQ9hu0pp5UWKT8SBCaidqlr7WRUlhhf8HsrVw7bCDHbl3Pnd/cbdzxGcyePJWsxR7YDBwEvADHv/cOFxa/wOSseXAWnMBqruEh+uT9jBO/se/HsOh3h8Pf4O/vTTHKa9+B+adMIhSycnDWj3RkF1wDA1auZ54qN/bTIiyFtoZqNbMnm5M2+YqjdccrBg0adHlLr0UQ9gdMRzLeHEuLUtJjKQjNh1kCWx/t7xK2sN9SepyTclLp1+0LUi4yQnQqns1hav5snh93NhcueYVbxkzDMTHAGoYSeCeNV0afBTugJ5vpXfYLX6QNZCkXAPDG+JNYPf4EhjKdfmyg1+U7OP2Jt/iEwWxwHMpl7ue4zDMXCmCiWgzIhU1BaEu0SWEpCEJNItH/uFWc+B6z8UsQhN+OWQKrlLoVCAALMD5mE6K/C4IgCG2c9jrHUnpABKEdEGnAsVRKEYmItBSEZma41vp+rXWp1rpEa/0AcH5LL0oQwAztmU7aygDrGcCGN46kj3sjfdwb4Q4Ie1K4cMkrPDxmEqNYxgYO5VKeBhe8xp+gA2ylG4+mXcWRZet4i9N5i9MZnruKe5bO5I/z3uUH+vK/Jw7jsA820otfGMZq/u6ZwmhegFMBFkV/BEFoK4hjKQjtALPUyBJHWSrpsRSEvUG2UqqP1nojgFLqQCC7hdckCDGu0bNQR2r4CXgfDh2+DoBnTx6FekpTMdbKPK5kYMF3zO5wHQfsKOLCK+DkP74Ho2D45FUMmbcK78eZlJ+WAsC/8k5nK90YwHrmM4lnNk3g4WGT2EI3bITJpyOnLV7Nofes47t7f225Fy8I+4D26FiKsBSEdkBDPZQWGTciCHuDW4GPlVKfR38fCOzXMfGCIAhC86BRkgorCELbJOZYxptjScPCUxCEpqO1Xq6UWg0ci/ExW6u1LmjhZQmCUQabOZ2Hh8KALz7mFu5h9dQTWMWJAFw0bxlHTf6ItzidG5fMIX9MRx6cehvfze4Jj8PHlmM57siP2HVYd25mFuWnzeWiOcsA+FPSWxw88Ss8uNm2oA/6X4rnXj+Xi9Rl8Ppw+Br0GIW6R8PdA9G3tNxxEASh+RFhKQjtAB31JOPNsbRYlJTCCsJeICokV7T0OgShDm/Ag4OvJJc83uJ0SshgF50A8F2iSDpa8/P/+sA6uGLMfB488TYOfW8zl5z5OF9xOLvO7A5nwZ++eIuDj/wKekYfNwmeYjzHz/6M3099nTMnvsiKTaOgi+KNEScxvHCVUX4LyGUWoS2j2+m4EQnvEYR2QCTmWNa9TxxLQRAEQRAE4bfS/qS0ILRDquZYxgvvkR5LQRCE9oBSf+d83ZPBXElffuCMgv/g6ODnvPyXiLyeDEBSgeb8//2T6WUz0PmKnaTz6ZmHc8yCr1l01hUsevgKDnvtf3xz+dGkX7STH6f2h4dmAHCdtnL8fZ9x8U1P8My4yyle7CbrmvNgLAzPexMKgcIZ0dVMb5mDIAj7iPYY3iOOpSC0AxqaJmKkwoq0FARBaA+M4xmyKWQOUyAPzl25khmdphvlrD2Bs2Eg67Hawjy3+Fy6LCjh2PyP4Q8huARGjn+Jb5YczeQnZnOGYyUXz36CAv0ABfoBHrzhNugGz3xxORSC2+OFC4CrQ9yUO4s7p17fki9dEIS9jDiWgtAOaMixtMi4EUEQhHbBLbqCPy54F7qC7q344IhjKD7CzXiegp3RjbbB3x5/iJdnj+B9TuLRiRPIj/Zf3vnHu/k7N7DihfMIjbGy5JPx6GSFKjb+E3n2/lFkUEJPNvP+yhNJGqp5dM0EAK46dSG8a7iVWotbKbRtjB7L9udYirAUhHaAbqDH0qKU9FgKgiC0cZRawS3yVS8I+wSNIhwRYSkIQhvEFI6qnnEjcq4hCILQ9vmawxkycRVr550EKfCH3DfZnnYAGZTwxZh+AAz85jteGHcWnzKYOTtuRD2heXbaKC5avozh5yznRu6HK2D+1ms4afD78AuwxHj8i7q+xDe9D+KwpRvRXRRXLVrIVVMXwvvAv/3AzehcZ8u8eEEQ9jrSYykI7YAGU2GVMW5E+iwFQRDaMA+OJIMS1mw9meMnv8MTwy7G+3Ami7mYRTOv4MjlGzhy+QbUFM1CJnDfedP5vksPsm/bztj3XkYfrdhML17ynI/+XqGCES7c8Apqq4Z0IB20y8LXHA6A8mkWHDwOQvDoFxPggFnGjyC0BzSEQtZm/QHSlVILlFIjW/rl1YcIS0FoB5hzLOMNsjRvEl0pCILQNlFqRuMbCYKwv1OqtZ6otd5v5yNLKawgtAMa67EEKYcVBEFoi8RE5QEwgYWo0RoeglmD/8bEaY/gxsvwact5Y/I5ABz23v/4z1dnwBA45INfKVp2ANPm3MLMJ+/hu8MGcsHg53n12QvgWDh36HOcwrt8NmwQAJV+CxeueQUOhS/79+WIo3/gpv/N4KpNT8DPRmCQILQHtFaEQ+1PZrW/VywI7ZAqYRm/xxKMPkwr8p++IAhCW+NDvYKv2cwfyt7k0DXrOJtXKCeVTEroyw+sZyB3zLsZgDN5jZL+GZyk1/LEERdTMCyVH+jLpZc9BlPAOjjM81+cTR65XLdyLm+deDoVfXKMJ8oDKsB12G6WMIaH/zeJa8bPh6ej4lbSYIV2giEs2194j5TCCkI7IBbeE+c+S9TGlFJYQRAEQRAEYU8Rx1IQ2gGRBuZY1t5GEARBaFscP/sz3ph6Eu+kncpxB37OOz8fTw5F3Ld8OvcdMh1SQkx33QfAhA6P8uQXV/LwkZO45oP5TLwKNn2VSzaFcAq8/MFYPht2FF7csBHeG3ESR9/zDQBqU4RHT5vA3dxKN7byCYM56qmP4KlT+IzjWvIQCMK+RdMuHUsRloLQDtD1Z/c0KDYFQRCEVs6D07l96q38Yev7vNRtJGrTq/ydv3PDJ/9gwTnjmOhejF5r55/dzwegnBT4GK65ZD5nffUCry66gGWM4sE5txG8RGF/V+MkwK+b+lIxycofeJNBl3wOwGXM40B+5vvwIaR/4ofjPgHeNNahRVgKQltHhKUgtAOqhGX9qbDiWAqCILQturER6NPSyxCEdofWilBQHMs2QXS+y8g+feTLVBCgeils3fssMm5EEAShzaHUDLrqsegsxev8HrVG8+/Rp6A/7IZarrnRNgfOAdbDzQffwX33GME6+nzF4ksu4ebJ9zKveDKXHTmXuwO3QFewH6uhD/y4vj9/nzmFlZzBh/NO5cMBpwLw4NArWcNQvrYezi1Dp3HP7TOBweiZLXYYBKGFUETCbVJmNUibfMXR+S4rBg0adHlLr0UQ9gdMzdhQKaw4loIgCG2LbSoV9U/NAD6GwyGbIp477lw6soUTWM3LV4zl4YMncc20+Zw40yhZHcHLrPzlXB4O3gwPw7XzHiLVUc7Tf7yE0895i5WeM6h4IQc3HsZ7noJyIMl4vusWzIXDjFTYbmlb4c5oGuxMSYMVhPaApMIKQjsgkfAekZWCIAhtiJ+ncaAuRA9VPMV4WAHHFqxnMePYNaI7o1gGb8IiLoVT4P0tp/D+llNY+ey5WN0V/HpwJ7rM+4V3+T2X8jT3O25kRdmZ3OSexYHjv8VBgPLnO3DnTdfDT8BPUDzRDW/C/Wk38KP6FTgSLSNGhPaIBkLW5v1pBYiwFIRWyOj5axk9f23C2zfUY2mKTR1plqUJgiAILYzaJJcKBUHY97TJUlhBaOts3+3FYUv8upBuYI6lhPcIQutBKXURcCPQD7hGa/1otfvcwNPAUUAIuF5r/e8WWajQ4tzZ+wZO4n1y+2wi7y+9KXgslb58yY8b+qMPVqjxmpefGsG5X6ykYFgqd3MrAKpMM7HTI6xhKHnP9ub6i+7kCh7nHf8pTHx3Mbff9ACbfsqld788Zm6Yxran+sAhxnOex0twLFy1fCEQLYNlZIu8fkFoUbRqNS5jcyLCUhBaIQUVfhzWxIVlJKoZ45XCxhzLZlmZIAh7mfXABcDNce67HijXWvdRSh0ErFZK9dFaV+zLBQotz997/5Wb8+/l9qJk+Bq+f6wHh07dDIeBfl9xyuJ/czBfce4nKzlq8EcsYxR9+QEAPVhxJQ+yngF0u2grZ/Mqp/Afkp+PGHVuL8NrjIRXIS+/C/okhYqWvPxnwxmQARxniEopgxXaLRoItb9xblIKKwitkFBE4w2GE95eU38qrDiWgtB60Fp/o7XeAMQrXh8NPB7d7ifgM2D4Plye0MIoNQOlZjS+oSAIwl5AHEtBaGVordFaE9ZQ6gmS7rY3uk8kegoaL7vH7LsUXSkIrZ7uwK/Vft8CdGuhtQj7mOqC8sZz5vCv5acztNMalvYbTTmp8AL4Nio+GH8M/3n7DK45bRaPDP4rf9j4Pjm9t9HTshmArUd1Y17elbDaSbfRW3maSxnDEob3X8XzR57NBd+8irJr9I+K2Z0m8xqnwWzj/5Fzpz7Hy0pKXwUBMBoS2hniWApCK6MyEI6Vtv5SVJnQPqYbGS+8x7xFi7IUhBZHKfWFUqqwnp9ma9hRSk1USn2mlPqsoKCguR5WaGEW6Q0s0hvosvwX/jTvLdYwlKtmLuQcXmFt3kDGup+lG1s567QXmFc8mfc5kX59vuBBy1QO52sO52syKOHO3FvpMfp7rrpnIfdzAx5c3HHkzSxkAqyAHcEMBvf6L9edM5dUyrlz6vXcOfV6ruUh4CFAymAFoT0iwlIQWhnlvmDs75sKmtY6Fa/aX3osBWH/QWt9pNY6p56fxurftwA9qv3eHdhaz/Ms0FoP0loP6tChQ3MtXxAEQYBoj2Uz/7QCpBRWEFoZZd6qb5dfCpvmWMYL75EeS0FoM7wETAI+i4b3HA1c2LJLEvYFaoHx50ImAGAlTMfJW/jTV2/x7LRRdCSfY3esZ2iXNXT057NKncjOrM6s4kRmzb0DNUhDB+P/AK0sqHLNr/078btrvuVSnqIvP/L2gjP598RTUMmah5nEp18N49HlEzjpl7WcHFxjLKDvu8BH+/4ACML+hiks2xniWApCK6OGY5mgsDQ1oyXOJ94M9GmKrjz3sTWcM09OHgRhX6OUulAptQ04D7hTKbVNKdUvevf9QIZSaiPwb2Ci1rq8pdYq7GP+O503/X/gTf8f2La8D9kU8Ub/k7iVu9hAP/p0+YZ5TOZY58eUlHbhB/pySvg/vHTlSAgDExRMUKhdmif7j6X7il1UbMzh1w8OwYmfxyZeyipO5KwpL3BnZBrH9P+Aq35cyAe9jqm2COP/BSmDFYS9QrpSaoFS+28jsziWgtDKKIsKy6xkB5sKmthjGacY1uy7bIpj+WO+nKsKQkugtX4eeL6e+yoxBKcgCILQkmgg2OhWTaVUaz2x2R+1GRHHUhBaGeU+o7biiK7pbC6sJBJpXBCam8RNhY3+maiu/GLLbsp9IQKheNMOBEEQhH2JUjNwXbCb3w97nZSDwqQcFOaLc/rxT8axjFH84DmUh7iWi3mGn7/4HRvy+6He0azmBJz+AOdPe43JQ2ejFyj0AsWmwbm8z4mk/r6Ai/s/QeQwxTF8whU7FlFEDq8Ou4Cijw9gDM9hSa/k/2Z/An3fMH44RtxKQWjHiLAUhFZGmde4BNa/awbeYJj8cl8Ce9XfY2lp4riRhas3AeCwydeHIAjC/sBjaVdwOm+h5yv0fEUX8jhmw9eM5gVecJ/PMFYzkHXgg1md/sahY9aRTRFnuP8NnWFpZDSFfVIo7JNCn/yfWBkZQSEdeObHy3kg62rOYCWzulxDJ/J544OT4BV4gBu4tdM9cADAp9V+BEFAY5SYN+dPK0BKYQWhlVEWdSwHdMsAYFNBJV3SXQ3u06Bj2YTwnj89+iFfbisl2WGl3BciHNFYLfGyZgVBEIR9wrXT+ZTZzP3mulhYyMmsYke/DP7I6wzmE05gNQuZwINDr+QEPuAEVnMPt/CfD87g7ckncJp6gA7bC42d33VSeEIK23tl883BfTjstY1QAhwG/AT3HT2N0+5/jbcvP5M7L74blgGjpqNfapmXLwjC/oNYDoLQyijzBXFYLRzSJRVILMDHLJdt0LFM4Lnzy3wo4KIhxkSD6kFCgiAIwr5FqRktvQRBEOqjHY4bEWEpCK2MMm+INJeNzmlJWBTMfe+nRvcxRWM8b7EpjqUnECbZaeOgjqmxtQiCIAgtiBXmfTKVUYc9S5+R39Bn5Dcs52w204ubuI81DGUJY1jx3nnMDNzOMWd+bfy++Dy6DtvIqZd+SBfdEVY7YbWTf487BbVDM59J/Jl/Gs9xYgg+g3+NPh1eUoxmKUwAx2FlsGyG8SMIQhXtdI6lCEtBaGWU+4KkJdlRSuG0WfElEKITS4WNO8cy8R5Ls/Q1Lcmooi/1imMpCILQYpwyHR1UdBn8C19zON3YSje2spphDFm5joe4lue5gOt5AP4H4ZCNlBcK+cfyG6AnbFveh3eePp6ebGbR6NEsGj2aP057l8uGzuX68AN8nnUcbIQe3TfCIdCFPBhuPPWiwaMJZD8EyHgRQRAMRFgKQiujzBciNSrs7FZFOJyAIjTnWDaYCtv443RKT+L4g3JId9kBEZaCIAgthZTBCsJ+jDiWgiC0Bsp9QdKiwu64Pjl0Tk9qdJ+q8J7f1mNZ4QuR6rSR7hZhKQiC0FKYorL0TScfPzyAw/ma/zKMEjIoIYMVjIQBfr72HM6hczYzovg/kArlb3WgojCDQ89ZB7NAr1AUkcMTXM4lNyzlkhuWok9UlJPCCutIni0excNTJ7H54EN5Y9hJHHPe19zSfxorGUEvNrfsQRAEYb9DUmEFoZVR5g3SJSom0132hMSdWQob17FsQo9lhT9EitMWcyzLJLxHEAShRXAUXcsfrMPoRD5vLz6TzqmlzDjbKEn909S3eHj2JK5Jm4/lp0qmZt0LPuh79peMYTFLXhvPyJUv8RIjyaCEqczmsvvnAvACZ7H0yUuYdNnDTOEfXM4TPPTjtTzNePgL3PPeTEiGl/85Fv4Cel5LHgVB2E8xHct2hghLQWhllPtCpCUZwi7dbafEG0RrHdeNNImF98R1LKPbNKIrwxGNJxAmJckmpbCCIAiCIAj1IcJSEITWQJkvGOuxzHA5CIQi+IIRXA5rvftUhffUvc8Um405lhV+4xsyxWnDZbdisygRloIgCPsYpWZwqD6TIkq4lbs5443/cP24jTzFGNx4APhidj8Gzv+OT8sGcxP3ccRXP/Cvqafzpy2v83r3M1gyYByvbT0f9Yvmv8MGcy0PsZVuACxkAhcc9CoLZv+VzVN7MZbnGMMSVnMC2GDIsFXcza2cfOz1xoLmndNSh0IQhP0MEZaC0IowRaTpWGZEex1LvAFcDle9+2ld/xzLqvCehp+7spqwVEolXIYrCIIgNC9O/HzEcTzHWIYOX8MDz94OW4HDjPvnjryMmyfNog8b8ePgp/7d+ITBrO1+NKfwDs93P49+fMHwbssZ9sKnDLrgQ05gNQBfczgqRdNl6i88weX0+CSf8sGp3PyXh2EgnD7sLU5WTwKg9aEtcwAEoTXQDh1LCe8RhFZEebSnscqxjApLT8MCzxSN8YplLQmOG4k5ltHnTnfZKRNhKQiCIAiCICDCUhBaFeU+Q9yZqbBmOmtjwjISGzcSb46luU3DytJ87hSnLbaGpjqWo+evZfT8tU3aRxAEQTBQagacMB0PbnqWbeN6//1MZTanX/Qv5v7tMtQTGvWEpgt5zOJmfqAvR7/xDVN4hIveW8Zt3MVnHM1Q1jCOxaycfi4kQwkZnMlrnMlrXMtDXHbkXFIp5wGu58PBg/iAE+jz2DewGe6YOQt4MfojCEJcNBBs5p9WgJTCCkILYoqspZOGJLR9WcyxjJbCuhwAlHoDDe6nG+ixTHTciOlYmm5pmstOqafh561NpT9EMBxp0j6CIAhCFa5/72Yoa1iWdhYXFLxKaodyTmIVqziJO18z+h6XMJbBfMJLnMfc4ZcxmE8ZfPKnjGIZG+jH/236mEt6z+fjGQNYwhj6sYFj/J8AcGb4Naa5Z7Lwy6vwHwTPucfwM324loe46qeFsOwfQBZaX92CR0EQ9nM0EG7pRex7RFgKQgtSVBkgyZZ44UCZN+pYmqWwTXQs4wbHJuhYVsQcy6hb6rKzpagykWXHyCv1xcp5BUEQhCZy+HQ8zysGT/ovT9/5Fz66/Sj6sYG/Fj/ChKyF3PbRgwCUHeug3JrKW5xOPp1YzQmEsHI2rzDshU+594KphLDixcVd4dsosWZwo/N+AM7mFUazlFAv+MB9PJ9zFGNYwpT8R+BCYFlxCx4AQRD2Z6QUVhBakF8KK8kr9SW8vSnKzFLYqvCexnos6w/vSbzH0niOqh5LG2W+pnWmB0MRgmFNONL4zExBEAShCqVmtPQSBEFIFHPcSHP+tALEsRSEFqLUGyQc0QRCiZeGltUK73HZrTislsbDe6J/NpwK29i4EaOmI8VRFd5TmsAMzerkpDop94coqvDTMS0poX0EQRDaO6aoPOqrj6AAPhnzf2xc0pW3OJ3RLGVnVmdO5R34ydg+3eXnpyO7kUcuPdlMEdlspA+plDPtgluY+d49fH9yDxZxKU9bL2U0S3mFswF4j5P4msN5Om0QnchnKGuYy5VElibDX411aD29RY6DIAj7NyIsBaGF2FpszBszy1oToXZ4j1IqoRCdhuZYJtxjGX3uZKcxLzMtyU44oqkMhGOBPo1RWO4HIL9MhKUgCEJT+Jdew7u4OanDG6waMZxljOJsXuF3BT+T22ETedN7M2XG3wE4lHUUkkM5qSxlNFOYww/0xUGA68MP8P3JPfgPpzBr4x0ot48RuSsZwUoANtOLUzz/Ic+dy4TiZ/g662D6sYG1GSfBP6ejx7XkURCEVoLpWLYzRFgKQguxbbchLPPL/YTCEWzWxivTy7xBlKpyDcEoh20svKcqFbbufbFU2EbKUyv8QVx2a2yd6VFxW+oNJiQsfcEw5dEAoF3lPiC90X0EQRAEQRBaHSIsBUHYl2zb7QUgHNHsKveTm+FqdJ8yX4gUpw1LNYWY4bInMMfSFI31jxtJJBU2pZq7agrLMm+QAxJYe2GFP/b3/DJ/A1sKgiAIJkrNgC7TWcpT3M5M5nEl1150Lw/N/xs7J6VDBWR0KKFwRgpTmAPAUNawlW50Ip/BfMLhfM3y8DlMtc6m3JrCi3kX8EbuH+jT5xtG8horGUFPNgNQTir93V/y4/j+3P3ULQzmE5blj4I/R3s8x0kZrCAI8Wl1wlIp9U8gqLWe0NJrEYTfglkKC7Cj1JugsAySFh01YpLhtpNX0nAAkG7AsTRLYROZY5nqrCssE51lWVhR5armlyUeWCQIgtDueROe23oZX3U7mMF8wtijX4bX4FXOZkL2InLJo8N75dxy8jQA7lkwE9cFu3k07So205O5TOYK63wWfn8VOMHby808JvMYV5BBCacG3mGV42QA5nIlF7OYFU+dycfF/4eqhEe6rQENf2V+Sx4FQWhdNL9jma6UWgCs0FqvaPZHbwb2aiqsUuoBpdQvSimtlDqs2u0HK6XWKqV+jP55UIKPdxXw1l5bsCDsQ7bu9uKMjhppTBialPtCseAek3SXo1Fxp6k/FVZVbdQgtR3LtKYKy/Iql9IohRUEQRAEQRASpFRrPXF/FZWw98eNvAoMA36tdfvjwFyt9cHAXKi6BKaUOlAp9W6tnxuUUkcBbmDNXl6zIOwTtu32cGT3TMBwLBPh401FbN9dc9sMt50STyM9ltHg2bjhPRbTsWz4uSv9IZIdv8Wx9MfWu6uRUtjR89cyev7ahB5XEAShrfNT/2581e1g+m/8kaWMZuj/3iOUDG9xOpvTujKNmbxx8kmMYhmjWMbIiS/h+TiLp7mE1745n2t5iAxK+OCQY5jV6xo+YTBn8So/04d+/g0McnzOGbzOGbzOZnpyBfPpyw/0yvoOtURzjcrlGpXb0odBEFoPMm6k+dFafwjUGEWglOoIHAmcGr3peeBRpVQHrXWB1vpn4JTaj6WUmgZ0A+4GjlRKnaC1Xh1nu4nARIDu3bs37wsShGZCa83WYi/H9+nAV9tKEnYswxGNw1bzelCGy05lIEwgFKlzn0mkgTmWqtY29VHuC9Etyx37Pa1aj2UimMKyX5c08sWxFARBaBS1BHhwOq+xizE8x/I+w+nGVg7mB2xfQ+px5ZzNcgbxORvoxyP8FYBHuYpLT3uMu7mNXw7rwiHLfmXcqAWs4iQG8Rm78jpx2ebn+GZoH85xvsJ/8k7hktynAUilnHw6cS9/YwUj+cvFj8PFN6NznS14JAShlSHhPfuMbsB2rXUYQGsdVkrlRW8vqG8nrfVMAKVUT+C2eKIyut0CYAHAoEGDZAq7sF9SVBnAGwzTLctFlwxXwo5lOKKx1hKHGe4q57BDavz/+Bv6IKhEx434a/ZYpjptKNUUYRkgNclGt0w37/2wq8FtC8r9sZmdgiAI7Zl/TT0dBwF+pg/vcxJjWEIR2Sw/bjjrGMALXMjv5vwMPnjhxrMAyGA3m+mJCw9Tmc3oUUt5ZtMEnu99DjdwPx1z8ylJyqCP52dOcH9AXm4XvuZwAD5ffBwLz5rAiLSVvOU5HQ6YZSxEZlcKgtAIe7sUttnRWm+W4B6htWMmwnbLdJOb4UrYsYxoXSMRFiDd7QBocOSImQpbe1+oNm6kEceydo+lxaJIddoSLoUtqPDTIcVJpzQnhRXGiJX6KPMFKaoIEG6sPlcQBKGNotSMll6CIAh7igaCzfzTCmgJYbkVOEApZQWI/pkbvV0Q2gSN9QiaibBds1zkpicl7Fgm2az8sX+XGrdlREtSGxo50tAcS0sC80a01lRER51UJ91tb1J4T06Kk45pSWhdMyW2NuGIETck6bGCILRnJo55hPu5ns30ZCUjCGNlgH8dSxlNLjuYy1WUkEHqhAL4L2ygHxvox2qGMYGFHH3nN1zLQ3Qin+N7v0sR2aziJHZ90Z3JWfMod6dwHGv45r2j+fyD4/j8g+O4eNwTALy8ZTQVJamw/Wa0uJWCICTAPheWWutdwHrgwuhNFwLrtNb1lsEKQltj625DWHbLdNMl3UVhRQB/KNzgPlprPMEwboe1xu3pCQhL04xU8eZYRv9syLH0hyKEIrqGYwlQVBHg/R8S++gWVPjJSXXQKS0JaDgZ1nQqt+1OTHALgiC0OV6Yzi46AXBz4F4ArIQ5wvkVx/AJxxasZ0B4PTdwP+WPduDm1+/gFN7lFN7lM44in05MuP1RDuRnLuUprmA+I1nBFB7B1Wc31/MAOQUVzOJmbj/5Vp4fdjbPDzubAazn3rSbYZnNKIM1S2EFQUgcDYSb+acVsLfHjcxRSm0DugLvKqW+jd51BXC1UupH4Oro74LQZti+29tg7+GijzZjsyiSnTa6ZBhCa2dpw+5cMKwJRzQue01hWb3Hsj6qwnvq3mc6lg1Vwlb4jQ701FqOpc2iCCVYrmo6lp3SjD7Q/AaSYXt1SAGM5FxBEIT2hFIzpAxWEIRWyd5OhZ0CTIlz+/fA4L31vEqpkcDIPn367K2nEIR68YfCbCvx0iGl/gQ9fygcm2GZm+4CjFmWPbKT693HGzAuV7kcNT+2GS6jx7KkAWFpSj8VLxU2gR7LCp8hLJPjCEtPsPHLaP5QmDJfKCosDSHdUJlrRTS4RxxLQRDaE9UFZekoJ6nFAdRWWHXEEMpJ5Qoe51Ke5mxe5aMOR3EgG7mZWbx544l0IY8B4fUADFv/Kf876jA205MDvixi89eHMvCitYwvfoqDs37Auz6TrhsLGT5+OXO5kucYy33cBMC6jUNQEQ2LgMOno7/a98dBENoE7TAVttWF9ySC1nqF1npienp6Sy9FaIdsKTJctlCk/nAafyiCM+o8mo7lra983eDjeqMCrrZjmRotT33qw0317muG98SbY5lAi2XMsazdY2mzWgiF69/T7DUtivZT5qQ4yU52oBTsakBYVvqN1yqOpSAI7Y5Z02HWdJ6xXowqhg+OOIYUyjlzx9vczw10JJ95TKYnm5nIE7zF6eSRy6XhRRxp/YIjrV+ADwYVf8OcFTeiKjUnXfQGAAuyLufrHcfQY9j3PDx+Em+8dw4fMZRc8rASxkoYtUHDHcDXM4wfQRCaTjudY9kmhaUgtCSbCisBGkw0DYU1tmhdqulYBhpISQXwBIxvldo9lhaLMkpSGxB4kUj9cyyrSmHr37886ljW7rE0S2Eb2heqZljmpDiwWS3YLIrnP60/r6syKmTFsRQEQRAEQWgdiLAUhGZmU4EhLLtmuuvdJqJ1TNC5HFZsFkWlP9RgmqzpWCbVciwBrI30OsZKYePcF3MsE+qxtNe4ffzxvQAo98e/lFZU4Wf7bm9MWJpzNu1WC8F6hLTWmsqACEtBENon7900lPduGsornA3fwVucztHzv6Gso4NZ3EQORWygH2483MI9bKAfp/MWaQsD3M5MbmcmQ497jwuyFpE7chP/HnoKq14ZzrqtQ1jNMCZ1eZjZTGUQn5N+/E46sYs+bOSzV47ns1eOh2+A5/8BZEkarCDsKe3UsdyrPZaC0B7ZVFAB1B+mo7UmosFS7bJOx1QneaU+8st8sR7E2pg9lrUdSwCbVdUr1KD6uJH6HcuGMnhMB7G2Y5kRnaFZUhkkLamm6Cz1BvmlyEM4orlxmdGkkxPtO3VYLfU6tN5gmIgGh81CXomXcERjjZc6JAiC0Na4fTqzGAjAu9/8kXEjF9CNrfxv0mE4CfA6fySAg4u2vMDX3R/AQYD33/4D55y2HCbBOBYD8BSX8gmDGcFK/rj0XV4ePYJz16xEb1H4B0LSmxpyoOuwjUxlNt3YyuKz84w1FAAUt8zrFwShVSPCUhCamV+ipbD1CUtTUI0d3CN2W9dMF5WBML8WeeIKR6jWYxnnfrulfqEG1Xos49QoJDJupLyeHktzhuZuT4Du2VUO7ej5a9m+2xCFNouKzaysciwVlYH46zXd0YM6pvBtXhn5ZT5yM1z1rk0QBKEtoIYCp7T0KgRBaBY0kNiY7zZFmyyFVUqNVEotKC0tbemlCO0Qs8eywh+K6yL6gsZt1UtalVL06ZCMw2bhl0JPrCeyOp5A/PAeMBzLhnosq+ZY1sVMim0wvMcXX1hmJlcJy+qEIpodZT4y3HZ6RgWnRVW9ZotF1euQmsE9fTunAlIOKwhC++HFmWeylW5spRsbD+tKLnlczGLG8xQbOZD+gS95mkuZ2H0uhWQz5L11PHnaWF7nDA7na1IoJ4VydpDLn7e+yJ1MgwuKOXflSh4dOgFVqenj/gneB3Jg24I+bPj+SHLJq1rEJCOwR8pgBeE3IHMs2w6SCiu0FCWeAMWVAbpmGg5bvFmWvlivZNXHb+mkIbw8+TgOyHDhDYY5/eEP6vRamvvFczTPPbIrqPoDeKrmWNY/bqShAJ4KfxCrRdVYM1QrhfXUfJ27ynyEI5rF44/hnan/R2qSrYaQtipFpJ7QH7Pstm8nU1hKMqwgCG2bJxgHt8Ecrua7DQP5bsNADnptKwNYz6FTN/PNkqM595OVlK7rTD82sGDNXzl3zUr4BmZyOx2mlvPkpsn8eceL/HnHixSSw6huz3IT98HnWZw44k2m5D/Coaet4xGm8OycUVACuoti0iEPA7BIXcYidRlwi4hKQRD2iDYpLAWhpfg5GtwzsHsmEL8cNiYsbXUFYk6KA6fNwvYSbx3RFXMs4wjLzGQHgVAktk1tzEdqOBU27q4ALPt8G1B3DmZmVFjWdiwr/CGS7Bb6d81AKUXfTqkcEnUgAcYe2wNN/CRcsxT24E7iWAqC0I74Gj7cdApP9hvLk/3GQiH0YwPvzR4KhTB88HK+G9yTixYvgwwgCYZPWU4YG3QFNirUCo1aofmaw3n5g7Fspid/P3IKq34ZTuSTZL67byALmcBFm16Cj6HbyJ9YcNBfWTT+CuCeaj+CIPxm2mF4jwhLQWhGzP7Kgd0yACiJKyzrlsKavHjFUO486zA8gXCdfWPhPfa6rdFZyYbAK64M1LkPqhzLuHMsa20Tj/oCdNJddpSC3bUcS7O30sRqUditVV83yVFx7PHXFcJm2W1WsgO7VfHM2s31rksQBKG1o5TMihQEoW0g4T2C0IzMfvsHFHB4V6MMuyHH0uWIf13n7IEHcMvyrymqqCkSY+NG4uyXXU1YdsuqO+Yk1mMZR1gm4liGIxprnJ2tFkVakp2SWo5lRMd3R03c0V7NykCIzOjaTcxRI8lOG06bFX+o4fmegiAIrRVTVN7GXRx20/+4nxsZfs8qAPT/KZzFpTyW9Rf0JsX/OIxDvvmVE8e9SQYlvJp7AW+tO53IomRuv+lW7lx5N1dPvB+AmSvu4dbf30PSTA074cZBc3h4/CQ+P3MQzyy4HO4HnoRLeZo1Pw3lP+oz4zmlBFYQmgdz3Eg7QxxLQWhGvMEwTrsl5iCWeuoKS28DpbBgzHh02CyEI7VLYUNYLQqHte7HNrMRxzKWChsnvsfUfw05lqFaDmSN53bb6ziWEa2xVNt+6aQhLJ00JPZ7ssMQlvFKdyuqJdA6bZYawrKhOZ+CIAitkeu0FX/AwdfjjmFoeA38Hvg9qAs1gVfTKCGD+x++mj78zFeHHcwA1vPP8J/ZlpdDeGcKFMKdHe7mzhHX48eBHwePjJzI2e6XIQU4HugK13SfzzNfXM5pE1/jzp+uh2fgzqV3M5m5LXwEBKENYqbCNudPK0CEpSA0I75ghCS7NTaGoyHH0hmnFNbEalF1hKU3EMFlt9bpc4Qqx7Ko3lJY48942jAW3lPvaiAYjmCzxheWGW5HHceyY6qTYQd1qPfx3E7jtZtBPdWpPjPTFJYNzegUBEEQBEEQWh4RloLQTGit8YfCJNmspEWFZe20VKjeY1n/x89qUYRrOYjeYChucA9U9VjurtexNP5sOLynAccyrGv0SFYn022v8zo9gXC98zihyrGsjNdj6Td7Sa2xPtS8EgnwEQShbaHUDCp8M8llB26HF3W85nPrUWAH7HDLlmk8OP5KrhszlzxyyVrpwYObh7+6mfRMP13TClETNAfe/y18ounP1yz44K8s+OCvfM4ghrIG/gAcH4IK4Eqgs5+37zuTHeRy6BPrYCmcqwYDUgYrCM1KOx030iZ7LJVSI4GRffr0aemlCO2I3Z4gEQ1OmwW71UKK0xbXsfSH6p9HaXJy3458urm4xm3eQLjefVKcNuxW1YBj2UB4T2zcSPy1hMIRQhHNmMHd496f4Xbw066KGrd5AuF6RTBUjUwx+ymrU+kPkeywYrEonFHxvbnIQ4/sZIorA5T5Wkk9iCAIQiOkPBeGEzW8q+CPfk7OWwUXGffdc+JMXLN28/ySs7lQPQ4vw5DX1vHYmZfyl0FPc+B73/Lz5N9xNXP4sXdfzvzkbVgUfeBhcPvsB+BY4Fkb/AR0AI5wwiMwb8lUOBCYAEyYjh7RAi9eEIQ2R5t0LGWOpdASmK6aw2Z8rNJd9rjC0kx3jZcKa5KSZIv1Gpo05AIqpchKdlBc6Y97f6zHsgHHMlKPsCyOlrlmpzjj3p9Ry7HUWuMJhBp2LJ1mj2U9wjJ6/6JLjwHg1yIjbbewwk9+mb9OmbAgCIIgCMJ+gxneI+NGBEHYE3aW+oDawrKugxibY9mAsExNslHhC9UoT/UGww3uk5XspLgyvpunid9fCY2PGzHTaXNqpbeaZLodVPhDBKIhO/5QhIgGt6P+gghz3Ej8UtgQKVFh2THVSZLdwq9FHqAq7KewIr6AFgRBaA0oNQMmTOfh8ZPgdIXrgt0syL0cVjtZsGEcCzaMo3ieG6stzBWBx+ihdzP5nNn4TlEUks1j713Kz+p3nDbvNa65Zz7zZk9FvaWx3FuJ5d5KTmA1A6Z+TPax2+FjOP+lf0JnoAvoHgp8QCVwxgzjRxCE5qcdCss2WQorCC3BjlLDsXz6kqOB+h1LX6jxHssUp51QROMLRmIlpd5G+hazku31OpYRreO6lVDlYtbnAZrCsj7HMtMd7Sf1BuiYmhRzZBsq9XU34FhWVHMslVL0zE7m16JKPIFQLCF2Z6mPTmlJ9T6+mRxbPYlWEARhf+LvT0zhPm5Gz1ecnvYvbuMudFeFmm18G0/0LYbvgdugNNSZjv0WkfS4hmPh+aFnw1w4hXcZfctS/up5hIrjc4icngzAyE6vcThfM+T6dXAJvHjPn7l42hNkTytC9ddwAXCZISilt1IQhOZCHEtBaCbySn3YLComwGqXiJr4Ghk3AkYpLEC5v2p/b7D+HkswHcv6U2HrdSxjPZb1OJZRsZqdEt+xzHAbt5uv1RN9fQ2JYPN1xHMsjVLYqn27Z7n5tcjDj/lVfZw7ou6wIAhCa8OcXSkIQhtGxo0IgvBbMF00a1TB1dtjGQzjsFlqzHmsTVpUWFb4qhw9byOBONnJjgbmWMafYQnVU2HjP25BuSEsc5LrcyxrJtJ6oy5kQ2u1WhQuu7UexzJMitMe+71nTjK/Fnv4bkdZ7Lb8svjCUuZcCoLQOjiSEawkjBV1r+bt+85kEvP56LijeHnqCF6eOoKK66w8u3gUhx68DkIQxgrXAVa4cMErXD35fm6cOYd+bKDi4Rw6frEFbgNug86flJLBbhy3laFPULAQnll5OdkUcs1Xs+Ddln79giDsAelKqQXRkNL9EimFFYRmIq/ES25GVXlmuttOSbxU2GCEJFvD13TMHsPy6sKyEccy0+2gzBciGI7UGQ2itY6bCAsJ9FhWBrBbFWmu+F8XGdFS2N2mYxkwHcuGv16SnVYqA/Edy5RqjmWPbDeBUIQPfizAZbcSikTYWY+wNCn1BuOKekEQhJbEcCtdsP00jvV8TMULOfAXePCcK7luw1zuXHY35BjbDp+8nHE8w+NcwQ397yePXC7Tc+nHBq57ay6Tmcs/uIEhU9fBBJjMPDa/09N4niUa/bwiYE9jxv03wUUwcsRL3J71AGTAvZuuBeBmHmqR4yAIbR5z3EjzUqq1ntjsj9qMiLAUhGZiR6mPI7plxH5Pd9kJhCL4aoXu1P49HqawrJ4M29hsyKyUKuewY63+QyO8Z88cy6IKP9nJznp7NDOjoT5mUJEpLJMbWCsYwtPjr+tYVk+FBeiRZfQMvf9DAQd3SqGwIhALSopHIBRh464KQhFNIBSJhSkJgiDsD9yhi5l+RhJPvT6G8cOXoHI1GbqEYFfF0mnnctGYZQC88eE5vNHnHLgTwEu5TuW7mQPR5yg801wcsuJX6Ay3T7uVzfTkjqmzeHj2JAB8ZylUT81ZQ1/gDnUFv9evs6LfeVxWPJcnVSF/e88QlDef3EIHQRDaOmYqbDujTQpLmWMp/FZql1PWFwJjbvfCxGPZWepj+GHVHEtXNNTGE6Rzek1h2VCZKEBqkrFvua9Wj2UDLmB2VOAVe+oKy0ikfsfStCwbSoWtr78SqsJ7TMcyFt7TqLCM71hWT4UFw7EE4/X37ZyKvaCyXmGptWZTYSWh6DiSoko/XdJdDa5DEARBEARB+O20yUv5MsdS2NcUVQYIhCN0Sa8SdBku08mrWZLpDYYbDO4BY9wIVJXChqPuW2OlsADFFXX7LI3wnvocywaXQmFloN5EWDCCeJSCf67ZDCReCpvitNXpsQyFI/hDkRqOZW6GK1au27dzGp3Sk+othS2qDFDqDcZEvdkfKgiC0NKYoT0/cjAfvz6AyxY8h8r9EV6HyxY/h/1ZzVJGs2NJBjuWZHDvEqNclZfhLP0vxrEY/gh9D/uS9zmJj0YeBdtgNSeweP5ERs5+iWtGzOeaEfMZ514EmyGXPCCL/6jP4Cp4Ul0JH0+HZNDiVgrC3qOdzrFsk46lIOxtajuaO0oModO5mjtmipvawtIXjDQ4agSqhKVZCutNIGnVdBWn/esb3r3uxBr3aep3LE3BWb9j6efAnOR6n1cphc2iCIWN/U2x2NBawRg5Ulbr2JgpsdWFpdWicNot+IIRDumcSl6Jl/e+2xXtG635osp9IawWRdcMF6XeoAhLQRD2K+7QXtysZ8jb69gxMYMulEBXjLEia2HFtvPosu08AD5dfDh3zrye209+gGfPGEvKoWH0SoVSr/HjCSN594Y/ct3Mu1jCWNQVG/j9pE1cvPIJAJ4Zczn8G+a9MpW39Qmcpp6HFwBmwLHRxciYEUEQmpk26VgKwm+lqMJPiSdQ7wgOk1A4gtaavOgMy+rhPWaoza2vfF1jH18wjLORHsvkWuE9plhLanCOpSEsg5G6azZSYeNTNW4k/v2NlcIC2CwWQhFjxqQpghsrhU121E2FrYj+Xj28B6pGs/TtnEqX9CS8wTBlvrqX70IRjd2qWPDnQYA4loIgCIIgtADtdNyIOJbIMHWhJr5gmI0FlQA4bBYO7pgSd7sST4Afd1XQKdXJPSu/A6jRz2c6luFaQs8XisTuqw+71UKS3RJzLH0BQ7S5GxCkGdHHDIUjde6LaF3veJMqx7LufZ5ACG8w3GApLIDNWt2xbNxdNe631ZljaY5XqT5uxPjdhi8UJifFSado/+jOUl+d4xgKR7BZLLF+UxGWgiDsDyg1g3N1H+6wjAXtheuhy79LsNxaSaQ0maun3s8/Zt/ALVOnYY1GSc7jShapK+BJSHk5DI+CmqphINz7wbWo3hp2gHYo1H80/1l6KKWjjO/q7CVFzCueTCB7Iaept6GPC1b/AwYaLqX+osUOhSAIbRgRloJQi11l0bmNKcZcyIKKuuKkqDLAz7sqjO3L/eSkOFFUBeiAMW4EiDl5Jr5AmM5pDQs1MAJ8Yo5lsPHZkDarBZtFEQw3zbE0iVcKWxTt16z+uuI+t0XhCxqv0xSWjfWRJjvjOJZRIZ1cy7HMzUiKucGdo32sO8t89O2cWmO7UETjsFpIsltJS7JRGOffrj0hF83qHgM5JkJL8bIaC1+C1m5UqeblYSPw4mZrp254cEMKeHDTlx8AuPPtuzlLv8Cr6gKu03dRQiZP/vFKbo/cajzgbcDzoEo0j/3vUv4y9Wn+MPpNANbmDWVy7lzm8Rdj227AxmJYNwMtJbCCsG9o/nEj+z0iLPcj9vYJj5xQJUZ+udEvmZ3soNIfJhCqKQwjEc2mggrcTivdM918t7OcgnI/DpulhiuYEg2vCdVxLBsfNwKQ6rTFUmETTVq1WVWd54OoY9nIuJF4mKI6p1HH0kLI7AcNhHDZrfU6pCZuh61OKmyl33Qsa341Ve+l7Bx1LPPjJMOGwhq3w9i2Q6oz7kUBQRAEQRCEvYqMGxEEAaocS4fNgtNmwV9LWBZ7AkQ05CQ7SXPZDQHoD9WZl2ixKOxWhT9Yy7FMIBUWICXJVhXeYwrLRgSpzWKJWwqrod45lObNkTiC1HQsGxWW0fAerXWj8zZNkh1WAqEIwXAEu9U4dpUxx7L+ryazFPaR//zE+Ud3q7kOq+JPAw4AosJSSmH3e+SCl9DWMdJgp8PnwBHwP30YrrLdnDtsJYyCJ6eM5bJznsOxsIzZxX/j2Kz/GjuevpT79Q34tYN/FE8hkL2ZB/WVrGcAz7xthPOQCvwM73IKZ81+gVefusDY9zIv87pNBWbA9dPhgRkt8toFQWhfiLAUhFrkR0dZ2K0WHLaqPkcTc4aiKSQ7pSdRvqsCh7VuFla6y85uT5DzHl+DRSmWThqSUCosGMmwZs9hIqmwYAi8QDxhqRtPhY2X3XPPyg0AjYb32K0KDVQGwngDjc/pBCMVFozS2XSXcTwq6nEsq+OwmSW/NV+nPxTGEwjH5mp2SE3i620lja5DEARhb2GOGMEFlxz5OIs+voLhkTfxbsvk2Q9GcdEty+jGFrgLFmRdjuVHDd8Yu9yubyWbIt7YdDacqLhEr+G6EXPhjWKO0R/w6em9eVFPZj6TeFmVAXae1GMB2DD+UH6mD6+qsw1R+Va0t/K0FjgIgtAeEcdSEAQwSmEdVgsv/2Uow/6+ilBEU+kPxVy0HdWE5dJJQwiFIxwx823Skup+nDLdDgorApT7QrGgGW8w3GC6q0mK00ZhuQeo6ltszLG0WhThYJxS2Ej98yrNm+P1WJr9mlmN9lgawnB3ZYDKQChhxxKMgCDz2Dz63kbjvgaEJRjHvnaJconHKBvOiM7z7JAijqUgCC3Po3orz7GK1ZyAzlWof2uCJyoyPQXQGU4bsxpGwSVPL6XiLispff8HwGbdk6ylHvgZft3Sib9xL/pyxUcrj+L4YZ/BhXB+h9fgRMAFPTzf8370EuHB/MBr+SM5Rn/O+uJrCWRHBa70VwqCsBdpk+NGlFIjlVILSktLW3opQitkV5mfjmlOlFJcf3pfAHZEx4lU/7vpUNqsFg7LTadjWlKdx8pw2bEoKK40SkojEU0gFEmoFDY1yV5njuWe9lhq6u+xbGjcSCgcwapUoz2htqhqLfEE8QTCuByNX7MyHcvqybDh6CJqh/csnTSkRqmkw2qp48zu9hjHONMUlqlOKgPhOgFBgtAQo+evrTOnVhAEQRCaRDsdN9ImhaXWeoXWemJ6enpC25d6g/xa5NnLqxJaC/llvlgfX26GMT5ke0lVUMyOUh92q+Llvwxt9LEsFkWG28Hu6ExMs18zkfCeFKeNstrhPYk4lhFdp18y0uAcy2gpbD2Opc3aWJ4s3H3O4YAh7ryBcINjUUyqO5Ym4YhGAc5GhLfpWFZf8+5K41iZpbA50fLdwvJAo2tpq2itKfUGG53HKrQelFJzlVLfK6W+VEp9pJQaVO0+t1JqqVJqY3SbP7bkWtszzzGK5xgFvabzAqNZO+UkruUh+nT7Bu4Ae2GEK91zeX7K2Wxakos+UFF8v5uU48NM1KuZqFfzTN44nhw9Fu6Cc1jOkpXjWXf2oRyvPgMnDFjysZE6WQJ43+VXlUsh2RSSzQOB67m50318+skwAtkrgD6SBisI+xKN8flszp9WgJTCYpTv5Zf7CUc01kaSLIW2RbzgkPxqYyxMYZlXUuVY7iw1hGdjqafm4674Mo+rn19HuT+EL+o8Jtxj6Q+hta7WY9nwR3b8cb246/XvKPeHasx4jGhdb3gPGGWy8aRHIByJ2ztaG1PM7fYE8ATCdElveE4nVL2WSn849u+Q6GfQZbcSimh2lftjFwFKoo5lRjXHEqCgwkf3bHejj9kWKfeF+H5nOR9tLOL4g3JaejktQl6Jt9G5sa2MN4BrtNbBqHBcChwYve96oFxr3UcpdRCwWinVR2td0VKLbfdcBKfzFh/mnMpVRy9EP61QozUP976Ca8bMN0ThzVAx2ErWBx7G/O8pFkSvFTypxzP+myUs85zLID7nlBHvcqT6GP0fhTpLs/6cY+Em+PKmvhyhPuAn/TsOUt8az3t4GvlfdYJjJbRHEIR9hwhLqsrvyrxBMuP0ktUui2ru9ELz8bXWcWcQNie1+9KEuuwq83PCQR0A6JTqxGpRNYRlXomXLul1y17r46RDOqIwykRjJa2JjBtJsqG10V8Zmw3ZiCBNi55Al3mDNU+mNfWG94AR4BOvx9IXDJORwEm5KebM15hIeI9Z7mo6lhGtKfEEE+rPdEf3/TavNCYsd0d7LDOTzfCeqLBshj7L1ppcajrk3+0oa5fCMhCKsHW3NzZjFWBXmY+UpNYrNLXW/67261qgq1LKorWOAKOBP0e3+0kp9RkwHHhp369UEAShndMOO3FEWGK4JGCMkYgnLPcVBRUBNhdWsrty76yj1Bvk+53lbCqooHeHlGZ//NaMKRyeuuRoyv0hOqYZosRmtdA5LYnt1R3LMh/9u2Yk/NgpThtOuzG2pMqxTKQU1jj5LfcZTqfLbm3QdQRiYrLUG6T6II6G5liCITpr68pyX5BgWCe0VlN8Go5lYuE9MccyKpqLKwMEwhF65jTuLpr7fru9jJMP6RR7bqjZYwnNIyxbK2Zy7o/55S28kvoprgzELog0N+Yc2MroxYsST4Bfijx0TG14fE4r4irg9aioBOgO/Frt/i1Q46tA2MvERotgtAdkh7czjNUcOm0deTd3gS3w4E1Xco36G/oexaV/e4xFG64g5bww+hGFOlLDocZjjf/meNzdi/F2yOSNkefAKcClcOnJj8GjGCetr8Kf+ScX69e4gBdgfpqx8/dgrXZWK2WwgiDsC0RYUiUszVK6fUVtJ3S3J4AGtpd494qwNGcE/lJY2W6FZWPO066oCOmUWuVI5mYksX23ISy11uwo9XH672o6lo05WXarhWAoEnNOEimFTYmmzFb4gwmLtfRqjmV1NPWnwoLRZ1k78+eXwsroWht/XpvVQmqSLRbe01jJLlRzLKPlvjtKfSTZLQk5pDaLwmmz8G1eWey2Ek+AJLsltt7sZEM8PP7fn7l4SM9GH7MtYlZA7Eth2RR3d3uJl592VdAjq+7FhOZwict9VXNgz3t8TexzUb1yY38L6lFKfYEhEOPRSWsdjm53ATAGGLaHzzMRmAjQvXt9TyfsKXdq4zP3KpsZVvAp0zrMxO9wUNgnhesOmst1+i4e5xKKyIb3Qc9WqBc1/AGuuWcWAPdzNd5TM/l9wescyEYWnPdXeBUW9bkCboNzI89x6/i7OXLeBtanHAt//gc8chwAT84ey2Xq4BZ69YIgyLiRdkzMsaxsuciliNaxk56CisQclqaeePmiJ1M7y3yNbLlnj9+aMF9bMBzBZlExJ3BX9Nh0SqsuLF28+c1ORs9fy2MXHUUgFGlSKSwYwtITCOELGe6cM8FSWDBOjr2BSEICLy2pyrGsTkTToNupqBves6kgcWEJhlNYYob3NNGxLPOF8ATC9MpJbtSVNUl22vh2R1Xy825PkAxX1QUZq0VhtyqCYd2m38sNYTqWP+2q4PzH16Cis1T3Bo0JtHj/BpujFy/Mz8Vved54r8sMv9IY4tJMWfbvxy0BWusjG9tGKXU2cDfwe611frW7tgA9gILo792BVfU8zwJgAcCgQYMk3UkQBKE5MVNh2xntSljWdwJiCsvdlS2XHlnhC8Uco4KyvVO6Z5Zh5u+lx29tBEIRvtxWQqbbwYEdDEGTbzqWaVWlcrkZrlgCqdlr2XRhqQiGNL4E010BUp1VwnLV9/l4g42fDKe76xOWutEey9pnlpsKjLyPRNxVMAJ8Cir8hCI6QWFZ5VgWlPuxWRQ5CTr1SycNYe6qjdz/1g+cO+8jXp58HCWeIBnumm6nvdZYkrYuMGu/PlNYegJh/KHELk7sbaqv0Uzj9ifw3t4TyrxVl4s9gTAV0dE2/lAY3Uig1f5KNLBnNnCq1npzrbtfAiYBn0XDe44GLty3KxQW6HH8LXIvAEWPHoDK0Pw0rhsHfbIVNsPFPz3BA3NuR23VfHl/X1Y8cB5lkxzoIQpr3woCGN+D2RRBKvhxsEAdAV8C/wGeBt6El+eMxTPFxYDJH7M+61jg/2JruKzDc4AR3CNlsIIg7CvalbCsDzO8p3gfl8JWp7oQSNSxbCoxYVmamGPZ1iko9xPRUFQZIC3JRse0pJhj2bGWY6kxygp3Ro9d53RXk57LbrUQjo5+gMRcwNSo+zjz3xuI6IZLWU1ipbC+WpfJNI32WNYeUbKpsJIe2W5euqLxsSpgBPhsKTaEQiJzLO1WCw6bhYpAiDKfETb0UgIjXEx+l2v0EpnBRiWeQKy/suo5VExctUeCYR1zbb3B8H4hLKvza7HhWPqboTQ13kWD6p+DykCISn8IheHgF1cGyE6p22u52xNI6MJPC/I0EACWVRPGv9daFwH3A4uUUhsxwuknaq333wbbNsiz+msu+nEZvG/8vmDKOC7f+AwvMZK/D57CjflzGMUycqdsglvgD7zJgk3jSP/Aj+OwMiIXJbNmpfE92I2tcAoMYzVj9Vb+ov4Ln0+HIBw/+B0qTktl5dZz6dbtJ/ABh/fn0CnrAPjur68BIioFocUwx420M9rkHMumEnMsW1hYpjptWC0qJm5qU9/g7kQGensD4Vi/VX65CEutjVEVaUk20l12Nhd78ARCLFz9CxYFaUlVwuiADENk+kMR7np9AwC5e1AKC7B1tyG8mtJjGY5owlonNN4k2WHFalHxHcsG9qvtWI6ev5b3vt9Fr5zkRp/TJNNtj4UcJeJYmuv9YWc5wbCOlf4myu9yjTm1ZvjPbk8glghrYvS2/vYqv3BE1+lbbQ0Ew5FYebQ5C3V/Ymv0QoTpIDY3ZniPw2qhuDJAKKJjF1+27fbW2d4bCPNjfsV+XdWhte6gtT5Aaz2g2k9R9L5KrfV5Wus+Wuu+Wut/tfR62xPqqZZegSAIQsvS7h3LYDgSK0GtrxTWHGwfDGtse2HOZTAcoTIQpmuGi2Ak0qhj2dQr+qPnr60xhH6nOJaUeIIEwhF6ZLtJTbLx1bZSfi3yYLdasFstNUrkzFmWgVCYQCiCgrhOR0Pc/sdDGb/oM7YWGyezSbZEUmGrhGUkorElME9SKUW6yx5XWDboWEa3MdFa4wuG6Z2TeMhThtsRC0VJVFhWBsL890ejHaypwrJDqhO7VcXe20YpbE3H0mEzSmELyv3kpDiaXPpoftbySrzklfoo9wVjTnIi+7Vkya0/FCYU0bjsVnLTk2LO7v6wNhOzFLYhB/G3YJbCprlsFFYY3+/ZKQ5KvEG27fZyRLeMGttXpT9Ly6HQNPrwLfA7HuB6uB98jxjfNUnDNEUfZJNNETd+MQc2w2cMYseZveBxP7dyN+WkwhXQc8Nmfuzcn3WfG59NNegX+BKshMmnE8X6PrLU4TD/HD6sPBVsoBZpuMvPdZ67eHDlbXxnGRhd0WstchwEQYgi4T3tEzMpFeoP79lZ5mNLVBBYFIx6bA1WS/OFYJiCNt1tp9QX3CvjEcw00mSnNZZ8+lvYn05Om4InECYQCrOj1Ifdqsh021FKcUCGi1+LPVgtCnetMjhTWPpDEQLhCHarBWsTLzB0SDEczirHMnFhGQobFzWcCX5a05JslHprfpvpRuZY1h43EghrIhp6d0jcsaze35hoKaFVKQLaCNrZk/JDt8NGpd9wu0q8QTJr9Vh2TkuiwhdiU2Eluz0BspIdpLvsTX7/lkSFenFlICFhuT9QFBVSdpuiR3YKn/5S3MIrqsn5j6/h+x3lOKJ9sFt3exMSlk25sGaWwqYm2SmsCGBRVaNxZr3xHYvXbo5t6wuGKWrBPnuhDfAsrL+sAv20gmikUvq7O/lb3ix4wMnbs09g6pGzOZCNkAObcnvRe04e50/5Jx9uGMTxaz6DclBXG1/GL+ozGcoauh5ZyINfXMlcJsOvZ8LzwL3AXcDTM+BpWKrHwp8APSO2HCmDFYQWph0KyzZZCquUGqmUWlBaWtrotmYcPdQ/bqTCH8ZhtdAt00VE19ynOomUpNbGFwzza7GHFKeNZIcVh9XSLMIv3vOAkRpaXBnA/xtSGFsrlf4Q32wv5Yf8Csr9ITqlJsUcrI6pThxWC+GIxm6r+bFIS7LjdljZUeqjwh/CYWv6x8acqWiW3yUioqwWhUUZFzYC4QhZCbo56S57nbLNRlNhlapRimi+X3o3qRS2yi1MZNwIgCV6KFOTbHsUpJLitOINhjlr7keEIzpOj6WFQzqn0jXDRZkvxM8FlXy1rZRQ7dkqDeAPRar1cTZvOeyefGckup95geq2M/rRt1Mq3mDTyk33dG2JEoqWeKe7jPfK9S+ub5bnq77ucl+ItCQbj44xXJxkpw2b1YLNomJ9nZ5AiKIKP78WebAoGiwZF4T6+Hne7+AaOEyno07z8UuvLvzSqwslP3ZhUe44+AzC2PixuC+XXL4U7vLTW63hmimzGMZqjv/qMyiBji9tgeOA4+D8H1+j69JC6AlTV8zj9pkPcG/3Gzj0pnWwGfgc4BjInI4bD5zQcq9fEAQB2qiw1Fqv0FpPTE9Pb3RbM37eYbXUG95jjk8wR1CU1w5G2UMiEc1PuypQStGno5FKareqhB3LQCjCtt2eGiWM9eELhrFbq1yhXQn0EBl9iD5CvyH8ZG+fnDaFXwor0UC3TBeHH5BGbkZVn6TFomK9lA5r3VPLgzqmoDGc3z0RltkphuDZFnUsnQkmrVotxnzJrpkushNMTE2LUwoLusHwH4uqWfwXE5ZNmHdaw7FMsBTWGhWTqYnasbVIj44XMZ2m2qWwYIjmAzJdHNU9g4M6phCKaIqb4EyVVvte2Ft92LU/J83xuTG/R3JSnBzUKRWtqyoXmpPqaw1HNJ6AIWCr3+4Phfm5oKLGxTtT2KVFHcTqAT6hcITvdpT95r7WMm+QNJedgzqmYrWoWO+0w2bBH4oQjmi+zStjY0ElJd4gXdKTEuplFoTqqMtbegWCIOx3mONGmvOnFdAmhWV9RCK6TkKkKSy7Zrri9liGIxpfKIwrGoqS4rRSVo9j2VQKK/x4AmEOzEnGabOydNIQLjmuVzQWv/Hn2FHqZXuJL9Y71BC+YISB3TKZfubvAJj0zGeN7lPiDfJLoYdPN+9fJXR7yuYiI4Ey3WXH7bDFZvqZ5ZA5qU6ykx1xxUmS3UqfaFmocw+Epd1qIdNtxxeMoFTij5HhctAlPalJYUH1O5b172NRqsYFCl8wjEXVHLvSGDUdywSFZfQkfs6FA/eorDrFacVmURRG+5Jrl8JWRymj9DnJbqGwCVUBJd5g7NjVFez7J6Pnr+XuaNBUh1QnR3bPAPZe8nUoEuHr7aV89utuvt5eWqek9OttpRRWBPgxvyL2b2VevHA7rDUcRIAtxV7KfKFGj7fWmoJyf40e8uqURXtiHTYL/Q9Ij5W1O20W/KEwZd4gEQ0HdkhmYLcMuma69/gYCO0TpaKlp1eWYRlcSRE58LGT3u/l0fu9PEYc9jI2wvzrg9PJJY/Am2novyp4wAlv9WR+2SQKyYFLgFWw6+juhhu5GXoc/D10AQaDOkfju17xt6MfIptCmA9c+RxcOpzLiufy45n9YVXVeBEpgxUEoSVoV8Jye4mXb/LKatxWERWJXbPclHiDsYRYME7Ozpn3EVpX9cSlJtmp9IdqbLeneKMn79Wdno7RksnGXMtIRFMQFZQ7Sr2Nlrj5QmF65rjpHHVdA+FEXE7jRK+0mcv/YO87mfEe3xzGXl9/o0Up+nRMiaVG1ibD7eB3uWlNToQ1yYmWsjptloTLPnt3SKZ7lrtJZaLxHMtGw3tq9Vh6AsZoiqY8754KS4uCww5ovLogHmZYkflerT3HMt72OSlOyv2hmLBpiEh0RIz52lpy1m0iRCKaHaU+IlrHUqCzUxz07pBCWpKN/DJfQhUOTaXUE8QTCNM5zYnNomqUDI+ev5brXvoSMN4XPxdUUuIJxITki5OG0i83LfZ7qTcYCzALNFItUekPs6mwkm/zyuK2MpR5QzVcSkv0YtKoo7oSCEXY7QlgVYqsZMceVSIIAgC94Go9n4Gd1rOjey/0QAVXAVfBG5+cw0VqAX967S2shNGFCr6HbbNz4A5wJPm5Y+YsCr5I5Zr7Z3HM/z4wSlpPgLu5jauH3Q8b4e/BKST9SUM3yCWPw07+HwfqAfA+PJl7JQ++dmWLHgJBEGphjhtpzp9WQLv6n9QIbonUOKEsjzqD3bNcaE0dp8cbNAfaG4cqLcmGxnA6f6s48gUjdU7ezV68yc993uC+RZUBwhFNh1QnvmAkFi4Sj1DEOMnsmZMcc6ACocZL4vzR115nJmID7E+lr7XZXOTBblVNDt6pTkq0R2tPMP9t9/aMPDMVVtdIeW28x9K8VhKOaCr94Vh4UKLsSSls57QkDuyQEhvHsidUdylru83VHWkTU+AXJjAvtswbIqIhJ1qG3NDnbG9ifq4a+3yVeoNsKfaw2xMkGI6Q4bbjjCYQd0lPIhhuWhlwopT6QliVonuWmwx33fefxx/GZlH065KG02Zh224vfrM832Gla6YLfyhMRGt+KazEabPgdlhruJjx2Fnmw6KMi0U/5FfUEf5lvmCs1LY6XTPdsRm26W57gxddBEEQBEFIjHaVCmuepBRW+GMlT6Zj2T3L+L3YEyCzWi+bLyYsqxxLIDbQ/bfgC4XriIyOqYYbFgxF6pxAhiOaoko/GS4Hu8r9JNkt9Mx2U+oNsqOk/hEipkDslZ1MusuOUiQ0NN4XPV71hRU1xP4oLjcXVtbrVpriY2+u2xSWe3tIfbrLTiii8QbDsRCdxuZYKoj1xVX6Q4R10+dKVv/cJBrek+y0kfwbJ0xU/xzWDu+Jh9NmId1lo6AigNa6QcFd4TeEZJrLjrWWE9cQnkCIvBIfgVDTenJ/6/vPdPjKvIaw7FAt8CndZZQB7yz1NdivW98a6kvS1VpHexmN8vK0aAKrJxAmOXpxojIQwu2wYrEoctOT+KXIgy8UiX3/dct04w9G2FXuxx+K0LdTCoUVgQZbAgKhCMWVATqmOemW6ebbvDJ+LfbUEIpGeE88YWmUxEZ0w+XTgtAQSs2Aq6ejf1GkegqoWJHDl1v6MpC16AuN96D/cHDeAtbBFRx26ka4C9IH7qQXm+Ei6OTYRemAzuS8UMHD3W/muqF3cdOUWQCcu3IlnLGZq/X93LhhDmPeMQZldmMru+jE+5cfDY8Dp3/BdaojIEmwgrDf0E7HjbQbx9KYRWkIrOqpq+aJY7eo0Kx9xdsbMK6qmy6V1aJIdlop9+6Z2DJPziIRYzZmbZFhio9gnFLV/DIfvxR6WL+1hAp/iI6pTixK0TktiXJ/iJ8LKuI+rykQu2cbJZUOq6WGY1mfC2KK6tY4GL42o+evZf3WkoTmR+4tTKdsT4RlPOetPkyhVb0cVmsaCe9RsVJY80JCU4VlssMaE69725Wtjs1qiYX/JHqxJzM6c3NLsafB7cywJqtFRUs8E3P7SjxBiioDsb7efUWgWjlpMKxj3ydguNKd05KoDISpDISbrbrAH4rgD0VizmDt919Ea7zVRGZOijF/NBzRJEUrQbpmudEYqckpThvpLqMvMhCKEKmn7aCg3I8GOqUlYbUoumW58IciNXrOy7zBuO/j6r2UGb/xAqHQzrkADn/iU9xuD8eM/oD7uIn15x3Lm7efyJu3n4hzJYRugrAnhWffGUX20dspfbYzM5gOJ8KPb/fnpjNnoLI0JMFSLuDs4jc4u/gN/j5iCi/ryczNnwzAc59fxiTmc9+86byv/gBnA2MBvgAOEFEpCPsTprBszp9WQLtxLHd7grFSv+r9i+W+EErBAdEr2Lcs/7qG8+IN1hV/aUl2dpb6CEf0HpVVjp6/Fn8ojNZ1Q1wyXHYU8XuLynwhnDYLmW4HlYFQzI0w4/onLv6MnBRnHQFiupNmf6U5N66h9UW0jp2k1g4rKij3821eGX06Jj6KoqUJRTShaieyLYF5kp9fVr+73BxUP7Hvkm68r7/aVkJDbcFKEeu9K/MFcdossRLKRFFKYbMqQnv4udgTzPf6KQ++j8PT+HxRc/s/zlkNwLotJfTIrv997AuFSbJZWDppCH969EN2J+hYmp+vnaU+Du6UmtA+8Wiq8DOf1x+KGI5lak07OCvZweYiD2XeYJNLnevDFJDpUWfQYbPgslsp9QbJzXDhC4bRVPXdWiyGwN262xt7j5kOYjii6ZrpMi6A2SxojHLVDqnOGsmzRZV+dpb5SHfZYxcxMlx2kp1Wtu/2kpPiIBLRVARC9ZTCGs+XmrTnpe1C+yYW2iMIgiDEaDf/o26t5kzsqiUsU5w2sqJiMhip3pdmlBPWdl8y3HY0dede+kNhdiUoGvzRsJHaotViUditljqlqhGtKfcFyXDZ6ZHtpl+XtNgJkctuRSkjyCIewahANMsE7TZL7Lb6CIQisfETtXssv9leSoU/RGkCrm2FP9Sk2Xl7C7Mc2Dze9TmATb29KZiO5d7WXGbp37UvrK9xe0NPa1EKjfGeL/eFmuxWmtgsltgIkX1JdoqTPh3rH41S+9/P7bBiUXDvG981KN781S4spbsdCfdYmhdlGruI4A+G2birgl3l/iaN9QmEImwurMQbCNe53RTXEU2NUlgw0old9uZLtgZDWDqslhoXbdJddsp9oVi/LkBytfLojmlJpLvssb5cs2IkxWmLhe04o99veSXe2H6RiObr7aX8UujBHp0tbKKUomuGm0DYcC3L/SG0JvZ41Ul22uiQ4qBLWt0gLrfDyvDDu+zx8RDaETnTWTR0NN8sOZpsivj0vWF4cDPgpY8ZPmYVw8esQuVpbHPhg17H0JF8HrP8hcfGX8qfNrwFy8B17G7u2zSNJ08bCxmaK5nL5VmPcnnWo9z42hzWM5ChndaQ0rMQZdf83+xP+HDyIB7Tl3LwiK+gcBGwPfojCMJ+QzsdN9IuHMvR89fWiL8vqFEKGyK1mrCsfnIXimjCER0TluaJ6fmPr8FmURR7gmRXO3HbVeYnr9RHUYW/xu3x8EXLcuONnbBbVZ1S2Eq/ESIS7+q7Ugq3w0plPZH7wXAEu1XF5rM5rBZKwhHOf3xNvf1l1QOOymoJSPNYNpaqWeIJ8EN+BQd3SnwWYn3U19+VKOZa51w4kEO7pO3xOn6LuDTdo6YEhezJ85mOZfXkYg2NTn6PaI0vGCEUaXp/pYnNogjr/T8IRSlFstMW67GOR4knUMPlznTb+TXB0tZEhWVhZYCi6M8WpTjsgLSYkG2oP3Prbg+FFQHWby1hyIHZsduDYU1ako0Kf4hgWJOTWvd7KDXJRmGFv8H+0kAowqbCCno24OaC8R4r84XIcttrPFa6y8bOMkN0egKhaMBO1WuxWRSHdK5ycntmu8lOdtA5PSn2OOZrv/6lL2Pfz5WBEP5QhJ7ZbjqmOuusP91lw2ZRVPpDsRL+eN+Z0LQZrYJQh27T4Xg4O/wqf/5B8Tq/Z/HJF7OV7qx7cggfLTkKgOOf+ozZUyYzj8n8fMvvuPOe67n97QcYctoq1oZOYkbadG48cQ6ff3EUbFR4ertZeOdVAPS8/RfWM5APZ54Kz0DHn7Zwff8HWMgENnIgP97Tn2N0CdCbTxjWcsdCEAQhSrsQllDlWFkUFJRXnexV+EKkJNlirl+o2sm46QbcedZhDDu4Q+x2FY2nL6zw1+j/McvQthR7GheWwQgKQ1jWFg/2OKWqprir74Q/2WGjKBpGUptgWNdI3XTYjATQsNbY6jmxNIOOkmwWyms5lkXRNE1vtE+rPnaU+mLb1SYUjuzVcsn8Ml+NIBdzHEVjJ8p7kw4pTReWe4IpLEMRnXAppcUCaGL/1qnOPes7c9gse2Wcxd4gxWljZ6mv3h6+zUVGlYPZl5vhstcb3lP7wkesFLYeYWluX+EPkWS30Dsnme92lrOj1EevnGTyy3xsLvJw+AFpdYKQPIFQrI9wV3nNxw+EI6S5bKQpu1FCGud7KDXJxq5yf41wndrklXgp9YYaDe76YWc54YiuI97SokFBm4sqsVmMhNeGQpJsVksdx9kUltWTYc0wn6xkR9zHU0rhtFnwBcOxtcdzLAXht6DUZujWs6WXIQjC/k4rGRHSnLSb/3H9oQg2i9G3U9uxTHEaaYY2i6rhWJqjRuKV2GW67ewq91NaTXSZJ0Bbij0M7J7Z6Hrqm2dot1nquI9lviBuh7XesQzJTiu7yo1AoHgnuY7qwjL690Aogs0R//F80RmbSXHK5sxxBd4GHEtPIBTbr/bIgB2lXr7YUkLfznV7z36rM2k+/uYiT41j4QtVjTZoKXJSDaG7tytFqwvLGLrh57UoZZRb+0PYLIp/XXVck2ZYmnTPcjdJWP7W8uLfQorTGB1Un9NvupNOs4fP7aDMF2y0tzoYjsQqDnaW1j/SRGtNhS9EhttOapKdDilOCsr9dEpzsnW3Uf5ZWBGge1bNr+mtxV4syih13VlaJSy9gTDhiHERye2wxHoTa5MWS7YOxRWWgVAk1i7QWC+2+V2aXEv8WpTioI6pfJtXSjAcjs3nbQq26IzTQKjaeKhon3lD42mcdqvhWEa/m+OlwsbDfC8efsdbTV6r0H4weiv/DHcBx2sO8G/HPcPDDKbz4ld/ZkD/j6EXHP/JZwDooxRqjIY7gCS4fc0DkA5rp53EdTPv4sYlc+AxmKcOhR/gzsV3c6e+G4C1DOT2/g9w01czmHX5HbjLirnx4TnwAly94X4+vHUNn94qSbCCsN/S/NfZ05VSC4AVWusVzf7ozUC76bH0R8vK7FZLzR5Lf4iU6ImH3WqJ9VhqrSmqDGC3qljoTXXM8QPVU2TN8retjSRNgiHcnPUkZzqipbCm+xiJGCf8tU+QqveNmSd2lXHcQaMUtuqf2nRAape41lhfKMLBnVI5+ZCOdRxL0y3x10ps1FpTUO7HEwixs8yPUoYjW1tYbi32oqlykZtCIkmWW6JOU/UyR1+cEKZ9TXZ0rsbeDrYxXe1wpOq4N/bdpqLbmOmdeyIqwXCZWvo4J4oZXlMRpzd59Py1/P3NHwDDtYdob3WcWbe1qX7hyiyFjfe+9YeMsmNzHV3Sk9DAdzvKYyX4xZVGFUIgFGHjrgq+3l5KSTQUx6Igv6zuczmsFrKTHRyQ4eKYXlmx+83vC4fNgjNOJYJJXqkhag1R13DfZ7wyVxO3w0rvHKNCIMVpa3Kf8otXDKVnTnJsDVrr2IXAhkiKpsma382mm7o3+6eFdsahPVk7biD4FKe436Uj+XQkH52pGMoaOAjooKGDxt2rmMijCq6HO6ddD1YgFVJuLuTBLTfD2DK4D/j1VO44+GbeGHcSZAAZMOSDdaR/tpNZn9zB6C6L8BZm8OK0M7llwzT+oW5oySMgCELLUKq1nri/ikpo447lpoLK2MmcPzoz0mpRNR1LX5CuGUYAhOFYGqfguz1Byn0hema7Y72J1bEoRYbLbqTNRjSaqpOwxkYYaK3xByOxEQm1cURL737aVUFOipNyX9AIoXDV/8/lio56qPSHasyoC0d0tBRW1djWZbdS7AnQOb2uaAYjtKRHtps0l73OiXRRZdXx8waryul2e4JsKqzqQeuY6iQUjuCpJXZ3R0OPQvWUICZCQ86mefwrAiEiWmNRCl8wnNCMw72J1aIadVuaA4tFYbWoJh1fw7E0HKpEZ1C2Zsz3zcG3vlFjVmJ18ecLhnFYLbHPv/n+2V1r1m1tzBJwu1XVKYWt/vjm85pCKcluJTvZQVFlgE5pTtwOG78UVuIJhMkr9bHbEyAtyU5uup0uaUkUVvjJr1YKaz6XOR6la6arXpGflmRjtydYp3S+sMLPrnI/OSlOKvyhmGMZCkfIK/HSMa2m81gZCBvfPdUuRFSfCZud4sTlsOHawzTmAzJcMcEciDrBjQlLp92KBu56fUP0tco4EaEZGT4dzoILeJ4h/VbxyooL6TPyG3IoYlW3ISxjFB90O4H/ciwAwz7/lJOOeoOXXxvBxMgTjBn8FJfwNKfdsJp777+WjnoXg/mE9QxglOdlbnbfCwOMp7p92K3c+dXdqLma3w9+HV5QXHTFswTuSAM+Ak5B6+Na6EAIgiDUpe2fQULsiv9Fg3vgsFlY8MEmIhGNxaKM8J6ow2OzWvBExciWYg9JdkuDJVxpLhtFlQG2l3ixWVXMFXrjm538WlQlLs0TLX8oTHFlgOxkJ2GtuXxYbyac0LvO4+akOPAHw+SX+2PjDZKd1gZPkCzKKPP0BOKXrdprhYBkJdvZXuIjGI4Qjhiv95x5H2G3WtBa4wuF6ZmdjMNmodwfih0v8zHNgKGawjJgnNBmuCjzBemSnsSu6Guovn9JMwjLhjAdY62NpFyHzRBZrnrKfvcl/bqk7ZNRHDaLioX3RLQmFI7gbOjkXhkOcjCs6w2MaYukOI2yyXj4QmEG9cxkyeXGCWJ6NMG0sWRYszw1xWmE5NSX9lrhN9w+d7XybHMMRtcMFxrYDPxa7KHcF+KADFfsfjAqLHZVc0QLo73PjgQuXKQm2SmoCNQpZ//i191oDR1SHYaQi14sW7e1hK27vVgtKiaOtdZ4AuHYhaz6XD93rfLz6sKzMbqkJ8Uu2JkVCCm1eiZrP57pMJvVG3saRCUItVFqhiEsBUEQhLi0yTNIpdRIpdSCUMg4EQlFNBEN3bLcdEh1EopoRj2+BoiG90SFkc2i8AcjfLWtFH8oQo8sd4MlgWZa7E+7ymOR+OZjxKOgPMCWYi/f7ywH6g+SsShFtyw3A7plcGjnVI7qnsFhuemNCpJkh41Kf7iGC2G6s7VPNs2UxeLKAJsKK9ntCcaCSQLhCFpD92w3aUlG+V/1PrSiigCpUZFrpq1GtGa3J0im207n9CQO7pRKkt2KMzqL7pzH1sRO/EyxHN5LwnJLsSd2rCr8wVjpbks7llDlJu1t7FYLpd4gFb4Qmwsr8YUisXEn8bAoFXPaWqOw3NNyxmSnDX8oQmmcUB7Dta/6jJrvn9pjhmqzI1pKevmw3mgNBRXx+ywroj2O1b9jkuxW+nRMwWY1nO206NgOh81Cbq3qAofVUsMRNUcUPXf54AbXB1Uuae0RRRsLKgBwOWw15t1ujlYiVBfhgZBxUaq2cGxOcjNcBMOaSLQMtrYQr475HjAvoJhrFWEpNCvXAEkwg+ncza3cOvJ2fr7ld8xlMmeUvY4/4GAad7KRPmykD+pbzfvL/8ASxlL0/gEscY/HRhjX7bv525b7uY27mM8kbuUuprgfZivdoI8f+vi588e74QjACxezmAG3fExgcxqHzlnHodotbqUgCPsdre8MMgG01iu01hNtNuOEwhR6XTNddEw1Ts6C0XEblYFw7Ap4pttBSpINt8NK9yxXLASlPmLCMr+C7SXGCV6ay04gHIkbYOILhlGqKvSmR7a7wce3WRRpLnvCA7yTnVZCEV2jp9E8qa1eCmuuPclmYetubyw90fzTTHHtmZ0cK781g3iM3lM/DqvRp2VuW+Y1ZtZl1SoRNAegV++n3JNS2GA40uA8zOo9bFt3e0l2WKN9ZCEKK/ykOm2tpvevOeiZbVwU+XZHGQUVAQ7ISGpQWCqq5gXGG4HTVjHDnH4urKhxeyhs9D/2yqn6jGZEvw/qS4YF4324cPUvuOxW+nYywqkmLPqsznaRiOH21VcOb2K6gd2z6pbkO2wW8sv8sc9FIBTB7bA2WioK4LRbUNQM4Bo9fy1PffgLdquKBp0ZVQnBcKSqvLyaEDUdweYuna5+kSA33XBoA6EI5f4QyQ5bo6nKDqvx2oJhjUWR8PenIDTKpdOhM2iH4pJpSyknlc30hIdhBCu5Ke0+pjj+wXRmcNlXz3HZV89x+7hb4Xnj/mtOngU5cFLBWp5NG4sO2Nlxai/WMYBfFxzCgi1XchKrYJETFjm5/eBb4Uno+tJGHuB61h95LFwC36kP+U592MIHQxAEoS7t4lKuP5oq2DXTTWm0jM0o+TNOyMwTsQx31cDuRDBcBcXC1ZtioiUtyUZxZQB/MBI7aTUFjzcYJi3JTnZ0VEmPJo6+aKyELMNthyIj0MMUrWap3OMXDaqxrVKKzGQHO0p9pCUZJ2vlfuPYlHqDKAUDu2fEjpcR9OHCEwjjC0awpxilt96oaN/tCWBRkF6rXNcM9aguds1QjerhMrWp3kNZXBlg3ZYScmuVAta331fbSshwOXDYLMYIFqBLTvxe0rZKstPG4blpbC4yBskfkNHwcbMoFZtPmkgpZVvBvDj0864KjqyW5OyLvl/jOZYPv/sT5xzZtcbjeAKh2KiQQDhCl/QkOkVDv+Ilq1YGQmhoVATmpDhwO6xx01vtViOkxvyMBsKazmlJjQYvmd8jh97+Jt5gzZFB3kA4dkzM98Gucn+stN8bDMdScT0xYbl3HUswej89/nC9PeHVUUrhtFvwBSPYLO3nvSzsXdSpQLeWXoUgCML+TTsRllWOpenGBEKRmOhpaqlUdYHnslvxBMMoZQSmmCdZ/lC4xmgLrTW+YJi0JBsdUp10SHU2W8lhjbCMZAe7yn0ckJHE6PlrYy6UOeqiOh1TnVT4QvTKSaa4MkDJ7qCRpugJkpZkx+2wVY0miCbImj2bV//+IDYVVDL/vz9Hy2ADZLgdcV0V83iYmKWwZlBSY+ws9aGB7SVeMtz2Bk/GzbAip92CzaIorAigFHWc1PZAvNmA9VFdi/yW92VrS9d02gx36+eCyhq3myXevXKqhGW8tF2ToooAhRUBspMdBEIROlcXlrWSVbXWbC/xYVF1+wVro5Sqd9akI1qFcPGTn+B22AiEIrHnTASXo2Z/qdZGz7TZV26+D3aW+vi12INSZt9yiDSXHU/AmMG5p6XdibxXumQYr2d7iQ+X3Uqnaj3vDe3vtFnxBffurFyh/aDUDDhlOl8+1ZcjNvwAB8H5F/yT1ziTu7iNWzz3cFjet/gykkh6WDPglo9Z1H80AJcsXor+u0JN1URuU4S3WFGXa7gYcMK/3zmF27gL30WK8e4nmVo8m1tumQbAnbPvhuNgGjO5IfB3WLcCckYCxS13MARBSBANNJzJ0BZpF8KyzBfCbq15gmaG1gCk7OEweDAcj4IKP3aLURpqln76ap1MGuWxNEs5ZkMnVF3SkyiqDLCr3B/tT4qQ4rTFLVdLslvpl5sGEO2Z9FJQ4ccfMhwX43ZzNInx4TADQnJSHFiUEVj01bZSguG6ZbAAL10xlKH3/qeGY9nU8B5ze0MAVNToN607wsEQBEk2S0zYZ7kd4lw0gulyWaOJsu0FpRRJditL/7eFdVt2A0YZ7I5SQ/h1z6oqhbVYjBLRYFjXSSU23bvdHuPiTOe0JLKTHSjqOpaFFQFKvUF6ZLlZPtnokUokyKY2jmoXydwO4zutU1r95c61MceZmA5kIGR8R5mOpZlefNPLX7G5sDKWgl0ZMIVlOKGy299C10wXLruV1CQb3bPcCb83k+wWSr0Nj/ZpbRdBhBbm3XcpJxW2Ab9AyVGZjGUJvVbs4PGRl3Bw7g9M4WE4ECawkEtWLjX22wiPj7sErtK8kjWcMFZueWIaaxjK+/f9gVcGn81LnEe5OwUrYW7JuocisgH479TBvMZIJn61GP4Nd+r/crv6ApDZlYIg7J+0+bPtcl+IUm8wNosy2WnDomoJy98Q7uByWIloI+Fx6IHZLJ88FIuqO6PRFy0Zde3lPr9kp410l52dZT4iEU0grBMaTp7stGJRVX12ZkmwOQPOLJM1HcvsZCcDu2cAYLMqeuckk1VPGXHXLHeNQKP6wnu01uwq89VJ0TS375blwheM8PX20th8v9qYAtZpN0aq5KYnNVoGKhiiHaBPh5R2d8KdZLfEeg1DkQjf7yzHGwhzUMfUOheCqqftQlVvrxlutdsTIBg2HEuLRRmzcaP9wWXeIAXlfrYUe0hx2mqIwKaGDy2dNIT5Fxvl7ebM20AoQqcESkVNzAsvpjtrHgPzdlO4egNhQhFNapINp81ChT9MMBzBH+3pbC7iHQOnzUr/run0yklOWFQunTSEy6Np27Z2dJFEEARB2J/QQKiZf/Z/2rxjub3Ei82iapSI2a0WAmFdzbH8DcIyeuIZimhyM1xGf4/NWsOhg6pAnH0RINM5zckP+UFKvEGC4Qg5CQhLi1KkOG2U+UK4HdaY85oWcyyNN/Rdr38HGKWl3bLcHN0jM+6cz+p0y3TH3CCo6VhqrWNu2Q/55fxS5MEXitRwikq8VWLWZbexpdjDT7sqOLBDcp1AGlPAPnPZYLKSHXvkBO1N9lfRZhq6ifSwtTVcdislniARrdlR4qMyEObgTilx+61tVhVLXzUJRucrJjussUAb0/F32Iw+yLxSH9t2VyVH985JbrQXsjE6RD/XgWjQkAY6pTZBWEa/i8yRQaawNL+jXv7LUPre/ma0v9oQeclOGxX+UKznsqGAs6aMFWkKiXyGzN7Y9uS+C82PUuYM8isYrj/i+E8+Qx+uUBdohkxaxbjAP+k38jvW5g2FkJVwdys3jZ7BVTcsNEpdgTtm3kw2RdzZ+wbOHbOSRUtGc8nypfQ453t4HXJvyuOgOVu5d8q1PPPB5VAIL58zAoCZTCObQhb0H8fENxZz+4gHYDjolS1zPARBaArtsxS2TTuWYa0p9RrzFKufYDiiLoLZ4vdb4uir91GazpgZHFEdbzCM1aLqpLPuDdJcdqwWFXNPOiQgLIHYCJGMaieL5m3myaXpJmanGGWvjYlKMMoJg2FNJCokd3uCMTfEPBEH2BI9WS0o99dI1TVTOG0WRYbbzuEHpOG0WWJjRKrjD4WxKMhsQgiTAL9Eewy7tEdh6bCiMS5KGP3FtnpH09gsljpOu1kGm5vhijm/naNppg6rwhsMk1fiJcNl54iu6QzsnlHjeyMeiTiYSXYrtmgJq9nH2ZQLA0lmMmx0/d5AGFvUZQWjTLhzWhIV0T7MJLuFFKeVQChCUWWArpkukp22PR71sjcxL0yJsBSag2f1lZzJCnoM/p7RXRahxynG8hzdHFuZwEK+zO0P6238vOF3/J53YQhYOlVi6VTJHZfP4mcOZHr+DCwPVXJ2+FXYBr/edwjffdCTO6feDYPgb/MewjVgN1wEU5nNVGYzm6m8eOafeYvTGXDTx/DGDONHEARhP6VNO5ahcKSOWwlgt1nwBELN4ljaon1XpmMJRn9fmTfIzjIfqU4byU4bvmDYOJH7jS5FIliUItNtj7kwiZTCglH+mlfqjYlGMByXJLslNm7EjPBvyoiBblnGcfGHIpT5jOPeOyeZn3ZVUOYNxo6/6eiEIpriykDMjSyJJs6aIlYpRabbQX6Zj1BE1yh384UiJNmt++Q4t0W6pLevsuGlk4bw1bYSznz0I0q8AbzBMB1S6x8DZLMqvMHawrJqXmKay0apN1TDsQx6NApjvNBvrVioLeDMUlvTbTS/gxIRepZof6mnWilsbcHbOS0pNmrEabOS7DBee4bLXmeu5v6EKSz3xYU8QRAEQaiLWQrbvmjTwtJps3Bol9Q6V62dNgvFlZHY2Iv6eiwTOTlTSuGyWyn3h2Indekue42I/sNy0/AGw43OxWxOMt2OmKNX27Gsr0QtxWnj6B6ZdURZWpKdV77YzpdbSwiGIzFHIx7xHrtb9CTPHwrHymB7ZLv5aVcFpd5g7Lht3e3BooyT5V3l/piw3O0J1gnfyUo2+khLPQEykx1s2+0lLcmOP1iV9tueqf3v0Oh7OfpP3h4dy94djOTcnaVGMFVDbrfNouqkGXsCYexWw+nLTnZS7gvF3vPmZ6VjmvM3icr6/v3MUtuCcj8Om4X+B6Q36XFddguVgXA0ETZCdrKjxnOZDqjdaoQ6pSbZ6JWTTFayPeGLNy3hZrocVg7ulEJyM8/YFNoPSr0Pj4wE4KLJIyEZ0u/eSdhh47WHT8OPk2+WHM1lFc9BBbADLj7zCd7nJN445yTWMBSAt544nceZROTaZBYtGU36FD/8AYaPWM48ruS02a/xdv8z0ecpWATqes3TjAegG1uhE7ycOxZ2GE6lhPYIgrA/08b/11VxnbXc9CRKvUYPIrDHJx/mCdMxd79LuT8Um7GY4XYwqEcm/lCEb/LK+LXIQzCsEz6xbLIoiEO6yx4bD9AhJfGkyHgni6lJtqoRIbUcwvqovuae0X4nX7TUEKp6oMwZfABbi704bVZyUhxs3e2NlRiWeALYajkPKU4bNoui2BPEEwizo9THjlJf7LU3tB6hLubRNcc7tCdSnDbsVkUgHMFltzb4ObVZLIS1JqI1luhnxRMIx75nclIcZCU7Yu/BdJedUm8w4QCppr5PHVZFuS9MREPXDFdCpenVcTmsFHuCVPqN+ZR1HMuosHTarHutZ3JvUV85syA0xgTmAr/j0ymHA/AzffDgZj6TGMA6/nTyW7AKntdnM5Q19FicD4fAUXzGNV/N5+H+kziQjQB8uuZu6OmH599l9ZJhPDtnFAuZwBunnsO57zzH2/3PhG2gXtG43t8N6Ss4uesaYyGT3mWIXsValQ2cjdb9W+aACIKwB0iPZbvBZrVwSOdU3A6jR+m39uFkuu3GfMpqAs4cY3BARhLl0R6l287o1+Tkxz0VRFaLivVKdmxktl1jz5Pmssd6KxtzLOORk+LAqhS+YJjdUceyZ7bh6JRVE5bbdntw2i2xUlyzr7PEE6wjZpVSZCY72O0JkFfqIyfFESvNS3Hu/YCk1kLi7yHj+LZHxxKqgmziBfZUxx19b5ll2xGt8QbCJEcFmTnP1iTZaePQLmlN/swkit1qwWz5jDertiGWThrC30YcCsC3O8pQitjcWhOzjUCqAIR2xyMn8kde54+8zoVPvcIgPuM5xjKM1Xz63uGcr//JBVtfpceGfMiA/44YzENcCyH4a8ECisihiBx4AbjeCf89hU7kc9HSZZzAau5452Ze7j4WugKzYOQXL+E9KxP4P3gHeAce08+xvmwA8Er0RxCE1oMpLJvzZ/+njTuW9WO3WujXJa1GwuOeirgMt4MMtyOuW9ApNYmdZX4CoQgHdkiOs/feIyvZwW5PkG6Zv61vLjXJTjgaphMKa5IdTRPihsg2RjpUlcLWdCzPf3wNP+aX0yHVicNaNZ8PjBEO8VzSLLc9VgLYIzsZm0VxQIYLaa/cczq3sx5LE5fdSpkv1GjoU6bbQcdUJztKfbgdxkgbDc06dqM6jX0nmSFYGS57LMm5KQzulU2K00Zako1OaUmxxzMxxzTtyWMLQmtEqRlcpnNaehmCIAitknYrLMEcBr93T5gsFkXPbDc7Sn30zNm3wjI72YHbYY31kCVK7ZPZtCQb4WiiazAcwbYH7kuS3UqFP8TD7/wEVJXHmsIyFNFEtHECq5SKlSaC4Vj+4fAu3HP24TXK8NJcdrKTHXRKS4oJz6aWAgoGCuPzsLcH3u+vZCU7CEV0Qq+/R7YbTyDMz9EkXYDHLx5En44pCZeJNldptjMqBBNNfq5Nh1Qnv8tNq/d+szRaHEuhPfHkU1eSMqGQncU9ALB8ozlizg/8d8pg/m/Tx1Cg4H1YdskoXF134/1dJm/p0zmdt1gw4RBGf7GIs3kVgEVzRnPJmKUMH7ace5bO5I7RN7OGobyt1sEsYDtcPPEJ/DhgVT4X69d4xn45AH9RTwPLgcPR+pyWOBSCIPwmJLxH2Atkuh1kuh2xcri91e9XuwdKqfg9prW3bwyjFFYT1oaxvydJi0l2K0WVgZhYzM1IQiliabPm3E/zRNkMJdFaU+INxnWSLErRp2PTRLNQD4qYU9weSXPZSavWm9vQZ8OiFH07pVBYYbyfrRa1z6sRTNJddg7pnBqbN9vcDOiaQa9sN1nSryi0J5bBo+OvxHKFUalz8OKvALAS5ve9V1LeO5Vxgxdz1dsL8T6azDadwxqGcr77NW7xTKOEDC5UNwNQ4RvK20ueYknv8dyx6WY6kc8gPuNnPZqf+wE9jZCeclLhX534hZ4QMkve7qm2KBGWgiDs/4iwFBolNclGWOtYn2XthNZEMB2PCn/IGNFitZDqtMV6LOsIS6tROlvuN8aTZLj27MRWQnsSI9NtR+vGtxMMbFZLjZmRLTXeRim1V9OmLRbVaI+2ILQVlJIZkYIgNBftM7xHhKXQKGlJhuiojKa0xnMsGxNwZjhKpT8U6+NKc9lZ8WUe3+0owx+dpee0VzmWZd4QJZXGh9IMVWltyZSthfY2v7I+5ELE/ov82wh7k5iovH46LIXpzIBZxgiiScznuhvmsuH+fvxn8RkcPO4rrrp8IUOeWMXa00+iq/oRZmRRsdvKnUxj7i/XMY9nAUhJCUM3uGzTXO4YMQs9W6He03AlMBD4GBwE+IG+3HTmDM5lGc/ocQD8Q10GgNZd9/XhEARB2CPahbCUE5LfhlkiuLXYg8NqqZMcmQjOqLCM6CrHM91lp6JaKazVomL3OazGWIftJUb6ZkatUjwRmEJrQr6D9hw5dsK+4mB9Nj+q7+D6Q/n1g0P497BTALjA8wIj73+J1ZwAx2t+ePsIpjzxd+bceyPX6zv5R/EUAp9Bykdh2AZ3nXUH30TnTR6mDoez+lNCBgBXHvIgXA0T9SMUkcPLK8cymhe4Y8os3v7HoaTocvLIBeBc/V+WMbZFjoUgCL8VjfRYCm2C5hZdZv+WPxShT4fkGgE5iZ702SxGIE8wrGMzKdNddn4t8sQe22mzxB7v9w++D8APO8uAhofWC4IgCIIgCML+g5TCCu2c+kSi6VCmOm1kJe95iEeS3UowHIoluKYl2QlHh/D5Q+FYuSwQCzr6fmc5UNexFAShipZw9cRJFNoKSs2AE6bzAv0YVvkBFW+CzoqWrAK8D6fPfIsBrOfRHlfxSO+J/GP8Dfwj+waYDAQhe/52iu44AJLB/k1Vw/plei7rKefl/mPhDgzncjgsUH+Fv8F79wxlIRNgLUBPbrc8ALpar6f0vguC0IoQYSk0St/OqbjsVnpku39TSEmSzUo5oRqlsKGIkfzqD0XIrCYezT7MFV/lAY0PrheE/YH2ILbaw2sU2h9DPljFkUs2oLsqJp3zMFvoSAGpAOQsqiCXTbzABfRWm3iMvzDkqVW8wAX0GJ9Pl6d+YcfbvfhiZj/WMZBR4WXcY70l9tgnsorPXzjOGC9yDlwzdRadpubztwUPMY0ZfDjmVPhsBsyYDtMNUamjpbSCILRWpBS2zdG7Q7KcBDUDuRku+ndN/82PYybDxkph3YZjGQxrtKbGcHZz9IU3GhiU0UjypfRcCvsj8v3TcsixFxLmuemsfQp+P/51VjGE+c9eg0rTDDlzFQDjFi8m75PenDn4RZZbzuH/jvyE974YSifPLr58qi8D87+A0/P5TA9iPpNYaR3By2ojAG/o9xn+1SpYD2ctfoElT43nkvGP8/B7N8OH8OGiU+E4uFjn8glfwbSz+YH+LXgwBEEQ9pw2KSyVUiOBkX369Il7f3OLkNonMLV/F7FjHJO3v93JxGc+xx4rhbUR0VBcGQCMUlsTq0VhtSjCEW2E+iQ4Y1FOJoW9iVzAEIS2hVJL4bnRLb0MQRDaHNJj2WbQWq8AVgwaNOjyll6LUMVhB6SjFLgcRi+lOX8vv8yHy27F7ajqsVw6aQinzv4vP+2qiPVkCsLeQi5ICEL7Q6m/Az24eMwTPJM3jq85HBdeTr/oX1zMEywrGwVAalo5Awav53n/BaQUedj0RS69CnagjtKU/uLk/k43sl4PYAP9+HzqcXx+4nGk+3cCMPy+6WTfsJ3QIVZO4V1ePXE0i1ZeAd9Dj8Xf8+uIQyAfnlGXA+8bC5O+SkFoA0gprNDG2N9OlnMzXAzqkYkl2qdpjjHxhSJ0y3TV6d/snJ7UqLDc316j0L5oC++/tvAaBGFP2aavpIQMFhdMZGDuWk71vMOl7qe5lKdxpRmp5ZmUcOxH61FKc9TQj7iZe3nxuz+jP1Ko1zUsA8fDZbhSPDw6ewJfcTi57ADgjoNmUXTJAfAM5OtOcLzi+Lx3GDtiCX95+2m4gKielN5KQRBaP+1aWMoJ1b7HUk08plXrm8xOqZv62iktCSDhMlhhz5HPQtNoT8erPb1Wof2g1AzA1dLLEAShzSKlsIKwTzFLYdOSbDht1jr3dzaFpZTCCkJcRPQJQtMxRCVw/Y1MJ5kpzEEpzaNMYKR7BT2W52M9J8z8rdcAcHO3O3jquDE8z9l4cPMWp8E2+Oew86EcuAL6ZW3gQH7mquUL0f0Vk/o8bDyHDXhmBlw8nevDD7AybwQfDj2Vm9fcBy8BCz8C3oXnxKkUBKH1I8JyHyAnf/HJTTeuFndMdca9v1O66ViKsBQEQRCamUuNuZLlpMLDcPOjs+jizuPZc0Yx9smXYZex2Wd/G8R9Q6ej/6G466jrjO2BS+5Zyu233Eo+HVmYP4H1DxzL7fffylOMoRtbAdh0Zi4L9f+3d+dhUlTnHse/P0CMuOCCMSAaF1CDKLjEfUFFTQyiN2JQUDDuKyEGExIXVhNzxUhQMS4oAiYSMRqjxoXFDRUuIqCiGFASEDEgCioKIu/9o2piZ2RmeuiepYvf53nqme46tbzvOd1dc7pOVZ/LlvSi6TWrYBDQCDoNGw8bATsfCu+Mh+4DPAzWLFN8jaVZrfpW02+w745bslEFQ119xtLMzMzMSs+GORTWF69ZnaqoUwm5HUu/TM3MrHDSAHi0H9zWj5Pb3McdnMdp3Mdhdz3FJ083YzQ9uJzf0eWcMWj7QNsHC9gBBsMF+w3l6t8NoSMT6N3tOugEg6Zfy/68TN/tfss519/CNizlaTowg32YwT7s8va7/HrsQFqwiJEDu8I90P+LvrTv9RJ8BLwzv45rxMyseHzG0uqtXb+5KZtv3IjNv+GXqZmZFccbJ+zE7sv+SYMng4fmnwabwcI1rZjeow0P05mH3jqN9ru9wkc9tgRg2ur9+Pwg8Y1jg00e+JAHOZnnexwLM+CZWQdy5MNTYBw8Mqojne4aD/PhlIH3JjsbKv53WC/OuGIcdIFuPe6i/6zrOHPvO5jxp5bAPYDvBmuWTR4Ka1ap2rxetEnjRrRpsUWt7c/MzLLrPzftMTOzGuExhmZmZrZhuKgfPRmFZgCfAy3hr92Op3GnFew7fDb9Rv6WWCKuWnIDK2nCSpqw/ORvMarJmTQeu4LPBm3F87OPhT4QT4g7OZcxnbvQ9M7FTKID089uA3tAL4bRi2FwMvRbMQBugcatV9CNP0I7GD32PFBLUD+frTTLpLJrLIs51X/uWJqZmVmmlf2E8mXDr6cJK7ng6KHELiJWiqU049NGTRl0cR8ePesYDjl0IuoZNGQNDVnDsseacOmymxm89VVwLBzQ5llotgotCUb/5TwmcRTXNf4lN9x+Fbt+OQ+6z+LIiVM4cuIU6AOTtzgUHofVg7egk06BEcB5QAxIJjPLoA2zY+mhsJaXmh4C659kMTOzGtWnH8PGiXu6/Iieu/6Zn877DTu0XcA4unDOuHuZevZeHPDbV9nssqXEQqE/BgDNjlnC2smb8vPNhsF8mDrxCEYe3ZXRLXowYfQPGMEljLgUeGkNTfdaBXzBM0cfCMDY6V25jl/AkV/APhtxSmzBA22Aj5MOpc9WmlmWuGNpZmZmZmZWNP4dS7Ma5zOTZmZWW/5zw55b+kFLQDCIa/hgXjPG0YVF7zdn7cGbEteINkwnVgg+ADUKRnTrDsA5b90LzYDewCOroNXGnNVnLCwFDgL+AZctup6bhl0B7eG92dvS/I8fJfvt/j5ssh3cC9wMD6g74OGvZpZNvsbSzMzMsm0pNDjwU1gO8wbuyRQOYDBX0ma72XApTDrrYDrzMFdeezW6Izh/+u+5kd7cSG/+tNv/QKtVPDK9I9y3MY+s7AgfQfPh7/CzHoOhb3KznqYXLoYl0PyKjxjTrQtjunWBTbaj5cq5HNDtWc5/4fckPcyEh8GaZZmvsTQzMzPLBP+8iJnVnQ1zKKzPWJqZmVkmHRxHcHAcAZ/D2t9vyuY/XAL9BvA/PMRZs8eyYPUONL/8HY7e+gWuW9KfL2lIg0s+ZTv+zaxlBzBr2QFMYz/4ycZ0OnU851x+C50WPcrJw+7jvcd25oaLr4KL4A9cwIGNp8L45KdFxtGFcXShwTufsvDYVkz97hHcro+AuYDPVppZNvmMpZmZmWXOG3E337k47cC1Ar6AT5ZuCSP6cfoweLtXC47gWRaqFb3jOvRwwBnA4zBoyLUM2uraZN2dgEdh2com7MnrsP11PDSiH+ecfQsjfnAJADfcegYwBa7uB0PgIc0BoOmqDiwf/yFt4z1eS3/yxJ1Ksw1B2VDYDYvPWJqZmVmmSHfWdQhmZhscdyzNzMwsM8qurfzOr+bDUyTTzRCrRSzYCBYDP5nCnZzLwlGtGBoX0Ith/KbzT2EM8DQw5B/wCck0BugDp3I/HRkPdISrYMRGl7BfTCa5y+sy2KQrDBoAzaBldKdldE+Gx27Vktf0WO1XhJnVobJrLIs51X8eCmt1qqqfH/HPk5iZWfWdC2/CX/9xPAAnNXiCn179G4aqL4yAi2Myv9bp/G/0ovfFt9H71qHA5HTdFRwTb3EuPwfg9M4PwiCYMPIHsBTGRBfOUCNuiFH8TFfAzH5wDpzyf/fyEfszoTUsPKQVAAtf3B5eBvZLtuxhsGaWZe5YmpmZWSb4TrBmVj9smNdYumNpZmZmmREP90edgZ36cVKvJwD41dpr+HWPgQyKPlzdeQjDx1/OOXELTVjJL4YPYPbwNqxiY/pyCEerDx/TjEvX3pxs8HlgK2DBG5wZz3PeijuA1TzGCcCr0O4e4EIe0Nbw0vdh7oCym7/CzH603/sliON5hYNquSbMrO5smD834o6lmZlZiZB0JdAV+BIQ8JuIGJuWNQHuJhl4uQboExGP1FWsta3sbOXiE5vCUf1gKDy59nAAjjv2OTgKrnrnBj54uBk3jvwluiY4a+AfmMuuPDf5ONQ7eHJOZ86MO1jExnRo8DQAD6zpzswVu/ND/sJotQQeA7ZjgpoBjwPbk/Qkp8JBU2HzfvBxeua03QBmlAUY7liaWbb55j1muebtzwAAD55JREFUZmal4+aI2Dsi9gFOAO6QtFVa1gf4OCJaAScCd0rarK4CrQtxf3+aT/8IJsGgtX04bsfnOG7H57j9qR5w5QC0y3KGamd4Exg0gJEtLuR5vYAOGwwbAS1htLZhgqbRhJU0YSW0hXa6hXlqChxK+9gVmM/3412gI/A+myxvA1yYBPHx14fj+tpKsw1N2VDYYk40lXS7pBNrM5Pq8BlLMzOzEhERy3Oebkby30vZl8RdgZ7pcv+QNA34PnB/rQZZB3xtpZltAJZHxPl1HURl3LE0MzMrIZIuBHoDOwBnR8QHadGOwD9zFv1XuswGIRb1Ry36Awv5U1zGWLrCgqTD+RyHw4/Pg7thaExEGgZ8D/aH7z+8F3/XD+FFgJuAZQCMWpD8/zb2ka6s3mYysehY1DmYof04OD7j7293AAYC8NnirUh+dgSSobHvfhWXz1aabYA2zGssFRF1HUONkfQxMKeu46hBzYCldR1EDXJ+pSvLuYHzK3XVye/bEbFtTQaTS9J0kg7iumwXEV/mLLsXcC9wVER8kB7zdomIJWn5cGBuRPxuHfs5Hyj75rst8FoR0yi2Ung91vcYHV9hHF9h6nt8ALtHxObF2pikx0nyLqalEfG9Im+zqLJ+xnJOROxf10HUFEnTnF/pynJ+Wc4NnF+pq8/5RcS+1Vj2VUmLgA7AAyRnKL8NLEkX2RGYVMG6twO3Q/2uD6j/8UH9j9HxFcbxFaa+xwdJjMXcXn3vANYU37zHzMysREj6Ts7jnYF9gNnprPuBC9Ky1sB3SW5bamZmVuOyfsbSzMwsSwZI2pPkFoFfAr0i4o207HpgpKS5adn5EfFxHcVpZmYbmKx3LG+v6wBqmPMrbVnOL8u5gfMrdSWbX0T8qJKyT4FT12Oz9b0+6nt8UP9jdHyFcXyFqe/xQWnEWO9l+uY9ZmZmZmZmVvN8jaWZmZmZmZkVJJMdS0m7SXpR0lvp39Z1HVOhJM2X9KakGel0fDq/5HKVNETSO5JCUtuc+RXmUkp5VpLfOtswLSul/LaR9JikOZJmSfqLpG3TspJuwypyy0r7PSRppqRXJD0nqX06v6Tbrkwl+WWi/fIlqYmksZLmpnl3qmC57SVNkrR8XXdFlHReuo15km6W1CCfsmLFV9l+JPXKac8ZklZI+l1a1kHSypyyKfnGVsT4Ko2hkPorYownSXpZ0muSXpf0s5x1ql2H+byXJDWUdEsay1xJ5xZalq8ixHd1Wk8z03rL/RzpL+nfOfV1Sx3EV2EMxai/IsU4qtz7dq2kzlXFX+T4jpM0TdIqSUOqEXtR6jDTIiJzEzAROCN9fAYwsa5jKkJO84G2WcgVOIzkR7v/K6fKcimlPCvJb51tWIL5bQ10yHl+PTAiC21YRW5Zab+mOY9PAqZnoe3yyC8T7VeNergGuDN93BpYDGy2rvoCjgA6AdPKle0MLAS2Jfki+gmgR1VlRY4vr/0AGwH/BvZPn3con08N1V9ldVRhDIXWXxFjPBBokfNamAscvr51mM97CeiRxtAgjWkhsFMhZbUY3/FAk/RxO+AjYJP0eX9gSIHv20LjqzCGYtRfMWIst1w74ANg41quw1Ykd9QeXH5/Nf0azPpU5wEUPSH4ZvpGb5g+b5g+37auYyswr/mU+6eo1HPNzamyXEo1z/Jttq42zEg7ngKMz2gbngKMz2r7pQfJaVlsu9z8stp+VeT+OmknK33+CHBqJct34OsdyyuAm3OedwEeraqsmPHlux/gh8CsyvKpifqroo4qjKHQ+quJOkzL/sZX/5RXqw7zfS8BjwJdcp7fDFxRSFltxVduOQHLgZbp8/4U0CkqUv1VGEOh9VdDdTgMGJbzvFbqsLL91eRrcEOYsjgUdgfg3Yj4EiD9uyidX+ruVTI8b7ikLclWrpXlkqU8y7chlHB+6XCqi4CHyVgblsutTCbaT9Kdkv4FXAv0JHttVz6/MplovzztCPwz5/m/qH5OlW2j0O3nu36+y50N3FVu3m6SpkuaIqnnOtapjfgqiqGm26fay0naAziI5IxPmerUYb7vpfV9XRVaZ8WIL1cPYF5ELMyZd1r6GfOkpIOrEVsx46sohmK85opWh5IaA934+vu2NuqwMjX5Gsy8LHYss+rwiGhH8oPXIvmWxEpLFtvwJuATspFLeeVzy0z7RcS5EbEj8CuS4b6ZUkF+mWk/gPSf/aUVTA03pPgkNQeOBsbkzJ4O7BAR+wKnAddI6ljL8VUaQ1XqoA7/ClwSEYuKEX+WSToSGAScnjP7D8DOEbE3yefOXyVtU8uh1YcY8nUy8K+ImJEzr5Tit3XIYsdyAbB92Ydu+rdFOr9kRcSC9O8qYDhwKNnKtbJcMpFnBW0IJZpfesF7a6BrRKwlQ224jtwy134AETEaOIrkOpFMtF2usvwkbZO19ouIfSOiWQXTlyTfpH87Z5UdqX5OlW2j0u0XMb58lusJPBYRS3P2vyIilqeP3wEe4qs2r5X4qoihyu3XVh1K+ibJ5QzXR8Sfc/ZfaR2uQ77vpfV9XRX6mi5GfKRn0cYAJ0fEnLL5EbE4Ir5IHz+VrtOW/BUcXxUxFOMzoSh1mPraKINarMPK1ORrMPvWdwxtfZ6Ap/nvC3cn1XVMBeazKekNKUi+ab8WeLDUc+Xr1yBWmEsp5sl/X0NaYRuWYn5p/JNIb2KQpTZcV25ZaT9gM5IzEGXPTwTeTXPKQttVlF8m2q+addEfuCN93Bp4H9i8kuU78PVrLHfh6zd96VlVWTHjy2c/wJvACeXmNeer3+reGngVOKk246sshkLrr4gxbgPMBC5ax3rVrsN83kvAWXz9Bii7FFJWjTorNL7vknQuDlzHetvnPG5PclOab9VyfBXGUIz6K0aMaXlL4FNg67qow3LvofLXWNboazDrU50HUCNJwR7AFOCt9O/udR1TgfnsArwCzCK5WP9+oHmp5kpysfZCYA3JXexeryqXUspzXflV1oYlmN+eQABzgBnp9GAW2rCi3LLSfsB2wEsk/yDOILmWat8stF1l+WWl/apZF5umec5NX88n5ZQNBC5MHzdMP6+WAKvTx/1zlr0AmJdOt5LeFKOqsmLFl0cMh5J8edCw3PYvTdt6BvAa8POaqL/K4qsqhkLqr4gxXg98xlefdzOAH69vHVb0XgIe46s79jZMYyiL5/yc9derrBp1Vmh8/0fyXsmtr73SsnvSepqZLndCHcRXYQzFqL9ixJiWXwnct45t11YdHkbyWbcC+Dh9fHxtvAazPpV9E2VmZmZmZma2XrJ4jaWZmZmZmZnVIncszczMzMzMrCDuWJqZmZmZmVlB3LE0MzMzMzOzgrhjaWZmZmZmZgVxx9KsBkkaKenS9PFASV3zWOdpSZ1qIbb/xCOpg6TjcspaSJpU5P09LeltSX0rKD9L0rgC99FF0mxJS6te2szM6htJIWmWpI7rse4oSYslDamJ2Mysco3qOgCzUiKpUUSsWZ91I+KaYsdTiHLxdCD5cfkn07JFwFE1sNteEfFIDWwXgIgYJ2kaMK2m9mFmZjXukIj4pLorRUQPSf1JjmdmVst8xtKsCum3p1dIehroJ2kvSc9Jmp6eHeuds+z2kiZIminpIaBZTlnu2ctjJL0o6RVJr0o6LY84dpK0VNIQSVPT9Q7PKe+Rzpsl6UFJ30znH5LGOkPS65JOz41H0l7AhUCPdJm+ZfvK2fb30lhnpfm1Sud3SNe5LS2bKek7edZr43S9OZImAgeUK/95mud0SX+T9K10flNJD0h6M41llL+dNjOrPelxsb+kF9LP8FNyyio6XuyeHvdmSnpNUp889zUyPVZMlPRPSTdKOjo9Ds+X9JOaytPMqsdnLM3y0yAiOgBI2hzoGBGrJG0GTJX0RES8AQwDno2IAZJ2AWYCj69je9OBwyLiS0nbAS+n2/iwiji2AWZFRB9JRwJ/krQr0Bq4DtgvIt6TNAi4CegK/AK4MSJGSxLQNHeDEfGqpD8Am0VEnzTHncrK0w7qaODIiJgt6RzgXuDAdJE9gR9HxAWSrgSuArpXkQfABcDOQFtgI+BZYH66zzOAVsBBEbFW0kXADel2rwE+jIg9JG0NvAw8kMf+zMyseNZGxCGSdgdekPRcOr+i48XFwGMRMQhA0lbV2NeewDFAQ5LjRFPgSKA5MEfSiPU5w2lmxeWOpVl+7sl53AS4VVI7YC3QAmgHvEEyfLQXQES8LWlCBdvbFrhLUmtgDbA1sDvwUhVxrAbGpNt/RtJn6XpHkhyw30uXu42kUwswCfilpG8DT0XElPxS/o8DgZkRMTt9fjcwPO1gA8yJiFfSxy8BJ+a53aOAeyLiC+ALSWOAw9KyzsD+wPSkL0wjYHnOepcBRMSy9MywmZnVrhEAETFH0nTgICCo+HjxLDBEUmOS41J1ruN/KCJWAUiaQ3K8Wwu8K+lDoCXwZjGSMrP156GwZvnJ/Sb018BiYJ+IaAdMBb5Rze3dCjwN7BUR7YGF67ENAJEcyMv+5gqAiBhK0tlbAtwkafB67qMin+c8/pL8v7BSFWWDI6J9OrWNiEPzjMfMzGpXZcciACLiAeBQYB7Ql+TMZr7KH2fW97hjZjXIHUuz6tsSWBARayS1BQ7PKZsI/BhA0s4kQ3cq2sb8iAhJx5IM+8xHY6Bbuv3DSTqjc4AJwAll1yEC5wHj0+V2i4h5EXEb8HvKXcuYWkG5IbI5XgTaS9ojfd4TeCUiPs4z5opMAM6U1EjSJmV5pR4GLi4bKiVp4/QMMSTfcvdM528FnFRgHGZmVn1lx7rWQHtgCpUcL9JrLRdHxEhgAOs+FplZCfM3PGbVNxgYnV4HOI9keE+ZnwCjJJ1K0uF7qoJt9CUZHtQXmJVO+fgAaC1pCsmQ3NMjYjXwuqRfAk9JCuBtkmsYAXpJOopkGO0q0mGk5TxI0smbAdyXTgBExBJJZwJ/lNSI5MznGXnGW5nbgb2B10nO2D5Dcs0l6fWgzYBn0qGwDYDhJMN7BwJ3S3qd5FqbyXw1TNbMzGrHKkmTSW5Sd0FE/BugkuPFj4DuklaTnNX0TXfMMkYRHlFmVgrSG+pMi4hmVS1bHym5q+6QQn9uRNJGQMOI+FzSFsDzwOURUXaGdidKuJ7MzOq79AvMzWvihjmFblvpz42U3YzOzGqPh8KaWW1ZBlyfnqUtxFbA5PTs6lRgXE6nsgvwN+D9AvdhZmZ1432Sz/iO1V1R0iiSM6Qrih6VmVXJZyzNzMzMzMysID5jaWZmZmZmZgVxx9LMzMzMzMwK4o6lmZmZmZmZFcQdSzMzMzMzMyuIO5ZmZmZmZmZWEHcszczMzMzMrCD/D3a0kGpFq2HBAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -524,7 +532,7 @@ }, { "cell_type": "markdown", - "id": "surgical-footwear", + "id": "medieval-packaging", "metadata": {}, "source": [ "### Store in dump file" @@ -532,28 +540,17 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "id": "affiliated-british", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "'dump_file.dmp'" - ] - }, - "execution_count": 23, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "calculator.dump(\"dump_file.dmp\")" ] }, { "cell_type": "markdown", - "id": "lovely-cigarette", + "id": "spatial-peace", "metadata": {}, "source": [ "### Load from dump file" @@ -561,75 +558,20 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": null, "id": "pleasant-machine", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The following components are found in the work_directory / input_path:\n", - " Union_sphere.comp\n", - " Texture_process.comp\n", - " Union_cone.comp\n", - " Union_box.comp\n", - " Single_crystal_process.comp\n", - " Union_abs_logger_2D_space.comp\n", - " Union_logger_2D_kf.comp\n", - " Template_process.comp\n", - " PhononSimple_process.comp\n", - " Union_conditional_standard.comp\n", - " Union_abs_logger_1D_space.comp\n", - " Union_abs_logger_event.comp\n", - " NCrystal_process.comp\n", - " Union_abs_logger_1D_space_event.comp\n", - " Union_abs_logger_1D_space_tof.comp\n", - " Union_logger_2D_space.comp\n", - " Union_conditional_PSD.comp\n", - " Union_master.comp\n", - " AF_HB_1D_process.comp\n", - " Union_logger_2D_kf_time.comp\n", - " Union_cylinder.comp\n", - " Union_abs_logger_1D_space_tof_to_lambda.comp\n", - " Powder_process.comp\n", - " Union_make_material.comp\n", - " Incoherent_process.comp\n", - " Union_logger_1D.comp\n", - " Union_logger_3D_space.comp\n", - " IncoherentPhonon_process.comp\n", - " Union_logger_2DQ.comp\n", - " Union_mesh.comp\n", - " Union_logger_2D_space_time.comp\n", - "These definitions will be used instead of the installed versions.\n" - ] - } - ], + "outputs": [], "source": [ "from_dump = instr.McStas_instr(\"\", dumpfile='dump_file.dmp')" ] }, { "cell_type": "code", - "execution_count": 30, - "id": "expensive-tenant", + "execution_count": null, + "id": "modified-brooks", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "demo_instrument\n", - "double source_energy = 320 // Source mean energy\n", - "double source_height = 0.025 // Height of source\n", - " sample_height = 0.04 // Height of sample\n", - "source Source_div AT (0, 0, 0) ABSOLUTE \n", - "powder PowderN AT (0, 0, 1) RELATIVE source\n", - "cyl_monitor Cyl_monitor AT (0, 0, 0) RELATIVE powder\n", - "acceptance_horizontal DivPos_monitor AT (0, 0, 0.1) RELATIVE powder\n" - ] - } - ], + "outputs": [], "source": [ "print(from_dump.name)\n", "from_dump.show_parameters()\n", @@ -639,93 +581,10 @@ }, { "cell_type": "code", - "execution_count": 31, - "id": "authorized-cigarette", + "execution_count": null, + "id": "divine-digit", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "/********************************************************************************\n", - "* \n", - "* McStas, neutron ray-tracing package\n", - "* Copyright (C) 1997-2008, All rights reserved\n", - "* Risoe National Laboratory, Roskilde, Denmark\n", - "* Institut Laue Langevin, Grenoble, France\n", - "* \n", - "* This file was written by McStasScript, which is a \n", - "* python based McStas instrument generator written by \n", - "* Mads Bertelsen in 2019 while employed at the \n", - "* European Spallation Source Data Management and \n", - "* Software Center\n", - "* \n", - "* Instrument demo_instrument\n", - "* \n", - "* %Identification\n", - "* Written by: Python McStas Instrument Generator\n", - "* Date: 12:21:44 on December 15, 2021\n", - "* Origin: ESS DMSC\n", - "* %INSTRUMENT_SITE: Generated_instruments\n", - "* \n", - "* \n", - "* %Parameters\n", - "* \n", - "* %End \n", - "********************************************************************************/\n", - "\n", - "DEFINE INSTRUMENT demo_instrument (\n", - "double source_energy = 320, // Source mean energy\n", - "double source_height = 0.025, // Height of source\n", - "sample_height = 0.04 // Height of sample\n", - ")\n", - "\n", - "DECLARE \n", - "%{\n", - "double source_energy_spread;\n", - "%}\n", - "\n", - "INITIALIZE \n", - "%{\n", - "// Start of initialize for generated demo_instrument\n", - "source_energy_spread = 0.02*source_energy;\n", - "%}\n", - "\n", - "TRACE \n", - "COMPONENT source = Source_div(\n", - " xwidth = 0.12, yheight = source_height,\n", - " focus_aw = 3, focus_ah = 4,\n", - " E0 = source_energy, dE = source_energy_spread)\n", - "AT (0,0,0) ABSOLUTE\n", - "\n", - "COMPONENT powder = PowderN(\n", - " reflections = \"Ni.laz\", radius = 0.01,\n", - " yheight = sample_height)\n", - "AT (0,0,1) RELATIVE source\n", - "\n", - "COMPONENT cyl_monitor = Cyl_monitor(\n", - " nr = 200, filename = \"cylinder.dat\",\n", - " yheight = 0.2, radius = 0.5,\n", - " restore_neutron = 1)\n", - "AT (0,0,0) RELATIVE powder\n", - "\n", - "COMPONENT acceptance_horizontal = DivPos_monitor(\n", - " nh = 300, ndiv = 300,\n", - " filename = \"acceptance_h.dat\", xwidth = 0.2,\n", - " yheight = 0.2, maxdiv_h = 30,\n", - " restore_neutron = 1)\n", - "AT (0,0,0.1) RELATIVE powder\n", - "\n", - "FINALLY \n", - "%{\n", - "// Start of finally for generated demo_instrument\n", - "%}\n", - "\n", - "END\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "with open(\"demo_instrument.instr\", \"r\") as f:\n", " instrument_file = f.read()\n", @@ -735,7 +594,7 @@ { "cell_type": "code", "execution_count": null, - "id": "fixed-address", + "id": "knowing-solution", "metadata": {}, "outputs": [], "source": [] diff --git a/examples/manual_code.ipynb b/examples/manual_code.ipynb index 2a957194..078483d3 100644 --- a/examples/manual_code.ipynb +++ b/examples/manual_code.ipynb @@ -2,13 +2,10 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "import sys\n", - "sys.path.append('/Users/madsbertelsen/PaNOSC/McStasScript') # Path to McStasScript pythoon file\n", - "\n", "from mcstasscript.interface import instr, plotter, functions\n", "\n", "# Creating the instance of the class, insert path to mcrun and to mcstas root directory\n", @@ -19,7 +16,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -31,7 +28,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -44,7 +41,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -53,20 +50,9 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "detector.add_component(\"Origin\",\"Arm\")\n", "src = detector.add_component(\"source\",\"Source_simple\",RELATIVE=\"Origin\")\n", @@ -75,20 +61,9 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "detector.add_component(\"pre_guide_slit\",\"Slit\",before=\"beam_extraction\",\n", " AT=[0,0,1],RELATIVE=\"source\",comment=\"Slit before the guide\")" @@ -96,27 +71,16 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Origin Arm AT [0, 0, 0] ABSOLUTE ROTATED [0, 0, 0] ABSOLUTE\n", - "source Source_simple AT [0, 0, 0] RELATIVE Origin ROTATED [0, 0, 0] RELATIVE Origin\n", - "pre_guide_slit Slit AT [0, 0, 1] RELATIVE source ROTATED [0, 0, 0] RELATIVE source\n", - "beam_extraction Guide_gravity AT [0, 0, 2] RELATIVE source ROTATED [0, 0, 0] RELATIVE source\n" - ] - } - ], + "outputs": [], "source": [ "detector.print_components()" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -126,29 +90,16 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "COMPONENT source = Source_simple\n", - " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.12\u001b[0m\u001b[0m [m]\n", - " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.12\u001b[0m\u001b[0m [m]\n", - " \u001b[1mE0\u001b[0m = \u001b[1m\u001b[92menergy\u001b[0m\u001b[0m [meV]\n", - "AT [0, 0, 0] RELATIVE Origin\n", - "ROTATED [0, 0, 0] RELATIVE Origin\n" - ] - } - ], + "outputs": [], "source": [ "detector.print_component(\"source\")" ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -157,7 +108,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -166,7 +117,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -175,43 +126,18 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Origin Arm AT [0, 0, 0] ABSOLUTE ROTATED [0, 0, 0] ABSOLUTE\n", - "source Source_simple AT [0.01, 0, 0] RELATIVE Origin ROTATED [0, 0, 0] RELATIVE Origin\n", - "pre_guide_slit Slit AT [0, 0, 1] RELATIVE source ROTATED [0, 0, 0] RELATIVE source\n", - "beam_extraction Guide_gravity AT [0, 0, 2] RELATIVE pre_guide_slit ROTATED [0, 2.0, 0] RELATIVE pre_guide_slit\n" - ] - } - ], + "outputs": [], "source": [ "detector.print_components()" ] }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "COMPONENT beam_extraction = Guide_gravity\n", - " \u001b[1mw1\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", - " \u001b[1mh1\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", - " \u001b[1ml\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", - "WHEN (vx > 0)\n", - "AT [0, 0, 2] RELATIVE pre_guide_slit\n", - "ROTATED [0, 2.0, 0] RELATIVE pre_guide_slit\n" - ] - } - ], + "outputs": [], "source": [ "detector.set_component_WHEN(\"beam_extraction\",\"vx > 0\")\n", "detector.print_component(\"beam_extraction\")" @@ -219,26 +145,9 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "COMPONENT beam_extraction = Guide_gravity\n", - " \u001b[1mw1\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", - " \u001b[1mh1\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", - " \u001b[1ml\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", - "WHEN (vx > 0)\n", - "AT [0, 0, 2] RELATIVE pre_guide_slit\n", - "ROTATED [0, 2.0, 0] RELATIVE pre_guide_slit\n", - "EXTEND %{\n", - "n_scattering = SCATTERED - 2\n", - "%}\n" - ] - } - ], + "outputs": [], "source": [ "detector.append_component_EXTEND(\"beam_extraction\",\"n_scattering = SCATTERED - 2\")\n", "detector.print_component(\"beam_extraction\")" @@ -246,27 +155,9 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "COMPONENT beam_extraction = Guide_gravity\n", - " \u001b[1mw1\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", - " \u001b[1mh1\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", - " \u001b[1ml\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", - "WHEN (vx > 0)\n", - "AT [0, 0, 2] RELATIVE pre_guide_slit\n", - "ROTATED [0, 2.0, 0] RELATIVE pre_guide_slit\n", - "GROUP guides\n", - "EXTEND %{\n", - "n_scattering = SCATTERED - 2\n", - "%}\n" - ] - } - ], + "outputs": [], "source": [ "detector.set_component_GROUP(\"beam_extraction\",\"guides\")\n", "detector.print_component(\"beam_extraction\")" @@ -274,28 +165,9 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "COMPONENT beam_extraction = Guide_gravity\n", - " \u001b[1mw1\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", - " \u001b[1mh1\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", - " \u001b[1ml\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", - "WHEN (vx > 0)\n", - "AT [0, 0, 2] RELATIVE pre_guide_slit\n", - "ROTATED [0, 2.0, 0] RELATIVE pre_guide_slit\n", - "GROUP guides\n", - "EXTEND %{\n", - "n_scattering = SCATTERED - 2\n", - "%}\n", - "JUMP myself iterate 3\n" - ] - } - ], + "outputs": [], "source": [ "detector.set_component_JUMP(\"beam_extraction\",\"myself iterate 3\")\n", "detector.print_component(\"beam_extraction\")" @@ -303,29 +175,9 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "// Simulating severe misalignment\n", - "COMPONENT beam_extraction = Guide_gravity\n", - " \u001b[1mw1\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", - " \u001b[1mh1\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", - " \u001b[1ml\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", - "WHEN (vx > 0)\n", - "AT [0, 0, 2] RELATIVE pre_guide_slit\n", - "ROTATED [0, 2.0, 0] RELATIVE pre_guide_slit\n", - "GROUP guides\n", - "EXTEND %{\n", - "n_scattering = SCATTERED - 2\n", - "%}\n", - "JUMP myself iterate 3\n" - ] - } - ], + "outputs": [], "source": [ "detector.set_component_comment(\"beam_extraction\",\"Simulating severe misalignment\")\n", "detector.print_component(\"beam_extraction\")" @@ -333,85 +185,27 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Here are the availalbe component categories:\n", - " sources\n", - " optics\n", - " samples\n", - " monitors\n", - " misc\n", - " contrib\n", - " union\n", - " obsolete\n", - "Call show_components(category_name) to display\n" - ] - } - ], + "outputs": [], "source": [ "detector.show_components()" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Here are all components in the samples category.\n", - " Incoherent Phonon_simple Res_sample Single_crystal\n", - " Isotropic_Sqw Powder1 Sans_spheres TOFRes_sample\n", - " Magnon_bcc PowderN SasView_model Tunneling_sample\n" - ] - } - ], + "outputs": [], "source": [ "detector.show_components(\"samples\")" ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " ___ Help Phonon_simple _________________________________________________\n", - "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", - "\u001b[4m\u001b[1mradius\u001b[0m\u001b[0m [m] // Outer radius of sample in (x,z) plane\n", - "\u001b[4m\u001b[1myheight\u001b[0m\u001b[0m [m] // Height of sample in y direction\n", - "\u001b[4m\u001b[1msigma_abs\u001b[0m\u001b[0m [barns] // Absorption cross section at 2200 m/s per atom\n", - "\u001b[4m\u001b[1msigma_inc\u001b[0m\u001b[0m [barns] // Incoherent scattering cross section per atom\n", - "\u001b[4m\u001b[1ma\u001b[0m\u001b[0m [AA] // fcc Lattice constant\n", - "\u001b[4m\u001b[1mb\u001b[0m\u001b[0m [fm] // Scattering length\n", - "\u001b[4m\u001b[1mM\u001b[0m\u001b[0m [a.u.] // Atomic mass\n", - "\u001b[4m\u001b[1mc\u001b[0m\u001b[0m [meV/AA^(-1)] // Velocity of sound\n", - "\u001b[4m\u001b[1mDW\u001b[0m\u001b[0m [1] // Debye-Waller factor\n", - "\u001b[4m\u001b[1mT\u001b[0m\u001b[0m [K] // Temperature\n", - "\u001b[1mtarget_x\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // position of target to focus at . Transverse coordinate\n", - "\u001b[1mtarget_y\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // position of target to focus at. Vertical coordinate\n", - "\u001b[1mtarget_z\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // position of target to focus at. Straight ahead.\n", - "\u001b[1mtarget_index\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [1] // relative index of component to focus at, e.g. next is +1\n", - "\u001b[1mfocus_r\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // Radius of sphere containing target.\n", - "\u001b[1mfocus_xw\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // horiz. dimension of a rectangular area\n", - "\u001b[1mfocus_yh\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [m] // vert. dimension of a rectangular area\n", - "\u001b[1mfocus_aw\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // horiz. angular dimension of a rectangular area\n", - "\u001b[1mfocus_ah\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [deg] // vert. angular dimension of a rectangular area\n", - "\u001b[1mgap\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [meV] // Bandgap energy (unphysical)\n", - "-------------------------------------------------------------------------\n" - ] - } - ], + "outputs": [], "source": [ "detector.component_help(\"Phonon_simple\")" ] @@ -433,7 +227,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.8.8" } }, "nbformat": 4, diff --git a/examples/random_demonstration.py b/examples/random_demonstration.py index e9f1a540..9a838282 100644 --- a/examples/random_demonstration.py +++ b/examples/random_demonstration.py @@ -1,10 +1,8 @@ # Demonstration of McStasScript, an API for creating and running McStas instruments from python scripts # Written by Mads Bertelsen, ESS DMSC import random -import sys -sys.path.append('/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript') -from mcstasscript.interface import instr, plotter, functions +from mcstasscript.interface import instr, plotter, functions # Create a McStas instrument Instr = instr.McStas_instr("random_demo", @@ -26,15 +24,15 @@ Cu.process_string = "\"Cu_incoherent,Cu_powder\"" # Add neutron source -Source = Instr.add_component("source", "Source_div", AT=[0,0,0]) +Source = Instr.add_component("source", "Source_div") # Add parameter to select energy at run time -Instr.add_parameter("double","energy", value=10, comment="[meV] source energy") +energy = Instr.add_parameter("double", "energy", value=10, comment="[meV] source energy") Source.xwidth = 0.12 Source.yheight = 0.12 Source.focus_aw = 0.1 Source.focus_ah = 0.1 -Source.E0 = "energy" +Source.E0 = energy Source.dE = 0.0 Source.flux = 1E13 @@ -42,7 +40,7 @@ material_name_list = ["Cu", "Vacuum"] # Wish to set up a number of random boxes, here the number is chosen at random -number_of_volumes = random.randint(30,40) +number_of_volumes = random.randint(30, 40) # Initialize the priority that needs to be unique for each volume current_priority = 99 @@ -65,9 +63,9 @@ # Add a McStas Union geometry with unique name this_geometry = Instr.add_component("volume_" + str(volume), "Union_box") - this_geometry.xwidth = random.uniform(0.01,max_side_length) - this_geometry.yheight = random.uniform(0.01,max_side_length) - this_geometry.zdepth = random.uniform(0.01,max_side_length) + this_geometry.xwidth = random.uniform(0.01, max_side_length) + this_geometry.yheight = random.uniform(0.01, max_side_length) + this_geometry.zdepth = random.uniform(0.01, max_side_length) this_geometry.material_string = "\"" + volume_material + "\"" this_geometry.priority = current_priority this_geometry.p_interact = 0.3 @@ -112,7 +110,7 @@ PSD.filename = "\"PSD.dat\"" PSD.restore_neutron = 1 -big_PSD = Instr.add_component("large_detector","PSD_monitor", AT=[0,0,2]) +big_PSD = Instr.add_component("large_detector", "PSD_monitor", AT=[0,0,2]) big_PSD.xwidth = 1.0 big_PSD.yheight = 1.0 big_PSD.nx = 500 @@ -123,9 +121,11 @@ Instr.print_components() # Run the McStas simulation, a unique foldername is required for each run -data = Instr.run_full_instrument(foldername="demonstration", - parameters={"energy": 600}, - mpi=2, ncount=5E7) +Instr.settings(output_path="demonstration", mpi=2, ncount=5E7) +Instr.set_parameters(energy=600) + +Instr.backengine() +data = Instr.data # Set plotting options for the data (optional) functions.name_plot_options("logger_space_zx_all", data, log=1, orders_of_mag=3) diff --git a/mcstasscript/helper/mcstas_objects.py b/mcstasscript/helper/mcstas_objects.py index 8177a5d5..bc91fbe6 100644 --- a/mcstasscript/helper/mcstas_objects.py +++ b/mcstasscript/helper/mcstas_objects.py @@ -811,9 +811,9 @@ def set_RELATIVE(self, relative): self.AT_relative = "RELATIVE " + relative self.ROTATED_relative = "RELATIVE " + relative - def set_parameters(self, dict_input): + def set_parameters(self, args_as_dict=None, **kwargs): """ - Set Component parameters from dictionary input + Set Component parameters from dictionary input or keyword arguments Relies on attributes added when McStas_Instr creates a subclass from the Component class where each component parameter is added as an @@ -821,7 +821,12 @@ def set_parameters(self, dict_input): An error is raised if trying to set a parameter that does not exist """ - for key, val in dict_input.items(): + if args_as_dict is not None: + parameter_dict = args_as_dict + else: + parameter_dict = kwargs + + for key, val in parameter_dict.items(): if not hasattr(self, key): raise NameError("No parameter called " + key diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index ae847c09..d0f42490 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -94,7 +94,7 @@ class McCode_instr(BaseCalculator): package_path : str Path to mccode package containing component folders - current_run_settings : dict + run_settings : dict Dict of options set with settings data : list @@ -220,7 +220,7 @@ class McCode_instr(BaseCalculator): Returns data set from latest simulation in widget """ - def __init__(self, name, parameters=None, dumpfile=None, **kwargs): + def __init__(self, name, parameters=None, dumpfile=None, executable=None, **kwargs): """ Initialization of McStas Instrument @@ -242,11 +242,20 @@ def __init__(self, name, parameters=None, dumpfile=None, **kwargs): origin : str Affiliation of author, written in instrument file + executable : str + Name of simulation executable (mcrun or mxrun) + executable_path : str Absolute path of mcrun or empty if already in path input_path : str Work directory, will load components from this folder + + ncount : int + Number of rays to simulate + + mpi : int + Number of mpi threads to use in simulation """ super().__init__(name, parameters, dumpfile, **kwargs) @@ -270,7 +279,6 @@ def __init__(self, name, parameters=None, dumpfile=None, **kwargs): # Check required attributes has been set by class that inherits if not (hasattr(self, "particle") or - hasattr(self, "executable") or hasattr(self, "package_name")): raise AttributeError("McCode_instr is a base class, use " + "McStas_instr or McXtrace_instr instead.") @@ -293,6 +301,12 @@ def __init__(self, name, parameters=None, dumpfile=None, **kwargs): else: self.origin = "ESS DMSC" + self._run_settings = {} # Settings for running simulation + + # Sets max_line_length and adds paths to run_settings + self._read_calibration() + + # Settings that can't be changed later if "input_path" in kwargs: self.input_path = str(kwargs["input_path"]) if not os.path.isdir(self.input_path): @@ -300,44 +314,50 @@ def __init__(self, name, parameters=None, dumpfile=None, **kwargs): + "folder:\"" + self.input_path + '"') else: self.input_path = "." + self._run_settings["run_path"] = self.input_path - self._read_calibration() + if "package_path" in kwargs: + if not os.path.isdir(str(kwargs["package_path"])): + raise RuntimeError("The package_path provided to mccode_instr " + + " does not point to a + directory: \"" + + str(kwargs["package_path"]) + "\"") + self._run_settings["package_path"] = kwargs["package_path"] + + # Settings for run that can be adjusted by user + provided_run_settings = {"executable": executable} if "executable_path" in kwargs: - self.executable_path = str(kwargs["executable_path"]) - if not os.path.isdir(self.executable_path): - raise RuntimeError("Given executable_path does not point to " - + "a folder:\"" + self.executable_path - + '"') + provided_run_settings["executable_path"] = str(kwargs["executable_path"]) - if "package_path" in kwargs: - self.package_path = str(kwargs["package_path"]) - if not os.path.isdir(self.package_path): - raise RuntimeError("Given package_path does not point to " - + "a folder:\"" + self.package_path + '"') - - elif self.package_path == "": - raise NameError("At this stage of development " - + "McStasScript need the absolute path " - + "for the " + self.package_name - + " installation as keyword named " - + "package_path or in configuration.yaml") + if "force_compile" in kwargs: + provided_run_settings["force_compile"] = kwargs["force_compile"] + else: + provided_run_settings["force_compile"] = True + + if "ncount" in kwargs: + provided_run_settings["ncount"] = kwargs["ncount"] + + if "mpi" in kwargs: + provided_run_settings["mpi"] = kwargs["mpi"] + + # Set run_settings, perform input sanitation + self.settings(**provided_run_settings) # Read info on active McStas components - self.component_reader = ComponentReader(self.package_path, - input_path=self.input_path) + package_path = self._run_settings["package_path"] + run_path = self._run_settings["run_path"] + self.component_reader = ComponentReader(package_path, + input_path=run_path) self.component_class_lib = {} self.widget_interface = None - # Ensure output_path field exist + # Ensure output_path field exist (not ensured by BaseCalculator) if not hasattr(self, "output_path"): - self.output_path = None + self.output_path = self.name + "_data" # Avoid initializing if loading from dump - if not hasattr(self, "current_run_settings"): - self.current_run_settings = None - + if not hasattr(self, "declare_list"): self.declare_list = [] self.initialize_section = ("// Start of initialize for generated " + name + "\n") @@ -1589,55 +1609,122 @@ def settings(self, **kwargs): Path to mcrun command, "" if already in path """ - # Make sure executable path is in kwargs - if "executable_path" not in kwargs: - kwargs["executable_path"] = self.executable_path - else: + if "run_path" in kwargs: + raise RuntimeError("Can not change run_path for instrument as the " + + "available components could change along " + + "with their inputs. Create new instrument " + + "object with the desired input_path") + + if "package_path" in kwargs: + raise RuntimeError("Can not change package_path for instrument as " + + "the available components could change " + + "along with their inputs. Update " + + "configuration and create a new instrument " + + "object which will then have the new " + + "package_path.") + + if "executable_path" in kwargs: if not os.path.isdir(str(kwargs["executable_path"])): raise RuntimeError("The executable_path provided in " + "settings does not point to a" + "directory: \"" + str(kwargs["executable_path"]) + "\"") - if "executable" not in kwargs: - kwargs["executable"] = str(self.executable) - else: + if "executable" in kwargs: # check provided executable can be converted to string str(kwargs["executable"]) - if "run_path" not in kwargs: - # path where mcrun is executed, will load components there - # if not set, use input_folder given - kwargs["run_path"] = self.input_path - else: - if not os.path.isdir(str(kwargs["run_path"])): - raise RuntimeError("The run_path provided to " - + "settings does not point to a" - + "directory: \"" - + str(kwargs["run_path"]) + "\"") + if "force_compile" in kwargs: + if not isinstance(kwargs["force_compile"], bool): + raise TypeError("force_compile must be a bool.") - if "output_path" not in kwargs: - kwargs["output_path"] = self.output_path + if "increment_folder_name" in kwargs: + if not isinstance(kwargs["increment_folder_name"], bool): + raise TypeError("increment_folder_name must be a bool.") - if "force_compile" not in kwargs: - kwargs["force_compile"] = True + if "ncount" in kwargs: + if not isinstance(kwargs["ncount"], (float, int)): + raise TypeError("ncount must be a number.") - self.current_run_settings = kwargs + if "mpi" in kwargs: + if not isinstance(kwargs["mpi"], (type(None), int)): + raise TypeError("mpi must be an integer or None.") - def backengine(self): + if "output_path" in kwargs: + self.output_path = kwargs["output_path"] + + self._run_settings.update(kwargs) + + def settings_string(self): + """ + Returns a string describing settings stored in this instrument object """ - Runs McStas instrument described by this class, saves data in - data attribute - This method will write the instrument to disk and then run it - using the mcrun command of the system. Settings are set using - settings method. + variable_space = 20 + description = "Instrument settings:\n" + + if "ncount" in self._run_settings: + value = self._run_settings["ncount"] + description += " ncount:".ljust(variable_space) + description += "{:.2e}".format(value) + "\n" + + if "mpi" in self._run_settings: + value = self._run_settings["mpi"] + description += " mpi:".ljust(variable_space) + description += str(int(value)) + "\n" + + description += " output_path:".ljust(variable_space) + description += str(self.output_path) + "\n" + + if "increment_folder_name" in self._run_settings: + value = self._run_settings["increment_folder_name"] + description += " increment_folder_name:".ljust(variable_space) + description += str(value) + "\n" + + if "run_path" in self._run_settings: + value = self._run_settings["run_path"] + description += " run_path:".ljust(variable_space) + description += str(value) + "\n" + + if "package_path" in self._run_settings: + value = self._run_settings["package_path"] + description += " package_path:".ljust(variable_space) + description += str(value) + "\n" + + if "executable_path" in self._run_settings: + value = self._run_settings["executable_path"] + description += " executable_path:".ljust(variable_space) + description += str(value) + "\n" + + if "executable" in self._run_settings: + value = self._run_settings["executable"] + description += " executable:".ljust(variable_space) + description += str(value) + "\n" + + if "force_compile" in self._run_settings: + value = self._run_settings["force_compile"] + description += " force_compile:".ljust(variable_space) + description += str(value) + "\n" + + return description.strip() + + def show_settings(self): """ + Prints settings stored in this instrument object + """ + print(self.settings_string()) - if self.current_run_settings is None: - raise RuntimeError("Need to prepare run first!") + def backengine(self): + """ + Runs McStas instrument described by this class, saves data in data + attribute + + This method will write the instrument to disk and then run it using + the mcrun command of the system. Settings are set using settings + method. + """ - if self.current_run_settings["force_compile"]: + if self._run_settings["force_compile"]: self.write_full_instrument() parameters = {} @@ -1648,14 +1735,15 @@ def backengine(self): parameters[parameter.name] = parameter.value - options = self.current_run_settings + options = self._run_settings options["parameters"] = parameters + options["output_path"] = self.output_path # Set up the simulation simulation = ManagedMcrun(self.name + ".instr", **options) # Run the simulation and return data - simulation.run_simulation(**self.current_run_settings) + simulation.run_simulation(**self._run_settings) # Load data and store in __data data = simulation.load_results() @@ -1727,7 +1815,8 @@ def show_instrument(self, *args, **kwargs): + "=" + str(val)) # parameter value - bin_path = os.path.join(self.package_path, "bin", "") + package_path = self._run_settings["package_path"] + bin_path = os.path.join(package_path, "bin", "") executable = "mcdisplay-webgl" if "format" in kwargs: if kwargs["format"] == "webgl": @@ -1843,7 +1932,7 @@ class McStas_instr(McCode_instr): package_path : str Path to mccode package containing component folders - current_run_settings : dict + run_settings : dict Dict of options set with settings data : list @@ -1997,10 +2086,10 @@ def __init__(self, name, **kwargs): Work directory, will load components from this folder """ self.particle = "neutron" - self.executable = "mcrun" self.package_name = "McStas" + executable = "mcrun" - super().__init__(name, **kwargs) + super().__init__(name, executable=executable, **kwargs) def _read_calibration(self): this_dir = os.path.dirname(os.path.abspath(__file__)) @@ -2012,13 +2101,13 @@ def _read_calibration(self): config = yaml.safe_load(ymlfile) if type(config) is dict: - self.executable_path = config["paths"]["mcrun_path"] - self.package_path = config["paths"]["mcstas_path"] + self._run_settings["executable_path"] = config["paths"]["mcrun_path"] + self._run_settings["package_path"] = config["paths"]["mcstas_path"] self.line_limit = config["other"]["characters_per_line"] else: # This happens in unit tests that mocks open - self.executable_path = "" - self.package_path = "" + self._run_settings["executable_path"] = "" + self._run_settings["package_path"] = "" self.line_limit = 180 @@ -2081,7 +2170,7 @@ class McXtrace_instr(McCode_instr): package_path : str Path to mccode package containing component folders - current_run_settings : dict + run_settings : dict Dict of options set with settings data : list @@ -2235,10 +2324,10 @@ def __init__(self, name, **kwargs): Work directory, will load components from this folder """ self.particle = "x-ray" - self.executable = "mxrun" self.package_name = "McXtrace" + executable = "mxrun" - super().__init__(name, **kwargs) + super().__init__(name, executable=executable, **kwargs) def _read_calibration(self): this_dir = os.path.dirname(os.path.abspath(__file__)) @@ -2250,11 +2339,11 @@ def _read_calibration(self): config = yaml.safe_load(ymlfile) if type(config) is dict: - self.executable_path = config["paths"]["mxrun_path"] - self.package_path = config["paths"]["mcxtrace_path"] + self._run_settings["executable_path"] = config["paths"]["mxrun_path"] + self._run_settings["package_path"] = config["paths"]["mcxtrace_path"] self.line_limit = config["other"]["characters_per_line"] else: # This happens in unit tests that mocks open - self.executable_path = "" - self.package_path = "" + self._run_settings["executable_path"] = "" + self._run_settings["package_path"] = "" self.line_limit = 180 diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index 28410aa2..9f830ad1 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -303,9 +303,9 @@ def test_complex_initialize(self): self.assertEqual(my_instrument.author, "Mads") self.assertEqual(my_instrument.origin, "DMSC") - self.assertEqual(my_instrument.executable_path, + self.assertEqual(my_instrument._run_settings["executable_path"], "./dummy_mcstas/contrib") - self.assertEqual(my_instrument.package_path, + self.assertEqual(my_instrument._run_settings["package_path"], "./dummy_mcstas/misc") def test_load_config_file(self): @@ -344,8 +344,8 @@ def test_load_config_file(self): # Check the value matches what is loaded by initialization my_instrument = setup_instr_no_path() - self.assertEqual(my_instrument.executable_path, correct_mcrun_path) - self.assertEqual(my_instrument.package_path, correct_mcstas_path) + self.assertEqual(my_instrument._run_settings["executable_path"], correct_mcrun_path) + self.assertEqual(my_instrument._run_settings["package_path"], correct_mcstas_path) self.assertEqual(my_instrument.line_limit, correct_n_of_characters) def test_load_config_file_x_ray(self): @@ -384,8 +384,8 @@ def test_load_config_file_x_ray(self): # Check the value matches what is loaded by initialization my_instrument = setup_x_ray_instr_no_path() - self.assertEqual(my_instrument.executable_path, correct_mxrun_path) - self.assertEqual(my_instrument.package_path, correct_mcxtrace_path) + self.assertEqual(my_instrument._run_settings["executable_path"], correct_mxrun_path) + self.assertEqual(my_instrument._run_settings["package_path"], correct_mcxtrace_path) self.assertEqual(my_instrument.line_limit, correct_n_of_characters) def test_simple_add_parameter(self): diff --git a/tutorial/McStasScript_tutorial_1_the_basics.ipynb b/tutorial/McStasScript_tutorial_1_the_basics.ipynb index 4a99ca95..b6716104 100644 --- a/tutorial/McStasScript_tutorial_1_the_basics.ipynb +++ b/tutorial/McStasScript_tutorial_1_the_basics.ipynb @@ -53,7 +53,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -74,7 +74,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -95,7 +95,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -112,75 +112,27 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Here are the available component categories:\n", - " sources\n", - " optics\n", - " samples\n", - " monitors\n", - " misc\n", - " contrib\n", - " union\n", - " obsolete\n", - "Call show_components(category_name) to display\n" - ] - } - ], + "outputs": [], "source": [ "instrument.show_components()" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Here are all components in the sources category.\n", - " Adapt_check Moderator Source_Optimizer Source_gen\n", - " ESS_butterfly Monitor_Optimizer Source_adapt Source_simple\n", - " ESS_moderator Source_Maxwell_3 Source_div \n" - ] - } - ], + "outputs": [], "source": [ "instrument.show_components(\"sources\")" ] }, { "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " ___ Help Source_div ________________________________________________________________\n", - "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", - "\u001b[4m\u001b[1mxwidth\u001b[0m\u001b[0m [m] // Width of source\n", - "\u001b[4m\u001b[1myheight\u001b[0m\u001b[0m [m] // Height of source\n", - "\u001b[4m\u001b[1mfocus_aw\u001b[0m\u001b[0m [deg] // FWHM (Gaussian) or maximal (uniform) horz. width divergence\n", - "\u001b[4m\u001b[1mfocus_ah\u001b[0m\u001b[0m [deg] // FWHM (Gaussian) or maximal (uniform) vert. height divergence\n", - "\u001b[1mE0\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [meV] // Mean energy of neutrons.\n", - "\u001b[1mdE\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [meV] // Energy half spread of neutrons.\n", - "\u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [Ang] // Mean wavelength of neutrons (only relevant for E0=0)\n", - "\u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [Ang] // Wavelength half spread of neutrons.\n", - "\u001b[1mgauss\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [0|1] // Criterion\n", - "\u001b[1mflux\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1/(s cm 2 st energy_unit)] // flux per energy unit, Angs or meV\n", - "-------------------------------------------------------------------------------------\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "instrument.component_help(\"Source_div\")" ] @@ -201,17 +153,9 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "source Source_div AT (0, 0, 0) ABSOLUTE\n" - ] - } - ], + "outputs": [], "source": [ "src = instrument.add_component(\"source\", \"Source_div\")\n", "instrument.print_components()" @@ -227,23 +171,9 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "COMPONENT source = Source_div\n", - " \u001b[1mxwidth\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", - " \u001b[1myheight\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", - " \u001b[1mfocus_aw\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", - " \u001b[1mfocus_ah\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", - "AT [0, 0, 0] ABSOLUTE\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "print(src)" ] @@ -258,23 +188,9 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "COMPONENT source = Source_div\n", - " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m]\n", - " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", - " \u001b[1mfocus_aw\u001b[0m = \u001b[1m\u001b[92m1.2\u001b[0m\u001b[0m [deg]\n", - " \u001b[1mfocus_ah\u001b[0m = \u001b[1m\u001b[92m2.3\u001b[0m\u001b[0m [deg]\n", - "AT [0, 0, 0] ABSOLUTE\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "src.xwidth = 0.1\n", "src.yheight = 0.05\n", @@ -294,31 +210,9 @@ }, { "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " ___ Help Source_div ________________________________________________________________\n", - "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", - "\u001b[4m\u001b[1mxwidth\u001b[0m\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m] // Width of source\n", - "\u001b[4m\u001b[1myheight\u001b[0m\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m] // Height of source\n", - "\u001b[4m\u001b[1mfocus_aw\u001b[0m\u001b[0m = \u001b[1m\u001b[92m1.2\u001b[0m\u001b[0m [deg] // FWHM (Gaussian) or maximal (uniform) horz. width \n", - " divergence \n", - "\u001b[4m\u001b[1mfocus_ah\u001b[0m\u001b[0m = \u001b[1m\u001b[92m2.3\u001b[0m\u001b[0m [deg] // FWHM (Gaussian) or maximal (uniform) vert. height \n", - " divergence \n", - "\u001b[1mE0\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [meV] // Mean energy of neutrons.\n", - "\u001b[1mdE\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [meV] // Energy half spread of neutrons.\n", - "\u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [Ang] // Mean wavelength of neutrons (only relevant for E0=0)\n", - "\u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [Ang] // Wavelength half spread of neutrons.\n", - "\u001b[1mgauss\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [0|1] // Criterion\n", - "\u001b[1mflux\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1/(s cm 2 st energy_unit)] // flux per energy unit, Angs or meV\n", - "-------------------------------------------------------------------------------------\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "src.show_parameters()" ] @@ -335,18 +229,9 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " wavelength = 5.0 // Wavelength in [Ang]\n", - "int order = 1 // Monochromator order, integer\n" - ] - } - ], + "outputs": [], "source": [ "wavelength = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", "order = instrument.add_parameter(\"int\", \"order\", value=1, comment=\"Monochromator order, integer\")\n", @@ -362,25 +247,9 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "COMPONENT source = Source_div\n", - " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m]\n", - " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", - " \u001b[1mfocus_aw\u001b[0m = \u001b[1m\u001b[92m1.2\u001b[0m\u001b[0m [deg]\n", - " \u001b[1mfocus_ah\u001b[0m = \u001b[1m\u001b[92m2.3\u001b[0m\u001b[0m [deg]\n", - " \u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[92mwavelength 5.0 Wavelength in [Ang] \u001b[0m\u001b[0m [Ang]\n", - " \u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[92m0.01*wavelength\u001b[0m\u001b[0m [Ang]\n", - "AT [0, 0, 0] ABSOLUTE\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "src.lambda0 = wavelength\n", "src.dlambda = \"0.01*wavelength\" # When performing math use a string and the parameter name\n", @@ -404,7 +273,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -420,26 +289,9 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "COMPONENT guide = Guide_gravity\n", - " \u001b[1mw1\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", - " \u001b[1mh1\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", - " \u001b[1mw2\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", - " \u001b[1mh2\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", - " \u001b[1ml\u001b[0m = \u001b[1m\u001b[92m8.0\u001b[0m\u001b[0m [m]\n", - " \u001b[1mm\u001b[0m = \u001b[1m\u001b[92m3.5\u001b[0m\u001b[0m [1]\n", - " \u001b[1mG\u001b[0m = \u001b[1m\u001b[92m-9.82\u001b[0m\u001b[0m [m/s2]\n", - "AT [0, 0, 2] RELATIVE source\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "guide.w1 = 0.05\n", "guide.w2 = 0.05\n", @@ -466,7 +318,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -491,7 +343,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -500,7 +352,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -513,23 +365,9 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "COMPONENT mono = Monochromator_flat\n", - " \u001b[1mzwidth\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", - " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.08\u001b[0m\u001b[0m [m]\n", - " \u001b[1mQ\u001b[0m = \u001b[1m\u001b[92m\u001b[0m\u001b[0m [1/angstrom]\n", - "AT [0, 0, 8.5] RELATIVE guide\n", - "ROTATED [0, 'mono_rotation', 0] RELATIVE guide\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "print(mono)" ] @@ -544,7 +382,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -562,7 +400,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -571,7 +409,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -582,22 +420,9 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "COMPONENT sample = PowderN\n", - " \u001b[1mreflections\u001b[0m = \u001b[1m\u001b[92m\"Na2Ca3Al2F14.laz\"\u001b[0m\u001b[0m []\n", - " \u001b[1mradius\u001b[0m = \u001b[1m\u001b[92m0.015\u001b[0m\u001b[0m [m]\n", - " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", - "AT [0, 0, 1.1] RELATIVE beam_dir\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "sample.print_long()" ] @@ -614,7 +439,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -636,7 +461,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -645,7 +470,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -668,25 +493,9 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "source Source_div AT (0, 0, 0) ABSOLUTE \n", - "guide Guide_gravity AT (0, 0, 2) RELATIVE source \n", - "mono Monochromator_flat AT (0, 0, 8.5) RELATIVE guide \n", - " ROTATED (0, mono_rotation, 0) RELATIVE guide\n", - "beam_dir Arm AT (0, 0, 0) RELATIVE mono \n", - " ROTATED (0, mono_rotation, 0) RELATIVE mono\n", - "sample PowderN AT (0, 0, 1.1) RELATIVE beam_dir\n", - "banana Monitor_nD AT (0, 0, 0) RELATIVE sample \n", - "monitor PSD_monitor AT (0, 0, 0.1) RELATIVE sample \n" - ] - } - ], + "outputs": [], "source": [ "instrument.print_components()" ] @@ -708,61 +517,42 @@ "- mpi sets the number of CPU cores used for execution (requires mpi installed)\n", "- output_path sets the name of the output folder\n", "- increment_folder_name if set to True, automatically changes the foldername if it already exists (default).\n", - "- parameters allows setting instrument parameters using a python dictionary\n", "\n", - "The *backengine* method takes no parameters and just performs the simulation" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/tutorial/data_folder/mcstas_basics_0\"\n", - "INFO: Regenerating c-file: python_tutorial.c\n", - "CFLAGS=\n", - "INFO: Recompiling: ./python_tutorial.out\n", - "mccode-r.c:2837:3: warning: expression result unused [-Wunused-value]\n", - " *t0;\n", - " ^~~\n", - "1 warning generated.\n", - "INFO: ===\n", - "Warning: 64159 events were removed in Component[7] monitor=PSD_monitor()\n", - " (negative time, miss next components, rounding errors, Nan, Inf).\n", - "INFO: Placing instr file copy python_tutorial.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/tutorial/data_folder/mcstas_basics_0\n", - "\n", - " monochromator rotation = 22.4519 deg\n", - "Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Na2Ca3Al2F14.laz' (Table_Read_Offset)\n", - "Table from file 'Na2Ca3Al2F14.laz' (block 1) is 841 x 18 (x=1:20), constant step. interpolation: linear\n", - " '# TITLE *-Na2Ca3Al2F14-[I213] Courbion, G.;Ferey, G.[1988] Standard NAC cal ...'\n", - "PowderN: sample: Reading 841 rows from Na2Ca3Al2F14.laz\n", - "PowderN: sample: Read 841 reflections from file 'Na2Ca3Al2F14.laz'\n", - "PowderN: sample: Vc=1079.1 [Angs] sigma_abs=11.7856 [barn] sigma_inc=13.6704 [barn] reflections=Na2Ca3Al2F14.laz\n", - "Detector: banana_I=1.35163e-06 banana_ERR=2.28321e-08 banana_N=10521 \"banana.dat\"\n", - "Detector: monitor_I=4.0821e-05 monitor_ERR=2.69721e-07 monitor_N=50009 \"psd.dat\"\n", - "PowderN: sample: Info: you may highly improve the computation efficiency by using\n", - " SPLIT 47 COMPONENT sample=PowderN(...)\n", - " in the instrument description python_tutorial.instr.\n", - "loading system configuration\n", - "\n" - ] - } - ], + "The *backengine* method takes no parameters and just performs the simulation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "instrument.set_parameters(wavelength=2.8) # Set parameters\n", - "\n", + "instrument.show_parameters()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ "instrument.settings(ncount=5E6, output_path=\"data_folder/mcstas_basics\") # Settings\n", - "\n", + "instrument.show_settings()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ "instrument.backengine() # Perform simulation" ] }, { "cell_type": "code", - "execution_count": 28, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -779,30 +569,9 @@ }, { "cell_type": "code", - "execution_count": 29, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Plotting data with name banana\n", - "Plotting data with name monitor\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAHuCAYAAAALJ/jFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9ebgcVbn9v94+OQkJQ0jAQCBgMEFEAlchCIhI9IZRgYBcJlEmZVR/MnkVFFEhciWAIrPIcEEmEQJ4mczXG8aIJMCFQFASEiRMARLCkOQM3e/vj+quvapOV58ezpizPs9znrOqau9du6urh917r/c1d4cQQgghhBBCCNEIud7ugBBCCCGEEEKI/o8Gl0IIIYQQQgghGkaDSyGEEEIIIYQQDaPBpRBCCCGEEEKIhtHgUgghhBBCCCFEw2hwKYQQQgghhBCiYTS4FKs9ZnadmV3XDe0eaWaLGqg/ycy8+DetQrmxxTJj6z1XmTbPo3NP6qp2u4Luer6EEEJ0D2Z2tpnN7O1+CCF6Hw0uRbdjZjPN7Oxe7ML/V/wDAJjZIjM7sve604HRAH7Ww+c8p3jevkhff76EEKIixc+90g94H5rZ381sDzq+kZndYGZvmNkqM3vZzG40s8HF40dS/XYze9vMZpjZEWZmvffIMpkG4IDSRh/43BdC9BIaXIrVHndf7u7Le7sfWbj7m+7+QQ+f80N3f7Mnz1kt3fF8mdmQrmxPCCGq4AJEP+JtC+ApAHeZ2fjisT8B2BDAFABbAjgWwIcAmqj+4mL9TQFMBnA/gN8AuKkH+l4Txc+UpV3Zpt63heifaHApehUzG2ZmvzOzZWb2gZndZmbr0/HrzOx6M5taLPOamX0v1caXzexFM1tpZvea2Wm8XJWXWRaX7XwcwLXFX4Rnlvanf2VNz5gVl7HOK57nzwDWRwoz+17xF+gVZvakmX2xjmuyiZn9v+Kv2c8A2K5MmclmNrvYl3+a2Qm1XJMq+1Fajru/mT1dfEy3m9kaZnaymb1lZq+b2TdT9XY3s2fNrMXMXjKzQ8u0uW+x/x+Z2V/NbAyVqeb5aiou7X2r+BjvN7NPUBtnF5/TH5jZGwBm1vLYhRCiC/iw+OPhPwF8B0AewGQzGwFgRwCnuvsT7r7Q3We4+/HuvpLq54v1X3f3/3P3aQC+CuAQM9sr66TF98ojzezh4vvj/5rZ+mZ2mJm9UpwF/WGqzkQze7z4ufMvMzu5TJvfLL5flz7fJtDxeFls8f17VwA/LdZbROVOKba/qni+benYkcXP3W8W6yys6WoLIfoEGlyK3uYCAF8EsA+iD6NNAVyXKrN/8f8OAH4B4NdmthUAmNm6AO4EcB+AzyD6NfhHFc53AKJfg7+P6BfhAyqUjTGz4cXzzADwWQB/BnBmqszRAL4L4AQAEwD8N4B7zWyTas5B/DeAZkSP9wcAzkudZwtEj/NSAFsBOAXAz8zsa8Xj66K2a9IZZwI4CcC/I3qu/gzgk0X9GwBXWvEHATPbFMDdAO4AsHXx+H+b2fapNs8GcFrxMa6D6D4oR9bzdRqAI4t/2wNoBTDdzPg9bSKAfyv2+6gaH7MQQnQZ7t4OoA3AYEQzlCsATDGzpooVO7bzKIBnAOzbSdEzAZyL6D12NIA/Inr/3AvAyQCmlgaHZrYWgHsBPIfo8+2HAM4xswNTbf4UwEWIPlfeBvD7jHP/fwBmIczcbl88z8GILCD/WTzP84g+I9ekuhsA+DqA/QDs1sljFEL0Rdxdf/rr1j9Es0Znl9m/NqJBwe6071MAHMAni9vXAXg2Ve+fAI4v6hMBvAzA6Ph/A1hE29cBuI62FwE4srM+cjlEA8ZXADTR8ZtS53kZwJ6pNh4E8MOM6zIpegkm9m1ZfPzjad+xxX1ji9vXADgvVe8MAPdXe01ovwOYlNG/scXjU2jf5QCWAGgubucQfVHaq7j9SwCPp9q5BcBNqTYPoOOHAXizxufrDQDH0vZIRF/Wdi9unw1gOYBhvX3/609/+ht4f/yZgujHwh8CKAD4bHHf4cX3zvcBPIDoB7P1qP6R5d6zi8duBnBfhXM7gO/T9n8CaAcwkvbNA3BCUR8H4F+pz7fz+L282OYptP354r6hxe2zAcws9/hp3ywAU2l7EIBXS+/lxcfsAMb09vOnP/3pr/6/PjdzaWbTzGxhcSnFhM5rVN3ujmb2RHF53/NmdnxXtS3q5hOIPnT/Vtrh7i8CeA/RILPEc6l6bwAYVdSfBPC0uzsdn93lPQW2ADDH3fO0L+538ZffzQD8yaLgDR+a2YcAvoTocdZynmXuPr/ceYpsDeD7qfOcRefp6mvyPOklAF5y9zYAcPcCgHcBfKx4/FNl+jsLyecTSD6n/Hx2SnEWeUMk75ulAP6ROs8/3H1Fte0KIUQXc0bx/XklolUoJ7n70wDg7jcC2AjAEQDmIlqdMdfMNq6iXUM0CKtE+n37LU96Ipcg+b49O/X5Vs37NqiNakh8Png0mzs7dZ633X1xDW0KIfoYg3q7A2WYjmgp3SNd3O4VAH7s7n82s9EAXjKzO939rS4+j6ieaiPetaW2HWFJdzUfstVQKNOfZtLlzsPlS8t6DgbwYqrc+zX0o7PzAMBaAM4HcH1qf+k6ddU1SbeLYrudPR/1tNkd0Q81sBRC9CZXALgYRe9l+qC7v4/IwnCnmf0cwEuIZhHP6qTdTwF4vJMyPfG+DXS9vUrv20L0c/rczKW7P+rur6b3m9kORVP6nOLfV2ptGsDwol4L0Rf+jxrsrmiMBYiW6uxY2mFmnwKwLjoO0LL4B4DPmiVCs3cIgJOiDcmIfEDkH9mQ+vEx3i6eZ7uUp+9zpJcAeBPAJu4+P/W3pMrHUjrPSDMbl3EeAPg/RMuG0+d5hdqo9Zp0FS+Cns8iO6H657MciefLo0iybyF534xENOvbyHmEEKIrWVp8b+40Mnfxfe0NhB8qy2JmuyDykt/dNV0EEL1vTkz5P7v0fbvIP5B83x6EyBuv920hViP63OCyHMUAJVcAOMzdt0MULe3K4v5qOQqRgf1fAJ4GcKK7f9jVfRWZbGhmn+E/RAPLawD81sy+UIwadx0iL8k/q2z3JkRRW883s08Wg+p8BZVn7l4B8AUz27C4xBIAHgZwoJl9ycy2BnA1gJbUeUYAuMjMtjCzYxEFRgBQNE4CUwGcW4x4N64Yfe8MM9u1yscCd3+h2Jffm9m/mdlkRF4c5nwA+5nZz8xsSzPbysyOpqXe9VyTruJyRIPws4vn/g6AryFajVAv5Z6v3wD4uZntVVw+fx0in+mMBs4jhBDdjpltYGYPmNl/mNmnip8pv0BkebiXijYV3/c2MrNtzOw0APcAuMXd7+/CLv0BwDAAlxX7cyii4HS/bqDNVwDsYGYbWxQdF4jet79rZocUf0i+HMAQ9MHUKkKI+ukXg0tExvHNANxnUWqG+1AMegIAZvZOxt+z1MbpAE53900RzeJcUoxsKXqG4xAN6vlvCwCnAngUUQTShxFFBj2i2kbd/T1EEfD2QTSjdyCiD7CWCtV+hujX01cB3FXcdzWiJdl3AvgfRAET4hnH4nn2B7Bn8Tz7Iwpew335LaKgDf+JKFjCPYjutderfTxFvoHo/v47osh8P06dZw6A3RFFQX0K0RLyIxAFvqn3mnQJxdnTKYgGlCUf0VHu/kQDzZZ7vs5HFKToegBPAlgDwH5FD6gQQvRl3gfwLICfIHr/egLRe/rB7v7/qNwYRLOZ/wLwV0Q/aH4fURC0LsOjPMt7I5oR/T8AvwJwlrvf1kCzFwJYD9GPfiWf6c0Afg5gWvE8EwDsrR/6hVi9sGTMj75DMcfRV919bnEJ7H+6e805A4ttrQ/gX+4+jPbdB+Aad/9jl3RY9BnM7ApEy1NrXTrdo5jZJAD/6+7d4TdMn6vsNTEzB/Ald5/Z3X0QQgghhBCrN/1l5vJxAJub2ZdKO8xs+5SnrBLLALRYMaG9mW2IKE/TC13dUdHzFJeE7lBcinoconDmN/Zyt6qmGPH13C5us+I1KS6p1a/FQgghhBCiy+hzM5dmdjGiJX0bAngHwLvuvpVFSdjPR+R7G4xoqcU+1S6DM7PdEeVtair+XezuV3XDQxA9jJmdDeBbiHyGCwH8xt2v6NVOVYGZDQVQCju/zN3f7cK2z0aFa2Jm6yF6LQHAa+6+sqvOLYQAzOyniHL/be3uc3u5O0IIIUSP0OcGl0IIIUR/phic7FwAnwbwFQ0uhRBCDBT6y7JYIYQQos9jZkMAXArgRPRMhGYhhBCiz6DBpRBCCNF1/BzAje6+sLc7IoQQQvQ0g3q7A8z666/vY8eO7e1uCCGE6AfMmTPnHXf/WG/3o4SZ7QRge0QpiSqVOxbAsdFW83aRNbpLekC6mknTdEw8r3CsXJlm0m2pcs0oD4dJyGecL933tUm3k24lvRbp9O/m75NeJ6Mt7ksT6cGptvicQ0gvJz2cNNf/INUW97kV5akQt3AwtZ2ozhZ6Pj8/xvTzs4qqDKV236P969J+fizp683b/HxzJ6mtBO2p7VzGMX5O+assP78AwHHr2jM095HbGoYkH2aUK2RoLpN+XEzWvcdtVXo9Z712qn0/qPV9oyt4o8veu8eb+YquaCjFG8AD7r5nNzS92tOnBpdjx47F7Nmze7sbQggh+gFm9kpv9yHFrgA+BWBhMZj5GAAPmNlR7v5gqVAxmNxVAGC2kUdpgLuCar/MliufrpP19YDLjCK9JFVuFMrDAx8eoFTq+66k3yL9GumdSdPgCAAwg/Rk0ksz9EjSGyMJn3Ms6ftI75VRZmaqLe7zIpQna5AOYGNqOzFPzim++fz8GNOPax4d2obavYP2H0D7Z1Ld9PXmbX6+F5GmthIsTW1zW/zc83PKzxdfewB4LKM+n4f7yG1tW6EtLrcyQ3OZ9ONi+HXAP6RwW5Vez1mvnWrfD2p93+gKzu6y9+4V6Lp3UObsrvvVb8ChZbFCCCFEF+Du57n7Ru4+1t3HAlgMYA8eWAohhBCrM31q5lIIIYQQQgghqiGHjnPnonfR4FIIIYToBoqzl11ApY/qLB9ZNVQqz8smeUnfBxn7P56qn5U6l5cKfpCxP73Edl5GuZEZZTZI1d+H9HzStCzVyKvntMTVNk825bQ9kfbP/hZt8FJWamuz1JLNhbfSBvV59KSg36MiK3npLYAJY4NexH3cks5JfVlEj/Hfk01hDi+F5WW1vBSWK/C156XCQGLp8Qg6/7Ks54vZJrX9BGm+p75OmocW6WXEfIyXIbM3M2u566JUW7yk+imUh/vI16XS8mp+fWctKa7n63p3LZHlpbtpH7EQWhYrhBBCCCGEEKIL0MylEEIIIYQQot+hZbF9D81cCiGEEEIIIYRoGA0uhRBCCCGEEEI0jJbFCiGEEH2anso9x18JOOBI1vl5MVo6bd2ojHJjSVebE3AkysN95GAr6WAxWbkSSfsi2r9lxv5U27OpX7YD1aHAO1tTEJ/nUk0lcj3SY36Pdm9F+t1UQCBOC+58gILNLKR+HZVRFwCWkR5BQXUm0f4736eNsUGOTwXhmb+ofLvg4EiUPzNxHV5KtjWC+r+MAxo9hurga8Ztc0AeDvTD50gvtuT7je/drPyhHDSI77s0WcGsBmWUSVMph2aJSu8htb6/9K0gPloW2/fQzKUQQgghhBBCiIbR4FIIIYQQQgghRMNoWawQQgghhBCi36FlsX0PDS6FEEKIAUn6K0CW9yorsXqlJO9ZnjT2oW2bUaaSB4zbPYg0++E2SNVhv9vYjHNyX9iPl26LPHy70O7ZGWWeI5+fsecQgJN/c2vyLbI3k9tNf4PekPRo0muST3F+W9DX8jVKewDp8S+jft1J/TJ67tjjOT/VFOic/HxzH9/g6z2T9KRkU8uQAfliR4yl8u+nyl1O+oSMtrLujzTse0yfpwTfL+z93TZV7qGM+p8izfd62tOcRdbX+kqvqazXtxD1ocGlEEIIIYQQQogEZjYawBWIfoVZB8BR7r6yUh15LoUQQgghhBD9jtKy2K7+qwYzm25m/2dmT5vZI2b2mVrLmdlXi/ufMbNnzeyAcm1Ui5lNM7OFZuZmNiF17JNmNsvM/ln8v3lWO8TWAB5y92MRhTPerLMKmrkUQgghhBBCiNo4wt2XA4CZ7QfgGnRcA51ZzswMwA0AdnH3uWa2DYDHzGy6uxdKlc1sCIAN3f0V2rcWgHXc/fXUuaYD+A2AR8r04woAl7r7jWZ2OIArAXy52N644jbzAIDfAfi+me0IIA/gxc4uigaXQgghRL+lEb9UtT6sas5X7deJeRma5wp2TdXhFVhjST+Wsb/Siq1FpL9Oupl0hbyB7O97hNvi/IbU1giaGFj2bKox8jMmfIvkARxPHr6xSMKnf4/0G5zPkSptRnphqrERGf1ag9vN6GMHXyq1vTVdi+fIi2lUxkmPTzW1gPQXyMv6yBNBJ3yW7OkFEj5Lnm9JPH5+7vnasUcVSD5JY1Eevvey8qsC2a8XPifXr/Z1Xs9rUj7LeikNGIsMB1Coo1yhuA8A1gXwBg8si0wAcLOZ7ePu/zCz4YiSsl4D4OrUuR4FgGjcGjCzUYgGvrsVd90M4BIz+5i7v+3uC5BMGFyqdwqAq9x9upmdDmBPAPeWe5wlNLgUQgghhBBC9DsMyZ8HupD1zYxDal3l7ld1OL/Z1QB2L3Zlz6zGypVzdzezgwDcZWYfAVgbwFfSdd19jpl9G8C9ZnYkgAsA3OjuV6fLVmATAK+5e77YZt7MXi/uf7tCvXsBTDWz3QBsBOD6zk6kwaUQXcDBV84CANx63E693BMhhBBCCNEg77j7xM4Kufu3AMDMvgHgfAB7V1vOzAYB+BGA/dz9MTPbGcCtZvZpd/8wVf+h4szhwwDOd/eLG3hsVePuLwKoyQeqgD5CCCGEEEIIUSfufgOAL5nZejWU+wyAjdz9seKxxwB8hESunQgz2wDA2QCmAjjQzD5XYxdfBbCxmTUV22tCNBP5ao3tdIoGl0IIIYQQQghRJWa2lpltQtv7IDJsL62h3GIAY8xsi+KxLRFlsF2QamM0gBkA/svdzwRwIIBbzOzz1fbX3ZcAeAbAocVdhwJ42t0rLYmtCy2LFUIIIfottQbjqBQYJOvYxzPaSgc8qQaO2MIBUjh4CQfqSdd5inS5oIzlGJtRJ6v/OwdpqQAxq3jjfZTlUjrfSRTEZ+I2yXKzFwW9kgICTaYAOXxZ1k+dZ23Sh5J+hoIIzaD93Pf0Yj9OSHAz6Q7hPUptUR/HpI6tJAccP8Wb0f6Fi4IeOjboj1JtcUAhdr8N3YHOR/sTgYkALJtJ5xxJB/j7P19k6leHwFBHZpRjzYF7+BxLUm3xay0rCFBWf9NwW1wnfc5q6ve/4D6G6lOHdDFrAvijma2JKIrqUgD7FH2U9wI4y91nVyoH4E0zOwHA7WZWCuJzlLunn/ChAH7i7tMBwN2fMrMpiAaiCczsYkTLWDcEMMPM3nX3rYqHjwdwvZmdBWAZgG92yZVIocGlEEIIIYQQQlSJu78FYMeMY3tXU654/A8A/tDJuV4G8HJq37MA0iGo4e7fA/C9jHZeBLBDuWNdiZbFCiGEEEIIIYRoGM1cCiGEEEIIIfodOfTasliRgQaXQgghxGpNPQnYGfYdPpfRbpq0X60EW4lGZuj0V0Xy9yXaZf/kTNJjU/UXkWaf5T5BGvkBnVaaOZ8bwHjafo48lGwLncsVqEwiRAcAkM9yBJ2fvZTTSXuqOp/zq6RnkmbP5BakH0i1xXX4ej0/NuitqAh7Ocel2nquLeih7LN8KegRZPJkL2h68eCd5GEcQdd+GReiMu+lni++r8bTczF/JpXhe3IS6UWptu4jPY8034eccZE9j+nAnlx/LGm6dniRdLVf1yt5M6uhf/svRd9Ay2KFEEIIIYQQQjSMZi6FEEIIIYQQ/Q4ti+17aOZSCCGEEEIIIUTDaOZSCCGEWO2oxzvFdXgugH2Wa2eUSc8dZHkux5J+KqPMXqltzh3I/rY7SJ9Amn1rAEZQ5P1l5KdM+Cy5AnlMN0t5+OaiPOyn5FyNm5FO+wnn0vmH0H72GR5F57829bjY3/co7eZ8kJwnMuspAZL+zUljg/4b7X+PNNlV8edUW5OpX4tof558luzTnEGPtz11vYfS9rq0nz2Xh1KZW1J94USb87lt8rsmfJJchn2RQPb9/hbKcxjpdE5V9hhn+SyzGJXazvIxZ/kv0+8HjXgr08MI+TSFBpdCCCGEEEKIfoiWxfY9tCxWCCGEEEIIIUTDaHAphBBCCCGEEKJhtCxWCCGEEEII0e/Qsti+hwaXQgghxGoNf9RzwI8l6YJEVvSXD0jzV7p0eQ6M8j5pDuLDwT+4/BOptpZmlNuSNAf34WAtAJZx/UVBOgV7wQGk6Rq9merKBNIc52hD0qeRPpX0eqm2FpNeRfon9Bjvo/0jOPAMkg9/Juk9ST9DmuMkcbtAMiDRG6T58d5Dz+NQCno0JdXWnaR3IT2J9DTS4+nx3pNqi4PlLKRyI6jIzek6zD4Z+/k+4oA8fGH4tZJmLOm/k/44ab7v0sGBsoLwcLAefn3yk50VQCjdbhaVvvrXGpBHAXxER7QsVgghhBBCCCFEw2jmUgghhBBCCNHvMCSTyYjeRzOXQgghhBBCCCEaRjOXQgghRL+FP8bbMzTDPq50MvasY1n7V2ZoIOnH3Jn0DNLse1tEOu11Yz8knyftYyt3biDpV+O+kG8wcX4+XaqtITRHcijtf4k02/Ymk34s1fbx5U+JWaTZCzkuVY4v5ZGkx5Neg/R1pNkvCgCjSU8kzf7Nz9D1Yr/otW3Jtk6ja/QM7b8k4xyPkuZrCgAv0T2yCe2/k865C53vkVT9rDktI+38HG9LelGqEm/zvfO58ufAa6S3TB1Lt12u3bGk+V7P8kMDPe+BTA8j5MEUGlwKIYQQQggh+iEGYGh3jGY0Tq4bLYsVQgghhBBCCNEwGlwKIYQQQgghhGgYLYsVQggh+i2NrN1K57kclHGM92fl50vzCunXMksF2Ee2beoY5/XjJIpnkO6QIJGgfo4nT9v8mUFvPSnoIVQ13fXZ5PXbi/x8N7PvkPafTLu3TrV1C2nOjcm5NdkzmYZ9i9zWr0l/SDrL4wkAC0lzmtGLSOdJ/5L0F1K+xutIs2ezhfRJpDmvZprtSV+ecY3n0u7NUvX5cbHPcd2xQS9jkyx7IzknK5D06/LrgNpKvCa4ftpwy+fhPLBcP8vTXOl1l5Xnsp73iSw/d6Ptdi25HDB0SOflaqb3H1q/RTOXQtTJwVfOwsFXzuq8oBBCCCGEEAMADS6FEEIIIYQQQjSMlsUKIYQQQggh+h05A4ZWWj5eLx91Q5sDBM1cCiGEEEIIIYRoGM1cCiGEEKICnGR+Y9LzSe+TqsPBTDgxPLfFgUw2IJ2OosN1diXNgWQOIH1dsvrobYKe/yztnxQ0B4VxCiA0mfuVOuc5tPsE2j+d9nOcoR+lmqLTg2PKrE36ENLrp+pvSPpm0meT5sA7D5F+NNUWB0Q5lDQ/3ZeS5qfoklRbO5JeRXoH0keRnkH6/0u19S7pzegar0X7n6OLN2mvZP0JpO+h+2gZ3XuTD6a+cPCoVFvggEJ8T3IdfiKZnVPb80hXE7hnPOkXU23xDcNRaBr9is9t8Tk+aLBdsbqjwaUQQgghhBCi/5FD8scR0etocCmEEEJ0EWY2HVFChAKiRBDfdfdnerNPQgghRE+hwaUQQgjRdRzh7ssBwMz2A3ANOiZuFEIIIVZLNLgUQgghuojSwLLIcEQzmL1MNcnQ04wizYnZ2WeZlTAeSHoo30d52CfJHrT5qXLsbyNP2mja/QZ5KUccmaz+xqLybb1Bu40rUN/npLqyjPRPSLNnkyNXzqfH/mf2niLp2Tye9Nak2Wp3f6ov7FU8kvR3g5yw75Ohi3/Yvny7aaZ40N+nC3NLC/WF1iFOSdV/j/Q7pCeSnkz6GdJ0CgDA10j/gTR7ObmxV1P1Z5NPchd6Xh+h/TPo3gH5c8H7gaQfchFpfl75nub79reptvj3Jm6L66S9lSU+XqFfrLP8l5XeA7LK9WGfpUGjmT6Gng4hhBCiCzGzqwHsjuhrz5693B0hhBCix+jWVCRmtsjMXjSzZ4p/e3Tn+YRYHTj4ylk4+MpZvd0NIUSduPu33H1TAGcAOD993MyONbPZZjYbWNHzHRRCCCG6iZ6YuTzQ3ed2XkwIIYRYfXD3G8zsKjNbz93fpf1XAbgKAMw28swGhBBCVMagaLF9DC2LFUIIIboAM1sLwAh3f7W4vQ8iw+LSihW7nSyPVforAJfjLrNBjz1dnOyQ/ZdAMvcft7Vxxn72mrHpMH0eqs+eSW5r2Uup+txn8t2NoN2cD5F5I7X9a9J/I/1cRv3HyI93eOrYNNLnkf4p6dPIhLhj6hv0GNLkQRy1779iPXc38ln+hspPT/WFF28vJp/lFNo/jc4/Cdl8gfSapK8mvQlp9o6m17fxbcF5PseSXsT5TlOMoGNpK28M+yzJI8v5UYHUvbCINN9fnOeSfcdbZp08dYy9x/z65Ndg+u0kKzfmEtKVfJZZ/moh6qMnBpd/MDNDlLL3DHd/jw+a2bEAjgWATTfdtAe6I4QQQnQLawL4o5mtCSCP6JvaPu6u2UkhhBADgu4eXO7i7q+a2RBEv/ddgtRvd7w8aOLEifoAFkII0S9x97cA7Njb/RBCiAFDDskIzaLX6daAPqWlQe7eAuAyADt35/mEEEIIIYQQQvQO3TZzWVwWNMjdlxeXxR6CZDYjIYQQQgghhBB9EDMbDeAKREb6dQAc5e4rK9XpzmWxGwD4k5k1AWgC8AKAE7vxfEIIIYQAkJ0MvVIydT7GkVSyIqFw/cmpYxylhRPGjyU9L2M/nxtIBvR5DWXZZ1LQ6fj0TRlN89ejR0hzoJ9jUm3dTnoK6SdJjyZ9POn1kM2dpP9fkKM2CoGRlsxPxaWYSJoC5yy5hsp9jMpcW+H8N5PejPRaQQ49e1msV95IF+m9VFsUXIhvgzF/CffREIRARQte2Cq7X+eQ5pg2z5Ael109EfSIgy5tRoF+FtL+ERSA6Q0OSgXAKECP70UH+D5uI80dfizVMW6bg/BkBefh12Cl4Dxcv9JrnVlS4VhnVAoK1kP0YrRYM5uO6BVTAPAhgO+6+zNlyn0SwPWI3gXeBfBNd3+ps2N19mkagK8helPdmjN21HmurQE85O4XmtnFxcf7QqUK3Ta4dPeXAXy2u9oXQgghhBBCiF7iCHdfDgBmth+Aa5D8Na3EFQAudfcbzexwAFcC+HIVx1BsewiADd39Fdq3FoB13P311LmmI4oN/Qg6knkuMxtX3GYeAPA7AN83sx0RBap7MetilOhWz6UQQgghhBBCrG6UBpZFhiOawUxgZqMQDThL6wNuBrCtmX2s0rFUMxMA/MXMtii2ORzAgwD2LtOnR0sxb6rtR7HeAnefnPo7H8DRAK5y94MAPIVk4qKyKM+lEEIIIYQQov/Rfcti1zez2bR9VTHDRfL0ZlcD2L3Yk3IDr00AvObueQBw97yZvV7cbxWOvV1qwN3nmNm3AdxrZkcCuADAje5+NaqnUj/erlDvXgBTzWw3ABshWlZbEQ0uhRBCiNWCaj1WWXCdLO9X1v6nUm2tzDjGXrMDSLMn7aFUW/tntEv+uHtQJc8GOXSboI2KTCH9TKr61qT/TPqCjNNNJ53+2sne0HVJXxLkB++vHTYeTdVfRvoo0vR18xs3/S7Wty49ONatk+jaAcB0ygR3P12MCUGuvJ18lmwBpDIAkh7MDYNcfAp5ED9DZXhgwH5XIHKxxR0gzT7LQ0nzcwIAC0jzc3QqFyKf5BjyYo7bAAlmszWNj+2A8nCH90odm0l6LGn2FLNBmF9rSzPOV4lRpBvxWKbpBY9lz/GOu0/srJC7fwsAzOwbAM5HmdnErsDdHzKz0wE8DOB8d7+4O85T5rwvIvlm3SlaFiuEEEIIIYQQdeLuNwD4kpmlQ3e9CmDjYoBTFP9vVNxf6VgCM9sAwNkApgI40Mw+V2MXqz5Xo2hwKYQQQgghhOh/5ACs0Q1/nWBma5nZJrS9D6Jp5cTUsrsvQbQGojTHfiiAp9397UrHUucajSj28n+5+5kADgRwi5l9vvOedt6PatuoFi2LFUIIIYQQQojqWRPAH81sTURRVJcC2Mfd3czuBXCWu5c8m8cDuN7MzkK0oP2b1E6lYyWGAviJu08HAHd/ysymILHwPKKYLuSA4rEZZvauu5fy/VRzrobR4FIIIYQYMFTySGXlueQf4tszyqRzao/MKMdmvTtIs4ftp8mmOG/kG0+UbzdRJtWVfUivtQ3Kcj/prNyIQLL7fLnYD3l/xv7DU229F+Tup9wd6wcv3DfWK+eSCTGVv3PCTSG55tzTt4/1mAtDJ2+4+9uhwjtU+QupvqwKPsstT3w61vOeooxyk8iXOYZ8mZQLEwC2/HyoP5aSSN73MNm2plCF6aTfS/XrQNJ/I83XglOqpm9v7hs/F5yWdQbd3+/QffjG+6nGyKdqpJ3vSb7v2Qi8Zaot8nZiEWm2tt2XUZ/zagLZHkq+QSv5NGv1ajfq7V49cPe3AOyYcWzv1PaLyDDnVjpGZV4G8HJq37NImMjj/d8D8L16z9UVaFmsEEIIIYQQQoiG0cylEEIIIYQQov9h0Gimj6GnQ4gu4LX3VuKjloG7PEQIIYQQQggNLoXoAt5f2YZVbYXe7oYQQgghhBC9hgaXQnQBq9oLcHjnBYUQokvpymAclOQ+EbmmUuCeEpUChuycsZ+DmjyWfY43uF9jST9FZf5O+1MBge5ZRBsbB/kQnX9dKnIj6VSwmkTAmUdIX9IS9JghQd9C+yfSfgA4J8gHX6aoQxyQ6GrS06gtAHMfDkF88FGQix+m68VP42LS6VQLdGzeLRTEZysq8wQF8XmT9n+YbGre+qH+vEOorb9QIQrCM2FbCkz03/SYAOB20nwbcNClW0hPSFbHcxSU57lFQQ/lwE50772xLZ1vbLKtsRTEZ8YTKA+/DjgIzyJkw68vbndJhv54qj6/pkeiPNyv9Ff/rPeNURnn72OrtAzAkE5LiR5EAX2EaJDW9gJa2zVrKYQQQgghBjYaXArRIK+9F/3K7pq4FEIIIYQQAxgtixWiQf61dEVvd0EIIYQQYuCRg5bF9jE0uBSiQf71bmR20cSlEKIx6klOnlWunrayfJYfZLSb5S8DEt5GNtiNODPoZYuozHOk2T8JYP+9gp5O+79A+x9hr1yqK/PZx0Z+zmlHBn3PuVTmu6TfSrZ18uZ0zluDPuLgoP8flXdaIMaXFABOY01+xpPJW7kxfWsek/wGveXPn471vLnkbeSnaBXpK0ivTD2uAzcI+hdtQY8mX+qeVP4LpNdLNoVD7gv6WnpedqFzkEd07v3ks2QvJQBMIv2L64Ief2TQTs/d8XR/AcBs8kk+Rz7L2TOp0AFBHkW7r7082dZ88h1eSr7ek+g+wItBbk1lnku1hcmkbyPNr9VdST9EOu1vzvJKZ1Ht+wH7LNl/yefvY/5L0SfQslghGqQ0c+laFyuEEEIIIQYwmrkUokG0LFYIIYQQohcwdIx+LHoVzVwK0SCvvFuauezljgghhBBCCNGLaOZSiAZwd7xaWhbby30RQvR3GvUvZeW7y8pRxz6qdLkPUB42DvI5Uh6+hA+M8lwmfJbsy+RTpPJU3vkz2qBjj/wM5UnVH01+yDeeDXouF2KvHre7f7Kt6aQfo3YTqTy5/smkOa8ngGVU7kzKXXjtkUE/T+UvSVaftxv5LBNpQsnzuBn5Uk+iMnnyPwJJC+Cl1E/2hV5L3tUJOwQ9Gyn4vqBcpJOoL7+gxz6en9NU/shH6DyHHhn0zRnPEdl7OzD7JdogD+Nmk4K+lts9LNXATUGew/vZb0yey+foXku8tgCAvKCJm2dehmbS5l2GX99rZ9RJ9yXLn83103WEyEaDSyEaoL3g+Kg1j6acIV9wuDvMrPOKQgghhBCiMRQtts+hZbFCNMCqtgIAYI1B0UupoOlLIYQQQggxQNHgUogGaGnPAwDWaG4CAOQ1uhRCCCGEEAMULYsVogFaSjOXzaWZSw0uhRBCCCF6BINGM30MPR1CNMCq9jw2XGcN5Io+S81cCiHqJyuwRrVwnXSi9XLnSAfpyEqUzgFLOHDP0Iwylc7PQXxWkj4+yImpKo/wxqLyzZ5MQWEuSgb62dL3jfU8+79wYOGdQY/mIECk30idZyEFadn5nqCNAgLdT/WnUN2VqWA1m1G5hXRsPgXkmU9BcNLpFjYn/V+kF1OdW2j/NNLpa8zBgjjQEQfIeZGC6xxD+3dJtTWCyo2j/RsGOca/HrrL8X+wAxIcSvrmmUH/hK4dB9e5MxVYah8KXHQUXbBrKYDSL6n8IVz5tWRb59I5z8wIMgW6pzAf2XAEJr4A25Lm1xfda0gFY8oM/MPway391T8riE9WUC8hKqNlsUI0QEt7AZuOHIZSDJ98gzOX7o4331+FtnyhC3onhBBCCCFEz6GZSyEaYFVbHpuMHIa33l8FACg0OHP5xvJVeOXdFVC8WSGEEEKITjAoWmwfQzOXQtRJoeBoyzs+vt4wlEaDjS6LbW2PZizl3RRCCCGEEP0NzVwKUSctxYHgpiOHxTONjS6LbS9EbWpVrBADkXp8lrW2VekcWT7JNtLsA2NPWrou+f5wB+mHUJ6Tg3zkZ9nHcBHpPYNkS1qKeXY3bR1GmpLXv/E+nY4S3F80M9HWlj48tLs9+Sw3oUJvkmY/4KMpP+Gd5K1cQI9lGq1d2Y+uxT7s7QOG3x5OtPLDYbFunUb9P40qjCe9brIr7KE8w8+K9dTtfx4OnEvlTyDNjxdI+iy3J/1ekItHUmd+TGXSvtKT+N4jb+IvaPdRpKen/IjsGd0Z5Tf49ppM13gG+WuBpGc1waIgd6H6j7D/ky8+kPQoP0WavZHULiaTTnss+TX9KdLzM8pUgn2W7L/kfnXl+5RYHdHgUog6aS2OADdad2g8uCw0OChsy0eDU81cCiGEEEJ0Qg4df5QQvYqWxQpRJ6UB4OBBOZQi+jQ8c1kcXCrqrBBCCCGE6G9ocClEnZTGkYNyRjOXjQ0K2wryXAohhBBCiP6JlsUK0SBNueCPaXTGUTOXQoj6qeYjnb1f6Tx8nG+PPVYvkuZcmFyevZgA8AfSlLvvefJibsXeSvZSUs7L9DHOR/kG1f8o5WdkOJ/kKtr/Hml+uBex125Soql5Rvko2au3FukjqF9z6NzXJbs1vOWzsV5/8AuxXrD+VqEQ+SxH3f2vRP0ltiltkX+Tn5ebyQu7T7j27NcEgOUzQxLKqfuSz3JBkJN2vz/WM6eQR5SvHQD8hDT5FAcvDr7W1tnkC2XPZbotNAd5wTZBn0qP9wt0T53Tkqy+8XlBD6Xn4lDKecmpVxO+Ss5ZCWAMnX8ZH7g+yJPYc3lF0JOTflnMYC8pG0P59TmWdCV/M7/us3yWWTls0+WYfpLnUtFi+xyauRSiTrw4uzgoZ12W57I9r5lLIYQQQgjRP9HgUog6KQ3/mrp0WWxp5rKhZoQQQgghhOhxtCxWiDoJnsuuDOijmUshhBBCiKpQtNg+hwaXQtRJPHPZFGYuG/VKtslzKYQAkP3xXG2OOS7HbbGpLe2TRMYxNqVtkC5Ypl0gM4/fVn8PegT50JZRnsmE/xJIeDD5S+REqs+WtLRnc2FG2+zB24zL82NM5To08nY20f5nSPPj2o48mhckfaHLvxJ8jssPDRozqdAj18Vyj0S+UeBp/0ys5w4j3+FErk/exLPp3DvT+YBkns47qQP7TArdOoB8lsF+Ceyaykv6C7r+54Zr2fot8lneSdd1F/Iyrp9sCndS26fS+U+gx8u5PI9Jme/Yo3vPTDpA9/QI8l/iVtK7Jtt6jvpyLrV7NZU5JJ2jtciMjP0Asl+ffJGzvM5A8ubnY1l5a9P1l5Dm3JZZnkvub7XvRxpuDCS0LFaIemHPZXFXo3ku2xUtVgghhBBC9FP0U4IQdcKeS3RZQB/NXAohhBBCVIWixfY5NHMpRJ2Uy3PZ+LLY0sxl48GBhBBCCCGE6Ek0uBSiTrw4d9mUM1gxoE+jy1nbaUC5qj3fUFtCCCGEEEL0JFoWK0SdlMaRTTmL9zU6c9lOOUg+aslj2GC9RIXoL5jZegBuADAOQAuijObHufvbtbdWbaCMaupwAI9XSKffX6pJms5J2ncm/VSqHAf04cTwLwa5jAPUUKCdC1IJ50+lYCgLaf9CCvAymoLlPJAKOrTHS7RBba9Lu88m/UOqPynV1s2hL8PPPS7Wyw+hADm/pvLvUL9+nGwKKynYzl4UoIb6tZN/PNY3PP6lZP3DSXNQm1+QPora/X6Qxzx5aaKp8fS8/sjouZhChWaTnkH6oeTzNXhCCKDUuh49x9ZMpSiIDz2NeAdJDqW2+fpNIz2O+5gKwPTGPNrg5/K5IJdx4BsOqPMQMrmT9MK3ypf5PfX9mEoBfYZm6KzP/1dS29V8T8h47B3qV/Me0JXvTV2AQaOZPoZmLoWok27Jc5kP9Ve2auZSiH6GA/iVu2/h7tsAWADgvF7ukxBCCNFjaHApRJ1wnkvrqoA+FG72o9Zu/KVPCNHluPtSd59Ju/4G4OMZxYUQQog+jZmNNrO7zOwqM7vFzCrlsAKgwaUQDRANJGlVbJfluQSAFRpcCtFvMbMcgBMA3N3bfRFCiNWWUrTYrv7r7LRm65nZvWb2DzN71szuMLOPZZRdw8wuN7OXzOw5M7uKjk03s/8zs6fN7BEz+0w9l4Ham2ZmC83MzWxC6tgnzWyWmf2z+H/zrHaIrQE85O7HIkqKulkn5bVKWYh6cY/e08y6MKBPYnCpZbFC9GN+C+BDAJekD5jZsQCOjbaGI3wU8w9K9SQqz4I9ZY1+7HNfMrxmABI+yxHblC/yZ9Js3zw15U8bQd61ZeyfvCnIVcHbOG735xPVF9y1VdjYjzx5X6d+HUH759D+tAfw5tCXLw2+JdbTjz8klGFv4jmk2VsIAAcHP+SYg4PncTFdu1lTg89y6HeWJaoPfrEl1jsM/nusJ/88GCJ/cNnFocKYIH8/7CRkwlZDfixUH2eSl3I6eymB1uPXoa0ngjyS/KfXcVukb0GSW0m/F+TQX4drsfLGEeX7CwCbHRz0QvZjLiLNHsRdgxx/ZLKt+YtQHvZpHh8k+ywPTfmIb+Z7/BTS5MNNeKX5Nfyp1PnJx5yos4Q0P8b0ewBPRGV5Lteuoky5tkuslj+Wl2wQMwHAzM5HZIM4pkzZXwFYBeCT7u5mxibYI9x9ebGN/QBcA2BbrmxmQwBs6O6v0L61AKzj7q+nzjUdwG8APFKmH1cAuNTdbzSzwwFcCeDLxfbGFbeZBwD8DsD3zWxHAHkkb7iyaOZSiDpxIM5vGVKRNNZmYllsiwaXQvRHzGwagM0BHOzuHd4V3P0qd5/o7hOBNXu+g0IIIRqiWhtEcRD4TQA/cY9mINw9/mWuNLAsMhxAuW+SEwD8xcy2KLY5HMCDAPYu069H3f3VMv0YhWjQenNx180Ati3Ntrr7AnefnPo7H8DRAK5y94MQRW5L/0zWAc1cClEnpZlLRstihRjYmNm5ALYD8BV3b+msvBBCiAbIoaplrHWwvpnxXPhV7n5VuYKd2CDGAXgXwE/N7EuIVrT82N0fpfpXA9gd0dfKDoM3d59jZt8GcK+ZHQngAgA3uvvVNTyeTQC85u75Ypt5M3u9uL9SRPN7AUw1s90AbATg+s5OpMGlEHXi8Hg5bCmgT+PLYsMPVloWK0T/wsy2AnAGgH8CeLz4/rDQ3ffv1Y4JIYSolXei1SVVkWmDQDTW+gSAp939dDPbAcA9Zjbe3d8HAHf/FgCY2TcAnI/yM5IPmdnpAB4GcL67X5wu0x24+4sADqiljgaXQtRJcuYyUg3nuSw4DNGSW81cCtG/cPfn0XFBQ2e1UN6P1JWv/2rbYi/Xa6TZ78XeK/aacS5LIJH3chnnxqTvKDu/T/vJq4Yrkk3NpQngjdnfd0SQ6wW5wAYn63P4idHkp0ykeiTf2XbUrxHsH0Ti2Z2eI58lr447bVLQPAfx/WRTnA9z8Ud0/U4lnyKCT3ElyFsIYCWd5vzPnx7rf3s9eAu3O/GxWM/Znoyt/NQBUciOEuQY2/Klp2M976zPhgPP0/PwXqqt20k/Tz7L+2n/GqRXkT5kZqoxMoDeGX6jWbkPPY/3kJfy9yl/L887TaRjx3A58vGOoPgmu6W6cv3YoHdexAfoHOSt/Anp/Srkufw96WP4idkrXbLIH1Lbo0inn9hypN8P2EOZ5fWupky57dUfskHsU84GgSgxaTuKy1Hd/QkzewfAJ5FyCbv7DcWorOu5+7up82yAKCPvVACHmtnt7v53VM+rADY2s6birGUTopnIDktoG0WeSyEawFKey0ZnLtvyBTQVw89e//giHHzlrIbaE0IIIYRYbTFEP1Z09V81pw42iClZNgh3fwfA/6L4c4WZfRLRLwLzzWwtM9uE2tsH0a95/IsezGw0gBkA/svdzwRwIIBbzOzz1fUUcPclAJ4BcGhx16GIZlMrLYmtC81cClEn7g5DcllswzOXeYdZlN6kwaaEEEIIIUQ3UMkGYWb3AjjL3Uszk8cDuMbMLgDQBuAb7v5ecTbyj2a2JqJIrEsRzYCmvwEORRQQaDoAuPtTZjYFwIZl+nUxoiUiGwKYYWbvunspZPbxAK43s7MALEMUaKjL0eBSiDrhaLElGg/oU0DODG6NtyWEEEIIIbqeSjYId987tf0ygEllyr0FYMcqzvUygJdT+54F8GyZst8D8L2Mdl4Er7XvJrQsVog6Yc9lVwX0aSt6LptypsGlEEIIIYToV2jmUog6cbDnshTQp7E22/MFmEWtNTpQFUKIjlQKxsG5sbOChLDm5Otp+BgH7mkrX3wy5RR/L5Vw/hDeoOApo6ncfA6Yckay/kIK2DKaArbwgrKF/Lg4YMoJyba4Ds83bDgp6Ado/3MhOM+oO0Ynmlqy56Zh406+LhT55mSaZDiTA/0A+Ek49m87/3fYPzTkZZizLgXx+THV3SXZVGJOZUqQ84ZREJ/5HFjpvKA3Sz1fnwlyp0//b6xnfeFL4cAtQU7Y98lYr8THEk0tsM+FDQ7iQ2FQhreEe3V5OrbnWNKX032wGd0HC6nMMrrGl49MtnU5BTGaSA1zSJbZdB/uh+o45nLa4NfNW6QfQzZZr0+O0rQo4xwAsIR0VkCeSu8bvUz3pSIRdaLBpRB1wp7LEvmGA/oEz6VmLoUQQgghRH9Cy2KFaIB45rK0LLbhVCQFGICcmQL6CCGEEEKIfoVmLoWok4Tnsvi/a6LFGppyhvb2BtfYCiGEEEKszpRSkYg+gwaXQtRJIlpsVwX0yReKy2IV0EcI0R1U8kvxVwL2m7EnizxweIr05FRbXH8G6Ywk7zMqJJnP4g2qcyj5/sanyv3iJqrz8ViO8S/EevGF5Od7lPQlqdR1i8jctTP3ec8gLyCf5KlBLnmKPJYAcA5vkJ9vOj0WahYTUkEerwtyjK8X68W8Jo2vBfkccWSyKcwkPQ1lGbrWiliv5PtgQqrgtPDZNcuGhf37UBnyI86dsz1tpM+aD/Ie9iBeEavla9D18tR9tJj9oJQ6cGHGczeZrnGle/Ioapc9l4nX0HdJX5SsP579wufSAX7dkA8ZW5JOv4b4unB6xHmkK/mjmbVJf5BRplr/ZR/2aYpuRctihaiTRJ7LOKBPo8tiFS1WCCGEEEL0TzRzKUSdJKPFRjQa0KcULTbyXGpwKYQQQgiRiQFo6u1OCEYzl0LUCXsu0UUBfdryju3HjsBB22+Cgkezo0IIIYQQQvQHNHMpRJ04HGbR7zMhoE9jbbYXChiUy2HNwdHPcFoZK4RIUuljm31N1Xy8p31QvE0eQHwqo/7XSf8hdWxnlGcd0pz/cn/SdyarnED+tMvJB3cB7T+VchiCPJZAMg8j5bxcvBEZEtnbuC7pjf+RbGto8GMOfvfkWLd+ix7XqYtieYb/T6ynHpbyTG5M+l3S5OHba/c7Yr1+ohDw1tHBk7culsX6tnH0uNYN8oy7zwp9ufXnyb4ECyNuW7FvrA/a7e5Yr1xjRCg0eq9YTrg75KkEgLkHkIfyenrMx1Oh35N+B+XLAMAD5H/lfKfL6Dk9kvazlxEAFpNO5K08LMhdKOflIpQvAwCHUrmUhTKwbcb+VFuJvKycj5LznV6fUSaVfzPhuUwbjkuwF3NJRhkg0xOdoNL7THuGFgOJHpm5NLOfmpmbWdr2LUT/hWYubz1uJwBdsSzWMajJMCweXGp0KYQQQghRlhyiaLFd/SfqptsHl2a2LYAdAfyru88lRE/C0WIjn2QXLIstFNDclMOwwdGvgQrqI4QQQggh+gvdOrg0syEALgVwIorfxYVYXUh4LlGM8NoVM5c5w5pDopnLrhpcHnzlLBx85awuaUsIIYQQQohydLfn8ucAbnT3hWZWtoCZHQvgWADYdNNNy5YRoi8SeS7DfZ0z65KAPoOachhanLnUslghhBBCiAwMwJBOS4kepNsGl2a2E4DtAfywUjl3vwrAVQAwceJEfZMW/YayM5cN57ksoLnJ4oA+jQYIEkL0V7ISkNcTJIPrcHCe+RXqcGARTuD+GOmnSKcDmXBgEApAcijtvjkrKsr+yc3LrytfbFpG9UR0HgCreGNskG9QUJX7KRDMOVR8JgWUAYD1gtx65HOxnsMBjLYO55h6IgXOmZhs6rZTKHDOJ0LgHEwO8r6pB5TvF5B8/BSQZ8uXno71gqXjYn01vhUKHfJEsi0KvHPQZdSXTajMo6Rnt8TyPVCgHwBb3hHOPy/32XDgair0a9J8G26V7FbC+zabPl9PC5++W15D5zuRzgcAl/N9TIGeRtDz/QgH1wmBdwa/uwGY1vWepa1U0KmYvwe5Swh6hDHrJIvdTHo8PcfzLy/bl+RF4tcgkHztcZCsFzP6mGZUxn4O/JMVxEdBe0RHunNZ7K6IPsUWmtkiAGMAPGBmu3fjOYXoUXhCvsm6alls8Fxq5lIIIYQQQvQXum3m0t3PA3Beabs4wPyqu8/trnMK0ZOkZy5zua5YFhvNXA4b3LWeSyGEEEKI1Y5StFjRZ+iRVCRCrI6kPZddEtCnUExFMkSpSIQQQgghRP+iuwP6xLj72J46lxA9QXrclzNryCPp7sgXomWxa2pZrBADnGq9TOyXyvJIMZV8llxnLGlOwD40ozzvB5KeS6p/889Qln3IAzcvdWw++9UosfwbGR64k6ktAJhOenxz0A+cFfQ4auuY4DGd4n9KNnXWIbGeczr5LDmL97pBnnjZhbG+7BOnJNq6/ZSvhY2FdGBMkN8443ehu2fskag/DgtiPev+L8X6A6wd69b1wsVcsuBzsd7OX020NYdslrid9D3Bwzf43bC79cXwnCw+YnyirV/95Xux/sGj5IG8kQodT5q8nGNuSt6fi42NnmNRjnn2VtgYnfRcjvN/xnrBiXRfXD4z6KG0f+MgW9d7KXUmvg+PCHIE9es7VOQXfK+fnGqLfMXz+T7m19FzGfvJwwwAoMeP11CerPcJAGBv6XPonCz/ZfqYGKj02OBSiNUNR8pzmWssz2VbPqrb3GQY2qxlsUIIIYQQFVG02D6HlsUKUSfuDiPXZaMBfdoL0bTnoKYccjlDzhQtVgghhBBC9B80uBSiTtIzl40G9CnNXA7KRY3mzLQsVgghhBBC9Bu0LFaIeimX57KRmcviNGVzUy60p2WxQogEa6e22T9VzUc6e6LSbX1Amr1b7OninHrsqySzGoCkT5M8YieEfIpYTEWmkL4n7cvcmjR53U4bG/QfKB/lRSmv3GabBz2fjo2jPlro1+WFo0J3p16bbOsZ0lNIf4Y05dW87AXyWS5MPq7bDiCv36V0gCyMT1PDS7bfNFH/l0/+KNaz5gbP5eLtqYFDSd8f5JwdyS8KABzHfxLpGcFn2Hpk2D3u7udjPeUvyZyPP7j14rBxCOWZ3J/8rrdQBfIpLj4s6d8E/hDkCOrAMi5D50jlEl1wNCXOvJa8jXdNCno/qsD3x/503wDAnYtog7y/y8hA+gtKOJogndOVc1jOIM3+R0p4ijtIpz2X/FrbOGN/pfeJ5zKOVeOf7AMeS4NGM30MzVwKUQfu3tFzaY0NBtuLdQc1aeZSCCGEEEL0PzS4FKIOwhgyjC5zDc40tpVmLnOauRRCCCGEEP0PTSQLUQelQd9hO4RlSg3PXObTM5c8iBVCCCGEEAkULbbPoZlLIeqgNIhsyiVnLhtZxlqKFivPpRBCCCGE6I9o5lKIOojThtDgsinXWF5KznMJyHMphCjHBxWOVUpuXo6Vqe2Pk55HmoOsLCI9ljQFawGQSPo+lILtXE5BbUZTQJtEEB8O4AMkgwhRIJVpFNxnNPVlQSoozB688RT16+CgV4ZgLycYJbznqG1AFCa8xD23xnJL/2Ss573+6VBmDE+p0OMFgOmk77wu6JOPjOV7u48I+0OcIQDA7fha2Fj4RCx3fzkEYHpw831DGQ6i84VkW4ngSguD3NKfjvW8yz4b671xb6ynY39kwkF8+NadRPrD7H7tflM454NGQW0mHxDLE//y21hf9iAFUAKAPUmfQPchXwvwvUcVxiabwgO0Yzo9l5enA1CVzlehzGQKFjSDA+rwvX416S1Jv1/+fACSgbgYDt6Vft0z9Lqt+F5TIv0+0wcC/IheR4NLIeqg3MxllOey/jbjZbHyXAohhBBCdE4OwBq93QnBaFmsEHUQR3ZNzFw2lueytRjQR9FihRBCCCFEf0SDSyHqIMxchpdQozONHfNcRgF9GhmwCiGEEEII0VNoWawQdVBu5jJnhnxDAX2SbeaKSTRb2gsYOrip7naFEAOdLC/mxqlyS1Ee9nFxAvf5pBel6pBHbOUdKMsbGV61DpDPcjz52OYHzyO+PjbocT/Pbupkqv8Z2n8EPfahk2K53YrHEtXn3Lpz2LgreDbPxIGxPvyc20OZ2VT5uGRXBj8QvHOt1x0Z6z+fMjnWp+P8UGFMsv59lwXfIS4IMmE7HE3VXwrP1+LdUr5U6vJe24bn676H6RwnBV/nb086PexPXqLk7fJqkLc9GfyfB/333eEA356nJZt6cEyoM7zlzVgvPzOUufZ9MqPS5QIAHB/kQZeF++i2x8mv+7dwT5z48oWxvsz4Xgdw0U0oz6eCNPLxss/y0pTfdk/6rjCOfY5PkGafJfskN0id/0XSWV/rK3kpB1U41hm977F0A9oVLbZPoZlLIeogX/RH5rpwWWxbvCw2elkWx5YNDViFEEIIIYToKTS4FKIOykeLbXDmMhUtthSmMN9IlCAhhBBCCCF6CC2LFaIOyua5tMZmLsOAtThzWTqXZi6FEEIIITrgOaBlSHfMlRW6oc2BgQaXQtRBacDXlTOX6TyXpWWxpUGnEEJUTzU+y3S+Oz72YsZ+zme5Dmn2dAFJ/+ZbKMsD5EPbg8uk8vgddQDKMp/6OG1R0ONT/rY8abYakh9v6PJ/i/XK74f9c6wt2dYCeo8/5JVYHr4xmRavC/LEy8jDNzuZg3HvkSFX5GGnBD/fV4fNCIX40i9IduWXhZCP81KcFOtvUX7EF8i3d9vDwWd46l/OSbR1wYU/jvXjEz4fDrzH5/9c+f0vJfuVyJlJKTAPev2PYWNyS9AbPxP09Tsk2zoyyOXLNizb7sqrKRfo88nqw/8n+DRvs0V0hLyN48M5Lzv9lPJlAACHBXkU5am8lry/zj5iusFOSvuL+R7lJ5l9lpxr9q0MDQDkHwX7m9k/ya/PSl/9s471vrdS9B80uBSiDkpLWNMzl/kGxoHxzGVTcuZSY0shhBBCCNGTmNloAFcg+kVjHQBHuXv6V8kOaHApRB2UlsUOauKZy8bShpRmLuPZ0OLUpWYuhRBCCCE64mZoHdId4WIrj6HMbD0ANwAYB6AFUfjs49z97WrLmNkiAKuKfwDwn+7+QCO9NrNpAL4GYCyArd19Lh37JKLw2+sBeBfAN909vfaA2RrAQ+5+oZldDGAzAC901gcF9BGiDtqz8lx2SUAfzVwKIYQQQvRhHMCv3H0Ld98G0cL18+ooc6C7f6b4V3ZgaWZDzOzjqX1rmdlGZYpPB/BFAK+UOXYFgEvd/ZMALgVwZbGtcWY2I/V3OoC/A5hsZrcB+BiSfolMNLgUog7yGXkuuySgT8pzqYA+QgghhBB9B3df6u4zadffAHy81jJVMgHAX8xsCwAws+EAHgSwd5l+Perur6b3m9koANsCuLm462YA25rZx9x9gbtPTv2dD+BoAFe5+0EAngKwZzWd1bJYIeqgNBBs6o6APulosZq6FELUzNqkObAHB9pJL/taQnpr0m0ZmtvaNtUWH+Nk9HSOPThwD+tUv65dFPT4sUFvRkFRQtwWYH4qeMpEKncSrQA7OQRlWTmcvotZCBAzzj+WaGqBPRfrSf56rGca9QvPxuqybShAzAXJbk3f/JCgXwsas6nQVlwjGWDmYewS68WXhUhFZ59E0W4eCsFqBk8I1/iCl89MdubUIPc95Z5Yv7Dvp2M95+GdYz3qi/+K9ZKrN022dTn183kK0PMdWroYLiO+6w/H+reHpQL68FfZt4Pc644QuOa+UyjgU2pOaPmQcL/9yUO/vmYUnGc+VZhG987WqcBQzy0Kmu/JRBCeSSjPEaltvkd5rMH1OaAPv7743OltDtzDgYL49VgpOM8o0ksyS/UlHIY8mrqj6fXNjF+NV7n7VeUKmlkOwAkA7s5qrEKZP5iZAXgUwBnu/l66rrvPMbNvA7jXzI5E9G5yo7tfnS5bgU0AvObu+WKbeTN7vbj/7Yw69wKYama7AdgI0ZLaTtHgUog6KDdz2WQW76+H9nxy5rI0ddlIkCAhhBBCCFEz77j7xCrL/hbAhwAuqbHMLu7+qpkNAfDr4rHDy1V294eKS1UfBnC+u19cZd/qxt1fBJARrjsbLYsVog7ay+W5zDW6LDYZJMji/Y2PLl94/X0seX9V5wWFEHVjZtPMbKGZuZlN6O3+CCGE6F6KAXQ2B3Cwu5f9wpZVprR81d1bAFwGYOdy9YttbADgbABTARxoZp/LKpvBqwA2NrOmYntNiGYjOyyhbRTNXApRB/kyqUiarNFlsdH7Tbwstth0o2PLtnwBH7S0Y9iQblk2IoQITAfwGwCP9HI/hBBiQOAwtKA7osV+2GkJMzsXwHYAvlIcIFZdxszWBDDI3ZcXl8UeAuCZjDZGI/JYnufufzCzPwG43cwOd/fHq3k07r7EzJ4BcCiAG4v/n+botl2FBpdC1EHWzGVDeS7zjpxF7QBdN3P53orII6W4QEJ0L+7+KACYWWdFa4Q/qqtNZv5BFfvTXwHYp5nl9+IE7uw1ey3VFvu92EPJPrbgOxveclyslw9pTjY1cWzQs9PJ6EuQz9BSXrlEnU8FeUvwXGL/bYJeI8gFuYTpMXGamSOpDvksMYL2P0f+w1VJP+G4l54P5zmdzsMuqqNIP5Ks/xybBdeiAw9QuR8H2frIOrE+1c9JtHXBA6HgCwg+y88jfG/9zy/+V6wP2jzYxk586cJEW7dfdmCsJ5FF67ax5Du8M3h3Z4NWHs5FkltIbxWu5ddxU6zzF4b7+MGR+6YauDNWU0E+06H03K+k52483TvPpe615+kYWWST5Y4nfQWyYQ/mzCBHjw36jW9RmXVIX5dqK8vfzLB/Mv265zrcVpb/kuunz1ett7P/Y2ZbATgDwD8BPF5831/o7vub2b0AzkL05le2DIANAPypOIPYhCjFx4kZpxsK4CfuPh0A3P0pM5sCYMMy/boY0VLWDQHMMLN33b30BnM8gOvN7CwAywB8s6GLkIEGl0LUQfBccioSoNDIzGWhgEFNvFI9+oLaSJsAsGxFKwDANboUQgghhGgYd38eYR4gfYyjuGaVeRnAZ6s818sAXk7texaJX7Xi/d8D8L2Mdl4EsEO5Y12JBpdC1EFp+WuHZbENBfRxNFN7pcmPUv7Leln2UXFw2VArQoiuwsyOBXBstDW8V/sihBBCdCUaXApRB6X0IIO6MqBPPjlzGaci6aKZywa6JoToQorh7K8CALON9MoUQog6KSCHVgzu7W4IQoNLIeqgvTsC+hQczU0dZy4bmQ0FgKUflTyX+g4rRP+EvUvp/NuvZZRr1KdJ3kT8nTTnv1xEemyqLc63R7kxn6fdZDNcPuTK7G5xprmTyfd2EXndTiOf40ep+hMy8lyyJY5DMHHXv5pqa2aQ45aSZ/LEcP5Zl4WVbjtd+HSstzwlaACYZ63lz3k/6V+QTtok8SzCOTc7JKyYW35gsGHt9PD/hn7t+6VYX/D66cnGxgT5wvvBc/nqOpvE+ur3gwfwly+dHOvXsVGiqSWbh7yX058gk+oMLhV8uLM2D/1K3F5AKj1kuEiH73Z72P0NKjIlVf/+8NzPSSxOfAll2Yf0RaljWy2ijTaUh28qyqVJHtEIboue/De4zH2kDybN/ksg6Y9mDyR7ojmZZ5osn2SWF5PLVJsLU8ONgYRSkQhRB/lU2hAgGmg2mueSPZzpc9VL8Fw21IwQohPM7GIzW4zoq/oMM3u+szpCCCHE6oR+ShCiDjLzXDYwgmvPe2KwWoo4WW+bB185CwAwYePI06WxpRDdS6VACkIIIbqeKBWJlsX2JTRzKUQdlI0W22BAn2hZbEfPZcMBfRQtVgghhBBC9AAaXApRB9kzl/UP4qJlsR09lw2nIvlIy2KFEEIIIUT3k7ks1syqcem+6e7bdF5MiNWLctFim+JlrEBT2axGlWnLeyrPZUR7owF9VkSBBwpaGCvEasBrqe1qgvVkfdSPT22/mKGZ90lzwJCVqXKPkabAIFtRIJSHKNDOo1T8zLeSTU3cIOhbMrr1AOl3koeGnrcs9HL+5rH2NejHvGncMD328dRHAIPnh8e/wN4OB0J8G+x0DQXuWT/IefumUtqdG+Tvz/h6rJ/BZ2L92/0p8E5LsvrIs1aEjYlBPnV3CMjzBKW0G393COpyw8shOA+AROCcTz/5QqzXw7uxfvBv+8b6hd3DOTq0lRE7ZsKzT8Z67tTtw4EfUyHaDQC4lT63jqOvm3x7fYz0zcm0f7/0a2P98/fPivXKI8N9gDu5k6RPSD73uHwRHaP6c6ncIxRkCnTfduChII3q+x0Z9Z8gvXGqLY4G9RRpfh1xcJ70a5UDefF7RdZ7AJN+b2k0qFjtOAytGNJt7YvaqeS5fBvA3hWOG4C7u7Y7QvQPys1clsaF+YIn9lffZiEZLba4MLbhgD6auRRCCCGEED1ApcHlWe7+SqXKZvazSseFWF3Jl0lFkss1FoCnPe9ll8VqcCmEEEIIIfoDmYNLd/9TZ5WrKSPE6kg8c2kdl8XWOxhsyxcSy2JLLTcyuCy444OWaDmKa1msEEIIIVYjHIY8mnq7G4LoNBWJma0B4OsAxnF5d/9BN/ZLiD5NwR05C7OVQJjFzNc7c1lwrNFMnssumLnkSLOauRSiL2IIH63V+JKq9S5lleOP/UqJ1fcnfQ9pTuDOydvZfwkk/WLs7Zwa5K4VTs/MPj6Wv/TzYv0j2zGUeS4spDrGyegI4PdGJsyTg7/NptCb4miq8MbMoNnOBuCckcEg+IN9Lo71hAvJT7gvGQe3CHLC3aEMAMx9IZQ75qw/hAPPUKExpC9P9gWnkb46yG2nB88kriWP66HNQadse6Oe/Fes5zy+c6xv+3zwWT64Z9C3v3dgqHxLygayIFzXdUe+F+u5l9F1+UKQOxX+N9azXv98oqk/bRTuw0NvDb7Y1vUWhUIfBi/mXp68p3+00UVh442X6Agbc8k/eQ7tTllJgeuDvPww2k/XFbT/UnqtnJRui5hG+lS+4dhYyq+vtFd6EWn2Vi7NOGHac9mIN7JS+e7zWYq+TTV5Lv8IYDAiN3FLJ2WFGBC0FzyRhgQAcqWAPnUOBtvzBQwaEl6SseeykdyZxcBDOdPgUgghhBBCdC/VDC7Hu3v6J0khBjTlgvbEM5d1Di5b86k8l104czl4UK7hfJlCCCGEEH0Jh6FF0WL7FNUMLl82s7Xd/YPOiwoxMEgH3wHCEtm6l8Xmk9FiSzQyuGwr1m1uyqEtn6+7HSH6O2ZWKfp5iVXu/tdu74wQQgixmlLN4HI5gNlm9gCAVaWd8lyKgUy+UEBTaiAY57ks1NdmeyGZ57JrZi6jzgxuyuEjl/9BDGhuBfAkQqyscmwGYGyP9CbGUZs3qVJeuWrqVMp3x36veSjPc6Q/TnrbVDn2e/F5ziBN/kscT5pzaQLYJfg3f7Q9eegSXrMDYvX7keyBA4Dgx/zGhb+L9Q3XfTsUOY+KXz0p6LnJln7w+vkox9xryE/IPsldqIwlZ1eGt7wZ6+W/oOD8E0NuStwzM+hzqV8Ahp9G9WdvGOuzP//DoCfSA2NvX8pPuOTBTVGOU3Bh2Jgd5N/WCX7Xf1v8j2SlcWEuYsnJ1O4kKkO22FkjvxQ2OM8kgK/Nvbdsv7AL5bykx3KfpUyyJ5C+nHzA55Ifkm2a65E+k3NOpmHv8fvli5zECRUOSx28KchT76P9bIblx5LK/ZoJ1+HXHb8e0+8ZWUOBrP36LiEqU83g8h/FPyFEkchzmV4WG/2vd+ayLV9AM6ci6YI8l+3xzKXJcykGOvPd/cuVCpjZ0z3VGSGEEI3jMLRicG93QxCdDi7dXbkshUhRznPZeEAfx6AmHlwWz9VIQJ98AWsNGYRczuAA3B1mlSZuhFht+VwXlRFCCCFEBpmDSzP7D3f/o5mdWO64u1/Wfd0Som9TLlpsowF92gvJPJdxKpIGAvG05R0j1myGF5fq5gvJAawQAwV3b+uKMkIIIYTIptLM5QREaUi2L3NMC+zEgCZfcKTGlg3nuWzLe2JZ7K3H7oRPnHFvg6lIHCOHDcbSj1rj7UHKNSwGMGa2MyKHXSl3swFwdx/Vqx0TQghRMwXk0KJlsX2KzMGlu/+0+P+onuuOEP2DbstzSTOXuZzBrPGAPiPWHIxlK6LBZWu+gDWaNboUA5prAZwJYA6AfhhCudpgGllBfCoF9qgmKDy3O5b0Y6lykzOOcRCfXUlTUJStKak9ADxC7pzNfkoHngryFurLJqmufDXUueETtP+9IC//Zviqc8K614YDRyabGrVRCKyyZAsKVnNMkHt5CARz3+Yh0NCWnrzd5r0+Imw8FALy4NEgBz8QAiW1poILLR8Sfow8xi+N9dn/TUF8Tgryux6CEe2AJxJtHZ67PWzQBP7iOeNjfeq258T633YLoTim/OWWRFv/uGyLWM/b7bPhwEXhnGf4/8R66jk/D2VmIMky6udRFOjoO1QmdAtjPHnvLN6NNvahIDxnvkQHqM7WtHv/A5DgTgpadQEFBzr1iqBvofvzkJOpMgeiqsTYDP0H0vwaBpJBfFhzfX4NVhNuJQ2/hyypo74YSHR6h5nZIADHAvgyohnLvwL4nbtCT4qBS75QyM5zWe/MZZklq4Ny1nBAn5HDBmNhcY2tcl0KgWXu/sfe7oQQQgixOlLNzxeXIvr543pEy4cOB/BvSMYNF2JAkS8TLbY0c1m35zJfQHOZ2dCG8lwWZy5LMXza8nXmSRFi9eEmMzsewG1Iptda0XtdEkIIUQ9RtNghnRcUPUY1g8svAtjKPQoJYma3IpnoSogBR7losaXtevJcFgqOgqNLZy4LHrU5YlhzHCFWg0shsATA7xD9cAoUPZcAtF5cCCGEaJBqBpeLAQxByMbaDODVbuuREP2Ars5z2VYckTY3pWYucxbnqqy5j8UlsCPWHBynNWnTslghfokonftTpR9N+zfVeCuRUWZl6hgncM+qz1Qqw8e4XfKk7ZJRNd2tXagO+y9xRJCH0P7x7MsEsOzWoI88OJYTLnwy1iccFnyW290U/GlzJuycaGrJheSz/D0deK0llq+S6XOvl8h/eWHSwzfmlPmxXvyF4G287eV9Y30KLgxl1iLPIIAJ/q9Y37D0G+EAXZZv+O9i/dtrTg/6U4mmMHzVm7Fe/jfyfx4X5AW/+XHYmBG8kNPtkERbg98N/tnh/0PtDtky1lMtPMnsBf0tQh8BAGuQz3I27f8CyvLu++sld/yENNe/Z2zQo2n/eNJ3Jn2pOJT6cuoiOkBGzUPuoP08D8P+SwDg5/Jy0m+RZv8kv27TcLlqXvdpqqnDPstKQ4csx1w9Pk/RX6mUiqSUgmQhgFnFGUsA+A8AD3d3x4Toy1TKc1nPTGNpINhxwGoo1OnhbC8OWEcOG4xSs+2auRTidXef3XkxIYQQfR2HKVpsH6PSTwmcguRpAJ8s6v9D8icXIQYc7fnsPJf1DAbjwWVq5nJQAzOXbTxzGS+L1cylGPD8PzP7LwC3Ium5fKH3uiSEEEKsHlQaXP7K3ef1WE+E6EeU9Vw2MHMZlsV2nA2tO7VJsd5IBfQRgjm8+P8g2ucAPlGmrBBCCCFqoNLg8mIz2wjAvQDuAvCYewPZ3IVYjWgvFDCkOfnyycUBfRpZFttx5rKR6LMAMGLYYJz5lU/jiGv+Hi+VFWKg4u6b9XYfkhjCR3E1fqV0Gd7O8k5l+R/T+eqy6nOdsaTZk5X+LZqMk3dRHsH9Qg5FrN8c9J2U57JSTsDR5Kd8IyP/5XzOYQjgqOCzxHfC++lcW5faDXLORuSzfIP6CwCPkD6U+r9niFY595Cw8GvunbQI7NBkU4svCwa/MS8H/+VBl90dCp1EftFd2BAIfPHh0JmVI4fFesFPtor1DXd/O7R79PWxfqB1j0RbyycHn+VtDwfP50GzT4l124QvxbrZ6HPpkkRT2GRkCMux4MHQF/YzHvPS87GewTlRT3o22dgt28Rywk3BIzt3X7quZwe58j7KHQoADwT5jWuC//SGS8J1wSIqfyfpx8hjCSS8rFEChRL7B3la6C+msV83dU8fSvfrzbR/6JFBr2TPJ7/WXkN18OuZ689Plct638l6P6gnE2H3ZS90GPLydPYpclkH3H03AJ9HtCT2ewDmm9k1ZrafmQ3NqifEQKBStNi6AvoUB4LpaLG5hgaXUb11hzWjudi31vbKbR185SwcfOWsus4nRH/AzCab2XDaXtfMvtybfRJCCCFWFyoO9d19OYCbEOUFGwzg3wHsB+BCM5vr7vv1QB+F6HO0FzxeBluioYA+xTrpZbGDclbXYBWIlto2maG5KYfmQbniecrPXGpAKQYQ5wPYlrbfBzAttU8IIYQQdVD1PLK7twK4r/gHM9uhcg0hVl8q5rmsK6BPceYy13WpSAoFoNRcKQqtPJdCwNji4e4FM1OOSyGE6Ic4DK2KFtunyFwWW8LMLjCz4WY2yMweMbOPzOxwd3+is7pCrK60F7zDEtYQ0Kf29kpRXMvNXNYb0MfhsGKGy1L+TEWLFQIf8I+jRf1RL/ZHCCGEWG2oZuZysrufamZfQeQiPgTA/wC4sVt7JkQfplBwNHWYZYz+17csNmPm0uqfuXRHHCW2NLhs1+BSiB8AmG5mpYginwZwQIXy3YwjBLvICtxTbTAMLjcqo8wrFcpsQPq5CuVKcFay9KrimUHux2Ea6FLfSQF58LmMcwCYSMFPZi8KmoP47EjlF1EAoVRXsAf9gPfapnSgJVbjNgoBTxacRQFpAGBD0nTOwWNDQKK9R94b6+n/e0goNCX5/nv2J34U61sRgg4NPXxZrFdeS8GIJiS7clkuBNs5u/DDWF/04+/H+oeD/yvWP3qQgsrcn2wLvw7yIAsBhab4LbH+Iv5a9nxnb3Reoql1T3wv1qN2/1esl6wbrvcQut6vt1I0pQf4AgMYzwGYtgj7b6Ey55CekqyOa2fG8oZrXw/79wnywZd3ifXuFCQpcd8AwPxFtMHRfSi4z0wK6DORXk+zT0629TbpC04I+tT0SUs8lbEfACiwVCIID78fcPCuSl/9+bWeDvhVDZWCj4mBQi3hlb4I4A53f83M9A1VDGjaCx4vNS3RyLLYtjjPZWrmsqmRmUseXGpZrBAA4O6zzOzTAHZCFKr1cXdf1kk1IYQQfZACcmjBkM4Lih6jmsHlEjP7HYDdAZxnZoOqrAczmw5gMwAFAB8C+K67P1NfV4XoO1TKc1nPTGPJc1maYeQ265+5LLcsVoNLIYqDyXs7LSiEEEKImujUcwngMADPAzi4+IE8BsAFVbZ/hLv/m7t/FlE0vmvq66YQfYv2QqHDzGVDeS4LpTyXHdusZyYUSM5cDopnLrXoQAxMzOzRrigjhBBCDBTMbLSZ3WVmV5nZLdWko8ycgTSz2wBMB3Cvu/+6tN/dFwG4rpoOFVOZlBiOaAZTiH5PpZnLejyXIc9l8veeQTmr2yfpDpR6GHsuM1KRCDEA2Kr4uVaJjXqkJ5mwR6ke7xL7pdh7tXFGGU6sDgBtpLcm/VYV5057wsaSfoz0VNK7Bjl5UtAz/p5sajbHDySz4C/Jc3nIouy+NJHP80e0f2FIwTTJV8V6ptH5LOW5/HGQp24bzH7TfvmTUOWMv4VCZKfDzORnxtR1z4j1R4Pi1Kv47Drh8c/df/uy5wYQ/YJY5Oxh5HskD+LtpxwY6wd3J2/hWuQtRNIz+n8efIOfui94dO2v4YSzDv1SqMy3F4A5D+4cNujpmvXkZ2M9DCti/frg8LKbPpc8qgAwha7Z6ODxHXUweTlvJe/s8cnqOHRS0GuQvjbc6//R+sewf9eXqPJNybbG0/02n/3CdNLZvJ8Y8dPk9gwq9xYfm0eafczsb07DTwDXX5s0v9ZfS9Xn95pqfJaVFi/2vM+yN6PFmtk0AF9D9Ia3tbvPzSj3VQC/QPS1LAfgbHe/o7NjXd0nM/skIpPwegDeBfBNd3+pXDvE1gAecvcLzexiRCtSX6hUodId8htE1ugfm9nrAO4CcLe7v1KhTgfM7GpES2oNwJ611BWir1LJc1lPXsqp90YfCOlosTmrP8+lu8OKA97mnKLFigHP96soc3t3d0IIIcRqw3RE46VHsgpY9EXsBgC7uPtcM9sGwGNF66BnHXP3ArUxBMCGPAYzs7UArOPuryNJpT5dAeBSd7/RzA4HcCWAL5vZuKJmHnD38wH8HcD3zWxHAHkAL1a8IqgwuHT3xxD93Hh6MfjBfgBuNbPBAO4GcJe7P93ZCdz9WwBgZt9AlLx6bz5uZscCOBYANt100w71heiL5PPlosXWvyy2NH5MR4sd1GRY1VbfbGMioM8gBfQRAxt3v77zUkIIIUR1uPujAOIf8itQQLSCEwDWBfBGMceyZR1L1Z8A4GYz28fd/2FmwwHch8hueHU1fTKzUYimw3cr7roZwCVm9jF3XwBgckbfjwZwlbtPN7PTEU0UVoxZUFVgHnd/AdEU6C/NbDSigea5SA0UO2njhuJ63fXc/V3afxWAqwBg4sSJmlYR/YJyeS4HNTBzWcrpXnbmss6APqBUJKVBa7sGl0IIIYRYTXAYWrpnWez6Zjabtq8qjllqwt3dzA4CcJeZfYRovfJXOjuWamOOmX0bwL1mdiSi2Dc3uvvV6bIV2ATAa+6eL7aZL65M3QTJ5Dhp7gUw1cx2Q2Qd6fSH2mqjvg5DFMinVP5hd7+ikzprARjh7q8Wt/dBZAJZWqmeEP2BfMGRs44DQaDOmcvi/3Key3oD+hTgGGRRe6VBa6uWxQrRT8jyLqU/trNy2THsZuH69XwcLyK9skJb80mz34v7+FCQM9g3ljLO7UL5Ah8hfSmVOXRs0HuSBpK5KTm/45hJsZxpGV65I9Pb4T30gqODCfKCa/cNZR6iXId8GS5PNvXJo/8R65aW8N7/RVrNNvcS8lw6e08BTN4hlgf9JXzfu+3EkIOR/Y+b7P5qrCd9Ppno8on3Q1tbsuf0Abrem1GF7UifluzWL3cPOR1/tMdRsd5pfVrsdidVoMV4J55yYaKty04NuTzZWvje0nWpLXruJqe8jTfPpA2+D0NMkuVDyFvJ9Wfsn2xrfsY9gvdJ0717Ml27i7gMkPAbP0d9HEEm3WXXUXl+rZGnFUDSZ8mxVrJ8lmmvNb92s3zb1ebdXa3yXL7j7hMbbaSYZeNHAPZz98fMbGdEK0E/DWBV1jF3/5DbcfeHijOHDwM4390vbrRv1eDuL6LGXNCdDi7N7CQA5yG6y0rTHg7gE51UXRPAH81sTURrdJcC2Me9zm/KQvQhykWLjT2XDS2L7dhmvQF9QAF9zKwYHKjvzVwefGUUVOPW43bq5Z4IIYQQQnQpnwGwUdFuiOIg8iMAWyIaT2Ude5IbMbMNAJyNKCraoWZ2u7unop9V5FUAG5tZU3HWsgnRTOSrndSrmWpmLk8FMKHWQD7u/haAHevqlRB9GHdHwZEdLbaOsWBYFpvKc9lFqUiAyL8pz6UQZVfjlOwfQggh+hEF5NCKIb3djUosBjDGzLYo+iW3RLSeYgGAwRWOxRQtiQ8COM/d/2BmfwJwu5kd7u6PV9MJd19iZs8AOBTAjcX/T7t7pSWxdVHN4PLNWgeWQqzO5DNzUkb/61kWWxrypX2cTTmLc2DWinvS0N3clFO0WDHgaWA1jhBCCBFTTM1xAKIB4Qwze9fdtzKzewGc5e6z3f1NMzsB0WCw9JlzlLsvLbaReYwYCuAn7j4dANz9KTObguSi/4p9Kh4+HsD1ZnYWgGUAvtkV1yFNNYPLv5jZrwDcgmhtMAD9yisGLqXBXlOZgSBQb0Cf6H9zLj1zmatrsBq16eAeNjfllOdSiDpX4wghhBCMu38PwPfK7N87tf0HAH/IaCPzGJV5GcDLqX3PAni22j4Vj70IYIdyx7qSagaXpVHtf9A+/corBiyZM5fWiOeyuCx2UHqpLeqfuURyWWxzk6GtXTOXYsCj1TgxQ1PbHFSnmfRbpLMSu49PtZVO1F6CA/qcTPoi2p0KynJRRiCVR0LgGmw9Nuj0b/nTSbNZJ6vd5+n8l6SOHUxvqpNo/7kUxGct2v/nIMc8ydF9gLn7hmA9j9/9+Vg/jF1CoTWowqGp74TnhPfzPfBgrG+bGK7L7rvfHestT18U6o5ONjXhlGDvmsvfYfc8OJZ/LoRMBbNPDHFOTms5P9HWWo/nw8bWfBLSFCbl7G1/GPTU85IdmxPkN7b9XaxvOOzbsR7lIWjQknRGiNGTgubnflyQo86n+htRGaPnFADWpW1qFnfeRxtkgduB72O6vwEkg1ZRfMxlXIYD9zxHOv3a4tcqv4Z58otfn8n7MDsoWFUxPyu0JQYqnd457r5ZZ2WEGEjEM5cdZhm7IFpsmZnLelOROAX0KbXdpplLIbQaRwghViPyaOrtLggic3BpZuu4ezp2cs1lhFjdyJq5DAF9ui7PZVOuvplQAHB4wnM5eJA8l0JAq3GEEEKIbqPSzOVMJNe/1FtGiNWKkm8xHS0218jMZbGKWUcfZz2D1VKbyZnLvpmKhFFaEtHdaDWOEEII0X1UGlxuYWaV8qcYgPW6uD9C9HmyZi6B+geDaX9kor2GosWG7UFNOaUiEQJAMXn1lxC99P5aDHLQVW1/EsD1iD4f3wXwTXd/qava7+hpyvoYz/I+8f6NU8fYizUyQw/N0OlFTFuSpiTv+5AP7R6+LORBu4g9nqljiWTyxHOLSF+fOLSXB+PffY9TLvA9qS98iq0oRsbvU767W0ifRpo8jCdue2GsL8MpsV58TcqXek9bLHd/6pFYj9r2X0G/HPSS3TZNVB8+JlynYzaneCDnBLk1xft48NJ9w4H5LYm23sOIsLFZ8FmyT/KrRufYZYNYXvbwiYm28A7p++k8G88K+oFJsTx7GPksVz6RbOtvwWd6w6PBZ4ljglySo+uyT7I6fkj66iD3Ov+OWN9nZAz9CZX/xa3JtpaR53XC2KDvpOd14l5Bn0B1R6R8xMvY7/s50uyzpNdNgvRrgMtleS6ZkantanyW1b7PDMo4Vo9/szoKyKGlb6ciGXBUerb3rnCsRGtXdUSI/kJ7vuS5LDO4NEM947d0ZNdke120LLbJtCxWDHjM7BsA/gvA/xR3nWFm/1mM2NcVXAHgUne/0cwOB3AlgC93UdtCCCFEnyZzcOnuD/VkR4ToL+QL2YPLXA4o1JmKJFdm6rJLA/ooFYkQQDTftK27vwkAZrYhgAfQSSj4ajCzUYisIrsVd90M4BIz+1h3JKoWQggh+hrdN08txGpKe4XBZb0zjdnLYhsJ6KNUJEKUozSwLOm017kBNgHwmrvni23nzez14n4NLoUQootxGFoxuLe7IQgNLoWokeC5zHU4lqvTIxkti82YuaxjJrTUB26zuSmHD9uVg0oMeBaY2c8QLVd1AMcilZy6uzGzY4vnBTAc4aO4ntdnI6/pdL67DJ9kgqdIU57LrfdKFnuuQ27viHtm0gbHA2R/WNIzmYRyW+4/NmjObTk96W+7j3MX7kn6Wvb3bUCafJbsqwQw/M34dwmsP/jdWC/44laxvuyR4LPEuUHOOvqzibZ2Gv902Ngu9GWUh8+WuRZyYfrfkp8RdiB9NpDPkq2wa+PDsPFokJdvxCZT4ISjr431d18OeStXYFisf3/NSaFCuAxYsk3SC/rLZ0P+0h89TPkdL50U9B507R8gL+MeKT/hFkGOupv8p/vSOW+m8imbJF4lTX7Z+66lvJEPkA+X84pOJu8pAOy6KOhfkObXwWzyUm5G9+HCdE7VPVEebpfzWbKnme9VIPt1m7U/7blkst5PsryUlepXW0esbnT8diyEqEilZbFNOatrWWzBu3bmMl7+mpi5VEAfIRCFbtkCwLPFv08BOK6L2n4VwMZm1gQAxf8bIfkVF+5+lbtPdPeJwJpddGohhBCi9+l05tLM7gdwCYD/ca8zJ4IQqxEVo8V2+bLYyHPp7h3SlFSiFHSIuxilItFLWAxs3H0JgEO6q20zewbAoQBuLP5/Wn5LIYToHhyGFi2L7VNUsyz2KgDfB3CxmV0J4Gp3f7dyFSFWX+I8l03lAvrUN3OZuSy2OKAsOFDmdBX6GPXhiM+HlH7NTTm0auZSDFDMbGd3f8zMykZCd/d7u+hUxwO43szOArAMwDe7qF0hhBCiz9Pp4NLd7wBwh5ltAeAkAM+b2YMAfuPuc7q7g0L0NXpy5nJQcUSZL3jZZbhZtBcHkc1N7LnUzKUY0BwJ4DEAp5c55gC6ZHBZzJm5Q6cFhRBCiNWQegL6tAJYBeC/zex+dz+1i/skRJ+mYrTYXL15LlE2z2UpPUmtA9ZyvtBBTbl40JnmjeWrsKotDwfQnDMUCo5cDYNZIfo67v7t4v8v9XZfkjgaC3ZRbXLzcoxPbb9FetuM/c2kFwX53MxUW+lE7yUmk55avshpqYTz0+g8HOznTtp9F9X5VrL6r7b9Xqx/YN8NB4x+A+CF0jdTMKJVFNwHwPK5IXLQ8lVB//rhYNv9aWsI3rL8K6HM4WfcmGhrry/eEevHWz4f6yWcQpwerm2yKlGfY8KMOjgEu7mfDmx7zQuh0PpBvrVtMijMqGtC/Rn0HM37YghC5NeEzwS7jD6Txia79aPDQhCfKTeFKDrTHw0X2e/dMdZDJi6Pdevzk5KN3R/kkqkUxOeetqDfoHuSY+AA0TqCEolbMgQdwh4vBb3L5tRuqq27xga93yI6cEWQozmID79u6HwAAAp0hMNI0zkSAbcmkeZAVOly/JrOCuJDEZ86sCtpzkjYaLCx7osfGkWLHdJt7Yva6TSgj5kdYGZ/BXAHgBcBfNrdjwXwbwC+1s39E6LPUTlabL15Lst7KpuKp6g1YmxbsY/N1MdoWWzHdtryBfxr6Qq882ELln7UiteXr8K/lq6o6XyNIju36CnM7NFq9gkhhBCidqr5KeEYAP/l7g/wTndvN+OfAIUYGPRsnstocJivcTlrqTz3sbnJQhRZoqU92jdmxFAMbsph/tsf9WhU2ZWtebzwxvuY98b7nRcWonGG8UYxomul2PxCCCGEqJJqUpHckh5YmtnhAODu93RLr4Tow+SLA7RynstczurKS5m1LLZkmax95rLYx4TnMoe29o6DxtbiPjOLZ097MvDPqvY82guOG//2So+dUww8zOx0M3sbwAQzW1L6A7AcwCO93D0hhBB14DDk0dTlf6J+qpm5PBnADal9pyAKsy7EgKO9zKxgiSaL/Iq14u6wMstsm4rrYsvNOFai3NLdQU0WL5dlWtrzAKJfmkqzpz0Z+Kd0ve7+v9fxqQ3WltdTdBdXAfgjotRalA0e77v7st7pUldQja9pFOmlpF9Mlfs46b9ntLszaUpE38HHNYk0e7/YZ3lG+f3TUqsYNhsb9LfI03YJlSEP3BhP+sN+8Pr5dCykHF18dCgz/Io3Y738ZurvyqTnEtNJXx3k92+/Mmz8jcqsHeR2mJ1o6rZtjggbbEVdRPq0IH+50Q8T9e8+cd9Yz7o1WIm3PYQ68FpL0O8FX9qr2CTR1h4Icwg3jPx2OHBMkLaEPhcuujWWg9/dK9FW69x1Yj19avBZjjkjeAOHLA0+y71Hhlha0/+SyhK0MWm+xbYmnyWfnp4TAIl7ZJQHX+mSB8m/uceiWJ768DmxvmCjHyfbSvgsyQzLHuFpwW+L8bR/PnlEO/AUaTaN8oO/j3TSLwtsmVGH/dF8fvZoAsn3h4dQnmo9k1nvR434ykV/I/NuMbOJiCLerW9mJ9Kh4YASyoiBS7lgOSWigD5duCy2lIqkxonE0rLWxMxlLld2uWti5rI4f9qTy2JL49gPVrVj6YpWrL+WjPmi63H35YhmKb/a230RQgghVlcq/RSxMYCJANYEsD3tfx9RSHchBiTtFVKR5KzePJfll8WWzlHrsthy6VKam3Jw75jWpDS4zFkY4Lb1wszliGHNePuDFg0uRbdgZje4+zfM7ElEv+ckcPfP9UK3hBBCNIDD0KJosX2KzMGlu98F4C4z293dH+zBPgnRpykNHrt25rJ8tNjSEtFaA/qUBoeDmpLLYqNjBTTlgp+gJR5cGnLx4LLnZi5L1/Pg7TfFFQ8tQEtbvsfOLQYUvy7+P61SISGEEELUT6VlsTu7+2MABpnZ3unj7t4lCaeF6G+U/IjlU5EY6pn064mZy8HFgWZbvoA1mjsOLs0QD3Br9Xg2Qmlw+fUdosHl2x+2dlJDiNpx9znF/7GpyMwGAxjp7m9mVuzzZPmayOyXyJ23JKMMAHBQLW6Xc15mxfHbObVNOf5GkyluR9J3kj+NGbFOcpuTnp1JdbYmT9sbY2O52FLtUu7BxWtQHsCFIb/h8vEhv+Gv/LFY/8AOSLY1hXxs7PmkxdZjlgZP2+JV4Xy3nU4eSwCDZwZv6RnrDY/12ReE9/stP/90rH/0OOdGBHBekMNvJ88oB0R+hGZ0tg/t/t7Ydgzg0oz+jwz9H3U+eRYfOpgqJz2yU74Yclv+44tbxHre1JAz8xtn/C7WD2CPUDlluRz8bmi7dT0yXU6m54EthJT7EwCwRpBLTgw+y3GXPR/rBZODr/aCo8lj+0bIQwoA4HthuwyfJTM/Yz8AgO+FrGDVi0izKTftmeQEnuzfZG8m10n7H/k9oRqfpPyTojKVlsUeCeAxAKeXOeYANLgUA5LYc9lUZubSUGdAn/Key3jmssbBXnu+Y0Tb0sxlOlhPHNDHLB7gtrb33LLYfCFakrvJyGFYZ41BWPqRBpei+zCzWwAcB6AVwP8hiisw1d2n9W7PhBBC1EoBObQqFEyfotKy2G8X/38pq4wQA5FKnsuGlsWWmbuMZy5rnEiM+5hKRQJ0XPKaTEVSqt+zM5e54omHDm7CCs1ciu5lC3dfbmYHAvgroujnfwOgwaUQQgjRIJ3muTSzL5rZWkV9jJldYWabdX/XhOiblGYRy3kuc9ZAnstyM5d1LlNtj3Nxhpd4c8lzWUjPXIaAPvH5ejKgj4cAQ00WDc69jmsoRJWU1tPtCuBed18BoOd+TRFCCCFWY6pJXHMJgH8zs60AnIoov+XvAXy5OzsmRF+ls5nL0kxgLWSlIimdo/ZUJB2DDpUGmm3t5WcuE8tiezIVSSHMXDblDI5owMu+UCG6kBfM7EEAnwLwQzNLJ2jsRbL8TpU+qqvxP7EPa1RmqWS+PPJMZnrCtib9XOoY1XmDvGd3kldtMukZlMdvWcqrNm3/oC9grxuVYUvajFRXbiF9HemF5FUbF+QPbL1YP+RfSDS1a+6JsMFJbdYKcvEXydc5hsqk0ia2XhG8pWdzAOMpQX8PF8f6hOOvTTYQUjLinVWjY72ZBy/p4qnkX32NPmROSDaFKSEf5uKX6WL8OcglOcoNeXyQ37gsmQr983g81mvjg1jPOzN4Lv/7oGNjbUfzj4m3gmn9Fnk7+TNyc9Ls09z1WSRhP2K4Jxc8uVXYPTtcLxxKDY9I+W05FBhnxp3N/kl+O+HXHb+2kn3B1vQcPTeTyiwizT5kzhubhu69RH0+f/q1mvW+k5Uft1p6xpsZRYvVsti+RKczlwDaPZpG2AvA5e4+FcCI7u2WEH2XTvNc1jVzWX5ZbOkctc5clvrYTNFimwflyrbVWi6gT4/OXAKlCdbS4/1glQIGiG7jCACXAdjV3T9C9C3vh5WrCCGEEKIaqhlcDjKznQGU/CkAoCkFMWC5/vFFADKixZrVF9AHlQP61Jo7s+Sr5AFwc66UiiRrWaxRnsse9FwWHE00cwkAH7ZocCm6B3dfCeARAJ8uRkJf5e7393K3hBBCiNWCapbF/gRRkOq/uvvzZvZJdIyDLMSAoTQ0KzO2bGDmsnIqklpnEsPMZTUBfaJosdHMJcqW6U7y7hhcvJjx4FIzl6KbMLM9ENk7nkb0stvGzA5397/0bs+EEELUisPQiiGdFxQ9RqeDS3e/C8BdtP1PAAdk1xBi9aY0dsyauax1XFYKXlMpoE+tA9b2cp7Lps5nLkuky3QnBfd4hrY0g/lBS1uPnV8MOM4F8EV3nwcAZvYpRINNDS6FEEKIBul0cGlmawD4OiK7e1ze3X/Qjf0Sog8TDbzKWC7RlKs9z2VpIGdlRpelAWGt6U3ay3guB3eSioQfT3uPLouN8oMCmrkUPUJzaWAJAO7+opk1V6rQczSatPzjpDkAR3vG/o1T9TkACdcZS3pohk4H/eGgIxwYhIL1cOAdCu4z9E87JlpaOZzSE526iI5cH+R1of5Bf+H+ArcZBWzBTUEuOCtojtszNLR1XiJoEYB1ST8a5JZLn471vMNC4BosDtL/nnyPt3XpfX2fIKd8IgS1OeGwEMTnu8+en6j/WwtpyJvvCm2N2vdfKMeEU56M9XO3fC7Zl1tC/T+dsnesv/YepTSnxeN/2p3KWDLt+e/3OSn05e7Ql0m0+twupMd+HenxFMAHwK/vOC7W37/wynBgLhWaQnrONon6mE76FyFI1fDH3oz18nMoiM8vqPxPkk0lgvhM46BTFHDqqLFBP7dX0LNTQar2p8BUd86kAxxIi4PwvEaag/akj2UtLOR2P546xsGCONjPkoy21ia9MnVMn92iumWxfwQwGMATAFo6KSvEak9pCWu5wWA9y2JLA8dyy2LjmcuaB5cdPZeDioPL9BLbUmRYM4tnUXvUc8kzl/Jciu7nbTM70t2vAwAzOwLA273bJSGEEPVQQE7RYvsY1Qwux7t7OoayEAMWB8qPBFFfQJ+2QojWmmZQnQF9SgPIZlq6G5bFJgeOLe2FeNbSiulI0rkwu5O8J1ORABpcim7lOAB/MLMrEL2cn0G0OkcIIYQQDVLN4PJlM1vb3T/ovKgQqz9ZwXeAOmcuS8tiK6UiqdEDWZq5HEQBfSoti+VZWLOOuTC7i3zB4Y4Og0ulIhHdhbsvALCjma0FwPTZJoQQQnQd1QwulwOYbWYPAFhV2inPpRioOLzsklggCkhT6xLWSjOXTfXOXJbJxVkaaLan+tfSnk/4Lc2sQ5nuYmVbFKm2ZA3NFWdONXMpupNiCpIvA3Az+6u739fbfaof/hh/pca61SZGX0Sa4/nNzCiTbvsg0uRvI58h7glPwcp/J68aAJxA+nI+z55BBpsfbgMntQdwWpB7nR88lPeNpDe+7YIc/j/Bj3ff619BFoPnvx/reU+Rz/Icev+8hH64ez35vvrgGbvE+oQTr4j1fIyL9ak3nRPrC3b7caL+iX5hrC+78JRYL7FNQ6G7gvwZgs/PTky9x09nGTyEU7a9Jezf95BY37o7eSPDw4gYE+SSqaEvH3yHvHrkVx1zyoJYL3YyqQL4/mHks/wbyrNGhgaSFsShG8Ry+adofyK5Hnkjt/opEhyyiDZ2JU2+wz1o97Xv08ZhybbuZA8md2YD0nw+9kWy1xkA2DLelrGfPZdpnyRv8/tJ1udwpd/jqqnf9eSrGs6InqKaZ+MfxT8hBCrPXOZytS+LjT2XFQaXtQ724mWxFNAnKxVJtCyWvgAh+DC7mxWt0YfPt78Yvkw15UwBfUS3YWbnIhrW3ILodv+lmX3e3dPhO4QQQghRI9WkIvlZZ2WEGGhkTFxGM5d1+iMrLYutN1osz0iW/JfpNCPRstiwbdZz0WJXtUbnGdYcfjpuyplmLkV38h8APuvuHwGAmf0aUZhUDS6FEEIIwsxGA7gC0fT3OgCOcvf09HeCMmngOzQ6ysxuNLOHi9vbmNnxXdFhIfoj7l52IAhEM5e1jsva8hWWxdYbLTZfQHOTJZbvNg+qFNAnlMuZ9VieyxVt0SBy2ODk4FKeS9GNvAZgBW2vAvB6L/VFCCFEAxSQQysGd/lfNZjZNDNbaGZuZhMqlFtkZi+a2TPFvz3o2CfNbJaZ/bP4f/OsdhrtU53n2hrAQ+5+LKL8NJt1VqGaZbG/A3AfgBOL2y8iSjh9RWYNIVZjHBVmLnO1+yMrpSKpd+YyX/CE3xIABuVKqUjKBfQJ22Y9l4pkRWvkuVxjcHrmsi2rihCN8gyA+8yslCTxGwAeK/ow4e73ZlXsG6Q/tqv5IYbz2rEvM/3jM+fPe5E0+8Bmkmb/JefaA4D3yx+7gL7LnJqxMGrdlOfy8lBuku8QemJPUKGwH/N5P4BLw7H7/hH6vNPS/431rH2/VLYrO230eGJ71oRQrnW9RbHe0vOx3oKcRP973qRQftWQRFu7X/NI2XMOPTAkVFx7nT+FA1cmPwcuveXUoL8RtM0P5Q7aN+QCvRrfivWvln4v0dYuCH3Z6YWQs/OXnz451tPPDp7LfXFPrG/7VsrjegRd/3PDtR+3TjBAfumOmbH+7b4hX2eHHI43Pxu0UQ5LZw9huD8nfPpJMHM/3D5srKR+vUf3y+VBDt4tPN7W9ZJdwbljgz6T2tqF/KfnUvmJ5JP8DXsmAex8Mm1wwlfOF7szac5ByzlkAWDbjLY4j21Wzspq6R0vZT9gOoDfACj/Yk5yoLvPLbP/CgCXuvuNZnY4gCsRxQSIMbMhADZ091do31oA1nH39I+jlfqUeS4zG1fcZh5ANA78vpntCCCP5IdDWTqduQSwsbtfUWwQ7t4KoOeS4AnRx6g0dqwroE9pWWxG3kyg9sFlW94TaUgAoLkY0Kc1NSvZ0p5Hjoa2BuuxweXK4uAysSzWtCxWdCufATAEwLHFv6GIvsWdjkToFyGEECIbd3/U3V+tt76ZjUL068DNxV03A9jWzD6WKjoBwF/MbItiveEAHgSwd7V96uxc7r7A3Sen/s4HcDSAq9z9IES/cuyZbjtNNTOXiW95ZrYusuOZCLHaU2nmspGAPv+556c6HIsHlzXPhhbQ1JTsZCmgTzUzl7WmPqmXeHA5OLwVKaCP6E7cvfwUlRBCiH6Hw9CCIZ0XrJ31zWw2bV/l7lc10N4fLJpFeBTAGe7+HoBNALzm7qUJvLyZvV7c/3aporvPMbNvA7jXzI4EcAGAG9396hrOX9W5ynAvgKlmthuAjQBcX6EsgOoGl38ysysBrF18QCcCuKaKekKsllTyXNYT0KeUiiQ9GAQamLkseLwMtkRWKpLWfCparEX1e4IVxVQkQweHviqgjxBCCCF6mXfcfWIXtbWLu79aXN76awCXADi8lgbc/SEzOx3AwwDOd/eLu6hvnZ33RSQ9EJ3S6bLY4pTowwDmIJp+vdjdf1NXD4VYTcj2XNa+LLZUPr2MFag/oE8+7xiU8lyW2m9tTwX0aSskosrmYGhr76llsdEgcmhx5vLW43bC/tturIA+QgghhFgtKC1TdfcWAJchGGpfBbCxmTUBQPH/RsX9CcxsAwBnA5gK4EAz+1yN3aj6XI3S6cylmX3Z3f8A4A+pfX/t6s4I0R/oNM9lrTOXxWWq6QA8QJjNrH3mshDPVHLfmnKG9kJqWWy+kPB7mqFDme6inOdy7SGD0NJeQGt7AYMHVWMLF0JUhoP4VBuYg8txkBEOJnIH6VTAkkQdCr5y6lvolG+ktmfsH8uZn6CgLpR8/lcvhQA1P7BUJJaTKHhLiLuDWVyO8tIvHxKCn8z6fWoVNYcy/HHoyzx6uFsvDUFoln9lw3Ag9bP8dkc/FuuTcVGsD7/w9tDWKRTQZlzyPd1Anwv704HvB3nbbiHYzol/uTDWP9goNenxZpBTCrfE+lKcFA5MD/Lwm0Mff3V+MjjQD9althcHOfeLIbjO3D0p0M4UqvznZLf2KoQgQPfZ0lhP8lWxnnlWsIDNtY+SDQzljfuD/DHdE4e8FMtWLn5a6p4+cxFtUEyTRygw1bk/pfJ0r3NsHgCYQ0GytuNOzifNrzUOqpV4UADuJM2v22aUp1JQsKz3h2p/8M0qV81CyfpwWNXRXXsDM1sTwCB3X15cFnsIosBycPclZvYMgEMRBUs9FMDT7v52qo3RiDyW57n7H8zsTwBuN7PD3T0ZdSyDas/VFVTzzW1amX3nd3VHhOgvOJA5uqwnoE/J39hcbllsvTOXhY4zl6VzpNOMtLQV8O9bjsKtx+0EIAoslA76012EZbFhcLnWkOhD6CMtjRVdiJkd19t9EEIIsfpgZheb2WIAYwDMMLPni/vvNbPSktoNAMw0s2cBzAXwSYQMHABwPIDvmtk/AXy3uJ1mKICfFCf74O5PIfpZZq1q+1TDuRom86cEMxuP6AKsUwrRXmQ4gGHd0Rkh+gIHXzkLAOLBVprO8lwWvFgma+1sitLAcVBTmWWxdQb0ac972faac7kOkWBb8wUMGRQGd1FAn56buTQDhtAM5VprRL+2ftjSjhFr9t1fI0W/40AzOwDA0e6ezpshhBBC1IS7fw/A98rs35v0ywA+W6GNF5HIpVS2zMsAXk7texbAs2XKlu1TtefqCirNU+8M4EhEI25OQvQ+FK5dDGAq5rmkmcb0stQsSoO9cjON8eCyxpnE9kKhbHuDmjqmGeHlp7cetxOOv2EOXn7nw5rOVy8rW/MY1tyUGIiXZi7luxRdibvvVpy9nGVmP3H3TiPeCSGE6NsUYGjpw8tiByKZg8viB+/1Znaku1/Xc10Som/jDpQZtwEASpOFefeqHQZh5rLCsti6Zi7LLYvNdUgz0tKeT8wcDmqyHktFsqItn1gSC4TBpSLGiq7G3a80s78CeNLMLkCUs9miQz6qd3uXph6PUq2JztPn4NzYfDlWkuaE7UMzygBJjxgZEifTfs73Dkoq/9t0P6ntxCKw92P1A/tu2H3L5snqLaSPIJ/oCAqAuGxm0PtMCvrRZFPsk5xz59qxPtXvjvUFtm+o8PsgD/p08veM27YJfsiLeP4h2AnxtX3vDRupt/QPV5KdYE4eZVkQ5GUXnhLrWa8nJ1J2uuzpWE+fekjZvuAd0hTn8gdnpfybU0jvF54j/CR4GMecEbyFi28dH8qcmmzqvgPCc3QQ/R5029Hh2mEPqjB6UrKB2fTkTyc/5EnBZ4mj6H7hvtNlAAA8Pzborej8u9D+M8l/uQudb/1UW9vR+bEx6cdI8+uLvcrphRecxoxfw+zZrPTewK/1JWiMRj2bYnWg008vd7/OzMYBGMfl3f3e7FpCrL44HGbl7cq54qizlng4pbQf5WYaczmDWe2ey/aCo6lM9NnmplzCc1koONryngicM7gph9YeXBbbYXC5Rmlw2dYjfRADBzPbHsC1AG5CFE8g4xu5EEIIIeqhmmixUwF8G9FPIKUPYkeUVFOIgUeFaLH1zDTmC6VlseUHrIPqSG/SXiigOTOgTxg4lgaRg3tr5rK1HcOak29DWhYrugMzOw/AfwA4zt1ndFZeCCGEELVTzbqbgwCMc/f3Oy0pxACgYrTYXPBcVktpJjHLo5mrMwJtudQmg5pyiTQjLcV8lhzQJ5rd7KGZy7YC1kjNXK69hpbFim7hYwA+4+4f9HZHhBBCdBWGfDemOhG1U82z8YYGlkIEKuW5bIqXxVY/GCzNEmbNXDbVNXPpGNrc1GF/c1MOre2hrdb2jjOXPTq4bG1P5LgEyHOpmUvRhbj7Mb3dh9qo5/7PqvNx0pUC5fJXgqWkF5FmbyX7KtmLCSQ8YptRcMIZP0NZtqacgvunjs2mPpM9D/Mp5+Vceo/8Qqr+e6TZZzmF9l8bfKGT7g75EGcetieYOduEhIU7+f/G+oKRP4717/3rsT7mlDhFON7DiGS/xgY5jvIbzhlHSRHZ8zgmWX2tC2hV95kzg956UixHvfyvWC95fNNYH44bk41RnktMJj2J9Dkozy9Sz+kv6Jo9FJ777b4Y/IRrI/zGs3gaPamzOwS/jLltJPkc2Qs7gbSzlxHAxjcFPZ48kEPJZ0npLxPXeN1UB7Yiv+5Euo8e4XNSZge+dc7MuO8BJD2PfPH5tcr+ybGp+lkWEvZsct7ZV1Ll+LX+OdJ/z2iXqSdnpljdqWZwOcvMbgbwR9DbnDyXYqASeS7LDy/rSR0SL4vNmLlsyhnaa565LKBpSMeXd3OTpWYuoy8nQxKDy465MLuLFa15bLhOMtHzsMFNMNPMpRBCCCFEf6OaweX2xf8Uik2eSzFwqTRzmbPaZy7jZbEZIWibcoZCrdFiC47mMoPVl9/+CIve+Sjebo2XxbLnMrl0tjtZ2ZbvsCzWzLDWkEG4bfar+PvCpZn5RoUQQggxsHEYWpWKpE9RTbTYL/VER4ToT2Tmuaxr5rLkucwO6FP7zGV5z6VZ0TNapOS5HNyUXhbrcM+eoe0qSnku06w9ZFCPRawVQgghhBBdQ+bg0sw+Xamiu7/Q9d0Rou9T0XNpdQT0iaPFZgf0qWUmFIiixZYbrBoAbiqeuWymwWWxH1mzn13JitY8hg3uOLhca41BePuDljI1hBBCCCFEX6XSzOX/VDjmAD7RxX0Rol9QyXNZT57L9k6WxdaXisTL5800iz2eAKUiaaJoscUlsm35ApozZlO7inLLYoEoqM+by1eVqSGEqB0ODMKBPdIJ07MC/1CwnUSQEOap7NMvvC5oDqpyMpU5aVHQz3HwEgB4Lsg79wn6AvJrj6PgIydQACEAOIT0fNLfKddZYOZGFIllYurglCA/i6fDBsVEOeYTIYgPHg0/kr2KTRJNbXd3CHBzm1GwmjlB/vrg42h3sjM3DPs2bVEApQ+DXHJZCOLDgY0W7LxVoq3B74a4ja3X0fN9XZBTvnlLrKcfFi7qGZ5MFzt1arj+4774fOi/7YxOOXebxObQ7yyL9crhFOznC1RuSpBb3kEPHsA8OyxszKfAO4+FgD67f/7uWD+4+b6hzBupIDzn0r27Bu2fza+PK4K8hMpXhIIDYSZpjkewF2kKLAQg+Zr+FGkOvpUO4pNF1us4KzhP78dGKCCHFgzp7W4IInNw6e6b9WRHhOgvVFrxWhqLfffmp3DXd9IhC8tTWvJabhkrEA1Y60lFUi76bIdlsW0dZy5Lg9LuDuqTLzha2wsd8lwCwFprNNe0tFgIIYQQQvQ+3TstIcRqSMEdGePAOKBPLeOi9nwBg3KWORs6KGc1D7TaC4WyM5dmyeBArfnoF2f2XJbSkrR3s+dxRWv0i2e5ZbFrDxlU84BaiN7EzA43s2fNrN3MMubEhBBCiNUbZR0VokbcwyAyTWn20VFbQJ+sNCRANHNZa0CfrDYNyYFvaeaS81yWZjy7e+ZyZVs0sM1aFqvBpehnPINoAeYPe7kfQggxYFC02L6HBpdC1EC+EA0bM/Nc1hFdtS1jCWuJQbnaA/pEbWZEi+WAPvmOqUhKQXzaunnmcmVrNLgsFy12rTU0uBT9C3efCwBm1s1hjtdObX9AOusjnX1R7LMclSqXlXT9fdKccD3LKwYkfZobBMmex5PI03YL+dMOSfk6h5LfLGkVDIwmn+X9qWOXs3eO/JS/pzrH3Bn0FPLzXU4+PwC4J8jLfkEJ738S6gyeTf7FK8J1mHdkKk7iFeQT25r2k23w+6dcGTYmJKvjx6SvPTh0+aWjYn2CHR/K7EKPN/Xx0PqX0M9fnfK9WP/g4YtjfSIujfX0c8L5ph7980Rbe10TPIH3bR/ukRP9wlhf9uApoQI9JZid7NfKL4wIG/uQnkKFjgnP0Ty7GwlG033FNv4Xg3zwRfJZ7kZl5pNfEwDOpHthIntDr0BZ1id9SMp/eVEbbSwivSVp9j0zI1PbXG48afZcpl/rDL+m+b0iy2dZaeiQ5cfUcGMg0W3LYs1sPTO718z+UVwqdIeZfay7zidET1CKrpq5LDZX+7LYfKFQeebS6p25LOe5tMSsapyKJDG4DAF9upMVpcFlxsxlwQGX71IIIYQQot/QnT8lOIBfuftMADCz8wGcB+CYbjynEN1KS3s0IMpcFlvyXNbQZltGZNcSg5rqmbnM8FwitSy2lIpkUBjglQa6tQ5oa6U0uBxaznO5RvTWpKA+oq9gZk8B2DTj8AbuqZCZlds6FsCx0dbwhvsmhBADFXdDS6uWxfYlum1w6e5LkVwn8zcAJ3TX+YToKirNlpVmLrNWv8YRX2sO6JO9iKCp7pnLcqlIkAzoU2HmsnSsu1hV9FwOLbcsdkhxcKmlsaKP4O7bdmFbVwG4CgDMNtJNLoQQYrWhRxZBm1kO0cDy7jLH4l9wN90060dhIXqOeW9+gDUHl39ptMTLYivnuawloE97FQF9CjXM4Lk72guOprKpSCyZiqQ4E1vOc9lTM5fDylzrtdbQ4FIMRKrxTH6QUSZdLqst3p/OWcmGSPZukUEt4flk3xj7uwCAxuLjyZ82P5U7sMQhvH/r5LGVlOdyNnnXZi8KevTYoCel2n4zI9/gMZT3EPsHyT7Lo5J5FxOwh+8XQbb+gvJ0DqWcj2fw9QUWfCEYSHf/OeVaNPKrzpkU9PTU+emcCOkkMZvzYW4Wzn/Qw9fH+rYXKK8mAIQUlniL/Xl0zt2ve6Rseax8ItHUfd8hn+WT5LPcl3yW95CP91J6vGR9jdomPSnIcUeHB7xgHj1H09iziMxcpjiG+8wexpuCvCt13/DTdyrdI89Tua3oPn6O7q/nxqY6MDXIfaj+Pfya4pyT7HuuBHudX8wok35vqDVXZT25LXs/H6boOXrKYftbRBb1S9IH+BfciRMn6puk6HVa2grIF9rKH4uXxZavW8+y2PaM4DslBuUM7TVEbi0NyJqrWBYbz1w29bzn8rz7oi9g5ZbFauZS9DfM7FAA5wMYAWA/M/shgN3d/YXe7ZkQQqy+FAo5tK4a0nlB0WN0++DSzKYB2BzAPu7ezVH0hGicgjtWthXQni/g61dHv27eetxOAIBVbaVlsVkzl0VRU0Cf8sF34jattjyXpRnHpnKpSIr9LhQcuZyhtb2A5iaLZ1wBTkXSvS/X0rixoudSg0vRT3D3mwHc3Nv9EEIIIXqTbosWCwBmdi6A7QBMcfeW7jyXEF2FI5rdW/Tuig7HSqk7unLmMiv4TolaA/q0xzOX5ZbFFs9ZiB5HS3shEcwHAAYPKqUi6d6BXekxlU1FMqQZANDNXRBCCCGEEF1It81cmtlWAM4A8E8AjxdnTBa6+/4VK4oe5eArZwEIM3MiBLz5x5sdvU0tbZU9l011pSLpxHNZY0Cf9uIAuKnMgLW0qy3vGDIoWhbLwXyAMHPZ3s0zl6XZ2LLLYjVzKYQQQojOcCDf3vF7hOg9ujNa7PPokKZXiL6Nu8cDw3+8VWZwWfRcZkWLDctLqx8URalIshcRDKoxoE88c1luWWzxJVkaOLa05xN+y6heTy2Ljfo5ZFDHxy7PpRiYdFfQCw7Cw0F8spK0A8noJczKjDIHpMq9FeS7Wec4njQnok8H5h1fVmJ+CFCDrSgoyrWpoEHX07Ef0n5+KHMoKMzfaP9JqbZOprYe4f2kL6JrPCPIBSduBWbcZSEozYMH7BsOcLAc7svMZFc4bg+2Cgd/P/6ksH9MkLedGIL4/OmyvRNNfe2+e2N9wVY/jnXb2eFzpHkavR+vpIA2W4egQel+XnZOCOIz/PY3Y738kA1DoT2p3fnZXxsHHxmC2iw4mq7lBC41FQl+TM+XUxCf06jP0ziwE7HfotQOjsVAgXM4iA8Hhtpn86DvSbd1Bh27NehLDw76pA2oPAf3ScMBibhc1lf8kantpVWUW1Lh/EIk6dZlsUL0N3gp6D/e7BidrbNosfUF9Km8LLapxoA+pbLlfJylbpeW97a2FzCkOT247LllsTkr71/V4FIIIYQQov/RU9FihegXtNJs3T/e/AAbrLNG4ning8s6lsV2loqkqeaZy+xlsaVulwagrflCL85clu8jEO23VE5OIYQQQgjGXdFi+xqauRSCKKXmGJQzvLJ0RYeZs9LxzGWxWQcqEM1cZr8Um3K1ei47XxZbGji2tHWcuSwNdGuZLa2HfMErXq+c1TaoFoGDr5wV+6mFEEIIIXoKzVwKQZQGj2sOGYTlK9uwsi0fL9EEOM9lJzOXNZyzs4A+TblcXdFimypFi60wc1nabu0Bz2WlwWU6J6cQAwv+eG7P2J+mPUOzubCjl7w8Hyf9CunJpNnfRR5LAAlP2jL2Zh5GmryJE8kbNzvlc2QWkDcSwUOIGeyb43MAOJv0FNL3kyduJu0/NXjgBr/LZkqgdT0qOHRSaPbJYJScvuiQUOZGqnx5Mn/y3pcFn+N6d9wQ64mYHeuv/jeZNh9FkmlB7vRkeLOcNYzKnEOaLIe/xfeSbc0mG8iPwnPXfGv5N+GD/OlY3zZsm8Sx7U55LNZz1tg51stvJJ/l96nCe/Q5cF3qROQ/bZ1I99SOVOYQSkbAHksAWMn3BXkIp5HPkT2+R6XqM2kvb8zx5Xffw+WPSB7bujno52j/Sdwv9rKOzNgPABeSznqv4P3V+ifr8VlmnVMMJDS4FIKIB5eDm7B8ZRtWtKYGl3G02PL143FaDaOitrxX9lwaapu5LC6LbS67LNYSZVraykSLbeqZaLEFd1SYsNXMpRBCCCEqUzBg1eDe7oUgtCxWCKI1H81MDh3chDWac1jZmvzlrSVeFlt+MJirI6BPvpNosbmc1RTYprSctVIqklXFQXJLvmOey9Jy2loGtPWQL4QASOXImWYuhRBCCCH6ExpcCkFwwJ7NR62NFa35xPHW9s5mLmsP6NNWKFRcFjuo1sFlnIqk48u7NEO67KNWAOXzXDb3lWWxmrkUQgghhOhXaFmsEAQPHrfYcG28mEpH0tKeh6HzmctaaO9sWWzOkK9hkJWvEC22NHB858PIo9LSnu+QZ7LUl+4O6BMti9XMpRDlqdavVKuvKSvnJZD0WLHPclfSnHtvS9KPIcnXSf+KNHs2LwpyNqpjPr0pjGPPJ/nmbGx2/etIsxV1LhcKj+vFkZ9KVP/Eoa+HjZuDh3L69uSz3IQqsOXvJ+SzA/Dbl0+L9e6fuCfWZ3/ivFCIczh+FUmmBzlr/S+FjT2DPOjgkAv0tk2C72/m61QeAM6laJuHhGu85SeeQTlewKdj/d0V5yeOnYWfx/pjM8jj+wUqtGvw6H7D7471DeO+nTzRHuRbPDf4IW8848BYH27fCWVGT0rWX0k+zRF07y6jMpuR93YP2n9I2mPJXl5+LvlG4tcUl6ecrEDSZ5n4Kk6vKb6Pnb+L3JfqF/sx2VN9EOmbSI9K1ec8l1nvJ1leynRbvZAP0wGsqv27l+g+NHMpBNFKy14/teHaaMt7IiVHS3shM1IswAF9ahkMetmclNxmLTOXbXGey0qDy+yZy1IakO5ORZIvOCpM2GrmUgghhBCin6HBpRBEaSloaeYSAFbS0tiW9nzF2cm6lsXmC50E9KnPc1nOx9mUM+QMeDeeuSx0mLk0MzTncvEgtbtwz54BBqLnoJttn0IIIYQQogvRslghCJ65XG/NaJkQB7ZpaSt0mpuxVro+FUkxV2dGm81NuXhZbGt7x4A+URnr9pnLajyXXujePgghhBCiH1MAsKq3OyEYDS4HOG9/0IIVrcpFVKKFPJfDBkeDLl6a2ZqvcllszTOXlZbF1piKJJ65LN/RQU2GdysE9InK5HogFUl2YCRAM5dCCCGEEP0NDS4HOO+taMUHLRpcluCZy6HFwWW+hpnLprpTkVSeuawloE9pIJo1YG1uyuHtD7ID+pTKtHbjstj2fIjKm4WZ1eRdFWJgUM/7NQf84IAbH6TK8VcCrvMQ6XkZ59g2Yz8A7FN+9whKWL/sLTqwMlWQgplMo/eMQw8IeiYVXzNV/SPSPyZ9JiWsvzYEUhn87thYf8LuTzTlvwnnt/vp/SnE5sG4g5+P9YKntgoHnkn1a3Jo68Fv7RvOPzs83taD10EW3304BNL5B7YIbU0IbX1AAZx+9fnvlS0PAL9fdVLYWBz69fqY0bFePmRYrPfyGbH+7bDTE239djJtr08HLiF9Wgiuc8OFFMRnr0RTmPDk3rGee2HYf7jdHjZGUwV6HgAA11EQn+c4ulII4nPqy+fE+gLjCPFHIMFmY4Ne+GzQu2wT9CPpIEBZUNtZ7ToH7uHXYzLQYJKPk55Bml/b6aA7gzJ0Ne81vRDAR/QoZjYawBUA3gKwDoCj3D39Jp1AnssBTt41O8TE0WKBeHDJ1yfyXGbXD+O5GgLwdBrQBzWmIulkWWwuh3c/akV7voCCA4PLnLu5ybp15jKeIa7wDpQzQKtiBzYHXzkLB185q7e7IYQQoq9SWhbb1X9VYGbTzGyhmbmZTainnJlNN7P/M7OnzewRM/tMtQ+9jnN90sxmmdk/i/83z2qH2BrAQ+5+LKJfEzbrrIIGlwOcQsFr8vOt7rTkaeayuTi45JnL9kLFIDT1LItt7yygTy6HfMHhVTaaL1ReFtvcZFj6UStWtkW/0JZbFtvclOtWz2ULzRBnkdPMpRBCCCH6LtMBfBHJ3E21ljvC3f/N3T8LYBqAa9IFzGyImX08tW8tM9uoxnNdAeBSd/8kgEsBXEntjTOzGam/0wH8HcBkM7sNwMcAvNjJY9XgcqCT9+jre3f76/oLpZnL6476HJqbcjCkPJfthU58grUtiy0UHAXPnmUEwlLban8DaKsQLRaIBo75guPrv3sCAMouix3UZGjrxh8dWtqjgW2la2nyXK72aGZSCCFEf8XdH3X3Vxsp5+7LaXM4ornYNBMA/MXMtgAAMxsO4EEAe6cLZp3LzEYh8i/cXNx1M4BtzexjxXoL3H1y6u98AEcDuMrdDwLwFBKZdMsjz+UApzRwWtmWx9oVlmYOFEqDy9JsXi5nCb9jS3snnsvSaKnKQVF7J7OMQBh45gse2q9AvtNosdH+UtqVwWWixQ5uyqGtvRtnLtuKM5foZOZSeS6FqJMsj1WWrzJdLqsOw8nXx6aOzUBZNiN/2sJq/WnEmG06LzM/1e548nayz/KBg4OeHmQr+/ZGJ89nz9B70iQuF+SCkeSzXBbk4HeTXrnWbwU/5XfPCP7J3z5InsWhQY66+1+J+r/NUbnFLUGvG/p434XBl3ofgj7mlEsTbQ3/8ZuxXn7/hkHfGDQmBvlD/FfZdgEAU0jPJj0uyDHnzw9df3x8ODAz2VSe771T6bm7lJ67O6nCG8n6IMslniN9aJAX2HZ0YDLp15JtTSH9CPss30Kn3PXT5PZ+dI8u5ANcjl9fdCOgOdU4l+PXdNZk2qjUdjW+yT4em6N7ure+mfEdfJW7X9UdJzKzqwHsDsBQZvDm7nPM7NsA7jWzIwFcAOBGd7+6htNsAuA1d88X28yb2evF/W9XqHcvgKlmthuAjQBc39mJNLgc4JSWUK5szWPtNdJvWKsnpZmSW4/bqcOxDoPLlO+vpT1fOVpsjTOX8RLWCgP70mC2Wt9lW6fRYqNzlZamZs1c1hKhtlaC57JCQB9EM5fuXnH5rOhIW75Qk09XCCGEEAnecfeJnRdrHHf/FgCY2TcAnI/yM5IPFZepPgzgfHe/uIf69iKQ/gWpMpqqGuCUvn+W/HcDndZ8Hk05i2cIc2aJZbGdzVyGwVKVA8HSLGNFz2X0v9qIsZ0NWOOZy/be9Fx2viy2dJ27c5C7urJ42Uq8+GY6EqgQQggh+irufgOAL5nZeuljZrYBgLMBTAVwoJl9rsbmXwWwsZk1FdtrQjQT2emy3lrR4HKAUwpWs6JVg0ugmPeRBmVNudTgsq2Af99yVNlZzxKG6gP65DuZZYz6kEuU7YzSoDBrCW1zauay7OAy1zMBfSoN1L+xU+Rdb+3G5bmrK635AlrbC6vtsmJ5NYUQQgDo1WixjVIMyrMJbe+DaJ3z0lS50Yi8Bv/l7mcCOBDALWb2+WrP5e5LECVEKi0KPxTA0+5eaUlsXWhZ7ACmtb0Qz69p5jKitb2QGGzlzBLLC1vzBQwp41FkaglEE89cVkpFUhx/1Tpz2ZzhuRxUnJltrbAstnmQYVVbD3guK8xclp6H1vYC1hzSbV1ZLcnno0BdK1rzWHOI3ub7P5Vyz2Uda88ow56sxPcXAJ8iPZ/0+Iz9O5NO+87Gkia/GPssjyJ/2bW0f7OUP41zUx6zKOOc9LhGpOofRXoxefWuo/2cznIZ50NMpnPb8prwWTnPyET4TPBPjloavJFL7NpYt66f6he9pf+WMwZQoP9EDsYcXwgAR5KeQW+Sv6X9sylXooUkkr8/NbXa7y7yVh7C9UlPD3JXo5NXWjjIxy4PcvEBdE99gcqcybkdgdPOuDHWx+zzh1gPPoRygZ60KFSYwSZLIGHiPJmeexo8DG/5bKyXD+E8rmzmBDA/9fyVMDpn4mP65CDZYwkkfcDzKbclFpHme+8e0umcslmeS4Z9lpXyXPZxb2Ufw8wuRrRkdEMAM8zsXXffyszuBXCWu8+uVA5RVt4/mtmaAPKInsx9vOMvw0MB/MTdpwOAuz9lZlOK7VXVp+Lh4wFcb2ZnIXKEf7OrrgWjbx0DmJU0W7lSM5cASoNHHlym8ly25csOxhirIYVGezUzl8WBZ3uVSR9Ly0izZi7NDCPXHIwPVrYBKD9zOSiXQ3u++z5kWvOlZbHZjzseXCqScc2U7oFlK1r75OBSs45CCCH6O+7+PQDfK7N/7yrLvQVgxyrO8zKAl1P7ngXwbJmyZc9VPPYigB06O1+j9L1vHaLH+Kg1DB60LDaiJT1zmTO007LM9PFy5KyGZbFVBPSJU5FUOcYqDVibM1KRAMB6aw7GOx9G0QXLzcQ2N1kcGKg7KM1cVvJclpYnt3TjDOrqSumHiGUftWHMiF7ujBBCCNFdlJbFij6DPJcDGB5QallsRHrw2GQW+1Lb8wW0F7zzZbGoPoVGyddYMRVJ8Vi1y2LbCwWYVY7E+rG1h8QD4LLLYrs9oE/nnsswc6l7s1Z45lIIIYQQoqfQ4HIAk1wWq3X2QMeAPv++5SisO2xwdKw42BrS3Nmy2Oo9l2HmsvMItNUG9GkveMVZSyCauSxRPhVJrptTkUT33mWHb5dZpjSIb1FAn5pY1ZaPfzjQ4FIIIYQQPYmWxQ5geFmsPJcRre1Jz+WwwYOwonidKgXAYXJWy8xlyXOZ3WbNM5f5QqbfssT6a4XgD+VTkVi3RmmtlGOzxBAK6COqZ3nRSwsA761oq1BS9B8q/fiXFaAna386iA8yjm1MmnMgc3AfDn7y9VRbi0hzEKAzgrz2fZRlYSo40GwO0sL5uykoygO0e49U8JSrqdykIIdesSzsXud/Y33fvpTSLfWw5tFlHePhcS0eGQL6LJm6aSh0KJ17crItvBfkqFO2ivWSo8P+C6ZSEJ/pqfq8fQPpliCn+PJQnN5uD/IXE03ddmKwYQ1/781YL5/ZIV5IxAMnBH1+6tifg/zVHcH69YPPZKTlo2BKW3ryfMc8GIL4cLut64frvbsvivWDlrq/N6MgPpNoPwXYWX75rmH/eCq0/TbJtm6mQE8TNw+aAxLxPflIxv0NAPPp2FF0nms5mBTX5yA+ySBTSfi1mhWgi4P7AB0D/JSjnqA/ChQ0UNHgcgDDA8oVWhYLoGO02DWam+KoqWFAVEW02CrPF89cVhgMxjOXNQT0qTQTCgDrdTa4zOWqDiBUDyUfZaXB5WANLuuCB5RLP+rfM5fu3q1Ri4UQQvRzHJXH26LH0bLYAcwKRYvtQGs+ObgcNrgJrfkC2vOFeEDUWUAfqyGgT0hFUoXnsoaAPpUGqwCw/lq8LLZMQJ9B3RzQp7gsttJAvXSdtSy2Nt6jpbDv9aFlseVyUxbc8fYHLbGvOc2yFW149rXlWPD2hz3RRSGEEEI0iGYuBzBaFtuR1vYC1lkjvCyGNkeDn5VteRoQdbIstoaAPu1VLIstBb2pJRVJVvTZW4/bCQDwvy+GZTBZqUi6O6CPWXYuTiBEi9XMZW3wsthlfXxZ7Fvvr8K/lq7EEwuXYqdx63U4XnpfeuZf7+GMO54DEO5hIYQQQvQ9NLgcwJS+uOVMy2JLpJfFDh3Mg8vqPJe1BPRpr2LmsuSfrD4VSaGKmcuwLLbc4xk8qHsHlyVvq1WIFlsKnKQ8l7XxXnFwOShnfTqgj7vjrfcjc9iidz8qO7gs/aAz9/XlHY6J/7+9M4+TpCzy/i/qruq7e+4ZZnoEhvsQBhG8Zlc8VxRPwBOPFVDXVRff3RV1XV133Vc8XhU51gPWg8OD8VhBRXdQEYHhHpgBBqbn7jn67ror83n/yCsyO7Mqq7t6qro7vp/PfCY688nMJ6syqyoy4hdhEaSX6g0xpqPKvrhei2srueYyzWymjZty/Fcxm2vCBgLmda37z2uYfTnTtF3DtJV38Ab3b3VvfwGzv+Jo2vLdjm7u9kGms/zFJtv8zM+ZIBDAZ37wBdveE2GvxcnM/MT9tr0lc5Ztv+OH/+Xa1/e+/Le2ffDLjk7z5O+w7b/sbI89cNMNfxY75sYXX+T88S3HvPWWd7m34S/5Vx3zEy//tG3/+82fdVa8go3/vOf4V95um//nCaazvJSNOcoxl/x0l21vpUG4OJ/Zir3f5Lzfv3nxawPn0nUF049ewvScd7Hr5SVM57idHWMvv6YA4IeO+Thbl+ca31OYzUW2TGsMwHUfPMaXc21kJ7NPYPa9COaxgOX8ft7mWbeG2TsDtp+OZvII6Sx1uHTGQvORtNgFjJUW29uWREEilwCstFgnVdOOXJaYcxmvpbmcTuSydlps2MilFkpz6aTF+h07FiF7brNBsaLX1K5K5HJ6jJvOZSoebWnnciRXtu+pnUM53zHW+i17xbkUBEEQhLmAOJcLmFypAiKgJxN36S8XMt5WJO7IZci0WDL05WFwWpFUSYu1IpdhK9DqqmqaLeA4l0TwjR7GzVYkYZ3keilWtJqvoxT0mR5WQZ9UPIKRbOumxR4YLyARjSAZi2DnUNZ3jOVcPr5vfNauRUEQBEEQGoekxS5gciUNmXgUmURU0mJNigFpsTkWuaxd0IfCO4JmymeoyGXISKKm106LTcaiVduVWFrIsqaQiFXf13QolvWar6NT0EeuzXoYzZcQixBiEWqpgj6cXKmC8UIFR/WkMVGo+EYuK5qOUkVHPErIlTQUyrp9PwqCIAgCAONpvnQ6aSnEuVzA5EoaMskY0onogkqLHc+X7Wigl5InomalxRZKWqj2GQBACF8t1olcVmlFQvX1uSxrqmafS8BwILUAcWjcjKSWtdpO4HQoevqJ+pGMRu2xQnjG8hVEI4RYNIJsSTOjxK3llB0YL4IIWNyRREnTsXMoC6WUK4o+OF6AAtDblsCB8SKypQrSiSg0XWHr/nEs7Uw17wTmBEH9LLn2aq9nXdBPAt7zkmvCuP6y37NNgB7z9aw/4mHWK/CPfFuPHpBzzTX+y3/B7MuPda/7Covgf56tY9pAgPXWXH4JW+7WXHL95sk/Z9rIPzjayGfGnddlVc55vb5Hnr6J65n9gGNu2cR0lvv9xwBw9bk84bUP2fZWOtq2/05dZ9tff+vH/Y/tYezfHG3iv192pW3/5Duvtu033vwrZ4N/C97XCSeyeZ3yXGfFRsc8eKqjN00Mdbu2L7E2lVju1UCaML0rVrlXuXSWN7G+kTex9/vd7Jr47usdOz/gOdDzHPMqtviD/Hpl1/0pTDP5GO9fCbj0m5vZfvl1CN7fdROC4Z4V72HJPwO8OkuO93PAb19hemEKgoGkxS5gcqUKMoko0vEocuWF89jn2cNZ7Bnxb4rkdXoyLHJpFZap9UM9QvWlsALVq8Vajmc9BX3iVdJsLeKR4II6VpruTHSXfq0nLMI4PFLQZ3qM5kqIRcmOXo+2WMXYwbECDk0WsagtiXg0glQsimxJw5CnJ6d1j3an40jEInbq/h+ePoTxwsL5vBIEQRCEuYQ4lwuYXElDOh5FJhFbMK1IJosVFCu6b8ROKTWlz6WrFUk5nObSKOgTbj6VEGmx02lFEiZymYhFEA1wLhOmQztbjl2xotvOYxBS0Gd6jOfLOHNNL/7PK40IVasV9fnKb58CFLCy24g8pszrwKu73D2cM9dHccKyDmSLhkP5o827EYsQujNxCIIgCAscBaAwC/+EaSNpsQuYfElDWzKGVDw6751LK4L28VccB8A/smgUsIF/QR9X5LJxBX0qIdJiY3UW9Kloqmr/SIujetOBabF25DJsuLROiuXaabERUzcozmV9jObLWNPXZjtfrVTUJ1fS8KMHdmNpZ9KuumxFsD/+o0exuCOJWy49Bxdedw/2jBjOZSIWwbFLO7Bl3zjKmo7fPnEAi9oT9kMXQRAEQRBaB4lcLmCyZlrsQiros3W/obnwc6pKPgV7XJHLSri02HoK+lhpp9XSWKN1F/SpXS0WMM4jk/B/vmRrLiuzVC1Wq92KBDDeC9Fc1sdorozuTBy9bUZF4FaKXO4ZySGTiGFFt6NLSsYjiNDUwk1Fs3JzhAgnr+iCpivsHc2jrCks7kh6dy0IgiAIQgsgkcsFTL6kYXF7EpnE/I9cWjxRp3NpOV/5smanutZK56yvoI9xzGpprNG6W5HoSMZndmvb1WJnLXKpIRnCQUjGIhK5rANdVxgvlNGVjqMn01rO5UShjJFcGVe8fB3++PRhe3mECMu70iiUpzqXVnT75JVGYYwD40WcuqrLfugzPyA4X8WN1JIGFeDgBXm8x+MFPIIKgPDPlqCG74CrsMlyVsTnNj6GFVg5jxVreT3cfJfZm7lenjWmv5gt/hxvag/g12zfr2CFVda+yrFfycbf4JifiXzBvS/lFFzZ8l72GcZqG73p6R/b9ve+/LfOivN5ASQgcYNz/qW+rc6K4862zQ0/dwoKbfp3PkkAn3PMrRewYjnnO+bXP+1fxOflH/u5a1e/ef5rnT9esMmxJzfY5hu/yor4/Ilt/IJ7Xfs6UznXwgN/YPP6rlNA6WS1yLa3kFPAqNQHN3cx+5PM/uOjjj3KCiW9y/PeEy8C9BVmv5XNi10TvOiS8uzrS2xfH+TreEGfTY75WLUiOnyO7DpUA2zFg8zmxX3YtQIA6GA2L+ITptCPdxyHf4bw+77FNO86JI21xZDI5QImW6rYabFBOsT5xhP7jC9zP0fNSnvlzqX14zZXcvpcJmoUy7Gru4Z4PctW5LJKpNGOXIZ8f4zI5cxSBq3I50wK+lSjVNHttMhqJMS5rIuJQgVKAV3puJ0W2yoFfYYmS4gQ8J4Xrp2yrn9RBgVv5LLs6HKPW9YB64p+8/qjZnuqgiAIgiBME3EuFzD5koa0mRYLYErkYL6hlMK2wQkAgK6mOn925JI5j5EIIRWPoGCmxSaikcA2JhaWFKwcohiOpWmMVtFIWs5lWOffaEUys1vb6XM5ewV9ajnpgOlcSrXY0IzlDUeyO5Mw056jGMm2RuSyrCskYhHfVOzVvW12qx/AePhT0pzIZTIWRToRBRHw2tNWHLE5C4IgCIJQH5IWu4DJlTRk4lG7aE3OLPAzXymUdRQruqExLWnIlSroSDkVJ4s+abGAkRqbK1WQiEZD9Xy02nsUKzpSNaJzdkGfammxdURCjXF6qII+1eB9LmeDYkWrmV4MGI6+RC7DM5o3HMmutHFd92QS2PjwXjy2dwy3XHpOM6eGiqYHXuf9fRlUdGU/bCn56JtXdKVQ0ZV9boIgCIIgabGtx/z1JISq6LoynMtkzNYvzffIZbZk6ATakzHTudRczqXzg9bt9KTjUeRLOlS8dqVYwKgWC4SMXGohnMs6I5cVLVwrkmo4zuUsFfQJUS0WABKx6JRCL0IwVgqslRLb0xbHnuHW0MdouppSuMpyeO/YMggAdvTSetDz+defgnOONkRYfe2tXcSHiK4G8FIARQCTAP5eKbW5ubOqhfcnANdiHc/skNoxF0wXtv9OtjzgemRDErd81LWqVGB6zld9zLG5tpLpD5HmOjsAFzB7/bGOvZnp9q5hWrsb2Xi+XwDoZtq3zewc2ZS/F2E6y39g2x7n3lVpGzuvtKOzxLsdcxMxneXNnrm8iM+L2ac7pjrkfBfQJufz/DeLmMYSAL7F7PM22OY7vvxftv3nL59r289ETnLGX87mDuAB9hbBtcrRFm75NFv8OLO73ff5BSuck974xxPhy3nMLnje+zuY3c3W7WfXzvlsOdeSjniO8yfU5ksXOvY//GvwOH5/qWvY8v6A8VyvO+5Zx+/bdMByr86SE+QKVAJsQaiOpMUuUCx9k1Et1vhgyc3zoj65koZ4lNBuRmetvnkWfppLwGhHki9XDJ1gqMil8X+4tFjjyz5MQZ/QzqXPj/h6sVqjVGazz2WIarFJqRZbF1ZaLI9czlY7mWpceN09dvsfi2r9V9f0ZQA4D7isBwqretK+41uU2wGcopQ6DcB/ALilyfMRBEEQhCOORC4XKJYjmUlEkU5YRWvm95OpXEnDsUs6bIfJ60w7mku305M2+4DGIpFQRWjILD0SJp2zohkprFSlZ5/tXIZub6I3LHI5G3pHXXfr6aohBX3qY9TSXJrOZXcmYUefLWfP6iNp2UeKiq4C+7nazqX5XlsRzOVdqSMzuQaglPol+/MeAKuIKKKUkgtYEARhtlCQtNgWQ5zLBUquaDmXMaTjTruN+UyuVMGJKzqxZe8YAJ/IpZUWG58aucyVNCRikVBFaOpJi9WqRHMsphe5nKlzWV9vzXqwHNYwmstkLILJ4vx+6NEoLrzuHuwdNdo0dJrOZW8mHrrKcLX9AjNzRDVdVe2/mknEEI8Sinbk0nj4EJthBL6JfAjA/4hjKQiCICw0xLlcoOTKxg92I3JpROPmc6/LUkVHWVM4YXkntpq9LrOeSG1Qq5F0PIrRXAnFSjSUQ2RFIUuVcK1IqrUhAZyCPt/+4w6885z+mvusln4YlkYU9MmVKr7zKPoUawkiEY24qogK1aloCql4xC4k1Z1JQNMVlFJVo+OzzbgZUa2mLU7FosiVjZY/xZAp6EcSInoQwOqA1UuVUpo57iIYTfReXGVf7wfwfuOvLjRPz1TtuFyjdQqzeY+9M5jNe/IBeNGVjs2Vp/kgHZrTd7DU59WHsb9P6WfLeX9B1msxz/oWetn8Q99jgl2aS965y7YPTnre8g8x+/MbHJv373wps09g+33PLnAO9rJ9L2MrLmP2l5j9z+6p4E72HTPKTuAzjklvYmN4Fx82BgBwhWMe/QFHBPk9YhrVtKOzTI86gsT8JT3ufXGd49sd8wPqy7b9Tf5R8LkXOPbFbv3mxu6LnD9Yu1SXBHEDO8f3eT5jLmD2X+APzzlQ/Npxa39xG9Pouq49JtLlGlvXfcNtwKWtJFakTPGeofye4jrLvQhHL7N5z8olnnFBPXGnQwv3wxSOGOJcLlCslFDeimQ+Ry6tlN8Tl3dio/kjO1sMSIudUi02iv1jGtrq1FyGSSmt6HrVNiSA06YkbPzJqMrZoFYkM4h6bT+Yta8tjuXEh06LlVYkodF0Hd3phP13j1nYpxHR7JlgpesGpcUCQFsyisHxIs76tzuRLVWwqC0ROLYZKKXOqDWGiF4P4PMAXqqUOlBlX9cDuN7YZsX8bzAsCIIwW+gA8s2ehMAR53KBYqXFtiWcarHzuaBPwYx+rVvaDisw6dWYBhb0iRtpscWKbr9W1YhQ+B6RlSqpghZW5FKF1VzqqmqEKAxW5PKrv31q2n0FK7qOYsUncln2f539SM4xzWUztIyciq7Q1+48Be8xHbSKphDi0p01RnNGixTruvR7fVb3ZtCVjuOE5Z34+SP70J6aW19PRPQaAF8G8DKl1ECTpyMIgiAITWFufXsLDcNyrBZKWqylO+tKx21nzRu5tPtcetJiU4koCma6XneIHnuWO1UOWdCnliNYb4qrUThlptVije1nElLRdOXrYBcDWr74IQV96qOiK1tvCRjVYo3lOoDmeZdW5DJa5UEKEaE7k8BXL3ou9o3mq6bxWs7prZcFDmkG3wVQAvBjNveXKqWGmjclQRAEQTiyiHO5QLFSYBdKWqyuFCJkOE0R01mbErkMcHoyVuSyrIeKttmay7CRy1ppsRErcllzd8Y+QzistbBSKMNGS70opaAr/+itkxYbQnM5R9NimxXBrGjK9QDEdi5DFGaazTmP5WqnxXKaqQ+dLkqpxc2egyAIwoJDAZi/P1/nJOJcLlCyRacVSSo2/9NiNV3Z6ao/uuxcrLvydkyG1FwafS7DFxmx/LpwrUhq96S002Jr7s1o86Er4LaH9uKKVxxXe4MArCJD0/Qt7TRkXRkR8TTTXhYDqvL6kYhG7QqiQm0qum73uASAbqa5bCbetFghiNkqhuEt4GHR6/k7qOk6L/jB5zjAbE9P0j/yNp8BgijevP4XvNCPNyTN5KuPsWO+vt+xT2b256o0ryd2TH5bsII6B2nU+eMuT0GfbzD7g6z4yutZIZrbNjn2nY5U9+CHPPvKs/MqLHVsVlwHH2Tn8jM2dwA4+j72Bzv+crb4Fz+1zTOVc4wHvsuK6ADABsd85j1O4R78ms/FMfMbWRGfT7p39Xc//aJtf/0NH7ftbx7+GBvFzutyNvdrvgwX57Ft7uTFblhhqdQljq02ubd/4QbHvo1vzwrsKDaXHvYaj/DxgLtSURjOc8y7O92rXsCOqfg9xd8XVg3KVUjLe9/y+7MjYDn/DPAWzOLM9DNIivgIQGuV4xOOGE5abAyRCCEVj9gNzOcj3pYfmWQ0vOYyEYVSwHihHCra9uULTwcAu79gPfPyw4q0qhDupeVEzDTwE49ZabFOj0QrshUGXon38GTRtc7SXEpBn8bA3xtNV7ZDCTiay5lU/a3n+EFYabG3NkmLKgiCIAjCkUEilwsUS19ppcRmErEpztZ8QlduJ64tEQuuFuvTigQAxvLlUNG2etp4lEOmsBIQKnRp9cKcaXzImtN0A15cv3twooijejP23/WkxSZjEZQ1BV1XtpMt+GNFrbszTpXVtkQUEQLGCxUsD2hHUs9DA+82YVNox/JldKRic7lvpSAIgtCKKACFZk9C4IhzuUDJljTEo2Q7QlZF1PkKT4sFDKfaT3Np6TI5lgOuVLhom6VXDJUWG0JzCQCgcGmxZd045owjl9GZpcVWi1wGaVv9sKLIJU1HKtLEcqdzACtqzQv6EBFW9WSwaziHfWMFrOxOB20eyHi+jPZkfV8VXq3uWK7siqhOh2ZV4BUEQRAEITziXC5Q8qUKMgnn7U+bFVHnK5pyt/xoS8aQ9TjTJc2/YE+K9XAIU9CHO0S1CNOKBDAikWEcPU2zIpcz8y6dIkLT8y55VPjQhCct1nQuUyGiwEnuXDazl8YcwHIuvRWNl3UmkS1WsGckjzbzPs+VKqGuu8GxArYOTqC/L1NzLOeJ/RPoYK1ERvNlV/9NIYjZyh4JapJerXk612hxzeREwHKvrrIzwN7pmFxneR7Tut3p1Uwe75jPvMWxj2bjbmPbH+PRJm6/xrEvYstvZvb+px2bTnXslzzq3td6to5r8K56nmOft4HNiw2/zvN5mur2n9eHHHOVeptt76l6G7LX4pfs/Le8wTYfGx53lm8P3lPiKmfc0b3P2PbW7SVn0LscneTR6nHX9l8/1dFZul5jLqV9EZvj89nya7guE4Br1/zhGLuOeNTq6g3u7bku1qVV5PZKx+xji0eYDhYArmBzvmrAsT/V79guve9XHPMFH0UwfC5svy7NJR/j1Uzyn/ITAcsbCf9sqPYZIixUxLlcoORKmqvB/XyPXOo6wANfbckocsWpkUu/VE3uhIeqcFpHWmxF00M1tyeiUJrLeiKXtSJBFDJa6keumubSTj8OVy0WMHWaqWlOZoFQMa+3Lo9zSURYu6gN+bKGpw5M4sRP3wHdjMLXengwMJQF4BRoCkNZ0zFZrLiuwdFcacaRS0EQBEGYgg5Ji20xRACzQMl5KnimE9F53edySkGfRAyTHueyWNF8I5NpFjELlxZrRttCpsWG6WNZt+ayAfJEI1o6PfeSP6iYGrk0NZehqsWGjwK3AoNjBWSLzdEuD2VLIAAnreicsi4aIaxb0o7FHUl86K+PxdLOJIoVHQ/vHq26z93DOQBAqRL+s8HZxnnPRvNlV7quIAiCIAjzE3EuFyi5UgVtLCKXMdttzFe0KQV9pkZqixV9SjEfAEgnnGX1OJfhI5fhbsMwbl6lQWmxABAhmrbm0opcEs2sWqzlgIZx1L3UW+F2phyaKGLncA5bByeOeHGsiq7j8GQRfe0J9LUnfcck41GsXdSGj71sHVZ1p0EAfvno/qr73T1ipDoW63j9dxw2op2lim4/7BjLlaek6wqCIAiC0NoQ0Toi+ikRfZOI/i3MNpIWu0CZErmc92mxnoI+yanVcUsBfSzTcec2SYRIi7UL+jSoFQlgpqiGcPQa1YrE2sd044WW5jIViwZqLsOlGBtjpuNc+lFvldN62LJ3DIAR7d02OIETl0+NIM4WhydK0BWwtDNc7nAsGkF3Jo5fProPa3ozdhVZb6R6z4gZhawjcmw5lwrAgfEClnelDM1ljbRYKdgDhOsxV+1rm28TtC++3Nsvj8N1XQH6NJdwz7uvAcdce7ljr3qVY/+R6dPuZHpAL8dc6NhHs/3ircxmmsntx7q358e/iY1bzsbt/6Fjv5TrP/vd+3o9szez46/neeBsjGKav0tZP0cAKPo/CDpad4SGz9Cks+KBY9wDL2T742/FR5j9R6eXZgmOhrCrOOja1diVTqPP0k+cz66tb38uG+Xsa4Ny9KabyNMP8hTWJ/Mwn8uAY5/f79jvYmN+5t7Vya+937a30FnOiiuY9pX/3B3xaGQvZq/RRrac9TXFDn7tsGvyZo929yKup2QXQlBfVVfPTO8YrsG823971z1YRSTruieDdNDVelvWy2z2yZwGTaoWS0T9cF9V3QA6lVJTPliJaADGLK2Z/qNS6tfmunUAboSh+B0C8E6l1NPefdQxr6sAvBFAP4BTlFJb2LrpHOtvANyolPoZEX2ViM5USj1QbQOJXC5Qpmgu53FabLGiQQFTIpd+rUh802IT9aXFEhES0UjIViRhC/oQwsQuLd1dI5p2EGgGabHGl0oyHsHhyZJrnZUWW1dxpAY5l7PJY6ZzecKyTigFbBucOCIpskopHJgooC0Zrauqa29bAgfGi5goGHM8OFHEQ7tHMZYr22P2DBs/TsqaCiz45b1GLOcSAPaO5jFZrBj9N6WgjyAIgjBPUEoNKKVOt/7BcDR/WGWTN7Hxv2bLrwVwtVJqHYCrAVzn3ZCIkkS0xrOsnYhW+BxnI4AXw1X1qvaxiOhoIrrT8+/jAP4bwHlE9CUYTzL6q5wjAHEuFyzetNh0fP6mxeZMJ/K9L1xrL2tLxpAva3baHhBcLZY74WF0goARvQynuQzZ5zJsKxIrLbYBoUu/aGnYVFMrCv765670jVzGoxQqYmsX9KlD89csHts7hlQ8gvZUDM9Z3IZiRcd9Oxr5tNif8UIFhbKOZSGjlhY9mQRS8QiGsiVkixUMHM6irCk8vm/MHrN7JGdHwfePuR8NK6VwzaZnsHnnCMbzjkO643DWvqb3jOQwZq7rqqOgzy2XniORTEEQBGFOQEQJAG8D8J06t1sC4AwAN5mLbgJwBhEt9gw9GcBvieg4c7suAL8B8GrvPpVSf1JK7a73WEqpZ5RS53n+fVEpNaSU+jul1D8AmATwRK3zmjXnkoiuIqIdRKSI6OTZOo5QPxdedw92D+ddEbnMPI5cWj0XuTNt2Tw1thSguUy5CvqEa4eRiIWLXIbuc4mQrUistNhQe6zOzKrFakjHo1jamUK+rLkieEFVef1I1FEc6Ujg51xbyx7bM2ZfV52pOAjA/QOz71weGC8gFiH0ttUXGYxGCC89YSmGsyU8fXDSdvafPGCUsi9WNAyOF+xo6N4RJ8WqWNGwdXAC/3nHNujKKNhjMXA4i86Us82oGQkVzaUgCILQcKxqsY3+Bywios3s3/urzOK1APYqpR6sMuYHRPSoqV3sNpcdZW6nAYD5/z5zuY2Zhvq3AH5FRC8C8FsANyulvlX9xXER6lheiGglEX2biL4N4FGl1NZaB5rNyOVGBIdlhSajKTWlFUm+rEHXp+tONI5GF2Kx0l/bWMpgJmmcO9eZBqXFZupMiwWMoj7hCvqoUAV9Qkcu62hFUgujoM90+1xW0JaMYpFZXIYX9SlWtNCvoxUpLrZ4tdhSRcfgeMG+xqIRQiYZxf0Dw7NaWEgphbF8GX1tCZemOCznn7oCFV2hVNGxbmk7YhHCk4OGc7l/tACl4DiKozl7u+0Hs8gWK7jqzaehPRm1U2vzJQ37xgrIJGKIRQh7R/N25LI7I2mxgiAIwpzhsFJqPft3fZWx70H1qOWLlFKnATgLxvP/b9Q7GaXUXQA+DuAPADYppb5W7z6mg1Jqr1Lqvea/r9TeYhYL+iil/gQ0Jj1PaDy6rlz9G9OmXazorojmfMCKXFoOJeBELl0RNU1He2rqLRGPRmzFYxidoLVNmAqboQv6hNQ/Oq1IGpAWi3DRUj8MTW8MizsM5/LQRBFr+toAGNViw76OrRa5DMKJjjvXWGcqjkd2j+G0VV2IhHiPp8OhiSJ0BaSmec9uOG4x2pMxLGpPoCMVRzoRtSOXu81iPh2pOIAC9o4aj3JLFR3ZYgXLulJ405mrcNWvt+HARBGlim73xUzFI0jGItjDI5fS5zIE09HoBm0TZrm3AXpHiO33Mps3eT/FM+5Ox9xxDbM9jeltqvxm4UVW8EpmO0VlcAornvLYgHv7Hf3sDyaJ2n+ZYxMv4sOKwtzICscAwLucKD2OYQWBguqtfJQVlPmKp/DN+Wwde7meibCCOGk2/kzP9ut5gSBmr+KD/F/vsaS3Ago7r5+xe/WTbMiLnH1tyrD34XL+ngDYw+yLmM2L+LyNLd/A7Nf91LWrLek32PbL1c9t+zcfe60ziCsCetzv16ofOm/MnggriLQjoAgP56IBzwJeQIpdR69n185tTtGjqUV8OPx65/cOPyYvyMPx1ovhF8le+FPts2UJs72fCfXSnFZczcTUPb4EwDuCxlhpqkqpIhF9E4B1Me8GsJKIokopjYiiAFaYy73HWQrgMwD+HcDFRPRjpdR9dUw19LFmimguFyC6UlBwR+Qs+0i3UDgSWA4kL3binK8nchkQRbScg9ARt1jE1j9Wo6zpdnXZaoStFmsVXWmEL0NE0GdQ0CeTiGJRuxGtckcu/avy+pGcIwV9skUNRO7oeHsyhpKm247nbDAwZDiAqZCvp5dUPIqTVnTaVWYziSieGpyAUgq7zWI+qXgE8SjZabFPH5yAguNIt6fiUAp4/TfvxodvesjebzIWMdJi80ZBJ0mLFQRBEBqOguHTNvpfeC4B8D9KqSG/lUTUZmokQcaT/4sAPAwASqmDpn2xOfxiAA8ppQ559rEcxiOo/1RKXQngTQBuJqJzw04y7LEaQdOdSyJ6v5XPfOhQw89v3jOdlDsr9dWbFgsA773hft9t5jJWWiw/X8vR9GoBgyJqlrMWVisYj0ZQbmDkMkoELYSjZ53rdFIkvcxUc5lJRO3I5Rdu32Zfp0ZabHjtqrFNizuXpQqes6jN9V52mFHw8cLsOZc77Uhh8OtZT3GcTDyKbEnD3tE89ozkEIsQfnL5C3Dqqm47LfbxfUbLCCvzwbqXJgsVuyhYKh5FMh7FntE8RrKGc9kpzqUgCIIw/7gEnpRYIvoVEa03/1wKYBMRPQpgC4B1AD7Ahl8G4O+I6CkAf2f+7SUN4FNKqR8AgKntvABAu3cgEX2NiPbAyGG4k4geZ6vDHGvGNL3PpZnDfD0ArF+/vvmCvwWAJat0p8UaP05DBNvmHDmfgj6ZpFXQx4lcFqs6l0ZibOhqsTEK2YpED9WKJBIhu81INfJl41zDOKy1IBivye7hXM2xXgzNZQy9mQSI4HotihU99OvY6FYkY/kyorOQqp8tVvBXxy3BvlEnjSkejeCYJe047KmW20h2mpHLsGnGtbA+B95zw/0YmixhRXca0QhhZXcaD+8eBQA8sW8cETIimoARXY5HCZPFCoiAJR1JRCOERCyCUkXHs4eySMUjVR1gQRAEQZiLmG09vMtezexnATzXO4at3wZXXrvvmGcBPOtZ9iiAR33GfhjAh6d7rEbQdOdSOPJYETC/yOV00yBbGSs6yVMWrZS+SRa5LFapYmo5a0Fps17i0UioxvMVXYVqRRIh56FANRoZuVzckcSzh7P46y9tQm9bAqt6MqHmChhO++KOJGLRCPraEq4U4WK5nrRY4/0oNagVycDhLOIhj21FWmtF/UoVHWVN4eSVXfjKhae7tj2rvxe3bt497cJItdg5nEMyFmnI+w04zmW+pKFQ0XD8ckODt6I7jV88sg9vufbPAAiZRMyl6+1IxjBZrCAejeCkFZ245dJzcOcTB/C+/96M27cMulr+CDPFGwmfSdNy70+ACWZz/SXXfnG9Fy8ayLRmAIyK9xZMUOjSdLFG9LgtYLl33R3wZZL/0e9ZGdAjfC3TI+5gv9HOZ7q9d3l/u7EK0NvZa3Ee2+bjbPgiZl/r+U33C7bv17PtuQJqM9NZft6z/RZmX+6Y33/Pm2z77a/7sbPiIrYvqvL7kuseydE8YjMbcyazr3FrQf+vEVwBAPyfZ/+fs+IK9jnFa1zy1+v17HiA663/TS/TWY4wHW8PO/n3ujff8wGms/wIW3EB00lewJaP8GvFe02z68Wl8eVjBpj9UWbf7tkXf/03wR9+Px/PbK/A92DAuOEA2/s5Ua/OstrnzEw+j6aJjmB5qtAUZs25JKKvAXgDgGUwwrJDSqmTamwmHAGstFhvKxK+bj6RLVnVYtn52pFLnhYbXMXUTosNG3GLRkL2uVSIhXBYo5FwabHW+TQicrmoPYmOVBwnLO/ETfftQkVTOGbJlAyMgHlodmR8UXsSB8ad4hHFiuaKmlfDjlzWWS1WKYXB8QL6WHsOpRSKmo5Kg69xS1N5ysquKeuet7YHN923yxUhbyS7hrL2NVvLCebrg8bGIhGs6EohV9JQLOs4qicDAFjZk4YCUNIUth+ccD2YAoD2VAzDuTLKmo7nLDYKN63qNYpM5Mua/fBKEARBEIT5zaxpLpVSH1ZKrVJKxZRSy8SxbB0sJ6XNJy12vkYuieD6gWtFLq1IH2A4MNXTYmehz2XIgj4RolCOv+XENKo4aTIWwX+84RSs7E5jKFvCaK4UajuroA9gREC5c1jSwkcurUhxsVyfc7lnJI+dQzlXIaGhbAlKGQ49X14PFU2fco9YkfGTVnROGb9+jRHZmCjOzhPcgaFcw9NN1y3rQLZYQUVXWNVjOIgru42CPxOFMibNNjMcS3epK6DfrAq8stupYBi2l6sgCIIgCHObphf0EY48fpHL+ay5zBY1tHnS+KzImTty2bhqsWHSYnVdQVfhooyRkJVbcyUNEWp8C6AV3Smk41HsOJwLleKYLWp2GvKi9iQq3rTYsNpV0ympN3JpOY+8END+USd6+vSBySnb1ELTFR7dO4bdwzlXIa2JQgXpeNSVdm2xqieNRDRi94FsJKO5EsbyZVv72CiOW9aBgvm6HdVrRi67jf+t4jw88nzLpefgpx94Aawrbu0iw7nsSMXtHplh06kFQRAEQZjbiOZyjlPW9LpT7iznwNWaI25GHlogLbZY0VCqNG4eudLUSEsiFkEiGrFTZo2IVHBhlCjV51wmohGUa5yDlZ4ZD5UWa0SFdF1V7ZmYK1Uapr/jRIiwdlEGT+yfwJ6R6gV+NF0hX9amRC4t3WGxihPvhYiQjIVLMeaMmBFWHvHcy4rtPH1wAucc3VfXPp8cnEBZUxjKlrC6NwMiwki2hPFCBSu6Uq6xPO20LRlFfhbSYq1iPmGj6bWw5vzTB50mdavMtNgVZuRyNF9GNELIeKKlqXgUmWQU2aJmp8Va2z+xfzxU0SphuszkwYW3Xx4njA6L97lMe9YNMJvp3sA1df/ObK6z9PZm5D9V+L6G4cunPH9/7kH2B9PK7fg8W84aL/6Cae1u9vS55H0fu5nNZaW82x3XXOZv8czzQtu85rPvtu3L3/pdNohp8670akfZ67TRyZz4p/d8wVn+Ipal8W62r+96tKQfZed5NnuP+Nu6idn8pfukW7/5f97A/r6KfQ/+hQ1ayezfMvto97Rcxx8ZcOwrmM7ySTbmKu9rxMV47Byv5UPY+/KiCxEIfy9vYy/AeVc6dpad+/6geQDAjcz+BLO5GJXfn7za9vmefd3NbN7nMoyGGnB/hoTRTFbri9mEdnYKwOzVzROmgTiXc5wD40Zz87FcGV0hm5RbQSTucKUSxo+/VkiL3TtawHC2BKVUQyJwk8WKKwXYwvgxbHwQWpGxaq1ICOEjgvEQabGWkx82cgkY+jW/CJlFrqg1RG/pR0cqjiUdSQyOF3FooogP/dD4webV71ntKCznclF7Ako51109rUgA4z2ptxXJ0KTpXPLI5ZjxhUoAnjow4bdZVe4fMH7IljWFyWIFHak47txq/AjtYdpOL4lYpOHtSC687h4MmdHZRkcu1y11foQcZeomO1JxQ/erKxy3pN33AUdHMo5cUbOjnYCh1Xxi/7ikxQqCIAjCAkGcyzmOVYXz/oFhnHei92mvP76Ry4SlmWq+c1nWdGi6wv6xAlZ0e5+GuwlT0TNX0pBJTnVm2hIxW3NpRcaCImqxaKQupy0epZoOUVk31oeqFmuOyZWqO5fZWYpcWixqT+LgRNF2tPywUo2ta8rqdWm1UqmnFQlgRIvrTYsdzlrOpWY/pNg3mgeR8b4/VUdarHWNLe5IImYWVhrOltCRiuPXjx9AIhqxNbx+JKIRaLoydagz+8jlPW0LZlS2UZFLC6toExGwuD1pL0/GIsiVNJy0ohNfNqviclZ2p9DXnnDNx9JdztYDD0EQBEEQWgtxLptM2HYHQViO4n11OJdW6it3UqxiN3X+hp8VLH3eUwcmajqXYQiMXCaitiNkO5cBkcvlXSlX5dFaJENELq3zDJUWa0Uua6RX5koaZjMDsS0ZRYSA+3ZUcS6L7uq8i0wHxXIQ62lFAhjOWb0FfSznUlfASK6M3rYE9o0WkIxFkI5Hsf3gZF33nlIK9w8MoysdN53LMlb1KPzh6UPoaYtXjWhb7+/gWAHPWRyu2m4YChUNSzuT+PHl585oP97zT8WjdjSUn1fCdC5P9ClcBBgPYNo917JVEEg0l4IgCMKsIK1IWg5xLuc4lm7v3meHQm+jKQUit1MTjRAihJboR2dFuJ46MIENxy2pMbo2uVIFSzpSU5ZnkjFbc1ms4VzGo5FQTiAfX9O5NCOXodJirchluXp6Za6k2Y7obBAhQnsyhvsHhl2Rb07WE7lc1mm89qWKobucTlpsvZHLoaxT1Xb3cM5wLsfySEQjSCei2DWcQ1nTA9/TA+MFbNk7hqMXtyOdiKJY0XFgvIj+vgwiRBjNZbF3NI9SRUdvpvpDB+uaGhxvrHNZLOs4Ybm/ozdTlnamDB0Lw3ogEORc+mE7l3XcO0K98PuQP4wL+rUVNkU7SFfF98sb/D3Psz2/Tni/QC5OfGvAvriGDAjUdi5n+rgdTGv3OU8fwGPYuJex5XcwrdwOtvxnzOYSOADYPu7Yn2fneAobcxWzL2H2eo+er98xL3+C6SwvCtj+3ce6t3+fY15w7s22vfHjbAdrHfMz3/knx34F02UCANv1mWc4r/8Dx76AHd8xu64YtO2xkWXufV3M7KPZ9xH/anols7mEcKN7V/y12PCdbba9KdLvrFBMP3qxRyN7M7MvYDbXf17A3pebWD/KK17l3tdVvFcl00PyS9rVz5ILS70P//m96r3e/caUmf0Lz7iVqE1Y74t/PvCLmt+f9fbFBMTdWFjIN/4cRzMdlC37xvGma/7sSpsL3kb5OiDRSLiKpLNNWbcil/VX9PSDVy7ltCejyHk0l/VE1KphOJc1CvrYkcvazqA1pFbxpmyxMuspiB2pGLbuHw/sF2nN0dJcWhq8YtnoMamr+l7nZCyKUqW+gjgj2RKsS3zPiPGlum80j2QsYs+r2mt5zzNDyJY07DN1mla1145UDD2ZOAjA/rECetsS6EhV/9K0Uq15r89GUKhoWNOXqT1wGizrTGGZp0hROm5ErU9aPrWfZxCnrup2veaCIAiCIMxvxLmc41R0ZejAdBW63YGmK18HJErU9MhlxdRbAvUVXeGtIbxkixVfTVwmEcMT+8dx4XX31NRc1ks8WrvCqVPQp/YxIyHTYvNlDS9et3jaadZh6EjFoStgslD2Xe84l4bTlYpHkYhGUKhodoS4Hs1lYhrVYoeyJduh2T2SQ6mi4+BEEW89ew1ufI8RYbEKD/mxdb8RnRiaLKFU0TFRrKAjFUM6HkUsGkFn2iiedd4JS2oWebIjl2ONK2en6QplTc2ac+nH4o4kTl3VFbpwGACs6E7j9KO6XT1mBUEQBKFhWNViG/1PmDbiXM5xNF2hKx1HLEKYCPixP2UbFeBcRprvXI7mjXOIkNGLsBGtUXIlzbeQSlsiap9vaRpOTzWsVE5VJRJspc2GiVzygj7VyBb9z7WRtCdjiEYo8GGGFQ3m1YiT8QgKZd15nWc5LXY4W0IqFkU0QtgzksOB8QKUMgrMLOlIoiMVq+qobx2cQDxKUDDSWScKZaxf02M7kr2m/vaVJy8L3IdFNEKIRqihkcuiGcld09dWY2TjiBA1vHiQIAiCIAjzC3Eum0yxomPXcLjG9H5EiPCmM1fh5JVd9UUufaItkRZwLq0m7e3JGPJlzU5pnC5KKWRLFbT7VIvNJGP2+dqay2hjfjwnTIcxKHUUqK8VifV+WQWIgsiV/KO0jSQaIZy8ojPwerN0rLyIUioWRaGs2U5RkLbVj+kW9IlHjR6Zu4fz2Gf2uFzenQIRYd3SjqqRy237x9GVjqM3E8eB8QIKZR1nrXU0NovbE1i3pB1/FVITnIhGMDjWOOfSqhR7JCOXgiAIgiAItRCFbZMZzhaxf6yAnUPZuot9GD/WdXSm4zh7bS8e2T0aKtLX39eGvvapRUiiEao7/bDRjOSMyGVnKo7xQgVPHZjA6io/oLPFClLxaKCDli9rUMpwJL20JaK2xvTTP9sCoD6npxpWoZhSJbhojKXJDNNg3hpSLdqm6wr5snZE9G1n9ffi0b1jvhpdywFOs3mk4hFUdGX3n6yrWmwsYhcJCkOxomGyWEF3Jo5kLII9IznsNx07q/rwuqXteGT3qG9keWiyiIMTRazuzaA9GcOweU2e1d+LD2wwGrhfeN096GlLgIhqpiDfcuk5eMe378VggyKXulJ2lsKa3iMXuRRaFX5vhJES8M/CaoU5+IMTXqznwYDx456/efp03n8csSoyildFqVYl/AzHHGSLl7N97e93b8L7yu9hNr8lP8rsTcy+wHP4PCviw/f1CmafzOz9zOb1UQBgK7NHHXPVx5yCRHv+dIyz4g735iefe79t/3rcmUDin53XuPRVZ76f2fevCCLR72zzwL+zIj63sEGbHHPsDpa14X27+Ov6ALMfZvY1zP4cs1mRIgCu4kqbzmJVgG5iY97Niviwuk4AgH9g9iZmX8DnwgpOrWVFfK5ihYIAuAtLcfhBWaEf1wtTregOH8dee1ehH75fdg8AcN+T/Di8qnu171D+mcDHbfUOnAGN7fXsQqrFthwSuWwyVgRiLB8upZUzbv7A7EzHcfZzeqFgtN2oRbZY8S1w0wqaS6uFhFUk5amDwT+W8iUNj+8bx47D2cAxk3aKpl8rkhh0ZUQ3LSepUc6ltZ9qFWOtarGh0mKpdlpsoRLsSDeas9b2QinjWvKS84tcmpq7p833s570ymSdmkvrGopHjDTOPSN57DUjlyu6jC/xY5d0oKIrVHQ1Ra+7bdCYYyYRRUcqhvZkDETAqavCF7LxsrQzNeO02GJFw47DWTy4axSD40Wk49G69I+CIAiCIAizjUQum0zBTM0bnY5zmTd+2HemYjhzjfFUazxEauxksYJ2H11eK2guR3JmZCsexYquFL79xx2468lDvtGhvaM5KBjFW5bky3aRFY7dc9Enmme10jAcTGNZIwv6AKiqFaxMIy22Wiqn49Qdmcgl4H+95YoVEMHulQg4kconByddf4eh3oI+lnP5j686AQfGC/iXnz+OR3aPoicTt6Op65Z2GHMtaehKu+diFfOxIsDPWdyGYrm+9ilelnWmcHCiGFhMKwwP7xrFwYkiejJxLOlI+l7vzWQ2i0gJgiAIgjA3kMhlk7G0fuMzjFx2pY0UwGrOh0W2WEG7T/uEVnAuLcfg5vc/H8fW0MXtNvWYRMDO4ZxviqO35yInY+owNX0WIpcsLTaIK28z+kaF6Z9562XnIELVNZeWI52e5YI+gFHQJhWP+EbKsyUNbYmYq4qqFbm0KgDXWy22OA3nsrctgaN6jUjl77cdtFNiAeCUlV0gcsZaXHjdPbj2rmewuCNpvy/peBTdNXpZ1mJpVwqarjA0Of0SdNb1vro3g+5Mwo5mC4IgCMKCRQHQZuGfMG0kctlEShXd/tE8rbTYvKNPBIz0ykqNqpq6rowf/35psRGjOma9Te4byYjZQiIVj+K4ZR34w9OHAiuuWsV+VvdksHM4h4MTU3+4Z02Hq91Xc2ks05SyI5eN6nPppMUGO+vWMcNEsogImUSsalqs5UgficglYDhdBZ9CO7lSxaW3BIxzjEcJTw5OLy12us5lt5k2WtEVlnc5zmVXJo6+tgQOTxraSv4e5Eoa1vf3ohjiQU1YlnUaPSMHxwtY0pmqMdqf3cM5AI17AFINiUIuVIL0mFy7xTSA2IZgmI7NJYja4JjqBrb8vIDjAS692TGsGf32TY7NtY1TNGksyr+ZLV7PbD6VkQHHvqLfvSt+WkzmiWeY/Ulm/xuz13qmxTPl2Vz2fNN5jdNvH7Ht/J4e1+Zb3nqW88dlbMWAY57w2Ydse+sTz3X2+6oRcPJXsX13sxVMV/qWj91o278Yf62z7Ub3vE44lx3zDc4x8Ro2iOtP+evwONzwdXybIfjj3Z7/zSSbuGbAsanfsXfczpYz/aUXxa7JNNPh5rn+kl/32+GG6xm5zpJd32DzcjEQPC/XMfnD3yBd5Uzx/raaRW2lMGcQ57KJ7BnJ2fZobjqRS+Mm7kobb2MsEqmq8QOAXNlytqb+uP/bFz0H//LzxzFZqCDZ3ngHxdK1VfvhOpwroceMEh27pB1KAYUAx2LPSA4EYGlnEiO5EnaP5KfoSe3IpV+1WNMB0mchcmlFvaq9H5ZzGUZzCRgFcgoh0mK9jl0j4e9dIhbBWL4MpZQrSpkrab4ObjIWtbWP9Tjxv9920E6XDoNVNKivLeGKkK7sdjt1SzqSODxZwtBk0Xb4lFLIlzScsKwD//xqo3hDUP/UerCdy7ECTl01vX3sHskhEY3MuYilOKqCIAiCsHAQ57KJ7BxynMtGRC6jEUK+XD2tNVulwI0V3ZssVtDXnqx7Po1gJFuyewget8zQxQVVSN07kkcyFgERYVlnCk8dnMSTByZwxmrnKap1vr6RS3OZpqtZ0FwaDkC1tFgFS3MZ7piZRLRq5NJKmfV7b2eKn4OQjEWgK+MhRxfT//n12rzl0nPwD7c+gp88aDwGryctNkJUtV+ol+FsCdEIoSsdRyRCiEUIFV250mIB45pIx6M4MFHE4g7jes+XdSgAxy/vCH28MCztMvZfq2JstQcwe4bzDYusTwdxEgVBEISWQ8Ed4RaajjiXTWRgyKhymopHpuVcWttYhT1iUaraVxGA3ZuwmrMVpuLsbDGcK6PHdC6PWWK0ZglyLveM5O1Io6Xp2zmUdTmXlg7Rrz1Hm13Qp3bkst4f1vFY7YI+lr8UC1ngJR2v7lxmq5zrdKh1zgkztXXvSN7lXOZKFbT5RIr7WUuZepx4glF0KSxG9NtwLAHDka0UNSz3OJdEhKWdSQwM5ezenHnTQT9+WSeqUe/1sKgtiViEZtTrcvdIri6nXBAEQRAE4UgjzmUT2TmUQ1siiqN6M9NMiy0jEYvYjlUsEoGmK1Q0HbGAH+925NKn6IvV/mMyRMXZ2WI0V7KdkEwihniUUAxw0PaM5G3tnvWje8fhnGuMo0P073MJAAMsgtyotNiklRZbNXJpEKagD2A4jdX6XObLwcWLZgMrirZvNI8TVzjOWLakuZxNizWLnJ6MyXh4B9hKA612XXOGJ53otzHPKLJFbUpaLAD0tSexazhntwnJljQQgKPr7Dlbi0iEsKQjiVs378YDO0fqdk6LFQ2D4wWs6JqeXlNYKITRVfF+ed4+l3wbLnAL6ne3htleTRmHa8o2MZv3DeQPdG71bM+aH3KdJddmpt/g2N6ed3nWrzDP5jnKtnFJENn3sVfbdwmzuX6TS+0uYjZPg+f9LwHgH5nNtI1dX3AaeB6V2G3bW45hGksA4B9Ti/yXb913ovPHqGNqyzyfwVxKe5jZ7CPn1j+/C750u//c+h2ms2Sa0yUn7rLtg1tWOyuuDZgH4NbF8tePa1n5x2KfZ3t+WW5kdrof/jCd5UWeVd8d8N/epbPkQlym30S133hcY8wfgt7H7OOrbM8J6l07nd91YbYRjaUwFXkM3kR2DmWxpq8NXen49KrF5it2SizgRMCqtSMJmxbbLIazjuYSMBwvP91ioazh8GTRdiojREjGItg55O55We18n7O4Hcu7UkjHo3YaZdgoYi3iIQr6WKHLsK0pjII+1d7bI9eKBHCcS0tHaZEvVXznwCOX9aR3WhLDsEV9vNeQdSxvWixg3DOL2g3t5flf/xNGciWkE9FZKZqztCtVV0sVzr7RApSqrxCSIAiCIMx7dBhpsY3+J0wbcS6byM6hHNb0ZdCVjk9Pc1koozPtOE0ffdk6AEb0LwjLcezwaUXS7LTYsqZjolBxRZ1iEfJ1Lq1KsVe8/Dg7CpSMRTBw2ONcljTEo+TrLEQjhNW9GRy3rAOnrOzC8cs6XIVpZoLT5zI40qhPo6BPtbRYK6qZmQXNpR+xCIHIiFxy/DSXALCml0Uu63DerMhlWMdsKFtEX7tzDfW2JbC4PYGlHf5Rv9W9GazuzUBBoVDWp0S5b7n0nIboDZd1pqqmSVfDqhTbTM2lIAiCIAhCLSQttklousLukRxeftIyDGeLeGRP+GqYFuP5sity2WW2XRit4qhmqxR9sdNiZ8G5LFV07BnJ2VUz/bAqgva0uSOXBZ/5WJV2V/U40ahUPOpKcQUwpXrskcLpc1lbLBg+chmt2vfTem/TdaSczgQiQjIawR6PcxmkuezKxO3iOvVE4Cx/P6xjNpx1p8W2J2NoX9xuazC9RCOE5V0p3HLpOXjdN/4UOk25XpbNIHK527zev33JWb4RWEEQBEEQhFZAnMsmsW80j7Km0N+Xgabr04xcuqt0dpv2WBX95qSVOunz499Oi50FzeXd2w9j72jB1of6MZI15t3LUhoTsQjKOX1Kuwsrcrmqx0m1TMUjODhRxEi2ZDuo2aLmq7ecbRIxY67VWpFYRYTq0VxWrxarIRWPhHZWG0EiFpkauSxpge1QrOI6YaO1QH2RS01XGM2X0ds2vWrH1a7PmbKsMwVdGXMMwnudW+weziMeJSydZo9MQRAEQZiXWGmxQssgzmWTsNqQrO7L4PBkEYWyjmJFqyuiM5EvY3Wv41x1m07ZaD44ClqtNUcmEQXR7EQuH9hpVEuo5iAMZ63IpeMwx6MEpYw5dZhR2guvuwe7hnOIR40iKRaWYzAwlLWdy99vO4BCeXrRopkQps9loawhQsCikG1f0vFY1YI+uVLliDvSyVgEe0cc57Ki6ShVpqaWWqRiRlGietKPHc1l8LlbjOZKUMrocVkLK9W1EX0sw7DMLMYTdA8cnixi884RHLtkajGh3SM5rOxOH9EHB8J8Jajghxf+kJJ/J2xjNr/P3+LZ/k5m84JAvQH2poDlXlhxIJ/CYQYDnr/58fsdk3/08ltLsaIs3h+tm5g9ymxeOIYXguHH4EVoAHftlg2OOfaNZY69wbGP/sDjrs2f+c5J/vO6oOjYA2wCbI6l3Z6K2JPw52ZmX+GY6VVOBaT8sm73NgX2Yv6TYx48nRXx+Sobfyazv+Q5/iizP8ns/cw+j9l/5dn+ygHHvqjfsfl58Wd2eTb+u+OenbEHqXnvOot7/cfz624KB5jNr1V+f/ELLOxvtKACX97v53p/84UpHCYsZETA0ySsNiT9fW3oMp3CeqOXY/kyOpl20opcVqs8my1WECH/1EkiQnsiNivO5YO7TOeyirNlpcXylMaPnGfoSA9Puh3mUkXHiu60K9UxFXOcSwtdKYRsI9lQLI1nNWc6W9KQSUTrSovNlSqBPR9zxeCI4WyRiEVxcKJoO365cvV2KH3tCSyus4eq5agfHC/WGAlc8t37AbivoVbBijoG3QOP7B6FroARn/t3z3AOR7EHSYIgCIIgCK2IOJdN4ur/3Q4iI1WuK0Q6qxellFnQx3ly2xnCuZwsGtGtoMhReyrW8LTYiqbj4d2jAEJGLllarBXVOzzpdiyKFc2lt7zl0nPwo8vPAREwwNqRaDoQbVCRnnqoFbnUdYVcQOGbINKJKHQVXDU1e4Qjl7dceg4+cp7xhN/q35iz067959GTSaCftSQJg/Ug5OmDQY/WHSrm692KzqWlNw66B7YNTgBwetFydo/kXSngQutBRFcS0aNE9BARPUxEFzZ7ToIgCPMeBakW22KIc9kkCmUNyVgEEbMFBlBf5LJQ1lHWlKugTzRC6EzFqu5nslC9wE17svGRy22DE7ZWsFrk0qpy251xzsl2Lie8zqWOVd3uH9vJWBQrutKuyKWmq6akEjrVYv2jjLtHctCU8tW+BmFFA4NSY3NVtI6zxUqzuIzVjsQqKhQUuZwO8SghGiE8dWCi5tiyqWdsRedyeXcKkSpp50/sN9Ks8mXN9aApW6xgOFvCUb1SyKfF+YZS6lSl1HMBvBrAfxFRT7MnJQiCIAhHEtFcNolCWbc1gt3TcC7HC8ZY3ooEMHSX1faTLVXQ7tOGxKI91Xjn0kqJ7UzFqlY7Hc6W0Z6MuXSnizoMJ4FHLnVdoawpV+TSYu2iNty59QAuvO4e3HLpOUZabBMil061WH9nestew5GoJ9JoOWy5soYeOFpBSzuYK2l1OauNwKpc+snbtmBxRxKfes2J5lwb99FCREjHo3VFLrnmshFtRBpBMhZFVzqOkVwJuq6mVK/dtn/crqa7eecwXnrCUgDARdcb7/NRErlsaZRSY+zPdhjP0xv0ADesxmkm2ikvXOPFx3E9JNeU3VplX3ybfmY/GDD+VZ6/ub6NadLyXKvGNIRpz/Z5dkzu7g8wm+vujmH2056pPMPsUfizkdkbmL3eM46/xJ9j9nXMfpgdegvTWAJuWSvf952O9CB9AdNGXsVO3lsb7JXM5rLvPv/55gtV9nUVs1cx+2Fmb4Q/v/D8/RNm72D2WmaPBhwbgOva49GolzJ7gNnbVzp2ut+9q/zt7A82Dnczm2mC3Rt7/uaaV65j7gjYnj9crXbf8nttmNlrmL3Ts03Q/oI+T0RnKVRHnMsmoJRCsaKhy3QMu0Kks3oZNx1IHrkEjKhf9T6X2hGPXD6wcwRLO5OIRgjjhQoqmo6YT4XUkVzJVcwHMCrHEgGHmObSSgtd5RPJWdOXwV+eHbL/Dhu5bLQDYmkug9JiH983BgLqijSmTYctX/J/f7LFCnrbjqwDsrzb+FVhvScf/9EjAIC2BkdQ04kotnucS69zDQAVM1LcU0fkkm8/245ob1sCI7kyHto9ijPXOD/OCmUNOw5nsbQzhcGxAu4fGLGdS/t693mYIrQWRHQZgI8AOArAe5RSQ9W3EARBEGZM7a5vwhFE0mKbwFC2BF3BjtBNJy3WiVy6nbGudLx6n8tiBe1VolvtycZqLi+87h7csWUQZ67pwQc2GI+DvcV5LH6/7SCGPeti0Qh6MwkcYmmxVvGYld1THam1i9pQ0ZUdwdJUc9JioxFChPydywuvuwc/uHcX0oloXVHVjBnpDmpHki9rDU1HDUMyFsXijiRK5ntitVfJNLi3aDoexXC2hKHJ6kV9yrqOaIRmrVflTOnOxEEAPvTDB11Vap86MAFdGfdfWzKG+wecJ85Fs9qxFPRpLkT0IBEdDvgXBQCl1LVKqeMBPB/AlUTUF7Cv9xPRZiLaDOT8hgiCIAjCnKQ1f4HNc6ziJ1Z0q3M6zmXecAC7fJzLaoWBssXqRV8aHbksVXQUKzrOWN1jFzQZHPdXSgdFNBe1J11psaUqkZw1fUaxmEJFR0XToRSakhYLGLpLv7RYpRSyxUrdjqCdFhvgXGbrLBDUKFZ2p+3omtXDsdFOrlXU56kD1VNjK5pCvIXbdcQiEXSm4xjOllxVf7eaestMIoqOVAwP7hzBm6/5MwDjYUqEwrVXEWYPpdQZSqlFAf80z9jHAOyDOymSr79eKbVeKbUekIcGgiAIwvxB0mKbwAHTubKiK9EIoaNGIR4vY3ZarFdzWT1yOVms+Pa4tGi05tLa1xlremwd4uBYwUga81DRFdKJqY7B4g63c1ms6CDAt6H82kXGD7VCWcMBM9pZLXI5m2mQiVjEt4BRWVOo6Kruyq7pGgV98qVKw9NRw7CyO41tpnNk+paBzuV0X29rf9sPTuCco32DQQCMSLHfA4pWorctgR2Hs66HBFv3TyAdj+K2D7wAv992EO/7782YNNOfixUdyVi0rt6gwpGHiE5QSm017bUAngvgicbsfaY96vg2XFC4zTswBFzHxfVd3oJbS5h9ArMfDFjONWy8158XPo7r26r1IGT7Gzmb2ey7ktiDWv4M6zHP9+l6No4/3+S9LUeZvZHZ3ueqhwK2uYPZ3cz+oGf7u5jN+zbe4Jj5vwRoI5fBzZ4Qx9/LbP4aed+u7UwLe/dSx34TG/N8Zn+X2d5nxl9lNtelbmY214h2e7bn2sbbBtjyfmaz5cvZ8v0/de+q5w2OPcLX8X1x/WXQ9Q24NcrHMzuonyW/n/g9CLjvQ97Hlm/j1Vlygj5DpJ+lMD3EuawDP43XdLAid4mY82OxKx1vSFpsdzqB0YCCIYAZuQyhuVRKNeTH7EShAiLgpBWddouFAwGRy7KmI+Yz50XtCezc5VSALVR0JGIRX6fRatcwni/jHd+6FxGa6oAfKRLRiG9arFVRtd7iO+kqkUtdV8g1IS0WAFb2pFHUdCil7Mhlo1uixKOEjmSsalEfXVfIlrSWj/D1ZOLYAWCYaaO37h/Hccs6EImQrcWcKFTwzKFJo31Qg9OMhVnhX4noJABlABqAD1vOpiAIgiAsFOQXSxM4YDaD57qw7kydzqU5tsMncqkrYLJUmVLsBzBSJ2s5l0pZlUfd46bjXFt9NZOxKOKZCOJR8k2LLVY06ArBabETzg/xfEmz0yS9pOJRJGIRHJosoVDRcfyyjqb9MI9HIyhXpqrMrV6Qt152btUospdM3Bib8ynoU6hoUKrxWscwrOhKQSkj8pwzqwE3siWKdb29/pt3Y+NDe/Hk4ITvNfjs4UlouqrrNW0G8WgEHakYRrLGPfyWa/+MB3aN4i3rjXB+T1sC6XgUhyeLuOAbd0Mpp+WL0Loopd7S7DkIgiAIQqMgonUAvgBgEMCwUuqTYbZr7fyxecqBsQIWdyTxo8vOtZd1patXefUyXqggFY+42nZY+wHgq7ssVjSUNH2KQ8qx2pQ0IjW2VNGN1ifmj/1IhLCkI2VrTjlWpVzfyGVHEvmyhmyxgkJZq1m4JhOPIhYh3Pz+56PDx8E+UgSlxWZLFaRikbqdIDst1qedixXNbEparBkt3jY4gUMTRfS1Jew2O41k3ZIOV9R2slixI6UA8OCuUQBoeecSMPST+bKG2x/bj5KmQ9MVTlzulKDvSMVQKOtY3ZfBySs758Q5CYIgCMKRR8FIGGn0v9oQ0UYieoSIHiKiPxLR6Z71/UT0MPs3QETDbP0AEW1j618x7ZfB2edVRLSDiBQRnexZt46I7iGip8z/j62xu78BcKNS6gMA2onozDBzkF8sTWBwvGAXt7HoSsd9na4gxvNl38hkd8ZICRzNlXFUr3tdtljbAbF+xE4WK1gaOCoc2wbHoRRcfTWXdfk7l8NZw7H2q/K5qN3o2XV4smin1lZzLo9e3AYF4KQVXTOZ/oyJR8l2LnnUN1vSpuUsVCvoY0VD000q6AMYTm9/XwZLOpI1tpgexy5tR0VXKGs6Hto1gsf3jWN5l3MfPbRrBNEIIRVv3WdmVsT1zdf+GYcmivjEbY/Z9+zxyx1t0PKuFBKxCH582bm45Lv3NWWugiAIgiBU5V1Wj2Mieh2A7wA4w1qplBoAcLr1NxF9FVN9rzcppbYEHYCIkgCWKaV2smXtADqVUvt8NtkI4P8B+KPPumsBXK2U+j4RvR1GV92/JqKj4e6wCwC/Ns/nM0T0YhjC4X4ADwTN1UKcyyZwYLxgawMtDM1l+GjheKE8pVIsYKTFAsBofmoUNFu0tH7V02IBNKQdySO7R419MkdwWWfKrozJsbR0/s6l8eP78GQRzx4ytJfVqqK2SkEXIy3WHbl8dM8oShUd7Z31R/bSVVqR2DrOJkQuj1/WgTW9GXSl4w1Nh/VyzBKjakO+pOGzvzTqpIyYVVeJCA/tGkV7MjYnCt9EiHD04nZsOzCBsbxxTR+3zIlcpuJRrOxOz+rrKcxVvJ/NYYpu8OXTKeLDC4McDBjj/UzmRUcehD9ckjrA7H7POF4MZTtq0+n+s4cX8XmUrTjVMbmCgd92az3fs5vhzyJm82I5o8w+z7MN/znJ68Dcxmzefeliz/a8iA9/ZtvP7PsDtr/I09bpheyh4A72Gr2IvUajbPwqZn/KM6872KPpF7LlihX6uZKl+l/B3q+rPfv6OrP58T/PbJ6ox48BAGn+mJxHozYxe8Ax929gyz1FeEbuZX+cwmz+5vEiU/y69zztd41jx3dVNAq67r3FgYKK9QQV+glLvcXCwm4zf7AcS5MuAP7NzQEQUQLA2wDUG508GcBNRHS+UupJIuoCcDsMx+9bPnP6k3k87/GXwHB8X2YuugnAN4hosVLqGUz9hLL4O3P77yJkkTpxLpvA4HgB6/t7XMu60gmM5UuhC+mM5ytTivkAQHeVtiZWqmvVarHJxqXFPrR7FPEo2S1XACNy+b9PHrTP04rodaXjiEfJtwenFbk8NFHC1v0TiBBaOjpl4U2LVUrhn3/6GOJRwuJpRPciZlQubzqSulLQzbRQy+FshjMSiRCWdU2t3Ntojl1qOF97R/MYL1TQkYxholjB0wcnsbwrhScPTGBF19zRJqYTUfzjK4/H5375BJKxiG8mgiAIgiAI1dDhqhbdOBYZvYhtrldKXe8dRETfAvByAATglVX291oAe5VS3qdtPyDjh/+fAHxCKTXKVyqlHiCivwXwKyK6BMCXAHxfKTXFsazBUebxNXO/GhHtM5cf8tuAiFYC+Kz556Nhi9SJc3mEKZQ1jObKvmmxZU2ZesLab8tYvmxH9Fz7sSKXPprLUJHLBmouH9k9ijZPJGlZZwq5koaJolNwqKLr2PTkIfS1JXwda8sROzxZxLbBcaTjc6Mtg7da7IHxInYO53DMknbEItNzjjOJmO1I7h8rYHCsgIqm20V+5nNV0RVdKUTI0BuftKIT8WgED+8exa+3DOKMNT1GCnadFXibzbvP7cc3fv80krHWf1giCIIgCAuIw0Yv4uoopd4HAET0DgBfBPDqgKHvgRFt5LxIKbXbTH39KoBvAHi7zzHuIqKPA/gDgC8qpb4W+ixmgFJqL4D31rvd/P0l2qJYbTi8PRq7WMQxjHM5XijjOYvbpizvChG5PBJpsWP5Mp45lMUVL1+HD/21oxdeaka4BscKtnM5ki2jpOnoa/OP5vW2JUAEHJooYuv+8VCvTyvAq8UWKzp2j+TwknWL7cjjdEjHo3afy2yxgoqu8OzhrK2nbUYrkiMFESGdiCJb1PDp15yIL//2KbQnY7jmrmfQa+oWb73sXN908VYlEiGsW9pRdcxs9mIVBEEQBGHmKKW+R0TXE1GfUmqIryOiFQBeAuAdnm12m/8XieibAH7ut28iWgrgMwD+HcDFRPRjpVS9BRl2A1hJRFEzahkFsMJc3lDmxq/0FuHAeAGHJouBPSTDYBWz8aYRWlrJsXwZy0Ok9u0dydtOBicZiyKTiPpWnrUckJmmxdZqSXLhdffYzu1pR3W71lkR28Gxgv2jeihbxOreTGDfx3g0gp5MAo/vG8dIrow1vRnfca1GPBZBznwd9o7koQB87nUn4+M/fmTa+8wkonbk0qoau2XvGKxAbrMd79l2hJZ0pFBMaTj7OX0AjJ6Ru0fyUKqEY5a0zxnHstbrJA6lEJ6ZPAisppeq97OkmhaUp6xxHRjXZZ4QsNy7PaOH6QFHBhw73e8eF6SzxNPMZkUTt/O6AJ65rPfs22KC2R9h9gZmP+zZ5nRmX8DsyYAx3/ds/3xm/4XZRzN7L7M3MfsfPNkSPD7Tx14jrq3sZjbXex7jmdceZvcze5DpHz/Ilm9ktldh8buA418VsE3e8/uJb3MMe48f498VZzCbv9/8xQPcJ8rHdQYs53rPsC1v+bXO98XvL6/Gkmui+TZcX83vR6/+czp6TL95NYtZS4utillUp8dyEInofBhvgPcDDAAuAfA/3OkkojYAMaXUmJkWexGmfkqAiJYD+A2ALyilfkBEPwHwYyJ6u1Lqz2Hnq5Q6SEQPw1Bff9/8/yGllG9K7EwQ57IODk+WkC1qeHjPKM5Y3VN7Ax+sHo9+abGAfzqrF6UUKrrybdsBGLrLammx7UegFYm1/amrul3LbefSfB3Kmo6xfAVvf/4abB4YCdzfovYE/vKscU/WE51r5o/0BCvoM1Esozsdx+q+mTnGmUQUubKGiqajWDb2/djeMRy92Ch204yCPkcSbyXa3rYEdo/kkS9rOGN1d3MmJQiCIAjCQqMNwI9MJ1GD4VSer5RSRPQrAJ9WSlmazUsAfNiz/VIAPzEjiFEYxXI+4HOcNIBPKaU2AoBS6kEiugDu0mE2RPQ1AG8w199JRENKqZPM1ZcBuJGIPg1gBMA76z7rEIhzGZLJYsV2zn7z+IFpO5d2WmxXcFpsLazIVTTAuezKJDDqs58Jy7msEt1KxqJIRCOBzmW2WMG+sYLx/2geKwKau08WKzh6cduUSNKSTsM5OGBGcK0WJOeftqKqczk4VrDndPOl51SNULVK1CcRI5Q1HYWyhkJZR2/bVI1svaQTUeRLFSNaZy57fO+4XcgmM481l16s9/mET92BfFnDc6d5TwqCIAiCINSDUuoA3PkDfN2rPX+v8xnzLIDnhjjOswCe9Sx7FMCjAeM/jKmOrLVuG4Cz/dY1EqkiEZL7dgxBAYhFCL95YnDa+xkcKyKTiKLD4wTU41yOF4wxsWhw5HKsakGf6tGttmR0iuZS0xWePjiJLfvGMZoroaTp+PTPtkApNWV7pRSyxcqUlFjAaLEQixC+95ed0HSFQxNFpONRHL+sE7dcek6gY2i1KFnZnZ4zqY9xs6DPM4eMHKdMfOZRRaugzzNm65a2RBSP7xuzHxykG3CMuUZvm3E9TPeBT7Opdt0LgiAIglANBSMtttH/hOmycMIcM+Tu7UMgAlZ0p/DsoSy2H5y0++7Vw4HxApZ1pqZUO7WqvPo5hV52DeUA+PeEBAz9puXQcLLFCpKxSM0+kO2p2JTI5bbBcQxnS1jSkcRRPWkcmizizq0H8bKv/AF9bQnXj+NSRUdZU3iuj3MJmC06Kjo+98snkC1pWLtoamEiL3HTkT5hefXiJ61EImqc55ODhhgnbUaMZ+JIGJFLDc8eNt7fvvYEdg3n8cS+caTikcBo9mzTTOdoWVca6XjU1SdSEITpwO+hicBRDlyr5f05wTWUvPdgkP6S6xz5tl7Y9iO3+2+fH/Bss4HZrFchsQf4im3DNZvLPD0zvTI8i1Fm89qK/Pnr6Z5tHnPMJU/vsu2DL1vtrOC9ML3b896W/OfIYma/j9n3MPtLnoe0f4I/XGb4MLP7mO3tjvc5ZvPemhuZ/Qyzt7PfPes98+Lt2vn58oRA1/N+j9xtP+tBuZ+fDO9NuYHZm5j9Kve+XNtwnSbXU/YGLOfjAfd9EOTI8HOpppn0k/gBwf1pg8YLQmOQyGVI7t5+GB3JmJ3a+O7v3mcXtqmHwfHClEqxgJGqGqFwkct7dxgfDN7op0V3xl9zOVmsVC3mY88lGZ/iXD6w00hZXdGVQiwawbLOFE5Z2YWdQ1lUWLsN6zjA1GI+FoloBGP5Mm748wCWdaam6Oj8sBzpE5Z31hjZOsRjEZQ0hScHJ0BoTG/OTNwo6PPsoSxiEbIr7m7eOYy2OVJFt9HEIoS+9vr7hgqCIAiCIAiNRZzLEBj9FSfQmY4jGYvi1FVdGPGpxurHhdfd43JCB8cKvg3nIxFChAi3bq5dEfi+HcPIJKKBEcjOdByj+fKUlNVssRKqD2JHMjYlLfb+gRHEo4RELIJbLj0Ht152Lr7wxlNQ1hT2jLifuk0WNRABx3uf+JrEYxEoAK86eRlW94Zrem85l0H7bEWsPpdPHphAOhFFpAG9OY1qsRU8c2gS6XgU6YShkR3NlZGe58V8BEEQBEEQhNZmYYY66uTPzxhVSi2t38tPXIqrfjOGUkWvttkUdF3h4IR/5BIwCvRo+lQNI6es6Xhg5wg608FvXXc6gVJFx5uvvcdOk7zl0nMwWdRCOZdtySgOT7qd580Dw+hIxV3pvCet6EJvWwIjnihptlhBWyKGREBj+N5MAkopfOXCsnLufgAAIIhJREFU0/Gu74Rr09OejCEdj+KstXNHVxePkp0W+/ITl+KrF9XUbdcknYghXzYil6m44bAev7wDj+4Zw9BkuAcecxnRJgqCIAiC4KAA1M76E44c88q5rNV/cbr8efthdKRidpuHl5+0DFf95qmq0Uu/lNnhXAllTWFZp38KXyxCqNRwLh/dM4Z8WcOX33IaXnXKct8xVs/Miq5cGrz7dgzBp/7OFNpTcQyYuk4A2Duax/6xgm9/yY5kDMPZkl05tqLpyJYqVVNduzNxdGfiSNVRfCadMCLGSzr8HfNWJBGLIF/WkB/TcFyDIq6ZRBRlTWEoW7Kjviev7MKje8YQWaB5COJwCoIgCIIgtAbzyrnkNNLRvO2hvcgkorj1snMBGNVQk7HIFH2k3zGLZQ2j+TJKFR2DZvsNv7RYwHBGskUNSqkpBX8s7t1hRFGft9Yr6HboNiOsmq6DZz5rugosAsRpT7oL+mweMDWePv0xrb6YD+4awYruNJ48MAFdIVSEdL7DX+vjG1Rshvf4tJzzk1d0AQCiDUi7FQRhIeFtOcUlDvwzPKjJOh8TsgiPy+5n9kCV7XkVHV4Y5UFm80IwG9yb849GxY7vetjKvlPzrDjQjirFT9b2O3aWLV/EbF7s5nDwrg5GWBGfC9iK7cHbgD/DZcWBcDKzNwaM8SpSeK0bvv0NzF7PbF4o6BLPvk5h9s3M5q93UL2oZzx/H81s/loM8P2y96un3729q8MZLyy1gdl8mxcETAxwv2h8AuzhcQ/b7wi/PnlxH8B9H6wMOB6/P5cEjKk2LqjgVrU+5mHHCUIwCyrW4dU/hmHnUBbFio5O1v6CiGwHzK8VBwDoSmHfaB6P7h3DwFAOX//9006Py4C02K50HCVNxzOHsr7rAUNvecyS9qoFTKzKs4PjRdccNaUQCVFNtN3TimTzwAjaElGXY2Ox8YMvQCoesQv+PLx71NyHOJfcuWxUJVOuq7zuHetxy6Xn4OSVxhdbsyrFCoIgCIIgNAcd0oqktZhXHoBSChNVHL7pcMcWo8Z1t6e3YnsqhqFsCXtH81jVY6SLVjQdhydL+PubH8Iju8dQ0nT0ZOIgAN/c9Ax6M0al2aDIpXWMu5465NvmpKLp2DwwgtedvqLqnE9a0YWudByHJoo4NFFENEJ43Tf+hGJFR0eytgPyq8cGkS9rqGg6YtEI7h8Yxhlrenw1pvFoBKet6saDu0YBAI/sHkUsQkgG6C0Bd2R3Pqc0Wq9BRyqG5QHveb1YDn48Sjiqx3iKum5pBwhoSMEgQRAEQRAEQZgu8ypyuW+sgK37J3D59x+sWRgnLP/z2H60JaJT9IFWGxDLqQKAHUM57BzO4S/PDqEtGcVxS9uxbmkH1i5uw5KOJA5NFgEAiwOijhs/9EIcvbgNdz11yF7Go62vu/puTBYrOPs5fb7bW3Sl4zh+WQfOXN2N5yxqQ19bwqx0G6laCMjCioBlixre+M27sW1wAmeuCS6kc8aaHjy+dwyFsoaHd4/ihccuslOIFzLf+8tOAMBxSzsC05zrJR033r9ohOxqwal4FMu6Uugx2+QIgiAIgiAIQjOYN5HLQlnDgfECkrEIfvPEIJKxKNYtdUf/cqUKDk4UUdb0UNrDXUM5PLpnDJ949fF4/4uPdq3b+MEX4JTP/AYP7hzBa09bgUJZw2iuhMXtSdz7ifNc6bexSAT/+cZT8c7v3Id4lAJbiADAS9YtwQ/u3YlCWZvi0E4UDI3n2VX0lpxYNILFHUks7kjie+89O3RKsOVcPn1wwtZentXfi3vMqrlezlzdg2t0hXueHcLTByfx6oBCQzNhLkY4rXe5USmxgBO5THuujdU+xZYEQRAaQ1ADd65H5II+7zZBLaeYVs4lwvPq03hBtAPwpecNjj1yjXudeh/8GfC3aQPbtkoxtuczeyOzL2D2b5nt/QoNSmi5I2D5MZ6/u5l9MbM3VdnGYlXAcgD4KrMnmb2F2X9kNtdoesddwGx+iYwyez3LDNvs2dfIgGNTv2MzEzvY9TLCV3g5m9m3MJtrHu9m9iWe7bmumNfcYMcc+Ve2/CXM9l63PO1yG/zh9xC/17xaSP4bI4zO0vvTvxJgzxWstFihVZg3kcvbHtqLsqawdlEbvvfes1HWdGwdnECuZNwoSinsOJzFgfEifrfVfZMHaTH/57H9AODrLMWiEZy6qgsP7jK0hn95dgi6Anrb4lPGAsCL1y3Gyu4UemtEl15y3GIUKzruZUUEShUdGx/ai0MTJSRjkUDNZqNoT8YQIeBN196DHYeNqrGnH9UdOP65q411N9w9AKWqj11IWNHKRhXzARznsp5Ku4IgCIIgCIJwJGi5yGXYKq98nK4r/Ncfn0UmEUVnKoYXHLMIxy5tx9b9E/ja77bjn151PH756H5MFjUQgB/cuwuvPNlxGHWlECGacuxfPbYfpx/VbWsqvZyxpgf/9YdnUShr+N3Wg4gQ0JmKB84/aD+cs9f2IhmL4K4nD+El6xZj72gee0byeOiWhxGLEI4KGaGyjl9vASPAcGBOP6obLzxmEa7e9IzRhiUZC3xP+tqTWLvISec9bVV33cecj1j1ddYtbZxzaVXn9UYuBUEQBEEQBKHZtJxzWQ3LUbrxPc/DULYEXVcYyZbwluvuwbOHsjhmcZsdLepMxbG4PYFv/fFZ/M0py/Gfd2xDJhFFTyaOPz59GDuHsljT14bH943hgZ0jSMWj6GtLoK/diCzuHMrisb1juPLVweXVz1jdg4qu8MjuUdy59QBeduJSXPeO9YHjw5CKR3H2c/rww/t24vfbDmDPSB69bQnc8O6z8G+/fKJu7d50i+fEoxF87OXHBabCennu6m7sOJxFMhYR7Z9JVzqOld1pnFFFr1ovxy3twFpTRysIgiAIgrCwkbTYVqOlnMtSRccT+8fRkYzh5V+5C+3JGH76gRfgwuvuga4UxvJlDE2WcObnfotsSQMAnPX5OwEYlTnv+MiLXXrGo3ozqOhZvO7qP0FXRnpiOh7F4HgRP7xvFz72snX4h1sfQTRCIAJ2j+SxeySP9924GQ/vNtJdX3XKssD5nmGmg37/3l3YP1bAx162rur5hXXuXrJuMf7w1CEMDOXQnYnj6MVtOHVVd8OKwtRDmNYlAHDmmh789MG90oKEEYtGsKonHUrfGxYiwpKOqQWh5qImVRCEZuPNqpgIWMeX8x9xYXVcXKfJt+f9K3lzRHcPabdeje+LCQpHuIbO25uS6ehog2OrTWwMe5CsfsqW80aVANJMg8m1kfy0rhlgf/QH7sp1yncym/fD3I9geE/Ix5nNJYRc/8hfx2s8Othj2HnxbmgnMXuA2aMBNgDsYPYgs/Ps+Oml/svPZ8sBYLTfsfm57GDbHMO0lNsf9Uxmq7+dvpAdn2/D+1wOePbl/duP5wUcuxprmM3viSB9c9hsqCD9ZCP7XFa774WFSkt5ApquAF1h/1gBasxYtv7ffotiRUe+pKGiK0QjhDefuQoPmy0vXnDMItx4zwBWdKWnFMqJRyP4xKtPwMd//Ci603Hc8ZEXAwAu/d5mfPuPO/Czh/ZhcLyAdUvb0ZNJoFDWcGiiiId2jWAoW0JbMlo1lbWvPYn+vgx+8cg+RAj46+OrNbkNz4bjFuNzvzQq0h67uN1uMXGkHIjpHOesfuND0ErbFARBEARBEARhYdFSnkA6EcXRK7ug6QrZUgXZooaz1/biV1v2oysdR197Al3pOL7wxlPtFNl/fvUJeHj3aOA+33TmKlyz6Rl0sT6Vbzt7DX79+AEMjhfw5jNX4YtvPg2AkXZ7VG8G//3e5+FvvvanULo2q5rqmWt60BfQYqRejl7cjpNWdCIdj+JHlze3pUdYR3Pd0g4ct7Td1pwKs/cwQKKUgiAIgiAIgKTFth4t5VxaRCOEzlQcnak4vvjm07Br2KhYGqQf9PuxzZct9qQRvvCYRUjGIlAK+NT5J/puc+fHXoIwtCdjODxZwnknLK09uA7mYnppd0Z0gIIgCIIgCIKwUGk5D2Y2ojLefUYihBOXd4JYddfp0pNJYDhbwutOX1l7cB3MxejUXJyzIAiCIAiCIAiNoeWcSz9mw2lJxBpTZCURi+CE5Z1Y1jW7vScFQRAEYXoEFemY8A5k8DQzvv1EwHIvvFrNYyHmwov29FeZCy9s8iCzeSEWbyYRe/irxv2Xu7Y5g9mewjcFPi2+L1YQxzX/Ace8ky8HcCc/Z378TY55zAZmuzd3FRTihep54Rs+31OqZFjxl3iUz5EXuznVMXn77/33uvd1Hiuww7c/n23/i01sXxvYcs+81jJ7hG3D36PtQa8j4H4v2Lg8nzM/+WqBAj6OF+tJewea8G4DBzzrvEWn/I6/k9nV7rWge5UTttBOvQV5GlkcaLooSFpsazGrziURrQNwI4A+AEMA3qmUeno2jxmWRjmsEq0TBEEQBEEQBEEAGtcjwZ9rAVytlFoH4GoA183y8QRBEARBEARBEIQmMGuRSyJaAiNv4WXmopsAfIOIFiulDs3WcQVBEARBEARBWAgoTO2NKzST2UyLPQrAXqWUBgBKKY2I9pnLbeeSiN4P4P0AsHr16lmcjiAIgiAsRGZL78S1Zr2edUE6Sz6O6+MOBNiAW8/IdY5cZ8nnwjR/AIAbmM31lHczmxf34z9UPVouxf4+hc1rO98k5A/dtez8+9jyxzc49jNVtuc6y/3MHmX2mcx+gNnKsy/i69j8XTpJNoZLA/dzbSHcOssXnQp/+h1zNGAeU+AHDdLYDXj+DtJD8nH8+rq1yrb82s0HjONj+PXFrzvArbkM0lby3ukHA45djaD73vvTf7Y+H2ZTZym0MrOdFlsTpdT1Sqn1Sqn1ixcvbvZ0BEEQBEEQBEEQhGkwm5HL3QBWElHUjFpGAawwlwuCIAiCIAiCIMwAHVIttrWYtcilUuoggIcBXGwuuhjAQ6K3FARBEARBEARBmH/Mdp/LywDcSESfBjAC4J2zfDxBEARBEEKxxPM313WF0UvxaMFOz7owPy8GmM21anurbMPXnRCw3KuVCxrXH3AMrhc91r2KawIfu4Ed8hK2IqBvondaO5i2dJDpL/O8tySb795XubfnesxuZvOOb5uZlvSYfsfe7tGFqjh8+QXXuA6w/bJzPN+jcb2T6Sz/yFeMw5dqQafBoIH9zOZz3+TZAdf18mvsjBBjvNch7235Fmbza+TzzOZv+H2effF77/iAYwb1wvReSPx1CaOzFC2kMLvMqnOplNqGqcp6QRAEQRAEQRCEGSJpsa1G0wv6CIIgCIIgCIIgCHMfcS4FQRAEQRAEQRCEGTPbmktBEARBEARBEIRZQNJiWw1xLgVBEARhQRJUMKQa0ykMwsfxYiT8+NWK+PBteHEevj0vtuKFFc5BZ8B++wPGs+I4AKBY8ZdjLnHs7bwIz4PMfptj5vl+AVeBnDyby3JWEGeU2d2ezfffwsZdyFbwAjPsGHyO69l+AeBxZqdYgZyROx37PFZQ6E5WEOgXnuJA/JjE5qLYa7+c2ft/yrY9z72rPHstaQPbF38teUEe/v4C7vf1BwHHuZvZvDCV9ydyULGf7QFj+LwGEAzfnt8rvOgPL7bldaTSAesqAXaHZ/uJKnMThPqRtFhBEARBEARBEARhxkjkUhAEQRAEQRCEOYikxbYaErkUBEEQBEEQBEEQZoxELgVBEAShQRDRBgC/A/D3SqlvNHc2taimmeQ/D7iOLKxOk2/D9WJcE8d1a8dU2Rc/ZlCE4gxm3+VZ97wQ23BtJZ8718MBLj3l9n62nNt8jnzufL9emGZ0P9+GzTE/7tmG6SzVAFvO9YhMj0dMZ7nZo//sYfrAkU1sxQsc8xkEMOD5m+ksu9niEaat3M9fC/4+ePe10jEVn9cGZvPl3u35e/G2gHH8+FzTW03Hy7fn13GQvpjbQPB91BEwptrP9SDNZJA+WjSWwlSIKAXgWgDjAHSl1Eemuy+JXAqCIAhCAyCiDgD/CeD2Zs9FEARhYaBgOM+N/lcbIlpHRPcQ0VPm/8fWOy7sPsJCRFcR0Q4iUkR0ch3zfQOAu5RSHwaQI6L1052DOJeCIAiC0Bi+DOCLAA43eyKCIAjCrHMtgKuVUusAXA3gummMq7kPIkoS0RrPsnYiWuFzrI0AXgx36eMwx1oDJyS/A+50jLoQ51IQBEEQZggRvQpAt1Lqx82eiyAIgjC7ENESGDnVN5mLbgJwBhEtDjsu7D4AnAzgt0R0nLnPLgC/AfBq77yUUn9SSu2exnx3wXAwYf7v55yGoqU0lw888MBhIpr2yTSYRZi7T59l7keeuTpvQObeDObqvIHWmvua2kMaAxE9CGB1wOrjAHwBwMtC7uv9AN5v/jkJfObJmc9w2rTS+3mkOQLn/oHZ3X09qClLnPMfCbH9jmkcM8x+m8NCvu6B5p9/Az+79/8a+Myixu3PJkVEm9nf1yulrmd/HwVgr1JKAwCllEZE+8zlh0KOozD7UEo9QER/C+BXRHQJgC8B+L5S6lt1nE+t+f4UwDVEdCqAqFLq/jr27aKlnEullNdTbxpEtFkpNe1842Yicz/yzNV5AzL3ZjBX5w3M7bnPBKXUGUHriOiFAJYDuI+IAOOH2/lE1KuU+qzPvq4HcL13eTNYqO8nsLDPHVjY57+Qzx2YX+evlHpls+dwJFBK3UVEHwfwBwBfVEp9rcH7zwO4pBH7ainnUhAEQRDmGkqpPwFYYv1NRDcA2Nz61WIFQRCEabIbwEoiippRwCiAFebysOMo5D5AREsBfAbAvwO4mIh+rJS6bxbmO2NEcykIgiAIgiAIghASpdRBAA8DuNhcdDGAh5RSh8KOC7sPIloO4E4A/6mUuhLAmwDcTETnNnq+jUAil8G0RMrSNJG5H3nm6rwBmXszmKvzBub23I8ISqlLmj2HOljI7+dCPndgYZ//Qj53QM6/UVwG4EYi+jQMhfE7AYCIfgXg00qpzdXGhVhnkQbwKaXURgBQSj1IRBcAWOYdSERfg9FWZBmAO4loSCl1Uh3HmjGk1FSFtyAIgiAIgiAIgiDUg6TFCoIgCIIgCIIgCDNmwTuXRNRHRL8ioieJ6FEi+qnV84WI1hHRPUT0lPn/sc2erx9E9C9EpIjoZPPvlp83EaWI6BoiepqIHiOi683lc2HuryGih4joYfOaeYO5vOXmTkRXEdEOfn2YywPn2grn4Tfvavdqq8w7aO6e9f9Sz/txJKlyvfjer600d2H6ENHVRLSNiB4horuJaF5UkQwDEb3d/DypENGHmj2fI8FCvmdrfT7PZ2p9hwpCo1jwziWMzk//Vyl1nFLqVADPwOhXBgDXArhaKbUOwNUArmvSHAMhojMAPB9G81OLlp83gP8LoABgnVLqFACfMpe39NyJiAB8D8A7lFKnA3g7jPz1CFpz7hsBvBhTm+FWm2srnMdGTJ13tXsVaI15A8GvedD9CrT+3IPuV6B15i5Mn9sBnKKUOg3AfwC4pcnzOZI8DOAiAD9s8jyOJAv5nt2IgM/nBUCt71BBaAiiufRARG8EcDmAtwJ4CkAfK9k7BODY2aisNB2IKAlgE4y5/i+A1wA4iNafdzuAPQBWKaUm2fIlaP25E4zGw69VSt1NRC8G8C0AL0QLz52IBgC8Rim1pdrrDKMsdsucB5+3z7o3ArhcKXVeK1473rn73a+13o9WmHvQ/WqOa7m5CzODiPoA7AOQVkrpzZ7PkYIWSPsYuWcNqn23LBT4d2iz5yLMLyRyyTCjT5cD+DmAowDsVUppAGD+v89c3ip8FsD3lVI72LK5MO+jYXyZ/QsRbSaiTWQ0IW/5uSvjacxbAPyMiHbCeAr6LsyBuTOqzXVOnIfnXgXmxrz97leg9ecedL8CrT93oX4+BOB/FpJjucCQe1bw+w4VhIYhzqWbrwOYBNDyTy6J6BwAZwH4ZrPnMg1iAJ4Do7/OegD/COCnANqbOqsQEFEMwD8DeJ1Sag2A82GkkLX83OcZc+ZeBebn/UpEnc2dlhAWInqQiA4H/IuycRfBiKxf3rzZNpaw5y4IC4w59R0qzC2kz6UJEV0FIy3wfKWUTkS7AawkoihLHVkBYHdTJ+rwEgDHA9hhZGpiFYBfA/goWnvegKF1qAC4CQCUUvcS0WEAebT+3E8HsEIpdTcAmKmxWRh6tFafu0W1a5uqrGsJvPequXhO3q9E9G4Ymq9WnnvQ/boOhna0lecuAFBKnVFrDBG9HsDnAbxUKXVg9md1ZAhz7guMVv+sFGaZgO9QQWgYErkEQESfB3AmgAuUUkUAUEodhPGj72Jz2MUwnty3hCZBKfUFpdQKpVS/UqofhibqFUqpW9HC8wYApdRhGJqzlwFG5ToAlg7kYbTw3GFqz4joOAAgohNgNKp9Gq0/dwDVr+1Wv+797lVgTt+vv5kDcw+6X7e3+tyFcBDRawB8GcY1OdDk6QiziNyzC5ug71BBaCQLvqAPEZ0EYAsMxyZvLt6hlHo9ER0P4EYAPQBGALxTKfVkc2ZaHU8BjpafNxE9B8B3APQBKAO4Uil1+xyZ+9sA/BMA64nfvyilNrbi3InoawDeAMMBPgxgSCl1UrW5tsJ5+M0bhtbV915tlXmb8/B9zT1jBuAu9tPScw+6X1tp7sL0IaJDAEoAuIPxUqXUUJOmdMQgoosBfBHG9VsCkAXwcqXUE02d2CyykO/ZMJ/P85Vqv3ebNythPrLgnUtBEARBEARBEARh5kharCAIgiAIgiAIgjBjxLkUBEEQBEEQBEEQZow4l4IgCIIgCIIgCMKMEedSEARBEARBEARBmDHiXAqCIAiCIAiCIAgzRpxLYcFCRANEdPIROM5rieiLpt1PRO+fwb4UEbXXuc0NRLTHLMHut34DEW2e7pzMfZxLRA9PZ36CIAjzCSLqJaLdRHQWW3YlEf3kCBz7MiL6qGmfTkRv8ax/mIjSDTxe1e+Xae5Tvk8EYQ4Ta/YEBGG+o5T6OYCfm3/2A3g/gOuP8DS+oJT6xmztXCn1ZwCnE5H0NhIEYUGjlBomog8BuJGIngtgHYAPAHjuETj2tezP0wG8BsCtbP3ps3DYhn6/yPeJIMxtJHIpCB6I6J1E9BgRPUpEtxHREnP5JUT0GyK6hYgeJ6K7iWiZuS5BRNcT0VNE9Cci+gYR/Zht92Nz91cDONF8Kmutdz2d5X8T0RuIaBsR/ZmIPumZ59lE9L9E9ID572/qOMd/I6LtRHQXgL/xrHsXEd1r7vP3RHRcrXMUBEEQHJRSPwPwIIAvALgRwEeVUgf9xpqf+Z8xP+efJKI3snWvJKKHzO+j3xHRMeby44joHiJ6hIi2ENEV5vLPENFVRNQH4LMAzjO/b77GjmV9v5xl7uNR8/+zzOX9RHSYiD5vHvtJInph2HMnoveY83qEiO4noqVsn/9h7nMbEZ1JRP9lHv9e6/tUEIS5jTiXgsAgI032CwBerpQ6FcAWAF9nQ84CcIVS6iQATwD4O3P5pQBWAzgRwHkA1gcc4oMAnlBKna6UelONuSwB8F8AXqeUOhdAia3rBnAtgLcqpc6E8XT6OnN5rXM8H8BrYTzV/msAx7N1LwLwFgAvNvf7RQDfqfMcBUEQBOP74b0Adiqlbq0xVjc/518L4HoiWmJ+B3wPwNvM76MfAviBOf4DAH6llDpNKXUygG/znSmlhgB8GsCd5vfNh/l6IkoA+AmAT5n7/iSAn5jLAaAPwD1KqefCcFL/M8wJE9EGAJ8A8Aql1GkA/grAGNvnn8x9fhvA7wBcbR7/AQAfCnMMQRBaG3EuBcHNX8H4wt5v/n0dDEfK4m6l1G7T/guAo9l231NKVZRSBQA3NWAuzwfwoFLqSfNvnkp7LoC1AG4noocB3A5AATgmxH7/CsAtSqlJpZQG94+S8wGcBuBec79fAHAU267R5ygIgjBf+WsA4wCOI6JkjbHfBgDz8/5BGJ//ZwN4RCn1hDnmuzDSRTsA/AHAe4joc0T01wBG65zbcQBKSqk7zeP+DsYDzOPM9ZNKqV+aNv+uq8XfAPhvpdSgud9J8/vC2uf/mPaDAPYopR42/34A4b6/BEFoccS5FAQ3BMNJ4/C/C8zW4OiW/bYLiwbzXiSilGcuQRCAR80n0ta/o5RSYQrz1Nrvd9g+T1NKrWbrRAMjCIJQAyJaBOD/wXC2NgP413o2h/FZG/iZq5T6CYAXAHgGwD/BiHDWNcWAfVvLimwZ/64Ls98gvPsM+j4VBGEOI86lILj5HYBXM+3H3wK4M8R2/wvg7UQUMx3ECwPGjQPo8ix7Bka6LQC8lS2/B8BziehY8+/3sXV/BnAsEf2VtcDUz1T7Yrf4HYC3EFEbEUUBvJut+wWAdxLRKnOfUSI6s85zFARBWOh8E8B/KaUeAfD3AN5KrHqsD+8GAPPz/nQA98L4DjidiCzpwrsAPKSUmjC1l4NKqRtgOK7P89mn3/eNxTYASes7xPw/DuCp0Gfoj/UdstTcb3uIqK0gCPMIeUokLHTuJKIK+/sUAP8M4LdkVKp7FobWsBbXwkgnfRzAbhgpPhmfcY8CeJKItgDYZuouPwpDL7kfgJWGBKXUQTLalvyCiIbhrvg3QkSvBfBFIvoqgIQ51/NRI7qolPolEZ0D4GEA+2A4jSvNdX8goisB/Nx0PBMAfmSeT9hzFARBWLCQ0f5jHYC3Afbn9QcBfIeIzlRKlXw2KxLR3QAWAbjUKv5DRO8A8EMiigE4BODt5vi3AHgbEZVgfOb/vc8+fwfgCiJ6BMBdXHeplCqZhYO+RkRtALIA3mQun/a5K6XuIqL/gPHdqsOIVp4/7R0KgjDnIKUky00QGgERdZhPlJMwWo/8SCn1rRaY1w0ANjeiVHytczQd8g6l1ORMjyUIgrAQmMufm438fvHZ95x9XQRhISNpsYLQOO40i+A8AuBpADc0dTYOYwA+TI1pcu17jmQ2vQZwAIDegOMIgiAIrU8jv18AyPeJIMx1JHIpCIIgCIIgCIIgzBiJXAqCIAiCIAiCIAgzRpxLQRAEQRAEQRAEYcaIcykIgiAIgiAIgiDMGHEuBUEQBEEQBEEQhBkjzqUgCIIgCIIgCIIwY8S5FARBEARBEARBEGbM/wfJ+hl68sBb/wAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "plotter.make_sub_plot(data)" ] @@ -826,30 +595,9 @@ }, { "cell_type": "code", - "execution_count": 30, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Plotting data with name banana\n", - "Plotting data with name monitor\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA40AAAHjCAYAAACHNfo6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9e5xdVXn//3nmkszkMoQJJNZAGC5RgopyqYjYGhVt0aIWBb7IV6VWRVvbr21ttWorVq3tr1XbeqEi1qhFDVa80EqtqEGLgEKkQQg2EQZkkEAyCZOZzH2e3x97nzmfs2evc/a5nzPzeb9e85p19ll77bXX3uec9ez1fJ7H3B1CCCGEEEIIIUQaHc3ugBBCCCGEEEKI1kVGoxBCCCGEEEKIIDIahRBCCCGEEEIEkdEohBBCCCGEECKIjEYhhBBCCCGEEEFkNAohhBBCCCGECCKjUbQUZjZgZm5mW5t0/Mvi419Wx7a93HM0s0EzG6x1n0oc8+pEfy9r5PHrjZltNzPlHBJCiDbDzLbEv0tXNLsvQiwVZDQuUsj4+lqz+1ILmmE01ZGvA3gvgK81uR+l+Aaifn692R1pFGZ2Rfy52dLsvggh2hv6Hea/yfj37F/M7MSUfX7NzK4zs1+a2ZSZ7Tezu83sM2b2skTd5IPIOTN73Mx+HrfxBjNb1bgzbj7xOGxvdj+EWIx0NbsDQiQYArAZwOPN7kgd+Zq7b212J0rh7t8A8I14hfFlJaq3I68BsKLZnRBCLHp+BuBLcbkPwBYAvwPgt83sme6+GwDM7HUArgYwDeA/AOwBsArASQAuBLAJ6Q/xvgXg1ri8GsBGAL8O4LcBvNfMXu3u36n9aTWVHyGaK+xrdkeEWCrIaBQthbtPA7i32f0Qix93f7DZfRBCLAnudfcrci/MzAB8BsBrAbwLwGVmtgLAPwI4BOBsd7+HGzCzXgBnBdr/T3f/h0T9ZQD+EMDfIHr492x3/5/anE7zcffD0FxBiIYi91QBADCzl5vZD8zskJmNmdmPzex3U+rNa/7M7DfM7BYzO2xmj5rZJ+IfvuQ+q8zsI2b2sJmNm9kOM7swTT+Y1DTmXgM4DsBxaRq7Yi6FoffMbKWZfSjRp1eUGKPnmdk3Y3ehCTO7x8zeYWY1e/gSH+NmGtNPm1l/kfp9ZvZ+M7s37tN+M/uamT09UP9iM/tJXHcovi69tXLp4etnZqfE4zViZvvM7FNmtjKu92IzuzU+zyEz+/NAe0eb2UfN7IHYVeuXcdsDKXUH47/VZvZPcd2J+F4+N6V+gaYxPv/3xC+/R/fZ9sR+lXxWfjs+37FajLMQon1xdwfwifjlmfH/pyJaVfxe0mCM9xl39+1lHGPK3f8ewBWIPCr+Nst+8ferm9kJZvZ2i1xdx83sTjP7zbhOn5l9PP6OHTez75rZkwPt1WVuYQlNY+51/PZzrXCusIX2q+Q3pd/M/tmi+cKsSb4glihaaRQwsz8B8PcAHgPwWQBTiNxarjazp7v7H6bs9jIA5yFylfkhgBcBeDOAfgD/h9ruBPBNAL8G4Pa4/V8B8DkAWdxlDiLS1b01fv0P9N6dGfZfgJl1APh3RC5CO+K+PBHAFwB8O7DPWwD8EyJXmK8DOADgOQA+COCZAC6opC+JY7wIkUvSNIAvxsd6CYAbASxDdF24/lEAvo/IRed78b5rAbwCwAvN7Fx3v4XqvxHAJwHsB/BpABMAXo7I9anWHA/gZkQuU1chcpV6PYA+M/sygK2INJ23IrrX/trMHnb3z1J/j47fPwHRdfkCgCchcit9iZmd4+7/mzhuN4D/QuQCdi2AIwFcAuCbZnamu+8s0uet8f/nIrpPB+PXuf+VflYuBvACRPfNdgAzRfoghFgaWOL1cPz/eDPrcPe5Gh3nIwDegeg3YY27HyxjvzMAXI9orngpohXLcxAZvF2IXG4HEP2O/LuZnezus7kG6jm3SGEQ0VzhPQAeQP77PPdepb8pywF8F9Fv8FcAdAIYKdIPIRYv7t52fwCOAfBRALcAOAzAAQw0uA9rEbmS3AdgHMD9AD4G4Ohmj0/cv4F4XL5Wot6JiIyUIQBPoO2rAPxP3Mav0/bL4m1TAJ5F23sA7AIwB2ADbX9DXP9aAEbbfy2u6wAuS+n31kQ/BwEMBs7hinifLVneA/C63NgA6KDtL4i3J/v0lHiMbgVwBG23+Jo7gFdmuCaXJdum9zrie2gGwK/S9i5ExrUnzx+RYekALklsPwmRJvQu2nYkgFFEE5NjafsKus7by+13kfvOAfxe4jx+El/zRwGcRu9tQGTA7ky09Zm4nb9IbH9NvP27KfeII/ph76btr423fzJRfzvih/4Z76VKPyszAH6tHp9z/elPf637h8DvcPzbsTV+7zPxto74O9IB/DeA3wXwZNBvVEr7ue+Yt5box01xvedn6HOuX7sArKXtr4i3H4h/ezrpvY/G711A2+o9t9gS178i0f9iv2WV/qZcD2BZs+8n/emv2X/t6p56EoCLEH15/aDRBzczQxRZ8lUA/g7RU7G/Q7Si8Y34/XbhUkQT+r9190dyG919FHlXvdem7PcFd7+V6k8geupoAE5PtA8A73Z3p/o/APCfNTmD8vm/8f93Oj3N9ShQQNpK4+WIxugt7v441XcA70T0o1LsCWgWnoNognGdu/+YjjED4C+SleNVxosA/Ie7f5Hfc/c9AD4F4Klm9tR488sArATwz+7+C6p7GMAHqux7Gj8HcCUdZwaRMWcArnf3n9B7Q4gmSadY7OprkR7n/wB4BMD/xw27++cQrTI/z8yOTTn2n3ikjc1xDSLD7cyUuuVQ6Wflq/H9LoRYmpxskVTiCjP7MCKvm9cimsP8NQDEv0UXAvgxgHMQBcS5F8BBi9z8L6xibvHL+P9RZezz1+6+n15/FZFBtwbAnzmtKALYFv9/Om2r99yiLKr8TXmHu0+lbBdiSdGu7qnfd/f1AGBmr0fkvtBINgF4NoDL3f2qeNt2M5tDNFF+EqJoae3AM+L/21Pe+16iDvOTlG1D8f81tO3pAPb7QpcPIFopPq9UB+vA0wEMe4puBJHx8sLEtrMQGYYvNbPfStlnHMDJNegTkP4Q5FYsdGn8VURPpldZep6qzfH/kwH8lNr/YUrdW1K2VctOfkgQk5s4pAVjeASR2896RPfRyYieMN/i7pMp9W9CdF8+A8AvaPtBdx/kiu4+Y2Z7UXhfVsIz4v/bU94r9lm5vcrjCiHamycjbyhNA3gYwL8AeL+735+rFD/we6aZnQngXETuob+G6HfyPADbzOySlO/WUlRibBZ8T7v7nJk9BmAFP3iMyX23P5G2PSP+vz2l7VrMLcql0t+UcXe/u4rjCrFoaEuj0TP6+pvZ8QDej8io7EPk4vBed/9qlV1YFv9P+rUfjP+30wpuX/x/b/INd3/czCapDpOWEiNn2HTSttUAdgeO/WjWTtaYIxDu04JxQKSlMKSs+BEra9AnIGVM4h/rZFjxXHCc58Z/pfq1Ov7/WEqdelyHNM3HTIb3uuP/wfsy5pFEvRyhVC0zKLwvK6HSz0qz7nMhRGvwdXd/edbK7n474odN8eriSwF8HpE++loA15V5/F+J/6d9/4cIfU9n+f4G6j+3KJdKf1PKGTMhFjXtZNyURexicBuiFZY/QvSluwPAV8zspVU2fzeiACR/YWZnWhQd9JkA/hLADe6+q8r2G0nuB2B98g0zOwKRCLwa0fchAEcH3ltXRbtM7iFC2g9K6EcpdOwF44Do/GcB9Li7Bf6OL7/bC/qEtH7FgXuSbkW5a/KBIn0yzweWORT/T7sWtboOtSR4Xya2NzIgQaWflXJXBYQQAkAkg3D3ryMKTAMAzytnfzNbhWjFcg7RHKhR1HtuUbP+JLYn+6TvbyFiFq3RiCighQF4rrv/q7t/y91fhyioyF9V03DsGvJiRC6oP0Y0Ib8NUVCcomkbWpA74/+/nvLecxN1KuF/AKw1syelvHd2Ge3MIvyU8WD8f0PKe6cF+tRvZqekvPeclG0/io/9qyX6WA05V6BfS3nvWVjoFfBjRD9mzyqz/WenvFfOdWgUP0MUHOdZsRYlSe5+rXXesZxOJ+1euzNxbKYWnxUhhAgxGv8v19X0rYgCnn2LNfkN4M74f6O/L+eQ/v3drN8UIRYNi9lo/E1EqR4eN7Ou3B+AbwF4upn1AYCZnZvI5xP6255o/1OIJuxvQvQF+CZEgTb+LV4Zahe+gGii/KdxOGoAUR5DROGrgSglRaXkgrS8j0X8ZvYcRNcoK8MAjjKz5Snv3RH//7889mb2ckQR1pL8a/z/A4n6L8BCPSMQhRefBfBxM/uV5Jtmtt7MNi/crSxuRhSp7QIzmzdO43v2fcnKcWCBfwPwAjN7c0qfOsyM3Va/gSjS8JvM7BiqtwJRcumWItacbEPkVvVH/J6ZXYooIMJ2d3+wxofOhb1PewBR78+KEGKJYmbHm9nvxSuDyfeORpSyCIh091na6zazP0b0AP0wgNRcuHWkWd+Xw0j5/m7ib4oQi4a21DRmZB2iMMqvCby/FpEbwg+RDxpSjMO5gpm9BFGk1HPjiJsA8H0zuw9RjrjzEeUYagVON7Otgff+y92/YGbvRJT49644h14ul9LxAD7h7jdVcfxPI7oGFyHKP/UdRF/aFyMy6l+CvHtpMb6HyCj/upndjCiYwH+4+12IruGPERl8/21mP0QUrOiF8TFenGhrK4BXI8ot9WMz+zYiAf/FiHIdvoQru/tdZvYHiNJr/K+ZfRORgXdkfJznINI7VuyW7O6zZvYmRPkjbzIzztM4hXz0O+bNiMT9n4gDQv0I0dPojYhWD9chEv7D3YfN7G2IDOA7zexLiJ66/nbc71OR7To0kj9D9EDmb8zseYhcq56EqM/7EZ1/rcmFpv+ARcmqDwF40N2/4O576vxZEUIsXY4A8HEAf2dm3wdwD6LfuY2I5hSrEEUcvzZl3980szVxeSWA4xB9d65D9Nvxandv6ApaE78vvwfgQjPbBmAnIsP1C7Ex2IzfFCEWDYvZaNyPKBLl3wbefxiYTzlwb5ltPy3+/+PE9h/F/zejdYzGY5Ee1hqI3Dq/4O7/n5ntAfDHAH4H0Qr0LgAfdPdPVXPwOHLlbyIKSHQRIleZexEZkhsRGUWHgg3keT8iQ/8liIzBDkTC9bvc3eOopv+AKMLc0xFdiy2IDMYCozEOLHM+IjflSwD8v7hPr0IUMKbAaIz3udLM7kQ0Rr+O6EdmGJHx+D5ET1Wrwt2/ZWa/EZ/rqxAZgNcDeBtStCjuvt/Mzo77fyHyuaZ+iWjl8ssp53AQUaLn18f93wbgwwAeRLbr0DDc/VEzOwuRVvilAJ6PqM/XAHgPRx2s4TF/amZvQHSd34Yo6NVNiK9vPT8rQoglzS5E8pbzADwz/utD9Dv9Y0ReO/8SCAT4G/GfI/rdeAzRw9T/APClOM1Fw2nS9+Vb4+Oci+h30RBFIH+wGb8pQiwmrPzIza1FvMLyKQDHc6j9eHXtbADPcPfxGh/zMkRJYl/o7jfS9hchcn99jbt/vpbHXIyY2ecR5Ux8SiD9xaKC7pvfcfetze1Nntgt90YAf+fuf5by/mVowX4LsZQxs/9EZCh8wN3f3ez+CCGEWNy0k/auADN7pZm9ElFUMAA4L96W03H9JSJ3j++b2WvN7Llm9nIze7eZ/UuVh78O0Url58zszWb2vFhX9jlE+X2qTemxqAjoAJ+DKNHublTh1tmmfCbWyW5t5EHNrD+pCY2j2H0gfvn1xHtXm5kjMhiFEC2CmV2CwkTqQgghRF1pZ/fULydefyL+fxOALe7+oEUJcq8A8NeIUg3sR5To/LOoAncfMbNnxW3/GSKN3i8RuRJe0SxXkBbmU2b2REQuoyOIdHg5LeMfVpCouF25E/kAALnXjeT5AK40s/9C9HDjCYhWKp4A4Bp3vzlR/xsAHqLXdzaik0KIMLF27SOIgnlU7RYvhBBCZKHt3VNF62NmrwFwOYAnI1r9fRzALYh0DT9sZt+WEnFgl/chSrtxFCKj/WeIHqJ81N1ni+wuhGgBzOwqACe6+wtiTwC5pwohhKg7MhqFEEKINiB2678RwNPd/WcyGoUQQjSKtnJPPeqoo3xgYKDZ3RBCCNEA7rjjjn3ufnTpmosfM+sG8EkAf+/uP8tQ/40A3ggAK1euPOPkk08uvsM9dxS+PuWMBVVmdxTW6Tx9YZ0C7ky0+YwzFrSTz94b0XFaVGfqjsJ9l50RbZ9ObA/RHdd36oM9Mf/+2C8Sx6UyT4wmqcyP2HsCdfh0uM25QDlUh9ufCNThfs4E2mS4/9zPpIsJv9cZOLYFtvOxud1lVJ6icnegfyG4P1OBOpZhO/eH+z9d5Hg83nyenfRihhrj/nEwgVBuq9DYdSYr5uqfkT+juTvyo9dFO/A9DwBYt/AzCOQ/y574zFr8mcX9hdtnDxQ2O/9d8EDi83lcie+IDNTyd+AkMz9culpZ/BL4lruXk3e8bWmrlcYzzzzTb7/99mZ3QwghRAMwszvc/cxm96MVMLN3A3gdomjT4/G2TCuNmX47T0tMtX+ycG4w0ltYp2+8xPzhqESb+3xBO92JGXHvaFRnMGFNDsRzlaGklRmTfAK+Pq4/vYaO9Vf592/7f4nj8r5U3kNlNig2B+pwP7jN8UA5VGcTlXcH6vRTeTjQJsOGJfdzOFGP9+8LHLsrsJ335XYHqDxI5Q2B/oVYTeWhQJ3uwHbuMx+X+/9okePxePO49K3Ml/eOpffvJCqPBPrHbfLY8XF5jFZ4frQPW/4s1h2Rr8P3PADgDxd+BoH8Z5k/LwDQfTD+jL+qcPtIItzj/HfBGxKfz09Vb2PU8nfgiWZ+eS0aIq4AlszvVFutNAohhBBLDTPbCOBdiPKrLk9EQV4eB8c5JF2yEEKEMcjwqYa2TbkhhBBCLBFOQOSx+K8ADtAfALwtLj+tOV0TQgixFJDBLYQQQrQ2dwJ4Xsr27yEyJD+NQi/JqmH3tZJuqMw/hRRl1bE7dktdUZfWhVgaJN1S53lF+vacu2r3i4u3O1/vwvT3k27lG5okjTOE3ZdFaWQ0CiGEEC2Mux8EsD253aKJ2APuvuC9chkn4dx0wMm1LOMRAP4S8xoqZi9FdulLvJdTafVTJBiuz0Es2IBM6sRyusTBx/PbNn0+X+5HIawV47bWUfkQlXdROaTj4zZZQ8e6OdbTjQS2M9zvkGaO+5nUK6b1Z2/iPZ5Uh/rEdfia8DmzNpT7GtJxZhlH1pUm750cI4E6POF9INBmMfgceP91pGPk82E9JD/R4WvIfWJtZD+9wffwevpcdK/KH42qYJwiM828M1/mz3UvObh3vyBR/spCfeP0N0nfCABkfHJb019O1BOLChmNQgghhBBCiEWNNI3VobETQggh2hB3r48vqBBCLELknlodMhqFEEIIUR6nJuzVnQGXtDhUfzJEf73ZHUjNIYSoM1+iz97/kavqYkJGoxBCCLHEyeVHBMJ5/jLB6SADifdYlwWkayXHSce4iTKgDVH7rKXLktdumnSbSc0grz4MUJ67H5FYjNtlHRxvD2kRWWfH4xvK/cfnw7rKkDaQt4dWUni8BovUL9DZUTmk++R+hPI/8rHXBtrkc+Djcv/GA3VYlxnSRvI4st6QSY5FqF3enzWqrBXleyQ0ppxTcQ/da7wvjxfrBx+l+t3IB5fhYDecNzJ0X4x/M/0zWEybGNQ3fyn9YU2zAt8kkXtqdWjshBBCCCGEEIsauadWh/I0CiGEEEIIIYQIopVGIYQQQjSNinNCCiHm2RXreDf0lKiYQi69xgz5C/d+I1Hp+fnPZjLfY/BzewrVuyeu8/2EC+uvN+4zL/fU6tDYCSGEEKI8kokOc3wuw8TytPz2kXvTm+mlie/4rvQ6rI08RBpI1pjxJGfH48BZOW1VIlAO17uZtGLl5hQM5TgMaQNZM8f1OQclnw8P+6HA9pAOL9SHZJ7CUP+4rfWB7XwOId0gjyOPe3dgO/eH9w3pWHl7aJLL7fA4JvW8p1J5Z6CtkI4zxH4qH6Z7jfvE4/sQl+kenqZ7mPflvKYAsClNT3g25WAMfL4qggPfnKJgVIsNGY1CCCGEEEKIRY00jdUho1EIIYQQQgixqJF7anVo7IQQQgiRSmbtUp2OV2tui136qkorIkQTKfczktMrdr+oHr0pg4vifr8lsf1JdD7/G3+//I5cW1sRGY1CCCGEKI8M4q2Qgck6Rs47Nz6Zvn9oktzdmS9vXpkvT89Sm6TvGqR9k/kUWdfGejLW6IUmTKyn2xOoEzJSQzq2UL7HkI6R+9kdKHOd6UCdJKEclKG2WH/IfWVCOsaQdjGkJeXt04Ht3P4glY+hckh7CRTqGEPXJAQfm/udZVw4ryXvO0A63iy5QjdQHsgCjs8Xu48H8IXoszZOn7Xpl4Q/w5keHvEJnUzljwG4Nt7/SY01DuWeWh0yGoUQQgghhBCLGhmN1aE8jUIIIYQQQgghgmilUQghhFgKvCbFFexzNdIo5sLrP5rYvq+4i2kx6q1vFEJEDMZa3/6MOR4brXWuJTJ8KkdjJ4QQQohUgpPBndXlY8u1u9vS910fmLz20qyli8q7KN/dJtI3svTyVNq+e6ywXdaK7UrkucsR0twNcf/Sdy3oR0gbF9L3cZ6+TYHtawNt7g9snwlsBwr1iqytW5GsmFKf282iuQzliwxpLnnsQjkrQ+6H3P9QLsfkuPAxegNl3md1oM69gToM59FcT/dq78Z8efzBfJnPJ6QBZZ3w+PX5z934qvznbi99FoYngIG0vI6VsDNDOyEj9TO071Y9PGoVZDQKIYQQQgghFjXSNFaHjEYhhBBCCCHEokZ5GqtDYyeEEEIsZibvAO6vsYvXRRnbC+Vbu00uZ0IsFoa785/n/un20TeK8pDRKIQQQiwF3gvg+NpP6EbuL3w9r4Mkg7Hv/yCvUyKDManvO9WLB84J5XVkPdhDpNFivdkgbU8ed4h0jKyPW4f07SGt214qh/R9zEigHMo1yHVY0xbKlchwfZ78JccipLlkfSMfg88/lCOSyyG9Im/n6xkax1C+Q+4naz35vLLkikz2iXWQGwJtcRwoHheuz/k4WZfKxx4eA06PPws7SPfL+/K9lpzM5z5H02tKP5zJGvwmxEwxgWwpsugea4jcU6tDRqMQQgghhBBiUSP31OpQnkYhhBBCCCGEWCSY2W+a2e1mttPMbjWzp1fbpgxuIYQQYqnAGsN7E+/dUiNXsQ+mu8Tlwvz3fie861Dsire6Spc5Idqd7fFnoa9EvXLI5WPklB5JQq7htcrFyC6z3RsTb9bZXXWpuKea2ZEArgHwHHffZWbPjl8/tZp2ZTQKIYQQi5nlZwDH3x4OSlMB0/+VL/cuB7oPxpM9NhifBODPU/LCPStfZT2A9bH+aoi0W4dIY8g6vpB+jvVdpx+RLw9R/sbBwL5AoV7tJCrvQjpcn/PusbyLJ1isjQvlLESG7aF8fDwufCzW9PEYhTSWyWOHcjMeDmznY/PxQvkrQ3kgQ2PE4x46T26Tx4jr87XhfiYNtJC2MqT75O18X4RyUGbJ68n1+dx4382/kd4O6w05H+P0LB2LPmtZ9Y21MiCXCmZ2DIC3AzgTwNMRXb7j3X0wpe6xAD4C4IWI7NwbAbzV3R9M1i3CiQD2u/suAHD3H5rZRjM73d13VHoeck8VQgghhBBCLGpymsZa/mXkJAAXATgA4AfB/pmtAPBdACcDeC2AVwPYBOB7ZlZkfXgBuwH0m9k5cbsvRfQcY6CMNhaglUYhhBBCCCHEoqaJ7qnfd/f1AGBmrwfwokC9NwA4AcCT3X1PXH8nIiPwcgAfjrftAJB07s1xmrv/wswuAPABM1sN4L8B3IPCheuykdEohBBCiKqY1yu+q4KdtyhnoxCtDruYJ+kdLeGumjWv64lxvXLW1NoAd5/LWPWlAG7NGYzxvveb2c0AXobYaHT30zMc8/sAtgCAmS0H8AjCHveZkNEohBBCLAU+UzsdEudI7O7MlwffWVhv4M8X7ttPmsPuZ+TLG54LYPtCfSPrykI6uVNpkjkzk5/EDgdy3CW1ZKwh42PwPiENIesDWYs3RGXWw4VyE2bRQK4P1AnlRAzl8uP+JJce+NxYQ8fthjR9WXIzhnSChwN1Qvkr1wbq8L7ch9D5F9N37g1sD40952MMjRG3eRZpEXd9K71NvuZ9dBIjdBKDtC+Q90HcRTrG0HmGdIz8ua4l3S8CcG3Kd9GJ9X94VKeUG0eZ2e30+ip3v6rCtp4C4Osp2+8GcGE5DZnZr7j7L+OXfwHgu2yMVoKMRiGEEEIIIcSipk7uqfvc/cwatdWPSPeYZBjAkWW29Vdm9muIbL1bAPxulX2T0SiEEEIIIYQQLUCaS0jZy7Du/oYa9KUAGY1CCCGEEEKIRU0b5Gk8gHRP4iORvgLZUGQ0CiGEEIuZB+8A3hw/qL6yPF1jMvhFyYAXCXLaxP6MgS1yycerndjtMAXXEUuX22r0OcrMG+jz9qn4O+L74c/gSC9plhuc87HFDZ+7Eekak5yCKPppU2nxsRNCCCFEqxGa6A1QmYPZDI8BG3xhkJsNFDhnMJCgvJdmKr2crJz7M5a+nYOIcKCVYtEgVhd5LwcHXgklYg8lbueJVygRPdfhdvi4KwLbQ8fi+ocD25Nt8flw8JhQsJlQEvvxQJn35eUVHlM+Bw5+EzqH0L5MKNBOX7JigFBgIz42Xze+p3jfHYkANmn78v08TjvzuR2iMo873/+rAwFvAPo8vyph6H0h3r4hxQAcit97Q4YHNG8B8OtRfTYYC/h5wHhcWg+AvgHg783sBHe/DwDMbADAOQDe0cyOATIahRBCCCGEEIscA9Bda8tnpnQVADCzV8bFM+L/55nZYwAec/eb4m2fQmRif93M3o1I3/g+AL8A8MladblSZDQKIYQQQgghRP34cuL1J+L/NyHOp+juY2b2fAAfAfB5RHbudwC81d1HG9TPIDIahRBCCJEn6aJWo32DbmlCiKYyvSbWQL64+raGu2Md83cy7nA2fS/cUl99oxnQ1aSVRnfP9AXo7g8CeEUVPaobMhqFEEKIxczGM4Arby9dL4XelyKvayqTDZfk92WDcXVPXkPF2znJ+N4J6gO1ub4L6J+O9h2gID3jk/k6/TSJ4wA8g6R7TE5+ttBk+YZv0vGoTkjfx5o4Tu4+FNiXNXCsoWPtWigRO2vm+Lgh3SMzHdh+OPGa+7SfyjxmoWPwuXH9kFaQ2+Hz5/NhDSQC20MBX/g6hcaU9ZDJY/UGyqwhXEdlvj4DVB6kMo8LH4/7yhrIU+ke3kX3MPcndG1Zxzg8kV5nwxHUzjcL35sf1yJ6yPnAN8gbjAAw/IL8Z5XpO5leFGu3DpgB3Z2NPeZioqPZHRBCCCGEEEII0bpopVEIIYQQQgixqKmLe+oSQkMnhBBCiNJcRJKc3Yn3ftK4XGu74xD8x2TM/SiEaA4F6XU8w3fEK+L699WnP3WJnrqE0NAJIYQQLYyZ/QaAtyNK8HwkgMcA/BDAFe5e+4TPFWoYK+EQ6awKtIGkddpBdVgzyPoupjdQhyc8ycnPbQktVw7W2Q1wu1RmrRzrGEPaRdYJMpyDMJTvL4t2MZQfkvVzIQ1cklA+Qz63kLYulJsx1D8+VkivyLo/Hi++TqwH5H1D2ki+p5L5O0Na1IJ7LNAn3h6abHObA4Hj7qR7mDW2of7weQ4ldIybY8ONtYeHxvLaw2SwqvljhHIoJmAN41Aov+LmxOvc980rFCir1ZHRKIQQQrQ2/QDuQBSi/TEAGxEler7VzJ7m7g80s3NCCNEWGAAFwqkYGY1CCCFEC+PuXwTwRd5mZj8CcC+AVwL4UDP6JYQQYukgo1EIIYRoP3Jejlk9DSvjomwuY+Nx+ovel2ZrdjB2XQulShBC1J6cHnhtYvY/vir9c57L3wgA3QfTXVST+/aONs69vWwMsnyqoKFDZ2ZbAHwv5a3H3X1NI/sihBBCtBNm1onIueo4AH8D4BEAX2pYB+6kMmkOxylohX3x/oJd/AsLm+F8cZxHbnWgDmvOOD9eaAIzSGXWerFmrpilzZow1pCx3i2Ud5CPx/o7Ph7nBeRzYF1eyJgOnQOPC49jqA/cT+4PUKhd5HZD+4fGMpR3MHQNQ5pDho/F+SW5nZCOMaSlZP1o8p4KaVF5O98j44E6TOj6JPWUOU6nTg1yDtLAcTf/RqKB/4yMuN2kMRwP5DLt++N8efrjgQ5lJBj4JqSZ/kpge0gbWQkyGquiWUP3hwB+TK9nQhWFEEIIAQC4DcAZcXkPgOe7+6NpFc3sjQDeCAAbN25sTO+EEEIsWpplNO5y91ubdGwhhBCiHXk1ogWMEwC8DcC3zew57j6YrOjuVwG4CgDOPPPMFvYXE0KIBqKVxorR0AkhhBBtgLvnovjfZmY3IPLEfAeAN1XdeFK7eG1t7EzWRAkhGs+u2L2zlhP+QXIZXZ8lX+qGxPfAUJOeYyl6alU0y2i8xsyOAnAQwLcAvMPdH2xSX4QQQoi2wt0PmtkeACfV9UBHUPm5AD61cLLHWjF+lw3G3uUUSINywQ2SdpG1aJynsUADSXVYi8d6s5AekLV6SX3bTOA9niRlyf/H7bDmjuF9Q/0O6e8GqcyaNq4f0jeOB+oU0wexhpCPF9IlhtoKaQtD+RhDOsmQZjTUZois0aP4GKH7KnQOrFHl/vE14bE7jsqss2QdI/eb22dd5chN+fJQ4PPVSwfey/lO/xoYiLWI3R+AEAU02mh8HFFo8JsQfX+fBuCdAG4xs9PStBnSZQghhBCFmNl6ACcDuKbZfRFCiLZAgXCqoqFD5+4/AfAT2nSTmX0fwI8QBcd5d8o+0mUIIYRYspjZVwHsALAT0QPXJwH4I0QLIcrRKIQQou403d529x1m9r8AfrXZfRFCCCFakFsBXATgTwAsA/ALANsBfDAtCE4jGOkt1Cj1jUfPdItpGJP7CCFaj9zntO+MxBv/Xbt1G87t2NC8jlpprIpWGTpDoRRCCCGEEADc/W8B/G1dDxIKfJOiYSyHnI6RDcZDpLMa6EnukSdniO6goBub6P2HqMwau1AOwWLaPZ4McX69QSqHNG0huB0+dkhbydq40OSMdYVZdH+s+2SdXBb9YLKtkIaQydJuMW1pqTaHM9RhQvdC1vMP5abMotHsC2xnHVbo/EPt8PXncSwYI85xmvh85T5TTFcFD3MGQjkYQ1DgGzYYm4IC4VRMR7M7YGZnInK1ua3ZfRFCCCGEEEIIUUhDVxrN7BoA9yPSZhxEFAjnzwEMAfhoI/sihBBCCCGEWCLIPbUqGj10PwVwCYA/QOQ18QiA6wC8x933NbgvQgghhMhIUbeyVwXeS+Z/LIPdJg2kELWkobri36FjjYWrzcPfIcV8yatBRmNVNDp66gcBfLCRxxRCCCFEbenupAAWAYOx+0X5ct/5mNdNznTn6w8H8shxjkPWcfGkZYDKnLNuiMqsB9vyxXz55ktSuwwgrCcLEcqRGNIxhvIahtoJHSuLBnJ/YDvXT+oBQ3o91hPy/usz1AmdZ1ZtYQ6+HqH6fKzQuPC+ofNNEsqLGGqX72GuH7ovQvD9vI7KfI+sDfRhL32+1hfRD6ce9+bC1xvK2z1I74sR1lCLlkb2thBCCCGEEGLxo0A4FdP0QDhCCCGEEEIIIVoXrTQKIYQQou40PdS+EKImhPK0tjzSNFaFhk4IIYQQJRmfLHw9r/8ikVb3i5DXK70hP7EcJz0h0x/II8dBcFjHFsrTt2kl9YGCbrBm7AbSMbKODQhr1EJ6N2431KeQ/q4rUEZgeyjvIvctlMtwdaAOl5O6ur7Ae9wP7l9yLEv1byZQZni8Qjk4+Zqx3jBLH4ppOkOExoz1hOOB7TOBOqG8m5upzJpGboev7S4qn0RlHpdu0jcC6bkW2RjsX7ng7fL4TL796TWFRmbqmH8hYHjWMiCWjMaqkHuqEEIIIYQQQoggsreFEEIIIYQQixutNFaFhk4IIYRYzNx/Rz4tRsgFjKHciiPXl3+4nHaxt0haixANzSMnxBJmOE59M0I+r0l3cSbLZ3Mw4Uqa5gLbdBQ9tWJkNAohhBCiJF1dgYAXlHOtINjN4/niIOkMN9DE9BDprFbTdtY8rSdtFesqd9Nkl9tnzdhmanPXRHqd5Ov+RPn0eOJ7A02IQ3nxWH/GhPI9TgfqsI5vPLCd+xnSHoZ0jCGtX5JqdIChnIehfUN5HUO6UtbrTQfqcDmkpSyW+5Hf4/EOXQeGrwm3e0ygPo8L30f9gTrc/rrE9lPje3aAtu+i+3d9YPbPeVM3HJEvJ/XMQHnBb7oPtqDxKMpGRqMQQgghhBBicSP31KrQ0AkhhBBCCCEWNzIaq0JDJ4QQQiwRapVfjdvpu7CqLrU8N9Yy5L8QDeA2umfPaqKuMKdxXJ9I39E7GvfpVfTZujOx8z1yaW01ZDQKIYQQS4CRr2aseG++2LcJwM7sk7fpWSpfnzdKB0jryPqo3i6gfzqqU5AjjrWIAb3i06jOTaTFYh3bjyaAc+NJ81mn5dvfdmdhvzn/4W4qh3LwbaBySGd2HvXvR9Q/nnixdo3b5Ha4byHdH/dzP5VDfd4bqJM8RgjW+vF4D1KZ8yiOB8rTgfKpVOa8k3xufNxQvkM+1llU5ryGz6XrdF0ilyHvz+MyQGUeS+7rOYVNzQeF2UoG3emJOjkt4nVUh8+N783TAzlObws85OB29tLNsyEQ/IY/p33r0usk4cA3yaA4LYFBgXCqQHkahRBCCCGEEEIE0UqjEEIIIYQQYnEjTWNVaOiEEEIIUZKCdBoZCWmahFhyXFRfd81Gu4MW6Jpj19i9tezDG+p0PrJ8KkZDJ4QQQixmjj8D+MLt6Ds14yQsg4aR87kNfz6vZer7Tv4Ygw/n6+wdy9cJ5e/jnI2s6WMtFmsAdwV0jMlcezmuvzNfXgHgfNJfcQ7GPgDnpQQPYZ3ZHtrO2j3WN96c0Mfl2ryZ2inQX1KZ9Ye8LwflmUnUyZ0P5+Nj7R6PXSiXIVCooeR+DFJ5JFDmsWCt39pAHdbohfJIFmjxUMilKRpAzoPIfdsR2Hd74HokSWo0t6Qc+9JL8nW2fzFf3kLBolgPyhrI0LGGAJwTH2sPX9uJ9PpcZkJa0sGJvJZyiNrnOsMPFuoVkwG10ugFsL5UEJ4vBN6vl8EoqkJGoxBCCCGEEGJxo0A4VSGjUQghhBBCCLG4kaaxKjR0QgghhKg7Oc0Vp9PYE3CxqyXV5Fm8JqPrYhZyboyVnOfV8b4DGdrfXEH77cqVVYzp1gxjWozdrZhSIoUsrqTYULpOsXZybq0LjArWcV6rvIvtjoxGIYQQYgkwft/CbeUYQvMJuQGsDwTFGSGRVn9PPkBGliAdoZx9Id1XaN/uQJ3DRfbPMg7jyOvgrqTzYSOtH8DmFK0bE9IAnhvIOxnKqRjS+vF4bQhsZ5LayL2BcigvIp8P51Hk67A3UIfPn9vhvvJ1C+VgDOXK5HZOojJrPQ9RmbWXQGFfWRP6zMDxtn4RuCy+/t1fzF//rV8ubDdX54bAPRK6H0P5KIeSFWM4lyn3c4C291GjvYFEoKtTcjnmPttDCZ3thpyOsZrAP58iA/PqGhrnWmmsCuVpFEIIIYQQQggRRPa2EEIIIYQQYvEjy6diNHRCCCHEUoXTcGRItbGYuKGIXvHmKvRq29tE6ybqw7b4+h9Tol6xfTcltufuqT60PsPdsXb5txNv/Cp9Ln7cpO8aRU+tChmNQgghxBKANYkACg3GatuKyemcknDwm26atLGxxho11rrxRHmQyqxRG0B6TjgOgrMWwLkBLdmWy/Llm7em9495Mx0rZCRyv1nTxzpDzh34EOkYWWfIEzXW2LHWj40MbjOZjzGnydxGfS6mGeVz4OvD+7C2jq8b6wb5nFlDyO3wefK5JTWXOdgo2x+ow/3hdli7yFq/JJyzkvvEGkIeo1CO0KRWMgdrMfkcQuPC91FfoA5vv4vuqXVc5/h8eRddqA30OV3dFf48MxsoB+XwV+mN71KZjifaFxmNQgghhBBCiMWNAuFUhYZOCCGEEEIIsbiR0VgVGjohhBBiKVBJCHzaZ+T69Coz5Pe3l8onHVH+4arhanK5fH2KqypQXc5GhtNp9Bep12psk95SlEFabtUcWVxXK+ZVuk9bERmNQgghxFLkZDQs4fYwaauS+f5yWkTO5cg6M9bSnbUyX941li+zjo85l4xHNhi7E+8lcypeUCLXIsP6M9ao8QQrlC/xVCoPUjmpjcvl9bs6cQ45bgv0jfvA4859GEjswzpAHnvefzeVRwJlPmfWBj4aOFZIu8d6wIeofDhQJzSx5T5zbk3WEvJxAeD1l+TL276YL4fyIibzV55X4j7ie3Ar1XkI+WvOhj7rFU+nz8IgfRb42q6mMu87TIOxIWEQlpNbFUDBd0jBA5RXJPb/SosE2lIgnIpRnkYhhBBCCCGEWCSY2TvN7GdmNmdmL0+812NmXzOzXWZ2p5l9y8xOKNWmjEYhhBBCCCHE4ianaazlX+vyHQAvBvD9wPtXuvtmd38GgOsBXF2qQRmNQgghhBBCiMVNk4xGMzvGzD5qZreY2WEzczMbCNQ91sz+zcweN7MRM7vOzDaWe6rufpu7/zzw3oS7f4s23Qqg5Epja9vIQgghhKgbI72BHIP1DHKRYFesnQrlRKyE6zO0WSwoTk5H1p3YXqtAOuVyvQLYtCW3Ba5bTr/Yl/pucwl9J4TYmzjHtHypyXYb+f3SIpwE4CIAdwD4AYAXpVUysxWIMlxOAngtAAfwfgDfM7NT3X0sbb8a8AcAvl6qkoxGIYQQYimQCHqTaXLI+yTq5yZ+46vy27soeurw4/lyKOk5B1pJBiHJwYYbB785iQJ4nET9CRlY51IS8hu/HDgYwn3tC5SBfEATPjafG59DQUCSwLHY2OUgMhzAhQO7cACSUPAaDrpzI5UHE8emS1gQbGYTlQ8Fjs0MBI7BSeYXBJ6Jx/HGRFCYtGMdQ2Wuk+TiuM2bqc099H6xIDrXUfCbAdrOY8xjsSFQZwOAs+J+bA3cn33IB2BiLs5ghDH9ADaXCC7F58xBqtKipCbrcH+LQoFvyjVER75aVvXsNC/lxvfdfT0AmNnrETAaAbwB0Yrfk919T1x/J6KP++UAPhxv2wEgtPp4mrv/ImvHzOzPATwJwAtK1ZXRKIQQQgghhFj8NCF6qrvPZaz6UgC35gzGeN/7zexmAC9DbDS6++m16JeZvQ3AKwCc6+6HS9WXplEIIYRoYczslWb2FTN7wMzG44h4HzSz1aX3FkIIUUeOMrPb6e+NVbT1FAA/Tdl+N4BTqmh3AWb2xwAuAfBCdz+YZR+tNAohhBCtzdsAPAjgnYg88U4DcAWA55nZs8t4il1bXiOdXY4bpDmsCbk8lAM1bPOaOrRZb5IurJcFXFRDlOsOWgmNOEbNqY976j53P7NGbfUDOJCyfRjAkeU0ZGbvBvAmAEcDeKqZfQzAme7+iJkdA+BDAO5DpJcEgJlS5yGjUQghhGhtznf3x+j1TWY2DOCzALYgCpxQNn3HJzbcU3xiWhC8ggzGYdIZrgCwIZ7g8qSyl/c/Kr99kDKrc5LxXaSh2kxJzHfTsQYTOqucZo8nNtPIJ1jnifhlz8JCblmofWPN3SCVT6Iya9dYD8kaMiap47s07t+VdFzW7u0PlFmXxjrBXYHjso6RtY5JTSIfY32gXV7ifpTKfP6seQvpO/lasZaS9ZoDgTo8vqH2Ge4/nz/75LFOEghrFPncuouUN6cYe8W0seUwnqIzBAo/R0w3gIGUz2bBoBJJve3pnq5R7O0pHdim3MA3fefTiyL640VK2mCVbaG7+/sRBdFJe++hStqU0SiEEEK0MAmDMceP4/8bUt4TQgiRpHmBcLJyAOmxpY5E+gpkQ2ntoRNCCCFEGs+N/4cWloQQQiRpQiCcMrgbka4xySkA7mlwXxYgo1EIIYRoI8xsA4C/AnCju98eqPNGAG8EgGMtSovR++LG9I9TcBSwob4aqFy6i0onNtsDuRnrjfSQi5fr4msbSkuSJJQH9BrafmmZ+kZmZ07fGXBhLUYmDeNF5NqdcCtNy984vYZS1Ezmtxe4py4tvgHg783sBHe/DwDMbADAOQDe0cyOATIahRBCiLbBzFYhSsI8A+B3QvXc/SoAVwHA6Z2WOsscub/wdVn6qs/lm1z95fzEr5ue4vcuz5e7SZfIT/pZA7d3AtgUTyx7aZI8PZuvwzorzo/HDAW2czCRZC5H1uhNA9iSkneR+8p5/ljfyP0bCNRn2LeYpWV8bjxRYx0ja/pYh8jaO2Z1oE5SY8n94PNhw4fHYiBwPL4OSZ1pDtZMcp/43Pi+HAxs53b4fEIPALh91jcmc3TydeNj8LF7kdcu3kb3S+g+DOUBZY5BPvfnNQFDckegb6G8i6wB7vtt2k65KEcmgFPj43JOh6TBOBPQQdaKketJB1nLhypNdE81s1fGxTPi/+eZ2WMAHnP3m+JtnwLwFgBfjwPZOID3AfgFgE82sr9pyGgUQggh2gAz60H0JPoEAM+NgxkIIYTIQnM1jcmQPp+I/9+EKKAZ3H3MzJ4P4CMAPo+ox98B8FZ3H21QP4PIaBRCCCFaHDPrBvAVAM9ElIj5riZ3SQghREbcPdOSqbs/COAVde5ORchoFEIIIVoYM+sAcA2AFwB4ibvf2uQu1Y29ddD3sU7s3Ix6sO3SGYoyyN0vvSXqlcPVdWizXuR0zMV006x17h2tXJdZFYZWD4TT0shoFEIIIVqbjwO4EMAHAIyZGWcZfKiUm2rHaWeg9/aF8XKqyRFX0A7nYDstYWz9JHpvFxlhBVo00lxx3jmeKA/R9pCujHVsrBMMadqSOj4+Xkh/t5nKw4FyaEwHqMzavZlAHc67yLo6zinI7bBekdlEZdbx8fkn5Wmsp2Qd43hge1eGOny8gmuLdLgOhwcOTVr5HDYn3jvLF+bf5A8M52bk/JBA4f3D7/F9yH3lnJU8FiENLJDXz26j/vE1GAfw+pSHHTym3J9BPi59dp7J+kbSMWYJ/FQszyIbg+PfzBuE6wN1mO6D+XYbEoCq9VNutDQdze6AEEIIIYpyXvz/XQBuSfy9vlmdEkIIsXSQvS2EEEK0MO4+0Ow+CCHEokCWT8Vo6IQQQojFzH135POnXVuFluitCRezf2iSLqkKtkmruOS4Tde8LHbkcjmShbA/JcXGphL6YE7T0S0d4aJARqMQQgghasLIvYWvcxq/zSTSG3oUqfSS5movabFCWifW8SU1ijn2B7YnNYD7AVwcT4KvSxgZF8Tbb6DtrNdjTSNrILnfA1TmsLfTgTJr4FgzxzqxnVReQWXWVY4AOC8l3x9rHZM6vnOoHDo31keyPcE6Pu4r6wb5Wr3+knz5OtLZhcYllI+R67Be8fTAdr42PI7cfrJd1sryuPD14fsipDMN3asXZwzSlGMLlbmffA34OjPdgXKob8XIEtRmera4LrJhSNNYFRo6IYQQQgghxOJG0VOrQoFwhBBCCCGEEEIE0UqjEEIIIerD+vbXk+XcOvtL1GtVpONscV4VXZ/xb+Q33TxWWOXcFNfp09Fk4s920t18Q8DNljWO866qv5rfNvLTfN2+lbXp4gLknloVGjohhBBiMXPCGcC1C/M0lk2GwDcFuiUyGIdJBMZ6uJEJYHM8ydxBE+KTSN94F+kbWbs1QOWQ7nEt8hPurFxA9VkHOJyod6kvzEG5nd7n8xykMmvOkrw+JadgKD8gn3NIu8l6Oz7u7kAdoFDjx1pEHvtQu7w91CduZ0dAx8h5Ck+lMusSWWPI+R55Yst6y7WJfuTui+sTRvX5dP35PR7v9QDOKZH/ESCdIn0WtpKRddklqJj1ZFg9REYmXw/uTy99jlj32k+fNdZhHiqiKx5Yh/ZFlk/FyD1VCCGEEEIIIUSQphuNZvafZuZm9v5m90UIIYQQQgixCMkFwqnl3xKiqYu0ZnYJgKc3sw9CCCGEyMPaoyQ599PpNfk645OBun3p25PsrLPmbju1vyUl/QQAXPrqfHnr5/PlkNsrkNeXba66h3mujNs8tUQ9UT03BO67rbQ96dLK5O6rYvdIrs6WKt05ty8yXer4quh8emv54RF1p2lGo5mtAfARAH8E4AvN6ocQQgghas/ISN7I5CAygzQB5klIgdaN9FRnkXZrZyJASNq+PImvdpKzIfF6S0pAEs5tx5rDkHaR58msk3woUB6g8g4qZwnMw/kbA+kxC/SDSaYD21lDyP3g5wSsm0yOY45BKvNYhNphIy6UU5Dr7KIyXxu+L1h7mjxffi+UdzGU/5HH5RoafD63676Y19DuChiG3Nd+5O9B1gCzlvRcMlB30HFD2tNB+qwx3M/j31yoC/Z9+WOvvj59/wXtxd8FOYMRAMZ35fM8Bp8x1dJgViCcqmime+r/B+Bud/9iyZpCCCGEEEIIUSk5o7GWf0uIppyumT0HwGuwRFxTL/7kLQCAbZef3eSeCCGEEEIIIUR5NNxoNLNuAJ8E8Pfu/rMM9d8I4I0AsHHjxjr3TgghhFgasC4RALoPZkhNcVF5rmI5V7Tp2bJ2qxvVasNuXmTaMiEaxXB3rGNc3uSOLLHgNbWkGSuNb0fkTv2BLJXd/SoAVwHAmWeeWV6yJSGEEEKURd/5pevMUAK87s68Lol1WQOBBN088WA9HeveOHfcLtIxsmaMNVqhHIrM9iKJ0Xd9Pp8vsu/z6YZhKOBJUit2XorukbVxIS1eCD431slNB+oMUPkwlVmTx7q/ZD5F1paF+sqauE1UZv0h95XzJfI4Jq9bDh4vzhXJfeV+cpt8zgyfC48FHyupq+NzGEf+2nL+xhXI53bke4z1lBzY6Dm/ndAHxv9Pp3t2G7Uzg3QGqcz38/aAfnIzfab2kI4xmadzc8pnJ7llsMizk9wxOWdrzmAEosBZ/dNNms5L01gVDR06M9sI4F0AXg9guZnx84blcXCcQ+7eIs8khRBCCCGEEGJp0+hAOCcA6AHwrwAO0B8AvC0uP63BfRJCCCGEEEIsZhQIpyoafbp3AnheyvbvITIkPw1gTyM7JIQQQohFxqsid7htFJ99faBqrbk6di3MkhJDtBe5/J5JN9acu2ooLUcxcvuy623SZZSpe87G9VH7u8nNdVON8ylyLth5N9akXvpaKdJajYYaje5+EMD25HaLPgAPuPuC94QQQghRe4KBb2iyNpiYoA7EeqfQpHZDT/p21j0eCuRpZG3g0EReWzVN9Vm7xn04h/qWMxiTsH4uTSeWmxcnjctz4navCeTFC2kr2Wjk+vxknI0MNkRmAmVunzWgrA3lMZoO1OE+J8cidG1Zl8d6vZ2BY4c0lKx7DOU15DyQrEXkvrEWsTuwfUtgO8P2UHLVYpDKfH0oFWJB/ku+PtwuX4dvf5X0fYE+jQO4LL7vbgx8XkI5QUNa0mHSMfK1WU+f2b5gssRCklrU01N0kAxrGNlgbDjSNFaFhk4IIYQQQgix+FH01IppCaPR3RXDWgghhBBCCCFakJYwGoUQQgjRGuwtopnKuZZ109P6zDkYN5T3fDjpGluKnPvopZeUtds8Oa1YMrXGdcrNKERRUjWKrYjcU6tCQyeEEEKIVAZIvDUSEoUlyE0a2fhc/8T8+6xLC+nYWK8X0t9x/UEqc/Ab3pd1YjsShiCfGrfFfeU+hbSL6wN1QvkLQ9rIUG4+rj8M4PUpeksOqMLt8IQvNO5AWGc4GGgLge3JsU9rk8fo0UAdHtNQTsVQ/sZT3ps3YL7xnnRtIDOdeM1t8fW/K7CdtYKsxeRz6AKwJUWveAyAc1O0gS88Pr/te/fn64fuRz7uAJVDY7eXtI7jE4V11sf94TyLADDQldcplqtRDBqVjQh8I6OxKhqdckMIIYQQQgghRBshe1sIIYQQQgix+FEgnIqR0SiEEEKIJUHSLbXduWGRnc9SIedOHModyu7GOL55GsGkW2rFrM+3k3Rzn3dX/YPEsT7awtrIJYqMRiGEEELMsz6Qc411UFl0TL2U/233w/nySbR9KJA7LpkHLg2u0wfg/LjfHLjm/3Tlz+WOmfz2tPZzejJOns71OIdff6D8QGD7WYF+8ySM8/rdTGXWGCa1cTn42pxM5R9RmfV6rDFMBv7hY+ygMmvo+HiHA22x/nIwsD2kuWRCUtrQcfk8/+k96RpA1piyljKZo5LHYihQbxjApfG9czPdO3xufO/wvufyRQ/wr/fbfPvb6GNX8HmkMufTZH0jjy+P0TEraTsFtZqhE+gqYi2wDjLZr5ZDmsaqCA6dmb2uwja/5u5Zvu+FEEIIIYQQov7IaKyKYkN3NQBHNMRZcQB3IttDQiGEEEIIIYQQLU4pe/sCREZg1rZ2l6wlhBBCiPbglMRz43tK64zKDcHfKuTcWvtL1BMiyXUlNIpZuT6gUd0ab0+6zzaT4Oc8p198QcaGTo3rPzewvZZopbEqig3dLICH3f2BInXmMbOOeB8pV4UQQoglQt/r8+WRq/PloUTOtzRCOfsGSPc4TO2EcjkyF5AmkyckO2gO2g/gdKrHOshQDsNe5LVrDActYa1Y6NweSrSZVoc1hwU59agc0oDuD2wPaQm5HSCcU5LPbW+gTugc+NibAvW5zRB8PULG/Voq83neRmUeU54IJ8eCtYKhseR+sAb0aYm2tqTcO7vo3mHdI2t0t1KdQwtaWNgHvr9Y68nX41QapJGx9DZHaPCevPfxgvce23DEfLm3h4LZrA8Yei8A8IWoTsF3ARuGNwHY6Qu31xhX9NSKCRqN7p7URhfF3eewUE8thBBCCCGEEKKN0SKtEEIIIYQQYlHjBszK8qmYsofOzNYB6Elud/cHa9IjIYQQQogKuZrc+QZoe9Kdkd1Ks2rFrlNeRFEhuVQu7GJ7epH6N7bRvZbTN/YVy7dxVHw+L6p/f0R9yGQ0mlkfgH8EcDGA5YFq8hIWQgghFhOBwDfzGiYgPxlEoY6RDTHW2W2gvHBcnzVXg7SddWkhLVkWWJ82lHiPj30X8trF4UDORoa1fqyn20llnkuzoXAXlY8JtM/7ch9Y0/looA7rB7mfrCVKRjAM6SxDORj52KwJDE0wdwW2c/2QFq8vsJ1zE/L5hALTcI5HPpekxiqZU/PNKfkYQ/rOUO5IBLYfB+DUuH02GI9BPofoDbQ9lL8yy2fkRvpAJlNFboiPNUTHYg1jMUaoU33foTdmF1SNeCrmtY4F7KRttTSetdJYFVmH7uMAXgHg04i+4ybr1iMhhBBCCCGEqCFuwExnR41bnatxe61LVqPxNwD8qbt/vJ6dEUIIIYQQQgjRWmQ1Gg3Az+rZESGEEKJViNNIlU0cSVwIIUSL4WaY7aq1f+pUjdtrXbKO3JcAnA/gxjr2RQghhGgVQjKkYriZPdPdd5Su2t7sJZ3R+rVFKrYpuYA35eomxeLmw/F9cVad2g8Fv9newKA4O+NjLdYcerOdCsFSKVmNxv8C8A9mthrAN5GiB3f379ayY0IIIUQTMUQ6/odKVYzpBPCuunXG7BgAbwdwJoCnI4p3cby7D9brmFnZux9YHwfP6KPJ7WqKs96PfPCcHYGopTwh4YAnHLSG63MgFGYg0CazIfE6FOSGk6l3I59wfVsgQiv3lQOMcDs7AnU4KM5JVOax4CcZHICFz6c7Qx1uM2kc8BhzgBkOYMP94PoceIaT1TOhADHczkDguBxoh9vhMWVDn4PF8L3AwXtC9YHC68PHCPW7F8B58T3CkXb5GDxGfN9xwCeG+90LYEvc/i5qn+87Dqg0SGXuA48jnwuff0FApAlgwNODYg0lDNoNafUoWBa+s/Bt0R5kNRq/Hv8/HsBltN0R/bA6FD01yNTMHOYCHzYhhBAty6fc/UdZKppZJ4B317EvJwG4CMAdAH4ABa4XQoiycBhmZa5UTFaj8Xl17cUi5759Y5iZk8xFCCHaiFcjvFiyAHefNbNXA7ivTv35vruvBwAzez1kNAohRFk4DDMyGismk9Ho7jfVuyOLldk5x6GJaXR11DrErxBCiHrh7tc0Yp8y2q7rk8dccu4cBXkYs3B2ac3V3jrrsm5ogBbr+jZKuC6aw3V1vkdy+sZQDsp6wd8Rw5RHNfl5y7mrblhXfrtlf++IhqIUl3Xmf/cewpwDs3JPFUIIsUhYz79pZDBueBaAW6L3eDI4TpPMk0jruIu2s86OtXhZdIxcfxp5XdmVNIHfHKif4+KU32lO4s76sxXI6xt3BeqwzoxhzRn3Y4DKPBbcJhsKrD/jdnjfAl0alXkci00EQ3pCPgYvx/M5c7us1+NjDwT25XPjffl8uA8I1OFz5us/FKjD/QEiLWradWaNKo9LUht7Qbzv1QF9I9fhIDjnbk5UuieqEwqIw+MV0p6yDZdJG0w7jCTFnkT/ynx5eCy9zghtZ4Ozv2dh3XozK9OnYoIjZ2bfBfB77n5vXC6Gu/sLatu1xcGOBw8AiFYc5+YcHR16SimEEO2Gmf0mgAsBHAsgOdVxd39u43sVxszeCOCNALBx48Ym90YIIUS7U8xnkq2bjvh16E++lwHueODAfPnQZCg2lhBCiFbFzP4MUeTw3wKwEsBs4q/lROvufpW7n+nuZx599NHN7o4QQjSdXCCcWv61Kmb2TjP7mZnNmdnLU94fjN+/M/57fak2gyuN7v48Km+ptNNLnZ88eHC+fGhiGkf0LtbMN0IIsWh5C4BPAniLu882uzONIOeKN7CycHvvaOQmN76K0mY8rWHdqivXkOvfpRkkJVvrnLNPtAZVaRQvkndZJfD3Sy1ZYtFTvwNgG6LUUSEudvc7szYox946Mjw2hfv3jWHl8k6MTc5iZHwGOLLZvRJCCFEmfQC+vJgNRg5AsavMSfL4XXljMkRvT/4Y3H4fgM2+MH8j69VCciqewIT0g2/OGE/gmsA5Dwbqh/IlsqaNdWNc/zCVV1CZE4LyOfO5sS6NtWicT5H7wH1j7R23z/q8JKy/ezRQpzewnekKlAepzI/UWbsZ0rdyfc5ByWPN58xwfR7H5L0Wyh0ZOmdu69IL8+WTFtRcyLl0rya1i1tSjhvKFcnnNkhlvs6sK2aNIZ//eECfCADrAw+TRjhPa2Iwc5//vlMSn7V7Fn/Mj3Ly7JrZsQA+AuCFiLw5bwTwVnd/sJxjuvttcXtV9Z3J7FZqZmvM7L1m9l9mdnf8/wozW1Oz3iwyfhLrGdfEq4uHJqaLVRdCCNGafAvAs5rdCSGEENXRJPfUXJ7dA4jy7KZiZisAfBfAyQBeiyj10yYA3zOzlaH9quBzZnaXmX3OzDaUqpxppdHMno7I0j0CwK0A7kH0IOidAH7PzF7g7ndV0em25+JP3gIA2Hb52fPbdjx4AF0dhr7ebgwdnMDIhDSNQgjRhrwFwFfNzAH8F6If/gLcvV75Gecxs1fGxTPi/+eZ2WMAHlNqLCGEKE4T8zRmzbP7BgAnAHiyu++J6+8EsBvA5QA+HG/bASAU4ew0d/9Fhj49190fMLMuRPbcvwE4u9gOWd1T/wnAfgBnuvsDuY1mNgDgPwF8FPnVcxFzxwMHcMoT++YjCo2Ma6VRCCHaEEfk3fUBAO8P1GnETOTLidefiP/fhCb/BufSa/Qub2Yv8uRSHPAkh1Nd7G9ob4QIs43cB9PSvgAAki6dLUYyz2u1bXQvMtlhGXl2Xwrg1pzBGO97v5ndDOBliI1Gdz+9Bn16IP4/Y2YfAXCFmXW7e9BYyWo0/iqA17LBGB9o0MzeA+AzlXZ6sTIzO4f/+cXjuPhXj8XOhw4CkHuqEEK0KVsBPBuRzuReAFPN6IS7N2TmuIH0TtOz6Qm3pzOoOwcnCl/ndHebAxPjUH49nqiEtGi8PaRvLEZIoxbaHtIcsv7u/MQ+p8bnzYFVWMfIs0DOfRjKkc56w91U5rFj3V9owpdsn32ieNLH+7O+kccolLMwlGsxtD0UMpDHl6/BWiqPB8o81qwl5T4MJI53W6B/PPasv+VZ3jX0iCd0f4auCfeJczaetRnzGsDr6T7i9nlcuG88FnsCeVNHaPte0jT2JTo6MwP0Ty/Mx7qhJ/37ghm5v/B1Wr7Ngu+dGmryokA4LR3O5SkAvp6y/W5EKZ9qQuzq2u3uB+NNlwL4aTGDEchuNO4HMBl4bwJ6aLeAex85hPHpWZy2cQ3ufvhxAJB7qhBCtCdbEEVO3drkfgghhGgtjjKz2+n1Ve5+VYVt9SNF/oDoGUxZoTTN7N0A3gTgaABPNbOPIfIYfQSRxPArZtaJKNjOL5DBKM1qNF4J4E/N7L/cff45hJn1AngbgI+XcyJLgVwQnNM3Hokv3PYgOkzuqUII0absQ+EihxBCiDakDik39rn7mTVsL22ptuzlVnd/PwJyiliDf1q5bQaNRjP7K34J4DgAD5rZNxH9eK4H8GJEK94rFrawtLnjgQM4evVyHHNk5NDQ2WE4pJVGIYRoR/4JUdC3b5WhTWkZ5n5yx3zes1KpMRrBzeRu9rSeIhWbyM4ausTluK0ObYrFRTLVRitTCx1jUc6tffttkKfxAAq9n3McifQVyIZSbKXx3YHtr0nZ9i4Af1l9dxYPOx48iDM2HjmfH6WzwzAiTaMQQrQjRwJ4KoB7zOzbWPjj7e7+nsZ3qz6U0iQVq8MTyYEyDULWXPGsaThQZu1WL4AtGXMyAsCNicn5TiqfS+WTkNcifjSxzx/E2znHI+dLZF1iKJY9n/MglfnceCz40XNIu8j1Q/rB0Pgm9wnp+JL7lOoTn+cAlVlnyBPS0LJ+6Hy4HT4ujyPPwDgPJOfN3JE43gCV02byQOG5hfKLDgK4LL5f2DDkc+Dz5/PZuiu/L8O6ML6/ziKB5w6qFPp87SUdY5q+EFgY4Cqpac7ynVGqbsH2OhiMbcLdiHSNSU5BlLmiqQSNRnfPnMNRFLJvdBIPDh/G/31WPhpuV0eHjEYhhGhP3kXlJ6W87wAWjdEohBCLEQealXIjK98A8PdmdkIujVOcqeIcAO9oZseA4u6plwD4d3c/1MD+LAp2PJDXM+aQe6oQQrQneogqhBCLgeZFT82YZ/dTiPICfz0OZOMA3ocoUM0nG9nfNIqN3JUAPmNmNwH4GoCvu/vDDelVm7PjwYPo7jQ8dcMR89u6OkyBcIQQQrQ8Sa1SyRD6GbVNg3XWa91A7Z8Xu/OxG2qlU8Ub2khnJhYn7NJajht2o8lpp4HqXFgXKSXz7Lr7mJk9H1F6p88jiinzHQBvdffRBvUzSLHv0KMRufa/DJG+8WNxSNmvAfiau++qf/fakx0PHMApTzwCPZSdNNI0aqVRCCHaDTP7LQAD7v6xlPd+H8D97v7NxvcsGx2nnYHe228vXbEGDJM+irVl/Mi0IMfdynz59JUA9kUTy100SU5qF9Pa5zpZSOYJY00Y5yDkfg8E2mIdX0jTxu1w5MCghozKPHNgXRrrJ1mTSWn9CrRxJ1GZJ3DcJpBNExg6z1B+RT4f1iuyKxu3eUygfrKvafVZo7g+WbFEH85J1ONxyqKhZE4NbA/pGJkB5I3DUHAcbp/H5Ta6uUN5GkOfTWb9ysLXHERrut5BcG4kA7PmeRqb456aNc+uuz8I4BV17k5FBF1u3H3a3W9w9ze5+wYAzwHwPUSBcH5qZj8zs781s2c1qrPtwPTsHHYOHcTpG9cUbI/cU6fhLfyESAghRCp/AWBl4L3e+H0hhBBi0ZJZp+Hut7j7O9x9M6LIPlsBPBfAzWb2SzP75zr1sa3Y9csRTEzP4YzjCnNwdnUYpmcdE9NtF61dCCGWOidjYWDFHHeicHFHCCFEizKLzpr+LSUqcvF393sBfBDAB83sCQB+G8BLa9mxdiUtCA4QrTQCwKGJafQuW1o3mRBCtDkdAFYF3luNsIdaa3DfHcBFsWfUteTtclHCW+ra7J4wrF2qJbXK/daInIjXS+soyqDcHIw5PW5zwrYspO55Gd+aaP8fau+Z1wZ5Gluaiu9FMzsF0dPVW9z9SkSBc5Y8Ox48iCf09eCJa3oLtnfFRuPIxDTW9bVoNmMhhBBp/A+ASwF8NeW9S1EoKWt7yg1YwTrG/sTP23xbR+UnhIOcO4725cAZoTyFrEXrS5TPieUftwWC3yRzCF5AcpHraB8+Hl9Y1qKxVi6UgzGkdWRNI+vJQu2H8j1y3/ipBevw+Px5qZzrb0IhvD+PBaX/K8gpyefAbfGxh6jM2rrjqMxa0tD15yX92wLHCuWWHAz0YXWgzeT+rIMdoDJrInksdlOZryfrIYF8DsatdA+yRnMGwLklpE18PqF8lDxGrPsM5f7sTwSyYboDdhd/hvl7AQjrd0X7kMloNLOPAehy9zfFry8AsA1AJ4ARMzvX3Rujsm9x7njgAE4/bs2C7bmVxsfHFQxHCCHajA8B+IqZfRlRSPSHEM3f34jI0+bCJvZNCCFEBhzW6nkaW5qsmsbzAPyQXr8XwL8DeDqAHwG4orbdak+mZuYwdHB8gWsqUOieKoQQon1w968C+H8AfgPADQDuAvCt+PUfuvt1TeyeEEKIjMyiq6Z/S4msZ/sExCv7ZnYMokA4v+vud5nZPwH4dH26116MTkariKelGI1dHZF9rrQbQgjRfrj7R81sK4BnI/LU2wfgh62QO6uesI6J3c2S4fhDDMUudxvWlqhYA3L5FPtL1MuxjdwBW1uUKhYzOzJoHXP6xpDraTuQ+y7pXV64vftguutt3TWUomyyGo3jyAcBeC4id/OcO+ooCl3ClyyjkzNY1tmBp25Y6LmdW2kcGddKoxBCtCPufgjRCmN7ccIZwLUpCpIyAt8kSSbuzhHK07gzkDsu1E5v+uZgfjnWdA0G9i3GNICLU/LiDSCfL491j6zFu4vKrLnkST1r9FhPxufJ48IawJA2kCdefP583MHAsZjdidd8vJC2ko+dJX9haJLI2j0+/0Eqs86Onz1wTsUfBdrndkJjzQwnXrNekcclpCHk7QOBfvA58wOOZF7H0+P77saAUcn78rlxf0L5S7mfwbGYCLyBhdrl3PGT+wzE55DJAKTAN/UyGBUIpzqyuqfuAPD7ZvZUAL8P4NvunssdcTyAX9ajc+3GoYkZPHVDH5Z3Lbwh8+6pWmkUQohWx8x+3cxCEVOL7ZNxDU4IIYRoH7KuNL4LwH8iiiB3EMCb6L2XI/yQZ8kw546xqZlUPSMAdFgUQXVEmkYhhGgHvgfgbGT8fTOzznifX0U4p6MQQogmoZXG6shkNLr7j81sI6IEx7vdnVe8r8JC74Ylx+HJWbgDpx+XbjSaGfp6u+WeKoQQ7YEBeLGZnZyxflbPnYYz95M75vMq9o6mu6Qm8y6G6i1mrgtoIq9TPkbRBEJuqW3FqRnO4RSqc0/9v3cUPbVygkajmX0LUU6qb7j7w+4+BuCOZD13/4869q9tOBQHwUlbadx2+dkAgC1/972Guade/MlbCo4thBCibP6y2R1oNgU5GwM6I9Y3DZGmaRzA5ljTNB2YAHN9fhod0ujxpCWUvzCU7xAI57tjw3AY+RyOofyNrGPkvnIeQdbH9QbKrCcryJFHZR4X3nc8sJ11ldzOWVTmHI+cHxEoHGNui48R0vrx8Vh/+TQq30RlPmfOg8iwNpLHIpSPcoDKg4F9uZ98LkndJx87lHeT6/D+oXyXI8jfX6yf5fEK3bfXBD5H/FngY/EyBfctFPgpdH9tSOZfDTjhc4Cs3hOo/iYAO1M+e6ekn0/B985iMJ4XCcVWGgcB/AWAj5vZ7QC+BuBr7r6ryD5LllwQnCcc0ROss7qnW+6pQgjRHhxf4X4P17QXQgghakLknrq00mTUkuDIufvlAGBmZwN4GYDXAPiAme1GZEB+1d1vbUQn24GxyRmsWl58ybuvt6um7qlaTRRCiPrg7g80uw9CCCFqhzSN1VHS3Hb3WwDcAuAdsbbjtxEZkW8zs0cBfAORG+t33H3JLqPNzDm6u4pLWvp6uvHoyGSDeiSEEEIUMr2m0NUrlCOtVgy2qGvZtkS/ku560jGKerK9zPur1fWNu+P+HaPY0YuastZo3f1eAB8E8EEzewLyBuTXAEwCOKLWHWwH3B1zc47OEh/q1T1dck8VQgjRUDpOOwO9t9++wGBksgS+YZ1RyBjsRT43G9dJ5os7NUOdHKyrY+1iSD/XD+C8uP3bMk62uS3WrrGuK6R941911pYhUCeUL5G1mCOB7b2B7Vl0j6xj5H0HEv0IRTYM5fYLaR03UZlDEHN9Phb3I5QHMcsMKnQNuD+cTzKU7xIATkq8Piu+r/ihwyC9z+MS0nom2ZLSJus7OTclt7mdyqylZUL5MQt0uGsTb+5b+F2QDJQ1PpH/zthN/X5oDNgU0A2nMXJ/4etQzshaopXGyqk42pu7P+LuV7r7bwJYB+CNpfYxs98ws++a2SNmNmlmD5nZtWZ2SqX9aAUmZ+bgADo6iv849fV0K0+jEEIIIYQQDcZhmEFnTf+WEmWrQc1sHYAF0V7cfVuG3fsRRWD9BIDHAGwE8A4At5rZ09pVQzIWR07tLGU09nbj8NQspmfn0N3ZstHZhRBCCCGEEGKeTEajmfUB+EcAFwNYHqhW0tx29y8C+GKi7R8BuBfAKwF8KEt/Wo2xyVkAyOSeCgCHJmbQv3JZ3fslhBBCFIPdzkq5qGbVJw5lqLcjkBOxVmR1SxWiHHIpL2oZf7PV9Iq5zy+7PA+kaBWTLqsLoHQa7Iba3cTFOUVPrY6sI/dxAK8A8GlE6YlqGc0l57rdtmK/0awrjT2R1P7QxLSMRiGEEA0lGfSm5KSvCKHcjKxJSurDcpQr0gjpDTdTHwaQ11zeFtCbAflchcekHOecWIu1lfYfoPf53AYD21lzyTo+APiDuP3rA9o1Hi+esG8JHJcncCFdYUivF9LJAYXav1DuxJD+lCdyuwLbBwJ94jqh3IesXQ1pPbnM5xnKAxqqD4T1kaH8mkkN5JaUfJ9APk8jG4xrkZ5HlO+XFQDOT2mT8zqGxojh8x+nz+/wWHr93oR/Ie+z6RmBg2SguzObnlq0BlmNxt8A8Kfu/vFaHNTMOhGtTB4H4G8APALgS7VouxmMTWV3TwWAkXHpGoUQol0ws2UA/hzAJYhkFUmPG3d3Pb4WQogWR4FwKifrj5wB+FkNj3sbgDPi8h4Az3f3R1MPbPZGxEF2Nm7cWMMu1I7cSmNHRvdURVAVQoi24u8A/D6AGwBch9p62wghhGgAytNYHVmNxi8BOB/AjTU67qsRre6fAOBtAL5tZs9x98FkRXe/CsBVAHDmmWe25Br26ERupbF4PXZPFUII0Ta8EsB73P0Dze5IIxjpLXwAyqk22p2cO2Ba2otyc+cJUYqbK8zHyGlmkmkoWl6ve1Tcv3XZqvP3zWL6rlmMZDUa/wvAP5jZagDfRKELNwDA3b+b9aDunnN1v83MbkDkpv8OAG/K2kYrkT16arzSKPdUIYRoJ1YBuKXZnag15WqJBi5JbPhCtD9PankC2E8P9Kdn09vkoBjTpKcK5UQ8hmYtw6Sr4n4860P58/ren+T7w7+8nKcPKNSEhTR0g1QO6elYx7cawGUpGrVQDkbWbp4eaDOkY8yiH+XrxMdKjsWjgXrcFl8fPjb3j89hkMr82Jw1oDyx5DHiHIShfJeHAmW+rqHH9cMA3pySKxEo1CiGxngz0nMtsm52PfKaWYbHKzQz5PNkjSqP3V1U5j6H7mVuZ4Q+dzzuG0jHOJgQt66nwDiDd+bLAywKfRTzOR9D+ReTD6jqjVYaqyOr0fj1+P/xAC6j7Y7IddWRIXpqGu5+0Mz2YKF+uG2YD4RT0j011jRqpbGlufiT0dxw2+VnN7knQogW4XoAvw4g88NRIYQQrcdSy61YS7Iajc+rVwfMbD2AkwFcU69j1Jv5lBslVhpXL++CGTAyoZVGIYRoIz4K4HNmNoewt819De+VEEII0SAyGY3uflMtDmZmXwWwA8BORKvgTwLwR4hW5dsyRyMQRU81A6zESmNHh2HV8i6MjGulUQgh2oica+oVAN4TqKPH1yLI1TQ/SNNTiuZyZZV5Q7Psn0udcZi2rU+vurg5KoNL6mvq47aqPI3V0eiRuxXARQD+BMAyAL8AsB3AB9OC4LQLo5MzJV1Tc/T1dMs9VQgh2ovXIZJhLG2+UN4QsFaKA3uEdHyspeNfSdZZDRdx1BmI/387oWPM5b67JvE7fWmKxgwoDIizYEk5JpSPsrtIu2mwtoxPbXegPhuc3Dcex5DGkBkM1AcKx346UG9DhjrrAtv53PgcQvdF6N5h7SLfI7wv6/jGA3V436T2jvfn8+R+8P6cXzJ07zDJ452ekiv0IeS1sZzX8YV/kb/Pbn1ffnsoiA7fO9z/UH3Ov7ohkadxejYftGaAti8IooXi9K3EvO5RtD5Bo9HMvgvg99z93iwNmVkHouiql7t76vedu/8tgL+tpKOtzNjkTEnX1Byre7pwSO6pQgjRNrj71mb3QQghRHUoEE51FFtp3ILCh2ClsAr2WRSUYzT29XTLPVUIIdoQizQIpyBaqNgPYJd7GctKQgghmoqMxsop5Z76NTMrJ4nxkvzxLMs9tbcLDx+cKF1RCCFEy2BmrwfwfgBH0+ZHzezd7v7pBhz/WAAfAfBCRA9pbwTwVnd/sN7HFkIIIYoZjZ+tsM19Fe7XtoxNzqKjjJXGeycOla4oWhKl4xBi6WFmlwK4CsB3APwrgEcAPAHApQCuMrPD7v7FOh5/BaJ0H5MAXovoAe37AXzPzE5197Fi++OeO4BT49+oneU/283plPpWJt5oMS1SLkfe2sT2GwMPdUPbqw32sDXQDyFKkcwTmSMXRKelgiitj/o0MhKukpaHMfk9wnVyOsl64TCl3KiC4Heju/9OIzvSzpSraZR7qhBCtBV/BuAad391YvtnzezzAN4OoG5GI4A3ADgBwJPdfQ8AmNlORDFFLgfw4VoejCdu5Sbf5gkhB9IYoEAaw7Sdg5OEAo2EkrizFmaQyqGE6ZVEqkxGw8wlcf9oIBpqaFLFCeo56AMHCuH86dxvHqPeQJnb4THiMeWAJ/2BOkAisAnS4ePtDdTZEzjGqVTmcw4FjuHtT6MyJ7TfRGU+t4eozNefz+uYwHagcCxDQYi4Txw4h5OPc/2RQJnHMfTAYRzA+fE9eGsgYBNfm9Bn4ST6PPLndD19fofpUdRwwkFuYB1S6SZ7bHo2vc7IWP47JvT9Mn5d+r7Vouip1dHR7A4sBspzT+3G6OQM5uZa6wmtEEKIIE9GtMKYxr/G79eTlwK4NWcwAoC73w/gZgAvq/OxhRBCCBmNtSBaacxWt6+nG3Me5XYUQgjRFhxC4YIEcwwKFyTqwVMA/DRl+92IAvMIIYTIwCw6a/q3lNAabZXMzTnGpmaxZkV36cqI3FMBYGRiBqt7su0jhBCiqdwA4K/N7H/d/Qe5jWZ2NiJt4Q11Pn4/gAMp24cBHJm2g5m9EcAbAWCjfmpqxnUZvYqEqBc3x/fgYpzAj6/S56uVaat7bq4FI5sfjp22O8pwTwWAQxPTaDFJsxBCiHT+DMCzAGw3syEAv0QUCOcYRNKtP2tAH9J+AIM/PO5+FaLgPTizyxwPV3bQsgNTUHCcAZoA7iJ91EkBfSNrzljHN4j0OuyvM0BlXvZNTnK2BOYR2+k3PJRMnn+xObk995X7wTo+1q6xXo01dwzr8vicQxpA7ifrJ3cG+sZ6wOMSx+a+crshfSTX576yvo8ZD2znfQepzBq9XVTeHNjOcjvuP481jy+PafL5Ct8/fYlyTlt4dWD+9yMqs74xdA+vBXBu3Gby4cQF8fabaXvo3uQ+8/lw/UH63G0iHWOWzykADD4KDMR96kOAhAHYO7rws8ffL0mDcb5+DR/UKE9jdbSZ0djsHixkbDL6GJaTpxEARsblniqEEO2Auz9iZs8A8DoAv4ZozjkI4CYAW939cJ27cAALY7IA0Spj2gqkEEKIFGQ0Vk4mo9HMnuTu/1vvzpSiFYPHjMZG41vPfRJeftqGErXJPVURVIUQom2IDcOPxX+N5m5EusYkpwC4p8F9EUIIsQTJutJ4r5l9D8A/A/iquzdlmawFvVPnVxpXLs82lPPuqZMyGoUQQmTiGwD+3sxOcPf7AMDMBgCcA+Ad9Twwu4z19iTebLE8jVm4JnZ1S6bfaCu3K9EShPJ8VkNIM3tjK+ZpjLkt0eezajRZLzfdTxaUp7E6sn5Pvg6RoH4bgEfN7F8AfCoO+d0wWlHTODpvNGa7CfvmVxqrs7vdHUMHxzE9O4crvnF3wXYAGNw/hnWrl1d1DCGEWKqY2X0Aftvd/8fM7ke6pjCHu/uJdezOpwC8BcDXzezdcV/eB+AXAD5Zcu9nnAHcfnsdu5fOIOmj2Ld2D+mjeBLMWjfOwcg+PKGYPslcgeelzBeuKTLJn0FeT8awXo37xzq+06kcysc3EKgTOh/WA/IY9Qe2c99Yx8iE8jQmNYb8mvWhIa0gw+fME0w+3gNU5mvLj9LZqOfx4vtie6B91mtyH0J5LZnk9eCxCGkFWa+4N1CHc1YOJI6RpmMM9W+c6m8P3Jt8nnwf8fXjvKm7M+gYK1nmSNMwZq1fD4MRUJ7Gask0cu6+FcBWMzsVUSLh3wPwZ2Z2I4ArAVzv7nN162VMKxqNY5NRIJxVGVcaV89rGqtbabx/3xgeOjCODgOu2xHJuy3+AjEDDh6ebsmV2XZgzj0cXUIIsVS4Cfk58E0objTWFXcfM7PnA/gIgM8jCoDzHQBvdffRZvVLCCHE0qEsc9vddwL4fTP7UwCXIHryeR2AX5rZ1QCudPfkA7+a0YKSxrLdU5d1daCnuwOHJqtbadw/NgUA2LRuNb71R7++4P0nv/sGzLbigLUB9/7yEByO4bEp9K9c1uzuCCGagLv/DpUva2JXcn14EMArmt0PIYRoZxQIp3IqXaMdAHBq/H8KUdLhPwbwJ2b2Gnf/ak16l8BbcOks556adaURiCKoVrvSuH90EgDQ3Zm+JtbVYZiR0Vg27o6xqRnMOXDhP/8Qn/vds7BhTSuqCIQQjcLM/hLA1e6+IHGFmf0KgDe4+181vmdlckrK78U91f9ODJKb3IYjqm6uJtxAfUpzVU1ja7xPMIWAEHXgmhbWKxZjsISmM+Ri2p2w2ebdUo+Sj1erk9nSMbNlAC5E5J56DiK39L8B8Gl332dmRyLKCfVhAHUxGlvTPbW8lUYgiqB6aKI2K43dnR2p73d2mFYaK+Dg4WnMOdC/chkePTSJV175Q3z2dc/Ek9avLr2zEGKx8h4A/wmkZjt8Yvx+6xuNFVBMZ1TKuDrpCKD7YLT/Lppg9gLYHP+ec5s7SEM1gnxOxd20L+vh+Fu5H/kAHDcEJrOskxtJvJd8PX8OVOZcgKHcgbyd21wd2N4bKDOh2QXPIkJ5I3lf1ieG+pB8vYnKu6ncHSiHcmfy8Vh/+DQq3xxok8eOz43bCeUsRKDOeKCc1DTysQcD9fgeeZTKfE0GEu3mdInXJHSJl6boG0PnE9Klcpn7xteAdcUFOVET+RhzDCSCYCXzqw7UeH7etxL5QFvK09gypFscCczsQ4h+LD+L6HvnpQBOdPe/dfd9AODuBwD8Ixbmia0ZrWgD5YzGFclHJ0Xo6+3GyER1K43Do5HR2FV0pbHuMtNFx9DB6Otz7cpluPbyszE757jwn2/BHQ8Ml9hTCLGIKTZrORLAZKM6IoQQojJy0VNr+beUyLo89moAn0akWRwsUu9eAL9T5P2qaMWVxtHJWaxc1omOjuxPQvp6unHw8FRVx90/NoXODkNH4AlMZ0cHZueakhmlrckZjcu6OrD5V/rwlTc/G6/5lx/h0qtvwycuPb3E3kKIxYKZbQHwfNp0uZn9VqJaL4CXIMqjKIQQQixashqNx7h7SSsnXnX8bHVdCtOqK43luKYCkXvqL4YPV3Xc/WNT6CpiqMo9tTKGDkRG4/KuaBH+2P4V+PKbzsbvfObHeMPn7sBx/StwtFKZCLEUeC6Ad8dlR/oD0SkA9wD4w0Z1qtEUC32/N4Pb2FCgDud/rBU5V7/+EvWEaDbbqnC5zOVsXFeiXiPh74m+8daeeyrlRuVkHblxMzvb3X+UfMPMzgDwI3ev+xptSwbCmZopKwgOUCP31LHJoJ4RiNxT5xyYmpnDsq5MXsgC0Upjh6HAID9q1XJ88Y3Pwps+fwf+e88+zLbgfSiEqC3u/l4A7wUAM5sD8Ky038C2ogZBb3ITQjYY2Xl/+HHg9Pg7ciiRd25DvJ0NRtZWbQ4cM5SzkLezLmsYeW0YAnWSuQm7ka4n43oDyAfVCSVhZ4OVf+VvpDKfJ7fPekjWXz6UeqTCY3HYetbVsV6I+8PHSir2Q2IMHnv2YwrlKeR+H0Nl1taFPlAhXSb34VCgDo/dIJUHAn1gfWLyvmBCetVQ/ks+Ht+rvGTQBeDilHv1gsA840a67x5NrVE4FoNU7gvUYe1lQW7RhI6RjcGCsciYU7GUMTme0FPWIzCQNI3VkdWaKHZHdKJB+ataceGs0pXGkfEqA+GMTgUjpwJAZ/zeoSqN06XG0IFxLOvqmM95mWPV8i58+rIz0dfThYcPFvtZEUIsNty9o+0NRiGEEEsGM3unmf3MzObM7OUp77/YzO4ws5+Y2V1m9ppSbRa1dsysA3mDsSN+zfQCOA/AvmynUB2tqGmMjMbynlr09XRjanYOE9Oz6CkjgA4TuacWX2kEgEMTM1i7Su6UWXn48XEs70q/Jsu7OnFEbzdGJmbw+OFpHLEiGWdNCLFYMLONAH7p7tNxuShxHkUhhBAtyhJbafwOgG2IYtIUENtzXwDwbHe/x8yOA/C/Znadu4+GGgwajWb2HgB/Gb90FEZDTvKJDJ2vmlY0GkcnZ7FhTU/pikRfb2RsjExMV2Q0zs05DoxNYV0RbV1nbDRW6wa71MitNIboXRZdr5/vG8XpG49sVLeEEI3nfgBnI/KgG0Rpj5qWn4mkuZHlXMam15BLZpWxYHP525KP1XbE2zevzNbOjip0XznN2EAZ+yhPo2gGN6bc5+wyfGjBuy1AkZyKuc9/f3lT44bRDKPRzI4B8HYAZwJ4OqJFt+PTgoua2bEAPgLghYgW7m4E8NZyH0y6+21xe6ldiv/nPKrXANiPSKcfpNhK43Zq+C8RWapJ1/pJREEA/r3YQWpFC9qMFbmn9vVE9UfGZ7CugvR/IxPTmJlzdBXRNM4bjVW6wS4lxqdmsX9sCsccGfak742N/D2PymgUYpHzOgA/p3IL/gI1hlJapJNocsj52/iRJevkHhrLl9nZn3+tWCfGRhy3eQFFArmBBF6hnIvrkM/luD0xkRoM7BNqi88ni/aqH8Bl8bE/TMfmPIisdeOxCOUj5LHjPjyTyiHdJ+v+khpGNlI4NyMfg2c9vD/3jx8a8PUM6Ru5f6HH3dzvkHYzpNGbCZRDeQ2BwnPgPoU0lEOB8v5Am7xvufC58Tnz56Xg3Ohz2kcPbnZR57g/exIaw1D8eM6pOEj3drlrIpwTdhFyEoCLANwB4AcAXpRWycxWAPguIvvqtYh+d94P4Htmdqq7j6XtVy7uPmtmFwL4mpmNIUoddUGpoKdBa8fdbwJwU3wSDuBqdx8K1W8Ecy0oaqzMaIy+MirVG+4fi65pMU1jl1YayyaXbmN5kZXG5V0dMAA/fyy4ei+EWAS4+2epvLWJXRFCCFEDcnkam8D33X09AJjZ6xEwGgG8AcAJAJ7s7nvi+jsRPb+5HMCH4207AIRkE6e5+y+KdcbMugC8C5Gh+H0z+1UAX48N06DkMFMgHHd/b7MNRqA1A+GMTlYSPTVeaZyobBVwODYai2ka8yuNMhqzwjkaQ5gZero78fNHa/KwRwjRppjZKWb2CjN7YrP7IoQQonVx97mMVV8K4NacwRjvez8iieDLaNvp7n5U4K+owRjzDABPdPfvx+39GNHi+GnFdiqmafwXAO9z9/vjcjHc3X83QyerotU0jTOzc5icmcPKZeVGT401jRUadPtHI8FJ0eipsUF5qELDdCnycIaVRgDo6e7AfVppFGLJYGYfA9Dl7m+KX1+AKMBAJ4ARM3th/KO7qNlFrmftmgvxypyussL9PxrvX0k6gOur0GgK0Wz48795bfn751LwrDuicHv3wZS5/dn1+axEgXBqnqfxKDO7nV5f5e5XVdjWUwB8PWX73QAurLDNNH4B4IlmdkocCOckRC60Pyu2U7GRex6Af4zLz0dxPUeDUm60ltE4NjkLAFjVU6l7amUGXd49tchKY/x5k3tqdoYOjKOzw7CsyLgCUTCcB4YPKwemEEuH8xDnbIx5LyIt/18C+BCA9wD4rSb0qyyKaRN54pYlLjT/eh2ayOdgBAXb2UuaqJMCOd+GaSIa+rViXRYbq4MkatsMYCBljrAtkE8y+et7TOL1uXFbVwdyNia1b1tS6nNfuwNlZgWVOYBEKL8e6wRDOr6QjpFdx5LnwmS5JtwW94PHm8+B+819Dek7uZ09VObk9qzDfCDQt9D1KNDxoRAeb75HuE+hMebzTF7zXE7Qm+l+GaT39xdWn8/lyPcz94cfYnDfOGzGIH0e13J+VDIAOVfieEB7DAA7Eh3M6R0HnpaouHNhztZmU4dAOPvc/cwatdUP4EDK9mFEusPMmNm7AbwJwNEAnho//DzT3R9x971m9gYA2+I8xB0Afr9UsJ1imsbjqTxQTkfrRYvZjBidin52VpWbcmPePbUyg254NHZPLbLSaGbo7DC5p5bB0MFxPKGvJxRpap7e7k7Mzjke2D+GTesriGQkhGg3noB4ThdHwXsKgN9197vM7J+QEtJcCCGEqIA0a6dsq9vd348oiE7o/S8C+GI5bdZ8jbaetN5KY2Q0lhsIp7e7E50dVlUgnNU9XegoYdx0dVjFusmlyNCBcWxYU9rpKBdB9eePjcpoFGJpMA5gVVx+LqIFkpw70igKH+gLIYRoQdogT+MBpHv/H4n0FciGksnaMbNnA+h393+PX68F8DEATwXwLQBvd/fZuvUyptUC4YxWaDSaGfp6uipOh7F/bAprVy4rWa8aw3QpMnRwHM88vn9e2xiih9JuCCGWBDsA/L6ZPQjg9wF8mwIbHA/gl03rWRbuvgM4JX7IeE95P6RpuR1rwim1b/eG+EFqKE1GOdxcpjtdNVpHsfS4rcz7K5kiptXIfU/0bSpRsci+QOn0PtXSxOipWbkbkSdLklMQpThsKlmtnb8B8B3k8zH+HYAXI0o4+WYAjwN4X817l2DOHe5e0n2wUeRWGsuNngoAfb3dlbunjk2iP6PRqDyN2ZiZncMjIxPYsKa3pNHY2WF44hE9+PljiqAqxBLhXQD+E8D/ADiISCeS4+UAftT4LjWeDT2lJ3Wcm21FoE7f8fkyP1JnPRlr47gOJwzfwfqrwLF4Dss5B/cm6rEWjQ2/UMAf1sqxhozbYV0eHy9kWLKOkTVwoXyMIf1glnyKrAdM6vh42ZyPEcr5eCqVQzo+rr8usD2Up5LPh+tnaZ8fIITGvdhMLHSMUH7FcQAXxF5xW2muyvVDbgncD66fzAmZ08/uDOht+Z4NfS4KdKWkTwy1kxy7gs8IfSZHdqd/R2wIeAoGH0o9g8q3pldZpHwDwN+b2Qnufh8AmNkAgHMAvKOZHQOyG42bAfwtAJhZN4BXAniru/+Lmb0VUe6QuhuNADA961jW1VpGY7nRUwFgdU9X5YFwRqdwbP+KknrFyD1VK41Z2HtoErNzjieu6cW2y88uWf/EdauUq1GIJYK7/9jMNgI4GcBud+e56FUotEeEEEK0KHWInpoJM3tlXDwj/n+emT0G4DF3vyne9ikAb0GUM/HdiPSN70MU7fSTjexvGllHbhXyD2yeCWAl8quOxRJM1pzx6dmWiVg5moueWslKY0935Sk3xqbwjGPXlNxfgXCyM3Qger624chszkUnHr0KX779Fy218i2EqB/uPgbgjpTt/9GE7gghhGgvvpx4/Yn4/00AtgDR74yZPR/ARwB8HlEAnO8gWqhr+kpFVmtnCMDTAfwAUejxn7p7Ltj1kSj0KqgrE9OzOKI3S0Dw+pMPhFO+f3RfTzfu21f+9Z+bcxwYm0L/ymW4f19x98iuDlOexowMHYxu4SyBcIBopXFsahaPjEzgV46QikWIxY6ZPQ1Rao3nIvrdGwawHcBfuftPm9i1yjkt8cDrJ5ELWSYd45vzdXb/c37zMStr0TEh2pcr66xvvTGX77BO7deK8VWF3yO9oxn0ir8a71OrBBYJmhkIx90zrTDEaS9eUefuVERWo/GLAP7azLYg0jK+h947HQ10zRmfqnu8ncxUGggHqNw9dWRiGjNzjrWrlpes29lhODQ5g9k5R2eHVsOKMb/SmNVoPDqaGf380TEZjUIscszsVxE9DR5HpDl5BFEajvMBvMTMft3dF6xCtgxPOQO4/fbS9VLo6ytdh3loDNgU65dWk/HJOeKwCzg1rnOIPDV4EjxIZf6G5XYKtif6cVmKhmo3Hev//k3h+//0jsLfyD+I978uoEtjfSDPALgfoUl9SMfH2sCdVOaZQsh3KKS95GPxvpzXMBk4KItukLeHJoB86/Ax+NjcJ24/pEVlQhpN3j4Q2M73znSgDBTqD3mMuS1OWRjSPbJe9XQq76Iyjxe3yeM1gHT4HhkMtMn9D+X45O0DFyQO8hX6zByVmFPuqz6ATd9T6cXtAH4ct/nPtZu/tkH01JYmq7VzBYAJAM9CFBTnw/Te07FwybVujE+3jtE4NjmDrg7D8grcZft6K3NP3T8W5WjMFj016tfoxAyOWNEaq7OtytDBCaxduQy9y7J9mZy0Loq+v+fRQ3jOpqPq2TUhRPP5IICfAniBu8/P4cxsNaKAcB8E8KIm9U0IIYSoO5mMxjidxgcC7728lh0qRasZjSuXd1WkaVvd04WxqVnMzM6hqzO70TkcG41Zoqd2xauLIxPTMhpLMHRwHE/MuMoIAEevWo7VPV2KoCrE0uBZAF7NBiMAuPshM/tbAJ9tTreEEEKUQ4un3GhpmhNCqAomWso9dbaiIDhApGmM2pjBmhWlDcAc+0cnAQBrV2VLuQEAj49P49gK+riUGDpwGJvWlc7PzZFVTzxaEVSFWCKU8r1qsSzCzSWLJrJu+R9rRKvnxROi0RTkU1xZ5L0a5VqcXlP7z2Dkntp2pk/LkGnkzGwZgD8HcAmiSKlJQZ27e0OuQuutNFb2xKIvDuYzMl6m0Tjvnlpa05hbaVQwnOK4O4YOjmPLk8uTlZ+0bhV+sPuxOvVKCNFC3AbgnWZ2Y8I9dSWAt6NdM4n9pPTkbmQkMAm8Mr9t05VUP2EMzu9LRtgA5XVjDdgAldk3hvVwofx9xyzs4QL4WP+d0DCylou1X4OJ8h/HWsdrAkYl69VC+Ru5TV66Zt0bnw/X577xvuOBcihnH/eHNW1AWH/Iv5CPUnmAynzdBqkcyh3J/eBrwFo/rh86Hy5zftAdVH4mlTmxKj8u5usHFJ7nMIDzU3IwDiAdzmvJ1/NRAOfG7bCOldvk+mupPEjlUB5F3p7Uq+bYQo2Ok054iJyndlwHnO7pwbFGxvKf7dADoCyBb/rOT2y4NtqnHgajqJ6sht7fAfh9ADcAuA7AZN16VIKWMhqnZioKggNE7qkAys6jODwaGY1HruwumU+wk9xTRZjhsSlMTM9lDoKT48SjV+Hf7ngIIxPT8yvHQohFyTsRRUp9wMz+HcAvEQXCeQmi+dqWpvVMCCFEJhQIpzqyWjyvBPAed0/VNTaSVoueWq17arkG3f6xKazu6cLyrtI3/bzRqFyNRXn4YPSYLWuOxhy5CKr3PTaGZxy7ptbdEkK0CO7+IzN7FoC/BPAbiB7mDwP4LoD3uftdzeyfEEIIUW+yWjyrANxSz45kZaKVVhonZ7B+dU/piin09cYrjePluY7uH5vKFDl12+Vn4/HD03j6X/0XRuSeWpRyczTmyEVQ/fmjozIahVjkuPtORA9QFw3l6gqDrqc1PEatubHG2sScC6F8S5YmW2t0P+Xuy/0l6jWbZK5FZjA+h/7QNPiUxL73tIb0WyuNlZPVaLwewK8jeqraVFrKPXVytmL31NxK46Fy3VPHJjNFTgWAVbELbLnHWGo8VGaOxhzH9q9Ad6dhj4LhCLFkMLMnIpKBDbn7w83uTz3oLS2ZL5uBnryROUgTb/4FZU0fP+rkOvxrFsqVFyLrNzwbhKxxGwz0g3VprGNjbRmfWyj3IevYWIvHfeCchbxvKNceAnWY5DJ5KOcj95t1gHuovC5QJ9ROSH/J15/Hhc+N9+Vryzo+7g/rGPlYfC35+gHhfJwDgX1CutHBwL5ML4CLYw3htoBxelLgWHxt+Xx4XDhn487EByaXN/UkesjTTbZVd2ehRpE/w8MTwEBKXtQsjFxf+DrXx+6D1F4NH/zIPbU6slo8HwXwOTObA/BNFH6OAADufl8tOxZiYnquEYfJROSeWmEgnHn31DJXGkencGz/itIVEbmnrlreVfZq5lJj6OA4VizrxJoy05J0d3bguLUr8fNHZTQKsdgxs9cAeC+iYHC5bQ8C+At3/9emdUwIIYRoAFmNxpxr6hUA3hOoU3fT3dA6K43uPp+nsRJyq4Dl6g33j02V5QrZ19OlQDglGDowjg1reivKt3ni0SuxR0ajEIsaM3sLgH8CcCOA9yFa8FiPKKL4Z83sCHf/eBO7KIQQogQO5WmshqwWz+vQAnmoOsxaJhDO5MwcZua8YqMxtwpYTjqMuTnHgbGpTDkac/T1disQTgkefny87CA4OU5atwrf2fUopmfn0N3ZUeOeCSFahD8BsNXdX5fY/i9mthXA2wAsPaNxffSgbTflJVhfRObfUH3jqQrZL9qPWmtwa8qrwn3bQf0+vYSrarHvgXrkeyxEeRqrIdPIufvWOvcjE2atEwhnbDIy9iqNngqUvwo4MjGNmTlHf4YcjfljdGulsQRDB8Zx6jFrKtr3xKNXYWbO8cD+w/OBcYQQi44nAPhS4L0vALiogX2pGeVOyvr6StfJAgfOmKYccSwQYA0Ma9S4zt7E9gtyk1UyGHnfkAYu+R4fO5S/kfvBmjY+Hmv6ON8ft8O6N9YxDlD5tkB9hn/lQ4+ixwN1khmKN1OZzy053jlC2kU+Bvc7pD+97Bn58s135sucszF0nllydrKwh8+F+5Y8l34AW+L76joyjDh/JR97OlAO6VL52Hw+fK0A4LIUQ4x1hYOB/oTyYIYekx+izyPfy5svKay3fmW+vGsM6WQMfFMq36NoHcpaGjGzDjN7qpk9N05q3FA6zFrGPXVsMupHpSuNQLQK+J1de3HxJ7MFpt0/FuVozBI9NcfqnvJWM5cah6dmcODwdNlBcHKceHQcQVXBcIRYzNwF4MTAe5sA/LSBfRFCCFEBuUA4tfxbSmQ2Gs3s9wE8AmAnoiiqT463f83M/rA+3SukldxTR+dXGiu/YVb3dGF2LvuT3uGc0Viue6pWGoMMxZFTj6nQPfXEeHVxz6OjuPiTt2R+ACCEaCv+H4B3mNmFZtYJAGbWaWYXAfhTAA35DRRCCCGaRaZlMjN7A4B/BPAvAP4LwLX09g8AvAJRkIC60tHROoFwxqYio7GqlcaebsyUYTTuH50EgMwpN6JjKHpqMR46WFm6jRyrlnfhCX09WmkUYnFzLaJo8F8CMGtmBwAciSgA3CiAaymQlrv7cU3pZYh77si7bO5seniCupFzH7zgaU3uiFhUbG9lnWGN2Bmf49paNBZrnUfIv7Xv/Fo0XBuW2upgLclq8fwxgA+5+9tzT1mJexE9aa07HWYto2nMrTRW655azkpj3j21DE1jbzcOTUzD3SuKDrrYeThnNFa40ggAJ65biZ8/NoaeLgXCEWKR8h20QDC4prM3fQiOoQTgexP6plz+tl30+zNA4hbWbiV1XDlCUkrW3rHubSslHmR920Bifw7YsZf6x9ovPsYglUP5+3jSzbq/UB491o0xfKyBDMfl7VyfzyWkDeX6QOF4s6Yx9CvJ5zYYqM86RtYDsr7zw3emb+fx4uvJ58+PxkO5LDmfJnOYyg8l3uPrz33i3JShfIlAXme7NTD/4n6fSw87rksmz0whlB+T2xykMp9LSOubvB83B4LaTJP+8CTSKGfRPfedD+Da5nydOkzRU6sgq8VzPIBvBd4bA7CmJr0pgVkLrTTWIBBO2e6po5HRWN5KYzfmHBibmq2qr4uVoQPj6OowrFtdJORfCU46ehWu2zGEzb+yWoa5EIsQd7+smcc3sz8G8DwAZyIKyvNed7+imX0SQgixtMhqRezDwodROZ6MwodRdaOVNI1jtVhpjN1TvUR44hz7x6awuqcLy8pY0VpN+SBlNC5k6OA4nnBEDzo7Kjf2Tly3CocmZzA961jWJaNRCFFz3oBoEeBrAN7U3K4IIUR74kq5URVZR+56AH9pZtsBPBBvczM7CsAfIfohK4mZvRJRMuQzEa2mPwjgOgB/7e6Hiu0L5NxT5zJ2ub6MxtFTVy2rxj012jfrYuP+samyIqdGx4icUEYmpvHEoHPJ0mXowHjFesYcuQiq49OzZRn0QgiRkae4+5yZdaEBRuNwd+HDr/7p6EdqnNxQuzL+9A22sPfF9dQ3TSNFPaiVHvKauJ1Q2pd6Efr89lfunAUgWz7G6TX1+e6QprFysn5PvhvA8xGFFb8NkbbjnwCcjCj90F9lbOdtiAzFdyJyHT8NwBUAnmdmz3b3ohZhRwu6p66sKnpq9JHPGgxn/+gk1q7KrmcEotVMAAqGE2Do4DjOPrE66XcuP+PE9CyO6G3E17gQYilR6rexJKecAdx+e416s5CuLqD7YPQ7NkDbecLJujTWPfI35nqakeyknyzONRfSX/UmyueV0JIl9ZMhbWEot10v8nq1m+kYrKfbj3x+vWtY0xk4FjOYoQ8MT+ZC8dLXB+ok8ybye9yPs6jM2r9QvkTWWbLUjdvn68D9431Zr8f9CeUj5HuKj8t95uMOJNrZQt5fnJuR2+Xx5tyOIX0jH4Ov534AF6d5m9FxQ1pf7kMobyRfGx7TDWT0DVJuxqyP0LsTU9/e0fRci+XkYGTjsV4Go6iOTEaju+83szMBvBXAbwD4ebzvxwB8xN1D37dJznf3x+j1TWY2DOCzALYgSuURxFrMPXV5Vwe6OitfWcoZdLNz2eYDw2NTOLZ/RemKfIzevHuqKGR6dg57RyZwTJUrjetWL8eq5V0t80BDCCGEEEIUksvTKCojs0dG7D76vvivIhIGY44fx/+TQacWkFtpbIVIoKOTM1VrBHN6w6zBcPaPTeEZx64p8xiRYXpoUkZjkkcen8CcVxc5FYgeZpx49Ercv2+sdGUhhGgAZvZGAG8EgI0bNza5N0IIIdqdTMtkZnafmT098N5Tzey+Kvrw3Pj/rqK1EGkaAWBypvm6xrHJmaqC4AB5vWEW99S5Ocfw2BTWripT0zgfCEfuqUmG4nQbT6xypRGIguG0it5WCFE9ZvYHdWr3XDPzDH/bqzmOu1/l7me6+5lHH310jXovhBDti8MwO9dZ07+lRFarZwBASEzXA6CiRMZmtgGRHvJGd08VXPDT0qM2HI+VAManZtGTdKhuMKOTs9UbjWWsNI5MTGN2ztFfRo5GIL/SKPfUhQwdiHM01sJoPHoVpmbnykqhIoRoaf7BzC4E8Dp331OydnZ+iMKUaSEOl66SkQfuAN5gGPnX4tVCASnwhuyePRwsZ7FzfUpwkiQ3t3AgIJHODQ2+ZlfT8V6fMZq+qBAHZmaWlqFXS8qxekJ38pkADpZ7YDNbBeDriHS6vxM8qPtVAK4CgBM3n+qziFxUjyz3gDVmbHIGq6oIggPkDboshsb+sShHY7nRU5d1daC3uxMjEzIamYs/ecu80ViTlUaKoCqEWBS8AMCnAPyPmb0HwIc8a36kIrj7YQD3VttOPclFSwVQYDD2XgLgU+mBLdJCgBUEG6HAG0MThfVyCcSHApP1UHCVvYl6F6Rcnsto245E+6fTexxJNRSQhc+nL1BngMrdge2DC3q5EDZEeV8+VjIRfQ7OgfZMKnO+eB7TpNHL+/M58Hg/GmiLJ5XdgTpc5nHkfvBY87E4KA7vmyVY0HigzOebHItQwI5NVE7OrnKBdK4OROcdoHLoaVRoLIB8kKdt1H5oHHm8QhP+ZLCc+c/FUfn2RxLqm+nZIg+ZUiinLpAPrAWgICiQaC5Bo9HM/ghROg0gMhivN7OpRLVeRPfnl8o5qJn1APgGgBMAPNfdQ999yf0AtMbEfHRypmxX0SQ5TWMW99T9o7HRWMEx+3q7cGhC7qlJJmfmcNSq5TVZteYIqkKI9sfdt5vZ0wC8F8BfA3ilmb3O3e9pcteEEEJUgLthdkYJdiql2MjdB+A7cfm1AG4HkAxkMwngHgBXZz2gmXUD+AqiB2DnuvtdJXaZJ5d/vRUiqI5NzmDj2vIimSbp6e6EWbaVxuGxSQBAf5krjUC0oqmVxoVMzszi+HiFsFqOW7sChta4N4UQtcHdJwC83cy2Ifqd22FmXwOQfIDq7v7aevUjjl4+gHwcglPivMcA8M149VIIIUQRIqNR7qmVEjQa3f3riNxHcyt8f+Xu91dzMDPrAHANIrefl7j7reXs3xFbja2wmjM6OYNVy6p/WtHVYWW6p5anaQQi7aQC4SxkanYOG9ZUmaE2pruzA8u7O1piFVwIUXP2ALgTwDMA/BpSjMY6H/8tiB7e5rgw/gOA45HN47Gu5FxL+1dWsPNFtXU/uzHhznZuwKtYekPRamS5J+utucy5nveV+CwPdy/sR5cW8RY1WfM0BjWHZfJxRD90HwAwZmbPovceKuWmOr/S2AIT81pETwWAzg4ryz21kpXGvt5uDI8l5zhLG3fH5MxcTYLg5Ojt7lQEVSEWGWb2UgCfALACwBvc/dON7oO7XwbgsoobOO4M4FO3o+9TFez7qdK/T4dIo7iXtE8bAs/kBmgy2vvifHk11e+jNln3xd/YaTrKYrAeMPnNP52od0GKbqwL+UTsWwN6MoZDwvNs4TIKg3TNrvQ63NeQdo+3s/aOdWyhPnA5qdt7GpVZ78djxLo57lModxq3w/0LtdMVqMPjwswEykxIk8rntReFOljWunI/BqkcOueTAtuTdXIaSDYYeSxYY8vnwNG0dgTqnxT4DA5PlK7DOsbhhA65LzD9XVAvvVrzcGilsQoyWz1mdgKAiwBsRBQxlXF3/90MzZwX/39X/Me8F8AVJfoAoPkugHNzjrGp2aoD4QCR0Tg7V9rQGB6bwuqeLizrypQlpYC+nm48sF/eS8zMnMO9NpFTc/R0d+Lg4WnMzM6hq7P86ySEaB3M7GgAHwPwSgD/AeBN7v5wc3slhBCiUtwNM9MyGislk9FoZi8D8GVEeopHEWkZmUyuOe4+UE7nknS0SCCcw/Hxa7HS2JV1pXFsquzIqTlW93Qp5UaCXK7PDUdWp0tllnd1wAEcODyNo1eX70YshGgp7gUwB+A17n5NszsjhBBCNJOsVs/7AWwHcKm7J4PhNIyce2qzNY1jk5HzQ23cUzswOVNab7h/dBJrV1VmiPT1RoFw3H1+tXapM2801nClMbe6ODw2JaNRiPbnuwB+390fLVmzTUmmzciFxU9uT6vTimwP/L7lXEzX1qCt0HaxeLi+ymt8Tbx/yG01SU6DW7vZSPuQzOvaO1rv7xfD3KyEl5WSdeROAPAnzTQYAVppbLJ76mhsNK6q0UpjtuipUzi2v7JVsb6ebkzPOiam59C7TMvyADA1E91DNTUa46ca+8cmAayuWbtCiMbj7heWrrV0KTAeA8ZniF08Kf9yPk/jXbSdJ9z8Lc2aLq4Tyqe3P1G+OBAUhw0F/vZev7AqgEKtFveJNXc8QzidyleS0PDUwL6DgXZC+RV5X9YPMlyfZxP7E/V+ROUBKvMYdwfKbJhz/dAvLWvx+FjJ3IRp7RwK1AlpQEPawJlAHaDwXmB/LdZ9hsY+eR0uzd17p+TvtRvpXuA+rUU+gBM/qAiNy1lU5nO+izSGfD34fuyjG2OETqbvfCoDwLWl56rJPJdicZHV6rkX5T2kqwt599TmBhup7Uqjxfq64quA+8em8Ixj11R0jL7eqJ8jE9MyGmMmZ+bQYfmxqQXdndH1U9AhIYQQQogWwwEoEE7FZI3W8WcA3hkHw2ka1iLRU0fnjcbqb7zlXR1wR9FANXNzjuGxKaxdVammMXoOeEi5GueZnJnD8q7OmrrrdpN7qhBCCCGEaCHcIqOxln9LiKzLLFcgWmncZWa7sTDqsbv7c2vZsRBRWoNmaxqj49fCPbUvNuhuuW8/Bo5KT4ozMjGN2TlHfwU5GqNjRP18XLka55mamcPyCiLRFiPnniqjUQjRlmyozUO0XM5Gfkw5sC69LgDc1gyd4GnSJorGknMz3bK5RMVE/VZhkNOPcHqc4xMV74ncWEN6RW5nfSV5XUXTyGr1zAL4WT07kpXeZZ1N1zSO1VDT2NPdge5Owy0/349Lnrkxtc7+2AipNHpqX29kmI5opXGeyZm5mlw/xszQ1WEyGoUQbUGB9rCIwVhO8JtDE6XrbF4HYG/U5m0BvRbrsjbTBPVmav8c2v6jxHHPDWgXQ/DxjqMyPyHPoqHjX5WQ1pHbGaQy68FCNja3z30OaQZZ98kzAPZtKqbs53rc795AmZNt82Pq0OyDz2eQyjx2/YHtA1TmfJTc59VIz63J1+McKid1iHwOIT0ht5U8z8tSdIk3BnJz8rGSs5MtKfczB6zaQ/c/X6eQPpf7PPxwXle8g/q5heoMfnnB4WvC3jFgoMzPalU4gJnWMsbbiUyzZnffUud+ZKa3u7Nl3FNrYXSYGfp6unHrffuDusb9o7HRWKF7am41U2k3Ig5PzWB2zmu+0ggAXZ02b+QLIYQQQogWQk53FdN2GciXd3c03WisZSAcIHIfffTQJO7bN5b6/vBYlBazv+KVxqifhyb0SQGAfYcioy6nQawlXR0dGB6V0SiEEEIIIRYPQaun3KA37n5f9d0pTW93JyZawD3VDFhRo0ikOffRW36+HycevWrB+7mVq6MqzdPYI/dU5rHRyAjPRTutJd2dck8VQixOLBFP35PRDcpgd531WteXyH137jPqenjRQlzZxDyItdYl3kjtPbOnSMUy2dUI/eRFgWO8JpeEPbE9Q4qPsnFopbEKii2V7UE0vFlpSAih1nBPncXKZV01i7y5vKsDT+jrwS337cf/fdZxC97PuaceuaKylcblXR1Y1tmBEQXCAQDsmzca6+Ge2oHhwzIahRBtxlD+576vSLU0hhOTvXmN0nrSK5IjzUNU7gewyRcGyGD2BHSSO2g7PxLN8ku3/c7C12xQ3BXYHoLzHHL+O96XNXesodtO5VDuRy5zTkSewLE9z/n49gbqMI8GtgPhsQzlbORjhPbdRGUelwEqsy6R2wnlYGTtXmjsGI5FwzrGUL5PIKytTOog/yBFx8jPV1hbyBpQIK+/tH8q3J42Gb+R7n9uk/WwIZ1kSEtZkPv0+ny5v6dQ28x6yuHdhf3KjRNP1Tnn48CFyBuEr5G+sJ0oZjT+TsN6UQa9yzrnNYXNYmxypibpNnKYGc4+cS1+sPuxVF3j8NgUVvd0YVmFGjwzQ19vl1YaY3JGeFcdjMbuDsOjhyZL5t0UQgghhBANRCuNVRE0Gt39s43sSFZ6ujvx2KHJpvZhdGqmZnrGHGefsBZf/ckQdj86iietX13w3v6xqYpdU3P09XQrEE7Mvjq6p3Z1dmBmzjEyPoMjVnSX3kEIIYQQQtQfRziUryhJbS2fBtAaeRpnap6u4ewT1wKIdI05o/HiT94CAOjssIqD4ORY3dOlQDgx+0Yn0dlh6KjDSmDOEN0/NimjUQixqGEXtbTtfRn9XEPtCNGO3FAHDeXVcZsDNWyzXEJ5GsXSoS2NxmZrGscmZ7ByWW2H7tj+Fdiwphe33rcfr332QMF7w2NTOLZ/RVXt9/V2yz01Zt/oZF1WGQGgqyNq94B0jUKIRQYHvmFDj/VOvH0wIZbLaR03kdZxJCAi40kpayZZV8aP5ZIxeS7IacMs/44/bW1hpZ15jRbn8Cv2uC/X7nVU/yx6/2Yqs9EQ0uINUDmk4zuGyqG8hnxmoXyKDI/XQOK9pM4ux+rAdj5eSOvI/WANaGhWEtJxcv3QsUKzM9ab7gj0LXntQ/0L5Xncm6wYw+fD47s2WTHG/zBfvprutUEAr0/Ja3gDG3SBNhk+z5lEeXNK+0m98fBE6fyKR0z8T/7FlwH3UxdW+lwDczQC0Upjc02ItqbtUm70LuvEeJOjp45OztbcPRUAnnXCWtx6337MzRV+iCL31OpWGuWemmff6FRdguAA+eA6+5V2QwghhBCitZip8d8Sou2Mxp7uTkxMzzW1D5F7au2DxZ594locODyNn+3NP7dzdwyPTVXtnhoFwllid3eAaKWxPrd+V7yCqbQbQgghhBBisdCW7qlTs3OYmZ2rS/TLLETRU2s/dKxr3PwrkTPL7Jxjds7Rv7L6QDiH5J4KANh3aBK9NcqxyWy7/GxMTM/i5L/4z/ncmkII0XTuvwN4Vexe9oV0dzB2Kz1i4or58uM9VxTU47D7of1D7Ixd3E5dV6JiDbhm3p1uf7DO1gp07dcrKrZoADcWuc9yrtFZ3FAr4qio/cHwRwcAaZfPT7xRKr/ihsS5DTXQRVXRU6ui/YzGZZGhODEzh1VNMhpH6xAIBwA2rOnFxv4VuOW+/Xjdc44HAEzPRh+mat1TV/d0YWJ6DpMzs1je1ZCUmi3J1MwcRiZm0NdTnyA1Pd2dWLGsUyuNQohFTTBnG+sPSZc4SNtZxzhE2wdW5ss7KZcja85YG8Zzv/UAzok1VtfQhPtfsRaXzusQqQ8oZIDKIQ1dSLsX0sexjpH1gNz+TipvCtRJagzfHJ8PG7A8I3kmlYcC5QEqJ8eiN1Dm/g0FtnPeRc4dGNL6sb2xI1CHr0EoDyTX4RyMrDHlvvF9NBBoEyjMeXgX0rmNyknVXu6e3BYwAkN5JJkBAOemaGmZ7kB5M30GOd/pevqsDdJnbXNIZIlCDWOWh0SpGkbREMysB8CXADwZwCSij+Cb3f0+qvNOAK9F9BG+wN2/VqrdtnNP7e2ODJ5mRVCdmZ3D5MxcXVYagSj1xm337cdsrGucnotccat3T42+RpZ6BNX9Y/VLt5Gjf+UyHJDRKIQQQgjROuRWGpeGpvFKd9/s7s8AcD2AqxPvfwfAiwF8P2uDbWc09sRGY7OC4YxNRsetl9H4rBP7MTIxg12/jJ79zcQrjVUbjfHK2lIPhrPvUGTM1dO1ee3KZXJPFUIIIYRoJZpkNJrZMWb2UTO7xcwOm5mb2UCg7rFm9m9m9riZjZjZdWa2sazTdJ9w92/RplsBnJCoc5u7/7ycdtvQPbW5K42jU9EdUo9AOABw9glHAQBuvS9yJp+ejVYaj1pVpaaxN7rUSz0Yzr7RaKXxb15xKs447si6HOPIlcsUPVUI0fq8pnyPi5xbWsgNtZncsET0hjn324xpMEUTyV2rrJPtnBtrES/RplFunsakC2tID51jfFVh/d7RBqfjqC8nAbgIwB0AfgDgRWmVzGwFgO8icil9LSIz9/0Avmdmp7r7WNp+GfgDAF+vcN952s9ozK00NsloHJuMjK56rTQ+4YgeHH/UStzy88hozK00HrmiWk1jzj11ia80xkbj0VUa4cXoX7kMu/eO1q19IYQoi+PPAL5we9EqfRdiPmeab6G8cDfl62SZKLJWin+m2cBhHSNrunbTdIi1aw9QmX95Q7kPWUvHcP2klmwImNc+svE5lKj3+hRtGbfF+kDO5cfaOK7PORh3B7aH8giG4pQMUjmkq+TxSuZyDB2P9YEDVGYtIl831mKGogjQ7VXQP+4DX4PQY2++L7g/fP4rAmXWKrIeFAD2UJmv2+svyZdv/mK+zOPK9UP6Ts7NmYWCzxGVN1CZx27XRPp2hvu5i26qDYFcqQDQxx25CcDeMgy8Rga+SdK8QDjfd/f1AGBmr0fAaATwBkQrgk929z1x/Z2Ivh4uB/DheNsOAKHVx9Pc/Re5F2b25wCeBOAF1Z5E+xqNTXJPHa2z0QhE+Rr//X8exuZfWY3puTms7unCsq7q3Cnz7qlLfaUxWgE8anV1RngxIvfUybq1L4QQQgghKqAJ02B3z5or8KUAbs0ZjPG+95vZzQBehthodPfTszRmZm8D8AoA57p7uc8oFtB+msZlrbHSWI/oqTnOPnEtDk3OYGxqFjOzXrVrKsDuqVppXLGsEyuW1e/69a9cjonpuaY92BBCCCGEEA3hKDO7nf7eWEVbTwHw05TtdwM4pZyGzOyPAVwC4IXufrCKPs3TtiuNzdI0zrun1tHoeNbxkYPHyPg0pmfnqg6CAygQTo79o5NYW2X6klL0r4zGev/YJI5ZtqJEbSGEEK3ANRny321fIrpJ0VrkXKbrkyyswaxPfIbKcW2tFkdhfpbasM/dz6xRW/0ADqRsHwaQORCHmR0D4EMA7kOkhwSAGe6nmb0bwJsAHA3gqWb2MQBnuvsjoXbb1mhs1krjaBw9tVYrjdsuP3vBtnV9PTjx6JXYNzqF6VmvidG4YlknOjtsyafc2Dc6VZOV22L0r4zaHx6bwjFHymgUQrQoNwe2b89P4gYCVYbIeOpLRmSJJ4Hj3VSnC+ifjrbvon1PIt3UUEI3NV+Hyqy/SuoNc4R+nc/18OSUczsOI69v5O2sG+N+8PYQA1TmYWedGesYeV7Lx+IAKYNUDukBRwLbi81gZgJl1mWynpKPzbcCH5vPgfvBY8daP87wx/kx+VjcNz4W++0NUvkwgItTclzyeXEuR6Cw33xuV5OOke/PV5yXv8e+cUP+GIcAnJ9ybND2HYl7MMd0oMzXMJTLNDTuPIU+nQcAmP/87kz081T6/OxKvLcZCykV+CbJIgt8Uw1pA1HW0yp3f6jUPu7+fkRBdjLTdu6pueip41NZ3YNrSz4QTn2ip+Y4+8S1ODQRrTQeVYOVMTPD6p4uuaeOTjbAaIyul9JuCCGEEEK0CA5gtsZ/teUA0p0djkT6CmRDaTujsafpK431D4QDRKk35hyYmavNSiMQuagudffUyGisr3vq2vh6HZDRKIQQQgjRGjQpT2MZ3I1I15jkFAD31PxoZdK27qnN1DR2dRiWVxnNtBRnnZB/0JBzd6yWvt6uJZ2ncXbOMTzWAPfU2CgdltEohGh3Lkp4OF1b2oUs57q2PjHDSOZtazSsR1y6v4RLm+uaqA28LaCHvTGDlraRVPM5HUyc40ARl3CRyjcA/L2ZneDu9wGAmQ0AOAfAO5rZMaANjcbuTkNnhzUtMuXY5AxWLu+C1VkMf9Sq5ejt7sT49GzNVsb6erqXdJ7GA4enMOeou9G4enkXujtN7qlCiNbm55VP6FgfNfhofnLIWifO8LQ6kOORdYycF26QtrO+i4091lFtp3IlE5tzAttD+QJ5gj8Y6BPX4VyADGvO+DxDRg3nPjw9sJ2V9KEY+1xnb+I9niVsojLr/fjcQrMKHju+bnw81gmGEtpz+9wO78vHCuWN5DENtZmEj8G5Fvke4/viv0nHyMfg/rEelHWsfP1Zo5k0JrfEnzU2QrkOtxPqcx/tMPgwHYs+gwM9YV3ihgw5W4M0MvBNkublaYSZvTIunhH/P8/MHgPwmLvnUpZ+CsBbAHw9DlTjAN4H4BcAPtnI/qbRdkajmc0bU81gdHK2ruk2mL7eLoxPz9bMPXV1TxcG91WdpqWhXPzJWwCkBwwql32jUe7EehuNZoYjVyzD8KiMRiGEEEKIlqCJRiOALydefyL+fxOALQDg7mNm9nwAHwHweUTBbL4D4K3uPtqgfgZpO6MRiHSNzczTWO8gODnW9C7D3pFJHNe/sibt9fV0L+lAOPtjI67eKTeAKBiOVhqFqJxmSRCEEEKIWuPumVwU3f1BAK+oc3cqoi2Nxt5lHZholnvq1Ezdg+DkWLOiG6dvXIONa2uTtqGvd2kHwmnUSiMQGaYHDstoFKJSdv1ypHQlkYm5n9yB8VXRfGUphrXfltNYlrHPDcrHKMS8RrG/QndU1keWm4KjbkjQXDHtaTQ21T11pmHuqQDQ3Vm7gDt9Pd0Ym5rFzOwcumrYbrvw2KHIaDy6AUbjkSuW4e6HNekVolJ+OvR4s7sggGDgm4GnpVdPap1yE0UOkLE5ue/OqA5PMDeRg82usXyZ53u3UTmkXWP92CCVWWMGANwl1sQlv8Uvi/VkV3OuSXqf9W17qMzaONYJ9gbKrPvjNjlPIesYWcfGOrmRQJ3VgTJQqHcM5WPkx8+cR5GvD48pjwUb73yerAfla8vXk8ear9MAlXl8B6nM/ec+8Ph2I5+jEyjMqTiOfE7F7YH8nTzGoPpbEw8hLktph/t0bjJV/I8Xfg4fpTJfA067yJpZbn+Ydk4ahGmf2TTSjEAOfNPswFepNNc9te1pS8uhmUbj2OQMVi5rS1sbq3uifufShiw19o9NobvT0Ndb/+u3duUy7I9XNoUQ5XOXjEYhhBCiZWhL66enu7OJ0VNnG+aeWmv6eqPndSPjM1izov66vlZj36FJrF25vO6Rb4EoTcrIxAymZ+dqulosxFLhp0NaqRdCCFFDtNJYFW1p/fQu62xa4vTIPbUxgXBqTV+80rhUg+HsG53EUasbYyzncjUeGJvCur5qYlMLsfSYmJ7F/+49VLriEsDMngTg9wE8D8AJiDzRfgzgL9z9fxramePogdsR2XbJaSkXC9dL67jo2UbXOBlR4rom51Tc1YD7L6tbaeizHdRNb6D6Qy2ibxRl0Z5GY3cnHm6Ce6q7z+dpbEfyK41L1WicakgQHCByTwWA4cMyGoUol589cggzc5pUxLwIkcH4WUQyrjUA/gzAbWZ2jrvf0ZRePQ7ggeLXqJuer64njeLORNLCU+P/MxlWAHiy/jT6aj1iovBBsnushDslP1G9cheC3Jh4fWlKUvLrA/oz1uXx9vFAHdY3chKsASqPZNjOw8W6P9bVcR9YD8j9SQ774cB7rP3jtpiC/J2BPvE5sP6S6/MY8YyF2wnl0GT4/DcH6oTyKRarNwzggvgeKWZklmo3pNG97fa87jEEa0ZD15PHuiBPI1eiMusbiwW/6c6wdlKgedzQIg9bHOHEoqIkbWn9NEvTODkzh5k5b1+jsSc2GieW5tr8/tFJPGl9UvJfH46M3X+Vq1GI8pGesYAvAfi4e34GaWbfRTTH/n8AXtOkfgkhRHvhAJTNqWLa0vrpWdaJ8am5hh93LA4g08joqbVk9RJ2T3X3aKWxQe6puVyQytUoRPnc/fDjOKK3u3TFJYC770vZ9riZ/S8KAzcKIYQQdaMtrZ/e7s6mJH4em4yO2bYrjUvYPXVkYgZTs3MNSbcBAP0591QZjUJk5uJP3gIgyof7tA1HYGeT+9OqmFk/gKcC+ExTO7KeXM72Vu5OvCN27xtooZ/W7U3WronFwY0BDeL2DNrE3OeCXUzLyTXaDkyvKRyH7oMNkCUsTWe7mtBCX9HZ6e3uxOjkDC765x/i2jc9u2HHHZ1faWzPQDirl3fBrL3cU2dm52qibcqlv2iUpnFNbzfMtNIoRLnMueNnjxzC7z7nhGZ3pZX5KAAD8A+hCmb2RgBvBICNGzei94EHqj8qaxjXl570Ts+m53LrowlzgUaNvp45N+PTKOjOdeS5vGciX/4Gls3nxGO2k44xpGlL9iNkKIbEDedfSMf7cr7Mv7SsrWPWUpkll6yBY40hP/LlNo8J1OE+h3SVydyCDO/Py9p8bG5rJFDnmVTm/IKca5LHnbWB3G/O93gpzWB30WAPUp2QxpLHiK9TUpPI5xPSJfI+PF7cbuj6dAHYkrtvL8p/LnbQfcQMBtrnsWPDkvu8nsarKzD73ztR+HqTh3M2zudkfEMGvWKrBL5R9NSqaMtcAL3LIqOt0bfg2FR0p7XrSmNHh2HV8q62Wmn8xYFx3P3wCGarNBz3xdrCnNtovenq7MARvd1Ni/IrRLsyPjWL6VnH0zZkDM/ZZpjZuWbmGf62B/b/cwCvAvAWd9+TVgcA3P0qdz/T3c88+uij63Q2Qgghlgptaf30xGGb5hocXS+30tiuRiMQBcP5950PY9cvR7Dt8rOb3Z2SjE/PYmbOcc/DI3jaMZVPIvc1eKURiFxU5Z66OMm5UbbDZ6jdyGnHn7qhr0TNtuWHKL7oleNwcoOZvQnAXwN4t7v/S607JoQQixqtNFZFW1o/vTmjscFLje0eCAeIguEcHmmfT8zkdBTw6L/37Gs7o3HtymXYPzbZsOMJsRgYm5pFX08XNvaHgte3N+5+GMC95e5nZq8G8AkAH3L3D9S8Y0IIIUQR2tL66V0WedXOlchhU2vGFsNKY283hg6G1BWtxdTMHKZmI6Px5j378OYtJ1bc1r7RKZjlA9Q0gv6Vy3D/vrHSFcWiQquQ1TE2OYOnH7sGpiTq85jZbyMKenO1u7+t0nbSknEHE3GXSU7zlMzttjPevja5Qx3ZFsinKEQt2bkEvqPStIxVc1GGNrPUqQTlaayKtrR+8iuNjTUaP/69nwMAVi1ry2EDELmnVqsPbBQ547a70/DjwWFMTM/OuyaXy77RSfSvWIbOjsZ9yfevXI47HjjYsOMJ0Q4UM6rn3HF4anbR6hkrwcx+HcAXAewEsNXMnkVvT7r7T5rSMYqWyhPLYQqkwUFEmD76Ce0D0D8dtTXSm2+HA3sMU/CbU2l7ll/ivQAujucKHMkyGdSEnaE58Mpgol5awvXrqd1Qn7jfHPBmP5U3BY57EpUPUZkf/4aCtCSvQa7/V1Ofk77SHBiH59fcP05Ez2M3E9h+F5X52nK/+dw4WM46KnOgmW/P5K8t34NbqM5/U5mD0XAf+Fz4WEDh9RkI9OM4AKfG/eB7IRlQ6ZxSc9Zr8+8PUzuDiWqvj9vhh0A76fk037/80KTAyWwmH8hmiI61AsCGlDFNPgxiRv618HXfp8J1k3S/CAXnXXeUp7Eq2tL6yRkOsw1O1ZjTUK5s0+ipANDX01XUaGylVZIHhyNJz1GrluOXj09gxwMH8OyTjqqorX2HJhvqmgoA/Su7ceDwFObmHB0NNFaFaFfGp2bhAJ4io5F5PoDlAE4DcHPivQdQOJcVQggh6kJ7Rk9t0krjrDvMosiY7Upfb3dNUlg0gpzRePSq5ejqMPz3ngU5rjOzf2wKR61unGsqEK00zs45RibkCyFEFsamokfAWmnM4+5XuLsF/gaa3T8hhGgrZmr8t4Roy5XGXMqNhhuNc47ONvdhz600eoPHrhJ+MXwYZkBPdweecewa3FyF0bhvdBJPP2ZN7TqXgbWxfnL/2BTWrGiswSpEOzI2OYNOMxy3SIPgNI277wBOqcFvV1JnVCO3spx73OoiLnDVsK2Gusrr4rZOr0FbzeDKuP/dTe5HrdjWInOymzP045q4DruMPpSok+b+vIAa6f3SNM7Fti/gSdn7wa6uAxcWqVhvFD21KtrSaGxWyo3ZOW+oJq4e9PVGPxWzbWA0Prj/MJZ3dcDMcM6Ja/HR7+7G44enccSK8n/umuOeGhmKw2NTOFFp0oQoydjUDFYs75Q7d53o3Qjgntp/9w9k+T0ho3WQRH38bd5HgrJDD+bLvWRMjpNmMuTDcTGJ9LbRsfYjr4FLBjHZhUJyurEbqF4ohBzrBlnHx7o31gmyRpH1Zw9R/3bRcblvIQ0gw8dlQ5kNlGIBgs4/M1+++vZ8OaRRzaqnTDs27ztI5Q1U5rHjc2P4XthJ5dBsYRh5jeFtgbEGCnWcfAzuU3egDpeHAv0IcS59pvgePI8Mrr2kY+T7jvsW0r2uX5kv96/MB8TKajD2HZupWiqDX87wncEPpFrkwYBoe/fUxh531htrNG67/Oyaawv7emKjcbYNjMbhw+jpiq71czYdhTkHbrlvf4m9FjI+NYuxqdkmuKfmjUaxuGiXYFLtgrvjn2/6OcYmZ7G6jaNTCyGEaGFy0VNr+beEaEujsadJmsa5ReCeuronmpC1+kqju+MXw4exvDu6RZ9+zBqsWNZZkYtqM3I0Aq1tNF78yVvmgx6J8rh5zz7c/sAB/HTocWy9+f6WvL7txMT0LP5o2534mxvuRf/KZXjimtC6hRBCCCGaRVs+0m2mprG7jYPgAHn31JkWX2l8fHwahyZncGRseC3r6sBZx/dXaTRqpbEWtFKE3UYzPTuHK75xN5Z1dsABXHH9PXj/f+zC805eh1ecfgyef3IyYLsoxiOPT+Dyz9+O/3nocbztRU/C9//3MeVnrDPTawrHt/vgwt8CdlGbpvD0fecX1uMUGX3jC9NmcPqNgWRehzqQ07ddXINjbW/Sfdis4y5Frmnhsc6SxqWW5HTF/StLVKwx/H0B5L9H6oZSblRFWxqNPV2R4dbolBuz7lje5lqbeffUFnevy0VOXd6VN9LPOekofO9nu/DwwfGyViP2jUZGW6NXGnu6O7FyWSf2jy4uo3Ep86+3PoDdj47iSetW4ciVy/Delz0FX7njIXz1Jw/j2/fsxZErurGsqwMbtFpWkjt/cRBv/NztGJ2cwVWvPgMvesoT8IPdlQe7EkV4yhnA7bcvMBjLZeT6dOMwC6xj5Jxvh8iw3EU6xgGavD5E2i3OfbeDyuwltm1XXhu4NmAY7Em8Pim1Vlivx8cO6e+GAVwQ94MDtnCbrDkboHJIc8jnnwyikgbXCeWKTHrY3Uw6xpA+kvcZpDJr67iv44Fy8jr8QTxe1wWuG49LKB8h6we5nzzufJ34vJKayUEq87lxu/2J8pb4HLbSOVxGWsSbv5wvb0Lp/I0zAM5PyTUa0nfyeW4IBJfizxSHHRvhz1qx3Iy/IAMvw3fB+gYbo0EUCKcqGm40mtkxAN4O4EwAT0d0fx/v7oNZ2+jq7IBB0VMroa83uuStnnYjZzR+9FWn4eQnRF/Vz9kU5Wi8ec8+XHhmdhX2/ia5pwJA/6plGB6bbPhxRe0ZHpvCR779v/i1TUdhMl5+OfkJfXjXS07B23/zZPxg9z58ZcdD+I+dv8T41KzycxZh3+gkLvrkLVi3ejmu+91nz3/GhRBCCNGaNMPX8iQAFwE4AOAHlTbS0WHNMRrb2zsVq6tYaWykDi5nNB57ZP4Z2JPXr8ZRq5aV7aKac0/NuYs2kv4VyzB8eIkppVuISu/ZtP0+/O2fYWxqFn/5W6cscKHs6uzA805eh4+96nQMHPX/t3fm4XVVVf//rMxDkzZJ57QllBZogRZKGctQBRlUQBkVAUEFnH2d3ld9/amv+urrLIoyCwiCgKCAIPM8FUqBYinQKTTp3CRt5nn//jjnJiu39yT3Jjd3yvo8z3lysu8+++x97jn3nHX2+q5VRGN7N39+sXokXc9InHNsrG9l3Y4WDpk5gfu+eIwZjIZhGEbisDyNwyYZ7qnPOOemAIjIZ4CThtNIlkBvAt1TnXP0OtI+5UZfIJwUn2msqW9l4rg8ilUkRRHh6H0m8vy6OpxzUWufdjZ3UlKQ0xdAKZGUF+exo9lmGtOd1VsauW3ZRi46qoq5U4KcgjwmjcunoaWL/3vobY7bdxKzJ41LUC9TnxfW1bFldzuTxuVzy6ePIC8nzd/CpQvvvQqXxunetSC974GJ5v40905KNCGd4Vhy8I+UvzEdCOVe3MON9Xx1zt8W8Kx5SZKui1D0VGNYJNxodM7FxdTLksTONLZ2eu5o6W405mZnkSXp4Z46o2zPBN/HzJnIfW9s9nRlQzy8h9jR3MGkJLimApQX5/PO1qBsWkY64Jzjh/e/xfjCXL564r5D1hcR9p5YzPqdLXztzjf422ePIsd3URjLQYQAbnt5IzlZQlVFkRmMSSD3HOC6oX/7c3IGrvcFy1EGY+lcYOWebelAFnoOeZvOd9gOU/z7d70q19qw1UpbpfP9Van1RUSuozkx4DnhzLBynZx9idKf3aP0Z7p/mjbg1AiaM63dm6HW16h1bShonV2Q0VSt1qvUutYuFgWs6/Z1rKBwbaQ+lnoiJehZW7elx6y1hfrY6cRZVQH7DdIMah1jkE5Snxe6D1o/qdvU+wq/Wwfl4MylX2cY9CKlSq0/ddfAz0K6x6BgPIVEPndPVOfmCtWmPo9KArSIOjCVPl5TBtEuBgWmqVb9rm9XeRfPjzyeAQG1Pha2fmNqP48a/aTtXTsnW+hKYCSc7U3ebFFOVtoesj6ys4SeRE7TDoON9a3MKt/TaDx6jidZfy6GgBl1zR1J0TMCVIzLo66lE5fiKU6MYB5etZUX19fxtZP2Y3xRUKrogeTlZPGjjxzI6zW7uOaZ9aPcw/RgZ3MHj6zaysRxeab1NAzDMBJPKHpqPJcxRMpbQCJymYgsF5HlO3bs6CvPz8mmsztxhk9IY1eQm/KHbEhysrJSeqaxq6eXzbvaIxqNM8qKqKoo4vm1O6PWq+1s7qQiwek2QpQX59HR3ds3U22kF+1dPfz4gdXsP7WEjx8WffAlgNMXTudDC6bx28fe5a3NQfMgY4e/vVpLV49jctBrcMMwDMMwUpaUT7nhnLsWuBZg8eLFfZZOfk4WDS29CYtQWNOXAiLxurh4k50lNLV3852/v8m8aaXMn1bCflNLGZefGqfDll3t9PS6iEYjeKk37n19M/OmlZAVhV5kZ3MHR82uGLLeaFBe1J+rsThFju9I2bK7PWXOldHm+mfXU9vQxm2fOaLPxTQWfnzGgSxbX8/X7nyde7+4ZBR6mB709jr++vJGDq8qxyRe6UcovUbp3LAP5qsv863B8z2Gs22UT4SQu+mSr6iyK/rXlxw5qrs3xgDX++fYZw4aWB5Nrs2glCKakKuzzv674JzIdUeLSLlYYyIKDfSI9xELlnJjRKTtk19+jpdce2dzB5NLR//NdU19KyKQm53+TzxTS/PZ1tTB/W9s5rZl/Ymx9qooorGti5KCXNo6eyjMS46B3Bc5NcBoPGbORP6ybCMtHd190WCD6OrpZVdrV9LcU0MRW+tbOgPHk07UNrSysb6VwtzshKaUSIYWsLO7lz88uY5TDpjK0XMmDvgs2n6UFefxs7MO4tM3L+eKx9YMvUGG8tL6OqrrWvmPE/fl9pc3Dr2BEV/2OhSuWz50PZ8+DSMDH+ga16iHuvmxXfulxVDY7G27LSBnodbcVamnk0b1kKc1aotU7rcp9Lf//DAM0iVHAi9GeGAN0CgGaQ61T0FQTsWqgHb0s6yuH6SK18dLayaD8jcG6SrD76JaN6j3obV/cwPqaIK0hbq+1glWqfVlAXUKA9b1MdJj03dd3b62895U6+E+IaUBn+lz4X7VgI60oI+rPnZB2tWg/J0arY3U+UH1w3zp3v3rq1VCzqqA62WlOscH5Nkc5NG6anrAB/okflv16TRV3gLcObx8ryPGjMYRkdZGI0BNQ1tijMaGVvJzsqKO2JnKVIzLp2JcPn+97Eg27Wpj9ZYm3t7SyOqtjTyxejsNrV0s/eWTfPXEfTn70BnDmmEZCTUNntE4qyKykXXUPhWIwO62oY3G+pZOACaWJMk9dVy/0ZhKdHT1sLGhjd1tXYwvjE6nB/CvN7cC0NbVw2Ort3HSAVNHq4tJZ2N9Kz3O8Z0Pzhu68iCcMG8K5y6ewdVPr2P/qSVDnrOZyG0vb2R8YS6nHDh1UKNxrAYIMgzDMIxUJ20FeqHIe7W+gTHabKxvzQjXVI2IMKOsiA/Mn8KXTpjLHz9xKAtnTmDetBKmTyjkW/e8yalXPMujb21LaCCXjfWt5GYLUwNeBkwoyuPA6eNpbB86bvIOP4BRRXGSAuH4M411KWY01rV0Ut/Syb2vbxq6suKBN7dQlJdNfk4Wf3hybcoH+Glq76KlI/bXio1tXdS1dHLpsXsHvryIhf/34flMG1/I+h0tKZ/uJt7sbO7g4VVbOWvRjKSkvTEMwzAMoD/lRjyXMURSjEYROVtEzgYO9YtO9cuOj7aNkAG3aVfQJH58qalv65vdzHRKC3K553NHc9UnFtHd67j0z8s595oXaWpPzJx+KN3GYOlNlsyZSHN795AP4Dv9HImTkjTTWOYbjQ0pZjSGvst7VkRvNNY2tPJ6zS4qivOYPr6AN2p382wMUWwTzdrtzaze2sRbWxpZXr2nA1VQIKV3tzXx7vZm8nOy+PzSOXHpS0lBLr84ZwHt3b0J+81KFe72A+B8/PDYAgkZKcox4i3DYJMIm0bRW+dfIvxrBO2vFGGlCNVqSdS+DSPRxHo91udK3xJOY6Ek3tV0uFj01GGTLPfUsIw1/NH/+zSwNJoGsrOEnCyhtmH0H8B2t3axu62LWeVjJ92siHDqQdM4cf4U/vpKDVc8toadzR2UF+fR3tUzqjMGNfWtQ+r/jpkzkaufXkfTELONdc2+e2qSNI0l+TnkZktKzTT29jqaOrrJEni9ZhfrdjSzTxQJ6EOuqeXFeeTlZNHW1cuVT67luH0njXaXY6a7p5ev3/UG2eL9Tlxy4yvcftmRHFg5ftDtahtaueiGl8kS2H9qybCCFwW5WB69z0QmFOVS1+ylYMkEV/dIaP2pc47bX97IYVVlzI0yr6qRWgwITKGNxXLgucFf2m1TuRa1U3Y3UBnJS0FdE7XdA+uH0GfRGtW+fv3VSH/eRB2URLfT+PrAXVe3MyT61ZPWxOl9L1U/GSvUDnUotmq1rjVkXQHl+ilHj2Evta51eVqTqPP3Bekqw18HB+U/1PWqA9rS5Tofo95W/6puC6ij9Xpar6ifwroCyoNeb+tz5/mA/uj9wsDzNih/pf4elIQwkA+oHT6qGtLHQo9H92EKMM8/t/VLigW6D6oT+vtbpq4XrUnV5wj051DVBmVh2K2wfjuUd+2pS2y8P3Iwm/AXMFX+31EPfGPElaRMnTnnJGBZGks7+TlZbEqA0RjS2GWae2o05GZnceGRe/H0N5dSOaGA+pZOfv7QOxHrRpsCYyg21rcys2xwA31xVVmfrnEwQjONFUkyGkWE8uI86ls6krL/SKzZ3kxPr6NyQiFZAn+Pcrbxn29u4aDK8RTkZpMlwmXHzeblDfW8EmEWL9lc/fQ63qjZRVVFEftPK6GkIIeL/vQya7c3B25T19zBRTe8TGtnN/tPLRmVFyNlRXl09vSyektQaIvM4sV1XgCc84+YleyuGIZhGGOdUCCceC5jiLT2t8zLyUqIprE/3UZaH64RUZyfw4yyIqaU5POn5zfwwrrRcUvc3dbFrtauwHQbIQpysynJzxlS17izuYOC3CyKkxQJFqC8OD+lAuGEjLzy4jyOmTuJv7+2id4h3Hxr6lt5o2YXHzxoWl/Zxw+fRUVxHlc+sbavLF4vDmIhfJ+rNu/misfXcNrC6VSMyyc/J5tbP3MEWQIXXL+s73rWNHd0c8lNr7BpVxs3XHwYRXmj44RRVuS9M35s9bYhaqY20X7PoQA4px7Yf97ccflRFvDGMAzDSDxmNI6ItLaC8nOy2bSrbdSDcYRSQOTnpvXhigszy4vYe2Ix37xrZVSBaGIl9EA/lNEIUFqYS2tnD5sH0YjVNXcycVx+Ul0BK4rzUso9dXl1PbnZQn5OFmceUsmmXW28PMRs4b/+vQWADymjsTAvm08dszdPv7uDlbW7Rq2/3T297GzuoKund8i6Hd09fP3ON5hQlMcPTz+gr3z2pHHc8ukjaO3s5oIblrG9sX3ANpffspxVmxv54ycWcVhVeaSm40Judhbj8nPS3miMhjo/AM6ZiyotAE6qcpEMXCIQ0ipF0ivpzwarF4k1In3LaPCUSFT58gwj3VgtwupRPLdHqj1eIdK3DEnAb1CsvydGYkjblBvgzfy1d/VS19I5qpq1moZWJhTlkpNlRmN2lvCrcxdy9lUv8KP73+IX5yyMa/s1Q+Ro1FQU51Hb0Mady2v4jxP3jVhnR3NH0vSMIcqK8xIW5TcaXqluoCQ/BxHhpAOmUJyXzd9XbOLI2RWB2zzw5lYOqhy/RyTRC4/ai6ufXscfnlzLNRcuHpX+3rm8lnU7WsjLzuL1ml0cPHNCYN0rHlvD21ub+NPFi/uCEIWYN62Umz51OBdcv4wLb3iZcfnZZGcJX73jdZ5fW8evzlnICfPC1R3xp6wol5W1u9m6u52p40c/XVCyuHuFFwDn/MPNNTVT2KaEYIUxnrpdAesa3eYCJbpaoQR7+hWh1v3pK7cxoI5+HbR2EA3jioBtdFtr1bru01Nq5kGLLLQIQGvrdJtac9gdUEePTevnotFD6mO0KaBO+P96/Hof2wLKuwPKg76ftijKtc6wO6BOUA5N3Wa1Wq9S6/r7CBdrBB17vQ+tJ9UJmlYHlOu8o0HncNBxCTqfg64p/ZC/SF1fm9T5H6SfLInyGi89uH99xUuR61SdE11bo04oeqoxLNLaCgrN/I12MJyN9W1RzXyNFRbNKuPzS+dw16u1PLJqa1zbDs3qRpPmoCA3m/GFufz15Rq6A2ahdjZ3MnFcciKnhkilmcbNu9rYtKutL1dgUV4Opxw4jQfe3EJ7V+QwYCHX1A8t8GYZtXthaUEulxxdxcOrtvHutvjr9Nq7evjd42soyssGgXOufoFbXqyO6F3w6nsNXP30Os5bPJP37x/Z+Fs0q4zrLlrMhp0tvL21iQ07W3nwza389wfncdahMyJuE28mFHnnYybPNnoBcGosAI5hGIZhZAjpbTT6GsPRDoZTW9/KzLIi0+IovnzCXOZPK+Xb97zZF2wmHmys92Z1S6NMgD65JJ+tje08+c6OiJ/XpcBMY3lxHk3t3XR2D+1eOdosf68BgJKC/vePZy2qpLmjm0feimzERHJN1VyyZG+K8rL545NrI34+Em596T22NrazV3kRB00vZcmcify/e1fx1Ttep7Wz/3VtT6/jG3e9wbTxhXz3w/MGadFL13Ll+YfQ0tnDjuYOLj9+NpceNzvufQ+iMDeLvSqKMtpobGzvZsPOFj5us4yGYRhGquCwlBsjIK2Nxryc0Ezj6Ln+9fQ6ahvaonKXHEvk5WTxm/MOpqm9m//++5tx05XWNMQ2q1tWlMuU0nxuW/beHp/19rpRd12OhvJQrsbW5M82Lq+upygv25u58zlydgXTxxfw9xW1Ebd5YOUWFswYH3gNlBXn8YkjZnHfG5sDZyuHQ3NHN1c9tY5j5kyktDCXnOws/vTJw/jaB/bl3jc285E/PM+6HV401JqGVjbsbOEX5yzom0UdjJMOmMq+U8Yxs6yQb52yf9z6HA0iwonzpvDC2jpaOjJTRb+jqYPSgpwBgZOMFOASGbiEc670LyMgVi3SMhGWmf7QMNKKtNUcWiCcYZPWmsacrCxKC3JG1T11W2M7nT29zBxDORqjZb+pJXzj5H35yYNv8/fXok8SPxg19a3Mn146dEUfEeG8xTP5/ZNr98jvuKuti55eR0UKuKeCF5RnSmlyNWyvVDewaFbZgKAyWVnCGYdUcu0z69nR1MGkkn4ju6a+lTdqd/OtUwc3rC49djY3v/gem3e1M3tScVz6euNzG6hr6eQbJ+/HTx9c3dfXL58wl0NmTeDLt7/GGVc+T2lBDtsaO7hkSRVH7zNxQBuDeQaUFeVRVkTEIEmj5VEQavfFdXXc8NwGnl2zg1MOzAzDqrmjm8272mho6aS+pZNPHl1lAXBSnWzgRv+FX4ChWPpRtQ5wW4QXhPNVAIsN/cXlBSoPm6pTrcRegfPt0/tXc5RoTD+0BOXs047yOh+dfr0c/vCzXa3r1046RFhbQJ0giZTeVvdVt6NzGQa12RVQpzugXKP3pY+1Hn94//VnQTq+oLt0UO5EfSx0+9EcR/10EfT9ayf4oO9pslrXx10Tfl40BnwWpBWtVutVAe0EHaO2gDrRfP9B+9VoHe88dZuuVfkby8MeUYLyKA7Izfh6f705sRqRf47cfqkWbG6OrUlj9EjrmUaAGWVFbBokeuZIiSWa51jk08fM5vCqcr5/7yo6ukc2y+TN6rbGfKzPO3wWAtzxSs2A8pDbbLJnGstSZKaxsb2Lt7c2sriqbI/Pzjykkp5ex31vDPx1fvDNwV1TQ0wuLeC8xTPZ2dwx4vMAYFdrJ9c+u54PzJ8SMfDNsXMn8c8vH8ucyePYvLudgtws/vPkxM4YjoTFVWWML8zl0be2D105BWnr6qG6roXP3LycD17xLAv/5xEO/P7DnPSbZ3h3ezMicMGR5ppqGIZhpBCWcmNEZIDRWDiq7qmhwCwzy8xojER2lvDLcxbS6xzrd7SMyE11a2M7XT0u5mNdOaGQ9+03mTuW1wyYQUsVo7FvpjHJwXBWvNeAc3BYVfke+ty5U0o4qHI894S5qD745uCuqZrLj/d0gbUNbRHzPsaSw/GaZ9bT3NHN10+KHBUXvO/9zsuPYlZ5EftOLqEwibk4YyU3O4v37TeJJ97eRs8QOTJTkZr6VrY3dlBT38qU0nxOWziN/zplf3738UOYP62Eg2dOYM5kC4BjGIZhpBCh6KnxXMYQaWs0hh56K8sK2dQwerkaaxrayBKYPsHcU4OYVVHEdz88n8b2bupbh38Fbawb/qzu+UfMYkdTB4+pYC47mz0jbVJJct1TQ5rG+jgGDBoOy6sbyM6SwJQVZy6qZNXmRt7Z2sR517zIGVc+xxu1u4ecZQwxo6yIqeML2NncyZf/+lpM+kZtUG5vauem56s5bcF09p86uKtyXk4W08YXpJXBGOLE+VNoaO1ixcaGZHclJhpaOtnV2sWU0gIe/upx3HjJ4fz4IwfxuaX7cPrC6ZQU5JKbnba3FsMwDMMn6nyJ+4i3xNjuAB31CLXUxuiT1ppG8B5UWzp72NXatUdetnhQU9/KtPGFfUF3jMicu3gm37v339SNwDAaiSvw0v0mM318Abe9vJFTfSNnZ5PXl4ri5M40TijKQwTqkzzT+Ep1PQdML6U4P/Jlf9rC6fzvA6u55zVvtjHU31iCmcwsKyQnS/jnyi1s2tXGdRctjnmm949PrqOzp5evfiB4ljETOG7fSeRmC4+9tY3DqsqH3iBFuO+NzTiS/zLGGAY3DvJy9c6AzyJpGMN5q79O4YTID35BWsdy9TBarXMnPgwL/JfBuUp3HPQaSTt6a0f1NWp9MP2c1pxVEhmtldReafqOpf2edF/1a2etLQzSqGl0Bt0gLZ5GtxOkmQvKzRdeL0jHlxtQrscc9ApZH8cgjWJQrkhdHo1noG4/mvqDPX3o71afI3o8VWo9KNJDUK5J7Zuhj68+LnOU5nC1ul6CcmjqdgbkdeyJXKe+Har8624wQ1HL1QujSW+sfl+iCp6zSf3uxDNIVih6qjEs0t4SqvRnAEcrGI4XXGXszDIOllZksM+ys4SK4jx2tXbR2D682caN9a1kZwnTJkQXLEb3JztL+Njhs3h2zU6qd3qq7rqWDnKyhPGF0aXvGC2ys4RsEf4aprlMJJ3dvbxes4vFewUbJxPH5XP8vpP4x2ubcM5R39LJwihdU0OICNMnFHL1BYtYvaWRj/zhedbEkL9x0642blu2kXMOncHeE/uV+pmY7qa0IJcjZ1fwaJql3rh7Ra0fgTft3zkahmEYhhElaW80zijzDLpNu0ZH17ixPvbALKnOaD2AVxTn44BHVg3vIXhjfSvTJxQM27XtvMNmkp0l3P7KRgB2NnVSMS6PrKzkuzzkZAvdPcnL0/jvzbvp6O7lsAhBcDRnLprBtsYOdjR10NLZM+yUCaccOI07LjuKju5ezvzjCzy7JnIezXB+95g3L/ClE+YOUTMzOHHeFNbvaOlLHTIaxKIlHYo125pYWbs76TphwzAMw4gZC4QzItLeaAwFTRmNmcb2rh62N3VYEJwoKc7PJj8ni/vfGF585JEa6FNKCzhh/8n8bXktHd09PLxqK03tqXFF52Zl0ZXEgCfLq72A54cOYTSeMG8yJQU5vOe7Co8kz97CmRP4xxeWUFlWyMU3vsL2xvZB67d19fC3FbV84shZfR4Eo0kqzF6eMM8LAv/46m1xNe5Gi7+tqCUnS5iY5DQ2xvCQ3D2XWND6pgEuZsPQJK0UYeUQbmerRVht+RsNw4gnY8BoFJECEfmHiKwWkddF5GERmR1Q9xIRcSLykaHaTXv/otLCHMblj06uxlBU1lkVZjRGg4hQXpzHc2t3Ut/S2RcAJlpq6ls56YBonOODOf+IWTzy1jYeXrWNrp7elAnIkZMttHclb6bxleoGqiqKmFwyuOtvQW42H14wjdtfrqE4Lzsm19RIVE4o5K7PHsWXbn+Np97ZQWN7Nze/UM3M8kJmlBVROaGwT2O5qaGNvOwsPr90zoj2mU7MKCti3rRSHntre1xlG6NBT6/jH69tYul+k1LmZYyRemzaPfD/Kv+vzvemjUWtjQqyYSsDfra0pkvn4NP6Rn2mLlLtvBz2Dktr1HQ/gnIEakd//YpLayhzAtY1WksZpGPTdTR6bCUB5UHbBuX+G2wf0bxjiEacEs0rQV1HCxyC+h2kpQzKfRhNnsnwfui7YZDoQp8vQTpZvW1QfkndvwF5LQOuF/09HXFQ//pKleNU0602KM2B8q49X2qXRim1b9sGhc3e9tFk2Q7K/WjEnauccw8DiMgXgeuB9+sKIrIXcCnwUjQNpsYT9QgQET/tRvyNxlC6jRk20xg1FcV59PQ6Hvr31pi2a+nopq6lc8RGynFzJzGjrJDblr1HV68jNzs1nsRzs7MGpANJJM45llfXszjKYCtnLpoBQEWcZpNKCnK5/qLFTC3Np761k+/ft4pP3bSck37zDAd8/2EW/ehR/r1pN3UtnVyypIpJJWPL9fED8yaz/L36pJ0f0fLc2p1sa+zoOz8MwzAMI61IUsoNEZkhIr8XkRdFpNWf2asKqDtTRP4mIrtFpFFE7hGRmBIfO+faQwajz0vAgJlGEckCbgC+BEQVxTLtZxrBm80YjVyNNfWeIZppmsbRpCgvm9mTirn/jc2cf0T053hNw/Ajp2qysoSPHz6LXzz8DkDqzDRmCd29jt5el3CN5bodLTS0dg2pZwxxWFU5+00ZR2kcAwjlZGexV0Uxs8qLuPITi6htaPOXVmob2nhg5RZKC4TLj9sn5raT7WI6Uk6cP4XfPbGWXa1dKW0w3/1qLeMLczlh3mRufqE6sF66fx+GYRhGhpK86KlzgHOBV4FngZMiVRKRIuAJPCPuk3g9/jHwpIgscM61DHP/XwLuDSv7GvC8c+5VidLVKSOMxhllhbzsa7biycb6Vgpzs02/EwMiwmkLpvO7J9awvbGdyaXRRUIN5WiMh370nMUz+M2j79KdYjONALvbRic1zGCE9IzRzjSClyZkNBARJpcUMLmkgEWz+o3Yddu9QDDji5Ib6TYZHFQ5niml+TS0dqas0djY3sXDq7ZyzuIZ5Odkm2FoxM6C1PgtNgwjAr4eue3B/qLC8QOraB1zboypkcPTbIxBF9VnnHNTAETkMwQYjXiuorOB/Zxza/36K/E83y8Hfu2XrQCCZmYOcc71hesXkW8D+wInqLIDgLOBY2MZRIYYjUU0tXezu60rrukVQuk2orXADY/TFk7jisfX8MCbW7hkyd5RbbNxBDkaw5lcUsBJB0zhwTe3kpOVIjONvvFa19KZcKPxleoGyovzmK1SWIwWZkzEjohw4rwp3P7yRnrjHCypo7uHjfWtI37x9eDKLXR093KWuaamNW542ZCGRuVgq4oxQXehCpQ8D+C1PXPErVD6Q60N0wp4rR/Tw9Rax/pBYnHp185Bil2tb9NatCB9W1A+vqA2NfpOGKRLDNo2KB9jNP2B6HIbRqPX1ATlYIzmlIxG96d9zYK+jyAdqj6+4cdFb6P1ikHaPd3XoNe0QfkYg55e9Xiq1TyTbr9UfQmNSlhbFfbePqKxFnDNtu3u1yqGG32FEUOqpAGh6KmJ3q1z0epPTgdeChmM/rYbROR54Ax8o9E5tyiaxkTkG8BZwInOOX2ZHAfsBazxbZypwLUiMs05d1VQe6nxRD1CKkNpN+Ksa8zEdBuJYM7kEuZNK40pimpNfSsl+TlMiNNM00VHVQFQGOvrsFEiP8e71N7ctCvh+36lup7Fe5XZy48U5sT5U+h1DDvHaRB/fbmGLbvbWbO9mfau4fvk3L2iltmTijl45oT4dc6IChEpEZE7RWStiLSIyC4RWSYiFyS7b4ZhGAYTRWS5Wi4bQVsHAP+OUL4KmB9LQyLyNeDjwAecc7v0Z865q5xz05xzVc65KjzN42WDGYyQMTONntFY29DK/OnRxG4aGuccNfWtHDm7Ii7tjQX0LNNpC6fx84fe8Wdrhza8N/r14mXYHDm7gkNmTiAvJzXei4zLz6EwN5urn1rPGQsrE6JrPO+aF+ns7mVjfSsXHrnXqO/PGD5Hza4gS6ChNX5GY2tnN79/Yi35OVm0d/Xy60ff5TsfnBdzO+/VtfBKdQPfPHk/e/GQHPLw3o3/FKgG8oHzgFtEZJJz7jdJ7JthGEb6MDozjTudc4vj1FY50BChvB6ILjAFXuAd4FfAejw9JED3SPuZGk/UIySU0y2eEVQbWrto6eyxmcZhctqC6QA88OaWqOqPxqxuqhiM4LkgTp9QwDvbmnji7e1DbxAnmjq8X8fFUQbBMZJDQW42E4ry2Nnc0adBHSk3Pl/NzuYO9plUzOSSfK57dj2vDKPtu1dsQgTOXFQ5dGUj7jjn6pxz5zvnbnDOPe6ce9A590m8N8OfiqqR9a8OmUexa4IMWKJiivQvAbSNE9rGRf+yoVqEans5YRijQuh61MtgRJsrNebfjmSRpOipw+hlODEdWOdcrXNOnHP7OOcO9pdAg9E5t9Q594+h2s2Imcby4jwKc7PZtCt+RmNIYzfSFBBjlZnlRSycOYH739jMZ4/fpy9peSTNW2+vo6ahjRPmjSxHY6pTUZxHR3cvVz65lhPmTU7IrE1TexcFuVkcMH380JUVpk1MPFUVRbzV0c2nbnqFOy4/innThu81sbu1i2ueXseJ8ybT1N5NUV4O+blZfP3ON/jXV47ty405GOdd8yLOOTbvbmfJPhOZNj6a7GpGAqnDm3VMGKU6w9fygEpK36gfSNvW91fROquuDf3rOsdjm9IfHhEgx96m9F1a9xWkJatW6+FXgNaZBenvtgeUR5PLUNfX+47mCSOoP0EE6S2DdIjhfe4KqKf3HZQXMtZn6KDjFaTF1OXbotg2aD3oOIb7lul962OhxWF6DLpdfey1tlajX8UF5QTV641h60c473qrz+2/1pq0BviHqm8/i9yH6rv616vUAVhdp/rWDvNc5Gs7JwpLYgwGvhkuDUT+CSsj8gxkQkmdqZgR0J+rcei0G+dd82KfATMYNXEMzDJWOW3BNFZtbmT9juZB621v6qCzuzfjDXQR4bPH78PrNbt4cX3d0Bv4RHvORqKpvZuDU8RN947Ljwo0Rgf7bKyQm53F/lNLKMrL4cIbXqZ653Aja8O1z66jsb2br5+0HwDZWcIvz15ITUMrP/3X6qjbaWrvprahjbMOtVnGZCMeOSJS4WtmTgZ+m+RuGYZhpBc9cV7iyyo8XWM484G34r63GEn+k2ScqCwrHJWZxpBe0oidDy+Yjgj8c+XgLqqX3PQyMDYM9LMPncGkknz++OS6Ud9XT6+jtbOHw2JItWEkl/zcbG79zOH09PZywQ3L2Lrbe2Ucy4uDHU0d/Om5ak5fOH3AbOURsyv49JK9ufWljTzz7o6o2trZ3EFxXjYnHzA19sEY8eYLeBM5O4Erga845/4cVFlELgsFZtgRVdpmwzCMMYCL8xJf7gOOFJG++LQiUgUs8T9LKhljNHozjfEzGmsbvDD10bhxGZGZOr6Aw6rKue+NzTgXfGV1dHmRiMeC0ViQm82lx+7Nc2t38nrNrlHdV3OfntGMxnRizuQSbrrkcBpaOrnoT8vY1doZ0/Z/eHItnT29fPUD++7x2TdO3o99JhXzX3evZHdb16DGaE+vo66lkw8eNI2iPPsdjBcicqKIuCiWp8I2vQM4DDgVuB74vYhcHrQf59y1zrnFzrnFk7QTa0jbOITGsbFQ+pZoCOmjQhqoaHRQhmGMjJUirEzUtfY56V8GIeJvx6UycIlElL9N6YqInC0iZwOH+kWn+mXHq2rX4XnS3ysiZ4jI6cC9QA1wTUI7HIGMeRKonFDErtYumju6GRcHQ29jlFE/jcE5beF0/t8//s1BlaWBD54d3d78/vQJBRE/Hy6p6u54/hF78Ycn1/HHJ9dy7UXxCri1J/UtnrGxaNaEUduHMTosnDmB6z65mItvfIWLb3yFnCwhO4qIu7UNrdy2bCPnLp7B3n5eTn0dFORm8+tzD+bMq17gh/cP7unS0NpJr4OzDrXcjHHmBfyUhEMwQG/hnNsBhKaIHxKRIuCXIvIn54bIwDj7ULhz+aAPYrm7+l/sBRqKWhp9AnCbt01QMI3CcIHYe179wmPC6j/nlVeqIBoD9I0tUOW/eNRBcrSmTTtQ6/KgvH7h6HpaW6b1akH6OK0ziybHoe5HUA7GWPM6BmkUg56GdASBTWGfBY1TtxtNAMqgvuryoH7rY1St1vUrUL1t0HerQ39pHWZQ/cEuJH0663p6PHp/c9T6e2o96FyN5hxepB6TqpV2UesKS3L6NYT6eilX2+qcpVXnqDaVvrGQ/usu3FAsvBC4as/JgGhfMo1R7gr7/4/+36eBpQDOuRYReT/wG+AWvAA4jwP/4ZwbXOuVADJqphHil6txY30rM8vMaBwppx44lewsoa45eLako7uXvOws8nNSI6fiaDMuP4eLj67ikbe28e62oDTEI+P1ml1sb+pgckk+JQXxyX1pJJaj95nI7z9+CCtrd/HutiZ6B5mtD/G7x9eAwJfePzewzsKZE/jC0n24e0Vt34sF8NIMvbW5kaufXsfHr32J9TtayM/J4nCbqY4rzrlW59zbUSwbh2hqOTCOgc//hmEYRgriRzONtCwNq7fROXeWc67UOVfinPuIc646Ob0eSMbMNOpcjftNLRmi9uB09/SyeVc7Zyw0o3GkTByXz9H7VPDyhvq+78g5x9rtzby0oZ5l6+uob+nMeDfg8FnPi4+u4rpn13PVU+v4zXkHDxpdNla6enr51t0ryc0Wmy1Pc04+YCo/O2sB3/zbStZsb2Z7YzuTSwfOyIfOnZ+ceRB/e7WWS5bszfQJg2uxv/j+uTy2ejvvbmuip9fxjbve4Jl3d7C9yRO/zZtWytTxBUwuyU9ITlFjWBwPNDMwqKdhGIZhjAoZ86ReGZppjEMwnC272+npdcwstyA48eC0hdN5ds1Oahra+Nytr/Lyhnrq/BmOqaUFlBXlMaU0oZHjk05ZcR6fOGIWf3q+mq+euKf2LERLRzebGtpiMqqve3Y9b29tYu7kceTYA3/aEPTC4JzFM7nyibW8V9/KsT9/kk8csRefXTqbySUDjcdfP/IuhbnZfH7pPkPuKy8ni1+ft5BTf/ss63e2UNfSybFzJ3L8vpM4bt9JTCktGHbEXiO++LrFI4HHgFo8L7lzgbOBbznnYhO9BjF/8FyLAIWnx2VPexByoascJDNQLLkeDWOsE9I5Dj9xk09IfxjpEUT/ZrwV4AlzSeTt9fVc2GzpONKFjDEaJ43LJz8nKy7BcGosR2NcOfmAqXzr7pVs2d1Oluzm+P0mceTeFRwxu5xZ5UV87NqXkt3FpPCZY2dz8wvvcfUze0ZSdc7x0L+38sN/vsWW3e0I8MK6nRy9z8RB26ze2cIVj63hlAOm0hBjABUjdZk6voAJRbnMnVLCzS9W85dl73HBkXvx2eM9A7Glo5tlG+r58vvnUDEuuhcw+08tZf70Upxz3P+lY6PSTBpJ4U3gDOCXeJKuncBq4MPOuQdiaunO6B7OSvem7yFwQK7F+yI/4BXO6l+fFy52ezfCPp/rL9Oaq027lYZKlU9ReRq1LqtU7atLrWuHat0drR8Mf1KIVeOmtWvlAeVBRKOzDNIMBuVN1OgnlyBNYn1AnXCiydmo+1oesK41ekG6z7aAde1/rfuqj922gHLtd6bHr+trrWL4sQjKr6nrBeVgDModqs/DIG1p0Dm8uj2gjqpUq9b1tVMblsVpbgTJQ5u67uZ9JqwT16n6AS+ZBuRjvETV6QZuHFwDHe3vk5E8MsZoFBEqJ0SXq3EoQuk2TNMYH8YX5nJg5XiygH988ZhkdydlmFJawNmLZ/C35bUcML20L5di9c4Wvn/fKp5+dwfzppVSWpDDxvo2Lvvzq/z1siM5MOB1vHOO7/z9TfKys/ifMw7gy7e/lsjhGKNMQW42vzxnIV983xx+98Qabnx+A39Z9h4TCvNo7exmQlEunzlu9tANKUJBw8xgTF2ccy8AH0x2PwzDMNIfx+DhjozByJhAOODnahxiprG1s5ua+lZ6eoPfaNQ0tJKTJUwbH99onmOZwtxs8nPHRqCbWPjscfvQ3dvLlt3t9PY6fvvYu5z022d49b0Gvvfh+dz/xSVMKMpj/6kljC/M5ZN/epkNAUnf//ZqLS+sq+O/Tt2fKaV27mYqVROL+fW5B/PY147ngwdOY2tjO43t3Xzu+H0otaBHhmEYhhGAw5v2jOcydsgoo3FGWdGQ7qk19W1s3t3OXctrAutsrG9j+oRCcrIz6vAYKcisiiJOXzid7U3trNy0m98+toaTD5jK418/nk8ds3ffOZiXk8Utnz4cB1x4wzK2NbYPaGdncwf/++BqFu9VxvmHz4qwJyPTmD1pHL8+72AWVI5nVnkRnzy6Kq7t33H5USmbtsYwDMMwjMSSMe6p4EVQrWvppK2zh8K8PWe11u1oZldbFwL88pF3+fDC6RFzOm6sbx0TieZThbH+YPq5pXP4x+ubEYFbP30Ex8yNrFucPWkcN19yOB+79kUuuuFl7rz8KC67ZTngad5aOrr56ZkH9UW7HOvHNZMY7LsszMumMC+bgmHM5Ns5MkZY9Wq/BikoYMUo0RdEZ3p/Wddg8V4PMVdpw0gEIT2x1j0Oxiald6wMzzSrr9vXAn5jBskTG/HzUdE4mnvqSMg4oxFg065W5kzeM+3Gn57bgAjMnTyOd7c1c9VTa/nmyfvvUa+2vpWTDpg66v01DID9ppawcMZ48nKyAg3GEAfNGM91F3lJ3z918ysI0NTexbIN9XzlhLnMnTKydDOGYYxRAozJqCIbBmwba8TTqoMjlxcqqW6Oyl7Zrd6T1CkvsRnqIXi18ubXztuDOXIHJYRvCihvDCjXfk9BCe11QBYC6uj96sApegz6MVj3Jyh4TWFAefhnut2gV+k68Izetx5bkBOf3rZOret+Bz3i630FBfMJ6nNFQHn4vvT/+rzQ/X5PrQcFy9F9Dfregr4rHfBG19fHtFDFP9MBovS1MxdgpXet6gBUmqri/mu+sbC/TtNA5yY2rYbKUCCdoBc9z6j1Q1WfPogFvUlTMsr/stLPTVYTwUW1oaWTu1fUMrE4n7KiPM44eDrXPbthj8A5LR3d1LV0WroNI6EU5GaTFfAjHs7Rcyby248dzIqNDazZ3syGulb2mVTM5983dKoFwzAMwzCMsYlpGkdCRhmNM/xop5GC4dz28kbau3qZOt57HfOfp+yPAD9/6J0B9Wp8I9LcU41UIZK27IMHTeN/P3IQu9u66Ozu5f/OWkB+jgUaMgzDMAzDiEzIPTWey9gho9xTJ5fkk5stewTD6ezu5eYXqjl27kQ6u3sBb1by0mNnc+WTa7l4SRWLZpUBsLHO0m0Y6cH5R8ziumfX0dsLh1WVD72BkZGYLtEYVcJdz4L0SiE+ZJpEw0hVgtxSNSHtYokFYTfCyCijMStLmD6hkE27BhqN/1y5me1NHfz87AVc9VR/IvXPLd2HO5bX8KN/vsU9nzsaEelzbbWZxvhiD7ajw2T7VTcMYygOOBSWL0/4brt6+tfbNgz8rLzLMz5zg7RVB9NnoGptVbXSVmld2YBE70rHqIUmWpMWjn4Y0sna9fZai6Y1anrfeh9BukE9NxFNkhz9SlD3U4trdDu6D0HbBiWtD0c73wVpJbV2MUjY0xVQJ0ijF3RM9Tij0Q8GPckFfQfh/dcaUt1upVrfFFBfl+vvIUiLqb8T3X41kQk6d3Rgm8Y1/ev16topV48OOepAbt/dv97U3q9bzB1Mn3x6QPm6GHWLCdE5WiCckZBR7qngBcPROkXnHDc8t4G5k8dx/L6TBtQtzs/hmyftx2sbd3H/yi0A1NS3Mi4/hwlFlu/MMAzDMAzDMDIH0zQOl4yaaQTP7fTJd3b0/f/S+npWbW7kp2cehER4o3nWoTO46YVqfvavt7nlhWrWbG9mZnlRxLqGMVrYTKxhGIZhGIaRqmSc0TijrIgdTR20d/VQkJvNDc9toLw4j48eUhmxfnaW8N0PzeP865chAh3dvcwss8ipRnpgxqZhGOlIfe7QL2a1W6phGIkndA0OIw3wQE4Ju5YfSlbKDXNPHQkZaDR6Bt/mXW2ICI+/vY0vvW/OoImvj54zkRPnTeGJt7fhMD2jYRiGYQBDB74J54H++lqXpnM2tnX0lxfm9OsbOaa/TuOr/XWqw3LE9W2r15VGa5OqrzVmQfkXwz/T/Q7S9OnyaB6kCgPW9baDaS4j9SGIGWo9SPcYlCsw/LOg3I5BAh59XIJ0jLqOzkGpdX96v/r7iOZY6ye4oD5ognJihqPHrPWKuq9BeTc1uh96f9vV+oyAdc0AjakaRO7Fqj9XqHK9X6VX1MFxqj6u2v+76nOQbhFo/PnA/0v/J7hu8gml3DCGQ8YZjaFcjZt2tfHoW9vIzcrigqP26vs8aGbmOx/cn8dX+0ZjhRmNhmEYhmEYhmEYkIFG4wx/lnDV5kbuWl7L6QdPjyrC5OxJ45hSms/Wxg5Lt2EYhmEYhmEYGYW5p46EjDMap5TkA/DLh9+hu9fx6WP2jnrbyrIicrKzOGqfitHqnmEYhmGkHueHaY5ui+CWGl5nqPpR0jXB100dOOwmDMOIkW0W8NGIkYwzGnOys8jPyaKju5clcyqYN6106I1C22YJlRMKB9U/GoZhGIYRG1pzlaPyNxbm969ver5/XTsIVRVAaZtnlIYMTIB6lVNOozVjlRf2r7fe0r8erl0L0uhp7dr+an1tQH2tldT90Ho1/eCl5zyCdHxBef0G0yWGiCZPYThB+4tGo6gJevrSfQo6FnpsQbpMTVDeTP196O9c7ytISznYPqrUerVanxJQHqRF1fs7bVb/+vMb+9f1GMLHP8/t+bJG64d1zkaAwmavvjYYC4Epbs/rqzAfcnftmSs1ROg4l562x0d7krTAN+GYpnEkZJzRCJDnG42xzDIahmEYhmEYhpGpmHvqSMhIo3Fcfg69vY6l+05OdlcMwzAMwzAMwzDSmow0GmeVF+GcIyvL/LUNwzAMY9icoe6jxcHVIqFzMZbEuG042m3OMAyPNb6b6RTlzj2Ywiqa/KgDmB+n6+6Q/na6Ngz8KOQCmxjMPXUkZKTRCCDDEPhaonTDMAxjTBJNIJsW4N7hPeA1tfTnY9yu7s86X1yOKm9rj6yzAqWzUvW7VW7GOeP711coHaN+4NE6NhiYX0/rzPZS6/rBvF7tT+sVtX+T1tBVqnWdjzGafIRaJ6cd64LyRgYRpE8M18kFaSWLAuro/gVp94IcAoM0ikHaTV0elEOyLqA/uv/6WOvvPvy8CBqb1rRqzaFuKyg3p0Z/b8uUjrFyj5p7EnRMt7X0r5erc7Zb7SzofBlgwCmDcTDdYuP9A/+PPpJIMjD31JGQlewOGIZhGIZhGIZhGKlLRs402oyhYRiGYRiGYRj9mHvqSEi40SgiM4HfAB8ABHgM+A/n3MZBNzQMwzAMIzVQGqW2NQM/CoX1j5ZI4fx1uU7LAbDCd0stCd/AMIxhEelay50+xEYXxUnvuMBrpzHsdySUZsdIHRJqNIpIEfAE0AF8Es/k/zHwpIgscM61DLa9YRiGYRgJZJgaRujXMIajczBqppzTv651Um0d/etrlZawCVjk9swjl/sd1eZ/9a8H6RZhoOZshnoyWq0mJVarfQfp6XS5Vk7VB5QH9aErYF3r+0oDyoNyEG4KqBOey7F1kM9CBGkXNdHoHtsC6tSq9RkB5VVqXY9NHxfdvtab6u9D1w+fg9LtBmlidbnen24r6FgE6hLVuj4vKgK23abOTYC5/nWhczY2qTrlKjBVl8qbqunaPEiQGmUwlp4D/HmI34nX+j8foGNdkOgAV6ZpHAmJnmm8FJgN7OecWwsgIiuBNcDlwK8T3B/DMAzDMAzDMMYE5p46XBIdCOd04KWQwQjgnNsAPA+ckeC+GIZhGIZhGIZhGEOQ6JnGA4B7I5SvAs6JUG4YhmEYRiI5N8xl7M4YXVQvUdvf6G97yOi4oQXpIQ1jLFMdyt84wvyoTPTa6QqbnMs9PaD+Uep6DBecrUwFjaK5p46ERBuN5UBDhPJ6oCzSBiJyGXAZwKxZs0avZ4ZhGIZhRIfSKA3IQXdJbEbcgETky/pX25T+SuvPCoF5EXSMOm/iWqVj1MFygjSDMFBntTrAe033Y45a13kaq9R6WFyPiOj9NgaUR/OgprfVYwvS1Wlaw/6Ppp7WOur+dQeUay2i1hDqvkajb9To+rrPQc6HQfU1QfkUw9GaRt3uPKXX1RpC/f1oPWG9Mqx0fslFKtfom7v718P1rVURtIs6T+O2lv46Jep6CdIxtnWoADQTB7mW24M/igllSCYmv6MZjSMhGXkaI71qCDwznXPXOucWO+cWT5o0aRS7ZRiGYRiGYRiGYYST6JnGBga+oAlRRuQZSMMwDMMwDMMwjBFieRpHQqKNxlV4usZw5gNvJbgvhmEYhmGMIiFtVdXB8WtTu+IZxlhmdej6Gky7eEaKXS8j1UwbSSPRRuN9wC9FZLZzbj2AiFQBS4BvJbgvhmEYhmGEM5KHuBv7tw0ZjADVr/drqwZol3SAnC/2r+r8ilO+0L/e9quhuxCUE1A/WNeGBemYorRoWh+pH5K03k3rGHUdnV9PUxpQR895zFPra9V6UA5GvW1QbsKSgDo6/2CQvi98e72u9Z3RPEjq/IL6OOo+ae1iUcB6kH6SgDpBBB3HyWH12gLWg77DN9W5o8c5R51fy9S5p9tcoupsVzrGKUClf+3oa0pvq7WR5aqd0pPUvnTfwnKl9ukYFXsEvwnK2ah5MdUNQNM0joREaxqvA6qBe0XkDBE5HS+aag1wTYL7YhiGYRiGYRjGmCDknhrPZeyQUKPROdcCvB94F7gF+AuwAXi/c645kX0xDMMwDMMwDMMwhibR7qk45zYCZyV6v4ZhGIZhKOYr11AV4p+ZYfXirTk6K8U0VoaR4myS0b1mdPqaSK6qAPW5A/tQ3hWhXrheUTPU70h4LtfXRsPV1dxTR0LCjUbDMAzDMDKf8oKh6zAbuHvPvIsQ+eE154r+OoUH95dve75/vVIZwCUdkXfbFvb/2gAtmtZHah2b1vfptroDyrVuULev668O2K/W2WmtY2HAukZrD5vUun5s1jknAd5T63oMQcclSIuox6br6/yVpQHrel+63xqtVw3Km1keUB50vMKdDfW+D1fns9YuVqo6c8/pX+96pH99k9IoBmk6dV5Hfa7pY6fPoylhwW8Km/fUPZZuUJ+r/nergeYEWAJawxhuMI6IpAa+seipIyEZeRoNwzAMwzAMwzCMNMFmGg3DMAzDMAzDyHDMPXUkmNFoGIZhGGmCiHwcuA3Y5JybkZCdnq9c024bwrXsktjd2ELudHu4s2qN06jomwwjc4iXC2k0+sYBLFX7Dc9ZYmQUZjQahmEYRhogIhOA3wBb49LgW1E8EJ4//AfR0o8xIG9jiMYH+9d1TsQB2+4fuVxrw3i+P/djk85fp3SM1QHtV4T9H/QwVB32/xH+/lYEBCbRGkKtXesKKA9aD9JDBuVs1Oh2tPayKaBcaxjDPwvanx6nPpa639p+0PWD8kIGjV+j9X1B/dHfZTT9KQ9YD29rRYDuVWslt98VeX8avY8ZAbrEVnV+tarPq8YTkSaVp1FrHRuVgDQ3e+B6aF+acF1xX58jBb2JxHbgqWG+4EnIiyHTNI4EMxoNwzAMIz34OfAGsAU4Mcl9MQzDSDPMPXUkWCAcwzAMw0hxRGQJcAHwhWT3xTAMwxh72EyjYRiGYaQwIpILXAv8wjm3VkY5Z5thGEZmYu6pI0GcSx9xuYg0Ae8kux9JZCKwM9mdSBJjeewwtsc/lscOY3v8+znnSoaultmIyHeBi4EDnXPtInITcOJggXBE5DLgMv/f/UjOvXMsnrs25rGBjTlx7OWcmxSPhkTkIbxxxJOdzrlT4txmSpJuRuNy59ziZPcjWYzl8Y/lscPYHv9YHjuM7fFn4thF5ETg0SiqPu2cWyoic4A3gY865x7y27iJIYzGVCATv7+hsDGPDWzMxljE3FMNwzAMI3G8AMyLol4oaOLvgCeAl/zoqQB5gPj/dzjngoJNGoZhGEZcMKPRMAzDMBKEc64VeDuGTeYDewENET5rAK4A/mPkPTMMwzCMYNLNaLw22R1IMmN5/GN57DC2xz+Wxw5je/xjeewhPgaEp73/FnAocA5Qm/AeRc9Y/P5szGMDG7Mx5kgrTaNhGIZhjHXSRdNoGIZhZA6Wp9EwDMMwDMMwDMMIxGYaDcMwDMMwDMMwjEBSaqZRRN4nIs+JSJuI1IvILSIyJUK9MhG5XkR2ikiLiDwmIgclo8/DQURmiMjvReRFEWkVESciVRHqRTVOESkQkV+IyBb/2L0oIsclZDDDIJrxi0iJiPxSRJ4SkUa/ztKA9tJm/FGO/QQRuVVE1vnjWSciV4nI5Ajtpc3YIerxHyoiD4nIJhFpF5GtIvKgiBwVob20GX+0133YNtf49W6N8FnajB2i/u6r/PJIy4Swumk1/rGMiOwrIleIyEoRafa/s/tEZGGy+zaaiMjXROR+f7xORH6Q7D7FCxGZKSJ/E5Hd/j36HhGZlex+jSbD+Q1PZ0TkbBG5W0Te839j3xGRn4rImM+dO1ZJGaNRRI4FHgF2AWcBXwGOAx4XkXxVT4D7gFOAL/l1c4EnRSRd9B1zgHPxIt89G6lCjOO8AbgU+B7wYWAL8LCIHDwanY8DQ44fqAA+BXQzdE6zdBp/NGP/LN74f4z3/f8UOB0v5P64sLrpNHaIbvwTgLXA14GT8c7/CcDTInJ4WN10Gn80Y+9DRI4GPgE0BlRJp7FDbOP/KXBU2NIUVifdxj+WOQl4H3AzcBrweWASsExEDk1mx0aZS4HJwD+S3I+4IiJFeGlg9gc+CVwIzMV7PilOZt9GmZh+wzOAbwA9wHfwnkWuAj4HPCoiKWM/GAnEOZcSC/AY3oNijio7DHDA51XZGX7Z+1TZeKAe+F2yxxHlWLPU+mf88VSF1YlqnMBCv94lqiwHeAe4L9ljHcH4Ra2f6NdZGqGttBp/lGOfFGG74/y6n0rXsUc7/oDtSoAO4PfpOv5Yxo73gujfwLeBauDWsM/TauzRjh+o8ss/M0RbaTf+sbwAE/Vvul82Hu/h+8/J7t8ojjvL/5vjn68/SHaf4jSur+AZE3NU2d54L3m/luz+jfb36a9Hff9K1yXgWeQif9zvT3b/bEn8kkpvCo4EHnXOdYcKnHOvAHXAR1W904HNzrknVb3dwP14hlbK45zrjaJatOM8HegC7lD1uoG/AifrWdpUIZrxO+eiFdum1fijHPuOCMWv+H8rVVlajR2iPvcj0YJnNHapsrQaf4xj/yaQDfwq4PO0GjuM6LuPRNqNfyzjnNsZ/pvu38/eZeBvWkYR53M+lTgdeMk5tzZU4JzbADxPmjyHDYcM/j4jEsOziDFGSCWjsQfojFDeARyo/j8A7w18OKuAWRHc99KVaMd5ALDBeQmjw+vl4blTZDJjZfzH+39Xq7KMHruIZIlIrq+TudIvvl5Vycjxi8g+wHfxPCwi/SZCho5d8VMR6fb1UvfJnlruTB9/xiMi5Xj39tVD1TVSjsGeT+YnuC9GYon0LGKMEVLJaHwHb7axDxHZC5gGlKvicjyXlnDq/b9lo9K7xBPtOIeqVx7hs0wi48fvi85/i/cj/Q/1UaaP/U68F0nv4Wl6P+ice0t9nqnjvxq4R3sZRCBTx94BXANcjqeB+wZwEPCCiMxT9TJ1/GOJ3wOC99tmpBeDXX+Z8gxmhCEilcAPgcecc8uT3R8j8aSS0XgFcLiI/FhEJovI/sAtQK+/hBA8f+pwJAF9TCTRjnOsHI8gMnr8IpID3I7nCvIx7b5Nho8d+E/gcDyD8d/AP0Vksfo848YvIhfgabm/MVRVMmzsAM65Lc65zzrn7nHOPeucu45+Pe9/q6oZOf50QUROHCTKrV6eCtj+28D5wBe1i2MqM9IxZyB2/Y0hfO+2e/F0q5ckuTtGkshJdgdCOOf+4huK38B7OHB4epUHGeieWk/kt8iht1uR3n6lI9GOsx6IFOa6TH2eyWTs+P3oZDfjBQL6kHNuZViVjB07gHNuPbAeeEVE/olnOIYiykKGjd+/Kf8a+BnQrlJMZAG5/v8tzrkuMmzsg+GcqxGR5/CM6RBjZvwpygvAvCFrQbj7MCLyWeAnwHedc3+Kd8dGkWGPOQNpIPj5JFOewQwfESnAi+Y/GzjeOVeb5C4ZSSJljEYA59z/E5H/wzsxtzvntonIauA5VW0VXvjucOYDG51zzQnoaiKIdpyrgI+KSFGYvmc+nmtfWrzFHQGZPP6rgfOAs51zj0f4PJPHPgDnXKeIrAQOVsWZNv6JeGkIfuIvmpl4od4/iueinGljH4rwmcWxNv6Uwj/mb8e6nYhcCPwR+JVz7n/j3rFRZLhjzlBW4ekaw5kPvBWh3EhTRCQXuBvP6+dE59ybSe6SkURSyT0VAOdci3PuTd9gPAUvD9DVqsp9QKWIhMS4iEgpXu6n+xLb21El2nHehxee/xxVLwfP2HjEOdeRmO4mjYwcv4j8Ci+k9yXOuX8EVMvIsUfCzwu2GFinijNt/FvxdHzhyza8lETvo/8FWqaNPRA/ENISYJkqHjPjzxRE5KPAjcD1zrmh3K+N1OY+4EgRmR0q8JPcLyGznsPGNL6301+AE4AznHMvJblLRpJJmZlGETkEOBVY4Rcdgxd2/ufOuRdU1fuAF4FbReSbeK4Q38Z7E/3zxPV4ZIjI2f5qKLHxqSKyA9jhnHuaKMfpnHtdRO4Afuu/EdqAl3x1b7zE4ClJFONHRE4FivECYQAcLyIT8Vz0/gXpOf6hxi4i/wV8DfgTsEZEdICoHc65dZCeY4eoxn8NnnvhcmAnsBfwRbygWBeG2knH8Udx3j8VYZt2YJtzru+zdBw7RPXd/wrvZeaLwA5gP7zfvV7U7Gu6jn+sIiLH4WmzVwI3hf2mdTjnXktOz0YXX4NdRf8L+vnqGngwQvTfdOE6vN/ke0Xku3heAD8CavACWWUs0Ty7ZBB/wHsx979AS9h1W2tuqmOQeCV8HOmC5+rwHLALaMMzHi8JqFuO90Bdj6cfeBxYmOwxxDheF7A8Fes4gUI8LdRWoB3vjfzSZI8xDuOvDqhTnc7jH2rseIZDUJ2b0nnsUY7/U3j6oTp/TOuA24CDIrSVVuOP5ryPsE01cGu6jz2G7/4VvJdk3f7YbgP2y4Txj9UF+MEg3311svs3iuO+aZBxVyW7fyMc2yw8t8VGoAnPbT6txxTluGP+DU/XheBnMAf8INn9syXxi/gnhmEYhmEYhmEYhmHsQcppGg3DMAzDMAzDMIzUwYxGwzAMwzAMwzAMIxAzGg3DMAzDMAzDMIxAzGg0DMMwDMMwDMMwAjGj0TAMwzAMwzAMwwjEjEbDMAzDMAzDMAwjEDMajbRBRC4WEScic5Ldl3BE5CYRqVb/V4nID0Rk9ijsq1pEbopTWz/wj6nT/R+kfug7qIrH/gP28Zjq062jtR/DMIzRQETuFJF6EZkaVp4tIstFZI2IFCarf+H49ysnIhersotF5FMR6o76PSCgj9XqvvCDBO53htqvE5ETE7Vvw0g1zGg0jPjwI+Cj6v8q4PtA3I3GUeIoBvY/mXwJrz9bk90RwzCMYfBFvATofwwr/wawCPiMc64t4b0KZgveb+4DquxiYA+j0a9zlL9NonnQ3/f1Cdzndn+fX0jgPg0jJclJdgcMIxNwzq1Ldh9GgnPupWT3IYRzbjWAiHQkuy+GYRix4pzbLiJfBW4WkXOcc3eJyL7AD4BrnHNPJ7eHA3HOdQBR3QOcczuAHaPbo0B2JPpe5ZzrBF4SkYJE7tcwUhGbaTQyChHJFZEf+64snf7fH4tIrqoTcsW5XER+KCJbRGSXiNwvIjPC2isSkatEpE5EmkTk7yJydARXnj73VBFZCjzpf/SocmtZ6n++h3tNJPcgv/wr/hjafbemYwPGvbeI/EVEdohIh4i8LiIjmjkUkdki8oCItPrtXgHkB9S9VETe8Pu5U0RuEJHysDqTROR2EWkUkQYRuVFETtfHxjAMIxNwzv0ZeAi4UkQmATfgGVv/NdS2ygX0OBH5h4g0+/egP4S7tYrINBH5s/+72yEiK0XkgrA6U0XkZhHZ7NfZIiL/FJHJ/ucD7j8i8hRwPLBE3b+eCutblWo/rvfdWBGRhf69uU5E2kTkHRH5tvr8KRF5TkRO8e+NbSLymogcISI5IvITvz/1/r28eCT9MYxMxWYajUzjZuBc4CfAc3huJd/FcxM9P6zut4EX8FxwJgO/Av6Cd7MMcS1wDt4b4uXACX6dwViB58ryB+DLwCt++VuxDEREPg38FrgJuAOYA9wOlITVmwksw3Oj+Sreg8l5wN0i8hHn3H2x7NdvMw94FCj0x7IduBw4M0Ld/wO+DvwO+CZQCfwYOFBEjnbO9fhV7wEOwjvua4GzgN/H2jfDMIw04XJgFd4s3mzgQ865xhi2vxW4E8/N9XDge0AxnusovnHzNFAGfAeoAS4AbhGRIufctX47twB74f0+1wBT8O5lRQH7/by/72x/DACD9Tve992oEZHDgafw7ilfBWqBucCCsKpzgF8A/ws0Az8H7vOXHLxjOs+vsx34z+H0xzAyGuecLbakxYL3o+6AOQGfH+h//oOw8u/65Qv8/6v8/58Oq/cNv3y6//9+QC/wn2H1fufXu1iV3QRUq/+X+nVOjNDPSH2s0m3ieQHUAA+F1TvPr3eTKgu9wa4Iq/so8PoQx/QH3s/AHuWX+vs5UpVl4T0AOaBK9bsH+F7Y9kv8eh/x/z/J///csHr3+eVLI/ShGrg12eedLbbYYstwF+Cn/m/c3TFsE7rXXR1W/t/+7+2+/v9fjPT7CTyGZ/hk+/83A18eZH8D7j9+2VPAc4P0rcr/P6733UH6WK3ve6r8Gf9eWTTItk8BXcBsVXa6v9/HwureA2yI0MZSAu7pttgyVhZzTzUyieP8v+ERN0P/h7/JfCDs/zf9v7P8v0cAAtwVVu9vw+1gDMzwlzvDyu8GusPKTsELELDbd7XJEZEc4GFgoYiUDmP/RwE1TulHnHO9EfrzATxj8i9h+16G92Y69J0cifew8/ew7RNxLA3DMBKO/9t7IZ6xcZiIlAyxSTjhv7d/xfu9Pdz//zhgk3PuqbB6twKTgPn+/68A3/TlDgeJiMTYj8GI9303akSkCO8F5V+cc61DVH/XObde/f+2//fhsHpvAzPifIwMIyMwo9HIJEIauvCoblvDPg9RH/Z/KPBKSPA+zf+7PazetmH1LjZC+x6wL+dcN1AXVncycBHem1S9/ML/vGKY+480zvCyyf7ftRH2X6r2PQ1ocM51DdGeYRhGpvALPNfRD+H9Vv40xu3Dfx9D/1f6f8uJHMU0/J53Hp5Xx38CK4FNIvI9EYnHM2C877uxUIb3HFsbRd2GsP87BynPwXPNNQxDYZpGI5MI3YymAjqaaShXVrixNRShm+BkYIMqnxJ71wbQAeSFlYUbdqF9D9iXP4sXXrcOeBb4WcD+Ng+jj1uAAyKUh489dExPYs+br/58C1AmIrlhhuNIj6VhGEbKISLH47n5f9059y8R+THwQxG5zTn3QpTNTMGTBOj/ATb5f+vxZBThDLjnOee242nTvyAi+wGfBP4HT9ZwVZR9CSLe991YaMCTkFQOVdEwjJFjM41GJhEKY/6xsPJP+H+fibG9ZXhuReeElYf/H4nQ29NICZzfw9OBaD4U9n8tnk7j3LDys9jzZc9DeKL/Vc655RGW4aSueBGYKSJHhgr8t9Lh/XkU76Y9K2DfIWP7Jbw3t+ERXaM5loZhGGmDH+H0ejy30Cv84p8B/wau9wONRUP47+3H8H5vX/b/fxrPlXJJWL3z8TxkVoc36Jx7xzn3HTyDK/w+pOkg8v0rnHjfd6PGd0l9DrggPKqsYRjxx2YajXTkFBEJT/y+2zn3qIjcDvzAn5F7AU+b9/+A251zK2PZiXPuHRG5DfiRbzC9CrwfOM2v0jvI5u/iaQ8/JSL1eDfgd5xzTXi6lO+KyH/jGVPHAh8P23eviPwP3gPGjf42c/Aiz4VHsfse3kPEMyJyJV7AgDK8B4LZzrlICZqH4mbgW8A9IvIdvAeQz+K5nOp+rhORn+GFld8P7wGiHZiJp3e83jn3pHPuERF5DrhWRCbiubOeDSz0mxrsWBqGYaQTP8SLVnqmrwXHOdflR8R+CS+gzfejaOeDIvIL4BE8HeP3gT875971P78J+Are7/R/471s/ATeb+/lzrkeERmPFxjnL3h6vS7gDLx7xCOD7Pst4PMich7eDGKTc+6d8ErOuVXxvO8Og2/g3XdeFJFf4R2D2cDBzrkvjfK+DWNMYUajkY5EStOwCs9I+iSwHi+c93fxXDN/hueKMxwuA5rwtCB5wBN4bj7/BHYHbeScqxORL+Ll5Hoab5btfXhR3H4KTMCLfPctvCA2F+LNbOo2bhCRccDX8IzKf+O9zb01rN5GEVmMFwn1J3gBEOr8+jcPZ9DOuU4R+QBwJV649xbgNrwgBleH1f2OiKzGd3/Cm52tAR4H1qiqZ+J9dz/DC4pzH96DxU0MciwNwzDSBf+3+KvAT5xzb+rPnHOviJfv9lsicqdzblXERvq5AC+d0efwtHbX4RlJofZafDfYnwP/h5eO6R3gQudc6D7RjpcG6lI8Q7bXr/MJ59y9g+z7Z3iur9cD4/DuY0sD6sb7vhs1/jFdgmeo/x4vl/B7wI2jvW/DGGuIcy7ZfTCMtEJEvol3Q6xyzm1Mdn9Ggoj8AO/tdS5e6o2ewbeI+/7/gBfCvTzkRuvP6mbhzUY+55y7ILgFwzCMzEJELsYzeuY659YmuTspgYhU4xmunwZ6QzO4Cdp3Dl4U2MeADzjnHkvUvg0jlbCZRsMYBBH5MN4M5ut4b2iPxXvTe2e6G4xhdOG9na0arR34D0Lj8WaF8/BShXwW+EWY7vIRvMTT4OlVDMMwDOMif/kfPM+aUUdEZuB5zhjGmMeMRsMYnCbgI3hupMV4Uet+qWPvUgAAAJhJREFUR3R6lHTgWjxXW+gP3jNatAD/AeyD50K0AfgO/alBQnyefu3kaEbeMwzDMNKD0/DuGzC8iODDZRtwmPp/D12nYYwVzD3VMAzDMAzDMAzDCMRSbhiGYRiGYRiGYRiBmNFoGIZhGIZhGIZhBGJGo2EYhmEYhmEYhhGIGY2GYRiGYRiGYRhGIGY0GoZhGIZhGIZhGIH8f4rLdKvgN/vGAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "functions.name_plot_options(\"monitor\", data, log=True)\n", "functions.name_plot_options(\"banana\", data, left_lim=90, right_lim=150)\n", @@ -866,111 +614,9 @@ }, { "cell_type": "code", - "execution_count": 31, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "/********************************************************************************\n", - "* \n", - "* McStas, neutron ray-tracing package\n", - "* Copyright (C) 1997-2008, All rights reserved\n", - "* Risoe National Laboratory, Roskilde, Denmark\n", - "* Institut Laue Langevin, Grenoble, France\n", - "* \n", - "* This file was written by McStasScript, which is a \n", - "* python based McStas instrument generator written by \n", - "* Mads Bertelsen in 2019 while employed at the \n", - "* European Spallation Source Data Management and \n", - "* Software Center\n", - "* \n", - "* Instrument python_tutorial\n", - "* \n", - "* %Identification\n", - "* Written by: Python McStas Instrument Generator\n", - "* Date: 12:59:09 on December 15, 2021\n", - "* Origin: ESS DMSC\n", - "* %INSTRUMENT_SITE: Generated_instruments\n", - "* \n", - "* \n", - "* %Parameters\n", - "* \n", - "* %End \n", - "********************************************************************************/\n", - "\n", - "DEFINE INSTRUMENT python_tutorial (\n", - "wavelength = 2.8, // Wavelength in [Ang]\n", - "int order = 1 // Monochromator order, integer\n", - ")\n", - "\n", - "DECLARE \n", - "%{\n", - "double mono_Q = 1.714;\n", - "double wavevector;\n", - "double mono_rotation;\n", - "%}\n", - "\n", - "INITIALIZE \n", - "%{\n", - "// Start of initialize for generated python_tutorial\n", - "wavevector = 2.0*PI/wavelength;\n", - "mono_rotation = asin(mono_Q/(2.0*wavevector))*RAD2DEG;\n", - "printf(\"monochromator rotation = %g deg\\n\", mono_rotation);\n", - "%}\n", - "\n", - "TRACE \n", - "COMPONENT source = Source_div(\n", - " xwidth = 0.1, yheight = 0.05,\n", - " focus_aw = 1.2, focus_ah = 2.3,\n", - " lambda0 = wavelength, dlambda = 0.01*wavelength)\n", - "AT (0,0,0) ABSOLUTE\n", - "\n", - "COMPONENT guide = Guide_gravity(\n", - " w1 = 0.05, h1 = 0.05,\n", - " w2 = 0.05, h2 = 0.05,\n", - " l = 8, m = 3.5,\n", - " G = -9.82)\n", - "AT (0,0,2) RELATIVE source\n", - "\n", - "COMPONENT mono = Monochromator_flat(\n", - " zwidth = 0.05, yheight = 0.08,\n", - " Q = mono_Q)\n", - "AT (0,0,8.5) RELATIVE guide\n", - "ROTATED (0,mono_rotation,0) RELATIVE guide\n", - "\n", - "COMPONENT beam_dir = Arm()\n", - "AT (0,0,0) RELATIVE mono\n", - "ROTATED (0,mono_rotation,0) RELATIVE mono\n", - "\n", - "COMPONENT sample = PowderN(\n", - " reflections = \"Na2Ca3Al2F14.laz\", radius = 0.015,\n", - " yheight = 0.05)\n", - "AT (0,0,1.1) RELATIVE beam_dir\n", - "\n", - "COMPONENT banana = Monitor_nD(\n", - " xwidth = 2, yheight = 0.3,\n", - " restore_neutron = 1, options = \"theta limits=[5 175] bins=150, banana\",\n", - " filename = \"banana.dat\")\n", - "AT (0,0,0) RELATIVE sample\n", - "\n", - "COMPONENT monitor = PSD_monitor(\n", - " nx = 100, ny = 100,\n", - " filename = \"psd.dat\", xwidth = 0.05,\n", - " yheight = 0.08, restore_neutron = 1)\n", - "AT (0,0,0.1) RELATIVE sample\n", - "\n", - "FINALLY \n", - "%{\n", - "// Start of finally for generated python_tutorial\n", - "%}\n", - "\n", - "END\n", - "\n" - ] - } - ], + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "with open(\"run_folder/python_tutorial.instr\") as file:\n", " data = file.read()\n", diff --git a/tutorial/McStasScript_tutorial_2_SPLIT.ipynb b/tutorial/McStasScript_tutorial_2_SPLIT.ipynb index 28abd363..ae9308d2 100644 --- a/tutorial/McStasScript_tutorial_2_SPLIT.ipynb +++ b/tutorial/McStasScript_tutorial_2_SPLIT.ipynb @@ -40,6 +40,8 @@ "metadata": {}, "outputs": [], "source": [ + "instrument.add_component(\"Origin\", \"Progress_bar\")\n", + "\n", "src = instrument.add_component(\"source\", \"Source_div\")\n", "src.xwidth = 0.1\n", "src.yheight = 0.05\n", @@ -188,7 +190,7 @@ "instrument.backengine()\n", "data_ref = instrument.data\n", "\n", - "plotter.make_sub_plot(data_unreasonable)" + "plotter.make_sub_plot(data_ref)" ] }, { diff --git a/tutorial/McStasScript_tutorial_3_EXTEND_and_WHEN.ipynb b/tutorial/McStasScript_tutorial_3_EXTEND_and_WHEN.ipynb index 4ee501ab..99101f13 100644 --- a/tutorial/McStasScript_tutorial_3_EXTEND_and_WHEN.ipynb +++ b/tutorial/McStasScript_tutorial_3_EXTEND_and_WHEN.ipynb @@ -181,10 +181,10 @@ "source": [ "instrument.set_parameters(wavelength=2.8)\n", "instrument.settings(ncount=5E6)\n", - "instrument.backengine()\n", - "data = instrument.data\n", + "instrument.show_settings()\n", "\n", - "plotter.make_sub_plot(data)" + "instrument.backengine()\n", + "plotter.make_sub_plot(instrument.data)" ] }, { diff --git a/tutorial/McStasScript_tutorial_4_JUMP.ipynb b/tutorial/McStasScript_tutorial_4_JUMP.ipynb index 47b109db..74e18eff 100644 --- a/tutorial/McStasScript_tutorial_4_JUMP.ipynb +++ b/tutorial/McStasScript_tutorial_4_JUMP.ipynb @@ -225,6 +225,25 @@ "We see that each daughter instrument have beam and show the different powder patterns as expected." ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The McStas instrument file\n", + "We here show the generated McStas instrument file in order to clarify how this would be accomplished without the McStasScript API." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "with open(\"run_folder/python_tutorial.instr\") as file:\n", + " instrument_string = file.read()\n", + " print(instrument_string)" + ] + }, { "cell_type": "code", "execution_count": null, diff --git a/tutorial/Union_tutorial_1_processes_and_materials.ipynb b/tutorial/Union_tutorial_1_processes_and_materials.ipynb index afea0cd4..b49e9067 100644 --- a/tutorial/Union_tutorial_1_processes_and_materials.ipynb +++ b/tutorial/Union_tutorial_1_processes_and_materials.ipynb @@ -21,7 +21,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -30,7 +30,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -47,18 +47,53 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here are all components in the Work directory category.\n", + "No components found in this category! Available categories:\n", + " sources\n", + " optics\n", + " samples\n", + " monitors\n", + " misc\n", + " contrib\n", + " union\n", + " obsolete\n" + ] + } + ], "source": [ "instrument.show_components(\"Work directory\")" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Incoherent_process ________________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[1msigma\u001b[0m = \u001b[1m\u001b[94m5.08\u001b[0m\u001b[0m [barns] // Incoherent scattering cross section\n", + "\u001b[1mf_QE\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [1] // Fraction of quasielastic scattering (rest is elastic)\n", + "\u001b[1mgamma\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [1] // Lorentzian width of quasielastic broadening (HWHM)\n", + "\u001b[1mpacking_factor\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // How dense is the material compared to optimal 0-1\n", + "\u001b[1munit_cell_volume\u001b[0m = \u001b[1m\u001b[94m13.8\u001b[0m\u001b[0m [AA^3] // Unit_cell_volume\n", + "\u001b[1minteract_fraction\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // How large a part of the scattering events \n", + " should use this process 0-1 (sum of all processes \n", + " in material = 1) \n", + "-------------------------------------------------------------------------------------\n" + ] + } + ], "source": [ "instrument.component_help(\"Incoherent_process\")" ] @@ -74,7 +109,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -93,9 +128,24 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Union_make_material _______________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[1mprocess_string\u001b[0m = \u001b[1m\u001b[94m\"NULL\"\u001b[0m\u001b[0m [string] // Comma seperated names of physical processes\n", + "\u001b[4m\u001b[1mmy_absorption\u001b[0m\u001b[0m [1/m] // Inverse penetration depth from absorption at standard \n", + " energy \n", + "\u001b[1mabsorber\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [0/1] // Control parameter, if set to 1 the material will have \n", + " no scattering processes \n", + "-------------------------------------------------------------------------------------\n" + ] + } + ], "source": [ "instrument.component_help(\"Union_make_material\")" ] @@ -111,7 +161,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -129,7 +179,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -147,7 +197,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -176,21 +226,20 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ "src = instrument.add_component(\"source\", \"Source_div\")\n", "\n", - "instrument.add_parameter(\"source_width\", value=0.15, comment=\"Width of source in [m]\")\n", - "src.xwidth = \"source_width\"\n", + "source_width = instrument.add_parameter(\"source_width\", value=0.15, comment=\"Width of source in [m]\")\n", + "src.xwidth = source_width\n", "src.yheight = 0.03\n", "src.focus_aw = 0.01\n", "src.focus_ah = 0.01\n", "\n", - "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", - "src.lambda0=\"wavelength\"\n", - "src.dlambda=\"0.001*wavelength\"" + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.dlambda = \"0.001*wavelength\"" ] }, { @@ -205,7 +254,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, "outputs": [], "source": [ @@ -241,9 +290,49 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Union_logger_2D_space _____________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[1mtarget_geometry\u001b[0m = \u001b[1m\u001b[94m\"NULL\"\u001b[0m\u001b[0m [string] // Comma seperated list of geometry names \n", + " that will be logged, leave empty for all \n", + " volumes (even not defined yet) \n", + "\u001b[1mtarget_process\u001b[0m = \u001b[1m\u001b[94m\"NULL\"\u001b[0m\u001b[0m [string] // Comma seperated names of physical \n", + " processes, if volumes are selected, one can \n", + " select Union_process names \n", + "\u001b[1mD_direction_1\u001b[0m = \u001b[1m\u001b[94m\"x\"\u001b[0m\u001b[0m [string] // Direction for first axis (\"x\", \"y\" or \"z\")\n", + "\u001b[1mD1_min\u001b[0m = \u001b[1m\u001b[94m-5.0\u001b[0m\u001b[0m [1] // histogram boundery, min position value for first axis\n", + "\u001b[1mD1_max\u001b[0m = \u001b[1m\u001b[94m5.0\u001b[0m\u001b[0m [1] // histogram boundery, max position value for first axis\n", + "\u001b[1mn1\u001b[0m = \u001b[1m\u001b[94m90.0\u001b[0m\u001b[0m [1] // number of bins for first axis\n", + "\u001b[1mD_direction_2\u001b[0m = \u001b[1m\u001b[94m\"z\"\u001b[0m\u001b[0m [string] // Direction for second axis (\"x\", \"y\" or \"z\")\n", + "\u001b[1mD2_min\u001b[0m = \u001b[1m\u001b[94m-5.0\u001b[0m\u001b[0m [1] // histogram boundery, min position value for second axis\n", + "\u001b[1mD2_max\u001b[0m = \u001b[1m\u001b[94m5.0\u001b[0m\u001b[0m [1] // histogram boundery, max position value for second axis\n", + "\u001b[1mn2\u001b[0m = \u001b[1m\u001b[94m90.0\u001b[0m\u001b[0m [1] // number of bins for second axis\n", + "\u001b[1mfilename\u001b[0m = \u001b[1m\u001b[94m\"NULL\"\u001b[0m\u001b[0m [string] // Filename for logging output\n", + "\u001b[1morder_total\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [1] // Only log rays that scatter for the n'th time, 0 for \n", + " all orders \n", + "\u001b[1morder_volume\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [1] // Only log rays that scatter for the n'th time in the \n", + " same geometry \n", + "\u001b[1morder_volume_process\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [1] // Only log rays that scatter for the n'th time \n", + " in the same geometry, using the same process \n", + "\u001b[1mlogger_conditional_extend_index\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // If a conditional is used with \n", + " this logger, the result of each \n", + " conditional calculation can be made \n", + " available in extend as a array called \n", + " \"logger_conditional_extend\", and one \n", + " would then acces \n", + " logger_conditional_extend[n] if \n", + " logger_conditional_extend_index is \n", + " set to n \n", + "-------------------------------------------------------------------------------------\n" + ] + } + ], "source": [ "instrument.component_help(\"Union_logger_2D_space\")" ] @@ -257,7 +346,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -294,16 +383,42 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Union_master ______________________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[1mverbal\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [bool] // Toogles terminal output describing the defined simulation\n", + "\u001b[1mlist_verbal\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [bool] // Toogles information of all internal lists in \n", + " intersection network \n", + "\u001b[1mfinally_verbal\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [bool] // Toogles information about cleanup performed in \n", + " finally section \n", + "\u001b[1mallow_inside_start\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [bool] // Set to 1 to allow rays to start inside the \n", + " defined geometry \n", + "\u001b[1menable_tagging\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [bool] // Enable tagging of ray history (geometry, \n", + " scattering process) \n", + "\u001b[1mhistory_limit\u001b[0m = \u001b[1m\u001b[94m300000.0\u001b[0m\u001b[0m [bool] // Limit the number of unique histories that \n", + " are saved \n", + "\u001b[1menable_conditionals\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [bool] // Use conditionals with this master\n", + "\u001b[1minherit_number_of_scattering_events\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [bool] // Inherit the number of \n", + " scattering events from last \n", + " master \n", + "\u001b[1mrecord_absorption\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [bool] // Toggles logging of absorption\n", + "-------------------------------------------------------------------------------------\n" + ] + } + ], "source": [ "instrument.component_help(\"Union_master\")" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, "outputs": [], "source": [ @@ -320,13 +435,287 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Instrument settings:\n", + " ncount: 5.00e+06\n", + " output_path: data_folder/union_materials\n", + " run_path: run_folder\n", + " package_path: /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1\n", + " executable_path: /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1/bin/\n", + " executable: mcrun\n", + " force_compile: True\n", + "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/tutorial/data_folder/union_materials_5\"\n", + "INFO: Regenerating c-file: python_tutorial.c\n", + "CFLAGS= -I@MCCODE_LIB@/share/\n", + "INFO: Recompiling: ./python_tutorial.out\n", + "mccode-r.c:2837:3: warning: expression result unused [-Wunused-value]\n", + " *t0;\n", + " ^~~\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1604:105: warning: incompatible pointer types passing 'int (const struct saved_history_struct *, const struct saved_history_struct *)' to parameter of type 'int (* _Nonnull)(const void *, const void *)' [-Wincompatible-pointer-types]\n", + " qsort(total_history.saved_histories,total_history.used_elements,sizeof (struct saved_history_struct), Sample_compare_history_intensities);\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/stdlib.h:161:22: note: passing argument to parameter '__compar' here\n", + " int (* _Nonnull __compar)(const void *, const void *));\n", + " ^\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1613:20: warning: incompatible pointer types passing 'struct saved_history_struct *' to parameter of type 'struct dynamic_history_list *' [-Wincompatible-pointer-types]\n", + " printf_history(&total_history.saved_histories[history_iterate]);\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1434:50: note: passing argument to parameter 'history' here\n", + "void printf_history(struct dynamic_history_list *history) {\n", + " ^\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:2030:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:839:1: warning: non-void function does not return a value in all control paths [-Wreturn-type]\n", + "};\n", + "^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:883:1: warning: non-void function does not return a value [-Wreturn-type]\n", + "};\n", + "^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3274:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3274:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3276:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3276:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3278:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3278:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3280:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3280:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: warning: format string is not a string literal (potentially insecure) [-Wformat-security]\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^~~~~~~~\n", + "./python_tutorial.c:17318:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_filename\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^~~~~~~~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: note: treat the string as an argument to avoid this\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^\n", + " \"%s\", \n", + "./python_tutorial.c:17318:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_filename\n", + " ^\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_abs_logger_2D_space.comp:543:49: warning: format string is not a string literal (potentially insecure) [-Wformat-security]\n", + " sprintf(this_abs_storage.Detector_2D.Filename,filename);\n", + " ^~~~~~~~\n", + "./python_tutorial.c:17560:18: note: expanded from macro 'filename'\n", + "#define filename mccabs_logger_space_filename\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^~~~~~~~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_abs_logger_2D_space.comp:543:49: note: treat the string as an argument to avoid this\n", + " sprintf(this_abs_storage.Detector_2D.Filename,filename);\n", + " ^\n", + " \"%s\", \n", + "./python_tutorial.c:17560:18: note: expanded from macro 'filename'\n", + "#define filename mccabs_logger_space_filename\n", + " ^\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:788:15: warning: expression result unused [-Wunused-value]\n", + " if (volume_index_main,Volumes[volume_index_main]->geometry.is_mask_volume == 0 ||\n", + " ^~~~~~~~~~~~~~~~~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:788:90: warning: expression result unused [-Wunused-value]\n", + " if (volume_index_main,Volumes[volume_index_main]->geometry.is_mask_volume == 0 ||\n", + " ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:789:92: warning: expression result unused [-Wunused-value]\n", + " volume_index_main,Volumes[volume_index_main]->geometry.is_masked_volume == 0 ||\n", + " ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "14 warnings generated.\n", + "INFO: ===\n", + "INFO: Placing instr file copy python_tutorial.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/tutorial/data_folder/union_materials_5\n", + "\n", + " Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Cu.laz' (Table_Read_Offset)\n", + "Table from file 'Cu.laz' (block 1) is 19 x 18 (x=1:6), constant step. interpolation: linear\n", + " '# TITLE *-Cu-[FM3-M] Otte, H.M.[1961];# CELL 3.615050 3.615050 3.615050 90. ...'\n", + "PowderN: powder: Reading 19 rows from Cu.laz\n", + "PowderN: powder: Read 19 reflections from file 'Cu.laz'\n", + "PowderN: powder: Vc=47.24 [Angs] sigma_abs=15.12 [barn] sigma_inc=2.2 [barn] reflections=Cu.laz\n", + "---------------------------------------------------------------------\n", + "global_process_list.num_elements: 2\n", + "name of process [0]: incoherent \n", + "component index [0]: 1 \n", + "name of process [1]: powder \n", + "component index [1]: 4 \n", + "---------------------------------------------------------------------\n", + "global_material_list.num_elements: 3\n", + "name of material [0]: inc_material \n", + "component index [0]: 2 \n", + "my_absoprtion [0]: 0.000000 \n", + "number of processes [0]: 1 \n", + "name of material [1]: abs_material \n", + "component index [1]: 3 \n", + "my_absoprtion [1]: 3.000000 \n", + "number of processes [1]: 0 \n", + "name of material [2]: powder_material \n", + "component index [2]: 5 \n", + "my_absoprtion [2]: 1.200000 \n", + "number of processes [2]: 2 \n", + "---------------------------------------------------------------------\n", + "global_geometry_list.num_elements: 3\n", + "\n", + "name of geometry [0]: box_inc \n", + "component index [0]: 7 \n", + "Volume.name [0]: box_inc \n", + "Volume.p_physics.is_vacuum [0]: 0 \n", + "Volume.p_physics.my_absorption [0]: 0.000000 \n", + "Volume.p_physics.number of processes [0]: 1 \n", + "Volume.geometry.shape [0]: box \n", + "Volume.geometry.center.x [0]: 0.040000 \n", + "Volume.geometry.center.y [0]: 0.000000 \n", + "Volume.geometry.center.z [0]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [0]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [0]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [0]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.focus_data_array.elements[0].Aim [0]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [1]: box_powder \n", + "component index [1]: 8 \n", + "Volume.name [1]: box_powder \n", + "Volume.p_physics.is_vacuum [1]: 0 \n", + "Volume.p_physics.my_absorption [1]: 1.200000 \n", + "Volume.p_physics.number of processes [1]: 2 \n", + "Volume.geometry.shape [1]: box \n", + "Volume.geometry.center.x [1]: 0.000000 \n", + "Volume.geometry.center.y [1]: 0.000000 \n", + "Volume.geometry.center.z [1]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [1]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [1]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [1]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.focus_data_array.elements[0].Aim [1]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [2]: box_abs \n", + "component index [2]: 9 \n", + "Volume.name [2]: box_abs \n", + "Volume.p_physics.is_vacuum [2]: 0 \n", + "Volume.p_physics.my_absorption [2]: 3.000000 \n", + "Volume.p_physics.number of processes [2]: 0 \n", + "Volume.geometry.shape [2]: box \n", + "Volume.geometry.center.x [2]: -0.040000 \n", + "Volume.geometry.center.y [2]: 0.000000 \n", + "Volume.geometry.center.z [2]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [2]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [2]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [2]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.focus_data_array.elements[0].Aim [2]: [0.000000 0.000000 1.000000] \n", + "---------------------------------------------------------------------\n", + "number_of_volumes = 4\n", + "number_of_masks = 0\n", + "number_of_masked_volumes = 0\n", + "\n", + " ---- Overview of the lists generated for each volume ---- \n", + "List overview for surrounding vacuum\n", + "LIST: Children for Volume 0 = [1,2,3]\n", + "LIST: Direct_children for Volume 0 = [1,2,3]\n", + "LIST: Intersect_check_list for Volume 0 = [1,2,3]\n", + "LIST: Mask_intersect_list for Volume 0 = []\n", + "LIST: Destinations_list for Volume 0 = []\n", + "LIST: Reduced_destinations_list for Volume 0 = []\n", + "LIST: Next_volume_list for Volume 0 = [1,2,3]\n", + "LIST: mask_list for Volume 0 = []\n", + "LIST: masked_by_list for Volume 0 = []\n", + "LIST: masked_by_mask_index_list for Volume 0 = []\n", + " mask_mode for Volume 0 = 0\n", + "\n", + "List overview for box_inc with box shape made of inc_material\n", + "LIST: Children for Volume 1 = []\n", + "LIST: Direct_children for Volume 1 = []\n", + "LIST: Intersect_check_list for Volume 1 = []\n", + "LIST: Mask_intersect_list for Volume 1 = []\n", + "LIST: Destinations_list for Volume 1 = [0]\n", + "LIST: Reduced_destinations_list for Volume 1 = []\n", + "LIST: Next_volume_list for Volume 1 = [0]\n", + " Is_vacuum for Volume 1 = 0\n", + " is_mask_volume for Volume 1 = 0\n", + " is_masked_volume for Volume 1 = 0\n", + " is_exit_volume for Volume 1 = 0\n", + "LIST: mask_list for Volume 1 = []\n", + "LIST: masked_by_list for Volume 1 = []\n", + "LIST: masked_by_mask_index_list for Volume 1 = []\n", + " mask_mode for Volume 1 = 0\n", + "\n", + "List overview for box_powder with box shape made of powder_material\n", + "LIST: Children for Volume 2 = []\n", + "LIST: Direct_children for Volume 2 = []\n", + "LIST: Intersect_check_list for Volume 2 = []\n", + "LIST: Mask_intersect_list for Volume 2 = []\n", + "LIST: Destinations_list for Volume 2 = [0]\n", + "LIST: Reduced_destinations_list for Volume 2 = []\n", + "LIST: Next_volume_list for Volume 2 = [0]\n", + " Is_vacuum for Volume 2 = 0\n", + " is_mask_volume for Volume 2 = 0\n", + " is_masked_volume for Volume 2 = 0\n", + " is_exit_volume for Volume 2 = 0\n", + "LIST: mask_list for Volume 2 = []\n", + "LIST: masked_by_list for Volume 2 = []\n", + "LIST: masked_by_mask_index_list for Volume 2 = []\n", + " mask_mode for Volume 2 = 0\n", + "\n", + "List overview for box_abs with box shape made of abs_material\n", + "LIST: Children for Volume 3 = []\n", + "LIST: Direct_children for Volume 3 = []\n", + "LIST: Intersect_check_list for Volume 3 = []\n", + "LIST: Mask_intersect_list for Volume 3 = []\n", + "LIST: Destinations_list for Volume 3 = [0]\n", + "LIST: Reduced_destinations_list for Volume 3 = []\n", + "LIST: Next_volume_list for Volume 3 = [0]\n", + " Is_vacuum for Volume 3 = 0\n", + " is_mask_volume for Volume 3 = 0\n", + " is_masked_volume for Volume 3 = 0\n", + " is_exit_volume for Volume 3 = 0\n", + "LIST: mask_list for Volume 3 = []\n", + "LIST: masked_by_list for Volume 3 = []\n", + "LIST: masked_by_mask_index_list for Volume 3 = []\n", + " mask_mode for Volume 3 = 0\n", + "\n", + "Union_master component master initialized sucessfully\n", + "Detector: logger_space_I=3.1635e-09 logger_space_ERR=3.59609e-12 logger_space_N=790141 \"logger.dat\"\n", + "Detector: abs_logger_space_I=1.70717e-09 abs_logger_space_ERR=1.53146e-12 abs_logger_space_N=1.81278e+06 \"abs_logger.dat\"\n", + "loading system configuration\n", + "\n" + ] + } + ], "source": [ - "data = instrument.run_full_instrument(ncount=5E6, foldername=\"data_folder/union_materials\",\n", - " increment_folder_name=True,\n", - " parameters={\"wavelength\" : 8.0})" + "instrument.set_parameters(wavelength=8.0)\n", + "instrument.settings(ncount=5E6, output_path=\"data_folder/union_materials\")\n", + "instrument.show_settings()\n", + "\n", + "instrument.backengine()\n", + "data = instrument.data" ] }, { @@ -341,9 +730,30 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plotting data with name logger_space\n", + "Plotting data with name abs_logger_space\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAHuCAYAAAD3MtMPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdf1yU15nw/89FLBNDBmpAglOhGBFqBFcDzVL0saBrKWZ1o2WzRjcNNrWkSTR5rDU/XGtM1sSkxk1JTCW2q2nij2+WqqsbLTEK64PUxwcq62gsCnEKdrQIcWFizLCW8/3j3IyEqtEEf8Rc79frfsHc95lzzsygZ859zrmOGGNQSimllFJKKaUulbArXQGllFJKKaWUUtc27XgqpZRSSimllLqktOOplFJKKaWUUuqS0o6nUkoppZRSSqlLSjueSimllFJKKaUuKe14KqWUUkoppZS6pLTj+QUmIk+KSPlnTXO1EJFyEXnyEuafKCJGRBIvVRmXiohki8gl3TvpcpShlFJXkrabF52/tptXuAylriba8ewBIjJXRGpE5KSIHBGRIhG5scv1Auc/XiMip0XkuIi8IyL3iohcwaovBiZ1qefZGqCPpbkUnPcl+yznfSJScBFZTcLWV/2lSqDfla6EUkqBtpuflbabl4W2m0r1sF5XugLXiCzgeaAauBl4FXAD07qkOQJ8HdvZ7wuMBX4GfBu4+3JWtpMx5oOeSHO1MMa8f6XrcKU5X8h6GWP+p+t5Y0w7cOzK1Eoppf6CtptXAW03td1U6nLSEc8eYIy5wxiz2hhTa4zZAcwD/q5bsj8bY44ZY/zGmP8yxiwG/haYLCJ558rbuav5PRHZKSIfichuERnSLc0sEWlwrleKyG1drt0iIr8RkTbn+L8ikuRcC00HEpGVwDeB+U6Zvu5pnMc3iMhyETkhIgEReVNEYrpcXykir4nIM06aP4rIzE/xtnZ/H7KdeuWIyAGn7HUi8uUuaT5251lEBopIqYicEpE/OXUK63LdJyL/W0R+LSIfisi7IvLNi6zXVBE5JCJBEfkvEfmbbtf/wflsTorI6yLyXLf3s4+IrHfqeEhE8rrfyRaR25zXdsqp83wRua7L9c6/kXLgI2DMud6/Lo+fdPJ8WESOOaMJiz7htZY79X/DeT0+EfnOedJnOc/5byf/Nd3+VgqcPP7B+XlCRH4hIuFd0twgIkud5/+3iGwSkYTzlOmTM6MknUe5c+1NEflNl7Qpzuf+rfO9bqVUz9N2U9tN0XbzbOm13VTXNO14XhoxwH9/UiJjTAVQA0z4hKRPA/8C3Ab8AVjX2RCIyD8AC4BHgeHAfmCziEQ4z30ZaMbeNc4AioCOs5TxMPBb4AXs1JKvn6MuLwCjgPHYBjcBWNktzUTn5187dX9RujX6n8E/AfcCo7Gv9/GzJXLen43AKexrmQbcB8zqlvRRYAPwV9jXv0pEvnQhFRGRTOxrfxEYCvw7sElE+jvXBwFvYD+Dzs/mh92yeREYCGQD/4j98tW1jGjgbeA/gDSgwEn3SLd8nsR+toOBqgupP/bv6a+AHKAQ+JGc58uc4wHggPPc5cAaERlwjrQ3Aq9g/+7ygK84j7uKBaZg/56+4xz3dbm+DPv+5GH/no4DG7t+Eerm69i/335AMtAI7OxS9+EiMt35AvIa8IYx5u1PeM1KqUtP201L201tN7XdVNcuY4wePXgAUUA98E9dzhUAvnOkXwNsOU9+BvjnbvmfBL7tPP4t8EyX672w/2n8wHnsBf7xHHk/CZR3eVwOPHmuNNhpUO3At7pc/5pTx2Tn8Upgb7c8DgL3f8JrzD7LeR9Q4Pye7aS7rcv1J4BdZ6s/kOu8T1/ucv1+wN8t/6Iujz1OGV87Rz0TneuJXT671d3S7Or8PLDTyMq7Xd/R5f2MBP6n62vHfjEIvR/AT4C13fKYAvy+2/s39xP+LrPtP/ePfa7HgfAu594GFp0nj3Kgotu5is7ndC/jLM/PcF7vdV3+XfwZiOmS5tXO1+u83x8BkV2uf8n5XDMv4N9iCbC9szzn3CSgDXjJ+fzdn5SPHnrocWkPtN1cibab2m6e/fnabupxTR064tmDRMQF/Bp4Dzjv9IuuT8P+B3g+uzt/Mca0ArVAinPqa9j/tDuvn8beufuac+oV4JfO1Jkfdd5V/JRuwf4H1rW832PvUn+tSzpvt+cdxd6h6wld8z5fvl8Dao0x/93l3G+BfiISeZ78OE+eZytjV7dzv+XMe5GMXb/UVde7qrdgv/BUn+M62Lu1k0Tkg84D+KXz3K72XGCduzpo7BqWThfyOe0+y+OUsyUUEY+I/EpE3hORAPCf2Ncb1yXZMWNM8znqMAQIB/xdXvsJoDd/+fq7l/1j7J3efzDG/LnzvDFmHVAKPAR83xgTOO+rVUpdUtpuhmi7aWm7qe2muoZpcKEeIiK9gLXYu5tjnIbsQnwNGzntfD6pgT33E435uYiUYqdkjAcWiMi3jDGfVObZXGgkwf/p9thw/mndAexdzO6isHfZzmT08cX/58v3outqjDFigyVe6A2ZTyrjk74cne353dPfiJ129MwnlPXhJ1w/m4v9nDrTXKiV2C9c04E/YqeXlTrnLqQON2L/NtLPkvefzlWo2PVGTwI5xpjj3a7dAAzD3jFOAt65kBeilOp52m5+jLabZ65ru6ntprpG6YhnD3Dmzf8K+w8yz1xgRDsR+V/YtQIbPyHp7V2eE4m9I1jrnKoFMrtc74WdmvH7znPGmPeMMT8zxvwNdsrK5HOU8z/Adee4BnYq1Olu5X0N+HLX8j6FOuzahxBn/cOXsdONPo3fAynSJYgC8A3gqDGm7exP+VRlZHY79w3OvBe1/OV//l0fd76fXV97Rrf0/wXcaoyp6358tqp/ard3e/x1zvwtdpcFvGCM2ebc4Y++yLL+C/vF6ktnef1nveMqIh7g/wP+tzGm+11mgOewjfIU4KfyOdxbTqlrgbab2m52K0PbTUvbTXVN045nz3gVO0//HiBcROKco2tjdJ1zziMiQ0VkNrAJOy//N2fJs6vvicgkERmMXZjuB7Y6134GzBCRyU5j9nPABawGEJF/EZG/EbuJ8//CLuY/V6P0B+CvReQrItKn+0XnP61/BV4SkZFiowCuxK61+bQNHdh1A4+IyD1iI+qNAF4Hyowx+z5lnm9jX89KEUl1Fv8vwAYl6ClFwN+LyIMikiwiT2HvCv7cub4cGCkis53rc7DBEuwCE9uQrwZ+JiJfF5HbgX92ntt5h3Qp9ovAMhH5K7ER5f5BRJ7owddxMYaJyOPO63kc+wXi1XOkrQcKRCRJRL6NDXBxwZxGdx3wbyLyLREZICLfFBut78vneNq/Yadtbezy7/AmsBEKsXeRC4wxb2L//f1S5IruCajUF5W2m9puarv5l7TdVNc07Xj2jPuw0cD2YOfadx7xXdL0d841YBdu52EjrE25gPznA3OwkfwGAt/pnH9vjFkDPIXdAPq/gFRgXJe7x1/C/gf3e5xF/Zz5D767Jdi7a+9x7rUPP8IujP8P7F3gI9hoeZ/FSuDHwGxgr1PHd4G//7QZGmM6sKH5I4D/h43EthIbXbBHONOu7gP+N7APuBP4O2NMo3P9EPBdYCb2/Rzq1CHYJZtHsIv1/w+wqkv9gk4ejdhoiInYKHP/D/sZNPTU67hIP8e+jhps0Ikpxpj3zpH2+8Ag7Hvzz8DcT1HeVOw0oxXYv+EV2P+3PjpH+izs59D13+E6sdEq/xVYaIzZ66R9CLiVv4yYqJS69LTd/GxWou2mtptnp+2mumqJMZ96GYS6DMTuIZVjjCm/0nVRn53Y/bDqjTEPnuN6JvbO483GmKbLWrlPIHZfr3JjzJNXuCpKKXVO2m5eW7TdVOraocGFlLqEROQh7J3uk0A+8C1gZJfrf43dp2sPNohAEfD21dZ4KqWUUpeDtptKXbu046nUpTUUu7m1G7tG6DvdIiNeh50SNghoxa5BeuQy11EppZS6Wmi7qdQ1SqfaKqWUUkoppZS6pDS4kFJKKaWUUkqpS0o7nkoppZRSSimlLqkv7BpPkRuM3WdZKaV60tFmY0zfz5pLkoj5sCeq08VRKDXGfLuHs1VfENpuKqUuDW03vyi+sB1P23gWXulKKKWuOU/+oSdy+ZCe/x/qSYjp4SzVF8qX0XZTKdXztN38otCptkoppZRSSimlLqkv8IinUkpdvcKA3le6EkoppdTnhLabVz8d8VRKKaWUUkopdUlpx1MppZRSSiml1CWlU22VUkoppZRSn2s61fbqpx1PpZS6CmkDqpRSSqlriU61VUoppZRSSil1SemIp1JKKaWUUupzTWcKXf2046mUUlchbUCVUkopdS3RqbZKKaWUUkoppS4pHfFUSimllFJKfa7pTKGrn3Y8lVLqKqQNqFJKKaWuJTrVVimllFJKKaXUJaUjnkoppZRSSqnPNUE7Nlc7HfFUSimllFJKKXVJ6Y0BpZS6CukaT6WUUkpdS7TjqZRSSimllPpcCwNuuNKVUOelU22VUkoppZRSSl1SOuKplFJXIUGn2iqllFLqyhKRKOBfgLHGmHjn3K3Aw8B12P7kNGOM+aS8dMRTKaWUUkop9bnWecO2J49PLFMkWkQ2i0itiOwVkXUi0rdbmkQRqely+ETk/S7Xk0XktyJy0Pk56DO9ETbPxSJyWESMiKR2u3ZR5RljWo0x3wNqu5x71xhTaIz5PhDhHJ9IO55KKaWUUkopdfEM8LwxJsUYMxSoBxZ9LIExPmPMsM4D2ACs7pJkGbDUGJMMLAWKuxciIi4R+Wq3czeKiOcc9doAjAL+cJZrZy1PRAaKyDvdjh+f64WLSI6IrAKagQ/Pla4r7XgqpZRSSiml1EUyxrxvjCnvcmoX8NVzJEdEwoGpwL86j2OB24A1TpI1wG3dR02BVGCriKQ4z4sC3gbGnaNeFcaYxrOUf87yjDH1xpi/6Xb89DyvvcwYMxU4DQw7V7qudI2nUkpdhXQ7FaWUUurCXaJ2M0ZEqro8ftUY8+rZEopIGPBDYON58psA/NEY8zvncbzz+M8Axpg/i4jfOX+880nGmGoRmQ5sFpEC4AXgDWPMLy7y9VxQeWd5bUuBr4nIMuA5bOc6HzvD+UvAvgspXDueSimllFJKKfWXmo0xGReY9iXgA+Dl86T5Hs5o58UyxvynM/V1B/BTY0zRp8nnU5b9IPBgl1OHgfKLzUen2iqllFJKKaXUpyQii4FBwD8YYzrOkcYDfBNY1eV0I/AVEbnOSXMd4HHOd3/+zcCTwDNAvojc/imqesHlXQo64qmUUlchnWqrlFJKXbgr1W6KyEIgHbjDGBM8T9IC4C1jTEvnCWNMk4jUAHcDbzg/9xhjPjbtVUT6Ydd0LjLGrBKRXwMlIvKPxpjKC63rhZZ3qeiIp1JKKaWUUkpdJBEZAjyBHTWsdLZLWe9c2ywiXafpFnD2abb3AzNE5CAww3ncXW9gnjFmFYCzRvRO4MZz1KtIRI4A/YF3RGT/RZZ3SeiIp1JKKaWUUkpdJGPMfmyAnbNdG9ftcfI50v0e+OtPKOc94L1u5/YCe8+RfiYw89OWd6lox1Mppa5COtVWKaWUunCCdmyudjrVVimllFJKKaXUJaUdT6WUUkoppZRSl5SOSCullFJKKaU+13SJytVPO55KKXUV0gZUKaWUUtcSnWqrlFJKKaWUUuqS0hFPpZRSXygiEgX8CzDWGBPvnLsVeBi4Dts2TjPGmCtXS6WUUhcjDLjhSldCnZeOeCql1FWoswHtyeNiiMh8ETEiknqO69eLyM9F5JCIeEXk1S7X/lZE9jgbae8VkUkXWXz3shaLyOGz1UdEkkXktyJy0Pk56JPyM8a0GmO+B9R2OfeuMabQGPN9IMI5lFJKKdVDdMRTKaXUx4jIbUAm0HCeZM8DHwHJxhgjIjc7zxXgdeB/GWP2ichQYKeIbDDGdHQpwwXEGWP+0OXcjUCkMcbfrawNwM+A/3OWeiwDlhpj3hCRfwSKgdFOfgOdx12VGmN+eo7XnQN8H2gGPjzPa1dKKaXURbriI54XcrdaRK4TkaUiUi8idSLy/W7X73LuuO9zft58+V6BUkpdO5wO4VLgAeCsU02dDuJ3gXmd01GNMX/qkqQDiHJ+/zJwtGun05EKbBWRFCfPKOBtYFz38owxFcaYxrPUIxa4DVjjnFoD3CYifZ3n1Rtj/qbbcdZOp5O+zBgzFTgNDDtXuitN202llPpLAvTu1bOH6llXw1t6zrvVXUwFkoBBQDSwR0TeMcb4RCQDeBIYbYw55nx5CV6+6iulVM/rbEB71GliRKSqy5lXjTGvdkv1FPCGMeawHbw8q4FACzDfGSX8APgnp4NoROQu4N9F5CTgBu7onoExplpEpgObRaQAeMEp9xcX8YrigT8aY/7s5PlnEfE754+f74kishT4mogsA54DvgrkY9/6LwH7LqIel5u2m0oppT53rmjHs8vd6rHOqTXAyyLS1xjT9UvDPwDLnTvmx0VkA/D3wE+B/w0sNsYcA7t253LVXymlPmeajTEZ57ooIt8Avg489gn59AJuAfYYY34sIn8NbBKRJOwU1ceBvzPG7BSREcD/JyK3GmM+6JqJMeY/ReTHwA7gp8aYok//0i6OMeZB4MEupw4D5Zer/E9L202llFKfV1d6xPNC71YnAH/o8rjBSQNwK3BYRHYANwLrgIUajVAppS7aN4GvYf9PBegPlIrINGPM213S/QE7HXUNgDHm/4pIM5DsXPcYY3Y613Y6I5+Dgf/XtTBneueTwDPA3SJSYozZfRH1bQS+IiLXOe3HdYDHOX+t0nZTKaXOIiwMert6ONPTPZzfF9wVX+PZA3oBQ7F3f78J5AH3nC2hiPxARKrsVDONG6GUUl0ZYxYZYzzGmERjTCJwBMjt1unEGNMMlOGMuolIMhAL1DnP6d9l7eZgIA6o75qHiPQD3gGeM8bMxU5zXSsiWRdR3yagBrjbOXU3dhT2vNNslbabSimlLr8rPeJ5oXerG7Drbzrvlne9k/sHoMQYEwSCIvLvwO3Ar7oX5qxlehVAxKN3dpVSV62r7c6tiGwGfmKM6Vwjej/wryLyAvA/wD3GmP920v4QKBGRzoBC04wx73fLsjc2ONEGAGPM70TkTmwntXvZRcAk59o7ItJijBnSpR6vichPgBPYoEfXMm03lVJKfS5d0Y6nMaZJRGqwd6nf4Nx3q/8NmC4i67BBEu4ERjnXVgPjROR17OsZA5Rc+torpdS1zRn17Px9XLdr7wHZ53jeKmDVJ+T9HvBet3N7gb1nSTsTmHmOfH4P/PX5yrqWaLuplFJnJwK9rvSQmjqvq2Gq7f3ADBE5CMxwHiMim53Ie2D3hHsPOATsAp5yvrQArAWagHexU672A7+8bLVXSimlLi9tN5VSSn3uXPH7Aue6W9317roTROGH53h+BzDLOZRS6poQJtD7+h7O9GQP56euCG03lVJKfR5d8Y6nUkoppZRSSn0WIvClno6NoHrU1TDVVimllFJKKaXUNUxHPJVS6moUBuidW6WUUkpdI7TjqZRSSimllPp8CwN6OjaC6lE61VYppZRSSiml1CWlHU+llFJKKaWUUpeUTrVVSqmrkaBThpRSSqkLJWhshKucjngqpZRSSimllLqktOOplFJKKaWUUuqS0qm2qkfNMDcAsJHxtHwYQ/QNzUxlNSuYxjRWECScDKoBWMgTLOJxJr2/jvybSijtyCU3rJSS9/PJuqkSPx4AsikDwE2ATUwgmhZ++24OP7r1n9nEBAD8H3rIuaGMTdv/nvTRO6n+3Qg4Bj8a98+046KUXADS8OIljYOVQ/lGVhkBbiSHckrJ5eDmoQCkj9tJdeUIO83xywZ+I3z1gd/zQYeb5LCDHOxIBqBlw1dgmGH8LSVs2v734IPogj/S4vOQeksVAPu++3VuXNZM+0fhtP8mEoB+Uw5zdPMAm3+isW/cRwIfQfSwP9p8a4BvA8eArzlvbg3w387jY0AcsMt5nBkEnzO/pPM584G7gTXAYLjxsWY+eDjGpvnFgs/2QatLT7dTUUoppS6cRrW96okx5krX4YoQ8RgovNLVuOaY554E4NicKOL2tcJKoAC2po7Ew1GGrK2HBidxLKwtuJPJ0zfAJDg52g7AV7sySMMbyrPP06fYP2+gfW4s8BSc3ghFkQ+QTwkA4QRxBwN4XUMp4TvkUM4d27exdfRIvAwlA9sRDBLO2O0VLB99DzmU4cdDM9FkUE0J+QBE08y9W95kV94wNjGeIOFMYBPhtFNKLokcBiCHclYzhXSqqGQELoL0w8+vnXwA+uGnhRgSOUw7LtLwMuvDJRTesAwX7aHX6cdDLckcxUMaXtKp4t4Pf8XMG4poJhqAg6RQ+X4W2TeVs4jHuIO3WM50mommnByqSAfARTt+PBx9L5Fv3FLOb9/L5ke3LOSFd/+J7Ft/A0C5/N8e/NTVxz1ZbYzJ+Ky5ZPQWUzWgJ+pzhhygR+qmvpi03VRKXRo91G7eIKYqqSfqc4Z4td3sSTriqXrWJPujhRjibm6F+4FDMHZzBYyB1ybfxb3H37SJPoIUaiENjuVFEdPWysbIPCYN3wJvg9NXhCpoJxxGAK3Av0FZ5EjS2EvCliabxguL5jzCY/texJPqt6OlCfASM3mNe9nIeACmtr0Jg2znMmnfEcpSc0Kdv84OpYejbM0bydiiCkpn5hJOO9G0sInxFLKMx1kEQCVZzOQlyslm/vHnoAEmpL9JASs4SAoAAdxkUB3q5AZwk3aDFxftpFMVGrFNw8sAfLhop5YUntn+FE+Ofgw//Wghxqmfj8SbfNQ6eedTggc/AdxUkU4KBwFwESSAm8RbynERJPkWLy/87p/od9thyt/9tvOmasdTKaWUUkpdPtrxVEqpq5FG51NKKaXUNUQ7nqpHLUp6BIC/khcZcgjwwv6JA0kZUU9t5EA74pjpJF4O7vgA3A0xba2URY5kUuMW+DfY2nckY/9UYdONg+RgLbvih5EZrGFd3zxiaGHU9t3U5fUHIHHEEdJDQ6Tgwc/J+DBe4176HD/FvV47yrpudB7VkRks3P40y0ffE5o668cTGjFczRSyqGTtzDtZzRRq6/6KtUl3kk4VvyafKawCoJwcWoimigzW9fWT1beSAlbg4WgorxUUEE0ze0nj1+SThhcXQbKoxEtaaArwYRLJ59csZjZLmIV7dAA3AaoZj5sAAD4ScRNgAIeZxRLGs4mNTMCDn/sppgo7E8RNgFxKqSSLdsLxvZ/Is7f9b8JpZ8WtBQDs6/FPXimllFLqCrvuSldAnY9GtVU9anbbi8xue5G8zcAK4BAMmVtPr6Cd3tqrCSh1jiAkrT9CQ99YqiKHMba4Ag4BP4MUDtJQEEtDQSwnCnvjCnaQebyG07F2beWo9buhCqJpIZoWgq4wPBzlrdQxJBxvIuF4EwddKQQJh3W2HhyCAfjIpoz9owdSRTrRNNNCDGnBvZSQTwn5ZFNGLSkk4qP2+F/xWtJd+PGEgiKVk0M5ORRSjB8PU1hFCzE8w1xSOMh8zgTu8XCUSXVb8DGAAlYQTjuvcS9BwmkmmiJmUsRMjuJhE+PJoYzVTCGaZtwEmM1ibBfUzTomkU4Vs1nMGiazggIC3MhqpvBTZuMlDS9pgJ3iO55NFFKM+8sBllGIj8RQXkoppZRSSl1O2vFUPWpF5D2siLwH1sHpR4E0IArY5iSoAirscSKvN+yDhMYmMp+vYX/hQE6OCIM59pynzR597jrFxsg8+BMEXWH0mXuKHRNv5/T90KfuFH3qThGxpoNakrmjeBtr+94J22B48QHiprdysiDMrj2dBEFcjC2uoJRc5vIMbgJUkY7XNZQ09pLGXlI4SAvRuAiyq+8wqslg1vFXqCKdAG6yKSObslBHzkU75WSThpcAbtYy2ekOR+OnH2lJu0mhlhZiKCebhMYmsqgki0pms5jZLGY8m5y3J8NG3SUFD368pFFIMYUUU0U61WQQxMWPWMIENuHhKIn4yKDa6VIGCOCmjGzaCWcT4wn8t5uheHnpdz++An8RSimllFJK6VRb1cM6A/QwCXoFYX+enWYbiOxN3NpW9kweTDjtAAyprodB2E5pFAzZWc/JjDBOxPemz8pT9IoilNekfVvgEARS3UQEW/Hgt6OnnWmutyORMYUt5LdtsGvjBsHywnvIoIo01wEAAtzIjsLbSWMvpeSSz69JC+6l2pWBF7udio8BFFKMlzSChJNPCUv73scqpvIrvkuzE+zHRRAfiXhJ49XgdMpdOVSSRWZdDZVJWQDkUkoG1STio5Rcsilnf/xAvKSR37aB+ZHzAKglBTcBomkmhYN48FNGNkBoqm0G1UTTQim5ZFHJYRtuKNTh7BztjKYFNwH8eNjkn0CBZwUAa26byGqmAPCHHv3U1SWhYeGVUkqpC6ft5lVPO56qR4WmcVYB26B9cTi9GsCbmsao2N0Mrz5wJlrtGNgzeTCJ+GghmmZiyNxeQ0TTKfYUDGb4dNtZpAkbzbYAu0WLC5KKj0AGnIx3Bu0nwrPBxzjoSsEbOZjhaQc4lhTF9MbXoRVeS70LsFFtSyLvZPL2Dewa/QF++hHjaiY9WIXfZfcNTaGWEvKZtfMVjo2IwscAcimlmRj6Bf3c6LIdwZVMA8BLGotdPw51HN9KGkOwS1QYH4kECaeFaLKoZAUFpOFlYeSjdiowNkKtj0TARvAtJZdng4/xjGsuRcwEoJRcPPjJoIoS8vGRSAEreImZZFNGLqWAjbZr13iOIPz6IOEE8TKUAG42/e7vnVrpPp5KKaWUUury0Y6n6lGTGrfYXwqAZdiOphdG3bMbBkHDm7E4202ScLyJ4UUH4CPoM+4IScEjkACnM2D4zgMcW26HM12006fulO2wNgJpsH/yQIYU13Mw3W4tcphEJmVvIby8nSHH6zmWFEXc2lYYBFvTR3JvsQ0utKdwMJPv2kDDm7G8xAxeYBarmUqaay8e/IANZLTKNYUdI2531noeptyZurraNTW0/UoupZSQTyI+3ATw4A9tdeKnHwAxtPDY8RdZ1zePNLzccXwbiX191JJMIodDnUUfA8iikoU8EXq8yTWB4o5C0sJsedE0M5OXWMzs0J6dB0khnSqO4rFbyGD3Ki0hnxhaiL6phVffm8nvbhnCqA93wJe/mPv2KqWUUkqpT0dEooB/AcYaY+Kdc7cCD2NDOvUCphljzvtFUzueqkftjx8IwJDn62GS7fTlDKqwf2hNkLCviZODnFHKCmAzMMf+XDvnTlKoZfjcA+xaOIzMlTUA7Ci4nfCkdjKratiTN5hoWkgMHoaoMyOsKRyEXzjTd7dB3Bg7rTeIi7H7KkL7iw5ff4DTv7DTV1etv4/9EweSTwkJO5tYNyIPgIjGDhY3zOPE6N6hslwuOz04mhYqsdNos6gkl1LSg1WUunJJ4WBoymsMLQCsYBrRfRfjYwC1JJPW10spufhIxI+Ho05nsZIsXuYhUjjIFFYxlq0sZjavhk0P7QlaSi61JDObxQQJ5yApBHDjZSj5lJBNeShdNM18gBs/HpJv8fJdXmPKDavgFvs+vNrjn7zqcbqdilJKKXXhrkC7KSLRwOvAQCAI1AGFxpjj53nOfOBJIM0Ys885lwy8BkQDLcB3jTGHPkO9FgPfARK7lvNpyzLGtALfE5F3upx7Fyh08vw3IAL44Hz5aHAh1aOGbK9nyPZ6ts4ZCU/B2C0VVEUOg0bYM2cwrIeItg4i2jrsP89YWDAG6ub0Z/J3NzB8+wG4HjJvrYE2oA2SqSVzSw37Jw+kH34SqpuIaOrg2OQostp2k9W2m1qS4TmYmz7PltMAw1cewEUQbobTLnvQCs2RUXZa6yFb31qS4Xo7OhlDC7OTnoZD0Of5U7QQTbHr/tCaSRsF1wYO2sR4Rm3fzXzXAibN3kI74fjxEMTFwn1Ps3Df04xnI6Xk0k4491NMADcp1IaObMrJppxw2qkincXMJq6xlQXMD3Uum4mmmWgKWEEpuRQxg6N4SKeKMrKJoZliCiliBkXMYDaLKSeHG52ouPmU4OEoB0kJBTVSSimllFKfmQGeN8akGGOGAvXAonMlFpHbsBsLNnS7tAxYaoxJBpYCxWd5rktEvtrt3I0i4jlLURuAUZw9rMc5yxKRgSLyTrfjnNEpRSRHRFYBzcCH50rXSTueqkftHz2Q/aMHMnZ2BVv/fSRUQGZxDRyyU1hZBuv65rGubx6nx8HsXz3N/FsgqfoIu341DNYDsXDs3SiOzbQHwI682xmypR4X7exJHwxr7DTToCuMoCvMbnWSAQv/7mmGbzlAw8RYyIDhdQfY2nckvRqgVwM0FMRy1OkcnpjTm2Ojo2jHxY702xnVuJtRjbtJw8uxwijbMcbuCbqRCaThxR0MMIXVTGE1hRRzOgMWV88jf/EbgF0fOoGNFKa+SGHqi3ZdJeOdSLM5lJNNADfNxBBNC3764acfWVTiop1neYxj8VFkUM1UVrOCaaFtXjz4yaKSSkbQDz8v/O6fmM1iprCacGdv0CwqSaEWD35yKA8FHIqhmVpSQlvBKKWUUkqpTxQjIlVdjh90vWiMed8YU97l1C7gY53DTiLiwnb0HsB2WDvPxwK3AWucU2uA20Skb7csUoGtIpLiPC8KeBsY170sY0yFMabxLHU4b1nGmHpjzN90O356ttfjpC8zxkwFTgPDzpWuk061VT0qMehEtXVBJSMYe3MFxwqjiGtqJeJnHbzf5EyLBXqtg8Xr58GbQBRkTq+BBGAcxNW1hu4Fnc4AV6SXhrxYooPNJFMLYyCrbTeByN6AXS+6q3AYmdtqOJYXRUJdE3tSBwPYNZlO9NuE6iYSEprgT7ArdRgtRJMdLMPnGsDW+JGADUDUywtMhFGNuzkWH0U2Zbhop93lCkWZBZgV+Txp6V4KWcbw7QdYNzqPZqKZ4GyPktu2DXdkgKxgJSWufLykhbZk6dwXFGAhWayggCwq8ZLGVFbjx0M+JaG1mw+xlAyqGMBhNjGBKbf9K5uYgJsAGVSHpvdOYh21pFBMIW4Cdm3quu/Rb9JhVr5yv1OiBhe66ml0PqWUUurCXZp2s9kYk3EhCUUkDPghsPEcSZ4C3jDGHBaRrufjgT8aY/4MYIz5s4j4nfOhKbvGmGoRmQ5sFpEC4AUnv19cxOu5oLLO8fqWAl8TkWXAc9gOdj52kvOXgH3neTqgHU/Vwypddv3j2DEVzG17jhMzexPXaCPR7phzO9FzWhhSVA/AnpmDGZ5wwM7HX4HtdKYCT8HW5SMZW1UBQK+VEF4YJNwVTsRTHTZdAvRaBsHlNirsadcpMo/XwDM2ymxcVAXD6w5wOhZ67bTbugAkxh4m4HIT19pK5r4a9qfa8wHctDsLA7yRg/GP8FBLCjmUAbCXNPKDJax2TQ11PH0kUlQ9h7fSx+DmA7aOHomLdsIJhjrXQVcYXoZS7sohm7JQAKNNTMBFeyiq7QQ20Y6LRHzMOv4Ke/oOJoVagrhCU2M7RzxrSaGZGJ7lcWaxhBRqCafdTivGrkPtHAHdyHhiaCF10v8jg2pWDuvseCqllFJKqR70EnaN48vdL4jIN4CvA499lgKMMf/pTH3dAfzUGFP0WfK7yLIfBB7scuowOAFGLpBOtVU9auy+ChvMZzP0qoI+2afsPp3Xw6h9uxnydD2sA9ZBP/x2Out27Ihkq/25dvmdjP1GBcRij3F2XWjc9FZIgx2Ft9sRy+XDWM1UVjOVXq1AFaxNupOxxyvY03cwDUmxeCMHU5fXnyHH6xlyvJ6I9R0cJIVpST9nR+rtePCHOpNpeEnDSz/8JOIjhzKG1x0gmhaO4qHd5WL67NedXTPdpFPFjvTbScNL5vEaOxWXAGOLK0LTYw+6UignmzS8tBBDADcZVOPBj5tAKF0VGbgJkMhh1va9k2UUkkwtKyhwVpTa/TsryWJm2yt48DOWrbQTzkYm4Kcf49nEeDZRSzIejoZGStPwMpXVANw4rJkbhzVfgb8MpZRSSqlrkxPMZxDwD8aYjrMk+SbwNeCwiPiA/kCpiHwLu2fDV0TkOiev6wCPc757OTdjAxM9A+SLyO0XWdULLutS0I6nUkoppZRS6vOtM6ptTx4XUqzIQuxmgXcaY4JnS2OMWWSM8RhjEo0xicARINcY87YxpgmoAe52kt8N7OkeGVdE+gHvAM8ZY+Zip7muFZGsC6spXGhZl4pOtVU9qnPq6hCX3daEl4F7gGlwOgG7dtKZf19JFpM+2mL35yzAjngegslNG2AiNIyOBSChqCk08nliYm+y2nZDEALcyKznXwHg9P1QmjcGD37q+vZn+L4DEATPoCZ6NcCi1EcAmDHRzkhY3vZDmiOjCOCmhWjcBEg43gRAQ99YSsgnhzLWJt1JOEGCuPCRyPzF0yiqmwNAftIblKz8RxgJi5IewY8HNwGCheHMqrP12pU0DD8eSsllReMPWRD/aChSbVrbAWIi7bpML2kUOkHFVjOFCWyinBwWMD+0fYuvIxF/mIeqyGG8HHyQl1wzqSQLD34qGRGa3jsAH2l4Q3uAVpHBb3+Xww9u+xnuG+w04fPGulZXB91ORSmllLqqicgQ4AngIFDprN08bIyZKCKbgZ8YY6ouIKv7gddE5CfACeC7Z0nTG5hnjNkAYIz5nYjcCcSdpV5F2M0E44B3RKTFGDPkIsq6JOQT9vm8Zol4jLP1jOpB5tCT9pcKqCvoTzQt9Fl7CsYAb8FbBWO4Y+U2m+Z6YCW89pu7uHffm5wcFEbEemd2wlOw691hAGTW1ZwpoBVogtMjoDLy9tA+nnfM3gaxcGJOb/oUnWLJzAeYte8VuBmO9Y1iNVMBaCGaXEoJp5204F58rgFE00xcYyvr4u0+ni7aSaGWvaTh4SiZjbb8HfG3E047mVvs49l5T3M/xdSSgpc0wmknl1LaCbfbwgCLRj8CQD4lBHDbfT1pIZHDePCHOot+PBRTyDRWUEYO7YSTTC3tuIjGTo2tJIsUDuIljRaimcFLTGYNuZSSSykvMROwa0EPMyAU3daPhwBufr1uKt+ZtAqAX0vdZ/2o1Tk9WX2hgQjOJ+PLYqq+2RP1OUM20iN1U19M2m4qpS4NbTe/KHTEU/Wok/F29nZ7gYtVTGV+9XM2YNA9wOtwR902WOkkjgIW2hG6Y6lRxK1stedHAi8TCpaDC7vNSqv9ff+cgQypq8cdGWBU3W6bJgOOTY4ips1Gw51V9wp7UgcTxEUih8mnBLCjp2tn3snktRvYOnkkWcFKIp7qYN3CPHKDpQBUuzJoJoZ2XGxiPA/Fv0zV9pGEx7dTSi61eckALD4+j4a+sdxRt43EJB/FFNo9QYHhsbbjmU05KdSymNk0E80Hzj6eHvy0EANOx3MT45nCKgK4SWNvqOxvURra/iSaFnwk0kI0NxKglNxQp/MHHcvJDbP1/xaltONiPgtCUXLHs5EfTfpnij/sDC6kHU+llFJKXUME7dlc5fTjUT3qcZfdM7eocQ7zNz8HI5wLL2ODCrngWLnd2yRuXytshlENu2E9HPtVFC7a6bP2FKfHERo1pAm7XLsCGAdD1tfD9RCd1BLacqVw8ou8eOMj9NoFZACtMLzxAEvj7/vYiOmJmb3x4OfkxDCygpUEXG42LbQRZ0MReVdW0FBgp/mOD24k0eWDVrvdS9rLe3EF7ajs8r730EI0j0W9CEAiPlqIIYMqGlLt81uIppRcFrQ9TWnkGCrJoiC4gmLX/bQQHYpyu7D6aVLS/4sprKaadNwEqCWF2SzmbXIBcBOgigzyKSGcIJuYQAq1VJLFjLCXePJd+96H39pONM3O3qBBCinmR6uXQqaBjz4WvltdzcLQqbZKKaWUumZox1P1qCVtdv0jm7Ezy/8EVEFhwYsURz0CH0FctTOy2WqPJRMfYFbrK8Td1QptsP83A+2WK52d1ueh7jf9Cea5GLKlnoaJsXjamogONttygOLNj3Dab8tiJez5jd3D88G1v6Rhcmxo/Waf6lNEp7fgcw1gSGM9vvgYJu/bEFqbCkAGtBOOn35kNtWQEl8LGbBr4jASOUyxy07bzaGMaFo47SK0JrSKDMrIYVajXePpidpG3I1HSIz0EU0L2ZRR7LqfaJrJp4SxbAWgML2YrYyllFzaCeeJ4EJ8rgF48DODlwC79jOHMtLw8hAvk0UllWQRxEUMzRTcugzA2bvTxTRWUEmWHYWNg4Jbiln5r7qdilJKKaWUuvw0qq3qUb2W2YNDsKfvYNgJbIfi6Y/AW0ArnB5kDw7B6UchgyqbbhI0/CaWlLZ6Oz23czuVyZC09gjRNLMnbzAJW5qojRxIiSufBYsfZcHiR5m7eB69vHBsdBQ8DMNX2m1QaIKE7U12ZLQBSLCdSg9+TsaGkdJWz8lBYXjw46IdF+3QaNdcTmjbQkN8LKOqd3M6ygYzau82BOUjkZLIOwGoJQU3AWatf4Xl8fewPP4eApG9+Y+wv8VNgMwtNbj5gAlsxEU7VaTzMg/yMg8ya/srPMTLjGcjydSy2PVjhqytZwXTnE1e0siikiwqKSeb2SzGSxpPsJA09lJFBh78ePBTRQZBwpnFklAn9Bujy2yQojjOsgRdKaWUUupzrnOm0GWOaqsunI54qh61a84wADJn1zD8rgOQAPwEG+9rDDTEnxl9pBV6rYEv37+bPWYww58+QDhBApG98Y/2hAIHZd5cw/68gQxZX8/BiSkwCIZsr2dIghM5F+zoaBDcwQDr8vKYdHwLfjwkjG6iITUWNzaaqx8P/fBTSwqZ62vYM3kwycFavKSF9r3cnzeQRHwUR95HQXAFJ1PDiNjZQcrogyTsbMI1wq49Hd54gD3xg4mmmQwCRNOCmwALJj4aKm8sW8mllHxKeCtvDFlU4iORRHzE0Ey/oJ1qu2j0IxSwgpVMox9+Uqhl0eRHqCQrlFcaXvx4aCaa2W0vMj9yAV6GAvAsj3GQFMB25FuIJoCbjc50XO+HaSTecBgSL8nHri4FIRQBWvUsEYkC/gUYa4yJd87dCjwMXIdtG6eZL2r0PaWUUuoS0BFP1aMyj9eQebyGY4ujIAG2Lh4JDXDydfunllDUZDuhT2A7i9tg6FMwvPoATLTrPvsUn2JIdT2ZjTVkNtZwcnQYQwbWQxSUkRMavTwZH3ZmVHSnLT+isYPcYCm7+g4js66GutT+tBBNFelUkU474cTV2am+DZNj6YefclcOoxp3h15DC9Ek7GsigJuIn3UQsbODtaPvxE2AuhH9KSGfEvI57dRn7PEK0qnCRyLTWY6PRMrJppxsnmAh0bRQQj4bGU8xhVSRQUZbDcsopMSVT4krH4C7319LM9EMxctqppCIjyXMIpmDJHMwNA23nBwmR75BOEFqSWYTE6gmI1SvIOEkOluq/HZ1jn3eR+Hs8w+Fj7CHUp9AROaLiBGR1HNcXywih8+WRkSuF5Gfi8ghEfGKyKufsS7nKytZRH4rIgedn4M+KT9jTKsx5ntAbZdz7xpjCo0x3wcinEMppZRSPURHPNUlEVfUCndjtwtZCZWjs8iKrcRV0EGvlU6i7wIvn9kaZdQ3dsNP4ERhb/pUn7KRbIGIyA5O1Pemz9xTzH/qORuoaBBEzO6AcU5eLiAK1iXl0UIM07e/Djshel4LSSuPcKzACWi0pRXWQcryWvo0ngLgjqZtEAWTGzcAsC4+j5ODwsiikpMPh1HssusiO6fSrmMSAEFXGLmUctoFq5lKGnuZxgo2MZ5XmQ7AUTx4OEoMzRQxk8fqXqQuqT+rIu9iKqu5g7cAWMB8ZtxUxGwWh7Z+6YyEu4tMwE4RfqzxRaLjW4immfks4H6K8XCUcrJD+4B2bsuSRSWuKUGmsJrHbnqWHMpZff0UJy+lzk1EbgMyCYXvOqsNwM+A/3OWa89jb3EkG2OMiNx8ljJcQJwx5g9dzt0IRBpj/BdR1jJgqTHmDRH5R6AYGO3kN9B53FWpMeanZ3tBIpIDfB9oBj48WxqllFJXKd3/+qqnI56qZ/3IOe4GYiFhSxMzf/U8Y5+uoN3lotdOwOscBcBH0KsVRs3YDRvt4z4rT3EivfeZdZlR0GfLKZiG3Q/0ZmAZvPXSGLsWNNXuD7og/VFiaGH6+tfhEBAPfYpPQQLE7WwlbmcrJ0eHcWJ5b/x42Bo/0nZuo4AK2+FcF5/HpKItVLqyyGrbTakr1wki1MwmxjtBh+xqyhZXDPNZQNAVRmFwGS3E4MfDura7cAcDuIMBVjElFKG2kGK2Jo2klhRyKWU+CxjPRsazESC0R6ePxFAHdwSVbGICm5hAIcXMjn8aH4k8xFKOdnjYSxrVpDODotDWKguYj5c02gnnMIncXbme+ykmhVraP3LR/pH+r/wFFiMiVV2OH3RP4HQIlwIPAOecamqMqTDGNJ7l+TdibyvN65yqaoz501mySAW2ikiK87wo4G3O3E66kLJigduANc6pNcBtItLXeV69MeZvuh1n7XQ66cuMMVOB08Cwc6VTSiml1MXTEU/Vo/b8ykaTdRMg6fgR+AiK1s+xncDqU/ZOlBNY9Vh6lB2BnAD8G2emgLZBn+2nOP0T+7BXFXY6LYDLBi0aPvIAd0zfZrdaAaL/vYUMqhi1djc0wekC7MhqOrw24i7uXfkmAJUjshiAjwBuWojh2Mwo2nGxImka84ufs5mlQjsu/JF2bejwpw/Qb56fe7e8yda8kYwtrrDpxsG0+BW85JpJOlVMrtvA3KR5+CNjSVhpKzahYBOrmUIytZSRTQwtZFNO3PFW1kROZpNrAgAB3NSSTCm5pFCLj0SKmEE61aQ4swFLyaWEfLuOlPm4wwJ4SaPswxwO35DITCf6rZsApR25jA/bxDRW8kymh8c3/wvfGFcGH4X34KetLqlLs51K8wVshP0U8IYx5rDIp9p+ZyDQAsx3RhA/AP7JGFPRNZExplpEpgObRaQAeMEp9xcXUVY88EdjzJ+dPP8sIn7n/PHzPVFElgJfE5FlwHPAV4F87D3zLwH7LqIeSimllPoE2vFUPaozQM8d1dvsqGMTkAonx4URsaaDk3eHEfF3dh/MuJdbbXCguwEvnJjYmz7rT9ktUu7ukmkQdqUOI3N7Dafvh+H7DthJd4WEvhqmUGuDER2CE/N64247BaPh5KAwBuBjT4HtEGdQTZ/tp0iqOkLlnCyeYS5Fx+eQ0beK006Zvbxwx/ptkAYJ25rYMe92goTTkneUcnLwFQ5w8qrq8pozGFtVQXKS7TR6JtmOZzjtPBFcyEuumUxjJV7ScBNgSd8HbDpnH08vaaRTzeLGeUyL/znfocR2fvEwqWMdALPDFuOiPTRamkItU1jNyzc8yFE85FAGwCqm8kTYM7QQzWqmEB3WwnfGleAmwMHEZMD2CpTqTkS+AXwdeOwzZNMLuAXYY4z5sYj8NbBJRJKMMW1dExpj/lNEfgzsAH5qjCn6DOVeFGPMg8CDXU4dBsovV/lKKaV6WBgalO8qp1NtlVJKdfom8DXgsIj4gP5AqYh86yLy+AN2quoaAGPM/8WumUzuntBZ+/kk8AyQLyK3X2R9G4GviMh1Tn7XAR7nvFJKKaWuIjriqXpU5xYoIR8BOyFiZwfEg9c1lMzUGnvtEHaV1xggE/rMPgW7YN3MPCZVb6HXz87kkZh3GKZDLxfsf3cgQ0bX261anBHPPttP0WffqdDqMG/kYIYfOkDEXR1UvptFPiUABAln1+gUMhtqmLX2FbvWdD1k7ykjENkbAN+IRPrhpx0XCTThx8P44EZWu6byRHBhaHpsCfnkU+JEkN0L8XaK7mTW8nKkHUiZtG8LC1IfZX7dc7yVNIZsytjEBDz4KSGfJcwCoIAVxK1tZdHkR6glBR+JNBPNBDYxPmwTYLdTmcYKomlhCqs4SAotRANQRQa1znYqK/3TeNbzGCuYRiI+ZrOY+SwgER8tv/9Kz3zQ6tK7AtupGGMWAYtCVbCdz781xlzwtFNjTLOIlAFjgbdFJBk7Wb6uazoR6Ydd07nIGLNKRH4NlIjIPxpjKi+wrCYRqcHOkXjD+bnHGHPeabZKKaWUuvy046l61PigDZRDAlCF7RgeAh6GtyaP4Y7Z286EDllmr20tGMnYX1RwIq83fRpPMenWLfZr6gtOuiiIa2xlR/3tjHp+N0Om207nrvRheNLtVNVwghx19v4ctXI3/oJ2To4Lo3piBml4Sdp3xOZ1PZB0mNOT7NrR049CL2fN6WqmOHm1M73xdRbFP8Jja14kel4zR10esqjkoCuFNLyA7QimtNVTFpmDjwFsHWHP/Y7hPMRSACbdvIV8SliXlEc7Ll5iJml4WcgTLGEWpeQ6ee2lcnIWHo6yhFm8xAyyKaedcHIpDb3GZGop5n6W8iDTWc5GJtBOONW/G8GM22zMlOi45tDnMYGNLGY2hRTTQjS/JafHPmv1xSIim4GfGGOqnMdFwCQgDnhHRFqMMUOc5PcD/yoiLwD/A9xjjPnvbln2xgYg2gBgjPmdiNzp5Ne97E8q6zUR+QlwAhvYSCml1BeNRrW96mnHU/Wogy476jbcewAGAevhZHkYEVUd3LF2m/2K+FyXJzwKY9dWQCuEB4MwHXgd2/H8kZNmHFANo1p3s+dXgxk+9wAn54SRebyGE33tKGWfLadoz3Mx/PkDsAaGRNWzbmIek57eQt28/tSl9gcgaf0R4hpamTD6TV4e/RC1JDO2qoKIhg4eTPglAGvj72Rm/PMsYD675g3jICkEcDOpbgu02g4vQCKH8UX2J5HDTNqyhWN5UXYNKIm87CwdW973HsazES/5JHKYRHx4SWMCm/AyFDcBADYxgVxKmXx8A/l93whFuh2AL9Q5dRMgiIsWoikll1xKScPLLJbwg9t+RiI+AIIfueAGSMRHOO0c/N1QSm9rYQCH4b979ONW1zhjTGKX38d1uzYTmHmO570HZH9C3u8B73U7txfYe5a05yvr98Bfn68spZRSSl152vFUParI+W64YvMPObkwjIg/dRCxuYOGibGEEyRubaudWgvQNbZmFUQ81MGC3zxKCrVMnr6BE2/aTmWQcOL2tcIcGH78AKRBxMoOCBL6KnoirzfhBCEDGubEUsQMFh+fx8x5z/Ns8DG8rqEA9Bvn56ArhWzKSVjbxIrJ0xhLBcdGROHDBg1KxMfkfRtYm3onbgIUtv2S+ZHzIAkm1W0hc3sNADtG30447cTQwom83pSSi48BTGAjxU7o3vnHn2Nd3zwyqKKSLMaziSwqGVJXz2tJdzG1zUbbfTDyRTKo4q2+Y0ihFi9pVJPBDIrYyHgAprES4GMdTj8efO8nknVTJY87MySX3DCLdsKZSRE+EglPbMNFkDJy+GrW7wG7CE8ppZRSSqnLRZxt1r5wRDzGhkVVPek/jN3f/Y712+z+mMuANGAidpprBWfCfowDDsHSyffxYNEv4SPYP2cgQ4rq7fXOyLYVwGY4/QL0+j6c/oXd+3N//ED89APAzQckcpi4462hvT/JBBZ2KQvsvp1/goaFsZSSi5tAaHpwZ7Tdt34zxkbl3QynHwZ/ZCybGE847bbTWG3rtyt9GGnBvVS6smjHRQA3k49v4FjfKI460X0DuAmnnYy2Gqoih5FCLbNYQhpeEjmMh6MAlJNNrTOy6sGPD7vO9CgeClgBQDV22rAfDy6CNgous/Hgp5Ks0IhnFpX46YePAXhJYxorQlFzi5gBwB/k//uMn7Q6tyerL2DLkk+UESem6h97oj5nyAv0SN3UF5O2m0qpS0PbzS8KjWqrelQiPtsBSgCet51E7sZ2Og9hRymjnONHwAjIphwi7bkhs+s5WRgGI4B1znG9PXo1Ac9Ac2QUNMGQ7fUMwMcAfGQ+XUNcdSu8BSdTw6AV9jcPhBGwv3Cgja+5BhgNJxb2JqGoiQyqWM0UInZ2ELG9gyW/eYAlv3mAO4q3cSw9ym6j4gojYV8TWdhYJ0NW1rM8/R6Wp99jt3BxuRm7tgI3AVYzhbf6juEoHvaSxl7SACimkOLI+ygnmxaiSaGWRA5zkBRKyaWUXNLw8nLwQRI5zBRWk4aXXEpZwHwqyaKSLBZWPx3a0zOAm8XM5tfvTSFIOEHCSaGWFGp5puMJYmghDS+vcS9e0simnEqyLs8fgVJKKaWUUt3oVFvVo4Y874xWBoE50GsztpPZAHsKBxPERebaGgB2lN/OqC27GbKznhMFvekz/BQ8ChFtHdSl9ycpygkIVAGrXoapPwHugbhxrWydOZKx364gONpZRR4PDemxJLQ2EbG+g/2TB+LBz8lBYQyZ60TABdgO/lQP4YWHGb72AOvG3QU7YdG8R2wHGCADFjObGFrABaOCuzlMIvmUMLPgeQopBmwwoiAupk1ewUbGM55N3FG9jf3pA/E6nc4cyknERzrVPM6zuAlQSRb98FPACtqdVfDzWYDbFSCLSoopJIVa5rOAAc46TYBp6T+304mBV9c9TMGkZcy4ZTFlZDONlaEIt+vCJjGd5UTTwjPvP0H+TTair5uAfU3oVFullFJKKXV56VRb1aP2mdcBSGmrp9caOFYYZdd1gl3b+SLwiH142gW9crFrPVuBh4Gd2Gmxazgz1XYdNthQk/N4nJMuljPTdlNh3eg8JhVtYf/MgQzZXs+O0bczav1uqLKjnAArmMYUVhFX1wqH7NpQd9spmiOjaCEGgCFb6iEeTqTaayWRd5LftgFv5GAA0toOAHbkNe54Kwv6Pko+JZSSywQ2UksKdzRus1WPzwNs8KAsKtnEeDY23sWS+AdIYy8pHATs1iwugiyjkFxKOYqHftiIvYvr5gGwP2kgJeTTQjRPsJBKsignBzcBfCSGtrLZSxoejtJOOB78JFNLCflMYyUrKAB0qu2l1UNThvqJqfpeT9TnDHlGpwypT0/bTaXUpaHt5heFTrVVPWoT49nEeHo1AFUQl90K24AM2NN3MNwMHLRHWeRIWI6dVtsEJ9J7287kU9AwL5ZdScPYlTSM0/djO5pjgElwOgFOFoRRN7G/7YSOs8+fdHwLb80cw5DsepgOo7bvtqOtYz5ex7jnW6EC6vL6U0kW3sjB/FlaCeC2nbdUmJn6PH3WnwIgmmZ6tUK0M1roi+yPL7I/LcRQ2PdF5q99jpS2embVvUI47VSRYbeSqQIPR6kmgyXYgD/P8jhb40cyq/EVGxjImZw8s+0VVjCNfH7NNFYyhdUsCM5nAD4WJT3CoqRHeJxnWc0UUqjlXn5FOy58JOLHE5rinIiPCWyihWimsJrZLOYF/49ZwiyqSSeGltCop1JKKaWUUpeLTrVVPapzj0ueAn6CHblMAypgeMMBThaGEdFkg/iMfbrCdhpToeE3sSSsbbKd1IWQsKWJhFRniHMNnFjemz51p6AKenmh17gOkg4dwZnRCl5gBNyxfZudwjt3tw0ydDPMzns6NGo4y/sKu+YMI7OxhqS6IwSTXAzZV88S8wAeZ4Qx81AN6fFVnB4D3sjBZAUrYR8kXN9Ebd9kkoN2naXPNYDiukfgIyiOvI/wyHbyKSGRwzRMjAWglFwKKaaEfG4kgJc0G0Qo3s1RPOQH7TTYxZGPkEspE9iIBz9FzCDa1UI47TQ7U2jHs4nDJBLEFRo9PUwi49kU6oAClHdk80TYM/zo3aWEx7WR7SkLRbztnKqrlFJKKaXU5XTFO54ikgy8BkQDLcB3jTGHuqW5DigCvg0YYJEx5hfd0qQAe4BXjDGzL0fd1V+6o9pOMeVR2J86kCGD6mmYHEs74SStPELEvg7WzbTTTydFbbEjmZGQ0Nhkp9tmYNeHrsM+xol0e2s9pxqgdynQAA0jYgmMcJ9ZUzrGpq8b3Z9RRbs5sbA3fbacYk/eYBa1zeNkvB3cj6joIHNlDTTByYfDaCcc1kNuamloT81jo6PIoBpfZH+G1x2Aj2BdXh6T1m7BPfmD0NYstSTjSfLTx3WK71BCXF0rhUkvMrSz8w3MdLZD8eAnSDhuAvjJJpdS2nGF8sqmHA9+/Hjos/0U00av5HGepZDij41QLuUhysghhmYAdpLFaqacGa0FssIqqSadNbdOZDVTcBMIdV73vfJ1J6fNPfBpq0sqDBtYS6lutN1USqmz0Hbzqnc1TLVdBiw1xiQDS8GJ3PJxU4EkYBDwDeBJEUnsvOg0sMXAhktdWXV+u9KHsSt9GHhhyK31sN12KpN2HoF9cGJmbyYVbWFS0Rb2zBxsO6FRcHoE0GrXhLINu3bTiX47ZG49DILezwBB22FM2NLEkPX1LJrzCIvmPGLTPgVBXJwugD7FpziWF8XwxgOURY4koq2DiLYOuB62FoyEcRDxfAfDZxzgxLzeVJEeih67kmkM2VJPLSnQAEtSH2DSvi28NXkMmftqQpNap7a9SRnZ0ARxja28lTSG+ymmmRj8ePDjoYXoUIChAfjwMYAB+GgnnGzKaCGaFqJxEQxFnZ07eh5e0oimBS9p9MNPP/y0EB1aC9q5X+oOvkkupSxhFs/yGM/yGAHc+PGwmilkU863KGUAPva9+3W7xUzmZf+zUEr1LG03lVJKfe5c0RFPEYkFbgPGOqfWAC+LSF9jzPEuSf8BWG6M6QCOi8gG4O+BnzrXHwP+A7jROdQV0jkSRxvwOuAC9jkXCyBIOIywayeHNx5g+OYDsA16ZTgjm8X1ds3nJOw6SZzn/wTwwq7Rw2xU3HVQ92Z/Htv3ImA7vJnUMOR4PQ19Y0kY0YQ7GLDPjQc+cvJ6DryThzK2sYIT83rT52lblxZiyKHszAtJtWs6l4++hzT20pAayx3Ht7EndXBoZLEo8gFmHX+FRemP4MdDOlX48ZBDmR1VBXYVDKOdcKJpIYCbaW2v44vsz17SyGprxR1pR1mTg7VEu1pIWN9E5cQsfCQ6+3z6cTlRbTs7oQAZVLGCAmJoJoiLEvJtRxk7eprG3lDgoYL31vKtWzaRfetvQhFy3/4sH7JS6orRdlMppdTn1ZUe8YwH/miM+TOA89PvnO8qgY/vANHQmUZEhgK5wL98UmEi8gMRqRKRKviwB6qvlFJKXVbabiql1NkIdsCjJw/Vo674Gs/PQkS+hI2LOs0Y82cROW96Y8yrwKv2uZ4v5j4yl1hStbP35hogFWiAtwrGcMfwbZz+T4jb3sqx0VEAxE1vtWszfwI74m9n1L7dds3nNtjz5mCSR9sgPhGHbDCiuoL+ZNbVQCqcnBjGXtJIwpaX+XwNvAC7+g4jwI12zeggWJp3Hw9u/+WZMh9uJZ8S+Aj6bDkFE+3P3LzS0GvIpgw2Q2ZCDZmuGlgDdcv7s6vvMGJoZjwbAfAxAFphtutFem2DXROHUU424bSzq2CYkyaRLCpJON4EFfW8NXEMZWSTwkE2RuYx6fgWAPb3tXt/lk5000I0WVRSSi4FwRWUu3IA6Iefdlwk4qOWlNCeoFNYTRUZzKQIgEqyKCUXHwPwksb4W0pIxEcaXkrI7/HPXF0inQ2oUj1I202llFJXypXueDYCXxGR65wG8DrAw5ndGTs1AF8F/p/zuPNObj9gILDZaTy/DIiIRBpjfnAZ6q+6s/07tv52JGOrKyAD0qmCZ5x9Lwe1EldsowbtXz6QlLZ6aiMH2ii0g7Cd1bthePWBM1+6vYALkjYf4di8KOKebyUi2IFv3gCWpD4AwMyEV+gVhMyiGhgH+/NsRy6LylCnE+BYQRTRwWa7+HwQcMiuLx3yjXr2/3YgACuZhrswQCI+wgkydnMF/YJ+khqPcDoWKiNvByCAm2NJUfgYQMrEWmpJJp8Sfsps27kF/Hjs1NyPbEfYRyKLd86jYUSsXdPpxCGaP3oBs1lMCd9hApsIp51prOAZ19xQYKBObgKk4aWFaIK48JLm7OmZDdjot7WkkEItZWRTSwppeFnBNFpCee3pkY9bKXXZabuplFLqc+mKdjyNMU0iUgPcDbzh/NzTbZ0KwL8B00VkHTaK353AKGNMAxDTmUhEngRu1Oh8V97YpyvsusqRNvDOydFhtsPZZTePIcPrYRoMcdWz6hmYmgsUYLdimQQnRzuRaB/tgBXANLsH5/45A4mmmVlPv2K3Y+nkwj5eA655QSZv38D+0QNxBwMEXHZdZtyWVrbmjSRnRAXNkVFUJmUxqWgL/ASGTLcRctuXlzL8+AGO9Y3icRYxdlwFi10/Zn7rc/iS+jOqbjcAe5IGA9BCNCuYxqzqV1iXnsdUVrOCaQBMYwUtRDM7voBp8Sv5DiVMG/FzPPgJpz3UKS5Z+Y8sL7gHgGaiqSYDD36SqSXo7BkTwE0O5cxnAR78FFJMGdkEcOMmwGwWAzbabiKHaSGGoXgJ4Gbx+7NJvqk2tBepUurzSdtNpZQ6B41qe9W70ms8Ae4HZojIQWCG8xgR2SwiGU6a14H3gEPALuApY8x7V6Ky6hN85BxrsKOfTwAuiPi7Dk7fjV1hNNEeJ3eF2V099sHUBvu8Y5Oj4BmgFSKGdxAxvMNurTINGpJibQCilfW2E+t0MlkDNMDpBGAznJwTRtLxIxwbHYWffriCHWxiApuYAF5w8wG9lkFccStZVEKqHfU8/YI9hq+1W6i4aCcRH7hsMJ+30sfQTAxbk0ayNWkke0mjmgzuWLuNRA6zI/12juJh1PbdTtxbH24CjKrejYt2htTVU0kWC5hPOO3kUIY7GMAdDLC04D7aCWcAPobiJZsy/HjwMQA3H+DmA3IoZyFP4MGPmwBBwnHRbqflfphLCd+hhO9wFA/tznDxdyghgJv2mkgmsIl2wu0WMurq19mA9uShrhXabiqllPrcudJTbTHG/B7467OcH9fl9z8DP7yAvJ7s0cqpi7Y29U4Aot9tZuzKCthIaFprr51AFWydOBKAsdsr7HTXEXAivjd9xp2ykWiXAbE4X6WgYWYsCWubSFjRBNc3wd1wIqk3fb59irrf9Acg6a4j9NoJJxeGEfF8B3Xz+pNUfQRXejW9tsH0jNdtXnPsnqJ75gxm+PMHcAcD7Bk92O7X6Tg5MYyIpg42Mp751c+xY8TtbGQ8uZTiwU8V6QDce+ub7Hp3GMcmR+EmEBqhXDD6UeZveQ6AY3lRrE2/k/FsYl1SHj4GOJ3FnZSSy3zXAgBe4177vgWbOeryUMz9TGMFXtLIphyARA4TJJxqMggnyCyWkEM5QcLJv6GEauz3zWzKyaKSe99/jfCbgpSv+zZfnfR7VjGFP6z+mvMq3+nJj10pdRlpu6mUUurz6Ip3PNW1JdrZTmXs2gpIw3Y6D2LvuT8BvA1j76oA4P31cNM4eH8Z3JRxCqIgYl+HnTi2gtAITXSw2a6FnIRdpfQW9HGdgj9B0pYjZwqPhYiqDqiCwyQSnt5OwpYmW3bnMs948OAniAvGQcDlJjlYC8tgyWK7XjSFWu5o3cbQeC+nB0FW227ckQH8eFjBNApZBsCxd6NI5DAxba2sjJxGOtXUksxUVrMnz07DrSKDxzueJSuskmzKSaGWcIJ4OMrCfU+zPNVOry0hnywqGeX6TxbxOIUso5IRtBBNLcmAnUL7ayfdYRLJoJo0vHgZShXp5DgdVIDFzCbxJh8txMD1dl3oXJ7hockvA9AytWc+b6WUUkqpq8Z1V7oC6ny046l6VFpntJxlwMtwMjKMyhFZjJ1TYc+9Bc7yR27C/n5TFHa6rBdoBQ7BuuV5of0y7137pu3E7sR2PIOwK34YLXuiuWP7NpvZUuf5h4BfwNgtFRzLs73NrXNGMva47ewmrGyCDOBmexzFQ9zzBzi2OCo0BTWaFlgDw68/wPJ59xDuLEz1MYD5K59jbsE8ABZueZpdecNwu/ZSSDGJ+HicZxl1fLcN6wEcTk/kP8L+lhUUkMhhmom2nUHgmdQneIJnABuJdjVTmMpqEvHhJY0MqqgkKzSSWUY2C5hPOTlMZTVl5IQ6+lNZTREzAZjNYrIpI4Cbg6Tw1XG/52iHh7vL10PcZ/2E1WWjUW2VUkopdQ3RjqfqUXF1NmIt90Ndan+S1h9h7PUVNlqt02kM7TY3DjvV9mGgCtiO7WAGYVL2ltBUW6KwX8AbYE/fwSQW+shcWWM7mXfbJCcjw+y2KyOAj2BP3mCGrz3A8sn3MK3tdXb0tZFoR92xG/4Ec/vOI50qDpLC8KgDxG1vZXbGiwD0OgQNC2OJDjaTQZUdEQW8rqHQCDOcbUt25Q0js7qG04MIdRAKKWZB30cp7GtHRVuIIYtKiqsfYUn6A2RRSeaWN1madx+rtt/H8tF2xDORwxQxgwXMJ6OthvLI7FDHu7PjO5dnKCeHNLwUMZPXgt/lXtev+PX2qfzH6L8hBaeepNFOODcSIIiLGFpwhbUzZfRqSskF7CC0UkoppZRSl8vVEFxIXUPWJt3J2qQ7OTkxjKS6I7ZjmQH8CBtUqIkzAYEGYUc4n8Ou6fwJtjP5ArZTGmuPXXnD7J6cc+6zgX+ArQUjmbtwXihoSsTsDpu+CdgMifjYP3kgaXgJRPYmSDhBwuFF2JM6mGmswEU72ZRzugC2jh5JryroVQUnU8NIeL6JdpeLKme0MeJnHbQQzaJ5j1BNBtVkkLm9hq3pI+nVYKfK3strJOKjkGUcJIWDpODHQyVZ7Ei/nRaiyayuYUfe7axiKlNH/5Lpx19n+vHXWc1UBuDDw1FKI8fQTDRTWAWAl6F4GUolWXaPUSCLSsa63qGSLN4e/b9YzGxqSaGWFCrJYuOHE6gkCzcBArhZznSqyHBS1F7qPwOllFJKqctLg/Jd9XTEU/WoRHwARGzvsCc+wnYGH8VGp80AZ3cQGpJiSShush3NndjRyruBbXD6fuhlBw0JjL6R/fEDebD4lzQUxgIwtriC8sIcTiT1BqDPT07ZUVMXHCuMIm5LK1V5/Rh7vILTLhjbaqfa8oidSts5ipi5vgbSICOy2j4fiIjq4OTDYfQ5forcvqW0u1xEjDuFHw+PVb/IiXRb5rrReQC8lTqGFGpJpyoUHGjUTrvlSvOIaErJxcNRZlDE0vT7COBmKquIpoXZfZ8G7BrMBcynlmQ8+EnhIKXkkuzkC3D3+2vx3ZRINuW0E06OM522HRdTWB36DGpJJuaGFpKpZT4LcBNgIXMB2OSf4KR691N+wkoppZRSSl08HfFUPcqDHw9+aCW0xpJD2E5n59TaQ/ZImN5kp9HuhCWTH7DnAUZArybsWtBpMHZlBUP21bO08D4S9jWRMKOJhsJYprCaPo2n6NN4Ch4EGuBkRhgxba0QDxlUs6Pv7RRFPmC3bdkMJ/r2pphC4qpbuWPfNmiCrUkj6bP9FHvmDGbPnMEcS48ioq0DKgjtk0mjHdXs7HQCrGYqbgKkU0U25Xjw43UNJZx2Zo94mtkjnmYl08inhBaiiWtsZTyb8OMhnWoS8TmbvGwiER9lZBNDC1VkUEou+cESAAbgYwA+nr3pcdwEyKKSdKpwEwhNu/XjYRPj2cR43HxAFRl853ebmclLuAngIkgMzfDfLnuoq18Ydgp3Tx5KKaWUUhdJRKJE5F9FpLHLuVtFpFhEfiEiK0VEPikfHfFUPSo6aIPd4IK4la12tHMcsA1oBJ7HjmyCnVpbBccmRjFr/StsnTySsUUVEImd3uB0RI/NiyKuqJUHo34Js4FWSChqgtgmTk60904iHu2AjyCi0RlpfQr6PHyK9IwqRh3azY5Cu8azlhTGs4k96YMZvvIAywvvwU2AkyPCGP60nca7Z95gvH3TGDDRx73b3wQXnMjrzXKmU0Y2XoYCsIRZRAeb8bkGUEouhcFlVLsyKKaQuU7QoCJmUkI+xXWPQAVsKhiPmwAtRFNJFrWkADCejRzFg5c0WoghnxKKXfezmikUUhx6f8vIIZmDuAhSSi5ZVJJBFTmU4acfAO2Ek0ItL9/2fTKo4gfvvcYHX+nFva5fwYae+6yVUkoppa4anTdsLyMRicbumzwQG8mkDig0xhw/S9rFwHeARCDNGLOvy7Vk4DUgGmgBvmuMOdQ9j4uoV4+WZYxpBb4nIu90OfcuUOjk+W9ABPDB+fLREU+llFJKKaWUungGeN4Yk2KMGQrUA4vOkXYDMAr4w1muLQOWGmOSsXs1FHdPICIuEflqt3M3ioinp8oSkYEi8k6348fneD2ISI6IrAKagQ/Pla6TdjxVjyp35VDuyrGBfm7GRrK9HjvyCez692HsnzOQ/XMGcjI2jLqJ/e2FQ9COi/d/ZJ+3f/JAG4xoIrzETPbMHAwTsBFxX4b9Mwd+/K7WU7BgxKN26u4K7JrSYlufY6lRoSnAbgK0E05ysJY9BYOZvvZ1JtdtIOJnHfa5UbCKKYytqyCp8Qh7Rg+GNqginYSdTcTQQj4l5FOCHw8RbR20E05hcBktrhhKySWc9lAwowyqmMlL7E8ayI6C20nEx3g2cceWbUxjRaj6HvwkU0sWlWRTRiVZlJPNOiaFptC6CDKbxeRSShAXQVxE04IfD6XkEkMLMbQANrLtg8d/SRUZjL+lhPmuBVSRzneeWMV3nlh1Cf8CVI8RNEiCUkopdWXFiEhVl+MHXS8aY943xpR3ObUL+FjnsEvaCmNMY/fzIhIL3IYNvYnz8zYR6dstaSqwVURSnOdFAW9j5xb2SFnGmHpjzN90O356ttfjpC8zxkwFTgPDzpWuk061VT0qtK/mZs5sodIKvAysgcydNbZDCbAPklxH7O93wx3Tt9lrKyBlRL3tCAIL1z5tp90GsYGJomDI8/XsmjOMRA4DEDGolfnHn+O0y26HQhWwEHLbttGrAeam2j0up7CaIY317Ii/nVHFuzl9NwRdYQTmuIl73m4FM5vFrEvKY9L2Lbaj+xG4aKduRH+Su0SE9eDnZGQYzUST6HIRHWxmYdPTcD3s6jsMsEGDSskll1JGVe+mLr2/XcOZl8vctudwRwYAKCeHfEqIpoUq0pnCalKo5V5eC23fUk0GBazgcRYxjRWUkssmxjObxfjx4MbmtZopuAmwvO89zGcBR/0e0j1VuGininSn9nWf/cNWSimllLpadN6w7VnNxpiMCypeJAz4IbDxIsuIB/5ojPkzgDHmzyLid86HpuwaY6pFZDqwWUQKsOE53zDG/KKnyzobEVkKfE1ElmH3pPgqkI99578E7DvP0wHteKoetmv0MAAyq2o4UdCbPtNP2YBCzv6cu14aRubzNTZxE/zxBbgpAno3YNd8NsGS9AeYdfwVTsQ7EWtdp+w/hwI4WRhGRFMHJEBmdQ0nU+2g/f7FAxkyvZ5ek7CTBhqAh6DXRDhWEBUaXUxqPGKvxcPswqdZvH0evYIduEa0cmKOLc8dDDDU5QWXXaO5gh8CcJhEWoghw4kyW0kaA1w+XLSzgmn4Xf2YEL+JUnJZWG2j1b6Wfhc5lOFyoug2E4OXNMazicrI220gJiCZWgK4mc5yXuYhXARZyBMkU4vbmS4fwE0LMYQTZDrLWcckiilkI+OpJiO01UotKSTiYzVTmMYKKj12W5VcSnnodxfzf5NSSimllLpAL2HXOL58qQowxvynM/V1B/BTY0zRpSrrLGU/iA3n2ekwUH4xeWjHU/Wol5gBQOaY++gz+xQ8A7yFnXqbAJnba2y0WoDn4CtPYYMNBeFkbBgRwQ6iaYbnoA+nAGhYHEvC+iYYBBE7neBBqcA+iEiwj4ccrIcCm8+evoOp7ZvC5Ps3cCKvN+5gwAY6wtaBKkgeUcvixt2sHX0nifjIXF9Dn0O2vNP3w0bXBGZtfoUpI1bBTiibmEMupYytq2BX0jDA7qXpJY0B+HATYPHxV9jR93byKWFR+iOh96TdmRN8OP0wAdykU4UHPw/xMtnOv9eXmMkC5odGMtsJJ5dSNjGBFRQAdtS1iBnkUgrYKLte0sillA9w42MAAIUUs5opeN9PI3iTizT2chQPs95fwrduszfh3v6Mn7O6DK5AkASllFJKXTwnmM8gYLwxpuMin94IfEVErnNGIK8DPM757uXcDDyJ/YZ9t4iUGGN2X4qyLgVd46l61KrZ97Fq9n12TWcqbO070u7RGQUnZva2U3CrnGMQcD92Gm0VBFxu9icN5N6n37SdyHH2SKhu4vQYIAjLR9/D1tEjYQ3smTzYdmrfstuo0GTzOUyiHZWsgD4zTtHiioEx2CPW1iWuuhX22c5j5vYaWxdnHVzQFUZhcBnHFkYxdl8F+xcPxEWQzH01rEvKC73Wg6SwiQn0C9r1o1v7jqSKDAK4nRWlHtLwkk8JiRzGj4fcYClZVFLEDNa13UUGVWRQxRRWc0fjNsJpJ8CNFHcUUumE/3UTCEXCzaAaL0NZ/eFUZlJE5ftZHCaRLCqJpplomllBAS/zELk3lRLgRrwMpR9+nrjpGXwk4iPxMvwlKKWUUkpdRldoGzIRWQikA3caY4IXW21jTBNQg93NHufnnu6RcUWkH/AO8JwxZi52mutaEcnq6bIuFe14qh51cmEYJxeGwUewp2AwGVTD3XAyPow+209BApweYQ+ehx197TYnpEJcUWtonSJ/RyjYD62wKvIueAqmtb3O2OMVMAmCuOz9mUZod7nYNXEYjLMjg0l1R+AROL0QPG1Ndp1pK+xJH8zJwjBIgF15w2ynNgO43gYs2j9zIBFtHXhdQ4nb3squ1GEMqa4nDS9bU0eSwsFQoKJkalnSNod2l8vurxmsZFbjKwAUbZlD0ZY5pFBLFemMravAxwBecs2kn/9PVJNBUeQDpAerSA/aPTmXxt8H2DWmL4fZ6bbPBh/jKB6OOp1YL2nkUMbcGxaymNmk3eTl1x35pOFlAfNZwHzcfMAzPEEVGRx8P4UMqqgkCx+JpOElDe9l/ItQSimllLo2icgQ4AnsqGGliNSIyHrn2mYRyeiStkhEjgD9gXdEZH+XrO4HZojIQWCG87i73sA8Y8wqAGPM74A7gRvPUq/PWtYlIcaYy1XWVUXEY5ytZ1QPMhVP2l+2O/tvVrdCFJyOhV73ABnYNZZgRx+bsB3TEWFUurIY21hhrx0itI/nicLeuNtO0Wtll+dMxO4N2vnP2emg0gSzRz/NTF4iYXoTRNnOcMDlBmA1UykMLqPElc+9099k6/KReDhKOdk8WPdLAJYm3ceD1b9kV/owMo/XMLvv08xmMXFbWtmaN5Kx020dG5bHUkK+7WxeDzwHWxePZOzxChr6xgJ2XWZi8DDtLhfTWc5sFuMljemNrzMz/nkC2Hql4cVHIuHOWtBprMRLGqXk4iUNgKrqkbgGtDLjpiJaiAk9J0g4lWSF1oJmUMVGxhNDC+lU8YEzZgpQ2WFvirVcp2s9L50nqy80EMH5ZCSJqTpnHLlPRybRI3VTX0zabiqlLo0eajcHiala0hP1OUMmaLvZk3SNp+pRa0fcCcDk4Abivt0KE+HUj6D3Rjj5ZhiPuxZRtHMOAMdGROEOBogo7iBiUAcD4n12Wu4IaBgdi3u0Hf10t52i11zgI3uNddiOZyPsLxgI2A5e5vU1sBMWp82zndudwEK7pUqKE402l1IiGju41/smJ5b3JoYWhuyst/k6y0AL234JrRBDMycjw6gmg1JyIQ82MYGY5XbLkuHVB8hPL4EmG0To3offZGxjBQviHw0FDQrgxuPyO5FqV5HZWEN7fDh74gdTSRbpTqCiNPaSQi3NRONjAOVkk4aXKtJZwixb9/R/D0W4BUIjmO2E4yaAh6MAbGI8AEFnneh8FuDmA3IpxR9mt3pq6aHPW11ClyY6n1JKKXXt0p7NVU0/HtWjOgPf8DNgDtAEvXcBOyFiegdFk+fYAD9A3M5Wu9YzCo7NjCJp9hG7/+Y68NzdRK/OGaHXc2ZrlnjgeZgZ/zxFd88hMehsp7K5wwZxjsWu+2wD7oflE+9h+srXzyyZdgIZsRP6jDxFn9YDsBaqRqTjT+8HQAbV9Ek7RTMx+F0etrbl4YvsT9LxI+T2LQ0F8ZmbPo9EfKSk13Lv8Tfhenir7xhSqCURH4AzEmk70O242Bo/kkpG4CbAEyzkICmhMiexjiwq8eOx0WjJYgHzedzZhzhIOCnUMo0VBHDzmHPeR2JonWenBcxnAD6KmEkMLYTTjp9+VG8f4aR457N8zEoppZRSSl0UXeOpelQRMyliph3pnIDdlnYzMAZOvusEAGqwx8mHw+zWJ2MgbkurDf6TCbRCWeTIM2s8wXY818Cx1Ch4HYq2z6EhKZaIQx1EHOrgrYljWDvvTsiAk3eHcWxmFAyC6TNehzQ77ffYvChogmN5UXYd6gpgGzS8FMu91W86IXzc9Kk+xWkXZNbVkNW2m7LIkSQVHWFt3ztZyTQyG2vIbKyx25/UvU4z0baOf4JwgmRTRoAbCXAjbgLcsW8bGVQzuXED7bjw4GdW9SusZmpozWXc+8d4lsdD02c3MZ4sKjlICoUUU0gxc3mGWlLoh59iCpnKKgK4CaedaaxkAD4G4COA20axZQkZVJFNOZUfZlFNBv1GH6bf6MOX9W9CqauNiESJyL+KSGOXc7eKSLGI/EJEVoqIXMk6KqWUUtca7XiqHjX/6eeY//RzMAh6/wQ7wjgJOAQR6zvsiOZIe5S6cm0HdGKYXas5CJbX38PJh8MYu70iFDiIzdgO6MN2j00Ondkv9ERqb06k9iadKiYXb+BYehRe11BbmUjY8dLtnEwNI66ulbi6VvZPHkg5ORx1eey+neOglmQWpT9COTmUk8PJ1DB8kf0BqI20U3kZDdmUUUgxx+KjOBYfRS6l7E8ayKTtW9jTdzB7Ugfjx05lddGOi3YSOczW1JGMD25kT/xg0vBSSRYkQDTNTrczjcKbinERpJRcomlhL2lMYh3NRIei2gYJx4Ofamdhaym5JOIjl1KKnG1sADz4OUwi+ZSwgmnE0MyCG+YDkEMZOc5+n+oqd+Wi820Qkf8SkT0i8n9EZNg50l0vIj8XkUMi4hWRV8+SZr6IGBFJveDXffayFovI4bPlJSLJIvJbETno/Bz0SfkZY1qNMd8DZw6+PfeuMabQGPN9IMI5lFJKfV5coXZTXTjteKoetXbenXbk8XrsdNtD2FhfsZwJLBRvj0lFW2AzRHylA7xwLCmK6Y2vE9HWAeuBSHucnBMGK2FH+u1EzO2ADMhoqyGcIOFBe8Tta+VEYW/ijtvIuEedDuCo4t1EZHeERlndBJhctIHEtiMEcFMX35+x+yp4bPaLPMFCnmAhm1wTbAfSBS3OaObW1JEcJIXHeNYZVxxAGdlE08yx0VEcJpFoWtjEBIq5n1E7dzNq527acVFODmNd7+DHw2qmMJeFzOz7PEvbHiGLytCxgmm0E040zfy6I5+q4yNx8wG1pFBLCkOdbmoZ2WRTThaVVJPOD373K/Ip4bAz5TYNLxlU00w0HvyE085iZtNMNKu3f4/V2793mf8q1OfMvcaYvzLGDAcWA/96jnTPY1deJxtj0oB5XS+KyG3YOQwNZ3kuIuISka92O3ejiHjOknwDMAr4w1muLQOWGmOSsXMoirvkN1BE3ul2/PgcrwcRyRGRVUAz8OG50imllFLq4ukaT9WjJjdusL80Ab8AfgSnGqD3UuCgc77JJjk2M4q477bCT4AE8DGAuMwa+3gycLNN1+KKIWJEE6OKdtvpuFHQaxnERbXaqbwAL8NGxtPe10UaXjLX1/DaxLu4N+pNdhXa6LQACd9o4q3fjuGOum0kBJvgT7Y+JxeGEbfPRheafP0G9ifZkc4g4WRQTTGFTGE1M3mJ1UwBYCqrQ+s9J+3bQkNqLL9+bwrTbhnLnhGDAULRZWNoxoOfO45vg1bwJqUxP3Ie0U6YnwlsJIVagrhoIZqpYatZ2/dODpIcikjrIkgytaE1o1lUUuWMflaTEVrjmYiPFqJx0Q7A4x3P8h9hf8tDvEy7M8326Gf6lNW1zBjT2uVhFPAXG2GLyI3Ad4H+xgmNboz5U5frLmwncAqcc4g9FVgjIuONMbUiEgVswXZ0PxZ22RhT4eTbvR6xwG3AWOfUGuBlEelrjDlujKkH/uZCXrdTThlQJiIvAcOA313oc5VSSil1ftrxVEqpq5FwKab5xIhIVZfHrxpjzjZF9hfAt5xafPss+QzEBkeeLyI5wAfAP3V2EIGngDeMMYfPtVTSGFMtItOBzSJSALzgPOdi9vqJB/5ojPmzk+efRcTvnD/vZtgishT4mogsA54DvordjFuAL2HDlSmllPq8uDTtpupBOtVW9aynnGMdMAi4H3q/gB3tDAIuaJgcS8PkWOKKWmEcnC4AfgSZMTXwn0AGvDViTGh+fcL6JtZNzINIOJHX207dHQekwpLyB1hS/gDcDPc+/SbT614nc20Nb00cQwwt0AqZ1TV27GIYsBHuWLuNhqRY1vXN4+SgMNaNziPgcnMsNcoGL4qyU2y3xo8khhb6zD1FAStoIZohjfVMYTVTWE0VGWTuq8FPP6iy25i8fcsoiphJNC1E02K3MMHDxn13EcTF0r73wUeQTTnpVDmpogngJogLL2mUkE8z0SzkCbKoJBEfifioJAsX7fhIJJdSSsjHg59v3baRZGopJZdSclnBNLKoZPH7swFIDjto15FSHFovqr6wmo0xGV2Ov+h0Ahhjvm+MScD+azvbbqK9gFuAPc7+Zo8C60QkUkS+AXwdeOWTKmOM+U/gx8AOoNwYU/QJT+kxxpgHjTH9jTH3G2MOG2PKjTEPOed/YIxpv1x1UUoppb4IdMRT9ag9y+0U0+HHD0ArLJr5CI/NfRGaYP+8gSQGD5Ow1plr6wKiwBs5mOHBA3aKLdCQHsvoG7fZ8Q+AWGghBtKgz9xT8BM4HWUD/4QC5TyIDWL0EWydPJI7nt/Gujl5bB0xkrHfrYD7nbwa4MTk3iRsaSI8r5KDrhS8DGVS3ZbQXbIl8Q8wa8srkArH4qNgHJSTg5c0muPLQlNfp7W9zq7UYbQQw2sFd1EQXEGlK4vZ/BRPm32NKZEHmdT4Q2amPk8AN8vbfkhdan8yqKKWlNA+ng+ylCx2kkF1aF/Ot/hbJrGO5UwHoJloVjINgId4maBT4Ria8TGANOz+M24CFFPIEzc9g49ESj7MZ9MN40nDS0tHdE9+3OoaZ4x5XUReFZFoY0zX7V//AJzGmexujPm/ItIMJAPfBL4GdI529gdKRWSaMebtrvmLyM3Ak8AzwN0iUmKM2X0RVWwEviIi1zmjndcBHs5soKSUUkqpq4R2PFWPCnfWFbLN/nis9UVYD3veHczwGQfABbsWDwMgM7uGXeXDyNxXw1u/GUMWlQRwk7CvCTYSCkmyZ+JgxrMRWrERcYPQqxWGbK63UXMB2mD/5IEMOV5vO6nj7LrHhXVPn4ms66glhbTRe4mra6U9ycU0VrAraRgpToDLFGppyIslYWcT5fE5tIyIJptyomm20XbTnIxaIRB5I2l4cRPgoCuFFA4SHWzmwcgXAZjLMyyNv49syoihhcmRb5BBFY81vog3Pi1Up3xKmMIqfk0+NxLAxwCKuZ9w2lnhdDansYIZvEQ52fjx0EI0aXgJp53H33+W9JuqQ3nZTm01taRQeMMyjuIhSDgtvrPFbVHKctZu9jHGNDqPxwPvO0eIMaZZRMqwayvfFpFkbAixOmNMFTibzNo8fMDfGmM+NnVVRPoBbwOLjDGrROTXQImI/KMxppILYIxpEpEa4G7gDefnHmPMeafZKnV1cTs/dTaKUp9JGDa4pbpqacdT9SgXQftLK/ZrKMAI2Esaw8fZjmctyQBkbKyxUWNvhjuqt0Es9Dl0CnbC6YehV4J9+vC1ByAWTmdA0BVGxPoOTkzubdPGO2UsBx+JDDlYz+SqDRAL49kEFXD67jPbojzDE6yquw+q4K3JYwgnSAA3k3ZuYceI2wGIpoWE6U0sWP4os4N2lmG5Kwc/HhaNzuCx2S/aMgvgGebyGveSsL6J1ybexVE8BFxulrY9EnpPkiNthzYNL0uYRQA3hfEvsoD53M1ap/rTKeZ+SsklhzJqSaaQZaHRVbDbp5SRw1wWMp3lePCTTTn/P3t3HxfldSZ8/HfQzoAwvDjjiAgUZYQYwcVCoxXXRa1rNKvV1KbGJI0mtWZra/Pppi/bPGma5rFPmthuappuzEtjmsTY1KobNxqbqNQVQyxUVjAEMigFRBxnFBgUZ6qc549zi8T6go0ikuv7+dwfmPs+99so3FxzzrkuGyH+38B/73zvdzEeB0FKyQVM0iYHQcLYscWbP2xkDOF14No8QKOB3ymlooHTmIBzptZaK6U2AT+0Aksw4wh+rZT6GfBX4C6tdfNlnCsKeEhrvQFAa/1npdRsIPHchkqpFZiPjxKBd5RSAa31qC7X8ZJS6ofAMUzSIyGuIxJwCiE+GSTwFFeUZ1uD+WYVsAwoAtxw9wOvm6Gsg+GvU14HYIuewi31pmv0eFYE0Xd10PR6HImbWngjdjrT7FsAsLs76F8O/etgV1YeE4t2kzClHRZYxwcIwS1shRAUT8/BTsgEYkXQfwKUxJogbD6r4UVoWhaHkwC7GM80tlCX7+6c+zimvpK5z73C2iN3smPQTUys3834lF2UWIHc8WVmanS5fTQ/YBkAT8+5Fz8uHmz9KY2xbvpb8ffcQa8wl7U4CBLAiae0gUdyrTmYPNCZifYNZjGeImpJI4MqVrGQTKpNzU/LfF6likxWspg8SnASoJY0q8annRdZAMBCVtHIEA6RRBgb5WR3Zs8dMrAROH9NCiGszLTjLrBtxjmv9wMF3Thm2gXW7wf2n7NuL7D3PG2XAksvcJwPgLGXug4hei/p8RRCfDJI4Cmujm/Bjsk3MTF7t6n0tx6OLY0ihI1b/81Uaxi4eSs8A/v+K51R9TXwQwhj59jyKKaFtlBrN6VKwnYbY75QCYWQQRV1T5mu1KRWH1XzTE9mZmsN/X8M3AfjvGUQB8WDcsy8UR+dQeUtm7fCQkg80kL5oBjm8yrVZDLKW0OqVedlj2cka9ffCRUwMWs3C+f8J9mUs5AXGUYt9pCpLrHLPp6lrSZ/yhLfCzR54ujvg9Q6H49l3Q/A2m13smPyTVSRyXYKWO57iCAxBHCxkFUsxyQAshHGZQWSq1hILiWs4Jv8hrt5hsWdb6sTP2HsOAmQSRUBnGxnUme9UTA9ygFcBHFQ+ud8nDkHKYjYzkJW8bn9Uh1CCCF6Fwk4hbgiJKttryeBp7iyzgyvTYUkGqEFdnhuYmLWbhLWt4O7nR1/NUNaJ640dTlHPVoDeUAJ7MoaTxq1jKsoY9QvasyxJgPfBSIhsaKFuiw3qdt8HM+P6Bxe2r8OM+CuDo7nR7DLPp6p3p1QDuTBrNbN5lhZcCwlitXMZyYb2cI07t78OqSANysZgO/zGFte+wLMgEfmfI9HeBgbIRK87eAJsCvWXH8AJ2/ETieJQzTGmh7GJXEv8KZnChnWfNG3J09gJfeRxgEeCT3M0umPk015Z09rgZUcKZNqtjCNDKpYfeIOnAMC3MFq3mCWmbMKrGIhD7CctcylnGxc+GkkiSoymEQhjZj5m6uOLmTIwEbC2Jn5md+RRi1P7foOgfEuGWp7PZEHqBBCCCH6EAk8xRX1YNZDACxb8yienWbY7cTXdpvAMhu8nmQmbrOSVuZ12fHHwHdhXv0GUz0vC5MmBMAO+xakU0hBZwIi2+QQjtDZT4mPZUXhaG3nRc9dLNr2MvbJYdgEvAbPvXsX0zDDdsOxNjyrGliS9wLHsqIYRq2ZJxqicz7llke/QN3rbiugM/Mt7YSp9pg2adQCZs5mJtWUkMshkpjPan4+6Os0MoQkDgFmeGweJZSTzWr7Hayo/y5NKXGdQ2/LrUxFYezsYjw/4Cc4Bpj5mMs7HiA7opy5rAXM3NO9ZFNLGltOTOOlfl/hM/Y9zGc1DoK8wUwA/nvgLewin0aGUE0mqzvm87nxJsANF8Z+/H9kIYQQQgghLpMEnuKK6kyGMwL4EKiDpofiAEhc34KnvIE9c0zJFQdBPEesOaGpQBEcy48iYVM7b0+fwNRIU4v+lN0kLVrifYFiTw7ZlJOwsh1SwbPV7F+33E3CpnYW5b0MbtObemxpFI1Lk8ijpHN+posAnsEN7Mi6CRthJj6wG74FbIUhuWb+4wMPPcpSnsJBG1Vk0IaDJRUvsC5rOrNaN/Ni7F0ATMKUVqkmkx+ElhG0O8hmL078nUN7V3MHuxhPLqUUUkBaygGSOMRa5pJNeWdA7CLAJLbzKnewlKcAaIxIIpMqMy8Vk1yolDyCOPhwgIdS8ljMSsLYyGZv57GW8x0COEmikSQaCUXYcRA078G40JX/RxdCCCGEuNYUEtn0cvLPI66oM7UksWMCzzhI/GaL6VWcYdaNWVRp2izA9Eq2Qt1TblLrfSR426lb7GZq6U44kzvzdvAUNXAsP8rM3wTWLJ7NvMc3wBTTJLXUB1lQ7Mlh3OYy9iweSRAHE4/s5nhsROfQ16fsS5nIbkLYmPjAbtYsn40TP64FAQ6QBphhr0EcjFtZhmNxkEaG8POsr5NEI8tj7+f79U+aa0iZTSZVPNL6KN+OfZzx7KKWNAoo7OzJnMR2nPgJ4Op8b8qtXks7IYLEAKb0ywMsx4WfW/hvZrGRB1nGdiaxiOcAk7X3babyMI+wnAcIY2c+q3mRBRwgrXNIbjZ7O7/fwjSSaOQP789iwY3PsKr5hiv1Ty2uNkkLL4QQQog+RAJPcUUtWvWy+SYSjj0URUJRuwlA84FtViOrpua+/HRGbauhbpmbAE5SW3wwDcoPZpPaspW6xWbCaAAnYwZX4mhth8NAPdg8IRPI+qxjlgBZMK6ijKen38uSIy9wbFAUxYNyGLeizCQ4Ah6470nWTJ/NvNINLF1ugsU8SlnBUh4+8lPTqMUkGPIuTqaRIQRwdfZgZlDFnhTTYzuNLWyngGdiF+MgSBWZBHASJIZFReZ9eDN/Ci4re+4sNlLLMLIpp6R+Am+nTGA1dwB0DpW1E+YOVlNONi+ykKf2P0DBcNOT+QDLeZhHSKIRB0H8uGhkCGBKpsziDQC+f+Ix8gaUkE05adTyc77NrhvHs5a55N5o0gCXXqF/byGEEEIIIbpDAk9xRa1ZMBswczUTNrdzfHIE0fUdkAEMBraebTtqvUkelFrhI9XngzrgVrhlxVb2LB1JyMqsMu5IGZyE7bETcOS3Wb2K2yEO02MK1H3XTeoDPo4tjyKEneOxESRUtBPOsvHcUjPvE6D/L2Be3gaKp+dQwHYyqaaRJBwEeW6QGUK7qPxlxtgreSnlNgBGU04QB7mhEp6yL+XWIyZR0Sk7uGID/Dz0bb5hf7pziOxKFuPIbwNMgqUqMgF4g5mmliYhXCl+1jK3c3hsI0msZS6Leaaz93M5DxCTGOhss5r5ZFPOdiaRRCNO/Pw7j5FJFS78xFjB8cIBL1oBsAMXflaymFrSyKSqsydWCCGEEKJPkaR8vV7Etb4AIYQQQgghhBB9m/R4iivqTEmP4+4Ious6KLXnsXzeA7wWmkf0ix2QD6esTrcXY+9iUf3L8CHsm5NOWugA0a0dsA7GzKg8+6lVpFmSOMSoIzWMe62MY0ujAHj7uxMAmFq0kweXP8RCXgRgtf0OFvEyDoIs2vYyeyab4bFMBj9OptbvZGHKYoaxgoxQFQG7k28/+qvONsfdEbThIJtynAR4g1lk2KtYwIumPiimN7ORJJx2a/gsuZQzmiQaGVdfBsDClP/kRe+/kuapZS1f5A5Wsp1J7CWbNhydvZkDd53gm+OfIJNq7q5/nUkpm5nGFvYOMENuAd7kFpbxYGdSozPvdRAHDoL8hAcByKSKvWRz6GgSPx/47c4e3acalzIzyQzHlaG21wH55FYIIYQQfYgEnuKKSsJkho1e3wFZUEWmCTorOiAEDIaQ3XS0z+QNUzLlSzAqtQZOwptLpzB+6S4cre2UxOYAMG6lSRY05rZKeBqYA8v4AcvrHmJqyGS+ZTDMZCNDQo3k2UuY+Ohu6h5yM2ZNJUyhswRKwpF2lg56nKkf7mRxykrGFFVSnJ/DstJHeeyh+wHIpYQkDhFDED9OQth4IPQEq+1mPub80KsAlNtHU0sa09hCGBvljMaFnwIKWZzyJAAPsoxTbigll1lsxI8TJ35WsRAb4c7EQT8bv4RCCiikgG+n/JxJbGcX45lEIU4CgKkvWkUGAZwMoZFpbGEX48mmnC1M4xEeBmAX4ykhj/kDVzOERpbxIE78/CjpYX60//9Z/1I/vuL/9kIIIYQQ14wk5ev1JPAUV9S8+g3mmxHASUySnfWYDLa3A4fhkMf01A0JNXI8NoKHCx/hDlYzZkwlSXsaSTjSTtOguM4gljoIYWff6+mdyXSWb36IfdPTceIHILG+hbzWMvpvgolTdrPmIZP11vvdZDwrGli7dC4A2YPKmckbvDT5NmaxEYpgbf4X2ZU7nvHsAiCEjSAO5obWUmrPI4SNXfbxhLFRQh42uylJks8uhtDIN/gli1mJHyeZVLOI51jMMwA8w2Lmxv6evWRjI0whBTzCwwRwkUQjazHXlWll3f1Jxw8ojhjHEzxAEAerO+ZTEFEIQBgbDtrYuH8uBcO3UMgkfskSnmIpIWxstOp4zmQjqzvmUxuRRil5pFFL+YlsflT2GEPGHwCwqowKIYQQQgjRM5TW+lpfwzWhVJKGxdf6Mvqef3z47PftmCy0mUCU9frMV4Ay6/VYoBb4HLAKKACauxwzp8vrQ1a7Zmv9mU+2nrHWdT3Xe8CPgM3WdQDcDxQCrwH+v0Lep6DKWv+fVhv/X+Hz1voc6zoHAyOt/aKsdkHgm9Z+Q7pcb30lfN4a2vvOXyH7U1DZZb9p1jFnA8utdZ4u71UZcKrSnNADeP9s2jg+A/HWNW22jhdv7fPOYXANNu2awaoMA17rHsusttZl8T+PIK6WH5VqrfM+7lHycpQueftKXM9Zys0VuTbxySTPTSHE1XGFnpv/oHTJW1fies5SSfLcvJIk8BRCiCtKAk/RN8lzUwhxdVy55+aftl263eWIcMpz80qSrLZCCCGEEEIIIa4qmeMphBC9kFamVqwQQgghRF8ggacQQgghhBDiuqYVnJbIpleTobZCCCGEEEIIIa4qCTyFEEIIIYQQQlxV0iEthBC9kI6AkP1KfzbYcYWPJ4QQQvQO8tzs/aTHUwghhBBCCCHEVSWBpxBCCCGEEEKIq0qG2gohRC+klSJsv9L1VNqv8PGEEEKI3kGem73fNe/xVEplKKXeVUpVW19HnKdNP6XU00qpGqWUVyn11S7bHlJK7VNK/a9SqlQpNa1n70AIIYToOfLcFEIIcT265oEn8AzwtNY6A3gaWHmeNncAHmAE8DngR0qpNGvbbuCzWut/AO4BfquUirrqVy2EEEJcG/LcFEII0WOUUnFKqV8rpeq7rLtRKbVSKfW8UmqVUkpd6jjXNPBUSrmBzwCvWateAz6jlBp0TtMvA89prTu01keADcCXALTWW7TWJ6x2ewEFOK/2tQshhBA9TZ6bQghxfh1EEMJ2RZfuUEotV0odUEpppVTWRdr9i1Jqj1KqTCm1Vyl1a5dtlxzJcjkudk1/z7m01i1a63uAqi7r3tdaL9ZafxWItpaLutY9ninAQa31aQDra6O1vqtU4C9dXtedpw3AV4AarXXD+U6mlPqaUqpEKVUCJ87XRAgheoVr9QAVvZ48N4UQonfZAEzko79zP8LqDXwZuEtrnQPcCbyklDoTi11yJItSyq6U+vQ562KUUkmXeU3nPZdSKl0p9c45y3cufNuglJqklHoV8NONh8S1DjyvGKXUPwGPArdfqI3W+lmtdZ7WOg8G9NzFCSGEEL2MPDeFEOLj01rv1FrXX7olHUCc9X08cEhr3XEZI1mygLeVUplghr8CfwBmdPeaLnYurXWN1vrz5yxPXOyGtNbbtdZ3AKeAnEvc/zXPalsPDFVK9dNan1ZK9QOSrPVd1QGfBv5kvf7IJ7lKqc8BrwBf0FpXIYQQQvRN8twUQojz0CjCXOmstrjMiI9Oz2qtn73cg2ittVLqNuC/lFLHAQdwi7X5b0ayKKXOjGQ50uUYpUqpRcAmpdQC4GfAK1rr5y/jUrp1rvNRSj0N3KCUegb4KeYZMxczXeNTQMWlTn5NA0+ttU8pVYb5tPUV6+seaz5KV78DFiml1mHmoczGdB+jlPos8Ftgrtb6zz106UIIcVVdpQeouM7Jc1MIIXqU34z4+HiUUv2Bf8d82FeklMrHJHa78XKOo7X+ozX8dQfwhNZ6xce9tss49xJgSZdVB4DCyzlGbxhqex/wTaVUNfBN6zVKqU1KqTP/0C8D+4EPgWLgx1rr/da2XwFRwEprsm6ZUiq7R+9ACCGE6Dny3BRCiOtLDpCktS4CsL4eB0bSZSQLmHJYnH8kC0qpwcCPgJ8Ac5VSN13mdXT7XFfDtR5qi9b6A2DsedbP6PL9aeBfL7D/Z6/e1QkhhBC9izw3hRDib2kUp+l3rS/jQhqAZKVUpta6Sik1EkjEJHc72p2RLEqpIZg5nY9prV9VSv0eWKuUulNrvas7F3EZo2auimseeAohhPhbZqitZKIVQgghejOl1ArgVkwg+Y5SKqC1HqWU2gT8UGtdorVuUkr9KyZQ7LB2Xai1Pmp9fx8my+0PgWOYjOPnigIe0lpvANBa/1kpNds6b7eu6TLOdVVI4CmEEEIIIYQQfwet9VJg6XnWzzjn9avAqxc4xnlHspzTZj9mCkXXdXsx9Zi7dU3dPdfVIoGnEEIIIYQQ4rqmUVKzupeTwFMIIcQnilX77D+AqVrrFGvdjcC3gH6YZ+NCrbW+dlcphBBC9C29IautEEKIc3QQQQj7FV26Qym1QSn1v0qpPUqp/1FK5Vyg3XKl1AGllFZKZXVZ77Syq1YppfYqpdadpwj2ZbnQuaxtGUqpd5VS1dbXEZc6nta6RWt9D1DVZd37WuvFWuuvAtHWIoQQQogrRAJPIYQQXd2ttf4HrfUYYDnw6wu024CpC/mXc9Zr4HGtdabWejRQAzx27s5KKbtS6tPnrItRSiVdxrkAngGe1lpnAE8DK7scL10p9c45y3cucD8opSYppV4F/MCJC7UTQgjR+5ypf30lF3FlSeAphBCfHC6lVEmX5WvnNtBat3R5GQd0nNvGardTa/03db+01ke11oVdVhUDnz63HZAFvK2UyoTO4a9/AGac2/BC51JKuYHPAK9Zq14DPnOmh1VrXaO1/vw5yxPnux+r/Xat9R3AKUzNNSGEEEJcITLHUwgheqGrVE7Fr7XOu1QjpdTzwD8DCrj57z2ZUioCU0vyjXO3aa1LlVKLgE1KqQXAz4BXtNbPX8YpUoCDVs1KtNanlVKN1vqL1iRTSj0N3KCUegb4KSY4nou5508BFZdxHUIIIYS4BAk8hRBCfIQ1zxGl1F3AE5ynF7KbngLagF9e4Dx/tIa+7gCe0Fqv+DvPc9m01kuAJV1WHQAKe+r8QgghrqwOyWrb60ngKfqsz+mJ/Iav4FnRAJuslQ/BsfwoEh5vh0hgBHinJ3OANOyEAZhYuhs2wb6H0qkiAxcBHAR5lfncwWrSqO08R0JpO3tyRxLE0blkU04jQwCoJpMgDp5hMX9Rv+3ZN0CIj0lr/bJS6lmllFNrHbicfZVSy4ERwEyt9XmH6yqlBgM/An4C3K6UWqu13n0Zp6kHhiql+lm9nf2AJGu9EOJy3fUwLIGRY/fgwQvAro7xBLxDGZmxB4AATnx7U6EB8xwFYsb58QzwUvbeODgIxGP+wnwX+BwfKW8fk+ynrcRlBrSftBYX5iMqgCbMtreA9Y9c1dsVQvQsCTxFn1VLGp7HG0xfTb61Mg4S1rSz5ruzmRkyo/9shNnCNB5rfQiAUyOgfwqUk00eJTgJEMDJNLYQxNF5/ITN7Twy/XvMZS1+nARw4cTPqNIaVuYuBmAxKwlj49/f/4+evHXRB5h6ZD2b2EApFQMknJlPqZSaCRy1lss5zjIgF7hFax26QJshmDmdj2mtX1VK/R5Yq5S6U2u9qzvn0Vr7lFJlwO3AK9bXPVrriw6zFUJcQJsJOutPpFBPCgDhkzaSM7xUrhsDOV0qDJUDd5kf77YmJ8Hhh03QORRIAI4B2Zgg0uLOqMO3ItWUrvcDzUA8xOT5aXvKZRoVACFM2jAhRJ8igafosw69P8w89ELQlBsHQKK3hbp5btKoJWB3kdTqI3W9j+UtD1G8OAeATKrYsmAa8x7fYPprJkDCyQZKUvKYt34DxXNMu6Tpjbjw08gQ8ihlLXNpJAlXboAkGgEI4qCWNHJvLKK0x98BIS5bNPA7pVQ0cBoTcM7UWmul1Cbgh1rrEgCl1ArgVkxfxjtKqYDWepRSahTwA6Aa2KWUAjigtZ5zzrmigIe01hsAtNZ/VkrN5iN9I8aFzmVtvg94SSn1Q8yful+5Qu+FEJ88taZHE6DNawJBW3IrDXs9Vq+kghhN8mgv9tEharZZP4bJULNuFCNv3WN6RBsHY3OFCB+MJXmGl4YdHgB8J1MhBjgOeDCpxxqgrdhlglWsbU2Y9GN7eui+RZ+giZBMtL2cBJ6iz8q9sQgGAS3gajWJOvd50hm1uYbUET5oAeywY95NTNy2m3ErywA4viCCeSUbWPPd2cxbs8F8qpsK2ZSzY85NZFil/0rJo4BCdjGeMHYWh54h2tfBnpSRZFMOwFN8k/F0q/NGiGtOa30YGHeBbTPOeb0UWHqedvswCXouda79wP5z1u0F9p6n7XnPZW37ANN/IoT4uLIwQWNkCGJM72b4w1jcY+toPhqPLdJMSWnY5sE9uY70yfsAqNl/I87ZjVSuHkPyfC/ORD/BZgcMNW1Jto7vxQScXswQ2wIgJgRe+9k271hthBB9jpRTEX1WCJsprlAH/VvM4sRP8fQc3vRMYUfuTbSPg4mbd7NvcjqUACUQXd/BqWwoYDveecnwoTlGOdkk0Uji5hYSN7cwnl3YCbFo/cvYCBG0OyAStjOpc77n/+PfyaVUJrsLIYS4LoxMep/4gc3Y4oPY4oOQAL4dqYSLY2krdvGVAb/BPbkO33upuPHhxoctPkigyQV50PCeh/iIZuIHNpsqvi4zxNadUWcCSjsk3+M180NPWif9gLPzPechgacQfZT0eIo+K49SM1T2NUzqEiCxtIWNudksKnoZQlDX5ib1AR+jXqsxxRyAukFugjgYVVQDg1tgBuxLSWc8uwjiYN306QDcun4zwTlh3pwzhVtKt0IqNA2K49ulv+Kx3PsBmMYWqsig+mgmZzMcCXFpV6mcihBCXFiyGWp7I+9TeHISYCUD2unCueAgAL/a+20+N3o7N459n8JG0wa/HdrB+dmDBJsd1B9NIfxhrBku2w6+danm8Ld6adjroWGTh5gCP23NDvDbcX71IIHnh5pjZWESFzX07K2LvuE0/a71JYiLkMBT9FlbmAZb4fgvI4j+sZVUcwIs+ubL5sEGpG7ywbegKSWOxG1mOG5qqg8+9EEWFKfk0MgQpoW2EF3Swbr8XBwEzc7ZEMbGFqbhzA2QxgG2MI1puVv4vvdJANZ4ZpPPLtIG1lLdw/cvhBBCXJYySKGewuqbyc0oAqCeFLLv2U4z8YSxkTa6ltKjuYT9sTg9JhgNRjqIH9iMr3GwGTbrB3I0zrRGAhuGdma/9R11QztQDm2RLjNvtAICDMU2txWAcGEspIM11VQI0YfIUFshhBBCCCGEEFeV9HiKPms8u6AFttincWveZrMyBZgMdXPcpHp9kA97UkYyZk0lx+ec/Rxml2c840O7aGQIDoJEP9BB01NxuDibsfaUGzz1DRSkbGectwzscEfc6yyJfZKV9vsBsBFiL9lU/3o0sL5H719c3zqIkLnBQoieNcqUGKMCDmcMBuDEiQHUDEjHtzcVW3IrhyMHE66IJXmil4b96Z27+opjzdxMPxAJnxteyLvVk0xNz2jTJtzswDailfDBWGw5Vg9njANeUYS/2iUb6UGgsAfuV/Qp8tzs/STwFH1WNuVwK2Zo7ASz7pQd+n8IqZt9HJ8cQfSqDkJZdvbNS2eUt8Y0+jFMXbATKmDa4i0A1D3lJrXeR2Ld7s4hQ6TCmylTuLV+M/s86ZSTzbwjG1hZej9v5k4B4NYjm3l60L04FxwkcG8PvwFCCCHE5UiBGtIhEhoaTR1PTtqIH96Me3Qdvv0ppAx/nzZcNLznwTbCBI/jB+6iPC0bd4SPyv45ALy7dxK25FYcniChkyaobGt2EC6OxVbQauaAHgTGhYh5IEhboVXHc1wI3rLDZ4HNPXv7QoirSwJP0WcFiYEsmPqVnZ2Z8/pnA3FALgTtDgoX5+EkwKj1Nbw05zYA7l72uukFraik0D6JW1ZtJXqED1qBPNg36OwnvEk08lLKbWRSjYMgOwbdRNKgxs4SKusGTaeRJBZHrOQnMuFdCCFEb9ZuyqkUzHirc1Uz8YSw4+twQ5uiZtMoiIHksV4aVpv0s7tuHk+4Ihb3RB98oEifsY/mjnj6RZw28z7rrd7MEBAD4bdiTVXeSOADO23R9rOZbIvtcAS4GQk8hehjJPAUfdY0trAuZTq3ztkM2dbKHwPfBSrMy1vWbIUsODUF7n78dQDu+O4LPMLDkA+3bNvKvgXpjDpSw7FBUSSsaKdx6RAAphbt5FQ2OGKD2Ajjws92JuEkYBIbAUEcLCt9FNWigUd69P7F9c1ktZVC2EKIHvRZoNiO91aPSQSE6c0sOZFH/IBmiITkGV6aT8TTsD+dnPnFAJR9ZxzMBV+HG/eMOmreGwUpIWizMzJjD5VlYwBw3nyQQG0S2BVEYRIN1WCSCZWcvYyYb/pp+wdXD9646Avkudn7SXIh0WcVMolpoS3mE9Y6s3h/k2webimQ+GAL+IAi6F8OpJrl1c330kgSP8/9Ot7JyQRxQJ1VF3QTNJJEI0k8ln8//V8zdTsDOBkSMj2do1bWMG/9Buat30ASjTTlxplPdoUQQojerALI0QDEDzS1OAv33szgAYdp74giN6MIB0FSBtTjTGvEjws/LtxP1MFxCDw/FN97qRCCmHiTAd6DF5qBZrM9ffj7JthsBgZpSIf0sftInu8leb4X4qGtwQWOa/EGCCGuJunxFH1WCXlEP9gB94HXkwyAZ7NVGKwCuM983TH9JrIpxxYKAVBon4SNEN9+9FcwB2xZYUiFxKIWit/Koc16Gs5lLXWL3SyqeJnHsu4nZLcz7kgZuOHnc77e2cZOGOJDPXz3QgghxGXymqRApUdzzRxMwD22DoD4iGbKj2absinbUiEZ6G+CVD5QEAk5XyvGe8JDm9dFW7MDp+cgG3d8qXO6C/8ANXtHETPbT9srLkCBJ0QQB75fm1qf5Fltz+RTEEL0GdLjKfqscrJNvc7DdH4qe3xyBGsWzDYNxgElMNG7mxJyiX68g+jHTb3PqZt3UvxQDsVZOaSu8XE8NqLzIZhBFRlU4fE2EMTBmqzZ5FLCOG8Z6wZN57k5d9HIEBoZgo2QGXb7HzL0QwghRC/XAD7cOOKDZrRQCHzVqdSsGwXAlwf+liQaTUZaL+QMf4+c4e8B4J5cR9m2cbSVuEge7YW2Ls+9NLPYRrRCO7RtcIEHbFmtUGw3QecRzBKJ+XC4uCdvXPQFGkUI2xVdxJUlPZ6iTzu2IIqEbe2M+0KZWfFLmPfaBpgCdQfdpK7wcTwlgqkrdvLYQ/cDMJONHJsexbiKMqgHRkB0hQlIx32uDN4wh3rTM4Vb1m9lVF4NrIeXlt5GEo2UM5o7WA1A4pEWHIOCMLIHb1r0CWceoEII0ZNqqkfh9Bzknyeah13h0QJuvPV9vCc8vOxdxMjRewg3Oxg5Yw9lz44zO/2DCVBjxvkZMOAEzSfiiUn2EzppZ/bENWxonANAuDiW5BleGlJSGJn0PpWrx5ipKA3A56wLiAlBpB2cmNIsQog+Q3o8RZ/1CA+T8JV2dky+yQzdyQOKrI3lkFrhgyyILuqgbqmbxaxkMSsZ5a0hoaKduiw3j02/n2O5UVAEe3JHsu/ddCg3++dSwp45IzkVB+uWTieTauyEyWYvuxjPLsbDSaucS+W1ex+EEEKIbvkXKMh4i0DhUHy48eHGPdBHCDuDBxwmxuPH1+HGmdZI5d4xUAAUmJ7MmGQ/bV4XvmdTaWtwkTKgnrYSFxvem4c76TDupMPggYYdHjhpo3LTmLP5D5IBr7WA6fUM9PztCyGuLgk8RZ+1nAfgZ1ZSoDmYZQQmw209sAlwA3GQutJHEIdJJNRi9k894uP7pU+S8Hg7TIYxFZWEu/RAhbEzhEbKY0cSxk4SjVSRSRKHWHLkBZYceYE9KaarM+uJP/XovQshhBCXbTMUNk4CwHvCg/eEh+YT8QRw4iCIZ4CX0Ek7oZN2Ro7eY+ZungRbZNjs7woRc6efkRl7qD+RQkyeH0JwuqMfpzv6mfbxQIMy37uAJuvrzSGzeK0hul/s4XsX170OIghjv6KLuLIk8BR9loMgvGnma7ISswBN0+MgH/OJahzghh2LbyK11EdqqQ/ccCoVeMZsP3UfMBj40OxfN9lN3WQ3qdt8lJLHmPpKtlNAUquPRaUvE8DJS4Nu46VBpi6oHycVqz/bw3cvrnfyABVC9LgoSE/y4p5cR/aAcrIHlANmGG0jSYSw09bsIHzSRuW2McR4/MR4/LQ1O2hrcpKTtMds259DW7PDlGABAhVDCVQMxZl1EBqsuZ0VQIwmZrYf2oBCu1nAZLx97xrcvxDiqpLAU/RZ09gC2bBveroJGq3AMbG0BV4DUuBYSpRJMHRkN8/l3sVzuXdBCPpvgnUPTedtzwR2xd4E1UCcKaWylrmsZS4vTb6NW1Zs5e2UCTzIT7g19nWwQy1ptOGgDQdDaCSPUmw3t17Dd0IIIYTohjw4fGIwvvdSrZR8ZpJlTLKfG3mfAE5osxM/sBluCNG2xkXbGhe2yBDJw2soWzeOcFks1CqciX4zSqgNU8asBAJrhjJyxh7TZjbwpCJ80mZ6Pa3eU+IBj7UIIfoUSS4k+qwXWcgy+6OMqq8xQ2wB7EAIdjx3E2nUknrEB9lQN8jNogdeBuDUD6F/HAyjFgdB0lobYLApyXLLo1vJfKgKgAOkUbfUTSNJTGrdyRsf3sae3JHMZCPL+EHndXyRtYQLY3v47oUQQojLVAjhO22QEsKP66Obtt1shsS6QjQfjQe/nc/dsx2Ad/cXEB7YbLbbgUGaYLOD8Iex5Mwopuw9KwlRADM3tAlI08Q8FqCtxGVyMGzocrI8zs73FEL0GRJ4CiFELyRZbYUQQojLc5p+1/oSxEVI4Cn6rKWs4PiICKI3dcAMa2Wkmb/pIEjqep/JcpsKtUvTWLt8LgBzWUsqPrJbTSra/j5gHVR9N5PGh5LIDZUAYLOHSa33cXfodU654dQIeJX5LOUpZrERgBLy2MgsbAWthHv4/oUQQojLcjOEmx0kD6+hhnQAwidthE/aoT8kj/YymMOcYACVZWN491mTiAirQxNPCE7asMUHSR9YQ2VgDGXbxkGaNtujFLhC2G4OEbbmhfIuMB3Tywmmp7MEM9S2vqduXAjREyTwFH3Wv2/7D75f96R5mBVYK5+D/pEwZHojTXPicMwIYg91MLFoN9n5JolCgrcd6qB8+kjG1FfytmcCU9mJjRATvbs55TaHCtttvJRyG3mUkhY6wCF7ErPYiIMguZjg1I+TSRQS/kCG2gohhOjlnoD0r73P4ROD+fKA3wKwceBMAHz+VBr2emiIMQGps+AggeShANhcrTgI4vOmgidEuDgW+4yQ2ZbTSrjZYY7fDhTaCafbYZCGIwo+i0n2d2ZOZzOQBTzZA/crhOhREniKPitj8l7YBm9mTSHXbwJBRyjIIXsSNqv/8ZDdQaM9iYmRu0mobwfgeEoE0TM6GEIjx91W/q0pMHXFTk4tMImHAPzzXAyjllrSCNid2AgzsXQ3AC/lmgd1PrtYzgPE5Php67lbF0IIIS5fDjR3xNNW6OIFzxKzrr8VIEZZbdoU+CGUaIcYE1yGmx3UnPSYupwnzRQB7wkPI2fsoXJ/DsnDawBoaLDaBIDjCoCYcSaBUdsGa05pOma+50enmApxSR1EEJIM7r2aBJ6iz1rIi9RNdnNL0VZOZZt1/VvAE2rgmCeKhDHt8C2IWRAEH531O6MjO9iXkk4YG4m+Soal1MJJeHvpBKYW7cQ7LxmA7NBeAKrtmYSws4VpuHL9eI40mIy6QCl5JNFIW608QcXl0SgpgSKE6FlTTekT580HCdQmmXWRYWwjQoT9sdyW8RKl5FGzdxQDBpzAHmkCz0CTC+rtEAI8YXDasUeGqNw0BufNB2l4z+rOTLaG3DYoOAVUQFu0C1JCHx1qm4jp+RRC9ClSTkX0WS+yEAdBivNzCNkjCNkjeDNlCqfc1nDaGXD89ghcrS14pyfDVsxSAqMer2FMaSXFKTl4vA1QatUDjYQQdkLYCdodrLIvJISdMDYebP0pQ0KNvDloCst5gOU8wIssZAEvQqS+1m+HEEIIcXFvA5EQ2DkUTimzlNkJNzuwuVqpJpOa/TdCjMa3N5WUiHpSIupxJx0mZ2wxMXl++MCObUQr7ggf7hl1hE52+QDtlIJCK+gE+BcNCUCZHdZjlu2cnR4jhOhTpMdT9Flp1JJQ1M64uDLYZtZlLy2nfwmcyoPyZSPJCFWxPXYCmVTjXWZ6Mp0ECE53sJLFLORFjnmiCC51kNTqwx8bRxKNAFSRiZMA4+rLeC7lLiYW7aZ/XgfZg8rZbj015/MqrtYWbPFBSS4khBCidxsCTs9BQsl2UgaYzD6VJ8fgHl6Pb38KZRXjTK/lBwqSOVsmJQF8J1NhM1AAYX8slQ1jIEabobkJ1vGbMHU6bwjBW3bck+vxNQ6GZDuUW20+hxneG6968MZFX2BGCkk2+N5MAk/RZwVwwuPAt4A6sy51mw/qoH8RZHy3iujXOhi2oJbUVT68C0zgmVDaTkJLO9+cvILElS0wA1anzOeLsWsB2MI0APIoYVxRGW/mTyGNAzw3/S6COMijhPtYCZgg9o3Y6YQbZcikuDwdRMgDVAjRs5ohN6KUsgE5DOAEAO7RdTgIkjT8PcoYS/rw96lpG0X66H3UvDcKgJhkPwMGnMBHqlnf6IGddphgBY8V1vE94JxwkMBbQyERfL9ONb2fHs72ciYAZRJ0CtEXSeAp+qyqE5lmvkkR8D1rZTlwC7w9aAKTWnfCevBkN0AqDAmZnkw2ASNMIqLixTlkh/YyjS3UMowkGnEQBGAtc/l+6EkAsilnasVO8MFzk++iETM3ppY0MqjCFhmSHk8hhBC9WwPYCZFEI6WNZtKlM9FPTZMHPrBDmuZG3uewZzBBHCYzLeAZ4MWPC2I0NTtGmV7RUZzt4Yy0jl8M/UafNt8nQ0yBFbCuTj3b5n+RxEJC9DJKqTjgP4CpWusUa92NmO6dfpiYcqHW+qJzyy4aeCqlHu/GtbRqrf9vt65aiB6UOaCK4rdyGLe5DKu6CRyGNydPwUmAqth0kv6rkYRF7RAJhyabYNHT0gBuiN7WwbiTZbw5Zwq5lOA50oB3UDJOAgAmgdAIE3Su5g7Ks7J58fF/ZZH7ZX6e9XUAFvAiW5hmaqAJIfo8eW6K61oybNzxJdwT63AnHQZM3etA2VATGB5RbDz1JQoy3iKEHd+RVAD6DT9Ne0cU7uH1MBx8m1JNL2ZMyCQdOhNU3gDNR+MhGSiGtjUuPD8p5sTsAbS9YkWbBZhn9smevHHRF2gUoWswUkgptRz4IpAGZGutKy7QrhbzP/vM/+7vaa23WNsygJcAJybv81e01h9ejWv6e86ltW4B7lFKvdNl3fvAYuuYvwOi4eJFHC7V43kX8Mwl2nwFkAeo6HVC2MikCtzAN6yVi6EgtJ3oig7wwWPT7+f733sSDoPnSINpkwU7Jt9ECBtT63dyy4qtMAJ2TL+JiUd2UzUoE4BbirbCYCgnm28/8Cu4D9787hRqSePbFb8C4O2sCYzunLgiRPeZB6h8YHEdkuemuH61A4lw4sQAPj/A/H1ZTjbcoIlJDJjeyRWp7HKNxxEfNNlogWbiCRQONX9O54QYOWMPAZz4tqWa+Zxl5neZ8+aDBJsd0AC5Xyui/Gg2ZZvGQRPE3GmVVSl0mcBUiOvHBuAXwP90o+3cCwSmzwBPa61fUUrdCawEJndtoJSyA4la6790WRcDxGqtGy/jmi54LqVUuvW6qy1a6yfOdzNKqUnAVwE/WOPzL+JSgecftNaPXKyBUmr4pU4ixLUwiUISjrTDh1ifxwA+iF7VwZ7FI0mjlrmspckTRyIt8JppUrw0h4ne3Xg9yfAh1C11k1rhY2LFbo5lRZnhRcBz+XexqP5l8/p78PSge1my/gXq5rhZkzUbgCAOpm7bScy4oNTxFOKTQZ6b4vqVDcSEiB/QbAJOwEbYzOvcMYq2RGCsSR4UBEYmvQ9A5Y4x2HJaCX8YizPRT+XeMdiSW4kZ56etwdXZvxNYMxQKQtCMGcr7lp3ke7w07PWcreMJuGfU4YtM7dFbF+ICXEqpki6vn9VaP9u1gdZ6J4BSf9/cZKWUG/gMMNVa9RrwS6XUIK31kS5Ns4DXlFIztdZV1vDXzcCvgee7c02XOpfWugb4fHevXWu9HdiulHoKyAH+fLH2Fy2norW+uxsnvGQbIa6FF08shDcBO7DKWkbAscVRjLm5ElsohGdzA2Hs7PGM7Nxv3OYysIOnogHirJUl8FLWbVSRydzWDcxt3cCiR1/muZS7SKKRHYNuYj6rqZvjppEkysmmnGxKyOWOyS/Q9pZMWBHik0Cem+K6VgzpSV4A6ylWThAHNdWjmDnxd9Bf4x5bBychXBHbuZt7Yh3hk6aMypnyKSkD600w2QDkaMjR5MwvhkK7qdP5gR0mQMNej6nZ6bcWL/i+k2rqeQpxGUxSPvsVXQC/1jqvy/Lspa7jEl5VSu1VSv1KKRVvrUsBDmqtTwNYXxut9Z201qXAImCTUuofMQWQ1mitPxJ0XkK3znU+SqmngRuUUs8opYYppQqUUr+01ts5m0bsgrqdXEgpNQAz+KFzH2tsrxBCCCHOIc9NIYQQXfyj1rreGjL7JPBL4M7LOYDW+o9Kqe8AO4AntNYrrvxlXvDcS4AlXVYdAAov5xjdCjyVUkuBZcBRoOPM+QEZLiR6rUkDtoMP02v5M7NuTe5s0qhl3OQyoks68E5PxrOmgdQ8H8eWRgGQsLKd45MjiA518FzWXcwPvcrbCyZw97bXeXPyFKpi0wEIP2RjJm/gam1hS+wUtlPAeHYRxsZ8VgNQQi4Aq0/e09O3L65zUo/s+ibPTXFdGmWSCYWw884JM9qubYOZc1mfkYIzrRHfe6kkj/XiO+qmsnoMAOkZ+/C1pUJkiLY1LijQ1GwbhXOeVTrliBnuV9YwzgwWjLFqgVZgXp8CxlrXUGN9/W0P3rcQPUBrXW99DSmlfgW8YW2qB4YqpfpprU8rpfoBSdb6j1BKDQZ+BPwEuF0ptVZrvfsyLqPb57oaLjrUtov7gUyt9ae11sOsRR6eolc7k322aU4cbAW2wrwjG8zGEcB6SGu1htOehISidhKK2tmx+CZq7cNgGswPvUrQ7mDqkZ0wAm6p2EoSjSTRSHZrJYdIYkXs13EQZDTlrGIhfpxUkUEVGYSxc3fp6yanmBDik+R+5LkprjefghB2Gqo9pAyoJ2VAvZmTeQoaSSItohYGacLYsEWGcXoO4vQcpGbbKDgGXx74W5gAnFJwQ4hAk4uYAr+pzZkAeMz8Tt5RJtPtUEx/STNw0FqAmNl+U4ZFiMt0mn5XdLlSlFLR1pxMlJl4OQ8oA9Ba+6zvb7ea3w7sOWd+J0qpIcA7wE+11g8Cc4E1Sqnx3b2O7p7raulu4NlwnmxJQvRqAZycug8SK1pMoDnCrB+3sgzcsGP5TfS/zaw/lhUFqUAqTHx0N0k0whb4if1BDpEEJ6EpJY4dWTeRsKadhDXtBGOjGLOtkm97f0UatXjqG/j+kSeZFtpCOaMpZzRO/Dyde+/ZVPJCiE8KeW6K608bVO7PISbZTxBHZzK9kZP3cLqjH6Xb8pk5fC3NR+Npa3ARaDJLzuRiSIDfHv0yvIWp3wnQZqet2EVyhpfkDC+02XFPrMM2txVcYBvRCv8SMnNAGzBLpCmzIpXmxfVCKbVCKdWAmVrxjlJqn7V+k1Iqz2o2GChUSu3F9PVnAF/vcpj7gG8qpaqBb1qvzxUFPKS1fhVAa/1nYDYQ091ruoxzXRXd/bF+WCn1PLCJLpWVtNabrspVCXEFbD8xif6rMNOl11srIzE/7lNgYv1u1rw1m3lHNpDwQPvZz35GmFIsTR4by448CoehLstNGBsTj+zm2DxrSO62dvZMHomTAKnbfDw3+S4Wlb5MdGoHcwetBUzwe2v9ZlZ8ZinVPXr34nrXQYSUU7lKrlQh7EuQ56a4/nhh5PAygjjwWNl9wkk24mmmpjkdbgixcd2XYFyI3Iwiqk6Y8mJ+TObasD8W5oaIiQ/S5nWZ8iw3hGio9gDgzqjDtyMV4sGZdZDAqqHEzPPT1uyAsdbvu+PAuBBstsOenn8LhLhcWuulwNLzrJ/R5fv9wJiLHOMDzg44v1Cb/cD+c9btBfZ295q6e66rpbuB50xryQBOW+s05oH6sXSniKk1/ngFcLN13sfOZHC62DbxyfbzAd82VYkiMb2ZwLHcKILTHaRW+OBFmLZsC+yEUz+E/tb/unXzpltzNe0cj40gurwDGyFSvT5oAQaZdk2T40ijFlsoxNuTJzCzc6g+nXPzMqji6ZR7qd41mrPRrxC9k1LKCbwMpAMhTF7JxecbgqOUisQEb5/HBFbvaq2/Zm37RBTCvgR5borrz51QfyKF8EkbzZHxALQ1uPCdTCXG4yd7YDmlWfm4kw5Tun88MYlmSkvDOg94ML8J+tsYMOAEbZFgS27FFhmmrc0Elb7qVJPRtr82cz/zupw7ZH1NBt6yQ1XP3LLoO+QD296vu0Nt5wBpWuuJWutJ1jL5knt1z5kiphnA0/xt0VKAOzC/0kYAnwN+pJRK68Y28Qn2tcbnTA3PfzMB57HcKBLWt5ug8zUgzyQSwgf9i6A4N4fi3BwcBEmsbyGIg+jWDqgDV2sL2MGbm0wIGyErsEx4oB0waefLyYaT8NKg2zqHKDlCQWay8dq9CUJcHg08rrXO1FqPxqT5eOwCbR/H/JmZobXOBh7qsu2Sv9eVUnal1KfPWRejlEo6z7k2ABOBv5xn2wXPpZRKV0q9c87ynQvcD0qpSUqpV+lmIexLkOemuP48D/EDmikYWEhbg4u2BjNM1pbcSuaAKupJIT1jHw6CuIfX01bioq3EZeZjukKmhzMyjIMgxJhIsq3cquNp9fvnZhSZb5KBBrBHhkyJlVOYpb/+aEAqhOgzuht47gf+eqVP3qWI6WvWqteAzyilBp3T9MvAc1rrDuuT9w3Al7qxTXyCfS3pGRN43n42cRAjMHm7BsO+OemQD7iBn9KZNGjqtp0cS4liJYs5ZccEpq/BcXcEB0ijlmHUMszM/fweRLd2sIVpuAiwLz/9TN0nwMwRPROQCtELuJRSJV2Wr3XdqLU+qrUu7LKqGPhIcAgmQAS+gplroq19D1vbuvt7PQt4WymVae0XB/wBmHFOO7TWO89kAzznOi56Lq11jdb68+csT1zozdFab9da34H58zfnQu26SZ6b4vpTYLLavs+NnYmDfEfdxA9s5gQD8L2XyuETgwlhZzy7TMAZD86Cg9Bm7yys4CBIepKXcLPD9Mk3W0sTlDbmQWTYTHuJgcCfhn70Gn6nzFzP9p65ZSFEz+nuUNsPgW1KqQ18dK7Krz7m+f+miKlS6kwR065Du1L56CfddZwtdHqxbeITbDTlJqiMA1qtlZFQN91Nap2PUetrIBu8c5Lx5DXgDPlNG7cpg7KUFbwRO51p39pC9IcdRJd0kJ1fTpuVbCGttYE3B02hhDzyKMFBEM+2BpImN9KI6bSxETbHvCGEEJfjKpVT8Wutu9WXoJSKAP4VuowhPysd8+fkw0qpSZghqf9Ha72Tbv5e11qXKqXOFMJegCl69MrHLYR9gWfI+e6vsxA28FNMgD0XUMCn6EYh7EuQ56a4/iSbqSJhbPSLMCPEbZFhfHtTcYwO4h5bR/PReBrKPfhGuE1ZFCB00m6CxQKg2E5ZzlhiEgM40xoJnBp69icgRkOZ3Qzi9wDx4B5dhy8hFY5ZbaKsr4PAmmYqRLdIGbLer7uBpx0z5Cq7y7qPk3ThmrA+3bc+4Y+7ptcirr43mMUSXoCT8NycuwBYdNvLJD3vo3hxDuPWlHHKDTEEOZYSRcIa6+PVPCglj6nbduIZ0QAfQt1kN6leH4nbWjieHwTMnNBbUreSOagKT1EDYNqtZr75JBiYxHZKyINamXMgrjtPYQLKX55nW39MPco9WuvvKKXGAhuVUp7LOcH1Xgj7EuS5Ka4/ZeaLjTANvzY/zv98zxv8IWYmNTtGkTzR6sVMMImEkjNMZOg76gYvuL9Wh69xMM5EP4GKoYSTW3F6DhKoNR/GxiQGaIt0QLIdZ5apneLbm2p+8rKsa8jCBJwfZ4a1EKJX6lbgqbVeeJXO390ipnWYT6P/ZL3u+mntxbZ9hNb6WeBZAKWSrrs/AMTlaWQIbIO3fzOBuZgss/wEgrFRjDtSBv8G/VPAld1C/2mczWq7Dr4f9ySE4Hh+RGcPaGrcZpomx5H4zRYAji+PIGB3sZ1JFOWHGE05Q2gkgyozvwUoIY9s9pIxfq9ktRXXDSuZzwhgpta64zxN/oIZjvoagNb6PaWUH5NIp45PSCHsi5HnprguHYIU6incdLOpxwkUHi0wdTk9ISaxnU1pUQRqk5g9/LdUYbLaOgYGCX/Nho0wvpMpJtD0QthlJ1ARy+dGbwfg3f0F0KagBAIVQ808z0TM1zN/kXqt15lAeQ/euxDiqrvoHE+l1CUTIXSnzYVcRhHT3wGLlFIR1jyW2cDvu7FNfIJNopCm38SRRykJ3nYSvKZHM2FNO7yJyd3ZCrWxybAM3lw6hTeXToHb4dTtQAlEr+ogurWDW1dthmrM/M18IB+CdpNAaNGal6kmkzGllQRwMYxaVrCUFSwljxJqGUampOcTl0mjOhNZXamlO5RSy4BcYLbW+rxjxLXWfmA7MNXaJwMzsN37SSqEfT7y3BTXtWwo3HszeMDmasXmMvNUkjO8pCd52cI0MwT3iOJ/Ov6Ryk1jqNw0hpqj6dTsv5HBHGbk8DKIDJN+6z6ciWYKSz0p1JNiAthmSL7HC/UQk+c3Q2xdmPqfb2GG4DZhclgLcRmu1XNTdN+lkgv9XCkVpZQacKEFMy/n4zhvEdNziq6+jEnU8CEm2cWPrVo2l9omPsECOEmsbzHzLUswyzcAN9QtcLN08uNgB8+aBnBDGrWkUQu/gJLYHI4/FwH5sGbQbMiD43kRNJLEwnn/ycJ5/0lifQthbBybF8V4dvHz3K8zqqKGIA7m8yrzeZUx9ZVkUsXGXZK3Q/R+SqlRwA8wPWi7lFJlSqn11rauv5PB/K7+gVKqHFgD3KW1bu6yrc8Xwr4AeW6K61fQlEDhGLgH+nAP9DFt4BbaO6Ko2TsK349NbbLksV4zr9MJOCF7YDk0KAr3T6P+RAoU2zl8YrDp+WyGhh94aPiBpzOQbaj2QDa0veIiJttvxk9MsBZPyASdW67JOyCEuIouNdR2NGaUvTrPNm2tb/o4F3ChIqbnFF09jUlycb79L7hNCCFE92mt93H+3/cf+Z1svd6PSSVyvrafiELYFyDPTSGEEOI8Lhp4aq27W25FiF6nhDyoA3tKyAyPBd6cN4VbNm8ltcLHim3fha1Q/F85uPAzak0NAHuWj2RcRRnerGQ8v2gg9JyNuiw3W5jGNLbwc74NwHMpd5HGAULYuaVoK9Oyt7IvK53tTDLzS4FgioNpoS3E5PglT4K4LCY7nySlut7Ic1Nc12rBER8kQKxJGARsLP4S7hl1xHj8pPzQDJr9w7ZZEG16PgFKd+QTk+enzesie0A5756cRJvXZXJDZwELzOHDb8WaOZ1N4LzZJB1qK7faNVvXcNIOORqSlczxFJdFnpu9X3ez2gpx3Ql0OMEHnlUNNC0w2Rj9OCHL1OSMpoOmpXFkh/YSXdLBsXkmh/uYikqOj4ggiAN+CMOoJYiZz3kmaRCYup9TV+2keEEOL+XfRil5pFHLwxU/pTgrB4Ba0thin0bbaleP378QQghxWY5DVEQ76WP3UVM9yqxrhuaj8YSbHdQnQqV3DKRpnGmNZsgsZq5mW5MTmqH0aK4JLtsxff+RXY4fD+mT91GzYxSBNUNNIqFEiPmqn7YS6znpB8rUxy9oJITodSTwFH3WzIiN5oFXAolfMJlo7/7u6+CD6JYOTt0KbThIfLAF8iHhAaucSgjCT9kZU1QJwMTQbmiBzBG/ImSPILrEJPm85cOtHL89gioyuHvN60yaV4gz5GdN1uzOADWJRt5gJkPmH+DQHT3+FgghhBDdl2PqeA7mMP+cYUr4lnpy6RdxGsfAemr23wjtkDt6F4cZTG5GEWDKr7x7ahLOCaZESjDH1P9sG+QEwJnWCEB8RrMJaBsgeb6Xhr0eiNG0veU6G6DGY/It59EL8lMLIa4kCTxFn9VIEsemR5HwYXtnWvgd+Tcx8chumgbFkbi+Bc+EBpgB2GHf8nQARh2pwdHajjc/mbTWBkL2CDZ6ZjG3dQNb7NO4NXWzOVgkVNszuXvN65BvHtYb7bNIo5Zx3jLT5jC8mj+fQ98Z1uP3L4QQQlyWNvBVp+LMCJgstECgcCjcEMLXlkpyhpeGyBRqO9IAKP2TNY8lJQT9NYE/DYVBpupOuEzBuBAU2wlEmt7MULwdmkzQeWYoL2UK4sGWYxIPOeKDBN4ZCht66qZFX6FRnKbftb4McRF/d+CplIq4QH03IXqFhbxIwoPt7Fh2U2cP5MTNuyELXK0tHJ8RQdDuILGkBdbDqMlmjueOZSY4LSEPT10D/UMdzKvbwL456eRRyrEUMyQ3oaSdMSWVvLl4CplUsZ1JzOQNEotaKM7PAaDRM4RMqhnyxAEOLb8mb4O4TnUQIanc+xh5boperwByM4oo3Zbf+Reie3IdvsbB0F93Dq11R/jIpIr6sSY4Ld2WDzeEoMZOTHYAgPhbm2l4z2PKo7SZeXfxSfUMnniYmk2jTEbcfUAeOLMOEtg5FICAP9ZktZ0NrO+h+xZC9IhuJUFQSq1WSkV3eZ2EqeEmRK/1bX4OI8y8zjGLKhmzqNKUUklx038VHLIn4QhZczbnwKnvmWVixW54E2aG3uBYlgkym+bEMaq0hnKySVjRTsIK04u6b3E6t9RvxY+LmbzB3fwGIs0Q2yQaOUSS+fq+9HgK8Ukiz01xXXoeDjMYmqFg4lsUTHyLEycGgN9u6nOeNM3shKgik9L94yndP56YcX7Sk7wwTtPWYHo3G6o9OD97EBpgZMYeRmbsoaExhZr3RmEb1wohzGik5zGlWeIxSzOmqFJtD9+7EOKq6272vWqgRCmVo5SaDrwLrLpqVyXEFZBGLU0L4hhNOdyKWVLNENympXF4ihoI2h1mXokP+j9jFgCyIbqowyQY2gSJFS08l3sXtxRt5fjiCI4vjoDXMNsjYdy2MsrJZiEv0pQbR+pKH6krfSwIvci8ig0fs3iCEOI6JM9Ncf1xWTU2h8L73Mj73EhbswP8ULl3DM4sM4czhJ0BnGDk8DITkAKHTwzGPbweToJngJeYZD+BNUNx3nyQyv05VO7PYWTS+3AcwiftuCfWmeRCBdDmdTFy9B5Gjt4DBZqY2X665PITols0ihD2K7qIK6tbQ2211j9SShUBRcAxYKrWuvKqXpkQH1OQGBKPtEBdC8emW8NjV7UzLruMfbnpbMyfxfzQqxxfHEH0gx0c+65pE8JGGDsOgoSxse+hdMrJppEkTmVDwG4+zT201Ma49WU0zYlj1+Tx5FHKWkZziCTKF2cD4KANe1YI/nxt3gNx/ZK08Nc3eW6K61I7EBMiJjmIrzoVgPSMfRyOH0xbuYvAqqFQoKncn0Pu8F1UVo8x+1k9oW2R5hhl742Dg4AfArVJ0GbK2lbuHWOG7lan4luXaobhFgMuqNxkHSsS02sa1YP3LYToEd0KPJVSKcCPgdeBUcA3lVL3a63DV/PihPg4XATgSTi2LIqE20zG2j2vj2TM5krC2Fi07WUIwfHJEZz6ISRss7LaftgOPnjsoftxEGTJihfIXFBDMDYKf2wcqfU+wAzZbZoTxyGSAHCG/OTZS3AQZAgmg18peWZ+abzu8fsXQlw78twU16V4yEnaQ1n1uM6stn/YMQv3xDraQuBccJB+Eafx7U+hdP943Bl1AFbBsSBlz46D/jDynj1U7s+BLGWCTlfIHN9vx7c39WzNzhgNHgV2c24AGjAjkWJ66J6FED2mu0Nti4Bfaq0XAvnAX4H3rtpVCXEFFDZOggmml7Pp9TiaXo9jTH0lxydHmGDQboLO6G0dlMTmmCQG6+HU7cAc+L73SZYceQGAFbFfJ+HxdkrJozglh+KUHABqGYYfJ7cWbWa1/Q4mHtmNjTCJm1tI3NxCGrXYCEOhulZvgxDi2pDnprj+7DPTUdIz9vGHvbP4w95Z2LJa8e1P4cwADN/+FDOktlaRTg3p1FCz/0a8JzzY5rbCzVaQ+Y5iZMYeE0h+YDcLmKCzDZyzD5pn4w0hiAL36Drco+tM0qH+wIc9fvfiOtdBBGFsV3QRV1Z3s9pO1VpXAWit/wp8Syn1hat3WUJ8fP+ctAV2APWQuMLU8Xx76QSmVuzEE9nA2/kTyKSa6BE+xj1aBt8y+/UvArJgTcps5q3YAOUwizdY993p3Fq6mVMjzp4jGOvAhZ+m/Dic+Nk3KJ1R3hrenm7qt2xkFplU9eRtiz7CDLWVh951TJ6b4vqTZ2pyOgia+ZZA5bYxxIzzE463EXhrKCRD89F4ciYXU3o0FwD38HqT+bbYzshb9zCYw1T+A1SuG0PMzX4zTxTgpA2aFSRDwDvU9HLW27GNaMW3zQztZSeQ3ON3LoToAd2d4/k3fzlrrf/ryl+OEFfOH/48C0owAaWJO8mk2hSkfg2mfmunCSLjgMlwzGNNKPFAwvp25sZt4NQC6L8KYggSwAWp0L/ENPNOTuZFFnAHqzlAGrNaN9O/Dp7LuotGa/jtNLbgJAA39OSdCyGuNXluiuvSThjMYUob87BFWj2XLhgw4AR5A0ooKcijrclJ+KSd+o4Uwv5YAHz+WFPjMyfdDLEdXmbmaJ6EtmYHzkQ/gKnz+S7wOaANyNHEJAZoW+MyrwHyMMNshwD+nrt1IcTV93fX8RSit/u3z/xfnvvMXSxa9XLnkJ2SZbk4pheSkNcO5dD/Q6AO6ua4SfWauZucxAySmwL964DDkLithbTJB+CnULfcFL32VDQwPmsXVWQSwEljbBJ38zrZlDONLQCsZj4h7Hx6/Af8paffACGEEOJyfBlKf51P+j37iLcmYpYW5uOLTMUXMxh30mFINIGob28qtuRWAGyRYQZzmAbSscUHsRMytTkbhpKbVELp3nwAYrL9tB10mYCyGdP7ORuTZCjeuoZizHPYA5T32J2LPsBktZWRQr1Zd+d4CiGEEEIIIYQQfxfp8RR91lrmUvu5kax5d3ZnD6SdMAmPtkMKkA3UQdOcOFK3+dgzeSQAY7yVFC/PYdyRMoiE4z+MIHpTB1Mf2Anfgl2MB8A54g0mUch2CvDjYj6rKc7KIY0D/J65ndewmJX8ZZ2MtRWXp4MIqSEmhOhZ78HsdWvYsG4eZFnrIiEno5ggDg6fGEz8gGYa9npwj67Dt8Oal5nVSmlJPnjM8Nyy/WNJHl7D52Zs593G8aZeJ9AW6TLH9WKG1k6AthKX6e20prGwEyjo8loI0WdI4Cn6rLmshWVQwPbOOZe3VGzl1Leg/y/gzQVTuOXkVhLrW2ArjHFbJfbiYNwDZRxbHkXC4XaiWztMrc45JuDcyEwA0uy1uPAzLbQF7PAGM7m7/nUeSHmUpTwFwJLNL7B4+pM9fu9CCCHEZRtrfbjqwVSfBWIK/JTtH0vO8PeoKRyF/eYQtuRWUqjnRN4AAMInbeROLKK0Oh8iQxAZpqHaQ0OFxxzkXev4Lkx23Bs0nFRQArabWwk/FwvTTRP3PXX4fpDagzct+gqpf937yVBb0Wc9dXQprDcP0VFFNYwqqoEiKI8dCXPglm1bIRWKU3LYsewmMw/0Q8AH+5an84YVYFIOYewEcTAttIVf8g1+yTcIY+MAaXzD/jSzWjczN7SWt1MmcB8rO6/h6en3mtItkdfkLRBCCCG6bwukUwNecH72IM7PHmTwgMPQoPCe8OCeUUegyUW4IpbSbfnED2gmfkAztsgwpe/lm0AyMmySCZ3ELDkaFmGWU0AAeF6Z9eM04bJY08Np8f061ST9k/hBiD5HAk/RZ6UNrIUFcKt3M3X5bury3VAHY9ZXQgXwIBCCMDbGt+7m2Jwojs2JYk/uSEZV1HC393WasuJ4bPL9pBb5uHvz6+yyjyfhSDsJR9pZyWKSOMTP+TYlsTlstM8CoIQ8AjgJ4GRJ6QtMovBs0gQhuulMORWpRyaE6DFOKD+Rja2glUDFUAIVQ4mnmeSJXuIHNDOeXSbb7SkgTZtezWoPbSUuYrL92G5upa3BReD5oTizDuKeXwcfKIgJmeUdcw4WAA0KypQJTg9iJRuCmHl+MxUm6hq9B0KIq0YCT9FnZVIFPjieEoGDIA6CHP9hhAk63eB9N5kmTxxp1NK/BbZTwHYKGLO50nzaCtQyjO+vfJI9+SOpm+5m6pqd7Bk0kj2DRvJq0b0EcVBONtmhvYxnFw7amMYW/Djx4+TnuV8njVqs5IBCCCFE7zXEZKwN+2PNSJ1IKN0/Hhd+2jui2PDePLPNBbb4oHmeVoB7Yt3ZWp1NkP61fQR2DsW3N5XkGV7w2sFrx/l/D0IIaACStRnSG4OZ93nKLG2vuExw2n5N3gFxHdMoTtPvii7iypLAU/RZDoKwCaJ/0UGCt50EbzuH7EkwGU7lQRAHid4WUkt9UAJ5lJJHKRw2+6/xzCaJRsiHMfWVbKeA43Mi2Es2e8lmXf50kmhkLXOptmeS1OpjC9OoIrPzGvIooZxsPjdj+zV6F4QQQohuijFDbXMyirG5WrG5WuGIor4jhUBtEoTA5molxuPHPdBnAkePed7aIkOE34qFeDh8YrBJNFQBDfvTTaDZAIENQ80IoD9hejxjNJQBTZwdmuvB9IAWXIs3QAhxNUngKfosPy6YAbiBOrP4cUEG9F9nNTpMZ+9mI0k0ksTx2yM47o5gXukGbIRgE5yKg0MkEb2tg1lsZBYbubV0MwGcpkcTaIx1cwevUkUG1WRSTSZrmUseJVR3ZPT4/Yvrm6lHZr+iixBCXFQb1JBOEAfxA5uJH9gMxyHQ5CJ9+PsAOOKDhE9aw/ebgWaoqR5FuNlBzGw/RIJngBdO2qAN3MPrIQ/Ig5ib/WafhDPnUzAWE5g2WctOYCgm+BRC9CmS1Vb0WaUduTACTuVDVWw6AOO+Uga3w44FNzFx827WTZ/OrRWbeXPOFNO7CUSXdLAvP51R1JD4aAvHvxtB9MoO5i9dzdPT7+0MNP25TlwE+PbmX8EITGmWyXGs5g621H8BgOPuCJbbv0OgeOg1eAeEEEKIy+CF5qPx+JpT4IgCoGDyW7zPjdRsG4V7ch2+danE3OzHtynVDJMFnJ6DBP40FBJN6ZWy/WMZObyMynFjTLKgRNPuTOkU99fqaD4aT/zAZnx7U6EYbD9qBSDc7ID/ViYYFeIynPnAVvReEniKPqsgohDWQf8RwBxrpfX7aBfjGZ+/m1s3b4ZYKAhtp9puhsi+nT+BYdTizU0mmOtgF+MZsrSRYdRSQGFngNpIEqOO1JiaoM8A34Kf8CBpHODBlIcAGM8u5rKWH6U90pO3LoQQQly+UXDjwPfxD3TRcMTz0W1e8KWl4L61jtMd/Wi7QZvhskDgraHghLZyF2UhF3ihsmyMKZ8yirM9nMeAlBDNR+PJHVhqanxuAFyYkipgEguNBdb0wP0KIXqUDLUVfVYtaZ1DbQspoJACkyxhJ3z/tifp/1Monp4D9RD9eEdn7s+p23ZygDQ8FQ04CLJk5QskcYjs1krC2DqH5DoIsm9QOnuyRrJm+WxeSrmNuazFRYBsysmmnCAOtjDNpJYXQggherPD4D3hob0jCvYB+yCEnRTqKfjaW+QO34VvRypREe3kDH/PfJhrB/eMOghATLYf7DDynj0m6EzWJpnQMWuJAurthCtieXfdJCi0wwTMvM8UazkJ/C+SDV6IPkh6PEWfZSPMvqx0Rh2p4YusBeDUMgjGRpHgbYd14MJvHnQjYNTKGgCaFsdhJ0xdltsM2ciCAE7KY0cyhEYCuAAT2AZxkEsJY7yVvOmZQhWZzGVt51CPKjJYHHqGlfbFBK7JuyCuVx1ESAkUIUSPaytx0eYJmYAQeHd/AZxS2Fyt3DjwfbBDe0cU3pMe0sfuA8wcTyKhzWuej74ON7RhekQTMUEngJ/OBEK2rFbCxbFQC+R0uYAG4PMa3lZX/V5F3yLPzd5PAk/RZw3jAJmtNdACieUtZmUqJPy4Hb4FzIAhoUaa8uNwhIJEuzsASCxqIXHNbt5+agJTi3ZyKhtC2Ez9zw/B/t0wAKNW1HBsaRQJ29oh1WTJTaKRIGZ4Lpjg95A9iep1o4H11+BdEEIIIbopGfCEsEWGcFgjdYLNDrIHllPamIf3hAcSIFAxFGI0bZGmhIrTc5CMjGre3TYJZ8FBkwH3JCTP8OIgSGX1GABGjt1DZfUY3BlmjicnMYHpKcDb5TraFLzXg/cthOgREngKIYQQQgghhPgbSqk44D+AqVrrFGvdjZhunH6YeHKh1lpf6lgSeIo+y4+L8tiRjPFVwipr5e2YQtXr4djSKII4SF3jgyngTUkGwBNqADtUk0lt/jAWVbzMrb7N7JuTzi7GU4UpjbLc/RC7GE/u5BICuJjbuoEXY+/CRohpbAHgYR5hPLsgrafvXlzvJDufEKLHtQFeO2SFyI4oB+D9gTfSTDwjk943PZcnIXm0l4bGFPCb31HBSAfhgTaohcCaodhubsUxO0jDex6oAerN4YPfc5gkRaSa4bc5GgqVyb9wg3UNa63vXWf3E6I7rtVzUym1HPgi5q+9bK11xTnbncDLQDpm1rMXWKy1PmJtzwBeApxAAPiK1vrDq3VNl3s+rXULcI9S6p0u694HFlvH+x0QjfkNclESeIo+q5EhHCCNMa9VcuqXZl1tbDKe+gb2paQzan0NoTk2dsy7iYlrduNxW7nbW4B8WOJ9geMpEbyZNYVcSghjY2Hry/T3mWZ189yEsBHAhRM/y2K/xyS2kxsqIdpnhu0+kLLczCON7Pn7F0IIIS7LIcBvMtsWNk4y6+rt+FJCUG8neayXhmoPDds8JE/20p4YBUC/iNMcZjC22a2Emx2Ei2MJJMeaP7ELzNBdgIa9HjO89hgm0+1/K/NhcJqGSDONhdl2SSwkrjcbgF8A/3OB7Rp4XGtdCKCUegJ4DLjX2v4M8LTW+hWl1J3ASmDyuQdRStmBRK31X7qsiwFitdaNl3FN5z2fUird+r6rLVrrJ853U0qpScBXMbO3T1zg3j9CAk/RZx3qSOLW/ZvNQ83i2Wx6MzPjzNzPajKZWLqb43MiOGRPAsy8zNT1PrDDRvssxrPLzPsc3MKDnodYVvcoANsp4O4jr/PYoPsBeLjop3jzk3nKvhRnikkl1EiSme8ZecnRB0IIIcS1dRxsBa34rSR6AO6xpnxK4GQSdkLQADHj/DTsTzdzMS3Jo61JmmUKPODMOkiw2UH4lVhsXw0CEK4ACkLw36ZXyvkNq/7nOwr6Wz1VbZj+IPnAVvQOLqVUSZfXz2qtn+3aQGu9E0Cp8yfE0lofBQq7rCoG/tXaxw18BphqbXsN+KVSatCZHtEusoDXlFIztdZV1hDYzcCvgee7c02XOF8N8Pnz3sT572s7sF0p9RQmRdifL7WPBJ6izwqdtLPPk86oD2vof+ZXRh6wFfq/BsWLc5i4fjd1c9ykbvbhOWn1ePrg2OIok6G2dQP+2Dj25I9kjLeSKjJ5LOt+AL5f8SRNWXGdmW3X5M/GiUnGsKjoZQAeyf+eqftZK9n5xOXRKMnOJ4ToceEPYwmPbcaddBgAX+NgkpPqSR/+PjU7RpE82UvDXg/u0XWd+zgImsy2DZjhs22KwM6h2LJaoR7aXjGBbMydfpP59hgwAgIbhnb2bjoXHAQg8MuhEAOc+ye3EJdwlZ6bfq113pU6mFIqAhN0vmGtSgEOaq1PA2itTyulGq31H/kp0FqXKqUWAZuUUguAnwGvaK0/EnReQrfPd851Pw3coJR6Bvgp8GlgLqCATwEVF9q3K6njKfqspQNWMGpVDcTC8fwIjudHsGPQTZBnAstxK8rgAVPyZMf0m87uOAISStsZ92AZK2PNKIgxmysBeISHCWE3cwjiINHbQggbLgJkUkUjScxlLU/n38vT+fcyizcoYLsZRiSEEEL0Zv8E6WP3cbqjH77qVHzVqfCBHd9RNzXVoxg5cQ+T2A4N4NuW2rlbc0c8Mcl+cicXmTmbgHuiFZjOxQyvPQltzQ5sya1mfTxmHmcT8A8QWDWUwKqhpt8kCxjUQ/csRM96CtOv/8u/Z2et9R+B7wA7gEKt9YoreG0XO+8SrXWy1vo+rfUBrXWh1vob1vqvaa3D3TmO9HiKPmsX400FkziIDpk5l42TkyAOU8fTDsyDqUd2csoOxXNyABjnLQM7eJcls+TBF2haFgex5jhhbJ2Jg6iDp/PvJYlDZFBFYlELafm1rGApQWIAcBKglLyzc1eEEEKI3soL6dQQjrBR7jGrAhVDCZ+0Y3OZgPF9boScEJy04dthgk9bltlW6s0n954iSqvzOd3Rj/BJu5nnaU15cSb6TXCZALjMcNyAdyi8BbRb1xCPJBUSfZKV8GcEMFNr3WGtrgeGKqX6Wb2P/YAkLvBToJQaDPwI+Alwu1JqrdZ692VcxmWd70qTwFP0WYWNk3jpv27jbu/r7PCYHs2ZoTdoGhRHYkkLxxZHkbCynR2DbiKbctI4AGCG55bW0JiSBMvMsfblu7ATYgiNbGQWAPb8EGnUcsuRrVAH3vxk5rGGuaw1CYUw9T+FEL3LlUwNL0Sfsg/+sHoWtptbCZfFmnU5GtrsxCcdprJ6DOkZ++ADu6n5mWiahD+MJSbbT9gPpe/lA5i5m2ACSWu6S2DnULNPToiY+KBp8zRmGsyZHs6TmGBViMukUZym37W+jPNSSi0DcoFbtNad/8O11j6lVBmm7sIr1tc955nfiVJqCPAH4DGt9atKqd8Da5VSd2qtd3XnOi7nfFeDDLUVfZYz0c/dpa/DOphYv5uJ9buJ3tRB4lda4KQZTlu8OIcDVq2TNhy04WCUt4YduTfhJMCQUCN7ySaIAycBqskkm3KyKWcv2WRTzs8HfZ03c6fgx8UPWEYGVZ3XkEQjM3kDiqUshrg8HShC2K7ocilKKadSapNSqkoptVcptU4pdd4Bb0qpDKXUu0qpauvriC7b/kUptUcpVWYd59aP814opZYrpQ4opbRSKuucbRe8jgvRWrdore+Bsz+sWuv3tdaLtdZfxaSFj/441yzEdSkeYmb7uXHg+9hyWrHltJI8vIaCjLewESYm2U/NtlFmeCyYuZrHwDailbZil/mpGaThICZ4TMDku/RYSwMmYP1vO22FLtNmtrWuyzWQZ7UV4jqglFqhlDrzv/sdpdQ+a/0mpVSeUmoU8ANMz+Iu69m4vssh7gO+qZSqBr5pvT6fKOAhrfWrAFrrP2N+gmK6e02Xeb4rTgJP0WeNj7A+/BkBp+LMQhzwQ7P61AgTGN7tfZ2EI+28wSzeYBZPe+5l4srdpIUOsNp+B7du3oydEAnrzTgguzXLM5NqwtiYxHa2U0AAJ9Vkkkk1VWRSRSa7yMdBm9TxFNeLMynfM7XWozEV+B67QNsz6dgzMH0WKwGUSaH3MnCX1joHuBN4yUqo0EkpZVdKffqcdTFKqaTznGsDMBH4y3m2nfc6rOOlK6XeOWf5zoVuXik1SSn1KpeRGl6IPsUaXuvHZcqiNDto74hi19HxALQ1OcEFtptbISYE/wv8L4Q3xJI+eZ8JOgsV7lvN/M7kDO9Hj5+MGVJ7A1COmenmB4ZiAs0GTEbbGOiSWFeIXk1rvdSa/9hfa52otR5lrZ+htS7RWu/TWivr2ZpjLXO67P+B1nqs1jrD+lp1gfPs11pvOGfdXq31H7p7TZdzvqtBAk/RZ2VQxY7cmyAVgrFRBGOjeHPyFCiHPXNG0t8HqUU+ij050AKT2M4ktrOk/gXIg+gPO8ikinXTp5MRquK5OXeRGyrBSQAnAQopoIpMbIR5gOWsZS7ff/BJVvBNCthOAdvJo8TM94yXEXui99NaHz1TZ8xSjMlc9xFd0rG/Zq16DfhMl97RDszHPGD6Lw51mc9yRhbwtlIq0zpmHGYI0YzzXNdOrfXfzD+51HVorWu01p8/ZzlvPTKr/Xat9R3AKUyKEyE+WYZCW7GL5hPxcErBKUXgraG4B/po2OHBFh/EmXWQcEWsqc15A2a5OcThE4OJSQxAGvjWpUIiNPzaY5LrxWOWDzDl6u3AHGAn5H6tCLZgfiNkYYLfU0g5FXHZNKozAeSVWsSVJXM8RZ+1qmMhywsfYs/kkVSRCUA25TABxhyphK2wY/FNJNHIMU9U535NKXEktrRQnJVDI0nMe3QDuMG2OEStfVhnyZQCCkmikbXMJYgDgGPLojhEEqMpB+BV7iCAk9zhuyjt2dsX1zlNBOEr/9C7ZD2yM86T8r2rC6Zj11ofUUrdBvyXUuo44ABuOfcA1zItvHV/VyQ1vBB9yh/B/b06kzTIb60bCg2NKeAJkTKw3gy1dUHYH3t2vzY7xAdpK3FBM+TcWkwQBzUlo+CIMkNuwQSVLsyczzazqrQ6H4J09rZSCDRbr9+9qncrhOhhEniKPivQ73kUPzpnbc5HX3ZjVPvtZ/a5D+DGi7Q8zCq+B7zPRr7aZf0J4J1Ln0iIq+9y6pH9XSnflVL9gX8HvqC1LlJK5QO/VUrdqLVu69pWa/1Ha+jrDuCJnkoLb517CbCky6oDfLTAtxCfPJsfwXeRstM1AKw977auP9xlnd+dv+1H/D/r6/JLNxVCXN8k8BRCCPERF0j53tXF0rHnAEla6yIAK/g8DowE/nTOea7rtPBCCCF6D40iLNUEejWZ4ymEEL2QvgZZbeEjKd9nd035/pFr09qH6dS43VrVNR17A5DcZe7mSEwBhZpzzjMEMxTgp1rrBzHDXNcopcZ3+z26+HUIIYQQoheRwFMIIQQAF0v5fiYtfJfm503HrrVuwswNXauU+l9gDaYm5tFzTnfdp4UXQgghRPfJUFshhBAAaK33YZLrnG/bjHNefwCMvUDbV4FXL3Gu/cD+c9btBfaep+1SYOkFjnPB6xBCCPHJ0UGEZKLt5aTHUwghhBBCCCHEVSU9nkII0QuZJAnyya0QQggh+gYJPIUQQgghhBDXNclq2/vJUFshhBBCCCGEEFeV9HgKIUQv1EEE4Q755FYIIYQQfYMEnkIIIYQQQojrmkZxuqPftb4McRHXbKitUmqAUuq3SimvUuoDpdS/XKTtIqtdjVLql0qpCGv9F5RSpUqpCqXUPqXUv/XcHQghhBA9R56bQgghrmfXssfzASCotfYopUYA/6OU8mit27o2UkoNAx4GxgABYDNwJ/AboAmYqbVuVErFAaVKqd1a6//p0TsRQogrTHcoQiclq634CHluCiGEuG5dy+RCXwaeAdBafwiUANPP024usEFrfURr3QE8Z+2L1vo9rXWj9X0LUAl8ugeuXQghhOhp8twUQogLOPOB7ZVcxJV1LQPPVOAvXV7XASl/bzul1A3AOGDbhU6olPqaUqpEKVUCJ/6uixZCCCGuEXluCiGEuG5dtaG2Sqk/Yx5+5zP4Cp9rCPBfwJIzn+Sej9b6WeBZs0+SvpLXIIQQQnwc8twUQgjRl121wFNr/ZmLbVdK1WGG9xyxVqUC28/T9Ew7urSr73IcN/AO8ITW+vWPc81CCNFb6A5F+KSUU/kkkeemEEL8/eS52ftdy6G2vwMWA1hJEj4LvHWedr8HZiulBllZ+RYBr1v7OYG3gV9qrZ/vkasWQgghrg15bgohhLhuXcvA8wkgXinlBf4b+JrWOgiglPqxUuo+AK31fuBRoBj4ENgPvGId4/tABrBYKVVmLQt7+D6EEEKIniDPTSGEENeta1ZORWt9HPjSBbb98JzXK4GV52n3HeA7V+UChRDiGtI6grBk1BNdyHNTCCEuTJ6bvd+17PEUQgghhBBCCPEJIIGnEEIIIYQQQoir6poNtRVCCCGEEEKIK6JDgWS17dUk8BRCiN5IHqBCCCGE6ENkqK0QQgghhBBCiKtKejyFEEIIIYQQ1zcNnFLX+irERUjgKYQQvZEGTsoDVAghhBB9gwy1FUIIIYQQQghxVUmPpxBCCCHEtfKLh83XEmABUGF97wGKgUign9V2CLAB+CowAXgNmMPZ/Qut77OAHOv7I8AgIM06ttdafzOwvss2gJNAPTDS2g8gCmi2rme9dQ1zgbeABqvNbOu6PEA80ATkWevirfNinbvA2vY/wD8Cq4AvA36rTTOwz9pvnPUe5AAfAgeBfKtdCGi3vvqtcz8FvNDlugqBZGAwUGTd013Aw9b7duY9egpIsd4HJ/CedewR1r0A7HkE0ctpzP9h0WtJ4CmEEL1RB/IAFUIIIUSfIYGnEEIIIcQ1onOtudxbgduBb2B6+bIwPYS/AJ6xGs/G9OCFgAfhr5Xwqf6YXsB4zvYaZsLxOyKIntZBU2EciUUtUArsB/5qtVlhneMYcALTE1gJRAOTrHMABKyvZZieSYAPoekncSRWtJjXfwQegWeGLeC+B1ZBCRz7SRQJn2uHl6FpRRyAaf8ekAR1S90ktfrYszSLXYzHZZ3oy62/p98peGfgBOpJ5Z6K1RCCotxcTtOPiRt3A1A0M5exraU8H7sAN4cB8KyowUGQXYwHIOWH9exiPOPZxcSK3TRlxZG4rYVf6/kM5jA26yanfnYnb06fgo0QNXhwc5jB+MgJ7eFW+3oA/iBT7oX42CTwFEIIIYS4RpryraAsvwWGAb8DZsHRB6H9FAwFsx7gx7D3jxAE8m+HTw3DjIyoBOIwQSPAOIh+vAO9DhLXtoAd2APHn4kg+vkO08YOpAJJcGxuFAlfbIcfAC3AJuAV61hjgW3AMuv4VkCauLGFupluAFL/6OPAsCHct22VCZ6XWPuehFP3QeIhE6B+kPVpbjjwF4iF1FIfAI7cIN8qepYD+UMACNkjKI3NY+qBnTwzbAGUwd47M0ihntQiX+c95oT24I+N476iVRAJH+R+msH4+A13saT1WQD6ByA0zEZuqIS6LDfOkJ8dk29iMIfJprwz8Fwy/WdM4R0OM5gbeZ94mhldUc2bWVPIowSAP3SOdxa9VgdmiLTotSTwFEIIIYS4RhI3Wr2GlcCtQAiO/gIGzsL0Nr7B2XmN2TCiBKKeAZ632hdjgs7hmKAPOJYbRcLWdtQU4EHQ+aB+YoJR7rSO9QXMfMZhkPB4u5k3WgkcsLafCR7zgO9B05A4Eu9vQf8Q1DbAB6kbTfD4wZJPc8MLf+H4nRFEV3TA45AwpZ26uW5SD/k4MMQElTdU/IVT/wT9VwEDzXXfEP0XeBqGDT9kztcCE0/t5viICHIpoe5ON+khLzV2D6mtPt6cPgWAWw5tJbqxhVPZ4I+No4wxzNu8Ad/0wfQ7ZQ61Y9hNDMZHvT2FelLAnkEpeSaIPeTjwSEPAfBNVhDAxbTQFsJ2O83E81jW/QRxMI0tAPyEGX//P7IQApDAUwgheieZ4ynEJ4K2gkr1Q+AQUNkl6PwqHF1oYjQA1kHUCExvZB6mJ/QwHPweDJ1FZ29gQlI7zLBe3wDqQUzPZT4mWAX4L2A+JpHQ00AhHBg2hGELD5l1ZxTBr++dTx4lJNa3cLo/9G8BJmN6Z4EbWv4CkyH6lQ6a7o0jcVMLRXNzGX+0FE6CHycAjVlJjG0thZlwbFgUCZvbabohjvrVKXz2gMlAtOOGm4jiROfpy8nmlsatOIYFoRHGs8tc1pBcnEP8hLHzG+5iMD7qprspYDvK6pWd+Ohu9j6UQT0p5FHKb/kybnxkU87eIRldgsoHKaCQensKuxjPWN7je0efZPnAb37kWoT4pFJKxQH/AUzVWqecs+0l4K9a669e6jgSeAohhBBCXCNqm/laVAb50zBDYOdgejF/BgPXYTK/gslkOwzTC2oHKuDgFhh6H+ADkqx2hzFDZo9jekaTrP3swEKrzdPWOfZghtFGQj9Om6BzJGeH0Zb6uOeV1aZ39AfQvw7TMzoWjn/LVOXz2QfTj9OkBnwkbmvhsYfu5/svPAmTQcfBZ1dYaW1nYnpUK8C7NJ3B032sZzaz2MgpE5sy8dBuCMCOrJuYeGg3bw+J54NhnyaMnR33Wj2XmLmg22Mn4GMwX+FlyskG4PNHd3b2sA770iG2U8A0tpBwqJ3mIfGMZxejK6r5ddZ8xlMEwF38hiAOqsnkByyjkEnUD3STRCMv8xXrDZMAtNfTnJ2b3IOUUrcAjwKfAo4CC7TWB87TLgN4CfPTFAC+orX+8FLb/s5rWg58EZOrOVtrXdFl22WfS2vdAtyjlHrnnPN8A9iC+SjqkqSOpxBCCCHEtbLHLPk/Bb4ETMEk8vkjJqnQMExSoP1ALKZsylcxQ2yXwFA3MBCOr44wbYcBjVb7aExAOoezw2jzrWWr9fWr1tf9kLrZZ4LUpyF1m4/UbT6acuN4+84JJmjdZB3zn4AQRG/sIHpjB8M2HiL1FV9n7+n3Nz7Jn+7NYs2w2aifQNPSOJqWxkEjHJg8hGNLoyhnNKkbfXyFl3GHDrMldgpbYqdwfGAEOGHiB7s5PjCCqU/vJIwdB0HGt+5mPLsYzy7ei83Fx2D+kf/BSzpRnOAwbpTP9LD6cbLkhp919pDuHZJBFCeoJ4W9WRkf+ScYjI+X+QrfP/QkNXgA09MaxEE6XtI7a9AI8VFKqQRMEDdPa50NPAf85wWaPwM8rbXOwHz0s7Kb286cy66U+vQ562KUUknntsUUM5oI/OVyrkMpla6Ueuec5TsXuPdcYABYP2TdIIGnEEL0RmfqkV3JRQjR+xRZSyVm6OqZwBFgGvDA2abHn4kwwZ0T01v5IOb1cYj+QoeZ5zncajzFbNv4Gqb+Zsja53lr+Tc49lCUSRx0FBPs7reu48mz11VKHlMrdqJzMGN+GzG9qeus1wMxwepITJbcJdA0M47PllZwmn7ULXeTeKCFxAMtHM+LYFjpIWyhkMlWCyRsbif6QAe3bNvKLdu2sss+nmNDogAT2DISmoknpfUQ9bFDCOIgiIP8baXMDq0nqdWHnTDVZPLZQxW8fcMEPNTgoYb/y/+hmkze50YcBBlDGRlU4SWdr7SuJp5m4mnmfW7kAZbz4JCHyD9Uylje4zCDyabcOpLnCvxDiz7KAxzWWldbrzcB05RSrq6NlFJu4DOY6rtYXz+jlBp0sW3nnCsLeFsplWkdMw74A/ztBGSt9U6tdf256y91Lq11jdb68+csT1zg3m/BVLtdBuQrpf7xAu06yVBbIYQQQohr5cyff/cBQzCBnd36mgPMwmSbxQrE8oAbMF8PmHZFf4T854Ezg+U+wMzl9MHMX2B6R4dh/urLO3vqhPutFKBJmGG52zC9rgfoHDh3ywtbYT8oMMHrP0HTnXEMPtrC4YFdyqTUY4LXG6CdAbC1hTsG/h5K4U9zswATQE717eR9+418Ntoa+XeDOe/b904AwE6YZuI5fIOblGH11NtT+Meju3lx4Hw8eAniAGC0u5roog7qJrs7M9G+PWQCA2hnC9MAOE0/5h/9PYcHxhHGjh8nedRSzmjeiJ3OVj4PwGzWk46XbMo5FQ2NJBEkBgfBLr2d5+tUEr2KBk5d8aO6lFIlXV4/q7V+tsvraiBRKfVZrfWfgDus9amcLXAEkAIc1FqfBtBan1ZKNVrr1UW2HTlzAK11qVJqEbBJKbUA+Bnwitb6+cu4n4tdx5GL7aiUehq4QSn1DPBTrfWPrfVpwP/RWv/PpU4ugacQQgghxLWy1fr6z5jg7z1M/8F9mJ7IH3A25mnB1PXsh+m9tIbQ5v8MqMP0ZILJXPtLTLKiG+Cvm+BTS4D9cPyrZrBb9I87INvszw3m3H/6bhaffbzCjJCYYh2r0fr+qNmf9yDRZ0q/JDaajLynUqG/DxMwx0E8zTAc9g7LYHRkNTeG3gdgi30aH0z/NB5qWDLsZ/zfYf8HR2s7/e0w9cBOAD4YZkYSZh79C5sGTqEgtB21HhbOWc3hgXH4GAzw/9u7+/iqqjPh+78FkUNI8wo9yYlN4AiEkDtkggnQSZAKaLmJgwXEQS16a6VqB8XO1GqfOr5Ub/pUxbtKpaUOVqfiCxWBWx6SQXlRJBmBRBiSiSGAgaTmkFMIeWmIJ4as549r5yRSXgIkJMr1/Xz25+Tsvc7eK+ckWbn2Wuta5KdmBJdDqSMKFy3E4qeUFA4yDICr+JCNMdIDuoXJAITTyCCOc31DHi0RLgDWMovdjGU4+9kekcFxQgnnr2zh6mBwCqXn9LGqr40j1trM0x201tYbY+YCvzbGDATygDo6VsztVtbaD5yhr1uBZ6y1S3riOqe59gI68l133n8QGbR/VjrUViml+qL2rLY61LbbGWMijTF/MMZUddqXYoz5vTFmuTHmFWOMLhevLo6pzrYCGd6agAy5fQjyi5EZWOnO9gKQ4TwOBgbCnleAEPjsXiR4/S4y3LYWGQY7DS67GRgNzQ9JwBn2RJv0iEZC2eKh0sPpgnFFJRJoliBBcBMS7Hqdc42WcvxEzku9bCH7gFwomzcU/BBV2wxhEGAAhz2RhO1rI2yfrB8aRR3RRc0srfgJVSRQFeGhYp6HMu9QyrxDcdFCKMc5EQLXrdrEOtf1MAVMPsRV1JNWUU5aRTmFZNDMIMblleCihYxAIfsZTgJV3M7L3M7LFDOGa8u2sYt0cljPLNbwe+5mAtvZH9ExVe4+5H/3aYENDHd6VV0EqCOaIwzhCF8aNanUl1hrN1prJzoB6gtAKHKbprMq4HJjTH8A5zHe2X+mY19ijIkFHgd+Ccwxxow/x+p2+Vo9QQNPpZRSQcaYxcaYCmOMNcaknqHcQWNMmTFmt7NN63RsoDHmd8aYfcaYYmPMi6c7z4XWyRiTZIz5T2NMufM48mzns9bWW2t/AOzttK/UWnu3kw4+jODCFEr1sKdke+0jJLgLID2Xn0L2C0jv51hnGw2tz0Pt1chQ2F2Q9ipQCJffTjAjLbuA+wkGlIwGdkPofCQz7kSwTpbb5FWHpPc0BMl460eSDVU4WyKQD62ZSK/qJ8j8zkflnOyG1pFADiS/JHlMzAogHUZwgNja+uC3OjsvjzhfvXyfuZBWUU6AAZSSEizjLfER96N6+reCnQLxVGMjgTCo9LrZ401ijzeJBKqY5NtB/vQMJvl2cNQ1hLHsJruiiAd5hgd5hiwK2Jo8ngOMoJgxrGEWt/A6u0hnLbMYQIABBGhB1u6sciVQRCYtuAjlOFnk8ww/5RlOmVtF9TW9dMPWGBPnPPZDAsJl1tqmzmWstX7kN8ZZbZebgV3W2r+c6dhJ1/EAG5Fhrg8Dc4A3jTFZXavpmevR1XNcCA08lVJKdbaW02fCO9kca226s23otP9ppMlOcrL8PXLyC/tadj6n/GRjzGvIvBxdO0FdFK1PyPb9aUjQORWZhxkLDAReRYLPRcACCHkUPm5FhtwGkN7I9hloLzhbrbM/XrbKhW6OLQ6V8i7ZqmLcEgB64XBGpAz5fRlww7F5oV/+xzsbQvKRntTZyNInAYI9sSFHkd5RnOt+3lEnE0CWg3nFKf8srPdOlWC4BI4yhKsDW3DRgosWKlI9HP5dJL+PuZ2CmAwZtgswWjLNpvnKSfOVM7soj4WepzlOaPBaBWSx2jud3wXu4XeBe6jBzaTNOxjMUa4t2sYI9pNY4aeYNKaykTqiqSOa/QwnijoOMIIo6oLzOltwsYaZrGHm+X686tLwv40xnyCzrFuAnwEYY3KNMZ2H6d4D3GeMKQfuc5535Vi7UOARa+1rANbaj4GZwDdOLmiMWWKM+TPwLWCjMea/z/FaPULneCql1KXjbEkSsNZuAzjfkabGmG8AtwHfstZa55w1pyiaCrxhjJlhrd3rZOfLA/5Ax0y1M9apU3a+a51dbwAvGGO+6dxFPgDBCVpnZa3dAmwxxvwG+Rf5466+Viml1KXJGSlzqv05Jz0vAyacpuxpj3Uq076wUud9e4A9pyi7EFh4vtfqKRp4KqVUX9S+nEr3OmOShPPwmjMXchvwc2ttHTAcWZD6MWPMZOCvSLa7bZ1f2Ney8wFDkWFLBlkEvOQML1eq24Q85XxxP9ReDzE5yG+UGz5bBjFhENr+W7sbmArXXIEs2nAzsqRKPdJLGumUq3KOTwDehUSXH54A/hHpKQUSN/k5vCiSuJfqJUlQKxzLCCX682aiX2ru+Pd2NtKbmY70i1wPIWHO+YudMvcgPaCbgKNQ8aCHUI4TV1LPntQk0qbKShOrPdMZsvgo15Vtkt7YfMiuKIJqqM6WwQ4n6M+ksh3cU/0KAHumJGE2w9Y543FTE1xqZlnG7cxnOYVkghcGEOAqPiTR5w/+7bwmcht7piQxir20joT+nOAZ7308EHiGla6buIaNAKxkLgBZFPB77iaDQmLxs5dRzGItAM8y4xw/WXXR9Uy7qbqRDrVVSil1Pq6y1v4dMA4J1l5w9ocgA/J2OUHuQ8BqY0zEySew1n4AtGfne/9iZ+ez1n7LWnuPtbbCWvu+tfZeZ/9d1tqWi1UXdYlrn5f5KsQsQILIgbBnGVz+AoTe36lMOuyZkdTxz/W9yNDWm5HbPU6yHybA4QWRMh+zPzII/Zd0ZNAFuALiflwv8zl3g30UBgQCMq8zGyoXualc5KYiwwMVyNqay5zruZDcls5QXiKd/T8BpkoCoRZcEnQuLefw9EgOT4/k+oY8ktgLLmjy9mPZnbdLIBmQgPME/Zm0eQdlyUPJn5IBQCkp2CkSNA7hKFszxrM1Yzw55FJHFGPYA1WyDEshGVR4PDTF96Mpvh/3xzzNAALEU83PIp7kIMOYwyoaXeGMYD8vcwcvcwcT2M5gjrKSuWRRwDW129jINYxiLyuZGwxMlVIXRns8lVJKnbP2hamttQFjzG+Bd5xDh5CV1N5wjm83xhwBkuiYiQb8TXa+m40xq6y1O86hGsHsfE5v50XNzqdUd9rzBoyOhMt+AqyGtIfBWTlE1tcE8MPwzP2y5Eo2smz8d4Fq+HgqXNn+G7Ya4m6ol+VWvMicT5AAcZHzdRVwFKwbTCSYagiraAuu6Zn4Y7+Umwit34Xosc3yW50PuGDZlNu5p+IVACo9bgbHHJHMtU5W2+jdzSRG+iFWgkKAgKsfcUX17MlIAuAe3yuszp7O7CInIEWSGCWvOwTeQ3KN/FcgAAlTqsglh/kNcs3+rVAQk0UWBRybHkqAAVSRwOySPF5LvQGAuaykBReNhLOQ33CcUBbzAM83/ISVEelkOn+SqkigigRGsZdQjrMk5i4ms4UCsqgiwXnDgrnIlFLnSQNPpZTqi9qz8/VBxpgwIMRZv8wANyGDALHWHjHGbEHmXb5rjEkC3BBchb39HB7gXeBX1trXjDFvA6uMMfOstQVdqYe11m+M2Y3096zgImfnU6pbDJaHtGmwZwOkpSMDz2Ng340w8mY68k9+CmH/2AY3Iim8bkSSDw2EK6vpmB09GglKV4DNAdOADJnNwbklhPRsLgDzSyRADUF+i73I8N2fO+U+gpBssJtkSRNuhNZ4uGfpKxxbEApAYoUEqcdSQ4l+shkTD4enROKihShvs/SkAmGb27ATZJmVcBqp9LiZ/XQe5EDcZif7bSSUzRhKLH7u8b3C4exIWnCRSw5uaghxhgrnP5LBnIa1LI24i0yKGMwREqiiLHWoDMkFPuQqruJDsouKaErtR51rBGMopjQiiQUNL1IaIQFwDbE8EHiGIlemk+22hSMMZgAB5rISgLWkn+8nrC6WPtxuKqGBp1JKqSBjzBLkX9Q4JBPeUWvt/zDG5AKPWmsLkX6Yt50exv7Iyur/1Ok09wB/MMY8iyyifasz/7Oz9ux8a0Gy8xljZjrX7VKdOl3r340xjwLHkMRGSn117HMevZD2bSQwDACFMOIo8ENk+RKASMh/B7IrgQdh5a0wdxMSaD7lvA4kW+2PgP8L5hYkQH2BjqATpOdyNjAVmjL7EfZWm6wf+joSdFY65aYCr4LJQZZaaV/QKB3qiAIgenMzTfP6Ee1rhnQJTAF5/jkcjZF1MKumh5K87hDjAiUcmxNKdEkzhx+MJK6onsopbgAGB46QEKii1JVCi8fFcUKZ3LCNaREb2EU6ex6RYHE4+ymIkCUMB3OEQTQzuySPstShXLtZppRf+8k27M3wTMZ9zGUlxYwhg0I2MI01EbMY5CSvTmcXv3UtYDBHSaGU/pxwcuy6OmW0PdjFD1QpdTo6x1MppVSQtXahM/cxxFob1x7gWWtznKATa+2n1tqx1to0a+3/sNbeaK31dTrHp9baq621Y6y1V1pr805xnU/bg85O+/ZYa9/tap2cY2XW2gnW2iTnUcfDqa+WGc6WCvwbMj7gF0A8mDeACGRZlYHArZC9CQkYl8LcQuAd+Cwe6UpoX3szHfgd8ADwHJIcqB7pOc1xtheQ3iE3hO1rI39ehgzDvVfOUbnATeUCt6TZynfq+gnwFhyJiGRndirezT68m30wAcJK2uQaQHWEm7iH61nvmcphbyTHCeU4obTgovU7UiZ6STNbU8cTHmiUeaSdtLhcjPOVEE81oyinMSKU7Uxgdl4ejYTTSDhxFfXsZwT3F73IqNpD7CWJ11JvwE8sTdn9aMrux84Fqbwccwu38kcAvu9723nL3yGBKiawnQlsp4BsJrCdAwznKj6kmDGE00g81cTiJxb/hX/OSint8VRKqT5JhwwpdUk47JVUtHG/r5e5nAnArUhwuA+a34LQkU7hGmQ4rQt4FEnmcy9cPhHpzZzilItE5oF6kV7Mz+lIAtS+Um4+kAx8AofnRUp2WSdBUOUMd3D4bNnCoSTcXcVR1xAS3X4ZFru0nrjv1Et5gCKonCM9lseTQ0l+8hCMlkyzcWX1VCXLPMkhHKV/q/N9L4wkI1BIoyuc7UxgMEcAGOMKEFdUL0GsBwrJYFZtHjdtXwutBMvZSPiB73VaR8KWiIlkBQqociXwPpMZ5joIyDqcgzhOOaMI5Ti5nhwSqGIT15BFAQVkyTXZwxEGU0MsH3IVNcRSSCZ3s4xGwp1vctj5fLzqYtJ2s8/THk+llFJKqV4S96N64n5UD1Pgi03ASGA+0nO5HUIHIwFjJDAa9m1wjhfKczYRzGTLJ84WQJZDud15XSyUzRkq/5RvcrZqgj2kcevqpVf0FnltYoVfMuEuheRVhwhb0UbiZj+MgaaR/bA3Ax90vJ5keU3iw36iqJOsuPPcXFO7TYJkxxEGczDGQ+UcN0Ma6il1pdDMIAAmN2xjcsM24pbWsz5jKjZd5oK24MJsh2em34fNJjgEtjgmCXZLkqFrarex2zWW5HWHcFNDLjnkkkO2T+Z+bmEya5nF3bWvsIFpJLGXYRx0UgpVkUIpLlrIpJAxFDOZLWRSyC95mDqigkOKlVIXRns8lVJKKaV6y2jn8XO4bD4QC/k3QvZPkGG3m5HeTaB2GoxsT/rzFjKXM1te23oPhCxzju1Ghub6kV7JkZB8xyHJbnujU+ZpZD5nPMG1MfkdNE+D0HuQ4BagBCru9OBd6pMlWoCw2nr4DrQmSpGQYiRL7lgY0lBPaybU4Cax2s/O1FQSnETTBWQRTiOjag9xMMbDCA5QSAYplLIhYioAgQUDZGmUmFRacJFFAVunjyeBKqpi3BQzBoDvP/A2hxdHEltbT11MKNklRRCPlHMy0W71jKeUFB4IPEOLy8XvY27nn/k13hIfz6TexzQ2APBbFjCXlUxrkPVmtkRczX5GkEUBH3KV80Y0nuMHq5Q6mfZ4KqWUUkr1lhpnW4EsRPQ5ZKcjPZU3wi+KkcWK3oGYl5HUXiORYHQwwYy3IROBXGdzwbFHQiXQ/CXSK/koEkw680UrD7klQB2N9JBuB8rgsmp4b/FE6QFtAjzgzfNBIsRV1EsPZT4QJoFuyDKn7unALqiK8BDyDozLL2FnairjykqIK6onrqieLApILjkEyDnDG5oZRDPFjAn2Pl7fkEcWBYzzlVBHFIlFfrIadjC3di0DCHBL7dvcUvs2LJDkRrkxU4mqlfmi1hn6O4IDjOAAV9XuoIoEClxZhDc0E04jjYSzPlWC3P0MZz/DWbL5QfYyii0REzkSEUkmRQzieLBOCbpC01eDRX6HunNT3Up7PJVSqi+y6FwVpS4Fkc7jSOAKpIfyBPC59D4+9imwzimTjgSSYUgvZSuSQOhG4EE6ei4rIPqlZhl+i7M/HQlKnR7PxCK/BJ35QDxUTneTUOvnSESkBFqfOK+th8MLIokrqYcy8Fb4pKe1CSoflHmdiRV+KjwevLN9rGIOCfOquGnpWsZVlNB0Yz9aXDLeNi6vHiLAhAFuCMmHCdlFHI8IZYCTkrcqwoP3SR+rH5nOCA6wLON2MihkBAd4ldu4NUYSBbliWniQZ3in7B8pSx5KVsMO1sRMJ4EqGe4L3B/zNP/EUpIrDnHMG0oOufyRW0mhlBRKKSQTgANTRpDOLmLxU0UCBxlGFgUMZz8vc4fzRhw5zw9YKdVOezyVUkoppXrL9c42AbnZdC8QD5/9EkInImtqxjgbyPDbaud5KtRuQpIEVSM9jyuAo07ZB5zzfoost+ICnne23Ugg+ilQDIk/9mNWQFxZPcn5hzrmlQJVJMiwWhcytzQX2AyJPj+JPj80OQHpJvjpj3/DcQZJoJsJrkAbNbipwS2vjwcq4L2MidgJsCFiKteu28ZuxrKbsXh9PpgHs2rzKCWFu2tf4QAj+F/8Oz+t+A3SRzqIOqJ4p+If2ZmcSix+3omYzuyyPMb5SsiqLSKrtogZvMNRhnDMG0oVCexnOAB+YgGYy5vM5U0OMozdjGUAAQrIYgzFHCcUP7FMZguT2dJ9n7dSlzDt8VRKKaWUUkp9telIoT5PA0+llOqLNC28UpeG9qyv7UtFTgWq4fL7kWVVPkGWTXGONb3cj7CHnTUzZ0FMDpIoKAa43ylXjfRWhjnnzaGjR7S9zFHg24AH8DnJifJl//rsqVyXL4l2CINY/JRGJJEWKMfOhw9jxjMpbwetYVJkv2eozN3MkYRDd9S+jjNylpC3IOrOOnnihfXeqeREbmJywzaMH67bvInKOW7mNKzteE+KoHBOKvFUUxiTSjq7CKeRSq8bd6AGgN2usbjja2jBxRauZnZeHjunp3KAEZygPwAzA2socslw2jqi2M8I/MQSzl9pJJwW582fy0qqiXcy2xaxn+H4iaWRcEpJOddPVCl1Ghp4KqWUUkr1lkDHlxuflZG0afc7+3+JrOt5rxz/4lkIe6iNL16By6Yia3pmApXIENZc50Tt62vOBzYgCYWqgd9BU6bMsgpb1yZDdF8BboaQp5A5nxFI0HmFc45PZD5o4mpZw/NECEy6ZQfcDI0RoQAkFx2CMDiWHEr0A80SPHuhMtlNgttPnK8egDLvULIowPghxAVN3n4cTR4iw3WlCDuTUxnnKWGcr0See1JJCFSBCxJf8rPzzlRA1vMscmWSESikypXAe9MnBpMK5ZIDwAbXNDIp4o/cSjFpxFJDgAG4CDCNDTL8F0hibzDjLoCLFlIoJSNQSJ0r2nkjks75o1VKfZnO8VRKKaWU6mW1z8M190Paq3Qsg+KCfc8TXJ/zsvlAPVwWCbyABJslcHhXpJRPcLZEYBEyf3M7suTKNGANhD3RRtgTbbBNnjNLzkmF1GNndqos4dKeIdfrHL8VKrPdhLwF9gXgFSgkg0IyIAbykzPkBDnQmi3PE29wunGPyraBaVSRwPrkqcHrJVb4Zd6oM6d0BAd4L3silR43fCq9ra5AG2uZRcWdnmBw6SeWSXk7qHIlUEoKWYEC3IEaGgmnPyfozwkSqOIE/RnLbhayhBxymctKoqijmDE0Ek4j4fiJJYCLXHLYz3ASqCKU4+x2jWU36ewmvds/b9UD2oDmbt5Ut9LAUyml+qL2obbduSml+p5C2WKuR4KxpfBFLtKbGQkjf4IEmPFId+hUYAE0jwTKgDCIW1IvvZUTnW0TtH6AZMN9lI6strcj5UYjgWg8EmTmI8NuP4FxL5VIsOkEgk3x/eBVOWdihR/SwQSAn8O1P9rGtT/aBgMlAdGAQECy1T6BDI19240JwHupE3kvVXokGwmnigSasvvR6ArnsDcS/PCeZyLveSYSYADX+rZRQBb4ZD3QkEKYyRq8RT6iS5qJLmkmI1BI/vQMoqhj9kt5vO+ajN8Vy8vcwTQ2MI0NpARKJVkR4KaG7HVF5HIdAQbQSDhFZFJEJgEGMJktRFHHEI6SVlTO77mHcBqDC6oopS6cDrVVSimllOoto51HZ1kTgMvikYA0BgkA28u84WwnINTp/eRV2FmTyrgflUjPJsCNztDZGcA+JJB8FRk+62SqbXXKhjyKZNVdCvwL8CQyD1RGoRL2dFvH+p/PI4EvSDDbfkPrCbjpxrXymsFyjTRfOXwO+d4MXLQA0puZ0OAju6mInZ5Uxj1dwtYHx+O6s5ijDAGgnFGUe+BqtrB1zniOMJjiKWkM4jjJuYdodeaoVrkSKGYMNbiZNm8DjYQDkqk2eoV0VTXd2A+OwhHPYBrJJDBjAI/lP0VTZj8GNbVRECO9tO3zQm/lj4yqPcRtGS/yCx4DCC7zopS6cBp4KqWUUkr1ltWdvj5KcJ1NFgEPw8er4Uon2Mp/A7I/AZ6C2qUQUww0wLjvlUgioo+c145GAsx1SPD6EdLzmY8MsQVCRgI/hmP/EUp0fnPHvNApgBesE3iaT+Q5AWh6SgK2uphQonc34yyDKdcrQdYiHQx2ARg/cAdkLypizxSZH+nNk95HEmBcbgmt98CkFTtourEfxa4xAExgO95VPtgGcbfuwHrheFg/DrhGwDz4Y8QtAFzDRtzU4KKFUlcKWRQwgACLeYCH5j0FwHFCSfYfopg07mYZK5nLsuzbAchwFTKc/QCkUMpy5nNL7SF+GPMCUdRRTTwn6M+Q4No0qs+zoPcJ+jYNPJVSSimlests5/EnSI/lUvjsDbj8LWAeXJlAMBjNDkGCxwqIyUbW+FyAzMX8HGhyzhUJHIXK/3CTWObHusG0r9k53ynjkutFVzTDcmha1o+wt9qk93M5HFzsAcAb75Nezt1wwDWCtIpyoqubOXxnZDArbGKZM5ezCXgL6haGsj9mOOMWybDdtJJyAMqmDw0mIsILVREe3pk3g2lsYNHmJwGomOKBavjDc7fwg7LX2RszlAKyyaSQw95IssgHZH5pM4NIoZRSUhhXUgJlkDCnKpjVdlTtISqmeJjFGt5nMveXvcgzyfeRzi6GcDTYExve0MzgiKMYP8yNeZNBNHOcUI4yhO1McN6wjRf0MSulNPBUSqm+SdcjU+rS0L6cSgD2/VKmbc64WXY1PwH7miBtmlOmBJmrOdV5XQBJPOQswRIcBvsq8BQkPu2H5XC8uB9hmW3Sc1nrlLkC+RszEI69HEp0SbOcuwRYAN51Tu/ku3B4cSRxhfWk5ZfLcOB9EOevl+sAzAebDmY3cCNEr2smdoYfXDLUtj0QnOTbwS8yHuKxzU/BaAgwgPmB5bgCbcGeqioS6L/wBLc1vE5rPAyimWvYSBUJNBLOhIYiKRgBCYEqClxZpFDKntQkAqkDSKAqGCz2jyng1/wzw9nPZN7ncHIk81nOBqZxrW8bezxJwXMN4jhbk8dTRCYJVFFFAgFcTGA7AEXn+fEqpTpo4KmUUkop1UtaE+UxZBGMXArf2uAccEPoNEibAMHRnh7gWSQRUKcEQGwAqiCYAycemY+ZDUxF1v1Md46tcR4/QDLafgrRnzfL3Mw7nGuE0TFkMVXWwKybEcUgmhlAgNjIegkyH3XKFIGJh51TUiU5kRsSf+SH6yF7VZGcEznnw2ESdG71jCcjUMgB1wgCrgGMS5DlUyat28HqGdMhAibzPolL/TAbEvP9VMzxsCpiJgBza9dyMMbDKMqpwU0dUUxu2EZzxKBgMqAa3MxhFfsZQTFjKOBuruJDUihlq0fmjwKsZRa38keS2Msq5vBAw3MsiniIBKo4wHCn8o3n+Mmqi07Xv+7zNKutUkoppVQvCXlHNpYChdAcQILJKqfAcmR4bT7QgAzNdZIQsct5zXLgO0jwONg5nokMwb0RCVSrnfP+i7NNdcqtQYLUT2DPfyRJT+ifkGG5nwI/h+R1hxhVe4jEfD9xq+oxT8hrbaRsW+eMhxIYl18CE4AYWP276ZAMTTP60ToGWsfAsSmhhBTLeYdxkA2uadTgZtzmkuD7cXhGJAnON19KCnwblnluZ8+cJHaR7iyA0khVjBtvno9En58DjCArUMDPIp4kwAC+73ub7/ve5gAj6M8JxrCH/pxgLisZQIA1zCLAgOA1MyhkDMU0M4gsClgU8RB3swyAKAm7L/hzVkppj6dSSvVN7euRKaW+1lqvl8eQQuBfIOYOZFmVVKRXcx8yjxNk6ZNPkd7K2UAkfPY8XJ6IZLhtz37rDKElgAyHzQTGIMNzVzhlwpCe0vvhmDeUqNpm0srKKXtkKMmbD1E2ZSgAyXmHgomHWsfIeUKqgSZn3igw6ekd7NyTKvMsw6Se4dmNEIBBTW1UxUimosQVfirmefAW+Yhv8OOKaOHaFdtgKrSGybkOMIL0wC5wIXNIP4cccjlOKLOX5LFnoQyPTaiVpV2e8dzHNDZQ5MpkLLtJoIrnPXcBcBuvUkUCdUSRzi5acBHKcTIp4mXuIIf1gCQXKmYMLlqoI4pR7CWuoh6/183gYHdz6Pl9wEqpIA08lVJKKaV6SUh7QqB44F6k9/F54C0ks20GHb2f9Ugw+awzpzIXLi8EXkCCyvVOuQogB+kFzaYjm+0VUPa7TgHlp8ByiKZZ5n5mw4j4QxybEtrRy9cEx1JDiV7RTEgtHF4YyYGFI0ihlOiP5O5Y2Z6hjG0ooTURQvbBsYWhXJu/jYpsD94yH4nbJfnQnnlJpK0qh4+gYPF4xlAM2XDYE0mRkyJ3WsMmjkRI4qLBHGFr9ngmvbQDOwvyF3bMF62LCaWOKG7lj7hoYQPT+KfAUqpcCWRRAMD9PM/T/JSUhnIaI0JpJJyEWj97Y4bycMNTwQy5AD8oeZ1jqVKmkEx+4X2IMeyR9UQBOHEBn7JSCjTwVEoppZTqPfXO44JIWAAAR6pJREFU4xXAQPgsB47jJBl6C1mi5HanTCyy3MlSMN8BapAeTBfSq+n0Gh5+OZK4dfUSgD6BZLLdBHwbkh84JIXccj0qkPmfE4FtEBIJ0ZXN7Fwgcxur5iQwzlcC6RKAxq2oJ25gEXvmJMECiYiTnzwEo8FOkbpEv9TMzjtTyawtIT85g+x9kponLa8c6qH1URhDMaWkkJjvp8Cbxex1eQAcmxGKn1iyHyiiaVE/jrqGgBuqYtwMZz9DGtrfMCACcskhlOP8c8NvCKmEtamzCDgZm7IoYEhDPT+LeJLFeY9QPH0MVTEJDOYIRyIiGcRxAG6qWEtZ6lB+w0LmspLHyp7iV8k/JoVSDjDCudjg8/2E1cVigS96uxLqTHptjqcxZpAxZqUxZr8xpswY8w9nKPtDp9wBY8wLxph+Jx0faIwpNcYU9nzNlVLqImhfj6w7N/WVpu2mUkqpr7LeTC70ANBorR0BzACWG2O+cXIhY4wXeAz4e+S+30hg3knFFgH/2bPVVUoppXqVtptfZ6sBFxwERl4PMxKRG0ajYY9fNjKQIbkRSOKgHCRjrBe4R8oyGuJK6qGSjqVWPgH7MjI3NN3ZrkCG2j4L+Q9mwDtID2g88B0Yd0cJ4+4oYQQHpFd2O0Q/0MzOeamQLb2X0XnNROc1S4/q52DygSqouNNDCy72xgwlPbCLyhluKme4ac2Gpnn9CNkniYNSKIWBMDsvT64bL2tqDg/s5w+LbyHsrTYSqGL1jOl8yFXUEcUfI27hjxG3EHJUymZRwGTepzEilAWpz/JQ7XPEUkMsNUxjA6URSbho4c3pM8kIyH2W5cyniEyyKCCLApZ5b2dU7SFu4XV2Oel/b+dlisjkIMM4yLAe+9iVupT0ZuA5FyRlmLV2H1AITD9FuTnAWmvtX6y1bcC/Oa8FwBhzFdKovnqK1yqllFJfF9pufp3FQ3MhZP8cuF6eMw+ohrRE2QAJJq9Dgs41yLzQeOc1Fc72AJKUqB6a7u4nczxBlk9xAjw+AeZLUp/sq4vk9dlyPV5BkhfNliVJOOq8ZjRk1pZAPqyfPlWWb0mACo+HX837MXtmJEGCZILNLikieckhwkranLywUVRHuAl7t435GS+QvVmG3+6Zk4SdAOszprI+YyrVEW42uKZxDRshHeIb/GRSxFQ2spz5ZJFPFvls9Y4n5Ch4N/ucpVKy+N/8K3UxocxlJXNZiTtQQykp1BDLAAKsdN1EVm0RQzjK/uAyKVLfD2PGE081LlpYnTw9eM4k9pLE3m7/uFUP0JFCfV5vzvFMBA51el5JxwpUXSpnjAkDnkP+XI482wWNMXcBkuqMyHOvsVJKKdV7tN38OqpwHjdBaCbyz64XCfSqkfmbU5wyE4Fc+OxGuHwkEnzmI72X2wlmvz18ZyRDGuoJWQZ7B7ZxZS6YJ8A+CuYO51xPyRYyH3gIyqYPJfnpQ3KudGj6rvRNJK84JNMb9wE3gnkDiITrHtgErc65noOfLX0OSoB5MCAQkO8rHppS+5FWUR78dtfPmMpy370QL+uDjqktpyrGLb2fwODAEVJcpSRW+NmaOp5JJTsoTM2gjmjmsjJ4niT2sto7ndmb8wh15mrW4KaITGYGZLHSsNo2wj2NzGINCVSxn+Hkxkwlh1zSNpezfspUAKaxgQ1M4x1mBDPb9ucEU9lIOaPO73NVSv2NHgs8jTEfI43fqcR202WeAZZaaz8zxpy1AbXWvgi8KPWLt91UB6WU6n66nMolR9vNS5OdII/mBOz7AEZGImt33g74kaVRJjqFPwHccPkLBANBQIK87yA9nUDcC/XwcyAAV1YDu+UcZjk4yWMl2dC9SGA7GJKXHIJsJBPtwz7CCtukXPuSLDmw05PKuKYSuVYFtK804q3wSQ9pDjAQXIG2YOA8qKmNY15ZiqSRcDIo5D3PRDI9RQyr9bExZiLX+rbJ9wlQCy0ZLl7z3iA9jQHwE0sCVYzzlQSXXSmNSGK2L4/Dd0ZSziiyKCCU4zQSzv/j+hUAS44+SKEnkwMMJ4NCCshiLispZgwDpgQodN6Mx/gFv+MeBnOEQTRzgv4UkMVYdpPLdU7Fjpz7h6uU+pIeCzyttVee6bgxphIYCvzF2ZUIbDlF0fZydCrXnlh8IpBjjHkUmZkQbYzZY61Nu5C6K6WUUhebtpuXJrPb+SIMRj6PzPV8Cj4eDVc+hQSh9zplvEgvaHswOdV5rAe+DThBLLuR4bifAjcDo+HY70IpIIvrhm6SMsuQ3tIaaH0IQm6Ua3kDPg4viiQur1P22PmyfEsLLvY8mERaXjlbHxnPVbU7ACR4LNsmPaC1EBIDlRluEl1+CmIyCKcRADc1bOIavl/2NluTxzOpfgejYso55pGlUQAC3gEEGMD3897GToA9GUlkUEgdUfzBcwtj2APAOF8J+Z4MAGYG1tDoCieuqJ66jCj+38DPAFifOpXHfE9x2BNJAVlM412qkOVWGgnH5YylnME6CsjCRQsBBlBHNFEcYyVz8eN23gQNPPs8vWHb5xlre+cGpjHmceBya+0Pnbuu24AR1trGk8pdAWwFxiL31vKA1621/35SuauBxdbaTLpA7tzefaHfhlJKneTxoq7+HToT881My8xuTji63HRL3VTv0Hbz68lWPy5f/ATphZwN1EPtWxCzDBnh/IRT+FFkCZXngYeQJVE+QgLQ5XTMSYtwzud3nuc6ZSG45AqxzrkSkW6IbUAJVPxfD8NqfZj2uLMW6d2scV5TD2TDseRQol9y/st3yxDa68o2cTg5ktjaeqpi3ITTSHRZM5XJcvHEzX5ww9bU8YRynHHrSiAedmakMrahJPieNEaEspz5PFD7G8wn8F72REZRTi455JALEJw3GspxXLQ41aghPNBIoyscgLiKeo55ZW3O+AY/jRGh5JLDzMAaVrpuCgaebmqCyYaS2EtcRT17vEkMD+znCpeMhfabl7v6kapzpu3mpaI353g+A7xijNmPrMp7V3vjaYx5Aqi21i6z1n5qjHkS+dMK8C6yapVSSn19taGJDdTJtN38OnrWeaxGei1TgX0QM9XZ/xGsK5YvZ7yBDGfNRno3fwmfvQGXx0Ll624Sff6Oc26mI4lQEzJP04UkJAIZiusCYpC+74lyfe/DPgl2b3XKvQrcjwSg9VA2ZyjJZYeI3typaykGrsvbBEedjLoeGJx5hLDqNnDBAOePWcUUD6EcZ5JvB61h8PyMuxjLbsZQTFWEB4AjDGbckhLmLlzJwRgPXnyMQd6ALApYwn0AzGUlYyhmC1eTQimDaKYFF8tdc7m/4kUAVnunk0AVLbj4MOIqAEI5zjrX9WSRT0JABgI85voFmRRRRQJHGEymtyi4P53dgPwSKaUuTK8FntbaJjpmJ5x87NGTnv8e+P1Zzvc+HTMXlFJKqa8VbTe/ptydvg4Am+Gz1XB5IvA5NC+DGbnO8WVIIDkRWTDHC5dXA09AYpG/I1GRFxlG+xNo/a7sCnkVaII9byc5l60hLr9eyt6KBLQ3I0uuZCKBMMA02ONNIq26HCIh+aVDkrwovp6QJilyLDuU6BXN5M/LIDuvCCJht2ss2flFsrwLTvfp0nr2LE5iSFg970RM5/7/+SLMh9VzpjPblwdAqOc4TIHfczeLfE/ycPYjLMp/kvXZUwmnketZB0h23b0xQ8migFyuYwx7yKwtITOmiNe8NwCQQBVrmUUGhbipoZFwEqjiACNw0cJR1xA5F0XEO99wFHW8zi248XM96yjSX5GvDr1h2+f1Zo+nUkoppdSlbYzzmAs8CNSCexPSq1kIoY/iLKKD/FPtRno7I+HYnFCi/76ZfR/ByI+QjLQgQ23dQAWExCO9ltuBZDoyzNYCNWDjwcyXXZWpbhJz/LAcml6WrLZhz7eRllwuvaIVkjE3Lr9eelOd/yKjf9wM10N2URGt2VAQMZ6shh3snJfKEI4SRZ2U8zaT9nQ5ZELVlAQq/8NNYoWfOqIp88i05EbCKUjN4gEW0xTTj0W+JyEeUijFu9nH4SmSXdmsgZY7XTQziLmBN/G7YjHVcDBmWHAtzijqWLTuSSpnuDlBf7ybffxqyo+Zy0qOMDj4EeSSwx8r7uJX3h+TQy7VxDOVjdQRxXyWA/B+8INSSp0vDTyVUqovsmiSBKUuBe1LkswH7gCehct+DoxG0kTFIkEjSDC6GZm72QrRNc2QAyM/R4bptmeG3Y30YLqc54Od69wLvOBc9iEIiXQy3W4H+2+QmOaXtUNvhbAn2jrqOBAJNHcjSYe2QdOj/QgLSJk9zyWR9qNyyIHtGRlMKtqB9cL7TOanJb+htT1Xcy3Sm+qC+0telPmmJZDjXU+cT3pFj3lCg3M2q1wJrPTcxB28zH6G43X7WOksSXu/90WKGSPJglwFVBNPVOoGABbw22DVX5txAzMDazjgGsHqKelUE+8svzI4uFTKAyxmtXc6WRQQRR3/xFJKSSEWfzCIldHtSl2ajDGRwK+Ba621CScd+3fgC2vt/LOdp18P1U8ppZRSSp2FzZaNADLf8gUkcFwNXzyMJBza5my5sG8DEmSGIMNh65GAMgzJZHsdHZlwM6HS44ajYF92zp0jW8g+55oBIALMZji8J1KCTJCAN1YCVO6Qa+MF3gEiocXlosnbjyZvP9LyyuVYJmT7iiAf6mJCmcMqCEDIUdmYJedYnz1Vgulq2DkjlSEN9Rz2RHLYE0kdUQwP7Gc/w3mfycxiDSfoz+SGbbyZOpP5geXMDyxnz5QkktjLVDZSRQI35a+lgCwCuPC+5MP7ko9dpJPgJHT+I7cylt0sqXiQf2UR4TRSQBYFZJHSUE4zgwjlOMWM4QAjaGYQxwnlACM4wIge+exVN2u/YdudWxcYYwYaY35njNlnjCk2xrx4mnJJxpj/NMaUO48ju3LsfBhjFhtjKowx1hiT2tV6nI61tt5a+wNg70nnuhfY0NV6aeCplFJKKdVLqmLcVMW4JdnPaKTn0w37XoHLRiPzNmc7WyQMAskwCxJEVgDFQDqwy9k2IQmG3oLEVX4IIFlqneGyVCDB6SxoerAf/KOcM7a2XoLfdDi8MJLDCyOpjnCz+j+mwxQk6Mx0rguEvdVG2FuSQIhqCXLzPRngRXooX/LBG9AU34+m+H4cSw2FdyRJEK9KPVy0sCFiKkVkUkQm3iIfYSVtbOIahrOfOqIYVusjpBhO0J+wd9sIe7eNAAMYwlGKyCSHXCqz3VxXsolZrKHiTg8Vd3qYXZZHI+Gsc11POH9lP8P5g/cWrmEjLlq4ig+5ig8JOQpzG96mmUHk1G6ikEwyKGQts5DFXXTioDqjp5HxBknW2jHAI6cptwxZRzkJWMqX5+Gf6RgAxhiXMWboSfu+YYyJP8W11gKTgEPnUg9jzHBjzMaTtp+e6psxxmQgf5IKTvP9/g0daquUUuqScqohQ8aYFCR3Z3+kbbzD9tZ6Y0oppfqKIcaYzmu0vGitDfZoGmO+AdwGfKu9zbDW1px0DowxbuBK4Fpn1xvAC8aYbwLmdMestX/pdJpU4A1jzAxr7V6nLcsD/gDOZGSHtXabc90u18Na+xdr7QHgmi68LyDjKxKARcCVxpirrLUfnukFGngqpVRf1EvZ+Ywxi4EbgGHAGGttyWnKJQH/jsweOwrcZq3dd1KZx4DHz3SeC61TV+pxMmttPfADY8zGTvtKcRapNMa8hQxc/Ov51lmprkq8w1kCZSqy7Ek+EA8j7wfKkB7MeU7hfLj8HmRxnPnI0ijtczk/QeZQAhWLPHjX+eSnuFDOxx1IT2d7XuQFwHIIe6hNEhG5wTwBlc+5SczzEzfNyUR7NyQOzIOjcOw5WROzBjfjflQit2qQ65c9N5Tklw4RfmcjW2eM56raHQCULR5KcoV0uoQ1NZP/YAYDCDBuUQkMlgRAbmqIq5DrHc6IJM5XTw657Gc4LbTwYcx4qrPj+X7J27R+Ry5Zzihi+TDYK+rd7GPPlCTCacRb5gPgteQbSKCKRsLJYT1DOMogmlnCfUxgO1XIVLXWwfDHiFu4reF1Xo+5gSzyWcf1zGQNuxkLwJ86JSNSfZSlJ6biHjnLOp7DkbbnMWPMZKTd+Nf2wK+TBOAza+0JAGvtCWNMtbPfnOFYMPC01hYZY34I5BpjbkfGNayw1i6n685Uj7+c6YXGmKVAsjFmGfCUtfYJZ/8w53s+Y9AJGngqpZT6srXI8vRna0Dah+qsMMbMQ4bqTGk/aIy5EpmJVnmqFxtjXECctfZQp33fACKstdUnFT9TnU5bD2PMcP52uNIGa+0zp6nTZOTf+SPA8VOVUarb/dJ5XA68AHv8kHYzEiRWQ3MThL7llNmN/ITOd47dD6G/RIatzkaWQwG8T/skkH0VuYFVDTyEDMF1yvCsc57lSNKigASWiSv8MiT3dafcYLAumQMaYACJS/0k5vslcM13ynwCyVMPQTrUEcWkh3dweFEkcVPqicXPau90AGbn5ZEdVgSbYc+dSaRVlJNY5qcseSjFXskae+3mbTRly0ywBKpICZQyqKmNEyFAGMH1Pr9f8jYLU5/mn1hKI+Hg9ZHSUM6iiIeITZYOp1sDf+RV120MoIVxm0vkvC74Ff8PCQ0+UiJKAcnCew0bKYgYD0BWoIBSVwotuNgY7PzZdR4frroEhCD5pHdZa39qjJkArDPGjLDWNnT3xay1HzhDX7cCz1hrl3T3Nc5w7QXIb/7J+w8if03OSud4KqWUCrLWbrPWVp2pTKehOm84u95Ahtl80znuQuaN/BNyD/pUUoH3jDGjnNdEImu053S1Tmerh7X2gLX2mpO2UwadTvkt1trvI/k/08/0HijVXaxLNuKBmyHtBaTnEyAHQl9BgsipSAKfKXAsIxRynWMvO/s/Qtbg/AD5Nzgf6d2sBkZC5XS3BJ3VzuZDgtIpQCTwKkSvaqb1emS22g9lO+YJxawAYmQ+JlORuagDgWTZ8hdnQASszpjOsFqfBJ0/rodaCG9oJpxGwmmUntUnoPVGSNtczk5vKmXJQ0kuO4SLFly08Icpt/Cq6zbS8sspZxSDmtown0jAWeH1MKzWx7BaHztTU0mhNNhrOcv7BqsiZhJLDRkUkkEhVa4EZrKGUexlz5Qk/K5YFvMApaSwMuIGp1bhvMMMPuQqoqiTY66bGMtuAEaxl1FfzqeiVGeHkDbjDQBr7Xbk5mXSSeWqgMuNMf0BnMd4Z/+Zjn2JMSYWGUn0S2COMWb8Oda3y9fqCRp4KqVUX9RGT2TnG2KMKey03XWetfuboTrIv7LtKdafQIb/VJzm9Vhri5B/bXONMVcB7wFvXuiQoZPqcVqdhwwZY7zGmKuNMS84+13AeQ8NVupcmKmysRzJUDsamjchAWE8Mly2PaCMBB6G6B81S2D5EfIT3yCvo8TZNiGzlTcjt3hiIbHEL+eqdLYHkZ/0ALS257T0QkilnLPp/X40vd+P6AeaIRv2TEkiekkzrfFIgqF4JHj1QfbTRRAJs5fkYeolQN3zXBLESDbba8u2cW3ZtmCipJB98vohHCW56FDHkjJIoJdFAc9n38X3fW9jKuDN7JlEUYc3zxdMxpRZW8LVbGEU5exnOGt8N3NT2dpgMFpFAslLDvEKd3CC/kRRRyPh3MLrbOFq3NQQTzXxVDOZ9wnlOLnk8IuGJyllNAVksZK5TGMD07qetFP1pjbkpkl3bmdhrT0CbMGZM+lM/3AD+08q50fGLLSPObgZ6SX9y5mOdT6HMcYDbESGuT4MzAHeNMZknb2mZ69HV89xIXSorVJKXTrONlflghlj/h4YB/zsbGX72JChCuD9i3V9pdod2xUKQPRLzZKd9lUInQgUATP4csqQ+UgAugkJKKuBR5FlT74LIY865UKg9VYIeR4Yi/TFpCNzRZ01NSumePDe4oP50L898NuE9GjGQ9hyZx3PCsAPY2rL4UYJTH8x/SEeu+UpKl6XYa/epT75j7JGykc3NVOX2sgxb6h8X0flVK33wKqImdyUv5atGeOZtGIH782byFGGcNOKtVJoKqz3TCWFUrZ6xtPoCSeBKrZwNSOmHwhmmP0wZjwFZDGGYlIopcLjodSTQjiNjOAAAHsWJpFDLmNqyymMSaUFF3VEMYu11BFFLDK/tooEkthLCqUsj7id61lHFHVMZSOvcpvz5ujoe3Va9wB/MMY8C3wB3GqtrTPG5AKPWmsLO5X7d2PMo8AxCP5wne1Yu1DgEWvtWgBr7cfGmJlA3MkFjTFLkAH4ccBGY8xRa+3/OIdr9QgNPJVSSp2r4FAdJzFB56E6dyID8CqcbHrfAjYYY+6w1r7b+SQnDRm62Rizylq7o5vqodRXQh1RAES/1SyB5Xqk59ONJAb6FHAS6rDUOTYVKfsWklAoEkJeQX76HSFPIENw2+d1fo4Esw6vzydBa4Wz1MoCqMj24C3xSc9qtlOwCXgKzKNSJxsPj730FFTLnE8AcmCnN5VxOZIwqDLZzbBaH2tipjP707zg7K8jEZHcVLEWOxqGcZBj80KJoo5r87bJEF+gNCKJMRST6PNz2BPJkIZ6Qo5ChddDI+HBNTWzKCCKuuA6nfsZThR11OAm1AkSh3CUKOo4GONhE9dwN78nuqyZJm8/VrpuCg7TnckaNnENbmooJJM6opjqLLmyl1HOG6FzPNWpWWs/Ba4+xf6ck56XARNOc47THjvpOp+etG8PsOcUZRcCC8/3Wj1FA0+llFLnxFrrN8bsRv6dXcGXh+r8ytkAMMYcBP7h5Ky2zpChd4FfWWtfM8a8Dawyxsyz1nZpTbCz1EOprwTvKsnAigvpmXQhAWETNN8OoQ85+0DmbvZHfnOmIfM7I51jv0Ru+eDs88o5yEEC1mzkX9bRThmP89iK/PbkOHX5HAlmP3KON8Gx90OJqm3GbAaTC9wKpENyieQGq0x1E04jTZn9CCtpYy9JJC71Mzs9T1KMDWz/FltgIJjtUDU9gXiqGcJRWrMh5AMpkxZSDslwzBuKixb2RwylMSIcFy3U4A4GmgEGMKa2HBOQ9UPHlZXQ5O3Hq67bKHeCxQcanmNXRCrljKI/JygkgyxvAa5AG1GuYxSQFazXLtJx0cJc3mQQzaxkLg/zSyazBYB3nRsEqg+zdGl4rOo9OsdTKaX6Iosk/ujOrQuMMUuMMX9Geio3GmP+29mfa4zpPEz3HuA+Y0w5cJ/z/Fy0Dxl6DWTIEDAT+EZX69RN9VCqd8U4mxcZavsJwVQloQ/BZ48iiwUNRv6pXg61uXTM75yPDIctRALTKwA/EvB9gvSQLnKu8ZNO130L6QGNkae135bhusfmhcr80lhnmwbRK5ox+VA5xw2Z0BrmXDNXtvgGP7H48btiqcxwc+2qbTAf1s+YSuUMN6s901ntmU50RTPHPKEQAdmbi2QplUANIR/AazNu4LUZN9A0Rf41LSCL6IpmjjIEP7HBREDt8zd/zz2cCIHVnunUEcX65Kk0usKJoo4sCsiigC0RE9nENSRQxVxWkhUowO+KJaRaekNT+IQUPuGP3Mos1tJIOGMoZg0zmcz7LGEhy5nP8q4l7FRKnYX2eCqllAo63fCccxkydFK5YafZ/5UfMqRUt2if/bUbGIMMq12KzO8cCJffjASQANXw8W648idIEJoLrEbW+1wNlRluABJv8EuKrwfBjnaG0hYCiXD4QekijXupXobz+oDREFMMZEL0smZaM6G/s3boiRDJKBtgAMkrDnF4XiRxefXsnJMa/BaKSeMHvtep80TxIVeRNacAb56P4Z79hNPI7JI8AFoTkaVPsiHa10z0S82svnM65TNGMRVZVrfF5eKoN5zrlm6SINoLYygOXutDrgJgFmsIaYKxEbvxrvKxcs5crlu3ib0zRgXLprOLyQ3bKI2QBKPrXNeTQinPJ89gFmspJQWAWPx8yFVMYwPljOIBFvMbFlJDLDNZA8jqM0qpC6OBp1JKKaVUb2mfSxlAhtR+ivRibkIyzy7vVAa4shAJRJ/v9DgSuB0SfyLJcmgFnpPXmgeQQegNQAjE3VAvZX5Ox3DaQjg8J5K4l+tluOzDbcEhvCGzwBtwhgNnwpCGekiQYC3RJ9cb90IJOxelMq6iBG/+28GlX5LLDtEaL0NxAY4TSvLmQ7w3ZSLXVm+DbMmEy3fzqEiWsb/hDc3sjxjOiQX98b7kI7uiiAqvB6/PR50nKhiENhLOYU8kVSSwfc4ErmYL+TMyiKUmOBz3VW4jI6KQERygBjfFjGEwR4jFzxpmcj3rAPBW+DjsjZShwEAuORSSycMs4o/BvCtHzvWTVRdbe1Zb1Wdp4KmUUn1R+3IqSqmvt3znsRo+XgZXzpavNy6Daz5HMtG2Z7adivRyRiKB6nzn6xXAK8CfnHJ+4GkkYL0VuMMpF0HHCrV+pEfR6XGNy6uHagiraJNhuu3zSuuda9UCyc5SKDGQmO+XnlakHuNWlcj1IoHPIT85g+wSyWaUuNQJiK+AiukervVtgxjY6h2PO7mG5cxncckjgCQvGsJRGgnnvTuHE4ufNF85Oz2puGgJJjSqIoE1zGQEB8iigCoScNFCDrmcoD8Av2h4kl0RqURRRy45ZFBIAdnksJ6bytbyfLKsKDXNu4ECsjnKYBKoopp4nuGn/JFbOcBw55vUwFOpC6WBp1JKKaVUbxnsPNbDlSPhi01wWTJc8x1kMYQAEjiCJFYdjQSPq5E5niFIAHoPBJebfNUpF0CWMklGAtAfIfM3QXpWY+GLZ+GyT5zXDEYSAX2KrPnpaP2Ok/wnxNn/AJADh+90hu1urpf99Uhm3RKI91ZDLux/cCjJJyQJEU2STXenJ5VxPy5h0kM7sC54hkfYkyrDYd3UEMpxvD4fWz1RpDSUQy4cuHMEBWRxK38M1qsGN25qCKcRgFCOc5BhwSG0GRGFjCsrYWvyeFIopZFwssinmUEcSw6ljmgAdjPW6Smt5AAjOMgwBhAgFj8DnF5QpdSF08BTKaWUUqqX2FnyaG6Bj/fBlYlIT+KtSBD3MNLrCXAdkvn2VaQH8lZYNx9mNAGzkIRBIJlsnUy1lBEMQo/tCSV6qAyl2HpoPJOKdvBJXRI1uLl29Da5XhiypIuTiZZ34ciMSOJy6+U82cgw3WqIe1qG7VY86MFb4ZNAGKic4ca7zkfrPZC87hB/WHgLAD9Y8TpbPeOZlLeDw8/J0Nb9To/iuFVO4msvUAE756QyjIMciYjklTvvIIdcAFICpQCsdN3E/UtfJH9BBgAZFBIeaGS5az6zWAtAOI08kPwki0se4bXUG5gZWMNR1xAOMoxccpjlzN/cwtWksws/sdQRRQ65HGAEM3iHYsacz8eqeoMOte3zNPBUSqm+qD2rrVJKKaXU14Cx1vZ2HXqFMfEW7u7taiilvnYeL7LWZp693JmZQZmWEYVnL3guik231E1dmrTd7Bn2548D8MVSuOxZJKlQPJJxthqooiP/82ykt/MKoB6aiyH0KaR3cgrSOwrS09k+zPZGJEtuNTJ3s7NPgEzpdTX5yLzPdCAXKh9xMuQ68zOPLQglelWzDPGdj8wN7ZzrukyWYymIGM+kl3bANuAfkbmi7fNFB0J+RgbhNJJAFdFLmyEdjmWHEl0iPbGVqW4OMowAA7imdhu5MVMZQIBMiqgjiv6cAOBl7mAub3KUIXzIVWQ4k1X9xDK34W0AGiNCAUkWlEUB7zCDsezGTQ1FZHLEGedcRQKx+LmaLYTTSCPhrGUW4TQG1/pcZ0rP9lGq89aN7WZyN7ebu7Td7E7a46mUUkop1VvulYfLyuDj+XDlp7DvChj5BLLECuDEWvL8ISQQHQihbiQAHIvMA53qlGsfovsysA54FxmueyMdS7M0Af2BCWCqgWeh9R3o3wo1j0R2JAQaCLhl+ZOdc1LJnFLCwRgP3kifzOkESSiUAcsjbueevFc4dmco0d5mVk+ZDsDsvLxgvYaznxZcRJc184cFtzCKvWQXFdE6suMtqSKBmYE11MWEBoNOAG+Zj/xkGVo7lzdpwUUdUfzspedYfed0pgU2EFbdRlN8x1qgAQYwhmJ2kc5YdrOdCaSzi2EcDGbILWYMUdRRRQIHGEECVcxkDc0MIom9AKzTVZu+Glp7uwLqTDTwVEoppZTqJa1OEp8vNsCVucAKGPkUEtRlIkFje6KfdOAt+OIjuGw+Mg/0DWi6ux9hqW3BOZaABJpNznnm0ZE0qD3wvAJZM3Q2siTLo1AdIb2c8Q1+mc8JElTGgHXBuKdL4ArwenyyPMtRp8xg2Dp9PPeseoWKOR68T0pQOis9j6oYN9aJ2Uw+4IXBgSOwCe5wv87emKE8n3EXt/EqACfozxiKaXG5qMFNI+FElzRTmepmgDcQXCplI9dwDRtpJJytd44HICy/jbIpQ2WtUCCLAqJXNNN6PRABdURxnEFUkUgW+VSRAMA7zGABvyWBOly00Eg4VSRQRCbDOXA+H6tS6hT69XYFlFJKnUL7cirduSml+pyQMbKFfgC8gyyd8gnUPo0EfU6vZLDDzQuXLUcC0k2yP/CNNlmWpcLZ8p3XrkaCzXwkI25Zx3VJd56Pccq8BYnr/ITTSMi78OaUmbw5ZaYka1kHxTFJVD7oliG0/8d5fbyzFcKksh3YKbImJkeBBWDekGVXTD2YetgzI4nwQCNhJW1sXTAeUw3JFYeYzPtEP9lM9JPNhHIcgFJSaMFFM4NYnTqdxAo/LS4X8Q1+4hv83FH7Oku4jzqiSKCKTIrYOSWVUlIYwQFGcIBF/Jyd81L5dcR9DHAmzc9iDYM4Tikpwe3N2tvZzgTqiKKGWGpwU0UC09jASuaykrnd+pkrdanSHk+llFJKqd7yoPO4G754Ay5bAFwBMU5PI+nI8FqAJ4BUJOtsBjLH0ivFyAQn8WvHUipjgSLnGrnQeiOEVDplCuHwnEgib68ntAnpFQ1B5nF+CjetWgvA+jlTua5hE2mby2nK7ifzO8uAF6BykfSQ1kxxkxIoJWxdm9RvJOzxJhG+oBFvkY8y71AA0srKafL2AxdkBApl+ZZ6yT77/COypmYWBcTix00Nm7iG75e9DS5Y75W5nrERMgR4TG05Y9nNGIopJINY/JygP2PZHcyUu4DfUkoKc1jFPSxjMlvIooC9jOIaNnJ9gwwBLojJoIAsfrr5NxyZMpgojlFFAiuZy90sA+BdHWrb9+n6132e9ngqpZRSSvWSpvn9aJrfDz5xkgvVIj2Z25GgczfSc7kaCSBjkWGytyLJgJY7ZXKRJVVmIb2QTznH5juP34aQV53X+OG9GROJq6gn9C049h+hcs0EZFjvZrBTZLuuYhMV0z3wCbzvmgwfIMHlzZDo85Po8zPOV0LYijZZCuVd2LpgPGm+cqKoAxcMoplBNFOZ7Ga5az7HUkPZ4JrGMU8o1g2NhLOw9kUW1r5IM4OIb/ATt6KeW2rfxroh35vBcPbjoiXYS2kC8H3f2ySW+YnFz3D2E2AAjYQzrqyEcWUleCt8BBhAf06woeJ75JDLr/lnEqjiCR5lacRdLI24i/TALv6ZX/OLKQ9RRzSbuIZmBhHKceTssT38U6DUpUGz2iqlVLfqpux8AzItcd2cna9Ks/Op86ftZs+wuY/LF39C5mHWIwmD2oexuulIMpSJBHf5QBN88QEU18PYo2CeACdJK589CpcnQlN5P8KeboPPofUhCCmU1wGwFOzrYLY716sHFkBTfD/CStrk2gCvgp0PpgKsV3aZH4L9N9gbIz2ZLlrw5vkgHQ57Iokrqqcyw03iEr+s++nMK906bzyTluyQOan5bbJ/HzQ91Y+wwjYAmjL78b5rMsPZzyCaOcgwACZt3sHzU+7i/ooX5X2LhMKYVIpJI4f1FJFJFHXsZRQtDAAgh1wOMoxhHKSOqGDG2v0Mp5lBVDvfZAqljKGYXHKoI4qr+JDh7CeX64LzQB83oef9Gauz6aZ2c2CmJaGb28392m52Jx1qq5RSSinVW9oDwVw6ljuZivRwDga2g10vu81mZM7laCAeWv7UjysT22AF0rP5ipSL+rwf5LcR9r026cH8OYR8AHxExxIoOWACSK9qKxJ4NkGLy0WYq1mCW6DiQQ/edT7wSpBaOd1N4gsyb3MUh6Re+UAqVHrchNMIFZBY7+fwwkjKGUVohszbDOU46xdOJYEqEqZUsWXK1SRQhYsWBmTLHMzkzYcYMCWAixbCaSQjUEiLy0XZlKHcv/lFHp7yCACLVj1J8Zw0RrGXFlxc9/AmXlt0Az/If116hIGdnlSWM59wGnmEJ8jlOvy4yaKA7YwgnV0AXFuxjee9d0ldOU4dUVSRQBTHWM585w3beiGfsroY2tD1r/s47fFUSqlupT2e6utJ282eYTc9Ll/UIkl+tsO+1TKN8n9Gwrt1U7nue5ukTBiShTYMnCSwEqR+imS0bV9OJRMJHNvXz6xHgtMcgj2ZlXe6SXzYL/+o54BNl15NKpzztf+lqEYC3RhkvmiNc51qqJjiAWAX6WRSRHyDn6oID8NqfRwP60eLy0Uj4ZLFFihyZTKGYqIrmsn3ZpBCKdG+Zgmma+Vyr2XcQAJVTPLt4LAnkgOMYAABhnCUYbW+YC9rI+Fk1pZQHJNEWkU5O72pVJFACy5SkDU3C8iikXB+WvYb9iRLuT3eJKKoYyPXMJktgGS1HcJRtjCZQRxnAtvZzwj8uIOf029N4zl9rupcaLt5qdAeT6WU6ossmiRBqUtBewA5EAkWU2HkzTDSBdwK192wCdrXuHTBxzfKl1cuRwLJadC6zZm/OdAptxz4iXPugUiwmIMEeM5w2cSn/TARDk+PJG5zvfRaBpCkRZ/S0XOUDbyFBKJhwBVg3WBKwLvCB4B3qg9egJ2LUhmXV4KdAK5AG2EVzURHNgeXeRmWcZDokmYqUj2E00gpKQz2HKGITLK8BYDM2zzmCYXPIa6ongMZMC6vBICd01MZ4SxvMqLhECec/2KPeUNJCZTicrUQYEBwyZUUSqkmnopkD/sZTlptOWu8s3jspacYcef+4DDaERygkXCWl9zL4dRIZ9juMebyJg/yjPNGlJ77Z6uU+hINPJVSSimlesuj8rDvChgWCZeNRJL8ZELz9RD6Dh3BqQ+GhUDMg8iyJk8B8RCyD3gacIJS3kKSBbVnt52FBLU3AiVOmYHAOxBXWC9Lr3yOLK1SApUPuqkjCoD9DGf26DwYDU0x/fC7YvGWyNDbYxky7zG6ohkmSgBHtfScbs/IIPtokQwZjpRLJlb4ZZ3PEh+E+MhPzmAlN/FYxVPBt2OnN5VxFSVs9Y4nyltHFQkcni5Bop9YWpxu3BMR/ZmUt4O66VGkNJSzPSKD44TiooVcZzzxzMAaolwjqCKB6xvyeC9jItewkQV3PksUdcxkDQDbmUAKpaxOnU4zgwjgIosCBtHMGIoBWEf/C/qY1UWgN2z7PA08lVJKKaV6yxPyMPLbyJImbyEJhQZC6D1Ib+FEp6wbYu5H1vssAl5GhtCGAa+DE0fBs3QkIWrv5axFht46PZ5kIkHht4EYOOyNxEUL0RXNxDf4SWySZUvSqsslE+5uCGtqwxvm49j0UKJvaSY6x/kvfyrQBNGbm2m9EfZHDJVexwrYuSCVcT6Jdis9brxFPjmfG44TShb5EmyukjLjaktgE4x5sFiG6XKE8EAjuOC6pzfxqwd/DMADDc+xfvpU3NRQEDGeauKZEXiHA64Rkk0XWO6az1h2M6liB+u9U2kknCKGMZeVrGIOuVwHwDVsJDu/iPXZMlb5CIMJp5E1zDzfT1UpdQq6nIpSSimllFJKqR6lPZ5KKdUXaXY+pS4NP3EeH6BjLuW7yNzKWciQ2PYyzzpfZwLP0dHDeQ8yh3OB87wEyWDrZMBtHQMhDUivZ65TZjUwFngD+A7ELa8P9qyWTk8i7a1yeVINrfdDSDHYCZLZNnpdM2WvDw0Oey1mDMyB7xe9zf6IoSQvPYS9GY5NCWVcUQlbM8YDMKlsB9YLJkbW5pzcsI2QJ2Dr4vG0flcu178VzEAYEAiQ0NRMccwY3ndNJosCdj6Yyi28LtWKcNNIONet2MTqedO5qWwth5MjqcFNFYmADP3NatjBHm8SS1jIBt/3sC5ZBmY+y3FTE6z/nmxJOnSC/qRQSrLvEC2e91nEz5037OC5f7bq4tJ2s8/TwFMppZRSqpdYJ8usyUGGzr6DBJ2FyDDbTyC4oscbyD/WbuDHyBzPViTA/ISO+ZshcHhBJHFL6yEMQo46r8lFhuUCTc85a2emdnpdMpAPab5y+RrYc6cEZOHZjUT/WOZy4oUWXKStk+A0zV8OU6B1JCQvPQRTZZ5neEgzxzJCCUWWU2EZFD6XiiumheyiInDBzsWpTMrfwdZsCU6zGnbQfx78xrWQHFcuWRQQndeMnQB1MVHEIkOA7+UF7mMJb86byQS20+TtR1xRPWszRgSz2gKEVENCRBWT2cIxTyjFjGEX6Uzm/WDgvJKbyGE9zQwilONsZwIrPYO4m2U0M+j8P1yl1Jdo4KmUUkop1UuOh8msp7DKNum1XOEcuIKOeZrtPZ63Iut+vuE8dyPLn/wjMn/zDmf/RxD3o3rp9bwX6UlNBT4F+6wUCfteG8f+I5TokmZZYmU5sBmYggS9Tu9n2qryjnmhEwku0ZKWXw675eumB/sRtqKNI3dGUrQgkywKaCScxCI/ZBDMRGsfhXG+ErZ6xkM8bPWMx00NW7PHk9WwA5CezDqi+FnRcxzOkKxETVP64Qq0ce3mbcFERf87418pJYUT9KeRcLwlPp7PuIs6ooMJgT7kKhqTw4mijqv4kBrcuKkhnL/KeqOOQRwniwKqZIVRUiilxklkdB9LAFjHNV38RJVSp6OBp1JK9UVtaHY+pS4BYflt8kUF0ns5Gj57BS4H6Z28lY7lVKYCR4EGJAD9CNiHrNM5mo61N99Cekm9SG/o53BsQSjR+c3BJUhCFkP0LTJkNplDVO5xk7jKD9VwbGGoZKoF2AyVGW4Sf+SXnthPgXgoy5bXAYRVt2FnQdyKenJyNlEV4yah1g8uqMFN8goplz8vgwEEmLRqB1vnjGdSxQ62esczqWiH1BM4kd0fNzWsz5gqvZ0VzVR4PXj3+Tg2JTS4BEraqnLq5kQRYAABBvBaxg1czzr2MzzY45lCKcWMYTEPMJ/lZPuK+JXnx/zM9xxvemYS76zzMp/lvMptzOAdRnCAOqJwUxNcF1R9RVjkd0j1WRp4KqWUUkr1tiYkUNwEl9/sBJ+RSM9nhVNmA9I7ORa+eBQui0Gy0n5wUrlspFfU7TzPlHmZ+CGkvUc1DJgPyTccgmRIrPXDg8ALEH1js2TNBciFxHS/BLL18pztkPwvhziW7SynkteMqYamef0IK2kjsd6PjewYRrxnXhIAw9nP+0wmc0oJ/TkBtZDgraIiw0M18cEycRX1uL0y/3KZ93YaCWdu6kr2ksQoZHjv4TmRwey1UdQxLr+EPdlJXJu3jYXTnwbgFzwGQDzV5NRuYqcnlTEU8wfPLQziePD1dURxnEEklxzicKqcdyVzmctKFvOA80bsPeePVCn1ZcZa29t16BXGxFu4u7eroZT62nm8yFqbefZyZ2ZMpiWksDsq1KHVdEvd1KVJ282e8biVnsUojjGCA4TTSBJ7yeU6XAQYxkEKyQCgmDT8uMmigAwKKSCbEewngSr2M4JBzlzKXHLIoJADjGAAAYZwlCMMpgVXsDdwCQvJYT0pfIIfN/05IUmCgOEcCJ5rI9cQSw0DaCGKYzQziFJSqCOKYU7CnQEE8BPLcA7gx00CVWxnAnNZyRpmBb/XFgYwge1UkUAUdYyhmCUsJJYaDrYNA6B/vxMcPz6IqEF1hNPILNZQRQKlpABw3Jlz6W9zc3T/5QxP+m9qjseSNahA6nU8imsGbQRgbfUsZsavoZBMWhiA/9ME0q/Yzu7yb/ONbx3hr4cHA/CNuKO4BkpWmqPvX843vn2E2EE1hNPI7uqxUvnLf9W9H7zqpJvazX6ZloHd3G42a7vZnTTwVEqpbtWNgSfd3ICiDag6f9puKqV6Rje2m6ab202r7WZ30nU8lVJKKaWUUkr1KA08lVJKKaWUUkr1KE0upJRSSimllPrquzRnEH5laI+nUkoppZRSSqkepYGnUkoppZRSSqkepYGnUkoppZRSSqkepXM8lVKqT7LAF71dCaWUUkqpbqE9nkoppZRSSimlTskYE2mM+YMxpuoUx/7dGLO8K+fRwFMppZRSSin1FdcGNHfzdnbGmLXGmP8yxuwyxnxojEk/TbkkY8x/GmPKnceRXTl2Powxi40xFcYYa4xJ7Wo9TsdaW2+t/QGw96Rz3Qts6Gq9ei3wNMYMMsasNMbsN8aUGWP+4Qxlf+iUO2CMecEY06/TsXRjzFZjTKmzTb8434FSSvWk3mlAv+66665tb9B2Uyml+qT/Za39O2vtWGAx8IfTlFsGLLXWJgFLgd938RgAxhiXMWboSfu+YYyJP8W11gKTgEPnUg9jzHBjzMaTtp+e6psxxmQAg4CC03y/f6M3ezwfABqttSOAGcByY8w3Ti5kjPECjwF/D4x0tnnOsTBgNfCgtTYFSAN2XJzqK6XU148x5qAT1Ox2tmknHR9sjMk1xuw1xuwxxqw2xnyz0/FuvWvrnLPb7tx2113bXqLtplJKXVxDjDGFnba7Ti5gra3v9DQSuXP8JcYYN3Al8Iaz6w3gSmPMN8907KTTpALvGWNGOeeMBN4Fck5Rp23W2lPdYD3jtay1B6y115y0PXOqNwa4DmlfFgHZxpirTlMuqDcDz7lIxI21dh9QCJzqruscYK219i/W2jbg35zXAtwCbLPWfuScp9Vae7THa66UUl9vc6y16c52cjBmgaettaOstWnAAeBXnY6f9a4t9Pyd256+a9tLtN1USqnTak/K150bR6y1mZ22F091ZWPMcmNMJRKE/a9TFEkAPrPWngBwHqud/Wc61vHdWVsE/BDIdYK894A3rbXnMlKnS9c6zfe4FEg2xiwzxnittU9Ya38IPAzkW2s/PNs5ejPwTOTL/0RUcupv+kzlUoAvnLvvu40xLxljonuktkop9dV31ju3Z2OtrbXWvt9p10fAUDj7ndST9Oid256+a9tLtN1USqk+yFo731qbCPwcOF1b0x3X+QD4KbAVeN9au6SnrnWKay+w1n7LWnuPtbai0/6D1tr5XTlHjy2nYoz5GGn8TiW2my4TAkxFhhPVAP8HeBb4wWnqdBfg/KMV2U1VUEqpntA+x7NbHbHWZnah3GvGGANsA35ura07VSFn3uCPgHecXX9zJ9UY034n9S+dX2utLTLGtN+5vR35273iQu/cnu56J9U7eNcWeMpa+4Szfxjwr125a9sTtN1USqmvNmvtq8aYF40xg08aTVIFXG6M6e+0Vf2BeGe/OcOxLzHGxAKPA78EbjbGrLLWnst0iTPVo8f1WI+ntfZKa+2Q02wnkDuwnYdZJXLqb/pM5Q4Bm621Pmc40evA+DPU6cX2rnIZVaWUUuokV1lr/w4YhzSGL5yh7G+Av56lzGn11p3b7rhr20P10nZTKaXO28VPyudMEUno9HwGUOtsQdZaP7AbuNnZdTOwy5kScdpjJ13LA2xEbpg+jEyreNMYk3XWinahHl09x4XozaG2bwF3AzjJIMYB/3GKcm8DM53Jt/2Qsc1/co79CRhvjAl3nv9P4L96tNZKKfU11j6k1VobAH4LZJ+qnDFmMTI8da4TwECnO6lOmTPeST3pzu0cY8xpA6DTOKfrfQ1ou6mUUn1LGPCWMabYGLMb+GdghrXWOlMaOo8yuge4zxhTDtznPO/KsXahwCPW2tcArLUfAzOBUyWZW2KM+TPwLWCjMea/z/FaPaLHhtp2wTPAK8aY/cAJ4C5rbSOAMeYJoNpau8xa+6kx5klkHhHIHKAVANbaSmPM08B/GmPagAqCQ4KUUuqrzHKxl0BxMp6GWGvrnaG2NyF3Rk8utwjIAK5zAlRA7qQ6De/NyN/p095Jde7cvgv8ylr7mjHmbWCVMWaetbZLSX7O5XpfE9puKqVUH2KtrQG+fZpjOSc9LwMmnKbsaY91KvMp8OlJ+/YAe05RdiGw8Hyv1VOMtbY3rtvrjIm3zo1jpZTqRo8XdXEe5RkZk2Y7pk52F+8Z62aMuQLpLevvbKXAQmutzxiTCzyKRMMlQDkdkXGFtXaWc45k4N+BaOAYcJu19ktLl3S6Vpq1dm2nfWlAnLX23ZPKLgFmA3HAEeCotfZ/nMv11IXTdlMp1TO+uu2mOje92eOplFKqD3Hupo49zbHOd27NGc7RpTupX4c7t0oppZTqOg08lVKqT+qRrLZKKaWUUr1CA0+llFJKKaXUV5zesO3rejOrrVJKKaWUUkqpS4AGnkoppZRSSimlepQOtVVKqT5JhwwppZRSXaftZl+nPZ5KKaWUUkoppXqUBp5KKaWUUkoppXqUDrVVSqk+SYcMKaWUUl1ngS96uxLqDLTHUymllFJKKaVUj9LAUymllFJKKaVUj9Khtkop1SfpUFullFKq67Td7Ou0x1MppZRSSimlVI/SwFMppZRSSimlVI/SobZKKaWUUkqprzgdatvXaeCplFJ9kkUbUKWUUkp9XehQW6WUUkoppZRSPUp7PJVSSimllFJfcTpSqK/TwFMppfqkNuB4b1dCKaWUUqpb6FBbpZRSSimllFI9Sns8lVJKKaWUUl9xmtW2r9MeT6WUUkoppZRSPUp7PJVSqk/SO7dKKaWU+vrQwFMppZRSSin1FWeBL3q7EuoMdKitUkoppZRSSqkepT2eSinVJ+lQW6WUUkp9fWjgqZRSSimllPqK0xu2fZ0OtVVKKaWUUkop1aO0x1MppfokvXOrlFJKqa8PDTyVUkoppZRSX3F6w7av06G2SimllFJKKaV6lAaeSimllFJKKaV6lA61VUqpPkmHDCmllFJdp+1mX6c9nkoppZRSSimlepT2eCqllPpaMsYMBJYBDUCbtfbHvVsjpZRSqu/q6XZTezyVUqpPskBrN29nZ4xJMsb8pzGm3Hkcea7lunqOrjLGLDbGVBhjrDEm9RzqOxv4wFq7EDhujMm8kHoopZTqy7Td7HS+PtluauCplFKqs2XAUmttErAU+P15lDvrOYwxLmPM0JP2fcMYE3+Ka60FJgGHzrEeQ4GDztcVwLDTfC9KKaXU+dJ2s4s08FRKKQWAMcYNXAm84ex6A7jSGPPNrpbr6jmAVOA9Y8wo55yRwLtAzsn1stZus9ZWnUd9K5FGFOfxVA2wUkopdV603Tw3l/AcT99f4fG9vV0LxxDgSG9XwqF1ObW+Upe+Ug/QupzOqO45jW8DPD6ke84VNNAYU9jp+YvW2hc7PU8APrPWngCw1p4wxlQ7+//SxXKmK+ew1hYZY34I5BpjbgeeBVZYa5efw/dztvquBn5njEkD+ltrd57DudXf0HbzNLQuf6uv1AO0LqfTl+qi7eYl0m5ewoEne621fWK+jzGmUOvyt7QufbceoHU5nZMaqPNmrf2f3XGevsxa+4Ex5qfAVuAZa+2Sbj5/M3B7d57zEqft5iloXfpuPUDrcjp9rS7dcR5tN7vl/D3abupQW6WUUu2qgMuNMf0BnMd4Z39Xy3X1HBhjYoHHgV8Cc4wx43uovkoppVRP0HbzHGjgqZRSCgBrrR/YDdzs7LoZ2GWt/UtXy3X1HMYYD7AReMpa+zAwB3jTGJPV3fVVSimleoK2m+fmUg48Xzx7kYtG63JqWpe/1VfqAVqX0+lLdTkf9wD3GWPKgfuc5xhjck9Kq37Kcl041i4UeMRa+xqAtfZjYCbwjZMLGmOWGGP+DHwL2GiM+e9zvJbqHn3pZ1vrcmp9pS59pR6gdTkdrUv30Xazi4y19mJdSymllFJKKaXUJehS7vFUSimllFJKKXURfG0DT2PMIGPMSmPMfmNMmTHmH85Q9odOuQPGmBeMMf1OOj7QGFN6vlm3uqMuxph0Y8zHxpjdxpj/Nsa8aIxx9VJdvmeMKTLGlDh1+cm51qMb63K5MWaLMab+XD8fY0ySMeY/jTHlzuPIU5Tpb4xZ6lx3vzFmfleOnatuqMt3jTGFxpiAMWbx+dajm+ryiPNz8V/Oz8m0XqzLHcaYPc7vTbExZmFv1aVTmVHGmOMX+jkp1d26429yp+Pabmq7qe1m1+ui7aa2m5cGa+3XcgMeBZY7X48EDgPfOEU5L/Bn4JtIIL4BuO2kMs8CLwGFvVUXZFz3AOfrfsDbwMJeqssEIN75OhLYD1zVS3WJBCYB/3Cunw+wGZjnfD0P2HyKMrc51+vnXP/PwLCzHTuP9+JC6zICGAv8b2DxBf7uXGhdpgGDnK//DqgDQnupLhF0TCkIRxZCTuuNujjH+wPvA69f6Oekm27dvXXH3+ROZbTd1HZT282u10XbTW03L4nta9vjCcwFlgFYa/cBhcD0U5SbA6y1klWqDfg357UAGGOuQv64v9qbdbHWNltrW5xylyENalsv1WW7tbba+boe+AQY2kt1qbfWbgX+ei4XNsa4gSuBN5xdbwBXGmO+eYo6/pu1ts1Kxq+1wI1dOHZR62Kt3W+t3QW0nuv1e6AuG6y1x51ye5CFkQf3Ul0arLXtE9kHIb875zyxvZt+XgB+Bvx/QPm51kGpi0DbzZ6ri7abZz92Ueui7aa2m+ri+zoHnonIXZp2lUDCuZQzxoQBzwE/6u26OPWJN8bsBo4AjZxfFrBuqUunOiUD30buavVqXc5RAvCZtfYEgPNYfYrznuna3VWv7qhLd+nuutwGHLDW/rm36mKMud5INrdDyGLLxb1RF2NMGnJX+9fncX2lLgZtN3uwLp3qpO3mhddL280erIu2m6qnhPR2Bc6XMeZj5If1VGK76TLPAEuttZ+dalz6Ra4Lzt3SdKdhXwHMBt7sjbo41/IA/xdY0H4nt7fqovoeY8x3gCeBa3uzHtbad4B3jDGJwFpjTK61du/FrIMx5jKkx+EOa+0JY8zFvLxSgLabaLup+jhtNztou/n19JUNPK21V57puDGmEhnG0r4gaiKw5RRF28vRqVyV8/VEIMcY8ygwEIg2xuyx1qb1Ql06X6/JGLMS+D4nNaAXqy7OEIqNyJ2wP53qWhf7fTlHVcDlxpj+zh+0/kD8Kc7bfu2dna59qAvHLnZduku31MUY8/fIP3nfu4DGqlvfF2ttpTFmBzKv6VzrdKF18QDDgVyn8YwCjDEmwlp71znWRanzou2mtptnOncXaLvZg3XRdlPbzUuC7QMTTXtiAx5HxoyDzDWpAcJPUe4K/nYC/v86RbmrOf8kCRdcF+dYe5KEAchY+V/2Ul0GA/8F/KivfEbn8/kgk9U7T3rfcooyt/O3k96vONux83gvLqguJ72nF5ok4ULfl3FIQzLhQurRTXVJ7lRuCNJwfrc3P6Pu+px00627t+78m+yUO+e/y91ZF7Td1HZT201tN3XrU1uvV6DHvjEIA95CMsftRe4gtR97Arin0/O7gQPO9jug/ynOd85/oLuzLs4vbDHScJUASzmPjGfdVJdngGZgd6ftjl6qS3/nj9RfgBbn68e7eP1kYDsyYX07MMrZnwtkdjr/7zpd+65Orz/tsfN4Ly60LhOd770Bmcf0Z2BaL9Vlp/N5dP75GNNLdfk18N9OHf4LuK+3PqOTzvU42oDq1sc2tN3sybpou3mWY+fxXmi72TN10XZTtx7b2tMlK6WUUkoppZRSPeLrnNVWKaWUUkoppVQfoIGnUkoppZRSSqkepYGnUkoppZRSSqkepYGnUkoppZRSSqkepYGnUkoppZRSSqkepYGnUkoppZRSSqkepYGnUicxxrxvjPnUGPOz83jtQmPMfmNMYU/UTSmllOprtN1USnWFBp5KndpCa+2vzvVF1tolwPweqI9SSinVl2m7qZQ6Iw081SXDGJNjjNndaWsxxnyvC6+73RjzrjHmT8aYMmPMJmNMijFmvTGm3BjzmjHGXIzvQSmllLpYtN1USnUnDTzVJcNam2utTbfWpgNLgUJgQxdfPg74F2ttMtAMvA7cAqQAY4Cp3V9jpZRSqvdou6mU6k4aeKpLjjFmGvAT4HvW2s+7+LJ8a+2fna93AdustfXW2lbgv4ARPVBVpZRSqtdpu6mU6g4hvV0BpS4mY8zfAcuAadbav5zDSzs3tCdO8Vx/l5RSSn3taLuplOou2uOpLhnGmMuBt4FbrbXlvV0fpZRSqi/TdlMp1Z008FSXkvnAN4EXOiVKmNzblVJKKaX6KG03lVLdxlhre7sOSvUpxpj3gcXW2v/vPF9/tfP6zG6sllJKKdUnabuplOoK7fFU6m/VAs+c70LYwG+BI91eK6WUUqpv0nZTKXVW2uOplFJKKaWUUqpHaY+nUkoppZRSSqkepYGnUkoppZRSSqkepYGnUkoppZRSSqkepYGnUkoppZRSSqkepYGnUkoppZRSSqke9f8DxgNeC3m9aX8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "plotter.make_sub_plot(data)" ] @@ -360,20 +770,315 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Instrument settings:\n", + " ncount: 5.00e+06\n", + " output_path: data_folder/union_materials\n", + " run_path: run_folder\n", + " package_path: /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1\n", + " executable_path: /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1/bin/\n", + " executable: mcrun\n", + " force_compile: True\n", + "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/tutorial/data_folder/union_materials_6\"\n", + "INFO: Regenerating c-file: python_tutorial.c\n", + "CFLAGS= -I@MCCODE_LIB@/share/\n", + "INFO: Recompiling: ./python_tutorial.out\n", + "mccode-r.c:2837:3: warning: expression result unused [-Wunused-value]\n", + " *t0;\n", + " ^~~\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1604:105: warning: incompatible pointer types passing 'int (const struct saved_history_struct *, const struct saved_history_struct *)' to parameter of type 'int (* _Nonnull)(const void *, const void *)' [-Wincompatible-pointer-types]\n", + " qsort(total_history.saved_histories,total_history.used_elements,sizeof (struct saved_history_struct), Sample_compare_history_intensities);\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/stdlib.h:161:22: note: passing argument to parameter '__compar' here\n", + " int (* _Nonnull __compar)(const void *, const void *));\n", + " ^\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1613:20: warning: incompatible pointer types passing 'struct saved_history_struct *' to parameter of type 'struct dynamic_history_list *' [-Wincompatible-pointer-types]\n", + " printf_history(&total_history.saved_histories[history_iterate]);\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1434:50: note: passing argument to parameter 'history' here\n", + "void printf_history(struct dynamic_history_list *history) {\n", + " ^\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:2030:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:839:1: warning: non-void function does not return a value in all control paths [-Wreturn-type]\n", + "};\n", + "^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:883:1: warning: non-void function does not return a value [-Wreturn-type]\n", + "};\n", + "^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3274:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3274:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3276:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3276:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3278:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3278:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3280:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3280:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: warning: format string is not a string literal (potentially insecure) [-Wformat-security]\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^~~~~~~~\n", + "./python_tutorial.c:17318:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_filename\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^~~~~~~~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: note: treat the string as an argument to avoid this\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^\n", + " \"%s\", \n", + "./python_tutorial.c:17318:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_filename\n", + " ^\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_abs_logger_2D_space.comp:543:49: warning: format string is not a string literal (potentially insecure) [-Wformat-security]\n", + " sprintf(this_abs_storage.Detector_2D.Filename,filename);\n", + " ^~~~~~~~\n", + "./python_tutorial.c:17560:18: note: expanded from macro 'filename'\n", + "#define filename mccabs_logger_space_filename\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^~~~~~~~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_abs_logger_2D_space.comp:543:49: note: treat the string as an argument to avoid this\n", + " sprintf(this_abs_storage.Detector_2D.Filename,filename);\n", + " ^\n", + " \"%s\", \n", + "./python_tutorial.c:17560:18: note: expanded from macro 'filename'\n", + "#define filename mccabs_logger_space_filename\n", + " ^\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:788:15: warning: expression result unused [-Wunused-value]\n", + " if (volume_index_main,Volumes[volume_index_main]->geometry.is_mask_volume == 0 ||\n", + " ^~~~~~~~~~~~~~~~~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:788:90: warning: expression result unused [-Wunused-value]\n", + " if (volume_index_main,Volumes[volume_index_main]->geometry.is_mask_volume == 0 ||\n", + " ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:789:92: warning: expression result unused [-Wunused-value]\n", + " volume_index_main,Volumes[volume_index_main]->geometry.is_masked_volume == 0 ||\n", + " ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "14 warnings generated.\n", + "INFO: ===\n", + "INFO: Placing instr file copy python_tutorial.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/tutorial/data_folder/union_materials_6\n", + "\n", + " Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Cu.laz' (Table_Read_Offset)\n", + "Table from file 'Cu.laz' (block 1) is 19 x 18 (x=1:6), constant step. interpolation: linear\n", + " '# TITLE *-Cu-[FM3-M] Otte, H.M.[1961];# CELL 3.615050 3.615050 3.615050 90. ...'\n", + "PowderN: powder: Reading 19 rows from Cu.laz\n", + "PowderN: powder: Read 19 reflections from file 'Cu.laz'\n", + "PowderN: powder: Vc=47.24 [Angs] sigma_abs=15.12 [barn] sigma_inc=2.2 [barn] reflections=Cu.laz\n", + "---------------------------------------------------------------------\n", + "global_process_list.num_elements: 2\n", + "name of process [0]: incoherent \n", + "component index [0]: 1 \n", + "name of process [1]: powder \n", + "component index [1]: 4 \n", + "---------------------------------------------------------------------\n", + "global_material_list.num_elements: 3\n", + "name of material [0]: inc_material \n", + "component index [0]: 2 \n", + "my_absoprtion [0]: 0.000000 \n", + "number of processes [0]: 1 \n", + "name of material [1]: abs_material \n", + "component index [1]: 3 \n", + "my_absoprtion [1]: 3.000000 \n", + "number of processes [1]: 0 \n", + "name of material [2]: powder_material \n", + "component index [2]: 5 \n", + "my_absoprtion [2]: 1.200000 \n", + "number of processes [2]: 2 \n", + "---------------------------------------------------------------------\n", + "global_geometry_list.num_elements: 3\n", + "\n", + "name of geometry [0]: box_inc \n", + "component index [0]: 7 \n", + "Volume.name [0]: box_inc \n", + "Volume.p_physics.is_vacuum [0]: 0 \n", + "Volume.p_physics.my_absorption [0]: 0.000000 \n", + "Volume.p_physics.number of processes [0]: 1 \n", + "Volume.geometry.shape [0]: box \n", + "Volume.geometry.center.x [0]: 0.040000 \n", + "Volume.geometry.center.y [0]: 0.000000 \n", + "Volume.geometry.center.z [0]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [0]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [0]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [0]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.focus_data_array.elements[0].Aim [0]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [1]: box_powder \n", + "component index [1]: 8 \n", + "Volume.name [1]: box_powder \n", + "Volume.p_physics.is_vacuum [1]: 0 \n", + "Volume.p_physics.my_absorption [1]: 1.200000 \n", + "Volume.p_physics.number of processes [1]: 2 \n", + "Volume.geometry.shape [1]: box \n", + "Volume.geometry.center.x [1]: 0.000000 \n", + "Volume.geometry.center.y [1]: 0.000000 \n", + "Volume.geometry.center.z [1]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [1]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [1]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [1]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.focus_data_array.elements[0].Aim [1]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [2]: box_abs \n", + "component index [2]: 9 \n", + "Volume.name [2]: box_abs \n", + "Volume.p_physics.is_vacuum [2]: 0 \n", + "Volume.p_physics.my_absorption [2]: 3.000000 \n", + "Volume.p_physics.number of processes [2]: 0 \n", + "Volume.geometry.shape [2]: box \n", + "Volume.geometry.center.x [2]: -0.040000 \n", + "Volume.geometry.center.y [2]: 0.000000 \n", + "Volume.geometry.center.z [2]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [2]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [2]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [2]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.focus_data_array.elements[0].Aim [2]: [0.000000 0.000000 1.000000] \n", + "---------------------------------------------------------------------\n", + "number_of_volumes = 4\n", + "number_of_masks = 0\n", + "number_of_masked_volumes = 0\n", + "\n", + " ---- Overview of the lists generated for each volume ---- \n", + "List overview for surrounding vacuum\n", + "LIST: Children for Volume 0 = [1,2,3]\n", + "LIST: Direct_children for Volume 0 = [1,2,3]\n", + "LIST: Intersect_check_list for Volume 0 = [1,2,3]\n", + "LIST: Mask_intersect_list for Volume 0 = []\n", + "LIST: Destinations_list for Volume 0 = []\n", + "LIST: Reduced_destinations_list for Volume 0 = []\n", + "LIST: Next_volume_list for Volume 0 = [1,2,3]\n", + "LIST: mask_list for Volume 0 = []\n", + "LIST: masked_by_list for Volume 0 = []\n", + "LIST: masked_by_mask_index_list for Volume 0 = []\n", + " mask_mode for Volume 0 = 0\n", + "\n", + "List overview for box_inc with box shape made of inc_material\n", + "LIST: Children for Volume 1 = []\n", + "LIST: Direct_children for Volume 1 = []\n", + "LIST: Intersect_check_list for Volume 1 = []\n", + "LIST: Mask_intersect_list for Volume 1 = []\n", + "LIST: Destinations_list for Volume 1 = [0]\n", + "LIST: Reduced_destinations_list for Volume 1 = []\n", + "LIST: Next_volume_list for Volume 1 = [0]\n", + " Is_vacuum for Volume 1 = 0\n", + " is_mask_volume for Volume 1 = 0\n", + " is_masked_volume for Volume 1 = 0\n", + " is_exit_volume for Volume 1 = 0\n", + "LIST: mask_list for Volume 1 = []\n", + "LIST: masked_by_list for Volume 1 = []\n", + "LIST: masked_by_mask_index_list for Volume 1 = []\n", + " mask_mode for Volume 1 = 0\n", + "\n", + "List overview for box_powder with box shape made of powder_material\n", + "LIST: Children for Volume 2 = []\n", + "LIST: Direct_children for Volume 2 = []\n", + "LIST: Intersect_check_list for Volume 2 = []\n", + "LIST: Mask_intersect_list for Volume 2 = []\n", + "LIST: Destinations_list for Volume 2 = [0]\n", + "LIST: Reduced_destinations_list for Volume 2 = []\n", + "LIST: Next_volume_list for Volume 2 = [0]\n", + " Is_vacuum for Volume 2 = 0\n", + " is_mask_volume for Volume 2 = 0\n", + " is_masked_volume for Volume 2 = 0\n", + " is_exit_volume for Volume 2 = 0\n", + "LIST: mask_list for Volume 2 = []\n", + "LIST: masked_by_list for Volume 2 = []\n", + "LIST: masked_by_mask_index_list for Volume 2 = []\n", + " mask_mode for Volume 2 = 0\n", + "\n", + "List overview for box_abs with box shape made of abs_material\n", + "LIST: Children for Volume 3 = []\n", + "LIST: Direct_children for Volume 3 = []\n", + "LIST: Intersect_check_list for Volume 3 = []\n", + "LIST: Mask_intersect_list for Volume 3 = []\n", + "LIST: Destinations_list for Volume 3 = [0]\n", + "LIST: Reduced_destinations_list for Volume 3 = []\n", + "LIST: Next_volume_list for Volume 3 = [0]\n", + " Is_vacuum for Volume 3 = 0\n", + " is_mask_volume for Volume 3 = 0\n", + " is_masked_volume for Volume 3 = 0\n", + " is_exit_volume for Volume 3 = 0\n", + "LIST: mask_list for Volume 3 = []\n", + "LIST: masked_by_list for Volume 3 = []\n", + "LIST: masked_by_mask_index_list for Volume 3 = []\n", + " mask_mode for Volume 3 = 0\n", + "\n", + "Union_master component master initialized sucessfully\n", + "Detector: logger_space_I=1.13342e-09 logger_space_ERR=5.90802e-13 logger_space_N=3.86971e+06 \"logger.dat\"\n", + "Detector: abs_logger_space_I=4.16101e-11 abs_logger_space_ERR=2.36615e-14 abs_logger_space_N=4.12627e+06 \"abs_logger.dat\"\n", + "loading system configuration\n", + "\n" + ] + } + ], "source": [ - "data = instrument.run_full_instrument(ncount=5E6, foldername=\"data_folder/union_materials\",\n", - " increment_folder_name=True,\n", - " parameters={\"wavelength\" : 2.8, \"source_width\" : 0.03})" + "instrument.set_parameters(wavelength=2.8, source_width=0.03)\n", + "instrument.settings(ncount=5E6, output_path=\"data_folder/union_materials\")\n", + "instrument.show_settings()\n", + "\n", + "instrument.backengine()\n", + "data = instrument.data" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plotting data with name logger_space\n", + "Plotting data with name abs_logger_space\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5gAAAHuCAYAAAD6LKNIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9f3xb5Xn4/79uy0iRYjlyJCxbsR05NrbjxK5DAg5pkiUl/EqBUUoHpYWxjjL6c2vHPl27jnYdb97td7z7m5ZS2lHKWlgpMEIpoaFkIYQYHOLGwYmNnSi2I8fGIorlSJGQfL5/3EfHwglgWgc76fV8PPSwdevonKMj27cvXfd93cowDIQQQgghhBBCiD9V3nSfgBBCCCGEEEKI04MEmEIIIYQQQgghpoQEmEIIIYQQQgghpoQEmEIIIYQQQgghpoQEmEIIIYQQQgghpoQEmEIIIYQQQgghpoQEmOKPppT6qlJq85+6zUyhlNqslPrqSdx/UCllKKWCJ+sYJ4tSao1S6qSuafRuHEMIIaaT9JvveP/Sb07zMYT4Y0iAOQMopf5FKdWmlDqqlOpXSn1XKVWQ8/gN5h9YQymVVkq9qpTapJT6a6WUmsZTvwO4Muc8T9TRvGGbk8G8LmtO0B5SSt3wDnZ1Jfp8xfG2AaXTfRJCCAHSb/6ppN98V0i/Kf5s5U/3CQgAVgD/P2AH4AfuBtzA3+Rs0w+cg/5Q4EzgAuA7wMXAh9/Nk80yDGN0KraZKQzDeG26z2G6mf945RuG8Xpuu2EYKeDQ9JyVEEIcR/rNGUD6Tek3hTgRyWDOAIZhvN8wjF8YhtFpGMYW4F+Bv5ywWcYwjEOGYYQNw/iDYRh3AJcC1yilLnmzfZufUn5MKfWcUuqYUuoFpdSiCdt8XinVaz6+TSl1ds5jC5RSTyqlRsxbi1Kq2nzMGsajlLoX+AvgK+YxQxO3Me+7lFI/VkodVkrFlFL/rZTy5Tx+r1LqZ0qp281tDiqlPvtHXNaJ12GNeV5rlVJ7zGM/rJTy5Gzzhk+SlVJVSqmNSqmEUmrQPKe8nMdDSqnPKaV+rZSKK6U6lFJ/8Q7P6yNKqVeUUkml1B+UUusmPH61+d4cVUr9XCn1jQnXs0gp9Yh5jq8opS6Z+Mm0Uups87UlzHP+ilLKlvN49mdkM3AMOP/Nrl/O/a+a+/x7pdQhMzvw9bd5rZvN87/ffD0hpdQH32L7FeZzoub+fznhZ+UGcx9Xm18PK6XuUUrZc7ZxKaXuNJ8fVUptUEpVvMUxQ2o865G9bTYf+2+l1JM529aa7/uFb/W6hRBTT/pN6TeV9Jsn2l76TTEjSIA5M/mA6NttZBjGVqANuPxtNv134FvA2cAB4OHsH3yl1NXAvwFfAJYALwNPKKVmm8/9PjCM/hR4GfBdYOwEx/h74Hng/6GHhJzzJufy/4DVwGXojrUCuHfCNh8wvzab5/5tNaFz/xN8Gfhr4H3o1/vFE21kXp/HgAT6tfwN8LfA5yds+gXgUeA96Nf/X0qpMyZzIkqp5ejX/m2gEfgfYINSqsx8/CzgfvR7kH1vPjFhN98GqoA1wEfR/2TlHsMLPAU8DjQAN5jb/cOE/XwV/d4uBFonc/7on6f3AGuBvwP+Ub3FP22mTwJ7zOf+GPilUqryTbYtAH6A/rm7BJhn3s9VDFyL/nn6oHn725zH70Jfn0vQP0+vAo/l/sMzwTnon99SoAboA57LOfclSqmPm/9o/Ay43zCMp97mNQshTj7pNzXpN6XflH5TTD/DMOQ2g27AHKAH+HJO2w1A6E22/yXw27fYnwHcNmH/R4GLzfvPA7fnPJ6P/uNwk3m/Hfjom+z7q8DmnPubga++2Tbo4Usp4MKcx+vMc6wx798L7Jqwjy7g5rd5jWtO0B4CbjC/X2Nud3bO418Ctp/o/IGLzOvkyXn8ZiA8Yf/fzbkfMI9R9ybnGTQfD+a8d7+YsM327PuBHv61ecLjW3KuZyHweu5rR/8DYF0P4FbggQn7uBbYO+H6/cvb/Fyu0X8u3vC+vgrYc9qeAr7+FvvYDGyd0LY1+5yJxzjB85eZr9eW83uRAXw529ydfb3m9T4GFOY8fob5vi6fxO/iQ8Dvs8cz264ERoDvme+/++32Ize5ye3k3pB+816k35R+88TPl35TbtNykwzmDKKUcgC/BvYBbzlsIvdp6D90b+WF7DeGYRwBOoFas6kO/cc5+3ga/Ulcndn0A+An5pCXf8x+SvhHWoD+Q5V7vL3oT53rcrZrn/C8AfQnblMhd99vtd86oNMwjGhO2/NAqVKq8C32x1vs80TH2D6h7XnGr0UNen5RrtxPSReg/7HZ8SaPg/709Uql1Gj2BvzEfG6unZM851xdhp5jkjWZ9+mFE9yvPdGGSqmAUuo+pdQ+pVQM+F/06y3J2eyQYRjDb3IOiwA7EM557YcBJ8e//onH/if0J7dXG4aRybYbhvEwsBH4NHCjYRixt3y1QoiTSvpNi/SbmvSb0m+KGUCK/MwQSql84AH0p5Xnmx3WZNShK5W9lbfrSN/8iYbxQ6XURvRQisuAf1NKXWgYxtsd80QmW7nv9Qn3Dd56OHcM/ankRHPQn5qN7+iNk/Dfar/v+FwNwzCULk442Q9u3u4Yb/dP0ImeP3H7AvRwodvf5ljxt3n8RN7p+5TdZrLuRf9j9XHgIHpY2EazbTLnUID+2Vh6gn0PvtlBlZ4P9FVgrWEYr054zAU0oT8BrgY2TeaFCCGmnvSbbyD95vjj0m9KvymmmWQwZwBzXPt96F+8S4xJVpBTSq1Cj+V/7G02PTfnOYXoT/g6zaZOYHnO4/noIRV7s22GYewzDOM7hmGsQw81ueZNjvM6YHuTx0APYUpPOF4d4Mk93h+hGz03wWLOT/Cghwn9MfYCtSqnmAFwHjBgGMbIiZ/yRx1j+YS28xi/Fp0c/0c+9372eua+9mUTtv8DUG8YRvfE25926n+0cyfcP4fxn8WJVgD/zzCMp81P7L3v8Fh/QP8DdcYJXv8JP0FVSgWAB4HPGYYx8VNjgG+gO99rgf9Qp+DabEKcDqTflH5zwjGk39Sk3xQzggSYM8Pd6HH01wF2pVSJecvtdGxmW0Ap1aiUugXYgB43/+QJ9pnrY0qpK5VSC9ETxMPA78zHvgN8Ril1jdlp/RBwAL8AUEp9Sym1TunFjlehJ9W/WedzAGhWSs1TShVNfND84/RT4HtKqZVKV927Fz0X5o/t0ECP6/8HpdR1Slewey/wc+AZwzB2/5H7fAr9eu5VSi02J+H/G7o4wFT5LvAhpdSnlFI1SqmvoT/l+6H5+I+BlUqpW8zH/z900QI9AUR32L8AvqOUOkcpdS5wm/nc7Ceed6I7/LuUUu9RuoLb1UqpL03h63gnmpRSXzRfzxfR/yjc/Sbb9gA3KKWqlVIXowtNTJrZuT4M/EopdaFSqlIp9RdKV8fzvMnTfoUebvVYzu/hXNAVAdGfCt9gGMZ/o3//fqLUtK6pJ8SfK+k3pd+UfvN40m+KGUECzJnhb9HVt3aix8Jnb+U525SZbb3oCdSXoCuaXTuJ/X8F+P/QlfOqgA9mx8cbhvFL4GvohZL/ACwG1ud8GnwG+g/ZXszJ9Yz/IZ/om+hPy/bx5nMT/hE9Qf1x9Ke6/ejqdH+Ke4F/Am4Bdpnn2AF86I/doWEYY+iS97OBF9GVz+5FV/ObEuZwqb8FPgfsBq4A/tIwjD7z8VeA64HPoq9no3kOyZzd/AN60vyzwH/lnF/S3EcfuvpgEF3V7UX0e9A7Va/jHfoh+nW0oYs/XGsYxr432fZG4Cz0tbkN+Jc/4ngfQQ8P+k/0z/B/ov/uHXuT7Veg34fc38OHla4O+VPg/xiGscvc9tNAPcdXKBRCnHzSb/5p7kX6Tek3T0z6TfEnU4bxR08zEKcApddgWmsYxubpPhfxp1N6PakewzA+9SaPL0d/kug3DGPoXT25t6H0ulibDcP46jSfihBCvCnpN08v0m8K8e6TIj9CzGBKqU+jP7k+ClwFXAiszHm8Gb3O1U70ZP7vAk/NtE5SCCGEeDdIvynE9JMAU4iZrRG9CLQbPYfngxMqEdrQQ7nOAo6g5wj9w7t8jkIIIcRMIf2mENNMhsgKIYQQQgghhJgSUuRHCCGEEEIIIcSUkABTCCGEEEIIIcSU+LOdg+nz+YxgMDjdpyGEEFNmx44dw4ZhnDkV+6pWyohPxY5yDMBGwzAunuLdineJ9JtCiNPNTO834dTsO/9sA8xgMEhra+t0n4YQQkwZpdSBqdpXHPi7qdqZ6avgm+JdineR9JtCiNPNTO834dTsO/9sA0whhBBvTiEdhBBCCDFZ0m+Ok+sghBDiOAo4Y7pPQgghhDhFSL85Tor8CCGEEEIIIYSYEpLBFEIIcRwZ6iOEEEJMnvSb4ySDKYQQQgghhBBiSkigLYQQ4jgnaS7JHKXU3cAGwzA2TP3uhRBCiOkhczDHSYAphBDi3XLEMIybpvskhBBCCHHySIAphBDiODKXRAghhJg86TfHyXUQQghxHBnqI4QQQkye9JvjpMiPEEIIIYQQQogpIRlMIYQQx5GhPkIIIcTkSb85TjKYQgghhBBCCCGmhATaQgghjiNzSYQQQojJk35znASYQgghjiNDfYQQQojJk35znAyRFUIIIYQQQggxJSTQFkIIcRwZ6iOEEEJMnvSb4ySDKYQQQgghhBBiSkgGUwghxHFO0iexc5RSdwMbDMPYMPW7F0IIIaaHZDDHSYAphBDihE5CB3HEMIybpn63QgghxPSTwEqTIbJCCCGEEEIIIaaEBNpCCCGOI0N9hBBCiMmTfnOcZDCFEEIIIYQQQkwJyWAKIYQ4jiwYLYQQQkye9Jvj5DoIIYQ4jgz1EUIIISZP+s1xMkRWCCGEEEIIIcSUkAymEEKI48hQHyGEEGLypN8cJxlMIYQQQgghhBBTQgJtIYQQx5G5JEIIIcTkSb85TgJMIYQQx5GhPkIIIcTkSb85TobICiGEEEIIIYSYEhJoCyGEOI4M9RFCCCEmT/rNcZLBFEII8W6Zo5S6Wyl12XSfiBBCCCGOp5Sao5T6qVKq7wSP/Uwpdc/b7UMCTCGEEMfJziWZyhtwxDCMmwzD2PDuvRIhhBDi5DsZ/eZkh5oqpe5QSu1XShlKqcU57TVKqeeVUl3m17Pebl+GYRwxDONjQOeEY3wa2DiZ85EAUwghhBBCCCFOXY8Cq4EDE9rvAu40DKMGuBP4UfYBpVSVUmrThNs/nWjnSqmlgAvYNpmTkTmYQgghjiNzSYQQQojJm85+0zCMrQBKqfHzUaoYOBu4wGz6JfB9pdSZhmG8ahhGD7Bukod4P1AO/B/gbKXUKsMwnn2zjSXAFEIIcRwJMIUQQojJO4n9pk8p1Zpz/27DMO6exPPKgYOGYWQADMPIKKXCZvurb/VEpdSdQJ1S6i7gG4ZhfM1sDwJffqvgEiTAFEIIIYQQQoiZatgwjGXv5gENw/gU8KkTtIeAG9/u+dM+B3Myk0+VUjal1J1KqR6lVLdS6sYJj/+VUqpdKbXb/Op/916BEEKcnqajUIF4e9JvCiHEzDRdRX7eRB8wTyllA90vAAGz/aSa9gCTt5h8muMjQDVwFnAe8FUzRYtSahnwVeACwzAWAyuBIyf/tIUQQohpIf2mEEKIt2QYxhDQBnzYbPowsNMwjLccHjsVpjXAzJl8+kuz6ZfoiaNnTtj0auDHhmGMmRflUeBD5mOfA+4wDOMQWKV1j530kxdCiNOYAs7In9qb+NNJvymEEDPTyeg3J9t3KqW+q5TqB8qATUqpl82HbgY+o5TqAj5j3j/pprvLn+zk0wreWHa319wGoB7Yr5TaAhQADwP/xzAM42SfvBBCnK6Ugvyp7iHSU7y/P0/SbwohxAx0UvpNmFTfaRjGZ4HPnqB9L9A89Sf11mbCENk/VT7QiC7B+xfAJcB1J9pQKXWTUqpVKdX66qsnPTsshBBCzETSbwohxKljjlLqbqXUZdN9IpM13QHmZCef9gLzc+5X5GxzAHjIMIykYRgx4H+Ac090MMMw7jYMY5lhGMvOPHPiaCIhhBBZSsEZtqm9iSkh/aYQQsxAJ6PfNPvOI4Zh3GQYxoZpfomTNq0B5juYfPor4ONKqTxznskVwK/Nx34BXKi0M4DzgT+c7HMXQggh3m3SbwohhJjppnsOJujJpj9TSt0KHAauB1BKPQHcahhGK/Bz9PjhV8znfM0wjH3m9w8Ay4AOYAzYCPzk3Tt9IYQ4/Zy0uSRiKki/KYQQM4z0m+Om/TK82eRTwzDW53yfAT7xJs8fAz5v3oQQQkyBbDU8MfNIvymEEDOP9JvjpnsOphBCCCGEEEKI04TE2UIIIY6nACnMI4QQQkyO9JsWyWAKIYQQQgghxMx0yi1TIhlMIYQQx1NIDyGEEEJM1snrN48YhnHTSdnzSSL/PgghhDieBJhCCCHE5Em/aZEhskIIIYQQQgghpoTE2UIIIU5s6nuIOUqpu4ENhmFsmPK9CyGEENNJIitALoMQQoh3zyk3j0QIIYQQ74wEmGJaqN40bMqHO8yGPSH4nyBsB5abbfnALeb3V5hf1wHHgFZgWDc5bztM4ttFsBL4NLDH3PaL5vZl+q5RA6oL+OqEk1kO/H0IPhyEj5ptXwH+DXj/K7DkLN2284dw1SfgoQTc4tRtzwHPm89Zax4PYDfwKuBGnxfApcCsNMUVYYZurwCg9Ev7GfhmpT6H7eZ21yThIQcLP7uTnteqAEjdUQjXAJ407M4Hr7ntUeBeYBS42Wy7CLgOWAbMMtu2mtdwr3ktvgTq9znHvM38mngQuBzKzdfXF7Iuk2EE33DZlBoBRsCpL7ARR5xOpNy6EELwAR4A4BGumeYzETOe9JsWCTDFnw2lXoLOs6f7NGYE9TDg+SOep9CBuzj9SbECIYQQYvKk37TIZRDT49588AGPmvc3BSGNzuQVmG2zwb51hNTeQihL67a2fAgCj/PGAKkWCBrQpOAhs60bncHrB85/SbcNA23ApiQccui2UeAzQb3fVvO5XwSiwC1nwSqzrf8TOnt6iVNnBDH3RQg+EIRHfgjXfEK3/yXwB3D+82HrFBO/LSJvTZLhQS/ckARgYF8QrjDgfkXZrd36MNdXA7BnXxNsVwBU3f4yPU8tgvx88pYexe8fAiA64iHxf4vwbjxI5MV5elvjZXq6FuGtPkjkLt3GjWBfPEJqmQtazV/7e8zzfBn4B/Mk/+/VOhPrQWdACepsLqBcvNElhbCoUH9/xybG07dCCCHE6UEyl2IGOOXqF0iAKabHRVDQMEzqmB2AVH8hLAW+gzWMk++DfVaKlA143PxR7UcP6/wHYJYOOhO7i6i5ehddFzTCmeggECAIxY29DP20Aj5nZi6H0cNyn3RAk7ldAbAJ+Dqw2WzbCjwLnAX8s9m2Bh14hYC+8WOwJwiPhOAnn9BDdEEHzjcaJLYXjQfMS2Bs82wKLhtmdNij2/YqytZ3U31rN5u7Lgag+L5ehroq4EWl9w/0vLSI4gt7GfpmBWMXzybmduvXHnXDnRA55IMzzG23LYJgEm9ehEiJDjDPW/0MO15bCt/LhwbzfP4S+A1Qx/hQ2g+ghxT3A/+SgHxzqKxlF6xs1N9uB3YAz2xCnIbkk1ghhBBi8mQdTIssUyKEEEIIIYQQYkrI59NiemyE0e/44Ovm0Ndl6II1V2Fl7QjB6GafLmjTb7YtRw+l3QuUmT++w9DV0aizkF9ED3kFKIGh+yp0+9+bbU+ji+4cY3yYawI9DLQMa4hs3q+OMpaerc/rYnRmc5a5bwewaURvuMQcInpLUA/Jvcrc51bgmNLZwfvNthvTzL+6m2jKw7kV2wDIVNjY0fVeomUeKyPrJsbwnKNUX91DOB4AYPSQl3jcxeLPv8jul84Zz4AeyydvzlHGjsxm/tk69esgRdetjXTdXGtlc5+/da3O2LYBf2OeTxRd1Ggv45nb7yfhHocevvxIzp+HFuALAI068wk6E7oUGJahsactKVYghBBCTJ70m4AEmGK6eKD0F/sZuLVS3w+a7VHzBnAIHUymoeDLumSsY1aSyNfnwcVQdraesxit8zC63TceDGaHpGYrpP4z8FvzexswYG5jxrbMQge3h4AbdNPY/8yG74Xg60HoNLe7Aj0Etj0ETvOEV6ID4KPAXwB6+iTzP7aXA7+o00Hd93VbTUUHXVsambP8EIMUA3DgiTqcKw8z2u7DfpYOWtPYKDozSldvPfYCszRrm2J0mYehCj+MQt48PYfT4YmRSdtIDcOBx+v0tqOQ96mjjP3XbOw36H2mDulAuPh3vQy5dAVbHjVf024DqpV5HAfEgPOAO8+AR8zXvjQBTifcxXgw2g7sRAghhBBCCIsEmGJ63AsDhyqtJUQ4BnnvPUrRmVEiW83CNCuxspXZuZqjwx7dVgD9u8xorh/sy0dINRTqzFvWX4egM6gzfB8yK9QcUuRVHWXs5dlWIOtcd5jEniJd7Ga2+dwjwK+D+vvh8XPED7R3Q9B87Ap0RvOOEfiLQv38o3Dg2jq9bMgmKF2xH4Cu3nqoTpIYdRF7Xc+htC8fwVsYob+oiNRuHQSOrowR2TuP+fV7OfBdHTQ2fXY7bQ8vZ2iggrLV3XjQxYN271sG+RkdTJvLpSz81U729DZQ9fmXcaID1N2+c+B1GNpSoQNKoGxBD/1fr4bNCv7WfI1OdBCZnVa50Py6yQnvBzbktHnQS76cjzgdyRxMIYQQYvKk37TIZRDT4wp0AHl+SN+/M8jYHbPx/kcPttUZAIZeqgCPAceUFXzhAD6qq65aRUsfAvfFMQ7/Xxtjv549vo5mz3x4HMbWzcZeYmby+gt1EDt7ti7WAySWF+nM5CHGA8xOdObzFuD7ZqrznnwdeH1unS74A3D+LvhMI3y9EH6EtY6m9/6DRL4+j+Iv9TLQWw5AVUUndlIMjRVblyHy6Dz66wo5t34L1JiHTtVADIqIcuAKfey2luUUXDxMJm0jMeYklacDbl5V5AWTjPnyraGvnYM1VFV0ksRBz92LdGMdOJsOk0zYGTuiX2T/fdV4P32QyK/mwR/MExpGB/A/BD5jtt1jXoejwOvmewB6aPEvgRuB/0KcbqSjFEIIISZP+k2LXAYxPVai5ybeGdT3g0AThOMBK1vJ48Bihf2KEVKPmgHmMeDSDPZPx7HPSgEw+lWPXo6jzNzPHdljKJ1lK0iTusF8/lVQujpMhHnYrzCDzvxCWGwe7yzzueVAbQg+HIR/Nn9NLgY+jB5mmx1ea6Vg0fsI6W9jUTfckGSoowJv3UEAenpr8ZYNEou6SUV1BnP+lXsZHXMTw20FnkduLMH+7RHaepeNLykCpM6y0zC3HYCOkXr9/Oa95JPBeX2cfHRg3ravmbQ5CWD+TXpeZiTuY/Qhn55vmd3lNRCx7YH/nacr6AJcCnwL+Bnw1+aw2KzZwCBWtVqC6Ot7J0IIIYQQQgASYIrpUgL2O0asQIt+RUHTMKMhnx6GCTrYeRKdLVxmtm0Gns8nvcZG6g49Hrbs9m76m8zhsj6seZRsB/s1I6Q2F46v83gP7K49B+fCw3oJEdDzJL+NnouZzX5WAw8EdUBlKr1+PwOj5pzRD2Zb51Lw9WFG5/v0cYO6tXxuHz0/XQSLzCVEMOdghmtZGmhlR3QFoAO/Blc7z+9bw5oFG/VLrJvHirnb2Dx8MTTp4aykFan+QnZsfi8sS+P0xAA48HAdZVd209OxCDx6XiYPKA6sqcO5WGcsAcb+azZVn3+ZnscWjcfEw8DT63RG8lKzbTd66HA3gFNnKXkFjp6ls5pOIPGK3vZ5MxrPvjfi9CPFCoQQQojJk34TkGVKxHRZFCIVKoRZKX3bDbb8NHneo1AEFEFB3TDUQXBuSFdl3Qp4oOzqbir9IZ0xXAwOkjoo+k+YEzykg6Nu4IY0xXOHdGXYqHm7ATgCiQeKdIA1DFWNL+vqrz70Ry75ev1MQuhAs0nfBq6thE+hs69Zf4DRW3ww/Ar0AHv0recbi6AE/qr5Z5QF+igL9BHFw4WBjRQzCPcquFfhdsVoGTyXOWWDRPEQxUPVl17Wa2IWJGla0ELTghbsvhGKG3vxXnGQcyu2kZhTRGJOEZRA/1PVzK/fS54tTZ4tjfPTh+EQFBcOMhaazVhIF/vpOWORHu76inmrTpK36Kh+HfeYt1eB68j56MkMJn/4il4jMzEC687SN/bo+Zge8yaEEEIIIf7sSQZTTI/ngsxZfIgjD5To+01wZGsJzmWHSaxzWZvNufQQXec06uVHAPqh/5+q4TfoYjRAT9ciHVD+a5oj3yqBD5vjV/85n6Hvm/Mdq8efTxSKb+q1jtHzkjlPcQ3WHMyh+go9x/MsdGYT4DYDXlHwPYB/022hr+ihsz/0wzIo/pLer5M4B7rq+O+f/rU1FLdqbg9PdVwOsww9BxVooB2XvwrQ8yzNJ+NdfJDI9nm0pc304N58hnYXUnDzMIOuYjigX+P8im4O3F6H48IUY3fqk/d+bYDwe+0c+GadXiYFSCUL9bDXGxkfQvyAgzEcusJutu0LwD3fAy6G/3MWbDezlNm/FP9TCP+YvXIL9TW7F3E6krkkQgghxOSdvH5zjlLqbmCDYRgb3nbrGUD+fRDT5shDJdaQ1OKaXoZ6A3pI53a9ZMaoz0fVhS/Dc5BJ6x/V0ZAPDoH9iyPUzNXrh+x+7ByKP9vL0L5yKIXFFXrtjN1rziH9ug2ugbJGvaRJv68c2hwM3VeB/VJzLct8dBGbTUm8JbpkbOSv58GD6KymxzzhrQq+gx7+4PyKbvs2esjpdwohH4au1EuALHx4J/Nr9nKgv47UK3r+Z89ZVTTVb2fXYAO+BREAnvrB5az55JMkcbCiWa+N+fOXPq7ncOYMsyhYOczoLB8uV5wM+eNDZHfVseZLT2IjQ9dVjQDYSDN2ZDZ5HzmqM71AFT3EcPO8ba2eawo66C4A9oC3Sc8TjbjnwXWf0Uu5LEZnbwFuQwfareh5qHegh8ZWMz6sWJxeJMAUQgghJu/k9ZtHDMO46aTs+SSRfx/E9JiFzq4d03eHOipwlh0msblofE7fXojh5sjWkvGf1BB4P3qQSChAT75OS865+BCZMRs1C9oJlwTYvescve0cGBs0K6a+ZKYwd6MDpzSk2szCP0EDrlBwi4PIxeYSKaXAQ4YOKu81j11iPvc24GqzbRg9vPbf0cGnmZDd41oCe9Oc975n6EFnKD1EqaGTAn+Mrb1rAVj6yefY/PDF5L33KM/v0G0L1+9kT7iehc072fPNJQCMXuxj4eqdhEaCJH5bxMKrdRC95/EiNv/2Yp1JNOvxHNhVBwUGlf6QVexn0+D5jP1hNvYLRsZf92zgOeDfkkT6/boths5yfgs9z/Rfc96vpehs58tm28voYcclCCGEEEIIAUiAKabL40ATlF1uZhZ/X00iVETBumFGW83FLD0wtKsC75qDRB41A7/lEB91MadsEIddV5EdaqmAJER85jbmkNaCy4YZ3e7D3pQTVGUf941vN6dskCNlJXBzGr5t/krYgFqliwyVoIOux9G/MZdijZBlO/Bz4OPm439ptt8FDOTTV1FOE20AxHHy311/zXk1z8Dz+jg70iuouvJlkjjoL9NB8J59TXiDYfb0NjD/87oKbIABbKRJFdrpWeViz/U68Dz3vi28EG7mvMA2nt+3BoC82XHG/ms2PaOLOPfWLQAcCNXBMbDPSpH6tnmOy8zXM88BPWYxoU3ApgTg1HMus0OLj6ED6Tb08i3m+4MfHVwD/AJxOpEMphBCCDF50m9a5DKI6VEG1EH/Nh3BFCwfZrTNRzzmNCuYgvOqwySibiJt86y5hGwF2zXmOplf0sNRF9/+Ig5S7Oh4L3OqD3Fks06pjV7jw7n5MInWIquYTX5ThtT3C/F++SCRx3VAmgi69NDPrfnwZfM4BbpSa2Jl0fix/WBfOUIqWjgeZPUDa9HP+yh6WC2Q94WjlPv7GBrxEyoMAtC1rZG8qqM837uK0qv3AzDwzUqGP+3FYU+xuPFFAHbvW0Z81MV5Fc/yfIfOah7Ir6Oq5mVq6CRa4sFzXxSAF3athn7YMWspVQs6ALCTIvJ5r368V1er5cvAjTD6UZ+1JIm9ZITU44XAK9BvzrVcB+CE84B/D8Gl+tzZjv5rsZnx9TH/0lzG5LI3eY+FEEIIIcSfHQkwhRBCnJiUWxdCCCEmT/pNQAJMMV226i+LP2Zm7TrOgUMwNmu2VVgmsbmIhZfvZE/bEoov19VZhx6tYHTYA/kZFt6u5yFGKaL/m9VwhcGRQz49LxLgYvAWRkisiZM85gBgdLsPlkFk9zw9TBb0Opmg5zHOMoeKhvJJ3Fykh4X2m/ubBanbCvVal1Gzba/51YYeSmu2j/1hNge21sE6CC/TGdfzV/yGMAF6XqtiGa0A7Px8hgZ28duuK6mv0RnIv1pwHxF8tI01cV39jwH4+ZaP03PvInqWL6Ls8m6S6NdT2rifAV+A1JOFlF4b1pe2dy32gjieuVGWVrQAsOPO9+IsOUziPDeE9K99qq1Qz2d1nGVV5OXDwC/RS7FcFtTfg85gfhQ9NDg7DPgTTv0XJHt9xOlFhvoIIYQQkyf9pkUug5gWBd8fZvRJH6F4JYAe2nqoBHxp2GT+WHogNBJk5eW/Y2vHBQBUfell+l4rJ9VfyJ5jTQA0LWihf1Y1dk+M1O5CvNeYFVG759HfUU1ZfTcFLl11ddTngwID0go8eqkP5+IYtoszjN7lg8fV+En+NXpNzuxvySLgDHRwnC3y80X0sNJSYE2SK659BIBHv3kNS7/2HDsHm8ik9cdZzwyuodHfTmrUxZaCVQBU23tI4IJ8g8296wD4YMWDxHERzAuxkYv0cfphze262uzz+9awcEEbAHvC9bDXQd75R+miFgB7QRz7rBRDT1XgvDCun98KicVF0A3FV5rBeksFkdvm6YD+GvP13IWeh/mv6ID7t2b768DfoeealmOdEwOMF/0RQgghhBB/9iTAFNNiNOqm5spddG3TS2tkM4D2gjjFHxsCoL+jmkRbEX2ry6FAB4MNtBOf62Ig6iZvtg6euuPVFNwwTLWrm7bgMiL36LmV9qtGSO0tpH9fFeTrLKJ38UEid83TQeKl+sc/UVUEB6HgZl0UaPwk0YVszDmhFAGPoAOszpwXs9Pc9l4HT9y8Xrf9FoY/78XhTFFcOAhAdWEPTz/xfs5b/wxDFJsvO0MaG95gGHueLlrUQjNL2Ekry3CiX+Ml1z7Mbx+8EhZCQfWwDiwBuh2QD8v8O2h7rQkAz9woNjJkltuIpjx6uzKYU3eII9ESbOhrYT9rBOeSOEc2lejlSkAvOXILem3Pm3Ne42+AizbB8nXjVWPvQgeY1YjTkXwSK4QQQkye9JsWuQxiehyz0xWutSq5Zoeapla66I/qZT1IA8E0foYYLXMD8GjXNdTU7CJWEsHv0oFbT7ga+hx4mlt1dVazKE9quFDvv1tBif5Rd1YkdMZxKxRfa2bytlWQ996jjLb7IGSez3LI8x5l7ODsNyyRwpnoNSBjZtsVwA4o+303/S3VpEZduv0naVwkSBwqIjorCcCzo6uYv34vbSNNXFX4EACd1OIghTMvQWJMrzMSzAvRTTUr2Mavt30EgCUr2qBcr+fpJsaedl1FllFoWr8dF3FK5+ohsge66iit2U9idxHlK3ZZr8dlT3CkOkl0xKOvzyuFpJ4r1MN67zVfz9XorGUbunLut832LwD/u05vt9JsW2TePoAQQgghhBCABJhimswpG+TIV3PWt7wCOAQcy8dbrYe4Jo85GL3Xh+2TGZx5Cb3dIYjWePC4ovT8dJFuW2Mwv3kvm/ddxJwPHLKOceSeEqo++TI9LYusQLZ/XxVzgoc4ckMJ0dc8ujGYZOy/ZuttLtWZ0gJfVAecB6Hmeh2kdXU0kveeo4ylZ49n8fYAX9bLrDiXHbaylQOvBXSW8RA4anRmcu3czbTTQFNhGzuzE02Barqxk+S3T14JgHd9hL6RcuKFTspW6PTpox3XYK8boX9fFQsXtFHVrMelDqe8tN2+nNIv7Sfymq4ca/eNkMHG4hUvsrvXDESj+RxJQEHDMKP3m1naYfTyIw8xvvZoA7BGXwNuycdZfRiAxHlFOsv5n7+Fj16iH1+Insd6i/ncT57onRanLIUUKxBCCCEmS/pNiwSYYloc6ffDzWnKKkIAhAdLGXtlNhzDCiYjUR80QQSvld2rWb2Lrt56/byLdWbQWRCnb7AcZqVosLez9Ut6vqbznw/T88QiataPD8XNq4rrYxeYGU7g3JotvBBcrQOorfpXYhSfDiLzoeu75jDevw8x9rMgHEbfOtHLraSBYUh8v4iBm/VflvVzn6CbKgZKAnjMyj+d1OIkTphSKs1UaRQPv+i9HntBnLyleimVrq5Gzq3ZQhwnHYN6KGxxfS+ZMRvr5z7IMF62pfTyI4lRF3w0jYcoEXSAWTW3hz29DQyl9TUBYFY+pY37SY3ZGc0W5bkYnTlew3jmFuAf8vVQ4FWQOFSk2/49BGuC8D+XjM/L9OjrYwWn4vQiQ32EEEKIyTt5/eYcpdTdwAbDMDaclCNMMfn3QUwLpy9KYk8R/b/UE/icnzhMIjgbPGn6W8xJfWcaMAyDqWJ89ggAkTEvdOfT312NvWkEgFWFz/Isqygu7KMtvoSCL+sysqOHvBSsGcZDFO/y8ayo19/HgS/XUXCP3u6Fr60213+EvPeY62WekdEVY29Jwj26YitfDOpAbDnwgPlCfOjfoo9swptZaAXHj3ZdA18H7z0HrTmPe1qWUNbcTT0dRPEAEMdFaUUfA1squXb1TwFo9S/jhZdWU3Z2N0VnRgGooZOtj15A95XVtI00kRjWz7d7YtgL4kTwWtVw95QswV43Qqq1kOILdUZ1aEsFA6OVxweEawwIKf2aAJ5EB5e3oOeamslMbgzq4bE/NzPJlzn10Fo/5CRjhRBCCCHE1DpiGMZN030S74QEmGJaJHYX6cI41+ksZCKkC+1QCmY8RvGCPpJldjz2qBWkleaFiZTMg3wIzg0B0E4D7sIYBx6rw75yhPK5fQBkfDZs+Wle6FhtzZlc0/wk+wmS962juFy6gM7oVejlSUKKsZ7ZAKSCSfgoFHhijK4zA8w1kOc/ythRFzSZ1Wb3ooPOHeuIPA6XXP4wAP391RT/tJd6Ougzy67+bfOd9FDFpsHzafS3A2AnSQMhVq3eQtocVxHHhT04QjMtdObV6NeYauDcK7fQkVqor12JXk6lfG4faWyMjrlhub6WbHeQCjqouXAXSey6rczQw5L7/eDT5z5/xV4icR+jy3KWdqlDz728wLwfMr8OYgaSTrjMbHsWWAu43/KtFqcy6SGEEEKIyZN+E5DLIKZLiQFRBcNm8BaCqitfJo6LgaheumTo9xV41xzETYwoeqhmDDcFwWFG9/roekwPXT3v8md4ftda6IdVc58lZkY86UIbLhJU1/ewc7AJgG6q6d9XRUFJhOFBPaR0TvUhXPYEUZ8Hb6HOlPaHy1l49k72PLXEym6S1utbUoCVBSz97H4GnqjEWX2YxCtFVjBZ9r5ufAzjJcKwOXR1M2soJcz7/U/QQjMAQUJ0UE//tmrmr9CVjvq3VDNn+SH6KCffDKwb7O3kk+HI3hIoMShdEAKgZ1895y54lvK8Prb26ahw6ZXPMYgfD1EyZtB64JgiYB/gSL4P+vSv/YGH6/Santuxivk4Dx0mcW8R3I9eAzNovvZy9DzZBLrIUdYxoH0S77cQQgghhPizIAGmmB73KEpv389AOKDvP+AgdrkbOykWN74IwMBYgMj2ecTq3FTN7QF0gJk6ZofdUHa9LoDz/K61ek3LNfk8vev9LGzcCUA+GUIjQdyFMV0NFogVFUC/YvRSH3xaH9rzyT4ObKsDD/R7zCqwIQd9nnIdYGXrBmWX8ngAzBGuDPRVQikkthZRfHUvu/fpyPP8BU9YwWZ2DiZAAhchKgmaqcHOVA1H+v0sXfEc5ejMq2t1gtBIkJjdTbW5RoqbGL2U6zU8uxX2BTpbed2Ce2hlGS5slDXrbXfsWwGzUiRKnERW6iVbSrftx00MQvlwjs5+slvBK+br+k/z/O4ogvczvjTL53LeM48BnwBKzeztP74O7z0Dkid8h8WpTooVCCGEEJMn/aZFAkwxPW5OM7CrEnuZnkeZusZBMmVnaNiPL6DHax5+1QMlBjVzOwnFdVYzk7ZRNbeHzotqrF0VVA8zutlH0/rttLUsZ0+XWTl1VhqG87EvTupMG5Cfn+Hc1Vt44fFV8KIOlCJxH2Uruul/uJrzrtwGQF+gnP77qsFMsHLNwxQcXc3oV3ywmPG5iaVgXzxC6lAhQ70Bmha0APB01/s5r+YZNo+toSBPj8/1EcFJHD+DOtgDnVV8tQT3gpgVkO7pWEJN/S78DNJqpkqbacFBioUL2sgssNHVobO3W+r1+Qdd+3GYkd7KBZsYxU3Ha/XYH9fXNxZ388KXV5P3haNU+kMA9EQXwaXobOX95utZB3zZ/FrKeLVcgAeUztya15LPnKGHM6cRpyMp8iOEEEJMnvSbFrkMYlo4PTEyBTbcHh1opQvi+O1DHLmlhLabdcWZstXdREa8uEhQ7+oAoHVwKalCO9X+HmteZhQPTeu3sz8VhDOgtGY/AAP7guAxqLb30LdCV1N1Eqd9pIG82XHGynVWc/QuH67Pxym7spuQOSZ0YF9QB05r0jD/sfET/xtYWL+TPVvMIPYeSN1QCKNgXxm3MpMdvnqieCjNC7N7yzkALFn9AJ3UEmQ/m0fWAhAoDLOweSdRPKznCf3csnrC8QA2V4ZmdMC6ceQimgtb6BysodzfBx4dTOaTIejaT4Z8kmY07CDFKJBqK+Sy9/0KgMN42PaFFYwlHfRcr5d3qblvF317y3Ul2hvNSHovei7sQfRfhw+ar/vXwG3o4HO32bYYXYF272TecSHefUqpOcC3gAsMwyg32+qBv0d/zpwP/I1hGMb0naUQQghxesmb7hMQQggxA2U/iZ3K22QOq9QdSqn9SilDKbU4p71GKfW8UqrL/HrW2+3LMIwjhmF8DL2oULatwzCMvzMM40ZgtnkTQggh/jQno988RVOBp+hpi1Nd4ttFsBIie/XSGgxD/pczNP1iu7VNHBf9w1W8sGk1cy7VEyED/gHiuGignacevlxvuCzN/pIgHnuUTF2+Na+zbEEPGWzs6Hova2qeBGBzx8XMr9/LgWg1zDIPVABDvQEYzWd+fU467uIkbHLAb64EIJM+DHthT+uS8aU5LkbvJw2pYw5r+ZHUqItQfpBVhc/SaC4/0k21VYBofaHOVg5SzBB+AB4zy7MuLWwFYOu+dcQW6O0vK3yMDupZ5t9BFA+XBXRWtYVmevbVs3LBJvbs0yflWJDERoYL3/cYndQC0BWuhVYHLEvivXfQur6Je4t0LudG8/VUouemzgK+NwLXFY5fjy8D/2JuA7oK8CPAGeb9jyHEVHgU+A66TnGuu4A7DcO4Xyn1UeBHwPsAlFJV5v1cGw3D+I8THUAptRb9Uz8MxKfu1IUQQgghAaaYHsuAoMH579OB1tOPvR9bXoa2ruXWkMuqy1/WX698meiYB4BaOgkRJIab4it7AV1Ep6u3niPHSpgTPIS3RM/h7O8NUlwRprimFzt6iOxf1f+MIfwcCNXhXanXxowF3aTuKGT+7Xs58FKdPvheoMQBZVjFgBJ3FOl1L4NYwWne+UcZ+8Zs7F8eITVcSPtYAwD2gjhXFT5EOw2kzKVC6unAQ5SNgxfR7H8BgCGKAWhrWc7S5ucAqCTEz1s+DkmwLdATHFtoxkWCEEGq6GHDTz+kT2BdmssWPISTOOcv0Ndy28gKEm1F9DWVW1VxFwY62FO3BB5yWK+n/6lq/T44oeA75tqhi316aPAA8HShrjAL+nUPA19kfEhsH9AAbH67N1ucsqahhzAMYyuAUspqU0oVA2czvoDOL4HvK6XONAzjVcMwehiv9zyZYzwDPKOU+h7646KXpubshRBC/FmTyAqQyyCmSdX6l+npreXpjvfrhjL0nMpZaTikfyx7rl0E/6wrx0Z262qo7Y0ZMmM2+qLlpKI6u1e1oIemilbatiynsiZEx2v1ACysaCeCl8yYjXieE4AwpexuOQfKDCLdep923whVt79MT7iaqrN1UNvjqYdRpdeBvEWf4px1Oot6ZGvJeGXZpcDNek3O6FwPAcK6ee4OdrCUOC7rfJxz4wxRzEf8v+DB164G9PO6B6tY2vwcS9GZyw7qaWrebmU7AXoeXkTee4/icieIuQpY+DFdKTeCl13ooPbANh0cX7jiMVqWn0t+fgabWYFnz61LdDDph0i/zpiSBoJJuMrBaJtPt/0D0IoOojdjLcfCbvDecZDI1nnjbT/kjQWPhHh7PqVUa879uw3DuHsSzysHDhqGkQEwDCOjlAqb7a++1ROVUncCdUqpu4BvAPOBq9CDmc5gfFaxEEIIIaaABJhiWoRH9JDUbHDirD7MQG+5HqZ6k06RHRitA0+aobCf8xt/A8DTu97P0sbnCM8NUD63DYDnf7AWlsKc5Ydo27Kc7Kog5Zf30TlYg98/xAB62KyHKLjBGwxTnqeXBWkLL2Ew7oe0jZ5wtX7yXkXx+l6Ghive8FtypN9P6fv2M/AxPU50bHg286/fS9cvGim7tpu2Xh19OSsSlBLGzxBVc/WaHxF8OEkQJoCzQI/KK2aQjN+GkzgvmGtjtm1bzsIVO4mOeYi06SC45spduIkxjJcM+XjRGcdy+ngqfBELAx3WMio9VFFr7yJAmEcfvAaAvE/p6rE9v18EdeYLehQWB3axe90542W1/cDN6CDze4zPTmuF9I02uBf4O7NtFbrK7MWTecfFKefklFsfNgxj2dtvNnUMw/gU8Kmcpv1I3l0IIcRUk2VKLBJgimmROL8Ib8tBFubp6rBbuy6AjwD/k+TAFp2Jy/uIDoqW0srG1EWAXpKkY6QeW36GuEtnJUs/uR8PUXpeq8K+eISlc3cA8NTDl1Nz5S66B6tY4dfLj+wZq6e4vpcG2nm6V++zrCJEZMQL0XzI178Spev3Ex3xsPh9LxKlCICh14px+qK6wmw2yMrAgZY6WJOkv6uahTU6s1hLJ34GeYa1NDG+LudhPAQJ0WmvtdqW0koEHz6zAq1nRZQO6inOG2LN2ZvNw9h0sLgECsqGraq6YQKUBsJ0Do4v25JEzwVNYWfx1XpN0d0d59BzcBEEDStfU7Ognd1d50A/48uxPAfcg/53vAH4kFlc838VR75VoofFmkNsaQ0Bfvicfh+4djLvvDhlzKxy633APKWUzcxe2oCA2S6EEEJMv5nVb04ruQxiehyFdNrG1kN6uQ5nyWGCL4bYs2sJC1frgCyFnZ7HFsHl0GBvB6CdBppcOwlRqbORQIABnnrpcihJQtpG+yw9ZLT4yl6ieKj0h3CYczBteRmGXqrg6f4KzHo8pCrsJPYUwdNQ+iVziZP6SrgfImf7GGgxq9q4gVkGTl+UjEd/RJU65iDPlqbR304aG6vNuiRRPHzrtc/pp83VS7FE8DKInxQO6tEBYhwnbSyhmEHCZkEeD1HK6cNLxCoaFCLIwqv1dRkaK6bNrDKUHVY78HQl86/Vmd98MnT9tJGVH/sdKTNynF+/l3L6iOJh9za9bEoXDfAfwBKsoNHeOULq0kLYil6WZLM5D2458AfgHMbnZX4mqAsB1Tkn844L8UczDGNIKdUGfBi9auuHgZ2GYbzl8FghhBDiNDBHKXU3sMEwjA3TfTKTIQGmmB736+GmHNIBTOLrRfTcZmNh40764uUAVLu6IQFBQjz9ez1XM2/RUUb9em5ie0oHkgH7AM7qw7gLY5TTR2dcB2rJlB2/fYgoHrqpAvSQVO/ZEfYcW8L5K/Sw29bUUnCD/eYRBrp0MFnVoQsLDTxVSd57jgJQdGaUyEXzSHynaHyA3VJwLzlMEgcx3GxjBaCDxODcEE3spIdqq81OijABXGbhSj9D1NJFD1W40YGoj2G2ja1gOM9LLV0ADKe81Nv34GcQR16Sw2bg+SyrGWipZM5Vh/AzBMAL+1bhvOowCVyExoIAOPMSbBtcQaU/RNkKPWS3/4lqnaVcB+giu6TaCnUxnzrg68BK83UOA+8B/tm8f5n5vD05VWbF6WWaPolVSn0XuBI9AHuTUipiGMYi9ODtnymlbgUOA9e/+2cnhBBCvImT128eMQzjppOy55NEAkwxPY4BexV49V3n1w+T2FPEHucSvIt1ddcwAZyXHKY1tZTz3vcMAM/3rsJLhO54NZm0ziLa7GmqCrvZ3XEOzvo4Xpeen5jCQQYbsRG3VU11975lOH1RmlZspyWu5zymjukqr+Vz+wjODQG6sFBftJyClcOM9usCOJFMPlwHpfX7GfhPM6tZDbX2LtzEiOG2MpNRPKSxsWHkcgKFuvBPE23sYCku4iTNzGIMN32U4yLOC2F9PksDrdTkdVHJfnrRwXatvYsUdrqpYnfXORSU6dfocsVZ3PwiAQaIozOJ8xd0Ek15iOIh8qSew+m9+CBL/G10p6o40loC6KJFRzz6e95rvi+3ADs3wQProBrMUbv6X/0zze8vM7+2AZ8D/tK8f0r96RPT5G0/hTUM47PAZ0/QvhfMicpCCCGEmLEkwBTToxXwQcEaHSh5XcO4mkPEcNP/ks74FZ/dS31hB2ECPN+7CoCmilYGzaU91hVuAmBLahWJURfeuoMceKqO8y80CwL1XgRpG8xKESIIQNWCDtzESOLA79LrQfa0LoIS6OmtJVrmASDSPY+lNc/RRzkp3wgA6ddtVF/fSddPG2Gh+Tp80DNWRWlemN3hRnpKdKa0Ka8NgDWFzxAyF44copiO1+pZMXebNbzXTpIUdrxEuDCwEdDDYYsZJI2NfDL6fHBTTh8RvKypedKqMFvMIG0sIYVDV+FFZ0Xz7RmSOFi8/kXrksdw66yxfokc2Vmi17J8kvHKsF8AHloHTvM9yravBLoB+qGpTLel0R8U/Oyt32pxCpv6YgWn3KewQgghxKRJkR9AAkwxXTxQcMUwo0/q7ODoLB8163eRwYY9qAO64UEvNn+GwcFi5lfoYZ1tLcspbu5ldK+PlrN1MiOTzqdqbg/l9NGyxmbNW6yq6MRNjHp0kArQSS1xXAyEA5QFdH0Q++IR6ud2UEDMGs66sGYnO8LLKA4MknpFDwMtbu4lMual7GPdZMy/IAMtldjzUvSlylkZ2IKLBABP7buM8xc8gY+IFSR6iHLd3J+zjRXW+dTSSRQPm3vXcX6FDjBtZMgnQwoHm7fpEq3FK3pxEadjpJ7iwkHrOCkcVNHN1pYLuLb5pwDsZAk9Dy7ivKufIWFmNbvj1Yw+4INqKF1tzjPdVgmLk3CXY3wFwU1AKTo7OYBVkZetwKXA/5ZZASqPozOc//iKvn/tWZN998WpQIoVCCGEEJMn/aZl2i+DUqoGnQPxAhHgesMwXpmwjQ34LnpBBAP4umEY90zYphbYCfzAMIxb3o1zF38CMzNWfGUvoIOqcDzA6G0+5t+ui9WMjrmxk2SZf4cVNJY27yeecoIvTdAcvxlzuel5rYrUXDvL7Dt4+mE9X7P0yv0Mxv14XRHSZkC4gm2ECbAs0EqfOfw0OHc/W7suwO4boXyuDjr74uWQthEkxJCzAtAB4mC6mP7+KooX6O3mLDlEPOWk3N6Hg5Q1t3LNgo1ksNFBPet5AoBOaojjoppunonr4kY2V4YYbpyemBW0VtPNlpTO2C5d8Zx1fXrGqvhA4SP0Um4Fwn4GGSDAJc0P85vUegDK7X3ccPVd9FFuvcbRQ15Yl4b8jLVW50C0EnY74GrgefN9+QjwT8CzCfhXJ+ZhdFD578AnGF818KNp6M6HOyWwFOLdJP2mEEKImWzaA0zgLuBOwzDuV0p9FPgR8L4J23wE/a/uWegOdadSapNhGCGwOtIfAY++Wyct/kQbYPQyH656HWAOPFYJaSi7vdtapqRq9cuAHkZajB7O6iFK22gT51U8S5hSQFdNLZ0bppghnu56Pwuv1NVWHSQJukIksVsFcFpoJpYqIGAfsIap9lFOTc0uq8gOgNMVp8NRzwu7VlttdpIcebIEliUZOksHnaWv7GfgpUrWnf00fgatzGQcl3X/u6nPAHC5fQMehojhJujSWcRqeojhxl6YpMg8n26qabC3EyDMhpHLAagv7OCyvA3W0NjsucZwU0UPPVSTn68zpbsfPgeu1NfFZi40esOCH3Hvwzcz59JhdtxnTrgsQA+RPQZmkhXKkxB0QJlTP5bVih42+yi6ABDAB/Ph+0DZW77T4lQln8TOZNJvCiHETCP9pmVaL4NSqhg4G7jAbPol8H2l1JkTys9fDfzYMIwx4FWl1KPAh9CLLICubfk4+l/mgnfj3MWfqIHx4ZcAQSAB0biHOcsPAbB/MMha/2ZaU0sJ2AcAHTReNncD21hBubkEnocoEbyksHNhzWPsGFuqd5kXIoGTw3jYukX/iC1d/Rwpu5094Xrm+A4DkJ+f4cAhH86COO5CHbg104LbP8rzyVUsrsgum+KAalgY6CDzis42uogzUBIgiocO6lnFFuslhQhyGY8Rsus5mDHcZLAxjA8fuuiQjQx2kgBWZdgYbrwkySfD3xT+J6CD4FaWUk0PISq5CD2cdhPno8v5RCnO00H40JUR67q0dS3X51ITovRKvbbn0ut1VnTHE+8FHzo7+Y/mST/igP+Hnpf5H8ANZns1sAcoB3OFFJ0/WQRkVymJn+B9FkJMKek3hRBCzHR503z8cuCgYRgZAPNr2GzPVQEcyLnfm91GKdUIXAR86+0OppS6SSnVqpRqffVVWT5NCCHeVPaT2Km8mVVklVKXIf5Y0m8KIcRMdDL6zVM0I3qKnramlDoD+DHwN4ZhZJRSb7m9YRh3A3cDLFu2zDj5Zyje1DDYl48w9CU91LTgy8Msc7XSSS1edGXZjD8fL8O47aOEU3o4rN8+xLOsIpmyE7fr1Fl27mJoLIg9L8XSvB0A9FBFT7iaskAf567WmcUXeldwfsVGYoEQPWO64qstL0NZoA8baWuZkS2pVeTnZ2iqaKWtN1tKFS6r/xXdVFvDa+M4KQ2EieNiLc/wg47PA+CtO8i5eS30UG2dX7Z67VP7LuPCBRus5+eTIY6LOC4ALmIjrSwljc0acrufIPV00EUt1XTz6NgVANTkddFOA1X0kDF/nTPY8BHRQ2/NCrhhApTTRyzfTftrev1QNqGrw24C1pov8F/Qqw1+Gp29/ITZ/gXgJ0CBAWnz98ysBMx3JvWOi1ORVJE97Ui/KYQQJ5FUkQWmP8DsA+YppWxmR2cDAmZ7rl5gPpBdcyH7yWwpUAU8YXaSHkAppQrln5gZ7nuQairk3NvNwK9rNZ01tQxsqSS+XAeOHnuUEJX0d1TTVL8d0ENKvUQI2YMMjOngK522UW/fgzMvQcvguZT79Y9PLV0M+7zEUgX02fWH+05PjG6qqKaH4jw9LzOFHTcxDuNhh1l9yG0fJZYqIGZ3k+fQQ1jHWmbTXVFNBK8V8KaOOVha2GoFdxfWPwboQj2D+Elhtwrt2EkRZD/nLngWvzmndAurWMtmhvFRjp6P2kYTRURxkaCP8QJDQ/hpoo1uqjg3rwWAEJU4zfA0iV7Ps5gh3MQIE6Bqbg+gixb1pctxF8YY3a4r93Ipen3LEnAu1sOFE74iaIM5Nx7iyEMlcIf5fm1CV5b1KXjEbDsP+AzwFfP+te/g/RdC/LGk3xRCCDGjTWuAaRjGkFKqDfgwcL/5deeEeSQAvwI+rpR6GF2s4ApgtWEYvegcCgBKqa8CBVINb+YrfVFXg+2I1wNwbs0WIniZv3ovkbh+Sx32FGECzKk+ZGUMATb3riPPkaTer7ON5fY+QlTi4TAOf9LKQnZTzUX2jUTw8fQWXVnW2XSYSkK000ATbdY+22lgoKPSCmS749Usc7WyueNiKNCFcqiDPbuWsLBxJxm7/oiqa3sj9as7+PnI9QQKw6TMIK+FZrPEjo1qdJA3iJ8IPmK46TbLs36AR2llKTbSdFEL6KVYzm3ewmE8NLALgCgewgRooRkXcWttzfX8hgdTV2OzZxjCD0ASOz1UUUUPHSm9YOfodh+MQqKuaPw35l50Nd86SCwv0m03Az+EIz8sgS+iZ2mBnuW1GfhqGvaafzYeR8/y+ptJveXiVCPFCmYk6TeFEGKGkn7TMhMuw83Az5RStwKHgesBlFJPALcahtEK/BxoBrJl2L9mGMa+6ThZMTUG9gXxBsMcuacEgBdmrWb+x/bqFSDTOnhroJ0QQfq7q4nX6+GjdpIU+KJ4XFHcZpnTdhoJEKaWTuK4rCGpXobpoZruVBXXrf4xoIO8TmqIx108dUhPA5tTNsgSexue+ih9YzrbWOvqZBgvHII179sEwDBefEQIE7CWTSle3cs2VtBU2EaYAEvYab3GFpqpoodOagBdvMdNjFVssYLJGG4qCTGI39onRVBOH8+yysp+XsRGOqg3CwANE0RXof312FVcZN9IF7VWYL2TJnPIrI3EqL5uK9/3O9pTDRx5soS85qMAjN08Gw6hg8c9el1NDjlhIzAHONOAbnP43G+AY5DnSDL2S/PPxgXANehMJsCXJv/+CyH+JNJvCiGEmLGmPcA0DGMvuhOc2L4+5/sM47PB3mpfX53SkxMnjTcYxpMXZeEndVC0Z6weNzFSOOiPBgH49fC1lC3ogVnj0362vnQBS89+jtBYkESeHkrrYxg7SbqpppL9DJqZPB8R+nDhs0esuYyDFFNLF50uKF+QHUrbiZsYbmIsydMB4jOsxUaGmvftYvODF+tz/tBBInk+PS/UXCbEQ5RB/FTTY60vCXrOo5M4IYLs7joHgEtqHubp19axZG4bNnNdkCGKGcRPkP3EzXKsV9Q8gJsYxQxSSxcAHdTjZ4iu12oJzt1vtY/muemjgiAhdprlXfPJ8HzLWjjToGqBvr5bw6sh6oBhGNs8W5/kWTqjm2gtgo3ZUrDoGpPnAe9XZOPlgs8MM1rnY2zdbLjO3O4fgf+BnESwOJ3IJ7EzlvSbQggxA0m/aZHLIKZFZPs87CtSbH1QV9qf84FDdByux+8fglH9Y9lUv500NvrBmrPIsA7qnHkJa5kSPdfRwSDFxCiw1op8P08Qx0Uxg1bGMDrmwZ83hI+IFSS20MxAbzmXVTzCTpaAebxhfHRtaWT+1XsBSOBioKWSQHOYfDNAtJEhQJgAYfYTtAK/DDb8DOEizpqaZwC91Mi1c3+Bh6iVZa2ih1aWEsNt7dNOkghequmxgs4iolTRg31ukiH8OMylTTpHamkqbMNN7A3Hrm/uMLOdesmSntFFlNV3Eynzktith8MW1A0zusEH7wX7WboYUGpzIXwYnFcdJvFoEXTqyz56mw++jJ6zech8E3vS8Hw+fOW3+v6tl/xRPwtiBpNiBUIIIcTkSb8JSIAppsuz4F4RY0BPEaTc3kdfUTlVdDPg0dnGOC4ChLliwYPWUFHn8sOECNJMi9XmIk4aG6Njbg4cqmRpoBXQWcQ2mrCRodaMlOrzOuikliZ28vTYOkCvl1lf0UEf5VbQOUgx9XSQWm3nQFcdAPNr9lLW3M3OwSZW+58FdGbxIjYyjJcM+dZw2BQOlrKDiNme5SZGD1Wkzb9AbTSRMKvHZj09to4b8+5hE+us8wG9rmaGfAbx04Geu9pc2MJ+gkTwWkNsh3ZVsLjxRRK4aI3rokULa3biZ5D+tmqyI3FHN/kgCFXNL9Pzg0W6cR2wGTyFURIPFMFt5sGHgVnAMWC52fbv+XAZ8DMJLMWkzVFK3Q1sMAxjw3SfjBBCCCGmngSYYlo4P3GYrqcayXuPng+4+75zqLr+ZR0kmXMwu77USPJ2XeHVQQqAhsJ2K5jKDnutpZP9BPHmRWgItFvtYQLYSeFnkM29OphcXLGTGG5CVFKVp4vvZLOjbWNNVmXZA/tqOXCsjoX1OwnU6KGvSRy4iFPr77SOESBMN9WsZgsbqaXADAjdxHiC9azlGfYTBHQG1EuEJHYqCQE6e6qrwCasa3NuXgvD+AgSImQ+N4kdGxnsjBcxymqkncN4WME2AB6pu4J8MvS9Vk7N3E7zNQ7x9L71rFz9O7a+ZK7P/j3gc9DTtQjzMLpkSAkMfKhSV4c9lHOgregAM1sepBr9F+QB8/71J3yrxanq5Az1kWVKhBBCnJ5kiKxFLoOYFon7iyj95H5cxAHoWbyInnA1VwQeYaBMB2/lt/fhJcIzg2tY4m8DdNDo4TBRPFTTDegsYhM7GSDAIH5rfmMEL+X04SBJaYUeTushSgoHdpJ6XiJQFuizhpxmv16y4BF++40r2TO8hPNX/waAp+9+P2tuepLW1FLK7Xp/NXTSRwWH8XA+m3gaHci+l23WUN1sMSIHKdppYJBiUjgAnX0tNgPcbCYzjpMUdrwMW9enih7aaCKJnU5q8KMD4WZaiOBlGB8buUi32V/ATQz73JSV1QwRhPwMPVTrTCTAKvTyI5uAu3LenPuh5le76Opo1IV+APYqvazJz4G/N4PhLzp1AHrVZN5xIYQQQgjx50ACTDE9noSBNZWgR7My55pD+OwRtrECb56eN1jMEEMUU+vvsgr3ROMePK7DDOO15hcGCeEgxf5UkGb7C1ZQZSdpDU/Nznl0kaCBdlLY+dvAPQD8pONTFNf3UpAXI2hmFjuoh+uSLA7s4pnBNQDk/eVRYrhZZ3/aGgoLusLrEMW00GxlFw/jMYfM1lrDXL1EqKGTp1lHpzkntJL91vzR7JzSKNU4SNFBvTW0t4OF5mqXTmrpwoNet/KekRv5QOEjpLBjN4PjDuqxkTa3iwJ6/meeI0lqzA4evZ3900ls+RkS9xSBniZKXvAoY8/NpuvWRkhD2e06y9v/w2r4AHpZk++YBYH+Gfg65CRfxelEPokVQgghJu/k9Zun3PQS+fdBTIuFj+2kL17O6LHxNS97di2CNJSfrQOtZ0dWYZ+VJGAfsAK3qMtDBhsOIlYBnBR2trECjz2KjbQVqGWwEceFjbQ1fFQXBLJTzKA1h3Np/XOECeAgZVVizZDPysAWRnEzNqirrp7buAUvwwDWkNZKQnSwkB6qsZOygt4O6slgo5hBK5PpIs42VmAnZZ1PJ7Vm0Z98K6tZTwdtNOEkziYzI3oVD9FCM5WECBAe32dB3JqruqPjvQBcVv8rOqmlkxqKzAAzioexl2eTXJ6gNKCH/EZeMwv+1IF52oyVOvQczSZgHoQHS/UD16HnXn4dKDPfxO3o4bEffUdvvThVKKRYgRBCCDFZJ6/fPOWml0iAKabFni1L9Hy+fn3feXac8xqfoWusxhri6i2MkMJOkP28MKYr8kf6/fxVxX8RpWh8X2P1LM3bQRQPKRzWfM0+yilmkBQOnn5NB2rFc4dwkKSGTmvoago7Teyki1prmOp13MejfAAncS5sfAyAp3ZdzrmNW+jDaQWxu2jAR4R6OkhitwK/AGHspMzqrpsB2MQ6qukhRJBtrLDOv543FhjaSRMBwgzjo5kWALqp5iI20kM1YQJWBnV93hO000AxQ3yy/psApLHRR7m1/ArAMD44Bn7XoHXcgbZK2At5HzzKWFIHt8zvwJvxElkzD74K+WeY1XKDh0m8twi60UNqAf4FHVx+37z/g0m99UIIIYQQ4jQmAaYQQojjyRBZIYQQYvKk37TIZRDTomDZMKNf9sEV+n4tXXRQT0FejBR2QA8pXUYrrSyzKr6WV/QRopLWwaWs8OthpufmtTCEHydx7CStCq87B5v4gP9ROqhnzdzNgC524yJOB/XW8NEkDnammnDYU9ZQ3OyQ1yH8dL2m50sWN/bSM1bFmrzN1jkGCRHBiz0na6r3aTeHshYQQA9JdZCkg3qaaaEVvXxINd30UY6T+Bva2mnAQ5Ris5hPiCABBsgnQww3EbwAtLKMZlqwk7TmdUbw0rZrOTRC35g+n0jbPBavf5GBsQCRdfP0Rf+q/jL28dnY79XrYDqTxUS2l3DZll+x4RcfItVWqDfaCtwGzoWHSSb0ax97bjbcwfiyJUIIIYQQ4s+eBJhiWoxu8sFi8K48CMCOsaUkjzkY7feRX/MyAOX0sZMmguzHZ04SrKKbH8Vv5gP+R7GRBvS6kUvzduAgyU6WWAVw1vmfpo0mAgxYx/USwUHSXPIjZR6nl5Tdbgaoui2DDQ9R9uxawmWNvwJ0MLc+7wniOCk2g9MMNpwkCLKfdhpYhV4fs4saSgkzQMAKeL1EKDXnT2aXRgkTIGjOq+wyA8Ry+khix0XCKlhkI0MbTbTTwHX8nG6qrW1juHEDT/fqKrJNFa0sbXyOzngtLpeuQnvJ2Q8TpYjdm+fBLfpaOJsOk2gtgkshdZcOJFNbC2ElbCj4kB4Ou1Jf45r3ddC1rRH7rCSJbj082XvFQSJ183TwKU5PU99DnHKFCoQQQohJk8gKkMsgpksdNNVst+62dS2ntGY/1TXdOHPKkh7YVUdlY8iqkPo061jn2mQW5dFtq/KeJYoHG2mW0UrcnEcJ0EA7m+LrWOvSZVJjuLGRIUiIIYoBSOKmlk4eeu0qquaamVL68DHMJY0PW/troJ02mqzKrABDFGMjg4MkbkatzGID7XiIsoJtDJkVcB/hA6TQ63pm91lOH2FKySdDE22ALhCUncOZ3V/QrDbbTAsbuciqigt66ZV2Gijw6fOqoZMELjIuG0mzcFAbS/AzSPH7ehnaUgFA4lGzwE9UV8gFGFszGzYD9+r3aH6FXgqm67uNUA1HNpVYx41cOk8vUyJFfsTknXKFCoQQQgjxzkiAKabHjyH+Hy691iJgLxlhFVvYxnvp36Kzc02rt3Nu4xZsZIigq82W04ebmDXUFWAYLy4SuEjgZ5BH+AAAXoZxM0qTa6dV7KaDejxECRE8rtps09w2q81NDDcxNnKRtXRJtoBPMy1Wddc1PEOISuyksJOihypAF/kJEyCG2xq62sAu8skwiJ9Sc9isiwQ2MkTxWMcBXdSngV04zdfYxhJcxHETo5kW6zhRPLiJsYxWAi69zxaaWctmkjisADW7JijAcK1uGxueDSWAF8Z6dKXcshXd9D+u18qcf9NeDrTU6RPywZx1hzgSKrGK/Mx/Yi8HPlsHa97pmy9OCTKXRAghhJg86TctchnE9HBCV289FOghmLb8jA4uH6xm4dU7dRsZMtgIE7CGlO4nyMBYgKq8Hmv4aDYYjOIhgtfadj1PMIifdhqswwYJUUU3Q/gJEQSwlhappZP9ZlsnNThIESBsDbl9atflLGzcyU6WcBl6dN9m1tCEDkzjOK1hu+00UECMTayzKsFGKcJFnCAhwujlP4bM9S8DhK3zyWCjmRbu4zrrvGvpwkGScvqwkbaGyLqJMYyXx1KXsc7+tNWWwWZlaEFnNVtZxsDXKll4q76+e5qayJsd13Mpzb8E/Vuq4WLAAQd+UIcZR8MwHLmthLxPHWWsXwejB75Up9fF3I1e2uTsSb3z4lQhy5QIIYQQkyf9pkUCTDEtar62i8iYl/ioHipaX9hB+2sNlF3dbQ19BZ01LGbQCiZ9RFibt5mHuIqBXZUALG18Di8R3MTeMLeyk1piuHlh3ypiC3T2sYFdRPARImhlDOM42ZZawdX2B61MqY00cVx4iFpLl3gXH2RPuB5vYJhnWQXACrZhJ2UNc11tzsHcxDqieFjLM1aRnzABWmhmDc9Yw2YDhBnEj51kzpIiXp5gPWvZbGVpkzjYxgoG8WMjQzXdVrufIS63b7CuUT0d5j5T1pIvbmIMhAMsvfU5drTo9TIXN7+IgxQ77n8vXGpe8CD6r8J29PBXc74mVwAXw9hHZzPnN4cAOLK9BPais6BCCCGEEEIgAaaYJl1djRTX9JIY9gAQK3RTM7dTf28ORbWTIoYbO0lWoCvGPstqnMQJEKa8UQ/5XMUWNrMWD1Erwwd6+CnAXy24zyqgk0+GHqqposcaPlpPBz57hBSONwyRdRHnoZGruKrwIQAuyttIOqCL/2SLDmWwkcKOjwiD+NllZkttZFjBNjZykVVZtoZOIngZxW1lTYOEaKMJL8OEqDTPO85SWoniseaehgiyjFYA4risLO0gfqrMqrMbwpcDcGFgoxVsPt+rA+E8R5JzAy1E8eBcqDOyux88B84x4GpYevVzgA6CB16qhFfR2UtzOmzBNcOMfsUHX4RMOpvuRP8FCb2DN16cOmSojxBCCDF50m9a5DKI6TEMQ90VOFfqYCccD2DLT+OyJ6ygyksMG2miFNFBPQAp7ISopC9ezgdcjwDwCz5CMy10UkuAMBnzxzpEEDcxyhkEdPDaQjNLacVBygpEkziwkSGFnQZ2AVjHvLHwHp4xJxnmm8WBXqCZK3gU0MuS2EhjJ0UtnQyamUkHSbMSbNyqLBsiyN/xIwbxW0Nk/QziJUI+GbwMAzBAgCR2c1apyzwfD3Fc1NOBm5gVoMZx8QLNeIjywcBD1jXyMoyfISIVOojue62cAGHaXmsiFdUBPElgt2LOBw6x41ad1aQacKAzmQXAWt08usGH9xsHiWyax+heneXFA8xCMphCCCGEEMIiAaaYHlGoWb+LYjMTN0AAJ3ESuOjZsgiAwGq9vEg07iFbGNZLhBR2al2dVvGci9gIjA8NzRbAcRLHQ5Q+yq2s6HqeoJ0GvESstihF9FDFGjZbAV026xggTMqsxLqEFqvozg6WAlBKmB6qqafDek72PH1EcJKwlinpoxwPUcKUWufcRS1eItjIWM8vp48O6q1qsNk2PTw2zS4aWGJWnPUyTB/l2Em9oZBRthBS2pwMcNncDcRx4p0bYSCklySZc80hjjxZwpGrSuAuHdTn2dKMfWM23AgsSsBzzuwLItI9Twed2aqx10De3x1lbIeek2l+BiBOJ9JDCCGEEJMn/SYgl0FMl2HoeqKR7qV6eYxl/h0MUsyBcCXnrt4CQHu8AVt+mlpXJ0Xm0iBJHHRQzzJaraI4eh3IGH4GieG2CvDooacRYhRYGb8QQWvobXYYaUe8nmWuVhI4JwSnh/kN660gGHSQmMBlLSmSwUYtnYSotI4PeumQ/QRxkCSF3Wp7llWUEuZZVgN6OZMOFuIjYu2zlaU008IwPms5E7uZcX2BZpaygxaazfYkFfRRQMzK8maH5voZZBk7APh110eoMtcXtQdHADiys0T/Bfg0rAzoa761dy3ckoRWB/yvk7wqc/mSL8+m6scv0/PPi2CTDkbnB/Yz8FqAVLt5cda/sx8BMcNJsQIhhBBi8qTftEiAKabHvcBtUOkPAfDCT1dT87FdeEuGeeElHXzNP3svS2gjaQZogLWOpJsYNeawV9CFelpoZgXbrCAxdz5mdvipjQw20ta6kAAul85KZrOGgJWVzJBvFR2yk8JHhAxRK5B0kKSeDtLYSOGwsohxnDhImRVjdQYziZ0m2ojjtLKifgaJ4CWDzQqY69nDs6yiiZ3EKAD0ENlsYZ8AYes4YUqxk2KAgDU02EaaarpJ4rCuRVlNNw20006DNfe0rLmb/qeqoUBnkAH4Xj4F/xZltMBB6er9VpGg/rXV9Px0EdwMfF2f+4FL66AujXnaQkzGHKXU3cAGwzA2TPfJCCGEEGLqSYAppselkFd1lJ6wXm6j9GP7ddCUB/FqnbXLBlE+IuykCdBZQC/DdFNtBY8OMyMZIEwUDx4r22knTIBuqnCYlWUH8VNOnzWXEXS12RR2yumzgrQAYTMDmaKYIUAHbl5zOZRaMxDNBrthAsRx4TMD2SQOBinGZw7pBV10KI6TKEVWwZ4wATLYcBK3gs4+yllGK3ZS1nl7GKLAPN92Gqzj63U1i4lSRCX7AT3s1kPUKkAEuphQiCDRMQ+pYw7rbch7z1HGIrOtdTl7LlnE6Ld9kIaBdCVs1tuV3r6fgX1BuF9hrpACBVDgi5K6IPsBQOHk338x852cYgVHDMO4acr3KoQQQkw3KfJjkcsgpoX9hhFSUTelC0IAxOJuQrOCNOW10TWq51Y6ClPWPMu+uJ6fuNb1DK0sI0CYKnoBiOCjng62sQIvw2RyxidksLGOp62s3RJ2mkV2AtbyIXqpkGKChBg0144cpJwG2s11OHVBHgcpPEQJELbmS0bxmGtgugiy38pswnhWMDs810XcWhdzk7nApJsYSezUM0S7WUW2nD7CBChm0Kpqm8TONlawhDa2sIqkWa22khClhEngsjKldlIM4sdF3JozGiJI21PLYXGSOT5dWCkx5mRs42ycVxxm630XAOa8zLoiGHVAN3CjAUA85cTuiXHurS1svUBviw9GN/v0WpgAF07+/RdCCCGEEKcnCTCFEEIcTz6JFUIIISZP+k2LXAYxLdKv2+BxxUBQZ+3wQ6B5Fx3U81eBBwA9JzJAGBsZoi4PoIeU+hnERsbKFgbNhRjL6cNHhGfMtTUa2EU5fbiIW0NFd9HAMnbQTRWtZiXYtWzGyzAx3NYQ2ewQ0zhO/OYQ2Qw27CTxErEymB6iuIlhI0M+GWt4rpsYxQxZcyhBD2ddzxNksFFlzqfU63ym2MhF1vBa0HNF22kkaA57TeDCTYxtrGAtm3kWvb5lGhvtNDJEsVUQqKu3noUV7biJWa8boPjCXhpo55nBNQCM7ZhNwVXDjG7yQZne5sgDJVAC5134DM/PWgXf1tfjyLoSeBy2fvQC5v9uLwAHuuqgFb1UiTg9SbECIYQQYvKk3wQkwBTTZGzHbJw3HLbuuwv1UNEgIfqoACBDvlWZ9Sr0Go/ZtS6zy3AAJHAyiJ8MNobx0kwLoOcyZoevZudbFpvBqY8I9XQAeuiqDlj196CLArXTiI00+Wahm3L6SOAiisca9uohas23rKXTKorTR7kVDGeDzuyw3CgefObz3YxiI005fVZV23YaWMcmwgSs884nQzFxs4hRtTV0dgg/Hg7jZ9AKepMVdjxErTmZAM+xgsyYjad3v5+aRr3WZ5enkdFDXugHLtXzWQuWR61rWlrRR+w2HcSPdvvgH4An4UBbHQArP/k7tl58AWwyD7J6su++EEIIIYQ4XUmAKabH48BK8BbqQKuWTp4Or4OALoYDOmPYSzk+IlbwlS1ck8FmZS7DBKiiGwcpXMTZyRIAVvEsMQoYIGBlEhOUs5QdhAmw1Cy0004DUYqswj6g19YcIEAam5UpraKHGAXEcFuVZR0kcRPDQZJB/FZ7Fd1W0JidB5kNAp3ErdeYXbezlLBV0KeeDrrNIDK7DmYntebSLJXEcDNsziltpJ39BN9wPbKVa9M5H6P5iHBgax0rV/+ObYMrdOMs4JjCe/NBIo/PA2C0zgc7oW2JDwqSLA6YwWiZnVSokJrP7qLrpUYAtv7iAuZfu5cD3677o34ExAwnQ32EEEKIyZN+0yKXQUyPakh0F+E4WxfacROjKtBN2hyWCjooqqWLHqqwm4FbEjsx3PRSbgWdtXThZ4gUdgbxW8t5bGYNQULsZImV1fQQxUGSVWyhyywg5CFKB/XmkFJdYbXHLJX6wlgzF+VttPYXw806NlkVXbNKCTOK28os7idIDDc+Iuwx16fUa1lm2MEy63y8DOMibmUfs68nTCkBBqy2NDaSOIjjpJZOa4mVAmJ4iOJnyMroxnFZlWaz2VMncWpW78LPEEVn6jaPP0R0zMO5eS28cKleVzOyfR5sgqart7NrsIHdYR1MLgx0sKdtiS6g9GnzNW/bz4GOOrhtsm+6EEIIIYQ43UmAKabHGpiz+BA9n10EwIrvbiM65mFV3rNWdi5DPjEKiONih1mq1EMUHxHyybCENkAPe22nwaq6mg1Qa+jERYLLeczKTA5STAQfgxTzfp4A4BE+wPX83Bp+C2AnyTOsoSavy8oMJnFwERtxE6PbDECD7CeOi1000Ei7Vck1SpGVwVxoDsXto9yap5kNKJeygxBBmmiz2voop5puuqm2XksUD0VE6aGKCD4riE7hIIHLCq5BD/Otp+MN1yKfDF1djbhq4sSiOiMbz3eRSdvomVtNfFRnSp2LD+P6UZy2LcspW93NEnYC8JvB9dAPwykvXKXfwoGWSjgC5mox4nQjn8QKIYQQkyf9pkUug5gWpWfvZ+CblVR992UAtrCK0rwwj3Zcw8J6HdRks3Tl9NE+opflaChsx2vOn+ymCtCFcsrpw02MFpqtLKKDJCns9FDFuWbGcBQ3ndRSTwe/YT0A63nCLPBjs+ZQOkixls1E8ViBWzl92MjQR7k1NxJ0QNfMC3g4TChnqZEoHtzErAymlwg2MgQJWc8fopgWmt+wLqceAusjQJh2czmSfDKksZnDdHVhINABs5sYThLWuqDZgHgza2gyg/AoHoprehnEj9ujj1OV18MLu1bTl1+Oq0AP4430+wkWhmClfl3PxHXBpLGDsym9fj8DD1fCxeYLn2VARsEt5v317+QnQMx40lEKIYQQkyf9pkUug5gWA49Vcu7nt+TMb+zDzyC7OQevWU01iYMh/CRxsL5QZxtdxMlgo4N6K5DUcyJTtLIMNzGrvY0mq5prdsirjYyVLVzLZkDPwdTDTAdxmnMjs8Fhds4nYBUWChKyigEFCdFCMyvYRocZSGbPM2UO5y01s6IpHHgZJorH2qeTOOv5DRnyrbU6y+kjgpdnWUUtnQDWXNDsEN7s8GAfEVpoJoabZewAoJMac98JK4PZ9t3llH22m2q6aT2ms8Ev3L8ayiDpt5O4v0if+KVp9nx3CQU3DtMVraXADEZ5HQY6Kllz5ZO0jOjhtIn+IppWbKfttuXv/AdACCGEEEKcliTAFNNi5eW/o4dq4ikdAGGHltS5eOsOsnXXBQAsbXyOMKVUErKCJj0/UVdjzc4vzAap2axhdqhpFd24GSWBkyp6AJ3VG6KYAGEr+Mpgo5pu2mmwqsMmzQAwY859zB7HTQw7SSsQBT1sN4IXL8PWvE4HSUoJ00e5dX4OUoSotJZEAV3QKIb7DcuMNNHGEMU000KxmcUdws8wXurpoI0m6zzDlFJLJ2ls1jVyM4qDJH1UWIWD1nz2SfrMeaujh3QgW3ZTNz6GsZOi9YN6yZax38ym7LPdROMe5vgO47Dr52cWHiaZsNMaX0ZisxmMtkLbjcvkr8jpbOrLrc9RSt0NbDAMY8OU710IIYSYTidnmZJTru+Ufw3FtNj61AWUXdjNke4SAI54ilgY6MBDlKHGKDA+9DU7HBQgRJBy+qimm19wLaCrxdrI4CBJA+200QToLF8zLdhIW9nFGrOAzkNcxef4FqAzi9tYwVJ20MFCAOrZQx/l2ElZGcgAA2Sw4WbUyjaCDjC7qSZA2Fr6pJhBuqjFzShtZlXbBtrNYbsOqzpsOw2U02dWwu2xXqONDE7iRPABsIl1NNNCiCBhAgyb7UvYiY0MIYLWPhO4qKGTejr4Se/fAbC4YielhNnacgGU64JJ4cFSUn47NjKMRWYDsPRjz7Fj3woYVcxv3MuBXp35pT8fPDD6h9kUX94LwFBZBXw0H+7PTsKUPyfibR0xDOOm6T4JIYQQ4hRyyvWd8h+hmB7bwXFhkjzvUQDGHpxN5LNequm2lhTZ3XUOmZqXrWI9MJ6lHMTPerNITzdV2MiQwImTuDVEtpsqMthwkLKWD0lhJ0QlV/GQlemMmwFZOw058yAL8DNIJ7XW/p5lFUtpJUypdT7ZJUrcxGijyZrzGKKSAmJE8bDOXCgyjstaG3OQYmB8vmQNnQyYBYKKGWIYL34y1vlcxUNE8BImQJCQVVU3O3S2hWZu5B4AOqing3oy5HNJxWMA/PabV+K88TDnNm/hhX/SC1aOHXQQuytFJm2DQ/pt2eFZBi8qaq7eRdeWRsyRuDALVtb/jr76cg783lyWpC6J/dEkqc2F+n7FO/8xEDOYzCURQgghJk/6TYtcBjEtym7tpue+RdgvHQGg6bNbCBFk42sX0TC3HYDFNS/iIkGUIivQqqbbzCwmrWGstXQRx0kaG1GK3rB8SRQPcVxWIKfbO4nisSq++s3qsxnyrWG32UI+AcK00Gw9L7sUSXaIajsNNLETB0nK6bOWCskdvpudN+klYg1JrWeP+XgBKRwUEbW2s5Gmmh6iePSyIOi5o2lsNNNCC83W0NcELuykuIJHrGJEcVwM4beG3ALM//xeInEfEbw4//Wwfu6wh2TCztjm2dRcba532VvP+Vf/htbUUi5c/RhhSgHY/ftzaIvrTKxzmX5+bWEn+1NBUssd5lEcCCGEEEKIP28SYIpp0d9VzQev/y96zEqwgxQTJEQbTVaAWEqYFA6GKLaqu3qI4iLOAAErs5jBhp8h63nZJTyyw0wH8VtDWnMDyCpzO8CaO9llzmNcSAchKvExTJD9gA4Qq9FrdWazn+X0kcCFkzheItb+XcSJ46KaHitItJuZ1NwqsBnysZNkEL+VlYziIYELNzFr/qefQfoo5zAe7KTeUMX2CdZb1wKgih4ChOmmiih6vmQ4VUqDq50wpSTMZUqIKoqCUbxX99A9qN8HpydmzQ996qnLoU4Pfy1+Xy+ZMRuR7nlcVvMrALaNrSB22M0c32HzyCVv/aaLU4t8EiuEEEJMnvSbFrkMQgghTuzkFCsQQgghTk/SbwISYIppsrTmOVpopr9FF5HxnnMQd16MNXM3W0uAPBr+AJcEfoOLOEtpBdCVZ3GRxGFl97LZPD9DhAnQbK55mR0CW0+Hld3soJ5aOvESsYazVpnDbj1EqaEL0FVbPRwmjQ2fORx2iGJr2ZBsli9ICD+DDON9Q1YxYt73ErGKDhUQI4IPD1FrmZI+ymmmBRcJK5sbpYghM6ObPU4GG0FCxHGa63GmzfZ8mmjDy7BVEKiNJjxErWG0AA12PezYRQKO6V/7y87+FX2U0zlSyzK/XuLkhY7VdATraXLtxHXhCzzVcbk+p9c8pEKFVJ39Mq3oZU6SxxzU+zvY/dQ5+iAXTuqtF0IIIYQQpzEJMMW02NHbDLvzocksVpO2kbHnE8NtBVUXBjbiIEU7jdbzsgFfB/Vsfm0NAJ+Z+12eYD0NtOMmxibOB/RyHRlsVNFtDUltpoVhvMQosIaz6iOO4iNiBbcp7MRxYSNtnc9SdmAnyTZWWM+1kbaGwObOmYziIYqHdM4yJ6WEGcVNAqcV/HoZJkwAB0mrimw31djIMEgxAQYArKC0jSVU0209fwXbiOAlhtsaRryCbSSx8ws+QgM6sNwWX8Fot4/Sxv1QoK95B/XEcJNoK6J8tbmmaP1OUtjZMbKMqsJuCoJ6TdLR7/mwf3yEnm2LOG/FMwA8P7yKDkc9c9aYFYJkiOzpRYb6CCGEEJMn/aZFLoOYFjUVHXSlG6z5e9X2HpLY6RqrwZanA6Vy+uijnGq6reU/hvGSIZ+1PMOWuasAXbG1iTZzCZGYVaG1kpC1XmW2Mm0f5TSwixQO2mkAxov8uIlZWU0vETLYsJOi1sxqZpcY8RBlNc8Cer3MXsrJJ0McF03sBHQGdBA/DlL4zbUsY7jppJYG2q1qs9lANFctndhJYSNtZU/DBNjEOi7nMeykrKB3IxdxERtpp8GqQpvASSlhGmi3At7Rfp3djMXdVAW6rfMZerAC3Fhrgva8VsWauZtxFsYJxStpcOkA9fnrVuAsiFO+oo/2uL5u11bcxy96r+fIdr3ECavfwQ+AEEIIIYQ4LUmAKaZF1zcb4R8THGEOhuFE3VcCPwd+ZMAsnW0cilbALIM9o4r9jUEADtxeBwXAGjCTiIyudBP5/jwKbhzG7YoxUF8JQFvHEga+Wwl3wZw2nWVz2FP85OFP0XTldutcNsXXMdrv45Kah/nt76/UjfngXXmQyK/mYS6NCW3QdP12ihni9pF/AaCpsI0UdjOw9VuZzWywu21kBUsL9fDeBC5sZPjP+N9wtetBADazBhsZktjJNzOQPdsWsXiFrqCbzUo+/9Ja8KWJVRQQilcy2q4DxprmXbTTQM+2ReRVmUu+RGbDVuDvgD+Y574ceAhG3xNm9IuN1mvkt/p1/fZ/zNd9CJ7aczkc1O3P37xWtz8KR2IlHPlECRzTTb849DFIgBkDS4B5upFPYoUQQojJk37TogzDmO5zmBbLli0zWltbp/s0hBBiyiildhiGsWwq9rWsSRmtv5uKPY1TxUzZ+Yl3n/SbQojTzUzvN+HU7DvzpvsEhBBCCCGEEEKcHiSRK4QQ4oQMKbcuhBBCTJr0m5pkMIUQQgghhBBCTAnJYAohhDiOoSAjPYQQQggxKdJvjpPLIIQQ4ngnp6Oco5S6G9hgGMaGKd+7EEIIMV0kwLTIZRBCCPFuOWIYxk3TfRJCCCGEOHkkwBRCCHEcQ0HaNtXT9MemeH9CCCHEzHBy+k04FftOKfIjhBBCCCGEEGJKSAZTCCHEcQylyORPdReRmuL9CSGEEDPDyek34VTsO6c9g6mUqlFKPa+U6jK/nnWCbWxKqTuVUj1KqW6l1I05j/2rUuplpdQflFI7lFIXvbuvQAghTk8Zm21Kb2JqSL8phBAz01T3m6dq3zntASZwF3CnYRg1wJ3Aj06wzUeAauAs4Dzgq0qpoPnYC8A5hmG8B/gY8KBSynnSz1oIIYSYHtJvCiGEmLGmNcBUShUDZwO/NJt+CZytlDpzwqZXAz82DGPMMIxXgUeBDwEYhrHRMIy4ud0uQAHek33uQghxOjNQZLBN6U386aTfFEKImelk9Junat853RnMcuCgYRgZAPNr2GzPVQEcyLnfe4JtAK4HegzD6D/RwZRSNymlWpVSra+++uqffPJCCCHEu0z6TSGEEDPaaVPkRyn1F8C/Axe82TaGYdwN3A2wbNky4106NSGEOOUYKNKn6CenYnKk3xRCiKkj/ea46Q4w+4B5SimbYRgZpZQNCJjtuXqB+cCL5v03fDKrlDoPuB/4S8MwOk/+aQshxOkvM+1dhDgB6TeFEGKGkn5Tm9YhsoZhDAFtwIfNpg8DO835Irl+BXxcKZVnzjO5Avg1gFLqHOBB4CrDMF56N85bCCGEmA7SbwohhJjpZkKYfTPwM6XUrcBh9HwQlFJPALcahtEK/BxoBl4xn/M1wzD2md//AHACP1JKZfd5nWEY7e/S+QshxGknW6xAzEjSbwohxAwj/ea4aQ8wDcPYi+4EJ7avz/k+A3ziTZ5/zsk7OyGEEGJmkX5TCCHETDbtAaYQQoiZRz6JFUIIISZP+s1x071MiRBCCCGEEEKI04RkMIUQQpyQfBIrhBBCTJ70m5oEmEIIIY4j63kJIYQQkyf95jgZIiuEEEIIIYQQYkpIBlMIIcRxdLEC6SKEEEKIyZB+c5xkMIUQQrxb5iil7lZKXTbdJyKEEEKIk0PCbCGEECd0EooVHDEM46ap3qkQQggxE0iRH00CTCFyDCoFwHPm/QRQaH4fB1zm96/nfHWhf5HSvPEXqpA3cuY874wJbWfkPOY07zsnPN//F+Y3m43Jvhwh/miynpcQYjJe9+h+88kj5n3G+78E431Zto9LA+6c70H3nWeY7bl9aaH5vIlt2f1mn++eZT42G17PNgJnXG5+c5/0m+Lkk35znAyRFUIIIYQQQgiBUmqOUuqnSqm+nLagUmqPUuoupdTX3m4fksEUIkf2g8+RnPsJ8/t8IMaJf2myn6ZmM5Ovm225mcjsp7C5n7pms5dn5LTFzG1GAH/O/oV4Nxkg5daFEG8rbXZeI+j+McF4H3oGEGG8b8wV542jeWLm83L70gTjGc/cDGg245lte+2Yvv/aMZg3Z/y8TnRcIU6W6ew3lVJ3AB8EgkCDYRi7zfYa4GeAF/3reL1hGK+81b4MwzgCfEwptWnCQzHAAex7u/ORAFOIHNnOKhscwvgvSTYQzA32skNjJz4/u11uB5h9fOIv3RnoTvVEx3vN/N4JMDT51yGEEEK8G17P6K8J3th/Yd7PBp3kPBafsF06Z7sTBYVpjp9iEp+wbfZYr5lDdZ2zwBl+Z69FiFPYo8B3gGcntN8F3GkYxv1KqY8CPwLeB6CUqjLv59poGMZ/nGD/BwzDOFcppYBfKaU2G4YRerOTkQBTiBPI7bSyAWTuXJKJj2W/z81WTpyDifn4xP0k0J/Oxsz7c3P28YaOds4kTlyIKSPl1oUQkzcxuATdr7knbJcNFPN5Y9CYRvebE//q5DOe2YTxYHVuzveFvHE+p0X6TfGumr5+0zCMrQDKrCVifl8MnA1cYDb9Evi+UupMwzBeNQyjB1g3yf0b2a9KqSGO/9V+A/nvQYgcbzecJj3hfjYjeQbHZydfn7DtxCJA2W3O4I1Db19jvNBBlvNEBxfiJJJiBUKIyThjwp+JiX3fxCkeaY4fEZQ7JDaf4zObE03MikY4/kPddBrpN8W76iT2mz6lVGvO/bsNw7h7Es8rBw4ahpEBMAwjo5QKm+2vvtUTlVJ3AnVKqbuAbwDzgeuBDBAzDKP9rZ4vAaYQOeI53+dWdc29n5tZzM6nzM1ywvinsbm/YM6cttw+b2JwOrGKnkU6SiGEEDNMIjn+fe78yOz9iZlFN7qvzA1Ec/ve3A96sxVjJ/ab2QDTnbPdxCGz1gkIceobNgxj2bt5QMMwPgV8KqdpP7B5ss+XAFOItxGbcH/i8NnXGS9KMPGT24ltE4PV7JDZ3M4zm83MHWYrhQrEdJAMphDi7eRn/5NMv7GOQdYZvDHozC3ccyK5hfByh8ZO7DdzM6DZ+7lTVZyOd/pKhPjTzbB+sw+Yp5SymdlLGxAw208qWaZECCGEEEIIIU4jhmEMAW3Ah82mDwM7DcN4y+GxU0EymELkcJlfc7OOucuUZGU/Xc39pBXeuEyJc8J+sp+2TizBbn3aOuF4E5c4sUrKCvEukDmYQojJyGYK08fe2LfB8QV/YHzJkYlTQbLZx9xKsifqN0cYH90zsd90oqvHgq5u65R+U7yLprPfVEp9F7gSKAE2KaUihmEsAm4GfqaUuhU4jJ5HedJJgClEjpEJ93OH8eTOs8ztNHPnYWY7u9yhOtmOL4JehAiOr5yXrZKXu8/ssTAfZ/Y7eilC/EkMlKyDKYR4W9llQbISjAeA2ZoFuUuYwPEV1bNLjGSnhmT7wzi638ztc3P3lzuFpdB8fuyYeYx8pN8U76rp7DcNw/gs8NkTtO8Fmt/t85EAU4g3kbvuVtZxS4dMaJu4fT5v7EDj6CzpieZl5u5j4jyWuQghhBAz2+sTvmY/fJ34z2b2A9jcJUtyP8QtzNku2w/mzsHMzWhOPHbE/OqVAj/i9DFHKXU3sMEwjA3TfTKTIQGmEDnyJ3yf2+llh73+/9m7//g27/re+68rUiWsRI5iuXajotTGbtyaOnOIwSyQnpYGwgLt3UK27pTRAQcKg40Du9nNzhkDBuMcOPwcA27o2IAWOgpl7d2MsrCU5rQsw8UhPnXn1MHGbgVK7VqJYiVypUq57j+u6/r6sqykbuqfyfv5ePjh+PIl6bKd5OvP9fl8P58zjRvxzvXmWnrt2GF6QQ36Hu9ffCu71vpnZT7jnSyyiDQHU0SezQX+BY2ZlTswvY5WzpH2ZzW9oNJr6lO57lZbN2F2R/caKra6aN2URbZA6+Zx27ZvWYgnXij67UHEp3ItqvzYK+nx7/eozFp6j6tW5uovja085pXi5pi9t7MGVOojIiLLzlTFQlltBnQN02WvjZw+7vPWTW9sSYTpLGa1ddPLdHrzo2sqHqt1U2RpKMAU8am4ETvjDmu1Zj45Zv4jqhZsegtmtTu4/myoP2j1FlD/gkoBkUWjJj8iMhc17iLmBZr+ddBb47yyVnCCwWrZTP+caG9d9LaVwMy12MtoeutmlCpjwYLAybP4gkTOktbNaQowRXwq93pUqlz8vDurXnOByuY//v2U1bKd3uP8A6O9LKm/JMi8mMgi0UIpInNRmcGsvJnq7wTrfd7rBOsvdfUC0Wo3c/0lt6aZD9P9CXJMd6c1zfS0Zsoi07o5TQGmiI9//2Pl2uQfGeLPNlbeNYWZjQsqF9pnmH33tvJjj/91KJ/hwkVERJZQsOI9VG9eV+M7x3/MXwrr30cZ9J3jV9kkyHs9rxS3DlT5I7JEFGCK+HgBnddBtrJLnVcy6w82L2B2kHlBxWNgeg+KP3j1v/cvkJULag60l0QWncaUiMhceetm5Q3ayt4DXhBZy0xB3zl532Mmmd6L6X+tSv6GP97rsHbOly8yL7RuOlYt9QWILGf+oLEyuITpwNJbMKeYWcpTuSD6A9NnmF5EayrechWPrQF42n0TERFZhvzd1GFmMOlt+/DWzcmK82D2eJPKMWBeaaz3Wt5zejdwZ40AO+G+iaxsay3LutWyrGuX+kLmShlMkdOozDJ6DQUqA0Xvc/73Hn8JT+W5VBz370+JUoX+tcoicvaS6C+diJyZf23z1kh8x7zAr7LE9YLT/Nn/v06J2ZVE/teM+j6uzIiWKp9MZIEt4LqpMSUiK9np9kLC9ELn3xMCMzOXlQuh/zyvbKiygcEFzAxEvQxmHdN3dS+A6jVBIiIiS6jWXehKVdYo74asv7LnAt+xyhus/tnT/uN5ZpbA+p8Dpmdo1jG7JFdEFp8CTBGfal1k/YtV5T8YbyH0Fjz/81QeqxwcfSb+/ZrmGvSvVRaRuuGJyFxMVhlP4l83vbLZCyo+5x9d4mU/K7unzyp59R2PMrNCyLs5639OrZuymLRuTtM/PRERqUoLpYiIyNxp3XQowBTx8e58nq60xj/Ly3MBM++awswh0P7usN57/93dvO8xMF0e62+WUAKVyIqIyLLjlcheUGWN8vZg+tdHL5tZWaXjZTv92038n/f3Qygxc931z49+xndMjfFEloYCTBGfam3Qq+3nqAxAvVKfah3w/CNHJpleRM/0XJWBbBA0B1MWlY2ldusi8qyecRfLIE7Q5w/yqvECQX9Xdv966S+n9W7CVm5RqTZHs3Ld1B5MWWxaN6cpwBQ5g9MtWNVGkfhneJUqzofp4NLLbPofE614TpjZFU8ZTBERWY4qu8ZWVvRUmxV9pkY8/l9MJ30f+5veBXEqffyjTrxrqXP/nAcoPOvli8gCUIAp4lM5UqSyqYDHX/bqlfb4O8T6765Wnutv8uMPWP3lsFGmS4WM1c/pSxF5XjSmRESei8oxXjBzhEm1YLLyZivMzGB6lUFTzB5DMsn0uul93n8D9xnQuimLagHXzbWWZd0K7LZte/dCvMB8028PIqdROdOrWoayxMwZmFMVf44yO3D0P2dluSzM7IA343Mnz+7rEDlbalYgIs+FV+LqrYX+Elh8f/bWN/8eSu+mai0zg8Ra35+956xcN70buJWdaTl+1l+KyFlZoHVTczBFVrLKALLa52D6H46Xtaxsw+4toJWlQ1MVjz/dPpXKeZk1AOEzX7uIiMhiq/xFsnJW9Jn4q3T8FUSVlT9+1dbnamtqDcDaOV6IiMwrBZgiPv47pF45a+VMrsrmO15zgsrSoGp3WCtFfM9T+RpeBhS0/VIWn+Z5ichc+LOV/uylp9q66R331FS8rzzXX+3jZT/966Y/8zlj3qYWT1lEWjenrVrqCxBZjrw9H5WLHUyXuHoZS/9i55XnVFtA/SU/3uO9ESX+NbByETULaeUEahE5I8uy1lqW9Q+WZaWqfO5blmV9fSmuS+RcVGJ69MiMtYuZ66a/B0Hlm/c8+B7nlc56N31LVc7zP6e3VEYAXuC+iciiOuOvq5Zl/a85PMekbdt/PU/XI7Kk/HdiK5vsVO4p8XiBpv/8aqWv/mxoZcbygoqPvX0nM5oOqRueLKKluhNrWdZngDcCTUCHbduPusc3At8C4kAGuNm27V+e6bls2z4OvM2yrL0Vr/HHwB7gVQtw/Vo35bziXxu9rSDPVPmcX7VmQJXH/M9frQzXv256wau/78EkcLF6F8giUgZz2rNlMN+M01rkTG83L+QFiiwmLwM5xcxFEqYzlJVBZ2U5bRAnOKyszPGCUK+MyN/oJ19xrn+hriw3ElksJQLz+jZH9wBXAo9XHP8q8GXbtjcCXwa+5n3CsqwWy7L2Vrz9WbUntyxrC05yY/9z/HbMldZNOa946+YkzogS/5rlrZuV1Txewzv/GldtXJf3/P4u7DB9Q7da6azWTVlK871urtS5ms9WcPdj27b/6kwnWJb1onm8HpElVZlJrPzYH1B65/v3bVY29fG/957D/3HE9zreY73nqZwlJnI+sG37pwCWZZljlmU1AC8BXu0e+kfgS5ZlXWjb9lO2bQ8D2+f4Eq8DksAngJdYlrXNtu2H5uv60bop5xl/eap/D6Sn2nYTb72r9Z1TWT7rf7x/RIm3Bvsb53n9CrwSXRFZWmcMMG3b/sNne4K5nCOyUvgHOXtyvj9XNiLwB5yVGcvKch//vC6Pl7n0t2v3As46KqzMm1iyQi3QPK96y7J6fR/fatv2rXN4XBL4jW3bZQDbtsuWZaXd40+d6YGWZX0ZuMyyrK8Cn7Jt+2Pu8SbgQ/McXGrdlPPOpPvey1ZC9XXTvx/TPwPa/zn/WBLvY+81glUeU7kWz1o31X1dFpHmR0+b83fBsqwI8EL/Y2zbHliIixIRkXPShG3bXYv5grZtvwd4T5Xjo8DbF/K1tW6KiMj5aE4BpmVZ78UpJzoKnHIP24DKfOScUnmHtHIel3/viHfM/97jbzbgP9fLdvqHT/v3fcLM/ZdB3zHKZ/c1iZyNZdasIAVcbFlWwM1eBoCEe3xZ0rop54vKbKR/7fK2kdQye92s3Fbib27nHQ/6zvOPH6m2blaW6NaAmuPJolrAdXOtZVm3Artt2969EC8w3+aawXwf0GbbdnoBr0VkWfMWtRwz51NW7tX0zj1d97xq5/r3cgZP85zL53d9OV8slwDTtu1xy7L6gP8MfNt9f9C27TOWxy6x96F1U84D1caL+IPBC3DustT5jlXrtO6NObmA2TOgvQY+ML21pDLA9M+ONlQiK4tsgdbN47Zt37IQT7xQ5hpg/lqLpJwPvL0fQWZ2eYXpPR6Vd129hc0fJHpNe4LM3pvp5/0DzPteu7JbHs/yHCLnEsuyvgi8AbgI2GtZVsa27RcD7wK+ZVnWh4FjLP9OrFo35bwQdedM1jw9u3trtSodmK4E8q+v/qC0WhdYb02MuO/9N3s9lc8jIktjrgHmR9yB1PcBT3sHbdu+b0GuSmSJeM0KanDuuMLMLrH+bq/e5/zNDPxZxyBVspAVxyo76XmPqzzvGVCJrCwqG2sh2qM/a5mPbdvvBd5b5fhjQPd8X9AC0rop54Wj7t9ub1SJf+063bpZGUD6K3385bT+buz+udAXMLuzrBdczugsq7uzsogWaN1ckeYaYF7rvm1k+tdcG2fhfF7mMjzb3W/zReC17ut+0rbtrz/b50SeK3+pT7XgcLLiPP+iWJnBhJmlrnXMXjT95/nvtlbODQuC71dUkRVrxZX5PA9aN+W8UC0L6Qly5nXTWwu9ih9/gAjOX/A8M+ddeo+rXDe9/ZszSnZPzv3rEJH5M9cA8wagybbthZhd6w3P/rZlWX+AMzz7VRXnvAloBS7F+f/moGVZe90ugGf6nMhZ8Zr7eIsezJ7TVe0x/gW0ch+llxH134n1VGsS5G/BfgHAC+Z8+SLPm9qtP29aN+W84P9fwsskVls3/ed5N2SrbTfxr7EZZpe8eh9X/u/kfT7qP0/rpiwirZvTVs3xvF+xAOXsvuHZ/+ge+kecwdcXVpx6I/B3tm2fcps63AP87hw+J/K8eN1cvUHPlZnFErO723lvJWb/o/F3ha3W/Me/cM4qkRVZZGUC8/p2ntG6KecdrxletXWz5HurvAHrL5utVtXqrbOVmczKj70eCWb9DaAGebKo5nvdXKlr51zD7F8CP7Es6x5m7iX5yvN8/bkOz94APO77+An3nGf7nMhzUplq8Jf8TDKbt5hW+y3SvycEZmdE8X3uAmaWzVZ25QuCuuGJrCxaN+W84K2Nz/g+rlw3K4PJym7p/nWvcjwYzFw3/Z/z37St2txHySSRJTHXf3phYBjo8B2z5/9yFpZlWbcAtwBs2LBhia9GliP/fhCPvyyn8q6rf3GsLO3xlwl5H3tNCSo71FYunt5z+UeXaC+JLKZlNgdzJdK6KeeFav0KKtfNyvMrg8Ea38f+z3ujRyp7HASpXiI765dazcGURaR1c9qcAkzbtt+6QK8/1+HZTwCXAD93P/bffT3T52awbftW4FaArq6uFbfQy8Kr3ENZuUfkTPzBpX/PiT+Y9ILOM7VRLzG9h2TGHkzdiZWVb8UNiz5bWjflfOG/0eqtadVmYnr8nWH9N3W9ta9yLrS3j9O/BJZwOrj7H+/N2azWTEhEFtcZ92BallXZNOCszjkd27bHgT6codlw+uHZ3wfeYVnWKnefyfXAD+bwOZGz5i9P9TfcqYzzqt299RbFXMUxr4yn8u5r5d6Sas9JGJXJyqJagH0kx23bvuVcDi61bsr5pjJQ9B/zOrtWBofVeNtK/NtRLmD6Zm2E6RmY3vmVvQu8vZfm5u1q901kkWgPpuPZmvx8zrKsGsuyIqd7Az77PK/hXcCfWJZ1GPgT92Msy7rPsqwu95zbcRom/BL4GfAx27Z/NYfPiTwnU763SqWK9zCzVXplNrKGmUOgS+7zes0M/K/hLcD+znv+pgjP4PtARJYzrZtyXpl036qVqHp9CKqtm/6mP96xWqYzkd7jvQxm3n3zf86/bvpv6Hqf17op54i1lmXdalnWtUt9IXP1bEV3m4ATgFXlc7Z7/MnncwGnG55t2/ZO35/LwB+d5vGn/ZyIiJwdDYw+a1o3RUTOQwu4bq64GdJnDDBt257rGBORc4K/DNZri145lsR/nnfM36DA+3xlRtPrOOsvf/X2jfizmTW+9zNKZdWsQBaR5nmdHa2bcr7xl636x3Z5Khv5+PlLa6PMbo7nf5y/d0G1dTPoe2+oOZ4sIq2b0/RdEPF5tqF1/vleMN0VtlonPO+9v+FAtc55ldU7z/iOe5+LIiIisnz5x2v5O756De7861nlXsmaimP+G634nsM7VrmNxSvP9Xdzr0VElooCTBGfandeK4PCyi6w/qxmZbBY2czHv+hC9YHT1baLTIEa/MiiW6nNBURk8XhrnLceVq5plXsz/cHhBRXHvfW1ci32B46nqwbyGuj5n/9irZuyyLRuOlTKI+Ljv3sarDh2ug6vXhDpPa6GKmU6TGck/V1kq5XSziqNdY9Rdt9EVq4V16hARM7Mq+qpZfa66alc0yqDSG/drNyW4gWt/o6xtUwHkd6xKNNbW/wdbLVuiiyNs85gWpa1yrbtU/N5MSJLzZ9ZrFa6egHVM47+7q9w5r0m3mP8/IGmP1M6gzrhySJaoIHRK65RwXzSuinnIn9m0T/32TvmrZv+ddF/HJwOsF7pbGXgWfI9xv/Yyhu0U1XOE1lMC7RurkhzCjAty7oDeIdt2yfdjxPAPwL/aQGvTWTR+Utrqv3jqAwuPV5W0n+ex2ud7mU1vbus3uMqX9efAfUHvCqRlcWkLrLPj9ZNOV9465eXaay2xvmDS28/ZU3Fce9mbQk46h6LMp2l9G8xqSyF9WdA/VlUrZuymLRuTptriexhoNeyrE7Lsn4H+Hfgmwt2VSJLxFukvFmV1YLGIDMDRa/zXWWC0b+wem/+uZZnusvqvxNbbbaYiCx7WjflvOAPFL25l55qM6KnmF43/Z/3r3NR981bj/PMXA9P26uAmdtRRGRpzOn3Vtu2P2pZ1r8B/wYcA15t2/ahBb0ykSVW2fnOyyj6O+TVMLO0x8+7Q+v9I5tkeo+K/w6rd8fV/zre4z01oDElsujUbv3sad2U80W1tc9bv7xeAzCz+7q3bnr8N1z9fQi88yK+c/xra7XX9tSAxpTIotO66ZhTBtOyrCTwMeB7QBr4E8uyQgt5YSJLzQsoK5sPeEGhP0PplcGWfG+V+0O8j0sVj/d4zz3le/yM88Ko3EdkhdC6KecbL7voBZXeGuYFnP5SV/+6Cc6a5wWO/qDR+zhf8Zz+1/TWTe987xouAK2bIktkrmH2vwH/zbbt71iWdQHwGaAH2LxgVyayBKo1DPAvZpUd7vwjSvyP94LJCyrOeYaZgecFFY/xjnlzvmbc+VUnPFlEalbwvGndlPOCfz2b9P3Z4wWJlVtOKpvh+c+rnI8ZYWbgWdlQzws+/evmJHDxc/tSRJ4XrZvT5hpgvtq27UEA27afAf6rZVn/18JdlsjSqDaKxN+kp/JzMHOvh78pT7WgE5zmBdGK873H+N/779Sq4EIW2wItlGsty7oV2G3b9u75fvJlRuumnBe8tc1fDutfNyvLWP2jRPz8Qae/SVAJyOCOHak4xzsv5zt/xlqtG7OyiBRgTpvrHszBKsf+v/m/HJGlNaP7HDP3c/g/X7lf0n8Ht1Kt79zKznfeY/xZTf9ifaaxJyIr0HkzpkTrppxvvDLYSWb+cln5i6Z/u0g1/iARZt/cvaDKOf4tLf4OtPpdX84RK+7mrBIjIj7+stjKvZb+bq6VXfGeYeaQaZgOECu76/mD0DyzR5x4/CVFQdBCKYtOd2JF5Nn4q26qdZH1d2b3n+91YYeZweOU77i/EZ7H6/BeLYj1Z0EjoN9yZdEt0Lq54m7OznVMiYiIiIiIiMgZ6d6OiM/pSnZgZgOCyvKdypmZXke8WmYL4t5ZZTqDWe0avOcF7SWRxaeB0SIyF/6KHn8fAnDWQK+Sx18NVG1vpvc8/vElXo+DCDO3qPg70vof7183g6DxXrKotG5OU4Apchqnm2vpL10tVTnPU7n4+RfefMU51Up9/I2CVCIri81pVqAlQkTmrnJv5SSnvwkLs2+wVs629PcnqOzS7n++altZzJgSkUWidXOaSmRFfLxW594iVS1A9IJMf6DpH0eC77i/oY//Ob27r/6g1Xvzjs/6L6qMspgiIrKseOumt37552FWWzfxfd6bYwkz10XPFDPXSv8+T/+6GWRmnwMTuJ7pLrCILBiF2SJnUK17a7Xgz7vrWjkXs9qoEX9m098IyDvPv3jOeJ3Vz/nyRZ4XNfkRkWfjrXvezdNaZmcbZ2UWmbkW+psB1VScW1l2653v34KSY+YNXGPNWXxBIs+D1k2HAkwRn8p26JPMXKy8xatyTAmn+dh/N9a/eHoizAw2/a/tz56WAE4+6+WLiIgsqjr35mfNSWet8q+bJWZ3gq021sv/58pxXs8wc630Alj/euo9/6xKouPP/esRkedPAaaIT7UZlc/lY4+38Hn7T/zHKs+rLK/1L74z9mAqgymLSAOjRWQujro3PysreLxjleWxp5vrPAXU4WQj/ef4x4ZB9XXTe7yXQTXWzulLEJkXWjenKcAU8Zl033t3Qv17SPylsdUWOv/d08pMaKXKLKW/o573PLPmY+pOrKx8K25YtIicmX/dpOLPOd/HlV1k/XOivZJXby2t7BhLxTF85/vNavyTmfvXISLzRwGmiE+d+75U8R5mL25+/gYE+M7z/wPzgkj/edVatXuv5S8TqgVlMGVRLVC79RU3LFpEzqzRtzh6I7r81TdeBrJy24f/4ygzq3f8QWTefe9fX6cqXse/r3PGeC+tm7KINKZkmgJMER//ndLKMh1/iU5lS3T/3C6Pl4n0nsNbML0yHv95lXtRqu7HVCc8WWRqty4izyboCzD9QZ/5fMV7/41W/1rnPdbfwMcLOv3rZtD9/OlGmtRUPFZkMWnddOi7IOJTeUfVuxsL0x3qKoPOarx/WN5z+I/7O+dVlgx5f/b2olBxnoiIyHIy9fT0n+uYXsNgZuBYTWWACDP3UHoNfirHhnmf8weiU0BD5fPpxqzIklCAKeLjL42t7HxXOUYEZpbnVJYAna78FWaXAlUGrl5G1HvtGoAXzPGLEJkHalYgIs+Fd0N2xhxKZu+3DFYc9x7rrbfVqoVgZtDqrZu1vmO1FY+5IIjWTVlUWjenKcAUOQ3/4GiPt6D5F8XKfZb+c2FmWQ8Vx7zj/n2ZU8zsvAduEwXfXWIREZHlxOsdUFm1U2LmbEyYfVPVv5XkdL+Y+s+vtm76Z2kCTJXQuimyRBRgiojILLoTKyIiMndaN6cpwBTx8UpsvBmW3p9huvTHa+wDM+/U+rvX+bvE+vdZesOin6k4z3t+/2P8d3JrQP9aZdGpG56IPJtat1NrzUmnOZ6/dNUb71VtjqV/La3sCFtZYvsM1edoeuumv9Ge2cKiEllZAlo3HfqVVcTHP8/LWwD9i1plyWzVeZW+Y5XDpb3AMuJ7vH/mF77H+Jv8TCEiIrL8HD3pvPevhd5a5+9hUBlMVjavqzbSJOL7vL+M1iuP9XeZ9c73XmeyBHVq8iOyJBRgivj4F0CYuW/En8H0n+8thjVM30WdonqW0vvYW/OCvo8r96P4g8qo/+JEFoFT6qO/dCJyZjXufxPPuAubv3u6P4Npzmf6Rqq37sVxbvB6N129wLJaQyBvvEm1fZzP4MzNBDeLqgymLKIFXDfXWpZ1K7Dbtu3dC/EC802/PYicgT/IqxzoDDMbGlQOePYWv8oZl/5FtXJWpnfMe+89NgcaGC0iIsuWP6isVs7qz2ZWZjjzvj/7s5aeKabLbmdsHfE9p/fe+/Mk0OifeSKych23bfuWpb6I50IBpoiPtzDVMl0uW1lhUzmLq9o/omrd9GqZDib9WdE699zKeZv+u8B1ACfn+EWIzIMFalaw4u7CisjcRHFvhp5GtZmXfpV7NL3zKrvQevMuL2B6na7Wrb3xBb4TRBaBmvxMU4ApUoU/uKzcQ+Kfg1n5Of8CWG2PiJfl9B4X9X2+WqZzxn6W8PP4gkTOwgIslCvuLqyIzM1Rqm8j8dY9f1BZWQrrlcfWMvPmrD8r6m+e55XYVq6bfqUSWjdl0SnAdCjAFKnC2+/hvyPrLZKVi5instTV499LUmJmtzv/4yqDVn9WM+6dKCIisowE3UWrtjRdyupPHE4y82arfw3175esDEy999666c9weltQKreuXBB0518CtQouRZaMAkyRKi7ACSz92UZ/NtG/38O/KFZ2jL2A6QXQa8leOUjaWzifqXhsqeKxalYgi0mlPiLyXPirePwlrjBz3avsXQDTAaOXlaw5zXF8n/c/jxkBVvI1HSpP/1lkMWjdnKZ/eiI+te6/iKmSE/j5M5aV40o8lfO6/Mfzvo+9UqFgxfmVC+oU+ocpIiIrgzcHc+ppJxPpL2f1d36t7CRb+THMrNzxPq4838t2+it/8syuLrpAv+eLLBn9Hivi47VZ93d39QeTXpDovzvrz2ia53Hf+2dy+QPVoO/PlWW1Ud85/ju2PP3cvhaR58NGA6NFZO68Shzv5qz/uH/es5dtrK04p3IMif+x/mDUCy79a2886KzfFwSnS3YBrZuyqLRuTlOAKeJT45ahXvD0zNIemBkI+hdPL4j076/MMfOOrMe78+rfb1m5h8Qrpa3FWSzBDXxVIiuLSnMwRWQO3N+nvXULZneBrQEyTJ9X2YvAWwcrj/ure4IVx/zB5NTTzsd1a6ev55kCWjdlkWnd9Oi7IOJTO2UD8KYlvg4REZEVYcxZN29cwkuoNu7ydA35RGThKcAUEZFZ1KxARERk7rRuTlu11BcgIiIiIiIi5wZlMEVEpCrdiRUREZk7rZsOBZgiIjKLjaVueCIiInOkdXOaSmRFRERERERkXiiDKSIis9hqty4iIjJnWjenKYMpIiIiIiIi80JhtoiIVLUAzQrWWpZ1K7Dbtu3d8/3kIiIiS0lNfhwKMEVEZLEct237lqW+CBEREVk4CjBFRGQWDYwWERGZO62b05ZsD6ZlWRHLsu60LGvIsqzHLMt6/RnOfYd73rBlWV+yLGuVe/z/sizrgGVZj1qW9R+WZf3fi/cViIicu2wsyqcC8/omz4/WTRGR5Wsh1s2VunYuZZOfDwA527ZbgWuBr1uWtabyJMuymoGPAL8NXOq+/YH76SeBa23bvgLYCvyRZVnbFuPiRUREFpnWTRERWfaWMsC8EfgqgG3bvwR6gd+pct4u4B7btp+ybfsU8HfuY7Ftu8e27bT75+PAIeCSRbh2EZFzmw2lUmBe3+R507opIrJcLcC6uVLXzqUMMDcAj/s+fgJInu15lmVdBrwc+MnpXtCyrFssy+q1LKv3qaeeOquLFhERWSJaN0VEZNlbsCY/lmX9AmeRq6Zxnl9rPfD/Ae/x7sxWY9v2rcCtAF1dXfZ8XoOIyLnEti3KJfWBW0xaN0VEVq4FXDdX3IivBfvtwbbtl5zp85ZlPYFTluPdEt0APFDlVO88fOelfM/TAOwFPm3b9veezzWLiIjDWShXZmnOSqV1U0Rk5VrAdXPFjfhayhLZ7wPvBLAs61LgpcC/VDnvB8D1lmVd6HbBewfwPfdxceBfgS/Ztv31RblqERGRpaF1U0RElr2lrH/6NPBNy7KGgDJwi23bOQDLsj4GpG3b/qpt27+yLOvjwM/cx/0Y+Lb75z8HNgLvtCzrne6xv7Ft+xuL9lWIiJyLbJTBXH60boqILFdaN40lCzBt2z4J/O5pPvfhio+/Bnytynl/BvzZglygiIjIMqJ1U0REVgJ1cBARkVls26L0jO7EioiIzIXWzWkKMEVEpAqLU2UtESIiInOjddOzlE1+RERERERE5ByiMFtERGazATUrEBERmRutm4YymCIiIiIiIjIvlMEUEZHZbEt3YkVEROZK66ahAFNERGazgZK11FchIiKyMmjdNFQiKyIiIiIiIvNCGUwREamuNO/PuNayrFuB3bZt7573Zxc5h0UmjxGrzVLGKcHLTUaJ1WaJkaWDRwDooZt1ZEmSooFxAJoYYZhWEqSZIA5AlBwJjjBOAyGKAIzRQDcPkyFOE6Pu872Mdg7xENvooJ8iIQAKhGlkjFGazONTJMkRJUaWnfwQgEbGCVFgHVlyRAGIkyFAmWFayBNxj01QJsgoTXTRywNcDUCSFElSRMibaz9CgjQJ4mToo9M85yAb2UwfSVIA9NJFmALrSVNPBoAsMcZoZB9XsYUD5uvJEiNEkTIBMu7rTFDP3rFr6Go8wMOHr3Rep/U3ZIYupuaiY0wdWgfA5d0HGZ1soqO2n+FTLQBkHr0YJqDhVU9QKDqv0RgaJ0uM7NEYxazzvbBfpGzXOWf+180VSQGmiIgsluO2bd+y1BchIiIiC8eybXupr2FJdHV12b29vUt9GSIi88ayrAO2bXfNy3O9uMvmH+f5/8jfmr/rk8WndXNpfY73EKZgMoZFQqwhRz0Zkx10MpNp0iTooB+APDUEKdNQHqf2qPPYk7WrWD15Cp6GieQaAHJEaX7sCBQAr0/JauCk8zbRvYb6kRPO4xOriJw8hZUCEu65TwMvgCcvXMtFR447xw7hpDJ+Cax1z3sCaAbGgbR77FLguPt6CeAx3+uvdd97maGwe/6I+2dwrnkcSLp/xn1cwj1e5xw62bCKYPkUhXCI2kNFCi9yjucia8gTYZQmssTM96NEgLD7/fYM0cIJoib7GqJAM6PkiRByXzzCFBHyHKTTZE9zREmQJk/EvMYn+BiytJb9ugkrcu1UBlNERGazUamPyDKSpwaAGqbMsSwxouRoZGzGsbgb1AAmQCoHAjxxYQMAEfKEwycInoD6ISdorA+fwG4Aq8D0b4clsN3AsP7ACRMkRk6eIr96FZHkKayT7qlrIXgIInVT0/93NOAEkQGcANJ/rMx0cDriHg8CB3ACRZgOLuPAr3yPT7nPd6l7LIUTRJZxglfcP6ed4/Zq59Dqx05BLUw0R4kmMuQiTnBdIEysnCUayDFGo/ulB2hmlEHaTNlskhRTRJzzyQKYoLFMgCjO99IpHS7QyDhRcoATYOaJEKCMnKO0bhoKMEVERESWuSkiBCmTZj0A68jSyDg5okTcoLNIiBIBYmRJuVFakhQByozRYIKi+v9zgonfWkO+NkJj3tmrWQqsYnXqFCeTq1jddwoA+1KcALIANDgZQIDVqVOU1waxCkUTvAULQByygRi1Jec5OQpMApuBg+4X0oCTFfUyjeAEmqtxsqDNTGc7x3ACyTDg5W+8BNGlvsfXVTwf7vNlgDKU3d92gw3AOFz8fzJMXhFihKbp71GpBAEn+AaoZ8LsKy24qVLv+xdngnE3EM1TQzuH3HOdgDVAmRNEKVI0wX4DY2RZR5Sc2U8qcq5SgCkiIrPZwDNLfREi4heiSMCtX42RNRnMtJsKrGeCVoYZo4FGt8lPnhrqyTBFDUU3UCpc6mQuTybzhL3M4lqnZBag0OG8D3vZxzAQxCmrBY611rCuZ4rJrhC1aSdDaq8G6iAxOT4d7HklqoeAF7jH0jhB5rj7hu/ctTgB5S99x9zyVpMBjTvn2QmwvBLbF7iP9Wdff+UeD0DQfWxpLQQTzjXUpotsij8KwEQkzpFwgo7JQ4zVeoFjhAnilAmYDPEYjeSIEqJIJ30ADHA5h9lIgTCtDAEQpEyJADmiDNNifnZZYkTIs84NVOUco3XTUIApIiIissx5e/hKboA5RCvd9JAmQYxjgLMHM0DZdG8FKBMkRZIa8hTcvZqRSJ5cq1MGWm5wsp+BUoljV0S56P8ch1rnNUsNkF8dInKySH51iHLAee11T01R6HAe42Uws3VOCW8kP0XQy0CWgPXMDCbdTCcFpstZgzjZykacgLLB9/ijOCWzKfdYEjgOVhkTtE42h6gdLzqB6QnfcyaccwtOzEj4Cab3eQKpyAsBp2NsjjUUasOmFLlImHoyJhPsfC8DRMnRxAiHaAecTrkZ4uSpMYF+iAJFwmSJEXRLYr3MaJaYyYiKnKsUYIqIyGw2aKuQyPKRIU7AzYwBNDJGhjhRciaIyRGlwQ141rh7/8JumWaGuBldAlBTyLM6fYqTCafsNVg+xUUjxyk1Q9DNDJaDUHuoCEGoLRRNhvNk5yrGw400P3XEPF+OKEVC5CNThCNOcBs/esLZ09nAdFaz5L6Fmd6vdgjYiRNM/gq43D1+FCcgfAHT+zXjOIHoCfdzQO2Pi3AFThbTvUYvuOQkjEQuAeCy0uNQcpocDYdbzf7I7qN9pOoaKBIyx4Jk6aGbGNkZgeMgbbQzYJoteaNPQhQYcrOV68hSw5TTOMkd+ZIjSpQcZQImiJVzjNZNQwGmiIiIyDIXI8sA7STc1qtFwozSRJIU7QwATiauh26SPGECpSm3AU1LeZhsIAZANH/CKX9dC6uPOmWvpdVAAYIZzG+Hoafh5KWrWD1+CsIw8VvOHsMB2umgn8m6EOGCE2g15sd5JHIFMbImQ2edPAEbcDKLlb9xXg5ulSm8CGevptfUx9OAE4geYnoP5jjTAav3y3yz+7EvO8kJ57GFDXDZo487x4475xWbw2x66jAlN5E4VreWFEmGaKGVYfM1tjNAiiRxJsz3vIN+0iRMZjNBmg76GaeBCeoBpxHTFDU0M2qaBsXdPZ2A+dmInKsUYIqISHXqhieybHgNZvxdSWuYYg05HsHZNNnMKK0MMUaj6R6bZR0FQqQD602X00I4xFhrjBAFMzKj7ejjzm+FZfjX1lcC8Oqnfmr2XRJ0sp4A3eWHCZQg2AvuS2MH4KWZRznZsIps2HnO3yTjXDyScQJCr7HtpPNcnGS6W2wcJwgtAZ04mUtwHnfcPc/bl5l0HxtmOisaBNa641fG3et9ARxbX8O6I1OcvNRtTjRyCrsB1o1M8WTzWhqPOpszi4TpKPcTC2RNdjFBmgh58kToodt96RTjNLCFAyaoH8PJfOaJUCQEQJr1ZImR4Ij5uY3TSJwMOdYw5Y44kXOQ1k1AAaaIiFSjdusiy4rTLTZvZl4O0M4O9lAgbBr6gLOvMk+N6VRaJESZoGn2AzAaaCJCnlg5S/1JJ8gaq1tLI8fJrQ3RxmHADdhGTjF5aYhsIGb2EYbKRQKBEvn/FGQ44JSFridNffA4U+EIyfyvATgWWevsnVzLzIY+YziZTf+xS3ECxxGmu8iexMlKBpluEtQIpfB04x5wP/8rKHcFmXQzmLVHi6w7MsVkQ4jaX7qzLMNgHXWeP1rIMVa31nyP+gMdtDPAHnaYpy0TIEOcLrd1bcndg7mfrWxlv/uURQ7SSTuHTDA5RgNRTpBmvfmejdFg9nDKOUrrpqEAU0RERGSZS5MgQdrs/UuQZoxGmhgx5zh7MINEyZkM5hQRApRIkjLBaYY4SbdrjjfC46LHjnOyeRXhQpGEO2YkWHBKTEcDTQQoEytnnccH4hCApqNH6AgeAmCidi2F8CqyxAiFnde+6KnjFLog3Mt06epJnN8+x5kZSB4FunEylF4GE9857nXaAQiOu4/xGvo0QulynEY/3m+2GfjNZXEuTmUoua+dXx2i9lCRUgNkwvUm4+jtj0yTMOWwQcqm5NXb95oiSZkgTYzQ76ZuE6TZwY9JkTTzMhMcoUjInZvpZERbGTbZYu/nIHKuWrXUFyAiIsuQdyd2Pt9E5KwlSRGiQIQ8EfI0ME6CNMM4zWqi5CgRIEWSGFnGaGDMbccaYYpDtFNDnhrydNJHoFxmMLCRcAbCGTjZvIpyMMhEJE66toF0bQM8DWORBhoYo6kwHcjGyJKcPIJ10glQy0En+OoLb6aGKSIni0ROFpm4cA3hXzEdVAZxusS6I03oct/WMj0f8zGc8tcwzogUt1EPGefNSjHdJMhTguAhKKyFyboQk3UhyMDFj2YoxCF40nkD+I8rWsivDs3IJMbIkiRFlhhFwhQJUyBMmvUUCFMmSJkg9W6Ja5EwcSaIM0GCNLu5FsD9KUwHjwFKhCgSosggbdS42cwCIQpucCvnkIVYN1fo2qkMpoiIiMgyN0wLHfSbLFgTo27GLUOWdYCTTUuSop9NZnQJwChNdNJHqOBsWpwKRyDg7OccSa4HnHLQNeS4+KnMdLfYhlUEKDNKM/XhCZM9DVBmXWGKY8kak7VrKx8mFUhSJmCyogHK2Akob4Dg/e7FvAinbPYKnMARnF+iG3wfexnMMLAG53pe5B4bw9l7GWY6KxoE2x1tEj3uzuW8HEbr1hMjS6DkjGKpPVQkdkWWTCBODXmaJp1S3qHaSygQIkHaNOKJkaWdAR6mmz46AdjGQ3TzMINsJO6WGw/Q7naaXW8aMI3SRJ4aRmnmJr4D4Aaw68xMTZFzmQJMERGZTXtJRERE5k7rpqEAU0REZtNCKbKsxMhSJuBrJNNIgBJRcqYsM0qOw7TRxiCDtAGwlf1kiTmzMcNOWWiRMGM00MqwyWoOh1uJk2GyLkTtE04WsBwMUiREI2M0FGZm3k7WriJ2dIpMnfNxORCgkTGyxCiEp8s/iy/AKZP1MpABnIykv8HPapzusl5n2bh7/GmcbOWLmP7/6AXun+NOOSxA7UgRVkOgNL2n1Pt++DOqqSvWk8g7szvzkelZlBnqCVOcUbpaJMQAnWzjIT7CXwGwi7sYopUwRVMWu4VeWhiinw7T+CdOhhRJujjAPq4GnIzzKE2EKZiMs5xjtG4aCjBFRERElrkYWUZoMnMaE6QpETDNesAJipxyzYQpxRynwTSp8YLTAzgdUwPlMuNhZ05jngg5ok632Oa8OT9ezhAolUiFk2bMyQCXk+AITYwQcIdR5ogSosAQrYQCToAaIU/4JNgJsLyAsoBT9roB3IpSp9y1zPSes7Dv+HHgCcwv7valYPXBxGVriE26XX7cRkCBkrtHE6AW6k+e4LH1lxArOecFKJOP1BDJTxGdnCJV65QHNzFKmQB72EE3DwPOqJEa8jzAVVzP3QAM0Qo45a6d7hDPImGyxGhlmP1sNZ8HZ19qC0MA9LGZNgbJEjMjTuC6Kj9pkZVPAaaIiFSnO7Eiy0aeCFFOmH2QOaKsJ02WGGU3gIySY4Qmmhk1TWzWkyZMkTQJEwx20O8EW4Eak7Hz9g92HD3MYN0lgJMlfXF6mInkGqKcMK9z9eRPKYRXMRWOmOypN0LF2QM63WF17MIiLx4adrKU4ASLAId8X9xanP9v6nB+M/VmXq6efvvNZU5as3EyQ3ADRPMnCLoB6uSlziiSY5fVkKpz9lBueuowj114CVFOOF1ngdjqLOVAgFxkDRPEfZ12a6hhiu3cb/ZbBigzRYQuDpivcS/bSfIEjYzx9w++B4APXvlXTFBPgjSjNLvPFyFLjDwRmhgFoI1BckRpYdjM1ZRzkNZNQAGmiIiIyIqQJWbGksTIkqGeJCkT+IUokiBNnoiZg1kgTCtDtOaHyUXWAE5mrbNwkGx4HRGmzPPnqSG/epXJVBYJMZJczyhNtDBM3h25cbD2CjblH6VEgAY3U9pPB82MEqJIB/2AM1olSYonWhvYMORGeWWcmZclpoPOX+I07CnhZCy9ctqTwAug1AAXp5ymOpOJENE6JzA82ewMQ6hNF5m4zPnaOo46MzwnLlxDmCIXP5bhicucDkCxcpbY0SlSdQ3EyJqGPs2MMkgbYzTQTQ8AIzQxRIvJ7AJcx72kSTBAOx+/8gPme9nIGKM0mczkIBtpZZgCIY64nYiOEaObHgbZOKMBk8i5SAGmiIjMZgPPLPVFiIjnIbbRTQ/jOCWt9WQIUCJCnoCbNvE6zMaZMGWaQcoUCNMb6TJls0lSHAh3saXQy4FwFwBbCr1sOHqKJ9evJVp2sp+jgSY2pQ4TShadTrSFgwD0hzcxGNlIiAJl91dJZ4xK0ez3BKhhilC5SP3RE9MdYlfjjBwJM52pTOIElgXgMqZnXtaBVXBKXwvuvszaJ4oUGiEXWUP9U26JbAHqR05QikO2zgmCR2iiTJCG5jGTuS0HAmTq1pA8Ok5ubYj6gBO0lty9rU6Q2Wi+b60MM0QL7e738m6u5zBtXMNepoiYn02cDA9wtQn0r+QhRmgyI2TAmYOZIkk9GQ6yee4/eFk5tG4aCjBFRGQ2G9zfyURkGeimhzgZk8EcpYkkKSaImyxZNz3kiJImYTKT6xijTIB2Bki75+WI0lnuY3X6FA3NTtAZLJ/iP9a30FQYIRV2MntJUjyRbCBPDY2M0Rd2AqN2BhijgXEaTbayj07ybtDlBbdRcvQFOrny6Yeh1v1CEsDPcBr5OC+DfTlYh3BKZVM4pbKAdRQ4AdZGOBZxNlpetOY4hXCI+tQJJygFCi+C8BgEn4DoBufr7io96jQYSkOu1QnAvQAwW+eUBnvXO0GcImHaGaDolgx7gWY/HQTd/ZYAb+Z2hmlhwvezCVMgxjGOuQH+CE1sop917n5YcEqIM8TJUaR+xqPlnKF101CAKSIiIrLMZYkRI0ufm/3yArsjJMw+v39jKzvYM6Oz7BgNbKaPfjpM4FcmQD5QQ7ixaMphJyJxZ3ZjuJn2o04jodG69dOdWAkwhlNq6n8er8y0hilCFAlRMPs5C4QpE6C0FnK1TmZx3dAUhWsg3M/0HEuYLotNQ2nDzK89eByzX/KxCy8hWUhBAUaucJr0xMsZRprXU0/GCTyBJ5NrOUQ7Ha39JsuaoZ44E4zRSII0cTfQG6fd+R5QTxrnOTfTR54ISVJ8nvcDcBN3MMDlhClS75uDeZAgjYybDHGBsLtfM2W+PwXCbGcvA7Sbpksi5yoFmCIiMpvarYssK3EytDNgymCdPZhx1pM2AWaGOCmStDJsgsFmRhmgnQbGaXBng+Rw9ivujVxjgsW2/GHCkQKDtNFftxGApvIoo4EmQhQIU6TRfbwXwMbJEKLgPmeUGFln3yZNALQXBjgWjpGrrWHdiLvXMwBhL1vpbsu0Jt0vMuwc95rylBpgrDbOxZkM6444j8+vP0EqnOSytY+b0SnB8imSgRSrx085Y0yAaCHH1vK/MxZpIILTFbf96LCT1YwUGaKFotuutolR8kQoECbslvc6WeA8jYybjrGDbKSdASJMMUwLAAfdpkDNjJpgcif3kWY9ZQKmRHYHe+ili1620MWBOf/cZQXRumkowBQRERFZ5tIkGKLFBIRFQvSyhavZZwJGr8lMnggZ6gEnEPVmMHqBVogCQcomcAIohL0wMkTczc7lAzU0lUfZF7iKl9FjMnRDtJAlRpqEyVY2M0ovXXRy0GRPB8LttDLs7Mlsdp4zS4zm4BEKcQj3ui8ex5l5WXK6xV78lHNuoAQXj2SgDE+ud0pkGyczhGsLTFy4hvohJ1s51PpCWh/9NSNXrDdBZza8joufyhCKFMz1BOrKrEtNMRaJsin/KEORFvP1dJcfJhAomRLZEEXuYhdRcuzkh+61r+MbvIVMvp4dkT0APJ5u5s2J2xihiRr3+zvIRsZppEzQHNvLdgKUaeMwo24ALnKuUoApIiKz6U6syLISoESRsCn3zBLhBu5x9/bVu+eUaXXnLu7ACYDyRBingTQJM5MxSJkUSQZoZwtOlFcOBBiliY0cZsrtFjtBPR2lR2gJDHOCKAU34xclR5YY27mfw2w0r50gTSPj5npSJEmQJkHajENp7jkCDRC+D3iF+8Udx2kCtAEufiwz/X9PAmdm5gm46LHj5ntRf/IET6xv4Firs+EtRJGfX3EFrQyTCzvBZJEQT1zYQIAyzSNHADjWXMPJhlWkSBKIlE3GMUyBVMD5s1e+WqKGXdzFIBtNpjNFktdxH7FI1uzffEviG0TJEaZonm+KCAHKDNDOVvYD8L3Df8j1G79L3G3OJOcgrZuGAkwREZlNC6XIstLIuCmFBaghzxAthCmaICZHlCwxNnLYdHJ9hA4202eCIHCyiC3lYUKBIkG3K0mO6KxMZ441HA63mZmRMbKA06U2RpZIeYotbrnnQ4FtJEjzAFeZTOpDbGOUJqLkTOa1dDkECzCya70J/AAKHRB2Z2R6ezCD/YC3HzPsfs7tJrvhyDgld8zJUG2L01W3XOaicScQ/Y/19QQoUSZIudkJGvvopD08QII0U9Tw2tQ+AO5NvoaXFXq4L/w6833z9mgmiHIfOwGnBLmFYb7DTbyLrwFO0JkiSYGQ+V7WkDc3Arzs8jUbf0iBEGnWzxgNI+cQrZuGAkwRERGRZS5DnHEaCLlBYoI0KXc/Zp+7D7CBcYZpYYhWE9BlWWca/HizMcMUGQxsJMEREwCVCTBMC1vKBxgPuHMjyXKQTnckStmUmkbJkSfCaCBqHh+gTJ4IjYwzTCsA17CXMEUKhIjmnXLWYAEoQXPqCCcTzhzL1SOnCKfhycvWctGjxwl6I02A/0i2UCbAppQz37IcdEpn7bDzZ0+aBIFAmVp3A2eZAI2MUX/kBLYbnGbqUsTJMOqWs343eT0A29lLX3gz9UyYAHOAdibcTKzXDChBmm/wVgKUzd7LAdppZYhB2tjFXQDs5RoaGaeDRxhwGwg1uzcHBmkz30eR5ciyrLXA54FX27ad9B3/S+BCoGzb9vvP9ByrFvYSRURkxSrN85uIiMi5bL7XzTmunZZlfcayrBHLsmzLsq7wHd9oWda/W5Z12H1/6bM9l23bx23bfhsw6Hue1wNXuFc09mzPoQymiIiIyDLXxCghiqYraZkAMbIzmvX0soVWhomRZZA2wGn8M0UNZQIzRms0MEaREIfd8zYySCd9jAcaZozWSHCEACWOkOBl9AAwSjMBSoy7nWoB1pM2HW699yEKNDPKGA18N/J7AOwK3OV0ez0Oq4OnnAcHgQxcxHGevGItF404Za6FzfDi1DD2ajiYvBxwuuk25sfJ1q4xr7158lEK4VWEC6f42YWdADQy5pQMr4+Z8yaI0zF5iInaOAmKZtSLd73+zK/3PfQ6yQL00E3xVIgtqw6Y8zLUEyNLgjRfz78dgOsi91Ljdpr1vufHiHGYNrayn4AZltj8rD93kTm6B/gb4KGK418Fvmzb9rcty/oD4GvAqwAsy2pxP/bbY9v2p6s8/4uB/7Bt+2OWZX3SsqxX2rb909NdjAJMERGZTXtJRJaVFEki5M0+SK9kNU6GfjoA2MUP2MMOp1zUDWKmqOEYMdaRNeW13viMMRrZ6CYpMtTTOvk4+dopXlZwAskj4YRpZtNBP4fccs+Y+1wlAmbf4RESZmyJP2gdpI0YWV7h7hMtB4P8JhnlYjK4sReshqHuF9L6b7/mopPHefK3nI6x0UKOcPAU6TpnHAs4weBEJE6Ygim77a+9nPb8IQZrW0yn2xRJ8kR4bWofP086CZ1GxhmtfSFByozTQAvOvM/72EmSFG0MMkaj89rknOY/JEm7AzubGKFlVZIAJfM1Fghxd/4GuiM9prPsEK1kiZEgbX4O3hiXJCl66TrrvweyjC3cullvWVav7+Nbbdu+dcZLu8GeZVnmmGVZDcBLgFe7h/4R+JJlWRfatv2UbdvDwPY5XsPj4NaPwwRQe6aTFWCKiMhsCjBFlhUvWPGCnVaGKLmBoteUZx9XAbCV/ebPBcJsop+DbDYBVROjZFlHjGMmW9nMKD21W2hkjHR4PeDs1QxQJkyBLDGTtcsRJU8NjYyTdzvOgrNPdJA20612iggFQmSJmcC4HAhw8VMZZ0yJ2xjWXgsN5XGIw7HLakwzonIwyMR6pzGOt4fRy9r20E1bxFTwAU7W0gsQNzJI49Hj/CYZN0FwU3mU/kAHAcpucO3s6+ykjyIhBmkzcz2j5CgQJkqOTg4CsJ+tJEnRxAj7uBqABsa4OvIAB9nM1TwAOB1su+kxnXO958sTYT9bzWgXOccs3Lo5Ydv22dyVSAK/sW27DGDbdtmyrLR7/KkzPdCyrC8Dl1mW9VXgU8A/AV+xLOuzQB1OtvS0FGCKiIiILHM5orQwbMo5C+7IkgIh04SmQJg0CfroNAFdK0MM0UorQ6a5TIY4nfQxRAtRnCxgDVPEmSBPxARk4ARLXrDlZeNKBBinkSFaTAfbA3TRzgAtDJkOqlFylAmQJkHZHf8xRgPR8OP0Rrbwihc4HWiLL4Da8SIEIZKfYiLiJEoufiJDobHIVCRCfcq5zonkGupHTrBz7f2k65zz4mSYiMSJkDffiyJhhuteSIqkychmw+soE6CJUaLkiBWOAZAOryfBBGkSJgN6jBgxjpGhnj42m59BkDL7uNoEiR3000M3O/mhaW4UoEyZAEXCphnQOvfnUSLA3kk3aXTGHJDI0rFt+z3AeyoOv32uj1eAKSIis9nAM0t9Ec9PtU54lmU1AT8C/jcwbtv2h5fuCkWemyIhEyQ6ezCPMerbx+dlM2vImyBxgHai5FhPmim33DVGlgIhGhk3XU6nqGE9aUZpIu7WrnrBWogCEfKMMd1dNkCZLg6YYDJAmQniMzqkZonRQzdb6DXZvJbCEMHj0FI7RMndwhnwmpmshXAGGkvO6xcaIRV5oTP2xEksEps8QSkOqdr11LiZ29jRKTJ1caLlHJlAvblGL5s5Gna+Ry9+apjshTHSJBingUC4bK7zB+zi3XyFO7gJcEps42TIEjP7Xh9iGx/gM9zFLvN1ZonRwhAnfF93iiRNjDJAO9exG3Cyn865w4wGtffynLT81s0UcLFlWQE3exnAmS6bWugXVoApIiLLhmVZnwHeCDQBHbZtP+oe3wh8C2cPSAa42bbtX57puWzbPg68zbKsvRWfyuFM1fvV/F69yMJpYIw8EVOmOkwLHfQTpmhKShMcoUiYKSJmb2WRMJ2Fg9wf3m6aAWWJUUPefawTuYUocoSEKaMFp0TWC0ABE3g+TDdb2c8QrXS7jX/2cg1Rcu6MSSeQLRAmRpb9vIImRpzrCYfpSPRzgignap2grPXRX0MQfpOMkziaYazWyUwGKJHM/5p8pMbMwZyodfZnlglwxC0Xrg8eZ33BySimA+vdrztEI2OEKNJDNwCpC5N00UuE/IzAsUyAt/ANBmg3s0YLhOmmh1628Lfp9wLw7sSX3XNGzCzLHrppYIxxGs0e1/GeDTzUvY3xn2wg9Crn+7uJfh7gavLU0BHpd7+jV8/xpy/y3Nm2PW5ZVh/wn4Fvu+8P2rZ9xvLY+aAAU0REZrPBVyW3mO5hYTvhPW7b9ssspxPC9y3L2mfb9uh8fgEiCyHLOoKUSeMEUO0cMk1+6t1M4wG28DJ6CLp7DAHCFLg9fDNb2W/Ka8Fp6hOgzJayU6aaCcRJkWScBrM3MUuMEAUGaKeZUROMtjMwo/wVnD2cg7RRpINt7j/fYVrYyKDJBHqPrR0pUsuvzbX8/IoraGWYACWsFM4OL5wAN/Q0hJ6e4pHkRsDZRxkolciE62kpO8FwurbB7HH0Sn4DlDlGjARH2M70PabY0SmoczKcXhnxGI0EKNNND1/ECSZv4G6+xjvZyn7el/g8AHlqeICr2OQG9uBkjaPkGKbVybQCN3X/A2M0knzVfSZA76WLGFkaGWdv8RrnYqa3aMq5YOnWTSzL+iLwBuAiYK9lWRnbtl8MvAv4lmVZHwaOATcvxvUowBQRkcWy5J3wbNu2vfeWZY2DJp7LyhAhT5IUx9xALUOcdgYYoN0EflvZT5qEaVQDsIYc23iIUZrMvsFO+hiliQniHAhsASBJio0MMkwrA1xuHt/OIcAZTeKVhW5kkBGaKBAi4zaWrCFPK0MkSDPk7kVsYJwM9eSImkZEA7TT0jrEKM3mWHthgEy4nlg5C7VwccrJlA4lX8hQXYyXPvWoyTbmAlEOBLY4X1OgyX2dMSL5KcYiDWavZ4wsvWyhnoy5xgBleuqShCmQJ8IoTeZ72UcnNeS5kgfNdXbSx3e4yQSOR0iYBkNehjhFkhxR2hg0QXSUHA+MXUVr47AJtvezlSZG2H30WgJBNwpRgCnzxLbt94J7d2Tm8cfATeEvIgWYIiJS3fx3w1sOnfAuwbmDWwZytm33n+nxIsuFN5fxBu4G4BE62MMOouRM0NnEKA2MEaRsgrwcUYqESJIyI0fSJCgQpp1D9LlNaEoESJF0mvC4wVwzo/TRSYAyCdImcB2lmXom6OIAd3Ij4HRwTZFkP1vNfMkyATermDPNc8AJyhoZo/mpI+bY+IUBwoUiTzQ3mGZCIYo0M0phNTSPOOc+1nwJW9nPGA0mA3nRkeNMNoQIUzTB4ADttHGYu9jFjdwJQD8dtDDEOI3uPlSn7raNQfJECFDiNjfB08YgA7RzA/eYwPF+tjP84xdz02v+wTy2v9gBIRg91UTnqj7ACSZvaLyHFEl2cy0AW+jlMG2UnglwVd0+96u+7jn9HZAVYGG6yK61LOtWYLdt27sX5BXmmQJMERGZ7RwZU1KlE94IsG9prkbk7PXRyTXsNaWvCY4QYYo+OsngNLbppYsca2hl2GTyOugnQ9wEqODsT2xgnGFaTJA2TCtjNLKVf2PcfY0xGglR4H6208SoadTjBWd9dJpg0utSO0ibKZttYIw0Ce7hepPJ28p+Xpp61C15dYLGUtgpx20+eYRMZHrmZY41RMgTKMHkhunX9kphx92mQ2PrG1hHljXkTJY1zgRBytzInSZA7KWLKDmaGCVWzjIcaAGcYHSQjXRxwJTTetceJWeCxDwR/vtrPsxBOsmyzvl6QvvZX9xKY2jcBObDD76Y2JVZDqS72JJwijZ+9Mgb2LjpEa5u3McgG5/X3wVZphZu3Txu2/YtC/LMC0QBpoiILHdL1glPZLlYT5phWk0w2cgYMbK8jB4TQDn7J53STa8sdJQmkqTcrrFOFjFHlCg59rDDzG5sZIwyAe7hBnZxF+AEZC0Mscbd33gd9wJwkM2UCdDAGCk2APBJPkgXB2hj0DQi2sMOtvEg72TQBLKNjHFv8jUAxC50jiWPjrOxMAhPw8bCINnwOvfccXJEqQnnTTCYJMUJQgQom0xnA+MMcDkZ6s1rgxOMNpTHSQecgPcDhU+zP7zVCdZLe01Do2wgRjsDNDFCwI0QpojQQT+jNPFgcRsAHw59nH1cRYQp83MYoJ3m0Ch9v+om9CInw7v+yhFCFPntxH5zLWsve5J0PkEskjVNkETOVQowRURktmWUwVzKTngiy8V+tnIjd1JvRohkKBKinozJnBUJk+AIOdaY4ClAiR662cEek93rp4MO+ungEVM2+yDbaGTc7OMEp8S1j83Uk3FHjThloZs5yBiNPMQ203V1J/dRdLvGTrjBbYI0A7STJUYj4wBcy720MEyynOIbgbcA8Ka6O5yGRYkM4ULRZCaTpIiQZ394q3n8AO0kSRElZwLMi1MZysnDpDlh9qNOECdNgnhgwuz13Be+mjwRuunh4fD0trT1pCkRIMs687WHKZpM76dD/w8Ag2xk909+l/e96pPcN7kTgB21e5zS4Rc5+129n4O359X7nreGhgmEyjyc9m2HSzz3vweyjC2jdXOpKcAUEZFlY7l1whNZLro4wA/YxVVuhXecCZoZZS/bTWZxhGZyrOEwbbzMHR9SJEwTIyQmx+mtdSKaTvpMAxwvq3kjdzJKswkIATp4hCkiHCPGYdrMGI4kKbOv0yu7TZKiTIARmkzAG3ef3z8bs4du1pElHChwA/cAmFLUnsDL2BrYb4JWr7S3jcMm8EuSIkaWLDFzrDE+TogCUXL04jQt6qaHVobJUG/2jkbI00E/w7QQomjmesbJmKyi1x02RIEaptjPVhO05olw/au+Sx+dxGudQH+CuFOq/EQX125w9sf+9MFX85or72WUJtrcjPL+U1vJZaOsT6Q58g/uHMy3Pee/BiIrwqqlemHLsiKWZd1pWdaQZVmPWZb1+jOc+w73vGHLsr5kWdaqis+/wLKsgYruhCIicra8gdHz+eY2KrAs69rTvqxtv9e27Rfath20bfsiN7jEtu3HbNvutm17o/t+cAG+6mVN66aIyDK2EOvmM4v6FcybpcxgfgCng1+rZVmXAg9ZltVq2/YJ/0mWZTUDHwE24wzX/hHwB8BtvtM+Afw78FuLcuUiIue6hZnnteIaFSwzWjfPY02M0sgYDW6paI6oO7+xZLKIIYr00E2SFPe7k3sKhNnOXj5T+z7TaKdIiCg5UiTN6JJhWskRJUOcuFuGG2HKvHaOqJnp2MoQU9TMaOjTyBhxdyRI0S2ljZDnM3yAXdxFjftc4Iw5CVAmXnDmd8aZ4EC4izYOMx5uNGW7yXKK2pEiJ5N54u6sz9Gwk/3LEzH7Oo9F1jJKMwnSbDIdbIPEy0cIBaZLbo8Ro58OCm5pcdD9T65AiAfZxi5+YJr3ZKhnjAa28SD72Qo4Jb972U47A3TR675OgGPE+L83fJLPDnwIgI9f+QH+x+RfMHXPOg6/fBMANRcdY31dmsf/9LIlGBohi2IJ52AuN0sZYN4I/CGAbdu/dO+i/g7w/YrzdgH3eHttLMv6O+CtuAulZVnbgEuBz6GFUkREzl1aN89j4zQQJ2OCpRhZOniEDh4xgdIE9TRToIlRU+rZRychCrQzYEpVE6QZpYkGxii53Wb76GSEJm7mdnpxpgl9kT/hSh4iQz15Iubx93IdCdLs5D4z5sQZY1KcUVKaI8r7+TwxsiY4TZA2zXj6wpsBZ27ktqMP01d3OQW3pBcgE4hzoLWJJkapcfdRTu83DZkAc5xGcqwhTYIcawDYTB8DgXYi5M1rd9BvvodjNM4Y79LOIdoY5C7eCDgNhsIUGaaVI24QnaGeLnpnlBF30keWGF/Lv4ub2v8BgL/8xWf4Ly/5MndcfxM31Dpls3d85W08ftE66IJX3viv7k/VG+0rckYaU/IcbAAe9338BM5MszmfZ1nWauALOIOELn22F7Qs6xbgFoANGzaczTWLiJw/1KxgudG6eR7LE2EjgybD5owJ2cxVPGDGioAzz7Lo6xj7Ru7iB+zieu4xwdkoTYQoEqbIKE5GcAsHTLdZrylOK8OsIUc7AwzRQpInAGcf5AG62Ms1pvnOIG2kSFIgZPYdxsgyRCsPsc2MMxmihavZR5EQl7szKw/RTrou7jT6IcO6/HHneKSdOBnKBOinA4B6MmSJ0UG/aSYUIc/2oz9lT91VtDIEOPs6i4QIUzB7R8sEOMxGtpQPQAAToLZPHmagtp27ucEE5k2MkqeGLDFzXpoEYzRwFQ9w+6SzDXxf6SpidVmSkRQPciUAL3vJg+RYw9ba/TziXveqN57kVM9qfvumB8z3XM5BGlMCLGCAaVnWL4DTrUaNpzn+XH0a+LJt279xy4XOyLbtW4FbAbq6uux5ugYREZHnTeumnEknB6knQ8KdHdlPB1liDNBuSlnz1JBwO6J62cYJ6rmGvbSXB9gdcLY/b6GXHrppdoMocIKtkJux8wLMFoapJ0MP3ZQJkHLvZ4zTSJQcXRwwgV8ToyRJkSbB3dwAwC7uIkqO67nbfB2HaGeCOJtJmWCuhiki5Nk6+TBDtZfwQOQqwAlk40wwRcQEsm35w0xEnGDUezzA3XW/Q46oyX4GKBOiSJ4IHTwCYBoWjQaaKLidXgHaagfJETVBMDjBqFfqe/sTbwXggxs+QYkAn733Q9P/ItfB+GO1jL/iGzD8YQC2v2gvozQxRqPJdJ4aXc0Lr3NKi2Mcey4/epEVZ8ECTNu2X3Kmz1uW9QRwCeC1md8A7jCmmbzz8J3nDTl6JbDT7Sr4AmCdZVmP2La96flcu4jIeU/t1hed1k05k2FaybLOzHlsYpQAJcoEKRIy5xUJmzmXABE3+9YX6PRl8oI0Mk7B3YsJTsfWMgGi5EzgtYYcWWK0MsQxYpTdXxuzxNyxHjFzPWW31DZB2nS13cMOtrOXh+mm3c1WbuQwjYzPCFhjHGOAdtprBygTNIGeM+kySI6oCXr3R36blxV6uD+8na04cyZ76WJHYQ8Pha802dwoOYqEKBAi4X7dU0QoE2SQNpoYMd1qx2ignQGm3IwlQI41JDhCOwN8dIOzt3IfVxEnQ/z1v+Flq5wuvQ+f6ubNG2/nC7/5c/hnC4DQLQW28RDf4K1kjjpZ1rWbnyRJigAlfnqzWxrr3xUtK5/WTWMpS2S/D7wT6HXvor4UZ7ZZpR8AD1qW9Vc4zQreAdwB4F8QLcu6CviMbdtdC3vZIiLnAa8b3vxacftIlhmtm+exAiEGuNwEWlli7GU7b+frJnCMk2OYFmqYosUtFXUCxmbCFMzeSMCM0Fjva/ITokiCNA1ueW2WGFNEmKCeKDnT7KaNQSaI08i4CRJHaeJadvMJ/rtptHMDdzNEKxsZ5Du8CYD38GU+xF/zaf6MB7gagHYG6KaHfjpIkGaYFgC2Tj5MIbyKXHiNaRJ01dF/Z7juhUTJmbmcAUr0hTfz2qf28eCFLwOc/Z8NjDFKM3/K5wD4IJ+ikTG2FHophsNk3BLbPeygiVEGaKfbHe+SI2qyxF42eBd38Qn+goZV4+wZ2wHAqeOr+cKxP+ct3V/lm9vfCcABughQ5koe5GDdZvN89UzQQzdu/yU51yzMurkiLWWA+Wngm5ZlDeH0XLrFtu0cgGVZHwPStm1/1bbtX1mW9XHgZ+7jfowzaFtERFaWFbePZJnRunkeO0GULg4QcBv61JDnBu4mR9RkESPkyRGl5MsObqKfIiEyxE1Dn6i7r7KH7hkBVZwJ9rPVZCM3MshetruzKAdnvHaMAAO0mxLbrexnL9ewgz2mZHeAdmrIM0wr29kLOPsY/zuf4BgxOjlorrGhMMZguI0aptjo7uG8t/Z3SHCEKDkCbmposO4SDtPGNYW9pMLO11hPhhxRnriwgStTDwPwreTvmdf7IJ8y38cRmugPd9BJnwkcd7CHPBH2sp0H2QZAgiN008MQrWZP6V3s4moe4I6vvI1Xvttt1NMIP/3xq/nmr97JNS+6D4D9k1tJ1qa449a3ccUtPwdgMwcpEWB8YANs9wL98Fn8TRBZ/pYswLRt+yTwu6f53IcrPv4a8LVneb59gO7CiojMB7VbX3a0bp7fOukz4zsA7uKNfJU/4j52mmAySYokKRKkGaIVgEfo4AgJrmGvKR/to9NkLr3nDFGgSJhB2swIjjQJuukhR9SMOwGnUU8/HTQzaoLOAmESHCFLzJTDJkiTJkGIggnmBtlIgRCHaOez/CnglK4OhNvp5CAP020C4Xoy1DPBMWK0TTqNfw7XtrGRQfaEd7CjsMc5Fm5z91vW8HfJNwNwLfdSJkiAsgmYR2liAynTEXdb4UEAbg/fTJkAV/OA+V42MkaOKD10cyc3mmMT1PPKd/8rP/0Ht8z1tQW4okD8ognuP/w6AH5n4z853+sXYsqK0yQ48ONXQD00JMbcn6IaZ51TtG4aS5nBFBEREZE5SJEkSs7MrfwrPsJtvJluHjb7KAfZSBuHCVA2Qd4YDWzhAIdpY4J6wNnbOEYjbQyaDOQUEY6QYCv7TSlsJwcpECZPhDYGTaA2TCttHKZMwMzB3MaDRMgzToMJ0vawgxu4hwGu4YB7L+MDfIYoOa5lN4fc8SH+LOw1hb1m1uWLnxrm2IU11DDFfbWvAeCq8j5qR4pEWqcYDzsBc4giDYwzTIspex2lmQh5U84LzrzNcRppYpQ067k/7NSqXstuDrORCepNKe4QLUSY4jruNcHxbdxMkRDNjPJTJ35nS6KXLDGG97+Ya7c6E4N2/9PvcsUbfs4tO//GzCMFCHVNUnw6zHja7RCUOJu/CSLLnwJMERGZTc0KRJaVIVq4mdvNTMcSASJMmSY84OxFjJElxxozG3OKiLsvM2/O8zKcaRJm9EiOKDVMEaYwo5vqTn7I7dzMEK0meIuSMw2BvL2ePXRzgijrSZtrbOMwe7mGejK82e1okyLJNh5inAbTUMcrRQ1QJhgumxErP7/wCurJEKJoAtD+QAdtrYNkiJss7QDtbOXfSHDEdKzNso4CIQqE2c8rALiaBygQoo9OJohTTwaA/WwlxjESpE1wPEyL6bZ7ldtLK0eUvslOBmrbuelKZ+blHZ97G7we1nY96eyvBC55w2NEOcE93GCCyYbEGG+uu50DbKFv4OW4Pwg5lyzcurni+hcowBQRkeoUYIosGzdwj8liAkSYYic/pJ6MmbUYYYpRmigQMgHmIG20MMQozeaxKZLkqSHNetP4p5FxIuQZo5EpN6u5hhxf5+0EKZOnxuyNDFNkkDYaGOMwbQCmGU4NUyZ7miJJM6PUMMUBtgBOtnEfV3Etu82+yiwxk53NESU56YxiSdQeYYoaEkczpOqS5lyPl80NUyDBEfrpMMGg1123j04TsDp7RiOEKHIzt5tuufvZSiNjjPmyr3EyDNNKwdeht5kRpmpr2Mp+E0Rf9af/wr53v5bjf3gRrHe+noYNadKsZ/y9G+BLzmMbTo0xyEb69r8cmrQH85ylOZiAAkwREVk8K+4urMhykSbBbq41TXm2sp8eulnnzq8EWEeWGFmi5Bh0A79uekiSop8O03wnRIE8EbdpkPMb8TiNpEkQoMQaNxCdIsIm+rmbG2hhyGQR97CDcRrJEDd7MBMcYS/tNDPKnfw+4JTifoDPcA/XE3PHpQQos540g2w03WadfZpFxmiknw4O1k53u+3iANm6GhP0tjPAEK3EOGaCQW8kSZKUCXgniDNMKx30m6C0nQHSJIiQd5sXHXO/H0V66SJKjr1uSetNfIcM9SRJmcxkC8P00M0jdDDsZk+P/KSZ0F9PUvxqLdf8d2dP6P2/+zr4bIk1n5zgxJ875bWPfuql0AEv3DnEr//Jra99w9n9XRBZ7hRgiojIbAvTbn3F3YUVERGZE40pMRRgioiIiCxzU9RwFQ+YpjFNjLKOLHEyJlsZZ4IB2mlhyGQWk27X1CQp07zH2zcZYcpk4kIUaWSMNAnTzCdAmQHa2cVd7GGHadTTzgAniFImYLKnw7SQ4Aj72cou7gIgzXru4o30Y8av0k0PbRzmIbYR5QQAXfSSIM1+trKNh4iWnQzqeKDBNCHyut6CUxIbpGz2ik4QJ0aWu9hl9mAG3W62eWrod0uIQxQ4QoKNDNJNj8lWdtHLIG3cyY3c4D4+7M4E/QZvNVnjMRooEaCeDBm3YdKRJpvOuj4e/ucruf8ap4ssfwSv2XAfA7TTFnHKisc+2Miv/6yV8Zc3wGXP+ccvsqIowBQRkdnUbl1kWTlGjDJBbuIOANoYNCWiXvmo9/E4jWZ/4hgNjNNIgbDZG+kZpcnsy2xnwMyA9EppI+QpE6CHbrbQawK1AdoJUCZB2jx+lCYi5ImRNUGhNxalSMgEaSmSfIV3000PA1wOOHspe+kixjG+xju5MXAngAl0ywTNn7OsM6W53te7jQcpEOKdfI0xGgAnOG5hiB66TdAZpkiEKWJkKRIizXoAkjxBjCzv5/OmHLaBMaaI0MQIfXQCTmOlVoZJkTQNkw59aTOpzyXh2zZ82wLgZR9+kB/fdx38Gn79QieAf83Oe/l1VyvFn9XCR9wfwM/n8IOXlUPrpqEAU0REZlMXWZFlpZlRYmQZogXAzKscpcnsjQQYo5EERzjm7jt8iCu5jnvJEzFZzTEaWEeWCeJmBEeCtJljWXQb2wQom+duZJxD7uMb3azoGA2mCU6cCTLUUyYwY29kA3nSJExTnL6fvJxrX/V9hmjlPXzZvE6YAq0M08Zhht2vcSv7yRMhSo497ACcJj9vLtzGcLjVBNH9bKKLXoZpMdf7Nd7F58p/SjYQMwFziiQZ4uxhB50cpJFxwAmE97OVJkaJu51l72c7MbLmseAEqD+68w1ccuNj5nv5ys/9K1NEiL4oR+jDzt7Rh//hSngx0FmAlNPI58fWJtgFG7//CIGdXhSy+bn9JZDlTeumoQBTREREZJlzGvCUCbslqd30kCFOlphpoBMjSw1TZIibjN9W9jNEK3lqzHkZ6pkiQpYYzYwCuE1vsmSIm3LUFElGaaKFIYqEaHLPzRGlnQH2s5UETsfXYVpJkjLBonfNWda5mUDnsS2vGjZBoDdDM06GbTxEH52sJ03B7a46QZzDtNHOADtwGugM0sbhcBsByia4rWeCNAkKhE0G8mZu46HANjbTx53caL4XUXJczQPkiLLO7S77INu4iTsYooVWht3vUZw0CTOz0/t+NNw4RhuH+bOx/wXAqd+s5rdf8gCH370JPuQ2J3o50Av/pfvr/H32PQA02Kuo4TEKhFjn/hxEzlUKMEVEZDbdiRVZVryMoZdR66eDJka5nAEe4krAmfNYzwQxsqZz6og7iqOejAnyvKC03rd/c4B2buROWhgyey0TpN2uq1M8wNWMu+WnW9lPmvWUCfB13g7AjXyXLOsYp4GDbmaumREeoYMd7GEfVwNOhjVCngIhkz29mxtoY5AO+ulnE82MANOB7AT1JrPoZUhDFE0pbpCyOyIlz/UFpxz2vvDr6KaHYVrMnlOvtNYLhCPkAWcEzBgNFAmzm2sBZ0RLEyNkWUecCQDu5EY66OcbvIXgBU4WsrgGesZextovPEkk5PxsEok0B/a+wsnkOhXEjB/ewFUb/4V9j7yWx7PuD/XKs/iLIMuX1k1DAaaIiIjIMjdKE9sZYoI4AJ30EaYwo3lPA2PkiHKQTpOZbGXYZDO97F6cCZNF9BrlePstH6Z7RiC6k/vYww7aGDQB2SBtpEgyRiNv4juAE6AWCJNmvTlvGw8RJ8Nnf/IhPv6qDwDwhVPvJ73KycZ6GdV2BtjGg4QpEiVHjfv4ImFqmCJB2gTMAco0McooTWZPaR+biZJjI4PcGf5997wS+9lKiAKb6QOckt00CVIk6eQgR9wMah+dXMNeUiTNXtE97CBFkizrOMxGwGmsVCZANw8Tq3OuvVwXpJUhbq99B8f/2flZZa6Iw6hzDfGX/sY59s8Xs+/J1zonKAiRc5wCTBERmW1h2q1rDqbIWfIa1njBX5EQGXcPZTcPA85exBhZEhyh5AaVAEM4+xW9TFwj49zFLgbZyI04DXUaGCdAmTgZDrpNbdaRpY9O0wxoGw8BTjDZwBgpktzFLsDpVruRQdoYNAHvXraTIM1bXvVV/pb3Oq+zapz7H3kdV2z6ubmeJkbpYzMJ0nTTw5jbHKiFIe5nO1exz+zrLBNgihpeRo95nQRpQhTpYzNve8ppgnTvha8hR5Q2DptmPkO0kCNqAss/PPotAP7fuj9iP68g4wbv4JQgv4uvch330uKWzY7SRD8d7P7F73LFS5wOPY/e+lL+/emruWTyMR5POO1hr0rvI/O5OD+68g1sfPARADJTF8N3IfSlSYpxJ6jHfsVz/Fsgy9rCjSlZcWunAkwREVksmoMpcpaSpFhH1pSfJkkxQDsd9JuGM1vZzyAbaWWIB9ySVC9LmCZhSkrXkWUr+2llyIzbaGSMGFkG2cgN3ANAL1tIkeQa9hKkzKCbyRungWPE2Mp+7sMZzXEV+zhEOwfdQNEzQLvTrCcfcR67bwN0Fqgnwx28CYD383mz/3GQNpNdzVBPiiRp1s/YZzpOA3/Le0132Cg5whRJkeRbF/4e4HTCTZBmnAYzDiXFBu7nGrZwgDYG+XndSwEncPTKcL3y3P1s5S/4BGkSZg9nb3ELwWCZW17yN6aMmJcDn4THv3AZqw6eBJzy5bGxBtbufZLDP3FHtKwHWqH4r7WserLzOf/85by24tZOBZgiIlKd2q2LLBtBd++g14CnTNCMBRl191l6eytTJM34kH463A6xadPJ9Rgx0yzIa8iTJcYYjRwhYcaRTBEhRJFxGvk6b+etfANw9id6Y0Ku414A7uF64mRodBvngBMMdnKQz/7Dh+CFzrHrd36Xe277fWI3O0EuwG28mQ76GaTNZGUBOjnI+/NfYCRyibneYVqIuQGyNwYlS4xWhhmliS56ASgQJkSRz/AB/l/eBTilsElS3MDd5IiSxwl6c0RNh1lv5Es7A74geicA7wp9jXu5jnEaTTY3tKnIwDcvpzU0zIEPOxnJ8scCdDc+TIokwavcEtnHLnZKYy+AU3+/2vlm/Pfn/vdAljmtm4ACTBERqUbNCkSWlTEa6aeDq9hnjrUzwChNJmNYJkCCNN/grSYY9EpWx2g0mcEfsGtGZ1SAa9gLOJlM/z5Pb++j93wACY6wn61kibG3eA0AbwrdwVc+9ae874OfNCWp9xy9gRvr7qRm1zEStc413vOnv88LPzdEjKyZWdnKMD9mB2/n6xQJmWzl/WxnR2SPmz11mhE1McIozcTJmNcBJ0hsYMxkc/vp4Ebu5MN8jK+5AWYrQ6wnzZ/zP9nBj81e0Q766aWLDvrNsUfoIMER7mIXW9ygNU6GMgEKhMxszAAljv/zRQy+NsiWj/0bAAduewXZ18eoWZPn+Hsuci7w/cBb4JqNPzQBtLr8nGO0bhoKMEVERESWuQAlapgi5GYci4QZpI0buJtet1wzRIExGrmBu0220uvOmiNqmvxczz1kiNNPh2nyE6bIEK3sZys38l0ADtPGGnJus5vpcSgDXE6EPBHyvDf0t+6xdq794PfZz1YTyLbXDTBGI7HarGnIMzz0YtJj6xlrbDDB61b2826+Yl7De50kKcZoJEvMBNH3s52d3McQLUy5GcgM9e7e07QJ3toZYJgWDrKZDpx9kJvo5yCb2cl91JMxgfSd3Eg7A2SIm8zvXw58hr9vfxPd9JhgMkuMwz/eROI1afb9wmnYs/4lI/A0nNhXDzsHAdh48yOMHm0iETpC298dBuDhO66Eerj/rtfBVe4PdevZ/V0QWe4UYIqIyGy6EyuyrIQp0sSI2TOZp4ad3Me9XGeCxK/xTq7mAZoYNQHZCE00M0qAsgny2hhkkLYZGcpeuoiSo5UhE5xmWccITcTIUiRM0Z1PWSbIEC1kWcfVPOAec8aHbGU/t+VvBuCtkW/wENsIUTAzL3kXJBqPECXHKM2Ak31sYpRhWpggbkp+A+74kSZGTSnvDvaQI0qYosks7ucVlAlwmDbTtGiCuDt/c8SMdmk5+mtuq3OurZFxk731mgulSPKAG/19qf3tjNJEI2OmYdIQrfyX13yZHGt480v+zlz7PXubYQICO53s6eFfdUDJ4tA/b+bam78PwKprTjqlsS8H/sX9oSrAPLdo3TQUYIqIiIgsczXkeZhuE+zczO3008F29pqA7IN8khRJGhgzQZU3luMYMYK+8tEa8jQyZjq5niBquqhmWQdAB49whITp6uqVn0bIc//R7fxJ3RdN4HgVD7CPq4mSY2vE2Vs5QDs1TJn9kAC0OqWq+3kFN7hNerbxoMl89rPJBMIBSvTTQS9bSHAEcBr65IjSRa+Z/5kgTYwsSVKmlLaRMUZoIkfUBLJ9dZ1s40GKhMkR5Up3H2WWGPvZSoEQXRww195BP3dwEw3uvtIwBYZpIUWS4Ttf7PxcfucYvB64GB7+hXM9ay6b4ER/PXwXhm5uBeDUh1YT+tQkxYlarvjYz92f6kuf+18EkRVAAaaIiMy2cO3WRUREzj1aNw0FmCIiMpuNuuGJLDNv5nZTvgpORnGAdtpw9v710kULQ4QpmpEio26JazsDM7qmevsbB7gccBr3FAjTyJgpm/Wylx9/5BN8dNOfm72IDYyxs+4+sqwze0K9c3ewh08d/gjgNLTZxV18g7eY8R/pjevZ997XcskXH+Nvf/UBADIvivNG7qKfDq7jXgpuKW6UnNkT6RmgnXoyDNJmvu4RmoiQJ0fUZFtDFBilmS56zbzM9/K3jNMAFCgT4EG2AbCZPjroZy/bGcbJOHbT47561JTiNjLOIBspECZ3o7PXs4lRHr7iSvhnWPUmZ0zJib31kIUr7vs5j6bdMSW/A+vr0jz+hVoefZd7LPEcfviy/GndNBRgiojIYllxw6JFlgsv8NnMQQB66KaHbt7Nl01A1kUvDYxzgC1mv2ScDBnixMmY4KudAR5ygyuvTHSIVjcYPWbKXgdpo5UhPr7pA/Sx2Ve6WuYEUWIco8+dy9nEKP/+46vpfk0P12z8IeAEg73FLeSORXn0E0456MYvPgJZp4HPK17klNJu4yFyRBlkoxldAvAQ2+imhzQJU57bxmETeHrHvPEoDYybIHiAdlM+vJ37Aac0uECIVoY5TJspI+6hm256aGfABLQ9dBPjGFfxgCmb/Tpvp4N+WhlimJbpH85PIfSWSYrvq3U+/n3gHgjfXISfOT8Hfg2PP9HK733sW3zvU3/oHPvgHH/4IivMqqW+ABERWaZK8/zmDotWcCny3PXRST8djNDECE2EKPIXfIJ1ZMlT475FCFNgDTnTjbVIiGvcQMubh9nLFjrpo4duUiRJkaQVZ3RIH5vZyn62sp8IefJE2M9W03W2nw6i5BihmSgniDNBnAl2cy2vfM2/8oVffZAAZQKUnW6toQynCmF4nw3vs+nkIPx1iZ/+j1ezhhxryPExPswRErRziAHa3f60TrbVCyKz7lcUpmDOSbOeNOvNsTu50f1qUoQpUiZAjqg5L0KeMkGKhFhDznzfmhglTYIIeRO438dOioT5yNhfMUoTozTxg1vfZH4GO7mPndznPNfvT1D8l1q4HuftXUC/k+ld9YqTrHrFSegE/j3I977yh3ADzpuce+Z73VyhTYOUwRQRERFZ5t7J18gTMY16IuS5mxvYwR4Ou41tNjLIAO1kqDfzHNeT5uu8navZZzKYozRRJsiN3GlKbvNEzJgPL4PZzgDtDHCQTqaIsJftgDNW5Goe4ABb2OiWqV7FA8TI0vii6SxijGMMp1uhNwjfdr6O/n/axCUbhni88zKO+F5nPWnWkXVDYGe+ZTOjZNwQ1ssiDtNCOwPUM0HZbXj0CB3UkzElwwAhiqRJOOWs7uiS9W4zoAl3HIn3nP10sJX9ZImRYw0Au7iLCHnaGg+bkuG/vOUvuJvr6eZh8zp9l74c/gqod98A7oFQ0yQ/+tgbAIh/6Ddk9q2GbQVemXiQ/mKHe+JFZ/E3Qc5DK676RxlMERGZzWu3fp7fhRVZLiaIkyVGgTAFwiRIE6DMQ2yjhWFaGDZzJPPUuDnEAGGKvIuvMUibOdbpltmmSXA1D3A1D7CHHcTIspMfmhmXLQzzGT5AmCJ5IryVb/BWvsEQrdzJjexgDxGmiDDFMK1kidHImLme7z3xJq5P3A0Xw5pvT7Dm2xMcOryZTL4erihxkM0cZLPJrHqlr2WClAmyn63UMEUzo25OdSvtDDBKEwO0M0gbg7SRoZ40CVoZIkSREEUi5AlRoJ0B83xBkw1dxzqy7lW20MIQfXQySpP71UTo5CBjNJqxJ+DsXX30Fy+lh5eZ7xEd8Mqb/hUmYNXFJ1l18UkIQrwuw6p3niT+od84Dy4Af+383I7/upHjv25c7L9CstAWYt1codU/ymCKiMhs6oYnsqyM0kyZgCkZDVAiTIH1pCkSMuccpo12BsxszPvYSZYY7QxwN9cD8Od8iju5kYN0mj2d29kLOMGXtw9xkDY+yKd4iG2M0jQjs7mFXv544Ousb3ea94QoMDDZTrI2xeGb3CY2H4B7rvh9rpr8F5M9PbS3nui7c5z4TD1Xf9GZoTlCExnqCVEgSs6UxyZJkWMNHfSbYyUCbGSQCFPmOhvc5jv1ZExmsZ0B+ukgQ9x8jXvZTsL9fu1hBy+jB4AIU5QIkCTFhJuGHKaVXrbwOnfWKDijT655yQ+5lnv5UP4Tzmv/0xP8tPbV8Ho49fXVAFz+k4PkiHLqU6tZ/zln32rTzaMcCL+C773hD1n73Sfdn6oymOcUrZuGZdv2Ul/Dkujq6rJ7e3uX+jJEROaNZVkHbNvumpfnekGXTXKe/48cmr/rk8WndXNpdfBzrmYfnfQBsIfXmBJXr/lOP5sIUCJFkh3sAaa7u/bQbYLIAGUOsIUSAfpxgsEbuZMMcQZp4zruBZyM3V3sYiv7iZIz8zZLBMhQTxe99OL8kx6jgTBFRk81sWWVU3r64x9fxwtfMwRgguBCMcTxl18ETdD5Tz8Dppv0NDEKwJu5DYApIuSIkiXGNrcZ0V6208QIJ4hyzC1dDVNkjEbaGOS/8jcAfJffJ0CZPBETdA7TQoEw4zQQokiSFDDdrXYPO9jJfQAMspGr2cdd7DIlsmM0UE+GLDFTGvzZt30I2oDjwP90s53/+0b4F3jh/xgiPeaU+9Y3ZqghT5gih3uc77nd/dz+Dsj8W/brJqzItVMZTBERmU3t1kWWle3cTwf9Zo9ggiMAHKaNMEXA2fMY5QRhiuzjasAJnhKk2cEes7exj81sZy8ByrQyDECZAAnSxMnwed4PwF/xEQKUSZBmjEZC7us0kSZImTEaSZEE3KD1xy+FpyF8ndsJ9ooCv76tFa4qwT7nV85VO07CR4HOEqlTzmN3rrqPPBEzTsXbm7mHHawhRxuHTXB7gC00MsYP2UmzG5CCk8Uco4G383UADrKZCHn2st2MM+mgnzIBxmgkR9RkQJ1GPyMEKJuvp5VhHuAqckRN4BsjS5kAt//kHdzyKieQrfnCMaK1OcZv2gA/uBGAtS9/kuiVJ/j1L1phh3N9499aDd+Fjbc9QkP3E+5Vb3hOfwdkmdO6aSjAFBEREVnmApRMJg1gB3v4Gu/keu7mhNvEZoQmmhklSs5k/MZpMIGgF2h5j72GvRxwM5BeljLNepPF28t2kqQYpI1tPGRGc3hNf7LESOfdstnIAL/9mgcoEmL3r3YBsP5Fo8RvnuDRf3gpPOpcd+vNwxz+2SY4EeTYNc7Xk2pMMkgb7+WLNDDG/W4zobfzdYZoJU+NyUJ20scEcRMYA1zLbh5im8mSAqacOEnKBIh5ahin0ez39JoRHSPGMK0kSJv5oU2McDs3s4u7CLuzPjPE2UIvG1/1CLfe+18BeMt1X+WbH3uX0+DnLc5r534Z5fh/voj43t+QiV0MQM0rjzG1dx2H37BpejyJMphyjlKAKSIis3nNCkRkWSgSJkzBzLzcww52cRcl377Mbh4mRdKMJ/HEmaCFIfrpMMe8Etpudx9iNz08wNV08IjJIEbJ0cQoKZLcxRtN19Ud7OF+ttOb72JX5C7AyWDeMXkT0docr3yRU4r70x+/miOPNcO/AF9wXnes2MDajz7J8X0X8Z7GrwBOwLqLu0iQpo/NpnT1LnbRwDgpkmYfpdcRtolR38zLy4kzQYZ6k4FsY5CDbCZMgT1uGrGNQQqEqCFPiqSZuVkiQB+baWLUfN/u4E28ly+SIkmLL5j9b5OfpL12AJzKX6ez7meAn4KbXObU8dXwVcifiMB/c45NfXQdNR89xtST6+Av3Cf7/rP91GVF0bppKMAUEZHqtFCKLBshN4vmjeaIkqOGPPVk2M9Wc14bg3yDt9KFsxesgXF2cy2d9JnGP3dyI82MEidjHreX7XRykCkiPOCW197A3QzTwqf2f4Tf2/otxmgAnGY3cTJ0Rg7yzcPvcp7gbnjlB/+VFMnpTOsE8BjQCjztHCqXgpyYiMFa+Nv7/gyAVVtOcnPj7XyZ99DImGm+E6JIiiRX8iAl9+v2rtnLqgKkSJInQoQ8u3ACXm/+5XXsNgFrmgSb6Gcv201wCXAbN3MT32GAdhNMxtyRKWM0mqxmPRk6avtpY5CaP3XGwPz0wVfDLlh72ZMc/+N1zhM+GYa3wNQfr+ONt3wHgB/c+Sam7llH6PWTFKmdy49cViKtm4ACTBEREZFlb5xGgpRNBrOdAYZp5Zu81TT+uZMb2cl9JNx5j+AEX9t4iBhZPsJfAXA1+2hgnA4eMdm9OBPkiDJMq2ka1EsXaRL85da/YDfXmue8I/8mkpEU23iQAxc5Jba7PngXPXTz+C8ucwJLYNU1Jzn1wGp4DNZvcrrNHrmzGd4KPGpDjwXA23d+nX462MaDNDJu9kZucLu6jtFI3H3SOBMM00o3PezmWvO9iJKbkaEdoJ0ER3iQbaaE+CCbeT+fp4N+Bmg3QXiMLH1spp0BEqQBp9x4gg7aGTAB/DYe4uEntrJtw4MmiL78yoMcKm1mV+gH/P2j73Fe/NfAXwMvhB9c+ibn2LeApyEQLOMmgkXOWQowRURkNrVbFxERmTutm4YCTBERWSxrLcu6Fdi9kgZGiywHUXIcI2aa20TIs5truYp9Zt/hTdxBkhQhCqZ5DzhZv8O08Vd8BIAyQWIc4362E2EKcEZ9jNJMF73UuMfu4CayxBiliU76TBZxLNJII2OsI0tHrVN2e/vAO/i99m9xuL4d/tH59fLUjtWEMpMUf1bLkfc2OxfzI4if+A2Zb14M9ziHHn5vN02M0s4AWWIMuc2EuumhkTHSJGhkHHAyuR3000cnDe6xEEW3E+woEZzS1TYGSZDmCZLma7yKfYQpMEQL68hyNzcATkOfBEcIUTBZ0Hu5jhRJPsgnTYZ4N9fy0Q0fYh9Xse/HrwXgL1/zF3z825v5+6H3ENo1CUDxm7WwDy5PH+TQZzc7X2QAuB6mciPwiXVn81dAZMVQgCkiIrMtTLv147Zt3zLvzypyHoiToYdurmYf4JS+vpuvkCZhSkrHaGA31xInQ4vbhSZHlH1cTTc9JtC6h+tZQ451ZM3exjwRcqxhkDZTJjpKE1voJUeUBGnGaQScjrMpkuxluykVfWX7v/K9+/6Qa3b+kPvf/DoArvj0z3nUugI+AGs+6QSnJ2L1ZD56MZd87DEe77oMcJrsxMiSIkkNeTa7Ad1+XsFOfkicCdJu46EAJRMENjIGOCWurQzxed7PjTizKBsYJ8caNpAyTZDG3OtvZpQcUdPg6KDbLGiYFgZpA5yy25u5zXxfAJKkGOBy53v2a+fn8sXin7Dqf57k1B+vpljv7q38Z6AXDv2qE7yxiNtx9uftegm89jn84GXl0JgSQwGmiIiIyDJXJkAXvWZcR5EQe9hBhDwTxN1jYV7DnhmzMesZZR9XUyTE5e7eyk766KOTTfRzECfDFuMYQcrEyZh5l+/mK2SI85mjH+D9dZ9niFbACbS2s5cB2ullC+AEbT/th/tjr2NNpxNMPnrbS/kd+5/40ao3cCJZ73whu+CKTT/n0f0vhS85hx7lpey4Yw+DtBEjyyvcBjxd9HKALjroN5nJCeIUCJGh3gTCWWLsYQdv5nYz6zPLOsZpoIFxYhwDnJEteWrccSRtpiNtF72M0UiSlNl/GiXHQTYzwOXUu42F8kRoZIwER0i9zckaX8du/nb4z+ADwIfcH1YOGAW+aTnjSwD+0xQN9lOMb9owHXS+5Dn/NRBZERRgiojIbGq3LrKsOCM7xkzwlSNKA+NcyYM84mb0IkxxB2/iJr5jymYTpE3ZrBcopUjSSR8PuIEnOEHaNh5klGbG3W6xzuOKXFO3ly9Ovpedtc58zDsmb+KG2ru54xdvM79JvmnTHVzxwZ/z6FdeyonPuFHVH8OP/ukNMGRDi9PQh2Z49EsvNWM+APgDCFKmlSE2ctgEshHytDFInhoe4CoAruQhpijTR6fJnrYzwGYOkmY9RbcJUpkANeSJkDeBZCd97GcrZYJkiZmmRQfpJEyRDHFq3ED2BFG+w5v4G97LYTerOUSr2zTpQRIcAZysMQEIXTpJ8XI3g/knwHuA/12gJeF8ocOvfzHj790A/b+GT7/QOU/1HOeWhVs3V9z2EgWYIiIymwJMkWXF65S6kcMATFHDCE18nvfzZm4HnM6pTYxwhASjOHse++mgnUOkSNJDN4AJrJKkTPCVIskREuSImpLbAdqJkuNHv7oBTlh0bXJSb4naNF8eezfEbD7+ImfUyFd5p1OCe32B+LucDGYmfDHcCbQ8DH/vvDYxoASrbjzJqSdXAxB/7W+4mxvopoc4GfJE3FOPmev1ZnCmSVAmQIOv2+x+tpIjylb2m0xnhDwjNNFBP6M0Ac5ok1GaiJHlRu7k87wfcEp+93EVb+Qu832Lk2EnP6SZUXPe+/k8d3Iju7nOvM737vtDuBuK5Vr4A+dLDHVOUvyTWuIXTUz/AEsQ+ugkfLSW4pPP7WcvK8TCrZsrbnuJAkwRERGRZe6+ozt5S903+NPiZwEoPh1ma+1+ApTZ52b3vpJ+D6EXFLi2bjrJUSZAhjjjNNDrNv7Zyn6yxCgTYP9RZwRHrC4LTAepABmvvvPnFpffeNBkRUdoor1xgEd/1cVffvgzzjlvsVlzUQZSYTIXX+wcqwHeAnyiG55yL+hR4PNw6hOrnX2JQOZ9F9PwxXEaGONubjCzLA/QxRZ66aGbNgYBZ9RIB49QJsCd3Ag4ZbNJUiRJmeAUnOxtL1vMns0IU5QIcDfX88dHv2TO663bQjsDfJO3mlmhny++j62h/byOH7KNB833podukqTMPtH8zgiHc5vgj4B7wD4KVl0t7IXAqjLDPS92XiQOxTY3wznh7B3Fbjztz1tkJbNs217qa1gSXV1ddm9v77OfKCKyQliWdcC27a5nP3Muz9VlE5zn/yNL83d9svi0borIuWbZr5uwItfOVUt9ASIiIiIiInJuUImsiIhUp3brIiIic6d1E1CAKSIip3N+7qAQERE5O1o3AZXIioiIiIiIyDxRgCkiIiIiIiLzQgGmiIiIiIiIzAsFmCIiIiIiIjIvFGCKiMhiWWtZ1q2WZV271BciIiIiC0NdZEVEZLEct237lqW+CBEREVk4S5bBtCwrYlnWnZZlDVmW9ZhlWa8/w7nvcM8btizrS5ZlrfJ9rtOyrActyxpw335ncb4CEZFzmQ08M89v8nxo3RQRWc4WYt1cmWvnUmYwPwDkbNtutSzrUuAhy7Jabds+4T/Jsqxm4CPAZiAD/Aj4A+A2y7JWA/8E3GTb9s8sywoCaxf1qxAREVkcWjdFRGTZW8o9mDcCXwWwbfuXQC9Q7S7qLuAe27afsm37FPB37mMBbgJ+atv2z9znKdm2nVnwKxcROefZQGme3+R50ropIrJsLcS6uTLXzqXMYG4AHvd9/ASQfI7ntQPPWJZ1H5AADgAfsG372PxfrojI+cQr9ZFlROumiMiypXXTs2AZTMuyfmFZ1sRp3gLz9DJB4BrgvwAvAXLAZ89wTbdYltVrWVbvU089NU+XICIi8vxp3RQRkXPBggWYtm2/xLbt+tO8lXHuqF7ie8gGIFXlqc503uPAT2zbPuKWAd0BvOwM13Srbdtdtm13XXjhhc/nyxMROcepRHaxad0UEVnJFqxEdsWN+FrKPZjfB94J4DYreCnwL1XO+wFwvWVZF7pd8N4BfM/93PeAl1mWFXU/fi3wfxb0qkVERJaG1k0RkfPPcdu2b7Fte/dSX8hcLeUezE8D37QsawgoA7fYtp0DsCzrY0Datu2v2rb9K8uyPg78zH3cj4FvA9i2/YRlWf8L+HfLsk4BI4BmrImIPG/aS7IMad0UEVm2tG56lizAtG37JPC7p/nchys+/hrwtdOcextw27xfoIjIeU0L5XKjdVNEZDnTuulZyhJZEREREREROYcsZYmsiIgsa2rMIyIiMndaN0EZTBEREREREZknymCKiEgV2ksiIiIyd1o3PcpgioiIiIiIyLxQBlNERKrwBkaLiIjIs9O66VGAKSIiVajUR0REZO60bnpUIisiIiIiIiLzQhlMERGpQqU+IiIic6d106MMpoiIiIiIiMwLZTBFRKSKBdlLstayrFuB3bZt757vJxcREVk62oPpUYApIiJVLEipz3Hbtm+Z7ycVERFZeiqR9ahEVkREREREROaFMpgiIlKFSn1ERETmTuumRxlMERERERERmRfKYIqISBXaSyIiIjJ3Wjc9CjBFRKQKlfqIiIjMndZNj0pkRUREREREZF4ogykiIqehUh8REZG507oJymCKiIiIiIjIPFEGU0REqtBeEhERkblbsHVzrWVZtwK7bdvevRAvMN8UYIqISBUKMEVEROZuwdbN47Zt37IQT7xQVCIrIiIiIiIi80IZTBERqULzvEREROZO66ZHGUwRERERERGZF8pgiohIFdqDKSIiMndaNz0KMEVEpAqV+oiIiMyd1k2PSmRFRERERERkXiiDKSIiVajUR0REZO60bnqUwRQREREREZF5oQymiIhUob0kIiIic6d106MMpoiIiIiIiMwLZTBFRKQK7SURERGZO62bHgWYIiJShUp9RERE5k7rpkclsiIiIiIiIjIvlMEUEZEqVOojIiIyd1o3PcpgioiIiIiIyLxQBlNERKrQXhIREZG507rpsWzbXuprWBKWZeWAwaW+jtOoByaW+iKqWK7XBbq2s7Fcrwt0bWerzbbt6Hw8kWVZ/4Lztc6nCdu2XzvPzymLROvmWVmu1wW6trOxXK8LdG1na7mvm7AC187zOcDstW27a6mvo5rlem3L9bpA13Y2lut1ga7tbC3na5OVbzn//Vqu17Zcrwt0bWdjuV4X6NrO1nK+tpVMezBFRERERERkXijAFBERERERkXlxPgeYty71BZzBcr22/7+9+w21pK7jOP7+uGr+SS3MQkUr01wEdRPFAi0jckmkhSiCMlMwS6J9kE98kiwVEaxhhJuS9ajSNAQTWzBKlyjC3HTXP6XbGqirFCvRWmmJ+u3BmYun9bh77z2/c8/sue8X/Lhz7/zmzufOnDPf/c2cme1rLjDbYvQ1F5htsfqcTfu+Pr+++pqtr7nAbIvR11xgtsXqc7Z91rK9B1OSJEmS1NZyvoIpSZIkSWpoZgeYSQ5JckuS7UkeTXLhHvp+ruv3eJLrkuy32/yDkvwxyea+ZEuyKsn9SbYkeSTJ95K8oSfZ1iT5Q5KHu2xX9iTXsUnuSbJr3H2Z5N1JfpdkW/f1pBF9ViTZ0OXYnuSy+cwbV4Ns5yfZnOS/Sa5platRtq90r6mt3WtsdU9yXZrkwe79+FCStS1ytcg21OfkJM+33qeaHS2Os0PzrZsLy2bdxLo5oWzWTevm0quqmWzA1cD3u+mTgL8CbxzR753ADuAoBgPuu4CLd+vzLeAHwOa+ZAMOBg7spvcDbgPW9iTb2cAx3fQRwHbg3B7kOgJ4P3DhuPsSuBu4qJu+CLh7RJ+Lu/Xv1+XZAbxjb/Ma7MNxs50IvAf4OnBNi0wNs60GDummTwf+ARzcg1yH8+otB4cBTwCn9WGbdfNXAJuAm1rvU9vstBbH2aE+1s2FZbNulnVzQtmsm9bNJW8zewUT+CRwA0BV/RnYDHxkRL+PA7dX1c6qegW4sVsWgCTnMjgw/7BP2arqhap6set3AIPC+UpPst1bVc9007uAPwFv70GuXVX1a+Bf4wRJ8lbgDODm7kc3A2ckOWpE5hur6pWq2gncDnxiHvOmmq2qtlfVA8BL4+aZQLa7qur5rt+DQIAje5DrueoqEnAIg/fk2De4N3qtAVwF3AlsGzeTZpp1c3rZrJuvZrZuts1m3bRuLrlZHmAez+BsyJwngeMW0i/JocC3gSv6lq3Ld0ySLcCzwD9p8ySsJtmGMq4E3svgbFJvco3pOODpqnoZoPv6zIj17CnLpHK2yDYprbNdDDxeVTv6kCvJR5M80vVZX1UPjZmrSbYkpzE4g31tgzyabdbNKWYbymjdHJ3FumndXJJs1s3x7T/tAIuV5H4GL45R3tZoNeuBDVX19KjPb7+eJcpGd7ZzVVfQfwR8DPhJH7J16zoa+Bnwxbkzs33IpX1fkg8AXwM+PO0sc6rqDuCOJMcDtyfZWFWPTTNTkgMYXI24tKpeTjLNOJoy66Z1U8uXdXN+rJtt7LMDzKo6Y0/zkzzJ4OMlO7sfHQ/cM6LrXD+G+j3VTZ8DXJDkauAg4M1JHqyq03qQbXh9/05yC/Bp9lIolypb9xGFXzI4I3Xrnta5lLkaeQo4NsmK7uCzAjhmxHrmstw3lOWJecybdrZJaZItyfsY/MNwTaNC1HSbVdWTSX7P4J6lcfONm+1o4F3Axq5IvglIksOr6vIxs2kfY938v/VZN+eZqxHr5hSzWTetm0uuenAj6CQasI7BZ6thcC/I34DDRvQ7gdfe3P7ZEf3Oo93DCsbO1s2be1jBgQw+Y/6NnmQ7EtgKXNHH/dliXzK48Xv4BvJ7RvS5hNfeQH7C3uY12FZjZdttm7d+WMG42+0sBkXh7J7lWjnU7y0MCuT5fcg26X1qm53W8jjb9Rv7WNsyG9ZN6+aEsu22za2b88tl3ZzhNvUAE/vD4FDgpwyexPYYg7M2c/O+Cnxh6PvPA4937XpgxYjfN/bBtWW27g3zEIOC9DCwgTZPBWuRbT3wArBlqF3ag1wrugPITuDFbnrdIvOsBO5lcPP3vcDJ3c83AmcOre/6oSyXDy3/uvMa7MNxs53TbZvnGNyjtANY3ZNs93X7b/i1dWoPcl0LPNLl2Qp8qS/7c7fftQ4Lpe11GtbNaWazbtZej7PWTevmkmTb7Xetw7q54Db3eGBJkiRJksYyy0+RlSRJkiQtIQeYkiRJkqQmHGBKkiRJkppwgClJkiRJasIBpiRJkiSpCQeYkiRJkqQmHGBKDSXZlOQvSa5axLJrk2xPsnkS2SRJ6hvrpjR7HGBK7a2tqm8udKGq+g5w2QTySJLUZ9ZNaYY4wJTmIckFSbYMtReTrJnHcpck+UWSW5M8muRXSU5J8vMk25L8OEmW4m+QJGmpWDel5csBpjQPVbWxqlZV1SpgA7AZuGuei58FfLmqVgIvADcBnwJOAU4FPtQ+sSRJ02PdlJYvB5jSAiRZDVwJrKmq/8xzsd9W1Y5u+gHgN1W1q6peArYCJ04gqiRJU2fdlJaf/acdQNpXJDkduAFYXVU7F7DocEF9ecT3vg8lSTPHuiktT17BlOYhybHAbcBnqmrbtPNIktRn1k1p+XKAKc3PZcBRwHVDDyz44LRDSZLUU9ZNaZlKVU07gzQzkmwCrqmqOxe5/Hnd8mc24C5K7gAAAFtJREFUjCVJUi9ZN6XZ4xVMqa2/A+sX+x9GA98Fnm2eSpKkfrJuSjPGK5iSJEmSpCa8gilJkiRJasIBpiRJkiSpCQeYkiRJkqQmHGBKkiRJkppwgClJkiRJauJ/2FfWvFQPFxYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "functions.name_plot_options(\"logger_space\", data, log=True)\n", "functions.name_plot_options(\"abs_logger_space\", data, log=True)\n", @@ -401,7 +1106,8 @@ "All libraries for McStas are found here: https://github.com/McStasMcXtrace/McCode/tree/master/mcstas-comps/share but only three are needed for the Union components:\n", "- Union_initialization.c\n", "- Union_functions.c\n", - "- Geometry_functions.c" + "- Geometry_functions.c\n", + "- Union_last_functions.c (if on McStas 3.X)" ] }, { @@ -428,7 +1134,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.8.8" } }, "nbformat": 4, diff --git a/tutorial/Union_tutorial_2_geometry.ipynb b/tutorial/Union_tutorial_2_geometry.ipynb index abadba76..5a07c758 100644 --- a/tutorial/Union_tutorial_2_geometry.ipynb +++ b/tutorial/Union_tutorial_2_geometry.ipynb @@ -89,10 +89,8 @@ "src.yheight = 0.035\n", "src.focus_aw = 0.01\n", "src.focus_ah = 0.01\n", - "\n", - "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", - "src.lambda0=\"wavelength\"\n", - "src.dlambda=\"0.01*wavelength\"\n", + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.dlambda = \"0.01*wavelength\"\n", "src.flux = 1E13" ] }, @@ -282,9 +280,12 @@ "metadata": {}, "outputs": [], "source": [ - "data = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_geometry\",\n", - " increment_folder_name=True,\n", - " parameters={\"wavelength\" : 3.0})" + "instrument.set_parameters(wavelength=3.0)\n", + "instrument.settings(ncount=1E7, output_path=\"data_folder/union_geometry\")\n", + "instrument.show_settings()\n", + "\n", + "instrument.backengine()\n", + "data = instrument.data" ] }, { @@ -374,18 +375,9 @@ "metadata": {}, "outputs": [], "source": [ - "logger_zx.D1_min = -0.12\n", - "logger_zx.D1_max = 0.12\n", - "logger_zx.D2_min = -0.12\n", - "logger_zx.D2_max = 0.12\n", - "logger_zy.D1_min = -0.12\n", - "logger_zy.D1_max = 0.12\n", - "logger_zy.D2_min = -0.12\n", - "logger_zy.D2_max = 0.12\n", - "logger_xy.D1_min = -0.12\n", - "logger_xy.D1_max = 0.12\n", - "logger_xy.D2_min = -0.12\n", - "logger_xy.D2_max = 0.12" + "logger_zx.set_parameters(D1_min=-0.12, D1_max=0.12, D2_min=-0.12, D2_max=0.12)\n", + "logger_zy.set_parameters(D1_min=-0.12, D1_max=0.12, D2_min=-0.12, D2_max=0.12)\n", + "logger_xy.set_parameters(D1_min=-0.12, D1_max=0.12, D2_min=-0.12, D2_max=0.12)" ] }, { @@ -393,7 +385,7 @@ "metadata": {}, "source": [ "### Run the updated instrument file\n", - "Run the simulation with the added cryostat. If mpi is installed, one can add mpi=N where N is the number of cores available to speed up the simulation." + "Run the simulation with the added cryostat, since no parameters or settings are changed it is enough to just call the backengine function and grab the new data." ] }, { @@ -402,9 +394,8 @@ "metadata": {}, "outputs": [], "source": [ - "data_cryo = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_geometry\",\n", - " increment_folder_name=True,\n", - " parameters={\"wavelength\" : 3.0})" + "instrument.backengine()\n", + "data_cryo = instrument.data" ] }, { @@ -412,7 +403,7 @@ "metadata": {}, "source": [ "### Plot the data from the new simulation\n", - "Here we increase the orders of magnitude of intensity plotted. Try to play with these values to see how it changes the plots." + "Here we increase the orders of magnitude of intensity plotted on the log plots. Try to play with these values to see how it changes the plots." ] }, { @@ -421,10 +412,7 @@ "metadata": {}, "outputs": [], "source": [ - "functions.name_plot_options(\"logger_space_zx\", data_cryo, log=True, orders_of_mag=5)\n", - "functions.name_plot_options(\"logger_space_zy\", data_cryo, log=True, orders_of_mag=5)\n", - "functions.name_plot_options(\"logger_space_xy\", data_cryo, log=True, orders_of_mag=5)\n", - "plotter.make_sub_plot(data_cryo)" + "plotter.make_sub_plot(data_cryo, log=[True, True, True, False], orders_of_mag=5)" ] }, { @@ -487,7 +475,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.8.8" } }, "nbformat": 4, diff --git a/tutorial/Union_tutorial_3_loggers.ipynb b/tutorial/Union_tutorial_3_loggers.ipynb index e1e1035f..253246e0 100644 --- a/tutorial/Union_tutorial_3_loggers.ipynb +++ b/tutorial/Union_tutorial_3_loggers.ipynb @@ -59,10 +59,8 @@ "src.yheight = 0.035\n", "src.focus_aw = 0.01\n", "src.focus_ah = 0.01\n", - "\n", - "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", - "src.lambda0=\"wavelength\"\n", - "src.dlambda=\"0.01*wavelength\"\n", + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.dlambda = \"0.01*wavelength\"\n", "src.flux = 1E13\n", "\n", "sample_geometry = instrument.add_component(\"sample_geometry\", \"Union_cylinder\")\n", @@ -209,9 +207,11 @@ "metadata": {}, "outputs": [], "source": [ - "data = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_loggers\",\n", - " increment_folder_name=True,\n", - " parameters={\"wavelength\" : 3.0})" + "instrument.set_parameters(wavelength=3.0)\n", + "instrument.settings(ncount=1E7, output_path=\"data_folder/union_loggers\")\n", + "\n", + "instrument.backengine()\n", + "data = instrument.data" ] }, { @@ -220,9 +220,7 @@ "metadata": {}, "outputs": [], "source": [ - "functions.name_plot_options(\"logger_space_zx\", data, log=True, orders_of_mag=4)\n", - "functions.name_plot_options(\"logger_space_zy\", data, log=True, orders_of_mag=4)\n", - "plotter.make_sub_plot(data)" + "plotter.make_sub_plot(data, log=True, orders_of_mag=4)" ] }, { @@ -252,10 +250,8 @@ "logger_zx.target_geometry = '\"outer_cryostat_wall,cryostat_wall\"'\n", "logger_zy.target_geometry = '\"sample_geometry\"'\n", "\n", - "data = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_loggers\",\n", - " increment_folder_name=True,\n", - " parameters={\"wavelength\" : 3.0})\n", - "\n" + "instrument.backengine()\n", + "data = instrument.data" ] }, { @@ -264,9 +260,7 @@ "metadata": {}, "outputs": [], "source": [ - "functions.name_plot_options(\"logger_space_zx\", data, log=True, orders_of_mag=4)\n", - "functions.name_plot_options(\"logger_space_zy\", data, log=False)\n", - "plotter.make_sub_plot(data)" + "plotter.make_sub_plot(data, log=[True, False], orders_of_mag=4)" ] }, { @@ -293,9 +287,8 @@ "logger_zy.target_geometry = '\"NULL\"'\n", "logger_zy.order_total = 2\n", "\n", - "data = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_loggers\",\n", - " increment_folder_name=True,\n", - " parameters={\"wavelength\" : 3.0})" + "instrument.backengine()\n", + "data = instrument.data" ] }, { @@ -304,9 +297,7 @@ "metadata": {}, "outputs": [], "source": [ - "functions.name_plot_options(\"logger_space_zx\", data, log=True, orders_of_mag=3)\n", - "functions.name_plot_options(\"logger_space_zy\", data, log=True, orders_of_mag=3)\n", - "plotter.make_sub_plot(data)" + "plotter.make_sub_plot(data, log=True, orders_of_mag=3)" ] }, { @@ -383,9 +374,8 @@ "metadata": {}, "outputs": [], "source": [ - "data = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_loggers\",\n", - " increment_folder_name=True,\n", - " parameters={\"wavelength\" : 3.0})" + "instrument.backengine()\n", + "data = instrument.data" ] }, { @@ -470,9 +460,8 @@ "metadata": {}, "outputs": [], "source": [ - "data = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_loggers\",\n", - " increment_folder_name=True,\n", - " parameters={\"wavelength\" : 3.0})" + "instrument.backengine()\n", + "data = instrument.data" ] }, { @@ -521,9 +510,9 @@ "outputs": [], "source": [ "log_2D_st.time_bins = 128\n", - "#data = instrument.run_full_instrument(ncount=2E8, foldername=\"data_folder/union_loggers\",\n", - "# increment_folder_name=True, mpi=4,\n", - "# parameters={\"wavelength\" : 3.0})" + "instrument.settings(ncount=2E8, mpi=4)\n", + "#instrument.backengine()\n", + "#data = instrument.data" ] }, { @@ -573,7 +562,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.8.8" } }, "nbformat": 4, diff --git a/tutorial/Union_tutorial_4_conditionals.ipynb b/tutorial/Union_tutorial_4_conditionals.ipynb index 66465ba5..bdef0734 100644 --- a/tutorial/Union_tutorial_4_conditionals.ipynb +++ b/tutorial/Union_tutorial_4_conditionals.ipynb @@ -69,8 +69,8 @@ "src.focus_ah = 0.01\n", "\n", "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", - "src.lambda0=\"wavelength\"\n", - "src.dlambda=\"0.01*wavelength\"\n", + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.dlambda = \"0.01*wavelength\"\n", "src.flux = 1E13\n", "\n", "# At a reference point to build the cryostat around\n", @@ -78,11 +78,11 @@ "cryostat_center.set_AT([0, 0, 1], RELATIVE=src)\n", "\n", "# Parameter for controlling sample rotation\n", - "instrument.add_parameter(\"A3_angle\", value=0)\n", + "A3_angle = instrument.add_parameter(\"A3_angle\", value=0)\n", "\n", "sample = instrument.add_component(\"sample\", \"Union_box\")\n", "sample.set_AT([0, 0, 0], RELATIVE=cryostat_center)\n", - "sample.set_ROTATED([0, \"A3_angle\", 0], RELATIVE=cryostat_center)\n", + "sample.set_ROTATED([0, A3_angle, 0], RELATIVE=cryostat_center)\n", "sample.xwidth = 0.015\n", "sample.yheight = 0.032\n", "sample.zdepth = 0.012\n", @@ -203,7 +203,7 @@ "outputs": [], "source": [ "import math\n", - "wavelength = 4\n", + "wavelength = 4.0\n", "theta = 180/3.14159*math.asin(wavelength/2.0/3.8843)\n", "print(theta)" ] @@ -214,9 +214,11 @@ "metadata": {}, "outputs": [], "source": [ - "data = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_conditionals\",\n", - " increment_folder_name=True,\n", - " parameters={\"wavelength\" : wavelength, \"A3_angle\" : theta})" + "instrument.set_parameters(wavelength=wavelength, A3_angle=theta)\n", + "instrument.settings(ncount=1E7, output_path=\"data_folder/union_conditionals\")\n", + "\n", + "instrument.backengine()\n", + "data = instrument.data" ] }, { @@ -340,10 +342,12 @@ "metadata": {}, "outputs": [], "source": [ - "data_con = instrument.run_full_instrument(ncount=3E7, foldername=\"data_folder/union_conditionals\",\n", - " increment_folder_name=True, #mpi=2,\n", - " parameters={\"wavelength\" : wavelength, \"A3_angle\" : theta,\n", - " \"tag_angle\" : -95, \"tag_time\" : 0.00188, \"tag_interval\" : 9E-5})" + "instrument.set_parameters(wavelength=wavelength, A3_angle=theta, \n", + " tag_angle=-95, tag_time=0.00188, tag_interval=9E-5)\n", + "instrument.settings(ncount=3E7) # Can add mpi to improve speed for this longer simulation\n", + "\n", + "instrument.backengine()\n", + "data_con = instrument.data" ] }, { @@ -431,10 +435,8 @@ "source": [ "PSD_conditional.overwrite_logger_weight = 1\n", "\n", - "data_con_f = instrument.run_full_instrument(ncount=3E7, foldername=\"data_folder/union_conditionals\",\n", - " increment_folder_name=True, #mpi=2,\n", - " parameters={\"wavelength\" : wavelength, \"A3_angle\" : theta,\n", - " \"tag_angle\" : -95, \"tag_time\" : 0.00188, \"tag_interval\" : 9E-5})" + "instrument.backengine()\n", + "data_con_f = instrument.data" ] }, { @@ -516,7 +518,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.8.8" } }, "nbformat": 4, diff --git a/tutorial/Union_tutorial_5_masks.ipynb b/tutorial/Union_tutorial_5_masks.ipynb index 56e95d4c..e8daeb60 100644 --- a/tutorial/Union_tutorial_5_masks.ipynb +++ b/tutorial/Union_tutorial_5_masks.ipynb @@ -58,9 +58,9 @@ "src.focus_aw = 0.01\n", "src.focus_ah = 0.01\n", "\n", - "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", - "src.lambda0=\"wavelength\"\n", - "src.dlambda=\"0.01*wavelength\"\n", + "\n", + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.dlambda = \"0.01*wavelength\"\n", "src.flux = 1E13\n", "\n", "wall = instrument.add_component(\"wall\", \"Union_cylinder\")\n", @@ -97,9 +97,10 @@ "metadata": {}, "outputs": [], "source": [ - "data = instrument.run_full_instrument(ncount=2E6, foldername=\"data_folder/union_masks\",\n", - " increment_folder_name=True, #mpi=2,\n", - " parameters={\"wavelength\" : 3.0})" + "instrument.settings(ncount=2E6, output_path=\"data_folder/union_masks\")\n", + "\n", + "instrument.backengine()\n", + "data = instrument.data" ] }, { @@ -163,9 +164,8 @@ "metadata": {}, "outputs": [], "source": [ - "data = instrument.run_full_instrument(ncount=2E6, foldername=\"data_folder/union_masks\",\n", - " increment_folder_name=True, #mpi=2,\n", - " parameters={\"wavelength\" : 3.0})" + "instrument.backengine()\n", + "data = instrument.data" ] }, { @@ -220,9 +220,8 @@ "metadata": {}, "outputs": [], "source": [ - "data = instrument.run_full_instrument(ncount=2E6, foldername=\"data_folder/union_masks\",\n", - " increment_folder_name=True, #mpi=2,\n", - " parameters={\"wavelength\" : 3.0})" + "instrument.backengine()\n", + "data = instrument.data" ] }, { @@ -312,9 +311,9 @@ "\n", "master = instrument.add_component(\"master\", \"Union_master\")\n", "\n", - "data = instrument.run_full_instrument(ncount=2E6, foldername=\"data_folder/union_masks\",\n", - " increment_folder_name=True, #mpi=2,\n", - " parameters={\"wavelength\" : 3.0})" + "\n", + "instrument.backengine()\n", + "data = instrument.data" ] }, { @@ -350,7 +349,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.8.8" } }, "nbformat": 4, diff --git a/tutorial/Union_tutorial_6_Exit_and_number_of_activations.ipynb b/tutorial/Union_tutorial_6_Exit_and_number_of_activations.ipynb index 9e1b32f5..aa08a55b 100644 --- a/tutorial/Union_tutorial_6_Exit_and_number_of_activations.ipynb +++ b/tutorial/Union_tutorial_6_Exit_and_number_of_activations.ipynb @@ -58,10 +58,8 @@ "src.yheight = 0.035\n", "src.focus_aw = 0.01\n", "src.focus_ah = 0.01\n", - "\n", - "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", - "src.lambda0=\"wavelength\"\n", - "src.dlambda=\"0.01*wavelength\"\n", + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.dlambda = \"0.01*wavelength\"\n", "src.flux = 1E13\n", "\n", "sample_volume = instrument.add_component(\"sample_volume\", \"Union_cylinder\")\n", @@ -135,9 +133,11 @@ "metadata": {}, "outputs": [], "source": [ - "data_empty = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_external\",\n", - " increment_folder_name=True, #mpi=2,\n", - " parameters={\"wavelength\" : 3.0})" + "instrument.set_parameters(wavelength=3.0)\n", + "instrument.settings(ncount=1E7, output_path=\"data_folder/union_external\")\n", + "\n", + "instrument.backengine()\n", + "data_empty = instrument.data" ] }, { @@ -175,9 +175,8 @@ "metadata": {}, "outputs": [], "source": [ - "data = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_external\",\n", - " increment_folder_name=True, #mpi=2,\n", - " parameters={\"wavelength\" : 3.0})" + "instrument.backengine()\n", + "data = instrument.data" ] }, { @@ -227,9 +226,8 @@ "metadata": {}, "outputs": [], "source": [ - "data_wrong = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_external\",\n", - " increment_folder_name=True,\n", - " parameters={\"wavelength\" : 3.0})" + "instrument.backengine()\n", + "data_wrong = instrument.data" ] }, { @@ -292,9 +290,8 @@ "metadata": {}, "outputs": [], "source": [ - "data = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_external\",\n", - " increment_folder_name=True,\n", - " parameters={\"wavelength\" : 3.0})" + "instrument.backengine()\n", + "data = instrument.data" ] }, { @@ -377,7 +374,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.8.8" } }, "nbformat": 4, diff --git a/tutorial/Union_tutorial_7_Tagging_history.ipynb b/tutorial/Union_tutorial_7_Tagging_history.ipynb index 644aad52..b0479bd9 100644 --- a/tutorial/Union_tutorial_7_Tagging_history.ipynb +++ b/tutorial/Union_tutorial_7_Tagging_history.ipynb @@ -61,10 +61,8 @@ "src.yheight = 0.035\n", "src.focus_aw = 0.01\n", "src.focus_ah = 0.01\n", - "\n", - "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", - "src.lambda0=\"wavelength\"\n", - "src.dlambda=\"0.01*wavelength\"\n", + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.dlambda = \"0.01*wavelength\"\n", "src.flux = 1E13\n", "\n", "sample_geometry = instrument.add_component(\"sample_geometry\", \"Union_cylinder\")\n", @@ -146,9 +144,11 @@ "metadata": {}, "outputs": [], "source": [ - "data = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_tagging\",\n", - " increment_folder_name=True,\n", - " parameters={\"wavelength\" : 3.0})" + "instrument.set_parameters(wavelength=3.0)\n", + "instrument.settings(ncount=1E7, output_path=\"data_folder/union_tagging\")\n", + "\n", + "instrument.backengine()\n", + "data = instrument.data" ] }, { @@ -247,9 +247,8 @@ "metadata": {}, "outputs": [], "source": [ - "data = instrument.run_full_instrument(ncount=1E7, foldername=\"data_folder/union_tagging\",\n", - " increment_folder_name=True,\n", - " parameters={\"wavelength\" : 3.0})" + "instrument.backengine()\n", + "data = instrument.data" ] }, { @@ -295,7 +294,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.1" + "version": "3.8.8" } }, "nbformat": 4, From 52d69e2410b96ef3638bce2532f755de4e1474ce Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 4 Jan 2022 17:58:30 +0100 Subject: [PATCH 184/403] Made settings use positional arguments so misspellings found. Avoided using parameters in settings, these have to go through libpyvinyl parameters now. This changed interface a bit, but no issue. --- mcstasscript/interface/instr.py | 73 ++++++++++--------- .../jb_interface/simulation_interface.py | 3 +- 2 files changed, 41 insertions(+), 35 deletions(-) diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index d0f42490..aa06b339 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -1580,7 +1580,9 @@ def _handle_parameters(self, given_parameters): default_parameters.update(given_parameters) return default_parameters - def settings(self, **kwargs): + def settings(self, ncount=None, mpi="not_set", force_compile=None, + output_path=None, increment_folder_name=None, + custom_flags=None, executable=None, executable_path=None): """ Sets settings for McStas run performed with backengine @@ -1601,59 +1603,58 @@ def settings(self, **kwargs): Sets ncount mpi : int Sets thread count - custom_flags : str - Sets custom_flags passed to mcrun force_compile : bool If True (default) new instrument file is written, otherwise not + custom_flags : str + Sets custom_flags passed to mcrun + executable : str + Name of the executable executable_path : str Path to mcrun command, "" if already in path """ - if "run_path" in kwargs: - raise RuntimeError("Can not change run_path for instrument as the " - + "available components could change along " - + "with their inputs. Create new instrument " - + "object with the desired input_path") - - if "package_path" in kwargs: - raise RuntimeError("Can not change package_path for instrument as " - + "the available components could change " - + "along with their inputs. Update " - + "configuration and create a new instrument " - + "object which will then have the new " - + "package_path.") - - if "executable_path" in kwargs: - if not os.path.isdir(str(kwargs["executable_path"])): + settings = {} + if executable_path is not None: + if not os.path.isdir(str(executable_path)): raise RuntimeError("The executable_path provided in " + "settings does not point to a" + "directory: \"" - + str(kwargs["executable_path"]) + "\"") + + str(executable_path) + "\"") + settings["executable_path"] = executable_path - if "executable" in kwargs: + if executable is not None: # check provided executable can be converted to string - str(kwargs["executable"]) + str(executable) + settings["executable"] = executable - if "force_compile" in kwargs: - if not isinstance(kwargs["force_compile"], bool): + if force_compile is not None: + if not isinstance(force_compile, bool): raise TypeError("force_compile must be a bool.") + settings["force_compile"] = force_compile - if "increment_folder_name" in kwargs: - if not isinstance(kwargs["increment_folder_name"], bool): + if increment_folder_name is not None: + if not isinstance(increment_folder_name, bool): raise TypeError("increment_folder_name must be a bool.") + settings["increment_folder_name"] = increment_folder_name - if "ncount" in kwargs: - if not isinstance(kwargs["ncount"], (float, int)): + if ncount is not None: + if not isinstance(ncount, (float, int)): raise TypeError("ncount must be a number.") + settings["ncount"] = ncount - if "mpi" in kwargs: - if not isinstance(kwargs["mpi"], (type(None), int)): + if mpi != "not_set": # None is a legal value for mpi + if not isinstance(mpi, (type(None), int)): raise TypeError("mpi must be an integer or None.") + settings["mpi"] = mpi + + if custom_flags is not None: + str(custom_flags) # Check a string is given + settings["custom_flags"] = custom_flags - if "output_path" in kwargs: - self.output_path = kwargs["output_path"] + if output_path is not None: + self.output_path = output_path - self._run_settings.update(kwargs) + self._run_settings.update(settings) def settings_string(self): """ @@ -1788,10 +1789,14 @@ def run_full_instrument(self, **kwargs): if "foldername" in kwargs: kwargs["output_path"] = kwargs["foldername"] + del kwargs["foldername"] - self.settings(**kwargs) if "parameters" in kwargs: self.set_parameters(kwargs["parameters"]) + del kwargs["parameters"] + + self.settings(**kwargs) + self.backengine() return self.data diff --git a/mcstasscript/jb_interface/simulation_interface.py b/mcstasscript/jb_interface/simulation_interface.py index 3a35d9fd..17a276ab 100644 --- a/mcstasscript/jb_interface/simulation_interface.py +++ b/mcstasscript/jb_interface/simulation_interface.py @@ -115,7 +115,7 @@ def run_simulation_live(self): run_arguments = {"output_path": "interface_" + self.instrument.name, "increment_folder_name": True, - "parameters": self.parameters, + #"parameters": self.parameters, "ncount": part_ncount} if self.mpi != "disabled": run_arguments["mpi"] = self.mpi @@ -147,6 +147,7 @@ def run_simulation_live(self): try: with HiddenPrints(): self.instrument.settings(**run_arguments) + self.instrument.set_parameters(self.parameters) self.instrument.backengine() data = self.instrument.data except NameError: From 3b61980c8d71d4ad3d5dd9e23dde642004d5e220 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 5 Jan 2022 12:59:02 +0100 Subject: [PATCH 185/403] Changed behavior when running simulation with exisiting foldername and increment_folder_name set to False. Before it would load such a data file, which made unittests easier but was confusing for users. Now it will provide an error if the folder already exists. Furthermore, if a simulation does not produce a folder, a warning is shown, and the data returned is None. Tests updated to take this into account. Started helper file for tests. --- mcstasscript/helper/managed_mcrun.py | 26 +- mcstasscript/tests/helpers_for_tests.py | 13 + mcstasscript/tests/test_Instr.py | 283 ++++++++++----------- mcstasscript/tests/test_ManagedMcrun.py | 310 +++++++++-------------- mcstasscript/tests/test_dump_and_load.py | 15 +- 5 files changed, 291 insertions(+), 356 deletions(-) create mode 100644 mcstasscript/tests/helpers_for_tests.py diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index 7891bede..d1124263 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -2,6 +2,7 @@ import numpy as np import subprocess import mmap +import warnings from mcstasscript.data.data import McStasMetaData from mcstasscript.data.data import McStasDataBinned @@ -198,14 +199,18 @@ def run_simulation(self, **kwargs): + "-n " + str(self.ncount) # Set ncount + mpi_string) - if self.increment_folder_name and os.path.isdir(self.data_folder_name): - counter = 0 - new_name = self.data_folder_name + "_" + str(counter) - while os.path.isdir(new_name): - counter = counter + 1 + if os.path.exists(self.data_folder_name): + if self.increment_folder_name: + counter = 0 new_name = self.data_folder_name + "_" + str(counter) + while os.path.isdir(new_name): + counter = counter + 1 + new_name = self.data_folder_name + "_" + str(counter) - self.data_folder_name = new_name + self.data_folder_name = new_name + else: + raise NameError("output_path already exists and " + + "increment_folder_name was set to False.") if len(self.data_folder_name) > 0: option_string = (option_string @@ -248,6 +253,9 @@ def run_simulation(self, **kwargs): print(process.stderr) print(process.stdout) + if not os.path.isdir(self.data_folder_name): + warnings.warn("Simulation did not create data folder, most likely failed.") + def load_results(self, *args): """ Method for loading data from a mcstas simulation @@ -271,7 +279,11 @@ def load_results(self, *args): raise RuntimeError("load_results can be called " + "with 0 or 1 arguments") - return load_results(data_folder_name) + if os.path.isdir(data_folder_name): + return load_results(data_folder_name) + else: + warnings.warn("No data available to load.") + return None def load_results(data_folder_name): diff --git a/mcstasscript/tests/helpers_for_tests.py b/mcstasscript/tests/helpers_for_tests.py new file mode 100644 index 00000000..4d0e62b5 --- /dev/null +++ b/mcstasscript/tests/helpers_for_tests.py @@ -0,0 +1,13 @@ +import os + +class WorkInTestDir: + """ + Simple class that enables working in test directory + """ + def __enter__(self): + self.current_work_dir = os.getcwd() + os.chdir(os.path.dirname(os.path.abspath(__file__))) + return self + + def __exit__(self, exc_type, exc_val, exc_tb): + os.chdir(self.current_work_dir) \ No newline at end of file diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index 9f830ad1..98d61351 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -8,23 +8,17 @@ from mcstasscript.interface.instr import McStas_instr from mcstasscript.interface.instr import McXtrace_instr from mcstasscript.helper.formatting import bcolors - +from .helpers_for_tests import WorkInTestDir run_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '.') - def setup_instr_no_path(): """ Sets up a neutron instrument without a package_path """ - THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - - instrument = McStas_instr("test_instrument") - os.chdir(current_work_dir) + with WorkInTestDir() as handler: + instrument = McStas_instr("test_instrument") return instrument @@ -33,14 +27,9 @@ def setup_x_ray_instr_no_path(): """ Sets up a X-ray instrument without a package_path """ - THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - instrument = McXtrace_instr("test_instrument") - - os.chdir(current_work_dir) + with WorkInTestDir() as handler: + instrument = McXtrace_instr("test_instrument") return instrument @@ -49,14 +38,8 @@ def setup_instr_root_path(): """ Sets up a neutron instrument with root package_path """ - THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - - instrument = McStas_instr("test_instrument", package_path="/") - - os.chdir(current_work_dir) + with WorkInTestDir() as handler: + instrument = McStas_instr("test_instrument", package_path="/") return instrument @@ -65,14 +48,8 @@ def setup_x_ray_instr_root_path(): """ Sets up a X-ray instrument with root package_path """ - THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - - instrument = McXtrace_instr("test_instrument", package_path="/") - - os.chdir(current_work_dir) + with WorkInTestDir() as handler: + instrument = McXtrace_instr("test_instrument", package_path="/") return instrument @@ -83,15 +60,10 @@ def setup_instr_with_path(): the dummy installation in the test folder. """ - THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - dummy_path = os.path.join(THIS_DIR, "dummy_mcstas") - - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - - instrument = McStas_instr("test_instrument", package_path=dummy_path) - - os.chdir(current_work_dir) # Return to previous workdir + with WorkInTestDir() as handler: + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + dummy_path = os.path.join(THIS_DIR, "dummy_mcstas") + instrument = McStas_instr("test_instrument", package_path=dummy_path) return instrument @@ -105,12 +77,8 @@ def setup_x_ray_instr_with_path(): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) dummy_path = os.path.join(THIS_DIR, "dummy_mcstas") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - - instrument = McXtrace_instr("test_instrument", package_path=dummy_path) - - os.chdir(current_work_dir) # Return to previous workdir + with WorkInTestDir() as handler: + instrument = McXtrace_instr("test_instrument", package_path=dummy_path) return instrument @@ -121,18 +89,15 @@ def setup_instr_with_input_path(): the dummy installation in the test folder. In addition the input_path is set to a folder in the test directory using an absolute path. """ + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) dummy_path = os.path.join(THIS_DIR, "dummy_mcstas") input_path = os.path.join(THIS_DIR, "test_input_folder") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - - instrument = McStas_instr("test_instrument", - package_path=dummy_path, - input_path=input_path) - - os.chdir(current_work_dir) # Return to previous workdir + with WorkInTestDir() as handler: + instrument = McStas_instr("test_instrument", + package_path=dummy_path, + input_path=input_path) return instrument @@ -143,16 +108,11 @@ def setup_instr_with_input_path_relative(): the dummy installation in the test folder. In addition the input_path is set to a folder in the test directory using a relative path. """ - THIS_DIR = os.path.dirname(os.path.abspath(__file__)) - - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - - instrument = McStas_instr("test_instrument", - package_path="dummy_mcstas", - input_path="test_input_folder") - os.chdir(current_work_dir) # Return to previous workdir + with WorkInTestDir() as handler: + instrument = McStas_instr("test_instrument", + package_path="dummy_mcstas", + input_path="test_input_folder") return instrument @@ -1770,28 +1730,28 @@ def test_x_ray_run_full_instrument_basic(self, mock_sub, mock_stdout): Tests x-ray run_full_instrument Check a simple run performs the correct system call. Here - the target directory is set to the test data set so that some - data is loaded even though the system call is not executed. + the output_path is set to a name that does not correspond to a + existing file so no error is thrown. """ THIS_DIR = os.path.dirname(os.path.abspath(__file__)) executable_path = os.path.join(THIS_DIR, "dummy_mcstas") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - - instr = setup_populated_x_ray_instr_with_dummy_path() - instr.run_full_instrument(output_path="test_data_set", - increment_folder_name=False, - executable_path=executable_path, - parameters={"theta": 1}) - - os.chdir(current_work_dir) + with WorkInTestDir() as handler: + new_folder_name = "folder_name_which_is_unused" + if os.path.exists(new_folder_name): + raise RuntimeError("Folder_name was supposed to not " + + "exist before " + + "test_run_backengine_basic") + instr = setup_populated_x_ray_instr_with_dummy_path() + instr.run_full_instrument(output_path=new_folder_name, + increment_folder_name=False, + executable_path=executable_path, + parameters={"theta": 1}) expected_path = os.path.join(executable_path, "mxrun") - expected_folder_path = os.path.join(THIS_DIR, - "test_data_set") + expected_folder_path = os.path.join(THIS_DIR, new_folder_name) # a double space because of a missing option expected_call = (expected_path + " -c -n 1000000 " @@ -1807,36 +1767,59 @@ def test_x_ray_run_full_instrument_basic(self, mock_sub, mock_stdout): stderr=-1, stdout=-1, universal_newlines=True) + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) + def test_run_backengine_existing_folder(self, mock_stdout): + """ + Test neutron run of backengine fails if using existing folder + for output_path and with increment_folder_name disabled. + """ + + THIS_DIR = os.path.dirname(os.path.abspath(__file__)) + executable_path = os.path.join(THIS_DIR, "dummy_mcstas") + + with WorkInTestDir() as handler: + instr = setup_populated_instr_with_dummy_path() + + instr.set_parameters({"theta": 1}) + instr.settings(output_path="test_data_set", + increment_folder_name=False, + executable_path=executable_path) + + with self.assertRaises(NameError): + instr.backengine() + @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) @unittest.mock.patch("subprocess.run") - def test_run_full_instrument_basic(self, mock_sub, mock_stdout): + def test_run_backengine_basic(self, mock_sub, mock_stdout): """ Test neutron run_full_instrument - Check a simple run performs the correct system call. Here - the target directory is set to the test data set so that some - data is loaded even though the system call is not executed. + Check a simple run performs the correct system call. Here + the output_path is set to a name that does not correspond to a + existing file so no error is thrown. """ THIS_DIR = os.path.dirname(os.path.abspath(__file__)) executable_path = os.path.join(THIS_DIR, "dummy_mcstas") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder + with WorkInTestDir() as handler: + new_folder_name = "folder_name_which_is_unused" + if os.path.exists(new_folder_name): + raise RuntimeError("Folder_name was supposed to not " + + "exist before " + + "test_run_backengine_basic") - instr = setup_populated_instr_with_dummy_path() + instr = setup_populated_instr_with_dummy_path() - instr.set_parameters({"theta": 1}) - instr.settings(output_path="test_data_set", - increment_folder_name=False, - executable_path=executable_path) - instr.backengine() - - os.chdir(current_work_dir) + instr.set_parameters({"theta": 1}) + instr.settings(output_path=new_folder_name, + increment_folder_name=True, + executable_path=executable_path) + instr.backengine() expected_path = os.path.join(executable_path, "mcrun") - expected_folder_path = os.path.join(THIS_DIR, "test_data_set") + expected_folder_path = os.path.join(THIS_DIR, new_folder_name) # a double space because of a missing option expected_call = (expected_path + " -c -n 1000000 " @@ -1856,38 +1839,39 @@ def test_run_full_instrument_complex(self, mock_sub, mock_stdout): """ Test neutron run_full_instrument in more complex case - Check a complex run performs the correct system call. Here - the target directory is set to the test data set so that some - data is loaded even though the system call is not executed. + Check a complex run performs the correct system call. Here + the output_path is set to a name that does not correspond to a + existing file so no error is thrown. """ THIS_DIR = os.path.dirname(os.path.abspath(__file__)) executable_path = os.path.join(THIS_DIR, "dummy_mcstas") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder + with WorkInTestDir() as handler: + new_folder_name = "folder_name_which_is_unused" + if os.path.exists(new_folder_name): + raise RuntimeError("Folder_name was supposed to not " + + "exist before " + + "test_run_backengine_basic") - instr = setup_populated_instr_with_dummy_path() - - # Add some extra parameters for testing - instr.add_parameter("A") - instr.add_parameter("BC") + instr = setup_populated_instr_with_dummy_path() - instr.run_full_instrument(output_path="test_data_set", - increment_folder_name=False, - executable_path=executable_path, - mpi=7, - ncount=48.4, - custom_flags="-fo", - parameters={"A": 2, - "BC": "car", - "theta": "\"toy\""}) + # Add some extra parameters for testing + instr.add_parameter("A") + instr.add_parameter("BC") - os.chdir(current_work_dir) + instr.run_full_instrument(output_path=new_folder_name, + increment_folder_name=False, + executable_path=executable_path, + mpi=7, + ncount=48.4, + custom_flags="-fo", + parameters={"A": 2, + "BC": "car", + "theta": "\"toy\""}) expected_path = os.path.join(executable_path, "mcrun") - - expected_folder_path = os.path.join(THIS_DIR, "test_data_set") + expected_folder_path = os.path.join(THIS_DIR, new_folder_name) # a double space because of a missing option expected_call = (expected_path + " -c -n 48 --mpi=7 " @@ -1913,32 +1897,32 @@ def test_run_full_instrument_overwrite_default(self, mock_sub, THIS_DIR = os.path.dirname(os.path.abspath(__file__)) executable_path = os.path.join(THIS_DIR, "dummy_mcstas") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder + with WorkInTestDir() as handler: + new_folder_name = "folder_name_which_is_unused" + if os.path.exists(new_folder_name): + raise RuntimeError("Folder_name was supposed to not " + + "exist before " + + "test_run_backengine_basic") - instr = setup_populated_instr_with_dummy_path() + instr = setup_populated_instr_with_dummy_path() - # Add some extra parameters for testing - instr.add_parameter("A") - instr.add_parameter("BC") - - instr.run_full_instrument(output_path="test_data_set", - increment_folder_name=False, - executable_path=executable_path, - mpi=7, - ncount=48.4, - custom_flags="-fo", - parameters={"A": 2, - "BC": "car", - "theta": "\"toy\"", - "has_default": 10}) + # Add some extra parameters for testing + instr.add_parameter("A") + instr.add_parameter("BC") - os.chdir(current_work_dir) + instr.run_full_instrument(output_path=new_folder_name, + increment_folder_name=False, + executable_path=executable_path, + mpi=7, + ncount=48.4, + custom_flags="-fo", + parameters={"A": 2, + "BC": "car", + "theta": "\"toy\"", + "has_default": 10}) expected_path = os.path.join(executable_path, "mcrun") - - os.getcwd() - expected_folder_path = os.path.join(THIS_DIR, "test_data_set") + expected_folder_path = os.path.join(THIS_DIR, new_folder_name) # a double space because of a missing option expected_call = (expected_path + " -c -n 48 --mpi=7 " @@ -1959,28 +1943,29 @@ def test_run_full_instrument_x_ray_basic(self, mock_sub, mock_stdout): Test x-ray run_full_instrument Check a simple run performs the correct system call. Here - the target directory is set to the test data set so that some - data is loaded even though the system call is not executed. + the output_path is set to a name that does not correspond to a + existing file so no error is thrown. """ THIS_DIR = os.path.dirname(os.path.abspath(__file__)) executable_path = os.path.join(THIS_DIR, "dummy_mcstas") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - - instr = setup_populated_x_ray_instr_with_dummy_path() + with WorkInTestDir() as handler: + new_folder_name = "folder_name_which_is_unused" + if os.path.exists(new_folder_name): + raise RuntimeError("Folder_name was supposed to not " + + "exist before " + + "test_run_backengine_basic") - instr.run_full_instrument(output_path="test_data_set", - increment_folder_name=False, - executable_path=executable_path, - parameters={"theta": 1}) + instr = setup_populated_x_ray_instr_with_dummy_path() - os.chdir(current_work_dir) + instr.run_full_instrument(output_path=new_folder_name, + increment_folder_name=False, + executable_path=executable_path, + parameters={"theta": 1}) expected_path = os.path.join(executable_path, "mxrun") - - expected_folder_path = os.path.join(THIS_DIR, "test_data_set") + expected_folder_path = os.path.join(THIS_DIR, new_folder_name) # a double space because of a missing option expected_call = (expected_path + " -c -n 1000000 " diff --git a/mcstasscript/tests/test_ManagedMcrun.py b/mcstasscript/tests/test_ManagedMcrun.py index caac66ce..e632bd74 100644 --- a/mcstasscript/tests/test_ManagedMcrun.py +++ b/mcstasscript/tests/test_ManagedMcrun.py @@ -6,7 +6,7 @@ from mcstasscript.helper.managed_mcrun import load_results from mcstasscript.helper.managed_mcrun import load_metadata from mcstasscript.helper.managed_mcrun import load_monitor - +from .helpers_for_tests import WorkInTestDir class TestManagedMcrun(unittest.TestCase): """ @@ -26,15 +26,11 @@ def test_ManagedMcrun_init_simple(self): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) executable_path = os.path.join(THIS_DIR, "dummy_mcstas") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - - mcrun_obj = ManagedMcrun("test.instr", - output_path="test_folder", - executable_path=executable_path, - executable="mcrun") - - os.chdir(current_work_dir) + with WorkInTestDir() as handler: + mcrun_obj = ManagedMcrun("test.instr", + output_path="test_folder", + executable_path=executable_path, + executable="mcrun") self.assertEqual(mcrun_obj.name_of_instrumentfile, "test.instr") @@ -51,15 +47,11 @@ def test_ManagedMcrun_init_defaults(self): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) executable_path = os.path.join(THIS_DIR, "dummy_mcstas") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - - mcrun_obj = ManagedMcrun("test.instr", - output_path="test_folder", - executable_path=executable_path, - executable="mcrun") - - os.chdir(current_work_dir) + with WorkInTestDir() as handler: + mcrun_obj = ManagedMcrun("test.instr", + output_path="test_folder", + executable_path=executable_path, + executable="mcrun") self.assertEqual(mcrun_obj.mpi, None) self.assertEqual(mcrun_obj.ncount, 1000000) @@ -75,18 +67,14 @@ def test_ManagedMcrun_init_set_values(self): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) executable_path = os.path.join(THIS_DIR, "dummy_mcstas") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - - mcrun_obj = ManagedMcrun("test.instr", - output_path="test_folder", - executable="mcrun", - executable_path=executable_path, - run_path="test_data_set", - mpi=4, - ncount=128) - - os.chdir(current_work_dir) + with WorkInTestDir() as handler: + mcrun_obj = ManagedMcrun("test.instr", + output_path="test_folder", + executable="mcrun", + executable_path=executable_path, + run_path="test_data_set", + mpi=4, + ncount=128) self.assertEqual(mcrun_obj.mpi, 4) self.assertEqual(mcrun_obj.ncount, 128) @@ -101,21 +89,17 @@ def test_ManagedMcrun_init_set_parameters(self): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) executable_path = os.path.join(THIS_DIR, "dummy_mcstas") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - par_input = {"A_par": 5.1, "int_par": 1, "define_par": "Bike", "string_par": "\"Car\""} - mcrun_obj = ManagedMcrun("test.instr", - output_path="test_folder", - executable_path=executable_path, - executable="", - parameters=par_input) - - os.chdir(current_work_dir) + with WorkInTestDir() as handler: + mcrun_obj = ManagedMcrun("test.instr", + output_path="test_folder", + executable_path=executable_path, + executable="", + parameters=par_input) self.assertEqual(mcrun_obj.parameters["A_par"], 5.1) self.assertEqual(mcrun_obj.parameters["int_par"], 1) @@ -130,18 +114,13 @@ def test_ManagedMcrun_init_set_custom_flags(self): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) executable_path = os.path.join(THIS_DIR, "dummy_mcstas") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - custom_flag_input = "-p" - - mcrun_obj = ManagedMcrun("test.instr", - output_path="test_folder", - executable="mcrun", - executable_path=executable_path, - custom_flags=custom_flag_input) - - os.chdir(current_work_dir) + with WorkInTestDir() as handler: + mcrun_obj = ManagedMcrun("test.instr", + output_path="test_folder", + executable="mcrun", + executable_path=executable_path, + custom_flags=custom_flag_input) self.assertEqual(mcrun_obj.custom_flags, custom_flag_input) @@ -191,15 +170,11 @@ def test_ManagedMcrun_run_simulation_basic(self, mock_sub): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) executable_path = os.path.join(THIS_DIR, "dummy_mcstas") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - - mcrun_obj = ManagedMcrun("test.instr", - output_path="test_folder", - executable_path=executable_path, - executable="mcrun",) - - os.chdir(current_work_dir) + with WorkInTestDir() as handler: + mcrun_obj = ManagedMcrun("test.instr", + output_path="test_folder", + executable_path=executable_path, + executable="mcrun",) mcrun_obj.run_simulation() @@ -225,15 +200,11 @@ def test_ManagedMcrun_run_simulation_basic_path(self, mock_sub): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) executable_path = os.path.join(THIS_DIR, "dummy_mcstas", "") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - - mcrun_obj = ManagedMcrun("test.instr", - output_path="test_folder", - executable_path=executable_path, - executable="mcrun",) - - os.chdir(current_work_dir) + with WorkInTestDir() as handler: + mcrun_obj = ManagedMcrun("test.instr", + output_path="test_folder", + executable_path=executable_path, + executable="mcrun",) mcrun_obj.run_simulation() @@ -262,18 +233,14 @@ def test_ManagedMcrun_run_simulation_no_standard(self, mock_sub): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) executable_path = os.path.join(THIS_DIR, "dummy_mcstas") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - - mcrun_obj = ManagedMcrun("test.instr", - output_path="test_folder", - executable_path=executable_path, - executable="mcrun", - mpi=7, - ncount=48.4, - custom_flags="-fo") - - os.chdir(current_work_dir) + with WorkInTestDir() as handler: + mcrun_obj = ManagedMcrun("test.instr", + output_path="test_folder", + executable_path=executable_path, + executable="mcrun", + mpi=7, + ncount=48.4, + custom_flags="-fo") mcrun_obj.run_simulation() @@ -299,21 +266,17 @@ def test_ManagedMcrun_run_simulation_parameters(self, mock_sub): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) executable_path = os.path.join(THIS_DIR, "dummy_mcstas") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - - mcrun_obj = ManagedMcrun("test.instr", - output_path="test_folder", - executable_path=executable_path, - executable="mcrun", - mpi=7, - ncount=48.4, - custom_flags="-fo", - parameters={"A": 2, - "BC": "car", - "th": "\"toy\""}) - - os.chdir(current_work_dir) # Reset work directory + with WorkInTestDir() as handler: + mcrun_obj = ManagedMcrun("test.instr", + output_path="test_folder", + executable_path=executable_path, + executable="mcrun", + mpi=7, + ncount=48.4, + custom_flags="-fo", + parameters={"A": 2, + "BC": "car", + "th": "\"toy\""}) mcrun_obj.run_simulation() @@ -340,22 +303,18 @@ def test_ManagedMcrun_run_simulation_compile(self, mock_sub): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) executable_path = os.path.join(THIS_DIR, "dummy_mcstas") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - - mcrun_obj = ManagedMcrun("test.instr", - output_path="test_folder", - executable_path=executable_path, - executable="mcrun", - mpi=7, - ncount=48.4, - force_compile=False, - custom_flags="-fo", - parameters={"A": 2, - "BC": "car", - "th": "\"toy\""}) - - os.chdir(current_work_dir) + with WorkInTestDir() as handler: + mcrun_obj = ManagedMcrun("test.instr", + output_path="test_folder", + executable_path=executable_path, + executable="mcrun", + mpi=7, + ncount=48.4, + force_compile=False, + custom_flags="-fo", + parameters={"A": 2, + "BC": "car", + "th": "\"toy\""}) mcrun_obj.run_simulation() @@ -384,17 +343,13 @@ def test_ManagedMcrun_load_data_PSD4PI(self): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) executable_path = os.path.join(THIS_DIR, "dummy_mcstas") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - - mcrun_obj = ManagedMcrun("test.instr", - output_path="test_data_set", - executable_path=executable_path, - mcrun_path="path") + with WorkInTestDir() as handler: + mcrun_obj = ManagedMcrun("test.instr", + output_path="test_data_set", + executable_path=executable_path, + mcrun_path="path") - results = mcrun_obj.load_results() - - os.chdir(current_work_dir) # Reset work directory + results = mcrun_obj.load_results() # Check three data objects are loaded self.assertEqual(len(results), 4) @@ -423,17 +378,13 @@ def test_ManagedMcrun_load_data_PSD(self): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) executable_path = os.path.join(THIS_DIR, "dummy_mcstas") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - - mcrun_obj = ManagedMcrun("test.instr", - output_path="test_data_set", - executable_path=executable_path, - mcrun_path="path") + with WorkInTestDir() as handler: + mcrun_obj = ManagedMcrun("test.instr", + output_path="test_data_set", + executable_path=executable_path, + mcrun_path="path") - results = mcrun_obj.load_results() - - os.chdir(current_work_dir) # Reset work directory + results = mcrun_obj.load_results() # Check three data objects are loaded self.assertEqual(len(results), 4) @@ -462,17 +413,13 @@ def test_ManagedMcrun_load_data_L_mon(self): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) executable_path = os.path.join(THIS_DIR, "dummy_mcstas") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - - mcrun_obj = ManagedMcrun("test.instr", - output_path="test_data_set", - executable_path=executable_path, - mcrun_path="path") + with WorkInTestDir() as handler: + mcrun_obj = ManagedMcrun("test.instr", + output_path="test_data_set", + executable_path=executable_path, + mcrun_path="path") - results = mcrun_obj.load_results() - - os.chdir(current_work_dir) # Reset work directory + results = mcrun_obj.load_results() # Check three data objects are loaded self.assertEqual(len(results), 4) @@ -502,18 +449,14 @@ def test_ManagedMcrun_load_data_L_mon_direct(self): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) executable_path = os.path.join(THIS_DIR, "dummy_mcstas") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - - mcrun_obj = ManagedMcrun("test.instr", - output_path="test_data_set", - executable_path=executable_path, - mcrun_path="path") + with WorkInTestDir() as handler: + mcrun_obj = ManagedMcrun("test.instr", + output_path="test_data_set", + executable_path=executable_path, + mcrun_path="path") - load_path = os.path.join(THIS_DIR, "test_data_set") - results = mcrun_obj.load_results(load_path) - - os.chdir(current_work_dir) # Reset work directory + load_path = os.path.join(THIS_DIR, "test_data_set") + results = mcrun_obj.load_results(load_path) # Check properties of L_mon L_mon = results[2] @@ -542,18 +485,14 @@ def test_ManagedMcrun_load_data_Event(self): THIS_DIR = os.path.dirname(os.path.abspath(__file__)) executable_path = os.path.join(THIS_DIR, "dummy_mcstas") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - - mcrun_obj = ManagedMcrun("test.instr", - output_path="test_data_set", - executable_path=executable_path, - mcrun_path="path") + with WorkInTestDir() as handler: + mcrun_obj = ManagedMcrun("test.instr", + output_path="test_data_set", + executable_path=executable_path, + mcrun_path="path") - load_path = os.path.join(THIS_DIR, "test_data_set") - results = mcrun_obj.load_results(load_path) - - os.chdir(current_work_dir) # Reset work directory + load_path = os.path.join(THIS_DIR, "test_data_set") + results = mcrun_obj.load_results(load_path) # Check properties of event data file mon = results[3] @@ -577,49 +516,46 @@ def test_ManagedMcrun_load_data_Event(self): self.assertFalse(hasattr(mon, 'Error')) self.assertFalse(hasattr(mon, 'Ncount')) - def test_ManagedMcrun_load_data_L_mon_direct_error(self): + def test_ManagedMcrun_load_data_nonexisting(self): """ - Check an error occurs when directory has no mccode.sim + If folder does not exists, a warning should be shown and None returned """ THIS_DIR = os.path.dirname(os.path.abspath(__file__)) executable_path = os.path.join(THIS_DIR, "dummy_mcstas") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder - - mcrun_obj = ManagedMcrun("test.instr", - output_path="test_data_set", - executable_path=executable_path, - mcrun_path="path") + with WorkInTestDir() as handler: + mcrun_obj = ManagedMcrun("test.instr", + output_path="test_data_set", + executable_path=executable_path, + mcrun_path="path") load_path = os.path.join(THIS_DIR, "non_existent_dataset") - with self.assertRaises(NameError): - mcrun_obj.load_results(load_path) - os.chdir(current_work_dir) # Reset work directory + with self.assertWarns(Warning): + result = mcrun_obj.load_results(load_path) - def test_ManagedMcrun_load_data_L_mon_empty_error(self): + self.assertIsNone(result) + + def test_ManagedMcrun_load_data_no_mcsim_file(self): """ - Check an error occurs when pointed to empty directory + Check an error occurs when pointed to directory without mcsim file """ THIS_DIR = os.path.dirname(os.path.abspath(__file__)) executable_path = os.path.join(THIS_DIR, "dummy_mcstas") - current_work_dir = os.getcwd() - os.chdir(THIS_DIR) # Set work directory to test folder + with WorkInTestDir() as handler: + mcrun_obj = ManagedMcrun("test.instr", + output_path="test_data_set", + executable_path=executable_path, + mcrun_path="path") - mcrun_obj = ManagedMcrun("test.instr", - output_path="test_data_set", - executable_path=executable_path, - mcrun_path="path") + load_path = os.path.join(THIS_DIR, "dummy_mcstas") - load_path = os.path.join(THIS_DIR, "/dummy_mcstas") with self.assertRaises(NameError): mcrun_obj.load_results(load_path) - os.chdir(current_work_dir) # Reset work directory class Test_load_functions(unittest.TestCase): """ diff --git a/mcstasscript/tests/test_dump_and_load.py b/mcstasscript/tests/test_dump_and_load.py index 37dbe3d4..c90c99e9 100644 --- a/mcstasscript/tests/test_dump_and_load.py +++ b/mcstasscript/tests/test_dump_and_load.py @@ -10,6 +10,8 @@ from mcstasscript.helper.mcstas_objects import ParameterContainer from mcstasscript.helper.mcstas_objects import ParameterVariable +from .helpers_for_tests import WorkInTestDir + run_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '.') @@ -271,19 +273,6 @@ def setup_populated_with_some_options_instr(): return instr -class WorkInTestDir: - """ - Simple class that enables working in test directory - """ - def __enter__(self): - self.current_work_dir = os.getcwd() - os.chdir(os.path.dirname(os.path.abspath(__file__))) - return self - - def __exit__(self, exc_type, exc_val, exc_tb): - os.chdir(self.current_work_dir) - - class TestDumpAndLoad(unittest.TestCase): def test_dump_simple(self): """ From 5e6fa5eee162e6b374cc6e3bde4e3dc3a43cc0f9 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 10:07:09 +0100 Subject: [PATCH 186/403] Added seed to allowed settings in ManagedMcrun and Instr settings. Tests include a case of setting seed. Updated interface to disable threading as it caused crashes. --- mcstasscript/helper/managed_mcrun.py | 18 ++++++++++--- mcstasscript/interface/instr.py | 10 +++++--- .../jb_interface/simulation_interface.py | 25 ++++++++++--------- mcstasscript/tests/test_Instr.py | 3 ++- mcstasscript/tests/test_ManagedMcrun.py | 4 +-- 5 files changed, 38 insertions(+), 22 deletions(-) diff --git a/mcstasscript/helper/managed_mcrun.py b/mcstasscript/helper/managed_mcrun.py index d1124263..603ef6a1 100644 --- a/mcstasscript/helper/managed_mcrun.py +++ b/mcstasscript/helper/managed_mcrun.py @@ -95,6 +95,7 @@ def __init__(self, instr_name, **kwargs): self.increment_folder_name = True self.compile = True self.run_path = "." + self.seed = None # executable_path always in kwargs if "executable_path" in kwargs: self.executable_path = kwargs["executable_path"] @@ -130,6 +131,9 @@ def __init__(self, instr_name, **kwargs): raise ValueError("MPI should be an integer larger than" + " 0, was " + str(self.mpi)) + if "seed" in kwargs: + self.seed = kwargs["seed"] + if "parameters" in kwargs: self.parameters = kwargs["parameters"] @@ -191,13 +195,19 @@ def run_simulation(self, **kwargs): option_string = "-c " if self.mpi is not None: - mpi_string = " --mpi=" + str(self.mpi) + " " # Set mpi + mpi_string = "--mpi=" + str(self.mpi) + " " # Set mpi + else: + mpi_string = "" + + if self.seed is not None: + seed_string = "--seed=" + str(self.seed) + " " # Set seed else: - mpi_string = " " + seed_string = "" option_string = (option_string - + "-n " + str(self.ncount) # Set ncount - + mpi_string) + + "-n " + str(self.ncount) + " " # Set ncount + + mpi_string + + seed_string) if os.path.exists(self.data_folder_name): if self.increment_folder_name: diff --git a/mcstasscript/interface/instr.py b/mcstasscript/interface/instr.py index aa06b339..a03b825a 100644 --- a/mcstasscript/interface/instr.py +++ b/mcstasscript/interface/instr.py @@ -1580,9 +1580,10 @@ def _handle_parameters(self, given_parameters): default_parameters.update(given_parameters) return default_parameters - def settings(self, ncount=None, mpi="not_set", force_compile=None, - output_path=None, increment_folder_name=None, - custom_flags=None, executable=None, executable_path=None): + def settings(self, ncount=None, mpi="not_set", seed=None, + force_compile=None, output_path=None, + increment_folder_name=None, custom_flags=None, + executable=None, executable_path=None): """ Sets settings for McStas run performed with backengine @@ -1651,6 +1652,9 @@ def settings(self, ncount=None, mpi="not_set", force_compile=None, str(custom_flags) # Check a string is given settings["custom_flags"] = custom_flags + if seed is not None: + settings["seed"] = seed + if output_path is not None: self.output_path = output_path diff --git a/mcstasscript/jb_interface/simulation_interface.py b/mcstasscript/jb_interface/simulation_interface.py index 17a276ab..673b49c1 100644 --- a/mcstasscript/jb_interface/simulation_interface.py +++ b/mcstasscript/jb_interface/simulation_interface.py @@ -90,10 +90,10 @@ def run_simulation_thread(self, change): Not used """ - thread = threading.Thread(target=self.run_simulation_live) + thread = threading.Thread(target=self.run_simulation_live, args=[1]) thread.start() - def run_simulation_live(self): + def run_simulation_live(self, change): """ Performs the simulation with current parameters and settings. @@ -149,26 +149,26 @@ def run_simulation_live(self): self.instrument.settings(**run_arguments) self.instrument.set_parameters(self.parameters) self.instrument.backengine() - data = self.instrument.data except NameError: print("McStas run failed.") data = [] with lock: self.progress_bar.value = index + 1 + data = self.instrument.data - if plot_data is None: - plot_data = data - else: - add_data(plot_data, data) + if data is not None: + if plot_data is None: + plot_data = data + else: + add_data(plot_data, data) - sent_data = copy.deepcopy(plot_data) - # This happens in a thread, maybe it should be in Main? - self.plot_interface.set_data(sent_data) + sent_data = copy.deepcopy(plot_data) + # This happens in a thread, maybe it should be in Main? + self.plot_interface.set_data(sent_data) self.run_button.icon = "calculator" - def make_run_button(self): """ Creates a run button which perform the simulation @@ -180,7 +180,8 @@ def make_run_button(self): tooltip='Runs the simulation with current parameters', icon='calculator' # (FontAwesome names without the `fa-` prefix) ) - button.on_click(self.run_simulation_thread) + #button.on_click(self.run_simulation_thread) + button.on_click(self.run_simulation_live) return button diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index 98d61351..7876e7e2 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -1864,6 +1864,7 @@ def test_run_full_instrument_complex(self, mock_sub, mock_stdout): increment_folder_name=False, executable_path=executable_path, mpi=7, + seed=300, ncount=48.4, custom_flags="-fo", parameters={"A": 2, @@ -1874,7 +1875,7 @@ def test_run_full_instrument_complex(self, mock_sub, mock_stdout): expected_folder_path = os.path.join(THIS_DIR, new_folder_name) # a double space because of a missing option - expected_call = (expected_path + " -c -n 48 --mpi=7 " + expected_call = (expected_path + " -c -n 48 --mpi=7 --seed=300 " + "-d " + expected_folder_path + " -fo test_instrument.instr " + "theta=\"toy\" has_default=37 A=2 BC=car") diff --git a/mcstasscript/tests/test_ManagedMcrun.py b/mcstasscript/tests/test_ManagedMcrun.py index e632bd74..c102cf11 100644 --- a/mcstasscript/tests/test_ManagedMcrun.py +++ b/mcstasscript/tests/test_ManagedMcrun.py @@ -238,7 +238,7 @@ def test_ManagedMcrun_run_simulation_no_standard(self, mock_sub): output_path="test_folder", executable_path=executable_path, executable="mcrun", - mpi=7, + mpi=7, seed=300, ncount=48.4, custom_flags="-fo") @@ -248,7 +248,7 @@ def test_ManagedMcrun_run_simulation_no_standard(self, mock_sub): # a double space because of a missing option executable = os.path.join(executable_path, "mcrun") - expected_call = (executable + " -c -n 48 --mpi=7 " + expected_call = (executable + " -c -n 48 --mpi=7 --seed=300 " + "-d " + expected_folder_path + " -fo test.instr") mock_sub.assert_called_once_with(expected_call, From 51d180564deb17e786c0b9e72352d2dd95bba64d Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 10:11:33 +0100 Subject: [PATCH 187/403] Trying github actions --- .github/workflows/github-actions-demo.yml | 18 ++++++++++++++++++ 1 file changed, 18 insertions(+) create mode 100644 .github/workflows/github-actions-demo.yml diff --git a/.github/workflows/github-actions-demo.yml b/.github/workflows/github-actions-demo.yml new file mode 100644 index 00000000..fd357f7a --- /dev/null +++ b/.github/workflows/github-actions-demo.yml @@ -0,0 +1,18 @@ +name: GitHub Actions Demo +on: [push] +jobs: + Explore-GitHub-Actions: + runs-on: ubuntu-latest + steps: + - run: echo "🎉 The job was automatically triggered by a ${{ github.event_name }} event." + - run: echo "🐧 This job is now running on a ${{ runner.os }} server hosted by GitHub!" + - run: echo "🔎 The name of your branch is ${{ github.ref }} and your repository is ${{ github.repository }}." + - name: Check out repository code + uses: actions/checkout@v2 + - run: echo "💡 The ${{ github.repository }} repository has been cloned to the runner." + - run: echo "🖥️ The workflow is now ready to test your code on the runner." + - name: List files in the repository + run: | + ls ${{ github.workspace }} + - run: echo "🍏 This job's status is ${{ job.status }}." + From 89f5d6c7bab586b1f344accd98a8c668162ad8e4 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 10:44:28 +0100 Subject: [PATCH 188/403] First attempt at unittesting on github actions --- .github/workflows/test_ubuntu.yaml | 29 +++++++++++++++++++++++++++++ 1 file changed, 29 insertions(+) create mode 100644 .github/workflows/test_ubuntu.yaml diff --git a/.github/workflows/test_ubuntu.yaml b/.github/workflows/test_ubuntu.yaml new file mode 100644 index 00000000..35b03132 --- /dev/null +++ b/.github/workflows/test_ubuntu.yaml @@ -0,0 +1,29 @@ +jobs: + build: + strategy: + matrix: + python-version: [3.8.8] + runs-on: ubuntu-latest + +steps: + - name: Checkout + uses: actions/checkout@v2 + with: + fetch-depth: 0 + + - name: Switch to Current Branch + run: git checkout ${{ env.BRANCH }} + + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v1 + with: + python-version: ${{ matrix.python-version }} + + - name: Install dependencies + run: | + python -m pip install --upgrade pip + pip install -r requirements.txt + pip install -e . + + - name: Run unit tests + run: python -m pytest mcstasscript/tests/ From 3699195b22a7907a7446eaf4f73127453a47c352 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 10:48:51 +0100 Subject: [PATCH 189/403] Fix of indenting --- .github/workflows/test_ubuntu.yaml | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/.github/workflows/test_ubuntu.yaml b/.github/workflows/test_ubuntu.yaml index 35b03132..da46ef29 100644 --- a/.github/workflows/test_ubuntu.yaml +++ b/.github/workflows/test_ubuntu.yaml @@ -20,10 +20,10 @@ steps: python-version: ${{ matrix.python-version }} - name: Install dependencies - run: | - python -m pip install --upgrade pip - pip install -r requirements.txt - pip install -e . + run: | + python -m pip install --upgrade pip + pip install -r requirements.txt + pip install -e . - name: Run unit tests - run: python -m pytest mcstasscript/tests/ + run: python -m pytest mcstasscript/tests/ From 1371ab67fd770847f6a0cf296cfe69caf67b946b Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 10:50:06 +0100 Subject: [PATCH 190/403] Added name and on condition. --- .github/workflows/test_ubuntu.yaml | 2 ++ 1 file changed, 2 insertions(+) diff --git a/.github/workflows/test_ubuntu.yaml b/.github/workflows/test_ubuntu.yaml index da46ef29..ae0d6bf2 100644 --- a/.github/workflows/test_ubuntu.yaml +++ b/.github/workflows/test_ubuntu.yaml @@ -1,3 +1,5 @@ +name: McStasScript unit tests on Linux +on: [push] jobs: build: strategy: From 0ff6b6d5fc2eabf478092c9a74be3185c749ab4e Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 10:54:37 +0100 Subject: [PATCH 191/403] Getting indentation right --- .github/workflows/test_ubuntu.yaml | 9 +++++---- 1 file changed, 5 insertions(+), 4 deletions(-) diff --git a/.github/workflows/test_ubuntu.yaml b/.github/workflows/test_ubuntu.yaml index ae0d6bf2..7601c38f 100644 --- a/.github/workflows/test_ubuntu.yaml +++ b/.github/workflows/test_ubuntu.yaml @@ -1,26 +1,27 @@ name: McStasScript unit tests on Linux on: [push] jobs: + Linux-Unit-Test build: strategy: matrix: python-version: [3.8.8] runs-on: ubuntu-latest -steps: + steps: - name: Checkout uses: actions/checkout@v2 with: fetch-depth: 0 - + - name: Switch to Current Branch run: git checkout ${{ env.BRANCH }} - + - name: Set up Python ${{ matrix.python-version }} uses: actions/setup-python@v1 with: python-version: ${{ matrix.python-version }} - + - name: Install dependencies run: | python -m pip install --upgrade pip From 2e42a3afd224aa5bd7acb5b854a7d8e66875f77e Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 10:55:59 +0100 Subject: [PATCH 192/403] Added colon --- .github/workflows/test_ubuntu.yaml | 48 +++++++++++++++--------------- 1 file changed, 24 insertions(+), 24 deletions(-) diff --git a/.github/workflows/test_ubuntu.yaml b/.github/workflows/test_ubuntu.yaml index 7601c38f..8c1aaa87 100644 --- a/.github/workflows/test_ubuntu.yaml +++ b/.github/workflows/test_ubuntu.yaml @@ -1,32 +1,32 @@ name: McStasScript unit tests on Linux on: [push] jobs: - Linux-Unit-Test - build: - strategy: - matrix: - python-version: [3.8.8] - runs-on: ubuntu-latest + Linux-Unit-Test: + build: + strategy: + matrix: + python-version: [3.8.8] + runs-on: ubuntu-latest - steps: - - name: Checkout - uses: actions/checkout@v2 - with: - fetch-depth: 0 + steps: + - name: Checkout + uses: actions/checkout@v2 + with: + fetch-depth: 0 - - name: Switch to Current Branch - run: git checkout ${{ env.BRANCH }} + - name: Switch to Current Branch + run: git checkout ${{ env.BRANCH }} - - name: Set up Python ${{ matrix.python-version }} - uses: actions/setup-python@v1 - with: - python-version: ${{ matrix.python-version }} + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v1 + with: + python-version: ${{ matrix.python-version }} - - name: Install dependencies - run: | - python -m pip install --upgrade pip - pip install -r requirements.txt - pip install -e . + - name: Install dependencies + run: | + python -m pip install --upgrade pip + pip install -r requirements.txt + pip install -e . - - name: Run unit tests - run: python -m pytest mcstasscript/tests/ + - name: Run unit tests + run: python -m pytest mcstasscript/tests/ From d3f1b65d5f137fc070da6ef96664a76b69ae3632 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 11:13:45 +0100 Subject: [PATCH 193/403] Small changes to syntax --- .github/workflows/test_ubuntu.yaml | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/.github/workflows/test_ubuntu.yaml b/.github/workflows/test_ubuntu.yaml index 8c1aaa87..4520486e 100644 --- a/.github/workflows/test_ubuntu.yaml +++ b/.github/workflows/test_ubuntu.yaml @@ -3,11 +3,11 @@ on: [push] jobs: Linux-Unit-Test: build: + runs-on: ubuntu-latest strategy: matrix: - python-version: [3.8.8] - runs-on: ubuntu-latest - + python-version: [3.6, 3.7, 3.8] + steps: - name: Checkout uses: actions/checkout@v2 @@ -18,7 +18,7 @@ jobs: run: git checkout ${{ env.BRANCH }} - name: Set up Python ${{ matrix.python-version }} - uses: actions/setup-python@v1 + uses: actions/setup-python@v2 with: python-version: ${{ matrix.python-version }} From f8497f929217b569777ecd05d92c08894f959e8b Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 11:15:40 +0100 Subject: [PATCH 194/403] removed name --- .github/workflows/test_ubuntu.yaml | 47 +++++++++++++++--------------- 1 file changed, 23 insertions(+), 24 deletions(-) diff --git a/.github/workflows/test_ubuntu.yaml b/.github/workflows/test_ubuntu.yaml index 4520486e..509351d1 100644 --- a/.github/workflows/test_ubuntu.yaml +++ b/.github/workflows/test_ubuntu.yaml @@ -1,32 +1,31 @@ name: McStasScript unit tests on Linux on: [push] jobs: - Linux-Unit-Test: - build: - runs-on: ubuntu-latest - strategy: - matrix: - python-version: [3.6, 3.7, 3.8] + build: + runs-on: ubuntu-latest + strategy: + matrix: + python-version: [3.6, 3.7, 3.8] - steps: - - name: Checkout - uses: actions/checkout@v2 - with: - fetch-depth: 0 + steps: + - name: Checkout + uses: actions/checkout@v2 + with: + fetch-depth: 0 - - name: Switch to Current Branch - run: git checkout ${{ env.BRANCH }} + - name: Switch to Current Branch + run: git checkout ${{ env.BRANCH }} - - name: Set up Python ${{ matrix.python-version }} - uses: actions/setup-python@v2 - with: - python-version: ${{ matrix.python-version }} + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v2 + with: + python-version: ${{ matrix.python-version }} - - name: Install dependencies - run: | - python -m pip install --upgrade pip - pip install -r requirements.txt - pip install -e . + - name: Install dependencies + run: | + python -m pip install --upgrade pip + pip install -r requirements.txt + pip install -e . - - name: Run unit tests - run: python -m pytest mcstasscript/tests/ + - name: Run unit tests + run: python -m pytest mcstasscript/tests/ From e0e1402a00439d74c602c0a4b6885f421aa3b1bc Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 11:20:05 +0100 Subject: [PATCH 195/403] Removed mmap from requirements as its a default package --- requirements.txt | 1 - 1 file changed, 1 deletion(-) diff --git a/requirements.txt b/requirements.txt index dd4a1c13..a28ff210 100644 --- a/requirements.txt +++ b/requirements.txt @@ -2,4 +2,3 @@ numpy matplotlib PyYAML ipywidgets -mmap From 4e985b678f2580947f8b8868c1343f299aedddbf Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 11:20:56 +0100 Subject: [PATCH 196/403] Removed demo --- .github/workflows/github-actions-demo.yml | 18 ------------------ 1 file changed, 18 deletions(-) delete mode 100644 .github/workflows/github-actions-demo.yml diff --git a/.github/workflows/github-actions-demo.yml b/.github/workflows/github-actions-demo.yml deleted file mode 100644 index fd357f7a..00000000 --- a/.github/workflows/github-actions-demo.yml +++ /dev/null @@ -1,18 +0,0 @@ -name: GitHub Actions Demo -on: [push] -jobs: - Explore-GitHub-Actions: - runs-on: ubuntu-latest - steps: - - run: echo "🎉 The job was automatically triggered by a ${{ github.event_name }} event." - - run: echo "🐧 This job is now running on a ${{ runner.os }} server hosted by GitHub!" - - run: echo "🔎 The name of your branch is ${{ github.ref }} and your repository is ${{ github.repository }}." - - name: Check out repository code - uses: actions/checkout@v2 - - run: echo "💡 The ${{ github.repository }} repository has been cloned to the runner." - - run: echo "🖥️ The workflow is now ready to test your code on the runner." - - name: List files in the repository - run: | - ls ${{ github.workspace }} - - run: echo "🍏 This job's status is ${{ job.status }}." - From 4d18f082888995f45b019b30c98de907e33dd351 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 11:21:44 +0100 Subject: [PATCH 197/403] installed pytest --- .github/workflows/test_ubuntu.yaml | 1 + 1 file changed, 1 insertion(+) diff --git a/.github/workflows/test_ubuntu.yaml b/.github/workflows/test_ubuntu.yaml index 509351d1..4e35267c 100644 --- a/.github/workflows/test_ubuntu.yaml +++ b/.github/workflows/test_ubuntu.yaml @@ -26,6 +26,7 @@ jobs: python -m pip install --upgrade pip pip install -r requirements.txt pip install -e . + pip install pytest - name: Run unit tests run: python -m pytest mcstasscript/tests/ From 55bafdafb0016ae71fd1c33342e8664f14d4f643 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 11:31:22 +0100 Subject: [PATCH 198/403] Show file structure to ensure all folders are present --- .github/workflows/test_ubuntu.yaml | 3 +++ 1 file changed, 3 insertions(+) diff --git a/.github/workflows/test_ubuntu.yaml b/.github/workflows/test_ubuntu.yaml index 4e35267c..8879551b 100644 --- a/.github/workflows/test_ubuntu.yaml +++ b/.github/workflows/test_ubuntu.yaml @@ -27,6 +27,9 @@ jobs: pip install -r requirements.txt pip install -e . pip install pytest + + - name: Show file structure + run: tree . - name: Run unit tests run: python -m pytest mcstasscript/tests/ From a8c7b7d1f3292756dc01977936ffcb3b26646063 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 12:00:16 +0100 Subject: [PATCH 199/403] Updated show_categories so that their output is in alphabetic order. This improves readability but also consistency accros platforms, as the order dependent on which order the folders were read by the system. --- mcstasscript/helper/component_reader.py | 12 ++++++++---- mcstasscript/tests/test_ComponentReader.py | 17 +++++++++-------- 2 files changed, 17 insertions(+), 12 deletions(-) diff --git a/mcstasscript/helper/component_reader.py b/mcstasscript/helper/component_reader.py index e9028ac0..aad30062 100644 --- a/mcstasscript/helper/component_reader.py +++ b/mcstasscript/helper/component_reader.py @@ -98,7 +98,7 @@ def __init__(self, mcstas_path, input_path="."): overwritten_components.append(file) self.component_path[component_name] = abs_path - self.component_category[component_name] = "Work directory" + self.component_category[component_name] = "work directory" # Report components found in the work directory and install to the user if len(overwritten_components) > 0: @@ -114,12 +114,16 @@ def show_categories(self): """ Method that will show all component categories available + Sorted alphabetically for easier readability and consistency """ categories = [] for component, category in self.component_category.items(): if category not in categories: categories.append(category) - print(" " + category) + + categories.sort() + for category in categories: + print(" " + category) def show_components_in_category(self, category_input, **kwargs): """ @@ -215,8 +219,8 @@ def read_name(self, component_name): output = self.read_component_file(self.component_path[component_name]) # Category loaded using path, in case of Work directory it fails - if self.component_category[component_name] == "Work directory": - output.category = "Work directory" # Corrects category + if self.component_category[component_name] == "work directory": + output.category = "work directory" # Corrects category return output diff --git a/mcstasscript/tests/test_ComponentReader.py b/mcstasscript/tests/test_ComponentReader.py index b6c93f70..d9cc7156 100644 --- a/mcstasscript/tests/test_ComponentReader.py +++ b/mcstasscript/tests/test_ComponentReader.py @@ -118,7 +118,7 @@ def test_ComponentReader_init_component_paths(self, mock_stdout): self.assertEqual(path, expected_path) category = component_reader.component_category["test_for_reading"] - self.assertEqual(category, "Work directory") + self.assertEqual(category, "work directory") expected_path = os.path.join(dummy_path, "misc", "test_for_structure.comp") @@ -174,7 +174,7 @@ def test_ComponentReader_init_component_paths_input(self, mock_stdout): self.assertEqual(path, expected_path) category = component_reader.component_category["test_for_structure"] - self.assertEqual(category, "Work directory") + self.assertEqual(category, "work directory") self.assertIn("test_for_structure2", component_reader.component_path) @@ -202,7 +202,7 @@ def test_ComponentReader_init_categories(self, mock_stdout): categories as well because of the dummy installation. """ category = component_reader.component_category["test_for_reading"] - self.assertEqual(category, "Work directory") + self.assertEqual(category, "work directory") category = component_reader.component_category["test_for_structure"] self.assertEqual(category, "misc") category = component_reader.component_category["test_for_structure2"] @@ -224,7 +224,7 @@ def test_ComponentReader_show_categories(self, mock_stdout): self.assertEqual(len(output), 7) self.assertIn(" sources", output) - self.assertIn(" Work directory", output) + self.assertIn(" work directory", output) self.assertIn(" misc", output) @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) @@ -243,10 +243,11 @@ def test_ComponentReader_show_categories_ordered(self, mock_stdout): output = mock_stdout.getvalue() output = output.split("\n") + self.assertEqual(len(output), 7) # Ignoring message about overwritten components, starting from 3 - self.assertEqual(output[3], " sources") - self.assertEqual(output[4], " Work directory") - self.assertEqual(output[5], " misc") + self.assertEqual(output[3], " misc") + self.assertEqual(output[4], " sources") + self.assertEqual(output[5], " work directory") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_ComponentReader_show_components_short(self, mock_stdout): @@ -355,7 +356,7 @@ def test_ComponentReader_read_name_success(self, mock_stdout): CompInfo = component_reader.read_name("test_for_reading") self.assertEqual(CompInfo.name, "test_for_reading") - self.assertEqual(CompInfo.category, "Work directory") + self.assertEqual(CompInfo.category, "work directory") self.assertIn("dist", CompInfo.parameter_names) self.assertIn("dist", CompInfo.parameter_defaults) self.assertIn("dist", CompInfo.parameter_types) From de8cc839634b79ac092a99a7c0ead4f84419a788 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 12:03:06 +0100 Subject: [PATCH 200/403] Missed a file in last commit. --- mcstasscript/tests/test_Instr.py | 26 +++++++++++++------------- 1 file changed, 13 insertions(+), 13 deletions(-) diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index d564f70b..3767ba3b 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -682,9 +682,9 @@ def test_show_components_simple(self, mock_stdout): + "instead of the installed versions.") self.assertEqual(output[3], "Here are the available component categories:") - self.assertEqual(output[4], " sources") - self.assertEqual(output[5], " Work directory") - self.assertEqual(output[6], " misc") + self.assertEqual(output[4], " misc") + self.assertEqual(output[5], " sources") + self.assertEqual(output[6], " work directory") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_show_components_folder(self, mock_stdout): @@ -699,7 +699,7 @@ def test_show_components_folder(self, mock_stdout): current_work_dir = os.getcwd() os.chdir(THIS_DIR) # Set work directory to test folder - instr.show_components("Work directory") + instr.show_components("work directory") os.chdir(current_work_dir) @@ -713,7 +713,7 @@ def test_show_components_folder(self, mock_stdout): self.assertEqual(output[2], "These definitions will be used " + "instead of the installed versions.") self.assertEqual(output[3], - "Here are all components in the Work directory " + "Here are all components in the work directory " + "category.") self.assertEqual(output[4], " test_for_reading") self.assertEqual(output[5], "") @@ -739,9 +739,9 @@ def test_show_components_input_path_simple(self, mock_stdout): + "instead of the installed versions.") self.assertEqual(output[3], "Here are the available component categories:") - self.assertEqual(output[4], " sources") - self.assertEqual(output[5], " misc") - self.assertEqual(output[6], " Work directory") + self.assertEqual(output[4], " misc") + self.assertEqual(output[5], " sources") + self.assertEqual(output[6], " work directory") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_show_components_input_path_custom(self, mock_stdout): @@ -766,9 +766,9 @@ def test_show_components_input_path_custom(self, mock_stdout): + "instead of the installed versions.") self.assertEqual(output[3], "Here are the available component categories:") - self.assertEqual(output[4], " sources") - self.assertEqual(output[5], " misc") - self.assertEqual(output[6], " Work directory") + self.assertEqual(output[4], " misc") + self.assertEqual(output[5], " sources") + self.assertEqual(output[6], " work directory") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_component_help(self, mock_stdout): @@ -846,7 +846,7 @@ def test_create_component_instance_simple(self, mock_stdout): comment = ("Radius of circle in (x,y,0) plane where " + "neutrons are generated.") self.assertEqual(comp.parameter_comments["radius"], comment) - self.assertEqual(comp.category, "Work directory") + self.assertEqual(comp.category, "work directory") @unittest.mock.patch("sys.stdout", new_callable=io.StringIO) def test_create_component_instance_complex(self, mock_stdout): @@ -883,7 +883,7 @@ def test_create_component_instance_complex(self, mock_stdout): comment = ("Radius of circle in (x,y,0) plane where " + "neutrons are generated.") self.assertEqual(comp.parameter_comments["radius"], comment) - self.assertEqual(comp.category, "Work directory") + self.assertEqual(comp.category, "work directory") # The keyword arguments of the call should be passed to the # new instance of the component. This is checked by reading From ab45030b51bb8b35b0e6dd200891913ec3959668 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 12:10:45 +0100 Subject: [PATCH 201/403] Attempting to add windows to the text matrix --- .github/workflows/test_ubuntu.yaml | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/.github/workflows/test_ubuntu.yaml b/.github/workflows/test_ubuntu.yaml index 8879551b..676928e3 100644 --- a/.github/workflows/test_ubuntu.yaml +++ b/.github/workflows/test_ubuntu.yaml @@ -2,10 +2,11 @@ name: McStasScript unit tests on Linux on: [push] jobs: build: - runs-on: ubuntu-latest strategy: matrix: python-version: [3.6, 3.7, 3.8] + os: [linux-latest, windows-latest] + runs-on: ${{ matrix.os }} steps: - name: Checkout From 35915067feba1e1759525f8acdd4ef85d1ee0986 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 12:24:41 +0100 Subject: [PATCH 202/403] Fixed unit test that would fail on windows due to hardcoded slash --- mcstasscript/tests/test_Instr.py | 26 +++++++++++++++----------- 1 file changed, 15 insertions(+), 11 deletions(-) diff --git a/mcstasscript/tests/test_Instr.py b/mcstasscript/tests/test_Instr.py index 3767ba3b..b89979a6 100644 --- a/mcstasscript/tests/test_Instr.py +++ b/mcstasscript/tests/test_Instr.py @@ -1597,16 +1597,19 @@ def test_write_c_files_simple(self, mock_f): finally: os.chdir(current_directory) - mock_f.assert_any_call("./generated_includes/" - + "test_instrument_declare.c", "w") - mock_f.assert_any_call("./generated_includes/" - + "test_instrument_declare.c", "a") - mock_f.assert_any_call("./generated_includes/" - + "test_instrument_initialize.c", "w") - mock_f.assert_any_call("./generated_includes/" - + "test_instrument_trace.c", "w") - mock_f.assert_any_call("./generated_includes/" - + "test_instrument_component_trace.c", "w") + base_path = os.path.join(".", "generated_includes") + expected_path = os.path.join(base_path, "test_instrument_declare.c") + mock_f.assert_any_call(expected_path, "w") + mock_f.assert_any_call(expected_path, "a") + + expected_path = os.path.join(base_path, "test_instrument_initialize.c") + mock_f.assert_any_call(expected_path, "w") + + expected_path = os.path.join(base_path, "test_instrument_trace.c") + mock_f.assert_any_call(expected_path, "w") + + expected_path = os.path.join(base_path, "test_instrument_component_trace.c") + mock_f.assert_any_call(expected_path, "w") # This does not check that the right thing is written to the # right file. Can be improved by splitting the method into @@ -1728,7 +1731,8 @@ def test_write_full_instrument_simple(self, mock_f): my_call("%}\n"), my_call("\nEND\n")] - mock_f.assert_called_with("./test_instrument.instr", "w") + expected_path = os.path.join(".", "test_instrument.instr") + mock_f.assert_called_with(expected_path, "w") handle = mock_f() handle.write.assert_has_calls(wrts, any_order=False) From 7452ebd6c5a3b0631835eb4b04c4aa034851d425 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 12:29:22 +0100 Subject: [PATCH 203/403] Fixed mistake in workflow that caused unix part not to run. --- .github/workflows/{test_ubuntu.yaml => unit_tests.yaml} | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) rename .github/workflows/{test_ubuntu.yaml => unit_tests.yaml} (95%) diff --git a/.github/workflows/test_ubuntu.yaml b/.github/workflows/unit_tests.yaml similarity index 95% rename from .github/workflows/test_ubuntu.yaml rename to .github/workflows/unit_tests.yaml index 676928e3..a391077b 100644 --- a/.github/workflows/test_ubuntu.yaml +++ b/.github/workflows/unit_tests.yaml @@ -5,7 +5,7 @@ jobs: strategy: matrix: python-version: [3.6, 3.7, 3.8] - os: [linux-latest, windows-latest] + os: [ubuntu-latest, windows-latest] runs-on: ${{ matrix.os }} steps: From f054b108fb7e731c7275648386b277388c2bbe5c Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 12:35:32 +0100 Subject: [PATCH 204/403] Added macos and cache system to unittest workflow --- .github/workflows/unit_tests.yaml | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/.github/workflows/unit_tests.yaml b/.github/workflows/unit_tests.yaml index a391077b..48fd3110 100644 --- a/.github/workflows/unit_tests.yaml +++ b/.github/workflows/unit_tests.yaml @@ -5,7 +5,7 @@ jobs: strategy: matrix: python-version: [3.6, 3.7, 3.8] - os: [ubuntu-latest, windows-latest] + os: [ubuntu-latest, macos-latest, windows-latest] runs-on: ${{ matrix.os }} steps: @@ -21,6 +21,7 @@ jobs: uses: actions/setup-python@v2 with: python-version: ${{ matrix.python-version }} + cache: 'pip' - name: Install dependencies run: | From fef851866994cbc381b634e5c9904f0da69666a7 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 13:24:20 +0100 Subject: [PATCH 205/403] Moved to find instead of tree to show files to ensure compatability between linux, os x and windows --- .github/workflows/unit_tests.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/unit_tests.yaml b/.github/workflows/unit_tests.yaml index 48fd3110..71fc2582 100644 --- a/.github/workflows/unit_tests.yaml +++ b/.github/workflows/unit_tests.yaml @@ -31,7 +31,7 @@ jobs: pip install pytest - name: Show file structure - run: tree . + run: find . - name: Run unit tests run: python -m pytest mcstasscript/tests/ From 5c01de8a4b71aef4f845f70375e6dbf15e2996a5 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 13:31:15 +0100 Subject: [PATCH 206/403] tree . on windows and unix find . on os x --- .github/workflows/unit_tests.yaml | 5 +++++ 1 file changed, 5 insertions(+) diff --git a/.github/workflows/unit_tests.yaml b/.github/workflows/unit_tests.yaml index 71fc2582..1465eb20 100644 --- a/.github/workflows/unit_tests.yaml +++ b/.github/workflows/unit_tests.yaml @@ -30,8 +30,13 @@ jobs: pip install -e . pip install pytest + - name: Show file structure + run: tree . + if: ${{ matrix.os }} == ubuntu-latest || ${{ matrix.os }} == windows-latest + - name: Show file structure run: find . + if: ${{ matrix.os }} == macos-latest - name: Run unit tests run: python -m pytest mcstasscript/tests/ From 38976a4fdcfbb6d286d869d1a7b9012b70e9c8b8 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 13:40:49 +0100 Subject: [PATCH 207/403] reorder lines for if --- .github/workflows/unit_tests.yaml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/unit_tests.yaml b/.github/workflows/unit_tests.yaml index 1465eb20..a5c12b01 100644 --- a/.github/workflows/unit_tests.yaml +++ b/.github/workflows/unit_tests.yaml @@ -31,12 +31,12 @@ jobs: pip install pytest - name: Show file structure - run: tree . if: ${{ matrix.os }} == ubuntu-latest || ${{ matrix.os }} == windows-latest + run: tree . - name: Show file structure - run: find . if: ${{ matrix.os }} == macos-latest + run: find . - name: Run unit tests run: python -m pytest mcstasscript/tests/ From ce06820daf4cb49975f440645529a8cfe34ba4fd Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 13:42:44 +0100 Subject: [PATCH 208/403] made comparisons strings --- .github/workflows/unit_tests.yaml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/unit_tests.yaml b/.github/workflows/unit_tests.yaml index a5c12b01..c871e7c7 100644 --- a/.github/workflows/unit_tests.yaml +++ b/.github/workflows/unit_tests.yaml @@ -31,11 +31,11 @@ jobs: pip install pytest - name: Show file structure - if: ${{ matrix.os }} == ubuntu-latest || ${{ matrix.os }} == windows-latest + if: ${{ matrix.os }} == "ubuntu-latest" || ${{ matrix.os }} == "windows-latest" run: tree . - name: Show file structure - if: ${{ matrix.os }} == macos-latest + if: ${{ matrix.os }} == "macos-latest" run: find . - name: Run unit tests From d29a866dd94ff074b2347d6f7c0f656c51f96b58 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 13:46:58 +0100 Subject: [PATCH 209/403] Changed to one workflow per operating system. --- .../{unit_tests.yaml => unit_tests_mac.yaml} | 8 +---- .github/workflows/unit_tests_ubuntu.yaml | 36 +++++++++++++++++++ .github/workflows/unit_tests_windows.yaml | 36 +++++++++++++++++++ 3 files changed, 73 insertions(+), 7 deletions(-) rename .github/workflows/{unit_tests.yaml => unit_tests_mac.yaml} (75%) create mode 100644 .github/workflows/unit_tests_ubuntu.yaml create mode 100644 .github/workflows/unit_tests_windows.yaml diff --git a/.github/workflows/unit_tests.yaml b/.github/workflows/unit_tests_mac.yaml similarity index 75% rename from .github/workflows/unit_tests.yaml rename to .github/workflows/unit_tests_mac.yaml index c871e7c7..0acf876d 100644 --- a/.github/workflows/unit_tests.yaml +++ b/.github/workflows/unit_tests_mac.yaml @@ -5,8 +5,7 @@ jobs: strategy: matrix: python-version: [3.6, 3.7, 3.8] - os: [ubuntu-latest, macos-latest, windows-latest] - runs-on: ${{ matrix.os }} + runs-on: macos-latest steps: - name: Checkout @@ -29,13 +28,8 @@ jobs: pip install -r requirements.txt pip install -e . pip install pytest - - - name: Show file structure - if: ${{ matrix.os }} == "ubuntu-latest" || ${{ matrix.os }} == "windows-latest" - run: tree . - name: Show file structure - if: ${{ matrix.os }} == "macos-latest" run: find . - name: Run unit tests diff --git a/.github/workflows/unit_tests_ubuntu.yaml b/.github/workflows/unit_tests_ubuntu.yaml new file mode 100644 index 00000000..ebfb547d --- /dev/null +++ b/.github/workflows/unit_tests_ubuntu.yaml @@ -0,0 +1,36 @@ +name: McStasScript unit tests on Linux +on: [push] +jobs: + build: + strategy: + matrix: + python-version: [3.6, 3.7, 3.8] + runs-on: ubuntu-latest + + steps: + - name: Checkout + uses: actions/checkout@v2 + with: + fetch-depth: 0 + + - name: Switch to Current Branch + run: git checkout ${{ env.BRANCH }} + + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v2 + with: + python-version: ${{ matrix.python-version }} + cache: 'pip' + + - name: Install dependencies + run: | + python -m pip install --upgrade pip + pip install -r requirements.txt + pip install -e . + pip install pytest + + - name: Show file structure + run: tree . + + - name: Run unit tests + run: python -m pytest mcstasscript/tests/ diff --git a/.github/workflows/unit_tests_windows.yaml b/.github/workflows/unit_tests_windows.yaml new file mode 100644 index 00000000..4053c00b --- /dev/null +++ b/.github/workflows/unit_tests_windows.yaml @@ -0,0 +1,36 @@ +name: McStasScript unit tests on Linux +on: [push] +jobs: + build: + strategy: + matrix: + python-version: [3.6, 3.7, 3.8] + runs-on: windows-latest + + steps: + - name: Checkout + uses: actions/checkout@v2 + with: + fetch-depth: 0 + + - name: Switch to Current Branch + run: git checkout ${{ env.BRANCH }} + + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v2 + with: + python-version: ${{ matrix.python-version }} + cache: 'pip' + + - name: Install dependencies + run: | + python -m pip install --upgrade pip + pip install -r requirements.txt + pip install -e . + pip install pytest + + - name: Show file structure + run: tree . + + - name: Run unit tests + run: python -m pytest mcstasscript/tests/ From 40c830450d8811f142dbfc0d96a3ebd3c84fe34c Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 14:02:53 +0100 Subject: [PATCH 210/403] Checking checkout of libpyvinyl on workflow --- .github/workflows/unit_tests_ubuntu.yaml | 9 +++++++++ 1 file changed, 9 insertions(+) diff --git a/.github/workflows/unit_tests_ubuntu.yaml b/.github/workflows/unit_tests_ubuntu.yaml index ebfb547d..23b7f25f 100644 --- a/.github/workflows/unit_tests_ubuntu.yaml +++ b/.github/workflows/unit_tests_ubuntu.yaml @@ -21,6 +21,15 @@ jobs: with: python-version: ${{ matrix.python-version }} cache: 'pip' + + - name: Temporary developer libpyvinyl checkout + uses: actions/checkout@v2 + with: + repository: PaNOSC-ViNYL/libpyvinyl + ref: develop + + - name: Show file structure + run: tree . - name: Install dependencies run: | From 609942dd15e67177a8cfc7ebf20a4a711913f22b Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 14:07:41 +0100 Subject: [PATCH 211/403] Trying libpyvinyl build first, then mcstasscript --- .github/workflows/unit_tests_mac.yaml | 23 ++++++++++++++--------- 1 file changed, 14 insertions(+), 9 deletions(-) diff --git a/.github/workflows/unit_tests_mac.yaml b/.github/workflows/unit_tests_mac.yaml index 0acf876d..761b7779 100644 --- a/.github/workflows/unit_tests_mac.yaml +++ b/.github/workflows/unit_tests_mac.yaml @@ -1,4 +1,4 @@ -name: McStasScript unit tests on Linux +name: McStasScript unit tests on OS X on: [push] jobs: build: @@ -8,20 +8,25 @@ jobs: runs-on: macos-latest steps: - - name: Checkout - uses: actions/checkout@v2 - with: - fetch-depth: 0 - - - name: Switch to Current Branch - run: git checkout ${{ env.BRANCH }} - - name: Set up Python ${{ matrix.python-version }} uses: actions/setup-python@v2 with: python-version: ${{ matrix.python-version }} cache: 'pip' + - name: Install dependencies (libpyvinyl) + run: | + python -m pip install --upgrade pip + pip install -r requirements.txt + pip install -e . + pip install pytest + + - name: Checkout + uses: actions/checkout@v2 + with: + fetch-depth: 0 + ref: ${{ env.BRANCH }} + - name: Install dependencies run: | python -m pip install --upgrade pip From 33f98e93a2aa4b3077310677ce801e31868ab7ba Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 14:09:26 +0100 Subject: [PATCH 212/403] Forgot checkout of libpyvinyl --- .github/workflows/unit_tests_mac.yaml | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/.github/workflows/unit_tests_mac.yaml b/.github/workflows/unit_tests_mac.yaml index 761b7779..13dc10e1 100644 --- a/.github/workflows/unit_tests_mac.yaml +++ b/.github/workflows/unit_tests_mac.yaml @@ -8,6 +8,12 @@ jobs: runs-on: macos-latest steps: + - name: Temporary developer libpyvinyl checkout + uses: actions/checkout@v2 + with: + repository: PaNOSC-ViNYL/libpyvinyl + ref: develop + - name: Set up Python ${{ matrix.python-version }} uses: actions/setup-python@v2 with: From 1587455be33ece29119b2ee5e33aaa0c41772118 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 14:13:15 +0100 Subject: [PATCH 213/403] All workflows now get libpyvinyl develop from github. --- .github/workflows/unit_tests_ubuntu.yaml | 30 ++++++++++++----------- .github/workflows/unit_tests_windows.yaml | 25 +++++++++++++------ 2 files changed, 34 insertions(+), 21 deletions(-) diff --git a/.github/workflows/unit_tests_ubuntu.yaml b/.github/workflows/unit_tests_ubuntu.yaml index 23b7f25f..9fc22982 100644 --- a/.github/workflows/unit_tests_ubuntu.yaml +++ b/.github/workflows/unit_tests_ubuntu.yaml @@ -1,4 +1,4 @@ -name: McStasScript unit tests on Linux +name: McStasScript unit tests on ubuntu on: [push] jobs: build: @@ -7,30 +7,32 @@ jobs: python-version: [3.6, 3.7, 3.8] runs-on: ubuntu-latest - steps: - - name: Checkout + steps: + - name: Temporary developer libpyvinyl checkout uses: actions/checkout@v2 with: - fetch-depth: 0 - - - name: Switch to Current Branch - run: git checkout ${{ env.BRANCH }} - + repository: PaNOSC-ViNYL/libpyvinyl + ref: develop + - name: Set up Python ${{ matrix.python-version }} uses: actions/setup-python@v2 with: python-version: ${{ matrix.python-version }} cache: 'pip' + + - name: Install dependencies (libpyvinyl) + run: | + python -m pip install --upgrade pip + pip install -r requirements.txt + pip install -e . + pip install pytest - - name: Temporary developer libpyvinyl checkout + - name: Checkout uses: actions/checkout@v2 with: - repository: PaNOSC-ViNYL/libpyvinyl - ref: develop + fetch-depth: 0 + ref: ${{ env.BRANCH }} - - name: Show file structure - run: tree . - - name: Install dependencies run: | python -m pip install --upgrade pip diff --git a/.github/workflows/unit_tests_windows.yaml b/.github/workflows/unit_tests_windows.yaml index 4053c00b..0daf85da 100644 --- a/.github/workflows/unit_tests_windows.yaml +++ b/.github/workflows/unit_tests_windows.yaml @@ -1,4 +1,4 @@ -name: McStasScript unit tests on Linux +name: McStasScript unit tests on windows on: [push] jobs: build: @@ -8,20 +8,31 @@ jobs: runs-on: windows-latest steps: - - name: Checkout + - name: Temporary developer libpyvinyl checkout uses: actions/checkout@v2 with: - fetch-depth: 0 - - - name: Switch to Current Branch - run: git checkout ${{ env.BRANCH }} - + repository: PaNOSC-ViNYL/libpyvinyl + ref: develop + - name: Set up Python ${{ matrix.python-version }} uses: actions/setup-python@v2 with: python-version: ${{ matrix.python-version }} cache: 'pip' + - name: Install dependencies (libpyvinyl) + run: | + python -m pip install --upgrade pip + pip install -r requirements.txt + pip install -e . + pip install pytest + + - name: Checkout + uses: actions/checkout@v2 + with: + fetch-depth: 0 + ref: ${{ env.BRANCH }} + - name: Install dependencies run: | python -m pip install --upgrade pip From f3e094cfa3465d1e8eccede296596a9b0a0e0de8 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 14:18:06 +0100 Subject: [PATCH 214/403] Fix of indentation error on ubuntu workflow --- .github/workflows/unit_tests_ubuntu.yaml | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/.github/workflows/unit_tests_ubuntu.yaml b/.github/workflows/unit_tests_ubuntu.yaml index 9fc22982..7f0de378 100644 --- a/.github/workflows/unit_tests_ubuntu.yaml +++ b/.github/workflows/unit_tests_ubuntu.yaml @@ -7,7 +7,7 @@ jobs: python-version: [3.6, 3.7, 3.8] runs-on: ubuntu-latest - steps: + steps: - name: Temporary developer libpyvinyl checkout uses: actions/checkout@v2 with: From c86c020b9710aa0a60d4c8289ce3cfb39ae17aa5 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 14:23:27 +0100 Subject: [PATCH 215/403] Added note on unused threading. --- mcstasscript/jb_interface/simulation_interface.py | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/mcstasscript/jb_interface/simulation_interface.py b/mcstasscript/jb_interface/simulation_interface.py index 673b49c1..718facff 100644 --- a/mcstasscript/jb_interface/simulation_interface.py +++ b/mcstasscript/jb_interface/simulation_interface.py @@ -83,6 +83,10 @@ def run_simulation_thread(self, change): """ Runs simulation as thread, allowing user to update plots simultaneously + The use of this method has caused crashes, temporarily circumvented by + calling run_simulation_live on button instead. Now plots can now be + updated while a simulation is running. + Parameters ---------- From 0925b954abdfa6fca151e3cd9366ac169724f6c4 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 14:31:17 +0100 Subject: [PATCH 216/403] Updates to test workflows so developer version of libpyvinyl is used --- .github/workflows/unit_tests_mac.yaml | 25 ++++++++++++++++------- .github/workflows/unit_tests_ubuntu.yaml | 25 ++++++++++++++++------- .github/workflows/unit_tests_windows.yaml | 25 ++++++++++++++++------- 3 files changed, 54 insertions(+), 21 deletions(-) diff --git a/.github/workflows/unit_tests_mac.yaml b/.github/workflows/unit_tests_mac.yaml index 0acf876d..13dc10e1 100644 --- a/.github/workflows/unit_tests_mac.yaml +++ b/.github/workflows/unit_tests_mac.yaml @@ -1,4 +1,4 @@ -name: McStasScript unit tests on Linux +name: McStasScript unit tests on OS X on: [push] jobs: build: @@ -8,20 +8,31 @@ jobs: runs-on: macos-latest steps: - - name: Checkout + - name: Temporary developer libpyvinyl checkout uses: actions/checkout@v2 with: - fetch-depth: 0 - - - name: Switch to Current Branch - run: git checkout ${{ env.BRANCH }} - + repository: PaNOSC-ViNYL/libpyvinyl + ref: develop + - name: Set up Python ${{ matrix.python-version }} uses: actions/setup-python@v2 with: python-version: ${{ matrix.python-version }} cache: 'pip' + - name: Install dependencies (libpyvinyl) + run: | + python -m pip install --upgrade pip + pip install -r requirements.txt + pip install -e . + pip install pytest + + - name: Checkout + uses: actions/checkout@v2 + with: + fetch-depth: 0 + ref: ${{ env.BRANCH }} + - name: Install dependencies run: | python -m pip install --upgrade pip diff --git a/.github/workflows/unit_tests_ubuntu.yaml b/.github/workflows/unit_tests_ubuntu.yaml index ebfb547d..7f0de378 100644 --- a/.github/workflows/unit_tests_ubuntu.yaml +++ b/.github/workflows/unit_tests_ubuntu.yaml @@ -1,4 +1,4 @@ -name: McStasScript unit tests on Linux +name: McStasScript unit tests on ubuntu on: [push] jobs: build: @@ -8,20 +8,31 @@ jobs: runs-on: ubuntu-latest steps: - - name: Checkout + - name: Temporary developer libpyvinyl checkout uses: actions/checkout@v2 with: - fetch-depth: 0 - - - name: Switch to Current Branch - run: git checkout ${{ env.BRANCH }} - + repository: PaNOSC-ViNYL/libpyvinyl + ref: develop + - name: Set up Python ${{ matrix.python-version }} uses: actions/setup-python@v2 with: python-version: ${{ matrix.python-version }} cache: 'pip' + - name: Install dependencies (libpyvinyl) + run: | + python -m pip install --upgrade pip + pip install -r requirements.txt + pip install -e . + pip install pytest + + - name: Checkout + uses: actions/checkout@v2 + with: + fetch-depth: 0 + ref: ${{ env.BRANCH }} + - name: Install dependencies run: | python -m pip install --upgrade pip diff --git a/.github/workflows/unit_tests_windows.yaml b/.github/workflows/unit_tests_windows.yaml index 4053c00b..0daf85da 100644 --- a/.github/workflows/unit_tests_windows.yaml +++ b/.github/workflows/unit_tests_windows.yaml @@ -1,4 +1,4 @@ -name: McStasScript unit tests on Linux +name: McStasScript unit tests on windows on: [push] jobs: build: @@ -8,20 +8,31 @@ jobs: runs-on: windows-latest steps: - - name: Checkout + - name: Temporary developer libpyvinyl checkout uses: actions/checkout@v2 with: - fetch-depth: 0 - - - name: Switch to Current Branch - run: git checkout ${{ env.BRANCH }} - + repository: PaNOSC-ViNYL/libpyvinyl + ref: develop + - name: Set up Python ${{ matrix.python-version }} uses: actions/setup-python@v2 with: python-version: ${{ matrix.python-version }} cache: 'pip' + - name: Install dependencies (libpyvinyl) + run: | + python -m pip install --upgrade pip + pip install -r requirements.txt + pip install -e . + pip install pytest + + - name: Checkout + uses: actions/checkout@v2 + with: + fetch-depth: 0 + ref: ${{ env.BRANCH }} + - name: Install dependencies run: | python -m pip install --upgrade pip From 04f53df97659a7d4c3f54049119377082a4ed2f6 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 14:46:30 +0100 Subject: [PATCH 217/403] Removed cache from libpyvinyl install --- .github/workflows/unit_tests_mac.yaml | 1 - .github/workflows/unit_tests_ubuntu.yaml | 1 - .github/workflows/unit_tests_windows.yaml | 1 - 3 files changed, 3 deletions(-) diff --git a/.github/workflows/unit_tests_mac.yaml b/.github/workflows/unit_tests_mac.yaml index 13dc10e1..11795848 100644 --- a/.github/workflows/unit_tests_mac.yaml +++ b/.github/workflows/unit_tests_mac.yaml @@ -18,7 +18,6 @@ jobs: uses: actions/setup-python@v2 with: python-version: ${{ matrix.python-version }} - cache: 'pip' - name: Install dependencies (libpyvinyl) run: | diff --git a/.github/workflows/unit_tests_ubuntu.yaml b/.github/workflows/unit_tests_ubuntu.yaml index 7f0de378..def17c8a 100644 --- a/.github/workflows/unit_tests_ubuntu.yaml +++ b/.github/workflows/unit_tests_ubuntu.yaml @@ -18,7 +18,6 @@ jobs: uses: actions/setup-python@v2 with: python-version: ${{ matrix.python-version }} - cache: 'pip' - name: Install dependencies (libpyvinyl) run: | diff --git a/.github/workflows/unit_tests_windows.yaml b/.github/workflows/unit_tests_windows.yaml index 0daf85da..cbe47c46 100644 --- a/.github/workflows/unit_tests_windows.yaml +++ b/.github/workflows/unit_tests_windows.yaml @@ -18,7 +18,6 @@ jobs: uses: actions/setup-python@v2 with: python-version: ${{ matrix.python-version }} - cache: 'pip' - name: Install dependencies (libpyvinyl) run: | From da974e59bd266bdd09b3ffa3aa908b7b0e8b276f Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 15:10:08 +0100 Subject: [PATCH 218/403] setting up a path for each library. --- .github/workflows/unit_tests_mac.yaml | 2 ++ .github/workflows/unit_tests_ubuntu.yaml | 3 ++- .github/workflows/unit_tests_windows.yaml | 2 ++ 3 files changed, 6 insertions(+), 1 deletion(-) diff --git a/.github/workflows/unit_tests_mac.yaml b/.github/workflows/unit_tests_mac.yaml index 11795848..72d310c9 100644 --- a/.github/workflows/unit_tests_mac.yaml +++ b/.github/workflows/unit_tests_mac.yaml @@ -13,6 +13,7 @@ jobs: with: repository: PaNOSC-ViNYL/libpyvinyl ref: develop + path: libpyvinyl - name: Set up Python ${{ matrix.python-version }} uses: actions/setup-python@v2 @@ -31,6 +32,7 @@ jobs: with: fetch-depth: 0 ref: ${{ env.BRANCH }} + path: mcstasscript - name: Install dependencies run: | diff --git a/.github/workflows/unit_tests_ubuntu.yaml b/.github/workflows/unit_tests_ubuntu.yaml index def17c8a..f7a40cc2 100644 --- a/.github/workflows/unit_tests_ubuntu.yaml +++ b/.github/workflows/unit_tests_ubuntu.yaml @@ -13,6 +13,7 @@ jobs: with: repository: PaNOSC-ViNYL/libpyvinyl ref: develop + path: libpyvinyl - name: Set up Python ${{ matrix.python-version }} uses: actions/setup-python@v2 @@ -29,8 +30,8 @@ jobs: - name: Checkout uses: actions/checkout@v2 with: - fetch-depth: 0 ref: ${{ env.BRANCH }} + path: mcstasscript - name: Install dependencies run: | diff --git a/.github/workflows/unit_tests_windows.yaml b/.github/workflows/unit_tests_windows.yaml index cbe47c46..226062b8 100644 --- a/.github/workflows/unit_tests_windows.yaml +++ b/.github/workflows/unit_tests_windows.yaml @@ -13,6 +13,7 @@ jobs: with: repository: PaNOSC-ViNYL/libpyvinyl ref: develop + path: libpyvinyl - name: Set up Python ${{ matrix.python-version }} uses: actions/setup-python@v2 @@ -31,6 +32,7 @@ jobs: with: fetch-depth: 0 ref: ${{ env.BRANCH }} + path: mcstasscript - name: Install dependencies run: | From 69dad371cd27c7da7e1837bf3ed26205506f08f1 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 15:13:05 +0100 Subject: [PATCH 219/403] Trying to cd into libpyvinyl and mcstasscript folders --- .github/workflows/unit_tests_ubuntu.yaml | 2 ++ .github/workflows/unit_tests_windows.yaml | 2 ++ 2 files changed, 4 insertions(+) diff --git a/.github/workflows/unit_tests_ubuntu.yaml b/.github/workflows/unit_tests_ubuntu.yaml index f7a40cc2..575142f6 100644 --- a/.github/workflows/unit_tests_ubuntu.yaml +++ b/.github/workflows/unit_tests_ubuntu.yaml @@ -22,6 +22,7 @@ jobs: - name: Install dependencies (libpyvinyl) run: | + cd libpyvinyl python -m pip install --upgrade pip pip install -r requirements.txt pip install -e . @@ -35,6 +36,7 @@ jobs: - name: Install dependencies run: | + cd mcstasscript python -m pip install --upgrade pip pip install -r requirements.txt pip install -e . diff --git a/.github/workflows/unit_tests_windows.yaml b/.github/workflows/unit_tests_windows.yaml index 226062b8..1ea86157 100644 --- a/.github/workflows/unit_tests_windows.yaml +++ b/.github/workflows/unit_tests_windows.yaml @@ -22,6 +22,7 @@ jobs: - name: Install dependencies (libpyvinyl) run: | + cd libpyvinyl python -m pip install --upgrade pip pip install -r requirements.txt pip install -e . @@ -36,6 +37,7 @@ jobs: - name: Install dependencies run: | + cd mcstasscript python -m pip install --upgrade pip pip install -r requirements.txt pip install -e . From 9c753b76f8a37da9be226f0f2feb4e369dc2f7f1 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 15:20:31 +0100 Subject: [PATCH 220/403] Changed directory structure of workflows. Now only libpyvinyl is in a folder. --- .github/workflows/unit_tests_mac.yaml | 3 +-- .github/workflows/unit_tests_ubuntu.yaml | 2 -- .github/workflows/unit_tests_windows.yaml | 3 --- 3 files changed, 1 insertion(+), 7 deletions(-) diff --git a/.github/workflows/unit_tests_mac.yaml b/.github/workflows/unit_tests_mac.yaml index 72d310c9..1a584ad9 100644 --- a/.github/workflows/unit_tests_mac.yaml +++ b/.github/workflows/unit_tests_mac.yaml @@ -22,6 +22,7 @@ jobs: - name: Install dependencies (libpyvinyl) run: | + cd libpyvinyl python -m pip install --upgrade pip pip install -r requirements.txt pip install -e . @@ -30,9 +31,7 @@ jobs: - name: Checkout uses: actions/checkout@v2 with: - fetch-depth: 0 ref: ${{ env.BRANCH }} - path: mcstasscript - name: Install dependencies run: | diff --git a/.github/workflows/unit_tests_ubuntu.yaml b/.github/workflows/unit_tests_ubuntu.yaml index 575142f6..4741b7ef 100644 --- a/.github/workflows/unit_tests_ubuntu.yaml +++ b/.github/workflows/unit_tests_ubuntu.yaml @@ -32,11 +32,9 @@ jobs: uses: actions/checkout@v2 with: ref: ${{ env.BRANCH }} - path: mcstasscript - name: Install dependencies run: | - cd mcstasscript python -m pip install --upgrade pip pip install -r requirements.txt pip install -e . diff --git a/.github/workflows/unit_tests_windows.yaml b/.github/workflows/unit_tests_windows.yaml index 1ea86157..630e6a0e 100644 --- a/.github/workflows/unit_tests_windows.yaml +++ b/.github/workflows/unit_tests_windows.yaml @@ -31,13 +31,10 @@ jobs: - name: Checkout uses: actions/checkout@v2 with: - fetch-depth: 0 ref: ${{ env.BRANCH }} - path: mcstasscript - name: Install dependencies run: | - cd mcstasscript python -m pip install --upgrade pip pip install -r requirements.txt pip install -e . From e915fb4b6ebba12cbbf741d99b03df8ba9bfb3fe Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Thu, 6 Jan 2022 15:27:27 +0100 Subject: [PATCH 221/403] Changed directory to avoid python setup getting requirements from mcstasscript before libpyvinyl is installed manually. --- .github/workflows/unit_tests_mac.yaml | 16 +++++++++------- .github/workflows/unit_tests_ubuntu.yaml | 16 +++++++++------- .github/workflows/unit_tests_windows.yaml | 16 +++++++++------- 3 files changed, 27 insertions(+), 21 deletions(-) diff --git a/.github/workflows/unit_tests_mac.yaml b/.github/workflows/unit_tests_mac.yaml index 1a584ad9..db26727b 100644 --- a/.github/workflows/unit_tests_mac.yaml +++ b/.github/workflows/unit_tests_mac.yaml @@ -8,6 +8,12 @@ jobs: runs-on: macos-latest steps: + - name: Checkout + uses: actions/checkout@v2 + with: + ref: ${{ env.BRANCH }} + path: mcstasscript + - name: Temporary developer libpyvinyl checkout uses: actions/checkout@v2 with: @@ -28,13 +34,9 @@ jobs: pip install -e . pip install pytest - - name: Checkout - uses: actions/checkout@v2 - with: - ref: ${{ env.BRANCH }} - - - name: Install dependencies + - name: Install dependencies (mcstasscript) run: | + cd mcstasscript python -m pip install --upgrade pip pip install -r requirements.txt pip install -e . @@ -44,4 +46,4 @@ jobs: run: find . - name: Run unit tests - run: python -m pytest mcstasscript/tests/ + run: python -m pytest mcstasscript/mcstasscript/tests/ diff --git a/.github/workflows/unit_tests_ubuntu.yaml b/.github/workflows/unit_tests_ubuntu.yaml index 4741b7ef..c14c2541 100644 --- a/.github/workflows/unit_tests_ubuntu.yaml +++ b/.github/workflows/unit_tests_ubuntu.yaml @@ -8,6 +8,12 @@ jobs: runs-on: ubuntu-latest steps: + - name: Checkout + uses: actions/checkout@v2 + with: + ref: ${{ env.BRANCH }} + path: mcstasscript + - name: Temporary developer libpyvinyl checkout uses: actions/checkout@v2 with: @@ -28,13 +34,9 @@ jobs: pip install -e . pip install pytest - - name: Checkout - uses: actions/checkout@v2 - with: - ref: ${{ env.BRANCH }} - - - name: Install dependencies + - name: Install dependencies (mcstasscript) run: | + cd mcstasscript python -m pip install --upgrade pip pip install -r requirements.txt pip install -e . @@ -44,4 +46,4 @@ jobs: run: tree . - name: Run unit tests - run: python -m pytest mcstasscript/tests/ + run: python -m pytest mcstasscript/mcstasscript/tests/ diff --git a/.github/workflows/unit_tests_windows.yaml b/.github/workflows/unit_tests_windows.yaml index 630e6a0e..55415dfa 100644 --- a/.github/workflows/unit_tests_windows.yaml +++ b/.github/workflows/unit_tests_windows.yaml @@ -8,6 +8,12 @@ jobs: runs-on: windows-latest steps: + - name: Checkout + uses: actions/checkout@v2 + with: + ref: ${{ env.BRANCH }} + path: mcstasscript + - name: Temporary developer libpyvinyl checkout uses: actions/checkout@v2 with: @@ -28,13 +34,9 @@ jobs: pip install -e . pip install pytest - - name: Checkout - uses: actions/checkout@v2 - with: - ref: ${{ env.BRANCH }} - - - name: Install dependencies + - name: Install dependencies (mcstasscript) run: | + cd mcstasscript python -m pip install --upgrade pip pip install -r requirements.txt pip install -e . @@ -44,4 +46,4 @@ jobs: run: tree . - name: Run unit tests - run: python -m pytest mcstasscript/tests/ + run: python -m pytest mcstasscript/mcstasscript/tests/ From 8de9af14806e79edf830626c2723160b41386774 Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Wed, 12 Jan 2022 15:26:35 +0100 Subject: [PATCH 222/403] Started sphinx documentation Added show_variables method to instrument object Made sure NameError is raised if trying to declare a variable with a name that was already used. --- docs/Makefile | 20 + docs/make.bat | 35 + .../mcstasscript.data.data.McStasData.rst | 29 + ...cstasscript.data.data.McStasDataBinned.rst | 29 + ...mcstasscript.data.data.McStasDataEvent.rst | 29 + .../mcstasscript.data.data.McStasMetaData.rst | 28 + ...stasscript.data.data.McStasPlotOptions.rst | 24 + .../_autosummary/mcstasscript.data.data.rst | 35 + .../source/_autosummary/mcstasscript.data.rst | 32 + ....helper.component_reader.ComponentInfo.rst | 23 + ...elper.component_reader.ComponentReader.rst | 29 + .../mcstasscript.helper.component_reader.rst | 32 + ...mcstasscript.helper.formatting.bcolors.rst | 36 + ...pt.helper.formatting.is_legal_filename.rst | 6 + ...t.helper.formatting.is_legal_parameter.rst | 6 + .../mcstasscript.helper.formatting.rst | 39 + ...ript.helper.managed_mcrun.ManagedMcrun.rst | 25 + ...ipt.helper.managed_mcrun.load_metadata.rst | 6 + ...ript.helper.managed_mcrun.load_monitor.rst | 6 + ...ript.helper.managed_mcrun.load_results.rst | 6 + .../mcstasscript.helper.managed_mcrun.rst | 40 + ...script.helper.mcstas_objects.Component.rst | 44 + ....helper.mcstas_objects.DeclareVariable.rst | 24 + ...lper.mcstas_objects.ParameterContainer.rst | 34 + ...elper.mcstas_objects.ParameterVariable.rst | 38 + .../mcstasscript.helper.mcstas_objects.rst | 34 + .../mcstasscript.helper.plot_helper.rst | 23 + .../_autosummary/mcstasscript.helper.rst | 36 + ....instr_reader.control.InstrumentReader.rst | 26 + .../mcstasscript.instr_reader.control.rst | 31 + ...nstr_reader.read_declare.DeclareReader.rst | 25 + ...mcstasscript.instr_reader.read_declare.rst | 31 + ...eader.read_definition.DefinitionReader.rst | 25 + ...tasscript.instr_reader.read_definition.rst | 31 + ...nstr_reader.read_finally.FinallyReader.rst | 25 + ...mcstasscript.instr_reader.read_finally.rst | 31 + ...eader.read_initialize.InitializeReader.rst | 25 + ...tasscript.instr_reader.read_initialize.rst | 31 + ...pt.instr_reader.read_trace.TraceReader.rst | 26 + .../mcstasscript.instr_reader.read_trace.rst | 31 + .../mcstasscript.instr_reader.rst | 38 + ...script.instr_reader.util.SectionReader.rst | 24 + .../mcstasscript.instr_reader.util.rst | 31 + .../mcstasscript.integration_tests.rst | 33 + ...sts.test_complex_instrument.FakeChange.rst | 23 + ...mplex_instrument.TestComplexInstrument.rst | 98 ++ ...egration_tests.test_complex_instrument.rst | 39 + ...ex_instrument.setup_complex_instrument.rst | 6 + ...simple_instrument.TestSimpleInstrument.rst | 101 ++ ...tegration_tests.test_simple_instrument.rst | 40 + ...ple_instrument.setup_simple_instrument.rst | 6 + ...ent.setup_simple_instrument_input_path.rst | 6 + ...nstrument.setup_simple_slit_instrument.rst | 6 + ...cript.interface.functions.Configurator.rst | 28 + ...asscript.interface.functions.load_data.rst | 6 + ...ript.interface.functions.load_metadata.rst | 6 + ...cript.interface.functions.load_monitor.rst | 6 + ....interface.functions.name_plot_options.rst | 6 + ...script.interface.functions.name_search.rst | 6 + .../mcstasscript.interface.functions.rst | 42 + ...tasscript.interface.instr.McCode_instr.rst | 76 + ...tasscript.interface.instr.McStas_instr.rst | 76 + ...sscript.interface.instr.McXtrace_instr.rst | 76 + .../mcstasscript.interface.instr.rst | 33 + ...stasscript.interface.plotter.interface.rst | 6 + ...cript.interface.plotter.make_animation.rst | 6 + ...stasscript.interface.plotter.make_plot.rst | 6 + ...script.interface.plotter.make_sub_plot.rst | 6 + .../mcstasscript.interface.plotter.rst | 33 + ...tasscript.interface.reader.McStas_file.rst | 25 + .../mcstasscript.interface.reader.rst | 31 + .../_autosummary/mcstasscript.interface.rst | 35 + ...erface.plot_interface.ColormapDropdown.rst | 26 + ...b_interface.plot_interface.LogCheckbox.rst | 25 + ...terface.plot_interface.MonitorDropdown.rst | 26 + ...erface.plot_interface.OrdersOfMagField.rst | 25 + ...interface.plot_interface.PlotInterface.rst | 31 + ...stasscript.jb_interface.plot_interface.rst | 35 + .../mcstasscript.jb_interface.rst | 34 + ...e.simulation_interface.ParameterWidget.rst | 25 + ...face.simulation_interface.SimInterface.rst | 34 + ...nterface.simulation_interface.add_data.rst | 6 + ...ript.jb_interface.simulation_interface.rst | 39 + ..._interface.widget_helpers.HiddenPrints.rst | 23 + ...e.widget_helpers.get_parameter_default.rst | 6 + ...e.widget_helpers.parameter_has_default.rst | 6 + ...stasscript.jb_interface.widget_helpers.rst | 39 + docs/source/_autosummary/mcstasscript.rst | 38 + ....tests.helpers_for_tests.WorkInTestDir.rst | 23 + .../mcstasscript.tests.helpers_for_tests.rst | 31 + .../_autosummary/mcstasscript.tests.rst | 52 + ...st_ComponentReader.TestComponentReader.rst | 115 ++ ...cstasscript.tests.test_ComponentReader.rst | 39 + ...ComponentReader.setup_component_reader.rst | 6 + ...ader.setup_component_reader_input_path.rst | 6 + ...sts.test_Configurator.TestConfigurator.rst | 104 ++ .../mcstasscript.tests.test_Configurator.rst | 39 + ...s.test_Configurator.setup_configurator.rst | 6 + ....test_Configurator.setup_expected_file.rst | 6 + ...ript.tests.test_Instr.TestMcStas_instr.rst | 163 ++ .../mcstasscript.tests.test_Instr.rst | 50 + ...t.tests.test_Instr.setup_instr_no_path.rst | 6 + ...tests.test_Instr.setup_instr_root_path.rst | 6 + ...test_Instr.setup_instr_with_input_path.rst | 6 + ...r.setup_instr_with_input_path_relative.rst | 6 + ...tests.test_Instr.setup_instr_with_path.rst | 6 + ...tests.test_Instr.setup_populated_instr.rst | 6 + ....setup_populated_instr_with_dummy_path.rst | 6 + ...etup_populated_with_some_options_instr.rst | 6 + ...test_Instr.setup_populated_x_ray_instr.rst | 6 + ..._populated_x_ray_instr_with_dummy_path.rst | 6 + ...s.test_Instr.setup_x_ray_instr_no_path.rst | 6 + ...test_Instr.setup_x_ray_instr_root_path.rst | 6 + ...test_Instr.setup_x_ray_instr_with_path.rst | 6 + ...ests.test_Instr_reader.TestInstrReader.rst | 111 ++ ...ipt.tests.test_Instr_reader.blockPrint.rst | 6 + ...pt.tests.test_Instr_reader.enablePrint.rst | 6 + .../mcstasscript.tests.test_Instr_reader.rst | 42 + ....tests.test_Instr_reader.set_dummy_dir.rst | 6 + ...tests.test_Instr_reader.setup_standard.rst | 6 + ...Instr_reader.setup_standard_auto_instr.rst | 6 + ...sts.test_ManagedMcrun.TestManagedMcrun.rst | 117 ++ ....test_ManagedMcrun.Test_load_functions.rst | 102 ++ .../mcstasscript.tests.test_ManagedMcrun.rst | 32 + ...t.tests.test_McStasData.TestMcStasData.rst | 109 ++ .../mcstasscript.tests.test_McStasData.rst | 41 + ...StasData.set_dummy_McStasDataBinned_1d.rst | 6 + ...StasData.set_dummy_McStasDataBinned_2d.rst | 6 + ...McStasData.set_dummy_MetaDataBinned_1d.rst | 6 + ...McStasData.set_dummy_MetaDataBinned_2d.rst | 6 + ...test_McStasMetaData.TestMcStasMetaData.rst | 105 ++ ...mcstasscript.tests.test_McStasMetaData.rst | 31 + ...cStasPlotOptions.TestMcStasPlotOptions.rst | 120 ++ ...tasscript.tests.test_McStasPlotOptions.rst | 31 + ....tests.test_Plotter.TestPlotterHelpers.rst | 128 ++ ..._Plotter.get_dummy_McStasDataBinned_1d.rst | 6 + ..._Plotter.get_dummy_McStasDataBinned_2d.rst | 6 + ...st_Plotter.get_dummy_MetaDataBinned_1d.rst | 6 + ...st_Plotter.get_dummy_MetaDataBinned_2d.rst | 6 + .../mcstasscript.tests.test_Plotter.rst | 41 + ...ript.tests.test_add_data.Test_add_data.rst | 101 ++ .../mcstasscript.tests.test_add_data.rst | 41 + ...add_data.set_dummy_McStasDataBinned_1d.rst | 6 + ...add_data.set_dummy_McStasDataBinned_2d.rst | 6 + ...t_add_data.set_dummy_MetaDataBinned_1d.rst | 6 + ...t_add_data.set_dummy_MetaDataBinned_2d.rst | 6 + ...ipt.tests.test_component.TestComponent.rst | 127 ++ .../mcstasscript.tests.test_component.rst | 40 + ...component.setup_Component_all_keywords.rst | 6 + ...est_component.setup_Component_relative.rst | 6 + ...ponent.setup_Component_with_parameters.rst | 6 + ..._declare_variable.Test_DeclareVariable.rst | 105 ++ ...stasscript.tests.test_declare_variable.rst | 31 + ...sts.test_dump_and_load.TestDumpAndLoad.rst | 98 ++ .../mcstasscript.tests.test_dump_and_load.rst | 50 + ...test_dump_and_load.setup_instr_no_path.rst | 6 + ...st_dump_and_load.setup_instr_root_path.rst | 6 + ...p_and_load.setup_instr_with_input_path.rst | 6 + ...d.setup_instr_with_input_path_relative.rst | 6 + ...st_dump_and_load.setup_instr_with_path.rst | 6 + ...st_dump_and_load.setup_populated_instr.rst | 6 + ....setup_populated_instr_with_dummy_path.rst | 6 + ...etup_populated_with_some_options_instr.rst | 6 + ...p_and_load.setup_populated_x_ray_instr.rst | 6 + ..._populated_x_ray_instr_with_dummy_path.rst | 6 + ...ump_and_load.setup_x_ray_instr_no_path.rst | 6 + ...p_and_load.setup_x_ray_instr_root_path.rst | 6 + ...p_and_load.setup_x_ray_instr_with_path.rst | 6 + ...t.tests.test_formatting.TestFormatting.rst | 104 ++ .../mcstasscript.tests.test_formatting.rst | 31 + ...pt.tests.test_functions.Test_load_data.rst | 97 ++ ...ests.test_functions.Test_load_metadata.rst | 97 ++ ...tests.test_functions.Test_load_monitor.rst | 97 ++ ....test_functions.Test_name_plot_options.rst | 98 ++ ....tests.test_functions.Test_name_search.rst | 103 ++ .../mcstasscript.tests.test_functions.rst | 47 + ...unctions.set_dummy_McStasDataBinned_1d.rst | 6 + ...unctions.set_dummy_McStasDataBinned_2d.rst | 6 + ..._functions.set_dummy_MetaDataBinned_1d.rst | 6 + ..._functions.set_dummy_MetaDataBinned_2d.rst | 6 + ....test_functions.setup_McStasData_array.rst | 6 + ...unctions.setup_McStasData_array_repeat.rst | 6 + ...ameter_variable.Test_ParameterVariable.rst | 106 ++ ...asscript.tests.test_parameter_variable.rst | 31 + ...t.tests.test_plot_interface.FakeChange.rst | 23 + ....test_plot_interface.TestPlotInterface.rst | 104 ++ ...pt.tests.test_plot_interface.fake_data.rst | 6 + ...mcstasscript.tests.test_plot_interface.rst | 43 + ...nterface.set_dummy_McStasDataBinned_1d.rst | 6 + ...nterface.set_dummy_McStasDataBinned_2d.rst | 6 + ..._interface.set_dummy_MetaDataBinned_1d.rst | 6 + ..._interface.set_dummy_MetaDataBinned_2d.rst | 6 + ...s.test_simulation_interface.FakeChange.rst | 23 + ...tion_interface.TestSimulationInterface.rst | 103 ++ ...script.tests.test_simulation_interface.rst | 42 + ...interface.setup_instr_root_path_McStas.rst | 6 + ...terface.setup_instr_root_path_McXtrace.rst | 6 + ...interface.setup_populated_instr_McStas.rst | 6 + ...terface.setup_populated_instr_McXtrace.rst | 6 + ....test_widget_helpers.TestWidgetHelpers.rst | 103 ++ ...mcstasscript.tests.test_widget_helpers.rst | 31 + .../mcstasscript.tests.utilities.rst | 30 + ...asscript.tests.utilities.work_dir_test.rst | 6 + docs/source/_templates/class.rst | 29 + .../_templates/custom-class-template.rst | 30 + .../_templates/custom-module-template.rst | 66 + docs/source/_templates/module.rst | 60 + docs/source/conf.py | 82 + .../source/getting_started/installation.ipynb | 149 ++ docs/source/getting_started/overview.ipynb | 96 ++ docs/source/getting_started/quick_start.ipynb | 590 +++++++ docs/source/index.rst | 62 + .../McStasScript_tutorial_1_the_basics.ipynb | 1059 ++++++++++++ .../McStasScript_tutorial_2_SPLIT.ipynb | 315 ++++ ...tasScript_tutorial_3_EXTEND_and_WHEN.ipynb | 263 +++ .../McStasScript_tutorial_4_JUMP.ipynb | 281 ++++ ...n_tutorial_1_processes_and_materials.ipynb | 1151 +++++++++++++ .../tutorial/Union_tutorial_2_geometry.ipynb | 492 ++++++ .../tutorial/Union_tutorial_3_loggers.ipynb | 591 +++++++ .../Union_tutorial_4_conditionals.ipynb | 539 ++++++ .../tutorial/Union_tutorial_5_masks.ipynb | 374 +++++ ...ial_6_Exit_and_number_of_activations.ipynb | 399 +++++ .../Union_tutorial_7_Tagging_history.ipynb | 1487 +++++++++++++++++ docs/source/tutorial/data_folder/note.txt | 1 + docs/source/tutorial/run_folder/note.txt | 2 + docs/source/user_guide/component_object.ipynb | 808 +++++++++ .../source/user_guide/instrument_object.ipynb | 819 +++++++++ .../source/user_guide/instrument_reader.ipynb | 42 + .../user_guide/parameters_and_variables.ipynb | 506 ++++++ docs/source/user_guide/plotting.ipynb | 42 + 230 files changed, 16727 insertions(+) create mode 100644 docs/Makefile create mode 100644 docs/make.bat create mode 100644 docs/source/_autosummary/mcstasscript.data.data.McStasData.rst create mode 100644 docs/source/_autosummary/mcstasscript.data.data.McStasDataBinned.rst create mode 100644 docs/source/_autosummary/mcstasscript.data.data.McStasDataEvent.rst create mode 100644 docs/source/_autosummary/mcstasscript.data.data.McStasMetaData.rst create mode 100644 docs/source/_autosummary/mcstasscript.data.data.McStasPlotOptions.rst create mode 100644 docs/source/_autosummary/mcstasscript.data.data.rst create mode 100644 docs/source/_autosummary/mcstasscript.data.rst create mode 100644 docs/source/_autosummary/mcstasscript.helper.component_reader.ComponentInfo.rst create mode 100644 docs/source/_autosummary/mcstasscript.helper.component_reader.ComponentReader.rst create mode 100644 docs/source/_autosummary/mcstasscript.helper.component_reader.rst create mode 100644 docs/source/_autosummary/mcstasscript.helper.formatting.bcolors.rst create mode 100644 docs/source/_autosummary/mcstasscript.helper.formatting.is_legal_filename.rst create mode 100644 docs/source/_autosummary/mcstasscript.helper.formatting.is_legal_parameter.rst create mode 100644 docs/source/_autosummary/mcstasscript.helper.formatting.rst create mode 100644 docs/source/_autosummary/mcstasscript.helper.managed_mcrun.ManagedMcrun.rst create mode 100644 docs/source/_autosummary/mcstasscript.helper.managed_mcrun.load_metadata.rst create mode 100644 docs/source/_autosummary/mcstasscript.helper.managed_mcrun.load_monitor.rst create mode 100644 docs/source/_autosummary/mcstasscript.helper.managed_mcrun.load_results.rst create mode 100644 docs/source/_autosummary/mcstasscript.helper.managed_mcrun.rst create mode 100644 docs/source/_autosummary/mcstasscript.helper.mcstas_objects.Component.rst create mode 100644 docs/source/_autosummary/mcstasscript.helper.mcstas_objects.DeclareVariable.rst create mode 100644 docs/source/_autosummary/mcstasscript.helper.mcstas_objects.ParameterContainer.rst create mode 100644 docs/source/_autosummary/mcstasscript.helper.mcstas_objects.ParameterVariable.rst create mode 100644 docs/source/_autosummary/mcstasscript.helper.mcstas_objects.rst create mode 100644 docs/source/_autosummary/mcstasscript.helper.plot_helper.rst create mode 100644 docs/source/_autosummary/mcstasscript.helper.rst create mode 100644 docs/source/_autosummary/mcstasscript.instr_reader.control.InstrumentReader.rst create mode 100644 docs/source/_autosummary/mcstasscript.instr_reader.control.rst create mode 100644 docs/source/_autosummary/mcstasscript.instr_reader.read_declare.DeclareReader.rst create mode 100644 docs/source/_autosummary/mcstasscript.instr_reader.read_declare.rst create mode 100644 docs/source/_autosummary/mcstasscript.instr_reader.read_definition.DefinitionReader.rst create mode 100644 docs/source/_autosummary/mcstasscript.instr_reader.read_definition.rst create mode 100644 docs/source/_autosummary/mcstasscript.instr_reader.read_finally.FinallyReader.rst create mode 100644 docs/source/_autosummary/mcstasscript.instr_reader.read_finally.rst create mode 100644 docs/source/_autosummary/mcstasscript.instr_reader.read_initialize.InitializeReader.rst create mode 100644 docs/source/_autosummary/mcstasscript.instr_reader.read_initialize.rst create mode 100644 docs/source/_autosummary/mcstasscript.instr_reader.read_trace.TraceReader.rst create mode 100644 docs/source/_autosummary/mcstasscript.instr_reader.read_trace.rst create mode 100644 docs/source/_autosummary/mcstasscript.instr_reader.rst create mode 100644 docs/source/_autosummary/mcstasscript.instr_reader.util.SectionReader.rst create mode 100644 docs/source/_autosummary/mcstasscript.instr_reader.util.rst create mode 100644 docs/source/_autosummary/mcstasscript.integration_tests.rst create mode 100644 docs/source/_autosummary/mcstasscript.integration_tests.test_complex_instrument.FakeChange.rst create mode 100644 docs/source/_autosummary/mcstasscript.integration_tests.test_complex_instrument.TestComplexInstrument.rst create mode 100644 docs/source/_autosummary/mcstasscript.integration_tests.test_complex_instrument.rst create mode 100644 docs/source/_autosummary/mcstasscript.integration_tests.test_complex_instrument.setup_complex_instrument.rst create mode 100644 docs/source/_autosummary/mcstasscript.integration_tests.test_simple_instrument.TestSimpleInstrument.rst create mode 100644 docs/source/_autosummary/mcstasscript.integration_tests.test_simple_instrument.rst create mode 100644 docs/source/_autosummary/mcstasscript.integration_tests.test_simple_instrument.setup_simple_instrument.rst create mode 100644 docs/source/_autosummary/mcstasscript.integration_tests.test_simple_instrument.setup_simple_instrument_input_path.rst create mode 100644 docs/source/_autosummary/mcstasscript.integration_tests.test_simple_instrument.setup_simple_slit_instrument.rst create mode 100644 docs/source/_autosummary/mcstasscript.interface.functions.Configurator.rst create mode 100644 docs/source/_autosummary/mcstasscript.interface.functions.load_data.rst create mode 100644 docs/source/_autosummary/mcstasscript.interface.functions.load_metadata.rst create mode 100644 docs/source/_autosummary/mcstasscript.interface.functions.load_monitor.rst create mode 100644 docs/source/_autosummary/mcstasscript.interface.functions.name_plot_options.rst create mode 100644 docs/source/_autosummary/mcstasscript.interface.functions.name_search.rst create mode 100644 docs/source/_autosummary/mcstasscript.interface.functions.rst create mode 100644 docs/source/_autosummary/mcstasscript.interface.instr.McCode_instr.rst create mode 100644 docs/source/_autosummary/mcstasscript.interface.instr.McStas_instr.rst create mode 100644 docs/source/_autosummary/mcstasscript.interface.instr.McXtrace_instr.rst create mode 100644 docs/source/_autosummary/mcstasscript.interface.instr.rst create mode 100644 docs/source/_autosummary/mcstasscript.interface.plotter.interface.rst create mode 100644 docs/source/_autosummary/mcstasscript.interface.plotter.make_animation.rst create mode 100644 docs/source/_autosummary/mcstasscript.interface.plotter.make_plot.rst create mode 100644 docs/source/_autosummary/mcstasscript.interface.plotter.make_sub_plot.rst create mode 100644 docs/source/_autosummary/mcstasscript.interface.plotter.rst create mode 100644 docs/source/_autosummary/mcstasscript.interface.reader.McStas_file.rst create mode 100644 docs/source/_autosummary/mcstasscript.interface.reader.rst create mode 100644 docs/source/_autosummary/mcstasscript.interface.rst create mode 100644 docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.ColormapDropdown.rst create mode 100644 docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.LogCheckbox.rst create mode 100644 docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.MonitorDropdown.rst create mode 100644 docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.OrdersOfMagField.rst create mode 100644 docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.PlotInterface.rst create mode 100644 docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.rst create mode 100644 docs/source/_autosummary/mcstasscript.jb_interface.rst create mode 100644 docs/source/_autosummary/mcstasscript.jb_interface.simulation_interface.ParameterWidget.rst create mode 100644 docs/source/_autosummary/mcstasscript.jb_interface.simulation_interface.SimInterface.rst create mode 100644 docs/source/_autosummary/mcstasscript.jb_interface.simulation_interface.add_data.rst create mode 100644 docs/source/_autosummary/mcstasscript.jb_interface.simulation_interface.rst create mode 100644 docs/source/_autosummary/mcstasscript.jb_interface.widget_helpers.HiddenPrints.rst create mode 100644 docs/source/_autosummary/mcstasscript.jb_interface.widget_helpers.get_parameter_default.rst create mode 100644 docs/source/_autosummary/mcstasscript.jb_interface.widget_helpers.parameter_has_default.rst create mode 100644 docs/source/_autosummary/mcstasscript.jb_interface.widget_helpers.rst create mode 100644 docs/source/_autosummary/mcstasscript.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.helpers_for_tests.WorkInTestDir.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.helpers_for_tests.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_ComponentReader.TestComponentReader.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_ComponentReader.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_ComponentReader.setup_component_reader.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_ComponentReader.setup_component_reader_input_path.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Configurator.TestConfigurator.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Configurator.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Configurator.setup_configurator.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Configurator.setup_expected_file.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Instr.TestMcStas_instr.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Instr.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_instr_no_path.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_instr_root_path.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_instr_with_input_path.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_instr_with_input_path_relative.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_instr_with_path.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_populated_instr.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_populated_instr_with_dummy_path.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_populated_with_some_options_instr.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_populated_x_ray_instr.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_populated_x_ray_instr_with_dummy_path.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_x_ray_instr_no_path.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_x_ray_instr_root_path.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_x_ray_instr_with_path.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.TestInstrReader.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.blockPrint.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.enablePrint.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.set_dummy_dir.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.setup_standard.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.setup_standard_auto_instr.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_ManagedMcrun.TestManagedMcrun.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_ManagedMcrun.Test_load_functions.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_ManagedMcrun.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_McStasData.TestMcStasData.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_McStasData.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_McStasData.set_dummy_McStasDataBinned_1d.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_McStasData.set_dummy_McStasDataBinned_2d.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_McStasData.set_dummy_MetaDataBinned_1d.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_McStasData.set_dummy_MetaDataBinned_2d.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_McStasMetaData.TestMcStasMetaData.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_McStasMetaData.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_McStasPlotOptions.TestMcStasPlotOptions.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_McStasPlotOptions.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Plotter.TestPlotterHelpers.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Plotter.get_dummy_McStasDataBinned_1d.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Plotter.get_dummy_McStasDataBinned_2d.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Plotter.get_dummy_MetaDataBinned_1d.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Plotter.get_dummy_MetaDataBinned_2d.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_Plotter.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_add_data.Test_add_data.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_add_data.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_add_data.set_dummy_McStasDataBinned_1d.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_add_data.set_dummy_McStasDataBinned_2d.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_add_data.set_dummy_MetaDataBinned_1d.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_add_data.set_dummy_MetaDataBinned_2d.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_component.TestComponent.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_component.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_component.setup_Component_all_keywords.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_component.setup_Component_relative.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_component.setup_Component_with_parameters.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_declare_variable.Test_DeclareVariable.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_declare_variable.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.TestDumpAndLoad.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_instr_no_path.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_instr_root_path.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_instr_with_input_path.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_instr_with_input_path_relative.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_instr_with_path.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_populated_instr.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_populated_instr_with_dummy_path.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_populated_with_some_options_instr.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_populated_x_ray_instr.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_populated_x_ray_instr_with_dummy_path.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_x_ray_instr_no_path.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_x_ray_instr_root_path.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_x_ray_instr_with_path.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_formatting.TestFormatting.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_formatting.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_functions.Test_load_data.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_functions.Test_load_metadata.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_functions.Test_load_monitor.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_functions.Test_name_plot_options.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_functions.Test_name_search.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_functions.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_functions.set_dummy_McStasDataBinned_1d.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_functions.set_dummy_McStasDataBinned_2d.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_functions.set_dummy_MetaDataBinned_1d.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_functions.set_dummy_MetaDataBinned_2d.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_functions.setup_McStasData_array.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_functions.setup_McStasData_array_repeat.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_parameter_variable.Test_ParameterVariable.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_parameter_variable.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_plot_interface.FakeChange.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_plot_interface.TestPlotInterface.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_plot_interface.fake_data.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_plot_interface.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_plot_interface.set_dummy_McStasDataBinned_1d.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_plot_interface.set_dummy_McStasDataBinned_2d.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_plot_interface.set_dummy_MetaDataBinned_1d.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_plot_interface.set_dummy_MetaDataBinned_2d.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.FakeChange.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.TestSimulationInterface.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.setup_instr_root_path_McStas.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.setup_instr_root_path_McXtrace.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.setup_populated_instr_McStas.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.setup_populated_instr_McXtrace.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_widget_helpers.TestWidgetHelpers.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.test_widget_helpers.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.utilities.rst create mode 100644 docs/source/_autosummary/mcstasscript.tests.utilities.work_dir_test.rst create mode 100644 docs/source/_templates/class.rst create mode 100644 docs/source/_templates/custom-class-template.rst create mode 100644 docs/source/_templates/custom-module-template.rst create mode 100644 docs/source/_templates/module.rst create mode 100644 docs/source/conf.py create mode 100644 docs/source/getting_started/installation.ipynb create mode 100644 docs/source/getting_started/overview.ipynb create mode 100644 docs/source/getting_started/quick_start.ipynb create mode 100644 docs/source/index.rst create mode 100644 docs/source/tutorial/McStasScript_tutorial_1_the_basics.ipynb create mode 100644 docs/source/tutorial/McStasScript_tutorial_2_SPLIT.ipynb create mode 100644 docs/source/tutorial/McStasScript_tutorial_3_EXTEND_and_WHEN.ipynb create mode 100644 docs/source/tutorial/McStasScript_tutorial_4_JUMP.ipynb create mode 100644 docs/source/tutorial/Union_tutorial_1_processes_and_materials.ipynb create mode 100644 docs/source/tutorial/Union_tutorial_2_geometry.ipynb create mode 100644 docs/source/tutorial/Union_tutorial_3_loggers.ipynb create mode 100644 docs/source/tutorial/Union_tutorial_4_conditionals.ipynb create mode 100644 docs/source/tutorial/Union_tutorial_5_masks.ipynb create mode 100644 docs/source/tutorial/Union_tutorial_6_Exit_and_number_of_activations.ipynb create mode 100644 docs/source/tutorial/Union_tutorial_7_Tagging_history.ipynb create mode 100644 docs/source/tutorial/data_folder/note.txt create mode 100644 docs/source/tutorial/run_folder/note.txt create mode 100644 docs/source/user_guide/component_object.ipynb create mode 100644 docs/source/user_guide/instrument_object.ipynb create mode 100644 docs/source/user_guide/instrument_reader.ipynb create mode 100644 docs/source/user_guide/parameters_and_variables.ipynb create mode 100644 docs/source/user_guide/plotting.ipynb diff --git a/docs/Makefile b/docs/Makefile new file mode 100644 index 00000000..d0c3cbf1 --- /dev/null +++ b/docs/Makefile @@ -0,0 +1,20 @@ +# Minimal makefile for Sphinx documentation +# + +# You can set these variables from the command line, and also +# from the environment for the first two. +SPHINXOPTS ?= +SPHINXBUILD ?= sphinx-build +SOURCEDIR = source +BUILDDIR = build + +# Put it first so that "make" without argument is like "make help". +help: + @$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) + +.PHONY: help Makefile + +# Catch-all target: route all unknown targets to Sphinx using the new +# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS). +%: Makefile + @$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O) diff --git a/docs/make.bat b/docs/make.bat new file mode 100644 index 00000000..6fcf05b4 --- /dev/null +++ b/docs/make.bat @@ -0,0 +1,35 @@ +@ECHO OFF + +pushd %~dp0 + +REM Command file for Sphinx documentation + +if "%SPHINXBUILD%" == "" ( + set SPHINXBUILD=sphinx-build +) +set SOURCEDIR=source +set BUILDDIR=build + +if "%1" == "" goto help + +%SPHINXBUILD% >NUL 2>NUL +if errorlevel 9009 ( + echo. + echo.The 'sphinx-build' command was not found. Make sure you have Sphinx + echo.installed, then set the SPHINXBUILD environment variable to point + echo.to the full path of the 'sphinx-build' executable. Alternatively you + echo.may add the Sphinx directory to PATH. + echo. + echo.If you don't have Sphinx installed, grab it from + echo.https://www.sphinx-doc.org/ + exit /b 1 +) + +%SPHINXBUILD% -M %1 %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O% +goto end + +:help +%SPHINXBUILD% -M help %SOURCEDIR% %BUILDDIR% %SPHINXOPTS% %O% + +:end +popd diff --git a/docs/source/_autosummary/mcstasscript.data.data.McStasData.rst b/docs/source/_autosummary/mcstasscript.data.data.McStasData.rst new file mode 100644 index 00000000..9a95b288 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.data.data.McStasData.rst @@ -0,0 +1,29 @@ +mcstasscript.data.data.McStasData +================================= + +.. currentmodule:: mcstasscript.data.data + +.. autoclass:: McStasData + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~McStasData.__init__ + ~McStasData.get_data_location + ~McStasData.set_data_location + ~McStasData.set_plot_options + ~McStasData.set_title + ~McStasData.set_xlabel + ~McStasData.set_ylabel + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.data.data.McStasDataBinned.rst b/docs/source/_autosummary/mcstasscript.data.data.McStasDataBinned.rst new file mode 100644 index 00000000..71b2c76a --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.data.data.McStasDataBinned.rst @@ -0,0 +1,29 @@ +mcstasscript.data.data.McStasDataBinned +======================================= + +.. currentmodule:: mcstasscript.data.data + +.. autoclass:: McStasDataBinned + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~McStasDataBinned.__init__ + ~McStasDataBinned.get_data_location + ~McStasDataBinned.set_data_location + ~McStasDataBinned.set_plot_options + ~McStasDataBinned.set_title + ~McStasDataBinned.set_xlabel + ~McStasDataBinned.set_ylabel + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.data.data.McStasDataEvent.rst b/docs/source/_autosummary/mcstasscript.data.data.McStasDataEvent.rst new file mode 100644 index 00000000..6984859d --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.data.data.McStasDataEvent.rst @@ -0,0 +1,29 @@ +mcstasscript.data.data.McStasDataEvent +====================================== + +.. currentmodule:: mcstasscript.data.data + +.. autoclass:: McStasDataEvent + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~McStasDataEvent.__init__ + ~McStasDataEvent.get_data_location + ~McStasDataEvent.set_data_location + ~McStasDataEvent.set_plot_options + ~McStasDataEvent.set_title + ~McStasDataEvent.set_xlabel + ~McStasDataEvent.set_ylabel + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.data.data.McStasMetaData.rst b/docs/source/_autosummary/mcstasscript.data.data.McStasMetaData.rst new file mode 100644 index 00000000..188a1b20 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.data.data.McStasMetaData.rst @@ -0,0 +1,28 @@ +mcstasscript.data.data.McStasMetaData +===================================== + +.. currentmodule:: mcstasscript.data.data + +.. autoclass:: McStasMetaData + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~McStasMetaData.__init__ + ~McStasMetaData.add_info + ~McStasMetaData.extract_info + ~McStasMetaData.set_title + ~McStasMetaData.set_xlabel + ~McStasMetaData.set_ylabel + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.data.data.McStasPlotOptions.rst b/docs/source/_autosummary/mcstasscript.data.data.McStasPlotOptions.rst new file mode 100644 index 00000000..b224de26 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.data.data.McStasPlotOptions.rst @@ -0,0 +1,24 @@ +mcstasscript.data.data.McStasPlotOptions +======================================== + +.. currentmodule:: mcstasscript.data.data + +.. autoclass:: McStasPlotOptions + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~McStasPlotOptions.__init__ + ~McStasPlotOptions.set_options + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.data.data.rst b/docs/source/_autosummary/mcstasscript.data.data.rst new file mode 100644 index 00000000..6c2fabdf --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.data.data.rst @@ -0,0 +1,35 @@ +mcstasscript.data.data +====================== + +.. automodule:: mcstasscript.data.data + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + McStasData + McStasDataBinned + McStasDataEvent + McStasMetaData + McStasPlotOptions + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.data.rst b/docs/source/_autosummary/mcstasscript.data.rst new file mode 100644 index 00000000..cc6e60e1 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.data.rst @@ -0,0 +1,32 @@ +mcstasscript.data +================= + +.. automodule:: mcstasscript.data + + + + + + + + + + + + + + + + + + + +.. rubric:: Modules + +.. autosummary:: + :toctree: + :template: custom-module-template.rst + :recursive: + + mcstasscript.data.data + diff --git a/docs/source/_autosummary/mcstasscript.helper.component_reader.ComponentInfo.rst b/docs/source/_autosummary/mcstasscript.helper.component_reader.ComponentInfo.rst new file mode 100644 index 00000000..8c5c4145 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.helper.component_reader.ComponentInfo.rst @@ -0,0 +1,23 @@ +mcstasscript.helper.component\_reader.ComponentInfo +=================================================== + +.. currentmodule:: mcstasscript.helper.component_reader + +.. autoclass:: ComponentInfo + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~ComponentInfo.__init__ + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.helper.component_reader.ComponentReader.rst b/docs/source/_autosummary/mcstasscript.helper.component_reader.ComponentReader.rst new file mode 100644 index 00000000..f675b66f --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.helper.component_reader.ComponentReader.rst @@ -0,0 +1,29 @@ +mcstasscript.helper.component\_reader.ComponentReader +===================================================== + +.. currentmodule:: mcstasscript.helper.component_reader + +.. autoclass:: ComponentReader + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~ComponentReader.__init__ + ~ComponentReader.correct_for_brackets + ~ComponentReader.load_all_components + ~ComponentReader.read_component_file + ~ComponentReader.read_name + ~ComponentReader.show_categories + ~ComponentReader.show_components_in_category + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.helper.component_reader.rst b/docs/source/_autosummary/mcstasscript.helper.component_reader.rst new file mode 100644 index 00000000..dde2cd53 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.helper.component_reader.rst @@ -0,0 +1,32 @@ +mcstasscript.helper.component\_reader +===================================== + +.. automodule:: mcstasscript.helper.component_reader + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + ComponentInfo + ComponentReader + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.helper.formatting.bcolors.rst b/docs/source/_autosummary/mcstasscript.helper.formatting.bcolors.rst new file mode 100644 index 00000000..2d0a6bbe --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.helper.formatting.bcolors.rst @@ -0,0 +1,36 @@ +mcstasscript.helper.formatting.bcolors +====================================== + +.. currentmodule:: mcstasscript.helper.formatting + +.. autoclass:: bcolors + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~bcolors.__init__ + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~bcolors.BOLD + ~bcolors.ENDC + ~bcolors.FAIL + ~bcolors.HEADER + ~bcolors.OKBLUE + ~bcolors.OKGREEN + ~bcolors.UNDERLINE + ~bcolors.WARNING + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.helper.formatting.is_legal_filename.rst b/docs/source/_autosummary/mcstasscript.helper.formatting.is_legal_filename.rst new file mode 100644 index 00000000..5a0a4c19 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.helper.formatting.is_legal_filename.rst @@ -0,0 +1,6 @@ +mcstasscript.helper.formatting.is\_legal\_filename +================================================== + +.. currentmodule:: mcstasscript.helper.formatting + +.. autofunction:: is_legal_filename \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.helper.formatting.is_legal_parameter.rst b/docs/source/_autosummary/mcstasscript.helper.formatting.is_legal_parameter.rst new file mode 100644 index 00000000..2f16d73c --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.helper.formatting.is_legal_parameter.rst @@ -0,0 +1,6 @@ +mcstasscript.helper.formatting.is\_legal\_parameter +=================================================== + +.. currentmodule:: mcstasscript.helper.formatting + +.. autofunction:: is_legal_parameter \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.helper.formatting.rst b/docs/source/_autosummary/mcstasscript.helper.formatting.rst new file mode 100644 index 00000000..cce17dcd --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.helper.formatting.rst @@ -0,0 +1,39 @@ +mcstasscript.helper.formatting +============================== + +.. automodule:: mcstasscript.helper.formatting + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + + is_legal_filename + is_legal_parameter + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + bcolors + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.helper.managed_mcrun.ManagedMcrun.rst b/docs/source/_autosummary/mcstasscript.helper.managed_mcrun.ManagedMcrun.rst new file mode 100644 index 00000000..f8cf9353 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.helper.managed_mcrun.ManagedMcrun.rst @@ -0,0 +1,25 @@ +mcstasscript.helper.managed\_mcrun.ManagedMcrun +=============================================== + +.. currentmodule:: mcstasscript.helper.managed_mcrun + +.. autoclass:: ManagedMcrun + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~ManagedMcrun.__init__ + ~ManagedMcrun.load_results + ~ManagedMcrun.run_simulation + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.helper.managed_mcrun.load_metadata.rst b/docs/source/_autosummary/mcstasscript.helper.managed_mcrun.load_metadata.rst new file mode 100644 index 00000000..b9847efd --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.helper.managed_mcrun.load_metadata.rst @@ -0,0 +1,6 @@ +mcstasscript.helper.managed\_mcrun.load\_metadata +================================================= + +.. currentmodule:: mcstasscript.helper.managed_mcrun + +.. autofunction:: load_metadata \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.helper.managed_mcrun.load_monitor.rst b/docs/source/_autosummary/mcstasscript.helper.managed_mcrun.load_monitor.rst new file mode 100644 index 00000000..2a4167a4 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.helper.managed_mcrun.load_monitor.rst @@ -0,0 +1,6 @@ +mcstasscript.helper.managed\_mcrun.load\_monitor +================================================ + +.. currentmodule:: mcstasscript.helper.managed_mcrun + +.. autofunction:: load_monitor \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.helper.managed_mcrun.load_results.rst b/docs/source/_autosummary/mcstasscript.helper.managed_mcrun.load_results.rst new file mode 100644 index 00000000..0b1ef42d --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.helper.managed_mcrun.load_results.rst @@ -0,0 +1,6 @@ +mcstasscript.helper.managed\_mcrun.load\_results +================================================ + +.. currentmodule:: mcstasscript.helper.managed_mcrun + +.. autofunction:: load_results \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.helper.managed_mcrun.rst b/docs/source/_autosummary/mcstasscript.helper.managed_mcrun.rst new file mode 100644 index 00000000..c4574f67 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.helper.managed_mcrun.rst @@ -0,0 +1,40 @@ +mcstasscript.helper.managed\_mcrun +================================== + +.. automodule:: mcstasscript.helper.managed_mcrun + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + + load_metadata + load_monitor + load_results + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + ManagedMcrun + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.helper.mcstas_objects.Component.rst b/docs/source/_autosummary/mcstasscript.helper.mcstas_objects.Component.rst new file mode 100644 index 00000000..9a47c11f --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.helper.mcstas_objects.Component.rst @@ -0,0 +1,44 @@ +mcstasscript.helper.mcstas\_objects.Component +============================================= + +.. currentmodule:: mcstasscript.helper.mcstas_objects + +.. autoclass:: Component + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~Component.__init__ + ~Component.append_EXTEND + ~Component.print_long + ~Component.print_long_deprecated + ~Component.print_short + ~Component.set_AT + ~Component.set_AT_RELATIVE + ~Component.set_GROUP + ~Component.set_JUMP + ~Component.set_RELATIVE + ~Component.set_ROTATED + ~Component.set_ROTATED_RELATIVE + ~Component.set_SPLIT + ~Component.set_WHEN + ~Component.set_c_code_after + ~Component.set_c_code_before + ~Component.set_comment + ~Component.set_keyword_input + ~Component.set_parameters + ~Component.show_parameters + ~Component.show_parameters_simple + ~Component.write_component + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.helper.mcstas_objects.DeclareVariable.rst b/docs/source/_autosummary/mcstasscript.helper.mcstas_objects.DeclareVariable.rst new file mode 100644 index 00000000..7e5d2526 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.helper.mcstas_objects.DeclareVariable.rst @@ -0,0 +1,24 @@ +mcstasscript.helper.mcstas\_objects.DeclareVariable +=================================================== + +.. currentmodule:: mcstasscript.helper.mcstas_objects + +.. autoclass:: DeclareVariable + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~DeclareVariable.__init__ + ~DeclareVariable.write_line + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.helper.mcstas_objects.ParameterContainer.rst b/docs/source/_autosummary/mcstasscript.helper.mcstas_objects.ParameterContainer.rst new file mode 100644 index 00000000..0c6a3c6b --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.helper.mcstas_objects.ParameterContainer.rst @@ -0,0 +1,34 @@ +mcstasscript.helper.mcstas\_objects.ParameterContainer +====================================================== + +.. currentmodule:: mcstasscript.helper.mcstas_objects + +.. autoclass:: ParameterContainer + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~ParameterContainer.__init__ + ~ParameterContainer.add + ~ParameterContainer.check_list_type + ~ParameterContainer.check_type + ~ParameterContainer.from_dict + ~ParameterContainer.from_json + ~ParameterContainer.import_parameters + ~ParameterContainer.new_parameter + ~ParameterContainer.print_indented + ~ParameterContainer.show_parameters + ~ParameterContainer.to_dict + ~ParameterContainer.to_json + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.helper.mcstas_objects.ParameterVariable.rst b/docs/source/_autosummary/mcstasscript.helper.mcstas_objects.ParameterVariable.rst new file mode 100644 index 00000000..e12ec0b0 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.helper.mcstas_objects.ParameterVariable.rst @@ -0,0 +1,38 @@ +mcstasscript.helper.mcstas\_objects.ParameterVariable +===================================================== + +.. currentmodule:: mcstasscript.helper.mcstas_objects + +.. autoclass:: ParameterVariable + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~ParameterVariable.__init__ + ~ParameterVariable.add_interval + ~ParameterVariable.add_option + ~ParameterVariable.clear_intervals + ~ParameterVariable.clear_options + ~ParameterVariable.from_dict + ~ParameterVariable.is_legal + ~ParameterVariable.print_line + ~ParameterVariable.print_paramter_constraints + ~ParameterVariable.write_parameter + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~ParameterVariable.value + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.helper.mcstas_objects.rst b/docs/source/_autosummary/mcstasscript.helper.mcstas_objects.rst new file mode 100644 index 00000000..89382169 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.helper.mcstas_objects.rst @@ -0,0 +1,34 @@ +mcstasscript.helper.mcstas\_objects +=================================== + +.. automodule:: mcstasscript.helper.mcstas_objects + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + Component + DeclareVariable + ParameterContainer + ParameterVariable + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.helper.plot_helper.rst b/docs/source/_autosummary/mcstasscript.helper.plot_helper.rst new file mode 100644 index 00000000..736b3c80 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.helper.plot_helper.rst @@ -0,0 +1,23 @@ +mcstasscript.helper.plot\_helper +================================ + +.. automodule:: mcstasscript.helper.plot_helper + + + + + + + + + + + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.helper.rst b/docs/source/_autosummary/mcstasscript.helper.rst new file mode 100644 index 00000000..d01c6fc2 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.helper.rst @@ -0,0 +1,36 @@ +mcstasscript.helper +=================== + +.. automodule:: mcstasscript.helper + + + + + + + + + + + + + + + + + + + +.. rubric:: Modules + +.. autosummary:: + :toctree: + :template: custom-module-template.rst + :recursive: + + mcstasscript.helper.component_reader + mcstasscript.helper.formatting + mcstasscript.helper.managed_mcrun + mcstasscript.helper.mcstas_objects + mcstasscript.helper.plot_helper + diff --git a/docs/source/_autosummary/mcstasscript.instr_reader.control.InstrumentReader.rst b/docs/source/_autosummary/mcstasscript.instr_reader.control.InstrumentReader.rst new file mode 100644 index 00000000..1576bcac --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.instr_reader.control.InstrumentReader.rst @@ -0,0 +1,26 @@ +mcstasscript.instr\_reader.control.InstrumentReader +=================================================== + +.. currentmodule:: mcstasscript.instr_reader.control + +.. autoclass:: InstrumentReader + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~InstrumentReader.__init__ + ~InstrumentReader.add_to_instr + ~InstrumentReader.generate_py_version + ~InstrumentReader.update_file_name + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.instr_reader.control.rst b/docs/source/_autosummary/mcstasscript.instr_reader.control.rst new file mode 100644 index 00000000..449be958 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.instr_reader.control.rst @@ -0,0 +1,31 @@ +mcstasscript.instr\_reader.control +================================== + +.. automodule:: mcstasscript.instr_reader.control + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + InstrumentReader + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.instr_reader.read_declare.DeclareReader.rst b/docs/source/_autosummary/mcstasscript.instr_reader.read_declare.DeclareReader.rst new file mode 100644 index 00000000..2d30fc1b --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.instr_reader.read_declare.DeclareReader.rst @@ -0,0 +1,25 @@ +mcstasscript.instr\_reader.read\_declare.DeclareReader +====================================================== + +.. currentmodule:: mcstasscript.instr_reader.read_declare + +.. autoclass:: DeclareReader + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~DeclareReader.__init__ + ~DeclareReader.read_declare_line + ~DeclareReader.set_instr_name + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.instr_reader.read_declare.rst b/docs/source/_autosummary/mcstasscript.instr_reader.read_declare.rst new file mode 100644 index 00000000..39190174 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.instr_reader.read_declare.rst @@ -0,0 +1,31 @@ +mcstasscript.instr\_reader.read\_declare +======================================== + +.. automodule:: mcstasscript.instr_reader.read_declare + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + DeclareReader + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.instr_reader.read_definition.DefinitionReader.rst b/docs/source/_autosummary/mcstasscript.instr_reader.read_definition.DefinitionReader.rst new file mode 100644 index 00000000..63180b97 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.instr_reader.read_definition.DefinitionReader.rst @@ -0,0 +1,25 @@ +mcstasscript.instr\_reader.read\_definition.DefinitionReader +============================================================ + +.. currentmodule:: mcstasscript.instr_reader.read_definition + +.. autoclass:: DefinitionReader + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~DefinitionReader.__init__ + ~DefinitionReader.read_definition_line + ~DefinitionReader.set_instr_name + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.instr_reader.read_definition.rst b/docs/source/_autosummary/mcstasscript.instr_reader.read_definition.rst new file mode 100644 index 00000000..a85a4a4e --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.instr_reader.read_definition.rst @@ -0,0 +1,31 @@ +mcstasscript.instr\_reader.read\_definition +=========================================== + +.. automodule:: mcstasscript.instr_reader.read_definition + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + DefinitionReader + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.instr_reader.read_finally.FinallyReader.rst b/docs/source/_autosummary/mcstasscript.instr_reader.read_finally.FinallyReader.rst new file mode 100644 index 00000000..82a514fa --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.instr_reader.read_finally.FinallyReader.rst @@ -0,0 +1,25 @@ +mcstasscript.instr\_reader.read\_finally.FinallyReader +====================================================== + +.. currentmodule:: mcstasscript.instr_reader.read_finally + +.. autoclass:: FinallyReader + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~FinallyReader.__init__ + ~FinallyReader.read_finally_line + ~FinallyReader.set_instr_name + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.instr_reader.read_finally.rst b/docs/source/_autosummary/mcstasscript.instr_reader.read_finally.rst new file mode 100644 index 00000000..aa324d55 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.instr_reader.read_finally.rst @@ -0,0 +1,31 @@ +mcstasscript.instr\_reader.read\_finally +======================================== + +.. automodule:: mcstasscript.instr_reader.read_finally + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + FinallyReader + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.instr_reader.read_initialize.InitializeReader.rst b/docs/source/_autosummary/mcstasscript.instr_reader.read_initialize.InitializeReader.rst new file mode 100644 index 00000000..8a853cd5 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.instr_reader.read_initialize.InitializeReader.rst @@ -0,0 +1,25 @@ +mcstasscript.instr\_reader.read\_initialize.InitializeReader +============================================================ + +.. currentmodule:: mcstasscript.instr_reader.read_initialize + +.. autoclass:: InitializeReader + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~InitializeReader.__init__ + ~InitializeReader.read_initialize_line + ~InitializeReader.set_instr_name + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.instr_reader.read_initialize.rst b/docs/source/_autosummary/mcstasscript.instr_reader.read_initialize.rst new file mode 100644 index 00000000..9ce7df19 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.instr_reader.read_initialize.rst @@ -0,0 +1,31 @@ +mcstasscript.instr\_reader.read\_initialize +=========================================== + +.. automodule:: mcstasscript.instr_reader.read_initialize + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + InitializeReader + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.instr_reader.read_trace.TraceReader.rst b/docs/source/_autosummary/mcstasscript.instr_reader.read_trace.TraceReader.rst new file mode 100644 index 00000000..96205481 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.instr_reader.read_trace.TraceReader.rst @@ -0,0 +1,26 @@ +mcstasscript.instr\_reader.read\_trace.TraceReader +================================================== + +.. currentmodule:: mcstasscript.instr_reader.read_trace + +.. autoclass:: TraceReader + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~TraceReader.__init__ + ~TraceReader.read_trace_line + ~TraceReader.sanitize_line + ~TraceReader.set_instr_name + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.instr_reader.read_trace.rst b/docs/source/_autosummary/mcstasscript.instr_reader.read_trace.rst new file mode 100644 index 00000000..f7569ae1 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.instr_reader.read_trace.rst @@ -0,0 +1,31 @@ +mcstasscript.instr\_reader.read\_trace +====================================== + +.. automodule:: mcstasscript.instr_reader.read_trace + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + TraceReader + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.instr_reader.rst b/docs/source/_autosummary/mcstasscript.instr_reader.rst new file mode 100644 index 00000000..9d60864b --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.instr_reader.rst @@ -0,0 +1,38 @@ +mcstasscript.instr\_reader +========================== + +.. automodule:: mcstasscript.instr_reader + + + + + + + + + + + + + + + + + + + +.. rubric:: Modules + +.. autosummary:: + :toctree: + :template: custom-module-template.rst + :recursive: + + mcstasscript.instr_reader.control + mcstasscript.instr_reader.read_declare + mcstasscript.instr_reader.read_definition + mcstasscript.instr_reader.read_finally + mcstasscript.instr_reader.read_initialize + mcstasscript.instr_reader.read_trace + mcstasscript.instr_reader.util + diff --git a/docs/source/_autosummary/mcstasscript.instr_reader.util.SectionReader.rst b/docs/source/_autosummary/mcstasscript.instr_reader.util.SectionReader.rst new file mode 100644 index 00000000..3572e07c --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.instr_reader.util.SectionReader.rst @@ -0,0 +1,24 @@ +mcstasscript.instr\_reader.util.SectionReader +============================================= + +.. currentmodule:: mcstasscript.instr_reader.util + +.. autoclass:: SectionReader + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~SectionReader.__init__ + ~SectionReader.set_instr_name + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.instr_reader.util.rst b/docs/source/_autosummary/mcstasscript.instr_reader.util.rst new file mode 100644 index 00000000..b888ab1b --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.instr_reader.util.rst @@ -0,0 +1,31 @@ +mcstasscript.instr\_reader.util +=============================== + +.. automodule:: mcstasscript.instr_reader.util + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + SectionReader + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.integration_tests.rst b/docs/source/_autosummary/mcstasscript.integration_tests.rst new file mode 100644 index 00000000..6e92a287 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.integration_tests.rst @@ -0,0 +1,33 @@ +mcstasscript.integration\_tests +=============================== + +.. automodule:: mcstasscript.integration_tests + + + + + + + + + + + + + + + + + + + +.. rubric:: Modules + +.. autosummary:: + :toctree: + :template: custom-module-template.rst + :recursive: + + mcstasscript.integration_tests.test_complex_instrument + mcstasscript.integration_tests.test_simple_instrument + diff --git a/docs/source/_autosummary/mcstasscript.integration_tests.test_complex_instrument.FakeChange.rst b/docs/source/_autosummary/mcstasscript.integration_tests.test_complex_instrument.FakeChange.rst new file mode 100644 index 00000000..cfe3a107 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.integration_tests.test_complex_instrument.FakeChange.rst @@ -0,0 +1,23 @@ +mcstasscript.integration\_tests.test\_complex\_instrument.FakeChange +==================================================================== + +.. currentmodule:: mcstasscript.integration_tests.test_complex_instrument + +.. autoclass:: FakeChange + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~FakeChange.__init__ + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.integration_tests.test_complex_instrument.TestComplexInstrument.rst b/docs/source/_autosummary/mcstasscript.integration_tests.test_complex_instrument.TestComplexInstrument.rst new file mode 100644 index 00000000..97423d77 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.integration_tests.test_complex_instrument.TestComplexInstrument.rst @@ -0,0 +1,98 @@ +mcstasscript.integration\_tests.test\_complex\_instrument.TestComplexInstrument +=============================================================================== + +.. currentmodule:: mcstasscript.integration_tests.test_complex_instrument + +.. autoclass:: TestComplexInstrument + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~TestComplexInstrument.__init__ + ~TestComplexInstrument.addClassCleanup + ~TestComplexInstrument.addCleanup + ~TestComplexInstrument.addTypeEqualityFunc + ~TestComplexInstrument.assertAlmostEqual + ~TestComplexInstrument.assertAlmostEquals + ~TestComplexInstrument.assertCountEqual + ~TestComplexInstrument.assertDictContainsSubset + ~TestComplexInstrument.assertDictEqual + ~TestComplexInstrument.assertEqual + ~TestComplexInstrument.assertEquals + ~TestComplexInstrument.assertFalse + ~TestComplexInstrument.assertGreater + ~TestComplexInstrument.assertGreaterEqual + ~TestComplexInstrument.assertIn + ~TestComplexInstrument.assertIs + ~TestComplexInstrument.assertIsInstance + ~TestComplexInstrument.assertIsNone + ~TestComplexInstrument.assertIsNot + ~TestComplexInstrument.assertIsNotNone + ~TestComplexInstrument.assertLess + ~TestComplexInstrument.assertLessEqual + ~TestComplexInstrument.assertListEqual + ~TestComplexInstrument.assertLogs + ~TestComplexInstrument.assertMultiLineEqual + ~TestComplexInstrument.assertNotAlmostEqual + ~TestComplexInstrument.assertNotAlmostEquals + ~TestComplexInstrument.assertNotEqual + ~TestComplexInstrument.assertNotEquals + ~TestComplexInstrument.assertNotIn + ~TestComplexInstrument.assertNotIsInstance + ~TestComplexInstrument.assertNotRegex + ~TestComplexInstrument.assertNotRegexpMatches + ~TestComplexInstrument.assertRaises + ~TestComplexInstrument.assertRaisesRegex + ~TestComplexInstrument.assertRaisesRegexp + ~TestComplexInstrument.assertRegex + ~TestComplexInstrument.assertRegexpMatches + ~TestComplexInstrument.assertSequenceEqual + ~TestComplexInstrument.assertSetEqual + ~TestComplexInstrument.assertTrue + ~TestComplexInstrument.assertTupleEqual + ~TestComplexInstrument.assertWarns + ~TestComplexInstrument.assertWarnsRegex + ~TestComplexInstrument.assert_ + ~TestComplexInstrument.countTestCases + ~TestComplexInstrument.debug + ~TestComplexInstrument.defaultTestResult + ~TestComplexInstrument.doClassCleanups + ~TestComplexInstrument.doCleanups + ~TestComplexInstrument.fail + ~TestComplexInstrument.failIf + ~TestComplexInstrument.failIfAlmostEqual + ~TestComplexInstrument.failIfEqual + ~TestComplexInstrument.failUnless + ~TestComplexInstrument.failUnlessAlmostEqual + ~TestComplexInstrument.failUnlessEqual + ~TestComplexInstrument.failUnlessRaises + ~TestComplexInstrument.id + ~TestComplexInstrument.run + ~TestComplexInstrument.setUp + ~TestComplexInstrument.setUpClass + ~TestComplexInstrument.shortDescription + ~TestComplexInstrument.skipTest + ~TestComplexInstrument.subTest + ~TestComplexInstrument.tearDown + ~TestComplexInstrument.tearDownClass + ~TestComplexInstrument.test_complex_instrument_interface + ~TestComplexInstrument.test_complex_instrument_run + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~TestComplexInstrument.longMessage + ~TestComplexInstrument.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.integration_tests.test_complex_instrument.rst b/docs/source/_autosummary/mcstasscript.integration_tests.test_complex_instrument.rst new file mode 100644 index 00000000..c4278c98 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.integration_tests.test_complex_instrument.rst @@ -0,0 +1,39 @@ +mcstasscript.integration\_tests.test\_complex\_instrument +========================================================= + +.. automodule:: mcstasscript.integration_tests.test_complex_instrument + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + + setup_complex_instrument + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + FakeChange + TestComplexInstrument + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.integration_tests.test_complex_instrument.setup_complex_instrument.rst b/docs/source/_autosummary/mcstasscript.integration_tests.test_complex_instrument.setup_complex_instrument.rst new file mode 100644 index 00000000..91b6982c --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.integration_tests.test_complex_instrument.setup_complex_instrument.rst @@ -0,0 +1,6 @@ +mcstasscript.integration\_tests.test\_complex\_instrument.setup\_complex\_instrument +==================================================================================== + +.. currentmodule:: mcstasscript.integration_tests.test_complex_instrument + +.. autofunction:: setup_complex_instrument \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.integration_tests.test_simple_instrument.TestSimpleInstrument.rst b/docs/source/_autosummary/mcstasscript.integration_tests.test_simple_instrument.TestSimpleInstrument.rst new file mode 100644 index 00000000..09e4dc2a --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.integration_tests.test_simple_instrument.TestSimpleInstrument.rst @@ -0,0 +1,101 @@ +mcstasscript.integration\_tests.test\_simple\_instrument.TestSimpleInstrument +============================================================================= + +.. currentmodule:: mcstasscript.integration_tests.test_simple_instrument + +.. autoclass:: TestSimpleInstrument + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~TestSimpleInstrument.__init__ + ~TestSimpleInstrument.addClassCleanup + ~TestSimpleInstrument.addCleanup + ~TestSimpleInstrument.addTypeEqualityFunc + ~TestSimpleInstrument.assertAlmostEqual + ~TestSimpleInstrument.assertAlmostEquals + ~TestSimpleInstrument.assertCountEqual + ~TestSimpleInstrument.assertDictContainsSubset + ~TestSimpleInstrument.assertDictEqual + ~TestSimpleInstrument.assertEqual + ~TestSimpleInstrument.assertEquals + ~TestSimpleInstrument.assertFalse + ~TestSimpleInstrument.assertGreater + ~TestSimpleInstrument.assertGreaterEqual + ~TestSimpleInstrument.assertIn + ~TestSimpleInstrument.assertIs + ~TestSimpleInstrument.assertIsInstance + ~TestSimpleInstrument.assertIsNone + ~TestSimpleInstrument.assertIsNot + ~TestSimpleInstrument.assertIsNotNone + ~TestSimpleInstrument.assertLess + ~TestSimpleInstrument.assertLessEqual + ~TestSimpleInstrument.assertListEqual + ~TestSimpleInstrument.assertLogs + ~TestSimpleInstrument.assertMultiLineEqual + ~TestSimpleInstrument.assertNotAlmostEqual + ~TestSimpleInstrument.assertNotAlmostEquals + ~TestSimpleInstrument.assertNotEqual + ~TestSimpleInstrument.assertNotEquals + ~TestSimpleInstrument.assertNotIn + ~TestSimpleInstrument.assertNotIsInstance + ~TestSimpleInstrument.assertNotRegex + ~TestSimpleInstrument.assertNotRegexpMatches + ~TestSimpleInstrument.assertRaises + ~TestSimpleInstrument.assertRaisesRegex + ~TestSimpleInstrument.assertRaisesRegexp + ~TestSimpleInstrument.assertRegex + ~TestSimpleInstrument.assertRegexpMatches + ~TestSimpleInstrument.assertSequenceEqual + ~TestSimpleInstrument.assertSetEqual + ~TestSimpleInstrument.assertTrue + ~TestSimpleInstrument.assertTupleEqual + ~TestSimpleInstrument.assertWarns + ~TestSimpleInstrument.assertWarnsRegex + ~TestSimpleInstrument.assert_ + ~TestSimpleInstrument.countTestCases + ~TestSimpleInstrument.debug + ~TestSimpleInstrument.defaultTestResult + ~TestSimpleInstrument.doClassCleanups + ~TestSimpleInstrument.doCleanups + ~TestSimpleInstrument.fail + ~TestSimpleInstrument.failIf + ~TestSimpleInstrument.failIfAlmostEqual + ~TestSimpleInstrument.failIfEqual + ~TestSimpleInstrument.failUnless + ~TestSimpleInstrument.failUnlessAlmostEqual + ~TestSimpleInstrument.failUnlessEqual + ~TestSimpleInstrument.failUnlessRaises + ~TestSimpleInstrument.id + ~TestSimpleInstrument.run + ~TestSimpleInstrument.setUp + ~TestSimpleInstrument.setUpClass + ~TestSimpleInstrument.shortDescription + ~TestSimpleInstrument.skipTest + ~TestSimpleInstrument.subTest + ~TestSimpleInstrument.tearDown + ~TestSimpleInstrument.tearDownClass + ~TestSimpleInstrument.test_simple_instrument + ~TestSimpleInstrument.test_simple_instrument_input + ~TestSimpleInstrument.test_simple_instrument_mpi + ~TestSimpleInstrument.test_slit_instrument + ~TestSimpleInstrument.test_slit_moved_instrument + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~TestSimpleInstrument.longMessage + ~TestSimpleInstrument.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.integration_tests.test_simple_instrument.rst b/docs/source/_autosummary/mcstasscript.integration_tests.test_simple_instrument.rst new file mode 100644 index 00000000..886d97e4 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.integration_tests.test_simple_instrument.rst @@ -0,0 +1,40 @@ +mcstasscript.integration\_tests.test\_simple\_instrument +======================================================== + +.. automodule:: mcstasscript.integration_tests.test_simple_instrument + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + + setup_simple_instrument + setup_simple_instrument_input_path + setup_simple_slit_instrument + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + TestSimpleInstrument + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.integration_tests.test_simple_instrument.setup_simple_instrument.rst b/docs/source/_autosummary/mcstasscript.integration_tests.test_simple_instrument.setup_simple_instrument.rst new file mode 100644 index 00000000..f01243a0 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.integration_tests.test_simple_instrument.setup_simple_instrument.rst @@ -0,0 +1,6 @@ +mcstasscript.integration\_tests.test\_simple\_instrument.setup\_simple\_instrument +================================================================================== + +.. currentmodule:: mcstasscript.integration_tests.test_simple_instrument + +.. autofunction:: setup_simple_instrument \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.integration_tests.test_simple_instrument.setup_simple_instrument_input_path.rst b/docs/source/_autosummary/mcstasscript.integration_tests.test_simple_instrument.setup_simple_instrument_input_path.rst new file mode 100644 index 00000000..71fa9e01 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.integration_tests.test_simple_instrument.setup_simple_instrument_input_path.rst @@ -0,0 +1,6 @@ +mcstasscript.integration\_tests.test\_simple\_instrument.setup\_simple\_instrument\_input\_path +=============================================================================================== + +.. currentmodule:: mcstasscript.integration_tests.test_simple_instrument + +.. autofunction:: setup_simple_instrument_input_path \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.integration_tests.test_simple_instrument.setup_simple_slit_instrument.rst b/docs/source/_autosummary/mcstasscript.integration_tests.test_simple_instrument.setup_simple_slit_instrument.rst new file mode 100644 index 00000000..3cca106b --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.integration_tests.test_simple_instrument.setup_simple_slit_instrument.rst @@ -0,0 +1,6 @@ +mcstasscript.integration\_tests.test\_simple\_instrument.setup\_simple\_slit\_instrument +======================================================================================== + +.. currentmodule:: mcstasscript.integration_tests.test_simple_instrument + +.. autofunction:: setup_simple_slit_instrument \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.interface.functions.Configurator.rst b/docs/source/_autosummary/mcstasscript.interface.functions.Configurator.rst new file mode 100644 index 00000000..06328851 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.interface.functions.Configurator.rst @@ -0,0 +1,28 @@ +mcstasscript.interface.functions.Configurator +============================================= + +.. currentmodule:: mcstasscript.interface.functions + +.. autoclass:: Configurator + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~Configurator.__init__ + ~Configurator.set_line_length + ~Configurator.set_mcrun_path + ~Configurator.set_mcstas_path + ~Configurator.set_mcxtrace_path + ~Configurator.set_mxrun_path + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.interface.functions.load_data.rst b/docs/source/_autosummary/mcstasscript.interface.functions.load_data.rst new file mode 100644 index 00000000..b9ef5a89 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.interface.functions.load_data.rst @@ -0,0 +1,6 @@ +mcstasscript.interface.functions.load\_data +=========================================== + +.. currentmodule:: mcstasscript.interface.functions + +.. autofunction:: load_data \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.interface.functions.load_metadata.rst b/docs/source/_autosummary/mcstasscript.interface.functions.load_metadata.rst new file mode 100644 index 00000000..5706faaf --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.interface.functions.load_metadata.rst @@ -0,0 +1,6 @@ +mcstasscript.interface.functions.load\_metadata +=============================================== + +.. currentmodule:: mcstasscript.interface.functions + +.. autofunction:: load_metadata \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.interface.functions.load_monitor.rst b/docs/source/_autosummary/mcstasscript.interface.functions.load_monitor.rst new file mode 100644 index 00000000..49cea964 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.interface.functions.load_monitor.rst @@ -0,0 +1,6 @@ +mcstasscript.interface.functions.load\_monitor +============================================== + +.. currentmodule:: mcstasscript.interface.functions + +.. autofunction:: load_monitor \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.interface.functions.name_plot_options.rst b/docs/source/_autosummary/mcstasscript.interface.functions.name_plot_options.rst new file mode 100644 index 00000000..d16ed3c6 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.interface.functions.name_plot_options.rst @@ -0,0 +1,6 @@ +mcstasscript.interface.functions.name\_plot\_options +==================================================== + +.. currentmodule:: mcstasscript.interface.functions + +.. autofunction:: name_plot_options \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.interface.functions.name_search.rst b/docs/source/_autosummary/mcstasscript.interface.functions.name_search.rst new file mode 100644 index 00000000..467c69ab --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.interface.functions.name_search.rst @@ -0,0 +1,6 @@ +mcstasscript.interface.functions.name\_search +============================================= + +.. currentmodule:: mcstasscript.interface.functions + +.. autofunction:: name_search \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.interface.functions.rst b/docs/source/_autosummary/mcstasscript.interface.functions.rst new file mode 100644 index 00000000..de157e23 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.interface.functions.rst @@ -0,0 +1,42 @@ +mcstasscript.interface.functions +================================ + +.. automodule:: mcstasscript.interface.functions + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + + load_data + load_metadata + load_monitor + name_plot_options + name_search + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + Configurator + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.interface.instr.McCode_instr.rst b/docs/source/_autosummary/mcstasscript.interface.instr.McCode_instr.rst new file mode 100644 index 00000000..a2389736 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.interface.instr.McCode_instr.rst @@ -0,0 +1,76 @@ +mcstasscript.interface.instr.McCode\_instr +========================================== + +.. currentmodule:: mcstasscript.interface.instr + +.. autoclass:: McCode_instr + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~McCode_instr.__init__ + ~McCode_instr.add_component + ~McCode_instr.add_declare_var + ~McCode_instr.add_parameter + ~McCode_instr.append_component_EXTEND + ~McCode_instr.append_declare + ~McCode_instr.append_finally + ~McCode_instr.append_finally_no_new_line + ~McCode_instr.append_initialize + ~McCode_instr.append_initialize_no_new_line + ~McCode_instr.append_trace + ~McCode_instr.append_trace_no_new_line + ~McCode_instr.backengine + ~McCode_instr.component_help + ~McCode_instr.copy_component + ~McCode_instr.dump + ~McCode_instr.get_component + ~McCode_instr.get_interface_data + ~McCode_instr.get_last_component + ~McCode_instr.interface + ~McCode_instr.print_component + ~McCode_instr.print_component_short + ~McCode_instr.print_components + ~McCode_instr.run_from_cli + ~McCode_instr.run_full_instrument + ~McCode_instr.saveH5 + ~McCode_instr.set_component_AT + ~McCode_instr.set_component_GROUP + ~McCode_instr.set_component_JUMP + ~McCode_instr.set_component_RELATIVE + ~McCode_instr.set_component_ROTATED + ~McCode_instr.set_component_SPLIT + ~McCode_instr.set_component_WHEN + ~McCode_instr.set_component_c_code_after + ~McCode_instr.set_component_c_code_before + ~McCode_instr.set_component_comment + ~McCode_instr.set_component_parameter + ~McCode_instr.set_parameters + ~McCode_instr.settings + ~McCode_instr.settings_string + ~McCode_instr.show_components + ~McCode_instr.show_instrument + ~McCode_instr.show_parameters + ~McCode_instr.show_settings + ~McCode_instr.show_variables + ~McCode_instr.write_c_files + ~McCode_instr.write_full_instrument + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~McCode_instr.data + ~McCode_instr.parameters + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.interface.instr.McStas_instr.rst b/docs/source/_autosummary/mcstasscript.interface.instr.McStas_instr.rst new file mode 100644 index 00000000..e63ff84e --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.interface.instr.McStas_instr.rst @@ -0,0 +1,76 @@ +mcstasscript.interface.instr.McStas\_instr +========================================== + +.. currentmodule:: mcstasscript.interface.instr + +.. autoclass:: McStas_instr + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~McStas_instr.__init__ + ~McStas_instr.add_component + ~McStas_instr.add_declare_var + ~McStas_instr.add_parameter + ~McStas_instr.append_component_EXTEND + ~McStas_instr.append_declare + ~McStas_instr.append_finally + ~McStas_instr.append_finally_no_new_line + ~McStas_instr.append_initialize + ~McStas_instr.append_initialize_no_new_line + ~McStas_instr.append_trace + ~McStas_instr.append_trace_no_new_line + ~McStas_instr.backengine + ~McStas_instr.component_help + ~McStas_instr.copy_component + ~McStas_instr.dump + ~McStas_instr.get_component + ~McStas_instr.get_interface_data + ~McStas_instr.get_last_component + ~McStas_instr.interface + ~McStas_instr.print_component + ~McStas_instr.print_component_short + ~McStas_instr.print_components + ~McStas_instr.run_from_cli + ~McStas_instr.run_full_instrument + ~McStas_instr.saveH5 + ~McStas_instr.set_component_AT + ~McStas_instr.set_component_GROUP + ~McStas_instr.set_component_JUMP + ~McStas_instr.set_component_RELATIVE + ~McStas_instr.set_component_ROTATED + ~McStas_instr.set_component_SPLIT + ~McStas_instr.set_component_WHEN + ~McStas_instr.set_component_c_code_after + ~McStas_instr.set_component_c_code_before + ~McStas_instr.set_component_comment + ~McStas_instr.set_component_parameter + ~McStas_instr.set_parameters + ~McStas_instr.settings + ~McStas_instr.settings_string + ~McStas_instr.show_components + ~McStas_instr.show_instrument + ~McStas_instr.show_parameters + ~McStas_instr.show_settings + ~McStas_instr.show_variables + ~McStas_instr.write_c_files + ~McStas_instr.write_full_instrument + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~McStas_instr.data + ~McStas_instr.parameters + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.interface.instr.McXtrace_instr.rst b/docs/source/_autosummary/mcstasscript.interface.instr.McXtrace_instr.rst new file mode 100644 index 00000000..69b3a723 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.interface.instr.McXtrace_instr.rst @@ -0,0 +1,76 @@ +mcstasscript.interface.instr.McXtrace\_instr +============================================ + +.. currentmodule:: mcstasscript.interface.instr + +.. autoclass:: McXtrace_instr + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~McXtrace_instr.__init__ + ~McXtrace_instr.add_component + ~McXtrace_instr.add_declare_var + ~McXtrace_instr.add_parameter + ~McXtrace_instr.append_component_EXTEND + ~McXtrace_instr.append_declare + ~McXtrace_instr.append_finally + ~McXtrace_instr.append_finally_no_new_line + ~McXtrace_instr.append_initialize + ~McXtrace_instr.append_initialize_no_new_line + ~McXtrace_instr.append_trace + ~McXtrace_instr.append_trace_no_new_line + ~McXtrace_instr.backengine + ~McXtrace_instr.component_help + ~McXtrace_instr.copy_component + ~McXtrace_instr.dump + ~McXtrace_instr.get_component + ~McXtrace_instr.get_interface_data + ~McXtrace_instr.get_last_component + ~McXtrace_instr.interface + ~McXtrace_instr.print_component + ~McXtrace_instr.print_component_short + ~McXtrace_instr.print_components + ~McXtrace_instr.run_from_cli + ~McXtrace_instr.run_full_instrument + ~McXtrace_instr.saveH5 + ~McXtrace_instr.set_component_AT + ~McXtrace_instr.set_component_GROUP + ~McXtrace_instr.set_component_JUMP + ~McXtrace_instr.set_component_RELATIVE + ~McXtrace_instr.set_component_ROTATED + ~McXtrace_instr.set_component_SPLIT + ~McXtrace_instr.set_component_WHEN + ~McXtrace_instr.set_component_c_code_after + ~McXtrace_instr.set_component_c_code_before + ~McXtrace_instr.set_component_comment + ~McXtrace_instr.set_component_parameter + ~McXtrace_instr.set_parameters + ~McXtrace_instr.settings + ~McXtrace_instr.settings_string + ~McXtrace_instr.show_components + ~McXtrace_instr.show_instrument + ~McXtrace_instr.show_parameters + ~McXtrace_instr.show_settings + ~McXtrace_instr.show_variables + ~McXtrace_instr.write_c_files + ~McXtrace_instr.write_full_instrument + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~McXtrace_instr.data + ~McXtrace_instr.parameters + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.interface.instr.rst b/docs/source/_autosummary/mcstasscript.interface.instr.rst new file mode 100644 index 00000000..02536e4d --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.interface.instr.rst @@ -0,0 +1,33 @@ +mcstasscript.interface.instr +============================ + +.. automodule:: mcstasscript.interface.instr + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + McCode_instr + McStas_instr + McXtrace_instr + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.interface.plotter.interface.rst b/docs/source/_autosummary/mcstasscript.interface.plotter.interface.rst new file mode 100644 index 00000000..7c1dd213 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.interface.plotter.interface.rst @@ -0,0 +1,6 @@ +mcstasscript.interface.plotter.interface +======================================== + +.. currentmodule:: mcstasscript.interface.plotter + +.. autofunction:: interface \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.interface.plotter.make_animation.rst b/docs/source/_autosummary/mcstasscript.interface.plotter.make_animation.rst new file mode 100644 index 00000000..51b83934 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.interface.plotter.make_animation.rst @@ -0,0 +1,6 @@ +mcstasscript.interface.plotter.make\_animation +============================================== + +.. currentmodule:: mcstasscript.interface.plotter + +.. autofunction:: make_animation \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.interface.plotter.make_plot.rst b/docs/source/_autosummary/mcstasscript.interface.plotter.make_plot.rst new file mode 100644 index 00000000..4e9253c7 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.interface.plotter.make_plot.rst @@ -0,0 +1,6 @@ +mcstasscript.interface.plotter.make\_plot +========================================= + +.. currentmodule:: mcstasscript.interface.plotter + +.. autofunction:: make_plot \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.interface.plotter.make_sub_plot.rst b/docs/source/_autosummary/mcstasscript.interface.plotter.make_sub_plot.rst new file mode 100644 index 00000000..5727a25d --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.interface.plotter.make_sub_plot.rst @@ -0,0 +1,6 @@ +mcstasscript.interface.plotter.make\_sub\_plot +============================================== + +.. currentmodule:: mcstasscript.interface.plotter + +.. autofunction:: make_sub_plot \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.interface.plotter.rst b/docs/source/_autosummary/mcstasscript.interface.plotter.rst new file mode 100644 index 00000000..a799b32a --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.interface.plotter.rst @@ -0,0 +1,33 @@ +mcstasscript.interface.plotter +============================== + +.. automodule:: mcstasscript.interface.plotter + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + + interface + make_animation + make_plot + make_sub_plot + + + + + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.interface.reader.McStas_file.rst b/docs/source/_autosummary/mcstasscript.interface.reader.McStas_file.rst new file mode 100644 index 00000000..78a3ce68 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.interface.reader.McStas_file.rst @@ -0,0 +1,25 @@ +mcstasscript.interface.reader.McStas\_file +========================================== + +.. currentmodule:: mcstasscript.interface.reader + +.. autoclass:: McStas_file + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~McStas_file.__init__ + ~McStas_file.add_to_instr + ~McStas_file.write_python_file + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.interface.reader.rst b/docs/source/_autosummary/mcstasscript.interface.reader.rst new file mode 100644 index 00000000..88f65cc5 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.interface.reader.rst @@ -0,0 +1,31 @@ +mcstasscript.interface.reader +============================= + +.. automodule:: mcstasscript.interface.reader + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + McStas_file + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.interface.rst b/docs/source/_autosummary/mcstasscript.interface.rst new file mode 100644 index 00000000..048758cc --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.interface.rst @@ -0,0 +1,35 @@ +mcstasscript.interface +====================== + +.. automodule:: mcstasscript.interface + + + + + + + + + + + + + + + + + + + +.. rubric:: Modules + +.. autosummary:: + :toctree: + :template: custom-module-template.rst + :recursive: + + mcstasscript.interface.functions + mcstasscript.interface.instr + mcstasscript.interface.plotter + mcstasscript.interface.reader + diff --git a/docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.ColormapDropdown.rst b/docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.ColormapDropdown.rst new file mode 100644 index 00000000..f79ebc3b --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.ColormapDropdown.rst @@ -0,0 +1,26 @@ +mcstasscript.jb\_interface.plot\_interface.ColormapDropdown +=========================================================== + +.. currentmodule:: mcstasscript.jb_interface.plot_interface + +.. autoclass:: ColormapDropdown + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~ColormapDropdown.__init__ + ~ColormapDropdown.make_widget + ~ColormapDropdown.update_cmap + ~ColormapDropdown.update_cmap_options + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.LogCheckbox.rst b/docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.LogCheckbox.rst new file mode 100644 index 00000000..d2ff0f1e --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.LogCheckbox.rst @@ -0,0 +1,25 @@ +mcstasscript.jb\_interface.plot\_interface.LogCheckbox +====================================================== + +.. currentmodule:: mcstasscript.jb_interface.plot_interface + +.. autoclass:: LogCheckbox + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~LogCheckbox.__init__ + ~LogCheckbox.make_widget + ~LogCheckbox.update + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.MonitorDropdown.rst b/docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.MonitorDropdown.rst new file mode 100644 index 00000000..778002c3 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.MonitorDropdown.rst @@ -0,0 +1,26 @@ +mcstasscript.jb\_interface.plot\_interface.MonitorDropdown +========================================================== + +.. currentmodule:: mcstasscript.jb_interface.plot_interface + +.. autoclass:: MonitorDropdown + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~MonitorDropdown.__init__ + ~MonitorDropdown.make_widget + ~MonitorDropdown.set_data + ~MonitorDropdown.update + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.OrdersOfMagField.rst b/docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.OrdersOfMagField.rst new file mode 100644 index 00000000..d03b870a --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.OrdersOfMagField.rst @@ -0,0 +1,25 @@ +mcstasscript.jb\_interface.plot\_interface.OrdersOfMagField +=========================================================== + +.. currentmodule:: mcstasscript.jb_interface.plot_interface + +.. autoclass:: OrdersOfMagField + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~OrdersOfMagField.__init__ + ~OrdersOfMagField.make_widget + ~OrdersOfMagField.update + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.PlotInterface.rst b/docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.PlotInterface.rst new file mode 100644 index 00000000..e05ae3c4 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.PlotInterface.rst @@ -0,0 +1,31 @@ +mcstasscript.jb\_interface.plot\_interface.PlotInterface +======================================================== + +.. currentmodule:: mcstasscript.jb_interface.plot_interface + +.. autoclass:: PlotInterface + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~PlotInterface.__init__ + ~PlotInterface.new_plot + ~PlotInterface.set_colormap + ~PlotInterface.set_current_monitor + ~PlotInterface.set_data + ~PlotInterface.set_log_mode + ~PlotInterface.set_orders_of_mag + ~PlotInterface.show_interface + ~PlotInterface.update_plot + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.rst b/docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.rst new file mode 100644 index 00000000..873329b2 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.jb_interface.plot_interface.rst @@ -0,0 +1,35 @@ +mcstasscript.jb\_interface.plot\_interface +========================================== + +.. automodule:: mcstasscript.jb_interface.plot_interface + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + ColormapDropdown + LogCheckbox + MonitorDropdown + OrdersOfMagField + PlotInterface + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.jb_interface.rst b/docs/source/_autosummary/mcstasscript.jb_interface.rst new file mode 100644 index 00000000..edd731de --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.jb_interface.rst @@ -0,0 +1,34 @@ +mcstasscript.jb\_interface +========================== + +.. automodule:: mcstasscript.jb_interface + + + + + + + + + + + + + + + + + + + +.. rubric:: Modules + +.. autosummary:: + :toctree: + :template: custom-module-template.rst + :recursive: + + mcstasscript.jb_interface.plot_interface + mcstasscript.jb_interface.simulation_interface + mcstasscript.jb_interface.widget_helpers + diff --git a/docs/source/_autosummary/mcstasscript.jb_interface.simulation_interface.ParameterWidget.rst b/docs/source/_autosummary/mcstasscript.jb_interface.simulation_interface.ParameterWidget.rst new file mode 100644 index 00000000..830f8c0b --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.jb_interface.simulation_interface.ParameterWidget.rst @@ -0,0 +1,25 @@ +mcstasscript.jb\_interface.simulation\_interface.ParameterWidget +================================================================ + +.. currentmodule:: mcstasscript.jb_interface.simulation_interface + +.. autoclass:: ParameterWidget + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~ParameterWidget.__init__ + ~ParameterWidget.make_widget + ~ParameterWidget.update + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.jb_interface.simulation_interface.SimInterface.rst b/docs/source/_autosummary/mcstasscript.jb_interface.simulation_interface.SimInterface.rst new file mode 100644 index 00000000..58c4f624 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.jb_interface.simulation_interface.SimInterface.rst @@ -0,0 +1,34 @@ +mcstasscript.jb\_interface.simulation\_interface.SimInterface +============================================================= + +.. currentmodule:: mcstasscript.jb_interface.simulation_interface + +.. autoclass:: SimInterface + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~SimInterface.__init__ + ~SimInterface.make_live_checkmark + ~SimInterface.make_mpi_field + ~SimInterface.make_ncount_field + ~SimInterface.make_parameter_widgets + ~SimInterface.make_progress_bar + ~SimInterface.make_run_button + ~SimInterface.run_simulation_live + ~SimInterface.run_simulation_thread + ~SimInterface.show_interface + ~SimInterface.update_mpi + ~SimInterface.update_ncount + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.jb_interface.simulation_interface.add_data.rst b/docs/source/_autosummary/mcstasscript.jb_interface.simulation_interface.add_data.rst new file mode 100644 index 00000000..d47dcbef --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.jb_interface.simulation_interface.add_data.rst @@ -0,0 +1,6 @@ +mcstasscript.jb\_interface.simulation\_interface.add\_data +========================================================== + +.. currentmodule:: mcstasscript.jb_interface.simulation_interface + +.. autofunction:: add_data \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.jb_interface.simulation_interface.rst b/docs/source/_autosummary/mcstasscript.jb_interface.simulation_interface.rst new file mode 100644 index 00000000..36110602 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.jb_interface.simulation_interface.rst @@ -0,0 +1,39 @@ +mcstasscript.jb\_interface.simulation\_interface +================================================ + +.. automodule:: mcstasscript.jb_interface.simulation_interface + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + + add_data + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + ParameterWidget + SimInterface + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.jb_interface.widget_helpers.HiddenPrints.rst b/docs/source/_autosummary/mcstasscript.jb_interface.widget_helpers.HiddenPrints.rst new file mode 100644 index 00000000..2b4d5708 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.jb_interface.widget_helpers.HiddenPrints.rst @@ -0,0 +1,23 @@ +mcstasscript.jb\_interface.widget\_helpers.HiddenPrints +======================================================= + +.. currentmodule:: mcstasscript.jb_interface.widget_helpers + +.. autoclass:: HiddenPrints + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~HiddenPrints.__init__ + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.jb_interface.widget_helpers.get_parameter_default.rst b/docs/source/_autosummary/mcstasscript.jb_interface.widget_helpers.get_parameter_default.rst new file mode 100644 index 00000000..a32a7179 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.jb_interface.widget_helpers.get_parameter_default.rst @@ -0,0 +1,6 @@ +mcstasscript.jb\_interface.widget\_helpers.get\_parameter\_default +================================================================== + +.. currentmodule:: mcstasscript.jb_interface.widget_helpers + +.. autofunction:: get_parameter_default \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.jb_interface.widget_helpers.parameter_has_default.rst b/docs/source/_autosummary/mcstasscript.jb_interface.widget_helpers.parameter_has_default.rst new file mode 100644 index 00000000..236c530b --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.jb_interface.widget_helpers.parameter_has_default.rst @@ -0,0 +1,6 @@ +mcstasscript.jb\_interface.widget\_helpers.parameter\_has\_default +================================================================== + +.. currentmodule:: mcstasscript.jb_interface.widget_helpers + +.. autofunction:: parameter_has_default \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.jb_interface.widget_helpers.rst b/docs/source/_autosummary/mcstasscript.jb_interface.widget_helpers.rst new file mode 100644 index 00000000..46adefe8 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.jb_interface.widget_helpers.rst @@ -0,0 +1,39 @@ +mcstasscript.jb\_interface.widget\_helpers +========================================== + +.. automodule:: mcstasscript.jb_interface.widget_helpers + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + + get_parameter_default + parameter_has_default + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + HiddenPrints + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.rst b/docs/source/_autosummary/mcstasscript.rst new file mode 100644 index 00000000..4295f961 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.rst @@ -0,0 +1,38 @@ +mcstasscript +============ + +.. automodule:: mcstasscript + + + + + + + + + + + + + + + + + + + +.. rubric:: Modules + +.. autosummary:: + :toctree: + :template: custom-module-template.rst + :recursive: + + mcstasscript.data + mcstasscript.helper + mcstasscript.instr_reader + mcstasscript.integration_tests + mcstasscript.interface + mcstasscript.jb_interface + mcstasscript.tests + diff --git a/docs/source/_autosummary/mcstasscript.tests.helpers_for_tests.WorkInTestDir.rst b/docs/source/_autosummary/mcstasscript.tests.helpers_for_tests.WorkInTestDir.rst new file mode 100644 index 00000000..15539529 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.helpers_for_tests.WorkInTestDir.rst @@ -0,0 +1,23 @@ +mcstasscript.tests.helpers\_for\_tests.WorkInTestDir +==================================================== + +.. currentmodule:: mcstasscript.tests.helpers_for_tests + +.. autoclass:: WorkInTestDir + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~WorkInTestDir.__init__ + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.helpers_for_tests.rst b/docs/source/_autosummary/mcstasscript.tests.helpers_for_tests.rst new file mode 100644 index 00000000..43572439 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.helpers_for_tests.rst @@ -0,0 +1,31 @@ +mcstasscript.tests.helpers\_for\_tests +====================================== + +.. automodule:: mcstasscript.tests.helpers_for_tests + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + WorkInTestDir + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.tests.rst b/docs/source/_autosummary/mcstasscript.tests.rst new file mode 100644 index 00000000..6c41dc46 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.rst @@ -0,0 +1,52 @@ +mcstasscript.tests +================== + +.. automodule:: mcstasscript.tests + + + + + + + + + + + + + + + + + + + +.. rubric:: Modules + +.. autosummary:: + :toctree: + :template: custom-module-template.rst + :recursive: + + mcstasscript.tests.helpers_for_tests + mcstasscript.tests.test_ComponentReader + mcstasscript.tests.test_Configurator + mcstasscript.tests.test_Instr + mcstasscript.tests.test_Instr_reader + mcstasscript.tests.test_ManagedMcrun + mcstasscript.tests.test_McStasData + mcstasscript.tests.test_McStasMetaData + mcstasscript.tests.test_McStasPlotOptions + mcstasscript.tests.test_Plotter + mcstasscript.tests.test_add_data + mcstasscript.tests.test_component + mcstasscript.tests.test_declare_variable + mcstasscript.tests.test_dump_and_load + mcstasscript.tests.test_formatting + mcstasscript.tests.test_functions + mcstasscript.tests.test_parameter_variable + mcstasscript.tests.test_plot_interface + mcstasscript.tests.test_simulation_interface + mcstasscript.tests.test_widget_helpers + mcstasscript.tests.utilities + diff --git a/docs/source/_autosummary/mcstasscript.tests.test_ComponentReader.TestComponentReader.rst b/docs/source/_autosummary/mcstasscript.tests.test_ComponentReader.TestComponentReader.rst new file mode 100644 index 00000000..35f0ebe2 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_ComponentReader.TestComponentReader.rst @@ -0,0 +1,115 @@ +mcstasscript.tests.test\_ComponentReader.TestComponentReader +============================================================ + +.. currentmodule:: mcstasscript.tests.test_ComponentReader + +.. autoclass:: TestComponentReader + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~TestComponentReader.__init__ + ~TestComponentReader.addClassCleanup + ~TestComponentReader.addCleanup + ~TestComponentReader.addTypeEqualityFunc + ~TestComponentReader.assertAlmostEqual + ~TestComponentReader.assertAlmostEquals + ~TestComponentReader.assertCountEqual + ~TestComponentReader.assertDictContainsSubset + ~TestComponentReader.assertDictEqual + ~TestComponentReader.assertEqual + ~TestComponentReader.assertEquals + ~TestComponentReader.assertFalse + ~TestComponentReader.assertGreater + ~TestComponentReader.assertGreaterEqual + ~TestComponentReader.assertIn + ~TestComponentReader.assertIs + ~TestComponentReader.assertIsInstance + ~TestComponentReader.assertIsNone + ~TestComponentReader.assertIsNot + ~TestComponentReader.assertIsNotNone + ~TestComponentReader.assertLess + ~TestComponentReader.assertLessEqual + ~TestComponentReader.assertListEqual + ~TestComponentReader.assertLogs + ~TestComponentReader.assertMultiLineEqual + ~TestComponentReader.assertNotAlmostEqual + ~TestComponentReader.assertNotAlmostEquals + ~TestComponentReader.assertNotEqual + ~TestComponentReader.assertNotEquals + ~TestComponentReader.assertNotIn + ~TestComponentReader.assertNotIsInstance + ~TestComponentReader.assertNotRegex + ~TestComponentReader.assertNotRegexpMatches + ~TestComponentReader.assertRaises + ~TestComponentReader.assertRaisesRegex + ~TestComponentReader.assertRaisesRegexp + ~TestComponentReader.assertRegex + ~TestComponentReader.assertRegexpMatches + ~TestComponentReader.assertSequenceEqual + ~TestComponentReader.assertSetEqual + ~TestComponentReader.assertTrue + ~TestComponentReader.assertTupleEqual + ~TestComponentReader.assertWarns + ~TestComponentReader.assertWarnsRegex + ~TestComponentReader.assert_ + ~TestComponentReader.countTestCases + ~TestComponentReader.debug + ~TestComponentReader.defaultTestResult + ~TestComponentReader.doClassCleanups + ~TestComponentReader.doCleanups + ~TestComponentReader.fail + ~TestComponentReader.failIf + ~TestComponentReader.failIfAlmostEqual + ~TestComponentReader.failIfEqual + ~TestComponentReader.failUnless + ~TestComponentReader.failUnlessAlmostEqual + ~TestComponentReader.failUnlessEqual + ~TestComponentReader.failUnlessRaises + ~TestComponentReader.id + ~TestComponentReader.run + ~TestComponentReader.setUp + ~TestComponentReader.setUpClass + ~TestComponentReader.shortDescription + ~TestComponentReader.skipTest + ~TestComponentReader.subTest + ~TestComponentReader.tearDown + ~TestComponentReader.tearDownClass + ~TestComponentReader.test_ComponentReader_find_components_categories + ~TestComponentReader.test_ComponentReader_find_components_names + ~TestComponentReader.test_ComponentReader_init_categories + ~TestComponentReader.test_ComponentReader_init_component_paths + ~TestComponentReader.test_ComponentReader_init_component_paths_input + ~TestComponentReader.test_ComponentReader_init_filenames + ~TestComponentReader.test_ComponentReader_init_overwrite_message + ~TestComponentReader.test_ComponentReader_init_overwrite_message_input + ~TestComponentReader.test_ComponentReader_load_all_components + ~TestComponentReader.test_ComponentReader_read_component_category + ~TestComponentReader.test_ComponentReader_read_component_int + ~TestComponentReader.test_ComponentReader_read_component_required + ~TestComponentReader.test_ComponentReader_read_component_standard + ~TestComponentReader.test_ComponentReader_read_component_string + ~TestComponentReader.test_ComponentReader_read_name_error + ~TestComponentReader.test_ComponentReader_read_name_success + ~TestComponentReader.test_ComponentReader_show_categories + ~TestComponentReader.test_ComponentReader_show_categories_ordered + ~TestComponentReader.test_ComponentReader_show_components_short + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~TestComponentReader.longMessage + ~TestComponentReader.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_ComponentReader.rst b/docs/source/_autosummary/mcstasscript.tests.test_ComponentReader.rst new file mode 100644 index 00000000..5136d839 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_ComponentReader.rst @@ -0,0 +1,39 @@ +mcstasscript.tests.test\_ComponentReader +======================================== + +.. automodule:: mcstasscript.tests.test_ComponentReader + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + + setup_component_reader + setup_component_reader_input_path + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + TestComponentReader + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.tests.test_ComponentReader.setup_component_reader.rst b/docs/source/_autosummary/mcstasscript.tests.test_ComponentReader.setup_component_reader.rst new file mode 100644 index 00000000..36c09c77 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_ComponentReader.setup_component_reader.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_ComponentReader.setup\_component\_reader +================================================================= + +.. currentmodule:: mcstasscript.tests.test_ComponentReader + +.. autofunction:: setup_component_reader \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_ComponentReader.setup_component_reader_input_path.rst b/docs/source/_autosummary/mcstasscript.tests.test_ComponentReader.setup_component_reader_input_path.rst new file mode 100644 index 00000000..90dfc13c --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_ComponentReader.setup_component_reader_input_path.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_ComponentReader.setup\_component\_reader\_input\_path +============================================================================== + +.. currentmodule:: mcstasscript.tests.test_ComponentReader + +.. autofunction:: setup_component_reader_input_path \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Configurator.TestConfigurator.rst b/docs/source/_autosummary/mcstasscript.tests.test_Configurator.TestConfigurator.rst new file mode 100644 index 00000000..27632f5e --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Configurator.TestConfigurator.rst @@ -0,0 +1,104 @@ +mcstasscript.tests.test\_Configurator.TestConfigurator +====================================================== + +.. currentmodule:: mcstasscript.tests.test_Configurator + +.. autoclass:: TestConfigurator + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~TestConfigurator.__init__ + ~TestConfigurator.addClassCleanup + ~TestConfigurator.addCleanup + ~TestConfigurator.addTypeEqualityFunc + ~TestConfigurator.assertAlmostEqual + ~TestConfigurator.assertAlmostEquals + ~TestConfigurator.assertCountEqual + ~TestConfigurator.assertDictContainsSubset + ~TestConfigurator.assertDictEqual + ~TestConfigurator.assertEqual + ~TestConfigurator.assertEquals + ~TestConfigurator.assertFalse + ~TestConfigurator.assertGreater + ~TestConfigurator.assertGreaterEqual + ~TestConfigurator.assertIn + ~TestConfigurator.assertIs + ~TestConfigurator.assertIsInstance + ~TestConfigurator.assertIsNone + ~TestConfigurator.assertIsNot + ~TestConfigurator.assertIsNotNone + ~TestConfigurator.assertLess + ~TestConfigurator.assertLessEqual + ~TestConfigurator.assertListEqual + ~TestConfigurator.assertLogs + ~TestConfigurator.assertMultiLineEqual + ~TestConfigurator.assertNotAlmostEqual + ~TestConfigurator.assertNotAlmostEquals + ~TestConfigurator.assertNotEqual + ~TestConfigurator.assertNotEquals + ~TestConfigurator.assertNotIn + ~TestConfigurator.assertNotIsInstance + ~TestConfigurator.assertNotRegex + ~TestConfigurator.assertNotRegexpMatches + ~TestConfigurator.assertRaises + ~TestConfigurator.assertRaisesRegex + ~TestConfigurator.assertRaisesRegexp + ~TestConfigurator.assertRegex + ~TestConfigurator.assertRegexpMatches + ~TestConfigurator.assertSequenceEqual + ~TestConfigurator.assertSetEqual + ~TestConfigurator.assertTrue + ~TestConfigurator.assertTupleEqual + ~TestConfigurator.assertWarns + ~TestConfigurator.assertWarnsRegex + ~TestConfigurator.assert_ + ~TestConfigurator.countTestCases + ~TestConfigurator.debug + ~TestConfigurator.defaultTestResult + ~TestConfigurator.doClassCleanups + ~TestConfigurator.doCleanups + ~TestConfigurator.fail + ~TestConfigurator.failIf + ~TestConfigurator.failIfAlmostEqual + ~TestConfigurator.failIfEqual + ~TestConfigurator.failUnless + ~TestConfigurator.failUnlessAlmostEqual + ~TestConfigurator.failUnlessEqual + ~TestConfigurator.failUnlessRaises + ~TestConfigurator.id + ~TestConfigurator.run + ~TestConfigurator.setUp + ~TestConfigurator.setUpClass + ~TestConfigurator.shortDescription + ~TestConfigurator.skipTest + ~TestConfigurator.subTest + ~TestConfigurator.tearDown + ~TestConfigurator.tearDownClass + ~TestConfigurator.test_default_config + ~TestConfigurator.test_set_line_length + ~TestConfigurator.test_set_mcrun_path + ~TestConfigurator.test_set_mcstas_path + ~TestConfigurator.test_set_mcxtrace_path + ~TestConfigurator.test_set_mxrun_path + ~TestConfigurator.test_simple_initialize + ~TestConfigurator.test_yaml_write + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~TestConfigurator.longMessage + ~TestConfigurator.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Configurator.rst b/docs/source/_autosummary/mcstasscript.tests.test_Configurator.rst new file mode 100644 index 00000000..0a5e435c --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Configurator.rst @@ -0,0 +1,39 @@ +mcstasscript.tests.test\_Configurator +===================================== + +.. automodule:: mcstasscript.tests.test_Configurator + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + + setup_configurator + setup_expected_file + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + TestConfigurator + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Configurator.setup_configurator.rst b/docs/source/_autosummary/mcstasscript.tests.test_Configurator.setup_configurator.rst new file mode 100644 index 00000000..fbc4687f --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Configurator.setup_configurator.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Configurator.setup\_configurator +========================================================= + +.. currentmodule:: mcstasscript.tests.test_Configurator + +.. autofunction:: setup_configurator \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Configurator.setup_expected_file.rst b/docs/source/_autosummary/mcstasscript.tests.test_Configurator.setup_expected_file.rst new file mode 100644 index 00000000..28cbbe61 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Configurator.setup_expected_file.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Configurator.setup\_expected\_file +=========================================================== + +.. currentmodule:: mcstasscript.tests.test_Configurator + +.. autofunction:: setup_expected_file \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Instr.TestMcStas_instr.rst b/docs/source/_autosummary/mcstasscript.tests.test_Instr.TestMcStas_instr.rst new file mode 100644 index 00000000..565aa1c4 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Instr.TestMcStas_instr.rst @@ -0,0 +1,163 @@ +mcstasscript.tests.test\_Instr.TestMcStas\_instr +================================================ + +.. currentmodule:: mcstasscript.tests.test_Instr + +.. autoclass:: TestMcStas_instr + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~TestMcStas_instr.__init__ + ~TestMcStas_instr.addClassCleanup + ~TestMcStas_instr.addCleanup + ~TestMcStas_instr.addTypeEqualityFunc + ~TestMcStas_instr.assertAlmostEqual + ~TestMcStas_instr.assertAlmostEquals + ~TestMcStas_instr.assertCountEqual + ~TestMcStas_instr.assertDictContainsSubset + ~TestMcStas_instr.assertDictEqual + ~TestMcStas_instr.assertEqual + ~TestMcStas_instr.assertEquals + ~TestMcStas_instr.assertFalse + ~TestMcStas_instr.assertGreater + ~TestMcStas_instr.assertGreaterEqual + ~TestMcStas_instr.assertIn + ~TestMcStas_instr.assertIs + ~TestMcStas_instr.assertIsInstance + ~TestMcStas_instr.assertIsNone + ~TestMcStas_instr.assertIsNot + ~TestMcStas_instr.assertIsNotNone + ~TestMcStas_instr.assertLess + ~TestMcStas_instr.assertLessEqual + ~TestMcStas_instr.assertListEqual + ~TestMcStas_instr.assertLogs + ~TestMcStas_instr.assertMultiLineEqual + ~TestMcStas_instr.assertNotAlmostEqual + ~TestMcStas_instr.assertNotAlmostEquals + ~TestMcStas_instr.assertNotEqual + ~TestMcStas_instr.assertNotEquals + ~TestMcStas_instr.assertNotIn + ~TestMcStas_instr.assertNotIsInstance + ~TestMcStas_instr.assertNotRegex + ~TestMcStas_instr.assertNotRegexpMatches + ~TestMcStas_instr.assertRaises + ~TestMcStas_instr.assertRaisesRegex + ~TestMcStas_instr.assertRaisesRegexp + ~TestMcStas_instr.assertRegex + ~TestMcStas_instr.assertRegexpMatches + ~TestMcStas_instr.assertSequenceEqual + ~TestMcStas_instr.assertSetEqual + ~TestMcStas_instr.assertTrue + ~TestMcStas_instr.assertTupleEqual + ~TestMcStas_instr.assertWarns + ~TestMcStas_instr.assertWarnsRegex + ~TestMcStas_instr.assert_ + ~TestMcStas_instr.countTestCases + ~TestMcStas_instr.debug + ~TestMcStas_instr.defaultTestResult + ~TestMcStas_instr.doClassCleanups + ~TestMcStas_instr.doCleanups + ~TestMcStas_instr.fail + ~TestMcStas_instr.failIf + ~TestMcStas_instr.failIfAlmostEqual + ~TestMcStas_instr.failIfEqual + ~TestMcStas_instr.failUnless + ~TestMcStas_instr.failUnlessAlmostEqual + ~TestMcStas_instr.failUnlessEqual + ~TestMcStas_instr.failUnlessRaises + ~TestMcStas_instr.id + ~TestMcStas_instr.run + ~TestMcStas_instr.setUp + ~TestMcStas_instr.setUpClass + ~TestMcStas_instr.shortDescription + ~TestMcStas_instr.skipTest + ~TestMcStas_instr.subTest + ~TestMcStas_instr.tearDown + ~TestMcStas_instr.tearDownClass + ~TestMcStas_instr.test_add_component_simple + ~TestMcStas_instr.test_add_component_simple_after + ~TestMcStas_instr.test_add_component_simple_after_error + ~TestMcStas_instr.test_add_component_simple_before + ~TestMcStas_instr.test_add_component_simple_before_error + ~TestMcStas_instr.test_add_component_simple_double_naming_error + ~TestMcStas_instr.test_add_component_simple_keyword + ~TestMcStas_instr.test_append_component_EXTEND + ~TestMcStas_instr.test_complex_initialize + ~TestMcStas_instr.test_component_help + ~TestMcStas_instr.test_copy_component_keywords + ~TestMcStas_instr.test_copy_component_simple + ~TestMcStas_instr.test_copy_component_simple_fail + ~TestMcStas_instr.test_copy_component_simple_object + ~TestMcStas_instr.test_create_component_instance_complex + ~TestMcStas_instr.test_create_component_instance_simple + ~TestMcStas_instr.test_get_component_simple + ~TestMcStas_instr.test_get_component_simple_error + ~TestMcStas_instr.test_get_last_component_simple + ~TestMcStas_instr.test_load_config_file + ~TestMcStas_instr.test_load_config_file_x_ray + ~TestMcStas_instr.test_print_component + ~TestMcStas_instr.test_print_component_short + ~TestMcStas_instr.test_print_components_complex + ~TestMcStas_instr.test_print_components_complex_2lines + ~TestMcStas_instr.test_print_components_complex_3lines + ~TestMcStas_instr.test_print_components_simple + ~TestMcStas_instr.test_run_backengine_basic + ~TestMcStas_instr.test_run_backengine_existing_folder + ~TestMcStas_instr.test_run_full_instrument_complex + ~TestMcStas_instr.test_run_full_instrument_junk_par_error + ~TestMcStas_instr.test_run_full_instrument_overwrite_default + ~TestMcStas_instr.test_run_full_instrument_required_par_error + ~TestMcStas_instr.test_run_full_instrument_x_ray_basic + ~TestMcStas_instr.test_set_c_code_after + ~TestMcStas_instr.test_set_c_code_before + ~TestMcStas_instr.test_set_component_AT + ~TestMcStas_instr.test_set_component_GROUP + ~TestMcStas_instr.test_set_component_JUMP + ~TestMcStas_instr.test_set_component_RELATIVE + ~TestMcStas_instr.test_set_component_ROTATED + ~TestMcStas_instr.test_set_component_SPLIT + ~TestMcStas_instr.test_set_component_WHEN + ~TestMcStas_instr.test_set_component_comment + ~TestMcStas_instr.test_set_component_parameter + ~TestMcStas_instr.test_set_component_parameter_error + ~TestMcStas_instr.test_show_components_folder + ~TestMcStas_instr.test_show_components_input_path_custom + ~TestMcStas_instr.test_show_components_input_path_simple + ~TestMcStas_instr.test_show_components_simple + ~TestMcStas_instr.test_show_instrument_basic + ~TestMcStas_instr.test_show_parameters + ~TestMcStas_instr.test_show_parameters_line_break + ~TestMcStas_instr.test_simple_add_declare_parameter + ~TestMcStas_instr.test_simple_add_parameter + ~TestMcStas_instr.test_simple_append_declare + ~TestMcStas_instr.test_simple_append_declare_var_mix + ~TestMcStas_instr.test_simple_append_finally + ~TestMcStas_instr.test_simple_append_finally_no_new_line + ~TestMcStas_instr.test_simple_append_initialize + ~TestMcStas_instr.test_simple_append_initialize_no_new_line + ~TestMcStas_instr.test_simple_append_trace + ~TestMcStas_instr.test_simple_append_trace_no_new_line + ~TestMcStas_instr.test_simple_initialize + ~TestMcStas_instr.test_write_c_files_simple + ~TestMcStas_instr.test_write_full_instrument_simple + ~TestMcStas_instr.test_x_ray_run_full_instrument_basic + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~TestMcStas_instr.longMessage + ~TestMcStas_instr.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Instr.rst b/docs/source/_autosummary/mcstasscript.tests.test_Instr.rst new file mode 100644 index 00000000..77a32905 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Instr.rst @@ -0,0 +1,50 @@ +mcstasscript.tests.test\_Instr +============================== + +.. automodule:: mcstasscript.tests.test_Instr + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + + setup_instr_no_path + setup_instr_root_path + setup_instr_with_input_path + setup_instr_with_input_path_relative + setup_instr_with_path + setup_populated_instr + setup_populated_instr_with_dummy_path + setup_populated_with_some_options_instr + setup_populated_x_ray_instr + setup_populated_x_ray_instr_with_dummy_path + setup_x_ray_instr_no_path + setup_x_ray_instr_root_path + setup_x_ray_instr_with_path + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + TestMcStas_instr + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_instr_no_path.rst b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_instr_no_path.rst new file mode 100644 index 00000000..21ef5103 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_instr_no_path.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Instr.setup\_instr\_no\_path +===================================================== + +.. currentmodule:: mcstasscript.tests.test_Instr + +.. autofunction:: setup_instr_no_path \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_instr_root_path.rst b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_instr_root_path.rst new file mode 100644 index 00000000..7f0b149c --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_instr_root_path.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Instr.setup\_instr\_root\_path +======================================================= + +.. currentmodule:: mcstasscript.tests.test_Instr + +.. autofunction:: setup_instr_root_path \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_instr_with_input_path.rst b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_instr_with_input_path.rst new file mode 100644 index 00000000..03e734b0 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_instr_with_input_path.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Instr.setup\_instr\_with\_input\_path +============================================================== + +.. currentmodule:: mcstasscript.tests.test_Instr + +.. autofunction:: setup_instr_with_input_path \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_instr_with_input_path_relative.rst b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_instr_with_input_path_relative.rst new file mode 100644 index 00000000..568e549f --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_instr_with_input_path_relative.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Instr.setup\_instr\_with\_input\_path\_relative +======================================================================== + +.. currentmodule:: mcstasscript.tests.test_Instr + +.. autofunction:: setup_instr_with_input_path_relative \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_instr_with_path.rst b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_instr_with_path.rst new file mode 100644 index 00000000..e59bb9fb --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_instr_with_path.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Instr.setup\_instr\_with\_path +======================================================= + +.. currentmodule:: mcstasscript.tests.test_Instr + +.. autofunction:: setup_instr_with_path \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_populated_instr.rst b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_populated_instr.rst new file mode 100644 index 00000000..92c82a2c --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_populated_instr.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Instr.setup\_populated\_instr +====================================================== + +.. currentmodule:: mcstasscript.tests.test_Instr + +.. autofunction:: setup_populated_instr \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_populated_instr_with_dummy_path.rst b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_populated_instr_with_dummy_path.rst new file mode 100644 index 00000000..77c8a8fb --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_populated_instr_with_dummy_path.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Instr.setup\_populated\_instr\_with\_dummy\_path +========================================================================= + +.. currentmodule:: mcstasscript.tests.test_Instr + +.. autofunction:: setup_populated_instr_with_dummy_path \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_populated_with_some_options_instr.rst b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_populated_with_some_options_instr.rst new file mode 100644 index 00000000..3cd026f6 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_populated_with_some_options_instr.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Instr.setup\_populated\_with\_some\_options\_instr +=========================================================================== + +.. currentmodule:: mcstasscript.tests.test_Instr + +.. autofunction:: setup_populated_with_some_options_instr \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_populated_x_ray_instr.rst b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_populated_x_ray_instr.rst new file mode 100644 index 00000000..28d0e459 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_populated_x_ray_instr.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Instr.setup\_populated\_x\_ray\_instr +============================================================== + +.. currentmodule:: mcstasscript.tests.test_Instr + +.. autofunction:: setup_populated_x_ray_instr \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_populated_x_ray_instr_with_dummy_path.rst b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_populated_x_ray_instr_with_dummy_path.rst new file mode 100644 index 00000000..7f30098d --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_populated_x_ray_instr_with_dummy_path.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Instr.setup\_populated\_x\_ray\_instr\_with\_dummy\_path +================================================================================= + +.. currentmodule:: mcstasscript.tests.test_Instr + +.. autofunction:: setup_populated_x_ray_instr_with_dummy_path \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_x_ray_instr_no_path.rst b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_x_ray_instr_no_path.rst new file mode 100644 index 00000000..f4140434 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_x_ray_instr_no_path.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Instr.setup\_x\_ray\_instr\_no\_path +============================================================= + +.. currentmodule:: mcstasscript.tests.test_Instr + +.. autofunction:: setup_x_ray_instr_no_path \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_x_ray_instr_root_path.rst b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_x_ray_instr_root_path.rst new file mode 100644 index 00000000..ba4c5ec3 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_x_ray_instr_root_path.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Instr.setup\_x\_ray\_instr\_root\_path +=============================================================== + +.. currentmodule:: mcstasscript.tests.test_Instr + +.. autofunction:: setup_x_ray_instr_root_path \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_x_ray_instr_with_path.rst b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_x_ray_instr_with_path.rst new file mode 100644 index 00000000..22d13c0c --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Instr.setup_x_ray_instr_with_path.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Instr.setup\_x\_ray\_instr\_with\_path +=============================================================== + +.. currentmodule:: mcstasscript.tests.test_Instr + +.. autofunction:: setup_x_ray_instr_with_path \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.TestInstrReader.rst b/docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.TestInstrReader.rst new file mode 100644 index 00000000..3a55f03a --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.TestInstrReader.rst @@ -0,0 +1,111 @@ +mcstasscript.tests.test\_Instr\_reader.TestInstrReader +====================================================== + +.. currentmodule:: mcstasscript.tests.test_Instr_reader + +.. autoclass:: TestInstrReader + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~TestInstrReader.__init__ + ~TestInstrReader.addClassCleanup + ~TestInstrReader.addCleanup + ~TestInstrReader.addTypeEqualityFunc + ~TestInstrReader.assertAlmostEqual + ~TestInstrReader.assertAlmostEquals + ~TestInstrReader.assertCountEqual + ~TestInstrReader.assertDictContainsSubset + ~TestInstrReader.assertDictEqual + ~TestInstrReader.assertEqual + ~TestInstrReader.assertEquals + ~TestInstrReader.assertFalse + ~TestInstrReader.assertGreater + ~TestInstrReader.assertGreaterEqual + ~TestInstrReader.assertIn + ~TestInstrReader.assertIs + ~TestInstrReader.assertIsInstance + ~TestInstrReader.assertIsNone + ~TestInstrReader.assertIsNot + ~TestInstrReader.assertIsNotNone + ~TestInstrReader.assertLess + ~TestInstrReader.assertLessEqual + ~TestInstrReader.assertListEqual + ~TestInstrReader.assertLogs + ~TestInstrReader.assertMultiLineEqual + ~TestInstrReader.assertNotAlmostEqual + ~TestInstrReader.assertNotAlmostEquals + ~TestInstrReader.assertNotEqual + ~TestInstrReader.assertNotEquals + ~TestInstrReader.assertNotIn + ~TestInstrReader.assertNotIsInstance + ~TestInstrReader.assertNotRegex + ~TestInstrReader.assertNotRegexpMatches + ~TestInstrReader.assertRaises + ~TestInstrReader.assertRaisesRegex + ~TestInstrReader.assertRaisesRegexp + ~TestInstrReader.assertRegex + ~TestInstrReader.assertRegexpMatches + ~TestInstrReader.assertSequenceEqual + ~TestInstrReader.assertSetEqual + ~TestInstrReader.assertTrue + ~TestInstrReader.assertTupleEqual + ~TestInstrReader.assertWarns + ~TestInstrReader.assertWarnsRegex + ~TestInstrReader.assert_ + ~TestInstrReader.countTestCases + ~TestInstrReader.debug + ~TestInstrReader.defaultTestResult + ~TestInstrReader.doClassCleanups + ~TestInstrReader.doCleanups + ~TestInstrReader.fail + ~TestInstrReader.failIf + ~TestInstrReader.failIfAlmostEqual + ~TestInstrReader.failIfEqual + ~TestInstrReader.failUnless + ~TestInstrReader.failUnlessAlmostEqual + ~TestInstrReader.failUnlessEqual + ~TestInstrReader.failUnlessRaises + ~TestInstrReader.id + ~TestInstrReader.run + ~TestInstrReader.setUp + ~TestInstrReader.setUpClass + ~TestInstrReader.shortDescription + ~TestInstrReader.skipTest + ~TestInstrReader.subTest + ~TestInstrReader.tearDown + ~TestInstrReader.tearDownClass + ~TestInstrReader.test_comma_split + ~TestInstrReader.test_comma_split_brack + ~TestInstrReader.test_comma_split_limited + ~TestInstrReader.test_parenthesis_split + ~TestInstrReader.test_read_component_1 + ~TestInstrReader.test_read_component_2 + ~TestInstrReader.test_read_component_EXTEND + ~TestInstrReader.test_read_component_GROUP + ~TestInstrReader.test_read_component_JUMP + ~TestInstrReader.test_read_component_SPLIT + ~TestInstrReader.test_read_component_WHEN + ~TestInstrReader.test_read_declare_parameter + ~TestInstrReader.test_read_initialize_line + ~TestInstrReader.test_read_input_parameter + ~TestInstrReader.test_read_instrument_name + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~TestInstrReader.longMessage + ~TestInstrReader.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.blockPrint.rst b/docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.blockPrint.rst new file mode 100644 index 00000000..2e42db31 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.blockPrint.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Instr\_reader.blockPrint +================================================= + +.. currentmodule:: mcstasscript.tests.test_Instr_reader + +.. autofunction:: blockPrint \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.enablePrint.rst b/docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.enablePrint.rst new file mode 100644 index 00000000..7d8860ac --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.enablePrint.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Instr\_reader.enablePrint +================================================== + +.. currentmodule:: mcstasscript.tests.test_Instr_reader + +.. autofunction:: enablePrint \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.rst b/docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.rst new file mode 100644 index 00000000..f57ac30f --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.rst @@ -0,0 +1,42 @@ +mcstasscript.tests.test\_Instr\_reader +====================================== + +.. automodule:: mcstasscript.tests.test_Instr_reader + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + + blockPrint + enablePrint + set_dummy_dir + setup_standard + setup_standard_auto_instr + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + TestInstrReader + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.set_dummy_dir.rst b/docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.set_dummy_dir.rst new file mode 100644 index 00000000..6d4f0c33 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.set_dummy_dir.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Instr\_reader.set\_dummy\_dir +====================================================== + +.. currentmodule:: mcstasscript.tests.test_Instr_reader + +.. autofunction:: set_dummy_dir \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.setup_standard.rst b/docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.setup_standard.rst new file mode 100644 index 00000000..1742a64d --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.setup_standard.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Instr\_reader.setup\_standard +====================================================== + +.. currentmodule:: mcstasscript.tests.test_Instr_reader + +.. autofunction:: setup_standard \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.setup_standard_auto_instr.rst b/docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.setup_standard_auto_instr.rst new file mode 100644 index 00000000..703d60ea --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Instr_reader.setup_standard_auto_instr.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Instr\_reader.setup\_standard\_auto\_instr +=================================================================== + +.. currentmodule:: mcstasscript.tests.test_Instr_reader + +.. autofunction:: setup_standard_auto_instr \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_ManagedMcrun.TestManagedMcrun.rst b/docs/source/_autosummary/mcstasscript.tests.test_ManagedMcrun.TestManagedMcrun.rst new file mode 100644 index 00000000..4ca2316e --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_ManagedMcrun.TestManagedMcrun.rst @@ -0,0 +1,117 @@ +mcstasscript.tests.test\_ManagedMcrun.TestManagedMcrun +====================================================== + +.. currentmodule:: mcstasscript.tests.test_ManagedMcrun + +.. autoclass:: TestManagedMcrun + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~TestManagedMcrun.__init__ + ~TestManagedMcrun.addClassCleanup + ~TestManagedMcrun.addCleanup + ~TestManagedMcrun.addTypeEqualityFunc + ~TestManagedMcrun.assertAlmostEqual + ~TestManagedMcrun.assertAlmostEquals + ~TestManagedMcrun.assertCountEqual + ~TestManagedMcrun.assertDictContainsSubset + ~TestManagedMcrun.assertDictEqual + ~TestManagedMcrun.assertEqual + ~TestManagedMcrun.assertEquals + ~TestManagedMcrun.assertFalse + ~TestManagedMcrun.assertGreater + ~TestManagedMcrun.assertGreaterEqual + ~TestManagedMcrun.assertIn + ~TestManagedMcrun.assertIs + ~TestManagedMcrun.assertIsInstance + ~TestManagedMcrun.assertIsNone + ~TestManagedMcrun.assertIsNot + ~TestManagedMcrun.assertIsNotNone + ~TestManagedMcrun.assertLess + ~TestManagedMcrun.assertLessEqual + ~TestManagedMcrun.assertListEqual + ~TestManagedMcrun.assertLogs + ~TestManagedMcrun.assertMultiLineEqual + ~TestManagedMcrun.assertNotAlmostEqual + ~TestManagedMcrun.assertNotAlmostEquals + ~TestManagedMcrun.assertNotEqual + ~TestManagedMcrun.assertNotEquals + ~TestManagedMcrun.assertNotIn + ~TestManagedMcrun.assertNotIsInstance + ~TestManagedMcrun.assertNotRegex + ~TestManagedMcrun.assertNotRegexpMatches + ~TestManagedMcrun.assertRaises + ~TestManagedMcrun.assertRaisesRegex + ~TestManagedMcrun.assertRaisesRegexp + ~TestManagedMcrun.assertRegex + ~TestManagedMcrun.assertRegexpMatches + ~TestManagedMcrun.assertSequenceEqual + ~TestManagedMcrun.assertSetEqual + ~TestManagedMcrun.assertTrue + ~TestManagedMcrun.assertTupleEqual + ~TestManagedMcrun.assertWarns + ~TestManagedMcrun.assertWarnsRegex + ~TestManagedMcrun.assert_ + ~TestManagedMcrun.countTestCases + ~TestManagedMcrun.debug + ~TestManagedMcrun.defaultTestResult + ~TestManagedMcrun.doClassCleanups + ~TestManagedMcrun.doCleanups + ~TestManagedMcrun.fail + ~TestManagedMcrun.failIf + ~TestManagedMcrun.failIfAlmostEqual + ~TestManagedMcrun.failIfEqual + ~TestManagedMcrun.failUnless + ~TestManagedMcrun.failUnlessAlmostEqual + ~TestManagedMcrun.failUnlessEqual + ~TestManagedMcrun.failUnlessRaises + ~TestManagedMcrun.id + ~TestManagedMcrun.run + ~TestManagedMcrun.setUp + ~TestManagedMcrun.setUpClass + ~TestManagedMcrun.shortDescription + ~TestManagedMcrun.skipTest + ~TestManagedMcrun.subTest + ~TestManagedMcrun.tearDown + ~TestManagedMcrun.tearDownClass + ~TestManagedMcrun.test_ManagedMcrun_init_defaults + ~TestManagedMcrun.test_ManagedMcrun_init_invalid_mpi_error + ~TestManagedMcrun.test_ManagedMcrun_init_invalid_ncount_error + ~TestManagedMcrun.test_ManagedMcrun_init_invalid_parameters_error + ~TestManagedMcrun.test_ManagedMcrun_init_no_folder_error + ~TestManagedMcrun.test_ManagedMcrun_init_set_custom_flags + ~TestManagedMcrun.test_ManagedMcrun_init_set_parameters + ~TestManagedMcrun.test_ManagedMcrun_init_set_values + ~TestManagedMcrun.test_ManagedMcrun_init_simple + ~TestManagedMcrun.test_ManagedMcrun_load_data_Event + ~TestManagedMcrun.test_ManagedMcrun_load_data_L_mon + ~TestManagedMcrun.test_ManagedMcrun_load_data_L_mon_direct + ~TestManagedMcrun.test_ManagedMcrun_load_data_PSD + ~TestManagedMcrun.test_ManagedMcrun_load_data_PSD4PI + ~TestManagedMcrun.test_ManagedMcrun_load_data_no_mcsim_file + ~TestManagedMcrun.test_ManagedMcrun_load_data_nonexisting + ~TestManagedMcrun.test_ManagedMcrun_run_simulation_basic + ~TestManagedMcrun.test_ManagedMcrun_run_simulation_basic_path + ~TestManagedMcrun.test_ManagedMcrun_run_simulation_compile + ~TestManagedMcrun.test_ManagedMcrun_run_simulation_no_standard + ~TestManagedMcrun.test_ManagedMcrun_run_simulation_parameters + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~TestManagedMcrun.longMessage + ~TestManagedMcrun.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_ManagedMcrun.Test_load_functions.rst b/docs/source/_autosummary/mcstasscript.tests.test_ManagedMcrun.Test_load_functions.rst new file mode 100644 index 00000000..4faea0b1 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_ManagedMcrun.Test_load_functions.rst @@ -0,0 +1,102 @@ +mcstasscript.tests.test\_ManagedMcrun.Test\_load\_functions +=========================================================== + +.. currentmodule:: mcstasscript.tests.test_ManagedMcrun + +.. autoclass:: Test_load_functions + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~Test_load_functions.__init__ + ~Test_load_functions.addClassCleanup + ~Test_load_functions.addCleanup + ~Test_load_functions.addTypeEqualityFunc + ~Test_load_functions.assertAlmostEqual + ~Test_load_functions.assertAlmostEquals + ~Test_load_functions.assertCountEqual + ~Test_load_functions.assertDictContainsSubset + ~Test_load_functions.assertDictEqual + ~Test_load_functions.assertEqual + ~Test_load_functions.assertEquals + ~Test_load_functions.assertFalse + ~Test_load_functions.assertGreater + ~Test_load_functions.assertGreaterEqual + ~Test_load_functions.assertIn + ~Test_load_functions.assertIs + ~Test_load_functions.assertIsInstance + ~Test_load_functions.assertIsNone + ~Test_load_functions.assertIsNot + ~Test_load_functions.assertIsNotNone + ~Test_load_functions.assertLess + ~Test_load_functions.assertLessEqual + ~Test_load_functions.assertListEqual + ~Test_load_functions.assertLogs + ~Test_load_functions.assertMultiLineEqual + ~Test_load_functions.assertNotAlmostEqual + ~Test_load_functions.assertNotAlmostEquals + ~Test_load_functions.assertNotEqual + ~Test_load_functions.assertNotEquals + ~Test_load_functions.assertNotIn + ~Test_load_functions.assertNotIsInstance + ~Test_load_functions.assertNotRegex + ~Test_load_functions.assertNotRegexpMatches + ~Test_load_functions.assertRaises + ~Test_load_functions.assertRaisesRegex + ~Test_load_functions.assertRaisesRegexp + ~Test_load_functions.assertRegex + ~Test_load_functions.assertRegexpMatches + ~Test_load_functions.assertSequenceEqual + ~Test_load_functions.assertSetEqual + ~Test_load_functions.assertTrue + ~Test_load_functions.assertTupleEqual + ~Test_load_functions.assertWarns + ~Test_load_functions.assertWarnsRegex + ~Test_load_functions.assert_ + ~Test_load_functions.countTestCases + ~Test_load_functions.debug + ~Test_load_functions.defaultTestResult + ~Test_load_functions.doClassCleanups + ~Test_load_functions.doCleanups + ~Test_load_functions.fail + ~Test_load_functions.failIf + ~Test_load_functions.failIfAlmostEqual + ~Test_load_functions.failIfEqual + ~Test_load_functions.failUnless + ~Test_load_functions.failUnlessAlmostEqual + ~Test_load_functions.failUnlessEqual + ~Test_load_functions.failUnlessRaises + ~Test_load_functions.id + ~Test_load_functions.run + ~Test_load_functions.setUp + ~Test_load_functions.setUpClass + ~Test_load_functions.shortDescription + ~Test_load_functions.skipTest + ~Test_load_functions.subTest + ~Test_load_functions.tearDown + ~Test_load_functions.tearDownClass + ~Test_load_functions.test_mcrun_load_data_PSD + ~Test_load_functions.test_mcrun_load_data_PSD4PI + ~Test_load_functions.test_mcrun_load_metadata_L_mon + ~Test_load_functions.test_mcrun_load_metadata_PSD4PI + ~Test_load_functions.test_mcrun_load_monitor_L_mon + ~Test_load_functions.test_mcrun_load_monitor_PSD4PI + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~Test_load_functions.longMessage + ~Test_load_functions.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_ManagedMcrun.rst b/docs/source/_autosummary/mcstasscript.tests.test_ManagedMcrun.rst new file mode 100644 index 00000000..5c82724a --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_ManagedMcrun.rst @@ -0,0 +1,32 @@ +mcstasscript.tests.test\_ManagedMcrun +===================================== + +.. automodule:: mcstasscript.tests.test_ManagedMcrun + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + TestManagedMcrun + Test_load_functions + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.tests.test_McStasData.TestMcStasData.rst b/docs/source/_autosummary/mcstasscript.tests.test_McStasData.TestMcStasData.rst new file mode 100644 index 00000000..781dcb99 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_McStasData.TestMcStasData.rst @@ -0,0 +1,109 @@ +mcstasscript.tests.test\_McStasData.TestMcStasData +================================================== + +.. currentmodule:: mcstasscript.tests.test_McStasData + +.. autoclass:: TestMcStasData + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~TestMcStasData.__init__ + ~TestMcStasData.addClassCleanup + ~TestMcStasData.addCleanup + ~TestMcStasData.addTypeEqualityFunc + ~TestMcStasData.assertAlmostEqual + ~TestMcStasData.assertAlmostEquals + ~TestMcStasData.assertCountEqual + ~TestMcStasData.assertDictContainsSubset + ~TestMcStasData.assertDictEqual + ~TestMcStasData.assertEqual + ~TestMcStasData.assertEquals + ~TestMcStasData.assertFalse + ~TestMcStasData.assertGreater + ~TestMcStasData.assertGreaterEqual + ~TestMcStasData.assertIn + ~TestMcStasData.assertIs + ~TestMcStasData.assertIsInstance + ~TestMcStasData.assertIsNone + ~TestMcStasData.assertIsNot + ~TestMcStasData.assertIsNotNone + ~TestMcStasData.assertLess + ~TestMcStasData.assertLessEqual + ~TestMcStasData.assertListEqual + ~TestMcStasData.assertLogs + ~TestMcStasData.assertMultiLineEqual + ~TestMcStasData.assertNotAlmostEqual + ~TestMcStasData.assertNotAlmostEquals + ~TestMcStasData.assertNotEqual + ~TestMcStasData.assertNotEquals + ~TestMcStasData.assertNotIn + ~TestMcStasData.assertNotIsInstance + ~TestMcStasData.assertNotRegex + ~TestMcStasData.assertNotRegexpMatches + ~TestMcStasData.assertRaises + ~TestMcStasData.assertRaisesRegex + ~TestMcStasData.assertRaisesRegexp + ~TestMcStasData.assertRegex + ~TestMcStasData.assertRegexpMatches + ~TestMcStasData.assertSequenceEqual + ~TestMcStasData.assertSetEqual + ~TestMcStasData.assertTrue + ~TestMcStasData.assertTupleEqual + ~TestMcStasData.assertWarns + ~TestMcStasData.assertWarnsRegex + ~TestMcStasData.assert_ + ~TestMcStasData.countTestCases + ~TestMcStasData.debug + ~TestMcStasData.defaultTestResult + ~TestMcStasData.doClassCleanups + ~TestMcStasData.doCleanups + ~TestMcStasData.fail + ~TestMcStasData.failIf + ~TestMcStasData.failIfAlmostEqual + ~TestMcStasData.failIfEqual + ~TestMcStasData.failUnless + ~TestMcStasData.failUnlessAlmostEqual + ~TestMcStasData.failUnlessEqual + ~TestMcStasData.failUnlessRaises + ~TestMcStasData.id + ~TestMcStasData.run + ~TestMcStasData.setUp + ~TestMcStasData.setUpClass + ~TestMcStasData.shortDescription + ~TestMcStasData.skipTest + ~TestMcStasData.subTest + ~TestMcStasData.tearDown + ~TestMcStasData.tearDownClass + ~TestMcStasData.test_McStasDataBinned_init_1d + ~TestMcStasData.test_McStasDataBinned_init_2d_names + ~TestMcStasData.test_McStasDataBinned_init_2d_values + ~TestMcStasData.test_McStasDataBinned_init_2d_values_full + ~TestMcStasData.test_McStasDataBinned_init_values + ~TestMcStasData.test_McStasDataBinned_init_values_full + ~TestMcStasData.test_McStasDataBinned_set_colormap + ~TestMcStasData.test_McStasDataBinned_set_info_title + ~TestMcStasData.test_McStasDataBinned_set_log + ~TestMcStasData.test_McStasDataBinned_set_orders_of_mag + ~TestMcStasData.test_McStasDataBinned_set_show_colorbar + ~TestMcStasData.test_McStasDataBinned_set_xlabel + ~TestMcStasData.test_McStasDataBinned_set_ylabel + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~TestMcStasData.longMessage + ~TestMcStasData.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_McStasData.rst b/docs/source/_autosummary/mcstasscript.tests.test_McStasData.rst new file mode 100644 index 00000000..d07f116e --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_McStasData.rst @@ -0,0 +1,41 @@ +mcstasscript.tests.test\_McStasData +=================================== + +.. automodule:: mcstasscript.tests.test_McStasData + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + + set_dummy_McStasDataBinned_1d + set_dummy_McStasDataBinned_2d + set_dummy_MetaDataBinned_1d + set_dummy_MetaDataBinned_2d + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + TestMcStasData + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.tests.test_McStasData.set_dummy_McStasDataBinned_1d.rst b/docs/source/_autosummary/mcstasscript.tests.test_McStasData.set_dummy_McStasDataBinned_1d.rst new file mode 100644 index 00000000..94ba6ae9 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_McStasData.set_dummy_McStasDataBinned_1d.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_McStasData.set\_dummy\_McStasDataBinned\_1d +==================================================================== + +.. currentmodule:: mcstasscript.tests.test_McStasData + +.. autofunction:: set_dummy_McStasDataBinned_1d \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_McStasData.set_dummy_McStasDataBinned_2d.rst b/docs/source/_autosummary/mcstasscript.tests.test_McStasData.set_dummy_McStasDataBinned_2d.rst new file mode 100644 index 00000000..8cc7ea05 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_McStasData.set_dummy_McStasDataBinned_2d.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_McStasData.set\_dummy\_McStasDataBinned\_2d +==================================================================== + +.. currentmodule:: mcstasscript.tests.test_McStasData + +.. autofunction:: set_dummy_McStasDataBinned_2d \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_McStasData.set_dummy_MetaDataBinned_1d.rst b/docs/source/_autosummary/mcstasscript.tests.test_McStasData.set_dummy_MetaDataBinned_1d.rst new file mode 100644 index 00000000..7cb2e196 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_McStasData.set_dummy_MetaDataBinned_1d.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_McStasData.set\_dummy\_MetaDataBinned\_1d +================================================================== + +.. currentmodule:: mcstasscript.tests.test_McStasData + +.. autofunction:: set_dummy_MetaDataBinned_1d \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_McStasData.set_dummy_MetaDataBinned_2d.rst b/docs/source/_autosummary/mcstasscript.tests.test_McStasData.set_dummy_MetaDataBinned_2d.rst new file mode 100644 index 00000000..a62b8c52 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_McStasData.set_dummy_MetaDataBinned_2d.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_McStasData.set\_dummy\_MetaDataBinned\_2d +================================================================== + +.. currentmodule:: mcstasscript.tests.test_McStasData + +.. autofunction:: set_dummy_MetaDataBinned_2d \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_McStasMetaData.TestMcStasMetaData.rst b/docs/source/_autosummary/mcstasscript.tests.test_McStasMetaData.TestMcStasMetaData.rst new file mode 100644 index 00000000..e20bd396 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_McStasMetaData.TestMcStasMetaData.rst @@ -0,0 +1,105 @@ +mcstasscript.tests.test\_McStasMetaData.TestMcStasMetaData +========================================================== + +.. currentmodule:: mcstasscript.tests.test_McStasMetaData + +.. autoclass:: TestMcStasMetaData + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~TestMcStasMetaData.__init__ + ~TestMcStasMetaData.addClassCleanup + ~TestMcStasMetaData.addCleanup + ~TestMcStasMetaData.addTypeEqualityFunc + ~TestMcStasMetaData.assertAlmostEqual + ~TestMcStasMetaData.assertAlmostEquals + ~TestMcStasMetaData.assertCountEqual + ~TestMcStasMetaData.assertDictContainsSubset + ~TestMcStasMetaData.assertDictEqual + ~TestMcStasMetaData.assertEqual + ~TestMcStasMetaData.assertEquals + ~TestMcStasMetaData.assertFalse + ~TestMcStasMetaData.assertGreater + ~TestMcStasMetaData.assertGreaterEqual + ~TestMcStasMetaData.assertIn + ~TestMcStasMetaData.assertIs + ~TestMcStasMetaData.assertIsInstance + ~TestMcStasMetaData.assertIsNone + ~TestMcStasMetaData.assertIsNot + ~TestMcStasMetaData.assertIsNotNone + ~TestMcStasMetaData.assertLess + ~TestMcStasMetaData.assertLessEqual + ~TestMcStasMetaData.assertListEqual + ~TestMcStasMetaData.assertLogs + ~TestMcStasMetaData.assertMultiLineEqual + ~TestMcStasMetaData.assertNotAlmostEqual + ~TestMcStasMetaData.assertNotAlmostEquals + ~TestMcStasMetaData.assertNotEqual + ~TestMcStasMetaData.assertNotEquals + ~TestMcStasMetaData.assertNotIn + ~TestMcStasMetaData.assertNotIsInstance + ~TestMcStasMetaData.assertNotRegex + ~TestMcStasMetaData.assertNotRegexpMatches + ~TestMcStasMetaData.assertRaises + ~TestMcStasMetaData.assertRaisesRegex + ~TestMcStasMetaData.assertRaisesRegexp + ~TestMcStasMetaData.assertRegex + ~TestMcStasMetaData.assertRegexpMatches + ~TestMcStasMetaData.assertSequenceEqual + ~TestMcStasMetaData.assertSetEqual + ~TestMcStasMetaData.assertTrue + ~TestMcStasMetaData.assertTupleEqual + ~TestMcStasMetaData.assertWarns + ~TestMcStasMetaData.assertWarnsRegex + ~TestMcStasMetaData.assert_ + ~TestMcStasMetaData.countTestCases + ~TestMcStasMetaData.debug + ~TestMcStasMetaData.defaultTestResult + ~TestMcStasMetaData.doClassCleanups + ~TestMcStasMetaData.doCleanups + ~TestMcStasMetaData.fail + ~TestMcStasMetaData.failIf + ~TestMcStasMetaData.failIfAlmostEqual + ~TestMcStasMetaData.failIfEqual + ~TestMcStasMetaData.failUnless + ~TestMcStasMetaData.failUnlessAlmostEqual + ~TestMcStasMetaData.failUnlessEqual + ~TestMcStasMetaData.failUnlessRaises + ~TestMcStasMetaData.id + ~TestMcStasMetaData.run + ~TestMcStasMetaData.setUp + ~TestMcStasMetaData.setUpClass + ~TestMcStasMetaData.shortDescription + ~TestMcStasMetaData.skipTest + ~TestMcStasMetaData.subTest + ~TestMcStasMetaData.tearDown + ~TestMcStasMetaData.tearDownClass + ~TestMcStasMetaData.test_McStasMetaData_add_info + ~TestMcStasMetaData.test_McStasMetaData_add_info_len + ~TestMcStasMetaData.test_McStasMetaData_add_info_title + ~TestMcStasMetaData.test_McStasMetaData_add_info_xlabel + ~TestMcStasMetaData.test_McStasMetaData_add_info_ylabel + ~TestMcStasMetaData.test_McStasMetaData_init + ~TestMcStasMetaData.test_McStasMetaData_long_read_1d + ~TestMcStasMetaData.test_McStasMetaData_long_read_2d + ~TestMcStasMetaData.test_McStasMetaData_return_type + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~TestMcStasMetaData.longMessage + ~TestMcStasMetaData.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_McStasMetaData.rst b/docs/source/_autosummary/mcstasscript.tests.test_McStasMetaData.rst new file mode 100644 index 00000000..97ad837e --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_McStasMetaData.rst @@ -0,0 +1,31 @@ +mcstasscript.tests.test\_McStasMetaData +======================================= + +.. automodule:: mcstasscript.tests.test_McStasMetaData + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + TestMcStasMetaData + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.tests.test_McStasPlotOptions.TestMcStasPlotOptions.rst b/docs/source/_autosummary/mcstasscript.tests.test_McStasPlotOptions.TestMcStasPlotOptions.rst new file mode 100644 index 00000000..0f87fdbe --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_McStasPlotOptions.TestMcStasPlotOptions.rst @@ -0,0 +1,120 @@ +mcstasscript.tests.test\_McStasPlotOptions.TestMcStasPlotOptions +================================================================ + +.. currentmodule:: mcstasscript.tests.test_McStasPlotOptions + +.. autoclass:: TestMcStasPlotOptions + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~TestMcStasPlotOptions.__init__ + ~TestMcStasPlotOptions.addClassCleanup + ~TestMcStasPlotOptions.addCleanup + ~TestMcStasPlotOptions.addTypeEqualityFunc + ~TestMcStasPlotOptions.assertAlmostEqual + ~TestMcStasPlotOptions.assertAlmostEquals + ~TestMcStasPlotOptions.assertCountEqual + ~TestMcStasPlotOptions.assertDictContainsSubset + ~TestMcStasPlotOptions.assertDictEqual + ~TestMcStasPlotOptions.assertEqual + ~TestMcStasPlotOptions.assertEquals + ~TestMcStasPlotOptions.assertFalse + ~TestMcStasPlotOptions.assertGreater + ~TestMcStasPlotOptions.assertGreaterEqual + ~TestMcStasPlotOptions.assertIn + ~TestMcStasPlotOptions.assertIs + ~TestMcStasPlotOptions.assertIsInstance + ~TestMcStasPlotOptions.assertIsNone + ~TestMcStasPlotOptions.assertIsNot + ~TestMcStasPlotOptions.assertIsNotNone + ~TestMcStasPlotOptions.assertLess + ~TestMcStasPlotOptions.assertLessEqual + ~TestMcStasPlotOptions.assertListEqual + ~TestMcStasPlotOptions.assertLogs + ~TestMcStasPlotOptions.assertMultiLineEqual + ~TestMcStasPlotOptions.assertNotAlmostEqual + ~TestMcStasPlotOptions.assertNotAlmostEquals + ~TestMcStasPlotOptions.assertNotEqual + ~TestMcStasPlotOptions.assertNotEquals + ~TestMcStasPlotOptions.assertNotIn + ~TestMcStasPlotOptions.assertNotIsInstance + ~TestMcStasPlotOptions.assertNotRegex + ~TestMcStasPlotOptions.assertNotRegexpMatches + ~TestMcStasPlotOptions.assertRaises + ~TestMcStasPlotOptions.assertRaisesRegex + ~TestMcStasPlotOptions.assertRaisesRegexp + ~TestMcStasPlotOptions.assertRegex + ~TestMcStasPlotOptions.assertRegexpMatches + ~TestMcStasPlotOptions.assertSequenceEqual + ~TestMcStasPlotOptions.assertSetEqual + ~TestMcStasPlotOptions.assertTrue + ~TestMcStasPlotOptions.assertTupleEqual + ~TestMcStasPlotOptions.assertWarns + ~TestMcStasPlotOptions.assertWarnsRegex + ~TestMcStasPlotOptions.assert_ + ~TestMcStasPlotOptions.countTestCases + ~TestMcStasPlotOptions.debug + ~TestMcStasPlotOptions.defaultTestResult + ~TestMcStasPlotOptions.doClassCleanups + ~TestMcStasPlotOptions.doCleanups + ~TestMcStasPlotOptions.fail + ~TestMcStasPlotOptions.failIf + ~TestMcStasPlotOptions.failIfAlmostEqual + ~TestMcStasPlotOptions.failIfEqual + ~TestMcStasPlotOptions.failUnless + ~TestMcStasPlotOptions.failUnlessAlmostEqual + ~TestMcStasPlotOptions.failUnlessEqual + ~TestMcStasPlotOptions.failUnlessRaises + ~TestMcStasPlotOptions.id + ~TestMcStasPlotOptions.run + ~TestMcStasPlotOptions.setUp + ~TestMcStasPlotOptions.setUpClass + ~TestMcStasPlotOptions.shortDescription + ~TestMcStasPlotOptions.skipTest + ~TestMcStasPlotOptions.subTest + ~TestMcStasPlotOptions.tearDown + ~TestMcStasPlotOptions.tearDownClass + ~TestMcStasPlotOptions.test_McStasPlotOptions_default_bottom_lim + ~TestMcStasPlotOptions.test_McStasPlotOptions_default_colormap + ~TestMcStasPlotOptions.test_McStasPlotOptions_default_cut_max + ~TestMcStasPlotOptions.test_McStasPlotOptions_default_cut_min + ~TestMcStasPlotOptions.test_McStasPlotOptions_default_left_lim + ~TestMcStasPlotOptions.test_McStasPlotOptions_default_log + ~TestMcStasPlotOptions.test_McStasPlotOptions_default_orders_of_mag + ~TestMcStasPlotOptions.test_McStasPlotOptions_default_right_lim + ~TestMcStasPlotOptions.test_McStasPlotOptions_default_show_colorbar + ~TestMcStasPlotOptions.test_McStasPlotOptions_default_top_lim + ~TestMcStasPlotOptions.test_McStasPlotOptions_default_x_axis_multiplier + ~TestMcStasPlotOptions.test_McStasPlotOptions_default_y_axis_multiplier + ~TestMcStasPlotOptions.test_McStasPlotOptions_set_bottom_lim + ~TestMcStasPlotOptions.test_McStasPlotOptions_set_colormap + ~TestMcStasPlotOptions.test_McStasPlotOptions_set_cut_max + ~TestMcStasPlotOptions.test_McStasPlotOptions_set_cut_min + ~TestMcStasPlotOptions.test_McStasPlotOptions_set_left_lim + ~TestMcStasPlotOptions.test_McStasPlotOptions_set_log + ~TestMcStasPlotOptions.test_McStasPlotOptions_set_orders_of_mag + ~TestMcStasPlotOptions.test_McStasPlotOptions_set_right_lim + ~TestMcStasPlotOptions.test_McStasPlotOptions_set_show_colorbar + ~TestMcStasPlotOptions.test_McStasPlotOptions_set_top_lim + ~TestMcStasPlotOptions.test_McStasPlotOptions_set_x_axis_multiplier + ~TestMcStasPlotOptions.test_McStasPlotOptions_set_y_axis_multiplier + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~TestMcStasPlotOptions.longMessage + ~TestMcStasPlotOptions.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_McStasPlotOptions.rst b/docs/source/_autosummary/mcstasscript.tests.test_McStasPlotOptions.rst new file mode 100644 index 00000000..a33c7975 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_McStasPlotOptions.rst @@ -0,0 +1,31 @@ +mcstasscript.tests.test\_McStasPlotOptions +========================================== + +.. automodule:: mcstasscript.tests.test_McStasPlotOptions + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + TestMcStasPlotOptions + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Plotter.TestPlotterHelpers.rst b/docs/source/_autosummary/mcstasscript.tests.test_Plotter.TestPlotterHelpers.rst new file mode 100644 index 00000000..8ff72964 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Plotter.TestPlotterHelpers.rst @@ -0,0 +1,128 @@ +mcstasscript.tests.test\_Plotter.TestPlotterHelpers +=================================================== + +.. currentmodule:: mcstasscript.tests.test_Plotter + +.. autoclass:: TestPlotterHelpers + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~TestPlotterHelpers.__init__ + ~TestPlotterHelpers.addClassCleanup + ~TestPlotterHelpers.addCleanup + ~TestPlotterHelpers.addTypeEqualityFunc + ~TestPlotterHelpers.assertAlmostEqual + ~TestPlotterHelpers.assertAlmostEquals + ~TestPlotterHelpers.assertCountEqual + ~TestPlotterHelpers.assertDictContainsSubset + ~TestPlotterHelpers.assertDictEqual + ~TestPlotterHelpers.assertEqual + ~TestPlotterHelpers.assertEquals + ~TestPlotterHelpers.assertFalse + ~TestPlotterHelpers.assertGreater + ~TestPlotterHelpers.assertGreaterEqual + ~TestPlotterHelpers.assertIn + ~TestPlotterHelpers.assertIs + ~TestPlotterHelpers.assertIsInstance + ~TestPlotterHelpers.assertIsNone + ~TestPlotterHelpers.assertIsNot + ~TestPlotterHelpers.assertIsNotNone + ~TestPlotterHelpers.assertLess + ~TestPlotterHelpers.assertLessEqual + ~TestPlotterHelpers.assertListEqual + ~TestPlotterHelpers.assertLogs + ~TestPlotterHelpers.assertMultiLineEqual + ~TestPlotterHelpers.assertNotAlmostEqual + ~TestPlotterHelpers.assertNotAlmostEquals + ~TestPlotterHelpers.assertNotEqual + ~TestPlotterHelpers.assertNotEquals + ~TestPlotterHelpers.assertNotIn + ~TestPlotterHelpers.assertNotIsInstance + ~TestPlotterHelpers.assertNotRegex + ~TestPlotterHelpers.assertNotRegexpMatches + ~TestPlotterHelpers.assertRaises + ~TestPlotterHelpers.assertRaisesRegex + ~TestPlotterHelpers.assertRaisesRegexp + ~TestPlotterHelpers.assertRegex + ~TestPlotterHelpers.assertRegexpMatches + ~TestPlotterHelpers.assertSequenceEqual + ~TestPlotterHelpers.assertSetEqual + ~TestPlotterHelpers.assertTrue + ~TestPlotterHelpers.assertTupleEqual + ~TestPlotterHelpers.assertWarns + ~TestPlotterHelpers.assertWarnsRegex + ~TestPlotterHelpers.assert_ + ~TestPlotterHelpers.countTestCases + ~TestPlotterHelpers.debug + ~TestPlotterHelpers.defaultTestResult + ~TestPlotterHelpers.doClassCleanups + ~TestPlotterHelpers.doCleanups + ~TestPlotterHelpers.fail + ~TestPlotterHelpers.failIf + ~TestPlotterHelpers.failIfAlmostEqual + ~TestPlotterHelpers.failIfEqual + ~TestPlotterHelpers.failUnless + ~TestPlotterHelpers.failUnlessAlmostEqual + ~TestPlotterHelpers.failUnlessEqual + ~TestPlotterHelpers.failUnlessRaises + ~TestPlotterHelpers.id + ~TestPlotterHelpers.run + ~TestPlotterHelpers.setUp + ~TestPlotterHelpers.setUpClass + ~TestPlotterHelpers.shortDescription + ~TestPlotterHelpers.skipTest + ~TestPlotterHelpers.subTest + ~TestPlotterHelpers.tearDown + ~TestPlotterHelpers.tearDownClass + ~TestPlotterHelpers.test_find_min_max_I_cut_max_1D_case + ~TestPlotterHelpers.test_find_min_max_I_cut_max_2D_case + ~TestPlotterHelpers.test_find_min_max_I_cut_min_1D_case + ~TestPlotterHelpers.test_find_min_max_I_cut_min_2D_case + ~TestPlotterHelpers.test_find_min_max_I_fail_case + ~TestPlotterHelpers.test_find_min_max_I_log_cut_max_1D_case + ~TestPlotterHelpers.test_find_min_max_I_log_cut_max_2D_case + ~TestPlotterHelpers.test_find_min_max_I_log_cut_min_1D_case + ~TestPlotterHelpers.test_find_min_max_I_log_cut_min_2D_case + ~TestPlotterHelpers.test_find_min_max_I_log_orders_of_mag_1D_case + ~TestPlotterHelpers.test_find_min_max_I_log_orders_of_mag_1D_with_zero_case + ~TestPlotterHelpers.test_find_min_max_I_log_orders_of_mag_2D_case + ~TestPlotterHelpers.test_find_min_max_I_log_orders_of_mag_2D_with_zero_case + ~TestPlotterHelpers.test_find_min_max_I_log_with_zero_2D_case + ~TestPlotterHelpers.test_find_min_max_I_log_with_zero_case + ~TestPlotterHelpers.test_find_min_max_I_simple_1D_case + ~TestPlotterHelpers.test_find_min_max_I_simple_2D_case + ~TestPlotterHelpers.test_handle_kwargs_all_simple + ~TestPlotterHelpers.test_handle_kwargs_bottom_lim + ~TestPlotterHelpers.test_handle_kwargs_figsize_default + ~TestPlotterHelpers.test_handle_kwargs_figsize_list + ~TestPlotterHelpers.test_handle_kwargs_figsize_tuple + ~TestPlotterHelpers.test_handle_kwargs_left_lim + ~TestPlotterHelpers.test_handle_kwargs_log + ~TestPlotterHelpers.test_handle_kwargs_oders_of_mag + ~TestPlotterHelpers.test_handle_kwargs_right_lim + ~TestPlotterHelpers.test_handle_kwargs_single_element_to_list + ~TestPlotterHelpers.test_handle_kwargs_top_lim + ~TestPlotterHelpers.test_plot_function_1D_log + ~TestPlotterHelpers.test_plot_function_1D_normal + ~TestPlotterHelpers.test_plot_function_2D_log + ~TestPlotterHelpers.test_plot_function_2D_normal + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~TestPlotterHelpers.longMessage + ~TestPlotterHelpers.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Plotter.get_dummy_McStasDataBinned_1d.rst b/docs/source/_autosummary/mcstasscript.tests.test_Plotter.get_dummy_McStasDataBinned_1d.rst new file mode 100644 index 00000000..bfb09573 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Plotter.get_dummy_McStasDataBinned_1d.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Plotter.get\_dummy\_McStasDataBinned\_1d +================================================================= + +.. currentmodule:: mcstasscript.tests.test_Plotter + +.. autofunction:: get_dummy_McStasDataBinned_1d \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Plotter.get_dummy_McStasDataBinned_2d.rst b/docs/source/_autosummary/mcstasscript.tests.test_Plotter.get_dummy_McStasDataBinned_2d.rst new file mode 100644 index 00000000..8299482c --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Plotter.get_dummy_McStasDataBinned_2d.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Plotter.get\_dummy\_McStasDataBinned\_2d +================================================================= + +.. currentmodule:: mcstasscript.tests.test_Plotter + +.. autofunction:: get_dummy_McStasDataBinned_2d \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Plotter.get_dummy_MetaDataBinned_1d.rst b/docs/source/_autosummary/mcstasscript.tests.test_Plotter.get_dummy_MetaDataBinned_1d.rst new file mode 100644 index 00000000..a727390a --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Plotter.get_dummy_MetaDataBinned_1d.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Plotter.get\_dummy\_MetaDataBinned\_1d +=============================================================== + +.. currentmodule:: mcstasscript.tests.test_Plotter + +.. autofunction:: get_dummy_MetaDataBinned_1d \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Plotter.get_dummy_MetaDataBinned_2d.rst b/docs/source/_autosummary/mcstasscript.tests.test_Plotter.get_dummy_MetaDataBinned_2d.rst new file mode 100644 index 00000000..7c5d48cb --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Plotter.get_dummy_MetaDataBinned_2d.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_Plotter.get\_dummy\_MetaDataBinned\_2d +=============================================================== + +.. currentmodule:: mcstasscript.tests.test_Plotter + +.. autofunction:: get_dummy_MetaDataBinned_2d \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_Plotter.rst b/docs/source/_autosummary/mcstasscript.tests.test_Plotter.rst new file mode 100644 index 00000000..ad6ba15a --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_Plotter.rst @@ -0,0 +1,41 @@ +mcstasscript.tests.test\_Plotter +================================ + +.. automodule:: mcstasscript.tests.test_Plotter + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + + get_dummy_McStasDataBinned_1d + get_dummy_McStasDataBinned_2d + get_dummy_MetaDataBinned_1d + get_dummy_MetaDataBinned_2d + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + TestPlotterHelpers + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.tests.test_add_data.Test_add_data.rst b/docs/source/_autosummary/mcstasscript.tests.test_add_data.Test_add_data.rst new file mode 100644 index 00000000..a147251f --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_add_data.Test_add_data.rst @@ -0,0 +1,101 @@ +mcstasscript.tests.test\_add\_data.Test\_add\_data +================================================== + +.. currentmodule:: mcstasscript.tests.test_add_data + +.. autoclass:: Test_add_data + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~Test_add_data.__init__ + ~Test_add_data.addClassCleanup + ~Test_add_data.addCleanup + ~Test_add_data.addTypeEqualityFunc + ~Test_add_data.assertAlmostEqual + ~Test_add_data.assertAlmostEquals + ~Test_add_data.assertCountEqual + ~Test_add_data.assertDictContainsSubset + ~Test_add_data.assertDictEqual + ~Test_add_data.assertEqual + ~Test_add_data.assertEquals + ~Test_add_data.assertFalse + ~Test_add_data.assertGreater + ~Test_add_data.assertGreaterEqual + ~Test_add_data.assertIn + ~Test_add_data.assertIs + ~Test_add_data.assertIsInstance + ~Test_add_data.assertIsNone + ~Test_add_data.assertIsNot + ~Test_add_data.assertIsNotNone + ~Test_add_data.assertLess + ~Test_add_data.assertLessEqual + ~Test_add_data.assertListEqual + ~Test_add_data.assertLogs + ~Test_add_data.assertMultiLineEqual + ~Test_add_data.assertNotAlmostEqual + ~Test_add_data.assertNotAlmostEquals + ~Test_add_data.assertNotEqual + ~Test_add_data.assertNotEquals + ~Test_add_data.assertNotIn + ~Test_add_data.assertNotIsInstance + ~Test_add_data.assertNotRegex + ~Test_add_data.assertNotRegexpMatches + ~Test_add_data.assertRaises + ~Test_add_data.assertRaisesRegex + ~Test_add_data.assertRaisesRegexp + ~Test_add_data.assertRegex + ~Test_add_data.assertRegexpMatches + ~Test_add_data.assertSequenceEqual + ~Test_add_data.assertSetEqual + ~Test_add_data.assertTrue + ~Test_add_data.assertTupleEqual + ~Test_add_data.assertWarns + ~Test_add_data.assertWarnsRegex + ~Test_add_data.assert_ + ~Test_add_data.countTestCases + ~Test_add_data.debug + ~Test_add_data.defaultTestResult + ~Test_add_data.doClassCleanups + ~Test_add_data.doCleanups + ~Test_add_data.fail + ~Test_add_data.failIf + ~Test_add_data.failIfAlmostEqual + ~Test_add_data.failIfEqual + ~Test_add_data.failUnless + ~Test_add_data.failUnlessAlmostEqual + ~Test_add_data.failUnlessEqual + ~Test_add_data.failUnlessRaises + ~Test_add_data.id + ~Test_add_data.run + ~Test_add_data.setUp + ~Test_add_data.setUpClass + ~Test_add_data.shortDescription + ~Test_add_data.skipTest + ~Test_add_data.subTest + ~Test_add_data.tearDown + ~Test_add_data.tearDownClass + ~Test_add_data.test_1d_updates_correctly + ~Test_add_data.test_1d_updates_different + ~Test_add_data.test_2d_updates_correctly + ~Test_add_data.test_2d_updates_different + ~Test_add_data.test_fail + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~Test_add_data.longMessage + ~Test_add_data.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_add_data.rst b/docs/source/_autosummary/mcstasscript.tests.test_add_data.rst new file mode 100644 index 00000000..73b3caa5 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_add_data.rst @@ -0,0 +1,41 @@ +mcstasscript.tests.test\_add\_data +================================== + +.. automodule:: mcstasscript.tests.test_add_data + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + + set_dummy_McStasDataBinned_1d + set_dummy_McStasDataBinned_2d + set_dummy_MetaDataBinned_1d + set_dummy_MetaDataBinned_2d + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + Test_add_data + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.tests.test_add_data.set_dummy_McStasDataBinned_1d.rst b/docs/source/_autosummary/mcstasscript.tests.test_add_data.set_dummy_McStasDataBinned_1d.rst new file mode 100644 index 00000000..61cee01d --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_add_data.set_dummy_McStasDataBinned_1d.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_add\_data.set\_dummy\_McStasDataBinned\_1d +=================================================================== + +.. currentmodule:: mcstasscript.tests.test_add_data + +.. autofunction:: set_dummy_McStasDataBinned_1d \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_add_data.set_dummy_McStasDataBinned_2d.rst b/docs/source/_autosummary/mcstasscript.tests.test_add_data.set_dummy_McStasDataBinned_2d.rst new file mode 100644 index 00000000..bfefcf20 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_add_data.set_dummy_McStasDataBinned_2d.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_add\_data.set\_dummy\_McStasDataBinned\_2d +=================================================================== + +.. currentmodule:: mcstasscript.tests.test_add_data + +.. autofunction:: set_dummy_McStasDataBinned_2d \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_add_data.set_dummy_MetaDataBinned_1d.rst b/docs/source/_autosummary/mcstasscript.tests.test_add_data.set_dummy_MetaDataBinned_1d.rst new file mode 100644 index 00000000..af88bf87 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_add_data.set_dummy_MetaDataBinned_1d.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_add\_data.set\_dummy\_MetaDataBinned\_1d +================================================================= + +.. currentmodule:: mcstasscript.tests.test_add_data + +.. autofunction:: set_dummy_MetaDataBinned_1d \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_add_data.set_dummy_MetaDataBinned_2d.rst b/docs/source/_autosummary/mcstasscript.tests.test_add_data.set_dummy_MetaDataBinned_2d.rst new file mode 100644 index 00000000..8eb9cbad --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_add_data.set_dummy_MetaDataBinned_2d.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_add\_data.set\_dummy\_MetaDataBinned\_2d +================================================================= + +.. currentmodule:: mcstasscript.tests.test_add_data + +.. autofunction:: set_dummy_MetaDataBinned_2d \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_component.TestComponent.rst b/docs/source/_autosummary/mcstasscript.tests.test_component.TestComponent.rst new file mode 100644 index 00000000..ac14da9c --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_component.TestComponent.rst @@ -0,0 +1,127 @@ +mcstasscript.tests.test\_component.TestComponent +================================================ + +.. currentmodule:: mcstasscript.tests.test_component + +.. autoclass:: TestComponent + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~TestComponent.__init__ + ~TestComponent.addClassCleanup + ~TestComponent.addCleanup + ~TestComponent.addTypeEqualityFunc + ~TestComponent.assertAlmostEqual + ~TestComponent.assertAlmostEquals + ~TestComponent.assertCountEqual + ~TestComponent.assertDictContainsSubset + ~TestComponent.assertDictEqual + ~TestComponent.assertEqual + ~TestComponent.assertEquals + ~TestComponent.assertFalse + ~TestComponent.assertGreater + ~TestComponent.assertGreaterEqual + ~TestComponent.assertIn + ~TestComponent.assertIs + ~TestComponent.assertIsInstance + ~TestComponent.assertIsNone + ~TestComponent.assertIsNot + ~TestComponent.assertIsNotNone + ~TestComponent.assertLess + ~TestComponent.assertLessEqual + ~TestComponent.assertListEqual + ~TestComponent.assertLogs + ~TestComponent.assertMultiLineEqual + ~TestComponent.assertNotAlmostEqual + ~TestComponent.assertNotAlmostEquals + ~TestComponent.assertNotEqual + ~TestComponent.assertNotEquals + ~TestComponent.assertNotIn + ~TestComponent.assertNotIsInstance + ~TestComponent.assertNotRegex + ~TestComponent.assertNotRegexpMatches + ~TestComponent.assertRaises + ~TestComponent.assertRaisesRegex + ~TestComponent.assertRaisesRegexp + ~TestComponent.assertRegex + ~TestComponent.assertRegexpMatches + ~TestComponent.assertSequenceEqual + ~TestComponent.assertSetEqual + ~TestComponent.assertTrue + ~TestComponent.assertTupleEqual + ~TestComponent.assertWarns + ~TestComponent.assertWarnsRegex + ~TestComponent.assert_ + ~TestComponent.countTestCases + ~TestComponent.debug + ~TestComponent.defaultTestResult + ~TestComponent.doClassCleanups + ~TestComponent.doCleanups + ~TestComponent.fail + ~TestComponent.failIf + ~TestComponent.failIfAlmostEqual + ~TestComponent.failIfEqual + ~TestComponent.failUnless + ~TestComponent.failUnlessAlmostEqual + ~TestComponent.failUnlessEqual + ~TestComponent.failUnlessRaises + ~TestComponent.id + ~TestComponent.run + ~TestComponent.setUp + ~TestComponent.setUpClass + ~TestComponent.shortDescription + ~TestComponent.skipTest + ~TestComponent.subTest + ~TestComponent.tearDown + ~TestComponent.tearDownClass + ~TestComponent.test_Component_basic_init + ~TestComponent.test_Component_basic_init_defaults + ~TestComponent.test_Component_basic_init_set_AT + ~TestComponent.test_Component_basic_init_set_AT_Component + ~TestComponent.test_Component_basic_init_set_AT_Component_keyword + ~TestComponent.test_Component_basic_init_set_EXTEND + ~TestComponent.test_Component_basic_init_set_GROUP + ~TestComponent.test_Component_basic_init_set_JUMP + ~TestComponent.test_Component_basic_init_set_RELATIVE + ~TestComponent.test_Component_basic_init_set_ROTATED + ~TestComponent.test_Component_basic_init_set_ROTATED_Component + ~TestComponent.test_Component_basic_init_set_ROTATED_Component_keyword + ~TestComponent.test_Component_basic_init_set_SPLIT + ~TestComponent.test_Component_basic_init_set_WHEN + ~TestComponent.test_Component_basic_init_set_comment + ~TestComponent.test_Component_basic_new_attribute_error + ~TestComponent.test_Component_basic_object_ref_init_set_RELATIVE + ~TestComponent.test_Component_freeze + ~TestComponent.test_Component_init_complex_call + ~TestComponent.test_Component_init_complex_call_relative + ~TestComponent.test_Component_print_long + ~TestComponent.test_Component_print_short_longest_name + ~TestComponent.test_Component_print_short_standard + ~TestComponent.test_Component_show_parameters + ~TestComponent.test_Component_show_parameters_simple + ~TestComponent.test_Component_write_Component_required_parameter_error + ~TestComponent.test_Component_write_to_file_complex + ~TestComponent.test_Component_write_to_file_complex_SPLIT_string + ~TestComponent.test_Component_write_to_file_include + ~TestComponent.test_Component_write_to_file_simple + ~TestComponent.test_component_basic_init_set_parameters + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~TestComponent.longMessage + ~TestComponent.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_component.rst b/docs/source/_autosummary/mcstasscript.tests.test_component.rst new file mode 100644 index 00000000..229ca9f4 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_component.rst @@ -0,0 +1,40 @@ +mcstasscript.tests.test\_component +================================== + +.. automodule:: mcstasscript.tests.test_component + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + + setup_Component_all_keywords + setup_Component_relative + setup_Component_with_parameters + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + TestComponent + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.tests.test_component.setup_Component_all_keywords.rst b/docs/source/_autosummary/mcstasscript.tests.test_component.setup_Component_all_keywords.rst new file mode 100644 index 00000000..21647c5f --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_component.setup_Component_all_keywords.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_component.setup\_Component\_all\_keywords +================================================================== + +.. currentmodule:: mcstasscript.tests.test_component + +.. autofunction:: setup_Component_all_keywords \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_component.setup_Component_relative.rst b/docs/source/_autosummary/mcstasscript.tests.test_component.setup_Component_relative.rst new file mode 100644 index 00000000..4264aca1 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_component.setup_Component_relative.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_component.setup\_Component\_relative +============================================================= + +.. currentmodule:: mcstasscript.tests.test_component + +.. autofunction:: setup_Component_relative \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_component.setup_Component_with_parameters.rst b/docs/source/_autosummary/mcstasscript.tests.test_component.setup_Component_with_parameters.rst new file mode 100644 index 00000000..adf923ce --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_component.setup_Component_with_parameters.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_component.setup\_Component\_with\_parameters +===================================================================== + +.. currentmodule:: mcstasscript.tests.test_component + +.. autofunction:: setup_Component_with_parameters \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_declare_variable.Test_DeclareVariable.rst b/docs/source/_autosummary/mcstasscript.tests.test_declare_variable.Test_DeclareVariable.rst new file mode 100644 index 00000000..ac3b4442 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_declare_variable.Test_DeclareVariable.rst @@ -0,0 +1,105 @@ +mcstasscript.tests.test\_declare\_variable.Test\_DeclareVariable +================================================================ + +.. currentmodule:: mcstasscript.tests.test_declare_variable + +.. autoclass:: Test_DeclareVariable + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~Test_DeclareVariable.__init__ + ~Test_DeclareVariable.addClassCleanup + ~Test_DeclareVariable.addCleanup + ~Test_DeclareVariable.addTypeEqualityFunc + ~Test_DeclareVariable.assertAlmostEqual + ~Test_DeclareVariable.assertAlmostEquals + ~Test_DeclareVariable.assertCountEqual + ~Test_DeclareVariable.assertDictContainsSubset + ~Test_DeclareVariable.assertDictEqual + ~Test_DeclareVariable.assertEqual + ~Test_DeclareVariable.assertEquals + ~Test_DeclareVariable.assertFalse + ~Test_DeclareVariable.assertGreater + ~Test_DeclareVariable.assertGreaterEqual + ~Test_DeclareVariable.assertIn + ~Test_DeclareVariable.assertIs + ~Test_DeclareVariable.assertIsInstance + ~Test_DeclareVariable.assertIsNone + ~Test_DeclareVariable.assertIsNot + ~Test_DeclareVariable.assertIsNotNone + ~Test_DeclareVariable.assertLess + ~Test_DeclareVariable.assertLessEqual + ~Test_DeclareVariable.assertListEqual + ~Test_DeclareVariable.assertLogs + ~Test_DeclareVariable.assertMultiLineEqual + ~Test_DeclareVariable.assertNotAlmostEqual + ~Test_DeclareVariable.assertNotAlmostEquals + ~Test_DeclareVariable.assertNotEqual + ~Test_DeclareVariable.assertNotEquals + ~Test_DeclareVariable.assertNotIn + ~Test_DeclareVariable.assertNotIsInstance + ~Test_DeclareVariable.assertNotRegex + ~Test_DeclareVariable.assertNotRegexpMatches + ~Test_DeclareVariable.assertRaises + ~Test_DeclareVariable.assertRaisesRegex + ~Test_DeclareVariable.assertRaisesRegexp + ~Test_DeclareVariable.assertRegex + ~Test_DeclareVariable.assertRegexpMatches + ~Test_DeclareVariable.assertSequenceEqual + ~Test_DeclareVariable.assertSetEqual + ~Test_DeclareVariable.assertTrue + ~Test_DeclareVariable.assertTupleEqual + ~Test_DeclareVariable.assertWarns + ~Test_DeclareVariable.assertWarnsRegex + ~Test_DeclareVariable.assert_ + ~Test_DeclareVariable.countTestCases + ~Test_DeclareVariable.debug + ~Test_DeclareVariable.defaultTestResult + ~Test_DeclareVariable.doClassCleanups + ~Test_DeclareVariable.doCleanups + ~Test_DeclareVariable.fail + ~Test_DeclareVariable.failIf + ~Test_DeclareVariable.failIfAlmostEqual + ~Test_DeclareVariable.failIfEqual + ~Test_DeclareVariable.failUnless + ~Test_DeclareVariable.failUnlessAlmostEqual + ~Test_DeclareVariable.failUnlessEqual + ~Test_DeclareVariable.failUnlessRaises + ~Test_DeclareVariable.id + ~Test_DeclareVariable.run + ~Test_DeclareVariable.setUp + ~Test_DeclareVariable.setUpClass + ~Test_DeclareVariable.shortDescription + ~Test_DeclareVariable.skipTest + ~Test_DeclareVariable.subTest + ~Test_DeclareVariable.tearDown + ~Test_DeclareVariable.tearDownClass + ~Test_DeclareVariable.test_DeclareVariable_init_basic_type + ~Test_DeclareVariable.test_DeclareVariable_init_basic_type_value + ~Test_DeclareVariable.test_DeclareVariable_init_basic_type_value_comment + ~Test_DeclareVariable.test_DeclareVariable_init_basic_type_vector + ~Test_DeclareVariable.test_DeclareVariable_write_basic + ~Test_DeclareVariable.test_DeclareVariable_write_complex_array + ~Test_DeclareVariable.test_DeclareVariable_write_complex_float + ~Test_DeclareVariable.test_DeclareVariable_write_complex_int + ~Test_DeclareVariable.test_DeclareVariable_write_simple_array + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~Test_DeclareVariable.longMessage + ~Test_DeclareVariable.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_declare_variable.rst b/docs/source/_autosummary/mcstasscript.tests.test_declare_variable.rst new file mode 100644 index 00000000..5cdc84dc --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_declare_variable.rst @@ -0,0 +1,31 @@ +mcstasscript.tests.test\_declare\_variable +========================================== + +.. automodule:: mcstasscript.tests.test_declare_variable + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + Test_DeclareVariable + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.TestDumpAndLoad.rst b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.TestDumpAndLoad.rst new file mode 100644 index 00000000..c86fdfce --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.TestDumpAndLoad.rst @@ -0,0 +1,98 @@ +mcstasscript.tests.test\_dump\_and\_load.TestDumpAndLoad +======================================================== + +.. currentmodule:: mcstasscript.tests.test_dump_and_load + +.. autoclass:: TestDumpAndLoad + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~TestDumpAndLoad.__init__ + ~TestDumpAndLoad.addClassCleanup + ~TestDumpAndLoad.addCleanup + ~TestDumpAndLoad.addTypeEqualityFunc + ~TestDumpAndLoad.assertAlmostEqual + ~TestDumpAndLoad.assertAlmostEquals + ~TestDumpAndLoad.assertCountEqual + ~TestDumpAndLoad.assertDictContainsSubset + ~TestDumpAndLoad.assertDictEqual + ~TestDumpAndLoad.assertEqual + ~TestDumpAndLoad.assertEquals + ~TestDumpAndLoad.assertFalse + ~TestDumpAndLoad.assertGreater + ~TestDumpAndLoad.assertGreaterEqual + ~TestDumpAndLoad.assertIn + ~TestDumpAndLoad.assertIs + ~TestDumpAndLoad.assertIsInstance + ~TestDumpAndLoad.assertIsNone + ~TestDumpAndLoad.assertIsNot + ~TestDumpAndLoad.assertIsNotNone + ~TestDumpAndLoad.assertLess + ~TestDumpAndLoad.assertLessEqual + ~TestDumpAndLoad.assertListEqual + ~TestDumpAndLoad.assertLogs + ~TestDumpAndLoad.assertMultiLineEqual + ~TestDumpAndLoad.assertNotAlmostEqual + ~TestDumpAndLoad.assertNotAlmostEquals + ~TestDumpAndLoad.assertNotEqual + ~TestDumpAndLoad.assertNotEquals + ~TestDumpAndLoad.assertNotIn + ~TestDumpAndLoad.assertNotIsInstance + ~TestDumpAndLoad.assertNotRegex + ~TestDumpAndLoad.assertNotRegexpMatches + ~TestDumpAndLoad.assertRaises + ~TestDumpAndLoad.assertRaisesRegex + ~TestDumpAndLoad.assertRaisesRegexp + ~TestDumpAndLoad.assertRegex + ~TestDumpAndLoad.assertRegexpMatches + ~TestDumpAndLoad.assertSequenceEqual + ~TestDumpAndLoad.assertSetEqual + ~TestDumpAndLoad.assertTrue + ~TestDumpAndLoad.assertTupleEqual + ~TestDumpAndLoad.assertWarns + ~TestDumpAndLoad.assertWarnsRegex + ~TestDumpAndLoad.assert_ + ~TestDumpAndLoad.countTestCases + ~TestDumpAndLoad.debug + ~TestDumpAndLoad.defaultTestResult + ~TestDumpAndLoad.doClassCleanups + ~TestDumpAndLoad.doCleanups + ~TestDumpAndLoad.fail + ~TestDumpAndLoad.failIf + ~TestDumpAndLoad.failIfAlmostEqual + ~TestDumpAndLoad.failIfEqual + ~TestDumpAndLoad.failUnless + ~TestDumpAndLoad.failUnlessAlmostEqual + ~TestDumpAndLoad.failUnlessEqual + ~TestDumpAndLoad.failUnlessRaises + ~TestDumpAndLoad.id + ~TestDumpAndLoad.run + ~TestDumpAndLoad.setUp + ~TestDumpAndLoad.setUpClass + ~TestDumpAndLoad.shortDescription + ~TestDumpAndLoad.skipTest + ~TestDumpAndLoad.subTest + ~TestDumpAndLoad.tearDown + ~TestDumpAndLoad.tearDownClass + ~TestDumpAndLoad.test_dump_simple + ~TestDumpAndLoad.test_load_simple + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~TestDumpAndLoad.longMessage + ~TestDumpAndLoad.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.rst b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.rst new file mode 100644 index 00000000..cf236593 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.rst @@ -0,0 +1,50 @@ +mcstasscript.tests.test\_dump\_and\_load +======================================== + +.. automodule:: mcstasscript.tests.test_dump_and_load + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + + setup_instr_no_path + setup_instr_root_path + setup_instr_with_input_path + setup_instr_with_input_path_relative + setup_instr_with_path + setup_populated_instr + setup_populated_instr_with_dummy_path + setup_populated_with_some_options_instr + setup_populated_x_ray_instr + setup_populated_x_ray_instr_with_dummy_path + setup_x_ray_instr_no_path + setup_x_ray_instr_root_path + setup_x_ray_instr_with_path + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + TestDumpAndLoad + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_instr_no_path.rst b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_instr_no_path.rst new file mode 100644 index 00000000..b5169c3c --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_instr_no_path.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_dump\_and\_load.setup\_instr\_no\_path +=============================================================== + +.. currentmodule:: mcstasscript.tests.test_dump_and_load + +.. autofunction:: setup_instr_no_path \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_instr_root_path.rst b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_instr_root_path.rst new file mode 100644 index 00000000..e32846fd --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_instr_root_path.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_dump\_and\_load.setup\_instr\_root\_path +================================================================= + +.. currentmodule:: mcstasscript.tests.test_dump_and_load + +.. autofunction:: setup_instr_root_path \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_instr_with_input_path.rst b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_instr_with_input_path.rst new file mode 100644 index 00000000..8467ec9e --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_instr_with_input_path.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_dump\_and\_load.setup\_instr\_with\_input\_path +======================================================================== + +.. currentmodule:: mcstasscript.tests.test_dump_and_load + +.. autofunction:: setup_instr_with_input_path \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_instr_with_input_path_relative.rst b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_instr_with_input_path_relative.rst new file mode 100644 index 00000000..e0cbfec2 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_instr_with_input_path_relative.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_dump\_and\_load.setup\_instr\_with\_input\_path\_relative +================================================================================== + +.. currentmodule:: mcstasscript.tests.test_dump_and_load + +.. autofunction:: setup_instr_with_input_path_relative \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_instr_with_path.rst b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_instr_with_path.rst new file mode 100644 index 00000000..43f0a23d --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_instr_with_path.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_dump\_and\_load.setup\_instr\_with\_path +================================================================= + +.. currentmodule:: mcstasscript.tests.test_dump_and_load + +.. autofunction:: setup_instr_with_path \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_populated_instr.rst b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_populated_instr.rst new file mode 100644 index 00000000..2aff5aab --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_populated_instr.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_dump\_and\_load.setup\_populated\_instr +================================================================ + +.. currentmodule:: mcstasscript.tests.test_dump_and_load + +.. autofunction:: setup_populated_instr \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_populated_instr_with_dummy_path.rst b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_populated_instr_with_dummy_path.rst new file mode 100644 index 00000000..8c3ef682 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_populated_instr_with_dummy_path.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_dump\_and\_load.setup\_populated\_instr\_with\_dummy\_path +=================================================================================== + +.. currentmodule:: mcstasscript.tests.test_dump_and_load + +.. autofunction:: setup_populated_instr_with_dummy_path \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_populated_with_some_options_instr.rst b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_populated_with_some_options_instr.rst new file mode 100644 index 00000000..aa75b9ed --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_populated_with_some_options_instr.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_dump\_and\_load.setup\_populated\_with\_some\_options\_instr +===================================================================================== + +.. currentmodule:: mcstasscript.tests.test_dump_and_load + +.. autofunction:: setup_populated_with_some_options_instr \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_populated_x_ray_instr.rst b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_populated_x_ray_instr.rst new file mode 100644 index 00000000..c3e25cb8 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_populated_x_ray_instr.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_dump\_and\_load.setup\_populated\_x\_ray\_instr +======================================================================== + +.. currentmodule:: mcstasscript.tests.test_dump_and_load + +.. autofunction:: setup_populated_x_ray_instr \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_populated_x_ray_instr_with_dummy_path.rst b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_populated_x_ray_instr_with_dummy_path.rst new file mode 100644 index 00000000..5c2d1bbd --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_populated_x_ray_instr_with_dummy_path.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_dump\_and\_load.setup\_populated\_x\_ray\_instr\_with\_dummy\_path +=========================================================================================== + +.. currentmodule:: mcstasscript.tests.test_dump_and_load + +.. autofunction:: setup_populated_x_ray_instr_with_dummy_path \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_x_ray_instr_no_path.rst b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_x_ray_instr_no_path.rst new file mode 100644 index 00000000..55134cfb --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_x_ray_instr_no_path.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_dump\_and\_load.setup\_x\_ray\_instr\_no\_path +======================================================================= + +.. currentmodule:: mcstasscript.tests.test_dump_and_load + +.. autofunction:: setup_x_ray_instr_no_path \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_x_ray_instr_root_path.rst b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_x_ray_instr_root_path.rst new file mode 100644 index 00000000..1cf1d3ac --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_x_ray_instr_root_path.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_dump\_and\_load.setup\_x\_ray\_instr\_root\_path +========================================================================= + +.. currentmodule:: mcstasscript.tests.test_dump_and_load + +.. autofunction:: setup_x_ray_instr_root_path \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_x_ray_instr_with_path.rst b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_x_ray_instr_with_path.rst new file mode 100644 index 00000000..ca614de0 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_dump_and_load.setup_x_ray_instr_with_path.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_dump\_and\_load.setup\_x\_ray\_instr\_with\_path +========================================================================= + +.. currentmodule:: mcstasscript.tests.test_dump_and_load + +.. autofunction:: setup_x_ray_instr_with_path \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_formatting.TestFormatting.rst b/docs/source/_autosummary/mcstasscript.tests.test_formatting.TestFormatting.rst new file mode 100644 index 00000000..4e00ae61 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_formatting.TestFormatting.rst @@ -0,0 +1,104 @@ +mcstasscript.tests.test\_formatting.TestFormatting +================================================== + +.. currentmodule:: mcstasscript.tests.test_formatting + +.. autoclass:: TestFormatting + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~TestFormatting.__init__ + ~TestFormatting.addClassCleanup + ~TestFormatting.addCleanup + ~TestFormatting.addTypeEqualityFunc + ~TestFormatting.assertAlmostEqual + ~TestFormatting.assertAlmostEquals + ~TestFormatting.assertCountEqual + ~TestFormatting.assertDictContainsSubset + ~TestFormatting.assertDictEqual + ~TestFormatting.assertEqual + ~TestFormatting.assertEquals + ~TestFormatting.assertFalse + ~TestFormatting.assertGreater + ~TestFormatting.assertGreaterEqual + ~TestFormatting.assertIn + ~TestFormatting.assertIs + ~TestFormatting.assertIsInstance + ~TestFormatting.assertIsNone + ~TestFormatting.assertIsNot + ~TestFormatting.assertIsNotNone + ~TestFormatting.assertLess + ~TestFormatting.assertLessEqual + ~TestFormatting.assertListEqual + ~TestFormatting.assertLogs + ~TestFormatting.assertMultiLineEqual + ~TestFormatting.assertNotAlmostEqual + ~TestFormatting.assertNotAlmostEquals + ~TestFormatting.assertNotEqual + ~TestFormatting.assertNotEquals + ~TestFormatting.assertNotIn + ~TestFormatting.assertNotIsInstance + ~TestFormatting.assertNotRegex + ~TestFormatting.assertNotRegexpMatches + ~TestFormatting.assertRaises + ~TestFormatting.assertRaisesRegex + ~TestFormatting.assertRaisesRegexp + ~TestFormatting.assertRegex + ~TestFormatting.assertRegexpMatches + ~TestFormatting.assertSequenceEqual + ~TestFormatting.assertSetEqual + ~TestFormatting.assertTrue + ~TestFormatting.assertTupleEqual + ~TestFormatting.assertWarns + ~TestFormatting.assertWarnsRegex + ~TestFormatting.assert_ + ~TestFormatting.countTestCases + ~TestFormatting.debug + ~TestFormatting.defaultTestResult + ~TestFormatting.doClassCleanups + ~TestFormatting.doCleanups + ~TestFormatting.fail + ~TestFormatting.failIf + ~TestFormatting.failIfAlmostEqual + ~TestFormatting.failIfEqual + ~TestFormatting.failUnless + ~TestFormatting.failUnlessAlmostEqual + ~TestFormatting.failUnlessEqual + ~TestFormatting.failUnlessRaises + ~TestFormatting.id + ~TestFormatting.run + ~TestFormatting.setUp + ~TestFormatting.setUpClass + ~TestFormatting.shortDescription + ~TestFormatting.skipTest + ~TestFormatting.subTest + ~TestFormatting.tearDown + ~TestFormatting.tearDownClass + ~TestFormatting.test_is_legal_filename_reject_backwards_dash + ~TestFormatting.test_is_legal_filename_reject_forward_dash + ~TestFormatting.test_is_legal_filename_rekect_space + ~TestFormatting.test_is_legal_filename_simple + ~TestFormatting.test_is_legal_parameter_reject_empty + ~TestFormatting.test_is_legal_parameter_reject_first_number + ~TestFormatting.test_is_legal_parameter_reject_space + ~TestFormatting.test_is_legal_parameter_simple + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~TestFormatting.longMessage + ~TestFormatting.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_formatting.rst b/docs/source/_autosummary/mcstasscript.tests.test_formatting.rst new file mode 100644 index 00000000..f3e641b4 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_formatting.rst @@ -0,0 +1,31 @@ +mcstasscript.tests.test\_formatting +=================================== + +.. automodule:: mcstasscript.tests.test_formatting + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + TestFormatting + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.tests.test_functions.Test_load_data.rst b/docs/source/_autosummary/mcstasscript.tests.test_functions.Test_load_data.rst new file mode 100644 index 00000000..b5ea20cd --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_functions.Test_load_data.rst @@ -0,0 +1,97 @@ +mcstasscript.tests.test\_functions.Test\_load\_data +=================================================== + +.. currentmodule:: mcstasscript.tests.test_functions + +.. autoclass:: Test_load_data + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~Test_load_data.__init__ + ~Test_load_data.addClassCleanup + ~Test_load_data.addCleanup + ~Test_load_data.addTypeEqualityFunc + ~Test_load_data.assertAlmostEqual + ~Test_load_data.assertAlmostEquals + ~Test_load_data.assertCountEqual + ~Test_load_data.assertDictContainsSubset + ~Test_load_data.assertDictEqual + ~Test_load_data.assertEqual + ~Test_load_data.assertEquals + ~Test_load_data.assertFalse + ~Test_load_data.assertGreater + ~Test_load_data.assertGreaterEqual + ~Test_load_data.assertIn + ~Test_load_data.assertIs + ~Test_load_data.assertIsInstance + ~Test_load_data.assertIsNone + ~Test_load_data.assertIsNot + ~Test_load_data.assertIsNotNone + ~Test_load_data.assertLess + ~Test_load_data.assertLessEqual + ~Test_load_data.assertListEqual + ~Test_load_data.assertLogs + ~Test_load_data.assertMultiLineEqual + ~Test_load_data.assertNotAlmostEqual + ~Test_load_data.assertNotAlmostEquals + ~Test_load_data.assertNotEqual + ~Test_load_data.assertNotEquals + ~Test_load_data.assertNotIn + ~Test_load_data.assertNotIsInstance + ~Test_load_data.assertNotRegex + ~Test_load_data.assertNotRegexpMatches + ~Test_load_data.assertRaises + ~Test_load_data.assertRaisesRegex + ~Test_load_data.assertRaisesRegexp + ~Test_load_data.assertRegex + ~Test_load_data.assertRegexpMatches + ~Test_load_data.assertSequenceEqual + ~Test_load_data.assertSetEqual + ~Test_load_data.assertTrue + ~Test_load_data.assertTupleEqual + ~Test_load_data.assertWarns + ~Test_load_data.assertWarnsRegex + ~Test_load_data.assert_ + ~Test_load_data.countTestCases + ~Test_load_data.debug + ~Test_load_data.defaultTestResult + ~Test_load_data.doClassCleanups + ~Test_load_data.doCleanups + ~Test_load_data.fail + ~Test_load_data.failIf + ~Test_load_data.failIfAlmostEqual + ~Test_load_data.failIfEqual + ~Test_load_data.failUnless + ~Test_load_data.failUnlessAlmostEqual + ~Test_load_data.failUnlessEqual + ~Test_load_data.failUnlessRaises + ~Test_load_data.id + ~Test_load_data.run + ~Test_load_data.setUp + ~Test_load_data.setUpClass + ~Test_load_data.shortDescription + ~Test_load_data.skipTest + ~Test_load_data.subTest + ~Test_load_data.tearDown + ~Test_load_data.tearDownClass + ~Test_load_data.test_mcrun_load_data_PSD4PI + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~Test_load_data.longMessage + ~Test_load_data.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_functions.Test_load_metadata.rst b/docs/source/_autosummary/mcstasscript.tests.test_functions.Test_load_metadata.rst new file mode 100644 index 00000000..50b98783 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_functions.Test_load_metadata.rst @@ -0,0 +1,97 @@ +mcstasscript.tests.test\_functions.Test\_load\_metadata +======================================================= + +.. currentmodule:: mcstasscript.tests.test_functions + +.. autoclass:: Test_load_metadata + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~Test_load_metadata.__init__ + ~Test_load_metadata.addClassCleanup + ~Test_load_metadata.addCleanup + ~Test_load_metadata.addTypeEqualityFunc + ~Test_load_metadata.assertAlmostEqual + ~Test_load_metadata.assertAlmostEquals + ~Test_load_metadata.assertCountEqual + ~Test_load_metadata.assertDictContainsSubset + ~Test_load_metadata.assertDictEqual + ~Test_load_metadata.assertEqual + ~Test_load_metadata.assertEquals + ~Test_load_metadata.assertFalse + ~Test_load_metadata.assertGreater + ~Test_load_metadata.assertGreaterEqual + ~Test_load_metadata.assertIn + ~Test_load_metadata.assertIs + ~Test_load_metadata.assertIsInstance + ~Test_load_metadata.assertIsNone + ~Test_load_metadata.assertIsNot + ~Test_load_metadata.assertIsNotNone + ~Test_load_metadata.assertLess + ~Test_load_metadata.assertLessEqual + ~Test_load_metadata.assertListEqual + ~Test_load_metadata.assertLogs + ~Test_load_metadata.assertMultiLineEqual + ~Test_load_metadata.assertNotAlmostEqual + ~Test_load_metadata.assertNotAlmostEquals + ~Test_load_metadata.assertNotEqual + ~Test_load_metadata.assertNotEquals + ~Test_load_metadata.assertNotIn + ~Test_load_metadata.assertNotIsInstance + ~Test_load_metadata.assertNotRegex + ~Test_load_metadata.assertNotRegexpMatches + ~Test_load_metadata.assertRaises + ~Test_load_metadata.assertRaisesRegex + ~Test_load_metadata.assertRaisesRegexp + ~Test_load_metadata.assertRegex + ~Test_load_metadata.assertRegexpMatches + ~Test_load_metadata.assertSequenceEqual + ~Test_load_metadata.assertSetEqual + ~Test_load_metadata.assertTrue + ~Test_load_metadata.assertTupleEqual + ~Test_load_metadata.assertWarns + ~Test_load_metadata.assertWarnsRegex + ~Test_load_metadata.assert_ + ~Test_load_metadata.countTestCases + ~Test_load_metadata.debug + ~Test_load_metadata.defaultTestResult + ~Test_load_metadata.doClassCleanups + ~Test_load_metadata.doCleanups + ~Test_load_metadata.fail + ~Test_load_metadata.failIf + ~Test_load_metadata.failIfAlmostEqual + ~Test_load_metadata.failIfEqual + ~Test_load_metadata.failUnless + ~Test_load_metadata.failUnlessAlmostEqual + ~Test_load_metadata.failUnlessEqual + ~Test_load_metadata.failUnlessRaises + ~Test_load_metadata.id + ~Test_load_metadata.run + ~Test_load_metadata.setUp + ~Test_load_metadata.setUpClass + ~Test_load_metadata.shortDescription + ~Test_load_metadata.skipTest + ~Test_load_metadata.subTest + ~Test_load_metadata.tearDown + ~Test_load_metadata.tearDownClass + ~Test_load_metadata.test_mcrun_load_metadata_PSD4PI + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~Test_load_metadata.longMessage + ~Test_load_metadata.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_functions.Test_load_monitor.rst b/docs/source/_autosummary/mcstasscript.tests.test_functions.Test_load_monitor.rst new file mode 100644 index 00000000..97bc8099 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_functions.Test_load_monitor.rst @@ -0,0 +1,97 @@ +mcstasscript.tests.test\_functions.Test\_load\_monitor +====================================================== + +.. currentmodule:: mcstasscript.tests.test_functions + +.. autoclass:: Test_load_monitor + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~Test_load_monitor.__init__ + ~Test_load_monitor.addClassCleanup + ~Test_load_monitor.addCleanup + ~Test_load_monitor.addTypeEqualityFunc + ~Test_load_monitor.assertAlmostEqual + ~Test_load_monitor.assertAlmostEquals + ~Test_load_monitor.assertCountEqual + ~Test_load_monitor.assertDictContainsSubset + ~Test_load_monitor.assertDictEqual + ~Test_load_monitor.assertEqual + ~Test_load_monitor.assertEquals + ~Test_load_monitor.assertFalse + ~Test_load_monitor.assertGreater + ~Test_load_monitor.assertGreaterEqual + ~Test_load_monitor.assertIn + ~Test_load_monitor.assertIs + ~Test_load_monitor.assertIsInstance + ~Test_load_monitor.assertIsNone + ~Test_load_monitor.assertIsNot + ~Test_load_monitor.assertIsNotNone + ~Test_load_monitor.assertLess + ~Test_load_monitor.assertLessEqual + ~Test_load_monitor.assertListEqual + ~Test_load_monitor.assertLogs + ~Test_load_monitor.assertMultiLineEqual + ~Test_load_monitor.assertNotAlmostEqual + ~Test_load_monitor.assertNotAlmostEquals + ~Test_load_monitor.assertNotEqual + ~Test_load_monitor.assertNotEquals + ~Test_load_monitor.assertNotIn + ~Test_load_monitor.assertNotIsInstance + ~Test_load_monitor.assertNotRegex + ~Test_load_monitor.assertNotRegexpMatches + ~Test_load_monitor.assertRaises + ~Test_load_monitor.assertRaisesRegex + ~Test_load_monitor.assertRaisesRegexp + ~Test_load_monitor.assertRegex + ~Test_load_monitor.assertRegexpMatches + ~Test_load_monitor.assertSequenceEqual + ~Test_load_monitor.assertSetEqual + ~Test_load_monitor.assertTrue + ~Test_load_monitor.assertTupleEqual + ~Test_load_monitor.assertWarns + ~Test_load_monitor.assertWarnsRegex + ~Test_load_monitor.assert_ + ~Test_load_monitor.countTestCases + ~Test_load_monitor.debug + ~Test_load_monitor.defaultTestResult + ~Test_load_monitor.doClassCleanups + ~Test_load_monitor.doCleanups + ~Test_load_monitor.fail + ~Test_load_monitor.failIf + ~Test_load_monitor.failIfAlmostEqual + ~Test_load_monitor.failIfEqual + ~Test_load_monitor.failUnless + ~Test_load_monitor.failUnlessAlmostEqual + ~Test_load_monitor.failUnlessEqual + ~Test_load_monitor.failUnlessRaises + ~Test_load_monitor.id + ~Test_load_monitor.run + ~Test_load_monitor.setUp + ~Test_load_monitor.setUpClass + ~Test_load_monitor.shortDescription + ~Test_load_monitor.skipTest + ~Test_load_monitor.subTest + ~Test_load_monitor.tearDown + ~Test_load_monitor.tearDownClass + ~Test_load_monitor.test_mcrun_load_monitor_PSD4PI + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~Test_load_monitor.longMessage + ~Test_load_monitor.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_functions.Test_name_plot_options.rst b/docs/source/_autosummary/mcstasscript.tests.test_functions.Test_name_plot_options.rst new file mode 100644 index 00000000..bb500a01 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_functions.Test_name_plot_options.rst @@ -0,0 +1,98 @@ +mcstasscript.tests.test\_functions.Test\_name\_plot\_options +============================================================ + +.. currentmodule:: mcstasscript.tests.test_functions + +.. autoclass:: Test_name_plot_options + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~Test_name_plot_options.__init__ + ~Test_name_plot_options.addClassCleanup + ~Test_name_plot_options.addCleanup + ~Test_name_plot_options.addTypeEqualityFunc + ~Test_name_plot_options.assertAlmostEqual + ~Test_name_plot_options.assertAlmostEquals + ~Test_name_plot_options.assertCountEqual + ~Test_name_plot_options.assertDictContainsSubset + ~Test_name_plot_options.assertDictEqual + ~Test_name_plot_options.assertEqual + ~Test_name_plot_options.assertEquals + ~Test_name_plot_options.assertFalse + ~Test_name_plot_options.assertGreater + ~Test_name_plot_options.assertGreaterEqual + ~Test_name_plot_options.assertIn + ~Test_name_plot_options.assertIs + ~Test_name_plot_options.assertIsInstance + ~Test_name_plot_options.assertIsNone + ~Test_name_plot_options.assertIsNot + ~Test_name_plot_options.assertIsNotNone + ~Test_name_plot_options.assertLess + ~Test_name_plot_options.assertLessEqual + ~Test_name_plot_options.assertListEqual + ~Test_name_plot_options.assertLogs + ~Test_name_plot_options.assertMultiLineEqual + ~Test_name_plot_options.assertNotAlmostEqual + ~Test_name_plot_options.assertNotAlmostEquals + ~Test_name_plot_options.assertNotEqual + ~Test_name_plot_options.assertNotEquals + ~Test_name_plot_options.assertNotIn + ~Test_name_plot_options.assertNotIsInstance + ~Test_name_plot_options.assertNotRegex + ~Test_name_plot_options.assertNotRegexpMatches + ~Test_name_plot_options.assertRaises + ~Test_name_plot_options.assertRaisesRegex + ~Test_name_plot_options.assertRaisesRegexp + ~Test_name_plot_options.assertRegex + ~Test_name_plot_options.assertRegexpMatches + ~Test_name_plot_options.assertSequenceEqual + ~Test_name_plot_options.assertSetEqual + ~Test_name_plot_options.assertTrue + ~Test_name_plot_options.assertTupleEqual + ~Test_name_plot_options.assertWarns + ~Test_name_plot_options.assertWarnsRegex + ~Test_name_plot_options.assert_ + ~Test_name_plot_options.countTestCases + ~Test_name_plot_options.debug + ~Test_name_plot_options.defaultTestResult + ~Test_name_plot_options.doClassCleanups + ~Test_name_plot_options.doCleanups + ~Test_name_plot_options.fail + ~Test_name_plot_options.failIf + ~Test_name_plot_options.failIfAlmostEqual + ~Test_name_plot_options.failIfEqual + ~Test_name_plot_options.failUnless + ~Test_name_plot_options.failUnlessAlmostEqual + ~Test_name_plot_options.failUnlessEqual + ~Test_name_plot_options.failUnlessRaises + ~Test_name_plot_options.id + ~Test_name_plot_options.run + ~Test_name_plot_options.setUp + ~Test_name_plot_options.setUpClass + ~Test_name_plot_options.shortDescription + ~Test_name_plot_options.skipTest + ~Test_name_plot_options.subTest + ~Test_name_plot_options.tearDown + ~Test_name_plot_options.tearDownClass + ~Test_name_plot_options.test_name_plot_options_duplicate + ~Test_name_plot_options.test_name_plot_options_simple + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~Test_name_plot_options.longMessage + ~Test_name_plot_options.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_functions.Test_name_search.rst b/docs/source/_autosummary/mcstasscript.tests.test_functions.Test_name_search.rst new file mode 100644 index 00000000..468dfa63 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_functions.Test_name_search.rst @@ -0,0 +1,103 @@ +mcstasscript.tests.test\_functions.Test\_name\_search +===================================================== + +.. currentmodule:: mcstasscript.tests.test_functions + +.. autoclass:: Test_name_search + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~Test_name_search.__init__ + ~Test_name_search.addClassCleanup + ~Test_name_search.addCleanup + ~Test_name_search.addTypeEqualityFunc + ~Test_name_search.assertAlmostEqual + ~Test_name_search.assertAlmostEquals + ~Test_name_search.assertCountEqual + ~Test_name_search.assertDictContainsSubset + ~Test_name_search.assertDictEqual + ~Test_name_search.assertEqual + ~Test_name_search.assertEquals + ~Test_name_search.assertFalse + ~Test_name_search.assertGreater + ~Test_name_search.assertGreaterEqual + ~Test_name_search.assertIn + ~Test_name_search.assertIs + ~Test_name_search.assertIsInstance + ~Test_name_search.assertIsNone + ~Test_name_search.assertIsNot + ~Test_name_search.assertIsNotNone + ~Test_name_search.assertLess + ~Test_name_search.assertLessEqual + ~Test_name_search.assertListEqual + ~Test_name_search.assertLogs + ~Test_name_search.assertMultiLineEqual + ~Test_name_search.assertNotAlmostEqual + ~Test_name_search.assertNotAlmostEquals + ~Test_name_search.assertNotEqual + ~Test_name_search.assertNotEquals + ~Test_name_search.assertNotIn + ~Test_name_search.assertNotIsInstance + ~Test_name_search.assertNotRegex + ~Test_name_search.assertNotRegexpMatches + ~Test_name_search.assertRaises + ~Test_name_search.assertRaisesRegex + ~Test_name_search.assertRaisesRegexp + ~Test_name_search.assertRegex + ~Test_name_search.assertRegexpMatches + ~Test_name_search.assertSequenceEqual + ~Test_name_search.assertSetEqual + ~Test_name_search.assertTrue + ~Test_name_search.assertTupleEqual + ~Test_name_search.assertWarns + ~Test_name_search.assertWarnsRegex + ~Test_name_search.assert_ + ~Test_name_search.countTestCases + ~Test_name_search.debug + ~Test_name_search.defaultTestResult + ~Test_name_search.doClassCleanups + ~Test_name_search.doCleanups + ~Test_name_search.fail + ~Test_name_search.failIf + ~Test_name_search.failIfAlmostEqual + ~Test_name_search.failIfEqual + ~Test_name_search.failUnless + ~Test_name_search.failUnlessAlmostEqual + ~Test_name_search.failUnlessEqual + ~Test_name_search.failUnlessRaises + ~Test_name_search.id + ~Test_name_search.run + ~Test_name_search.setUp + ~Test_name_search.setUpClass + ~Test_name_search.shortDescription + ~Test_name_search.skipTest + ~Test_name_search.subTest + ~Test_name_search.tearDown + ~Test_name_search.tearDownClass + ~Test_name_search.test_name_search_filename_read + ~Test_name_search.test_name_search_read + ~Test_name_search.test_name_search_read_duplicate + ~Test_name_search.test_name_search_read_error + ~Test_name_search.test_name_search_read_repeat + ~Test_name_search.test_name_search_type_error_not_McStasData + ~Test_name_search.test_name_search_type_error_not_list + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~Test_name_search.longMessage + ~Test_name_search.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_functions.rst b/docs/source/_autosummary/mcstasscript.tests.test_functions.rst new file mode 100644 index 00000000..6f93bcac --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_functions.rst @@ -0,0 +1,47 @@ +mcstasscript.tests.test\_functions +================================== + +.. automodule:: mcstasscript.tests.test_functions + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + + set_dummy_McStasDataBinned_1d + set_dummy_McStasDataBinned_2d + set_dummy_MetaDataBinned_1d + set_dummy_MetaDataBinned_2d + setup_McStasData_array + setup_McStasData_array_repeat + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + Test_load_data + Test_load_metadata + Test_load_monitor + Test_name_plot_options + Test_name_search + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.tests.test_functions.set_dummy_McStasDataBinned_1d.rst b/docs/source/_autosummary/mcstasscript.tests.test_functions.set_dummy_McStasDataBinned_1d.rst new file mode 100644 index 00000000..4fcf4154 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_functions.set_dummy_McStasDataBinned_1d.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_functions.set\_dummy\_McStasDataBinned\_1d +=================================================================== + +.. currentmodule:: mcstasscript.tests.test_functions + +.. autofunction:: set_dummy_McStasDataBinned_1d \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_functions.set_dummy_McStasDataBinned_2d.rst b/docs/source/_autosummary/mcstasscript.tests.test_functions.set_dummy_McStasDataBinned_2d.rst new file mode 100644 index 00000000..2730ecba --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_functions.set_dummy_McStasDataBinned_2d.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_functions.set\_dummy\_McStasDataBinned\_2d +=================================================================== + +.. currentmodule:: mcstasscript.tests.test_functions + +.. autofunction:: set_dummy_McStasDataBinned_2d \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_functions.set_dummy_MetaDataBinned_1d.rst b/docs/source/_autosummary/mcstasscript.tests.test_functions.set_dummy_MetaDataBinned_1d.rst new file mode 100644 index 00000000..96de12c2 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_functions.set_dummy_MetaDataBinned_1d.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_functions.set\_dummy\_MetaDataBinned\_1d +================================================================= + +.. currentmodule:: mcstasscript.tests.test_functions + +.. autofunction:: set_dummy_MetaDataBinned_1d \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_functions.set_dummy_MetaDataBinned_2d.rst b/docs/source/_autosummary/mcstasscript.tests.test_functions.set_dummy_MetaDataBinned_2d.rst new file mode 100644 index 00000000..08635b61 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_functions.set_dummy_MetaDataBinned_2d.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_functions.set\_dummy\_MetaDataBinned\_2d +================================================================= + +.. currentmodule:: mcstasscript.tests.test_functions + +.. autofunction:: set_dummy_MetaDataBinned_2d \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_functions.setup_McStasData_array.rst b/docs/source/_autosummary/mcstasscript.tests.test_functions.setup_McStasData_array.rst new file mode 100644 index 00000000..2ddba636 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_functions.setup_McStasData_array.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_functions.setup\_McStasData\_array +=========================================================== + +.. currentmodule:: mcstasscript.tests.test_functions + +.. autofunction:: setup_McStasData_array \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_functions.setup_McStasData_array_repeat.rst b/docs/source/_autosummary/mcstasscript.tests.test_functions.setup_McStasData_array_repeat.rst new file mode 100644 index 00000000..d187ac71 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_functions.setup_McStasData_array_repeat.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_functions.setup\_McStasData\_array\_repeat +=================================================================== + +.. currentmodule:: mcstasscript.tests.test_functions + +.. autofunction:: setup_McStasData_array_repeat \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_parameter_variable.Test_ParameterVariable.rst b/docs/source/_autosummary/mcstasscript.tests.test_parameter_variable.Test_ParameterVariable.rst new file mode 100644 index 00000000..ab3370c4 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_parameter_variable.Test_ParameterVariable.rst @@ -0,0 +1,106 @@ +mcstasscript.tests.test\_parameter\_variable.Test\_ParameterVariable +==================================================================== + +.. currentmodule:: mcstasscript.tests.test_parameter_variable + +.. autoclass:: Test_ParameterVariable + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~Test_ParameterVariable.__init__ + ~Test_ParameterVariable.addClassCleanup + ~Test_ParameterVariable.addCleanup + ~Test_ParameterVariable.addTypeEqualityFunc + ~Test_ParameterVariable.assertAlmostEqual + ~Test_ParameterVariable.assertAlmostEquals + ~Test_ParameterVariable.assertCountEqual + ~Test_ParameterVariable.assertDictContainsSubset + ~Test_ParameterVariable.assertDictEqual + ~Test_ParameterVariable.assertEqual + ~Test_ParameterVariable.assertEquals + ~Test_ParameterVariable.assertFalse + ~Test_ParameterVariable.assertGreater + ~Test_ParameterVariable.assertGreaterEqual + ~Test_ParameterVariable.assertIn + ~Test_ParameterVariable.assertIs + ~Test_ParameterVariable.assertIsInstance + ~Test_ParameterVariable.assertIsNone + ~Test_ParameterVariable.assertIsNot + ~Test_ParameterVariable.assertIsNotNone + ~Test_ParameterVariable.assertLess + ~Test_ParameterVariable.assertLessEqual + ~Test_ParameterVariable.assertListEqual + ~Test_ParameterVariable.assertLogs + ~Test_ParameterVariable.assertMultiLineEqual + ~Test_ParameterVariable.assertNotAlmostEqual + ~Test_ParameterVariable.assertNotAlmostEquals + ~Test_ParameterVariable.assertNotEqual + ~Test_ParameterVariable.assertNotEquals + ~Test_ParameterVariable.assertNotIn + ~Test_ParameterVariable.assertNotIsInstance + ~Test_ParameterVariable.assertNotRegex + ~Test_ParameterVariable.assertNotRegexpMatches + ~Test_ParameterVariable.assertRaises + ~Test_ParameterVariable.assertRaisesRegex + ~Test_ParameterVariable.assertRaisesRegexp + ~Test_ParameterVariable.assertRegex + ~Test_ParameterVariable.assertRegexpMatches + ~Test_ParameterVariable.assertSequenceEqual + ~Test_ParameterVariable.assertSetEqual + ~Test_ParameterVariable.assertTrue + ~Test_ParameterVariable.assertTupleEqual + ~Test_ParameterVariable.assertWarns + ~Test_ParameterVariable.assertWarnsRegex + ~Test_ParameterVariable.assert_ + ~Test_ParameterVariable.countTestCases + ~Test_ParameterVariable.debug + ~Test_ParameterVariable.defaultTestResult + ~Test_ParameterVariable.doClassCleanups + ~Test_ParameterVariable.doCleanups + ~Test_ParameterVariable.fail + ~Test_ParameterVariable.failIf + ~Test_ParameterVariable.failIfAlmostEqual + ~Test_ParameterVariable.failIfEqual + ~Test_ParameterVariable.failUnless + ~Test_ParameterVariable.failUnlessAlmostEqual + ~Test_ParameterVariable.failUnlessEqual + ~Test_ParameterVariable.failUnlessRaises + ~Test_ParameterVariable.id + ~Test_ParameterVariable.run + ~Test_ParameterVariable.setUp + ~Test_ParameterVariable.setUpClass + ~Test_ParameterVariable.shortDescription + ~Test_ParameterVariable.skipTest + ~Test_ParameterVariable.subTest + ~Test_ParameterVariable.tearDown + ~Test_ParameterVariable.tearDownClass + ~Test_ParameterVariable.test_ParameterVariable_init_basic + ~Test_ParameterVariable.test_ParameterVariable_init_basic_type + ~Test_ParameterVariable.test_ParameterVariable_init_basic_type_value + ~Test_ParameterVariable.test_ParameterVariable_init_basic_type_value_comment + ~Test_ParameterVariable.test_ParameterVariable_init_basic_value_comment + ~Test_ParameterVariable.test_ParameterVariable_init_options_initialize + ~Test_ParameterVariable.test_ParameterVariable_write_basic + ~Test_ParameterVariable.test_ParameterVariable_write_complex_float + ~Test_ParameterVariable.test_ParameterVariable_write_complex_int + ~Test_ParameterVariable.test_ParameterVariable_write_complex_string + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~Test_ParameterVariable.longMessage + ~Test_ParameterVariable.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_parameter_variable.rst b/docs/source/_autosummary/mcstasscript.tests.test_parameter_variable.rst new file mode 100644 index 00000000..f0bc5a2c --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_parameter_variable.rst @@ -0,0 +1,31 @@ +mcstasscript.tests.test\_parameter\_variable +============================================ + +.. automodule:: mcstasscript.tests.test_parameter_variable + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + Test_ParameterVariable + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.FakeChange.rst b/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.FakeChange.rst new file mode 100644 index 00000000..b6467595 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.FakeChange.rst @@ -0,0 +1,23 @@ +mcstasscript.tests.test\_plot\_interface.FakeChange +=================================================== + +.. currentmodule:: mcstasscript.tests.test_plot_interface + +.. autoclass:: FakeChange + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~FakeChange.__init__ + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.TestPlotInterface.rst b/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.TestPlotInterface.rst new file mode 100644 index 00000000..d60c50ff --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.TestPlotInterface.rst @@ -0,0 +1,104 @@ +mcstasscript.tests.test\_plot\_interface.TestPlotInterface +========================================================== + +.. currentmodule:: mcstasscript.tests.test_plot_interface + +.. autoclass:: TestPlotInterface + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~TestPlotInterface.__init__ + ~TestPlotInterface.addClassCleanup + ~TestPlotInterface.addCleanup + ~TestPlotInterface.addTypeEqualityFunc + ~TestPlotInterface.assertAlmostEqual + ~TestPlotInterface.assertAlmostEquals + ~TestPlotInterface.assertCountEqual + ~TestPlotInterface.assertDictContainsSubset + ~TestPlotInterface.assertDictEqual + ~TestPlotInterface.assertEqual + ~TestPlotInterface.assertEquals + ~TestPlotInterface.assertFalse + ~TestPlotInterface.assertGreater + ~TestPlotInterface.assertGreaterEqual + ~TestPlotInterface.assertIn + ~TestPlotInterface.assertIs + ~TestPlotInterface.assertIsInstance + ~TestPlotInterface.assertIsNone + ~TestPlotInterface.assertIsNot + ~TestPlotInterface.assertIsNotNone + ~TestPlotInterface.assertLess + ~TestPlotInterface.assertLessEqual + ~TestPlotInterface.assertListEqual + ~TestPlotInterface.assertLogs + ~TestPlotInterface.assertMultiLineEqual + ~TestPlotInterface.assertNotAlmostEqual + ~TestPlotInterface.assertNotAlmostEquals + ~TestPlotInterface.assertNotEqual + ~TestPlotInterface.assertNotEquals + ~TestPlotInterface.assertNotIn + ~TestPlotInterface.assertNotIsInstance + ~TestPlotInterface.assertNotRegex + ~TestPlotInterface.assertNotRegexpMatches + ~TestPlotInterface.assertRaises + ~TestPlotInterface.assertRaisesRegex + ~TestPlotInterface.assertRaisesRegexp + ~TestPlotInterface.assertRegex + ~TestPlotInterface.assertRegexpMatches + ~TestPlotInterface.assertSequenceEqual + ~TestPlotInterface.assertSetEqual + ~TestPlotInterface.assertTrue + ~TestPlotInterface.assertTupleEqual + ~TestPlotInterface.assertWarns + ~TestPlotInterface.assertWarnsRegex + ~TestPlotInterface.assert_ + ~TestPlotInterface.countTestCases + ~TestPlotInterface.debug + ~TestPlotInterface.defaultTestResult + ~TestPlotInterface.doClassCleanups + ~TestPlotInterface.doCleanups + ~TestPlotInterface.fail + ~TestPlotInterface.failIf + ~TestPlotInterface.failIfAlmostEqual + ~TestPlotInterface.failIfEqual + ~TestPlotInterface.failUnless + ~TestPlotInterface.failUnlessAlmostEqual + ~TestPlotInterface.failUnlessEqual + ~TestPlotInterface.failUnlessRaises + ~TestPlotInterface.id + ~TestPlotInterface.run + ~TestPlotInterface.setUp + ~TestPlotInterface.setUpClass + ~TestPlotInterface.shortDescription + ~TestPlotInterface.skipTest + ~TestPlotInterface.subTest + ~TestPlotInterface.tearDown + ~TestPlotInterface.tearDownClass + ~TestPlotInterface.test_initialization_with_data + ~TestPlotInterface.test_initialization_without_data + ~TestPlotInterface.test_set_colormap + ~TestPlotInterface.test_set_current_monitor + ~TestPlotInterface.test_set_data + ~TestPlotInterface.test_set_log_mode + ~TestPlotInterface.test_set_orders_of_mag + ~TestPlotInterface.test_show_interface_return + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~TestPlotInterface.longMessage + ~TestPlotInterface.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.fake_data.rst b/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.fake_data.rst new file mode 100644 index 00000000..a3b03d77 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.fake_data.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_plot\_interface.fake\_data +=================================================== + +.. currentmodule:: mcstasscript.tests.test_plot_interface + +.. autofunction:: fake_data \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.rst b/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.rst new file mode 100644 index 00000000..e315e7e2 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.rst @@ -0,0 +1,43 @@ +mcstasscript.tests.test\_plot\_interface +======================================== + +.. automodule:: mcstasscript.tests.test_plot_interface + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + + fake_data + set_dummy_McStasDataBinned_1d + set_dummy_McStasDataBinned_2d + set_dummy_MetaDataBinned_1d + set_dummy_MetaDataBinned_2d + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + FakeChange + TestPlotInterface + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.set_dummy_McStasDataBinned_1d.rst b/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.set_dummy_McStasDataBinned_1d.rst new file mode 100644 index 00000000..d2fb46f5 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.set_dummy_McStasDataBinned_1d.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_plot\_interface.set\_dummy\_McStasDataBinned\_1d +========================================================================= + +.. currentmodule:: mcstasscript.tests.test_plot_interface + +.. autofunction:: set_dummy_McStasDataBinned_1d \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.set_dummy_McStasDataBinned_2d.rst b/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.set_dummy_McStasDataBinned_2d.rst new file mode 100644 index 00000000..2b8a7c3d --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.set_dummy_McStasDataBinned_2d.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_plot\_interface.set\_dummy\_McStasDataBinned\_2d +========================================================================= + +.. currentmodule:: mcstasscript.tests.test_plot_interface + +.. autofunction:: set_dummy_McStasDataBinned_2d \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.set_dummy_MetaDataBinned_1d.rst b/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.set_dummy_MetaDataBinned_1d.rst new file mode 100644 index 00000000..7c9ffd17 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.set_dummy_MetaDataBinned_1d.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_plot\_interface.set\_dummy\_MetaDataBinned\_1d +======================================================================= + +.. currentmodule:: mcstasscript.tests.test_plot_interface + +.. autofunction:: set_dummy_MetaDataBinned_1d \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.set_dummy_MetaDataBinned_2d.rst b/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.set_dummy_MetaDataBinned_2d.rst new file mode 100644 index 00000000..14180919 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_plot_interface.set_dummy_MetaDataBinned_2d.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_plot\_interface.set\_dummy\_MetaDataBinned\_2d +======================================================================= + +.. currentmodule:: mcstasscript.tests.test_plot_interface + +.. autofunction:: set_dummy_MetaDataBinned_2d \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.FakeChange.rst b/docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.FakeChange.rst new file mode 100644 index 00000000..7185e840 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.FakeChange.rst @@ -0,0 +1,23 @@ +mcstasscript.tests.test\_simulation\_interface.FakeChange +========================================================= + +.. currentmodule:: mcstasscript.tests.test_simulation_interface + +.. autoclass:: FakeChange + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~FakeChange.__init__ + + + + + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.TestSimulationInterface.rst b/docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.TestSimulationInterface.rst new file mode 100644 index 00000000..440b2252 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.TestSimulationInterface.rst @@ -0,0 +1,103 @@ +mcstasscript.tests.test\_simulation\_interface.TestSimulationInterface +====================================================================== + +.. currentmodule:: mcstasscript.tests.test_simulation_interface + +.. autoclass:: TestSimulationInterface + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~TestSimulationInterface.__init__ + ~TestSimulationInterface.addClassCleanup + ~TestSimulationInterface.addCleanup + ~TestSimulationInterface.addTypeEqualityFunc + ~TestSimulationInterface.assertAlmostEqual + ~TestSimulationInterface.assertAlmostEquals + ~TestSimulationInterface.assertCountEqual + ~TestSimulationInterface.assertDictContainsSubset + ~TestSimulationInterface.assertDictEqual + ~TestSimulationInterface.assertEqual + ~TestSimulationInterface.assertEquals + ~TestSimulationInterface.assertFalse + ~TestSimulationInterface.assertGreater + ~TestSimulationInterface.assertGreaterEqual + ~TestSimulationInterface.assertIn + ~TestSimulationInterface.assertIs + ~TestSimulationInterface.assertIsInstance + ~TestSimulationInterface.assertIsNone + ~TestSimulationInterface.assertIsNot + ~TestSimulationInterface.assertIsNotNone + ~TestSimulationInterface.assertLess + ~TestSimulationInterface.assertLessEqual + ~TestSimulationInterface.assertListEqual + ~TestSimulationInterface.assertLogs + ~TestSimulationInterface.assertMultiLineEqual + ~TestSimulationInterface.assertNotAlmostEqual + ~TestSimulationInterface.assertNotAlmostEquals + ~TestSimulationInterface.assertNotEqual + ~TestSimulationInterface.assertNotEquals + ~TestSimulationInterface.assertNotIn + ~TestSimulationInterface.assertNotIsInstance + ~TestSimulationInterface.assertNotRegex + ~TestSimulationInterface.assertNotRegexpMatches + ~TestSimulationInterface.assertRaises + ~TestSimulationInterface.assertRaisesRegex + ~TestSimulationInterface.assertRaisesRegexp + ~TestSimulationInterface.assertRegex + ~TestSimulationInterface.assertRegexpMatches + ~TestSimulationInterface.assertSequenceEqual + ~TestSimulationInterface.assertSetEqual + ~TestSimulationInterface.assertTrue + ~TestSimulationInterface.assertTupleEqual + ~TestSimulationInterface.assertWarns + ~TestSimulationInterface.assertWarnsRegex + ~TestSimulationInterface.assert_ + ~TestSimulationInterface.countTestCases + ~TestSimulationInterface.debug + ~TestSimulationInterface.defaultTestResult + ~TestSimulationInterface.doClassCleanups + ~TestSimulationInterface.doCleanups + ~TestSimulationInterface.fail + ~TestSimulationInterface.failIf + ~TestSimulationInterface.failIfAlmostEqual + ~TestSimulationInterface.failIfEqual + ~TestSimulationInterface.failUnless + ~TestSimulationInterface.failUnlessAlmostEqual + ~TestSimulationInterface.failUnlessEqual + ~TestSimulationInterface.failUnlessRaises + ~TestSimulationInterface.id + ~TestSimulationInterface.run + ~TestSimulationInterface.setUp + ~TestSimulationInterface.setUpClass + ~TestSimulationInterface.shortDescription + ~TestSimulationInterface.skipTest + ~TestSimulationInterface.subTest + ~TestSimulationInterface.tearDown + ~TestSimulationInterface.tearDownClass + ~TestSimulationInterface.test_ParameterWidget + ~TestSimulationInterface.test_initialization_McStas + ~TestSimulationInterface.test_initialization_McXtrace + ~TestSimulationInterface.test_show_interface_McStas + ~TestSimulationInterface.test_show_interface_McXtrace + ~TestSimulationInterface.test_update_mpi + ~TestSimulationInterface.test_update_ncount + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~TestSimulationInterface.longMessage + ~TestSimulationInterface.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.rst b/docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.rst new file mode 100644 index 00000000..5983b3fa --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.rst @@ -0,0 +1,42 @@ +mcstasscript.tests.test\_simulation\_interface +============================================== + +.. automodule:: mcstasscript.tests.test_simulation_interface + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + + setup_instr_root_path_McStas + setup_instr_root_path_McXtrace + setup_populated_instr_McStas + setup_populated_instr_McXtrace + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + FakeChange + TestSimulationInterface + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.setup_instr_root_path_McStas.rst b/docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.setup_instr_root_path_McStas.rst new file mode 100644 index 00000000..a7d070d6 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.setup_instr_root_path_McStas.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_simulation\_interface.setup\_instr\_root\_path\_McStas +=============================================================================== + +.. currentmodule:: mcstasscript.tests.test_simulation_interface + +.. autofunction:: setup_instr_root_path_McStas \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.setup_instr_root_path_McXtrace.rst b/docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.setup_instr_root_path_McXtrace.rst new file mode 100644 index 00000000..7a1f0a3e --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.setup_instr_root_path_McXtrace.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_simulation\_interface.setup\_instr\_root\_path\_McXtrace +================================================================================= + +.. currentmodule:: mcstasscript.tests.test_simulation_interface + +.. autofunction:: setup_instr_root_path_McXtrace \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.setup_populated_instr_McStas.rst b/docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.setup_populated_instr_McStas.rst new file mode 100644 index 00000000..768aaf1d --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.setup_populated_instr_McStas.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_simulation\_interface.setup\_populated\_instr\_McStas +============================================================================== + +.. currentmodule:: mcstasscript.tests.test_simulation_interface + +.. autofunction:: setup_populated_instr_McStas \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.setup_populated_instr_McXtrace.rst b/docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.setup_populated_instr_McXtrace.rst new file mode 100644 index 00000000..b0ea1152 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_simulation_interface.setup_populated_instr_McXtrace.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.test\_simulation\_interface.setup\_populated\_instr\_McXtrace +================================================================================ + +.. currentmodule:: mcstasscript.tests.test_simulation_interface + +.. autofunction:: setup_populated_instr_McXtrace \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_widget_helpers.TestWidgetHelpers.rst b/docs/source/_autosummary/mcstasscript.tests.test_widget_helpers.TestWidgetHelpers.rst new file mode 100644 index 00000000..cb5ebbcf --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_widget_helpers.TestWidgetHelpers.rst @@ -0,0 +1,103 @@ +mcstasscript.tests.test\_widget\_helpers.TestWidgetHelpers +========================================================== + +.. currentmodule:: mcstasscript.tests.test_widget_helpers + +.. autoclass:: TestWidgetHelpers + :members: + + + .. automethod:: __init__ + + + .. rubric:: Methods + + .. autosummary:: + + ~TestWidgetHelpers.__init__ + ~TestWidgetHelpers.addClassCleanup + ~TestWidgetHelpers.addCleanup + ~TestWidgetHelpers.addTypeEqualityFunc + ~TestWidgetHelpers.assertAlmostEqual + ~TestWidgetHelpers.assertAlmostEquals + ~TestWidgetHelpers.assertCountEqual + ~TestWidgetHelpers.assertDictContainsSubset + ~TestWidgetHelpers.assertDictEqual + ~TestWidgetHelpers.assertEqual + ~TestWidgetHelpers.assertEquals + ~TestWidgetHelpers.assertFalse + ~TestWidgetHelpers.assertGreater + ~TestWidgetHelpers.assertGreaterEqual + ~TestWidgetHelpers.assertIn + ~TestWidgetHelpers.assertIs + ~TestWidgetHelpers.assertIsInstance + ~TestWidgetHelpers.assertIsNone + ~TestWidgetHelpers.assertIsNot + ~TestWidgetHelpers.assertIsNotNone + ~TestWidgetHelpers.assertLess + ~TestWidgetHelpers.assertLessEqual + ~TestWidgetHelpers.assertListEqual + ~TestWidgetHelpers.assertLogs + ~TestWidgetHelpers.assertMultiLineEqual + ~TestWidgetHelpers.assertNotAlmostEqual + ~TestWidgetHelpers.assertNotAlmostEquals + ~TestWidgetHelpers.assertNotEqual + ~TestWidgetHelpers.assertNotEquals + ~TestWidgetHelpers.assertNotIn + ~TestWidgetHelpers.assertNotIsInstance + ~TestWidgetHelpers.assertNotRegex + ~TestWidgetHelpers.assertNotRegexpMatches + ~TestWidgetHelpers.assertRaises + ~TestWidgetHelpers.assertRaisesRegex + ~TestWidgetHelpers.assertRaisesRegexp + ~TestWidgetHelpers.assertRegex + ~TestWidgetHelpers.assertRegexpMatches + ~TestWidgetHelpers.assertSequenceEqual + ~TestWidgetHelpers.assertSetEqual + ~TestWidgetHelpers.assertTrue + ~TestWidgetHelpers.assertTupleEqual + ~TestWidgetHelpers.assertWarns + ~TestWidgetHelpers.assertWarnsRegex + ~TestWidgetHelpers.assert_ + ~TestWidgetHelpers.countTestCases + ~TestWidgetHelpers.debug + ~TestWidgetHelpers.defaultTestResult + ~TestWidgetHelpers.doClassCleanups + ~TestWidgetHelpers.doCleanups + ~TestWidgetHelpers.fail + ~TestWidgetHelpers.failIf + ~TestWidgetHelpers.failIfAlmostEqual + ~TestWidgetHelpers.failIfEqual + ~TestWidgetHelpers.failUnless + ~TestWidgetHelpers.failUnlessAlmostEqual + ~TestWidgetHelpers.failUnlessEqual + ~TestWidgetHelpers.failUnlessRaises + ~TestWidgetHelpers.id + ~TestWidgetHelpers.run + ~TestWidgetHelpers.setUp + ~TestWidgetHelpers.setUpClass + ~TestWidgetHelpers.shortDescription + ~TestWidgetHelpers.skipTest + ~TestWidgetHelpers.subTest + ~TestWidgetHelpers.tearDown + ~TestWidgetHelpers.tearDownClass + ~TestWidgetHelpers.test_HiddenPrints + ~TestWidgetHelpers.test_get_parameter_default_double + ~TestWidgetHelpers.test_get_parameter_default_double_specified + ~TestWidgetHelpers.test_get_parameter_default_int + ~TestWidgetHelpers.test_get_parameter_default_string + ~TestWidgetHelpers.test_parameter_has_default_false + ~TestWidgetHelpers.test_parameter_has_default_true + + + + + + .. rubric:: Attributes + + .. autosummary:: + + ~TestWidgetHelpers.longMessage + ~TestWidgetHelpers.maxDiff + + \ No newline at end of file diff --git a/docs/source/_autosummary/mcstasscript.tests.test_widget_helpers.rst b/docs/source/_autosummary/mcstasscript.tests.test_widget_helpers.rst new file mode 100644 index 00000000..8981d181 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.test_widget_helpers.rst @@ -0,0 +1,31 @@ +mcstasscript.tests.test\_widget\_helpers +======================================== + +.. automodule:: mcstasscript.tests.test_widget_helpers + + + + + + + + + + + + .. rubric:: Classes + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + + TestWidgetHelpers + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.tests.utilities.rst b/docs/source/_autosummary/mcstasscript.tests.utilities.rst new file mode 100644 index 00000000..03b15f80 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.utilities.rst @@ -0,0 +1,30 @@ +mcstasscript.tests.utilities +============================ + +.. automodule:: mcstasscript.tests.utilities + + + + + + + + .. rubric:: Functions + + .. autosummary:: + :toctree: + + work_dir_test + + + + + + + + + + + + + diff --git a/docs/source/_autosummary/mcstasscript.tests.utilities.work_dir_test.rst b/docs/source/_autosummary/mcstasscript.tests.utilities.work_dir_test.rst new file mode 100644 index 00000000..290c7dd6 --- /dev/null +++ b/docs/source/_autosummary/mcstasscript.tests.utilities.work_dir_test.rst @@ -0,0 +1,6 @@ +mcstasscript.tests.utilities.work\_dir\_test +============================================ + +.. currentmodule:: mcstasscript.tests.utilities + +.. autofunction:: work_dir_test \ No newline at end of file diff --git a/docs/source/_templates/class.rst b/docs/source/_templates/class.rst new file mode 100644 index 00000000..0f7d6f32 --- /dev/null +++ b/docs/source/_templates/class.rst @@ -0,0 +1,29 @@ +{{ fullname | escape | underline}} + +.. currentmodule:: {{ module }} + +.. autoclass:: {{ objname }} + + {% block methods %} + .. automethod:: __init__ + + {% if methods %} + .. rubric:: {{ _('Methods') }} + + .. autosummary:: + {% for item in methods %} + ~{{ name }}.{{ item }} + {%- endfor %} + {% endif %} + {% endblock %} + + {% block attributes %} + {% if attributes %} + .. rubric:: {{ _('Attributes') }} + + .. autosummary:: + {% for item in attributes %} + ~{{ name }}.{{ item }} + {%- endfor %} + {% endif %} + {% endblock %} diff --git a/docs/source/_templates/custom-class-template.rst b/docs/source/_templates/custom-class-template.rst new file mode 100644 index 00000000..893443b1 --- /dev/null +++ b/docs/source/_templates/custom-class-template.rst @@ -0,0 +1,30 @@ +{{ fullname | escape | underline }} + +.. currentmodule:: {{ module }} + +.. autoclass:: {{ objname }} + :members: + + {% block methods %} + .. automethod:: __init__ + + {% if methods %} + .. rubric:: {{ _('Methods') }} + + .. autosummary:: + {% for item in methods %} + ~{{ name }}.{{ item }} + {%- endfor %} + {% endif %} + {% endblock %} + + {% block attributes %} + {% if attributes %} + .. rubric:: {{ _('Attributes') }} + + .. autosummary:: + {% for item in attributes %} + ~{{ name }}.{{ item }} + {%- endfor %} + {% endif %} + {% endblock %} diff --git a/docs/source/_templates/custom-module-template.rst b/docs/source/_templates/custom-module-template.rst new file mode 100644 index 00000000..f46f9f63 --- /dev/null +++ b/docs/source/_templates/custom-module-template.rst @@ -0,0 +1,66 @@ +{{ fullname | escape | underline}} + +.. automodule:: {{ fullname }} + + {% block attributes %} + {% if attributes %} + .. rubric:: {{ _('Module Attributes') }} + + .. autosummary:: + :toctree: + {% for item in attributes %} + {{ item }} + {%- endfor %} + {% endif %} + {% endblock %} + + {% block functions %} + {% if functions %} + .. rubric:: {{ _('Functions') }} + + .. autosummary:: + :toctree: + {% for item in functions %} + {{ item }} + {%- endfor %} + {% endif %} + {% endblock %} + + {% block classes %} + {% if classes %} + .. rubric:: {{ _('Classes') }} + + .. autosummary:: + :toctree: + :template: custom-class-template.rst + {% for item in classes %} + {{ item }} + {%- endfor %} + {% endif %} + {% endblock %} + + {% block exceptions %} + {% if exceptions %} + .. rubric:: {{ _('Exceptions') }} + + .. autosummary:: + :toctree: + {% for item in exceptions %} + {{ item }} + {%- endfor %} + {% endif %} + {% endblock %} + +{% block modules %} +{% if modules %} +.. rubric:: Modules + +.. autosummary:: + :toctree: + :template: custom-module-template.rst + :recursive: +{% for item in modules %} + {{ item }} +{%- endfor %} +{% endif %} +{% endblock %} diff --git a/docs/source/_templates/module.rst b/docs/source/_templates/module.rst new file mode 100644 index 00000000..e74c012f --- /dev/null +++ b/docs/source/_templates/module.rst @@ -0,0 +1,60 @@ +{{ fullname | escape | underline}} + +.. automodule:: {{ fullname }} + + {% block attributes %} + {% if attributes %} + .. rubric:: {{ _('Module Attributes') }} + + .. autosummary:: + {% for item in attributes %} + {{ item }} + {%- endfor %} + {% endif %} + {% endblock %} + + {% block functions %} + {% if functions %} + .. rubric:: {{ _('Functions') }} + + .. autosummary:: + {% for item in functions %} + {{ item }} + {%- endfor %} + {% endif %} + {% endblock %} + + {% block classes %} + {% if classes %} + .. rubric:: {{ _('Classes') }} + + .. autosummary:: + {% for item in classes %} + {{ item }} + {%- endfor %} + {% endif %} + {% endblock %} + + {% block exceptions %} + {% if exceptions %} + .. rubric:: {{ _('Exceptions') }} + + .. autosummary:: + {% for item in exceptions %} + {{ item }} + {%- endfor %} + {% endif %} + {% endblock %} + +{% block modules %} +{% if modules %} +.. rubric:: Modules + +.. autosummary:: + :toctree: + :recursive: +{% for item in modules %} + {{ item }} +{%- endfor %} +{% endif %} +{% endblock %} diff --git a/docs/source/conf.py b/docs/source/conf.py new file mode 100644 index 00000000..d0fb33ee --- /dev/null +++ b/docs/source/conf.py @@ -0,0 +1,82 @@ +# Configuration file for the Sphinx documentation builder. +# +# This file only contains a selection of the most common options. For a full +# list see the documentation: +# https://www.sphinx-doc.org/en/master/usage/configuration.html + +# -- Path setup -------------------------------------------------------------- + +# If extensions (or modules to document with autodoc) are in another directory, +# add these directories to sys.path here. If the directory is relative to the +# documentation root, use os.path.abspath to make it absolute, like shown here. +# +import os +import sys +sys.path.insert(0, os.path.abspath('../../mcstasscript')) +sys.path.insert(0, os.path.abspath('../..')) + +print(sys.path) + +# -- Project information ----------------------------------------------------- + +project = 'McStasScript' +copyright = '2022, Mads Bertelsen' +author = 'Mads Bertelsen' + + +# -- General configuration --------------------------------------------------- + +# Add any Sphinx extension module names here, as strings. They can be +# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom +# ones. +extensions = ['sphinx.ext.autodoc', + 'sphinx.ext.autosummary', + 'sphinx.ext.napoleon', + #'nbsphinx', + 'myst_nb', + ] + +autosummary_generate = True + +# Add any paths that contain templates here, relative to this directory. +#templates_path = ['source/_templates'] +templates_path = ['_templates'] + +master_doc = 'index' + +# List of patterns, relative to source directory, that match files and +# directories to ignore when looking for source files. +# This pattern also affects html_static_path and html_extra_path. +exclude_patterns = [] + + +# -- Options for HTML output ------------------------------------------------- + +# The theme to use for HTML and HTML Help pages. See the documentation for +# a list of builtin themes. +# +html_theme = 'sphinx_book_theme' + +# Theme options are theme-specific and customize the look and feel of a theme +# further. For a list of options available for each theme, see the +# documentation. +# +html_theme_options = { + #"logo_only": True, + "repository_url": "https://github.com/PaNOSC-ViNYL/McStasScript", + "repository_branch": "mcstasscript_on_libpyvinyl", + "path_to_docs": "docs", + "use_repository_button": True, + "use_issues_button": True, + "use_edit_page_button": True, + "show_toc_level": 2, # Show subheadings in secondary sidebar +} + +# Add any paths that contain custom static files (such as style sheets) here, +# relative to this directory. They are copied after the builtin static files, +# so a file named "default.css" will overwrite the builtin "default.css". +html_static_path = ['_static'] + +# One entry per manual page. List of tuples +# (source start file, name, description, authors, manual section). +#man_pages = [(master_doc, 'McStasScript', u'McStasScript Documentation', 'Mads Bertelsen', 1)] diff --git a/docs/source/getting_started/installation.ipynb b/docs/source/getting_started/installation.ipynb new file mode 100644 index 00000000..7735bef1 --- /dev/null +++ b/docs/source/getting_started/installation.ipynb @@ -0,0 +1,149 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "decent-error", + "metadata": {}, + "source": [ + "# Installation\n", + "McStasScript needs to be installed and then configured. There are two ways to install, either through pip or from the source code directly. The configuration can be done after installation and changed at any point.\n", + "\n", + "Before installing McStasScript, install McStas or McXtrace as described on [www.mcstas.org](https://www.mcstas.org) or [www.mcxtrace.org](https://www.mcxtrace.org)." + ] + }, + { + "cell_type": "markdown", + "id": "crude-continuity", + "metadata": {}, + "source": [ + "## Pip\n", + "The standard way to install McStasScript is through pip. For Unix and OS X, use this line in the terminal. For windows, use the McStas-shell or McXtrace-shell to run the install." + ] + }, + { + "cell_type": "markdown", + "id": "ceramic-community", + "metadata": {}, + "source": [ + "```\n", + "pip install McStasScript --upgrade\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "introductory-monitor", + "metadata": {}, + "source": [ + "## From source\n", + "A developer might one to install directly from source, this makes it easier to contribute to the project and see how changes to the code affect the package.\n", + "\n", + "Open a terminal and go to the location where the source code should be located, and use these commands." + ] + }, + { + "cell_type": "markdown", + "id": "lesser-identifier", + "metadata": {}, + "source": [ + "```\n", + "git clone https://github.com/PaNOSC-ViNYL/McStasScript.git\n", + "cd McStasScript\n", + "pip install -r requirements.txt\n", + "pip install -e .\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "sound-familiar", + "metadata": {}, + "source": [ + "## Configuration\n", + "The McStasScript package has a configuration file in the source directory that can be changed with a text editor or through a configurator class included in the package. The configuration needs the path of the mcrun / mxrun executable and the base directory of the McStas/McXtrace installation.\n", + "\n", + "### Typical Mac OS configuration\n", + "\n", + "```\n", + "from mcstasscript.interface import functions\n", + "my_configurator = functions.Configurator()\n", + "my_configurator.set_mcrun_path(\"/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1/bin/\")\n", + "my_configurator.set_mcstas_path(\"/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1/\")\n", + "my_configurator.set_mxrun_path(\"/Applications/McXtrace-1.5.app/Contents/Resources/mcxtrace/1.5/bin/\")\n", + "my_configurator.set_mcxtrace_path(\"/Applications/McXtrace-1.5.app/Contents/Resources/mcxtrace/1.5/\")\n", + "print(my_configurator)\n", + "```\n", + "\n", + "### Typical Unix configuration\n", + "\n", + "```\n", + "from mcstasscript.interface import functions\n", + "my_configurator = functions.Configurator()\n", + "my_configurator.set_mcrun_path(\"/usr/bin/\")\n", + "my_configurator.set_mcstas_path(\"/usr/share/mcstas/2.7.1/\")\n", + "my_configurator.set_mxrun_path(\"/usr/bin/\")\n", + "my_configurator.set_mcxtrace_path(\"/usr/share/mcxtrace/1.5/\")\n", + "print(my_configurator)\n", + "```\n", + "\n", + "### Typical Windows configuration\n", + "\n", + "```\n", + "from mcstasscript.interface import functions\n", + "my_configurator = functions.Configurator()\n", + "my_configurator.set_mcrun_path(\"\\\\mcstas-2.7.1\\\\bin\\\\\")\n", + "my_configurator.set_mcstas_path(\"\\\\mcstas-2.7.1\\\\lib\\\\\")\n", + "my_configurator.set_mxrun_path(\"\\\\mcxtrace-1.5\\\\bin\\\\\")\n", + "my_configurator.set_mcxtrace_path(\"\\\\mcxtrace-1.5\\\\lib\\\\\") \n", + "print(my_configurator)\n", + "```" + ] + }, + { + "cell_type": "markdown", + "id": "stainless-class", + "metadata": {}, + "source": [ + "## Tests\n", + "In order to ensure the installation and configuration was succesful, one can run the test suite. Navigate to the folder containing the McStasScript source code and run:\n", + "```\n", + "pytest\n", + "```\n", + "\n", + "If pytest has not been installed yet, it can be installed with\n", + "```\n", + "pip install pytest\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "creative-prison", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/source/getting_started/overview.ipynb b/docs/source/getting_started/overview.ipynb new file mode 100644 index 00000000..702ad3ea --- /dev/null +++ b/docs/source/getting_started/overview.ipynb @@ -0,0 +1,96 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "ecological-candidate", + "metadata": {}, + "source": [ + "# Overview" + ] + }, + { + "cell_type": "markdown", + "id": "above-sport", + "metadata": {}, + "source": [ + "## McStas / McXtrace simulations\n", + "McStasScript is a python API for writing and running [McStas](https://www.mcstas.org) / [McXtrace](https://www.mcxtrace.org) simulations. These are sister packages meant for simulation of neutron and x-ray scattering instrumentation respectively and share a common syntax. The packages are used widely in the field and come with a large repository of components that describe smaller parts of the beamline. The community of users contribute such components to the packages, and they have in this way grown over the years.\n", + "\n", + "McStas and McXtrace simulations are described by an *instrument file* which is a custom language built on C. Here a number of components are placed in simulated space to describe the physical instrument, along with a number of monitors that record the properties of the beam. The instrument file is used to generate a c code, which is then compiled to an executable on the users system. The simulation itself is a monte carlo ray-tracing simulation that tracks individual rays from the source, through the instrument, through any scattering events and deposits the rays intensity onto any monitors along the way." + ] + }, + { + "cell_type": "markdown", + "id": "nasty-promotion", + "metadata": {}, + "source": [ + "## McStasScript\n", + "McStasScript provides a pythonic alternative to writing the instrument file as a textfile in the simulation meta language. A McStasScript instrument object is create which in turn can generate the instrument file and perform the simulation. The user still has to understand the underlying software and logic in McStas / McXtrace to make meaningful simulations, and it is possible to add snippets of C code to the generated instrument, so some C knowledge is still an advantage.\n", + "\n", + "McStasScript is developed with the intent of use in Jupyter Notebooks, with for example available widgets for performing the simulation and plotting the results. The package can be used in python scripts, but won't have the interfaces.\n", + "\n", + "McStasScript is developed under [PaNOSC](https://www.panosc.eu) and specifically WP5 on simulations. Our collected github repo can be found [here](https://github.com/PaNOSC-ViNYL). McStasScript uses [libpyvinyl](https://github.com/PaNOSC-ViNYL/libpyvinyl) which imposes some standards on how parameters are handled along with the syntax for constructing and running the simulation, and thus using McStasScript is similar to other packages that follow this standard." + ] + }, + { + "cell_type": "markdown", + "id": "corresponding-inspector", + "metadata": {}, + "source": [ + "### The instrument class\n", + "The central class of McStasScript is the *McCode_instr* class that describes the instrument object, from which both the *McStas_instr* and *McXtrace_instr* classes are derived. The *McCode_instr* class itself inherits from the libpyvinyl *BaseCalculator* that provides some basic functionality, such as loading from and dumping to file.\n", + "\n", + "Upon initialization an instrument object reads the available component database along with components in the work directory, and from this information can guide the user and check for errors. When adding a component to the instrument, a component object is returned which can then be customized further.\n", + "\n", + "It is possible to add practically anything to the instrument object that one would normally add to a instrument file, which includes parameters, declared variables, lines of initialize code and lines of finally code.\n", + "\n", + "The instrument object has methods for adjusting settigns of the simulation such as the number of rays to simulate and setting the parameters. The *backengine* method runs the currently specified simulation, and loads the data into the *data* attribute which can the be accessed by the user. The data is loaded as a McStasData object for each monitor output, these objects contain the data itself as numpy arrays and relevant metadata." + ] + }, + { + "cell_type": "markdown", + "id": "aboriginal-server", + "metadata": {}, + "source": [ + "### Component objects\n", + "Component objects belong to an instrument but are returned to the user whenever one is added to an instrument. At that point a custom class is generated for this kind of component, and the attributes will correspond to the parameters of the component. This is achieved by reading the McStas components in the users installation of McStas, and any custom components they may have added. Because the attributes correspond with the component parameters, it is not allowed to create new attributes in component objects, and in this way any misspelling of parameters are caught early. Since the component object is aware of the allowed inputs, it can provide help and for example show when any required parameters have not yet been specified." + ] + }, + { + "cell_type": "markdown", + "id": "prospective-tiger", + "metadata": {}, + "source": [ + "### Plotting tools\n", + "McStasScript includes tools for plotting the resulting simulation data, providing a convinient way to quickly see the results from the performed simulation. " + ] + }, + { + "cell_type": "markdown", + "id": "advance-picnic", + "metadata": {}, + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/source/getting_started/quick_start.ipynb b/docs/source/getting_started/quick_start.ipynb new file mode 100644 index 00000000..21f6cf9b --- /dev/null +++ b/docs/source/getting_started/quick_start.ipynb @@ -0,0 +1,590 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "delayed-biodiversity", + "metadata": {}, + "source": [ + "# Quick start\n", + "This section is a quick start guide that will show the basic functionality of McStasScript. It assumes the user is already familiar with McStas itself, if this is not the case, it is recommended to start with the tutorial which can serve as an introduction to both McStas and McStasScript.\n", + "\n", + "## Importing the package\n", + "The package includes an interface folder that contains the modules which the user is meant to use directly." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "dense-internet", + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter" + ] + }, + { + "cell_type": "markdown", + "id": "exotic-sandwich", + "metadata": {}, + "source": [ + "## Creating the first instrument object\n", + "Now the package can be used. Start with creating a new instrument, just needs a name. For a McXtrace instrument use McXtrace_instr instead." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "disabled-canon", + "metadata": {}, + "outputs": [], + "source": [ + "instrument = instr.McStas_instr(\"first_instrument\")" + ] + }, + { + "cell_type": "markdown", + "id": "known-depression", + "metadata": {}, + "source": [ + "### Finding a component\n", + "The instrument object loads the available McStas components, so it can show these in order to help the user." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "adult-assignment", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here are the available component categories:\n", + " contrib\n", + " misc\n", + " monitors\n", + " obsolete\n", + " optics\n", + " samples\n", + " sources\n", + " union\n", + "Call show_components(category_name) to display\n" + ] + } + ], + "source": [ + "instrument.show_components()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "fatal-climate", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here are all components in the sources category.\n", + " Adapt_check Moderator Source_Optimizer Source_gen\n", + " ESS_butterfly Monitor_Optimizer Source_adapt Source_simple\n", + " ESS_moderator Source_Maxwell_3 Source_div \n" + ] + } + ], + "source": [ + "instrument.show_components(\"sources\")" + ] + }, + { + "cell_type": "markdown", + "id": "powerful-rover", + "metadata": {}, + "source": [ + "### Adding the first component\n", + "McStas components can be added to the instrument, here we add a source and ask for help on the parameters." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "instructional-liquid", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Source_simple _____________________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[1mradius\u001b[0m = \u001b[1m\u001b[94m0.1\u001b[0m\u001b[0m [m] // Radius of circle in (x,y,0) plane where neutrons are \n", + " generated. \n", + "\u001b[1myheight\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Height of rectangle in (x,y,0) plane where neutrons are \n", + " generated. \n", + "\u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Width of rectangle in (x,y,0) plane where neutrons are \n", + " generated. \n", + "\u001b[1mdist\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Distance to target along z axis.\n", + "\u001b[1mfocus_xw\u001b[0m = \u001b[1m\u001b[94m0.045\u001b[0m\u001b[0m [m] // Width of target\n", + "\u001b[1mfocus_yh\u001b[0m = \u001b[1m\u001b[94m0.12\u001b[0m\u001b[0m [m] // Height of target\n", + "\u001b[1mE0\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [meV] // Mean energy of neutrons.\n", + "\u001b[1mdE\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [meV] // Energy half spread of neutrons (flat or gaussian sigma).\n", + "\u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [AA] // Mean wavelength of neutrons.\n", + "\u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [AA] // Wavelength half spread of neutrons.\n", + "\u001b[1mflux\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1/(s*cm**2*st*energy unit)] // flux per energy unit, Angs or meV if \n", + " flux=0, the source emits 1 in 4*PI whole \n", + " space. \n", + "\u001b[1mgauss\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [1] // Gaussian (1) or Flat (0) energy/wavelength distribution\n", + "\u001b[1mtarget_index\u001b[0m = \u001b[1m\u001b[94m1\u001b[0m\u001b[0m [1] // relative index of component to focus at, e.g. next is \n", + " +1 this is used to compute 'dist' automatically. \n", + "-------------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "source = instrument.add_component(\"source\", \"Source_simple\")\n", + "source.show_parameters()" + ] + }, + { + "cell_type": "markdown", + "id": "noble-colleague", + "metadata": {}, + "source": [ + "### Set parameters\n", + "The parameters of the component object are adjustable directly through the attributes of the object." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "continued-denial", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT source = Source_simple\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.03\u001b[0m\u001b[0m [m]\n", + " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.03\u001b[0m\u001b[0m [m]\n", + " \u001b[1mdist\u001b[0m = \u001b[1m\u001b[92m5\u001b[0m\u001b[0m [m]\n", + " \u001b[1mfocus_xw\u001b[0m = \u001b[1m\u001b[92m0.01\u001b[0m\u001b[0m [m]\n", + " \u001b[1mfocus_yh\u001b[0m = \u001b[1m\u001b[92m0.01\u001b[0m\u001b[0m [m]\n", + " \u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[92m3\u001b[0m\u001b[0m [AA]\n", + " \u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[92m2.2\u001b[0m\u001b[0m [AA]\n", + "AT [0, 0, 0] ABSOLUTE\n" + ] + } + ], + "source": [ + "source.xwidth = 0.03\n", + "source.yheight = 0.03\n", + "source.lambda0 = 3\n", + "source.dlambda = 2.2\n", + "source.dist = 5\n", + "source.focus_xw = 0.01\n", + "source.focus_yh = 0.01\n", + "print(source)" + ] + }, + { + "cell_type": "markdown", + "id": "interior-better", + "metadata": {}, + "source": [ + "### Instrument parameters\n", + "It is possible to add instrument parameters that can be adjusted when running the simulation or adjusted using the widget interface." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "atlantic-capital", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT source = Source_simple\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.03\u001b[0m\u001b[0m [m]\n", + " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.03\u001b[0m\u001b[0m [m]\n", + " \u001b[1mdist\u001b[0m = \u001b[1m\u001b[92m5\u001b[0m\u001b[0m [m]\n", + " \u001b[1mfocus_xw\u001b[0m = \u001b[1m\u001b[92m0.01\u001b[0m\u001b[0m [m]\n", + " \u001b[1mfocus_yh\u001b[0m = \u001b[1m\u001b[92m0.01\u001b[0m\u001b[0m [m]\n", + " \u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[92mwavelength\u001b[0m\u001b[0m [AA]\n", + " \u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[92m0.1*wavelength\u001b[0m\u001b[0m [AA]\n", + "AT [0, 0, 0] ABSOLUTE\n" + ] + } + ], + "source": [ + "wavelength = instrument.add_parameter(\"wavelength\", value=3, comment=\"Wavelength in AA\")\n", + "source.lambda0 = wavelength\n", + "source.dlambda = \"0.1*wavelength\"\n", + "print(source)" + ] + }, + { + "cell_type": "markdown", + "id": "practical-somewhere", + "metadata": {}, + "source": [ + "### Inserting a sample component\n", + "A sample component is added as any other component, but here we place it relative to the source. A SANS sample is used, it focuses to a detector (chosen with target_index) with a width of focus_xw and height of focus_yh." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "changing-funds", + "metadata": {}, + "outputs": [], + "source": [ + "sample = instrument.add_component(\"sans_sample\", \"Sans_spheres\")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "after-reliance", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT sans_sample = Sans_spheres\n", + " \u001b[1mR\u001b[0m = \u001b[1m\u001b[92m120\u001b[0m\u001b[0m [AA]\n", + " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.01\u001b[0m\u001b[0m [m]\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.01\u001b[0m\u001b[0m [m]\n", + " \u001b[1mzdepth\u001b[0m = \u001b[1m\u001b[92m0.01\u001b[0m\u001b[0m [m]\n", + " \u001b[1mtarget_index\u001b[0m = \u001b[1m\u001b[92m1\u001b[0m\u001b[0m [1]\n", + " \u001b[1mfocus_xw\u001b[0m = \u001b[1m\u001b[92m0.5\u001b[0m\u001b[0m [m]\n", + " \u001b[1mfocus_yh\u001b[0m = \u001b[1m\u001b[92m0.5\u001b[0m\u001b[0m [m]\n", + "AT [0, 0, 3] RELATIVE source\n" + ] + } + ], + "source": [ + "sample.set_AT(3, RELATIVE=source)\n", + "sample.set_parameters(R=120, xwidth=0.01, yheight=0.01, zdepth=0.01,\n", + " target_index=1, focus_xw=0.5, focus_yh=0.5)\n", + "print(sample)" + ] + }, + { + "cell_type": "markdown", + "id": "million-shoot", + "metadata": {}, + "source": [ + "### Adding a monitor\n", + "The monitor can be placed relative to the sample, and even use the attributes from the sample to define its size so that the two always match. When setting a filename, it has to be a string also in the generated code, so use double qoutation marks as shown here." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "characteristic-spectacular", + "metadata": {}, + "outputs": [], + "source": [ + "PSD = instrument.add_component(\"PSD\", \"PSD_monitor\")\n", + "PSD.set_AT([0, 0, 5], RELATIVE=sample)\n", + "PSD.set_parameters(xwidth=sample.focus_xw, yheight=sample.focus_yh, filename='\"PSD.dat\"')" + ] + }, + { + "cell_type": "markdown", + "id": "mechanical-burlington", + "metadata": {}, + "source": [ + "## Setting up the simulation\n", + "The instrument now contains a source, a sample and a monitor, this is enough for a simple demonstration." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "wicked-terrorism", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " wavelength = 3 // Wavelength in AA\n" + ] + } + ], + "source": [ + "instrument.show_parameters()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "postal-advocate", + "metadata": {}, + "outputs": [], + "source": [ + "instrument.set_parameters(wavelength=4)\n", + "instrument.settings(ncount=2E6)" + ] + }, + { + "cell_type": "markdown", + "id": "requested-translation", + "metadata": {}, + "source": [ + "### Performing the simulation\n", + "In order to start the simulation the *backengine* method is called. If the simulation is succesful, the data will be placed in the *data* attribute, otherwise this attribute will contain None." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "durable-printer", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/getting_started/first_instrument_data_4\"\n", + "INFO: Regenerating c-file: first_instrument.c\n", + "CFLAGS=\n", + "INFO: Recompiling: ./first_instrument.out\n", + "mccode-r.c:2837:3: warning: expression result unused [-Wunused-value]\n", + " *t0;\n", + " ^~~\n", + "1 warning generated.\n", + "INFO: ===\n", + "INFO: Placing instr file copy first_instrument.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/getting_started/first_instrument_data_4\n", + "\n", + "Detector: PSD_I=1.13331e-05 PSD_ERR=1.27748e-08 PSD_N=1.99997e+06 \"PSD.dat\"\n", + "loading system configuration\n", + "\n" + ] + } + ], + "source": [ + "instrument.backengine()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "detailed-ontario", + "metadata": {}, + "outputs": [], + "source": [ + "data = instrument.data" + ] + }, + { + "cell_type": "markdown", + "id": "frozen-circle", + "metadata": {}, + "source": [ + "## Plot the data\n", + "The data can be plotted with the *make_sub_plot* function from the plotter module." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "christian-detail", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plotting data with name PSD\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAHuCAYAAACCk63pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAABeYElEQVR4nO3dfdxlZ13f+++PAcGQKM0jTQhEISEVUIjBWLW0WDj4gK2iVCIYEHtCLBAfCj282kq1lYPW9EFM2jCtlRwRRKoHW4pwGkBLNFIiCRQwIDQESCSZPEASIg+Z+Z0/9r7vuRlmfr89893Xvfa95/N+veY1M3vd61rXuta11trXvdbvd0VmCgAAAADgu9/UFQAAAACAdcEACwAAAACWhAEWAAAAACwJAywAAAAAWBIGWAAAAACwJAywAAAAAGBJGGABACYVET8XEX8wdT0AAFgGBlgAsGIi4g8iIud/7omI/xkRT9uy/NSI+I2I+IuI+HxE/O+IeG1EfNV8+fO2rH9fROyJiCsj4rkREdPt2SFdIukZG/+Z7//PTVcdAACOHAMsAFhN/0rSX5V0jqT3Svq9iHjUfNnvSHqopO+X9NckXSjpHkm7tqz/qfn6D5f0FElvlfQrkl63DXU/LJl5T2bescwyI+KByywPAIBFMcACgNV0T2Z+OjM/IulFkvZKekpE/BVJ3yrpH2bmuzPzhsy8MjMvysy/3LL+3vn6N2fm+zLzEklPl/SsiPjuQ210/tTreRHxPyLiLyPinRFxYkT8SETcOH8a9rID1jk3Iv54/jTtExHx0wcp84KIeEdE3BsR74mIx25ZvvmKYES8RtLflPTP5ut9fMvP/cy8/M/Pt3fOlmXPi4iPz7fzcUk3HFZrAwCwJAywAGDFZeZ9kr4k6as0e1J1r6Tvj4hd5YpfWc5Vkq6T9HeaH/0nkl4h6TzNnoK9UbNX+L5b0k9L+r83BkgRcaykt0j6X5KeIOllkn4hIn7ogDL/maR/I+nxkvZI+rVDbPsnJV2t/U/wnjjfzg9L+nlJ/9d8Ox+U9JaIePCWdU+R9GxJf1fSU5t9BABgCAZYALDCIuIB8ydGXyPpXZn5JUkvkPSPJN0ZEW+LiJdExAkLFnm9pDOan7ksM9+Wme+X9OuS/oakCzPzQ5n5Wkkfnn8mzQY0n5f0DzLzzzLzdZJ+VdLPHKTM/zp/IvcLkr4lIr76wA1n5mclfVH7n+DtmS/6KUm/mpmvz8w/k/QTmg06n71l9QdJ+vH5E7sP9k0BAMDyMcACgNX0jyPiHkl/qdlg6oWZea0kzQc5p0p6rqQPaDb4+EBEnLZAuSEpm5/ZOji5VdItB8RI3SrppPm/z5Z0TWbu3bL86vnnW/2vLf/+i/nfJ2lxZ0v6k43/zJ/qXXPAdvZk5qcOo0wAAJaOARYArKbLNXud7mGZeXxm/vutCzPzrsz8fzPzH0p6jGYJLl6wQLlnS/p48zNf2rqpA/6/8dnG/WPRrIQHlikt/x5075LLAwDgsDHAAoDVdEdmfjQzP9394Py1ur+Q9ODq5yLib0j6Jkn/ZTlVlDR75fDcA+LB/vr88yP1JX15RkRp9lrit278JyLuL+lcczsAACwdAywA2EEi4pR53NUzI+LsiHh0RPwLSY/TLNnEhl0R8dD5nFnfGBEvkfRfJf1WZr51iVX6TUnHSPp38/qcL+nFkv6tUeaNks6LiNPmWROlWYr5F0fEsyLibEn/XtIDtYJp5wEAR7f7T10BAMBhuUvS+yX9rKSv0yx9+4cl/XBmvn3Lzz1Ms6daeyV9RtL7NIvVumKZlcnMuyPieyS9ar6NWyW9PDN/2yj2X0v6DUn/W7N9OCMzXx8RD9NsUuKTNJsb7Hsy8x5rBwAAWLLI7GKdAQAAAACL4BVBAAAAAFgSBlgAAAAAsCQMsAAAAABgSRhgAQAAAMCSMMACAAAAgCVZqzTtEcek9JBBpXdjUWes6o5znfWjWb6vWX7gXKCHw8lg2dW7K9vZtlt2Vfe9Ztkjf2fStXm13K13t21nXads51ivsynbdFUz43bX0s7I/XLq5l4Pq3O/ux6O7AsPMLc9krPf7j3fucd0ZY+8L4/s46PP7b+4LTNPMjeyLR4VkfcOKPcvpLdl5ncNKHqYtRpgzQZXLxhU9leby0et667fdYG/bJZ/jbHtLxnrdje/ruz7jG27ZVdtfre5bbcvVbo2r/ara5Ou3s6lqqt3t+2q7t3xcNrM5fRDV7ffFbdNq/XdNnGuG+7XDmfbne46X3Gvh9X5d1ezrnsfqJzSLJ/y65Oz3926XV9w7jFd2c7x6vrZyD7ulC31df+5G80NbJt7NeZb+M9JJw4odqg1G2ABAAAA2G4hBhYbaAcAAAAAlpD3/sI6IckFAAAAACzJmj3Bup/q94Od95JHxkl1h2Fk7Eu3vIuxcuIdujatynbfeXbe9b6jWd61WRdnVen6gtNX3N87VWUfY5btGBlX45wfi6iOibtfVd3c653Tpm4/rOruXjecW2bXV7o2c2K4Rp7bbptW67v90DleXfyXU7fRMcTOdb5b7vTD7ng418uu7OOa5U6srRPHu8jynYNXBPfjCRYAAAAALAkDTQAAAAAWYrD24wkWAAAAACwJT7AAAAAAWIjB2m/N2mGfjjxg1p3odGTAq5MMYpUPsTN5X9cmXeD1yEkJnXVHJjyR6nbrElE4E8Cu8qScIydnds5dyXvZYmTCk5GTkboB5VXd3KQkbrs4ZVdB+l3iHTexwcgJYJ113SQyji5ZkXPN6/pRd7xGTo6+qi+AuX2lOl5uEovOyHvQ9uIVwf14RRAAAAAAlmSVH28AAAAA2AF4RXA/nmABAAAAwJKs2UCzm2h4yjip6h3dbt1u29WEiO67vSPjiUbGOXXvxzsxd6scszNy4tuu7Io7Ke7IS1W37W6CSqfsjjOJeNdmTtluzGpVvhNf0nHaZBEjJzmuHN8sHzmR6ch7jDvhbtfm1fKRk+KOnJxZquvuxq1V94GRE6tLXly2831kdAzWek00TAzWzJoNsAAAAABsN14R3I9XBAEAAABgSRhoAgAAALDwiuB+PMECAAAAgCVZsydY3dufzsSabiCvE/zpJjZwjJwk0lnfmTRwkfVHTprr9KVuXWe5O4lxxf2dllO3LiDcSWLRGRko705K7SQXWOVELyM5k5lOOem0q6r7Tq13t3zkhNdughrn/tddD53vE25ynJH7NVJ3vFb5mrZcPMHab80GWAAAAACmwMBihlcEAQAAAGBJGGgCAAAAsPCK4H48wQIAAACAJVmzJ1j3Ux1MODIw2w3urDi/D+iCJ91631Esc2abn1q13269q+PZtbf7uyEn0cuo7Y7W7ZebjKXiHs+RgdtHmhBI8tusKt+9Zjl9fGRyj65Nu+Uj+4JzH3DP7arNu+PlHk/HyLLd/bq7WNb1Yed4jkwu1a0/ZSKJruwpkwZtLyYa3o92AAAAAGDhFcH9eEUQAAAAAJaEJ1gAAAAALLwiuB9PsAAAAABgSY6ygWb1Zujopqi27QZIVtzAaGfbbqB8FfjZ7VcXNOoExI5MRDH67WXnHOiO18ggYqduU17mRiYmGBlYXQXJd+tK45NkTFW2czyd5BzS2GuDk1xgysQhbptW63f7dVezvFrfvS44+90dj65u1XI3ac/xzfKq/JH9sKs3UUcbiMHa7ygbYAEAAABYNl4R3I9XBAEAAABgSRhoAgAAALDwiuB+PMECAAAAgCVZsydYuyR9zaCypwxQ7gIsq213AcRd2U5iA7fNnEQTbteu+tHIJBej98sJru627dTN6ePdcjfpwcgA/46TvKPb76rNu7JHJu8YmUBjdLB6dby7e1PXV6a8XY9MYFMZ/btwJ9GLezyddZ37+pTJjJzkUp0u6ciUx+voeaZDDNZ+tAMAAAAASIqIvyrpckm3aDY6/7HMPKzfLPKKIAAAAADLRgzWsv8stO2ISyLihojIiHjsls/PioirI+Ij87/PXKC4x0n6w8y8UNKtkr5uwWps4gkWAAAAAMvESS7eJOlXJL3rgM8vl3RZZr42Ip4j6dWSvlOSIuKR8/9v9TZJ/0HST0XEt0raK+n6w63Mmg2w9ql+97h6/7frEm6Xqd4PHhlX48ZBOUbGE3VlH2OUvUj5Dme/3eNZ7Zcbq1StPzIWqePGC43sCx0nlmKnuqNZ7sS7urFlTvxKFyPS9TPn/OruXyOvG05c9OiYuZExjpXRE3U719uRk2mPjGV3Y6ycvjDlxOrYkJlXSVJEbH4WESdLOkfSU+cfvV7SpRFxUmbuycyPSXrKgWVFxM9I2p2Zb4qIl0r6LklvOZz6TPqKYEScEBFviYgPR8T7I+J3I+Kk+bIjeaQHAAAAYAL3H/BH0okRcc2WPxcuWJ3TJd2UmXslaf73zfPPK2+RdEFEXCbp2yRds+D2Nk39K9CU9C8z8w8kKSJ+WdIvSvpxFY/0AAAAABwVbsvMc7drY5l5vaRnOGVMOsDKzDsk/cGWj/5E0k90j/S2t5YAAAAAKiHpASNGFkf+luUnJZ0WEbsyc29E7JJ06vzzoaZ+grUpIu4n6Sck/Rcd5JFeRGw80mOABQAAAKyQCOn+KzTAysxbI+I6SedLeu3872u342HNygywJP2qpHskXSrpCYuuNH8Pc/4u5gk68oB0Nwi/C7at6uVOMFkFpXZluwkAqrq5ky87bdZxur67XyOTXIwMpnUCzrt6HdcsHxnU3an2202KMHLC3k617dETKI9MROEEq3eJKE5pllft0m371mb58c3ySne8nOM5uq84RiavGnmd78q+t1k+MpmRY2Q/dJMRjfy+4UwMjUVFxKs0e63voZKujIjbM/Mxki6SdEVEvFzSnZIu2I76rMQAKyIukXSmpO/LzH0RsfAjvczcLWn3rJyvz+2sNwAAAIDZE6wH7Jpm25l5saSLD/L59ZLO2+76TD7RcES8QtI3S/r+zPyCNHukJ+k6zR7lSdv4SA8AAAAAjtSkT7Ai4jGS/rGkj0j643nu+hsy8wc00SM9AAAAAIdnWAzWDjR1FsEPapZ05GDLJnmkBwAAAODwDMsiuAOtWTOE6l2qAke7IEZ3xvgqiLELgLzDKNsNzuxmRx/JafOuTZ3EIm5f2KlGBrN3Qb7OcjdgvDoHunWPaZZ3Rva1kcfLPf8qTj/sjldX9t3N8mq/b2rW7ZJYVPeBrr2nvNV3SRWquk2ZHMBNZlT1w26/un7WXVeqNh/5XcY51ousXxnZF0YncnETdGAVrdkACwAAAMC2C0kTJblYNZMnuQAAAACAdcETLAAAAACeLlLnKEIzAAAAAPAwwNq0Zs0QOvIATjeI0QnOvMvctnMY3WD0av2ubCeBhhvU7QYwO2WP1LVL19cqXR+v+koXgNy1t9Om3T47beZeN5z13WD1E45wu8vYdnU8nWupVNfNPT+cYPaRgexdvbvj1SXYcM4BR3fdcJMmjLxWV8e7q5eb3GOqpAnudcM99ysj7/mdkd8fsarWbIAFAAAAYBKMLCSR5AIAAAAAloZxJgAAAAAPado3McACAAAA4CHJxaY1a4bUkQeFu0GITgDl6G076zrJJNyg0ZFBp1MGZjvBz+62K04Si259t71HBnV3+1UlY3GD1TvV+dWV7bT5cca6ktePnUQSLvda65wDzrnbresmSqrq7iaRqXT1dpIwSd450vWVqmy3n3X7VS13+tnUqnbr9qtLqnWHsa6bQGPk9xFMZc0GWAAAAAC2HU+wNpHkAgAAAACWhHEmAAAAAB9JLiSt3QDLmWjYdbex7sh3ot1YCuf9eec9cbdsN5bJmQjVmUxxdDzeyBite4tl7nnpxEl1uklWK1NN6Cn1bepOIu7orodVm3f1GtmHnb4g1fFI7uSxznWj08VRVZNSd5y+4F7Hu/WnmuDVvS9X8UJSvV/dPaK6jkt1P3b7oXP/crddXU9Hf1WeMu4Uo6zZAAsAAADAtiMGaxPNAAAAAMDDAGsTSS4AAAAAYEkYZwIAAADwkeRC0lE3wKoCCd1JVp0JKN3D4CQQ6JIDOGWv8kTDzsSAIwOj3X7oJADogps7VZu5x7JLPlCV70yW3ZXt6oLdq+Pp1qtql65sN+nIyP1yuBNaj0wA4NxD3ERKtxfLjmnWda5Z1XYl6WHmtkdO+l7pynYnza3Wd79vVHV3k0+NTErinNvduu5Ewkw0vI6OsgEWAAAAgKUjBmsTzQAAAADAwwBrE0kuAAAAAGBJGGcCAAAA8PAEa9OaNUPqyAOJu/XcIMRuNvtKd5iq5W4SCycBQBfw6uiCXZ2kI4ssr7gB5Y4uUUV1vLpg9bua5VVfc/tZ15ecfugEwrvJIDpOEL5zee/azA36Hlm3inudd68rzrar8885PxbhJIjq6lbtV3dNcq+1I+/Lzrnr3jur9bvreLftqs1WOZmDk4DD+Q4m+fcB7ERrNsACAAAAMAnStEtigAUAAADAxSuCm0hyAQAAAABLwjgTAAAAgIcnWJvWrBlSXqBipQum7YIYq227gfJOQKwbTFvt18iAcDdotFt/VD/qtu0GbXdJTaryu75w3GHW5XDKHpkEoyvbTYLhlN2p6u70Ycnrx8c3y0deDzvO8XK3XbW5c/5IdV/qrhtOogmXc03rkvZ0nHO7u5Z2nHuI+52g2na3X13ZVT/urjldPxv5ldRJ7uEm9ems2VdxSOKoAgAAAHCFSHIxxwALAAAAgIdXBDeR5AIAAAAAloRxJgAAAAAfIwtJR10zjEyq4JTtBuFX67vBl922qy7ktElX9uiuWwW1utuuyh4ZZC/Vx9NNyHBysWxkwgWpbjc3oLwKCu+uC91yJ5j9hGbdkYkL3KQl1X65Af7OOXRMs7xLulAl/3DvIU6CGpdzPeyOh5MEo+vjTl+5o1nXSbzTrTsygU23rnP+jCxbqtvUTXxV1a3bLzcRmdsuWEVH2QALAAAAwNKR5GITAywAAAAAHpJcbCLJBQAAAAAsCeNMAAAAAB6eYG1as2bYqzrotQpW7wJt3YQNTnIBJ4i4W9cNtnXK7tq0Wu6W7Rxvt69UbeoGq1d9XPJO+S4Q1zleXdkj691xEjKM3C8nOYBU9zU30YRzXRmZxMLtC267VLo2q85t93roOK5Z3vVTpy9010vneHRld9faatujkyaMPN7V8Rx5XZC8+2PXD50kMk7ZUt+XsBOt2QALAAAAwCQYWUgiBgsAAAAAloZxJgAAAAAPado3rdkAa5eOPM6qe0d25ERx3XvH1eSVUv2+9eiJa53J+brud3exbPTEmlX5tzfrdm1eTWbardvFOzicfiaNncS4U7XbyJged3LLzsh2q/bbje+aknNbcydKHdmXRh4vNw640rVpdd1x96ubLNiJr+zKrq7V7vcN51rsXrOmuiZJXn9w4sPcfjgy1n3FkORiE68IAgAAAICkiPjaiPhPEfHJ6rMKAywAAAAAno0nWMv+s8imIy6JiBsiIiPisVs+Pysiro6Ij8z/PrMrKzM/m5nPl/Th6rMKAywAAAAAO9mbJD1J0o0HfH65pMsy8yxJl0l69caCiHhkRFx5wJ+XLqMyvCkJAAAAwDdRkovMvEqSImLzs4g4WdI5kp46/+j1ki6NiJMyc09mfkzSU0bUZ80GWN1Ew1UA5cig0m7b7mGotu1OQNklVRg5GbATTHuLWXZVNzcQvmoXN4B4ZJKMkQk2uiDfbiJGZ5JIh9vHR04Qe2+z3AmsHj1hb6Vrs6ovuBMFO+e2e92o6uZO5D0yAYCTQGN08g7nvjxy4tqOW7dR23YnfnYnYK6MnKTYTc4xcmLobTYuycWJEXHNlv/vzszdC6x3uqSbMnOvJGXm3oi4ef75nmrFiLhM0tkRcbmkX8rMGw722aHWX7MBFgAAAIA1cltmnrudG8zMF0p6YffZoTDAAgAAAOBZvTTtn5R0WkTsmj+92iXp1PnnQ5HkAgAAAMBaycxbJV0n6fz5R+dLujYzy9cDl2G1xpkAAAAAdp4Jn2BFxKskPUPSQyVdGRG3Z+ZjJF0k6YqIeLmkOyVdsB31WbMB1v1UBzI6gZ9ugH/V1F2ApBOg7AT5LsIJ6nYCXt1g9CoZSrd+16bHN8srTkD4IuuPWleq28zt406CADcAueprTtIDqe+HxzTLnXW7JBiO7vys6tat6577zrojk5J0qvOzO3fdIH2nTZ1EL11yGzdpQtUubj+rtu0mPRh5H+g436Pc63zVH9zEHs7x6q7jbvKPHWa6LIIXS7r4IJ9fL+m87a4PrwgCAAAAwJKs2RMsAAAAANtu9ZJcTIYnWAAAAACwJIwzAQAAAHh4grVpzZphr6S7i+XODOQdJ5lEF8jrbtsx5Qzj1X51QaUdJ6i7a++uzaqEKd0p6QajO8lWOtX6bnIA51LlBj87iXNGJ2OpOH3JTTTRqRJsuH18ZNkj+6lzrXX7eMc53m7inoqbvKPadle20+bdPo88/9z7V/V9xU064iRrGZlIwq23m/Brh5koycWq4RVBAAAAAFiSNXuCBQAAAGDb8YrgJp5gAQAAAMCSMM4EAAAA4OEJ1qY1a4ZdqhMIVAkwqmWSdHyz3A2erjiztrtJKqYMQL7DWLcKdF9kfSchinO8nHot4phiWddm1bpSXbfRyVKqvub2lWq/3bI7VZtW54fUn39ucp2Kk3in6ytuYhGn7O78q9Y/4TDrcji6fti1iROk7wb4j9QdT+da3Kn2uzt3naRZnVVOuOCcf86xlur9PrlZ99ZmuZvUZAcJkeRijlcEAQAAAGBJ1uwJFgAAAIBtxyuCm3iCBQAAAABLsmbjzH2q38OdapLVbttu2c7ke268gxNr4cY7OLo2rfar22d3+ah1O24fduKgnLI73fvtTtnuBK/OxLVdDJVzTRsdE1C1WxVH65btcmKZpoyzGDkRqjuZ9sj7l8O991Vx3c6EuousP7JdquPtXue7c9+5x3T9tIq1vb1Z153keOR9fQJrNrI4UjzBAgAAAIAlYZwJAAAAwEMM1iaaAQAAAICHNO2beEUQAAAAAJZkzZ5gpY48uLMLGHcnl60CMN1J6EZONOwE07rbvstYt5sUtwumHTkxdHU8R04w2XG3XR1v91LTbbvqK922nUQvbh/vzm0nMYLT5qMTTVQTd7qJd6pJ4W801l1EVXd34udq0urueudue+Qk4s6E127iEKfuXZtW55A70XC37ep6OfI7gXuddxLUjPw66yQ0kVZ7cucl4xXBTTzBAgAAAIAlYZwJAAAAwMfIQhLNAAAAAMBFkotNvCIIAAAAAEuyZk+w7qcjD8AcnVzAaeopkws4AefdtrvA0Gq/u6DQbtvO8XYTZFR1c2ej7wLGnWDaLgDZCYTv6uUEP3f9bKSunznrd2U72+7auyu7S7pQ9RV325XTmuVOH+/W79btkvpU53aVAGMR3bbdfjyKe1929uuUZvktxnadJBaLrF9xEr24CTSc4zkyUURXr1U9PyZAkotNkz/BiohLIuKGiMiIeOyWz8+KiKsj4iPzv8+csp4AAAAA0Jl8gCXpTZKepK/Mn3u5pMsy8yxJl0l69TbXCwAAAMAiNp5gLfvPDjR5tTPzKkmKiM3PIuJkSedIeur8o9dLujQiTsrMPdteSQAAAAA1klxIWo0nWAdzuqSbMnOvJM3/vnn++ZeJiAsj4pqIuGbaWAsAAAAAR7vJn2C5MnO3pN2SFPGIrAMdp9xdJ3jTqbcbdOoEjnYD3tub5VVQdxdE3yV76FSJLLo2dY61kyBjEU5/6LZdld31I3d5xW2z6pi4yXG6QPlKt+2uzaq6jUyW4m67C+B36tZtu7tmVdxrsZO4oOMkTXCPV6U7d7tj3d0nquQe3fl1R7N8ZOIDty9VnIQnXb26NnHuMW7CkyPdrjQ+6dYOQpKLTav6BOuTkk6LiF2SNP/71PnnAAAAALCSVnKAlZm3SrpO0vnzj86XdC3xVwAAAMAKIsnFpsmrHRGvkvQMSQ+VdGVE3J6Zj5F0kaQrIuLlku6UdMGE1QQAAABwKLwiuGnyZsjMiyVdfJDPr5d03vbXCAAAAACOzOQDrOUK1YGOI4MgV3UG8o7bBapEFl3g5gnNcidhSbe8O15OP5oyuNkJfnYTTTjB7G4Av9OPnUQVXZKKbr+MvhLN8mz6abf+yLLT2HbbZtVyNylJpzpHuqQIXR+u1q+S8kj9fjn3oC7xR5doYlW/hqxyYoKuLzn9uLtmjfyu49zX3XpX9073+0RnzTJgk6Zd0orGYAEAAADATrSqvzoCAAAAsFMQg7WJJ1gAAAAAsCRrNs5M1e/4Vu+pu+9TOxMijowNc+O7nEkHu3fznVimbnJLd6LhysiJa0cbGe9Xld3FhnXvz3cxJtXxdmJ2JO94mdeVkVfoKbuhs19dV9lbLOtix1rHN8ur2JjTmnW7HavOoZGTEEv1AXMnR3fiRt3Ysuq60a3bXZOca60bu+lM+t7dO504qK7NHFPG2Hffk9xzZAfhCdYmmgEAAACAjyQXknhFEAAAAACWhidYAAAAADy8IriJJ1gAAAAAsCRrNs7cpbHJDSpdoO7ISQmrw9gd4m6Cu5ET246cMLQL5B0ZdOps2z0lu+PhJKJwdG3SJQ/ojnd13g+cJLKbUPdBR160JO/UHvkevJtb4AsDt10td3O8tKdI1Y/djVcJArrruJsEozr/urKdpAoDJ+qWVNfNnVjdaTN3v6r+4O5XdeHpvn91/dT5TuBONFztV3fid5Npj0wutWJ4grWJZgAAAADgYYC1iVcEAQAAAGBJGGcCAAAAsCVp2iXxBAsAAAAAlmbNnmDdT0ceHLrKM20723aDm7ttj0yMMHJm9oGJD9o+WLXZ6BnjnePlBOq6QdtO8PPgTTu6JBjObwK7ejsx3Z2Rp1fXDfcWy7r2dnP6lJdb99x8WLHs4826VYIMqb9P3FIs6xLUdGVXiRG6g+2enNUxcbKpSPW1emQSi678rk3vbZZXCR26+5ObhKyq+8jvcKOTmI38rrO9MqS9azCyiIivlfRvJD01M08/YNkVkr6UmX+/KoMnWAAAAAA88wHWsv8stOmISyLihojIiHjsls/PioirI+Ij87/P7MrKzM9m5vMlffiAbbxI0tsWqQ8DLAAAAAA72ZskPUnSjQd8frmkyzLzLEmXSXr1xoKIeGREXHnAn5cerPCI+GbNHuH+8SKVWYMHeQAAAACmlCHdt2vEs5t9/bYzr5KkiP0TVEbEyZLOkfTU+Uevl3RpRJyUmXsy82OSnrJgJb5X0umSXiHpnIj4G5n5rkP9MAMsAAAAAKvqxIi4Zsv/d2fm7gXWO13STZm5V5Iyc29E3Dz/fE+1YkRcJunsiLhc0i9l5j+ff36GpH9aDa6ko26AVQUSdoGfI5vKmTm940ard+tX7dbNbu5E4XdtMjIpQheQ6swo785G7/TjbttOwpQuuPmUZrlxvNxTt0qM0CVNGBmj7+afmTKVrpNgw9lvJ0/LIpzcAvd1naEqoDt/bm+Wd6rrzh3Nul0SjOqAddeNkdlYrIwmqjuDe63t2rRLNlFx2ty9P41M9jAyIVenu2itz1fxjNDe+4/Yny/elpnnDij4kDLzhZJeeJDPPy6pTHAhrdNRBQAAADCZvbtWaiKsT0o6LSJ2zZ9e7ZJ06vzzoUhyAQAAAGCtZOatkq6TdP78o/MlXZuZ5euBy8ATLAAAAACWVGjvRO+fR8SrJD1D0kMlXRkRt2fmYyRdJOmKiHi5pDslXbAd9WGABQAAAGDHysyLJV18kM+vl3TedteHAdYmd9b2TtXUbkKGKsjYjeoeGZTaBZ06ZbvHy0mI4gT6uvV2ElF0uuBnZ10n24OkKJZ1TfrgZvneYtnnm3WPbZZ3nCv0A5vlU55ele70qo6Hy92vrj9Uuv1Kp3LOuStJdxfL3KQ/1X2gOwHc+7aT+MC5ZnXb7ZJYONf5rk26BBlOX6r6kSQdZ5Rt3kPKC4+bUWjkfXm1pEL3TZpBaXUwwAIAAABg28vQQhJJLgAAAABgaRhmAgAAALBMmeRi1azZACt15PEtXVOMjEXqyu6WV+8td5NAuu8G31ssO6FZt3vfutpvZ11p7ETDzqSCXdndhKFOzJ07EWP1bv7gS40zGXAX+1LFUXW71d1num1XdZ9yEuMuvusLA7c9cr5QJ4bK1e13dam+b3TsZnW9dWKsJK+jujHGbtxOxambG9dWXYu749HOiG2U3cWWdduuThL3u4xzX+62PTrGH6tozQZYAAAAALYbT7D2IwYLAAAAAJaEJ1gAAAAAbDzBmmGABQAAAMDCPFj7rdkA636SjimWV7vrBuI6kdld2d3kfI5u286kg1MGIHfrOklLnEDcTtfe7sSZzmSK3QSTRpKLaqLgRVTFd0kunJwkne5wdblanDlYO1Wiii75Rre8S4IxcrLgkUkwnLK7fthdVqwY/q4jdskHbjLK7lQ71pXtJqkY2Vkq7n3X0V04urpVx6u7RzgJNLptd33F+T7iZhQa+R0Oq2rNBlgAAAAAttssyQVDC4kkFwAAAACwNAwzAQAAANhIcjHDAAsAAACAhXmw9luzAdY+SfcWy08wynaSWHTcBBtO9LM7A3lV9y5w2pnd3J0ZvVteHW83ULda300M0h3Par+6AGUj4LxLYtFdj7tkECOv51XZbox9V29nv5zLRrfdLklF11Wq9UfmHXATTXTrf/4Ily2iOp5OboCFVNfyO5p13fubY2TZI7mJQ6ZKqtCdQN3y7h7kcNrUTaAx8jscVtWaDbAAAAAAbLeUSNM+R5ILAAAAAFiSQz7BiojvWWD9z2fmO5ZYHwAAAAA7DmnaN1St8AZJ71EdPfF1ks5YZoUAAAAA7CwkudivGmB9NDO/s1o5Iq5dcn1MoSMPZJwyGNZNoOEESLrBtFX2gS7ws9vvLkmGY2TSko6TyKILXnbKdhJ/mLpNd9frav0uMUFXtnNpeGCzvEsWMdV9qttnJ49Lp2uzrq84ySTc20DX1xxfMNZtL3ddozr3mG7jVdndum5HdXR1c04Cp8269Z3EVd3yLuGJew+pkmB07e0mqnDKHnnBxKqqevu3LLD+Ij8DAAAAYM3xBGvmkEkuMrMdUi/yMwAAAABwtGif10bEt0v6RUmPnP98SMrMPHlw3QAAAADsAMRg7bfIC7G/LumfSPpT9REDAAAAAI4yqWAerLlFBlh3ZuYbh9dkW1S72wWNutHP1frdtp3gzW7de5vlxzTLq7p3s7I7Qafd8XCTdzhlj3xz1g0SrtqtK7s7noUu+N/drWr9Ka/1bhKLkd24yk/TJYoYmczBPb2qNu0SRbi5b0bmNTi2WOYk9ljEfdW53x2wTzXLq0Zzkz10pkxu5XASbLjJOZyyT2iWO8fDPZZV3d1EY12bGvdWrKxFvta8LiIukvTb2nIZz8zumzkAAACAowTzYM0cMsnFFrdKukTSHs1yRN+jPlc0AAAAABx1FhlmvlLS35L03szcN7Y6AAAAAHYaklzst8gA6+bMvGZ4TZaim2i4eo+2a4qRkwF37w47L/Z39XKDPJz3nqsgkM7ICSSloZPqlu5qlrsPj6s2N/tCFMu6LtzF9HTdrJuctjIyzmlkjNXIubLdyZlXNUarimOS+limrs1H9iVHd/4NvZxO2SjuBLCjtr3KERYj26zriDv1BHPjv9ZnxiMGWPst8i3y7RHxS5LeoC+PwfrQsFoBAAAAwA60yADrOfO//96Wz1LS1y+/OgAAAAB2ItK0z7QDrMz8uu2oCAAAAADsdO0AKyKeIuk9mfnZ+f8fIumczHzH4LoBAAAA2AFmMVikaZcWe0XwlyWds+X/d2mWtv2cg//4KqsCCZ2EC5IXce5MJNyVPaWRkzi6J3DXZs6kg85Ejd2x7tp0ZOaDRvVWQLdb3RsFXbWrJBfdtp0me3Czrrtth5u3p9JN2Nsdr5FJMEbq+mnVpt1lwU2wUekuG908qdZlw7kPuBMJd8kkjimWufdl54CNTObg3Pukul2mTNbgTuY7cr/cyZ2xEy1yBYjMzI3/ZOa+iOAFSwAAAACSyCK41SIDrLsj4rzMfLckRcR5kj43tloAAAAAdhIGWDOLDLD+kaQ3RcQH5///BknPGFclAAAAANiZFskieHVEfIOkv67ZVKJ/nJl3Dq8ZAAAAgB0hFaRpn1soCnM+oHrL4LosSbVLVbBtF0zbBZ12QYrOtkfOnL7KqjZzj0cX8FodEzdgtar73WbZnVOKZWZSkmq33GQOUyaDqBJoTMlskzwuDr3w1mbl7pL08Hpx3JmHXtjdm7sEG1UCje706pJvdKffyL6yt1jW1fueZnl36pft5mbQuKNY5txXF+EkHOpU+10l15CmvW+7iZYcXV9xvhN0ZU/VF7CuDnmLjoirMvM7qpUX+RkAAAAA64007ftVrfCYiPjtZv1Tl1kZAAAAADsTSS5mqgHWTy2w/n9eUj0AAAAAYMc75AArM6/YzooAAAAA2JmYB2u/NXxRsoq+rpa5gZtdEGQVJeweBic4swum7eo21YzzUwadOklHum27AeNd8o6Bqqr9lWbd7nBOeaWqkgt03Ljr4w69KL+lSFIhSW+vF7/7nYde9vF61dYZ19TL89xD1z2OKxJgSP3pd6R5jhbRXS6rBBxdvbu+UvXDzzfrdudPt37JvYeMPLmd+8TIenVt1i3vOtNUSRXc+3LX5s69d8rkHd1+kQRjHa3hAAsAAADAduIJ1n4MsAAAAADYmAdrZqEBVkQcI+lhW38+Mz80qlIAAAAAsBO1A6yIeKGkX9RsNsB9849T0tcPrBcAAACAHYJ5sPZbpBX+oaTHZuaNoyuzHKMObBd02gVQFtHqdtKEkbO+O0ky3IQNTsDslLPNO23W9YVuv5xgWjNBRrXp7o2Bkddjt2znbYeR8f2fqBe/u0k08dFi2S2HXZkv117RirrlM+vkHfHpJgmGw70UO8fzHmPdBzXLP2OULUnVIUk3k4vT6N29r7tejkzSVHWGrt7HNMtvb5ZX+10l3JK87zruvXHk8RjJvXBg1UTE10r6N5Kempmnzz/7FknPn//I0yU9OTP//FBlLHI7+PTOGVwBAAAA2G5TJrmIiEsk/aCkMyQ9LjM/MP/8LElXSDpBs99OXFANjCQpMz8r6fkRceWWz/6npP8ZESdJOrUrY5EB1n+PiH8p6be0JZkrMVgAAAAANkyYRfBNkn5F0rsO+PxySZdl5msj4jmSXi3pOyUpIh45//9Wb8vMXy62c5Gk3V1lFhlgXTD/+5lbPiMGCwAAAMBoJ0bE1pfLd2fmlw1yMvMqSYrY/05zRJws6RxJT51/9HpJl0bESZm5JzM/Jukpi1YiIh4wL+sV3c+2A6zM/LpFN7ze3EnqqneTu8PgxFi5Exo677h361ZxaS534j4nhutec9uVbr+6vtS9219o5rUtm6ybrLd7hf2BzfKpuOEnTjcrX07oJwuu4qy6KA1X1UvPu6FZubtsVH1p5PHodH28+6WvM+H1g5vlnzHKbhmzaQ+Nd+24cdcjt+1833Bjo0deHZz9dk9eJ7Zsyu8bqyUVo9K035aZ5x7BeqdLuikz90pSZu6NiJvnn++pVoyIyySdHRGXS/qlzLxB0g9L+p3M3FetKy2epv0bJD1ZsydX78jM6xdZz3Uk700CAAAAwJHKzBdKeuEBn7120fXv1/1ARPyopCslPV7SEyRdGRHPPrxqHrGN9ybPknSZvvI9SQAAAAAT20jTvuw/hk9KOi0idknS/O9T558PtUitXyLpnMz8tCRFxEMlvU3Sb46sWPfe5MhtAwAAADg8Eya5+AqZeWtEXCfpfEmvnf997XaMI9onWJK0Mbg68N+DfcV7k5I23psEAAAAAEXEqyLiU5Ieptnbdh+cL7pI0osj4iOSXjz//3CLPMH6WET8vGav56WkCyX976G1OgwRcaFmdZJ0cvPTzsR/bmCow5l8b/QEeFW7ddHoIycVHFm2O3nlyCQYTrCsGdTtPMV348mn0u1zl1zgc0b5q5r4Y5V1l6TPm8sdXRKL6pfCbp6k7rJh5TVwkkG4kxQf3yyvdPV2ZhHv6u0kyOi4iZKcC3137zuhWV51RDcRWWVkm0hjvz9urynnwcrMiyVdfJDPr5d03nbXZ5EnWBdJerSk98//nC3pBSMrNbfQe5OZuTszz51lF/mabagWAAAAABzcImnab5X0rG2oy1dsd6r3JgEAAAAcnlWKwZrSIQdYEfHtmflHEfE9B1uemW8ZV61NF0m6IiJeLulO7Z/0GAAAAABWTvUE63mS/kjSSw+yLCUNH2BN9d4kAAAAgMUNnGh4xznkACsz/8/530/evuq4QkceDT86ir4KsLyrWber28gAyS4Y10mi0dW7i0ivjMya0NV7ZNldm3TrH1Msa+qdTdFVV+gSMjhx8FKdIODYZt2uCz/IWNcpu1v/a+tVzzCKdp3SLD+jWnhqs/KdzfJqx9xTt/ve0CWqqHR9oToHuoPp1Eua3VoPpbsutJEI1UFxE03c0SyvempXtnMGuUksnAuPczxc7vesqu5T7teUSdBWy8Y8WFhsouGrFvkMAAAAAI52iwwzv+xX3vNsfk7uUwAAAABrhiQXM4d8ghURL42IPZIeGxG3bvyR9FlJ79q2GgIAAADADlE9wdot6Y2SLpX0wi2f35WZ3VvwAAAAAI4SU040vGqqJBef1exp1dO3rzqrrAsq7d62rIJa3SQWVYBlNfP5Ipz9cuq9yPqVkZNOuxkZqv1yA3XdoHBDVbUuyUXnC83yKpGFG6v++WJZl5ig41xWHlevet6tTdnXHHpRd2Z2PfyMZvl533roZXFvkzWhO57Vcje3QHd6fa5Y5lxKpf4cqHTfd7rbRJvIotJ18qpR3XuIk1ShSz5VJQzqdPW61yhbqjtbt18ON7lUV7cqOsXtK6uaGGRnIYvgftU8WL+RmT8aEe/RQS6vmfktQ2sGAAAAADtMNSz/t/O/X7IN9QAAAACwg5GmfaZ6RfBP53//4cZnEfFVko7PzE9vQ90AAAAAYEdZZB6s34qIr42Ir5b0AUkfigieagEAAACQtD/JxbL/7ESLPMd7dGZ+NiJ+SNI7JP2MpD+RdMnQmg1RBTG6M4w7s7p3h6ELzqwCQ283y3aCiJ026bjBsic0y51EFJ1q211ws5tsZaDqkOxt1nXijyXpM8WyE5t1uyZzElm4sdFFu8T/aDIPHFcvzqfFoRfeU6/bHs+T68VxZ1H3LpmDm7TE0cXwV3Wbsl5Oggx748763YXBvd5V63dJLJxtu0kR3Iwpla5uVUfutuumz6m2PTLhSWfK74+rhSyC+7VPsLS/5/xNSW/JzHsl7RtXJQAAAADYmRb5FcyHIuL/k3S2pJfNXxUEAAAAgE08wZpZZID1XElPk/S+zPxcRJwm6WVjqwUAAAAAO087wMrMv4yId0n61oj4a5LenZlvHV+1I5Gq3x+uHr517x03AQ3tO7TOtp33qd33kp396nRlV23etVk30bDTpl29nbK79/7vMMqW6tg0s6+MnD/Z6WZu2c5Ew+680FVXe3CzbhN3E7uKOKivasruToE7m+VO+MqUsUxd7NnIuq1smIYbf+LcG0dOLjslN8bYifHq2qwqu6u3u7w6QZ0ZyCUvtsyp9yLLdw4mGt6vvc1FxNMkvVbStZJC0jdGxHMy87+PrhwAAACA1TdLcsE8WNJiv0d8haQnZeafSVJEnK3ZgIsBFgAAAABsscgA6wEbgytJyszrI2JkvksAAAAAOwxJLmYWSdO+JyKet/GfiHiupD3DagQAAAAAO9QiT7BeIOk3I+JyzbJIXCfp2SMr5al2yZkF0g2GdYJOuweGVeKDLmlCpwu+rParSzTROdKEJW7ZXflu4o9bjHW7NnUnsDQU89YOfyW7Kr9LTOCoEmBIan+R58ROf65Zt7Oqr8l3berGm1fcJBbOLaY7niPj4K3bW3fN6RIyODu2yi/TVI3a1bubcN7Zbzep1pF+x1qk7E51/3MmKZa8C6J7Ubrb2PZqYaLh/RbJIvgxzTIIHispMnN9egIAAAAALNFCQ/aI+B5J3ykpI+Idmfn7Y6sFAAAAYKcgTft+i6Rpf4Wk75P0W5q9BPTKiPi2zPzZ0ZUDAAAAsDOQpn1mkVZ4pqQnZObnJCki/q2k90pigAUAAAAAWywywLpJXx5x+XlJN4+pzmhVkGOXXMAdkVdBjm5iAichQ6cL3nSCTjtOIouRQcLOTPfd+t3xctu0Kr9KliJJp9SLs1jWRW4+pFnudOPu1O0O13HFsq5eXcKGhzTLHd1+V3Xr1u2Wd8e7Ov26Lt4loqiWu2+uOPvd1ftBh1mXre5plru3gfKguPevqtG6a62b5GJk4quRWUmc5FNTJuzqdEmcpsr00u1zd2HoEr2sD5Jc7LfIqOE6Sb8fEVfM//+jkv5oHpelzHzLoLoBAAAAwI6yyADr8fO/L9zy2bfP/6QkBlgAAADAUYwnWPstkqb9ydtREQAAAAA7F1kEZ+43dQUAAAAAYF0cZbkUqwBJN3FBF2xbBVA6AatSXfduXXe/qvWr7ACSF0nfBep2wbKdqvyuTbr9cgKzRwYYO8daKvthV3SXAKBTnUInNet2iSicmPAHm9t2fhHoXN3tpAgGt69Ubdat6+53Vfdu211fcIwse2gyo9HJp5z7sptgo9Jda50EHO73jWr97r475b2zK7tqs+67jPs9an3MXhE8yoYWh8ATLAAAAABYkkMOMyPiBZn56u2sDAAAAICdhyQX+1XP8X4oIp4h6fmZedN2VQgAAADAzsMAa+aQrwhm5lMl/a6kqyPiudtXJQAAAADYmcpItMx8dUS8Q9J7IuJfSdonKWaL8uTtqODhqwIVq911A1q79btg3VHc2eadoFQnELdb7h6PjhOU2u1XVbabaKJTtcu9ZtlFH++C7LvD9ZDDrMpWn2mWd4koqiZ3cttIfdx19YtAt6tUSRe6X0B2x8tJWuImPPmCsa57ufxcsexBZtnVfnX1zma5lQzprmZdp1G75ALHNMsdI+8x7v1pVZMIuFlidup+uReOKbMKLRevCO5X9uaIeKKkX5f0OkmXyL/1AQAAAMDaqpJc/KKkZ0p6QWZeuX1VAgAAALCTpJhoeEP1BOskSY/PzLu3qzIAAAAAdiLmwdpwyFbIzB/fzopsDycOypnsVzry2LBFVO/3uhP3ObFI3XvHzn5363bHo9svJx6pq5sT1NNN5NjFQ1Tl32GsK5XHO5t1u1fQp4zp6WJnKiNjtKZ8YXtknNTIMI6ubHdC3mrbbtlV3dvQTPdaXK3vTqLaxVlVuut0F6NV3SfcOCmnzZyYuE637VvM9Uet63ImA3Zjn3E0YpgJAAAAwEKSi/0OmaYdAAAAAHB4eIIFAAAAwMYTrBkGWAAAAAAsqSCL4NyaDbD2qQ56rQJau6bYqU3lRox3QcRV+acZ60pjk5J0ySBOKJaNnMS462fd8XCCp7v27tqscnyzvKl3l8vUadKRuVi6ZBBdAg0nh2vXFaptVxPmLmLKy2V1WekSTXTfC7p2qfpSNwHy0AQcXWfoEtxU1w33eliV3SX1cZMmjExeUNXNuZYuwpkYespEFN22p7qwdPfG7hzo+pmTVAsjRMR3SPoxSQ+U9JnMfFFEPEjS5ZqdRPsy86eqMojBAgAAAGDJeZr2Zf9ZRERcEhE3RERGxGO3fH5WRFwdER+Z/31mux+ZV2Xmj2fmcySdHhHHSnqGpD/MzIsl3RsR51ZlMMACAAAAsJO9SdKTJN14wOeXS7osM8+SdJmkV28siIhHRsSVB/x56Zbl3yvpzzLzHkmPkPTx+aIbJJ1RVWanvvcGAAAAYIUMSnJxYkRcs+X/uzNz99YfyMyrJCkiNj+LiJMlnSPpqfOPXi/p0og4KTP3ZObHJD3lYBuMiOdJOiMzXzb/6BOaDbI0//u6qsIMsAAAAACsqtsys3wl7xBOl3RTZu6VpMzcGxE3zz/fc6iVIuLpkn5B0psj4nJJPyvpdyX9+4j4Rkm7MvM91YbXbICVqiOFq0DELkixC7btghirIH83SLhyXLPcyR4g1XV3Zk7v1ncSYEj98ay423Y4bdbpouydbBFd2c1+datXySSONdaVvG7o5pipdAkyrKQIja4rdN3QOYWcRBXd8eguh11fcXS3gXRW7nasS3zgnNud6h41OunBkX5fWGR5Vbabece5L7vHa8r731S649WdP2v2VbuwLhMNZ+abJT3sIIuet2gZR89RBwAAADBEKrR330oNsD4p6bSI2DV/erVL0qnzz4ciyQUAAACAtZKZt2oWK3X+/KPzJV2bmYd8PXBZeIIFAAAAwJPSffdN8wQrIl6lWSr1h0q6MiJuz8zHSLpI0hUR8XJJd0q6YDvqwwALAAAAwI41n5/q4oN8fr2k87a7Pms2wArVuzQy6NQJgnQDeavlXXBzF7DqzDjfBdN2ZVeJQZxkDq7ueHT7XbW5u19d8g7neHZ1c+p+TLO86adZLHdPgepwd0kP3EQUTqx6103vKZY90FjX3Xan2++qTbvLuJvEoqpbd3q0uQeqynedvNNdF6p7lHMCdWV3RmaR6YxMONSte4dRtpuwodpv57uK5CX8crdd9aXu/HIvxlP24+XKDO29b82GFkeIVgAAAABgmQ2wVirJxWRIcgEAAAAAS8ITLAAAAACeFE+w5niCBQAAAABLsmZPsFLezOxTcWeMr4KM3UPcBTA7wZldkLATMd6V7QQod+uODNTtOH2lO5ZOlL4bhN+1S9dPC87hcmOTuyQXDzG27dTN7YbOtke2qRuL3h0vK0eNk1yg68ROcpvRnCQXrqrd3Ho5yYycRElSfb3tyu4SJVVtZlyHbe7J7ejKnjIp1/bKDN33JZ5gSWs3wAIAAACw/UL79jK0kHhFEAAAAACWhmEmAAAAAE9KIsmFpLUbYKWOPKDCiQeSvMkWu/dzu7JHTmjovIc+8r3/4waWLdXH695m3W7S3KqPuqekEx/Wbbua+Fmq+1IXg+VORlqdn01fua8p25l8trscdbvlTMjbTRZc7VcXa9TdP7s2qw7XlKEU7nyiJfdaW11Pb2nW7e4h3fKqbl3MjsOdoNUJsOyu887xdAMNu45a1a3br64fVn3FjcFyjvfo+OWK2w9XNT8AHGs2wAIAAACw7TJ4gjXHAAsAAACAJyXdF1PXYiWQ5AIAAAAAloQnWAAAAAB8bojhmjjKBlgjJ8FzE1U4nMlju4DWO5rlVRfqyu6CbZ3EIO4kkdW2u2O5ygGrVQION/i5OiZdUpKRx7Prw02QfhZ9IZp6dadflwzCeZW92/aDimVdkgvXyFOkKnv4jb/qa+5OV0kuRk6KK9UN52ZymZLTWZzrYXe96xJEOUkTRiYlmdLIk7s7Xt3xYMRxNDrKBlgAAAAAli7FeHKOARYAAAAADwOsTSS5AAAAAIAl4QkWAAAAAE9qtcPQt9GaDbC6Z5PVUe+CfLsgx64pq/LdIOCqbm5yjeOb5V0wbqVKuDBadwVwkne42644wejdtt3jUbVLd3647xRU/XDguZ1mcps0k2Q46zqJLLrkG069uylUhr5+4gazV7prZbdjzu367mZ5d45Uy7s2ca5Z7sF2rtXOtVSq+5KbGKQ7nhW3nzlt6tx33bIdXb0YUeArrdkACwAAAMC2S/XZcY8SxGABAAAAwJLwBAsAAACAjyyCkhhgAQAAAHCRpn3Tmg2wuvQlXQBzpZv93JnV3Q3Cr7bt9nQngLlrky7ou1reJd/odMezajenH0lem7nHs9q2W3bVpl0/Oq5Z7rR5FxDeLa/q1iUG6eo98k7UXN67BBuV+7rj2e1X0Q+z27iTWKer173m+lW7uEkTquPZnT9usqNKdw44++0mFOo41xXn3O222y3vzgHneHdtXpXtfqUcmeilU7W5e+52y+9olmMnmiwGKyKeExHvj4j7IuJFByw7JiLeEBEfjYjrI+LpU9UTAAAAQGPjCday/+xAUz7Buk7SsyS97CDLXiLp7sx8VEScKeldEfGozLxnOysIAAAAAIdjsgFWZn5AkiJi30EW/7Ck585/7s8j4hpJ3y3pjdtXQwAAAAALIQZr06rGYD1c0o1b/v8JSacf7Acj4kJJF87+58blAAAAADhsDLA2DRtgRcR7NRsoHcwpmbmUqcgyc7ek3bNtPqIJjx4ZlNqVXQUhu4ehCjp1EzJ0Aa9OcGZXtpOwxAiyl1Qfk+54udt2OAlT3P1yOEliRhsZ/DyyLzjB6u6x7pJFOMkL3OQ5lZEJbDrd+VeV3SWacFV1cxMTOGV3/axTbdtNPFD1QzfJRffL5Krd3GtOd00bqdovt17V+m5Snym/E2AqwwZYmXmOsfonJD1C0p75/x8u6Z12pQAAAACMwRMsSRNmEWy8UdILJGme5OKJkt46aY0AAAAAoDFlmvbzI+JTkp4p6V9ExKci4hvmi39Z0kMi4qOS3izpwszsJqsBAAAAMIWN6WiX/WcHmjKL4Oslvf4Qyz6n2cBryZyYHnfCQ+fd/p36fq47eWzV5t3x6Lr2yJgeJ56ou5J0ZXcxCdVkwO454FwFu3VPaJZX++3GSVXcftTFeTjnfle3W4ztuu+AOLeekcfTiaV1t92pzt0u7qyL0XKOR7euUzf3eujEOnV9YeSE1+5+jyx75PeRke+WOXFSI+990rQxxkuWkpaSYWHnW9VXBAEAAABgx1nVNO0AAAAAdgrStG/iCRYAAAAALAlPsAAAAAB4eIK1ac0GWPtUBws6E2u6QYwjg9WdSQXdCfSqCQ+7ejuT4nb1Hhls7iY8cfpht21nEtaRgfCubttOQpSurziJQbqyncmdRwbCu+euY8qJa93zq9q2OxlwVfeqj3brLrLcadOOO1lwpUtEUR1P9/xykmC416zq/OzOXSdxyJTJcdzJmytdH51ygvIVwwBrE68IAgAAAMCSrNkTLAAAAACT4AmWJJ5gAQAAAMDS8AQLAAAAgIcYrE1rNsAKHXlgdxc02gUxjpzp2zlMXb3dLlDtl5tgo0qgcXezbheU2tWtKt+d6f6OYtlxzbodJ4C5azMnCUZ3xXWDo53EIV2CADepScVJcuGsK/X77VjVJDNugL+z7VVOEuMmwah01w0nyUV1LZW8RBTdPabjJGly+2F1bo9M2DUyiYXkJ5OojEy2MmXSoG3GAGsTrwgCAAAAwJKs2RMsAAAAANsuNfYFhh2EJ1gAAAAAsCQ8wQIAAADgSUl7p66ELyK+Q9KPSXqgpM9k5osi4hsk/aSkXZqNn34sM/NQZazZAGuX6iQBVaChG+Q7ctZ2Z2b1LmmCG8DvJDZwEoN0QaFd1+6OVxWY3QVWd3WrkneMDOKVpjvlV/mdASfBhnvuOu3S1dsJrJ4yKHvK5Bsjr4eukQlPuuN5e7PcUdXNPV5dP3YSWXT3kKruUybWccuujtfopFrOtp1rbVe2u9xNbgVJiohLJP2gpDMkPS4zPzD//CxJV0g6QbOL2QWZ+edVWZl5laSr5uv/XkQcm5kfkvSC+WdvlPRgSfccqgxeEQQAAADgu2/An8W8SdKTJN14wOeXS7osM8+SdJmkV28siIhHRsSVB/x56Zbl3yvpzzLznvn/nxwRvynpNjWpJ9fsCRYAAACAbTcuTfuJEXHNlv/vzszdX7bp2VMnRcTmZxFxsqRzJD11/tHrJV0aESdl5p7M/JikpxxsgxHxPElnZObLtmzjnZLeGRG/Kunxkt57qAozwAIAAACwqm7LzHOPYL3TJd2UmXslKTP3RsTN88/3HGqliHi6pF+Q9OaIuFzSz0p6jKQf0v5Jdz9QbZgBFgAAAADPmkw0nJlvlvSwAz7+g/mfhRxlAywnqLvjBNt2AcZdcObImdW7ujlBwk4As1svJ/mAm7igCo7ugp/dfuoEXjtBwl2bjQx+Ll+TVp3QpOMmF+hUx6RLttIdz6pdRt8aqrp1x8tNLOLo2qU6P7t6OclWRl4XpLruI7ftJg9wzj93v5zrykhugpqRyaecNu/K7vp41VdGf48andzqqPZJSadFxK7506tdkk6dfz7UUTbAAgAAALB0KzbRcGbeGhHXSTpf0mvnf1+bmYd8PXBZGGABAAAA8Ew4D1ZEvErSMyQ9VNKVEXF7Zj5G0kWSroiIl0u6U9IF21EfBlgAAAAAdqzMvFjSxQf5/HpJ5213fdZsgNVF11Xvubrv73aqieScSW8lbwJlN5Zp5ISjFXdSwZFxGl2bO3Fr7rvcTkzPyMkQu+PVLa/OkS4WqTte1ba764a7vKpbNWH1Iqo2Gx0H5cQCjpxQtNNtu9rvkfEnXXu7x9OpW7dud/9zyu7O7Wp995pU9WOnH0neVzc33se55zvHo1u/Ox4j+2GnO15TfY8aZA2SXCwDEw0DAAAAwJKs2RMsAAAAANtuTdK0LwMDLAAAAACeFcsiOCVeEQQAAACAJVmzJ1ihepdGTjTccSag7H4d4BxGNxnEVBMoj05i4TzjdvbLSYAhjZ1AeeSknl1f6RK9jPyVmTORt9MXuvXd86ta7k6S6lyT3MQ8lS6QfWTyDpdTtptcwCm7a3MncYG7X1X5ThKLbv0uQY37faQ6/7o2687d6nhO+W6Ym5Rk5D2/6yvufX+FTJimfdXwBAsAAAAAlmTNnmABAAAA2HYkudjEAAsAAACAjwGWJF4RBAAAAIClWbMnWKE6CLla1jXFHc3ybv1qSN8FbXcBr04yiJFdwKl3pws278rujme1vhsoX60/OtGEk+hl5PFyA5Sdbd9rru+s27W5s+2RZTvXO8lL3uH0JTdZihPM7iRc6LjJHrrlTtKEKRNodKq+5J4/xxlld+fAyMRWXdnVfrsJNLq6VdfqbtvOvdFts275ac3yHYQ07Zt4ggUAAAAAS7JmT7AAAAAAbDvStG9igAUAAADAQxbBTbwiCAAAAABLsmZPsPaqDnqtApC7Ibc783q1vDsMThIMN8i+4wQJO4G8btd1EjZ0s7J3+10F2nfRoV1yjq6fVus7wc1SPRu9W7azfhcI7/QlN3mHw0224nCSWEjedcNJfNCdux0ngU3HbVNn3W55dUycdaV6v7sENF3SEscp5vrOfdlVtenIxDtuX+hU++Umcqnq3l033PvbGmWF4AnWJp5gAQAAAMCSrNkTLAAAAADbjjTtm3iCBQAAAABLwhMsAAAAAD7StEtauwHW/dUH+VfrVtzA60qVHGCRsqsZ4zvdfnfbroI33dnNq227x8sJOu223R2PKtGEG4TvJD5wA6+r9bukIl0/G9lXHF0/67bdBel3Qf6Oqo+PDsKv2sVNyFBxklAssm0neYfTx50A/q7sbv3u/tWpjkl3P3ej6as2765ZXZs6iZTcRBTOuT0yQ0F3PXP6oftempO8w01U5l6XVghJLjbxiiAAAAAALMmaPcECAAAAsO14grWJJ1gAAAAAsCRr9gQrdOTv0TrvSy/CeX++U70D7+6XGzdQcX7NMTJeqOO+613FFbi/+hkZO+PEWjhxglK/X1U/d8+BkRO8TvmrvmrbbkycMyGvGz9ZcSdCdeJXum07cRhujLAbw+Wo+pI7Wf3I66ETV9qdP+4k4k48kXOs3e8yHeeaNfI7njuR8OiY121EmvZNazbAAgAAALDtUmQRnOMVQQAAAABYEp5gAQAAAPCR5EIST7AAAAAAYGnW7AmWE103cmLabrk7oeHIyS27iVBHJtiojJ4Yuqq7G7A6si90+1VN9OgGlFe6BBnuRMQVN/DaSdAxMvDanei0apeuD3fnX3e8ncQGTgIOty8467vX4mp9N4lFx0ma0PXDkRPyOtdTZ+LnRdavuEkPquPtJqipyu76gjsp9cgEHM513v0qPTrJ2jYiTfumNRtgAQAAANh2ZBHcxCuCAAAAALAkPMECAAAA4CFN+yaeYAEAAADAkvAEa5MbZOgkyRg9+3mli0Z0XqZ1u5cTrO4G6TuJKLo2dfrCKicOqdrMfSnbqdvx5radwOyu3nc1y7/G2LZTb/e64CTYcBO5HOl2F9l2x0kG0fWFar+dJEtS38+qunWJkEZes0Ymx+k49zf3/uVwv29UfclNYuHUzbnmdOu7bdb1w+4c2kFIcrGJARYAAAAAHwMsSbwiCAAAAABLwxMsAAAAAB7StG/iCRYAAAAALMlR9gRr5IuhzozxzrpSvV9u4gKHG6hb7XdXdrd8yuDnatvdbPJu8oGqfLdNnAD/zh3N8uoc6tZ1uJfQ7tzvEh9UunPAuSZ11w3nutL1Q+f8cq+HzjniJqKoAuGddRdRrd9dszrO8RqdjMUxZTKW6tzv6nVvs7y6nrrnbrffTl9z7q1dEhi3n3VtvoOQpn0TT7AAAAAAYEmOsidYAAAAAJaONO2bGGABAAAA8DDA2sQrggAAAACwJEfZEywnoHVk3sluuN/V2wni74JKnS7SBW52QfhTHq9q293xcmaM73THw9nvrmwn8cGUfWFkAHGXPMBJUDNadbzd5DfOfnX90En8MZqT2KcLpK90/bBrUzchkcNJvON+hRmZtMRpU/f+5VyLnfvX3c267nedqk1H9vGRx0Naq6/ipGnfxBMsAAAAAFiSNRo2AwAAAJgMadolMcACAAAAsAw5dQV8EfEdkn5M0gMlfSYzXzT//GclnSRpb2b+dFXGmg2wnPQlo99BHzmhYfXu/uh3h3cqdwLLivMeeWfkxJkjJ+085TDrcriqftq1iXOs3dgyp03dc7Oquxv74kwE7salOROUTxlX45y73SSqbgyI81XBabOR1+nRRsYKOhMRd23m3gcqXR93ritd2U693e+H7nUHi4iISyT9oKQzJD0uMz8w//wsSVdIOkHS7ZIuyMw/r8rKzKskXTVf//ci4lhJf0vSYyXdJOnWrj7EYAEAAADYyd4k6UmSbjzg88slXZaZZ0m6TNKrNxZExCMj4soD/rx0y/LvlfRnmXmPpMdI+mBm/oykh8yfch3Smj3BAgAAALBGToyIa7b8f3dm7t76A/OnToqIzc8i4mRJ50h66vyj10u6NCJOysw9mfkxSU852AYj4nmSzsjMl80/ulGzp2CSdJua1K88wQIAAACwqm7LzHO3/NndryJJOl3STZm5V5Lmf988//yQIuLpkn5B0kMj4vKIOEnS70p6QkT8K82eZv33qgyeYAEAAACApMx8s6SHHWTR31+0DAZYC+smchwZ0DoyONoNlHcm5O04dXOD9Kv13YDwar/coG7nlO7auwukr+o25USmIyd+diZfdnXXhe6a5Rh5PXQSZLjciaOr8++EYtkiZTsTEXemTEThXGtHGjlJeLeuOzl6dd1xr0nV+m4f7fqhMzl6V7eqzd0246v2hD4p6bSI2JWZeyNil6RT558PNdkrghFxWURcHxHvi4g/iohztyw7JiLeEBEfnf/M06eqJwAAAIBOavbLiWX/OcLaZN4q6TpJ588/Ol/StZm554gLXdCUMVi/r1kaxW+S9EpJb9iy7CWS7s7MR0n6Pkn/cZ4iEQAAAAA2RcSrIuJTmr3ad2VEfHC+6CJJL46Ij0h68fz/w0323HL+fuOGqyU9LCLul5n7JP2wpOfOf+7P55lDvlvSG7e/pgAAAABqzny05pYzL5Z08UE+v17Sedtdn1V5MfRFkv7bfHAlSQ/Xl+ex/4SajB8AAAAAprLxiiCGDbAi4r2aDZQO5pSNlIkR8SxJP6LZ5GBHsp0LJV04+18XRFwFUHYdwk00Ua3frTsykN4J8He3PTIZhJsAoOor3W9n7m6WV3V3T0knoYO7bWf9rs2cftoFNzs3g64vuOdXpbveOeeXW+9TmuUjb8BO3UcmFOocb6zr9sORCRuc60JXtnu8quvOyD7ald0le+iSyFTt5j5dmDJhUaXrZ13ikGq/un3u7rtuP8ZONGyAlZnndD8TET8g6RWS/nZm3rJl0SckPULSRhDawyW98xDb2S1p96y8r0+nzgAAAACOxHSvCK6aKbMIPl3Sv5b0tMz8+AGL3yjpBfOfO1PSEyW9dVsrCAAAAACHacoYrF+X9EVJ/zkiNj7725l5u6RflvSaiPiopL2SLszM7h0iAAAAAJMgBmvDlFkETyqWfU7SM7exOgAAAACOGAOsDauSRXCbVAd9dLB6lVShC77s6lYFWB7XrNs9GOxOFKcLOYGh3bpdUKpzAej2udt2tV9Oggx321MGL3f9tDsHnAQ2IxMAuMHR1fF22mS0bttVm3dt0i2vkpo4SWAk73h2567Tz0Zep13OfrnJjLrj7XwncBJjuWV363dJMBzOd6HueHbLq+9Rbl9w7iEjz23sVEfZAAsAAADAGAwopQmTXAAAAADAuuEJFgAAAAATMVgbeIIFAAAAAEuyZk+wRo6cuwDJKXUJApx13RnKHdW2u2QQXSBu10+qQHk3ALniJlxwknu4CRmq9d0g4JGXKicxiJsUYcrEByOTYDiJRbo2dfqCe71zE6ZUnL7g9GHXyN9WO0lgFlnfua879wH3+4STrMU976s2nzKxjqs6nqOTaq1TzBITDW9YswEWAAAAgO3HK4IbeEUQAAAAAJaEJ1gAAAAATLwiuGHNBlj7VL8rWy2rYm6WoXpkWk2et4hqomJnkmLJiykYOWGoM8njIssdo/tSxYm7ceOgquM5Mq6m0227m5TTiStwJ78cGdPjHK+O0+Zde3fnV7VfI2MYXSMnQnXjK93+cKTbduvtfNFz46SmnOy36g/utdaJtXVV33Wcyc0l73i533XW7Ks4JHFUAQAAANiIwdrAAAsAAACAiVcEN5DkAgAAAACWhCdYAAAAAEy8IrhhzQZYXZKLKsjRDXR3Jvt1EzJUdXMDxkcmAHACykcmZOi4gddV3bpj7SZEcSYaHjnprTuBq1O3kX3YTR4wsm6Orr275U7ShK6vVOeXO2Go06bdNWnkRMNukL3zhclJRNH1oyrpwSKq8rs2udXcdsX9gur005HXWvfVMWcC5a6vOG025fcRrKo1G2ABAAAA2H7EYG1ggAUAAADAxCuCG0hyAQAAAABLwhMsAAAAAEvAK4LS2g2wunc/q2XuTPVu8LSzrpO4oEti4baLU3bVpncb60p9co+qTd2A1Oq0c4615B3PkX24u9Q4fWFKo+s1svwpb4LVtt3XS5xAeCfRhFTXfZVfm3H2y01EUR2Trs3c88NZf+TXJ/d6OTLBjfOdwL2/jVq3W9+9NzLgOBqt2QALAAAAwPYjBmsDAywAAAAAJgZYG0hyAQAAAABLwhMsAAAAACbmwdqwZgMs59Fkt14X2Ok0ZdcZnc56TLN8ZNIEt3tVgaMnN+ve0Sx3HmF3faEr2wmm7ZY7desCdZ1g9Y4bRDwyQLlq0+5Yd+eu25dWlVPvrs2OM9Z3zk3XlF863GQQ1X2g68Pdfld169Z1kzQ5fcVJNDGybNfIRBTd8ey+MzjJVrpzoNq2m4RpdLIWrKI1G2ABAAAA2H7EYG1ggAUAAADAxCuCG0hyAQAAAABLwhMsAAAAACZeEdxwlA2wqoPeNYUbQFkt/5pmXaduXWKCLglGxwnkdXTt3bWpm5zA4bTZyGDYrp+NDKzu+ml3PKu6dYHwju54dW3mBF67wehVH3f7gpNYpNt2V7aTuMDt404Q/qjtLsK5rnTnV7ffIxMOdaptd9ecTlU3N7mN853ATdjgfG10v3KOvP9VZTvXHIkBx9HpKBtgAQAAAFg+YrA2EIMFAAAAAEvCEywAAAAAJmKwNqzZACt05PEt7mS/XVNW73O7k8c6utgXhxsj4nRPt82c+JSOM9mvU7bLOQfcPn6LsX7Xpm58pVN2x2nTkROGujEJTtkd5/zs4ommbFPHyJjTKa85biyTE2flThZccWOIq3Ng5H3Xjc10ynfLrvqaG2M18rqxanhFcAOvCAIAAADAkqzZEywAAAAA249XBDfwBAsAAAAAloQnWAAAAABMxGBtiMycug5LExF7JN04dT1W0ImSbpu6EtgR6CtYFH0Fi6KvYBH0k4N7RGaeNHUlFhERb9XsOC7bbZn5XQPKHWatBlg4uIi4JjPPnboeWH30FSyKvoJF0VewCPoJ1gkxWAAAAACwJAywAAAAAGBJGGAdHXZPXQHsGPQVLIq+gkXRV7AI+gnWBjFYAAAAALAkPMECAAAAgCVhgLWmIuKyiLg+It4XEX8UEeduWXZMRLwhIj46/5mnT1lXTCsinhMR74+I+yLiRQcso6/gy0TEWRFxdUR8ZP73mVPXCashIi6JiBsiIiPisVs+p89gU0ScEBFviYgPz+89vxsRJ82X0VewFhhgra/fl/S4zPwmSa+U9IYty14i6e7MfJSk75P0HyPi2AnqiNVwnaRnSXrdQZbRV3CgyyVdlplnSbpM0qsnrg9Wx5skPUlfOR8lfQZbpaR/mZmPzsxvlPQxSb84X0ZfwVogBusoEBEnSLpZ0ldn5r6I+KCk52bmNfPlb5Z0RWa+ccp6YloR8RpJ12TmpVs+o69gU0ScLOkjkk7IzL0RsUvS7ZLOzMw909YOqyIiPi7p6Zn5AfoMOhHxg5J+QtKPiL6CNcETrKPDiyT9t8zcN///w/Xlv2H8hKTTt71W2AnoK9jqdEk3ZeZeSZr/fbPoEzg0+gwOKSLup9ng6r+IvoI1cv+pK4AjExHv1ezL78GcsnGBiohnafZboSdtV92wWhbtKwAAbLNflXSPpEslPWHiugBLwwBrh8rMc7qfiYgfkPQKSX87M2/ZsugTkh4haeOR+8MlvXPplcRKWKSvFOgr2OqTkk6LiF1bXuE5df45cDD0GRxURFwi6UxJ3zcPX6CvYG3wiuCammd7+9eSnpaZHz9g8RslvWD+c2dKeqKkt25rBbFT0FewKTNv1Swpyvnzj86XdC3xETgU+gwOJiJeIembJX1/Zn5Boq9gvZDkYk1FxB5JX9T+Jw/S7EnW7RHxYEmv0exx/F5J/ygzf2/7a4lVEBHnS/plSX9Fsz7zOUn/R2Z+iL6CA0XE2ZKu0Ky/3Cnpgsz88LS1wiqIiFdJeoakh0q6TdLtmfkY+gy2iojHSPqAZgkt/nL+8Q2Z+QP0FawLBlgAAAAAsCS8IggAAAAAS8IACwAAAACWhAEWAAAAACwJAywAAAAAWBIGWAAAAACwJAywAGCFRMTxEfHJiHjils/+SUT8zjZs+6KI+On5vx8fEX/vgOXXRcRXL3F7r4mIT83Tey+rzG+b1zMj4thllQsAwKJI0w4AKyYi/q6kV2o2/9hZmk3u/IT5RJzbVYfnSXp6Zv7QwG28RtI1mXnpgLJT0nGZec+yywYAoMITLABYMfPJnN8r6Rc1m3Tzpw81uJo/qfm5iPjjiPhwRPzglmXfFRHXRsT7I+LtEfGo+eePjoirI+J9EfGBiHjJ/POfi4hLIuIESf9c0lPmT4NetWVbx87//cR5Ge+f//3E+ednRMRtEfGK+bY/HBHfsei+R8Tz5/V6X0S8JyJO2VLmK+dlXh8R3xwR/2G+/XdHxEOPpK0BAFg2BlgAsJpeLOnHJd2Ymb/d/Oy+zPw2SX9H0u6IODkiTpb0G5KenZnfKOl1kn5z/vP/QNJbMvObMvOxkn5ta2GZebukl0u6MjMfn5kXb10eEV8l6Xck/ey87H8q6Xfmn0vSCZKuzswnaDZQ+6VFdjgi/pakfyzpaZn5TZKeLOmzW8q8al7mr0l6u6TL5tv/U0kvWmQbAACMxgALAFbTd0q6S9KjI+KBzc/+miRl5oc1e/L1rZLOk/S+zPzQ/Gd+XdLjI+I4Sf9D0vMj4l9ExHdK+sxh1u3Rkr6YmVfOt/t2SV+cfy5J92Tmm+f//hNJj1yw3O+V9P9k5qfn5d6TmZ/fUuZ/m//7vZI+lZnXzf//p5IedZj7AADAEAywAGDFRMSJkn5FswHHNZJ+/nBWl5Rb/v4Kmfk7kr5d0sckvUyzJ12HVcVDlL3x2Re2fLZX0v0Po9xDObDMzx/w/0W3AQDAUAywAGD1/DtJ/yEz3yfpJyX9yNasggfxY5IUEWdKerykd0u6WrMnVmfPf+a5kq7NzLvnsVifzszXaDZ4+5aDlHmXpK89xPaul/TAiHjyfLtPlvQASR9ZeA8P7r9KuiAiTpmXe+wCT+8AAFgp/MYPAFbIPDX6WZKeLUmZeWdEvFDSf4qIb87MLx5ktS9ExB9JOlHSCzYSYkTEj0p6XUTcX9IeSc+Z//zfk/TsiPiiZk+dfvIgZb5d0ksi4n2S/nBrHFZmfnGeTONVEfFgSZ+T9EPzz4943zPzDyPilZKujIh9mj21+r4jLhAAgAmQph0AdrCdnI6cNO0AgHXEK4IAgKl8VtLFIyYalnSLpH3LKhcAgEXxBAsAAAAAloQnWAAAAACwJAywAAAAAGBJGGABAAAAwJIwwAIAAACAJWGABQAAAABLwgALAAAAAJbk/wcwrSIYh13WVwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plotter.make_sub_plot(data, log=True)" + ] + }, + { + "cell_type": "markdown", + "id": "critical-rebound", + "metadata": {}, + "source": [ + "### Access the data\n", + "The data is a list of McStasData objects and can be accessed directly." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "gothic-water", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[\n", + "McStasData: PSD type: 2D I:1.13331e-05 E:1.27748e-08 N:1.99997e+06]\n" + ] + } + ], + "source": [ + "print(data)" + ] + }, + { + "cell_type": "markdown", + "id": "common-overhead", + "metadata": {}, + "source": [ + "It is possible to search through the data list with the *name_search* function to retrieve the desired data object. " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "colonial-thompson", + "metadata": {}, + "outputs": [], + "source": [ + "PSD_data = functions.name_search(\"PSD\", data)" + ] + }, + { + "cell_type": "markdown", + "id": "american-crash", + "metadata": {}, + "source": [ + "The intensities can then be accessed directly, along with Error and Ncount. " + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "exempt-lincoln", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[3.44527442e-29, 2.85790145e-29, 3.31769558e-29, ...,\n", + " 2.91848858e-29, 3.46035438e-29, 3.18800919e-29],\n", + " [2.99309240e-29, 2.71389219e-29, 4.51518249e-29, ...,\n", + " 3.88940177e-29, 2.79711427e-29, 3.13858152e-29],\n", + " [3.09932004e-29, 3.65012990e-29, 4.19605051e-29, ...,\n", + " 6.17328696e-29, 4.54832798e-29, 2.95402503e-29],\n", + " ...,\n", + " [2.26834139e-29, 3.81964364e-29, 5.66352294e-29, ...,\n", + " 6.09311571e-29, 4.78664320e-29, 3.58314124e-29],\n", + " [3.37192383e-29, 2.95154846e-29, 3.68253460e-29, ...,\n", + " 4.11785300e-29, 3.48591918e-29, 2.20162822e-29],\n", + " [2.39943987e-29, 2.44856071e-29, 2.61788386e-29, ...,\n", + " 3.09847097e-29, 2.78252273e-29, 2.38869215e-29]])" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "PSD_data.Intensity" + ] + }, + { + "cell_type": "markdown", + "id": "unavailable-secretariat", + "metadata": {}, + "source": [ + "Metadata is also available as a dict." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "mediterranean-guatemala", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Date : Tue Jan 11 12:39:32 2022 (1641901172)\n", + "type : array_2d(90, 90)\n", + "Source : first_instrument (first_instrument.instr)\n", + "component : PSD\n", + "position : 0 0 8\n", + "title : PSD monitor\n", + "Ncount : 2000000\n", + "filename : PSD.dat\n", + "statistics : X0=0.000187759; dX=0.61402; Y0=0.00177741; dY=0.612948;\n", + "signal : Min=2.20163e-29; Max=1.15483e-06; Mean=1.39915e-09;\n", + "values : 1.13331e-05 1.27748e-08 1.99997e+06\n", + "xvar : X\n", + "yvar : Y\n", + "xlabel : X position [cm]\n", + "ylabel : Y position [cm]\n", + "zvar : I\n", + "zlabel : Signal per bin\n", + "xylimits : -25 25 -25 25\n", + "variables : I I_err N\n", + "Parameters : {'wavelength': 4.0}\n" + ] + } + ], + "source": [ + "info_dict = PSD_data.metadata.info\n", + "for field, info in info_dict.items():\n", + " print(field, \":\", info)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "coupled-sailing", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/source/index.rst b/docs/source/index.rst new file mode 100644 index 00000000..2f3355f2 --- /dev/null +++ b/docs/source/index.rst @@ -0,0 +1,62 @@ +Welcome to McStasScript's documentation! +======================================== + +**McStasScript** is a Python API for `McStas `_, which allows the user to get help, build their instrument, perform simulations and plot the resulting data. +This site serves as the documentation for the package and contains conceptual explanations of how the package is meant to be used, tutorials and a reference for all internal functions/methods. + +Documentation +============= + +.. toctree:: + :caption: Getting started + :maxdepth: 2 + + getting_started/overview + getting_started/installation + getting_started/quick_start + +.. toctree:: + :caption: User guide + :maxdepth: 2 + + user_guide/instrument_object + user_guide/component_object + user_guide/parameters_and_variables + user_guide/plotting + user_guide/instrument_reader + +.. toctree:: + :caption: McStasScript Tutorial + :maxdepth: 1 + + tutorial/McStasScript_tutorial_1_the_basics + tutorial/McStasScript_tutorial_2_SPLIT.ipynb + tutorial/McStasScript_tutorial_3_EXTEND_and_WHEN.ipynb + tutorial/McStasScript_tutorial_4_JUMP.ipynb + +.. toctree:: + :caption: McStas Union Tutorial + :maxdepth: 1 + + tutorial/Union_tutorial_1_processes_and_materials.ipynb + tutorial/Union_tutorial_2_geometry.ipynb + tutorial/Union_tutorial_3_loggers.ipynb + tutorial/Union_tutorial_4_conditionals.ipynb + tutorial/Union_tutorial_5_masks.ipynb + tutorial/Union_tutorial_6_Exit_and_number_of_activations.ipynb + tutorial/Union_tutorial_7_Tagging_history.ipynb + +.. autosummary:: + :toctree: _autosummary + :template: custom-module-template.rst + :caption: Reference + :recursive: + + mcstasscript + +Indices and tables +================== + +* :ref:`genindex` +* :ref:`modindex` +* :ref:`search` diff --git a/docs/source/tutorial/McStasScript_tutorial_1_the_basics.ipynb b/docs/source/tutorial/McStasScript_tutorial_1_the_basics.ipynb new file mode 100644 index 00000000..a1ccc6ae --- /dev/null +++ b/docs/source/tutorial/McStasScript_tutorial_1_the_basics.ipynb @@ -0,0 +1,1059 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# McStasScript introduction\n", + "This notebook shows how to use McStas and McStasScript to perform a basic simulation of a neutron diffractometer. The following software is required:\n", + "- McStas (www.mcstas.org)\n", + "- McStasScript (can be installed with python -m pip install McStasScript)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Anatomy of a McStas instrument\n", + "\n", + "In McStas a simulation is described using an instrument file. Such an instrument has five sections where code can be added to define the simulation to be perfomed.\n", + "\n", + "- Instrument definition\n", + "- Declare section\n", + "- Initialize section\n", + "- Trace section\n", + "- Finally section\n", + "\n", + "##### Instrument definition\n", + "In the instrument definition it is possible to define *instrument parameters* which can be specified at run time and used in the remaining sections for either calculations or as direct input to the components.\n", + "\n", + "##### Declare section\n", + "Here internal variables can be declared with C syntax.\n", + "\n", + "##### Initialize section\n", + "The initialize section is used for performing calculations, typically using both instrument parameters and declared variables to calculate for example chopper phases, angles and similar. The calculations are performed using C syntax. These calculations are performed before the raytracing simulation, and thus only performed once in a given simulation.\n", + "\n", + "##### Trace section\n", + "In the trace section McStas *components* are added, these are the building blocks of the simulation and correspond to different c codes that describe parts of neutron instruments or samples. Each component have a set of available parameters, some of which may be required. These will set the behavior of a component, a guide component may for example have parameters describing the physical shape and mirror reflectivity. Components also need to be placed in 3D space, and can be placed either in the absolute coordinate system or relative to a previously defined component.\n", + "\n", + "##### Finally section\n", + "The finally section is very similar to the initialize section, here calculations can be performed after the raytracing has been completed, again using C syntax. This may be some brief data analysis or print of some status.\n", + "\n", + "### McStasScript python package and this tutorial\n", + "The McStasScript python package provides an API to build and run such instruments files, but it is still necessary to have a basic understanding of the structure of the underlying instrument file and its capabilities and limitations. These tutorials will teach basic use of McStas through the McStasScript API without assuming expertise in the underlying McStas software." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Import the McStasScript package\n", + "The McStasScript modules intended for normal use is located in the interface submodule, and one usually imports the necessary modules from there." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### McStasScript configuration\n", + "Before the first use of McStasScript it is necessary to configure the package so it can locate the McStas installation and call the binaries. One way to find the path is to open a terminal with the McStas environment and run:\n", + "\n", + "which mcrun\n", + "\n", + "This should return the path for the binary, and the mcstas path is usually just one step back." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "configurator = functions.Configurator()\n", + "configurator.set_mcrun_path(\"/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1/bin/\")\n", + "configurator.set_mcstas_path(\"/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create an instrument object\n", + "A McStas instrument is described with a McStas instrument object which is created using the *McStas_instr* method on the instr class. Creating an instrument object also reads available components, both in the work folder and from the McStas installation. By default, the work folder is the current work directory, but using the input_path keyword argument this can be change to avoid cluttering the folder containing notebooks.\n", + "\n", + "Here our instrument object for this tutorial is created, we give it the name python_tutorial." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Requesting help on source components\n", + "The main building blocks used for creating a McStas simulation are the components. One can ask an instrument object which components are available, and get help for each component. Here we check what sources are available, and ask for help on the Source_div component." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here are the available component categories:\n", + " contrib\n", + " misc\n", + " monitors\n", + " obsolete\n", + " optics\n", + " samples\n", + " sources\n", + " union\n", + "Call show_components(category_name) to display\n" + ] + } + ], + "source": [ + "instrument.show_components()" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here are all components in the sources category.\n", + " Adapt_check Moderator Source_Optimizer Source_gen\n", + " ESS_butterfly Monitor_Optimizer Source_adapt Source_simple\n", + " ESS_moderator Source_Maxwell_3 Source_div \n" + ] + } + ], + "source": [ + "instrument.show_components(\"sources\")" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Source_div ________________________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[4m\u001b[1mxwidth\u001b[0m\u001b[0m [m] // Width of source\n", + "\u001b[4m\u001b[1myheight\u001b[0m\u001b[0m [m] // Height of source\n", + "\u001b[4m\u001b[1mfocus_aw\u001b[0m\u001b[0m [deg] // FWHM (Gaussian) or maximal (uniform) horz. width divergence\n", + "\u001b[4m\u001b[1mfocus_ah\u001b[0m\u001b[0m [deg] // FWHM (Gaussian) or maximal (uniform) vert. height divergence\n", + "\u001b[1mE0\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [meV] // Mean energy of neutrons.\n", + "\u001b[1mdE\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [meV] // Energy half spread of neutrons.\n", + "\u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [Ang] // Mean wavelength of neutrons (only relevant for E0=0)\n", + "\u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [Ang] // Wavelength half spread of neutrons.\n", + "\u001b[1mgauss\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [0|1] // Criterion\n", + "\u001b[1mflux\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1/(s cm 2 st energy_unit)] // flux per energy unit, Angs or meV\n", + "-------------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "instrument.component_help(\"Source_div\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding a component\n", + "Now we are ready to add a component to our simulation which is done with the *add_component* method on our instrument. This method requires two inputs:\n", + "\n", + "- Nickname for the component used to refer to this component instance\n", + "- Name of the component type to be used\n", + "\n", + "Here we want to make a component nicknamed \"source\" of type \"Source_div\".\n", + "\n", + "We also use the *print_components* method to confirm our component was added successfully. Running this code block multiple times result in an error, as McStas does not allow two components with the same nickname." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "source Source_div AT (0, 0, 0) ABSOLUTE\n" + ] + } + ], + "source": [ + "src = instrument.add_component(\"source\", \"Source_div\")\n", + "instrument.print_components()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Working with component objects\n", + "The src object created by *add_component* can be used to modify the component. It also holds the information on the component, which can be shown by printing the object. This will tell us for example if any required parameters are yet to be set and the position of the component." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT source = Source_div\n", + " \u001b[1mxwidth\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1myheight\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1mfocus_aw\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1mfocus_ah\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + "AT [0, 0, 0] ABSOLUTE\n", + "\n" + ] + } + ], + "source": [ + "print(src)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Modifying a component object\n", + "The parameters of a component object can be modified as attributes. From the above print we know there are four required parameters, so we start by setting these and then print the resulting component status." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT source = Source_div\n", + " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m]\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1mfocus_aw\u001b[0m = \u001b[1m\u001b[92m1.2\u001b[0m\u001b[0m [deg]\n", + " \u001b[1mfocus_ah\u001b[0m = \u001b[1m\u001b[92m2.3\u001b[0m\u001b[0m [deg]\n", + "AT [0, 0, 0] ABSOLUTE\n", + "\n" + ] + } + ], + "source": [ + "src.xwidth = 0.1\n", + "src.yheight = 0.05\n", + "src.focus_aw = 1.2\n", + "src.focus_ah = 2.3\n", + "\n", + "print(src)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Getting status of all parameters\n", + "Printing a component only show the required parameters and user specified parameters, but it is also possible to see all parameters with the *show_parameters* method. This reminds us to set an energy or wavelength range for the source, as it is necessary to set one of these even though they are technically not required parameters." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Source_div ________________________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[4m\u001b[1mxwidth\u001b[0m\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m] // Width of source\n", + "\u001b[4m\u001b[1myheight\u001b[0m\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m] // Height of source\n", + "\u001b[4m\u001b[1mfocus_aw\u001b[0m\u001b[0m = \u001b[1m\u001b[92m1.2\u001b[0m\u001b[0m [deg] // FWHM (Gaussian) or maximal (uniform) horz. width \n", + " divergence \n", + "\u001b[4m\u001b[1mfocus_ah\u001b[0m\u001b[0m = \u001b[1m\u001b[92m2.3\u001b[0m\u001b[0m [deg] // FWHM (Gaussian) or maximal (uniform) vert. height \n", + " divergence \n", + "\u001b[1mE0\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [meV] // Mean energy of neutrons.\n", + "\u001b[1mdE\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [meV] // Energy half spread of neutrons.\n", + "\u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [Ang] // Mean wavelength of neutrons (only relevant for E0=0)\n", + "\u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [Ang] // Wavelength half spread of neutrons.\n", + "\u001b[1mgauss\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [0|1] // Criterion\n", + "\u001b[1mflux\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1/(s cm 2 st energy_unit)] // flux per energy unit, Angs or meV\n", + "-------------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "src.show_parameters()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding an instrument parameter to control wavelength\n", + "Controlling the wavelength range emitted by the source is best done with an instrument parameter, then this same parameter can be used to for example rotate a monochromator or set the range for an wavelength sensitive monitor. Adding an instrument parameter is done using the instrument method *add_parameter*, and it is possible to set a default value and comment. The method returns a parameter object that can be used to assign the parameter to a component. The current instrument parameters can be viewed with the *show_parameters* method on the isntrument object.\n", + "\n", + "The default type for instrument parameters is a double (floating point number), but other types can be selected if necessary by providing a type string before, here we also provide an example of an integer." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " wavelength = 5.0 // Wavelength in [Ang]\n", + "int order = 1 // Monochromator order, integer\n" + ] + } + ], + "source": [ + "wavelength = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "order = instrument.add_parameter(\"int\", \"order\", value=1, comment=\"Monochromator order, integer\")\n", + "instrument.show_parameters()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now our source component can have its parameters assigned to a instrument parameter, or even a mathematical expression using the variable. This allows us to set a reasonable wavelength range for our source component." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT source = Source_div\n", + " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m]\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1mfocus_aw\u001b[0m = \u001b[1m\u001b[92m1.2\u001b[0m\u001b[0m [deg]\n", + " \u001b[1mfocus_ah\u001b[0m = \u001b[1m\u001b[92m2.3\u001b[0m\u001b[0m [deg]\n", + " \u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[92mwavelength\u001b[0m\u001b[0m [Ang]\n", + " \u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[92m0.01*wavelength\u001b[0m\u001b[0m [Ang]\n", + "AT [0, 0, 0] ABSOLUTE\n", + "\n" + ] + } + ], + "source": [ + "src.lambda0 = wavelength\n", + "src.dlambda = \"0.01*wavelength\" # When performing math use a string and the parameter name\n", + "print(src)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Using keyword arguments when adding a component\n", + "When adding a component, several keyword arguments are available, for example for setting the position of the component.\n", + "\n", + "- AT set position with list of x,y,z coordinates\n", + "- AT_RELATIVE set reference point for position (name of component instance or object)\n", + "- ROTATED set rotation around x,y,z axis\n", + "- ROTATED_RELATIVE set reference rotation (name of component instance or object)\n", + "- RELATIVE set both reference position and rotation (name of component instance or object)\n", + "\n", + "We use this to set up a guide 2 meters after the source. The McStas coordinate system convention is such that the nominal beam direction is in the Z direction and with Y vertical against gravity. We use the component instance name as a string to refer to our source. The RELATIVE could also have been specified as src, which is our source object." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "guide = instrument.add_component(\"guide\", \"Guide_gravity\", AT=[0,0,2], RELATIVE=\"source\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we set the parameters for our guide component." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT guide = Guide_gravity\n", + " \u001b[1mw1\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1mh1\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1mw2\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1mh2\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1ml\u001b[0m = \u001b[1m\u001b[92m8.0\u001b[0m\u001b[0m [m]\n", + " \u001b[1mm\u001b[0m = \u001b[1m\u001b[92m3.5\u001b[0m\u001b[0m [1]\n", + " \u001b[1mG\u001b[0m = \u001b[1m\u001b[92m-9.82\u001b[0m\u001b[0m [m/s2]\n", + "AT [0, 0, 2] RELATIVE source\n", + "\n" + ] + } + ], + "source": [ + "guide.w1 = 0.05\n", + "guide.w2 = 0.05\n", + "guide.h1 = 0.05\n", + "guide.h2 = 0.05\n", + "guide.l = 8.0\n", + "guide.m = 3.5\n", + "guide.G = -9.82\n", + "\n", + "print(guide)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding calculations to an instrument file\n", + "One of the advantages of McStas is the ease of adding calculations to the instrument. Here we calculate the rotation of a monochromator so that its scatters the wavelengths from our source. We need to declare variables using *add_declare_var* and append C code to initialize using *append_initialize*.\n", + "\n", + "For *add_declare_var* the first argument is the C type, usually double or int, the next is the variable name. A default value can be specified with the value keyword. Like when adding a parameter, a *add_declare* also returns an object that can be used to refer to this variable later.\n", + "\n", + "*append_initialize* just adds the given C code to the initialize section of the McStas instrument file. It is necessary to follow C syntax, for example remember semicolon at the end of statements." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "mono_Q = instrument.add_declare_var(\"double\", \"mono_Q\", value=1.714) # Q for Ge 311\n", + "instrument.add_declare_var(\"double\", \"wavevector\")\n", + "instrument.append_initialize(\"wavevector = 2.0*PI/wavelength;\")\n", + "\n", + "mono_rotation = instrument.add_declare_var(\"double\", \"mono_rotation\")\n", + "instrument.append_initialize(\"mono_rotation = asin(mono_Q/(2.0*wavevector))*RAD2DEG;\")\n", + "instrument.append_initialize('printf(\"monochromator rotation = %g deg\\\\n\", mono_rotation);')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding the monochromator\n", + "Here the monochromator is added, and we use the declared variables *mono_Q* and *mono_rotation* prepared above. Setting position and rotation can also be done using the *set_AT* and *set_ROTATED* methods on the component objects. Here it is also demonstrated how one can use either component objects or component names for the relative keyword.\n", + "\n", + "Rotation is specified around each axis, so rotation of our monochromator should be around the Y axis in order to keep the beam in the usual X-Z plane." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "mono = instrument.add_component(\"mono\", \"Monochromator_flat\")" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "mono.zwidth = 0.05\n", + "mono.yheight = 0.08\n", + "mono.Q = mono_Q\n", + "mono.set_AT([0, 0, 8.5], RELATIVE=guide)\n", + "mono.set_ROTATED([0, mono_rotation, 0], RELATIVE=\"guide\")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT mono = Monochromator_flat\n", + " \u001b[1mzwidth\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.08\u001b[0m\u001b[0m [m]\n", + " \u001b[1mQ\u001b[0m = \u001b[1m\u001b[92mmono_Q\u001b[0m\u001b[0m [1/angstrom]\n", + "AT [0, 0, 8.5] RELATIVE guide\n", + "ROTATED [0, 'mono_rotation', 0] RELATIVE guide\n", + "\n" + ] + } + ], + "source": [ + "print(mono)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Using an arm to define the beam direction\n", + "As the beam changes direction at the monochromator, we wish to define the new direction to simplify adding latter components. This can be done with an Arm component, which performs no simulation but can be used as new coordinate reference. The outgoing direction correspond to one more rotation of *mono_rotation*." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "beam_direction = instrument.add_component(\"beam_dir\", \"Arm\", AT_RELATIVE=\"mono\")\n", + "beam_direction.set_ROTATED([0, mono_rotation, 0], RELATIVE=\"mono\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding a sample\n", + "We now add a powder sample using the PowderN component placed relative to our newly defiend beam direction. The chosen powder is Na2Ca3Al2F14 which is a standard sample due to its large number of available reflections." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "sample = instrument.add_component(\"sample\", \"PowderN\", AT=[0, 0, 1.1], RELATIVE=beam_direction)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "sample.radius = 0.015\n", + "sample.yheight = 0.05\n", + "sample.reflections = '\"Na2Ca3Al2F14.laz\"'" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT sample = PowderN\n", + " \u001b[1mreflections\u001b[0m = \u001b[1m\u001b[92m\"Na2Ca3Al2F14.laz\"\u001b[0m\u001b[0m []\n", + " \u001b[1mradius\u001b[0m = \u001b[1m\u001b[92m0.015\u001b[0m\u001b[0m [m]\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.05\u001b[0m\u001b[0m [m]\n", + "AT [0, 0, 1.1] RELATIVE beam_dir\n", + "\n" + ] + } + ], + "source": [ + "sample.print_long()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding a cylindrical monitor\n", + "The flexible Monitor_nD component can be used to add a banana monitor (part of a cylinder). The component shape is specified using an option string. The restore_neutron parameter is set to 1 to allow other monitors to record each neutron.\n", + "\n", + "We have to specify a filename and option string here, and if we just use a string like \"banana.dat\" it would be interpreted as an instrument parameter called *banana.dat* and fail, so it is necessary to add single quotes around, '\"banana.dat\"'." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "banana = instrument.add_component(\"banana\", \"Monitor_nD\", RELATIVE=sample)\n", + "banana.xwidth = 2.0\n", + "banana.yheight = 0.3\n", + "banana.restore_neutron = 1\n", + "banana.filename = '\"banana.dat\"'\n", + "banana.options = '\"theta limits=[5 175] bins=150, banana\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding a psd monitor\n", + "We also add a simple PSD (position sensitive detector) monitor to see the transmitted beam." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "mon = instrument.add_component(\"monitor\", \"PSD_monitor\")" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "mon.nx = 100\n", + "mon.ny = 100\n", + "mon.filename = '\"psd.dat\"'\n", + "mon.xwidth = 0.05\n", + "mon.yheight = 0.08\n", + "mon.restore_neutron = 1\n", + "mon.set_AT([0,0,0.1], RELATIVE=sample)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Print the components contained in an instrument\n", + "Before performing the simulation, it is a good idea to check that the instrument contains the expected components and that they are appropriately placed in space. The *print_components* method is useful for this purpose." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "source Source_div AT (0, 0, 0) ABSOLUTE \n", + "guide Guide_gravity AT (0, 0, 2) RELATIVE source \n", + "mono Monochromator_flat AT (0, 0, 8.5) RELATIVE guide \n", + " ROTATED (0, mono_rotation, 0) RELATIVE guide\n", + "beam_dir Arm AT (0, 0, 0) RELATIVE mono \n", + " ROTATED (0, mono_rotation, 0) RELATIVE mono\n", + "sample PowderN AT (0, 0, 1.1) RELATIVE beam_dir\n", + "banana Monitor_nD AT (0, 0, 0) RELATIVE sample \n", + "monitor PSD_monitor AT (0, 0, 0.1) RELATIVE sample \n" + ] + } + ], + "source": [ + "instrument.print_components()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Running the simulation\n", + "Running the simulation is done in three steps\n", + "\n", + "- Setting the parameters with *set_parameters*\n", + "- Setting the settings with *settings*\n", + "- Running the McStas simulation with *backengine*\n", + "\n", + "The *set_parameters* method takes a value for each of the parameters defined in the instrument, here wavelength.\n", + "\n", + "Settings adjust settings for the simulations, a few examples can be seen here\n", + "\n", + "- ncount sets the number of rays\n", + "- mpi sets the number of CPU cores used for execution (requires mpi installed)\n", + "- output_path sets the name of the output folder\n", + "- increment_folder_name if set to True, automatically changes the foldername if it already exists (default).\n", + "\n", + "The *backengine* method takes no parameters and just performs the simulation." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " wavelength = 2.8 // Wavelength in [Ang]\n", + "int order = 1 // Monochromator order, integer\n" + ] + } + ], + "source": [ + "instrument.set_parameters(wavelength=2.8) # Set parameters\n", + "instrument.show_parameters()" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Instrument settings:\n", + " ncount: 5.00e+06\n", + " output_path: data_folder/mcstas_basics\n", + " run_path: run_folder\n", + " package_path: /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1\n", + " executable_path: /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1/bin/\n", + " executable: mcrun\n", + " force_compile: True\n" + ] + } + ], + "source": [ + "instrument.settings(ncount=5E5, output_path=\"data_folder/mcstas_basics\") # Settings\n", + "instrument.show_settings()" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/tutorial/data_folder/mcstas_basics_7\"\n", + "INFO: Regenerating c-file: python_tutorial.c\n", + "CFLAGS=\n", + "INFO: Recompiling: ./python_tutorial.out\n", + "mccode-r.c:2837:3: warning: expression result unused [-Wunused-value]\n", + " *t0;\n", + " ^~~\n", + "1 warning generated.\n", + "INFO: ===\n", + "Warning: 64538 events were removed in Component[7] monitor=PSD_monitor()\n", + " (negative time, miss next components, rounding errors, Nan, Inf).\n", + "INFO: Placing instr file copy python_tutorial.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/tutorial/data_folder/mcstas_basics_7\n", + "\n", + " monochromator rotation = 22.4519 deg\n", + "Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Na2Ca3Al2F14.laz' (Table_Read_Offset)\n", + "Table from file 'Na2Ca3Al2F14.laz' (block 1) is 841 x 18 (x=1:20), constant step. interpolation: linear\n", + " '# TITLE *-Na2Ca3Al2F14-[I213] Courbion, G.;Ferey, G.[1988] Standard NAC cal ...'\n", + "PowderN: sample: Reading 841 rows from Na2Ca3Al2F14.laz\n", + "PowderN: sample: Read 841 reflections from file 'Na2Ca3Al2F14.laz'\n", + "PowderN: sample: Vc=1079.1 [Angs] sigma_abs=11.7856 [barn] sigma_inc=13.6704 [barn] reflections=Na2Ca3Al2F14.laz\n", + "Detector: banana_I=1.35081e-06 banana_ERR=2.24941e-08 banana_N=10752 \"banana.dat\"\n", + "Detector: monitor_I=4.07521e-05 monitor_ERR=2.69874e-07 monitor_N=49651 \"psd.dat\"\n", + "PowderN: sample: Info: you may highly improve the computation efficiency by using\n", + " SPLIT 47 COMPONENT sample=PowderN(...)\n", + " in the instrument description python_tutorial.instr.\n", + "loading system configuration\n", + "\n" + ] + } + ], + "source": [ + "instrument.backengine() # Perform simulation" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "data = instrument.data # The data is available in the data attribute" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plotting the data\n", + "The *run_full_instrument* method returned a list of McStasData objects which can be plotted by the McStasScript plotter module. " + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plotting data with name banana\n", + "Plotting data with name monitor\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAHuCAYAAAALJ/jFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydeZwU1dX+n9MzDIxRFhcURB0FNSgYgxijRsX8cE1UNEY0cUFxA6OvouRVXEJciAmLxgXUiGJcQJMAYgIuvHFwAY2ABFGMsowRUBFZ3IbZ+vz+qOq6p2q6enq6Z2We7+czn3mq6t5bt6url9v3PueIqoIQQgghhBBCCMmHRHN3gBBCCCGEEEJI64eDS0IIIYQQQgghecPBJSGEEEIIIYSQvOHgkhBCCCGEEEJI3nBwSQghhBBCCCEkbzi4JIQQQgghhBCSNxxckm0eEZkiIlMaod0hIlKWR/0BIqL+37gM5Ur8MiW5nitNm3eacw9oqHYbgsZ6vgghhDQOIjJaREqbux+EkOaHg0vS6IhIqYiMbsYu/I//BwAQkTIRGdJ83alFNwC/beJz3u6ftyXS0p8vQgjJiP+5l/oB72sR+ZeInGCOdxeRx0XkExHZKiKrROQJESnyjw8x9atF5HMRmSsiF4iINN8ji2UcgDNSGy3gc58Q0kxwcEm2eVR1i6puae5+xKGqn6rqV018zq9V9dOmPGe2NMbzJSLtG7I9QgjJgvHwfsTrB2AxgGdFpJd/7G8AdgMwCEBvAJcC+BpAgam/xq+/J4CBAJ4H8EcATzVB3+uF/5mysSHb5Ps2Ia0TDi5JsyIi24nIn0Rkk4h8JSLPiMjO5vgUEXlMRMb4ZdaKyFWRNn4sIu+LSLmIzBaR6+xyVbvM0l+2sxeAR/1fhEtT+6O/skZnzPxlrMv98/wdwM6IICJX+b9Afysib4nI0Tlckz1E5P/8X7OXADgkTZmBIrLQ78sHIjKsPtcky36kluOeLiJv+4/pryLSQUSuEZHPRGSdiJwfqXe8iCwVkQoR+VBEzknT5ql+/78RkX+KSA9TJpvnq8Bf2vuZ/xifF5F9TBuj/ef01yLyCYDS+jx2QghpAL72fzz8AMCvANQAGCgiXQD8EMC1qvqmqq5W1bmqermqlpv6NX79dar6b1UdB+CnAM4WkZPiTuq/Vw4RkVf898eXRWRnEfmFiHzkz4JeH6nTX0Tm+587/xWRa9K0eb7/fp36fOtjjgfLYv3372MA/MavV2bKjfDb3+qfr585NsT/3D3fr7O6XlebENIi4OCSNDfjARwN4BR4H0Z7ApgSKXO6//8wALcBuFtEDgQAEekMYAaAOQAOhvdr8A0ZzncGvF+Dr4b3i/AZGcoGiEgn/zxzAXwfwN8B3BgpcxGAKwEMA9AHwJ8BzBaRPbI5h+HPANrBe7y/BnBn5Dz7w3uc9wM4EMAIAL8VkZ/5xzujftekLm4EcAWA/wfvufo7gP18/UcAD4r/g4CI7AlgFoDpAPr6x/8sIodG2hwN4Dr/MXaEdx+kI+75ug7AEP/vUACVAGaKiH1P6w/ge36/L6znYyaEkAZDVasBVAEogjdD+S2AQSJSkLFi7XZeA7AEwKl1FL0RwB3w3mO7AfgLvPfPkwBcA2BManAoItsDmA3gHXifb9cDuF1Ezoy0+RsAd8H7XPkcwOSYc/8PgAVwM7eH+ucZDM8C8r/+ed6F9xn5HVN3VwC/BHAagOPqeIyEkJaIqvKPf436B2/WaHSa/TvAGxQcb/Z9F4AC2M/fngJgaaTeBwAu9/VwAKsAiDn+ZwBlZnsKgClmuwzAkLr6aMvBGzB+BKDAHH8qcp5VAE6MtPEigOtjrssA7yUY2tfbf/y9zL5L/X0l/vYjAO6M1BsF4Plsr4nZrwAGxPSvxD8+yOybBGA9gHb+dgLeF6WT/O3fAZgfaWcagKcibZ5hjv8CwKf1fL4+AXCp2d4R3pe14/3t0QC2ANiuue9//vGPf23vz36mwPux8HoASQDf9/ed6793fgngBXg/mO1k6g9J957tH5sKYE6GcyuAq832/wKoBrCj2bccwDBfXwbgv5HPtzvte7nf5gizfYS/r9jfHg2gNN3jN/sWABhjtgsBfJx6L/cfswLo0dzPH//4x7/c/1rczKWIjBOR1f5Sij5118i63R+KyJv+8r53ReTyhmqb5Mw+8D5030jtUNX3AWyGN8hM8U6k3icAuvp6PwBvq6qa4wsbvKfA/gAWqWqN2Rf02//ld28AfxMveMPXIvI1gGPhPc76nGeTqq5Idx6fvgCujpznFnOehr4m7xq9HsCHqloFAKqaBPAFgF38499N098FCD+fQPg5tc9nnfizyLshfN9sBPCfyHn+o6rfZtsuIYQ0MKP89+dyeKtQrlDVtwFAVZ8A0B3ABQCWwVudsUxEds+iXYE3CMtE9H37Mw17Itcj/L69MPL5ls37Nkwb2RD6fFBvNndh5Dyfq+qaerRJCGlhFDZ3B9IwE95SulcbuN0HANykqn8XkW4APhSRGar6WQOfh2RPthHvqiLbCrekO5sP2WxIpulPO6PTnceWTy3rGQzg/Ui5L+vRj7rOAwDbAxgL4LHI/tR1aqhrEm0Xfrt1PR+5tNkY0Q85sCSENCcPALgHvvcyelBVv4RnYZghIrcC+BDeLOItdbT7XQDz6yjTFO/bQMPbq/i+TUgrp8XNXKrqa6r6cXS/iBzmm9IX+X8/qW/TADr5ent4X/i/ybO7JD9Wwluq88PUDhH5LoDOqD1Ai+M/AL4vEgrNXisAToQqhCPyAZ5/ZDfTj13stn+eQyKevh8YvR7ApwD2UNUVkb/1WT6W1Hl2FJGeMecBgH/DWzYcPc9Hpo36XpOG4n2Y59PncGT/fKYj9HypF0n2M4Tvmx3hzfrmcx5CCGlINvrvzXVG5vbf1z6B+6EyLSJyFDwv+ayG6SIA732zf8T/2aDv2z7/Qfh9uxCeN57v24RsQ7S4wWU6/AAlDwD4haoeAi9a2oP+/my5EJ6B/b8A3gYwXFW/bui+klh2E5GD7R+8geUjAO4VkR/5UeOmwPOSfJBlu0/Bi9o6VkT284Pq/ASZZ+4+AvAjEdnNX2IJAK8AOFNEjhWRvgAeBlAROU8XAHeJyP4icim8wAgAfOMkMAbAHX7Eu55+9L1RInJMlo8Fqvqe35fJIvI9ERkIz4tjGQvgNBH5rYj0FpEDReQis9Q7l2vSUEyCNwgf7Z/7VwB+Bm81Qq6ke77+COBWETnJXz4/BZ7PdG4e5yGEkEZHRHYVkRdE5Oci8l3/M+U2eJaH2aZogf++111EDhKR6wA8B2Caqj7fgF16EsB2ACb6/TkHXnC6u/No8yMAh4nI7uJFxwW89+0rReRs/4fkSQDaowWmViGE5E6rGFzCM47vDWCOeKkZ5sAPegIAIrIh5m+paWMkgJGquie8WZz7/MiWpGm4DN6g3v7tD+BaAK/Bi0D6CrzIoBdk26iqboYXAe8UeDN6Z8L7AKvIUO238H49/RjAs/6+h+EtyZ4B4B/wAiYEM47+eU4HcKJ/ntPhBa+xfbkXXtCG/4UXLOE5ePfaumwfj8958O7vf8GLzHdT5DyLABwPLwrqYnhLyC+AF/gm12vSIPizp4PgDShTPqILVfXNPJpN93yNhRek6DEAbwHoAOA03wNKCCEtmS8BLAVwM7z3rzfhvacPVtX/M+V6wJvN/C+Af8L7QfNqeEHQGgz18iyfDG9G9N8A/gDgFlV9Jo9mJwDYCd6Pfimf6VQAtwIY55+nD4CT+UM/IdsWEo750XLwcxz9VFWX+Utg/1dV650z0G9rZwD/VdXtzL45AB5R1b80SIdJi0FEHoC3PLW+S6ebFBEZAOBlVW0Mv2H0XGmviYgogGNVtbSx+0AIIYQQQrZtWsvM5XwA+4rIsakdInJoxFOWiU0AKsRPaC8iu8HL0/ReQ3eUND3+ktDD/KWol8ELZ/5EM3cra/yIr3c0cJsZr4m/pJa/FhNCCCGEkAajxc1cisg98Jb07QZgA4AvVPVA8ZKwj4XneyuCt9TilGyXwYnI8fDyNhX4f/eo6kON8BBIEyMiowFcDM9nuBrAH1X1gWbtVBaISDGAVNj5Tar6RQO2PRoZromI7ATvtQQAa1W1vKHOTQgBROQ38HL/9VXVZc3cHUIIIaRJaHGDS0IIIaQ14wcnuwPAAQB+wsElIYSQtkJrWRZLCCGEtHhEpD2A+wEMR9NEaCaEEEJaDBxcEkIIIQ3HrQCeUNXVzd0RQgghpKkpbO4OWHbeeWctKSlp7m4QQghpBSxatGiDqu7S3P1IISKHAzgUXkqiTOUuBXCpt9XuEM8a3ZjYXPY1jVgnjnZGb2f0l0bbryMdIvW/Mvo7RtuQC5VGR383L4o51t5oGx/Q9qUq0pYtt9XoHZAea2cviByz19Vkiirq7HSlfVzR+tWmjnkstsv24YaexsjjameeI9Ms1JTbyZT5wma2ilr27XW1195eL9Ox4mLTVDRjlm1rk9FxX1+jYTjsBdje6K9jytj7a3OkrWxCE9jFCtvF7AfC18Ieiz7HKeyT1y5yLHqPtgY+abD37l4i+m1DNBThE+AFVT2xEZre5mlRg8uSkhIsXLiwubtBCCGkFSAiHzV3HyIcA+C7AFb7wcx7AHhBRC5U1RdThfxgcg8BgEh39dIANyZ24PNVbKn868TR1eh+Rs81ekeje0fqzzP6B0bbwelao81gBQBQEnMsbr/ti203Wm65kzLA6dA4wqbb7hhpy/Z/hZO7n+H06rKYfgHAZ6bOvk5/aorYcfpmo9XUBYCdd01frtyUO9WUefRDU+idSL96GV1itLle9jr2Osg0ZdsFAPO48LTRuyI90QGgfb6ONPr19GXkMKd1eqSt5agbOzLva3R0AGie71CduB8p7Guwa+TYerQ+RjfYe/e3aJx30NGN/6vfNguXxRJCCCENgKreqardVbVEVUsArAFwgh1YEkIIIdsyLWrmkhBCCCGEEEKyIYHaaxVI88LBJSGEENII+LOXLQD71SvbJa71XQobt5wPCC9VXGy0XeZpl/ZFlzzuZXTMslT80mi73BQIL0G0dezy2zKjbX8jy0dDy3pLnLTLTMX0v8Qs+RwQaarU6NUbnbbLWruZc3zyZqQBc8xa9aydr9wsx+xivHpb45aVImJ5NeWmmd17m+WqBXbpKoAV5vr3N0uBF5akb9faH6PYp7vc9nmA0fb5nhOuLyc53dns32SXyD7npNplzHZZa/Q8ti+LkR57f0eX60aXOKcrVxyjs10Ga7/ihy5kpFw1CGlIuCyWEEIIIYQQQkjecOaSEEIIIYQQ0urgstiWB2cuCSGEEEIIIYTkDQeXhBBCCCGEEELyhstiCSGEkG0OG2CnPGZ/FBvEJy7Ppd1vF6OZgDQAwrkObX7Hfxltc1ZmWthmc03ax2KDsthAPSWR+jYQS1xAIBPcxwbk0WhwINsXE5RlmHmMk0yuxjIT7GZKpKlBThYtdIGCKu2l+46tUBKuP9D0812z/1qjx5kgPj3N/mhKcZvPspdpd6Up08fo9hnaKrZBfGLa7WbKv2qC6JxuAiABwAxzLbsMcHpTNNBSisHhTfv8bbL3YVxgKXtP2OBNQPh+s0GiTjHa3l82/2c0R6Ytt7vR9v6O5litL7kE8mp9cFlsy4Mzl4QQQgghhBBC8oaDS0IIIYQQQgghecNlsYQQQgghhJBWB5fFtjw4uCSEEEK2ORrLYxWXjD2aiN160uK++lnfXInR0aT0O8Zo6/O0RsWov+2wmPqvO3mO8QNOfdOUifS9r+mntdS9hfTU8mwaNjgPYOUg4wfsYMrYy9jN9BEA5toNcy3vj/E2Wgvf5EhfhprHeajZX2L0IqMHGW19mQDwI6OfKzPnN/2yjwvGZ2mvKQDsvS/Sssk+j+3SlwEQvkfM842TjP4sRkc7Y89p79HymDJxvsponRVIj31N2a/rXSPl7Hk+ijnHXkZHvZzR125DYfvcWOcgLREOLgkhhBBCCCGEBIhINwAPwPvVpSOAC1W1PHMtei4JIYQQQgghrZDUstiG/qsLEdlJRGaLyH9EZKmITBeRXSJlSkRkifkrE5GN5vh+IrJARD7w/8dM1WePiIwTkdUioiLSJ3KsvufrC2Ceql4KYD2AvbPpAweXhBBCCCGEEJI9CuAPqrq/qh4Eb4H4naECqmWqenDqD8BMAE+ZIg8AuF9V9wNwP4AHoycRkfYisldk3/Yi0j2mXzMBHI3wGumM5xORniIyN/I3El7uqIEi8gyAXQC8n+F6BHBZLCGEENJqictHWd+60fpxuTHXG22/70TPbb1nNl+gNQpmm8fPeg2tt3JtTJkIXUqc3mRyKlof3NQqs9+Uj7b7jinX33j9FpY5bScDdI7Tp1ifH4BlRm81+myjPzX6jXD1kG/S5pCcafabbmGG6fvciE/xGuP5tBbVZ422uSWfN+ebFunXdUb3NY3ZW8qkFQ3dEkdF2rI5NN8xOS+7mWtsr5G93gBC914Xc/03WS+s1fZeLYm0ZTu6e4y296T1/tr7Foj3C9v6xTE63ZghHdbnuDZmfy5k+56zbfssVXUjgFKz6w0Aw+LKi0gRgF8COMHf7grvhjvOLzIVwH0isouqfm6q9gEwVUROUdX/iEgnAHMAPALg4TT9es1vP3r+TOdbCWBgmj6PAPCQqs70B5snApgd9xhTcOaSEEIIIYQQ0uoQeCGdGvoPwM4istD8XRrbB5EEvIHlrAxdPRXAWlVNRYPaw9+uAQD//zp/f4CqLgJwCYDZInIUgJcATFPVWgPLOsjqfBFmAzhfRO4HcATCP/fEwplLQnJk8IMLAABPX3Z4M/eEEEIIIYQ0IBtUtX+WZe8F8DWA+zKUuQjebGO9UdV5/szhKwDGquo9ubSTw3nfB3BGfetx5pIQQgghhBBC6omIjAOwL4DBqpqMKdMdwDEAnjS7Pwawu4gU+GUKAHT390fr7wpgNIAxAM4UkR/k0NWsz5cvHFwSQgghhBBCSD0QkTsAHAJgkKpWZCg6BMA/VPWL1A5VXQ9gCYBz/F3nAHg74rdMpQOZC+D3qnojgDMBTBORI+rT12zP1xBwWSwhhBDS4sg2aEZ9g/hkWzcumIiNymIDi0SDA8UlnLdBPvrGnDtToB/blzKj44KqANhkg6fY+iaqTDcT4OYT0+7ASECfMlNukdnft6RWTwEA/U0QmUerwseOMm3Zy2oD5Bxo9LmRtqcavTKm3BKjiyNBfCx32XJG21gzw8y1sEF0hkTa+pXRm4y2czbPlZoNE0Tn0WgKPdsZE8TnExuY6SCjozFJzHO/yQT76WWelxUmUJE9B56Obws2OFNZjLb3ZPRx2cBBy5Eee77dY8oA8e8V+QT7ykSmtuLO2XjDDUF2qUMa/LwiBwIYBeADAPP9ADqrVfV0EZkN4BZVTXkUhwC4Kk0zlwN4TERugfdqOT9NmWIAN6vqTABQ1cUiMgjAbjH9ugfeUtbdAMwVkS9UNfVOks358oaDS0IIIYQQQgjJElV9F97YNt2xkyPb+8WUex/h+MzpyqwCsCqybymApTHlr0L6gWxW52sIuCyWEEIIIYQQQkjecOaSEEIIIYQQ0upIoHmWxZJ4OLgkhBBCWhz5eqTy9VvZOlG/WAr7FSLqCXvf6L1i+hXxIAacFdm23jPrG7RfKTvGaABdSpzubPavLnP6E+sLNX64zZGurPjS6V7mPFebMkNNmSG2L5HruNA8FpvwYIDRZxt9U6Qv98WU+9po63+cE1MGAE4x+jWj2xu92eg3jP5OpC17bJDR1qc5bYDT1to4M/Lc2fodjO5jfJYrzP53Ir7SRcYneojxSS6M82xaoqsHrY84Gz9kmdHR15DdXm9015i27HWJ+pvjXt9x+6P1bV+qkR9x58y3XdKa4LJYQgghhBBCCCF5w5lLQgghhBBCSKuDy2JbHpy5JIQQQgghhBCSN5y5JIQQQrY58s13Z71f1hMW15Y1vgHhrxcRH13A+zH7N0a24+YlBhht/HDFkfNt+tBo20+TxHHgGU6XmSILEcb6LO83+63n0fb/NVN+rTUwIpxb8gWjdzZ6s9F9In0ZZ/R1Rtv8lzat+wlGf4EQPR95N9ArHzHJNa2f0qYP7Wy09WgCwPZGzzV6ptEPG73Z6Ohj/NjohdajazpTXOK0zQsKhPu5cLrTp5vnewZiiMs/CYR9irZf9t4z/ap1D9sLc6LRrxsdlwsz6t/cIeZYnM+xIXNeElIbDi4JIYQQQgghrQ4ui215cFksIYQQQgghhJC84eCSEEIIIYQQQkjecFksIYQQQgghpNXBZbEtDw4uCSGEkBaB/UiOC8YR/di2id3XIz3ZBvCICwwSdz7bbu9IuXdi9OVGLzbaJqLPFEjFnt8GUvnMyfKySB0bZOUkJ+030rkm6M/e+zp9TqSp540+wZy/bzunN5U43cGUfyAS0Mdesm+Mfgvp+VFk+9OYchcavdpoG5Bna7jKyuNMJBz7mJ802gYa2snoryPnt9smZlIoONL1Rt9pdOQShdjbXOMeJenr2OcRCD+Xm2wQnzJTyLRl74nyTEMWcx/hDqMvNtoG54ne0/1iytnX1Dyj7Wsz+t7AAD2kZcFlsYQQQgghhBBC8oYzl4QQQgghhJBWhwBoV2cp0pRw5pIQQgghhBBCSN5w5pIQQghpNgTuo9h6qezHc8gIFqkf57O0Hq1sPVlxCdi7Gm39i/YcZZG2+hptvZHTkR77GDfGlIme3/rYbJ1TwlW6mXmNT8x+6wdcZrx5g8z+VyOnP8TokabdmWZ/f6P7GD0n0tYao62f8hijzWXpev5/Q9XXD9/TbXQ2B+YaPcho+5TYfgHAsph+nelkj/NXuCJHm4t3U4a2rLfTWm9XGG37ay25ADDNaOtftdf4LnN/dTPPIwCsLjMbxq8rJU6ruSfLB5ryUc+l9fvaJ/NGo5822ppqv4y09S+jf2B0mdGmjyF/8l6Rtj5C3djXcNx7RmPWJ20JDi4JIYQQQgghrQ4BUNwYo5m4mGqkTrgslhBCCCGEEEJI3nBwSQghhBBCCCEkb7gslhBCCGk2FOnXX9l91jMZ/diOy42ZS+67uHVg1otpjXPW+xX1fVlDo83jZ/1atn6Z0SYfIYBQDsuQ9ywmV+BRkdiR1t9nvXoL33R62mFOW9uczQ0JhH2LU4y2XsG7kR2DjN5s9AtOFt+9KdDrHzEeSyDszTQ5JIunuDrlK7q4A6WmvM3XCQAbnOw54d1A2/yXa94wz+ntpu6gSFvLKpCWy01Cyl852WmKS9i55bu7heucaLTNk2lzbtr788TIcz+zxGnr/wzl+TQ+y27G0/uJ9VgC4XvPsjRm/0FGz40cszeS9WPa11qZ0dZHHO1HNvlx8/VJZvJBNy+JBFCcKT9qrnBZbM5w5pIQQgghhBBCSN5wcEkIIYQQQgghJG+4LJYQQgghhBDS6kgIUNyh7nL15ptGaLONwJlLQgghhBBCCCF5w5lLQgghpMURF6Qj2ygTcR/vtn7XyLG4oB9xwYFskI9oWzaAiQ1GYoP72CTzNpDJw5G2bGL7MqNNwJUuJgiQbQoAfmm0iW+DbiaIz5Mxp7gu0tYcow83+iaj7zT6a8TT3wS+2ewikvQ+/+1AL+/+/UAfv25WqPqLI091GzVOlt/nHmTXUf8N9PplLiBQj/NtlCNgzdMuWM/KMS6Iz+EvvRzoBYuPdRXs45qEMKeZ6Cp7mP0/NPp9J7c8YYL4TIm0tczoRz90us++5oAJwvNqpH4fozcjPe/YID7TzYG+kYInpT9nCBvEZ05MGSB074ZuWPuasK+hGRna2iHDsRSZgoJl855SHNMWIbXh4JIQQgghhBDS+kgAaIxosSRnOLgkhBBCGggRmQlgbwBJePM7V6rqkubsEyGEENJUcHBJCCGENBwXqOoWABCR0wA8gnBCRkIIIWSbhYNLQgghpIFIDSx9OsGbwcyBhszgXZzl/r1ijq012vqtjjS6LNKW9ZE9Y/TuMe1+ZrT1WAJhb6fxpO1tPJOrTSL6hRE/3MIqp7u1c3qrKWO9ldYbODPSFbv8zlrqrAXwr0Zbz18vhFlmGjPewuVwPsue694NdCWKwvWPM/o1o/s7uf4R57O0nsM1j0Q686nRA5xc8LTxWRqLaIg3wps93nJ+zjW3mPNsQHo9yOgHIm3bKKDnmIs81e432no0AeBV49O80NR/1Nwvp5v7ZYa97+2TCgCmrVr3ewp739t7fXGkXInR1n85PaaM5Z3Itq2/EY1DnM8y6vdsBj+mgKOZFkajPh0i0gHAXfA+KbYCWKCqlzbmOQkhhJDmREQeBnA8vK89JzZzdwghhJAmo7HH+n+AN6jcT1VVRHZt5PMRQgghzYqqXgwAInIegLEATrbHReRSAP4PrZ2auHeEEEJI49Fog0sR2R7A+QB6qKoCgKp+lrkWIYQQsm2gqo+LyEMispOqfmH2PwTgIQAQ6a7N1kFCCGntCBgttoXRmDOXPQF8AeA3InIsvKh5N6mqdQaEfsHdc889azVCCCGEtAb8H1W7qOrH/vYp8ExQDWiEytbjVJ1FmUz+qGOMtt23dZZnqG+xPraSmHZtGeOlBAAYf9zexh+3uszpLqbdnSLVLzQ+y7h0gdOMHmT0xZFy9kusyY3ZaYozLVZudYXKh5jEmpGcmecd8adAP45LAn3lAWMDfe+6qwK9cqbLPwkg/DiNz7Lr8S635R74ONDfYrtAfxG5SF996e6rozq6ZJEvrjI5SjtUOj3XXIizw90KeUNNCks8avSVRodTboaxntWdjbaWUXuONZH61qe50B4w99Hzdr/1+y4Nt9XL5LD8xuz/ZIrTxUOcLremXOtPBoBSo3sjPea+D3k5ozll7aLAj2Lasu8bO0aOZVMnl/cQ0lZpzMFlIYB9ALytqiNF5DAAz4lIL1UNXjH2F9z+/fvzF1xCCCGtle8A+IuIfAdeWvuNAE5Jrd4hhBBCtnUac3D5EbyfTqcCgKq+KSIbAOyHyO9HhBBCSGvHt378sM6ChBBCGoYEwlGFSbOTaKyGVXUDgJfhB8sWkf3gzeVnWgBBCCGEEEIIIaQV0tjRYi8H8IiIjAdQBeA8Vd3cyOckhBBCCCGEEJIHItINXgbaz+CZlS9U1fJMdRp1cKmqqxBKx0sIIYSQ3Mk2gIYNxmGD5aw3OhoYxH5feN1omww+7mtDNNOYDRpi25pntE0BeobRpeGmZIDTq+0BE/DELotbG+nKOKM3mTq9TFCXQ02ZDTEaCAeMeaAikFueMFFl7MLom4yeGW7q8WoXxMe2e+97IwPd9QAXnKfr8HDA/WW3uE4XXe0elw3is2jVEaaCON3f9R0ADunu3EqlGwcE+g/7/E+gf33qPYEufmJToMvXmKBFCAcHwonOblx87mZX52FXp/eItwO9fPX3Q23hE6Ptujd7je81+vRwdWw1ellMuRlxAaMicbhCQXzsgQFOlr9p9tuAPFH62Q4YbV9fNghQmdHR+GCZzhN0zOi4AD5RWkmwnmaKFisiOwF4HF4A0wp4d+hlqvp5hjq/ATAaQF9VXebv2w/AY/BCdH0B4HxV/TCPfo0D8DN40dOC8+Rxrr4A5qnqBBG5B8DeAN7LVKHRlsUSQgghhBBCyDaIAviDqu6vqgcBWAngzrjCItIP3s8i/40cegDA/aq6H4D7ATyYpm57Edkrsm97Eeme5lQzARyN9L8ixJ5LRHqKyNzI30gA/wIwUESeAbALgPfjHmMKDi4JIYQQQgghJEtUdaOqlppdbwDYK11ZEWkPbzA3HN6gNLW/K7xp7Kn+rqkA+onILpEm+gB4SUT29+t1AvAigJPT9Ou1VDqsSB8ynktVV6rqwMjfWAAXAXhIVc8CsBjhJSdpaWzPJSHbLKqKDV9XIplUJBJSdwVCCCGEENJwNN6y2J1FxGa3eMhPn1i7CyIJAMMAzIpp61YAT6jqapHQ98U9AKxV1RoAUNUaEVnn7w+W16rqIhG5BMBsERkCYLzf3sP1eDxZnSsNswGMEZHjAHSHt6w2IxxcEpIjX26txqoN32DJms3ot2eXuisQQkiDYz/Gq2PKWI+W9Vmuj5T7rtFxK5+sD8y2uzxSznq8bJJ468W0XtBJRp8UbuqnRlvf3OqDkJbLI9v2d/bbjaeuh9lvvXnPGz0g0tZoW858o7UP315Gu0gu0lanH34a6C03Oc9mj4ucufBYvBzox0cajyaAJ8aeGeiLNj4S6EXvuedo1AG3BHrMa7e6c3QPT2xYb2bvfZYE+mXT6QGz3IUpfdFd1B7Hh5MArPlzr0Aff777rr0O3QK9bLPzi+6P/wR6eU3Yc3nlhLGBnmGMkmtGunPgQlPBPo9A2Kc5zej/sYXMPWG9nKsHhNuy1uNPysyG9cLae9rex3MzdOwHRtsbKeqtjKNdFmVs56Ptxnkrd8iizDbNBlXtn2XZewF8DeC+6AERORyeq/v6fDqjqvP8ZaqvABirqvfUVachUNX3ETbF1wmXxRKSI6m86OWVNc3cE0IIIYQQ0tT4AXT2BTBYVZNpihwD7yen1SJSBu9nrRdE5HgAHwPYXUQK/LYK4M0OplvWuiu8n7fGADhTRH4QLVMHWZ8rXzi4JCRHUovmK6vTvZcQQgghhJBGJQEvWnRD/2WBiNwB4BAAg1S1Il0ZVb1TVburaomqlsCLDX2Cqr6oqusBLAFwjl/8HABvRyPO+ulA5gL4vareCOBMANNE5AhkSbbnagg4uCQkR/yJS1RUc+aSEEIIIaStICIHAhgFb/ZvvogsEZEZ/rHZIpLtktrLAVwpIh8AuBK1F/YD3nrrm1X1SQBQ1cUABgHYPk2/7hGRNfBmSOeKyLv1PFfe0HNJSJ5UcOaSENJsxPks4zxS1gu5Q4ZjcV8PXo/Zv3tku8Ro67NcnL5M32FOv7M03NRmo1fPcbqL8bTZvIPvRLoyxeihRo8z+QHPMb47m5syehlMRrhO5xrP5JEmz6W13dmvftbPh3BuzMNfeRnpqEBRoHuPfTt07NxVfwn0gH1eCPTL37jr0h+vBbrr+S4DQme4PJUAcMA+zwX6Rtzh2sKxgX4agwM96njj5Vx3Y6it4kGu7RcfOdUdsNfybCcXwnwH7xNqCvee6nJ+2tyaoVymXyCeE4yeabS99fsaPbXKbES8jAutt9Lcx/2NHW2hvXettzFTLkp7rHfMfsSUAcKezzhsX6LvDTbA6Ucx5bLxdkfJpU7rQVXfhRdOKN2xWlFczbGSyPb7AA6r41yrAKyK7FsKYGmaslcBuCqmnTrP1RBw5pKQHOGyWEIIIYQQQhycuSQkV/x1sZy5JIQQQghpBgQczbQwOHNJSI5w5pIQQgghhBAHB5eE5EgqoE9lDQeXhBBCCCGEcCKZkDzhzCUhpOWRTQL08si2DeaxV0w5G61m95gy0XIzjL7AaJMw/h0b6CcSkefig5xeaIL4bHLRdbpq+0Cvl0hGgL33dfoFs/8OE8Rng9lfZvTX4aZs17bsYYL4XOhk0dkuEEvlMnOOCAMuej7Qpbec6A4YuaSPC2JTPqdLqH6PwSsC/Rl2DfQee7jrsubFXmnPfd/xvwptnzV/VqBfqD4t0Mds/6YrtMxUON/JTjuHgwNt6W+ui00p/5zRrutYM8j08XeRjl7jZPmyLkiLvV3uiBxbY/SPjLbP9wwTxKebCeKzNXoid43RwwTxsbdbF3Ovbppi9g8JN2WPhYJfWZbHlIkG8LGv27jXfdx7ABCOjtSQNFEQHwHQvs5SpAnhzCUhOZJaFstUJIQQQgghhHBwSUju+OtiOXNJCCGEEEIIl8USkjMM6EMIIYQQ0owkwGWxLQwOLgnJEbcsloNLQkhDk41nMhNxdez+vWLKRFlvtDEEhhKzR7E+LvtVY7rRVxp9r9H2sQO44Lfpj/Ua4XooE+K7stqcR5yn7vBRLwd6wT7HujIXm7q3TQm3ddQQp60f8wr3uCqvM368QaZMh3BTpUcaD+FAJ7ve+t9Arz9jT3fgunD9Hcxz2RmbA30E5gd6/vGuTF+Tb/03sNcUwJHOdyh7q9v/mjMUXttvbKDHy02ujPFF+p1xDDXyw/sDPVnOC3Txdc5aMtyUAYDxT5vz/NUcsNeym9FTIn2x1tIjzb3X1zxHi4zP8pA5gfy7jg819VM52W2EbKbmNdXrN6bMEKMj1ztEP6NfN9r0EXOM3jFS376Orf+yb0ydeZH61h9t3x/i3oPizkeIB5fFEpIrqWixHFwSQgghhBDCmUtCciWYuWQqEkIIIYSQpkdQa1UAaV44c0lIzjCgDyGEEEIIISk4c0lIjvjBYum5JIQ0AtbjZD+qizOUi2OHmP1Rz2RcPss4bL69XSPHbFtnGf2Uk/2N122hfRzGtxY9TzdznhUmP2HG62D6omMCuUBsmbedfN55OXHzkHBTtxnv3Im2nybZ4hDjldvZFDk70q1HzTU29rj1i43PcoY735XTtwtVv3fHkYG+duPtgQ75IU27y58/wG3cHo2AYh5XgXlc01y58deafKE3m6rRWaNXywI5SN8I9OTuV6StX25yYY6/8dxwW9b2WGD0o+a5n2zuo6FlCPFWSSB7696BXi7mnrrM3VPHq2v3p3JUuC2cYrS7j8/T7oF+XKy30noTo8bUu4y2eWBtnTKj7evJPN5ax2z9SL7YgOj7QdxrZ8eYMvRZksxwcElIjrhoscxzSQghhBDS5DBabIuDy2IJyRUG9CGEEEIIISSAg0tCcoSpSAghhBBCCHFwWSwhOcOAPoQQQgghzYaAo5kWBp8OQnIkFdCnkqlICCGNSrXR2QTwyUSm+vYrQYnRXxq9OKbMvyJt2aAhMcGBFtrgJxcYXRopOMDJT2wQnzFIS/9IQKCFMQns77eBa8z+V02wlzsjgYrWmDqPlgWyt54a6OUTTPkfGv1wuKmu2jnQmze6a1w5uKMr9Jg7370vhutj05RAjh/hgvj0VhecqMDcO8suOjTQnR74NNTUlrfM47JBdNwpUPTFSa6PvzJlppYhjpmvRKMYpeo4ufFDF6hoxxu/DZcz58cQe2Ctk2UlTi8qQYhD3HO/XC53+4vN87pwaSBf7O6ex9B9ByAchGdUoB4PBYYy9+SFpsOPxtyDAMKvFVMHTxt9pNHmsQMIB+baEXVTHtm259/d6PeNtoGCMgX0ybYc2ZbhslhCciRYFlvFwSUhhBBCCCGcuSQkTzhzSQghhBDSDAgYLbaFwZlLQnJEGS2WEEIIIYSQAM5cEpIzDOhDCGlIGsuvFOez3Cuybbx+oQTs1pNlPV1lRn83w/mNH/MU4+17zvrQSpy8zmgAGJfJr+bRQ38Z6DXyZYaShteMDtnQzMbzkTrGZwk4/2dnbA50zxHvBnrlPge64j3DTa0fsafbGGAOmFMcf/6sQC/BweH61odnPKOVE4oCXWGfuw5Objlwt3BnbLrmIUhL5U7G29fF3iufhQs+dlggrzx6bKA/XrdHoGde5LyYO8r/urp9Iyd9p8zpax9L26/zbu0e6MeHXxI5ejnSUm7ukW4HOW09sjMijwsnOjmwndNzY+7PjD5Li31NvRlTZq7Ru0eORT2UKexX/OqYMlGsz9K+7jdGC8ZAnyXh4JKQnEl5LitrkkgmFYmEZCxPCCGEEEIakARCP5yQ5ofLYgnJkdSyWIC+S0IIIYQQQji4JKQB4OCSEEIIIYS0dbgslpAcMROXXjoSLssghORFY/mVrJHNeilLIuVsDkvrx7R59az3ynq/BkTampO+refK0vaweMumQJd36hI5GudFdbkG14jpV1/rBwTwtfF5bjb7pxpP3WST93BKSdo+AsAzelWgz3rP+SEXHLRvoE9aOj3QK1d/x1VeHfEMzjUevpnOp1i8xF2LF0eavIulkc48a/RpZe6cs4zP82onf7fqmkDfsNjmbARgbI943ehy5wHsqdu7c+xryuAwhBjn5L29RroN+xn5sdHvxuQbBYB3bF5T559co+4xnmjvtf6R+jZH63jT6WuNH/ITd11wtbl3ZqwINzXQ5fkMWSAt15jHYlOJRh+Xxvkx+xltvZgrogVtx4y2HbM+S+ufjHqw4zzZcV7OFgajxbY4OHNJSK6YdbGcuSSEEEIIIW0dDi4JyRE7c8mIsYQQQgghpK3DZbGENAAcXBJCCCGENDGMFtvi4OCSkByx0WIrqmviCxJCSF7kkq/OUhazf15kOy6vXW+jozn2UjwZ2Y7xgd1f4vQVToZ9ltnmB3zOaOMl/dFvwsU+NLrY6HLns+x5kclNudn5+XqPeDvU1Fn7Op/lIR86c+Ki61zOyTljznAVupnKn4S7hb4Rr2KqW+PctThv7J8C/fiISA7HzkZPLnF6itm/2smQz7KzXXsD9H5pSaCX7/t9d2CF8wCu3MfkdlxtLuq0kAET5w02ff6F6XOpk53KnCFxy3dNzs254X5hpmnb5LzsMXyD2z/J3i+zw/VtXtXQ9Y8m1PQZYDd6hY/Ntf5Pe++ZXJp32b7Y+zBD7tXiIU6Xl5kD5npnfN1bT3Tc6zPbPJVx7zVdjV6fZVukrcJlsYTkCJfFEkIIIYQQ4uDMJSG5YgP6cHBJCCGEENK0MFpsi4Mzl4TkSCgVCQeXhBBCCCGkjcPBJSENAAeXhBBCCCGkrcNlsYTkiCqQECCpzHNJCAFEZCcAjwPoCaACXubzy1T18/xaziWIjw3OY5OxxyVMj5azAUDKjDaBc0JBUWzydyCczN0Fu4nPBW8DoXw3cuz99FXEBM45xOhJH0YKusA96NIxkL03umA9y6W7Kf+m278iEnRnxWeBXDTLPa7Dz3850IMxLdBX33iDqXxBbLcw1/R5gwti88KtJ7j9nyJEj6Pdxaw8uijQ6y/e0xW6xlR43uiHJdTW8l/ZID4u+MxQfTzQk7ubCExdXB+rTgq31U4+CHTxlk2BLp/pAhVtedgE8Xmtwund7wy19YS6++1cMfdbDxMsp7/RC93zAyB8Gx7sZFftH+j1q8xr5XZT/tHycFtYbnT0fve5xvQlFNyna6jY4Xp0oBfIUnPEvkDs62svo21UKiD8mtwB6YnWsdj3hLj3mnyD+MT1qwEQcDTTwuDMJSE5ogAS4n2oVlQxWiwhBArgD6q6v6oeBGAlgDvrqEMIIYRsM3BwSUgepAaXnLkkhKjqRlUtNbveQHjKgRBCCGk1iEg3EXlWRB4SkWkikmkaHAAHl4TkjKoi4b+CGC2WEGIRkQSAYQBm1VWWEEJIjqSixTb0X12nFdlJRGaLyH9EZKmITBeRXWLKjhOR1SKiItIncmw/EVkgIh/4//dN10a2NMK5+gKYp6qXwlsfvXddFbhKmZA8CGYuObgkhIS5F8DXAO6LHhCRSwFc6m11aqTTW7+Y9U9a71M04br1e1nvlf2qYH1gZUZbPxoA3Gi08Z7NtR5Gawi8y+iox/IYo41/03oIT7D+NpPUHgAmO5/ltRc5U914ucSVOccYIDs7XXS78x8CQOUUd2zyqb8M9K++dE/zgieODfTh6ryYC+SVcL92Mf68eeY73hQnP1vhJr6ll41RDqzZt1ege3xonrsVptwU44fcivQaACYZbXypk0cYn+VfTZklTrbrtDrSWFmgykebx2X9j+9YX6z9fnt6qKX7cbTZMtfPPPedXndm1C0buiDENKNLnVwvZvTQzVyjT6qcPuqgcFuv2nvM+mcfcNLexneY5/dGWxdYIMbD2NeUe8e+Vq2X0r6eo37PdjF17KIJW78kUv8dND6ZvN6tlpQNohQARGQsPBvE0DRlZwL4I4BX0xx7AMD9qvqEiJwL4EEAP7YFRKQ9gN1U9SOzb3sAHVV1XUOcS0R6+tuWFwD8CcDVIvJDADWINcE7OHNJSI6EPJccXBJCfERkHLxvzINVtdabg6o+pKr9VbU/sF3Td5AQQkhe1McGoaqvqerH0f0i0hXerwVT/V1TAfRLMwPaB8BLIrK/X68TgBcBnNxQ51LVlao6MPI3FsBFAB5S1bMALAZwYrrHaOHMJSG54keLTQhnLgkhHiJyB4BDAPxEVSvqKk8IISQPEshqGWsO7CwiC832Q6r6ULqCedgg9gCwVlVrAEBVa0Rknb8/iDKuqotE5BIAs0VkCIDxAJ5Q1Ycb+lxpmA1gjIgcB6A7gMfqOhEHl4TkyL67bo/tigqx6KNNDOhDCIGIHAhgFIAPAMwXb2XDalU9PWNFQgghLY0N3uqSrIi1QTQUqjpPREbCWx8+VlXvaaxzRc77PoAz6ixo4OCSkBypUSCREBQVJpiKhBACVX0XXniJBsZ+VEfz0FkPZVy+uji/U9Q6Y1d0rY1py+YR7G20zZEJ2FyRwA+cfMd6z6zn0vjOhkWammTq9B/gtPVZ3uzqj771+lD10TIq0OOvu8kdsDEPp7rHVbzF5Yws7/TvcF/M+YdOeNLtP9tMUl8xPZALttrvZMcixNSnA1l030mBvvgRNxlxPsxESWSOYs26nQPdY98N7sAXptDZTl45cWyg710zMtxYDyevvdX4UhPmeln/os25eUdJqKlrRz3h6r83INCLJxwQ6Lfh8moOXeyu42T9faitobJfoA/RgYFeZHJDbulsvJHlYW8jis19Za24NxuPrR0+nDbG6bNNXQB4Nc4jbMuZ84d8lpG2bLl37jD7jacY1u9rfZYzIm1F88KmsDe49VxGPZb2/cXWiXvfiHvPaZsYG8Qp6WwQdfAxgN1FpMCfSSyANzuYblnrrgBGAxgD4BwR+auq/qsxzpUvjeq5FJEyEXlfRJb4fyfUXYuQ1kEyqSgQoKgwwZlLQgghhJCmRgB0aIS/bE7tbBCDcrFBqOp6eOGxzvF3nQPgbVUNLVMVkW7wQmL9XlVvBHAmgGkickRDn6shaIqAPmeq6sH+3wtNcD5CmoSkKhIiKCpIMKAPIYQQQkgbwdggusOzQSwRkRn+sdki0t+UvUdE1sBbIzBXRN41TV0O4EoR+QDAlagV7hqAN6V8s6o+CQCquhjAIADbp+lXvufKGy6LJSRHapKKRELQvl2CAX0IIYQQQtoImWwQqnpyZPsqAFfFlH0fwGHpjpkyqwCsiuxbCmBpmrJ5nashaIqZyyf95KITRaRz9KCIXCoiC0Vk4eefN/jMLCGNRlIVBf7M5esrNmDwgwuau0uEEEIIIYQ0G409c3mUqn7sJ/+8G14UpXNtAT+s70MA0L9/f63VAiEtlJqkoiAhaF+YQJJ3LiGk0YgG8bHkE1Bjh8i2TeC+e8x+G/DDBhyxAUOAcICf3ZGW4o6muglwMikS/ORZs32aSXJ/utk/x8nRt9k+AphmzmOCBfX81q0WW7ndga4rPzJ1ew2I9MXYqqa5/Afzuh8d6BE6IdCLTKwZdAs3dcg6F0XneXONdpHrXKFFI5y2MWQAHIN5bmPFh+ZISaCunHh3oO/t7oL4nLRuOixzJrrAQ+NvMUF8ejp55YcmINAq18fJ+4S+1mHovibQkXkq+pW/F+gBHz4f6EH9XKSgiz5+KtzWu+7DddF75oAN+jSpzGxEAjMPMvouc4+dYu6d20z9LmZ/n3BTofvVBvt5tAzpMWVujhy6zaQK7GYmkj6xz6MNmGVfayZAFgBgudF9jTavldBrOIo9jw3YFffe0sKC+DReKhKSI406c5lK4umbXCciHAaLkFaNKiACtC8sgCpHl4QQQgghpG3TaINLEfmOiHTytcALiL2ksc5HSFNTo97MZRFnLgkhhBBCCGnUZbG7Avibn0elAMB7AIY34vkIaVJqkr7nsjCBJGcuCSGEEEKallQqEtJiaLTBpR/Z6Pt1FiSklZL0o8UWFSTAsSUhpPHIlLR8L6M/yrJOiqhP0noVS4y2fi17Dpu8Pep6MSbI0HmMD836LMXsV5t8HsBpF5gN49+cYX1oxpB4VMSzaSyA2FQWyJUTnM+y97dvB3q5FLjyk61pEsDzxtzV38njNr4U6MrN7trPW+r8dNfjzlBT81/8caClg/sQOURfD/SiVW5/j8ErQ/VXSlGgz9PSQPeEK3dX5dWugrFyzjnDeSwB4A/TXXDJX+94T6A3btwu0DtO+DbQWuiCZA6+agriOG/pnwL9lbknZ4oJpvmu8zIee0DnUP3hcP7VieuucAf6mOdh7xKnV1vPIICp5l6639wXM0yZgab+XHNPjTMeSwAoNx7GR8c4fXpMu5gSqKKrw9e78jbnOcUna80R61WeG7M/+rq12NdEnFc6+n6wPKZcNuwV2f4obSnStmiKaLGEbJMkFUgI0L4dZy4JIYQQQghhnktCciTwXHLmkhBCCCGk6RF45jvSYuDgkpAcSSYVCREUFQpnLgkhhBBCSJuHg0tCciQ1c1mY4MwlIaShsR/PmfLKWY9TnP/SEs1tabFersUx54/m2EsR8brhl0Zb02PET5ki9B4a8UzafH2ntHP6ubJAFm9xnsFQnkoA6Gw3HnPyWuflXH5td7f/qF2dHurOAQDoX+L0QvdYKm1+ROPrPGblG27/IOdTBAAZ6B70eROcN3EFegV6wD4vBLr0RZMbEQjlThxsEj/+9BfOqzf0qfsDPXmh8yyOnn59qKlfr/qj6b97Lnd80fksrcdUjlkd6N9dZeoCeOZpd10fP+gSd8DmjTRPAw5017EUYUrHm+u61cmiy523sPhi18ctT+wWqj/6IndPjxaTQ3Lyvk4PtT5F6z80+ScB4H5z7xn7ZygN7TDT30kx93ot7Pnt68j6LEuMjnourWfT5qwsiykTJc6PGfdeYcvQY0lqw8ElITniZi7puSSEEEIIaXISYLTYFgYD+hCSI15AH29wqQCUA0xCCCGEENKG4eCSkBypSSoKEkD7Qu9lxKElIYQQQghpy3BZLCE5klQvz2VqcMmlsYQQQgghTYgAaF9nKdKEcHBJSI4k1XkuATCoDyGkAamuu0gtsgmuYYOBRBOmx52zr9E24IhNMr8i/jzDhjg9yRS50OgpRmd6L93Z6JtdUBYbxGfQ0mmhKjNPPdtsmaBHXUqcNkFssNAUP8qUAXDtK7ebrmwO9A2HxtTpWWYOhNuy/Xx8vgt8c94RLrjP42Pc/j6j3grVb398ZaB/eoYL4mMDGE0eYyLPmGs0+r07Q22hc4WroyMCfReuDvQtuM3t12sCXRH9Zm/i5vRc+m6gV84/EGm5wwTBWRg5ttnoDU5WXufuvcpSp4uXbApVHy1D3cZAE8TH3oeT7X1sgviEAv0AeO4upOU5W+51o93jqrw7WskGZyozeojRb8aUMYGFAAD9jLYBiUqMfj/aAYMNHPRVjLbYoUMu71NkW4fLYgnJkZqkokC8PJcAZy4JIYQQQkjbhjOXhOSAqnoBfRKC9u04c0kIIYQQ0uQwWmyLgzOXhORAaiDpzVwWAODMJSGEEEIIadtw5pKQHKjxB5IJAT2XhJAGwiYtj0tmHueDyoT9qI/6LOPK2fNYT1lcMvZ+kW3jwZw0xew3vtCPjdcuRFV4c6XpV09j6LOessecD20h+oeqnzXrsUA/c9wQd+BgU6jbrk7PNPtftR5TYPy+N7kN47Oc9JYzkA6b9ag5h+vjvPONnw/AMccZT92VTj5+kPNZXrvUeTzHPXhzqP4Rl/3TbbzhZJ91zpu5bN1B7sDtzhvZY3jYI7v6S+dHbPee+zDreYDzTP58xnOBvuD/uWt6fsc/h9rCHU6uPMf4LAeZMnamyVzSQ0ZZzyKwaMKRbsM+rX3MB24fCWR5p0qEMX7Kg81u6/cdaPQUWzf6WvmFk6cb/+bHpsjCf5kNo2+P3OvXmXthXNxrarHRvWPKAMBGoz+K2W/fQ6zHMlrHsldMmeqYMpna4nCjLcFnm5AcqEn6g0tGiyWEEEIIaR4YLbbFwWWxhORAaiBZkHDRYpMcWxJCCCGEkDYMB5eE5EDSei6DZbEcXRJCCCGEkLYLl8USkgOpZbEiMKlImrNHhJDWT5yfMhef5Q4x+21b0a8AO8Zo693aPWa/9YcBwACjjbdQjPfMpGbENUZH0wmOE7PxlNHGA9fZeeDWdO8Vqv7M7WbbWii/Mfpac2BtZ6d/ZbyYQMT35+QAvBxo/afr7wl3PxvoY+bbvIUAHjQfGgNdnb+vcibA3+C37tSXvRaqvug940c0qTyXPW3MoDeYCuc6uea98DVqd6DzKup/Tf/h+n/y6X8LdM3GgkAPO8h4TIGwt/KdpYEcPd09d8/hlEAvEndPLULXcFvWgvmwk0NPnRjoydce5Q7MMx5TALjW6BeQHvOcFvV3/uLKWjfiKCc7m90lRofydJp7XX+LEOPsRtxr9SSjre+5Y6RcmdHWA2lfn/b1nE0+3Gi5ON93tm01Yj5MAUczLQzOXBKSA8mkWxbboR1nLgkhhBBCCOHgkpAcqLGeyyAVSXP2iBBCCCGEkOaFE8mE5EAySEVCzyUhhBBCSLPAaLEtDs5cEpIDyaT3PyE2FUnDtD34wQUY/OCChmmMEEIIIYSQJoIzl4TkgFsWC5OKhDOXhJCWQqbAPSmiSeLXG20D2ZTH1DnFaBs8BACeNNoEj7GBTWxwn7siAU8sk34Tc6Cdk6d9aPavCJUadNGWQM+83US+sVX6m8drimBz5JQzXIAavOCCx9jAO8/88RhXZlWJ02WRtm43gYoeMM3ihEAvGumC9hTfvClc/z4nB0x8PtAvv+ICwchfzefSG6buj8JNFW/52tW5z9Sxl3KD0XebMu88HW7susFOm2v0+y/3CHT5ii6BfkLPDPTDuDjU1Aq4a7Rmt56BnnzoFa5QF1Ph7nBXsNDeVyZq1DvRYD0elTul3e0xz9xvQ0OdDDhLSwL9jNggPJmwwXZsxCn7Wltu9NpI/XKk56sYnQkbEMgG6/kqizKEeHBwSUgOpAL6hJfFNmePCCGEEELaGAkAHZq7E8TCZbGE5EDSBPQpTHi/rCbB0SUhhBBCCGm7cHBJSA7UmJlLEUFCOHNJCCGEEELaNlwWS0gOBNFi/VlLEaHnkhDSQrEJzO3HftSr9d2Y+rsbbf1eNsO99WgC6HWj0yvmmAM/cPJys3uS8SlG/ZvDbDlbKeoZ9ehUEU5KP1O2cxv9zYG5zj/ZqaJroLes2M2doUfY51h+n/MQwjzEZ167INCrtHug99lnnSv013A/taPzE8p69/lx7+KRrl93fOr6VeL6BQDY6mTpr050bc2M+SwaZPSm0tChtR1PDvTRo+YFeg98HOg5fz4j0H32WRjo6/UvobYeRqdAH4H5gf4YznP5+OBLAn3uPOfPPa/7n0NtlU5wjwtTzYGF1ptoDKsz7P0BoK/x69pDj7r9Pd5ypsk1hzp/8Jq3dg411UNGIT1jAvXMGdYfbP2eEd+wvXXLJzjdy7yOVkw3hfoaHfYUA0fGHIvzYkaxfsr0r6kwmXyW9rWXrc8zP1SAakaLbVFw5pKQHKjxo8UWiPflgDOXhBBCCCGkrcPBJSE5kDTRYgHOXBJCCCGEEMJlsYTkQMpzKWbmsqHyXBJCCCGEkLrRBFDRvjHmypKN0GbbgINLQnIgmLn0B5cCgXLmkhDSYrC56KxP0vovjZ8NALDYaJvz8hdGm1x/GBh/+hVlTh/l8i7iNVPGWOVwxwCnbywNtzUpLgem8cAd5fq1Jeq/erdjIIcecH+gJx/nciVu6Y+0lM/sHN4xw+hzjDb197nF+Swnrbow0MNGPhpqSsatDnSnCuOtvN55K3ee8EWgL173cKj+InPS0n3Mc7nZybM2PhboZ25xvtCh+m6orR3l5UDrvs4X+8AHQwI9Z6bzXP72fOch/NmY2aG2YB5m6VGuX7rQeUxXfOi8jQtGHhvox590XkwAwCfGd3iNOz8WGW/ij4yf0XXXY6jJS3pFidN7u3tizXEmD+sdTn6BaNLLuUb/C2kxp1igMwN9eCLiuSy397Tz+2LFFLPf+pjfMdrmxQTCPssyo+O80pm8kFE/Z130jWy/k7YUaVtwcElIDqRmLgsSnLkkhBBCCCHbHiLSDd5PgZ8B6AjgQlXNGC2KnktCciA1kEwEg0vOXBJCCCGENCUqgsr27Rv8LxtEZJyIrBYRFZE+Gcr9VETeFpElIrJURM4wx/YTkQUi8oH/f998rkemPuV4rr4A5qnqpfCWtOxdVwUOLgnJgSAVib/KRzhzSQghhBDSlpgJ4GhkyM8iXnCOxwGcp6oHAzgXwGMikhqDPQDgflXdD8D9AB5M00Z7Edkrsm97EekeLVtHn9KeS0R6isjcyF8qJ9K/AAwUkWcA7ALg/bjHmoKDS0JyIFgWK5y5JIQQQghpa6jqa6r6cd0lkQSCBLCdAXyiqkkR6QqgH1wW16kA+onILpH6fQC8JCL7A4CIdALwIoCTI+Vi+5TpXKq6UlUHRv7G+uUuAvCQqp4Fz5gfNevXgp5LQnIg6Q8uU8tiOXNJCGl+bALzjUZXx5SxAUqAcAJ1W+65mPOZAEAyIHxITduvzjGnGJa+qRszJJzHPCcvNMcerXLaxeYBXrWPHcCBdwVycn9T3wbkufYzp+93gVQW7NMv1NQPH18SaOn970D30YpAdz/6k0APe8VFt9G3XUAbALhY7wv0m3BBdNpPqAz0hkoXVGbXIhtkCSgd6b7j9V71dqBPxj8CPf6VmwJ9+K0uaE97uP56uCAx8lPzYfZnJ5+Yfmagf/YLF8Rn+FMTQi1N7D/CbZxQFsjz9aFAb0bnQBffvCnQ5ddsF2qrd3e3Am/5oW7/qOQtgR4z4dZAd73ov6H6X525R6AP6zg/0KVyhOv/KhcoaaK4YDffwwuhtnBKidOfmCBVC00Zd6vh8LvMfXtduCmMsxtxgbFej9kfDaITZ3+zwXlscJ+SSLkvjV6LurHvDc0fwEchqEFBYzS9s4jYZ/chVXMTZ4mqqoicBeBZEfkG3gX8iX94DwBrVbXGL1sjIuv8/Z+bNhaJyCUAZovIEADjATyhquEoX5nJ6lxpmA1gjIgcB6A7gMcylAXAwSUhOZEaSBYYzyXzXBJCCCGEbBNsUNWYONLZIyKFAG4AcJqqvi4iRwJ4WkQOqE87qjrPX6r6CoCxqnpPvn3L8rzvAzijzoIGLoslJAdq0nguObYkpG2TbXAHQgghbYaDAXRX1dcBwP//DYDeAD4GsLuIFACA/7+7vz+EiOwKYDSAMQDOFJEfRMvUQdbnyhcOLgnJgWBZbJDnElBwdElIG2cm6gjuQAghpOFQCCrQvsH/GpA1AHoYv2RvALsBWKmq6wEsgVukfw6At1U1tEzVTwcyF8DvVfVGAGcCmCZi1nfXQbbnagi4LJaQHIjmuRSRTMUJIW0AVX0NaM73g0zJ0dOV2SG2VDhRu/Vixvi7tCyywySmH2hWVM013srrjP9xnNGLIk0dcoHTj9rzLHfyWeOBs944AHjumkAW/5/x93UyPq3+JmH9NCcPv+L5UFPn6Syz5a7LsnX7B/qE7s6r9+KvTg20XBf5AdJYEydNuDDQu8uUQL+kfwj0r28Jr4IrusF55ZaP+L7TFzutvc29aCx4b/Q6ONTWxJtdZ4qvc9fomo7ORPjLFX8L9LmnmbpySqgtmE39f84zKfuYxz/alB9o/J+fhr/UL7/LPRY87eqPEfPcmcQI63feM9yXH7k6pXNsHJKyQE38s3ki4O7Prhqef1lv43J+UmY2rAXN+oU7Bso+VwBQOe4XbuM6kw1inC1n7kn7eqrlc7TbNqCo9U+WGG28oLWw7wn2tW49m/ztLIWI3ANvyehuAOaKyBeqeqCIzAZwi6ouVNVPRWQYgL+KSNKveqGqpszhl8OLHnsLgE0Azk9zqmIAN6vqTABQ1cUiMsg/b1Z9qse58oaDS0JywKUicR/cXBZLCCGEENI2UNWrAFyVZv/Jke0nATwZ08b7AA6r4zyrAKyK7FsKYGm2fcr2XA0BB5eE5EB0cCkCLoolhGSFiFwK4FJvq1PGsoQQQkhrgoNLQnKgxl/YECyLBZjnkhCSFX44+4cAQKQ73zgIISRHkkigEkXN3Q1i4OCSkBxIRYst8C0Z9FwSQpoH65EqjimzMWZ/SWTberesN3OU0WlXdgEojdkPYK49v/VZxuS2fCLaQInRps5AU2dqWfz5jSeu/FxTx3j1hr51f6DXoVug51eG42U8Ls5Dib2NJ26zk+N7mdyS37rckgv2PTbU1vEfOv/msFkuH+Z56s75eOISV6FnqDrm3XpMoJ+a4Dx8F8K11bnS5dzc8rmzZ/WGy4sJIJQW/YmOvwz0z+a7fJZj/urySf59gsvN+JPy/ws11WvIskDLSPPbyX6mUGejpzmf5d0jLgu1dfUbD7qNzeZzdph7Hp+Y6PJvnrsucn+OMx7Ou4yfsVuJ09bzebprd72xQgIA/upknyNcDJRlI8w9dZe9p93rpnInkwAzyrjLne5r7qmQtdL6J63/Mrptc1va1531WUa91sUx2nors8l/SYgHo8USkgNKzyUhJIKI3CMiawD0gBdI4d3m7hMhhBDSlHDmkpAcqEmbioQQ0pbJFEiBEEJIw+OlIuGy2JYEZy4JyYHaqUi8/fRdEkIIIYSQtgoHl4TkQBAtNgjoI/7+/Nqtqkli5edfo7yyJr+GCCGEEEIIaWJil8WKyPos6n+qqgc1YH8IaRWkBpEFqSlL/191MomCREH6Slnwyeat2PB1JbZvzxXrhJD6ks3HtqUssn260TOMvtfogUjPjpHt54x2yeRhY59NNYFQzjaBUAbYRPQId/MNc2yuOXB6SSC7Tv9vqPr6U02d5ebA6s8COfmgK9z+d9x+dLOJ7IFr9fZAjx/pAvegj5MDks8HunSWiZQT+c3wxYQJDvSak38+/9JAP77G5Dj/1ASnAfDDHy0J9MTXhge635/fQzq+Huw+mz7A/qFj647oHujuWBfoxUccEOjOR2wO9D6rXICX4UPCwWrmwQUa+njsHoE+XMa4QpPMffRsu0D+z5yHQm2dMPyFQPeeX+YOvOXkua+YSDvHRNP+uQA1PbUy0CtPPdAVWWiuq41jtcIG5wHwsbuPll10qNv/aKRcgHu8RV9cEzpSuZMNnGNuShvEZ++TnF5dZQ6URc4z12h7v9pzfBWjo8QFBauO2b9XZPujtKUaE4WgEu3rLkiajEzfYD8HcHKG4wJgVobjhGyzOM+lt536vpRM5tfu1mrv20e+M6CEEEIIIYQ0NZkGl7eoasafIEQk7ucaQrZpai2LNTOXQO4zl1urvMElvZuEEEIIIaS1ETu4VNW/1VU5mzKEbIsEAX0k4rnMc+Yy5bVMcnBJCCGEEJIRhaAmjx/1ScNTp7FLRDoA+CW89L1BeVX9dbYnEZHfABgNoK+qLqujOCEtntSy1USitucyH7ZWJ0PtE0JIZuL8UzvElLEeKZtkHQgnYLf1S4w2/kmUxuwHwondTfL63cxu67O82fgiT4s0ZT1mF7q+HP7I6kAv+IXbv146h6tbK+kX9sADTlqv2zDXl+UTS2DpPdz15e8TnW/wp6XO91a6j/FZfmoqm90AULXEGVDbdXKPBY862bO7e05W1BhjJ4AbX7s50MMxMdAvnH9CoNffsmegtx9mTJ+l4b4UL9kU6PLru7gDk8xzNM9dF+3k+i4jwx9YE4tHBLrPrcYceaHzKZ73yJ8C/fhFl7i2Hv13uGP2vlpbEcg/vDUy0L9+7x5XplckDIixEK482uy/2+itRod8vBHv79lGv270o7acuV5Huf2Vxp4LAHjW6NMWm40hTq42rxuUG21vViDskzR+4VCdY4yeF6lfjvTYIUKc57LpPZak5ZNN1JC/ACgC8CaAijrK1kJE+gH4IYD/1lWWkNZCMsZzWZPnjCOXxRJCCCGEkNZKNoPLXqraO5fGRaQ9gPsB/ALAy7m0QUhLJDWIDPJcpvbnOeWYGlxy5pIQQgghJDMKQQWjxbYoshlcrhKRHVQ1U+ziOG4F8ISqrhaRtAVE5FIAlwLAnnvumbYMIS0NFy02FdBHQvtzpaIqtSyWo0tCGhIRyRT9PMVWVf1no3eGEEII2UbJZnC5BcBCEXkBZmV6XZ5LETkcwKEArs9UTlUfAvAQAPTv35/fqEmrQCMzlynynrlkKhJCGoun4WXHS/9Lp8feCBsMm5E4z2TXSLk4v1RcnV2jBQ02CaRdsGRzWJp8ezLEab0j3NRRNzr9apnTn6T3pOE20+4wl/cQADDpMafPdnUWiMvBiHOcLAr5KoHKneIC2//AyfEmp2BnJ3+Kf8TUBd5BX7dh5ORHfhnoiXD5JxeNODJUv90S90bfQ523Uua7/c/A5MKcHT7/HT+8zdX5h/nQMN7ONbfu7M7x4oZAz3o0/DIY1fFfgX7nFHddVk/sFujrzUtD5I1Af1EYbmvHx52WEaZfzgqKr+z9/WhZIHXJ90Jt3fm9qwN9w6Eun+avHzQ+yzNNhdXR5/pyo4038T7j5fzYFDmqxOnrwi0VTzG+1E7m/BiV/nyvmr68GvFvWi+r9UPaS6lxr+0vI9slMdp6Oa1JNPrVf3ejrYcyF9923DwUc3e3JbJ5tv/j/9WXYwB8F0Bq1rIHgBdE5EJVfTGH9ghpMdT4cXvczGVqf36jQkaLJaTRWKGqP85UQETebqrOEEIIyR+FoBJFzd0NYqhzcKmqOeWyVNU7AdyZ2haRMgA/ZbRYsi2Q8lzWCuiTt+fSG7UyoA8hDc4P6i6SVRlCCCGExBA7uBSRn6vqX0RkeLrjqjox3X5C2gLJpCIhzmsZeC7zjRbLZbGENAqqWtUQZQghhBAST6aZyz7w0pAcmuZYvb/6qmpJfesQ0lJJqtbyWwJAdU1DRYvl6JKQxkBEjoS3qiaVu1kAqKpGzYyEEEJaOEkkUMFlsS2K2MGlqv7G/39h03WHkNZBjSpsBOSUzHdQ6JbF5tUMISSeRwHcCGARgJo6yjYjcYEx1ufQlg26YROur42Us4F7yow20WrgAs9AbTJ3E8AHAF6zG8VISx+jp5ivIz2jBS9w8nYnf6eB8wY3iIsdWDmuc7h6fxNM5Waz/zajPzH6WucGWvm7SCCW+528wS7sOt3JoSOedBsmuM4hE2xQFWDRfBfg5wgTcOWZDr0C/fMXnwv0A5cNCdW3X6gXfO/7gX4OpwR6971cdKO/feQCJp96c/hD5lp7Yac7ufCk/oG+H79yfezl7s+dVvwt1Nbks912j7Pd/bKHiZwzH0e4Cve7TAFyceTDb6XR5lriaqNXuwUHV+p2oer3iguKU/SFuw8rd/rQlHrKyWfN831keCFDOf6N9IyJ2Z8tJqBO3Gd/sQnEVf5R5GCJ0bbP9nXXy+hooCDbXqZgPen2Z5tIojrLcmRboE7PpYgUwksV8mN4t/0/AfxJVXmnkDZLMqkosINL/3913qlIOHNJSCOzSVX/0tydIIQQQrZFsokWez+8n0Ueg/cd+lwA30M4vjMhbYqaZDgNSUPluSxPDS6TeTVDCInnKRG5HMAzCKfX+rb5ukQIISQXvGix7Zu7G8SQzeDyaAAHqmoSAETkaQDvZK5CyLZNUhVpLJcNEC2WM5eENDLrAfwJboGjwFuVU9BsPSKEEEK2EbIZXK4B0B5ukXY7hFPOEtLmSKoikai9LLbhUpHk1QwhJJ7fARgAYHHqR9OWif14ti6UvSLlrP/Jeql2j9kf9VlabDnrpbK/J5cZbT2aU8JN6QCzYZK5FxtP2wOmyKRbnR4W8Tl2KAlkpzs/DfQN8gdTyPjefhWpbyNHnPZZINfogYHu8coGV2ac8Xg6y6JHL/fm/ITeEOhzV5mV1rebXx77VARy0dPOYwkAcIfwzPPunFfeOjbQg811fWbV+aHqi/dx/T+28p+B7l7kDKRj/sdd1yvh2sXUcFfG4yanS50u/nJToId3dIbTVR92D/Q+B60LtTX0lTMC3ftolzp2wfBjA91n4luBXt/LeS7xx3C/FhzhvKSHv+fa6nOAq7/sFhd38t4JI8MN7O1kpbUd9uro9DXmfjnty0D21PBX3ZWLB7iN0UY/ZwpdY/RhRp8dyepnXwfln5kDVhvPZPnTZv8O4baw3Gj7Gi4zOluvtvVfxsU4y9ZnSdoqmVKRpJzqqwEs8GcsAeDnAF5p7I4R0pKpiXouxe3PB5eKhKNLQhqJdaq6sLk7QQghJH8UwmixLYxMM5c2BcnbAPbz9b8BdKxdnJC2Q+2Zy4bxXAYzl/BzaaZbe0sIyYf/E5HfA3gaYc/le83XJUIIIWTbINPg8g+qujzDcULaLMkkGmXmMhUtFgAqa5LokKANjJAG5lz//1lmnwLYpxn6QgghhGxTZBpc3iMi3QHMBvAsgNdVuVaPEMDLc5luUjHfVCTlZnC5taoGHdpxcElIQ6Kqe9ddqiUQl+0rmuPOYr1YmcrFYb1UcX4r6+W0fs9+4WL9S5xeGPM7tRof2s3Gg1YaKbfZyS2lu5lzmDILTaLJGRF/W6lpe2+XL/A4vBTo4oOdt7C8S4krv8l64AC9x51f9jTv95NMIevx7OOiWPbe+DYsy99zfkKbPnSFSfQ5++OfBfqZScYLCuDJsb8I9OY3ugX6zqOvDvQNr7lzHDxiSfo+AjhklMuzufD8HwVaRrvH+PgE5/nsZRJQnrf0T6G23sMBgV40xvhMj3HyfDwe6F8/7xbKDZ1gEokCOHyiuWZ3OblsrVlcZzyL+j/m/gCw3RJ3j5b/rIs7UGYKPW/0UW5h3kr5a6gtrHSPa8CsFwJdOtwk4PzUlI/6LC3l9ph9rfU22nbSLhgcGGnMHjP+5tBr0j7IqGfT+jTt+471abZc/6VCUJNVCBnSVCTiDqjqcQCOgLck9ioAK0TkERE5TURiMiIT0jaILllNzVzm65XcagaXFdUtONYIIa0UERkoIp3MdmcR+XFz9okQQgjZVogdXAKAqm5R1adU9Sx4P6f8BcBJAJaJyLNN0UFCWiI1quE8l77nMt+Zy61VSRT67VZUcXBJSCMwFsCXZvtLAOOaqS+EEELINkXW88iqWglgjv8HETkscw1Ctl2Smt5zmcxjcKmq2Fpdg/aFCVQnFRXVNXVXIoTUF7EWD1VNigjXnxNCSCtEIahktNgWRcaZSwAQkfEi0klECkXkVRH5RkTOVdU3m6KDhLREkkmFNLDnsrImCVUEM6JcFktIo/CV/XHU1980Y38IIYSQbYZsZi4Hquq1IvITeNmXzwbwDwBPNGrPCGnB1CQjy2IbYOYylYakMJEAUMOZS0Iah18DmCki7/rbBwA4I0P5RkbgPoptMA0bdCPboBlx5exHvQ2ZUBIpV2b0rkbbVcQ24IgNBGLLA1gYkxi+PCbIyW1Gnx459qqpf0JMkviBA5w+6aBw/Q5O9hz+bqCXjzEBdW6cE8jiLT903X04/LhkjXuPP3zEy4H+7YhbAj0GNwa6aFRloP/x5Wmhttr1cW31Sb4V6Dmz3O0oN7kyQ5eGg92MP+Mmp0uctsGJqqa4z6mj8U9XeVCoKbyE49w5J7pzdrrTRag5AvMD/We44D4LVg0IN3a1+eV1fycPGeyCBo188N5A//qBewI9+eIrQk0Vne3uvYrqwCqNO6+6OtA3vOci/ciBNqIOgH+YID4lSMt5s1xAoscPvcQcGRUu2PPWQJbaY8NMmalGTzaBpKKZdSfZ14F9TdmAWTsabQP12NcAANiAWTbIVpXRfWPKR9nLaBsUbH20ICGx1Ce80tEApqvqWhFh1FjSpvGixTas5zIVzOeY/XbBrH+vo+eSkEZAVReIyAEADoc3spuvqpvqqEYIIaQFkkQCFWhfd0HSZGQzuFwvIn8CcDyAO0WkMMt6hGyzaDSgTyrPZR7RYlODy07F7QBwWSwhjYU/mJzd3P0ghBBCtjXq9FwC+AWAdwEM9j+QewAY36i9IqSFU5MMz1wG+2tyHxCmlsV23i41uOSyWEIaChF5rSHKEEIIIW0FEekmIs+KyEMiMi2bdJSxM5Ai8gyAmQBmq+rdqf2qWgZgSt69JaQVU6MI57k0+3OFM5eENCoH+p9rmejeJD0JoQh7LVPE+SejCdDjyv3C6KeMtj6udyJ1rNnxdaPjfJaW6PcNc55pQ5y+0BTZampvdiuTyzvdgxArnZ8RPc21Or3E6cGm/A3h6ietmh7oOccZe+2xTk5Sd2vMx5pAPz7o4nBjW937/umYEejjxfghuznP5zPrTg30jI6nhJo6K/lYoFeiV6C1xny2vLM60A+//6tQ/ccfPi/QlWUdA/2lufY/6eiyxi0Y6R6wHhf+cfS6A4zptczJzbd0cxvHOHnjSTcHelHnQ0JtVZzhvJF/GeIe81nvzQr0N0Pc3MbQy9y1m7xqeKityv7ucUkP4z+9ytU5/ADnfT1A3wvVn7yP8XCa5xs3Os/j48c5b2TXt/4b6PUT9wy1hQeMh/Id45mchPQMjdkPAF1MW5tKzYF9YyrY1+PiyDH7mrSezXZGW9+0fQ+Ibr9vtH2viTuH9WU2D80ZLVZExgH4GTxHb19VXRZTrgzeO17qXe9/VfUF/9h+AB4DsBOALwCcr6ofNkafcjxXXwDzVHWCiNwDYG8A72WqkGl56x/hWb5vEpF1AJ4FMEtVm/9OIqSZSSYVBeaz+bGhh6HPb15ATTKfmUtvcNkxNbik55KQhuTqLMr8tbE7QQghZJthJrzx0qtZlD0zZvD5AID7VfUJETkXwIMAfmwLiEh7ALvZMZiIbA+go6quq0efYs8lIj39bcsLAP4E4GoR+SGAGoR/gUhL7OBSVV+H91PJSD/4wWkAnhaRIgCzADyrqm/XdQJCtkWSEc9loa/zWBWLrf5MpZu55LJYQhoKVX2s7lKEEEJIdqjqawAg6XLTZYGIdAXQDwjCNU8FcJ+I7KKqn5uifQBMFZFTVPU/ItIJwBwAjwB4OJs+1XUuVV0JYGCaPo4A8JCqzhSRkQBORB0xC7IKzKOq78GbAv2diHSDN9C8A8DJ2dQnZFujJqmhF27Kf5nPzGV5JZfFEkIIIYRki0JQ0TjLYncWEZtE5iFVfSiP9p4U74vjawBGqepmAHsAWKuqNQCgqjX+atE9AASDS1VdJCKXAJgtIkPgxb55QlUfRvZkda40zAYwRkSOg2cdqfOH2qwGlyKyHbxAPqnyr6jqA9nUJWRbJKnq56P0aIiZy9RMJQeXhJDwx7P1ZEY9lnEf49Znab1Ta2P2A8Bco60/8DmjS4y2OfUieS7tj+Znl5qNeUa7XIHlo00+Qhg/GgBcZzfGODnD1e86/ZNAr3837JWbI0e6cmo8deJyXg678U5XYWVXp0+IzEjc7uSvBxpv6LumzGYnX8VRgd4h8ty9A+fNXL6vy7kp3zhv4Tw9LNC/xf+G6lcc5LyNcp+rc3RHl8/yCOPV+3jsHoG+Cn8ItXWxmfwY/5XLmTn9zpMCfRPuQDoq3uwU2r5iiIv5OPGWEYHuc6vL5bn9e2ZljrO4QvcJX++1q3YK9K9wX6BLMSDQK48+MNALQsZK4G+r3BzIz44zky0XmnvM2GqfhctF+vvh4es9f/gRgV4vP3AHerlrhBXW23iX0ZeH2kIo+dEAo0uNtvkozTlqfbe3r2P7OrQ+TeuTjPqm61zliPB7UJtxx21Q1f4N1NZRqvqxv7z1bgD3ATi3Pg2o6jx/5vAVAGNV9Z666jQEqvo+6pkLus7BpYhcAeBOeJ8iqW+7CmCf+naQkG2FmqSifaGZuUzkP3OZ8lzu0KEQIm67IRj84AIAwNOXHd5gbRJCCCGEkMyo6sf+/woRmQjPXggAHwPYXUQK/JnEAnizgx9H2xCRXQGMhvcL2zki8ldV/Vc9upH1ufIlm5nLawH0YSAfQhzJSLRYwJu9zC/PpTcwLW5XgPaFCc5cEtJIpFmNk7J/EEIIaUUkkUAl2jd3N2IRke8AKFTVLf6y2LMBLAEAVV0vIksAnAPgCf//2xG/JXxL4osA7lTVJ0XkbwD+KiLnqur8bPqR7bkagmzyXH7KgSUhYZKqiIwtkUgIqpP5DC69mcoO7QrQoV0BKhpw5pIQ4uGvxvkMwEsA/uH//b1ZO0UIIaTVISL3iMgaeD9WzhXx1tqLyGwRSS2p3RVAqYgsBbAMwH4AbM6dywFcKSIfALgStdZQA/ByPd2sqk8CgKouhpfRY/ts+1SPc+VNNjOXL4nIHwBMg8lKxV95SVumJqkokNozl8m8BpfeTGUHzlwS0phwNQ4hhJC8UdWrAFyVZv/JRq8C8P1oGXP8fQCHxR03bayK7FsKYGm2fcr2XA1BNoPL8/3/Pzf76LkkbZqapNZaFlsg+c1cllfVoF2BoCAhaF9YwMElIY1DK1mNU113kVrlbGCPr2J0VnH8EA7i09vofkaXGV0arq4DnC42utwG9HHBeYpHu+9C5XdF4lTMMPoFE4jlBJf7e/0ZJvn8DJPgHgDggq9s3uiC+2C8CZJy7WdOzzTv7Ssi+cXPNonpXy8JZKdenwZ6yxu7Bfqe3X/tyr8Rbmr+Hi5ATOcPXw70X8zXrR7iglPq1J+F6tsgPj2PdpMT81e4FHkyzJUZ/tKEQHdHODXeOBM1acBLzwf6Z2NMEJwhFU7f7pYhXjfxtlBbNogPzKGXb3X92qXzBnfgwP8E8lidE2rr7cqDA73lRnddDx/rrtfKB1xAn+MPmAXLz94z/bchB+4z+tEvTRF3s3Wq6BBqa8vC3cxWZydvMLuXd3R62C1OT4ssdbrR3qN7GW1fX+ZexWKjTTAh76RGlxltg3LZYF1R+hr9jtHR4GH1Je79iGzr1Pkpo6p7N0VHCGlNqKLWzGVBQb4zlzXoUFgAAP7MJZfFEtIIcDUOIYRsQ9SgoLm7QAyxg0sR6aiqX8Ydz7YMIdsiNapIRBzL+c5cVlTXoEORP7hsl0BFFWcuCWkEuBqHEEIIaSQyzVyWIjw/n2sZQrY5kklFIjpzmRAk84wW26GdN2LlslhCGgeuxiGEEEIaj0yDy/1FJFP+FAGwU4bjhGyz1KiiIOq5TAiqa7gsNh+Yj5M0BSJyAIBj4c1Y/tMPctBQbe8HL8v5TgC+AHC+qn6YuVZ92Cuybe2jxTF1dozZXxLZtr6uOI+U9XfZ+tHE7KXm0HKk5WbnnyzvZBZBrb0+VOyQ7gsDvUiMV+1Z47/cbCo8b/YDQLlru3Ka88SdNGJ6oOfc7nKEDxoxLdCzhwRxOQAAR+zoov6Ximt3y0rjWzumLJDT1fk6N6NLqK0T8EKgb1h8V6An9nOBJCfr3wK9ayR5/SRcGOhZ1l/XyUnrs7x/4LWBlvMjn1V9jJ7qZPHNmwK9tuPugV448ZBAH3/Rq+G2ehi90p1nlwnunuo64r+BXj/toECXjnEaQMja+Lux1wT6hvnuep10hHkeJZzrfbi6xz/xNuMd7mX8tpteD+Qg3RLomeK8oADCfl8Yb+VQs/tmo63P8sZI3JXTTVszJpgDuxptX1PWF/lUuC2caHRZ+j6GXs+2LcALnp3u2DvIj6bxWSaRQEULTkXSFsk0uDw5w7EUlQ3VEUJaE0mtHS22IO88lzXo0M4NLr+uyDagByEkW0TkPAC/h5eCBABGicj/pkK8NwAPALhfVZ8QkXMBPAjgx3XUIYQQQrYJYgeXqjov7hghbZ1kEpB0g8s8o8WGlsXSc0lIY3AdgH6q+ikAiMhuAF4AkPfgUkS6wrOKHOfvmgrgPhHZpTESVRNCCCEtjWxjkhNCDDVJRUE0oE+eg8utVUns0MF7SbZv1zaXxRLSFKQGlikd/aEoD/YAsFZVa/y2a0Rknb+fg0tCCGlgFIJKFDV3N4iBg0tCciCt51LyHVzWYJcdPN+A57nkzCUhjcBKEfktvOWqCuBSRJJTNzYicql/XoQMclmxNsOx9VnUtz6uaLrPqBcrRZnRJUYbT1aXiM/R0nlAIIuXOA9feWdbyPjDdkeIRdYTFspzWRXIAfp/gS69wOWPBADsbdq+wvkk50wz/jwTQWLmmLPdxo3WjwZcrA8HepC6Sle/8mCgh6vzANo8kT1GrUA2jBlxa6B1kPucuWjvsNdu6R77BXrEl863d9Uufwj0xO4u5+TEu5w+fnA4H+QX5gIsWuPyK5a/4XyiO279NtDzTjV52IdEHsBmo23O0M5Orp+/pz15wOGjXP5KAFhw6LGBvuFR57PEACfnLLE+y7C9eeIYk3NzmDkwyXh3T3H31Ezb1DkIs8bJ4i3mPu60vTsw0ORBtaklzwl7Sdc8tXOgexxncn7OtXk+4zzUUd91mdHm/KHcs7ZO+J4On8f6LLPJU7lDZJv5LAmQqLsIISSKqjb4stiK6qTxXDJaLCGNxOUA9gew1P/7LoDLGqjtjwHsLiIFAOD/7+7vD1DVh1S1v6r2B7ZroFMTQgghzU+dM5ci8jyA+wD8QzWPaCWEbEPUJGMC+uQ5c9mhMOW5TGBrFZfFEtLQqOp6AGfXWTDHtkVkCbw5jyf8/2/Tb0kIIY2DQlDBZbEtimyWxT4E4GoA94jIgwAeVtUvMlchZNvG81yGB5eFDRktth2XxRLSkIjIkar6uoikjYSuqrPT7c+BywE8JiK3ANgE4PwGapcQQghp8dQ5uFTV6QCmi8j+AK4A8K6IvAjgj6q6qLE7SEhLJKlAIjJzmWjgaLE1SUV1TRKF0chBhJBcGALgdQAj0xxTAA0yuPRzZh5WZ0FCCCFkGySXgD6VALYC+LOIPK+q19ZVgZBtjaQqIhOX3sxljoNLVcXWKue5TA0yK6o5uCSkIVDVS/z/x9ZVtuWRKbCG/Rivjtm/o9E2iE80MIgN9FEco220HRMAaJMNRBIpZ5LUl3c2UVXUBFXBMU7uPSDc1GoTZOQEG3HFBScqlTfd7lNsUnkAPYy+2AT3sbFf9jB6nJNP6BWhps695a/pTg90c/K9ow8I9KhRtwR6s41oA2DiLBds5rxT/xToP293aaDlW/eZohXhD52nMdh1ZYgLvHNvT/f7ySHr3LVftMoFOppecXqorRva3+nK7ewC+li3cJ/BbwX6mJHueg8f64IJAcDE4SaIzkvmgHF6jFrlrsuMI1xfFuwbeXkeZ/QkJ3u+9W6g/4j/CfT9w4eHqs+vdK+dLSt2cweeN4GhnjP34TSz/2wX/AkAsNXdO+VD73H7HzN1zG2MaUbfHm6qx0wTxKd8ujli7297fhsdyNzDAMIBfSz2vcIG69oYKRfdTlc/7n0mUwCfbAIC5Y8XLbZ9o7VP6k+d31pF5AwR+SeA6QDeB3CAql4K4HsAftbI/SOkRZJuWWxBQlCd4+AytQTWBvSx+wkhDYOIvJbNPkIIIYTUn2xmLocC+L2qvmB3qmq1iFzZON0ipGWTVEUi3eCyKrfB4C//9AYAO7hMzVwyqA8hDUwoPKsf0XXHmLKEEEIIqQfZrLebFh1Yisi5AKCqzzVKrwhp4aSPFpvIeeYyVS3wXKaWxeY4WG1NDH5wAQY/uKC5u0G2cURkpIh8DqCPiKxP/QHYAuDVZu4eIYSQHFAIalDQ4H8kd7KZubwGwOORfSPghVknpE3iBfQJ7ysQb0Yzt/a8eh0KuSyWkEbiIQB/gZdayxrpvlTVTemrtBQy+ZWqs9j/UUyZOK8VEPZZ7mr0cqOt6TA6+ds7fbMhn6Vh4ACnKyLHVtsN5ws9XN8L9IIzjO/t8kj9FUabby6d7vw00FtKjB/P5bfHufsajyWAKz8cG+iXMQDpGGCS14++xXkZURIu1+ci52Hsa5LXb/ju9oHW680HzcXh+oPxdKDHLLnVHggoQqXb+NS19cE++4fa2gkmCcCPTP0Nzve37MVD3YFTnLSPFwAmXndNoCdPPDfQd+Fq19+Rpr9/c/LuVeGUs1fPf9BtXOc+X5+Aa/fwV952ZaaEqmPyI78M9NADjTf0OndPDxrrrsVMsT7H8Otj+PSHAz1RzP0WsvuZ+ztTwiP70sFvYgrZ15r1Yk6KlLOLCO2cj31Nvo54rI96bUyZuPeZTDSez5K0bGIHlyLSH17Eu51FxDqkOwFMKEPaLkl/mrH2stgEqmvyHFw20rLY/3z6FXbani9b0nZR1S3wZil/2tx9IYQQQrZVMs1c7g6gP4DvADA/V+FLeCHdCWmTpHJZ1l4Wm8/MpfffpiIB8pu5TC01ffTCQ7G5vApFhYw6S9ouIvK4qp4nIm/BSz0SQlV/0AzdIoQQkgcKQQWjxbYoYgeXqvosgGdF5HhVfbEJ+0RIi6YmZuayMB/PpV+vODVz2YCey7WbvPU3ufaNkG2Eu/3/1zVnJwghhJBtmUzLYo9U1dcBFIrIydHjqtogCacJaW2kJicTkZnLREKCQWJ9Sc14tm+EZbFr/MFlrjk4m5I1m77FV1tz8XYQkhlVXeT/n5faJyJFAHZU1U9jK7YI4nLMZSpnPY/WR2Zz5JVF6lvv1fsx57D1rRcz6t+0pjKbo8/4y4xvL5RrcO314aZ+ZeqUOLlgX3P+FeYxzrgrVP1uXRfoq0c4D9+WacZnaX9yMCk7734p7AGcCZeTcdmhZlHXOU4um2T2ryhz+l3TeQDL1h0U6G+7uyDGJ+J5V8hYNv+Cn4fq/9IYSK9d5RIpTvzSWYrnT/lxoH97oav7qP4h1Na9+7rcmFWb3Wdbu07OEFn0xcBAF2//baALovfkNFe//6iFgT4BLjbk+rHuuVtfs2egr97ReCwBYJkz4A7qPiPQIZ/lTab8gHD1oUc/6TZsqsclTs6U/wS6p7pCKxcfGGprohgPob13zzb37jXmXrVhwt5FiK7f/jfQ62WKOWJfX/2MLjX6lwhjfZZVRtvXpH0/MHljAcTntI0jLm8uIR6ZlsUOgecAHpnmmALg4JK0SYJlsZFVpoV55LlsjGWxKdZsbj2Dy03fVqGSQYxIIyIi0wBcBqASwL/hxRUYo6rjmrdnhBBC6ksSCVQyFEyLItOy2Ev8/8c2XXcIafkEy2KjM5ciOQ/g4gL6jH/xPzi5b7dcuwrAmw0EshtcpnyaT192eF7nzIWtVTUor6xB5LIS0tDsr6pbRORMAP+EF/38DQAcXBJCCCF5UmeEDxE5WkS29/VQEXlARPbOpnERmSki/xaRt0XkVRE5OM/+EtLspJa+FtTyXDbg4NKfwcx1ma1lTeC5bNkzgu9/+hUUbtkxIY1EO///MQBmq+q3AFr2i4MQQghpJWST5/I+AN8TkQMBXAsvS9RkAD/OWMvjAj/8O0TkNACPILyInJBWR2ogmM5zWZNrtFj/q22HwvCy2IZYybq2lXgu31mzGYC35r66JonC6LpjQhqG90TkRQDfBXC9iGRjMmoidjDa5oiznrbox7Y9Zr1QNkee9VKWGR1KtodwQkjbF+utPMnoN422vk4AYrxjV49w+i7jT/u78addaLTtbi1KnZw3wOlj7GO5BparTzV9sXY1k9Jv8giTD/FE59Mrx3awHACXW3PQW84DePWpzitoc2F2h/N73nBG2AuKH7kIlx+P2CPQ1ps45mmXD/KiwY+EqlvPZq/uKwN9VEdn9rt4yH2B3n+I8xZOtMkwAfT80JkC2z3tPit0tvuck4Vuf+X27pr++gj3eAFg+CiXT/JsTAv08l983xXq4OS8Rw4L9DFT7D0F6L9dQfnUnf+Qo13exh1eca+V0oNODNXHMqOnGm2smDjF3XuD4Lyrpf02h5pa1Mvco885b2NXdWbW9dZItjAmpyuA9TZP5jlDTB+nmFJlMbWjb1nLY47Z9xD7vmHNp0DYg2mP2Xbt+4xtd69IW9aDGfd+1rB40WK5LLYlkc23t2pVVXifKJNUdQyALtk0nhpY+nQCfx0m2wCpAWTtaLH5z1wWF4WXxeaa2sSSmrlMasseYC5d494uttJ3SRqPCwBMBHCMqn4Db0R2feYqhBBCCMmGbAaXhSJyJICUPwUACrI9gYg8LCL/BXAHvA91Qlo1qVnG2nku8xlcev87FIYHl/mOLZNJxYavK1DoD4S/bsGRWN9ZawaXVflHySUkHapaDi+O4wF+JPStqvp8HdUIIYQQkgXZLIu9GcD9AP6pqu+KyH4Ir53JiKpeDAAich6AsQBCaU1E5FIAlwLAnnvuWas+IS2NuGix+Q0uFQI3G5paEprvzGUq2mxxUQG+2lqNL7dWodN27eqo1fTUJBUffPYV2hUIqmqUg0vSaIjICfDsHW8DEAAHici5qvpS8/aMEEJIfVEIKtG+7oKkyahz5lJVn1XVg1V1hL/9gaqeUd8TqerjAI4VkZ0i+x9S1f6q2n+XXXapb7OENDmpIDvSoDOXWmuZbULy91ym8mR+x19u+3VFy5y5/LayGkkFOnbwBr4cXJJG5A4AR6vq8ap6HLzAPr9r5j4RQggh2wR1zlyKSAd4Fvietryq/rqOetsD6KKqH/vbp8DL6BrNtExIqyI1m9igy2KT3mDSkhDJe+YylTNyu6JCABX4qoUui/2mwhtM7tChEF98U4mtVfRckkajnaoGkSpU9X0RaSHT+XEBOOzrNlP8ofUx+22QDRuwoyxSriTm2GKjPzPaBMqRIeGm7FvXXUvTd0tNwved7FMQCYQyzAQ/mXSk08fEJK9fGDnPc6bPz5nrt8j1f+gtLsLLWbc+Fug7K/831NSWcbu5jU3mwM5O3ivfuo3rTBCfm8LdGtTPBbtZgoNdtx4xj/FuJ0u/CAerGT7cBc55eOPFga68zj2uvz3qPlh+o/8K9PozwivFDp4+K9Ar3z0w0GtvNfMBx5kKf3Ry5XsHwtL1gMcDvfxQE8TnHCfPG/GnQB8jT7sDLpYRgHAQIQxycpGY5/QFN99RVBoOLPVNYadA797RvQ7Wn93ZFermrtf4V8yTdMyccGdg7tdT3P26Xh41ZUYhPZH9NnLJ1OlmwwbMsgF14oJ1AUBvo3sZbV+3JnpVbKCg6LG47ws2UM9HGY59FbOfbOtksyz2LwCK4IWFq6hH298B8BcR+Q6AGniDylP84ECEtFpqYlKRFEge0WJV0+bNzPflUlGdRGFC0MFPbfLV1qo6ajQPX1dUo+sO7YMouZy5JI3I5yIyRFWnAICIXADg8+btEiGEkFxIIsFosS2MbAaXvVS1d93FwqjqZwB+WP8uEdKyScZEi03NXKpqrSWz2bQZHVxKgyyLTaJb5w4oTKQGly105rKyGj/qtTPWbvYi23LmkjQilwF4UkQegDe/tgThBBWEEEIIyZFsBperRGQHVW28JDWEtCJSA77oMtbUTGZSgYL6jS2R1MZZFltRncR+u+4QzAS2xJnL6qRia1USB/XojE+2bAXAmUvSeKjqSgA/9K0bws82QgghpOHIZnC5BcBCEXkBwNbUzro8l4RsqwTLYtN4LgGgOplEQSLrbD0A4pbF5p+KpKK6Bj26FKNswzcAgC9b4MxleaXXpz67d8RL730KANhazcElaTz8FCQ/BqAi8k9VjZqrWgDZvlbLjY7zO3U12nomo/5N61fb3ehdje5n9Fwna11C6x17HWm5xvgsxzn5hL4TKnZu6K1xjNHGx/aq2d0t0hN155/T3fnzevRzge/X9HdetSNunR/oZ0oiGdQ++dDp4n2dXmberB/9QSCvHDs20PcuHhlqauYtZwf6d7deE+gDLnov0I8ffEmg/9YvFGwfs/GTQFfu5MJZPKEXBXr9I0MC/bx5TlZO7xlq65iJb7o+3+r63GPxhkDrJPdEXNFrfKAnzh8Ramv0e3cGeuhb97vHsvG8QE+AqaPOO9oX4ef+17jHbXS2zixzfy5zsvJ24wMG0O7VD9zGQOMzvRnpKbMb/wofG2ju6edKYxqI+iF9orburXbD+KDFvNbUtpUpSYP1UdvXWkmGOhbr54x6KNNRnuFY3G91jfsbXk1WwxnSVGST5/I/AJ4C8AWAb8wfIW2S1OAy3bJYwOXBrA+q3jJYS74zl0lVVNUodu9SDBEv50JLXBZb7V/PnbdvHwywuSyWNBYicgeAO+HFAdgM4HcicluzdooQQgjZRqhzqK+qv62rDCFtibhosYVm5hKo38ylqiKRCP/Wk6/nMhUptkeX7SAiKEhIi1wWm0rtUtyuIBhclnNZLGk8fg7g+6r6DQCIyN3wwirGzWUQQgghbQ4R6QbgAXhLXjoCuFBVM01dA8hi5lJEuorIEyLyir99kIhcnm+HCWmtBJ7LyKsnNTDKaeYSDT9zWREMLr2lb97gsuXNXKauZ4d2BcE1reDgkjQeawGYXBHYCmBdM/WFEEJIHiSRQCWKGvwvG0RknIisFhEVkT5pju8kIrNF5D8islREpovILub4fiKyQEQ+8P/vG22jvmTqUw7n6wtgnqpeCi/X1d7Z9CGbRcp/AjAHwHB/+30AT8AbyRLS5giWxUZnLgvszGX9SKaJMJuv5zI1uNy9sx1ctryZy1T6lu2KCsyyWA4uSaOxBMAcEUklMzwPwOu+DxOqOru5OpYdmbxLccdsemnrpVwbKRfnvbLlbFu2fASbx8/mg7Q+yV+ZNzgTBe3ciX8Nt3WN0XfZA85/WfSCK1T597Dvbs5E57NEByfX7GNyAj7v5NXS3W04a6HH7ua72NlmYVdP53t7xstyAwC4pPKhQOsukYjglzvj3Q37uAemU1y5x5c5z+VN/e4I1V++6uBAD9WJgS5CZaDH4bpAj/jSeRvL19gnCMBrTt57xdWB7qr/DfQj+EWgJ0qJ6+8L4cd11RF/cG1Zn6nxGe7Swdyrg03lyPX+w6lXBfpbbBfo0fOcr1O3uvPLtcZjCWC0Tnb6aFcHpabQq+Z5PMrkSz3daACYYT4/HxvgdC+jTYpS4CAno4sA7dxPsTlP+ZvmQInRNmdl9HX3lNE/MDpuginqq7SezTjftiWXH6m32TyXM+FlfX015rgC+IOqlgKAiIyFZ8sY6h9/AMD9qvqEiJwL4EF48QBCiEh7ALup6kdm3/YAOqpq9MfRTH1Kez4R6elrywvwxoBXi8gP4aWVfD/mcYbIxnO5u6o+4DcKVa0EQEMUabMEy2IT0cGgt51LrktVzxNpkbxnLr0BWrdO3repwpY6c5laFltUgGcuOxwJoeeSNCoHA2gP4FL/rxjeV8KRgPkmTgghhGRAVV9T1Y8zHN+YGlj6vAFgL8BbGQovQtpU/9hUAP3szKahD4CXRGR/v24nAC8CODlaMK5Pmc6nqitVdWDkbyyAiwA8pKpnwfuF48TYi2HIZuYy9G1URDqj9vdgQtoMcdFiU57LmhyMktoIqUiqqhXtCgSFBd5vSC13Waz3GDsUFkBE0KFdAWcuSaOhqsc2dx8IIYQ0DApBBdo3RtM7i8hCs/2Qqj4UW7oORCQBYBiAWf6uPQCsVdXU5F2NiKzz939u66rqIhG5BMBsERkCb47/CVV9uB5dyPp8htkAxojIcQC6A3gsplyIbAaXfxORBwHs4D+g4QAeyaZxQrZFUoOhWstY8xlcIs2y2ER+AX2i6U1a6rLYVI7P1PXr0K6AqUgIIYQQ0pxsUNX+DdjevQC+BnBfLpVVdZ6IjATwCoCxqnpPXXXyRVXfB3BGnQUj1Lks1p8WfQXAInjTr/eo6h/r3UNCthFSlsrosth8Zi6TMalINM9UJKk+Pn3Z4fjpQd3x2ZcVGPzggpzbbAySyfAguENhgstiCSGEELJNICLjAOwLYLCqpr7gfAxgdxEp8MsUwJsdTLvMVkR2BTAantn8TBH5QbpyGajX+fKhzplLEfmxqj4J4MnIvn82dGcIaQ3UBJ7L8P6CIBVJLstiFRJZbZ5KRaJpgv1kgzdz6bZ36FCIGtW8BqyNQU1khrVDUQFTkRASwn5UR5e2dzV6fRZt2YA8xZFjNgDIXjF1TBCcUML4fuGmNpWaDRuAxAXhwTQTyGRctJ8WEwzFBFnpM/2tQC871QTx2T9S/Umjd3ay61IXrGa9mGV15hyHj3g51NSCo+2q6gsCdZ6+FOgXcEKgt7R3UWzk5sh774+cHLDKRRRai50Cfe3Rtwd6/OKbwvXNNTviqfmB/vmLzwX6rIWzAq3mffbtG3qHmip4yr3nfm/ZfwK9/hd7Bnro1NGurdn7BVp6hB/XKNziylWZYDt/deWWTygJdO9zygJ93ql/CrX1a7nSbUx2wZSKz3RRoh7p6AIN4cJw8MvR+7ogPms+dE9+j1kbAn3lKy5Q0L3uMtZ+qQ1u5/TZc8yBk5AW6+AeFwkOZF96oRhbhzld/pk5YJ8vWwEIv26/NLod0tM1sm3r2LZt7BYbkCcUjSjSVlwQoEyByPJDIVlHd20O/NzKhwD4iapWpPar6noRWQLgHHiBUs8B8Laq1lqi6qcEeRHAnar6pIj8DcBfReRcVZ0fLZ+O+pwvX7IJ6JPuLX9sQ3eEkNZCMiZabGpwmczRc5lu5hIAKmtym8VLJsN93KGD9wU1l4BDjUlSw2ldOhQWMBUJaXBE5LLm7gMhhJBtBxG5R0TWAOgBYK6IvOvvny0i/UXkQHghsrsDmC8iS0RkhmnicgBXisgHAK70t9NRDOBmf7IPqroYwCAA22fbp3qeLy9iZy5FpBeA/QB0TIVo9+kEmHjQhLQxUp7LWoNLyW3mUlWhqB3QJ7VZXaNon407OkKNKorMqG2HDt6vmLks221Mai2LbcdlsaRROFNEzgBwkapGc3AQQggh9UJVrwJwVZr9dtwUu/TM9zQeFnfclFsFYFVk31IAS7PtU33Oly+ZvrIeCWAIgF3hhWhP8SUYrp20YYJosYn0M5f1HbylBqPRpa+p7eqa3AaDSdUgSA5gZi5b2uBSNRR5l9FiSWOgqsf5s5cLRORmVc0q6h0hhJCWSxKCiha8LLYtEju49D94HxORIaomIzAhbZzYmcscB5dV/rLX2nku/ePJfJbFuu2WOnNZoxoEQwK8weWXLTCqLWn9qOqDIvJPAG+JyHh4OZvFO6RRI1IzE5fMPJqMvDzDsXRkasv6JjciPXGTvtGE7QOMtonhjY8rZCGMJJmP4drpxoMo/2uOmPeM54yvE4AuGR1o+b57/1v/iPMTWitp0cPOg7ZA9g61dbw6D+OL4nxwJ+CFQJ97xl9dhWdNZWtXBQBn+8MAlAa6x2Jz4Gsn/3102Ez64FNupffQEc5Y+tUEt1Ku5/FuRZysc/5PvBhJ3WCnDNYYPcToqe8E8oCTFgf6yohTasxFtwb6s0d2DfRZh7nfc3qPKXMVVjj5uDi/KQAcr87X+2alu1+3dN4t0EPPNqZaZ10FANy9zl2j+Tgi0H871U0s/ezU2YHuOctdr5VinkcAGGh8k9cYn+VdpsxRRo8rDeRkDXtJh95i+nyb9TzONdoG6bSvTev3BMJ+TPu6LTM6+vq0hEyfRse9n1gzaiYvZdx7GNnWqXOxnapOEZGeAHra8qo6O74WIdsuNTHRYoPBZT09jVXVMalN/P95zVym81xmGFzWJBUbv6nM6Xy5kkwCiQIuiyWNj4gcCuBRAE/BiyfAKXJCCCGkAckmWuwYAJfACwuX+iBWeIk1CWlzuJnL8P6cZy79mclankt/YFiVa0Afk4oEADr6g8tMntAvvqnE6g3f4OON32KPHZvGWh0dBHcoLEB5Jb/zk4ZFRO4E8HMAl6nq3LrKE0IIIaT+ZBMm5CwAPVX1yzpLEtIGCAaXDeS5DJbF1hpcev9zSW2STKoXhbWey2Irq72+fNuEg7uoN7RDUQEqqjm4JA3OLgAOVlWuzyKEkG0GQU1WwxnSVGTzbHzCgSUhjiCgT0y02HoPLlPLYqN5Lv3/1TnMXFZUp2ZD67csNjXQTQ0ym4JkEjCrYtGhsIDLYkmDo6pDm7sP9SPOG5nt2DhTbsy4tqxfy+amtF8BrHdrV6OjHk3jsxxoghPONaa40FvRKCevCefn0x+YXIlnmEqnxHRrrmkLgPzDeOVKzIGhzru2XIcFepyJYTi52xWhtl5c181t9He+xXPFZW3rqjZ/pvF1rq2AZegBDwd69HyXj9H6Bv99q/NZfk9c/kkAwOtG93FyvXleVr54oDswxZQfEm5q1FKXm3LMLc4zOXzEhEBP/GSEqfF2oDajc7ixV52cLCaxaLfBrt11rt0S4w38df97Qk29ONFsvGa08esOGjUt0LM32iCdwNUHPeg2TjAHrDdyoZMrDzLX63SjAWCGfR2YvKrWL/yqzWc5L1BDxSZbjdTBNUjPdKOjuS3jiPu6but/FDkW3U6RzXtIJuz7Cwd/bYlsnu0FIjIVwF8ABG5wei5JWyUuWmxhQW6Dy8rYmcvUstj6z1yW+9FW7YxgcbuCOvuX6ktTzhzWWhbbLsFosYQQQgghrZBsBpeH+v+vNPvouSRtllS8nuhgMJHjzGV1svYso22/OodoscHg0rQpIihMSNpltoMfXAAAqKpu2pnLyuokFMAvDnO/7ndoV4DqpKK6JonCgkR8ZUIIIYS0aRSCSqYiaVFkEy322KboCCGthVQ02FozlwlvIJTzstjozGXqeC4zl75nsiDSZkFC6lgW6x2ryDGIUH1JDYI7+LOqnvau49bqJLbn4JIQQgghpNUQO7gUkQMyVVTV9xq+O4S0fGI9l/5gs74BeFJLUW/8Sfgll1oWm4vncmuamctUH+MGl6oaeC4rmsjzmOrndkXurSg10NxaVYPt29OnQQghhBDSWsj0ze0fGY4pgH0auC+EtDhSy0WfvuzwYF9d0WKT9c1z6Q/o2kXaCwL65BAtNp3nMtXHuMFldVKD+BqVTTRzmYpKW1zkZig7FHqDS6YjISRFtonKbVSbuAActnzvyLF/xdTpa3RZzP53wlWKTQL4uVNi2rVBTUwglLt+GyolGB3oQ9RFsVk04UhXqL+pMHdM+DQPm7Z/Zfb/8KRA9h5Tlr6Lv4ps7/6J0+NLnL7Q6YvhguPcXzE80GcW/S3UVHuYAD8bzIGBTn5vvgvioy9EPiPGmfdyE9Dnjo9vC/Qhx7toNWf0dgGM5Kvw58CoijsCPeY+F9Bn4iAXxGfeWBeY6ZhTXcCm5c/NCrWF65x8cex9gT5e3nftzjLPyeVOzltngj8B6IrPAt17RZk7cKKTM4ef7TYmfRjuy/0m8M5OTvY4dUWg16CXO2BfQmvDTeFy09YJv0VazjF6qj0QUx5AODKTfU2VGG0DZi2P1N8Yo3eM2Z/pq3+x0fkGFbPkEhAoO5JIoALt6y5ImozYO0xV927KjhDSWkgmU3kuG2bmstpfitquMLwENNV8LnkuUwOzdLk44/yU9jxN5blM9bPYLost8jTTkRBCCCGEtC5oaCKknqQskHHLYpM55rlsVxAdXKaWxeYxcylRX2j6gD5AeEDZVAO7tJ5Lf5DNdCSkNSEi54rIUhGpFpHofBchhBDSJqChiZB6EsxcRn6aKczTc9muIG5ZbB4zl/VYFmsDBzXVzGVdnktCWhFLAJwN4Ppm7gchhLQZGC225cHBJSH1JC5abKKRZi7zyXNZa3ZVvMGlqgbtp6hshmWx36ZbFhsMLjlzSVoPqroMAESkiW/cbPxPXY1eb3TUY2m/Etik62Ux7VpTWq/woXLrMTM+si7Ga7fJlLFvR2oT0YdZdJzZmBuTiP6ocP1Ocz8N9PeLlgT6EDg/4vgjL3EV9t41kANWPR9qq/R5Z/YrGuIS1lde5/x4nbE50FuW7Rbohz8IT2jLKPPePtfpPvu4fi0bc6grvyLyWXC7k516uccot7tyn9/qvHKy3NSfGW5q+63mx7wpTnbt999Aj8AEd8B4HlEWeb7MbXERHnUbp5h75Gonj1/nPJvHzHJeTgCAvfw9jL7PaGv3fX3fcP0S42s92/nyOg/eFOg100z5N4xeXRZuK/SaiGGquSdfN9elNFLuRnvvWp+jNX0+Z7R9fZ2EMIuNtj7LjsgO+zqOez/J1n+ZrzeTbAtwWSwh9SQI6JNmySlQ/5nLuMFlauyaz8zllAt/ENqfGhB/kyZYTlVNMjhnRVN5LqvSBPRJpSLhzCUhhBBCSKuCM5eE1JO4gD6p7Zp6R4v1A/rELIvNZ+ayQ1F4wJoaXH61tapWmo/K6iSKChPYWpVsumWxQbTYNMtiGdCHtCBEZDGAPWMO76qqWd+wInIpgEu9rU55940QQtoqqoKKSi6LbUlwcElIPUmtHo0ui03NXNbUM7prauayqAED+mytqkFCardZGAwuq9Et8p22qkZRVJBAZXWyCVOReOHJQ8timYqEtEBUtV8DtvUQgIcAQKR7/V/ghBBCSAuFg0tC6klNsCw2vD/luazvWLCqOs5z6f3PdVlscbuCWr7K1ID464raOaeqapLYvn0hRAQVTbQktdz3VYZTkfjLYpto9pSQbZO4/Jd2v/VnZcLmwzwyfZG9I/6u1XZjrpObvjT7zbJ9+75p7JMAcPiElwO9QH7kDtzsPG3n3fqnQD9+tPFPAtjyhPM9lg79vtPTjHFwmJNDJ94f6Mm3XBHujLG+nbzj7EDP7ONyLc7HEa5QqZOCyIeD8fRV7eyyv7Wb78r96Ub3Hn7J5HD9sw54LNDPvHiBO2Byfl5hzInnHe+uUdfjXf5IABh/y01p+/z+qd8N9I4jvw3078a6J+n6XneH2jri+H8GeoG45JK99e1AL5/vnoe+WBroVwccFWqrvHMXt3Gtk4vfOiDQR37p8kSWd9oSqo/HSgI5/BXnGZ0oF7syNs3k504OWPU+LKXirjemGT/ls6aQ9VweGZPHtRZlRtvX6sCYMg9E6h9jtH0dWo9oJA9tLBly1wZYL+VekWMfZXkesi3DwSUh9cQLhoNaA7dg5rKeg8HUstfCBl4WW1xUUGt/aunu1sisoKqissZbFpsQNNnMZWr5bvtC67n081zSc0laESJyDoCxALoAOE1ErgdwvKq+17w9I4SQbZdkMoHKre3rLkiaDA4uCaknNUmtFYUVcLOC9R2XVSXrynOZw8xlVU0od2SK1OxqeWTg5kWQ9XyfCZEmC+iztcqbYbUpU1LLYhnQh7QmVHUqgKnN3Q9CCCGkOWG0WELqSY1qrfyRgB1c1nPmsjoV0Cf8cnzyksMA1D/6LOAGbVFS3Y4OLitrXB9Emi5a7LeV1bVmWL0BLlOREEIIIYS0NjhzSUg9ScbNXEqOM5c1SRQkpFaAoHaJRHC8vpRXpl8Wm+rjt5FlsTaoUEKkyaLFllcmaw2CRQQd2hVw5pIQQgghmVGgprr29x3SfHBwSUg9SWrtYD6At+RUJBfPZTLwa0bbS0hu0WLrWhYbHbgFuTYLvZnLJktFEuMN7dCugKlICKk39iM9LoH5d41uFzlWZnRcYvfl6ZtdvWtkh9nuNcLplaaI/stsGH2XCU4DYMHWYwPdVf8b6PWzXGaYx2WwqWGDBgE9Xlkf6DULeyEty5ycPMEE8SkNF7v7lcsCvRku2MzMSS6gzw4j3LU/ZISLFrNocSQY0uslgfx5R7OieoOT7+ttbuOVcPWZG08PdJ/j3wr0svcODfQzI821NLFyJp16Yait3re6YDsFcAHfdnzaBfHBC07ecPpdTs90GgB6Hv+u23j3wEAuX+U+y9TEGLjYBB0q/3q7UFvoVWH673x1/da5/uqJHQIt4+M/LyeKeU10MYFvxjlZ9TfXr3ZSGW7gGhMA6uzfol5EglQhdMlsEB77Wot7DV4eacxGJLJBfNYabQN5RbHvFdkG/knBAD6kNlwWS0gM1TVJrNtcjprIstSaZPplsYA3M5hLnstoypAUhQWJwJNZH8qras8IAi6gT3TmMjWYLCpIIAFBRRMN7L6trE7bzw6FCZRXclksIYQQQkhrgjOXhMTw7zWb8fGm8lqDn6RqrSWsKQoSUm+PZFVNEu0K0w8u2yUkt5nLymp079Sh1v7Ac5lmWWxCvP435cxleYw3tEMRZy4JIYQQkhlVRottaXDmkpAYvtzqLQ2KzkTGRYsFvMFZMpfBZUH69goLEjlHi003aBPxBo/pAvqkAgolRJowFUkSHdItiy0sYCoSQgghhJBWBmcuCYnh69TgMjJYTGrtHJcpcpm5rKxJojARM3NZIKjKIVpseWX6QRvgLd1NN3OZWporAlQ0UaTWrZU16Nax9gxrh3YJRoslbQSB+yiuzlQwC7KpvyJDeevLsn6vHY1+3mibcN16wiL1uxn/5TmmiLEThnksvDnJyfVrTDL67U2Z051v7XfTwwa3Gx5xBrdDJjp/2mF4M9AT9zW+0EOWmtphL+nVsx50G6b/xYs2Bfrx9y5xB35kKpvHASB0LWb+P+fZxGdO9jrVmVR17/DnTv8dXwv0IunqDhhv5bWv3B7oSrjZnWHDHw21dfjElwO9YLHzuF472NUfP+wmV8H4QhdPPCDUVr9fuNSuv3vKPRd74ONAC8z7+77mcdn7AwBuN3qF+yw8qfs/Ar3daxtdmUMi9Y21tHjLVYEuP9eUMS+Ddp0+MAci9/RdY8zGb5AWe+vdZXyZMVbf2gftOTfGaOulBMI+S+u/tK/bEqOjvsq9Ys5jsb7MHWL2E+LBwSUhMXxd4X3iJCMzl8mkIsYimdPMZXWNoihmWWxhIreZy7hUJIA3MxmduayqTmK79oXB8aaaufy2qnYqEgCMFksIIYSQukkKsLWouXtBDFwWS0gMX22tAlB75rJG45fFFubquYxdFlt/z6Wqxi6LBYBEorbnsrImiaICwdOXHY7/17trk6YiSRfVltFiCSGEEEJaHxxcEhKDWxYb3p/MEC02IVJrprMuvMFl3LLYRL2XxVbVKGqSmnZGMNVHO3O5taoGSfX8nQBQVJhARVOmIkk7uEzUGgATQgghhJCWDZfFEhLDV3HLYlWDlB5RCnOI7mqD6aRvr34DvdTAMd2MIOB5Lr+tdCaTVFqS1GxsUUFBk8xcqiq+razGdjEBfei5JG0DRd1eSftRna0vM84Xlam+9Vla75XNw2d9ltbrFaXEyVcnGG36Umx8ay4dIrAwmkPQ5WrsPcvlN1wuPU0Zk3dRovXd9iLjlVu0NZJ3MmBGoM7SktCRZ+SYQBd94Txt5Qd3QVr+7mTXI/4bOrT+XZenE7d9mLb6sD87b+SwFWGf5PG3zgr0cDX+0ZHOPzr+FueT7HOry4WJ/uHzLFg1INBD+90f6HK4vJN9Nrr6x5oEoP3GOI8lgNBt8TYODvQNt5jkjsZm2PtD85yO/H6oqeLNzsta3umeQM+xuR57mWtfEu7K56Pc62CXfcy9t9rdE13VGTPXi/XY2tcDgNfN/XpkXJ7L36TXV0TLj3LyfpNv9opSU8bma7V9ieaaLYvpi33d2raiX/3rm6uyhfksFcDW9N/JSPPAmUtCYogL6FOjiE1FkkjUP89ldR3RYqvqOVhNeRXjl8UKys3A7Rt/EJ16TO3bJZpkcFlZk0RSkd5zWVTQZLk2CSGEEEJIw8DBJSExpAL6RAeLyaQiZmyJwoTUGozWReZlsYLqZD1nLv2ZyOKi9G0mxIvSmuLryOCyqCDhDfxyiFJbH7ZWeo8rreeSM5eEEEIIIa0OLoslJIZgcBmduUxq5pnLeqciUWwXMxDMZZlteV0zlyL4tsotjUvNXKaW+qYi11bWJNEhkb6NhiDVz7TLYtslGC2WEEIIIZlJAtja3J0gFs5cEhLDl/6y2OgMXl2ey3rPXFbHz1x6y2Ib2HOZEJRXujbdzKW33d4MLhuTlO8zfUCfAlQnFWc9ML9R+0AIIYQQQhoOzlwSEsPXqVQkkWWx/yrbGOtJTEiuy2LjB6v1jdyaWvK6XVH6l3dC3GwlYAL6pDyX/uCyoioJdKjXqetFpkFwh3ZeHxp5ZS4hrQQbhGeH2FJhbDL2rjH7M9XZMaaM3W+DjHSMlDPHerkAM1jhAs+EZhsWGn1dJEH9OBcMZfkj5tiFpswGs/85G7wEwMpbAjlpH1dp2EUmQI7ty1GurfV4Htlw5aqxgZ6Lga6/77kANeu77xmqg18Zfce+6Ru+zcmzPnwsdOiZVecH+sUfmc+Q202hoU4uW3Oo27guch4TEOUIuB/1Lnr/KVflu64zNlDQtbfaEwLjZbDrownGhHFLTanegbrqfBeoZ1jvcNCimmrz+XCHe14OH/VyoN+rdB8UW27cLVR/lz+b4DPbmwP2Of6zrWEC75wTuQ+PrHL6QnOs1JS5y9Q/xd6TiDDGySuOMfvtayru9Rh9ba41Oi7Ilg3QlW1QMEIAEdkPwJ0APgWwUVVvqqMKZy4JiSNuWSwUiItLVlhQ/8FldTJDtNiCRM7RYjMtiy2vqoH6g+Zg5jLNstjGJAg8lHZZrLevvmldCCGEENKGSC2Lbei/LBCRn4jIYhF5R0TmicjeMeX2E5EFIvKB/3/fbI7lgoiME5HVIqIi0ifbfmTgJwAeU9XhALYXkUPqqtBog0sR2UlEZovIf0RkqYhMF5FdGut8hDQ0XwfLYsP7FYgdXRZI/aPFVmZYFtsuIfWOFvttXQF9EoKkusFj4LlMRAaXjRwx9tvKDJ7LQn9wyalLQgghhLQwRKQLgMcAnK2qfQH8CcCkmOIPALhfVfcDcD+AB7M8ljpXexHZK7JvexHpnuZcMwEcjfQ5ZmLPJSI9RWRu5G8kgD8DGCgi4+FNjZfEPMaAxpy5VAB/UNX9VfUgACvhTasS0uKpSSq+8Qc/NarBLB/g5WeMm7ksyDFabFFhXCqSHKLFZpHnEnBRZWulIvEHdo2dCiSIaptuWWxRauayUbtACCGEEJILvQB8pqof+NuzAZwgIjvbQiLSFUA/AFP9XVMB9BORXTIdi5yrD4CXRGR/v81OAF4EcHK0U6r6mqp+HN1f17lUdaWqDoz8jVXVL1T1SlW9FsDXAN6Lth2l0TyXqroR4ZXobwAY1ljnI7kx+MEFAICnLzu8mXvSsvjGDzaz8/btseHrCmytSkaWb6YfDOY6uCxMZFoW28B5Lv2ul1fVoDOArytqIDDRYguaZuYyo+eyMOW55OiSbOsUwPko45KTW59lLgnM43yWmfyX1kNZZvSXMfuHhKvbt8gVpU53G+D0ZtsV41X7JuJ162W2Z5r9z30YyFXqfGv7nLEuXL+na3vYQOPpu9jJawc73+D4Cc5SVCpdwm3dXxLIyp1cuw9+cY3bP8Vcu/tMXeuxBHDlKOfTvHf+SKRlgJPtURk+Ns5d5E5lnwZ6y/PGd/i6k7qHK3/CHs+GmnrxjFMDPbTzk4He9ZHPAm19lsHXUwAP32QuJAC8a86/wslBY9130vnoHOhhB5nnxF4vAJU7Oa/gWToj0M8cZLyc7zg5Sa0RFxg20rS9qzlQYXRno08399pU47GMMsVoNffuNab+XbbC6ZEGZhhdZvSRRtvX4GKjrX8SiPdHl8Xsj/q2rU/TPGGx3sxc3o+y9YrnSOPYSHcWEesGf0hVHzLbHwDYTUQOVdW3APzS378ngA2m3B4A1qpqDQCoao2IrPP3S4Zjn6caUNVFInIJgNkiMgTAeABPqOrD9Xg8mfrxeVwlEdkdwK3+5lJVXV7XiZokoI+IJOANLGc1xfkIyZfUktjdOnmDy28qq4PBpQKICRaLgoSgur6ey5p4z2W7hKAq5zyXtQdtT192OGa+vRZXP70kWJb6bWV1KLVKUy2LvXuu98UwfSoSei4JIYQQ0mxsUNX+cQdVdYuIDAZwl4h0ADAH3k9mGX6VyB1VnecvU30FwFhVvaeuOg103rUIhQarm6YK6HMvvKnU+6IHRORSEVkoIgs//zx24ExIk/JVanDZ0QuXaqOrZgroU5CQevsEK2uSaBe7LLb+M5fBjGBh+pnL1KAzNQj9uqI68FsCJlpsIw8uU9cpLhUJwGWxhBBCCGmZqOpcVf2RPwi9D16431WRYh8D2F1ECgDA/9/d35/pWAgR2RXAaHihhs8UkR/Us7tZnytfGn1wKSLjAOwLYLCq1vq2qqoPqWp/Ve2/yy6M90NaBl9XeD88dQ0Gl85/mGm8U5BI1HvmsqomGSxFjdKuoP4zoeVVNWhfmAgNGC2pwVxqEPpNRXXgwwSabuYyNSuZPlosl8USQgghpA6aN1rsbv7/BLxB3wOq+o0to6rrASwBcI6/6xwAb6vq55mORc7TDcBcAL9X1RsBnAlgmogckV1PM/cj2zaypVGXxYrIHQAOAfATVa2oqzwhLYVaM5eVbuZSoZCYdbEFUr8BUU1SkVTEpyJJ1D8VydbKmrQDthTbRWYuv6moSbssttFnLv3rlJoptQQzl5y6JNs8Najbt5SLz9IGFrR58Kw5KfoVwB4rM7rE6EgOyYAJ4U09w2w43571Wfb41vm71ti31E8Rpq/RM4y/DaMCFfJZhspEmOv63/ullYEe/4jxEw4y7ztnHxyuv8xok3ex0lQfMNHlxixdeGKgDxllDJAA7h1hfJZzzYGBRpv8iG9/GOmLCRtyRdHEQJ956l8D3e8V53OUPT9wFW6OZCCwCQuGuMf/01dMxw40ZUw6xnfbdws11WORuX6nlQVyJorc/nMiOT9TrIhsP1YSyPV43+3v5eR5S/8U6GGLw3kyQ7k1+x7ktPVfDjHaXocX2oXbmmL010bbHJYhn6VlRnizi/FmbnraHLA+aOuzHGD0vyJt9zba2uGsf9O2Oy9S/32kJ85b2UJ8li2D20XkSABF8ALsXA8AIjIbwC2qmvJsXg7gMRG5BcAmAOebNjIdS1EM4GZVnQkAqrpYRAYB2C1aUETuAXCGf2yuiHyhqqlXbzbnyptGG1yKyIHw3vk/ADDf/zK+WlWjrmZCWhyp3I+7dmwPoPay2PiAPvVbxlrlDxwLCzJEi81hWWxcMB/ADdyCmcvKathJzqaKFluT9IILpRuoB6lIOLYkhBBCSAtEVS+O2X9yZPt9AIfFlI09ZsqsQmS5raouBbA0TdmrAFyV67kagsaMFvsu4q1phLRoUgF9do1ZFhvvuazfzGVqcBm/LDZR74A+/7d8fWimNUrtmctwQJ/2TbgsNhEzA9yhiMti2zKMYk0IISQrUstiSYuhqQL6ENKqcDOXtZfFAogdXRbW03NZ5c9Kxi+Lrf/MZU2GQRtgAvpUZV4WW1nP5bj1Jaka6wtltFhCCCGEkNYHB5eEpOHLrdUQAbruUHtZrGaIFpuoZ7TY1Mxl7OCywBusaj0GWclkHYNLf+D2rYkWm27msqKqcQeXNUkNBRKycFksIYQQQkjro0nyXBLS2vh6azW2LyrE9h28l0hqIAb4AX1i6hXWM89lXZ7Ldv6grzqpaBdTJkpSgZgJQQBu5nJrVQ1UFd9UVGO7ovbB8aabuYzvZ+qxMqAPIbnyUQ51vmu0DQJkg/gMMHq6k11GxDe76U2nL3dyjcQE/KgVkMdUutAEQnnUlJthwzlcE6n/GdKx/JXvuw0bROgE88Y0uT1iudH284JAlR7jgvjo/7q2xuLKUPVF00zAlWnmQJmTwye4QEkT941c42edXIGege53kAviU/zapkCX2yA+JeGmbIAcvOX6/OLgowJ9/KxXA22D6PRYHH6f7tHPBGpaZBq+3Zy0g6lgY81MivRrobv33o4GV/J5fMwlbuP5yMGbTRCf28x98I4p09dE93nV3OtbO4bbmmqe773NfYjfIC03G33bienLAADsedbG7H/SaBus6/+39+ZhctTV/v/7VO89+2TfJyTshB0RBEQvKi5BQb8EFBXlyqao+NXv/bnvyhXEewVkuSBwXSBcEAQFxXhlD0gSlgRCQpYJyWSZZPal9/78/qjtVE1Xd/VM96zn9Tx5cqaWT32qu6q7T53zPgdwFv5hlZbg1et+puvvdo/teOEe7i54y2689xemEuJcCkIB+lMZ1EaDiAQDCAXISpO18KoWqxFyw0iL9dJcBo3l2ZxCkRo9DvJKeUZCzWNppGsu07k8snnlTIsNjKLm0sO7JCJoZVbeFQRBEARhiqHgfEAhjDniXE5xOvpTSFQ5/XEi0p/Kojai3x7xcBCDPtNiA1Suc1k8LdaM4GXyecTgz7sslRZLRPo5pXNWoSKenhoMaAhoVPVqsfm8spznQmhEkhYrCIIgCIIwgRDncorTOZBGf6q6TsREpC+ZtVJiayNB369RIEDIlRFtM6ODXimvQTMttoyiPqUK+gB6wZxEJmdpSQOuCGI4oI1C5LJ4+q6mkUQuBUEQBEEQJhDiXE5xcgplOUNTBWfkMoDBtCty6eEUDTtyGSyVFuvf0csrQCtRqisW1pBIZ61036+971C8f5ndCDscHA3nUg1xajl6WmxVpyAIkwyupeJ5Yl7ap3muvzuZ3cLsVmZz7Rej2/W3ytj2H1fY9oe5TvEbHvNycwuzub7tnba5nGnrWl27r19lmUtU2rK3Nh9pb9PF58U0nkGmxwOArzJ7rT2X9x9v609PZvP9FG6z7N9sc7XE+4JtvnLGoZZ9zL2bLPtXLUxneaFzd5xmmyt/dbFlP/LMOZadaGmy7BM6n7WnTq73/rUW27ZfLrz3a0+jEK+fc4T9x1nOdbtOs3WWlzx8k2Xv/MMCy36i80x7Xs1rLXv1Qe9yDka27rDnQaZBfJDpJ59n79Ee10Q/wuyr7e0arrFFtj18/nPYMa5zjXUhu/bu4eJQrllk2/zQrR1mdHFxKNcLc/3k8czmumGXFtSh0+Rw/SX/PPDSWALOz5Bi25m49Z/D0XqPkDyA1OgfVvBGqsVOcfJ5JUVTCtCXzKLOiFzWRIIOzWWxgj7lai7N4j8hD2/QTosto1qsj8hlPBR0RC7jEedzpkhQQ6rKzmWuRPquRuVV3hUmHytuXW31vBQEQRAEYfwjzuUUJ6cUFMqLjE0F+pN25LImEnBUi9WpUEGfkmmx5UUuc3kFpVA6LTYcQCKTx4BxXrURp55ztCKXxeYZIEmLFQRBEARBmEhIWuwUx3SEBjM51BcprjLV6E9lURcNAQBqwkF09A9a64qlxQbLdC7TJdNijcilT81lMmMU6CnxVsZDASTSWStyWeOKXIaDGlJVfOCQzeWRV0O1nhySarGCIAiCIBRDwX93FGFUEOdyimP+eE+kc6g3nKmpTj6vHJrLmkgQA1xzCW/nUqtwKxKzimw278/RSxjOZanIZSwcQHtfxkr3rQm702IDSFWxivCgDyc4oBGyWXEupyJ6yrRe2Xhqwfs+DqdHnJdGyqOf5BB9FP8c4Hot1o/Roe9izQIV62UJwKHf/OH7bZuYJs2xD9dSFtGq3cl7brba5jNs8Zmufe49zzK3EteuMftudvxG24wdZfeJBIDEl20N4x3Hf8KyL/m4rUV97EX7ePzlOnzwJcdYGx+0+2x2f4MdlMv5vsXEZKucPTeXdL5m2USsUebd9hz5WGvPs9/HS5SthQSAOx7/vP0Hy0S/5G/2dnfQe+2xFrNrwt3CcYNtnosHLftDB9lizsO32a/F6qNtneV7tz3sGOrxlbZ+FFtRmGs8lgPAp1kvVnYd9/ziVracaWzvZrrMC3jzU2Bp2J7A2nv4vfZpZrNr9wp2TXHZMAAofo0/y2x2r4DplovCPSuurXzDY3v3T39+r3t9hnh5b2OgsRTGPRKqmuJYkcshaZ9TF9ORtDWXAatlx2A6i1zeu49kUCuvWqyZ7hqsULXYRNqncxkKGK1I9HOtLRC5TFcxcmlVqRXNpeAik8vj5Z3d2N2THOupCIIgCIJQJhK5nMLk88qqxsmroU51+l0OV004aDlDu7v1p4IRjzRWzagWq5TyFXVJl+xzqS/P+HT0zLRYrViPD+iRy2Q6Zz1UiLs0l5GAhnQV+1yaznqxeWoklYynItv2DyCbV9jfl8LchugUjF4KgiAIvlEA5FnkuEIil1MYM4USsCNegl4pFoDV57ImEkQqm8f5tzyHXV3FnUsz0ug34FYqLdaMaGZ9DminxRbfLhYKYDCTQ38qi1CAEAm6nMtQdavFevXX5Oh9Lqs2BWGcsnGPnvaYyuathxCCIAiCIEwMxLmcwnAdoaTF2ljOJetzCegpxG1G5DLscsZMzEicX41kpkTk0qwW6zdy6TctNh4OIGGkxbqL+QC6s1vNarG+02Ilcjnl2LinFwS9HnPHgDQvEwRBEISJhKTFTmF4VECcSxszLdbUXJpOZk4BbV0JEIBwCY2kT9+ypObSbFHiV3NpRhtLRS6joQBS2Tz6ktkhxXyA6rciMVugFI1ckl6ZN59XJdN8hYmF2bty5WWnDFkWCQUQCwcQCWroGEhjYXN8TOY4NgyniA+HNzTnhTb8jjuP2bzIBy/iwwvqLPLYxsUaXlSFFbsBbyR/sm0u48V9AKznxU9YoSB+jkvY4gf5HAFWUwZYbBdswXZW0Od+ts0j9vJEW6NzrLts85K320V88FW2zQlsvl+1z2XjV44DZ8mLdkGed9JKy25I2YVk3hf+q2Xf90Nn5Zz3/cBet0UttezdeNGyN9BJ9g725rhjLivgAwAfsc3D/2YX2/kA/mzvs9TeZ/6VWyx7wZU7HUOtft0u0PM6jrDsU7b9w96GnrLsB9Q3Lfuju/mb5eJHzG6y38dTPsXGfc+74IQVneLXNy+2M51t8pBt9nza+dmzFnZBInyG7X+n63ozeZPZ6onC2wBw3mv7PJa3MJvfA4CzotJGj+34/q1F5rLIY/k4LtyTh6TFjjMkcjmFMaNHAJDIiObS5Id/eh0ArFYkccO5zBuRy3BQ89SBBcqMXKYNp9EzcllmtVjbuSwduQSAA/0p1ESGRmFHq6BPsXma66qZniuMPzbu6UU8HMC02ggyOYXepHw2CYIgCMJEQZzLKQyPVkrk0sasoGtGLGsN5yunFHZ16c6lF6Zz6bcdiZnu6qm51Mrrc5nK+m9FAgAH+tMF02IjQa2qrUj6/WgujXPg2mBhcpPJ5bG/L4V4OIimWAgaAR396bGeliAIgiAIPhHncgrDNZdS0MfGci6jpuYyaC1v60p4FvMBhuFcZk3NpVdarBG59OtcGg5hqQKb0ZAduXS3IQGqH7k0qxMXcy6vfJee5ybO5dTBql4cDkDTCE3xMDoH09ZDE0EQBEFwYKbFVvqfMGxEczmFGRTNZUFMx9DUIprOVzavsK8vibkNUc99y3Yu8wpE3k6WXS22OmmxHf0p1ISbhqwPBwJV1Vz2p0pXtTUd4KQ4l1MG86GDeX0214TRMZDGxj19OHZB4xjOrDREdBOAfwGQAtAP4EtKqTXDH5F/PfPU4DrXdlxP6UcX5aXLBJwN2FuYzZu8c11mEZ0lZytrMn8UPxzTijE9IN7n3P0UdYZlr6a7Cx7i/75oC/J+PuTz7yrLanjD1jP23Djbsmd+5S3LbqeIveu8a5xDxWytXXi2rbVLv6/e3uY1psf7ENuX60IBbN1t6yRxoX3M48K2FvW+j7PXDk5t36++9hX7j+tsnedH1KBl/0W937LPxmOWveETTIsJAFttc+PBtjZ085uHohC7Vtpz73j/NOfKI2396DTVYdk7scDehr2OF3ay87qOvfYAwF4iJJiWdY29/+ptZ9rLZ7gmupa9F19my2/+PgrzDWb/wmMbAHd67c+Ot4ovf9J7LMd92MJsrrk8nNnrXPvzA8VQmFZm+9VgJ0pvMgSvzy1hKiGRyymMU3M5uX/Ar7h1tVUwhNuFyOXz0JjDZ/7QTaZzUMq7UixgVz/1258xk8sjpHlrOENWtdhy02KLbxczHLe8QuG02JBW1WjRYCoLjVC0h6HpXEpUfeowmM5hVn3Eitib1+m2/f1jOS2/PAZgmVLqGAA/BbCyxPaCIAiCMOmQyOUUxkyLJZIf8Jxc3hlJNCOXg4YD7ict1m8aayab90yJBVjk0meKqt/Ipam5BFC4oE9AQyanqlapdSCdxbTaiKNa6JA5SuRyyjGYzuGklmbrPY+ENBCArRPAuVRK/Yn9uRrAfCLSlFJSkUoQBKFaKEga6zhDIpdTGDMVtikettLRBD3qyJ1Ls1qs6YD7cS799mfM5PIIFRnPdC4zPtNs/WouTccNKBy5NIsWVUt32Z/KoSbsHQEGeFqs/DafCuSVQiKdw+Fz7PRCjQiRkIZt+wfGcGbD4gsA/iyOpSAIgjDVkMjlFGYglUVQIzTGQqK5ZOTyLufSFUHzUy02W4bm0qsNCWCnxfqPXOb0BvRlRC4LFfQxHehUNm85eZVkMJUt6NRyTAd4sqdsCzrJTA4KwOFz6vDSW13W8mgoMC4il0S0DsBCj9WzlFI5Y7sLAHwcwBke24KILgVwqf5XA1vD9ZReuij3cq99vJbz3nfuezDmsR3Xe/X6WA4AttYPK9jn0TvYJs+y3paOtotOPdtq4n0vF9vmhS2W+fOn2CZuGflpttnzINNG3myb7f+Xaf1+bvdQ3PWVGxxDzWenkp52uf1HjI37BNvhItv8xg++4xjrJ/RZyz5B2frVJ77DtKgXsx3uYccAcOW111v27358mWU/dJ6tJX3oqAssu+Fbtt6UazQBAMvZa7zFbtD49SuZ7nA5255dKokTnC/4fHWCZV+ycoW94vSUZf508Gr7GOvYMZ52Tsvx9x/ZHG9ky7/FKkqf5tJs3sPH4ud8rmXNVI2W3U7uHpJe8Gsyw2yeDf+Gx/aA8xo/F4XhWmcvLaV7nR9NtN+f/nxcvzpNCVQI4lxOaQbTOcTDesNySYu1yeWVpZ0EAE0jaKTrE2fWRYqmnFqRyzKqxYaKpJ3aabF+NZf5kimxABAP2bd+oQii6VxWq6hPfyprFUzyIhrS5yBpsVODAaPIE49cAvpDhtYDg8jm8lbf17FAKXV8qW2I6FwAPwbwL0qpfV7bKaVuA3Cbvs9cfze3IAiCMJQ8hld7SKgakhY7hek3okfxcEAilwx35BKwncb5TcWeHtp9KX1HLkukxZpRzYzvarG5kimxABAN28cci7TYwXSuoNaTE5XI5aRlR8cAugac/SsTGf3aPWh6DVZedoqlx42FAkjn8tjVNb5/PRDRhwBcD+B9SqnWMZ6OIAiCIIwJErmcwgymdecyFg6iJ5EpvcMUIZvPI6g5bw09GqgwrymO9l5v5bgZNfTdiiRXPC02WGaBoFTGZ+SSRQ0LVos1KuKmquTYDaSyWDQtXnQbM3VXIpeTC6UU9vWmhlRATmRyiAYDQ6KTZgT70t+sQVM8jJWXnVK02vMYcieANID7WVr6vyjFejEIgiAIwiRHIpdTmAGjqEo8FEBCCvoA0H/4ZnNqSAVXM3I5r7FE5NLY798eeNXX8dK5fFHn0q4+679arObjro4GxzZy6S8tVpzLyUjC0FamXCnX6Wy+YLGsiXIdKKVmKKXmKaWOZf/EsRQEQagmCkCuCv+EYSORyynMYDqLeFjSYjm9ySwUbCfRxNRgzmuKOYqNuDGjhj6LxSKbK96KhIgQCpD/arHZnK/IZTCgt3hQAGo9WpEA1dNc6mmxJZxLw9FIpKXg5mSie1DPknBfW6lsHnUFrolQQMO0mvAkvg4I9lexn4I8fLl73UiWA85m7h9nNi8s0ulh82ovgKOqzRomV40dbNsJVtSEF5QZ0rv+emaz+d/DGt4vDdl2l6tYTYKNfYFrncH5qsWy7/vKpy17/soDzg1PLLg7cKZtLrnyNcve+pMjLfsn2g+c+9xkm2vJPj5+zLa5gNn8bQDwq699xf6Dv/z8WTGrhdUTYe/vs64CM59m9talljn/oC2WvetheznuZdv/1fn9tIuesextyq5rddDc3Zb99T+xN/kJeJNi9reYvZ5Jmm++xbaXus5rS6tlzlefsOz2zpm2TWwud7D9L3FPhr1Ic9jiPeyNWcoKGG1h15r7ubQjy38ds1s8NuIDOHXp3oV7OHzc9a51/HOXH5NfSH6KjQmCjkQupzADKV33JgV9bDoNHVjQFf6zNJelIpfWfpVJizXHLCdyefCsuqL9I03M/pUF02JDdrXYSqOUwkA6W9Cp5QQDGsIBDcmsXJuTCcu5zOWRMa7r3mQGubzyrMR80IyacR+5FARBEARBIpdTmqkUuexPZbGzcxDXP74JfclMwfYbANA5oD8mdUcTTUdsXomCPqZv6TdymS4RuQT0KKpbn+ZFKlM4tbAQGumZH4XSU6sZuRxM56CU3T+0GJGQJg8+RoipT/TzwGE06E7YhXz29iSxoDmONqNYj9e1u2RGLV56q3s0picIgiBMJBQA71IYwhggkcspTL8VuQwikcn5bp8xEelNZNCbzOLGf2zB63v6sP3AYMHtOvr1H77uaKKVFuszcun3lcyU0Fyac8mWUS3Wr3MZKBK5NCNIP3jktSHrRsqAoe8tlRYL6JVCJWI1uegZtIuHtXXrTqXlXLp6qppVY5fMqEU2r3xH8AVBEARBGBskcjmFGUzrRVXiZlXObM5RRXQykc0rEIB1334P3nHN/3q2t7DSYl3RxGhIQzSkoSYSLBoBCpQZuczmlBUl9CKoke9qsclMHs01xdNNTUxtZqGWIGa12Go8bzD7GRbqr+kmKs7lpKObVaY2nUrTyfSMXM6sATBZ29IoFG487lczyT+zvTRSfnRUgFO4dx+zeWP2Zmbzh21b4KSF2ats8x0HF1yMX3i2BQXAtIWO5vM/sc0fXs6Wc9t1nLOYpu5Y27yP+PFfYLazven31Ldte+419orrei1z6yZbZ4lWtvOPnNM66soXLXvD5xvtFWez12gJ26GFCxABXMfulxzTnG5g2xzKd5hlm1HnUI653Wx//+26jn8J2K/LLvVBy55ProeQyy62zIOI6Tz/yLZ5wjbDF9uvXXqpS0/44T/Y9tZzbZu9LuGOq+39p7k0tV+13+9dxNcdZpsnsmviZhSB3QeO1+9J29xyZuFdi0bWuGaSvUeO+5HrJHvhhN+T/F5v8dh/kWt/rp0ejlZbEJxMTk9CKEk+rzCYziEesZ3LwfTkdS7N3pWN8TAioQAGParjdnhoLuc0RDG7wf1tPJRA2ZrL/BBH1k0ooPlPi83mLL1kKTQiEGxHkmNGLvN+veQyGEiVF7mcnA7F1KW7QORyV9cgiOzWO24Oml4LQH94IgiCIAgWeUha7DhjcnoSQknMH+w14QBiZrP6SaxtM51LoHgksGsgDY3slFETMhyxUpjps35dslKtSAA9iuo/LbY8zaX7PE3MMargW1rOpZfulRMNB8ShKMF401SWonswbTmSPHIZCWogj0rH85tiIEzWyKUgCIIgTB7EuZyimLo3PXKpXwaTuahPTtnOZShAyOaVw+E06RxID2niXg7meH6dskwuX9G0WN259JcWG9DIs21JpJqRS/Pa85MWG9TEoZhkdA9mENQI4aCG3T225rLYfRAMaIiGAuhJZHDfizvRNZD2df0IgiAIgjB8iOgQANcA2AugUyn1rRK7iHM5VeG6t1jY6Cc4iX/EOyOX+vn2JDJorgk7tusYSOOw2f5aeRTCci59bp/10YpET4v1GbnM+C/o0xALeW4brmrkUr/O/EQuY+GApYMVJgfdiTSCmoZIMOCKXBZ3FutjQezrTeH/PfAqAGBhc7zqc50YcN1jn4ft1aPOraN6hNmHMzvDbK7pYjo/uDWTG5l9lm2u8tJWPmab57p6FT7Ijn81W3cR2+aEwv0rAQA/Zvt8k223imkzT2RatzXsHHn/TADf+w7TWZ7JVtzDdGuPsHM8keknv/mmY6wNS05ix7HNw49/ybI3ntBkrzirxbE/vs3s1czuts2GH++17J4Btr+rfaejb+N1bJ4XsvmzOc4/2h7gTPUXx1BPfPxs+4/L2Wt/A9uIvQ3pafa18n7l7Nn4GNe8PlT4YWh6PtNprnVdOye8attcW7m14FDAGq5nvNq57jPsWriTncAVXLO5ku3Alqsi1yfewWyvPrKtzG5x7c+3Y/eaQ8u5yGM5UFjzDYy8t+Uo9cYcw2qxRBSF3pn3LGMWq5VSlxbY7hAAdwOYBqADwKeUUm+WWjfMOV0H4KPQL5RlSqkNbN1wjvVBAHcrpf5IRP9BRCcopdYW20GqxU5RuO4tFjIjl14fMBOfXF5ZKaumxrGQ09I5kB7icJaDFQn16ZX50VwGjUirH1LZvG/N5az6KBZNqym4brxoLqPBiVnQZ8Wtq610VcFJ92AGy+Y34GMnzEdbdwKJdA4H+tP41CmLij7UWdQcx4mLmvDMv70LR82tx7QR3KeCIAiCUAF+Bt2pPEQptQzORz6cWwDcpJQ6BMBNAG71uQ4AQEQRIlrkWlZLRHMLHOshAGcA2FFgneexiGgJEa1y/fsagP8GcBYR/Rx6VasWj3O0kMjlFMVMgeXVYie95jJkay4BXfvlpnMgjYNn1Q77OOVGLtNZH5pLzV/kUilVVlpsMcwUxWpUi+03nUsfxaNiYSno45eJor3sSWSwsDmOuQ1RpLJ5rG/rAVC6hywRIUDA/Ka4rwcTgiAIglAtiKgWwKcAzFdKfxKvlBqSmkFEM6GXnX6PsegeADcS0QwA5LVOKbWfDXMUgHuIaLlSahMRNUBP9/g1gNv58ZRSzxjH9T0PpdR+pdRWOEPfnKuMMe4E8Lr3q6Ij39BTFFtzGXBUi52s8LRY05krFLnsGEihOT78iEiwbM2lsqKEXoQC/jSXacMB9ZsWWwxTd6qqELk0r7N4gRYobvRWJFLQx814dCT9zql7MIOj54cwr0lPa/3KfS8DKN1DVhAEQRCGUL1qsdOJaA37+zal1G3s7yXQU0u/S0TvAtAP4Fumc8dYAKBNKZUDAKVUjoh2G8upyDrLuVRKrSWizwF4lIguBvBzAL9VSt0O/xSbx36vnYhoHoAfGH++qpTa6LWtiTiXU5TBlB25jE2VyKXmjlxmHNsk0jm9T2Tt8J1LrVzNZT6PUKm0WE3zVS02la2ccwno1WSr0+cyi3BQKxmxBfT+oskJfl2OtSO4o2MAjSN4YDIc+Dm7z787kUZjPGw5k31J/T4sFbkUBEEQhFHkgFLqxCLrgwAOAvCSUuprRHQygEeIaKlSyt2MdMQopZ400lSfAnCtUuqXlT6Gx3HbAFxSzj7iXE5ReMVOu1rs5NRcprI5KNgpq2ZUrtOVFtsxoDeoHomWK1iG5lIphUxODempOWTMACGRKT1eyojwRUKVqaJJRFWJXA6ks76K+QDS53KkdA+msbc35btParVJZvQHOA2xkOVM9iWzCGiE2fWl+8gKw4UX0+CynYRrO/53q4/9+e8nXgDIDR/3Fo9tmDzoIfe6n9jmL77BbL4NW863B4Dnmb2MFVm5kS1/J8tmu7rFto9yTeUSVphlMRvrdLZPN9v+x8yez4rjAJh5xFuW3b5yoWVv3H2EfXhlF6TZ8Bw7BuAoaHTVtmst+4aTvmbZPREe0nnBNp852TnWQ+wz4q9snp9n2/BblG3/xFdYAR8AuKeV2fPYCva+bLVfuyvVs5b9K1oOTxw/8/l1xN6HE9xZibxQ06sey9mDrRNZcaA1riI8d3rM62Z+zDeYzfbnRaUAZ2EpR0EeVjUJ65jdzGy338LX8aJcXkW93Pfqembz7+Y+j+V+fyt6HX/SsAP6i3EPACilXiCiAwAOAcAjnjsBzCOigBEtDACYayynIuscENEsAN+DfiNdSET3K6X+WcZ8i82jokhBnykKL6pipcVO0h/xfUn9XC894yAAekSOSO9pyTHTZJtrIsM+VjmaS/MHf6m02KDmr89lKqu/f+M/cplDjY+UWEBPi83mle9quYKTTXv1L/eBcfLgqCehRykb4yE0xEIIECGvgNn10RG1ABIEQRCmKAq6i1fpf6UOq9QBAP+AoWE0KrHOBLDFtV07gJcBXGgsuhB6tHN/sXV8DCKaA2AVgH9XSn0TwMcA3EtEp5aeael5+B3DL/JtPkWxCvpEAkbz8smbFttvOJdmtIyIENQIXUMil6ZzOYJqseRfc2k6TCXTYgOaL81l5dNiCcp3gq9/+lNZX8V8AD1yCWBMK8ZO5Mqvm/bpzmUyk7fST4GxOyczFb3JSNM1H6yI3lIQBEGYgFwO4BtEtB7AvQA+qZTqJqJHiehE13ZXEdFm6MVxLve5ziQG4NtKqd8BgFJqHYCPABhSgZKIfklEuwDMB7CKiF4r81gjRtJipygDqazeyDyggYgQDwUmbUEfszppXVTvUbXyslNw9n88hc4Bp+ays193LkeSFhsIlBO5NJ3L0gV9/ETurLTYClSLBfTobjUil4PprO9qn9Gw6VzmUSdZkwXZ35dCNKRZ1zfHjFwCwGu7e/H2g6aN5tSGYD7QaYzpc40ENSQyOcwXvaUgCIIwwVBKbYOz4625/AOuv98AcLJ7u1LrXMfZ5lr2KoBXC2z7RQBfHO6xKoE4l1OUwXQO8XDAKlUcCwcnrXPZa0RsuM6vKR4e0orETIttqkDk0o97aabF+mlF4qfPpZUW67PPZSk0oqr0uexP5dAQG+oIFSJqRLYmYq/L0WD9rh5sOzAAIuCwWXWod72um/b26UWRMnn8v/tfxZyG6JhWmDUjlw1xfZ5W5FKcyxHg1Zzcq4F5odZnJlxPyXVghzGbN2BvYba7gODxhQ/RxLRnXUx3RsUazn+a2S49pcm5bP8HXQ/jH2llf9xtm60uHZzJL9jxT3dv83Hb3M40jF9lv9f+wjafz+yo8/O0fdsC+49GfnxbmrEhd5I91PWObDvsOtvW593e+6+WfdSLL9r7f9be36EZfB+cLHnStpedadvs5cITfHv+PpzvHOurTLPZxHb5xscseyub1q/oPHjy7Rbbvss2f6q6LfvrxN6vO1zv1z3MXtVqmQ+oz1j2R9/zKNvGfe1xvHS9ze4Nh/JN17j8PuAPTvfc7DFum8dyN1zj6tZUm7QW2Z+Pzff3+pzxy0j3L0Ie3qcqjAniXE5RBlLO6FE8HEBinOiyKo2ZFlsXtc+3uSaMjXudovjOwTRCAUJ9dPi3RaCMViT+02L9tSKpdFoskf+WKuUwkMpiboO/MKRVyXicOZelKsBmc3ns60th7Y4uKKWG9JuqFD/76xsIaoRggLBpXx8On1NvzU8phU37+lAfDSGXT1s667GkJ2FELo202IikxQqCIAjCpEKcyynKQDprFfIBdOdyskYuzbRYR+SyJuRoRbLi1tXYtn8ATfHwiByB8gr6+EyLLbsVSWXSYjVUJ3I5mCojLTY49prL4dA5kMaurgQ+evNziAS1qjhPPYkM3tjbh4XNMUyrieD1Pb3YtLcP+3r16pDpXB59ySym1YSRzgWrXtSnN5FBe18Kb3UMWsvyeYXBdA4xI5pu3nM8LRbwF7nkjrxp31cVtYggCIIgCMNFCvpMUQZSOYezFQtP3pYPfQUil2ZabI6lm2by+REV8wHKK+hz1e9fAuAjLdZv5DJT4WqxGqqUFptFTdifA+zuwTpRiuuYjv7PPnY0AGBPT2U7PCulsLNzEHMbophVF0U4qOGQWbXI5hUefnk3APs1i4UDqAkHkczkHde7SaVe046BNDoG0vjAL5/G/r4UOgfSeP9/Po31bT3oNe7B7kQGoQBZD7Ya4mHMaYjipBYfaWWCIAiCIIx7JHI5RRlMZ63+lsAUiVy6nMu80qMtpsYym1OYVjsy51LT/GsuzUqspQv6aP4K+hgOTbRCmstQQKt4qrRSeiTLd+QyNHZpsSNxuFLZPMIBDeefuADX/nXTkLY3I6VrMIOBdA7fPedIPLB2FwAgHtbbCv3ltb0IamTdz/FQwHIqq9nLNpnJIRrScPicOrzY2gUAOGh6DQD7HuwezKAhZmcHBDXCwua49T4LXjrJao3r7j23w2Md793H9ZetzHY/IFiHgnStKry8kW/zDee6zzAt8Z1MF0oX2/aDb7IdWK9CAE6xINufSzm5ZvSrTA/HpW4AAKYn/Cpb/AVm70rZ9rdYa6tGV1bMXbZ5R+cnLPsS+hzbyO5J2Hh9l2P3vv/Ya9k935xt2blr7c/X9/76Yct+/KFz7J2v468XgHvPtMyZK1j/za/Y/TfxCzbhP37Ttp92DgX+cf3NVsv89Tc+a9nv7GZ61WUttu2UlTr1iIzvdjIN41r2fp/wgnPDOUwLe65tf/SzTGfJa2k6dMfvcI3FrsM972QrbrBNrtF9+i62zSfggEsrL+B/cK0y70f5GLPdAsOYx7ohF69Bse+BdmZPEBdBAUiV3EoYRSRyOUVx9xqMhSZvQZ++ZBbhgOZIF22q0b8keDuSTC4/oh6XJn6rrJrblNRcauSzoE9l02IjQQ3pXL6iPSZT2TyyeVWGc2kW9JlYfS7TubwVQQ4Z71++gqV3OwZ0ffB5x81zLG+Oh7F2RxfS2TwSmZzVP9Js/TKQGv49XirCmczkURsJ4t5LT8GiaXEsmVGDv33lnQgHNSuK2pNIozHur5iTIAiCIAgTj6o5l0R0HRFtJyJFREdV6zjC8CgUuZy0BX1SGUdKLGD32ePOZTav0FyBH74BooLph26U8lkt1nefy/LSYldedkrRyqFmJc+9FUzp/Ph/PQ8A/tNix0GfS6WU9V75JZ3NW6+f+f52JzLFdilrPn3JDOqiIQRd146Z1t01mMZgOodDZuvRp3BQQyhAlu5yOOdUjGQmZzjUAQQ0wuz6KKbXRhDQnG2Ougczlt5SEARBEITJRzVj3g8B+E8MTZgQxpgVt65GW3cCpyyxe97FQpNbc1nrci6tH+FGr8u8UsjllWfkspz2DQHNr3Op/++rz6Wfgj4V7nNpjtPWncCC5nhFxjRfF7+Ry1h47J3LXV0J9CS9HUN35dhcXiGdzSNSo7+vQSMy3TmQGrGmFwB29ySRySnUFXgNY+EAlsyoQXtfColMDofNrsM3PqCnVh37/ccxkMphTWsn1rf1gggVi0rv7NSL+BRKyY6HA+hOZJDK5tA9mMHcRmlYKgiCIFQIaUUy7qiac6mUegZA1UrwCyMjl1eOyGVsMmsuk1lH8SLAjlx2GpFLMzLYPELNJaA7l34K4ZhbhIOl0mI1KKW/ZwHNe1srLbZCmksz8tbWNbxP7ULtOszXxf1+eGFWix2rBx+pbA57epJQ0B0x80FAXil0D2YKPkRo79O3d0cuD/SnsXTmyOaz4tbVONCvi0vc0XiTs4+ajZv+sRUAcMgsWzdXE9GdvI/dstpKtb77udaRTcigtcN0Loc+2DCL92xtH0BPImO1SxEKUcVecGXjVWSJfx7wtGx3X0uuueT7tBQ+Bs9vevoR51B3trI/mA5N8Yc+TAvpLj6cYNcc76nIpzL/TNu+mgm45m1yjvXXoy3zjvcynWTud5Z95tx/WPYTHznb3veAc6j5nbbA8JLn7P1xk22+90qmmXyKaSYBhI9i7bTeY5sbv3acZb/rWnsuj9/Fdt7AXi8AWMnGXcE04nb7TBx+/TGWvQL/n2V/b/41jqFmHs80m8e2WPY7r7T1kGe+aTcD3YdZ9tzPs+cOAOCJM+z1W9K81d7nfWyfta7+8A8x+2WPcfn0f3Oxba/a5xyrm9lLz7TtLUyb+fQfbPv0iwsvB4ALlrE/uLayzcNmx8PtzrEc9yHXTfNj8D60bq211+fO5MxmE6rPmGsuiehSIlpDRGv2798/1tOZEiilkFco0OdycjqXfans0LRYK3JpOJdGZHBaBSJLms+0WNPRCmqlq8UCpaNMZlpsuEQk1C8RY5y27so9EjRfl3iZkcuxci7bupLWQwCzxQcA9Axm8GZ7P377/NCG9LuN18vSXFqRy8oU9elPZqERHK2EOGcfOceyD5tt/4hoiIVAAC45bTGOXdCIhlgI/7HqTaSzI49e7ugYAABEC6Rkx4yHWG/s7UX3oGguBUEQBGEyM+bOpVLqNqXUiUqpE2fMmDHW05kSmH5PjavPZdZI55tI+Gmj0JfMojbi/EFbEw4gFCDc9VwrVty6GhkzclkB5zKgEXJ+IpdlpMUCKFnUx6xQqhWJbpaDphFCARp25LIQpnNZG/GXums6aKNV0IdfT8lMDvv7U5buk2tPk8Z9cv3fNg9x+tu69e3MyKX58KCjvzLl7PpSeiTeKyvkqHn11rGXzqy1ltdFQzippQnf/tARCGiElmlxpLN57OwaHDJGue1Jth8YQFCjIRpQQE+VJQDr23owkM6hSZxLQRAEoVKY1WIr/U8YNmPuXAqjT6HokRldmIzRy0IFfYgITfGwlQ6bNRyEijiXhLIK+vhJiwXsOXqRyuQr1uPSJBzUsLungs6l8bLwlOxiEBGiIW1MNJe7uhLQCFg0Tdeb7mbOZTqbA0FvsbHL5XybkcuwkdJ73+V6WnBHBSKXubzeyoVfz+7CTESE2fURNMVDQ9JUuUMaDQXwr6cvxoH+NPqKaEpNEukc3uocLFj1dkfHoGc6tkaEWDiAlS/uBKD3thQEQRAEYXIizuUEh0cY/EYbzHRMd+QSAAYzky/Hvj85NC0W0HWXZjpspSOXPurvWOmWfiOXmRIVY1PZXMX0liaRgFbRyGU+X57mEtCLTY22c7lpbx86BtKYVR+1WvbsZU52KptHJKThk29fhPa+FAZS9n2zuzuB+mgQD1xxKgD9/W2IhdDRP3Ln0urZGike/ZvTEHPoLb34wruXQiNdD1qK/f0p7OlJDnGmAaC1YwBnHT6rYOGrlZedgrOPmm1punm12FIViwVBEARBmFhUraAPEf0SwHkAZgNYRUQdSqkjq3U8wT9W5NLVigTApCvqo7dtGFrQB9B7XZpRppQRiWqqQFRF85kWm/eZFmumGmZLeKypbL5ilWJNwsEA2roTUEqNqDiX+dCj3GqxgB5hG+2I+g3/+yY0AuY0RBEggkbAHkfkUn+trz7rEPz2+R14q9NOLW3rSmBuo7OiyLTacEU0l31Jw7mMDn2fh+OkxcNB1EdD6PXRJmXQaGOyZX8fFk6zqwensjns7k7gvOPne+7LtZ+iuRwt+EMA/tCQ33vuQh78gcRQPfHQfVixGjzr2o4XbupkNm9Mbxe0cdaVPw8OFjN7Oyticy67lh5k27h/aSxg4y1hyweYfSKzf8Sqhl9xNBxcbpuX/JYV4WF1ZJ542H5drjrnWsu+4eNfcwzVd5Gdto5+25x5pV0QpwN2VfdTzrCL87hZ3fUu+4/TbfNUPGfZB86xx7oPn3YOwG7fvrQ9r9j8LstuZBVtVmKFvYOrUFH7wwvtOX/KnvPrF9iFa7ZgqWXv+qxtH/6HlxxjtWC7ZT/2sP0+brySFfG5iu2wyzkXzGb2I6/aNrH3dQPbZimz3ZWh+C3VwVfwzzR2rbmL+Djg9ws/zhvMXuSxvTsIwO/VtzH7n8zm97a7WBc/MT4Xfq/zz41xFoSQarHjjqpFLpVSX1RKzVdKBZVSs8WxHD/kClTsNHVlX7rnpYL7jCbl6r2Kkcrmkc2rIa1IAD1KmcnnoZRC52AG9bFQ0WqsfjH7XJbqI5i30mJLOJfGnEr1utSdywpHLoMaUtm8r8iWH8xrz6sYTSF4m5xkJmc5OdUikc7hz+v3YFZ9FKGABiJCOKhhT7ftXJqvdUM8hJl1EfQms1ZUsa07gXlu57ImbFV5HQl9yQzi4UDJIlDlUB8LIZnN4yM3PVP0vjMfPG1p73cs39WVQF4BLczhdEckD5ttOxqNMUmLFQRBEITJiqTFTkHyluaSp8XqzpefiNtEwoz01EWHRksaDc1lfyqHdDZfkUqxACwHNVWiOFLOcBYbSjSVNyObJavFZnIlHdVyMZ3Vi+/8Z0Uc/lxegdi4vuYQClgFfVo7BrB1/0CJPUZGW3cC0WAAcxrsfozhgIY9RrXYZCaHbF5Zr7V5ba3doT/h391dIHJZExlx5DKXV+hPFY7Cj4SGmD5eb8LbaT/Qn7LSst3O5RW/XQsAaJle47m/RC4FQRAEYWpQtbRYYXRQSpWsIurG3L6eOVxmy4dCxTomMmY0qVDD+eZ4GNm8QsdASk+JranMj16zWutAKluw759JNp+HRn7SYv1Xi40UOd5wMB2oVDaP2ohzXaE+lpzBdA781LL5PDr604iGAmWl2MaMgj5K6Q8Cyo0te82z0PJkJoeOgTQuPeMgvLKz21oeCWrYY6RQt7lajZh63he2deD4hY3oTWaHOJfNtWH8s3VkzuWmvX3IK/14ldQpxkIBBDVCbzKDGXX6m+x+kLFpr54epdFQ59J0/FumeTuXM+oiVm/NBnEuBUEQhEqhAEwuRdeER5zLCc6eniTauhPY0u6/+bape6uPDdVcTjTfsmswXTSSY1bBLLSNGUE50K/33qtUqmGATOcyh2m13ttl86pg6wY35rz89LmsRlosoFdHLRfdGVLY0NYDAGg9MIh0Lo8jZ9aX2NNJLKwX9GntGLSu3XxeVazlCqetOwEi4HOnH4Qv/F5vAr/yslNw/d8244b/fROZXN7S6f70PF2zE9AINZEAXtjeiY8cpzezntfkdC6n14TRNZhGLq+GnXr9suHsViJy6a4uWx8LoTeR1R9W5fLYuKfP8WBg4x5d59YYC2FLe79Dg5vK5BDQqGiLESJCPBxAbzJb8EGPUCm8ijjx7we/aeVeY3E95GPMbndt93Fmc51lK7P5ffICs493DrX9EfYHawz/oIfQatks5993Mk3xWew6XcX1m+xz6atsX5eeEB9hNtd5nmubS059zbJveN3WWR7+e6fsZON3mG7wAts8Aq9b9kvpYy17QXinY/8E7FT02PttbWTi5SbLvujx+y37P957mWXfd9SnHGN946DvWnYY9oOw791+jWVvvdIWrK7ASvs8prPzAPD+422t4WO7P4hC9GxhYkhbCoqNTznH2vgQ+/sL7AfKiexhXSt78mlP11jH7OVMZ7mHLV/Dro9+dn3McX1X8ednW7iekl/fG5nNr+95ronxa/cvzGYXkuMCm8lsrsUEgDZmc53lYR7Hc+up+b3eN4LlgqAjabETnMF0DnkFfHnly5aGrxSFIpemc+mnhcZ4YSCVxeZ9/QWrV5r0WwVQCmsuAf2cK5USC9hpsf2p4j/isnll6SmLYfW5HAPNZUAj1EaCJVN83bT3JZHO6XrXj//X89jVNYiOgTTmNcYKvhfFiAZ1zeWru7qtZd0+CtAUopieVymFrsEMpteErQieydyGKJQC2vtSVvXcuY122mx9NIRXd3Xj87/THdJ5bB2gX2tK6Q9DhssrO7sR1Kji7zEA1EeDSOfySGbz+J+1u5DI5NCfymF/n64T3binD6EAoS4aQm8yi/1MP5rM5hENaiWj0fXREGJlRq0FQRAEQZhYyCPkCU46m0dAI2xo68XchigWNMdL7pPLKxDBkbJppcWOA81le1/KV/VKs3pnsYhQn5kWW6gVieFQaqTrLyuFOY9ShWeyOX/Ope9qsZk8ptVUNi2WiDCvMYb2Pv21LpUKa2JGKw+aXoN0Lo9dXQnURAJDnC4/vLSzG4PpLNbv6rGWdQ6kSraNKVcjurc3iVxeFaxkO9vQX+7pTmB3t97/cnY9dy6D2NOTtHpZDq0WGzHmncZ0d36xT17e2Y2aSHDYzlmx98zU/XYPpnH93zYjHNSQzubx5Ob9+NgJ8/HG3l7Ew0Hrc2JLez9m1unnn8zkfEVT5zZGHQ65IAiCIIwYBSBZcithFJHI5QQnlc2jKR7CihMXYHdPEr0+mqEXipiZBX3Gg3PZNZhGx0C6ZAGUvYZzmckpfOiGpws6E1ZBnwJ9Ac22I43xcEWqxJqYQ5WOXOb9RS61setzCegpnuVGLtfv0tPNmmvCWHnZKZhRG8HSGbXDcow0AvJ54FXmXFaiZ6QbU1cYK1DJdk6D7izu6UliV3cCs+ujjpTm2mgIGtmRSdPxMjEj48OtGNufymJzex9qI5V9eGASCWoIBzTs7Epgf18KS2fUIBQgPLGpHeff8hxe392LC05agDs/cxIAYKuhu8zk8lbPz1IQkUQtBUEQBGGSI5HLCUw6m0c6p6dCfmf5EXhg3S6095b+8Vooyme2Iikh6xsV0oYjs25HF846Ypbndnt77UdVXQNpR5qvSb+puSwQuWyZFkcoQJhZN7xIkhcBq6BPcZ1izq/m0oxcjnJarBnp+vZDG8p3Ltu6EQ1pCGh65POgGd7FXkqhEenazd09qIsG0ZfMlpVemszk0DmQLunsb96nO5fxAkWR5hgRtz09iSHVYM3XafkNz2B9Ww/CQW3I/cUjl8Nh/a4eKOVfb1lOwR9z2xN/9Dcc6E/j7CNno2swjcZYCE9t3o9F0+JQAA6bU4fZ9VHURoJWUR/z/2iF+6sKw8VL/+SlkXJfT177c43X3R7jck0YAHCdJB+XaSbBH4byz/p1rrF4JsDBzGY6zTms0eSd++BJNzvOcg/995eYfZJrHe+HyU+FySG3Psw6r7FWnucewTV0wMYWW0941BEvWvYTr9t9MnmfyQ1b3JOxOeUIu5/k6ums5yWL6Hx59y8t+6cHfcWx/9cf/oVlH36OrQ09/0r7/b7v13ZvzP++6JP29sc7taSP/drW5S75rK0/3fo1+3U581pbZ/gE75da7CPuCf65yr63W9nibtc+t/D9mX07s5ez3w6856U7GraHaXSbmPa4i2/EtnH0pnTpiB3r+P3F7wN+T3H5j1vfzF80r324ztKtp/a670VnKQwPiVxOYPb0mFUrA6iJBBEJaSVTJwEgmxsaMQtohACRr/2rjenIrH2rq+h2e43zr48G0TmQKdhX0nQoChf0CeP4hU0lW4GUi1XQp0harF44xV9xF7NabKbEe5PM5BGpwo/8uY0x5PKqLD3u+rYe1IQr8+xKI73K6GA6h0bjverw6aTl8wqb9/VjZ1cC7/vFU+gpkm69aW8/QgGynHneq7EuEkRNOGAV0HIX7AGAkxfrjakjBR4YmCm8w424vmLoTQul7FaKpngYGgFfO/tQAEBDPIzeZNZ6YHX4nHoQEZbMqMGDL7Vhxa2r8ceXd+vbVvgeEgRBEARf5KE/CKj0P2HYiHM5xhQrMFKKnZ26c/WT8/THp0FNKxndAszI5dC3PhggX/tXk55ExnJi1raWcC57kwhqhOm1EaRz+YKRwr5kVk/5q0IRFC/syKW3c5nI5KAAn2mxfiOXla8WC9iVT1M+K8a29yaxrzdVMUeIX6qmE9Pp00nb0TmIRCaHhc0xREIa3tjbh417evHzxzehezDteCCxeV+fFcF3Q0SY0xhDW1cCe3uSQzSVAHDyQXrJw0LXWlM8BCL/TjFnxa2rceuTW7FoWrxk25qR0FwTxomLmrBkhl7iuCEaREAjtPfrrXoOmq4vXzKzVr9+lcID63ahMR4a1ftLEARBEITxi/wimMDs6hoEAMw3fvybfeRKMaMugjMOmTFkeShAJdtdVBvznMIBDa/s6rZSZAuxtyeJcFDTf7gD6CyQKtmXyhYs5lNNNB/OZfegHkEzo5LFsPpclmxF4k/7Vi7zDEeKvxdKKXR5pJquN4r51FRIH6gZkeCacADxcACaTyetazCN9r4UZtdHMachhke/eDrmNUaRzSvc9I8t2LSv30pTzeUV3mzvs6omF2JOQxSv7upBJqes14TztpZmEIBogfcgGNDQGAuhY5iay4FUDsfMbxzWvuXANZHBgIYTFjZBKV2HajqQS2bUIpNT6BhIY39fCjOGWaBIEARBEITJh2guJzC7uhIIaGRVrQz5jDz2JrNoiA1964MBragzNxqYbUUuOX0xbn5iK17b3YPjFjYV3HZvbxLhgIZgQEN9LITOgbSj/x6gtyKpK6DFdFPJpvQaEQjAQNo70mc5lz56a4astFjv91YphXS2OmmxC5p1R2p3t+7MR4IBfOW+V7C5vX9IgZkVt67Gri69V2Sl0mLNNOOj5jUAAEIBraR2MZHOYdv+AcTDAWv+0VAA85vimN8E3PmZk3DM9x9Hp/E+7OwcRDKTR6zBe86z66N4+k296V0h57IhHsIRc+sR9YjiTauNDEtzaWqrj13QiM+etrjs/YeDeT/86okt+GdrpyOiu3SmHsHc1ZXAtJqw1S9WEARBEEYdMy1WGDeIcznGpDI57O1N6TrIMlPednUNYk6DXbUyoGnIKYVMLu+ZPqeUQm8iU7D4TUjTMJDz22C7Opg9BD987Fzc/MRWfOnelzGnIVrQ+dvbk0TI+CHfFA+htSODXV0JRzuWpzbvH5NobECjopFLU/v3gw8fVXKsoJUW630epk61GmmxM+uiaJkWx86uBNa39SIUIKx7qwvRoIbBdG6IQz+QzmLJjFrcf8WpQ8YajhNvZg4fPb8Br+7qQTBAJZ20N/b2IptXWNwYsyKfnHg4iMZYCJ2DGWRzeWwyivn8YsWxOHZBY8Ex5zCHspDmEihecKe5JjwszaUZHT7GY17V5F2HzsTP/rLJEYU2nctUNo9Pvn2eFakuRSUf4Ajl4lWAo/B1rJPwsN/GbN4wvtO1Py9gwhvIswo3juIlLcxudY3F93/CNq8407Zv5oVUXCxlx+HJA3z6/PAdzP6ba6yvsod897LPlhvZNrx+2U22+ZPrf+Acq9E2N/yaFes52yPDYb3r7wW2ufo8VsTncttc8l5WUOcndkGdr8+2C/gAwM2f/Yxlfxfft+xHes+x7Es+a5/MHT/5vGW/6xtPOMba+Ha7UBEvbhT+uv0ePfEdVsRnF9vZ/ZV4CwrDL4lGZrsu6ZmnvmXZ7dcstFfsZRttZ9cOsSJPp7mO+TQrNNV1uMfEvPpuu4tMLWU2L2D1GLN54R5e9Md9jKzHOr5/ncc27nV+ivt47VtsO2EqIWmxY8y+vhT29ibxxt7yb8hdXQkrJRaw0yfNqFghEpkcsnmF+gIFOEzNZaHCOKPFrq4E4uEADp1Vh/lNMfR5tFZJZ/M40J/GRScvwsrLTrF6du7udn5oevW/rDaaRkWrk/YkdCfDTyEUOy3W+32ppnMJALPqozhmfgNm10cQCmi499JTMLshirwC2lyv+UAqi2VGlNGEF8cpFzPN+GgjLTSklY5cvmlUMS2W5toYDyOXVzjnxmfww0deBwAcbDhOhZjTYLcXKaS5LMX02jA6BvQfjeVorftTWRCAI+d6VLasIofPqcfBM2sxg7VWWdQch3lH/Z8TFxTeURAEQRCEKYk4l2OMGcHafmCg7H1159KO0pn9EE3HpRC9Cd3hKRi5DBAU9LTZsWJX1yDmN8VARDhhURP6U9mCzu4+ow3J7AZd72VGavf1OZ/45tToO5crLzsFi6fV+NJc+kkpNM+tWLVYs9hOxKMgTSUIBTQsmlaDZfMa8LbFzZbjtok9GEln88jklJXCWglioQDCAQ0nL27GystOwXuOmFXSudzS3g+i4s52fSwIAtA1mMFgJocFzbGiRYhM5zKgke+WIJzmmvCwCvoMpLKIhwPWA5TRprkm7Cg8FQxoiIUDqIkEcOhs91PrqQsRfZOIXiWil4joZSJaMdZzEgRBmPQoSLXYcYakxY4h+3qTGDR0edv2l+dcprI57OtLuiKX+g/priKRS9OZrS+kuTTSLzsH0mPWWoA7zCcuasIfX95dsMfiXsu51M8/bET32nudnwhjFbmsiQSs97YQ3Qn/zqX5w75o5DJT3chlIWKmc7mvD/9yuJ52ZrZfOXp+5ZzLmkgQxy1sxExDW9xcGy6or+W8aVR+JSLPiGlQ01AbDaInkYFSwPELG4vOY45xrQ33NZ5WE0H3YAbn3/Kc57zdZHN59KeymD7OiuYcPLPWOgdJd7W4USn1YwAgorkA3iCix5VSxcteC4IgCMIkQpzLMeSpzfsBAARg+4H+svbd3Z2EUnBELq/92DFYfuMz6CoSHek10kwLOY/fPedIfPrX/0RHfwqLpw+/6f1IaOtO4IRFegGfExbpfQMLpZfu7TGcy3o7mqSRHdE0yY6ZcxksmhbbPZhBOKB5tr7gmA8NimlHq50WW4igpiEc0LCZRS7NaO0Rc6qXwjmtJoy04XR5FWt6s72/4GvrdoSa4iG8ZbT0OWRW8SjcbCNyOdy2G9Nq9V6XmZxCOOjvmty0rw95hVGpeFyOkzhWUdTxjFKKi09roT9PHyfZQV7Xtju9249Ga6PHcvdY/2T2Mma3eszFS+MJ4PQzbftppl27mW/DPnOe9tK9AVjP9HXL2T78FvsWs9e49l/B7t3TbXPJbqZt/G9bZ+iQmLqjIWeyB4ZfZuNutB8mJR6w7fAap640vYbN/6tsxfO2uXUNmwuTOeJ7zqnc/tl/tez215k28Ue2ecflts6S6xEfOucC52D8tfwym+8bbL5RFLafcQ6F65jNz/HrzP4ps8917t5+BjuXPWwF06XiF6223Xi0bT+90jkYT0ZQL6Aw/P7g34Pr3Bt6wK9dL50lF5wCQ/XOJl73nfu3CZdleX1WlKvFFKYy4lyOIU9u3o8ZdREcNrsO28pMizVbdixgkUszCtZdpFF8rxm5LPCjfJrZ6H0YqXuVoDeZQU8iY0VjD51dB40Kt/SwnEvjBz8RIRTQsK/XTotVSumRS59RokpSEw4OcXQ5PYkM6mMhXxEss1qs2WbG1OpxZ8BKi61CtdhixMIBbNpnPxjpSWRREwlUrMdlIZri+nXaOZAu6FwOprNo605gXkNpXWRDLAzzS7tUimd9NIigRkUfCBRz0KbV6D8Ss/k8wj59jnU79KBXXRVfT6FyENHl0H9OLwDwWaVUR/E9BEEQhBEzti3aBRfyi2WMyOUVnn7zAN5zxCzUhAN4YF1b0TQ/N995aAMAYD6rjNpkOIfdBfo9mpiRy0IFfZpr7B/tY4FZKdaMxgY0QjioIV0gHXRvbxKxUAD1LKITDmgOhy5ppIoWi1xWK6WvJhLEQMo7LbYnkfbdwqGsarFV6HNZjHg4gK3t/cjk8khmcuhPZTG3IVp6xxFgRgA7B9JYNG1ohH3b/gGrN2MpYiFNv8ay+ZKRSyLCkXPrPSsxl8K8vzI+2gWZrHurG6EADTtaKlQOIloHYKHH6llKqZxS6hYAtxDRMgC/I6JVhRxMIroUwKX6X5VLIRcEQRCEsUacyzFi+Q3PoCeRwTsPmYFOoxn9/v4UZtb5+2GeyuZBAGbV2SkzNeEAQgEqqrm0C/oMfevH2rk0e1zyNg+hgIZMIc1lTxJzGqIO3dcXfr8Or+2204bMypxmtdXRpCYSsPSHhegezKDRp67V6nM5zjSXgF5sJ53LY0fHAHZ06NH0Qg8uKkmzEQH0uk7fbNfTdG6+6HgsnentMJoPFk7+8Sq096dw0IzSqeAjSQedbjjF5fSSXbujC7WRoO+HTtVANJU6SqnjS29lbbueiHYDOBPAAwXW3wbgNgAgmivP3AVBEIRJgziXY4RZ0fW0pdOtPnHb9g+U5VyGg5qjNyYRoSEWLh65THhHLqOhAGrCARzo9+ixVQV4iqeZ6suLFIUDWmHNZW/SSok1mV0fxd83tlsR4LcMZ2e0U0UBM3JZ3Lmc2+jvvSYiBDRC1ke12NHWwpkVYy//7Tr0JzPQqPopnKXSt9/c14+gRgWjmoWY3xTD9LpI1a+TGcaDoG0HBtDaMYB4OIhkJuf5nrX3JfFW5yAWNpff9kQYfYjocKXURsNeDOA4AK+P7iy8+tVxm9+fxa4tP/tw7Zdb58j/5g0auQ6M9/rj27c4h3qa69v48dk+XIvpPq85rM9lh4ce/ACzuZazzbUd1y3eZZtbpzNt4z/YNv/KbHeno2+xh0bTbXPmtaw347l2sDz9N+fcl6ywdZ4fwKOWfUP/1+yN5rMd7rTNox5+0THW2m2sL/GJttnQbTeE7Ll3Ngoy3/U371vJNasPMZvrH+9g9iWusS5mNv/K/BOzP8NsfmwAeJr/8aZtnn2wbbcyneWDrWz785xjKX6NncxsvpxrK8/0WA4Azczmx2xHYWYy262xbGE21+Xy+45/Nri/o/10CPDTC7MS+wiTAcm1GiO6ExnURgJoqglbEZNy2pGksvmCUaqmeKhon8ueRAbxcMAztW9abaTqkUuvHn9tXQlEQ5rlPAAw0mLzQ9qR7O1JWsV8TGbVR5HI5NBnOHWthnMZHeVUUQCojQSRySnL6XPTk8gYej9/5JXCH9a5f+XYjEVBn5WXnYL7rzgVGgGJdBY9iSzqokGrL2W1cEfY3dfTm+39WDy9xnf6ajCgDau1SLk0xsM4dFYtFjTF0BQPoz+VxZpWZyFRfi7rdnQDAH6x4rhxFz0cSd/SScz3ieg1InoZwP0Avmg6m4IgCIIwVZDI5RgwmM5iIJXDPCNyNbchhkhQw7b9/ivGprK5gmmVTfEwukpoLgsV8zFprglXzbks1TTebEPCUwAvOW0xfvTnjehJZNBoFHLJ5xX2FYhczqzXI0PtvUnUR0PY0TEAIj36OdrUGBG9wVSuYERMdy79p48SULDfp4ntXFY3+uZ2KKKhAFqm16C9N4lEJocvn3UYLnvnkqrOIR4OIBLUCl6nK25djVd2duPdh88ssOfY0xgPozGua647B9J4est+nHbw9CHbrbh1Nd7qHEQ4oOGoedWrvCtUDqXU+WM9B0EQBEGoJER0CIBrAOwF0KmU+laJXSRyORaY2jSz6qSmERZPr/Hd6zKZyRntDIY6Eg0lIpe9iWzBHpcm02rC6OgfG83lU2/ux/4+Z0qu6UDyKrAfvfk5ZPNqiHM5q9657Y6OQUSC2pjo1eJGJKxQSm/GaKPht6APAGhEKOJbIpUxq8VW55YuFqk6dFYd+o3iRe9YOtRRqvSxicjzOs3nFZLZfFGt5XggoBFqo0E8u+WA5zZ9ySyWzW8Yk7RuQRAEQZgYKACZKvwrDRE9RESvENFLRPQ0ER3rsd0hRLSaiDYb/x/sZ91wIKLriGg7ESkiOsrvPIrwQQB3K6WuBFBLRCeU2kGcyzGg1Uh/5Vqrg2bU+E6L3d2t60yGkxbrJ3JpFsLxwiuttRTFIm+AXujEfU62w2hXgTX7PRZKi+XbtnYMIDpGP8zNNMtCRX16DN1rOc4lUfFK22NVLRaw+0MGNapqf0tOU03hCH3SSEM+eKZb3FQZKpkO2hAN4bXdvQUjsHmlMJDKWj1fBUEQBEEYd3xaKXWMUuo46F1Zf+2x3S0AblJKHQLgJgC3+lwHACCiCBEtci2rJaK5BY71EIAzAOwoZx5EtISIVrn+fQ3AfwM4i4h+Dl1o3+JxjhaSFjsGmFrACHcup9fisfV78X9ueQ7/c/mpXrsCAHZ0emsJ/aTFFisaZGouy2mL4ocNbT1Y91Y35jZGMadA/8H+VBbZvBrqXNYNdS5NR2po5DJibJuCUgpvdQ4WrIo7Gph9Hgu1IzGd//LSYmlcpMUWwuwPWR8LVV1vaaI/BNGv82xeoWsgjWQmh0Raf72XVsm5rCT1sRB2dSfw3NYD+NDRc9GbzGDzvj5EghrCwQAUgOMXinMplIOfohn8gZe7MEjQYzsv+G+XRa51vFgPL37CC5twHTnf/neusT7BbF6wpIXZ7HtlGSvgAwAbmM1lzo+wB7FN7PO4kW2zp9U51np2TK4A+Auz2f7h99jzTf/U9fCN19T5uW3Wsfex/bdsG14cCMDWlXYRoRv+yAoKPWGbJ+x+1rK7r7UntuGzJznGmv/rLZa960j7vej5ESviw96iwz/1kmVvbDzOObHbmc2/pp9h9oeY3c1s9joAcBbk8frp8iCzhzT+4dcLuy4uZ4u38+3ZNbHY9R29nV27sffbdoJLq3mhnseYXazY9OHM5vfkWcx+hNnue5MX7vH6zVPss6FahXcmfxEfpVQP+7MBwJDKi0Q0E/oF8B5j0T0AbiSiGdBVTwXXKaX2s2GOAnAPES1XSm0iogboF9iv4bzjoJR6xjiu73kopfYrpbbCedFxrjLGuBM+CtWJczkGtB4YwPTaMB64wnYiF0+vgYLtJBRjZ6d3FdTGeBipbB6JdK5gn7/eRBYHz/R2aqbVhJHJKfSlsp4RzlQ2j47+FHJ5VbSHpIlSCt97+DVk8wpvdSaQyyvMa3Q6mK8ZFXPdzuVMy2EsELl0OZfxcBB10SD29Saxvz+FwXTOqtA52piay0IVY83IZVnOJQF5pfe67EtmhhSgMQsHjXYrEgBYNk/v0+e3tUolmFYTRmuHHunf053A7p4kPvjLp60o4OLp/irFAqPbasM81opbV6M2EkBdNIjvP/I6frN6B45f1ISuwYwepTaeIxy/qHHU5iYIgiAIE488hlarrgjTiYjXO77NaCPlgIhuB/Be6I7i2e71ABYAaFNK5QBAKZUzWlUtMPbxWmc5l0qptUT0OQCPEtHF0B/D/FYpdTv8U2we+712IqJ5AH5g/Pmqn0J14lyOAa0dA2hxtUkwK8YmM4Wri3J2dAxCI7v/IcdMtewaTCMWHhoh7ElkikbzrEqc/WlP53JfbxJ7epJ4cnM73n3YrILbmKy4dTU6+lPYsn8ALdPiGEjl0NadRCqbx2Pr92AwncX+vjQuuuMFS4fGiYYCaIiFHJrLtNHjc3rNUMdxVn0U+3qTlq71++cciTMPHf3iLnbkspBzqTtAZoEiPxDpKbZnXf8kWjsGh6R9jlWfSwBY0BzH0fMaRrUqb3NNBJ39eoS9YyCNWCiARDqHrsEMokFt1FuyDAciwikHTcOTm/cjlc3h189sx7SaMBZPr0FvMoN8XvluTSQIgiAIQkU5oJQ6sdRGSql/BQAi+iSAawF8oBqTUUo9aaSpPgXgWqXUL6txnALHbcPQJkFFEc3lGLCjY3BID76DpuvOgl/nMhIMFExbbTKcy0K6y3xeoS+ZKdrkvrnW7CHorbs0e2X+9vm3PLfhx3yrM4Ej5tRjZl0Ei6fHMachigP9aVzxu3VY39aLvb1JnHfcfBzjUbxktuEwmqRzeYQCWsEUzFn1EYdz6bfXYaWpLVLQx3xvyon0aURIZvKIhYMgDHVazb6nY1G8CABi4cLXY7WYVhvGQDqH57d1IpXNY05DFH+9+gzMro8OiWiPR0zt5ukHT0cqm8e2/QNQABY0xRDQCE3xMKbVjk3UXRAEQRCE8lBK/QbAu4hommvVTgDziCgAAMb/c43lxdY5IKJZAL4H4CcAPkZEbytzir6PNVIkcjnKJNI57O1NYvH0uGN5QzyEoEZIZPylxXoVbjGjYd0FdJcD6SzyCkUL+lgN6j0qxvYMZjCQziGoEf6xqR07OwexoDlecFsA2NOTRDqXx3eXH4GTD9LvtxW3rsb8xhi+vfwIfPnelxEPB/DvHzvas0jQzPoI9rEqsol0zjNKNqsuihe2d2JHxwACGg1Jvx0t4mYrkrS35rKcgj6LpsWRyyv8+arTcOR3/4pB10OIVDY3JlHLscKMsN/57HYQ6QV+6qIhLJrmfS2OR8zqur3JLC474yC8vLN7bCckTDGK6Sr5zwOuI+OaMK7Vchfz4plT/LOOa+BaPY693PU3067FLrbtBN+/xTbXux6uLmPH58+eathyrtXjGrylbFwA4M9d+apHCmv10rew1+UB51COBDqm2dx6L9NPXsy2eci1P+9exsZquGuvZQ/C/kwMg32vc5kegF1fYYJKJifk+k2uJd14JdNZfsQ51lEP22LSDcS0nWvZRj9i9kPM5tJbADid2fw9cv98N1nT6/z75+z15xJIPhf+M2EpK5653jUW100mVrLlPIOLp2e2MNvdp9rrnuL7PMtsPsliWkZ+T/N7mO/PjwE471Uvt8Dv8ceCqqXFFoWIagE0KaV2Gn8vh/5mOsTsSql2o//xhQB+a/z/kqmpLLaOHWsOgMcBXKOU+h0RPQDgfiK6SCn1nJ/5lppHJZk6v0bHCTs6dZ1YoYiamdpXDLNQTdTDkWgynMuuApHL3qT+oVO0FYkRLfHqdbl6m9464efnHwNC6cqx+/tTaIiFLMfSRNMIR89vxIy6iJVC6sWs+ijajchlNpfHYCaHeLjwPjPro2jvS2L7gQHMa4whPEYOV02xyGVC19XVFXHy3dRHQ2iKh6FphFh46HWSyuanVMsK07l8/PV9aIrpD2YmIoun1yAc0BDQCFee6f5VJQiCIAjCOKUGwP8Q0XrDabsawHKllCKiR4mIp9ReDuAqItoMvTjO5T7XmcQAfFsp9TsAUEqtg/5YZ0j1QiL6JRHtAjAfwCoieq3MY40YiVyOMmYbErfmEgBqIgHs60shY6R9FmJ/XwqJTA5f/8Bh+NQpLUPWm9Gw7sRQ57DXRyEZK3Lp4Vw+u6UDNeEAPrBsDh55ZQ+e2NSOeU2Fo4PpbB6pbB7Tav1rCwsxqz6C9r4U8nmF7QcGoJQdGSy0bSan8Mqu7oKv8WgRCWoIalRQc9mbyKAuEvRVDKkQ8XAAnQNp9KeyVvptKjO0jctkxnQuAUzo9FEiwkEzakDQsxdGs7iQIAiCIAjDQym1D8DbPdZ9wPX3G3CWzfa1jm2zDcA217JXAbxaYNsvAvjicI9VCcS5HGXMNiSLpg9N36uNhrC3N4XXd/fimAWNBfd/y6gU65WK2lhEc2k6l8XSYqOhAOLhgGda7LNbDuBti5sRCmi46O0LsWrjPnR5OKJtRj9Ov70mvX5Yz6qPIpdXODCQwut79DQVL+fS7H25szOBdx4yw9dxqwERoSYS9EiLTZdVzMdNzChW8+a+PhxntKpIZXNj0uNyrDCdywARHrnqtAlRwMeLcqoGC4IgCILAURiLtFjBG3EuR5nWAwOYVhMu6ODVGVGotTu6PJ1Lq1CNh3MZCerOYSGHz2yBUaygDwDk8gp/fLkN31l+hGP57u4Eth0YwMdPXggAOOPgGYgENez3cER3GK0iRlpFdJbhMLb3prBxTx8IKNhmBdDTYk3GMnIJ6O1IvNJiy9FbujEd683MuXx2ywFfbWyqxWhH3MxKwc01oQntWArC6FBu/0rAqbFqZ3adxzb7iuzP1/F+f1xTxvVtvBcm4NBzcp0ltdi2epMdmunmAGefS4fmktldbI7fZhq6H7p0d1ezudzClvOeiEm2/B/Mdsc4upndyGy+P+8NecC1/1HM/o1t9sDuTdnzF9anchfb/grXWFx2xzP0+T58jlwvyvWTADZcznSW3/YYi3fTu5fZ7npsfGyeZHgne78Xu95vzs3M5rLHBBdgssms59/N/PqEq7dli203sUBQF5sXVvEDuibWygf22K7Zw3brN/k+vGemV8eI9R7LizHedJbCeGZSOJem5m8ipJS1dgygxaMHXzioIRzQsPatLnwWiwtus6NzEETA/CbvwiVN8XBxzWUJrV8wQMjmdUeFv7YX3f4CALsIiaYRGmMh7O9PIZvLI+hK5TWjrHd9ptyCVk5M53JfbxIb9/QiFg5A86hMOqveTpFcWKTQ0GhQEwkWTIvtHsyMKFoVCWrQCHhjr/1hn1d6u5KpQkM8hJZp8SFO+kT4DBAEQRAEQZisTArnslKMhpO6o2MQpyzxKnMG1EWDWLejy3P9zs5BzG0oXqimIRayeilyrLTYIgV9ACCkaUjnhkbBehIZBDXCobPsJ9e10SD29aXwxt4+HDWvwbF964FBxEIBzKhzauLKfX1Nh3Ffbwob9/Ti7KNm4/rzjy24LT+WlxM/WtREggUjl2/s6UW8RBGjYhARYqEANu/jzqXydLgnK7Pqx3/LET+IQywIgiAIwmRh6oi0RkCpiqh+SaRz2NOT9EzXXHnZKbjq3UuxpyeJ3d2F88d3dAyUjMg11YQ8Ipf6slJVSoMBQsblXGZzefQm9Ygb7y9ZF9WdpDWtjsrLAIC3OgewaFp8xP0Pp9dGQARs3NOL9r4UjpjjLnlvEwkGrMqhYx+5DBTUXGbzasTVTePhADbttevQT0XnUhAEQRCEqY4CkKnCP2G4TCjnslJOXrnklarIOOffqreiKRZRO2GRnle/1iN6+VbnYMlefo3xMLoK9LnsTWR9VSkNBTRkcwrKOG+lFP7f/a8ik1OOKp0A8NDnT8O8xhheLDDfHR2DFXHwQgEN02oieGKzrvs5vIhzCejpxaEAjbkWryY8NC02n1fDci5XXnaKI8IVCwdxoD+F836la0KUAiZoNw5BEARBEARhkiBpsSXY0t6HdW91Y4FHu41ySGb0aGBLEefwsDl1iIUC+NGfX8dvn9/hcCgGUlkc6E97Voo1aYyF0FMgctmTyJQs5gMAoQBBQe/RqJRCa8cg/tnahflNsSHOJQCcsKgJL2zvgFLKilLm8wo7Ogdx5qHFK7b6TQmc3RDBhja9sEIp57I2EkQuX5kHAiOhtkBa7OZ2PZV1JP03V152Cp5+cz8+ecc/rchonr32UwVJJxWEYvDCO30ey90ZMlmPdfynQp+Hzcd173+8x/IWZnsVNQE8owjqhcLHSLir87PvjCQ75hY27lKvIj6uuTxdX3jVRcz+IbP3sLGWu767+P4XMPv/MnuLxzaAs17Mhcy+3+MYnP9w/c2LBX2L2bz2y13Mvr3IvLwK9PD9dzJ7DbOfdo3l9dNrKSvi01Fkhy1P2DadyWxWnEettO3TV7C5vMM5VoIX62HH6WLHwJPMnsnsq5xj4XfM3sHsRR7L+f3V4hqLv0mthefouFfdP/39FvkSBH9MqMjlWHD/2jbk8rqD9dwWd6m28khmdEdgUZEqpqGAhmMWNKA/OfRmNwvklIpcNsXD6E5krMijSW8yY6WxFiOo6ZfF6T/7B17Z1YP2vhQuf+cSzG0orHE7qaUJ+3pT2NVlf4vt60sinc0XPddymFWnH3tWfaSgg8tZPL0GS2cO6Ss76sQLpMX+ZvUOEKHkOZTi0Nn6F00inUNvMoNsTknkUhAEQRCEKUYe+lOUSv8ThsukiFxmcvkRa9gAXVfInQGlFB55ZTfqokFkcwqf/PU/cdTcevzxC6cNa/xkJoegRiUrhZ6wqAnPb+scEn2z25AUd9ga4yHk8gq9yazjWM9v6yiyl01TTRjzc3m885AZeHT9Hsyoi+Dfzj7UMzJmpvKu2dFpRVWtuZZwhP2yvq0HQOmo5Xji7xvbHenJPYkM/rCuDdNrwggFRvZcZ0ZtBEGNMJDO4nN3r0EurzC9NlJ6R0EQBEEQBEGoEuMuclmurrKtO4GXd3ajzVUAZzj6zB2dg9i4tw/rd+mOzLq39HG/f86R+OuXzwAB2LyvH9kClVS9MOfx/LYOHOhP+2pBcbzRu7AvmXGcx08efR1A6UI1TXE9KvapO15wLM/51PoFNcK8xhh+fO4yHDKrDvMaY0VTLg+dXYe6SBBrWm3dpdnjspQj7BfTGZtIzmWACErBKo50/9pdSGRyFalySkSIhQM40J/GC9s7cdCMmhG1NxEEQRAEQRCEkTLhI5fX/uUN5BWwvz+NfF45KpmWw66uQXT061Gmn/31DfzmkpPxyCu7EQlqeM8Rs1AXDaFleg22tPfj0Q17cc4xc4eM4dXKJJXJ4crfrUMkpKFleulI3omLmhHQCJv39WNWfQRzG/W8+WQmj4BGaIgXdyLM3n9ZV+Qzm1eIVyF3MqARjl/UhD+sa8OW9n6svOwU7OgYRFAjzG2sTLuIcECftx/ncrxo8cxrcTCVw+f++3m8sqsHJyxqwgNXnFqR8ePhAPqSWXxv+RF4bMPeiowpCMJExksbCR/LAW+dph8dWLE0Mq5DW+axzbwi+/OxuR6SN4xfx2y3UK/FNhXXYx5tm1zbGOO6Si5sBNB2nm2fyJb/0Ku65D5mu76/VrF9zmXf641smznMftA1dDezn2f225nNyx7wr+OPuMZ6gtn86yTF7CXMvoSd14lMrwoA32Y211M6dJZc7+px7gDwGrP5ZcDf+j/xHVyV688607ZXMc0kMc0m2DZPOx/KO2lm9rPM5ppirrPkPOL6u43Z72Q2v475/cWvaX5NAd73vVsHbTLZNJZmWqwwXhh3kcu+5FCtoEkur7C/L4VEOocVt67GB3/5NB56eTdioQDS2TzWvmVHzjoG0tjflyo4TiH+66ltAIDZ9VE8/eYBPLl5P/706h68+7CZVuuO5ngI0ZCG4/DrJQAAG75JREFUm5/Y6jnHQnPe3N6PTC6PQ2bVWXrGYjTEQ1g2rwHTa8PY25vCS2914z3XP4nOgTSiPgrBzDT0ibxS6Y6OAaSz+REVkinGiYuakMjkrKjujs5BzG+KITjC9E+T2mgQ4YCGt7U0l954nGBW5X3qzf3Y35dCKpvHp09tqdj4cxtiOGRWLS5+x+KKjSkIgiAIgiAIw2VcOZd9ySxe39OHfb1Op3DFravxf255Dm+292HbgQF85KZnkUjn8FbnIKbXhnHY7DpoBDz0kv4kaH9fCtv296O1Y8Dq7ViMA/0p3PviTkyvDWNBUwzzGmO45K4XcaA/heUsQnnf5afiRx9Zho17evHEpv1DxukYSGNPT9KxbE9PEoPpHG648DjEymiNEQlqOGhGLZbNq8fshigWTatBMEBo8lEI5qh59aiNBNHWnbAczOse3wyN7MI4leZEw+nrNQoR7egYwMIKFfMBgHg4iOMWNmK2R1Gh8UjYcKyvuuclbO8YRChAOPvI2ZUbP6hZKdCCIAiCIAiCMNaMK+eyLhpEUzyEHZ2DeGqz7bwppbBt/wB6ElnMro9if38K69t60JfM4stnHWL9yP7z+j1IZ/O48X/fRF4BeQX88SU79cBLh3nODc8glc1jTkMMmkb4ynsOQTavV99892HOFIcPHzsXcxui+OI9L1njnX/Lc/jRn17HlvZ+vNU5iGeNqrLdg2ns7UmiKR7CmYfOHNKr0A/xcBALm+O4/dMn4pj5jZjXWLolChFhYXMcmZzCrU9uxau7uvHIK7sxuyFatcjlcQsbEQoQ2roTyOUVdnQMFm25MhVojIdwzPwG3HfZKTh4Zi0Om11XtddfEARBEARh6iHVYscb405zuWRGLV7f04vP3PUiDp1Vi69/4HBsPzCAjoE05jfGMK8phv+84Di85xdPIq8ULjhpAR55ZTem1YaxeV8/fvP8Dvzuhbcwsy6C/lQWv3vhLVz09kUgIvQkMtjTk8SB/pRVWfNAfwr7+lJojocQC+uRxY8cNw/feXgDasNBRF3RxlBAw+fOOAjff+R17O5OgIjQPZjGP1u7MLMugp5EBt99+DU89qXTcfvT25FTCvMr0COzXB790un4wu/X4cZ/bMEdz25Hc00Yf/3yGVaKbzG4A+zXGY6GAljUHMeW/QO45cmt6EtmSxYeKofxoqMsl2gogLctbh5x6xFBEKYy/Ku6mF6Kr/PST3qN64bvz3WWXvsUkyzwdVxbyfVxXI/4RJGxuL6PC++Kfc8+5rFdr3tDnYSXng5OnSNnMftuPZst/wvT9rlfOl6E7RdseQuzuX7yTo9jA06dpEObybK3rmDH470o3Sxl9uUe4w6w94HrIgHgBo9xecH6O9hcLmHLuY4VcL6WLzObH1Oxc2xy6T9X8feY9YNUvDck09E6tJTua5rpb+kKNpZH/0tPG3DeB/s8tuMOTju88brXvfSXxXTXgjByxp1zGdAIh8yqxYa2Xry+pw+fvOOfAIDZ9RGrOMzshiiOmFMPpZSl6WuIhRDUCD/80+uIhQL401Wn4fHX9+FbD23AK7t6MK8xhi3t/cjmFa76/Uv4zSVvgwLw+d+tQ14pzGMOYEAjHDmn3rNC6gUnLcRPHt2InUZfR42Af//oMvxhXRu6BtPYvK8f1/9tM/77uVY014QRD5f/Mhdypsp1sP7t7MPw51f3YCCVw1ffe6gvx3IkNNeEUdeXwvV/2wygeD/PqUa1neOJ6nwLgiAIgiAIk4dx51yaP5LPueEZ9CQy+Ol5y/DzxzcVLAzDnT+NCM01YbT3pXDJaYsxsz6KDx87Fz95dCN+/8IOdA6kkVMKcxuiWL2tA9c9vhnpbB4vbO/Ekhk1iIeDjh/oxVpvxMIBLJvXYLX2CGiEFSctxIqTFgIAPnvXi7j5ia0AgD9+4R1YOtOrYld1WdAcx/ymGLoHM/jEyYtK7zBC7rv8VGzc04v3/+fTACrX43KiIg6lIAiCIAhCNZFqseONcedcmsTCAcTCAZy6dDr+8+9vDllfKHXzwzc+g1xe4bJ3HgQAqIuGcM4xc3Hvi3r9629/6AhcctpifOPB9bjlSd35+8w7WvDd5UcWHb8QoYCGUKDwdt9dfgT+sakd02rCY+ZYmsxtjGFuY2zUtH6Hz6nH7PoI2vtSFU2LFQRBEARBEARhfDNunctCzmOhYjycaCiApTNrHemfF75tIe59cSfqo0F8xmgD8d3lR+CRV3ZDI8I3PnC4x2j+5+dm0bQaHDO/AaEKteGYaCxsjmNOQ2yIXlUQBEEQBEEQhMnLuHUuC1Eqmlho/TELGnHorFrURoJWU/tIMIDDZ+sRxWo5gA99/rSqjFsuY5E6ed/lp476MQVBECYvw2l67qdoh3tcvg//ecCrpvMiPHx7d1oaL0yyhdlvMJtn9ryD2by4D+CsMMObz//BNptW2HYXXLQwm81/KTsOn6LjeHxfAAlWHOgd77ftVawoy8383Ncx+0znWBcz+xlm85fldmY7O50BFzCbT/kvzG5ltRbuYst5oRzAeSncw+ytzOadtPawIjpXu+o53MJsnhjGnzdfstK2l7P3jtXMGXL8M5ntKFrEjt/lbj/H34tmj+VPeCznhXYAR+EfxebvuKY5b/MYF3AWyeKyJX5/+b3vve7brMc2bvjxd3hs47eo2FigIGmx44uqOpdEdAiAuwFMg14n7FNKqaE5rlXmr1e/c8gycYAEQRAEQRAEQRAqR7XzNm8BcJNS6hAANwG4tcrHEwRBEARBEARBEMaAqkUuiWgm9AZR7zEW3QPgRiKaoZTaX63jCoIgCIIgCIIwFVBw9HMVxpxqpsUuANCmlMoBgFIqR0S7jeWWc0lElwK4FAAWLlxYxekIgiAIgmDj/gnAtVRezdz5Nocx2yFa9LkP15e1Mtv9Q3Gjx7izbLPrBY9xAf05d4GxtrSw5a8W3n/5wc6hHmG6vVW9bAXX87Wy/c9k+/JjAHjxaNtez/R9S9l5saHgLuXAtY0nMruR2fzl4rLWl+EN12MuYzbXcjYxneMvXO/XMraOv3z3sO1iTGe5h21TTDr3PLN5tzjFN+IaVwA4mdlnMpsrtLhmtLXIZPj7zd4jx7i/Yza/bt2ay5ke63iRyfXwBxfp+tFau/HSWXL4HPkx3B0RhnN8YbIx5uVMlVK3KaVOVEqdOGPGjLGejiAIgiAIgiAIgjAMqhm53AlgHhEFjKhlAMBcY7kgCIIgCIIgCMIIyEOqxY4vqha5VEq1Q0+8uNBYdCGAl0RvKQiCIAiCIAiCMPmodp/LywHcTUTfgd556lNVPp4gCIIgCL4o1q/Oq3ce10x69fcDnGK9VmbzPpV9HsvdcH0bj1C0ethcXAgAzzKb6y9Zn8whmjiDja6/5zAN3x6+PzvfxUxo6NjfpQVdw3V/rOcmz+9qZPbTrc79l7fY9ga+Hdc2Mj3h6WwbdwvsG5l9r8fxec9K/nI97TqvDez98pINcl0n71n5Vdd21zEtaoL3nWR61bPY4lWu99EhHb6Z/cF6lGIes1uY3eqaDOtxOkTXW+iA/Lp1j8U1ulzzyfWrXJfZ7nE8wJ/OkWsj3VE+P30rvY4hGkthKFV1LpVSb8CpphYEQRAEQRAEQagAkhY73hjzgj6CIAiCIAiCIAjCxEecS0EQBEEQBEEQBGHEVFtzKQiCIAiCIAiCUAUkLXa8Ic6lIAiCIAhw/iTgRT548RFexKfYTwivSi68sAgvWMKLqvDCLe6/eSGVWShMS5F58YIpy5n9E2a/zTa3vODanx1zznm2vYdtsp0X6uGvg7vQUC+z19nmGv56s+M1tTh3X8XsBDuvpaxAzBa2zRpm3+mayrnMfh6l6eZ/NDvXNXrY21tt+0FW9Ihznfv15mU7+Pu90jZXccfiTOfuCbYdrii8Py+mRKzQj+IFmwDnNcoL9/Brst3D5oWw3PvwYlZLPbYpVtyH31Ne85LCO8LoIWmxgiAIgiAIgiAIwoiRyKUgCIIgCIIgCBMQSYsdb0jkUhAEQRAEQRAEQRgxErkUBEEQhApBRGcC+DuALymlbiy+9Vjj/gkQK7iVdwP3Ys3XvfSbPMLAj8cFhC2usTYym+v7uJ6Ra9KeLTIvrpvz0rQdzqbomkuS2VxnyaVyW7jQkessXdpEh4aQHWcZ00z2s026Xbsfyew2rrNsLXzMWUxbuN6lJ3yQ6UfBNKNLmTbyNbZJI7Nj7NhutnO9LNdZPmabDp2j+xrkGswWZh/PbH5NufW67Jy9dJb8mlBsXkPeL6435tfLDmYvYza/brmuEnBe+16a5kUexxgp7vu+2H0sTBWIKArgFuhi8LxS6svDHUsil4IgCIJQAYioDsC/w/HLWRAEQageCrqDXOl/pSGiQ4hoNRFtNv4vWKmq2HZ+x/ALEV1HRNuJSBHRUWXM9zwATyqlvghgkIhOHO4cxLkUBEEQhMpwPYBrARwY64kIgiAIVecWADcppQ4BcBOAW4exXckxiChCRItcy2qJaG6BYz0E4AwUDncXO9YiAK2GvR3Fy24XRZxLQRAEQRghRPR+AI1KqfvHei6CIAhCdSGimdDzs+8xFt0D4HgimuF3O79jADgKwN+I6FBjzAYAjwP4gHteSqlnlFI7hzHft2DnYi/CCHKxx5Xmcu3atQeIqJKJ5SNhOibu02eZ++gzUecNyNzHgok6b2B8zX1R6U0qAxGtA7DQY/WhAK4B8B6fY10K4FLjz37ge5tGPsNhM57ez9Gm9Ln7LUK5pfQmvvFqEepmTelNHKwasqT0+XudV7HXpdzCnarM7SvDVL7ugbE//wp+du/5K/C96ZUbzyJKRPwuu00pdRv7ewGANqVUDgCUUjki2m0s3+9zO/IzhlJqLRF9DsCjRHQxgJ8D+K1S6vYyzqfUfP8A4GYiOhpAQCn1YhljOxhXzqVSyu2pjxlEtEYpNex847FE5j76TNR5AzL3sWCizhuY2HMfCUqp473WEdFpAOYA+CcRAfoPt+VE1KyU+kGBsW4DcJt7+VgwVd9PYGqfOzC1z38qnzswuc5fKXX2WM9hNFBKPUlEXwPwFIBrlVK/rPD4CQAXV2KsceVcCoIgCMJEQyn1DFj5SCK6C8Ca8V8tVhAEQRgmOwHMI6KAEQUMAJhrLPe7HfkcA0Q0C8D3APwEwIVEdL9S6p9VmO+IEc2lIAiCIAiCIAiCT5RS7QBeBnChsehCAC8ppfb73c7vGEQ0B3pi+78rpb4J4GMA7iWiUys930ogkUtvxkXK0jCRuY8+E3XegMx9LJio8wYm9txHBaXUxWM9hzKYyu/nVD53YGqf/1Q+d0DOv1JcDuBuIvoOgC4AnwIAInoUwHeUUmuKbedjnUkMwLeVUg8BgFJqHRF9BMBs94ZE9EvobUVmA1hFRB1KKbMrrp9jjRhSamyU1IIgCIIgCIIgCMLkQdJiBUEQBEEQBEEQhBEz5Z1LIppGRI8S0SYiepWI/mD2fCGiQ4hoNRFtNv4/eKznWwgi+i4RKSI6yvh73M+biKJEdDMRvUlE64noNmP5RJj7h4joJSJ62bhmzjOWj7u5E9F1RLSdXx/Gcs+5jofzKDTvYvfqeJm319xd679bzvsxmhS5Xgrer+Np7sLwIaKbiOgNInqFiJ4loklRRdIPRHSR8XmSJaIvjPV8RoOpfM+W+nyezJT6DhWESjHlnUvoHZZ+ppQ6VCl1NICt0PuVAcAtAG5SSh0C4CYAt47RHD0houMBvB1681OTcT9vAD8DkARwiFJqGYBvG8vH9dyJiAD8BsAnlVLHArgIev66hvE594cAnIGhzXCLzXU8nMdDGDrvYvcqMD7mDXi/5l73KzD+5+51vwLjZ+7C8HkMwDKl1DEAfgpg5RjPZzR5GcAFAH4/xvMYTabyPfsQPD6fpwClvkMFoSKI5tIFEX0UwBUAPg5gM4BprGRvB4CDq1FZaTgQUQTAE9Dn+g8AHwLQjvE/71oAuwDMV0r1s+UzMf7nTtAbD5+jlHqWiM4AcDuA0zCO505ErQA+pJTaUOx1hl4We9ycB593gXUfBXCFUuqs8XjtuOde6H4t9X6Mh7l73a/GduNu7sLIIKJpAHYDiCml8mM9n9GCpkj7GLlndYp9t0wV+HfoWM9FmFxI5JJhRJ+uAPAwgAUA2pRSOQAw/t9tLB8v/ADAb5VS29myiTDvJdC/zL5LRGuI6AnSm5CP+7kr/WnM+QD+SEQ7oD8F/TQmwNwZxeY6Ic7Dda8CE2Pehe5XYPzP3et+Bcb/3IXy+QKAP08lx3KKIfesUOg7VBAqhjiXTm4A0A9g3D+5JKJTAJwE4FdjPZdhEARwEPT+OicC+DcAfwBQO6az8gERBQF8HcCHlVKLACyHnkI27uc+yZgw9yowOe9XIqof22kJfiGidUR0wONfgG13AfTI+hVjN9vK4vfcBWGKMaG+Q4WJhfS5NCCi66CnBS5XSuWJaCeAeUQUYKkjcwHsHNOJ2rwTwGEAtuuZmpgP4K8Arsb4njegax2yAO4BAKXUC0R0AEAC43/uxwKYq5R6FgCM1NgB6Hq08T53k2LXNhVZNy5w36vG4gl5vxLRZ6Brvsbz3L3u10Oga0fH89wFAEqp40ttQ0TnAvgxgH9RSu2r/qxGBz/nPsUY75+VQpXx+A4VhIohkUsARPRjACcA+IhSKgUASql26D/6LjQ2uxD6k/txoUlQSl2jlJqrlGpRSrVA10S9Tyl1H8bxvAFAKXUAuubsPYBeuQ6AqQN5GeN47jC0Z0R0KAAQ0eHQG9W+ifE/dwDFr+3xft0XuleBCX2/Pj4B5u51v24Z73MX/EFEHwJwPfRrsnWMpyNUEblnpzZe36GCUEmmfEEfIjoSwAbojk3CWLxdKXUuER0G4G4ATQC6AHxKKbVpbGZaHFcBjnE/byI6CMCvAUwDkAHwTaXUYxNk7p8A8P8BMJ/4fVcp9dB4nDsR/RLAedAd4AMAOpRSRxab63g4j0Lzhq51LXivjpd5G/Mo+Jq7tmmFs9jPuJ671/06nuYuDB8i2g8gDYA7GP+ilOoYoymNGkR0IYBroV+/aQADAN6rlHp9TCdWRabyPevn83myUuz37tjNSpiMTHnnUhAEQRAEQRAEQRg5khYrCIIgCIIgCIIgjBhxLgVBEARBEARBEIQRI86lIAiCIAiCIAiCMGLEuRQEQRAEQRAEQRBGjDiXgiAIgiAIgiAIwogR51KYshBRKxEdNQrHOYeIrjXsFiK6dARjKSKqLXOfu4hol1GCvdD6M4lozXDnZIxxKhG9PJz5CYIgTCaIqJmIdhLRSWzZN4nogVE49uVEdLVhH0tE57vWv0xEsQoer+j3yzDHlO8TQZjABMd6AoIw2VFKPQzgYePPFgCXArhtlKdxjVLqxmoNrpR6DsCxRCS9jQRBmNIopTqJ6AsA7iai4wAcAuBKAMeNwrFvYX8eC+BDAO5j64+twmEr+v0i3yeCMLGRyKUguCCiTxHReiJ6lYgeJKKZxvKLiehxIlpJRK8R0bNENNtYFyai24hoMxE9Q0Q3EtH9bL/7jeFvAnCE8VTWXO94Osv/JqLziOgNInqOiL7lmufJRPQPIlpr/PtgGef4IyLaQkRPAviga92niegFY8z/JaJDS52jIAiCYKOU+iOAdQCuAXA3gKuVUu2FtjU+879nfM5vIqKPsnVnE9FLxvfR34loqbH8UCJaTUSvENEGIvqqsfx7RHQdEU0D8AMAZxnfN79kxzK/X04yxnjV+P8kY3kLER0goh8bx95ERKf5PXci+qwxr1eI6EUimsXG/Kkx5htEdAIR/Zdx/BfM71NBECY24lwKAoP0NNlrALxXKXU0gA0AbmCbnATgq0qpIwG8DuAqY/llABYCOALAWQBO9DjE5wG8rpQ6Vin1sRJzmQngvwB8WCl1KoA0W9cI4BYAH1dKnQD96fStxvJS57gcwDnQn2q/G8BhbN3pAM4HcIYx7rUAfl3mOQqCIAj698MlAHYope4rsW3e+Jw/B8BtRDTT+A74DYBPGN9HvwfwO2P7KwE8qpQ6Ril1FIA7+GBKqQ4A3wGwyvi++SJfT0RhAA8A+LYx9rcAPGAsB4BpAFYrpY6D7qT+u58TJqIzAXwDwPuUUscAeBeAHjbmM8aYdwD4O4CbjOOvBfAFP8cQBGF8I86lIDh5F/Qv7D3G37dCd6RMnlVK7TTs5wEsYfv9RimVVUolAdxTgbm8HcA6pdQm42+eSnsqgMUAHiOilwE8BkABWOpj3HcBWKmU6ldK5eD8UbIcwDEAXjDGvQbAArZfpc9REARhsvJuAL0ADiWiSIlt7wAA4/N+HfTP/5MBvKKUet3Y5k7o6aJ1AJ4C8Fki+iERvRtAd5lzOxRAWim1yjju36E/wDzUWN+vlPqTYfPvulJ8EMB/K6X2GuP2G98X5ph/Nux1AHYppV42/l4Lf99fgiCMc8S5FAQnBN1J4/C/k8zOwdYtF9rPLzkY9yIRRV1z8YIAvGo8kTb/LVBK+SnMU2rcX7Mxj1FKLWTrRAMjCIJQAiKaDuA/oTtbawB8v5zdoX/Wen7mKqUeAPAOAFsB/H/QI5xlTdFjbHNZii3j33V+xvXCPabX96kgCBMYcS4FwcnfAXyAaT8+B2CVj/3+AeAiIgoaDuIKj+16ATS4lm2Fnm4LAB9ny1cDOI6IDjb+/le27jkABxPRu8wFhn6m2Be7yd8BnE9ENUQUAPAZtu4RAJ8iovnGmAEiOqHMcxQEQZjq/ArAfymlXgHwJQAfJ1Y9tgCfAQDj8/5YAC9A/w44lohM6cKnAbyklOoztJd7lVJ3QXdc31ZgzELfNyZvAIiY3yHG/yEAm32fYWHM75BZxri1PqK2giBMIuQpkTDVWUVEWfb3MgBfB/A30ivVbYOuNSzFLdDTSV8DsBN6ik+8wHavAthERBsAvGHoLq+GrpfcA8BMQ4JSqp30tiWPEFEnnBX/uojoHADXEtF/AAgbc12OEtFFpdSfiOgUAC8D2A3daZxnrHuKiL4J4GHD8QwD+B/jfPyeoyAIwpSF9PYfhwD4BGB9Xn8ewK+J6ASlVLrAbikiehbAdACXmcV/iOiTAH5PREEA+wFcZGx/PoBPEFEa+mf+lwqM+XcAXyWiVwA8yXWXSqm0UTjol0RUA2AAwMeM5cM+d6XUk0T0U+jfrXno0crlwx5QEIQJByklWW6CUAmIqM54ohyB3nrkf5RSt4+Ded0FYE0lSsWXOkfDIa9TSvWP9FiCIAhTgYn8uVnJ75cCY0/Y10UQpjKSFisIlWOVUQTnFQBvArhrTGdj0wPgi1SZJtcFz5GMptcA9gHIV+A4giAIwvinkt8vAOT7RBAmOhK5FARBEARBEARBEEaMRC4FQRAEQRAEQRCEESPOpSAIgiAIgiAIgjBixLkUBEEQBEEQBEEQRow4l4IgCIIgCIIgCMKIEedSEARBEARBEARBGDHiXAqCIAiCIAiCIAgj5v8HkA61BA/j7vwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adjusting plots\n", + "The McStasData objects contain preferences for how the data should be plotted, which can be modified using the functions module and the *name_plot_options* function. The function arguments are the name of the monitor component and a list of McStasData objects, then options are provided with the keyword arguments.\n", + "\n", + "The following plot options are often useful:\n", + "- log [True or False] For plotting on logarithmic axis\n", + "- orders_of_mag [number] When using logarithmic plotting, limits the maximum orders of magnitudes shown\n", + "- left_lim [number] lower limit of plot x axis\n", + "- right_lim [number] upper limit of plot x axis\n", + "- bottom_lim [number] lower limit of plot y axis\n", + "- top_lim [number] upper limit of plot y axis\n", + "- colormap [string] name of matplotlib colormap to use" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plotting data with name banana\n", + "Plotting data with name monitor\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA40AAAHjCAYAAACHNfo6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAD3AElEQVR4nOyde5xdVXn+n3cuyUwukzCBDBCEAQka5KIQL4itqHihFlEQqaUqWhSttj/bWmvVVq1ae1PbeqEqtmiLipYI0krVqEEbAYWoQQkShOGSwJDMkEwuM8lc3t8fe++c5+zZ68w+c+4zz/fzmc+ss8/aa7977X3OWe9e63lfc3cIIYQQQgghhBBZtDXaACGEEEIIIYQQzYucRiGEEEIIIYQQQeQ0CiGEEEIIIYQIIqdRCCGEEEIIIUQQOY1CCCGEEEIIIYLIaRRCCCGEEEIIEUROo2gqzKzfzNzMrm7Q8S+Lj39ZDdv2cs/RzAbMbKDaNs1wzKtS9l5Wz+PXGjPbYGbKOSSEEC2GmZ0T/y69v9G2CDFfkNM4RyHn6/pG21INGuE01ZAbAHwAwPUNtmMmvoHIzhsabUi9MLP3x5+bcxptixCitaHfYf47EP+e/ZuZPTFjn98ws3Vm9oiZHTSzITP7pZn9u5ldkKqbfhA5ZWa7zezXcRtvNLMl9TvjxhP3w4ZG2yHEXKSj0QYIkWIbgDUAdjfakBpyvbtf3WgjZsLdvwHgG/EM4wUzVG9FXgtgUaONEELMeX4F4CtxuQfAOQBeD+AVZvYMd98KAGb2BgBXARgH8D8A7gWwBMCJAC4GsBrZD/G+BeDWuLwUwLEAfhPAKwB8wMxe4+7frf5pNZQfIxor7Gy0IULMF+Q0iqbC3ccB3N1oO8Tcx90fbLQNQoh5wd3u/v7khZkZgH8H8DoA7wFwmZktAvDPAPYAOMvd7+IGzKwbwDMD7f+vu/9Tqv4CAH8E4G8RPfx7trv/vDqn03jcfT80VhCirmh5qgAAmNnLzeyHZrbHzPaZ2U/M7Pcz6h3S/JnZi83sFjPbb2aPmdmn4x++9D5LzOzjZrbdzEbNbJOZXZylH0xrGpPXAI4DcFyWxq7UksLQe2a22Mw+mrLpohn66Hlm9s14udCYmd1lZu8ys6o9fImPsZH69PNm1luifo+ZfcjM7o5tGjKz683s9ED9S8zsp3HdbfF16a7Wkh6+fmZ2ctxfI2a208w+Z2aL43q/ZWa3xue5zcz+ItDeEWb2CTN7IF6q9Ujcdn9G3YH4b6mZ/Utcdyy+l8/NqF+kaYzP/33xy+/TfbYhtd9sPiuviM93XzX6WQjRuri7A/h0/HJt/P8URLOK3087jPE+o+6+oYxjHHT3fwTwfkQrKv4uz37x96ub2Qlm9ucWLXUdNbOfmdlL4jo9Zvap+Dt21My+Z2ZPCrRXk7GFpTSNyev47eda8VjhHNpvNr8pvWb2rxaNFyZN8gUxT9FMo4CZ/SmAfwSwA8AXABxEtKzlKjM73d3/KGO3CwCch2ipzI8AvAjAWwD0AvgdarsdwDcB/AaA2+P2jwLwRQB5lsvsQqSre3v8+p/ovZ/l2H8aZtYG4L8RLRHaFNtyNIAvAfhOYJ+3AfgXREthbgDwOIDnAPgIgGcAuHA2tqSO8SJES5LGAXw5PtZLAawHsADRdeH6hwP4AaIlOt+P910B4CIALzSzc939Fqr/JgCfATAE4PMAxgC8HNHSp2pzPICNiJZMfRbRUqnLAfSY2dcAXI1I03kronvtb8xsu7t/gew9In7/BETX5UsATkK0rPSlZna2u9+TOm4ngG8jWgL2VQCHAXg1gG+a2Vp331zC5qvj/89FdJ8OxK+T/7P9rFwC4AWI7psNACZK2CCEmB9Y6vVw/P94M2tz96kqHefjAN6F6DdhubvvKmO/MwHciGiseCmiGcuzETm8HYiW3PYj+h35bzN7srtPJg3UcmyRwQCiscL7ADyAwvd58t5sf1MWAvgeot/g6wC0AxgpYYcQcxd3b7k/AMcA+ASAWwDsB+AA+utswwpES0nuAzAK4H4AnwRwRKP7J7avP+6X62eo90RETso2AEfS9iUAfh638Zu0/bJ420EAz6LtXQC2AJgCsIq2vzGu/1UARtt/I67rAC7LsPvqlJ0DAAYC5/D+eJ9z8rwH4A1J3wBoo+0viLenbXpK3Ee3AlhG2y2+5g7glTmuyWXptum9tvgemgDwdNregci59vT5I3IsHcCrU9tPRKQJvZO2HQZgL6KByRNo+yK6zhvKtbvEfecA/iB1Hj+Nr/ljAJ5G761C5MBuTrX173E7f5na/tp4+/cy7hFH9MPeSdtfF2//TKr+BsQP/XPeS7P9rEwA+I1afM71pz/9Ne8fAr/D8W/H1fF7/x5va4u/Ix3A/wH4fQBPAv1GZbSffMe8fQY7bo7rPT+HzYldWwCsoO0Xxdsfj3972um9T8TvXUjbaj22OCeu//6U/aV+y2b7m3IjgAWNvp/0p79G/7Xq8tQTAbwK0ZfXD+t9cDMzRJElfxfAPyB6KvYPiGY0vhG/3ypcimhA/3fu/miy0d33orBU73UZ+33J3W+l+mOInjoagDNS7QPAe93dqf4PAfxvVc6gfH4v/v9up6e5HgUKyJppvAJRH73N3XdTfQfwbkQ/KqWegObhOYgGGOvc/Sd0jAkAf5muHM8yvgrA/7j7l/k9d78XwOcAnGJmp8SbLwCwGMC/uvtDVHc/gA9XaHsWvwZwJR1nApEzZwBudPef0nvbEA2STrZ4qa9FepzfAfAogL/nht39i4hmmZ9nZk/IOPafeqSNTbgGkeO2NqNuOcz2s/L1+H4XQsxPnmyRVOL9ZvYxRKtuXodoDPM3ABD/Fl0M4CcAzkYUEOduALssWuZ/cQVji0fi/4eXsc/fuPsQvf46IoduOYB3Os0oArg2/n86bav12KIsKvxNeZe7H8zYLsS8olWXp/7A3fsAwMwuR7R8oZ6sBvBsAFe4+2fjbRvMbArRQPkkRNHSWoGnxv83ZLz3/VQd5qcZ27bF/5fTttMBDPn0JR9ANFN83kwG1oDTAQx7hm4EkfPywtS2ZyJyDF9mZr+dsc8ogCdXwSYg+yHIrZi+pPHpiJ5ML7HsPFVr4v9PBvALav9HGXVvydhWKZv5IUFMMnDICsbwKKJlP32I7qMnI3rCfIu7H8iofzOi+/KpAB6i7bvcfYAruvuEmQ2i+L6cDU+N/2/IeK/UZ+X2Co8rhGhtnoSCozQOYDuAfwPwIXe/P6kUP/B7hpmtBXAuouWhv4Hod/I8ANea2aszvltnYjbOZtH3tLtPmdkOAIv4wWNM8t1+NG17avx/Q0bb1RhblMtsf1NG3f2XFRxXiDlDSzqNnnOtv5kdD+BDiJzKHkRLHD7g7l+v0IQF8f/0uvZd8f9WmsHtif8Ppt9w991mdoDqMFkpMRLHpp22LQWwNXDsx/IaWWWWIWzTtH5ApKUwZMz4EYurYBOQ0Sfxj3U6rHgSHOe58d9Mdi2N/+/IqFOL65Cl+ZjI8V5n/D94X8Y8mqqXEErVMoHi+3I2zPaz0qj7XAjRHNzg7i/PW9ndb0f8sCmeXXwZgP9ApI/+KoB1ZR7/qPh/1vd/iND3dJ7vb6D2Y4tyme1vSjl9JsScppWcm7KIlxjchmiG5Y8RfeluAnCdmb2swuZ/iSgAyV+a2VqLooM+A8BfAbjJ3bdU2H49SX4A+tJvmNkyRCLwSkTfewAcEXhvZQXtMslDhKwflNCPUujY0/oB0flPAuhydwv8HV++2dNsQpZdceCe9LKi5Jp8uIRN5oXAMnvi/1nXolrXoZoE78vU9noGJJjtZ6XcWQEhhAAQySDc/QZEgWkA4Hnl7G9mSxDNWE4hGgPVi1qPLapmT2p72iZ9fwsRM2edRkQBLQzAc939P939W+7+BkRBRf66kobjpSG/hWgJ6k8QDchvQxQUp2TahibkZ/H/38x477mpOrPh5wBWmNlJGe+dVUY7kwg/ZdwV/1+V8d7TAjb1mtnJGe89J2Pbj+NjP30GGyshWQr0GxnvPQvTVwX8BNGP2bPKbP/ZGe+Vcx3qxa8QBcd5VqxFSZPcr9XOO5bodLLutZ+ljs1U47MihBAh9sb/y11q+nZEAc++xZr8OvCz+H+9vy+nkP393ajfFCHmDHPZaXwJolQPu82sI/kD8C0Ap5tZDwCY2bmpfD6hvw2p9j+HaMD+ZkRfgG9GFGjjv+KZoVbhS4gGyn8Wh6MGEOUxRBS+GohSUsyWJEjLB1nEb2bPQXSN8jIM4HAzW5jx3h3x/9/jvjezlyOKsJbmP+P/H07VfwGm6xmBKLz4JIBPmdlR6TfNrM/M1kzfrSw2IorUdqGZHXJO43v2g+nKcWCB/wLwAjN7S4ZNbWbGy1a/gSjS8JvN7BiqtwhRcummItacXItoWdUf83tmdimigAgb3P3BKh86CXuf9QCi1p8VIcQ8xcyON7M/iGcG0+8dgShlERDp7vO012lmf4LoAfp+AJm5cGtIo74vh5Hx/d3A3xQh5gwtqWnMyUpEYZRfG3h/BaJlCD9CIWhIKfYnBTN7KaJIqefGETcB4Admdh+iHHHnI8ox1AycYWZXB977trt/yczejSjx751xDr0kl9LxAD7t7jdXcPzPI7oGr0KUf+q7iL60L0Hk1L8UheWlpfg+Iqf8BjPbiCiYwP+4+52IruFPEDl8/2dmP0IUrOiF8TF+K9XW1QBegyi31E/M7DuIBPyXIMp1+FKu7O53mtkfIkqvcY+ZfRORg3dYfJznINI7znpZsrtPmtmbEeWPvNnMOE/jQRSi3zFvQSTu/3QcEOrHiJ5GH4to9nAlIuE/3H3YzN6ByAH+mZl9BdFT11fEdp+GfNehnrwT0QOZvzWz5yFaWnUSIpuHEJ1/tUlC03/YomTVewA86O5fcvd7a/xZEULMX5YB+BSAfzCzHwC4C9Hv3LGIxhRLEEUc/2rGvi8xs+VxeTGA4xB9d65E9NvxGnev6wxaA78vvw/gYjO7FsBmRI7rl2JnsBG/KULMGeay0ziEKBLl3wXe3w4cSjlwd5ltnxr//0lq+4/j/2vQPE7jE5Ad1hqIlnV+yd3/3szuBfAnAF6PaAZ6C4CPuPvnKjl4HLnyJYgCEr0K0VKZuxE5kscicor2BBso8CFEjv5LETmDbYiE63e6u8dRTf8JUYS50xFdi3MQOYxFTmMcWOZ8RMuUXw3g/8U2/S6igDFFTmO8z5Vm9jNEffSbiH5khhE5jx9E9FS1Itz9W2b24vhcfxeRA3gjgHcgQ4vi7kNmdlZs/8Uo5Jp6BNHM5dcyzmEXokTPl8f2XwvgYwAeRL7rUDfc/TEzeyYirfDLADwfkc3XAHgfRx2s4jF/YWZvRHSd34Eo6NXNiK9vLT8rQoh5zRZE8pbzADwj/utB9Dv9E0Srdv4tEAjwxfGfI/rd2IHoYer/APhKnOai7jTo+/Lt8XHORfS7aIgikD/YiN8UIeYSVn7k5uYinmH5HIDjOdR+PLt2FoCnuvtolY95GaIksS909/W0/UWIlr++1t3/o5rHnIuY2X8gypn4lED6izkF3Tevd/erG2tNgXhZ7noA/+Du78x4/zI0od1CzGfM7H8ROQofdvf3NtoeIYQQc5tW0t4VYWavNLNXIooKBgDnxdsSHddfIVru8QMze52ZPdfMXm5m7zWzf6vw8OsQzVR+0czeYmbPi3VlX0SU36fSlB5zioAO8DmIEu1uRQXLOluUf491slfX86Bm1pvWhMZR7D4cv7wh9d5VZuaIHEYhRJNgZq9GcSJ1IYQQoqa08vLUr6Vefzr+fzOAc9z9QYsS5L4fwN8gSjUwhCjR+RdQAe4+YmbPitt+JyKN3iOIlhK+v1FLQZqYz5nZ0YiWjI4g0uElWsY/mkWi4lblZygEAEhe15PnA7jSzL6N6OHGkYhmKo4EcI27b0zV/waAh+n1z+phpBAiTKxd+ziiYB4VL4sXQggh8tDyy1NF82NmrwVwBYAnIZr93Q3gFkS6hh810rb5RBzY5YOI0m4cjshp/xWihyifcPfJErsLIZoAM/ssgCe6+wvilQBaniqEEKLmyGkUQgghWoB4Wf96AKe7+6/kNAohhKgXLbU89fDDD/f+/v5GmyGEEKIO3HHHHTvd/YiZa859zKwTwGcA/KO7/ypH/TcBeBMALF68+MwnP/nJpXf41R3Fr5905vQ6W1N1Vkd1Ju4o3t5xZsa+BNfv6Eq9+ZSMfQO2HaB2xuntbiuUJ+i5+ATVWdxX3OS+wUKZgz10UpnDlvLxEKjjgTKZVwRnpJ/IUSfUJtc5QOVQEIu0PZMl3ptp/9A0BNfhc+P+7QjU4TZD58D1+fz5eiwIbGfS58vH5mN0BOpw3/G5dQUM53mb9v5CeT/FcWWbFtCLdjrA+MHs+kDh83gw9TldMMPnFPelPncnzFAfAO5K7XNyvM+vU9ufmNHWL1J1TonqVPN34EQz3z9ztbJ4BPiWu5eTd7xlaamZxrVr1/rtt9/eaDOEEELUATO7w93XNtqOZsDM3gvgDYiiTY/G23LNNOb67TwnNdTckDE2eGmqzv9EdYY7i7f3jpceV3D93tWpN+/K2Ddg21YrbH+M3j6VHNHBMTou1XnmnxY3edtHC+Vu2n4MeQcj5DWQj1kEh2pnJ4OdTHYmmKVU5vNhB6UnR5vczr2BfZn07AH3U8hWhvsrFKqe63DfraJyb8AG7kduh+E2uR22Z1VgO5M+X+5jtomPMRGow8dbszj7eOPkZfZQyLlNry6U+fr0073dc3ShvO2+Qrk7dUGTz+OAFX+O+mca/78q9bn7ag5/4bTUPpvjfS5Kbb8uo62TUnXuiepU83fgaDO/ohoNEe8H5s3vVEvNNAohhBDzDTM7FsB7EOVXXZiKgrwwDo6zR7pkIYQIY5DjUwktm3JDCCGEmCecAKALwH8CeJz+AOAdcfnUxpgmhBBiPiCHWwghhGhufgbgeRnbv4/Ikfw8ilci5oOXgx0dqJNeolYOZ+VofxZsswpsEmKekV6WWooREgT3nF/83vjy4nY6d7WOvC3BkG/JtchGTqMQQgjRxLj7LgAb0tstGgw+4O7T3iub7TikIQqyGJm6ppFU1JbeaTVS778M2ZqmAMOUQXaUjrWCRjCdtH2YdIydKGi3NtHgeStpGNOwjnETtRvSFrKG8AEqh/R3vH2EynsCdVh/NxjYzvXZTh4gc/2Q7q8UoUA1efbnOtx3w4Ey1xmi8goqh4IRMSE7Q7pN1iECwLZAuyHtIsPX9uF9hTJf5xM5EBTdk6Fz43t7mHSMPXRxhuik0w7SjDpGPtbXC+WlAU3mNNoD2/N83mf6/hENR06jEEIIIYQQYk4jTWNlqO+EEEKIFsTdtU5TCCFyouWplSGnUQghhBDAyeSDZqW+IErpCpOUGr0lgtAfqrOmsG3wzkK5aDljhSOVrdJAClF9WBMdWlr6eqrz7xl1Qqk4KtFSi5ohp1EIIYSYj/BA7+TAIC1HbjZ+cs854oYpNWTvsbT9wXzmHWqTEow8THqtCSqfsaVQ3kSOKOsNecDTx1oyACCt2BZql/dnLVpo8BSqH9IfhmY9QrkMuU3elxOWb6LyMVRmnRzbw5rBdLusy2MdJB+P9YehfXn7eKDM7bB9rGPkNnlfPs+HqdxHZc59GdKbDqRec708tvL1Z90jayN53zvpvhvnzwvV4dyMfM/zZ2GcyseQ/nC8zCQ8E2l9cijnajqnYsJPqf7rm8/x0/LUylDfCSGEEEIIIeY0Wp5aGcrTKIQQQgghhBAiiGYahRBCCCGEmOMkORvTaVLWBFJxJHrg9HLunidU27KIJE9kOkdktdDy1MpQ3wkhhBDznRkC36RZVUa+t2l0FrROw1sKuqkRCljDORi7jy6U+x8qlEdJDza4BuiLbVoKap8O20/lQdoXCGsOWUMX0qtNBOqwLpGPzdo4bj+UaxGBOgxrDFkPx8cK6Q1ZY5euF8rzyNv5PFlbyPXZjkWBOtyPofPJc53YNr5OTN7BL9djO/icizS9VOZ+5fPn3Iz30n3IxyrKzZm6VxP607rcxIbv0nHPKZSHA+0U7cv64X3heiMPAT2jM3wHZAW+SUP5GxOHEQBGbqT2FciqaZDTKIQQQgghhJjTSNNYGXIahRBCCCGEEHMaLU+tDPWdEEIIMR9I50QDipaHZTHcWbxPMAR/BfsOVmn5GS9vE0LUmCSX4v9LbT97+uc8/Rnvq2R5u2gYchqFEEIIUTc6aOTBusQeFAaTW2iQObi1EKhjmLZz7rtTSd9VFLSD2u/k46by0XH+Q9alcTXWmXF91rpNBLaH9H0hXR7nJuRjraTyAJVDS+5GA2U+LuvzgOJzCOksQ3kKuS0+Tyaky+R9Q/pBhnWPIZ0kH4vbZK0j9x3nxEzX4/st1C9cn+0oOp+x7DrcJuseB6g+553cRtuL2n8WgqyewVnr3lt4/5glFnzvkMNYRWbUSFYBLU+tDDmNQgghhBBCiDmNnMbKUJ5GIYQQQgghhBBBNNMohBBCzFNYd1iOXrFWhHSJaX2kEGIWPDH6HA3eV7w5WRbO2sOexRUe69wSn9lYXz38jcKm3lcUyuPfrvDYJZDjM3vUd0IIIcR8IBX0Jo8jVokjyYNAZoJEc0W6L9JxrXluoTy8sVBm3R/rz3pI1LV5Ox2L6vTRiGcipWlk/R3rBkP5DENL3Lg+nxvvOxRoh3V53A5zL5VZxxaqzzq5PPkh0zaF6qW6L9MmrsPHZo1iKA9iKO8i29BP5ZAmlQlpDHnftH4ypHccCLTFx2D72KaBwPZ+6gzWPbINvC/nxGRY08vtrD4hsEOA7r4Sb361vO+FvhcAWB/vkxWQS7QEchqFEEIIIYQQcxppGitDTqMQQgghhBBiTqM8jZWhvhNCCCFEWRRpIY9OvflAYOnaSVqWJkRTcvLMn03+zHPanJ6LUxW/2HhttKgNchqFEEKIeUjNA9+w7okcxt7jAdwTvdcRCHwzcluh/DCJ4067sFDeuq5QHn4s2wQe5GwK6MTSTATKoRx8rNdjfRtr4ALmFWkdRwLlYwLbQ3pIzl8YytMYylmYfi+PvrEjUIdtCuVsDF0Hbj+kDd0SqB/qi5DGkm1ID4q5ra1UZrkfayJ5f9ZHTgTq8LltpUp8DUJ9seps2pd0v50BzfDwg1Sngz7/5DD2rQFw1/TvhVkFolof+H4hbXVvdo3i+8Kq97BpPi1PNbOXAPgQgAWIPgpXuPvPK2lTTqMQQgghhBBiTjNflqea2WEArgHwHHffYmbPjl+fUkm7ytMohBBCCCGEEDXAzI4xs0+Y2S1mtt/M3Mz6A3WfYGb/ZWa7zWzEzNaZ2bFlHvKJAIbcfQsAuPuPABxrZmdUch7zweEWQggh5i/33gFcEC/xuoGWjL0xtezrc/XTIm2Nl5xxegAhRP1Ilpz2rq5yw6+l75Vy9I3pVBzXVf/7qIHLU08E8CoAdwD4IYAXZVUys0UAvgfgAIDXAXBES0y/b2anufu+nMfbCqDXzM52941m9jIASxFlgtk025OQ0yiEEEKIsuAcjMNfT72XtcM9hQHgVtIoDY4Bq+PE4mndVKK5Wr2ksH3km4X3WUvGorFuFNpEX2HfARIWpjV2rDlM5+pLYH3YUiqHNGesueOBakjHyNpC1szxQC1Pvr9QnsKQlm5pql5Iuxg6z9C+oTohQnkgue84x2XoPEP6yZBWk+1kDWQa9q1Y38jXcyKwPY+Gskh/GGjzVHrIspF0jCeybSFt5EI61oFCeeR+FNGD6eTWP79Wwa4C/MDd+wDAzC5HwGkE8EYAJwB4krvfG9ffjOiWuwLAx+JtmwCEZh+f5u4PmdmFAD5sZksB/B+AuxD+eORCTqMQQgghhBBiTtMoTaO7T+Ws+jIAtyYOY7zv/Wa2EcAFiJ1Gd59xmam7/wDAOQBgZgsBPIriZ1llI02jEEIIIYQQYk6TLE+t5h+Aw83sdvp7UwUmPgXALzK2/xLAyeU0ZGZH0cu/BPA9dkZng2YahRBCiHnCCKW46Pm9mesMjxW/1++z0xnNKmR/BWyKl8CesbKuhxVClMPT6Xuh3FAvzcNOd19bpbZ6ATyesX0YwGFltvXXZvYbiHy9WwD8foW2yWkUQggh5jQnngnccHuRMwgAI/8J9IzOMtjEV2fOtRZiRWDkMTRR/Dppd0sq9MMZsePK67PWk06S7dlIYsW0do8JCX3Y1ND+If1ZX6AOl1k/xnkdQ/kVQ/n+QvaHdIh5hU2hYzNsB/c97xvSK4bgNkP6Rta08rUJnRvbMxKo05d6zddqMFAvpN0M2cHtnE0axR/TAxrux2euKJQ3kaiTdYwA0Bd/LvreQg99riq8372MygCwrQaBr/Jc3BAPAvhJbYNxtUjKjaxOKPupm7u/sQq2FNECfSeEEEIIIYQQs6eB0VPz8jiyn8MdhuwZyLoiTaMQQgghhBBCNJZfItI1pjkZUfTThiKnUQghhBBCCDGnqVEgnGryDQDPMrMTDtls1g/g7Pi9hqLlqUIIIcQcZnLTHdP0jAmjcQ5EztvWkWNkEMqpWMS78slwOG8jMxjYngS50QBGiALJ52j1m8vc8aTU5yzOqTqQ+vzNJgjWIZtenHrjf2do6yW1C5zVqO8NM3tlXDwz/n+eme0AsMPdb463fQ7A2wDcYGbvRaRv/CCAhwB8pp72ZqHvXCGEEGKewIFvEoexFP0XV+e4aUc0sYMdRg4owoFGOEDMtkD7x1GZn/5z0JHuQB0AoHg5RUFVQm2Fgrxw8BMO1BKqz8nk9wTqhALYhILLjAfKoTqlZktCdiCwPTSoDAX2YfEWB6cJ2cTts22LAu1wHYb7gm0YTtXj93gfvlZ8f4aCInF/FwVqouA3/bSd77WtFPzmjBMK5dvuy25z078WyidSoJ0t21HEGtSALxW+X0IPg4qoceCbJuNrqdefjv/fjDiforvvM7PnA/g4gP9ANDn6XQBvd/e9dbIziJxGIYQQQgghxJzGAHRW2/PJGTHW3XNNn7r7gwAuqsCimiFNoxBCCCGEEEKIIJppFEIIIYQQYh6R6Jx7npB64zm10xMe4mQ6xl31W6Jqlk+zXRaV5KZsMeQ0CiGEEHOY9jPORM/tt0/b3r23MFgr0q6R1nHkxuJ9kmT0mYFv0vxtoU7P32ZX4eT2qy8vlLdeVVxvdRyE417SSbGWrP/YQnnLg9ntP0DltNaNdYysVwtp7lhDF9Jibi1xvISJQB1uM0/i+tB21gbm0WGm9xkObO8IlLkO91dvoA73Nfcda/oY7gs+Hz5WX6BO6JxD55u2LwTvw3Zwv2Ql3gOK70+2aTRQZzPpGPl8VtDBOummupM0kyupfh9pHXE2lemm7T8bwP/N3qHjY4zcTHrqk3M4pRwoJ482MidmQGd71Zqbd2h5qhBCCCGEEEKIIJppFEIIIYQQQsxparI8dR6hrhNCCCHmIencjZyOo9x9s9pJh9xfPYs8bwnpnHFCiPox7bvilFSFFkmdUZPoqfMIdZ0QQgjRxJjZiwH8OYCTARwGYAeAHwF4v7vfVe3jhbSOtaAv4EiuuJp0laTROpHqbKHyOOkYWWPGg5xnkMaKtV5AsQ6OdYahvJCsXQvlRQzlhQzlEQzpGEO6Oq4fisUR0lvyeYX0dkDYvo7A9tC+IW0kQ+kIi86fCdkQOhbXYQ1sntyXQHEezTy5I/upzNeZ84CG9KchXSY7OaOBC70l8Bk5m/Os/qxQHL6fyv9JtqXa78PsmQjdlDVJECnqgZxGIYQQornpBXAHomTQOwAcC+BdAG41s1Pd/YFSOwshhEA01ahAOLNGTqMQQgjRxLj7lwF8mbeZ2Y8B3A3glQA+2gi7hBBCzB8a4jSa2W8hekp6BoApAPcAeKe7f68R9gghhBAtRrKaL7TarcBddwCnxcs9N9deezQY0B8mGsfQkkkgvFxVCNEAXlVFLfFJcVunprb30TEGa/z5N2i6rALq3nVmdgWAT8Z/H0SU9uOpKE57JIQQQgjCzNoRLa46DsDfAngUwFdm2145gW9KMTqWvZ0lTeUONlijFcrNdwZpFLeRDVyfc9yxjjGtXWONH+cI5P1D58A2se5tKFAnpBPl7aH8jeOBOkzIzlDuw7QmMY8dofpMnn2ZUL7EkDaUydO/IR1n6FhAWAcayinJ7YZsCuW1ZIr2XUjbqVO5f48L2DP4teJ2T4sfygzRg50eZNN3ceANACO/mPn7oyiX60mF4w1/g+qUEtTWAjmNFVHXrjOzfgD/BODP3P2f6K1v1dMOIYQQogW5DcCZcfleAM9398eyKprZmwC8CQCODY1MhRBCiJy01fl4b0C0HPVf63xcIYQQotV5DYBnAfhdRMEWvxM/jJ2Gu3/W3de6+9oj9GRdCCEiOqr8N4+o9+k+B5Fw/3fM7C8RzagPAPi4u3+qzrYIIYQQLYO7J1kmbjOzmxD9fr4LwJsrbvyi7OVjQGqZmRCiZUnnTq02aT1z02mUFT21IurtNB4d//0DgHcD+DWAiwF80sw63P2f0zsULbE59tg6miqEEEI0J+6+y8zuRXFatmxOPhO4/faqHp/1TEFNVGD7bTSwHEm9l+wTkjoV5QckjWKe3Icjge3p93oC9VhPGDoe1wm1kyevYbpfErhfOH9jSD8X2l5KYxg655kjLhWTR9OYJ99jnvqhwWzI5pC+M90O6xjzXOfhwPbQ8TgmzN1U5pySm/cVyvyZ4mMxefSjw6nyMxPn7un08OjrhTpDGQLa0Oc+k3sK3xdFn+3X1taJFdWl3stT2xBp1K9w98+5+/fc/S0A/hfAX5hNfwRStMTmiCPqbK4QQgjRfJhZH4AnI3r4KoQQYiaSQDhanjor6n26QwBWA/hOavu3AbwEwFEAttfZJiGEEKJpMbOvA9gEYDOiSaiTAPwxoskc5WgUQghRc+rtNP4SkYg/TTLDOFVHW4QQQohW4FYArwLwpwAWAHgIwAYAH3H3gUYYNNxZWBiUXrq2Ol7qtjVHWP80I91ariZE3XnPPPncKeVGRdS7674O4PcBvBjAf9H2FwN42N0frbM9QgghRFPj7n8H4O9qepDrApqjGrCG8isOki6xj7bz4CSk3VtBlVajELBnY0AzyeeVzlMSyqPH2jXOXLIisG8p3WRWO6HzDOVK5Dq8b8j+kA5vPFAn/R4TspvtGw/U4X5hvR5r60KZYbj9UE7FUK7MUJuh809fs9D+fD4rAtv5QUmo70K5I0PXjbWR56yk49KBt9Bnim3oowNzvsfT3k2VXgTgw9HnqIMe4PR15MvrWnbgmy82IFCOAuHMmno7jd8E8H0AnzGzwwHcB+CViG7T19fZFiGEEEIIIYQQM1BXp9Hd3cxeDuAjAD4A4DBEAaMudfcv1dMWIYQQQgghxDxBy1Mrou5d5+4jAN4a/wkhhBCiEZyW0jFtnr5ULK0xzLNErda54ELc1qDjCjEfYB0zkJ2/NU+dhiKnsSLUdUIIIYSYNatJ1LV1KPVerHHaTA7daSTeGqR46azFYg1YP41UOqg8QPVD+sE1VL6XyvtT9ULaNSakV1xKZdbf8QCL2+d9QxpFrs9t8rFC+RS5DmsAuR3Wz6VzCLKeLmQ3HyOk+wxtZz1pSLvH20N9xGSkEQRQfP68byiHZim4rdB1COUF5fuNcy2G7rs8WsfbqCP7A3XyDPI3/w1wWoYWcRvrjeUtCMhpFEIIIYQQQswHFAhn1rQ12gAhhBBCCCGEEM2LZhqFEEIIAVxAeqQbqqNFSmuchBBNyBPjz+kp+Xdh7fLqQKoN1kQf0kNflPpOiNP9zEY/XTbSNFaEuk4IIYSYj3DgmwuynbvQwK0owMWraGD4tcLmThphFOUyZHEYcdriQnl8slDmXI7DJF7Lo9HbRGXWkqXppzLryUIaPW5rJLCd7Qjp5joCdUK6tIlAmeunc1BmEconmLaD9YQhHV9o31C+x1BexNB2Pi4T0o/ycSmVIQK3XUk9ayjvZCg3ZSjH6YpAnS1UDt2feXJwbgtsZzsHJrLrrDkh+7hs5/hEcQ7GULAr/l5IO4FNgZzGitDyVCGEEEIIIYQQQeRvCyGEEEIIIeY2mmmsCHWdEEIIIYo5OVpaZh3Fy1N9c/SftYq9r6ibVUKIVuVVTbJcVdFTZ42cRiGEEGK+w4FvTi5zcHdzodgZGFWs6CjonbaQHqpI67ivUGY9YEijBQBnxzqrDdQma/TSer0z4vpXpzRZrAljDR1rzjjnI+vj2L6HqdwZKDMhnVwo918oHyFrD1mLFtIYhvSDaZu4L0LnENJHcrtsU0jHGdKMhvo6BNvAtoXs5zbTusfQ9eG2Qn0ZyrV5b6AOX8MTA/WfTOWQRnMVlUOfozUk9hx+kN54sPA5LaUB7usq8WYGPefTi3YAX52ula5J4BtRVeQ0CiGEEEIIIeY2Wp5aEeo6IYQQQgghxNxGTmNFqOuEEEKIeUg6h2JRGo0QJ81elxQK018J5Yb1H6yBDULMJTbFn5F0ypRnBnIxMvyd0lGuh3FO6rO5QctVmw05jUIIIYQocFdhsFY0bCOHsfd4APdMH9T1frBQZ+tfzXyoUQBr4sHoRnLoQoMT1tj1k66K9Yacm/GMQDvnoTjvHA92N5AA7RIyZJy28zFCWsSQtu7sgK3MaVRmveVIumIMnz/rKkM5BFk/V4qQhjKUI7I/cDzW34W0e1wnZDf3BZ/z1kAdvl9CesiQ1hMovp58Lw0Ejsd1NlD50sCxgcJ9uI7u/3tTdc7PcNj488I6xjupzH3E987WVDLP1XH7m3I+VJkI3RipOlk65rRddcWgQDgVoDyNQgghhBBCCCGCaKZRCCGEEEIIMbeRprEi1HVCCCHEXObXdwAXxcvDrgvrhBJ9YHrp2Uxax6KcjTmWpDYL62nJ3BkaDYkG8Yn4PlxVog7fq+fm0BaWS3r5aBZpDXTLos/6rFHXCSGEEPMQdgZzBZTJ0DCmGSSnkTV93aQ/zKOHCunhWHO2aax4n3PiwfQIDYA3ALgk3n4TbU/n7GMdIx/jtgngvIxBemeqrayB/GDKjoQfp+pdGu97I9XfhoKOjQf0rL/jbgxt5/O85OJC+RNfK5T7U/YMUJk1h6zvC12TQRTOZ11Ao/pcKrP+js8hpNHj7azdDOkqB5AN31+cy7A/VY/P8zYqrw60u5HKnQD+MCOPKFC4Vz+RuuZJfQ4a9UDgWGfTPbc1kPuU+z0d2CaLbhQ0xkyWw5j1MGko/cAp/p/V5jQU+KbpkdMohBBCCCGEmNsoEE5FyGkUQgghhBBCzG2kaawIdZ0QQgghGkYePVUlrK9S+9dSOysCda6mOuflbPeaeJ+e1PYrA9ubnaSf0kuA5yPJvZcebN9UhXuy0TlHk+PzEt70efJnO2uJajp36+oa6DVF9ZDTKIQQQsxlnngmcN3tJav0jFZnsNbZQVqnpxUGhCN3F+o8TLondixYr8YD0U4AZ8SDSR4oh6SRl9DAkx3GkE4SmJ6fL0vHyAyljpPFBiqzkzkQOC7nFNxC5ZBekffl+tyn3ObVpGPkfVm3CBTn8xtANqEclHm0qKz743b6A8cK5VfkfTmv4YpAHbYz5NCm8yMCwOXxdeZ7ifWdvciGj30OiSBvoqSS6b5PCOleQ7DdqwLbuR/7qJz+LGTRkfIWRsey602g4BzW+mHQrNBMY0UoT6MQQgghhBBCiCDyt4UQQgghhBBzH3k+s0ZdJ4QQQswD0vohgDREF6Teu6G5tEXJUrfQUkCgWHM409LRvFwZWN4q5g/V0sRWhdNqbwun35nNsvWqaC37anSeip5aEXIahRBCCDFren8re/vWnxXKo6n3ToudOs7/xjneWIvHOr60Ti7RT10bGKiyHjCtV5tJJ5YmFPyGyRP8hbVlpRK6J3DfsRaNz431c1yf7XmMyjz44zyFaftGMDN9ge0hJ5vPeQ+V2VaS/RWdz7ZA+6uQnR+yN1X/nIxr/okSDwZC58Z9xOfA14T7eCOdULpPsx5w5Lk3uZ1QsKRTKT/qIOkQO9k4+oCtovp56QXQl6E5zvOQRYFvWgs5jUIIIYQQQoi5jQLhVIS6TgghhBBCCDG3kdNYEeo6IYQQQtSVRF+5osJRSCVh/dP7Jktd8+bQW6d8hE3FVTl0r4k+cRNtC6X0qDfXBO47Xnp6/qn1sSUhWT6eTrlRESelzvMeLVGtBWb2bgCvA7AawIXufj291wXgKwCeBOAAolXqb3H3+0q1KadRCCGEmAeU1A9VEPhm0zeKX58R/2f94WoabbB2kQejPbSddXasxQtpAEPaswEq9wfKpaD0emXr+x6m8hCVWffGzgs7B9xOSMcHFDR6G8nh4L7jMu/Lg7+01pNzB/I15P0HqMx2sxZ1UWDfzVQO5QvkNkP5OPkcWFcYyhuZp53xEu8NpN67LCN/I/c33zus0QzpD/Nw453A+cnnOJA3ks+hP9DOFuqMU1M6xiT4DeuNJyYo/yrC59BNbfUsDlTKwyB9H1U7ENH8CYTzXQDXAvh84P0r3f1bAGBmbwNwFYDnl2pQeRqFEEIIIYQQogaY2TFm9gkzu8XM9puZm1l/oO4TzOy/zGy3mY2Y2TozO7bcY7r7be7+68B7Y4nDGHMrgBNmalNOoxBCCCGEEGJuk2gaq/mXjxMBvArA4wB+GDTPbBGA7wF4MqKlpa9BNGn9fTOrZO52Jv4QwA0zVdLyVCGEEEIIIcTcpnGBcH7g7n0AYGaXA3hRoN4bEc34Pcnd743rb0a0wvkKAB+Lt20CEJp9fJq7P5TXMDP7CwAnAXjBTHXlNAohhBBzmfvvAF5rwFjGe1+NtUOHp3RDOxWcQohSbKqS1m59tTV7FVJukKrx5c1lfzPi7lM5q74MwK2Jwxjve7+ZbQRwAWKn0d3PCOxfFmb2DgAXATjX3ffPVF9OoxBCCCFmTSg4zTMp8A4n/ebB6L3kyHIwD4YDRnLQFg7Ycltg3/7U6/NyJBNPB9U5I96Ho1uGgqfwqCt0Pryd7eMgKhzMhYPLcLAYZjCwnSODhoLapBkIHJvbCgVC4WNwVFk+H+7fUHCdPYE6bAOfcyigTii4TvqevTRwX1xL15zPZ01m7WI7+JxDQY6GU9vPzYjgG4rOezeVQxFgN40VgiXxZ5Drb6PPIN/Xo6HIQSXoXgh07oqON5ByhvuTQiOjpdZmpvFwM7udXn/W3T87y7aeguxlor8EcPEs28zEzP4EwKsROYy78uwjp1EIIYQQQggx96l+9NSd7r62Sm31ItI9phkGcFg5DZnZewG8GcARAE4xs08CWOvuj5rZMQA+CuA+RHpJAJiY6TzkNAohhBBNjJm9EtET4bUAVgJ4EMA6AH/j7ntK7SuEEKKlyJqKLXsNsLt/CMCHAu89PJs25TQKIYQQzc07EDmK70aU/u9pAN4P4Hlm9uwy9DJVg3O4BUnrJOvJq7KPvYWWzK3JsVQVANY1meaM2dDEtrUSyTLUFQ22I1kCXWr58CfiOv0529xapXsk/ZnnvI2MXRj9vz/U0EUpe66b3k6u75fZ0LhAOHl5HNmX/zBkz0DWlebuOiGEEEKc7+476PXNZjYM4AsAzkEUoj3M8WcCX7y9ZJVKAt+kdXZpTWC6Ti9ppdLasr7YkeMgIwP0PusYWd/Iuq9LSflz3sU4FOxnS87B8zYqs16RbWW5F2sUH6YyJ3dnDdkAlVnrxn00Gij3Ixu2M6v/0+2E9k2/ZieK7ePBI59DSMe3hcrcjzxN/hiVnxHYl20L6TUvJxHsx+5EEX8S319XB/R9aRZRmc+NNbR873FbIT1oHl3qMAo6S9YG3hhoP3QNuK/5+ncAOC1D68hwO6WC4iQaRqDgMALA8a9w+LrwfiKTXyLSNaY5GcBddbZlGsrTKIQQQjQxKYcx4Sfx/1AcGiGEEEzj8jTm5RsAnmVmJxwy2awfwNnxew1FM41CCCFE6/Hc+P+WkrWEEEIUqH4gnFzE2nQAODP+f56Z7QCww91vjrd9DsDbANwQB7JxAB8E8BCAz9TT3izkNAohhBAthJmtAvDXANa7e+a6UzN7E4A3AcCxx4ZyQBMnpZaoVRAWP1nu1jcLgVi1ct/l4TY6VmjJoBCNIllCe06N2k8+axUvVeijz+zZyu9agq+lXn86/n8z4svs7vvM7PkAPg7gPxDNjX4XwNvdfW+d7Awip1EIIYRoEcxsCaI8XhMAXh+qF+cJ+ywArF27tuojuQ4aPfQG8rltHiqU+7uK3+sZjUwa6S4MODlnYz+1z8faSHXOW1koD5Igbn1qaHZu/J8D39xWwjlN5zy8PN6Pk7CzdpF1eZy/L5Q7MaT74+2sgeOoGCmJHv4wI4ckaz25HbYzlDcQKLabyzxgDOUO5HZZQ8fnENJGso4xlBMy1C8DVN5InRTSK4Y0hulQxGwf78N61dB1S1//S+JrlQ5edE5GQCbWXPbTTfWHAHBXVH9dQJfJ/cXXiTWjXL+PTmbr1ux9BzI+41nRWnyjAYMzfN1kBL6Z1jYH2anmg6QGBsJx91wn4u4PArioxubMCjmNQgghRAtgZl2IdC0nAHhuHDZdCCFEHpo/empTU9dAOGZ2jpl5xt+uetohhBBCtBJm1gngOkQTMr/l7ulJJyGEEKJmNMrf/iMUIr8BxdGrhRBCCBFjZm0ArgHwAgAvdfdb63XsdDj+vpy5DWeCl6XWmpvic+BliCdmV80kWfoZSmXRSG5SnsayuDJHHsRakSxvTg+8+RqeV6XPVz1IPsM9Pak3OA/jddPTevRdnKofp8TJk7+xYgwNC4QzF2iU07ilnj96QgghRAvzKQAXA/gwgH1m9ix67+FqLFMdeaj4dXocmKbn91J1Pzd9gMdOFicY7wvoG/s4NyM9Sh6lMtt1G4m0VgF4Zob2MJ2DMOGZFxa/vpbyyS1FQX/GWsHNVP80KodyKhadP5XPoPIAldmR4SfpXH9ToH1KTYiNAXu6A2XWQALFDjXr2li7V5R3k8rc36wP7A8cu0g3F9iX63MOzVCuSM6hCBRyM15J1/IYen9Rqv755LjdSPvw+fMHLj3rcXlGLshjUvXPjeuEnP7LAjYAwPnx/3Ppc7SFtL6cv5H7CwDOjtvdzPf11kLOxlHaztemF0A/2cQPfVhP3Jf6XDUdWp5aEcrTKIQQQjQ358X/3wPgltTf5Y0ySgghxPyhUf72NWZ2OIBdAL4F4F1xtCAhhBBCEO7e32gbhBBiTqCZxllT767bDeCjiHKSjAB4GoB3A7jFzJ7m7o+ldyg715QQQgghakOSk+1lM1cd7synt0vrJpuBa5vQJjE7rirzWqZTYpRLejlpFtfMoK0spVXdGL93alewSpAk1Uw6FcmmgN5SCKau94e7/xTAT2nTzWb2AwA/RhQc570Z+9Q015QQQggx30l0hWmKAt9wEu9vYOZ8bMQKGm0Mkv4qlKcwlB+PNXOhCHqjqdfnZ+jHrlpXXIcTnIfsWIWC1pH1aiuoDmvdWMfG+kPWmbF2j4/FNrBGkdsZDdRJ5xp8Z2zzVQF93tJUfXZk+BisY+T+4vNZGijzdeP6fG3Zpn5kw7ZxO2wn3xdcP6Sf5D5ND4pHUq8vjfuSHyrw/tz3bAfbx22G8l0ylO60KD/kevoc8Xk+QOXQ5yh0PzL9KwJvoDinalG+zHXF2sdDx8sT4KcWgW/SSNNYEQ3vOnffZGb3AHh6o20RQgghhBBCzEEUPbUimiUQjgHQLKIQQgghhBBCNBkNn2k0s7UATgLw1UbbIoQQQsxH0vrD3vHoOe4WWoa3ZmV4n6R+IwnpwG6sol6rFbWOSaqJPEshRWmuDmgCxQy8qvC52fK14rfWJEtXafm7PVaj7xMtT62IunadmV0D4H5EqYZ2IQqE8xeIllR/op62CCGEECI/Wx4rDPDyBLnpoBHGKGmgWBvHOfJ6AKzKyCMX0tKxTmyQj4tCknQOSjKBgr4xHeyE20pLuc7N0LGFch5ymfWNnNeRczbyIIw1cHlyGXId7iPWq4XyVPL5rkm9d2dg/5D+kJ8lsD6O9XdbctQP5QYNae7Y7oFAnVCeSj4vPpe0DX0oXP+rAw8M+N7je4c1nXyde1G4P0MPIThX5gCVNwN4S8ZnJJQflM+Nzz90r7E+cZDFlKl2+/mzHRIXNytyGmdNvbvuFwBeDeAPEf1WPApgHYD3ufvOOtsihBBCCCGEEGIG6h099SMAPlLPYwohhBBCCCHmOQqEUxGapBVCCCHmI4eXr89LNI59gdEDL1vtmMUIo9b54m6ahSbtyhly6om5zcfqeP2T/I3PqMOxakVW3tW+ixtgiKg6chqFEEKIeU7vMgA7pwefWEP51TgozuBE8XtZTJDWqY/EXp27U8eOg+hsCmi0eKAyQOX+VDnLntAgJ53LkbVfrN1iLR5rC1kTN4RC/sb1AY0a6xv7qTyYqndJhhaTtXH3UpmdGNbisb6Rzz+k7xtI2cDnxn3B7XJfhHSJIa0cS+DOpvKmwLFCOlbu08svRDHXldYhjgbK6byMbEc/lQeozPk4Qw8j0tc5C+6XH6OQEzJ0T/E1COU75byRRbpdujEG6MCha1+KVWsL5cHbs+sMfq2Qq3HNBYGHVZT3lT/JVY09pUA4FaGuE0IIIYQQQsxt5DRWRLPkaRRCCCGEEEII0YTI3xZCCCFEgYtS68Guq20Oxk1VWn+W6BV5SWG9dIhbqnQOiX5u9Qz1RGlaMZ9mmlDe0Y0tqrEd6Y7s7nlR8XajpcW+Li78bg2vnwLhzBo5jUIIIcR8JEPDWIqZNIwA0L2wUB49UCgP7y5oF8dpMMx6uJAejLezRos1cKEBNOvESg14uN4AlVnXxbZyrkHOwRjSDXI+Sta3PUbl8UCZj8v5+0YDdboDdZYGtqdzObKGkPuF9+d9QvkVN+ewiTWjDF8r7q/OdMWYq9cVyqEclwhs5/pp7eEZgfdC+TiZY1Kvz834/HBex6IciVTm/u2nMl+DgUB9vmZF9zi94OOyHnIAwDMDn/kh2n/odmB1XC+kg0wcRgAY+TbQMxrVt7QWtdZoeWpFaHmqEEIIIYQQQogg8reFEEIIIYQQcxvNNFaEuk4IIYSYB3AOxYRkySjnVusrc8kYt8vLU9OML299nZkQs2VD/Bnjpacrsqs2DYMZOmEg7Dyktb2hJe2H6r2itnppUV3kNAohhBDiEIPrCjnVymVkX/b23mXF5c5dUfvDNMhc1VWos22sUOYBK2vJ0gnQE11VniAo21KvQ1pBHuDzgIm1iKzdY93YEJXZbnYUWFvHxx2gck9geyiX4Z7Adj5n1q6lNYlsUyg3Y0ijyMdmrRzr70K6T4Zt4v5K51HMajN0v/C1Ydi2dACiiUCZj8fnycfmdkPnOZQqX5LxueOcnQO0fU2gTb7mofyQ6fvuDJ/+8KgUE8incU5INIxAsWN519cts53hr+Vuujw001gR6johhBBCCCHE3EfRU2eNAuEIIYQQQgghhAiimUYhhBBClAUvY+ucxUhic7x/KCXCbLhxDuTmEwII52isFVtqlPuxSCs9yyXvVUXLUytCXSeEEELMA3ovDr9XrQFdZ0chuA4OJy0WibdYl1aUj490jH30RgeJyR4I7MvbWQ/HGjMeEKc1Zs97deH8v//lgt2sY+McdHwO7Phyfc7TNxCoMx7YzuVQzj4uh7SEfNzuQJ204x7SHPLxQud/KpXvzNEO0x+wgft9a6DNkL7v3kB9vi84F2M6b2SpeyYhlF9zAMBb4s8VO4EhbWWIDgDnZXw+2SHje2SAyiHNLOseGX4AxLkYO1DQDJdiDYlCB7cG6uRop/cV9KKa+kY5jRWh5alCCCGEEEIIIYLI3xZCCCGEEELMfRQIZ9bIaRRCCCFENmeltFW3NIEuSYg5yifiJacnzlCvmeAUGmvSOUuIrVQvc6nrBfRdUyLfq2gcchqFEEKI+cCXqufwsQZypDs7aMcg6Ri7aZ9NNHgM6Q83k56KdVln0KhlkOqciIJW6sZU++dnDFDTgUa++WU7pBvb8OXidrNs3RjYzoMqzsG3lMp8PqwtC+nvOB8la9dC+RRDuRVDmsS0Vo/3Zx0ca/H4PFlzOEDllQE7eF/WYnJfb6Iy6wzZVm5zU2B7aJDLtvH5Lk3VG0chd+L61H11bnJfvbGw3V5dfK+9Jf7POTJDOkm+/nkCROXR1YZ0rCF95sgE0B+f12yC4mzZWvgcFmlRyw3scwDADXFfVjMokDSNFRHsOjN7wyzbvN7dh2euJoQQQgghhBB1QE5jRZTquqsAOKIuzosD+BmKH9wIIYQQQgghhGhRZvK3L0TkBOZtKxBgVwghhBAtz0X0HPm67OWuoeWqm2uce+62QPvJ9tCSvIRk+aEmIgSzLr4v0qlCku0XXh7e9++rlP8wWU7NS0+fXGGbIQZzfk5DaXrMrgUA+OrfKetYfS/LddjK0ExjRZTqukkA2939gRJ1DmFmbfE+UskLIYQQcwEOfHNR9mCyZzRb38g53x5O5XxLYI0ea6AY1m5toHb6aTvnx+P6oYAi6eVQfOxQHr3bqMx5Afl4nJtxM5VZcxaylR0L1hL+mMp8PiEdY0i7xsfi8y2VpzHk7ITqpPMcJrB2kXWD3BfrS9iUReh+CeWZ5PKK1D7nZugWgeI+e5jK7EBeeVWh/JWrCvvz4DmUFxEo5GC8lo79wqMKn6lvPpL9uVsUsLM/sJ37lDWW3C+l7AzB1/B0fCWzzurVAO4p7R4MfqN6+WJL4YqeOmuCTqO75/nMcv0p5PucCyGEEEIIIYRoETRJK4QQQgghhJjTuAGT8nxmTdldZ2YrAXSlt7v7g1WxSAghhBDNwavC+qYkP1sfjSQ6NCATLUiyNDS9bFVUH065M5vlsKJx5Pp6N7MeAP8M4BKEU25qlbAQQggxV2kH8NVIc7QlECxjYgLoHY/qbAwMDvtPLZQ33Jl9qMcCJrCWjCPvLQrUYY0d6xBPBPDMgH6KcziyJozzlg9QmTV0rO8Kae5YfxjSHLKukvuOj8vtcy5HPmfuC7aNNW1p+HisOeJjs46RcySeTWXWKLKOkc85pMVku7l/OZchD2C5PrfTT2XuF25zP5VZtwgUX/NQnks+Hms3EagDZN97fM0/SjrGtMY2yTvKuQ/pI1XUp6Hrz9eD76OQxrjvwmnmHqKfppH8CRT85tTpddNsA3BGHXSMh9BMY0Xk7bpPAbgIwOcB3Iko7aYQQgghhBBCND1uwER7W5Vbnapye81LXqfxxQD+zN0/VUtjhBBCCCGEEEI0F3mdRgPwq1oaIoQQQjQLcRqpsokjiQshhGgy3AyTVRdeH6xye81L3p77CoDzUbxEXQghhJirjM9cZRpuZs9w900zV20y0jkYr8vWGeVJ/D3cmS85eDNxDZ1XpYnYhZiJJPBOzwz1mplEU9k3LTRmNnm+O+rBZLtCsMyWvE7jtwH8k5ktBfBNTM+LC3f/XjUNE0IIIRqIIdLxp2NjhGgH8J6aGWN2DIA/B7AWwOmI4okc7+4DtTomgEOBb4DiQV9favSQBL9hh/EZywrvD++mMkUk4eA0ndTmKEX/4KA4HKTlOCrfPd1yAMDr11CS9C3lD1o5YAqf8okAzslIys71ORIn30QcRIUHUxxEZnPABnYyBgLtsJ18LKZUwB4OhsJBWEJBe0LtnhjYzkF4+Nh8DnzcEwN1GLaH+4vPhR8GDFCZg8LwvkDxdWCb+L7lADsA8IfxfbGB7osBzAzbFwpOw4SCGYUikpYKfpTAQW0Gx2jfdcX1uM8mqGOG7y98FzCDqaBYffUMfiOqRl6n8Yb4//EALqPtjuiH1aHoqUIIIeYWn3P3H+epaGbtAN5bQ1tOBPAqAHcA+CGAF9XwWEIIMedwGCblrsyavE7j82pqhRBCCNFcvAbFEf5L4u6TZvYaAPfVyJ4fuHsfAJjZ5ZDTKIQQZeEwTMhpnDW5nEZ3v7nWhgghhBDNgrtfU499ymi7MQF2Xt8cOqRasL5CjVWl+wsxGzY0+X030h3Zx8tbW1m7KQooxaUQQggx3wkEvmH6LgPw76XrrZj4zqHy0L4XHiqzHmw4na08piOwnfVTrF3bmqp3SayT4qA2rGNkTVd/al/WgfEAlzV0rC1bEajDyeDZVtYDnkZl1sOx7q+TytwtrHvjARzXZzs52XxvoJzWJ/L5s8YvpCdkOwYC+04EynzOnAuez2EjlVlLyHYHbp2ic+G+6AZweXy/rCvhhIU0nXzOfH8yfG1Zo5h2oM6N7biJ7OB+4fPk8w9pQ/k8eV8+7plLC5/ju/YU6w0T0tf7mQEdIusVuwNBcfpWZ29vBJNyfWZNsOfM7HsA/sDd747LpXB3f0F1TRNCCCGaAzN7CYCLATwBQHpo5O7+3PpbFcbM3gTgTQBw7LHHNtgaIYQQ9cTM3g3gdYieZV3o7ten3h8AcACF5zufdPerSrVZyt3mRy9tiILd5KkrhBBCzBnM7J0A/hbADkQ6x6ZPzOXunwXwWQBYu3atQhUKIeY98ywQzncBXIsoCniIS9z9Z3kbDDqN7v48Kp+Tt0EhhBBijvE2AJ8B8DZ3n2y0MTWB8zQuRHYZwEC8FI2XQy4tmnf9DhrFTU2u9RLNRbKMuXuGeuVybZn3YWJHs+cH5XQ6I7Rut6L+exX1FUdPWTatZlVolNNYTsokM3sCgI8DeCGiSbn1AN7u7g+Wc0x3vy1uryLbGS3sFUIIIUrTA+Brc9ZhLMHwfxbKIyHhGLG7q6BjvHes+L0zYk0U66bY0esPtJnOI5jAg1XWX/UCOC9DJ8b1WTOWvD4vI+9i6NhAQYs2RPVZQxbKi8e2rglsZ/qpPEBl7kc+FmvX2Lnndvj808fly8y6RNbucbvcVmhftomdI9YubgvU6Q+0ycfiwWwoZyXD98IAldN6Q66XJ6ck91GoPp9zWj97acZ924/CvcmsD9x3bAPbz333f6Rj5O2j9JntRyGfIjuMaYru5/ML5Ymv0xvyNnKlTDKzRQC+h2jZ6OsQrfL8EIDvm9lp7r6vynZ90SKv8qcA/sLdS6bzzH0ZzWw5gD8GcBai76ptAH4E4J/cfddsrRVCCCGanG8BeBaiH3MhhBAtSoOWp+ZNmfRGACcAeJK73xvX34wo7tcVAD4Wb9sEICRWf5q7P5TDpue6+wNm1gHg3QD+C5GPFySX02hmpyOaHl0G4FYAdyF6iPJuAH9gZi9w9zvztCWEEEK0GG8D8HUzcwDfBvB4uoK71yo/4yHM7JVx8cz4/3lmtgPADqXGEkKI0jQqT2MZKZNeBuDWxGGM973fzDYCuACx0+juZ1TBpgfi/xNm9nEA7zezTndPL8Q4RN6Zxn8BMARgbXIQADCzfgD/C+ATAM6Zpd1CCCFEM+OIItl/GNFSoSzqMRL5Wur1p+P/N6MFfoM30nK6swPh+6vF1fGxSi0vTVMq9UIW5WrXhJgtV8b3Wj9t68ys2Rpsjc9n9cUNNqQ6HG5mt9Prz8aByGbDUwDckLH9l4iid1cFM1sMoJNWil4K4BelHEYgv9P4dACvY4cRANx9wMzeB+Dfy7RXCCGEaBWuBvBsRMEJ7kaDoqe6e+28lECexvEvF2sC+8pw9laRU3VvoA4/Luc6IZ3cGhq1jE5k1xmi8iCAy2Kbrw5owIDiATg7mqw/S+sms/YNJTHn7XxszuXHbbINA1QOBR3ppzLbPBLYzuxJvWY7Vgb2eSywnQeVfE3Yjjz9yDax5u4cKof0kFyf7QzluORrcyLChK5VaCA9jkLu0KsD2lqgoGNkWMN4ZeDhROheCOlb2c5+KvO14b5jesdTNpLGcZwutH2f6i0HfMf0trby+bBRLwDwpYzvlyo+nIkC4VRdYLnT3ddWqa1eZKxkQfSxOaychszsvQDeDOAIAKeY2ScRTf49iugr5joza0cUbOch5HBK8/bcECJRZhZjKP6OLgsz+18ALwbwYXd/72zbEUIIIWrEOYgip17dYDuEEELMbbKezJXtObv7hxBYGRPLKZ5Wbpt5ncYrAfyZmX3b3Q/FVjKzbgDvAPCpcg8c7/9qRKFnhRBCiGZlJ8ITNUIIIVqEJs/T+Diys68chuwZyLoSdBrN7K/5JYDjADxoZt9E9OPZB+C3EM1mLyr3wHE01o8jisj6pXL3F0IIIerEvyAK+vatMgIazEnM/h4A8Cj+vGh7smyVl56FlmoCwGAd9YDXSHsoGkQe3Sun18hK+9JIbiM7nlljHXI9aFSexjL4JSJdY5qTEQUhbSilZhpDS0Vfm7HtPQD+qsxj/z2AX7r7l81MTqMQQohm5TAApwC4y8y+g+lPfN3d31d/s2pP3+pC2bb+XVn7dtIIo5t0T6H8gqynOo7KrG97OJBUnDWQl5HN12wtlFknmA4iwtPIrF1jx5eaLdLkcFujAM7PGFyz48rnzH3BNnQH6vCx9lOZ9aDPCLTJfcR9mp7W4Hp8TUI28fZQDsLfO7XQJ5+7s9AXrG/kNpmQBjSkjTyHynwu3Ech3V8oV2b6GGkdaMIKKvM9wvde6PqHYPu4f/upPBCoH2pnPLA9lL8yL7v3pp3d6Z+F1XPA+awh3wDwj2Z2QhKROw46ejaAdzXSMKCE0+jubbU6qJk9B5HzqaWpQgghmp33UPmkjPcdwJx0GoUQYq7gQENSbgC5UyZ9DlGKpxviQDYO4IOIAtV8pp72ZlFqeeqrAfy3u4ceqMwKM+tEdOL/6O6/qmbbQgghRLWp5UNUIYQQ9aIm0VPzMmPKJHffZ2bPRyTf+w9E8sDvAni7u++tk51BSvXclQD+3cxuBnA9gBvcfXsVjvnniGbAP5ynspm9CcCbAODYY4+twuGFEEIIkdYVJrrEAdrevxq52NokGqxmYFPcF5tpWyvn1BP1Y30Tf46GO2dvWymtc1Yan0qO1azkTZnk7g8CuKjG5syKUk7jEQDOBXABIn3jJ+PkldcDuN7dt5TYNxMzOxbRMp/LASw0s4X09sI4OM4ed59MNsYJMj8LAGvXrtVCaCGEEHXFzH4bQL+7fzLjvbcCuN/dv1l/y2rPIGkC8wS/KVqaRPrDE7sK5XvHCmXWVvGA5G4qv2RZobxud6HM+rEeAOdmBBFhHVpar8b58a6ifdhPZg0ZdQUA4C0Zg91NgUE/n+fSzBrFsJYwpHXkwTefJw/OWEvH2sBSGbw5NyPnWgzlPGStIO87QOW/Ix0jn9vZVF5P5VBOwZDdrA3cGGgnpB/kc7no+OJr+p37s68n9wsfg3WM/FlI33vJvcNBcPjBwgoU7uebUvdUEiyHg9SwPaEHFHzfsT18PfieOm0x1Ukl3RucKH69JrYp/SCqVDCsRtACgXCamuCSG3cfd/eb3P3N7r4KwHMAfB+RFvEXZvYrM/s7M3tWGcc7AUAXgP9EFEgg+QOi1B2PAzh1FuchhBBC1Iq/BLA48F53/L4QQggxZ8m9sNfdbwFwC4B3mdmTAbwC0SzkO8zsMUTLV988QzM/A/C8jO3fR+RIfh7FD62EEEKIRvNkAJsC7/0M4WjjQgghmgjNNM6eWalB3f1uAB8B8BEzOxKRA/myHPvtArAhvd2i6ewH3H3ae0IIIUSDaQOwJPDeUkiy1pJUqh9LlsHyMsQzKmpRiNYkWaLebMtR02h5amXMOoSQmZ0MYA2AW9z9SkSBc4QQQoi5xs8BXArg6xnvXYrimCctQ1YACgDoLzOP2goeSZDWqY90jMOkY2RtGevvQnq99aRjXJTDHpZbhXLipb181nvxxTyNyqz9CukSWfeYPkaioVxHzipry9jhZB0j6xLZBtYo8rFC+rZQzsU0bFNofz72iYF9Gb5FQnrN86m8IXCskJZwgMqc45PvF26Hrx/3xb8ENIxA8bVdk3rvnPjasjaW77d0LsyE83J81iYC27kfQ4N5rnM3CjlEb8vxwGTrvkI566nYmgxNc4g8wW+Y3nF6v4mDA803cjmNZvZJAB3J8lMzuxDAtQDaAYyY2bnufvtsjcgbUUgIIYRoAB8FcJ2ZfQ1RHq2HEY0J34Ropc3FDbRNCCFEDhzWsDyNc4G8uafOA/Ajev0BAP8N4HQAPwbw/uqaJYQQQjQH7v51AP8PwIsB3ATgTgDfil//kbuva6B5QgghcjKJjqr+zSfynu2RiGf/zewYAE8B8PvufqeZ/QuiADZCCCHEnMTdP2FmVwN4NqKI+DsB/KgZEi7PyAN3AG+MF/R8rrDsa3x58SKfzl3Tl5vxsrJuWm46SMtNVzTJuOnGJl/G1sw5+ERlXF3mtb02QwPIS3s5tQinlgEK93me1C1p0ikxas1czLc4n8n7VT+KQhCA5yJaGp4sR92L2d27QgghRMvg7nsQzTAKYpREVyEHknVjfRcWyoM0RxvKKcgDDNYo9uTY3oOCjuuaEgNmPt5pqfey8j+yVqyfyhxitzdQJxQ1ifctctYD9UPbub84SE+ozbQOMTSgY60gt8tt8b6s6WPtImv0QuHy2VZ2oLhPQ1pHti10X3CbvG/63PkYx1B5OFCnn8qsgWQ7yh0wDwG4LL4HbywzNyNfs75Ama9NWnuZR9+8+jWF8sB/FMo99F3Q2ZHSKTYIBcKpjLzLUzcBeKuZnQLgrQC+4+5T8XvHA3ikFsYJIYQQjcDMftPMQhFTS+0TyucohBBCtCx5ZxrfA+B/EUWQ2wWA8zG+HJGuUQghhJgrfB/AWcj5+2Zm7fE+T0c4p6MQQogGoZnGysjlNLr7T8zsWEQJjre6O8/GfxbFs/BCCCFEq2MAfsvMnpyzft6VO6LOJHqz2SbT3CAtopjnpLWQrG/uyRk7mvWNjVyqquipsyfoNJrZtxDlpPqGu293930A7kjXc/f/qaF9QgghRKP4q0YbUBWOOxP43PSsWEngmzSrAzomHjiuXp16857Sg0DWk20N6LJYW8U6ucdy1EmT6Bg5QAkPeNIOJGsUh6ic1oGdk6EtC+kvWTcXypHI58MaQO4vbp/teZjKfD55cvaxdi3dj6wJ5LZ4n5Cmj4/B143Pjetz+9sC29m+UJ+GAsr0Bupwf3H7t6GYUJ+F9ud7pxfAJRn5G7lfQjkYO1HI68mcT9u2BvJ9sp18LTknKhPSBgPFGs0QI18DekYju/q/WNg+wAG1miRYlqiMUpdxAMBfAviUmd0O4HoA17t76L4TQggh5grHz3K/7VW1QgghRFWIlqfKg50twZ5z9ysAwMzOAnABgNcC+LCZbUXkQH7d3W+th5FCCCFEPXH3BxptgxBCiOohTWNlzOhuu/stAG4B8K5Y2/EKRE7kO8zsMQDfQLSM9bvuPh5uSQghhBD1ZuKOOw7piVhLlM6hVonOaKQ7amuC1tsNUHkV5gbJctd07jwhsripAj1sSIubtWy1VmyObeibod4WOs81dbRP1Jey5mjd/W4AHwHwETM7EgUH8noABwAsq7aBQgghhGg8fYHBYOIw5iWk7xsObOf67Kz1pspZWsxQ7seeVD1+zbrEgYAdQ4HtbDfne7wtUKefysOBMjsNrFHj466hMmsdQ3kTWbu2EsWwzo77jKfeud1QjsSQjpHrc1/weYbaD+knewLbucznzMflfZ+JYvh4oVkR1ihyX3K7qwCcF9+fN+XQIrLWNQQfdzywne3hvuD+7Q6Uuc3OlLfQSZN1A/uy7cuT47ERaKZx9sx6Ya+7PwrgSgBXmlkPgPOqZpUQQgghhBBCVAmHKXpqBZTtNJrZSgBd6e3ufm1VLBJCCCGEEEII0TTkchrjmcR/BnAJgIWBanLdhRBCiFbladGyueFfFG/O0jpy7sIzpj1Gbgw3ZujHFCdRNAvr4vuzVKqYPCT3ee8M9RpFkpqHl7QOpXKLhNL61BpFT62MvD33KQAXAfg8gDsR6ReFEEII0eR0nHkmem+fnqexyBl82uwDdmwaK+Qv5NxxS1EYHG6k7ax1Y+0WD0hC+etYZ7WRyqHANAOp12/JyJuXtunewPFC+exCurENVGa93kSgzMdibR3r3rZSmftrILCd7TyGynyO3D4Q1lCGdIADge1sR/oYWfUZti90XLaTbeD6rGllJyukB0znlOP7Iq2VvCy+l64NaBRLaS4vnKXTdGMg72hI68n2h/SW/BkM6U3TTt9E6nUS/GawgsA/ovnJ6zS+GMCfufunammMEEII0WyY2QIAfwHg1QCOxfQVN+7uenwthBBNjgLhzJ68P3IG4Fe1NEQIIYRoUv4BwFsB3ARgHbTaRgghWg7laayMvE7jVwCcD2B9DW0RQgghmpFXAnifu3+40YZUE87T2HvKzPW6QxENMD3nY0KzLVerJG+eEMw18b00myUGt8X78vLh9FLdc+Mln+t1z4omIe+9/m0A/2RmSwF8ExnL0939e9U0TAghhGgSlgC4pdFG1JLhXxQ0jqz9CjmDz1wMdO/1aXX6KCjO6FihvIZGG5tJD3UabX+Ytoc0cyyl4tyEAPDMjDx43A6fF+epAyJN2CUZ+/OxWUPHx2adYUiLyO2wHaxF66dyWluXZQPDg7m+QHlzoD7r+4BiHVyefImhHIlMKBcgw/0VypvJ7YcCwYTyXfJx+fxLBZQZoDL3Syg35WigDm8/o8TxyiGU45HLA6l9zsnQHhbZRtnWB3YXylna01De1oTxiUKdZgnao5nGysjrNN4Q/z8ewGW03REtXXUoemqQSz4TjTWuveKsBlsihBBiFtwI4DcB6OGoEEK0MMrTOHvyOo3Pq6kVQgghRPPyCQBfNLMphFfb3Fd3q4QQQog6kctpdPeba22IEEII0aQkS1PfD+B9gTp6fN3iJGk4Vs1QT4h6kNyP/VVs87YqtrmJc7VWIe9ikcb6+Iqby0R5GitDPSeEEEKU5g2IZBhziqI8jTnqpIPadGfUGV9OWinSNI6TwIv1gAO0nadvj6HRSW+gTlqLl3AeDWCvJJtHUMjTmIbzNrL2La3FSnSPmwLBSVg3yHkRQxq6kHaTcweyjjGk0eMyB1dhvdq5VL6JymknmY/Ner3jqBzKc9gdqMPnHMoFyNtZx8i6zDsDbZ4YqMP9zn3N/RjSJKb34fc4Lyjbx8djXWoo92UovyKXH07ZdFlGTlTu61C/h/SmfI4bScfIn9POlLcwEEikOpPOUbQ2QafRzL4H4A/c/e48DZlZG6Loqle4+9aZ6gshhBCtgLtf3WgbhBBCVIYC4VRGqZnGczA9wFgpbBb7CCGEEC2BmRmAkxE9wB8CsMVdj9aFEKJVkNM4e2Zannq9mZWTxFg/nkIIIeYcZnY5gA8BOII2P2Zm73X3z9fh+E8A8HEAL0T0kHY9gLe7+4O1PrYQQghRymn8wizb3DnL/YQQQoimw8wuBfBZAN8F8J8AHgVwJIBLAXzWzPa7+5drePxFiNJ9HADwOkQPaD8E4Ptmdpq77yvZwP13AL8b65++NPOz3a0pvd7qwGRqonFkfdiJyzKr1pVrSiRDT7SL46ntofyHaW5UsBzRYK6N78Fq5XusBtUOilMrHKaUGxUQdBrd/fX1NESIVkA5N4WYl7wTwDXu/prU9i+Y2X8A+HMANXMaAbwRwAkAnuTu9wKAmW1GlFf+CgAfq+GxD8GBNEIJ2u+lQBoc5GN1arSRBM8ZoMEma1tCgTY4sEdfdpUiVnObJeqNoxAkh4PisNkc/CQUkCYUVIW3c4AUPs1TqXwvlfupzH3KsBPcE9i+gcrcj+k2Qw40B1jhfUJJ77lfuD73BfcvX0+2mwP7rKQy9+8AlUMaqUEqhwLc9Kf24XbPDmzn89+Y2v8PM+4pPjc+Z76nuF/4HuagOHwODwT2TecGOie2Z2Pgc8dsofrpwE98/0zLPzRLigJzvYWOV8UoKYqeWhltjTZACCGEaHKehGiGMYv/jN+vJS8DcGviMAKAu9+PaIx6QY2PLYQQQsjdFkIIIWZgD4ozKDDHoHjypBY8BcANGdt/CeDiGh9bCCHmDAqEM3vkNAohhBCluQnA35jZPe7+w2SjmZ2FSFt4U3DP6tAL4PGM7cMADsvawczeBOBNAHDsotoZNls2l9AdzpYkJ2PPDPVCXFUDm8T8ppS+thGk9crVrg8A2xLd75rUG3dFy0/T+V6V27F1kNMohBBClOadAJ4FYIOZbQPwCKJAOMcgkp+9sw42ZI2sgiM6d/8souA9WLt2reNLt+c+UH8gmE1/aHBHg8De1L6du6ZrokI6NtacjQN4Zny8GwMDV9a6hfRqrB9j7VlaD7kpUI+1hTzVPBLYPhQ4NuvGuP7mgA18DqyBzJOsneHz5P4qNTXeHShzv/D5hDSKDOskQ3pKPp+OQDnUJsPt8LFC2ktuP63v49dbUu9dGt+f19L9yZrL0DEGqNxP5dD5c32+hhuozLrHdJCnhN5AmY8bCvCU7pf0vZ0Ey9pWLSf5Svqu+dfqOd7K01gZchqFEEKIErj7o2b2VABvAPAbiMZcAwBuBnC1u++vsQmPo3icl3AYsmcghRBCZCCncfbkchrN7CR3v6fWxgghhBDNSOwYfjL+qze/RKRrTHMygLvqbIsQQoh5SN6ZxrvN7PsA/hXA1909EAxbCCGEEFXmGwD+0cxOcPf7AMDM+hFlAXhXNQ7Ay8pWppaYji8vvJcsNx3uzLdkbEsFy9XSYf6FaCbW6f4scFLlfVEPraPyNFZGXqfxDYgE9dcCeMzM/g3A5+KQ30IIIcScwszuA/AKd/+5md2PbE1hgrv7E2tozucAvA3ADWb23tiWDwJ4CMBnqn2wx3YDq+IBGzuMIThP2/BuYE2875ZALjh+6jwe2B7S0oXyA6b1befHNtxGNrAebADAhTQo5QErt7UGwLkZ2jW2NZRfj7V+fP6sYwzlmgzp0kJaRO4v1qixbaHceumcm1yPz5N1o9xHofydXIf7heuH8hSyDaGcoHw9QzrZkL5xIFAn3b/cLvcFt9WJwr10Nd0jIa1rN4BLMurz/RzS6HI5VD+kH+VzC2kXgYKztilgGwB0Usf0Hk/trgZwT/aDpcSWRga+UZ7GysjVc+5+NYCrzew0RImE/wDAO81sPYArAdzo7lM1s1IIIYSoLzej4KPcjNJOY01x931m9nwAHwfwH4gC4HwXwNvdfW+j7BJCCDF/KMvddvfNAN5qZn8G4NWInnyuA/CImV0F4Ep3HyzVhhBCCNHsuPvrqXxZA01JbHgQwEWNtkMIIVoZBcKZPbOdo+0HcFr8/yCAXwD4EwB/amavdfevV8U6IRrAJZ+5BQBw7RVnNdgSIUQzYGZ/BeAqd9+e8d5RAN7o7n9df8sq5OnSZOUhybWnRW0ixCfieySdmiLETU2sh0yWdIdSmsxEXr0zgKpoIUX9yP0daGYLAFyMaHnq2QAeAPC3AD7v7jvN7DBEOaE+BkBOIzE5pcSlQgjRwrwPwP8CmOY0Ajg6fr/1nEZi1auztyeBb9L0jhe2Z+UCKbWddYkh3R/r2Fjrxvqzx1LHOjtDKzUQsCEND5BDeRFD+QjZVj63kF6xn8ohXR7D+sZQn3K/hPSQeTSJpd6bCNRh+Nj9VH44R/vjge1sN/d1SPc4QGXWAHJfjwbqpPWTfOzVge18f7KOka8n36snIptBAJeVofcLOZ58DmznGiqH8pJyv5xKAbFGDxQfY3CMXpSIbsLfEzPRR3rIWqE8jZWRN+XGRwG8DsByAN8C8DIA33Qv3N3u/riZ/TOAH9TAzpbm1zv2YmJSjqMQQrQopR6HHwbgQIn3hRBCNAGKnloZeWcaXwPg84g0iwMl6t0N4PUl3p+zhJY07thzAI/vH4dZNOPY3qapeCGEaHbM7BwAz6dNV5jZb6eqdQN4KaI8ikIIIcScJa/TeIy7H5ypkrvvBPCFykyaW/z35mg1kzvwwNA+nHDEkgZbJCph9OAkJqYUKFiIecBzAbw3LjuyH4geBHAXgD+ql1GNhNNv3Lm7sJ2XleYN618LkuV6IzPUS7iGlveFlpIKUU+y9LOLqMzLfPvrYE+lDAY+k6sbmHZjvqTcMLN3I1oluhrAhe5+fer930KUuqkN0S33D+7+xVJt5u25UTM7y91/nGHUmQB+7O6a783g+p9tR5sBUw7cM7hXTmMLMzY+iV8NhrJkCSHmEu7+AQAfAAAzmwLwrKzfwJbmJ4WB20h38SqYnnTdWcAauPSgMcnluJUcN/52ZZ1YZ6C8hkYwt/HBUiQ58a6iY5XSrrGzm+6HJGfjxwIOZ0jfyNtZWxfKqRfKZcj2DATa4X1DgVlCWtK0fTxI5PMJ5VTkvmNt6LlUvi1gExPKj1jqnkoIaQ9DOsalgTpAOEco27cShXvsykC+z24Al2fk++ScjdeUGRynn8qsB01rfRPupTLfUyF96pbdxa9PI0dvgGwdL/HZm5EaaxjTzDNN43cBXItopWgRZtYG4EsAnu3ud5nZcQDuMbN1pdI4teU8cKk7uR0581eZ2YvN7Htm9qiZHTCzh83sq2Z2ck47Wor7d+7Dzx/ahaOWdQEAtsrhaGmu+uF9ODAxhYMTU/AGPiUTQtQXd2+bcw6jEEKIumBmx5jZJ8zsFjPbb2ZuZv2Buk8ws/8ys91mNmJm68zs2HKP6e63ufuvQybF/5PnCssBDCFaPROk5Exj7IkmDbfFr5luAOcB2FmqHaIXwB0APg1gB4BjAbwLwK1mdqq7P5CznZbg+p9ugxmwcmkXduw9iHseq18OZqWNqC7bd43iU9//9aFZ48f3j6N38YJGmyWEqBHxj/Qj7j6e5wc7zqMohBCiSWngTOOJAF6FyAf6IYAXZVUys0UAvocouNrrEE3KfQjA983sNHffVw1j3H3SzC4GcL2Z7UMU0O3CmaSIQafRzN4H4K+S9gFsLNHOp3Ma+WUAX04d58eIAui8EsBH87TTCrg7bvjZNpx1wgpMTjkWdbZrprGF+fA3t2DKHccc1o0Hh0cxODImp1GIuc39AM4C8GNEKwFnWl7Q9GuesvKnBUPiH051d1Z/ZcVgHfPUlbvsrxTrmzi/nmgc1+a4L9YF6iRLWquxJLyWbCL7K1UFbqG2kqXq6e+Evhqt6GqQ0/gDd+8DADO7HAGnEcAbAZwA4Enufm9cfzOArYhSHn4s3rYJ0cRbFk9z94dKGWNmHQDeg8hR/IGZPR3ADbFjGpwILHXdNyRtI3IeP49iDS4QecJ3AfjvUsbNwFD8P5RaqCX5+cO7MTC0H39wzom4btPD6F7Qjvt27MPE5BQ62vOuChbNwC2/HsL/bH4Ebz93Nb79y0cBAI+OjGHNUc3+FS+EqIA3APg1lef0mvSe4+nFY9l1tpHG6YwVhfKWoUKZNWC9lOdtKSUlGaUcb/wolfVn/O3KuizW292U0lJdGg8yb6TBJ+vQSgXm4eNtCWxnQrntGNb95fm14HNbFdg+kMOGkL6R+7FUzsWQhpDPgQdsPJDka7iSyjdROU/QoZDmMtSPoXuHt/NxQxrA9D3CfUO3+TRNbEJI3pdHl5pu59IMp4lzM3KuxWdQOaRjLcqhSRctrUlMnLVQ4KvEvjPiepvJpv6u4no9o1EdPv8t8/DBi7vnjaD4MgC3Jg5jvO/9ZrYRwAWInUZ3P6NCk54K4Gh3/0Hc3k/MbBuApwH4TminoNPo7jcDuBkAzMwBXOXu20L1y8HM2hE9lT0OwN8CeBTAV6rRdrNw/U+3YUFHG15y6pGR09jZjoOTUxgY2o8TVyoYTqswMTmFD9z4S6xa3o03P/eJ2HB39PPy2MjYDHsKIVoZd/8Cla9uoClCCCGqQAvkaXwKgBsytv8SwMVVPM5DAI42s5PjQDgnIlpC+6tSO+Wa8nL3D1TLYYy5DdEs5T0ATgPwfHfPfLZpZm8ys9vN7PYdO3ZU0YTaMTE5hf/evB0vePJK9HRFz6m6F0Q3qZaothbX3PYg7n50D/7yt9egq7MdnR3RR2ZwRLm8hZjPmNnJZnaRmR3daFuEEEI0jMMTPyX+e1MFbfUCeDxj+zAi3WFuzOy9ZvYwIpnFVXHw0SMBwN0HES2FvdbMfg7g6wDeOpM2v5Sm8d8AfDCeFv23GWxzd//9Ms7lNYhm6E8A8A4A3zGz57j7QEbDnwXwWQBYu3ZtSywP2vjrIezcexAXPLWw0KG7sx1mUdqN805toHEiN0N7D+Cj3/4VnnPi4XjxU44EALSZoaPN8KhmGoWYN5jZJwF0uPub49cXIgpl3g5gxMxe6O4/aaSNJfnFHcBJ2UvCklQbRctTU2RpIYUQ9eGmOi/nTJaPnrhshoplUErDHHqvFrrnKBBO1fM07nT3tVVsL8vXKbsz3P1DiILohN6fFmdmJkr13PMA/HNcfj5K6znKcubcPZEM3GZmNyFa1v0uAG8up51m5fqfbkNPVwee9+QjDm1rbzM84bBFuEczjS3DP377Huw7OIn3nX8yjL68FnS0aXmqEPOL8xDnbIz5ACIt/18hCuD2PgC/3QC7yqL3eBTlRSvKzUgDxEES9XXSKKGnIztwzhoqs74JpIMK6fVOJA3U0oDW8W4q86Clf5ol0+swwyjoxEoFx1kF4LyMetzuCmQzQGXWEPL5dAfKrJ9jmVkvsu3mNlm7yHbm0QOmRyW8P+/Def5Yr8jnGZDDFp0b27QnUIfPZ2VgO+97GpUHqMz3GvfpM6nM2kDWQKaPwXYfQ+VQPk6eH2B9K9fvRSFPYx7nkM+B2+fUA2wn12fbBuiNkO51D8XpLKUHZr3i6NjMAWzWXFgoD65LtRUIilNNmjxP4+MovgwJhyF7BrKulNI0Hk/l/loZ4O67zOxeRGtpW579ByfwrV8+ipedfjQWdhTfmCf1LZHT2CLsOzCBr/zkQbz+2cdjdV+xrLyzvU3LU4WYXxyJeCxqZscg0p38vrvfaWb/gozkyUIIIUSZ/BLR70uakxEFHm0oDQ/jaWZ9AJ6MQpS6luY7dw1i/8FJvPxp05/LrO5bivt37sPBibxBlEQjcHcMDO3HisUL8PYXrp72/oL2Ni1PFWJ+MQogiWD2XESTBbfHr/ciHLBQCCFEk5DkaazmX5X5BoBnmdkJyQYz6wdwdvxeQ8m1sNfMng2g193/O369AsAnAZwC4FsA/tzdJ3O083VEKwE2I/rRPQnAHyOaQZ8TORpv+Nl2HL2sC8/onz67fFLfEkxMOQaG9uGkPo0xmpWdew9i74EJ/NVvn3YokBGzoMOwffeY0qcIMX/YBOCtZvYggLcC+A6FUD8ewCMNs6zO8LKxZCnZQAuF0P9YbOtMaR/qrSObiU1NZo8QW2uRX/Ki2t7njYyeamavjItnxv/PM7MdAHbEGSsA4HMA3oYoZ+J7Ecn/Pogo2uln6mlvFnnVoH8L4Lso5GP8BwC/BWA9gLcgUi58MEc7twJ4FYA/BbAAUSdsAPCRrCA4rcb45BR+cM8O/P5vHI+2tuk3/uqVkaN4z+AeOY1NzCO7x7BoQTteeeYxme93trfBPXIuj1zWlVlHCDGneA+A/wXwcwC7UKy/fzmAH9ffpDI45Uzg9tunbU5yqE0j4KCk87llwVq/kNaLdWOhnI382JU1bawNC+msuA63syWwPeG8DG1ZaJDEbbEdnAuPHdOQ3SHdI/cRJ2TjdrhPuR3eN5Rzka9N+tEoa1RZ7xfSIgY1cYHtrL8L6TvZEWGdJF8PPi5fD74GIYcmjwYUKO4L7ldOWs79x21tAXBZfE9dy7kMAzaVm/uR7wU+Hz6H7sB23pfvU74v+MClnIURAKtn0DF2BhrouxDAdfG+5DAWbZ87D0y+lnr96fj/zQDOAQB332dmzwfwcQD/gSgAzncBvN3d99bJziB5ncY1AP4OAMysE8ArEZ3Av5nZ2wFcgRxOo7v/XdLOXGR430FMTDle/tTsn7ITVy5BWxxBVTQn7o4DE5NYubQr0/EHokA4APDoyJicRiHmAXHi42MRSSm2ujuPrT4LYGtjLBNCCFEONYiemgt3z+X9xmkvLqqxObMib88tQeEBxDMALEZh1nETgGOrbFdLsnPvQTypbynWHJX9bKursx3H9i5SrsYm5vH945hyYGFHeNnpgvYkV6N0jULMF9x9H4A7Mrb/TwPMEUIIIepKXqdxG4DTAfwQUejxX7h7smLgMAD7a2BbSzE2Pom9ByZwwdNK53k+qW+pIqg2Mdt3RYs8FpRwGjtjp1FpN4SYP5jZqYhSazwX0e/eMCJ5xV+7+y8aaJqIaTYdohDX5rgnr0ryIqa2t9L9nKV1rmab1SIJhCNmR16n8csA/sbMzkGkZXwfvXcGtDQHQ3sPAgBedvrMTuN3734MByYmp6XkEI0nn9NoaG8zRVAVYp5gZk9HpDsZRRTB7lFEaTjOB/BSM/tNd582C9mqlDvo66VV+oP0tbiCRhgjpI/qBtCfkY+NczmyLo2ZCNThHIKs7wrpG3l7mvPo/K8k+0L6MIb1YayB6wFwedzu1dRmkYYMBQ0c57tcT++zDaFz66cy90tI65bWNN6JbEKau85AmZ2gASrzwPNsKt9EZV6vFTpub6AcyonIsAaSr9PZqXqs6WThUdqmSzK0iwyfDx+b72e+b5kOFN+TCTfSsfj8uZ1+KnNfrEJBh8hBlqaH/ivYuYZs4H1K5XA8ZF9GftdpXFeoU6s8jXIaKyOv0/h+AGMAnoUoKM7H6L3TMV3cOe8Y3n8QSxd24JjDFpWst7pvCSanHPfv3IcnH1nVmFOiCiROY2h56rVXnAUAOOsj31WuRiHmDx8B8AsAL3D3Q0tFzGwpojH9RwC8qEG2CSGEEDUnl9MYp9P4cOC9l1fToFbE3TE6Pokje2YOipJETb1ncK+cxibkkd1jMAM6AkFwElb2dEnTKMT84VkAXsMOIwC4+x4z+zsAX2iMWUIIIcqhUSk35gKNCSE0xxjadxDuhQApaZLZKQA44YjFaG8z3PPoHuB04JLP3DKtjmgc23aNYkF7G2yGpRF9SxdiYGhfnawSQjSYmdZWVUfE00BGuou/85J0HOkcjP1V0ittidvNSn3RKJKlhaWWrlaj/VKsj+usnKGeaC4+UePrlugbc2S9yU25+VVz1z85qjdI63C7aU5lNPW8vVoayDxEy1Pl+syWXD1nZgsA/AWAVyOKlLowVcXdfd5ehUd2RZ+AUjq4hIUd7ThuxSIFw2lStu8aLRk5NeHIZV247f5aDS2EEE3GbQDebWbrU8tTFwP4c0Q5iAWKdYzjKR1jQuibM5RrjuvzoJzrrwJwWoZmsJRTyjqxkEPH+/OAPaSzY33caioPUTmU15BzXN5MZdaZcd5A1oCOBrYzPOoI5UcEirVvIVv5GCEdXCjvIp8D6xhZDxrSpbJ+jm3gY/G+nONyIFCH9033XT+VWR8a0hCGRnZc5zQqD6YrxoT0qgxrekP5O0P3CPcjD94nAtvT1zj0+VyzBlWhyJFsoYBAc528jt4/AHgros/3OgAScxHbZtDBpTlp5VL8Sk5jU/LI7rFczn9fTxd2j45jbHwSXZ1a6iDEHOfdiCKlPmBm/w3gEUSBcF6KaIx2TsMsE0IIkQsFwqmMvE7jKwG8z90zdY3znUd2zxxxkzmpbwm+fdejGBufrKVZokzGJ6cwODKGo5bNrE3ti/WrgyNjOG7F4lqbJoRoIO7+YzN7FoC/AvBiRA//hwF8D8AH3T0UcFIIIYSYE+R1GpcAuKWWhrQyeYOnJJx05FJMOfDrHXtrbJkoh8GRMUyV0KYyfT0L430OyGkUYh7g7psRPUBtXX63+Ddq8MuFcnfqWdm2wJKwrFD46X2FEKJc0t8ttdI6aqZx9uR1Gm8E8JuInqqKFNtzBk9JSCKobh2U09hMPLI7vzY1mWlUrkYh5hdmdjQiSdA2d9/eaHuqxehYYZC2LZC3LTRgCAW2GO4stLOVxFLcJuvnSuUOTGD9VCj+OGsDJwCcn2Pw+RiV00nWmUQH+ffURyzj4nPgc2NBCmsdOWcfa/pYr8b6M9bVheB9Q3q4kAYubQdr7kYDdRg+Xug683ULaQNDeRdD+laGcy1upDLfv8cEbEv3xUBg/3TOwyz7AOAtGfkb+ZrzeXKbfA/yOXD9YwLb+ZqxPccF6vB16g98yLtTkUwGKA5g0bG3IBP+fmlk3gAtT62MvE7jJwB80cymAHwTGTp2d7+vmoa1Eo/sHsutZwSA/hWL0dFmNQ2Gs2v/QWntyqSQo3HmfkucxsfkNAoxLzCz1wL4AKJgcMm2BwH8pbv/Z8MME0IIIepAXqcxWZr6fgDvC9SZtx7KI7tGc+sZgWgm6/jDF+OeGs007hkbxz2De3HE0nSQW1GKJKBRnmvZ09WBrs425WoUYh5gZm8D8C8A1gP4IKIH9X2IIop/wcyWufunGmiiEEKIGXAoT2Ml5HUa34A5kIeqFkxOOQb3HEBfmQ7aSX1L8Yvtu3FkT/XFID/69RAcUWAXkZ9Hdo1hWXcn2nNoU80MfT1deHREgYSFmAf8KYCr3f0Nqe3/ZmZXA3gHgJZ3Gnk5aUvyu9n235SRf3EgVSfvkrmbFP5flEGe3Jwim/Hlteg75WmshFw95+5X19iOluWxPWOYnPKyZhoBYHXfEnzzF4/giCULczkp5bDhVzsAABOT8vPLYfuuURy9PJR9azp9PV2aaRRifnAkgK8E3vsSgFfV0ZbZ86Xi34S+LxXK7DB2dwC943Hdi1K/T9dN1ysCVD+wrZMGz6y5CyUrz6N1fJjKl7y6UJ7NkJD1cSOBOuxYcn0+H87Bt57KIa0jb2edGbezlcr9VA7l4GM7Qzn7Tg1sB4rPpzNQDuVF5LY4lx+LcQKytyK4/edSmTWdfKzxQJltYPs5bybblr53+qk8GihzuyFdKuts+dgjAC6JtX78QGIYBf3scMrxTLavDzikoXyXIYI5R/nDOQGsIW0w63jttYXy0Jdn/l4IwYFvauMwikop67vVzNoAnIzo/r/d3ffNsMucZ/uuyGkoR9MIRDON7sDY+CQWL6zeUw93xw/uiZzG8SnNNJbD9t1jOHpZF/YeCA1jiunr6cKdD++qrVFCiGbgTgBPDLy3GsAv6miLEEKIWaBAOJWR21sxs7ci0jMejmip6tMBbDKz6wF8z93/pSYWNjnl5mhMOKlvCQBg/8HZO42XfCaSml57xVmHtt372F5s2zWKNtNMY7ls3zWKtccdhg++/JRc9fuWLsR3Rsbg7rkj5wohWpL/B+ArZrYTwDp3nzSzdgAXAfgzAL/TUOuEEEKIGpPLWzGzNwL4ZwD/BuDbAL5Kb/8Q0Q/n/HQa45nGPLn9mONWLMaC9jaMjk9W1Z6b41nG3sULsHPvQUxOedWXv85F9h2YwO7R8bKWpx65rAtj41MYGZvAsu5QgHghxBzgq4hW/X0FwKSZPQ7gMEQB4PYC+Co9OHJ3Py6zlUbxizuAk2L77qGHiSeV/9swk+6Rc62llz0KIVoX/uz3LqM3fis8QVG0TxlLVWuJZhpnT94prj8B8FF3//P46SpzN6InrfOSbbtGsXhBe9mOWWd7G044YjEe3V1dTdyGX+3A6pVLcHByCjv3HsTj+w/i8CWKojoTyYzx0cvzByZaSWk35DQKMaf5LuZ4MLje41HsUMYMf6PEPmUOAs+INUtmBVXbHTj5UJlzxG0mlQBr9DifIuv+tny5oLk6j7SaN5IT24NwzsYrqR4/OmSxwh4Al8f7r6P6rFHcROVQHkGu30/lhwNltmEgsD1EKPch25nOS8nt8v6s0eOgQqFci/2BNlm7yTkOgYK+7xrq3/WpOn8S17mK6nA7A4Hjrgps7w3USbfFhPoiNKhOt3N5xn04LZddzHmBe5b1mnxPhfSWE4HtfP5Dgc9ddwlvIaRjrCSwVucuOucqruRymKKnVkBep/F4AN8KvLcPwPKqWNOCPLJ7FEct757V8sTVfUtx/87qyUL3H5zAj+8fxuuefRy+f3f00zq8T05jHrbFM8ZlBcKJI+Y+OjKG1X1LZ6gthGhV3P2yRh7fzP4EwPMArEUUlOcD7v7+RtokhBBifpF3TeVOFD80Yp6EebwK5ZHdYzhq2ezSZpy0cgkOTExhcqo6D7Bv+fUQDk5O4bknrURHvFx2aO/BqrQ919ke52gs51oeGdcdVNoNIURteSOiiavrG2yHEEK0LB6n3Kjm33wi79neCOCvzGwDgAfibW5mhwP4Y8zjH7Ltu8aw5sgeDAyVP2OYzE5VS9d48z070N3Zjqcffxg62+O8VPvkNObhkTh4UF8ZeTNXLk2cRqXdEELUlKe4+5SZdQB4c0UtXVB9jftAYGlnmkIY/buqbgNQvBQ1tAy10jyLSd49CRJqw7oc12e+5D5Mlt+mB+qXBe7tZidL3ziYupZ9dTg3aRpnT16n8b0Ano8orPhtiLQd/wLgyYgkBn9dE+uanAMTk9i59wCOXt49K6cxiaA6erByp9HdseFXO/DsJ67Awo52dCYzjfs0C5aHbbvG0NfTdajf8tC9oB09XR1yGoUQNcXdK8ufdMqZwO23T3cY1wC4ofQgrVzd4iiA/njgV5SzjvKu3UU6xj4ahYyTniqUB7AXwNlx+5vKDLpTasDTm3p9SUYuPM6vx7q8kLaQc9mx5oxt5TZDuRZZP8f9whq4NYHtoX37qcx5CtP7sMaP7eb+4na5Pp9byI7QOTNcvzdQZttCeSpDNvB9wXkg07AIhe3uDpRD1zDEpeQwXVWmY8wPMfi4oRya3Hd8v4TyOu5P3eRL6XXvy7L34e+OSvSNonnINUJ29yFEWoqPILo3f43oc/ZJAGe5++6aWdjEDO6OHLKjygiewhy3YjHMqjPTODC0Hw8O78c5TzoCANARB+bR8tR8bN81Oqtlxkcu65LTKIQQQgjR5CR5Gqv5N5/IvRjX3fcA+GD8JwBsTyJuLusuypWYl/Y2Q3dnO/ZXYaZxw6+iwDfPPSmK12Zm6GgzLU/NySO7R3HKqmUzV0zR19OFR6VpFEI0GWb2JgBvAoBjjz22wdYIIYRodXLNNJrZfWZ2euC9U8zsvuqa1RokaRpmO9MIAN2d7VVZnrrhVztwwuGLceyKRYe2dbTLacyDu2P77jGsKiNyasLKpV14TDONQsw5zOwPa9TuuWbmOf42VHIcd/+su69197VHHHFElawXQojWxWGYnGqv6t98Iu9MYz+AUN6GLgDNlci4TmxP0jQsK9/ZSOjubMfQvoMYG59EV+fsbr6x8Uncet8QXv2M4qfJnW1t0jTmYGjfQRycmJrl8tSFeGzPAUxNOdrKzNUphGhq/snMLgbwBncvJXUqlx+hWIIWYn8Vj1l10gEsst5jrdSJ5S/kCLIxbr/UL+9tFQZLuTre/5iKWhEim6sDAZUubdEgN+WyJT7/tJb4kO56S/qNKuHAxMT8cvSqSTmxYkN38loAuyo3pfV4ZPcoli/qRPeC2d+ACzqiyd7tu0ZxwhFLZtXGrfcN4cDE1CE9Y4JmGvORpNsoJ0djQl9PFyanHDv3HTgUTVUIMSd4AYDPAfi5mb0PwEfdKx/Ruft+AHdX2s6smCHozWzpCQSzYe4NRD4YoPqh5OYcRIaD63DQFd43lDWX64yk3uunMge54bHrSirzrwU7lg8H2gnZNxEoc+AUdix40Mbnz4PvewPbH6AyP+lPBz8JBaoJbU8HKkpgux+jMtvNfRQK1MJPWPh6hCLYhoLOcL8/ENi+OrUPX08+B7ZpgMp8fdJ+zx/GXx9X53igcTl91dwYqB8KZsNlvmYvRGE8eCsWZLbJ1/KMU1Nvbs7+/tiUsu+MjDocFGcL1e/jDs/zKE00lKDTaGZ/jCidBhA5jDeaWdoD6UZ0336lNuY1N9t3jeGoCmYZAWDhIadxbNZO48337MDCjjY864QVRds729vkNOagUqcRAB4bkdMoxFzC3TeY2akAPgDgbwC80sze4O61yRchhBCiprgbJifmV27FalKq5+4D8N24/DoAtwPYkapzAFHCpauqb1rzs33X6Kx0cAzPNM6Wm3+1A886YcW05a0d7YZHd2vp5EwcWmZcgdM4ODI2q0A6Qojmxd3HAPy5mV2L6Hduk5ldDyD9NM7d/XW1ssPM1iKaDEviEJxsZq+My9+MZy+FEEKUIHIatTx1tgSdRne/AcANQBSJE8Bfu/v9dbKrJXhk9xjW9h9WURuJ07htlk7j2Pgk7tu5D7/3rOmy0s62Nkw5sGt0HL2Ls5ciiMhh7+psw2GLyk/X3NcTSX0fVTAcIeYy9wL4GYCnAvgNZDiNNT7+2xA9vE24OP4DgONRvEIuP69KPUz8aunT4FyLQojyuKZCnW2jSedaDOZwvYjqXTc/NJrzhVxztO7++lob0mrsPziB3aPjFS9PbTNDZ7vNeqZx92i0ej+tZwSimUYAGN53QE5jCbbvHsXRy7uThyNlccSShTADBpV2Q4g5iZm9DMCnASwC8EZ3/3y9bXD3ywBcVu/jlqJ3GdC5a/qAcDN9j7JGj3VsIT1c6NeUBypcfyOVO1N1zs+Qn64v8R0/EGgrJLPaSuXBQB22m3VzfJ6s42M4QfseKvP5s52sYwwlrmcNHF+bdL+H9JS8P9sxEigzIT0onyfrVbkdPje2J6TdCz3+5XPmc+FrUGpEtxTAZfF9xTrDkFaSJYFsayfKC3gT6lO+L9juUL98h3SM6c9LAp/L4J2FcmcJb+EMPpeLZh5HrSlXGl5NZ9uhmcYKyL2w18xOAPAqAMciipjKuLv/fjUNa3aSJY2VLk8FIl1jkvOxXHaNjuMJvd04/vDF097rbI9mMYf2HsSJK6e9LWK27xqbdQTcjvY2HL5kodJuCDHHMLMjAHwSwCsB/A+AN7v79sZaJYQQYra4GybG5TTOllxOo5ldAOBriPQUjyHSMjLzbv75UI7GWaRpSLOgo/2QE1oOU+4YGR3H+acdnTlL1tGWzDQqGE4ptu8azZypzUtfz0ItTxVi7nE3gCkAr3X3axptjBBCCNFI8s40fgjABgCXuns6GM685JEKgqekWdjRhm27RuHuZS2R3DM2gSnPXpoK0EyjnMYgByemsGPvgYqu45E9Xdg2C6dfCNHUfA/AW939sRlrNjkTd9xxSI8U1CGFyLHcrCk5iey+Z9491xY14soq5e+8KWOsl0450+w5G7fG57CCPInel2XXTed17UvO7fOF7XZ5YazqF9ZKUmWYmlT01NmSt+dOAPCnchgLbN89CrNC9MxKWNDRhoMTUxjadxCHL1mYe79d+8dhAM564orM9wuaRjmNIQZHxuCOWS9PBYCVPV346YO7qmeUEKLhuPvFM9dqcWYIfJOm8wWYMbDFMalRReKkchCNERKXsX6uA8Az48Ek537jJlmXNkRl1n1dlk62F3MuCRTtb4vP4ysXZGsx+RihPIJ87FDeRdZGshiFdWlFejIq868T6/7YNh4FcCjdkAYwpGMDim1lO0JPT0JaRD42n2f2iKW4f0O5HJneQJnPjTWTg4E6rN7h+kDx+fA+oXDFz6AyX/8+AOfG93aWw1iKUN7JkKiJ+707UOZ9T6Qy3yNFetuJYu3i1sA5DK4rft2XWUu0KnmdxrsR/pzPSx7ZNYbDlyw8FP20Eha2F9JulOM07h4dx9KuDixakH0Z28zQ09Uhp7EE2yrI0ZjQt7QLQ/sO4sDEJBZ2aK28EEIIIUTT4QAUCGfW5PV43gng3XEwHIE44mYV9IzA7HI1PrZnDKPjk1geSBNx7RVn4dorzsKKJQuxc68ie4ZI+vyo5bO/lkcuixz9HXvUz0IIIYQQTYlb5DRW828ekXem8f2IZhq3mNlWTF967e7+3Goa1uw8snsMJx6xpCptLTyUqzG/Lu7ex/YCQHCWMaF38QLNNJbgkd2xNrXC5alAlHbjmMMWVcUuIYSoJyPdxcvNekYDy1D7onqDqbWKfVXSX22qQS67a+M2LwnlzxCiDlwV34erZqiXEFrGmmxPL6WtNenvCDH/yOs0TgL4VS0NaSXcHdt3jeI3Vh9elfba2wyLFrSXNdM4sDNaUd/VWXqyuHfxAjw0HFp9L7btGkXv4gXoXjD7p0V9SxOnUcFwhBDNR8eZZ6L39ttntzNrGPtmHjSGAu2wjpEHu/yrNxHYjsD2c1Lv9WXk0ONfv2u3AJfEdb6TGpBz3kWWRJ67tlBeT134wg8XzvPf3zNzv2xFIcffJ+jYa1J1EkJaMNblsdaN9Y39gX3z5PsDAErPF9QNcluhvI6ha/gwlfmahzKDhXJF8nG5X/j+4mMBwFvia8A5O0PnAhTrOE9MvXdh3NaV1BbruLitbany5RkPWa6hdvg8+wCcl6GH5PuF7yMe2LMN/dOOOJ1Q3tRVqcVYq1+T2vGLpR8aBR8q/X5he3HiPqpf5TyNmJDzO1tyOY3ufk6N7WgpRkYnsP/gZEWzU4yZ4ejl3eU5jUP7YAYsaC/tNK5YvAA/e2hXhRbOXR7ZNVpx2pQjl8lpFEIIIYRoeiZmriKyqTyKyzxk++7KdXBpynUa79+5D10d7TOm6OhdvACP7zsIb/LQzY1i+66xitOmHLaoE53tplyNQgghhBBiThKcaSw36I2731e5Oa3BI4nTWKWZRgBYtbwLd20PLR6ZzsDOfTMuTQUip3FiyjEyOoFlgaA585ntu0aDKUvyYmZYubQL/3X7w/jZg7tw7RVnVck6IYRoDEmKjHF6Kt8XWj8IYCDRWTUwBdrGHMvYkiWAjUgFcG0N9JqiPK6uUp5FoLLrmdyH1RtFilw4NNNYAaW+3u9F0aLiGZlRFGZmrwTwagBrES1ffxDAOgB/4+7pZfVNy/Y4YM2qCmeomKOXdWPn3gMYG59EV2fprpyacjwwvB8rFs+c/HTFkqjO0L4DchpTjIyNY8+BiYqXpwLREtWtgy1zCwshRBEc+IZzKjIc/KaPnrUNDE2vO619Gm0M0qCNx2+hfHSh7RupHHICWd/GEfwGUZw8/WFyAFgfdy3pGPnx4udIx8jthuwo15dmDRzvy7/iofyIA4E2uS+4/fRIJqRdDJ1baI0UXze+znw8zhHJv6CnBtrsD9i2JdA+Atu3Buqkg8uEnpPwuXG7D6OgXWWNIge/SUeS5HYSnWTIIT2P7tnbqE7ID+Jrw/21gm6qocDOfB8s+9R0d8DfEDiomLOU+h57fQ2O9w5EjuK7EX22noYoMuvzzOzZ7j5Vg2NWnUd2j6KjzXDE0vw5FWciWSL56O4x9B++uPTxR8ZwcGIKXTlyRK5YHNk4vO8gTjiicjvnEo/Ezn+ly1MBoK9nIX65fXfF7QghhBBCiBqgmcaKCDqN7v6FGhzvfHffQa9vNrNhAF9AFAjtezU4ZtV5ZNcY+nq60N5WvaUmieOyfdfojE7jwM59AICFM8xIAtHyVADYuVdpN9IkGtJqOI0rl3bh4ERLPPMQQgghhJh/OMJLF8SM1FV9kHIYE34S/8+buqbhbN9decTNNMlS1205guHcHzuNMy1jBQrLU5WrcTpJQKOjqxDQ6MhlXZhyYHJKAYeEEM3FxB13HFpyGkqJMUhL3TobqEusJ+ukMRQ1oBpax/RHkPW6ZzdJYMPNsU39qSFUVo5X/n7pe3PqzSun1w8tkReNpRl+Gp4b/99SslYT8cjuMZx2zPKqtJUETTkwMQmzgl6yFEkQnAXtOXJmLU6cxgOVGToH2b5rFO1tURCbSunriZYBa7ZRCNHqjE+UyKuWQTcNCDlwTu+yQpkdUdZA9ufQVt1LZa7CT5o5nx4zAeD8DI1Zen0Jv2bt3o8D7S5FIecjOwn82HdPqn7CGVRmbV03Cnq4KwO2suaONWp8rNDamVJaOoY1nayhZB0kt8X7rwxs5za5L0I5O/maM5uozAPY/oBtnL+Q80/yvcN2pgeifC+EJqj4nuRz601XjEnrJrPuz54S9bO2c/+yPWxD0b0T+KyFdKuP/n7xeHMwUK/pcUSZ58WsaKjTaGarAPw1gPXunpl52MzeBOBNAHDsscfW0bpspqYcj+wew0ueUt2ZxoUd7ThiycJcaTcGhvbhuN7FM6bbSNpdsrADQ5ppLOKSz9yCex/biyOrtMy4rye6Hw5OymkUQgghhGhKpGmcNQ3L02hmSwDcgOjyBYPuuPtn3X2tu6894ojGR3IZ2ncQByemqr48FYhzNe7Otzy1//BFudvtXbxAy1MzODg5VZWlqUDBaRyX0yiEEEIIIRqEmXWZ2fVmtsXMfmZm30qnUjSzd5vZr8xsysxenqfdhsw0mlkXgG8AOAHAc9394UbYMRsO5WisYrqNhFXLu7Hl0dK5GienHA8Nj+Lck/vwswd35WpXTmM2ByemqhIEB6CZRi1PFUK0CifNfpXFFlrpElqGJ8rnauksxQzcGN8jJzbYjhBF+sUylrnXRcc4v6KnXunu3wIAM3sbgKsAPJ/e/y6AawF8Pm+DdXcazawTwHUAngHgXHe/c4ZdmopEc3j0suo7jUcv78J37x6EuweXnm7fNYqDk1M4fsXi3E7jisUL8MjumbWS8wl3j2eMq3MdlyzsQJtpplEI0Xx0nHkmem/PVIAcom81gHtmF2CjOxAIY6SbtH4HCtv76PftYRrAhTIJn0blPPn4Qk+hecCTpU9LNIo3BfLrTaA4t2MC529kjSLr23icGgrgwPaF8ktyH/G6JHbcuwN1QhrDNGwrayX5GM+g8kBgXz52SJfHsC6V+52dI7YhNHjkfhwI1OHrz1rNtJ39VOY+4/1ZB7g/0C73fWjgHXr4MoJCfsYbWT9MdUL5O9M61HPjdjYF7nHWkrKdz7yw2KY+ALgu/iycRjlOAxelHOcRKNZGzwXM7BgAf44oT/3piG6J4919IKPuEwB8HMALARiA9QDe7u4P5j2eu48B+BZtuhVR2kOuc1t8vNznUdflqWbWBuAaAC8AcIG731rP41eDwkxjbZanjo1P4fH94XjAA0NR5NSZ0nIwvYsXYEiBcIoYn3Q4gFVVvI4LOtpwcLI5opoJIYQQQggimWms5l8+TgTwKgCPA/hhqJKZLUKUfvDJAF4H4DUAVgP4vpnlH/hP5w8RSQIrot4zjZ8CcDGADwPYZ2bPovcenmmZaqOjDF/ymVvw4PB+LOhow4o4Kmk14VyNvYH2kxyNx5fhNK5YshDD+w6WnMGcbyTLSKu1PBUAFrS3aXmqEEIIIUQz0rjlqT9w9z4AMLPLAbwoUO+NiKR7T3L3e+P6mxEtYrgCwMfibZsAhKKDPs3dH0pemNlfADgJ0YRdRdTbaTwv/v+e+I/5AID3l9p5stFeI4ADE1M4ellXTZwvztV4yqplmXXu37kfixa0Y+XShbnbXbF4AcYnHXsOTKCnK7QAaH5xIF5GWq3lqQDQ2d6GvQfm2JoKIcT8I611LHfZ6kXZv49JXrcVme82niTlQSmN5vpAHj0hZstNOcaTG6s05txS54kDXqKelb9xvuDueWcUXgbg1sRhjPe938w2ArgAsdPo7mcE9i/CzN4B4CJEcsD9M9Wfibp+77l7fyX7TzVB4vRq6uDS8ExjiIGhfThuRb50GwmHcjXuPSinMebgRJSoZ1U1Zxo72nBw35RmdIUQrcEsNYwAsCb0EDfgMA6QrJ4HHvyLxJqx06jSxhzP4jiE3OpAnUvI5vWp72g+9jAK2sUNVC/PI8HQLyw7oqF8iRMALo+Puz6gXWONGvcj69iGA3V4+6rA9jSsJ+Q+2pauGMOjl9CxuS+4HbaJz5l1dqwTDRHKcbg1XTGjzfSIYIDKoRyGfO/xAxHWg46icG3XlcgXmsB9Hbqf+X7kvuZrcCqV+Rr0B0b/vdQoV9m6bnrdQ3ZtLnyu+k4unNvI/dnHCNE7HvhOqeZ4qjYzjYebGYvGP+vun51lW09B9jLSXyJaqZkbM/sTAK9G5DDumqU9RbTUw7JmmGk8ODFVEz0jABy2qBNdnW2lncad+/CkI/N8bRboXRI5jUP7DpalhZzLHJyYQpsBPd3V+wgsaG+DAxjedxArluSfCRZCCCGEEHWg+k7jTndfW6W2ehHpHtMMAzgsbyNx4J2PArgPkR4SACbYTjN7L4A3AzgCwClm9kkAa9390VC7LeU0Nnqm0d2j3H41mmk0syhX467sSKcTk1N4cHg/XnzKkWW1m+gvlXajwIGJKSzoaKvqjOCCjiiu1KMjY3IahRBCCCFEuWQ5O2UNVuMYMSX3cfcPAfhQOe22lNM42WCnMYmMWauZRiBaLvlwYKZx265RTEw5jl9R3mzhoeWpiqB6iIMTU1jY0V7VNhe0x07j7jE85ehsTaoQQrQqW+kh24rU6CG4tKxFua1BEoOr4uP2N+ToopYkmtnaTDs0jm2cvmPNzPW3pj5bq+u5itCRnW+neXgc2bLqw5A9A1lXWsppnGrw8tREB1ermcak7bsffSzzvYGhSMOaLDG99oqzcrW5YnE06zWkmcZDHJiYwqKF1b39eaZRCCFalgq0jodyt6F4MMnaMtZrsU5sVeh5bEBn9eNUtcsz8iyGODc1nriG9gnp+Fiv2E/l26h8DJXPJwXS+q8VyiF9H2/nXI48xu0OlFlXF9IuhuqntXqbqcz9zefGoe7ZT2D9IRPSA4Z0mRyxg0dEIc1k6HxCeSpZe8j7pjWpQ1Tme4H36Q1sD+XpTEcw6c+4b/tQyM0YYkMg1yL3F9tTlNeTnmsP0kmW8qeCOmZi2xZgVVKvW7EdZsEvEeka05wM4K462zKNuuZprJRGp8BL0inUcqbx6OXd2LHnAA7EDiqTpNvoP3xRWW12L2hHd2c7hvbKaQSAsfFJTEw5FrZX9/bvbI++IB/dLadRCCGEEKKpcACTVf6rLt8A8CwzOyHZYGb9AM6O32soLTXT2PjlqdVP05Dm6NghfXT3GI5LLUO9f+c+LF7QjiNmoZdbsWSBNI0xDw1HzzAXdlbXaTQzdLYbHpHTKIQQQgjRXDQuTyPM7JVx8cz4/3lmtgPADne/Od72OQBvA3BDHKjGAXwQwEMAPlNPe7NoKaex0YFwDiQRN7tq122cqzHtNA4M7UP/4eWl20hYsXiBlqfG3B/P2HZ1VlfTCERLVDXTKIRoRgYzfjv6qiT7yGq73twYyKHIy/5mWvInRL3ZEPjsJEume1Lbz2/QPcw5Fydm43gF0vFUXLd1+Frq9afj/zcDOAcA3H2fmT0fwMcB/AeiYDbfBfB2d99bJzuDtJTT2OiUGwdrEHEzTSFX43THY2DnPjxl1ewCrPQuXoAdexUIBwAeiLWhXR3VX529oL1NmkYhxJwkFLAi5DCuObpQHiGh3Sh9RbIGrjv11XlGfLxeaj+kY2PRRk+gTilYB8f7c7uss9tE5VAevatpiMhjbNaNjQTKbA+vbWLNHesKWT/HfRTKiRhqBwAupDLrNVnfx+3eSeWQ5pJ1dpw7MNQX3YE6/VQOaWP5PPMkKCt1j5xGZdaK9qGgi+WcmtyXoeRpNwF4S0Ye0N9CIbHhf+L4UiYDKO4L/hzlGdhvGip8vrrJGewH0DM6/XM+UkKf2N2RHQirqB1yAldfiCLtc11p4Eyju+dyHtz9QQAX1dicWdFSmsZGzzTWIuJmmiOXRctT07kaxyen8NDjo+hfUZ6eMaF38UIMS9MIALh/aB862gwdVdY0ApppFEIIIYRoShKnsZp/84iWchobPtM4OXUorUKt6Opsx+FLFk5zGh9+fBSTU47+MtNtJKxYEi1PdS3NwQND+6quZ0xY0N6GvQcmsGesuWM6CyGEEEIIkZeWWp46NdW4Yx+YmMT4pB9Kq1BLVi3vwraU05hETj3+8Nk5jb2LF+DAxBT2H5zE4iqnmmg1BnbuR1eNZoyT+2NwZAxLu9LBu4UQogFsuQN4euWyii2pZah5QvBXQjqfWzVYR21eqIeoogISzWEonUiefVfNUK+WbIxtODWVECBJlcPLkftnSBqQfFbTE2+1/o6YFfNsdrCatJT30MiZxh17Ij3ggo7ai3OPXt6Newb3FG0bGErSbczeaQSA4X0H57XTODY+ie27R2uWazNxGh/ZPYYTV+ZRUwghRH3oWwvgJ9X/Hc0TTGdbwAEMaeA6AtsZ1hKmc+idl5H7LqQxSx9vEMA58f6baX/O7RfK88d6yFBewIFAHd53NFVOclBeE8h9yXo7zgPI+R55rNwf2BcA1lOZ+4X3Yd0gOz5sN7c7HtjO9XnUE7rmg6nXiTbwY4F+YfgahI67MrXPVgCXxMfYSMcYCNjEdnNeS6CggeRryNfkOzj+UJ1r6eOStikhlL8z1Ndch895GylqQn03WkJ1k0s3XK6GketX8+FRAzWNc4GWWp7aSE3jzlgP2Fnj5alA5DRu3zVWtJR0YOc+LF3YgRWx81cuyX4753kwnIcf3w93oKuGy1MBKO2GEEIIIYSYM7TUlFMjZxp3xjON9XIaR8cnsWv/OA6Lnb37h/bPOt0GAKyIczvO91yN9+9MIqfWaHlqfH8oGI4QQgghRBOhmcaKaCmncWrK4e41TXkRIpmh62yv/bFXLY8Wj2/bNXrIaRzYuQ+nP2H5rNtMZhrne67GB4aSHI3Vd/6vveIsAMCZH/yO0m4IIaqCmZ0E4K0AngfgBEQry34C4C/d/edlN3hS4Tds+P7it5Kw+ZxCo+9UlAXrHte8oGzrqsbGHOOEK9nW9Juvb648cVfFttZGWNG63FiH8WDS99PukRpwUwPGt41kdEnx+XbvbUINpDhESzmNDuDAxFRNkrLPxCGnsa0+M41AlHbjlFXLcHBiCg8/vh8XPPXoGfYMw5rG+cz9O/dhWXdnTdJtJPT1dGmmUQhRLV6EyGH8AqL0gMsBvBPAbWZ2trvfMWMLXYgEgLdXZsiaUwFsnt2gjp0d1oA9k4RmWyjyRj+lJL53d3abG6nMwUhCuQlZezeQamsLCvo4dhg5v+B5FAzkx/QVn9ZTJrBujvV0/Sjo29jpYf0Zn0NI68faNQ67xufMkyrcJkps/72nFa7xv/y0YB/nY2TFPp8nDyr5mgwEjs3nw+08g8qssWRYMxjSxnIfDQG4LO73q6jfuX56Eopt4hyMHShoHRl2+s69OMtq4NLAqrmbSuhVz8vYZzW1P5xOGx+zJ3tzUfCbPXQvd9MFTGsys3IxAijSHHbPEDCn4TiKbwpRFi3lNALAyNh4g5zGg2hvM7S11ScQDlDI1fjQ4/sx5Zh1ug0AWLSgHQs72ua90/hAvMy3lhy1rAvb5TQKIarDVwB8yknkbmbfQzQO/38AXtsgu4QQorVwAJONNqJ1aTmnce/YBBoRlHLHngN1WZoKREtJF3S0HXI8knQblTg7ZoYVixdgaO/8dhoHhvbhzOMOwz//ztNqdowjl3Xhpw/tqln7Qoj5g7vvzNi228zuQWMj9gshhJhHtJzTuGesMQrWHXsP1GVpKhA5eKuWd+O/7ngYP39oF170lCMBzD5HY0LvkgUY3jd/o6cemJjE9l2juPCM9KKL6nJkTxeG9x3E2PhkQ2bFhRBzGzPrBXAKgH9vlA2DKe1VnrQbzc6G+JzOuaz2x/r7OurkRIGrqqgZTHSzm2lbf479ZqNb5H2ylqrWhcMr6LvTaN9GL8RSIJxZ03JO494DjbnaO/fWb6YRAI5e3oUdewozjT1dHThsUWXJ4nsXL5zXgXAeGh7FlAPHH76opsc5clm0qH9wZAzHVbCkWAghAnwCgAH4p1AFM3sTgDcBwLHHHgt86YFpjh6Q7ezxtmnO4QyG9dGoYoREh6wN41+yTaRjZG3ZnaRj5MVFD1CZtXj7A/ZwnVEAF2bkb0wf+5qrs7ffTINdPl4o1yI/nmQ9HOsktwB4Z2zT+kBOyVCZtZSh3Iwh7WEolx8AfJp0jNx/PPpi7ebvdRful6+MZu8bOgeG7y3Wq4Zs2ErlUH5MHuSGtKGhfknXm0BBjxgKtMT39vqvFbSreUgvGzgtcK8mbCQdI9vdT+VQX3PeRfoIYkVgiL1qRfZ2AOikTp4oc4jefTSAe+roBCt6akW0VJ5GoHEzjTv3HKhLuo2Eo5d148DEFIBoSeXxFaTbSJjvy1OTZb61duSOWhb9zChXoxAijZmda2ae429DYP+/APC7AN7m7veGjuPun3X3te6+9ogjjqjR2QghhJgvtNxM456x+oc9OjAxiZGxCfR0VTbTVw5HL+/G+KRjyh3374x0eJXSu3jBvA6EMxCn2zi+xk4jzzQKIUSKHyHfqsRpk2dm9mYAfwPgve7+b9U2TAgh5jSaaayIlnMaG7E8NZmdq+fy1FVxBNUD41PYvmsUF1VBh7diyQKMjk9i9OAkuhfMP63dA0P70dPVgeUVLvOdicRp1EyjECKNu+8HcHe5+5nZawB8GsBH3f3DVTdMCCGEKEHrOY0NWJ56KEdjHZenrjoschpHxsajdBtV0OGtiHM1Du07gGMW1FbX14wMDO1DfxWW+c7EkoUdWLqwQ7kahRBVwcxegSjozVXu/o5y95+44w4Md2Z/77FmMdEyZmkfZ+Sk+ZWUvJqsi/u7Z4Z6ovFcGV+r08rcb0ONxx3NSvJd0ndqmTteVKP+Up7Gimgpp9EM2NOAmcZGOI1JrsaR0ejuriRHY0Lv4oUAgOF9B3HMYfPTaXzaEypf5puHI5d1yWkUQlSMmf0mgC8jCtJ4tZk9i94+4O4/zdtWZ0dxgu68zuFMwXLYYew9HpmBLdgh4gE0Bz/hIDrj9FPPgV04WEgoyAkAnB/bd03gHM/I2NaXEXiEg81wcvhrU8nhsxK9f8Kyg8KspDL3Cwck4ZFOKJjJaioPULmfymw/9/U2KrNtpY7HsNP0OQp+w+t4WHDL43Suw4FmOCDPOVS+kconBuzheyF0LD7PtIOeBKxZl7pfeB++DzejmLfE+1+d4zPF15bvhbRAOenj0KiXbePARHzO3BdFgYC66AUNVbgf+R4ZHALOoHt8pLtwnh0pT6JndPrDp8E7myTCsvI0VkRLOY3tZg0JhLNzT7Q89V9fcyae0FsfZ+uoeInjSHy+labbACJNI4B5GUH14MQUtj0+ilc8tT5pzY5c1oVHpGkUQlTO8wEsBPA0FAeVBKJgov31NkgIIcT8o6Wip7a3WUMC4eyIZxqPWLqwbsfs6mxHR5thYsqxfFEnli9aUHGbyfLU4XkYQfWhx/fHy3zrkwLjyJ4uPLo7z/NaIYQI4+7vd3cL/PU32j4hhGgpJqr8N49oqZnGNrOGBMLZsecAlizsqHui9oUdbZg4OFmVpakA0Lskchr/+bv34Ku3P4RrrzirKu22Ag8M1SfdRsJRy7qwY88BTExOoaOOy5qFEKLasB4yWd5apIVcPW2XafttboXB1ckzLy1cH1h+mCxXbYXTFNO5Kr5+6aW6ebl2HmgWt/JnvqtExWZG0VMroqWcxvY2a1ggnMOXVD7TVy4LOtqw7+BkVZamAsDShR3obDeMTzbBuvI6c//OKHp9tfpyJo5c1o0pj2apk7yNQgjRCDrOPBO9t98+bXtIY8TbQwF0mJGHil/PFNDlDBpwbqNV/IP0885rirg91r31U/m2wLH6Ats3pV6ftyZVvivqg5CTyDaNZNYozqvCvwJcn3Vy/VTmXOo8UGO9GmsgeV1LOiF9Vn0m7ShxH/PxuK3Qmi8+N7aDtYjcJq+3Zp0p98uJAC6M78mr6Hpwv/D5s53cJl9zvn4DVB4GcDnd/6yJ7QFwafzeZtrOtoZ+7dk+7rttKJzbTWU6nqvoczRKn6OtVIev7VIqD1J9tpl1jEBBx7g1ZdtoSn2TqXsOPEzKxXXU3jxwyFuFlnIa2xqladx7AIcvqd/S1ISFHdEMVbVmGs0MvYsXYGJyqirttRIPDO3D0q4OHFbjdBsJRy6L7pdHdo/JaRSCuOQztwDAvFrpIIQQoglQ9NSKaKl1c+1tjVmeunPvwYY4jQs6ouWw1Ui3kbBi8cJ5OtO4D/0rap9uI+HInshRVARVIYQQQgjR6rTYTCMaEghn594DOOuEFTNXrDJdnZFPf1Lf0hlq5mfFkgV4YHhf1dprFR4Y2o/Tn7C8bsdLot/KaRRCiObh2pw5EZNlkP21NUfkJE8qi2pxVSqdCpOk5Ail/kgTWt7MXBPQU5a7XLUWbIltmNFZWBXVG9xe2FTu8tQi7fTKEhUrQSk3KqKlnMZkptHd6zZjND45hV37xxsy07i8uxOnHN2DNUdVL+VvtDx1fs00HpyYwsOP78cFTz26bsdcvqgTCzra8KjSbsw7tPxSzCXGA4t78ugeOSfkGvrNvjeQF44H6KwB48emrFEcoHLosS4nWUrn1mOuIWEaH3sAxRq3hLQTk+RvZCeBNYRsN7ffm2M77xvSdA4E6vBjdnZ0OH8j1wfCGspBzAzfLv1UZq1cyCbWBvL5c32+FzjvIOeNZO0iayxDA17u3/Q59gfeeyDQVug+TPfxpRl5RPle5f7qAHBexj24hT5HfJ24HMrNyccKaTJ55JkV+CbJx5g4jGkGtzZJbkZGgXAqoqWWp7aZYcqB/Qfr95hgKE5PcfjS+gfCMTMsXlhdv7538QKMzzNN48NJuo06RU4Fomt31LIuPKKZRiGEEEII0eK03EzjFIC9Byaq7kyF2BnnaGzETGMtWLF4AaYcmJpqsqc/NeSBoShyajW1oXlQrkYxH6lkplWztEIIIWqKZhpnTUs5jW2x07hnbBx9PfVJErNjz9xyGnsXR+cxPjV/Zhvv31nfHI0JRy3rwh0PPl7XY4rmRk6RaCgXZSwju67MB4ivitvYGK6SpYOqnsii/rC2LGuZIFDQurXyeYrmhZdDX9ZsSz5LMNId2b1s7P1F293fFxVeWmfdpqKnVkRLOY3tZpgA6pp2Y0c803jEnHEao2W280nX+MDQPixd2IEVi+u7xLhvWRcGdx/A1JSjra3xgnYhhKiEvouzt/euBLAt+k3ZEog30EmjjVWpn/BE97QlEIDksRy2dQM4O2MwvYa23UvtTwA4n94rN+gI28casgEq91M5pOkDCk7AOrKB9XPc/nCgzG2GbNsS2J4OwMK2cjwSzjsZ0jqyTfeWOEZWfa7Dmrv0ep3zMvqLdYynUnkiUB5AQat6I7XTnzpWSGfKbXF/p3NhXjKDg8eaw8cAnBvXZ41mKAgQXwPWbnLfcf+GcoXydQUKn8dtAR1yQpIDc4QO0t1V0DomDmNeel8E4H+iffPkhxX1p7WcxliBWU+n8dDy1AZoGmvBiiXRecwnXeP9Q/tx3OGL6hY8KeGoni4cnJzC8P7GpGwRQgghhBAxip5aES0XCAdAXXM17txzEIsWtGPRgpbyr4Mks20T80rTuK+uQXASjlymXI314JLP3HJo2acQQgghhKg+LeUJJUv89tZ5pnEuzRKtSDSN82R56vjkFB5+fBTnn1a/dBsJR1KuxlNWLav78YVoNu7bsRf379yHRQvasXv/OJYt6px5JzHn2Rw/EK70buBlhudnLD1MkyeHXjX2mYkNTZCPr5W4Mu6vvhnqzcTH4nbKTCc4K9LLn0Pa2Dwk9/SqGerNlq1x+7MNHTgY799dn9Aj5aGUGxXRUk5je3wjjozVT8W6c+8BHLF07jiNPd0dMAAT82R56sOPj2JyynHcivpGTgWiQDgA8IhyNYp5zsTkFD73w/vx8fX3YHxiCg7g6R9ej3NPXomLzjgGv3nSEehsb6mFL61JuUFvEM6zltYcJXqvNYH6rFdkbRjr4fpoRDJAAzvW1bHeLqT1K8X5GfkUk7bOzbD9WqrHOfjS+fiSfUP6sz6qw232peokbM1sJQz3RUhvF9K0pTWDPDDkfuV2Q5pD1hPyteJ2uP1XkWOxiX4qQxrQUDzytC4v4WEq8/nzfbcVwJ8Erh/vcwyVWUOZdt5m0jEyeUazHPiGH4IMUB3ud+4jvqf4mvO15L4I3SP9JbyFQbpuHAhqdKzw/RHskf/Jfqf3ZfRiXfjYZSOnsSJay2lsa8Dy1L0HcPzh9V/aWCvMDB3tNm9mGgeGosipjbiGhy9ZiPY2U9qNJqUWkUwnJqdw72N7MeWOv77xLhxzWHf8twirDuueuYE5yF3bR/DO636OX2wbwYuf0ofHRg5gfHIKa/t78Y2fb8c373wUhy9ZgJedvgr76phOSQghhBD5ablf58UL2uu8PPUgnt4fivvVmnS0tWFinqTcGGhQug0gesixculCPLr7QN2PLRrDrfcNY2jfQSzoaMOXf/wgRseLFfftbYZVy+eH83hgYhKf/N69uHLDr7F80QJceekZOO/Uo3DJZ27Bgo42vP9lT8F7XroGG361A+s2PYz/vPUBHJycwsqlC+HudQ9cJYQQYo6jlBsV0XJO45KujrpFTx2fnMLjczDy5cKONowenJwXA7MHhvZjycIOHL6kMdFvj1zWhUdHZp5pVP6+ucF/b96ONgNOX7UMX33zWRjedxAPPz6KbbtG8fDj+/Gx79xzKCLzXGbP2Dhe+i//h3sf24uLzjgGf/nba7B80fTPYGd7G154ch9eeHIfdu0/iJf80w/w6MgB/O3/3o2/OC+04EzMlsGM7/vQ8tNDXJDa54bs+tx20mYzhs2/qYR+MllCe2/GezMRSjXCXJORv1I0B1dV8dok98JgiTq3Be6XZOnyGbRtNvdjy5DOHTuLJfRlo+ips6bu311mdgyAPwewFsDpiJZQH+/uA3n2X7Kwo27LU4f3HYQ7cPgc0jQCwPJFnRgYGscvt4/M+QAtA0P7cNyK+qfbSDhqWRfufnRPQ449l2gFp3p8cgr/+8tHcdiiBWhrM5gZVixZiBVLFuL0JywHAHzxRw/g4V2j2LX/YKYTNRcY3ncQWx/bi1XLu3H165+Oc5608v+3d97hcRVX//8cdcmSbMtF7paNjTE2NmBjWgBTEmoooaWQhJBQQkjykpAEEt68JOEHISEJLSGUJNQQIPQSAwZMh2CMbdyr3Jsk22pWn98f9641ut6RVtIW7ep8nmefnZ2dO3fm7t5759w53zkdbwT0y8tiVFEeLQbueWsN/XJT8/ikIo0R3JKLM6Co0RsQbgto+kJG5kIr39ZQlVv1uxb/mBjBaMYuEhzQH0p4bE2Y3c3Rjny7fIGVtgf+dnn7kaKt47M1ky7NmY2tJbP1kEdbaftOVOlIB+uyv6twlLF/EzsWpN03u7x9rJ+w9HCuvpVY6XmOMnY7I1lQyRXLMrgojn3sbX2k/Tvb27seddnHwj5e9rGY49jWxo4Daf+2dixT12Nqu8/2ZJvd/mJLY1oYdNAqC2/QjbcePHU2NqMT23hM8cmNZCIRKw+MAy4AdgLvdHbjgpxMquJkNO6o8mYEBiVolurxy4+MySC5qE8WArywcHPU6+5plJbVUJJATeqQwly27q7DdGOlNCU5eHdVGbtqG/fGQg1HQY43bJ1bujNezYorFTUNrC2roU9WOq9cfWzEBmMIEaFkQB5nTh3GLbOWxaiViqIoSq8ktBBONF+9iEQYjW8bY4qNMacBT3Z244KcDKritHpqyI0s1dxTM9PT6JubyYsLttCSwvEaz//r+6wrr6UkASunhhjSN5vahua4PejobdQ1NrO1so66xuj6m3Ql9uOLC7ZQkJNB31z3c+78bG/14v+WRrrWY3Lxf88vprnFMHZQH/K7uKCNiPCHC6Yyc8KgKLdOURRF6dWo0dgt4u6eaozp1gos+dkZcQuWXlbdAKSe0QjebOOashrmrd/J9BRb6CdEg7+0fyIWwQkxpK/nELJ1dx2FORqTLprMW7+Tnzy5gHXltVT3SawrY31TM68u2crJk4awoaLWWS4tTcjPzuCjtcltNIZzF561aCsvLNjMiH655GV179aSmZ7G3V+bxoOXdKsaJUkIp7XsLi7NmKIoXSN4nu7VQ/9PO+faYdZ3H6fuJEVvIen02AVxXAhn70xjimkawTMaN+3awwsLNvdoo7E7WrbQ7FMiQ6bsjdW4u479iws6KK1EQl1jM3+avYL73l7DkMIcCrIz2FXbSENTC1kZkTtPbNxZS1l1Ay8s2MwZU4Z2S/f69ooyquqaOGPKUO6es7rdsgU5GSzatDulwkvsrGng+mcXMWlYIXlZ6VGpMzdK9SitdLjoTTgcC990B1t/ZmvdbM3VRus2bz9ise9Wdnk7rqPti2Q/wrH1akENY6mVts9KWx9mjzxsfaArpqBdp13POCttax2D2sJw29rY7bT1dvYxtTWGdptd+rbg/uy67N+h3JG2693jSM9x5Ns0OtK2ltA+7vaxcI1oXFdbu/zSwHf2Ni7Npf27LbTSti7VfmTsil9p/z9t7aatk7TbUOHIt0cattbxJKtBS60fbaIVE3He861p+3+6J8K5msLLgdv8a8ZhEdxT47HwjY2untotenw0ZRG5TETmisjcHTt2kJ+dGbeFcMqq6snNTKdPCg5e0tOEEycO5qXPttDUnJrhN+oavX6NTqR7aqFnNG6L0+x4qvPp+p2cfsc73PPWGi48bCSvXH0sQ/vl0GwM768ui7iepuYWtlXW09DUwvcf+5Sv3Pchy7uxYNGLCzfTPy+To8cN7LBsQU4mzS2GeetTR9f46xeXsKu2gd+fN5U0neFRFEVRlJSjxxuNxph7jTHTjTHTBw0aRH6Ot3pqPLR4ZdX1DCzIStmwFGdOHUZZdQMfrCnvuHASUtfUTJrAoAS6Fw8u9Pa9RY3GdulIQ9jSYlhfUcu5d7/PnoZmHrpkBjd/aQoFOZn0zckkTeCVxVsj3t8Ha8ppajHsNzifG8+ezNItVZx2xzv85sUlVHZSM13X2MzsJds4ZfIQMtM7vqQW5GSQnib8N8ldVEPMXrKNZz7dxPeOH8eBwwo73kBRFEVREoHBC7kRzVcvIul8owr91QerG5pirhErq069GI02MycMJj87g+fnb+aY8am36ER9Yws5mekJNfqzM9IZmJ8VUaxGJTyLNu3ms827qWts4cuHjeTnp09sc+6npQn987J4dfE2bjzbkJ7W8e/9wgIvnmL/3EwuOmI0px00lN+/spy/v7eW5+ZvpjAn8tieby7bTk1DM2dMGdZh2ZCb9Vl3vZv0ukaA3bWN/PyZzzhgSAHfO35cxxvQs8OmpCxrPoEL/PPiiU4+cL0gcD5FsL1r2f1YaBcVRUkMofO88PIEN6Sz9LLFa6JJ0hmNoRX5quviYTTWM7Ioca6NsSYnM50vTCpm1uKt3HjOZLIzkssNtyO9Y11jc9T0Vd1hSN+cuC3elEo0txjueXs1f3x1BSIwoTif3547JWzZ/n2yWLW9mrmlFRw+dkDYMiHqm5qZtWgrRX28eIrgaXxv/tJBfPmwkfzy+cUs2LCLHdX11DY0dbioy4sLtzAwP4vDx3jKmEiMohljinjwg3XUNTaTk5n4/2hX+fWLSyivaeDvFx/WKT2pCzUok4fc7Lbp3GrPmLQNxowMKNyzb2zGQsLrK2292nuBWI4h7Mdv9gjApZO003bMvdLAvl2xCe18Wx9px0J0jUFtnwVbc2Zr2lz6O3tbW6NmO9Hb27oeS9r59pWsPX8KVzk7bbfDbl8kGkUbl07Q/m1d2ki7nS7tZZMj7fq927vaj3Dsw3WMbCIZbNv/T1vfaLfbjvEYPNZT/HNqpXXutAl6dEJrciLsfQAUXDTqcL+eiszW/KDe1o7nWPHntt8V3eZvs6htvvqhJD893j01SIFvKMZD17ijqj6lZxrBc1GtqmvireU7Et2UqNLU3EJ9U0uPGJAPKczp0D21sq6R5hQOf9JZNu3aw1fu+5DfzVrOyZOGMGV4X/rluWf++uVmkpWRxqwIXFTfWVFGZV0TA8KsuDp1ZD+e+e5RlAzIo6quid+8GFwWoS019U28vmwbp04eSkYErqkhZowZQENTCws37o54m57GrtoGnpq3kStn7sfk4X0T3RxFURRFaR8NudEtEmI0ish5InIeMM3POtXPO66jbfN999RYx2psam6horaBQRG6qCUrR48bSFGfLJ5fsBnoWny6nsiCjbsxQHZPMBr75rC10m00vr1iB0u3VLGtnTK9iefmb+KU295m8abd3Hr+VO766iEdGmTpacKx4wfyyqKtmA5WiHxh4Wb65WVS6IinmJYmFBfmMLRvDo/9d327WsnXl22nrrGF06cM7bhjFoeV9Afgv2uTU0/c1NLCmrIa9i/O56oTInNLVRRFUZSEElo9NZqvXkSi3FOfDHz+i//+FjCzvQ1D7qmxDrtRUduAMakZbsMmMz2N0w4awlOfbKK2oXvHtDvhMVzsaWymuq6JXbUN7c40hVi5rYq73ly1V7MW0sAmkqF9c9lV2xjWFbGhqYUbXlgMxP4/3Rm6+lt25z/Q1NzCD//1Kc/N38y00f350wUHM6oTK9+ePGkIs5du57NNu5kyol/YMnsamnltyTbOOngYa3bUtFvfiP65DMjP4tqnFnLIyH4MLszZp8yLCzYzuCCbwzoZtqZfXhYHDCngo7UVXNWpLXsGGyr20Nhs+P15U/dxa1cX0yRlSkBvuDD8w5eQy1pu8NZ4buf0iiF31UzrEr3QugRqVFtF6Rxz/HNqeAflQri0xwv9ekZ0cfgUukZkBLa3XdS7FP5HSTgJGVEbY7qsht+7EE6M3VPLqhoAUt49FeCLU4bxyIfreW3Jto4Lx5Gm5hZWbqtmT2Mz02+czTHjB/LFqcP4/IHFe92UQyzfWsUdb6zk5c+2kJuZzqXHjuXjtRURrWYZa4p9Y2Pr7jpKAjEjH3h/LWt21JCTmUaVvypwWgQLuaQaexqbWbalivkbd/Ojz+/PlTP3i9jdM2Sk7KxpID1NmLVoq9NofGPZdmobmvnilGEc1UF4jDQRbrvwEM648x1+/OQCHvzWjDa/TVVdI3NW7OCrM0ZFtPhOkBljivj3Jxtpam7plGtropm3fifbq+oZUpjD1JH9Et0cJRJqgfld3NZa+MbWOO2pby1SZMV5Kzy/i/sJMDjwebw/yJxjDTxdcersh/8u7Vpwftyuy6WKtkcd9mMiu157W9uPwBXQx9aluWIcurSRlY58l44v0gGfSzfqOpZNjnwbl/7S3talY3TpHl242uzSRtoEoynbdW0kPC6tnus3tP97dhxFVyTn9tp9dJjzYvxBrd9v+qw1vdSarhluPQOdmNOqPV5o1VMeGGaPN+GvBQBFjfvqIJuaWvN7zCJYodVTlS6RPCMVn1b31BgbjdXeHbE3GI2HlRQxtG8OL/guqj2FRz9az57GZkYV5fLtz41hxbZqfvTEAqbdOJvLH55LeXU91fVNfPeRTzj5treZs2w73z1uP9792Qlcd+rEHmEwAgzt612dg7rGbZV13D57JSdNHMywvrk0txhW7ahORBM7RSxcmDdU1NLcYvj3FUfygxPHd8mI6t8niyPGFjGrHRfVFxduZmB+doeL5YQYNzif608/kHdWlvHA+6V78y+85wPOuus9Gppa+OLUzrmmhpgxpojahmYWb3YNs3oeTc0t/OKZRWSmCyP6d3YopyiKoihKrBGRHBF5VkSWish8EXlFRMY6yn5LRIyInN1RvT1jVN0J7NVTY0nIaByU4u6p4Gm4zpgylLdW7KCpucVZLp56x501DfzxtRUU5mQwpDCH606byDs/PZ6nvnskX50xinnrd7FqRw2LN1fy7soyvn/CON679gR+esoBFIVZ4CSRDPGNxuuf/axN/m//s4zGFsP/nnEgBf7DkI9L4xOGoSdpV5duqWRnbSND+mZzyKj+3arrlElDWFNWw6rt+xrfVXWNvLFsO2dMGdqpmcGvHT6KkyYO5rezlrFsa6uBV1HTwLC+ORwysmttnuG7tCZTvMYHP1jH0i2VlAzo06XZVUVRFEVJGL1rIZy7jTETjTEHAy8A9wcLiMho4FLgw0gqTDqjsU9WBiKxXwindaaxZxkgseLMqcNpbDZU1PYMVe9ts1dQVdfI6AF5e+MspqUJ00YXccOZk/jwuhOZOKSAkgF5vPuzE/jxFyZEpHlMBEN899SGplaDfG5pBc98uonLjhnL6AF9yM5IIzNdmFu6M1HNTBh3vbGKNGk9Tt3hC5OGADBr0b6L18xeuo36LswMigi3nDuFwpxMfvjYfOoam2lqbmH3nkZOnzK0y+7EgwtzGDOwT9LEa9y6u44/vrqcmRMG0T9PFWcpz1el9dUNKnPFqZ3qDCtF2oQSUBQFloqwNArnRakIpR3UU5Epe1+R0tnycSEBRqOIjBCRO0XkAxGp9Wf2ShxlR4rIv0Vkt4hUisjTIjKqM100xtQZY16xsj4E2sw0ikga8Dfg+0A9EZD4VUI6SVqakJ+VQVWsNY3VDWRnpO2d2Uwlwi1UMXl4ISUD8iivrmdwgmdXl2+t4pGP1nPREaNZvjW8EiQ9TSjM9VbA7NvDB7B9sjNITxMa/Fnc5hbDL59bzLC+OVx5/H6AZ5gUZGckfNapqq6Rhz5Yx/wNu8jKSOPWV5YzraQ/h47qT1/HaqPdYcW2Kl5etIWhhTntuqRGurhKcWEOh47qx6zFW/n+iePbfPfCgi0M75cb0cxgcH8D8rO59fwpXPyPj7ll1jIqahsxwBlThkXULhczSoqYtXhrUmhZf/3iYppaDL8+czI/+feCRDdH6QyTp8Hcue2Xsb3np4cvEtInBQnqlUKLXNjGYq6lm6K4NX+lJeqaaQ1pKta3pm1t1cTAvkP7srVYkcRvDGrDXPEP7SuyHS/ShWs9ZFuvZo9eXDH+XCMPOz+SmIgurWd7V/NIHh1HEteys3EdXbEp7TKueIyR4Dqm7R0Lex+uuJB2/1112eXXOeq0++n6D9r5Lh3rprZOTXuZaMUnqPzIqt8694Oig/FhYjbubUuY64GdZ2+TmeG+fvQSxgEXAJ8A7wBfCFdIRPKAN/CMuG/izY3eCLwpIlOMMe2v4Ofm+8BzgbwfAe8ZYz6RCB88JKVFVJCTEXP31FCMxkgPZLIjIpw5dRh3vLGqzYxYvDHG8OsXF5OfncHVJ+3PFY98krC2RJOs9LS9x/Wx/65nyZZK7vrqIW0CxxfkZLKuopbNu/YwrF989WK7ahv4+3ulPPDeWirrmijIyaClxXD3W6tpftMgAvsPLmBaSX92VNWTk5nG6h3V9M/Lom9uZpddFe98YxV5mel7XXijwSmTh3DTy8vYUFHLyKK8vf17e8UOvv25MV02zmZOGMzFR5Xwj/dKyc5IIzsjjSkjuhefcMaYIh6fu4EV26s4YEjPDX08Z/l2Xv5sK9d8Yf9OrWirKIqiKD2GUMiN+PO2MaYYQES+g8NoxHMVHQtMMMas8ssvBFYClwN/9PPmAa7Zx0OMMRtCH0TkOmB/4EQrbxJwHnBMZzqRlEZjfk5GXBbCSfVwG0HOPNgzGitqGrq0vTGm20b2a0u28d6qcm744oH072HaxO6QleEZjTtrGrj11eUcOXYApx/U1k0ypGucu24nZ8bJaCyrruf+d9by8Ael1DQ0c/KkYq46fjw3vrQEgL9ffBgLNuxi7rqdzF23kxfmb947y3/iH97aW09hTgb9+2RRVl3PgAh/t1Xbq3hx4WauOG4/5q2LnlvuyZM8o/GVxVv5zjHe1MWsRVtpajF8cWr3ZgavPfUA3l9dxopt1Qztm9Pt//uMMa26xp5mNIY0rw9eMoNfPreYsYP6cOmxYXX0iqIoitLzSdDqqcaYSGdjzgQ+DBmM/rZrReQ94Cx8o9EYc2gklYnINcC5wEnGmFrrq2OB0cBKfxwzBLhXRIYaY+521ZecRmN2RsxDbuyoqu91qwOOG1xAXlY626rqePzj9Uwa1pf9iwvIygjvNlhZ18jHayt4f3U5H6wuZ8mWSvYvzu/y/uubmrnxpaWMH5zP144Y3eV6eiJZ6UJtQwu3vrqcqrombjhz0j4GR15WOnlZ6cwtreDMbho3HdHSYtiws5bP3fIGDU0tnDFlGN87fhwThrRd9LtPdgZHjRu4NzxFc4vh7D+/S0NTC9+dOY5dtQ3srG3c+/760m2sr9jD4x+v58LD2nfBv+uNVeRkpPOdz43hyigajaMH9OGAIQW8snjr3jAyGenCmIF9mDSse4ZZTmY6d3zlEM79y/tRceMe0T+XYX1z+GhtBd84sqTb9cWCv7y5ivUVtfzzO4fvE5NR6cUE4zraOGI2htxYi4PxNLrBe36drnAFiqJ0nU3++ZUbxlqw3U/3up62d10Is12bbZOXgSJi+//fa4y5t4t1TWJfN1KAxUCnAhqJyI+Ar+AZjLvs73zD8G6r7BzgNmPMs+3VmZRGY0FOJrv2xHohnAYO7oUxyIb1y2XNjmp+9pTnFJ+ZLkwYUsCkoX3ZVllHZnoaN/9nKR+uLuezTbtpMd4s2rRR/clKT2Pjzj2d1meFZjRmThjM+opaHv72jB4TLiNaZGWk0dhs+Od/1/PNI0v2Mc7AcxE+dFR/Po7DYjibd9extbKe86aN4MqZ+zF2UGTGfnqakJeVQV4WnH3IviGEL/jr+yzfVsX1zy5i9IA+HOEIbbFmRzXPL9jMpceMZUB+dtQDwp8yeQi3v76Sg/14jR+X7uKq48dFxd38gCGFTB7ePbfUECLCjDFFvLe6PCoz9dFmT2Mzf31rDWcf3DauZbR/L6UHsKLrA7fiH1ofNrQmm6xnu41WusISadkasI/WtKbHW6OTYst7famlv3LFI3TFtXNpwKBtXMhVVtqlY4xEx+bSELriEdoDMvvKaddj69tchnJ7/Qy3r2AZWzdnaxFdWkmX/s4uY+/PpW+08+02uWJT2tvax9QVpxNHmfZGky6dZSSxIO1pne48J3HpHu3jYj9mH35wa3rlfOuLRa3Jwj5AmXfO77HuO7m06oQ3dfN+VDQRWNjDDMLQ6qnRpcwY41CCd5oiINwgsAKIeKl2ERkB/AFYg6eHBGjqbjuT0mjMz8lgw87ajgt2keYWQ0VNfa+I0RhkQJ8sivL6c8t5U1m0aTeLN1eyePNuXl2ylZ3+yqql5TUcPLIfVx0/jiP3G8gho/qRk5nOCbfOYU1ZDa8u2cYpk4d0ar8NTS3c9YYXs/CY8YP25rc3OO1o4NqTBrZZvhFclJfF1Z/f31luekl/bn99JZV1jRTmxGaBn5r6JrZV1tEvL5Nbz58a1bpFhHGD8tm1p5HvPvIJz37vaEYP6AO0Phx4/PIjuevNVWRlpO11H402p0wewm2zV7KztgEDtBi67ZoaK2aMGcCz8zdTWl7LmIF9Et2cvRhjKC2rITszjV+cfmCim9NrEZECvBXuDgWG4o1jlwN3GmMeSWTbFEVRlKgTztLulAVvjNnYmW2MMTMjKZeURmNBdmwXwtlZ20CL6T3hNoKIeK58Ywb22TvQNsZwzl+8YOb//u5RbRZwCTEwP4vNu/Zwx+srOXlScadmTTburKWhuSVlB6fZmZ5b309PmRB2FdKQgfv+qjKMgXnrdjJzQhR9uCz+9fEGmloMw6K4+IxNRnoaf/vmYZz9l/f49oNzefrKo9oYwKVlNTw3fzPfOqokZnFQJxR74Vh21jbQ3AIHDClgfHHPdGBr1TWWO41G2+COF+U1DVTWNfGbsyf3ini1PZgsvGfjNwOlQDZwIfCwiAwyxvwpgW1TFEVJHmIz0xhNdtJ28j5Ef8LPQMaVpPQBLMiJraYxFKNxUEFsBtXJiIiQnZFOQU5mWIMxVGZYv1yWbKnkVV9LFgnV9U3sqG7gkqPH9KiZlmhSmJPBpGGFXDB9ZLvlDh7Vj/S02MVrbGhq4f531lCQk0FBOzOZj19+ZLcMlJKBfbj7a9MoLavh+//8lKbmVg34n99cRUaacNlxsVtURUQ4efIQdu9porq+qcfOMgLsN6gPA/pk9ah4jRU1Dawrr6VPVjpfndGp8FBKlDHGlBtjvmqM+Zsx5nVjzMvGmG/ixd26JGo72l9aX4cEXoqipBzbRPYJlwMwT4R5nXRNdcZjPExaXy6OlNZXrAmtnhrNV3RZjKdrDHIgsCTqe+skSTnTmJ+dSW2DF2C7vdhuXaWsyls9tLfONHaHgflZtBjD7bNX8oUDO55trG9qprSshow04aoTxsWplfFHRMjPzujweORlZTB5WCEfl8bGgHj2001s2V3HhG4sWBSpMXnkfgP4zdmTue7pz7jp5WUA1DU28/Snm/jGkaMZHOOHMqdMGsI9b3kiqTOmDO2gdOII6RpfWriFTTv39Ai36t+8uITmFsPYQX26HE5FiTnleLOOicHSKoUbeMK+cQRLfK2UXb7QGoXY2rAMK9/WRh5uKXLmWUtP2Apr+5Gl/WjMHvAsDbTN1hDaj/nLHWVs7Ha74jS6NJD2vuzjtdFKu7SBNvZjdFdMSHtfrmMEbbWFGY60a392WzMd+XY/7XpcvjV2eyIRbdj7cv1+rtiSdj60PWau+J+u39COKWrHZgw3jQRt+2/XY/+3I5kusXWMdptXWgfD7nOm9cOWOnawpwmGm/D6RNtYrLBOrKKDw9fVZuGbeBiKycXzwK0iMtYYswZAREqAo4FrE9kwSOKZRoCa+vDr5l54zwd73bm6QmimsbeF3IgGIsL3TxjPki2Ve1eubI+bXlpKTUMzYwb2aXfmqzcxvaSI+Rt2Ud8U3XWhm1sMf31rNZOGFYZ1kY0FX5kxikuOHsPf31vL9so6Nu+qIz1NuOK4/WK+76kj+pGVnkafrPS9uspo0d2Z2CAzxhRR39QS9d+8K7y5bDvPfLqJYf1ynF4FSvwRjwwRGSAilwEnA7cluFmKoijJRXOUXxEiIueJyHnAND/rVD/vOKvYfXgyhOdE5CwRORNvNdUNwD2d72x0SUqjMd83GivrYrOC6o4q32jshQvhRIOzDh5GyYA8bn99JcbxZArg+QWbefCDdQwpzKYohWIydpfDSvpT39TCok3BZ57d45XFW1lTVsOVM6Ozimik/Py0A5g5YRCl5bWUVdfzlcNGUlwYe9fvtDRhwpB8xg3u+qxqvAjpGmMdf7Yjquoa+fkznzGhuIBhcYoVqkTM9/CcocqAu4AfGmMechUWkctEZK6IzN2xY0e82qgoitKzMVF+Rc6T/usK//Nf/M+/2ts0Y2qAE4AVwMPAo8Ba4ARjTHUnexp1kvIxckG21+xY6RrLquvJSk+jMCcpD0/CyUhP46oTxnPNkwuYvXQ7nz9w30XLV22v4tqnFjJtdH/U+60t00Z7BsTc0gqmjY54heV2McbwlzmrGDOwD6dMHsLpMXLXDDf7lpGexh1fOYTD/9/r1DU2c8XM2M8yhkiWmbIDhhSSnibsqm1kbVkNOZlp5Gamk5OZTrYjTmosuPk/y9hWWcdfL5rGTS8HHfiUaCAiJwGvRVD0rcCKdo/j6RgH4gWAvlNEmo0xYZ8++3HC7gWYPn1699a9P8W7SG97pW12cTsPBRVFSS0qc9sO1gr3RP/8Dxv7MUUwxkQ02jXGrAfOjXFzukRyjKgChNwYY2U07qiuZ2B+Vo+LmZZMnH3wMO58YyW3zV7BSRMH8+V7PwQ8o6KmvokrHplHbmY6f/7qofzwX58muLU9i0EF2Ywd2IePS3dy+XEdl4+Ed1aWsWhTJb/90kEJ0agV5mQycWgBjc0tDO2rM1hB0tOEgpwMymsaOP7WOft8nyaQk5lOWXXsQgF9sLqcf360nsuOHcvUXhijNo68T1u5k4s2caWMMTuA0JThLBHJw9O+/N0Y0323G1ecxlM6vl7YxqM9sKysC1faXd7WLm6ztm2jS7RizR1qicDmbW9Nu/SDtk5sRPim7YNdzhXbL6jdDIdL62dva+vMXDERXftyxWa0j4Urxl+wTleMRNf+bAW+3Tf7cbFLo+nar0tL6TqOdhtccSZtXLEfg8IN+zext7FjeZZaaVt/uKkL+wth98f1vwhqI8eHzqtvtZ5TKx9o/X6AQ7tYYKetemwDLqML1kLF/Lafw2o5P2i9FoRdSEfpUSSl0RhyT/3FM5/x6tVRGlVblFU3qJ4xDJ2Ji5iRnsZVx4/jJ/9eyOylrXdzYwy/eOYzVu+o5uFLDmdIjMI+JDvTS/rz2pJttLQY0tox8iINxXD3nNUUF2ZzzqHD2y0XSzLT08iMwcJVqcLYgX2oqmviyuP3Y09DC3WNzdQ1NVPX0MwTczeyraqOHzz2KQ9/+/BOGf6R/Ef2NDRz7dMLKRmQx9Un7d9heaXrGGNqgWVRqGou8E28sfnGDsoqiqIoSrdITqPRd09tbonN1HVZVX2vNWaiOVA855Dh3PXmKm5/fQV5memICI9+tJ5n52/mx5/fn8+NHxj1faYK00uKeGLuRtaUVTNucNfiC4aMhWtPPYAP1pRz/ekTyc5Ij2YzlSiSmZ5GUZ8szjlk3zmQj9ZWkJeVzvury/nja8v5yckHRGWfof/IQcP7sq68lscvO4LcLP2PJAnHAdXA9o4KKoqiKEp3SUqjMaQ1jJnRWF3P5OGFHRdU2iUjPY3vHT+On/57IfsX55OZnsavX1jCzAmD+N7xqRteIxydNYwPK/EcOT4u3dllozHEX+aspl9eJl/ReHtJzaCCbA4rKeLPb67m0FH9OXHivlrhrlBd18Tf31vLRUeM4vCxrqACSqIQkcuBI4DZeDOKA4ALgPOAa40xDVHZ0YGB2esl0b+/7slv3UdudWrplRQl0YTcO4suiu/+IuYbVvmH9PxPRpLSaMyPodHY0mIor2nQlVOjxDmHDOeuN1axcecemloMA/Oz+NMFB7frcqlAyYA8BuZn8XFpRbeMvdqGJj5aW8EPTxxPn+ykPN27RarNYv/qrEks2rybqx+fz0s/OIaRRXkdbtPY3ILguYYHddotxrCmrIYhhTn87JTozF4qUecz4CzgVjxZUBlemMEzjDEvxXzvs1rvs5E8pmizOIalV8zs5AT2+PNb0yufbE1vsrSO86y0rZdy6fUOtS6B8wJLIthXR5dA1Nai2Weeva39uNnehUuLZgemskWsLt2fSwPp0hjiKOPSN4I7vqLdVrs/rjiHtY4yLj2oK/ajjX3cax1l7P7b7bf369JtBjWG9mdXzEuXLtHum11+uyPfrn+8lS511G/XM9H6E855oDV9eCDaVOhhjb3f4AI3e9vWzkI0QYOxw0VrvtHxmC/VFr5JRZJyFJnr331iYTTu2tNIc4thkGoao0JmehpXneDNNgrwl4um0V/Da3SIiDB9dBFzS3c6yzS3GNaV11Bd38xvXlzC9NH9mVbSn8EFra7VW3bXkZuZzsVHlcSh1UqsyclM5+6vTeOMO9/hu49+wr+vOIocx2i8pr6JP7y6gnnrdwFwwP/OYnBhNsUFORQX5jC4MJvV26vZ09jM3V86VOOk9lCMMe8DpyW6HYqiKMmPwf1YSOmIpDQaRYT0NKHZX+GpqbmF0vJalm+tYvnWSlZsq3IOpDqirFpjNEabcw4Zzs0vL6V/XhYH66qMETO9pD+zFm9lW2XdPnENm1sM1zy5gK2V9eRlpfPIh+v427trARhVlMf00f3ZsruOsuoGLjl6TI8w1FNt1i/aRHp8Rg3I448XHMx3HprLr15YzJodNfts/8aybfzvs4vZvHsPgwuyyclM59TJQ9hWWce2ynqWbq3krRX1VNc3MSg/i5kTBrt2pyiKoigpgqHtnK7SGZLSaARvifqdNY2cdvs7rNpRTUNTC+AtTZ+eJuysbWT+hl2dNlJ2VKnRGG0y09PYv7h7urzeSCjg+8elFZwxZdje/KbmFn785AKem7+ZEf1zGd4vl4e/fTiLNu/mk9KdzF1Xwdsrd1BW3YAAlx47JkE9UGLFSQcW892Z+3H3nNWMHdhnr2fE9qo6fvXCEl5auIX9i/P59xVH8rtZywG47rR9ozycd/f7GidVURRFUZQOSVqjsSA7g8q6RgYVZHPM+IHsX1zAhCEFjBucz0X3f8T8Dbu4ffYK/vGtGZ2qNzTTOKgg8TMzSu/mwKGF5GWlM7d0516jsam5haufWMALCzbz01Mm8NZyL2xbVkYah47qz6Gj+nMpYzHGcPaf36PFoHERU4Bws5A//vz+zF+/iw/XlpOXlc5j/13PTS8vpb6phWu+sD+XHbsfWRnthzhJRMxOJcWZEtl/yqWjUhQlsYTOTTtuamlgcq4kYD2EO5/3WJrj4q9HsOMLAnU8EQuNo7qndoekNRrHDc4H4MFL9jUK09OEIX1zeHP5jk7PNupMo9JTyEhP45BR/Xhi7gaWbqnkke8czv/8az4vfbaFa089gCuO22+v0RhERLrsoq0kBxnpadzxlUM46revs3hzJdc9/RlHjC3ipnMOYuyg/EQ3T0k2YrBaauF4YOG+9doDzAp7MRvLC7/imda0vaBIiVWm0drWVuSOcAQxX2ilRwfaZAfOtP1iXAvG2PmuIahrQZkKRxnX4jKuNkSysI2rjD34C6qZ7XZU0jGux5K2neFaaMjVT/sYlVjpTVba/p1cC9501jwIrptvB0C19+Fagsxut11XlZW21453HV970SFX3+zfbaN1sO1FdCpr2tYb7reyF6+K9GFOrjVEbmzuuPy2h6HY6EI3yU7SGo0dMaQwh+r6pk7PNpZVN5CZLvTN1UUhlMQzfXQR760qp7G5hR889in/WbSVX5w2kUuPHZvopik9gEEF2YwfnE9peS03nDmJ86eN2GeF1Pa0kqozVRRFUXoPqmnsDilrNKanCZceM5bfv7K8U7ONZdX1DOiTvc/AS1ESQShe49ItVcxbv4vrT5/Id45pNRh10K8U5GRy0PC+XDB9ZKKboiiKoig9GHVP7Q4pazQCfPOoEu57Zw13vL6Sv198WIflL7znA5ZtrWJkkWrAoo0aN13j4FH9ANjT2MwvzziQSz6ni9ooitJJ1n0Cl/oPQu+LvouY7dJWOL6dgoqiJJRt/oRIruXmvcpy8x6XQ+w415qMeUpdVZORlDYa87Mz9s42Ltiwi6kRzDY2NreonlHpMeRnZzCify5Z6WmdNhjVUFcUJd5UrmyrkQqHvcBGyfmt6W1PWvVY5dvo3urC59tatyKrfvsRsD3gsTVm0FYfVxVBvkvAYs9h2Pu2tXEjrLStXXPp+2xcGkUXGY60S0sZ3IeNvY1dV6WjTCTzOXYZ+1jb9djHyMal47Sxj2mtlS620rYOsb3t7TbZQYrs7e3jUmSl7f9nhSPdRrtrpV19s4/7AGvH26z/v3187T53lpIMKGoMf163ad+l1gMkaH1IdW4E3nsxWfgmiM40dof2l9ZLAb55VAn98jK5/fWVEZVvbG5hkBqNSg9ieL/cvSEVFCXI45cfqQ8IFEVRFCUimqL86j2kvNEYmm18Y9l2FmzY1W5ZYwxNzYaBOkBXFEVRFEVRFEUBktg9tTNP1kPaxttfX0lNfZNz+6YWg0HDbSiKoigpyumWm1hQv9QJnVFFZms9GRnhvwvmd+S2qihKzyUYjqNb53M4fWPQhTUmukd1T+0OSWs0tkfQILS1jZOGFZKfHb7bjc3eH3RgflbM26gokaKuh4qidIvR0+C+uW0NxijS1NSqd7KNSRe2MWnHYyy29I3FsFfjtM1azdxewKPU0jfad3VbA+dyHmtv8GNr0Sod+faw09Y62voue1tbx+hqh0snaO/X1tiVO+q022Nva2vy7PqDmrlItII2wdiGIexjZPfN1YdINJoFjnxXG1y/fySxMgGGW+ntjrQd83Opo1673fY+bG3k4ce1ple+Fb5OO8bj+IOs8p+1pjOA8Wbf89GO5UgdTPHLDLfOL1tvXHROa7ryBSLDtdCWbQBGom+MGRpyozukvHtqiG8cOZp+eZls2rnvZamyrpFHP1rHmh3VABQXxnL5KEVRFEVRFEVRlOQhJWcaw1GQk7l3trG6vomWFsP7q8t58pMNzFq0lfqmFnIz0xlVlMf00f0T3VxFURRFURRFUaKGuqd2h15jNII32/in11awekc1n7vlDTbvrqMwJ4MLpo/k/OkjuPHFJYgIGem9ZgJWURRFSXXWfgLf6IRL2CGBsp96rmVBTVNncWkdOyqvKErnCLl0Z7ZzrnX3fO6Q4Vb9fa38ibHdrRI7epXRWJCTybB+Oayv2MO44gKuO20inz+wmJzMdABE9AalKIqipCgDgIeioy3KyAi/EEabWG6fa62/4qPWbFsDudK675Y/GV6LletQjEzMaW3DPMf92xak2PMLwTiL9md7G1sr1+go49JAumIqjnbku3SMNq5BWyQxHl0xJIPHIs9K27ENXUowl6bTxqUbtLWeLn2jKyamq892/XZfcJTJdKQBSq20HefQ7rOtb3RpV+39lVhpO36jrWO0sXWVxda58J6lY5xo/TEarR+q0krbx6vIqifXOo/s867imdbz1KUZ7RJLgSVhtI8xWfgmiGoau0OvMhoBhhTmMLggh4cumZHopiiKoiiKoiiKEhfUPbU79DqjUURI1wlFRVEURVEURVGUiOh1RqOiKIqiKPuyJ997opo7PrLytitbG7fUTm5r01md1UKVlShKzAhpI4uPDvPluzGMrzg8Vue1uqd2BzUaLTQenqIoipJyjJkGD83dN98a3IUMRsC5UEXhaa3piuc73m3lJ61pW2dlL84xIKPV4HQZjNuseIyuWIO2ps0e2NiOaLY2LDhsdGkLXdo/l57Opb+zNYoVjjIuXWUkcRPt/kSiw4xUo+YqZ/chEh2j65ja+S79oatOOx5ncbCgj63JdGkX7f9LUA86wEq30QRa6XWOfNd/z5IiOuNO2u2wf1v7XLC3baNdtDqUifVA5yRLr+jQTxadaO3rFUfjImVTPDSKnUXdU7uDLhOqKIqiKIqiKIqiOOl1M406m6goiqIoiqIovQ11T+0OcTcaRWQk8Cfg84AAs4H/Mcasj3dbFEVRFKXXEC7ERlyWuW+fUl83VeQIraEoSmwJuYYXHhf5NqFwOeO/1H6dIfaG6PlW4Dr0j8Rfg5TIiKvRKCJ5wBtAPfBNPJP/RuBNEZlijKmJZ3sURVEURYHcamvgdoFjEQrLwHTFEbSx4zjaejB7MFlhabRsiiz9ZMarrekqq3yJZWTag11bi2Xrx+zYekHtmj0YsvVn6xxlXBrKSOI02ml7XyuttEtLZ+vY7Bh/rv3auPSJwWPRWU2nrRu0cZV3xYu0dZKR1H+olV5qpW1tpN0Gux7XMQoOihsdafuYDXbUZfdhlZW243ROudj68F5r8iP7z2BRARxu9o1xGnzgEi6GKrPDn7/2+Vj5Vuu2bXSigQdOK5+2PvQJ39ZuYesho7rYlWoau0O8ZxovBcYCE4wxqwBEZCHetfJy4I9xbo+iKIqiKIqiKL0CdU/tKvFeCOdM4MOQwQhgjFmL93zlrDi3RVEURVEURVEURemAeM80TgKeC5O/GDg/zm1RFEVRFCVSDrTcxIJiknX7usPZYTxyr4pRmxSll7EpEnfNI60yH+x7btpxUjNcloBdx7AIGwdu93YXIdfX4ATgc7HQOqp7aneIt9FYBOwMk18B9A+3gYhcBlwGMGrUqNi1TFEURVFSmUgXvXkitgtT7LF0iXZMucLbWtMLr2hN29rFXKt8U1NrDLqF1kDa1pLlRpCGtoMhW1tna79c+rtI9uGKL2i31dYxunR/pVZ6hJXe6Kiz3NEGW98X1Dq6NISuMq7YlLbuz+6PrTm07QT7WLviFNpttfWmNvZvaW+b6ci3ywePha3vdP3mLhMkw5G2+zb7gdb0oVah8VbajsHoiuVZap1TU45wNMhB4QERFNpMG+NzvKucZTA2ObxAKx5pTRedGcG+o4oajd0hEXEaw92NnI8ljDH3GmOmG2OmDxo0KIbNUhRFURRFURRFUYLEe6ZxJ+EXXetP+BlIRVEURVEURVGUbqJxGrtDvI3GxXi6xiAHAkvi3BZFURRFUZIYW5ulKEoYDrPOkY+77nrujLsYK8LFlVUSSryNxueBW0VkrDFmDYCIlABHA9fGuS2KoiiKokTKEmuQGMGArk3sR4vi37am7cVybB0jwBSz7/a2dnGENYKx00VWzMaK18O3rTLw2daKFROeUivdJs6dlbbjLrrmM1z6xnFWusKRtre1B3B2myOZR7HLbwt8Z+/D1u7Z9briTtq6TLseW0Xm0kza29r7csVUdOky7eNl99P1m9npoKbRbsdBVrrUSruOhd1u+39RbGl0l1paxD3WzuzfxN42+L8Nx8oPW9Pjp4cvUxRcevKfYRbLmduadi6WE+SJ8LEg2+y7MQJjM2YGo2oau0O8NY334Z1rz4nIWSJyJt5qqhuAe+LcFkVRFEVRFEVRegUh99RovnoPcTUajTE1wAnACuBh4FFgLXCCMaY6nm1RFEVRFEVRFEVROibe7qkYY9YD58Z7v4qiKIqiWATjqcUw1Ibthgpu11WboIZKUZTYsNJ3+x7RpxMbbbDOz5Ex1jdGDXVP7Q5xNxoVRVEURUlyIo352AEba1rTucB4X8foMhhLcsIvwGEviLPS0jHaGrMCKx3UybliMLpi/tn12myy0qd+qTX90dOtaVtnZw9f7biD9n5tbZhLu+cq74onWGWl7biJwbpcGj077dIKuuI32rh0jzZ2G1w6OZsSR3vs+m2doK0ltX8/gNFWeqlje7t92630FOtAbrT+PJssHWNQ33qo//8f/kdL6/vj1jK27tPWRtpxGm3Dr9TSJULrsal4sjWv3OFhmZvdzsOdDTF+oGNfXySa+9LVU7tDIuI0KoqiKIqiKIqiKEmCzjQqiqIoiqIoipLiqHtqd1CjUVEURVGSBBH5CvBPYJMxZkREG635pFW/GEPdYhDbxTQzve133YmvGKq3cHKXq1CUHsk83xXz0D/EaAedDWXhl9/zStvs3KVhynZmv1Fyb1fiixqNiqIoipIEiEg/4E/A1qhUGE8D0tIuZlojj/EHhy9feJ/1wYo1V3lI+PJ2HLlMS7I00covtfLHWXowgApLE1YElPjaslJLT2UroRodaVujVmrpGG0NoUsP6dIS2hpIW8do44oV6NqX3c5g3ET7O1tDaPff1gqWOPbh0onaGkr72LmUZraO03VcbC2iXadrW1fsy6AO026TS8dolxlspW2t4JSrWtOld7WmJ1p6xXmWoVj5i9a0HYO00qrT/s9OsfSzK63/XZvzayxhcWlPc092fAHsmRjZYlY9D9U0dgc1GhVFURQlOfgdsADYApyU4LYoiqIkGeqe2h10IRxFURRF6eGIyNHARcD3Et0WRVEUpfehM42KoiiK0oMRkUzgXuD3xphVEtUl6BVFUXoL6p7aHcSY5PFJFpEqYHmi25FABgJliW5EgujNfYfe3f/e3Hfo3f2fYIwp6LhYaiMi1wMXA5ONMXUi8gBwUnsL4YjIZcBl/scJJObe2Rv/u9rn3oH2OX6MNsYMikZFIjILrx/RpMwYc0qU6+yRJJvRONcYM73jkqlJb+5/b+479O7+9+a+Q+/ufyr2XUROAl6LoOhbxpiZIjIO+Aw4xxgzy6/jATowGnsCqfj7dYT2uXegfVZ6I+qeqiiKoijx431gYgTlQota3gG8AXzor54KkAWI/7neGONaJFNRFEVRooIajYqiKIoSJ4wxtcCyTmxyIDAa2Bnmu53A7cD/dL9liqIoiuIm2YzGexPdgATTm/vfm/sOvbv/vbnv0Lv735v7HuLLQCCqINcC04DzgY1xb1Hk9MbfT/vcO9A+K72OpNI0KoqiKEpvJ1k0jYqiKErqoHEaFUVRFEVRFEVRFCc606goiqIoiqIoiqI46VEzjSJyvIi8KyJ7RKRCRB4WkeIw5fqLyP0iUiYiNSIyW0QOSkSbu4KIjBCRO0XkAxGpFREjIiVhykXUTxHJEZHfi8gW/9h9ICLHxqUzXSCS/otIgYjcKiJzRKTSLzPTUV/S9D/Cvp8oIo+IyGq/P6tF5G4RGRymvqTpO0Tc/2kiMktENolInYhsFZGXReTIMPUlTf8jPe8D29zjl3skzHdJ03eI+Lcv8fPDvfoFyiZV/3szIrK/iNwuIgtFpNr/zZ4XkamJblssEZEficgLfn+NiNyQ6DZFCxEZKSL/FpHd/j36aREZleh2xZKuXMOTGRE5T0SeEpF1/jV2uYjcLCK9PnZub6XHGI0icgzwKrALOBf4IXAs8LqIZFvlBHgeOAX4vl82E3hTRJJF3zEOuABv5bt3whXoZD//BlwK/BI4A9gCvCIiB8ei8VGgw/4DA4BLgCY6jmmWTP2PpO9X4PX/Rrzf/2bgTLwl9/MDZZOp7xBZ//sBq4AfAyfj/f/7AW+JyIxA2WTqfyR934uIHAV8Dah0FEmmvkPn+n8zcGTgVRUok2z97818ATgeeBD4InAlMAj4SESmJbJhMeZSYDDwbILbEVVEJA8vDMwBwDeBrwPj8cYnfRLZthjTqWt4CnAN0Az8HG8scjfwXeA1Eekx9oMSR4wxPeIFzMYbKGZYeYcBBrjSyjvLzzveyusLVAB3JLofEfY1zUp/x+9PSaBMRP0EpvrlvmXlZQDLgecT3ddu9F+s9El+mZlh6kqq/kfY90FhtjvWL3tJsvY90v47tisA6oE7k7X/nek73gOiRcB1QCnwSOD7pOp7pP0HSvz873RQV9L1vze/gIH2Nd3P64s3+H4o0e2LYb/T/PcM//96Q6LbFKV+/RDPmBhn5Y3Be8j7o0S3L9a/p5+O+P6VrC/HWOQbfr9PSHT79BX/V096UnAE8JoxpimUYYz5GCgHzrHKnQlsNsa8aZXbDbyAZ2j1eIwxLREUi7SfZwKNwONWuSbgX8DJ9ixtTyGS/htjIhXbJlX/I+z7jjDZH/vvw628pOo7RPzfD0cNntHYaOUlVf872fefAOnAHxzfJ1XfoVu/fTiSrv+9GWNMWfCa7t/PVtD2mpZSRPk/35M4E/jQGLMqlGGMWQu8R5KMw7pCCv+eYenEWETpJfQko7EZaAiTXw9Mtj5PwnsCH2QxMCqM+16yEmk/JwFrjRcwOlguC8+dIpXpLf0/zn9fauWldN9FJE1EMn2dzF1+9v1WkZTsv4jsB1yP52ER7poIKdp3i5tFpMnXSz0v+2q5U73/KY+IFOHd25d2VFbpcbQ3Pjkwzm1R4ku4sYjSS+hJRuNyvNnGvYjIaGAoUGRlF+G5tASp8N/7x6R18SfSfnZUrijMd6lEyvffF53fhneRftb6KtX7/gTeg6R1eJre04wxS6zvU7X/fwWetr0MwpCqfa8H7gEux9PAXQMcBLwvIhOtcqna/97EnYDgXduU5KK98y9VxmBKABEZDvwamG2MmZvo9ijxpycZjbcDM0TkRhEZLCIHAA8DLf4rhOD5UweROLQxnkTaz95yPFykdP9FJAN4DM8V5Mu2+zYp3nfgp8AMPINxEfCiiEy3vk+5/ovIRXha7ms6KkqK9R3AGLPFGHOFMeZpY8w7xpj7aNXz/sIqmpL9TxZE5KR2Vrm1X3Mc218HfBW4ynZx7Ml0t88piJ5/vQjfu+05PN3qtxLcHCVBZCS6ASGMMY/6huI1eIMDg6dXeZm27qkVhH+KHHq6Fe7pVzISaT8rgHDLXPe3vk9lUrb//upkD+ItBHS6MWZhoEjK9h3AGLMGWAN8LCIv4hmOoRVlIcX679+U/wjcAtRZISbSgEz/c40xppEU63t7GGM2iMi7eMZ0iF7T/x7K+8DEDktB0H0YEbkCuAm43hjz92g3LIZ0uc8pyE7c45NUGYMpPiKSg7ea/1jgOGPMxgQ3SUkQPcZoBDDG/K+I/Bbvj7ndGLNNRJYC71rFFuMt3x3kQGC9MaY6Dk2NB5H2czFwjojkBfQ9B+K59iXFU9xukMr9/ytwIXCeMeb1MN+nct/bYIxpEJGFwMFWdqr1fyBeGIKb/JfNSLyl3s/Bc1FOtb53RHBmsbf1v0fhH/Nlnd1ORL4O/AX4gzHm/0W9YTGkq31OURbj6RqDHAgsCZOvJCkikgk8hef1c5Ix5rMEN0lJID3JPRUAY0yNMeYz32A8BS8O0F+tIs8Dw0UkJMZFRArxYj89H9/WxpRI+/k83vL851vlMvCMjVeNMfXxaW7CSMn+i8gf8Jb0/pYx5llHsZTsezj8uGDTgdVWdqr1fyueji/42oYXkuh4Wh+gpVrfnfgLIR0NfGRl95r+pwoicg7wD+B+Y0xH7tdKz+Z54AgRGRvK8IPcH01qjcN6Nb6306PAicBZxpgPE9wkJcH0mJlGETkEOBWY52d9Dm/Z+d8ZY963ij4PfAA8IiI/wXOFuA7vSfTv4tfi7iEi5/nJUGDjU0VkB7DDGPMWEfbTGDNfRB4HbvOfCK3FC746Bi8weI8kgv4jIqcCffAWwgA4TkQG4rno/QeSs/8d9V1Efgb8CPg7sFJE7AWidhhjVkNy9h0i6v89eO6Fc4EyYDRwFd6iWF8P1ZOM/Y/gfz8nzDZ1wDZjzN7vkrHvENFv/we8h5kfADuACXjXvRas2ddk7X9vRUSOxdNmLwQeCFzT6o0xnyamZbHF12CX0PqA/kDrHHg5zOq/ycJ9eNfk50TkejwvgN8AG/AWskpZIhm7pBB/xnsw9/+AmsB5u1HdVHsh0Qr42N0XnqvDu8AuYA+e8fgtR9kivAF1BZ5+4HVgaqL70Mn+GsdrTmf7CeTiaaG2AnV4T+RnJrqPUeh/qaNMaTL3v6O+4xkOrjIPJHPfI+z/JXj6oXK/T6uBfwIHhakrqfofyf8+zDalwCPJ3vdO/PYf4z0ka/L79k9gQir0v7e+gBva+e1LE92+GPb7gXb6XZLo9nWzb6Pw3BYrgSo8t/mk7lOE/e70NTxZX7jHYAa4IdHt01f8X+L/MRRFURRFURRFURRlH3qcplFRFEVRFEVRFEXpOajRqCiKoiiKoiiKojhRo1FRFEVRFEVRFEVxokajoiiKoiiKoiiK4kSNRkVRFEVRFEVRFMWJGo2KoiiKoiiKoiiKEzUalaRBRC4WESMi4xLdliAi8oCIlFqfS0TkBhEZG4N9lYrIA1Gq6wb/mBq7/e2UD/0GJdHYv2Mfs602PRKr/SiKosQCEXlCRCpEZEggP11E5orIShHJTVT7gvj3KyMiF1t5F4vIJWHKxvwe4GhjqXVfuCGO+x1h7deIyEnx2rei9DTUaFSU6PAb4Bzrcwnwf0DUjcYYcSRt259Ivo/Xnq2JboiiKEoXuAovAPpfAvnXAIcC3zHG7Il7q9xswbvmvmTlXQzsYzT6ZY70t4k3L/v7vj+O+9zu7/N7cdynovRIMhLdAEVJBYwxqxPdhu5gjPkw0W0IYYxZCiAi9Ylui6IoSmcxxmwXkauBB0XkfGPMkyKyP3ADcI8x5q3EtrAtxph6IKJ7gDFmB7Ajti1ysiPe9ypjTAPwoYjkxHO/itIT0ZlGJaUQkUwRudF3ZWnw328UkUyrTMgV53IR+bWIbBGRXSLygoiMCNSXJyJ3i0i5iFSJyDMiclQYV5697qkiMhN40//qNcutZab//T7uNeHcg/z8H/p9qPPdmo5x9HuMiDwqIjtEpF5E5otIt2YORWSsiLwkIrV+vbcD2Y6yl4rIAr+dZSLyNxEpCpQZJCKPiUiliOwUkX+IyJn2sVEURUkFjDEPAbOAu0RkEPA3PGPrZx1ta7mAHisiz4pItX8P+nPQrVVEhorIQ/51t15EForIRYEyQ0TkQRHZ7JfZIiIvishg//s29x8RmQMcBxxt3b/mBNpWYtUf1ftuZxGRqf69uVxE9ojIchG5zvp+joi8KyKn+PfGPSLyqYgcLiIZInKT354K/17epzvtUZRURWcalVTjQeAC4CbgXTy3kuvx3ES/Gih7HfA+ngvOYOAPwKN4N8sQ9wLn4z0hnguc6Jdpj3l4rix/Bn4AfOznL+lMR0Tk28BtwAPA48A44DGgIFBuJPARnhvN1XgDkwuBp0TkbGPM853Zr19nFvAakOv3ZTtwOfClMGV/C/wYuAP4CTAcuBGYLCJHGWOa/aJPAwfhHfdVwLnAnZ1tm6IoSpJwObAYbxZvLHC6MaayE9s/AjyB5+Y6A/gl0AfPdRTfuHkL6A/8HNgAXAQ8LCJ5xph7/XoeBkbjXZ83AMV497I8x36v9Ped7vcBoL12R/u+GzEiMgOYg3dPuRrYCIwHpgSKjgN+D/w/oBr4HfC8/8rAO6YT/TLbgZ92pT2KktIYY/Slr6R44V3UDTDO8f1k//sbAvnX+/lT/M8l/ue3AuWu8fOH+Z8nAC3ATwPl7vDLXWzlPQCUWp9n+mVOCtPOcG0ssevE8wLYAMwKlLvQL/eAlRd6gj0gUPY1YH4Hx/QG7zKwT/6l/n6OsPLS8AZABiix2t0M/DKw/dF+ubP9z1/wP18QKPe8nz8zTBtKgUcS/b/Tl770pa+uvoCb/WvcU53YJnSv+2sg/xf+9XZ///NV4a6fwGw8wyfd/1wN/KCd/bW5//h5c4B322lbif85qvfddtpYat/3rPy3/XtlXjvbzgEagbFW3pn+fmcHyj4NrA1Tx0wc93R96au3vNQ9VUkljvXfgytuhj4Hn2S+FPj8mf8+yn8/HBDgyUC5f3e1gZ1ghP96IpD/FNAUyDsFb4GA3b6rTYaIZACvAFNFpLAL+z8S2GAs/YgxpiVMez6PZ0w+Gtj3R3hPpkO/yRF4g51nAtvH41gqiqLEHf/a+3U8Y+MwESnoYJMgwevtv/CutzP8z8cCm4wxcwLlHgEGAQf6nz8GfuLLHQ4SEelkO9oj2vfdiBGRPLwHlI8aY2o7KL7CGLPG+rzMf38lUG4ZMCLKx0hRUgI1GpVUIqShC67qtjXwfYiKwOfQwishwftQ/317oNy2LrWuc4T23WZfxpgmoDxQdjDwDbwnqfbr9/73A7q4/3D9DOYN9t9Xhdl/obXvocBOY0xjB/UpiqKkCr/Hcx09He9aeXMntw9eH0Ofh/vvRYRfxTR4z7sQz6vjp8BCYJOI/FJEojEGjPZ9tzP0xxvHboyg7M7A54Z28jPwXHMVRbFQTaOSSoRuRkMAezXTUKysoLHVEaGb4GBgrZVf3PmmtaEeyArkBQ270L7b7MufxQuWLQfeAW5x7G9zF9q4BZgUJj/Y99Ax/QL73nzt77cA/UUkM2A4dvdYKoqi9DhE5Dg8N/8fG2P+IyI3Ar8WkX8aY96PsJpiPEmA/Rlgk/9egSejCNLmnmeM2Y6nTf+eiEwAvgn8Ck/WcHeEbXER7ftuZ9iJJyEZ3lFBRVG6j840KqlEaBnzLwfyv+a/v93J+j7Ccys6P5Af/ByO0NPTcAGc1+HpQGxOD3zeiKfTuCCQfy77PuyZhSf6X2yMmRvm1ZXQFR8AI0XkiFCG/1Q62J7X8G7aoxz7DhnbH+I9uQ2u6BrJsVQURUka/BVO78dzC73dz74FWATc7y80FgnB6+2X8a63//U/v4XnSnl0oNxX8TxklgYrNMYsN8b8HM/gCt6HbOoJf/8KEu37bsT4LqnvAhcFV5VVFCX66EyjkoycIiLBwO+7jTGvichjwA3+jNz7eNq8/wUeM8Ys7MxOjDHLReSfwG98g+kT4ATgi36RlnY2X4GnPbxERCrwbsDLjTFVeLqU60XkF3jG1DHAVwL7bhGRX+ENMP7hbzMOb+W54Cp2v8QbRLwtInfhLRjQH29AMNYYEy5Ac0c8CFwLPC0iP8cbgFyB53Jqt3O1iNyCt6z8BLwBRB0wEk/veL8x5k1jzKsi8i5wr4gMxHNnPQ+Y6lfV3rFUFEVJJn6Nt1rpl3wtOMaYRn9F7A/xFrT5vwjqOU1Efg+8iqdj/D/gIWPMCv/7B4Af4l2nf4H3sPFreNfey40xzSLSF29hnEfx9HqNwFl494hX29n3EuBKEbkQbwaxyhizPFjIGLM4mvfdLnAN3n3nAxH5A94xGAscbIz5foz3rSi9CjUalWQkXJiGxXhG0jeBNXjLeV+P55p5C54rTle4DKjC04JkAW/gufm8COx2bWSMKReRq/Bicr2FN8t2PN4qbjcD/fBWvrsWbxGbr+PNbNp1/E1E8oEf4RmVi/Ce5j4SKLdeRKbjrYR6E94CCOV++Qe70mljTIOIfB64C2+59xrgn3iLGPw1UPbnIrIU3/0Jb3Z2A/A6sNIq+iW83+4WvEVxnscbWDxAO8dSURQlWfCvxVcDNxljPrO/M8Z8LF6822tF5AljzOKwlbRyEV44o+/iae3uwzOSQvXV+G6wvwN+ixeOaTnwdWNM6D5RhxcG6lI8Q7bFL/M1Y8xz7ez7FjzX1/uBfLz72ExH2WjfdyPGP6ZH4xnqd+LFEl4H/CPW+1aU3oYYYxLdBkVJKkTkJ3g3xBJjzPpEt6c7iMgNeE+vM/FCbzS3v0XU9/9nvCXci0JutP6sbhrebOS7xpiL3DUoiqKkFiJyMZ7RM94YsyrBzekRiEgpnuH6baAlNIMbp31n4K0COxv4vDFmdrz2rSg9CZ1pVJR2EJEz8GYw5+M9oT0G70nvE8luMAZoxHs6WxKrHfgDob54s8JZeKFCrgB+H9BdvooXeBo8vYqiKIqifMN//QrPsybmiMgIPM8ZRen1qNGoKO1TBZyN50baB2/VujuITI+SDNyL52oLrYv3xIoa4H+A/fBciNYCP6c1NEiIK2nVTsZy5T1FURQlOfgi3n0DurYieFfZBhxmfd5H16kovQV1T1UURVEURVEURVGcaMgNRVEURVEURVEUxYkajYqiKIqiKIqiKIoTNRoVRVEURVEURVEUJ2o0KoqiKIqiKIqiKE7UaFQURVEURVEURVGc/H9K5Laq6G+7TQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "functions.name_plot_options(\"monitor\", data, log=True)\n", + "functions.name_plot_options(\"banana\", data, left_lim=90, right_lim=150)\n", + "plotter.make_sub_plot(data, fontsize=16)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Behind the scenes \n", + "McStasScript writes the instrument file and uses mcrun to compile and run it. The file can be found in the input_path selected when the instrument object were created. We can print it here to see what was done behind the scenes." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/********************************************************************************\n", + "* \n", + "* McStas, neutron ray-tracing package\n", + "* Copyright (C) 1997-2008, All rights reserved\n", + "* Risoe National Laboratory, Roskilde, Denmark\n", + "* Institut Laue Langevin, Grenoble, France\n", + "* \n", + "* This file was written by McStasScript, which is a \n", + "* python based McStas instrument generator written by \n", + "* Mads Bertelsen in 2019 while employed at the \n", + "* European Spallation Source Data Management and \n", + "* Software Center\n", + "* \n", + "* Instrument python_tutorial\n", + "* \n", + "* %Identification\n", + "* Written by: Python McStas Instrument Generator\n", + "* Date: 11:20:52 on January 07, 2022\n", + "* Origin: ESS DMSC\n", + "* %INSTRUMENT_SITE: Generated_instruments\n", + "* \n", + "* \n", + "* %Parameters\n", + "* \n", + "* %End \n", + "********************************************************************************/\n", + "\n", + "DEFINE INSTRUMENT python_tutorial (\n", + "wavelength = 2.8, // Wavelength in [Ang]\n", + "int order = 1 // Monochromator order, integer\n", + ")\n", + "\n", + "DECLARE \n", + "%{\n", + "double mono_Q = 1.714;\n", + "double wavevector;\n", + "double mono_rotation;\n", + "%}\n", + "\n", + "INITIALIZE \n", + "%{\n", + "// Start of initialize for generated python_tutorial\n", + "wavevector = 2.0*PI/wavelength;\n", + "mono_rotation = asin(mono_Q/(2.0*wavevector))*RAD2DEG;\n", + "printf(\"monochromator rotation = %g deg\\n\", mono_rotation);\n", + "%}\n", + "\n", + "TRACE \n", + "COMPONENT source = Source_div(\n", + " xwidth = 0.1, yheight = 0.05,\n", + " focus_aw = 1.2, focus_ah = 2.3,\n", + " lambda0 = wavelength, dlambda = 0.01*wavelength)\n", + "AT (0,0,0) ABSOLUTE\n", + "\n", + "COMPONENT guide = Guide_gravity(\n", + " w1 = 0.05, h1 = 0.05,\n", + " w2 = 0.05, h2 = 0.05,\n", + " l = 8, m = 3.5,\n", + " G = -9.82)\n", + "AT (0,0,2) RELATIVE source\n", + "\n", + "COMPONENT mono = Monochromator_flat(\n", + " zwidth = 0.05, yheight = 0.08,\n", + " Q = mono_Q)\n", + "AT (0,0,8.5) RELATIVE guide\n", + "ROTATED (0,mono_rotation,0) RELATIVE guide\n", + "\n", + "COMPONENT beam_dir = Arm()\n", + "AT (0,0,0) RELATIVE mono\n", + "ROTATED (0,mono_rotation,0) RELATIVE mono\n", + "\n", + "COMPONENT sample = PowderN(\n", + " reflections = \"Na2Ca3Al2F14.laz\", radius = 0.015,\n", + " yheight = 0.05)\n", + "AT (0,0,1.1) RELATIVE beam_dir\n", + "\n", + "COMPONENT banana = Monitor_nD(\n", + " xwidth = 2, yheight = 0.3,\n", + " restore_neutron = 1, options = \"theta limits=[5 175] bins=150, banana\",\n", + " filename = \"banana.dat\")\n", + "AT (0,0,0) RELATIVE sample\n", + "\n", + "COMPONENT monitor = PSD_monitor(\n", + " nx = 100, ny = 100,\n", + " filename = \"psd.dat\", xwidth = 0.05,\n", + " yheight = 0.08, restore_neutron = 1)\n", + "AT (0,0,0.1) RELATIVE sample\n", + "\n", + "FINALLY \n", + "%{\n", + "// Start of finally for generated python_tutorial\n", + "%}\n", + "\n", + "END\n", + "\n" + ] + } + ], + "source": [ + "with open(\"run_folder/python_tutorial.instr\") as file:\n", + " data = file.read()\n", + " print(data)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/source/tutorial/McStasScript_tutorial_2_SPLIT.ipynb b/docs/source/tutorial/McStasScript_tutorial_2_SPLIT.ipynb new file mode 100644 index 00000000..f7a581a4 --- /dev/null +++ b/docs/source/tutorial/McStasScript_tutorial_2_SPLIT.ipynb @@ -0,0 +1,315 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Advanced McStas features: SPLIT\n", + "McStas uses the Monte Carlo ray-tracing technique, which allows some tricks in how the physics is sampled as long as the resulting probability distributions matches the physics. This is possible as each ray has a weight, corresponding to how much intensity this ray represent. The SPLIT keyword can be used to split a ray into many equal parts, which can be useful if the remaining instrument has many different simulated and random outcomes. In this tutorial we will use the SPLIT keyword on a powder sample, as there are many powder Bragg peaks each ray could select, and splitting the ray samples this more efficiently." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setting up an example instrument\n", + "First we set up an example instrument, this is taken from the basic tutorial and correspond of source, guide, monochromator, sample and banana detector." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\", output_path=\"data_folder/mcstas_SPLIT\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument.add_component(\"Origin\", \"Progress_bar\")\n", + "\n", + "src = instrument.add_component(\"source\", \"Source_div\")\n", + "src.xwidth = 0.1\n", + "src.yheight = 0.05\n", + "src.focus_aw = 1.2\n", + "src.focus_ah = 2.3\n", + "\n", + "wavelength = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0 = wavelength\n", + "src.dlambda = \"0.03*wavelength\"\n", + "\n", + "guide = instrument.add_component(\"guide\", \"Guide_gravity\", AT=[0,0,2], RELATIVE=src)\n", + "guide.w1 = 0.05\n", + "guide.w2 = 0.05\n", + "guide.h1 = 0.05\n", + "guide.h2 = 0.05\n", + "guide.l = 8.0\n", + "guide.m = 3.5\n", + "guide.G = -9.82\n", + "\n", + "mono_Q = instrument.add_declare_var(\"double\", \"mono_Q\", value=1.714) # Q for Ge 311\n", + "instrument.add_declare_var(\"double\", \"wavevector\")\n", + "instrument.append_initialize(\"wavevector = 2.0*PI/wavelength;\")\n", + "\n", + "mono_rotation = instrument.add_declare_var(\"double\", \"mono_rotation\")\n", + "instrument.append_initialize(\"mono_rotation = asin(mono_Q/(2.0*wavevector))*RAD2DEG;\")\n", + "instrument.append_initialize('printf(\"monochromator rotation = %g deg\\\\n\", mono_rotation);')\n", + "\n", + "mono = instrument.add_component(\"mono\", \"Monochromator_flat\")\n", + "mono.zwidth = 0.05\n", + "mono.yheight = 0.08\n", + "mono.Q = mono_Q\n", + "mono.set_AT([0, 0, 8.5], RELATIVE=guide)\n", + "mono.set_ROTATED([0, mono_rotation, 0], RELATIVE=guide)\n", + "\n", + "beam_direction = instrument.add_component(\"beam_dir\", \"Arm\", AT_RELATIVE=mono)\n", + "beam_direction.set_ROTATED([0, \"mono_rotation\", 0], RELATIVE=\"mono\")\n", + "\n", + "sample = instrument.add_component(\"sample\", \"PowderN\", AT=[0,0,1.1], RELATIVE=beam_direction)\n", + "sample.radius = 0.015\n", + "sample.yheight = 0.05\n", + "sample.reflections = '\"Na2Ca3Al2F14.laz\"'\n", + "\n", + "banana = instrument.add_component(\"banana\", \"Monitor_nD\", RELATIVE=sample)\n", + "banana.xwidth = 2.0\n", + "banana.yheight = 0.3\n", + "banana.restore_neutron = 1\n", + "banana.filename = '\"banana.dat\"'\n", + "banana.options = '\"theta limits=[5 175] bins=150, banana\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Running the simulation\n", + "Here we run the simulation with very few neutrons to show problematic sampling." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "instrument.settings(ncount=1E5)\n", + "\n", + "instrument.set_parameters(wavelength=2.8)\n", + " \n", + "instrument.backengine()\n", + "data_low = instrument.data\n", + "\n", + "plotter.make_sub_plot(data_low)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding the SPLIT keyword\n", + "Here we add the SPLIT keyword to the sample, we choose to split each ray into 30." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sample.set_SPLIT(30)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "# No need to set settings or parameters as these have not changed\n", + "instrument.backengine()\n", + "data_reasonable = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plotter.make_sub_plot(data_reasonable)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding the SPLIT keyword\n", + "It is however possible to mismanage splitting, mainly by simulating a too few rays and splitting too much. Here we do this on purpose to see how such data would look. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "sample.set_SPLIT(10000)\n", + "\n", + "instrument.settings(ncount=1E3) # Change settings to lower ncount, but keep parameters\n", + " \n", + "instrument.backengine()\n", + "data_unreasonable = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plotter.make_sub_plot(data_unreasonable)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Comparison with high statistics run\n", + "We here compare the different runs to a reference. The reference run is set up to have 50 times more rays than the earlier runs with 5E7 instead of 1E6 rays." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "sample.set_SPLIT(1)\n", + "instrument.settings(ncount=1E5) #1E7\n", + " \n", + "instrument.backengine()\n", + "data_ref = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plotter.make_sub_plot(data_ref)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plotting data on same plot\n", + "Here we only have one monitor in each data list, but we still use the *name_search* function to retrieve the correct data object from each. This avoids the code breaking in case additional monitors are added.\n", + "\n", + "Once we have the objects, we use the *xaxis*, *Intensity* and *Error* attributes to plot the data with matplotlib." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "banana_low = functions.name_search(\"banana\", data_low)\n", + "banana_reasonable = functions.name_search(\"banana\", data_reasonable)\n", + "banana_unreasonable = functions.name_search(\"banana\", data_unreasonable)\n", + "banana_ref = functions.name_search(\"banana\", data_ref)\n", + "\n", + "plt.figure(figsize=(14,6))\n", + "plt.errorbar(banana_low.xaxis, banana_low.Intensity, yerr=banana_low.Error, fmt=\"r\")\n", + "plt.errorbar(banana_ref.xaxis, banana_ref.Intensity, yerr=banana_ref.Error, fmt=\"b\")\n", + "plt.xlabel(\"2Theta [deg]\")\n", + "plt.ylabel(\"Intensity [n/s]\")\n", + "plt.legend([\"Low statistics\", \"High statistics reference\"])\n", + "\n", + "plt.figure(figsize=(14,6))\n", + "plt.errorbar(banana_reasonable.xaxis, banana_reasonable.Intensity, yerr=banana_reasonable.Error, fmt=\"r\")\n", + "plt.errorbar(banana_ref.xaxis, banana_ref.Intensity, yerr=banana_ref.Error, fmt=\"b\")\n", + "plt.xlabel(\"2Theta [deg]\")\n", + "plt.ylabel(\"Intensity [n/s]\")\n", + "plt.legend([\"Low statistics with SPLIT\", \"High statistics reference\"])\n", + "\n", + "plt.figure(figsize=(14,6))\n", + "plt.errorbar(banana_unreasonable.xaxis, banana_unreasonable.Intensity, yerr=banana_unreasonable.Error, fmt=\"r\")\n", + "plt.errorbar(banana_ref.xaxis, banana_ref.Intensity, yerr=banana_ref.Error, fmt=\"b\")\n", + "plt.xlabel(\"2Theta [deg]\")\n", + "plt.ylabel(\"Intensity [n/s]\")\n", + "plt.legend([\"Very low statistics with unreasonable SPLIT\", \"High statistics reference\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpretation of the data\n", + "We see that with low statistics, the data quality is so bad that noise can be mistaken for peaks. Using SPLIT improves the situation a lot, and the data is very similar to the high statistics reference which takes longer to compute. The situation with a low number of simulated rays and very high SPLIT have some erratic behavior, showing some very different peak intensities than the reference, and some peaks that shouldn't be there at all." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/source/tutorial/McStasScript_tutorial_3_EXTEND_and_WHEN.ipynb b/docs/source/tutorial/McStasScript_tutorial_3_EXTEND_and_WHEN.ipynb new file mode 100644 index 00000000..c37d5b61 --- /dev/null +++ b/docs/source/tutorial/McStasScript_tutorial_3_EXTEND_and_WHEN.ipynb @@ -0,0 +1,263 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Advanced McStas features: EXTEND and WHEN\n", + "In this tutorial we will look at two advanced features in McStas, the EXTEND block and WHEN condition. Here we will use them to flag certain neutrons with EXTEND, and only record them in monitors when the flag is set using a WHEN condition." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument = instr.McStas_instr(\"python_tutorial\",\n", + " input_path=\"run_folder\",\n", + " output_path=\"data_folder/mcstas_EXTEND_WHEN\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Set up an example McStas instrument\n", + "First we set up an example instrument conisiting of a source, a guide and a position/divergence monitor. The guide is set up such that it only has mirrors on the left and right side, and absorbs neutrons if they hit the top or bottom. This is done to look at the horizontal behavior independently from the vertical, as this is easier to analyze." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "src = instrument.add_component(\"source\", \"Source_simple\")\n", + "\n", + "src.xwidth = 0.02\n", + "src.yheight = 0.02\n", + "src.focus_xw = guide_opening_w = 0.05\n", + "src.focus_yh = guide_opening_h = 0.06\n", + "src.dist = 1.5\n", + "src.flux = 1E13\n", + "\n", + "wavelength = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0 = wavelength\n", + "src.dlambda = \"0.001*wavelength\"" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "guide = instrument.add_component(\"guide\", \"Guide_gravity\", AT=[0,0,1.5], RELATIVE=src)\n", + "guide.w1 = guide_opening_w\n", + "guide.h1 = guide_opening_h\n", + "guide.w2 = guide_opening_w\n", + "guide.h2 = guide_opening_h\n", + "guide.l = guide_length = 15\n", + "guide.mleft = 4.0\n", + "guide.mright = 4.0\n", + "guide.mtop = 0.0\n", + "guide.mbottom = 0.0\n", + "guide.G = -9.82" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "acceptance = instrument.add_component(\"acceptance\", \"DivPos_monitor\")\n", + "acceptance.set_AT([0,0, guide_length + 0.1], RELATIVE=guide)\n", + "acceptance.nh = 200\n", + "acceptance.ndiv = 200\n", + "acceptance.filename = '\"acceptance.dat\"'\n", + "acceptance.xwidth = 0.08\n", + "acceptance.yheight = 0.05\n", + "acceptance.maxdiv_h = 1.5\n", + "acceptance.restore_neutron = 1" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "instrument.set_parameters(wavelength=2.8)\n", + "instrument.settings(ncount=5E5)\n", + "instrument.backengine()\n", + "data = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpreting the data\n", + "Here we see an acceptance monitor, with position along the x-axis and divergence along the y-axis. The guide is under illuminated by the small source, so there are gaps in the acceptance diagram. We see the position and divergence of the beam consist of a large number of stripes, the ones with lowest divergence has the largest intensity.\n", + "\n", + "## Add an flag\n", + "A flag is just a name for a variable that records some information on the neutron during the simulation, and can be used later to make a decision. Here we could check how many times the ray was reflected in the guide.\n", + "\n", + "We use an EXTEND block after a component to access variables internal to the component in the instrument scope. We declare a variable in the instrument scope called *n_reflections*. In the component scope, one can use the SCATTERED variable which contains the number of times the ray has encountered the SCATTER keyword within the component. Usually this is done when entering and leaving, and under each scattering / reflection, so the number of reflections is SCATTERED - 2." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument.add_declare_var(\"int\", \"n_reflections\")\n", + "guide.append_EXTEND(\"n_reflections = SCATTERED - 2;\")\n", + "guide.print_long()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Use the flag to limit what is recorded in a monitor\n", + "A WHEN statement can be used to activate / deactivate a component when some condition is true / false. For example we could require 0 reflection in our guide. We add a few monitors similar to the original, with the only difference being WHEN statements requiring 0, 1 or 2 reflections in the guide for the component to be active. We use a for loop to add the similar components, only changing the component instance name, filename and WHEN statement between each." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "reflection_numbers = [0, 1, 2]\n", + "\n", + "for reflections in reflection_numbers:\n", + " reflections_string = str(reflections)\n", + " \n", + " acceptance = instrument.add_component(\"acceptance_\" + reflections_string, \"DivPos_monitor\")\n", + " acceptance.filename = '\"acceptance_' + reflections_string + '.dat\"'\n", + " acceptance.set_WHEN(\"n_reflections == \" + reflections_string)\n", + " \n", + " acceptance.set_AT([0,0, guide_length + 0.1], RELATIVE=guide)\n", + " acceptance.nh = 200\n", + " acceptance.ndiv = 200\n", + " acceptance.xwidth = 0.08\n", + " acceptance.yheight = 0.05\n", + " acceptance.maxdiv_h = 1.5\n", + " acceptance.restore_neutron = 1\n", + " \n", + " acceptance.print_long()\n", + " print(\"\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Running the simulation\n", + "We now run the simulation with the new monitors to see how they differ from the original version." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "instrument.set_parameters(wavelength=2.8)\n", + "instrument.settings(ncount=5E5)\n", + "instrument.show_settings()\n", + "\n", + "instrument.backengine()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plotter.make_sub_plot(instrument.data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpretation of the data\n", + "The original monitor is unchanged as it was not modified. On the monitors with different numbers of reflections, we see the middle line correspond to zero reflections, the two lines around those are for one reflection and so forth. This explains why the lines further from the center has lower intensity, as they underwent more reflections while also having a larger angle of incidence." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The McStas instrument file\n", + "We here show the generated McStas instrument file in order to clarify how this would be accomplished without the McStasScript API." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "with open(\"run_folder/python_tutorial.instr\") as file:\n", + " instrument_string = file.read()\n", + " print(instrument_string)" + ] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/source/tutorial/McStasScript_tutorial_4_JUMP.ipynb b/docs/source/tutorial/McStasScript_tutorial_4_JUMP.ipynb new file mode 100644 index 00000000..8e679da4 --- /dev/null +++ b/docs/source/tutorial/McStasScript_tutorial_4_JUMP.ipynb @@ -0,0 +1,281 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Advanced McStas features: JUMP\n", + "In this notebook we will look at JUMP and how it can be used to control the sequence of execution of components. One instance where this is useful is if a guide splits into two. Consider an instrument with the following components:\n", + "\n", + "- source\n", + "- main guide\n", + "- guide1\n", + "- sample1\n", + "- detector1\n", + "- guide2\n", + "- sample2\n", + "- detector2\n", + "\n", + "After the main guide, if the ray hits the opening of guide1 the ray will continue to sample1 and detector1 as expected, but if it misses the opening of guide1, it will just be absorbed and never reach guide2 later in the component sequence. One possible solution is to use a JUMP statement, which jumps to another place in the component sequence. The target component must be an Arm, and no coordinate transformations are done, so the simplest solution is to have the Arm conincide with the component with the JUMP statement.\n", + "\n", + "- source\n", + "- main guide\n", + "- arm A JUMP arm B WHEN ray hits guide2 entrance \n", + "- guide1\n", + "- sample1\n", + "- detector1\n", + "- arm B (same position and rotation of arm A)\n", + "- guide2\n", + "- sample2\n", + "- detector2\n", + "\n", + "Here we build such an instrument with a few notes on the syntax along the way." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "src = instrument.add_component(\"source\", \"Source_simple\")\n", + "\n", + "src.xwidth = 0.12\n", + "src.yheight = 0.12\n", + "src.focus_xw = guide_opening_w = 0.1\n", + "src.focus_yh = guide_opening_h = 0.06\n", + "src.dist = 1.5\n", + "src.flux = 1E13\n", + "\n", + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.dlambda = \"0.001*wavelength\"\n", + "\n", + "guide = instrument.add_component(\"guide\", \"Guide_gravity\", AT=[0,0,1.5], RELATIVE=src)\n", + "guide.w1 = guide_opening_w\n", + "guide.h1 = guide_opening_h\n", + "guide.w2 = guide_opening_w\n", + "guide.h2 = guide_opening_h\n", + "guide.l = guide_length = 15\n", + "guide.m = 4.0\n", + "guide.G = -9.82" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding the reference arm\n", + "We here add an arm just after the exit of the main guide which will be the component that performs the JUMP under certain circumstances. The McStas syntax for such a JUMP statement would be:\n", + "\n", + "JUMP *reference* WHEN *condition*\n", + "\n", + "We will call the arm we jump to for *target_arm*, and our condition is that the neutron is on the left side, so x<0. That means our JUMP statement would be:\n", + "\n", + "JUMP target_arm WHEN (x<0)\n", + "\n", + "In McStasScript this is added with the *set_JUMP* method, that takes a string for what to set after JUMP." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "start_arm = instrument.add_component(\"split_arm\", \"Arm\")\n", + "start_arm.set_AT([0,0, guide_length + 3E-3], RELATIVE=guide)\n", + "start_arm.set_JUMP(\"target_arm WHEN (x<0)\")\n", + "\n", + "print(start_arm)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding the first daughter instrument\n", + "We then add the left side, which correspond to x>0, so this is the case where no jump was performed and the sequence of components runs as normal." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "guide1 = instrument.add_component(\"guide1\", \"Guide_gravity\")\n", + "guide1.set_AT([0.25*guide_opening_w,0,0], RELATIVE=start_arm)\n", + "guide1.set_ROTATED([0, 1, 0], RELATIVE=start_arm)\n", + "guide1.w1 = 0.5*guide_opening_w\n", + "guide1.h1 = 0.5*guide_opening_h\n", + "guide1.w2 = 0.5*guide_opening_w\n", + "guide1.h2 = 0.5*guide_opening_h\n", + "guide1.l = guide1_length = 10\n", + "guide1.m = 2.5\n", + "guide1.G = -9.82\n", + "\n", + "sample1 = instrument.add_component(\"sample1\", \"PowderN\")\n", + "sample1.set_AT([0,0,guide1_length+0.5], RELATIVE=guide1)\n", + "sample1.radius = 0.015\n", + "sample1.yheight = 0.05\n", + "sample1.reflections = '\"Na2Ca3Al2F14.laz\"'\n", + "\n", + "banana1 = instrument.add_component(\"banana1\", \"Monitor_nD\", RELATIVE=sample1)\n", + "banana1.xwidth = 2.0\n", + "banana1.yheight = 0.3\n", + "banana1.filename = '\"banana1.dat\"'\n", + "banana1.options = '\"theta limits=[5 175] bins=150, banana\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding the second daughter instrument\n", + "Now we need to add the target_arm that rays jump to when they go to the right side of the guide split. This is in the exact same position of the previous arm, to avoid the need for a coordinate transformation which is not performed automatically when using JUMP statements.\n", + "\n", + "After that we add a second daughter instrument with a different sample." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "target_arm = instrument.add_component(\"target_arm\", \"Arm\")\n", + "target_arm.set_AT([0,0,0], RELATIVE=start_arm)\n", + "\n", + "guide2 = instrument.add_component(\"guide2\", \"Guide_gravity\")\n", + "guide2.set_AT([-0.25*guide_opening_w,0,0], RELATIVE=target_arm)\n", + "guide2.set_ROTATED([0, -1, 0], RELATIVE=target_arm)\n", + "guide2.w1 = 0.5*guide_opening_w\n", + "guide2.h1 = 0.5*guide_opening_h\n", + "guide2.w2 = 0.5*guide_opening_w\n", + "guide2.h2 = 0.5*guide_opening_h\n", + "guide2.l = guide1_length = 15\n", + "guide2.m = 2.5\n", + "guide2.G = -9.82\n", + "\n", + "sample2 = instrument.add_component(\"sample2\", \"PowderN\")\n", + "sample2.set_AT([0,0,guide1_length+0.5], RELATIVE=guide2)\n", + "sample2.radius = 0.015\n", + "sample2.yheight = 0.05\n", + "sample2.reflections = '\"Cu.laz\"'\n", + "\n", + "banana2 = instrument.add_component(\"banana2\", \"Monitor_nD\", RELATIVE=sample2)\n", + "banana2.xwidth = 2.0\n", + "banana2.yheight = 0.3\n", + "banana2.filename = '\"banana2.dat\"'\n", + "banana2.options = '\"theta limits=[5 175] bins=150, banana\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Running the simulation" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "instrument.set_parameters(wavelength=2.8)\n", + "instrument.settings(ncount=5E5, output_path=\"data_folder/mcstas_JUMP\")\n", + "instrument.backengine()\n", + "\n", + "data = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Interpretation of the data\n", + "We see that each daughter instrument have beam and show the different powder patterns as expected." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### The McStas instrument file\n", + "We here show the generated McStas instrument file in order to clarify how this would be accomplished without the McStasScript API." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "with open(\"run_folder/python_tutorial.instr\") as file:\n", + " instrument_string = file.read()\n", + " print(instrument_string)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/source/tutorial/Union_tutorial_1_processes_and_materials.ipynb b/docs/source/tutorial/Union_tutorial_1_processes_and_materials.ipynb new file mode 100644 index 00000000..9584bf80 --- /dev/null +++ b/docs/source/tutorial/Union_tutorial_1_processes_and_materials.ipynb @@ -0,0 +1,1151 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# The Union components\n", + "This tutorial is the first in a series showing how the Union components are used. This notebook focuses on setting up material definitions that are used to provide scattering physics to geometries. There are several kinds of Union components, and they need to be used in conjunction with one another to function.\n", + "- Process components: Describe individual scattering phenomena, such as incoherent, powder, single crystal scattering\n", + "- Make_material component: Joins several processes into a material definition\n", + "- Geometry components: Describe geometry, each is assigned a material definition\n", + "- Union logger components: Records information for each scattering event and plots it\n", + "- Union abs logger components: Records information for each absorption event and plots it\n", + "- Union conditional components: Modifies a logger or abs logger so it only records when certain final condition met\n", + "- Union master component: Performs simulation described by previous Union components\n", + "\n", + "In this notebook we will focus on setting up materials using process components and the *Union_make_material* component, but the Union components can not work individually, so it will also be necessary to add a geometry and the *Union_master*. First we import McStasScript and create a new instrument object.\n", + "\n", + "In case of any issues with running the tutorial notebooks there is troubleshooting at the end of this notebook." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Process components\n", + "In this notebook we will focus on exploring how to build different physical descriptions of materials, and checking that they behave as expected. We start by looking at the process component for incoherent scattering, Incoherent_process." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here are all components in the Work directory category.\n", + "No components found in this category! Available categories:\n", + " sources\n", + " optics\n", + " samples\n", + " monitors\n", + " misc\n", + " contrib\n", + " union\n", + " obsolete\n" + ] + } + ], + "source": [ + "instrument.show_components(\"Work directory\")" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Incoherent_process ________________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[1msigma\u001b[0m = \u001b[1m\u001b[94m5.08\u001b[0m\u001b[0m [barns] // Incoherent scattering cross section\n", + "\u001b[1mf_QE\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [1] // Fraction of quasielastic scattering (rest is elastic)\n", + "\u001b[1mgamma\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [1] // Lorentzian width of quasielastic broadening (HWHM)\n", + "\u001b[1mpacking_factor\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // How dense is the material compared to optimal 0-1\n", + "\u001b[1munit_cell_volume\u001b[0m = \u001b[1m\u001b[94m13.8\u001b[0m\u001b[0m [AA^3] // Unit_cell_volume\n", + "\u001b[1minteract_fraction\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // How large a part of the scattering events \n", + " should use this process 0-1 (sum of all processes \n", + " in material = 1) \n", + "-------------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "instrument.component_help(\"Incoherent_process\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The process components in general have few parameters as they just describe a single physical phenomena. The incoherent process here is described adequately by just the cross section *sigma* and volume of the unit cell, *unit_cell_volume*.\n", + "\n", + "Two parameters are available for all processes, *packing_factor* and *interact_fraction*. The packing factor describes how dense the material is, and can make it easier to mix for example different powders. It is implemented as a simple factor on the scattering strength. The interact fraction is used to balance many processes when they are used in one material. Normally processes are sampled according to they natural probability for scattering, but this can be overwritten using the *interact_fraction*, which provides the sampling probability directly, they just have to sum to 1 within a material." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "incoherent = instrument.add_component(\"incoherent\", \"Incoherent_process\")\n", + "incoherent.sigma = 2.5\n", + "incoherent.unit_cell_volume = 13.8" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Making a material\n", + "In order to collect processes into a material, one uses the *Union_make_material* component. Here are the parameters." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Union_make_material _______________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[1mprocess_string\u001b[0m = \u001b[1m\u001b[94m\"NULL\"\u001b[0m\u001b[0m [string] // Comma seperated names of physical processes\n", + "\u001b[4m\u001b[1mmy_absorption\u001b[0m\u001b[0m [1/m] // Inverse penetration depth from absorption at standard \n", + " energy \n", + "\u001b[1mabsorber\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [0/1] // Control parameter, if set to 1 the material will have \n", + " no scattering processes \n", + "-------------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "instrument.component_help(\"Union_make_material\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A material definition thus consists of a number of processes given with the *process_string* parameter, and a description of the absorption in the material given with the inverse penetration depth at the standard neutron speed of 2200 m/s. For our first test material, lets just set absorption to zero and set our process_string to incoherent, referring to the process we created above.\n", + "\n", + "The name of the material is now inc_material, which will be used in the future to refer to this material." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "inc_material = instrument.add_component(\"inc_material\", \"Union_make_material\")\n", + "inc_material.my_absorption = 0.0\n", + "inc_material.process_string = '\"incoherent\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If the material contains no physical processes, it is necessary to set the *absorber* parameter to 1, as it will just have an absorption description. Here we make a material called abs_material. " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "absorber = instrument.add_component(\"abs_material\", \"Union_make_material\")\n", + "absorber.absorber = 1\n", + "absorber.my_absorption = 3.0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The primary reason for having both process components and a make_material component is that it is possible to add as many processes in one material as necessary. Here we create a powder process, and then make a material using the powder and previously defined incoherent processes." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "powder = instrument.add_component(\"powder\", \"Powder_process\")\n", + "powder.reflections = '\"Cu.laz\"'\n", + "\n", + "inc_material = instrument.add_component(\"powder_material\", \"Union_make_material\")\n", + "inc_material.my_absorption = 1.2\n", + "inc_material.process_string = '\"incoherent,powder\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "At this point we have three materials defined\n", + "\n", + "| Material name | Description |\n", + "|-----------------|------------------------------------------------------------------|\n", + "| inc_material | Has one incoherent process and no absorption |\n", + "| abs_material | Only has absorption |\n", + "| powder_material | Has both incoherent and powder process in addition to absorption |\n", + "\n", + "Let us defined a quick test instrument to see these materials are behaving as expected. First we add a source." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "src = instrument.add_component(\"source\", \"Source_div\")\n", + "\n", + "source_width = instrument.add_parameter(\"source_width\", value=0.15, comment=\"Width of source in [m]\")\n", + "src.xwidth = source_width\n", + "src.yheight = 0.03\n", + "src.focus_aw = 0.01\n", + "src.focus_ah = 0.01\n", + "\n", + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.dlambda = \"0.001*wavelength\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding geometries that use the material definitions\n", + "Here we add three boxes, each using a different material definition and placed next to one another. The *material_string* parameter is used to specify the material name. The *priority* parameter will be explained later, as it is only important when geometries overlap, here they are spatially separated, yet the priorties must still be unique.\n", + "\n", + "It is important to note that these three boxes will be simulated simultaneously in the McStas simulation flow, so no need for GROUP statements to have these in parallel. Because they are simulated simultaneously, a ray can go from one to another, which would not be possible with a standard GROUP." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [], + "source": [ + "box_inc = instrument.add_component(\"box_inc\", \"Union_box\", AT=[0.04,0,1], RELATIVE=src)\n", + "box_inc.xwidth = 0.03\n", + "box_inc.yheight = 0.03\n", + "box_inc.zdepth = 0.03\n", + "box_inc.material_string = '\"inc_material\"'\n", + "box_inc.priority = 10\n", + "\n", + "box_inc = instrument.add_component(\"box_powder\", \"Union_box\", AT=[0,0,1], RELATIVE=src)\n", + "box_inc.xwidth = 0.03\n", + "box_inc.yheight = 0.03\n", + "box_inc.zdepth = 0.01\n", + "box_inc.material_string = '\"powder_material\"'\n", + "box_inc.priority = 11\n", + "\n", + "box_inc = instrument.add_component(\"box_abs\", \"Union_box\", AT=[-0.04,0,1], RELATIVE=src)\n", + "box_inc.xwidth = 0.03\n", + "box_inc.yheight = 0.03\n", + "box_inc.zdepth = 0.03\n", + "box_inc.material_string = '\"abs_material\"'\n", + "box_inc.priority = 12" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding loggers that show scattering and absorption\n", + "In order to check the three materials behave as expected, we add spatial loggers for scattering and absorption. These are called loggers and abs_loggers, here is the parameters for a logger." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Union_logger_2D_space _____________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[1mtarget_geometry\u001b[0m = \u001b[1m\u001b[94m\"NULL\"\u001b[0m\u001b[0m [string] // Comma seperated list of geometry names \n", + " that will be logged, leave empty for all \n", + " volumes (even not defined yet) \n", + "\u001b[1mtarget_process\u001b[0m = \u001b[1m\u001b[94m\"NULL\"\u001b[0m\u001b[0m [string] // Comma seperated names of physical \n", + " processes, if volumes are selected, one can \n", + " select Union_process names \n", + "\u001b[1mD_direction_1\u001b[0m = \u001b[1m\u001b[94m\"x\"\u001b[0m\u001b[0m [string] // Direction for first axis (\"x\", \"y\" or \"z\")\n", + "\u001b[1mD1_min\u001b[0m = \u001b[1m\u001b[94m-5.0\u001b[0m\u001b[0m [1] // histogram boundery, min position value for first axis\n", + "\u001b[1mD1_max\u001b[0m = \u001b[1m\u001b[94m5.0\u001b[0m\u001b[0m [1] // histogram boundery, max position value for first axis\n", + "\u001b[1mn1\u001b[0m = \u001b[1m\u001b[94m90.0\u001b[0m\u001b[0m [1] // number of bins for first axis\n", + "\u001b[1mD_direction_2\u001b[0m = \u001b[1m\u001b[94m\"z\"\u001b[0m\u001b[0m [string] // Direction for second axis (\"x\", \"y\" or \"z\")\n", + "\u001b[1mD2_min\u001b[0m = \u001b[1m\u001b[94m-5.0\u001b[0m\u001b[0m [1] // histogram boundery, min position value for second axis\n", + "\u001b[1mD2_max\u001b[0m = \u001b[1m\u001b[94m5.0\u001b[0m\u001b[0m [1] // histogram boundery, max position value for second axis\n", + "\u001b[1mn2\u001b[0m = \u001b[1m\u001b[94m90.0\u001b[0m\u001b[0m [1] // number of bins for second axis\n", + "\u001b[1mfilename\u001b[0m = \u001b[1m\u001b[94m\"NULL\"\u001b[0m\u001b[0m [string] // Filename for logging output\n", + "\u001b[1morder_total\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [1] // Only log rays that scatter for the n'th time, 0 for \n", + " all orders \n", + "\u001b[1morder_volume\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [1] // Only log rays that scatter for the n'th time in the \n", + " same geometry \n", + "\u001b[1morder_volume_process\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [1] // Only log rays that scatter for the n'th time \n", + " in the same geometry, using the same process \n", + "\u001b[1mlogger_conditional_extend_index\u001b[0m = \u001b[1m\u001b[94m-1.0\u001b[0m\u001b[0m [1] // If a conditional is used with \n", + " this logger, the result of each \n", + " conditional calculation can be made \n", + " available in extend as a array called \n", + " \"logger_conditional_extend\", and one \n", + " would then acces \n", + " logger_conditional_extend[n] if \n", + " logger_conditional_extend_index is \n", + " set to n \n", + "-------------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "instrument.component_help(\"Union_logger_2D_space\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The parameters for the abs_logger are very similar, so the two are added here." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "logger = instrument.add_component(\"logger_space\", \"Union_logger_2D_space\", RELATIVE=\"box_powder\")\n", + "logger.D_direction_1 = '\"z\"'\n", + "logger.D1_min = -0.04\n", + "logger.D1_max = 0.04\n", + "logger.n1 = 250\n", + "logger.D_direction_2 = '\"x\"'\n", + "logger.D2_min = -0.075\n", + "logger.D2_max = 0.075\n", + "logger.n2 = 400\n", + "logger.filename = '\"logger.dat\"'\n", + "\n", + "logger = instrument.add_component(\"abs_logger_space\", \"Union_abs_logger_2D_space\", RELATIVE=\"box_powder\")\n", + "logger.D_direction_1 = '\"z\"'\n", + "logger.D1_min = -0.04\n", + "logger.D1_max = 0.04\n", + "logger.n1 = 250\n", + "logger.D_direction_2 = '\"x\"'\n", + "logger.D2_min = -0.075\n", + "logger.D2_max = 0.075\n", + "logger.n2 = 400\n", + "logger.filename = '\"abs_logger.dat\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding the Union master component\n", + "The Union master component is what actually executes the simulation, and so it takes information from all Union components defined before and performs the described simulation. This is the component that matters in terms of order of execution within the sequence of McStas components. As all the previous components have described the what the master component should simulate, it has no required parameters. It also does not matter where it is located in space, as it will grab the locations described by all previous Union components that need a spatial location, such as the geometries and loggers." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Union_master ______________________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[1mverbal\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [bool] // Toogles terminal output describing the defined simulation\n", + "\u001b[1mlist_verbal\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [bool] // Toogles information of all internal lists in \n", + " intersection network \n", + "\u001b[1mfinally_verbal\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [bool] // Toogles information about cleanup performed in \n", + " finally section \n", + "\u001b[1mallow_inside_start\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [bool] // Set to 1 to allow rays to start inside the \n", + " defined geometry \n", + "\u001b[1menable_tagging\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [bool] // Enable tagging of ray history (geometry, \n", + " scattering process) \n", + "\u001b[1mhistory_limit\u001b[0m = \u001b[1m\u001b[94m300000.0\u001b[0m\u001b[0m [bool] // Limit the number of unique histories that \n", + " are saved \n", + "\u001b[1menable_conditionals\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [bool] // Use conditionals with this master\n", + "\u001b[1minherit_number_of_scattering_events\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [bool] // Inherit the number of \n", + " scattering events from last \n", + " master \n", + "\u001b[1mrecord_absorption\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [bool] // Toggles logging of absorption\n", + "-------------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "instrument.component_help(\"Union_master\")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "master = instrument.add_component(\"master\", \"Union_master\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Running the simulation\n", + "Here the McStas simulation is executed as normal." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Instrument settings:\n", + " ncount: 5.00e+06\n", + " output_path: data_folder/union_materials\n", + " run_path: run_folder\n", + " package_path: /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1\n", + " executable_path: /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1/bin/\n", + " executable: mcrun\n", + " force_compile: True\n", + "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/tutorial/data_folder/union_materials_5\"\n", + "INFO: Regenerating c-file: python_tutorial.c\n", + "CFLAGS= -I@MCCODE_LIB@/share/\n", + "INFO: Recompiling: ./python_tutorial.out\n", + "mccode-r.c:2837:3: warning: expression result unused [-Wunused-value]\n", + " *t0;\n", + " ^~~\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1604:105: warning: incompatible pointer types passing 'int (const struct saved_history_struct *, const struct saved_history_struct *)' to parameter of type 'int (* _Nonnull)(const void *, const void *)' [-Wincompatible-pointer-types]\n", + " qsort(total_history.saved_histories,total_history.used_elements,sizeof (struct saved_history_struct), Sample_compare_history_intensities);\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/stdlib.h:161:22: note: passing argument to parameter '__compar' here\n", + " int (* _Nonnull __compar)(const void *, const void *));\n", + " ^\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1613:20: warning: incompatible pointer types passing 'struct saved_history_struct *' to parameter of type 'struct dynamic_history_list *' [-Wincompatible-pointer-types]\n", + " printf_history(&total_history.saved_histories[history_iterate]);\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1434:50: note: passing argument to parameter 'history' here\n", + "void printf_history(struct dynamic_history_list *history) {\n", + " ^\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:2030:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:839:1: warning: non-void function does not return a value in all control paths [-Wreturn-type]\n", + "};\n", + "^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:883:1: warning: non-void function does not return a value [-Wreturn-type]\n", + "};\n", + "^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3274:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3274:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3276:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3276:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3278:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3278:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3280:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3280:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: warning: format string is not a string literal (potentially insecure) [-Wformat-security]\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^~~~~~~~\n", + "./python_tutorial.c:17318:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_filename\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^~~~~~~~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: note: treat the string as an argument to avoid this\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^\n", + " \"%s\", \n", + "./python_tutorial.c:17318:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_filename\n", + " ^\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_abs_logger_2D_space.comp:543:49: warning: format string is not a string literal (potentially insecure) [-Wformat-security]\n", + " sprintf(this_abs_storage.Detector_2D.Filename,filename);\n", + " ^~~~~~~~\n", + "./python_tutorial.c:17560:18: note: expanded from macro 'filename'\n", + "#define filename mccabs_logger_space_filename\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^~~~~~~~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_abs_logger_2D_space.comp:543:49: note: treat the string as an argument to avoid this\n", + " sprintf(this_abs_storage.Detector_2D.Filename,filename);\n", + " ^\n", + " \"%s\", \n", + "./python_tutorial.c:17560:18: note: expanded from macro 'filename'\n", + "#define filename mccabs_logger_space_filename\n", + " ^\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:788:15: warning: expression result unused [-Wunused-value]\n", + " if (volume_index_main,Volumes[volume_index_main]->geometry.is_mask_volume == 0 ||\n", + " ^~~~~~~~~~~~~~~~~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:788:90: warning: expression result unused [-Wunused-value]\n", + " if (volume_index_main,Volumes[volume_index_main]->geometry.is_mask_volume == 0 ||\n", + " ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:789:92: warning: expression result unused [-Wunused-value]\n", + " volume_index_main,Volumes[volume_index_main]->geometry.is_masked_volume == 0 ||\n", + " ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "14 warnings generated.\n", + "INFO: ===\n", + "INFO: Placing instr file copy python_tutorial.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/tutorial/data_folder/union_materials_5\n", + "\n", + " Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Cu.laz' (Table_Read_Offset)\n", + "Table from file 'Cu.laz' (block 1) is 19 x 18 (x=1:6), constant step. interpolation: linear\n", + " '# TITLE *-Cu-[FM3-M] Otte, H.M.[1961];# CELL 3.615050 3.615050 3.615050 90. ...'\n", + "PowderN: powder: Reading 19 rows from Cu.laz\n", + "PowderN: powder: Read 19 reflections from file 'Cu.laz'\n", + "PowderN: powder: Vc=47.24 [Angs] sigma_abs=15.12 [barn] sigma_inc=2.2 [barn] reflections=Cu.laz\n", + "---------------------------------------------------------------------\n", + "global_process_list.num_elements: 2\n", + "name of process [0]: incoherent \n", + "component index [0]: 1 \n", + "name of process [1]: powder \n", + "component index [1]: 4 \n", + "---------------------------------------------------------------------\n", + "global_material_list.num_elements: 3\n", + "name of material [0]: inc_material \n", + "component index [0]: 2 \n", + "my_absoprtion [0]: 0.000000 \n", + "number of processes [0]: 1 \n", + "name of material [1]: abs_material \n", + "component index [1]: 3 \n", + "my_absoprtion [1]: 3.000000 \n", + "number of processes [1]: 0 \n", + "name of material [2]: powder_material \n", + "component index [2]: 5 \n", + "my_absoprtion [2]: 1.200000 \n", + "number of processes [2]: 2 \n", + "---------------------------------------------------------------------\n", + "global_geometry_list.num_elements: 3\n", + "\n", + "name of geometry [0]: box_inc \n", + "component index [0]: 7 \n", + "Volume.name [0]: box_inc \n", + "Volume.p_physics.is_vacuum [0]: 0 \n", + "Volume.p_physics.my_absorption [0]: 0.000000 \n", + "Volume.p_physics.number of processes [0]: 1 \n", + "Volume.geometry.shape [0]: box \n", + "Volume.geometry.center.x [0]: 0.040000 \n", + "Volume.geometry.center.y [0]: 0.000000 \n", + "Volume.geometry.center.z [0]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [0]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [0]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [0]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.focus_data_array.elements[0].Aim [0]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [1]: box_powder \n", + "component index [1]: 8 \n", + "Volume.name [1]: box_powder \n", + "Volume.p_physics.is_vacuum [1]: 0 \n", + "Volume.p_physics.my_absorption [1]: 1.200000 \n", + "Volume.p_physics.number of processes [1]: 2 \n", + "Volume.geometry.shape [1]: box \n", + "Volume.geometry.center.x [1]: 0.000000 \n", + "Volume.geometry.center.y [1]: 0.000000 \n", + "Volume.geometry.center.z [1]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [1]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [1]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [1]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.focus_data_array.elements[0].Aim [1]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [2]: box_abs \n", + "component index [2]: 9 \n", + "Volume.name [2]: box_abs \n", + "Volume.p_physics.is_vacuum [2]: 0 \n", + "Volume.p_physics.my_absorption [2]: 3.000000 \n", + "Volume.p_physics.number of processes [2]: 0 \n", + "Volume.geometry.shape [2]: box \n", + "Volume.geometry.center.x [2]: -0.040000 \n", + "Volume.geometry.center.y [2]: 0.000000 \n", + "Volume.geometry.center.z [2]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [2]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [2]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [2]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.focus_data_array.elements[0].Aim [2]: [0.000000 0.000000 1.000000] \n", + "---------------------------------------------------------------------\n", + "number_of_volumes = 4\n", + "number_of_masks = 0\n", + "number_of_masked_volumes = 0\n", + "\n", + " ---- Overview of the lists generated for each volume ---- \n", + "List overview for surrounding vacuum\n", + "LIST: Children for Volume 0 = [1,2,3]\n", + "LIST: Direct_children for Volume 0 = [1,2,3]\n", + "LIST: Intersect_check_list for Volume 0 = [1,2,3]\n", + "LIST: Mask_intersect_list for Volume 0 = []\n", + "LIST: Destinations_list for Volume 0 = []\n", + "LIST: Reduced_destinations_list for Volume 0 = []\n", + "LIST: Next_volume_list for Volume 0 = [1,2,3]\n", + "LIST: mask_list for Volume 0 = []\n", + "LIST: masked_by_list for Volume 0 = []\n", + "LIST: masked_by_mask_index_list for Volume 0 = []\n", + " mask_mode for Volume 0 = 0\n", + "\n", + "List overview for box_inc with box shape made of inc_material\n", + "LIST: Children for Volume 1 = []\n", + "LIST: Direct_children for Volume 1 = []\n", + "LIST: Intersect_check_list for Volume 1 = []\n", + "LIST: Mask_intersect_list for Volume 1 = []\n", + "LIST: Destinations_list for Volume 1 = [0]\n", + "LIST: Reduced_destinations_list for Volume 1 = []\n", + "LIST: Next_volume_list for Volume 1 = [0]\n", + " Is_vacuum for Volume 1 = 0\n", + " is_mask_volume for Volume 1 = 0\n", + " is_masked_volume for Volume 1 = 0\n", + " is_exit_volume for Volume 1 = 0\n", + "LIST: mask_list for Volume 1 = []\n", + "LIST: masked_by_list for Volume 1 = []\n", + "LIST: masked_by_mask_index_list for Volume 1 = []\n", + " mask_mode for Volume 1 = 0\n", + "\n", + "List overview for box_powder with box shape made of powder_material\n", + "LIST: Children for Volume 2 = []\n", + "LIST: Direct_children for Volume 2 = []\n", + "LIST: Intersect_check_list for Volume 2 = []\n", + "LIST: Mask_intersect_list for Volume 2 = []\n", + "LIST: Destinations_list for Volume 2 = [0]\n", + "LIST: Reduced_destinations_list for Volume 2 = []\n", + "LIST: Next_volume_list for Volume 2 = [0]\n", + " Is_vacuum for Volume 2 = 0\n", + " is_mask_volume for Volume 2 = 0\n", + " is_masked_volume for Volume 2 = 0\n", + " is_exit_volume for Volume 2 = 0\n", + "LIST: mask_list for Volume 2 = []\n", + "LIST: masked_by_list for Volume 2 = []\n", + "LIST: masked_by_mask_index_list for Volume 2 = []\n", + " mask_mode for Volume 2 = 0\n", + "\n", + "List overview for box_abs with box shape made of abs_material\n", + "LIST: Children for Volume 3 = []\n", + "LIST: Direct_children for Volume 3 = []\n", + "LIST: Intersect_check_list for Volume 3 = []\n", + "LIST: Mask_intersect_list for Volume 3 = []\n", + "LIST: Destinations_list for Volume 3 = [0]\n", + "LIST: Reduced_destinations_list for Volume 3 = []\n", + "LIST: Next_volume_list for Volume 3 = [0]\n", + " Is_vacuum for Volume 3 = 0\n", + " is_mask_volume for Volume 3 = 0\n", + " is_masked_volume for Volume 3 = 0\n", + " is_exit_volume for Volume 3 = 0\n", + "LIST: mask_list for Volume 3 = []\n", + "LIST: masked_by_list for Volume 3 = []\n", + "LIST: masked_by_mask_index_list for Volume 3 = []\n", + " mask_mode for Volume 3 = 0\n", + "\n", + "Union_master component master initialized sucessfully\n", + "Detector: logger_space_I=3.1635e-09 logger_space_ERR=3.59609e-12 logger_space_N=790141 \"logger.dat\"\n", + "Detector: abs_logger_space_I=1.70717e-09 abs_logger_space_ERR=1.53146e-12 abs_logger_space_N=1.81278e+06 \"abs_logger.dat\"\n", + "loading system configuration\n", + "\n" + ] + } + ], + "source": [ + "instrument.set_parameters(wavelength=8.0)\n", + "instrument.settings(ncount=3E5, output_path=\"data_folder/union_materials\")\n", + "instrument.show_settings()\n", + "\n", + "instrument.backengine()\n", + "data = instrument.data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Interpreting the results\n", + "The first logger shows scattering, and since the top box has incoherent, and the middle both powder and incoherent, we expect those to show up. We can see the beam attenuation, as the beam originates from the left side.\n", + "\n", + "The second logger shows absorption, and here the top box is absent as it has no absorption cross section. The bottom box is however visible now, as it has absorption but no scattering. As the absorber is quite strong, we see the attenuation here as well." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plotting data with name logger_space\n", + "Plotting data with name abs_logger_space\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAHuCAYAAAD3MtMPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdf1yU15nw/89FLBNDBmpAglOhGBFqBFcDzVL0saBrKWZ1o2WzRjcNNrWkSTR5rDU/XGtM1sSkxk1JTCW2q2nij2+WqqsbLTEK64PUxwcq62gsCnEKdrQIcWFizLCW8/3j3IyEqtEEf8Rc79frfsHc95lzzsygZ859zrmOGGNQSimllFJKKaUulbArXQGllFJKKaWUUtc27XgqpZRSSimllLqktOOplFJKKaWUUuqS0o6nUkoppZRSSqlLSjueSimllFJKKaUuKe14KqWUUkoppZS6pLTj+QUmIk+KSPlnTXO1EJFyEXnyEuafKCJGRBIvVRmXiohki8gl3TvpcpShlFJXkrabF52/tptXuAylriba8ewBIjJXRGpE5KSIHBGRIhG5scv1Auc/XiMip0XkuIi8IyL3iohcwaovBiZ1qefZGqCPpbkUnPcl+yznfSJScBFZTcLWV/2lSqDfla6EUkqBtpuflbabl4W2m0r1sF5XugLXiCzgeaAauBl4FXAD07qkOQJ8HdvZ7wuMBX4GfBu4+3JWtpMx5oOeSHO1MMa8f6XrcKU5X8h6GWP+p+t5Y0w7cOzK1Eoppf6CtptXAW03td1U6nLSEc8eYIy5wxiz2hhTa4zZAcwD/q5bsj8bY44ZY/zGmP8yxiwG/haYLCJ558rbuav5PRHZKSIfichuERnSLc0sEWlwrleKyG1drt0iIr8RkTbn+L8ikuRcC00HEpGVwDeB+U6Zvu5pnMc3iMhyETkhIgEReVNEYrpcXykir4nIM06aP4rIzE/xtnZ/H7KdeuWIyAGn7HUi8uUuaT5251lEBopIqYicEpE/OXUK63LdJyL/W0R+LSIfisi7IvLNi6zXVBE5JCJBEfkvEfmbbtf/wflsTorI6yLyXLf3s4+IrHfqeEhE8rrfyRaR25zXdsqp83wRua7L9c6/kXLgI2DMud6/Lo+fdPJ8WESOOaMJiz7htZY79X/DeT0+EfnOedJnOc/5byf/Nd3+VgqcPP7B+XlCRH4hIuFd0twgIkud5/+3iGwSkYTzlOmTM6MknUe5c+1NEflNl7Qpzuf+rfO9bqVUz9N2U9tN0XbzbOm13VTXNO14XhoxwH9/UiJjTAVQA0z4hKRPA/8C3Ab8AVjX2RCIyD8AC4BHgeHAfmCziEQ4z30ZaMbeNc4AioCOs5TxMPBb4AXs1JKvn6MuLwCjgPHYBjcBWNktzUTn5187dX9RujX6n8E/AfcCo7Gv9/GzJXLen43AKexrmQbcB8zqlvRRYAPwV9jXv0pEvnQhFRGRTOxrfxEYCvw7sElE+jvXBwFvYD+Dzs/mh92yeREYCGQD/4j98tW1jGjgbeA/gDSgwEn3SLd8nsR+toOBqgupP/bv6a+AHKAQ+JGc58uc4wHggPPc5cAaERlwjrQ3Aq9g/+7ygK84j7uKBaZg/56+4xz3dbm+DPv+5GH/no4DG7t+Eerm69i/335AMtAI7OxS9+EiMt35AvIa8IYx5u1PeM1KqUtP201L201tN7XdVNcuY4wePXgAUUA98E9dzhUAvnOkXwNsOU9+BvjnbvmfBL7tPP4t8EyX672w/2n8wHnsBf7xHHk/CZR3eVwOPHmuNNhpUO3At7pc/5pTx2Tn8Upgb7c8DgL3f8JrzD7LeR9Q4Pye7aS7rcv1J4BdZ6s/kOu8T1/ucv1+wN8t/6Iujz1OGV87Rz0TneuJXT671d3S7Or8PLDTyMq7Xd/R5f2MBP6n62vHfjEIvR/AT4C13fKYAvy+2/s39xP+LrPtP/ePfa7HgfAu594GFp0nj3Kgotu5is7ndC/jLM/PcF7vdV3+XfwZiOmS5tXO1+u83x8BkV2uf8n5XDMv4N9iCbC9szzn3CSgDXjJ+fzdn5SPHnrocWkPtN1cibab2m6e/fnabupxTR064tmDRMQF/Bp4Dzjv9IuuT8P+B3g+uzt/Mca0ArVAinPqa9j/tDuvn8beufuac+oV4JfO1Jkfdd5V/JRuwf4H1rW832PvUn+tSzpvt+cdxd6h6wld8z5fvl8Dao0x/93l3G+BfiISeZ78OE+eZytjV7dzv+XMe5GMXb/UVde7qrdgv/BUn+M62Lu1k0Tkg84D+KXz3K72XGCduzpo7BqWThfyOe0+y+OUsyUUEY+I/EpE3hORAPCf2Ncb1yXZMWNM8znqMAQIB/xdXvsJoDd/+fq7l/1j7J3efzDG/LnzvDFmHVAKPAR83xgTOO+rVUpdUtpuhmi7aWm7qe2muoZpcKEeIiK9gLXYu5tjnIbsQnwNGzntfD6pgT33E435uYiUYqdkjAcWiMi3jDGfVObZXGgkwf/p9thw/mndAexdzO6isHfZzmT08cX/58v3outqjDFigyVe6A2ZTyrjk74cne353dPfiJ129MwnlPXhJ1w/m4v9nDrTXKiV2C9c04E/YqeXlTrnLqQON2L/NtLPkvefzlWo2PVGTwI5xpjj3a7dAAzD3jFOAt65kBeilOp52m5+jLabZ65ru6ntprpG6YhnD3Dmzf8K+w8yz1xgRDsR+V/YtQIbPyHp7V2eE4m9I1jrnKoFMrtc74WdmvH7znPGmPeMMT8zxvwNdsrK5HOU8z/Adee4BnYq1Olu5X0N+HLX8j6FOuzahxBn/cOXsdONPo3fAynSJYgC8A3gqDGm7exP+VRlZHY79w3OvBe1/OV//l0fd76fXV97Rrf0/wXcaoyp6358tqp/ard3e/x1zvwtdpcFvGCM2ebc4Y++yLL+C/vF6ktnef1nveMqIh7g/wP+tzGm+11mgOewjfIU4KfyOdxbTqlrgbab2m52K0PbTUvbTXVN045nz3gVO0//HiBcROKco2tjdJ1zziMiQ0VkNrAJOy//N2fJs6vvicgkERmMXZjuB7Y6134GzBCRyU5j9nPABawGEJF/EZG/EbuJ8//CLuY/V6P0B+CvReQrItKn+0XnP61/BV4SkZFiowCuxK61+bQNHdh1A4+IyD1iI+qNAF4Hyowx+z5lnm9jX89KEUl1Fv8vwAYl6ClFwN+LyIMikiwiT2HvCv7cub4cGCkis53rc7DBEuwCE9uQrwZ+JiJfF5HbgX92ntt5h3Qp9ovAMhH5K7ER5f5BRJ7owddxMYaJyOPO63kc+wXi1XOkrQcKRCRJRL6NDXBxwZxGdx3wbyLyLREZICLfFBut78vneNq/Yadtbezy7/AmsBEKsXeRC4wxb2L//f1S5IruCajUF5W2m9puarv5l7TdVNc07Xj2jPuw0cD2YOfadx7xXdL0d841YBdu52EjrE25gPznA3OwkfwGAt/pnH9vjFkDPIXdAPq/gFRgXJe7x1/C/gf3e5xF/Zz5D767Jdi7a+9x7rUPP8IujP8P7F3gI9hoeZ/FSuDHwGxgr1PHd4G//7QZGmM6sKH5I4D/h43EthIbXbBHONOu7gP+N7APuBP4O2NMo3P9EPBdYCb2/Rzq1CHYJZtHsIv1/w+wqkv9gk4ejdhoiInYKHP/D/sZNPTU67hIP8e+jhps0Ikpxpj3zpH2+8Ag7Hvzz8DcT1HeVOw0oxXYv+EV2P+3PjpH+izs59D13+E6sdEq/xVYaIzZ66R9CLiVv4yYqJS69LTd/GxWou2mtptnp+2mumqJMZ96GYS6DMTuIZVjjCm/0nVRn53Y/bDqjTEPnuN6JvbO483GmKbLWrlPIHZfr3JjzJNXuCpKKXVO2m5eW7TdVOraocGFlLqEROQh7J3uk0A+8C1gZJfrf43dp2sPNohAEfD21dZ4KqWUUpeDtptKXbu046nUpTUUu7m1G7tG6DvdIiNeh50SNghoxa5BeuQy11EppZS6Wmi7qdQ1SqfaKqWUUkoppZS6pDS4kFJKKaWUUkqpS0o7nkoppZRSSimlLqkv7BpPkRuM3WdZKaV60tFmY0zfz5pLkoj5sCeq08VRKDXGfLuHs1VfENpuKqUuDW03vyi+sB1P23gWXulKKKWuOU/+oSdy+ZCe/x/qSYjp4SzVF8qX0XZTKdXztN38otCptkoppZRSSimlLqkv8IinUkpdvcKA3le6EkoppdTnhLabVz8d8VRKKaWUUkopdUlpx1MppZRSSiml1CWlU22VUkoppZRSn2s61fbqpx1PpZS6CmkDqpRSSqlriU61VUoppZRSSil1SemIp1JKKaWUUupzTWcKXf2046mUUlchbUCVUkopdS3RqbZKKaWUUkoppS4pHfFUSimllFJKfa7pTKGrn3Y8lVLqKqQNqFJKKaWuJTrVVimllFJKKaXUJaUjnkoppZRSSqnPNUE7Nlc7HfFUSimllFJKKXVJ6Y0BpZS6CukaT6WUUkpdS7TjqZRSSimllPpcCwNuuNKVUOelU22VUkoppZRSSl1SOuKplFJXIUGn2iqllFLqyhKRKOBfgLHGmHjn3K3Aw8B12P7kNGOM+aS8dMRTKaWUUkop9bnWecO2J49PLFMkWkQ2i0itiOwVkXUi0rdbmkQRqely+ETk/S7Xk0XktyJy0Pk56DO9ETbPxSJyWESMiKR2u3ZR5RljWo0x3wNqu5x71xhTaIz5PhDhHJ9IO55KKaWUUkopdfEM8LwxJsUYMxSoBxZ9LIExPmPMsM4D2ACs7pJkGbDUGJMMLAWKuxciIi4R+Wq3czeKiOcc9doAjAL+cJZrZy1PRAaKyDvdjh+f64WLSI6IrAKagQ/Pla4r7XgqpZRSSiml1EUyxrxvjCnvcmoX8NVzJEdEwoGpwL86j2OB24A1TpI1wG3dR02BVGCriKQ4z4sC3gbGnaNeFcaYxrOUf87yjDH1xpi/6Xb89DyvvcwYMxU4DQw7V7qudI2nUkpdhXQ7FaWUUurCXaJ2M0ZEqro8ftUY8+rZEopIGPBDYON58psA/NEY8zvncbzz+M8Axpg/i4jfOX+880nGmGoRmQ5sFpEC4AXgDWPMLy7y9VxQeWd5bUuBr4nIMuA5bOc6HzvD+UvAvgspXDueSimllFJKKfWXmo0xGReY9iXgA+Dl86T5Hs5o58UyxvynM/V1B/BTY0zRp8nnU5b9IPBgl1OHgfKLzUen2iqllFJKKaXUpyQii4FBwD8YYzrOkcYDfBNY1eV0I/AVEbnOSXMd4HHOd3/+zcCTwDNAvojc/imqesHlXQo64qmUUlchnWqrlFJKXbgr1W6KyEIgHbjDGBM8T9IC4C1jTEvnCWNMk4jUAHcDbzg/9xhjPjbtVUT6Ydd0LjLGrBKRXwMlIvKPxpjKC63rhZZ3qeiIp1JKKaWUUkpdJBEZAjyBHTWsdLZLWe9c2ywiXafpFnD2abb3AzNE5CAww3ncXW9gnjFmFYCzRvRO4MZz1KtIRI4A/YF3RGT/RZZ3SeiIp1JKKaWUUkpdJGPMfmyAnbNdG9ftcfI50v0e+OtPKOc94L1u5/YCe8+RfiYw89OWd6lox1Mppa5COtVWKaWUunCCdmyudjrVVimllFJKKaXUJaUdT6WUUkoppZRSl5SOSCullFJKKaU+13SJytVPO55KKXUV0gZUKaWUUtcSnWqrlFJKKaWUUuqS0hFPpZRSXygiEgX8CzDWGBPvnLsVeBi4Dts2TjPGmCtXS6WUUhcjDLjhSldCnZeOeCql1FWoswHtyeNiiMh8ETEiknqO69eLyM9F5JCIeEXk1S7X/lZE9jgbae8VkUkXWXz3shaLyOGz1UdEkkXktyJy0Pk56JPyM8a0GmO+B9R2OfeuMabQGPN9IMI5lFJKKdVDdMRTKaXUx4jIbUAm0HCeZM8DHwHJxhgjIjc7zxXgdeB/GWP2ichQYKeIbDDGdHQpwwXEGWP+0OXcjUCkMcbfrawNwM+A/3OWeiwDlhpj3hCRfwSKgdFOfgOdx12VGmN+eo7XnQN8H2gGPjzPa1dKKaXURbriI54XcrdaRK4TkaUiUi8idSLy/W7X73LuuO9zft58+V6BUkpdO5wO4VLgAeCsU02dDuJ3gXmd01GNMX/qkqQDiHJ+/zJwtGun05EKbBWRFCfPKOBtYFz38owxFcaYxrPUIxa4DVjjnFoD3CYifZ3n1Rtj/qbbcdZOp5O+zBgzFTgNDDtXuitN202llPpLAvTu1bOH6llXw1t6zrvVXUwFkoBBQDSwR0TeMcb4RCQDeBIYbYw55nx5CV6+6iulVM/rbEB71GliRKSqy5lXjTGvdkv1FPCGMeawHbw8q4FACzDfGSX8APgnp4NoROQu4N9F5CTgBu7onoExplpEpgObRaQAeMEp9xcX8YrigT8aY/7s5PlnEfE754+f74kishT4mogsA54DvgrkY9/6LwH7LqIel5u2m0oppT53rmjHs8vd6rHOqTXAyyLS1xjT9UvDPwDLnTvmx0VkA/D3wE+B/w0sNsYcA7t253LVXymlPmeajTEZ57ooIt8Avg489gn59AJuAfYYY34sIn8NbBKRJOwU1ceBvzPG7BSREcD/JyK3GmM+6JqJMeY/ReTHwA7gp8aYok//0i6OMeZB4MEupw4D5Zer/E9L202llFKfV1d6xPNC71YnAH/o8rjBSQNwK3BYRHYANwLrgIUajVAppS7aN4GvYf9PBegPlIrINGPM213S/QE7HXUNgDHm/4pIM5DsXPcYY3Y613Y6I5+Dgf/XtTBneueTwDPA3SJSYozZfRH1bQS+IiLXOe3HdYDHOX+t0nZTKaXOIiwMert6ONPTPZzfF9wVX+PZA3oBQ7F3f78J5AH3nC2hiPxARKrsVDONG6GUUl0ZYxYZYzzGmERjTCJwBMjt1unEGNMMlOGMuolIMhAL1DnP6d9l7eZgIA6o75qHiPQD3gGeM8bMxU5zXSsiWRdR3yagBrjbOXU3dhT2vNNslbabSimlLr8rPeJ5oXerG7Drbzrvlne9k/sHoMQYEwSCIvLvwO3Ar7oX5qxlehVAxKN3dpVSV62r7c6tiGwGfmKM6Vwjej/wryLyAvA/wD3GmP920v4QKBGRzoBC04wx73fLsjc2ONEGAGPM70TkTmwntXvZRcAk59o7ItJijBnSpR6vichPgBPYoEfXMm03lVJKfS5d0Y6nMaZJRGqwd6nf4Nx3q/8NmC4i67BBEu4ERjnXVgPjROR17OsZA5Rc+torpdS1zRn17Px9XLdr7wHZ53jeKmDVJ+T9HvBet3N7gb1nSTsTmHmOfH4P/PX5yrqWaLuplFJnJwK9rvSQmjqvq2Gq7f3ADBE5CMxwHiMim53Ie2D3hHsPOATsAp5yvrQArAWagHexU672A7+8bLVXSimlLi9tN5VSSn3uXPH7Aue6W9317roTROGH53h+BzDLOZRS6poQJtD7+h7O9GQP56euCG03lVJKfR5d8Y6nUkoppZRSSn0WIvClno6NoHrU1TDVVimllFJKKaXUNUxHPJVS6moUBuidW6WUUkpdI7TjqZRSSimllPp8CwN6OjaC6lE61VYppZRSSiml1CWlHU+llFJKKaWUUpeUTrVVSqmrkaBThpRSSqkLJWhshKucjngqpZRSSimllLqktOOplFJKKaWUUuqS0qm2qkfNMDcAsJHxtHwYQ/QNzUxlNSuYxjRWECScDKoBWMgTLOJxJr2/jvybSijtyCU3rJSS9/PJuqkSPx4AsikDwE2ATUwgmhZ++24OP7r1n9nEBAD8H3rIuaGMTdv/nvTRO6n+3Qg4Bj8a98+046KUXADS8OIljYOVQ/lGVhkBbiSHckrJ5eDmoQCkj9tJdeUIO83xywZ+I3z1gd/zQYeb5LCDHOxIBqBlw1dgmGH8LSVs2v734IPogj/S4vOQeksVAPu++3VuXNZM+0fhtP8mEoB+Uw5zdPMAm3+isW/cRwIfQfSwP9p8a4BvA8eArzlvbg3w387jY0AcsMt5nBkEnzO/pPM584G7gTXAYLjxsWY+eDjGpvnFgs/2QatLT7dTUUoppS6cRrW96okx5krX4YoQ8RgovNLVuOaY554E4NicKOL2tcJKoAC2po7Ew1GGrK2HBidxLKwtuJPJ0zfAJDg52g7AV7sySMMbyrPP06fYP2+gfW4s8BSc3ghFkQ+QTwkA4QRxBwN4XUMp4TvkUM4d27exdfRIvAwlA9sRDBLO2O0VLB99DzmU4cdDM9FkUE0J+QBE08y9W95kV94wNjGeIOFMYBPhtFNKLokcBiCHclYzhXSqqGQELoL0w8+vnXwA+uGnhRgSOUw7LtLwMuvDJRTesAwX7aHX6cdDLckcxUMaXtKp4t4Pf8XMG4poJhqAg6RQ+X4W2TeVs4jHuIO3WM50mommnByqSAfARTt+PBx9L5Fv3FLOb9/L5ke3LOSFd/+J7Ft/A0C5/N8e/NTVxz1ZbYzJ+Ky5ZPQWUzWgJ+pzhhygR+qmvpi03VRKXRo91G7eIKYqqSfqc4Z4td3sSTriqXrWJPujhRjibm6F+4FDMHZzBYyB1ybfxb3H37SJPoIUaiENjuVFEdPWysbIPCYN3wJvg9NXhCpoJxxGAK3Av0FZ5EjS2EvCliabxguL5jzCY/texJPqt6OlCfASM3mNe9nIeACmtr0Jg2znMmnfEcpSc0Kdv84OpYejbM0bydiiCkpn5hJOO9G0sInxFLKMx1kEQCVZzOQlyslm/vHnoAEmpL9JASs4SAoAAdxkUB3q5AZwk3aDFxftpFMVGrFNw8sAfLhop5YUntn+FE+Ofgw//Wghxqmfj8SbfNQ6eedTggc/AdxUkU4KBwFwESSAm8RbynERJPkWLy/87p/od9thyt/9tvOmasdTKaWUUkpdPtrxVEqpq5FG51NKKaXUNUQ7nqpHLUp6BIC/khcZcgjwwv6JA0kZUU9t5EA74pjpJF4O7vgA3A0xba2URY5kUuMW+DfY2nckY/9UYdONg+RgLbvih5EZrGFd3zxiaGHU9t3U5fUHIHHEEdJDQ6Tgwc/J+DBe4176HD/FvV47yrpudB7VkRks3P40y0ffE5o668cTGjFczRSyqGTtzDtZzRRq6/6KtUl3kk4VvyafKawCoJwcWoimigzW9fWT1beSAlbg4WgorxUUEE0ze0nj1+SThhcXQbKoxEtaaArwYRLJ59csZjZLmIV7dAA3AaoZj5sAAD4ScRNgAIeZxRLGs4mNTMCDn/sppgo7E8RNgFxKqSSLdsLxvZ/Is7f9b8JpZ8WtBQDs6/FPXimllFLqCrvuSldAnY9GtVU9anbbi8xue5G8zcAK4BAMmVtPr6Cd3tqrCSh1jiAkrT9CQ99YqiKHMba4Ag4BP4MUDtJQEEtDQSwnCnvjCnaQebyG07F2beWo9buhCqJpIZoWgq4wPBzlrdQxJBxvIuF4EwddKQQJh3W2HhyCAfjIpoz9owdSRTrRNNNCDGnBvZSQTwn5ZFNGLSkk4qP2+F/xWtJd+PGEgiKVk0M5ORRSjB8PU1hFCzE8w1xSOMh8zgTu8XCUSXVb8DGAAlYQTjuvcS9BwmkmmiJmUsRMjuJhE+PJoYzVTCGaZtwEmM1ibBfUzTomkU4Vs1nMGiazggIC3MhqpvBTZuMlDS9pgJ3iO55NFFKM+8sBllGIj8RQXkoppZRSSl1O2vFUPWpF5D2siLwH1sHpR4E0IArY5iSoAirscSKvN+yDhMYmMp+vYX/hQE6OCIM59pynzR597jrFxsg8+BMEXWH0mXuKHRNv5/T90KfuFH3qThGxpoNakrmjeBtr+94J22B48QHiprdysiDMrj2dBEFcjC2uoJRc5vIMbgJUkY7XNZQ09pLGXlI4SAvRuAiyq+8wqslg1vFXqCKdAG6yKSObslBHzkU75WSThpcAbtYy2ekOR+OnH2lJu0mhlhZiKCebhMYmsqgki0pms5jZLGY8m5y3J8NG3SUFD368pFFIMYUUU0U61WQQxMWPWMIENuHhKIn4yKDa6VIGCOCmjGzaCWcT4wn8t5uheHnpdz++An8RSimllFJK6VRb1cM6A/QwCXoFYX+enWYbiOxN3NpW9kweTDjtAAyprodB2E5pFAzZWc/JjDBOxPemz8pT9IoilNekfVvgEARS3UQEW/Hgt6OnnWmutyORMYUt5LdtsGvjBsHywnvIoIo01wEAAtzIjsLbSWMvpeSSz69JC+6l2pWBF7udio8BFFKMlzSChJNPCUv73scqpvIrvkuzE+zHRRAfiXhJ49XgdMpdOVSSRWZdDZVJWQDkUkoG1STio5Rcsilnf/xAvKSR37aB+ZHzAKglBTcBomkmhYN48FNGNkBoqm0G1UTTQim5ZFHJYRtuKNTh7BztjKYFNwH8eNjkn0CBZwUAa26byGqmAPCHHv3U1SWhYeGVUkqpC6ft5lVPO56qR4WmcVYB26B9cTi9GsCbmsao2N0Mrz5wJlrtGNgzeTCJ+GghmmZiyNxeQ0TTKfYUDGb4dNtZpAkbzbYAu0WLC5KKj0AGnIx3Bu0nwrPBxzjoSsEbOZjhaQc4lhTF9MbXoRVeS70LsFFtSyLvZPL2Dewa/QF++hHjaiY9WIXfZfcNTaGWEvKZtfMVjo2IwscAcimlmRj6Bf3c6LIdwZVMA8BLGotdPw51HN9KGkOwS1QYH4kECaeFaLKoZAUFpOFlYeSjdiowNkKtj0TARvAtJZdng4/xjGsuRcwEoJRcPPjJoIoS8vGRSAEreImZZFNGLqWAjbZr13iOIPz6IOEE8TKUAG42/e7vnVrpPp5KKaWUUury0Y6n6lGTGrfYXwqAZdiOphdG3bMbBkHDm7E4202ScLyJ4UUH4CPoM+4IScEjkACnM2D4zgMcW26HM12006fulO2wNgJpsH/yQIYU13Mw3W4tcphEJmVvIby8nSHH6zmWFEXc2lYYBFvTR3JvsQ0utKdwMJPv2kDDm7G8xAxeYBarmUqaay8e/IANZLTKNYUdI2531noeptyZurraNTW0/UoupZSQTyI+3ATw4A9tdeKnHwAxtPDY8RdZ1zePNLzccXwbiX191JJMIodDnUUfA8iikoU8EXq8yTWB4o5C0sJsedE0M5OXWMzs0J6dB0khnSqO4rFbyGD3Ki0hnxhaiL6phVffm8nvbhnCqA93wJe/mPv2KqWUUkqpT0dEooB/AcYaY+Kdc7cCD2NDOvUCphljzvtFUzueqkftjx8IwJDn62GS7fTlDKqwf2hNkLCviZODnFHKCmAzMMf+XDvnTlKoZfjcA+xaOIzMlTUA7Ci4nfCkdjKratiTN5hoWkgMHoaoMyOsKRyEXzjTd7dB3Bg7rTeIi7H7KkL7iw5ff4DTv7DTV1etv4/9EweSTwkJO5tYNyIPgIjGDhY3zOPE6N6hslwuOz04mhYqsdNos6gkl1LSg1WUunJJ4WBoymsMLQCsYBrRfRfjYwC1JJPW10spufhIxI+Ho05nsZIsXuYhUjjIFFYxlq0sZjavhk0P7QlaSi61JDObxQQJ5yApBHDjZSj5lJBNeShdNM18gBs/HpJv8fJdXmPKDavgFvs+vNrjn7zqcbqdilJKKXXhrkC7KSLRwOvAQCAI1AGFxpjj53nOfOBJIM0Ys885lwy8BkQDLcB3jTGHPkO9FgPfARK7lvNpyzLGtALfE5F3upx7Fyh08vw3IAL44Hz5aHAh1aOGbK9nyPZ6ts4ZCU/B2C0VVEUOg0bYM2cwrIeItg4i2jrsP89YWDAG6ub0Z/J3NzB8+wG4HjJvrYE2oA2SqSVzSw37Jw+kH34SqpuIaOrg2OQostp2k9W2m1qS4TmYmz7PltMAw1cewEUQbobTLnvQCs2RUXZa6yFb31qS4Xo7OhlDC7OTnoZD0Of5U7QQTbHr/tCaSRsF1wYO2sR4Rm3fzXzXAibN3kI74fjxEMTFwn1Ps3Df04xnI6Xk0k4491NMADcp1IaObMrJppxw2qkincXMJq6xlQXMD3Uum4mmmWgKWEEpuRQxg6N4SKeKMrKJoZliCiliBkXMYDaLKSeHG52ouPmU4OEoB0kJBTVSSimllFKfmQGeN8akGGOGAvXAonMlFpHbsBsLNnS7tAxYaoxJBpYCxWd5rktEvtrt3I0i4jlLURuAUZw9rMc5yxKRgSLyTrfjnNEpRSRHRFYBzcCH50rXSTueqkftHz2Q/aMHMnZ2BVv/fSRUQGZxDRyyU1hZBuv65rGubx6nx8HsXz3N/FsgqfoIu341DNYDsXDs3SiOzbQHwI682xmypR4X7exJHwxr7DTToCuMoCvMbnWSAQv/7mmGbzlAw8RYyIDhdQfY2nckvRqgVwM0FMRy1OkcnpjTm2Ojo2jHxY702xnVuJtRjbtJw8uxwijbMcbuCbqRCaThxR0MMIXVTGE1hRRzOgMWV88jf/EbgF0fOoGNFKa+SGHqi3ZdJeOdSLM5lJNNADfNxBBNC3764acfWVTiop1neYxj8VFkUM1UVrOCaaFtXjz4yaKSSkbQDz8v/O6fmM1iprCacGdv0CwqSaEWD35yKA8FHIqhmVpSQlvBKKWUUkqpTxQjIlVdjh90vWiMed8YU97l1C7gY53DTiLiwnb0HsB2WDvPxwK3AWucU2uA20Skb7csUoGtIpLiPC8KeBsY170sY0yFMabxLHU4b1nGmHpjzN90O356ttfjpC8zxkwFTgPDzpWuk061VT0qMehEtXVBJSMYe3MFxwqjiGtqJeJnHbzf5EyLBXqtg8Xr58GbQBRkTq+BBGAcxNW1hu4Fnc4AV6SXhrxYooPNJFMLYyCrbTeByN6AXS+6q3AYmdtqOJYXRUJdE3tSBwPYNZlO9NuE6iYSEprgT7ArdRgtRJMdLMPnGsDW+JGADUDUywtMhFGNuzkWH0U2Zbhop93lCkWZBZgV+Txp6V4KWcbw7QdYNzqPZqKZ4GyPktu2DXdkgKxgJSWufLykhbZk6dwXFGAhWayggCwq8ZLGVFbjx0M+JaG1mw+xlAyqGMBhNjGBKbf9K5uYgJsAGVSHpvdOYh21pFBMIW4Cdm3quu/Rb9JhVr5yv1OiBhe66ml0PqWUUurCXZp2s9kYk3EhCUUkDPghsPEcSZ4C3jDGHBaRrufjgT8aY/4MYIz5s4j4nfOhKbvGmGoRmQ5sFpEC4AUnv19cxOu5oLLO8fqWAl8TkWXAc9gOdj52kvOXgH3neTqgHU/Vwypddv3j2DEVzG17jhMzexPXaCPR7phzO9FzWhhSVA/AnpmDGZ5wwM7HX4HtdKYCT8HW5SMZW1UBQK+VEF4YJNwVTsRTHTZdAvRaBsHlNirsadcpMo/XwDM2ymxcVAXD6w5wOhZ67bTbugAkxh4m4HIT19pK5r4a9qfa8wHctDsLA7yRg/GP8FBLCjmUAbCXNPKDJax2TQ11PH0kUlQ9h7fSx+DmA7aOHomLdsIJhjrXQVcYXoZS7sohm7JQAKNNTMBFeyiq7QQ20Y6LRHzMOv4Ke/oOJoVagrhCU2M7RzxrSaGZGJ7lcWaxhBRqCafdTivGrkPtHAHdyHhiaCF10v8jg2pWDuvseCqllFJKqR70EnaN48vdL4jIN4CvA499lgKMMf/pTH3dAfzUGFP0WfK7yLIfBB7scuowOAFGLpBOtVU9auy+ChvMZzP0qoI+2afsPp3Xw6h9uxnydD2sA9ZBP/x2Out27Ihkq/25dvmdjP1GBcRij3F2XWjc9FZIgx2Ft9sRy+XDWM1UVjOVXq1AFaxNupOxxyvY03cwDUmxeCMHU5fXnyHH6xlyvJ6I9R0cJIVpST9nR+rtePCHOpNpeEnDSz/8JOIjhzKG1x0gmhaO4qHd5WL67NedXTPdpFPFjvTbScNL5vEaOxWXAGOLK0LTYw+6UignmzS8tBBDADcZVOPBj5tAKF0VGbgJkMhh1va9k2UUkkwtKyhwVpTa/TsryWJm2yt48DOWrbQTzkYm4Kcf49nEeDZRSzIejoZGStPwMpXVANw4rJkbhzVfgb8MpZRSSqlrkxPMZxDwD8aYjrMk+SbwNeCwiPiA/kCpiHwLu2fDV0TkOiev6wCPc757OTdjAxM9A+SLyO0XWdULLutS0I6nUkoppZRS6vOtM6ptTx4XUqzIQuxmgXcaY4JnS2OMWWSM8RhjEo0xicARINcY87YxpgmoAe52kt8N7OkeGVdE+gHvAM8ZY+Zip7muFZGsC6spXGhZl4pOtVU9qnPq6hCX3daEl4F7gGlwOgG7dtKZf19JFpM+2mL35yzAjngegslNG2AiNIyOBSChqCk08nliYm+y2nZDEALcyKznXwHg9P1QmjcGD37q+vZn+L4DEATPoCZ6NcCi1EcAmDHRzkhY3vZDmiOjCOCmhWjcBEg43gRAQ99YSsgnhzLWJt1JOEGCuPCRyPzF0yiqmwNAftIblKz8RxgJi5IewY8HNwGCheHMqrP12pU0DD8eSsllReMPWRD/aChSbVrbAWIi7bpML2kUOkHFVjOFCWyinBwWMD+0fYuvIxF/mIeqyGG8HHyQl1wzqSQLD34qGRGa3jsAH2l4Q3uAVpHBb3+Xww9u+xnuG+w04fPGulZXB91ORSmllLqqicgQ4AngIFDprN08bIyZKCKbgZ8YY6ouIKv7gddE5CfACeC7Z0nTG5hnjNkAYIz5nYjcCcSdpV5F2M0E44B3RKTFGDPkIsq6JOQT9vm8Zol4jLP1jOpB5tCT9pcKqCvoTzQt9Fl7CsYAb8FbBWO4Y+U2m+Z6YCW89pu7uHffm5wcFEbEemd2wlOw691hAGTW1ZwpoBVogtMjoDLy9tA+nnfM3gaxcGJOb/oUnWLJzAeYte8VuBmO9Y1iNVMBaCGaXEoJp5204F58rgFE00xcYyvr4u0+ni7aSaGWvaTh4SiZjbb8HfG3E047mVvs49l5T3M/xdSSgpc0wmknl1LaCbfbwgCLRj8CQD4lBHDbfT1pIZHDePCHOot+PBRTyDRWUEYO7YSTTC3tuIjGTo2tJIsUDuIljRaimcFLTGYNuZSSSykvMROwa0EPMyAU3daPhwBufr1uKt+ZtAqAX0vdZ/2o1Tk9WX2hgQjOJ+PLYqq+2RP1OUM20iN1U19M2m4qpS4NbTe/KHTEU/Wok/F29nZ7gYtVTGV+9XM2YNA9wOtwR902WOkkjgIW2hG6Y6lRxK1stedHAi8TCpaDC7vNSqv9ff+cgQypq8cdGWBU3W6bJgOOTY4ips1Gw51V9wp7UgcTxEUih8mnBLCjp2tn3snktRvYOnkkWcFKIp7qYN3CPHKDpQBUuzJoJoZ2XGxiPA/Fv0zV9pGEx7dTSi61eckALD4+j4a+sdxRt43EJB/FFNo9QYHhsbbjmU05KdSymNk0E80Hzj6eHvy0EANOx3MT45nCKgK4SWNvqOxvURra/iSaFnwk0kI0NxKglNxQp/MHHcvJDbP1/xaltONiPgtCUXLHs5EfTfpnij/sDC6kHU+llFJKXUME7dlc5fTjUT3qcZfdM7eocQ7zNz8HI5wLL2ODCrngWLnd2yRuXytshlENu2E9HPtVFC7a6bP2FKfHERo1pAm7XLsCGAdD1tfD9RCd1BLacqVw8ou8eOMj9NoFZACtMLzxAEvj7/vYiOmJmb3x4OfkxDCygpUEXG42LbQRZ0MReVdW0FBgp/mOD24k0eWDVrvdS9rLe3EF7ajs8r730EI0j0W9CEAiPlqIIYMqGlLt81uIppRcFrQ9TWnkGCrJoiC4gmLX/bQQHYpyu7D6aVLS/4sprKaadNwEqCWF2SzmbXIBcBOgigzyKSGcIJuYQAq1VJLFjLCXePJd+96H39pONM3O3qBBCinmR6uXQqaBjz4WvltdzcLQqbZKKaWUumZox1P1qCVtdv0jm7Ezy/8EVEFhwYsURz0CH0FctTOy2WqPJRMfYFbrK8Td1QptsP83A+2WK52d1ueh7jf9Cea5GLKlnoaJsXjamogONttygOLNj3Dab8tiJez5jd3D88G1v6Rhcmxo/Waf6lNEp7fgcw1gSGM9vvgYJu/bEFqbCkAGtBOOn35kNtWQEl8LGbBr4jASOUyxy07bzaGMaFo47SK0JrSKDMrIYVajXePpidpG3I1HSIz0EU0L2ZRR7LqfaJrJp4SxbAWgML2YrYyllFzaCeeJ4EJ8rgF48DODlwC79jOHMtLw8hAvk0UllWQRxEUMzRTcugzA2bvTxTRWUEmWHYWNg4Jbiln5r7qdilJKKaWUuvw0qq3qUb2W2YNDsKfvYNgJbIfi6Y/AW0ArnB5kDw7B6UchgyqbbhI0/CaWlLZ6Oz23czuVyZC09gjRNLMnbzAJW5qojRxIiSufBYsfZcHiR5m7eB69vHBsdBQ8DMNX2m1QaIKE7U12ZLQBSLCdSg9+TsaGkdJWz8lBYXjw46IdF+3QaNdcTmjbQkN8LKOqd3M6ygYzau82BOUjkZLIOwGoJQU3AWatf4Xl8fewPP4eApG9+Y+wv8VNgMwtNbj5gAlsxEU7VaTzMg/yMg8ya/srPMTLjGcjydSy2PVjhqytZwXTnE1e0siikiwqKSeb2SzGSxpPsJA09lJFBh78ePBTRQZBwpnFklAn9Bujy2yQojjOsgRdKaWUUupzrnOm0GWOaqsunI54qh61a84wADJn1zD8rgOQAPwEG+9rDDTEnxl9pBV6rYEv37+bPWYww58+QDhBApG98Y/2hAIHZd5cw/68gQxZX8/BiSkwCIZsr2dIghM5F+zoaBDcwQDr8vKYdHwLfjwkjG6iITUWNzaaqx8P/fBTSwqZ62vYM3kwycFavKSF9r3cnzeQRHwUR95HQXAFJ1PDiNjZQcrogyTsbMI1wq49Hd54gD3xg4mmmQwCRNOCmwALJj4aKm8sW8mllHxKeCtvDFlU4iORRHzE0Ey/oJ1qu2j0IxSwgpVMox9+Uqhl0eRHqCQrlFcaXvx4aCaa2W0vMj9yAV6GAvAsj3GQFMB25FuIJoCbjc50XO+HaSTecBgSL8nHri4FIRQBWvUsEYkC/gUYa4yJd87dCjwMXIdtG6eZL2r0PaWUUuoS0BFP1aMyj9eQebyGY4ujIAG2Lh4JDXDydfunllDUZDuhT2A7i9tg6FMwvPoATLTrPvsUn2JIdT2ZjTVkNtZwcnQYQwbWQxSUkRMavTwZH3ZmVHSnLT+isYPcYCm7+g4js66GutT+tBBNFelUkU474cTV2am+DZNj6YefclcOoxp3h15DC9Ek7GsigJuIn3UQsbODtaPvxE2AuhH9KSGfEvI57dRn7PEK0qnCRyLTWY6PRMrJppxsnmAh0bRQQj4bGU8xhVSRQUZbDcsopMSVT4krH4C7319LM9EMxctqppCIjyXMIpmDJHMwNA23nBwmR75BOEFqSWYTE6gmI1SvIOEkOluq/HZ1jn3eR+Hs8w+Fj7CHUp9AROaLiBGR1HNcXywih8+WRkSuF5Gfi8ghEfGKyKufsS7nKytZRH4rIgedn4M+KT9jTKsx5ntAbZdz7xpjCo0x3wcinEMppZRSPURHPNUlEVfUCndjtwtZCZWjs8iKrcRV0EGvlU6i7wIvn9kaZdQ3dsNP4ERhb/pUn7KRbIGIyA5O1Pemz9xTzH/qORuoaBBEzO6AcU5eLiAK1iXl0UIM07e/Djshel4LSSuPcKzACWi0pRXWQcryWvo0ngLgjqZtEAWTGzcAsC4+j5ODwsiikpMPh1HssusiO6fSrmMSAEFXGLmUctoFq5lKGnuZxgo2MZ5XmQ7AUTx4OEoMzRQxk8fqXqQuqT+rIu9iKqu5g7cAWMB8ZtxUxGwWh7Z+6YyEu4tMwE4RfqzxRaLjW4immfks4H6K8XCUcrJD+4B2bsuSRSWuKUGmsJrHbnqWHMpZff0UJy+lzk1EbgMyCYXvOqsNwM+A/3OWa89jb3EkG2OMiNx8ljJcQJwx5g9dzt0IRBpj/BdR1jJgqTHmDRH5R6AYGO3kN9B53FWpMeanZ3tBIpIDfB9oBj48WxqllFJXKd3/+qqnI56qZ/3IOe4GYiFhSxMzf/U8Y5+uoN3lotdOwOscBcBH0KsVRs3YDRvt4z4rT3EivfeZdZlR0GfLKZiG3Q/0ZmAZvPXSGLsWNNXuD7og/VFiaGH6+tfhEBAPfYpPQQLE7WwlbmcrJ0eHcWJ5b/x42Bo/0nZuo4AK2+FcF5/HpKItVLqyyGrbTakr1wki1MwmxjtBh+xqyhZXDPNZQNAVRmFwGS3E4MfDura7cAcDuIMBVjElFKG2kGK2Jo2klhRyKWU+CxjPRsazESC0R6ePxFAHdwSVbGICm5hAIcXMjn8aH4k8xFKOdnjYSxrVpDODotDWKguYj5c02gnnMIncXbme+ykmhVraP3LR/pH+r/wFFiMiVV2OH3RP4HQIlwIPAOecamqMqTDGNJ7l+TdibyvN65yqaoz501mySAW2ikiK87wo4G3O3E66kLJigduANc6pNcBtItLXeV69MeZvuh1n7XQ66cuMMVOB08Cwc6VTSiml1MXTEU/Vo/b8ykaTdRMg6fgR+AiK1s+xncDqU/ZOlBNY9Vh6lB2BnAD8G2emgLZBn+2nOP0T+7BXFXY6LYDLBi0aPvIAd0zfZrdaAaL/vYUMqhi1djc0wekC7MhqOrw24i7uXfkmAJUjshiAjwBuWojh2Mwo2nGxImka84ufs5mlQjsu/JF2bejwpw/Qb56fe7e8yda8kYwtrrDpxsG0+BW85JpJOlVMrtvA3KR5+CNjSVhpKzahYBOrmUIytZSRTQwtZFNO3PFW1kROZpNrAgAB3NSSTCm5pFCLj0SKmEE61aQ4swFLyaWEfLuOlPm4wwJ4SaPswxwO35DITCf6rZsApR25jA/bxDRW8kymh8c3/wvfGFcGH4X34KetLqlLs51K8wVshP0U8IYx5rDIp9p+ZyDQAsx3RhA/AP7JGFPRNZExplpEpgObRaQAeMEp9xcXUVY88EdjzJ+dPP8sIn7n/PHzPVFElgJfE5FlwHPAV4F87D3zLwH7LqIeSimllPoE2vFUPaozQM8d1dvsqGMTkAonx4URsaaDk3eHEfF3dh/MuJdbbXCguwEvnJjYmz7rT9ktUu7ukmkQdqUOI3N7Dafvh+H7DthJd4WEvhqmUGuDER2CE/N64247BaPh5KAwBuBjT4HtEGdQTZ/tp0iqOkLlnCyeYS5Fx+eQ0beK006Zvbxwx/ptkAYJ25rYMe92goTTkneUcnLwFQ5w8qrq8pozGFtVQXKS7TR6JtmOZzjtPBFcyEuumUxjJV7ScBNgSd8HbDpnH08vaaRTzeLGeUyL/znfocR2fvEwqWMdALPDFuOiPTRamkItU1jNyzc8yFE85FAGwCqm8kTYM7QQzWqmEB3WwnfGleAmwMHEZMD2CpTqTkS+AXwdeOwzZNMLuAXYY4z5sYj8NbBJRJKMMW1dExpj/lNEfgzsAH5qjCn6DOVeFGPMg8CDXU4dBsovV/lKKaV6WBgalO8qp1NtlVJKdfom8DXgsIj4gP5AqYh86yLy+AN2quoaAGPM/8WumUzuntBZ+/kk8AyQLyK3X2R9G4GviMh1Tn7XAR7nvFJKKaWuIjriqXpU5xYoIR8BOyFiZwfEg9c1lMzUGnvtEHaV1xggE/rMPgW7YN3MPCZVb6HXz87kkZh3GKZDLxfsf3cgQ0bX261anBHPPttP0WffqdDqMG/kYIYfOkDEXR1UvptFPiUABAln1+gUMhtqmLX2FbvWdD1k7ykjENkbAN+IRPrhpx0XCTThx8P44EZWu6byRHBhaHpsCfnkU+JEkN0L8XaK7mTW8nKkHUiZtG8LC1IfZX7dc7yVNIZsytjEBDz4KSGfJcwCoIAVxK1tZdHkR6glBR+JNBPNBDYxPmwTYLdTmcYKomlhCqs4SAotRANQRQa1znYqK/3TeNbzGCuYRiI+ZrOY+SwgER8tv/9Kz3zQ6tK7AtupGGMWAYtCVbCdz781xlzwtFNjTLOIlAFjgbdFJBk7Wb6uazoR6Ydd07nIGLNKRH4NlIjIPxpjKi+wrCYRqcHOkXjD+bnHGHPeabZKKaWUuvy046l61PigDZRDAlCF7RgeAh6GtyaP4Y7Z286EDllmr20tGMnYX1RwIq83fRpPMenWLfZr6gtOuiiIa2xlR/3tjHp+N0Om207nrvRheNLtVNVwghx19v4ctXI3/oJ2To4Lo3piBml4Sdp3xOZ1PZB0mNOT7NrR049CL2fN6WqmOHm1M73xdRbFP8Jja14kel4zR10esqjkoCuFNLyA7QimtNVTFpmDjwFsHWHP/Y7hPMRSACbdvIV8SliXlEc7Ll5iJml4WcgTLGEWpeQ6ee2lcnIWHo6yhFm8xAyyKaedcHIpDb3GZGop5n6W8iDTWc5GJtBOONW/G8GM22zMlOi45tDnMYGNLGY2hRTTQjS/JafHPmv1xSIim4GfGGOqnMdFwCQgDnhHRFqMMUOc5PcD/yoiLwD/A9xjjPnvbln2xgYg2gBgjPmdiNzp5Ne97E8q6zUR+QlwAhvYSCml1BeNRrW96mnHU/Wogy476jbcewAGAevhZHkYEVUd3LF2m/2K+FyXJzwKY9dWQCuEB4MwHXgd2/H8kZNmHFANo1p3s+dXgxk+9wAn54SRebyGE33tKGWfLadoz3Mx/PkDsAaGRNWzbmIek57eQt28/tSl9gcgaf0R4hpamTD6TV4e/RC1JDO2qoKIhg4eTPglAGvj72Rm/PMsYD675g3jICkEcDOpbgu02g4vQCKH8UX2J5HDTNqyhWN5UXYNKIm87CwdW973HsazES/5JHKYRHx4SWMCm/AyFDcBADYxgVxKmXx8A/l93whFuh2AL9Q5dRMgiIsWoikll1xKScPLLJbwg9t+RiI+AIIfueAGSMRHOO0c/N1QSm9rYQCH4b979ONW1zhjTGKX38d1uzYTmHmO570HZH9C3u8B73U7txfYe5a05yvr98Bfn68spZRSSl152vFUParI+W64YvMPObkwjIg/dRCxuYOGibGEEyRubaudWgvQNbZmFUQ81MGC3zxKCrVMnr6BE2/aTmWQcOL2tcIcGH78AKRBxMoOCBL6KnoirzfhBCEDGubEUsQMFh+fx8x5z/Ns8DG8rqEA9Bvn56ArhWzKSVjbxIrJ0xhLBcdGROHDBg1KxMfkfRtYm3onbgIUtv2S+ZHzIAkm1W0hc3sNADtG30447cTQwom83pSSi48BTGAjxU7o3vnHn2Nd3zwyqKKSLMaziSwqGVJXz2tJdzG1zUbbfTDyRTKo4q2+Y0ihFi9pVJPBDIrYyHgAprES4GMdTj8efO8nknVTJY87MySX3DCLdsKZSRE+EglPbMNFkDJy+GrW7wG7CE8ppZRSSqnLRZxt1r5wRDzGhkVVPek/jN3f/Y712+z+mMuANGAidpprBWfCfowDDsHSyffxYNEv4SPYP2cgQ4rq7fXOyLYVwGY4/QL0+j6c/oXd+3N//ED89APAzQckcpi4462hvT/JBBZ2KQvsvp1/goaFsZSSi5tAaHpwZ7Tdt34zxkbl3QynHwZ/ZCybGE847bbTWG3rtyt9GGnBvVS6smjHRQA3k49v4FjfKI460X0DuAmnnYy2Gqoih5FCLbNYQhpeEjmMh6MAlJNNrTOy6sGPD7vO9CgeClgBQDV22rAfDy6CNgous/Hgp5Ks0IhnFpX46YePAXhJYxorQlFzi5gBwB/k//uMn7Q6tyerL2DLkk+UESem6h97oj5nyAv0SN3UF5O2m0qpS0PbzS8KjWqrelQiPtsBSgCet51E7sZ2Og9hRymjnONHwAjIphwi7bkhs+s5WRgGI4B1znG9PXo1Ac9Ac2QUNMGQ7fUMwMcAfGQ+XUNcdSu8BSdTw6AV9jcPhBGwv3Cgja+5BhgNJxb2JqGoiQyqWM0UInZ2ELG9gyW/eYAlv3mAO4q3cSw9ym6j4gojYV8TWdhYJ0NW1rM8/R6Wp99jt3BxuRm7tgI3AVYzhbf6juEoHvaSxl7SACimkOLI+ygnmxaiSaGWRA5zkBRKyaWUXNLw8nLwQRI5zBRWk4aXXEpZwHwqyaKSLBZWPx3a0zOAm8XM5tfvTSFIOEHCSaGWFGp5puMJYmghDS+vcS9e0simnEqyLs8fgVJKKaWUUt3oVFvVo4Y874xWBoE50GsztpPZAHsKBxPERebaGgB2lN/OqC27GbKznhMFvekz/BQ8ChFtHdSl9ycpygkIVAGrXoapPwHugbhxrWydOZKx364gONpZRR4PDemxJLQ2EbG+g/2TB+LBz8lBYQyZ60TABdgO/lQP4YWHGb72AOvG3QU7YdG8R2wHGCADFjObGFrABaOCuzlMIvmUMLPgeQopBmwwoiAupk1ewUbGM55N3FG9jf3pA/E6nc4cyknERzrVPM6zuAlQSRb98FPACtqdVfDzWYDbFSCLSoopJIVa5rOAAc46TYBp6T+304mBV9c9TMGkZcy4ZTFlZDONlaEIt+vCJjGd5UTTwjPvP0H+TTair5uAfU3oVFullFJKKXV56VRb1aP2mdcBSGmrp9caOFYYZdd1gl3b+SLwiH142gW9crFrPVuBh4Gd2Gmxazgz1XYdNthQk/N4nJMuljPTdlNh3eg8JhVtYf/MgQzZXs+O0bczav1uqLKjnAArmMYUVhFX1wqH7NpQd9spmiOjaCEGgCFb6iEeTqTaayWRd5LftgFv5GAA0toOAHbkNe54Kwv6Pko+JZSSywQ2UksKdzRus1WPzwNs8KAsKtnEeDY23sWS+AdIYy8pHATs1iwugiyjkFxKOYqHftiIvYvr5gGwP2kgJeTTQjRPsJBKsignBzcBfCSGtrLZSxoejtJOOB78JFNLCflMYyUrKAB0qu2l1UNThvqJqfpeT9TnDHlGpwypT0/bTaXUpaHt5heFTrVVPWoT49nEeHo1AFUQl90K24AM2NN3MNwMHLRHWeRIWI6dVtsEJ9J7287kU9AwL5ZdScPYlTSM0/djO5pjgElwOgFOFoRRN7G/7YSOs8+fdHwLb80cw5DsepgOo7bvtqOtYz5ex7jnW6EC6vL6U0kW3sjB/FlaCeC2nbdUmJn6PH3WnwIgmmZ6tUK0M1roi+yPL7I/LcRQ2PdF5q99jpS2embVvUI47VSRYbeSqQIPR6kmgyXYgD/P8jhb40cyq/EVGxjImZw8s+0VVjCNfH7NNFYyhdUsCM5nAD4WJT3CoqRHeJxnWc0UUqjlXn5FOy58JOLHE5rinIiPCWyihWimsJrZLOYF/49ZwiyqSSeGltCop1JKKaWUUpeLTrVVPapzj0ueAn6CHblMAypgeMMBThaGEdFkg/iMfbrCdhpToeE3sSSsbbKd1IWQsKWJhFRniHMNnFjemz51p6AKenmh17gOkg4dwZnRCl5gBNyxfZudwjt3tw0ydDPMzns6NGo4y/sKu+YMI7OxhqS6IwSTXAzZV88S8wAeZ4Qx81AN6fFVnB4D3sjBZAUrYR8kXN9Ebd9kkoN2naXPNYDiukfgIyiOvI/wyHbyKSGRwzRMjAWglFwKKaaEfG4kgJc0G0Qo3s1RPOQH7TTYxZGPkEspE9iIBz9FzCDa1UI47TQ7U2jHs4nDJBLEFRo9PUwi49kU6oAClHdk80TYM/zo3aWEx7WR7SkLRbztnKqrlFJKKaXU5XTFO54ikgy8BkQDLcB3jTGHuqW5DigCvg0YYJEx5hfd0qQAe4BXjDGzL0fd1V+6o9pOMeVR2J86kCGD6mmYHEs74SStPELEvg7WzbTTTydFbbEjmZGQ0Nhkp9tmYNeHrsM+xol0e2s9pxqgdynQAA0jYgmMcJ9ZUzrGpq8b3Z9RRbs5sbA3fbacYk/eYBa1zeNkvB3cj6joIHNlDTTByYfDaCcc1kNuamloT81jo6PIoBpfZH+G1x2Aj2BdXh6T1m7BPfmD0NYstSTjSfLTx3WK71BCXF0rhUkvMrSz8w3MdLZD8eAnSDhuAvjJJpdS2nGF8sqmHA9+/Hjos/0U00av5HGepZDij41QLuUhysghhmYAdpLFaqacGa0FssIqqSadNbdOZDVTcBMIdV73vfJ1J6fNPfBpq0sqDBtYS6lutN1USqmz0Hbzqnc1TLVdBiw1xiQDS8GJ3PJxU4EkYBDwDeBJEUnsvOg0sMXAhktdWXV+u9KHsSt9GHhhyK31sN12KpN2HoF9cGJmbyYVbWFS0Rb2zBxsO6FRcHoE0GrXhLINu3bTiX47ZG49DILezwBB22FM2NLEkPX1LJrzCIvmPGLTPgVBXJwugD7FpziWF8XwxgOURY4koq2DiLYOuB62FoyEcRDxfAfDZxzgxLzeVJEeih67kmkM2VJPLSnQAEtSH2DSvi28NXkMmftqQpNap7a9SRnZ0ARxja28lTSG+ymmmRj8ePDjoYXoUIChAfjwMYAB+GgnnGzKaCGaFqJxEQxFnZ07eh5e0oimBS9p9MNPP/y0EB1aC9q5X+oOvkkupSxhFs/yGM/yGAHc+PGwmilkU863KGUAPva9+3W7xUzmZf+zUEr1LG03lVJKfe5c0RFPEYkFbgPGOqfWAC+LSF9jzPEuSf8BWG6M6QCOi8gG4O+BnzrXHwP+A7jROdQV0jkSRxvwOuAC9jkXCyBIOIywayeHNx5g+OYDsA16ZTgjm8X1ds3nJOw6SZzn/wTwwq7Rw2xU3HVQ92Z/Htv3ImA7vJnUMOR4PQ19Y0kY0YQ7GLDPjQc+cvJ6DryThzK2sYIT83rT52lblxZiyKHszAtJtWs6l4++hzT20pAayx3Ht7EndXBoZLEo8gFmHX+FRemP4MdDOlX48ZBDmR1VBXYVDKOdcKJpIYCbaW2v44vsz17SyGprxR1pR1mTg7VEu1pIWN9E5cQsfCQ6+3z6cTlRbTs7oQAZVLGCAmJoJoiLEvJtRxk7eprG3lDgoYL31vKtWzaRfetvQhFy3/4sH7JS6orRdlMppdTn1ZUe8YwH/miM+TOA89PvnO8qgY/vANHQmUZEhgK5wL98UmEi8gMRqRKRKviwB6qvlFJKXVbabiql1NkIdsCjJw/Vo674Gs/PQkS+hI2LOs0Y82cROW96Y8yrwKv2uZ4v5j4yl1hStbP35hogFWiAtwrGcMfwbZz+T4jb3sqx0VEAxE1vtWszfwI74m9n1L7dds3nNtjz5mCSR9sgPhGHbDCiuoL+ZNbVQCqcnBjGXtJIwpaX+XwNvAC7+g4jwI12zeggWJp3Hw9u/+WZMh9uJZ8S+Aj6bDkFE+3P3LzS0GvIpgw2Q2ZCDZmuGlgDdcv7s6vvMGJoZjwbAfAxAFphtutFem2DXROHUU424bSzq2CYkyaRLCpJON4EFfW8NXEMZWSTwkE2RuYx6fgWAPb3tXt/lk5000I0WVRSSi4FwRWUu3IA6Iefdlwk4qOWlNCeoFNYTRUZzKQIgEqyKCUXHwPwksb4W0pIxEcaXkrI7/HPXF0inQ2oUj1I202llFJXypXueDYCXxGR65wG8DrAw5ndGTs1AF8F/p/zuPNObj9gILDZaTy/DIiIRBpjfnAZ6q+6s/07tv52JGOrKyAD0qmCZ5x9Lwe1EldsowbtXz6QlLZ6aiMH2ii0g7Cd1bthePWBM1+6vYALkjYf4di8KOKebyUi2IFv3gCWpD4AwMyEV+gVhMyiGhgH+/NsRy6LylCnE+BYQRTRwWa7+HwQcMiuLx3yjXr2/3YgACuZhrswQCI+wgkydnMF/YJ+khqPcDoWKiNvByCAm2NJUfgYQMrEWmpJJp8Sfsps27kF/Hjs1NyPbEfYRyKLd86jYUSsXdPpxCGaP3oBs1lMCd9hApsIp51prOAZ19xQYKBObgKk4aWFaIK48JLm7OmZDdjot7WkkEItZWRTSwppeFnBNFpCee3pkY9bKXXZabuplFLqc+mKdjyNMU0iUgPcDbzh/NzTbZ0KwL8B00VkHTaK353AKGNMAxDTmUhEngRu1Oh8V97YpyvsusqRNvDOydFhtsPZZTePIcPrYRoMcdWz6hmYmgsUYLdimQQnRzuRaB/tgBXANLsH5/45A4mmmVlPv2K3Y+nkwj5eA655QSZv38D+0QNxBwMEXHZdZtyWVrbmjSRnRAXNkVFUJmUxqWgL/ASGTLcRctuXlzL8+AGO9Y3icRYxdlwFi10/Zn7rc/iS+jOqbjcAe5IGA9BCNCuYxqzqV1iXnsdUVrOCaQBMYwUtRDM7voBp8Sv5DiVMG/FzPPgJpz3UKS5Z+Y8sL7gHgGaiqSYDD36SqSXo7BkTwE0O5cxnAR78FFJMGdkEcOMmwGwWAzbabiKHaSGGoXgJ4Gbx+7NJvqk2tBepUurzSdtNpZQ6B41qe9W70ms8Ae4HZojIQWCG8xgR2SwiGU6a14H3gEPALuApY8x7V6Ky6hN85BxrsKOfTwAuiPi7Dk7fjV1hNNEeJ3eF2V099sHUBvu8Y5Oj4BmgFSKGdxAxvMNurTINGpJibQCilfW2E+t0MlkDNMDpBGAznJwTRtLxIxwbHYWffriCHWxiApuYAF5w8wG9lkFccStZVEKqHfU8/YI9hq+1W6i4aCcRH7hsMJ+30sfQTAxbk0ayNWkke0mjmgzuWLuNRA6zI/12juJh1PbdTtxbH24CjKrejYt2htTVU0kWC5hPOO3kUIY7GMAdDLC04D7aCWcAPobiJZsy/HjwMQA3H+DmA3IoZyFP4MGPmwBBwnHRbqflfphLCd+hhO9wFA/tznDxdyghgJv2mkgmsIl2wu0WMurq19mA9uShrhXabiqllPrcudJTbTHG/B7467OcH9fl9z8DP7yAvJ7s0cqpi7Y29U4Aot9tZuzKCthIaFprr51AFWydOBKAsdsr7HTXEXAivjd9xp2ykWiXAbE4X6WgYWYsCWubSFjRBNc3wd1wIqk3fb59irrf9Acg6a4j9NoJJxeGEfF8B3Xz+pNUfQRXejW9tsH0jNdtXnPsnqJ75gxm+PMHcAcD7Bk92O7X6Tg5MYyIpg42Mp751c+xY8TtbGQ8uZTiwU8V6QDce+ub7Hp3GMcmR+EmEBqhXDD6UeZveQ6AY3lRrE2/k/FsYl1SHj4GOJ3FnZSSy3zXAgBe4177vgWbOeryUMz9TGMFXtLIphyARA4TJJxqMggnyCyWkEM5QcLJv6GEauz3zWzKyaKSe99/jfCbgpSv+zZfnfR7VjGFP6z+mvMq3+nJj10pdRlpu6mUUurz6Ip3PNW1JdrZTmXs2gpIw3Y6D2LvuT8BvA1j76oA4P31cNM4eH8Z3JRxCqIgYl+HnTi2gtAITXSw2a6FnIRdpfQW9HGdgj9B0pYjZwqPhYiqDqiCwyQSnt5OwpYmW3bnMs948OAniAvGQcDlJjlYC8tgyWK7XjSFWu5o3cbQeC+nB0FW227ckQH8eFjBNApZBsCxd6NI5DAxba2sjJxGOtXUksxUVrMnz07DrSKDxzueJSuskmzKSaGWcIJ4OMrCfU+zPNVOry0hnywqGeX6TxbxOIUso5IRtBBNLcmAnUL7ayfdYRLJoJo0vHgZShXp5DgdVIDFzCbxJh8txMD1dl3oXJ7hockvA9AytWc+b6WUUkqpq8Z1V7oC6ny046l6VFpntJxlwMtwMjKMyhFZjJ1TYc+9Bc7yR27C/n5TFHa6rBdoBQ7BuuV5of0y7137pu3E7sR2PIOwK34YLXuiuWP7NpvZUuf5h4BfwNgtFRzLs73NrXNGMva47ewmrGyCDOBmexzFQ9zzBzi2OCo0BTWaFlgDw68/wPJ59xDuLEz1MYD5K59jbsE8ABZueZpdecNwu/ZSSDGJ+HicZxl1fLcN6wEcTk/kP8L+lhUUkMhhmom2nUHgmdQneIJnABuJdjVTmMpqEvHhJY0MqqgkKzSSWUY2C5hPOTlMZTVl5IQ6+lNZTREzAZjNYrIpI4Cbg6Tw1XG/52iHh7vL10PcZ/2E1WWjUW2VUkopdQ3RjqfqUXF1NmIt90Ndan+S1h9h7PUVNlqt02kM7TY3DjvV9mGgCtiO7WAGYVL2ltBUW6KwX8AbYE/fwSQW+shcWWM7mXfbJCcjw+y2KyOAj2BP3mCGrz3A8sn3MK3tdXb0tZFoR92xG/4Ec/vOI50qDpLC8KgDxG1vZXbGiwD0OgQNC2OJDjaTQZUdEQW8rqHQCDOcbUt25Q0js7qG04MIdRAKKWZB30cp7GtHRVuIIYtKiqsfYUn6A2RRSeaWN1madx+rtt/H8tF2xDORwxQxgwXMJ6OthvLI7FDHu7PjO5dnKCeHNLwUMZPXgt/lXtev+PX2qfzH6L8hBaeepNFOODcSIIiLGFpwhbUzZfRqSskF7CC0UkoppZRSl8vVEFxIXUPWJt3J2qQ7OTkxjKS6I7ZjmQH8CBtUqIkzAYEGYUc4n8Ou6fwJtjP5ArZTGmuPXXnD7J6cc+6zgX+ArQUjmbtwXihoSsTsDpu+CdgMifjYP3kgaXgJRPYmSDhBwuFF2JM6mGmswEU72ZRzugC2jh5JryroVQUnU8NIeL6JdpeLKme0MeJnHbQQzaJ5j1BNBtVkkLm9hq3pI+nVYKfK3strJOKjkGUcJIWDpODHQyVZ7Ei/nRaiyayuYUfe7axiKlNH/5Lpx19n+vHXWc1UBuDDw1FKI8fQTDRTWAWAl6F4GUolWXaPUSCLSsa63qGSLN4e/b9YzGxqSaGWFCrJYuOHE6gkCzcBArhZznSqyHBS1F7qPwOllFJKqctLg/Jd9XTEU/WoRHwARGzvsCc+wnYGH8VGp80AZ3cQGpJiSShush3NndjRyruBbXD6fuhlBw0JjL6R/fEDebD4lzQUxgIwtriC8sIcTiT1BqDPT07ZUVMXHCuMIm5LK1V5/Rh7vILTLhjbaqfa8oidSts5ipi5vgbSICOy2j4fiIjq4OTDYfQ5forcvqW0u1xEjDuFHw+PVb/IiXRb5rrReQC8lTqGFGpJpyoUHGjUTrvlSvOIaErJxcNRZlDE0vT7COBmKquIpoXZfZ8G7BrMBcynlmQ8+EnhIKXkkuzkC3D3+2vx3ZRINuW0E06OM522HRdTWB36DGpJJuaGFpKpZT4LcBNgIXMB2OSf4KR691N+wkoppZRSSl08HfFUPcqDHw9+aCW0xpJD2E5n59TaQ/ZImN5kp9HuhCWTH7DnAUZArybsWtBpMHZlBUP21bO08D4S9jWRMKOJhsJYprCaPo2n6NN4Ch4EGuBkRhgxba0QDxlUs6Pv7RRFPmC3bdkMJ/r2pphC4qpbuWPfNmiCrUkj6bP9FHvmDGbPnMEcS48ioq0DKgjtk0mjHdXs7HQCrGYqbgKkU0U25Xjw43UNJZx2Zo94mtkjnmYl08inhBaiiWtsZTyb8OMhnWoS8TmbvGwiER9lZBNDC1VkUEou+cESAAbgYwA+nr3pcdwEyKKSdKpwEwhNu/XjYRPj2cR43HxAFRl853ebmclLuAngIkgMzfDfLnuoq18Ydgp3Tx5KKaWUUhdJRKJE5F9FpLHLuVtFpFhEfiEiK0VEPikfHfFUPSo6aIPd4IK4la12tHMcsA1oBJ7HjmyCnVpbBccmRjFr/StsnTySsUUVEImd3uB0RI/NiyKuqJUHo34Js4FWSChqgtgmTk60904iHu2AjyCi0RlpfQr6PHyK9IwqRh3azY5Cu8azlhTGs4k96YMZvvIAywvvwU2AkyPCGP60nca7Z95gvH3TGDDRx73b3wQXnMjrzXKmU0Y2XoYCsIRZRAeb8bkGUEouhcFlVLsyKKaQuU7QoCJmUkI+xXWPQAVsKhiPmwAtRFNJFrWkADCejRzFg5c0WoghnxKKXfezmikUUhx6f8vIIZmDuAhSSi5ZVJJBFTmU4acfAO2Ek0ItL9/2fTKo4gfvvcYHX+nFva5fwYae+6yVUkoppa4anTdsLyMRicbumzwQG8mkDig0xhw/S9rFwHeARCDNGLOvy7Vk4DUgGmgBvmuMOdQ9j4uoV4+WZYxpBb4nIu90OfcuUOjk+W9ABPDB+fLREU+llFJKKaWUungGeN4Yk2KMGQrUA4vOkXYDMAr4w1muLQOWGmOSsXs1FHdPICIuEflqt3M3ioinp8oSkYEi8k6348fneD2ISI6IrAKagQ/Pla6TdjxVjyp35VDuyrGBfm7GRrK9HjvyCez692HsnzOQ/XMGcjI2jLqJ/e2FQ9COi/d/ZJ+3f/JAG4xoIrzETPbMHAwTsBFxX4b9Mwd+/K7WU7BgxKN26u4K7JrSYlufY6lRoSnAbgK0E05ysJY9BYOZvvZ1JtdtIOJnHfa5UbCKKYytqyCp8Qh7Rg+GNqginYSdTcTQQj4l5FOCHw8RbR20E05hcBktrhhKySWc9lAwowyqmMlL7E8ayI6C20nEx3g2cceWbUxjRaj6HvwkU0sWlWRTRiVZlJPNOiaFptC6CDKbxeRSShAXQVxE04IfD6XkEkMLMbQANrLtg8d/SRUZjL+lhPmuBVSRzneeWMV3nlh1Cf8CVI8RNEiCUkopdWXFiEhVl+MHXS8aY943xpR3ObUL+FjnsEvaCmNMY/fzIhIL3IYNvYnz8zYR6dstaSqwVURSnOdFAW9j5xb2SFnGmHpjzN90O356ttfjpC8zxkwFTgPDzpWuk061VT0qtK/mZs5sodIKvAysgcydNbZDCbAPklxH7O93wx3Tt9lrKyBlRL3tCAIL1z5tp90GsYGJomDI8/XsmjOMRA4DEDGolfnHn+O0y26HQhWwEHLbttGrAeam2j0up7CaIY317Ii/nVHFuzl9NwRdYQTmuIl73m4FM5vFrEvKY9L2Lbaj+xG4aKduRH+Su0SE9eDnZGQYzUST6HIRHWxmYdPTcD3s6jsMsEGDSskll1JGVe+mLr2/XcOZl8vctudwRwYAKCeHfEqIpoUq0pnCalKo5V5eC23fUk0GBazgcRYxjRWUkssmxjObxfjx4MbmtZopuAmwvO89zGcBR/0e0j1VuGininSn9nWf/cNWSimllLpadN6w7VnNxpiMCypeJAz4IbDxIsuIB/5ojPkzgDHmzyLid86HpuwaY6pFZDqwWUQKsOE53zDG/KKnyzobEVkKfE1ElmH3pPgqkI99578E7DvP0wHteKoetmv0MAAyq2o4UdCbPtNP2YBCzv6cu14aRubzNTZxE/zxBbgpAno3YNd8NsGS9AeYdfwVTsQ7EWtdp+w/hwI4WRhGRFMHJEBmdQ0nU+2g/f7FAxkyvZ5ek7CTBhqAh6DXRDhWEBUaXUxqPGKvxcPswqdZvH0evYIduEa0cmKOLc8dDDDU5QWXXaO5gh8CcJhEWoghw4kyW0kaA1w+XLSzgmn4Xf2YEL+JUnJZWG2j1b6Wfhc5lOFyoug2E4OXNMazicrI220gJiCZWgK4mc5yXuYhXARZyBMkU4vbmS4fwE0LMYQTZDrLWcckiilkI+OpJiO01UotKSTiYzVTmMYKKj12W5VcSnnodxfzf5NSSimllLpAL2HXOL58qQowxvynM/V1B/BTY0zRpSrrLGU/iA3n2ekwUH4xeWjHU/Wol5gBQOaY++gz+xQ8A7yFnXqbAJnba2y0WoDn4CtPYYMNBeFkbBgRwQ6iaYbnoA+nAGhYHEvC+iYYBBE7neBBqcA+iEiwj4ccrIcCm8+evoOp7ZvC5Ps3cCKvN+5gwAY6wtaBKkgeUcvixt2sHX0nifjIXF9Dn0O2vNP3w0bXBGZtfoUpI1bBTiibmEMupYytq2BX0jDA7qXpJY0B+HATYPHxV9jR93byKWFR+iOh96TdmRN8OP0wAdykU4UHPw/xMtnOv9eXmMkC5odGMtsJJ5dSNjGBFRQAdtS1iBnkUgrYKLte0sillA9w42MAAIUUs5opeN9PI3iTizT2chQPs95fwrduszfh3v6Mn7O6DK5AkASllFJKXTwnmM8gYLwxpuMin94IfEVErnNGIK8DPM757uXcDDyJ/YZ9t4iUGGN2X4qyLgVd46l61KrZ97Fq9n12TWcqbO070u7RGQUnZva2U3CrnGMQcD92Gm0VBFxu9icN5N6n37SdyHH2SKhu4vQYIAjLR9/D1tEjYQ3smTzYdmrfstuo0GTzOUyiHZWsgD4zTtHiioEx2CPW1iWuuhX22c5j5vYaWxdnHVzQFUZhcBnHFkYxdl8F+xcPxEWQzH01rEvKC73Wg6SwiQn0C9r1o1v7jqSKDAK4nRWlHtLwkk8JiRzGj4fcYClZVFLEDNa13UUGVWRQxRRWc0fjNsJpJ8CNFHcUUumE/3UTCEXCzaAaL0NZ/eFUZlJE5ftZHCaRLCqJpplomllBAS/zELk3lRLgRrwMpR9+nrjpGXwk4iPxMvwlKKWUUkpdRldoGzIRWQikA3caY4IXW21jTBNQg93NHufnnu6RcUWkH/AO8JwxZi52mutaEcnq6bIuFe14qh51cmEYJxeGwUewp2AwGVTD3XAyPow+209BApweYQ+ehx197TYnpEJcUWtonSJ/RyjYD62wKvIueAqmtb3O2OMVMAmCuOz9mUZod7nYNXEYjLMjg0l1R+AROL0QPG1Ndp1pK+xJH8zJwjBIgF15w2ynNgO43gYs2j9zIBFtHXhdQ4nb3squ1GEMqa4nDS9bU0eSwsFQoKJkalnSNod2l8vurxmsZFbjKwAUbZlD0ZY5pFBLFemMravAxwBecs2kn/9PVJNBUeQDpAerSA/aPTmXxt8H2DWmL4fZ6bbPBh/jKB6OOp1YL2nkUMbcGxaymNmk3eTl1x35pOFlAfNZwHzcfMAzPEEVGRx8P4UMqqgkCx+JpOElDe9l/ItQSimllLo2icgQ4AnsqGGliNSIyHrn2mYRyeiStkhEjgD9gXdEZH+XrO4HZojIQWCG87i73sA8Y8wqAGPM74A7gRvPUq/PWtYlIcaYy1XWVUXEY5ytZ1QPMhVP2l+2O/tvVrdCFJyOhV73ABnYNZZgRx+bsB3TEWFUurIY21hhrx0itI/nicLeuNtO0Wtll+dMxO4N2vnP2emg0gSzRz/NTF4iYXoTRNnOcMDlBmA1UykMLqPElc+9099k6/KReDhKOdk8WPdLAJYm3ceD1b9kV/owMo/XMLvv08xmMXFbWtmaN5Kx020dG5bHUkK+7WxeDzwHWxePZOzxChr6xgJ2XWZi8DDtLhfTWc5sFuMljemNrzMz/nkC2Hql4cVHIuHOWtBprMRLGqXk4iUNgKrqkbgGtDLjpiJaiAk9J0g4lWSF1oJmUMVGxhNDC+lU8YEzZgpQ2WFvirVcp2s9L50nqy80EMH5ZCSJqTpnHLlPRybRI3VTX0zabiqlLo0eajcHiala0hP1OUMmaLvZk3SNp+pRa0fcCcDk4Abivt0KE+HUj6D3Rjj5ZhiPuxZRtHMOAMdGROEOBogo7iBiUAcD4n12Wu4IaBgdi3u0Hf10t52i11zgI3uNddiOZyPsLxgI2A5e5vU1sBMWp82zndudwEK7pUqKE402l1IiGju41/smJ5b3JoYWhuyst/k6y0AL234JrRBDMycjw6gmg1JyIQ82MYGY5XbLkuHVB8hPL4EmG0To3offZGxjBQviHw0FDQrgxuPyO5FqV5HZWEN7fDh74gdTSRbpTqCiNPaSQi3NRONjAOVkk4aXKtJZwixb9/R/D0W4BUIjmO2E4yaAh6MAbGI8AEFnneh8FuDmA3IpxR9mt3pq6aHPW11ClyY6n1JKKXXt0p7NVU0/HtWjOgPf8DNgDtAEvXcBOyFiegdFk+fYAD9A3M5Wu9YzCo7NjCJp9hG7/+Y68NzdRK/OGaHXc2ZrlnjgeZgZ/zxFd88hMehsp7K5wwZxjsWu+2wD7oflE+9h+srXzyyZdgIZsRP6jDxFn9YDsBaqRqTjT+8HQAbV9Ek7RTMx+F0etrbl4YvsT9LxI+T2LQ0F8ZmbPo9EfKSk13Lv8Tfhenir7xhSqCURH4AzEmk70O242Bo/kkpG4CbAEyzkICmhMiexjiwq8eOx0WjJYgHzedzZhzhIOCnUMo0VBHDzmHPeR2JonWenBcxnAD6KmEkMLYTTjp9+VG8f4aR457N8zEoppZRSSl0UXeOpelQRMyliph3pnIDdlnYzMAZOvusEAGqwx8mHw+zWJ2MgbkurDf6TCbRCWeTIM2s8wXY818Cx1Ch4HYq2z6EhKZaIQx1EHOrgrYljWDvvTsiAk3eHcWxmFAyC6TNehzQ77ffYvChogmN5UXYd6gpgGzS8FMu91W86IXzc9Kk+xWkXZNbVkNW2m7LIkSQVHWFt3ztZyTQyG2vIbKyx25/UvU4z0baOf4JwgmRTRoAbCXAjbgLcsW8bGVQzuXED7bjw4GdW9SusZmpozWXc+8d4lsdD02c3MZ4sKjlICoUUU0gxc3mGWlLoh59iCpnKKgK4CaedaaxkAD4G4COA20axZQkZVJFNOZUfZlFNBv1GH6bf6MOX9W9CqauNiESJyL+KSGOXc7eKSLGI/EJEVoqIXMk6KqWUUtca7XiqHjX/6eeY//RzMAh6/wQ7wjgJOAQR6zvsiOZIe5S6cm0HdGKYXas5CJbX38PJh8MYu70iFDiIzdgO6MN2j00Ondkv9ERqb06k9iadKiYXb+BYehRe11BbmUjY8dLtnEwNI66ulbi6VvZPHkg5ORx1eey+neOglmQWpT9COTmUk8PJ1DB8kf0BqI20U3kZDdmUUUgxx+KjOBYfRS6l7E8ayKTtW9jTdzB7Ugfjx05lddGOi3YSOczW1JGMD25kT/xg0vBSSRYkQDTNTrczjcKbinERpJRcomlhL2lMYh3NRIei2gYJx4Ofamdhaym5JOIjl1KKnG1sADz4OUwi+ZSwgmnE0MyCG+YDkEMZOc5+n+oqd+Wi820Qkf8SkT0i8n9EZNg50l0vIj8XkUMi4hWRV8+SZr6IGBFJveDXffayFovI4bPlJSLJIvJbETno/Bz0SfkZY1qNMd8DZw6+PfeuMabQGPN9IMI5lFJKfV5coXZTXTjteKoetXbenXbk8XrsdNtD2FhfsZwJLBRvj0lFW2AzRHylA7xwLCmK6Y2vE9HWAeuBSHucnBMGK2FH+u1EzO2ADMhoqyGcIOFBe8Tta+VEYW/ijtvIuEedDuCo4t1EZHeERlndBJhctIHEtiMEcFMX35+x+yp4bPaLPMFCnmAhm1wTbAfSBS3OaObW1JEcJIXHeNYZVxxAGdlE08yx0VEcJpFoWtjEBIq5n1E7dzNq527acVFODmNd7+DHw2qmMJeFzOz7PEvbHiGLytCxgmm0E040zfy6I5+q4yNx8wG1pFBLCkOdbmoZ2WRTThaVVJPOD373K/Ip4bAz5TYNLxlU00w0HvyE085iZtNMNKu3f4/V2793mf8q1OfMvcaYvzLGDAcWA/96jnTPY1deJxtj0oB5XS+KyG3YOQwNZ3kuIuISka92O3ejiHjOknwDMAr4w1muLQOWGmOSsXMoirvkN1BE3ul2/PgcrwcRyRGRVUAz8OG50imllFLq4ukaT9WjJjdusL80Ab8AfgSnGqD3UuCgc77JJjk2M4q477bCT4AE8DGAuMwa+3gycLNN1+KKIWJEE6OKdtvpuFHQaxnERbXaqbwAL8NGxtPe10UaXjLX1/DaxLu4N+pNdhXa6LQACd9o4q3fjuGOum0kBJvgT7Y+JxeGEbfPRheafP0G9ifZkc4g4WRQTTGFTGE1M3mJ1UwBYCqrQ+s9J+3bQkNqLL9+bwrTbhnLnhGDAULRZWNoxoOfO45vg1bwJqUxP3Ie0U6YnwlsJIVagrhoIZqpYatZ2/dODpIcikjrIkgytaE1o1lUUuWMflaTEVrjmYiPFqJx0Q7A4x3P8h9hf8tDvEy7M8326Gf6lNW1zBjT2uVhFPAXG2GLyI3Ad4H+xgmNboz5U5frLmwncAqcc4g9FVgjIuONMbUiEgVswXZ0PxZ22RhT4eTbvR6xwG3AWOfUGuBlEelrjDlujKkH/uZCXrdTThlQJiIvAcOA313oc5VSSil1ftrxVEqpq5FwKab5xIhIVZfHrxpjzjZF9hfAt5xafPss+QzEBkeeLyI5wAfAP3V2EIGngDeMMYfPtVTSGFMtItOBzSJSALzgPOdi9vqJB/5ojPmzk+efRcTvnD/vZtgishT4mogsA54DvordjFuAL2HDlSmllPq8uDTtpupBOtVW9aynnGMdMAi4H3q/gB3tDAIuaJgcS8PkWOKKWmEcnC4AfgSZMTXwn0AGvDViTGh+fcL6JtZNzINIOJHX207dHQekwpLyB1hS/gDcDPc+/SbT614nc20Nb00cQwwt0AqZ1TV27GIYsBHuWLuNhqRY1vXN4+SgMNaNziPgcnMsNcoGL4qyU2y3xo8khhb6zD1FAStoIZohjfVMYTVTWE0VGWTuq8FPP6iy25i8fcsoiphJNC1E02K3MMHDxn13EcTF0r73wUeQTTnpVDmpogngJogLL2mUkE8z0SzkCbKoJBEfifioJAsX7fhIJJdSSsjHg59v3baRZGopJZdSclnBNLKoZPH7swFIDjto15FSHFovqr6wmo0xGV2Ov+h0Ahhjvm+MScD+azvbbqK9gFuAPc7+Zo8C60QkUkS+AXwdeOWTKmOM+U/gx8AOoNwYU/QJT+kxxpgHjTH9jTH3G2MOG2PKjTEPOed/YIxpv1x1UUoppb4IdMRT9ag9y+0U0+HHD0ArLJr5CI/NfRGaYP+8gSQGD5Ow1plr6wKiwBs5mOHBA3aKLdCQHsvoG7fZ8Q+AWGghBtKgz9xT8BM4HWUD/4QC5TyIDWL0EWydPJI7nt/Gujl5bB0xkrHfrYD7nbwa4MTk3iRsaSI8r5KDrhS8DGVS3ZbQXbIl8Q8wa8srkArH4qNgHJSTg5c0muPLQlNfp7W9zq7UYbQQw2sFd1EQXEGlK4vZ/BRPm32NKZEHmdT4Q2amPk8AN8vbfkhdan8yqKKWlNA+ng+ylCx2kkF1aF/Ot/hbJrGO5UwHoJloVjINgId4maBT4Ria8TGANOz+M24CFFPIEzc9g49ESj7MZ9MN40nDS0tHdE9+3OoaZ4x5XUReFZFoY0zX7V//AJzGmexujPm/ItIMJAPfBL4GdI529gdKRWSaMebtrvmLyM3Ak8AzwN0iUmKM2X0RVWwEviIi1zmjndcBHs5soKSUUkqpq4R2PFWPCnfWFbLN/nis9UVYD3veHczwGQfABbsWDwMgM7uGXeXDyNxXw1u/GUMWlQRwk7CvCTYSCkmyZ+JgxrMRWrERcYPQqxWGbK63UXMB2mD/5IEMOV5vO6nj7LrHhXVPn4ms66glhbTRe4mra6U9ycU0VrAraRgpToDLFGppyIslYWcT5fE5tIyIJptyomm20XbTnIxaIRB5I2l4cRPgoCuFFA4SHWzmwcgXAZjLMyyNv49syoihhcmRb5BBFY81vog3Pi1Up3xKmMIqfk0+NxLAxwCKuZ9w2lnhdDansYIZvEQ52fjx0EI0aXgJp53H33+W9JuqQ3nZTm01taRQeMMyjuIhSDgtvrPFbVHKctZu9jHGNDqPxwPvO0eIMaZZRMqwayvfFpFkbAixOmNMFTibzNo8fMDfGmM+NnVVRPoBbwOLjDGrROTXQImI/KMxppILYIxpEpEa4G7gDefnHmPMeafZKnV1cTs/dTaKUp9JGDa4pbpqacdT9SgXQftLK/ZrKMAI2Esaw8fZjmctyQBkbKyxUWNvhjuqt0Es9Dl0CnbC6YehV4J9+vC1ByAWTmdA0BVGxPoOTkzubdPGO2UsBx+JDDlYz+SqDRAL49kEFXD67jPbojzDE6yquw+q4K3JYwgnSAA3k3ZuYceI2wGIpoWE6U0sWP4os4N2lmG5Kwc/HhaNzuCx2S/aMgvgGebyGveSsL6J1ybexVE8BFxulrY9EnpPkiNthzYNL0uYRQA3hfEvsoD53M1ap/rTKeZ+SsklhzJqSaaQZaHRVbDbp5SRw1wWMp3lePCTTTn/P3t3HxfldSZ8/HfQzoAwvDjjiAgUZYQYwcVCoxXXRa1rNKvV1KbGJI0mtWZra/Pppi/bPGma5rFPmthuappuzEtjmsTY1KobNxqbqNQVQyxUVjAEMigFRBxnFBgUZ6qc549zi8T6go0ikuv7+dwfmPs+99so3FxzzrkuGyH+38B/73zvdzEeB0FKyQVM0iYHQcLYscWbP2xkDOF14No8QKOB3ymlooHTmIBzptZaK6U2AT+0Aksw4wh+rZT6GfBX4C6tdfNlnCsKeEhrvQFAa/1npdRsIPHchkqpFZiPjxKBd5RSAa31qC7X8ZJS6ofAMUzSIyGuIxJwCiE+GSTwFFeUZ1uD+WYVsAwoAtxw9wOvm6Gsg+GvU14HYIuewi31pmv0eFYE0Xd10PR6HImbWngjdjrT7FsAsLs76F8O/etgV1YeE4t2kzClHRZYxwcIwS1shRAUT8/BTsgEYkXQfwKUxJogbD6r4UVoWhaHkwC7GM80tlCX7+6c+zimvpK5z73C2iN3smPQTUys3834lF2UWIHc8WVmanS5fTQ/YBkAT8+5Fz8uHmz9KY2xbvpb8ffcQa8wl7U4CBLAiae0gUdyrTmYPNCZifYNZjGeImpJI4MqVrGQTKpNzU/LfF6likxWspg8SnASoJY0q8annRdZAMBCVtHIEA6RRBgb5WR3Zs8dMrAROH9NCiGszLTjLrBtxjmv9wMF3Thm2gXW7wf2n7NuL7D3PG2XAksvcJwPgLGXug4hei/p8RRCfDJI4Cmujm/Bjsk3MTF7t6n0tx6OLY0ihI1b/81Uaxi4eSs8A/v+K51R9TXwQwhj59jyKKaFtlBrN6VKwnYbY75QCYWQQRV1T5mu1KRWH1XzTE9mZmsN/X8M3AfjvGUQB8WDcsy8UR+dQeUtm7fCQkg80kL5oBjm8yrVZDLKW0OqVedlj2cka9ffCRUwMWs3C+f8J9mUs5AXGUYt9pCpLrHLPp6lrSZ/yhLfCzR54ujvg9Q6H49l3Q/A2m13smPyTVSRyXYKWO57iCAxBHCxkFUsxyQAshHGZQWSq1hILiWs4Jv8hrt5hsWdb6sTP2HsOAmQSRUBnGxnUme9UTA9ygFcBHFQ+ud8nDkHKYjYzkJW8bn9Uh1CCCF6Fwk4hbgiJKttryeBp7iyzgyvTYUkGqEFdnhuYmLWbhLWt4O7nR1/NUNaJ640dTlHPVoDeUAJ7MoaTxq1jKsoY9QvasyxJgPfBSIhsaKFuiw3qdt8HM+P6Bxe2r8OM+CuDo7nR7DLPp6p3p1QDuTBrNbN5lhZcCwlitXMZyYb2cI07t78OqSANysZgO/zGFte+wLMgEfmfI9HeBgbIRK87eAJsCvWXH8AJ2/ETieJQzTGmh7GJXEv8KZnChnWfNG3J09gJfeRxgEeCT3M0umPk015Z09rgZUcKZNqtjCNDKpYfeIOnAMC3MFq3mCWmbMKrGIhD7CctcylnGxc+GkkiSoymEQhjZj5m6uOLmTIwEbC2Jn5md+RRi1P7foOgfEuGWp7PZEHqBBCCCH6EAk8xRX1YNZDACxb8yienWbY7cTXdpvAMhu8nmQmbrOSVuZ12fHHwHdhXv0GUz0vC5MmBMAO+xakU0hBZwIi2+QQjtDZT4mPZUXhaG3nRc9dLNr2MvbJYdgEvAbPvXsX0zDDdsOxNjyrGliS9wLHsqIYRq2ZJxqicz7llke/QN3rbiugM/Mt7YSp9pg2adQCZs5mJtWUkMshkpjPan4+6Os0MoQkDgFmeGweJZSTzWr7Hayo/y5NKXGdQ2/LrUxFYezsYjw/4Cc4Bpj5mMs7HiA7opy5rAXM3NO9ZFNLGltOTOOlfl/hM/Y9zGc1DoK8wUwA/nvgLewin0aGUE0mqzvm87nxJsANF8Z+/H9kIYQQQgghLpMEnuKK6kyGMwL4EKiDpofiAEhc34KnvIE9c0zJFQdBPEesOaGpQBEcy48iYVM7b0+fwNRIU4v+lN0kLVrifYFiTw7ZlJOwsh1SwbPV7F+33E3CpnYW5b0MbtObemxpFI1Lk8ijpHN+posAnsEN7Mi6CRthJj6wG74FbIUhuWb+4wMPPcpSnsJBG1Vk0IaDJRUvsC5rOrNaN/Ni7F0ATMKUVqkmkx+ElhG0O8hmL078nUN7V3MHuxhPLqUUUkBaygGSOMRa5pJNeWdA7CLAJLbzKnewlKcAaIxIIpMqMy8Vk1yolDyCOPhwgIdS8ljMSsLYyGZv57GW8x0COEmikSQaCUXYcRA078G40JX/RxdCCCGEuNYUEtn0cvLPI66oM7UksWMCzzhI/GaL6VWcYdaNWVRp2izA9Eq2Qt1TblLrfSR426lb7GZq6U44kzvzdvAUNXAsP8rM3wTWLJ7NvMc3wBTTJLXUB1lQ7Mlh3OYy9iweSRAHE4/s5nhsROfQ16fsS5nIbkLYmPjAbtYsn40TP64FAQ6QBphhr0EcjFtZhmNxkEaG8POsr5NEI8tj7+f79U+aa0iZTSZVPNL6KN+OfZzx7KKWNAoo7OzJnMR2nPgJ4Op8b8qtXks7IYLEAKb0ywMsx4WfW/hvZrGRB1nGdiaxiOcAk7X3babyMI+wnAcIY2c+q3mRBRwgrXNIbjZ7O7/fwjSSaOQP789iwY3PsKr5hiv1Ty2uNkkLL4QQQog+RAJPcUUtWvWy+SYSjj0URUJRuwlA84FtViOrpua+/HRGbauhbpmbAE5SW3wwDcoPZpPaspW6xWbCaAAnYwZX4mhth8NAPdg8IRPI+qxjlgBZMK6ijKen38uSIy9wbFAUxYNyGLeizCQ4Ah6470nWTJ/NvNINLF1ugsU8SlnBUh4+8lPTqMUkGPIuTqaRIQRwdfZgZlDFnhTTYzuNLWyngGdiF+MgSBWZBHASJIZFReZ9eDN/Ci4re+4sNlLLMLIpp6R+Am+nTGA1dwB0DpW1E+YOVlNONi+ykKf2P0DBcNOT+QDLeZhHSKIRB0H8uGhkCGBKpsziDQC+f+Ix8gaUkE05adTyc77NrhvHs5a55N5o0gCXXqF/byGEEEIIIbpDAk9xRa1ZMBswczUTNrdzfHIE0fUdkAEMBraebTtqvUkelFrhI9XngzrgVrhlxVb2LB1JyMqsMu5IGZyE7bETcOS3Wb2K2yEO02MK1H3XTeoDPo4tjyKEneOxESRUtBPOsvHcUjPvE6D/L2Be3gaKp+dQwHYyqaaRJBwEeW6QGUK7qPxlxtgreSnlNgBGU04QB7mhEp6yL+XWIyZR0Sk7uGID/Dz0bb5hf7pziOxKFuPIbwNMgqUqMgF4g5mmliYhXCl+1jK3c3hsI0msZS6Leaaz93M5DxCTGOhss5r5ZFPOdiaRRCNO/Pw7j5FJFS78xFjB8cIBL1oBsAMXflaymFrSyKSqsydWCCGEEKJPkaR8vV7Etb4AIYQQQgghhBB9m/R4iivqTEmP4+4Ious6KLXnsXzeA7wWmkf0ix2QD6esTrcXY+9iUf3L8CHsm5NOWugA0a0dsA7GzKg8+6lVpFmSOMSoIzWMe62MY0ujAHj7uxMAmFq0kweXP8RCXgRgtf0OFvEyDoIs2vYyeyab4bFMBj9OptbvZGHKYoaxgoxQFQG7k28/+qvONsfdEbThIJtynAR4g1lk2KtYwIumPiimN7ORJJx2a/gsuZQzmiQaGVdfBsDClP/kRe+/kuapZS1f5A5Wsp1J7CWbNhydvZkDd53gm+OfIJNq7q5/nUkpm5nGFvYOMENuAd7kFpbxYGdSozPvdRAHDoL8hAcByKSKvWRz6GgSPx/47c4e3acalzIzyQzHlaG21wH55FYIIYQQfYgEnuKKSsJkho1e3wFZUEWmCTorOiAEDIaQ3XS0z+QNUzLlSzAqtQZOwptLpzB+6S4cre2UxOYAMG6lSRY05rZKeBqYA8v4AcvrHmJqyGS+ZTDMZCNDQo3k2UuY+Ohu6h5yM2ZNJUyhswRKwpF2lg56nKkf7mRxykrGFFVSnJ/DstJHeeyh+wHIpYQkDhFDED9OQth4IPQEq+1mPub80KsAlNtHU0sa09hCGBvljMaFnwIKWZzyJAAPsoxTbigll1lsxI8TJ35WsRAb4c7EQT8bv4RCCiikgG+n/JxJbGcX45lEIU4CgKkvWkUGAZwMoZFpbGEX48mmnC1M4xEeBmAX4ykhj/kDVzOERpbxIE78/CjpYX60//9Z/1I/vuL/9kIIIYQQ14wk5ev1JPAUV9S8+g3mmxHASUySnfWYDLa3A4fhkMf01A0JNXI8NoKHCx/hDlYzZkwlSXsaSTjSTtOguM4gljoIYWff6+mdyXSWb36IfdPTceIHILG+hbzWMvpvgolTdrPmIZP11vvdZDwrGli7dC4A2YPKmckbvDT5NmaxEYpgbf4X2ZU7nvHsAiCEjSAO5obWUmrPI4SNXfbxhLFRQh42uylJks8uhtDIN/gli1mJHyeZVLOI51jMMwA8w2Lmxv6evWRjI0whBTzCwwRwkUQjazHXlWll3f1Jxw8ojhjHEzxAEAerO+ZTEFEIQBgbDtrYuH8uBcO3UMgkfskSnmIpIWxstOp4zmQjqzvmUxuRRil5pFFL+YlsflT2GEPGHwCwqowKIYQQQgjRM5TW+lpfwzWhVJKGxdf6Mvqef3z47PftmCy0mUCU9frMV4Ay6/VYoBb4HLAKKACauxwzp8vrQ1a7Zmv9mU+2nrHWdT3Xe8CPgM3WdQDcDxQCrwH+v0Lep6DKWv+fVhv/X+Hz1voc6zoHAyOt/aKsdkHgm9Z+Q7pcb30lfN4a2vvOXyH7U1DZZb9p1jFnA8utdZ4u71UZcKrSnNADeP9s2jg+A/HWNW22jhdv7fPOYXANNu2awaoMA17rHsusttZl8T+PIK6WH5VqrfM+7lHycpQueftKXM9Zys0VuTbxySTPTSHE1XGFnpv/oHTJW1fies5SSfLcvJIk8BRCiCtKAk/RN8lzUwhxdVy55+aftl263eWIcMpz80qSrLZCCCGEEEIIIa4qmeMphBC9kFamVqwQQgghRF8ggacQQgghhBDiuqYVnJbIpleTobZCCCGEEEIIIa4qCTyFEEIIIYQQQlxV0iEthBC9kI6AkP1KfzbYcYWPJ4QQQvQO8tzs/aTHUwghhBBCCCHEVSWBpxBCCCGEEEKIq0qG2gohRC+klSJsv9L1VNqv8PGEEEKI3kGem73fNe/xVEplKKXeVUpVW19HnKdNP6XU00qpGqWUVyn11S7bHlJK7VNK/a9SqlQpNa1n70AIIYToOfLcFEIIcT265oEn8AzwtNY6A3gaWHmeNncAHmAE8DngR0qpNGvbbuCzWut/AO4BfquUirrqVy2EEEJcG/LcFEII0WOUUnFKqV8rpeq7rLtRKbVSKfW8UmqVUkpd6jjXNPBUSrmBzwCvWateAz6jlBp0TtMvA89prTu01keADcCXALTWW7TWJ6x2ewEFOK/2tQshhBA9TZ6bQghxfh1EEMJ2RZfuUEotV0odUEpppVTWRdr9i1Jqj1KqTCm1Vyl1a5dtlxzJcjkudk1/z7m01i1a63uAqi7r3tdaL9ZafxWItpaLutY9ninAQa31aQDra6O1vqtU4C9dXtedpw3AV4AarXXD+U6mlPqaUqpEKVUCJ87XRAgheoVr9QAVvZ48N4UQonfZAEzko79zP8LqDXwZuEtrnQPcCbyklDoTi11yJItSyq6U+vQ562KUUkmXeU3nPZdSKl0p9c45y3cufNuglJqklHoV8NONh8S1DjyvGKXUPwGPArdfqI3W+lmtdZ7WOg8G9NzFCSGEEL2MPDeFEOLj01rv1FrXX7olHUCc9X08cEhr3XEZI1mygLeVUplghr8CfwBmdPeaLnYurXWN1vrz5yxPXOyGtNbbtdZ3AKeAnEvc/zXPalsPDFVK9dNan1ZK9QOSrPVd1QGfBv5kvf7IJ7lKqc8BrwBf0FpXIYQQQvRN8twUQojz0CjCXOmstrjMiI9Oz2qtn73cg2ittVLqNuC/lFLHAQdwi7X5b0ayKKXOjGQ50uUYpUqpRcAmpdQC4GfAK1rr5y/jUrp1rvNRSj0N3KCUegb4KeYZMxczXeNTQMWlTn5NA0+ttU8pVYb5tPUV6+seaz5KV78DFiml1mHmoczGdB+jlPos8Ftgrtb6zz106UIIcVVdpQeouM7Jc1MIIXqU34z4+HiUUv2Bf8d82FeklMrHJHa78XKOo7X+ozX8dQfwhNZ6xce9tss49xJgSZdVB4DCyzlGbxhqex/wTaVUNfBN6zVKqU1KqTP/0C8D+4EPgWLgx1rr/da2XwFRwEprsm6ZUiq7R+9ACCGE6Dny3BRCiOtLDpCktS4CsL4eB0bSZSQLmHJYnH8kC0qpwcCPgJ8Ac5VSN13mdXT7XFfDtR5qi9b6A2DsedbP6PL9aeBfL7D/Z6/e1QkhhBC9izw3hRDib2kUp+l3rS/jQhqAZKVUpta6Sik1EkjEJHc72p2RLEqpIZg5nY9prV9VSv0eWKuUulNrvas7F3EZo2auimseeAohhPhbZqitZKIVQgghejOl1ArgVkwg+Y5SKqC1HqWU2gT8UGtdorVuUkr9KyZQ7LB2Xai1Pmp9fx8my+0PgWOYjOPnigIe0lpvANBa/1kpNds6b7eu6TLOdVVI4CmEEEIIIYQQfwet9VJg6XnWzzjn9avAqxc4xnlHspzTZj9mCkXXdXsx9Zi7dU3dPdfVIoGnEEIIIYQQ4rqmUVKzupeTwFMIIcQnilX77D+AqVrrFGvdjcC3gH6YZ+NCrbW+dlcphBBC9C29IautEEKIc3QQQQj7FV26Qym1QSn1v0qpPUqp/1FK5Vyg3XKl1AGllFZKZXVZ77Syq1YppfYqpdadpwj2ZbnQuaxtGUqpd5VS1dbXEZc6nta6RWt9D1DVZd37WuvFWuuvAtHWIoQQQogrRAJPIYQQXd2ttf4HrfUYYDnw6wu024CpC/mXc9Zr4HGtdabWejRQAzx27s5KKbtS6tPnrItRSiVdxrkAngGe1lpnAE8DK7scL10p9c45y3cucD8opSYppV4F/MCJC7UTQgjR+5ypf30lF3FlSeAphBCfHC6lVEmX5WvnNtBat3R5GQd0nNvGardTa/03db+01ke11oVdVhUDnz63HZAFvK2UyoTO4a9/AGac2/BC51JKuYHPAK9Zq14DPnOmh1VrXaO1/vw5yxPnux+r/Xat9R3AKUzNNSGEEEJcITLHUwgheqGrVE7Fr7XOu1QjpdTzwD8DCrj57z2ZUioCU0vyjXO3aa1LlVKLgE1KqQXAz4BXtNbPX8YpUoCDVs1KtNanlVKN1vqL1iRTSj0N3KCUegb4KSY4nou5508BFZdxHUIIIYS4BAk8hRBCfIQ1zxGl1F3AE5ynF7KbngLagF9e4Dx/tIa+7gCe0Fqv+DvPc9m01kuAJV1WHQAKe+r8QgghrqwOyWrb60ngKfqsz+mJ/Iav4FnRAJuslQ/BsfwoEh5vh0hgBHinJ3OANOyEAZhYuhs2wb6H0qkiAxcBHAR5lfncwWrSqO08R0JpO3tyRxLE0blkU04jQwCoJpMgDp5hMX9Rv+3ZN0CIj0lr/bJS6lmllFNrHbicfZVSy4ERwEyt9XmH6yqlBgM/An4C3K6UWqu13n0Zp6kHhiql+lm9nf2AJGu9EOJy3fUwLIGRY/fgwQvAro7xBLxDGZmxB4AATnx7U6EB8xwFYsb58QzwUvbeODgIxGP+wnwX+BwfKW8fk+ynrcRlBrSftBYX5iMqgCbMtreA9Y9c1dsVQvQsCTxFn1VLGp7HG0xfTb61Mg4S1rSz5ruzmRkyo/9shNnCNB5rfQiAUyOgfwqUk00eJTgJEMDJNLYQxNF5/ITN7Twy/XvMZS1+nARw4cTPqNIaVuYuBmAxKwlj49/f/4+evHXRB5h6ZD2b2EApFQMknJlPqZSaCRy1lss5zjIgF7hFax26QJshmDmdj2mtX1VK/R5Yq5S6U2u9qzvn0Vr7lFJlwO3AK9bXPVrriw6zFUJcQJsJOutPpFBPCgDhkzaSM7xUrhsDOV0qDJUDd5kf77YmJ8Hhh03QORRIAI4B2Zgg0uLOqMO3ItWUrvcDzUA8xOT5aXvKZRoVACFM2jAhRJ8igafosw69P8w89ELQlBsHQKK3hbp5btKoJWB3kdTqI3W9j+UtD1G8OAeATKrYsmAa8x7fYPprJkDCyQZKUvKYt34DxXNMu6Tpjbjw08gQ8ihlLXNpJAlXboAkGgEI4qCWNHJvLKK0x98BIS5bNPA7pVQ0cBoTcM7UWmul1Cbgh1rrEgCl1ArgVkxfxjtKqYDWepRSahTwA6Aa2KWUAjigtZ5zzrmigIe01hsAtNZ/VkrN5iN9I8aFzmVtvg94SSn1Q8yful+5Qu+FEJ88taZHE6DNawJBW3IrDXs9Vq+kghhN8mgv9tEharZZP4bJULNuFCNv3WN6RBsHY3OFCB+MJXmGl4YdHgB8J1MhBjgOeDCpxxqgrdhlglWsbU2Y9GN7eui+RZ+giZBMtL2cBJ6iz8q9sQgGAS3gajWJOvd50hm1uYbUET5oAeywY95NTNy2m3ErywA4viCCeSUbWPPd2cxbs8F8qpsK2ZSzY85NZFil/0rJo4BCdjGeMHYWh54h2tfBnpSRZFMOwFN8k/F0q/NGiGtOa30YGHeBbTPOeb0UWHqedvswCXouda79wP5z1u0F9p6n7XnPZW37ANN/IoT4uLIwQWNkCGJM72b4w1jcY+toPhqPLdJMSWnY5sE9uY70yfsAqNl/I87ZjVSuHkPyfC/ORD/BZgcMNW1Jto7vxQScXswQ2wIgJgRe+9k271hthBB9jpRTEX1WCJsprlAH/VvM4sRP8fQc3vRMYUfuTbSPg4mbd7NvcjqUACUQXd/BqWwoYDveecnwoTlGOdkk0Uji5hYSN7cwnl3YCbFo/cvYCBG0OyAStjOpc77n/+PfyaVUJrsLIYS4LoxMep/4gc3Y4oPY4oOQAL4dqYSLY2krdvGVAb/BPbkO33upuPHhxoctPkigyQV50PCeh/iIZuIHNpsqvi4zxNadUWcCSjsk3+M180NPWif9gLPzPechgacQfZT0eIo+K49SM1T2NUzqEiCxtIWNudksKnoZQlDX5ib1AR+jXqsxxRyAukFugjgYVVQDg1tgBuxLSWc8uwjiYN306QDcun4zwTlh3pwzhVtKt0IqNA2K49ulv+Kx3PsBmMYWqsig+mgmZzMcCXFpV6mcihBCXFiyGWp7I+9TeHISYCUD2unCueAgAL/a+20+N3o7N459n8JG0wa/HdrB+dmDBJsd1B9NIfxhrBku2w6+danm8Ld6adjroWGTh5gCP23NDvDbcX71IIHnh5pjZWESFzX07K2LvuE0/a71JYiLkMBT9FlbmAZb4fgvI4j+sZVUcwIs+ubL5sEGpG7ywbegKSWOxG1mOG5qqg8+9EEWFKfk0MgQpoW2EF3Swbr8XBwEzc7ZEMbGFqbhzA2QxgG2MI1puVv4vvdJANZ4ZpPPLtIG1lLdw/cvhBBCXJYySKGewuqbyc0oAqCeFLLv2U4z8YSxkTa6ltKjuYT9sTg9JhgNRjqIH9iMr3GwGTbrB3I0zrRGAhuGdma/9R11QztQDm2RLjNvtAICDMU2txWAcGEspIM11VQI0YfIUFshhBBCCCGEEFeV9HiKPms8u6AFttincWveZrMyBZgMdXPcpHp9kA97UkYyZk0lx+ec/Rxml2c840O7aGQIDoJEP9BB01NxuDibsfaUGzz1DRSkbGectwzscEfc6yyJfZKV9vsBsBFiL9lU/3o0sL5H719c3zqIkLnBQoieNcqUGKMCDmcMBuDEiQHUDEjHtzcVW3IrhyMHE66IJXmil4b96Z27+opjzdxMPxAJnxteyLvVk0xNz2jTJtzswDailfDBWGw5Vg9njANeUYS/2iUb6UGgsAfuV/Qp8tzs/STwFH1WNuVwK2Zo7ASz7pQd+n8IqZt9HJ8cQfSqDkJZdvbNS2eUt8Y0+jFMXbATKmDa4i0A1D3lJrXeR2Ld7s4hQ6TCmylTuLV+M/s86ZSTzbwjG1hZej9v5k4B4NYjm3l60L04FxwkcG8PvwFCCCHE5UiBGtIhEhoaTR1PTtqIH96Me3Qdvv0ppAx/nzZcNLznwTbCBI/jB+6iPC0bd4SPyv45ALy7dxK25FYcniChkyaobGt2EC6OxVbQauaAHgTGhYh5IEhboVXHc1wI3rLDZ4HNPXv7QoirSwJP0WcFiYEsmPqVnZ2Z8/pnA3FALgTtDgoX5+EkwKj1Nbw05zYA7l72uukFraik0D6JW1ZtJXqED1qBPNg36OwnvEk08lLKbWRSjYMgOwbdRNKgxs4SKusGTaeRJBZHrOQnMuFdCCFEb9ZuyqkUzHirc1Uz8YSw4+twQ5uiZtMoiIHksV4aVpv0s7tuHk+4Ihb3RB98oEifsY/mjnj6RZw28z7rrd7MEBAD4bdiTVXeSOADO23R9rOZbIvtcAS4GQk8hehjJPAUfdY0trAuZTq3ztkM2dbKHwPfBSrMy1vWbIUsODUF7n78dQDu+O4LPMLDkA+3bNvKvgXpjDpSw7FBUSSsaKdx6RAAphbt5FQ2OGKD2Ajjws92JuEkYBIbAUEcLCt9FNWigUd69P7F9c1ktZVC2EKIHvRZoNiO91aPSQSE6c0sOZFH/IBmiITkGV6aT8TTsD+dnPnFAJR9ZxzMBV+HG/eMOmreGwUpIWizMzJjD5VlYwBw3nyQQG0S2BVEYRIN1WCSCZWcvYyYb/pp+wdXD9646Avkudn7SXIh0WcVMolpoS3mE9Y6s3h/k2webimQ+GAL+IAi6F8OpJrl1c330kgSP8/9Ot7JyQRxQJ1VF3QTNJJEI0k8ln8//V8zdTsDOBkSMj2do1bWMG/9Buat30ASjTTlxplPdoUQQojerALI0QDEDzS1OAv33szgAYdp74giN6MIB0FSBtTjTGvEjws/LtxP1MFxCDw/FN97qRCCmHiTAd6DF5qBZrM9ffj7JthsBgZpSIf0sftInu8leb4X4qGtwQWOa/EGCCGuJunxFH1WCXlEP9gB94HXkwyAZ7NVGKwCuM983TH9JrIpxxYKAVBon4SNEN9+9FcwB2xZYUiFxKIWit/Koc16Gs5lLXWL3SyqeJnHsu4nZLcz7kgZuOHnc77e2cZOGOJDPXz3QgghxGXymqRApUdzzRxMwD22DoD4iGbKj2absinbUiEZ6G+CVD5QEAk5XyvGe8JDm9dFW7MDp+cgG3d8qXO6C/8ANXtHETPbT9srLkCBJ0QQB75fm1qf5Fltz+RTEEL0GdLjKfqscrJNvc7DdH4qe3xyBGsWzDYNxgElMNG7mxJyiX68g+jHTb3PqZt3UvxQDsVZOaSu8XE8NqLzIZhBFRlU4fE2EMTBmqzZ5FLCOG8Z6wZN57k5d9HIEBoZgo2QGXb7HzL0QwghRC/XAD7cOOKDZrRQCHzVqdSsGwXAlwf+liQaTUZaL+QMf4+c4e8B4J5cR9m2cbSVuEge7YW2Ls+9NLPYRrRCO7RtcIEHbFmtUGw3QecRzBKJ+XC4uCdvXPQFGkUI2xVdxJUlPZ6iTzu2IIqEbe2M+0KZWfFLmPfaBpgCdQfdpK7wcTwlgqkrdvLYQ/cDMJONHJsexbiKMqgHRkB0hQlIx32uDN4wh3rTM4Vb1m9lVF4NrIeXlt5GEo2UM5o7WA1A4pEWHIOCMLIHb1r0CWceoEII0ZNqqkfh9Bzknyeah13h0QJuvPV9vCc8vOxdxMjRewg3Oxg5Yw9lz44zO/2DCVBjxvkZMOAEzSfiiUn2EzppZ/bENWxonANAuDiW5BleGlJSGJn0PpWrx5ipKA3A56wLiAlBpB2cmNIsQog+Q3o8RZ/1CA+T8JV2dky+yQzdyQOKrI3lkFrhgyyILuqgbqmbxaxkMSsZ5a0hoaKduiw3j02/n2O5UVAEe3JHsu/ddCg3++dSwp45IzkVB+uWTieTauyEyWYvuxjPLsbDSaucS+W1ex+EEEKIbvkXKMh4i0DhUHy48eHGPdBHCDuDBxwmxuPH1+HGmdZI5d4xUAAUmJ7MmGQ/bV4XvmdTaWtwkTKgnrYSFxvem4c76TDupMPggYYdHjhpo3LTmLP5D5IBr7WA6fUM9PztCyGuLgk8RZ+1nAfgZ1ZSoDmYZQQmw209sAlwA3GQutJHEIdJJNRi9k894uP7pU+S8Hg7TIYxFZWEu/RAhbEzhEbKY0cSxk4SjVSRSRKHWHLkBZYceYE9KaarM+uJP/XovQshhBCXbTMUNk4CwHvCg/eEh+YT8QRw4iCIZ4CX0Ek7oZN2Ro7eY+ZungRbZNjs7woRc6efkRl7qD+RQkyeH0JwuqMfpzv6mfbxQIMy37uAJuvrzSGzeK0hul/s4XsX170OIghjv6KLuLIk8BR9loMgvGnma7ISswBN0+MgH/OJahzghh2LbyK11EdqqQ/ccCoVeMZsP3UfMBj40OxfN9lN3WQ3qdt8lJLHmPpKtlNAUquPRaUvE8DJS4Nu46VBpi6oHycVqz/bw3cvrnfyABVC9LgoSE/y4p5cR/aAcrIHlANmGG0jSYSw09bsIHzSRuW2McR4/MR4/LQ1O2hrcpKTtMds259DW7PDlGABAhVDCVQMxZl1EBqsuZ0VQIwmZrYf2oBCu1nAZLx97xrcvxDiqpLAU/RZ09gC2bBveroJGq3AMbG0BV4DUuBYSpRJMHRkN8/l3sVzuXdBCPpvgnUPTedtzwR2xd4E1UCcKaWylrmsZS4vTb6NW1Zs5e2UCTzIT7g19nWwQy1ptOGgDQdDaCSPUmw3t17Dd0IIIYTohjw4fGIwvvdSrZR8ZpJlTLKfG3mfAE5osxM/sBluCNG2xkXbGhe2yBDJw2soWzeOcFks1CqciX4zSqgNU8asBAJrhjJyxh7TZjbwpCJ80mZ6Pa3eU+IBj7UIIfoUSS4k+qwXWcgy+6OMqq8xQ2wB7EAIdjx3E2nUknrEB9lQN8jNogdeBuDUD6F/HAyjFgdB0lobYLApyXLLo1vJfKgKgAOkUbfUTSNJTGrdyRsf3sae3JHMZCPL+EHndXyRtYQLY3v47oUQQojLVAjhO22QEsKP66Obtt1shsS6QjQfjQe/nc/dsx2Ad/cXEB7YbLbbgUGaYLOD8Iex5Mwopuw9KwlRADM3tAlI08Q8FqCtxGVyMGzocrI8zs73FEL0GRJ4CiFELyRZbYUQQojLc5p+1/oSxEVI4Cn6rKWs4PiICKI3dcAMa2Wkmb/pIEjqep/JcpsKtUvTWLt8LgBzWUsqPrJbTSra/j5gHVR9N5PGh5LIDZUAYLOHSa33cXfodU654dQIeJX5LOUpZrERgBLy2MgsbAWthHv4/oUQQojLcjOEmx0kD6+hhnQAwidthE/aoT8kj/YymMOcYACVZWN491mTiAirQxNPCE7asMUHSR9YQ2VgDGXbxkGaNtujFLhC2G4OEbbmhfIuMB3Tywmmp7MEM9S2vqduXAjREyTwFH3Wv2/7D75f96R5mBVYK5+D/pEwZHojTXPicMwIYg91MLFoN9n5JolCgrcd6qB8+kjG1FfytmcCU9mJjRATvbs55TaHCtttvJRyG3mUkhY6wCF7ErPYiIMguZjg1I+TSRQS/kCG2gohhOjlnoD0r73P4ROD+fKA3wKwceBMAHz+VBr2emiIMQGps+AggeShANhcrTgI4vOmgidEuDgW+4yQ2ZbTSrjZYY7fDhTaCafbYZCGIwo+i0n2d2ZOZzOQBTzZA/crhOhREniKPitj8l7YBm9mTSHXbwJBRyjIIXsSNqv/8ZDdQaM9iYmRu0mobwfgeEoE0TM6GEIjx91W/q0pMHXFTk4tMImHAPzzXAyjllrSCNid2AgzsXQ3AC/lmgd1PrtYzgPE5Php67lbF0IIIS5fDjR3xNNW6OIFzxKzrr8VIEZZbdoU+CGUaIcYE1yGmx3UnPSYupwnzRQB7wkPI2fsoXJ/DsnDawBoaLDaBIDjCoCYcSaBUdsGa05pOma+50enmApxSR1EEJIM7r2aBJ6iz1rIi9RNdnNL0VZOZZt1/VvAE2rgmCeKhDHt8C2IWRAEH531O6MjO9iXkk4YG4m+Soal1MJJeHvpBKYW7cQ7LxmA7NBeAKrtmYSws4VpuHL9eI40mIy6QCl5JNFIW608QcXl0SgpgSKE6FlTTekT580HCdQmmXWRYWwjQoT9sdyW8RKl5FGzdxQDBpzAHmkCz0CTC+rtEAI8YXDasUeGqNw0BufNB2l4z+rOTLaG3DYoOAVUQFu0C1JCHx1qm4jp+RRC9ClSTkX0WS+yEAdBivNzCNkjCNkjeDNlCqfc1nDaGXD89ghcrS14pyfDVsxSAqMer2FMaSXFKTl4vA1QatUDjYQQdkLYCdodrLIvJISdMDYebP0pQ0KNvDloCst5gOU8wIssZAEvQqS+1m+HEEIIcXFvA5EQ2DkUTimzlNkJNzuwuVqpJpOa/TdCjMa3N5WUiHpSIupxJx0mZ2wxMXl++MCObUQr7ggf7hl1hE52+QDtlIJCK+gE+BcNCUCZHdZjlu2cnR4jhOhTpMdT9Flp1JJQ1M64uDLYZtZlLy2nfwmcyoPyZSPJCFWxPXYCmVTjXWZ6Mp0ECE53sJLFLORFjnmiCC51kNTqwx8bRxKNAFSRiZMA4+rLeC7lLiYW7aZ/XgfZg8rZbj015/MqrtYWbPFBSS4khBCidxsCTs9BQsl2UgaYzD6VJ8fgHl6Pb38KZRXjTK/lBwqSOVsmJQF8J1NhM1AAYX8slQ1jIEabobkJ1vGbMHU6bwjBW3bck+vxNQ6GZDuUW20+hxneG6968MZFX2BGCkk2+N5MAk/RZwVwwuPAt4A6sy51mw/qoH8RZHy3iujXOhi2oJbUVT68C0zgmVDaTkJLO9+cvILElS0wA1anzOeLsWsB2MI0APIoYVxRGW/mTyGNAzw3/S6COMijhPtYCZgg9o3Y6YQbZcikuDwdRMgDVAjRs5ohN6KUsgE5DOAEAO7RdTgIkjT8PcoYS/rw96lpG0X66H3UvDcKgJhkPwMGnMBHqlnf6IGddphgBY8V1vE94JxwkMBbQyERfL9ONb2fHs72ciYAZRJ0CtEXSeAp+qyqE5lmvkkR8D1rZTlwC7w9aAKTWnfCevBkN0AqDAmZnkw2ASNMIqLixTlkh/YyjS3UMowkGnEQBGAtc/l+6EkAsilnasVO8MFzk++iETM3ppY0MqjCFhmSHk8hhBC9WwPYCZFEI6WNZtKlM9FPTZMHPrBDmuZG3uewZzBBHCYzLeAZ4MWPC2I0NTtGmV7RUZzt4Yy0jl8M/UafNt8nQ0yBFbCuTj3b5n+RxEJC9DJKqTjgP4CpWusUa92NmO6dfpiYcqHW+qJzyy4aeCqlHu/GtbRqrf9vt65aiB6UOaCK4rdyGLe5DKu6CRyGNydPwUmAqth0kv6rkYRF7RAJhyabYNHT0gBuiN7WwbiTZbw5Zwq5lOA50oB3UDJOAgAmgdAIE3Su5g7Ks7J58fF/ZZH7ZX6e9XUAFvAiW5hmaqAJIfo8eW6K61oybNzxJdwT63AnHQZM3etA2VATGB5RbDz1JQoy3iKEHd+RVAD6DT9Ne0cU7uH1MBx8m1JNL2ZMyCQdOhNU3gDNR+MhGSiGtjUuPD8p5sTsAbS9YkWbBZhn9smevHHRF2gUoWswUkgptRz4IpAGZGutKy7QrhbzP/vM/+7vaa23WNsygJcAJybv81e01h9ejWv6e86ltW4B7lFKvdNl3fvAYuuYvwOi4eJFHC7V43kX8Mwl2nwFkAeo6HVC2MikCtzAN6yVi6EgtJ3oig7wwWPT7+f733sSDoPnSINpkwU7Jt9ECBtT63dyy4qtMAJ2TL+JiUd2UzUoE4BbirbCYCgnm28/8Cu4D9787hRqSePbFb8C4O2sCYzunLgiRPeZB6h8YHEdkuemuH61A4lw4sQAPj/A/H1ZTjbcoIlJDJjeyRWp7HKNxxEfNNlogWbiCRQONX9O54QYOWMPAZz4tqWa+Zxl5neZ8+aDBJsd0AC5Xyui/Gg2ZZvGQRPE3GmVVSl0mcBUiOvHBuAXwP90o+3cCwSmzwBPa61fUUrdCawEJndtoJSyA4la6790WRcDxGqtGy/jmi54LqVUuvW6qy1a6yfOdzNKqUnAVwE/WOPzL+JSgecftNaPXKyBUmr4pU4ixLUwiUISjrTDh1ifxwA+iF7VwZ7FI0mjlrmspckTRyIt8JppUrw0h4ne3Xg9yfAh1C11k1rhY2LFbo5lRZnhRcBz+XexqP5l8/p78PSge1my/gXq5rhZkzUbgCAOpm7bScy4oNTxFOKTQZ6b4vqVDcSEiB/QbAJOwEbYzOvcMYq2RGCsSR4UBEYmvQ9A5Y4x2HJaCX8YizPRT+XeMdiSW4kZ56etwdXZvxNYMxQKQtCMGcr7lp3ke7w07PWcreMJuGfU4YtM7dFbF+ICXEqpki6vn9VaP9u1gdZ6J4BSf9/cZKWUG/gMMNVa9RrwS6XUIK31kS5Ns4DXlFIztdZV1vDXzcCvgee7c02XOpfWugb4fHevXWu9HdiulHoKyAH+fLH2Fy2norW+uxsnvGQbIa6FF08shDcBO7DKWkbAscVRjLm5ElsohGdzA2Hs7PGM7Nxv3OYysIOnogHirJUl8FLWbVSRydzWDcxt3cCiR1/muZS7SKKRHYNuYj6rqZvjppEkysmmnGxKyOWOyS/Q9pZMWBHik0Cem+K6VgzpSV4A6ylWThAHNdWjmDnxd9Bf4x5bBychXBHbuZt7Yh3hk6aMypnyKSkD600w2QDkaMjR5MwvhkK7qdP5gR0mQMNej6nZ6bcWL/i+k2rqeQpxGUxSPvsVXQC/1jqvy/Lspa7jEl5VSu1VSv1KKRVvrUsBDmqtTwNYXxut9Z201qXAImCTUuofMQWQ1mitPxJ0XkK3znU+SqmngRuUUs8opYYppQqUUr+01ts5m0bsgrqdXEgpNQAz+KFzH2tsrxBCCCHOIc9NIYQQXfyj1rreGjL7JPBL4M7LOYDW+o9Kqe8AO4AntNYrrvxlXvDcS4AlXVYdAAov5xjdCjyVUkuBZcBRoOPM+QEZLiR6rUkDtoMP02v5M7NuTe5s0qhl3OQyoks68E5PxrOmgdQ8H8eWRgGQsLKd45MjiA518FzWXcwPvcrbCyZw97bXeXPyFKpi0wEIP2RjJm/gam1hS+wUtlPAeHYRxsZ8VgNQQi4Aq0/e09O3L65zUo/s+ibPTXFdGmWSCYWw884JM9qubYOZc1mfkYIzrRHfe6kkj/XiO+qmsnoMAOkZ+/C1pUJkiLY1LijQ1GwbhXOeVTrliBnuV9YwzgwWjLFqgVZgXp8CxlrXUGN9/W0P3rcQPUBrXW99DSmlfgW8YW2qB4YqpfpprU8rpfoBSdb6j1BKDQZ+BPwEuF0ptVZrvfsyLqPb57oaLjrUtov7gUyt9ae11sOsRR6eolc7k322aU4cbAW2wrwjG8zGEcB6SGu1htOehISidhKK2tmx+CZq7cNgGswPvUrQ7mDqkZ0wAm6p2EoSjSTRSHZrJYdIYkXs13EQZDTlrGIhfpxUkUEVGYSxc3fp6yanmBDik+R+5LkprjefghB2Gqo9pAyoJ2VAvZmTeQoaSSItohYGacLYsEWGcXoO4vQcpGbbKDgGXx74W5gAnFJwQ4hAk4uYAr+pzZkAeMz8Tt5RJtPtUEx/STNw0FqAmNl+U4ZFiMt0mn5XdLlSlFLR1pxMlJl4OQ8oA9Ba+6zvb7ea3w7sOWd+J0qpIcA7wE+11g8Cc4E1Sqnx3b2O7p7raulu4NlwnmxJQvRqAZycug8SK1pMoDnCrB+3sgzcsGP5TfS/zaw/lhUFqUAqTHx0N0k0whb4if1BDpEEJ6EpJY4dWTeRsKadhDXtBGOjGLOtkm97f0UatXjqG/j+kSeZFtpCOaMpZzRO/Dyde+/ZVPJCiE8KeW6K608bVO7PISbZTxBHZzK9kZP3cLqjH6Xb8pk5fC3NR+Npa3ARaDJLzuRiSIDfHv0yvIWp3wnQZqet2EVyhpfkDC+02XFPrMM2txVcYBvRCv8SMnNAGzBLpCmzIpXmxfVCKbVCKdWAmVrxjlJqn7V+k1Iqz2o2GChUSu3F9PVnAF/vcpj7gG8qpaqBb1qvzxUFPKS1fhVAa/1nYDYQ091ruoxzXRXd/bF+WCn1PLCJLpWVtNabrspVCXEFbD8xif6rMNOl11srIzE/7lNgYv1u1rw1m3lHNpDwQPvZz35GmFIsTR4by448CoehLstNGBsTj+zm2DxrSO62dvZMHomTAKnbfDw3+S4Wlb5MdGoHcwetBUzwe2v9ZlZ8ZinVPXr34nrXQYSUU7lKrlQh7EuQ56a4/nhh5PAygjjwWNl9wkk24mmmpjkdbgixcd2XYFyI3Iwiqk6Y8mJ+TObasD8W5oaIiQ/S5nWZ8iw3hGio9gDgzqjDtyMV4sGZdZDAqqHEzPPT1uyAsdbvu+PAuBBstsOenn8LhLhcWuulwNLzrJ/R5fv9wJiLHOMDzg44v1Cb/cD+c9btBfZ295q6e66rpbuB50xryQBOW+s05oH6sXSniKk1/ngFcLN13sfOZHC62DbxyfbzAd82VYkiMb2ZwLHcKILTHaRW+OBFmLZsC+yEUz+E/tb/unXzpltzNe0cj40gurwDGyFSvT5oAQaZdk2T40ijFlsoxNuTJzCzc6g+nXPzMqji6ZR7qd41mrPRrxC9k1LKCbwMpAMhTF7JxecbgqOUisQEb5/HBFbvaq2/Zm37RBTCvgR5borrz51QfyKF8EkbzZHxALQ1uPCdTCXG4yd7YDmlWfm4kw5Tun88MYlmSkvDOg94ML8J+tsYMOAEbZFgS27FFhmmrc0Elb7qVJPRtr82cz/zupw7ZH1NBt6yQ1XP3LLoO+QD296vu0Nt5wBpWuuJWutJ1jL5knt1z5kiphnA0/xt0VKAOzC/0kYAnwN+pJRK68Y28Qn2tcbnTA3PfzMB57HcKBLWt5ug8zUgzyQSwgf9i6A4N4fi3BwcBEmsbyGIg+jWDqgDV2sL2MGbm0wIGyErsEx4oB0waefLyYaT8NKg2zqHKDlCQWay8dq9CUJcHg08rrXO1FqPxqT5eOwCbR/H/JmZobXOBh7qsu2Sv9eVUnal1KfPWRejlEo6z7k2ABOBv5xn2wXPpZRKV0q9c87ynQvcD0qpSUqpV+lmIexLkOemuP48D/EDmikYWEhbg4u2BjNM1pbcSuaAKupJIT1jHw6CuIfX01bioq3EZeZjukKmhzMyjIMgxJhIsq3cquNp9fvnZhSZb5KBBrBHhkyJlVOYpb/+aEAqhOgzuht47gf+eqVP3qWI6WvWqteAzyilBp3T9MvAc1rrDuuT9w3Al7qxTXyCfS3pGRN43n42cRAjMHm7BsO+OemQD7iBn9KZNGjqtp0cS4liJYs5ZccEpq/BcXcEB0ijlmHUMszM/fweRLd2sIVpuAiwLz/9TN0nwMwRPROQCtELuJRSJV2Wr3XdqLU+qrUu7LKqGPhIcAgmQAS+gplroq19D1vbuvt7PQt4WymVae0XB/wBmHFOO7TWO89kAzznOi56Lq11jdb68+csT1zozdFab9da34H58zfnQu26SZ6b4vpTYLLavs+NnYmDfEfdxA9s5gQD8L2XyuETgwlhZzy7TMAZD86Cg9Bm7yys4CBIepKXcLPD9Mk3W0sTlDbmQWTYTHuJgcCfhn70Gn6nzFzP9p65ZSFEz+nuUNsPgW1KqQ18dK7Krz7m+f+miKlS6kwR065Du1L56CfddZwtdHqxbeITbDTlJqiMA1qtlZFQN91Nap2PUetrIBu8c5Lx5DXgDPlNG7cpg7KUFbwRO51p39pC9IcdRJd0kJ1fTpuVbCGttYE3B02hhDzyKMFBEM+2BpImN9KI6bSxETbHvCGEEJfjKpVT8Wutu9WXoJSKAP4VuowhPysd8+fkw0qpSZghqf9Ha72Tbv5e11qXKqXOFMJegCl69MrHLYR9gWfI+e6vsxA28FNMgD0XUMCn6EYh7EuQ56a4/iSbqSJhbPSLMCPEbZFhfHtTcYwO4h5bR/PReBrKPfhGuE1ZFCB00m6CxQKg2E5ZzlhiEgM40xoJnBp69icgRkOZ3Qzi9wDx4B5dhy8hFY5ZbaKsr4PAmmYqRLdIGbLer7uBpx0z5Cq7y7qPk3ThmrA+3bc+4Y+7ptcirr43mMUSXoCT8NycuwBYdNvLJD3vo3hxDuPWlHHKDTEEOZYSRcIa6+PVPCglj6nbduIZ0QAfQt1kN6leH4nbWjieHwTMnNBbUreSOagKT1EDYNqtZr75JBiYxHZKyINamXMgrjtPYQLKX55nW39MPco9WuvvKKXGAhuVUp7LOcH1Xgj7EuS5Ka4/ZeaLjTANvzY/zv98zxv8IWYmNTtGkTzR6sVMMImEkjNMZOg76gYvuL9Wh69xMM5EP4GKoYSTW3F6DhKoNR/GxiQGaIt0QLIdZ5apneLbm2p+8rKsa8jCBJwfZ4a1EKJX6lbgqbVeeJXO390ipnWYT6P/ZL3u+mntxbZ9hNb6WeBZAKWSrrs/AMTlaWQIbIO3fzOBuZgss/wEgrFRjDtSBv8G/VPAld1C/2mczWq7Dr4f9ySE4Hh+RGcPaGrcZpomx5H4zRYAji+PIGB3sZ1JFOWHGE05Q2gkgyozvwUoIY9s9pIxfq9ktRXXDSuZzwhgpta64zxN/oIZjvoagNb6PaWUH5NIp45PSCHsi5HnprguHYIU6incdLOpxwkUHi0wdTk9ISaxnU1pUQRqk5g9/LdUYbLaOgYGCX/Nho0wvpMpJtD0QthlJ1ARy+dGbwfg3f0F0KagBAIVQ808z0TM1zN/kXqt15lAeQ/euxDiqrvoHE+l1CUTIXSnzYVcRhHT3wGLlFIR1jyW2cDvu7FNfIJNopCm38SRRykJ3nYSvKZHM2FNO7yJyd3ZCrWxybAM3lw6hTeXToHb4dTtQAlEr+ogurWDW1dthmrM/M18IB+CdpNAaNGal6kmkzGllQRwMYxaVrCUFSwljxJqGUampOcTl0mjOhNZXamlO5RSy4BcYLbW+rxjxLXWfmA7MNXaJwMzsN37SSqEfT7y3BTXtWwo3HszeMDmasXmMvNUkjO8pCd52cI0MwT3iOJ/Ov6Ryk1jqNw0hpqj6dTsv5HBHGbk8DKIDJN+6z6ciWYKSz0p1JNiAthmSL7HC/UQk+c3Q2xdmPqfb2GG4DZhclgLcRmu1XNTdN+lkgv9XCkVpZQacKEFMy/n4zhvEdNziq6+jEnU8CEm2cWPrVo2l9omPsECOEmsbzHzLUswyzcAN9QtcLN08uNgB8+aBnBDGrWkUQu/gJLYHI4/FwH5sGbQbMiD43kRNJLEwnn/ycJ5/0lifQthbBybF8V4dvHz3K8zqqKGIA7m8yrzeZUx9ZVkUsXGXZK3Q/R+SqlRwA8wPWi7lFJlSqn11rauv5PB/K7+gVKqHFgD3KW1bu6yrc8Xwr4AeW6K61fQlEDhGLgH+nAP9DFt4BbaO6Ko2TsK349NbbLksV4zr9MJOCF7YDk0KAr3T6P+RAoU2zl8YrDp+WyGhh94aPiBpzOQbaj2QDa0veIiJttvxk9MsBZPyASdW67JOyCEuIouNdR2NGaUvTrPNm2tb/o4F3ChIqbnFF09jUlycb79L7hNCCFE92mt93H+3/cf+Z1svd6PSSVyvrafiELYFyDPTSGEEOI8Lhp4aq27W25FiF6nhDyoA3tKyAyPBd6cN4VbNm8ltcLHim3fha1Q/F85uPAzak0NAHuWj2RcRRnerGQ8v2gg9JyNuiw3W5jGNLbwc74NwHMpd5HGAULYuaVoK9Oyt7IvK53tTDLzS4FgioNpoS3E5PglT4K4LCY7nySlut7Ic1Nc12rBER8kQKxJGARsLP4S7hl1xHj8pPzQDJr9w7ZZEG16PgFKd+QTk+enzesie0A5756cRJvXZXJDZwELzOHDb8WaOZ1N4LzZJB1qK7faNVvXcNIOORqSlczxFJdFnpu9X3ez2gpx3Ql0OMEHnlUNNC0w2Rj9OCHL1OSMpoOmpXFkh/YSXdLBsXkmh/uYikqOj4ggiAN+CMOoJYiZz3kmaRCYup9TV+2keEEOL+XfRil5pFHLwxU/pTgrB4Ba0thin0bbaleP378QQghxWY5DVEQ76WP3UVM9yqxrhuaj8YSbHdQnQqV3DKRpnGmNZsgsZq5mW5MTmqH0aK4JLtsxff+RXY4fD+mT91GzYxSBNUNNIqFEiPmqn7YS6znpB8rUxy9oJITodSTwFH3WzIiN5oFXAolfMJlo7/7u6+CD6JYOTt0KbThIfLAF8iHhAaucSgjCT9kZU1QJwMTQbmiBzBG/ImSPILrEJPm85cOtHL89gioyuHvN60yaV4gz5GdN1uzOADWJRt5gJkPmH+DQHT3+FgghhBDdl2PqeA7mMP+cYUr4lnpy6RdxGsfAemr23wjtkDt6F4cZTG5GEWDKr7x7ahLOCaZESjDH1P9sG+QEwJnWCEB8RrMJaBsgeb6Xhr0eiNG0veU6G6DGY/It59EL8lMLIa4kCTxFn9VIEsemR5HwYXtnWvgd+Tcx8chumgbFkbi+Bc+EBpgB2GHf8nQARh2pwdHajjc/mbTWBkL2CDZ6ZjG3dQNb7NO4NXWzOVgkVNszuXvN65BvHtYb7bNIo5Zx3jLT5jC8mj+fQ98Z1uP3L4QQQlyWNvBVp+LMCJgstECgcCjcEMLXlkpyhpeGyBRqO9IAKP2TNY8lJQT9NYE/DYVBpupOuEzBuBAU2wlEmt7MULwdmkzQeWYoL2UK4sGWYxIPOeKDBN4ZCht66qZFX6FRnKbftb4McRF/d+CplIq4QH03IXqFhbxIwoPt7Fh2U2cP5MTNuyELXK0tHJ8RQdDuILGkBdbDqMlmjueOZSY4LSEPT10D/UMdzKvbwL456eRRyrEUMyQ3oaSdMSWVvLl4CplUsZ1JzOQNEotaKM7PAaDRM4RMqhnyxAEOLb8mb4O4TnUQIanc+xh5boperwByM4oo3Zbf+Reie3IdvsbB0F93Dq11R/jIpIr6sSY4Ld2WDzeEoMZOTHYAgPhbm2l4z2PKo7SZeXfxSfUMnniYmk2jTEbcfUAeOLMOEtg5FICAP9ZktZ0NrO+h+xZC9IhuJUFQSq1WSkV3eZ2EqeEmRK/1bX4OI8y8zjGLKhmzqNKUUklx038VHLIn4QhZczbnwKnvmWVixW54E2aG3uBYlgkym+bEMaq0hnKySVjRTsIK04u6b3E6t9RvxY+LmbzB3fwGIs0Q2yQaOUSS+fq+9HgK8Ukiz01xXXoeDjMYmqFg4lsUTHyLEycGgN9u6nOeNM3shKgik9L94yndP56YcX7Sk7wwTtPWYHo3G6o9OD97EBpgZMYeRmbsoaExhZr3RmEb1wohzGik5zGlWeIxSzOmqFJtD9+7EOKq6272vWqgRCmVo5SaDrwLrLpqVyXEFZBGLU0L4hhNOdyKWVLNENympXF4ihoI2h1mXokP+j9jFgCyIbqowyQY2gSJFS08l3sXtxRt5fjiCI4vjoDXMNsjYdy2MsrJZiEv0pQbR+pKH6krfSwIvci8ig0fs3iCEOI6JM9Ncf1xWTU2h8L73Mj73EhbswP8ULl3DM4sM4czhJ0BnGDk8DITkAKHTwzGPbweToJngJeYZD+BNUNx3nyQyv05VO7PYWTS+3AcwiftuCfWmeRCBdDmdTFy9B5Gjt4DBZqY2X665PITols0ihD2K7qIK6tbQ2211j9SShUBRcAxYKrWuvKqXpkQH1OQGBKPtEBdC8emW8NjV7UzLruMfbnpbMyfxfzQqxxfHEH0gx0c+65pE8JGGDsOgoSxse+hdMrJppEkTmVDwG4+zT201Ma49WU0zYlj1+Tx5FHKWkZziCTKF2cD4KANe1YI/nxt3gNx/ZK08Nc3eW6K61I7EBMiJjmIrzoVgPSMfRyOH0xbuYvAqqFQoKncn0Pu8F1UVo8x+1k9oW2R5hhl742Dg4AfArVJ0GbK2lbuHWOG7lan4luXaobhFgMuqNxkHSsS02sa1YP3LYToEd0KPJVSKcCPgdeBUcA3lVL3a63DV/PihPg4XATgSTi2LIqE20zG2j2vj2TM5krC2Fi07WUIwfHJEZz6ISRss7LaftgOPnjsoftxEGTJihfIXFBDMDYKf2wcqfU+wAzZbZoTxyGSAHCG/OTZS3AQZAgmg18peWZ+abzu8fsXQlw78twU16V4yEnaQ1n1uM6stn/YMQv3xDraQuBccJB+Eafx7U+hdP943Bl1AFbBsSBlz46D/jDynj1U7s+BLGWCTlfIHN9vx7c39WzNzhgNHgV2c24AGjAjkWJ66J6FED2mu0Nti4Bfaq0XAvnAX4H3rtpVCXEFFDZOggmml7Pp9TiaXo9jTH0lxydHmGDQboLO6G0dlMTmmCQG6+HU7cAc+L73SZYceQGAFbFfJ+HxdkrJozglh+KUHABqGYYfJ7cWbWa1/Q4mHtmNjTCJm1tI3NxCGrXYCEOhulZvgxDi2pDnprj+7DPTUdIz9vGHvbP4w95Z2LJa8e1P4cwADN/+FDOktlaRTg3p1FCz/0a8JzzY5rbCzVaQ+Y5iZMYeE0h+YDcLmKCzDZyzD5pn4w0hiAL36Drco+tM0qH+wIc9fvfiOtdBBGFsV3QRV1Z3s9pO1VpXAWit/wp8Syn1hat3WUJ8fP+ctAV2APWQuMLU8Xx76QSmVuzEE9nA2/kTyKSa6BE+xj1aBt8y+/UvArJgTcps5q3YAOUwizdY993p3Fq6mVMjzp4jGOvAhZ+m/Dic+Nk3KJ1R3hrenm7qt2xkFplU9eRtiz7CDLWVh951TJ6b4vqTZ2pyOgia+ZZA5bYxxIzzE463EXhrKCRD89F4ciYXU3o0FwD38HqT+bbYzshb9zCYw1T+A1SuG0PMzX4zTxTgpA2aFSRDwDvU9HLW27GNaMW3zQztZSeQ3ON3LoToAd2d4/k3fzlrrf/ryl+OEFfOH/48C0owAaWJO8mk2hSkfg2mfmunCSLjgMlwzGNNKPFAwvp25sZt4NQC6L8KYggSwAWp0L/ENPNOTuZFFnAHqzlAGrNaN9O/Dp7LuotGa/jtNLbgJAA39OSdCyGuNXluiuvSThjMYUob87BFWj2XLhgw4AR5A0ooKcijrclJ+KSd+o4Uwv5YAHz+WFPjMyfdDLEdXmbmaJ6EtmYHzkQ/gKnz+S7wOaANyNHEJAZoW+MyrwHyMMNshwD+nrt1IcTV93fX8RSit/u3z/xfnvvMXSxa9XLnkJ2SZbk4pheSkNcO5dD/Q6AO6ua4SfWauZucxAySmwL964DDkLithbTJB+CnULfcFL32VDQwPmsXVWQSwEljbBJ38zrZlDONLQCsZj4h7Hx6/Af8paffACGEEOJyfBlKf51P+j37iLcmYpYW5uOLTMUXMxh30mFINIGob28qtuRWAGyRYQZzmAbSscUHsRMytTkbhpKbVELp3nwAYrL9tB10mYCyGdP7ORuTZCjeuoZizHPYA5T32J2LPsBktZWRQr1Zd+d4CiGEEEIIIYQQfxfp8RR91lrmUvu5kax5d3ZnD6SdMAmPtkMKkA3UQdOcOFK3+dgzeSQAY7yVFC/PYdyRMoiE4z+MIHpTB1Mf2Anfgl2MB8A54g0mUch2CvDjYj6rKc7KIY0D/J65ndewmJX8ZZ2MtRWXp4MIqSEmhOhZ78HsdWvYsG4eZFnrIiEno5ggDg6fGEz8gGYa9npwj67Dt8Oal5nVSmlJPnjM8Nyy/WNJHl7D52Zs593G8aZeJ9AW6TLH9WKG1k6AthKX6e20prGwEyjo8loI0WdI4Cn6rLmshWVQwPbOOZe3VGzl1Leg/y/gzQVTuOXkVhLrW2ArjHFbJfbiYNwDZRxbHkXC4XaiWztMrc45JuDcyEwA0uy1uPAzLbQF7PAGM7m7/nUeSHmUpTwFwJLNL7B4+pM9fu9CCCHEZRtrfbjqwVSfBWIK/JTtH0vO8PeoKRyF/eYQtuRWUqjnRN4AAMInbeROLKK0Oh8iQxAZpqHaQ0OFxxzkXev4Lkx23Bs0nFRQArabWwk/FwvTTRP3PXX4fpDagzct+gqpf937yVBb0Wc9dXQprDcP0VFFNYwqqoEiKI8dCXPglm1bIRWKU3LYsewmMw/0Q8AH+5an84YVYFIOYewEcTAttIVf8g1+yTcIY+MAaXzD/jSzWjczN7SWt1MmcB8rO6/h6en3mtItkdfkLRBCCCG6bwukUwNecH72IM7PHmTwgMPQoPCe8OCeUUegyUW4IpbSbfnED2gmfkAztsgwpe/lm0AyMmySCZ3ELDkaFmGWU0AAeF6Z9eM04bJY08Np8f061ST9k/hBiD5HAk/RZ6UNrIUFcKt3M3X5bury3VAHY9ZXQgXwIBCCMDbGt+7m2Jwojs2JYk/uSEZV1HC393WasuJ4bPL9pBb5uHvz6+yyjyfhSDsJR9pZyWKSOMTP+TYlsTlstM8CoIQ8AjgJ4GRJ6QtMovBs0gQhuulMORWpRyaE6DFOKD+Rja2glUDFUAIVQ4mnmeSJXuIHNDOeXSbb7SkgTZtezWoPbSUuYrL92G5upa3BReD5oTizDuKeXwcfKIgJmeUdcw4WAA0KypQJTg9iJRuCmHl+MxUm6hq9B0KIq0YCT9FnZVIFPjieEoGDIA6CHP9hhAk63eB9N5kmTxxp1NK/BbZTwHYKGLO50nzaCtQyjO+vfJI9+SOpm+5m6pqd7Bk0kj2DRvJq0b0EcVBONtmhvYxnFw7amMYW/Djx4+TnuV8njVqs5IBCCCFE7zXEZKwN+2PNSJ1IKN0/Hhd+2jui2PDePLPNBbb4oHmeVoB7Yt3ZWp1NkP61fQR2DsW3N5XkGV7w2sFrx/l/D0IIaACStRnSG4OZ93nKLG2vuExw2n5N3gFxHdMoTtPvii7iypLAU/RZDoKwCaJ/0UGCt50EbzuH7EkwGU7lQRAHid4WUkt9UAJ5lJJHKRw2+6/xzCaJRsiHMfWVbKeA43Mi2Es2e8lmXf50kmhkLXOptmeS1OpjC9OoIrPzGvIooZxsPjdj+zV6F4QQQohuijFDbXMyirG5WrG5WuGIor4jhUBtEoTA5molxuPHPdBnAkePed7aIkOE34qFeDh8YrBJNFQBDfvTTaDZAIENQ80IoD9hejxjNJQBTZwdmuvB9IAWXIs3QAhxNUngKfosPy6YAbiBOrP4cUEG9F9nNTpMZ+9mI0k0ksTx2yM47o5gXukGbIRgE5yKg0MkEb2tg1lsZBYbubV0MwGcpkcTaIx1cwevUkUG1WRSTSZrmUseJVR3ZPT4/Yvrm6lHZr+iixBCXFQb1JBOEAfxA5uJH9gMxyHQ5CJ9+PsAOOKDhE9aw/ebgWaoqR5FuNlBzGw/RIJngBdO2qAN3MPrIQ/Ig5ib/WafhDPnUzAWE5g2WctOYCgm+BRC9CmS1Vb0WaUduTACTuVDVWw6AOO+Uga3w44FNzFx827WTZ/OrRWbeXPOFNO7CUSXdLAvP51R1JD4aAvHvxtB9MoO5i9dzdPT7+0MNP25TlwE+PbmX8EITGmWyXGs5g621H8BgOPuCJbbv0OgeOg1eAeEEEKIy+CF5qPx+JpT4IgCoGDyW7zPjdRsG4V7ch2+danE3OzHtynVDJMFnJ6DBP40FBJN6ZWy/WMZObyMynFjTLKgRNPuTOkU99fqaD4aT/zAZnx7U6EYbD9qBSDc7ID/ViYYFeIynPnAVvReEniKPqsgohDWQf8RwBxrpfX7aBfjGZ+/m1s3b4ZYKAhtp9puhsi+nT+BYdTizU0mmOtgF+MZsrSRYdRSQGFngNpIEqOO1JiaoM8A34Kf8CBpHODBlIcAGM8u5rKWH6U90pO3LoQQQly+UXDjwPfxD3TRcMTz0W1e8KWl4L61jtMd/Wi7QZvhskDgraHghLZyF2UhF3ihsmyMKZ8yirM9nMeAlBDNR+PJHVhqanxuAFyYkipgEguNBdb0wP0KIXqUDLUVfVYtaZ1DbQspoJACkyxhJ3z/tifp/1Monp4D9RD9eEdn7s+p23ZygDQ8FQ04CLJk5QskcYjs1krC2DqH5DoIsm9QOnuyRrJm+WxeSrmNuazFRYBsysmmnCAOtjDNpJYXQggherPD4D3hob0jCvYB+yCEnRTqKfjaW+QO34VvRypREe3kDH/PfJhrB/eMOghATLYf7DDynj0m6EzWJpnQMWuJAurthCtieXfdJCi0wwTMvM8UazkJ/C+SDV6IPkh6PEWfZSPMvqx0Rh2p4YusBeDUMgjGRpHgbYd14MJvHnQjYNTKGgCaFsdhJ0xdltsM2ciCAE7KY0cyhEYCuAAT2AZxkEsJY7yVvOmZQhWZzGVt51CPKjJYHHqGlfbFBK7JuyCuVx1ESAkUIUSPaytx0eYJmYAQeHd/AZxS2Fyt3DjwfbBDe0cU3pMe0sfuA8wcTyKhzWuej74ON7RhekQTMUEngJ/OBEK2rFbCxbFQC+R0uYAG4PMa3lZX/V5F3yLPzd5PAk/RZw3jAJmtNdACieUtZmUqJPy4Hb4FzIAhoUaa8uNwhIJEuzsASCxqIXHNbt5+agJTi3ZyKhtC2Ez9zw/B/t0wAKNW1HBsaRQJ29oh1WTJTaKRIGZ4Lpjg95A9iep1o4H11+BdEEIIIbopGfCEsEWGcFgjdYLNDrIHllPamIf3hAcSIFAxFGI0bZGmhIrTc5CMjGre3TYJZ8FBkwH3JCTP8OIgSGX1GABGjt1DZfUY3BlmjicnMYHpKcDb5TraFLzXg/cthOgREngKIYQQQgghhPgbSqk44D+AqVrrFGvdjZhunH6YeHKh1lpf6lgSeIo+y4+L8tiRjPFVwipr5e2YQtXr4djSKII4SF3jgyngTUkGwBNqADtUk0lt/jAWVbzMrb7N7JuTzi7GU4UpjbLc/RC7GE/u5BICuJjbuoEXY+/CRohpbAHgYR5hPLsgrafvXlzvJDufEKLHtQFeO2SFyI4oB+D9gTfSTDwjk943PZcnIXm0l4bGFPCb31HBSAfhgTaohcCaodhubsUxO0jDex6oAerN4YPfc5gkRaSa4bc5GgqVyb9wg3UNa63vXWf3E6I7rtVzUym1HPgi5q+9bK11xTnbncDLQDpm1rMXWKy1PmJtzwBeApxAAPiK1vrDq3VNl3s+rXULcI9S6p0u694HFlvH+x0QjfkNclESeIo+q5EhHCCNMa9VcuqXZl1tbDKe+gb2paQzan0NoTk2dsy7iYlrduNxW7nbW4B8WOJ9geMpEbyZNYVcSghjY2Hry/T3mWZ189yEsBHAhRM/y2K/xyS2kxsqIdpnhu0+kLLczCON7Pn7F0IIIS7LIcBvMtsWNk4y6+rt+FJCUG8neayXhmoPDds8JE/20p4YBUC/iNMcZjC22a2Emx2Ei2MJJMeaP7ELzNBdgIa9HjO89hgm0+1/K/NhcJqGSDONhdl2SSwkrjcbgF8A/3OB7Rp4XGtdCKCUegJ4DLjX2v4M8LTW+hWl1J3ASmDyuQdRStmBRK31X7qsiwFitdaNl3FN5z2fUird+r6rLVrrJ853U0qpScBXMbO3T1zg3j9CAk/RZx3qSOLW/ZvNQ83i2Wx6MzPjzNzPajKZWLqb43MiOGRPAsy8zNT1PrDDRvssxrPLzPsc3MKDnodYVvcoANsp4O4jr/PYoPsBeLjop3jzk3nKvhRnikkl1EiSme8ZecnRB0IIIcS1dRxsBa34rSR6AO6xpnxK4GQSdkLQADHj/DTsTzdzMS3Jo61JmmUKPODMOkiw2UH4lVhsXw0CEK4ACkLw36ZXyvkNq/7nOwr6Wz1VbZj+IPnAVvQOLqVUSZfXz2qtn+3aQGu9E0Cp8yfE0lofBQq7rCoG/tXaxw18BphqbXsN+KVSatCZHtEusoDXlFIztdZV1hDYzcCvgee7c02XOF8N8Pnz3sT572s7sF0p9RQmRdifL7WPBJ6izwqdtLPPk86oD2vof+ZXRh6wFfq/BsWLc5i4fjd1c9ykbvbhOWn1ePrg2OIok6G2dQP+2Dj25I9kjLeSKjJ5LOt+AL5f8SRNWXGdmW3X5M/GiUnGsKjoZQAeyf+eqftZK9n5xOXRKMnOJ4ToceEPYwmPbcaddBgAX+NgkpPqSR/+PjU7RpE82UvDXg/u0XWd+zgImsy2DZjhs22KwM6h2LJaoR7aXjGBbMydfpP59hgwAgIbhnb2bjoXHAQg8MuhEAOc+ye3EJdwlZ6bfq113pU6mFIqAhN0vmGtSgEOaq1PA2itTyulGq31H/kp0FqXKqUWAZuUUguAnwGvaK0/EnReQrfPd851Pw3coJR6Bvgp8GlgLqCATwEVF9q3K6njKfqspQNWMGpVDcTC8fwIjudHsGPQTZBnAstxK8rgAVPyZMf0m87uOAISStsZ92AZK2PNKIgxmysBeISHCWE3cwjiINHbQggbLgJkUkUjScxlLU/n38vT+fcyizcoYLsZRiSEEEL0Zv8E6WP3cbqjH77qVHzVqfCBHd9RNzXVoxg5cQ+T2A4N4NuW2rlbc0c8Mcl+cicXmTmbgHuiFZjOxQyvPQltzQ5sya1mfTxmHmcT8A8QWDWUwKqhpt8kCxjUQ/csRM96CtOv/8u/Z2et9R+B7wA7gEKt9YoreG0XO+8SrXWy1vo+rfUBrXWh1vob1vqvaa3D3TmO9HiKPmsX400FkziIDpk5l42TkyAOU8fTDsyDqUd2csoOxXNyABjnLQM7eJcls+TBF2haFgex5jhhbJ2Jg6iDp/PvJYlDZFBFYlELafm1rGApQWIAcBKglLyzc1eEEEKI3soL6dQQjrBR7jGrAhVDCZ+0Y3OZgPF9boScEJy04dthgk9bltlW6s0n954iSqvzOd3Rj/BJu5nnaU15cSb6TXCZALjMcNyAdyi8BbRb1xCPJBUSfZKV8GcEMFNr3WGtrgeGKqX6Wb2P/YAkLvBToJQaDPwI+Alwu1JqrdZ692VcxmWd70qTwFP0WYWNk3jpv27jbu/r7PCYHs2ZoTdoGhRHYkkLxxZHkbCynR2DbiKbctI4AGCG55bW0JiSBMvMsfblu7ATYgiNbGQWAPb8EGnUcsuRrVAH3vxk5rGGuaw1CYUw9T+FEL3LlUwNL0Sfsg/+sHoWtptbCZfFmnU5GtrsxCcdprJ6DOkZ++ADu6n5mWiahD+MJSbbT9gPpe/lA5i5m2ACSWu6S2DnULNPToiY+KBp8zRmGsyZHs6TmGBViMukUZym37W+jPNSSi0DcoFbtNad/8O11j6lVBmm7sIr1tc955nfiVJqCPAH4DGt9atKqd8Da5VSd2qtd3XnOi7nfFeDDLUVfZYz0c/dpa/DOphYv5uJ9buJ3tRB4lda4KQZTlu8OIcDVq2TNhy04WCUt4YduTfhJMCQUCN7ySaIAycBqskkm3KyKWcv2WRTzs8HfZ03c6fgx8UPWEYGVZ3XkEQjM3kDiqUshrg8HShC2K7ocilKKadSapNSqkoptVcptU4pdd4Bb0qpDKXUu0qpauvriC7b/kUptUcpVWYd59aP814opZYrpQ4opbRSKuucbRe8jgvRWrdore+Bsz+sWuv3tdaLtdZfxaSFj/441yzEdSkeYmb7uXHg+9hyWrHltJI8vIaCjLewESYm2U/NtlFmeCyYuZrHwDailbZil/mpGaThICZ4TMDku/RYSwMmYP1vO22FLtNmtrWuyzWQZ7UV4jqglFqhlDrzv/sdpdQ+a/0mpVSeUmoU8ANMz+Iu69m4vssh7gO+qZSqBr5pvT6fKOAhrfWrAFrrP2N+gmK6e02Xeb4rTgJP0WeNj7A+/BkBp+LMQhzwQ7P61AgTGN7tfZ2EI+28wSzeYBZPe+5l4srdpIUOsNp+B7du3oydEAnrzTgguzXLM5NqwtiYxHa2U0AAJ9Vkkkk1VWRSRSa7yMdBm9TxFNeLMynfM7XWozEV+B67QNsz6dgzMH0WKwGUSaH3MnCX1joHuBN4yUqo0EkpZVdKffqcdTFKqaTznGsDMBH4y3m2nfc6rOOlK6XeOWf5zoVuXik1SSn1KpeRGl6IPsUaXuvHZcqiNDto74hi19HxALQ1OcEFtptbISYE/wv8L4Q3xJI+eZ8JOgsV7lvN/M7kDO9Hj5+MGVJ7A1COmenmB4ZiAs0GTEbbGOiSWFeIXk1rvdSa/9hfa52otR5lrZ+htS7RWu/TWivr2ZpjLXO67P+B1nqs1jrD+lp1gfPs11pvOGfdXq31H7p7TZdzvqtBAk/RZ2VQxY7cmyAVgrFRBGOjeHPyFCiHPXNG0t8HqUU+ij050AKT2M4ktrOk/gXIg+gPO8ikinXTp5MRquK5OXeRGyrBSQAnAQopoIpMbIR5gOWsZS7ff/BJVvBNCthOAdvJo8TM94yXEXui99NaHz1TZ8xSjMlc9xFd0rG/Zq16DfhMl97RDszHPGD6Lw51mc9yRhbwtlIq0zpmHGYI0YzzXNdOrfXfzD+51HVorWu01p8/ZzlvPTKr/Xat9R3AKUyKEyE+WYZCW7GL5hPxcErBKUXgraG4B/po2OHBFh/EmXWQcEWsqc15A2a5OcThE4OJSQxAGvjWpUIiNPzaY5LrxWOWDzDl6u3AHGAn5H6tCLZgfiNkYYLfU0g5FXHZNKozAeSVWsSVJXM8RZ+1qmMhywsfYs/kkVSRCUA25TABxhyphK2wY/FNJNHIMU9U535NKXEktrRQnJVDI0nMe3QDuMG2OEStfVhnyZQCCkmikbXMJYgDgGPLojhEEqMpB+BV7iCAk9zhuyjt2dsX1zlNBOEr/9C7ZD2yM86T8r2rC6Zj11ofUUrdBvyXUuo44ABuOfcA1zItvHV/VyQ1vBB9yh/B/b06kzTIb60bCg2NKeAJkTKw3gy1dUHYH3t2vzY7xAdpK3FBM+TcWkwQBzUlo+CIMkNuwQSVLsyczzazqrQ6H4J09rZSCDRbr9+9qncrhOhhEniKPivQ73kUPzpnbc5HX3ZjVPvtZ/a5D+DGi7Q8zCq+B7zPRr7aZf0J4J1Ln0iIq+9y6pH9XSnflVL9gX8HvqC1LlJK5QO/VUrdqLVu69pWa/1Ha+jrDuCJnkoLb517CbCky6oDfLTAtxCfPJsfwXeRstM1AKw977auP9xlnd+dv+1H/D/r6/JLNxVCXN8k8BRCCPERF0j53tXF0rHnAEla6yIAK/g8DowE/nTOea7rtPBCCCF6D40iLNUEejWZ4ymEEL2QvgZZbeEjKd9nd035/pFr09qH6dS43VrVNR17A5DcZe7mSEwBhZpzzjMEMxTgp1rrBzHDXNcopcZ3+z26+HUIIYQQoheRwFMIIQQAF0v5fiYtfJfm503HrrVuwswNXauU+l9gDaYm5tFzTnfdp4UXQgghRPfJUFshhBAAaK33YZLrnG/bjHNefwCMvUDbV4FXL3Gu/cD+c9btBfaep+1SYOkFjnPB6xBCCPHJ0UGEZKLt5aTHUwghhBBCCCHEVSU9nkII0QuZJAnyya0QQggh+gYJPIUQQgghhBDXNclq2/vJUFshhBBCCCGEEFeV9HgKIUQv1EEE4Q755FYIIYQQfYMEnkIIIYQQQojrmkZxuqPftb4McRHXbKitUmqAUuq3SimvUuoDpdS/XKTtIqtdjVLql0qpCGv9F5RSpUqpCqXUPqXUv/XcHQghhBA9R56bQgghrmfXssfzASCotfYopUYA/6OU8mit27o2UkoNAx4GxgABYDNwJ/AboAmYqbVuVErFAaVKqd1a6//p0TsRQogrTHcoQiclq634CHluCiGEuG5dy+RCXwaeAdBafwiUANPP024usEFrfURr3QE8Z+2L1vo9rXWj9X0LUAl8ugeuXQghhOhp8twUQogLOPOB7ZVcxJV1LQPPVOAvXV7XASl/bzul1A3AOGDbhU6olPqaUqpEKVUCJ/6uixZCCCGuEXluCiGEuG5dtaG2Sqk/Yx5+5zP4Cp9rCPBfwJIzn+Sej9b6WeBZs0+SvpLXIIQQQnwc8twUQgjRl121wFNr/ZmLbVdK1WGG9xyxVqUC28/T9Ew7urSr73IcN/AO8ITW+vWPc81CCNFb6A5F+KSUU/kkkeemEEL8/eS52ftdy6G2vwMWA1hJEj4LvHWedr8HZiulBllZ+RYBr1v7OYG3gV9qrZ/vkasWQgghrg15bgohhLhuXcvA8wkgXinlBf4b+JrWOgiglPqxUuo+AK31fuBRoBj4ENgPvGId4/tABrBYKVVmLQt7+D6EEEKIniDPTSGEENeta1ZORWt9HPjSBbb98JzXK4GV52n3HeA7V+UChRDiGtI6grBk1BNdyHNTCCEuTJ6bvd+17PEUQgghhBBCCPEJIIGnEEIIIYQQQoir6poNtRVCCCGEEEKIK6JDgWS17dUk8BRCiN5IHqBCCCGE6ENkqK0QQgghhBBCiKtKejyFEEIIIYQQ1zcNnFLX+irERUjgKYQQvZEGTsoDVAghhBB9gwy1FUIIIYQQQghxVUmPpxBCCCHEtfKLh83XEmABUGF97wGKgUign9V2CLAB+CowAXgNmMPZ/Qut77OAHOv7I8AgIM06ttdafzOwvss2gJNAPTDS2g8gCmi2rme9dQ1zgbeABqvNbOu6PEA80ATkWevirfNinbvA2vY/wD8Cq4AvA36rTTOwz9pvnPUe5AAfAgeBfKtdCGi3vvqtcz8FvNDlugqBZGAwUGTd013Aw9b7duY9egpIsd4HJ/CedewR1r0A7HkE0ctpzP9h0WtJ4CmEEL1RB/IAFUIIIUSfIYGnEEIIIcQ1onOtudxbgduBb2B6+bIwPYS/AJ6xGs/G9OCFgAfhr5Xwqf6YXsB4zvYaZsLxOyKIntZBU2EciUUtUArsB/5qtVlhneMYcALTE1gJRAOTrHMABKyvZZieSYAPoekncSRWtJjXfwQegWeGLeC+B1ZBCRz7SRQJn2uHl6FpRRyAaf8ekAR1S90ktfrYszSLXYzHZZ3oy62/p98peGfgBOpJ5Z6K1RCCotxcTtOPiRt3A1A0M5exraU8H7sAN4cB8KyowUGQXYwHIOWH9exiPOPZxcSK3TRlxZG4rYVf6/kM5jA26yanfnYnb06fgo0QNXhwc5jB+MgJ7eFW+3oA/iBT7oX42CTwFEIIIYS4RpryraAsvwWGAb8DZsHRB6H9FAwFsx7gx7D3jxAE8m+HTw3DjIyoBOIwQSPAOIh+vAO9DhLXtoAd2APHn4kg+vkO08YOpAJJcGxuFAlfbIcfAC3AJuAV61hjgW3AMuv4VkCauLGFupluAFL/6OPAsCHct22VCZ6XWPuehFP3QeIhE6B+kPVpbjjwF4iF1FIfAI7cIN8qepYD+UMACNkjKI3NY+qBnTwzbAGUwd47M0ihntQiX+c95oT24I+N476iVRAJH+R+msH4+A13saT1WQD6ByA0zEZuqIS6LDfOkJ8dk29iMIfJprwz8Fwy/WdM4R0OM5gbeZ94mhldUc2bWVPIowSAP3SOdxa9VgdmiLTotSTwFEIIIYS4RhI3Wr2GlcCtQAiO/gIGzsL0Nr7B2XmN2TCiBKKeAZ632hdjgs7hmKAPOJYbRcLWdtQU4EHQ+aB+YoJR7rSO9QXMfMZhkPB4u5k3WgkcsLafCR7zgO9B05A4Eu9vQf8Q1DbAB6kbTfD4wZJPc8MLf+H4nRFEV3TA45AwpZ26uW5SD/k4MMQElTdU/IVT/wT9VwEDzXXfEP0XeBqGDT9kztcCE0/t5viICHIpoe5ON+khLzV2D6mtPt6cPgWAWw5tJbqxhVPZ4I+No4wxzNu8Ad/0wfQ7ZQ61Y9hNDMZHvT2FelLAnkEpeSaIPeTjwSEPAfBNVhDAxbTQFsJ2O83E81jW/QRxMI0tAPyEGX//P7IQApDAUwgheieZ4ynEJ4K2gkr1Q+AQUNkl6PwqHF1oYjQA1kHUCExvZB6mJ/QwHPweDJ1FZ29gQlI7zLBe3wDqQUzPZT4mWAX4L2A+JpHQ00AhHBg2hGELD5l1ZxTBr++dTx4lJNa3cLo/9G8BJmN6Z4EbWv4CkyH6lQ6a7o0jcVMLRXNzGX+0FE6CHycAjVlJjG0thZlwbFgUCZvbabohjvrVKXz2gMlAtOOGm4jiROfpy8nmlsatOIYFoRHGs8tc1pBcnEP8hLHzG+5iMD7qprspYDvK6pWd+Ohu9j6UQT0p5FHKb/kybnxkU87eIRldgsoHKaCQensKuxjPWN7je0efZPnAb37kWoT4pFJKxQH/AUzVWqecs+0l4K9a669e6jgSeAohhBBCXCNqm/laVAb50zBDYOdgejF/BgPXYTK/gslkOwzTC2oHKuDgFhh6H+ADkqx2hzFDZo9jekaTrP3swEKrzdPWOfZghtFGQj9Om6BzJGeH0Zb6uOeV1aZ39AfQvw7TMzoWjn/LVOXz2QfTj9OkBnwkbmvhsYfu5/svPAmTQcfBZ1dYaW1nYnpUK8C7NJ3B032sZzaz2MgpE5sy8dBuCMCOrJuYeGg3bw+J54NhnyaMnR33Wj2XmLmg22Mn4GMwX+FlyskG4PNHd3b2sA770iG2U8A0tpBwqJ3mIfGMZxejK6r5ddZ8xlMEwF38hiAOqsnkByyjkEnUD3STRCMv8xXrDZMAtNfTnJ2b3IOUUrcAjwKfAo4CC7TWB87TLgN4CfPTFAC+orX+8FLb/s5rWg58EZOrOVtrXdFl22WfS2vdAtyjlHrnnPN8A9iC+SjqkqSOpxBCCCHEtbLHLPk/Bb4ETMEk8vkjJqnQMExSoP1ALKZsylcxQ2yXwFA3MBCOr44wbYcBjVb7aExAOoezw2jzrWWr9fWr1tf9kLrZZ4LUpyF1m4/UbT6acuN4+84JJmjdZB3zn4AQRG/sIHpjB8M2HiL1FV9n7+n3Nz7Jn+7NYs2w2aifQNPSOJqWxkEjHJg8hGNLoyhnNKkbfXyFl3GHDrMldgpbYqdwfGAEOGHiB7s5PjCCqU/vJIwdB0HGt+5mPLsYzy7ei83Fx2D+kf/BSzpRnOAwbpTP9LD6cbLkhp919pDuHZJBFCeoJ4W9WRkf+ScYjI+X+QrfP/QkNXgA09MaxEE6XtI7a9AI8VFKqQRMEDdPa50NPAf85wWaPwM8rbXOwHz0s7Kb286cy66U+vQ562KUUknntsUUM5oI/OVyrkMpla6Ueuec5TsXuPdcYABYP2TdIIGnEEL0RmfqkV3JRQjR+xRZSyVm6OqZwBFgGvDA2abHn4kwwZ0T01v5IOb1cYj+QoeZ5zncajzFbNv4Gqb+Zsja53lr+Tc49lCUSRx0FBPs7reu48mz11VKHlMrdqJzMGN+GzG9qeus1wMxwepITJbcJdA0M47PllZwmn7ULXeTeKCFxAMtHM+LYFjpIWyhkMlWCyRsbif6QAe3bNvKLdu2sss+nmNDogAT2DISmoknpfUQ9bFDCOIgiIP8baXMDq0nqdWHnTDVZPLZQxW8fcMEPNTgoYb/y/+hmkze50YcBBlDGRlU4SWdr7SuJp5m4mnmfW7kAZbz4JCHyD9Uylje4zCDyabcOpLnCvxDiz7KAxzWWldbrzcB05RSrq6NlFJu4DOY6rtYXz+jlBp0sW3nnCsLeFsplWkdMw74A/ztBGSt9U6tdf256y91Lq11jdb68+csT1zg3m/BVLtdBuQrpf7xAu06yVBbIYQQQohr5cyff/cBQzCBnd36mgPMwmSbxQrE8oAbMF8PmHZFf4T854Ezg+U+wMzl9MHMX2B6R4dh/urLO3vqhPutFKBJmGG52zC9rgfoHDh3ywtbYT8oMMHrP0HTnXEMPtrC4YFdyqTUY4LXG6CdAbC1hTsG/h5K4U9zswATQE717eR9+418Ntoa+XeDOe/b904AwE6YZuI5fIOblGH11NtT+Meju3lx4Hw8eAniAGC0u5roog7qJrs7M9G+PWQCA2hnC9MAOE0/5h/9PYcHxhHGjh8nedRSzmjeiJ3OVj4PwGzWk46XbMo5FQ2NJBEkBgfBLr2d5+tUEr2KBk5d8aO6lFIlXV4/q7V+tsvraiBRKfVZrfWfgDus9amcLXAEkAIc1FqfBtBan1ZKNVrr1UW2HTlzAK11qVJqEbBJKbUA+Bnwitb6+cu4n4tdx5GL7aiUehq4QSn1DPBTrfWPrfVpwP/RWv/PpU4ugacQQgghxLWy1fr6z5jg7z1M/8F9mJ7IH3A25mnB1PXsh+m9tIbQ5v8MqMP0ZILJXPtLTLKiG+Cvm+BTS4D9cPyrZrBb9I87INvszw3m3H/6bhaffbzCjJCYYh2r0fr+qNmf9yDRZ0q/JDaajLynUqG/DxMwx0E8zTAc9g7LYHRkNTeG3gdgi30aH0z/NB5qWDLsZ/zfYf8HR2s7/e0w9cBOAD4YZkYSZh79C5sGTqEgtB21HhbOWc3hgXH4GAzw/9u7+/iqqjPh+78FkUNI8wo9yYlN4AiEkDtkggnQSZAKaLmJgwXEQS16a6VqB8XO1GqfOr5Ub/pUxbtKpaUOVqfiCxWBWx6SQXlRJBmBRBiSiSGAgaTmkFMIeWmIJ4as549r5yRSXgIkJMr1/Xz25+Tsvc7eK+ckWbn2Wuta5KdmBJdDqSMKFy3E4qeUFA4yDICr+JCNMdIDuoXJAITTyCCOc31DHi0RLgDWMovdjGU4+9kekcFxQgnnr2zh6mBwCqXn9LGqr40j1trM0x201tYbY+YCvzbGDATygDo6VsztVtbaD5yhr1uBZ6y1S3riOqe59gI68l133n8QGbR/VjrUViml+qL2rLY61LbbGWMijTF/MMZUddqXYoz5vTFmuTHmFWOMLhevLo6pzrYCGd6agAy5fQjyi5EZWOnO9gKQ4TwOBgbCnleAEPjsXiR4/S4y3LYWGQY7DS67GRgNzQ9JwBn2RJv0iEZC2eKh0sPpgnFFJRJoliBBcBMS7Hqdc42WcvxEzku9bCH7gFwomzcU/BBV2wxhEGAAhz2RhO1rI2yfrB8aRR3RRc0srfgJVSRQFeGhYp6HMu9QyrxDcdFCKMc5EQLXrdrEOtf1MAVMPsRV1JNWUU5aRTmFZNDMIMblleCihYxAIfsZTgJV3M7L3M7LFDOGa8u2sYt0cljPLNbwe+5mAtvZH9ExVe4+5H/3aYENDHd6VV0EqCOaIwzhCF8aNanUl1hrN1prJzoB6gtAKHKbprMq4HJjTH8A5zHe2X+mY19ijIkFHgd+Ccwxxow/x+p2+Vo9QQNPpZRSQcaYxcaYCmOMNcaknqHcQWNMmTFmt7NN63RsoDHmd8aYfcaYYmPMi6c7z4XWyRiTZIz5T2NMufM48mzns9bWW2t/AOzttK/UWnu3kw4+jODCFEr1sKdke+0jJLgLID2Xn0L2C0jv51hnGw2tz0Pt1chQ2F2Q9ipQCJffTjAjLbuA+wkGlIwGdkPofCQz7kSwTpbb5FWHpPc0BMl460eSDVU4WyKQD62ZSK/qJ8j8zkflnOyG1pFADiS/JHlMzAogHUZwgNja+uC3OjsvjzhfvXyfuZBWUU6AAZSSEizjLfER96N6+reCnQLxVGMjgTCo9LrZ401ijzeJBKqY5NtB/vQMJvl2cNQ1hLHsJruiiAd5hgd5hiwK2Jo8ngOMoJgxrGEWt/A6u0hnLbMYQIABBGhB1u6sciVQRCYtuAjlOFnk8ww/5RlOmVtF9TW9dMPWGBPnPPZDAsJl1tqmzmWstX7kN8ZZbZebgV3W2r+c6dhJ1/EAG5Fhrg8Dc4A3jTFZXavpmevR1XNcCA08lVJKdbaW02fCO9kca226s23otP9ppMlOcrL8PXLyC/tadj6n/GRjzGvIvBxdO0FdFK1PyPb9aUjQORWZhxkLDAReRYLPRcACCHkUPm5FhtwGkN7I9hloLzhbrbM/XrbKhW6OLQ6V8i7ZqmLcEgB64XBGpAz5fRlww7F5oV/+xzsbQvKRntTZyNInAYI9sSFHkd5RnOt+3lEnE0CWg3nFKf8srPdOlWC4BI4yhKsDW3DRgosWKlI9HP5dJL+PuZ2CmAwZtgswWjLNpvnKSfOVM7soj4WepzlOaPBaBWSx2jud3wXu4XeBe6jBzaTNOxjMUa4t2sYI9pNY4aeYNKaykTqiqSOa/QwnijoOMIIo6oLzOltwsYaZrGHm+X686tLwv40xnyCzrFuAnwEYY3KNMZ2H6d4D3GeMKQfuc5535Vi7UOARa+1rANbaj4GZwDdOLmiMWWKM+TPwLWCjMea/z/FaPULneCql1KXjbEkSsNZuAzjfkabGmG8AtwHfstZa55w1pyiaCrxhjJlhrd3rZOfLA/5Ax0y1M9apU3a+a51dbwAvGGO+6dxFPgDBCVpnZa3dAmwxxvwG+Rf5466+Viml1KXJGSlzqv05Jz0vAyacpuxpj3Uq076wUud9e4A9pyi7EFh4vtfqKRp4KqVUX9S+nEr3OmOShPPwmjMXchvwc2ttHTAcWZD6MWPMZOCvSLa7bZ1f2Ney8wFDkWFLBlkEvOQML1eq24Q85XxxP9ReDzE5yG+UGz5bBjFhENr+W7sbmArXXIEs2nAzsqRKPdJLGumUq3KOTwDehUSXH54A/hHpKQUSN/k5vCiSuJfqJUlQKxzLCCX682aiX2ru+Pd2NtKbmY70i1wPIWHO+YudMvcgPaCbgKNQ8aCHUI4TV1LPntQk0qbKShOrPdMZsvgo15Vtkt7YfMiuKIJqqM6WwQ4n6M+ksh3cU/0KAHumJGE2w9Y543FTE1xqZlnG7cxnOYVkghcGEOAqPiTR5w/+7bwmcht7piQxir20joT+nOAZ7308EHiGla6buIaNAKxkLgBZFPB77iaDQmLxs5dRzGItAM8y4xw/WXXR9Uy7qbqRDrVVSil1Pq6y1v4dMA4J1l5w9ocgA/J2OUHuQ8BqY0zEySew1n4AtGfne/9iZ+ez1n7LWnuPtbbCWvu+tfZeZ/9d1tqWi1UXdYlrn5f5KsQsQILIgbBnGVz+AoTe36lMOuyZkdTxz/W9yNDWm5HbPU6yHybA4QWRMh+zPzII/Zd0ZNAFuALiflwv8zl3g30UBgQCMq8zGyoXualc5KYiwwMVyNqay5zruZDcls5QXiKd/T8BpkoCoRZcEnQuLefw9EgOT4/k+oY8ktgLLmjy9mPZnbdLIBmQgPME/Zm0eQdlyUPJn5IBQCkp2CkSNA7hKFszxrM1Yzw55FJHFGPYA1WyDEshGVR4PDTF96Mpvh/3xzzNAALEU83PIp7kIMOYwyoaXeGMYD8vcwcvcwcT2M5gjrKSuWRRwDW129jINYxiLyuZGwxMlVIXRns8lVJKnbP2hamttQFjzG+Bd5xDh5CV1N5wjm83xhwBkuiYiQb8TXa+m40xq6y1O86hGsHsfE5v50XNzqdUd9rzBoyOhMt+AqyGtIfBWTlE1tcE8MPwzP2y5Eo2smz8d4Fq+HgqXNn+G7Ya4m6ol+VWvMicT5AAcZHzdRVwFKwbTCSYagiraAuu6Zn4Y7+Umwit34Xosc3yW50PuGDZlNu5p+IVACo9bgbHHJHMtU5W2+jdzSRG+iFWgkKAgKsfcUX17MlIAuAe3yuszp7O7CInIEWSGCWvOwTeQ3KN/FcgAAlTqsglh/kNcs3+rVAQk0UWBRybHkqAAVSRwOySPF5LvQGAuaykBReNhLOQ33CcUBbzAM83/ISVEelkOn+SqkigigRGsZdQjrMk5i4ms4UCsqgiwXnDgrnIlFLnSQNPpZTqi9qz8/VBxpgwIMRZv8wANyGDALHWHjHGbEHmXb5rjEkC3BBchb39HB7gXeBX1trXjDFvA6uMMfOstQVdqYe11m+M2Y3096zgImfnU6pbDJaHtGmwZwOkpSMDz2Ng340w8mY68k9+CmH/2AY3Iim8bkSSDw2EK6vpmB09GglKV4DNAdOADJnNwbklhPRsLgDzSyRADUF+i73I8N2fO+U+gpBssJtkSRNuhNZ4uGfpKxxbEApAYoUEqcdSQ4l+shkTD4enROKihShvs/SkAmGb27ATZJmVcBqp9LiZ/XQe5EDcZif7bSSUzRhKLH7u8b3C4exIWnCRSw5uaghxhgrnP5LBnIa1LI24i0yKGMwREqiiLHWoDMkFPuQqruJDsouKaErtR51rBGMopjQiiQUNL1IaIQFwDbE8EHiGIlemk+22hSMMZgAB5rISgLWkn+8nrC6WPtxuKqGBp1JKqSBjzBLkX9Q4JBPeUWvt/zDG5AKPWmsLkX6Yt50exv7Iyur/1Ok09wB/MMY8iyyifasz/7Oz9ux8a0Gy8xljZjrX7VKdOl3r340xjwLHkMRGSn117HMevZD2bSQwDACFMOIo8ENk+RKASMh/B7IrgQdh5a0wdxMSaD7lvA4kW+2PgP8L5hYkQH2BjqATpOdyNjAVmjL7EfZWm6wf+joSdFY65aYCr4LJQZZaaV/QKB3qiAIgenMzTfP6Ee1rhnQJTAF5/jkcjZF1MKumh5K87hDjAiUcmxNKdEkzhx+MJK6onsopbgAGB46QEKii1JVCi8fFcUKZ3LCNaREb2EU6ex6RYHE4+ymIkCUMB3OEQTQzuySPstShXLtZppRf+8k27M3wTMZ9zGUlxYwhg0I2MI01EbMY5CSvTmcXv3UtYDBHSaGU/pxwcuy6OmW0PdjFD1QpdTo6x1MppVSQtXahM/cxxFob1x7gWWtznKATa+2n1tqx1to0a+3/sNbeaK31dTrHp9baq621Y6y1V1pr805xnU/bg85O+/ZYa9/tap2cY2XW2gnW2iTnUcfDqa+WGc6WCvwbMj7gF0A8mDeACGRZlYHArZC9CQkYl8LcQuAd+Cwe6UpoX3szHfgd8ADwHJIcqB7pOc1xtheQ3iE3hO1rI39ehgzDvVfOUbnATeUCt6TZynfq+gnwFhyJiGRndirezT68m30wAcJK2uQaQHWEm7iH61nvmcphbyTHCeU4obTgovU7UiZ6STNbU8cTHmiUeaSdtLhcjPOVEE81oyinMSKU7Uxgdl4ejYTTSDhxFfXsZwT3F73IqNpD7CWJ11JvwE8sTdn9aMrux84Fqbwccwu38kcAvu9723nL3yGBKiawnQlsp4BsJrCdAwznKj6kmDGE00g81cTiJxb/hX/OSint8VRKqT5JhwwpdUk47JVUtHG/r5e5nAnArUhwuA+a34LQkU7hGmQ4rQt4FEnmcy9cPhHpzZzilItE5oF6kV7Mz+lIAtS+Um4+kAx8AofnRUp2WSdBUOUMd3D4bNnCoSTcXcVR1xAS3X4ZFru0nrjv1Et5gCKonCM9lseTQ0l+8hCMlkyzcWX1VCXLPMkhHKV/q/N9L4wkI1BIoyuc7UxgMEcAGOMKEFdUL0GsBwrJYFZtHjdtXwutBMvZSPiB73VaR8KWiIlkBQqociXwPpMZ5joIyDqcgzhOOaMI5Ti5nhwSqGIT15BFAQVkyTXZwxEGU0MsH3IVNcRSSCZ3s4xGwp1vctj5fLzqYtJ2s8/THk+llFJKqV4S96N64n5UD1Pgi03ASGA+0nO5HUIHIwFjJDAa9m1wjhfKczYRzGTLJ84WQJZDud15XSyUzRkq/5RvcrZqgj2kcevqpVf0FnltYoVfMuEuheRVhwhb0UbiZj+MgaaR/bA3Ax90vJ5keU3iw36iqJOsuPPcXFO7TYJkxxEGczDGQ+UcN0Ma6il1pdDMIAAmN2xjcsM24pbWsz5jKjZd5oK24MJsh2em34fNJjgEtjgmCXZLkqFrarex2zWW5HWHcFNDLjnkkkO2T+Z+bmEya5nF3bWvsIFpJLGXYRx0UgpVkUIpLlrIpJAxFDOZLWRSyC95mDqigkOKlVIXRns8lVJKKaV6y2jn8XO4bD4QC/k3QvZPkGG3m5HeTaB2GoxsT/rzFjKXM1te23oPhCxzju1Ghub6kV7JkZB8xyHJbnujU+ZpZD5nPMG1MfkdNE+D0HuQ4BagBCru9OBd6pMlWoCw2nr4DrQmSpGQYiRL7lgY0lBPaybU4Cax2s/O1FQSnETTBWQRTiOjag9xMMbDCA5QSAYplLIhYioAgQUDZGmUmFRacJFFAVunjyeBKqpi3BQzBoDvP/A2hxdHEltbT11MKNklRRCPlHMy0W71jKeUFB4IPEOLy8XvY27nn/k13hIfz6TexzQ2APBbFjCXlUxrkPVmtkRczX5GkEUBH3KV80Y0nuMHq5Q6mfZ4KqWUUkr1lhpnW4EsRPQ5ZKcjPZU3wi+KkcWK3oGYl5HUXiORYHQwwYy3IROBXGdzwbFHQiXQ/CXSK/koEkw680UrD7klQB2N9JBuB8rgsmp4b/FE6QFtAjzgzfNBIsRV1EsPZT4QJoFuyDKn7unALqiK8BDyDozLL2FnairjykqIK6onrqieLApILjkEyDnDG5oZRDPFjAn2Pl7fkEcWBYzzlVBHFIlFfrIadjC3di0DCHBL7dvcUvs2LJDkRrkxU4mqlfmi1hn6O4IDjOAAV9XuoIoEClxZhDc0E04jjYSzPlWC3P0MZz/DWbL5QfYyii0REzkSEUkmRQzieLBOCbpC01eDRX6HunNT3Up7PJVSqi+y6FwVpS4Fkc7jSOAKpIfyBPC59D4+9imwzimTjgSSYUgvZSuSQOhG4EE6ei4rIPqlZhl+i7M/HQlKnR7PxCK/BJ35QDxUTneTUOvnSESkBFqfOK+th8MLIokrqYcy8Fb4pKe1CSoflHmdiRV+KjwevLN9rGIOCfOquGnpWsZVlNB0Yz9aXDLeNi6vHiLAhAFuCMmHCdlFHI8IZYCTkrcqwoP3SR+rH5nOCA6wLON2MihkBAd4ldu4NUYSBbliWniQZ3in7B8pSx5KVsMO1sRMJ4EqGe4L3B/zNP/EUpIrDnHMG0oOufyRW0mhlBRKKSQTgANTRpDOLmLxU0UCBxlGFgUMZz8vc4fzRhw5zw9YKdVOezyVUkoppXrL9c42AbnZdC8QD5/9EkInImtqxjgbyPDbaud5KtRuQpIEVSM9jyuAo07ZB5zzfoost+ICnne23Ugg+ilQDIk/9mNWQFxZPcn5hzrmlQJVJMiwWhcytzQX2AyJPj+JPj80OQHpJvjpj3/DcQZJoJsJrkAbNbipwS2vjwcq4L2MidgJsCFiKteu28ZuxrKbsXh9PpgHs2rzKCWFu2tf4QAj+F/8Oz+t+A3SRzqIOqJ4p+If2ZmcSix+3omYzuyyPMb5SsiqLSKrtogZvMNRhnDMG0oVCexnOAB+YgGYy5vM5U0OMozdjGUAAQrIYgzFHCcUP7FMZguT2dJ9n7dSlzDt8VRKKaWUUkp9telIoT5PA0+llOqLNC28UpeG9qyv7UtFTgWq4fL7kWVVPkGWTXGONb3cj7CHnTUzZ0FMDpIoKAa43ylXjfRWhjnnzaGjR7S9zFHg24AH8DnJifJl//rsqVyXL4l2CINY/JRGJJEWKMfOhw9jxjMpbwetYVJkv2eozN3MkYRDd9S+jjNylpC3IOrOOnnihfXeqeREbmJywzaMH67bvInKOW7mNKzteE+KoHBOKvFUUxiTSjq7CKeRSq8bd6AGgN2usbjja2jBxRauZnZeHjunp3KAEZygPwAzA2socslw2jqi2M8I/MQSzl9pJJwW582fy0qqiXcy2xaxn+H4iaWRcEpJOddPVCl1Ghp4KqWUUkr1lkDHlxuflZG0afc7+3+JrOt5rxz/4lkIe6iNL16By6Yia3pmApXIENZc50Tt62vOBzYgCYWqgd9BU6bMsgpb1yZDdF8BboaQp5A5nxFI0HmFc45PZD5o4mpZw/NECEy6ZQfcDI0RoQAkFx2CMDiWHEr0A80SPHuhMtlNgttPnK8egDLvULIowPghxAVN3n4cTR4iw3WlCDuTUxnnKWGcr0See1JJCFSBCxJf8rPzzlRA1vMscmWSESikypXAe9MnBpMK5ZIDwAbXNDIp4o/cSjFpxFJDgAG4CDCNDTL8F0hibzDjLoCLFlIoJSNQSJ0r2nkjks75o1VKfZnO8VRKKaWU6mW1z8M190Paq3Qsg+KCfc8TXJ/zsvlAPVwWCbyABJslcHhXpJRPcLZEYBEyf3M7suTKNGANhD3RRtgTbbBNnjNLzkmF1GNndqos4dKeIdfrHL8VKrPdhLwF9gXgFSgkg0IyIAbykzPkBDnQmi3PE29wunGPyraBaVSRwPrkqcHrJVb4Zd6oM6d0BAd4L3silR43fCq9ra5AG2uZRcWdnmBw6SeWSXk7qHIlUEoKWYEC3IEaGgmnPyfozwkSqOIE/RnLbhayhBxymctKoqijmDE0Ek4j4fiJJYCLXHLYz3ASqCKU4+x2jWU36ewmvds/b9UD2oDmbt5Ut9LAUyml+qL2obbduSml+p5C2WKuR4KxpfBFLtKbGQkjf4IEmPFId+hUYAE0jwTKgDCIW1IvvZUTnW0TtH6AZMN9lI6strcj5UYjgWg8EmTmI8NuP4FxL5VIsOkEgk3x/eBVOWdihR/SwQSAn8O1P9rGtT/aBgMlAdGAQECy1T6BDI19240JwHupE3kvVXokGwmnigSasvvR6ArnsDcS/PCeZyLveSYSYADX+rZRQBb4ZD3QkEKYyRq8RT6iS5qJLmkmI1BI/vQMoqhj9kt5vO+ajN8Vy8vcwTQ2MI0NpARKJVkR4KaG7HVF5HIdAQbQSDhFZFJEJgEGMJktRFHHEI6SVlTO77mHcBqDC6oopS6cDrVVSimllOoto51HZ1kTgMvikYA0BgkA28u84WwnINTp/eRV2FmTyrgflUjPJsCNztDZGcA+JJB8FRk+62SqbXXKhjyKZNVdCvwL8CQyD1RGoRL2dFvH+p/PI4EvSDDbfkPrCbjpxrXymsFyjTRfOXwO+d4MXLQA0puZ0OAju6mInZ5Uxj1dwtYHx+O6s5ijDAGgnFGUe+BqtrB1zniOMJjiKWkM4jjJuYdodeaoVrkSKGYMNbiZNm8DjYQDkqk2eoV0VTXd2A+OwhHPYBrJJDBjAI/lP0VTZj8GNbVRECO9tO3zQm/lj4yqPcRtGS/yCx4DCC7zopS6cBp4KqWUUkr1ltWdvj5KcJ1NFgEPw8er4Uon2Mp/A7I/AZ6C2qUQUww0wLjvlUgioo+c145GAsx1SPD6EdLzmY8MsQVCRgI/hmP/EUp0fnPHvNApgBesE3iaT+Q5AWh6SgK2uphQonc34yyDKdcrQdYiHQx2ARg/cAdkLypizxSZH+nNk95HEmBcbgmt98CkFTtourEfxa4xAExgO95VPtgGcbfuwHrheFg/DrhGwDz4Y8QtAFzDRtzU4KKFUlcKWRQwgACLeYCH5j0FwHFCSfYfopg07mYZK5nLsuzbAchwFTKc/QCkUMpy5nNL7SF+GPMCUdRRTTwn6M+Q4No0qs+zoPcJ+jYNPJVSSimlests5/EnSI/lUvjsDbj8LWAeXJlAMBjNDkGCxwqIyUbW+FyAzMX8HGhyzhUJHIXK/3CTWObHusG0r9k53ynjkutFVzTDcmha1o+wt9qk93M5HFzsAcAb75Nezt1wwDWCtIpyoqubOXxnZDArbGKZM5ezCXgL6haGsj9mOOMWybDdtJJyAMqmDw0mIsILVREe3pk3g2lsYNHmJwGomOKBavjDc7fwg7LX2RszlAKyyaSQw95IssgHZH5pM4NIoZRSUhhXUgJlkDCnKpjVdlTtISqmeJjFGt5nMveXvcgzyfeRzi6GcDTYExve0MzgiKMYP8yNeZNBNHOcUI4yhO1McN6wjRf0MSulNPBUSqm+SdcjU+rS0L6cSgD2/VKmbc64WXY1PwH7miBtmlOmBJmrOdV5XQBJPOQswRIcBvsq8BQkPu2H5XC8uB9hmW3Sc1nrlLkC+RszEI69HEp0SbOcuwRYAN51Tu/ku3B4cSRxhfWk5ZfLcOB9EOevl+sAzAebDmY3cCNEr2smdoYfXDLUtj0QnOTbwS8yHuKxzU/BaAgwgPmB5bgCbcGeqioS6L/wBLc1vE5rPAyimWvYSBUJNBLOhIYiKRgBCYEqClxZpFDKntQkAqkDSKAqGCz2jyng1/wzw9nPZN7ncHIk81nOBqZxrW8bezxJwXMN4jhbk8dTRCYJVFFFAgFcTGA7AEXn+fEqpTpo4KmUUkop1UtaE+UxZBGMXArf2uAccEPoNEibAMHRnh7gWSQRUKcEQGwAqiCYAycemY+ZDUxF1v1Md46tcR4/QDLafgrRnzfL3Mw7nGuE0TFkMVXWwKybEcUgmhlAgNjIegkyH3XKFIGJh51TUiU5kRsSf+SH6yF7VZGcEznnw2ESdG71jCcjUMgB1wgCrgGMS5DlUyat28HqGdMhAibzPolL/TAbEvP9VMzxsCpiJgBza9dyMMbDKMqpwU0dUUxu2EZzxKBgMqAa3MxhFfsZQTFjKOBuruJDUihlq0fmjwKsZRa38keS2Msq5vBAw3MsiniIBKo4wHCn8o3n+Mmqi07Xv+7zNKutUkoppVQvCXlHNpYChdAcQILJKqfAcmR4bT7QgAzNdZIQsct5zXLgO0jwONg5nokMwb0RCVSrnfP+i7NNdcqtQYLUT2DPfyRJT+ifkGG5nwI/h+R1hxhVe4jEfD9xq+oxT8hrbaRsW+eMhxIYl18CE4AYWP276ZAMTTP60ToGWsfAsSmhhBTLeYdxkA2uadTgZtzmkuD7cXhGJAnON19KCnwblnluZ8+cJHaR7iyA0khVjBtvno9En58DjCArUMDPIp4kwAC+73ub7/ve5gAj6M8JxrCH/pxgLisZQIA1zCLAgOA1MyhkDMU0M4gsClgU8RB3swyAKAm7L/hzVkppj6dSSvVN7euRKaW+1lqvl8eQQuBfIOYOZFmVVKRXcx8yjxNk6ZNPkd7K2UAkfPY8XJ6IZLhtz37rDKElgAyHzQTGIMNzVzhlwpCe0vvhmDeUqNpm0srKKXtkKMmbD1E2ZSgAyXmHgomHWsfIeUKqgSZn3igw6ekd7NyTKvMsw6Se4dmNEIBBTW1UxUimosQVfirmefAW+Yhv8OOKaOHaFdtgKrSGybkOMIL0wC5wIXNIP4cccjlOKLOX5LFnoQyPTaiVpV2e8dzHNDZQ5MpkLLtJoIrnPXcBcBuvUkUCdUSRzi5acBHKcTIp4mXuIIf1gCQXKmYMLlqoI4pR7CWuoh6/183gYHdz6Pl9wEqpIA08lVJKKaV6SUh7QqB44F6k9/F54C0ks20GHb2f9Ugw+awzpzIXLi8EXkCCyvVOuQogB+kFzaYjm+0VUPa7TgHlp8ByiKZZ5n5mw4j4QxybEtrRy9cEx1JDiV7RTEgtHF4YyYGFI0ihlOiP5O5Y2Z6hjG0ooTURQvbBsYWhXJu/jYpsD94yH4nbJfnQnnlJpK0qh4+gYPF4xlAM2XDYE0mRkyJ3WsMmjkRI4qLBHGFr9ngmvbQDOwvyF3bMF62LCaWOKG7lj7hoYQPT+KfAUqpcCWRRAMD9PM/T/JSUhnIaI0JpJJyEWj97Y4bycMNTwQy5AD8oeZ1jqVKmkEx+4X2IMeyR9UQBOHEBn7JSCjTwVEoppZTqPfXO44JIWAAAR6pJREFU4xXAQPgsB47jJBl6C1mi5HanTCyy3MlSMN8BapAeTBfSq+n0Gh5+OZK4dfUSgD6BZLLdBHwbkh84JIXccj0qkPmfE4FtEBIJ0ZXN7Fwgcxur5iQwzlcC6RKAxq2oJ25gEXvmJMECiYiTnzwEo8FOkbpEv9TMzjtTyawtIT85g+x9kponLa8c6qH1URhDMaWkkJjvp8Cbxex1eQAcmxGKn1iyHyiiaVE/jrqGgBuqYtwMZz9DGtrfMCACcskhlOP8c8NvCKmEtamzCDgZm7IoYEhDPT+LeJLFeY9QPH0MVTEJDOYIRyIiGcRxAG6qWEtZ6lB+w0LmspLHyp7iV8k/JoVSDjDCudjg8/2E1cVigS96uxLqTHptjqcxZpAxZqUxZr8xpswY8w9nKPtDp9wBY8wLxph+Jx0faIwpNcYU9nzNlVLqImhfj6w7N/WVpu2mUkqpr7LeTC70ANBorR0BzACWG2O+cXIhY4wXeAz4e+S+30hg3knFFgH/2bPVVUoppXqVtptfZ6sBFxwERl4PMxKRG0ajYY9fNjKQIbkRSOKgHCRjrBe4R8oyGuJK6qGSjqVWPgH7MjI3NN3ZrkCG2j4L+Q9mwDtID2g88B0Yd0cJ4+4oYQQHpFd2O0Q/0MzOeamQLb2X0XnNROc1S4/q52DygSqouNNDCy72xgwlPbCLyhluKme4ac2Gpnn9CNkniYNSKIWBMDsvT64bL2tqDg/s5w+LbyHsrTYSqGL1jOl8yFXUEcUfI27hjxG3EHJUymZRwGTepzEilAWpz/JQ7XPEUkMsNUxjA6URSbho4c3pM8kIyH2W5cyniEyyKCCLApZ5b2dU7SFu4XV2Oel/b+dlisjkIMM4yLAe+9iVupT0ZuA5FyRlmLV2H1AITD9FuTnAWmvtX6y1bcC/Oa8FwBhzFdKovnqK1yqllFJfF9pufp3FQ3MhZP8cuF6eMw+ohrRE2QAJJq9Dgs41yLzQeOc1Fc72AJKUqB6a7u4nczxBlk9xAjw+AeZLUp/sq4vk9dlyPV5BkhfNliVJOOq8ZjRk1pZAPqyfPlWWb0mACo+HX837MXtmJEGCZILNLikieckhwkranLywUVRHuAl7t435GS+QvVmG3+6Zk4SdAOszprI+YyrVEW42uKZxDRshHeIb/GRSxFQ2spz5ZJFPFvls9Y4n5Ch4N/ucpVKy+N/8K3UxocxlJXNZiTtQQykp1BDLAAKsdN1EVm0RQzjK/uAyKVLfD2PGE081LlpYnTw9eM4k9pLE3m7/uFUP0JFCfV5vzvFMBA51el5JxwpUXSpnjAkDnkP+XI482wWNMXcBkuqMyHOvsVJKKdV7tN38OqpwHjdBaCbyz64XCfSqkfmbU5wyE4Fc+OxGuHwkEnzmI72X2wlmvz18ZyRDGuoJWQZ7B7ZxZS6YJ8A+CuYO51xPyRYyH3gIyqYPJfnpQ3KudGj6rvRNJK84JNMb9wE3gnkDiITrHtgErc65noOfLX0OSoB5MCAQkO8rHppS+5FWUR78dtfPmMpy370QL+uDjqktpyrGLb2fwODAEVJcpSRW+NmaOp5JJTsoTM2gjmjmsjJ4niT2sto7ndmb8wh15mrW4KaITGYGZLHSsNo2wj2NzGINCVSxn+Hkxkwlh1zSNpezfspUAKaxgQ1M4x1mBDPb9ucEU9lIOaPO73NVSv2NHgs8jTEfI43fqcR202WeAZZaaz8zxpy1AbXWvgi8KPWLt91UB6WU6n66nMolR9vNS5OdII/mBOz7AEZGImt33g74kaVRJjqFPwHccPkLBANBQIK87yA9nUDcC/XwcyAAV1YDu+UcZjk4yWMl2dC9SGA7GJKXHIJsJBPtwz7CCtukXPuSLDmw05PKuKYSuVYFtK804q3wSQ9pDjAQXIG2YOA8qKmNY15ZiqSRcDIo5D3PRDI9RQyr9bExZiLX+rbJ9wlQCy0ZLl7z3iA9jQHwE0sCVYzzlQSXXSmNSGK2L4/Dd0ZSziiyKCCU4zQSzv/j+hUAS44+SKEnkwMMJ4NCCshiLispZgwDpgQodN6Mx/gFv+MeBnOEQTRzgv4UkMVYdpPLdU7Fjpz7h6uU+pIeCzyttVee6bgxphIYCvzF2ZUIbDlF0fZydCrXnlh8IpBjjHkUmZkQbYzZY61Nu5C6K6WUUhebtpuXJrPb+SIMRj6PzPV8Cj4eDVc+hQSh9zplvEgvaHswOdV5rAe+DThBLLuR4bifAjcDo+HY70IpIIvrhm6SMsuQ3tIaaH0IQm6Ua3kDPg4viiQur1P22PmyfEsLLvY8mERaXjlbHxnPVbU7ACR4LNsmPaC1EBIDlRluEl1+CmIyCKcRADc1bOIavl/2NluTxzOpfgejYso55pGlUQAC3gEEGMD3897GToA9GUlkUEgdUfzBcwtj2APAOF8J+Z4MAGYG1tDoCieuqJ66jCj+38DPAFifOpXHfE9x2BNJAVlM412qkOVWGgnH5YylnME6CsjCRQsBBlBHNFEcYyVz8eN23gQNPPs8vWHb5xlre+cGpjHmceBya+0Pnbuu24AR1trGk8pdAWwFxiL31vKA1621/35SuauBxdbaTLpA7tzefaHfhlJKneTxoq7+HToT881My8xuTji63HRL3VTv0Hbz68lWPy5f/ATphZwN1EPtWxCzDBnh/IRT+FFkCZXngYeQJVE+QgLQ5XTMSYtwzud3nuc6ZSG45AqxzrkSkW6IbUAJVPxfD8NqfZj2uLMW6d2scV5TD2TDseRQol9y/st3yxDa68o2cTg5ktjaeqpi3ITTSHRZM5XJcvHEzX5ww9bU8YRynHHrSiAedmakMrahJPieNEaEspz5PFD7G8wn8F72REZRTi455JALEJw3GspxXLQ41aghPNBIoyscgLiKeo55ZW3O+AY/jRGh5JLDzMAaVrpuCgaebmqCyYaS2EtcRT17vEkMD+znCpeMhfabl7v6kapzpu3mpaI353g+A7xijNmPrMp7V3vjaYx5Aqi21i6z1n5qjHkS+dMK8C6yapVSSn19taGJDdTJtN38OnrWeaxGei1TgX0QM9XZ/xGsK5YvZ7yBDGfNRno3fwmfvQGXx0Ll624Sff6Oc26mI4lQEzJP04UkJAIZiusCYpC+74lyfe/DPgl2b3XKvQrcjwSg9VA2ZyjJZYeI3typaykGrsvbBEedjLoeGJx5hLDqNnDBAOePWcUUD6EcZ5JvB61h8PyMuxjLbsZQTFWEB4AjDGbckhLmLlzJwRgPXnyMQd6ALApYwn0AzGUlYyhmC1eTQimDaKYFF8tdc7m/4kUAVnunk0AVLbj4MOIqAEI5zjrX9WSRT0JABgI85voFmRRRRQJHGEymtyi4P53dgPwSKaUuTK8FntbaJjpmJ5x87NGTnv8e+P1Zzvc+HTMXlFJKqa8VbTe/ptydvg4Am+Gz1XB5IvA5NC+DGbnO8WVIIDkRWTDHC5dXA09AYpG/I1GRFxlG+xNo/a7sCnkVaII9byc5l60hLr9eyt6KBLQ3I0uuZCKBMMA02ONNIq26HCIh+aVDkrwovp6QJilyLDuU6BXN5M/LIDuvCCJht2ss2flFsrwLTvfp0nr2LE5iSFg970RM5/7/+SLMh9VzpjPblwdAqOc4TIHfczeLfE/ycPYjLMp/kvXZUwmnketZB0h23b0xQ8migFyuYwx7yKwtITOmiNe8NwCQQBVrmUUGhbipoZFwEqjiACNw0cJR1xA5F0XEO99wFHW8zi248XM96yjSX5GvDr1h2+f1Zo+nUkoppdSlbYzzmAs8CNSCexPSq1kIoY/iLKKD/FPtRno7I+HYnFCi/76ZfR/ByI+QjLQgQ23dQAWExCO9ltuBZDoyzNYCNWDjwcyXXZWpbhJz/LAcml6WrLZhz7eRllwuvaIVkjE3Lr9eelOd/yKjf9wM10N2URGt2VAQMZ6shh3snJfKEI4SRZ2U8zaT9nQ5ZELVlAQq/8NNYoWfOqIp88i05EbCKUjN4gEW0xTTj0W+JyEeUijFu9nH4SmSXdmsgZY7XTQziLmBN/G7YjHVcDBmWHAtzijqWLTuSSpnuDlBf7ybffxqyo+Zy0qOMDj4EeSSwx8r7uJX3h+TQy7VxDOVjdQRxXyWA/B+8INSSp0vDTyVUqovsmiSBKUuBe1LkswH7gCehct+DoxG0kTFIkEjSDC6GZm72QrRNc2QAyM/R4bptmeG3Y30YLqc54Od69wLvOBc9iEIiXQy3W4H+2+QmOaXtUNvhbAn2jrqOBAJNHcjSYe2QdOj/QgLSJk9zyWR9qNyyIHtGRlMKtqB9cL7TOanJb+htT1Xcy3Sm+qC+0telPmmJZDjXU+cT3pFj3lCg3M2q1wJrPTcxB28zH6G43X7WOksSXu/90WKGSPJglwFVBNPVOoGABbw22DVX5txAzMDazjgGsHqKelUE+8svzI4uFTKAyxmtXc6WRQQRR3/xFJKSSEWfzCIldHtSl2ajDGRwK+Ba621CScd+3fgC2vt/LOdp18P1U8ppZRSSp2FzZaNADLf8gUkcFwNXzyMJBza5my5sG8DEmSGIMNh65GAMgzJZHsdHZlwM6HS44ajYF92zp0jW8g+55oBIALMZji8J1KCTJCAN1YCVO6Qa+MF3gEiocXlosnbjyZvP9LyyuVYJmT7iiAf6mJCmcMqCEDIUdmYJedYnz1Vgulq2DkjlSEN9Rz2RHLYE0kdUQwP7Gc/w3mfycxiDSfoz+SGbbyZOpP5geXMDyxnz5QkktjLVDZSRQI35a+lgCwCuPC+5MP7ko9dpJPgJHT+I7cylt0sqXiQf2UR4TRSQBYFZJHSUE4zgwjlOMWM4QAjaGYQxwnlACM4wIge+exVN2u/YdudWxcYYwYaY35njNlnjCk2xrx4mnJJxpj/NMaUO48ju3LsfBhjFhtjKowx1hiT2tV6nI61tt5a+wNg70nnuhfY0NV6aeCplFJKKdVLqmLcVMW4JdnPaKTn0w37XoHLRiPzNmc7WyQMAskwCxJEVgDFQDqwy9k2IQmG3oLEVX4IIFlqneGyVCDB6SxoerAf/KOcM7a2XoLfdDi8MJLDCyOpjnCz+j+mwxQk6Mx0rguEvdVG2FuSQIhqCXLzPRngRXooX/LBG9AU34+m+H4cSw2FdyRJEK9KPVy0sCFiKkVkUkQm3iIfYSVtbOIahrOfOqIYVusjpBhO0J+wd9sIe7eNAAMYwlGKyCSHXCqz3VxXsolZrKHiTg8Vd3qYXZZHI+Gsc11POH9lP8P5g/cWrmEjLlq4ig+5ig8JOQpzG96mmUHk1G6ikEwyKGQts5DFXXTioDqjp5HxBknW2jHAI6cptwxZRzkJWMqX5+Gf6RgAxhiXMWboSfu+YYyJP8W11gKTgEPnUg9jzHBjzMaTtp+e6psxxmQgf5IKTvP9/g0daquUUuqScqohQ8aYFCR3Z3+kbbzD9tZ6Y0oppfqKIcaYzmu0vGitDfZoGmO+AdwGfKu9zbDW1px0DowxbuBK4Fpn1xvAC8aYbwLmdMestX/pdJpU4A1jzAxr7V6nLcsD/gDOZGSHtXabc90u18Na+xdr7QHgmi68LyDjKxKARcCVxpirrLUfnukFGngqpVRf1EvZ+Ywxi4EbgGHAGGttyWnKJQH/jsweOwrcZq3dd1KZx4DHz3SeC61TV+pxMmttPfADY8zGTvtKcRapNMa8hQxc/Ov51lmprkq8w1kCZSqy7Ek+EA8j7wfKkB7MeU7hfLj8HmRxnPnI0ijtczk/QeZQAhWLPHjX+eSnuFDOxx1IT2d7XuQFwHIIe6hNEhG5wTwBlc+5SczzEzfNyUR7NyQOzIOjcOw5WROzBjfjflQit2qQ65c9N5Tklw4RfmcjW2eM56raHQCULR5KcoV0uoQ1NZP/YAYDCDBuUQkMlgRAbmqIq5DrHc6IJM5XTw657Gc4LbTwYcx4qrPj+X7J27R+Ry5Zzihi+TDYK+rd7GPPlCTCacRb5gPgteQbSKCKRsLJYT1DOMogmlnCfUxgO1XIVLXWwfDHiFu4reF1Xo+5gSzyWcf1zGQNuxkLwJ86JSNSfZSlJ6biHjnLOp7DkbbnMWPMZKTd+Nf2wK+TBOAza+0JAGvtCWNMtbPfnOFYMPC01hYZY34I5BpjbkfGNayw1i6n685Uj7+c6YXGmKVAsjFmGfCUtfYJZ/8w53s+Y9AJGngqpZT6srXI8vRna0Dah+qsMMbMQ4bqTGk/aIy5EpmJVnmqFxtjXECctfZQp33fACKstdUnFT9TnU5bD2PMcP52uNIGa+0zp6nTZOTf+SPA8VOVUarb/dJ5XA68AHv8kHYzEiRWQ3MThL7llNmN/ITOd47dD6G/RIatzkaWQwG8T/skkH0VuYFVDTyEDMF1yvCsc57lSNKigASWiSv8MiT3dafcYLAumQMaYACJS/0k5vslcM13ynwCyVMPQTrUEcWkh3dweFEkcVPqicXPau90AGbn5ZEdVgSbYc+dSaRVlJNY5qcseSjFXskae+3mbTRly0ywBKpICZQyqKmNEyFAGMH1Pr9f8jYLU5/mn1hKI+Hg9ZHSUM6iiIeITZYOp1sDf+RV120MoIVxm0vkvC74Ff8PCQ0+UiJKAcnCew0bKYgYD0BWoIBSVwotuNgY7PzZdR4frroEhCD5pHdZa39qjJkArDPGjLDWNnT3xay1HzhDX7cCz1hrl3T3Nc5w7QXIb/7J+w8if03OSud4KqWUCrLWbrPWVp2pTKehOm84u95Ahtl80znuQuaN/BNyD/pUUoH3jDGjnNdEImu053S1Tmerh7X2gLX2mpO2UwadTvkt1trvI/k/08/0HijVXaxLNuKBmyHtBaTnEyAHQl9BgsipSAKfKXAsIxRynWMvO/s/Qtbg/AD5Nzgf6d2sBkZC5XS3BJ3VzuZDgtIpQCTwKkSvaqb1emS22g9lO+YJxawAYmQ+JlORuagDgWTZ8hdnQASszpjOsFqfBJ0/rodaCG9oJpxGwmmUntUnoPVGSNtczk5vKmXJQ0kuO4SLFly08Icpt/Cq6zbS8sspZxSDmtown0jAWeH1MKzWx7BaHztTU0mhNNhrOcv7BqsiZhJLDRkUkkEhVa4EZrKGUexlz5Qk/K5YFvMApaSwMuIGp1bhvMMMPuQqoqiTY66bGMtuAEaxl1FfzqeiVGeHkDbjDQBr7Xbk5mXSSeWqgMuNMf0BnMd4Z/+Zjn2JMSYWGUn0S2COMWb8Oda3y9fqCRp4KqVUX9RGT2TnG2KMKey03XWetfuboTrIv7LtKdafQIb/VJzm9Vhri5B/bXONMVcB7wFvXuiQoZPqcVqdhwwZY7zGmKuNMS84+13AeQ8NVupcmKmysRzJUDsamjchAWE8Mly2PaCMBB6G6B81S2D5EfIT3yCvo8TZNiGzlTcjt3hiIbHEL+eqdLYHkZ/0ALS257T0QkilnLPp/X40vd+P6AeaIRv2TEkiekkzrfFIgqF4JHj1QfbTRRAJs5fkYeolQN3zXBLESDbba8u2cW3ZtmCipJB98vohHCW56FDHkjJIoJdFAc9n38X3fW9jKuDN7JlEUYc3zxdMxpRZW8LVbGEU5exnOGt8N3NT2dpgMFpFAslLDvEKd3CC/kRRRyPh3MLrbOFq3NQQTzXxVDOZ9wnlOLnk8IuGJyllNAVksZK5TGMD07qetFP1pjbkpkl3bmdhrT0CbMGZM+lM/3AD+08q50fGLLSPObgZ6SX9y5mOdT6HMcYDbESGuT4MzAHeNMZknb2mZ69HV89xIXSorVJKXTrONlflghlj/h4YB/zsbGX72JChCuD9i3V9pdod2xUKQPRLzZKd9lUInQgUATP4csqQ+UgAugkJKKuBR5FlT74LIY865UKg9VYIeR4Yi/TFpCNzRZ01NSumePDe4oP50L898NuE9GjGQ9hyZx3PCsAPY2rL4UYJTH8x/SEeu+UpKl6XYa/epT75j7JGykc3NVOX2sgxb6h8X0flVK33wKqImdyUv5atGeOZtGIH782byFGGcNOKtVJoKqz3TCWFUrZ6xtPoCSeBKrZwNSOmHwhmmP0wZjwFZDGGYlIopcLjodSTQjiNjOAAAHsWJpFDLmNqyymMSaUFF3VEMYu11BFFLDK/tooEkthLCqUsj7id61lHFHVMZSOvcpvz5ujoe3Va9wB/MMY8C3wB3GqtrTPG5AKPWmsLO5X7d2PMo8AxCP5wne1Yu1DgEWvtWgBr7cfGmJlA3MkFjTFLkAH4ccBGY8xRa+3/OIdr9QgNPJVSSp2r4FAdJzFB56E6dyID8CqcbHrfAjYYY+6w1r7b+SQnDRm62Rizylq7o5vqodRXQh1RAES/1SyB5Xqk59ONJAb6FHAS6rDUOTYVKfsWklAoEkJeQX76HSFPIENw2+d1fo4Esw6vzydBa4Wz1MoCqMj24C3xSc9qtlOwCXgKzKNSJxsPj730FFTLnE8AcmCnN5VxOZIwqDLZzbBaH2tipjP707zg7K8jEZHcVLEWOxqGcZBj80KJoo5r87bJEF+gNCKJMRST6PNz2BPJkIZ6Qo5ChddDI+HBNTWzKCCKuuA6nfsZThR11OAm1AkSh3CUKOo4GONhE9dwN78nuqyZJm8/VrpuCg7TnckaNnENbmooJJM6opjqLLmyl1HOG6FzPNWpWWs/Ba4+xf6ck56XARNOc47THjvpOp+etG8PsOcUZRcCC8/3Wj1FA0+llFLnxFrrN8bsRv6dXcGXh+r8ytkAMMYcBP7h5Ky2zpChd4FfWWtfM8a8Dawyxsyz1nZpTbCz1EOprwTvKsnAigvpmXQhAWETNN8OoQ85+0DmbvZHfnOmIfM7I51jv0Ru+eDs88o5yEEC1mzkX9bRThmP89iK/PbkOHX5HAlmP3KON8Gx90OJqm3GbAaTC9wKpENyieQGq0x1E04jTZn9CCtpYy9JJC71Mzs9T1KMDWz/FltgIJjtUDU9gXiqGcJRWrMh5AMpkxZSDslwzBuKixb2RwylMSIcFy3U4A4GmgEGMKa2HBOQ9UPHlZXQ5O3Hq67bKHeCxQcanmNXRCrljKI/JygkgyxvAa5AG1GuYxSQFazXLtJx0cJc3mQQzaxkLg/zSyazBYB3nRsEqg+zdGl4rOo9OsdTKaX6Iosk/ujOrQuMMUuMMX9Geio3GmP+29mfa4zpPEz3HuA+Y0w5cJ/z/Fy0Dxl6DWTIEDAT+EZX69RN9VCqd8U4mxcZavsJwVQloQ/BZ48iiwUNRv6pXg61uXTM75yPDIctRALTKwA/EvB9gvSQLnKu8ZNO130L6QGNkae135bhusfmhcr80lhnmwbRK5ox+VA5xw2Z0BrmXDNXtvgGP7H48btiqcxwc+2qbTAf1s+YSuUMN6s901ntmU50RTPHPKEQAdmbi2QplUANIR/AazNu4LUZN9A0Rf41LSCL6IpmjjIEP7HBREDt8zd/zz2cCIHVnunUEcX65Kk0usKJoo4sCsiigC0RE9nENSRQxVxWkhUowO+KJaRaekNT+IQUPuGP3Mos1tJIOGMoZg0zmcz7LGEhy5nP8q4l7FRKnYX2eCqllAo63fCccxkydFK5YafZ/5UfMqRUt2if/bUbGIMMq12KzO8cCJffjASQANXw8W648idIEJoLrEbW+1wNlRluABJv8EuKrwfBjnaG0hYCiXD4QekijXupXobz+oDREFMMZEL0smZaM6G/s3boiRDJKBtgAMkrDnF4XiRxefXsnJMa/BaKSeMHvtep80TxIVeRNacAb56P4Z79hNPI7JI8AFoTkaVPsiHa10z0S82svnM65TNGMRVZVrfF5eKoN5zrlm6SINoLYygOXutDrgJgFmsIaYKxEbvxrvKxcs5crlu3ib0zRgXLprOLyQ3bKI2QBKPrXNeTQinPJ89gFmspJQWAWPx8yFVMYwPljOIBFvMbFlJDLDNZA8jqM0qpC6OBp1JKKaVUb2mfSxlAhtR+ivRibkIyzy7vVAa4shAJRJ/v9DgSuB0SfyLJcmgFnpPXmgeQQegNQAjE3VAvZX5Ox3DaQjg8J5K4l+tluOzDbcEhvCGzwBtwhgNnwpCGekiQYC3RJ9cb90IJOxelMq6iBG/+28GlX5LLDtEaL0NxAY4TSvLmQ7w3ZSLXVm+DbMmEy3fzqEiWsb/hDc3sjxjOiQX98b7kI7uiiAqvB6/PR50nKhiENhLOYU8kVSSwfc4ErmYL+TMyiKUmOBz3VW4jI6KQERygBjfFjGEwR4jFzxpmcj3rAPBW+DjsjZShwEAuORSSycMs4o/BvCtHzvWTVRdbe1Zb1Wdp4KmUUn1R+3IqSqmvt3znsRo+XgZXzpavNy6Daz5HMtG2Z7adivRyRiKB6nzn6xXAK8CfnHJ+4GkkYL0VuMMpF0HHCrV+pEfR6XGNy6uHagiraJNhuu3zSuuda9UCyc5SKDGQmO+XnlakHuNWlcj1IoHPIT85g+wSyWaUuNQJiK+AiukervVtgxjY6h2PO7mG5cxncckjgCQvGsJRGgnnvTuHE4ufNF85Oz2puGgJJjSqIoE1zGQEB8iigCoScNFCDrmcoD8Av2h4kl0RqURRRy45ZFBIAdnksJ6bytbyfLKsKDXNu4ECsjnKYBKoopp4nuGn/JFbOcBw55vUwFOpC6WBp1JKKaVUbxnsPNbDlSPhi01wWTJc8x1kMYQAEjiCJFYdjQSPq5E5niFIAHoPBJebfNUpF0CWMklGAtAfIfM3QXpWY+GLZ+GyT5zXDEYSAX2KrPnpaP2Ok/wnxNn/AJADh+90hu1urpf99Uhm3RKI91ZDLux/cCjJJyQJEU2STXenJ5VxPy5h0kM7sC54hkfYkyrDYd3UEMpxvD4fWz1RpDSUQy4cuHMEBWRxK38M1qsGN25qCKcRgFCOc5BhwSG0GRGFjCsrYWvyeFIopZFwssinmUEcSw6ljmgAdjPW6Smt5AAjOMgwBhAgFj8DnF5QpdSF08BTKaWUUqqX2FnyaG6Bj/fBlYlIT+KtSBD3MNLrCXAdkvn2VaQH8lZYNx9mNAGzkIRBIJlsnUy1lBEMQo/tCSV6qAyl2HpoPJOKdvBJXRI1uLl29Da5XhiypIuTiZZ34ciMSOJy6+U82cgw3WqIe1qG7VY86MFb4ZNAGKic4ca7zkfrPZC87hB/WHgLAD9Y8TpbPeOZlLeDw8/J0Nb9To/iuFVO4msvUAE756QyjIMciYjklTvvIIdcAFICpQCsdN3E/UtfJH9BBgAZFBIeaGS5az6zWAtAOI08kPwki0se4bXUG5gZWMNR1xAOMoxccpjlzN/cwtWksws/sdQRRQ65HGAEM3iHYsacz8eqeoMOte3zNPBUSqm+qD2rrVJKKaXU14Cx1vZ2HXqFMfEW7u7taiilvnYeL7LWZp693JmZQZmWEYVnL3guik231E1dmrTd7Bn2548D8MVSuOxZJKlQPJJxthqooiP/82ykt/MKoB6aiyH0KaR3cgrSOwrS09k+zPZGJEtuNTJ3s7NPgEzpdTX5yLzPdCAXKh9xMuQ68zOPLQglelWzDPGdj8wN7ZzrukyWYymIGM+kl3bANuAfkbmi7fNFB0J+RgbhNJJAFdFLmyEdjmWHEl0iPbGVqW4OMowAA7imdhu5MVMZQIBMiqgjiv6cAOBl7mAub3KUIXzIVWQ4k1X9xDK34W0AGiNCAUkWlEUB7zCDsezGTQ1FZHLEGedcRQKx+LmaLYTTSCPhrGUW4TQG1/pcZ0rP9lGq89aN7WZyN7ebu7Td7E7a46mUUkop1VvulYfLyuDj+XDlp7DvChj5BLLECuDEWvL8ISQQHQihbiQAHIvMA53qlGsfovsysA54FxmueyMdS7M0Af2BCWCqgWeh9R3o3wo1j0R2JAQaCLhl+ZOdc1LJnFLCwRgP3kifzOkESSiUAcsjbueevFc4dmco0d5mVk+ZDsDsvLxgvYaznxZcRJc184cFtzCKvWQXFdE6suMtqSKBmYE11MWEBoNOAG+Zj/xkGVo7lzdpwUUdUfzspedYfed0pgU2EFbdRlN8x1qgAQYwhmJ2kc5YdrOdCaSzi2EcDGbILWYMUdRRRQIHGEECVcxkDc0MIom9AKzTVZu+Glp7uwLqTDTwVEoppZTqJa1OEp8vNsCVucAKGPkUEtRlIkFje6KfdOAt+OIjuGw+Mg/0DWi6ux9hqW3BOZaABJpNznnm0ZE0qD3wvAJZM3Q2siTLo1AdIb2c8Q1+mc8JElTGgHXBuKdL4ArwenyyPMtRp8xg2Dp9PPeseoWKOR68T0pQOis9j6oYN9aJ2Uw+4IXBgSOwCe5wv87emKE8n3EXt/EqACfozxiKaXG5qMFNI+FElzRTmepmgDcQXCplI9dwDRtpJJytd44HICy/jbIpQ2WtUCCLAqJXNNN6PRABdURxnEFUkUgW+VSRAMA7zGABvyWBOly00Eg4VSRQRCbDOXA+H6tS6hT69XYFlFJKnUL7cirduSml+pyQMbKFfgC8gyyd8gnUPo0EfU6vZLDDzQuXLUcC0k2yP/CNNlmWpcLZ8p3XrkaCzXwkI25Zx3VJd56Pccq8BYnr/ITTSMi78OaUmbw5ZaYka1kHxTFJVD7oliG0/8d5fbyzFcKksh3YKbImJkeBBWDekGVXTD2YetgzI4nwQCNhJW1sXTAeUw3JFYeYzPtEP9lM9JPNhHIcgFJSaMFFM4NYnTqdxAo/LS4X8Q1+4hv83FH7Oku4jzqiSKCKTIrYOSWVUlIYwQFGcIBF/Jyd81L5dcR9DHAmzc9iDYM4Tikpwe3N2tvZzgTqiKKGWGpwU0UC09jASuaykrnd+pkrdanSHk+llFJKqd7yoPO4G754Ay5bAFwBMU5PI+nI8FqAJ4BUJOtsBjLH0ivFyAQn8WvHUipjgSLnGrnQeiOEVDplCuHwnEgib68ntAnpFQ1B5nF+CjetWgvA+jlTua5hE2mby2nK7ifzO8uAF6BykfSQ1kxxkxIoJWxdm9RvJOzxJhG+oBFvkY8y71AA0srKafL2AxdkBApl+ZZ6yT77/COypmYWBcTix00Nm7iG75e9DS5Y75W5nrERMgR4TG05Y9nNGIopJINY/JygP2PZHcyUu4DfUkoKc1jFPSxjMlvIooC9jOIaNnJ9gwwBLojJoIAsfrr5NxyZMpgojlFFAiuZy90sA+BdHWrb9+n6132e9ngqpZRSSvWSpvn9aJrfDz5xkgvVIj2Z25GgczfSc7kaCSBjkWGytyLJgJY7ZXKRJVVmIb2QTznH5juP34aQV53X+OG9GROJq6gn9C049h+hcs0EZFjvZrBTZLuuYhMV0z3wCbzvmgwfIMHlzZDo85Po8zPOV0LYijZZCuVd2LpgPGm+cqKoAxcMoplBNFOZ7Ga5az7HUkPZ4JrGMU8o1g2NhLOw9kUW1r5IM4OIb/ATt6KeW2rfxroh35vBcPbjoiXYS2kC8H3f2ySW+YnFz3D2E2AAjYQzrqyEcWUleCt8BBhAf06woeJ75JDLr/lnEqjiCR5lacRdLI24i/TALv6ZX/OLKQ9RRzSbuIZmBhHKceTssT38U6DUpUGz2iqlVLfqpux8AzItcd2cna9Ks/Op86ftZs+wuY/LF39C5mHWIwmD2oexuulIMpSJBHf5QBN88QEU18PYo2CeACdJK589CpcnQlN5P8KeboPPofUhCCmU1wGwFOzrYLY716sHFkBTfD/CStrk2gCvgp0PpgKsV3aZH4L9N9gbIz2ZLlrw5vkgHQ57Iokrqqcyw03iEr+s++nMK906bzyTluyQOan5bbJ/HzQ91Y+wwjYAmjL78b5rMsPZzyCaOcgwACZt3sHzU+7i/ooX5X2LhMKYVIpJI4f1FJFJFHXsZRQtDAAgh1wOMoxhHKSOqGDG2v0Mp5lBVDvfZAqljKGYXHKoI4qr+JDh7CeX64LzQB83oef9Gauz6aZ2c2CmJaGb28392m52Jx1qq5RSSinVW9oDwVw6ljuZivRwDga2g10vu81mZM7laCAeWv7UjysT22AF0rP5ipSL+rwf5LcR9r026cH8OYR8AHxExxIoOWACSK9qKxJ4NkGLy0WYq1mCW6DiQQ/edT7wSpBaOd1N4gsyb3MUh6Re+UAqVHrchNMIFZBY7+fwwkjKGUVohszbDOU46xdOJYEqEqZUsWXK1SRQhYsWBmTLHMzkzYcYMCWAixbCaSQjUEiLy0XZlKHcv/lFHp7yCACLVj1J8Zw0RrGXFlxc9/AmXlt0Az/If116hIGdnlSWM59wGnmEJ8jlOvy4yaKA7YwgnV0AXFuxjee9d0ldOU4dUVSRQBTHWM585w3beiGfsroY2tD1r/s47fFUSqlupT2e6utJ282eYTc9Ll/UIkl+tsO+1TKN8n9Gwrt1U7nue5ukTBiShTYMnCSwEqR+imS0bV9OJRMJHNvXz6xHgtMcgj2ZlXe6SXzYL/+o54BNl15NKpzztf+lqEYC3RhkvmiNc51qqJjiAWAX6WRSRHyDn6oID8NqfRwP60eLy0Uj4ZLFFihyZTKGYqIrmsn3ZpBCKdG+Zgmma+Vyr2XcQAJVTPLt4LAnkgOMYAABhnCUYbW+YC9rI+Fk1pZQHJNEWkU5O72pVJFACy5SkDU3C8iikXB+WvYb9iRLuT3eJKKoYyPXMJktgGS1HcJRtjCZQRxnAtvZzwj8uIOf029N4zl9rupcaLt5qdAeT6WU6ossmiRBqUtBewA5EAkWU2HkzTDSBdwK192wCdrXuHTBxzfKl1cuRwLJadC6zZm/OdAptxz4iXPugUiwmIMEeM5w2cSn/TARDk+PJG5zvfRaBpCkRZ/S0XOUDbyFBKJhwBVg3WBKwLvCB4B3qg9egJ2LUhmXV4KdAK5AG2EVzURHNgeXeRmWcZDokmYqUj2E00gpKQz2HKGITLK8BYDM2zzmCYXPIa6ongMZMC6vBICd01MZ4SxvMqLhECec/2KPeUNJCZTicrUQYEBwyZUUSqkmnopkD/sZTlptOWu8s3jspacYcef+4DDaERygkXCWl9zL4dRIZ9juMebyJg/yjPNGlJ77Z6uU+hINPJVSSimlesuj8rDvChgWCZeNRJL8ZELz9RD6Dh3BqQ+GhUDMg8iyJk8B8RCyD3gacIJS3kKSBbVnt52FBLU3AiVOmYHAOxBXWC9Lr3yOLK1SApUPuqkjCoD9DGf26DwYDU0x/fC7YvGWyNDbYxky7zG6ohkmSgBHtfScbs/IIPtokQwZjpRLJlb4ZZ3PEh+E+MhPzmAlN/FYxVPBt2OnN5VxFSVs9Y4nyltHFQkcni5Bop9YWpxu3BMR/ZmUt4O66VGkNJSzPSKD44TiooVcZzzxzMAaolwjqCKB6xvyeC9jItewkQV3PksUdcxkDQDbmUAKpaxOnU4zgwjgIosCBtHMGIoBWEf/C/qY1UWgN2z7PA08lVJKKaV6yxPyMPLbyJImbyEJhQZC6D1Ib+FEp6wbYu5H1vssAl5GhtCGAa+DE0fBs3QkIWrv5axFht46PZ5kIkHht4EYOOyNxEUL0RXNxDf4SWySZUvSqsslE+5uCGtqwxvm49j0UKJvaSY6x/kvfyrQBNGbm2m9EfZHDJVexwrYuSCVcT6Jdis9brxFPjmfG44TShb5EmyukjLjaktgE4x5sFiG6XKE8EAjuOC6pzfxqwd/DMADDc+xfvpU3NRQEDGeauKZEXiHA64Rkk0XWO6az1h2M6liB+u9U2kknCKGMZeVrGIOuVwHwDVsJDu/iPXZMlb5CIMJp5E1zDzfT1UpdQq6nIpSSimllFJKqR6lPZ5KKdUXaXY+pS4NP3EeH6BjLuW7yNzKWciQ2PYyzzpfZwLP0dHDeQ8yh3OB87wEyWDrZMBtHQMhDUivZ65TZjUwFngD+A7ELa8P9qyWTk8i7a1yeVINrfdDSDHYCZLZNnpdM2WvDw0Oey1mDMyB7xe9zf6IoSQvPYS9GY5NCWVcUQlbM8YDMKlsB9YLJkbW5pzcsI2QJ2Dr4vG0flcu178VzEAYEAiQ0NRMccwY3ndNJosCdj6Yyi28LtWKcNNIONet2MTqedO5qWwth5MjqcFNFYmADP3NatjBHm8SS1jIBt/3sC5ZBmY+y3FTE6z/nmxJOnSC/qRQSrLvEC2e91nEz5037OC5f7bq4tJ2s8/TwFMppZRSqpdYJ8usyUGGzr6DBJ2FyDDbTyC4oscbyD/WbuDHyBzPViTA/ISO+ZshcHhBJHFL6yEMQo46r8lFhuUCTc85a2emdnpdMpAPab5y+RrYc6cEZOHZjUT/WOZy4oUWXKStk+A0zV8OU6B1JCQvPQRTZZ5neEgzxzJCCUWWU2EZFD6XiiumheyiInDBzsWpTMrfwdZsCU6zGnbQfx78xrWQHFcuWRQQndeMnQB1MVHEIkOA7+UF7mMJb86byQS20+TtR1xRPWszRgSz2gKEVENCRBWT2cIxTyjFjGEX6Uzm/WDgvJKbyGE9zQwilONsZwIrPYO4m2U0M+j8P1yl1Jdo4KmUUkop1UuOh8msp7DKNum1XOEcuIKOeZrtPZ63Iut+vuE8dyPLn/wjMn/zDmf/RxD3o3rp9bwX6UlNBT4F+6wUCfteG8f+I5TokmZZYmU5sBmYggS9Tu9n2qryjnmhEwku0ZKWXw675eumB/sRtqKNI3dGUrQgkywKaCScxCI/ZBDMRGsfhXG+ErZ6xkM8bPWMx00NW7PHk9WwA5CezDqi+FnRcxzOkKxETVP64Qq0ce3mbcFERf87418pJYUT9KeRcLwlPp7PuIs6ooMJgT7kKhqTw4mijqv4kBrcuKkhnL/KeqOOQRwniwKqZIVRUiilxklkdB9LAFjHNV38RJVSp6OBp1JK9UVtaHY+pS4BYflt8kUF0ns5Gj57BS4H6Z28lY7lVKYCR4EGJAD9CNiHrNM5mo61N99Cekm9SG/o53BsQSjR+c3BJUhCFkP0LTJkNplDVO5xk7jKD9VwbGGoZKoF2AyVGW4Sf+SXnthPgXgoy5bXAYRVt2FnQdyKenJyNlEV4yah1g8uqMFN8goplz8vgwEEmLRqB1vnjGdSxQ62esczqWiH1BM4kd0fNzWsz5gqvZ0VzVR4PXj3+Tg2JTS4BEraqnLq5kQRYAABBvBaxg1czzr2MzzY45lCKcWMYTEPMJ/lZPuK+JXnx/zM9xxvemYS76zzMp/lvMptzOAdRnCAOqJwUxNcF1R9RVjkd0j1WRp4KqWUUkr1tiYkUNwEl9/sBJ+RSM9nhVNmA9I7ORa+eBQui0Gy0n5wUrlspFfU7TzPlHmZ+CGkvUc1DJgPyTccgmRIrPXDg8ALEH1js2TNBciFxHS/BLL18pztkPwvhziW7SynkteMqYamef0IK2kjsd6PjewYRrxnXhIAw9nP+0wmc0oJ/TkBtZDgraIiw0M18cEycRX1uL0y/3KZ93YaCWdu6kr2ksQoZHjv4TmRwey1UdQxLr+EPdlJXJu3jYXTnwbgFzwGQDzV5NRuYqcnlTEU8wfPLQziePD1dURxnEEklxzicKqcdyVzmctKFvOA80bsPeePVCn1ZcZa29t16BXGxFu4u7eroZT62nm8yFqbefZyZ2ZMpiWksDsq1KHVdEvd1KVJ282e8biVnsUojjGCA4TTSBJ7yeU6XAQYxkEKyQCgmDT8uMmigAwKKSCbEewngSr2M4JBzlzKXHLIoJADjGAAAYZwlCMMpgVXsDdwCQvJYT0pfIIfN/05IUmCgOEcCJ5rI9cQSw0DaCGKYzQziFJSqCOKYU7CnQEE8BPLcA7gx00CVWxnAnNZyRpmBb/XFgYwge1UkUAUdYyhmCUsJJYaDrYNA6B/vxMcPz6IqEF1hNPILNZQRQKlpABw3Jlz6W9zc3T/5QxP+m9qjseSNahA6nU8imsGbQRgbfUsZsavoZBMWhiA/9ME0q/Yzu7yb/ONbx3hr4cHA/CNuKO4BkpWmqPvX843vn2E2EE1hNPI7uqxUvnLf9W9H7zqpJvazX6ZloHd3G42a7vZnTTwVEqpbtWNgSfd3ICiDag6f9puKqV6Rje2m6ab202r7WZ30nU8lVJKKaWUUkr1KA08lVJKKaWUUkr1KE0upJRSSimllPrquzRnEH5laI+nUkoppZRSSqkepYGnUkoppZRSSqkepYGnUkoppZRSSqkepXM8lVKqT7LAF71dCaWUUkqpbqE9nkoppZRSSimlTskYE2mM+YMxpuoUx/7dGLO8K+fRwFMppZRSSin1FdcGNHfzdnbGmLXGmP8yxuwyxnxojEk/TbkkY8x/GmPKnceRXTl2Powxi40xFcYYa4xJ7Wo9TsdaW2+t/QGw96Rz3Qts6Gq9ei3wNMYMMsasNMbsN8aUGWP+4Qxlf+iUO2CMecEY06/TsXRjzFZjTKmzTb8434FSSvWk3mlAv+66665tb9B2Uyml+qT/Za39O2vtWGAx8IfTlFsGLLXWJgFLgd938RgAxhiXMWboSfu+YYyJP8W11gKTgEPnUg9jzHBjzMaTtp+e6psxxmQAg4CC03y/f6M3ezwfABqttSOAGcByY8w3Ti5kjPECjwF/D4x0tnnOsTBgNfCgtTYFSAN2XJzqK6XU148x5qAT1Ox2tmknHR9sjMk1xuw1xuwxxqw2xnyz0/FuvWvrnLPb7tx2113bXqLtplJKXVxDjDGFnba7Ti5gra3v9DQSuXP8JcYYN3Al8Iaz6w3gSmPMN8907KTTpALvGWNGOeeMBN4Fck5Rp23W2lPdYD3jtay1B6y115y0PXOqNwa4DmlfFgHZxpirTlMuqDcDz7lIxI21dh9QCJzqruscYK219i/W2jbg35zXAtwCbLPWfuScp9Vae7THa66UUl9vc6y16c52cjBmgaettaOstWnAAeBXnY6f9a4t9Pyd256+a9tLtN1USqnTak/K150bR6y1mZ22F091ZWPMcmNMJRKE/a9TFEkAPrPWngBwHqud/Wc61vHdWVsE/BDIdYK894A3rbXnMlKnS9c6zfe4FEg2xiwzxnittU9Ya38IPAzkW2s/PNs5ejPwTOTL/0RUcupv+kzlUoAvnLvvu40xLxljonuktkop9dV31ju3Z2OtrbXWvt9p10fAUDj7ndST9Oid256+a9tLtN1USqk+yFo731qbCPwcOF1b0x3X+QD4KbAVeN9au6SnrnWKay+w1n7LWnuPtbai0/6D1tr5XTlHjy2nYoz5GGn8TiW2my4TAkxFhhPVAP8HeBb4wWnqdBfg/KMV2U1VUEqpntA+x7NbHbHWZnah3GvGGANsA35ura07VSFn3uCPgHecXX9zJ9UY034n9S+dX2utLTLGtN+5vR35273iQu/cnu56J9U7eNcWeMpa+4Szfxjwr125a9sTtN1USqmvNmvtq8aYF40xg08aTVIFXG6M6e+0Vf2BeGe/OcOxLzHGxAKPA78EbjbGrLLWnst0iTPVo8f1WI+ntfZKa+2Q02wnkDuwnYdZJXLqb/pM5Q4Bm621Pmc40evA+DPU6cX2rnIZVaWUUuokV1lr/w4YhzSGL5yh7G+Av56lzGn11p3b7rhr20P10nZTKaXO28VPyudMEUno9HwGUOtsQdZaP7AbuNnZdTOwy5kScdpjJ13LA2xEbpg+jEyreNMYk3XWinahHl09x4XozaG2bwF3AzjJIMYB/3GKcm8DM53Jt/2Qsc1/co79CRhvjAl3nv9P4L96tNZKKfU11j6k1VobAH4LZJ+qnDFmMTI8da4TwECnO6lOmTPeST3pzu0cY8xpA6DTOKfrfQ1ou6mUUn1LGPCWMabYGLMb+GdghrXWOlMaOo8yuge4zxhTDtznPO/KsXahwCPW2tcArLUfAzOBUyWZW2KM+TPwLWCjMea/z/FaPaLHhtp2wTPAK8aY/cAJ4C5rbSOAMeYJoNpau8xa+6kx5klkHhHIHKAVANbaSmPM08B/GmPagAqCQ4KUUuqrzHKxl0BxMp6GWGvrnaG2NyF3Rk8utwjIAK5zAlRA7qQ6De/NyN/p095Jde7cvgv8ylr7mjHmbWCVMWaetbZLSX7O5XpfE9puKqVUH2KtrQG+fZpjOSc9LwMmnKbsaY91KvMp8OlJ+/YAe05RdiGw8Hyv1VOMtbY3rtvrjIm3zo1jpZTqRo8XdXEe5RkZk2Y7pk52F+8Z62aMuQLpLevvbKXAQmutzxiTCzyKRMMlQDkdkXGFtXaWc45k4N+BaOAYcJu19ktLl3S6Vpq1dm2nfWlAnLX23ZPKLgFmA3HAEeCotfZ/nMv11IXTdlMp1TO+uu2mOje92eOplFKqD3Hupo49zbHOd27NGc7RpTupX4c7t0oppZTqOg08lVKqT+qRrLZKKaWUUr1CA0+llFJKKaXUV5zesO3rejOrrVJKKaWUUkqpS4AGnkoppZRSSimlepQOtVVKqT5JhwwppZRSXaftZl+nPZ5KKaWUUkoppXqUBp5KKaWUUkoppXqUDrVVSqk+SYcMKaWUUl1ngS96uxLqDLTHUymllFJKKaVUj9LAUymllFJKKaVUj9Khtkop1SfpUFullFKq67Td7Ou0x1MppZRSSimlVI/SwFMppZRSSimlVI/SobZKKaWUUkqprzgdatvXaeCplFJ9kkUbUKWUUkp9XehQW6WUUkoppZRSPUp7PJVSSimllFJfcTpSqK/TwFMppfqkNuB4b1dCKaWUUqpb6FBbpZRSSimllFI9Sns8lVJKKaWUUl9xmtW2r9MeT6WUUkoppZRSPUp7PJVSqk/SO7dKKaWU+vrQwFMppZRSSin1FWeBL3q7EuoMdKitUkoppZRSSqkepT2eSinVJ+lQW6WUUkp9fWjgqZRSSimllPqK0xu2fZ0OtVVKKaWUUkop1aO0x1MppfokvXOrlFJKqa8PDTyVUkoppZRSX3F6w7av06G2SimllFJKKaV6lAaeSimllFJKKaV6lA61VUqpPkmHDCmllFJdp+1mX6c9nkoppZRSSimlepT2eCqllPpaMsYMBJYBDUCbtfbHvVsjpZRSqu/q6XZTezyVUqpPskBrN29nZ4xJMsb8pzGm3Hkcea7lunqOrjLGLDbGVBhjrDEm9RzqOxv4wFq7EDhujMm8kHoopZTqy7Td7HS+PtluauCplFKqs2XAUmttErAU+P15lDvrOYwxLmPM0JP2fcMYE3+Ka60FJgGHzrEeQ4GDztcVwLDTfC9KKaXU+dJ2s4s08FRKKQWAMcYNXAm84ex6A7jSGPPNrpbr6jmAVOA9Y8wo55yRwLtAzsn1stZus9ZWnUd9K5FGFOfxVA2wUkopdV603Tw3l/AcT99f4fG9vV0LxxDgSG9XwqF1ObW+Upe+Ug/QupzOqO45jW8DPD6ke84VNNAYU9jp+YvW2hc7PU8APrPWngCw1p4wxlQ7+//SxXKmK+ew1hYZY34I5BpjbgeeBVZYa5efw/dztvquBn5njEkD+ltrd57DudXf0HbzNLQuf6uv1AO0LqfTl+qi7eYl0m5ewoEne621fWK+jzGmUOvyt7QufbceoHU5nZMaqPNmrf2f3XGevsxa+4Ex5qfAVuAZa+2Sbj5/M3B7d57zEqft5iloXfpuPUDrcjp9rS7dcR5tN7vl/D3abupQW6WUUu2qgMuNMf0BnMd4Z39Xy3X1HBhjYoHHgV8Cc4wx43uovkoppVRP0HbzHGjgqZRSCgBrrR/YDdzs7LoZ2GWt/UtXy3X1HMYYD7AReMpa+zAwB3jTGJPV3fVVSimleoK2m+fmUg48Xzx7kYtG63JqWpe/1VfqAVqX0+lLdTkf9wD3GWPKgfuc5xhjck9Kq37Kcl041i4UeMRa+xqAtfZjYCbwjZMLGmOWGGP+DHwL2GiM+e9zvJbqHn3pZ1vrcmp9pS59pR6gdTkdrUv30Xazi4y19mJdSymllFJKKaXUJehS7vFUSimllFJKKXURfG0DT2PMIGPMSmPMfmNMmTHmH85Q9odOuQPGmBeMMf1OOj7QGFN6vlm3uqMuxph0Y8zHxpjdxpj/Nsa8aIxx9VJdvmeMKTLGlDh1+cm51qMb63K5MWaLMab+XD8fY0ySMeY/jTHlzuPIU5Tpb4xZ6lx3vzFmfleOnatuqMt3jTGFxpiAMWbx+dajm+ryiPNz8V/Oz8m0XqzLHcaYPc7vTbExZmFv1aVTmVHGmOMX+jkp1d26429yp+Pabmq7qe1m1+ui7aa2m5cGa+3XcgMeBZY7X48EDgPfOEU5L/Bn4JtIIL4BuO2kMs8CLwGFvVUXZFz3AOfrfsDbwMJeqssEIN75OhLYD1zVS3WJBCYB/3Cunw+wGZjnfD0P2HyKMrc51+vnXP/PwLCzHTuP9+JC6zICGAv8b2DxBf7uXGhdpgGDnK//DqgDQnupLhF0TCkIRxZCTuuNujjH+wPvA69f6Oekm27dvXXH3+ROZbTd1HZT282u10XbTW03L4nta9vjCcwFlgFYa/cBhcD0U5SbA6y1klWqDfg357UAGGOuQv64v9qbdbHWNltrW5xylyENalsv1WW7tbba+boe+AQY2kt1qbfWbgX+ei4XNsa4gSuBN5xdbwBXGmO+eYo6/pu1ts1Kxq+1wI1dOHZR62Kt3W+t3QW0nuv1e6AuG6y1x51ye5CFkQf3Ul0arLXtE9kHIb875zyxvZt+XgB+Bvx/QPm51kGpi0DbzZ6ri7abZz92Ueui7aa2m+ri+zoHnonIXZp2lUDCuZQzxoQBzwE/6u26OPWJN8bsBo4AjZxfFrBuqUunOiUD30buavVqXc5RAvCZtfYEgPNYfYrznuna3VWv7qhLd+nuutwGHLDW/rm36mKMud5INrdDyGLLxb1RF2NMGnJX+9fncX2lLgZtN3uwLp3qpO3mhddL280erIu2m6qnhPR2Bc6XMeZj5If1VGK76TLPAEuttZ+dalz6Ra4Lzt3SdKdhXwHMBt7sjbo41/IA/xdY0H4nt7fqovoeY8x3gCeBa3uzHtbad4B3jDGJwFpjTK61du/FrIMx5jKkx+EOa+0JY8zFvLxSgLabaLup+jhtNztou/n19JUNPK21V57puDGmEhnG0r4gaiKw5RRF28vRqVyV8/VEIMcY8ygwEIg2xuyx1qb1Ql06X6/JGLMS+D4nNaAXqy7OEIqNyJ2wP53qWhf7fTlHVcDlxpj+zh+0/kD8Kc7bfu2dna59qAvHLnZduku31MUY8/fIP3nfu4DGqlvfF2ttpTFmBzKv6VzrdKF18QDDgVyn8YwCjDEmwlp71znWRanzou2mtptnOncXaLvZg3XRdlPbzUuC7QMTTXtiAx5HxoyDzDWpAcJPUe4K/nYC/v86RbmrOf8kCRdcF+dYe5KEAchY+V/2Ul0GA/8F/KivfEbn8/kgk9U7T3rfcooyt/O3k96vONux83gvLqguJ72nF5ok4ULfl3FIQzLhQurRTXVJ7lRuCNJwfrc3P6Pu+px00627t+78m+yUO+e/y91ZF7Td1HZT201tN3XrU1uvV6DHvjEIA95CMsftRe4gtR97Arin0/O7gQPO9jug/ynOd85/oLuzLs4vbDHScJUASzmPjGfdVJdngGZgd6ftjl6qS3/nj9RfgBbn68e7eP1kYDsyYX07MMrZnwtkdjr/7zpd+65Orz/tsfN4Ly60LhOd770Bmcf0Z2BaL9Vlp/N5dP75GNNLdfk18N9OHf4LuK+3PqOTzvU42oDq1sc2tN3sybpou3mWY+fxXmi72TN10XZTtx7b2tMlK6WUUkoppZRSPeLrnNVWKaWUUkoppVQfoIGnUkoppZRSSqkepYGnUkoppZRSSqkepYGnUkoppZRSSqkepYGnUkoppZRSSqkepYGnUkoppZRSSqkepYGnUicxxrxvjPnUGPOz83jtQmPMfmNMYU/UTSmllOprtN1USnWFBp5KndpCa+2vzvVF1tolwPweqI9SSinVl2m7qZQ6Iw081SXDGJNjjNndaWsxxnyvC6+73RjzrjHmT8aYMmPMJmNMijFmvTGm3BjzmjHGXIzvQSmllLpYtN1USnUnDTzVJcNam2utTbfWpgNLgUJgQxdfPg74F2ttMtAMvA7cAqQAY4Cp3V9jpZRSqvdou6mU6k4aeKpLjjFmGvAT4HvW2s+7+LJ8a+2fna93AdustfXW2lbgv4ARPVBVpZRSqtdpu6mU6g4hvV0BpS4mY8zfAcuAadbav5zDSzs3tCdO8Vx/l5RSSn3taLuplOou2uOpLhnGmMuBt4FbrbXlvV0fpZRSqi/TdlMp1Z008FSXkvnAN4EXOiVKmNzblVJKKaX6KG03lVLdxlhre7sOSvUpxpj3gcXW2v/vPF9/tfP6zG6sllJKKdUnabuplOoK7fFU6m/VAs+c70LYwG+BI91eK6WUUqpv0nZTKXVW2uOplFJKKaWUUqpHaY+nUkoppZRSSqkepYGnUkoppZRSSqkepYGnUkoppZRSSqkepYGnUkoppZRSSqkepYGnUkoppZRSSqke9f8DxgNeC3m9aX8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Alternative run to show powder properties\n", + "In order to see the scattering from the powder sample, we restrict the source size to only illuminate the center box with a powder material. A wavelength with powder lines close to 90 deg is selected to ensure the scattering from the center box hits the surrounding boxes.\n", + "\n", + "We choose to show the data with logarithmic colorscale using the *name_plot_options* method on functions." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Instrument settings:\n", + " ncount: 5.00e+06\n", + " output_path: data_folder/union_materials\n", + " run_path: run_folder\n", + " package_path: /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1\n", + " executable_path: /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1/bin/\n", + " executable: mcrun\n", + " force_compile: True\n", + "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/tutorial/data_folder/union_materials_6\"\n", + "INFO: Regenerating c-file: python_tutorial.c\n", + "CFLAGS= -I@MCCODE_LIB@/share/\n", + "INFO: Recompiling: ./python_tutorial.out\n", + "mccode-r.c:2837:3: warning: expression result unused [-Wunused-value]\n", + " *t0;\n", + " ^~~\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1604:105: warning: incompatible pointer types passing 'int (const struct saved_history_struct *, const struct saved_history_struct *)' to parameter of type 'int (* _Nonnull)(const void *, const void *)' [-Wincompatible-pointer-types]\n", + " qsort(total_history.saved_histories,total_history.used_elements,sizeof (struct saved_history_struct), Sample_compare_history_intensities);\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/stdlib.h:161:22: note: passing argument to parameter '__compar' here\n", + " int (* _Nonnull __compar)(const void *, const void *));\n", + " ^\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1613:20: warning: incompatible pointer types passing 'struct saved_history_struct *' to parameter of type 'struct dynamic_history_list *' [-Wincompatible-pointer-types]\n", + " printf_history(&total_history.saved_histories[history_iterate]);\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1434:50: note: passing argument to parameter 'history' here\n", + "void printf_history(struct dynamic_history_list *history) {\n", + " ^\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:2030:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:839:1: warning: non-void function does not return a value in all control paths [-Wreturn-type]\n", + "};\n", + "^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:883:1: warning: non-void function does not return a value [-Wreturn-type]\n", + "};\n", + "^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3274:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3274:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3276:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3276:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3278:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3278:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3280:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3280:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: warning: format string is not a string literal (potentially insecure) [-Wformat-security]\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^~~~~~~~\n", + "./python_tutorial.c:17318:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_filename\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^~~~~~~~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: note: treat the string as an argument to avoid this\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^\n", + " \"%s\", \n", + "./python_tutorial.c:17318:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_filename\n", + " ^\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_abs_logger_2D_space.comp:543:49: warning: format string is not a string literal (potentially insecure) [-Wformat-security]\n", + " sprintf(this_abs_storage.Detector_2D.Filename,filename);\n", + " ^~~~~~~~\n", + "./python_tutorial.c:17560:18: note: expanded from macro 'filename'\n", + "#define filename mccabs_logger_space_filename\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^~~~~~~~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_abs_logger_2D_space.comp:543:49: note: treat the string as an argument to avoid this\n", + " sprintf(this_abs_storage.Detector_2D.Filename,filename);\n", + " ^\n", + " \"%s\", \n", + "./python_tutorial.c:17560:18: note: expanded from macro 'filename'\n", + "#define filename mccabs_logger_space_filename\n", + " ^\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:788:15: warning: expression result unused [-Wunused-value]\n", + " if (volume_index_main,Volumes[volume_index_main]->geometry.is_mask_volume == 0 ||\n", + " ^~~~~~~~~~~~~~~~~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:788:90: warning: expression result unused [-Wunused-value]\n", + " if (volume_index_main,Volumes[volume_index_main]->geometry.is_mask_volume == 0 ||\n", + " ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:789:92: warning: expression result unused [-Wunused-value]\n", + " volume_index_main,Volumes[volume_index_main]->geometry.is_masked_volume == 0 ||\n", + " ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "14 warnings generated.\n", + "INFO: ===\n", + "INFO: Placing instr file copy python_tutorial.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/tutorial/data_folder/union_materials_6\n", + "\n", + " Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Cu.laz' (Table_Read_Offset)\n", + "Table from file 'Cu.laz' (block 1) is 19 x 18 (x=1:6), constant step. interpolation: linear\n", + " '# TITLE *-Cu-[FM3-M] Otte, H.M.[1961];# CELL 3.615050 3.615050 3.615050 90. ...'\n", + "PowderN: powder: Reading 19 rows from Cu.laz\n", + "PowderN: powder: Read 19 reflections from file 'Cu.laz'\n", + "PowderN: powder: Vc=47.24 [Angs] sigma_abs=15.12 [barn] sigma_inc=2.2 [barn] reflections=Cu.laz\n", + "---------------------------------------------------------------------\n", + "global_process_list.num_elements: 2\n", + "name of process [0]: incoherent \n", + "component index [0]: 1 \n", + "name of process [1]: powder \n", + "component index [1]: 4 \n", + "---------------------------------------------------------------------\n", + "global_material_list.num_elements: 3\n", + "name of material [0]: inc_material \n", + "component index [0]: 2 \n", + "my_absoprtion [0]: 0.000000 \n", + "number of processes [0]: 1 \n", + "name of material [1]: abs_material \n", + "component index [1]: 3 \n", + "my_absoprtion [1]: 3.000000 \n", + "number of processes [1]: 0 \n", + "name of material [2]: powder_material \n", + "component index [2]: 5 \n", + "my_absoprtion [2]: 1.200000 \n", + "number of processes [2]: 2 \n", + "---------------------------------------------------------------------\n", + "global_geometry_list.num_elements: 3\n", + "\n", + "name of geometry [0]: box_inc \n", + "component index [0]: 7 \n", + "Volume.name [0]: box_inc \n", + "Volume.p_physics.is_vacuum [0]: 0 \n", + "Volume.p_physics.my_absorption [0]: 0.000000 \n", + "Volume.p_physics.number of processes [0]: 1 \n", + "Volume.geometry.shape [0]: box \n", + "Volume.geometry.center.x [0]: 0.040000 \n", + "Volume.geometry.center.y [0]: 0.000000 \n", + "Volume.geometry.center.z [0]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [0]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [0]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [0]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.focus_data_array.elements[0].Aim [0]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [1]: box_powder \n", + "component index [1]: 8 \n", + "Volume.name [1]: box_powder \n", + "Volume.p_physics.is_vacuum [1]: 0 \n", + "Volume.p_physics.my_absorption [1]: 1.200000 \n", + "Volume.p_physics.number of processes [1]: 2 \n", + "Volume.geometry.shape [1]: box \n", + "Volume.geometry.center.x [1]: 0.000000 \n", + "Volume.geometry.center.y [1]: 0.000000 \n", + "Volume.geometry.center.z [1]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [1]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [1]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [1]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.focus_data_array.elements[0].Aim [1]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [2]: box_abs \n", + "component index [2]: 9 \n", + "Volume.name [2]: box_abs \n", + "Volume.p_physics.is_vacuum [2]: 0 \n", + "Volume.p_physics.my_absorption [2]: 3.000000 \n", + "Volume.p_physics.number of processes [2]: 0 \n", + "Volume.geometry.shape [2]: box \n", + "Volume.geometry.center.x [2]: -0.040000 \n", + "Volume.geometry.center.y [2]: 0.000000 \n", + "Volume.geometry.center.z [2]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [2]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [2]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [2]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.focus_data_array.elements[0].Aim [2]: [0.000000 0.000000 1.000000] \n", + "---------------------------------------------------------------------\n", + "number_of_volumes = 4\n", + "number_of_masks = 0\n", + "number_of_masked_volumes = 0\n", + "\n", + " ---- Overview of the lists generated for each volume ---- \n", + "List overview for surrounding vacuum\n", + "LIST: Children for Volume 0 = [1,2,3]\n", + "LIST: Direct_children for Volume 0 = [1,2,3]\n", + "LIST: Intersect_check_list for Volume 0 = [1,2,3]\n", + "LIST: Mask_intersect_list for Volume 0 = []\n", + "LIST: Destinations_list for Volume 0 = []\n", + "LIST: Reduced_destinations_list for Volume 0 = []\n", + "LIST: Next_volume_list for Volume 0 = [1,2,3]\n", + "LIST: mask_list for Volume 0 = []\n", + "LIST: masked_by_list for Volume 0 = []\n", + "LIST: masked_by_mask_index_list for Volume 0 = []\n", + " mask_mode for Volume 0 = 0\n", + "\n", + "List overview for box_inc with box shape made of inc_material\n", + "LIST: Children for Volume 1 = []\n", + "LIST: Direct_children for Volume 1 = []\n", + "LIST: Intersect_check_list for Volume 1 = []\n", + "LIST: Mask_intersect_list for Volume 1 = []\n", + "LIST: Destinations_list for Volume 1 = [0]\n", + "LIST: Reduced_destinations_list for Volume 1 = []\n", + "LIST: Next_volume_list for Volume 1 = [0]\n", + " Is_vacuum for Volume 1 = 0\n", + " is_mask_volume for Volume 1 = 0\n", + " is_masked_volume for Volume 1 = 0\n", + " is_exit_volume for Volume 1 = 0\n", + "LIST: mask_list for Volume 1 = []\n", + "LIST: masked_by_list for Volume 1 = []\n", + "LIST: masked_by_mask_index_list for Volume 1 = []\n", + " mask_mode for Volume 1 = 0\n", + "\n", + "List overview for box_powder with box shape made of powder_material\n", + "LIST: Children for Volume 2 = []\n", + "LIST: Direct_children for Volume 2 = []\n", + "LIST: Intersect_check_list for Volume 2 = []\n", + "LIST: Mask_intersect_list for Volume 2 = []\n", + "LIST: Destinations_list for Volume 2 = [0]\n", + "LIST: Reduced_destinations_list for Volume 2 = []\n", + "LIST: Next_volume_list for Volume 2 = [0]\n", + " Is_vacuum for Volume 2 = 0\n", + " is_mask_volume for Volume 2 = 0\n", + " is_masked_volume for Volume 2 = 0\n", + " is_exit_volume for Volume 2 = 0\n", + "LIST: mask_list for Volume 2 = []\n", + "LIST: masked_by_list for Volume 2 = []\n", + "LIST: masked_by_mask_index_list for Volume 2 = []\n", + " mask_mode for Volume 2 = 0\n", + "\n", + "List overview for box_abs with box shape made of abs_material\n", + "LIST: Children for Volume 3 = []\n", + "LIST: Direct_children for Volume 3 = []\n", + "LIST: Intersect_check_list for Volume 3 = []\n", + "LIST: Mask_intersect_list for Volume 3 = []\n", + "LIST: Destinations_list for Volume 3 = [0]\n", + "LIST: Reduced_destinations_list for Volume 3 = []\n", + "LIST: Next_volume_list for Volume 3 = [0]\n", + " Is_vacuum for Volume 3 = 0\n", + " is_mask_volume for Volume 3 = 0\n", + " is_masked_volume for Volume 3 = 0\n", + " is_exit_volume for Volume 3 = 0\n", + "LIST: mask_list for Volume 3 = []\n", + "LIST: masked_by_list for Volume 3 = []\n", + "LIST: masked_by_mask_index_list for Volume 3 = []\n", + " mask_mode for Volume 3 = 0\n", + "\n", + "Union_master component master initialized sucessfully\n", + "Detector: logger_space_I=1.13342e-09 logger_space_ERR=5.90802e-13 logger_space_N=3.86971e+06 \"logger.dat\"\n", + "Detector: abs_logger_space_I=4.16101e-11 abs_logger_space_ERR=2.36615e-14 abs_logger_space_N=4.12627e+06 \"abs_logger.dat\"\n", + "loading system configuration\n", + "\n" + ] + } + ], + "source": [ + "instrument.set_parameters(wavelength=2.8, source_width=0.03)\n", + "instrument.settings(ncount=5E6, output_path=\"data_folder/union_materials\")\n", + "instrument.show_settings()\n", + "\n", + "instrument.backengine()\n", + "data = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plotting data with name logger_space\n", + "Plotting data with name abs_logger_space\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5gAAAHuCAYAAAD6LKNIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9f3xb5Xn4/79uy0iRYjlyJCxbsR05NrbjxK5DAg5pkiUl/EqBUUoHpYWxjjL6c2vHPl27jnYdb97td7z7m5ZS2lHKWlgpMEIpoaFkIYQYHOLGwYmNnSi2I8fGIorlSJGQfL5/3EfHwglgWgc76fV8PPSwdevonKMj27cvXfd93cowDIQQQgghhBBCiD9V3nSfgBBCCCGEEEKI04MEmEIIIYQQQgghpoQEmEIIIYQQQgghpoQEmEIIIYQQQgghpoQEmEIIIYQQQgghpoQEmEIIIYQQQgghpoQEmOKPppT6qlJq85+6zUyhlNqslPrqSdx/UCllKKWCJ+sYJ4tSao1S6qSuafRuHEMIIaaT9JvveP/Sb07zMYT4Y0iAOQMopf5FKdWmlDqqlOpXSn1XKVWQ8/gN5h9YQymVVkq9qpTapJT6a6WUmsZTvwO4Muc8T9TRvGGbk8G8LmtO0B5SSt3wDnZ1Jfp8xfG2AaXTfRJCCAHSb/6ppN98V0i/Kf5s5U/3CQgAVgD/P2AH4AfuBtzA3+Rs0w+cg/5Q4EzgAuA7wMXAh9/Nk80yDGN0KraZKQzDeG26z2G6mf945RuG8Xpuu2EYKeDQ9JyVEEIcR/rNGUD6Tek3hTgRyWDOAIZhvN8wjF8YhtFpGMYW4F+Bv5ywWcYwjEOGYYQNw/iDYRh3AJcC1yilLnmzfZufUn5MKfWcUuqYUuoFpdSiCdt8XinVaz6+TSl1ds5jC5RSTyqlRsxbi1Kq2nzMGsajlLoX+AvgK+YxQxO3Me+7lFI/VkodVkrFlFL/rZTy5Tx+r1LqZ0qp281tDiqlPvtHXNaJ12GNeV5rlVJ7zGM/rJTy5Gzzhk+SlVJVSqmNSqmEUmrQPKe8nMdDSqnPKaV+rZSKK6U6lFJ/8Q7P6yNKqVeUUkml1B+UUusmPH61+d4cVUr9XCn1jQnXs0gp9Yh5jq8opS6Z+Mm0Uups87UlzHP+ilLKlvN49mdkM3AMOP/Nrl/O/a+a+/x7pdQhMzvw9bd5rZvN87/ffD0hpdQH32L7FeZzoub+fznhZ+UGcx9Xm18PK6XuUUrZc7ZxKaXuNJ8fVUptUEpVvMUxQ2o865G9bTYf+2+l1JM529aa7/uFb/W6hRBTT/pN6TeV9Jsn2l76TTEjSIA5M/mA6NttZBjGVqANuPxtNv134FvA2cAB4OHsH3yl1NXAvwFfAJYALwNPKKVmm8/9PjCM/hR4GfBdYOwEx/h74Hng/6GHhJzzJufy/4DVwGXojrUCuHfCNh8wvzab5/5tNaFz/xN8Gfhr4H3o1/vFE21kXp/HgAT6tfwN8LfA5yds+gXgUeA96Nf/X0qpMyZzIkqp5ejX/m2gEfgfYINSqsx8/CzgfvR7kH1vPjFhN98GqoA1wEfR/2TlHsMLPAU8DjQAN5jb/cOE/XwV/d4uBFonc/7on6f3AGuBvwP+Ub3FP22mTwJ7zOf+GPilUqryTbYtAH6A/rm7BJhn3s9VDFyL/nn6oHn725zH70Jfn0vQP0+vAo/l/sMzwTnon99SoAboA57LOfclSqmPm/9o/Ay43zCMp97mNQshTj7pNzXpN6XflH5TTD/DMOQ2g27AHKAH+HJO2w1A6E22/yXw27fYnwHcNmH/R4GLzfvPA7fnPJ6P/uNwk3m/Hfjom+z7q8DmnPubga++2Tbo4Usp4MKcx+vMc6wx798L7Jqwjy7g5rd5jWtO0B4CbjC/X2Nud3bO418Ctp/o/IGLzOvkyXn8ZiA8Yf/fzbkfMI9R9ybnGTQfD+a8d7+YsM327PuBHv61ecLjW3KuZyHweu5rR/8DYF0P4FbggQn7uBbYO+H6/cvb/Fyu0X8u3vC+vgrYc9qeAr7+FvvYDGyd0LY1+5yJxzjB85eZr9eW83uRAXw529ydfb3m9T4GFOY8fob5vi6fxO/iQ8Dvs8cz264ERoDvme+/++32Ize5ye3k3pB+816k35R+88TPl35TbtNykwzmDKKUcgC/BvYBbzlsIvdp6D90b+WF7DeGYRwBOoFas6kO/cc5+3ga/Ulcndn0A+An5pCXf8x+SvhHWoD+Q5V7vL3oT53rcrZrn/C8AfQnblMhd99vtd86oNMwjGhO2/NAqVKq8C32x1vs80TH2D6h7XnGr0UNen5RrtxPSReg/7HZ8SaPg/709Uql1Gj2BvzEfG6unZM851xdhp5jkjWZ9+mFE9yvPdGGSqmAUuo+pdQ+pVQM+F/06y3J2eyQYRjDb3IOiwA7EM557YcBJ8e//onH/if0J7dXG4aRybYbhvEwsBH4NHCjYRixt3y1QoiTSvpNi/SbmvSb0m+KGUCK/MwQSql84AH0p5Xnmx3WZNShK5W9lbfrSN/8iYbxQ6XURvRQisuAf1NKXWgYxtsd80QmW7nv9Qn3Dd56OHcM/ankRHPQn5qN7+iNk/Dfar/v+FwNwzCULk442Q9u3u4Yb/dP0ImeP3H7AvRwodvf5ljxt3n8RN7p+5TdZrLuRf9j9XHgIHpY2EazbTLnUID+2Vh6gn0PvtlBlZ4P9FVgrWEYr054zAU0oT8BrgY2TeaFCCGmnvSbbyD95vjj0m9KvymmmWQwZwBzXPt96F+8S4xJVpBTSq1Cj+V/7G02PTfnOYXoT/g6zaZOYHnO4/noIRV7s22GYewzDOM7hmGsQw81ueZNjvM6YHuTx0APYUpPOF4d4Mk93h+hGz03wWLOT/Cghwn9MfYCtSqnmAFwHjBgGMbIiZ/yRx1j+YS28xi/Fp0c/0c+9372eua+9mUTtv8DUG8YRvfE25926n+0cyfcP4fxn8WJVgD/zzCMp81P7L3v8Fh/QP8DdcYJXv8JP0FVSgWAB4HPGYYx8VNjgG+gO99rgf9Qp+DabEKcDqTflH5zwjGk39Sk3xQzggSYM8Pd6HH01wF2pVSJecvtdGxmW0Ap1aiUugXYgB43/+QJ9pnrY0qpK5VSC9ETxMPA78zHvgN8Ril1jdlp/RBwAL8AUEp9Sym1TunFjlehJ9W/WedzAGhWSs1TShVNfND84/RT4HtKqZVKV927Fz0X5o/t0ECP6/8HpdR1Slewey/wc+AZwzB2/5H7fAr9eu5VSi02J+H/G7o4wFT5LvAhpdSnlFI1SqmvoT/l+6H5+I+BlUqpW8zH/z900QI9AUR32L8AvqOUOkcpdS5wm/nc7Ceed6I7/LuUUu9RuoLb1UqpL03h63gnmpRSXzRfzxfR/yjc/Sbb9gA3KKWqlVIXowtNTJrZuT4M/EopdaFSqlIp9RdKV8fzvMnTfoUebvVYzu/hXNAVAdGfCt9gGMZ/o3//fqLUtK6pJ8SfK+k3pd+UfvN40m+KGUECzJnhb9HVt3aix8Jnb+U525SZbb3oCdSXoCuaXTuJ/X8F+P/QlfOqgA9mx8cbhvFL4GvohZL/ACwG1ud8GnwG+g/ZXszJ9Yz/IZ/om+hPy/bx5nMT/hE9Qf1x9Ke6/ejqdH+Ke4F/Am4Bdpnn2AF86I/doWEYY+iS97OBF9GVz+5FV/ObEuZwqb8FPgfsBq4A/tIwjD7z8VeA64HPoq9no3kOyZzd/AN60vyzwH/lnF/S3EcfuvpgEF3V7UX0e9A7Va/jHfoh+nW0oYs/XGsYxr432fZG4Cz0tbkN+Jc/4ngfQQ8P+k/0z/B/ov/uHXuT7Veg34fc38OHla4O+VPg/xiGscvc9tNAPcdXKBRCnHzSb/5p7kX6Tek3T0z6TfEnU4bxR08zEKcApddgWmsYxubpPhfxp1N6PakewzA+9SaPL0d/kug3DGPoXT25t6H0ulibDcP46jSfihBCvCnpN08v0m8K8e6TIj9CzGBKqU+jP7k+ClwFXAiszHm8Gb3O1U70ZP7vAk/NtE5SCCGEeDdIvynE9JMAU4iZrRG9CLQbPYfngxMqEdrQQ7nOAo6g5wj9w7t8jkIIIcRMIf2mENNMhsgKIYQQQgghhJgSUuRHCCGEEEIIIcSUkABTCCGEEEIIIcSU+LOdg+nz+YxgMDjdpyGEEFNmx44dw4ZhnDkV+6pWyohPxY5yDMBGwzAunuLdineJ9JtCiNPNTO834dTsO/9sA8xgMEhra+t0n4YQQkwZpdSBqdpXHPi7qdqZ6avgm+JdineR9JtCiNPNTO834dTsO/9sA0whhBBvTiEdhBBCCDFZ0m+Ok+sghBDiOAo4Y7pPQgghhDhFSL85Tor8CCGEEEIIIYSYEpLBFEIIcRwZ6iOEEEJMnvSb4ySDKYQQQgghhBBiSkigLYQQ4jgnaS7JHKXU3cAGwzA2TP3uhRBCiOkhczDHSYAphBDi3XLEMIybpvskhBBCCHHySIAphBDiODKXRAghhJg86TfHyXUQQghxHBnqI4QQQkye9JvjpMiPEEIIIYQQQogpIRlMIYQQx5GhPkIIIcTkSb85TjKYQgghhBBCCCGmhATaQgghjiNzSYQQQojJk35znASYQgghjiNDfYQQQojJk35znAyRFUIIIYQQQggxJSTQFkIIcRwZ6iOEEEJMnvSb4ySDKYQQQgghhBBiSkgGUwghxHFO0iexc5RSdwMbDMPYMPW7F0IIIaaHZDDHSYAphBDihE5CB3HEMIybpn63QgghxPSTwEqTIbJCCCGEEEIIIaaEBNpCCCGOI0N9hBBCiMmTfnOcZDCFEEIIIYQQQkwJyWAKIYQ4jiwYLYQQQkye9Jvj5DoIIYQ4jgz1EUIIISZP+s1xMkRWCCGEEEIIIcSUkAymEEKI48hQHyGEEGLypN8cJxlMIYQQQgghhBBTQgJtIYQQx5G5JEIIIcTkSb85TgJMIYQQx5GhPkIIIcTkSb85TobICiGEEEIIIYSYEhJoCyGEOI4M9RFCCCEmT/rNcZLBFEII8W6Zo5S6Wyl12XSfiBBCCCGOp5Sao5T6qVKq7wSP/Uwpdc/b7UMCTCGEEMfJziWZyhtwxDCMmwzD2PDuvRIhhBDi5DsZ/eZkh5oqpe5QSu1XShlKqcU57TVKqeeVUl3m17Pebl+GYRwxDONjQOeEY3wa2DiZ85EAUwghhBBCCCFOXY8Cq4EDE9rvAu40DKMGuBP4UfYBpVSVUmrThNs/nWjnSqmlgAvYNpmTkTmYQgghjiNzSYQQQojJm85+0zCMrQBKqfHzUaoYOBu4wGz6JfB9pdSZhmG8ahhGD7Bukod4P1AO/B/gbKXUKsMwnn2zjSXAFEIIcRwJMIUQQojJO4n9pk8p1Zpz/27DMO6exPPKgYOGYWQADMPIKKXCZvurb/VEpdSdQJ1S6i7gG4ZhfM1sDwJffqvgEiTAFEIIIYQQQoiZatgwjGXv5gENw/gU8KkTtIeAG9/u+dM+B3Myk0+VUjal1J1KqR6lVLdS6sYJj/+VUqpdKbXb/Op/916BEEKcnqajUIF4e9JvCiHEzDRdRX7eRB8wTyllA90vAAGz/aSa9gCTt5h8muMjQDVwFnAe8FUzRYtSahnwVeACwzAWAyuBIyf/tIUQQohpIf2mEEKIt2QYxhDQBnzYbPowsNMwjLccHjsVpjXAzJl8+kuz6ZfoiaNnTtj0auDHhmGMmRflUeBD5mOfA+4wDOMQWKV1j530kxdCiNOYAs7In9qb+NNJvymEEDPTyeg3J9t3KqW+q5TqB8qATUqpl82HbgY+o5TqAj5j3j/pprvLn+zk0wreWHa319wGoB7Yr5TaAhQADwP/xzAM42SfvBBCnK6Ugvyp7iHSU7y/P0/SbwohxAx0UvpNmFTfaRjGZ4HPnqB9L9A89Sf11mbCENk/VT7QiC7B+xfAJcB1J9pQKXWTUqpVKdX66qsnPTsshBBCzETSbwohxKljjlLqbqXUZdN9IpM13QHmZCef9gLzc+5X5GxzAHjIMIykYRgx4H+Ac090MMMw7jYMY5lhGMvOPHPiaCIhhBBZSsEZtqm9iSkh/aYQQsxAJ6PfNPvOI4Zh3GQYxoZpfomTNq0B5juYfPor4ONKqTxznskVwK/Nx34BXKi0M4DzgT+c7HMXQggh3m3SbwohhJjppnsOJujJpj9TSt0KHAauB1BKPQHcahhGK/Bz9PjhV8znfM0wjH3m9w8Ay4AOYAzYCPzk3Tt9IYQ4/Zy0uSRiKki/KYQQM4z0m+Om/TK82eRTwzDW53yfAT7xJs8fAz5v3oQQQkyBbDU8MfNIvymEEDOP9JvjpnsOphBCCCGEEEKI04TE2UIIIY6nACnMI4QQQkyO9JsWyWAKIYQQQgghxMx0yi1TIhlMIYQQx1NIDyGEEEJM1snrN48YhnHTSdnzSSL/PgghhDieBJhCCCHE5Em/aZEhskIIIYQQQgghpoTE2UIIIU5s6nuIOUqpu4ENhmFsmPK9CyGEENNJIitALoMQQoh3zyk3j0QIIYQQ74wEmGJaqN40bMqHO8yGPSH4nyBsB5abbfnALeb3V5hf1wHHgFZgWDc5bztM4ttFsBL4NLDH3PaL5vZl+q5RA6oL+OqEk1kO/H0IPhyEj5ptXwH+DXj/K7DkLN2284dw1SfgoQTc4tRtzwHPm89Zax4PYDfwKuBGnxfApcCsNMUVYYZurwCg9Ev7GfhmpT6H7eZ21yThIQcLP7uTnteqAEjdUQjXAJ407M4Hr7ntUeBeYBS42Wy7CLgOWAbMMtu2mtdwr3ktvgTq9znHvM38mngQuBzKzdfXF7Iuk2EE33DZlBoBRsCpL7ARR5xOpNy6EELwAR4A4BGumeYzETOe9JsWCTDFnw2lXoLOs6f7NGYE9TDg+SOep9CBuzj9SbECIYQQYvKk37TIZRDT49588AGPmvc3BSGNzuQVmG2zwb51hNTeQihL67a2fAgCj/PGAKkWCBrQpOAhs60bncHrB85/SbcNA23ApiQccui2UeAzQb3fVvO5XwSiwC1nwSqzrf8TOnt6iVNnBDH3RQg+EIRHfgjXfEK3/yXwB3D+82HrFBO/LSJvTZLhQS/ckARgYF8QrjDgfkXZrd36MNdXA7BnXxNsVwBU3f4yPU8tgvx88pYexe8fAiA64iHxf4vwbjxI5MV5elvjZXq6FuGtPkjkLt3GjWBfPEJqmQtazV/7e8zzfBn4B/Mk/+/VOhPrQWdACepsLqBcvNElhbCoUH9/xybG07dCCCHE6UEyl2IGOOXqF0iAKabHRVDQMEzqmB2AVH8hLAW+gzWMk++DfVaKlA143PxR7UcP6/wHYJYOOhO7i6i5ehddFzTCmeggECAIxY29DP20Aj5nZi6H0cNyn3RAk7ldAbAJ+Dqw2WzbCjwLnAX8s9m2Bh14hYC+8WOwJwiPhOAnn9BDdEEHzjcaJLYXjQfMS2Bs82wKLhtmdNij2/YqytZ3U31rN5u7Lgag+L5ehroq4EWl9w/0vLSI4gt7GfpmBWMXzybmduvXHnXDnRA55IMzzG23LYJgEm9ehEiJDjDPW/0MO15bCt/LhwbzfP4S+A1Qx/hQ2g+ghxT3A/+SgHxzqKxlF6xs1N9uB3YAz2xCnIbkk1ghhBBi8mQdTIssUyKEEEIIIYQQYkrI59NiemyE0e/44Ovm0Ndl6II1V2Fl7QjB6GafLmjTb7YtRw+l3QuUmT++w9DV0aizkF9ED3kFKIGh+yp0+9+bbU+ji+4cY3yYawI9DLQMa4hs3q+OMpaerc/rYnRmc5a5bwewaURvuMQcInpLUA/Jvcrc51bgmNLZwfvNthvTzL+6m2jKw7kV2wDIVNjY0fVeomUeKyPrJsbwnKNUX91DOB4AYPSQl3jcxeLPv8jul84Zz4AeyydvzlHGjsxm/tk69esgRdetjXTdXGtlc5+/da3O2LYBf2OeTxRd1Ggv45nb7yfhHocevvxIzp+HFuALAI068wk6E7oUGJahsactKVYghBBCTJ70m4AEmGK6eKD0F/sZuLVS3w+a7VHzBnAIHUymoeDLumSsY1aSyNfnwcVQdraesxit8zC63TceDGaHpGYrpP4z8FvzexswYG5jxrbMQge3h4AbdNPY/8yG74Xg60HoNLe7Aj0Etj0ETvOEV6ID4KPAXwB6+iTzP7aXA7+o00Hd93VbTUUHXVsambP8EIMUA3DgiTqcKw8z2u7DfpYOWtPYKDozSldvPfYCszRrm2J0mYehCj+MQt48PYfT4YmRSdtIDcOBx+v0tqOQ96mjjP3XbOw36H2mDulAuPh3vQy5dAVbHjVf024DqpV5HAfEgPOAO8+AR8zXvjQBTifcxXgw2g7sRAghhBBCCIsEmGJ63AsDhyqtJUQ4BnnvPUrRmVEiW83CNCuxspXZuZqjwx7dVgD9u8xorh/sy0dINRTqzFvWX4egM6gzfB8yK9QcUuRVHWXs5dlWIOtcd5jEniJd7Ga2+dwjwK+D+vvh8XPED7R3Q9B87Ap0RvOOEfiLQv38o3Dg2jq9bMgmKF2xH4Cu3nqoTpIYdRF7Xc+htC8fwVsYob+oiNRuHQSOrowR2TuP+fV7OfBdHTQ2fXY7bQ8vZ2iggrLV3XjQxYN271sG+RkdTJvLpSz81U729DZQ9fmXcaID1N2+c+B1GNpSoQNKoGxBD/1fr4bNCv7WfI1OdBCZnVa50Py6yQnvBzbktHnQS76cjzgdyRxMIYQQYvKk37TIZRDT4wp0AHl+SN+/M8jYHbPx/kcPttUZAIZeqgCPAceUFXzhAD6qq65aRUsfAvfFMQ7/Xxtjv549vo5mz3x4HMbWzcZeYmby+gt1EDt7ti7WAySWF+nM5CHGA8xOdObzFuD7ZqrznnwdeH1unS74A3D+LvhMI3y9EH6EtY6m9/6DRL4+j+Iv9TLQWw5AVUUndlIMjRVblyHy6Dz66wo5t34L1JiHTtVADIqIcuAKfey2luUUXDxMJm0jMeYklacDbl5V5AWTjPnyraGvnYM1VFV0ksRBz92LdGMdOJsOk0zYGTuiX2T/fdV4P32QyK/mwR/MExpGB/A/BD5jtt1jXoejwOvmewB6aPEvgRuB/0KcbqSjFEIIISZP+k2LXAYxPVai5ybeGdT3g0AThOMBK1vJ48Bihf2KEVKPmgHmMeDSDPZPx7HPSgEw+lWPXo6jzNzPHdljKJ1lK0iTusF8/lVQujpMhHnYrzCDzvxCWGwe7yzzueVAbQg+HIR/Nn9NLgY+jB5mmx1ea6Vg0fsI6W9jUTfckGSoowJv3UEAenpr8ZYNEou6SUV1BnP+lXsZHXMTw20FnkduLMH+7RHaepeNLykCpM6y0zC3HYCOkXr9/Oa95JPBeX2cfHRg3ravmbQ5CWD+TXpeZiTuY/Qhn55vmd3lNRCx7YH/nacr6AJcCnwL+Bnw1+aw2KzZwCBWtVqC6Ot7J0IIIYQQQgASYIrpUgL2O0asQIt+RUHTMKMhnx6GCTrYeRKdLVxmtm0Gns8nvcZG6g49Hrbs9m76m8zhsj6seZRsB/s1I6Q2F46v83gP7K49B+fCw3oJEdDzJL+NnouZzX5WAw8EdUBlKr1+PwOj5pzRD2Zb51Lw9WFG5/v0cYO6tXxuHz0/XQSLzCVEMOdghmtZGmhlR3QFoAO/Blc7z+9bw5oFG/VLrJvHirnb2Dx8MTTp4aykFan+QnZsfi8sS+P0xAA48HAdZVd209OxCDx6XiYPKA6sqcO5WGcsAcb+azZVn3+ZnscWjcfEw8DT63RG8lKzbTd66HA3gFNnKXkFjp6ls5pOIPGK3vZ5MxrPvjfi9CPFCoQQQojJk34TkGVKxHRZFCIVKoRZKX3bDbb8NHneo1AEFEFB3TDUQXBuSFdl3Qp4oOzqbir9IZ0xXAwOkjoo+k+YEzykg6Nu4IY0xXOHdGXYqHm7ATgCiQeKdIA1DFWNL+vqrz70Ry75ev1MQuhAs0nfBq6thE+hs69Zf4DRW3ww/Ar0AHv0recbi6AE/qr5Z5QF+igL9BHFw4WBjRQzCPcquFfhdsVoGTyXOWWDRPEQxUPVl17Wa2IWJGla0ELTghbsvhGKG3vxXnGQcyu2kZhTRGJOEZRA/1PVzK/fS54tTZ4tjfPTh+EQFBcOMhaazVhIF/vpOWORHu76inmrTpK36Kh+HfeYt1eB68j56MkMJn/4il4jMzEC687SN/bo+Zge8yaEEEIIIf7sSQZTTI/ngsxZfIgjD5To+01wZGsJzmWHSaxzWZvNufQQXec06uVHAPqh/5+q4TfoYjRAT9ciHVD+a5oj3yqBD5vjV/85n6Hvm/Mdq8efTxSKb+q1jtHzkjlPcQ3WHMyh+go9x/MsdGYT4DYDXlHwPYB/022hr+ihsz/0wzIo/pLer5M4B7rq+O+f/rU1FLdqbg9PdVwOsww9BxVooB2XvwrQ8yzNJ+NdfJDI9nm0pc304N58hnYXUnDzMIOuYjigX+P8im4O3F6H48IUY3fqk/d+bYDwe+0c+GadXiYFSCUL9bDXGxkfQvyAgzEcusJutu0LwD3fAy6G/3MWbDezlNm/FP9TCP+YvXIL9TW7F3E6krkkQgghxOSdvH5zjlLqbmCDYRgb3nbrGUD+fRDT5shDJdaQ1OKaXoZ6A3pI53a9ZMaoz0fVhS/Dc5BJ6x/V0ZAPDoH9iyPUzNXrh+x+7ByKP9vL0L5yKIXFFXrtjN1rziH9ug2ugbJGvaRJv68c2hwM3VeB/VJzLct8dBGbTUm8JbpkbOSv58GD6KymxzzhrQq+gx7+4PyKbvs2esjpdwohH4au1EuALHx4J/Nr9nKgv47UK3r+Z89ZVTTVb2fXYAO+BREAnvrB5az55JMkcbCiWa+N+fOXPq7ncOYMsyhYOczoLB8uV5wM+eNDZHfVseZLT2IjQ9dVjQDYSDN2ZDZ5HzmqM71AFT3EcPO8ba2eawo66C4A9oC3Sc8TjbjnwXWf0Uu5LEZnbwFuQwfareh5qHegh8ZWMz6sWJxeJMAUQgghJu/k9ZtHDMO46aTs+SSRfx/E9JiFzq4d03eHOipwlh0msblofE7fXojh5sjWkvGf1BB4P3qQSChAT75OS865+BCZMRs1C9oJlwTYvescve0cGBs0K6a+ZKYwd6MDpzSk2szCP0EDrlBwi4PIxeYSKaXAQ4YOKu81j11iPvc24GqzbRg9vPbf0cGnmZDd41oCe9Oc975n6EFnKD1EqaGTAn+Mrb1rAVj6yefY/PDF5L33KM/v0G0L1+9kT7iehc072fPNJQCMXuxj4eqdhEaCJH5bxMKrdRC95/EiNv/2Yp1JNOvxHNhVBwUGlf6QVexn0+D5jP1hNvYLRsZf92zgOeDfkkT6/boths5yfgs9z/Rfc96vpehs58tm28voYcclCCGEEEIIAUiAKabL40ATlF1uZhZ/X00iVETBumFGW83FLD0wtKsC75qDRB41A7/lEB91MadsEIddV5EdaqmAJER85jbmkNaCy4YZ3e7D3pQTVGUf941vN6dskCNlJXBzGr5t/krYgFqliwyVoIOux9G/MZdijZBlO/Bz4OPm439ptt8FDOTTV1FOE20AxHHy311/zXk1z8Dz+jg70iuouvJlkjjoL9NB8J59TXiDYfb0NjD/87oKbIABbKRJFdrpWeViz/U68Dz3vi28EG7mvMA2nt+3BoC82XHG/ms2PaOLOPfWLQAcCNXBMbDPSpH6tnmOy8zXM88BPWYxoU3ApgTg1HMus0OLj6ED6Tb08i3m+4MfHVwD/AJxOpEMphBCCDF50m9a5DKI6VEG1EH/Nh3BFCwfZrTNRzzmNCuYgvOqwySibiJt86y5hGwF2zXmOplf0sNRF9/+Ig5S7Oh4L3OqD3Fks06pjV7jw7n5MInWIquYTX5ThtT3C/F++SCRx3VAmgi69NDPrfnwZfM4BbpSa2Jl0fix/WBfOUIqWjgeZPUDa9HP+yh6WC2Q94WjlPv7GBrxEyoMAtC1rZG8qqM837uK0qv3AzDwzUqGP+3FYU+xuPFFAHbvW0Z81MV5Fc/yfIfOah7Ir6Oq5mVq6CRa4sFzXxSAF3athn7YMWspVQs6ALCTIvJ5r368V1er5cvAjTD6UZ+1JIm9ZITU44XAK9BvzrVcB+CE84B/D8Gl+tzZjv5rsZnx9TH/0lzG5LI3eY+FEEIIIcSfHQkwhRBCnJiUWxdCCCEmT/pNQAJMMV226i+LP2Zm7TrOgUMwNmu2VVgmsbmIhZfvZE/bEoov19VZhx6tYHTYA/kZFt6u5yFGKaL/m9VwhcGRQz49LxLgYvAWRkisiZM85gBgdLsPlkFk9zw9TBb0Opmg5zHOMoeKhvJJ3Fykh4X2m/ubBanbCvVal1Gzba/51YYeSmu2j/1hNge21sE6CC/TGdfzV/yGMAF6XqtiGa0A7Px8hgZ28duuK6mv0RnIv1pwHxF8tI01cV39jwH4+ZaP03PvInqWL6Ls8m6S6NdT2rifAV+A1JOFlF4b1pe2dy32gjieuVGWVrQAsOPO9+IsOUziPDeE9K99qq1Qz2d1nGVV5OXDwC/RS7FcFtTfg85gfhQ9NDg7DPgTTv0XJHt9xOlFhvoIIYQQkyf9pkUug5gWBd8fZvRJH6F4JYAe2nqoBHxp2GT+WHogNBJk5eW/Y2vHBQBUfell+l4rJ9VfyJ5jTQA0LWihf1Y1dk+M1O5CvNeYFVG759HfUU1ZfTcFLl11ddTngwID0go8eqkP5+IYtoszjN7lg8fV+En+NXpNzuxvySLgDHRwnC3y80X0sNJSYE2SK659BIBHv3kNS7/2HDsHm8ik9cdZzwyuodHfTmrUxZaCVQBU23tI4IJ8g8296wD4YMWDxHERzAuxkYv0cfphze262uzz+9awcEEbAHvC9bDXQd75R+miFgB7QRz7rBRDT1XgvDCun98KicVF0A3FV5rBeksFkdvm6YD+GvP13IWeh/mv6ID7t2b768DfoeealmOdEwOMF/0RQgghhBB/9iTAFNNiNOqm5spddG3TS2tkM4D2gjjFHxsCoL+jmkRbEX2ry6FAB4MNtBOf62Ig6iZvtg6euuPVFNwwTLWrm7bgMiL36LmV9qtGSO0tpH9fFeTrLKJ38UEid83TQeKl+sc/UVUEB6HgZl0UaPwk0YVszDmhFAGPoAOszpwXs9Pc9l4HT9y8Xrf9FoY/78XhTFFcOAhAdWEPTz/xfs5b/wxDFJsvO0MaG95gGHueLlrUQjNL2Ekry3CiX+Ml1z7Mbx+8EhZCQfWwDiwBuh2QD8v8O2h7rQkAz9woNjJkltuIpjx6uzKYU3eII9ESbOhrYT9rBOeSOEc2lejlSkAvOXILem3Pm3Ne42+AizbB8nXjVWPvQgeY1YjTkXwSK4QQQkye9JsWuQxiehyz0xWutSq5Zoeapla66I/qZT1IA8E0foYYLXMD8GjXNdTU7CJWEsHv0oFbT7ga+hx4mlt1dVazKE9quFDvv1tBif5Rd1YkdMZxKxRfa2bytlWQ996jjLb7IGSez3LI8x5l7ODsNyyRwpnoNSBjZtsVwA4o+303/S3VpEZduv0naVwkSBwqIjorCcCzo6uYv34vbSNNXFX4EACd1OIghTMvQWJMrzMSzAvRTTUr2Mavt30EgCUr2qBcr+fpJsaedl1FllFoWr8dF3FK5+ohsge66iit2U9idxHlK3ZZr8dlT3CkOkl0xKOvzyuFpJ4r1MN67zVfz9XorGUbunLut832LwD/u05vt9JsW2TePoAQQgghhBCABJhimswpG+TIV3PWt7wCOAQcy8dbrYe4Jo85GL3Xh+2TGZx5Cb3dIYjWePC4ovT8dJFuW2Mwv3kvm/ddxJwPHLKOceSeEqo++TI9LYusQLZ/XxVzgoc4ckMJ0dc8ujGYZOy/ZuttLtWZ0gJfVAecB6Hmeh2kdXU0kveeo4ylZ49n8fYAX9bLrDiXHbaylQOvBXSW8RA4anRmcu3czbTTQFNhGzuzE02Barqxk+S3T14JgHd9hL6RcuKFTspW6PTpox3XYK8boX9fFQsXtFHVrMelDqe8tN2+nNIv7Sfymq4ca/eNkMHG4hUvsrvXDESj+RxJQEHDMKP3m1naYfTyIw8xvvZoA7BGXwNuycdZfRiAxHlFOsv5n7+Fj16iH1+Insd6i/ncT57onRanLIUUKxBCCCEmS/pNiwSYYloc6ffDzWnKKkIAhAdLGXtlNhzDCiYjUR80QQSvld2rWb2Lrt56/byLdWbQWRCnb7AcZqVosLez9Ut6vqbznw/T88QiataPD8XNq4rrYxeYGU7g3JotvBBcrQOorfpXYhSfDiLzoeu75jDevw8x9rMgHEbfOtHLraSBYUh8v4iBm/VflvVzn6CbKgZKAnjMyj+d1OIkTphSKs1UaRQPv+i9HntBnLyleimVrq5Gzq3ZQhwnHYN6KGxxfS+ZMRvr5z7IMF62pfTyI4lRF3w0jYcoEXSAWTW3hz29DQyl9TUBYFY+pY37SY3ZGc0W5bkYnTlew3jmFuAf8vVQ4FWQOFSk2/49BGuC8D+XjM/L9OjrYwWn4vQiQ32EEEKIyTt5/eYcpdTdwAbDMDaclCNMMfn3QUwLpy9KYk8R/b/UE/icnzhMIjgbPGn6W8xJfWcaMAyDqWJ89ggAkTEvdOfT312NvWkEgFWFz/Isqygu7KMtvoSCL+sysqOHvBSsGcZDFO/y8ayo19/HgS/XUXCP3u6Fr60213+EvPeY62WekdEVY29Jwj26YitfDOpAbDnwgPlCfOjfoo9swptZaAXHj3ZdA18H7z0HrTmPe1qWUNbcTT0dRPEAEMdFaUUfA1squXb1TwFo9S/jhZdWU3Z2N0VnRgGooZOtj15A95XVtI00kRjWz7d7YtgL4kTwWtVw95QswV43Qqq1kOILdUZ1aEsFA6OVxweEawwIKf2aAJ5EB5e3oOeamslMbgzq4bE/NzPJlzn10Fo/5CRjhRBCCCHE1DpiGMZN030S74QEmGJaJHYX6cI41+ksZCKkC+1QCmY8RvGCPpJldjz2qBWkleaFiZTMg3wIzg0B0E4D7sIYBx6rw75yhPK5fQBkfDZs+Wle6FhtzZlc0/wk+wmS962juFy6gM7oVejlSUKKsZ7ZAKSCSfgoFHhijK4zA8w1kOc/ythRFzSZ1Wb3ooPOHeuIPA6XXP4wAP391RT/tJd6Ougzy67+bfOd9FDFpsHzafS3A2AnSQMhVq3eQtocVxHHhT04QjMtdObV6NeYauDcK7fQkVqor12JXk6lfG4faWyMjrlhub6WbHeQCjqouXAXSey6rczQw5L7/eDT5z5/xV4icR+jy3KWdqlDz728wLwfMr8OYgaSTrjMbHsWWAu43/KtFqcy6SGEEEKIyZN+E5DLIKZLiQFRBcNm8BaCqitfJo6LgaheumTo9xV41xzETYwoeqhmDDcFwWFG9/roekwPXT3v8md4ftda6IdVc58lZkY86UIbLhJU1/ewc7AJgG6q6d9XRUFJhOFBPaR0TvUhXPYEUZ8Hb6HOlPaHy1l49k72PLXEym6S1utbUoCVBSz97H4GnqjEWX2YxCtFVjBZ9r5ufAzjJcKwOXR1M2soJcz7/U/QQjMAQUJ0UE//tmrmr9CVjvq3VDNn+SH6KCffDKwb7O3kk+HI3hIoMShdEAKgZ1895y54lvK8Prb26ahw6ZXPMYgfD1EyZtB64JgiYB/gSL4P+vSv/YGH6/Santuxivk4Dx0mcW8R3I9eAzNovvZy9DzZBLrIUdYxoH0S77cQQgghhPizIAGmmB73KEpv389AOKDvP+AgdrkbOykWN74IwMBYgMj2ecTq3FTN7QF0gJk6ZofdUHa9LoDz/K61ek3LNfk8vev9LGzcCUA+GUIjQdyFMV0NFogVFUC/YvRSH3xaH9rzyT4ObKsDD/R7zCqwIQd9nnIdYGXrBmWX8ngAzBGuDPRVQikkthZRfHUvu/fpyPP8BU9YwWZ2DiZAAhchKgmaqcHOVA1H+v0sXfEc5ejMq2t1gtBIkJjdTbW5RoqbGL2U6zU8uxX2BTpbed2Ce2hlGS5slDXrbXfsWwGzUiRKnERW6iVbSrftx00MQvlwjs5+slvBK+br+k/z/O4ogvczvjTL53LeM48BnwBKzeztP74O7z0Dkid8h8WpTooVCCGEEJMn/aZFAkwxPW5OM7CrEnuZnkeZusZBMmVnaNiPL6DHax5+1QMlBjVzOwnFdVYzk7ZRNbeHzotqrF0VVA8zutlH0/rttLUsZ0+XWTl1VhqG87EvTupMG5Cfn+Hc1Vt44fFV8KIOlCJxH2Uruul/uJrzrtwGQF+gnP77qsFMsHLNwxQcXc3oV3ywmPG5iaVgXzxC6lAhQ70Bmha0APB01/s5r+YZNo+toSBPj8/1EcFJHD+DOtgDnVV8tQT3gpgVkO7pWEJN/S78DNJqpkqbacFBioUL2sgssNHVobO3W+r1+Qdd+3GYkd7KBZsYxU3Ha/XYH9fXNxZ388KXV5P3haNU+kMA9EQXwaXobOX95utZB3zZ/FrKeLVcgAeUztya15LPnKGHM6cRpyMp8iOEEEJMnvSbFrkMYlo4PTEyBTbcHh1opQvi+O1DHLmlhLabdcWZstXdREa8uEhQ7+oAoHVwKalCO9X+HmteZhQPTeu3sz8VhDOgtGY/AAP7guAxqLb30LdCV1N1Eqd9pIG82XHGynVWc/QuH67Pxym7spuQOSZ0YF9QB05r0jD/sfET/xtYWL+TPVvMIPYeSN1QCKNgXxm3MpMdvnqieCjNC7N7yzkALFn9AJ3UEmQ/m0fWAhAoDLOweSdRPKznCf3csnrC8QA2V4ZmdMC6ceQimgtb6BysodzfBx4dTOaTIejaT4Z8kmY07CDFKJBqK+Sy9/0KgMN42PaFFYwlHfRcr5d3qblvF317y3Ul2hvNSHovei7sQfRfhw+ar/vXwG3o4HO32bYYXYF272TecSHefUqpOcC3gAsMwyg32+qBv0d/zpwP/I1hGMb0naUQQghxesmb7hMQQggxA2U/iZ3K22QOq9QdSqn9SilDKbU4p71GKfW8UqrL/HrW2+3LMIwjhmF8DL2oULatwzCMvzMM40ZgtnkTQggh/jQno988RVOBp+hpi1Nd4ttFsBIie/XSGgxD/pczNP1iu7VNHBf9w1W8sGk1cy7VEyED/gHiuGignacevlxvuCzN/pIgHnuUTF2+Na+zbEEPGWzs6Hova2qeBGBzx8XMr9/LgWg1zDIPVABDvQEYzWd+fU467uIkbHLAb64EIJM+DHthT+uS8aU5LkbvJw2pYw5r+ZHUqItQfpBVhc/SaC4/0k21VYBofaHOVg5SzBB+AB4zy7MuLWwFYOu+dcQW6O0vK3yMDupZ5t9BFA+XBXRWtYVmevbVs3LBJvbs0yflWJDERoYL3/cYndQC0BWuhVYHLEvivXfQur6Je4t0LudG8/VUouemzgK+NwLXFY5fjy8D/2JuA7oK8CPAGeb9jyHEVHgU+A66TnGuu4A7DcO4Xyn1UeBHwPsAlFJV5v1cGw3D+I8THUAptRb9Uz8MxKfu1IUQQgghAaaYHsuAoMH579OB1tOPvR9bXoa2ruXWkMuqy1/WX698meiYB4BaOgkRJIab4it7AV1Ep6u3niPHSpgTPIS3RM/h7O8NUlwRprimFzt6iOxf1f+MIfwcCNXhXanXxowF3aTuKGT+7Xs58FKdPvheoMQBZVjFgBJ3FOl1L4NYwWne+UcZ+8Zs7F8eITVcSPtYAwD2gjhXFT5EOw2kzKVC6unAQ5SNgxfR7H8BgCGKAWhrWc7S5ucAqCTEz1s+DkmwLdATHFtoxkWCEEGq6GHDTz+kT2BdmssWPISTOOcv0Ndy28gKEm1F9DWVW1VxFwY62FO3BB5yWK+n/6lq/T44oeA75tqhi316aPAA8HShrjAL+nUPA19kfEhsH9AAbH67N1ucsqahhzAMYyuAUspqU0oVA2czvoDOL4HvK6XONAzjVcMwehiv9zyZYzwDPKOU+h7646KXpubshRBC/FmTyAqQyyCmSdX6l+npreXpjvfrhjL0nMpZaTikfyx7rl0E/6wrx0Z262qo7Y0ZMmM2+qLlpKI6u1e1oIemilbatiynsiZEx2v1ACysaCeCl8yYjXieE4AwpexuOQfKDCLdep923whVt79MT7iaqrN1UNvjqYdRpdeBvEWf4px1Oot6ZGvJeGXZpcDNek3O6FwPAcK6ee4OdrCUOC7rfJxz4wxRzEf8v+DB164G9PO6B6tY2vwcS9GZyw7qaWrebmU7AXoeXkTee4/icieIuQpY+DFdKTeCl13ooPbANh0cX7jiMVqWn0t+fgabWYFnz61LdDDph0i/zpiSBoJJuMrBaJtPt/0D0IoOojdjLcfCbvDecZDI1nnjbT/kjQWPhHh7PqVUa879uw3DuHsSzysHDhqGkQEwDCOjlAqb7a++1ROVUncCdUqpu4BvAPOBq9CDmc5gfFaxEEIIIaaABJhiWoRH9JDUbHDirD7MQG+5HqZ6k06RHRitA0+aobCf8xt/A8DTu97P0sbnCM8NUD63DYDnf7AWlsKc5Ydo27Kc7Kog5Zf30TlYg98/xAB62KyHKLjBGwxTnqeXBWkLL2Ew7oe0jZ5wtX7yXkXx+l6Ghive8FtypN9P6fv2M/AxPU50bHg286/fS9cvGim7tpu2Xh19OSsSlBLGzxBVc/WaHxF8OEkQJoCzQI/KK2aQjN+GkzgvmGtjtm1bzsIVO4mOeYi06SC45spduIkxjJcM+XjRGcdy+ngqfBELAx3WMio9VFFr7yJAmEcfvAaAvE/p6rE9v18EdeYLehQWB3axe90542W1/cDN6CDze4zPTmuF9I02uBf4O7NtFbrK7MWTecfFKefklFsfNgxj2dtvNnUMw/gU8Kmcpv1I3l0IIcRUk2VKLBJgimmROL8Ib8tBFubp6rBbuy6AjwD/k+TAFp2Jy/uIDoqW0srG1EWAXpKkY6QeW36GuEtnJUs/uR8PUXpeq8K+eISlc3cA8NTDl1Nz5S66B6tY4dfLj+wZq6e4vpcG2nm6V++zrCJEZMQL0XzI178Spev3Ex3xsPh9LxKlCICh14px+qK6wmw2yMrAgZY6WJOkv6uahTU6s1hLJ34GeYa1NDG+LudhPAQJ0WmvtdqW0koEHz6zAq1nRZQO6inOG2LN2ZvNw9h0sLgECsqGraq6YQKUBsJ0Do4v25JEzwVNYWfx1XpN0d0d59BzcBEEDStfU7Ognd1d50A/48uxPAfcg/53vAH4kFlc838VR75VoofFmkNsaQ0Bfvicfh+4djLvvDhlzKxy633APKWUzcxe2oCA2S6EEEJMv5nVb04ruQxiehyFdNrG1kN6uQ5nyWGCL4bYs2sJC1frgCyFnZ7HFsHl0GBvB6CdBppcOwlRqbORQIABnnrpcihJQtpG+yw9ZLT4yl6ieKj0h3CYczBteRmGXqrg6f4KzHo8pCrsJPYUwdNQ+iVziZP6SrgfImf7GGgxq9q4gVkGTl+UjEd/RJU65iDPlqbR304aG6vNuiRRPHzrtc/pp83VS7FE8DKInxQO6tEBYhwnbSyhmEHCZkEeD1HK6cNLxCoaFCLIwqv1dRkaK6bNrDKUHVY78HQl86/Vmd98MnT9tJGVH/sdKTNynF+/l3L6iOJh9za9bEoXDfAfwBKsoNHeOULq0kLYil6WZLM5D2458AfgHMbnZX4mqAsB1Tkn844L8UczDGNIKdUGfBi9auuHgZ2GYbzl8FghhBDiNDBHKXU3sMEwjA3TfTKTIQGmmB736+GmHNIBTOLrRfTcZmNh40764uUAVLu6IQFBQjz9ez1XM2/RUUb9em5ie0oHkgH7AM7qw7gLY5TTR2dcB2rJlB2/fYgoHrqpAvSQVO/ZEfYcW8L5K/Sw29bUUnCD/eYRBrp0MFnVoQsLDTxVSd57jgJQdGaUyEXzSHynaHyA3VJwLzlMEgcx3GxjBaCDxODcEE3spIdqq81OijABXGbhSj9D1NJFD1W40YGoj2G2ja1gOM9LLV0ADKe81Nv34GcQR16Sw2bg+SyrGWipZM5Vh/AzBMAL+1bhvOowCVyExoIAOPMSbBtcQaU/RNkKPWS3/4lqnaVcB+giu6TaCnUxnzrg68BK83UOA+8B/tm8f5n5vD05VWbF6WWaPolVSn0XuBI9AHuTUipiGMYi9ODtnymlbgUOA9e/+2cnhBBCvImT128eMQzjppOy55NEAkwxPY4BexV49V3n1w+T2FPEHucSvIt1ddcwAZyXHKY1tZTz3vcMAM/3rsJLhO54NZm0ziLa7GmqCrvZ3XEOzvo4Xpeen5jCQQYbsRG3VU11975lOH1RmlZspyWu5zymjukqr+Vz+wjODQG6sFBftJyClcOM9usCOJFMPlwHpfX7GfhPM6tZDbX2LtzEiOG2MpNRPKSxsWHkcgKFuvBPE23sYCku4iTNzGIMN32U4yLOC2F9PksDrdTkdVHJfnrRwXatvYsUdrqpYnfXORSU6dfocsVZ3PwiAQaIozOJ8xd0Ek15iOIh8qSew+m9+CBL/G10p6o40loC6KJFRzz6e95rvi+3ADs3wQProBrMUbv6X/0zze8vM7+2AZ8D/tK8f0r96RPT5G0/hTUM47PAZ0/QvhfMicpCCCGEmLEkwBTToxXwQcEaHSh5XcO4mkPEcNP/ks74FZ/dS31hB2ECPN+7CoCmilYGzaU91hVuAmBLahWJURfeuoMceKqO8y80CwL1XgRpG8xKESIIQNWCDtzESOLA79LrQfa0LoIS6OmtJVrmASDSPY+lNc/RRzkp3wgA6ddtVF/fSddPG2Gh+Tp80DNWRWlemN3hRnpKdKa0Ka8NgDWFzxAyF44copiO1+pZMXebNbzXTpIUdrxEuDCwEdDDYYsZJI2NfDL6fHBTTh8RvKypedKqMFvMIG0sIYVDV+FFZ0Xz7RmSOFi8/kXrksdw66yxfokc2Vmi17J8kvHKsF8AHloHTvM9yravBLoB+qGpTLel0R8U/Oyt32pxCpv6YgWn3KewQgghxKRJkR9AAkwxXTxQcMUwo0/q7ODoLB8163eRwYY9qAO64UEvNn+GwcFi5lfoYZ1tLcspbu5ldK+PlrN1MiOTzqdqbg/l9NGyxmbNW6yq6MRNjHp0kArQSS1xXAyEA5QFdH0Q++IR6ud2UEDMGs66sGYnO8LLKA4MknpFDwMtbu4lMual7GPdZMy/IAMtldjzUvSlylkZ2IKLBABP7buM8xc8gY+IFSR6iHLd3J+zjRXW+dTSSRQPm3vXcX6FDjBtZMgnQwoHm7fpEq3FK3pxEadjpJ7iwkHrOCkcVNHN1pYLuLb5pwDsZAk9Dy7ivKufIWFmNbvj1Yw+4INqKF1tzjPdVgmLk3CXY3wFwU1AKTo7OYBVkZetwKXA/5ZZASqPozOc//iKvn/tWZN998WpQIoVCCGEEJMn/aZl2i+DUqoGnQPxAhHgesMwXpmwjQ34LnpBBAP4umEY90zYphbYCfzAMIxb3o1zF38CMzNWfGUvoIOqcDzA6G0+5t+ui9WMjrmxk2SZf4cVNJY27yeecoIvTdAcvxlzuel5rYrUXDvL7Dt4+mE9X7P0yv0Mxv14XRHSZkC4gm2ECbAs0EqfOfw0OHc/W7suwO4boXyuDjr74uWQthEkxJCzAtAB4mC6mP7+KooX6O3mLDlEPOWk3N6Hg5Q1t3LNgo1ksNFBPet5AoBOaojjoppunonr4kY2V4YYbpyemBW0VtPNlpTO2C5d8Zx1fXrGqvhA4SP0Um4Fwn4GGSDAJc0P85vUegDK7X3ccPVd9FFuvcbRQ15Yl4b8jLVW50C0EnY74GrgefN9+QjwT8CzCfhXJ+ZhdFD578AnGF818KNp6M6HOyWwFOLdJP2mEEKImWzaA0zgLuBOwzDuV0p9FPgR8L4J23wE/a/uWegOdadSapNhGCGwOtIfAY++Wyct/kQbYPQyH656HWAOPFYJaSi7vdtapqRq9cuAHkZajB7O6iFK22gT51U8S5hSQFdNLZ0bppghnu56Pwuv1NVWHSQJukIksVsFcFpoJpYqIGAfsIap9lFOTc0uq8gOgNMVp8NRzwu7VlttdpIcebIEliUZOksHnaWv7GfgpUrWnf00fgatzGQcl3X/u6nPAHC5fQMehojhJujSWcRqeojhxl6YpMg8n26qabC3EyDMhpHLAagv7OCyvA3W0NjsucZwU0UPPVSTn68zpbsfPgeu1NfFZi40esOCH3Hvwzcz59JhdtxnTrgsQA+RPQZmkhXKkxB0QJlTP5bVih42+yi6ABDAB/Ph+0DZW77T4lQln8TOZNJvCiHETCP9pmVaL4NSqhg4G7jAbPol8H2l1JkTys9fDfzYMIwx4FWl1KPAh9CLLICubfk4+l/mgnfj3MWfqIHx4ZcAQSAB0biHOcsPAbB/MMha/2ZaU0sJ2AcAHTReNncD21hBubkEnocoEbyksHNhzWPsGFuqd5kXIoGTw3jYukX/iC1d/Rwpu5094Xrm+A4DkJ+f4cAhH86COO5CHbg104LbP8rzyVUsrsgum+KAalgY6CDzis42uogzUBIgiocO6lnFFuslhQhyGY8Rsus5mDHcZLAxjA8fuuiQjQx2kgBWZdgYbrwkySfD3xT+J6CD4FaWUk0PISq5CD2cdhPno8v5RCnO00H40JUR67q0dS3X51ITovRKvbbn0ut1VnTHE+8FHzo7+Y/mST/igP+Hnpf5H8ANZns1sAcoB3OFFJ0/WQRkVymJn+B9FkJMKek3hRBCzHR503z8cuCgYRgZAPNr2GzPVQEcyLnfm91GKdUIXAR86+0OppS6SSnVqpRqffVVWT5NCCHeVPaT2Km8mVVklVKXIf5Y0m8KIcRMdDL6zVM0I3qKnramlDoD+DHwN4ZhZJRSb7m9YRh3A3cDLFu2zDj5Zyje1DDYl48w9CU91LTgy8Msc7XSSS1edGXZjD8fL8O47aOEU3o4rN8+xLOsIpmyE7fr1Fl27mJoLIg9L8XSvB0A9FBFT7iaskAf567WmcUXeldwfsVGYoEQPWO64qstL0NZoA8baWuZkS2pVeTnZ2iqaKWtN1tKFS6r/xXdVFvDa+M4KQ2EieNiLc/wg47PA+CtO8i5eS30UG2dX7Z67VP7LuPCBRus5+eTIY6LOC4ALmIjrSwljc0acrufIPV00EUt1XTz6NgVANTkddFOA1X0kDF/nTPY8BHRQ2/NCrhhApTTRyzfTftrev1QNqGrw24C1pov8F/Qqw1+Gp29/ITZ/gXgJ0CBAWnz98ysBMx3JvWOi1ORVJE97Ui/KYQQJ5FUkQWmP8DsA+YppWxmR2cDAmZ7rl5gPpBdcyH7yWwpUAU8YXaSHkAppQrln5gZ7nuQairk3NvNwK9rNZ01tQxsqSS+XAeOHnuUEJX0d1TTVL8d0ENKvUQI2YMMjOngK522UW/fgzMvQcvguZT79Y9PLV0M+7zEUgX02fWH+05PjG6qqKaH4jw9LzOFHTcxDuNhh1l9yG0fJZYqIGZ3k+fQQ1jHWmbTXVFNBK8V8KaOOVha2GoFdxfWPwboQj2D+Elhtwrt2EkRZD/nLngWvzmndAurWMtmhvFRjp6P2kYTRURxkaCP8QJDQ/hpoo1uqjg3rwWAEJU4zfA0iV7Ps5gh3MQIE6Bqbg+gixb1pctxF8YY3a4r93Ipen3LEnAu1sOFE74iaIM5Nx7iyEMlcIf5fm1CV5b1KXjEbDsP+AzwFfP+te/g/RdC/LGk3xRCCDGjTWuAaRjGkFKqDfgwcL/5deeEeSQAvwI+rpR6GF2s4ApgtWEYvegcCgBKqa8CBVINb+YrfVFXg+2I1wNwbs0WIniZv3ovkbh+Sx32FGECzKk+ZGUMATb3riPPkaTer7ON5fY+QlTi4TAOf9LKQnZTzUX2jUTw8fQWXVnW2XSYSkK000ATbdY+22lgoKPSCmS749Usc7WyueNiKNCFcqiDPbuWsLBxJxm7/oiqa3sj9as7+PnI9QQKw6TMIK+FZrPEjo1qdJA3iJ8IPmK46TbLs36AR2llKTbSdFEL6KVYzm3ewmE8NLALgCgewgRooRkXcWttzfX8hgdTV2OzZxjCD0ASOz1UUUUPHSm9YOfodh+MQqKuaPw35l50Nd86SCwv0m03Az+EIz8sgS+iZ2mBnuW1GfhqGvaafzYeR8/y+ptJveXiVCPFCmYk6TeFEGKGkn7TMhMuw83Az5RStwKHgesBlFJPALcahtEK/BxoBrJl2L9mGMa+6ThZMTUG9gXxBsMcuacEgBdmrWb+x/bqFSDTOnhroJ0QQfq7q4nX6+GjdpIU+KJ4XFHcZpnTdhoJEKaWTuK4rCGpXobpoZruVBXXrf4xoIO8TmqIx108dUhPA5tTNsgSexue+ih9YzrbWOvqZBgvHII179sEwDBefEQIE7CWTSle3cs2VtBU2EaYAEvYab3GFpqpoodOagBdvMdNjFVssYLJGG4qCTGI39onRVBOH8+yysp+XsRGOqg3CwANE0RXof312FVcZN9IF7VWYL2TJnPIrI3EqL5uK9/3O9pTDRx5soS85qMAjN08Gw6hg8c9el1NDjlhIzAHONOAbnP43G+AY5DnSDL2S/PPxgXANehMJsCXJv/+CyH+JNJvCiGEmLGmPcA0DGMvuhOc2L4+5/sM47PB3mpfX53SkxMnjTcYxpMXZeEndVC0Z6weNzFSOOiPBgH49fC1lC3ogVnj0362vnQBS89+jtBYkESeHkrrYxg7SbqpppL9DJqZPB8R+nDhs0esuYyDFFNLF50uKF+QHUrbiZsYbmIsydMB4jOsxUaGmvftYvODF+tz/tBBInk+PS/UXCbEQ5RB/FTTY60vCXrOo5M4IYLs7joHgEtqHubp19axZG4bNnNdkCGKGcRPkP3EzXKsV9Q8gJsYxQxSSxcAHdTjZ4iu12oJzt1vtY/muemjgiAhdprlXfPJ8HzLWjjToGqBvr5bw6sh6oBhGNs8W5/kWTqjm2gtgo3ZUrDoGpPnAe9XZOPlgs8MM1rnY2zdbLjO3O4fgf+BnESwOJ3IJ7EzlvSbQggxA0m/aZHLIKZFZPs87CtSbH1QV9qf84FDdByux+8fglH9Y9lUv500NvrBmrPIsA7qnHkJa5kSPdfRwSDFxCiw1op8P08Qx0Uxg1bGMDrmwZ83hI+IFSS20MxAbzmXVTzCTpaAebxhfHRtaWT+1XsBSOBioKWSQHOYfDNAtJEhQJgAYfYTtAK/DDb8DOEizpqaZwC91Mi1c3+Bh6iVZa2ih1aWEsNt7dNOkghequmxgs4iolTRg31ukiH8OMylTTpHamkqbMNN7A3Hrm/uMLOdesmSntFFlNV3Eynzktith8MW1A0zusEH7wX7WboYUGpzIXwYnFcdJvFoEXTqyz56mw++jJ6zech8E3vS8Hw+fOW3+v6tl/xRPwtiBpNiBUIIIcTkSb8JSIAppsuz4F4RY0BPEaTc3kdfUTlVdDPg0dnGOC4ChLliwYPWUFHn8sOECNJMi9XmIk4aG6Njbg4cqmRpoBXQWcQ2mrCRodaMlOrzOuikliZ28vTYOkCvl1lf0UEf5VbQOUgx9XSQWm3nQFcdAPNr9lLW3M3OwSZW+58FdGbxIjYyjJcM+dZw2BQOlrKDiNme5SZGD1Wkzb9AbTSRMKvHZj09to4b8+5hE+us8wG9rmaGfAbx04Geu9pc2MJ+gkTwWkNsh3ZVsLjxRRK4aI3rokULa3biZ5D+tmqyI3FHN/kgCFXNL9Pzg0W6cR2wGTyFURIPFMFt5sGHgVnAMWC52fbv+XAZ8DMJLMWkzVFK3Q1sMAxjw3SfjBBCCCGmngSYYlo4P3GYrqcayXuPng+4+75zqLr+ZR0kmXMwu77USPJ2XeHVQQqAhsJ2K5jKDnutpZP9BPHmRWgItFvtYQLYSeFnkM29OphcXLGTGG5CVFKVp4vvZLOjbWNNVmXZA/tqOXCsjoX1OwnU6KGvSRy4iFPr77SOESBMN9WsZgsbqaXADAjdxHiC9azlGfYTBHQG1EuEJHYqCQE6e6qrwCasa3NuXgvD+AgSImQ+N4kdGxnsjBcxymqkncN4WME2AB6pu4J8MvS9Vk7N3E7zNQ7x9L71rFz9O7a+ZK7P/j3gc9DTtQjzMLpkSAkMfKhSV4c9lHOgregAM1sepBr9F+QB8/71J3yrxanq5Az1kWVKhBBCnJ5kiKxFLoOYFon7iyj95H5cxAHoWbyInnA1VwQeYaBMB2/lt/fhJcIzg2tY4m8DdNDo4TBRPFTTDegsYhM7GSDAIH5rfmMEL+X04SBJaYUeTushSgoHdpJ6XiJQFuizhpxmv16y4BF++40r2TO8hPNX/waAp+9+P2tuepLW1FLK7Xp/NXTSRwWH8XA+m3gaHci+l23WUN1sMSIHKdppYJBiUjgAnX0tNgPcbCYzjpMUdrwMW9enih7aaCKJnU5q8KMD4WZaiOBlGB8buUi32V/ATQz73JSV1QwRhPwMPVTrTCTAKvTyI5uAu3LenPuh5le76Opo1IV+APYqvazJz4G/N4PhLzp1AHrVZN5xIYQQQgjx50ACTDE9noSBNZWgR7My55pD+OwRtrECb56eN1jMEEMUU+vvsgr3ROMePK7DDOO15hcGCeEgxf5UkGb7C1ZQZSdpDU/Nznl0kaCBdlLY+dvAPQD8pONTFNf3UpAXI2hmFjuoh+uSLA7s4pnBNQDk/eVRYrhZZ3/aGgoLusLrEMW00GxlFw/jMYfM1lrDXL1EqKGTp1lHpzkntJL91vzR7JzSKNU4SNFBvTW0t4OF5mqXTmrpwoNet/KekRv5QOEjpLBjN4PjDuqxkTa3iwJ6/meeI0lqzA4evZ3900ls+RkS9xSBniZKXvAoY8/NpuvWRkhD2e06y9v/w2r4AHpZk++YBYH+Gfg65CRfxelEPokVQgghJu/k9Zun3PQS+fdBTIuFj+2kL17O6LHxNS97di2CNJSfrQOtZ0dWYZ+VJGAfsAK3qMtDBhsOIlYBnBR2trECjz2KjbQVqGWwEceFjbQ1fFQXBLJTzKA1h3Np/XOECeAgZVVizZDPysAWRnEzNqirrp7buAUvwwDWkNZKQnSwkB6qsZOygt4O6slgo5hBK5PpIs42VmAnZZ1PJ7Vm0Z98K6tZTwdtNOEkziYzI3oVD9FCM5WECBAe32dB3JqruqPjvQBcVv8rOqmlkxqKzAAzioexl2eTXJ6gNKCH/EZeMwv+1IF52oyVOvQczSZgHoQHS/UD16HnXn4dKDPfxO3o4bEffUdvvThVKKRYgRBCCDFZJ6/fPOWml0iAKabFni1L9Hy+fn3feXac8xqfoWusxhri6i2MkMJOkP28MKYr8kf6/fxVxX8RpWh8X2P1LM3bQRQPKRzWfM0+yilmkBQOnn5NB2rFc4dwkKSGTmvoago7Teyki1prmOp13MejfAAncS5sfAyAp3ZdzrmNW+jDaQWxu2jAR4R6OkhitwK/AGHspMzqrpsB2MQ6qukhRJBtrLDOv543FhjaSRMBwgzjo5kWALqp5iI20kM1YQJWBnV93hO000AxQ3yy/psApLHRR7m1/ArAMD44Bn7XoHXcgbZK2At5HzzKWFIHt8zvwJvxElkzD74K+WeY1XKDh0m8twi60UNqAf4FHVx+37z/g0m99UIIIYQQ4jQmAaYQQojjyRBZIYQQYvKk37TIZRDTomDZMKNf9sEV+n4tXXRQT0FejBR2QA8pXUYrrSyzKr6WV/QRopLWwaWs8OthpufmtTCEHydx7CStCq87B5v4gP9ROqhnzdzNgC524yJOB/XW8NEkDnammnDYU9ZQ3OyQ1yH8dL2m50sWN/bSM1bFmrzN1jkGCRHBiz0na6r3aTeHshYQQA9JdZCkg3qaaaEVvXxINd30UY6T+Bva2mnAQ5Ris5hPiCABBsgnQww3EbwAtLKMZlqwk7TmdUbw0rZrOTRC35g+n0jbPBavf5GBsQCRdfP0Rf+q/jL28dnY79XrYDqTxUS2l3DZll+x4RcfItVWqDfaCtwGzoWHSSb0ax97bjbcwfiyJUIIIYQQ4s+eBJhiWoxu8sFi8K48CMCOsaUkjzkY7feRX/MyAOX0sZMmguzHZ04SrKKbH8Vv5gP+R7GRBvS6kUvzduAgyU6WWAVw1vmfpo0mAgxYx/USwUHSXPIjZR6nl5Tdbgaoui2DDQ9R9uxawmWNvwJ0MLc+7wniOCk2g9MMNpwkCLKfdhpYhV4fs4saSgkzQMAKeL1EKDXnT2aXRgkTIGjOq+wyA8Ry+khix0XCKlhkI0MbTbTTwHX8nG6qrW1juHEDT/fqKrJNFa0sbXyOzngtLpeuQnvJ2Q8TpYjdm+fBLfpaOJsOk2gtgkshdZcOJFNbC2ElbCj4kB4Ou1Jf45r3ddC1rRH7rCSJbj082XvFQSJ183TwKU5PU99DnHKFCoQQQohJk8gKkMsgpksdNNVst+62dS2ntGY/1TXdOHPKkh7YVUdlY8iqkPo061jn2mQW5dFtq/KeJYoHG2mW0UrcnEcJ0EA7m+LrWOvSZVJjuLGRIUiIIYoBSOKmlk4eeu0qquaamVL68DHMJY0PW/troJ02mqzKrABDFGMjg4MkbkatzGID7XiIsoJtDJkVcB/hA6TQ63pm91lOH2FKySdDE22ALhCUncOZ3V/QrDbbTAsbuciqigt66ZV2Gijw6fOqoZMELjIuG0mzcFAbS/AzSPH7ehnaUgFA4lGzwE9UV8gFGFszGzYD9+r3aH6FXgqm67uNUA1HNpVYx41cOk8vUyJFfsTknXKFCoQQQgjxzkiAKabHjyH+Hy691iJgLxlhFVvYxnvp36Kzc02rt3Nu4xZsZIigq82W04ebmDXUFWAYLy4SuEjgZ5BH+AAAXoZxM0qTa6dV7KaDejxECRE8rtps09w2q81NDDcxNnKRtXRJtoBPMy1Wddc1PEOISuyksJOihypAF/kJEyCG2xq62sAu8skwiJ9Sc9isiwQ2MkTxWMcBXdSngV04zdfYxhJcxHETo5kW6zhRPLiJsYxWAi69zxaaWctmkjisADW7JijAcK1uGxueDSWAF8Z6dKXcshXd9D+u18qcf9NeDrTU6RPywZx1hzgSKrGK/Mx/Yi8HPlsHa97pmy9OCTKXRAghhJg86TctchnE9HBCV289FOghmLb8jA4uH6xm4dU7dRsZMtgIE7CGlO4nyMBYgKq8Hmv4aDYYjOIhgtfadj1PMIifdhqswwYJUUU3Q/gJEQSwlhappZP9ZlsnNThIESBsDbl9atflLGzcyU6WcBl6dN9m1tCEDkzjOK1hu+00UECMTayzKsFGKcJFnCAhwujlP4bM9S8DhK3zyWCjmRbu4zrrvGvpwkGScvqwkbaGyLqJMYyXx1KXsc7+tNWWwWZlaEFnNVtZxsDXKll4q76+e5qayJsd13Mpzb8E/Vuq4WLAAQd+UIcZR8MwHLmthLxPHWWsXwejB75Up9fF3I1e2uTsSb3z4lQhy5QIIYQQkyf9pkUCTDEtar62i8iYl/ioHipaX9hB+2sNlF3dbQ19BZ01LGbQCiZ9RFibt5mHuIqBXZUALG18Di8R3MTeMLeyk1piuHlh3ypiC3T2sYFdRPARImhlDOM42ZZawdX2B61MqY00cVx4iFpLl3gXH2RPuB5vYJhnWQXACrZhJ2UNc11tzsHcxDqieFjLM1aRnzABWmhmDc9Yw2YDhBnEj51kzpIiXp5gPWvZbGVpkzjYxgoG8WMjQzXdVrufIS63b7CuUT0d5j5T1pIvbmIMhAMsvfU5drTo9TIXN7+IgxQ77n8vXGpe8CD6r8J29PBXc74mVwAXw9hHZzPnN4cAOLK9BPais6BCCCGEEEIgAaaYJl1djRTX9JIY9gAQK3RTM7dTf28ORbWTIoYbO0lWoCvGPstqnMQJEKa8UQ/5XMUWNrMWD1Erwwd6+CnAXy24zyqgk0+GHqqposcaPlpPBz57hBSONwyRdRHnoZGruKrwIQAuyttIOqCL/2SLDmWwkcKOjwiD+NllZkttZFjBNjZykVVZtoZOIngZxW1lTYOEaKMJL8OEqDTPO85SWoniseaehgiyjFYA4risLO0gfqrMqrMbwpcDcGFgoxVsPt+rA+E8R5JzAy1E8eBcqDOyux88B84x4GpYevVzgA6CB16qhFfR2UtzOmzBNcOMfsUHX4RMOpvuRP8FCb2DN16cOmSojxBCCDF50m9a5DKI6TEMQ90VOFfqYCccD2DLT+OyJ6ygyksMG2miFNFBPQAp7ISopC9ezgdcjwDwCz5CMy10UkuAMBnzxzpEEDcxyhkEdPDaQjNLacVBygpEkziwkSGFnQZ2AVjHvLHwHp4xJxnmm8WBXqCZK3gU0MuS2EhjJ0UtnQyamUkHSbMSbNyqLBsiyN/xIwbxW0Nk/QziJUI+GbwMAzBAgCR2c1apyzwfD3Fc1NOBm5gVoMZx8QLNeIjywcBD1jXyMoyfISIVOojue62cAGHaXmsiFdUBPElgt2LOBw6x41ad1aQacKAzmQXAWt08usGH9xsHiWyax+heneXFA8xCMphCCCGEEMIiAaaYHlGoWb+LYjMTN0AAJ3ESuOjZsgiAwGq9vEg07iFbGNZLhBR2al2dVvGci9gIjA8NzRbAcRLHQ5Q+yq2s6HqeoJ0GvESstihF9FDFGjZbAV026xggTMqsxLqEFqvozg6WAlBKmB6qqafDek72PH1EcJKwlinpoxwPUcKUWufcRS1eItjIWM8vp48O6q1qsNk2PTw2zS4aWGJWnPUyTB/l2Em9oZBRthBS2pwMcNncDcRx4p0bYSCklySZc80hjjxZwpGrSuAuHdTn2dKMfWM23AgsSsBzzuwLItI9Twed2aqx10De3x1lbIeek2l+BiBOJ9JDCCGEEJMn/SYgl0FMl2HoeqKR7qV6eYxl/h0MUsyBcCXnrt4CQHu8AVt+mlpXJ0Xm0iBJHHRQzzJaraI4eh3IGH4GieG2CvDooacRYhRYGb8QQWvobXYYaUe8nmWuVhI4JwSnh/kN660gGHSQmMBlLSmSwUYtnYSotI4PeumQ/QRxkCSF3Wp7llWUEuZZVgN6OZMOFuIjYu2zlaU008IwPms5E7uZcX2BZpaygxaazfYkFfRRQMzK8maH5voZZBk7APh110eoMtcXtQdHADiys0T/Bfg0rAzoa761dy3ckoRWB/yvk7wqc/mSL8+m6scv0/PPi2CTDkbnB/Yz8FqAVLt5cda/sx8BMcNJsQIhhBBi8qTftEiAKabHvcBtUOkPAfDCT1dT87FdeEuGeeElHXzNP3svS2gjaQZogLWOpJsYNeawV9CFelpoZgXbrCAxdz5mdvipjQw20ta6kAAul85KZrOGgJWVzJBvFR2yk8JHhAxRK5B0kKSeDtLYSOGwsohxnDhImRVjdQYziZ0m2ojjtLKifgaJ4CWDzQqY69nDs6yiiZ3EKAD0ENlsYZ8AYes4YUqxk2KAgDU02EaaarpJ4rCuRVlNNw20006DNfe0rLmb/qeqoUBnkAH4Xj4F/xZltMBB6er9VpGg/rXV9Px0EdwMfF2f+4FL66AujXnaQkzGHKXU3cAGwzA2TPfJCCGEEGLqSYAppselkFd1lJ6wXm6j9GP7ddCUB/FqnbXLBlE+IuykCdBZQC/DdFNtBY8OMyMZIEwUDx4r22knTIBuqnCYlWUH8VNOnzWXEXS12RR2yumzgrQAYTMDmaKYIUAHbl5zOZRaMxDNBrthAsRx4TMD2SQOBinGZw7pBV10KI6TKEVWwZ4wATLYcBK3gs4+yllGK3ZS1nl7GKLAPN92Gqzj63U1i4lSRCX7AT3s1kPUKkAEuphQiCDRMQ+pYw7rbch7z1HGIrOtdTl7LlnE6Ld9kIaBdCVs1tuV3r6fgX1BuF9hrpACBVDgi5K6IPsBQOHk338x852cYgVHDMO4acr3KoQQQkw3KfJjkcsgpoX9hhFSUTelC0IAxOJuQrOCNOW10TWq51Y6ClPWPMu+uJ6fuNb1DK0sI0CYKnoBiOCjng62sQIvw2RyxidksLGOp62s3RJ2mkV2AtbyIXqpkGKChBg0144cpJwG2s11OHVBHgcpPEQJELbmS0bxmGtgugiy38pswnhWMDs810XcWhdzk7nApJsYSezUM0S7WUW2nD7CBChm0Kpqm8TONlawhDa2sIqkWa22khClhEngsjKldlIM4sdF3JozGiJI21PLYXGSOT5dWCkx5mRs42ycVxxm630XAOa8zLoiGHVAN3CjAUA85cTuiXHurS1svUBviw9GN/v0WpgAF07+/RdCCCGEEKcnCTCFEEIcTz6JFUIIISZP+k2LXAYxLdKv2+BxxUBQZ+3wQ6B5Fx3U81eBBwA9JzJAGBsZoi4PoIeU+hnERsbKFgbNhRjL6cNHhGfMtTUa2EU5fbiIW0NFd9HAMnbQTRWtZiXYtWzGyzAx3NYQ2ewQ0zhO/OYQ2Qw27CTxErEymB6iuIlhI0M+GWt4rpsYxQxZcyhBD2ddzxNksFFlzqfU63ym2MhF1vBa0HNF22kkaA57TeDCTYxtrGAtm3kWvb5lGhvtNDJEsVUQqKu3noUV7biJWa8boPjCXhpo55nBNQCM7ZhNwVXDjG7yQZne5sgDJVAC5134DM/PWgXf1tfjyLoSeBy2fvQC5v9uLwAHuuqgFb1UiTg9SbECIYQQYvKk3wQkwBTTZGzHbJw3HLbuuwv1UNEgIfqoACBDvlWZ9Sr0Go/ZtS6zy3AAJHAyiJ8MNobx0kwLoOcyZoevZudbFpvBqY8I9XQAeuiqDlj196CLArXTiI00+Wahm3L6SOAiisca9uohas23rKXTKorTR7kVDGeDzuyw3CgefObz3YxiI005fVZV23YaWMcmwgSs884nQzFxs4hRtTV0dgg/Hg7jZ9AKepMVdjxErTmZAM+xgsyYjad3v5+aRr3WZ5enkdFDXugHLtXzWQuWR61rWlrRR+w2HcSPdvvgH4An4UBbHQArP/k7tl58AWwyD7J6su++EEIIIYQ4XUmAKabH48BK8BbqQKuWTp4Or4OALoYDOmPYSzk+IlbwlS1ck8FmZS7DBKiiGwcpXMTZyRIAVvEsMQoYIGBlEhOUs5QdhAmw1Cy0004DUYqswj6g19YcIEAam5UpraKHGAXEcFuVZR0kcRPDQZJB/FZ7Fd1W0JidB5kNAp3ErdeYXbezlLBV0KeeDrrNIDK7DmYntebSLJXEcDNsziltpJ39BN9wPbKVa9M5H6P5iHBgax0rV/+ObYMrdOMs4JjCe/NBIo/PA2C0zgc7oW2JDwqSLA6YwWiZnVSokJrP7qLrpUYAtv7iAuZfu5cD3677o34ExAwnQ32EEEKIyZN+0yKXQUyPakh0F+E4WxfacROjKtBN2hyWCjooqqWLHqqwm4FbEjsx3PRSbgWdtXThZ4gUdgbxW8t5bGYNQULsZImV1fQQxUGSVWyhyywg5CFKB/XmkFJdYbXHLJX6wlgzF+VttPYXw806NlkVXbNKCTOK28os7idIDDc+Iuwx16fUa1lm2MEy63y8DOMibmUfs68nTCkBBqy2NDaSOIjjpJZOa4mVAmJ4iOJnyMroxnFZlWaz2VMncWpW78LPEEVn6jaPP0R0zMO5eS28cKleVzOyfR5sgqart7NrsIHdYR1MLgx0sKdtiS6g9GnzNW/bz4GOOrhtsm+6EEIIIYQ43UmAKabHGpiz+BA9n10EwIrvbiM65mFV3rNWdi5DPjEKiONih1mq1EMUHxHyybCENkAPe22nwaq6mg1Qa+jERYLLeczKTA5STAQfgxTzfp4A4BE+wPX83Bp+C2AnyTOsoSavy8oMJnFwERtxE6PbDECD7CeOi1000Ei7Vck1SpGVwVxoDsXto9yap5kNKJeygxBBmmiz2voop5puuqm2XksUD0VE6aGKCD4riE7hIIHLCq5BD/Otp+MN1yKfDF1djbhq4sSiOiMbz3eRSdvomVtNfFRnSp2LD+P6UZy2LcspW93NEnYC8JvB9dAPwykvXKXfwoGWSjgC5mox4nQjn8QKIYQQkyf9pkUug5gWpWfvZ+CblVR992UAtrCK0rwwj3Zcw8J6HdRks3Tl9NE+opflaChsx2vOn+ymCtCFcsrpw02MFpqtLKKDJCns9FDFuWbGcBQ3ndRSTwe/YT0A63nCLPBjs+ZQOkixls1E8ViBWzl92MjQR7k1NxJ0QNfMC3g4TChnqZEoHtzErAymlwg2MgQJWc8fopgWmt+wLqceAusjQJh2czmSfDKksZnDdHVhINABs5sYThLWuqDZgHgza2gyg/AoHoprehnEj9ujj1OV18MLu1bTl1+Oq0AP4430+wkWhmClfl3PxHXBpLGDsym9fj8DD1fCxeYLn2VARsEt5v317+QnQMx40lEKIYQQkyf9pkUug5gWA49Vcu7nt+TMb+zDzyC7OQevWU01iYMh/CRxsL5QZxtdxMlgo4N6K5DUcyJTtLIMNzGrvY0mq5prdsirjYyVLVzLZkDPwdTDTAdxmnMjs8Fhds4nYBUWChKyigEFCdFCMyvYRocZSGbPM2UO5y01s6IpHHgZJorH2qeTOOv5DRnyrbU6y+kjgpdnWUUtnQDWXNDsEN7s8GAfEVpoJoabZewAoJMac98JK4PZ9t3llH22m2q6aT2ms8Ev3L8ayiDpt5O4v0if+KVp9nx3CQU3DtMVraXADEZ5HQY6Kllz5ZO0jOjhtIn+IppWbKfttuXv/AdACCGEEEKcliTAFNNi5eW/o4dq4ikdAGGHltS5eOsOsnXXBQAsbXyOMKVUErKCJj0/UVdjzc4vzAap2axhdqhpFd24GSWBkyp6AJ3VG6KYAGEr+Mpgo5pu2mmwqsMmzQAwY859zB7HTQw7SSsQBT1sN4IXL8PWvE4HSUoJ00e5dX4OUoSotJZEAV3QKIb7DcuMNNHGEMU000KxmcUdws8wXurpoI0m6zzDlFJLJ2ls1jVyM4qDJH1UWIWD1nz2SfrMeaujh3QgW3ZTNz6GsZOi9YN6yZax38ym7LPdROMe5vgO47Dr52cWHiaZsNMaX0ZisxmMtkLbjcvkr8jpbOrLrc9RSt0NbDAMY8OU710IIYSYTidnmZJTru+Ufw3FtNj61AWUXdjNke4SAI54ilgY6MBDlKHGKDA+9DU7HBQgRJBy+qimm19wLaCrxdrI4CBJA+200QToLF8zLdhIW9nFGrOAzkNcxef4FqAzi9tYwVJ20MFCAOrZQx/l2ElZGcgAA2Sw4WbUyjaCDjC7qSZA2Fr6pJhBuqjFzShtZlXbBtrNYbsOqzpsOw2U02dWwu2xXqONDE7iRPABsIl1NNNCiCBhAgyb7UvYiY0MIYLWPhO4qKGTejr4Se/fAbC4YielhNnacgGU64JJ4cFSUn47NjKMRWYDsPRjz7Fj3woYVcxv3MuBXp35pT8fPDD6h9kUX94LwFBZBXw0H+7PTsKUPyfibR0xDOOm6T4JIYQQ4hRyyvWd8h+hmB7bwXFhkjzvUQDGHpxN5LNequm2lhTZ3XUOmZqXrWI9MJ6lHMTPerNITzdV2MiQwImTuDVEtpsqMthwkLKWD0lhJ0QlV/GQlemMmwFZOw058yAL8DNIJ7XW/p5lFUtpJUypdT7ZJUrcxGijyZrzGKKSAmJE8bDOXCgyjstaG3OQYmB8vmQNnQyYBYKKGWIYL34y1vlcxUNE8BImQJCQVVU3O3S2hWZu5B4AOqing3oy5HNJxWMA/PabV+K88TDnNm/hhX/SC1aOHXQQuytFJm2DQ/pt2eFZBi8qaq7eRdeWRsyRuDALVtb/jr76cg783lyWpC6J/dEkqc2F+n7FO/8xEDOYzCURQgghJk/6TYtcBjEtym7tpue+RdgvHQGg6bNbCBFk42sX0TC3HYDFNS/iIkGUIivQqqbbzCwmrWGstXQRx0kaG1GK3rB8SRQPcVxWIKfbO4nisSq++s3qsxnyrWG32UI+AcK00Gw9L7sUSXaIajsNNLETB0nK6bOWCskdvpudN+klYg1JrWeP+XgBKRwUEbW2s5Gmmh6iePSyIOi5o2lsNNNCC83W0NcELuykuIJHrGJEcVwM4beG3ALM//xeInEfEbw4//Wwfu6wh2TCztjm2dRcba532VvP+Vf/htbUUi5c/RhhSgHY/ftzaIvrTKxzmX5+bWEn+1NBUssd5lEcCCGEEEKIP28SYIpp0d9VzQev/y96zEqwgxQTJEQbTVaAWEqYFA6GKLaqu3qI4iLOAAErs5jBhp8h63nZJTyyw0wH8VtDWnMDyCpzO8CaO9llzmNcSAchKvExTJD9gA4Qq9FrdWazn+X0kcCFkzheItb+XcSJ46KaHitItJuZ1NwqsBnysZNkEL+VlYziIYELNzFr/qefQfoo5zAe7KTeUMX2CdZb1wKgih4ChOmmiih6vmQ4VUqDq50wpSTMZUqIKoqCUbxX99A9qN8HpydmzQ996qnLoU4Pfy1+Xy+ZMRuR7nlcVvMrALaNrSB22M0c32HzyCVv/aaLU4t8EiuEEEJMnvSbFrkMQgghTuzkFCsQQgghTk/SbwISYIppsrTmOVpopr9FF5HxnnMQd16MNXM3W0uAPBr+AJcEfoOLOEtpBdCVZ3GRxGFl97LZPD9DhAnQbK55mR0CW0+Hld3soJ5aOvESsYazVpnDbj1EqaEL0FVbPRwmjQ2fORx2iGJr2ZBsli9ICD+DDON9Q1YxYt73ErGKDhUQI4IPD1FrmZI+ymmmBRcJK5sbpYghM6ObPU4GG0FCxHGa63GmzfZ8mmjDy7BVEKiNJjxErWG0AA12PezYRQKO6V/7y87+FX2U0zlSyzK/XuLkhY7VdATraXLtxHXhCzzVcbk+p9c8pEKFVJ39Mq3oZU6SxxzU+zvY/dQ5+iAXTuqtF0IIIYQQpzEJMMW02NHbDLvzocksVpO2kbHnE8NtBVUXBjbiIEU7jdbzsgFfB/Vsfm0NAJ+Z+12eYD0NtOMmxibOB/RyHRlsVNFtDUltpoVhvMQosIaz6iOO4iNiBbcp7MRxYSNtnc9SdmAnyTZWWM+1kbaGwObOmYziIYqHdM4yJ6WEGcVNAqcV/HoZJkwAB0mrimw31djIMEgxAQYArKC0jSVU0209fwXbiOAlhtsaRryCbSSx8ws+QgM6sNwWX8Fot4/Sxv1QoK95B/XEcJNoK6J8tbmmaP1OUtjZMbKMqsJuCoJ6TdLR7/mwf3yEnm2LOG/FMwA8P7yKDkc9c9aYFYJkiOzpRYb6CCGEEJMn/aZFLoOYFjUVHXSlG6z5e9X2HpLY6RqrwZanA6Vy+uijnGq6reU/hvGSIZ+1PMOWuasAXbG1iTZzCZGYVaG1kpC1XmW2Mm0f5TSwixQO2mkAxov8uIlZWU0vETLYsJOi1sxqZpcY8RBlNc8Cer3MXsrJJ0McF03sBHQGdBA/DlL4zbUsY7jppJYG2q1qs9lANFctndhJYSNtZU/DBNjEOi7nMeykrKB3IxdxERtpp8GqQpvASSlhGmi3At7Rfp3djMXdVAW6rfMZerAC3Fhrgva8VsWauZtxFsYJxStpcOkA9fnrVuAsiFO+oo/2uL5u11bcxy96r+fIdr3ECavfwQ+AEEIIIYQ4LUmAKaZF1zcb4R8THGEOhuFE3VcCPwd+ZMAsnW0cilbALIM9o4r9jUEADtxeBwXAGjCTiIyudBP5/jwKbhzG7YoxUF8JQFvHEga+Wwl3wZw2nWVz2FP85OFP0XTldutcNsXXMdrv45Kah/nt76/UjfngXXmQyK/mYS6NCW3QdP12ihni9pF/AaCpsI0UdjOw9VuZzWywu21kBUsL9fDeBC5sZPjP+N9wtetBADazBhsZktjJNzOQPdsWsXiFrqCbzUo+/9Ja8KWJVRQQilcy2q4DxprmXbTTQM+2ReRVmUu+RGbDVuDvgD+Y574ceAhG3xNm9IuN1mvkt/p1/fZ/zNd9CJ7aczkc1O3P37xWtz8KR2IlHPlECRzTTb849DFIgBkDS4B5upFPYoUQQojJk37TogzDmO5zmBbLli0zWltbp/s0hBBiyiildhiGsWwq9rWsSRmtv5uKPY1TxUzZ+Yl3n/SbQojTzUzvN+HU7DvzpvsEhBBCCCGEEEKcHiSRK4QQ4oQMKbcuhBBCTJr0m5pkMIUQQgghhBBCTAnJYAohhDiOoSAjPYQQQggxKdJvjpPLIIQQ4ngnp6Oco5S6G9hgGMaGKd+7EEIIMV0kwLTIZRBCCPFuOWIYxk3TfRJCCCGEOHkkwBRCCHEcQ0HaNtXT9MemeH9CCCHEzHBy+k04FftOKfIjhBBCCCGEEGJKSAZTCCHEcQylyORPdReRmuL9CSGEEDPDyek34VTsO6c9g6mUqlFKPa+U6jK/nnWCbWxKqTuVUj1KqW6l1I05j/2rUuplpdQflFI7lFIXvbuvQAghTk8Zm21Kb2JqSL8phBAz01T3m6dq3zntASZwF3CnYRg1wJ3Aj06wzUeAauAs4Dzgq0qpoPnYC8A5hmG8B/gY8KBSynnSz1oIIYSYHtJvCiGEmLGmNcBUShUDZwO/NJt+CZytlDpzwqZXAz82DGPMMIxXgUeBDwEYhrHRMIy4ud0uQAHek33uQghxOjNQZLBN6U386aTfFEKImelk9Junat853RnMcuCgYRgZAPNr2GzPVQEcyLnfe4JtAK4HegzD6D/RwZRSNymlWpVSra+++uqffPJCCCHEu0z6TSGEEDPaaVPkRyn1F8C/Axe82TaGYdwN3A2wbNky4106NSGEOOUYKNKn6CenYnKk3xRCiKkj/ea46Q4w+4B5SimbYRgZpZQNCJjtuXqB+cCL5v03fDKrlDoPuB/4S8MwOk/+aQshxOkvM+1dhDgB6TeFEGKGkn5Tm9YhsoZhDAFtwIfNpg8DO835Irl+BXxcKZVnzjO5Avg1gFLqHOBB4CrDMF56N85bCCGEmA7SbwohhJjpZkKYfTPwM6XUrcBh9HwQlFJPALcahtEK/BxoBl4xn/M1wzD2md//AHACP1JKZfd5nWEY7e/S+QshxGknW6xAzEjSbwohxAwj/ea4aQ8wDcPYi+4EJ7avz/k+A3ziTZ5/zsk7OyGEEGJmkX5TCCHETDbtAaYQQoiZRz6JFUIIISZP+s1x071MiRBCCCGEEEKI04RkMIUQQpyQfBIrhBBCTJ70m5oEmEIIIY4j63kJIYQQkyf95jgZIiuEEEIIIYQQYkpIBlMIIcRxdLEC6SKEEEKIyZB+c5xkMIUQQrxb5iil7lZKXTbdJyKEEEKIk0PCbCGEECd0EooVHDEM46ap3qkQQggxE0iRH00CTCFyDCoFwHPm/QRQaH4fB1zm96/nfHWhf5HSvPEXqpA3cuY874wJbWfkPOY07zsnPN//F+Y3m43Jvhwh/miynpcQYjJe9+h+88kj5n3G+78E431Zto9LA+6c70H3nWeY7bl9aaH5vIlt2f1mn++eZT42G17PNgJnXG5+c5/0m+Lkk35znAyRFUIIIYQQQgiBUmqOUuqnSqm+nLagUmqPUuoupdTX3m4fksEUIkf2g8+RnPsJ8/t8IMaJf2myn6ZmM5Ovm225mcjsp7C5n7pms5dn5LTFzG1GAH/O/oV4Nxkg5daFEG8rbXZeI+j+McF4H3oGEGG8b8wV542jeWLm83L70gTjGc/cDGg245lte+2Yvv/aMZg3Z/y8TnRcIU6W6ew3lVJ3AB8EgkCDYRi7zfYa4GeAF/3reL1hGK+81b4MwzgCfEwptWnCQzHAAex7u/ORAFOIHNnOKhscwvgvSTYQzA32skNjJz4/u11uB5h9fOIv3RnoTvVEx3vN/N4JMDT51yGEEEK8G17P6K8J3th/Yd7PBp3kPBafsF06Z7sTBYVpjp9iEp+wbfZYr5lDdZ2zwBl+Z69FiFPYo8B3gGcntN8F3GkYxv1KqY8CPwLeB6CUqjLv59poGMZ/nGD/BwzDOFcppYBfKaU2G4YRerOTkQBTiBPI7bSyAWTuXJKJj2W/z81WTpyDifn4xP0k0J/Oxsz7c3P28YaOds4kTlyIKSPl1oUQkzcxuATdr7knbJcNFPN5Y9CYRvebE//q5DOe2YTxYHVuzveFvHE+p0X6TfGumr5+0zCMrQDKrCVifl8MnA1cYDb9Evi+UupMwzBeNQyjB1g3yf0b2a9KqSGO/9V+A/nvQYgcbzecJj3hfjYjeQbHZydfn7DtxCJA2W3O4I1Db19jvNBBlvNEBxfiJJJiBUKIyThjwp+JiX3fxCkeaY4fEZQ7JDaf4zObE03MikY4/kPddBrpN8W76iT2mz6lVGvO/bsNw7h7Es8rBw4ahpEBMAwjo5QKm+2vvtUTlVJ3AnVKqbuAbwDzgeuBDBAzDKP9rZ4vAaYQOeI53+dWdc29n5tZzM6nzM1ywvinsbm/YM6cttw+b2JwOrGKnkU6SiGEEDNMIjn+fe78yOz9iZlFN7qvzA1Ec/ve3A96sxVjJ/ab2QDTnbPdxCGz1gkIceobNgxj2bt5QMMwPgV8KqdpP7B5ss+XAFOItxGbcH/i8NnXGS9KMPGT24ltE4PV7JDZ3M4zm83MHWYrhQrEdJAMphDi7eRn/5NMv7GOQdYZvDHozC3ccyK5hfByh8ZO7DdzM6DZ+7lTVZyOd/pKhPjTzbB+sw+Yp5SymdlLGxAw208qWaZECCGEEEIIIU4jhmEMAW3Ah82mDwM7DcN4y+GxU0EymELkcJlfc7OOucuUZGU/Xc39pBXeuEyJc8J+sp+2TizBbn3aOuF4E5c4sUrKCvEukDmYQojJyGYK08fe2LfB8QV/YHzJkYlTQbLZx9xKsifqN0cYH90zsd90oqvHgq5u65R+U7yLprPfVEp9F7gSKAE2KaUihmEsAm4GfqaUuhU4jJ5HedJJgClEjpEJ93OH8eTOs8ztNHPnYWY7u9yhOtmOL4JehAiOr5yXrZKXu8/ssTAfZ/Y7eilC/EkMlKyDKYR4W9llQbISjAeA2ZoFuUuYwPEV1bNLjGSnhmT7wzi638ztc3P3lzuFpdB8fuyYeYx8pN8U76rp7DcNw/gs8NkTtO8Fmt/t85EAU4g3kbvuVtZxS4dMaJu4fT5v7EDj6CzpieZl5u5j4jyWuQghhBAz2+sTvmY/fJ34z2b2A9jcJUtyP8QtzNku2w/mzsHMzWhOPHbE/OqVAj/i9DFHKXU3sMEwjA3TfTKTIQGmEDnyJ3yf2+llh73+/9m7//g27/re+68rUiWsRI5iuXajotTGbtyaOnOIwSyQnpYGwgLt3UK27pTRAQcKg40Du9nNzhkDBuMcOPwcA27o2IAWOgpl7d2MsrCU5rQsw8UhPnXn1MHGbgVK7VqJYiVypUq57j+u6/r6sqykbuqfyfv5ePjh+PIl6bKd5OvP9fl8P58zjRvxzvXmWnrt2GF6QQ36Hu9ffCu71vpnZT7jnSyyiDQHU0SezQX+BY2ZlTswvY5WzpH2ZzW9oNJr6lO57lZbN2F2R/caKra6aN2URbZA6+Zx27ZvWYgnXij67UHEp3ItqvzYK+nx7/eozFp6j6tW5uovja085pXi5pi9t7MGVOojIiLLzlTFQlltBnQN02WvjZw+7vPWTW9sSYTpLGa1ddPLdHrzo2sqHqt1U2RpKMAU8am4ETvjDmu1Zj45Zv4jqhZsegtmtTu4/myoP2j1FlD/gkoBkUWjJj8iMhc17iLmBZr+ddBb47yyVnCCwWrZTP+caG9d9LaVwMy12MtoeutmlCpjwYLAybP4gkTOktbNaQowRXwq93pUqlz8vDurXnOByuY//v2U1bKd3uP8A6O9LKm/JMi8mMgi0UIpInNRmcGsvJnq7wTrfd7rBOsvdfUC0Wo3c/0lt6aZD9P9CXJMd6c1zfS0Zsoi07o5TQGmiI9//2Pl2uQfGeLPNlbeNYWZjQsqF9pnmH33tvJjj/91KJ/hwkVERJZQsOI9VG9eV+M7x3/MXwrr30cZ9J3jV9kkyHs9rxS3DlT5I7JEFGCK+HgBnddBtrJLnVcy6w82L2B2kHlBxWNgeg+KP3j1v/cvkJULag60l0QWncaUiMhceetm5Q3ayt4DXhBZy0xB3zl532Mmmd6L6X+tSv6GP97rsHbOly8yL7RuOlYt9QWILGf+oLEyuITpwNJbMKeYWcpTuSD6A9NnmF5EayrechWPrQF42n0TERFZhvzd1GFmMOlt+/DWzcmK82D2eJPKMWBeaaz3Wt5zejdwZ40AO+G+iaxsay3LutWyrGuX+kLmShlMkdOozDJ6DQUqA0Xvc/73Hn8JT+W5VBz370+JUoX+tcoicvaS6C+diJyZf23z1kh8x7zAr7LE9YLT/Nn/v06J2ZVE/teM+j6uzIiWKp9MZIEt4LqpMSUiK9np9kLC9ELn3xMCMzOXlQuh/zyvbKiygcEFzAxEvQxmHdN3dS+A6jVBIiIiS6jWXehKVdYo74asv7LnAt+xyhus/tnT/uN5ZpbA+p8Dpmdo1jG7JFdEFp8CTBGfal1k/YtV5T8YbyH0Fjz/81QeqxwcfSb+/ZrmGvSvVRaRuuGJyFxMVhlP4l83vbLZCyo+5x9d4mU/K7unzyp59R2PMrNCyLs5639OrZuymLRuTtM/PRERqUoLpYiIyNxp3XQowBTx8e58nq60xj/Ly3MBM++awswh0P7usN57/93dvO8xMF0e62+WUAKVyIqIyLLjlcheUGWN8vZg+tdHL5tZWaXjZTv92038n/f3Qygxc931z49+xndMjfFEloYCTBGfam3Qq+3nqAxAvVKfah3w/CNHJpleRM/0XJWBbBA0B1MWlY2ldusi8qyecRfLIE7Q5w/yqvECQX9Xdv966S+n9W7CVm5RqTZHs3Ld1B5MWWxaN6cpwBQ5g9MtWNVGkfhneJUqzofp4NLLbPofE614TpjZFU8ZTBERWY4qu8ZWVvRUmxV9pkY8/l9MJ30f+5veBXEqffyjTrxrqXP/nAcoPOvli8gCUIAp4lM5UqSyqYDHX/bqlfb4O8T6765Wnutv8uMPWP3lsFGmS4WM1c/pSxF5XjSmRESei8oxXjBzhEm1YLLyZivMzGB6lUFTzB5DMsn0uul93n8D9xnQuimLagHXzbWWZd0K7LZte/dCvMB8028PIqdROdOrWoayxMwZmFMVf44yO3D0P2dluSzM7IA343Mnz+7rEDlbalYgIs+FV+LqrYX+Elh8f/bWN/8eSu+mai0zg8Ra35+956xcN70buJWdaTl+1l+KyFlZoHVTczBFVrLKALLa52D6H46Xtaxsw+4toJWlQ1MVjz/dPpXKeZk1AOEzX7uIiMhiq/xFsnJW9Jn4q3T8FUSVlT9+1dbnamtqDcDaOV6IiMwrBZgiPv47pF45a+VMrsrmO15zgsrSoGp3WCtFfM9T+RpeBhS0/VIWn+Z5ichc+LOV/uylp9q66R331FS8rzzXX+3jZT/966Y/8zlj3qYWT1lEWjenrVrqCxBZjrw9H5WLHUyXuHoZS/9i55XnVFtA/SU/3uO9ESX+NbByETULaeUEahE5I8uy1lqW9Q+WZaWqfO5blmV9fSmuS+RcVGJ69MiMtYuZ66a/B0Hlm/c8+B7nlc56N31LVc7zP6e3VEYAXuC+iciiOuOvq5Zl/a85PMekbdt/PU/XI7Kk/HdiK5vsVO4p8XiBpv/8aqWv/mxoZcbygoqPvX0nM5oOqRueLKKluhNrWdZngDcCTUCHbduPusc3At8C4kAGuNm27V+e6bls2z4OvM2yrL0Vr/HHwB7gVQtw/Vo35bziXxu9rSDPVPmcX7VmQJXH/M9frQzXv256wau/78EkcLF6F8giUgZz2rNlMN+M01rkTG83L+QFiiwmLwM5xcxFEqYzlJVBZ2U5bRAnOKyszPGCUK+MyN/oJ19xrn+hriw3ElksJQLz+jZH9wBXAo9XHP8q8GXbtjcCXwa+5n3CsqwWy7L2Vrz9WbUntyxrC05yY/9z/HbMldZNOa946+YkzogS/5rlrZuV1Txewzv/GldtXJf3/P4u7DB9Q7da6azWTVlK871urtS5ms9WcPdj27b/6kwnWJb1onm8HpElVZlJrPzYH1B65/v3bVY29fG/957D/3HE9zreY73nqZwlJnI+sG37pwCWZZljlmU1AC8BXu0e+kfgS5ZlXWjb9lO2bQ8D2+f4Eq8DksAngJdYlrXNtu2H5uv60bop5xl/eap/D6Sn2nYTb72r9Z1TWT7rf7x/RIm3Bvsb53n9CrwSXRFZWmcMMG3b/sNne4K5nCOyUvgHOXtyvj9XNiLwB5yVGcvKch//vC6Pl7n0t2v3As46KqzMm1iyQi3QPK96y7J6fR/fatv2rXN4XBL4jW3bZQDbtsuWZaXd40+d6YGWZX0ZuMyyrK8Cn7Jt+2Pu8SbgQ/McXGrdlPPOpPvey1ZC9XXTvx/TPwPa/zn/WBLvY+81glUeU7kWz1o31X1dFpHmR0+b83fBsqwI8EL/Y2zbHliIixIRkXPShG3bXYv5grZtvwd4T5Xjo8DbF/K1tW6KiMj5aE4BpmVZ78UpJzoKnHIP24DKfOScUnmHtHIel3/viHfM/97jbzbgP9fLdvqHT/v3fcLM/ZdB3zHKZ/c1iZyNZdasIAVcbFlWwM1eBoCEe3xZ0rop54vKbKR/7fK2kdQye92s3Fbib27nHQ/6zvOPH6m2blaW6NaAmuPJolrAdXOtZVm3Artt2969EC8w3+aawXwf0GbbdnoBr0VkWfMWtRwz51NW7tX0zj1d97xq5/r3cgZP85zL53d9OV8slwDTtu1xy7L6gP8MfNt9f9C27TOWxy6x96F1U84D1caL+IPBC3DustT5jlXrtO6NObmA2TOgvQY+ML21pDLA9M+ONlQiK4tsgdbN47Zt37IQT7xQ5hpg/lqLpJwPvL0fQWZ2eYXpPR6Vd129hc0fJHpNe4LM3pvp5/0DzPteu7JbHs/yHCLnEsuyvgi8AbgI2GtZVsa27RcD7wK+ZVnWh4FjLP9OrFo35bwQdedM1jw9u3trtSodmK4E8q+v/qC0WhdYb02MuO/9N3s9lc8jIktjrgHmR9yB1PcBT3sHbdu+b0GuSmSJeM0KanDuuMLMLrH+bq/e5/zNDPxZxyBVspAVxyo76XmPqzzvGVCJrCwqG2sh2qM/a5mPbdvvBd5b5fhjQPd8X9AC0rop54Wj7t9ub1SJf+063bpZGUD6K3385bT+buz+udAXMLuzrBdczugsq7uzsogWaN1ckeYaYF7rvm1k+tdcG2fhfF7mMjzb3W/zReC17ut+0rbtrz/b50SeK3+pT7XgcLLiPP+iWJnBhJmlrnXMXjT95/nvtlbODQuC71dUkRVrxZX5PA9aN+W8UC0L6Qly5nXTWwu9ih9/gAjOX/A8M+ddeo+rXDe9/ZszSnZPzv3rEJH5M9cA8wagybbthZhd6w3P/rZlWX+AMzz7VRXnvAloBS7F+f/moGVZe90ugGf6nMhZ8Zr7eIsezJ7TVe0x/gW0ch+llxH134n1VGsS5G/BfgHAC+Z8+SLPm9qtP29aN+W84P9fwsskVls3/ed5N2SrbTfxr7EZZpe8eh9X/u/kfT7qP0/rpiwirZvTVs3xvF+xAOXsvuHZ/+ge+kecwdcXVpx6I/B3tm2fcps63AP87hw+J/K8eN1cvUHPlZnFErO723lvJWb/o/F3ha3W/Me/cM4qkRVZZGUC8/p2ntG6KecdrxletXWz5HurvAHrL5utVtXqrbOVmczKj70eCWb9DaAGebKo5nvdXKlr51zD7F8CP7Es6x5m7iX5yvN8/bkOz94APO77+An3nGf7nMhzUplq8Jf8TDKbt5hW+y3SvycEZmdE8X3uAmaWzVZ25QuCuuGJrCxaN+W84K2Nz/g+rlw3K4PJym7p/nWvcjwYzFw3/Z/z37St2txHySSRJTHXf3phYBjo8B2z5/9yFpZlWbcAtwBs2LBhia9GliP/fhCPvyyn8q6rf3GsLO3xlwl5H3tNCSo71FYunt5z+UeXaC+JLKZlNgdzJdK6KeeFav0KKtfNyvMrg8Ea38f+z3ujRyp7HASpXiI765dazcGURaR1c9qcAkzbtt+6QK8/1+HZTwCXAD93P/bffT3T52awbftW4FaArq6uFbfQy8Kr3ENZuUfkTPzBpX/PiT+Y9ILOM7VRLzG9h2TGHkzdiZWVb8UNiz5bWjflfOG/0eqtadVmYnr8nWH9N3W9ta9yLrS3j9O/BJZwOrj7H+/N2azWTEhEFtcZ92BallXZNOCszjkd27bHgT6codlw+uHZ3wfeYVnWKnefyfXAD+bwOZGz5i9P9TfcqYzzqt299RbFXMUxr4yn8u5r5d6Sas9JGJXJyqJagH0kx23bvuVcDi61bsr5pjJQ9B/zOrtWBofVeNtK/NtRLmD6Zm2E6RmY3vmVvQu8vZfm5u1q901kkWgPpuPZmvx8zrKsGsuyIqd7Az77PK/hXcCfWJZ1GPgT92Msy7rPsqwu95zbcRom/BL4GfAx27Z/NYfPiTwnU763SqWK9zCzVXplNrKGmUOgS+7zes0M/K/hLcD+znv+pgjP4PtARJYzrZtyXpl036qVqHp9CKqtm/6mP96xWqYzkd7jvQxm3n3zf86/bvpv6Hqf17op54i1lmXdalnWtUt9IXP1bEV3m4ATgFXlc7Z7/MnncwGnG55t2/ZO35/LwB+d5vGn/ZyIiJwdDYw+a1o3RUTOQwu4bq64GdJnDDBt257rGBORc4K/DNZri145lsR/nnfM36DA+3xlRtPrOOsvf/X2jfizmTW+9zNKZdWsQBaR5nmdHa2bcr7xl636x3Z5Khv5+PlLa6PMbo7nf5y/d0G1dTPoe2+oOZ4sIq2b0/RdEPF5tqF1/vleMN0VtlonPO+9v+FAtc55ldU7z/iOe5+LIiIisnz5x2v5O756De7861nlXsmaimP+G634nsM7VrmNxSvP9Xdzr0VElooCTBGfandeK4PCyi6w/qxmZbBY2czHv+hC9YHT1baLTIEa/MiiW6nNBURk8XhrnLceVq5plXsz/cHhBRXHvfW1ci32B46nqwbyGuj5n/9irZuyyLRuOlTKI+Ljv3sarDh2ug6vXhDpPa6GKmU6TGck/V1kq5XSziqNdY9Rdt9EVq4V16hARM7Mq+qpZfa66alc0yqDSG/drNyW4gWt/o6xtUwHkd6xKNNbW/wdbLVuiiyNs85gWpa1yrbtU/N5MSJLzZ9ZrFa6egHVM47+7q9w5r0m3mP8/IGmP1M6gzrhySJaoIHRK65RwXzSuinnIn9m0T/32TvmrZv+ddF/HJwOsF7pbGXgWfI9xv/Yyhu0U1XOE1lMC7RurkhzCjAty7oDeIdt2yfdjxPAPwL/aQGvTWTR+Utrqv3jqAwuPV5W0n+ex2ud7mU1vbus3uMqX9efAfUHvCqRlcWkLrLPj9ZNOV9465eXaay2xvmDS28/ZU3Fce9mbQk46h6LMp2l9G8xqSyF9WdA/VlUrZuymLRuTptriexhoNeyrE7Lsn4H+Hfgmwt2VSJLxFukvFmV1YLGIDMDRa/zXWWC0b+wem/+uZZnusvqvxNbbbaYiCx7WjflvOAPFL25l55qM6KnmF43/Z/3r3NR981bj/PMXA9P26uAmdtRRGRpzOn3Vtu2P2pZ1r8B/wYcA15t2/ahBb0ykSVW2fnOyyj6O+TVMLO0x8+7Q+v9I5tkeo+K/w6rd8fV/zre4z01oDElsujUbv3sad2U80W1tc9bv7xeAzCz+7q3bnr8N1z9fQi88yK+c/xra7XX9tSAxpTIotO66ZhTBtOyrCTwMeB7QBr4E8uyQgt5YSJLzQsoK5sPeEGhP0PplcGWfG+V+0O8j0sVj/d4zz3le/yM88Ko3EdkhdC6KecbL7voBZXeGuYFnP5SV/+6Cc6a5wWO/qDR+zhf8Zz+1/TWTe987xouAK2bIktkrmH2vwH/zbbt71iWdQHwGaAH2LxgVyayBKo1DPAvZpUd7vwjSvyP94LJCyrOeYaZgecFFY/xjnlzvmbc+VUnPFlEalbwvGndlPOCfz2b9P3Z4wWJlVtOKpvh+c+rnI8ZYWbgWdlQzws+/evmJHDxc/tSRJ4XrZvT5hpgvtq27UEA27afAf6rZVn/18JdlsjSqDaKxN+kp/JzMHOvh78pT7WgE5zmBdGK873H+N/779Sq4EIW2wItlGsty7oV2G3b9u75fvJlRuumnBe8tc1fDutfNyvLWP2jRPz8Qae/SVAJyOCOHak4xzsv5zt/xlqtG7OyiBRgTpvrHszBKsf+v/m/HJGlNaP7HDP3c/g/X7lf0n8Ht1Kt79zKznfeY/xZTf9ifaaxJyIr0HkzpkTrppxvvDLYSWb+cln5i6Z/u0g1/iARZt/cvaDKOf4tLf4OtPpdX84RK+7mrBIjIj7+stjKvZb+bq6VXfGeYeaQaZgOECu76/mD0DyzR5x4/CVFQdBCKYtOd2JF5Nn4q26qdZH1d2b3n+91YYeZweOU77i/EZ7H6/BeLYj1Z0EjoN9yZdEt0Lq54m7OznVMiYiIiIiIiMgZ6d6OiM/pSnZgZgOCyvKdypmZXke8WmYL4t5ZZTqDWe0avOcF7SWRxaeB0SIyF/6KHn8fAnDWQK+Sx18NVG1vpvc8/vElXo+DCDO3qPg70vof7183g6DxXrKotG5OU4Apchqnm2vpL10tVTnPU7n4+RfefMU51Up9/I2CVCIri81pVqAlQkTmrnJv5SSnvwkLs2+wVs629PcnqOzS7n++altZzJgSkUWidXOaSmRFfLxW594iVS1A9IJMf6DpH0eC77i/oY//Ob27r/6g1Xvzjs/6L6qMspgiIrKseOumt37552FWWzfxfd6bYwkz10XPFDPXSv8+T/+6GWRmnwMTuJ7pLrCILBiF2SJnUK17a7Xgz7vrWjkXs9qoEX9m098IyDvPv3jOeJ3Vz/nyRZ4XNfkRkWfjrXvezdNaZmcbZ2UWmbkW+psB1VScW1l2653v34KSY+YNXGPNWXxBIs+D1k2HAkwRn8p26JPMXKy8xatyTAmn+dh/N9a/eHoizAw2/a/tz56WAE4+6+WLiIgsqjr35mfNSWet8q+bJWZ3gq021sv/58pxXs8wc630Alj/euo9/6xKouPP/esRkedPAaaIT7UZlc/lY4+38Hn7T/zHKs+rLK/1L74z9mAqgymLSAOjRWQujro3PysreLxjleWxp5vrPAXU4WQj/ef4x4ZB9XXTe7yXQTXWzulLEJkXWjenKcAU8Zl033t3Qv17SPylsdUWOv/d08pMaKXKLKW/o573PLPmY+pOrKx8K25YtIicmX/dpOLPOd/HlV1k/XOivZJXby2t7BhLxTF85/vNavyTmfvXISLzRwGmiE+d+75U8R5mL25+/gYE+M7z/wPzgkj/edVatXuv5S8TqgVlMGVRLVC79RU3LFpEzqzRtzh6I7r81TdeBrJy24f/4ygzq3f8QWTefe9fX6cqXse/r3PGeC+tm7KINKZkmgJMER//ndLKMh1/iU5lS3T/3C6Pl4n0nsNbML0yHv95lXtRqu7HVCc8WWRqty4izyboCzD9QZ/5fMV7/41W/1rnPdbfwMcLOv3rZtD9/OlGmtRUPFZkMWnddOi7IOJTeUfVuxsL0x3qKoPOarx/WN5z+I/7O+dVlgx5f/b2olBxnoiIyHIy9fT0n+uYXsNgZuBYTWWACDP3UHoNfirHhnmf8weiU0BD5fPpxqzIklCAKeLjL42t7HxXOUYEZpbnVJYAna78FWaXAlUGrl5G1HvtGoAXzPGLEJkHalYgIs+Fd0N2xhxKZu+3DFYc9x7rrbfVqoVgZtDqrZu1vmO1FY+5IIjWTVlUWjenKcAUOQ3/4GiPt6D5F8XKfZb+c2FmWQ8Vx7zj/n2ZU8zsvAduEwXfXWIREZHlxOsdUFm1U2LmbEyYfVPVv5XkdL+Y+s+vtm76Z2kCTJXQuimyRBRgiojILLoTKyIiMndaN6cpwBTx8UpsvBmW3p9huvTHa+wDM+/U+rvX+bvE+vdZesOin6k4z3t+/2P8d3JrQP9aZdGpG56IPJtat1NrzUmnOZ6/dNUb71VtjqV/La3sCFtZYvsM1edoeuumv9Ge2cKiEllZAlo3HfqVVcTHP8/LWwD9i1plyWzVeZW+Y5XDpb3AMuJ7vH/mF77H+Jv8TCEiIrL8HD3pvPevhd5a5+9hUBlMVjavqzbSJOL7vL+M1iuP9XeZ9c73XmeyBHVq8iOyJBRgivj4F0CYuW/En8H0n+8thjVM30WdonqW0vvYW/OCvo8r96P4g8qo/+JEFoFT6qO/dCJyZjXufxPPuAubv3u6P4Npzmf6Rqq37sVxbvB6N129wLJaQyBvvEm1fZzP4MzNBDeLqgymLKIFXDfXWpZ1K7Dbtu3dC/EC802/PYicgT/IqxzoDDMbGlQOePYWv8oZl/5FtXJWpnfMe+89NgcaGC0iIsuWP6isVs7qz2ZWZjjzvj/7s5aeKabLbmdsHfE9p/fe+/Mk0OifeSKych23bfuWpb6I50IBpoiPtzDVMl0uW1lhUzmLq9o/omrd9GqZDib9WdE699zKeZv+u8B1ACfn+EWIzIMFalaw4u7CisjcRHFvhp5GtZmXfpV7NL3zKrvQevMuL2B6na7Wrb3xBb4TRBaBmvxMU4ApUoU/uKzcQ+Kfg1n5Of8CWG2PiJfl9B4X9X2+WqZzxn6W8PP4gkTOwgIslCvuLqyIzM1Rqm8j8dY9f1BZWQrrlcfWMvPmrD8r6m+e55XYVq6bfqUSWjdl0SnAdCjAFKnC2+/hvyPrLZKVi5instTV499LUmJmtzv/4yqDVn9WM+6dKCIisowE3UWrtjRdyupPHE4y82arfw3175esDEy999666c9weltQKreuXBB0518CtQouRZaMAkyRKi7ACSz92UZ/NtG/38O/KFZ2jL2A6QXQa8leOUjaWzifqXhsqeKxalYgi0mlPiLyXPirePwlrjBz3avsXQDTAaOXlaw5zXF8n/c/jxkBVvI1HSpP/1lkMWjdnKZ/eiI+te6/iKmSE/j5M5aV40o8lfO6/Mfzvo+9UqFgxfmVC+oU+ocpIiIrgzcHc+ppJxPpL2f1d36t7CRb+THMrNzxPq4838t2+it/8syuLrpAv+eLLBn9Hivi47VZ93d39QeTXpDovzvrz2ia53Hf+2dy+QPVoO/PlWW1Ud85/ju2PP3cvhaR58NGA6NFZO68Shzv5qz/uH/es5dtrK04p3IMif+x/mDUCy79a2886KzfFwSnS3YBrZuyqLRuTlOAKeJT45ahXvD0zNIemBkI+hdPL4j076/MMfOOrMe78+rfb1m5h8Qrpa3FWSzBDXxVIiuLSnMwRWQO3N+nvXULZneBrQEyTJ9X2YvAWwcrj/ure4IVx/zB5NTTzsd1a6ev55kCWjdlkWnd9Oi7IOJTO2UD8KYlvg4REZEVYcxZN29cwkuoNu7ydA35RGThKcAUEZFZ1KxARERk7rRuTlu11BcgIiIiIiIi5wZlMEVEpCrdiRUREZk7rZsOBZgiIjKLjaVueCIiInOkdXOaSmRFRERERERkXiiDKSIis9hqty4iIjJnWjenKYMpIiIiIiIi80JhtoiIVLUAzQrWWpZ1K7Dbtu3d8/3kIiIiS0lNfhwKMEVEZLEct237lqW+CBEREVk4CjBFRGQWDYwWERGZO62b05ZsD6ZlWRHLsu60LGvIsqzHLMt6/RnOfYd73rBlWV+yLGuVe/z/sizrgGVZj1qW9R+WZf3fi/cViIicu2wsyqcC8/omz4/WTRGR5Wsh1s2VunYuZZOfDwA527ZbgWuBr1uWtabyJMuymoGPAL8NXOq+/YH76SeBa23bvgLYCvyRZVnbFuPiRUREFpnWTRERWfaWMsC8EfgqgG3bvwR6gd+pct4u4B7btp+ybfsU8HfuY7Ftu8e27bT75+PAIeCSRbh2EZFzmw2lUmBe3+R507opIrJcLcC6uVLXzqUMMDcAj/s+fgJInu15lmVdBrwc+MnpXtCyrFssy+q1LKv3qaeeOquLFhERWSJaN0VEZNlbsCY/lmX9AmeRq6Zxnl9rPfD/Ae/x7sxWY9v2rcCtAF1dXfZ8XoOIyLnEti3KJfWBW0xaN0VEVq4FXDdX3IivBfvtwbbtl5zp85ZlPYFTluPdEt0APFDlVO88fOelfM/TAOwFPm3b9veezzWLiIjDWShXZmnOSqV1U0Rk5VrAdXPFjfhayhLZ7wPvBLAs61LgpcC/VDnvB8D1lmVd6HbBewfwPfdxceBfgS/Ztv31RblqERGRpaF1U0RElr2lrH/6NPBNy7KGgDJwi23bOQDLsj4GpG3b/qpt27+yLOvjwM/cx/0Y+Lb75z8HNgLvtCzrne6xv7Ft+xuL9lWIiJyLbJTBXH60boqILFdaN40lCzBt2z4J/O5pPvfhio+/Bnytynl/BvzZglygiIjIMqJ1U0REVgJ1cBARkVls26L0jO7EioiIzIXWzWkKMEVEpAqLU2UtESIiInOjddOzlE1+RERERERE5ByiMFtERGazATUrEBERmRutm4YymCIiIiIiIjIvlMEUEZHZbEt3YkVEROZK66ahAFNERGazgZK11FchIiKyMmjdNFQiKyIiIiIiIvNCGUwREamuNO/PuNayrFuB3bZt7573Zxc5h0UmjxGrzVLGKcHLTUaJ1WaJkaWDRwDooZt1ZEmSooFxAJoYYZhWEqSZIA5AlBwJjjBOAyGKAIzRQDcPkyFOE6Pu872Mdg7xENvooJ8iIQAKhGlkjFGazONTJMkRJUaWnfwQgEbGCVFgHVlyRAGIkyFAmWFayBNxj01QJsgoTXTRywNcDUCSFElSRMibaz9CgjQJ4mToo9M85yAb2UwfSVIA9NJFmALrSVNPBoAsMcZoZB9XsYUD5uvJEiNEkTIBMu7rTFDP3rFr6Go8wMOHr3Rep/U3ZIYupuaiY0wdWgfA5d0HGZ1soqO2n+FTLQBkHr0YJqDhVU9QKDqv0RgaJ0uM7NEYxazzvbBfpGzXOWf+180VSQGmiIgsluO2bd+y1BchIiIiC8eybXupr2FJdHV12b29vUt9GSIi88ayrAO2bXfNy3O9uMvmH+f5/8jfmr/rk8WndXNpfY73EKZgMoZFQqwhRz0Zkx10MpNp0iTooB+APDUEKdNQHqf2qPPYk7WrWD15Cp6GieQaAHJEaX7sCBQAr0/JauCk8zbRvYb6kRPO4xOriJw8hZUCEu65TwMvgCcvXMtFR447xw7hpDJ+Cax1z3sCaAbGgbR77FLguPt6CeAx3+uvdd97maGwe/6I+2dwrnkcSLp/xn1cwj1e5xw62bCKYPkUhXCI2kNFCi9yjucia8gTYZQmssTM96NEgLD7/fYM0cIJoib7GqJAM6PkiRByXzzCFBHyHKTTZE9zREmQJk/EvMYn+BiytJb9ugkrcu1UBlNERGazUamPyDKSpwaAGqbMsSwxouRoZGzGsbgb1AAmQCoHAjxxYQMAEfKEwycInoD6ISdorA+fwG4Aq8D0b4clsN3AsP7ACRMkRk6eIr96FZHkKayT7qlrIXgIInVT0/93NOAEkQGcANJ/rMx0cDriHg8CB3ACRZgOLuPAr3yPT7nPd6l7LIUTRJZxglfcP6ed4/Zq59Dqx05BLUw0R4kmMuQiTnBdIEysnCUayDFGo/ulB2hmlEHaTNlskhRTRJzzyQKYoLFMgCjO99IpHS7QyDhRcoATYOaJEKCMnKO0bhoKMEVERESWuSkiBCmTZj0A68jSyDg5okTcoLNIiBIBYmRJuVFakhQByozRYIKi+v9zgonfWkO+NkJj3tmrWQqsYnXqFCeTq1jddwoA+1KcALIANDgZQIDVqVOU1waxCkUTvAULQByygRi1Jec5OQpMApuBg+4X0oCTFfUyjeAEmqtxsqDNTGc7x3ACyTDg5W+8BNGlvsfXVTwf7vNlgDKU3d92gw3AOFz8fzJMXhFihKbp71GpBAEn+AaoZ8LsKy24qVLv+xdngnE3EM1TQzuH3HOdgDVAmRNEKVI0wX4DY2RZR5Sc2U8qcq5SgCkiIrPZwDNLfREi4heiSMCtX42RNRnMtJsKrGeCVoYZo4FGt8lPnhrqyTBFDUU3UCpc6mQuTybzhL3M4lqnZBag0OG8D3vZxzAQxCmrBY611rCuZ4rJrhC1aSdDaq8G6iAxOT4d7HklqoeAF7jH0jhB5rj7hu/ctTgB5S99x9zyVpMBjTvn2QmwvBLbF7iP9Wdff+UeD0DQfWxpLQQTzjXUpotsij8KwEQkzpFwgo7JQ4zVeoFjhAnilAmYDPEYjeSIEqJIJ30ADHA5h9lIgTCtDAEQpEyJADmiDNNifnZZYkTIs84NVOUco3XTUIApIiIissx5e/hKboA5RCvd9JAmQYxjgLMHM0DZdG8FKBMkRZIa8hTcvZqRSJ5cq1MGWm5wsp+BUoljV0S56P8ch1rnNUsNkF8dInKySH51iHLAee11T01R6HAe42Uws3VOCW8kP0XQy0CWgPXMDCbdTCcFpstZgzjZykacgLLB9/ijOCWzKfdYEjgOVhkTtE42h6gdLzqB6QnfcyaccwtOzEj4Cab3eQKpyAsBp2NsjjUUasOmFLlImHoyJhPsfC8DRMnRxAiHaAecTrkZ4uSpMYF+iAJFwmSJEXRLYr3MaJaYyYiKnKsUYIqIyGw2aKuQyPKRIU7AzYwBNDJGhjhRciaIyRGlwQ141rh7/8JumWaGuBldAlBTyLM6fYqTCafsNVg+xUUjxyk1Q9DNDJaDUHuoCEGoLRRNhvNk5yrGw400P3XEPF+OKEVC5CNThCNOcBs/esLZ09nAdFaz5L6Fmd6vdgjYiRNM/gq43D1+FCcgfAHT+zXjOIHoCfdzQO2Pi3AFThbTvUYvuOQkjEQuAeCy0uNQcpocDYdbzf7I7qN9pOoaKBIyx4Jk6aGbGNkZgeMgbbQzYJoteaNPQhQYcrOV68hSw5TTOMkd+ZIjSpQcZQImiJVzjNZNQwGmiIiIyDIXI8sA7STc1qtFwozSRJIU7QwATiauh26SPGECpSm3AU1LeZhsIAZANH/CKX9dC6uPOmWvpdVAAYIZzG+Hoafh5KWrWD1+CsIw8VvOHsMB2umgn8m6EOGCE2g15sd5JHIFMbImQ2edPAEbcDKLlb9xXg5ulSm8CGevptfUx9OAE4geYnoP5jjTAav3y3yz+7EvO8kJ57GFDXDZo487x4475xWbw2x66jAlN5E4VreWFEmGaKGVYfM1tjNAiiRxJsz3vIN+0iRMZjNBmg76GaeBCeoBpxHTFDU0M2qaBsXdPZ2A+dmInKsUYIqISHXqhieybHgNZvxdSWuYYg05HsHZNNnMKK0MMUaj6R6bZR0FQqQD602X00I4xFhrjBAFMzKj7ejjzm+FZfjX1lcC8Oqnfmr2XRJ0sp4A3eWHCZQg2AvuS2MH4KWZRznZsIps2HnO3yTjXDyScQJCr7HtpPNcnGS6W2wcJwgtAZ04mUtwHnfcPc/bl5l0HxtmOisaBNa641fG3et9ARxbX8O6I1OcvNRtTjRyCrsB1o1M8WTzWhqPOpszi4TpKPcTC2RNdjFBmgh58kToodt96RTjNLCFAyaoH8PJfOaJUCQEQJr1ZImR4Ij5uY3TSJwMOdYw5Y44kXOQ1k1AAaaIiFSjdusiy4rTLTZvZl4O0M4O9lAgbBr6gLOvMk+N6VRaJESZoGn2AzAaaCJCnlg5S/1JJ8gaq1tLI8fJrQ3RxmHADdhGTjF5aYhsIGb2EYbKRQKBEvn/FGQ44JSFridNffA4U+EIyfyvATgWWevsnVzLzIY+YziZTf+xS3ECxxGmu8iexMlKBpluEtQIpfB04x5wP/8rKHcFmXQzmLVHi6w7MsVkQ4jaX7qzLMNgHXWeP1rIMVa31nyP+gMdtDPAHnaYpy0TIEOcLrd1bcndg7mfrWxlv/uURQ7SSTuHTDA5RgNRTpBmvfmejdFg9nDKOUrrpqEAU0RERGSZS5MgQdrs/UuQZoxGmhgx5zh7MINEyZkM5hQRApRIkjLBaYY4SbdrjjfC46LHjnOyeRXhQpGEO2YkWHBKTEcDTQQoEytnnccH4hCApqNH6AgeAmCidi2F8CqyxAiFnde+6KnjFLog3Mt06epJnN8+x5kZSB4FunEylF4GE9857nXaAQiOu4/xGvo0QulynEY/3m+2GfjNZXEuTmUoua+dXx2i9lCRUgNkwvUm4+jtj0yTMOWwQcqm5NXb95oiSZkgTYzQ76ZuE6TZwY9JkTTzMhMcoUjInZvpZERbGTbZYu/nIHKuWrXUFyAiIsuQdyd2Pt9E5KwlSRGiQIQ8EfI0ME6CNMM4zWqi5CgRIEWSGFnGaGDMbccaYYpDtFNDnhrydNJHoFxmMLCRcAbCGTjZvIpyMMhEJE66toF0bQM8DWORBhoYo6kwHcjGyJKcPIJ10glQy0En+OoLb6aGKSIni0ROFpm4cA3hXzEdVAZxusS6I03oct/WMj0f8zGc8tcwzogUt1EPGefNSjHdJMhTguAhKKyFyboQk3UhyMDFj2YoxCF40nkD+I8rWsivDs3IJMbIkiRFlhhFwhQJUyBMmvUUCFMmSJkg9W6Ja5EwcSaIM0GCNLu5FsD9KUwHjwFKhCgSosggbdS42cwCIQpucCvnkIVYN1fo2qkMpoiIiMgyN0wLHfSbLFgTo27GLUOWdYCTTUuSop9NZnQJwChNdNJHqOBsWpwKRyDg7OccSa4HnHLQNeS4+KnMdLfYhlUEKDNKM/XhCZM9DVBmXWGKY8kak7VrKx8mFUhSJmCyogHK2Akob4Dg/e7FvAinbPYKnMARnF+iG3wfexnMMLAG53pe5B4bw9l7GWY6KxoE2x1tEj3uzuW8HEbr1hMjS6DkjGKpPVQkdkWWTCBODXmaJp1S3qHaSygQIkHaNOKJkaWdAR6mmz46AdjGQ3TzMINsJO6WGw/Q7naaXW8aMI3SRJ4aRmnmJr4D4Aaw68xMTZFzmQJMERGZTXtJRERE5k7rpqEAU0REZtNCKbKsxMhSJuBrJNNIgBJRcqYsM0qOw7TRxiCDtAGwlf1kiTmzMcNOWWiRMGM00MqwyWoOh1uJk2GyLkTtE04WsBwMUiREI2M0FGZm3k7WriJ2dIpMnfNxORCgkTGyxCiEp8s/iy/AKZP1MpABnIykv8HPapzusl5n2bh7/GmcbOWLmP7/6AXun+NOOSxA7UgRVkOgNL2n1Pt++DOqqSvWk8g7szvzkelZlBnqCVOcUbpaJMQAnWzjIT7CXwGwi7sYopUwRVMWu4VeWhiinw7T+CdOhhRJujjAPq4GnIzzKE2EKZiMs5xjtG4aCjBFRERElrkYWUZoMnMaE6QpETDNesAJipxyzYQpxRynwTSp8YLTAzgdUwPlMuNhZ05jngg5ok632Oa8OT9ezhAolUiFk2bMyQCXk+AITYwQcIdR5ogSosAQrYQCToAaIU/4JNgJsLyAsoBT9roB3IpSp9y1zPSes7Dv+HHgCcwv7valYPXBxGVriE26XX7cRkCBkrtHE6AW6k+e4LH1lxArOecFKJOP1BDJTxGdnCJV65QHNzFKmQB72EE3DwPOqJEa8jzAVVzP3QAM0Qo45a6d7hDPImGyxGhlmP1sNZ8HZ19qC0MA9LGZNgbJEjMjTuC6Kj9pkZVPAaaIiFSnO7Eiy0aeCFFOmH2QOaKsJ02WGGU3gIySY4Qmmhk1TWzWkyZMkTQJEwx20O8EW4Eak7Hz9g92HD3MYN0lgJMlfXF6mInkGqKcMK9z9eRPKYRXMRWOmOypN0LF2QM63WF17MIiLx4adrKU4ASLAId8X9xanP9v6nB+M/VmXq6efvvNZU5as3EyQ3ADRPMnCLoB6uSlziiSY5fVkKpz9lBueuowj114CVFOOF1ngdjqLOVAgFxkDRPEfZ12a6hhiu3cb/ZbBigzRYQuDpivcS/bSfIEjYzx9w++B4APXvlXTFBPgjSjNLvPFyFLjDwRmhgFoI1BckRpYdjM1ZRzkNZNQAGmiIiIyIqQJWbGksTIkqGeJCkT+IUokiBNnoiZg1kgTCtDtOaHyUXWAE5mrbNwkGx4HRGmzPPnqSG/epXJVBYJMZJczyhNtDBM3h25cbD2CjblH6VEgAY3U9pPB82MEqJIB/2AM1olSYonWhvYMORGeWWcmZclpoPOX+I07CnhZCy9ctqTwAug1AAXp5ymOpOJENE6JzA82ewMQ6hNF5m4zPnaOo46MzwnLlxDmCIXP5bhicucDkCxcpbY0SlSdQ3EyJqGPs2MMkgbYzTQTQ8AIzQxRIvJ7AJcx72kSTBAOx+/8gPme9nIGKM0mczkIBtpZZgCIY64nYiOEaObHgbZOKMBk8i5SAGmiIjMZgPPLPVFiIjnIbbRTQ/jOCWt9WQIUCJCnoCbNvE6zMaZMGWaQcoUCNMb6TJls0lSHAh3saXQy4FwFwBbCr1sOHqKJ9evJVp2sp+jgSY2pQ4TShadTrSFgwD0hzcxGNlIiAJl91dJZ4xK0ez3BKhhilC5SP3RE9MdYlfjjBwJM52pTOIElgXgMqZnXtaBVXBKXwvuvszaJ4oUGiEXWUP9U26JbAHqR05QikO2zgmCR2iiTJCG5jGTuS0HAmTq1pA8Ok5ubYj6gBO0lty9rU6Q2Wi+b60MM0QL7e738m6u5zBtXMNepoiYn02cDA9wtQn0r+QhRmgyI2TAmYOZIkk9GQ6yee4/eFk5tG4aCjBFRGQ2G9zfyURkGeimhzgZk8EcpYkkKSaImyxZNz3kiJImYTKT6xijTIB2Bki75+WI0lnuY3X6FA3NTtAZLJ/iP9a30FQYIRV2MntJUjyRbCBPDY2M0Rd2AqN2BhijgXEaTbayj07ybtDlBbdRcvQFOrny6Yeh1v1CEsDPcBr5OC+DfTlYh3BKZVM4pbKAdRQ4AdZGOBZxNlpetOY4hXCI+tQJJygFCi+C8BgEn4DoBufr7io96jQYSkOu1QnAvQAwW+eUBnvXO0GcImHaGaDolgx7gWY/HQTd/ZYAb+Z2hmlhwvezCVMgxjGOuQH+CE1sop917n5YcEqIM8TJUaR+xqPlnKF101CAKSIiIrLMZYkRI0ufm/3yArsjJMw+v39jKzvYM6Oz7BgNbKaPfjpM4FcmQD5QQ7ixaMphJyJxZ3ZjuJn2o04jodG69dOdWAkwhlNq6n8er8y0hilCFAlRMPs5C4QpE6C0FnK1TmZx3dAUhWsg3M/0HEuYLotNQ2nDzK89eByzX/KxCy8hWUhBAUaucJr0xMsZRprXU0/GCTyBJ5NrOUQ7Ha39JsuaoZ44E4zRSII0cTfQG6fd+R5QTxrnOTfTR54ISVJ8nvcDcBN3MMDlhClS75uDeZAgjYybDHGBsLtfM2W+PwXCbGcvA7Sbpksi5yoFmCIiMpvarYssK3EytDNgymCdPZhx1pM2AWaGOCmStDJsgsFmRhmgnQbGaXBng+Rw9ivujVxjgsW2/GHCkQKDtNFftxGApvIoo4EmQhQIU6TRfbwXwMbJEKLgPmeUGFln3yZNALQXBjgWjpGrrWHdiLvXMwBhL1vpbsu0Jt0vMuwc95rylBpgrDbOxZkM6444j8+vP0EqnOSytY+b0SnB8imSgRSrx085Y0yAaCHH1vK/MxZpIILTFbf96LCT1YwUGaKFotuutolR8kQoECbslvc6WeA8jYybjrGDbKSdASJMMUwLAAfdpkDNjJpgcif3kWY9ZQKmRHYHe+ili1620MWBOf/cZQXRumkowBQRERFZ5tIkGKLFBIRFQvSyhavZZwJGr8lMnggZ6gEnEPVmMHqBVogCQcomcAIohL0wMkTczc7lAzU0lUfZF7iKl9FjMnRDtJAlRpqEyVY2M0ovXXRy0GRPB8LttDLs7Mlsdp4zS4zm4BEKcQj3ui8ex5l5WXK6xV78lHNuoAQXj2SgDE+ud0pkGyczhGsLTFy4hvohJ1s51PpCWh/9NSNXrDdBZza8joufyhCKFMz1BOrKrEtNMRaJsin/KEORFvP1dJcfJhAomRLZEEXuYhdRcuzkh+61r+MbvIVMvp4dkT0APJ5u5s2J2xihiRr3+zvIRsZppEzQHNvLdgKUaeMwo24ALnKuUoApIiKz6U6syLISoESRsCn3zBLhBu5x9/bVu+eUaXXnLu7ACYDyRBingTQJM5MxSJkUSQZoZwtOlFcOBBiliY0cZsrtFjtBPR2lR2gJDHOCKAU34xclR5YY27mfw2w0r50gTSPj5npSJEmQJkHajENp7jkCDRC+D3iF+8Udx2kCtAEufiwz/X9PAmdm5gm46LHj5ntRf/IET6xv4Firs+EtRJGfX3EFrQyTCzvBZJEQT1zYQIAyzSNHADjWXMPJhlWkSBKIlE3GMUyBVMD5s1e+WqKGXdzFIBtNpjNFktdxH7FI1uzffEviG0TJEaZonm+KCAHKDNDOVvYD8L3Df8j1G79L3G3OJOcgrZuGAkwREZlNC6XIstLIuCmFBaghzxAthCmaICZHlCwxNnLYdHJ9hA4202eCIHCyiC3lYUKBIkG3K0mO6KxMZ441HA63mZmRMbKA06U2RpZIeYotbrnnQ4FtJEjzAFeZTOpDbGOUJqLkTOa1dDkECzCya70J/AAKHRB2Z2R6ezCD/YC3HzPsfs7tJrvhyDgld8zJUG2L01W3XOaicScQ/Y/19QQoUSZIudkJGvvopD08QII0U9Tw2tQ+AO5NvoaXFXq4L/w6833z9mgmiHIfOwGnBLmFYb7DTbyLrwFO0JkiSYGQ+V7WkDc3Arzs8jUbf0iBEGnWzxgNI+cQrZuGAkwRERGRZS5DnHEaCLlBYoI0KXc/Zp+7D7CBcYZpYYhWE9BlWWca/HizMcMUGQxsJMEREwCVCTBMC1vKBxgPuHMjyXKQTnckStmUmkbJkSfCaCBqHh+gTJ4IjYwzTCsA17CXMEUKhIjmnXLWYAEoQXPqCCcTzhzL1SOnCKfhycvWctGjxwl6I02A/0i2UCbAppQz37IcdEpn7bDzZ0+aBIFAmVp3A2eZAI2MUX/kBLYbnGbqUsTJMOqWs343eT0A29lLX3gz9UyYAHOAdibcTKzXDChBmm/wVgKUzd7LAdppZYhB2tjFXQDs5RoaGaeDRxhwGwg1uzcHBmkz30eR5ciyrLXA54FX27ad9B3/S+BCoGzb9vvP9ByrFvYSRURkxSrN85uIiMi5bL7XzTmunZZlfcayrBHLsmzLsq7wHd9oWda/W5Z12H1/6bM9l23bx23bfhsw6Hue1wNXuFc09mzPoQymiIiIyDLXxCghiqYraZkAMbIzmvX0soVWhomRZZA2wGn8M0UNZQIzRms0MEaREIfd8zYySCd9jAcaZozWSHCEACWOkOBl9AAwSjMBSoy7nWoB1pM2HW699yEKNDPKGA18N/J7AOwK3OV0ez0Oq4OnnAcHgQxcxHGevGItF404Za6FzfDi1DD2ajiYvBxwuuk25sfJ1q4xr7158lEK4VWEC6f42YWdADQy5pQMr4+Z8yaI0zF5iInaOAmKZtSLd73+zK/3PfQ6yQL00E3xVIgtqw6Y8zLUEyNLgjRfz78dgOsi91Ljdpr1vufHiHGYNrayn4AZltj8rD93kTm6B/gb4KGK418Fvmzb9rcty/oD4GvAqwAsy2pxP/bbY9v2p6s8/4uB/7Bt+2OWZX3SsqxX2rb909NdjAJMERGZTXtJRJaVFEki5M0+SK9kNU6GfjoA2MUP2MMOp1zUDWKmqOEYMdaRNeW13viMMRrZ6CYpMtTTOvk4+dopXlZwAskj4YRpZtNBP4fccs+Y+1wlAmbf4RESZmyJP2gdpI0YWV7h7hMtB4P8JhnlYjK4sReshqHuF9L6b7/mopPHefK3nI6x0UKOcPAU6TpnHAs4weBEJE6Ygim77a+9nPb8IQZrW0yn2xRJ8kR4bWofP086CZ1GxhmtfSFByozTQAvOvM/72EmSFG0MMkaj89rknOY/JEm7AzubGKFlVZIAJfM1Fghxd/4GuiM9prPsEK1kiZEgbX4O3hiXJCl66TrrvweyjC3cullvWVav7+Nbbdu+dcZLu8GeZVnmmGVZDcBLgFe7h/4R+JJlWRfatv2UbdvDwPY5XsPj4NaPwwRQe6aTFWCKiMhsCjBFlhUvWPGCnVaGKLmBoteUZx9XAbCV/ebPBcJsop+DbDYBVROjZFlHjGMmW9nMKD21W2hkjHR4PeDs1QxQJkyBLDGTtcsRJU8NjYyTdzvOgrNPdJA20612iggFQmSJmcC4HAhw8VMZZ0yJ2xjWXgsN5XGIw7HLakwzonIwyMR6pzGOt4fRy9r20E1bxFTwAU7W0gsQNzJI49Hj/CYZN0FwU3mU/kAHAcpucO3s6+ykjyIhBmkzcz2j5CgQJkqOTg4CsJ+tJEnRxAj7uBqABsa4OvIAB9nM1TwAOB1su+kxnXO958sTYT9bzWgXOccs3Lo5Ydv22dyVSAK/sW27DGDbdtmyrLR7/KkzPdCyrC8Dl1mW9VXgU8A/AV+xLOuzQB1OtvS0FGCKiIiILHM5orQwbMo5C+7IkgIh04SmQJg0CfroNAFdK0MM0UorQ6a5TIY4nfQxRAtRnCxgDVPEmSBPxARk4ARLXrDlZeNKBBinkSFaTAfbA3TRzgAtDJkOqlFylAmQJkHZHf8xRgPR8OP0Rrbwihc4HWiLL4Da8SIEIZKfYiLiJEoufiJDobHIVCRCfcq5zonkGupHTrBz7f2k65zz4mSYiMSJkDffiyJhhuteSIqkychmw+soE6CJUaLkiBWOAZAOryfBBGkSJgN6jBgxjpGhnj42m59BkDL7uNoEiR3000M3O/mhaW4UoEyZAEXCphnQOvfnUSLA3kk3aXTGHJDI0rFt+z3AeyoOv32uj1eAKSIis9nAM0t9Ec9PtU54lmU1AT8C/jcwbtv2h5fuCkWemyIhEyQ6ezCPMerbx+dlM2vImyBxgHai5FhPmim33DVGlgIhGhk3XU6nqGE9aUZpIu7WrnrBWogCEfKMMd1dNkCZLg6YYDJAmQniMzqkZonRQzdb6DXZvJbCEMHj0FI7RMndwhnwmpmshXAGGkvO6xcaIRV5oTP2xEksEps8QSkOqdr11LiZ29jRKTJ1caLlHJlAvblGL5s5Gna+Ry9+apjshTHSJBingUC4bK7zB+zi3XyFO7gJcEps42TIEjP7Xh9iGx/gM9zFLvN1ZonRwhAnfF93iiRNjDJAO9exG3Cyn865w4wGtffynLT81s0UcLFlWQE3exnAmS6bWugXVoApIiLLhmVZnwHeCDQBHbZtP+oe3wh8C2cPSAa42bbtX57puWzbPg68zbKsvRWfyuFM1fvV/F69yMJpYIw8EVOmOkwLHfQTpmhKShMcoUiYKSJmb2WRMJ2Fg9wf3m6aAWWJUUPefawTuYUocoSEKaMFp0TWC0ABE3g+TDdb2c8QrXS7jX/2cg1Rcu6MSSeQLRAmRpb9vIImRpzrCYfpSPRzgignap2grPXRX0MQfpOMkziaYazWyUwGKJHM/5p8pMbMwZyodfZnlglwxC0Xrg8eZ33BySimA+vdrztEI2OEKNJDNwCpC5N00UuE/IzAsUyAt/ANBmg3s0YLhOmmh1628Lfp9wLw7sSX3XNGzCzLHrppYIxxGs0e1/GeDTzUvY3xn2wg9Crn+7uJfh7gavLU0BHpd7+jV8/xpy/y3Nm2PW5ZVh/wn4Fvu+8P2rZ9xvLY+aAAU0REZrPBVyW3mO5hYTvhPW7b9ssspxPC9y3L2mfb9uh8fgEiCyHLOoKUSeMEUO0cMk1+6t1M4wG28DJ6CLp7DAHCFLg9fDNb2W/Ka8Fp6hOgzJayU6aaCcRJkWScBrM3MUuMEAUGaKeZUROMtjMwo/wVnD2cg7RRpINt7j/fYVrYyKDJBHqPrR0pUsuvzbX8/IoraGWYACWsFM4OL5wAN/Q0hJ6e4pHkRsDZRxkolciE62kpO8FwurbB7HH0Sn4DlDlGjARH2M70PabY0SmoczKcXhnxGI0EKNNND1/ECSZv4G6+xjvZyn7el/g8AHlqeICr2OQG9uBkjaPkGKbVybQCN3X/A2M0knzVfSZA76WLGFkaGWdv8RrnYqa3aMq5YOnWTSzL+iLwBuAiYK9lWRnbtl8MvAv4lmVZHwaOATcvxvUowBQRkcWy5J3wbNu2vfeWZY2DJp7LyhAhT5IUx9xALUOcdgYYoN0EflvZT5qEaVQDsIYc23iIUZrMvsFO+hiliQniHAhsASBJio0MMkwrA1xuHt/OIcAZTeKVhW5kkBGaKBAi4zaWrCFPK0MkSDPk7kVsYJwM9eSImkZEA7TT0jrEKM3mWHthgEy4nlg5C7VwccrJlA4lX8hQXYyXPvWoyTbmAlEOBLY4X1OgyX2dMSL5KcYiDWavZ4wsvWyhnoy5xgBleuqShCmQJ8IoTeZ72UcnNeS5kgfNdXbSx3e4yQSOR0iYBkNehjhFkhxR2hg0QXSUHA+MXUVr47AJtvezlSZG2H30WgJBNwpRgCnzxLbt94J7d2Tm8cfATeEvIgWYIiJS3fx3w1sOnfAuwbmDWwZytm33n+nxIsuFN5fxBu4G4BE62MMOouRM0NnEKA2MEaRsgrwcUYqESJIyI0fSJCgQpp1D9LlNaEoESJF0mvC4wVwzo/TRSYAyCdImcB2lmXom6OIAd3Ij4HRwTZFkP1vNfMkyATermDPNc8AJyhoZo/mpI+bY+IUBwoUiTzQ3mGZCIYo0M0phNTSPOOc+1nwJW9nPGA0mA3nRkeNMNoQIUzTB4ADttHGYu9jFjdwJQD8dtDDEOI3uPlSn7raNQfJECFDiNjfB08YgA7RzA/eYwPF+tjP84xdz02v+wTy2v9gBIRg91UTnqj7ACSZvaLyHFEl2cy0AW+jlMG2UnglwVd0+96u+7jn9HZAVYGG6yK61LOtWYLdt27sX5BXmmQJMERGZ7RwZU1KlE94IsG9prkbk7PXRyTXsNaWvCY4QYYo+OsngNLbppYsca2hl2GTyOugnQ9wEqODsT2xgnGFaTJA2TCtjNLKVf2PcfY0xGglR4H6208SoadTjBWd9dJpg0utSO0ibKZttYIw0Ce7hepPJ28p+Xpp61C15dYLGUtgpx20+eYRMZHrmZY41RMgTKMHkhunX9kphx92mQ2PrG1hHljXkTJY1zgRBytzInSZA7KWLKDmaGCVWzjIcaAGcYHSQjXRxwJTTetceJWeCxDwR/vtrPsxBOsmyzvl6QvvZX9xKY2jcBObDD76Y2JVZDqS72JJwijZ+9Mgb2LjpEa5u3McgG5/X3wVZphZu3Txu2/YtC/LMC0QBpoiILHdL1glPZLlYT5phWk0w2cgYMbK8jB4TQDn7J53STa8sdJQmkqTcrrFOFjFHlCg59rDDzG5sZIwyAe7hBnZxF+AEZC0Mscbd33gd9wJwkM2UCdDAGCk2APBJPkgXB2hj0DQi2sMOtvEg72TQBLKNjHFv8jUAxC50jiWPjrOxMAhPw8bCINnwOvfccXJEqQnnTTCYJMUJQgQom0xnA+MMcDkZ6s1rgxOMNpTHSQecgPcDhU+zP7zVCdZLe01Do2wgRjsDNDFCwI0QpojQQT+jNPFgcRsAHw59nH1cRYQp83MYoJ3m0Ch9v+om9CInw7v+yhFCFPntxH5zLWsve5J0PkEskjVNkETOVQowRURktmWUwVzKTngiy8V+tnIjd1JvRohkKBKinozJnBUJk+AIOdaY4ClAiR662cEek93rp4MO+ungEVM2+yDbaGTc7OMEp8S1j83Uk3FHjThloZs5yBiNPMQ203V1J/dRdLvGTrjBbYI0A7STJUYj4wBcy720MEyynOIbgbcA8Ka6O5yGRYkM4ULRZCaTpIiQZ394q3n8AO0kSRElZwLMi1MZysnDpDlh9qNOECdNgnhgwuz13Be+mjwRuunh4fD0trT1pCkRIMs687WHKZpM76dD/w8Ag2xk909+l/e96pPcN7kTgB21e5zS4Rc5+129n4O359X7nreGhgmEyjyc9m2HSzz3vweyjC2jdXOpKcAUEZFlY7l1whNZLro4wA/YxVVuhXecCZoZZS/bTWZxhGZyrOEwbbzMHR9SJEwTIyQmx+mtdSKaTvpMAxwvq3kjdzJKswkIATp4hCkiHCPGYdrMGI4kKbOv0yu7TZKiTIARmkzAG3ef3z8bs4du1pElHChwA/cAmFLUnsDL2BrYb4JWr7S3jcMm8EuSIkaWLDFzrDE+TogCUXL04jQt6qaHVobJUG/2jkbI00E/w7QQomjmesbJmKyi1x02RIEaptjPVhO05olw/au+Sx+dxGudQH+CuFOq/EQX125w9sf+9MFX85or72WUJtrcjPL+U1vJZaOsT6Q58g/uHMy3Pee/BiIrwqqlemHLsiKWZd1pWdaQZVmPWZb1+jOc+w73vGHLsr5kWdaqis+/wLKsgYruhCIicra8gdHz+eY2KrAs69rTvqxtv9e27Rfath20bfsiN7jEtu3HbNvutm17o/t+cAG+6mVN66aIyDK2EOvmM4v6FcybpcxgfgCng1+rZVmXAg9ZltVq2/YJ/0mWZTUDHwE24wzX/hHwB8BtvtM+Afw78FuLcuUiIue6hZnnteIaFSwzWjfPY02M0sgYDW6paI6oO7+xZLKIIYr00E2SFPe7k3sKhNnOXj5T+z7TaKdIiCg5UiTN6JJhWskRJUOcuFuGG2HKvHaOqJnp2MoQU9TMaOjTyBhxdyRI0S2ljZDnM3yAXdxFjftc4Iw5CVAmXnDmd8aZ4EC4izYOMx5uNGW7yXKK2pEiJ5N54u6sz9Gwk/3LEzH7Oo9F1jJKMwnSbDIdbIPEy0cIBaZLbo8Ro58OCm5pcdD9T65AiAfZxi5+YJr3ZKhnjAa28SD72Qo4Jb972U47A3TR675OgGPE+L83fJLPDnwIgI9f+QH+x+RfMHXPOg6/fBMANRcdY31dmsf/9LIlGBohi2IJ52AuN0sZYN4I/CGAbdu/dO+i/g7w/YrzdgH3eHttLMv6O+CtuAulZVnbgEuBz6GFUkREzl1aN89j4zQQJ2OCpRhZOniEDh4xgdIE9TRToIlRU+rZRychCrQzYEpVE6QZpYkGxii53Wb76GSEJm7mdnpxpgl9kT/hSh4iQz15Iubx93IdCdLs5D4z5sQZY1KcUVKaI8r7+TwxsiY4TZA2zXj6wpsBZ27ktqMP01d3OQW3pBcgE4hzoLWJJkapcfdRTu83DZkAc5xGcqwhTYIcawDYTB8DgXYi5M1rd9BvvodjNM4Y79LOIdoY5C7eCDgNhsIUGaaVI24QnaGeLnpnlBF30keWGF/Lv4ub2v8BgL/8xWf4Ly/5MndcfxM31Dpls3d85W08ftE66IJX3viv7k/VG+0rckYaU/IcbAAe9338BM5MszmfZ1nWauALOIOELn22F7Qs6xbgFoANGzaczTWLiJw/1KxgudG6eR7LE2EjgybD5owJ2cxVPGDGioAzz7Lo6xj7Ru7iB+zieu4xwdkoTYQoEqbIKE5GcAsHTLdZrylOK8OsIUc7AwzRQpInAGcf5AG62Ms1pvnOIG2kSFIgZPYdxsgyRCsPsc2MMxmihavZR5EQl7szKw/RTrou7jT6IcO6/HHneKSdOBnKBOinA4B6MmSJ0UG/aSYUIc/2oz9lT91VtDIEOPs6i4QIUzB7R8sEOMxGtpQPQAAToLZPHmagtp27ucEE5k2MkqeGLDFzXpoEYzRwFQ9w+6SzDXxf6SpidVmSkRQPciUAL3vJg+RYw9ba/TziXveqN57kVM9qfvumB8z3XM5BGlMCLGCAaVnWL4DTrUaNpzn+XH0a+LJt279xy4XOyLbtW4FbAbq6uux5ugYREZHnTeumnEknB6knQ8KdHdlPB1liDNBuSlnz1JBwO6J62cYJ6rmGvbSXB9gdcLY/b6GXHrppdoMocIKtkJux8wLMFoapJ0MP3ZQJkHLvZ4zTSJQcXRwwgV8ToyRJkSbB3dwAwC7uIkqO67nbfB2HaGeCOJtJmWCuhiki5Nk6+TBDtZfwQOQqwAlk40wwRcQEsm35w0xEnGDUezzA3XW/Q46oyX4GKBOiSJ4IHTwCYBoWjQaaKLidXgHaagfJETVBMDjBqFfqe/sTbwXggxs+QYkAn733Q9P/ItfB+GO1jL/iGzD8YQC2v2gvozQxRqPJdJ4aXc0Lr3NKi2Mcey4/epEVZ8ECTNu2X3Kmz1uW9QRwCeC1md8A7jCmmbzz8J3nDTl6JbDT7Sr4AmCdZVmP2La96flcu4jIeU/t1hed1k05k2FaybLOzHlsYpQAJcoEKRIy5xUJmzmXABE3+9YX6PRl8oI0Mk7B3YsJTsfWMgGi5EzgtYYcWWK0MsQxYpTdXxuzxNyxHjFzPWW31DZB2nS13cMOtrOXh+mm3c1WbuQwjYzPCFhjHGOAdtprBygTNIGeM+kySI6oCXr3R36blxV6uD+8na04cyZ76WJHYQ8Pha802dwoOYqEKBAi4X7dU0QoE2SQNpoYMd1qx2ignQGm3IwlQI41JDhCOwN8dIOzt3IfVxEnQ/z1v+Flq5wuvQ+f6ubNG2/nC7/5c/hnC4DQLQW28RDf4K1kjjpZ1rWbnyRJigAlfnqzWxrr3xUtK5/WTWMpS2S/D7wT6HXvor4UZ7ZZpR8AD1qW9Vc4zQreAdwB4F8QLcu6CviMbdtdC3vZIiLnAa8b3vxacftIlhmtm+exAiEGuNwEWlli7GU7b+frJnCMk2OYFmqYosUtFXUCxmbCFMzeSMCM0Fjva/ITokiCNA1ueW2WGFNEmKCeKDnT7KaNQSaI08i4CRJHaeJadvMJ/rtptHMDdzNEKxsZ5Du8CYD38GU+xF/zaf6MB7gagHYG6KaHfjpIkGaYFgC2Tj5MIbyKXHiNaRJ01dF/Z7juhUTJmbmcAUr0hTfz2qf28eCFLwOc/Z8NjDFKM3/K5wD4IJ+ikTG2FHophsNk3BLbPeygiVEGaKfbHe+SI2qyxF42eBd38Qn+goZV4+wZ2wHAqeOr+cKxP+ct3V/lm9vfCcABughQ5koe5GDdZvN89UzQQzdu/yU51yzMurkiLWWA+Wngm5ZlDeH0XLrFtu0cgGVZHwPStm1/1bbtX1mW9XHgZ+7jfowzaFtERFaWFbePZJnRunkeO0GULg4QcBv61JDnBu4mR9RkESPkyRGl5MsObqKfIiEyxE1Dn6i7r7KH7hkBVZwJ9rPVZCM3MshetruzKAdnvHaMAAO0mxLbrexnL9ewgz2mZHeAdmrIM0wr29kLOPsY/zuf4BgxOjlorrGhMMZguI0aptjo7uG8t/Z3SHCEKDkCbmposO4SDtPGNYW9pMLO11hPhhxRnriwgStTDwPwreTvmdf7IJ8y38cRmugPd9BJnwkcd7CHPBH2sp0H2QZAgiN008MQrWZP6V3s4moe4I6vvI1Xvttt1NMIP/3xq/nmr97JNS+6D4D9k1tJ1qa449a3ccUtPwdgMwcpEWB8YANs9wL98Fn8TRBZ/pYswLRt+yTwu6f53IcrPv4a8LVneb59gO7CiojMB7VbX3a0bp7fOukz4zsA7uKNfJU/4j52mmAySYokKRKkGaIVgEfo4AgJrmGvKR/to9NkLr3nDFGgSJhB2swIjjQJuukhR9SMOwGnUU8/HTQzaoLOAmESHCFLzJTDJkiTJkGIggnmBtlIgRCHaOez/CnglK4OhNvp5CAP020C4Xoy1DPBMWK0TTqNfw7XtrGRQfaEd7CjsMc5Fm5z91vW8HfJNwNwLfdSJkiAsgmYR2liAynTEXdb4UEAbg/fTJkAV/OA+V42MkaOKD10cyc3mmMT1PPKd/8rP/0Ht8z1tQW4okD8ognuP/w6AH5n4z853+sXYsqK0yQ48ONXQD00JMbcn6IaZ51TtG4aS5nBFBEREZE5SJEkSs7MrfwrPsJtvJluHjb7KAfZSBuHCVA2Qd4YDWzhAIdpY4J6wNnbOEYjbQyaDOQUEY6QYCv7TSlsJwcpECZPhDYGTaA2TCttHKZMwMzB3MaDRMgzToMJ0vawgxu4hwGu4YB7L+MDfIYoOa5lN4fc8SH+LOw1hb1m1uWLnxrm2IU11DDFfbWvAeCq8j5qR4pEWqcYDzsBc4giDYwzTIspex2lmQh5U84LzrzNcRppYpQ067k/7NSqXstuDrORCepNKe4QLUSY4jruNcHxbdxMkRDNjPJTJ35nS6KXLDGG97+Ya7c6E4N2/9PvcsUbfs4tO//GzCMFCHVNUnw6zHja7RCUOJu/CSLLnwJMERGZTc0KRJaVIVq4mdvNTMcSASJMmSY84OxFjJElxxozG3OKiLsvM2/O8zKcaRJm9EiOKDVMEaYwo5vqTn7I7dzMEK0meIuSMw2BvL2ePXRzgijrSZtrbOMwe7mGejK82e1okyLJNh5inAbTUMcrRQ1QJhgumxErP7/wCurJEKJoAtD+QAdtrYNkiJss7QDtbOXfSHDEdKzNso4CIQqE2c8rALiaBygQoo9OJohTTwaA/WwlxjESpE1wPEyL6bZ7ldtLK0eUvslOBmrbuelKZ+blHZ97G7we1nY96eyvBC55w2NEOcE93GCCyYbEGG+uu50DbKFv4OW4Pwg5lyzcurni+hcowBQRkeoUYIosGzdwj8liAkSYYic/pJ6MmbUYYYpRmigQMgHmIG20MMQozeaxKZLkqSHNetP4p5FxIuQZo5EpN6u5hhxf5+0EKZOnxuyNDFNkkDYaGOMwbQCmGU4NUyZ7miJJM6PUMMUBtgBOtnEfV3Etu82+yiwxk53NESU56YxiSdQeYYoaEkczpOqS5lyPl80NUyDBEfrpMMGg1123j04TsDp7RiOEKHIzt5tuufvZSiNjjPmyr3EyDNNKwdeht5kRpmpr2Mp+E0Rf9af/wr53v5bjf3gRrHe+noYNadKsZ/y9G+BLzmMbTo0xyEb69r8cmrQH85ylOZiAAkwREVk8K+4urMhykSbBbq41TXm2sp8eulnnzq8EWEeWGFmi5Bh0A79uekiSop8O03wnRIE8EbdpkPMb8TiNpEkQoMQaNxCdIsIm+rmbG2hhyGQR97CDcRrJEDd7MBMcYS/tNDPKnfw+4JTifoDPcA/XE3PHpQQos540g2w03WadfZpFxmiknw4O1k53u+3iANm6GhP0tjPAEK3EOGaCQW8kSZKUCXgniDNMKx30m6C0nQHSJIiQd5sXHXO/H0V66SJKjr1uSetNfIcM9SRJmcxkC8P00M0jdDDsZk+P/KSZ0F9PUvxqLdf8d2dP6P2/+zr4bIk1n5zgxJ875bWPfuql0AEv3DnEr//Jra99w9n9XRBZ7hRgiojIbAvTbn3F3YUVERGZE40pMRRgioiIiCxzU9RwFQ+YpjFNjLKOLHEyJlsZZ4IB2mlhyGQWk27X1CQp07zH2zcZYcpk4kIUaWSMNAnTzCdAmQHa2cVd7GGHadTTzgAniFImYLKnw7SQ4Aj72cou7gIgzXru4o30Y8av0k0PbRzmIbYR5QQAXfSSIM1+trKNh4iWnQzqeKDBNCHyut6CUxIbpGz2ik4QJ0aWu9hl9mAG3W62eWrod0uIQxQ4QoKNDNJNj8lWdtHLIG3cyY3c4D4+7M4E/QZvNVnjMRooEaCeDBm3YdKRJpvOuj4e/ucruf8ap4ssfwSv2XAfA7TTFnHKisc+2Miv/6yV8Zc3wGXP+ccvsqIowBQRkdnUbl1kWTlGjDJBbuIOANoYNCWiXvmo9/E4jWZ/4hgNjNNIgbDZG+kZpcnsy2xnwMyA9EppI+QpE6CHbrbQawK1AdoJUCZB2jx+lCYi5ImRNUGhNxalSMgEaSmSfIV3000PA1wOOHspe+kixjG+xju5MXAngAl0ywTNn7OsM6W53te7jQcpEOKdfI0xGgAnOG5hiB66TdAZpkiEKWJkKRIizXoAkjxBjCzv5/OmHLaBMaaI0MQIfXQCTmOlVoZJkTQNkw59aTOpzyXh2zZ82wLgZR9+kB/fdx38Gn79QieAf83Oe/l1VyvFn9XCR9wfwM/n8IOXlUPrpqEAU0REZlMXWZFlpZlRYmQZogXAzKscpcnsjQQYo5EERzjm7jt8iCu5jnvJEzFZzTEaWEeWCeJmBEeCtJljWXQb2wQom+duZJxD7uMb3azoGA2mCU6cCTLUUyYwY29kA3nSJExTnL6fvJxrX/V9hmjlPXzZvE6YAq0M08Zhht2vcSv7yRMhSo497ACcJj9vLtzGcLjVBNH9bKKLXoZpMdf7Nd7F58p/SjYQMwFziiQZ4uxhB50cpJFxwAmE97OVJkaJu51l72c7MbLmseAEqD+68w1ccuNj5nv5ys/9K1NEiL4oR+jDzt7Rh//hSngx0FmAlNPI58fWJtgFG7//CIGdXhSy+bn9JZDlTeumoQBTREREZJlzGvCUCbslqd30kCFOlphpoBMjSw1TZIibjN9W9jNEK3lqzHkZ6pkiQpYYzYwCuE1vsmSIm3LUFElGaaKFIYqEaHLPzRGlnQH2s5UETsfXYVpJkjLBonfNWda5mUDnsS2vGjZBoDdDM06GbTxEH52sJ03B7a46QZzDtNHOADtwGugM0sbhcBsByia4rWeCNAkKhE0G8mZu46HANjbTx53caL4XUXJczQPkiLLO7S77INu4iTsYooVWht3vUZw0CTOz0/t+NNw4RhuH+bOx/wXAqd+s5rdf8gCH370JPuQ2J3o50Av/pfvr/H32PQA02Kuo4TEKhFjn/hxEzlUKMEVEZDbdiRVZVryMoZdR66eDJka5nAEe4krAmfNYzwQxsqZz6og7iqOejAnyvKC03rd/c4B2buROWhgyey0TpN2uq1M8wNWMu+WnW9lPmvWUCfB13g7AjXyXLOsYp4GDbmaumREeoYMd7GEfVwNOhjVCngIhkz29mxtoY5AO+ulnE82MANOB7AT1JrPoZUhDFE0pbpCyOyIlz/UFpxz2vvDr6KaHYVrMnlOvtNYLhCPkAWcEzBgNFAmzm2sBZ0RLEyNkWUecCQDu5EY66OcbvIXgBU4WsrgGesZextovPEkk5PxsEok0B/a+wsnkOhXEjB/ewFUb/4V9j7yWx7PuD/XKs/iLIMuX1k1DAaaIiIjIMjdKE9sZYoI4AJ30EaYwo3lPA2PkiHKQTpOZbGXYZDO97F6cCZNF9BrlePstH6Z7RiC6k/vYww7aGDQB2SBtpEgyRiNv4juAE6AWCJNmvTlvGw8RJ8Nnf/IhPv6qDwDwhVPvJ73KycZ6GdV2BtjGg4QpEiVHjfv4ImFqmCJB2gTMAco0McooTWZPaR+biZJjI4PcGf5997wS+9lKiAKb6QOckt00CVIk6eQgR9wMah+dXMNeUiTNXtE97CBFkizrOMxGwGmsVCZANw8Tq3OuvVwXpJUhbq99B8f/2flZZa6Iw6hzDfGX/sY59s8Xs+/J1zonKAiRc5wCTBERmW1h2q1rDqbIWfIa1njBX5EQGXcPZTcPA85exBhZEhyh5AaVAEM4+xW9TFwj49zFLgbZyI04DXUaGCdAmTgZDrpNbdaRpY9O0wxoGw8BTjDZwBgpktzFLsDpVruRQdoYNAHvXraTIM1bXvVV/pb3Oq+zapz7H3kdV2z6ubmeJkbpYzMJ0nTTw5jbHKiFIe5nO1exz+zrLBNgihpeRo95nQRpQhTpYzNve8ppgnTvha8hR5Q2DptmPkO0kCNqAss/PPotAP7fuj9iP68g4wbv4JQgv4uvch330uKWzY7SRD8d7P7F73LFS5wOPY/e+lL+/emruWTyMR5POO1hr0rvI/O5OD+68g1sfPARADJTF8N3IfSlSYpxJ6jHfsVz/Fsgy9rCjSlZcWunAkwREVksmoMpcpaSpFhH1pSfJkkxQDsd9JuGM1vZzyAbaWWIB9ySVC9LmCZhSkrXkWUr+2llyIzbaGSMGFkG2cgN3ANAL1tIkeQa9hKkzKCbyRungWPE2Mp+7sMZzXEV+zhEOwfdQNEzQLvTrCcfcR67bwN0Fqgnwx28CYD383mz/3GQNpNdzVBPiiRp1s/YZzpOA3/Le0132Cg5whRJkeRbF/4e4HTCTZBmnAYzDiXFBu7nGrZwgDYG+XndSwEncPTKcL3y3P1s5S/4BGkSZg9nb3ELwWCZW17yN6aMmJcDn4THv3AZqw6eBJzy5bGxBtbufZLDP3FHtKwHWqH4r7WserLzOf/85by24tZOBZgiIlKd2q2LLBtBd++g14CnTNCMBRl191l6eytTJM34kH463A6xadPJ9Rgx0yzIa8iTJcYYjRwhYcaRTBEhRJFxGvk6b+etfANw9id6Y0Ku414A7uF64mRodBvngBMMdnKQz/7Dh+CFzrHrd36Xe277fWI3O0EuwG28mQ76GaTNZGUBOjnI+/NfYCRyibneYVqIuQGyNwYlS4xWhhmliS56ASgQJkSRz/AB/l/eBTilsElS3MDd5IiSxwl6c0RNh1lv5Es7A74geicA7wp9jXu5jnEaTTY3tKnIwDcvpzU0zIEPOxnJ8scCdDc+TIokwavcEtnHLnZKYy+AU3+/2vlm/Pfn/vdAljmtm4ACTBERqUbNCkSWlTEa6aeDq9hnjrUzwChNJmNYJkCCNN/grSYY9EpWx2g0mcEfsGtGZ1SAa9gLOJlM/z5Pb++j93wACY6wn61kibG3eA0AbwrdwVc+9ae874OfNCWp9xy9gRvr7qRm1zEStc413vOnv88LPzdEjKyZWdnKMD9mB2/n6xQJmWzl/WxnR2SPmz11mhE1McIozcTJmNcBJ0hsYMxkc/vp4Ebu5MN8jK+5AWYrQ6wnzZ/zP9nBj81e0Q766aWLDvrNsUfoIMER7mIXW9ygNU6GMgEKhMxszAAljv/zRQy+NsiWj/0bAAduewXZ18eoWZPn+Hsuci7w/cBb4JqNPzQBtLr8nGO0bhoKMEVERESWuQAlapgi5GYci4QZpI0buJtet1wzRIExGrmBu0220uvOmiNqmvxczz1kiNNPh2nyE6bIEK3sZys38l0ADtPGGnJus5vpcSgDXE6EPBHyvDf0t+6xdq794PfZz1YTyLbXDTBGI7HarGnIMzz0YtJj6xlrbDDB61b2826+Yl7De50kKcZoJEvMBNH3s52d3McQLUy5GcgM9e7e07QJ3toZYJgWDrKZDpx9kJvo5yCb2cl91JMxgfSd3Eg7A2SIm8zvXw58hr9vfxPd9JhgMkuMwz/eROI1afb9wmnYs/4lI/A0nNhXDzsHAdh48yOMHm0iETpC298dBuDhO66Eerj/rtfBVe4PdevZ/V0QWe4UYIqIyGy6EyuyrIQp0sSI2TOZp4ad3Me9XGeCxK/xTq7mAZoYNQHZCE00M0qAsgny2hhkkLYZGcpeuoiSo5UhE5xmWccITcTIUiRM0Z1PWSbIEC1kWcfVPOAec8aHbGU/t+VvBuCtkW/wENsIUTAzL3kXJBqPECXHKM2Ak31sYpRhWpggbkp+A+74kSZGTSnvDvaQI0qYosks7ucVlAlwmDbTtGiCuDt/c8SMdmk5+mtuq3OurZFxk731mgulSPKAG/19qf3tjNJEI2OmYdIQrfyX13yZHGt480v+zlz7PXubYQICO53s6eFfdUDJ4tA/b+bam78PwKprTjqlsS8H/sX9oSrAPLdo3TQUYIqIiIgsczXkeZhuE+zczO3008F29pqA7IN8khRJGhgzQZU3luMYMYK+8tEa8jQyZjq5niBquqhmWQdAB49whITp6uqVn0bIc//R7fxJ3RdN4HgVD7CPq4mSY2vE2Vs5QDs1TJn9kAC0OqWq+3kFN7hNerbxoMl89rPJBMIBSvTTQS9bSHAEcBr65IjSRa+Z/5kgTYwsSVKmlLaRMUZoIkfUBLJ9dZ1s40GKhMkR5Up3H2WWGPvZSoEQXRww195BP3dwEw3uvtIwBYZpIUWS4Ttf7PxcfucYvB64GB7+hXM9ay6b4ER/PXwXhm5uBeDUh1YT+tQkxYlarvjYz92f6kuf+18EkRVAAaaIiMy2cO3WRUREzj1aNw0FmCIiMpuNuuGJLDNv5nZTvgpORnGAdtpw9v710kULQ4QpmpEio26JazsDM7qmevsbB7gccBr3FAjTyJgpm/Wylx9/5BN8dNOfm72IDYyxs+4+sqwze0K9c3ewh08d/gjgNLTZxV18g7eY8R/pjevZ997XcskXH+Nvf/UBADIvivNG7qKfDq7jXgpuKW6UnNkT6RmgnXoyDNJmvu4RmoiQJ0fUZFtDFBilmS56zbzM9/K3jNMAFCgT4EG2AbCZPjroZy/bGcbJOHbT47561JTiNjLOIBspECZ3o7PXs4lRHr7iSvhnWPUmZ0zJib31kIUr7vs5j6bdMSW/A+vr0jz+hVoefZd7LPEcfviy/GndNBRgiojIYllxw6JFlgsv8NnMQQB66KaHbt7Nl01A1kUvDYxzgC1mv2ScDBnixMmY4KudAR5ygyuvTHSIVjcYPWbKXgdpo5UhPr7pA/Sx2Ve6WuYEUWIco8+dy9nEKP/+46vpfk0P12z8IeAEg73FLeSORXn0E0456MYvPgJZp4HPK17klNJu4yFyRBlkoxldAvAQ2+imhzQJU57bxmETeHrHvPEoDYybIHiAdlM+vJ37Aac0uECIVoY5TJspI+6hm256aGfABLQ9dBPjGFfxgCmb/Tpvp4N+WhlimJbpH85PIfSWSYrvq3U+/n3gHgjfXISfOT8Hfg2PP9HK733sW3zvU3/oHPvgHH/4IivMqqW+ABERWaZK8/zmDotWcCny3PXRST8djNDECE2EKPIXfIJ1ZMlT475FCFNgDTnTjbVIiGvcQMubh9nLFjrpo4duUiRJkaQVZ3RIH5vZyn62sp8IefJE2M9W03W2nw6i5BihmSgniDNBnAl2cy2vfM2/8oVffZAAZQKUnW6toQynCmF4nw3vs+nkIPx1iZ/+j1ezhhxryPExPswRErRziAHa3f60TrbVCyKz7lcUpmDOSbOeNOvNsTu50f1qUoQpUiZAjqg5L0KeMkGKhFhDznzfmhglTYIIeRO438dOioT5yNhfMUoTozTxg1vfZH4GO7mPndznPNfvT1D8l1q4HuftXUC/k+ld9YqTrHrFSegE/j3I977yh3ADzpuce+Z73VyhTYOUwRQRERFZ5t7J18gTMY16IuS5mxvYwR4Ou41tNjLIAO1kqDfzHNeT5uu8navZZzKYozRRJsiN3GlKbvNEzJgPL4PZzgDtDHCQTqaIsJftgDNW5Goe4ABb2OiWqV7FA8TI0vii6SxijGMMp1uhNwjfdr6O/n/axCUbhni88zKO+F5nPWnWkXVDYGe+ZTOjZNwQ1ssiDtNCOwPUM0HZbXj0CB3UkzElwwAhiqRJOOWs7uiS9W4zoAl3HIn3nP10sJX9ZImRYw0Au7iLCHnaGg+bkuG/vOUvuJvr6eZh8zp9l74c/gqod98A7oFQ0yQ/+tgbAIh/6Ddk9q2GbQVemXiQ/mKHe+JFZ/E3Qc5DK676RxlMERGZzWu3fp7fhRVZLiaIkyVGgTAFwiRIE6DMQ2yjhWFaGDZzJPPUuDnEAGGKvIuvMUibOdbpltmmSXA1D3A1D7CHHcTIspMfmhmXLQzzGT5AmCJ5IryVb/BWvsEQrdzJjexgDxGmiDDFMK1kidHImLme7z3xJq5P3A0Xw5pvT7Dm2xMcOryZTL4erihxkM0cZLPJrHqlr2WClAmyn63UMEUzo25OdSvtDDBKEwO0M0gbg7SRoZ40CVoZIkSREEUi5AlRoJ0B83xBkw1dxzqy7lW20MIQfXQySpP71UTo5CBjNJqxJ+DsXX30Fy+lh5eZ7xEd8Mqb/hUmYNXFJ1l18UkIQrwuw6p3niT+od84Dy4Af+383I7/upHjv25c7L9CstAWYt1codU/ymCKiMhs6oYnsqyM0kyZgCkZDVAiTIH1pCkSMuccpo12BsxszPvYSZYY7QxwN9cD8Od8iju5kYN0mj2d29kLOMGXtw9xkDY+yKd4iG2M0jQjs7mFXv544Ousb3ea94QoMDDZTrI2xeGb3CY2H4B7rvh9rpr8F5M9PbS3nui7c5z4TD1Xf9GZoTlCExnqCVEgSs6UxyZJkWMNHfSbYyUCbGSQCFPmOhvc5jv1ZExmsZ0B+ukgQ9x8jXvZTsL9fu1hBy+jB4AIU5QIkCTFhJuGHKaVXrbwOnfWKDijT655yQ+5lnv5UP4Tzmv/0xP8tPbV8Ho49fXVAFz+k4PkiHLqU6tZ/zln32rTzaMcCL+C773hD1n73Sfdn6oymOcUrZuGZdv2Ul/Dkujq6rJ7e3uX+jJEROaNZVkHbNvumpfnekGXTXKe/48cmr/rk8WndXNpdfBzrmYfnfQBsIfXmBJXr/lOP5sIUCJFkh3sAaa7u/bQbYLIAGUOsIUSAfpxgsEbuZMMcQZp4zruBZyM3V3sYiv7iZIz8zZLBMhQTxe99OL8kx6jgTBFRk81sWWVU3r64x9fxwtfMwRgguBCMcTxl18ETdD5Tz8Dppv0NDEKwJu5DYApIuSIkiXGNrcZ0V6208QIJ4hyzC1dDVNkjEbaGOS/8jcAfJffJ0CZPBETdA7TQoEw4zQQokiSFDDdrXYPO9jJfQAMspGr2cdd7DIlsmM0UE+GLDFTGvzZt30I2oDjwP90s53/+0b4F3jh/xgiPeaU+9Y3ZqghT5gih3uc77nd/dz+Dsj8W/brJqzItVMZTBERmU3t1kWWle3cTwf9Zo9ggiMAHKaNMEXA2fMY5QRhiuzjasAJnhKk2cEes7exj81sZy8ByrQyDECZAAnSxMnwed4PwF/xEQKUSZBmjEZC7us0kSZImTEaSZEE3KD1xy+FpyF8ndsJ9ooCv76tFa4qwT7nV85VO07CR4HOEqlTzmN3rrqPPBEzTsXbm7mHHawhRxuHTXB7gC00MsYP2UmzG5CCk8Uco4G383UADrKZCHn2st2MM+mgnzIBxmgkR9RkQJ1GPyMEKJuvp5VhHuAqckRN4BsjS5kAt//kHdzyKieQrfnCMaK1OcZv2gA/uBGAtS9/kuiVJ/j1L1phh3N9499aDd+Fjbc9QkP3E+5Vb3hOfwdkmdO6aSjAFBEREVnmApRMJg1gB3v4Gu/keu7mhNvEZoQmmhklSs5k/MZpMIGgF2h5j72GvRxwM5BeljLNepPF28t2kqQYpI1tPGRGc3hNf7LESOfdstnIAL/9mgcoEmL3r3YBsP5Fo8RvnuDRf3gpPOpcd+vNwxz+2SY4EeTYNc7Xk2pMMkgb7+WLNDDG/W4zobfzdYZoJU+NyUJ20scEcRMYA1zLbh5im8mSAqacOEnKBIh5ahin0ez39JoRHSPGMK0kSJv5oU2McDs3s4u7CLuzPjPE2UIvG1/1CLfe+18BeMt1X+WbH3uX0+DnLc5r534Z5fh/voj43t+QiV0MQM0rjzG1dx2H37BpejyJMphyjlKAKSIis3nNCkRkWSgSJkzBzLzcww52cRcl377Mbh4mRdKMJ/HEmaCFIfrpMMe8Etpudx9iNz08wNV08IjJIEbJ0cQoKZLcxRtN19Ud7OF+ttOb72JX5C7AyWDeMXkT0docr3yRU4r70x+/miOPNcO/AF9wXnes2MDajz7J8X0X8Z7GrwBOwLqLu0iQpo/NpnT1LnbRwDgpkmYfpdcRtolR38zLy4kzQYZ6k4FsY5CDbCZMgT1uGrGNQQqEqCFPiqSZuVkiQB+baWLUfN/u4E28ly+SIkmLL5j9b5OfpL12AJzKX6ez7meAn4KbXObU8dXwVcifiMB/c45NfXQdNR89xtST6+Av3Cf7/rP91GVF0bppKMAUEZHqtFCKLBshN4vmjeaIkqOGPPVk2M9Wc14bg3yDt9KFsxesgXF2cy2d9JnGP3dyI82MEidjHreX7XRykCkiPOCW197A3QzTwqf2f4Tf2/otxmgAnGY3cTJ0Rg7yzcPvcp7gbnjlB/+VFMnpTOsE8BjQCjztHCqXgpyYiMFa+Nv7/gyAVVtOcnPj7XyZ99DImGm+E6JIiiRX8iAl9+v2rtnLqgKkSJInQoQ8u3ACXm/+5XXsNgFrmgSb6Gcv201wCXAbN3MT32GAdhNMxtyRKWM0mqxmPRk6avtpY5CaP3XGwPz0wVfDLlh72ZMc/+N1zhM+GYa3wNQfr+ONt3wHgB/c+Sam7llH6PWTFKmdy49cViKtm4ACTBEREZFlb5xGgpRNBrOdAYZp5Zu81TT+uZMb2cl9JNx5j+AEX9t4iBhZPsJfAXA1+2hgnA4eMdm9OBPkiDJMq2ka1EsXaRL85da/YDfXmue8I/8mkpEU23iQAxc5Jba7PngXPXTz+C8ucwJLYNU1Jzn1wGp4DNZvcrrNHrmzGd4KPGpDjwXA23d+nX462MaDNDJu9kZucLu6jtFI3H3SOBMM00o3PezmWvO9iJKbkaEdoJ0ER3iQbaaE+CCbeT+fp4N+Bmg3QXiMLH1spp0BEqQBp9x4gg7aGTAB/DYe4uEntrJtw4MmiL78yoMcKm1mV+gH/P2j73Fe/NfAXwMvhB9c+ibn2LeApyEQLOMmgkXOWQowRURkNrVbFxERmTutm4YCTBERWSxrLcu6Fdi9kgZGiywHUXIcI2aa20TIs5truYp9Zt/hTdxBkhQhCqZ5DzhZv8O08Vd8BIAyQWIc4362E2EKcEZ9jNJMF73UuMfu4CayxBiliU76TBZxLNJII2OsI0tHrVN2e/vAO/i99m9xuL4d/tH59fLUjtWEMpMUf1bLkfc2OxfzI4if+A2Zb14M9ziHHn5vN02M0s4AWWIMuc2EuumhkTHSJGhkHHAyuR3000cnDe6xEEW3E+woEZzS1TYGSZDmCZLma7yKfYQpMEQL68hyNzcATkOfBEcIUTBZ0Hu5jhRJPsgnTYZ4N9fy0Q0fYh9Xse/HrwXgL1/zF3z825v5+6H3ENo1CUDxm7WwDy5PH+TQZzc7X2QAuB6mciPwiXVn81dAZMVQgCkiIrMtTLv147Zt3zLvzypyHoiToYdurmYf4JS+vpuvkCZhSkrHaGA31xInQ4vbhSZHlH1cTTc9JtC6h+tZQ451ZM3exjwRcqxhkDZTJjpKE1voJUeUBGnGaQScjrMpkuxluykVfWX7v/K9+/6Qa3b+kPvf/DoArvj0z3nUugI+AGs+6QSnJ2L1ZD56MZd87DEe77oMcJrsxMiSIkkNeTa7Ad1+XsFOfkicCdJu46EAJRMENjIGOCWurQzxed7PjTizKBsYJ8caNpAyTZDG3OtvZpQcUdPg6KDbLGiYFgZpA5yy25u5zXxfAJKkGOBy53v2a+fn8sXin7Dqf57k1B+vpljv7q38Z6AXDv2qE7yxiNtx9uftegm89jn84GXl0JgSQwGmiIiIyDJXJkAXvWZcR5EQe9hBhDwTxN1jYV7DnhmzMesZZR9XUyTE5e7eyk766KOTTfRzECfDFuMYQcrEyZh5l+/mK2SI85mjH+D9dZ9niFbACbS2s5cB2ullC+AEbT/th/tjr2NNpxNMPnrbS/kd+5/40ao3cCJZ73whu+CKTT/n0f0vhS85hx7lpey4Yw+DtBEjyyvcBjxd9HKALjroN5nJCeIUCJGh3gTCWWLsYQdv5nYz6zPLOsZpoIFxYhwDnJEteWrccSRtpiNtF72M0UiSlNl/GiXHQTYzwOXUu42F8kRoZIwER0i9zckaX8du/nb4z+ADwIfcH1YOGAW+aTnjSwD+0xQN9lOMb9owHXS+5Dn/NRBZERRgiojIbGq3LrKsOCM7xkzwlSNKA+NcyYM84mb0IkxxB2/iJr5jymYTpE3ZrBcopUjSSR8PuIEnOEHaNh5klGbG3W6xzuOKXFO3ly9Ovpedtc58zDsmb+KG2ru54xdvM79JvmnTHVzxwZ/z6FdeyonPuFHVH8OP/ukNMGRDi9PQh2Z49EsvNWM+APgDCFKmlSE2ctgEshHytDFInhoe4CoAruQhpijTR6fJnrYzwGYOkmY9RbcJUpkANeSJkDeBZCd97GcrZYJkiZmmRQfpJEyRDHFq3ED2BFG+w5v4G97LYTerOUSr2zTpQRIcAZysMQEIXTpJ8XI3g/knwHuA/12gJeF8ocOvfzHj790A/b+GT7/QOU/1HOeWhVs3V9z2EgWYIiIymwJMkWXF65S6kcMATFHDCE18nvfzZm4HnM6pTYxwhASjOHse++mgnUOkSNJDN4AJrJKkTPCVIskREuSImpLbAdqJkuNHv7oBTlh0bXJSb4naNF8eezfEbD7+ImfUyFd5p1OCe32B+LucDGYmfDHcCbQ8DH/vvDYxoASrbjzJqSdXAxB/7W+4mxvopoc4GfJE3FOPmev1ZnCmSVAmQIOv2+x+tpIjylb2m0xnhDwjNNFBP6M0Ac5ok1GaiJHlRu7k87wfcEp+93EVb+Qu832Lk2EnP6SZUXPe+/k8d3Iju7nOvM737vtDuBuK5Vr4A+dLDHVOUvyTWuIXTUz/AEsQ+ugkfLSW4pPP7WcvK8TCrZsrbnuJAkwRERGRZe6+ozt5S903+NPiZwEoPh1ma+1+ApTZ52b3vpJ+D6EXFLi2bjrJUSZAhjjjNNDrNv7Zyn6yxCgTYP9RZwRHrC4LTAepABmvvvPnFpffeNBkRUdoor1xgEd/1cVffvgzzjlvsVlzUQZSYTIXX+wcqwHeAnyiG55yL+hR4PNw6hOrnX2JQOZ9F9PwxXEaGONubjCzLA/QxRZ66aGbNgYBZ9RIB49QJsCd3Ag4ZbNJUiRJmeAUnOxtL1vMns0IU5QIcDfX88dHv2TO663bQjsDfJO3mlmhny++j62h/byOH7KNB833podukqTMPtH8zgiHc5vgj4B7wD4KVl0t7IXAqjLDPS92XiQOxTY3wznh7B3Fbjztz1tkJbNs217qa1gSXV1ddm9v77OfKCKyQliWdcC27a5nP3Muz9VlE5zn/yNL83d9svi0borIuWbZr5uwItfOVUt9ASIiIiIiInJuUImsiIhUp3brIiIic6d1E1CAKSIip3N+7qAQERE5O1o3AZXIioiIiIiIyDxRgCkiIiIiIiLzQgGmiIiIiIiIzAsFmCIiIiIiIjIvFGCKiMhiWWtZ1q2WZV271BciIiIiC0NdZEVEZLEct237lqW+CBEREVk4S5bBtCwrYlnWnZZlDVmW9ZhlWa8/w7nvcM8btizrS5ZlrfJ9rtOyrActyxpw335ncb4CEZFzmQ08M89v8nxo3RQRWc4WYt1cmWvnUmYwPwDkbNtutSzrUuAhy7Jabds+4T/Jsqxm4CPAZiAD/Aj4A+A2y7JWA/8E3GTb9s8sywoCaxf1qxAREVkcWjdFRGTZW8o9mDcCXwWwbfuXQC9Q7S7qLuAe27afsm37FPB37mMBbgJ+atv2z9znKdm2nVnwKxcROefZQGme3+R50ropIrJsLcS6uTLXzqXMYG4AHvd9/ASQfI7ntQPPWJZ1H5AADgAfsG372PxfrojI+cQr9ZFlROumiMiypXXTs2AZTMuyfmFZ1sRp3gLz9DJB4BrgvwAvAXLAZ89wTbdYltVrWVbvU089NU+XICIi8vxp3RQRkXPBggWYtm2/xLbt+tO8lXHuqF7ie8gGIFXlqc503uPAT2zbPuKWAd0BvOwM13Srbdtdtm13XXjhhc/nyxMROcepRHaxad0UEVnJFqxEdsWN+FrKPZjfB94J4DYreCnwL1XO+wFwvWVZF7pd8N4BfM/93PeAl1mWFXU/fi3wfxb0qkVERJaG1k0RkfPPcdu2b7Fte/dSX8hcLeUezE8D37QsawgoA7fYtp0DsCzrY0Datu2v2rb9K8uyPg78zH3cj4FvA9i2/YRlWf8L+HfLsk4BI4BmrImIPG/aS7IMad0UEVm2tG56lizAtG37JPC7p/nchys+/hrwtdOcextw27xfoIjIeU0L5XKjdVNEZDnTuulZyhJZEREREREROYcsZYmsiIgsa2rMIyIiMndaN0EZTBEREREREZknymCKiEgV2ksiIiIyd1o3PcpgioiIiIiIyLxQBlNERKrwBkaLiIjIs9O66VGAKSIiVajUR0REZO60bnpUIisiIiIiIiLzQhlMERGpQqU+IiIic6d106MMpoiIiIiIiMwLZTBFRKSKBdlLstayrFuB3bZt757vJxcREVk62oPpUYApIiJVLEipz3Hbtm+Z7ycVERFZeiqR9ahEVkREREREROaFMpgiIlKFSn1ERETmTuumRxlMERERERERmRfKYIqISBXaSyIiIjJ3Wjc9CjBFRKQKlfqIiIjMndZNj0pkRUREREREZF4ogykiIqehUh8REZG507oJymCKiIiIiIjIPFEGU0REqtBeEhERkblbsHVzrWVZtwK7bdvevRAvMN8UYIqISBUKMEVEROZuwdbN47Zt37IQT7xQVCIrIiIiIiIi80IZTBERqULzvEREROZO66ZHGUwRERERERGZF8pgiohIFdqDKSIiMndaNz0KMEVEpAqV+oiIiMyd1k2PSmRFRERERERkXiiDKSIiVajUR0REZO60bnqUwRQREREREZF5oQymiIhUob0kIiIic6d106MMpoiIiIiIiMwLZTBFRKQK7SURERGZO62bHgWYIiJShUp9RERE5k7rpkclsiIiIiIiIjIvlMEUEZEqVOojIiIyd1o3PcpgioiIiIiIyLxQBlNERKrQXhIREZG507rpsWzbXuprWBKWZeWAwaW+jtOoByaW+iKqWK7XBbq2s7Fcrwt0bWerzbbt6Hw8kWVZ/4Lztc6nCdu2XzvPzymLROvmWVmu1wW6trOxXK8LdG1na7mvm7AC187zOcDstW27a6mvo5rlem3L9bpA13Y2lut1ga7tbC3na5OVbzn//Vqu17Zcrwt0bWdjuV4X6NrO1nK+tpVMezBFRERERERkXijAFBERERERkXlxPgeYty71BZzBcr22/7+9+w21pK7jOP7+uGr+SS3MQkUr01wEdRPFAi0jckmkhSiCMlMwS6J9kE98kiwVEaxhhJuS9ajSNAQTWzBKlyjC3HTXP6XbGqirFCvRWmmJ+u3BmYun9bh77z2/c8/sue8X/Lhz7/zmzufOnDPf/c2cme1rLjDbYvQ1F5htsfqcTfu+Pr+++pqtr7nAbIvR11xgtsXqc7Z91rK9B1OSJEmS1NZyvoIpSZIkSWpoZgeYSQ5JckuS7UkeTXLhHvp+ruv3eJLrkuy32/yDkvwxyea+ZEuyKsn9SbYkeSTJ95K8oSfZ1iT5Q5KHu2xX9iTXsUnuSbJr3H2Z5N1JfpdkW/f1pBF9ViTZ0OXYnuSy+cwbV4Ns5yfZnOS/Sa5platRtq90r6mt3WtsdU9yXZrkwe79+FCStS1ytcg21OfkJM+33qeaHS2Os0PzrZsLy2bdxLo5oWzWTevm0quqmWzA1cD3u+mTgL8CbxzR753ADuAoBgPuu4CLd+vzLeAHwOa+ZAMOBg7spvcDbgPW9iTb2cAx3fQRwHbg3B7kOgJ4P3DhuPsSuBu4qJu+CLh7RJ+Lu/Xv1+XZAbxjb/Ma7MNxs50IvAf4OnBNi0wNs60GDummTwf+ARzcg1yH8+otB4cBTwCn9WGbdfNXAJuAm1rvU9vstBbH2aE+1s2FZbNulnVzQtmsm9bNJW8zewUT+CRwA0BV/RnYDHxkRL+PA7dX1c6qegW4sVsWgCTnMjgw/7BP2arqhap6set3AIPC+UpPst1bVc9007uAPwFv70GuXVX1a+Bf4wRJ8lbgDODm7kc3A2ckOWpE5hur6pWq2gncDnxiHvOmmq2qtlfVA8BL4+aZQLa7qur5rt+DQIAje5DrueoqEnAIg/fk2De4N3qtAVwF3AlsGzeTZpp1c3rZrJuvZrZuts1m3bRuLrlZHmAez+BsyJwngeMW0i/JocC3gSv6lq3Ld0ySLcCzwD9p8ySsJtmGMq4E3svgbFJvco3pOODpqnoZoPv6zIj17CnLpHK2yDYprbNdDDxeVTv6kCvJR5M80vVZX1UPjZmrSbYkpzE4g31tgzyabdbNKWYbymjdHJ3FumndXJJs1s3x7T/tAIuV5H4GL45R3tZoNeuBDVX19KjPb7+eJcpGd7ZzVVfQfwR8DPhJH7J16zoa+Bnwxbkzs33IpX1fkg8AXwM+PO0sc6rqDuCOJMcDtyfZWFWPTTNTkgMYXI24tKpeTjLNOJoy66Z1U8uXdXN+rJtt7LMDzKo6Y0/zkzzJ4OMlO7sfHQ/cM6LrXD+G+j3VTZ8DXJDkauAg4M1JHqyq03qQbXh9/05yC/Bp9lIolypb9xGFXzI4I3Xrnta5lLkaeQo4NsmK7uCzAjhmxHrmstw3lOWJecybdrZJaZItyfsY/MNwTaNC1HSbVdWTSX7P4J6lcfONm+1o4F3Axq5IvglIksOr6vIxs2kfY938v/VZN+eZqxHr5hSzWTetm0uuenAj6CQasI7BZ6thcC/I34DDRvQ7gdfe3P7ZEf3Oo93DCsbO1s2be1jBgQw+Y/6NnmQ7EtgKXNHH/dliXzK48Xv4BvJ7RvS5hNfeQH7C3uY12FZjZdttm7d+WMG42+0sBkXh7J7lWjnU7y0MCuT5fcg26X1qm53W8jjb9Rv7WNsyG9ZN6+aEsu22za2b88tl3ZzhNvUAE/vD4FDgpwyexPYYg7M2c/O+Cnxh6PvPA4937XpgxYjfN/bBtWW27g3zEIOC9DCwgTZPBWuRbT3wArBlqF3ag1wrugPITuDFbnrdIvOsBO5lcPP3vcDJ3c83AmcOre/6oSyXDy3/uvMa7MNxs53TbZvnGNyjtANY3ZNs93X7b/i1dWoPcl0LPNLl2Qp8qS/7c7fftQ4Lpe11GtbNaWazbtZej7PWTevmkmTb7Xetw7q54Db3eGBJkiRJksYyy0+RlSRJkiQtIQeYkiRJkqQmHGBKkiRJkppwgClJkiRJasIBpiRJkiSpCQeYkiRJkqQmHGBKDSXZlOQvSa5axLJrk2xPsnkS2SRJ6hvrpjR7HGBK7a2tqm8udKGq+g5w2QTySJLUZ9ZNaYY4wJTmIckFSbYMtReTrJnHcpck+UWSW5M8muRXSU5J8vMk25L8OEmW4m+QJGmpWDel5csBpjQPVbWxqlZV1SpgA7AZuGuei58FfLmqVgIvADcBnwJOAU4FPtQ+sSRJ02PdlJYvB5jSAiRZDVwJrKmq/8xzsd9W1Y5u+gHgN1W1q6peArYCJ04gqiRJU2fdlJaf/acdQNpXJDkduAFYXVU7F7DocEF9ecT3vg8lSTPHuiktT17BlOYhybHAbcBnqmrbtPNIktRn1k1p+XKAKc3PZcBRwHVDDyz44LRDSZLUU9ZNaZlKVU07gzQzkmwCrqmqOxe5/Hnd8mc24C5K7gAAAFtJREFUjCVJUi9ZN6XZ4xVMqa2/A+sX+x9GA98Fnm2eSpKkfrJuSjPGK5iSJEmSpCa8gilJkiRJasIBpiRJkiSpCQeYkiRJkqQmHGBKkiRJkppwgClJkiRJauJ/2FfWvFQPFxYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "functions.name_plot_options(\"logger_space\", data, log=True)\n", + "functions.name_plot_options(\"abs_logger_space\", data, log=True)\n", + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpretation of the data\n", + "Now that the direct beam only hits the center box, all rays that enter the surrounding boxes are scattered from that center box. Since the center box contains a powder, the scattered beam is not homogeneous and most of it is in the form of Bragg peaks with certain scattering angles, and we can see two of these intersecting the surrounding geometries." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Troubleshooting\n", + "In case of issues with the notebooks concerning the Union components or McStasScript it is recommended to:\n", + "- Update McStasScript with python -m pip install --upgrade mcstasscript\n", + "- Get newest version of Union components (Both library files and components themselves)\n", + "\n", + "Since the Union components need to collaborate, it is important to have the same version of the libraries and components. The newest version of the components can be found here: https://github.com/McStasMcXtrace/McCode/tree/master/mcstas-comps/contrib/union\n", + "All libraries for McStas are found here: https://github.com/McStasMcXtrace/McCode/tree/master/mcstas-comps/share but only three are needed for the Union components:\n", + "- Union_initialization.c\n", + "- Union_functions.c\n", + "- Geometry_functions.c\n", + "- Union_last_functions.c (if on McStas 3.X)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/source/tutorial/Union_tutorial_2_geometry.ipynb b/docs/source/tutorial/Union_tutorial_2_geometry.ipynb new file mode 100644 index 00000000..a15aae94 --- /dev/null +++ b/docs/source/tutorial/Union_tutorial_2_geometry.ipynb @@ -0,0 +1,492 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Advanced geometry using the Union components\n", + "The Union components allow the user to construct advanced geometry from simple shapes. Each available shape has their own component, here are the currently available geometry components.\n", + "- Union_box\n", + "- Union_sphere\n", + "- Union_cylinder\n", + "- Union_cone\n", + "\n", + "They differ in their parameters describing the geometry, but are otherwise identical. In this notebook we will show how to construct hollow geometries with several layers, and that multiple scattering between these quickly result in complex behavior." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setting up some standard materials\n", + "Before setting up the geometry, we need some material definition, here we set up aluminium and a sample powder." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "Al_inc = instrument.add_component(\"Al_inc\", \"Incoherent_process\")\n", + "Al_inc.sigma = 4*0.0082 # 4 atoms per unit cell\n", + "Al_inc.unit_cell_volume = 66.4\n", + "\n", + "Al_pow = instrument.add_component(\"Al_pow\", \"Powder_process\")\n", + "Al_pow.reflections = '\"Al.laz\"'\n", + "\n", + "Al = instrument.add_component(\"Al\", \"Union_make_material\")\n", + "Al.process_string = '\"Al_inc,Al_pow\"'\n", + "Al.my_absorption = 100*4*0.231/66.4 # barns [m^2 E-28] * Å^3 [m^3 E-30] = [m E-2], correct with factor 100.\n", + "\n", + "Sample_inc = instrument.add_component(\"Sample_inc\", \"Incoherent_process\")\n", + "Sample_inc.sigma = 4*3.4176\n", + "Sample_inc.unit_cell_volume = 1079.1\n", + "\n", + "Sample_pow = instrument.add_component(\"Sample_pow\", \"Powder_process\")\n", + "Sample_pow.reflections = '\"Na2Ca3Al2F14.laz\"'\n", + "\n", + "Sample = instrument.add_component(\"Sample\", \"Union_make_material\")\n", + "Sample.process_string = '\"Sample_inc,Sample_pow\"'\n", + "Sample.my_absorption = 100*4*2.9464/1079.1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Set up source\n", + "We will also need a source, and allow the wavelength to be tuned with a instrument parameter." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "src = instrument.add_component(\"source\", \"Source_div\")\n", + "\n", + "src.xwidth = 0.01\n", + "src.yheight = 0.035\n", + "src.focus_aw = 0.01\n", + "src.focus_ah = 0.01\n", + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.dlambda = \"0.01*wavelength\"\n", + "src.flux = 1E13" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Describing the geometry of a simple cryostat\n", + "A cryostat is a complex geometry with several layers to consider. The way geometry is described in the Union components aims to make it easy to describe such systems. This is aciheved by allowing the simple geometries to overlap, and having a value called the priority to determine which is active in a given volume. If two geometries overlap, the overlapping region gets the physics from the geometry with the highest priority. In that way a cryostat model can be created by having a high priority for the sample in the center, and decreasing the priority as we move out.\n", + "\n", + "The ray tracing algorithm can however not handle if two geometries overlap perfectly, even with a single side. This could be two boxes sharing a side.\n", + "\n", + "Let us look at the parameters for a Union geometry component." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument.component_help(\"Union_cylinder\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The geometry components have many parameters due to their flexibility, but only a few are needed for basic use.\n", + "- material_string : string for selecting an available material\n", + "- priority : number, in case of overlap the geometry with highest priority decides the material properties\n", + "- geometrical parameters : Here radius and yheight\n", + "\n", + "In addition there is a focusing system where scattering of physical processes that support this can be forced to a certain direction, this is controlled with these parameters, but are rarely used:\n", + "- target_index : relative component index of target\n", + "- target_x : if target_index not set, relative x coordinate of target\n", + "- target_y : if target_index not set, relative y coordinate of target\n", + "- target_z : if target_index not set, relative z coordinate of target\n", + "- focus_aw : angular width of focusing cone (either specify angular, box or circular)\n", + "- focus_ah : angular height of focusing cone \n", + "- focus_xw : spatial width of focusing cone (box type focusing)\n", + "- focus_xh : spatial height of focusing\n", + "- focus_r : spatial radius of focusing cone (circular)\n", + "\n", + "Finally there is p_interact, which is used for controlling Monte Carlo sampling frequency of the geometry, as it controls the probability for scattering occurring for any path before or after scattering.\n", + "\n", + "The remaining parameters including masks and number_of_activations are for advanced rules which will be described in a later tutorial." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### First geometry, a sample in a container\n", + "\n", + "We have defined the following materials that are available to us:\n", + "- Al\n", + "- Sample\n", + "\n", + "Lets start by building a simple powder container with a lid." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sample_geometry = instrument.add_component(\"sample_geometry\", \"Union_cylinder\")\n", + "sample_geometry.yheight = 0.03\n", + "sample_geometry.radius = 0.0075\n", + "sample_geometry.material_string='\"Sample\"' \n", + "sample_geometry.priority = 100\n", + "sample_geometry.set_AT([0,0,1], RELATIVE=src)\n", + "\n", + "container = instrument.add_component(\"sample_container\", \"Union_cylinder\", RELATIVE=sample_geometry)\n", + "container.yheight = 0.03+0.003 # 1.5 mm top and button\n", + "container.radius = 0.0075 + 0.0015 # 1.5 mm sides of container\n", + "container.material_string='\"Al\"' \n", + "container.priority = 99\n", + "\n", + "container_lid = instrument.add_component(\"sample_container_lid\", \"Union_cylinder\")\n", + "container_lid.set_AT([0, 0.0155, 0], RELATIVE=container)\n", + "container_lid.yheight = 0.004\n", + "container_lid.radius = 0.013\n", + "container_lid.material_string='\"Al\"' \n", + "container_lid.priority = 98" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Set up loggers to check what is going on\n", + "In order to view what geometry we have set up, we set up three loggers that view the scattering projected onto three different planes. These record the spatail distribution of scattering events." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\", RELATIVE=sample_geometry)\n", + "logger_zx.D_direction_1 = '\"z\"'\n", + "logger_zx.D1_min = -0.02\n", + "logger_zx.D1_max = 0.02\n", + "logger_zx.n1 = 300\n", + "logger_zx.D_direction_2 = '\"x\"'\n", + "logger_zx.D2_min = -0.02\n", + "logger_zx.D2_max = 0.02\n", + "logger_zx.n2 = 300\n", + "logger_zx.filename = '\"logger_zx.dat\"'\n", + "\n", + "logger_zy = instrument.add_component(\"logger_space_zy\", \"Union_logger_2D_space\", RELATIVE=sample_geometry)\n", + "logger_zy.D_direction_1 = '\"z\"'\n", + "logger_zy.D1_min = -0.02\n", + "logger_zy.D1_max = 0.02\n", + "logger_zy.n1 = 300\n", + "logger_zy.D_direction_2 = '\"y\"'\n", + "logger_zy.D2_min = -0.02\n", + "logger_zy.D2_max = 0.02\n", + "logger_zy.n2 = 300\n", + "logger_zy.filename = '\"logger_zy.dat\"'\n", + "\n", + "logger_xy = instrument.add_component(\"logger_space_xy\", \"Union_logger_2D_space\", RELATIVE=sample_geometry)\n", + "logger_xy.D_direction_1 = '\"x\"'\n", + "logger_xy.D1_min = -0.02\n", + "logger_xy.D1_max = 0.02\n", + "logger_xy.n1 = 300\n", + "logger_xy.D_direction_2 = '\"y\"'\n", + "logger_xy.D2_min = -0.02\n", + "logger_xy.D2_max = 0.02\n", + "logger_xy.n2 = 300\n", + "logger_xy.filename = '\"logger_xy.dat\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add master component\n", + "We need to remember to add a master component to actually perform the simulation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "master = instrument.add_component(\"master\", \"Union_master\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Add banana monitor\n", + "We are also interested in viewing some scattering data, here we add a banana monitor using the Monitor_nD component." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "banana = instrument.add_component(\"banana\", \"Monitor_nD\", RELATIVE=sample_geometry)\n", + "banana.xwidth = 1.5\n", + "banana.yheight = 0.4\n", + "banana.restore_neutron = 1\n", + "banana.options = '\"theta limits=[5 175] bins=250, banana\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Run simulation\n", + "Now we need to run the simulation to view the geometry we have built." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "instrument.set_parameters(wavelength=3.0)\n", + "instrument.settings(ncount=3E5, output_path=\"data_folder/union_geometry\")\n", + "instrument.show_settings()\n", + "\n", + "instrument.backengine()\n", + "data = instrument.data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plotting the data\n", + "Due to the large differences between the scattered intensity from parts in the direct beam and outside, we use a logarithmic axis to display scattered intensity. We limit it to 4 orders of magnitude below the maximum intensity, otherwise a single very low intensity event can draw the intensity axis out to a large interval making it difficult to see the important nuances." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "functions.name_plot_options(\"logger_space_zx\", data, log=True, orders_of_mag=4)\n", + "functions.name_plot_options(\"logger_space_zy\", data, log=True, orders_of_mag=4)\n", + "functions.name_plot_options(\"logger_space_xy\", data, log=True, orders_of_mag=4)\n", + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpretation of results\n", + "The beam is narrower than the sample, but taller than the can, so some parts of the sample powder are not directly illuminated, and can thus be seen as a intensity area especially on the zx logger image. The aluminum scatters less, and so lower intensity still." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding a cryostat around the sample can\n", + "We can add a crude model of a cryostat around our sample can by adding more Union geometry components. They have to be before the Union_master in the McStas instrument file, so we use the keyword argument *before* in the *add_component* method to specify this when adding the components.\n", + "\n", + "We also need to designate areas as empty, this is done using the default material Vacuum which has no absorption or scattering processes. In this way we can create several layers by decreasing the priority when going out." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "inner_wall = instrument.add_component(\"cryostat_wall\", \"Union_cylinder\", before=\"master\")\n", + "inner_wall.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "inner_wall.yheight = 0.12\n", + "inner_wall.radius = 0.03\n", + "inner_wall.material_string='\"Al\"' \n", + "inner_wall.priority = 80\n", + "\n", + "inner_wall_vac = instrument.add_component(\"cryostat_wall_vacuum\", \"Union_cylinder\", before=\"master\")\n", + "inner_wall_vac.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "inner_wall_vac.yheight = 0.12 - 0.008\n", + "inner_wall_vac.radius = 0.03 - 0.002\n", + "inner_wall_vac.material_string='\"Vacuum\"' \n", + "inner_wall_vac.priority = 81\n", + "\n", + "outer_wall = instrument.add_component(\"outer_cryostat_wall\", \"Union_cylinder\", before=\"master\")\n", + "outer_wall.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "outer_wall.yheight = 0.15\n", + "outer_wall.radius = 0.1\n", + "outer_wall.material_string='\"Al\"' \n", + "outer_wall.priority = 60\n", + "\n", + "outer_wall_vac = instrument.add_component(\"outer_cryostat_wall_vacuum\", \"Union_cylinder\", before=\"master\")\n", + "outer_wall_vac.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "outer_wall_vac.yheight = 0.15 - 0.01\n", + "outer_wall_vac.radius = 0.1 - 0.003\n", + "outer_wall_vac.material_string='\"Vacuum\"' \n", + "outer_wall_vac.priority = 61" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adjusting the logger view to see the larger cryostat area\n", + "The loggers were only viewing a small area around the sample can, but this can be expanded as we still have access to the component objects." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "logger_zx.set_parameters(D1_min=-0.12, D1_max=0.12, D2_min=-0.12, D2_max=0.12)\n", + "logger_zy.set_parameters(D1_min=-0.12, D1_max=0.12, D2_min=-0.12, D2_max=0.12)\n", + "logger_xy.set_parameters(D1_min=-0.12, D1_max=0.12, D2_min=-0.12, D2_max=0.12)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Run the updated instrument file\n", + "Run the simulation with the added cryostat, since no parameters or settings are changed it is enough to just call the backengine function and grab the new data." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "instrument.backengine()\n", + "data_cryo = instrument.data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot the data from the new simulation\n", + "Here we increase the orders of magnitude of intensity plotted on the log plots. Try to play with these values to see how it changes the plots." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plotter.make_sub_plot(data_cryo, log=[True, True, True, False], orders_of_mag=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpreting the data\n", + "The different layers of the cryostat both result in scattering from the aluminium the beam has to move through, but also some increase intensity where it illuminated by scattering from the sample.\n", + "\n", + "### Comparing situation with and without cryostat\n", + "It could be interesting to see what difference adding the cryostat did to the measured signal in the banana monitor, here we extract the numpy arrays and plot them manually with matplotlib for at direct comparison. Ensure you run the two simulations with the same wavelength in order for a comparison to be meaningful." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "banana_can = functions.name_search(\"banana\", data)\n", + "banana_cryo = functions.name_search(\"banana\", data_cryo)\n", + "\n", + "import copy\n", + "import numpy as np\n", + "banana_diff = copy.deepcopy(banana_cryo)\n", + "banana_diff.Intensity = banana_cryo.Intensity - banana_can.Intensity\n", + "banana_diff.Error = np.sqrt(banana_cryo.Error**2 + banana_can.Error**2)\n", + "\n", + "import matplotlib.pyplot as plt\n", + "plt.figure(figsize=(14,6))\n", + "plt.plot(banana_can.xaxis, banana_can.Intensity, \"r\",\n", + " banana_cryo.xaxis, banana_cryo.Intensity, \"b\",\n", + " banana_diff.xaxis, banana_diff.Intensity-10.0, \"k\")\n", + "plt.xlabel(\"2Theta [deg]\")\n", + "plt.ylabel(\"Intensity [n/s]\")\n", + "plt.legend([\"Sample in can\", \"Sample in can in cryostat\", \"Difference displaced to -10\"])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/source/tutorial/Union_tutorial_3_loggers.ipynb b/docs/source/tutorial/Union_tutorial_3_loggers.ipynb new file mode 100644 index 00000000..d57308e0 --- /dev/null +++ b/docs/source/tutorial/Union_tutorial_3_loggers.ipynb @@ -0,0 +1,591 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Visualizing what happens in Union master\n", + "One disadvantage to collecting all the simulation in the Union_master component, is that it is not possible to insert monitors between the parts to check on the beam. This issue is addressed by adding logger components that can record scattering and absorption events that occurs during the simulation. This notebook will show examples on the usage of loggers and their features." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Set up materials and geometry to investigate\n", + "First we set up the same mock cryostat we created in the advanced geometry tutorial to have an interesting system to investigate using the loggers." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter\n", + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "Al_inc = instrument.add_component(\"Al_inc\", \"Incoherent_process\")\n", + "Al_inc.sigma = 0.0082\n", + "Al_inc.unit_cell_volume = 66.4\n", + "\n", + "Al_pow = instrument.add_component(\"Al_pow\", \"Powder_process\")\n", + "Al_pow.reflections = '\"Al.laz\"'\n", + "\n", + "Al = instrument.add_component(\"Al\", \"Union_make_material\")\n", + "Al.process_string = '\"Al_inc,Al_pow\"'\n", + "Al.my_absorption = 100*0.231/66.4 # barns [m^2 E-28] * Å^3 [m^3 E-30] = [m E-2], correct with factor 100.\n", + "\n", + "Sample_inc = instrument.add_component(\"Sample_inc\", \"Incoherent_process\")\n", + "Sample_inc.sigma = 3.4176\n", + "Sample_inc.unit_cell_volume = 1079.1\n", + "\n", + "Sample_pow = instrument.add_component(\"Sample_pow\", \"Powder_process\")\n", + "Sample_pow.reflections = '\"Na2Ca3Al2F14.laz\"'\n", + "\n", + "Sample = instrument.add_component(\"Sample\", \"Union_make_material\")\n", + "Sample.process_string = '\"Sample_inc,Sample_pow\"'\n", + "Sample.my_absorption = 100*2.9464/1079.1\n", + "\n", + "src = instrument.add_component(\"source\", \"Source_div\")\n", + "src.xwidth = 0.01\n", + "src.yheight = 0.035\n", + "src.focus_aw = 0.01\n", + "src.focus_ah = 0.01\n", + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.dlambda = \"0.01*wavelength\"\n", + "src.flux = 1E13\n", + "\n", + "sample_geometry = instrument.add_component(\"sample_geometry\", \"Union_cylinder\")\n", + "sample_geometry.yheight = 0.03\n", + "sample_geometry.radius = 0.0075\n", + "sample_geometry.material_string='\"Sample\"' \n", + "sample_geometry.priority = 100\n", + "sample_geometry.set_AT([0,0,1], RELATIVE=src)\n", + "\n", + "container = instrument.add_component(\"sample_container\", \"Union_cylinder\", RELATIVE=sample_geometry)\n", + "container.yheight = 0.03+0.003 # 1.5 mm top and button\n", + "container.radius = 0.0075 + 0.0015 # 1.5 mm sides of container\n", + "container.material_string='\"Al\"' \n", + "container.priority = 99\n", + "\n", + "container_lid = instrument.add_component(\"sample_container_lid\", \"Union_cylinder\")\n", + "container_lid.set_AT([0, 0.0155, 0], RELATIVE=container)\n", + "container_lid.yheight = 0.004\n", + "container_lid.radius = 0.013\n", + "container_lid.material_string='\"Al\"' \n", + "container_lid.priority = 98\n", + "\n", + "inner_wall = instrument.add_component(\"cryostat_wall\", \"Union_cylinder\")\n", + "inner_wall.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "inner_wall.yheight = 0.12\n", + "inner_wall.radius = 0.03\n", + "inner_wall.material_string='\"Al\"' \n", + "inner_wall.priority = 80\n", + "\n", + "inner_wall_vac = instrument.add_component(\"cryostat_wall_vacuum\", \"Union_cylinder\")\n", + "inner_wall_vac.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "inner_wall_vac.yheight = 0.12 - 0.008\n", + "inner_wall_vac.radius = 0.03 - 0.002\n", + "inner_wall_vac.material_string='\"Vacuum\"' \n", + "inner_wall_vac.priority = 81\n", + "\n", + "outer_wall = instrument.add_component(\"outer_cryostat_wall\", \"Union_cylinder\")\n", + "outer_wall.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "outer_wall.yheight = 0.15\n", + "outer_wall.radius = 0.1\n", + "outer_wall.material_string='\"Al\"' \n", + "outer_wall.priority = 60\n", + "\n", + "outer_wall_vac = instrument.add_component(\"outer_cryostat_wall_vacuum\", \"Union_cylinder\")\n", + "outer_wall_vac.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "outer_wall_vac.yheight = 0.15 - 0.01\n", + "outer_wall_vac.radius = 0.1 - 0.003\n", + "outer_wall_vac.material_string='\"Vacuum\"' \n", + "outer_wall_vac.priority = 61\n", + "\n", + "instrument.print_components()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument.show_components(\"Work directory\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding Union logger components\n", + "Union logger components need to be added before the *Union_master* component, as the master need to record the necessary information when the simulation is being performed. There are two different kind of Union logger components, the *loggers* that record scattering and the *abs_loggers* that record absorption. They have similar parameters and user interface. Here is a list of the currently available loggers:\n", + "\n", + "- Union_logger_1D\n", + "- Union_logger_2D_space\n", + "- Union_logger_2D_space_time\n", + "- Union_logger_3D_space\n", + "- Union_logger_2D_kf\n", + "- Union_logger_2D_kf_time\n", + "- Union_logger_2DQ\n", + "\n", + "- Union_abs_logger_1D_space\n", + "- Union_abs_logger_1D_space_tof\n", + "- Union_abs_logger_2D_space\n", + "\n", + "The most commonly used logger is probably the *Union_logger_2D_space*, this component records spatial distribution of scattering, here are the available parameters." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument.component_help(\"Union_logger_2D_space\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setting up a 2D_space logger\n", + "One can select which two axis to record using *D_direction_1* and *D_direction_2*, and the range with for example *D1_min* and *D1_max*. When spatial information is recorded it is also important to place the logger at an appropriate position, here we center it on the sample position." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\", RELATIVE=sample_geometry)\n", + "logger_zx.D_direction_1 = '\"z\"'\n", + "logger_zx.D1_min = -0.12\n", + "logger_zx.D1_max = 0.12\n", + "logger_zx.n1 = 300\n", + "logger_zx.D_direction_2 = '\"x\"'\n", + "logger_zx.D2_min = -0.12\n", + "logger_zx.D2_max = 0.12\n", + "logger_zx.n2 = 300\n", + "logger_zx.filename = '\"logger_zx.dat\"'\n", + "\n", + "logger_zy = instrument.add_component(\"logger_space_zy\", \"Union_logger_2D_space\", RELATIVE=sample_geometry)\n", + "logger_zy.D_direction_1 = '\"z\"'\n", + "logger_zy.D1_min = -0.12\n", + "logger_zy.D1_max = 0.12\n", + "logger_zy.n1 = 300\n", + "logger_zy.D_direction_2 = '\"y\"'\n", + "logger_zy.D2_min = -0.12\n", + "logger_zy.D2_max = 0.12\n", + "logger_zy.n2 = 300\n", + "logger_zy.filename = '\"logger_zy.dat\"'\n", + "\n", + "master = instrument.add_component(\"master\", \"Union_master\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Running the simulation\n", + "If mpi is installed, one can add mpi=N where N is the number of cores available to speed up the simulation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "instrument.set_parameters(wavelength=3.0)\n", + "instrument.settings(ncount=3E5, output_path=\"data_folder/union_loggers\")\n", + "\n", + "instrument.backengine()\n", + "data = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plotter.make_sub_plot(data, log=True, orders_of_mag=4)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpreting the data\n", + "The zx logger views the cryostat from the top, while the zy loggers shows it from the side. These are histograms of scattered intensity, and it is clear the majority of the scattering happens in the direct beam. There are however scattering events in all parts of our mock cryostat, as neutrons that scattered in either the sample or cryostat walls could go in any direction due to the incoherent scattering. The aluminium and sample also have powder scattering, so some patterns can be seen from the debye scherrer cones." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Logger targets\n", + "It is possible to attach a logger to a certain geometry, or even a list of geometries using the *target_geometry* parameter. In that way one can for example view the scattering in the sample environment, while ignoring the sample. It is also possible to select a number of specific scattering processes to investigate with the *target_process* parameter. This is especially useful when working with a single crystal process, that only scatters when the Bragg condition is met.\n", + "\n", + "Let us modify our existing loggers to view certain parts of the simulated system, and then rerun the simulation. If mpi is installed, one can add mpi=N where N is the number of cores available to speed up the simulation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "logger_zx.target_geometry = '\"outer_cryostat_wall,cryostat_wall\"'\n", + "logger_zy.target_geometry = '\"sample_geometry\"'\n", + "\n", + "instrument.backengine()\n", + "data = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plotter.make_sub_plot(data, log=[True, False], orders_of_mag=4)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Scattering order\n", + "All loggers also have the option to only record given scattering orders. For example only record the second scattering.\n", + "- order_total : Match given number of scattering events, counting all scattering events in the system\n", + "- order_volume : Match given number of scattering events, only counting events in the current volume\n", + "- order_volume_process : Match given number of scattering events, only counting events in current volume with current process\n", + "\n", + "We can modify our previous loggers to test out these features. The zx logger viewing from above will keep the target, but we remove the sample target on the zy logger, which is done by setting the *taget_geometry* to NULL. We choose to look at the second scattering event." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "logger_zx.order_total = 2\n", + "\n", + "logger_zy.target_geometry = '\"NULL\"'\n", + "logger_zy.order_total = 2\n", + "\n", + "instrument.backengine()\n", + "data = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plotter.make_sub_plot(data, log=True, orders_of_mag=3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Demonstration of additional logger components\n", + "Here we add a few more loggers to showcase what kind of information that can be displayed.\n", + "- 1D logger that logs scattered intensity as function of time\n", + "- 2D abs_logger that logs absorption projected onto the scattering plane\n", + "- 2DQ logger that logs scattering vector projected onto the scattering plane\n", + "- 2D kf logger that logs final wavevector projected onto the scattering plane" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "logger_1D = instrument.add_component(\"logger_1D\", \"Union_logger_1D\", before=\"master\")\n", + "logger_1D.variable = '\"time\"'\n", + "logger_1D.min_value = 0.0006\n", + "logger_1D.max_value = 0.0012\n", + "logger_1D.n1 = 300\n", + "logger_1D.filename = '\"logger_1D_time.dat\"'\n", + "\n", + "abs_logger_zx = instrument.add_component(\"abs_logger_space_zx\", \"Union_abs_logger_2D_space\",before=\"master\")\n", + "abs_logger_zx.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "abs_logger_zx.D_direction_1 = '\"z\"'\n", + "abs_logger_zx.D1_min = -0.12\n", + "abs_logger_zx.D1_max = 0.12\n", + "abs_logger_zx.n1 = 300\n", + "abs_logger_zx.D_direction_2 = '\"x\"'\n", + "abs_logger_zx.D2_min = -0.12\n", + "abs_logger_zx.D2_max = 0.12\n", + "abs_logger_zx.n2 = 300\n", + "abs_logger_zx.filename = '\"abs_logger_zx.dat\"'\n", + "\n", + "logger_2DQ = instrument.add_component(\"logger_2DQ\", \"Union_logger_2DQ\", before=\"master\")\n", + "logger_2DQ.Q_direction_1 = '\"z\"'\n", + "logger_2DQ.Q1_min = -5.0\n", + "logger_2DQ.Q1_max = 5.0\n", + "logger_2DQ.n1 = 200\n", + "logger_2DQ.Q_direction_2 = '\"x\"'\n", + "logger_2DQ.Q2_min = -5.0\n", + "logger_2DQ.Q2_max = 5.0\n", + "logger_2DQ.n2 = 200\n", + "logger_2DQ.filename = '\"logger_2DQ.dat\"'\n", + "\n", + "logger_2D_kf = instrument.add_component(\"logger_2D_kf\", \"Union_logger_2D_kf\", before=\"master\")\n", + "logger_2D_kf.Q_direction_1 = '\"z\"'\n", + "logger_2D_kf.Q1_min = -2.5\n", + "logger_2D_kf.Q1_max = 2.5\n", + "logger_2D_kf.n1 = 200\n", + "logger_2D_kf.Q_direction_2 = '\"x\"'\n", + "logger_2D_kf.Q2_min = -2.5\n", + "logger_2D_kf.Q2_max = 2.5\n", + "logger_2D_kf.n2 = 200\n", + "logger_2D_kf.filename = '\"logger_2D_kf.dat\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Runnig the simulation\n", + "We now rerun the simulation with the new loggers. If mpi is installed, one can add mpi=N where N is the number of cores available to speed up the simulation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "instrument.backengine()\n", + "data = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "functions.name_plot_options(\"logger_space_zx\", data, log=True, orders_of_mag=3)\n", + "functions.name_plot_options(\"logger_space_zy\", data, log=True, orders_of_mag=3)\n", + "functions.name_plot_options(\"abs_logger_space_zx\", data, log=True, orders_of_mag=3)\n", + "functions.name_plot_options(\"logger_1D\", data, log=True, orders_of_mag=3)\n", + "functions.name_plot_options(\"logger_2DQ\", data, log=True, orders_of_mag=3)\n", + "functions.name_plot_options(\"logger_2D_kf\", data, log=True, orders_of_mag=3)\n", + "\n", + "plotter.make_sub_plot(data[0:2])\n", + "plotter.make_sub_plot(data[2:4])\n", + "plotter.make_sub_plot(data[4:6])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Interpreting the data\n", + "We see the scattered intensity as a function of time, here the peaks correspond to the direct beam intersecting the sides of the cryostat and sample. The source used release all neutrons at time 0, so it is a perfect pulse.\n", + "\n", + "The absorption monitor shows an image very similar to the scattered intensity, but this could be very different, for example when using materials meant as shielding.\n", + "\n", + "The 2D scattering vector is interesting, it shows a small sphere made of vertical lines, these are powder Bragg peaks. Since the wavevector is almost identical for all incoming neutrons, the first scattering can only access this smaller region of the space. The larger circle is incoherent scattering from second and later scattering events, where the incoming wavevector could be any direction since a scattering already happened.\n", + "\n", + "The 2D final wavevector plot shows mainly the powder Bragg peaks." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Animations and time series\n", + "Several of the Union loggers sets up more than one McStas monitor, these include:\n", + "- Union_logger_3D_space\n", + "- Union_logger_2D_space_time\n", + "- Union_logger_2D_kf_time\n", + "\n", + "The Union_logger_2D_space_time for example sets up a number of Union_logger_2D_space monitors that are limited to specific time intervals. This can be used to make an animation of the monitor, which we will demonstrate here." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "log_2D_st = instrument.add_component(\"logger_2D_space_time\", \"Union_logger_2D_space_time\", before=\"master\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "log_2D_st.time_bins = 36\n", + "log_2D_st.time_min = 0.0007\n", + "log_2D_st.time_max = 0.0011\n", + "\n", + "log_2D_st.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "log_2D_st.D_direction_1 = '\"z\"'\n", + "log_2D_st.D1_min = -0.12\n", + "log_2D_st.D1_max = 0.12\n", + "log_2D_st.n1 = 300\n", + "log_2D_st.D_direction_2 = '\"x\"'\n", + "log_2D_st.D2_min = -0.12\n", + "log_2D_st.D2_max = 0.12\n", + "log_2D_st.n2 = 300\n", + "log_2D_st.filename = '\"logger_2D_space_time.dat\"'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "instrument.backengine()\n", + "data = instrument.data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Creating an animation\n", + "The plotter in McStasScript can create animations when supplied with many McStasData objects. We use name_search to find all the data from the relevant logger, and then a for loop to set plot options for each of them. Then the plotter can make an animation, which is saved as a gif." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ani_data = functions.name_search(\"logger_2D_space_time\", data)\n", + "for frame in ani_data:\n", + " frame.set_plot_options(log=True, colormap=\"jet\")\n", + " \n", + "plotter.make_animation(ani_data, filename=\"animation_demo\", fps=2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Viewing the animation\n", + "Some problem in the jupyter notebook prevents playing the gif directly, but it can be played from markdown. One has to refresh this cell when a new animation is written. It should be visible that the beam enters the cryostat from the left, scatters of the sample and illuminates the entire cryostat. Running this simulation with a larger ncount and more time_bins in the monitor will reveal more details in what happens. This is available below, but commented out as the simulation can take some time.\n", + "\n", + "![SegmentLocal](animation_demo.gif \"Animation\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Optional: Increasing resolution\n", + "Running this simulation with a larger ncount and more time_bins in the monitor will reveal more details in what happens. This is available below, but commented out as the simulation can take some time." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "log_2D_st.time_bins = 128\n", + "instrument.settings(ncount=2E8, mpi=4)\n", + "#instrument.backengine()\n", + "#data = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#ani_data = functions.name_search(\"logger_2D_space_time\", data)\n", + "#for frame in ani_data:\n", + "# frame.set_plot_options(log=True, colormap=\"jet\", orders_of_mag=6)\n", + "# \n", + "#plotter.make_animation(ani_data, filename=\"animation_demo_long\", fps=5)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Viewing the animation\n", + "In the longer animation it is more evident that scattering from the aluminium hits the top and bottom of the outer cylinder.\n", + "\n", + "![SegmentLocal](animation_demo_long.gif \"Animation\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/source/tutorial/Union_tutorial_4_conditionals.ipynb b/docs/source/tutorial/Union_tutorial_4_conditionals.ipynb new file mode 100644 index 00000000..3946d819 --- /dev/null +++ b/docs/source/tutorial/Union_tutorial_4_conditionals.ipynb @@ -0,0 +1,539 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Using conditional component to modify loggers\n", + "Even with the results from the loggers, it can still be difficult to explain all the features in the resulting scattering pattern. The conditional components can modify a logger so that it only records events when the final state of the neutron satisfy some condition. The condition could be leaving with a certain energy or in a specified direction. Before demonstrating these conditional components, we will set up an interesting sample and sample environment, including a few loggers and a time of flight 2theta detector. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Set up an example instrument\n", + "First an example instrument is made, again with a cryostat but this time with a box shaped single crystal of YBaCuO. Since the *single_crystal_process* have quite a few parameters, we use the *set_parameters* method that allows setting parameters using a dictionary." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter\n", + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Set up Al material with incoherent and powder\n", + "Al_incoherent = instrument.add_component(\"Al_incoherent\", \"Incoherent_process\")\n", + "Al_incoherent.sigma = \"4*0.0082\"\n", + "Al_incoherent.packing_factor = 1\n", + "Al_incoherent.unit_cell_volume = 66.4\n", + "\n", + "Al_powder = instrument.add_component(\"Al_powder\", \"Powder_process\")\n", + "Al_powder.reflections = \"\\\"Al.laz\\\"\"\n", + "\n", + "Al = instrument.add_component(\"Al\", \"Union_make_material\")\n", + "Al.process_string = '\"Al_incoherent,Al_powder\"'\n", + "Al.my_absorption = \"100*4*0.231/66.4\"\n", + "\n", + "# Set up YBaCuO with incoherent and single crystal\n", + "YBaCuO_incoherent = instrument.add_component(\"YBaCuO_incoherent\", \"Incoherent_process\")\n", + "YBaCuO_incoherent.sigma = 2.105\n", + "YBaCuO_incoherent.unit_cell_volume = 173.28\n", + "\n", + "YBaCuO_crystal = instrument.add_component(\"YBaCuO_crystal\", \"Single_crystal_process\")\n", + "YBaCuO_crystal.set_parameters(\n", + "{\"ax\" : 3.816, \"ay\" : 0, \"az\" : 0,\n", + " \"bx\" : 0, \"by\" : 3.886, \"bz\" : 0,\n", + " \"cx\" : 0, \"cy\" : 0, \"cz\" : 11.677,\n", + " \"delta_d_d\" : 5E-4, \"mosaic\" : 30, \"barns\" : 1,\n", + " \"reflections\" : '\"YBaCuO.lau\"'})\n", + "\n", + "YBaCuO = instrument.add_component(\"YBaCuO\", \"Union_make_material\")\n", + "YBaCuO.process_string = '\"YBaCuO_incoherent,YBaCuO_crystal\"'\n", + "YBaCuO.my_absorption = 100*14.82/173.28\n", + "\n", + "src = instrument.add_component(\"source\", \"Source_div\")\n", + "src.xwidth = 0.01\n", + "src.yheight = 0.035\n", + "src.focus_aw = 0.01\n", + "src.focus_ah = 0.01\n", + "\n", + "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.dlambda = \"0.01*wavelength\"\n", + "src.flux = 1E13\n", + "\n", + "# At a reference point to build the cryostat around\n", + "cryostat_center = instrument.add_component(\"cryostat_center\", \"Arm\")\n", + "cryostat_center.set_AT([0, 0, 1], RELATIVE=src)\n", + "\n", + "# Parameter for controlling sample rotation\n", + "A3_angle = instrument.add_parameter(\"A3_angle\", value=0)\n", + "\n", + "sample = instrument.add_component(\"sample\", \"Union_box\")\n", + "sample.set_AT([0, 0, 0], RELATIVE=cryostat_center)\n", + "sample.set_ROTATED([0, A3_angle, 0], RELATIVE=cryostat_center)\n", + "sample.xwidth = 0.015\n", + "sample.yheight = 0.032\n", + "sample.zdepth = 0.012\n", + "sample.material_string = '\"YBaCuO\"'\n", + "sample.priority = 200\n", + "\n", + "# Setting up two layers of cryostat\n", + "inner_cryostat_wall = instrument.add_component(\"inner_cryostat_wall\", \"Union_cylinder\")\n", + "inner_cryostat_wall.material_string = \"\\\"Al\\\"\"\n", + "inner_cryostat_wall.priority = 12\n", + "inner_cryostat_wall.radius = 0.0621\n", + "inner_cryostat_wall.yheight = 0.16\n", + "inner_cryostat_wall.p_interact = 0.20\n", + "inner_cryostat_wall.set_AT([0, 0.01, 0], RELATIVE=cryostat_center)\n", + "\n", + "inner_cryostat_vacuum = instrument.add_component(\"inner_cryostat_vacuum\", \"Union_cylinder\")\n", + "inner_cryostat_vacuum.material_string = \"\\\"Vacuum\\\"\"\n", + "inner_cryostat_vacuum.priority = 13\n", + "inner_cryostat_vacuum.radius = 0.06\n", + "inner_cryostat_vacuum.yheight = 0.15\n", + "inner_cryostat_vacuum.set_AT([0, 0.01, 0], RELATIVE=cryostat_center)\n", + "\n", + "outer_cryostat_wall = instrument.add_component(\"outer_cryostat_wall\", \"Union_cylinder\")\n", + "outer_cryostat_wall.material_string = \"\\\"Al\\\"\"\n", + "outer_cryostat_wall.priority = 10\n", + "outer_cryostat_wall.radius = 0.180\n", + "outer_cryostat_wall.yheight = 0.355\n", + "outer_cryostat_wall.p_interact = 0.20\n", + "outer_cryostat_wall.set_AT([0, 0.032, 0], RELATIVE=cryostat_center)\n", + "\n", + "outer_cryostat_vacuum = instrument.add_component(\"outer_cryostat_vacuum\", \"Union_cylinder\")\n", + "outer_cryostat_vacuum.material_string = \"\\\"Vacuum\\\"\"\n", + "outer_cryostat_vacuum.priority = 11\n", + "outer_cryostat_vacuum.radius = 0.178\n", + "outer_cryostat_vacuum.yheight = 0.355\n", + "outer_cryostat_vacuum.set_AT([0, 0.037, 0], RELATIVE=cryostat_center)\n", + "\n", + "# Set up loggers\n", + "logger_space_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\")\n", + "logger_space_zx.n1 = 150\n", + "logger_space_zx.n2 = 150\n", + "logger_space_zx.D1_min = -0.2\n", + "logger_space_zx.D1_max = 0.2\n", + "logger_space_zx.D2_min = -0.2\n", + "logger_space_zx.D2_max = 0.2\n", + "logger_space_zx.D_direction_1 = '\"z\"'\n", + "logger_space_zx.D_direction_2 = '\"x\"'\n", + "logger_space_zx.filename = '\"logger_zx.dat\"'\n", + "logger_space_zx.logger_conditional_extend_index = 1\n", + "logger_space_zx.set_AT([0, 0, 0], RELATIVE=cryostat_center)\n", + "\n", + "logger_space_zy = instrument.add_component(\"logger_space_zy\", \"Union_logger_2D_space\")\n", + "logger_space_zy.n1 = 150\n", + "logger_space_zy.n2 = 150\n", + "logger_space_zy.D1_min = -0.2\n", + "logger_space_zy.D1_max = 0.2\n", + "logger_space_zy.D2_min = -0.15\n", + "logger_space_zy.D2_max = 0.2\n", + "logger_space_zy.D_direction_1 = '\"z\"'\n", + "logger_space_zy.D_direction_2 = '\"y\"'\n", + "logger_space_zy.filename = '\"logger_zy.dat\"'\n", + "logger_space_zy.logger_conditional_extend_index = 1\n", + "logger_space_zy.set_AT([0, 0, 0], RELATIVE=cryostat_center)\n", + "\n", + "logger_2DQ = instrument.add_component(\"logger_2DQ_sample\", \"Union_logger_2DQ\")\n", + "logger_2DQ.Q_direction_1 = '\"z\"'\n", + "logger_2DQ.Q1_min = -4.0\n", + "logger_2DQ.Q1_max = 4.0\n", + "logger_2DQ.n1 = 100\n", + "logger_2DQ.Q_direction_2 = '\"x\"'\n", + "logger_2DQ.Q2_min = -4.0\n", + "logger_2DQ.Q2_max = 4.0\n", + "logger_2DQ.n2 = 100\n", + "logger_2DQ.target_geometry = '\"sample\"'\n", + "logger_2DQ.filename = '\"logger_2DQ_sample.dat\"'\n", + "\n", + "logger_2DQ = instrument.add_component(\"logger_2DQ_environment\", \"Union_logger_2DQ\")\n", + "logger_2DQ.Q_direction_1 = '\"z\"'\n", + "logger_2DQ.Q1_min = -4.0\n", + "logger_2DQ.Q1_max = 4.0\n", + "logger_2DQ.n1 = 100\n", + "logger_2DQ.Q_direction_2 = '\"x\"'\n", + "logger_2DQ.Q2_min = -4.0\n", + "logger_2DQ.Q2_max = 4.0\n", + "logger_2DQ.n2 = 100\n", + "logger_2DQ.target_geometry = '\"inner_cryostat_wall,outer_cryostat_wall\"'\n", + "logger_2DQ.filename = '\"logger_2DQ_all.dat\"'\n", + "\n", + "logger_time_all = instrument.add_component(\"logger_time_all\", \"Union_logger_1D\")\n", + "logger_time_all.n1 = 600\n", + "logger_time_all.min_value = 0.0008\n", + "logger_time_all.max_value = 0.0015\n", + "logger_time_all.filename = '\"scattering_time.dat\"'\n", + "\n", + "master = instrument.add_component(\"master\", \"Union_master\")\n", + "\n", + "# Adding a banana - tof detector\n", + "banana_detector = instrument.add_component(\"banana_detector\", \"Monitor_nD\", RELATIVE=cryostat_center)\n", + "banana_detector.xwidth = 1\n", + "banana_detector.yheight = 0.2\n", + "banana_detector.restore_neutron = 1\n", + "banana_detector.options = '\"banana, theta limits=[-180,180] bins=361, t limits=[0.0011 0.0025] bins=500\"'\n", + "banana_detector.filename = '\"tof_b.dat\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Calculating theta\n", + "Our YBaCuO sample has the 010 axis along the z axis and have 010 allowed with d = 3.8843. Here we calculate the necessary rotation of the crystal for satisfying the Bragg condition. This could also be done within the initialize section of the McStas instrument, but here we wish to preserve control over the A3_angle." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import math\n", + "wavelength = 4.0\n", + "theta = 180/3.14159*math.asin(wavelength/2.0/3.8843)\n", + "print(theta)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "instrument.set_parameters(wavelength=wavelength, A3_angle=theta)\n", + "instrument.settings(ncount=3E5, output_path=\"data_folder/union_conditionals\")\n", + "\n", + "instrument.backengine()\n", + "data = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "logger_zx = functions.name_search(\"logger_space_zx\", data)\n", + "logger_zx.set_plot_options(log=True, orders_of_mag=9, colormap=\"jet\")\n", + "\n", + "logger_zy = functions.name_search(\"logger_space_zy\", data)\n", + "logger_zy.set_plot_options(log=True, orders_of_mag=9, colormap=\"jet\")\n", + "\n", + "logger_2DQ_sample = functions.name_search(\"logger_2DQ_sample\", data)\n", + "logger_2DQ_sample.set_plot_options(log=True, orders_of_mag=9, colormap=\"YlOrRd\")\n", + "\n", + "logger_2DQ_env = functions.name_search(\"logger_2DQ_environment\", data)\n", + "logger_2DQ_env.set_plot_options(log=True, orders_of_mag=9, colormap=\"YlOrRd\")\n", + "\n", + "plotter.make_sub_plot([logger_zx, logger_zy, logger_2DQ_sample, logger_2DQ_env], fontsize=10)\n", + "\n", + "time = functions.name_search(\"logger_time_all\", data)\n", + "time.set_plot_options(log=True)\n", + "plotter.make_sub_plot([time], fontsize=18)\n", + "\n", + "banana = functions.name_search(\"banana_detector\", data)\n", + "banana.set_plot_options(log=True, orders_of_mag=7, cut_max=0.001)\n", + "plotter.make_sub_plot([banana], fontsize=18)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpretation of the data\n", + "The data from the two spatial loggers show scattering location within the cryostat, and we see one beam entering the cryostat, yet two beams leaving as we satisfy the Bragg condition for the sample. This also result in scattering from when the scattered beam intersect the sample environment.\n", + "\n", + "We have two 2DQ loggers recording the scattering vector, one just for the sample and one for the sample environment. On the sample monitor we see that many Bragg peaks scatter some intensity, but 010 and 0-10 have the most intensity, they are at [0.9, -1.5] and [1.5, -0.9]. The two circles are incoherent scattering from the two most common wavevectors, the initial beam and the beam scattered from 010. On the 2DQ logger for the sample environment, we mainly see the Debye-Scherrer cones as lines within the circles defined by the two predominant wavevectors. It seems the used wavelength allows two different Bragg conditions to be met in the aluminium.\n", + "\n", + "The time logger show a surprising amount of complexity. The 5 peaks from entering and exiting two layers and intersecting the sample are clear, but all structure after 0.0012 is a surprise. There is also an unexpected peak at 0.00115, this may be the scattered beam intersecting the outer layer of the cryostat, this happens a bit sooner than the direct beam because the path is shorter when scattered from the front of the sample.\n", + "\n", + "The time of flight vs 2theta monitor also has a large amount of complexity that is not simple to explain. The bright spot at [0, 0.00155] is the direct beam, while the spot at [60, 0.00155] is the scattered beam. The horizontal line at t=0.00155 must be incoherent scattering from the sample, as it must have had the same distance to all points on the detector. The curved lower branch could be incoherent scattering from where the beam enters the cryostat, as that is closest to the 180 deg point on the detector. The remaining hot spots are all some Debye Scherrer cones from a beam entering or exiting the sample environment, and the more blurry spots may be of even higher order." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Conditional components\n", + "We can use conditional components to investigate peaks in the final scattering pattern, by limiting the loggers to only recording events that for example end in a certain spot. Currently there are two available\n", + "- Union_conditional_standard\n", + "- Union_conditional_PSD\n", + "\n", + "The standard version allows limits for energy, time and number of scattering events for the neutron when it exits the *Union_master* simulation, in this case when it leaves the sample environment.\n", + "\n", + "The PSD version propagates the final neutron states to a given rectangular surface and it is possible to filter the logger events on the neutron state when it reaches this surface, and ignores all events that misses. This is what we will use here to investigate a peak in the scattering pattern. We also set a time limit as our detector is time of flight sensitive.\n", + "\n", + "Here are the important parameters for the Union_conditional_PSD component\n", + "- target_loggers : comma separated string of logger names this conditional should affect\n", + "- xwidth : width of rectangle\n", + "- yheight : height of rectangle\n", + "- time_min : lower time limit for condition\n", + "- time_max : upper time limit for condition\n", + "- overwrite_logger_weight : If set to 1, will weight logger results with the final ray weight" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Set up instrument parameters describing what spot to investigate\n", + "instrument.add_parameter(\"tag_angle\", value=-95)\n", + "instrument.add_parameter(\"tag_time\", value=0.00188)\n", + "instrument.add_parameter(\"tag_interval\", value=9E-5)\n", + "\n", + "# Set up an arm pointing to the relevant spot\n", + "spot_dir = instrument.add_component(\"spot_dir\", \"Arm\", RELATIVE=cryostat_center, before=\"master\")\n", + "spot_dir.set_ROTATED([0, \"tag_angle\", 0], RELATIVE=cryostat_center)\n", + "\n", + "# Set up a conditional component targeting all our loggers\n", + "PSD_conditional = instrument.add_component(\"space_all_PSD_conditional\", \"Union_conditional_PSD\", before=\"master\")\n", + "PSD_conditional.target_loggers = '\"logger_space_zx,logger_space_zy,logger_time_all,logger_2DQ_sample,logger_2DQ_environment\"'\n", + "PSD_conditional.xwidth = 0.2\n", + "PSD_conditional.yheight = 0.2\n", + "PSD_conditional.time_min = \"tag_time-0.5*tag_interval\"\n", + "PSD_conditional.time_max = \"tag_time+0.5*tag_interval\"\n", + "# Ensure the position of the conditional rectangle is on the detector surface\n", + "PSD_conditional.set_AT([0, 0, 0.5], RELATIVE=spot_dir) \n", + "\n", + "# Add a monitor with flag that is only active when the condition in the conditional is true\n", + "instrument.add_declare_var(\"int\", \"flag1\")\n", + "logger_space_zx.logger_conditional_extend_index = 1\n", + "master.append_EXTEND(\"flag1 = logger_conditional_extend_array[1];\")\n", + "\n", + "# Copy of our banana detector, but with WHEN condition to verify we are investigating the right peak\n", + "banana_detector = instrument.add_component(\"banana_detector_limited\", \"Monitor_nD\", RELATIVE=cryostat_center)\n", + "banana_detector.xwidth = 1\n", + "banana_detector.yheight = 0.2\n", + "banana_detector.restore_neutron = 1\n", + "banana_detector.options = '\"banana, theta limits=[-180,180] bins=361, t limits=[0.0011 0.0025] bins=500\"'\n", + "banana_detector.filename = '\"tof_b_limited.dat\"'\n", + "banana_detector.set_WHEN(\"flag1 > 0\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Run the simulation\n", + "We run the simulation again with a larger ncount, as the loggers now only record a small fraction of the scattered neutrons. You can investigate other areas of interest by changing *tag_angle*, *tag_time* and *tag_interval* to another interesting location on the time of flight detector.\n", + "\n", + "If MPI is installed add mpi=N where N is the number of CPU cores available in your computer to speed up the simulation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "instrument.set_parameters(wavelength=wavelength, A3_angle=theta, \n", + " tag_angle=-95, tag_time=0.00188, tag_interval=9E-5)\n", + "instrument.settings(ncount=3E5) # Can add mpi to improve speed for this longer simulation\n", + "\n", + "instrument.backengine()\n", + "data_con = instrument.data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Confirm our conditional is on the desired peak\n", + "First we plot our 2theta / time of flight detector and the version limited to what the conditional records to confirm that we selected an appropriate region to investigate." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "banana = functions.name_search(\"banana_detector\", data_con)\n", + "banana.set_plot_options(log=True, orders_of_mag=7, cut_max=0.001)\n", + "\n", + "banana_limited = functions.name_search(\"banana_detector_limited\", data_con)\n", + "banana_limited.set_plot_options(log=False)\n", + "\n", + "plotter.make_sub_plot([banana, banana_limited], fontsize=10)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plotting the loggers, now limited by the conditional\n", + "We use a different colormap here instead of the standard jet, because in jet the lowest and highest intensity are both dark colors. By choosing a colormap where zero intensity is white, it blends in with white from lack of data which is beneficial in this situation for clearly seeing the hotspots." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "logger_zx = functions.name_search(\"logger_space_zx\", data_con)\n", + "logger_zx.set_plot_options(log=True, orders_of_mag=9, colormap=\"YlOrRd\")\n", + "\n", + "logger_zy = functions.name_search(\"logger_space_zy\", data_con)\n", + "logger_zy.set_plot_options(log=True, orders_of_mag=9, colormap=\"YlOrRd\")\n", + "\n", + "logger_2DQ_sample = functions.name_search(\"logger_2DQ_sample\", data_con)\n", + "logger_2DQ_sample.set_plot_options(log=True, orders_of_mag=7, colormap=\"YlOrRd\")\n", + "\n", + "logger_2DQ_env = functions.name_search(\"logger_2DQ_environment\", data_con)\n", + "logger_2DQ_env.set_plot_options(log=True, orders_of_mag=7, colormap=\"YlOrRd\")\n", + "\n", + "plotter.make_sub_plot([logger_zx, logger_zy, logger_2DQ_sample, logger_2DQ_env], fontsize=10)\n", + "\n", + "time = functions.name_search(\"logger_time_all\", data_con)\n", + "time.set_plot_options(log=True)\n", + "\n", + "plotter.make_sub_plot([time], fontsize=18)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Interpreting the data from loggers with conditional\n", + "Now that the loggers only show scattering from neutrons that end in our specific peak of interest, we can explain the origin of this peak. The spatial loggers show that scattering primarily happens in the sample, and in the outer part of the cryostat where the scattered beam leaves the sample environment. It is in this case obvious the first scattering is in the sample, as the exit area is not within the direct beam, but one can create individual loggers for each scattering order in order to confirm this.\n", + "\n", + "On the 2DQ logger for the sample it is clear the scattering is from the main Bragg peak (010 and 0-10). We see two peaks as a ray scattered from a Bragg peak will fulfil the Bragg condition of the opposite reciprocal indices. On the 2DQ logger for the sample environment, we see the brightest spot is a small part of a Debye-Scherrer cone. Scattered neutrons from other parts of this cone will not hit our conditional PSD, some may not even hit the detector at all.\n", + "\n", + "That means this specific peak was an uneven number of single crystal scattering events in 010/0-10 in the sample followed by a powder scattering in the outer wall of the sample environment. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Using the final weight option\n", + "Here we rerun the simulation with the overwrite_logger_weight option in the conditional turned on to see the effect. Without it a ray is recorded in the loggers if it satisfy the conditional, but it does not matter how large the final weight is. For this reason, some rays with high sampling probability to reach the condition but low weight are represented more than is appropriate. This is mainly important when shielding is simulated, as ray that pass through the shielding needs can be heavily overrepresented." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "PSD_conditional.overwrite_logger_weight = 1\n", + "\n", + "instrument.backengine()\n", + "data_con_f = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "logger_zx = functions.name_search(\"logger_space_zx\", data_con_f)\n", + "logger_zx.set_plot_options(log=True, orders_of_mag=9, colormap=\"YlOrRd\")\n", + "\n", + "logger_zy = functions.name_search(\"logger_space_zy\", data_con_f)\n", + "logger_zy.set_plot_options(log=True, orders_of_mag=9, colormap=\"YlOrRd\")\n", + "\n", + "logger_2DQ_sample = functions.name_search(\"logger_2DQ_sample\", data_con_f)\n", + "logger_2DQ_sample.set_plot_options(log=True, orders_of_mag=7, colormap=\"YlOrRd\")\n", + "\n", + "logger_2DQ_env = functions.name_search(\"logger_2DQ_environment\", data_con_f)\n", + "logger_2DQ_env.set_plot_options(log=True, orders_of_mag=7, colormap=\"YlOrRd\")\n", + "\n", + "plotter.make_sub_plot([logger_zx, logger_zy, logger_2DQ_sample, logger_2DQ_env], fontsize=10)\n", + "\n", + "time = functions.name_search(\"logger_time_all\", data_con_f)\n", + "time.set_plot_options(log=True)\n", + "\n", + "plotter.make_sub_plot([time], fontsize=18)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Comparison between normal and overwrite_logger_weight\n", + "Here we make a direct comparison, and see only a slight difference in this case. No shielding is simulated here which would cause a much more clear difference." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "logger_zx = functions.name_search(\"logger_space_zx\", data_con)\n", + "logger_zx.set_plot_options(log=True, orders_of_mag=9, colormap=\"YlOrRd\")\n", + "\n", + "logger_zy = functions.name_search(\"logger_space_zy\", data_con)\n", + "logger_zy.set_plot_options(log=True, orders_of_mag=9, colormap=\"YlOrRd\")\n", + "\n", + "logger_zx_f = functions.name_search(\"logger_space_zx\", data_con_f)\n", + "logger_zx_f.set_plot_options(log=True, orders_of_mag=9, colormap=\"YlOrRd\")\n", + "\n", + "logger_zy_f = functions.name_search(\"logger_space_zy\", data_con_f)\n", + "logger_zy_f.set_plot_options(log=True, orders_of_mag=9, colormap=\"YlOrRd\")\n", + "\n", + "plotter.make_sub_plot([logger_zx, logger_zy, logger_zx_f, logger_zy_f], fontsize=10)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/source/tutorial/Union_tutorial_5_masks.ipynb b/docs/source/tutorial/Union_tutorial_5_masks.ipynb new file mode 100644 index 00000000..d7a1d2a5 --- /dev/null +++ b/docs/source/tutorial/Union_tutorial_5_masks.ipynb @@ -0,0 +1,374 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Union tutorial on masks\n", + "There are some geometries that are impossible to build using only the priority based system geometry system, for example making part of a cylinder thinner, which is needed for a cryostat window. In many such cases, masks can be used to solve the problem." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Setting up an example without masks\n", + "First we set up an example with a thick and hollow Al cylinder and a logger to view the spatial distribution of scattering." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "Al_inc = instrument.add_component(\"Al_inc\", \"Incoherent_process\")\n", + "Al_inc.sigma = 0.0082\n", + "Al_inc.unit_cell_volume = 66.4\n", + "\n", + "Al_pow = instrument.add_component(\"Al_pow\", \"Powder_process\")\n", + "Al_pow.reflections = '\"Al.laz\"'\n", + "\n", + "Al = instrument.add_component(\"Al\", \"Union_make_material\")\n", + "Al.process_string = '\"Al_inc,Al_pow\"'\n", + "Al.my_absorption = 100*0.231/66.4 # barns [m^2 E-28] * Å^3 [m^3 E-30] = [m E-2], correct with factor 100.\n", + "\n", + "src = instrument.add_component(\"source\", \"Source_div\")\n", + "\n", + "src.xwidth = 0.2\n", + "src.yheight = 0.035\n", + "src.focus_aw = 0.01\n", + "src.focus_ah = 0.01\n", + "\n", + "\n", + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.dlambda = \"0.01*wavelength\"\n", + "src.flux = 1E13\n", + "\n", + "wall = instrument.add_component(\"wall\", \"Union_cylinder\")\n", + "wall.set_AT([0,0,1], RELATIVE=src)\n", + "wall.yheight = 0.15\n", + "wall.radius = 0.1\n", + "wall.material_string='\"Al\"' \n", + "wall.priority = 10\n", + "\n", + "wall_vac = instrument.add_component(\"wall_vacuum\", \"Union_cylinder\")\n", + "wall_vac.set_AT([0,0,0], RELATIVE=wall)\n", + "wall_vac.yheight = 0.15 + 0.01\n", + "wall_vac.radius = 0.1 - 0.02\n", + "wall_vac.material_string='\"Vacuum\"' \n", + "wall_vac.priority = 50\n", + "\n", + "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\", RELATIVE=wall)\n", + "logger_zx.D_direction_1 = '\"z\"'\n", + "logger_zx.D1_min = -0.12\n", + "logger_zx.D1_max = 0.12\n", + "logger_zx.n1 = 300\n", + "logger_zx.D_direction_2 = '\"x\"'\n", + "logger_zx.D2_min = -0.12\n", + "logger_zx.D2_max = 0.12\n", + "logger_zx.n2 = 300\n", + "logger_zx.filename = '\"logger_zx.dat\"'\n", + "\n", + "master = instrument.add_component(\"master\", \"Union_master\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "instrument.settings(ncount=2E5, output_path=\"data_folder/union_masks\")\n", + "\n", + "instrument.backengine()\n", + "data = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Masks\n", + "All Union geometries can act as a mask for a list of other already defined geometries. The geometries affected by a mask will only exist inside the mask, while the parts outside will not have any effect on this simulation. This provides some interesting geometrical capabilities, for example by defining two spheres with some overlap and making one a mask of the other, a classical lens shape can be created.\n", + "\n", + "The relevant parameters of all geometry components are:\n", + "- mask_string : comma separated list of geometry names the mask should be applied to\n", + "- mask_setting : selects between \"ANY\" or \"ALL\" mode. Default mode is \"ALL\".\n", + "\n", + "The mask mode is only important if several masks affect the same geometry, per default just having any of the masks overlap the target geometry allow it to exists, which correspond to the \"ANY\" mode. If the \"ALL\" mode is selected, the target geometry will only exists in regions where all the masks and itself overlap.\n", + "\n", + "Note that a unique priority is still necessary, but it is not used." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding a window using masks\n", + "Here we add a window to one side of the cylinder by inserting a larger vacuum cylinder, but mask it so that it is only active in the area around the window. In this way we get a nice curved window. We chose a box shape for the mask, but we could also have chosen a cylinder to get a round window." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "window = instrument.add_component(\"window\", \"Union_cylinder\", before=\"master\")\n", + "window.set_AT([0,0,0], RELATIVE=wall)\n", + "window.yheight = 0.15 + 0.02\n", + "window.radius = 0.1 - 0.01\n", + "window.material_string='\"Vacuum\"' \n", + "window.priority = 25\n", + "\n", + "mask = instrument.add_component(\"mask\", \"Union_box\", before=\"master\")\n", + "mask.xwidth = 0.1\n", + "mask.yheight = 0.2\n", + "mask.zdepth = 0.09\n", + "mask.priority = 1\n", + "mask.mask_string='\"window\"'\n", + "mask.set_AT([0,0,-0.1], RELATIVE=wall)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "instrument.backengine()\n", + "data = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding an external window using a mask\n", + "It is also possible to create a thinner section where the material is reduced from the outside. Here we need to add both a vacuum and an aluminium geometry, both of which need to have a priority lower than the original inner vacuum. One mask can handle several geometries, just include both names in the *mask_string* parameter." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "o_window = instrument.add_component(\"outer_window\", \"Union_cylinder\", before=\"master\")\n", + "o_window.set_AT([0,0,0], RELATIVE=wall)\n", + "o_window.yheight = 0.15 + 0.03\n", + "o_window.radius = 0.1 + 0.01\n", + "o_window.material_string='\"Vacuum\"' \n", + "o_window.priority = 30\n", + "\n", + "o_window_al = instrument.add_component(\"outer_window_Al\", \"Union_cylinder\", before=\"master\")\n", + "o_window_al.set_AT([0,0,0], RELATIVE=wall)\n", + "o_window_al.yheight = 0.15 + 0.04\n", + "o_window_al.radius = 0.1 - 0.01\n", + "o_window_al.material_string='\"Al\"' \n", + "o_window_al.priority = 31\n", + "\n", + "mask = instrument.add_component(\"mask_outer\", \"Union_box\", before=\"master\")\n", + "mask.xwidth = 0.12\n", + "mask.yheight = 0.2\n", + "mask.zdepth = 0.09\n", + "mask.priority = 2\n", + "mask.mask_string='\"outer_window,outer_window_Al\"'\n", + "mask.set_AT([0,0,0.1], RELATIVE=wall)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "instrument.backengine()\n", + "data = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Masks are flexible\n", + "Masks can be used to create many interesting shapes with few geometries. Below we create a octagon with rounded corners using just three geometries, two of these being masks. Using masks expands the space of possible geometries greatly, and in many cases can also be a performance advantage when they reduce the number of geometries needed to describe the desired geometry." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")\n", + "\n", + "Al_inc = instrument.add_component(\"Al_inc\", \"Incoherent_process\")\n", + "Al_inc.sigma = 0.0082\n", + "Al_inc.unit_cell_volume = 66.4\n", + "\n", + "Al_pow = instrument.add_component(\"Al_pow\", \"Powder_process\")\n", + "Al_pow.reflections = '\"Al.laz\"'\n", + "\n", + "Al = instrument.add_component(\"Al\", \"Union_make_material\")\n", + "Al.process_string = '\"Al_inc,Al_pow\"'\n", + "Al.my_absorption = 100*0.231/66.4 # barns [m^2 E-28] * Å^3 [m^3 E-30] = [m E-2], correct with factor 100.\n", + "\n", + "src = instrument.add_component(\"source\", \"Source_div\")\n", + "\n", + "src.xwidth = 0.2\n", + "src.yheight = 0.035\n", + "src.focus_aw = 0.01\n", + "src.focus_ah = 0.01\n", + "\n", + "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0=\"wavelength\"\n", + "src.dlambda=\"0.01*wavelength\"\n", + "src.flux = 1E13\n", + "\n", + "box = instrument.add_component(\"box\", \"Union_box\")\n", + "box.set_AT([0,0,1], RELATIVE=src)\n", + "box.xwidth = 0.2\n", + "box.yheight = 0.1\n", + "box.zdepth = 0.2\n", + "box.material_string='\"Al\"' \n", + "box.priority = 10\n", + "\n", + "# Cut the corners by using an identical box rotated 45 deg around y\n", + "box_mask = instrument.add_component(\"box_mask\", \"Union_box\")\n", + "box_mask.set_AT([0,0,0], RELATIVE=box)\n", + "box_mask.set_ROTATED([0,45,0], RELATIVE=box)\n", + "box_mask.xwidth = 0.2\n", + "box_mask.yheight = 0.11 # Have to increase yheight to avoid perfect overlap\n", + "box_mask.zdepth = 0.2\n", + "box_mask.mask_string='\"box\"' \n", + "box_mask.priority = 50\n", + "\n", + "# Round the corners with a cylinder mask\n", + "cyl_mask = instrument.add_component(\"cylinder_mask\", \"Union_cylinder\")\n", + "cyl_mask.set_AT([0,0,0], RELATIVE=box)\n", + "cyl_mask.radius = 0.105\n", + "cyl_mask.yheight = 0.12\n", + "cyl_mask.mask_string='\"box\"' \n", + "cyl_mask.priority = 51\n", + "\n", + "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\", RELATIVE=box)\n", + "logger_zx.D_direction_1 = '\"z\"'\n", + "logger_zx.D1_min = -0.12\n", + "logger_zx.D1_max = 0.12\n", + "logger_zx.n1 = 300\n", + "logger_zx.D_direction_2 = '\"x\"'\n", + "logger_zx.D2_min = -0.12\n", + "logger_zx.D2_max = 0.12\n", + "logger_zx.n2 = 300\n", + "logger_zx.filename = '\"logger_zx.dat\"'\n", + "\n", + "master = instrument.add_component(\"master\", \"Union_master\")\n", + "\n", + "\n", + "instrument.backengine()\n", + "data = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/source/tutorial/Union_tutorial_6_Exit_and_number_of_activations.ipynb b/docs/source/tutorial/Union_tutorial_6_Exit_and_number_of_activations.ipynb new file mode 100644 index 00000000..b1d26615 --- /dev/null +++ b/docs/source/tutorial/Union_tutorial_6_Exit_and_number_of_activations.ipynb @@ -0,0 +1,399 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Advanced geometry component concepts: Exit geometry and number of activations\n", + "This notebook explains the concept of exit geometry and the activation counter both of which are tied to the geometry components and how they are treated by the *Union_master*.\n", + "\n", + "An exit geometry is created by setting the *material_string* of a geometry to \"Exit\", and if a ray enters such a geometry, it is immediately released from the master component. Normally this only happens when the ray does not intersect any geometries. There are several uses for this, for example inserting a monitor within a Union geometry ensemble." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Set up an example with empty sample container\n", + "First we set up an example with an empty sample container." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "Al_inc = instrument.add_component(\"Al_inc\", \"Incoherent_process\")\n", + "Al_inc.sigma = 0.0082\n", + "Al_inc.unit_cell_volume = 66.4\n", + "\n", + "Al_pow = instrument.add_component(\"Al_pow\", \"Powder_process\")\n", + "Al_pow.reflections = '\"Al.laz\"'\n", + "\n", + "Al = instrument.add_component(\"Al\", \"Union_make_material\")\n", + "Al.process_string = '\"Al_inc,Al_pow\"'\n", + "Al.my_absorption = 100*0.231/66.4 # barns [m^2 E-28] * Å^3 [m^3 E-30] = [m E-2], correct with factor 100.\n", + "\n", + "src = instrument.add_component(\"source\", \"Source_div\")\n", + "src.xwidth = 0.01\n", + "src.yheight = 0.035\n", + "src.focus_aw = 0.01\n", + "src.focus_ah = 0.01\n", + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.dlambda = \"0.01*wavelength\"\n", + "src.flux = 1E13\n", + "\n", + "sample_volume = instrument.add_component(\"sample_volume\", \"Union_cylinder\")\n", + "sample_volume.yheight = 0.03\n", + "sample_volume.radius = 0.0075\n", + "sample_volume.material_string='\"Vacuum\"' \n", + "sample_volume.priority = 100\n", + "sample_volume.set_AT([0,0,1], RELATIVE=src)\n", + "\n", + "container = instrument.add_component(\"sample_container\", \"Union_cylinder\", RELATIVE=sample_volume)\n", + "container.yheight = 0.03+0.003 # 1.5 mm top and button\n", + "container.radius = 0.0075 + 0.0015 # 1.5 mm sides of container\n", + "container.material_string='\"Al\"' \n", + "container.priority = 99\n", + "\n", + "container_lid = instrument.add_component(\"sample_container_lid\", \"Union_cylinder\")\n", + "container_lid.set_AT([0, 0.0155, 0], RELATIVE=container)\n", + "container_lid.yheight = 0.004\n", + "container_lid.radius = 0.013\n", + "container_lid.material_string='\"Al\"' \n", + "container_lid.priority = 98\n", + "\n", + "inner_wall = instrument.add_component(\"cryostat_wall\", \"Union_cylinder\")\n", + "inner_wall.set_AT([0,0,0], RELATIVE=sample_volume)\n", + "inner_wall.yheight = 0.12\n", + "inner_wall.radius = 0.03\n", + "inner_wall.material_string='\"Al\"' \n", + "inner_wall.priority = 80\n", + "\n", + "inner_wall_vac = instrument.add_component(\"cryostat_wall_vacuum\", \"Union_cylinder\")\n", + "inner_wall_vac.set_AT([0,0,0], RELATIVE=sample_volume)\n", + "inner_wall_vac.yheight = 0.12 - 0.008\n", + "inner_wall_vac.radius = 0.03 - 0.002\n", + "inner_wall_vac.material_string='\"Vacuum\"' \n", + "inner_wall_vac.priority = 81\n", + "\n", + "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\", RELATIVE=sample_volume)\n", + "logger_zx.D_direction_1 = '\"z\"'\n", + "logger_zx.D1_min = -0.04\n", + "logger_zx.D1_max = 0.04\n", + "logger_zx.n1 = 300\n", + "logger_zx.D_direction_2 = '\"x\"'\n", + "logger_zx.D2_min = -0.04\n", + "logger_zx.D2_max = 0.04\n", + "logger_zx.n2 = 300\n", + "logger_zx.filename = '\"logger_zx.dat\"'\n", + "\n", + "logger_zy = instrument.add_component(\"logger_space_zy\", \"Union_logger_2D_space\", RELATIVE=sample_volume)\n", + "logger_zy.D_direction_1 = '\"z\"'\n", + "logger_zy.D1_min = -0.04\n", + "logger_zy.D1_max = 0.04\n", + "logger_zy.n1 = 300\n", + "logger_zy.D_direction_2 = '\"y\"'\n", + "logger_zy.D2_min = -0.06\n", + "logger_zy.D2_max = 0.06\n", + "logger_zy.n2 = 300\n", + "logger_zy.filename = '\"logger_zy.dat\"'\n", + "\n", + "master = instrument.add_component(\"master\", \"Union_master\")\n", + "\n", + "banana = instrument.add_component(\"banana\", \"Monitor_nD\", RELATIVE=sample_volume)\n", + "banana.xwidth = 1.5\n", + "banana.yheight = 0.4\n", + "banana.restore_neutron = 1\n", + "banana.options = '\"theta limits=[5 175] bins=250, banana\"'" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "instrument.set_parameters(wavelength=3.0)\n", + "instrument.settings(ncount=3E5, output_path=\"data_folder/union_external\")\n", + "\n", + "instrument.backengine()\n", + "data_empty = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "functions.name_plot_options(\"logger_space_zx\", data_empty, log=True, orders_of_mag=4)\n", + "functions.name_plot_options(\"logger_space_zy\", data_empty, log=True, orders_of_mag=4)\n", + "plotter.make_sub_plot(data_empty[0:2])\n", + "plotter.make_sub_plot(data_empty[2])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Adding an exit volume\n", + "Now we switch the sample_volume material from Vacuum to exit, ejecting rays from the simulation when they encounter it." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sample_volume.material_string='\"Exit\"' " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "instrument.backengine()\n", + "data = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "functions.name_plot_options(\"logger_space_zx\", data, log=True, orders_of_mag=4)\n", + "functions.name_plot_options(\"logger_space_zy\", data, log=True, orders_of_mag=4)\n", + "plotter.make_sub_plot(data[0:2])\n", + "plotter.make_sub_plot(data[2])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding an external component in the gap\n", + "We can now see any part of the beam that intersected the exit volume is basically removed from the simulation. It is now however possible to insert another component within that exit volume, for example a sample not available as a Union process. Here we just use a PowderN sample in order to demonstrate. We select the same dimensions as the exit volume, but subtract 10 micrometer to avoid a perfect overlap." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sample = instrument.add_component(\"sample\", \"PowderN\", after=\"master\")\n", + "sample.set_AT([0,0,0], RELATIVE=sample_volume)\n", + "sample.radius = sample_volume.radius - 1E-5\n", + "sample.yheight = sample_volume.yheight - 2E-5\n", + "sample.reflections = '\"Na2Ca3Al2F14.laz\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Running the simulation again\n", + "We run the simulation again, but know that the scattering within the sample wont be directly visible in the loggers." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "instrument.backengine()\n", + "data_wrong = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "functions.name_plot_options(\"logger_space_zx\", data_wrong, log=True, orders_of_mag=4)\n", + "functions.name_plot_options(\"logger_space_zy\", data_wrong, log=True, orders_of_mag=4)\n", + "plotter.make_sub_plot(data_wrong[0:2])\n", + "plotter.make_sub_plot(data_wrong[2])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpretation of the data\n", + "Now we have added a sample inside the Union geometry, but when the neutron reaches that sample, it is ignored by the sample environment leading to unphysical behavior. Here the beam does not illuminate the sample environment on the way out, and all rays scattered by the PowderN sample are not attenuated by the " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Allowing the rays to return to the Union_master\n", + "Now we could recreate the entire sample environment with new geometries and insert an additional unit master to grab the neutrons after the external sample, yet this would be error prone as all geometries would need to be exactly the same. Instead it is possible to tell Union geometries that they should be simulated in several of the next *Union_master* components using the *number_of_activation* parameter on each Union geometry, which is 1 per default.\n", + "\n", + "Setting it to 2, we tell the geometries that they should be simulated in the two next *Union_master* components. We do not update the sample_volume which is an exit volume, as this would allow the ray to escape once more. Instead we will replace it with Vacuum, but one could also have placed something closer to the actual sample.\n", + "\n", + "One last necessary detail is to set the *allow_inside_start* parameter on the second *Union_master* component. This disables an error message that would occur if a neutron starts inside a Union geometry, as this is most likely an error. Here we want to do this on purpose, and we need to let the *Union_master* component know this is allowed." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "container.number_of_activations = 2\n", + "container_lid.number_of_activations = 2\n", + "inner_wall.number_of_activations = 2\n", + "inner_wall_vac.number_of_activations = 2\n", + "\n", + "sample_replacement = instrument.add_component(\"sample_volume_replace\", \"Union_cylinder\")\n", + "sample_replacement.yheight = sample_volume.yheight\n", + "sample_replacement.radius = sample_volume.radius\n", + "sample_replacement.material_string='\"Vacuum\"' \n", + "sample_replacement.priority = 101\n", + "sample_replacement.set_AT([0,0,0], RELATIVE=sample_volume)\n", + "\n", + "master_2 = instrument.add_component(\"master_after_sample\", \"Union_master\", after=\"sample\")\n", + "master_2.allow_inside_start=1" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [], + "source": [ + "instrument.backengine()\n", + "data = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "functions.name_plot_options(\"logger_space_zx\", data, log=True, orders_of_mag=4)\n", + "functions.name_plot_options(\"logger_space_zy\", data, log=True, orders_of_mag=4)\n", + "plotter.make_sub_plot(data[0:2])\n", + "plotter.make_sub_plot(data[2])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpretation of the data\n", + "Now we see evidence of the beam leaving the sample environment after interacting with the sample, and also elevated scattering in comparison to the empty can. This is now a reasonable simulation containing an external component inside a Union geometry ensemble, but there is still one problem, if the ray leaves the external component and reenters later, it will find a Vacuum instead of that sample. This can be fixed to some extend by adding a second copy of the external component and a third *Union_master* component, while incrementing the *number_of_activations* on all geometries, then the ray would be able to leave and enter the external component once before the external component effectively disappears. Even with this assumption, it is still a reasonable approximation and a flexible approach to add for example a mirror inside a sample environment." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Comparison of the three datasets\n", + "Here we compare the three datasets, the empty sample environment, the wrong simulation where rays scattered in the sample could not interact with the sample environment, and the full simulation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "banana_empty = functions.name_search(\"banana\", data_empty)\n", + "banana_wrong = functions.name_search(\"banana\", data_wrong)\n", + "banana_sample = functions.name_search(\"banana\", data)\n", + "\n", + "import matplotlib.pyplot as plt\n", + "plt.figure(figsize=(14,6))\n", + "plt.plot(banana_empty.xaxis, banana_empty.Intensity, \"r\",\n", + " banana_wrong.xaxis, banana_wrong.Intensity, \"b\",\n", + " banana_sample.xaxis, banana_sample.Intensity, \"k\")\n", + "plt.xlabel(\"2Theta [deg]\")\n", + "plt.ylabel(\"Intensity [n/s]\")\n", + "plt.legend([\"No sample\", \"Wrong simulation, no exit\", \"Full simulation\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpretation of the data\n", + "We see that the wrong simulation have slightly lower background, and more peak intensity. We also see the peak shape is different near the aluminium Bragg peaks. Since the Union components contain a powder process, one can also recreate this example without using an external PowderN component to check the accuracy of the approach. It is however still not perfect, as the Union powder process will perform multiple scattering where PowderN will not. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/source/tutorial/Union_tutorial_7_Tagging_history.ipynb b/docs/source/tutorial/Union_tutorial_7_Tagging_history.ipynb new file mode 100644 index 00000000..d81e6c8a --- /dev/null +++ b/docs/source/tutorial/Union_tutorial_7_Tagging_history.ipynb @@ -0,0 +1,1487 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Union tagging system\n", + "The *Union_master* is capable of recording histories for each neutron in a tree like fashion and add the total intensities for each unique history together. At the end of the simulation these are sorted by intensity and written to file, and the top 20 are shown in the terminal. This system does not work with MPI, if MPI is used only part of the data is written to disk. The system can take up a large amount of memory when used, so it is disabled per default.\n", + "\n", + "First we set up a simple instrument with sample, container and a layer of cryostat." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "Al_inc = instrument.add_component(\"Al_inc\", \"Incoherent_process\")\n", + "Al_inc.sigma = 0.0082\n", + "Al_inc.unit_cell_volume = 66.4\n", + "\n", + "Al_pow = instrument.add_component(\"Al_pow\", \"Powder_process\")\n", + "Al_pow.reflections = '\"Al.laz\"'\n", + "\n", + "Al = instrument.add_component(\"Al\", \"Union_make_material\")\n", + "Al.process_string = '\"Al_inc,Al_pow\"'\n", + "Al.my_absorption = 100*0.231/66.4 # barns [m^2 E-28] * Å^3 [m^3 E-30] = [m E-2], correct with factor 100.\n", + "\n", + "Sample_inc = instrument.add_component(\"Sample_inc\", \"Incoherent_process\")\n", + "Sample_inc.sigma = 3.4176\n", + "Sample_inc.unit_cell_volume = 1079.1\n", + "\n", + "Sample_pow = instrument.add_component(\"Sample_pow\", \"Powder_process\")\n", + "Sample_pow.reflections = '\"Na2Ca3Al2F14.laz\"'\n", + "\n", + "Sample = instrument.add_component(\"Sample\", \"Union_make_material\")\n", + "Sample.process_string = '\"Sample_inc,Sample_pow\"'\n", + "Sample.my_absorption = 100*2.9464/1079.1\n", + "\n", + "src = instrument.add_component(\"source\", \"Source_div\")\n", + "src.xwidth = 0.01\n", + "src.yheight = 0.035\n", + "src.focus_aw = 0.01\n", + "src.focus_ah = 0.01\n", + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.dlambda = \"0.01*wavelength\"\n", + "src.flux = 1E13\n", + "\n", + "sample_geometry = instrument.add_component(\"sample_geometry\", \"Union_cylinder\")\n", + "sample_geometry.yheight = 0.03\n", + "sample_geometry.radius = 0.0075\n", + "sample_geometry.material_string='\"Sample\"' \n", + "sample_geometry.priority = 100\n", + "sample_geometry.set_AT([0,0,1], RELATIVE=src)\n", + "\n", + "container = instrument.add_component(\"sample_container\", \"Union_cylinder\", RELATIVE=sample_geometry)\n", + "container.yheight = 0.03+0.003 # 1.5 mm top and button\n", + "container.radius = 0.0075 + 0.0015 # 1.5 mm sides of container\n", + "container.material_string='\"Al\"' \n", + "container.priority = 99\n", + "\n", + "inner_wall = instrument.add_component(\"cryostat_wall\", \"Union_cylinder\")\n", + "inner_wall.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "inner_wall.yheight = 0.12\n", + "inner_wall.radius = 0.03\n", + "inner_wall.material_string='\"Al\"' \n", + "inner_wall.priority = 80\n", + "\n", + "inner_wall_vac = instrument.add_component(\"cryostat_wall_vacuum\", \"Union_cylinder\")\n", + "inner_wall_vac.set_AT([0,0,0], RELATIVE=sample_geometry)\n", + "inner_wall_vac.yheight = 0.12 - 0.008\n", + "inner_wall_vac.radius = 0.03 - 0.002\n", + "inner_wall_vac.material_string='\"Vacuum\"' \n", + "inner_wall_vac.priority = 81\n", + "\n", + "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\", RELATIVE=sample_geometry)\n", + "logger_zx.D_direction_1 = '\"z\"'\n", + "logger_zx.D1_min = -0.04\n", + "logger_zx.D1_max = 0.04\n", + "logger_zx.n1 = 300\n", + "logger_zx.D_direction_2 = '\"x\"'\n", + "logger_zx.D2_min = -0.04\n", + "logger_zx.D2_max = 0.04\n", + "logger_zx.n2 = 300\n", + "logger_zx.filename = '\"logger_zx.dat\"'\n", + "\n", + "logger_zy = instrument.add_component(\"logger_space_zy\", \"Union_logger_2D_space\", RELATIVE=sample_geometry)\n", + "logger_zy.D_direction_1 = '\"z\"'\n", + "logger_zy.D1_min = -0.04\n", + "logger_zy.D1_max = 0.04\n", + "logger_zy.n1 = 300\n", + "logger_zy.D_direction_2 = '\"y\"'\n", + "logger_zy.D2_min = -0.06\n", + "logger_zy.D2_max = 0.06\n", + "logger_zy.n2 = 300\n", + "logger_zy.filename = '\"logger_zy.dat\"'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding the Union_master with tagging\n", + "There are two important parameters to consider when setting a *Union_master* up for tagging:\n", + "- enable_tagging [default 0] 0 for disable, 1 for enable\n", + "- history_limit [default 300000] Limit of unique histories recorded\n", + "\n", + "As the *Union_master* component records each ray in succession, their unique history is added to the history tree. If a ray takes the same path in the tree, the intensity gets added to that unique history. When the history limit is reached, the tree is not built out further, but if already recorded histories occur, their intensity is still added to the existing tree." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "master = instrument.add_component(\"master\", \"Union_master\")\n", + "master.enable_tagging = 1\n", + "master.history_limit = 300000" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/tutorial/data_folder/union_tagging_3\"\n", + "INFO: Regenerating c-file: python_tutorial.c\n", + "CFLAGS= -I@MCCODE_LIB@/share/\n", + "INFO: Recompiling: ./python_tutorial.out\n", + "mccode-r.c:2837:3: warning: expression result unused [-Wunused-value]\n", + " *t0;\n", + " ^~~\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1604:105: warning: incompatible pointer types passing 'int (const struct saved_history_struct *, const struct saved_history_struct *)' to parameter of type 'int (* _Nonnull)(const void *, const void *)' [-Wincompatible-pointer-types]\n", + " qsort(total_history.saved_histories,total_history.used_elements,sizeof (struct saved_history_struct), Sample_compare_history_intensities);\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/stdlib.h:161:22: note: passing argument to parameter '__compar' here\n", + " int (* _Nonnull __compar)(const void *, const void *));\n", + " ^\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1613:20: warning: incompatible pointer types passing 'struct saved_history_struct *' to parameter of type 'struct dynamic_history_list *' [-Wincompatible-pointer-types]\n", + " printf_history(&total_history.saved_histories[history_iterate]);\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1434:50: note: passing argument to parameter 'history' here\n", + "void printf_history(struct dynamic_history_list *history) {\n", + " ^\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:2030:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:839:1: warning: non-void function does not return a value in all control paths [-Wreturn-type]\n", + "};\n", + "^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:883:1: warning: non-void function does not return a value [-Wreturn-type]\n", + "};\n", + "^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3274:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3274:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3276:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3276:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3278:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3278:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3280:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3280:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: warning: format string is not a string literal (potentially insecure) [-Wformat-security]\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^~~~~~~~\n", + "./python_tutorial.c:12948:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_zx_filename\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^~~~~~~~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: note: treat the string as an argument to avoid this\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^\n", + " \"%s\", \n", + "./python_tutorial.c:12948:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_zx_filename\n", + " ^\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: warning: format string is not a string literal (potentially insecure) [-Wformat-security]\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^~~~~~~~\n", + "./python_tutorial.c:13191:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_zy_filename\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^~~~~~~~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: note: treat the string as an argument to avoid this\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^\n", + " \"%s\", \n", + "./python_tutorial.c:13191:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_zy_filename\n", + " ^\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:788:15: warning: expression result unused [-Wunused-value]\n", + " if (volume_index_main,Volumes[volume_index_main]->geometry.is_mask_volume == 0 ||\n", + " ^~~~~~~~~~~~~~~~~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:788:90: warning: expression result unused [-Wunused-value]\n", + " if (volume_index_main,Volumes[volume_index_main]->geometry.is_mask_volume == 0 ||\n", + " ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:789:92: warning: expression result unused [-Wunused-value]\n", + " volume_index_main,Volumes[volume_index_main]->geometry.is_masked_volume == 0 ||\n", + " ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "14 warnings generated.\n", + "INFO: ===\n", + "INFO: Placing instr file copy python_tutorial.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/tutorial/data_folder/union_tagging_3\n", + "\n", + " Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Al.laz' (Table_Read_Offset)\n", + "Table from file 'Al.laz' (block 1) is 26 x 18 (x=1:8), constant step. interpolation: linear\n", + " '# TITLE *Aluminum-Al-[FM3-M] Miller, H.P.jr.;DuMond, J.W.M.[1942] at 298 K; ...'\n", + "PowderN: Al_pow: Reading 26 rows from Al.laz\n", + "PowderN: Al_pow: Read 26 reflections from file 'Al.laz'\n", + "PowderN: Al_pow: Vc=66.4 [Angs] sigma_abs=0.924 [barn] sigma_inc=0.0328 [barn] reflections=Al.laz\n", + "Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Na2Ca3Al2F14.laz' (Table_Read_Offset)\n", + "Table from file 'Na2Ca3Al2F14.laz' (block 1) is 841 x 18 (x=1:20), constant step. interpolation: linear\n", + " '# TITLE *-Na2Ca3Al2F14-[I213] Courbion, G.;Ferey, G.[1988] Standard NAC cal ...'\n", + "PowderN: Sample_pow: Reading 841 rows from Na2Ca3Al2F14.laz\n", + "PowderN: Sample_pow: Read 841 reflections from file 'Na2Ca3Al2F14.laz'\n", + "PowderN: Sample_pow: Vc=1079.1 [Angs] sigma_abs=11.7856 [barn] sigma_inc=13.6704 [barn] reflections=Na2Ca3Al2F14.laz\n", + "---------------------------------------------------------------------\n", + "global_process_list.num_elements: 4\n", + "name of process [0]: Al_inc \n", + "component index [0]: 1 \n", + "name of process [1]: Al_pow \n", + "component index [1]: 2 \n", + "name of process [2]: Sample_inc \n", + "component index [2]: 4 \n", + "name of process [3]: Sample_pow \n", + "component index [3]: 5 \n", + "---------------------------------------------------------------------\n", + "global_material_list.num_elements: 2\n", + "name of material [0]: Al \n", + "component index [0]: 3 \n", + "my_absoprtion [0]: 0.347892 \n", + "number of processes [0]: 2 \n", + "name of material [1]: Sample \n", + "component index [1]: 6 \n", + "my_absoprtion [1]: 0.273042 \n", + "number of processes [1]: 2 \n", + "---------------------------------------------------------------------\n", + "global_geometry_list.num_elements: 2\n", + "\n", + "name of geometry [0]: sample_geometry \n", + "component index [0]: 8 \n", + "Volume.name [0]: sample_geometry \n", + "Volume.p_physics.is_vacuum [0]: 0 \n", + "Volume.p_physics.my_absorption [0]: 0.273042 \n", + "Volume.p_physics.number of processes [0]: 2 \n", + "Volume.geometry.shape [0]: cylinder \n", + "Volume.geometry.center.x [0]: 0.000000 \n", + "Volume.geometry.center.y [0]: 0.000000 \n", + "Volume.geometry.center.z [0]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [0]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [0]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [0]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [0]: 0.007500 \n", + "Volume.geometry.geometry_parameters.height [0]: 0.030000 \n", + "Volume.geometry.focus_data_array.elements[0].Aim [0]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [1]: sample_container \n", + "component index [1]: 9 \n", + "Volume.name [1]: sample_container \n", + "Volume.p_physics.is_vacuum [1]: 0 \n", + "Volume.p_physics.my_absorption [1]: 0.347892 \n", + "Volume.p_physics.number of processes [1]: 2 \n", + "Volume.geometry.shape [1]: cylinder \n", + "Volume.geometry.center.x [1]: 0.000000 \n", + "Volume.geometry.center.y [1]: 0.000000 \n", + "Volume.geometry.center.z [1]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [1]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [1]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [1]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [1]: 0.009000 \n", + "Volume.geometry.geometry_parameters.height [1]: 0.033000 \n", + "Volume.geometry.focus_data_array.elements[0].Aim [1]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [2]: cryostat_wall \n", + "component index [2]: 10 \n", + "Volume.name [2]: cryostat_wall \n", + "Volume.p_physics.is_vacuum [2]: 0 \n", + "Volume.p_physics.my_absorption [2]: 0.347892 \n", + "Volume.p_physics.number of processes [2]: 2 \n", + "Volume.geometry.shape [2]: cylinder \n", + "Volume.geometry.center.x [2]: 0.000000 \n", + "Volume.geometry.center.y [2]: 0.000000 \n", + "Volume.geometry.center.z [2]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [2]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [2]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [2]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [2]: 0.030000 \n", + "Volume.geometry.geometry_parameters.height [2]: 0.120000 \n", + "Volume.geometry.focus_data_array.elements[0].Aim [2]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [3]: cryostat_wall_vacuum \n", + "component index [3]: 11 \n", + "Volume.name [3]: cryostat_wall_vacuum \n", + "Volume.p_physics.is_vacuum [3]: 1 \n", + "Volume.p_physics.my_absorption [3]: 0.000000 \n", + "Volume.p_physics.number of processes [3]: 0 \n", + "Volume.geometry.shape [3]: cylinder \n", + "Volume.geometry.center.x [3]: 0.000000 \n", + "Volume.geometry.center.y [3]: 0.000000 \n", + "Volume.geometry.center.z [3]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [3]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [3]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [3]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [3]: 0.028000 \n", + "Volume.geometry.geometry_parameters.height [3]: 0.112000 \n", + "Volume.geometry.focus_data_array.elements[0].Aim [3]: [0.000000 0.000000 1.000000] \n", + "---------------------------------------------------------------------\n", + "number_of_volumes = 5\n", + "number_of_masks = 0\n", + "number_of_masked_volumes = 0\n", + "\n", + " ---- Overview of the lists generated for each volume ---- \n", + "List overview for surrounding vacuum\n", + "LIST: Children for Volume 0 = [1,2,3,4]\n", + "LIST: Direct_children for Volume 0 = [3]\n", + "LIST: Intersect_check_list for Volume 0 = [3]\n", + "LIST: Mask_intersect_list for Volume 0 = []\n", + "LIST: Destinations_list for Volume 0 = []\n", + "LIST: Reduced_destinations_list for Volume 0 = []\n", + "LIST: Next_volume_list for Volume 0 = [3]\n", + "LIST: mask_list for Volume 0 = []\n", + "LIST: masked_by_list for Volume 0 = []\n", + "LIST: masked_by_mask_index_list for Volume 0 = []\n", + " mask_mode for Volume 0 = 0\n", + "\n", + "List overview for sample_geometry with cylinder shape made of Sample\n", + "LIST: Children for Volume 1 = []\n", + "LIST: Direct_children for Volume 1 = []\n", + "LIST: Intersect_check_list for Volume 1 = []\n", + "LIST: Mask_intersect_list for Volume 1 = []\n", + "LIST: Destinations_list for Volume 1 = [2]\n", + "LIST: Reduced_destinations_list for Volume 1 = [2]\n", + "LIST: Next_volume_list for Volume 1 = [2]\n", + " Is_vacuum for Volume 1 = 0\n", + " is_mask_volume for Volume 1 = 0\n", + " is_masked_volume for Volume 1 = 0\n", + " is_exit_volume for Volume 1 = 0\n", + "LIST: mask_list for Volume 1 = []\n", + "LIST: masked_by_list for Volume 1 = []\n", + "LIST: masked_by_mask_index_list for Volume 1 = []\n", + " mask_mode for Volume 1 = 0\n", + "\n", + "List overview for sample_container with cylinder shape made of Al\n", + "LIST: Children for Volume 2 = [1]\n", + "LIST: Direct_children for Volume 2 = [1]\n", + "LIST: Intersect_check_list for Volume 2 = [1]\n", + "LIST: Mask_intersect_list for Volume 2 = []\n", + "LIST: Destinations_list for Volume 2 = [4]\n", + "LIST: Reduced_destinations_list for Volume 2 = [4]\n", + "LIST: Next_volume_list for Volume 2 = [4,1]\n", + " Is_vacuum for Volume 2 = 0\n", + " is_mask_volume for Volume 2 = 0\n", + " is_masked_volume for Volume 2 = 0\n", + " is_exit_volume for Volume 2 = 0\n", + "LIST: mask_list for Volume 2 = []\n", + "LIST: masked_by_list for Volume 2 = []\n", + "LIST: masked_by_mask_index_list for Volume 2 = []\n", + " mask_mode for Volume 2 = 0\n", + "\n", + "List overview for cryostat_wall with cylinder shape made of Al\n", + "LIST: Children for Volume 3 = [1,2,4]\n", + "LIST: Direct_children for Volume 3 = [4]\n", + "LIST: Intersect_check_list for Volume 3 = [4]\n", + "LIST: Mask_intersect_list for Volume 3 = []\n", + "LIST: Destinations_list for Volume 3 = [0]\n", + "LIST: Reduced_destinations_list for Volume 3 = []\n", + "LIST: Next_volume_list for Volume 3 = [0,4]\n", + " Is_vacuum for Volume 3 = 0\n", + " is_mask_volume for Volume 3 = 0\n", + " is_masked_volume for Volume 3 = 0\n", + " is_exit_volume for Volume 3 = 0\n", + "LIST: mask_list for Volume 3 = []\n", + "LIST: masked_by_list for Volume 3 = []\n", + "LIST: masked_by_mask_index_list for Volume 3 = []\n", + " mask_mode for Volume 3 = 0\n", + "\n", + "List overview for cryostat_wall_vacuum with cylinder shape made of Vacuum\n", + "LIST: Children for Volume 4 = [1,2]\n", + "LIST: Direct_children for Volume 4 = [2]\n", + "LIST: Intersect_check_list for Volume 4 = [2]\n", + "LIST: Mask_intersect_list for Volume 4 = []\n", + "LIST: Destinations_list for Volume 4 = [3]\n", + "LIST: Reduced_destinations_list for Volume 4 = [3]\n", + "LIST: Next_volume_list for Volume 4 = [3,2]\n", + " Is_vacuum for Volume 4 = 1\n", + " is_mask_volume for Volume 4 = 0\n", + " is_masked_volume for Volume 4 = 0\n", + " is_exit_volume for Volume 4 = 0\n", + "LIST: mask_list for Volume 4 = []\n", + "LIST: masked_by_list for Volume 4 = []\n", + "LIST: masked_by_mask_index_list for Volume 4 = []\n", + " mask_mode for Volume 4 = 0\n", + "\n", + "Union_master component master initialized sucessfully\n", + "Detector: logger_space_zx_I=18017.8 logger_space_zx_ERR=32.4189 logger_space_zx_N=879822 \"logger_zx.dat\"\n", + "Detector: logger_space_zy_I=18017.8 logger_space_zy_ERR=32.4189 logger_space_zy_N=879822 \"logger_zy.dat\"\n", + "\n", + "\n", + "Top 20 most common histories. Shows the index of volumes entered (VX), and the scattering processes (PX)\n", + "1859607\t N I=3.965281E+04 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "506763\t N I=1.050335E+04 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "226314\t N I=4.825743E+03 \t V0 -> V3 -> V4 -> V2 -> V4 -> V3 -> V0 \n", + "166837\t N I=3.557502E+03 \t V0 -> V3 -> V4 -> V3 -> V0 \n", + "70469\t N I=1.466246E+03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "31797\t N I=5.940376E+02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "23495\t N I=4.091492E+02 \t V0 -> V3 -> P1 -> V0 \n", + "17274\t N I=3.516535E+02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "13839\t N I=2.758026E+02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "11994\t N I=2.441687E+02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "9842\t N I=2.293453E+02 \t V0 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "10180\t N I=2.028735E+02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "8250\t N I=1.719896E+02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "5405\t N I=1.056087E+02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "4597\t N I=8.898223E+01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "3735\t N I=5.656959E+01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "2454\t N I=4.841669E+01 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "2882\t N I=4.699149E+01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "2334\t N I=4.194865E+01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "2056\t N I=4.159660E+01 \t V0 -> V3 -> V4 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "loading system configuration\n", + "\n" + ] + } + ], + "source": [ + "instrument.set_parameters(wavelength=3.0)\n", + "instrument.settings(ncount=3E5, output_path=\"data_folder/union_tagging\")\n", + "\n", + "instrument.backengine()\n", + "data = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plotting data with name logger_space_zx\n", + "Plotting data with name logger_space_zy\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAHuCAYAAAALJ/jFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydeZgU1dX/P2dGIaIsCrKMgIAIOCoBAVFcXnBBJZGfjgu+oLgBKhqNBhMjOuMMYDSiRqKogBsKEZfRFxJUNEJQURSFgI6CbLLMAIKCKAjC3N8f91Z3dXd1d/U2W9/P8/Qz3VW3bt3q7ulb555zvkeUUlgsFovFYrFYLBaLxZIKOdU9AIvFYrFYLBaLxWKx1H6scWmxWCwWi8VisVgslpSxxqXFYrFYLBaLxWKxWFLGGpcWi8VisVgsFovFYkkZa1xaLBaLxWKxWCwWiyVlrHFpsVgsFovFYrFYLJaUscalJWVE5B4RmZdqm5qCiMwTkXsy2H87EVEi0i5T58gUItJXRDJav6gqzmGxWCzViZ03E+7fzpvVfA6LxS/WuKxBiMhoEVkiIj+JyAYRmSAih7j2X2V+XJWI7BORb0XkHRG5UkSkGoc+HihwjdNrkglpkwnM+9LXY/taEbkqga4K0OO1RLIAaFXdg7BYLBaw82aq2HmzSrDzpiWrOKC6B2AJoQ/wV+BToAUwCWgIXO1qswHohV4YOBw4G3gEOBf436ocrINS6sd0tKkpKKW+q+4xVDfmpusApdQv7u1Kqb3ApuoZlcVisURg580agJ037bxpsThYz2UNQin1G6XUdKXUcqXUfOBu4P+FNduvlNqklCpXSv1XKTUe+C1wmYicF61vszp5jYh8ICI/i8jHInJsWJvbRGSd2b9ARE5w7esgIm+KyA/msVBEOpp9gdAdEXkW+B+gyJxzbXgb87qBiEwWke9FZKeIvCQizVz7nxWR50TkXtNmo4jcnMTbGv4+9DXj6iciX5pzl4pIE1ebkBVkETlKRN4Skd0istmMKce1f62I3Coir4rILhEpE5H/SXBcQ0TkaxHZIyL/FZGzwvYPMp/NTyLyvIjcH/Z+Hioir5kxfi0i54WvSIvICebadpsxF4lIrmu/8x2ZB/wMnBnt/XO9vsf0eYuIbDJegfviXOs8M/4XzPWsFZGLYrTvY47Zbvr/R9h35SrTxyDz93sRmSIi9VxtGojIY+b47SIyS0TaxjjnWgl6O5zHPLPvJRF509W2s/nc+8e6bovFkn7svGnnTbHzplf7GjNvisgRIrJfRI4Jaz9LRP4W67ottRNrXNZsmgHb4zVSSr0PLAEGxmk6BngYOAH4Bih1fuxFZBBQDPwJ6A58AcwWkYPNsY8CW9Grvz2BCUClxzluAT4EHkSHgfSKMpYHgdOB89GTalvg2bA2F5q/vc3Y/yZhE3sK3AVcCZyBvt4/ezUy789MYDf6Wq4GrgVuC2v6J+B14Nfo658mIgf6GYiInIS+9r8BXYH/A2aJSGuz/2jgBfRn4Hw2N4R18zfgKKAvcDn6Bst9jqbAHOCfwPHAVabd78P6uQf92R4DLPIzfvT36ddAP+A64A8S44bNMBL40hw7GfiHiLSP0vYQYCL6e3cecIR57aY5MBj9fbrIPK517X8C/f6ch/4+fQvMdN/shNEL/f1tBXQC1gMfuMbeXUSGm5uM54AXlFJz4lyzxWLJPHbe1Nh5086bNWLeVEptBN4BrnAamvf2HOD5ONdsqY0opeyjBj6AxsAq4C7XtquAtVHa/wN4I0Z/Chgb1v9PwLnm9YfAva79B6B/GEaY18uAy6P0fQ8wz/V6HnBPtDbokKW9QH/X/i5mjJ3M62eBpWF9rACuj3ONfT22rwWuMs/7mnYnuPbfCXzkNX70j99PQBPX/uuB8rD+J7he55lzdIkyznZmfzvXZzc9rM1HzueBDvmaF7Z/vuv9bAT84r529OQfeD+AQuDFsD4GA1+FvX+j43wv++qfjZDP9VugnmvbHOC+GH3MA94P2/a+c0z4OTyO72muN9f1f7EfaOZqM8m5XvN+/ww0cu0/0HyuJ/n4X3wFeNc5n9lWAPwA/N18/g3j9WMf9mEfmX1g581nsfOmnTe9j6/WedO8b2sBMa9vBMri9WMftfNhPZc1EBGpD7wKrAZihkq4D0P/yMXiY+eJUmoHsBzobDZ1Qf8wO/v3oVfguphNE4GnTJjLH5zVwSTpgP6Rcp/vK/RqcxdXu2Vhx1WgV9rSgbvvWP12AZYrpba7tn0ItBKRRjH6I0afXuf4KGzbhwTfi07ofCI37tXRDuibmk+j7Ae96logIj86D+Apc6ybxT7H7GaF0jklDn4+p489Xnf2aigieSIyVURWi8hO4D/o623parZJKbU1yhiOBeoB5a5r/x44iMjrDz/37egV20FKqf3OdqVUKfAWcBMwTCm1M+bVWiyWjGLnzQB23tTYebNmzZuvAYcCp5nXl2O9lnUWK+hTwxCRA4AX0auUZ5rJyg9d0IpksYg3iUY/UKnHReQtdPjE+UCxiPRXSsU7pxd+Ffp+CXutiB3KvRO9GhlOY7SXKdhRaMJ9rH4THqtSSokWIfS7eBPvHPFugLyOD29/CDpE6N4459oVZ78XiX5OThu/PIu+qRoObESHgr1ltvkZwyHo70YPj743Rzup6Pyfe4B+Sqlvw/Y1ALqhV347okN+LBZLNWDnzRDsvBncb+fNGjJvKqV2i8jLwOUishE4EbjU/+VYahPWc1mDMHHsU9E3q+cpn0pxInIaOnZ/ZpymJ7qOaYRe2VtuNi0HTnLtPwAdRvGVs00ptVop9YhS6ix0eMllUc7zC5AbZR/osKV9YefrAjRxny8JVqJzEQKYfIQm6NCgZPgK6Cwu4QLgZKBCKfWD9yFJneOksG0nE3wvlhP5A+9+7byf7mvvGdb+v0C+Umpl+CO1oSfNiWGvexH8LobTB3hQKfVvs1LfNMFz/Rd983Sgx/V7ehxFJA+YAdyqlApfLQa4Hz3xDgYekFpYe81iqQvYedPOm2HnsPOmpibOm88Bl6DzOv+jlFqf4JgstQRrXNYsJqHj5q8A6olIS/NwTzi5ZlueiHQVkVHALHSc/Jsefbq5RkQKjGLXZKAceNvsewT4nYhcZiasx4H6wHQAEXlYRM4SXcj4NHQCfbSJ5xugt1EIOzR8p/lhehr4u4icKlpd71l07kuykxno/Lffi8gVopXqTkGHXcxVSn2eZJ9z0NfzrIgcZxLui9FCAOliAnCJiNwoIp1EpATtFXvc7J8MnCoio8z+P6IFCnTCh56spwOPiEgvETkRGGuOdVY6H0NP9k+IyK9FK5wOEpE703gdidBNRP5srufP6JuESVHargKuEpGOInIuWlTCN2ZiLQVeFpH+ItJeRP5HtApekyiHvYwOsZrp+j88DLTyH3o1+Cql1Evo/7+nRKq1Zp7Fkq3YedPOm3bejKRGzZumz/eAbcAobEhsncYalzWLa9EqW4vRse/Oo42rTWuzbR06Wfo8tHLZYB/9FwF/RCvkHQVc5MTDK6X+AZSgiyD/FzgOGOBaBT4Q/SP2FSaRnuCPeDgPoVfJVhM9F+EP6GT0f6JXczegVehS4VngdvQP11IzxjL0SllSKKUq0bL2BwOfoFfenkWr9qUFEyJ1LXAr8DlwAfD/nFU9pdTXwFDgZvT72dWMYY+rm9+jk+XfA6a5xrfH9LEerTLYDq16+gn6M1iXrutIkMfR17EELfQwWCm1OkrbYcDR6PdmLDA6ifMNQYcEPYP+Dj+D/v37OUr7PujPwf1/WCpaBfJpYJxSaqlpexOQT6QSocViyTx23kyNZ7Hzpp03vUnLvBnW5gW0x/iVJMZjqSU4qk2WOo7oGkv9lFLzqnssltQRXWdxlVLqxij7T0KvILZQSm2p0sHFQXQ9sHlKqXuqeSgWi8USFTtv1i3svFn9iMhEtIqwn4UdSy3FCvpYLLUAEbkJvWL9E3Ax0B841bW/N7qO1WJ04v4EYE5NmyAtFovFYqkK7LxZcxCRQ9Bhy1cAv6ne0VgyTbWHxZrY8Q9FZIX5e7RHm1wT571KRFaKyDCPNp1FZJeIjK+akVssVUpXdHjKf4FB6NAst+JgLjp86wu0auJ/gf+t6kFaLJbMk455U0QuFZFlIvK5+dui6q7AYqkS7LxZc3gUnav8lFJqfnUPxpJZqj0sVkTeBZ5WSr0gIpcD1yilzghrMxQd+30eOidhMXCqUmqt2Z8L/BudaF+ulBpVhZdgsVgsFkuVkeq8KSI90QqrZyilNolIY2CPUipaLpXFYrFYLL6oVs+liDRHy0D/w2z6B3CCiBwe1nQQMFkpVWnq5rxOaLL5HegE91QU0ywWi8ViqdGkad68FRivlNoEoJTaYQ1Li8VisaSD6g6LbQNsdCmv7Ud7H9uEtWuLlrV2WOe0EZGuwDnAwxkfrcVisVgs1UvK8yZa3biDiMwXkc9E5C5bSsdisVgs6aBWC/qIyIHoWkZXK6X2x5sbRWQEMALg4IMP7tGlS5fMD9JisViqiU8//XSrUirco5UUHUXUrnR0FEYFvKWUOjfd/ZpQz4eBs5VS4YZXtnMAOh/tbKAe8Cba+Jwa3rA2z5uf/qD/9mgUfJ7XaAMA5T+11vsO1tuX8Av7fzgw0N6LnXwFwIqKLrALXWIe6GH+wz79tFy/7pHHp5/uBaBJD12V5BD03xa0ZRXfsZd6AOyhPgCH8y0AR5Cn+/pO93nEYcE68y1d6wefsxuAXPaz67tDaHXYRiq+O0Lv3GbGdTR8ha5334WGut+lwC+uce4wfTcuDz3/p+XoaGqgsx5jj0NC349yNlLxkz5nj4NhG7oqRlM6eLx78D0r+Z5D+RU/U/GzGesX5cDB5PXYGXhPtn7XHIC8wzZQvrO1LuiyPnhNDktNVZHD+Zaf+RXf7W4GQL2DtBN+78+/0p8T0OMwWMbPKPR9Ylfq86X5TI4h7MI82Gyqj7SgLctMJY69u3/FgQft4Zef6pPb4BcAusmBEcc64+xqPmt3fxWqFfVlD7t+1mPo8Sv4bP9+AFR5Lji/3k7BkcMht9kv7N9ozuNURP3F/F21E45tGOjr0yWA+Zft8avgd5TcPH7V7ScAfv7O/BM471XryOt3vo89DnNtM7GCPTp5tF8CNIveX00mm+fNdFHdxuV64AgRyTXGYS6QR+BnJMA64Eh0jSEIrsi2Qtedmm0MyyaAiEgjpdSI8JMppSZhCs727NlTLVq0KP1XZLFYLDUEEfkmfit/7AKuS1dnLu4J3IJExwi1XYSuN3e8U9xdRDqha+g1Rd9SDzX17VBK7QCuEZF3MjDs6iTVeRPz9xWl1B5gj4j8H3AiHsZlXZk3R1MYeN6E7QD8UZryKaBUUUS7cZQgBehqgoDq791vH+YCsIB+yAxoNWgN5QA57QH4PsbbNYSnAZjGNfRhLgP4FwATuZFWQDntkfJgWcYNeUHjRKbDQb/9HgWoRociMkuPU50fbDMAeGMWD6o3AbiNx7iYaQC8wpBAu+t4hEkDbgGgYnbotX1Y1g+OLeYvajsAfy57OPiehMmyOGNYO82M4Tizw7kFPtYc93bwmEJTfrGEcYFt93ErE7iZp7iG80r1+9u8QBtjB7EcgJv5O5dOnwnAIYOXso8mtEIbZRVl+r0/Ml8vBqw11tVSOgPw67LlfGrOpfLN2I2hpDwMJYAbeYhW+pNlEePpjb74hZwe+h4sNE8ODfbXhpVskF8C54SX9D7X985hAKWcC8ymINjnGXDi58HzSVno2AFkotk2Eprs3aTHWa8l8rTZfo3+zgB4FQHpyBcArORY6n+nV2L2HBZllQWQw4ADQH0XZf/t5lwPRO2ixlJX5s3qpFrDYo3c8xKC6lz/Cyw2+SFuXgaGi0iOySu5AHhVKbVOKdVMKdVOKdUO+Bs6xyTCsLRYLBZL8gh6NTLdD5+8ji5mHj7pPwE8ppTqBDwGPJn4ldUuUp03zb7pQH/RHAiciVbKrLU02bspcFOdKI6B6MYxwhykQD/cNKvcGLfvm3kg4liReeiyhZpSBiQ03lh8QE8uZlrE+AH+xVmB54WMDjzCESlGpDjuuWQhDOI5BvEciQRVe71vYxnFywxEzvA4IEUcYywaPfkg5HUea8hjTeB1C+NljHueUo9tD8VoL8XIUujN/ICx6uAYe+HfTff743Wce9zRjpNJIFP1A+Bqnog+SJ/4/c5kG9U8b1YbNWGM1wPPiUgh8D0wFEBEZgOFSqlFwPNAb+Brc0yJUmq1V2cWi8ViST+Cjk6rDpRS7wO4Ux9cwjZnm03/AB4VkcM9DK26Rqrz5otAT6AMqESXa3iq6oZfNUgBjCkdxd0F48l5/E+B7ZVPHqyXK7rDyZ8Fb97HMoqDgBXGw3VR6TTe2XsmADueaBnSt/ZwXseKyk6clvMeAGoQgPaaSbfI8YTf+E/jGvJYw0W8wigeYIzxmpbTntN4GylrT9MuW4PXM/0I7hxcyEqO4qLBB1BOHrns4zTgIvUDr+YNAYI3+BfN1gbmdpqwjOPpzHK20yRiXNtoxkWzp9GPucCUwPa1tKNV/hoqpIiZzGVFZSf+kX8hr82/gJcWXhl5gZxP0/0b2WrcFgGvZPm4gAEzq1J7NU/jbfIo56WccYypDBX4//MZD/PSuwM5T27jSPUV3wzswpZn29L09Y2syukIwKVLZ2opR2BFt66A9uSNZRR3oyvSfVMWGsL96xXLA+3OYab5TI4nD+jb6U3TKjTScCyjgJt5hYvZsrQtAHf/GlqrvEAbcUlJNu6+iR31zRrXg9ozuaGsI3zh8pKWFcGx3obYbAoChqUcBid/B63eXcN62lBxRqhH1qENK2k87BAa1NOh0pPrjeASc32cBNykn6rB2mhdNenY4NjnwFX94TTe4xmuJ3fzT0AubVqsRxa6PJergn1ADI/lJFAjQj2WsTymdZ3qnDerk2o3LpVSX6EnwPDtA1zP9wM3+OjrnrQOzmKxWCyZppmIuIMHJ5lQzHhECNuIiCNs8y2AiDwGdBGRJ4D7lVLey/q1jFTnTaVUJXCbedQJttdrGb+RBx+e0A/1WeT2BuxiKsNpgvaGKg+v1HU5T1JGfuQOCPQpD93OX0tvBuBhbgWglToypO1NPBYI5QRwd/mnnPsBnVv5Bx6Lez3racPFvMJlvEY7kyOaTxmPGgvjnUD9ev33ap6gPnvoQ7D8oxOuKfI1uEqojsyZSBn5zOBKXjppCn1Va7bQgrmcyzb1L5ZUdgsZy5gyHepa4rqerTlHcBrBuNhLK5/jLmMMShmMeVcbmlf+8BzIoXxzJ3APjDlhFBO5keNZBsDxXZfx1rqB2pgsC5Y3Dzw/tpgrjAE4leH6ulwhr3PKBtIqX/8cfCofmOv+IxAMq3U+h98xQY+xKzE9tKoAoCV4hLtG8EUR5+WXAqUhIbAAq8qCxt962pDLfvIop8IsXDRjG5/KO3wzrYjWg1cC0LDej2yQabykPiWCR4OG7arbTd/dCQRWPuPEOafAnWo/904qSbkfi28ai8gkYJZSalZ1Dyac6laLtVgsFkstIIPhPVuVUj1dDz+GpS+UUjcqpVorpa6vK4alpeqQdfv8ty3Rj8DrMogoDhNGG1YmOTIf41mdfA3zZpUbY4b8yiWhr6/jkdD9MiuQfwmhYanHB1KAXe2nQz/ejNgeD8cjFrfdCu01lhyQnMgw2EA7+Vob1B6Eh8omSnc+ojsfeYaOygptw8vRINWw3CMjoR1fBRYjEj4+L36bbCWD8+YOpdSImmhYQg3wXFosFovFkgR+hW0sWUbgBv6jIu5eOB5VCloTCk5Wp0MhfEg/AFQhPID2LN7FBH18DrBWG5aOR1TMUvwVlZMBmIq2JPswlw9L+kUfzF/g/t//iQE5swPewQX0YShTmcYQctnPhrKO5DT9idNb6PDac9jL+yUDAfjjxRMCXb0xuB/PcwWdWcGY+UYAR4vf0vSyjfAj/G+j12CJNiyv50nW0I4xZePYm6+VWKdUbmRbrg59VaqIZ7gemQ7TX7sGgJv+F5peYE7Y72iYp59+uKIfZ3V6hzGXjDPHDgsYYp3Uco5iJf8e5XhFjdv22FnwhQ6DHcBsLpUeHKd0mO7nMhuuNh4+kwraN/9NlnE8ALsbb4XzDuUf914IwG3o5EVnv8Pdqx+AXyn4SCAfuuV/RCvK6azqU0YL5pQN9LzT7ZH/AYs4hdN4m6NUd/ZSn48dr+SxX6PU0chwuHNyA/KMkA9A4z2b2LG2JRtWdOTITsYg+5sOv3174mm8x+k8w9WB9tfxBE9yfaj6ilmzmE1BSEhtgClwzEOL+ZLubJikw4A3nNoR5urv9SKKQJ3C8XzC5zf30sdcD3xRxKVGUEj11iGq/FYLQvVjLvNuPxeWw+CZWuVn+qRrIk5d+X8Hw6nwzbYugVBYABabvya0NVyw5968ElQ5nmRjOGy2Y41Li8ViscSlpuWOKKW2iMgStKDNC0QXtrFYEqfdAajK+M0W0A+XEG0AlQ98q7122746gqvzn+EdzgoYHlMZqtVgy+Ci/KCCq0gx/VX30H6IFBi6+/TRTKwcCehQUzgC+Xwfd7Yt4d7pJfxlsA7BfZJb2JL/IvM53eRUeox1MDA4KEizNecI5EDgNKCvzvkDreha8rLrOHU0zSo38mrlxWzNOYJJD89isPoWHtL5pG6cwz7P68Wc8tPoz1lwzz5ebauN6IsGaJnaS2c/F+hbH7c/pJ8KR4VmmjFMjxLcb82SspNYsgTeADBpoeoXkKXBsONyvF1tJ6qKCPXXe4eXoCbDTc6CxapCnu00iKsk30mypfHfNrFjZeyw7CVHn6SfdDwJPjIbuwb3q6+NMQg0vsolTHWHzm+UMuCLohCF2GX0wqyHIGVwZr5WGw6GPgP/rM8hlwfzdgGmT9efjSN9KWUmP/V9M5Z8jzzJGAZiNKPSUvPmzarChsVaLBaLpUYjIhNEZAPQGnhHRL4wu64HficiK4DfQRqShyxZiywgYcVLL5VMGQ5DmcxQJsc81hGVcbiZ5Oo2yABTdsSDO4h9PTJYP4oddRyIGhoqZaEhroN4LvDcnUep+5hBH+Yi0/2Hr7p5JIkCDl4htwBvc1pC/ZzFvzjLlIXJJG6l11ght+7vl+TpRyrqyA4Nd22l4a6t8Rui1WZlYrDkiWeb2fphsVjPpcVisVji4uSOZIC4wgRKqZvBxC6GbvcUtrFkH47ujPrau36ge5tIMYgJZS2EP/Yy7h+TOuiol8pwHUp7xeTJoMq5QuXxfI4Wh6FyMs9fMjzuuFrlrzEeygUBARkgIEwzJl+fayI3cjGvwBdFzCmDboXavfWBEeK5Ffh/lf/HUTmrWElHzuIdtr14ROjJ3j+Aeymh6WUbGV85im2/PYI/zS6mDet5XZbzIbnw4hHwYpHjdAvh0oLneEn6APD4L1dzx96/AFoQCAgIysjpwRqXZ+a84/IEdmG6gK7uF9Z36UyMCCr95SwuVe2AaZSRz9154xlTrt+HzqygnFb6PDmA6sEYtZORPKbrfyrt8X2ZgdzCIxw1eCXvywJeUp9Swt08mz8I8uGqshnwX+ifrw34Z7sOgkq4KmcGFTKV1moIshSad+3MFnkmMM6z1M7Ac2XWBmS1Cgjl3MYq1tMG/lvEN0uBj6D5iHW0yl/D5caFumVpW1RXbZDdzXjUuyD/53ozji2mudIe7Fadgt+JViP084ql7dlBy6DH8lgC3x3nMwhH5YM8rT2W8qXZ9oAuF/PjsmbM49yImpMNzcd0SLut/FjULHAMwJGDdf5lCxqwZXrbyPOF9SW3AzGiw7OVDM6bNZpsvGaLxWKxJEgGw3t22NrElpqA6kNA6VM8hC+fl3KUItQjeXER6uXQdhdNnsbzUk4rNTSw7c78Qp7hatqxFoC3GBjiuSynPbJ6FOfll7KFFgB0ZnlovzmvAFotNGTcxlsk0+GiwdPIp4wxZ4zj5Hfncn+eMapX6TxM1SF0rI9OH8ZOGvLnQCHE6VygOvMW57C9XkskD/7Nb1Dl0KzLRrb1DRq0L5XpuNNAqKYCONqU79B8+EK/kDG+zEAu5UHaM537ZTDHq2WMKR/FXYxHZBYvqRXkUcGlOfq9+ad6j3dMUmaFE9pqwkkrSttTQXu6qYY8w/FsoxlXlc6An4FuwWscz+2cFlYP0mHL0rYoVUQ/3iTXhOD+e6EJK3UtW93OX9nvumUe03UUd08KqtTWQ+c2frM0tPyJgzucNagm2zYgZDTXVQJFfl0cbGdKllTIVHqos8grL+fTslPYsbJlaJ8Ajsjslx7n91iC+/H1ZvQd/Cbzpp8L3UNzI785owvN33XV9xxGyHvqifN2pK9sa63HhsVaLBaLxWKx1HLcBeJFimnBOlqwLvZB+CsE7xXq6iiJJqImGp5DmSrxQnAdXuTCiPDWaMR6L9whsXmsQWQWc+kTNTy3WeXGqPvC+4s7rjTfuXqK6qSIO2R1FGO9z+sRLuz+XOSw2OeQz4LfPSdfM1r/MimY0xnvex5YZ4hDImG1lrTTWEQmicj51T0QL6zn0mKxWCxxydbwHkvtQHmnCXrSSV3IihP0c5FilCpiKJN5XoLb6K69S7pe5XCefxXGFIxiBXABrwGw8uWOnM58phL0UPZhLgsYAgpGG6UfySkBSmCsDmu86E5tWLZgM+8ZAZmLmcalHfbRmRVMYRgVZe35lFOYlq/FVx7gZjqyivsr/wRAm5z1dBv8ESeyEMm7hSvK4YrBk1lJR8rJQ70LHWnOUeVfsJJjGcRUGvJjyPugS0hMgYpi6Hk+l37yHAfQhjW04EPRnr7m5Y5R3pZtXx0BT2gv3CDg0vznAuN34yi6vpSnPZtNNwTLmtxQ+ThN98M0htBawV2MDxiWc9Rf6V+mFXP5UP/5De+wlUFctXQG7AZO1tsvLZtJ84J1HMUqttGUO9D1QIcWPEdvtGTqWfybEeu0Muqc7QMZ3PVpBlc+zXyGANCt60csKe8OP9Zn3opzobNjcC1CqSLyWEOFTGWMCZXdThNAhzADvDRiYOB6x/8wit2NdXh14z06X7TVu2sYbBYRHGOutdLnXo9WgZ03/VwaX7yJJmzi4nqvAjfCF0Vw7Bt6jOocANbsbcfKvbD7xwbUa/kDe5uuhE9PCH3j/6v/qAeChuWJvfXn+PF/9ecUvqiw8IfeHPTb79nV6FC93zEse8CWMhMO2w2tcLsPVFciCDdG5Qx0KPBIM54YeZp1nQzOmzU64sfeK1gsFovFYqkTyBx0Hfv++rU2DCZwF8EQxuV0hc9CPXNTGc5UFdymPovs++7S8agCAJ1rOZ65zDfGVTnt6ROmxrqf3JDX6k7n2ZCQ7Y4X83iWcXfZeAbnPw35cyMUVwHOyXkLgOllet+J+dqQej5vuC/VTifE1Pnj5qVeV3LyJ3NZUdmJpvs7se3FI9jipFOWh4Z2znCkWDEqs6+25wz5DFrBSwPMvm7AeK2WyxLgjWJG5uylBZsBuBFdEuWl6VfCkGLeU1N1O4MTpnklMyjqqnMA11a6w07bAm15mYFspgWXls3kyPyveCnnSngHFpxxCq3brgVgw/aOTJf1/FO9x2Cm89vSd+hdsJAlR7wVMB4nqhs937Pxe3WY746xLWlVsoaeLALgEhPWvIzRjGo0nhI1jn68ybx1zWBfLjuOKuFB4FrVDIj08DnX12RvcNuJ+doYXK+6AGtozpaQ8it7DmtkDnYMS5MHe10xPBnMKw6GuJ6uPepnmbqnP0vAYF0yHXb/81DPUiHqgaBxCHhKpe1s0CxgWKp39V+/Xk9L3UaUSr7Qbm2mZ8+eatGiRdU9DIvFYskYIvKpUqpnOvrqIKLGpKOjMC6HlcBcYgj6WGoGtWHelDn6r2NcZhonFLY8itBKuhBX/UIIeqAi8u5i9ZHEMekiorRFNRNYRPAQf4poW43vW7oIr0sZbVvIMS5D0TEes4FaMm+mbYyZwHouLRaLxRKXbA3vsdR9HPEe5VGvMtAmjjHieB9fCfNKJjwWR+OnoxlTmEEzllEhXljPPkykqqPoWpdxchu314teZ9LJ0WxeqUN8NxOpflqTcEqUhNfcTJZ4+bWJGNoQ3yi1BMnWdJJsvGaLxWKxWCx1kL/0v9U8e9hzvyN8M5X4ZUT8UE77tIvzeKF6E6LCenK+E4IbrP8QSzAH4nvenONVArUKxRQIUhPinLuGeCwd/BpSUDM8lil7yK+OvA7HOJQoaxXJeittrqXFGpcWi8ViiUu2SqpbLAB3qv1R96XqrXSjBkbf5/ZYLohRVDAbPJYOsTyWDqrSeVazPZYO6fJYOsQzjhMxtMF6LBMhW+dNW4rEYrFYLBZLnUMK9COtfZ6gHzWZcGGhRGlWuZFmlRvjN8wwkhNadkQGRHpn63/3A/W/+6FqB5YEbVgZeERDpnuXJ8kUMjJMtMfPMbcHw2ITPp9sQGRDcgdbahXWc2mxWCyWuGTrCqyldnFHnHBYiAyJ9cq1dIxSVar/jkMnZt6b+hDj4g6BdBt5W3OOiHmcmh3dsHT6idWHEw7brDK4LZ4QT7xw2EzQnY8AWMxJVXrehESATO1M1Sn18/ZmPm2I7dFMR56mOP8W/YDFwMXBfY6QlB9sOGyQbJ03rXFpsVgsFl/YCcNSq+iW/i69SpTUJD6cbsJlU8hxjGfEVhWqMuz17KBh6RAozVHDcepaxqKq81KTMQJTCYlVqnXyB9diMjRvNhaRSdRQlXV7r2CxWCyW6qRGT5KWuo3Id/DWYUDVlS+JhuOxzGZkqf6rumb+XG4P8cvoZFendqUfvJRqnW0QPxe0unCXVpFJ5nmSet3tMPVH6RKnpSXN1GiVdWtcWiwWiyUuGQzvqdGTpKUWU6TDGCksohPLEzrUCYdNhURLPDi4FUET9iJ28948MsdxU41LqLto3rRCRgNQkmB/0Qgq4cYus7KZFkmfI9nPwyEhhdk0hMM6+Al1TYcIkJrseuHDiyqHwZHfxWkjX+u+1dHJD6wWY8NiLRaLxWKxWLIIpQ6r7iEESLrMhItoyqDpMgIzTVV4LB3c73ciHksHL6VaP+q11Y37O5Lqst43h3VBxTEwLdmHVYu1WCwWS1ycYtDpflgs6UaGu8RJCH0ejbGMCqkjmWnyWFMrwmD7MDdl9dlsJdOfsUhxwBvr+5hJwVDYuG3Lgo+ExzYyMj82G8nWebM2jNFisVgs1Uy2hvdYai9KFQUMyy/R7poXNw+iiJ/Y3+LgCEXYRJF1+/TxbSNvpfJYQys11Jc30it3r6aTbk/oXXHCYR2ivZ/uPMJoJBsOW9PwY7DKagWA6iDR25iSIkmL9NwVv0k3tS2g6pvy+Woh2TpvWuPSYrFYLBZLncGdO5Yz9idfx/g1btJFOkJgE8GpD+mUG4mFu2zJAvplcFTxcZdC8WNApgPHgx3+nWjBOgA209ZXP4l8xm5xIf+cn0BbEFNyR5WEbT8Mz9DWVN5nrURbtaViLDUHa1xaLBaLJS5OeI/FUhuZxjX6r0sPJlXRHi+PpUNFgTESfJyjNnksayqZNjhrIkqdEH1fDI9loM0D2rBM+vy3Jdg+izyWDtk6b9qcS4vFYrFUJ41FZJKIJLYMb7GEITn64UX9736Ielzu5p/I3ezPw5kuksllG00hoylM+FyOsqsbJ5cyXj5lbc+5jPY+i/wVkb9W/YCqGLk9GI4asn1qlPdletBbHNgmjyPyePxzJZDPaanbZKNBbbFYLJYEsaVILLWR/S0ODhiWjuGpKlMvSxGPR0uHmWdTMtJ/otw9e7TvPMmEy5+kERFd6lYpvdbkLoXi9k66P8t0Ey1E2m84bDLEC4d1hwRXyFTzIvZ3V84AegRfh4fDAvA+8IzvYYb2P9L0OzHK/gz/j9UGbM6lxWKxWCxRyNbwHkst4k3vzXsOaxTVownaAK1qkgnjHIeXdRAfL6PSby5ldedcpkq091mpP1btQKqLT0G967F9g3l8H7rZq66pUjf4OpVdIowkg/NmYxGZBMxSSs3KzCmSx94rWCwWi8ViqXP0Zj6QngLz6SI54RaLQzJlMeIR/pnICr1ddUquv1Q9ds41tsqP/12RM4LPPY1Iv+c0uZfqO5CF5nnvKG2NOBTt9J+efMCnJafoYxKP2rYkR42O+LHGpcVisVjikq3hPZbag+ofY19Y+KRTpkSGh6rLposb44TDeimfJqKG6lZ0zSRVdR4HJxw2Lp9XnYhPVanUxsJ9br9GayxjU91pjMiTTJ3MQxM3hJ1w2J6ubU6oLAcAvytCTUi42zpFts6b1ri0WCwWi8VS56hJHkuHgHesmsdRW8mEgRfuGUzWYxk4PsUcw+A1xvdup+KtDOnHVYokmscysD+snM0iTsHRmQoYl5asxhqXFovFYomLzbm01BYkB66o1O7I53sNB0B9ovc5qrDuPEvpFdzvhEhWnKBv7NVnCZy3QP/1KnEiJl2yLocNOuGgSNC4yoTgTjqxYcpBYgn0uOuNQjAcN13GbV0lW+fNbLxmi8VisVgsWYQYV2HOJvO6RIfDSi/z2pQMbJWAMekwFCeuVhuy4hiXF+s/bgOryd5NbK/X0tMDl4hXLjxMVWaaPgb67yPkeKf8hInmdYwGv+GwTvhsRL9dQS2Nf7zbyHNy+sI9ZLGOacE6QCu6jmUUoFVf0xHSWltraLrzKAOLJmVm0STfeCiNl1UOAy4zx+WZ48oTP6djmIaXM7FkF9a4tFgsFktcMpg7UqNV7yy1D23MaUNvqvFIOsZlZcvxUOzyrDn7jXEZ8GAlYWReUTqZqQwPGpfuMRVqw7Iu03T/sBBjVLpW42B8sp/c6h5CzeFFI+jzeuSuCBXZJVUwnjqAzbm0WCwWiyUKts6lpbaiwzX95cG5BX6cMNcrSvWGqcZghWCYK+vhigwIAtUUakOtQu2Vqz4jUYxnViVoTNeU99Ypm+mr7YrMjaMuYo1Li8VisVgsljqAyOMA1Ns2xGwpNjfx3jfy6jNtWAJIYZSC81F4fvjwgEE6llGMKdAhmVTqPh2vqPqsZeIX4pNkw2EDxzueqcE6905GeufeRcPxWIp8rftTR/sKh3Vw5zx6hcO+aeptnsvciGPyWEMu+wOv72J8sK84Ia2baet/kD5pw0oA1tMx7X0nglukxx0O68nfQA01z8dHaROl73AkD3IW/2ReVX0NWUv1Y41Li8VisfjCThiW2ki9bbey57BGAIHcvF27GgCws0EzwCVGc7fJQQsYhIDLY+ngJcwjc2CMKYciHsZpH+aywBhJ0bxWyeYIuvMM00k6vGqFjAZgjFxl+jw65T7dVLcYT6IeS9Dfw+bq6owYt+HErQ0a9sMeEQLr5nt/56zsfjCqHG7kIQAe4zZ/B9ZBsnHezMZrtlgsFovFUodR6obkjjNGofwzufPePWc8Y/qPCvZnPJp9XB63mk4iHsuIY9NsODqUmFoX52ak9/SyQabpJzUslDgdwkTxypQAUGEWanyGolvqHjnVPQCLxWKx1HwEOPCA9D8slnTQkw/oyQdR94sUB72TVczFTAt57VZWHU3QBVpd46vO9yZRHA+tSDFSFt8r51xbHmsCiqmZpLa8j+lEJoU+AtvnVN+YagrZOm/WgiFaLBaLpboRgQMyMWPsy0CflqzlNN7m/TlnA6D6R97sb5FndKinjoqlN/N12zAvUyL1LQPH9Heejecup6i8rOUiBXmU8wpDAm2b7h/GdTlPRnZybHFCoahivFGqLD3hsI6H1QnfTQR3vqWbEsYBsEo9bbb48266+1tAv4BhGdEuTFAn0dBiR6RGdfLX3hf9ipAzoteBrIpwWIdo70P9737Q+wc3Ctmecg3L84Lf34lzbnP9X2Qf2TpvWuPSYrFYLBZLrWYRp3Aab0fdX52KnK/KKSjVLvA6WK4jNDGzusZY3WqlfgkR6lFFAaMyFlV9bc75HAMtG4jQ+rba31mPNS4tFovFEhcRONCWhLPUISQHTqw0zyW2x9CpXakKXNtMofiYAijuPowtqQqDZU5UWE1MWa309g7i2ccdaE/sfWH5bDJdj0MWmn795MYlSbpLaAziOQBmcGVa+qtK0v1epOPzk8NMHzEUXd049Ve31wtVM5bbg8/VA0l83z3+Z7KNDM6bNbo+tDUuLRaLxWKx1HreQ4fD9u4/32w5HST2Tf/5zORuaQhoY1NVJn5et1jPAvqRu1mXYdjf4uAQj2UmaPr5Rra9eETE9kRDQ1MJhwVdfoJWR6PKo7eZxjXIQpiOP+MpnjhQNJXWaNcsE4DfBo13J8xWdfIOKX4ZXd/lEmbGHauTz+ko1yYTUipSDB9lxtPqZXA6CspN9u4KaeuM3W1cOoZl0uc3uZi2onHaqNH1oa1xabFYLJa4ZCx3xGJJMws53Vc7bUiO5y6lDcuYbT28L1cM1lKwK33WM2xV6AjKtI/wWAbOE8Vj6RDusdyacwS4PUmvmL9X+xpSUqQ71LQ2eiwdnPcibWJBJyWWc+uFX4+lQ7jHMtDPA/pvoh7LwPFZ7LF0yNZ506rFWiwWiyUuGVS9aywik0Tk/Oq9QktdQ3plsO+HEmuf6VIkzSo3BsIbU8GtXlvdyAD9AGjDStqwsnoHVI2kS9HXreaabgbyMgN5GckPCk1lO1Yt1mKxWCyWqqdGh/dYahfhyqH0APUJyPBgG6f2pBsnHNYpn9C47yZG1dPhkm4hGTfPPzScMbeNYirDQ7bvb3GwZ/t2rPUMO5UFZgx9PA9LiMbjNkX1RMViAf1iGpbhuYWO0admm78e4bAis+C880PbRQmHFeOwVSqxcYf0Ef7ZGxyvorq5Pfp2X+N8ruEhxMFrjR8O6+CEw6ZCuBc0Wp/J5Hke+d1XfDOpi3d/8UKou4W+bPDD9wDsvuNQfVycuqhOeK3jCbXUfaxxabFYLJb4CGAFfSy1CPUJtGAdLQDSXPpB3UbU0hhefFhmjMp87WWsl7MXgAqZCh+kHma6NecIqBe7jWM8jgtTqXVwb09FZEc8Invdeah+cQxSgA0TTOjxzZHtnNxITG6k87lEWxSADJUfySCphsqupQuM0IJBcgYwzOx4H7gptK3I4+acN+i/Pr2Qs4yVmsoCQZ0jS+fNajcuRaQT8BzQFNgGDFVKfR3WJheYAJwLKOA+pdQUs+9q4FagEv0RTlZKTai6K7BYLBaLxVITiCry4uGt9GwXqMnXEmIYJxDbeInoN9YN+imp59llmog6oLOjNAzh/EC73M3x+k9qWKF9mM9+bNj2eF7F8M+muj+LuONN9/geje99dLOrkfZYEnZMtHFZj2X2Ue3GJfAE8JhS6gURuRx4EgivEDQE6IiuvNsUWCwi7yil1gKvAs8qpZSINAQ+F5F5SikfFZAsFovF4guhZswYFksUnHDB5kqr2bgL1Q/h6cDzaVwTt6+o5RlyYETlIwBsoxkArzAkhVFnHkeQ5c4ogixuj2Yf5vKhzOfSDKvc1hWckFJ26j+JlBDx8p4mWkbE13kSVA4OHOcSnVIFICPNi1PN327R+5UBwEdmfxqvpdaRpfNmtV6yiDQHTgCjHw7/AB4VkcOVUt+6mg5CeyQrgW9F5HXgEuABpdQPrnYNgAPR3k2LJeM4NzM5m3QYTuUHB3NtwWMAPCU3AnpFVgROVPP5eMXp0Fkfc61qxlOluk3rAi1UsN6n6qDFUuVk6SRpqd1spi0tWFfl53Xy5ipKTGkKVzrjdTlPAiYMtQq9ZPeWlXBR/jQuZlpcg/glWevpiWq4aysAOxs0i3qslxcyXjhss8qNgAnv9erTIxzWIbxUSLhH2UvttLaEw3qRiHqrjCQk7FX1BtxlUrz6GHVD8oOzhJKl82Z1X3IbYKNSaj+AUmq/iJSb7W7jsi3wjev1OtMGABEZCPwFOAr4s1JqWaYHbrFYLBaLpebgGEMX8qLZEvRcrgveMvgianmGSoBbkhhdkGg5j5lCDXZ52DyY6xIZWkA/UMnVusxGEvUGhhzrYeBmxMuXYNirQ3gpkfA+Yn2n/IVNW+oqdaIUiVJqplLqWKATcIWIdPZqJyIjRGSRiCz69ttvvZpYLCEMZTJD0ck6PfmA63iE63gEWbcP8Skkl4h8+K3chyyFq3kCKTTy46Xo5zVHId6SrRyQgYfFkiFkeKhKbGC7UWUdyyjfojxSoENinXqY7ucOeayJWu8w2jwgBfqRCS7kRZehnToXMy1tffVhbqA8i6M8a0kcKQs+kjp+etATmpbxmJIp7u+7rAiGAGclWThvVvcQ1wNHiEiu8VrmAnlmu5t1wJHAJ+Z1uCcTAKXUOhH5GPgtsNxj/yRgEkDPnj1t6KwlgNyp/7a6dw0Vpe2ZVDCUpmwFLtT7D4Qev3gc+H9F0HMPV7eYQhO+hwJ4cM5dAFyrnPBY4En4uLw3/Gofz6oyRnw3mVf27oKL9A/whi+K6J8f31rtw1w+LA2uKtsixRaLxRJEhsOYyYsAeJ3LANiztx7v1dPZN+JR7kOWQvOuOnQ2l/1AaqUl5ASA9qjPQC4GjtW/872Zz0JOj3t8PFXXZAh62CLDYT3Lo0QJvTynwVtxQ2pl3b7gedv6u83c9tsjQrxdyeYJeh0fLXzUCZfenGYlYb84NScTLcTkXI9eyIgj/pOgx7JZ5Uaa3u8dntzdJFEu5qSIcFuLxU21GpdKqS0isgT4X+AF83dxWL4lwMvAcBEpRQv6XAD6F1pEuiilvjLPmwH9gFIsljTwvJwHB7QG4E7GsZsGXL70FQAO6vs9uxv/xKtqBBc9NBv+UMx56nhG9H+ESatvppxWrKIj8BpcV0y9bbfy9GHXMIVh9DlsAX/hz1ym/gHAN+v2sXDviSzkRPh1Mc8+WES3ko9oXtKdhXs38VDBHwCYEtAPt1iqmCyVVLfUPu4ePh41GYrG/kTDQ3eG7FMLgs/vYnygNmI8VNhdhVMX041jkLorcah8QBXRm/m++k0nrxnjOl2kU7jIbdDaEMrkaZW/JqWFED95m1HxCLf1ytOtzfmtKZOl82ZNCIu9HvidiKwAfmdeIyKzRaSnafM8sBr4Gq0/VaKUWm32XSciXxgj9d/Ao0qpOVV5ARZLdSErdEFjWbePOyjmDvyH4FosCeEIE2RZeI+lbpBITUrwDnt1+nH68huO6NVPeOig53EnOF5Q//gJc0wljLI6iHdN6Q7trE58f6cmZXYcuZt/CtQmjTh3lPc6n8Xkszji85Db9SMrydJ5s9qHaLyOEeLNSqkBruf7AU/5KqXUrZkbnaWu0I83mTf9XABGDn6IRfTk4zmnc2L/+ewnl6vuXcZKjgKgokt7Sihkw+yO8C8YM0DfSCygDyvozO+6PkAb1vNHaU1zdRk38ARcvI/GN13HG++25NEzhtG49WYOZTs9WcRY9SmXrpjJaYf9ixkMYgCz+WP5A2zJa86hbAfgmykHsOPclpza523ef7WIawse46mlN/K3rtexs15Dri2bBiuBRWj5b29BPUCHXi374Xh2rzS1qPQpUOEFfiwWi6UOkbv5J3LGBpVJ97c4GJHxjFHaeylSDMO0ZyVQ91JnMbBl1jP6SffU1VvVZ5HbPs453dPbCUED0jnOCYe916utz3DReOqrEFt1NBGPloguTa7U0fqvz1DYkD7Cr8uEEoer6abTKI4XDitTzRCGJt53G+IrwDvhsM4iQ6L1KysmhXrKEw2v9cL5vuQSaVgu5qTg+U4Nfkccw/EYW8/SYqh249JiqQks43gGM51lHM/7nM2Gde3gN7/QSm0ItGnCdmbNvgS67YFT69NNfcQutnMa7zGk7TTW0J7xZ4ziJmlDD7WKTugM9vrsgesh791yFtGThfTm0bwb+X/yFK2UTuRsVbKGioL2vP+3fjxaMIxc9vPUr4v5PXfDra353UMP0C5/LX/4f83poc5iMy3YUNoRNsLuzhMAuB/gm9Gc2HYBFkvayVJJdUvt5+/czBZ5JmYb58Y+YOhFMQTdZS785gN69eXHkPAyUuMeMzhoWEZtk1/zPX3u9yeeoZtSaGcNw/d3yjFMM+TBjFU6Jtr7XUZ3YyjPDP38stnozNJ5Mwsv2ZJtSBn0TUEuvK7g5BaprtU7DosljMYiMgmYpZSaVd2DsdR+/ORRBmtfenuvnBxJtwCPGH0dFUW52+19C/dGWjSJeOn8eF99n7cK5j+v70wiyKT0eB8TPq+JE4yV+xpYjPiRgLRmwPvv1T4PVHk6RmepjVjj0lKnENGewGfV5fybs0z9ro7Mky6cqf5FZ5ZzFKuYKLeRs+kn+rCAXRzEPPpRTiuelc2wcQ8n5i2ko9JhLXlUANCTRfw4oCEATVZvZypDWSFvsoLdHK+OpyvL+HJBd0aquZSxk2Ucz/nMZDHdYRT8jglcyVT2V+ZSRDGsyqNC9JLe3WoHx5cuI5d9XPTQbP5y261wdxGMAR6GmQ+dzzfl7TlZLQD2cgf38WLBIN4vPRteLaJ5wTq6sQSYzWCmQSMYf4IO5z2A/fRhAROX3qbfo9vg5Ifmso2mACzHWpsWn2RGmGCHUtVxS2Wpa1QOP5jmM9exZXOo18XxWipVpI0bd+jrP0P7cIxBJ1cnmjEkRtlB9U9+vE7ZEvWZf0EWP56taMaYHwXVZHDCYVPqI+y65tMbR5tRyoL73e2ihcj2YS4n5wdFgyQHWJLEmDzCYZ0SZGpg7GNjhcNGnEcVJe2BTOWXUw4zT05KoY+R5smpxgC9ogjece13ruu3e/TfsfWB5Opu1lqyUNDHGpeWWk8+i/kyUHTyzoj9x+V/wm/UbPZQnxkMAmCkeogy8llEDxqwm4bs5MF774JxcEXeZNbThkPQeTpDduklu/YNVtOUreymAatkOfW2HcVRqh67aEB9ShjCNNgKe6jPmebXdQ7ncBC7+euAm1lFR3qyiNyc/TRkJzM6DOI6tSMwzkvnz+Rvp18Hv4WVdOTEkvl83O10Li14DoCKX+UF2t5UOkU/6Qh/7Xozf1z9CGd1GM94RtGZ5azkKD6X4DJkqXqSV7pezP7KXLaFJWyKUStUBdrwBFAPJfFBWCwWSzUgvcyTVrBlYFvMeiAsCgrm9FfdOYeZnKj6gSkJkrv5J3IqdG5Z7ubQUMCP5zjeJ12LMY81qMJII9CpUalKQw2fTHosnXqTftRbZaEZT4SyhauN6IABpc5PeWyd0S7CaIuWfjyWxdyhZf9zCvifsoXBcZopMCmPWLfooc7pwvFY+nnPHQJ5ryN0Le2ewCJOiXlMk72bANher2VS4ww3ZP2o9YYsRoyII9JT4fzfpZ6/bKmdWOPSUse4FyhiLe1pyE42NOjIBuDz3XNprQr4E/fx+z5P0mbBetqwngncDECFvEwrlUdFWXueLxtOj/wPOIe3uEj6MsGV1/754b2gGHI2tWPvPw8md+h+HuI2bqp8lG3XHUHrySvpzHKe5DrasZY91ON03uOPZRP4a/7NHM8ypjCMdzmDv5ffzNq8dgDMrhwALSGfMuZ0Oo2zeY9SBkDBfVwkvTlT9WRv03coV/l8M6MLRw76im9WdIHOG/gjTfmruoVXuJgt8gx/v1X/oJ+sDg2M+0aOZ0tpWwYXPA0PwTSuocEP31fNR2KpG2Rp7oilFmHq7jneRDFKJ0oVcQ56AbIJ23kL7XZyjMloqpjOsY6HMWR7f21wVjyRfBmIVEpIJEOyNSOrg7n0o4j7Yo452r7wup3pNCrjeSxrE+q7NPRhPJAyAF1h/iRgqyvfMuBZ1R5LssljCZmcN2t0OklNKEVisSRMb+YjhQRuGOoa8QQZUsVLAl9cb2WTvZsCq6MWC5C1kuqW2s9pvB3y2glpDUfKdF6lk1sJob/Ffn4X81gTYozGKicyllGMppDRREnizAC+SpXkBb2EqVBors6LlxnIy/i31N7mtKj7WrDOlUObHImOpyoI/y5lGhnpCnN1b4/xnan/3Q/U/+6HzA6sNpO5eXOHUmpETTQswU7tllrE1TxBHuXcW1rCiQXB7dtpwiS1KvB6EY9QTismzbiFpj9u5IWcywEYTgHTGcLgBU/z5w4P8/vV95HLfjaUduRS1YKXLmkPxwBfwqCXZ3AX46Bfd25soFe3K+a059Jvn+Ol0iupPO5grv32MQD+t/Q1feLuTp7FBHS0yLFmRGczLh9Aq7rqfVtReSAyXDd5FbhoA5eraWwpbUvTCzbSkJ30f+g9XlIDubSwiJHqIZqwhCcvuY5vyrrQOn8lG77oyB/yc2nITq7mGXaqm/lyhh7Lh++a1dszl8KqvtAMps+/xuRDFLP7t4cGfwH+BqwF+gLHqcB7maxEusVisVQV6pPIbU6o7KmqDwDvbD5TlybxMCz3tzg4In/P8X42q4S9lfXYmnMETQgals5vo1PmBJeKbKbxEw7rEC000wmtBVDKR3itz7kg1Rx+bUxdF/DqOmVO5iiYU34aC+nNWNP2rip8zxPBTzhsoK0r3DRWOKw7XzbZcNjAOX3kaTo1s++LEtrqKMDWN95PJ7TW3jNYwBqXllrKxyNPh1NhzjUDGfz00yyiBwCTJt3CgyNupCE7mXQ51Bu0l/Pkd/DfAvp2fdOI3sDg1U8zg0FcyGtM3HAbS+iOE0mjSiCfq/lScoGlTOFGAJ46p5SXaIhSQAHAjYiz4Jzkb71S7het9d8C0IUs30PdBjCTo0q+YKJcahpO4SLVkTLyYQose6grW2gBwNU8A4Oe4XYm0KeTzhW6WL2ic0076Dyi5iXrOKukDf/au4kdi1vCocAoYBjQbR/92+pZ4i0GBupnWSxAVgoTWGoxPYt4j9Cw12gCPIEQyzAnolscx89NfXioa6zcy+owjhxj5uJYbdKk8lnCuKj7Lkkw6uhs3gNgIaMi9sWrV+mHRMdTFVR52HSUkNVY4k97DmsU2tYalZFk4bxpw2ItNR6R4oDoTE1ApNgzrDSlPgsJGqppYFRgbTd55Izg8xt5iBuxKj8Wi6V2ES0ENhqPcB2PcB3SyyUUlOy5y6IrmlYVfsaghWQ+CLzuw1z6GCGj6sLP++bn2sYyirEeBmlEX2eEznnJ9gNa0EcWxm+XDDIpc7UtkyHkfftU9MOS9VjPpaXG0pEvuJhXAq+fLbyexndt4tmCQXxc0JuJT98GV8H0sms4OV9PhI+OGAbAetrAgVBR1p4r1Dvs52mmS3/mTTuXEYMfIZf9VMxoz8TLLgU2sPzmrsiNxmAcWUQZ3UGFjkcpHYsrssz8LQ3ZnklWcqxrPMGVQbkelnE8c2QxcCdXqGcBaM5mPizUrtieJYv4eOrp0A1oCdfxJGOWmhXlGfpP09c30iZnPQA7aciH5TqU7PzAcr7eJ++CijEBW+owVtCnxiAinYDngKbANmCoUurrsDa56Fj8c9G/HvcppaaEtekMLAYmKqX83TnXEtQn4GQdVP73YC7t/5zRCofdNADgIHYBMIMrE+8/wx6aoegiglMZnpH+3aG1bsMyGlXlkapY0R72uc8bWubE7e29O0NjSLZeZSBfMezr9LR5r69xhSInijMVy/tJd5EQ0cJh/eAYv7bAFFk7b2bhJVtqG39ScB9wYcGLDGA2e6lPLvu54prJ5FFOOXlsNmGhMxmowzkFaA8P5t/Ia1zAffyZkWoip7AIuAUphRGDHoFB8CS3mDMd72s8ziQraXSnqpL4bTyP6wTQHpwxzdQ3ImogPGja/L3wdlQJyL3Q/M51jFkxjmu7PsZTM26EU3WbHjmfMuf2gfzugQeY8sMwDjpkF03eLWeW/Jbz1BusoR1vvJt5I9pSg8nSSbKG8gTwmFLqBRG5HHgSCF/2GQJ0BI5GG6GLReQdpdRaCBifTwKvV9Wgq4WXdbH3QfFbAnALT+oSJf90QmkPjtk+FjVBndXPGMJz/cLVVqucA5y5LTZ+rs1v6LF6Nz39QGI5l4lS0ww29/smX6joDbOVLJ03bVispUZyIS+GvE5Ejcyps+VFOkNPk2UYjzGMx9LWn9yrH1XFhbwY8flYLJaqQUSaAycA/zCb/gGcICKHhzUdBExWSlUqpb5FG5GXuPbfAfwTWJHZEVc/V/NEzP3t+CqmqqvXPq+QTDnMVZi+Gkh3OGshoxnEcwziubT16ZeaqN7qhVcIbLrDVhMNr5YBpjSI174MpPVEHccC/bBkH1loT1tqKpIHx5QvZicN6QkMYDbPcDUD0AIzs78bwIDDZrOKo5hLXz5/txd/OGMsuexnG00BaMo23Vl76Lv6TWZxPu9xNnewgPsLXbWXCoCAxzI5lCpARNdSU0ks2IlsMP20TmkcIWNyzcXh3tC77xxNyVf3Io1+ZsauQXDyPthwAIyHsoJ8OB4W0ZPdKw+l+QnrqFjdDv5PeGNmATm9f6LTGUvJJzjDyVTz5MpfzHUcmLbrsNRAsnQFtgbSBtiolNoPoJTaLyLlZvu3rnZtgW9cr9eZNohIV+ActIxZpqILqwXpBY4tpHRkKVcD81zeuC3yTOD5kSrUpyltAQ5GmcoWkkRUiZSASmEhUwoAhqNiBMc45UvG4T3A0RTyZOV1QKgoUTyc0itex4johVulUlOEjYXjsXzZZ3sxLhJVGSyXEUuAxg9+w2FlOnBU8PWlE5/jpUk6JrYNKwGtIO8nHNYxSFuN0KVHqlrMJ2Qscd5HkWJyNukoeqdWLAA9wUlLVbOtYQlk7byZhZdsqQ30Nauv3VjCSo5i748NGNl2AuMZxQp5jXrbOsMn8OCSu+h725t8WmjCenrCFQMns4KuzFt3lt7WVucP3D/GrNaVVK+aWUB9lg1p6U/d6a9dCeOgyziYAb0HvQNt4Z22v0HGK/IpY8OV0/iwpX5vtpS2hYuKOVH1Y9kPx7N7axNW3N4VHoA91EvLuC0WS9UjIgcCk4GrjWEar/0IYARA27apq3JWB89wfcjrgSaecqbbkWtUXcXjElt95tQaDN7we4Vkqu+SM0bTRbrDWWOpvWaamqje6smqoBE2gyuZYcJW21TfiAJlQTz3ZTJ3dh7kPBMMJzdVgCxZiA2LtViqgHSHwlos1UJuBh6WRFkPHGFyJp3cyTwc1a0g64AjXa/bmjat0P6W2SKyFvg9MFzEO5hPKTVJKdVTKdXz8MPDI28t0YgWYuvmDooD9QSj9pMTfMRsV03KtOkIm/UTAluV4Zzh9GZ+QOQnUeKNOVYodTwFWxnpEhFKZmwJqNpKnvZoOl5Nv2PIZzH5LNZtY4Tr1mmycN60nktLtSFLgTfg7j+NBuDU8r68v+BsAP583H3sfudQ+Nk03g6tRpZzHU/yh7ce4+LDnoY/wUJ6s5OGBERlxyxkuerMiavnR4a2tI++Ypes8qufcFhZrbi2g9exyYfDOlpCSQnVnraHf5efhcqrr/voIFxNOc3V1WwZDH+aXsxrXMgeNYjNwGmN3mPhr06EcXArD3ODE1L2f9Bq4BoqTtKr+UOZzPPvGkEhqyhb98jS8J6ahlJqi4gsAf4XeMH8XWzyKt28jDYaS9GCPhcApyul1gHNnEYicg9wSF1Ri1WfBJ87arFOeKzDTC5BhoNMCS343nDXVg75CnY2aBZsvB4qhrcP6UPM764qhTzWUFEWFsL4eorX4EMrLlo4rHv/OJdB6tzUR/NqOUZQLM9WusNhpQxeyg8alXIgqF882sXIClaVrucJhMM6hngqokuxzrdhZkf4f7ENyxasAx81OsPHmOoiQsDg/ShJL+aqQip/0vcO7rgHNRL8CGDls1gr8mcDWTpvZuElW2oqXVlG7z4LeXDCXexedChH3vwV1/Mkfy57mAfzb+QPMx/jqIFf0Kr/GjoZDYo91GcJ3Tiq7AtdroPeiPxVd6hi501InmnmUTBajDF4xer0yME/tXokqoP/+k+O8FB43qSY0iGkOb1xNgPYsi4PLoP7VxfCKIE/wXG9PzFlTlYCO7nh38/QTX0EwPrKNnRmOfmdysgj9E2U1Qre19erhqZ3rBaLheuB50SkEPgeGAogIrOBQqXUIuB5oDfglCgpUUqtro7BVjdN9m5ie72WSR0bYlT6vam/QOdcxspfBJ2uIcPhfoAp3sad23gK5zTeBuA9zuZP+Y4hUxQQ9UlHmOxZ/AuAd/iN5/5kyrh4cemBccJglxeFKMg6NSdjqbg22bsJIOZn73hML2FmoH34MYmUJNEGI0Bb+L+iEB0EL5p/t07nAF/nfPauhYqr9B8pixKGPdHfmKLlULpVbb3auI16932SrHaNyzUGx2h152N+OVIbkXKlXthwvJiWuo01Li3Vx691zuGY58ZxUZlOeH91zhAtsj8eDmA/UxhG0y4bmc5gegz8gG4s4anCG7mH+zixRIepaKMyiFJ/9DxdrNuqTNaqTMSo9N1nCsO9Ns8pdXdjYNtm2uoF1LbQmWWseO01+Nto1u9tA6/qm53jCj7h89NhzantANjxz5bMu2gKfDOaHm0X8um63nrR8nArR14nydIV2JqIUuortOEYvn2A6/l+4AYffd2T1sHVINRkQgyG8H1MDjXkQjyWsfp1eRbLaQ/uG/8aoEjuxd2zR5tn3nmUVVXHMuSc+YDJrfTyWDo07+Qy2NJ6bv/CQQn370PodrO5nmh3CGqo94JGqiVu4n3WarAJde0ZZX8H8b3QoiaGht5mjcfSIUvnzSy8ZEt1cyv30ZSt6FSf9OAuMZJszciUxxBD/dVP2K2TkznFZfQlPZbV2sDLhGFrsVgstY3czT+FKlsaJAc4RD9X/iteBY83la/8RIy6w2mrgnSEfqZKIdqozaQ4UDo8tdrjGCpW52Qh+60tKZOgeRXWoXR7Zh0DTvUm5HnI+OKERidDuhR6LXULa1xaqgQ5HQ55cysAwxqYjctbU6/ZD5x5WCkdWclRrKJ+/z1Mf+WawHGryjvC2vp067MEgKcGG8OrI3xceHpKhqRXOGxg32qdxL+czgmFxKSLaNflqObLun36ddvE/4WncCMPcDMPcDO3MyFi/3K6gupKR75gVeGxdCrRd0+fl3eFvrBjbEsYUwz/KeIq1YJnbzuAlfcdBUeOg+5FsLiER9V6bhqmPaRiSswpK0teuxFqhZCAJTtx5ww6z5urq9kxry05v/4p1qHx+54DPAH9S53QzYHBvLX/enuBxjKKATmdeb50OEJotEkewXITgbDbyYl7Dt/j7MDz+9DXfT/FAc+Ue2nxHbR6eiJTpgyApv/spl9Uo/zjZpfH0nnv4MaIch2yAtBTIyo/MhzWyxByVGlvYh316+0NOVcybJnUNsQYdZckiUbMPNc0LAw41ysvhG53G5sRIbMxQm7d76MsMdvKgC+KUPmuEiQtTLuIGIssIkvnTWtcWqqcvdRjCsOgG1y16xmasY0+LOC3jd6Bz/dxVf4TNGQnAMvyjmfelHP59zu/0XXDzI+ahIUeZcJbmahRGVug58S4x6fDYxkYSxo8lis5FkpAFnSlf5+ZrKAzzAPeC4oULKczXA796s3jrR03s/tRoG8RNx0NJ349n4/fPR3uSnkolppA5sJ7Ghul0llKqVkZOYMlq6n878Go/t77YuU0+uGKro51GD8vX5XqnLPtNEntpD6pTo+lQ1WUM3E8lqnMel5GpV+PZbLtU8VtPLsNuKjG3JL0jyFguFaDUnGtwIbFWizpRwT4c3WPIjoiOg5KqUZJHT+UxAV/oon1pAs/qn8Rx5Tv0ccYBdlUPKNRz3Gb/qseSluXlrrBDqWq+rbMUleRKCGnTimJj4frRcNwBdmQPqoonDTeb3Uyv+URfZgF2ZPDPFNOuCqEGoCZCHPsyBdApD6CRRPiCUzxu5fs5+cI7aSaEykDCCwoO4JAbiEmS3ZgjUtLxujJB8Ap+kVnKG1wIQAr6EwPPuXa3Z2YtKCIS/s8x72FJXT6YSkN2cmzc67niv6Taco2urGEuYXnRvRdXXmVyaJUa+RokKPRhQN8ECsHM1Wj73YmIOv28Uf2xe1LF0IeyFl5/+Lfv/8NvGBuSk6FDy/uBxdAczbTpNF2mty5nW3fNSX/oTI+Pt14fl/cBx8eAD7raVlqMHbGsNRUiovgOP3UbYyJY0N5eC6b7N3Ejou190fFEittDYyFt1y1GK9QeTy/dDjPL/XOt3RUTKeGpdm7b969PG0Xo8XtXmFIjAF5E8sITSYfUefmeSvdRiPZ/Mdo6u3hirsRobBuY8yExPbPnwkedTOTNZgdBdhEQmadxYz1SabVtOMr1tIFMOVu8vR1x0rniUf4sU7upUyHYxJ5b7qZ49yf2bGP03jPheygJYzVfTvGpQxIb55nrSML580svGRLVTJCPUILtjBm6Tj6H/6e3ri1FP5bAK8Cd8FLm66E38AgZjBh7+9o3HdTyqU//JKsx9IhmXFm2jBOZpXb8VgGXnsYnO/wGygAOcPse38fLDoAtsKkhbdAmz30z3uLVYcdxWZacNT8L+jLPJ5aeCO0gXpnO2oZqb3nFovF4snnugRICIu0968effRrU/IjVo5juNcomhfpiq6TU5qr4qp2pkHBNZpBFS1cNRPCLKvyjMcyBcPIDyofziFOSZMaiPs9V/nasExHX4nw5fTuvo91/h/CF0d21H8NpYIC1apTMK/Tkl1UY4q2pa4ishlJo/0wlMmB8NPExlEaUGkN2d7BPOSvwZqYVYxIcVAQoirPO1s/Ejpmhqu+ZjrGICBt9cNSi3CECdL9sFjSiJygPU0tWBeRmx/vuJDXYb/Reaxxicm42rlsS5ljxH+8+i/Rj1h9xTp/YPsZ+pHwcdODIZM1nUzOzb2ZH/Aq1jS8PiNJMOKnH2/SjzfTN6gEccYvk4Jqu1lNls6b1nNpSRsixXBAcKW1B4voyCrGMwp+hIu+NbUsBw+B52HwA09DAXxAHzqyijGF47iixL84QiYJN0rTUQdTfR2/jUhxoK6kKkifwI/neJIMrVXvOs8OQH4GLgMW65uZZWpooN0uGvCUbAWKYVUhe1+PXHGQqbqWl6UWkKXCBJbageOxlNfDdtxdBGPBxM0gw7TCqvSCnH82JGfyT1SeFyxRcjyf8PkJvQKvnfIhrcLWKcvI59Php3iORU4A9Vly1+GEwwr+Fx/HoovWO6G4oOcSpYqQErizsBC3TmyskhTRwlP94hUO66evaG2ccNho3J0fWr/zLY9w2Gh5iC+btpcwM2bZkS3yjNkZ6UmOlhe7lnYxx+0YuF7Cgd+U6XBYp35qxcL2KYXDeuEed0CUJ0oJk6h0cz2/4QY41fTjMipznnGUmiPLAGUFWTpvZuElWzLN3WoCY2boH/o/lk7g9wX38bfP7+DVYSaHZCx0K/iI72nCetpwGTO4f0URfUveZD1tmEtojmWyYUfRDEK12nn2x6T6TQfVUbAaQCURouKUP/Hc1wn4DNoxiGFM4e7b2sPFwK/gqhOe4Nm7jaHcAVp0WMeWqW3hOWg1dA0VU9tH79hisViSoPlnwfy4FiXr2JITGiLhCPlIL6j87cGoTwAvQ7B7EeqzoHEZnusH0GPyBywiaGCq/pEe0MA+lxfVq6+I9lHmiODiXvTjvDyXdw4uZFxChUiqD6UyNzdXR2kxv6jBxiv9qGtbgmU8wu+fMkpwLSOkdEmooZ6lRmWWY8NiLVlFtJChmhwqUxfozNKo+6orNNmSIM4KbLofFksV46iXummyd1NEGG2q5RUkxzzKQuceZ3uqyG0wmgRif2sAyaaEyFL98NV2eGi4clUQEOxL5tiyxL5rfsKqEx5DjFDrQJs88wgbr/u5ozrreXw1pQNVK1k6b9aCIVpqA/ksZrBqQy6TeY/ToDv8SEO4qJgWajt/GXErr4y4GIBPV/dhyerefN9hOd/c24XPP9chSHOnJ77iJqsVkJ66jm7ihcE6BlG6V1iry6OZKmvpgkhDjlGL+VJmwn+KmLr5Ch0mc04xlFzIlvltoR3QWlExuD1sAubq99GZ2OKtylssFkss3IqeTjjjqaoP/dgP6HDWhsBRn3zBSo6lN/NZvjdYK+Hzwl6BkFYpQytfegj6uD2WDqmWDglXRvXLbhowjhIu5EV6sIgxKhgiqz2moR7LWMqdfsIvHcPYq0ZooqU0vN4zd9huG1aarR2B4HsEsO2rI4BxIefyyittNdgxxEI9xpe4xH9iFUOK9Xk6+xzDssneTQDsWGm+h1Heh49lLnxRFCGKE20OdIxJP15vP3he05/1+b1KiIg8Dq1uiDzGg2NGLKaM7oFF5eV4yClb6jTWuLQkjeQDzeCC+S8CnTmEnczmN3pnN3hxzSByNkFDbuEmacMFaj0AnwIcJ3wzvgs0AZWEyIDz4xf+DQ43+sInumiTRKqhMuHniXaT4aRypiGFs8YRmGRv7Q5NoP5Be9nd+GDgTlbMOJCDzvue3d0OhXfMARcD3f4IP0MK4niWqsTOGJYaSLTfW6WKOI23I9rvpKF3WYk3zF9ji7mNljzWUFHmcWN/bHSDUlW6yli49nsZZW7uoJj7iF/7UtcM9g51lbxIQzFWrmU6ECmGLzzyEl3GivM+OSVL/OKUe2kW570DoB80H7wOzGecLoMsGjIJuF0bqE32hu0zua8xmWL+PuS90Cq3Q6sHgq937T1IP6kXZTzJLHLMdTyKMY6peBylbgh6Kn+lF/dzDt5F7mao/PfBsN2U2hnpGs/poObX3sXzlMnCeTMLL9mSCZqwnUkn3ALAPZ/dAbvgea5g1c3HctPWKXAonGbqNb5+1WXQE9TIWD36I90eS9/nzWBOSG1H3/CA5B0KwEE7fqR3o4XMk4VAEZ06LGNFs66wEno89AGffqY9ACpKrpLFYrEky3ucHXP/Qk4P3qR/ktq5Ur153ppzBHckIOQTzmtcBlwWEOXJGJ/H2HesD2PKhadR7jJ+1xuPpUOIV9fDK6gGBw366mB7PV03lXxihoCGXPdD8futuL096oH47ZIlZDy/N39nu/e7SowE3nd9/5W72dVRk6Bw0nK6IjU3xdWSQaxxabFkkN7MT8grGsuzOYzHAJiCt4rsA9wMwO1MiOzXR/hwqiFdCSvNhR8fpRi5pYbgSKpbLDWUBj98z+7G+vfPUUoFj9qXGcIJXdxv/lEu4DXgwoh2EUZHdyN85iEs5PbweSmxxkOmA0O8PYrh40mXZ8ld2zBTXlJf4zA5mqpr6POU+3XKg5xkPscng++bE8YbbhQHjk0wbDihcfnIm4zbR5xF/2jKu24uZhqvLhzCMb0XA92Dx2bYc14jydJ50xqXlqTow1zOLNvFWtqxjONZJa8A82FVIfesuI8enT7gTN4hd8J+9lCPZmxjOoNZxCnclgbdHHcuALgEGp4L9Sim8wfcEXtQHlFIEUW3VZGnQNC1BY+ZZ5ktM1KddOcjAFT5ScgE2D3vUDYPbEHOplFUtod67IG/67afcgocgg6RxSWffzNwkt6WiaLeliTIUkl1S83HMYoa/PC9534pDP3ddhtTjvCLmqwVZAGtIBtGhUwNOVegrzhju4DXeBId1eNHhCVaOKyDHwMwat7keD1XyQLTrk/obr83/9Hm1YuUNqheDVMlD5+vIWgoD+FpAKZxTehYZBZ3q49owC4A7uDhqOMJhB6bMFjnb1XFNakR2qhsE77d9VkFP/v2Ia/d3ytZCPwlcoE23GMZ8I5GG487fzWZhYN2oeqv0ZDpwB0AB8NvgbVw0expoY06usZxXhaGxWbpvJmFl2xJF7toQBO282npKcArUFwEKLhAGw2fjj2FPxSM5cGBd/ENoGbG7i8dHDVUizTUBLw8ltG8jg6xcjHjHevlsQz06yN8ONVVa2dC7O7epp2pyJ3d4S/F8LsiPr+5F0cqnWT5zW1d4B/ox8osU5GzWCxpZfc/D4Vpwbp9qpAIBdhkiVoaxLXdndvnqLh6lf9wjgkK+EQ/bx6pFThsetlGuGwYsDGqUFAgXz6JUlWe/dUQz5TbS5nOqJiA8efxnYjmsXRolb+GctqTicjldAjixTMqoy32Bo8zJed6g8hMYCZcYd6nNxILmbZUPSLyK+AJ4AegUin1+2T6saVILAkhq1VIgVxLZhFzcySlwZBZ0AIJAVGjdJ9zpnmEnaMF66okl+Us/pXxc1iSIEsl1S21FznM9dx4KN2/YdF+z/x4GN3lGGSOeaShBIafPkQ+QOSD1E6UAvFKqVzMtOg7k8T5TJyyYdFKh8n0UMVY7VHUoapOOZNES39A5stohJT2MCU/nO2plsSJe27Xe5a7+SdyN/+UeB9mnDJUPyyGapw3RWS8iKwRESUix7m2dxKRD0VkhfnrLqJTAPxHKXUzsEtEeiZz2XZqtyTFXuqxx6ggdCpYyopVhfTooCe7hmU7mbf6HE7t8A4L6e3bY5lKLkKi3sqh6EraU/F/JxAtrCoascJoqxN3/mUmSrksduJZXah7QX4u4qB7vmf3+4fyzcwuMAUunfkc8x7qx5YZbeEyOFOZ37H3Cfw6yUmZKTdjsVjqFkcOdmSnuwQ3PgpcFNquubqazbSlBetoPnkdW4a3RYbrcFjHiIkVIitzgNaxx+LlsQxXLfVTcuQVxxPkQSGjGSN6Hg6fi2KVNQkPhw1sT9Hj+ApDIgxLJ2fUnS/qnuvDw2EDY1HnA+cDwc8kjzUhoafBftqGvHYo5g5gWOIX4hOn7Mj2ei0jPJbhuZfhn33gtSoKXofxiCYz04WEel9i+ns5PXm0Thj1MX10DcsyJz6pG/A372PyWEMrNTR4nVOLAga69V5WGa8DjwDvhW1/AnhMKfWCiFwOPAk4GbtHgsltgjXoAnKLEj2xNS4tiXHURuApckf0YyjPc9d3Y9n7YwM4qoTOqg3zOZ1zeIt5d53L+5ydVJkRS5BohqlXDkvazjnQe7undH8i/T4EcCjSBA7pthXOgpfmXwnbYfCgp3nl7FtZ6YSAtUbfH3qnUFmqiywUJrDUHta6jUpAfRcpQOL+HfPKzXNuhuPe4G8A1d/0bf7KOcazNTn5m2c12UcbdQqFjE76HKkSq5RKLGM4WXQYqTYw3ekmnp9Rt9AF6p17D9FP6qUWGptJgyh8Qb1VeTA/MxPCPxHnd4W67m9xcHJ95Bvj/g79PNOCxbWKzMybzUTEbfRNUkqFxBUqpd4HEAn+p4hIc+AECMho/wN4VEQOV0p9C6xDG5iYv0uSGZw1Li2+GMLT7CMXODPpPtyrlZnwmDn0RHtQvYpcZ5J4ntd4aq81nXQrClpqGVkqTGCpPTi/wafm69qW7jIkTr3L93P0NsdACg9BDYQ+9vSo1+jseyv2b6DXXOCc/z3ODhhK5bRPKoomEzhhmFHFgAyOUVvCuAyPKDXGMoqq+sHyo6BaE3F7Xh2ctCc1IvpxgbDjbpkZV50ic/PmVqVUMiGrbYCNSqn9AEqp/SJSbrZ/C5QCj4tIVyBXKa/YjfjYWwVLXK7jEaAhAMeob/mypIhuPMIzXE2bw9bT97B5zFJXM/3ptvS95k3ulVwg8dAHZyIOCDB0M9sLCJmM00GqE3m8a5PVCq5K3ngOL0nix7Brhw4JC1+9D8c9Jq/xpUOyPWYfpxTzIwCXwrRm8DNML70GOsI3Gxpp2fhZpbSe2ZXuLGYrzXSfosOqlEp+XBaLJXtwfjebq6vjtj1x8nxkadAr1uqTNWz/oQkyXNfrdXsUVX+dWjGUsLkkrNxHvAXHFqzjHPM8d/NP7G9xsGcYqYNbJMgx7kqi/B76Cbn1wm1wiHwNwMlqQ2D/WTGO9ZqnvK4jGW+c19wfodIe9jqXfTGVVd3j9TK0gJgltpy2XrN8PGEf5/xj1E4A7mJ8YHus+5xoiwAh9wbt4p7aF+KUxvkVqBMiy4qqfAIbnRImjrCP5+dlF6ZrPEqp3cBVqfZjjUtLTKQBjNgF02U9PdRZdGY5DQt3soTufLm0O9d2fYz3OI0rmArXwAwug8fO1ceGTazuH/50eyxFZgT7VoPS2rf3+Yo5UelJ0wnTiTdhpstjGaueZSxSNRr9TAyBlf3/Rm8bUCYUaD54HW1Yz6eTTsHYkLoMyYMFbHgINjSLnKBlPihbmLnqsZ5LSw3nxHwt8vK+LIBhRYBOFsunjLnoealFpSPio0NiGz+2ic71XMpl/y1CdfUW9fEyUkWKaaUcBRNzQ32XeTk22M7tRXXKTzRXV/MW57B1c1P/F5khHGOlyd7Y7d7hLD4s60dJAgaiyCx9DnV+kqNLnFno/I67oux3SqCkg1geS2dOHKGaBLZNmn5L3D79eBAjz6UXA5QK6rOIUZBVJqOuM/pGYDldPQ1v53wygJDvr+SBKje5lj48tO7zZDU1b95cDxwhIrnGa5mLjmJen86T1KxLttRIJk2/hUN+2sp6dpHLfj5udDrn//AybIAZHQeR16CcBxfeBW32AKBGhiqbJoqTZyjle8yW+mnzWFYVqRrP4SVJ/Bh28TyWvs+dhrnATx/aA9kWaIucBCd2nc/HNxurcbv+c/5tLwMwa+ol8N/gdovFYgknkI9nVp9kcxF9Z74Z0sYrd3z53k76Rtv1u1VOe2gETPY+dirDjbfrycC2VvmmdqGZr+ItOAb6axHc5uXpc/ASCUo3boMjaKS4jJUYyqW1zTM1WLUJCApF83B6eSzTRSs1lIkkFpEVL2w5rdylRZ4cb2ks/NTFtFQ/SqktIrIE+F/gBfN3scm3TBvWuLRERWpZ/kBtoSblXoYXn06EWGG4ieTU6raJGeMNfvieXY0OTegYS4rUvBVYi8U34lJIVQv8H3cjDwEwUXT4olJFgfxJOD7msafxNu+XmBxPH/U2vRRqHdVXiAx1DRh6S8xxPufs2pgjGCiLtS+4LZBKI/ozOtGkoLlFf3ryQcL6C7GifPJYQx/jEfcSL0pF9R7c5XGSF9CTmdGF+QJtbtd/1QMJ9p3gd0dMxZgjT/eXtlPnyNy82VhEJgGzlFKzPE8tMgFdWqQl8I6IbFNKHQtcDzwnIoVo2cS0F4+xtwqWCMT5UewGXAAjBj9CA3ZTTivW0h7ehz3U55gBi/ny7O7sens7x/XWs+Ey9OwY7nmLei5XzkN4XqXKq6/rO/rorypCYUPPVxQMAa3iGM1Ew2EdYnkTZd0+VNv4PwfhuaAR53BCXld7JwJFNToPUXy88HT4u6uOWJsiZnU0mupX/gK3HgjAQfdYCdlqw6rFWmooAWGeJdDpk6WskNdgWBHzhp8Lt0Y/bnu9loFaiOvpGLMECeg561RTy+P4est4/4siKsrCjIlSXAaoOS4nKCKUSQ9fvNIf8YhVwsRvHxHHqNCSIumMRHIE/NzoGpyn06MyuC+8NEi0EijpJjAnujy+jmHWZO9B+kk9j+N8hsO6644rdTQSVvrNCYd1cMJU3TOw2zOpynX+b84zQeVYL2+puL7zXt8vr/NkLZmZN3coFftbYmpV3uyx/Ssggz55a1xaYrEELi17ji204PXSy3Q9S3mNExVspwlfNugOnys2rD6K9VlYgzDZG4Sa4LF02ExbZN2++A09iLUCmUhYsOogtGAdW456Bv5j3tPX4dSH3ub9M87WdbT+eyD8HphbzO73TJukNMwsFku2cMxkXZfvy7LuMCU5w2ip8U4qpT2QIsW8LwsCHsxT898Oyad0CGwrdIyd+HgZtLGEeQLXk+B11SaPpYPqBIN4DoAZXBmyr4fqHeKddGafT8vMtgTfn9ZdV5pnkTn/2jCObhwn8h3zCsVNueRXHI9loF2CHsvAcYNjh0ZHtD8dZCJ88z9GF6OWhU5bksPnT54lW5A0OeFktYrqvfJsP9X1vCyxH6/ahOT5y1/INC1Y5wq/0TwQucBVo5Gj47expBEnvCfdD4ulmpBeLhEyQFw35rI0dF/9736g/nc/+O9bIucyGe5d+iRkDCVmXL38X0c0ChkdUg8zUEKihuF+nxwvcm2kLt+7WJIkS+fNah+iiHQCngOaAtuAoUqpr8Pa5AITgHMBBdynlJpi9t0NXIaOxN8H3KmUeqvqrqDucU/ZHQCUcQyzd/1Gb2wJKxZ05Uy1HtjJvz/7Dez+BY4CnjsQeR9UElHbgZCRqVAxtT1qaGgYhd/w2qrAqUPrLoUhssFsax3R/ng+Yb/5Fyuje/LnNbk6Kg1aDlIKzQuCRqWs2wdHjuOvapt3+zBpeffnkaj6rAjQUWBlsQ51dq1gbqZtyIqm/M8M3n/4K2AB/LoL56kDmfd6P3ZfYNoYXTMJD0ezWCxZibtUiKw+HlYdz5dlousqLzE78vEM4dvvjltrBQe98D271+qc7vdlAZxWRL3XtWF5rWrGU3NuROaA6h/qsYyWw64qoZg7uGf4fYAu97HjpOglMgLXMccc3z9uU1cunHfpD2e/SOwyYRF5nR5Kr+34im+MQru7L8kDKsw5Q+bJ0D6Szfl8acCVcB+8ZF6rrt71rAM1TJcGt7lLg4iZS5082N7oxEAnV9NPGZFwRIojStGEjCnJeSqWaqzf2qRe5G7+CTChryZ11K83M+Jafg4bl+u+QRYA3Wqf2JMlNarduASeAB5TSr0gIpejpdfCosQZgo5POBpthC4WkXeUUmuBj4EHlVK7ROTXwH9EpJWp1WJJkE7zl/I8VwBwFc/w0sFr+Z1qQMM+O7l3aAn/PmURv1MNyD+hjL+Puz1qPwmrpboWKuuysVClSm9x2ExbxKgj/FGa1qwf/1tNDu1xQBd4w6k19i66ntY9BEqXWKoIK+hjqS38HDb/PGz+hhkz6hOQOUVUuG+GzSLpQe2+Z5cqQuZA4766BuLF9V71PYTwerz3yEFAMY33XBfWLvR3VxWiQ2llAxC5aJkITi1MMOGMLg9pTcI95ydj2NUYjk28vreljpOl82a1hsWKSHPgBOAfZtM/gBNE5PCwpoOAyUqpSiOX+zpwCYBS6i2l1C7Tbin6o6z+olGWtCDyV/24H+T+zJ1HF8SeHPV1qjjXEbfd1NAQ4dqIFAa9rTHbSbEOPVsav20s+vFm/EaW9JCbgYfFkiakl1aSjrrfFZIq6/bF/Z2KF5oqBfoRdX9YyGsqiHyJyJf+2sYZVzgXM42LmZbkyLQIkFvVNhH6MJfezA94D2s7coZ+JNs2keM9+1ygH6A9xOkIhc5nMfksDp7DhP/KdAKLMaCfSxIRbHWezMybjUVkkohUXfHYBKhue7oNsFEptR/AFPQsN9vdNVfaAt+4Xq8zbcIZCqxSSm3I0HjrJC1Yx5bP2sIhQOd2HGnca3ffOx427mEuS/l8dU9yHviJPlP78BrtacFmetz5AZ/KZwAo9buUxpCOkM9ME74SrbdFX1l2lHMBJEw5MKHzpvG90WGtbXVOLArV4YCYCfYxV2F//YZpdJ6/k79omg8yodCxbroe/kX//d2BAZl9/g4d1RcMnriQ6ZOugbMUfTvoCHi/arcWi6Vu4s6X5A7z9yqQr4yH0jEsHwamFMM3JhfxfVd6RgGwD3Y3ngA9TSpAf5CRLfnbRO1xvIUnmdIf5ASgnTm367cs2m9mSPjoncC5oO6Nfj2x5hbP9oOdRVGA4d5tVBEywDs0GGAsowCYjU6HWUC/kHBYh7V08Zw3mm7wVpqN6GOIeb8G+/fyyXTg8jiq52HXFa2tKjSGf5F+T9ylS5LheD7hODWAZfRKyjB0jlHveow1ih6o3A4MSV6Yp+GhO82zgyP6cFRiffMVhKzxflGkQ7HL4Jg+jlGafGqQxZO4arHVSZ25GxOR/wHGgIdsW7DNCGAEQNu2qSly1VX6qgXMW30OAEfe+RXfLOhC+7y1nNXh3yygD++X6rd3fYEOXRE+y+h4lPpjRvt3mBo2GYe/ThW/15FM3mp1oaIYlX6NYV/hQ03goFHfs/uuYE3L6fcbCfmj9jHvP+dCu+TUbi0JUsvCe0TkV+i0ix+ASqXU76t3RJaM0wp2NTqU7jM/AmBJ6UnBfZcEn6rJ5rcn2m/V+UU0nxm73qByTX0SJQskqqEZw6iMhlLH+G9bmljfTr3GsS7vVCLEUrSNh7tkSl3Ay0CM19ZtkCZyvGef7nquMXJavZRqoxGuGRGiUjzYlJgZDBXT2+sSdi6+LOtep1Od4lLL5s10Ud1qseuBI4xgjyPck0dAriPAOuBI1+u27jYicjLwAnCBUmp5tJMppSYppXoqpXoefnh45K0lm6iJqm5SSqCO5APcXO3qramGrPoNCUtX6JjIlJT7sNRMRGS8iKwRESUix7m2dxKRD0Vkhfnr1hAuAP5jan3tEpGeVT5wS5XjVfcwHFm3L+kSTKnSh7n0YW5AEVakOLAtML40qcXKACL6rg6ihWc6Qj/JzMeyQj+8cOppeh7nQ8k+WcVacRmG6QyJTgZZqB/h5G7+KSDm45eIsFgTelsT76MsNYNqtaeVUltEZAnwv2jj8H+BxSav0s3LwHARKUXnU14AOo5BRHoBM4CLlVKZdaPVQQZQShM6csEJr/ExvdlJQ47rsAiA3TQA4HuaMINBVJTq2k5uxdBUw2HDcSujOjcJXmpw2YiTi5mKd3MYj+k+OgRrbYpTfmpQ8v364sDYu90Kc0oFG/dmGR8fcDpHqS9YdduxMGoPXF4f+h0ITaB523K2GFnFeEqIlhSo3hXY14FHgPfCtscShDsS+Mg8X4MOYlyU8ZFaqgU1MzhnLBEdLq9U0HN5Rf9gDv3z664OPHdy/dbThualOplpM23JY3+w80/g972ehG5wi0cqvp/fHMdYPDmB+rwyX9cJDO/Dqx4m+Iy4eWMavAEUDwkoszuqqduMSpqXN1HydNjrttZHcFG5zs90PJ6JolRRwLD0fUwcZdnezOfEfP05+h2Dw8vomOpLmJnQmByW0SvEsPSDY/ip3kaobg5Ggdjf8V7hsDLAPHnjcfjohrh9hCjGpkA/5rKInjQcvJQV03Ussswj+Otby3UkUiJLPZc14ZKvB54TkULge3TeJCIyGyhUSi0Cngd6A06JkhKl1GrzfCJwEPCkBGNTrlBKLaui8ddamuzdRJ96sJOGTJLttFbN2PZDU/bv0xNs38PmsadPfW7lYZ7keo4vWMZbDIwoTxELxxNXk0qKQM1UpHW/R39c/QgAt3eIf5yzCpuwQm+88fgsMRL1eHeOkfwCr0azLp2ghG889y7kdOQqOIpVrFpyLPV+tQde2QPA3qYPU08NgVbDoEJ/L6W05n3f6gRCtQnwKKXeB3D9xrsF4ZxUiH8Aj4rI4WaB0h3xciTB7F1LHaQdXwFNTT5g6IKkDAf2uAwvk5MpS+FE1+9cLvspp31k5+cTEU/lCJc0n+pdfiQaAcMtYCBGzqPqE21YQmoezItmexiB08xzl2POEeO5Iif4OplQ12j3Bk0vc8R+jjDtQkuTqHztbcyDiPff8UIej76le8sYgqqT9xg8Pz8XzjwZ6z4mXLHWGUM57WmydxP16+0FQj9zFZZrmY5FTkesbi7nBrbJSNP/xDgHn/Q4SkUamIkYkkGvZHco0lOAehla9dHvx7bvmrL38kYw23VQNzgq/wtWTTw22M+C0HDdrKIa583qpNqNS6XUV2jDMXz7ANfz/YDnMoxSKg3BI9nLG/kF8Dr0Vb25gAegEczgMgC204QNpR25qOdM6h1iBHkPy+x43Pl62eyx9DIU05GPOYUbI7Zl3GPpcNEvIR7JwPnVVXG9sqoryBkDYT3s/agROT1+orJlDvW23UoLlrFhVEc4t0gLC1hqG81ExO1RnKSUmuTjuHiCcKXA4yLSFchVKpq/x5IV1CekFiZo4/Lj4do1GL6vYqAxUhxnVpughy8ZEv32OR7LkLrPafwGO9fSjq/4sbIhAA9zR1TVV63zdwSUAwl6LFPJyfRLKqI8yXosU0GF3fX69VjG7DNg5MX3WkLqHkuH+ea931CmjfKVHAsjgZFB5VpL2mksIpOAWUqpxMIAqoBqNy4t1YPcCY3vSeK4BIUCMkW6QmbFXJCqZldXpryPieKUX/EKrxIz/6qBEbvShqxWqA6SkHfcUkVkLrxnq1Iq7fmQptbxVenu11LzECnmSLNKJmXAscWcqvrwfmFUfb/IPgr14qaE/fTJCehEHGJ7u9zeLS81VnfKR9QxmH3RjNhkw/5FimGaj0ijAdD0nwl373G+rwPPlTo6RsuaRTzVX5kEja9K8zlNLmq8sN+qJJhvmnzN0WBeZ3oM2FpL5uZNqxZrqVl0ZinQlfr19nJV2RM8W3o984adS9P523h1xRCu7aTz8l7ZexGNf7uJHfWfZC/Aq/rHtpUaSoVM9TXRRbPZkgmX9Zqco/XjRM95lQ8BXDUsUy+JmoohFE9YwA+pGKSxxp4uA0+mAs8dGNUrGSgh8LfY74V613ze3fZQ+a+Dabp/I9vOOoLN77ag9W1mMsyv5UW4LYkQEIQzXstognCWLMDRCPAi3CvpcEzXxXzZr7tnxIOaqXPguAN4HY767AtWuX4KlYm2GMsEJroiQlqwjmgKsxA/bzKk7Qmm7WckLA4jeQBDUOUguIwmY8QEF4q7BOZPAbb99gh4o1iHQHr89hcymnc4CwjNzRQpBjHt1dcRxwGBWppKRXo+o4WzVpiwlnJVFKiHmWrpkBaso7m6OmYoc5O9mwKKquW0R0wsRSIqq16IUQpWd8ZoY/IxG3fvpl8/a3a8bo6djSdiIsvUdx778sy+8hjnNfGCrU3/zuKIlAGvmLSTvCKgvf5ebQIugA2TOqJGhHrZA7xg/mZrWGyWYo3LbOUy6MMCnj36er7+ug39Cuby6mo96+w3AeI7fh/6I+pMQHlVOlBvHI9lqn6+6vZYuqluryXEFoTIpMcSQq8/qoR/AVzNMzzb5Hq2vX4EjIcNn3WEHp/RWjXK7AAtNWrGSEAQzlLHCdSpLEMbg+cX8R6QV+KohkbPwztm8GK+LHSVWrg1rMF9wDnFrJLov0sjeYy7GG8Myyg5/W/4uI4YYbepLPL5PdYxWqKVVvF/vvR5K6syesU5V5O9myL3ZchH5KdcSFXfGXgu0Dq1K103gCofXY7Eg0DIbbzc0GygBs2bVUV1lyKx1DGsNHVmkEIdlippSA0ZxmMB1diQc7ik3dPhUa0u5GbzKKXGhHFbUkNEJojIBqA18I6IfGF2XQ/8TkRWAL8zry2WkPDWjnwR8Hr1Zr6vUh/RPIVSpo0PLwMkpF2UUhCxzhfPOyknBL2ZvvuNUgakqhjLKMYyKmSbFu+JLBciA1yKp862MwipA+mX6r5uP4i8g8g7iR8X53slU5N/3wJ9LIjMl3SXMJHb4WmGxHyfJS/UGLVkD1loT2c3zSo3su31rnBRMftVPvxnD+MYzbYfmsJxwqm73mb6d3op7cSJWq5u4cTQlcNy2kOqq4ndHOMlgTW5MeavKyw2IhzWqKu2UrFXrH1JtvulfQorytXsrYy5KryqMC3jiydEpBI0mJ/hep69CG1KADSBx9XfuaH8Cc/2tjxJmshc7khcYQJTqzKi8Gs0QThLdhGS4zgzaFhWyFSaq6ujHldGdx36eip06/8R3QGVr8uXCMA5xbRWQ0AN8fTmaAPpxkBI5znoEij6J08PwhmL+iR2TnvgWlxq1yd/5tSnDC0N0qxyI7k5ulRK1NDO8aEvhzI5cF53yoM2uEMFccJ/LwfxHAAzuJISxrmnYABO421OVX0i6gSF46jWxqpD6d4fHiobKxzWyfOM5TWNl+ohAc9xy5i5sRHHrYATO82PO0YARpsFhDujz0kRYj8jgiGvsTzgTjisI5AH2rhT5dB4rbMYEhnWK8a7GC3clmMfJ2eT/la3Kl9Dxe2R91VS5gqjHQougVvkIdP/bdHHXmexpUgs2URf1ZudwF/zbuePn02An4EmcAD72fsnHV74MadHzVWJRmZLfDiruvENhXhy5OkkUBQnkwzTBb9V29T/ZZ+ao/ODpoSp04VIu++r/hBd31TADZc8o8sFvAdMKYZvRut9R46rzpHVLTInqV6jhQkstQ81WXtZKqfAFnmGze6ySGXAc8G5ylHp7B7eyVtFaOH0laHbjy1mB9pAiWUkXdFbG3MyJbgtZtqBKoobaeFU8m5WGbtdyDGD3RoDVc9d4VYu0ednx7hxO7tUgvUjA8fVIIGcaCh1VuLH+FlK+735+6vgpkRzRd2lQ9wlTfKAVg+sMcJV06BbjE7G68/BMS6zkiwtRWLDYrOI0aSgo54gsUISEwm5lEL3aqLHfh+hRKkgknr+SUh/KYZqyrp98dukKXzWD8m8/7Ja1eqwW4vFUjOR6SY1I+w3qTfzkeFEKMF64eRNevYfTcU1Rz/qArF+02tbmGOsz+VlBvIyGRYSSIFUw1oj+puoH/ksJp/Fwe0ejtZo34F4/z9eobTiXl2xpJPGIjJJRM6v7oF4YT2XWYJMhDtHwnU5T3IvJfRmIfeXFjHvOB278Ic+Y3mw410s/KE3Bz34PbsaHZrW83uVDokVcimO8J8rVcNPaGOVeBGrAdX2gBDDUmaY7aZGpbPP7dn0CgcdxmNc29+73mXI+aIUqI5H+LgyhVLBwt/bNrSAfWZp8GeBNkVwFTR+cxM7XjRCH/ODdeMsSZKl4T2Wmo/Kj8z7OvTw7bB/GNuuOwKYH9zxMLSavIY8gh40KYPm+aFWk+oPfAfQEVnqSuC4uygQMrlr70EhxzyfMxzuMccXEqr2akJdlcfiYsCz+IK5ey/Qi8H9gHtzSoLnvsj08XL8upGO564Pc4GOIcqufBGcF/wor87gSgBeirL/PfyXfHEjZQTmeHdIZoVMhWlFWrE2igcyXNshnohQG1bSOkp4c6CPBEJhQ47rBER5H8NDfP3cx4gUQ7/Qdsd85xiEoT529/feea8C4bESO9pL8tDVRl4EZf5FotWlFCmGYUVUDG8fiGgLhME65/nAnOcO4NilwYP/MAWlhnl3XNexpUgsdZ1F9GTO6vOhm2I9baAjvNppADfwBA/m38WZZf8C4B1+k/K5YomwJpLHF+/HPtO5dNFKmSTdXwritH5DYtXA6GIU6SaZ9z9deabbcqfA+UUwC/gv1Gv9A3tppFNK2sGO61vqMNmn0nI6i8VSg2k+WHscL+YVUA15DG2ADZqs8wUXTg7e/MdyvsUqTxE+HwVCDU2YqtRcR5h/WsXIBYxRxqJG8kL0XZdQReE9yTI3dHG4LDJwOyHUSOdZWD8rPT7XD4pCwmIDTImiX2AWK1S+l9GfpUZlllNHAjkssagLipnh4aRuVdpoynNpO/eM4COlfmQDWvDSvI4T8pvI2KLuX7fPVyjtA9zMA2F6KX6PTScBpdcI6ZY09P10+vvMOg7IwKOGh/dYaicSVplIBgYfgW0JKptL+R6kfA+gvY1+cxndi325m38KUd2sKrQHMzqxwmGbVW4MRIpEHBcnzWE0hYGUHJFpiEzz7seEsEaoxbpUzDOFTEJ7p5fGbxu1jzSHsQIBdeN04f7+p3zv4bMygBMqKzIle0NkMzNv1mhqwRAt6aD5yHXaa7lPuLbTY2ynCY27bGIiN3IBr0EZHMp27iNUVCBQXLk09HWiuMNhfTHKe3PgB/Gy2If7KVScCZyJIDzUSKQUODHh/gKfhflPVQPNttP0DQ7v1dfbw7yaShV5GobxwmGjjsPn+xkrHNYrdDehMYQp/QUEMG4CpsDevo1gq2l8FfA+0BEO6bmVH19sltQ5LS6soI+lBrOll/Y4vvbJhVQ0MuGurtQAd0inFiPRz1uwjub5sKXMeCzz4Vbu429ld8Ar5oCLo5+3BesC3k41k2CJk0ITDuv8bpXCHRTzwObIye35d4cH2jg4mqz3XhDcNuZl59jxXIw20hwF1mh8KPM5OSwnwC28F1Ha5KTofTn5lo6nSwYCf3PtFy32rJS/daKmXTbCP2Hb50fAm64d5xXBcbGPbZWvF5T3B36UIj3O7pBadzhsPNXYaDglVbxEihx6Mz9k/k9GXFCpIpMXuRMA6RCZ8iOTTNsYv5xxr28YMOZxICjY4+WxjPt+Hfu4OfgG6rX8gVaHlYOqx/a9TdixKPYQ6jxZKuhjjcs6Tj/epK8xCJt32MwB7OdTerCk9CT4HP59wW/49yb4U39/YZQhku9VSMDIXRJ5/lg/3m759URwPIxKtfaVPxi+uuh4AW9nQkDmu5X6JaRNsvkdAHxUX78nTs6lh/GfiBF3OxMitqVDmTZRVOQwYrcvMAsOrwNNgDHF8GQR9Y77gb2vNIKbYP++XA66+Ht2jz80sDiR0ntvsVhqHOqTYB42rwDnhM5p4SWPnDmkRdjr3szHKyIQ4NK8F82zK3l++HCaT/YQ/wmzq9w35PdRxH3mhIESJZNBGY/XE1zNDcOfCWwPJ5ZRExUp4sMcUHEUZi9S2vh61WMBeWuODjH2TGj4vejFvA7e/boLlyg1BJFZiMxCqfOpl7NXb+9KILQ407gFm5I1Mr1o/u462rEW0NFU7vsSkcfNeW7wOjQqO2nIlx38h8PK7frvMQ8s5kv5KOSc+SzmmJmm/E7AQ91cHzdTL1wHx+v9vsgAV27ssaYPtxLzdGBTI75p2YjGF+vSJ46xKh/Y8NhswhqXWcA5vMU09BLekgUncWqftwHoW/gm8+49F/rC/QuCMfZe3smAcZdgGFGyRLv592sUqDurR37dWbF8ILDkbXisgGTSVWJ9FlVJOjzAqRqr0W4AVAlQYjyj24vgc9j7iYmJ67yZ3cPM3VyrlE5vsYI+llrAfnJp3n9dSPmRWHjlWP5t+B2ANvBOQ8+XWrTmypB2W4a3jTACVZpF2b0EgCC+xzJwfDyjbVRYfzHSaMJz89TM0HQVvx7LdJBKubHm6mo20zZhbYJ4xv1a2pHL/qTH5SaQYxlNpPB18zeFmA+lbvClLN9JXciKAV3Dji1yPb8hVFBrE+xYa/KRHXHAUyKN0awgS+dNm3NpqXLilePwm4voN+Y/0F7+ishf/R+QZkQ2xL328NzH8DzNmo7MBLlEPwLbMlwuxmKxWLzmglu5jxasC3m046uI3Es/efvSy7tdovNQupE5+hGzTZlWq5VqWJhMFCnTHrBw9d9MM5ZRgbBXv6QrJ1IO04+qxl2SxIvw/NdkqI7P0lL9ZKE9nT10Zik76cy8h87lgtte5PXBl3HV9Cd4tuR6/lp4M69xIfTVbT2VwTxINBw2XIa7KnA8lomGw8pU/VcN1eGwnm1c4bJuwnMs3WGmjkqbuNIdZUZkfmKEoI5bwMijrIibgGfZrEK6Q1xqGiLFsNzkTUYpeSK36b8qkeLLR46DV4u4omAyz18zHFoD3zSFJ4AD4NSSt4P9l55dLR7gWk2WrsBaag/bvjoCHgZu1V/X38eZr7wMyuV7O9H4sU3sWNkSKQOVfzbH80lIGymAU0vf5v3h8UtwNNmrwwPr19MhoOfwFs+XDIc2kV7O63mGGz6N3peTz6k+id4mUaKW+jCGhbtEiBsn5/PkAkd7t593w/DzubybTu6rUHWpNm5Pdaw51RHnUe8m3m84iYbDRozFGGfuz8rrc1EPmPYjuxOuCutWm1WqCBkJsJhjBi7my+HdkVnBUGyligKfv86z7RrMs52JDjs/N3JMALSE4wZ/wueH9YJHXdunFUX9rtVpsnTezMJLzi76MZcLbruFh7mVM6f/i2fPuB6ug3rsYT+5nNhnvq86V+kk3k2979DXBCcjpf6Y2AFpxjFI46nOhuQ/vtoaLqo9Xj81EMLrUme6XEyA84vgWZh2ymAtSnFdMXQpgp+BefD+WeZGcGv0LixxyEJhAkvtQOXDEJ5mOtcEtv1tzh206u+xwDnTWXxtGLkvGk9BxdL2qK7B3MP+k/Vq3lvhP3opoD5LsH1/H23yiRnuWpNQ+UAVazpAcvms6bp3cupSpgs1EZjoo40xOL1yadXsoICTr3OGGI69kEe9tmcpmZk3G4vIJGCWUmpWRs6QAjYsto7iyKWng2ghQ0N4miE8HXV/tPDPeKGhmUDy/P9QpjvEyavMR8zzJ/jepFuqPZ60fFUjjYgoK2CpU9hSJJaME+t3XXpFD2/1k6LhhEeGh0gmGmYpJfqRLNFCX6UkGJ4oJ3goxCbIIJ5LrQMP3HO0u/TJYwzjMbQYjMg7iLzjfbzf0hgx2jlzaTrmUycdJPCYSeCRUD9T4+xvG3zEIp/F5LMYkS8R+TKxQaA92V5hsg13baU385GJIBP1eTz/j4bqhyVt7FBKjaiJhiVYz2WdRFYr+BWsWH08TTps5zYeYkNJR3oUfsBF707j1RVDeIWL+Xj1afqAKCpvXvTkA8B/aZGK0vYZCz+MFnKbjDos6HDYeJNTtHBZP4jJh1emlla4cuntTPAsA5NIAnyq4bAyAfhtan3Ew/Fkivyiw6HUgZGNbtLGrayG8HXVqIrFRkK/8tmDGfynp5l+XRGtB69kw0lHwQXCQd2+B6Bdo7UANNnbKlgE3RKfzIX32FIklrQwjWuY/jqMmPwIAE/m34LI1ECRdylDf4dHQauZ2mtZ0St0/mhQbzcAO0Dr95wHnxf2Co2ouRjen342OWfqepU9W0SPZd1xmf6NaVWq56tOLIf1sa/jap4A4BmuD9keKxxWG2NHhGyLNZ/1YS4LooSy9mEuJ88m6n6AXPYxgyspZLTZ0i/wvIRx0U9sxnVp/nO8VKYFklR+8Fdez+v1Yh6fDtzzSEATYLlLpCZGOKxMBZaYdomkbrj7iKFU607RAWCf63makJGO91KHw2rjMyx81gmFLSNYHu5HdEjsr4AuPs7jFA+9omvshnUVGxZrqVOMrU+niUvpxmI+nng6HADdWEIfFvDqSUN4/zgdIqh85KJHCxmaZsKPxIn9D1vVimZUVovaqU+p1kzkfThhrn6CcpN5b6LlLSbNPwXl39GaeZYoVAdPEfwQHEVbGQjTp18Dt8KG+aa22SGw+5VDAfjy8UNp/MGmTI3WYrFUM5MOvwX1rX7edP8wtl0H3OrdVn0SvmBl5rt84BMCJUNCjhmsjaDNm3Uph/W08ez7LsZzl1kw7M16zie228rJwbw6ZqvoNH1lY6BsiFe/APIMnPz23CTPoJnhUs2NZ0j6RZUHF4zd13AjU4Jt1FnRj/c5dzvtPA3vzq4UlBTTOdKVDhLPqFQe1XC8+HKBNhqVwuRbJsj40PdYSoGv4Pj8ZXw4vx8cB7qcancEOGawFgv6coiOCW011Yluqzr9DUv1YcNisxwZmdwPjUQTATAhldWtoFfTkIUJtA0LG/arnpsJ5LaguI6v9kv1I2PjiRNq7a5h5qs/+XsaRpUlOCuw6X5YLCnihHy6y08dzyfkbv4p7rHulA7Hm+SpCjsduvMR3fko9lgS+L3U59R1H3M3/xQxXjkhGOrqhLvKZyA5+pEJ+vFm4PloCkNCVN30YS59SM1ITYZCRgceVYmjNuyFrNunS2G5t8njgfqWieCl4Cq3E6hh6fU6Xn/xVGHThTxk7/siyNJ5sxYM0ZIwfxI4Hlasy2fFP7vSY6QOZd1GU27b+yD8k4DSF8cl1vUiTokwLNUAkAYmrOXz6Mems2AxpEeB1ilNEi72I07NzwXJ9ltq+nW5IieD6h186Q6z8myf8Dljv7/O5Ber3qTjsQyECd2aOTGe8HBYJ2dErSO2p/KrOB7eCuBnOP+hl5m/9zR2bGgBnws0A5rBQf/+nh31nwSqQfu9NpOl4T2WWsZ/Ql9+/20Tmk8OGgVbytrCfdCG9QGPozs0UhpAq126bR5rUJPbe5ZSqCgz88+xxVQ4G12/l5IDzSv1eTfT1oi/nK6NxNfM7+tk799XJxz2WT/Xa9iWqz18OtWgKHhdJ5htRihIvQ1uZVeveaM+e5jLuYwOMx69VEvd+PViag/YlcwI8zZGm9NfNoJJl8pA7nbJAUie/6ik8HQKtxcu0XsSNRRIMUw15jmdMtlDifjuyUjg4Pj9hxuUIRUBHjffv4lFASNVPRAMh3UWGOY6N4pOSKxLoVYV6Pf0w7J+qNO1KvKORcE0ky/LnP6K4XdFVJjwYfmVOT4Z72ltJEvnzSy85LrPMS8v5kuZCZcXwgV7WE8burGERfRkx1kt4ffAs8mHp6oYNYv8hC8mS3iOpePFymSYrchfo6rMDuMxAKZwo+d+fbwuIeI2KuMRfj1e6rlVVXIk0XwSFSOtwln1jSXZHrf/aJ/1Ev1nc0FbnKoBefSkQb3d7LhH9OT4o96++/NDYXkRh7TWsrEiv3jnfVosllqBY+y04zSOzP+Kb8q68LnMBmbD3UVQsg0wvz2BsMjTdU7lOH3/10oNpaJBpHEjS4EhxfBFEUvKTtIG273ABWENhxVxyFhHirpZaB9GQMdLCVap85EyqNwGXA7i9HtP6DGOsJn6Aah0RG/wDIONhiMWFF4CxU3AoADGUcL6HMcbHBofHCsfM+K8PhaWndImrzBEH2PEfcKNxzHSHqWGJaRkGj6Wxnuuo3M9rdrz8UKj+GqmABVF7Mg9b4Xfe7gXbKMtWPuljO5ERE93DzPofwJeBx7w2Z8ztkmYsSVoTM8GKd+DlNXXG4593PQTLLGyY2VLODcy7Ng5l2PsfjkxtESKpW5ijcs6SBnd6ac205BXmLXgEprnbaY7i+nHXP486mEg/UaJ2uWjTVWVpEiAaBOAWhCcJJLrtyDo/fPZPlXivb+xPJYRvFj1n5Xf3BHPYz0M8HLa04e5VIwyN4ynmM/j0yL4HH78qhn8v1+SP2k2YkuRWGowa43CiHuJ8+QS7X2LZwyV0x4CHkvYuathcOd/i+Am89wIvbTKX0PF8PYwzPu3UlVCC6/tpQChxwRuyGOOMDbRfv/jlTaJN2+4BfKqq6zEJcbaUi6vpV+PZaB9Gt7j6iDiPT8YjB0eky+nGyMuzmemPAxU9wJDsoTnwAaM3GzxWLrJwnnT5lzWIWS1ojNLMyIT7peefBBQlE2k5Ei0cibpICgHDhJnZomX3+j0lfKYzHsTyFGtQaU/3MSTQa8OZI5+pLXPXuntz5IQthSJJWW88t7cOHOM9PL+f4+XS+nQZK8/MTDP8lzDvQWCUvlNu9iHpeFXA+FCXuRCXgy8HsrkkDzWeLzMwEAIq1/ijS28jJjTvibk9iVTtkTO0I+0jWFB8OHeFvOYSTH2pXiPcyEv6rzgz9DlSQabRw35zCxVg/Vc1lGas5kldOfMPv+inDxmMpCeLCIwb2Q4nDITRAuHjVaSJFXihbXECofVxyfn/fMT7ut4np1J4HG1FoDreSZ+/0ZwJ1YIqxqUfsMylXDYZPnw5n7Uu+cHcg/Yz+5+5vN43+xcBuepWbzRqxrki2sjthSJpRYg06H/4Jn0Ubu5p+w+dkcxGlU+5H2i544WbA5sH8RznAbMaGAUUc3vZJ93tQe0bO8xNB61iYqBZr65JxhKKb10OGyLT9aRi8nvvNyc77NIwzJc6K3poo30zZnHqyVDIsf7Q+jrrTlHBAzLQN3KUXDFYG0MepbkcqakKhKIG00h95aVwBdFcdVcnXBYh0vL9SL5S3n6c5A8oKI4UFYmGUS+BgabElQmP9BHykr4PYYzN3sZlhH6DcaQ9CptIvKLOSY0LeN4k9uxjF7BUFbzC6kewFc4LO3C8ixNH05/LVjHX9EJl1cyI253Kq++dukDqBsCxmIgX3njHTCvfiDsPBrOMVmDzbm01Hb6dniLHixiBpfRhvXkUU4b1tOCzUy/5Bq+pDvq5cyOwV3/MpFIz3Qbhm4SMfK8wiuT7StmP4H3puYG6aS7rla6UP0TaDsB5OlG8CFc9K6+EZtX2Zdtrx8By+CN1RfCDMdrXHM/C4vFEhvV9oCA+MlbDAQGcs9XsOSrk7iq4AmeLTM1I58L3tyW0x5ZChXXmvknRh1Jh0Bt3JnaOxOCS89mP7n6PK42OWMdNdhQRRbVH07jbcAYWYX4MgBflZX6SZw0Nr8hoa9xWcjrRGtGXxKn1Ionx5q/YcE7TrmTGU6tRcewOba4xqTYJFMGLFb9zKTG0MfftsC+EcYYHOFd8CbV9/b1ssvgK6Ab8BG6DN5UvcCzpOyklPq2hNBYRCYBs5RSs6p7MOHYsNg6gt/w03QxhKcZwtNx2yUSGuvGHY4jbYNKooniN9xWTtePTHEabwduHqqKQOhtEu+/3GtEK0g9TKY6S6k03LU1fiOLP7JUUt1S+2jHV0kdF1KWxBXGF749nGihttEIDxEU16LmBya5xPO4E1xeyjTip8QKEFKWxF2KRGQzIptjHWq8hrH2p3Z/PJZRjA3Imrr6jRd2W0bUElrJzn2x5l2ZFDssNaSta0zh4cHJ4Kf0nAzQj4jtUd5HP+V+sprMzZs7lFIjaqJhCXZqr1PMm3ku8zgXnoUtU5qzd7sWJDizw+xwobdazRUFk3m+cDiyRHsaM+n1dCMd9F+1OsMn6ubfk5bMKmOscFg/OBOPmh27XUrnMCG5Xt5Tkd16nzoo+vEm3OiQn6Dx5ZvIu6aCV1cbZYPPBb6GoyZ/warhZtm8PUgXc04bJRudLBQmqImISCfgOaApsA0YqpT6OqxNLjABXXhKAfcppaaYfXcDlwH7zONOpdRbVXcFGaIbHJnvMizN//QienBi/vzAZpG58EURrfLX0KorIR7LlwpNOKxx4kkZtMqHtbQLlB9xlMLVCTciE13nHw3qE4C2OpceRasOawE9T1WeZzyWL+g/p/Z+m/dLzgbgPfTfD/iz78tVqkgbP4uLobgIVsLzUh4yL4w2LtBxlMAXkX1IGXTLUJjiOEpYnj+NV+VEz/0yADgPeCP6/bFjMKry8YQLIUEwNWSMD9kCpY6O38iDijPMPUaCXkeZDrHWOaKplC9Dr1QIwEl6zpZ7fJ7Tx/zsfD/kMB0Oe+V3Hv1MBG50iRp+EZYmtMT8PRNyNo2iclv94L5uev+JU/X/3MflvWG73p9VIbEOWThvWuOyrtAS7u4zmvE/jGL3s4dy3WFP8vdzbocZigbs4qr+T5iG16fldNO4xle7ZG/UQxTqUlAR9Wt4qvnx26SCc+Pgh3SVc0nJSOri6ifFMJl4ocaZ5Me7dA7UjiUtA6UD+t78JgyENbSj0+SlbN7bnB3jW0bvxGKpeTwBPKaUekFELgeeBMJlQoYAHYGj0UboYhF5Rym1FvgYeFAptUtEfg38R0RaKaV2V90lZIZvyroEbmBb5a+h4qH2kA+7OMh10z434rjAXBH2eyVlUBGegK6CpUbUSHwrYLqVW51IlvCyIKewyNfxgW2u3+dkI0ycEivxcJc9cavvKuWli6t5hSERIa/hKJW6ltddjPfescT8jXJ9sa5bG+/zYO48lOrrfzDO27TKY5+je+Ejy9y9EJyoOq5nfxPDXnsYlWo2oQsmzvaw98lRsZUFZsGkidmx0/ztBh+Xna5zMtkDTfbovE1LVmDDYusA6VbOrKlIh6D3MGqbfP3IJA9wMw9wc0LH3GyOSgSRDfqRQTVZmaAfae1ztUJkd8DDGLE/LARJhx79gtwGcluK567GENw6jw2LrRGISHPgBOAfZtM/gBNE5PCwpoOAyUqpSqXUt+jKeJcAKKXeUipQQGop+tNtmumxZxJ36Gr9737wbNOdj6KGr8pAHU7bjq98K1s6xpyTfhFQpPUIsYzaxwla6EcK9COeQmt4qKbcrx8hbRZGigVVhYp8IaMpZHRa+oqX0uIOy3XozXx6k+GV4gyRSAhuIqG1UftwhciKPI6Irl3pFRIbcex0AvnNcdvGUa6t82TpvFkLhmjxQ+Oem2jCdnafdCiMhfW04aB/f0+3RktYUKmzu8OLLffjTSA9NY2SwSlZ4hYBioY7f2Eqw5mahDcs/Ic7YY9clIXRdOKEW8VTos000bye9b/7gXovwJ7DGiXcp6xWcJboW9x4548hJuQVDhvIQ/qt+Xu+DjdSDwXbOAp88+48l1b3rmHX3oPY+X1D8luUseNM47ncE39sFks10wbYqJTaD6CU2i8i5Wb7t652bYFvXK/XmTbhDAVWKaU2ZGi8VUar/DVs+y5oI1dMb0/jmzbxeVkvuuW7cgq/KIJji6n4ZjT8eADcEaPTDcBbRaj+QQN2Cu3jGgJ9O+go43nTz/WsD/l+L3/RLI6henLXUEMqaFi5PYhFETmZ4ygJGpZnmY0uL5jbIxUeUukY2F7evZBw2ygM4jle6qrDjJWXwW3m1EAu4TuR57t7wHhfIZ5eOJ9RKtE3jsfSMabUYJDbzfMo68XKUaDtDdLNjMXxbneJ9CC6DUVnUUB5qNjms9g8i67gpGbrPEg5THsUvbyT0RAphvOK4J/Gg9k3TPnWa8HFSXOdAt0Gf6RFe5aYbb9Ci/KurQ9riVtz01J3sMZlHeDR/sMooZBdHMS1ZY+xlnYsphtXNNKhPAtyYhePrjWMjx/qqTJYRyl47sRdfROM5HdC51OtEz4m4XMk5oD112cHgRj5kFwQmreaTuW/WCG4nxcal8UBUCGLOVE14+NTT+dzeqG+BqmdC95VR+Yk1Wu06l1dRkT+BxgD0eP2RWQEJoivbduqLyfkl117D6JJve20OqyctSauXxt1LU1IpFaq7P6JUa48vwhugm4zP4KZ0InlgFYpFcfYnBldndr9u+VOv3AMmrmqKKZ3R7nyPJ3amdvrtUSG65SQqVGcl855HeNS/SmsgcnndBtojvLqS9GHkxbGzNRyuSU+S53FUrEtp31ML5o7LNdhIRlU5cs0TxZpJdeF8ZtynfYyMuKGpE/nNnCVuiFoiLsNefeCuku/MWSx5Kbg0yWfnQR/gyOn6kTTbyQPWAvTUhR6qM1kaSkSGxZbyxGJv9ic6bCEZMI20x3mKRJ8pNTPVGLWd3SHroiMQ2Rc9MZpJl6RcD/KsPH6CLSboR++xxZFbS8eLVhHC/wn1TrFmaPuTzIkVqyIT3yyVPWuBrIeOMII9jjCPXlmu5t1wJGu123dbUTkZLQpcoFSanm0kymlJimleiqleh5+eHjkbc3mtP/P3rmHR1Vd/f+zIRBCJMHEJiRIDMhFolBAEIuXilqtWHkt2mqxUtuCVn1rq7Wtr7WkUPW11Wpri1alNyxUq6Iv/MSK16qgKCIFDSABYoBAookkGEJgwv79sfY++8x9JhcIZL7Pc56ZOWefffacOXPWWXt913fxAvlUolbBpcz36kImCo/mOjOyKqa6QRaLZFMfYkGNISLF82fMjE7tbYOqd3A/i8PorX4F8bbCrzqbLKwNbq/v2hUQqhI7jDUMoxUG29+nmotSc5PbJ0G6+RGFFC02hcMVWyimmAoe5zLenzqOUxa8Rj41vMpEPlwuM0ZjWRZGP02EDhurAHBY28oAuijxS+rdzRNgtYIEHuzbQ8Gzs9TGioVDTYeNBusANue0PnKhBykwEUv7YJCnvx30ubW/kV6VgGN5qXl9Eo7Xw6gF+AYi9HM78JkZm6Hk6hiTDCmkcKigta5RSq1Grt6/m9f3TF6lH08AM5RSC5F8yotBQjtKqXHA48ClWkeSiTn8UP9kP+rpF5GC6sfxbOKpBVfQ86+Sl+nEbE5FqVn8k1kcpy/jo5knhO07wPjm49lKBcWIvx6M7+ve/H7Kj6W8yKVhmyOP/TRDy38HtIlYWnrrKSNf4231IW+q6QBMPCARyzfHTUS/49p5v2KMOpC6SqiqlwH/fPxbbv1l5tXSYc0k7c9LfsZsgidQ1QKJXEWiw+qQiOXjfIvHjQ9jKcXXMQe4MahdxvpPuTVLjrOa0VyKCAHFUyQfgNT53KZk0kDbaPEVs2B+Kefp0d6YwVBaY1B9YyHouvqTeY0xl+Dli544zxtbVPjKP0aiw1qUMVoouTePjkrJBTjQT0KOw/Vk1I/jFEG1x40wPm2ilWo5KJNiokN0EYZPfY91ZeYYJ89ilD6f1QtOFcXYD+C8kgqeZ6S3fwpdAynn8jDHw/pWrlbHM1T3ZTpzue0Pw6igmBGs5e0hZ3LsxnLyiV1/qq3Qg5QXDVMLozuC/nwOPUh5UbYr+HPC6rNRx+ALhCrDwIiY4xEFNhoWK9dP4G7AWrePcEHQOIyDFIneGddxv2QW/F8palG4kU+4D9vusoSaufatZL3ULEzOWdUxarzFU6W1Y+xd/CmbJp0Ip8vnA8WKMxcu5Q1VQ7edF3PgsczonXRx6C4oqd5J8T3gb0qpmcCnSN4kSqklwEyt9UrgUWA8YEuUzNbaI6Q/AGQADylH97hSa732II2/3aGngloidNE3y4Qy+dOS5ZzGcn7Vq5Snyq6QhgEomCoP/ra0yGjeYrVylViOZhdHz36L1UtPpeC8LRTM3sKOmQOpmF1Md1o8JzPv/kqqfQ7mEiaxacqJblBPhqvB2qijnxbrf++tWwXHHDie2u7PBa2/g9nc+Yco58A4CDYq+P1uvweglLsi7xAFWl/EMQfkZvvLY+HKqke48lZ4dEHkmmZhDm4c/LDbfdzGPVL7Mm0ItBzNz7kHfYCI0WX/5KPfCbLOZTQsXTBZrosI2/ru28munvFVwu3EajVFUWnOMSdH30puwlSpB8molzo4Te8fLf1OMNvOBi6Hbv/VSPdqaMmPbKvsOLwczczg/NANhBtsG0gY/rLsUxYlr9My4bSejloO65bD9yfcze8X/Bjml7J6AZw8dRmfkMswPgze+V/hzmlXQFe0mynn8jDH1Vnz4Er4cA2UFs9i38os9py+jz69d3PBRvHeliQSGoyCRCKWIE5LPEpm2D5TxLE8nKDbl8172KA6wgx9WxBqhNVTBy+q3JTdC2hCL5G8UHW2hl8A/4YDFcD1sWePU0jhUENrvR5xHEPXT/K9bwEiJmVpraMQK48slDOYXfTlnJJneeneCwEouGkLuxr60jdrFwDnlSyihjxvnwI9jWpgx1JxPHeUDYReGq7Svvtg5BJX5ZwISdrBeMhtuSBMjM9/f0o27vw430IZH1FHyesEJwDod8ziRYVjweWlRlDG6w5aShNL6ZIEsZXBZmC+Sd+pwNRgexI07tWQfenOhI8RCYmI5HjfNwFb0tba09FQxuiY0dVEoSeAqoiwway7f8KP+f0oPCGfdxcIS+6jYhP9n9A1ncqujJRzeZgiWUeuQ8Zgo30xoknRYJVihyXQJhE12WRhz19olNXmuBzWwgApJIQJvMKbU48QsauDAK2gJWUxUuji6LPnEwB29z4m4nZrt94tE7ulSxxF0i/8k08ln1SLsm20CJQfSkkAWush0dsYu5Z7cdzuwmDVX+8cKRSQZJg/ieBek/Jxk1FEjwUbef2kW/+gCegnEErO11jkrbvdyJWG1rmMFE1MtHxGeyHS7+7ftuM6s94wlKNNavrzJZOFzRVO5BoLOuZyFzGNuN2XOyn/icj/BxBbKzTyxGuPHynoqnazC37lwx9BjuX/g3POfJbjKeclzmXT4L7c2/smbtpzLyW92zdz2ooHRVMxjavkGiF/IhE6rK35NY/IlJyw44QYxUT2tw6yvbcr9Wu0DpbhHswHgJmdjoB4eYO9Gz4FYE/W0dHH0YoSK96+7ZxTqqz9Ljb9t2J2NdFcyvbIqY05Dl/usNYZQfXTTnr5Hd5fNA7+a5ZHYYpFT+6y6KJGMoXDA4VsgeKBvLnATRjtLunDS2UXQgUcd5MoWJ7J65AFj9cJ939p2WTJv9OnMp7XqEA4bNln7WR8z7e9vp4nQQnUEORTiZ8Vp9/BHKc4qJ0VFdM++16bZiKWB3ztuoH2fzZ1rv2qti7SeReqmxAz9AFf7uEjIbUKy+HWKDnrugqIY3tt9DSR+30hW6hiIIVsoUCn+auieAIxuS0XBO0zVQ9gwYrvQIzfIJlcyvr1QodVn5fcTAiPykb6LraNMmxPPZSwNv7xFEQYix1npG3Sl49sMEFoslxr1r3yILwCB34hn0uqgims1gnVD7j33SL8FGoScJv5YHzCjGc+9fqKKAL5L9P3PJN/+WUkr9JiNXxhquQDz2Im55W9DsAXSoJL6Njfv8ugi9rNLviVjwycMkUibNOZy1/4Nn3YTTEVnDPoRa5+eR55Z1dSQXG70xn9aE3E0iKRaKRtM432lxeL5sys4EyU+nW7Hy+FzoXe7OHNyjPgrgDvV43kuMnr2dV8DfXbLO+5jbLDKaSQwkHH6SUvcG7JS/yFq/howQksXTCZq6f+DkrgIX5gWp1AIVvIzamlKqRe71YG0J2WmMeIFrH09wHi5Hj5etWGdpvv2tWov0i7BCcFtR6CiqPv35ZJujtnz0bPhDs/aX0fsXATc4Im9WLBTwO2E9DDx9/MBoaGRSjt55+H9BFRoMY6h+0clY2GHa8ZJyoCEaqKgZL5nAgefFCczgfEqfTqgrYj/JPe3Y63ysgu2ukXuPNTXFUZfJY5B+aXysTOKKAEr67sciZKlHbBQC/XOYUjH6lSJEc41FRZ4rYb6YRwLCbyLyaa6Sql9id+zM06obIYySJWiZCDibZKabd3GZZDidb+zm2Rom+vMaSQHLSCQPdu7b6kkEJb8Qox+HsGtzDLW/zwyo20wxxmPKdFjXHiN966pSGfxxG11IjFvQdJVVzNliXp/RKp1Whgaa02GgjuN2kN1MOt2i3o+AcbSj0oEUr/ujNlCWubxLkNPUZ7I1J5njC8HD5Ru4jz230snRUdaDezlVIPK6UuOtTfMRJSkcvDECdPWUYVMnX1432/5tKeT7GYyYxnBYuZzA/PFmW436pm+EbkWVGbx5CcSms+WvfwHM5ESpm0B+Yxo02OZTQ6bLRz4KfD+umR5ZzoPYAotS2MHhxvBnpP1tGtdizVZg299slxCtNb1YfXl3kAikdz9SvOqnmgVieiphvSRxupup7TaMqExDq+mhd9e6gw1aaFQm0+ecoy3q0cL2UH+gIvIjqcvzS1TClNUWNTSOEwQNXiQaKLWw+lub+CLKSq50PAZLil4Bdh+6jJUODS99hRNpBRJW+xukxqQzxfEkzDVCbQqRuij6NmgWELTYURrOWlMSIkpFc5PsQKzgR9ZpBjaemwfsfST38F+MKBV7iUJ4NXxtGm8ffhp37a9xMQ2uJyhE6sDU9VnL4I4juxjqVLYzo/fjrkjrKB/LLk5uAGG6ajhxLRsQyNWIYduyTYsYxFk/Vsn7FPER3Lh8y2HNO0zmky6KHi9al5wLdk4l3rHmHj8cOmZkDiQonS77Wos2V/b7+ngVPnUxYifqQfiPQ+M8yxjFfiJTQ/0+4fRNk16JbbyIGnSuEEeLhkGtPrHkXNgfeKvuAFPqv+OgiOAv4Oi755XlgfKbQK9Vrrqw/1IKIh5VweppjEswA8XPED0oc28+GQkXz4q5GcPuUFtjKAp5SR6P7vxPqLlLzvdx5Db5wx+xqkUKsTbp5Yn0k6NR0FXeJyT1u1/6Aji27ZWhpWqPphW8eQ7OSDnuKLIM9NY+jsNVTUFbPvR/fBxaVkN19D/e3xZeq7ErRStKR1hMnY1wF9ptCVcBS7oRGoNyuqgErkCacO2AgbCkQ+bgXjGcYG1h4YARg1WCuo8g6SvbbY9JNsLcSR4K/ysHLfyWS/5UpehCq76gjP2ZHKkvjxJJd6jiC03Tb6+wpF9i3Wc038XpiM0vbPy+7xnDCbvwitF31p7aO2/9iHApGcNv1alLbjQanwci3J9t8esE6oAlgPA0q2ojYi/78tQADnZQSAQhjKhg4ZS2dFV7WbKU7SYYZDQalUvWWJh7ZQWcKOeQRSHVtzftRmfchptMo3s59PpZdHpBYFb4u47xH4O3ZltHTv3u4LnZzek0LXwSxuSaidmulYLaHw3yM7CpZKCiI8Y8VnIiFaaoya4hY/5jCdFzgjaN0yxvIpvWneo/iEPrxHCbpO0dCSTmNzd3bSl0/oAysU71FizkA+5QyAdxUsVV671xjP3/AVUn5fwRYl1OatCnYodJ18fovRLGMszXsUaxhGY3N3Y0UL+ZTerKeYDxgMO5Ts+7FiPcXoOjeJ29CSzmN8lTUMg4+lzQucQaBB8Sm9+YDBVJLPeooJNCgCDYrXItQP6bsvOEQci0atlrt6kGoSXo3vRKFWtJ7+6vVhqLaqMPEczb77dtJ33065phIcd0TxnxSC0EF2s1MjFbk8DFFIFQ+/JuIEXz/zbzxQdhNf2PgKo3mPLRRTTR6n6zxe50tR+0iODhuMUDrsdE9a3N2J2iIsoNSv4anI1NRISFZN1iKRcxDpmJYOG62cSSQoBQXGR1SG2qLPjt4+7JiDFBCfDqsqA9K+KC0oV0bPdL+THtmKfJ2+wEmHwMn9obzoCM9qQWp+R5l1PlXYeNCDFGrJabALPlwxEj6n4dlSWA/16Q/BQay92cXRqek9KXR+5FMDtUj0MtssG81rFbBX7CbAV3maOdxE948b6fZIIwdeyoQb8cRGVk8SSqylDhayhRar9/qWobw+Fn9Maiawox/MnYUieoqAp+A61eU36plwKRKd8td9XM7EIMfS2r5Q9N23U+5hEDU1Jh4ms5gfB34DwMqeJ7eqj1jYf6xxADvID/9PyTByqSWOPlNU/N/V53M8m9hzdQYVDGTGvofZsG8o9ev7od4CTgfGAht6JBb5TGzeIiJC7ZnWidcC9cNvM5MpJaf1tXyVx/gqj/E0lwP4JlCKYK+8a6G7UNFzwZMBzjPvs+XjciPUeEKrvkEKhwtSzuXhhtWKxU98DUypq8Fs4uslf6MPn7GSsZTtEY5JPEW7ZKD3JNauXeWlLwkvBXK4ozcJnkgfOgON1uZeqs1Qs3mANyZ/TmbUfTu4xEibcRvQF0aNf4sA3Xn/X+Ok9Mr2W8Ayd48c/aU2QaPcQ3YKKXQ22KeZtUiuVz4yH1cINMIeguk3Xl7ZVJfjV8pd3PdMdCpoxrFSrqHnbc1R29SMMw7oBWGb2gWhuYdX6sLYE6vrI6/WURglPdnHl7a+AUuAZqAeTgu8CwOlr/SqzzgmZx00Q9befZALmXn1sAwYAqP/vS6YnpwLbITMpQfIrK+nX+7bnNn4tvw2AcT52wsTA2/K8bIl0jax/k3ZvxCohZFHfQg5MLDXDum7Go5u/Eicl3zESQ3ACdkfQR2MzPpQJhta4HKekRzcbKARvhR4A4rg6JVNHJ27SfqoxXOAzmwx4xsu68dlv0/hRV8B4HRWSqPViHMZ6dz69KXsJEWocFMsJEMtjtpHK6iwu3r2kyhnQWncvEwPfWHUVFGGraCYnZdm0+/79ZCDnNdM5L+ZDvSCPuxOelyHM7qq3TzktFil1FCl1JtKqQ/Na1iFYKVUd6XUHKXUJqVUuVJqum/beUqplUqpZqVUctnnKXi4ht9xDb+LuK0zUDMThZ96qgbJEgnx6Jp2X6V+3alLk6RopymkkEIKyUGtEluh1LaoOfTx6KYgAi9qEqTXNXhLzOOqWahuyLImWF02mkKs8kWtulc30r26MaqibCSaq8U0Hoka6VSfkyWF9oG6Dq/OZELty1qvQm+viYSUW+ONIwGKa1vGmkLXQWeIXP4RmKO1/rtS6puItlsoYfAKYDASr8sF3lNKvai1rgA2IxV+LwF6HbRRHwKo70DGbz9l2JQNlNVJhPLOhbM5ZcprDGMDFRTz2e9NxPKn0ftprdrrFfyZBUoUCPxKqXOTlEWPW6D+g+CIZTy1zmTpsPGg1B0w8Gdx2yUSlbsRUe7V+hZAFErDru5ExmRyG+NFC3VRmuRCrhZqlR/J/k5hfceIosb7TRMprh3xmDEoU0HFrc1vEWmE/tyosPE9E4CKNIlazhxH3uxKaj4sgrfSyaj/1Iz9/jar3h4J0CgCXXAGNoXOj130pSi7RiJPuUiUrQ4X+cp0tNhIGMFalj4+Weirl/VD+e6zfkbOgCwRytvKYPrs+QR6Rujsb/LiqYU+IveOM3gh4rG7ndPIga9IFFXPFLrhpUgB+qdejk1/XLTvIok2WSf4q3KsXT37eUqoxxzYTu16J6A2kX9Ftf0TeIU5rISVyNPhFqA7EgHciEQas3GRyWYk4teMnOchpq1JU+Ao0z7PbKsx++5FIlq2r0xznDoclbne9FmF/J7ZCOUyYPo2Kq70Qp4CG4FBQDWiLp5njpfrG0udeV8PNJj+e5nPvcz3AImyNfvWD4Sxe96VbZ+fFdMeKDULro2w/djwVQcLTu3VZzOj0WGfDI68Wjwz5HIonwUfyOeaByRCr68DVXYq/At63vQA/d6tx5R6daI+mcjvMwLOIIpS0RGKrmo3D2nkUimVB4wB/mFW/QMYo1TYHNplwCNa6wNa64+BZ4CvAWity7XW7+FuOUc0Ls16kp7s4/icTRyfs4mTprzD25vP4NGFM7iMx/n+T+/2KLPJ4CF+4Csy7XA+izh90ItMHfSXdhh9YtAlkeXDQQyjqgx4uYWhqGKg9zCgN8ti4Z+J1lPiOIdb7pD99U/ahZ5byBbUnaDubHNXQYj1PfI9WYXIHlrozHksyLlbgWqrykBYn7EjA+omWToKuiiN7FN38r4ax9dn/40buY+8oZXkTamk6cGjacq+v+MOfhiihbR2X1JIoa1YywhxJGoQp6MGcS4KgXWE5d2NGvOWqMTyJ84LlXAF9CL3IB7pHpVPJb1772EFZ6KXQN+cXd5ioSI8oJ+uJ0hpkH8BO6Fbvok2rZwVUSVWnw0c4+7VB/rdw4H/ZMJKyF4WoQbJ07NkCUHuCduZxwy2ek/9IfgdfOFjKUmSwR7nDA7Bo5KShnvKykacM+v0fYY4ZJWIQ1FlFpsHm4fQSK16aCbOgbQOZ4PZbo9lndKBiKPXgjighWap8X9BYJTpMx9xMi3Nda9ZPjP7ZyPXyF7Tz2fm+PaY2eZ46aa/z4Be8GLvc+iV+QtAromYAn0PzgoqCwJQULKFghLDqgqJ/MV65lEPmyXHlUXxoyU/01ts22hQ94aIDYUyn26XJWoU9Nul8juuFqdSX+f7f3wZVnKynLcWs2Qjv/VRgGGL7yOdfQnoRxxJ6Ip281CPcACwXWvdAqC1blFKVZn1H/vaFQEf+T5XQrS75BEMofzTl10MRmZQF1z3HY5/4APOGvQqr3MGqxeeGrebZCOWvWliwUIRv9HtwI7t7HUDtY4ftUwU95ks/sfbqKKbSH5jaNv8Nh0xOcT7TQ9l5C/e2Pr0/Iw+upwqCkmjhZqZRZw8exkDfrqVdy9IRSxTSKGz43yeF8fBRkhAnByT50U6vGYUUD+jj7dfgZ7GWkx08jLiYiuDAcIm7KrNk7NHVY1QucsvsOdKkGSGOa816i88RZx75mioP83ke74DjJW28cqYvFpmbH+IIyM1L6UkyQekiWPwPOKkbcFFE99HnLoA8gS2FjnfhbB/I/RIh4YGyPJNcNc9ATmjTLtG2F8PPYzj2GQcmwwbxbS/nf28DIlEFiFPq7W+QRfiIqi9zJhsFNQ6otk4h3Yr4lDmIc7jQOCvpp3tf53pbzjigDabc9AdLtz6ErryJVTRL6KdXjmXnZDlovW1qHvjt+v2l+jUWr1RXq0AVST0Ybf8FgXIb1CJnFsbMc6GVzgL8Kr/pHCE4pDnXB5MKKWuNvmZKz/++OP4O3QiJHJj6EyIJn/ersc4hPmQSski76Pn7RyUsRzkvMtYkePOAjWZIGpbm/tL5bV6wgTtvaSQQmeBGgfqVlmitvFFnc7lWc7l2fjlQBJgaURCaPmLtmACr8Rto9Rz7Xa8roRIpUMuZT5KvYhSL3bMMR+QxfucZLmTUJTwXvxjxnAsU4iMrmo3D3XkcivQXynV3UQtLelha0i7SuA4ZI4OwiOZCUFr/TDwMMDYsWMPD4UaHy6a8gSPbp4OAUXPY0Q44KwH/sVFLOZHm//A8YPKOH7KB5Sb3L7W5rn58TzmCT0GhdSK/XSUsqk/n+8VvgxFQo99NVp7I+Ljp8RCYufBOon+nNL2QBUDIcYDSzJQahkAWp8Ws52dTY8GPTLm5uC2vnN3MB1LncSkiv86UX9N7jjb1Aq2/fsKep7UAL+cxbvfLOWcoc9yysjXeHvhmcl1lkIKKRxUBOguEbY05Omg1ry3dMdmuB55Ev8VP6WafNgLO1YNlEhLFEpibst0arvPRSnJs1MzgBuhpqyI7ME7w3MuV86i286bOfCfTLLP2knffSb/0SCSTQ61S1qXcgYvmBzNEWSfsFPyKmcA00vhLeDi4Jz6SBFLvzP7BS33MF0Cl5kqk49HiR3lUy3RP5vvaCmoq4E62LhZhFdz6mFtvXmIrJJgbQOQAWxfK331R9ZvXCn7bEce5HbXQ0alfM4B+jRCoEb2BxHszsqEhkaoALJqpN8eyGeA/huhCdhv1mchQc7iNKgNQG9kbD3SYH9A+qtuhJw6CASgYR0UD8JRcy2NGtOZzdUcALTAooFWb6IUpWaxQ80L++3sdRIJNl1HrTYrolxzofCKNCVSrCmGadaR0ktCxI4PPGVyfyOIEQVReXe5z6frCcALvKHymds8nXvqfw47kGtoBJIPC/IUP0pK3KRw5OOQOpda6xql1GrgG8Dfzet7Jq/SjyeAGUqphchf/mKgSz3xXXDTQhYv/BoZ537KiKy1vL1ZKD5bcwbwOJfxy0E/5ufK0H30iYdwpGYIHTzD9QpfBp0cvbc94acHt7cjmiwOdrkPXXSo56TiQy9KvO1WBjNdP8+7vMXqe0/ll3o3P18ILz15Iefc+iznTHmWF7mw4wZ7mKCrSqqn0PnxPOfzLf4pFMdK5ClhL+I4jAKyoJzjAVhdZupYjomgemnKh8Sk0t8H+hGAfhQaD0FruT9Ey1WLlb8ZC/Vnmaf/5faYrcNyQ3mNB60v4BVGSBkQcPlzIDTSGvG7AkB5vTh8IE4eOCfP+jgBsy3H18Zus47lmFyoqJXtWchDabV534RzNKsbYQ/BDmj/bNheL07i9s2yb0629BcAhhfCi1XiN+akQY6RfMwpQq6T7jKIhq1yDK9zS6+2dOA02D3Y0alDHcgvjH+FN1WwUM2TXNGhZaxCHcCES4f49/HlBZcxGuIp3I6SCQp/xNSje2u4mxvEUT8JOX9rEYc9D4+OfAv/C4hyZ1dAV7WbnYEW+z3g+0qpD4Hvm88opZYopWwVoUeR+Y+NyLzdbK0lLqWUOl1JuOkm4Bql1Dal1PkH+0t0ZvgTuAFUb1k65FgxKJqxyp0kg/G8xvhDrDiWyDlMhq4aqdzLwaC7TmcO05nTsQfxQRXK0ur9i2Q52FCvyZJCCikcGfA7lqHiLGpBOAXQb3NcZNG0T8Bp9Odp2vfDWMMwElNVK2Y9xdGKVgJqtiwRt0WwVbakRKqsRMdB3etSmpR60FNtjbnPA5GvPxDqqyfwE6fciW3Xu+FTejd86tb/WJbWInQCRam5QgtuBe07hSMXhzwEobVeD4SVjNVaT/K9bwEiVoTVWr/BIRV5Pjh47oEp0A9uzrqH3uxh3yDh4+yhN9cxh9WM5ofaCcgAkeWwOwAHgw6bDELpsEnt64tCRqPXxoJSs/iuPoY/rXFlP1RlgB8W3cMDddfxj5zL+Ql3s2nMibCrdeP9rl5t3sWmxbYHEi2B0hq0ha6tZhr6q3E0dWXbhKL+tMD8XpcG+PmKe7h1ykzu33MDe+jNmzMnwrmt7/tIQlecgU2h8+MYakU//q/IU00VEikZhCTZDBJhOoBRJW950UuAr5f8jdcNEapgtjiYOxYIhbGgWxWB5mtMyw855ZHX6OnVq4DjKecN38xtS77QCvueJbmS9emfgnbcwzz9be993307yY9UygSJBqmlwC/84j+RcSnzzTspWzKBV1jORBct9TmWflruP6P015N9ErEDEWIJmOVdJKKHUFGbgD44gV5LiW3y9dUHiVAGkDymEUh0s9hEIhuAdbWy326k3pw93KpGWZ8GVDTK9lN6QdNe6bsW6NMsbZZtljFkANuN6E8DsL1KaLi9gZp66J8LdfVQVwk5OXjKtFnjceJAduciHMW6CCYRPTT45oKJMH+i8O/i4YoHRWAngbQl68jZ6yoS/A6r1hEfk6VdhBqWSu03+/Xw6pzqj8FWm7ciPgBHFX8CwJ7dGXS7pJED8zPhR3OD+lvOBBjye1iChILyzIb3kRJsW+AGfm9WhlcnOFLRFe3mIXcuU0gQZ8FvSq5n9r6fA1C/zWiBfqaoHXkMVRRE3TW0ZpHe00FjJDZFM1Kpk9ZgRSdgRCdyDo+dUs7d/JhvVD4Rv78IDvrBoLu2tfZlstDRS80ltn8lQXUr2wt6qkRxX+Usdhf14b6GG5mQtZyXxlwoKs0vdn6V445GV63XlULnRx7V8kBr8wOHIA+3RYjTUCu1MAGqyeeUEolCii1xuYejeYvV6nnAPvSP8+VV9vMijkH57NqpwFpI7cl1Qev8+1ihng1ET3wPdSo/UobZEoVqqWdGFu2JZquilb4Y0bJWzqFlmGxEnhSzgAaXC5mDOIrD0+C5gDiOYHIkzfsMnIN4AuJ41gHrGuX9CTjnsz+OlVqH+CW7geJeUL5XttftdamQ24DqvS7vMgOhyb5t8kBzEBptbyAvG5qanWNaHTAU2b1mcI3Id7ZcuWqEMhtAJifqYU+BeOlHRzqXUyML6vjzHGM5fkH7XBedJROJ+hotGOrlapoR2ycMfXdCwwjD7t6mhrqdrLgJuGm69K3mAv3lf2irjAxBfkRbp/RdeS0zVPJDn7x1cNBV7WZnoMWmEAfJUCMttcfPiU8WY1nmLfb4iYyhtRQbNbP1DoOaJ0t7QP1KlkRha0jezs1cw+84l2dbddyxLEM9fujovq1VMuxoKDWrTb+vvW5VVTOqqjl223i5Jrgobgrtjmyl1MNKqYsO9UBS6FqIVQfY4nrujU5TNPdOa/vyqYxYa1DNkAVcVAhi271pPMI02pBoGQMpKmzr0Vp76V0rIfsmosB6yNJBfNRpdS9BSspWrVYlWiw7hS6FVOTycEEvzY8+nMPFQx+jkCoe4EZZ/yL8qHwOjNIUDKoI3uekyKpfnQVuljWy2ECkSJEyM3d6knWkB3bI2CA6XVU9DhdcthA3zenwhl7Makbxh5HTOYUVbGUAVxfN4bcrbmHp+DMoo4Q+7OYXq26hkCoe4pqwPj5gMCctL+e4Cev5aOYJMhbfuejoaKOdSNBTwumw1o5EUpr1/zatQcSoQCT8Uqg8zI5QTC4G1MLY0eASyvjTndeTffNOmnb1oTYrF96bD+8B/yeUM0vH7YoQYYIOMRn1Wrt59hRSSBZN9BbK5hYkZLURoTPWAqcCp8MAI0I/ApEyXXrnZPJudY6lOFynwgenUlAiOZjFVDDadxz/vUkpH2cwArQeHnVb/Yn9RL4wBOpr5s0IuDLE8dR6OErNYjCXAniq8E9yBWqkRKb0mjjCPS+VhimE3s7NANzGPQC82v0sJtcvFcGbZqTm47+RyJ75++emwboAnJYLj9cKnXU3LmJo78xWyXU9EqW0dNpTTDSyxnT/KhKZbELqMzeZpRrI2Sv9Zpj9bXTTo9L2gh4mgrndiAzl46KVPbpDRT0UZwsltgnIT4MVlTC8F2TlIxHKIUiUDeCLiIpwM0IRHgFVFPBbbiS0mIGXv/icdRpLvUl+TyE2gknTujSqY6nPFFt7oDoTPdJFHSO2TTQiOkFott2r/fs6um3ex/a/UITeaCnUkSm7g/mASLHHTQwWpkA9ck5t93XIBdAMGxia0HiPFHSg3ezU6Hrf+DDEsVPKKTR3va0MYDwruHjQ4wAU31TBbzf/FHA3MmibU7kyJJcvUXpmNJpN3P3a8LBeMG1L0PduC/RPk2tfs7SIN84by1pGMJnFPMml7KIvc7ieM0wE8ih2k0YLfE7zJJdyNLu4iMWcyWusYDznIjWw3h1wGm/PO5MLph38goqdsegzRB+X1ok5le66TY8bedcPQDHf56pb/0gtuWwtGsCGhmHw1KmifLcNota+SSGFFA4piqkQRyAdcQaacYmAq4HToM/ndgNQSy4llHHlrY8wjxlB/RxbUg4E50i9x2hyL99uPvUPap9RfwMAewwPNB/Iu7oybIIsSOn1T2ZdnOyODQyL3aC12An67Oibj2eTUGIrEedgHa7ESxXsb5F8xbwaWFUrqq09kNNt68PlmNc68/60NFgWEJZkH2D3XqcEW4E4mODUZ62/1wSUA+fmwppaV44EhHq7H9i+V5zFpoD83P0Rp3RbvYhxVJh1FSan8lhD6x1fCDRD3TrIGYjsbB99bCKppc3Ww7C8D3mQa5mvI7Ng4trR+eHbdYK1wHXs4Hq7IOyaDf0+5vlOHEvfM+Z1I1ELZLa5D48559LSY2sQx3IrkAOjWd3uY0+h8yFFiz1C0RmojuplWZLeT8kSC3OY3roxJXhe1A2yBO/7YLuo3bYX1CKzRFCabVV/B+GaSYSGlkLnRVcsBp3CkYtkUzkSvX+pGXGboNY4JkjMdlEmdyUKFazcGYtKm8iYUogPpbZ59bCD1kegTsdLpRjBO4zwyrcfOtiKApbq6q2/N1jxNmgfNdfkWqYQDx1kNzt1OknKuezkKOE9tt07mLfXnMlEXuHdhafRl128su8sXtl3Fr3pQHWeNsAfKRpAOQMoD2uznIlx62+pQU61FYRyaWmXP+OOdotaRsMN3B1WruP0y17guaVTeOq8STzP+czhOi7kWcaykil1CzmD13idM8mjhgoG8hpn8NtB3+Mz+nB/ww30ZRdnP7CctYzwbhU/nHAXP5p2OwOp4KQl5fD/RAGx2/WNdLu+kZ8xMyhvp61Qj5vlTlmC0J/QCXoPemRkSiwE/zatQc3ZRdScHZkSa8cbdsxK4Kr4Obt6SvwIfAUn8Ncl36OMEnqyj6YXj4ZLFqK7KThnFjyJLF0Utl5XyrlMobNhDxkSscwET8y1BYk+DQHqRMlyORN4V73Io5Nn8KJPAjqfSjhxFtvUfLZVFrOjcgA7rhvIm9eJjfqkW396dtsXdEyth7An62j6ZO32dAM+qc6lZoaPOrtUlqD9zowetdRPAE9ug9JtvK1e4e0pwQ21LqWcE9mkgh0SvUaWUKhpIQ70P8Kjlrdxj0eJVYW+qG0hcj7ted0LNELFXlhVI7ouDUhgakS2UF/9dS+bEDOyG1gRcLTXHkg0MQfISHN1Me22BrPUItvyCI5aZpmlAifkUxsQJdgsIKOXRD6LkaCjpdH2AIbkikptHfKd9gcgZzhCgc1DRHy6I7VRMesHApVQ1r2Esu7B9KwBlHPs3eVhIjndaWHHIh+TrBJRh98FXBGuJRCWo6tmwednRbW1QW3PdkvQGCJMPrTkZ8ZUnk0E5ZzoUbLtcfRU4EU4g9dhKHIuC82Sg/wnuwNp0JPmIMXlIx0daDfrtdZXa60XH+rvGAkpWuzhgGI4b+QiVjCec6aIaMyEnqIrPZfp9Oy72zQUbs5E/sVZejyv8OWED6GMDdNt0JOx0TNP+XQXMCr5iJqOsos/3+96Wjdj5qd6WPEcqz6rKqW8sy5KQ98PTzCZ1znDa3+lTqMPtRzNLn5xnpR82U0fJrOYMkp4lklclvM4vWnip9xFLbmsZQQjWcsOCrmIxTx/1PmUUMYl183nSh71ci6fbzifF7K+xJNcytBJayieVMEjzKB7fgsPcU3QQ7j6s/ku3/HWuG0JyJsncm46CrHyKXUSUe5Ey9QkXc7mE9h0w4ls+v0sbG6N6r0Xnk+HwfbC7JjSOymkkELr0IfPJF8uHaHkZSMeSz3iGA2Ai5Aw0tz6RYDU/ftuyRwWYyb+DW3xnKJnKaOEHTZfTs2CM0qBgfD6LPigVO4AJniV51N1PTAnE26UbaFO5UT+BeDZ5Yh56+OAscfCSrmPj1r4ltniSqfIPf44DvR7AtRVqFGyXq8ijOYbBFOiQ5WBZSZGomXmUivnrReiopqJ+4yotVYjzl0AUYl90VBObW6kdTLtk8lgxLmzpUsGm/0zAuLoVSNPL/mIMxgwrzZ/0zqe4JzFYtwDbB2wsVZyQav3Sn7lqnoYky1VpJqahYpbV++c1IatkDUQuW4yzVJnOlyETEocBWyFTy/NYANDKWUWx+nPqOCEsPN28tRl5p1wa4+dXM5WBgOgcoDbw8/1+2oJPGRKxhiaqfZHDnNA14XvlwziPRPYqKS+CQipLECxr90088ZcilpPD3Je9Z/hq5zBTYEH5LoZhcw4DEImJoqATBjGh63/MikcNkg5l50cu+jLRVOe4LV9ZzCh53KeWzCF2qm5nrTxjdzH//zwPmncTqqp7QE9xTmb9gbbqn7aULOyPXAdc/hvE7WcxBJ6s4dzeYlq8rhk0hLeXDKa3uzh8ws28NzUiVxQ+QKktXBO4YvkU80ZvMbvkWhlIVV8v9vvWcxFtNCdAWzld6Y8y/1Z3+cebmYtIyihjHIG8wpnAfDLJXdw0aQn+N9HbqScwfzpz20X9NGXtbmLg4pY421vgZ3c326n+a7r+eyuYyANunVv5MDgnnC+cSpj63gcsdDQJSXVU+j82EVf+g+pFaepOy7ny9QxpAX+itSY7Ju1C4AzeI3dHCVRprPFkTznZZm8rWIg6r+BE+OnCVRTBOYe1F4qrNYRGM1bUVp8BCqBycBv4hzJhfHHp6ukNIhXnqMecbgKzeeNEm0ckwMNDbBqL6xCHMP+SNmQ7Xudj5aDOJS9Ed92t1n3NlJ/0kYph5s+0hBHMgeXMmtFgoyMW1i5kjqcA7ouII5rUzMMSYPdjdAnUxxL+7Cbkw097IdaKU+SkYN4tDagNsoc2IjSHL2+iR0nFPI9HuIW7vPOl//Zxq9VMZr3zDvfs89txlG8zve7TXPv/YrlWpeKQ5oAuv3DH510UUkboYw0FZpw9LJf7M2h/TzN5VD/DRnGvxFhpPXIf/EtYDhUnFwMEE+274hBV7WbKVpsCh2O9soJDOt3ZsfkCaqZMN8o8nVmRKKJHvQx3GSWJH7jaG0TLXkTtd82lLRJIYUUUrCwap+JIKEcfh9lVY1zS7L9tAWJlLxIIT4ilZo5qMcuJGZpEn/up6c+nCCu4M9cwZ8Tatt3305Hu35AJkJu5K7kDpjCEYtU5LIT4wxeYBrL+dXMUrhKc8WgBeye2ocSynh4hUS8ysav5sp5j/Bo7xmoJ6VgcjJ0WAv9mnXU4tMjw+ivto8on9vLsYyVf+CvD2lprvEQ2k4XpTGdOfzJlPrYR08WM5kbuB8Qpd4VjOda9RO+q1/m50t+xuucwSSW8Pepl7KPnrxZNI7e7GHkrz+k/CfHMvjjbfxg4cPMuuanosKHlLxYywhO3LGJsQVvALCQKYzjHaaygFc5i3XLR8MEeJRpMBf+POk7zOF6ntx3Cb/8zs38/HGTI2Oi1dpQVjqr8mu0ayYZGq8ylB29PDxaGc2pTDqq+a1Z5E77KlsDA+BCYLtQ3S6e/RjPfOPyJDs70tA1JdVT6PyoJRf2bpKIUyXCLsgzS4u0uQyZjdvAMHbTR6i0BgUvi+q4UgMo0H1cxx+4+5KoofvuUyXu/mVFfvJKoKasiNPPe4E3Fn1J1k2upGZNEa+u+TKnjEws76R7dSMt+ZmsnmE4iEajp+++nW48B8JTO8JgA582gLZaqLDKRmSnht93N3E8/bvXCpWxBYnepSGqsd0hLQ221ziV11VmvzogsNdRYjG75abBtoBEFhtwCrKWHlsHDM6GtYaymmPW+dVk801/GWY49j1IOZG1e51CbX4hVFRJNHMbMKTRRUiLAxLN3G87AfKH+L5nlm/gvcy6HNh+Qm7YeYoE9TDwDMDX0Evcel0H6sd4ZUv03SIQCL5SIqOC+0qUDhstCqkKEYbupaWSy+tfj0SpwdBhQ/e1zxN+NpyPMuu/DsNQi6cszGqEXmz+g2zBSwVK7CntSEDXtJtd7xsfZvjVwlKGzl5DC92Zz1Te2Hwuq/uNFooK8OjCzi8BF+pQtFu/s4HZYhz9zmVb8c/Zk9nKAF7kHIbxIcvNXfUMXmcCy7lUP8lyJjCV+fSmie/xIPP5JkcvbpIOBgJjYfBft/HaVadwxtfeprT8V+wcnM1QNrCH3gzlQ0iDuxFr04fd/B//RV8+ZQRreXXCWh7ie1zPHCYsXM5I1jCB5QzuuYnFTOapyybxOmfy23m3tNv3bg20pyKX+G8c7XpItORNzL7bgSL7oXqak/QkCsfvYOmQyQzf+B4ns5JnzurazqUVJkghhU6JFsQBAvF66s06c8muYQQAF/M0t3EPE0wS4o7JRnjFKHvuULvJ030TOqSdFLPOZc3LEk76sGQY1nftyy76jtzFBkaixsgjtV4V3tdfdRkP8Borq09O6NitQSKlL3bRV85bGnLuMhGHPRcogsC/IScT9hthnMGIA9kQgLVgzrJgN7A2II6f8dOCamA2IA5kucnZrMPQa037NYCdU641+1g/2fpedXtlDiELcVJJcxTaIaZEyX6cE9o/AMV50NQIdY04x6cI77kKkOvH5Kn2X1bLyaetlHN4CCvy6qtBPeanwoY7lnqqcyC5I7n+5yNCDvGC3PVzhS+r54FSq4BVrD5rOqeUrHB0Yutgvo/jL58Nt3Ob6eU74R0fgeiqdjNFi00hKSRMfWwjxfFgoRAplq2mwCLOP9TDaTViUar8ardKrUCpFVH7SJaaFWufSPTXZGmrHVUeRQ2RpTW4l7bnvKaQQgqHDpFor5cyP+5+6XUNpNdJ1l+yZUzaovTdGqXwSPfNaNTYVFmJxKF8ZZZjlaax9NlCtnQYJdlGP73Pk2QJa/eAbX9oy9Ol0HWQilx2YmxiMFOn/JnnD5xP7c5jOLlwJUMHreVG7uPaXX+RRpc8B4DWFyTcb0TKA8lRKiNFn6wzmUwE6nwzXfw8kxPfKQLenukjWbQhenUD97ObPuwhg/v5AeUMZq6pqdmbPfRhN/dwM7/mx5zw3EcEToMlzZfAv2HRpecxuXwpjQO6kdnrAM+efQ4XLn4JhkD5Cccy+LFtNE+G5b2/wFl1b/LB547n5JZ3Ach6ax+cBjXkM4FlNJHB97mf5zmf1YxiOnP55YI7mDr1z0xgOZsYzFYGcPK0ZbyrXgTEiHV0aRbAq0EaTdU3EvQgFdGxtNdcJNqsCr0+l8fov51EfbQuRRXBaB7h0appHPWfT9i6ZwA//8o9sBZ+83HXdiy74gxsCp0fx7NJREMM1Q/LYtyLKMfWwwCj/mxRQTE7ygbCXXBJiXEsx44k46VPqZl8tHy+C84pedbscaG3r1KzPMrsGbxA8z6J1406W3ioa6pH0O0cobaqcSb2Ngo4Gah1jqL2laS8aorQdrV/UvZrgI/SuKtnP/DZ6Q37hsqbnmZcU4CtkPeOcXhKxZn4qy7jqgUuST+7+RqioS+7gtViG5Fz2B32r4TqgEQDrehONfJ5HSLesw5HWS0263YjNNcMJICVZbZZcZ7tSMQyDVemZDsuyllr9s8CskywLgsR7qk1FNceaVBRD031MDxboqEZAREg6hGQEiqnFUFdFVTXiLBPf1t+BDPwc8z7GkTcZzxeBHwAWxneoyLqeQM45erX4Gp4e/MZ8GLIM9Lo4Mix1td6ExS6JDwi6gn8VOBEmaqsqnqm51iqhyNEU0eZ12ENMEe4vsrazx2zYFmpqMRa5dcJzgHV17lnQ+WzudqvJNvXvc2oHwgMpCl7DRP0chF/eh85n72Q/2UmnpLzWhPb7vgnlc6Drmg3U85lJ0YfdrOSsXy/2+9ZUXgKA6ngXcaykrGu0VMXtAudMFEkSnE9mGNqC6oYyDDWcN3Cm8mjhs9ft4GzHvgX/+ByXudMasnlehP1+4Rj6Mun3ModjHv5fbZcUMDArTvYMqCA6kvzuahuKWRCevMBdA4cTzlrLhpKIVUMfnobiy4/jwksZ+LHb1L+uWMppIrF3UUG/4qjnpK8IeDMLW8zLPtPPJ5zMdOZy1pGMI8r+fXUG+jDbq5VxazTf6GMEjLYw5W6MKhmWyjm+iJtWo+P2q69y5eEXStXtaKUx99KvXzS9oSOpfj6BOyhN/wxnc/6ptPzqgZ6PtnAvjey+NGiOei2zYOkkEIK7YwPGUr/ojeFfpeGeCMBxCmqA6pgH+le+x1lwY+2Ty28wnvfdM7RaFNGMjQy2ZyT5aI/JzoHc0TPtbzOl1AzhS7Y7Xofv9KUFdHvmIm0ZG3j10CfF79ZGKbL8fQj8Dcuw2MjTjVOqh/fnu693UVfOW+ViKOwGnEONooDl4M4eiCOZR3iPObjHihtCZL9uBqW+3F5lk2I81iHOJy2hEk1pv4l4mwGkLzJYqDcbFtnTm0Dks5nj/eRcXj7A2/Xu7Fk+Gi5GytdXc2KehiSZxplh5y7dITWmQ7kwqdnZrCWkfxz/2S+ZvnTRC+tpQcpMA6fKpRrzeY4the0vjZMWEgvAaX+arZfhU0iVTcgDuey9tFkiESv1noko7mRbzX/UyYkinD1LdchP0gdbDhvWLuMIYXOjZRzmUIY/HTBmA/hhwHiCcaU8B4cQbNKamb0KJ4yeT56zMEbz8GGLSSdTM3MpI8R4xwfyeiquSMpdD3YaFLQujZSClUZ8Fj8dpZm2byvJ6G1IKLZMxXjflTCe/w0dCwmIUofiD+eFA4PRKLDQuxrI2L7KMw2tSr82UFNg4w/JNd/V0NXtZsp57KTQpXAcWU9OY3lLOYiyvcdz3ImMLbnu2H0HtVbXvWexPoOvWkE9ZVAwn/UfiPMyMajyobSYa/hdwA8vPAHEffzDPxHP5PtRXIJJ/qwrwaZ8fjqZ17EIvqwm1c5iwcf+DblHM+d/IytDOAG7mc4Mn3d76/1BKZAWj2QCwO37IDFsPuGPpz63Gpeu+AU+rCb0eXr+GDw8Zz4y00wHVgJbBGV2PcYxYDPbeWE8o8I5MEVzU8B8NjnL+ayumcAeG3gKZy5+G3Ov+h5XucMpvEo9/IjXucMNjCMs/R4nqeK8ayggmLO4UW+zV84e2YM3mgUzEIEgUqTkBBPhg4bhOPNjxTJ0Y+wrb0ilsqo4TnxoQhtzAS0roSjRnzCkoZJMl3eF/r03U0g0J2ML++h/vY4hb+OYGhUl6zXlULnx/FsEoVYW58RJBrVC5k7zIZif56lVUv9oNRRAxuAKS5aqSYD+fASF3LeIy5a5e1n+nnDRAh5BLhd3rbMdkIrBXpacKT0pMj2Si+M4AhYSmyUyGX9qeZ+dLHrw8sBrHXtfsUtMWtGa1/1iWbSvYgda5EIVDUwCNjsaK17TJPdSKSxwrxmIQFkcAqxGUjk8jjzmmW2nYBPmMesP9aI8KxHopBWIXZEL6j21avsb4a1HxfpzMCpzNYCxZkS6eyP0GMJQP5wWLMORg6B/TXQI9McPB0JrYJcN/UIrToXeu9pYnXvUYAwlaPBr9prryMbsQyNguuS8AmMoO02TzJE3TUuHroKAkJz1ZZae4yhvhYCO34t/emfSP/LDf11b3A36jvgkeROjX64pmx5HlU8xU/1dt4ZfBLjMt+X/10d8moDvMMT/A5HELqq3Uw5l50Yw/iQBTO/wwWzF/Ju+WlcXfI7PqMPc5nOj6aIFfvNh7fF6SUc/pw5z1nLMAbyYmAc6A5IQLf1k+YnqRIWy0FVZXBKSXQ5dv8Mr1ILYeAU8/7XXKfT+Cq7KKaCEsp4kkuZwHLO4hWe4avcv/4nTtYeaPheT7L+uA+mQGAgbMg6nhNzNjGy/EMYAGf+520aT+gGVXDi5k2Sr1ELjed1I3PIAQqaqyigior0gbw2+BTOXPo2288TKuxYVlKbcxR99nzGyc0roRmWM4ERrGXg+zvYclIBl//9GZ745kX84qa7uOjexcznUibyKkutENHF9nvON9/dUb0Ajhuz3rw7Ifw83mnO163Rf4fWwP/bHYwyKe0RsfzsK8dw7Mvl8J1ats0czKgpq3npxQsZPuk9xs9+GwA1Y3JQvlQKKaRw6LCBoRRtrJEHZKtM2UjQA/MPTEkpgALd16nEmnIdnjNgHvgVQDWct0gcy7BoYUgks+++naCfNtvESzldTwAGU1BiSp3skLb5VHqUytBoZM3sIi9XMvSYWpeiZosTmn3LTrLfikBxtXjVlrMYHbbJH7FUmzW8peBJ+fzGwipxrKz06xs45dSjIKtGHLremHxL5EGyv3nf33ecXOPQVSMOn3Uky3EO5mDEAf0Ik8eZA4tr5H0+4rQGgG17JQdzuPHbt5lJBFtBpIcZ4pBMycXMCMD+FumnwTTsAaxbJw5sw1bISEeukyyEAjzADLAK51iZnM4JJD9525FQajFD9XHm00iv9EkYVTZU66DgJ+gqy9oC7/roZdrPM46lH285R1XNhOGz3zNtR6O+PBKuEDGoLRQz7uX35fxlIyc/D9iKl3N5Fq+07guncFgh5Vx2UmSv3slWBvCF2a+wlQEcX/IBA9hKBQO5mbt5lYkAXDz0MZ7e034lEtrbqUw29/IhJGL5UJT9gpzFJJT6PGxZiNZTPAe7mZ5s4niGsYFhbKCMEkooYyoLJM+kDhZeL2JJTfTmii8+Bf+GTy7P5sQ5myTpowqax0L6RshcegCyYf15x7GLozn1Z6vJvPIAc074Lle2PEqf+n2cuHUT2wfv4tnzzuHCh16SgQyHd848iXHPv0/PLx5gy6UF9GUXu+jLsyeViGH7InztlsVk/OJTashj7b4RXNhzCRsYxrszT+OHs+9iE8ezOMpXr4jgVNqI5S9acSrbEx3peMaKWHptfIJ/+mUopDs7qgrhUthNH06f9ALjWcFqRvPSjAujd3SEoyvW60qh8+NL778hYjnLEGdhFJLn1Yg83ObAHJN7fvaC5fIgbcga55UsYmlZeCK19oKVsZOs9SOu7l9281epv6uf5xyC5N6/jql5+UhkZVGvL+sIzGz9/bCaIlRO/HYxkYucwxrEDqYh0afVxpHMhe21rialjVjWEVyXclVAnMcA4lCmIQ6eFfaxeZXg6lS+WiM/WROSb5mDOLP5iJNoncoas81WJbWR1IZGyefsA5TvhTF5UpczLxu210s0c00jjEwXJ7RHC5IbWIc3kUwhLuc0E3ruhZ69m5M7h2+YVzNZ4U1aRBZrj4pkczVjlUqJ1Jcn1OMT7PFHshNBRv0lNO08mol8W5R6VpsNttRLjnkfEKFKgHHJHeKwRle0m6lSJCm0GmfwAmfwQsRtycq0B+2r6lCqzisTErFNnDIn43mtXWtfHo5Qi9zSocd5XJYUUkghhSMBXomqBUKPVca/DP2cDNTSCOtCop9tLb2kPpQlhc6DaI6+UrNQOeaa8k3qRyrh1ZFI5npTqi7480EcZwqHF7qeO30YoQ+7OZcX+WXZHXy95G8s4UJ6s4cmMujNnqTppRb+nDl/xGgi/2Ii8ApfbuPIHfy0SP94r+DPLCiTz7HyDuy+EbHebjszyJmMRI8F0KajyTzBn/R/OIZPeI0zGMBWqslnHtP4V8uXyVq6j+YvfkZDYU/4Gkz5j5R7oRb5x4yFfv9VD9+DD847nhPf30R6JZJbmQ07z8ymL7s4hlr0j0DVwfVb/wSrDUX26QMcU1jLhXNfgpPM4Bph3Pr3qfxqHkXv1lCWU8KFS1+CXpB7Zi1Hf9zEpwMy2HrXANYwkmryGdFzLTdxL9/mL3Sf3UIhVTzNxQzV+wD40OdU+mlYEc9NO9NhvX6ngPoaqH+AfiJ+e4t4QkwJ92MeAnWSDnZ3WuCtdEZNeYtachnKBo8tQOJVf44odFVhghQ6P1456QtMXPGmRNlacOqUuUhUKoCnqP31qX8D4J853wJg6afHAqvgP2PgSaHDFkTIiVTjgBvdZ/+9yVJT++7bSfYtO9k1s9SbeLVRS4CapUVeHqWq9nU+vdQT2bGItD+AlVyISocFWB3w9AjCvsfjwOXu/qoHKcmnNHoLb9FipFURamML8jkdyIP87lLKYw+Sb+kvG2JVZPeb1xFm1zSzzZYl6W9e9+OikzYvMwMX+bQ5lA3I8fb7+rZ01wwkijkmE+oaXR7mdiTFb52h8e6pN8q1zdJ/RrZQZ+sqIWcswbp+VinWhGbVy/Al3uDeS68L+jVsuRCbHwk+evXVkR3LgvFb2BFaZ6sV0FqU5kfwDiMQeeO1jPNyNEEilbaciI1Qus+jwyc3fOVIQmGFfvhlHWWzhUqr0DAKmrYdDSeuoUoX8unADI4e2OTyV9ORKHAj8EUYwdrWfuXDEl3Vbqacy06K63s+QJnhU3y3ZA592E0N+by0eRKXDOqgirxJIszo+eBRQNZHbRJ9Xy135Bv4k1nz4/A2cei20RxMi0k8y/Ocz2hWs4Vi9tCbn3EHWb/eBwWQvhm2npTH4P9sw6uRvBE+vSmDo//eBN+QVScu3cT6847jhGUfiSEeAv3er+fTkzI4ekWT/MOyoaGwJ1nN+8j8xwE4G9IfhS03FDDwaZOE0wzkQlG55A2NZwUN5/Skd+M+it6voWF4T6ooZBd9qaCYYioYwVou5Um+z+8ZxWpu4l76sothbBAa7WT4MfdHLfLcXtCXdWj3hwTbFg5m+JT3yKOG1QtPpWBKFdXkcz7P8+7q06TRYVJup73QgUYyWyn1MLBYax2N1Z1CClFRyQCofdOraekJ+xjxNbZCrlG4ubMs2HPURgJTrXHrqhjIGbzA8VPLeX2q2Dk1DrgPr0xJPLzbYJL2ssxxrCiPeVWTgYtK0Ytc3UtUaVwF11i53nooqMpA9AYJoC+fCh20CHHS7TndCHVbpM5lDpDfC+r2upqV2xFnrxhX53I7sn07cK7ZnoNQZPsgDmk+jo1q6bXgHEdwpUjycLUvG8y+a4ExCB3WrsvoJZTYasSh7A/k50qbJpOHu71KnM7iPCQ3dwRe/i1puFqXhcAQuLcggscVB7ou8voCPS1qTepEy721C65McvL2ypwgQUivfvUJwAcjgcc5emuT/KBbEIrsFuQ8pgEroeKEYgBObPPgDw90VecyRYvthGgtnbQjoEpkCYVEOf918AfUVrx/EG/cnQDNe+J/39bSWltD4VI9ZAla56MBqYXxKc+dBf6H0RTahHqt9dUpxzKFQwGlZsW1uTanEkgo3UL5Esps+ohaDt2rG+le3YiKJTkK3M0NcY/xM2byM0LVWiJjOnOYbuo1h411hs+5TSEuJhNOwRlAOeo6F8nsaJTwnk+Qx8Eqo3fkMaDt9O0UjnykIpedFHd8+5fyxlJS0hAlsyqcLPQ1ogbq/5Nbqo4tKZKMQE970mEhNrVxPt9hfonQY9XC73gCpn6K7P0RIpYAyqii6Ul+2m3sSCWIUVgELLrw61AI36r5p8zO1iPn+H1Yt1ZmSAH6sM1Tw8O8HvejJspwlJwAsJ+P2InMsvbAFoSWdrZAdIB9HjXIm3n93g4+Mu/zTVs7W1vHZ2TghA8C7CODTQxjk1eQOr8XzBnyIzgNLq9/hssHPhMkw99siptV7jmOXk9qaKfSHvFgf5O8KRIx1U9EpuN6hvC/I2x8qjRpMahIsHTYePUvlRH90bZsiVJwM/Lj7QX+g5zbbJg76L9RY7pmrklXlFRPofPjaHa5D5mIYE8tEnX7DBgA+RgeagUSCrsEmOt7QE6Dgtk2x38gb5QZZo6xSdnLdjKsZ+yExl09+3mOZXNTTw78JzNqGREWy7GLuQw+OAFOhW5PN9K9Gu7Kh/N53jSMzhACcQz90cxodFgPLcB885zwNaCv2zSTnzGdJjl39WblZ3hqOxnpYqv6ZMLuRokyNphmfRAaajWiJAswMg1qA3K61yH7ViMiP8vwBNUZjtjSatNfBdJ3LpCVBvsD0n+Tr+8sxD6eYNrnIXYxAAQC7lhjCoE0aKqF7XtF0KehEfpnm46OQp6rbLQWM6hmPME+aqBPwW4WI1RUpWYJpdjQSK3ILMRP84kWsYwEtQCGTpVZzA2MDHP21CTgthBpnMuROi4IBdYT7LE4zVzzujS8LJ2N3IY4yUrJU5DWGUHrp/EIrJwBK0FPhT9SJefLnrsiRNhorFk3EIqpiPmdj0R0RbuZci47ITaXFEpeRQAxkp+Z1wBCMRhx8Maio8zotrcjetBQihjNFiTH4j3Egr0PCzeLYatDDFOt2WTLh9YgxqsaJ6NejDBAemDU6cy+VuHOIoDLObFGsRqXW1Jnlm1mXb7veA3AseY4VpmvDvhoL2SshdMyEetmHcsqWdJNHmU8R6i1tNbW5EPq/RHW+WhA7eFQthu2IA8cGxF6Tz1Cka6CN6+y8v6RZ3ZTSCGFg4cNDAOWyr1vFKJWmY/c4xtBD8erD/31SZJz+fgj34JHSmUS9MRZFJjCuvbh3+8kuPzG+HVu9TsSobR4o+xLZBz7KRknfcqerKNl5ROgxpRy3CrxArTJg+tu/N8f+8qmRMMdzE444rjW99CgzcSzFz3dFZwPv4+e8mR4EpIvtx659+VBRiGwUvIW1xl6rM21tPmTAWCV6at/wJUq6YPYrSbEto0E8tOEZrsWvMnUY02f1aa//IDLxdwNnmtiTUmG6fsj4JResG6vDKIcuKgXrKoydTB7mfzNRpmYraiHIdaZHGG+o/3ZrHO0DnGQDFf3IhZztTo+7PxuZTA8ELa6w1DGaHEsCXEefe9tbmVbjhENWpeaCdlgjvZaRsg5PAn5L9Yj59Ha0q146V5dhRbbVZFyLo9AtJZWa5VZI82sxYpCtrZ+ZSFbrESKO87MyAWmU2h/eEpv74hz53cyLS0r9CHH7tPWvJD2oL4qwwhLXS8HB5I7kjIZKRwZOJ/IKl/WDu5Q8+ADY+8MKzb7dHmzq2c/L5e9miJHg71DXrp9PvnxKDWLbjtvjr7d3OdsuRLlu++pcS4XdJp54Ld5XonYZaso/vNWqOB2ZShDrtJ3t6GPVojX+R1HpYJFGsPaPhBZoKctiOS4KjWX67omoScmuqrd7Hrf+DDAwNd2yJRgDS5qCS65/Jzg9hFvSrdFp2dYyuzJC5YBsJLT2jzmSEjkZvkKE9FTjHrszHAjGFrYGoQO670PiXRFu1F/mz+y6NfXymxaHo7yY4QfFm92NNf+yKm30UVLBOmDCBMUI1HNDGRmtQcyi1qDq+lVYdr5i02DRELTTD8Z5hWcKt6xSKR0DTLhZ/UA1uGioRmmjVXXW/UWjLGRy0Zc8rxRa9PDxBG8l+u4KUreTbviUnmpPhBdnRaA042arMld1CMTP4QqBKYn3j6UDutXMY6oKDsWWIREKgciP2ou8n8MwKnLVku7jvnrpJBCCklgLCvl/1kDvG9WBpDIZTaoGmjO6QnAdObyLeZ5qpW5LdOpXd+fHWXw85KfMTeBG4taBHnmviE5mMFpGS35mQDkn1cpytPARSziGlwtZ70K4ASjdC436wP97kmOETIAohY29iFU4E49DPijnkbk5oED13GzvkfOYQA5n90Rm1kDDVtFECe/EPZXuehhHo59k4UjVzUQ/JBp00kGIzay1kQl7ecc89ofsW+2juZ+xM72x9nE4kxY1wjFabDR1NN8ey+cmwcVNWJLK/Y6+12+F0YYKmwgIOPcXw890nB1Ga16e3ccrXo4UAWFVPGVH78IN4c7k5YmC0Yh9tMH4YNrgfDnMJu/u6tnv/j5u3Phw7kj0S/bfM7R6AdE0ZjbiGl/9ASn/urG+SCQh9bXRlaGNSlX6nHodpaEcVvyM8PosLbto+oshNrzb0AqHADCvNuLe3bNQx5o6qG3xwVL4UhGyrnsjFiNJzdOJuIwZOI5RNoQ/KPFjuJx/qNhx0ITsYxATYxl8FpbEsVx7wdKDmZHR6BWI+cRhOqyEUiHNS+5XA9rvNLMZ3+O5HCzza9iZ/Mo/fmROYhjadtZBbtaX9ti33pwVB/rOI7EUY2sw+tXyeuNK0hdAYz5N3A+8oCVjdzYjRAtf4R7/xI+delFHweFn6potKxEIpbx1A6hneivc5MvMJ0o3hswnNGN68QgNiI/bDrujtkYddcjFl1V9S6Fzo9iKsQ+FiJ5YzafrheyvhZWG5rffdzIjrKB7PAxdHSJTGT+suwOdAmk1zXQs/ZGmnNCJ5+EFquAoWwAYB/pnPLOa1EVynfMNMeJY9/iOZU2YunhVMg7rxJmElRmal6Q1xgDn/r6vkyc5PN5nioKyMr+SO53meCVmm6GrBwI1MD+RrFdTbhSIdau7cfZsx64UiU2p3I/QlnN8bWxqSYZwHBDla3DTcraY9XhNBEyGqV9RcBNvPYHNtaIfWwAhhh7v63RjKteKLFNeyF/BBgBYZmQPQlxgkCuo1zkHARgy+cL+IRc/nr3ZXwLp36n706uTmSyiKYR4FFh40QKk45Y7kVOYjy8FfxRa5mQmc+lMhlbhdjIWvNahJRqSzzd9IhBV7WbKbXYFNoMdass7daf+rVXxDqFQwNVGWizpH1nhb8OWNi2m9pXce9IQwvd231JIYVDjWipJH4bZJ3MaCrRVkFTfQ3UFBjLsqTHkU9lWOkoW8NZjQtWoW1PdCaF+iMN0ZRVJYro4M/T7ZhxuOMF0Wo/lCWa+v8izmcR56PUGlSUi18tEvGhFCKjK9rNVOSyM6IRobtYagHItF8mUANfyvl/ALzYyu6dgqxwKrxSI9vMa4yokj9Xrq3Rp+VhGZfhSDoK+5vw2d9v80f+MudamYG1NbtsNLgKr6RvPjLj+REyeWcjhlYt1lJg7YxrhXlvXbA6ZObWRj3zcZFMK8RTiwTD1iAztbYvSxfyHwtk8tRGP8FFUi0NqcJsf7EGzq3Eqd3t9XV+FNz0d+HA3PzNAu7htggnLjaUlIIzVK4E2ivT8C7ZUf80Wrvk802gHSKW/+3rY7Eld7kaKWPOLkMfreQHOwq5XrojP3YjjlmQQgopHHJ0p8WxUSwnsxK512cCuVCOCLFcxCIevuUHFCzawo6ygVxd8jseLjNU1RJxKPftKqZgUIWsW+RzLNUs+E8pp09+AXC1nmNFr/JmV5rI4g+8dbZ9t503c+AhE/FMrKqI7F/VzBfOEw/hzc1nodAJsUoipQBYx1Iir2fCx3eKgalEzqdNtciBpo2QlgZr6yVNBJxYj2XlrCM4+FWNs2/9cXZxPy7qaZk5TYgyrF8AyCqpWzGgL5uo9NuGyVWM3KZ3Y5XaneBeQ6PUvOyBYwthtlEl27NycPd2S6muQa4b8/0H7t3BkoH2GwdD61JvAmAFZ8JdANe6Wt/2PFc1m3dHQ3/RqdhDBlqXeo6lUrbPCMdphWDQMJzSLABzrhXBK1xUU/kEkM+66V8+scZMFnF+WJ/qXlFV9xzN/3P5LHvojc4GVYf8KL2Q461HfpQh8Am5yX+RFA47pJzLzogPcY7QXuTGl2aWXHjxy1+h8F+bYwrwXMPvAMnvsEnnfFteWkubjQZ9Z/v2B03sUPO4WvcNylFJaCzRok5PI+ezO2I0jFrsq+vEyKXhcjlyzGc/RRbEyNlC0T3Mshvn/A3GFW3Oxzl+1vm0+9Th8jRtzqXN9+yByRXBFZOuNvucQrBabAPifOaZfZtWQsYQ82E0QkPBfF4NN9/zyxhnLhhx5ewPIyjjcGsTEIjlmOp7zQPYUci10oJz1HNxEsI1HTbcTguN6pKS6il0flRRSFF6jfw/A8j/dggyCdQLWAbTTngUgK/xBNwFO8oGUlCyJcix9GPH5mLPYdOLfA7k52fxhhX6KQH1MqDkc89PGuibIzcaq2UgdS43eI5oGC52b6spQq2BwSM/oAC5Ua2w+70TvNubVRP4ZeHPeJOzvHVKzYJZpZwz81kAXuRCWR9hIti/Ti90kadVU4czeu06N6GdjaSU9IKMTGiogeGZsKbR2TMQ+wcu1QOczQNsNh7V5v1wgidotyM2z295/I7lCKMEu844lWlm32ok73J/QBzJir3Sl3UFm/Y6xzULqDOft9dCji1bk4U40XZCNg9xLJvNQPfCKawApKbltofl2+qrw89rKLxcTM+5BK2vZYTvB7U5upGmB9QDwO3Ajge9fS1saZJYyq4e5pj9bgH9mq9vrKMZXAFAJoj/F63NzDJr4DfiSKp7QeuRIvB3vHEy54+kikJa0iCtFnEqaxCKrC3psgWOPmlX/LEeQeiqdvPIeYI80pCJy/Haiyc8w/D2P5QtN6KUjZcdG73tQSgVYW/G1kFuK/7y3LVyDo8yK5qBAFT/29aQdOI4aTinzxo6f53LDOR+mYcT4dmPM5A9cLW/7P62T+ss2vyQBtxMag/EZ8lBopa2bYNZ583E4gy6jXxaZ/XFRrhoJXJTX4vLL00DauGe8p/L58HJRy4TjVh67fUYQ++qDMoHCm+XfDmT9obWPYI/21n975vXStwMQQB52ApmrqWQQgqHEMfwiUzI5iLeRjqunJcR5bLCOguZwqkl73kRu1ElNoFM1EyqGBgxD91zEkzpkmj3LqclEP++p0xiUiJ56kH4r3QAbnvnHm6LMNaox40skBuE0R+vExtp6vpSieQgVkFDgzhw+1tgZKbLZQRnl/bj1tUAx5n11mbaepevItHEAMETsnXAWRinsRes2iu+SfleZ+8AxmRLDmUTIgx0bCbUNbqSJdYO9zbj6W/aZwH5eUAvqKuSA2VY8Rl7Lt83Ax4BvAXN50MaLYxZU8axI23Wp4M/3/aUq61IT3AOri5MD/q8lnCOcyzV19bAi1giDqSKnBacOH7kHEwQDQbF2zBfci530Ze01bjnVCucuA65lmrhNc4AICVMfGQjlXPZhaHUNpTa1qr8RrVZe2UpruF3YY7gLcziFmSmV011CrUHAypLFiC+GlsKcREtZyS5PvajVIQil4cA6mxZUkgOVlK9vZcUUjjYiGTv7LpQe1jM+lblO4beM0P7jdRfrNzH27mZ24leqiTiGFJPeIcMSj0YllcZtL0Q1CS8epVJ9x9jv3jHjtnvNCkrErou/Bhzw9qlEI6uajc7/wi7GAZQzlY7NVeDU70D+bU+k7c7VA+0jh5h9FNJE63BFKs/iF/jMFLZkERwGaaoNd/y1kntzD5JK9FGkoXnn8i0aACZkTV5l2/jSoL46aY2aujP3wCZSbUFoW300uaFgIts2mimpc3athYbCS4UDY5xucest1TbLBy1qAJHE+rv23ePWZ+G5MRkjMAp3YHMwhYAplD2Xf9zI7dwX7RT2G6oWWhm7mPl8BpGTWgZktbmYkJwmRFwdFhbFzNh2LyjbGQWPw/HIDB3TjUPdATDe6TicBASSKHrYQ+9hZ1iS3dZbZRs5H/rE/H6H/4XgFtL5IZw5wOzKbjOOZYW9h50nL8AMMB8d0+yOYzZe6W8RH36Q7zta3oGL/BGN6G1FhyIMIFrcvw8R/NvQBqUcyLRysyrGcAo0I+Eb/uNrgGu5ybmBDmWemF4W572O7+laDMB/DN+zh2BX4qtBDmfG4FKyMqSMh/9s6Gm3ukTNOEUYK39AheNtGxTm03QAxhjtqXh1GCLccrqaUjJkBycjfOzet6ud4yg/F4SRQ3g7LZf7T2nF+xuFHtcnG0isM2QU4hcK5YCbG2mKb3CcNmeXg/NvdN5c+RovsYTHHt1OVsNEViZL6fr7DPQmaI+zAeyvRDY4exZPPGksDSO60ClAVwLjwW3Xbfc0GEnuHVK/RpLClaFwWkg2jfXXsJ7sN7Rab261x45d5WnAgvAlSPR84QSy5eBH4UMfBQMYwOBUZDWiIt414OXZtkCl/KU+ZA8g+pwRVe0mynnsjOiGfkzWlqKvTnkAfmgftU+aiLxnMmY+/ocTOvIPuzbfhfOADsBoYODUxqcLPwsSsUwHoUnK26TGCsQw9WEo6rWmCbWObSCAuAMpTWmuwmmxILLwQRHtfWXEdmPGFC7r2WPVOMMrDWKlpK7B7/UjLQd7BvfENNXPrCiEc7ajNB5rKE0ghZshrse+WECZzAYraWu+inUodTTQ4rTQccpCwDI/20t8nDVHcehBkgHNTFVMTqFFDoDmunpSgZlIt7JaUjupRH2qaIAgO9zP1NYglLywCdURNEtKEREfvz4aNwJ0s6myI0KP359ur0xfNezq2cgoj+O8hrcb9474j1UU+Q9zseamL2NewD4efQmrPYNLh7VNtp9/SxekXM4BJmQTEeGvhGoE0cNTAksU2PSOnVpGDqrr7/xafBqQOzgYIQmW4Or2ZyFmyi1WgTW0awIOFtci1Bh1xqqZR+zb1YaVJs8yiGFsN3U3ywuhOoqo5OwVyi2OQGoM1TarADkWOayLbtiHWortlCLRwnOL5BRbvWyS+OhBh4qhV9E3pqMKJ2+Opxto5fE2mM3FPwkbr/D738vLF9TzwPmTQ9fZ99bXQvjeCo1l1OmvsY+elJGCWkrcUJQIOe0CjmPI2ADQwGvpGYKhwmUUtnAfcCXtLYFEaMjRZpIIS7agxaZ0HFmtiK6lMJhAzXZzfSHbXs88vqofRW5Gd72xhX82UTOU/DD1uvqapLqKRzZUDNMNDBeu7LWlezw2061VBbreAJhpUfUlMgCPO0BNcYpf1tKZmu/VwrJo9VU1VbuB4Z+G6P8VnLj2IhSG837uUElTVKIjENpN5VS9yiltiiltFLqJN/6oUqpN5VSH5rXIXG/h9b1WuvvgCnwGwepyGUnw3uMltkyK+JjS5HYWdlTQf9mANwkUROby9jW6GAiNMSodNgQGqK3PgaN1tYAW8lpHh32n77tlg7rGb2vmGNsjjo8gLBC1l/+06vBlNhMWVYtc4WfG5BTvRsnmZ7l66PCvOYQTpm1s6wBXxsrvb4fR3e10czdOJVXK35gYWdobdtjERpQb3M8KxbUhFOtzcUVrS42bVgPjPV1nIfMHAbglo9/K+s+F06LbQsVtbXQIyM7lm0Zg55iJioMhdzSVm20Ui2UJa441VhgKU5FsBmZfTXPgv+Y9lXT8OlWjzWFFFJoO5ro7Qm1ARKJavY1GAtluLDgJWXAB6WcV7KIpcaxLGQLO8YNhBuhYOoW0NOoYqDcF31UWF1iJlwxNMeHga8cG6Yc+jpfijkpO5QNfMgw6fOd8O1qEegIk3GhdFhl7mt6Jjz6snyZeWdLjuZvD9wIwCfd+gftM41HgGCPWpXJd6uiUKiMW4EvIgZsI5AupTuq9wJ7JXK4zUQtrTJrBmJurVBdHbA9IAydDFyE0qaTNCFluU5H7Fg5LoWk1teufy9YuxeW1bsyJ7lpsCIA/QMwPBv+XQ/7q5yQz7oqp6o+ElGJzcCUJglISZXqtZB/GrCDYLXYAcg5SEPu+c3u+gnV5tcmL0YZco42Rl3rUqFZXw07ykrhROMgnvggfHCtd75DoSvD1wHwyoNO8TUKVFUzLJOIpZ6AOH+XRm5rI5Y2n1LPi1/KxjuO73kzt+UCNh2APZ/15qdZv5IfsDtyDmuQc2qjmJVQlKrjdTDxDPA74PWQ9X8E5mit/66U+ibwEHA2gFLqePPZj+e1TjTBThDTuVRC3o6HBq317ckcNIXo6E6LeAx7EUeoHvfntLUZDzIOmrPxpHlNhLKYKGySh33w6A40ulpcNkcSnKprD1xpknycQ1mHGLsGxEnsg3MG63AUW399yz04hzALcRQbzPo+uGeh/r4+s3B5nDZVoRZHg7V5JHZbhe99GqZ2Vz0uX9cqnAaAZ826q2Kfto5ANKXC0JSmhHBVW0YSG16eb9F35XrJRk6sUbujFzAAzgi7Xx/ZsDOwKURHymYeGmxlAIx/G1bgJmRrEJtpyky8a2bcdnuukKDgEUeFLXhnCzsmD2THYwPD71er8fISE8bYYNupz5NXpZZzup7A0AglSvRCcSxbAx1HqOyXq0QQ6EOGceWSR5hnHEx/5PI0lgsldjVuUi0XWAlZedCjVhy0jbUuDcTaJJvu4Z+c9WsRWBqsndi1juIqhDLb37d/tWmTA/To7kqD2ZImvQNwViasaxSqq50gPjYTyhvFlqYhk67982C7eRbo0V0czf6ZkJVpOt0LnIDzbK0BzwOWAeNNXm+SsGXiFMAHsR3DWND6Wq9sSFwUN3vKtHoCLq2qHaD1EJ9jOQZOW0Xt/DFegYHmM3vSOKQbmS8fcFRYq1HQDAyBckMrjl/l/MhAB9rNY5RSK32fH9Za+7PT0Fq/AaCUmzhQSuUhKc/2xvMP4A9Kqc9prT/WWm8Czm3r4OLRYq/EuTXRli4kZ3F4YCL/YiL/OtTD6BCohSn6bGeD+pCgQswpHLkI0L3dlyMMKZt5hCCainrffTu997HotP574liW0XffzpgU1ETST9QMUJ+TJRSXMp9LmR91X4lWRujzIJQX60pQqs67du7mBu7mhqhtu1c30r26MWy9OpOoZUNs3XI1RJakxnarLDHbxOg30nWXQnx0kN38RGs91rc8HG8cBgOA7VrrFgDzWmXWx4RSag5wglLqj0qp0CB+EOLRYpdqrWPe7ZRSSVRZSiEeejY3S4QpD5k964VELy1Xc1Rw+1h0WJs3lojiqj866TdwsaKWVgo7WmJ5NBotuALTQYgwl+/RRgwd1lJwE8EahjHyLWQG24rbmPpnVtEVZHa0B06UAGSi1kYl/WqxILOjdpY0tMYXuL7t7Cymj1rzaqm0ObhZ2B6m/X7TT3+E+toDmYEtNl/DT+NNC/ls+1m2Fy6wxcPBRTCrgHfl7b1XGUVBM0OuJ3dshFopiQ9rnRGnZWIIFeRR5hrUk4zwwX+bz1N818zq6PtHRS9kxtXWfbORzDo4Zk+ttEl+QjuFIxcpm3kIcDyb5AbZHRHx8Ss8pwP10Js9AFQYuZmCki2sZQQ7JsszUtUiE2U6FXjL9V2gp7EjxCHMbr6GXT37iXP5jqOqqjXAG6bRuSLaMyACDVDrUq7nXtmn7Eth9Eg/HTbYKQz3ZrWZaA1lP97GPdwWEj74kGFetDKksacoW0YJgxu3iRE0arZUAy2wv14ihfmNonU2AlGMTUPs2SpkNxsb/sisr8DVqDw2TaiyfRA7WGPa9+8F6/Y68TprUwNAUyMMyYT95rggtm+b8csyekGxiVjXmXUj82BVjWEWGQG/4WnQ1AzFRbC9EjLSIKe7DHr/MuhhbeVwM7ARSHrERuh9klw/6mzQL7tJhl09+8nvPsfse0346Q39fe2+uz81qq4qet3UEt6TN7ePhisiNnHHCamlmRC+F3m1LTMSpBgL8APQH4MaNcatexU4F9ZRQub7B+R/WIRQxAqRz+nASpg4/pXkx5hCp4DW+nrg+kTaxnQutdbfirU90TYpJI7M9QfkT9iAUDWsoUwDesH68ccBwuCIhlf4MsARKUqipxCztEUY7ANGI3I+m6Fis6O/gpzaLFy+pHX0rJNoncomX7fWUObh6nY34FTyeoB5lBHjth2Xi2JpQdZxBElp8eupWuczgDig1qH1U478NFm7Tw9zHE8GHGRywqrhBeDeB6+Lfr5aAT20XbvrNFj/ueM4gY9clW/7BLURyIY9vcVRboU5Pyxh63WlEB0pm3loUMwWmQDaiNz3cpH7Xi0yIZvpaOxn8DqzS0QDfN+Bnnx90d9ML/KzaBPZGWam/jYwEl+6Jrt69vPeRyoH4m0bCvKEXUQ+ldSX96Nbro1SZTKHm4KimIlM7ulHIEoAkifjeB6PLjD5mCHU3tAyJQPY6mihOcAWvPPZoxD618vms9Ik59JfiiQX5zCCUF1tCS/M+4qA2MR1iL3MQexj3d5wCq2lwuYgTuNuhM8HkJ8p6/YA5SafstjQZPMQh3Ix4jttCxjxV5Mj2lQJfXrBbvOM1bAFssbjbuZpiIO5Fk/ltDstXHB2fMdIa3viAO6P2MZeQ6pf5Hkof8kQi+FV4mTaXEm9Me5Qwvu9M8K6CSGfTb8qQmxAf+x7b/4Tqgy4fi7H6dNZyVh5zmpEtB9OQP6XvZBn2ZOQNpCw5u7hjk5oN7cC/ZVS3bXWLUpkswvN+nZDwmqxSqneRmGoxC7tOZAUOg4HS+01FG1V3YxGS4qFQ/VdU4gMpWYddhTmWKq2KaSQKFI28/BCVLrquODP57OI82llUqTt06faCqBedu/77tvpJhdWKAABAABJREFURbZCbZmqao6oJhvN7qlusvijn2ppiGqsr7/2UhXtSoj1vGFtif83TarvyL6p274wOpvLUm7VchJSdVX3ypLCkQ2tdQ3C4/qGWfUN4D2t/VMHbUdC7rRS6gbgDmQSyVZP0kCK3tPeMEw7AgQXgwYSTU9SahsAWn/HOGfzYu8QgkTpkbHrLPnGE0VNFkCpO8wxfxZfvdPbx97MZZxXmunjULrPyBUfynm0CeVpQEAmI/1RQjvLup3gmpWW1mqJnH4l1wAOlpZq0xQqzKudeW0gWNwnjWA1PXDFp+1+/kin//h2Rtf+cfNxM7/DzWseULcFckaZRn5qZzbctMMoAxTMiahGGA/K/KA60R8M4OcZEevDtRf0JN/7l0O22WGGPZAJqTlaDc4PGcYJNR/JCbYU4xqESZAOR2818/FxMxWODKQEfRJHymYeXLzKRC4PPCOBwmbkf1qFE6YZBHkeBwUmsURost2gnON5rkxuDmom5P5iOwC160faYKaH0bzlab5YWOdTv4NXF/68RYsAubl2r27kQEs+9G2mJT+TfCqpMcp8uiTYsZSyJD2lX3O/elRVeTb5UZ8Ert0eGnmMilGI/LgPE3gFK62i1CwoKOUTch2NZwvO2BhRlgDGbgUcswac7TwOR121onU2jjfctG9CNGD8r9VmWxZi6ypw7CFbE9MvxbSx0QnZ2eNUNzoV9t0BmG76PTZNIqZBbKUsI+gDNO2FLP/zViVyLTW6dSs5mVNefs2cq5AI5ufdc4yF+hphCFVk17o07mT4uvtHy4Cvf05WRCivbMV+9HXuGN123hyxv9B0JhcACEmfutLRYdVSs48nSLVG3nww0nyP6YznNflPZePYYpbelYYwCTJNTdouhA60m9lKqYeBxVrrxZEaKKXuR558+gEvKqVqtdYnIgH9vymlZgKf0gE6AInGan8IDNM6mbKvKbQKlQh9oBGhaNjSB+YmuC8CCS9WCYkqBkKCzqI6E/mlSaBMQwJYsDB+rmcsnM/z5l2UpIAICDoHNYhTUI2cR+Nc7jdvP0Lue9YwZeFyIv2GbLt5zcMZxmKzrg6n7pqD6zsLpyKbb4Zg6UMNiFG0BhezzvZh8zy34YmweXMOmO22bIote2KpvDaPszoAOVZZ2DpG9eacrDOfC1yfyuiGaVd+LSHYMiLRFF/t7xEvVzZeGRQvkniV6bcDRSisSuTdDIOcpc44NuLUYpsBq9PWRZxLIOVcJo4fkrKZBw3n8qL8T206QBZyU7eq642mXAkwj2ksLZtMQYmwYnZMHsg5i0RG+yUuDOq34B3LnHHaFbXGpcmnkuZ9PZHnNoFeREJRzbxVlVRTJB/OMc6Fufel99xHzRTZFno/1IXpYO6l/uilv50ViGnJz0TbaQ1mUF7yCm8aR1Kvso4lfGHhK2zieGoUsGMW6ewTx9xOyppz2FQNGdmQly25l/2zYV29K99lJ1ztZC0E52PaNI4cs64JcfrWBOT9YNOHtZWDTfu1iFNq00Gs43qaoeX2wNnt/WZfaxv3AMW9HOU2yzzx5mRDRQ0UF0oeZ34R8JnvIC2IY23zZaogbXALX+VpbuE+lDl3ttzIDn9tDh8KFsn145W0SRL6Bp/jqC8Ib/AicFL4apDfHzB5MgI1CC+nykapp0a4QymfNIxSc+F5cTTVQuCSNeHtFwHHnMmPJtwuP24u8rrVvG5E7OQWOHr8rsgDPoLRQXazXuvQAkjB0FrfAOGKUlrr9cD4jhiURaLO5baUkTxI2IormRFAHmYz8QQKbK2lkTG60PrYGFsPPmI5Av6ZvlD8JYpTGe6ARJHsW4mcx0JczSpcBNIaIZsHCS7n8iPEoDXg7s02D7IOmVX1lyKx0USbS2nbZSG+nHX6bBSyFjF8dubVOqZ1OOfRbqvGRTxzcNFLKyZkx4VvWwY4pzITeeiy5UgqI5+uRJFUxNLu04HOYGsRLWJp4U1u1JsVdha2GRF6qIm4WwopQMpmHlRUk88xaZ/JPS4TeZjNxCXFd5e6kgA15AU5lgAvciGjeYvzZi9iLSMAvDZVPsfyPU4FbIRRkL1sZ1Ae5vME00Fa8jOdY6FLqVlqnEoTBfLbM8/hTCAamXDE0mA5E4NyR98cI45m3qrKoHF8wKPumaMOibWvhoxTgS2wvUrszLJ6Z3dqkIglZpcR5v16xH7l4yZtbZvdAMY5tHZ3HS662cPXVwZic7N8x1kVcKVL9uDKfQH0SHMTs9VG6CcPaApA/0LYWCU6bNuroP8gXE1GazNBjLSdgM2DPl6MNvwZpEBPDbpO7P47zh7oMWmiTZzGY4rpeBIJ74P2lSmJyzxbD3qzcy6t4OP8m0LanQ5cI6I+nD8XraeHTBI/DSc+LdHXcqACmib0lv/eMuSEFyAPRYXIhMVwGOVX1kvhiEWizmWpEumoJbgqUmidKDEyhY6C6h38Xu+J0MYk8MdSlm318TcLRyNUGVapWfBU69RHbRkVK0wErvRIwiqfKXQa2Acx78EpQXi5mjFquypjEHWEXBErp94a4YMUwqFRR2LpkI5CymYeRpjOHODkiNv8rAr7Pk9/O+G+w0qXhNAl1RTo9qCLNrYXYtFmI+WXWmfj/dSUSFzYyJ4/bjSe11jBme3SnyoEfgFcE5vRE9SHcUL9jqa3LUo+cXugI/s+EtBV7WaizuVFZhmKEAZAmN9tNpRKqaHA35D5xVpgmtbBj4NGzeh+4MvmuHdprefG23ZYwlLsjkIiJo3IDKIphTAHuYNc7t8no31KSERSKGsTLokurx0J1pk4yziQhWxhx+ZiuzX549t8iXrk6goAza7kh1WCtbOo+wlWgbWKsX7YXMk0XNTSHzkEmWldi0Q2bZZPhq+tLXuShcvPtLShJrPO5qnYiOgeZPbXyrY34ei8dj9bmmQ/QuUtts8pNUj+SCVBFBk/9AugKgOoStBFiSubRaPDJou418lpoH8avEoNQe5KcaAWxo6cRpq4UEXA7RvQab7rLhM3s11NEK04hRRC0GE2E1J2MxTpNMt9rhLHz8xGoihVwHioMJGl1WUSfSwo2eLRFi1qyONcXuTRW2fQ8+aGoG1+cblqivAzIRWgpzr6/g8X3QXAfdwiK+ab+9srwBPRVWYTdVBuR/Lpfj7uHn75jrxfYii9LfkT+SqP8YzvKcHWWvyxX730PUnTqlGg9UWehS2jhBMLN0nYcQByDvPwSqxkpUkEcDgumlhtmvjVXkFslC2XBcEitH6tAKuE/kVcyS3Mth5IyZDdPvosuNSTnGxYVQ/De0GP7lDRKKqw+b0kahnw9dcA1FYJVTYQgIx0oftSDRn5OOGEAWapR57FAlCAeN3FngyqnTjIYFjP4ELPKgf41GlDWMc9HpfBi3AXREkPsVHQs81rBEcyFvRm3/uQsajleCV49E2gpoH/gUHdC7k/3E7tHMObGzUS+pqN+XDc5PXkUisM8mbgPeRHPgmxnVuAenidM4C4VVVSOMyR6FPkV4FirXXos3Z74I/AHK3135VS3wQeAs4OaXMFck8ZghjT95RSL2qtK+JsO/zgt3WZCK3TSjmHUDMgcqQyFB0RsfT6jlLLsi01E23E0m/MWxWxbMaVkAgg57NeDFQ+Lo/R5lfW4PIpbS1Kf53LBhztFRzNx9JxrAErxzmA+3G5Izb30goWNCC0HjuGat/x7Ocms4wwr3sIFgTa79vP0mk9Y25rtQ03392KXVgVoYOEmptMxDJJJbqEfvPF0SOTemP8XM9YyLj4U/h/iGtg61tW48ocJBeIPezRCSXVOzM60mZCym4GoYpCBtduk5qEK3EzcT565whMrtiJD8IH1zLCZO/tIYM/qU+42Hz1FzmX7F+4GoaYvDoIsWs21+19YqL+1X5wxXyzf4RH6tvhQG0mp5S07+zuxQsf4+ngaWiH1cD8i9C+siS6Cp5gMhN5Rc5dAI8SSxViOz6DhoCYEDvBWo1cSNtx+gP+VJIMxKZaaqudwLVmqM7XNhS2xEn/gLPTGWaCLwPJpcT02RRSymT7XhieJyVJ9vsU+IYXyXdbVgXFASlJknUCMhFtUx3SzHcehdTYHiQCb380RSxthLHvPnltbcTSQl/tIo/gc/yuTvw5KpajGVpnM2FceRF6nlOR/aRbf7jOqc/6+1WDTqBkcxlbTipg4LId8r/rhTzT2pJw9XQ5dFW72S3BdptxKV7tBqVUHlK26B9m1T+AMUqpz4U0vQx4RGt9wMjlPoMjl8TalgJCl/XTZyO2GRcuuR7WZqEsbS0xEtpfCp0L+VQG5RQdTKib3BK2bY1ZZpJ0eRO1RJYU2oYWurf7coSiQ2wmpOzmwURbS1vFKz+hojyBRTquUrMSKs+lokgQeNtTNMZDBnWdLPF+R/Vw7GsvUg1KpR6khPco4b3wbQ8QsSRJtDIl0UqXqHsJitizQqEWhKxLIQwdZDezlVIPK6US4G8dfCTqTm8EXlZKPUNw/kiSQfkwDAC2a61bTH8tSqkqs95fc6UI0VixqMQRSGNtOzyRSbBYiBWIrYElX7gE3oygRd3BaKsTaG+kYUnvPoRGqqoYGCbcn0g/Hj5DZs9acKI2vYLpsGk4sYH+Zv12nFhPNcHCOaHqrU3IBK8VFQjgyofk42irVtzHyrVbRVkbBV1nPuebtlZkqBanWhtARAhs5NUKJdgZ3d24COxxcrIEvczKWtwMYgRYOmwU5myr0JF5j4n0aemwsRzLIDqsQpT5L4Wmk46GK3H/RcsgaEQimVZ1NzRelEIKHWczIWU3w9CTffLfrEJuYHuRG2gLHoOlxtzZ/q3/yheXXMtSJvP1kr8xjA2M1r1ZcOAMenbbRz7VrC4/Naj/HWXG3vgjQN+VF/2OW6UXyeTcAqZ6AkLZZ+1kgB7KWsbJQ/gVIXl0J2FUXcOjX0rNIrv5mrD1t3GPvL4D2Pc4x/IiFvMd5nvtLR1WzQBuBGyViqlwzIHt/LDbfaaPRfCxkmjsEJyw0FG43PcaiVRWEFxKy6Z22HQOP+pwTJ+PgFN6we69sAZnL/1CdQ04BtFxiN0bngeraly0EsQeL6sX221tbJN53wfYWCN2sT8m4rkX1lVKykge0D/XfC+rcGrzWKxE7RY8tdgJn1/OBJZzhe+81lcYIaeh8qJMfoyuA1sqTa0A3tBwT2SWV/fqRg70myf7WXX1hyM2RZ8d2bGMhGg5mDYKqUMncP+IRGrNpa/n+Y57k3kGrDArTluDfuvzwfufDt+Y9jT6R8opDdciP0Y2ci5Pgl0elzaFNiKuWuyhRKLOZTqwCScCBhGr7XRuKKWuBq4GKCrqpJy2QmApcsZtrcsAQieI4hTEQyLUWf4nfpOTpywDnLpYW9HhCqK9kBtbJvLQkQtsdNTT/Tjpc39NSbvNyqtbuo7NLbH79UHutdYpPRZHp+3h29+WC/Hna/Y2+1vjXEwwVchPg7UOpS1zsp/gXBa7vtq3rg4kZ8aeh+7I46RVH46BZIV32hORhHm8bVYiOZZUcjS8aF4nxWwVjNuBx3H1zrqb11zfaxdCqs5lUjgibCYcHnaziQxxjVcg/1NTfoQ0vMnavxAuwvPSgXPZvUum75pzsihkC9XkO7pfjPQOv1Pph7t/FkFPGEGUhuArFRKyPlL9w+23sKPKlCOJ1t8j8Od42Wz3wZVVNukzPMy56HPnMfmrSyUePgSxnVvx9AtyjGPYA7Fb1TiNgN3IKbd2rD8yWWtTR+oQZ3HZXmlvU0aMafYmY7PMshHx8ZqA7TXS93Bjv5Y1mlIjuHJhdtI2B3Emm/ZK7uXuvZJ/acfX0AhD8mB/M9RUQl499BiLqzhjKZ1Vsk6PkujTtJCa4dnFNjLdj5j4WIU4ebEnx/XVoMLnFGRblLuI1tdG789HuVVv+dZPiND4rQiOJ0jRUMRxVqNGotDoEtDjTTR8FPy0ZJY8dzQjEzy2jFd35I5YD1e2PCoddT9sU7yTQle1mwnRYrXW346wtIeHsRXob8QFrMhAoVnvRyVOgRrkcW9rAttCv8fDWuuxWuuxn/tcKIPo8ME0oqgBHAKozdpTjE0ENvKoCp06XaI4g+AijNFotYlQh1KIDLXI1KyKtj0Jmlhb6GQppNBRUEplK6X+rJSKaCfaAx1oMyFlNzsE5/Js0GdVFkVV1ZdCoiYLtTWU3qpmhNNTI6Wd9G74lN4Nn7Zh1NFTWqYzh2k8EvN54ZgD24M+3+6FNFNoC1SOi2K2uS/fc5JSD6LUg3HbR3q2CqXAimCPvNr3rRpfKrUphQiI6VwqpeISvhJpEw1a6xokXfwbZtU3gPdMDogfTwAzlFLdTF7JxcBTCWw7/NCMzLTaBPRaJGppxGim/Z/wJVQ7kKuu4Xdcw+8AiSLGiiTaqGUVhREdt0K2xHQ0o9FYVRmk1zWQXtcQcVuocT+e8sQoseDOmxV1AOgup7YCp8RqqaiWymOprlk4ZTpw1J4eOKrqaTg1Oiv4Yyk+lp6Tj6HlmH2ykBlXW8vLqr1a2pCts2kFhmwNL1s82tJsLXU2B1dLM4DM9OaDCE6cRHDEuwWnotuOiJqnWT6r3SixHZkLqibLojXol00EdRRy7rKRa6kXMsVehZuJjR5EOCJxqHIulVL3KKW2KKW0Uuok3/qhSqk3lVIfmtchsfoB0FrXG0dvQ+vPRNRxdqjNhJTdjIRiKhx9vQa5v/XCpZjUQy6fkMsnrGYUoya9RUHJFnp228fFOU9zcc7TgNBfPQqsgd8GBb2PMHkW6R71/rhx9OEz+XAfnK4nhAneRXJQtS5F61LqT+tH/Wn94L/SvajlBF5hAq8EtT+fRZzPIr7DfJYTKSQFzP01zP01j46ZwZIDjsZhabbS93JXp9DWfjS1oqurRGW1FrE3xZkuRcOqvFpROUuBtYqvfXDU2eFItLHOfLb9WZX2/oiNLjav+ZmQl23U1BtlsTa42rTLAYqNna9AxlkNlO91NrQ/YiMDiNBPjzToPxZ6FCKRNksfsvZxELAF1ErIpZZnuZBj+MQ7V7t69guqcarrLCVWoNQs9HiJ7kXCWJYxOn81Wl9Lt53TUGcji/1poqnG+hxM63AOYw3DrGgViKCtiNrSvdoZfH0TRCs1qW8yFFjjiNrJZFUGvOG+my4B0kBZkdz1wInwCceIfSxArps0JEhbhdjRbHi8+2U83r2dZOYPE3RFrYJ4tNh7lVJfgJh1IH4DjG7DGL4H/E0pNRP4FJgGoJRaAszUWq8EHgXGIywJgNlae6LKsbYdfrCUHuNMUohzOOvhE3J57oGO5pMmDqsWm0gQ0u8U6qrkhQVe50vBx453GkYg8un1yJWeDhRCk7lSLN213Gz2lxexjp6lmlr4xWch2Em1OY/FOIl2u69N5bAOp1Wg9St+2FxHS3Et9n1uwBWTbkIMs3V8rRpfD9OftW3DrUNtKcGVphNfzkoo9OTo2yA5FeC2KAZ3Chyl5b9XiTy5+H/4XrgJixQOBp4Bfge8HrI+qmqqUup489mP57XWd3fgOA+GzYSU3QxCbkutmwSylMZG5F43UJYSkyT9LmMpM8mTNWVFvF5icirX4266yAN0RBt1AeTNrqRGAYsj1yH0lxoR+uxEeCecfbMn62gg9sUSjX7rYVT4qrlcH2cn6NltX9Bn62Cu50mOGfiZuzLSkfNYBPnGUO7fLI7ZNuOz2Lx/m05iHyzzEHs0GGebasz6HMQO2tvqfrMtB2d3bQ5nQ2PwBDA4zQI7MdsArKsXO5oDvBoQ1Ss78ZuFUGXHZEFFjSjI7q+F/GwzgHTwntltvuAo5PophCVM4nESc4p0XTswdy4oJbQqrtbXxo1cWqVZFwSQ565uxzd6dVSD8inntS1yaZ/DpulH+FPZ9czN+2/4N/L/OwH5UZuRc7sSxl+0ovUHS+GwQTznciQiixLp3qfN+thyaHGgtV6PGLnQ9ZN871uAiITyWNtSiAwrbnJ1MvlnyR5jIRRMSUJ8J5E+jaFvtax2Cq2GVW+NlRMJZqb2IDmVdja2PQuPpxAdHVgM+hil1Erf54e11kGSFlrrNwCUT83Cp5pqZ53+AfxBKfU5rfXHWutNwLkdMeAY6HCbCSm7ebChZkSvTQmSV7kWx01V6g4AtP6ZfDZqmqdPDds1+Di2i5Wz4KtyH81+TC6Xkp7iHC9nYlJjt7TYeRHyK73jmvHpOONLQWAdx0Rs3QDKAdjq40EpNQsmlnLyy8kdN5ISbMTxTYKCOOrokb6DFfuxoj6R9zPT1xsc71fdBFfGeTboquhAu5mtlHoYWKy1XtwRB2gLYjqXWutES5Wk0F7IRGZ57AxsGjLzky7vZ1HKrOtKGWdIkso4WjrBKKBSs+BZuZk8xA/Ctxtaqx6kGItQYd9deBpwWsxIYRUDUavNh0HR23nHMaUk9Gy4gifN2uCUpGhOpB3XSk6LOhYgeBbSns9C+ZiHRCytNkyP4C68GdEMghVirTBBEy5aaYV+QCZAbRaLnS21AjvFOLrtfrPYCjF7zGdbET3XHMOKBh1rxrLN7FOMi1TW+Npa+tFucNQek0hPJsKf7YBJhWqKOizH0uZ06CkilGEnR7qdHNLOd02FIp5TrCPkmX530AMuGgLyI6chtfTWIv/TLoQOrNf1idZ6bCv2S1Q1NQxKqTnACUqpPwK/0lq3S5J2ymYeGrze/QwurHlJbuzpyL0vHWdLG/DojK+u+jK/HnMDP7nzfgpu3cKOsoEUlGxhx2MDYXXI/aOXhv+VeQJ7f7tVt3DngtkwvxT6wUlnu9CiFfOxMwvjeY231SvSFhjJWh5YcRMKR5VUMxDl2VqiZL2GwzqYSv2aL2jxSJeWTYaT5NiRhIKOObAdPvgJuSdsB7Z7djKI6jsSNq/ZJzZ8K8FieAOAzdDQYOo9B8TW9UfsTw7usyV4ZJh1VvQnzWz/yLefbZOD2K4snCjp4F6wZ6/YT9u/XyyoCaHYelRX4Ng0yAo4IaAeSFB6BCLsA0KzBUhLk+hlj1wkZcRPqk9D6KO5sPPkbIaygZ8zmyksQfF8+AkOgXXarHMZCe9OMs8wS8wkqXE2VQwbPVyfSpmP+NBtp4Qdy6uDJ1p3TBroRT7temWYSaH2Ts8DNQEvCu4J/fgdTzULNcd91lYhd5W8Plo2g++X3C1Kw9nItbMe+eGGID/OWLzob2t0+Q5HdKDdPCLUYlM4WBiCOEU5iFG0tB6TT1KTRKGIqE7Yhe0fXRIKho/2OgXiKaIlC+tsJvwUWohTi7XUlyo5tTWI8anF5YlYBVZrILcjFBtz76QPYqys42fb2fwSS3W12aPWwFoH0hpQm/+x2zfUEThVPdt/E8E5nOAUaa2htseyx7fHHA7OuT7KbGg058HoV1onTSfgbMZzziB8Flep/WZ9qOseHcpP14lD1YkWsVRnA1dF78M5q7H7v4zHXCH2FuTcWZosuJOdwmEHrfX1kAB3MIXDAsPYIM7PXhxl3U7KFgEBqDa287tj5nAfN1Jwq8wnFJSY19niaKqykInN/zE6Akbc8g5mc8dU42x+UMr7ZePCJkK1/pkR9HlNVlwhNjf0ghvPawSVIBmAczCfkZf6U/uhV4Fa2o8rz3uEaZQHRSHfVO+Qpy8P63eF6XceM8KEe8JwxSwYIffv+Uzltvd+4/QeWhCK7L+BbNhdE6zq+jZi18oR+qtN/QDx9W2ZL0trtba2jmD18wZgTC9RdQWxvdv3OtprBXJck0ZIbhpsDLiSXfvNOPpkQlMzZOx1Zcf6AP2zoaYeenSHjY2SNtLULJ972DQkCyt/a6idfZp3MyDdef6JPD+pH5u2dw8O25bM85c/wrhuuXEqo6TUenjur+bNVVGbaF2KmukYQHq5cUAfkEVf56PL/sKnpTEnx1OfVQuQH+S+B2H6tfRll/xwNXhUagKI3WwG0uEyHjcdRZgFTuGIQcq57GyoQe66NtcyYNaZB9sJBFe3TTRi6bWPc1OzOZTgnFJ1yXNm4wUx9y2YsiVhCqx/djjZ0ibvlhlnOR49tgjnWNabJd9FIhtwtSytQbSzoeDqX1rhAOs82soudobW1qi0Tp99vxtXisQ6rvkYgQLcbC+mbbEZk42C+j/3QP6sNkJpo6Z2jH5H1Mqt08t0VGvOgYl+N9vZ2TjPG50FoU5gNGdYzzaOZTuhhHXOQTfnjnrkATBA8Cx3F0EnExLwVFNN1DKaamoKRzi2MoDB67aJI1SH/G+rgC8i9fVOMw4o8vqnyde7KI3PFoVxmS82ax4D/ickrzIBB+HtGWeitXMeyxnMeeMX8Twuuf2UR17j7XFncvo7ko/5xjjD8tazYHScY4z4CXlrZLZLlwAHrMMajE+69UepWQzVXwVggy9upEsAXeoJBN328W/EsLyPcw4aEAezFvqYepEbERtoa+3sxrGB7ISstXE1uAlba7usy9WAm6i15UJCtQ38tjLf2LWKvY41lAGMTIPqgDiKy+rFZuYBY/Ikx7KuXsbe0CjRzZp6EQnqcRJyjeTh7hyjcDVSN0Jm7gF6F9gng45HaK5lLESaZNX6qsj9xlCCj4tNM9GRWGnrgWXXwi4YzwpxKgfgxLQsg2AgkC//Veg6kUvodHbzoCBF4elimMi/mMi/gtZdwZ+5gj8fohG1Hmqmo0IqdYe3pNB5Ea18TLv0PbNj+k2hcyIJ1dQUUogLvwq6p5AZpV2oYrqnqhkhNaDvvp0R1WAPJi5lftDnZEpKpZA4Yp1Xe91EK5OmlksU0a/sGg1WGfhQIlWCJIVYaHXkUinVTetoJYBTaDVstM1O3UEQXePoj83sWQLlxqLlJCYLHSFiqdRGs03CN1UMZCzLGEtVQseORNlV6temz5/41hln8W8ijKCnwdQScYQXRIl42n7+oS/mcp6RWWxb9L5WIoK2YLMtI2IjgLZ0iD39dbjIpU9hnAzfZyvFbiOXNqI5GLxsi95m+0ZcMWkry47Ztg2ZtbUqejYaacdjy5bYMdv9wM38WtW8/EE4VVg7sWlUh5/sfYmcyzbmXnr1MN+XF31r8PZk6LDePoaGo+bJEo8aG4bTEXfjyeiztHFVhg3yG2rlmqlBTnomEg3eirt4uhA6sBh0XGECpdT9wBSkWvmLSqlarfWJRFFNPdRQSvXSWsfQZU6hPVFAleQJ2ppMdchnU4aEGtht7uRfKXtRrhqAbaAeBpu5VFAi7BsvgilmR5Rj309sLLYUiX6kKMxRWDpjMtSaCOnTju6o/gZvlH2JgpItFLyzhXON/vp8s7+alwlXwaPMQB8ANcaMaw1M8/L/ZjCNRxhGZPGePP1tdgHHsyniuG0e5wufO50vVb4h9sKfClALtEBGuuQuDkHsTTmO8WN1APykjmLE7tUhhVU/Qmyjta3WvjX5FpCfLs3XL5h8TPOvsusstbbB3o+b5RLINevX1cjn/DyorjF2NQBDcnHU18yQQQ/BqfUbKfxd9AUSExZUD0MymtRKrYBlTp/LLyDlj5DbXMjzE+86No6FA/+XiT9zz1JewanKqgdM3vFZZsNdSPGiXsJY27FAGGuLJlzEhatfcg9Pucj5HQJsBnK6XhSvA+1mp0ZCzqVSagEwQ2vdaD4XIsp8X+zAsXVNZCI0glocrbHQ99nWFWplLetX+HLYumRpqZ0FfjqTVeUD51xeztOQp5yRNKXG+hdBU6UTE7A0VpsHaQ2kdeKszbKCObadzYW0uR7WmNXhnE1wOZm1CCW3AjGoDWYfTPsc3zGtqE+dr41t56/LaWuLnYKwU/pg6EZDCC6VYfN38+GK/33K5REdZCTq2LWqb3M92FzPcJmm5FCRdSyD67fJBysSYh9AqnD/zy6CDlS9iytMoLW+AbghwvqIqqmdABVKqfnAg1rr6IoeKbQLWkiT+1szTrGtEfmfpoH+KgwwnMfcE7bDCYYq6tMkDiqVZR/ofQ6Em6wKT/3wOwChdS53f9pHHMJxoXv59i8RBtErxsGbxwyu516+l/8QD8wzUt1/jTzZFksF1uJJrkAtlfdnnPc6l+jBPMkVEdv2ZZfYiyHASly9S4DPpNzHsWnQZOpI+nUH+iDOpn/yc51ZP7wXrNsr3VXgaK5+h9JOkqYhdrk4E1Y1Or0DcFoFI0x+pi1nYvvcWGtKmGRKqRTb//YaV2LMTgxv3AhDChEj65eNsBoF1sm0OTFxoHVp0DXlR9yUob/DgZt7ewJSsbD0OkOrbmO987bIwfx1ymWUMot9vmLPfdgtP8IWHC02E5ngbwFyTZsuhA60m50aiRI1PgRWKqVGKaUuAN4E/tpho0qh1biG33ENvzvUw+hQ+mMKHQOlZAlbf6csSfW1wMnbtzdsVBPwik5HbFckSwopHAKMRCKpLymlnlNKfUWpSP+uFA4VvLILgKpqpoT3KOE9VFlitENVFl4H0+9AtoV2apk9bUUsmqZNh7EpMR15z06h46AmmUXNQqkH49bB9PaJdP1OMKqxyP9DLZclhU6JbKXUw0qpiw71QCIhocil1voXSqllwDLEYH5Ja72uQ0fWVZGGSyRvQab5mhHFz+64GcQ2whqUZKKWQc7iXeFqJkEU1zh9reQ0L//AzuhZOqzNCX2FLwdFJC0ijdmKGLw980z4+U9cVHMgctXa82qEbYornfqcjWBaFTt/NHI/TgDICu3YiKHdD1x00yrgZSCToX0QcQP7R6vFKcP6VWCzCFabzTXHG276tDTaYpyce4PpLw+hGtnZ3gwQQQJLyrMlM1pBgldqFtwRWVRCW02KyRE3y/6Tw+mpdmbfyvZH7LsN5EZLx22rYzn45W1uBjsPOX+NeP/B9YOPA5x6YVdAB0mqH3Ew+aC3K6X+F/gvJMbQopT6AzAnRZltX6TTLPf3TITCORCJWhYC9aBWw5KzJQ/g5m738D/33gfAeVcvooY8VleNjtjv+QSL70RC33072dWzn/e55kx34znQ7x60LmU8r3HKO7CCM737X/O+a4L6sXbNOpYPrDARy2d8jabJPflWqb5DqOJmtCimWiA1LCfwClUUspyJUXUWasiHmvfF4BQi98A8JGVnLRSbiGETrvSWFZwDZzdBbJQV9Nm9F04x0Utrd3ebri2T2dovW5JrTaOzk0OMYM9wcyA7htw0WBOQMeT3gkAAKgKwrlH6tbYyPxOWNQo1d3gmNO2FIXnmS3RHng2qzMDfR3h568w5SINyjucH+35H9uDg3zsUNhrolaEhASFFU5dG5ciTk66L3E4twFMtHv7yeyi1CC5ITHnWU36NcAt39TPlfyB0bp9Q0Cjzugt5Fr0Zrpr2OAXztrBDyfPacXoifdlFYASkLUNOfhpOdXgA8G/oefK+hMZ7JCFViiQKlFIDkLvYP4ETge8rpX6ote56V0kHY9bgn1LKr+TDXuRPaR9qLbUgBiLVruwQDIlNcexI+mNSKALexRkPgHSpvF6Ho8Nap9Cf05iBU5MF5zT6HUhrJIcgOZMenQexSzYH0++4rsVRbK3ybBNyD+6B0ForEPqrpenaAjS2PmY54ngeiytxYnNPjs3E8WrBXTMBIKQ2ZDDsDHeIsfpZ8qVr9FRXU6u94Xc89csx2lVG35YQbI6lUUekAfcgclTK0UohNpRSvYErgeuQv+xcYCKwBGhHXeMUerJPZnkqcRT27mZJA96HPmcLHW8F47nypkfYY4pEPc9k1C7YVdjX629p2WTOK4kdudQl4lgGrXvH/ynyPbMaycXsc3RkeuC748wk7R9iHj4haF0aNRoZOkmrp8rrB1S4GtvpiMOVgyROHgU9GsXGrDF0VUuFtVoCPXCTrjb9w9rTtXvde3CTo5bJbMXyP0KcQD8aAmJTbW6lPU5tQOxvLc7htLbWJkb0AOoaxWb26SXv87IR21hoDtyAI9jnIbn7WUA2NOZ1o4itPN1zChPpZKG856x9TsJG94ucM6qX+0qT3OTW99nzCZ+tPkbWG5lXG0A4Tk/ko94n8NFC2DclnbVZwxmduc6Vc9mLq5k6EMoM17x9FEFS6KxIlBa7DPiD1vrbyDWxH1jRYaNK4ZAinqpZPHQGSux4XosoyZ5CZKgP47dJuC8fbTWh9mtkaUsfKXQ8rDBBey90cnpPa6CU+j3yzD0amKq1PltrvUBrPQNPIiSFzoB49FVrB0NphGfwgusjyZJg7YXrSaAAcQSoGY4Gm6LCtj9UTvw2FpaO3RZE6sM+w0VToFVxLh2l5sbYllIaThQdaDc7NRKdev+S1noDgNZ6P/ADpdR/ddywui7mMp3Svb9yxZ+rkAiUJVFVRd7PX2g3GtT9MPWGVtBhfX1bQxspOV1t1rBaBX32180MRbQE90iiQ/FgC0ZblpCdgHzlmi8w8aU35bw1I9ObXxQ11YbNMjFpa2756af7kdnO7cgkJjga0BBgDS5amW+6tfs2ITOsTUjUEtNfb7PYCKWtr4lpl0UwzcgvitADmVi1s7G2KHUtjk5rhYkyrkSuF5tnX+vO09/O+zoA34p0EjeUoocGr4oXsVRqFvxH2tgZTW/fKBP/seiwnQqW62xpsY1mSQOOgpPmiU5LWyi8hxM6UPWuU9N7WolKoERrvSvCtokHeSxHPF7kXL7z/gJXE7oKuTHbyNTZeKIazfRkF0ezlhHsMDNYBSVb2FFm0jO8iM7kiBOsfiXPET3X8kbZl9w2w9YIvfdZeiSm5qXUJjRF6+2D+kBzH90cfCxyodvt4hz8jF9xq4Y7mB3VsbRO7xuzzbhKTf9TS1nOROkzCtQCeGNqX7n31eKKTeYg59XQeKyv0gMXrexjmu7H2b0Ks83aJkyXgxE7dyyO1WODh/79PwJOS4ONAVl/Gs5mWgZRb7PfsWkSxbSvPZDoZHk9DM8T1djhebCiRi6N7fVQXIRjh9nQKzgqcBqwFVrGpnlqw6osulKs31F/Oye4xqkfk5DZ9+cWTGH4VN+GT22+5LWuT6PqrpeY6PJUWbdu0mi0Hp24Y7ra9LMm3LEsw9HCW/IzPcdSrQI9Bj77o4la+qKZPDqLXX8wGmtNwCVzGaC3Mrp8nZzHXrgfyV7uaVDCIZqJOURIqcXGgHUsQ9b9X/sPJ4WtDHY0PEvBq8LROo2joJY7Weq2wJ/faBHN6VMLoSBRuuuotquR2rqFflXYROE5myyHTOVoPgGEonESDNksIXnrWDYh9sSWAdmOUHMseclSbKyDtwZxALfhcjusE5iPc0bTECO6H1fyxDqM1h+rxinRZvmO04CTec8x7XJxBtbSZa1N7AFy7bTgGRPPSJ4O37r/n3BD+G8T6lSGwuYvJkI1TdrZ+op59fXtlSTZLGMNnaSI9hAHbbtugrAE+d9lIU5lPnJuG2Wd3qDgjkOjuptC54bW0QsRaK13HMyxdAUMoFL+lych93eTJ+ephK+EkpPkobaEMn7C3ewoG8gPdTq/LbsFfE7kuTzLS2UXyo2dgejzZH324J3UXy+5dkrNgunGGXwk8pisuI9+J3ySTn0I3BL/e+lHiBh1OpdneWnKTXR7sJE/0mic1fhQC4CJjgJrMQ37JWbQk2Y5b9ZWBpBnkHSgF2TkQsM6sUfbzeY+iA0abD6v9fWdgUs/sc5oHW5ydjdi46xSrH+S9zjg1YCzrT3SoM5M+lkbWmGOUREwKX4BcTitY1mcKQ7lkDQpRTK8l5QzGZIJ2yuh/xBkR3vNgJuMPglogKzV+yg+uYLPl4U9Ckec2A/NmfQ7iOphuMA3lbZuwWj3e9x4LbHgRURvl5feDZ+yJytyvrD3HGceEvwWNMhJDMF05vBdDX9adb3s9wAwNriN/a5KzYX50+E3wJenU8hj7BycTb+8esmxXI84lSchzyNDYFSzcYbTSeEIRippqDMiE/EiTF1Cr8ZeI7AF1PciOAcJ5MTpG4BWlB3xbiQLYcfCgVHzKfUgJbXFpHXSx+kwfBuJaLYgs5SZ8v7cPNhWIw4cuD/Ddt9nazjBOZm2bEiT77OdmbWlQXrgywnBSaD7o5XFuHxOa4tsvctjcXkjVtp9MK7ESRMiDGTLj+SY8V00CvlCmbiQK8i1NCDeiUoeyeZiRuyjrbmRHQUrqhVAPHpTyoZ04uY+H6noijOwKXR+7CM9qPSIB3u5jghu/x6nooDHucyrbWnLjpwb5Ri7evbD+mDRGIPR2BoxMcs4qTMjbw52HGdzLs/G7O51TMTS9jcz8Xu0ngpPMJBx3d8XUZt05N63GaiC/Y1Avdij9bjaynZCNNcXZcSsrwWmZMO/66V9Bc4GgptEBbnVZiE20DqfNorZAOwPOPtsxYGKcfUwt5vhpgF19ZCfBk3N0qZPpkQrAzbvMxP6FyL3cjsRsdF0/kUcWyVLzkMFxaI4AhBlTjHUaY+G5x6eIsI/Ie11hGC0XhJh3XXiWCYDvSZ+m6D2Y4xjCfB+cP1Lr42eDohY0PE3fcB93MgTfE2es5YBkxCncgsSNKmHO9NFpPGO5IZzWKMr2s1Ecy5TOMyhSmRpt/5iSJwnirEsC5Ncb02uZLQSGimkkEIKKaQQiunMSaq9WiRLxG1lzh6qmcKciGQbI+WWB22fYpY22Na22uXbubnV+3YlePmqERyudjvGDFCVAVRlIH7jGIiWcxn3+CHXkZpmr/W5jjbre59CCn6kIpedEXkIRdDeUyx33aid6j8q1Jc1tAMtNpn8RhuxtFTajkY8WqP6Fa6ofax2FRqdrhz33+bkFEFujcyOWsqrX9U1x7cOXOmRPmadjWzmI7Or5WabjVBa2k6xeR8wn+17m3uJOVYDwfkpNppplWktBcmmwNgcFas4Ox5khj7dfMd6s8Hkj1z61b8D8CSgHpdN+rKQc2VEdEKprR0dXYxGZfXTYa1I1HFT1nPcIqiIUgSkzXRYYADlbK3FqcTmIrPYvXDnt4uhqxaDTqHzo4pCuSlam1mP/FfXIaUTGiEdEbf/Ab/jZN7luhIJE81BOIKqzOZeXih9HCu5dULN992HFgAXlXL1I1JP+uGyKArtK2eRp79NPsF55mqGyaF8EA48JFFJPVMcy0Swcp9Ifv9ooXAja8iHKCVIvGNGoG76RYh0iex/OzfTl0/lXjcAMUKZyPnMhR69YM1mKUfSe6/cGrcj9nA/LrI4xvS7HTgdWFcvSq3W5vVBfpoMxL7lIvasv1lfjAQRh+BsYRZOdwAkalmHKyNmS3VlpMG2gCtpUhGAEdlQUy/7ZwHF2dDQALtroL8tR+K3cbYMSz3CYMmHT+nLX/VlfIvHg0WQri1FP0BM6CU+8aSjgiOcEX+bs4HjI/Tjo9vuyTo6aJut9zz8ZaGd+vMoIZiaa2HzNf1t53K9aTsLrhclWhXyPACgfJKeR/3xE6r35LNp7YkcndkkJz4TxzbPRn7gZjif583KdjDUhwG6qt1MOZedEZaLnovc9Cwdrx7YC+rq5PO8dDvnUJ+lx7dKeMePlRHEqF2uZBJ4Kk5ZlGmI9XkaucltQW58uXBRHsyvCa45aZ9PLJW1T0h/1tm0Dp/Nr7SCBr19fQ1HnNcsxOG0ugHWUFrn0sq155r31p+xjMwViMHuTzClqNh8TgOKv4hcO81msZOVmcCp8OST34RLUzmCSaEZedCwog/p5n0CkxpHGkSYIGUyUuh86GnrXNbgVNfeR8qTGLrsLvoCsHrJqazmVPSkJA5wUgxxOr862i9NWYjZ4ijk+zwWPRJPTOfAEEN19QUKtaewnhiN9TfzbuPKacEJn21NU7iNe2CrkvuedQi2IPc9M7M5JFNKeVTjaLF5uPrPtpQWiP17Dpn4rMVN0NYg86A2v7Lat5+1j02I7bSlwWz5LWuf+5h25TithFogNyDvK4DtAdlnXb3Y0R5AcR7QIs5mn164XHrLzcUMqhGn6/wSjL/ceVOec5ggDbZV2AS6qO33W0urTobcpZcEs8H0PFMn8y4fFXYFkm8JwCcAnD7+BXgZ+YELkHNoa88a8aQtFAO05knvsEQH2s1spdTDwGKt9eKOOEBbkKLFHsa4ht9xDb871MNIGpY6lHB7tRB1qGubHOGIR9lqVZ+toGipCPklMfsvcmJDUdsl0CaZdim0O464UiQpdH4UsoXzWcT5LIpadkup+e79Ang2akZm+0GNkcX7PMW3jEusj2MObOeYA9vD+oLwkiqh21JIHmqFi+TFOr9B++QE02pVFJEdf5kRdbaLUMZDMnRY9TX3fgDlDKA8ePufEztmCgcV9VrrqzujYwmpyGXnRDYyFVePExSxifX1oCcqrin4bdxuEilP0hq0NWKZCBJR/Dzlp5KbuZUBqDudwq2+NaSvMvjT9VP5ztwFMkuZjUxtNgPD4ZQaeNG0zcDNjPZAJuDSfNtsCZHdSCTR0nasqE8TMmNqmTZ2fQNOldaK/WThyo3YAtINvnU2slmNm/ndjqMR2UhpEyLXzkDctVKPm3VthlmX/hRwc+KhdFjv3MVRerUGMJLwQFugZ0d2LP2qsC46fUJ4Pkh7KcQaPMbl8gPkINdJOjIDawVDqmPsfAQjVYokhc6IY6iV/+gAXARzABK2WglkS5kvgIsmPcHKUPlLgLGwY6XYkYKSLYxgLUsBjl8AF10Bl0uz/zf1XC6c+iKf8j8APPTODyLm/KtxcPo7Vl1UZq08ZdkICrPePW10bHtdf1o/9DugKuDR2TOiCgH5oXUpapxxTv9mVq6OLEBTOSCPopU1EnWqQQzVUYiRqoOmKlFiXWOEfYYjNqiGYA05cBHM7b51ebhSJCC2qzrg1GLLkdtuHWKui3Gsnz24dBFM++NwIj6YtoN7QfVep6bew2zPN4qxPUzjrEJE9Mk+a9lwmn3eArn/fxHu40YAHgo/ZRFhnU1t6qLZcy15iy/C0Wai4tpSoXADqhvoA6BfjtN3IWhTls46kN3+YcqIGPXYbhuDHUtLh1UPANcbyaUrRwdToYIgUkpqGnCWWb47F+aZaOWpRil2J3z2jJQqOX/q8xKS3ogoPg3BRYBrgRHmv9rF0BUFfVLOZWfEFxGlLVuSJAe58dUiD7yb4aHNP4TTDk+KY7IOgI7FeU0Q3y2bz3e+twD+gRiNOuTcZsOQ82HV8+IwBnB5GZbu4y/z0YBTsavG0Wmt3HoPnKM4GJcjYvNGrIqef19w1FvriNoSJuBot8WIsbZ1vewxBwM530SMoJ2UsAmjAF+D0td+BWdGv15Ca1S2B5Kd1EiGphYm7R/jASvRfFF/u9Oee1d+DDu5A44a250wafYUUkjh0KEvu8Q+bkEeZO39bxkymdgIPzc5XrcZncrLkMTz+0xNkP/P3pnHV1Hd7/99CCYCsgiUkLBIAFGC8AUBY1EpuOBWqSIWC5W6gAu2WilW65I0caktVKsVK4sbFn5aFS20LrhgUVEUlQIG2ZElISlBArIkJjm/P845M3Pvnbl3bnKzkMzzet1X7p05c+bcJXPmcz7P53na7dvNsOTlALwh1lCIQyl9NPACXDzeLEP6w4dDz0N+Ft97kV+EvdakHXEqfPiFufCsjBpU7mmmNVa/iNwnMwmtGQzb9xmd6N62WE1i3VGfqyn21/FKRYWad8xctA01TxkLEfPxH4MKPveiFmPXoLo9jF1HWVJhz4cHdD+7sFVgTXlKF+BTR9/92yr118N6iKas5HvgwBHI0p6Wx6CCzV1HoEUFdGmrFGRbN4fvS+AYc30/GTAmQcVY6qZkAP8PWk71jMKUkAFAlu2B6axJdMW378CNKsCUA1Rg6QZnPaR8TwWWfuDHnkbOi9y2g96I5cBHveFJta3ZxQep6vz/3DvprPsaD2LFDO7p8Gd7ocfMqa0w6yvqfzVAo0cQXAbwhQkoXsR8FysTLy9Ca7+eHP3EiNYK8L3m9Z+Q8rdWH2ljFH3Jy4szQPXgJeTj2V7kVisjHuu3kmjE+74CeKOpmkEHaLoIX7RyE0Krjjpru/LdgLY3IbQ20/m6WDyjzhe+mDYUz6DVZLL8el8GiA9C5MJ/tX1MLSzK1gThtGlDp103e5Ct3XFs3Y6pqaOpzptBcNkA8eXZfRmUt06tFB6LouK1xVZ7MV5MkXo4IagpHTZaIFDbQYLMU4FlNISI/9zl3c6sJE7KfJy5n/xSfX7HoT5TnZYcdyI8u9FeTW2NWvE0xs9gZyaN4l0LbKGeVOzV05bYzMkeqFVYQ4Hdi60oa5TyDIzBdKrevg7ld2kylEYsCNTqrVGt7dsflWFLwf6t7EUZFwN8Avw2NGt5ESpaf534ssLy4erdTIXDL2W7Wr5xbueLlzZbgcoEGxiGUTrwHXyWpT5cnyVQAQIEqEWkUqSue+nYNLyVKCZHCVAKi1Ec+yxWsIb+vMg4Uimyrg1peYd54wtzPVwTeoKHdMZPB5c9+JpvhhqdbvtaZmoc5Rd28GdEfKQbFTbP9rfsJK+hOK87Ig86uWQlT/tiGVN5mE+H2vNe+HVUFJTRzOM+Vn6mxi0WnMx9442S0IyIdvtopz4/M5cU6efa4xKUoI9J+JnqAVDZxWJsOmxv1HxWjJrPuqCmpm3AhZq6+g1qnjUMneb6uE3YgkGG+dPJca43S+E01PzYtblShTXzZwmwv1i1M2UmRpH9sL6utzFlJMeispN7gYG6cQfs8qQC4Cq4BhXo/yVMxcd8B6fJkWQBn96uvh85Xe039bxmQVxmQrrspbfZkFWqpleIy9WGsTep7S+FnI6223brZ2ph4qTUDQCsG6oynHI/UdF3ypes6zzIc7/QAbNcDWKVel71SiuknGQp3rYdu5u2ZT+mVGds5XiV3f/Dotvgv6gMcCsUzcuUk2jP9iBz2TQQBJcNEIPIhw7CVv40NJ8dwNnYwWUdwi1jaRAzwFyl//qIY6R0Pv+t/dw6tvoZy7nczMEnb6HVjVUqGDOWL3pyuRqYv1GVDJhaSxMEgpqHdmEHdqZmJAs1+Rn1O7BVZg31NVU/T0VRdD49YgeHYNdoNncco8sNOaS3d3W0A1U/0v4ibOXSdN3QWJBc4/+ziSezV5NFC9lT1Klojnlf8QhIAeoH0AGbp9wNNUFqK5Kh09bCjKOTll5dNFVJ9QANHyvIovexO9WLtlj1XZSibmrbwxr6A/Ba/pVclzmT1wnl4ReQwfmnqtWst/Q1rmPVLkq+7mI3ulIvrI0bxwmffc02Tkasjv96uC+5M8Kx0NVDh2PFmjtYRHeyWEbxD+2+rcXUGDTbqsrmyPSU6I2ioB37VCRYhl0nko6iNVYqKun3evM6VCAIal40JSD99bbD2JYjJihsjpoz9x5Rc6iZX3c52rRA1VIeRs1zqyvsPr7RbTph02uPqVCBqLEA63Gs6t9Qaj89oui5oALaDs1h70Zo3hzanIi6p3Jm9FL0CVYBJ0NZK5jHVQBIeU88H6crEsm8WpetA8ULIxdPLUrt9XZGe93yQdAZpA8rOxnLx3OC/n8Yr36nA1ll17Aav7RWqBufjUA6rERZ6fSLffpGgaY6bwbBZSOA0OkseShyn/GkrAsRngANF8aIORHS5tUeg8l4dvN/M+aV4RQrAK2VEVBe6w6BFUmApgKVcUq2XrvVKTpVQcUSx/MVtpBLbSBcBfRusq1nARoGDPW5pf4JCYcXZttJobTo6sCmUjs8VHU9pizwR48Ovy8QIhf6x79Y0nL/t8DxMds1VTTFebPpveOjBBNfmc0eOtCNHWymN0lUsmTBaB4fP4k0TaaoucxNdETLSHrtc6vNlHmq7lIsjF13KXrqY7bEN1a/ODFlE0OeWclAVnES61nKSG5mJlvpwUls4CwO0P2/xfAlarVtO7bv6Jlw6hbUtbw5DDiCWtncCwwG7oMez2NL21WATIcBfwey4N9Z53DxinehDCVovxIqJtlja74GO/PYH75Na8HxOYfhWCi7FVJWwurhfSiiE+cVfsjB9s3ITbmd31/7EJc8/RLd2MElLCaPbD7OHgl/daxkbq/AiXjpsDWFM3OohHMSq2DsXLF1VbTtTVwYct2HdKKINQygnGQu4nWeXXQjfUavZggrAZgfo48AvtGg/boCNHx0okgxC4zoTCdsRefmwF7IREWCizoc5Jmiq0lNLaaIVH6ap+RTz3e5OU5uVk5a5lYKF+hM03x13fpGU125Tfevk6Y8hMqcOuBGhwVCBHnWl/cJ2SamwmkPw2nLl0X1fpYyBzEGMMFll4f0jrDFOL1Id7VMhfHvc28zRYe9pwoe4jZ+p/0tpLyElhy238Na1Gd5EMsv9DC2wFwb1PR3mFARHzPbGNaOEaDbhS2cp78W+mKL6BmV2HX6eQvge+1bmYpi8Zg8svGy7IKtzG5KS05spQV8dN+GXntYH/d9BbQwmcojqDk9BSwh03TgP6gUayUUtezEZbymPsuzVebSUnT9PAe+h0/zgX5/A75CyptoV25//oX50TOV4nb1V05/J4S9BSBm631aTzu8Tjdk7psb2bepu6xM1VnMVBXoilXAjx3nMF/amly4JAcxOrIsxVK8FcUwfwBwmb3zSpWVvCD1fdsXtTk2tbgT0A2OD2ixTQJBcNlA8Xz2ZC7Je4n3GUkWKxjIKnqM38oLjGOQ5pn+lq8AkIe8CQbvW3rYQeZSiJ3wSgaLyeCcMe/Qi80UkcoeOjCcD1jJEJ7nKuZ/dx3sh91Xt6WYVAbsUDUNbERNtmtRk1EroD/sPyWZNv8ph+eBNfDZ2acwdPFaaA7iWeAiYB1cXPyuChwLYOtv08g4WEhzM5ktBkah9vcEtkNZWjKUHYarIaUI6AQD1m6ArRtYdslpjC7/J635jmefHscvD81kXMsXuXDLe1zf8zE+vk/ZtBgz7/rMWFq4Nwc+VD5dsaTWDbwouDILNfH7REyLlbAM6eeLzoAhZfBkCqfkfcazZ9/IqPfUTLtgi+Ibz+/p//yNAbUoTBBYkQSoEdqxT1HXi1HRxXbUddTUDaYr6izAhFSVgnyHcxmvl4j+nH0Po/I0JVYXJJiAIC1zq12L10+zL9br62offe2YZF+nwoNJEwQU0d0SXAkX4yl9X2ewRtnbPp06HP4CAlWP50Rlaisu4wV9a38lD47Jg9cAEdnWiWe4EYBn9euOVbuY5lApHcmb3EUa/co2q7vDtsAW1Gd5EGgFLUpsOmqXY2H/EdX0ADYttoXdJc1RQeWpx0LFETuA3I+iz1agSj5Wo4LFHqgA8Bjd54kdoKjEVlo3f41iu0Fv/dqoxKL76AK0aQXfV8LhI2r7YaB9ChyTjr14XIYdVJeigk6ADOhQtoc/ptzh/cEeg1ovHXuTVSO5L7mzVW8pM4FMu/lEzBraZMRF+OaI2kEoFJ+tM5aOudTYk4CdsXScNgKye3MreAVgZg5yim0B5rQ8CTlOKxkJBsBuODwXRk1dxBA+Vw2MN0wr1Jd9EFWKdBDSznDpsBEjEPQJ0KDw07znKCaVA7Tm9aqLaNHsEC05zKd7s5jY/nn+SJQLXT3CqzbTr5tIbWUsLVy+Eym7IrJncW/e3ZzEeraRwV+5hdYcYBRvcdsZf2DNGf3JJYcz3vscnahCTgJxEFX2acwmS6HNunI1S/4HWANDt6+FQtj9u7Z0blUKKVD2U0j5MzAQNv28K73/t5OPLhzMGWvVxVj+HN5v/0NG7P0YsQP2D0mm86ZS5G8hv30vCkgjnUKSqODlU8ZSQkcuTn6dEbxPCuU82fJGWnOAt3qez+y8WyEXX/5ndQWzuurXALpG53o4dpuYfQwViNESLoS12UPhHmjJIV5bqMzuEuCOEyBAgAShkHSoXKsChFaoa3QJKpKpUK/NDd7zoyczatEiChdk8GfuUX582EGlha+VOnmhkZzWSLRvNKCiK+c5jHCaiH0uuRBG8xKLm13h2eZXsmXIa1mlAkuAGVXTkLKLfr2GrMpP7Zo5s9j5oT4wBVI7ADrAPKCDxU3YwnMmgwgqODwGNT3ucgR2RlfAZBz3Ahd2gIdLVGBpbkz3AxtL7GB1Eyr4RPfbHiVyZ/wv26ACy1RUoGrGse2g1jxoruosi0zgWIItlJiEWpwApW8xSG//BFoVVLH6bFVJGrEwajKgLjp3XrWV85gcuuErLB/KcNR02c1pZWL16aylvCGy9EQu8md5YmUyF8CS/NGclLmeCyreV0yutaj/rQqUvZ7OZBZb7qMBaogGzfjxcNYJcLRDPBHK8W8sEOJhhIiMHgztVvS0qbUBGj/E2ZEBq8iuhoBP2PEBImFWYBP9CBCgIUDk2zWURqsg5jEuytliqH5MtpViAc7ibbtN2D6D+5kWuVFv99rnObahkdYUnm19eicGUNlDk0F03e/IBLrNT6AsssLWLEL3P6we1R6jyE2IqrsT7cp3W3WkoedandDzNDbU4rxZKqW8viEGlhBkLhssXtt7GX9qfzufM4Tn105mNrfSdcAmWhx3iEqS2FPewW6c7N2P1ypruNCPmVRlNA5FHULoJcfB338EwEoP3xVT40kUNVsDKdXysMgHroQ8HuA5xvE6FzGOF1nJECXDDpyLNssuxbKkEEvg4SunMPWFJygbDUkVUJkO61v2YcDiDRy8pBmtkqp48rKrGcvLrCOTxcN7cy7vkPFRobIG6QS9P9/J7sFtydr/uWVxsbz9YPqSz472ndjcvhcjn/oYKkCcA/0KNjP1lId5lFuYyyS2kUEB6bTkEK9yKekUksUKfr5M6YJHy1jWhoVMD730v42TY7b1osMKochOUh7j3qCWEf5/0rLVXngcLs16gdfEergPXrs3x6rPgl/U/SAbAJqi6l2Aho8ddFM0xgoUtXErKq11EHXdLYZzTlbX9HMWvcO9+TNIG68oi+VVyZTcYCvCprJdUQlXQeGqDPgqx6LDpsmJpLOV1pbOt4KTChse0BWLZ5Ayh7NYz5mfvc0HnGcFlk46fnjwaK5JbkHl/UxjMHCPthKxspYeMfFj2NGQOecIh+LQ+3ShpGsXlhZ0YXtSO9p0K4Zl2PZWJ6q/RRvhmObqUVEBX6BUXY3NVntCk7Bd9L5tel8bFEW2i35taK17gRUlcCEqO9kblQU1NiaHUbWZTlvJElQm8nAFpB6rxnO4Qtd5toLDem49pjn0bYvFx91bqutGy+DAQWi+H9qcjWIo9XWcoAjLAk4OhNGayvoh54V8tuaeqfWhPXz3947W9mEsBUYSC14ZS9e20x0vfPpVii/0sad69Blen+sQBRJitfYef5W2ZTeEtnOIWTEQrs58kv6sUZT0jxz7TkFpU2SoMSeHeHw1DTTFeTMILhsoytq34TJGKvn04ySjei4miQqKk1PJJ5PSfzlUxlwoejElpI9SSDnVfbv5DOKkK17d8kX+e+gk1tCf83mLfbSjGzs4TEvWcxI7LuvG8suUZvdjy37L1FkqHZxSCvs7JZNSVs6Alzewa2wHuvy9BH4E1xx6lpSVMLLkY0b2/1hNUIXAQtiz4Dje4nz6s4bmbSpZnqX6ziSfFMp5n5FcueM1SIetF6bxJQMZxnLG8aJVM5RPJpOYy+/2/oH+7ddwGa/xDNfAX/Wb8tZ/aHRwC1Z9e1l64XQ4v81bLB00gteGXgn3AldLRvR8k38UKFrsi8FKf4AADQY3/+8pdTeTglKD6YAKLEtQtfKpmjrrQGF+BjIT+jf7jLQ5BaxhqAq85DXkk6miHO06YW7ATQ1dNDjrKZ3Zow/Fct3gPCsYdQqw3OPiORltuxN3VWXz4JLQC194XWc4nAry4nR7+yoG0r1yiQoGVqLmr2KgTFFi9x9UgZwRyqnAro/cq18bcR/jLQm22I5hKrfGpsj2RX3c+4FTsXV1ivQ5vkEFm8b+C5Q+TIsU2FkBG4+oms6SCtuZC6BvJ6AStpVAjyS75nKA9krZvxHadFPvje7AW/rAn6GCN13WKHZAu/b7gLAALwzH/XwPB1raAeYP31vKcpcAM5YGgMdtTij+EuX4WqBul6bMcu3X1F/CjYiHb2Ry3+fhdFRAeSLq/7A9ihu9DlZpmu55ET0FaEwIaLGNALEoFrVyzu0Vlox1yPYr1CPh56sh1dG1zwTTRhoyUtnukC4HsShK4wTC0JVd9w2wDZtrfJ56+B9oalD0nuYJfwQIUF8Y4kixnETN6X0nsdqT8hovwq/ZAGK1eiQC4lT1cGZGhUd2K0AoxAb18It0tvpamEgkhPgbQvzNX9uHI6m4fsuqxAJ3m54ACk113mz4I2zCeC37SrgSTstcRiVJfF41mA7N1Jre+DFPW+0WzItOCRW66Fo6LgBLuYCRvMlI3mQpFyAz1UQ7BJuCaryzHqCmqaD4IY0knB6LF4nTS0AI7BuHcEqtobEIgMO5/J9Yzz/l+bTmAD3YyluczxoGkEsOTzCFbVpC4KXhl3BFq8WwBtgCbV4vV+p+g6FLTglv555JN3bQjn103ljK9us6kUwZnf9bCllQdhG02/8dHdqUMGDHBirawkUoc7TmpcBBuPKT16A7LLvwNPqwnr9yC/lk8jlDmMJMXmQc674YxMunjuXS9q8yllf46ReLlHTeVSDDNCkiPteeIuGBpR86bDhEmIGzocOKBx3b7vLRj1lwiMNqxCjhhcusWxhYxmsLroSucMJnX/PNwpNp27WIlYeGMDhdqzt50LQDBAhQ95jzg6uYXPK8uqPpjqLImuelQApcommNF+Yv5fLM+dZ1vYSOFJDBSaymj7yM9XRX15XeoWUiD3EbtwCPcBsbRqtVMTtr4w5npuc06ZLB8pFhCvW0VAqg4dnMB8jjgVH4gpQ5iDzQzhoKA+3XPdimnhjRm3QUNbZMZQBBZSBboxJS63Sz71EUWeeSs7EgMRnO77Ezl6nYgjubdH8H9DHGvqSL3nZqc1hXocR8TFbzMLBTfzSpKHGhFnr//oOaBbsX3q6A85rDF8XQt5US9KEUtum4vQ2o7FoFKrtmPo+N+rlWybVKZTxwoGVHFXSiVISXMzKuoFLRaNVxIdRUzUKTYcFes7bqzQvHqqqUN0V2PE7/3Ri5yxWFDq/LmQM0Cy70dx5CiTXbxFx+I3ezm7Z0frnUtnYxNi/b1etebPI5kABHM4LgsgFjSt7DPLHlNj5dOJw+Y1Zz6LuWjGvzIl8ykO9obTc0dRZ1aCbvZW1hZLgTjoGJ79I5sYsH3+IPd93GAVrTnzWUs54ddGMES1nGWQD0ZzUzB19Hr8GbOUBrMs/Ip1/hZrZ360T3q4vpzWaWcRa/ePkffHVdL/o9uxnOgU3/15VkykmmjE/JUn5rzWFFm8EMLFMeVM3XVrHowlGc330JKdtVDdGXDORSXuV1LuYyXuW3TOd+7qH3qZutcS/mEhgcqfYWjiKH0XKsADSRiKqqehzI5Qk6T4J/+5ePn88rt0zgpOEbSBlTzll8wGvNL+Xzp3VQGbvEt9GhqUqqB2j4SKcAjkPFXkbp9CCK7qgtNaai0jJ9M7/klfwJgLYZ0ViPfxpFp0XbQ66pzj5S50Sa21cHRXRHTIZm99vBZYxY1jdkNpY1JszgHsfrb9mhOKdHULWrxus5BXqkQ1GBTWk9gAr4mqOoq7v06726Z2NR0lo/P4wKKA+jgsfmjtfmOONNaYLUvq1UsNi3uaK9ttHbU1spFVhzHs1+ZheqTe+28J9SFVgWVah+1x2EHs1hf7G2KdGK7xyL/dsBpfx+Oipy1urw+drUIwMVPMYDL9XY2oRroOmF3+gM5+Yb4Td625Mg/WTJBwL9FL+7HfvovKJU+YTrelUqULTqg8BgjoqsWyLRVOfNgBYboMYQYqfykExUf7VAgW1KiJeyE3G8Vprrxia6xbnK6EblinouB202nuMi+rlWPWqKuqILH62oJdW7tkKI2UKIS+r7/QVomhAP2qyJ87EvAibr5Ka6aq6TsZQ5xQ9QmcIwxHut9AORBy84HDBB0xY1BdZ5vTV0xoDSWDswFuPW69vth1N5Nfz3YzKVtTKmi9QjZFsCrLsCREdTVFlvWksIRxlmMpUnVsEPxywlixW83GYsT2yYyuV95jOANQA8IVKBzUg5IeTYG3gUgFncGkKHdcJZ0A+KPiryNa0js37osF6ojq+gl8Ksa/93gSh4iD+lK1W9buzgNS7lcl6mJYcBRZ86QGtu5VHO5y1ac4B+pZtpmXaIhzJ+zZ1L/kJG2T/gR1BOMpTB6m59GPDwBj6ZOpDTl6xi9LFL2DP8OPakHccZb3zOvy88B4A9F3bgF2/8g68u7EXSyRWsIIvbeIQbeZL+rOZLBvJrHmERlzCS95nFDVSQxIcbzoP18a+kgl27k6jV8LjgoXTX6S73jIAXLP/MeALLgaEvnRQkgFHpb/HK8gk0u/sg61Ef7FNiD9zbJeScARKGUilr6uYWoCmjF5vgZOB1VMKwAJUp6Y7KmpRA/pJTOX/UPwFIySyjSPvt9WcNhTqzJBbAqPGQlhdJZXyMWwCdUXQJJrNYBkDxUKWoJp6D+zKngaawfpo33Lf3sKXqPUdwPw6GjWjtylBxC15FHlyePR+YELkzvG2+TQEuIJ3j/7NZqXxqT0sADsJhrbS6Fzsj+T2WhSF9samwoDKJX+g2J6KOLUJlFg87zt9XH2/UZL9HZTJ3AV0qdSazQrWxFGYPqnH01u3aY4sDAWwrVfua68xlVitFo23dSu1rA3xfAcckqfdGimNA5nfTQf89FotGHQ3h83DhigzSsgw1Nnr28uN5I+ET/XkUfGn5U4bTYQ0qU1vpk4ZmKM2CRbR5NBPFmFonFsGfc+DPN9kiQlEYUCYQlVNBvAh00zvmT4KBkMFY9Xm1RX1ZnVAp5XQs5f2UJqgW2xQRBJcNHD8cs5SPl40kY/hWdp7Ymz4bV7OZXhRo5bvTZP2vYBiLj4T1V0837zI9BXiMG3iUIXxOMuVU0pwnuRFQVNWz+IC3OJ+ljCCfTJ4/+SoWFEzgb+k3Mm7UszzAPXQ7tJNBS9bx9g1nkkoxnAL9y1bDIJj5g+s4iw/oUbmNTy4cqFRegcV7L2Hfhe1IoZwWHGIES9lDB4axnN/f8hD/euxcJjOH1hxgDQP4+MGRcPd8YH7EwkJ1As2Q42ugNBdPYAihiwbxHhvSz9Ox21hto/2+hpSxRIzmcjmfV76YwDcfnWyZrHNmtYfXKNBU6T0BGj4WMIG8gw8qGmwxKlBohYp6dO2gCSwNUiliVf7pFK7KIO2urRTmZ8AqWLJgtGUObyA/I1Rr9it9jbxT/Tlt0TLPsd33v2muiq/F4hndefTrrTnWjwCdzAbx3qt0GGHrql4+fj4vj1dzhDNLad5jeP3cCrLoN2SzosMaSqyuSWxxLPRoCz1aweqNilpqgsUu+rmpqwTFKu2EpqSiajI3oY5roduCHWh+j6K/rqiw9605ovruoLcbzSETWO7V5+7SVlmLFOkg9MR02FigFGIHNIeigzqoLVPnT+2LCpzbon4rJiAC9Tsq09s7Ad1gq4/g0gmZBf35jBKUeqxRmTXZcEOVlTJHfbe/yEXKHCvwqw3I18GIFlv4TW715/wd2IsP/VazQmYxof0rUIlaTfgEFaC3Rf0fNkGV9aY6bwbBZSOBuDb2DbbTUwsivS4TNhYXASFfx2krrmhS3776aWCenQ0NftQG6zWrmSAIHavKxDLPAgQI0MgRHgDUFKlspw/rgUhLlOpArMCuDzz/fcgdUfM+FxARVAeIDaF5xrI69KpahHiiepZ0RkCqMrWVTZk9Fhhst1EB8KCaDjFAI0YQXDZwpFAGzaGMFPhPGZ0o4gyW828UcX7twqHwr8jjZnGrZ5+mPnKEjNznFZBZNJ2ekbqt0fb5haJyRGau6jJQnMRMAOZyKzfwKBlsI59MfrT3PwD8of3vKCCNgayinGQu5VXWMIAp6U/wR+5g8fAr+McH27hLVpI0qpIHiu7ipNQNZI/Koxs7eOQHtzGOF/m/p9dz37XTWM4wNnASAL9q/xiLGc1VzGMzvTmXd3idiznAcfz5sZvZQTcu4nWemnczvKw/Exmb7hQN9Rk4uvlT1hZiqcMaOqwQufxapvCXf97JSaxn8Kkf8fnXZ3DJXS+x+OQcLhll1KpqwWvnKICkaZpBB2j4yCRfic+ciMpcdkK9Ngqg+2EiSlXzdqazb38769hR49WFoTIzCTIhicqQvs38dlxnLaLXEngEmKtNKt+axKejbXNh4y8pJsO9zKDTHPfVrWjZItlTkMUysoAV2rg4anYp532kHKHanQ2imaLwv5w9gbHMZyzzeZkJtB27Wx/QGbHEcfwe+2k3tqvPbRUqc+fM4jWHvRuVvyQo0ZxdpSoLuQ000TiU8npAb69AZS1TVTe0QGUQFwMXoLKK64BtFUqbtEi36auFe753bDc4jKLm7kJlL3c6pGoNhffEDrCxBFKPVdTadUfg1Lawfyu0aQVFGyG1Oyqr5lxLaIPKuGmadVbGp64ffTici/hriCzWLSDDUpEtIEPVwH5lf7eGDisWAMYH9efqj7w2Mklgn/dvevtNUW1EmvU6yPqiPip45AeAu7K+ax9nQN8snVk1/ya6xEXKAYxlDWWDIGUtKqvZHNtvdi3QX9/LNiE01XkzCC4bON5fcAGXjFc3tZenv0xvNnGA1vRGKYY2H1MJY+BLTo/WDWBfjExwmeiMpXWesIylUco2ip4TeJoF+apIzhk0dpoeX72d5/kTEIia4DydrVzSXknYP8EUDtGSx7mZSpqTSjEraMEa+tOH9cxeNpGXGUsLlnESG7g59Qlac4Cf3fIq4x97monMU/vHfsunZJHBNj5nCAB/fvgeLp36AlevfpE/DLiNycxhw/ZMnu0+gcO05CTWc/uh6Rw3dg8HJnb0HLcf+Akq6yrwNOIStbHoazKWJrj0g79MvJNO87bz4Bd5XHLqSxSM38rihVfAsbCHmn3uRz9Ek1P6C3B0oDUH1N2MyeZtxJYQLQMGwjAUH/AjzqDnOQWM+mwRSxjN51UqJZPUTN0tO7OVE5kDTAKU1QSom/u2ZTfAzB+zL1kHab8EGWYFIufAaF5iWblSG//wSm0b/75usNdu6wwYTM1cD7NPCw3dd5fyo7yHGcgsve9UYNAImr3htCsBWRX5GYlmIKs6W7oKTgwc/wktOMww4EmKVWAwEPUZrgSSsCRcD1eoIO4Y4KNSFcfvwlaCbY5Nae2CCjr3o6iyrVGxeRFqDaAHytTJHNtXt2/RXAWToGisBhsdn8sxut82qMDRBLk92sK6UkWDPQCsK1FjWnNEjbUrKsg8cATadNIBcXvUb8f8ftqg6Jzb1Xv+5JKBDAqjqxqKcU0ylkLkwis58HX150BxtkufF+rAM0rmUmwA1nelb5/Q91WZ2soKLK06TNMeWLc8LGNZAYOvVzZ23Ugi5T+ohYgTUR/8J/pvOrAdXht8KdCUlmib5rzZ9N7xUQY5HtIZQuHCDJ4aM4EN9OGJK6Zy3Usqy2bksePqsxo1ktGykjXJWBp4BZV1SW2dy80R29SNhrrZOIu3mcjzpFLMO5xLf1Zz73sz+OnZzzGEz7l+8jyenTOOjpTw4/fe4Y2zR/IO5/C3x67hIe5gJUMYwVKGtVnOObxDOSm0Yx8AxVemci7v8NrOKykbkMJHnMFD3e9gMaN5RfwIOqrvTP6vrj6NxgNPP8vwdjKH/nxGJc0p/r47XzKIdAoo7JxB8sn7ace3tTvQAAECVAvd2KECoPao2q4OeofJZJZAnvbaeFYUMVB+whr6c12mYavc7OlHeFXPucxjsue5w4NKJxZxBSTrQGQsVuZwX3LnmO/p01N1NnSsdxv5RbgPZiReZgLCzRdAZysHjv8kZHNLDqnPshIVZJahPs8koBRaHwscUYHeMdiJ4mJUvPyjY+E/us7VeFkeRmUud4HlitwDZc9s9h+DCkpbYHtabkPZj5jth4E2+q51dYVd51lxRFmMgAoyTebUCA61Ac7oAEUlcExzFbC2PlZ5XfY4EZV9M7YkYIn4MARYB6d/vYqtJ6dF+ZRt+KlfNAsYAuBy95pHOR7Ed/q5Q7DOq/9mu9XqfVXnyPpeJ6pO1EJAK+1th2hpZUzBJ512oP77ob1pE7349sIWHP+HwypjCeozHYj6v2wFfXExyQzQ6BBYkTRwmMxOLNxNNiN506qjNJjETIvuWd+4gUctFVs3dKzaRceqXSFy6dEgxJ8Q4k+u+xSlyFtkAUD8UT2aGibwNGJR7dluhH9/You0qGXWtu52TWRdQ0xVj4jt0X8uTR5GmKCpSaoHaPxwzpHjeI5xPIfwjicthNuJnMXbnMXbnvsNhEdto596eKvtchdxlgANFoYK67WIUVsI/00GqFvU4rzZoC28gszlUYDCLzJo++PdXLf9OX7Y/QP4mS2L3YkihvNBzD6EXgSVCbiB9uL8e0FOhFuYThnJAMznWuZXMyNp/C/rQ1H2A85D5J/HVZlzSKeAfDJ56uwJXDd6PhMWLeD/zbmMtzifA7SGSTBryw0UkE5HShjJ+1zGq1SQxHIOMIsbWV/Uh5NSNdfkXylUXJ/EcSP28ODeu2jX/lv+vOwefjV8Or+S/4/HuN11TLVJKxXbFS9Jdq/eZULMs6nQXpBjTPAZOwMeTq8O2VfD2lwhcuE/OfRmM689fCUnTP2afeXt2Hllb5gGPdpvYzO94zJaDxAgQN0gmTKVITmIqpPbi8qUFKCyT82hg07VjZKDgGKKSOWpfMVWuS5zpqppz78ZMu1J8vnJk+E2mJdpz3tpciJwmEIxj07yGn8D1HbB+5I7W4GlmKyos2DTYYtXQ/Hq7vAaoH3t0Qug946ZgTQelduN+QdU/bcVclT0eVlWqWuk03LEJj2dblEeZR/YTrnK2hWh0o2lqLrDSqA9tKiAXUdUUrhIbWIdtgJs0RFV5gp23aTJWrZAJQXbO7oHTW1tDm9XwAjsGs1OqCxkV20n0h7YX2Efcwzqq26D2m8sUHro4/YDA3TN5eoS6NtWZy6PKNrsXqBHJ2xrLBP3nYlNs+4O357cgmTKQz/UIfq7uD1UhND4VHpZiDjhdQ9lUW6jGDQZv0qjXyDat4rap3XO/WH9FOgfQrrt52rVDTsWL+QwPc+2U78ha3H6ONijqQITeZ6Whw4rWuxB1SeDUBZBmhp7EjUw4Q7gRIO28AqCywYOOQZOYjUbhg/ghGVf8/EXI+k15iveXXgxAL8aM51OusTdrYbSUD2fqrshu+JLzaH4gPM82+zRIgT4DJSk/K3nPiOCEPX4O/ydJ+SYTMBBkRLXwuBFH3E707mDP9KOfZSTzK+2TCeXHAbxBZnkk4VyVL6ZmazbMIi0PlupKm3Fo6nKO+2D64fzPiP5rpVaQb9VzuLW4YBHUFkTzOda5sdRhxgv5Bg7EAT3oLE+FVyll2n087BieBbnTP037xacS1p6AbygaGwbntZBZTx+mo0QQaYxQENESw7Dcag7GiM+8x2qomGL+msWYf+cf491XFrmVoaxnH204/2qEaRlbuUDhlM4OoNRixaxJD/yQmnVZLrcxIfPb1a5h9Pf8h6UIFAYiuiOWbsSrwFvKWuRrIXOFWHHvNa1Ar5O/C1cEpUqituCCtRPRAVdKUoE55gkFcw1R9FS96KCyU3YwaYJ8lqgAsX30QEkKuj7Hjv464IKLEsq7JrLVN1va93HzgoVbBoRIPRx6PO1Qe3fqF/vQgWYLVBUWLO/Qgem31eqfvq31YMoBnpiC/pkYAdIreD4wsMUpXUK+ZxkH1vh3g8SpTwcL6Ldc4GxYPMH5+KtHG0v6n6z4GToAffxAHlJD6ovoVg/KlC/o+3ADiimE00NTXHeDILLRoSW+7/lUJvjQ7ZVhzbjNGT2a/oM7opjDQnVkZePN0ubaCQqM5nIzHU4bkEt23plVyPG0lKP5RARdNlEozYzu00NElFbqndthRCzgcVSysW1cYIAAWoCN49JU3axguEWo4b77PnCUBFj3dy7nie3fuabANWD0Maecm/0diHH6Mxj39e/ZJ1OA1qel/P9f/9GJZbjb/J/crd+fJQImftJK4sZICZqcd5s0AiCy6MAvdhE1rIVFJHKN9tOpuzUFLhcTUKVsjW/3TudpOaVUftIaFDxSvwTn3OCrUkQ6ocO6wwi3eiSoifILfp5gZKii2f1LmQ8TwP6fQjRh8HyLM7lHSpI4hmu4ZsNJ7O6T38qac4+2rFu+CA6LdtOoTgGyGUU5yJljvXpiFfiPH9tBk2r9OWhGrWRTuqqk3Ll2d6HKJQrHdZn8BiNUgvQovQWDn8IhQszKDw2g7SLtlJYkM6z6RNJpZgLrxuhGl4b3PTVAho0vSfAUYJWKCpsCirjdBy22kwGjF67hJmnXGc1/2nmc2zgJDbTi1X5p3Na5jI2V/VicLPPKXwogyX5o+lw8i5KkrQfxKQci8YqhsJpmjqoBHVahQylXflu+id7jNPYSnyh+zIB5e/sa4tzUdeNhTOi+zsALO1us5UsNXhNrDFjtfZnKrqlWEWEn6Xz2ryDbnTZW6LSh6Woz7AbkKKsO/aWwiFs0ZwKVIaxDSphlYrKIIIt+GOKCdqgRHwOoLKKRqhnY4W2DUEJ7Rhl1w5aNXavbtcG6KLFmj4qsTOj7dsq5doBzVWW0/TdBpWYTD0W2h+BFsfCrhItSgQc00q/gUo96BP1QD/Cztp2B0rggzT1PRhBolS2w1g9OTqoYfIJELPVgzOx7EQMY8ZXtnOCu8iPE/J13Z+ZOr/9G1LaAabTr9INzkDRwthQRlfIPjesUiJV7TL38Y0oZ4QsgM+B/6DS2Umo304pikZ8ohIPCtD4EQSXRwFeZwwiE/iXyvIM4kvaSbXstZp9jGj/viPtfnHIsTEvDi6Ila30upFvqBlLgwIyED3jOyaejKXd1v4cpvYBsNXbHlkG0F2ZHxG770QFj7WRsTTwm7E0kIcczxOgNBz1XPrzc9J03XC47WNqtXiCkoYfxnJeeXwCV5/yoro5uLdWh3lUQDZRSfUADR876Eb3imJ1E2uosQNRXo26dm7mGSqwTMvcSmG+Yq90otjq49P84SoAy9eEy34PU4LOJrmI+3w6dDjN/qVu4DvlaZ5/3jWUlauo0itjaYJKV/wuB/lg7Pdbm8iszFdR2UYUlfFElLLoQSAFWrdSdZc7D9r00/2oYM5cHZw+l51QVNc2ensbFH3WUF7Ntha6n/1HoK8OEjdWKE/KL0pVgNr6WBXcAvRGBYvHJKltJzrO2ftY5Wd5YnPomqJosIeBbSWqxnLvXmV3Yvkw9kV5MZrbqBP1wMtAdoOS9sexj3aen1k8GUvrmNdVALpu9iBwKLUyK84FzE9qlrG0xuOjTMh5Pykz0XW7nYHOCLYxjkfUAs+PUErD3VCrCykoanUpnHVybI2QxoSmOm/Wm1qsEKKlEOJFIcQmIcTXQogfR2k7WbfbLIR4XAglrC2E6CKEWCqEKBVCrPQ6vinBjWY4hI+sbGHCziNyXalCtY36Oq8bJjJH+6CFoiGN0Q1iIYgr1APqd7zhyq1itf1I2DmyI1+L7MSfJ0CAAEc3zifxEtrtynfTrnx3xHav+QNIiJr3MJYyjKV2n0tiH9OQ562GAjHFFu2xtplMZV2NId1++Glbq2OZqB4BAjhRn+H0NOCAlLK3EOJE4AMhRG8p5XfORkKIDFSKZxBqbekNFLFkHqpkPwe18PX7Ohx7nWNgvjI5/vi1kSxa8VNEaxVEXpc5k2I6sZ6T2LClf4xevFGdekQn3OpLjO3ILG4NaeuW4TTUDhmlBM/LxiS8LtL5HsLVQ+UWM6nD8wsnAymu2UFTR/iyNhmrzufSm68A2CxeDhlfNDjHYhYKaju75zkWn6I/xlLETaTHSVs1kvxunqZiGcjYGkyRY3T57lwVhTdFp1R3lRPYWVBGJ3kNZeW7Wclg+GUZHEmmz/g1AIFSLE1TmCBAw0cvNqmsZQfUXUIbVNbtCOouZ7/tCX0Zr/IEU5VwzxcZ0E5yZqZt1TAqU0d1sjdL8kcrhdWwGPC4/+xhYEtlPq/mPEU9nMgcSCaqLyaoes2TzIu39LwwDeRqdCAa3QdzKRcgloFAXTfFqXrIX6ixOuvhxjKfV/InqBcd8fTlNF6YBUlptPn6G/WWTkFloDqot/h9sRLF2XnQzjgatHc8P0PTTrcdsYV4TGayNUqMpwJFd+17rFKfBfVVHUZRYU9sBRsPKk/KVN3vgSOKkotu1+KIyp6m6rGUVChl2QpNpd1ZAQPSlZ9lc7Sn5kFo3lz1ZcnVgqLBmqmpFPXbGQjiP7DysiGkUxDyeRWLZ9RnLnMQ/w39LJ0kf3Fy2L7pLu2ud9nmF5eBLIjcXPXPVtZdsanLdNJmTRbSuU9cBOg0TzSvS3PPdUcIA2s/8xnPjT2fVbTiNOwIoxj1+faHDzgLgNP9vr9GgKY4b9ZncDkO+AWAlHKjzjxeCLwU1m4s8JqUyj5eCDEHuAaYJ6UsBZYJIUbU1aDrC19yOmIiXD/vUdLZwq908PPXP97OdXcohdEN5+ub342hx9aUruomahMtUDKB4vVhgWK48Et1AtrrZTsWM9rytwxXjK1LUSGvGwjz2Zjg0qAmwaLxYXtKpMF6FVFFq2F0w3SUMq0c81iIIq+UOVYG0VNJlejBYTwQIhf+rT4j+TAh/pLSJX6Lx37GzR81/Ljw1+pm7jjo8hDp8nw2VfTmmy9PhuOBtbBh1YBAEChAgAaMYlLp3LZUWY9Uov52R1EbvwOGwFJGhhxTmJ+hLCjGCTZ/1tveBnAABmZ9Evc4ns9Xc8LzwCWZ6lYmK9nU84eu1j0/Wc8fc3Ohf+h82vaC3exLDg0wn+Qa7iz/AwClp3eGv0SeX5jr1P3wcf5ILs+cb+/sCqxSdZfhNZd2Bzkc5kVFKd6O+hwNdXQvbCqFvifCiXuVncfhMlinAzSjEPs9yo4EdQiHUUHd9/rvLr2tLyoo3HXEVobdhFZ5PVb1fYzuy0m5PaD/dsFWlm2vz/U9KsAEGNFK9QMq8OzUFg4chBYdYOd2OLET0AGK1qiaTE4GS8i0Oapm8Dj1Mp0CKkliQvnfafsX/d084fjOzvT4PIG067fSnzWcD7yF+4qttRig5cxiUVRlgcOuJOy7FHehAsRTHO302oJYXr1SKXGXfvKHv0Xsu2NeLn98UH0Ww/lALe50QK0kbER9QceivqASLOX8AI0b9Rlcdge+cbzejmJoV7ddo4ecB60PTeDclu8wa+8NAFx6xwukUMbyqmF02mhSR/Hf/NdUJtutviQ8YxkN0TKWzv6EyCUtrG28Sq4mKJwXJWAwAfBjcfUcik30U0+k+huvMmp9ZSzjRTRbEWdQZoLS8HdVnYxlVAyMv1a19P7ONNs9jVWTW8E10HWYMqbb+Xd10+nXHqcxw5hBBwjQ0JCMEmajEyrrZPwZ04G9IJPgIe4E4BFuY5058BfqjwkqT9Mel5+uGM6qFacjs9zPd6BlR4SliGLPfWdmvs2H+aFz4ZLVOqBwLJytYDiGESvmAmtsAZdpyaZG367Vd8Wv7fpNSxxIX6dkJqTs3c/ivZdQ1r6N5WkpVnl3J6vU36W0U1m7vdjBegqQAX3TUZ8rKkijBM7orrclqVrG9ulYGcETu6OyVhnAVvi+BI5pi53mNJ6LpSpbOSAddq2DNprK2b4VfL8dTkyB78vgmFMgtVAfc0RZmNBJnS/1WDUejlVjwdRUlkCXc9T526cDrVRWlBLdxzm6j1b6/aL7KEXdbTaHAZ9v4K3B53N38oPc7nJXUF1/5ZrAc4EgHNNQdZlemo+zHNnM1/2e/TIA/rhgAH3HfwmXAu0GMLO8Ew9wn7KxSUd9v91Rn+tAYB2sOVsx7BI97TdUNNV5s9ZqLoUQXwgh9ng86uWTFkJcL4RYKYRY+b///a8+hlAj+K0Pi1e0pqFALHTPPDUUeI3PWbOYzlYrIxtX32InQuys9thS2W5lFusLYl504Zx4vl8hvkeI7xMzsGjnGVrrp2g0kAgqq5IS/ggQoCFD5NuZJTFZX+8dpBVTw+2rr+FYtlB1BbFEPxaEbm+5/1vrAdCxahcdq3bV7eAaOYxFicHD3Iy43adibCLOf0V87ZOKDloqswESg6Y6b9Za5lJKeWq0/UKI7cAJgInyuoOj+tyGaYej3Y5qjmk2MBtgyJAhtWuwV0sY2PJL8smkR/ttbBCv8tpHObAHfjP6flIp5rc97VU1oVXn5F0enflEvJnBNGmCq9Bs6F8X6mygXl2tTrbU+EANlue67v88W9NhfVAoawJXixOBlVUVYidSdtXPVUQldTrNjzVHOOZys/obx6/2YX0MwFRmuq64GkSjwwqhaCzSaxk/TkSlVIcFn/FQYsGjBlOvxmqB5QiUntEZ7oWRqe/z7k1KbXnnst50Gr5drbYGCBCgQWMzvTm54hvbtL05KhO1Q/0VO+BQe2WBcAOzSM4sZ0n+aHgOlb28E3hIKcaySvUZQTcUuTDJce2alKM4VI66vR1044TMr/lm6MksXmm4jlokJ+y6Z9VJ6u1jURTWl8MylvbN/uOWrYT40kjOqk6MMJBcOBkxVC2ayc/aqICyY+j7kOOVyEuLr3HFaWUrVNayLZiEMG1RRXIHsT/f76DFQRQFUr9uD4pKaqRb/4Oq2ywGRsExKaiMVpnux3x2e+GYI2pflyFY2Ugq4Zg26rzHdEBlVE12sScqu2isZ8pQ37kZnyFwFejjRuu/nVB0zf2O8xyrxo+m0XIE+ES/t3SgPZyLsn8RU5TdSDQ4A/nC9hkU7M0ImY/DYd1HJCADatSGrcDydJBZ9jwYMs6J+JrjrD5/rrKcSlVZbVv38CDkVBD95jJzypt2gexGFB/ZKOl+pMYyjGqYrwc46lCftNiXgBuAlVrQZyjwM5d2r6DqKnNRRIbJwAKXdo0ecgB0I4N0CvhUqDi8zzCVzvyA4SRRSZ8tJr3Z8MRHYlEV/VIZowUnfoOQ6sBrfJa/mIBCkYFy8oqzbx2IVhc1rYNMBLw8JK398VBLXzkGOcZ/RqC6kJ+pG62uozex4lAWI059k320Y1XBIHqwjR5jtrn6zDVJSKioaPgrpgGaHnqxSQUWfbE1B4pR20qATrCNHqEH6YASgEKgX67lNRluB/LTzOf4B5A2ZyvMmUihyIVc3TaeOefxONomCnvcKZSH/3W8/WI87GmmLFjeThnGec0/VPYjHVBBVyeUlYQJzo7DoscCioaagvqst2DXLrZBfQdDUHeb21EBfwVq7blYn6Otfl6mn7fForRSRiil09y1rkF93211H2XABv16oz5Hqv57UPdVoc/TFxV0luj30R2bCosef1s9dk3R3UoPLp/imzcKhFqUTNW6CVOnezROMORLjhpcvBdXWaVKrsDbE9MVO4G1jv7lJMSKSUwoEGpxYSO2wJYWhKIA9tDB/zkaA5rovFlvViTAdKCdEGIT8C/geinlAQAhRJ4Q4kYAKeUW4D7UOtJG1KXr77pdklBcwpeAAUKInUKI39f5OwlgwZ02ehghDkfucMEEnmYCTyd4VJFwUp1CtteQnhr1nHHQp+LqdyGIgjJEQVnsxhqTmGmJBEX018CtVJyo6WcqfCriBggQoOmgrumBIo6FN6etiRC2gJ7vc9WyNUWA+FGd31s0+xMxOvbcVp3ynWgI6LQBnKi3zKWU8iDgygiXUmaHvZ4FzHJpV4nSQGsy2Lm6Ny0HHCK55DYAtu2F89u/xeItY7m054tWuxt4lOvvik9UJ1EYabGbM+IWsakLZLEMU04uMkG6BJmx4FbAb0SJUva2Cduu6bCG4ulCh42X/ukHUz2Cx3iRKDqsL1zuCGplTmI+j1gLpf1g53m94TKomJLEqtlKJP3TtjpjOS4BY2gEkFJQWdH0zKADNHykVxaq7NQKVMapBHV30xeVqVoDv9v+iNX+zKy3OXPR23y44DzafqSCtdJNOhOZCUlFql3K3v2kZZbwAcOR8hf2DfukHNreqY4TkzsrxVewVF/lahCTNcPGKT/4V/13ji3CY/DKmAl0eHlXxJK/WzapbVk6+5I7W4FlOgU8pC0h5GeOhgNDjxMiF9J0Ow9BmCF8rjJ3hgxTgcpatkVl9nZgC+CA+tyPYGcAU7EzgPux1WbN8Sfqvya26Y76vkzG0WQxv9PHDkFlPI3orrkE9df9rNPPt+u+SlFZ0XTdD6isZCssxVJWob6XVqj5oQCb+gvwoT7GWGikQEpGOf964lwu1vRYAxPsq+8jVFlf3Wvgyn4xvyXp8DMVF3mL6jgtQ27jIdACVdEgF5rAVf2OTABoflNp87Za5UludiXWuc09Uj/NjJMDYA/QWf2OlN5DB/6QdZsyC1yL/T2C+k7KgCxo7qks1DjRVOfNpveOj3LIATCEA5RfrQOYGahCh2PL6UAJ/VnDfQseoP/4+nGHV3HUtaEbNx/rW/l0fvixtYWvgXsiN9eUngoodT4X1BZlV33mKbGahWBulPoPdsWetBoKavqZXr3oST7gLDYv6AcjylhT3h/mwE8/ew6AF42cZAA9STY9ek+Aho/1SX0Y2mqtClxKgB+hAok1WDVgj2dNstrfzFwl5nUblL7cWQVajgXD1NRiSvZGrkqZQEBMhtKbOytPSWcDh+pruDdmNMiF+BbTcVqUXC2fJJUi737davgKc6OWlmSUb+GlwVewbXAGA/mSdArZRztK6MDwrZ9S0QEOtUrmQFJruvyvBEphWe/TGP7fT6nIgB1t0shYqyRdF55yIWO2vgEH4blTfsq5vMsBjiPj0DdsbXkC7djHd7SmQqtpnvy/b9j1gw60K/uW/JRMWnOAVIpJqqzkQFJrWlceIKWsHIAdLbtyHAdoXXaAbSkZtOYAyZTxLucy9tArzG15HVP2PsWhVipa35dyPJUkkUQlXQpL2JN2HB3/9x0yCYrat6WEjpaqZ4exJVSSxCoGMpjP+Su/oi/VWIX2icrUVspjMg78+vqHeMQjwHQGrF6oqUNAODqmlrCSIYoKXYoVlAMqgE8BVkC3y6olmXLUoqnOm/VJiw1QDYjtFbEbHUUIp2CKbHdqrBv9sbZopvWNulTNFdmhFFkjNpSw/rfIOs9eiz+qR9Q2D9qCVwHqHW2FELOFEJfU90ACNA2EUwL9zCV+laWd17xo9MSzeJuzeNu9j9Wx1eGd9NjqwJSGuJWHBPBGNzbRjU3VPr6mZSdiiv+2TqpqbZW6BHTYAG4IMpdHIT5ffQZXL3oSgGe33EARqVyd/gyg1Oq4EWbfeCusksxKsC2J0CuhfqmkfjOWYhHIOqp/W8FwssYsgzHudJUhfATASpTyrFHiA9sj0wtC/AkAKX8b15i8MnBCM51lXVIzv0uJS8k2kYhXmdgX/q3/urB7Xy2/lOzk+5gxfhqXsIjFjKb1Z5v4x1CVsXzxs8hjmiwktbUCWyqlvL42Og7QhHAQxeIpxRYaaWvv26oFfRYYR/nLgG3QdtpuSu9X2cCTWM2G0QOADOQiVZ9YeHEbS0HWgqHBzslRGco59nXLbTFNCJ0tdBwXDiOok2rxO2Pj1fJLKT1Wjf2hqtjtva6v9zONexcolVo5vjPwAQDZ3A3YYkjDM1ZwjDDc3r1Wnz/SEovy/xQjVYxSr39YsJQZGbfz8YKRsNpBxW0JJ4eNQYiNIa+lPNHe95V+MlDvq4LeOD7rM9V9xr0FarwpLSUreZJr2w/hGW4EbBbvaF6CNFhBFvxAieF1Bux8sA3zLTwEaNF0umaFBpbOTHKImjD6fgwi6LIQmV100mHF2Xrbe4798iYrsHRmLJ12I/IllzcBVP1TvfuqzjNCxmBsaA61Od6iw2byJQD5DLL7zVRBNbIlO7v3RnRX/tZGFbdY7AOgh9xqKzUfQQkxFaF+Ku2BdEhqYrTYWpw3GzSC4PIog+zeHFEhrYvWD3u+z8cLR/LpwLPo1TOfq3mGX+2fzl+3TKvnkfqDlDkIx0VWBVmR1Fi34Ks2lWHrE3Gpqtb0XHnQmxH26wQHlX4XFxJ6zjvCXrv9Tp4BnoLSTzozd/gk0ilg9jJdn7wS+BnIqbU80AABAiQEyxnG0IFrVe1cd1RNYCmqXlAbuRdq2c+RLGWBGAUP2Me3vWc3+5I7c1JYv7IAxvEcH1iLkIpKGFWx3HHNk4tCM0ZnymHW8w84z7OPTgO2x1QAN0FNda+wTsrs/THaOhdVpfxV7L6NXQgj1R+P+s4QXKiCSbeaQ6nF78Pfq/msuxVsYmd+75B9Jqj0QrwK67b0QG/vNj6o0DVZQI1lgRKOytRWluhPTRdud+j37fwO1GJBK+sLmsBK25pmLapeNh21krACOEUH9YQb1QVobAiCyyYAt1Wz+ka8AjbmPVwl1Q1CrAwiuBfTG8/J06Qy/xI9QW7xN4bqoCF99uH+mkKsA6BXNVmrQsuXx7IgaWjwS4cV2Y13AaM6kFJQ8X3TW4EN0DSg5ot2IdtENvzUcQ2wMpBRoDKP0IvNoX1dBGfqwCmdrRQVdaKqRGWU3Goj3c4l9FhktpNREzoX3o9aWL7H4ZdpMkxOER+nF+N9MYI/IXK5V6paxzxnVF4DiGZY6UI7GLUpywVkWJTdn2Y+p/f6q4GvjXk3Vp/OcR+tECugrw6ihfa+Nous4fRpoe0qHeslAVxQi/NmWyHEbGCxlHJxbZygJgiCy6MRzwp25KnM5YYnBvD7KXcy49A00ijgXc6lgHTYrdaXRK/E2mp40WFNjaCfrNsNPAoOFdtwOmxdXKRXMBzhQRk2dFiDaIHsJGayhv5Wn4YOO51bdIvoUqXCFvh1pb6GbzM0oJpkBMPrdjfRL77jzUr8c7UbMLu913CFPeciRW8Ud8rX+/kzcLl6um6Wpv900ZSn4bAz23t1uulCUFUZTBkBGh5uZRZi5Sw63bWd4nyVkbo6U5WOPMONVsBnUfLu7QpHzOKRinCy2EA79lnel2I4MAL+kf0LZF5kzZrIh7TM0LlKTIZOYdkrywf5IvjwovNIez26BUQR3a1ziXnALxznzXW55j4J0UjltzAduD3qOe9hBve4BJh5POCrVs9LeZa1+tp9SuwVTGkF3t74R9VoriBSrcZkLRdzibr/4RnPPhZpkwK3IDwcse5FDE31uidmApGKPIX53plu50IBgGivX+8FPTTXOc2yH3lBt3dQZ90Q7bdxqM3xEdvWrRiEzLIzlHZtr/o/kdv1OJZH9jefa5nQG7gX8h0KWasmnk7avKM/+K4eam3ebNDlJMGdwlEImQciX9EQfj/lTl5kHEnNK/hwtaLZNEs9yG+G3c+fs40c6nWcIL+jB1+zLaLSwYYR0Yml2JrN3cxFKe+FXyhU4AiLGU2h0Bcj2SKij+vzHo3LJkXKHCbwNJV6fM6xegUVJmMpRJHuIxUpx1hiLtEylhOZw3pNknKrywQVpF0Xg1mT0JXTbOBq9XwSM6MrvrrhJH2T8M3demx9o59Pz+Em+J/ETBZja64cLRnLiCz5EeAn8+GqCfD8fGACA8d8wqrtQ9i5ojfJJ+4n+df7PVV/AwQI0ADRA4oXdOfq8U/ybP6NdGCP3vw1l/Aurztu/tPy1I2umJzBT+c8xz9G/wIYrhatMnVgCZGFgT5RvKA7xXQPCbrk6zCSN3lfF+9JmWMp2RqYIFjKHIsZ4oTMVhk/8Xu4o6qAP85W80vrQ+q9HmjZkcO0jDzQTLXO8fihqpqxNIP79MJxXg3E5owibsnXXWCte8a2gAzu1tWeMtNctH/BS4SuQjuzsTITBvGJta+TvCZu2mssWIsEC1A2KWHowTYAuukFjB1R6LMxz6V/qvH0IMx8/HykpYhw0GnlFLu+1VnXCk7qr8pYOkWjZCbaTxvo8rw+fpJd9/p7odxRDlzLqKxFtEB5m3+8aCRcAIULMnz/5gIc/QiCy6MUv8lUVRKrGMhJrGfdykH8ath0/rrhdialzuXPD95D17xNkKcucj34up5HbCNWUOm1slVnNiVx4KntNyC7R/4b3c5jvo6PW6jnWcF1eTXzr3QbbzyojYnbDW7Z2QgRBAdlLa4M7L0T+FXedP565e1w8XzWl15Ei3YHOLzneMo7aD+8BkBlblCQQBMUJghwFGEgLGUEJ2R+zQzusQKOdzjHyiIBnJmpVFoLPeYauSz2qVRgFHq8qrnrHrXGcITMYikXxD7B1bpPj+vQQ+TwkM5btD5kb3+AUC7/Y9xO6/8ZKdzq8fylD7EgV/jIWPpFHvcCHubowJfapNKi+8YIZKJlLA1iZdnsGkh7odepJOtqBWP2hakTy72RbdzmNCtXVQc5qxCxIr9oDUsWjKbFj7/l8L9UZrRJB5VNdN4MrEiaAKLRWsR49fDVzxL1iPv8YdYafs5ppOEnMidErTWiXQ30YkRPPKmxiYIQuZbVR7wWI7cwXVOa6hfibFu9rtp9iO8R4vvEDKia6M1XVpY7QIAAjRvVtdgYxCchWTBlQm/bLaSz1aJL3sCjFlsn4vxD/duXJArG5sLLYkS00ZnPat75jeM56+HHxkRcRNz+jbUF5/dm4NdWRIhcxFQQcYi8OS1H3M4dD4T4G0L8rdrHe/b7sL9zCLEa4eKNY5RlY6EHXyPybCpwgMaPIHN5lGIGivIqpkKfh1fz1LAJ/JVfwU4o7JPOaXctowdb+YfYBhCVDmvgNzOYxwPcZ0RR7tJ/h6g6PpOVnAUgdd3cKu++3ER33BBuDzKfa63AMlbGSspUslhGFutVXaQes5jrfczz+arOMurKYzUzgNHqJk2t5m8XPsavwupX7SxdnHRYc7yPTJyZP+QA0OrzFqLRcJ2WKXUlYhRe52sF7qv09rzQvxbFaC20ePZb5u6fBJ8A907g8Psoquy9E+DenEDIxw1SNMkV2IYEIURLVEHZYJQW6jQp5b882k4G7kCVT70B3CKlrBJC/ATIRtmaC+BpKeWf62L8tQk5XgU7HSkB4BtgVf7p/CpzOn/NVjWHffLUBe7D/PNgFQyc8wn/yP+FqrP8O4i7YKCe20zg1Cx62XxccMtYmgVbOUrXWzZTX4pntnBw5KYDLbVAncchD5AXd7BtKKzGIiURsPqKMq9CaPbVjFtmhkXqE/Si+fjQeaY6WTJLUdUlGyjCylVj9e+mquoFQzt1ZgijjSUamk1XCyCV826K2CengDDFrFOgr/yOdQ8PimgXDjvYVPddMj2F6dzCb78yzKwv4X8CNgMXAH/Xm/+QSyc5jm84nhPGNxzWXL2gic6bQXDZSHDdwvncMSaXSWfPZTX9SaOA2RNvZYR8M/qB/09foBfEDgTkqCj7ogVaA2WoPPsC76ZWG2tuUUGeCS5D2tSQcVObKrHWORwB1lwTBPk8718X3l6ntiThMPLvxBAM8IXbjklAJzXD1qIe6snP4fA7x8PlufCrHLhSN3hF+d/V52feoCGBirq3lgkQgmnAASllbyHEicAHQojeUsqQKjAhRAaQAwwCSlDB5c+BecBu4BIpZYEQoi3wuRDiUynlB3X6TmoBMhPEgjNgIIzKXMSS10erQOZK6JMZmXkBGJj5CUWkWhTZreU9aJl82NpfmdqK3nxlab+mUqSfZTB7hV5MdfHQlbXkkRutXzPfPG28PJkf2uCT6AumsfCiQ631RR/9uNmK1BfcKK6+A8FpOcg4SUTOub+mIjbO+slEIJ9BEJaFjX6Oj0L3a9Gr/HmDEKfre8j5OfCHubqvHM7ibb7hZL4RW/W2ahYwH+1oovNmQIsN4At+KDAh7eOkgNZ3v9VBvJ9J1L6ybeGZmG23SFejbj+Yrsm2vs4zD1dRiXggVtvZUKi/786P4qHVNvC3DNBwMQ54EkBKuRHlynqhS7uxwGtSyv9JKauAOfpYpJQrpFTmD1LKUmAdcEIdjL3WIBYQYq1RF3BSZROBYSx13ebcHq1M5H6mWQqosSBeDFUqryuIdEcGLVZbL2rvBixbrXj2gcoKWmqrLggXDQovo3BSXUFlNcXtIG5Rj7rG+Szi/DD13PAxgn/6ajS4/X8JD/pXy/3f1vh8AY5uBJnLoxzyYehPGaeM+YyXGcu+qnYMbLaKduyj77wveX+houGIzu5+RNGoi6aWxFWA51Kf44thmRGLDmtg6LBevTkDs3BKo6LPDo+a6RRCWbZI2VX9rcHqrurvT7q/30b2v0q/C5d6z9t5jEnMhFooTxQb4E99YjT6Pz0pxUtpvVJL5w/Ndv1NyYf9BZbOoDnab0cYPaGrQazC4rzKiYBH5rHqx8pTjt/pDf/Noe+AL1k3exB3XZ/NXCZRPLX2hYqOalTEbhKgVtEdxfg02A50q247IcTJwOnADQkcY71BbJGMGr+YJfmjWZKvAoWXGUta5lYO0Fp5J07G+iSKSOUOnYb544N3Ao4sk2MO2JzdD+7tR9t7drO1HEpv7kyz+w/SrMdBKlNbRR+TyAWhromnVUWWgchRoYGlH/GcaKUHIg/IURf6a/Xl9G6yuSszUuwnGkq6doHCXEXRTUCJg6LZKlqsSCfE29KmvkYe5zkXr8+xPJtjwZTf4HG/Ia+PDCxVoH4NvaZ/Fbddl18YOqyhn0p5kzs110epSWVqq9DAV6vHSr1A3LfgS9YX9QGi/16dMNlKZ2B5O4/x2wuAgcDzwCtqTHIMMH4SPfia4v3w+f4hqs1XF8I+W+ioJiq6Ry2a4LwZBJeNAGsXDuXeMXeTTyaVzZIoIJ2V5aow47gL9vDdqo41Pke8wVatUQtX6b8NgLpY3QDU7bNxBsRzuZm5UVRka+Jx+dsNj/mekOOxGpEyxzWbalFrqV+6aduyG8hKViu8S4aOVrmeDyHl4TJGXb+I1hygE0V0eriINdSxCkeAABpCiC/AU4o51WN7dc+VBvwTuNlkMj3aXY/WpuzevWEuvsjxWjzHJRtX+HoGP73oOf1KB447lLJrOvDrH8wi7X/RPfjs67MOBoCqd/VNegKUMD8+daR68kXY9mZ6uw44nz/VeC5HMjHuYYbtnRgjGPzhOBPMjox/sDXBbsxHGBNe82u0+SvW3BatjtHNP/NqnglVlf0k7HP9XPebiNKRauCtsIDYskuZQohdSj6DapZpPzb0palv5qtJ/D1zrN76srW/R5ttrFswCIZU/5QBjm4EtNgmBPFF7DZx91kDimZNYK9E1gxC/MnKMjYUCLFQPWqRupTKdstTrSaIV0EPGha1OUAckKgV2EQ/AliQUp4qpezo8ahEZSCdFNbuwA6XrqK2E0J0At4Bpksp/xFjTLOllEOklEN+8IMfVPet1Sr8UmKdFEI3qny4IKYYDWJy7OulmGw//CBcgdZgGEsteqtfZU0xRj38oGPVLkuoJx6E03NrC9mWw2UkhFiMEIt9H+9GqxVivstR9QexQj0SgaSig77p4TFV+Kuh8iueIMRPM4BGE503g8xlI4AcA+3Kf0Vpv860/Wo3qcnFlJ7bmR8uW0pqchFFw1L5+Iv4Vyij+VGaVUUvcZpwdddwRBjb+4TMcw8so/XjpMOGK4yGtuuq9k8DttZM8dTQYZ19+xmDXzjVWQGEvmeSo93bQ+xVXagZ/SnejKrYIiOO8duHdLnPE1MVRVY+HLZd5NJVTmDJw+rDSftsK4VTVYZi1dOnk3atylqkUxixEhzAATNJBqhPvISisK7Ugj5DgZ+5tHsFWCZUBFWCUkZbACCE6AC8DTwupYyimX2U4TngiGAVAy2Gy3XjlSfwM0VXc27quwCMmrOIJULVoBWQgbgUMsnn3dUX+z6VnOOksobOrcZywmRBr5LpwBzmMRkhlnKmoz5FZVslvKyufRGVK7+HZjccJElrCMkvDKXR/Tod7p1osDRsjB+LZXSS11gBs5tvscplq/OY9zqW+bxsiQVFIhq9dU+zLggtlhsu9GPaO4cfrS83dKzaxRSPdMkKhluBpRC5vuY5Nx9MmQUnsZqTgPUMiKqEb2DUZo0gkJgNnBnWr7xJBcMn6tcbw/e7j9eUh4TPh9IlyLsy1axUe7sC2LY6ofd+rvdLmYp6+3NeximC/M0TWrjnE93Nf4Az5rMTkNL7t9No0UTnzSC4bCTYl9yZuzdm8+DyPEYOe5/xyxYwixv4+OGR8GPoc6pZkh0QtZ94UROKZnXht07TD6T8rVUP2VAg64A/6nYzUR2EB3K+jhlDnWe7dy7vDfvU83bso/BcVJ3mTvV6yes6qGwgnmwBAnhgOvCsEGITUAlcL6U8ACCEyAMKpJRPSim3CCHuA8uwcQm2UcCdQB/gBiGEqbV8VEr5TJ29i0RjoPqjApHuiIHAz2HBj23O6pIn7IUj6VyFuw3ezb/Y9W5IWonOyOvlckfAJh1JoHC9mnnY6Uwpc2yvaJcEnepT9XuPjrRMYOkFGQcLZE+zLr6znOHjGhuuPFsLyOMBz31SXhLz+Ceqplh2J+FB6SmyD2tFYuVr5d4aHu+iMlxdVKa2QnjYs0Co1ZzzN+k6Lr8fkwkqJ9g1o0LkwlW6DvN/hj47ocY6FgGOLgTBZRODWbVzyywK7f8oH3Q70mf/eqIbXMP4yFCWBstzAe8MaDSEryCH91/bPozhmMRM/cy/T2UispyxEG31OkAAC5JaEZoK4B9SyoPAFR77ssNez0JbDodtvx24PXx7Y4AQubA5G2/pN5f2X/nw/3UIqph5pVBLaTvnEbOvOsjlTn4vWvAnqXw6b+cxxGRodr+/4616y2w13vvUmoNrBq4muJvsuISBhMilQ+Uk/UoL+hSUwb4UNd7M+LOUdQ1xtvrrVlsp2ut9OtAMoeKeCVyXwHFU00O6ut6Z8SKChnwiqqqb6PdjjRpNdN4MgstGhAeH59H2nd10YwerGEjh9m6cMPVrjmcf6/efxOG2yvhWZMPgWjaJH8xK/cw9KKwvk3o5JrLWxklZ5XKj6lqLgefASDooRFKFVTDqHojKMMEfsxBf3cmnrmHefyKDZ7csqngReCoHOsIP8xS16+NsnXE4WdLp7B2sE4uARQ3+MwsQIIA7rDINs+FYCT8WHJ5xPC2mfUtKi3IObwpVybTmgX65SqhF+/WJr3Jo1kEb0qe2sozuQd08p4UFQEJfe+0sZ/QbaDlK02FBe1aqUYdXgIqzgV4wLHW5Y+t5nv06xxiOkCzrQvCi1YJdsyfDhIpeZgJ3E8q7NXV7JhMWKziUr7uPzxX94lMuNxlLL6zNHwpfDXUdYzzz5oZ8zf7yGwg/BXybi5ih+98IbCTCN1Nmqu1x4SH7qZgSuduyffm9v+5mP6Z9W7WtitPCJJ9Bqk+TKdf/FnIKMF6ryuaj/C6dzic/wQowAzQdBMFlI0Lasq2cxHrW0J/3t5zPP3r+hDzuZdXC02lx7rdcLnvzSrbivK/kDERLNa3JQ+p4+SCM5E1GAkudJPow9OBrALYRaYprgoSa6NpPZA5XyfQQ6ka4tYcfeCr/RZlAQgJNHxD6SuuHyjqXmy06qOgJ0qNe1Ynrxsxkrg4w4wnETJZ0ro8saU0ylokKZlPZTvE8NY5oKrXm83MG58aLM/w4S8CqFfylzw38esuT6rVDPLl4WXf4Tw7sqcnomwgkiogZIEADRS85FsgnixWQBws2XMvhnx9Ph9d20XLGISsAMQFOmpxI4Qo1T5isZKFb8DPfvr4V5meoQMAoczoYtoXD9Jyj48GzeBuANeX9Adt6wg05PESOo1rgtwCb4QMdUGaxjCyWhZSFOINUma1q5mbn3wpf5XBPWP9iDPBz3b6ai3kPkEfHql3MYlfMYM7GeEqSDiHlifamfSmMyjTR+GiVvdwiEVvsa7tzTjE2FjsXKBsLZ+BrRJicyuRukJnQrnw37cqjfw9OmPPK92z7DGshQ899p8mR+vVSpMxBZjpsN/b21vsc45iujk2friaswp4ZiqgOcIPq8wS9evzNAn2PZYLIcLXacNyUY9VbCpELaZqeWo2MZVLRQU5y6FOLgjJkekpEOzER5DxCPS93XaUy09fYmenC/EiLnyaBJjpvBsFlI0IBGUxwKLr9dMs/6dtzFckj9pPUvJJXhk+wC9BrOXMYTQyoKUP2FAgXf0uIzOb6CQwj+tATsk3BbdgwNzkJ9Vhw4ocVcMID/JpZdLhCqSSW/KULl2x5iZUMoXBVE6PoBAjQiLGJfoh82Ew/ZCYseBN+vUjdmT9i3cFrfJVDASBa25vMDbDTu3JfcueodiPOjKVfqIxljDbVsLeYxa3MquHNe3jGMhpi1e4BoUElQD+dnqt7kflagRILilQediJRrJjwGk3nd+Um4kOhGZe/88tbQl+vL+qjajkLyuw2es4W+YRkTi1cNcmq9A5ZxIgzEx3g6EZgRdJEYauC1Rz1ZUcyhI+s2tGQ8fTEM4CrC0xipmtwZ1ae3WA+Q/G6/8+zvj73eOBmO5LKdsR7IBLgDZYIO5UAcaB2JNXbCiFmCyFiK3YECOAT4fWPxprCSct0Xj9MFjAa4rEbiQdC5MYMUOLu08WKI+4+xqtHTc/3ELdFtUGJNs54PxeVnVSczZcYzUseCuC18ZnXBcTZ+vFH9WgI8Pr+0tlaozrkRoPAiiTA0Y75XItYqOiUTy28mdSeRaz7ehDlXSs4YdnXDGIVrw2/EoDrDz0akWGMRoc1gdw2XUdZW4GN22poPHTYuoShw7rRdsUxuk1YMbcfOmxN4TfrGYtqG4v26imRbrwvz3TdHYEiukMUOqx1Ppda1U4Tt1PcvTviHiXJLgrK4Ecp9Nr4FZuFNnb+YQWHvmupnv8cFi+8Aj7UfVZD8bZJovYk1UulrG2piQCNHSN5E4BLMpWQzUqGkHbLVtbQn/wwLl5a5lYqSVIvXgDeUE8tyqNDYCb05jg600EuN0GLujYaSqvQejZJ0w9aNZQfcJ6716YOcvt8pvie67XCu5tK+l2fmRpIRXsxNZFugjuxVGWN3cjyMNuScLjRYVXQ6E6TvYFHQz41O5MZltE8IlR2y2VO2Snmq7nGJdB10mHvZxrKS8wdpcdqOmyVZ5MQ7KC35z4pcxDtlaBP+Dxo6LuMDw2OpcxRvpafqKw5gNgHvObYL/7GN2KpUl7tBWlZW2E8FD6cgYhjroo6N2u2rdtV1znnn8u/ORc4Jx3ewbbqEfkoFtwFwIRcuDMHvpqkvr8LgCPAm4C5r3hIUdCbJAIrkgCNBqeoP3eNyWZm+RROGaY4OO3YxwFawwe5zNb36LMSEB/Whx0JeCvI1kXwFg0msHsqbHs0CxXrM+wJnkqHl4dGgvX1uccDt6C1eGF3z33xwtSLen0SveRYNm/JpG3nIkp3avLt1RKOLYdVkfUjAQIEaBwofD2DX100nU30AqBtb1uYx1mPf0Peo5Dnr5Qjbc7WaqldSl0X7mUrUhtiYolQXpUL/LftcLJ3HeZWekSt0ZSZ3hnKeD+backzLIXcKwjlLEtHUBnS7/zEfv7xUIvD7UykvCnkdeGKDGSWPcdVhy5d6+in1PcnOjxd1UJABqKJxpRNHQEtNkAIJvA0E3g6ZJsS+Xmzxn170VgTiXhoGELsrDWPSyf9NRHUGyHc70rEIvXwi+ncwnRuid0wQUhleyj1bF6dnTpAomFWYJsYvSdA04BYDWK4ehi4lTGM47kQCqhfqqxXSUTMcQ2zH55tJisrE1/9aTro/UyzHiIy0Rl53Bj9EBsRwp+s6f0uWURzfpHuUDONgWj01rpCOI3W2Hs0VNSU9tubr0JeG59TP30KsVr9jzhFfpoqmui8GWQuGyFkHxjHcXzAWdyYPIv5TOBOHqKCJH5d8Bi8cjFodojIUypzfhCeKazvzJkfbyyj0iZruTTRjbZ72vfL+FQsdWntrXDq2taiM52BlImVvomVPfSzauxGnZUPR6FNf+fvfccD6Sy9/ERTYkf3g3ZqU+nzs7SSJGxe3Q9eSIFjQd6V2HEECBCgfhBe0iEuzuWv9+aAqgLh8sz5jr0TrGezuNVSHLXwiP47B4qKOgFQVaJFfjIdC4fhvn5DgSE5noI9VWe24kPOg025CJa7Xl/tYxXfM9osa+ivxpo6mXJyXFVWYuPjvJHWvYCXHYkXomUlu7Ejptem2IDlhRm+OBxPptjrPCbI9dof/j59q6A/pKilljqsC402vA+nKE/4e7WUi7Mi28qpxIQQf9PnvMmzjSkD6cYmurmMWcocK7B8d4qiwl7+hA4sL3I0HAi8T4hP7PNPTIabw/6Znp+LlJMQE/X3GCwwNwkEwWUjxT+2TKRt1yL+2C+HFp9/y7w2E/l04XC4Gp7aP4HrTpwPV0UeN59rI7ZFq8OMB1401kQinokoXtuReGBRYKU3FTYuvJLqGgjKOBdzb+exxIzHJ4q3dAtZhKiTsotVsHlVP1gMF+pCozfa5bBZrFD7JwFlnkcH8EITrR0JcBTjvlxknrr5HRulmRwAYglwD8hR9nYhNnC53AHAKyUqIH2RX/BipmNxc46/oXyaPxz+aSig/t+CXO6jzRxwl+50aRsW7Ih8YGxsGq1ds3litGYhcAvmqkMBDqe31gcigsQGXiVeE6r1JvoB9sLGKw/bizFcmGP/VsJ+MydM+RqmJCsLlVUg5SR7PE01qGyi82ZAiw3Q4CCy7UfC+qymemw0hddo56oNtVqxQT1qiunc4qpoexZvW75stQWnwq0Q3yPE9zGO8OhHfI8YHeoxJ0R8N20B4kQTpfcEODogFtgZt/PDghHhsggnVuuHyCWp6GDEfq/rfjjV3w2tD+2x2olmIKLcafnpD0AsUw/AorOOZb5FVwS4jBe4jBc8+xjGUsSL1VeSFReFZa/c2sR4v/HQao8GOOmxzt9gLNSViqqYoh4h22rI2BELQEzEqqf0+j0F9ZY02XkzyFw2Usiegkm8wucbB9ONHSRRCQMlV++fxXWiD5fIl1i8Ra3ltisvimoqbGow3bKa1UW4SqkJxuIR4/EjWCCl3bebomt9wS2DZ4Jp43cpslHiMwO1P6YjsHR+fqbmMt4sZjSYc8k+sduaFdIIM+uvnSJFWqXul/q5o9bGLwXJKNCGq7sKkRtybItp3wJw+Nzj+eDQcMa2fFkp2G3SHKNVuh8fXnMBAgQ4uiDyYVQmjJKDWDJ6tFZQzeOV1+3si3gV+FXocc3+7yCpqcWIoRn0+uwrOgCnyT4spxtgzzemMMF1/llp6tFc1Lq16IkQufDfyGtdLOpmdWHsP9yoq17013gEaaJhHM8B8I/8X6h+wz4zq37vwhxK3pgL63NI66OCril68VOsnhGiCOsXznnx3gXqM73H8b6izTt+sn52cJjBztm9Oe36ZeyMoi5rnVcHYWmOz8IwrgZlaYNITgdsq5wiuiNu12Ob7ugr7Ps77uAVACQVHaTqGk3j7uE+jp139UY+6L7PIMI7c2r04PmbfC1D65DoEMdEKuYHaPwIgstGjKd63gy7YdXf1YWq2RkHefbEG2E9tOZpOEXQdt/uGL3UPUxwlbD+dMBanaxWNIXXWOdLNPwEen7gRY01svm1iseFqscESDsGWVC970VK5fMSIi7wLnADHF53PMkn7ofr4LtNM3m2dw6nbPyM5hdVWk2/1JN3gDhxFKyYBmi6OHP823yYfx5L8kNX2kYsUne7psRDvAr8FZibyyg5CHiXtxiNU1+mhA50oCTiHGXlyepJcuT5nUGJEfmRVS4iKGv13wG24vX9Md6bs8LCKwB91RSYemA5I2GcHl8cSrDWGF730SaGzYdtReKOwg0Zeq6bEVkL2wBh6LFZwGnjl/m+Z3Ar4anpvHSgZceILHxEgAgxg8posBYeHIF6hIWPpsAaO7YmjyY4bwa02ACAXZBeXQzhI1el2UTBUE2PVuNjiFRqjUctr6lCiMUIsThmu5r+fgMECBAgGkQ+iO2Rd4ln8bZFBRVX1J4qeoTyts9rox8Yj0vwR311g7hIU3d9qufGA0vVthp03vAgOhZtN2Z/cd6DiNlHgbKsY4yx3l9S0cGQALYHX9ODr0N+M64U2YeJy6czwNGNIHPZiCG3gFgBXbM2sfPU3lR1aAX7oE+f1fRiM3cdyqaAdN7hXMCbJuJFh01nK4UL1erbYIfYzASeDjnmYU0Rmuqo8YsQp9ELsSLbQQuNoQbrW9FNI00qyshE48NUQ4RfQJ1CDQlTp31WIPOw6hSNOI7z8zN02PA2NUE8WVKv70GG3aA46ayywPFc5iAWKqpvNPXacDqs85zd2ETXszex83e94fTVlH+TSYvPv+Xw2hz4BawVr8MPHePzIZIRIAwSCOhNARogxAJods5BlhcNU0qvv5PQS00kyzgrhJUhsoE0Pc/MybHrMTWNMu2zrZagScg59N/S3R2R3WPfOjk9MUOUtF3mq4nMAU5KyLwEWNYiMtumwzoplCIdKFTX7R9WQ3TO79z7IooO+6LHHC5ljqaXbqUAF3qqpsN6ZXWdpRiGpmp95qNVfSfzdaZ0SOS5a4LwzKPfjKXxWxVilqW06nWPUzxbZbW5XtFhhchFDNLHjHenL1emtkKsAHJstVkTDFamtgp5Hg/MZ90smmD9NAhJqv83rlM0TjTReTMILhs51MWlN+JlSa+e+fRgG1ms4B3O5eMtI7iu5xNkoVQ0/To+2quydtpNKcGeETVzGS14kGOIKuBjU02rPyEUkKEn8dqBEshRgbQQf4qo7Qyno8oCrKAKXOjAk8wqeeL+TY3EuNvNU20h3kUAJ6S8JLQvfSMoHXodYiFw+XyYlMOlc15g0cWXUPWz5hy+8nj4P2AE8Hc9IWcRoLqQQGXMVgEC1Auq3m3F4+Mn8UvmQvNK+OZuzuyuMnLiPZCllg296/Ei366DE6uJqPOTmSDyQ6/FWSzj06HnwWBVwy3y4fP8M0jLtMVaxBJ9/Kjo9Y+uY3IEiYY+a43HcW00Qj/VESf/WCwLDX7DqK/hQZsXrOOijMF4VRr115cYzaPEVoM1NOB7fOgsuEIHluH1+dVBVzkhZhvjlSqX1Y+qbLzznHOMsT6f8KD0mwUnkzZ+K2mvb6VwQYalaSBWqeBXiSICv9G+mVO9bVIaJZrovBkEl00EsqegGymsLB/Mu/9S3kXnjPk3T91+M82mHaTqYEvYHF/Wq4AMxEAzUavj3LKcU5np8GqMMsaw4CqWYM942c3HKEORqJVhCB2fUV6V0hYOqnH/jtVxP99LffmO1nSyhugZS1+4TY3htRevhI+Ae4AbgE3mh6dPEASXAQI0OpgMjsifC7cB3zWnbe/drCnvz8jk90PbDhJwmR1gmoUqkQ+F+Rlx10ed9pldZ3ea9sCMt1b/eaGoHPMSxHhx864OyXLNAMiptnBPIq75iYBzAeBQeQv1xFEL66zvTFQ5jZuXZTzYl9xZUVBn5cS2fwkLTKv7uTsDwngzlta5PUSV1G9ILTz0GP81oALOAI0LQogzgWuAFGCflPKX0doHNZcBQhBhCl1dyXJHRu5owjCWhtSf+IEQfnO+AZwQr6uHgTJ1dq+dDG9rbT8af2RHK5qopHqAxolUtvua39qV76ZdeajwnQjz7BOnqkc0iKGO545Ax+s4t2Aops3HUMjmbrK5W703h/VTTVGda+1LjLaylSF9xfjMnbZbfq1aagIhcq26TtexbK+IqLcNH5epPXTt/2z1iNiuax3jsTDxg3S2RtRGprOVkbzJSKeUaxT4HZNYrh4BPFCP86YQYoYQYqsQQgohTnFs7yOE+FgIsUH/jWleK6X8UEp5nZTy50A3IcRx0doHmcsmhCQqGJ28mOQx5Ty1ZQrvbrkIMuCy1NcoJ5nF+aomUbQBuT/02HTs+pGVnIEYr3KVckFotswtAIAEZKZc4NcaJRYt022/+AIYjN4e+xxPiZ8gZVcmMZPrZCvmWvTYd3Qf50ZYjUD1Pxdzc+NmaeLa3qpN6acmSipCMqPh1jARx7+o94+Lf6zVXW014kchdGKHE3rL/cpyZMqYh1k9pj8fvngezAJ2AEPgnI3/5t1h6g35NToPECDA0QdnPWHHql2UrO1C6ded+ekAZYUhzwaxwHEhnw2dHFkhRYm16Z8qcHChomaGBpYmQ2lmwW1uvg8vYVEF9zTr4p5BG5TDfV+o4CZeKxKRD/wmrkPiylgWkGEFlmJ7ha96Uy/8VAy26gwhlA4brxXL/UxjRvk0SrcpGzXZx9tODRKXbbWD5ce9z6VpymKFx37926sLoR8x252aK7SKrNQemOIi4MfYBa6OryH8HimTLwHIZ5Ddpjs0+yySTfbpwzqL/+fhyKnVfRcBqonXgEeBD8K2PwnMlFL+XQjxc9Sd09kAQohe+rUTb0mpTHCEEBcD66SU30U7cRBcNiF8M/Fk8ueVkL8/kz4919CJIj48/TwmMZdVDIRMWNzmipBjZGb1zH5rI5isCyxnJGDfLPiBlF1rZzCNHOGCP9HoRqZteMaA/4zhiWUwcPgncAzKR1Ovp41gKSOWL024b1yThVmBDRCgAaPk6y7QXFFUt5FhBYDOgErM1mIpb6OIXj0UJdaNphjuAe22oCe/MM+6R+6bE5ptjBA+08eGi9a4BUOXV83Xz9zr/uRnIJY8oJ6PgvhmMm9IOcZVKTcWXGsp+8Wue3QKyoUH+LWBaONRY4m8VQ4f1zdnayroey59uGyD2qvHLCADUkODV5UciF4364TfBQg5TAWW4KDchh97rO/TNj7U3rzZUQix0vF6tpQyZLlCSvkhgHD4vQkhOgGngqVy9v+Ax4UQP5BS/k9KuRm0ymcYhBBXAz2klHfGGlxAiw3gCr+01urSbpx0pNqSbgdbvbUhQYg/JZSuFNl/w7BrES+G/o6OVqp0AI2AFhvgKMSTXBNBEYwH4ceK0bawWDj80Gzv1sRV6xiX63Usm6qGcC0VYqNSY62Nvh3vv2PVLksISZ23YcxvDRFe9Nuox8T5WcakNEcZQ5P83mpv3twjpRziePjNg3cDdkkpKwH03wK93RNCCJPX7iyEeFII8YNo7YPMZVPCx/D56jN4aoBa9dxMLz5sfh4XTlxKn3mr2fDgAFglYZVjlWM8yAWRq11S05DElrDtUfyxTACplGWrj1gWJZHIiUptdVu1lKfiJSoYFYYOa/d9rp4MP7LOI+6Lv1+hF4CN7YicCOJB9ZB3+ejAsXLoRmuKlWn2S4c1NSjVWW0OV4INV9eF0KzB4ZePB6DF2G9Zv/8kfjhmKR8XDIMXUuA3cO9XNVQYDBAgwFEBZ5ZFZmqarMv/fX8+Y+3kobSduZvSsZ25fNF8XlkwAVYpKxNQmZciuquaM6DZOd7nfZJrALiRZ2IM0NxUe2fIDMNCRLkWv6wzls41U5kJYqXdv8pYhlIZRT78MFNpCVjsHEc9nVeWKpu7AcjjgRrRYa3zOObacEZUATMQ+XCvY9s07gf9GYfjXtEaKTtDDNssIXI5Tar3/KlYGjKO6iiZeynbumUnY6m2msyiVwZTzAZ0/K5IiXGWxPxeH7NKH/OEY2xTwoK9VdDsmYNweaToj5Q5dm1lO1iXP0irJ+sGI4A3zPxvz/1CzIVZk3jq+glcJ9QXJSaCDGcgBWjwkFL+C/BN0wuCyyYEqS9SI7mKA7RWL16GgfM+4VJe4/dX9ue+nrezqqfi0b8yPrbkdnUVSp2BYU2DzajnqZ3kYI0QblGS+P4biJJfWECaaKq0vFbVXSY1r+S7H3fkY0bCnUBHOFO+DRDibxcgAQgyjQGOAqhgSddDiqW0LTtAt+QdIW3avrxbBWvjiZrVjLjRjuKa4bXg6bwmP0Ce5z4L73ifAyKvpfVxzXcqsSa8b+2DPA24utkzzOAex3kbxvzWEBEe4JrPUUzxaB/2WVYNahXiQe16TIzF2k7vbY9YXL5u9nyl4v5k9GMbLRrWvLkD6CKESJJSVgohklC+gjtiHBcXAlpsgCYBIRY2OGVRIXZWW2k2midozGOvUI+GiliULzFPP/xkbAMECNAkIBaqbFxS0UGLnhqTwudTDV0sstkjrvv1nVRdKJuGnDdBFFEn7bQmuJ9p1VaYjwU/NNyXGE0Wy+JWX/Uz5t58ZflEO9GNTa6KwmrMtUfhFSu8BYNALbwa0bvqwlCSQ2jJfv5fHq7RaQPUIqSUxSiJsZ/pTT8DvpRS/i+R5wkyl00QS7mACTzNgoXXwqQKvqUdz3A1Z/Z8h7c4n1WHtALY79UfpyFwOG5BcTUe43bXcxn1WHlRZIbS1BzGnf00at8xVtCqQ3mJ6KOn+iu3RG8XDSEqtDqYjFcEyNBhjYIqPAZHiPAG9Tw+BnUoFoyYQyxqlBcdVhyjx/G997FyUWRQaavcegeclRVJtHjtW/q3WcOnYilty27gw9d1xjIKTTtAnAgEfQIcjZifQ+nLUPqIFuZZmUvpXE31002GpyoxxbNI4sM8de2Q2SCGgngEi6sZTvu/kWeiWoOEw62kwxwvq/TfBK2BOucdRWFU1FAzbxoqrAkcjFKtkwqbxwOJGYwLClzEZWQmlg3JaX2WAcMjPEPNeEs2dVHHxJjbLArsauC/w0P8Gq19tRAMR4MVcM7KgTNDz+/8bbjRZQ0dNjywNHWOrvTcJyK3ReDiGPvbufSbCeJU6PvFl6x7YhDFT3SHI3o8+cDMSWrOuHmuai8n+RhII0PtzZtthRCzgcVSysVuDYQQj6FMvjsD7wghSqSU/YAbgeeEENnAt4BP3wH/CILLJooFYgeQywlyHCexgZYc4gCtSaKS1i0PAPBd8w5wtVNlameNlFFN5lDG4EfGssWoDmKdE+ILdt1sRTzbetRISNmV6VZ47l5j6IVo5431+cmXfJ8msu90YtJmagJf33kF8Hf19PBrxytL369gzbT+cO9wRifPgYtgHpNrb6BNEUFwGaABw1w7xGhFY5WL1A1u1/GbSKcAxhvrEMdiYz99k+9SHCeWOF4sBubmgoys/zuz6m397DzfteaxauUnoryTYl3DrOBIBxoyC8un2dRWxsKeZl3c/R0vAunmLbwAGKjPl6nagWp7DzN817h3rNpFyY+7WMdGQ7vy3bQta82+5M5Rs6xXsIh2nAXj4Tw+oAdf05xKDtGStAHuAa15H7FwiJau23fQG5Ldj3Fb2Bbib7FPZtpG0ZeIVs8p0oFLlSYBjsDS0GNjBZviIrQVSZfQ2koXyC9ArB4EZ2IF7nUdrDdo1N68WSpldL1hKeUtYGUknNu/BmJUBNcMQXDZRCFlDjfzME+IFzlJDuK1ZVfCWjhhytecz1sAnN/zLZ5ZpibTJR5Oz14ZS+s8UTJH1a7X9Bl0JqI2oyYZS9f+amhbEk8AmkjI7s2jqhfGPD5KxjLqcc5V5jHKqLpwbzpcCr3abwZg3S2D4K9weMTxtJj2LS/vH8uhNsdXf7ABAgQ4ahFeE7kzvzc7Mt1tjlzniGwlNlO4JMMKogD4KofifH+BiBdOyfyMtQ8ODR1DVfX7iwvHmTvcyNs+p11THg9YAWN9wM5EDnfdv6eZCkhjCfk0bHRCypsS2mNExvK1+BaCo3lBm9+8Z9AY7nio1yrk6zqjOnKSpx1LgMaJoOYyQI3gx0ak2nYlC0GIBxCiZtScpiRdHq+lS8re/aTs3Z+Qcxs6k+u+sDpKsdqmvIa009+V8/sSZ6u2iaoLClBNSOD7WngECJAgmFq78Jo7J3VVTFQP0Neh7Phq2Iex1MoO+oWbFYpbzZwYE10ttiHD0GljtXFrJ/IVLdctgxrRNp2YVi1eeInRvISHj4zzHCKXbmyiG5uA6F7f8xnLfMbGP5g4kMmXZPJl3MfFW3sata+wwNLVQqcJ3Wv5RhOdN+stcymEaAk8AwxGJY2naalbt7aTgTsAAbwB3CKlrBJC/ATIRhHjBPC0lPLPdTH+xoCZTOWZ0m9Z8t7x/OXsG/j1j9KpnDKBLNSM97M2rzJi/5u04BAj5FoATmIv6xkQrVtvbL4MeuWhKODekGOiC7oYZKGKQMNrMrwwhI8oQM1IrvUecWRS/dY6QnTJ8GiZyOrWpA4e85GnAq9fGXPr89cL/nJAfKugzrGrek33S42Y5z0WISLNtov3p5LUvJLD9xzPtvt70KFNCYyAFvd/y+HfH8/hfx2PDMQEAgQIAEo9Wt9V3MCjeuOtQOTilgkgCshQ88Mo1CMMw/TfEKsPkYtgufUaHDfj90OzR9TTNQyFu1QtJ1EsThaVX8K+5M6u+8JrNCGUIulGh1XHNHfNkrpRcKPRVOV4HMH1SOTr/gJLJ9LZSnIz+zyxaJRen4UbRmWr+lmZB9s4OWRfrIoQN4GcduW7aalpr1602mhw/q4AK2PppDJ7wWQMTbLcBNQxFV2NSmxYYOmr9hLH92IWjJ20zlVE6F3IYYQGlR2x7EZMxjIRGhgBjh7UJy12GnBAStlbCHEi8IEQoreUMiTBLoTIQBVJDAJKUMHlz4F5wG7gEillgRCiLfC5EOJTKeUHdfpOjmIcbvsYp8mRFJMKwM7uvZm/XVX6/3D/UspIoYhUqyYzHH5sRExwFM+KlkV9lfFNWq596YtZvFm9oxHx2rqUtW+TuJMboSU3utKQihAxIDnADnSdCPcfA2CuhF6CQ6UtObzqeJqddBCuhJbHHeJwVQsADn/XEqaVIdNTEvRmAkRAApX1PYgAAbwR7tfY8sff0rrNgZBt1897lFncilgNFw5YyKoBg+I6h+UTiYvCnQeqbmtleUNb+CXIzyLbtn0hUnW0ocOv8E8eDzCO5yK2qyBqRsR2N9Sk5v+nKxRnOpb/JJ/kWL4M7djNofIWngHuBF6u/oB8Ih/1G423kMjLv7TaWOV4Pt8jSLwqCB5D0ETnzfqkxY5Du95IKTcCK4ELXdqNBV6TUv5PSlkFzNHHIqVcIaW61EgpS4F1wAl1MPYmDVFQZj+vJuXVtV8HPSmLZUpSvJZkzUPOO8890Km18/mwRYn1mYoX1UMJAt2S0O+hIUHUnpVagAABGgnEUJ0NxN+c1JCtmPwi0WUCzuyjGKYesWAUSt368qLARuvLq7+awNxLNFSIqfoh/oQQf6p+P+IwQhxO4Mi84aToet2fmaypWK4eARKOtkKI2UKIS+p7IG6oz8xld+Abx+vtQLfqthNCnAycDtyQwDE2ekiZg1gOn56xlBEyi01sIoVyAA7RnP6s5gOGcxuP8Ai38XnBEACESXitit6/kwphZaWqa0ESBr90WIPP81VWz48gg1gEV41WdKF3ONfaHo0WM4mZAMzlZrufOFRlDZTdiKZwNa9EbCemBYhfxKTD6prJ6ij1SkcpS6eeZt23u+fYo43FUM0AGCdoUar8uloM/JZ2bfZR2DeDErqQtncraWO2VouuFKAaCNRiAxxFONTmeIaQz+dDz2A2tyI/swNLJRY2hnP5NwBr6A/YQWp4VjH8JrrZblUfmM5W0lwuZjJTl24sgB10Ix0onKyvUwPdx6tsSKJTQGWVv8DSqTTqRoe1M4jJnMQG6xi3+dFJnVViPyMty4lYMGM1Qjwv8gt/B3rASfUMz8yJfOBK9/fwEqNJyzLUaA/V2LCMpgp2O9dIjMZToVafS7zofpwbjdRP1lbcDnI6CE2BlVohVkzVrz3KRlzPp1lII3mT96dcAEDfJ1RgKceH/U88pY/bh/UTFhNRphdh/TY51JNabH2i1oJLIcQX4KnLnZrgc6UB/wRuNplMj3bXA9cDdO/uTzK8KUAOA2QO2dxND7aRjMpMvsX5bKYXf+NGLt/yb5LbHaBTehE3MIv7NA2mpgFiyDgcAZgVONZAmc/3eRPu8BPjfD4itz/1vJXbeQzh4cctx5lnqmbz9p6JGVui4FeSPyY25dJs9zTS2xSweWE/ANqN2QcjIG3hVgqtItImPHHVFQIrkgANFM5A0G1OavuRoZp2jrBieifM4M/vjFaZqixPjK6MWxBh5rFwQZhoypx+YCmmJgh5PBDqtegj0xQt4HLSZJ/AX4a1ttREzXfwEjN4lFu5gkUxjqhbWMHew7+tWT+yBSK6eH9CYCi6EBrEy2vt59bC8FU58KRdf9kk0UTnzVqjxUopT5VSdvR4VKIykE4Ka3ewaO5ORG0nhOgEvANMl1L+I8aYZksph0gph/zgBz+o7lsL4IBooybO8MnTD61mAk8zgae9+06AUqyBm9qb27hjIVz11Nruc5xC7ESIne77XNQDvfvZjxCJUXkNEKApQQhxphDiKSHE34UQj9f3eALUHE6VSvO8B19bWciYx+drZU2P9m7qsK0P7XEZx07EZBBaG6ehUzKjwU35061eMhriFfpR592IEBsjt08EIVy94hsk/Jb0JKr0R7T32S4G9bgHXyN6ajqr+FuEL6cpyRFP2NlRa18C1WkDHN2oT1rsSygK60ot6DMU+JlLu1eAZUJd5UqAycACACFEB+Bt4HEp5dw6GXUjxqtcytqWQ/n9oTsBKNybTq/2m7l89uuMun4RB2hNEhUcogV/2H8bv2vzSOxON0dqvJuV5QkJHb0P9NNRYVjm0E11VlE8Iw2so61qPyX2IcMEiOKhwxo4FWQNpdQoHc7SSoc1RSoqJRqeYbQ9xuoG4bRhM67i7O5wfA58m0vH1BIK9qfT4txvObynHeVVyXR4eReFwwIqbJ2iHldghRAzgMuBHkB/KZV8tRCiD/Ac0AE1P0zUNfyekFJ+CHyoj/+nEOK4cCG5AI0Hn2drkbMr9fX7WB9lGQNVgHjmnLf1hub8MHMpH/dUYj7HrbUDywIyVIAQZQxWVjNKxlLoa6DU10QT2HWonGS12dOsixXofjxPjUVOhLtRBz2A6qRj1S46nKzaC5HLCM3BLCOFjxeo4+4av9nqt2PVLlils6FhbKH7mUYfbNrwfa8bu5AZEZRXN0xp9kRUwZ+xzAfgZb93BBMWw3y7zCyE/pvpCNb6hdI848lYGiVh+Z6xSFFeoHWheGqpyMocy3LFt4jRUyD36uOnhO0bB/zOfpnFMj69Xd3zyOn2e+phKfPZeF9sha/0izWxhyFljgo843PsaZxoopnL+gwupwPPCiE2obSUrpdSHgAQQuQBBVLKJ6WUW4QQ9wGf6OOWAH/Xz+9EaVPeIIQwtZaPSimfqbN30YiwhqFwCLqhJrNO7YtpzQH4FoaxnNe4lFULT+dDzlN6vScDj0Ph8gxFrXXAptV4T7nzudZzHxARqNUEBWSAzIjcBmS5Jsw9cLL7Zr9jlbKr975YCnYh/SRQ5bWh4pfAfVAsnkHKHPrzGWv3DKHsiFaE/T1ADtLFLiBAo8NrqELkcCXwJ4GZUsq/CyF+DswCzgYQQvTSr514S0o5Xe+/GFgXBJZHP0LqxPTzs3ibb0pOhivh3sy7uS/fO8CRmaigStfwibB1RcveY4vZ0tG9o6+6wo/tl/HqAtQlZlWFylN0uHJXSJBoPkfjPVmdWkm/KrJOSOmu4ibnAfMuOWoyY360HeJpF7OfvT4a/SH2fcY2TrZ/59o2BRxBvC7JsXxGnUHsQB9jCNAkUG/BpZTyIOCq2SalzA57PYvImwSklLcDdcAyDxALYjjIBs7+ETrOlQkUVRXuydA6hfKRTJzoT9znN6u8Pu1P3QSdRDZclTcHON/1mJNYTXJNBhmg5jBm0IlHRyHESsfr2VLK2SGnVtlGhHD8ZlRJxKnAeXrT/wMeF0L8QKuLbwaHGpcDQoirgR5SyjsT9i4CNBgIkcuZ4SueLm0A2papICseL8WjBSl7m07pxBwmMpnEFveJ1XBfNW29/WY5nZnXuM+h737VcpnLfudV9P9i9HWR7st4XPr0xM7ky5A6zABhqL15s60QYjawWErZ4Pji9Zm5DNBA0RrlC3YS68liBa3vOMAHnMW3tOOnY57jH1sm8vihyfxyw1wu7LOQN4aryMrtIhNLGbY+jXXtYNP/6nKiVhkjxuIRpCrlWJjloMoaGxM3YaBon6dRpZPjYgvuiD/qtnfEHHqNIPOg5f5vOTzjeACK5+lx9YALr13IGyeb97GatctUQdR3n3SEV/XxsVyxAyQOtefXtUdKOaQax3UDdukafqSUlUKIAr39f14HCSF+DNwP/EsI8SRwr5TSs32AowNiAZw5/m3r9YdiOSPUT4P7RDKQq6+L2nc5Sl9pc7ZSmJ/Bh/nneV7zxRL9RC9PyC/06y1urWMjdEnde060sqiOm/7HDt1CUvMKZrKbfcmdrQxkCvtJLrmNpdhMl/vHq0zkX6pus7ZFo7XeE8V/siTpkB6sZ5OYiEaHfQklQW4ord3YRNfxsIPeVhuZqQJL52v1xP78nPOin3sOs1AqVsO9q2fYC6f/9T7G0Em3edGbwmDVs34V2qczs1gTT88I/Bec2qIrGK74g4BwZB/FRXaAaW1zU5qdAX3HK+VYk01uds5BAJKKQE5pFZrVbKqovXmzaarFBjh6YQeIgxBbxsEpAmbA9VMeZTnD+FPPWzlES6b0eZgnxk/lnGX/pkBr5jW0DKbQKqpyS2Izlga1kbGMFjy6jqGeMpbW+eNc2Q3JWApoUQq98r5iBVn0mbiaDcsHwD3wxojLYAgkd9zPBvEqTBtAn+mr2bBsAPwK4lgTCBDAgpTyX4A3Pz3AUQ/bGmS9+jMp9AZerIbTpArSVtAZMUYFm3Khqn1My8aq2QtXoraCgrdiL4jWJCuVCJS1jyyfMMHiX6KouPqtg/SisNY1Ep2xNHDObU6GTniAmsp2WoQfK3MskT6Z5fjdEBrY1ui3MV//9chcyuvt7GWsMKTDv3ZR8mMHLTqWiv40WDdB17HOj8xcJhWpQLNqs1JVjkEkCNDIEASXAaLi+p6PseNQN8pJ4XOGsHb1UAoGvEs79nGA1qQt2Mq7mRdzYb6dwXQillVJfXof1UawWV14xZFOcR+rbZSgM+pq7DjPXZFtazlj6cThlcezedvx8AZgFtPvB3opcYoymYOYmUPfKdpfKwgq6w8NS5hgB9BFCJGks5ZJKGeIOIqoAzQWKM9DxZA2KuBLUd58bkI6ny7QF5LxkfsK8zJizk2m1ls0AGL1gZYeNaBHOcJFeHYKHU3Fed/gVpObaBymZVwWXHV17+MntyWfAOgCr7vv7/vwl/pZWBD5VQ59M78Ei7WmAslubKKgKK16A26MaFjzZp2g1qxIAjRd1ERWW2yRFpW2NuFlKWKQynZLuTQapnOLRV2NZ1/EeMRCK2NZW/D7nmoL4dL2fsciasn/LMDRDSllMbAKW2X8Z8CXAcW16UJk2wrUgGULMohPaFe+23r47i+KTYTJzPjqx8O4vq7gZivi2TbsrtDYSwxjaYQli+lXNIs8zrXvi+zavkTCspJJkNiPEH+qllWZV3s3BVZxdmxbEC8YFdlEQtyuH6PVozbOIyaqR4DGjyBzGSAqZnErQuwkuaQNg9t/zg8HLCWdAh7hNs7nLYawkqL8Hbzx3hh4HOsXJURuxMpcfYjfSEf9i7nwu5ldNyj8tx7VgcJg6opiKbL6bReB9cCxFXQ6u4DiHt3hCMiz4SIW8oazXQdY94VeNT01znMESAxqT1I9pjCBEOIxYAzQGXhHCFEipewH3Ag8J4TIBr4lpBItQFNFYXb0a7wcAAwwC24gF3bXwQSwQx0bHlQaBVkpc0ICS/mFCjSTiqCqpBW8rLdno1TVfx7WT5jlSG3ADx3Xrc5SWZrk8UqzCciqKP0n8BrsNVY3vYZEZvvi1XtwUmTDjymiu2tgaeonewAnyHG+6zF94/fxH2L8MI26rCgo03tSQtqpRRglcrUufVBk/ec76k8+gxCzdQ3za8BaYIfKMEuZA6nxj7FRIbAiCRDAHVJ25SFu43fiSvhhFpuX9+LQoZY8u/NG1eAIPHX2BF5kHEvEqcBT1T9XDBptohArwPVLb3GjrfrZFzGeOoi446Hs1AbCJ+QkKuEIcNIDFOv6JROcvlFwMUwbA8ejLszHgwyCyvpF7anexRQmkFLeApE0ACnl10AcJj4BGjNknpeH7+lUV27aLUCrTG3l69i0LxrGgmY8QdldVdmWXyYYujFghISq2S9ECsUkCpaVTKL6k7+N+5ho37FbUClrwMgxgV6IGmwNYRRnjfXMjPJptN2221NFOWqtaLccpAsxSdZOaWzDRu3Nmw0aAS02QK0hZe/+hEuhT2QOE6M5UdcjJjGTScys72HUK+xVUI/94jDd2MQEnnbf3109AgQIEMAvolEixVD1SNi5EnTX5EZVVRlQ/3TbeOCktcZDkzU4i7c5i7dDtsVD6xzHc4zjudDjw7LDHat20bEqVGjITzmHF33TL13XC1ksI4tlIa+FeB8h3q9+p9iU2Fg0bYt23N7OONbovOJvnvsG8YlvCmw0unhIu4f1QwsbBUgo2gohZgshLqnvgbghyFwG8IU7eYTf/Qx4DcrKk/luW0eO67GHO1o+xOcM4bqFutD+v3D9gHaUk8ICQ7toA3J/aLbQ1MXIPFwh/gjj71AByHyujWusJnCZz7VqAv2dzoo96L2yaALWeUz2bOM6zlqg+nqpr/o9l9NypMY42fA5ol8q5KjYgWU4RrKU1QP2sPaTHAZmfQLAKk5XO2dois6/ADP3xku5DZBY1J6keoAACYHIB3aq1SlxN8jPHPuGhr4Oz3Bamac5hN3wq8yNnOMdqFTN0pnMS1FVwBpu2ayrstVc83wC9VwiqKVmDHFm85wZS89ziVw6VE6i5NxQWm02dwOQxwOOtosZpZXz2kXpMzwLls5WZE/12XmxKt3otPFQXWtLUEds0P33sS0+lGBOLeGGXMQN+jx+rFa+VQGmECDlTch0NdcaqZ5702cgC+AeR6bfsirZBryRG2mfYngn1zv/dxqfb2y1EFiRBAgQHXIBiCdgdPJi8jPVFf0DhrOkja7+PpDL5bI3JXQkixXc1f5Bft/moXoccd1iLjfX9xDqFWaSiopZLdg5tTcLOvaGc4AHgFU6qLwHmKTbnY+ixN6oJukAAQIE8IIc7wg2RoVmKuVn1c9chlMCo9Uh+sU8JpPFMk6TJymvQQf80m1jwaay2ljuoLVWJ7D6gPNCsp0d3tkV1R8zHC/yi4ht4UHlnmZdImoXi8UzunEUJXRDEw2rqqnp9xX+/axgODXx9DSwKbHRA7BEB8BS3gS4ZzC/5HTw66vZL1JTw6D0Av2e3gM5tTqjDNAYEASXAeoE3dgUYnwcIBLx+luGHOsiftCQkLJ3P+UdHoFZ9Wc9E6CGaKLCBAEaD1of2gN4W3eYALWty1TlJQjnl+7nJeRjArb75AHA9qGsDvz6U3rB1NvVZAxeEMvrz+tQ6ClVavaP2+/AmXE0qOnnGXVM+ncjG3nFuMlketVuNno00XkzCC4DxAU5BWAyQuTSovQWDn9yPKySJLc7QPk9ORxgEZUksY0etGMf/B26jt4EhNJYvOiw1nnuAFzosH5oq04ard+Vv+cXqn7nxRnX1ZQO+yTXOF55U+cnMZPrxvjLjiaEDmv66p7YS0Ta9VvZt78dh288HtbCrxc9xF/y74TFKK3PU3TDXWCxqxa5dhWgPlBParEBAsSCMwtm6K9WxrISjvtwj7Vf5MOZmesBRbssPlUXev9d/TE3wqZG0Jl1O59FLFmh2DpWYHA+UIqi8N8Ye6zhGbGaolNm3VhMRZtPnXRYu/0ljGU+ryx3D86cVFq7hk+r9fbTlwJNwYwIfF2mpngzfd1Q9yZ+F7790G5lHxWoinzglzGEb2oAcTYwGJiWg5xu1x2PkoPc2zvGbjKYfmFovWIB8PMc+Lud/ZTyJtqV7+akZBWdy/fs37ZYDm2HxHWqxokguAwQwCc+yqGyYj8cB316rmGDeBWAA08Mp4A03l14MZwC40c/zYKW19Ln0Op6HnB01KU9iucYajCIhpqxNCh/sw2D5bnsoYzDbdVdhJRncJtpcAm06PotAIfaHK+2NYDvJECdoEHXjgRoBPg7fLetIzLTXuT8gPOAUL/daIFAARmc77LSJbNsKybwtmPysh5JBPXRVsatWYatNjKWAP8Ypktn6mml0GQsDUzGshv77DYu5Re1kbG0zncUZizl+Ph9SktXdq63jHWA+kMQXAaocwi9CianeLdxivLE3b+P1cUhfATASs6Iu//GBKHnejk6eruY/YR95kJ/bckzjFpwm8hjVsCvj8IJtsmiiUqqB2icMDTVTtmh22rqPxmvf2JtwKjCLnexD/EDIRaDts+Q8kSE2AjA5fJToHaDrtpEQ/huDPx4kdaof63kWx3LEzclYSlzLOqwrz6eAAbGf+5GhyY6bwbBZYBqQa1EtSF92FYG8iWXyCRe52JgH1fyIn88OYer+sxhB91gLmzIHMCv85W4z1/evxPQ6qeX197FPotlCacfeaG69ZI38oyvdoYOa4JBDqs/iaTAusGrzsjAt5z9C1AwPp1KkuDPtufX61wEK4Fn4fAvg4xlgAABqgdjk/EB51l0WIsea6op5tg384brUUR3xDTQDEm1z6Jo/oLTMpdZc8kS8aXqV47WtiFahOeCyPHEU78YXhMIcBkvAPAqV8Y83gkTWDYUqEB0gg5QNyLlidY+J5U2RPU1H7rKvgDssLaGfo5umUa3z9xY1LiJHIXTYc3x4X1Y5/R5n1IXInThQaP9/kbb6q44LFq6uY9d6H6kX1uZv5j3Z1NrSzd15lM6RwbKq6InEQI0XgTBZYAaoYAMxPIMOBc4rAKNFJkFzeH5fD2jny5hm1CBJnDClK/5ZmGoqXDK3v2UtbezW9XJWBpImRPiTeWG2sxYip56HFuir5SKhYBDbK+6NBmxCIvTHy+ztqYZS6sfk7EsKIOVKfBMLuNlN5YyksLuGTAQCs/OgK7AmUBHoBI2jB4A6yB5hcpwOn8DARoYAiuSAEcBRHdC/CvCMzhiKJz52duw6jyrjVvgEdGv41quFt06AWYBLnTxzYjz1Bc+PlVnLL+I3OcnYyblJWGvTUCo/nrNazXNmFrny4R0kmrUh2u/cSxiJzqzKExlkFkYjjLfX8OTADzjKOCNWwDoZFUraYJLqdnfYru6WQjXUxBT7NpKKXOsBRmpbcUN9VuOUrWUYAs0yUztNYpS7vX6fdSJNUtDQxOdN4PgMkCNIYcBh0AszIHO8P4KuDBrISV05NOnh8N1efSSY3lluKLSnLDsa74Zk8oMpvHX3jlWYJFI1FXG0qAm9ZJxnSdBwaBfeGUsDbwm6+MO3szLe5Pp1L4YegN/kbBKwC9RCxH3QJ/81Wx4XM3cQVB5FKCJqt4FODrwAeepwBJC/Cy9cObCt626y3CEBhRqLhFhGcHU1GK7vba8CGdy+K1hDK8JhPgzlgbLGekaVNY3nBlLP4g197jB9fMe6P/4v3JL3OdsiHAGb8amxbPt2YRkOgMkGLU3bzZoIbwguAzQoDERtWy2HLVEtol+9TmchEC43EiE7Bc74ZWuQP0KDTlXOL1WO622t0On6dvxtrwOEMATDXqSDHB0wimyAzb11Il0tlI4VAUxzoA0ooY8P/QYvzBiQbbgTmzEqgs09hivjFGLtW6BaW0hEZTbhlT3WBsQQkX2Up4atZ1byUk6W+nGDsKTpW52N1FZUdX8jJ3Zy+rC0JBBZTNlga2zESChaNBCeEFwGSBhkGM0LbLLQ3SU6bTmAJXXJnHDtZuBP7JmWX8A3uFcnmAK6RRw/cZH2Wakx8Uxqh95oXqdDVfFsCypLgxttiYZTif91Qnn65gX9112ACniEJJwCvHUdTYzZBwPwoi73sQUHXVKL6L4J8/w3c/U+975UEtYmkvfnqMp6dmBYrpzyZiXYCK8s//chFudBKhF1N4KbIOeJAMcPbCofyIX3lLXoMHvfUQSlXw6xr7Wfzj0PORn8QWKxhIDfUylpm0W0R3RTO8SOXYWcwx0WrjdHg/e84HbfDSROb6st8LRsWpXyOs9zbqEvE4EzdPrfdSUDmuC8SQHj3AYioPpJiLk5k0ZQWddpf+aWlstTuSWSQ1ZBHD5nAy1VQ7wfAueCD8m3b0ZAPlksoLhdqDWS/eRBWI2sDG+c4v2+vi9oQvEQvwNPrkJWgEH9bazFYXc0GEBMvmSvqMgH21z8qpueyWw42/0lafTt0DtFwuAm3LgNZeB/O1vcdugHPVoooyf4M4uQEIh01OYKXdw56GbSWqu/qPeST6Hfyz7Bb8aPh2AdWIQY+XL/G78I/xhwW3MXn0rlwx4CTgmor/nsyfH9MQ82mAFkx4rzlJ2RUzUL+oxc+mchGIGgZ9D8UXd6fq6VsX4f7lImUO78j2U/jeHc5nOXwtugd6weMtYWnTcV3sDDxAgQIAn9d9R8Omy4fBrkGFriQVkgAuFNjx4clqYxEPXLB7THbnQFg/yAylzLMaOG6wgqw4zlgY1DR6h7jOWfuppE3q+GBlLA7ffkdoWud21zlL7W7qPIc7P+Cv994i/5ua84kWXfeOB8YCTmjvF9sUM0DTQLHaTAAHqFmIDjOTNah17Fm9bqoGufQv1qG/EosZWF6lsD/FtSzTE9grEbLV6KmJkTGvrPQaoJxhJ9UQ/AgRIICxF7RhwzhXtynfTrny3v/7zQ2myXn1b7WvpLkuIZ7mbbO6mht4pGvczLUQttXpjyo2oOxXpDsXSmvQd4zNPNDbRDTEPxLzE9+01T1/GC4jbVZmJHwiRa8/HsxM3PrHaIUDk3B7ju8zkSzL5MnEDaQxoovNmkLkMkHDczFxubqkoR7fwGHOZxODhH1FCBwD+Jq/hSwbCjfAM1zB+wNMsOjQamAnr7RW3EXlvMoUnqA3j5UQI/oTTYWNBiJ3qONnV7sNkMTcAP7fpPdJlQjPBmhwD/GSnftE1smEtwLKN+ebu0B0nw/sLL4ClufBKDjuze/NDOZyPl4+E3TAoeRUMgL9ecTu9XvqKzXv6wXeCQz2Pr5NxBwgQoAninznI0Spo3FTeCzlclWwILW4i01OiHu5aK/lz/ffvoW1FPrBWZzd1MHLmRCUY9GEzLRiUm4PMtr01w700w+ejeUxGLIHngctHzbe2+/GXDKfBxgtxkR7j6zXqplooojujeQmA5VXD9HvJCAksncGNm1hNLNqvl7BQN+1FE25PEnJsNeiwBsJx2k4+aa1uWVdTQODbBgzgQ4/+DUX1dTs4ldfbgaX9uQ9Sv2/9SixQY2v22UGq3r2JdQuACbn09ajRUQFnseu+AI0TQXAZoNZQQAZi0SPwk1wGy3MpI3RCv374o8xueStlh5IZ1/JFPpCXsUHkco4cwj7acQd/jPucXup/BlLG3WWtoLaEeuIRjqgWTniAXnIsAB2uL+HTecPhTAln5XDcBXtIH1PAx2ePhElAZ3XI+xsugD9KNm/JrNHkHKABoAlKqgc4uuC8vy1NmaU3RtIEnXPFgW9bqyc+9Mj81CxafVfZAWWiIeXVCe3PKK3eW4M+3OiY9xaYBckHIva5YRFXRNSNJsoOJB70ZgdyYux21UFZebJ6khy6/VWuBA+qazikzAldcI7WNs7Pz8zT4dliWRAq2FN1TSu1/XUQE2CdWNRohZpqhCY4bwbBZYAGjyyW8alQKnU1vXAZ0Zy6rOOcxEz97Cd1d1JCaanxBLPh4hPnswioR9WgAA0DTVSYIMDRBTEZmBtGzRwK/DO0nZtaZ62OawxRbTHcvA0bKoRQos7hfpiR7XK518eCrglYElkfGS0TaVGVpbfQkqEIu9mbJNoDE+xynZougIv2wOPq+XGX7gHgQMuOCfeYDMkmb0hMn40STXTeDILLALUKORrE/BwK2Eoy5QDcJO7jWfkbrl74Ir0OfcWj3ArAU4tu5jdyEX9edjHsgTVj+nOfeIDT5DKrPyF2htBKawqvC7obhbWmiNaXU+3Os40jQJSyK+JFVVAvxyVgcC7orav8ewEcB8kltwGwuUBloM9Jf4dPNw2HM4HH4buxHdlAR7q+t4mdW3rBseW8/94FnHL2Z6zNHqo6bWTiTAESgsCKJEBCoOisoeyNy2VvXhkK/CTFshsRIpc0R1qqMrVVyDFuDBDp4R3pDDDSJhr1WTtgldm2DUo4HTaqiuz5yv/5ZRmbCuuGWAGQ01bEKdSTaDrsfUKl5+4j1/fi8DnN3tHPfhGxL5ZvY3Wxg96qnla/vk9/brGU5Z3fYbS2MoQKq2g9ThXXiH49vj8xVW9/uOYMqJCg/rjI/W6/HbMAIPKh2TMHqSrV2Utj26Npy87vKZ9BiI8G0azXQZKKDkb8vwVofAiCywC1DnUxslXQxHPat/LynQyUq/jxvHfgF7lALoWyG08Nn8AfuUPJkb8C5/MWlfIiPhcnAFjCC/uSO8c/Fh/BjZosrou7by/M5eaQ19O1UfPtPJawc4RD6LSlrM7s81WOrtFQweWS7qPhHij/dRt4Afg/nRWQ7WBSBdzXnK5zNsHrsFPMZ+eiHPiJqsFkoGTtliGNTvG3SSKwIgnQQCG0Y0enOXDmnLdhzjA+zFbU1CLeDvGwNCgU8xgozydcndOvN+UEngZgPteG1L+5BVB+vCif4UZLoOcBxyqck1YbHpz6QW1k2WJlLO12OuCIUR9YG4quUWsnq8wz72DXZCwXsyxiX6zP0o/PZLj3o5+MpRC5cJt7n27nFLd3hIM6YN4Wo/O5+q8JHp01mI6+xRPQd8qXtO2dRunp6h5MfqEsTCLGpN+jnBLj3I0ZQeYyQIC6QdrErcxueSt/kLfxu/xHuHrik3SYmMSft9zNgi3QoudhAH6/5Q+cM+bfLGA8h2gJfbvC/QD+VP38wPuC/lSDrx2orYylwebZ/Rh4/SeM2P4m78+7AO5EBZZ6cpttaDFzc0mZM5Z27GPnbTmwE5iZo1dVG4A0b4AAAZoEVECogkIxFs4c4K4cLmUOg/ikDkfmjmhzjJRtgOrXbJoAyEtlNRG2Ir7HEudc+qJLxrIu4BY0xhT/c4gQ2t6USz2bh+B+78DLM4B9xH8GOAQ9XM5Rg6A+PbmQ0mkuC/wediZyGChDzQAJQoNm/ARWJAGOWsxkEuJpEE8nrs+4FNiwpdfF6yA0nWgSMx11ln77WWhlG2O2fdHdX6qmuJ9ptdJvgEaCJiqpHuDoR02va37sR9wwkTlRPSvjxVjmx27UgCGa6YeZN10+1zcZyZvVDHyNhcY4nmMcz6ltG46OmkAxBasu0vcx1fxdxjou3j6FB2U8ALU5b5ZKKa9viIElBJnLAPWAAjLgECQV3U+zDgd5hhvpwddwv8pyrXp6IBtOHcAdX+SylR68O+Zi7liYyx//lc19PW/nJDZQTKeQPs1E8o/sX5CWV3OhhtrMWvqlw/pVgnODGx3W+L+Fq4WLBcApcJ9Rcn0BuAA4DlpwmH2046qJc3j+ds09eySX62U71jCAzfSieHM2m7dAcrsDqv7ycq1jPiWQhm1UkDRJ1buGBCFES+AZYDCKbDVNSvkvj7aTgTtQ9IE3gFuktAmBQohjgS+AQ1LKIbU99tqE1PFbOlspHKOu+3IhiMnnwblq3zTuZwb3kFR0kNbHHwB6sC+5s8oM5ti0v3A6rMgDxtr9AxTmZ0C/HQAslVtJkxNrLAykbujzIjJWhgpb3cDSymAugJ+OV/NkfWQGhcgFUbdsICFyQzKLNe7PUe9ocGmfF/SzK9W+8cD4HMuvUnqov0ajirpSXBfAXdL7AuxKx/apPAsg3wvbcKb923H2LaeAaD9IPd8LSUUHqdrVCmaAPDXyPQDcP+WAqzBSk0ATnTeD4DJAveH/t3f24VGUV///nGCxYlEUSiQCyotoY6GgKC8qBaugWKgiig0WixWoYrVafClI0gThUUFbUaiAtYqS+gYqKBW1hAcVRFEpSlQMoCBBUBRB8IGf5P79cc/szu7ObnY3u8kmez7XNVd2Z+655+xuknvPnHO+J7yo+7iHPuQTTqI7MOidp6igI68c+AV/WnA7d84sgr5wCAdZQ1eWcxavFZ7Lkbd9zrDGT7CLZimxKVGn0m98eI1lfPPE70GmKx12ojQF7ILQsmQkO+a2ZWVFP/oOeZFHXxpFh6nr2NC5iNEj7gVgpSwHlsO6Igbl295kC4dcUrNmYIqixGIcsMcY01FETgBeFZGOxphvvYNEpB22oKwbsBPrXF4OeDvoTgZWAj+rFcvrADPH1lD+JuRlJ8HT1skL6R+/rgiTH3Q4/ZjLqJpdN8SE5IR9MgrjpnRGX2fPizel1G/6wNJzRdC5OTHJNNJaJhkV12TraKs9L0pqqx8Hcw+P2cJnktkT/2RKg0HTYpWMYgz3pmwuETtfKudM6PoLQtuBVDt+8/fI5tqp/O5NGXK229xYUeLk+zRsSiIMA9uzwhjzMbAaON9n3FDgWWPMF060co5zLgAichZwAvBo2i2uI9zUSy/deT10TIx6RikJPS5TIsfESnmVIZ7tJWfzsSkRWlRtpUXV1hrPEy+uwFB9pwfLA0qu4chGg2w05LI5IOaUSmrrs0oncra/YE/EuIHBLeKY/D31htUXsnDd1MilkhF8wklIE2DfEk5lNbP7XM9vls/h1sZ3cseBW7j4mnkczyaWMIBl+efBB8UMMrtYdPQlbPiqI/85+wIAxi8tZEphCS+VnEV/Xg3M353XWc0ZabE9WrppTc+pqcx4yPWeAH4ArYZsQha0o5dn7p8UvMsHa7vxUzOQ99eeBg9DS96i5Yjt7KQFywafB0B+/3K+vKw5s2UXAKcbWxfzphSzsB7cGVaUBkBb4FPP881Am0TGicjhwN+wzWtPSIuVdUQl7cC5oee2mdoh/+Ru4FRj82O75a5hNWcEHEdTCBQW0ezA5zQ78HmECrkptPXoE6dMY9uUdpjxQH7QsUxFn0yRRbDEKrC2OGkrAF/mHAsQ5tyNCT0vhhLsUOYxv9RGO02BK94SmQ4rUgyt7P/vRNt8tKgKtTUWMZVT5S5nzM2JGRDn9aI5ltHt8Vd79abDujzjpMNGXN9JSZUkskF9U1wLINleXuEtT/zahYRwquMImqv9jzt9NGP2Jz2/CI6HiR6nUvLS10pGySzUuVQyBrMPcHpe9lk+lLmM4Eua07HxBuYvGA4fQ99bXuR/ym/gzwv+yqIF0PerF9lHE3ottak0W2gDD8PNJVM5znzIAQ7lPTrXyev53RBX1CfONNnjJtufteCobaADPPw9H5R3C9wF28VR9OpSxsr3+vH+jafR6Z61NGUP2+7/nh+12AVAn8av0tvYx39e3wdOrN93ZJUEyFJJ9dpERN4hvFFjkBjJZwkxFZhhjNnqpNZWZ9NoYDRA27ax23NkEtWlQlbX1qNloRvFsq950vhxIXVj1aW8+rUfGWHyIne6DFiEMYNoURV9yM6h1okLtPhIQswlESY3kMbElUR/3017V9E8Pb/b9SEltzrC6zEDvS5LwwaucY57HEj55Gr4JY7SfxaSpeumpsUqWcMm8hjH7Yxz/sslq7QWDZHg3fKoYxZQrZKsN5V2KtclrD7bhgpkrkeRr56n5CgZQvpU744UkdkiEl/zvAaMMeYUY0yLKNtBbATyOM8pbYEtPlPFGncmUCgin2DluzqLyNoYNs02xnQ3xnT/8Y9/XINXVzckWp4Qc65RwZ6a6UDS9I3ML00xGv0cvdZ02JCIHcmQx6aYNbDJ4qrQJn3+Krv5HqtGJdbvNcnRwWhkOpFSZ8sLRjsDx+JIk/WdM9u+j2SpyrpGLpWM5HLpDLxLVzOANSN6wtNw3L4PGcQi3qMzvx3yAA/L71n++VlMz72ea1fZDsC9e7wOv4c1U3rCg/Dwprdh8hn8z/gbQua/nXHg3IWW9naf2ZicrW5qa7hfGS7sYx1Eu+93g2dEHDemKOEvQW77ElcQSNZD606R404ftpw3pYzbzXpmDRlj7+TedwiMwv4XOLGYpmYwKzf25eKX5zF//XDWL+xCTo+9nN92Id/RhD00pYzzgEsAuLUTtRJlVRo83xhjRte1EfWEp7C5kaudqONpwK99xs0Hlov9JrcT+5deCmBMUPZERPoC0+q7WqxLswO2B7Kb2tpo+16q660XTI8NpsPaL/ttAyIrE0tSo3QZHu0MpLWaQQHHcmcjp5u987/VGz1stGACAEPJZ365k/KaH5ynQ/46ACo42QoAFQQdut6OUE54f8t4ImvRzo0nHRYcp/m86MerS4cVWeSM87//VMgE59FVABHpzVvoWK2NuWxm/4HGABy5f0zgfPs75dPPMdxGx/lMVs9OpDhKKq9f1ntiuOmwgefVpabOuhq6Ax9WM+5BuGbpPYwFZnBjYN5AfeW8q62M2C7gNmBsljmWWYw6l0pGEiLB3Rr4I3RjDdMYx74Dh/HNa8dwtxnLn6bMYMX43kzsYReXSdKYXsYuhHeMv5UJ3M6bX+3mAcbwHp0pox/XMZ3vacSk/HFMLEidPLYx1Y/53ZBIpzJkjrA6y3jblnh5iJH071sGn07AtD2Eq5jBe+71n3Dk7NcBv4GcI/cCUMV4Plj4A0YPvpf1nEjfTi+y/MizAFjMkEBtjeY6ZDFZKqmeYUwFHhaRCuynMdoYK8coIiVApTHmAWPMRhGZBLzhnPcS8FidWFzHtBwSmt6aDNWl0KaCYJOY6M7ezKpr6JuzLLF5nf7LveMcXxbLC6wJL3pfY3qopF3gBkMqOfKkyFrcRDA9YhybGTua51fTG+4spo2TbHsR6epz7P7Ep2sIKcIJk6Xrpn5VVBQHybdbHpuQQmi670ua7vsy/vPlroAwQSpTsQLzLwC501G3Wx6aXtud1wMiQV4SFTLwvW6S6S+KoqQWY8xeY8wlxpiOxpgTjTHPeY4VGmMe8DyfZYzp4GxXO2m14fMtayhRSy9+qatn8bI9Nthucc9VCHKK3eoL4c5KqtJc3X7SLr0pC0Q100VEOmZ56ktaUonclOD4al5HREpskq9dxttNUWoDjVwqGY8JSMBbVTb5BFgGr559FpeOf4TVdKdUbDnRNaYp7wIrf9yPn7OKQV88xW+P/icAsxdcz11DruPm9tO5ZuM9PMNF9C9dyAEak0clpflX+l5/KtcBcPMqG0U0PWAOIxgtHexzU4TcWf3r8EYsRzCHRzePtOe3Df4ZtqGCz2QeLCmCz6HViE0UMI/7vroOOCJizvFmDVOkEa7WR8tOm+k/2Krknr7QOpb/kC+hTR9o0QcOgw6D17GHpgDsKGxLQclDlD53JfyqmGXmItbLMxxnhnHoYQf47sKjgPjTn5QGTJYKEyj1h12NjwlxLHvnrog5PpfNtCyEPzCd2yEo2HOh/SGyHSbGr6MUTb3VdRDCo1Bun8w8n2N+2P/DTr9LzzWC1zs5ahTsUPYnHZVcQb+AYykbbYpOUAinemocsWw1KGYqZwmTA4+TjTDuKLeR7fDPLny+qEqyXUIdy2jjfHF6pnpZRZ+01I+GI879Z9MnuC+iSOF+4Frn9/tk5/drhn1dM/JvRAbCTIJRcthh5/FTkc02snTdVOdSqXeYTiAXwLOrLoMXgK7AT2yhw0z3n1lT+MPGqdxXeBMFJQ9xMU/DELh5472wqZgKutGEfTRlD3lU8grn2LKKst1sk+b8y1zENMbxtpxh/zl4uIE7vOs6g3kKuATuuBk6wzyGcteQPJqxC1kwlz8OuQOAv3Ir4NaHHB8434oAfQbPtaZ1rDvqHaHXkDJWruoHHffz6Fe/4cCyI+hg1rELoPt+dmzOg0XF0KaIN0fY1aKXOchKKaaX6cNQnmYRg1i29jwat97N6SXLKd04EvfG9vq5XeCRLnzqRF3DVeKULCcLF0mlfmE8rSdf5Vw6EqxDBOB5+0OkmJZmZPUTTtqOMakR6h2KLUtYVtUXSP6mXUgblTD8nJlwpzIhx8fhCaeNyZOeBTG8BjMdhDuVrfK9Dld0h/wp7GJ6CT4pPWnCbT+S0Dk+bWTAreFsF1HD6Y6Xcjg933qGq+hDdQRv0qcPt292+O+V/Y4ECx29hqwjC9dNdS6VeolbwyAvAB8DT9vnL+WfxdMMZXb761nMQLjqe0o3j2Be2ytZwr38qf1kFpvBvNSkG7fsK+bO5faf4IV9HueDn3bjX0uv4NfSlYM04l6u50xWB1uZNIU/5ltHcRZjYN0Z0Gw/sJDRt9zLDfyVnyz+JC77K+jIcW0r+FROCtmfTzlNzEXAWs7iVRrxPT14k0OO/it3vlbEhi4doNX3tMzbTgc2sHNIcwDWL+zCY4OHAjDZTOADKebuuTsC8658fAYrn4AVw/oxpWorzX+6lXtzrudG7oGHBf7ufNkYkdDHoCiKUq8wVUHnartThyliMzluc/wm098dnJhTGc1RcKOSQ4mMpKaiT2ZtkkjEMh2k6/2K9tlFjIvTIa8v9YWmer80IGxln/j04FycuWnKSt2gzqWSFch6GO2jolqbjOUeWlEJHFpnNogU0/zgVXV2faUe40qqK0oGEkiHfTDxqFw4bq39niYtQq8hxZxubLQuWrTIrc0074Ttl2IuNtWrltYU2WzDJN5yi5jjYyixRlOJrUsC7Vretz/8nMI8NnFvLdgSrk4cbV99JaKPJcBwqwRrzNXRz3Nu3rQ2NoW7W8otq0ekb908UkRmA4uMMYvScoUaoM6lUq8xTnrQcB4CoL8MgonXw+XQmxX0bruCR8tHwSEwe+N1/K79TD54qBvNv93KnWuL4OfFTDQH2E5L+k5/kYM04i6zk8vlb7CuNazDpsxi03GW0ZeLeZoLeYY2+VtY/NVAzuJVmrOTa5nBbwbOYQkDmLe9gKr9h9L8wq2soDdvShnXGCtz3p3V/JORfLagIzhyHL8b/Bz/eGIsL8lgOhmraf6PgrG0Lq1ggyOjPmjwUyxacAnvDMnnlFXl7DiqLX07vch+DqXX4DIWM5AXDljd+X+bZXyE9aa/ownsB3raa43JmUUZ/Zx2L7Yetb7cZVUURYkHGQJmgScd1kNEvVyM/3+2nQkczI3d0iQe5ksFxhSRl+NfSxce/YkWTaupeq3f65U8YFsxZxqrK3uwnn89vJ572SZfw0fQulMFAHnYHNt40kjBaiBAfK1MEsHtUemn+hoQ4XvDsTFKaxP7uxHlBkcSac8Q7LcZEqmMNvY6Z+x0rz3WjZSwVOSsTYdNLxndwqt+//dQFId5WDGeeZ76SCkfxR/yp2K/WyyAO4bwD8Zy4S2Ps51cRnb5M/80I5kk7WDy8fxh/FRW4wgnvtAafmhgjXBO/isAdOY9br5uOmvoSfO/beWsnFc58P4RNO2zh2mM44ONXflt+1k8LLs51azh7YVnQGt4c3EfeKEPK3iD01nFxLnTyBmwl5wz9tItdw0A/5g7ltYjKvhsXUfyqKQl29n+cEsO0Jj/3HkBp97yOh9xIqyBkiGF/KLHCwC2XyXQzal12NX4GF507jL/0ZHZ+8zcR6MRB7l58z3QpoiFvMX7T5wGj/fDDEvfZ6I0MLJUUl2pH5g5VqCHOSPZMST5tiMQGbEMXCOOL+vhEUu/c9OZChtvxDIw3olYhquyumRS1BLiEwdy31/h67Ta4hedTFXEMhPcBleQJ0SoqsBGLF3n0o+fOM2/P8hznPLq+mo2ZLJ03dRWJIrSgDiRtXVtgqIkypEiMltE/DukK0ocyGlR9g+xWzKMYE71g+o5hUxwRObqB1Ia3FI6rxTH7DdZF/PVVcsVrZ9UaopGLpUGi03TuInpBiD47ULKL2Ni/gRmMYa+lLGS/+NHf/wR98k+WpkRbJN2/Nv04/yXyuBimPe5vX1XdcxTXGPuYebGG/jfnJ/z08IK+Bc0+vggH6zvxnGdPmQAS8g1XXmc5hw3+EM+lXLuMssAuFmms2ZDD/414iK20Iabl07n7XVnwDEwesS9fEcTHu3bkWXrz+NPnW6nSePveIQRrLqlBxOlKdeYpuSXlHNtkwf5176L+HXhM9xdMpY7uYXSJ2zkttOwtWynJa/Sh07mLADO5iLWb7SiRGYzwGmgEUslUdInqZ7R6T1K/WHHaW0xb4ErOWN7W55b7Xluu6mbmB5xbHhuKfO2FwQczbmMIo9NbCu30TGTD+JR4jTjg46ueSv2dd36weOqPnTmOinG6ORwnbDq2kJYVdaikJRKt4+lG710nVBv64+EbHHqO3HuI0WLQrqqo+UJVuuFt3wxxm1O2jHsZ3x402Fdpd+n3VYwNcCbDhv++bgpu7Z2M7koaI3KXK712eeKDW/27LvP1l4yPbT20vbb7mbXivuBi4sRyeLSG21FoijZgckHKbeL49ucAWfBt+fBXWYnfwVamU2cR5lVDDQwAvvfv6XZzgEOhQ4lrDC9ubTkEQ4tOcB7dGZQp6eooCOV5HGndAae4G+mkj8ygCUM4D+LLwCKOa79MPbTmAo6MOnscUwst33VmvAdO3FSsd6Hu9+/DYD+2J6Vz5tzmMUYBrEIvivm1xsXwG8NNzKDT5jKvmFN2EAHlq0/j+uPt1IGIek57dP9rioNnixdJJX6QYgj90ywdtAsSH7OuViVoHnsrYFlmU24o5jpTkC6eiem+nWnYr4jO35e+8JAa5yfcarnRsM49/PrVls4A8jSdbPO0mJFpImIPCEiFSLyoYj8MsbYUc64DSJyv4i93yciXUXkHRFZIyLrnNSqupPiVBoMIlYpT16qa0ti02R3emtKFEVR6hPhKbAyyqMkG+8c0+2W1PXDtEu8qY0y127u/mQYyrxAFG0Ec7IidTcd5LLZ1uimATk6KNpTl0iOR13X3Tfbbim/1kaDbAyKXjTavjct11HqB3UZuRwH7DHGdBSRE4BXRaSjMeZb7yARaQcUYWWodgL/Bi4H5gIfAT2NMQcch/MpYAz45LYoiocQFT5HnE2kOTAXLgq949iZ9wKPb5bbyfm8EUt4lvkLhsMrwDnwlyG3smjhJSwZPAA4BR4fwkzWkvN5B95jJ78d+AB55iBPc4CZjOXNFX3gjGKeMwMA+NXiJQD8YuALVJLHln1tGNPkAe4WWwn+SxbB/MNYtOYSmAh0KOawb2wq132yD9iHMWOxArH1XwJdyUC0FYlSX7ioiFcJqn0CIfVv4VElv3RYL1Yp1qbDhqfEAjjZmHSd8wZrLukJx4N5Kg4733fnSH06rEtNIn3hYj4zq6ycaEmCYYlo6qXiqL2Hq9/Gkw4rA51zFwf3eYWSbmccALcxLfLcHGgZhzCQl1Skw/phCqxCbA9CVWzjjVh6b1JEUxeW2ZECQXITmKlhtswMflbivFxjipxyGuc8N43X04pEpBg22A/R0fKh0Xbn4Kwi24s8W8nSdbMuncthwBUAxpiPRWQ1cD7WQfQyFHjWGPMFgIjMAUYCc40x33nG/QA4DEjwX4aiWCLTWPpBf+jB0OCuDU0Znvsgj0olp5vlvHnxGzDuJv6y4g5oYdufDDBLmMk1rC/swv+U3ADAarozpbyEv+ePpDEHaNJ7Hyt23sCvFjjX7P49Z7YtozurubOwiJUl3biPP8DjtpbSDANxFmBTApR4bM3wNCZFUZTawpsGu4WOMMdG+B59MIE5Yihh+o4PBA97kveU22YkzAEFzAjP4yTTDr1Ojpu2W1t8mXNsrV4vnezIaRuX8mwy+LUYqQtMVWSU0oy2jmXK6VAS8h3qYO7hkK5rKRlPXarFtgU+9TzfDLRJdJyI5InIGuBLYA+ggXhFUZR0cDANm6KkGBkSmaYXctwTxZTToivNxoMbzawNzuEFzuGFGs+TamXUmNeK0uIkrnPlY0Rs2Cud77Ost1t9QW5KX3pr3DbMtqmvbh9YsAJaVkTLZ3wGpAnXGVm4bqYtciki72AdQz9yU3UdY0wl0FVEDgcew8qCPh7FptHAaIC2bWvWB0vJHkIaLrcHGMVc9zuL6ePZD3BH4AtNQclDlJPPvO0FXJC7mPH5hWyhDdP3XUeTJvtodvQudlx8hHPeIbxqzgXO5Y4SgHfpCczzqLqakrS8PEWJH//v6oqSsdh6y1GcaeyX3tdkhd1fEpmO6cX9kvyqR212201ONHKq7ykxm9fHStNMlmhKsCF9CdN0DQiqv7q9MqPSqgjn5YcQ6/2vljWxD4e/z97PJl0Ry2QJ+Y6RYtx02IAj6nw7NkujjK8mE6pTwVrWz+4SuvP8Iszi4N+MNw3XTM1yxxKyct1Mm3NpghrQvojIZuA44AtnV1ugzGeoOw7PuC0+19srIk8Aw4niXBpjZuNENrt3756FH7dSG5j2rj6aTWmdmwtwibPB5CbewbVomKIoShZgFoD0Flqu2MyOsHvcZ5revFZiHcZcNtPyLdge9T54GE0jd3nr/Fzy2OS73yUe5y+8rQbAK1xQrYnDeASn4igqqVZGjeVUm0qQe5KceEOwFcg2cSQ3TXBeP1wnfqKMgf+eYMd2iRznivlspy2mU2JmpdJ5T2a+aDc3fOd2M6drEJ0Pp9PotXxEF+DwQO2rLAU4F7fM2XVmzejMSRNWao+6rLl0xXdWO4I+pwG/9hk3H1gu9r/XTmAU2N4QItIe+MwR9GkM/Ao86iuKoiiKomQlO3q3xayA4/mQLbThE0c4RyJuT0fyqk9/zOoibcYURU3dTGXEMnC9KGI9l+Y/whPVOJg1vQYEI5Y2US3GuBtTYIc5oYbnZ7c2QUDQp4Ydha1T6ZnXEVSSpcHriPwdZl2Nkr3UpXM5FXhYRCqwGcSjjTF7AESkBKg0xjxgjNkoIpOAN5zzXsKmvwL0Bm4RkSqgEfC/wKTafBGKoiiKotQ90dRHk57PifaYt6LP7Y3a2RYhveOeP9wRjRXt9NLbSfIKV3ONhwnYFzCZ+ldn4dZFJhpprE28vw+xIrq1YkuS7W6izWPyY6dJ+56b4HilYVBnzqUxZi9unmDkscKw57OAWT7jHiPoaCqKoiiKkuUEBHqagZwLvPKE3V/sfMn/h/2xfU7NtBf8+iCfwyvOo+hKrm76Y7jWTYuqrYBVZfVzNN0v+b1ipE/WNGKZjEPkji1kAgAlTI4+v/Oio6W1hswbKDGJHzdCfJun5MRtSfOZ2P6gxhTFnwrtZ1eU99/b+iYc740E97MVJ+pnBgZFhUwnkFXO/h5JmxjkhhgtSpxayGTSVhtt30tVt8Pt+ZVgzg4eC2lTUpr43Er9py4jl4qiKIqiKCnBvS3t6MwE95uiQOQRiFvQxbwVOXcES4ow/e3DRHshhjuQLdga13nJRCxd6mPE0iWTI5Yurc1w2wKHuk/FTVVNaEg7HScCGehjWd25GrHMSuqyFYmiKIqiKEqNkVPsliyNtu+NaNHhN6eUx5du6G3TUFPbEqXJ7q9psvvr2rugUiPi6QXZg+X0YHnseeL83Yw5x9nOdnSoymusuWMeu8ZuSnahkUtFURQlDgzw/9Ix8ZEiMhtYZIxZVO1oRakG85aTGntvcN/phcEv5rLKtn6oadqhG7H0Ekx/bOl7jqveaeZEHtvZ6EHnoH/EK1WRqFjUJNrmpsN6e1uGp7/GSodtduBzAHY1PiZpG/z4bL2jOvtRfK9NNltlWtPW/yuy6+SFtxBxI5Z++KU5G1dptQyY41GBde9vLI7L3Aj8lIa96q2B68eRDitnA1cBXUP3H8w9HCod8R5sGqzrRJqZnl6yVxdFHMsu0rZuZjTqXCqKoih1yTfGeL/yKEriGD/B0iuCqa1eR8Cvku9g7uERTp3fnPE6eLm5O4Jf7uNUhkhVGmWTH+1zHh2VkvmU9BJPa5F4emFGq+VNyBZH9VVuJLSX6JoYKa4n/x1jrvb9u3KdSY1eZheaFqsoiqLEgQG+T8OmKOlDSgipt/SmvYJtU5LL5kDfw4aEDLTRQDciGHVcWDpwOC2qttKiaisiHyPycarNTBudeYvOvFX9wCSRyG411Z9TzXudCANYyAAWJnWuzHa2VUEBoXRgI5vZTNrWzSNFZLaIDKrFFxM3GrlUFEVR4iA703uU+oMMsT/NAic1VophkJOWd5pHoKdncUJRQr+Uwmi40cqhzGMoK5gvVkHUvZ5fOqwffu1GbKuT6oWDvsw5NtDcPhx5CC698hGgemVZcZSRmh8MLRgVJywRTRgpHiVYP+JJh42WcuttlxFhjyMEJOuB+23k2kwPm9ejkmvaHsKhX+3m0K9g/9FHRMy3ij5JOZbxYpJMh3XxTcFNMDfE3OO5EVMWI6o+w0mJLQWedfbNdFuxBB3L7EuHdUnbupnRGT/qXCqKoiiK0jApKobuwS/G4V+SP+Gk2raoVgg6KNU7bNU52l/mHOsMtD+knuS8vcdp1Q9KEvNykuelUEF2CYOTPjdVbom5xtPLMry+1tOSRMku1LlUFEVR4sBN71GUzCdVqYchc+YAp9rH5q3Y4jyJ4Pa33NndOnG+9aNKvSUVfSujRc9Dfs/nOdHxatp/JBKJryndeR2A1ZyR/otlJNm5bqpzqSiKoihKveZ2xjFpAdzGtODOVkXkvLsX2GsFexwectJKr3TSTCF6qqeUA2cCP03MnhX0tvOZ4YxgDiOYw1ysN+o6k1/mHMsECoExEeevzHHSYT32+KXDBprUdw3d76aHykBo/nzweuZKIEY6rJtOaxaDMf7lXO57JHOd5yOCx4YRX8ptPAQiYh5nKVrKbTxCS6YTMD3KsbCIol86bLxEU5PNZNy2IyEKsufHF2V1Px+3pUo8AkVKw0adS0VRFCUOtOZSqT+4zsJFLKLsQF+aHdjjW9M3AjfsOCrmfDnbQh1Ub32nH351b+DWUtoiwDw2MRIYkzOLWVVjaL56azAFVYmJX7uNTMUbsfSrpfXirf30vsZ4oozVRSwD4/yin0eFOpIyG7iw5tHN1ZyByHaE7RiTW7PJ6iXZuW6qc6koiqLEQXYukkr9ICRiWQ3eiKVLVHGafGi0fW+yZgFwGPtCnnfKWc8nHA/AZKyU7eSwOsZo9kTYV41DYWsv43dYExGT8UYsXVIRsQzMH6ezlGnUZsQyZTWcXycmcqXES3aum/WkLFtRFEVRFCV+RB6Me+xY7knJNW9nHLczLqFz8tgUiFKlCin1pMx696ewFUY6qK51ipQHlWEhqGhbV8h6R4U22fPj+DxkVfW/IzI3mKbsMoZ7GcO9yRvnnT/K71PMc2bazftcyQ40cqkoiqLESfYJEyj1m2flW/jvMZgu/sfnMirgWLoRSjf9VaSYu80OpubCjcwIOc8vHTaPTfj1ip8tFwMwy0RPhwTbaqS6NiN++NUm1hbeGs1wqk0BddqKJNO6ZFt5Ozi5bh3LZHAj1uE0O/C5TdteF4weVtIuag/KVKYF+0UsE02HDa/ZFCmGGY7AkMnNcscy+9ZNdS4VRVEURWlwGHMVsrb6cTNlDwA50QNmcTOTsRFf+I1pHfOcStoFelimimiOZqanPlbX6zJEuCeK4FBt4vbQjJfw341WZgT7DhwWdXyrHvE5kX4pyrO4PjHjYs2fzI2LscFUW+N310VpsKhzqSiKosRBdtaOKPUPP+XXXDaznbaBxu6/Mfbrz9xqhHzSSV2I0ngFYzIRN801mlKtktm40WjFJTvXTXUuFUVRFEWp9wSFd4KqrqaLdSxj4Tpawejh8JD90QjUyl3kjmsXVT22OqKlw9pWJRZX/CecmqTDiszjUmPT9uIR4xH5O7S62l63MrYAUKwUYPf8kLmjOCa14XC6dZ7VRU7DcdNWW/eoAGALHas/pxT41j42o9tBY8/B15yfToTWvfEQ3t6kLlRypRy43z42YWmugXRYN9XZ+duJlTatNFzUuVQURVHiIDubQSv1j3Cl1e20DR4zV0c9L5l6x5pQFw5CpkYsA7QalFQNppIZ6GcXTnaum6oWqyiKosSBm96T6k1RUkuj7XsDUcyBLGAgSYYTw+ZKNelQiW0IiCxKj4KuR5nV+7gNFaHj2jvbWuKq2U2lfQmNH2W3dCOriCospFRHdq6bGrlUFEVRFKVek8tmWuTaKKXrDMpLcH7/0HEyxHmwxf4wbyV+LXeO8CiglNjNFBJoR+L230y2vjJaKmyLqq0A7Hzc9rB0U2PdNh0hwjcxMMY/WjuMRwCbKutVo40W+fWrcw0cizM10o16iYTbmP76y6aNv+UzWQDm5oTOMz3cR9Wnw7q0LohMoQ04lmP8+03WtHem6xwG7U2CNcCZoWnYbvuTcEEhOdv+/MPSqc6em2pwYaW+oc6loiiKEgfZmd6j1C8CX9KX2C/oixkSY3T1uG1J0kEyabFu/WHzg6ek2pwEbIhfFMg6qdXXcnoxZlDAucV5jxJxmt1oY3j7Ga+93sdb6IjIXcFjGxMyN3V8FPl+xqoFNXOCj6O9PzLbefCz2Jd2nUGzNPJYwCH1OKZNdn/tPDoqYvw4bgdui33BrCE71011LhVFURRFqddYJdjXA89Nf/9xkxaERhSTIZpojwlq70TMn+r6yi9zbMSSMDGfeCOW1eEV94lHMMgvYuly6eJH4hILqktMghHLmuAn+mNMUVpTT2sUsYw1r08LFIA/Lb2du6+5jfuuuSlC/Edp+GjNpaIoihIHaasdOVJEZouI9h5Q0oIM8aTDpgG3PlDrJ9NPGypoQ0VIzSRYBVbJCabnxks33qAbb/gec2suZb3d4iGRsdFwlWEDUcdaRsqDkdBqx8ZhY/hnlV1ozaWiKIqiRCFt6T3fGGNGp2NiJbsw5gzgjJB9IsWBViFn8TIwgFc5N+ocsWoHa4LfvOJktpp34p8nFfWHbnuTaPWc1dsQv+JseMQyWvpmIRMAKGGy73nu+DZh8/s6Qe/XrD1L1HnTSA+Wc7onuug6bd88fAzx/HeMFrH2OzfgED7ujFnqnw4beA/+6YybGjy274ijojqW07gNucY5ZyY4rWWzFE2LVRRFURRFaVg8U8yZpnfapj+HVzzPakG+M4sJpJS6fRRdZ7UAKCAgPhQv79Iz+sFDEk8zNp0SGx/OKvoEnLa6uuXmvubqHOxY9nlTYTO+/Y2SctS5VBRFUeLATe9RlMxHEtS7kcExjrnqsMl3NEkLiQjrKMkhYtVbYwnrxCKXzUBor9XA3HGKFCV7ba/Kr/d6qSKWCJDikp3rpjqXiqIoiqI0GNyUPHCEUl6C17w1XyZ6Wmwy6bBz44hWhs/bmzJ6vQMr6Jf4BcMQ+QxjWtvHcTgsyabDpoJodjVmf8zzOrIOgApOjjlfTdNhvfPGqhNM1uGLhrfVSLojlma083tyZuj7F+6MBo5NRVESQp1LRVEUJQ6ys3ZEqaf0DKbmmf4E0iijYRbGOJZhEUsXY4oQ+ayuzWiweCPCyTqRfhHLwPxxptwme+1wR9t7vVSoCmvEMh6yc91UtVhFURQlDrJT9U6pH8hpkaqwIsU02r6XRtv31q4tI+w2jEc8/RrTS2/KQp67AjkuydgylHkMZV6NbUs3iaibppNmBz4PRDSTIV5V1XjGydnBtFWZXfvKszLbZhC4WQQy027ZR3aumxq5VBRFURSlwWBmRk9pjKdO8QbuAOCv3BrYV1OF1XA+4fiUzGNM6xDH0uRHOpb1ger6joanw8ZCNhoATHuxz+OsbYw631rn/C7BfTVJh5UTnPk+jnK8PNTWVKfgRiPZlGKZ65wfpeelkn2oc6koiqLESfal9yj1A/NW2PM6FLkxzpft3jFSIlNJeN2m287DS3hrj3h4muFJ21SbpCLFMxXU1PkzpiiuCGw8v9velNW6UJ0Nv6a5xn9cdpB966Y6l4qiKIqi1Gui9aeUHzgPJqb+mqmOZiqJ4RdRzBaiRTP92pjksQmAStoFx0WJ5nrP96bSaidiJRHUuVQURVHiIDsl1ZUGRnERxvqEEc6h277EvHNrxGnJOJCxlGC9X/TDydTWJ/WBPDbRqn3o+2vybUuQXGIL7EQj1c5r1HTYKDdIXAdSjnaOf5XcdaU0MvXV62TKjcBJic+r6bCxyM51U51LRVEUJWJJpcMAACBTSURBVA6yc5FU6gfeL+QjmAPYFiEm7FdWpBgpAqSI8c45sgpMj9BxrpBNrNTQZBzOZOv/6jJK6nV6WlRtBeDLnGNr3Y5wsjFi6RItBdcvwlhJu0CbEZfT85cD8GZ5n9ADH4K5J/pcXkT+bseZq0P33+ScPzUo6GOyUswHsnXdVOdSURRFUZSsY0pOCawMPjfv1J0tXjRimTzRIsLJRCxrm+p6rCYbsYTIiOUq+kTc6HCdSkUJR0TygeuBRljfcaQxxkQbr61IFEVRlDhw+3WlelOUmhPehiQZbmcctzPO99gI5jCCOdzOOOQeG8FrUbUVuRPkzsjxeWwK1Lr5MYxHAm1S3LkCr6XcRlOlPLIdyFDmIVLMBAqZQGHgdTfZ/TXDeIQmu78O2lZuUyG9UavelAXOBZA8u3mRPJCBdjuLl0NsDozJIcLuMnpTRu+I1yo5wejnMB5B5GNnK+YObgi8t35cxQyuYoadZ6Cts5S1sICBgXny2BS4huTAUwzmKQYjpTCchxjOQ4H5uvFGYA6XNlTQhopAi49wpeF+vEgbKgLzAsh66MxbnMhaTmQtPVhOswOfW1ukGFlYfWsS97ishYt43J7rsU1KoQfLA79LeWxCLgG5JHKuPDYhR9vUWfc1NNn9dWAfhLYnCfl8HHVd93cl8Pu3KqrpkXNEmVupu3VTRKaJyCYRMSLyU8/+TiKyUkTWOz9PqPZVGFNujBljjLkKONzZoqKRS0VRFEVRGgQyBMyCUcHnL9mfpr/z01HavBXrQFTielbBcwCe2X6hPf8YO+43JswDi0JxoH3JGAAGsJAlDGYM99p58puwn8a+57ao2sofc/4KPm05PuLEuK4fDTdK1StKOu5Q5tEo8KU1VFn2zKqXyaMSgJ3PHstxQz5kp3dusUWES33iGNYhjU+pVuRjLjUreFI+sTsuKuJ3C9xji+D8QXHNE3X+cujqef1PMZhLWBjFFpvKaMwPIo61oQLomJwNm7+HFw9h0OingLOijqvJNeKy42w4denrvL0x8mZAyLhS4FvnybP2h1ns7O93te85Zqrncdamw2YEzwL3Aq+G7X8AmGGMeUxELgdmAWcDiEgH57mXJcaYqSLSD7gK+BLYF+vC6lwqiqIocZCdtSNK/cAsSC5yOdfjVHp7LVb9MvTG/KMldpwphNtuBHBqDm/xn/d4PqEpeyL2P7PvIpo22cMEJtMn91XG8iBuEMAbBaQptMrf5HF+IR/rIboO8gQKGb+gkMmUMIfrGf3EXFoO28xI/gnAvPzhkA9b6BhwLg9lPyvoTRnn2R3TgA4+L8DxB1874lx7zd1B+/IpJ7+qnMXYN1ywzmU/Vvi+F82/d1/XsbxKH1oZm746jOP5sxNWm2je8D13OPM4u3wFsIhTF7/O273PAODaFTNo5Tiz8xjOjVX3cC/XA7Ca7uzjMOhpKN04MtDvEmBNeU9adtnM/Vwb2LfFdeKc91XWAycG/9ddw0zu5Baud24QNOIgfTu9yLsHugIewZ0X4RuAdUUh+6PxzYfHML5LIXTx1NJ2cR1LN5XV1kTmsYltV7YjSmDdpgMH0maLkNPgu1+EptJ625MAvF1+RshzU2CjsQDvcVpEnWYswudWXOpu3TTGvAYgEvz9F5GWwCnAuc6ufwH3i8iPjTFfGGM2AOdEma8MKBOR+4CuQNRCAnUuFUVRlDhw03sUpeHiRhhxHJVwvGJBAIVMoDPvAVBKAV19zhnKPJpHuV4emwLOoBvtjMfG72hCG+f5MB7x/zYYg8e5yHn0TFzjpRyahymJihSH9Fycx1AALh/4dGDfpYs940uhlVP7Z9OPOydodXKIfAzr/DP/XuAcLuAVj03gjRy7abAx57/RedA3dH8PrGjOKsJEc3xtLI7oX+nXVsQ795uldt7wekqbynxu4LkrsMO0Ypjn3yPz0K92A9Dp6GpNjSCWnZDtoj5pWzdbiMhqz/PZxpjZUUcHaQNsNcYcBDDGHBSRSmf/F9FOEpG+wFBAgB8A78e6iDqXiqIoiqLUa+Ql4PfB9FeXSf3HsZMWjPC4d3MZxZ132i/ZdziRxxHM4VGpZLRpBsDFb81j/uZhwARMW/tV6SIeD8zRmzJWlvdjYlia6QZPGPClcuuYXJw/j520YL5Y5dn7zVh2kMtfuSHk3J0fHstEptE6v4KDNAJg5Y3BdiYr1/Sj19IyOmOL8qbk2WjXpZWP8Aq/gDthx51tmfuO7Q3RnC8DtvJKP/5y3a38RWy0aow3hXUDzO9ZQS/Th5UiwDIuHfYpT3AFctnfYZ1Nf9zZ6EH6m24c5BBekncBJ+1VruDSqkfw4wmuALfm8jHYVtqOpQW9eZ3e/KfqHJofhJ23Hcuk8YMwBgazhkEmn9NZxcRCG4W8K/869hubSvz2g2c4AjTtkBx4smowZ5eugOEfc725l+3kArDvwGG0bL8FgB2OLS3zN7NjQVt2fNiWS09ayPP51iWPSI/9HmBKyOuoOGA/12A0siPyDHBZMdzgOGzH2x+j8+9ltuwCYz87mQJMcOo43yiCMcUsetye8+DSq9gh9uaC2yrks/LQdFg5G7i/Hf0fsjbuolno8ZuwjiPBqPaZb73MaxvPQTaC9QfCuCoo5CPXALfbx+9xGnITnDX1Zc4sgFc9TiqjCdZwdgVOjZw2YC8azUwzXxpjutfWxYwxy4Bl8Y5X51JRFEWJA02LVRoOk26JjFIBzL7HRiwvvnEeF7d9IqIVyR6a8gyXWYcNmFQ+meYnBdNZG+ccAOAcXqFjfoUT4bRzyHPBeVzH0o1aTqaEKdOg9UMVgTHH8wm97wmmms4/ezjrqzqxnk58mXMscyttxOvJUutQBNVubeuJbbSDrtArv4xe15XRjK8ZbTayiMHcyD1U0o5nCqxT+ERBEcN4hDZhdZO9zEms9AjcLGGwTbFdN5hL84MO5ZM5V/Dk/VfA2I+51HgdTZtfa6qCkTyAidIUeJDmB68iKpM+5pmSi/jE8dq2lYcqwU6qGsdHdALgMfNnwKbsTmMcLzAQgDZsoY2B1ZxANyrJG2JrR9eU96SMvvTgzcB8s/g9AK3zK9hiimh24HMuXR+W2top+NAMgzbDhgMVbKEjVzGDf6wfGzj+5uw+OP59VLbTFkxRSApqoE2N6/w9HnGafV0F85h/U2SrHNchFJwPcySwBuhXZFOgN0TOd+C2IxKKLCbiOGZnxNIl49bNLcCxItLIiVo2AvKc/SlD1WIVRVEURclK5JTYx/vxIiOYE1DUTHh+J2oXFPpJH66a6QxiOGxREFkUsa+QCRH7vIqxqcatC03L3GtjH+9GaM3nC1ESjYfzEPISjoZt4u9zhF1hqqwh6q7lyb0n1SkVB64VpiQcrcZSFtgtZN/ZIOfaDWxqcCA9WMlYjDE7sLcafu3s+jXwrjEmakpsMkiMNiUNmu7du5vVq1dXP1BRFKWeIiJvpyp1RqStgZuqH5gw16XMRiW91Nd1M+BArrE/crbtBaDqfCukY94JtsowVQSikoeyH7BRokc3Oo7EUAGn9nBSqY1+Fm23kb2qUY4I0CFwy4Ji7iwvAqcBwF+qbuW+qj8wMGcxj5bbes3786+iuaO7ehnPBByJVvnWMXAjdSafgLMwgcmOCFDYayyHJ/NtGu4OWrKHpgB8TyMmbpxK6/Y2XPWZo+zay/wwcO5KsXKgxgTVWF3HcmbVNexstI/mB5vwi5xXnPlz2c+hDOQFJsrPYd0gOLkYRtoIaq+HygLzNGEf79GZPzCdiac4UeLPga4wabF9/ybmTePJysFcWu6kpt4KLLLv6SRjRZEeZiQbyk8OvB9SDqfnL+fN8j4EdJP+AxwPvQrs9T/heA7SiB1rnR6XTpXYkwX2ffKmwrrO5RpZwvPGimvuohk3cg+NsdHoPk7ktfSlK7m/v/19WMIAABZyCW2o4LP1TkrrVAhkPZ+8G2OOwIssgNOHLOfNVbZusqDHQ5SWXwln2uOTvhrHxHLn/doDp/cI1m+6vwvbytvRPz/4GpY49aHe4/zQ+Y7/f4KrYWSWhjmSXQn8bdABTA/HRtfpdQLzxhHMCrQcaeTsfznoWJp7iGjlEl5LmunUk3WzAigDFhljIu8MASIyHRgCHIONoe80xpwsIicBjwBHAV8DI4wxH6XSOk2LVRRFURSlweJ1HsP3Bx57Gtiv2n46AAdzrbM4gULGt7dfkKe4qp4E1WWLsM5qzpy9XJT7LM35kq9pZtMbnXml5A643PAoV2HyCUS9LvMI6rjpkK4+rOtkQju2lbbj/oLYkbIpjGdNaU/GFxQyRX4Dz1kRGzMYoCMiy2De+c7ooAPo1+KjhMkAlOfMAwNPMxwpvyKgI2kqoZBX4LlB1oGWIsxDQaEg93WdwwvBSd/9t3O982EaTMyZZr/24jh6nrnBUW4dBdwAHfLXRX/hTaFr/hvQA96lJ9Av4GC5jiGX2R+tyyt8p3iXngGn6JdyFo8ZK9I0jCcYxEL6F77KwBIbfa7o35G5jODN6/owaPpTgTm20DGYNjvHqr5+Ji19r/ebIVYYalUP61xKyZX2tX8VdA45uZjRphmzy6/nzXMdUaCXHWVYfCspAdi2oh1uWeaRrbcD8M0xx8D9UU4A62BGihtbjg06nOCfEmvuiTG3kg6+MSaahJLFGHMdcJ3P/g+BHpFnpA5Ni1UURVHiwK0dSfWmKKlHTnO2Erv5jvEck3esWujt0Xo9+J0/ynF+YjCGez0KtD5zeFIf5zE0oLjqxVurCNbZdffLbKpNgRQpDm1zEm1cnk179Ut99UuRjTh/YLVDovIIw4LzSDEixYEIciK8wDlxt9BINu3Ud671TgsTh/DP5ERHhCl8XMLXqdxv7V7lfzye9yye9yf8fZFyaLL7a5od+JxmBz6Pft746ufOLrJz3dTIpaIoihIH2opEqcdcGHx4MPdwG6Uq9k/Xa5f7CRtKTkawfS2niM3/M6aIj96ZRxOnf/ijo6xnWfXC4Zgr7RfwrrlWRfW2MKGgVoWb6O30gZxBGWN5MOQLvJTAY9ZnZCT/5FRs+vGdTq3m6QXLeZdu5GIjUSLFnG6CSrKcA2voyfjKQmZVjYF1x9I3/0WWeb2Q5/oC8IvBL/CfQBeDU4BFGDMICbbURPKsCu38gVcwcbHHsXzFCgT1BlYwGQZPILfK2nTtwAf59cBnMIu9wy9ApJiJNKX5wS7s/PBYeuVbB2jlY/1C+jY+XDmMZfTjYU9IrtecMrbQhv0caqOTgJT35Lj8D9lCG/6d34/zNy5lzcYePN8+qGy6bUE7uLiY48wwjuvyId+VNwFgDA9wbVgIT24CMzWYvikLYeyBzzmx8XoO0Jj7ZB9QzOVDnRYrTvDzpeln0V+ccKuTVJjHpkBk8SCNoN8RdFoaWfD5qFSGposOCD6spB2yahqsg9lSDD9x38z9oZOcCZ2/Cs7dmVY2GfoMJy11fhG78o+xarJO0JjngJ9C1wInDXh2TwKdcNqAuQ7HeTwG2niut+vQiNcQlT8XYaZUPyw7yM51s86cSxFpgv2VPhX7zo8zxjwfZewobKtiwf6JXGdMMIlFRH6Ibea5T2t3FEVRlIZIqtZNEekKTAdaOMP/ZIz5t9889RXzVuhzGRJ2PKwOzJwCUmIdwg6FMVIwgX004WmG8+iDd8E/bg45NrF8Gr3yy1hMGSvox+zy6wPprSvozQQn3fQBRtIr37YMWVluncTLS55mfGFhyHyDnLrAxVxAOfn8Q4Lyo2+u6kOH0eu4n2s5f1cZ4/fZc3d+kufUJZ4H686Dk4vZ+fixADS/bCtrqrryC4/cxn9KL3AiXv04kciw2qSBk+Hfi4BFcMMg8KRAtmELoxfOhQfs8yOfdRwTB8kD1rnv9VYm5Y9jojj9POcB02z7jdtpw0RpSoFpzN1mB9MYx8qcoDrsxqo82udU+nbX+3f7szk/p4xffvYCLfO207JgMztK28JHRXy6HrgAnvx4cEBZdsfatpguTlqp41i5gj+mC/AdfPPMMbx52SyYXwTze/L8kHOAcxh+4DG++dksZ7DHiBOLaWXs5ylSzJH7gz1L15/dhdOX2ujzhZ0e51mJLG8zPaAj6+jh1OBCH1rlb2LbH4roO/1FAMod+dgdz7flyN9+Dp/D3Rut4//T9vZmwQr6IW/0C9RJBu4tbCDw3tm+mD3tsZ9h6zxfCbXnyI6f883Tx2AKnEjnD+G7D49iX9jfkYvby9L7PLtVYrObuoxcjgP2GGM6isgJwKsi0tEY8613kIi0wybfdwN2YhfJy4G5nmGTgZXYPxNFURQl5WScpHo2UuN1U0QOBxYABcaYN0TkEODIWn0VdYBZEMcYx68TeRp4OuCAeh1RN2oZ4Hd3YYx1MN2ayd7eOZ2ejG6apCvG8wAjycO2xXDbZ5oSgBLy2MSUo22+7qSvbGhvIC9wG9MoNksA+Ev5HbAHNqw6mdU9TuWWfcVMKS2BnkGPx+Q7/TvnFbndUNjZ9VjYA917WDvuLA11siflTYZtxUAxTwqcaV7mtYHnwvmDuHjxPObfaAWDXEZLB6AY47Tu8OVkG0nbySlM5OcYc4KtgR3u6JAUDOI9OnOpgdLSKyjlSutwVtnX/gTDOHn3Og7b9TX7jjjKmfQkpByuyH+Ew9gH5mM4FrabE9hEHu2pZFKncRzFLq7lQS49YSHmYx/V2JHYb8L/5/nMhtkU6feGdQYeYT0nBo7tanwMOL8PPejH6caK7IgUh7RK+ebQWRhTxJil97KGbiGXvNCcyDNuEWg0ehazDaBNEcuePQ+z2davuhHnXaOLAjWi9vfztNDzj8VKtlwBDAVafQ9nEujZ6sXkE2h7AvDNu8dEtiv5P9cpVRIjO9fNuqy5HIZzr8sY8zGwGjjfZ9xQ4FljzBfOXdc5zrkAiMhZwAnAo2m3WFEURVHqjlSsmwXAa8aYN5x5vjfG7PSZo0FzBzdwBzcEWkEUMiGirlAe8jw+wW6JcA9juYexDGVecJ5qWjbEqgG8gTvivrZfa5FU03RfMIrqFUx6iOE8xHAW4F+EGV7z51cnGK1+80TWciJro7aGifX+SWUwzXOARyk2EdpQQRv8RYHCabL76+i2OHWl7lYd4ZHBEKEkd8xGg0ikknDImHJotH1vaPuTUrv/0K92c+hXu2Oeq2QMR4rIbBGJVOPKAOoyctkW+NTzfDPQJpFxzh3YvwGDsQ6moiiKkhays3Ykw6jxuomNUfw/EVmMFSZ9G5teG/2bcJZhTFGIY+llLqM84272HbOCfkg5DM1/OrCvNytowj4edc7/Pf/k9zjCL791HSVbbLitvB3mq2CvxQt4BSmHP+bfwSxsumUwSlrGYi5gBf04rOBW2rCF30kwKjaXUcwtAHEjmm/Ya9zRw0bf7iiwNYYrF/ZzVFpBBtpjrRdX8FrbjhRsfojv3b4TjWDDTSdjpkJTvuRHe8fy7Y9sdvWuxsfYNNjK4Hsxv3IgQ1iMOJpEpo/jXD4GpmBQ4DVsoS3rqzrR/LKt7PylTeFtwnf8qXwGAP/Ot6nD13vFkX5obPprV8CTydyTN6ArHMUue82PnddVCbTYj8k7lAHA7/Lt3A8ylnC8NbNPMZh36cpEaUprj0+7ij6Bx250exiP8OQsNxr8NY/uHuGJtsKzqy6Dnv7O5IZVJ9uAYVNgXh8YXgxbiuFqO98rXEAP05QttAHK4agoLT56PogxV4XpgR4S4Rwe9pOv+e75owjH9ADxRC5NQfWOpabARiNt62a1arF1Sdr6XIrIO9gFzo9cYBfQ3m3cKSIzgQpjQgWNReQ+YLMxZqrz/HTgQWNMF+ec1caYh0SkLzAtVs2liIwG3A/jp/hm72cELbA9aTIRtS15Mtk+tS05Mtk2gBONMU1TMZGIvEiwRi+VfGmMOS8N89Y7amndvA8YBPQCtmMr6I4wxlwZxSZdN2tOJtsGmW2f2pYcalvy6LpZQ9IWuTTGnBLruIhsBo4DvnB2tQVfDWV3HJ5xW5zHZwIDRaQQ+CFwlIisNcZ0iWLTbGC2c/3VmSr+o7YlRybbBpltn9qWHJlsG1j7UjVXJi9kDYVaWjc/BZYaY7Y5c5YCUeJ0um6mgky2DTLbPrUtOdS25NF1s+bUZc3lU2DzOxxhgtOAF33GzQcuFJEfi0gOMAp4EsAY08UYc7wx5nhsi9z3ojmWiqIoilLPqfG66fw8XUTcO/PnAf9Nq9WKoihK1lCXNZdTgYdFpAI4CIw2xuwBEJESoNIY84AxZqOITALecM57CXisTixWFEVRlLqjxuumMWaziNwFrBSRKmATwbRXRVEURakRdeZcGmP2ApdEOVYY9nwWMKua+ZYBiYTZZycwtrZR25Ijk22DzLZPbUuOTLYNMt8+JQFStW4aY+YS2s4rXjL590ltS55Mtk9tSw61LXky3b6MJ22CPoqiKIqiKIqiKEr2UJc1l4qiKIqiKIqiKEoDocE6lyLSRESeEJEKEflQRH4ZY+woZ9wGEbnfEUDwHv+hiJSnSkEqFbaJSFcReUdE1ojIOqeZ6qEZZN+vRORtEXnfse9PGWTbsSJSJiLf1PQzFZFOIrJSRNY7PyP6rYpIIxGZ4dhRISJXxXOspqTAtv4islpE9ovItPBzM8C+ic7v1n+d37UBGWTbSBFZ6/x9vici12WKbZ4xJ4rIvnR8tkr9JBX/Xz3Hdd1M3D5dN4Nj6mTdTJF9aVs7U2Cbrpu6bqYfY0yD3IBCbF8vgBOAz4Ef+YxrB3wG/BjrbC8BRoSNuRv4B7anZkbYBhwGNHYe52DVAa/LIPt6AHnO4yOBCuCsDLHtSKAP8MuafqbAUuBy5/HlWIn/8DEjnOvnOPZ8Bhxf3bEUvFc1ta0j0A24HdtDNtV/ozW1bwDQxHn8M2wPwMMyxLYjCJYdNMW2f+iSCbY5xxsBy4DSdHy2utXPLRX/Xz1jdN3UdTOaPRm7bqbIvrStnSmwTddNXTfTvjXYyCUwDHgAwBjzMbAaON9n3FDgWWPMF8aYKmCOcy4AInIW9p/xo5lkmzHmO2PMAWfcD7CLZlUG2bfKGFPpPP4G+IDQvmt1ads3xpjlwLc1MUREWgKnAP9ydv0LOEVEfuxj8xxjTJWxzc+fJSjKEetYndpmjKkwxrwLfF9Te9Jk3xJjzD5n3FpAgOYZYttu46xGQBPs32iNC9xT9DsHcCvwPLC+pjYpDQpdN+vWPl03Q22u1XUzVfala+3UdbPubHPQdTNOGrJz2RZ718NlM9AmkXEicjjwN+DqTLPNsS9PRNYAXwJ7SJ3CVUrs89h5EtATe+coo2yrIW2ArcaYgwDOz0qf68SyJV12psK2dJJq+0YAG4wxn2WKbSIyWETWOWOmGmPeywTbRKQL9u71X1Ngj9Kw0HWzju3z2KnrZu2vm6myL13oullHtum6mRh12eeyRojIO9hfBD9yU3SZqcAMY8xWv/zsaNSSbTh3OLs6i/ljwBDg8Uyxz7lWK+A5YKx7RzZTbFMaBiLyc2AScG5d2+LFGLMQWCgibYFnRWSxMeajurRJRH6AjUaMNMYcFJG6NEepZXTd1HVTUUDXzUTQdTNx6q1zaYw5JdZxEdmMTSf5wtnVFijzGeqOwzNui/P4TGCgiBQCPwSOEpG1xpguGWCb93p7ReQJYDhxLJK1ZZ+TivAK9u7Tk9XZVZu2pYgtwLEi0sj5h9MIyPO5jmvLWx5bPo3jWF3blk5SYp+I9MJ+QfxVCheglL53xjatfxNbq1RTG2tqWyugA7DYWSCbASIiRxhjRtfQNiXD0XUz5Hq6biZoW4rI5HUzVfalC10368Y2XTcTxWRA4Wc6NuAv2NxpsLUf24GmPuPaE1nAfoXPuL6kTpigxrY5x1xhgsbYHPIpGWRfc+C/wNWZ+rmm4jPFFnd7i8TLfMb8lsgi8fbVHUvBe1Uj28Le83QI+tT0vTsNuxj0yEDbTvKMa4FdHPtngm218dnqVj+3VP5/dcbV+H9sKm1D180af66p+ExT8P81rv9vdWVf2PueakGfmr53um7qupn2rc4NSNsLg8OBp7Bqax9h79C4x0qA33uejwE2ONvfgUY+89X4H2oqbXP+ON7DLkTvAzNIneJXKuybCnwHrPFsIzPEtkbOP40vgAPO478kac9JwCpsgfcq4ERn/2Kgu+d6f/fYMtpzftRjKXivamrbmc57sxtbm/QZMCCD7HvL+Qy9v2OdM8S2vwLrHJv+C/whU963sLn+gi6Sujkbum7WtX26btbxupki+9K2dqbANl03dd1M++ZK/iqKoiiKoiiKoihK0jRktVhFURRFURRFURSlllDnUlEURVEURVEURakx6lwqiqIoiqIoiqIoNUadS0VRFEVRFEVRFKXGqHOpKIqiKIqiKIqi1Bh1LhVFURRFURRFUZQao86loqQBEVkmIhtF5NYkzr1ORCpEZHU6bFMURVGUTEPXTUVpGKhzqSjp4zpjzB2JnmSMmQ5clQZ7FEVRFCWT0XVTUeo56lwqSgKIyEARWePZDojIr+I477ci8pKIPCkiH4rIf0QkX0ReEJH1IjJPRKQ2XoOiKIqi1Ba6bipKdqHOpaIkgDFmsTGmqzGmKzADWA0sifP004AbjTEnAd8BpUABkA90Bn6ReosVRVEUpe7QdVNRsgt1LhUlCURkAPAn4FfGmP+L87TXjTGfOY/fBV4zxnxjjPke+C/QMQ2mKoqiKEqdo+umomQHh9S1AYpS3xCRnwEPAAOMMV8kcKp3MT3o81z/HhVFUZQGh66bipI9aORSURJARI4F5gO/Mcasr2t7FEVRFCWT0XVTUbILdS4VJTGuAn4M3O8RJ+hX10YpiqIoSoai66aiZBFijKlrGxSlwSEiy4Bpxpjnkzy/r3N+9xSapSiKoigZia6bitIw0MiloqSHr4CpyTaDBmYCX6bcKkVRFEXJTHTdVJQGgEYuFUVRFEVRFEVRlBqjkUtFURRFURRFURSlxqhzqSiKoiiKoiiKotQYdS4VRVEURVEURVGUGqPOpaIoiqIoiqIoilJj1LlUFEVRFEVRFEVRasz/B7pV3K7LKwT/AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "functions.name_plot_options(\"logger_space_zx\", data, log=True, orders_of_mag=4)\n", + "functions.name_plot_options(\"logger_space_zy\", data, log=True, orders_of_mag=4)\n", + "plotter.make_sub_plot(data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Finding the history file\n", + "A file called Union_history.dat is written in the run folder with all the unique histories. In some cases a bug happens that causes the file to be unreadable, for now the best fix is to rerun the simulation." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "History file written by the McStas component Union_master \n", + "When running with MPI, the results may be from just a single thread, meaning intensities are divided by number of threads\n", + "----- Description of the used volumes -----------------------------------------------------------------------------------\n", + "V0: Surrounding vacuum \n", + "V1: sample_geometry Material: Sample P0: P1: Sample_pow\n", + "V2: sample_container Material: Al P0: 4 P1: Al_pow\n", + "V3: cryostat_wall Material: Al P0: 4 P1: Al_pow\n", + "V4: cryostat_wall_vacuum Material: Vacuum \n", + "----- Histories sorted after intensity ----------------------------------------------------------------------------------\n", + "1859607\t N I=3.965281E+04 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "506763\t N I=1.050335E+04 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "226314\t N I=4.825743E+03 \t V0 -> V3 -> V4 -> V2 -> V4 -> V3 -> V0 \n", + "166837\t N I=3.557502E+03 \t V0 -> V3 -> V4 -> V3 -> V0 \n", + "70469\t N I=1.466246E+03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "31797\t N I=5.940376E+02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "23495\t N I=4.091492E+02 \t V0 -> V3 -> P1 -> V0 \n", + "17274\t N I=3.516535E+02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "13839\t N I=2.758026E+02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "11994\t N I=2.441687E+02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "9842\t N I=2.293453E+02 \t V0 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "10180\t N I=2.028735E+02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "8250\t N I=1.719896E+02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "5405\t N I=1.056087E+02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "4597\t N I=8.898223E+01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "3735\t N I=5.656959E+01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "2454\t N I=4.841669E+01 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "2882\t N I=4.699149E+01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "2334\t N I=4.194865E+01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "2056\t N I=4.159660E+01 \t V0 -> V3 -> V4 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "1531\t N I=3.104778E+01 \t V0 -> V3 -> V4 -> V3 -> P1 -> V0 \n", + "1529\t N I=2.937892E+01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1605\t N I=2.843064E+01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "1094\t N I=2.371972E+01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "1056\t N I=2.251227E+01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "927\t N I=1.618954E+01 \t V0 -> V3 -> P1 -> P1 -> V0 \n", + "750\t N I=1.509174E+01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "623\t N I=1.063780E+01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "559\t N I=1.026990E+01 \t V0 -> V3 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "556\t N I=9.481044E+00 \t V0 -> V3 -> V4 -> V2 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "589\t N I=9.135234E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "298\t N I=6.872061E+00 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "388\t N I=6.792255E+00 \t V0 -> V3 -> V4 -> V2 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "434\t N I=6.645396E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "435\t N I=6.588350E+00 \t V0 -> V3 -> V4 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "273\t N I=5.790274E+00 \t V0 -> V3 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "366\t N I=5.672326E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "285\t N I=5.647409E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "352\t N I=5.331544E+00 \t V0 -> V3 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "265\t N I=4.655556E+00 \t V0 -> V3 -> V4 -> V2 -> P1 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "267\t N I=4.518687E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "186\t N I=3.656094E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "281\t N I=3.513630E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "182\t N I=3.302548E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "160\t N I=3.112205E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "163\t N I=3.046436E+00 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "144\t N I=3.000987E+00 \t V0 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "163\t N I=2.972572E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "211\t N I=2.805841E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "183\t N I=2.789270E+00 \t V0 -> V3 -> V4 -> V2 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "113\t N I=2.753453E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "175\t N I=2.589555E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P0 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "134\t N I=2.491092E+00 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "137\t N I=2.457782E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "103\t N I=2.004625E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "115\t N I=1.942657E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "97\t N I=1.776228E+00 \t V0 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "84\t N I=1.619118E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "85\t N I=1.601890E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "25\t N I=1.378346E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "98\t N I=1.373456E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "95\t N I=1.349907E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "69\t N I=1.326884E+00 \t V0 -> V3 -> V4 -> V2 -> P0 -> V4 -> V3 -> V0 \n", + "78\t N I=1.312686E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "40\t N I=1.202410E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "72\t N I=1.113576E+00 \t V0 -> V3 -> V4 -> V2 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "38\t N I=1.054350E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "57\t N I=9.793343E-01 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "64\t N I=9.571626E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "57\t N I=9.514756E-01 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "63\t N I=9.241653E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "48\t N I=9.188580E-01 \t V0 -> V3 -> V4 -> V2 -> P1 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "44\t N I=9.071488E-01 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "37\t N I=8.697112E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "53\t N I=8.477626E-01 \t V0 -> V3 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "41\t N I=8.158051E-01 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "60\t N I=8.021806E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "52\t N I=7.809131E-01 \t V0 -> V3 -> V4 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "40\t N I=7.692616E-01 \t V0 -> V3 -> V4 -> V2 -> P0 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "53\t N I=7.261881E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "42\t N I=7.178343E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "36\t N I=6.980954E-01 \t V0 -> V3 -> P1 -> P1 -> V4 -> V2 -> V4 -> V3 -> V0 \n", + "29\t N I=6.689273E-01 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "34\t N I=6.539172E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P0 -> V0 \n", + "34\t N I=6.538197E-01 \t V0 -> V3 -> P0 -> V0 \n", + "42\t N I=6.024936E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "35\t N I=5.834859E-01 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "36\t N I=5.775684E-01 \t V0 -> V3 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "48\t N I=5.733596E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "30\t N I=5.577867E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "39\t N I=5.534476E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "60\t N I=5.273567E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "29\t N I=4.431660E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "22\t N I=4.231337E-01 \t V0 -> V3 -> P0 -> V4 -> V3 -> V0 \n", + "25\t N I=4.180681E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V4 -> V3 -> V0 \n", + "20\t N I=4.001083E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "15\t N I=3.996063E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "21\t N I=3.907685E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "9\t N I=3.873613E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "19\t N I=3.872826E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "35\t N I=3.741849E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "19\t N I=3.653692E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P0 -> V4 -> V3 -> V0 \n", + "10\t N I=3.577379E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> P1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "27\t N I=3.383308E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "2\t N I=3.171137E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P0 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "19\t N I=2.898560E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P0 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "8\t N I=2.891570E-01 \t V0 -> V3 -> V4 -> V2 -> P0 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "17\t N I=2.822871E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P0 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "20\t N I=2.790372E-01 \t V0 -> V3 -> V4 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "8\t N I=2.645994E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "22\t N I=2.587804E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "17\t N I=2.515664E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "13\t N I=2.500189E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P0 -> V4 -> V3 -> V0 \n", + "2\t N I=2.410002E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "16\t N I=2.356043E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "12\t N I=2.307864E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P0 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "19\t N I=2.306564E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "5\t N I=2.259507E-01 \t V0 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "19\t N I=2.122730E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P0 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "11\t N I=2.028933E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "13\t N I=2.024403E-01 \t V0 -> V3 -> P1 -> P1 -> P1 -> V0 \n", + "13\t N I=2.008074E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P0 -> V4 -> V3 -> V0 \n", + "19\t N I=1.999939E-01 \t V0 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "15\t N I=1.997969E-01 \t V0 -> V3 -> V4 -> V2 -> P1 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "9\t N I=1.826944E-01 \t V0 -> V3 -> P1 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "2\t N I=1.791654E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> P1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "19\t N I=1.772469E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "17\t N I=1.688696E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "20\t N I=1.670351E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "15\t N I=1.626160E-01 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "11\t N I=1.559772E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "13\t N I=1.500194E-01 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "10\t N I=1.424290E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "9\t N I=1.375370E-01 \t V0 -> V3 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "11\t N I=1.361135E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> P1 -> V0 \n", + "8\t N I=1.350152E-01 \t V0 -> V3 -> V4 -> V2 -> P1 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "7\t N I=1.336463E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "8\t N I=1.285106E-01 \t V0 -> V3 -> V4 -> V2 -> P1 -> P1 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "3\t N I=1.221980E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> P1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "10\t N I=1.210789E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "5\t N I=1.201056E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "9\t N I=1.200436E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "3\t N I=1.182892E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "7\t N I=1.175995E-01 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "9\t N I=1.142555E-01 \t V0 -> V3 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "6\t N I=1.083372E-01 \t V0 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "5\t N I=1.079352E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> P1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "4\t N I=1.064247E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P0 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "7\t N I=1.036886E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "10\t N I=1.017997E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "4\t N I=1.017446E-01 \t V0 -> V3 -> P1 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "7\t N I=1.014091E-01 \t V0 -> V3 -> P1 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "10\t N I=9.965093E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "6\t N I=9.662395E-02 \t V0 -> V3 -> V4 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "8\t N I=9.191802E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "7\t N I=9.091205E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P0 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "4\t N I=8.802686E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "5\t N I=8.753136E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "4\t N I=8.713988E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P1 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "7\t N I=8.673562E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "6\t N I=8.473219E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "5\t N I=8.459402E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P0 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "7\t N I=8.453155E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "5\t N I=8.202485E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V4 -> V3 -> V0 \n", + "7\t N I=8.179178E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> P1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "5\t N I=8.008056E-02 \t V0 -> V3 -> V4 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V4 -> V3 -> V0 \n", + "6\t N I=7.787455E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> P1 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "4\t N I=7.691362E-02 \t V0 -> V3 -> V4 -> V2 -> V4 -> V3 -> P0 -> V0 \n", + "6\t N I=7.687598E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "3\t N I=7.361250E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "6\t N I=7.285952E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "8\t N I=7.219209E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=7.037750E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P0 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "6\t N I=7.035304E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "20\t N I=6.930433E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "5\t N I=6.736602E-02 \t V0 -> V3 -> P1 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=6.721552E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> P1 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "9\t N I=6.695282E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P0 -> V0 \n", + "6\t N I=6.648583E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "5\t N I=6.543821E-02 \t V0 -> V3 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "5\t N I=6.229937E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "4\t N I=5.973815E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> P1 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "4\t N I=5.969631E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=5.951830E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> P1 -> V1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "5\t N I=5.841225E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "6\t N I=5.788928E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P0 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "3\t N I=5.768873E-02 \t V0 -> V3 -> P0 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "3\t N I=5.767973E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P0 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "3\t N I=5.764591E-02 \t V0 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "2\t N I=5.744261E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "6\t N I=5.505677E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "4\t N I=5.463461E-02 \t V0 -> V3 -> V4 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "3\t N I=5.433915E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "6\t N I=5.383604E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P0 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "3\t N I=5.197286E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> P1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "4\t N I=4.987311E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "3\t N I=4.856827E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "3\t N I=4.831851E-02 \t V0 -> V3 -> P1 -> P0 -> V0 \n", + "2\t N I=4.609026E-02 \t V0 -> V3 -> V4 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "2\t N I=4.605094E-02 \t V0 -> V3 -> P1 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "4\t N I=4.514625E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "6\t N I=4.274886E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "4\t N I=4.227548E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V1 -> P1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "2\t N I=4.209610E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P0 -> V1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "2\t N I=4.207892E-02 \t V0 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V2 -> V4 -> V3 -> V0 \n", + "5\t N I=4.207512E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "2\t N I=4.205341E-02 \t V0 -> V3 -> P1 -> P0 -> V4 -> V3 -> V0 \n", + "1\t N I=4.200370E-02 \t V0 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "3\t N I=4.167133E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "3\t N I=4.160331E-02 \t V0 -> V3 -> V4 -> V2 -> V4 -> V3 -> P1 -> P1 -> P1 -> V0 \n", + "3\t N I=4.157004E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> P1 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "2\t N I=4.111478E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> P1 -> V1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "7\t N I=4.002838E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "2\t N I=3.845955E-02 \t V0 -> V3 -> V4 -> V3 -> P0 -> V0 \n", + "2\t N I=3.844839E-02 \t V0 -> V3 -> V4 -> V3 -> P0 -> V4 -> V3 -> V0 \n", + "3\t N I=3.799710E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> P1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=3.771217E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "2\t N I=3.767373E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P0 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "2\t N I=3.632067E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> P0 -> V4 -> V3 -> V0 \n", + "2\t N I=3.623438E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "2\t N I=3.619957E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "2\t N I=3.553759E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> P1 -> V1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "3\t N I=3.532011E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "2\t N I=3.448112E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "3\t N I=3.315148E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P0 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "3\t N I=3.309992E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "2\t N I=3.276986E-02 \t V0 -> V3 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "2\t N I=3.269722E-02 \t V0 -> V3 -> P1 -> P1 -> P1 -> P1 -> V0 \n", + "2\t N I=3.240473E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P0 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "9\t N I=3.154916E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "3\t N I=3.119187E-02 \t V0 -> V3 -> P1 -> P1 -> V4 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "4\t N I=3.025105E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P0 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=3.002264E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> P1 -> P1 -> P0 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=2.825316E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=2.823280E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> P1 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "2\t N I=2.815913E-02 \t V0 -> V3 -> P1 -> V4 -> V3 -> P1 -> P1 -> P1 -> V0 \n", + "1\t N I=2.789046E-02 \t V0 -> V3 -> P1 -> P1 -> P1 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=2.788551E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "4\t N I=2.644613E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "2\t N I=2.618939E-02 \t V0 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "4\t N I=2.600572E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=2.559786E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> P1 -> V1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=2.545367E-02 \t V0 -> V3 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=2.503821E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=2.436294E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "3\t N I=2.362027E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "2\t N I=2.353812E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "4\t N I=2.332097E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "2\t N I=2.272885E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P0 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "2\t N I=2.260732E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P0 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=2.229209E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> P0 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "3\t N I=2.226424E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V1 -> P1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=2.177959E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> P0 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "2\t N I=2.173728E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V1 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "4\t N I=2.137424E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P1 -> P1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=2.134416E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V4 -> V3 -> P0 -> V0 \n", + "2\t N I=2.124210E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P0 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "2\t N I=2.114286E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> P1 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "1\t N I=2.106589E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P0 -> V0 \n", + "1\t N I=2.105620E-02 \t V0 -> V3 -> V4 -> V2 -> P0 -> V1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=2.105417E-02 \t V0 -> V3 -> P0 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=2.102680E-02 \t V0 -> V3 -> V4 -> V2 -> P0 -> P1 -> V4 -> V3 -> V0 \n", + "3\t N I=2.101774E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=2.101559E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P0 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=2.099840E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> P0 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=2.099810E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> P1 -> V1 -> P1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=2.099241E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> P0 -> V4 -> V3 -> V0 \n", + "3\t N I=2.073353E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> P1 -> V0 \n", + "4\t N I=2.016148E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=2.008879E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "3\t N I=1.989747E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> P1 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=1.986359E-02 \t V0 -> V3 -> P1 -> P1 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "2\t N I=1.942461E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=1.923702E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P0 -> V4 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=1.922269E-02 \t V0 -> V3 -> V4 -> V2 -> V4 -> V3 -> P0 -> V4 -> V3 -> V0 \n", + "5\t N I=1.834890E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=1.814081E-02 \t V0 -> V3 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=1.813887E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> V2 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=1.813885E-02 \t V0 -> V3 -> P1 -> P1 -> P1 -> V4 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=1.812308E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=1.812027E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "1\t N I=1.810402E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=1.808167E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=1.807547E-02 \t V0 -> V3 -> P1 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=1.807263E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "2\t N I=1.739841E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "5\t N I=1.714379E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P0 -> V4 -> V3 -> V0 \n", + "1\t N I=1.621517E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> V2 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=1.618113E-02 \t V0 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=1.617426E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> V2 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=1.616066E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> V2 -> P1 -> V1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=1.611050E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=1.609214E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> V2 -> P1 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=1.527837E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=1.388429E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P0 -> V4 -> V3 -> V0 \n", + "1\t N I=1.377018E-02 \t V0 -> V3 -> P1 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=1.367051E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> P0 -> V4 -> V3 -> V0 \n", + "1\t N I=1.365858E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P0 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=1.365367E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P0 -> V1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=1.365050E-02 \t V0 -> V3 -> V4 -> V2 -> P0 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=1.364029E-02 \t V0 -> V3 -> V4 -> V2 -> V4 -> V3 -> P1 -> P0 -> V4 -> V3 -> V0 \n", + "1\t N I=1.363490E-02 \t V0 -> V3 -> P0 -> P1 -> V0 \n", + "1\t N I=1.302289E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> P1 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=1.299298E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=1.289116E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> V2 -> P1 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=1.289094E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=1.286992E-02 \t V0 -> V3 -> P1 -> P1 -> P1 -> V4 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=1.283121E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> P1 -> V1 -> V2 -> P1 -> V1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=1.271447E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=1.242743E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=1.202185E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=1.193356E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=1.192701E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> P1 -> V1 -> P1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "2\t N I=1.180068E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=1.179451E-02 \t V0 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=1.178828E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=1.177854E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> V2 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=1.177829E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=1.176821E-02 \t V0 -> V3 -> V4 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=1.176692E-02 \t V0 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=1.176084E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=1.175595E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> P1 -> V1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=1.175161E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> V2 -> P1 -> V1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=1.174237E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=1.174026E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=1.077195E-02 \t V0 -> V3 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=1.050128E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P0 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=1.049533E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> V2 -> P1 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=1.047453E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "2\t N I=9.194804E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> P1 -> V1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=8.828024E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V4 -> V3 -> P0 -> V4 -> V3 -> V0 \n", + "1\t N I=8.616066E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=8.382155E-03 \t V0 -> V3 -> V4 -> V2 -> P1 -> P1 -> V1 -> V2 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=8.360062E-03 \t V0 -> V3 -> V4 -> V2 -> P1 -> V4 -> V3 -> P1 -> P1 -> P1 -> V0 \n", + "1\t N I=7.974062E-03 \t V0 -> V3 -> V4 -> V2 -> V4 -> V3 -> P0 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=7.660077E-03 \t V0 -> V3 -> V4 -> V3 -> P1 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=7.647885E-03 \t V0 -> V3 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "5\t N I=7.331964E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=7.128787E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=6.530489E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V1 -> V2 -> P1 -> P1 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "2\t N I=6.369831E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "1\t N I=6.350997E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V4 -> V3 -> P1 -> P1 -> P1 -> V0 \n", + "1\t N I=5.952547E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "1\t N I=5.855741E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> P1 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=5.839953E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> P1 -> P1 -> V0 \n", + "1\t N I=5.634308E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V2 -> V4 -> V3 -> V0 \n", + "6\t N I=5.502077E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> P1 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=5.452432E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P0 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=5.319210E-03 \t V0 -> V3 -> V4 -> V2 -> P1 -> P1 -> V1 -> P1 -> P1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "2\t N I=4.920947E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> P1 -> V1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=4.135698E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=4.100827E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P0 -> P1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=3.945110E-03 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P0 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "3\t N I=3.705516E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> P1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=3.669367E-03 \t V0 -> V3 -> V4 -> V2 -> P1 -> P1 -> V1 -> P1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=3.648249E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=3.477421E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "2\t N I=2.474695E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P0 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=2.304728E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=2.255269E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> P1 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=2.011449E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P0 -> P1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=1.869764E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V1 -> P1 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=1.847745E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P0 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=1.528149E-03 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=1.056831E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P0 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=9.166647E-04 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "4\t N I=7.810965E-04 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=5.888911E-04 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=4.802447E-04 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=4.204479E-04 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P1 -> P1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=3.772470E-04 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=3.676614E-04 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=2.357966E-04 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> P1 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "1\t N I=9.527289E-05 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=9.238563E-05 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "1\t N I=9.057649E-05 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> P1 -> V1 -> P0 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=8.667397E-05 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> P1 -> V1 -> V2 -> P1 -> V1 -> P1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=4.666257E-05 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P1 -> P0 -> P1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=4.519254E-05 \t V0 -> V3 -> V4 -> V2 -> P0 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=3.945415E-05 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P1 -> P1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=3.325231E-05 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> P0 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=3.066219E-05 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=2.534252E-05 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P0 -> V0 \n", + "1\t N I=1.606027E-05 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=9.518509E-06 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P1 -> P1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=5.475630E-06 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P1 -> P1 -> P1 -> P1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=5.457173E-06 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P1 -> P1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=4.436696E-06 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P1 -> P1 -> V2 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=2.717751E-06 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P1 -> V2 -> P1 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=2.038084E-30 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> P1 -> P1 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=1.945785E-50 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> P1 -> P1 -> P1 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "\n" + ] + } + ], + "source": [ + "with open(\"run_folder/Union_history.dat\") as file:\n", + " instrument_string = file.read()\n", + " print(instrument_string)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpreting the histories\n", + "The history with highest intensity in my run is: V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> V0, which means:\n", + "- Neutron entered Volume0 (Surrounding vacuum)\n", + "- Neutron entered Volume3 (Cryostat wall)\n", + "- Neutron entered Volume4 (Cryostat vacuum)\n", + "- Neutron entered Volume2 (Container)\n", + "- Neutron entered Volume1 (Sample)\n", + "- Neutron entered Volume2 (Container)\n", + "- Neutron entered Volume4 (Cryostat vacuum)\n", + "- Neutron entered Volume3 (Cryostat wall)\n", + "- Neutron entered Volume0 (Surrounding vacuum)\n", + "\n", + "So the most likely occurrence is that the ray is propagated through all geometries. The next most likely history is:\n", + "\n", + "V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0\n", + "\n", + "- Neutron entered Volume0 (Surrounding vacuum)\n", + "- Neutron entered Volume3 (Cryostat wall)\n", + "- Neutron entered Volume4 (Cryostat vacuum)\n", + "- Neutron entered Volume2 (Container)\n", + "- Neutron entered Volume1 (Sample)\n", + "- Neutron scattered on Process1 (Since we are in Volume1, that would be Sample_pow)\n", + "- Neutron entered Volume2 (Container)\n", + "- Neutron entered Volume4 (Cryostat vacuum)\n", + "- Neutron entered Volume3 (Cryostat wall)\n", + "- Neutron entered Volume0 (Surrounding vacuum)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Use conditional component to filter tagging\n", + "Just like a logger can be modified by a conditional component to only record events that satisfy that condition, the tagging system of the *Union_master* component can also be modified by a conditional component. In that case, the tagging system will only record events that satisfy the condition imposed by the conditional component.\n", + "\n", + "This can be useful to explain an unexpected feature, as the conditional components can filter for energy, time, direction or any combination of these. Here we demonstrate this feature by adding a *Union_conditional_PSD* outside of the direct beam and enabling the *master_tagging* control parameter, which causes the condition to be applied to the tagging system." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# Set up an arm pointing to the relevant spot\n", + "spot_dir = instrument.add_component(\"spot_dir\", \"Arm\", RELATIVE=sample_geometry, before=\"master\")\n", + "spot_dir.set_ROTATED([0, 60, 0], RELATIVE=sample_geometry)\n", + "\n", + "# Set up a conditional component targeting all our loggers\n", + "PSD_conditional = instrument.add_component(\"space_all_PSD_conditional\", \"Union_conditional_PSD\", before=\"master\")\n", + "PSD_conditional.xwidth = 0.2\n", + "PSD_conditional.yheight = 0.2\n", + "PSD_conditional.master_tagging = 1\n", + "PSD_conditional.set_AT([0, 0, 0.5], RELATIVE=spot_dir) " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "tags": [ + "scroll-output" + ] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/tutorial/data_folder/union_tagging_4\"\n", + "INFO: Regenerating c-file: python_tutorial.c\n", + "CFLAGS= -I@MCCODE_LIB@/share/\n", + "INFO: Recompiling: ./python_tutorial.out\n", + "mccode-r.c:2837:3: warning: expression result unused [-Wunused-value]\n", + " *t0;\n", + " ^~~\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1604:105: warning: incompatible pointer types passing 'int (const struct saved_history_struct *, const struct saved_history_struct *)' to parameter of type 'int (* _Nonnull)(const void *, const void *)' [-Wincompatible-pointer-types]\n", + " qsort(total_history.saved_histories,total_history.used_elements,sizeof (struct saved_history_struct), Sample_compare_history_intensities);\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/stdlib.h:161:22: note: passing argument to parameter '__compar' here\n", + " int (* _Nonnull __compar)(const void *, const void *));\n", + " ^\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1613:20: warning: incompatible pointer types passing 'struct saved_history_struct *' to parameter of type 'struct dynamic_history_list *' [-Wincompatible-pointer-types]\n", + " printf_history(&total_history.saved_histories[history_iterate]);\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1434:50: note: passing argument to parameter 'history' here\n", + "void printf_history(struct dynamic_history_list *history) {\n", + " ^\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:2030:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:839:1: warning: non-void function does not return a value in all control paths [-Wreturn-type]\n", + "};\n", + "^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:883:1: warning: non-void function does not return a value [-Wreturn-type]\n", + "};\n", + "^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3274:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3274:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3276:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3276:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3278:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3278:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3280:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3280:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: warning: format string is not a string literal (potentially insecure) [-Wformat-security]\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^~~~~~~~\n", + "./python_tutorial.c:13237:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_zx_filename\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^~~~~~~~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: note: treat the string as an argument to avoid this\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^\n", + " \"%s\", \n", + "./python_tutorial.c:13237:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_zx_filename\n", + " ^\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: warning: format string is not a string literal (potentially insecure) [-Wformat-security]\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^~~~~~~~\n", + "./python_tutorial.c:13480:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_zy_filename\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^~~~~~~~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: note: treat the string as an argument to avoid this\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^\n", + " \"%s\", \n", + "./python_tutorial.c:13480:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_zy_filename\n", + " ^\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:788:15: warning: expression result unused [-Wunused-value]\n", + " if (volume_index_main,Volumes[volume_index_main]->geometry.is_mask_volume == 0 ||\n", + " ^~~~~~~~~~~~~~~~~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:788:90: warning: expression result unused [-Wunused-value]\n", + " if (volume_index_main,Volumes[volume_index_main]->geometry.is_mask_volume == 0 ||\n", + " ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:789:92: warning: expression result unused [-Wunused-value]\n", + " volume_index_main,Volumes[volume_index_main]->geometry.is_masked_volume == 0 ||\n", + " ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "14 warnings generated.\n", + "INFO: ===\n", + "INFO: Placing instr file copy python_tutorial.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/tutorial/data_folder/union_tagging_4\n", + "\n", + " Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Al.laz' (Table_Read_Offset)\n", + "Table from file 'Al.laz' (block 1) is 26 x 18 (x=1:8), constant step. interpolation: linear\n", + " '# TITLE *Aluminum-Al-[FM3-M] Miller, H.P.jr.;DuMond, J.W.M.[1942] at 298 K; ...'\n", + "PowderN: Al_pow: Reading 26 rows from Al.laz\n", + "PowderN: Al_pow: Read 26 reflections from file 'Al.laz'\n", + "PowderN: Al_pow: Vc=66.4 [Angs] sigma_abs=0.924 [barn] sigma_inc=0.0328 [barn] reflections=Al.laz\n", + "Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Na2Ca3Al2F14.laz' (Table_Read_Offset)\n", + "Table from file 'Na2Ca3Al2F14.laz' (block 1) is 841 x 18 (x=1:20), constant step. interpolation: linear\n", + " '# TITLE *-Na2Ca3Al2F14-[I213] Courbion, G.;Ferey, G.[1988] Standard NAC cal ...'\n", + "PowderN: Sample_pow: Reading 841 rows from Na2Ca3Al2F14.laz\n", + "PowderN: Sample_pow: Read 841 reflections from file 'Na2Ca3Al2F14.laz'\n", + "PowderN: Sample_pow: Vc=1079.1 [Angs] sigma_abs=11.7856 [barn] sigma_inc=13.6704 [barn] reflections=Na2Ca3Al2F14.laz\n", + "starded conditional initialize \n", + "---------------------------------------------------------------------\n", + "global_process_list.num_elements: 4\n", + "name of process [0]: Al_inc \n", + "component index [0]: 1 \n", + "name of process [1]: Al_pow \n", + "component index [1]: 2 \n", + "name of process [2]: Sample_inc \n", + "component index [2]: 4 \n", + "name of process [3]: Sample_pow \n", + "component index [3]: 5 \n", + "---------------------------------------------------------------------\n", + "global_material_list.num_elements: 2\n", + "name of material [0]: Al \n", + "component index [0]: 3 \n", + "my_absoprtion [0]: 0.347892 \n", + "number of processes [0]: 2 \n", + "name of material [1]: Sample \n", + "component index [1]: 6 \n", + "my_absoprtion [1]: 0.273042 \n", + "number of processes [1]: 2 \n", + "---------------------------------------------------------------------\n", + "global_geometry_list.num_elements: 2\n", + "\n", + "name of geometry [0]: sample_geometry \n", + "component index [0]: 8 \n", + "Volume.name [0]: sample_geometry \n", + "Volume.p_physics.is_vacuum [0]: 0 \n", + "Volume.p_physics.my_absorption [0]: 0.273042 \n", + "Volume.p_physics.number of processes [0]: 2 \n", + "Volume.geometry.shape [0]: cylinder \n", + "Volume.geometry.center.x [0]: 0.000000 \n", + "Volume.geometry.center.y [0]: 0.000000 \n", + "Volume.geometry.center.z [0]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [0]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [0]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [0]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [0]: 0.007500 \n", + "Volume.geometry.geometry_parameters.height [0]: 0.030000 \n", + "Volume.geometry.focus_data_array.elements[0].Aim [0]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [1]: sample_container \n", + "component index [1]: 9 \n", + "Volume.name [1]: sample_container \n", + "Volume.p_physics.is_vacuum [1]: 0 \n", + "Volume.p_physics.my_absorption [1]: 0.347892 \n", + "Volume.p_physics.number of processes [1]: 2 \n", + "Volume.geometry.shape [1]: cylinder \n", + "Volume.geometry.center.x [1]: 0.000000 \n", + "Volume.geometry.center.y [1]: 0.000000 \n", + "Volume.geometry.center.z [1]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [1]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [1]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [1]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [1]: 0.009000 \n", + "Volume.geometry.geometry_parameters.height [1]: 0.033000 \n", + "Volume.geometry.focus_data_array.elements[0].Aim [1]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [2]: cryostat_wall \n", + "component index [2]: 10 \n", + "Volume.name [2]: cryostat_wall \n", + "Volume.p_physics.is_vacuum [2]: 0 \n", + "Volume.p_physics.my_absorption [2]: 0.347892 \n", + "Volume.p_physics.number of processes [2]: 2 \n", + "Volume.geometry.shape [2]: cylinder \n", + "Volume.geometry.center.x [2]: 0.000000 \n", + "Volume.geometry.center.y [2]: 0.000000 \n", + "Volume.geometry.center.z [2]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [2]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [2]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [2]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [2]: 0.030000 \n", + "Volume.geometry.geometry_parameters.height [2]: 0.120000 \n", + "Volume.geometry.focus_data_array.elements[0].Aim [2]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [3]: cryostat_wall_vacuum \n", + "component index [3]: 11 \n", + "Volume.name [3]: cryostat_wall_vacuum \n", + "Volume.p_physics.is_vacuum [3]: 1 \n", + "Volume.p_physics.my_absorption [3]: 0.000000 \n", + "Volume.p_physics.number of processes [3]: 0 \n", + "Volume.geometry.shape [3]: cylinder \n", + "Volume.geometry.center.x [3]: 0.000000 \n", + "Volume.geometry.center.y [3]: 0.000000 \n", + "Volume.geometry.center.z [3]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [3]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [3]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [3]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [3]: 0.028000 \n", + "Volume.geometry.geometry_parameters.height [3]: 0.112000 \n", + "Volume.geometry.focus_data_array.elements[0].Aim [3]: [0.000000 0.000000 1.000000] \n", + "---------------------------------------------------------------------\n", + "number_of_volumes = 5\n", + "number_of_masks = 0\n", + "number_of_masked_volumes = 0\n", + "\n", + " ---- Overview of the lists generated for each volume ---- \n", + "List overview for surrounding vacuum\n", + "LIST: Children for Volume 0 = [1,2,3,4]\n", + "LIST: Direct_children for Volume 0 = [3]\n", + "LIST: Intersect_check_list for Volume 0 = [3]\n", + "LIST: Mask_intersect_list for Volume 0 = []\n", + "LIST: Destinations_list for Volume 0 = []\n", + "LIST: Reduced_destinations_list for Volume 0 = []\n", + "LIST: Next_volume_list for Volume 0 = [3]\n", + "LIST: mask_list for Volume 0 = []\n", + "LIST: masked_by_list for Volume 0 = []\n", + "LIST: masked_by_mask_index_list for Volume 0 = []\n", + " mask_mode for Volume 0 = 0\n", + "\n", + "List overview for sample_geometry with cylinder shape made of Sample\n", + "LIST: Children for Volume 1 = []\n", + "LIST: Direct_children for Volume 1 = []\n", + "LIST: Intersect_check_list for Volume 1 = []\n", + "LIST: Mask_intersect_list for Volume 1 = []\n", + "LIST: Destinations_list for Volume 1 = [2]\n", + "LIST: Reduced_destinations_list for Volume 1 = [2]\n", + "LIST: Next_volume_list for Volume 1 = [2]\n", + " Is_vacuum for Volume 1 = 0\n", + " is_mask_volume for Volume 1 = 0\n", + " is_masked_volume for Volume 1 = 0\n", + " is_exit_volume for Volume 1 = 0\n", + "LIST: mask_list for Volume 1 = []\n", + "LIST: masked_by_list for Volume 1 = []\n", + "LIST: masked_by_mask_index_list for Volume 1 = []\n", + " mask_mode for Volume 1 = 0\n", + "\n", + "List overview for sample_container with cylinder shape made of Al\n", + "LIST: Children for Volume 2 = [1]\n", + "LIST: Direct_children for Volume 2 = [1]\n", + "LIST: Intersect_check_list for Volume 2 = [1]\n", + "LIST: Mask_intersect_list for Volume 2 = []\n", + "LIST: Destinations_list for Volume 2 = [4]\n", + "LIST: Reduced_destinations_list for Volume 2 = [4]\n", + "LIST: Next_volume_list for Volume 2 = [4,1]\n", + " Is_vacuum for Volume 2 = 0\n", + " is_mask_volume for Volume 2 = 0\n", + " is_masked_volume for Volume 2 = 0\n", + " is_exit_volume for Volume 2 = 0\n", + "LIST: mask_list for Volume 2 = []\n", + "LIST: masked_by_list for Volume 2 = []\n", + "LIST: masked_by_mask_index_list for Volume 2 = []\n", + " mask_mode for Volume 2 = 0\n", + "\n", + "List overview for cryostat_wall with cylinder shape made of Al\n", + "LIST: Children for Volume 3 = [1,2,4]\n", + "LIST: Direct_children for Volume 3 = [4]\n", + "LIST: Intersect_check_list for Volume 3 = [4]\n", + "LIST: Mask_intersect_list for Volume 3 = []\n", + "LIST: Destinations_list for Volume 3 = [0]\n", + "LIST: Reduced_destinations_list for Volume 3 = []\n", + "LIST: Next_volume_list for Volume 3 = [0,4]\n", + " Is_vacuum for Volume 3 = 0\n", + " is_mask_volume for Volume 3 = 0\n", + " is_masked_volume for Volume 3 = 0\n", + " is_exit_volume for Volume 3 = 0\n", + "LIST: mask_list for Volume 3 = []\n", + "LIST: masked_by_list for Volume 3 = []\n", + "LIST: masked_by_mask_index_list for Volume 3 = []\n", + " mask_mode for Volume 3 = 0\n", + "\n", + "List overview for cryostat_wall_vacuum with cylinder shape made of Vacuum\n", + "LIST: Children for Volume 4 = [1,2]\n", + "LIST: Direct_children for Volume 4 = [2]\n", + "LIST: Intersect_check_list for Volume 4 = [2]\n", + "LIST: Mask_intersect_list for Volume 4 = []\n", + "LIST: Destinations_list for Volume 4 = [3]\n", + "LIST: Reduced_destinations_list for Volume 4 = [3]\n", + "LIST: Next_volume_list for Volume 4 = [3,2]\n", + " Is_vacuum for Volume 4 = 1\n", + " is_mask_volume for Volume 4 = 0\n", + " is_masked_volume for Volume 4 = 0\n", + " is_exit_volume for Volume 4 = 0\n", + "LIST: mask_list for Volume 4 = []\n", + "LIST: masked_by_list for Volume 4 = []\n", + "LIST: masked_by_mask_index_list for Volume 4 = []\n", + " mask_mode for Volume 4 = 0\n", + "\n", + "Union_master component master initialized sucessfully\n", + "Detector: logger_space_zx_I=18092.6 logger_space_zx_ERR=33.1511 logger_space_zx_N=879706 \"logger_zx.dat\"\n", + "Detector: logger_space_zy_I=18092.6 logger_space_zy_ERR=33.1511 logger_space_zy_N=879706 \"logger_zy.dat\"\n", + "\n", + "\n", + "Top 20 most common histories. Shows the index of volumes entered (VX), and the scattering processes (PX)\n", + "5892\t N I=4.578027E+01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "895\t N I=2.001013E+01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "143\t N I=3.463667E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "108\t N I=2.251620E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "66\t N I=1.949978E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "65\t N I=1.194341E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "37\t N I=7.657474E-01 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "14\t N I=3.683233E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "19\t N I=3.455680E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "17\t N I=2.855082E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "13\t N I=2.822139E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "9\t N I=2.778669E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "17\t N I=2.373749E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "18\t N I=2.297456E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=2.200556E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "11\t N I=1.857153E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "10\t N I=1.571294E-01 \t V0 -> V3 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "6\t N I=9.084604E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "5\t N I=8.596945E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "4\t N I=8.405909E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "loading system configuration\n", + "\n" + ] + } + ], + "source": [ + "instrument.backengine()\n", + "data = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "History file written by the McStas component Union_master \n", + "When running with MPI, the results may be from just a single thread, meaning intensities are divided by number of threads\n", + "----- Description of the used volumes -----------------------------------------------------------------------------------\n", + "V0: Surrounding vacuum \n", + "V1: sample_geometry Material: Sample P0: P1: Sample_pow\n", + "V2: sample_container Material: Al P0: P1: Al_pow\n", + "V3: cryostat_wall Material: Al P0: P1: Al_pow\n", + "V4: cryostat_wall_vacuum Material: Vacuum \n", + "----- Histories sorted after intensity ----------------------------------------------------------------------------------\n", + "5892\t N I=4.578027E+01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "895\t N I=2.001013E+01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "143\t N I=3.463667E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "108\t N I=2.251620E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "66\t N I=1.949978E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "65\t N I=1.194341E+00 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "37\t N I=7.657474E-01 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "14\t N I=3.683233E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "19\t N I=3.455680E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "17\t N I=2.855082E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "13\t N I=2.822139E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "9\t N I=2.778669E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "17\t N I=2.373749E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "18\t N I=2.297456E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=2.200556E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "11\t N I=1.857153E-01 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "10\t N I=1.571294E-01 \t V0 -> V3 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "6\t N I=9.084604E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "5\t N I=8.596945E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "4\t N I=8.405909E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "4\t N I=7.833313E-02 \t V0 -> V3 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "4\t N I=7.512586E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "5\t N I=7.432999E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "3\t N I=6.171041E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "5\t N I=5.967012E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "2\t N I=4.201788E-02 \t V0 -> V3 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=4.079794E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "2\t N I=3.763233E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=3.552621E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "2\t N I=3.316035E-02 \t V0 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "2\t N I=3.311965E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "2\t N I=3.308331E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "2\t N I=3.307357E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=2.793967E-02 \t V0 -> V3 -> P1 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=2.790450E-02 \t V0 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=2.762920E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "2\t N I=2.734459E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "2\t N I=2.732315E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=2.380510E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "2\t N I=2.150892E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=1.923950E-02 \t V0 -> V3 -> P0 -> V4 -> V3 -> V0 \n", + "1\t N I=1.921815E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P0 -> V0 \n", + "1\t N I=1.921198E-02 \t V0 -> V3 -> V4 -> V2 -> P0 -> V4 -> V3 -> V0 \n", + "3\t N I=1.884439E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> V2 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=1.811470E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=1.658620E-02 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=1.657351E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> V2 -> P1 -> V1 -> V2 -> V4 -> V3 -> P1 -> V0 \n", + "1\t N I=1.654961E-02 \t V0 -> V3 -> P1 -> P1 -> V0 \n", + "1\t N I=1.653411E-02 \t V0 -> V3 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "5\t N I=1.536141E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=1.479142E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "2\t N I=1.377721E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> P1 -> V0 \n", + "1\t N I=1.072312E-02 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "3\t N I=6.601606E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P0 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=4.722113E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P0 -> P1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=4.516881E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=4.340485E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> P1 -> V4 -> V3 -> V0 \n", + "1\t N I=3.643161E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P0 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=3.424502E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V4 -> V3 -> P1 -> V0 \n", + "2\t N I=2.831503E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=2.169313E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> V2 -> P1 -> P1 -> V1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=1.570388E-03 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "4\t N I=1.393536E-03 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=4.412262E-04 \t V0 -> V3 -> V4 -> V2 -> P1 -> V1 -> P1 -> P1 -> P1 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "1\t N I=7.660815E-05 \t V0 -> V3 -> V4 -> V2 -> V1 -> P1 -> P0 -> P1 -> V2 -> V4 -> V3 -> V0 \n", + "\n" + ] + } + ], + "source": [ + "with open(\"run_folder/union_history.dat\") as file:\n", + " instrument_string = file.read()\n", + " print(instrument_string)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Interpreting the data\n", + "Now all the histories contain a scattering process as this is necessary to reach the rectangle placed by the Union_conditional_PSD component set at 2theta = 60 deg. We also observe the intensities are much lower, simply because only a fraction of the simulated rays satisfy this condition." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/source/tutorial/data_folder/note.txt b/docs/source/tutorial/data_folder/note.txt new file mode 100644 index 00000000..fa985a4a --- /dev/null +++ b/docs/source/tutorial/data_folder/note.txt @@ -0,0 +1 @@ +This folder will contain data files from McStas simulations performed in the notebook. diff --git a/docs/source/tutorial/run_folder/note.txt b/docs/source/tutorial/run_folder/note.txt new file mode 100644 index 00000000..1a8cb02d --- /dev/null +++ b/docs/source/tutorial/run_folder/note.txt @@ -0,0 +1,2 @@ +McStas components, library functions and data files placed here can be used in tutorial notebooks. +This folder will also contain generated instrument files. diff --git a/docs/source/user_guide/component_object.ipynb b/docs/source/user_guide/component_object.ipynb new file mode 100644 index 00000000..e953898b --- /dev/null +++ b/docs/source/user_guide/component_object.ipynb @@ -0,0 +1,808 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "valid-array", + "metadata": {}, + "source": [ + "# Component object\n", + "McStas components are the essential building blocks used to make McStas simulations. This sections focuses on how to work with the component objects in McStasScript.\n", + "\n", + "Since a component is always part of an instrument, new components are created in the instrument object so that they may immediately be registred and controlled by that instrument object." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "widespread-maple", + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr\n", + "\n", + "instrument = instr.McStas_instr(\"component_examples\")" + ] + }, + { + "cell_type": "markdown", + "id": "piano-anderson", + "metadata": {}, + "source": [ + "## Creating a component object\n", + "A component object is returned from the *add_component* and *copy_component* instrument object methods. When creating a component object, it needs an instance name and the name of the component in the library. When copying a component, the same library component is used." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "documentary-import", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT source = Source_div\n", + " \u001b[1mxwidth\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1myheight\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1mfocus_aw\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1mfocus_ah\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + "AT [0, 0, 0] ABSOLUTE\n" + ] + } + ], + "source": [ + "source = instrument.add_component(\"source\", \"Source_div\")\n", + "print(source)" + ] + }, + { + "cell_type": "markdown", + "id": "confidential-active", + "metadata": {}, + "source": [ + "## Setting component parameters\n", + "Since the underlying McStas component is read, McStasScript is aware of the parameters, including which are required from the user. These can be set directly as attributes or with the *set_parameters* method." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "dynamic-holmes", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT source = Source_div\n", + " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m]\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.03\u001b[0m\u001b[0m [m]\n", + " \u001b[1mfocus_aw\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1mfocus_ah\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + "AT [0, 0, 0] ABSOLUTE\n" + ] + } + ], + "source": [ + "source.xwidth = 0.1\n", + "source.set_parameters(yheight=0.03)\n", + "print(source)" + ] + }, + { + "cell_type": "markdown", + "id": "naked-harbor", + "metadata": {}, + "source": [ + "Trying to set a parameter that does not exist would lead to an error. The full list of parameters in a component can be shown with *show_parameters*. This also show the current state of the component, including default values and values set by the user." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "respective-spectrum", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Source_div ________________________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[4m\u001b[1mxwidth\u001b[0m\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m] // Width of source\n", + "\u001b[4m\u001b[1myheight\u001b[0m\u001b[0m = \u001b[1m\u001b[92m0.03\u001b[0m\u001b[0m [m] // Height of source\n", + "\u001b[4m\u001b[1mfocus_aw\u001b[0m\u001b[0m [deg] // FWHM (Gaussian) or maximal (uniform) horz. width divergence\n", + "\u001b[4m\u001b[1mfocus_ah\u001b[0m\u001b[0m [deg] // FWHM (Gaussian) or maximal (uniform) vert. height divergence\n", + "\u001b[1mE0\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [meV] // Mean energy of neutrons.\n", + "\u001b[1mdE\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [meV] // Energy half spread of neutrons.\n", + "\u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [Ang] // Mean wavelength of neutrons (only relevant for E0=0)\n", + "\u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [Ang] // Wavelength half spread of neutrons.\n", + "\u001b[1mgauss\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [0|1] // Criterion\n", + "\u001b[1mflux\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1/(s cm 2 st energy_unit)] // flux per energy unit, Angs or meV\n", + "-------------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "source.show_parameters()" + ] + }, + { + "cell_type": "markdown", + "id": "liable-spokesman", + "metadata": {}, + "source": [ + "## Setting the component position and rotation\n", + "The default location of a component is at the origin of the absoslute coordinate system used in McStas. The placement of components in space is very important, and McStas provides easy coordinate transfers when placing each component, which are accessible from McStasScript. In McStas one specifies the position with **AT** and orientation with **ROTATED**. Each of these can be relative to a reference, which is set with **RELATIVE**. This behavior is adopted in McStasScript where *set_AT* and *set_ROTATED* methods are available.\n", + "\n", + "If for example we want to shift our source a bit horizontally, we would use a list as a vector. " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "respiratory-springer", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT source = Source_div\n", + " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m]\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.03\u001b[0m\u001b[0m [m]\n", + " \u001b[1mfocus_aw\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1mfocus_ah\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + "AT [0.02, 0, 0] ABSOLUTE\n" + ] + } + ], + "source": [ + "source.set_AT([0.02, 0, 0])\n", + "print(source)" + ] + }, + { + "cell_type": "markdown", + "id": "twelve-roommate", + "metadata": {}, + "source": [ + "In McStas convention the beam direction is along z, and it is common to place components some distance down beam, and so if a number is given instead of a list, it is assumed to be along z." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "compatible-romance", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT source = Source_div\n", + " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m]\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.03\u001b[0m\u001b[0m [m]\n", + " \u001b[1mfocus_aw\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1mfocus_ah\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + "AT [0, 0, 0.01] ABSOLUTE\n" + ] + } + ], + "source": [ + "source.set_AT(0.01)\n", + "print(source)" + ] + }, + { + "cell_type": "markdown", + "id": "wrong-garbage", + "metadata": {}, + "source": [ + "The position and rotation can also be specified when creating a new component with the *AT* and *RELATIVE* keywords. With the **RELATIVE** option we are now in the coordinate system of the reference component." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "familiar-joshua", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT PSD = PSD_monitor\n", + "AT [0, 0, 2] RELATIVE source\n" + ] + } + ], + "source": [ + "monitor = instrument.add_component(\"PSD\", \"PSD_monitor\", AT=[0, 0, 2], RELATIVE=source)\n", + "print(monitor)" + ] + }, + { + "cell_type": "markdown", + "id": "expressed-supplement", + "metadata": {}, + "source": [ + "Setting the rotation is similar with the *set_ROTATED* method. The rotation is specified with euler angles in degrees." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "recreational-overhead", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT PSD = PSD_monitor\n", + "AT [0, 0, 2] RELATIVE source\n", + "ROTATED [0, 4, 0] RELATIVE source\n" + ] + } + ], + "source": [ + "monitor.set_ROTATED([0, 4, 0])\n", + "print(monitor)" + ] + }, + { + "cell_type": "markdown", + "id": "prepared-harrison", + "metadata": {}, + "source": [ + "Here McStasScript assumed that the rotation should be relative to the source, but it is possible to have another reference for the rotation as shown here." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "automotive-racing", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT PSD = PSD_monitor\n", + "AT [0, 0, 2] RELATIVE source\n", + "ROTATED [0, 4, 0] ABSOLUTE\n" + ] + } + ], + "source": [ + "monitor.set_ROTATED([0, 4, 0], RELATIVE=\"ABSOLUTE\")\n", + "print(monitor)" + ] + }, + { + "cell_type": "markdown", + "id": "tired-breakfast", + "metadata": {}, + "source": [ + "When setting both position and rotation at initialization one can distinguish between the reference for position and rotation with the *AT_RELATIVE* and *ROTATED_RELATIVE* keywords." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "beautiful-marking", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT guide = Guide\n", + " \u001b[1mw1\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1mh1\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + " \u001b[1ml\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + "AT [0, 0, 2] RELATIVE source\n", + "ROTATED [0, 0, 0] RELATIVE PSD\n" + ] + } + ], + "source": [ + "guide = instrument.add_component(\"guide\", \"Guide\",\n", + " AT=2, AT_RELATIVE=source, \n", + " ROTATED=[0,0,0], ROTATED_RELATIVE=monitor)\n", + "print(guide)" + ] + }, + { + "cell_type": "markdown", + "id": "opened-athletics", + "metadata": {}, + "source": [ + "## Using parameters in a component\n", + "It is common to use defined parameters and declare variables in a component, and they can even be defined directly where needed. The parameter section of the documentation explain the details of setting up parameters, but here it is shown how they are used in components.\n", + "\n", + "After creating a parameter, it can be used when assigning component parameters. Just use a string with the same name, and it can even contain basic math." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "better-massachusetts", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT guide = Guide\n", + " \u001b[1mw1\u001b[0m = \u001b[1m\u001b[92mguide_width\u001b[0m\u001b[0m [m]\n", + " \u001b[1mh1\u001b[0m = \u001b[1m\u001b[92m1.5*guide_width\u001b[0m\u001b[0m [m]\n", + " \u001b[1ml\u001b[0m\u001b[91m : Required parameter not yet specified\u001b[0m\n", + "AT [0, 0, 2] RELATIVE source\n", + "ROTATED [0, 0, 0] RELATIVE PSD\n" + ] + } + ], + "source": [ + "instrument.add_parameter(\"guide_width\")\n", + "guide.w1 = \"guide_width\"\n", + "guide.h1 = \"1.5*guide_width\"\n", + "print(guide)" + ] + }, + { + "cell_type": "markdown", + "id": "capable-touch", + "metadata": {}, + "source": [ + "When creating a parameter or variable, an object is returned which can be brovided to the component." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "accomplished-currency", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT guide = Guide\n", + " \u001b[1mw1\u001b[0m = \u001b[1m\u001b[92mguide_width\u001b[0m\u001b[0m [m]\n", + " \u001b[1mh1\u001b[0m = \u001b[1m\u001b[92m1.5*guide_width\u001b[0m\u001b[0m [m]\n", + " \u001b[1ml\u001b[0m = \u001b[1m\u001b[92mguide_length\u001b[0m\u001b[0m [m]\n", + " \u001b[1mm\u001b[0m = \u001b[1m\u001b[92mguide_m_value\u001b[0m\u001b[0m [1]\n", + "AT [0, 0, 2] RELATIVE source\n", + "ROTATED [0, 0, 0] RELATIVE PSD\n" + ] + } + ], + "source": [ + "guide_length = instrument.add_declare_var(\"double\", \"guide_length\")\n", + "guide.l = guide_length\n", + "\n", + "guide.m = instrument.add_parameter(\"guide_m_value\")\n", + "\n", + "print(guide)" + ] + }, + { + "cell_type": "markdown", + "id": "large-auditor", + "metadata": {}, + "source": [ + "These features cover the majority of usecases for McStas components." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "discrete-celebrity", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "// This guide points in the same direction as the PSD monitor\n", + "COMPONENT guide = Guide\n", + " \u001b[1mw1\u001b[0m = \u001b[1m\u001b[92mguide_width\u001b[0m\u001b[0m [m]\n", + " \u001b[1mh1\u001b[0m = \u001b[1m\u001b[92m1.5*guide_width\u001b[0m\u001b[0m [m]\n", + " \u001b[1ml\u001b[0m = \u001b[1m\u001b[92mguide_length\u001b[0m\u001b[0m [m]\n", + " \u001b[1mm\u001b[0m = \u001b[1m\u001b[92mguide_m_value\u001b[0m\u001b[0m [1]\n", + "AT [0, 0, 2] RELATIVE source\n", + "ROTATED [0, 0, 0] RELATIVE PSD\n" + ] + } + ], + "source": [ + "guide.set_comment(\"This guide points in the same direction as the PSD monitor\")\n", + "print(guide)" + ] + }, + { + "cell_type": "markdown", + "id": "removable-national", + "metadata": {}, + "source": [ + "## Advanced features\n", + "In McStas / McXtrace there are a number of advanced features which can be used to control component behavior in the simulation. In the tutorial section these keywords are explained and demonstrated, here it is shown how they are applied. Most of these can be set when creating a component or through component methods." + ] + }, + { + "cell_type": "markdown", + "id": "technological-garden", + "metadata": {}, + "source": [ + "### SPLIT\n", + "The split keyword instructs the simulation to split the ray into multiple smaller rays to improve statistis. This is done before the component that has the SPLIT keyword applied. The split value must be an integer. Use the SPLIT keyword to set split while creating a new component." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "equal-tactics", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "// This guide points in the same direction as the PSD monitor\n", + "SPLIT 150 COMPONENT guide = Guide\n", + " \u001b[1mw1\u001b[0m = \u001b[1m\u001b[92mguide_width\u001b[0m\u001b[0m [m]\n", + " \u001b[1mh1\u001b[0m = \u001b[1m\u001b[92m1.5*guide_width\u001b[0m\u001b[0m [m]\n", + " \u001b[1ml\u001b[0m = \u001b[1m\u001b[92mguide_length\u001b[0m\u001b[0m [m]\n", + " \u001b[1mm\u001b[0m = \u001b[1m\u001b[92mguide_m_value\u001b[0m\u001b[0m [1]\n", + "AT [0, 0, 2] RELATIVE source\n", + "ROTATED [0, 0, 0] RELATIVE PSD\n" + ] + } + ], + "source": [ + "guide.set_SPLIT(150)\n", + "print(guide)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "adequate-small", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SPLIT 180 COMPONENT Splitter = Arm\n", + "AT [0, 0, 0] ABSOLUTE\n" + ] + } + ], + "source": [ + "print(instrument.add_component(\"Splitter\", \"Arm\", SPLIT=180))" + ] + }, + { + "cell_type": "markdown", + "id": "registered-roommate", + "metadata": {}, + "source": [ + "The split keyword can be removed from a component by setting split to 0." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "french-bangladesh", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "// This guide points in the same direction as the PSD monitor\n", + "COMPONENT guide = Guide\n", + " \u001b[1mw1\u001b[0m = \u001b[1m\u001b[92mguide_width\u001b[0m\u001b[0m [m]\n", + " \u001b[1mh1\u001b[0m = \u001b[1m\u001b[92m1.5*guide_width\u001b[0m\u001b[0m [m]\n", + " \u001b[1ml\u001b[0m = \u001b[1m\u001b[92mguide_length\u001b[0m\u001b[0m [m]\n", + " \u001b[1mm\u001b[0m = \u001b[1m\u001b[92mguide_m_value\u001b[0m\u001b[0m [1]\n", + "AT [0, 0, 2] RELATIVE source\n", + "ROTATED [0, 0, 0] RELATIVE PSD\n" + ] + } + ], + "source": [ + "guide.set_SPLIT(0)\n", + "print(guide)" + ] + }, + { + "cell_type": "markdown", + "id": "opened-stewart", + "metadata": {}, + "source": [ + "### EXTEND\n", + "A component can be extended with additional C code that has a special scope. It can access both parameters and variable from the component, and the instrument. Lines of extend code can be added with the *append_EXTEND* method. Beware that this code is executed for each neutron that reach the component and during the ray-tracing simulation." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "academic-outside", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "// This guide points in the same direction as the PSD monitor\n", + "COMPONENT guide = Guide\n", + " \u001b[1mw1\u001b[0m = \u001b[1m\u001b[92mguide_width\u001b[0m\u001b[0m [m]\n", + " \u001b[1mh1\u001b[0m = \u001b[1m\u001b[92m1.5*guide_width\u001b[0m\u001b[0m [m]\n", + " \u001b[1ml\u001b[0m = \u001b[1m\u001b[92mguide_length\u001b[0m\u001b[0m [m]\n", + " \u001b[1mm\u001b[0m = \u001b[1m\u001b[92mguide_m_value\u001b[0m\u001b[0m [1]\n", + "AT [0, 0, 2] RELATIVE source\n", + "ROTATED [0, 0, 0] RELATIVE PSD\n", + "EXTEND %{\n", + " if (x>0) flag = 1;\n", + " else flag = 0;\n", + "%}\n" + ] + } + ], + "source": [ + "instrument.add_declare_var(\"int\", \"flag\")\n", + "guide.append_EXTEND(\" if (x>0) flag = 1;\")\n", + "guide.append_EXTEND(\" else flag = 0;\")\n", + "print(guide)" + ] + }, + { + "cell_type": "markdown", + "id": "initial-federation", + "metadata": {}, + "source": [ + "### WHEN\n", + "The WHEN keyword can be used to set a condition for when a component should be applied to the ray. The input for a WHEN condition is a logical c expression that can use variables in the instrument scope. Since just the expression is needed, there is no terminating semicolon.\n", + "\n", + "Below a monitor is created which checks the flag defined during the extend example. This monitor will thus only record rays that had a positive x coordinate after the guide. WHEN and EXTEND are often used in conjuction with each other in this way, this is also explored in the tutorial." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "flying-olympus", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT Left_side_PSD = PSD_monitor\n", + "WHEN (flag == 1)\n", + "AT [0, 0, 0] ABSOLUTE\n" + ] + } + ], + "source": [ + "left_PSD = instrument.add_component(\"Left_side_PSD\", \"PSD_monitor\")\n", + "left_PSD.set_WHEN(\"flag == 1\")\n", + "print(left_PSD)" + ] + }, + { + "cell_type": "markdown", + "id": "honey-notebook", + "metadata": {}, + "source": [ + "The WHEN keyword can also be applied when adding a component." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "immediate-ivory", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT Right_side_PSD = PSD_monitor\n", + "WHEN (flag == 0)\n", + "AT [0, 0, 0] ABSOLUTE\n" + ] + } + ], + "source": [ + "right_PSD = instrument.add_component(\"Right_side_PSD\", \"PSD_monitor\", WHEN=\"flag == 0\")\n", + "print(right_PSD)" + ] + }, + { + "cell_type": "markdown", + "id": "cutting-spring", + "metadata": {}, + "source": [ + "### JUMP\n", + "The JUMP keyword allows the user to modify the order in which components are executed on a per neutron level. Using JUMP is complex with several pitfalls, but the syntax is simple. The system is explored in the tutorial on this site, but for full documentation refer to the McStas / McXtrace documentation.\n", + "\n", + "Here the jump keyword is used to jump from the guide component to the target_arm in case the y component of the velocity is positive. That would skip the monitors!" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "seven-kingdom", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "// This guide points in the same direction as the PSD monitor\n", + "COMPONENT guide = Guide\n", + " \u001b[1mw1\u001b[0m = \u001b[1m\u001b[92mguide_width\u001b[0m\u001b[0m [m]\n", + " \u001b[1mh1\u001b[0m = \u001b[1m\u001b[92m1.5*guide_width\u001b[0m\u001b[0m [m]\n", + " \u001b[1ml\u001b[0m = \u001b[1m\u001b[92mguide_length\u001b[0m\u001b[0m [m]\n", + " \u001b[1mm\u001b[0m = \u001b[1m\u001b[92mguide_m_value\u001b[0m\u001b[0m [1]\n", + "AT [0, 0, 2] RELATIVE source\n", + "ROTATED [0, 0, 0] RELATIVE PSD\n", + "EXTEND %{\n", + " if (x>0) flag = 1;\n", + " else flag = 0;\n", + "%}\n", + "JUMP target_arm WHEN (vy>0)\n" + ] + } + ], + "source": [ + "instrument.add_component(\"target_arm\", \"Arm\", RELATIVE=guide)\n", + "guide.set_JUMP(\"target_arm WHEN (vy>0)\")\n", + "print(guide)" + ] + }, + { + "cell_type": "markdown", + "id": "valid-latitude", + "metadata": {}, + "source": [ + "### GROUP\n", + "The GROUP keyword allows the user to set a number of components in parallel, but only allows a ray to interact with one of them. When two components have the same group name, this behavior is applied." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "consecutive-request", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT mono_1 = Monochromator_flat\n", + "AT [0.01, 0, 5] ABSOLUTE\n", + "GROUP monochromator\n", + "COMPONENT mono_2 = Monochromator_flat\n", + "AT [-0.01, 0, 5] ABSOLUTE\n", + "GROUP monochromator\n" + ] + } + ], + "source": [ + "crystal_1 = instrument.add_component(\"mono_1\", \"Monochromator_flat\")\n", + "crystal_1.set_GROUP(\"monochromator\")\n", + "\n", + "crystal_2 = instrument.add_component(\"mono_2\", \"Monochromator_flat\", GROUP=\"monochromator\")\n", + "\n", + "# Place two crystals in parallel\n", + "crystal_1.set_AT([0.01, 0, 5]) \n", + "crystal_2.set_AT([-0.01, 0, 5])\n", + "\n", + "print(crystal_1)\n", + "print(crystal_2)" + ] + }, + { + "cell_type": "markdown", + "id": "educated-commons", + "metadata": {}, + "source": [ + "### Set c code\n", + "It is possible to add C code between components in the instrument trace section. In McStasScript this is attached to component objects as one can insert code before or after a component." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "assigned-content", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "// code before\n", + "COMPONENT code_arm = Arm\n", + "AT [0, 0, 0] ABSOLUTE\n", + "// code after\n" + ] + } + ], + "source": [ + "code_arm = instrument.add_component(\"code_arm\", \"Arm\", c_code_before=\"// code before\")\n", + "code_arm.set_c_code_after(\"// code after\")\n", + "print(code_arm)" + ] + }, + { + "cell_type": "markdown", + "id": "verbal-gibson", + "metadata": {}, + "source": [ + "Here this is used to set comments, but there is also the option of setting a comment directly with the comment keyword." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "nuclear-bottle", + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "// This is a comment!\n", + "COMPONENT commented_component = Arm\n", + "AT [0, 0, 0] ABSOLUTE\n" + ] + } + ], + "source": [ + "commented_component = instrument.add_component(\"commented_component\", \"Arm\", comment=\"This is a comment!\")\n", + "print(commented_component)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "stable-blond", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/source/user_guide/instrument_object.ipynb b/docs/source/user_guide/instrument_object.ipynb new file mode 100644 index 00000000..433a6177 --- /dev/null +++ b/docs/source/user_guide/instrument_object.ipynb @@ -0,0 +1,819 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "important-midwest", + "metadata": {}, + "source": [ + "# Instrument object\n", + "This section shows the majority of the features implemented for the instrument object in McStasScript." + ] + }, + { + "cell_type": "markdown", + "id": "eastern-distance", + "metadata": {}, + "source": [ + "## Initialization\n", + "When an instrument object is created the only required argument is the name of the instrument which will be used for the instrument filename. There are however a number of keyword arguments that can be used to provide more informaton and alter the behavior.\n", + "\n", + "| Keyword argument | Type | Default | Description |\n", + "| --- | --- | --- | --- |\n", + "| author | str |\"Python Instrument Generator\" | Name that will apear as author in instrument files |\n", + "| origin | str |\"ESS DMSC\" | String that will appear as origin in instrument files |\n", + "| input_path | str | \".\" | Folder which is considered workspace for McStas / McXtrace |\n", + "| output_path | str | instrument_name | Name of data folder written by simulation |\n", + "| package_path | str | | Can be set to manually specify location of McStas/McXtrace installation |\n", + "| executable_path | str | | Can be set to manually specify location of mcrun/mxrun executable |\n", + "| ncount | int, float | 1E6 | Sets the ncount used for simulations |\n", + "| mpi | int | | Sets the number of MPI threads used for simulations |\n", + "| force_compile | bool | True | Whether to force compilation before each run or not |\n", + "| parameters | ParameterContainer | | Set of parameters for initialized instrument |" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "liable-newton", + "metadata": {}, + "outputs": [], + "source": [ + "from mcstasscript.interface import instr, functions, plotter" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "experienced-locator", + "metadata": {}, + "outputs": [], + "source": [ + "instrument = instr.McStas_instr(\"instr_name\", author=\"Mads Bertelsen\", origin=\"DMSC\")\n", + "instrument_w_settings = instr.McStas_instr(\"instr_name\", ncount=3E6, output_path=\"new_folder\")" + ] + }, + { + "cell_type": "markdown", + "id": "universal-saudi", + "metadata": {}, + "source": [ + "### Using settings method\n", + "The instrument object has a settings method which can update some settings after initialization. The current settings can always be viewed with *show_settings*.\n", + "\n", + "| Keyword argument | Type | Default | Description |\n", + "| --- | --- | --- | --- |\n", + "| output_path | str | instrument_name | Name of data folder written by simulation |\n", + "| package_path | str | | Can be set to manually specify location of McStas/McXtrace installation |\n", + "| executable_path | str | | Can be set to manually specify location of mcrun/mxrun executable |\n", + "| ncount | int, float | 1E6 | Sets the ncount used for simulations |\n", + "| mpi | int | | Sets the number of MPI threads used for simulations |\n", + "| seed | | | Sets the seed of the simulation |\n", + "| force_compile | bool | True | Whether to force compilation before each run or not |\n", + "| custom_flags | str | | String with custom flags for mcrun/mxrun command |" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "sapphire-pasta", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Instrument settings:\n", + " output_path: instr_name_data\n", + " run_path: .\n", + " package_path: /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1\n", + " executable_path: /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1/bin/\n", + " executable: mcrun\n", + " force_compile: True\n", + "Instrument settings:\n", + " ncount: 3.00e+06\n", + " output_path: new_folder\n", + " run_path: .\n", + " package_path: /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1\n", + " executable_path: /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1/bin/\n", + " executable: mcrun\n", + " force_compile: True\n" + ] + } + ], + "source": [ + "instrument.show_settings()\n", + "instrument_w_settings.show_settings()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "assumed-boundary", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Instrument settings:\n", + " mpi: 4\n", + " seed: 300\n", + " output_path: instr_name_data\n", + " run_path: .\n", + " package_path: /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1\n", + " executable_path: /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1/bin/\n", + " executable: mcrun\n", + " force_compile: True\n" + ] + } + ], + "source": [ + "instrument.settings(mpi=4, seed=300)\n", + "instrument.show_settings()" + ] + }, + { + "cell_type": "markdown", + "id": "unsigned-ideal", + "metadata": {}, + "source": [ + "## Parameters\n", + "Instrument parameters can be added with *add_parameters* which returns a parameter object." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "signed-distributor", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameter named: 'wavelength' without set value.\n", + " Wavelength in AA\n", + "\n", + "Parameter named: 'wavelength' with value: 5\n", + " Wavelength in AA\n", + "\n" + ] + } + ], + "source": [ + "wavelength = instrument.add_parameter(\"wavelength\", comment=\"Wavelength in AA\")\n", + "print(wavelength)\n", + "wavelength.value = 5\n", + "print(wavelength)" + ] + }, + { + "cell_type": "markdown", + "id": "fourth-glasgow", + "metadata": {}, + "source": [ + "## Initialize section\n", + "One of the great advantages for the McStas / McXtrace packages is the initialize section of the instrument where calculations can be performed before the ray-tracing simulation starts. One could for example calculate appropriate angles to reach a certain bragg peak at a given wavelength. This would involve defining some declare variables, using these in the initialize section and then assigning them as component inputs.\n", + "\n", + "In McStasScript many calculations can be performed directly in Python, and so typically the initialize section is used less, but it is still useful and available through McStasScript.\n", + "\n", + "The instrument object has the method *append_initialize* which adds a line of code to the initialize. This line is copied directly into the instrument file, so it follows C syntax. Remember the semicolon! In addition there is *add_declare_var* to specify the declared variables needed. When declare variables are defined an object is returned which can be used when refering to that variable." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "spare-button", + "metadata": {}, + "outputs": [], + "source": [ + "wavenumber = instrument.add_declare_var(\"double\", \"wavenumber\")\n", + "instrument.append_initialize(\"wavenumber = 2*PI/wavelength;\")" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "twelve-tuition", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "// Start of initialize for generated instr_name\n", + "wavenumber = 2*PI/wavelength;\n", + "\n" + ] + } + ], + "source": [ + "print(instrument.initialize_section)" + ] + }, + { + "cell_type": "markdown", + "id": "occupational-budget", + "metadata": {}, + "source": [ + "## Finally section\n", + "The finally section works exactly as the initialize section, but is executed after the ray-tracing simulation. Add a line to it with *append_finally*." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "cultural-workplace", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "// Start of finally for generated instr_name\n", + "printf(\"Thanks for using McStasScript!\\n\");\n", + "\n" + ] + } + ], + "source": [ + "instrument.append_finally('printf(\\\"Thanks for using McStasScript!\\\\n\\\");')\n", + "print(instrument.finally_section)" + ] + }, + { + "cell_type": "markdown", + "id": "threaded-double", + "metadata": {}, + "source": [ + "## Help features\n", + "There are a few methods built into the instrument class that helps the user, these are:\n", + "\n", + "- *show_components*\n", + "- *component_help*\n", + "\n", + "### show_components\n", + "The *show_components* method shows the component categories, and if called with the name of a category, will show all components in the specified category. The categories can include the work directory if any components are located there." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "foreign-chosen", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here are the available component categories:\n", + " contrib\n", + " misc\n", + " monitors\n", + " obsolete\n", + " optics\n", + " samples\n", + " sources\n", + " union\n", + "Call show_components(category_name) to display\n" + ] + } + ], + "source": [ + "instrument.show_components()" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "regulated-hollywood", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Here are all components in the optics category.\n", + " Absorber Guide_gravity Pol_bender\n", + " Arm Guide_simple Pol_constBfield\n", + " Beamstop Guide_tapering Pol_guide_mirror\n", + " Bender Guide_wavy Pol_guide_vmirror\n", + " Collimator_linear He3_cell Pol_mirror\n", + " Collimator_radial Mask Refractor\n", + " Derotator Mirror Rotator\n", + " Diaphragm Monochromator_curved Selector\n", + " DiskChopper Monochromator_flat Set_pol\n", + " Elliptic_guide_gravity Monochromator_pol Slit\n", + " FermiChopper PolAnalyser_ideal V_selector\n", + " Filter_gen Pol_Bfield Virtual_mcnp_ss_Guide\n", + " Guide Pol_Bfield_stop Vitess_ChopperFermi\n", + " Guide_anyshape Pol_FieldBox \n", + " Guide_channeled Pol_SF_ideal \n" + ] + } + ], + "source": [ + "instrument.show_components(\"optics\")" + ] + }, + { + "cell_type": "markdown", + "id": "ultimate-junction", + "metadata": {}, + "source": [ + "### component_help\n", + "The *component_help* method can show the parameters of any component the instrument object knows about, although not necessarily used in the instrument." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "dominican-dubai", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Guide _____________________________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[1mreflect\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [str] // Reflectivity file name. Format \n", + "\u001b[4m\u001b[1mw1\u001b[0m\u001b[0m [m] // Width at the guide entry\n", + "\u001b[4m\u001b[1mh1\u001b[0m\u001b[0m [m] // Height at the guide entry\n", + "\u001b[1mw2\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Width at the guide exit\n", + "\u001b[1mh2\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Height at the guide exit\n", + "\u001b[4m\u001b[1ml\u001b[0m\u001b[0m [m] // length of guide\n", + "\u001b[1mR0\u001b[0m = \u001b[1m\u001b[94m0.99\u001b[0m\u001b[0m [1] // Low-angle reflectivity\n", + "\u001b[1mQc\u001b[0m = \u001b[1m\u001b[94m0.0219\u001b[0m\u001b[0m [AA-1] // Critical scattering vector\n", + "\u001b[1malpha\u001b[0m = \u001b[1m\u001b[94m6.07\u001b[0m\u001b[0m [AA] // Slope of reflectivity\n", + "\u001b[1mm\u001b[0m = \u001b[1m\u001b[94m2.0\u001b[0m\u001b[0m [1] // m-value of material. Zero means completely absorbing. glass/SiO2 \n", + " Si Ni Ni58 supermirror Be Diamond m= 0.65 0.47 1 1.18 2-6 1.01 1.12 \n", + "\u001b[1mW\u001b[0m = \u001b[1m\u001b[94m0.003\u001b[0m\u001b[0m [AA-1] // Width of supermirror cut-off\n", + "-------------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "instrument.component_help(\"Guide\")" + ] + }, + { + "cell_type": "markdown", + "id": "studied-victorian", + "metadata": {}, + "source": [ + "## Adding components\n", + "One adds components to the instrument using *add_component* which takes the name of the component instance for the instrument, followed by the name of the component in the library. Notice that it is not allowed to add two components with the same instance name, meaning rerunning this cell would raise an exception. " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "literary-nirvana", + "metadata": {}, + "outputs": [], + "source": [ + "source = instrument.add_component(\"source\", \"Source_div\")\n", + "source.set_parameters(xwidth=0.1, yheight=0.1, focus_aw=3.0, focus_ah=2.0, \n", + " lambda0=wavelength, dlambda=\"0.1*wavelength\")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "loving-raleigh", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT source = Source_div\n", + " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m]\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m]\n", + " \u001b[1mfocus_aw\u001b[0m = \u001b[1m\u001b[92m3.0\u001b[0m\u001b[0m [deg]\n", + " \u001b[1mfocus_ah\u001b[0m = \u001b[1m\u001b[92m2.0\u001b[0m\u001b[0m [deg]\n", + " \u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[92mwavelength\u001b[0m\u001b[0m [Ang]\n", + " \u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[92m0.1*wavelength\u001b[0m\u001b[0m [Ang]\n", + "AT [0, 0, 0] ABSOLUTE\n" + ] + } + ], + "source": [ + "print(source)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "unnecessary-helen", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "source Source_div AT (0, 0, 0) ABSOLUTE\n" + ] + } + ], + "source": [ + "instrument.print_components()" + ] + }, + { + "cell_type": "markdown", + "id": "outdoor-motor", + "metadata": {}, + "source": [ + "There are a number of keyword arguments allowed when adding a component. These will mainly be discussed in connection to the *component* object, but a few are relevant for the instrument, because the handle in what order components are sequenced in the instrument. To illustrate this we add a slit and a guide to the instrument at reasonable positions. Notice these new components are added at the end of the instrument." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "informative-council", + "metadata": {}, + "outputs": [], + "source": [ + "slit = instrument.add_component(\"source_slit\", \"Slit\", AT=2, RELATIVE=source)\n", + "slit.set_parameters(xwidth=0.015, yheight=0.015)\n", + "\n", + "guide = instrument.add_component(\"guide\", \"Guide\", AT=0.1, RELATIVE=slit)\n", + "guide.set_parameters(w1=0.03, h1=0.03, l=10.0)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "moral-apartment", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "source Source_div AT (0, 0, 0) ABSOLUTE \n", + "source_slit Slit AT (0, 0, 2) RELATIVE source \n", + "guide Guide AT (0, 0, 0.1) RELATIVE source_slit\n" + ] + } + ], + "source": [ + "instrument.print_components()" + ] + }, + { + "cell_type": "markdown", + "id": "least-circulation", + "metadata": {}, + "source": [ + "The order of components is important in a McStas/McXtrace simulation as each will affect the ray state in the sequence shown with *print_components*. If one wants to add a component between the source and the slit, this can be done with the *before* or *after* keyword." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "absent-pizza", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "source Source_div AT (0, 0, 0) ABSOLUTE \n", + "PSD PSD_monitor AT (0, 0, 1.9) RELATIVE source \n", + "source_slit Slit AT (0, 0, 2) RELATIVE source \n", + "guide Guide AT (0, 0, 0.1) RELATIVE source_slit\n" + ] + } + ], + "source": [ + "monitor = instrument.add_component(\"PSD\", \"PSD_monitor\", after=\"source\")\n", + "monitor.set_AT(1.9, RELATIVE=source)\n", + "monitor.set_parameters(xwidth=0.1, yheight=0.1, filename='\"PSD.dat\"')\n", + "\n", + "instrument.print_components()" + ] + }, + { + "cell_type": "markdown", + "id": "municipal-prior", + "metadata": {}, + "source": [ + "The PSD monitor was inserted after the source, this could also be accomplished with the before keyword argument.\n", + "```\n", + "before=\"source_slit\"\n", + "```\n", + "It is important to note that the McStas instrument file is read sequentially, so the position of the PSD monitor can not be relative to a later component, but must only refer to earlier components. At this point in development it is not possible to reorder components in the instrument object." + ] + }, + { + "cell_type": "markdown", + "id": "distinct-thousand", + "metadata": {}, + "source": [ + "## Making a component copy\n", + "It is possible to copy an existing component using the *copy_component* method. This can reduce both the amount of typing necessary, but also the risk of making a mistake. Here the guide is copied and placed a bit after the end of the first guide, with a small rotation." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "figured-electronics", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT guide_2 = Guide\n", + " \u001b[1mw1\u001b[0m = \u001b[1m\u001b[92m0.03\u001b[0m\u001b[0m [m]\n", + " \u001b[1mh1\u001b[0m = \u001b[1m\u001b[92m0.03\u001b[0m\u001b[0m [m]\n", + " \u001b[1ml\u001b[0m = \u001b[1m\u001b[92m10.0\u001b[0m\u001b[0m [m]\n", + "AT [0, 0, 10.01] RELATIVE guide\n", + "ROTATED [0, 0.5, 0] RELATIVE guide\n" + ] + } + ], + "source": [ + "guide2 = instrument.copy_component(\"guide_2\", \"guide\")\n", + "guide2.set_AT(guide.l + 0.01, RELATIVE=guide)\n", + "guide2.set_ROTATED([0, 0.5, 0], RELATIVE=guide)\n", + "print(guide2)" + ] + }, + { + "cell_type": "markdown", + "id": "parental-theme", + "metadata": {}, + "source": [ + "## Getting components" + ] + }, + { + "cell_type": "markdown", + "id": "hidden-shopping", + "metadata": {}, + "source": [ + "It is always possible to retrieve the component objects corresponding to components in the instrument with the *get_component* and *get_last_component* methods." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "military-biotechnology", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT source = Source_div\n", + " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m]\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92m0.1\u001b[0m\u001b[0m [m]\n", + " \u001b[1mfocus_aw\u001b[0m = \u001b[1m\u001b[92m3.0\u001b[0m\u001b[0m [deg]\n", + " \u001b[1mfocus_ah\u001b[0m = \u001b[1m\u001b[92m2.0\u001b[0m\u001b[0m [deg]\n", + " \u001b[1mlambda0\u001b[0m = \u001b[1m\u001b[92mwavelength\u001b[0m\u001b[0m [Ang]\n", + " \u001b[1mdlambda\u001b[0m = \u001b[1m\u001b[92m0.1*wavelength\u001b[0m\u001b[0m [Ang]\n", + "AT [0, 0, 0] ABSOLUTE\n" + ] + } + ], + "source": [ + "my_source = instrument.get_component(\"source\")\n", + "print(my_source)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "ambient-naples", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT guide_2 = Guide\n", + " \u001b[1mw1\u001b[0m = \u001b[1m\u001b[92m0.03\u001b[0m\u001b[0m [m]\n", + " \u001b[1mh1\u001b[0m = \u001b[1m\u001b[92m0.03\u001b[0m\u001b[0m [m]\n", + " \u001b[1ml\u001b[0m = \u001b[1m\u001b[92m10.0\u001b[0m\u001b[0m [m]\n", + "AT [0, 0, 10.01] RELATIVE guide\n", + "ROTATED [0, 0.5, 0] RELATIVE guide\n" + ] + } + ], + "source": [ + "last_component = instrument.get_last_component()\n", + "print(last_component)" + ] + }, + { + "cell_type": "markdown", + "id": "cardiovascular-hughes", + "metadata": {}, + "source": [ + "## Run the simulation\n", + "The simulation is executed with a call to the *backengine* method." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "intense-chapter", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/user_guide/instr_name_data_6\"\n", + "INFO: Regenerating c-file: instr_name.c\n", + "CFLAGS=\n", + "INFO: Recompiling: ./instr_name.out\n", + "mccode-r.c:1880:1: warning: non-void function does not return a value in all control paths [-Wreturn-type]\n", + "} /* mcsiminfo_init */\n", + "^\n", + "mccode-r.c:2837:3: warning: expression result unused [-Wunused-value]\n", + " *t0;\n", + " ^~~\n", + "2 warnings generated.\n", + "INFO: ===\n", + "INFO: Placing instr file copy instr_name.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/user_guide/instr_name_data_6\n", + "\n", + "Simulation 'instr_name' (instr_name.instr): running on 4 nodes (master is 'CI0021617', MPI version 3.1).\n", + "Detector: PSD_I=0.114429 PSD_ERR=0.000144614 PSD_N=626113 \"PSD.dat\"\n", + "Thanks for using McStasScript!\n", + "Thanks for using McStasScript!\n", + "Thanks for using McStasScript!\n", + "Thanks for using McStasScript!\n", + "loading system configuration\n", + "\n" + ] + } + ], + "source": [ + "instrument.backengine()" + ] + }, + { + "cell_type": "markdown", + "id": "spread-douglas", + "metadata": {}, + "source": [ + "## Get the data\n", + "The data is held in the data attribute of the instrument. If the simulation failed, or did not output any data, the data attribute will contain None." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "honey-conference", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[\n", + "McStasData: PSD type: 2D I:0.114429 E:0.000144614 N:626113]\n" + ] + } + ], + "source": [ + "data = instrument.data\n", + "print(data)" + ] + }, + { + "cell_type": "markdown", + "id": "varying-clearing", + "metadata": {}, + "source": [ + "## Visualizing the instrument\n", + "It is possible to visualize the instrument using mcdisplay, yet this opens a new window and is not yet implemented in such a way that it is shown in the notebook. The *show_instrument* method is used, and one can choose the format. Be aware that the parameters set for the insturment is used for the visualization." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "headed-simulation", + "metadata": {}, + "outputs": [], + "source": [ + "instrument.show_instrument()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "italic-madagascar", + "metadata": {}, + "outputs": [], + "source": [ + "instrument.show_instrument(format=\"webgl\")" + ] + }, + { + "cell_type": "markdown", + "id": "dressed-branch", + "metadata": {}, + "source": [ + "## Dump and load an instrument object\n", + "It is possible to save an instrument object to disk and load it later. For now the name is still a required parameter, but it is overwritten by the loading process." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "casual-blame", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'dump_file_name.dmp'" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "instrument.dump(\"dump_file_name.dmp\")" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "advance-soldier", + "metadata": {}, + "outputs": [], + "source": [ + "loaded_instrument = instr.McStas_instr(\"\", dumpfile=\"dump_file_name.dmp\")" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "european-pepper", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "source Source_div AT (0, 0, 0) ABSOLUTE \n", + "PSD PSD_monitor AT (0, 0, 1.9) RELATIVE source \n", + "source_slit Slit AT (0, 0, 2) RELATIVE source \n", + "guide Guide AT (0, 0, 0.1) RELATIVE source_slit\n", + "guide_2 Guide AT (0, 0, 10.01) RELATIVE guide \n", + " ROTATED (0, 0.5, 0) RELATIVE guide\n", + "Instrument settings:\n", + " output_path: instr_name_data\n", + " run_path: .\n", + " package_path: /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1\n", + " executable_path: /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1/bin/\n", + " executable: mcrun\n", + " force_compile: True\n" + ] + } + ], + "source": [ + "loaded_instrument.print_components()\n", + "loaded_instrument.show_settings()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "independent-blend", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/source/user_guide/instrument_reader.ipynb b/docs/source/user_guide/instrument_reader.ipynb new file mode 100644 index 00000000..8a95e5e4 --- /dev/null +++ b/docs/source/user_guide/instrument_reader.ipynb @@ -0,0 +1,42 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "stretch-villa", + "metadata": {}, + "source": [ + "# Instrument reader\n", + "How to use instrument reader (not it is unfinished)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "alpine-yeast", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/source/user_guide/parameters_and_variables.ipynb b/docs/source/user_guide/parameters_and_variables.ipynb new file mode 100644 index 00000000..6e455703 --- /dev/null +++ b/docs/source/user_guide/parameters_and_variables.ipynb @@ -0,0 +1,506 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "smooth-monaco", + "metadata": {}, + "source": [ + "# Parameters and variables\n", + "At the instrument level there is a destingsion between parameters and variables. Parameters are inputs to the instrument that can be changed at run time, while variables are defined internally within the insturment. This section of the documentation covers these two as they have some similarities." + ] + }, + { + "cell_type": "markdown", + "id": "strong-muslim", + "metadata": {}, + "source": [ + "## Parameters\n", + "Instrument parameters are built on the libpyvinyl parameters, and have some interesting features. First a simple parameter is added." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "acceptable-emperor", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameter named: 'first_par' without set value.\n", + "\n" + ] + } + ], + "source": [ + "from mcstasscript.interface import instr, functions, plotter\n", + "instrument = instr.McStas_instr(\"parameters_and_variables\")\n", + "\n", + "first_par = instrument.add_parameter(\"first_par\")\n", + "print(first_par)" + ] + }, + { + "cell_type": "markdown", + "id": "alive-cholesterol", + "metadata": {}, + "source": [ + "It is a good habit to add a comment to each parameter when creating it. Since two parameters can not have the same name, creates " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "adverse-default", + "metadata": {}, + "outputs": [], + "source": [ + "second_parameter = instrument.add_parameter(\"first_par\", comment=\"My first parameter!\")" + ] + }, + { + "cell_type": "markdown", + "id": "downtown-pittsburgh", + "metadata": {}, + "source": [ + "### Types\n", + "If only one argument is given, it is assumed the type is a C *double*, so a floating point number. It is also allowed to have integers and strings. No other types are supported by McStas / McXtrace." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "cellular-server", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " first_par // My first parameter!\n", + "double double_par // Typed double\n", + "int int_par // Typed int\n", + "string string_par // Typed string\n" + ] + } + ], + "source": [ + "double_par = instrument.add_parameter(\"double\", \"double_par\", comment=\"Typed double\")\n", + "int_par = instrument.add_parameter(\"int\", \"int_par\", comment=\"Typed int\")\n", + "string_par = instrument.add_parameter(\"string\", \"string_par\", comment=\"Typed string\")\n", + "\n", + "instrument.show_parameters()" + ] + }, + { + "cell_type": "markdown", + "id": "southern-shoulder", + "metadata": {}, + "source": [ + "### Value\n", + "It is common to set the value of a parameter when it is created." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "rental-indication", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Parameter named: 'par_with_value' with value: 5.2\n", + " Added value at creation" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "instrument.add_parameter(\"par_with_value\", value=5.2, comment=\"Added value at creation\")" + ] + }, + { + "cell_type": "markdown", + "id": "expressed-nancy", + "metadata": {}, + "source": [ + "The value can always be changed, either directly or through the instrument object. When using the instrument object, use the name in the instrument file as the keyword argument." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "narrow-guard", + "metadata": {}, + "outputs": [], + "source": [ + "double_par.value = 1.2\n", + "instrument.set_parameters(int_par=3)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "thirty-sunrise", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " first_par // My first parameter!\n", + "double double_par = 1.2 // Typed double\n", + "int int_par = 3 // Typed int\n", + "string string_par // Typed string\n", + " par_with_value = 5.2 // Added value at creation\n" + ] + } + ], + "source": [ + "instrument.show_parameters()" + ] + }, + { + "cell_type": "markdown", + "id": "cardiac-apparel", + "metadata": {}, + "source": [ + "### Parameter restrictions\n", + "Since the parameter object in McStasScript is derived from libpyvinyl, some functionality is inherited in terms of setting parameter restrictions. This comes in the forms of intervals and options, which can both be legal and illegal.\n", + "\n", + "Here is an example of adding legal intervals to the *double_par* parameter. None can be used if the interval should extend to infinity in the given direction." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "portuguese-circuit", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameter named: 'double_par' with value: 1.2\n", + " Typed double\n", + " Legal intervals:\n", + " [0,5]\n", + " [7,inf]\n", + "\n" + ] + } + ], + "source": [ + "double_par.add_interval(0, 5, intervals_are_legal=True)\n", + "double_par.add_interval(7, None, intervals_are_legal=True)\n", + "print(double_par)" + ] + }, + { + "cell_type": "markdown", + "id": "virtual-judges", + "metadata": {}, + "source": [ + "Now only values between 0 and 5 or from 7 to 8 are accepted. Trying to set a different value will raise a ValueError." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "unknown-edition", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameter named: 'double_par' with value: 1.8\n", + " Typed double\n", + " Legal intervals:\n", + " [0,5]\n", + " [7,inf]\n", + "\n" + ] + } + ], + "source": [ + "double_par.value = 1.8\n", + "print(double_par)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "familiar-church", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Parameter named: 'double_par' with value: 10\n", + " Typed double\n", + " Legal intervals:\n", + " [0,5]\n", + " [7,inf]\n", + "\n" + ] + } + ], + "source": [ + "try:\n", + " double_par.value = 10\n", + "except:\n", + " print(\"Failed to set value!\")\n", + " \n", + "print(double_par)" + ] + }, + { + "cell_type": "markdown", + "id": "psychological-voluntary", + "metadata": {}, + "source": [ + "Setting *intervals_are_legal* to False means that only values outside the defined intervals are allowed.\n", + "\n", + "Options work in a similar way, but for specific values." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "honey-theta", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Failed to set value!\n", + "Parameter named: 'int_par' with value: 3\n", + " Typed int\n", + " Allowed values:\n", + " 1\n", + " 2\n", + " 3\n", + "\n" + ] + } + ], + "source": [ + "int_par.add_option(1, options_are_legal=True)\n", + "int_par.add_option(2, options_are_legal=True)\n", + "int_par.add_option(3, options_are_legal=True)\n", + "\n", + "try:\n", + " int_par.value = 10\n", + "except:\n", + " print(\"Failed to set value!\")\n", + " \n", + "print(int_par)" + ] + }, + { + "cell_type": "markdown", + "id": "worse-square", + "metadata": {}, + "source": [ + "Adding restrictions to parameters is a healthy habit that can make the produced instrument more resilient to errors. Ensure the given wavelength is a positive number to catch errors early instead of trying to understand what happened when a simulation fails." + ] + }, + { + "cell_type": "markdown", + "id": "spread-parade", + "metadata": {}, + "source": [ + "## Declared variables\n", + "It is possible to declare variables that are used internally in the instrument and as such not exposed to the user. This is done thrugh the instrument objects *add_declare_var* method." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "confidential-village", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Declare variable: 'declared_var' of type double\n" + ] + } + ], + "source": [ + "declared_var = instrument.add_declare_var(\"double\", \"declared_var\", comment=\"Declared variable\")\n", + "print(declared_var)" + ] + }, + { + "cell_type": "markdown", + "id": "valuable-sigma", + "metadata": {}, + "source": [ + "There are no restrictions on the type for declared variables, typically double and int is used.\n", + "\n", + "Declared variables have no methods for additional input, all information must be given at initialization." + ] + }, + { + "cell_type": "markdown", + "id": "capital-fraction", + "metadata": {}, + "source": [ + "The declared variable can be initialized to a given value by using the *value* keyword." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "valid-offense", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Declare variable: 'integer' of type int with value: 5\n" + ] + } + ], + "source": [ + "declared_var = instrument.add_declare_var(\"int\", \"integer\", value=5, comment=\"Declared integer\")\n", + "print(declared_var)" + ] + }, + { + "cell_type": "markdown", + "id": "identified-butter", + "metadata": {}, + "source": [ + "Declared variables can also be one dimensional arrays using the *array* keyword. In the full McStas / McXtrace its possible to make arrays of any dimensionality but only one dimensional is supported in McStasScript. If a value of array is smaller than the length of the given value, the simulation will fail as it would write outside of the declared memory." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "polish-integration", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Declare variable: 'declared_array' of type double with value: [2, 3, 4]. Array with length 3\n" + ] + } + ], + "source": [ + "var = instrument.add_declare_var(\"double\", \"declared_array\", value=[2, 3, 4], array=3)\n", + "print(var)" + ] + }, + { + "cell_type": "markdown", + "id": "overall-differential", + "metadata": {}, + "source": [ + "The declared variables of the instrument can be displayed with *show_variables*." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "after-reply", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "type variable name value array length \n", + "-----------------------------------------------\n", + "double declared_var \n", + "int integer 5 \n", + "double declared_array [2, 3, 4] 3 \n", + "\n" + ] + } + ], + "source": [ + "instrument.show_variables()" + ] + }, + { + "cell_type": "markdown", + "id": "affected-street", + "metadata": {}, + "source": [ + "## Using parameters and variables\n", + "Instrument parameters and variables are can both be used when setting component attributes. One can use either the name in a string, or the object directly. When using a string, it is allowed to do basic math and use several parameter / variables. It is also possible to select a certain element from an array." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "dangerous-telling", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "COMPONENT source = Source_simple\n", + " \u001b[1myheight\u001b[0m = \u001b[1m\u001b[92minteger\u001b[0m\u001b[0m [m]\n", + " \u001b[1mxwidth\u001b[0m = \u001b[1m\u001b[92mdouble_par\u001b[0m\u001b[0m [m]\n", + " \u001b[1mdist\u001b[0m = \u001b[1m\u001b[92m5.0*first_par\u001b[0m\u001b[0m [m]\n", + " \u001b[1mfocus_xw\u001b[0m = \u001b[1m\u001b[92mdeclared_array[1]\u001b[0m\u001b[0m [m]\n", + "AT [0, 0, 0] ABSOLUTE\n" + ] + } + ], + "source": [ + "source = instrument.add_component(\"source\", \"Source_simple\")\n", + "source.xwidth = double_par\n", + "source.yheight = declared_var\n", + "source.dist = \"5.0*first_par + 0.1*double_par\"\n", + "source.focus_xw = \"declared_array[0]\"\n", + "print(source)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "biological-engine", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/docs/source/user_guide/plotting.ipynb b/docs/source/user_guide/plotting.ipynb new file mode 100644 index 00000000..60fa5924 --- /dev/null +++ b/docs/source/user_guide/plotting.ipynb @@ -0,0 +1,42 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "adult-childhood", + "metadata": {}, + "source": [ + "# Plotting\n", + "All there is to know about plotting" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "initial-enlargement", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From b703622ab974a51624761420ef4842b4218504ec Mon Sep 17 00:00:00 2001 From: Mads Bertelsen Date: Tue, 15 Mar 2022 11:22:56 +0100 Subject: [PATCH 223/403] Updates to documentation, including longer run lengths. Start of relying on release version of libpyvinyl, but still issues. Tests does not run. Syntax will change as a result of release version of libpyvinyl data handling. backengine will return data, and not in the data attribute anymore. --- docs/requirements.txt | 2 + docs/source/conf.py | 1 + .../source/getting_started/installation.ipynb | 2 +- docs/source/getting_started/overview.ipynb | 6 +- docs/source/getting_started/quick_start.ipynb | 6 +- docs/source/index.rst | 10 + .../McStasScript_tutorial_1_the_basics.ipynb | 14 +- .../McStasScript_tutorial_2_SPLIT.ipynb | 339 ++++++- ...tasScript_tutorial_3_EXTEND_and_WHEN.ipynb | 13 +- .../McStasScript_tutorial_4_JUMP.ipynb | 5 +- ...n_tutorial_1_processes_and_materials.ipynb | 18 +- .../tutorial/Union_tutorial_2_geometry.ipynb | 956 +++++++++++++++++- .../tutorial/Union_tutorial_3_loggers.ipynb | 74 +- .../Union_tutorial_4_conditionals.ipynb | 47 +- .../tutorial/Union_tutorial_5_masks.ipynb | 47 +- ...ial_6_Exit_and_number_of_activations.ipynb | 37 +- .../Union_tutorial_7_Tagging_history.ipynb | 40 +- docs/source/tutorial/animation_demo.gif | Bin 0 -> 203149 bytes docs/source/tutorial/animation_demo_long.gif | Bin 0 -> 1413612 bytes docs/source/user_guide/component_object.ipynb | 23 +- .../source/user_guide/instrument_object.ipynb | 164 ++- .../source/user_guide/instrument_reader.ipynb | 159 ++- docs/source/user_guide/laue_example.py | 48 + .../user_guide/parameters_and_variables.ipynb | 16 +- docs/source/user_guide/plotting.ipynb | 293 +++++- mcstasscript/data/McStasDataFormat.py | 51 + mcstasscript/data/data.py | 86 ++ mcstasscript/data/pyvinylData.py | 51 + mcstasscript/helper/mcstas_objects.py | 24 +- mcstasscript/interface/instr.py | 259 +++-- mcstasscript/tests/test_Instr.py | 6 +- 31 files changed, 2508 insertions(+), 289 deletions(-) create mode 100644 docs/requirements.txt create mode 100644 docs/source/tutorial/animation_demo.gif create mode 100644 docs/source/tutorial/animation_demo_long.gif create mode 100644 docs/source/user_guide/laue_example.py create mode 100644 mcstasscript/data/McStasDataFormat.py create mode 100644 mcstasscript/data/pyvinylData.py diff --git a/docs/requirements.txt b/docs/requirements.txt new file mode 100644 index 00000000..39e17c5a --- /dev/null +++ b/docs/requirements.txt @@ -0,0 +1,2 @@ +nbsphinx +sphinx-book-theme diff --git a/docs/source/conf.py b/docs/source/conf.py index d0fb33ee..72362af7 100644 --- a/docs/source/conf.py +++ b/docs/source/conf.py @@ -14,6 +14,7 @@ import sys sys.path.insert(0, os.path.abspath('../../mcstasscript')) sys.path.insert(0, os.path.abspath('../..')) +sys.path.insert(0, os.path.abspath('/Users/madsbertelsen/PaNOSC/libpyvinyl/github/libpyvinyl')) print(sys.path) diff --git a/docs/source/getting_started/installation.ipynb b/docs/source/getting_started/installation.ipynb index 7735bef1..a887698b 100644 --- a/docs/source/getting_started/installation.ipynb +++ b/docs/source/getting_started/installation.ipynb @@ -105,7 +105,7 @@ "metadata": {}, "source": [ "## Tests\n", - "In order to ensure the installation and configuration was succesful, one can run the test suite. Navigate to the folder containing the McStasScript source code and run:\n", + "In order to ensure the installation and configuration was successful, one can run the test suite. Navigate to the folder containing the McStasScript source code and run:\n", "```\n", "pytest\n", "```\n", diff --git a/docs/source/getting_started/overview.ipynb b/docs/source/getting_started/overview.ipynb index 702ad3ea..e9d5940b 100644 --- a/docs/source/getting_started/overview.ipynb +++ b/docs/source/getting_started/overview.ipynb @@ -16,7 +16,7 @@ "## McStas / McXtrace simulations\n", "McStasScript is a python API for writing and running [McStas](https://www.mcstas.org) / [McXtrace](https://www.mcxtrace.org) simulations. These are sister packages meant for simulation of neutron and x-ray scattering instrumentation respectively and share a common syntax. The packages are used widely in the field and come with a large repository of components that describe smaller parts of the beamline. The community of users contribute such components to the packages, and they have in this way grown over the years.\n", "\n", - "McStas and McXtrace simulations are described by an *instrument file* which is a custom language built on C. Here a number of components are placed in simulated space to describe the physical instrument, along with a number of monitors that record the properties of the beam. The instrument file is used to generate a c code, which is then compiled to an executable on the users system. The simulation itself is a monte carlo ray-tracing simulation that tracks individual rays from the source, through the instrument, through any scattering events and deposits the rays intensity onto any monitors along the way." + "McStas and McXtrace simulations are described by an *instrument file* which is a custom language built on C. Here a number of components are placed in simulated space to describe the physical instrument, along with a number of monitors that record the properties of the beam. The instrument file is used to generate a c code, which is then compiled to an executable on the users system. The simulation itself is a Monte Carlo ray-tracing simulation that tracks individual rays from the source, through the instrument, through any scattering events and deposits the rays intensity onto any monitors along the way." ] }, { @@ -44,7 +44,7 @@ "\n", "It is possible to add practically anything to the instrument object that one would normally add to a instrument file, which includes parameters, declared variables, lines of initialize code and lines of finally code.\n", "\n", - "The instrument object has methods for adjusting settigns of the simulation such as the number of rays to simulate and setting the parameters. The *backengine* method runs the currently specified simulation, and loads the data into the *data* attribute which can the be accessed by the user. The data is loaded as a McStasData object for each monitor output, these objects contain the data itself as numpy arrays and relevant metadata." + "The instrument object has methods for adjusting settings of the simulation such as the number of rays to simulate and setting the parameters. The *backengine* method runs the currently specified simulation, and loads the data into the *data* attribute which can the be accessed by the user. The data is loaded as a McStasData object for each monitor output, these objects contain the data itself as numpy arrays and relevant metadata." ] }, { @@ -62,7 +62,7 @@ "metadata": {}, "source": [ "### Plotting tools\n", - "McStasScript includes tools for plotting the resulting simulation data, providing a convinient way to quickly see the results from the performed simulation. " + "McStasScript includes tools for plotting the resulting simulation data, providing a convenient way to quickly see the results from the performed simulation. " ] }, { diff --git a/docs/source/getting_started/quick_start.ipynb b/docs/source/getting_started/quick_start.ipynb index 21f6cf9b..5745c0f3 100644 --- a/docs/source/getting_started/quick_start.ipynb +++ b/docs/source/getting_started/quick_start.ipynb @@ -269,7 +269,7 @@ } ], "source": [ - "sample.set_AT(3, RELATIVE=source)\n", + "sample.set_AT(5, RELATIVE=source)\n", "sample.set_parameters(R=120, xwidth=0.01, yheight=0.01, zdepth=0.01,\n", " target_index=1, focus_xw=0.5, focus_yh=0.5)\n", "print(sample)" @@ -281,7 +281,7 @@ "metadata": {}, "source": [ "### Adding a monitor\n", - "The monitor can be placed relative to the sample, and even use the attributes from the sample to define its size so that the two always match. When setting a filename, it has to be a string also in the generated code, so use double qoutation marks as shown here." + "The monitor can be placed relative to the sample, and even use the attributes from the sample to define its size so that the two always match. When setting a filename, it has to be a string also in the generated code, so use double quotation marks as shown here." ] }, { @@ -340,7 +340,7 @@ "metadata": {}, "source": [ "### Performing the simulation\n", - "In order to start the simulation the *backengine* method is called. If the simulation is succesful, the data will be placed in the *data* attribute, otherwise this attribute will contain None." + "In order to start the simulation the *backengine* method is called. If the simulation is successful, the data will be placed in the *data* attribute, otherwise this attribute will contain None." ] }, { diff --git a/docs/source/index.rst b/docs/source/index.rst index 2f3355f2..bbe83c6f 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -22,7 +22,9 @@ Documentation user_guide/instrument_object user_guide/component_object user_guide/parameters_and_variables + user_guide/data user_guide/plotting + user_guide/functions user_guide/instrument_reader .. toctree:: @@ -53,6 +55,14 @@ Documentation :recursive: mcstasscript + +.. autosummary:: + :toctree: _autosummary + :template: custom-module-template.rst + :caption: Reference (libpyvinyl) + :recursive: + + libpyvinyl Indices and tables ================== diff --git a/docs/source/tutorial/McStasScript_tutorial_1_the_basics.ipynb b/docs/source/tutorial/McStasScript_tutorial_1_the_basics.ipynb index a1ccc6ae..a06e0cad 100644 --- a/docs/source/tutorial/McStasScript_tutorial_1_the_basics.ipynb +++ b/docs/source/tutorial/McStasScript_tutorial_1_the_basics.ipynb @@ -351,8 +351,11 @@ } ], "source": [ - "wavelength = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", - "order = instrument.add_parameter(\"int\", \"order\", value=1, comment=\"Monochromator order, integer\")\n", + "wavelength = instrument.add_parameter(\"wavelength\", value=5.0,\n", + " comment=\"Wavelength in [Ang]\")\n", + "\n", + "order = instrument.add_parameter(\"int\", \"order\", value=1,\n", + " comment=\"Monochromator order, integer\")\n", "instrument.show_parameters()" ] }, @@ -570,7 +573,8 @@ "metadata": {}, "outputs": [], "source": [ - "sample = instrument.add_component(\"sample\", \"PowderN\", AT=[0, 0, 1.1], RELATIVE=beam_direction)" + "sample = instrument.add_component(\"sample\", \"PowderN\",\n", + " AT=[0, 0, 1.1], RELATIVE=beam_direction)" ] }, { @@ -733,7 +737,7 @@ } ], "source": [ - "instrument.set_parameters(wavelength=2.8) # Set parameters\n", + "instrument.set_parameters(wavelength=2.8)\n", "instrument.show_parameters()" ] }, @@ -758,7 +762,7 @@ } ], "source": [ - "instrument.settings(ncount=5E5, output_path=\"data_folder/mcstas_basics\") # Settings\n", + "instrument.settings(ncount=5E6, output_path=\"data_folder/mcstas_basics\")\n", "instrument.show_settings()" ] }, diff --git a/docs/source/tutorial/McStasScript_tutorial_2_SPLIT.ipynb b/docs/source/tutorial/McStasScript_tutorial_2_SPLIT.ipynb index f7a581a4..b10b7f2b 100644 --- a/docs/source/tutorial/McStasScript_tutorial_2_SPLIT.ipynb +++ b/docs/source/tutorial/McStasScript_tutorial_2_SPLIT.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -27,16 +27,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ - "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\", output_path=\"data_folder/mcstas_SPLIT\")" + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\",\n", + " output_path=\"data_folder/mcstas_SPLIT\")" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -102,21 +103,77 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": { "tags": [ "scroll-output" ] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/tutorial/data_folder/mcstas_SPLIT_116\"\n", + "INFO: Regenerating c-file: python_tutorial.c\n", + "CFLAGS=\n", + "INFO: Recompiling: ./python_tutorial.out\n", + "mccode-r.c:2837:3: warning: expression result unused [-Wunused-value]\n", + " *t0;\n", + " ^~~\n", + "1 warning generated.\n", + "INFO: ===\n", + "INFO: Placing instr file copy python_tutorial.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/tutorial/data_folder/mcstas_SPLIT_116\n", + "\n", + " monochromator rotation = 22.4519 deg\n", + "[python_tutorial] Initialize\n", + "Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Na2Ca3Al2F14.laz' (Table_Read_Offset)\n", + "Table from file 'Na2Ca3Al2F14.laz' (block 1) is 841 x 18 (x=1:20), constant step. interpolation: linear\n", + " '# TITLE *-Na2Ca3Al2F14-[I213] Courbion, G.;Ferey, G.[1988] Standard NAC cal ...'\n", + "PowderN: sample: Reading 841 rows from Na2Ca3Al2F14.laz\n", + "PowderN: sample: Read 841 reflections from file 'Na2Ca3Al2F14.laz'\n", + "PowderN: sample: Vc=1079.1 [Angs] sigma_abs=11.7856 [barn] sigma_inc=13.6704 [barn] reflections=Na2Ca3Al2F14.laz\n", + "\n", + "Save [python_tutorial]\n", + "Detector: banana_I=2.57019e-06 banana_ERR=1.14784e-07 banana_N=1447 \"banana.dat\"\n", + "\n", + "Finally [python_tutorial: /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/tutorial/data_folder/mcstas_SPLIT_116]. Time: 0 [s] \n", + "PowderN: sample: Info: you may highly improve the computation efficiency by using\n", + " SPLIT 47 COMPONENT sample=PowderN(...)\n", + " in the instrument description python_tutorial.instr.\n", + "loading system configuration\n", + "\n", + "Plotting data with name banana\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAHuCAYAAAD3MtMPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADN9klEQVR4nOzdd5gs+Vkf+u9bVR1npiefHHe1WdrVrla7CIkcJYQBgVgLbIJsQMYWFwNOXMMV19dcbLANXGRrSQYMyAIEEmDJZOWjsFmbw8lx8vR0rK6q3/2j6lfTM9OhOlRPz/T38zznObszPd11Znq66603iVIKRERERERERHExdvsAiIiIiIiIaH9j4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSUREe5qI/JaI/FYM9/t9InK+h6//ShFRwZ9faHG7U8FtTnX7WA3u8+fqHvsr+3W//RDXz4uIiIYbA08iIuqJiHxMRN6zi4fwfwR/AAAicl5Evm/3DmeHwwB+ZsCP+f8EjzuMhv3nRUREMbB2+wCIiIh6oZRa3+1jaEUpdX0XHrMAoCAig37otuL4eYlISilV7ff9EhFR/zDjSUREsRGRrIj8moisisiGiPyBiMzVff63ROS3ReRng9tcEZEf2XYfXy0iz4tIWUQ+IiI/UV8CW1+6KSIfA3ASwH8Pykw/pj++PSu7PdMWlMY+FzzOnwOYwzYi8iMiclZESiLyBRH58i6+J8dF5G9EpCIiTwB4XYPbfK2IPBIcy4si8k86+Z5EPA5d4vttIvJ48G/6IxFJi8g/F5EbInJVRL5n29d9vYg8JSJVEXlJRN7R4D7/XnD8RRH5WxE5VnebKD8vMygXvhH8G/+3iNxUdx/vCX6m/1JErgH4WCf/diIiGjwGnkREFKf/BODLAXwzgK8AcALAb227zbcFfz8I4N8B+EURuQsARGQKwJ8A+CiA1wL4IIB/0+Lx3gbgMoAfhV9q+rYoBykik8Hj/DWAewH8OYD/c9tt3gng3QD+CYBXA/gdAB8RkeNRHqPO7wBIwP/3/ksAP7ftcW6D/+98L4C7APwYgJ8RkW8PPj+Fzr4n7fyfAP4pgK+B/7P6cwC3Bv/9SwAe1hcLROQEgD8F8McAXhN8/ndE5PXb7vM9AH4i+Dfm4D8PGmn28/oJAN8X/Hk9ABvAh0Sk/rzlfgD3BMf9/R3+m4mIaMBYaktERLEQkQkA/wjAW5VSnwo+9n0AnhORW5VSLwY3Pa+U+sngv18UkR8D8GUAngHwXQCWAfyYUkoBeEFEvgJ+ULSDUmpFRFwA6x2WuH4XgDyAH1VKuQCeD7KZX1p3m38L4IeVUn8R/P//JyLfDOC7sS14bEZE7gDwlQBuUUq9HHzs5wE8XHezfwXgvyml/nvw/2dF5BcB/AD8ILOj70kE/49S6jPBsXwQwLcDeLNSqhYc20/BD/4+Cj/ofkwp9Z7ga18UkTcB+OfBcdXf58eC+/zPAP5zowdu8fP6UQA/rZT6aHAf3wc/QP1aAH8Z3MYF8ANKqVKX/24iIhqgPZ3xFJFfEJFzQXnOq/t0n0kReaLuz4si4ojITD/un4hohNwEP7P3Wf0BpdTzANYA3F53uy9u+7prAA4E/30rgMeDAEt7pO9HCtwG4NEg6NTC4xaRcQCnAXxQRAr6D4Cvgv/v7ORxVnXQuf1xAq8B8KPbHuen6x6n39+TZ+r+ewHAS0qpGgAopTz4Qe588PnbGxzvGWz9eQJbf6b1P8+2guzzIWx93qwAeGHb47zAoJOIaO/Y6xnPD8Ev8/lkv+5QKWXDL10CAIjIjwL42uBNj4iIoos62aa27f8VNi+MSvD/vfIaHE+i7r8bPU797ceCvx8C8Py22+U7OI52jwMA4wB+HsBvb/u4/j7163uy/X4R3G+7n0c39xnHlCMGnUREe8iezngqpT6llLq0/eMi8qCI/J2IPBr8+aYeHub7AfxmD19PRDSqXgHgAPgS/QERuR3AFHYGb828AOBekS3jWXcM49mmBsDc9rFF+Fk0fRzz9f8fPM7rtvUQPlD33wsArgM4rpR6edufhYj/Fv04MyJyc5PHAYAnAdza4HEu1N1Hp9+TfnkedT/PwBsQ/efZyJafVzD19ga2Pm9m4GeLe3kcIiLaRXs68GwkGLrwPgDfpZR6HYC3wh+MMNXFfd0Pf9jBn/XzGImI9qFDIvLa+j/wg87fhN8L+SYRuQ/+YKGP1vV3tvP78KfL/ryI3BoM+PkmtM74XQDwJhE5FJRtAsAnAHyHiHyViLwGwK8DqF+/8fsApgH8FxG5TUR+EMCb9SeDstafBfDvReT7RORmEblfRH4y6K+MRCn1bHAsvyEi94jI18IfpFPv5wF8i4j8jIjcISJ3icg7ReRdPXxP+uW/wQ/Q3xM89j+D3xP6Sz3cZ6Of1y8B+L9F5M1BK81vATgLf/gTERHtQfsu8IQ/COI0gI+KP6b+o/DfjF8FACKy1OTPUw3u650Aflf3uhARUVM/BODxbX9uA/DjAD4Ff1LqJ+APiPneqHeqlFqDP+n0m+FnAr8DflDSamfjz8DPll0C8OHgY78Ovz3jTwD8LwDvh5/FrH+cbwPwjcHjfBuA/3fbsfx/AP41/OE/z8G/KPk6AFej/nsC/xD++9LnAfwX+EOL6h/nUQBfD39a62Pw20m+F8D5umPt9HvSF0HW9VvhB5tPwx8C9P1Kqc/1cLeNfl4/D3/6728D+AKANIBvCXpOiYhoD5Ktswn2JvF3l71VKfV0UFb7r5RS3U730/eZhn8y8eVKqaf7cJhERNQHIvI++CWvvbRRxE5EvhLA3yml4uhv3P5YDb8nIqIAfJWeMEtERLRb9mPG8zMAbhGRr9IfEJHXb+uFieJtAF5m0ElEtLuCMtMHg/LWH4K/2/F3d/mwIgsm0/77Pt9ny+9JUKZb6OdjEhER9WJPZzxF5JfhB4iHACwBWFZK3SX+Iuufh9+vk4TfF/LNnZToiMhfAfigUup9/T9yIiKKSkTeA+Afw+9rPAfgl/bCa7OIZAAcDf53VSm13Mf7fg9afE9EZBb+eyAAXFFKlfv12ERERN3Y04EnERERERERDb/9WGpLREREREREQ4SBJxEREREREcXKiuuOReQX4I9bPwXgNY2G9IiICeCX4Y+vVwB+Tin161Huf25uTp06dapvx0tERERERETde/TRR5eUUvONPhdb4Al/X9ovwd8/1sx3w9+veQuAWQCPi8hfK6XOt7vzU6dO4ZFHHunDYRIREREREVGvRORCs8/FVmqrlPqUUupSm5s9BODXlFKeUmoRfrD69riOiYiIiIiIiAZvt3s8TwCoj4ovAji+S8dCREREREREMdjtwLMjIvKDIvKIiDyyuLi424dDREREREREEex24HkRwMm6/z8BoGl5rlLqV5VS9yul7p+fb9izSkRERERERENmtwPPPwTwAyJiiMg8gG8F8MHdPSQiIiIiIiLqp9gCTxH5ZRG5DOAYgL8WkWeCj39ERO4PbvY/AJwF8BKAzwL4v5VSZ+M6JiIiIiIiIhq82NapKKV+BMCPNPj4W+r+2wXwT+I6BiIiIiIiItp9u11qS0RERERERPscA08iIiIiIiKKFQNPIiIiIiIiihUDTyIiIiIiIooVA08iIiIiIiKKFQNPIiIiIiIiihUDTyIiIiIiIooVA08iIiIiIiKKFQNPIiIiIiIiihUDTyIiIiIiIooVA08iItpXHnr4DB56+MxuHwYRERHVYeBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSURERERERLGKNfAUkVtF5IyIvBj8fUuD2xwQkf8lIk+JyPMi8l9FxIrzuIiIaPg89PAZPPTwmd0+DCIiIopB3BnP9wF4r1LqVgDvBfBwg9v8JIDnlFJ3A3gNgNcBeFvMx0VEREREREQDElvgKSIHANwH4P3Bh94P4D4Rmd92UwVgQkQMACkASQBX4jouIiIiIiIiGqw4M57HAVxRSrkAEPx9Nfh4vX8H4FYA1wBcB/AXSqlPN7pDEflBEXlERB5ZXFyM78iJiIiIiIiob4ZhuNDbATwF4DCAowC+XES+o9ENlVK/qpS6Xyl1//z89sQpERERERERDaM4A89LAI6KiAkAwd9Hgo/XezeA31NKeUqpdQAfBvBVMR4XERERERERDVBsgadSagHAEwDeEXzoHQAeV0ptr5E9B+AbAUBEkgC+FsDTcR0XERERERERDVbcpbbvAvBuEXkRfmbzXQAgIh8RkfuD2/wogC8TkS/CD1RfBPBrMR8XERERERERDUis+zKVUs8DeLDBx99S99+vAPi6OI+DiIiIiIiIds8wDBciIiIiIiKifYyBJxEREREREcWKgScRERERERHFioEnERERERERxYqBJxERDbWHHj6Dhx4+s9uHQURERD1g4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERERERESxYuBJREREREREsWLgSURERERERLFi4ElERHvSQw+fwUMPn9ntwyAiIqIIGHgSERERERFRrBh4EhERERERUawYeBIREREREVGsGHgSERERERFRrBh4EhERERERUawYeBIREREREVGsGHgSERERERFRrBh4EhERERERUawYeBIREREREVGsGHgSERERERFRrBh4EhERjbCHHj6Dhx4+s9uHQURE+xwDTyIiIiIiIooVA08iIiLqCbOmRETUDgNPIiIiIiIiihUDTyIiIiIiIooVA08iIiIiIiKKFQNPIiIiIiIiihUDTyIiIiIiIooVA08iIiIiIiKKFQNPIiIiIiIiihUDTyIiIiIiIooVA08iIiIiIiKKFQNPIiIiIiIiihUDTyIioh499PAZPPTwmd0+DCIioqHFwJOIiIhoj+HFDiLaaxh4EhERERERUawYeBIREREREVGsGHgSERERERFRrBh4EhERERERUawYeBIREREREVGsGHgSERERERFRrBh4EhERERERUawYeBIREREREVGsGHgSERERERFRrBh4EhERERERUawYeBIREREREVGsGHgSERERERFRrBh4EhERERERUawYeBIREREREVGsGHgSEREN2EMPn8FDD5/Z7cMgIiIaGAaeREREREREFCsGnkRERERERBQrBp5EREREREQUK2u3D4CIiKifzi8XMZlJ7PZhEBERUR0GnkREtG94nsKNfBVQu30kREREVI+ltkREtG+slWsAAG+Xj4OIiIi2YuBJRET7xlKhCgBQiilPIiKiYcLAk4iI9o3NwHOXD4SIiIi2YOBJRET7xnLBBgB4jDyJiIiGCgNPIiLaN5jxJCIiGk4MPImIaN9gxpOIiGg4MfAkIqJ9Y7nIjCcREdEwYuBJRET7xuJGkPHkIk8iIqKhwsCTiIj2DWY8iYiIhhMDTyIi2jd0jycDz+H20MNn8NDDZ3b7MHbNqP/7iWg0xRp4isitInJGRF4M/r6lye2+U0S+KCJPB38fjPO4iIhof9JTbTlciIiIaLjEnfF8H4D3KqVuBfBeAA9vv4GI3A/gPQC+Tin1agBvArAe83EREdE+U7IdlGwXADOeREREwya2wFNEDgC4D8D7gw+9H8B9IjK/7ab/HMAvKKWuA4BSal0pVYnruIiIaH/SZbaCvZnxZPklERHtZ3FmPI8DuKKUcgEg+Ptq8PF6dwK4SUQ+ISKPici/FRFpdIci8oMi8oiIPLK4uBjjoRMR0V6zXPQDz6RlcKYtERHRkBmG4UIWgLsBfB2ArwDwZgD/sNENlVK/qpS6Xyl1//z89sQpERGNsqUNv78zaRlQezDjSUREtJ9ZzT4hIgsRvv66UuruJp+7BOCoiJhKKVdETABHgo/XuwDgj5RSVQBVEfkwgAcA/E6ExyciIgKwuUolZRnYYMMGERHRUGkaeAJYBPCWFp8XAH/a7JNKqQUReQLAOwD8bvD340qp7TWyvw/gLSLyP4Lj+RoAf9T+0ImIiDYtBT2eSdMv5nE9BdNo2LlBREREA9Yq8PxppdSFVl8sIj/T5v7fBeC3ReSnAawC+J7g6z4S3P8jAP4ngPsBPAvAA/AXAH4j2uETERH5lgpVjKesMNi0HQ+ZpLnLR0VERERAi8BTKfXBdl/c7jZKqecBPNjg42+p+28PwI8Ff4iIiLqyXLAxO54MV6nYrocMGHgSERENg1YZTwCAiKQBfDeAm+tvr5T6lzEeFxERjZhC1cGV1TKqjouU1XnAuFysYnYsiZVguq3teP0+RCIiIupSlKm2fwjgOwE4AIp1f4iIiPqmUHGwVq7hlYXu3mKWNmzMjaegN3LVXAaeREREw6JtxhPAq5RSd8R+JERENNK8oEb2/HIRdx7Jdfz1y8Uq7js5jVcWCwCY8SQiIhomUTKeZ0VkIvYjISKikaZ7M88tdZ7xdD2FlaKNufEk9BxbmxlPIiKioREl47kO4BER+QsA4WY09ngSEVE/hRnPLgLP1ZINT2FLqS0znkRERMMjSuD5QvCHiIgoNkHCE+eXOw88l4MdnrPjSejVncx4EhERDY+2gadSqt2uTiIiop7pjGc3pbbLhSoAYHasbrgQM55ERERDo2ngKSJvV0r9oYj8cKPPK6X+a3yHRUREo0b3eC4VbGxUaphIJyJ/7WIQeM5PMONJREQ0jFplPF8Nf5XK6xt8TjX4GBERUdd0xhMAzi+V8Jpjk5G/Niy1HeM6FSIiomHUNPBUSv1fwd/fP7jDISKiUVUXd+LccrGzwLNYhWkIJjOJzYwnS22JiIiGRtseTxGxAPwggK+Gn+n8WwC/ppRyYj42IiIaIZ5SSFkGqo7X8WTbpQ0bs2NJGIZAgoUqtrv7xTkPPXwGAPCBH3rDLh8JERHR7ooy1fa9AE4B+G0AAuAfALgHwLviOywiIho1SgGmITg8me448FwuVjE7ngIACDOeREREQydK4PnlAO5SSnkAICIfAPDFWI+KiIhGjqcUDAFOz43hXIcrVZYKNubGkwAAg3s8iYiIho4R4TaXAaTq/j8B4FI8h0NERKNKARARnJob63ilylKhirltGU8OFyIiIhoerdap6DUq5wCcCTKdAPB2AJ+I+8CIiGi0eErBMgSnZ8ewVqphrWRjKpuM9LXLBb/HE9h/GU/2iRLRXsTXLtquValt/RqVxwHcGvz3kwBysR0RERGNJKU2M54AcG6piHtPtA88S7aDcs3d2ePJjCcREdHQaBV4/kel1HMDOxIiIhppnlIwAJyeywIAzi8Xce+J6bZft7Th7/DUPZ5B3LlvMp40OpghIqL9rFWP5y+LyDMi8vMi8ibRG7mJiIhioDOex2eyMAQ4t1SK9HVLxSoA1PV4+gtV2ONJREQ0PJoGnkqprwPwpfDLbH8EwMsi8psi8i0ikhnUARIR0WjQU21Tlomj05nIK1WWC37Gc3Z8syxXhBlPIiKiYdJyqq1Sal0p9ftKqe8EcAeAPwTwZgBPi8iHB3GAREQ0GnTGEwBOzY7hfMSVKkuFrRlPwB8wxB5PIiKi4RFljycAQCllA/ho8Aci8mBcB0VERKNHKcAImjpOz43hTx6/AqVU269bDgLPmbGtGU+W2hIREQ2Ptns8ReQ/icikiFgi8kkRKYrIP1BKfW4QB0hERKPBg9qS8dyoOFgu2m2/bqlgYyJlIZ0ww4+JCKostSUiIhoabQNPAF+rlFoH8A0ArsBfq/ITsR4VERGNFKXUjowngEh9nstFG3MTqS0fMwSoue2zpURERDQYUQJP7csB/LFS6goAvpsTEVHf6CAxzHjW7fJsZ2mjitmxrfs+BQLbcft8lERERNStKIHngoj8GoC/D+CvRMRCB72hRERE7ehBQDrjeWw6A9OQSAOGlovVLRNt9f0w40lERDQ8ogSe3wXgGQAPKaVWARwD8J9iPSoiIhoptaAf09/ACSRMAydmsjgfYZfncsHeMtEW8DOng1ynki/XUKw6A3s8IiKivaZp5lJE/gDAhwB8RCn1i/rjSqnzAH4r5uMiIqIRojOeQaUtAODUbBbnloqYSDcvslFKYaVkY3ZH4ImBrlM5v1xC0uqke4WIiGi0tHqX/CUA9wL4jIj8tYi8W0RODui4iIhohOjspFEXeZ6a83d5tlqp4nj+UKK5HaW2g8141lyP61uIiIhaaHoZWSn1aQCfBvAvROROAN8C4AMikgTwpwA+rJR6fDCHSURE+5lefVKf8Tw9N4aS7aLmKiQtafh1OtjbWWqLgQWeSik4ngJGeH3LRqUGjy21RETUQqS6IKXUs0qp/1cp9SUAvgnAdQD/PtYjIyKikdEw4znrT7at1JpPp9UDhLZPtTWAgWUg8xW/t9Px1MhmPS+tlnFppX0/LhERja5IgaeIZEXk1iDzOQ3gE0qpt8R7aERE1E8PPXwGDz18ZrcPo6FGPZ56l2elxVoUHejt7PGUgfV4rhbt8L9X6v57lLhekPWlganUXCxuVHf7MIiIImu7FkVE/imAnwOwAkC/iysAN8V4XERENEJq7s6M55GpDJKmgUqteQCpM57z2wJPQzYn5cZtpbQZbC7kqziYSw/kcYeJ4yp4LXpxqf8WNqq4tl6B7XgcbEVEe0KUfZw/DuDVSqkLcR8MERGNJjtcp7LJNAQnZrNYLjTP6tRcD5YhyGW2vp0NMuO5Vhd4LhYqACYH8rjDxPE8eMrvdxVp3I9L/eUFGeaVoo1Dk6N3sYOI9p4ol8iuM+gkIqI4NerxBPw+z1YZT8f1MDue3BHsDHK40EqxFv73KJY+Oq4XDhYq2s3Loqm/3CDDvNTiwgwR0TCJEnj+lYj8RxG5T0Tu1H9iPzIiIhoZjabaAsDpuSwqjtt0pUrNVTsm2gLBOpVd6PFcyI9eELARDFcCgPVyrcUtqZ90xpOBJ9H+MMxzGPolSqnt9wR/v73uY+zxJCKivrEb9HgC/i5PpdA0iKy53o7BQoBfsqv7P+O2WrIhAAxDsLgHg4Ca6yFhdt8jWB9s5ss1HJ3K9OOwqA399F4qjOZAKyLae9oGnkqp04M4ECIiGl12s4xnuFKlSeDpKcxtW6UC+AGs6ym4noJpxNtzuFqyYZkC05A9V2p7fqmIxy6u4c7DE13fR76yGXgy4zk4OuPZqgeaiGiYNL3EKSK5dl8c5TZERETtbAaeW4PE0/PNd3kqpeC4HuYmGmQ8Zev9xmmlaMMyDCRNAwt7LPA8t1wEAJR76M3cnvGkwWCPJxHtNa1qaz4W4euj3IaIiKilzXUqWz9+cCINQxpnPD3l/5ltkPHUAewg+jxXSzVYpiBhGnsu47kUHK+9rSy5k16jfHmzxzNf1+9J8dLra5ZZaktEe0SrUtvbROTzLT4vAGb7fDxERDSCmmU8DUOQskxUnJ0ZOR2sNurxNAaY8Vwt2rCMzcBzL60UWQ4GI9V6CNDrM54stR0cNyi13Yt9xUQ0mloFnm+J8PW8zEZERD2zm2Q8ASCdMFCy3R1DcHSwNDfePOPZS0AV1WqphoRpIGkJyjUXhaqDiXQi9sftB90f2EtmmKW2u0OvsGHGk4j2iqaBp1Lq44M8ECIiGl3hOpUGn5sZS2K1VMQ//b3H8CvfdR+Slh986qm1jdep+H/HnfFUSmG1ZOPgRCoMihc3qnso8Awynj18n/KVWjjVlxnPwVBKhRlP9ngS0V7R/fx0IiKiPrEdD4KdpbaAH1ienM3iL5+9gXf97qPhoCEnLLVtkPEM/o4745mvOHA9FfZ4AthTfZ5LQaltrxlP0xBYhmyZcEvxqb9Qs1K0wwm3RETDjIEnERHtOtvxdqxSqXcol8a//7ZX42+fX8AP/M4jqNTcMOM5O9Zoqq1/Z9WYM55rJT9wswwDCdN/zGGdbNtoYJAuta25mxm0TuXLtXCdDEttB0NPIU5aBhxPMdNMRHtC2z2eRERE3dKBzgd+6A0tb1dzPRhtBvJ894MnkTAN/KsPPoV3/tYXUHVcmIaEpbf1dKlt3BnPlSBjuFcznvX9gcuFKg7k0h3fh854miJbJtxSfIq2/31OWQaqjoflYhXTDaY7ExENk7YZTxH53yLyVtkrI/qIiGjPaZfx1L7z/uP4z995Dz57dhmLBTvMMm4XrlOJOeO5GmQ8E4YRTLaVPTNlVCmF5WIV6YR/KnAj391x58s1WIbhZzxZajsQOuOZTpgAgMUNDhgiouEXpdT2VwH8KIBXRORfiQhXqBARUV/ZETKe2rfdewy/9PfvBYAtU27rhcOFYs54rhb9QMsyBSKC+fEUFroM4AYtX3FQcxWySb/4aWGj0vX96B5PlnwORjEIPFNBtn+5uDeec0Q02toGnkqpP1ZKfS2ANwM4CuAZEfkdEXld7EdHREQjIWrGU/vme47gjsMTODGTbfj5Qa1TWQ17PP3Hm59I7ZmMp+7vzCb9rFm3Gc/1cg2WITANgz2eA1KqBqW2QcZzqa68u1EvLxHRMOhmuJANoALgd0TkP/X5eIiIaARVnegZTy2XTmA81XhUgb6nfpfabj+pXynafn9jfeC5R3o8l4P+VB14dpPxVEoFpbZ+xrMY7FuleJXqMp6GbP4siYiGWZQez7eJyN8C+GMAzwO4Uyn1gwDuAfDtMR8fERGNANv1Gu7w7JYOYm033jUTq6UaprPJMMM6P5HGYpclq4OmM55J0+9P7SbjWbJdOJ7yg++g33ajwgFDcdPDhUwRzIyluMuTiPaEKFNt/xGA/6CU+ov6DyqlHBF5dzyHRUREo6TWRcazFX1XsQ8XKtqYzibC/5+fSGG5aMNxPVhN+k+HxVIw0TZhGkhaBhbynQfMuqfTMgRGkPXNl2uY4YTVWOnhQoYhmBtPhj9LIqJhFuVd8X9uDzpF5B8AgFLqz2I5KiIiGim221mPZzvGgHo8V0r2ljUW8xMpKLW5ZmWY6VUqehVMN/tH9RRb0zTCcuNeBgw16k9kz+JOeriQKcDcODOeRLQ3RAk8/3mDj/1Yvw+EiIhGl71HM55rJRsz2c3A88BECgC6CuIGbblYxWQmAUMESVNwo5uMZ2kz46kHLNWvVGHQGA89XMgwBLPjyS37WImIhlXTUlsRuR/AgwDmROSH6z41CYA1NERE1DedTrVtZ1B7PFeKNbzuZCKcbjsfBJ57YcDQcsHG3Lj/dp6wDFxfr8AN+jWjqi+11T8/rlSJX6nmQuBn9pnxJKK9olWP51EA9wMYA/D6uo/nAXxfjMdEREQjppM9nlEMYo+nUgprJRvT2SSAIgBgfnzvBJ5LhSpmg+NNmgY85Q8cOpBLR76PfDBIyDQk/PnlyxwuFLdS1Ql7amfHkyjZLkq2E+5kJSIaRk1foZRSHwbwYRH5eqXUXw7wmIiIaMT0PeNZd79x2ag6cDwVBJ6++bDUdvgn2y4Xbdx6cBzLBRuJYBDSjXxngefWjGfvPZ4UTcl2YQbf77ng4sFywUZ2hoEnEQ2vpj2eIvLG4D8tEXnL9j8DOj4iIhoB/nChfvZ4ChKmxDpcaDUYIFQ/XCidMJFLWy0zno7r4cpaOfYy4HaWC1XMjgUZT0sHnp0FzPkgyPQznn7mtL7Hk+JRsl0YwRmcLpdmuS0B7Kum4dbq0tj3Afg0gH/R4HMKwEfiOCAiIho9tuMhnejv+pGEacQa3OnJtTNjiS0fn59IYbFFEPDYxTVcXi2jWN29klTH9bBaqmF2PAncQJjxbDcUSZ/QfuCH3gDAz25OpKzwokEuY4XBKMWnaDs7Mp5cqUJEw65Vqe0PBH9/1eAOh4iIRpHteMgkzL7eZ9IyYs14rgUTXaeyW+ftHZhIYyHfPIB75uo6AGC1VMMnX1rEl90yH9sxNrMSDEPSPZ4J0x8O1E3GM5fZDLxz6QRLbQfAz3jqHk9dasuMJxENt7aXl0Xky0VkPPjvfyQi7xOR0/EfGhERjQp/uFB/7zNpGrEOFwozntsCz3YZz2eu5mEZgpRl4D1/+syulNzq9RtzQZmwIYLZsWTHvan5yrbAM5MIBw5RfEp1Gc/ZMZbaEtHeEKWu6VcAFEXkLgA/DuAigN+I9aiIiGhkuJ6C66m+9ngCutRW9fU+6+kVKvU9nkAQeLYoWX3mah5jKQunZrN4ZbGI//7pc7EdYzM68NTZMqB9praR9XINk5nN4qlchhnPQajPeKYTJiZSFkttiWjoRQk8HaWUAvBmAP9NKfWzAKbjPSwiIhoVOuPX74xnyoo347lasmEaglx6a9fKgYkUSraLQoMezqrj4qUbGxhLmpjKJvG1dxzAL//NS7i+PtgpuDo7Nju+GTQfyKVwo9OMZ9nBZF3GczKTwAYDz5aUUnj2Wr6nn3mp6sKs+32Zm+AuT9o7OABpdEUJPK1gwu13APjb4GP9bcQhotjxhZ6GlQ4848l4un29z3orxRqms4kdx61XqjTKer54vQDHU8im/GD1p996F2qews9+5LnYjrMRHaTMjW1mPA92mfHMpet7PC1OtW2j6njYqDi4sFLCx15Y6Oo+ivbmHk/AL7ddZsaTiIZclMDzpwC8F8BnlFLPiMitAF6O97CIiGhU6Kxk33s8LQM1N8ZS26K9ZYendmDC34PZKPDUg4XGkv712xOzWbzrK27Gnz55daDTYJeLNixDkKsrkz2Y87NmTgdZYr/UdmuP53q5Br9QihqpL0X+kfc/jvNLxY6+XimFct0eT8CfbMuMJxENu7aBp1Lqw0qp1yqlfiz4/xeVUm+L/9CIiGgU6MCz/xlPiXVwz2qpceCpM56NBvU8czWP8ZSFlLX59vtPvuJmHJ3K4PxyCd6AArblQhWz48kt3/P5XBqe8oPSKGzHQ7nmbhkuNJlJoOYqVGq7u6N0mOkLDMenMzANwQ/8ziMNy7KbsV0Pjqe2ZjzHk5F/bkREuyXKVNt0MM32Z0XkP+o/gzg4IiLa/+Lq8UwOoMdzetsOT6B1qe0zV9dx5+HcloAvkzTxU2+9E+Wa23Gpa7eWCzZm68psAeCgDpgjHoMuqZ3ctk4FAAcMtaC/b9mkiV/5rvtwdqmIH/vAE/C8aBcdyrZfPr4947lasjvKVhMRDVqUUts/BPCdABwAxbo/REREPYu3xzPOdSo1zIztzHhOZRJImLIj8HQ9heeubeCuo7kdX/MNdx3EZCaBy6tlrJfiD9qWivaWwUIAcCDnlwhH3eWpM3fbhwsBaNnn6bgeXl4ooNhBlm8/yZf9f7dlGHjjq+bwk2+5A3/57A38yt9F62IqBoFnfcZzbjwJpTb3sxLR8BrlmRtW+5vgVUqpO2I/EiIiGklhxrPP95uyDKzElAFSSmGtZGOqQamtYQjmxlNY2BZ4nlsqoFxzcdeRSTx7Nb/lcyKCI5NpPFfewGOXVvFVtx2I5bi15UIVN82NbfnYwZyf8Yw62VZnNXNb1qlYWz7XyJW1MpaLNjKJ0ZxTqINyMwgc3/nGU3jmyjr+81+9iFsPjO9Yz7NdKQjYt0y1DdbiLG0w8CSi4RXlff6siEzEfiRERDSSbNfP4PQ54RlrxnOj6sDxFGYaBJ5A412ezwTB5l1HdmY8ASCb8gOx7UFpHPxS263HPjeegkj0Utv1VhnPFoHn1TU/sI2zDHqY6e+bFUSOIoKffdtrcPexSby8WEC11noSc6lBxlPvY10ucsAQEQ2vKIHnOoBHROSX2eNJRET9Zjt+b1u/S239qbbxBDerwSCXZtmpA00Cz6Rl4FUHxht+jWUYSFlG7IFnyXZQrrlhsKIlTAOzY8mGQ5EayVf8zFujHs9WpbbX82UAiLUMepjpoNysCxzTCRP/4dvvhqc2v6/NFG2d8dxaaguAk22JaKhFKbV9IfhDRETUd7GtU4kx47ka9GFOZ3cOFwL8jOcTl9Yxkd58m33m6jpuOziBhNn8mm82aYYrV+Ki9z1u7/EE/FUwNzrMeG7Z4xkEoa36VK+t77+Mp+7X+sAPvaHtbfMVB4YAxrYLLYeCHlu3zZChUrVFxpO7PIloiLUNPJVSPzOIAyEiotG0OdW2z8OFYpxq2y7jOT+ewkqxipvmshARKKXwzNU8vvGuQy3vdyxp4fxyCYWqg/FUlGvDndNZsbkGgefBXAoLGxWMJds/dj7s8azPePpf1yprd10HniOc8TQbXGXRFymcdoFnbedU21zaQtI0sMiMJxENsSjrVA6IyO+KyCeC/79bRN4V5c5F5FYROSMiLwZ/39LitreJSElEfiH64RMR0V63OdW2v/cbZ8ZzJQg8m/Z4Bjsxa64fRFxdr2CtVMNdRydb3q/u83zuWnzltjorNret1BboLOOZL9eQtAyk64YEWaaBsaTZcriQzng6nkKlTT/jfrTeJPC0TAOGAK7X+jmrhwsZdWdwIuLv8mTGk4aI43oj+TtOzUXp8fw1AJ8CMBX8//MAfjji/b8PwHuVUrcCeC+AhxvdSETM4HMfini/RES0T+jhQv3OeMa5x3M1WFsx3SzwDII63WP69BW/fLbZYCFNZxrj7PPUA2i293gCfsZzqVCFUu13Sq6Xa1v6O7XJTKLlcCGd8dz+36MiX6nBMhqfflmG0T7j2WCPJ+BfSGCPJw2Tq+sVPHM1H+n1hEZDlMDzqFLqfQBcAFBK2QDavpOLyAEA9wF4f/Ch9wO4T0TmG9z8XwP4cwAvRjloIiLaP8KMZ5/vN2kaYcax31ZLNkxDtvRw1puf2Bp4PnM1D0OAOw61DjwTpmBmLBlrn+eS7vFsUCZ8IJeGqsvUtpKvNA48c5lEy+FC19YrSFlG+N+jJl92YDVpaLZMad/jaeuM59b7YMaThk3N9eB4KqwQIYoSeG5p1BCRKUQ7PzgO4IpSSgesLoCrwcfr7+9uAN8A4L+0u0MR+UEReUREHllcXIxwCERENOxsN56ptgnTgOuptify3Vgp1jCdTew4+dcOhIGn/9jPXl3HTfPjyCRb764UEdx1JIdnYy61HU9ZW0pkNX3cUTLF6+Va2NNZL5dONC21tR0PS4Vq2L+qJ9yOknylcakt4E+6bZfxLNouEqbsqBBgxpOGjX4uX1wp7fKR0LCIEnh+UEQeBjAhIt8H4C8B/GY/HlxEEvBLed+lA9RWlFK/qpS6Xyl1//x8o8QpERHtNZvDhfp7v8kgqxbHSpW1ko2pJmW2wGbG067LeLYrs9XuPJzDi9cLsa2CWS5WG060BYCDwWTVKI/drNQ2l0kgX248XOhG3s9w6sBzNDOezQNPy2if8SzbLjINLhrojCfLGmlYuMGFt0ure+8C00MPnwmnVVP/RJlq+/Mi8t3wezzfAuCXlVK/G+G+LwE4KiKmUsoN+jiPBB/XDgO4GcBHgivdUwBERHJKqR/s6F9CRER908l6iF5tDhfqd8bTv7+q4zXM7vVipWg3HSwE+HsZJ9IWaq6Hmuvh2noFrz7SerCQdueRHGzXw8sLBdxxOFqw2onlgt2wzBbYDDyjDGXKlx28an7nTtJcxsJz1xpnPHWgmU6YMA3BjRELPJVSyFccHJzY2V8LBBnPNmXOxaqDsQYTj+fHU7BdD66nYJn9Llwn6pzOeF5ixpMCUabafrVS6veUUg8ppb5TKfW7IvLV7b5OKbUA4AkA7wg+9A4AjyulFutuc1EpNaeUOqWUOgXgFwH8GoNOIqLREVfGU/cRxjHZdq1Uw1STHZ7agYkUaq5CMdi7GDXjqW8X14ChpUK14WAhwF+xIhI945lrNlyoSY/ntXU/85G0DCRNYygynoPMbBRtt2VgaBkCp91U25qLbIOSbZ3FrsVQWk7UDZ29v7jMwJN8UUptG603+fmI9/8uAO8WkRcBvDv4f4jIR0Tk/oj3QURE+5jtujAN6XvGM85S25WSjZkmWUNtfiKFmuOFw2DujBh4np4bRzph4JmYAs/lot1whyfgr/SYHUuFfbfNeJ7CRrPhQukENipOw5JRPcU2aRlIWgau53c/8BwkPe23eY+nAU/5ayiaKVUdZBvsWdXrcVp9LdEg6Ysol1YZeJKvaamtiLwKwK0AciLylrpPTQLIRrlzpdTzAB5s8PG3NLg5lFLviXK/RES0f9iOF5bF9lPCjCfjqZTCatHGdNvAMw3bXUPRdnF0KtOyJ7SeaQhuP5TDs9f6P9lWKX/C5OxY44wn4Gdqr6617skq2A485QeZ2+lgtFDZ2ed5bb2C8ZQFy5ChyXgOks4Em03Xqfi/BxsVp+nzq2g3yXiObR1oRXvPIFsc4ua4HvS1Jw4XIq1Vj+cbAXwfgIMA/kXdx/MAfiLGYyIiohFScxWSZpQCnM7ElfF0ld+7NB2p1NbPeN5/crqjx7jzSA5//uTVvg+KcYIpv82GCwH+Ls/zy8WW97Ne8gOoZsOFADQst72+XsGhSb+PNGkZuLpehu144c9qv9NDl5qtU9GZ0PVyrWngWbZdzI0nw32e2txEUGrLjCcNgULVf66bIri2XkHN9cKLgTS6mj4DlFK/rZT6KgDvVkp9Vd2fb1FK/a8BHiMREe1jVcdD0urv8B9gM+NZ7XPGU5cyTrfJYM5PpOApoFLz8Oqj0QYLaXcdySFfcXC5z9Mg9eCaZj2egD9gqF3wooPKRj2eesVKo5Uq1/IVHK4LPJUCFjZGJ+upvyet9ngCjYN2rWg7yDYYLjSTjd6fSxQ3fZElmzLhegrX1kbn95yaa3vpQSn1WyJys4h8vYi8Rf8ZxMEREVF/VB0XF5aLQ9n/ZTteOAion+LKeOpJjW17POuCu6iDhbQ7g2m2/e7z1N+LuRbHrocitcq26gAql9kZAOksaL5B4Hl9vbwZeAZB1o0R6vNs3+MZBJ5N1tEAfsZzrEGprWUamM4mWWpLQ0FfPNHPVZbbEhBhnYqI/CyAHwDwHABd16EAfCTG4yIioj565moe1/PVcH/iMLHdeEotkzH1eOrgvV3P5oFcfeDZWcbz9kM5GAI8e63PgafXPuN5INzl2TyA0YFRq1Lb7RnPmuthYaOKQ5MZXFguhT/zUerz3OzxbD7VFmicLdaKTYYLAcDsWBJLhWqPR0nUO32RxX+uVjlgiABECDwBfCeAm5VS8YzXIyKi2JWClR7DmA2xHTfmHs/+/pv1/UWZagv4wcTBXPNAr5FM0sRN8+N49mp/BwzpjGfrHs9gl2eLTLE+qWw1XGh7uejiRhVKoS7j6f98ro9S4Nm2x9P/nrQqtS01GS4E+JNtR+n7ScNLP4ezSRMJU5jxJADR1qlcY9BJRLS3FYOVHu12BO4G2/GQsGKcauu6bW7ZmbDUtl2PZ5BVHEuZXa2KuetIru+7PB3Xg0jr/tQDQcBca5Ep1hm5yQYDlsLhQtvKRfUOTz1cyDQE2aQ5chnPsWTz50O7jKfteHA81TTwnB1PsseThkL9RZajUxlcYuBJiBZ4nhGR94vI29jjSUS0NxWDCYNDmfF0vXgynjGW2hoCTKRbFw1NZ5MwDcF4qvX022buPJzD1WAaZL/UXIWZ4LiaiZTxrNRgCDDeoORzLGnCNGRH8KQDTJ3xFBEcmkyPVIZuvdx496lmCCBo3B8LINwJ26zUdm48FZZTE+2msKzcFByfyTLwJADRSm1fH/z97rqPsceTiGgPKQarFwY5XMh2PDx7NY9j05mWt6s5Kpxw2k+61Nbuc7Dtr1JJwmgRvAGAYQjuPjoZTirtlO4LLdkuJjP9CcxrrheWADczN95+Lcd6uYaJdKLh90BEkEtbO8pFdYB5OLf5fDg8mcb1ERsu1GgSsCYiDYN2Ta9QGUs1K7VNwvUUPAaftMvCQVriB54f/eK1XT6iwdtPe1n7pW3gGaxUISKiPSzMeA7whPT6egUbVSfc59ZM1fUwmUygWutvSWxcGc+a67UczrPlGHoYmnRnMAm3ZDsts2SdqLkKs2Otj90yDSRMge20Gi7UOnOXyyQaZjwzCXPLJNyDuTQ+d3Yl4tHvfflKrWFfbD3LEOQrjX9ndMYz02y4UPC8rA1hST2NlnzFgWkIRAQnZrJYLdWwUfEvWNHoahp4isidrb5QKfVs/w+HiIjiUAqCP2eApbaLBT+T5bVJZdqOX2rb98AzxnUq0w16G/ttZiyJw5NpFKv9+744roe5NhlPwO+PbZfxbBV4TmYSO8pFr6/7Ozzr+xsPT6ZxI1+B66mW5b/7Rb7s4MhUGhtNAkvAL01slvHUz4VG61QAv9QWGM6Sehot+XIt7Fk+MZMFAFxaKePOIww8R1mrjOf/avE5BeCmPh8LERHFpBBOtR1cJmRxw1/r4LbJstqOi5RlYKPPj58ISlz73+OpWg7n6ac7D+fwmVeW+3Z/NU9hts00XsDPFrfq8Vwv1xru8NRyaT/jmajr3b22Xg4HC2mHJjNwPIXlQjVc47KfrZdruP3QRMvA0zKkRY+n/3ucaTFcCBhsST1RI/lKLbyYdHw6CDxXS2ElB+20VrK3vGbuR03fNZRSpwd5IEREFJ9SONXW7/9q15/YDzrwbFfda7seEqb0vQ8mvoyn13aVSr/ceSSHv3l+oS89e55ScD0V9nC2kjCNcBJyI/mKsyOIrDeZSeB6vrIlyL2+XsGX3Dy75XaHg2Dz2nplJALPfMXv8byyVm56G9Mw2g4XGmtSajvPjCcNiXzZCQPPzYwnBww1s1q08dJCoW9tFcNqf4fVREQEAFv6LFstp++n6BlPr6deyGb0leNqHzOeSik4rsLUgDKed+k+zz6UIetgJEp/atIS1FzVNHO2Xm7dq5jLWFuCJ9dTuLFRxZHJrYOmdPA6CitVPE+hUHVaDhcCdI9nd8OFZiMMhiIahHxls9R2MpvARNriLs8Wfu9zF+CpwbbD7IYoU22JiGiP0yesALBctDE9gIzdYkFnPFu/kdZcFUvgqYcL9fMk3FV+r8nM2NbgIa6phXceDibbthnQFIUOIqOU2uqg/cZGFUendk4lbjtcKL11uNBSoQrXUzuypHq1yo0RmGy7UXWgFJBrs4bHNASrBRtKqR37PtsNF8omLRjCwJN2X75c29K3fYIrVZqqOi5++8wFAJt7ovcrZjxp33no4TPhCGsi8hXrApeVoj2Qx+wo42k2zuD0wjAEliF97fHUwdugejyPz2RgioTrcHqhg5EoGU9dyvnExbUdn/M8harjtczc5TIJVB0vLBG+GpSWHt4WeM6MJZE0jZHIeOoMcJSMZ81VqNR2Pm/bDRcC9GCo/X3ySsMvX3HCjCfgB57MeDb24SeuYnGjipRlwBmSidRxnUsz8CQiGgFF2wmH7Qw68Iw01TaGjCfg93n2NfAMAqlBBZ4igmzKDDNdvdDBSJQez2zKhCHAF87vXHWivwftAs/62+odntszniKCg5MpXF9v3vO4X+gMcLseLp0lalQSX661Hi4E+EO1mPGk3eS4HgpVB6ax+bp+fCaLy6tl7pjdRimFX//kWdx+aAIzY0lmPImIaO8rVV2kLf9kdfAZz+a3UUrBduMNPPt5Eh5mPAc0XAgAskkTJduFahPAt6OvpEfJeBoiGE9Z+Ny5nYGnzmC3W6dSf1ud0Tw8ubNs93AuMxoZz6BvM8oez/rb1ytW/SxSssXkS8s09v3JKw03PVOgPuN5fCaLquOFLRjk+/iLi3jxRgE/8GU3wTIESgGVPq8WGyYMPImIRkCh6iCV8F/yV4rxv/ErpSL1eOqVHUkznim7iTZrQTqls4aD2OOpJUwDnup9SFLNVRBpXaZZbyKdwPPX8zsybzqAbdWrqD8XZjzzFSQto+H37dBkGtdHoMczX/ZPxlutoQEQZokaZTxLtots0tzR+1nPMqRteTv1F1t8ttLP9foez+PT/kUnlttu9eufPIeDuRS++Z4jLasd9gsGnkREI6Bku7AMgSH+cKG4rZdrYZDW6iRYl8HGlvE0DdhO/07CdSA1qHUqAGAGQUa5xz7PmushYRgtg5Z6E2kLSgGPXtia9ews4+n/fK+tV3B4Mt3wsQ9PpnF9vdJzRnfYRc54BhdhGq1UKdkOsk0GC2mmMPCk3aWf69uHCwFcqVLv2at5fOrlJXzvl55C0jJgmc0vOu0XDDyJiPY5pRSKtgPDECRMA6sDCDx1mW3ClJYZTx2ctiod7EXS6m/GU5fatgse+km3SfW6UqXmqrDPN4rxlIWEKTvKbZ0IgefOHs8yDjXZ03kwl0bV8bBW2r8nW0Bnw4WAxiefRdtFtskqFc0MMp77PZCn4aWf6/WltkenMxBhxrPer3/qLLJJE9/9wEkAm9+v/fxayMCTiGifK9dcKOVnQixTBpLx1IFnOmHCU2g6UGIz49n/qbaAH9DW+jxcyDIEhhFPaXAjRpjx7G3AkON64ZqUKExD8Jqjk/hCk8Cz5XCh9M4ez+0TbbXDI7LLM1+uQQSYSLVfp6Jvv105KLVt9/UK/d1fS9SJRhnPlGXiUC6NSyv7f5BYFLbj4U+fuIrvvP84JoMWhFYXnfYL7vEkItrn9AoG0xAkDGMgw4V0f2faMrABP/gda3DCHXepbcKS/mY8g8BzkHSpbannUluFTLKzY3/g9Cx+/ZNnUbbdcJKq60bJeG72eCqlcCNfweEG+0CBzUm31/P7+4Q0X3EwkbLaXrQIA8/KzgsNxepmqW2z3bH66zcqDtKJeC7oELWiezy3v1YeD3Z5Rqz239eu5yvwlMI733g6/JgZZjwHMwCwn3SPc7ud1sx4EhHtc3qHpxFkPAcSeAYZz1Rw4tssaLJd/+Nx9nj2c6qt56mBZjsBhI/XS+CplELN6yzjCQAPnp6B4yk8fmk1/JjjKWSTZsv7Slkm0gkDrqfgeAo1V7XIePoB6ShkPNuV2QL+7+lY0my6TqXdcCh98lqo9r6Ch6gbYcZzW2n/8Wnu8gT8SpCFjSq+8dWHcGI2G35c93fv54wnA08ion2uaG9OGEyYfsYz7v6vxUIVSdMIezeb7aHU5YBx9XgmTKOvJYeuUlvKxwbB6MNwoXzFgVLoqMcTAO47OQ0R4PN15bau50XqcZ3MJOC4Kvz+N+vxnJ9IwTQk3PW5X+Urtci9wblMomGpbX3Gs5kw8GyQMSUaBF1Wbm5LbZ6YyeLGRmXkd3kublThegr/+Mtu2vJx/f1i4ElEe57jeri2XubAiRFUX2prGYKq4/VcttnO4kY1DCiAFhnPsNQ2nmAuaRnhY/SD66kdJ1Nx0zF5Lz+zzWFPnb3tT2YSuONQDl84vxl4Op5qWWar5dIJuJ4Xfv8b7fAE/Ofl/Hhq3wee6+Va21Uq2mQm0XKdSiv6+blR3b8nrzTcdFn59inWJ2YzUH1YDbXXLRdtZJMm7jsxveXjIv57NIcLEdGet1Kq4eJKGS8tFHb7UGjAdMbTEAkDj7jLbRc3qpibSEEnB5tlPDen2sbTi5ay+lxqq3ah1Dbs8ew+g7Ww4Qd1nQaeAPDA6Rk8emE1DCAdT0UKoHKZBBxPhT22h5qU2urP7fddnvmyEylgB/ygXZcr1osUeNb1eNLocT3V8+qlXjUrKz8+7ZeVVp3dPb7dlK/UUKg6mGryWmAawownEe19ep/eIPr7aLjoHk/T2OwhiXuy7eJGFfPjnWQ84yu13fsZT//xKj2sU9EZz25Kmh84PYNKzcPTV9cB+N+DKAHUZCYB11OwHQ8JUzDbYvfp4cl0xz2eDz18JhxosRd0VmprYb28M3As2Q6yEafistR2NF1fr+Dpq+u7Wt3U7Lmud3mOcsbzzCvLAJoPZ7NMwRoDTyLa6/RaAwaeo6ekS23Fn2oLIPZdnksFv9RWZ+t0ue92sQ8X6nPG0/UUYmpHbcrow1Tb+r2qnXr9qRkACNeq+BnPKKW2lp/xdDwczKVbZooPTab3falt1OFCQOMeT9vxUHMVhwtRS1XHg6d6n4Ldi3zZaVgVMT+RQsoyUKmNbuD5qZeWYAgwnm58AckyDGY8iWjvY+A5uvQJqGHIQDKejuthuWhv6fEs1xqfBNsDGC7Ur4ynUgqewi6U2vp/93IiubBR9Yd9dHHs8xMp3DQ3Fg4Ycl0VebiQG5TaNptoqx2eTKNQdcIdofuN43oo2m70jGd6Z+CpyyczUYcLMfAcSU5Q3dSoVHtQmmU8RQTHZ7IjXWr7qZeXkEsnwguK21mGYH0PrlOJins8iUaEw8BzZJXqptrqYQ8rxWpsj+dPzUWkjGc15lLbpGXAdvsTzJRrm5njQRIRGLL5+N1YyFeQNI0dwz6ieuD0DD7yxWu47dAEXLWz1LbR7rawx9PxcKjJYCFNf952PFhtMnrD6PJquWWgp3dydjJcaKPqBBn24Hco+D1ul/E0RCBgj+eo0n3z+bKDw5O7cww6u98oc3diJoura/t7Z28zl1dLOLdUDEuOG7HY40lE+wEznqOraLtImAJDBKb42cU4M54LQVnn/HgqzA42G3YRd8YzaRqw+3R1vX468KAZIj0NF1osVLsaLKS9/tQM8hUn7BuMUjKqg9Oq0z7jqVet9LMsepCKVQf5Sq3pmgidvYw8XCi43UZd1kpnvNv1eAL+c7TAqbYjaTgynk7T7P7x6QyqNW9oJuwPslf8Uy8tAQAmW1yAMk0/8NyvK2cYeBKNCAaeo6tYdTAWnKyKCGbGklgpxPc8WCwEgedECrqlsNgkaNITT+PNePYnmCnVTQceNMOQ3kpt89Wu+ju1B077fZ6rpegBVP2JZ5RSWwB9HQQ1SDXPg1KbF12200FA1FJb/f3N1w0Y0s+/bKJ9Rtg0hMOFRpQTZDw3dinwdFwPhWrjHk8AOD6ThatUeE4yrK6ulfv+O/TJl5dwMJdCpsXvsGUY8BRQ6OFC4zBj4Ek0InSp7eo+7h2gxopVF2N1fWHTY8munwdRrg7rQTYHJlIQEYg0z3jWYp9qK2HpWa8K1c2S5UEzRXpakbCwUe0pq3xsOoPDk+nweRMp8Kw78WwXeB7IpQDs3cBTn+xfWC42/LwOICMPFwoGj9SX3G1mPCMGnuzxHDmO64Xv9fkGU5EHQT/vmmY8gzLTyhD/rq+VbFxaLYcXUfvB8xQ+8/IS3viquZYtD1bw/rK+T3d5MvAkGhHMeI4uP+O5ebI6O5aMtdRWB55z434wYUrzbF0cGc8P/NAbwp7DpGnC9fpzdV3/G3an1Lb74UJVx8V6udZTqa2I4IHTM2FPbq7JRMZ69UFWux7PlGVibjzZMDu9XLTxwvWNoQ5K9cn+hZVSw8+HGc8Oejzrvw6oy3i2GS4E+M9R9niOnvoLFbtVatvuIsteWKnyxSv+6qh+vuY8czWP1VINX3bLXMvbhYHnPu3zZOBJNCIYeI6uou1sOVmdGUvG+jxYKlQxkbKQCYagGIY0L7WNu8czCGj70Tuo96HuQtwJw+g+4xmuUukxuNfltgAwme1vqS3gr1TZfqL3R49exssLBayVazi31DibuNsc1wtfXy81CTzXu+zxrD/51D3G7YYLAcx4jqr61/XtU5EHZbOsvHmpLQBUexiW1o1OejmfuuwHnv0Mjj/58iIA4I2vah14mkFLxBoznkS0V6m6fgp/4uhw91ZQf23PeMbe47lRxdxEKvz/VmWiOtDopf+wFX2//TiB2M3hQqYISk1W0rSj+w6TPX6PHzhVF3h2MFwI2Mx+t3Iol96S8fz9z13Ev/ijJ5FO+Kcq55YKnRzuwNQHhxeWm2Q8y932eG7ed7mT4ULCjOco2hJ47tLPP3yuN3mNGE9ZsAwZ6oznU5fXAKBv8wEAf7DQ7YcmcGCi9UU4nfFcK+/PJAEDT6IRUK65UED4Yr+bi6Vp8Er21h7PmbEkNqpObKWLixtVzNcFGobhT9ZtpOp6Pa35aCfVz4ynXkuzx4YLhRnPHrPKrzowHp4URQmg9Iln0jQiBev1Gc/f+vQ5/OSffBFfees87jycAwCcHdKMZ32/9MUWpbamIchGXBXTMOPZ6XAhZjxHTv1zcbeGC0UZpJVKGKgMOOPZCZ3xdD0VVrr0omy7eOT8atsyW8AfLgSw1JaI9jB95TsVZA5YbjtaivbmVFvADzyB+AZNLRaqmN+R8WxeahvXYCFgM9jqR5Bd0qW2u5LxbD6gqZ2FPgWeIoKJtAUBIgVQE8FzLurP9/BkBo6ncHm1jPf82bP4hrsO4uF/eD8SpoGEKTi3OKyBp3+CmLKMHYGnLu/Llx3k0lbkCyxjSROmIdt6PDscLsSM58hZKfrPF0N2b7jQZo9n88x8wjTCvuhhs7BRwbX1SljSfm290vN9fv78CmzXw5tumW972zDjyVJbItqr9JXPtOW/kDLwHC3FqrtjuBAALMdUbru4sTXwNAwJy1S3q7nxBp597fHUw4WGPOO5vZdpMV+BIf0pZz48mcbR6UykAMowBKYhkX++epfnlbUyvvmeI/iV77ov/Np0whzejGfwejqWsrBStBtmmvKVWuSJtoAf5OfS1o51KqYhkfqhTUNgux6qfdphS3vDStG/yJROmLs3XKjSutQW8IOrYQ08vxhkO6eD98nrfQg8P/XSIpKmsaVdoRnDEKQsY9d6dOPGwJNoBOheD90rtcKVKiOlWHV2lNoC8VyAqNRcbFScnRnPJmVVtuPFNlgI6G/Gs1h1IAB2Ie6E0cM6lcVCFTNjqb6UM0+kEzg61XpCbb1DuRTmxpORbnty1h86MjeexC8+9NotGdp0whza4UK6cmA8uLjTqNx2vVyLPFhIy2USO4YLZZNmpJ+jLm1m1nO0rBRrwUWm3Qtc8uUaRIDxFtOXLUPg9mnNVb89eXkdhgDTwQC1q+vlnu/zky8t4f5T0+HAvXamsglmPIlo79JvQKkg47nKjOfIcFwPVcdrWGrb6gLEjXwFX7yyDq/Dq9K6n3BLj6dI0z6ZuEtt9X33Y5BFyXZhGBJbP2orpvgZLKeLzO1CvooDE+2H+8Th2HQW09logefrTk7jriM53DQ3tqMnNJMwsFK0sTaEF810qe148Dt2scGAoXy5FnmwkDaZSWzJWpW39Wq3orPy7PMcLaslG4mgp3rXhgtVHEykrJYtCaZhwFX9WXPVb1+8vIZbDkwgHfRS95rxrLkenr++gTdF6O/UJrdddNpPGHgSjYCN7RlPBp4jQ5eH1vfkhYFni+XY6+UaSrYbubxRl3fqhdtbMp5G8/5EO+5SW7O/61R2o8wW8Ac0AUCpi4EcCxtVHMjtTuDZCRHBeKpxH6RuExjGrOdqyYYIwmxGo4xnvuJE2uFZv4M2l07sGC4UdTiRDtw52Xa0LBdtWIbAMmT3hguV25eV6z7GYSsnVUrhqcvreM2xSRjifx+v9Zjx1L/DX/aq9v2d2lQmGWmqbScrYoYFA0+iEaBPPpKWP6SDgefo0JnG+oznVDYJEf8CRLM3Lt1P+NiF1Y4eL8x4TmzLeNpOwzU+tuP1PPSmFR3U9qXU1nbCAHDQjCAY66bcdvuU4b1IZx+GMvAMT/YNTGcTuNAo8Ow241neOlwoymAhoK7UlhnPkbJarMt4lhu/5sYtX2n/XNfPz2HL6l1dr2C5aOOeY5MA/IFhV9d6y3iul2uYziZw15Fc5K+ZzCawvkvDoeLGwJNoBOgrn/6JUZKB5wgp2TsDT9MQTGeTWG7yPCjbblia+mg/Ak9D4KnG5a7VAZXa1vrQT1SsuruW8dQnap2uVPE8haXC3sh4tpJK+CfTQxl4lmrhxZMTs2MNS23XI2SBtstlrC0nnyXbQTYRrdTWYo/nSFop2rBMqRsu1f6CW7+zZvly++y+ZQ5n4PnUpTUAwN3HpgD47x+9lNoqpbBeruFLXzXX0TT0yUwC60PYVtAPDDyJRoDuEzLEL7Nk4Dk69DTZsW0lejNjyabrVF5eKADwh+g8erHzwFNks5wX2Ow3axQ01VwPqUEMF3J7n+6pp4ruBiP8HnYWSKyUbDiearu0fNgZIjg+nRnKybY64wkAJ2ayO0ptPU+h6nhdDRfavk6l04znRnW4TuwpXqslG5Zh7Gopa5SMpzWkGc8nL68jYQpuPzwBwA88exkuVK55qLkKX/aq6P2dADDFHk8i2ss2Kv4Js4gw4zliGpXaAsBMNtl0ncoLNzYA+GtXXl4odDTQZbFQxUw2uaV81jCaB02xDxcKp9r2nvEsVN1d2eEJdF9q2ygDvVednhvD2SHc5blasmEFz7OTM1lcWStv6Sl2g3LHXDpatlLLpROwHQ+VoK+31MlwIWY8R06l5qJku0gEGU8AuzJgKEqP57CW2n7xyhpuP5QLBzEmTQMbFafrknV94eiNHQaek5kEirbblxaRYcPAk2gEbFSc8ArjzHiS61RGiB4utP2EtVXm+6UbGxAAc0Ff4OMX1yI/3vYdngCg10c2CppiHy5kSfg4vSrZuzdcSMfxnZbaLgSB525Nte2n03PjOL9U7HjScjtej31wa6XaZsZzNgvXU7hW1xfmBGXenZba6gypzlqVqk7kdQz6ebrBHs+RoV/PLVM2M567MGAoX3EiZDz9F7RhCjw9b3OwkKbfm653mfUs2y5MQ3B8JtvR100Fq1yG6fvTLww8iUbARqUWXmGcYcZzpGxmPLeV2o43fx68cGMDmaSJ8ZQF05CO+jyXCjsDT50lLDYKPGPe45k0/X93rS97PN0hKLXtMPDM+wFQq1Lb+kmqw+z0/BjKNRc3Nnpf6K6tlWw8emG1adl5O56ngvLGzVJbALiwspmZ1SsjOh0upANVffJZtN0dJfPNiPjljMx4Dkah6uD8cnFXhvloYeBpGJsZzwEHLo7roVCN0OM5hBnPCyslbFSccLAQsBl4djtgqOp4SHVxYXX77/5+wsCTaATky5u9aTNjSayXa13tA6S9p9hguBDgl9GuluyGJ0ovXt9AJmHCNAR3HJ7oKPBsNEHVbNGfaDseEjFmPBN9zHgWq04YAA6a/v0t1zoLJBqtt9mrbp4bAwCc62O57aWVMjyFpntm29moOPAUNkttZ4PAs27AkOP5z72uM55B1qpsu8hELLUVEYynLU61HZDFjSpu5Kthaftu0IGnX2rrPx8HXWqrn2/tLrL4+5CHa53KU5fXAGwOFgI2WzW6HTBUddyuAs+pYPfxeoSVKnsNA0+iEZCvz3iOJaHU/rySRjs16/GczibhKcDZVra4Uanh6nolLOl73YlpPHFpLdKFCqUUFjeqmGuS8SxVdyPj2Z91Kq6nUK65iPFQW+o+41nFRMqKXKI5zE7P+4FnPwcMLRX9QKFS6+75oTOlOoNzcCKNpGXgUt2AIZ3xnIywx7Oe7gn9N3/8Rbz9fZ+B7XqRM54AMJ6ymPEcEP17eWl150TjQdl8Lu7ecKF8MIU5ykUWy5ChOg956vI60gkDtxwYDz8WZjy7KLVVSgUZz85feyeZ8SSivWxLj2cwbZTltqNBT7XNJLa++c2O+88DZ9uakRdv+BNt9aL6+05Oo1xz8fz1jbaP5QZvtE0znrVGPZ4q1h7PRLhOpbfAsxwc+66V2gbfom6GC83v8VUq2sGJNDIJs68rVZaCDFXV6W7qse6XTwSNzIbhT9/dmvHsrtRWn3y6ngr7WrOp6MHrRDrBHs8B8DwVVnNsn2g8SPU9nuFU4wFfeNDZ+SiDtMyhCzzXcNeRybB6AfAv+M2Np7rKeC5uVKGUvwqqU1PB7/5aaXi+P/3CwJNoBGxsy3gCDDxHRbHqhGWz9fTzoOZtDcheCiba6kD1dSenAUTb51kLJsfu7PH0/y41OAm2uyxFikpnPKPss2tFZ453rdS2y4xno9LnvcowBKfmxvoaeOpdtt1mPPXE5/qT1e0rVcIezy7WqQB+4KqvD2U7yHhOMOPZd412Xl5aLUEXjlxa6X71BuAHGt1eJFst2jCC3l5D/Ishgx4upDOs0TKextAEnkopPH0lj9ccndzxuSNTaVztIvDU2e90F+9vw5DxPLtUDGcE9BMDT6J9zvMUNqqbPZ7TWQaeo6RouzvKbIHNwHN7xvOFG35/pw4Gj05lcDCXihZ4BidM9YHnB37oDfjt738QQOOgKfaptmZ/Mp468NytjKeIIGkaXUy1reBAbm/v8Kx309wYzi4W+nZ/OuPpeKqrfsiVon9iaNU9L07OjuHiSinsn3Y8haRpdHyBRWdIXbcu49lJqW2PPZ6Ngiza6dmr+fC/L/WQ8bQdDy/c2MC1LvsJl4s2prNJiPir03LpxOBLbcOMp//cbTW4bJhKbcs1F+Wai3uO7ww8D+XSXU211Rchuim1ze1yxtP1FJY2qliN4fEZeBLtc0XbgVKbJ0a6xJIrVUZDyXZ2TLQF6gPPrQHZizc2cOvBcUiQYRMRvO7kdNeBJ4Cwv7DpHs8YGycNw18t0GuPpw74divjCfjfx3KD72ErCxvVfbFKRTs9N4ZLq+W+7bdbrrsA103QsLatxxPwM56FqhOetLmeQi6TCH+ngGiThJOWgUzChOOpcOVLNuJwISDo8WSpbeyeu+YHntmk2VOpre7RrDRoSYj69dPB6zoATKStgQ8X2uzx3Fultrol5TVHp3Z87shUZst6pKj060k3FT2mIZhIW7v2/bm8WoJC75VCjTDwJNrndI+HLtXT+6FWCgw8R0Gx6jRcOr9Zaruzx/OWgxNbPnbfiWlcWSu37XOpBdnT7aWdSctAwpQd2TrH9eApIBHzxJ6kZfSc8SzscsYT8E9sO8l4FqsOSra7LybaajfNj8H1VN+GuCwVqtA/0vq+zKhWSzZMQ7Y8L8KVKst+SbDjqUgn4o3kMhZczwvLdTsaLpS2sLELexxHzbPX8kgn/IsEl1e7L7VdCiZQl7sMPFeKNmaym4FnLjO4jKfOjocZzyiltubwBJ6FqoOJlIWbgsnZ9Q5PprFRdTr+Xbq0WkLClHC4Xqemsold+/6cDSaH92Ma/HYMPIn2uTDwDE7uU5aJiZTFjOeIKFbdhhnPlOXv6azPeK4WbSxuVHHbtsBT93k+drF11tN2PSRMCftT6mUSO4Mm/aYWZ6kt4Ae2vWc8dz/wzCTMhgOamlkIykj3W8YT6N9KlaWCHV6Y6SbjuVKsYTq7NZupV6ro7JfreR0PFtImM4mtGc9OhgulrIEPlxlFz13bwFjSQjph4Np699n45eBicLW2eaGhEytFG9Njm8+zXDox8AsP+XINIsB4hMy8ZQg2Kk5X/9Z+K1YdvProZMMg8dCk36rQ6YChSyvlrspstcnM7gWerwTtDK6n+t4nzMCTaJ/TLxpm3YnR9FiSPZ4jomg7DXs8AT/rWavr8XwxGCx066GtgeddRyaRtIy25bY118PceKrhm3c2ae0otdUnaHEHnknL6PnKrS7F2v1S2w4Cz2AwxIGJ/dPjGQaefRowtFyoIh0M37qw0vl9rpXssG9eOx5kPC8GGVQnKLXtRi6dgOup8OS8ox7PlIWq4/WtLHnYDEMP6lrJxpW1MrJJEynLhKeAq2vdZT2Xg9U+Ct3dx0qxhpmxzYtMucwulNpW/MxhlCyf3jXa7+C40+eFpxRKtou7j+3s7wT8UlsAHQ8YurRa6mlw3lQmGZbyx6nR96v+9bWbMuNWGHgS7XP6Rb2+B2mGgefIqC+13d5XNj2WDJfbA3WB58HxLfeRtAzcc2wyQuCpmpZ1ZlMmiruU8UyaBmynt6vqm8OF+nFE3fFLbaOfSC4GpXv7qdR2KpvEzFiyL7s8PU9huWgjYQrSloGLXUwkXW0QeKYTJg7mUrigM56uirReohGd8exmqu148JhF9nnG5rlr/mumH3j6Lw7dloEv17W/dPr8VkphtWRjpi7jOZHaheFC5Vrkiyz6nGS3y23LtgsF4O5jUw0/fyinM57RXx8c18O19UpPgefkLpfa6mus3V5IaYaBJ9E+F5babgs8V1lqOxKKVbfpyerstoznCzc2MJG2wjfaevednMYzV9fD6ZqN1NydOzy1bINsnc7EpAbQ49lzxjM4drNPGc8ow2W2yyStDjOe+6/UFvCznueWmk+2jZrxWC/X4HoKCdNAKmHi4nLnwexqsRb2zdc7OTMWlto6nmpYfh5FLpPYusezw+FCADhgKEbPhoOFrHBfY7crVZbqAs/zHQae+aBkdXpLj6c1+HUqlVrksvJhCTz170ezjOehyTREgKtB5i/K68u19QpcTyGV2JultmeXCpgIXj+uMPAkok7kGwSe09kkhwuNiHalts6WUtsCbjs4saVfTXvdiWnUXIVii4xbzfWaZzx3sdQ2YQpqvfZ46j2euzlcqEGfbCsLG1UkTGkYGO1lp+fGwuEXvdDDXBKmIGUZuLxa3jHluR0/y5Tc8fHjM1lcXPZXqrg9lNpuZjw7L7WdCAIA9nnG57lrecyNJ5G0DCRNf4hat5NtV4r+76shnZeS6wqm+udiLp1ApTbYUut82Yk8SMs0hyPwLFZdWIbg2HSm4ecTpoH58RSutch4bg9GL/Yw0VabyiSwVqqFa5kGpVB1cCNfDS8gMONJRB3RpTb1pbaz40kOFxoBKuhdaTRcCAgynp4HpRSUUnjxxsaOibbafcGAoWYnsUqp1qW2DSay6izkIKba9prxLNgOkqYRa49nuyxop1NtFzeqmB9PNbyQsJfdND+GhY1qz0NJdIbJMg2kEwYcT3W0Q1GXN05ldwaeJ2ezuJ6vwPEUFND1cKFc2goznqYhHZ3ITqSZ8Yzbc9fyuONwDoC/euroVKanUtuEaSCdMDsutW0YeGb0hYfBBXZ7LeNZqblYK9sYT1ktXycPT6Y7em3Qg8rSvZTaBhedOt3d3Cs9uC2TNJG0DAaeRFFUuxxHvh9tVBwkTEH9a+p0NolKzeuoX4z2nqrjT0dslvGcHktCKcBTfj/gWqmG27b1d2pz4ymcms02PYl1giCgWeA5lrR2Bp6DGi5k9r5OpdRkOvAgZZJmRzv+FjYqmG9QNr3X6ZUH3e471DYznkY4fbKTbFXRdlFzFaYbZJT1ShX9nO9+nYp/37brIZswO7qIsFlqOxwrK/abmuvhpRsF3BkEnoCf6b7cZcZzqegHnpmE2XGp7WrDwNP/+Q9ywFBnPZ5G8DW7dx7y2585j5qrcHiy9evk4clMZ4HnagmmIT29t+lKlbUBB+ZngzaGdMJAyjQ6HqrUDgNP2nc2KjU8cXkdz17N7/ahDIWNSg0T6a3j/meDNycOGNrf9FCRRns8gbpdnq6HF6/7bza3Nsl4An7Wc6PiNCz90YFdsx7PTNIMy1W1wZXaGj0vwi7aTkf9dXHoJuO53/o7AeD0nH9xpNfAc7mu1FZnJjoJPPXJ/nSDUtsTwUoV/TvYdcZTB56Oh2yHFz70cCGW2sbjlcUCbNfDnUe2Bp7dltouF6qwDEE6YeDyaqmjEln9Xl7f4zmR8p87gxwwlK84kZ/r5i5nPNfLNfzXj72CyUyibbB8aDLd0TqVSytlHJlK91RtovvC10sDDjyDwUJpK3rGU1dNRcHAk/adSs1/se7XuP29zn8j2HrCPM3AcyToFSDNMp76AoTjKbzQZJVKvdednIbjqYZBnJ4a2zzjuXMHZTjVdgCltr1mPItVZwgynhbKNbflgKd6ixvVoZ1o281wJe3kbBYiQLnW2890qWDDNARWkJlImIILyx0EnqWdJ/vhMQYZTz2UqtvhQpP1Gc8OL3zo4SAMPOOhL27fUZ/xnM5itVTrqry5vtTWU51dBNGtM7PjO0ttBzVgSCmFQjV6j6ch/mv/bgWe7/v4K8hXajjepLez3pGpNApVJ/L38tJqCcensz0d32TG/1mulQd7nnZ2qYhj0xkYQWn/9WBQUivPXsvj0QtrkX6WDDxp39FXCW/k+1sesFfpjGe9GQaeI0EPAhprMpCkPuP50o0NzI4lMdckYwn4gSfQ+ERWB3bNvj6TtFCq7l6pba8DNvxe2d3PeAJAxWmf6fOUvypkP2Y80wkTRyYzvWc8i1XMjCUhIhARHJvOhr1ZUawGmYj6FRbazFgSY0lzM+PZwx5PIMh4djBYCNjMeLLHMx7PXcsjaRlh6TewWWLdyfMIAEq2g3LN9bPvwSTUTi6erxZtpCy/TFfTAeCgLjzo4CRqxlNEkNulya3X1yv4zU+dw7fccyTS6/qhyUz4dVFcWim3DDyjXHjTF536lbGOOu377GIBNwVVJUnL731f3Ki2+ZoiXKW2zBJphoEn7Ts6i8LA07dRccIhExoDz9GgT3qzLabaAoDj+hnPW5r0d2q3HJiAKdLwRDYstW2R8bRdb0vmMVynEnfgafUeeNbvQ90tOvCIUm6r1+QcmNh/PZ6AP2Co18BzccMOs/6AHzRcWIl+sq+XuzcaLiQiODE7FlYHdLvHUwcPnmpeMt9MJmHCEKDAjGcsnr2Wx20HJ2DVVWwcn/EDlE7LbfUOz4RphGXfrVYGbbdStMOLKJoOAAdVaqv7/Du5yDKZsQa+axQAfulvXoSnFH7862+LdPsjQQ9olLLTsu1iqVANnwvdCns8B1hqq5TCuaUiTgcXU/R7c7uVKnrKeDrC+hgGnrTvMPDcys94bgs8sww8R4Eu8xtvUiK6NePpr1JpxTQEuYyFhY0qfu6jz2858a+5HgxpXtabaRA0haW2A+jx7Hm4kN18H+qg6GxGlF2e+t+7HzOegD9gqFLzelo1sFzcWop8YiaLC8EKlCga9dXVO1F34tnLOhUt0+HzT0QwnrKY8YyBUgrPXdvAHYe3vmbqLFenGc/lop6wLLBMAzNjSZxb6qDUtmjveB4OutR2M+MZ/QLJbuyqfGWxgD945DK++8GTOD4TrRz28JT/uxxlwNDlYKpx1PtuJuzxHOD350a+ipLt4uZ5P/DU783tAu5XFgtIWsaWtX3NMPCkfacWltq2Lg0YFfnyzmb/XMaCaUjYo0T7U5jxbJIpGU9ZEPhBVaHqNF2lUu+muTHMjyfxvo+/gm/8xU/gzCvLAPwMW6u1KDogrQ+adBZyIOtUesx4FqpOOCV0t+ifY7SMZ+sM9F53em4MrlJhlqUby4WtGc+Ts1lsVJzIJ3qrpRpEmvdvnpzdLMHsdbgQgMg9xvVlfBPpBHs8Y7CwUcVK0d4y0Rbws1QTKQuXVztbQbFcN2EZAE7NZjvLeJbsLf2dgF9lYsjgpsZ2l/EcfOD5C3/xAtKWgX/21a+K/DUHJlIQiRZ46nU6x3rs8cwmTSRMGehU27OL/nPupnldauu/5rQLPM8uFZBJRHsfZ+BJ+06Y8dxgxhNo3OMpIpjOJpnx3Od04NksYBIRWKaEV8RvazFYSLNMAzfNj+P3/vGD8BTwjl/7LP71B59Cpea2DCB1trBYt8JnkFNtbbe3nY8l2+14qmi/bZbatj+R1BfgDuT2aeAZnBiVeyi3XSpUt/Qk6wxF1AFDq0Ubk5lE06v8ut/PkO6f4+N1F40yic4vfPgZT65T6bdGg4UA/zX1WBeTbcNS2+C5dHpuHOfrMp7t+vNWG2Q8RQQT6cQuZDyHN/AsVBx89Onr+IEvv6nlPIPtEqaBAxMpXItQantpxb9Nr6W2IjLw788rQV/xTUHG0zIEE2mrZeCplMLZxWKkMlsA2N3Lt0R9VnO9sLdpgRlPuJ5C0XYxkbZ2NLLPjjHw3O90ZqxViWjCNMLb3XqgfeCpvfFVc/iLH/1y/OJfv4hf++RZeAoN9xlqjcpEawOaapuyDNgRBvK0Mgw9nrrUMkqprQ60Ozm52ks2d3l2l8ku2Q5KtovZuu/PyWAFysWVEn72I88BQMsBIKulnSf79XTgGaX8rBnDEJiGBPt4O7/wMZFmqW0cnr0WBJ5Hcjs+d3w60/FU/aWif76i+0VPz2XxwccqwTTt9q87y0GP53a5jDWwjPdmxnM4S22VUri4WsLsWBL/+Mtuanv77b/7hyYzuB6hhevSSgnphNF0tVgnjzmZSQx0ncrZxQIyCROH6vY/H5nMtNzleT1fQcl2I7d1MONJ+4qevJWyDBSqzsi/4eqhEtt7PAFgeiyBlaIdedIZ7T36+d/qxEVPoTuYS2GyReDYSCZp4t+85Q786T97E3Jpq+VJuD6GYt3vZHVQU20tI7wg1Q3H9VB1vKGZahu11HZmLBl7GfNuOTKVgaD7XZ46wzQ3vnW4EBB9MMxaqRZebGk0pVIHspbR289A/452s0d2PG1xuFAMnr2Wx7HpTMPs3omZLC6t+r3CUd9flws2skkzvEihd9WeX24fwNZcDxsVp3HgmU4MbHiP6wWDtDostc1XapFXRPVivVzDRsXBu7/6VV21TRyZTEcaLnRptYRj09mednhqk5nEQNepnF30BwvVH/uRqdb/7k4GCwEMPGmf0QOF9AniwogPGNIlNo3eCGbHUsx47nMl24EZ7OJqRgcmt0bo72zm1UcnccfhXMt+wnC4UG3ncKG4p9omTAkfqxvFCJnjQcg2+B42U3O9ngYL9bJncxBMw1870W3guRT01NVnhLNJC3PjKVyMWGrbaKBLvSPBQJJeMp71X9/N8288ZWFjxC/AxuG5a/kd/Z3a8ZksKjUPi4XoVVfLheqWHk09VfR8hAFD4T7ZZoHnAEttRbaWh7eTyySgFAbyHL22XkHSNPBdD57s6usPT2Zwbb3SdviYv0qltzJbbSqbbJoR9oI1J/0M2s8tFcMyW+3IVKZN4On3hWYYeNIo0oGnnuI56gOGwsCzRcaTBm9QWeZi1cVY0mx55dUy/c+1m2jbK12muivDhUwTrqfaLsFuRvdU7nbGMxN+D9ufpNmut28HC2nphNF1j+dSkPHcPpDl5Gz0lSprJbvhyb6WMA2kLCPSbrtWrB4Cz4n04EotR4Xr+Ssntvd3arq3T/f6RbFctDE7tvn7emrOz5ZHGTCk38dnGlwEmUhbAx0uNJGyYHTwfO/3rspmFjYqyFcczE0ku66wOTyZRsl2276PXFot9TzRVpvKJJquUzlzdhlnl4rhROReVR0Xl1dL4WAh7chUBqulWtPZAq8sFjEWDEKKItZ3exG5VUTOiMiLwd+3NLjNT4nIMyLypIg8KiLfEOcx0f6ml/uGGc8RHzC0EZbaNlhwnk1irVzraR0BDbco/UEJo/eMZxThcKHq1uFCZtDDFqeE5d9/tytVihFKlgchm+ig1NZR+z7wzCZNVGpeVxmd5QYZT8Avk4yc8SzZLfuaAX866dEesx/696Ob5994iqW2/Va2XSi1c7CQpku2O1mpslywt5R9Z5MWDuXSkVaqhGt9xnY+F3OZwWY8O10bNKiVIX/25DUAwNxY96+Jh6f8vsdW1TPrJb+c93iPE221XIse2M+dWwHQ24C1eheWS/AUwlUq2tGgcuPqWuPz6VcWCzg9Pxa5tDjujOf7ALxXKXUrgPcCeLjBbT4P4PVKqXsAvBPAB0SkPzlqGjnX81UINk9yR32X50aLHs+ZsSSUQk/rCGi4FW2nbZZEZzxvjTDRthf6OOrfJG3Hi32wELA5vKja5UqVYtU/5rHd3uMZscdTKRWU2qZb3m6v0xfUHr2w2vHX6lLb7X1xJ2ayuJavwGtzQa5Sc1GpeZhqUWoL+KVyva7h0T2i3ZXaJlCuuXB63GNLm3Tm564Gg4WAzTUaHQWexeqWjCfgZz2jZDxXi35gsv3rAb/UdpDDhTpdG9RL4NlJ5dCHHr+CbNLseBduvcOTQeDZ4n3kUrjDs1+ltv7Pr1GW9fPn/FVmUYbNRaFLZnWZt3YkDDwbZ/DPLhZx87YsaSuxveOLyAEA9wF4f/Ch9wO4T0Tm62+nlPoLpZT+7XwKgACYjeu4aH9byFeQMA1YhoGxpMlS27Iutd35ZqBLxJwe10zQ8CpW3bYnvdPZJI5MpvHqJidR/aIHo+ggDvAzkHEPFgI2hxd1nfG0N/eh7mbvY8oyYEj7Ew3HU1BATz2ee4HeQ/u5sysdf+1SwcZE2toxEOPETBZKAdU203J1X12jgS79pi8OdTtcCNj6e7fXDNsAvKLtYiJl4ViTTHY6YWJ+IhUGIe0opfydstvKvk/PjUeajrtSapXx9Kcat7rwcGWt3Je2G9dVHU20BRAOtIsz4/nKYgFfvLK+JaPcjcOT/s+7ZeC50p8dnpoOzN/+vs9s+R2oOi4ev7gGIFrPfxRng+fazsDTD7gbBZ5l28WVtTJumhuCwBPAcQBXlFIuAAR/Xw0+3sz3AHhFKXW50SdF5AdF5BEReWRxcbHvB0x73/V8JTzJPJhLRxp9vZ9tBCU2jTKe+upozeOV8P2qZDttT1aTloHjM9lwjH9c0gkDIlv7E+1BBZ7Bv63VCUMr+qS918xVr0QE2aTVNuOpA+z9XmprGoKxlBVe+e/E9h2emp5EW22zficsb+xwEnQ3ehkuNBE8Zze4y7NvSraLOw7nWpYWnuhgl2e+7MDx1I6LGKfnslgt1bBWah0UrhT0c7HxcCEATSf8K6Vwba0SbgToRTcZT337OAPPDz9+BYY0zgh34sBECoYA1RZB/GbGs089nsHry/aM5xcvr/uT1pMmbMfb0sLSrbOLRRyYSO1ozTqYS8OQxoGnvjBy84GxHZ9rZmiGC4nIVwD4dwDe0ew2SqlfVUrdr5S6f35+vtnNaIRdz1eQDK4OH8ilRn6qbaseT311lBnP/atQdXe9L1ETEWQTZjghFvBLXwdRaquHF3Wb8dSlddku9ij2WyZpolxrfZKhV8fs94wn4F9Ue+ryesflZtt76jTdn1dpc5FCD/xoV2rbD70MF9IZz1FfLdYvSimUbAd3HG7dmnB8OhN5uJDe4bn9QoheqdIu67la8rP3jYa06YvOzQYMrZdrcJVCpcc9x8Bw9ngqpfChJ67iS2+e6/kip2UaODCRbpPxLCOXtsJ/V6/0/WxvidL9nQdy/nPm5YX2JdntnF0s7JhoC/jvnwdz6Ya7PM8GpeDDkvG8BOCoiJgAEPx9JPj4FiLyBgC/C+BblVIvxHhMtM/dWK8gUZfxHPVS242qg5RlNHzB1Vf/2Puzf5Vsp6ul83HJprZm62zH62mVStSyV/387zXjOdZFqWO/ZZNm24yn/nceyO3vHk/An9jteAqPXeysz3OpsLOnDvCzxJmEiWqb8rVBltrqgKLV6pZmdODRzYChjQqHz21XdTx4CrizTWvC8Zksrq2X2/YKA5s7ZXeW2urJtq0Dz5Wijdm652H966IOBJsNGNLBcdXxel7L4XhexxnPbNKEZUjbwLPbcuvHL63h4koJ3/LaIx1/bSOHp9oEnn2caAsAkxndErX1MT9/bgW3HhwPkwov9SPwXCrumGirNVup8spC4/LcVmILPJVSCwCewGYG8x0AHldKbamRFZHXA/gAgO9QSj0W1/HQ/leoOijabphB8QPP9juX9rN8udb0CqQu4ahxuNC+FWWq7SD5QdPWqbZRVqn02lcZBp49T7Xd/SA+k2gfeI5KqS0AjKcTMGQzAxDVctHG3MTOQE5EcGIm2zbjuRqU2k4NoNR2OpvAnYcncKqDkzttPCy17SzwfOT8Cp69toGVJqscRpWu2Ng+0Xb7a9TxmSw8Fe1i10qQ8dx+IeT4TBaGAOcjBJ7N1vroQLBZ4KnLgZUCbvSwBUApBU+h4x5PEcFki8mtvfrw41eQsgx846sP9eX+Dk+mW76PXFop9W2iLdA44+m4Hh69sIoHTs8gbRkQAC/d2OjpcWquh7VSDTc1eY1pFnieXSrg6FSmo6FNcdc4vQvAu0XkRQDvDv4fIvIREbk/uM1/BZAB8LCIPBH8eU3Mx0X7kF6lok8yD0ykUHW8ge2wGkYbFadhfyfgD0AYS5rMeO5jeo/nsNjen7hnejzrhgvttmzSbFtWWnM9GLL7PamDYBmCu45MdtTn6bgeVkt2056v4zPZCMOF/BPlbrKQnRKRhu0SUXSb8dSTguPer7jX6Atn7dZP6eAjyiRtvVN2e+l3yjJxbDobDn1pZqVoN9zhCWwGgs3Og+oHIEVdI9SI7kHsNOMJILbAs+Z6+POnruFr7zjY9e/PdocnM7Adr2FCQymFy6vlvk20BTYvbNUHns9d20Ch6uCB07MQEWSSJl7sMfCsBBUejUptAeDIpF9quz0rfnax2PRrmon1HV8p9bxS6kGl1K3B3y8EH3+LUuqR4L9fr5SaV0q9tu7PF+M8Ltqf9OqU+own0NtVvE4M2+Q9wL/K2eoFd2Y8GfaD0f7iegrlmjsUwZLWKOM52Km23T3XS7aLdMKIfd9oFH7w3r7HM0omeb944PQMHr+41nYgkLZSsqHUzhN97eRsFlXHbVkts1K0MZFq3Fc3TMZTrYfLNPPk5TUA8e9XHKR+vEeXqi4yCXPHNOTtdPDRrmQb2Cy1bZS1PDU3hvPLjQNP/e9ZLdlNS77bZTzrV75EHYbUiA6MOu3x1F8TxwWOT728hOWi3bcyW8DPeHpq57AfwH/drTpen0ttg+FCde9dnwsusj1wagaAXwXTa6ltJbjQ1qxX88iUH3Av100/Vkrh7GKho1UqwBANFyLqlc541vd4AqO9y3Oj4iDXJOMJADPZJPd47lM6OBmmrNf2/sSaO9jhQt1mPAtVZ2i+j5koPZ4D+r4OiwdPz6DqeHjq8nqk2y+HGabGGc8TQZlkqwsVayUbUw3WVwwbPVxoo0ng0cyTl9Yh8DN2l+uyYsN4gXWQSrYbacjT4ckMLEPalmwD/g7PqWyi4UWMm+bGcG6x2PQiiFLKz3i2CzybBHaXVsvhv6eTvaPbbWY8O3+djCvj+aHHr2Ayk8BX3nagb/cZrlRpUCmmL3z1s9Q2YfqrAZ267QOfO7eCk7NZHAr2imYSJi6vlnuabFuuuUiY0nRFUKNdnjfyVRRtFzcPU8aTaJB0ZnMz4+mfVIzygKF8pday9GVmLNn1pM/9bq+fYOmBOMMwiVXLJk2UqluHCw0y42m73U1uLFXbr6UZlGzSRLlNFqXmekiYu5+dHZTXB1f+Px+xz3OpEPTUNQs8I6xUWS3VmpY3DpNswoRIZ6W2CxsVXFkrhxnhz7zc+boaba+/jtZbK9mwXS9S4GkagqPTmUiltsuF5oHjqdksirbb9CKIp/yLA816PDcvPDT++V9eKSGdMJGyDFzYpYxnHIGn6yn85TM38E13H+7re8zhYKdlo5+r/lg/S20B//ujv7+ep/CF8yththNA2F/Zy2TbSs3FiRZr1Rrt8jy7GEy0ZcaTRtWN9Qom0lZYDndgghnPVj2egF/aw3Uq+1NxKDOeFkp1q0CqAwo8dRBmO90914sRsxyN9DoYabsoU21HrdR2eiyJ2w5O4LNnowVIy0166rRwpUqLPs/Vkj2QVSq9MgzBeNLqaLjQU5f8zPHcRAoJU/CZV5biOrw95dlreQDR19qcmMlGKv9eKlQx16Tf+HRwUl9pcrFJz2hodhHENAQTKathqa3n+T2JKctAyjJ6KrUdth7P1ZKNcs3Ft772aF/v9+b5cRgCXF4t76gi0H3hx+oynv14/Z+sq0x7aaGAtVIND5yuCzyDsu9eym3LNbdlAHk0yHheqQs8XwkDz84ynsNzRkLUo+v5Cg7VrQ/IJE3k0tZI7/LcqNRaBp6zY8ktJRy0f+jMYreZun4GS9r2wTiDKglN9WGq7bAE8JmE1XK4UM314Hqq4ZXrOH6mw+LBm2bwR49ejjQsrV3GU5ebtc542k0nQA6b8bTVUcbzqctrMA3BWNJCLp3Ap19ZhlIKIqOTRW/kuWv+AJeok8KPTWdx5pX2F0OWizZuOdD4pP/0rP8cqzguctgZ1Omp9K3W+vg9lDt//jc2KrBdf6WV45k9ldrq37vJLqY8TwY9np6nYPSpj36pYOPoVAb3n5zuy/1pk5kEbjkwjhduFPBPf/9x/Mb33h9e5Ks6Lg5MpNr2/3b+mBYur/g/Zz1E7cHTs+Hn0wkDSdPoerKtUgrVmtcygJzMJJBNmri6VgkrGO44nEM2aW45745idC6J0r53PV8N+zq1Q5Oju8vTdjxUaq33ak2PJZs2ytPeVhiiFSBaNmmGJcDA4Ept9YlBreupti6yQxJ46gFNzXq+9JqPUSq1BfwBQyXbxTNX821vu1SwkTSNpv1oKctE0jRaZjzXirWm5Y3DZjxldTRc6InL67j14ARMQ5DLJLC4Ue3Lgvp+czwv3Kc6CM9ezSNhSuRqguMzGTieavv+ulK0d+zw1I5OZ5AwpelzUQd8rZ6LE+nGGU+9wzNlmUhbBpYKdsdDqLSi7cI0BIe72B08mUnAU0ChzdC0qGquh/VyDX/vtUf6FsjWm8omcXo2i0+8uIif/vDT4Wtxpc+DhcLHy2xmPD93bgWHJ9NbynlFBDfNj3Wd8aw6HhSAm5sMFtKPcWQqg2vrdaW2S/5E204vSDHwpH1jIV/ZEXgezKVxfUQznroMpFXGU5fnMOu5/+jhQmND0psI+NnXcs0NR7LbzmAynr3u8SxVnaFZS5NJmmFfVyPLYeA5Wm/vuvTscxHWqiwVqpgdT7Y8YUoljIbf44cePoO3v+8z2Kg6A1ml0g/j6eiBp1IKT15aw2uPTwIAJoP3j0+/PHzltpdXynjxRqGnNSCdeO5avqOSe12y3Spz3m61j2kITs6ONS211b2fLTOe6cZTY3WGM50wwqqQbrOeegBbN4Genty63qedsTrZ0O8y23oHcmn88FfejPd//hLe9/GzAPzX5ONNhvP0YiqbgOP5K1w+f24FD5ye2fHadcvBiXClSrO+6qVCFU9fWcdvfOrcltLmdqtUtO27PF9ZKDSdgtvKaL0z0b7legoLG1Ucmtz64n1gIj2ypbZ6mEDLdSrBmxX7PPefYc14AgiH49QGvMez20FaxaoTubwubuH3sEm5re5ftEYs43lgIo2b5sYiDRhaLlSbTrTV0pbZNGDQr5d7JeM5kU40HS6z3YXlEtbLNdxzbAoAkEqYODGTxacjlIwO0nqphsWgZDrKxYZu1J/A246HlxY2Ompd0NNNW/cK11qu9gGAU7NjzTOekUptrYY//4srJYj4F+Z0eWg3fZ6FqoOS7WK8y/caPZCoH32ez1/P4+paGTNjSdx2qPWu1V79xNffhrfefRj/4X8/j6VCFXZMGU89XKjqeFjYqG7p79RuPTDedrLtQr6Kku3i3/35s/iSn/0b/OSffBHPX8+jHDy3TrdpHTg6lcaVNf982vMUrq6XO16lAjDwpH1iuVCF66kdteYHcyksbFR3LL0dBZuBZ4uMZ/Bmxcm2+48eQDMsAROAsFxVH9vASm11xrOHUtthyXjqwLPUJAOyXPRPxhPG6L29P3B6Bp8/t9Jy/ybgl9o2K23UUgkDNVc1PJHTFSLTXfSz7YaJNqW29QGW3t95z/Gp8PNvfNUsPnt2eahaMt7/hYvwFCASfZpxL15ZLKDmqo4ynsfDjGfz1x39+9qs3xjwM1GVJntlHdfzS6JbvM/n0onGpbarJRzKpWGIhBnPbrLHT15aA9D9IDud8ex1l2fN9fDjf/AkTENwarb/AeB2hiH4hbffg/tPTuOVRX/Xaj9XqWiT2QSUAtaC78+DDQLPWw76QbYe+LPdatHGRtXBkak0/vzdb8Lfu+cIPvjoZXzjL34SV9bKMA1pefECAI5MZrBU8M+n/edj54OFAAaetE/octoDDUptHU9hZYB9IMNCl9q2Gm8eZjyH6ISC+kOfMA/LGhDAX+0AbJYB2wPOeEZZbdBIyXaGpsczE/w8y036oXTGc9R6PAE/8MxXnLZTf5cL1aaljVo6eF6eWyru+FyY8dwrpbap6MOFnri0hkzC3DLs5g03z2Gj4uDpK9H2pMat5nr47c+cRy5tYSqTwBfOxx94PhdOtI3+OjCdTcCQ1qW2+ve11Un/qdkxKNX4wlnNU5jOti4bz2Ual9peXimHgZIV9DxHyXhuL+V8/OIqgN4Dz14znu/9u5fxzNU8Ts+NDazVIJ0w8avfc3/4enGsz6tUgM3vz2qwr7VRlvGWg/7HXrzROPD8uxcWAPj9qa8+Oon/8B1343M/+TX4ybfcDssQTGYSO55D2yfy6l2etuuFFTcMPGlk6Zr+RhlP//OjV26bj9LjGWY891fguZ92x3VLD/EZlkwdsFn2W7L9Ps9Brf3opdS26vg79IZlqu1m8N484ylAuFZqlOgStFZlpUopLBVszE20Dhp1i8L/fvr6js/pC3V7JvBMWztWPzTz5KU1vObo5JapyF96sz9B89NDslblfz99HdfWKzg0mcZE2sL55VLs7/HPXs0jaRnIJKK/XokI0gkzXLPRiJ6w3KrUVpdANvqdd1wPM2OtM+8TaX+dzvbKr0urpS2loSdnx7oqtX3s4hrSCaPpDsh29CTcXgLPp6+s41f+9mV8271H22butut15Yku6z04kcK9x/s7RRfwhwsB/uvaA6d29ncCwMmZbMvJtn/z/AISpmw5H5jKJvGDX34zXnt8qulU5Xr1O0x16Td7PGlk6YznocmtgafOgC6M4GTbfHDy1Wqqrf5clBUEtLeUbAcpq/uTgTjobF3JdsJBP6kBZDwNQ2AZ0lWp7eZamuEI4MNS2xY9npYpI7n64th0FkenMi2DrI2q/9xrtjdRS1oGJjMJ/MnjV3acsG9OEt0bpbbjKQtF221bKltzPTx9NY97gsFC2tx4CrcfmsBnXh6OPs/f+NQ5nJ4bw1QmEV4gqC+3jePC43PX87j90ETHv1cpy0AlQsazVQb+7mOTSJoGLqyUdpRMO65qG2jl0n6pZv3U2Krj4nq+smU66omZbMeBp1IKj19cxUQPF+Z6zXhWHRc//gdPYmYsifd8811dH0cv0gkTp+bGkInhfUJ/fxTQsL8T8DPWzSbb2o6HT7ywiKlM68x4O3qXp+14KNdcHJ3KdPXvHZ4zEqIe3FivwBDsGBihp9yOYsYzSo+nPiFnqe3+Uxii3ZPaWF3QpAPPQUy1Bfwpr91kPItDNh040264UNEeuYm29R4Mym2b9XnqE/12GU/Az0JdWSvjc9t6CGt7LOOp3wOKbdZVvHB9A7bjbenv1L705jl84fwKvDb9s3F79MIqnri0hu9/4ymI+BmcbNKMtdxWKYVnr+Zxx6Fcx1+bTZqo1LywvWC7laINMyh1bGYsZeHm+TFUHQ//14ef2fK5mue1Dzwz/s+/vhLgymoZSm3tSTw+k8Xl1VJHvbznl0tYLdV6eq8ZS5owDek68Pzlv3kJL9zYwM99+2u62iM67Kbq/k3NAk9g62Tbel84v4KNqrPlfrqhEzt+xtPtqswWYOBJ+8T1fAXzE6kd5WXz47rUdgQznsGLeLs3hG5PyGm4lWwX2SGaaAtsBk3Fqhvu1BxEj6d+nK4ynkM2pCnTNuNZhTWCZbbaA6dn4Hiq6RRQXdrYrscT8APL8ZSFP37s8paPO65CJmH2fVF8XPR7QLs+zyeCITF6om29L715FlXHi9wrGpff/NQ55NIWvv2+YwD8ctbXnZyOdcDQjXwVq6Ua7jjc+ZRU/brx9JXG+2WXi1XMjCXbriHJZRI4OpXGBx+7jA89fiX8uOOqthdAdGVTfZ/npVV/LcbWUtssaq7qaAXdYxeC/s4WF7gbqS9vFfED724Cz0LVwX/72Ct4++uO4atvP9jx1+8F+qKEKYI7Dje/+KEn226/cPDXz90IKzh6kbJMzE+kwoxnNxNtAQaetE/cyFd29HcC/snm7FgSNzZGM+M5ljTbllpapvRlnQr7KodLoeoMTZZO04M5yrXNUttBBZ4J04DdxfNcl7YNSxCfTWyWKzeyMuoZz5v8fsRm5bbLYU9d+8DTNARvfvUhfPTp61syzI7n7ZmJtsBmUNBul+eTl9YwO5bEsQa7CB+8acbPSkXsFY3D5dUSPvr0NbzjgRNbLgQ9cGoGL9zYwFpMQwSfveYPVbrzyGSbW+6kg349+XW7pYKN2Yg9iUenMrj/5DT+7YeexoXlIpRScLwIpbYNpsbqfZ3bS20B4MLyzoFazTx+yS+zzfR4EaabwNNxPbyyWMDBXBo/9c139vT4w0xncSfSVsvefT1gqFw38Vwphb95bgFvvHm2L33/R6YyKFQdeF1OtAUYeNI+cSNfCctqtzuQG81dnhuVWssdnpplCGoeM577Tckent2T2pZSW2ewpbapbjOe4ZCm4fhe6oxns4XyywV7JCfaaqdms0iYEva4b7eoS23brFPR3nbfMRSqDv7y2c0hQ46r9swOT2Az+Gm3y/PJy2u4+9hkwz6wiXQCdx+bRL68exnP3zlzASKC7/3SU1s+/sDpGSgFPHJ+NZbHfe6aX754excZz4RpIGkZ4Zqa7aLslNVEBL/4918LQ4Afef/j4VDAdoGnLrWu/524tFpC0jRwcGLzvEkHnpc66PN87MIa7jk+1XNPea6DwLNSc/G+j7+CJy6vo1Lz8B+/4+6Wsyz2Oh3Yt/s565Uq9RfJXlks4OJKCV9zR3+ywUen0mFg281gIYCBJ+0T14MJd40czKWGrtS2X9nBVvezUXFa9ndqCdPoS8aThkuh6g7NQBwtLBOtbgaeiQGW2n7shYWOf+/CHs9hyXi2KLWtOi42qs5QDZQaNF22t1auNVxjoTOeUSdfPnh6BkenMvjjx+rKGz1vz/R3ApsTeltlPF1P4aWFQsP+Tu2NN8+hUHV2ZZ+n6ym8//MX8eZXHwrXOmj3HJ9C0jTw+Zj6PJ+9lsfxmUzXwc140mweeBbb75Std2w6i//w7XfjycvrOB9kJqMMFwK2Zjwvr5RxbDqzpcT38GQaliGRBwwVqw6ev57HfSemIh9/M5OZRNOLRZpSCn/wyCV81S98DD/30ecxkbLwmqM5fNkt8z0//jATEdx9bBLzE60vUOjJtvUZz79+zl+j8tW3H+jLsRyZ3Pzdu/kAM540osq2i3zFaZrxPDiR7qhnYb/IV2otd3hqSdOA46mmw0pobyoN4XChbDjV1g13ag5uuJB0NRhF70Mdmoxni3UqK8Vgh+c+6/HsdN3B7FgSrqfwyRd3rv9YKlQxnU1EDs4NQ/Ct9x7BJ19axELQsuG4qudBHYOkL0C26s8sVh0ohZaBp16rkt+FctvFjSo2Kg7e+abTOz6XTpi45/hkbH2ez3U5WEgbS1m4tFIOL3rUWy7YHa//ePNrDuO7HjyB1ZL/c2jb4xmcB9SXn19cKeFYXX8n4E9GPTqdwYXlaIHnU5fX4Sng3pO9rxCZbLJrVFsr1fDFK3n8yz96CgcmUnj/D3wJbjs0MVR7qnebnmxbfy73N8/dwJ2Hczsu1nRL348hO9cXRsXAk/Y8PbG2aeA5mcZSoRrryhDPU7iyVh6qIT1RM57pRPNF6RSf7Ssa+q1YdYbuTdk0BCnLGPg6FcDPeHYzkLMYvIkPS4+nYQjSia1XtTU9sXWUM56Af6JtGoI/e+rqlo8/9PAZ/K+nru0obWwX2H7bvcfgKeBPn/DvL0pf3TAJhwtVm5/Y62xoo8FC2n0npyGClgFCHJTyB97ce2IK951oHOQ8cHoGT19Zb9r73EqryiHXUzi3XMSdR7oPPPX3/6kr61s+Xqm5KFSdyKW29X7qm+4ML0J1W2p7vEEv74mZbORS28cu+qXN97a4WBHVZMZqWmp7bb2MF25swFMK7/2u+/Chf/pGvCG4CEJb3XJwInxvWC3aePTCKr72jv5kO4HNwDOdMLsurx7tdyfaF8Idns0Cz1wKSvlN/HF59loel1fLYcZhGETt8dSTGc8u7dz/NMoW8pXYgvF8pYZHLq52NMShU0XbxfgAg6WoWamxlIWSPfiptgnT6CrjWQpOyIcpe5xNWg1PsPXE1jh7PHtdtj4Ihghmskn89bM3dvTCOq7qqLQRAF51YBz3HJ/CBx+7Eg50mdpDpbZ6uNB7/+6VpgFWoergxEy2ZRCTTpiYSFltSyL7LV9xUHU8vPONO7Od2utP+dOMH7+41tfHLtkulELLaaLtjKUsiOwcMKTPF6IOF6qXSZq45cA45sdT4VCZZhKmgWzSDC8YbFRqWCvVwp7Oep3s8nz84hpumh/ry++CHi7UaA2SzmTfcmAc33T34ZHcURzVLQfGUXU8uJ7C372wAE+hb/2dwOYuz16GSTHwpD1PZzwPTTa+aqib5+Pc5alfqJuN8N8N0TOeQeC5yIxnvcVCFQsb1VjKygoVv6zt0zEuZC/ZDrIxBEu9Bh6ZhImiPfiptknTQDc55mLVgQiQtnYv47n9e55JmK1LbUc84wkAs+NJFG0Xf/f8wpaP1zwPs11kmN5271E8dy0fBl17aaqtLhN3WwyRK1bdlmW2Wi6TQMl2B3qRda1UgwjwtS1OoF93chqGYMfO1V7pCzx39hB4mobglgPjOwJPXaHQzfMR8IPPm+bHkIrw2jSRtsL3sksrO1epaCdmslgt1ZCv1FpmgpVSePziatMMdKcmMwm4ngorTOo9emEVhmDoZhYMo1vrJtv+zfMLmJ9I4TVHO5/G3MzR6c2MZ7f47kR73vV1P6A80DTjObjAs9Ewi92glPJ7PCNkPE1DkDQNltrWsR0vfAN89EL/JyXqCxSPxDQMo+q4qLlqqLJ02ljKRHkXptr6pbZd9HjaLrIJs+2evUHKJs2GPdmbpbbDc6y7JZe2MDeexJ8/dW3Lx2uuCvc7d+Kb7zkCy5CwwmYvldqahmAsaTYdCmQ7HmzXwz3H2p+gjod7Kdfb3LJ/1so2cmkrHE7WyEQ6gTuP5PD5c/29mFeyXUykrYYrZjpxz7EpPHV5fctr0FIx2CnbYQa+G7l0An/17A089PAZXFoNVqlMNw48AeBimz7PquNhuWjj3j4MFgI2d1U2Krd95PwqxlMWM50R6Mm2JdvBJ15YxNfcfqCv710zY0nccmAcB3PdXSwBGHjSPnAjX0U26ZcANaJ/QW5sxDfZdjPwHI6MZ9XxUHNVpIwn4Pd5nl1kqa32/PV82A8Yx8CKSnCB4gsX4gk89QqQYbxCnElaKNYFnoPKziVNA9201Q7jWppssnHGc7loI2kaMHmCBhHBm199GH/z/I1wQJSnFFxPdVXaODOWxFfdfgBrwUCXvVRqC/jlts1GEOjJza+NkPHUK5GeuZrv16G1dHm1hErNCwOTVh44NYvHL641LKl3XA8v3tgIJ8FGVbJd3HEo13PQc/fxKSwXbVxe9bONDz18Bv/uz54FAMyNdX8SH1UuyCgCjXd4ascjrlTRPcH9zHgCwHppa+BZCCbnRj2XGTXbq2FOzmQhABbyVWxUnb5Ns603M5bs6X2bgSftaQ89fAYfeuIKDuXSTd8YZsdTMASx7vLUVwcrNberrEq/veNXPwvAv+ofRSZh4uxicSiOfRjokqikaeALcQSeNRcCv+RJZ+z7qTBkk1jrjSVNlHeh1DZhdjdcqFB1hy7wzDTNeFYxO55kZiDw1rsPo1Lz8NfP3QCAcO/hXJu1BM287d6j4X/P7LXAM2XBbfILoF8v7jrSPuNpmQZSloFnrkbLeF5ZLYcZtii2l3d+IphMPJlp//1+4PQMqo4XXmio94t//RJWSzXcyFcjD89RSqFkOz0NFtJeGwxtql+roocRDibjaW0JPCdSVsNg/sSsH3heaBd4VhyMJU3cerDz3aYNj69JxvPxi6vwFCLNqyD/9zOdMFG0XSQtA2+6ZW63D2kHBp6059mO13SiLeCXGc1PpPA/P3+xL7szG9EZT0/5WYfdpt9gor5YpxMmNqoOFhuMex9FT1xaR8IUzI4n8dTl9R0DSnpRqDqo1a1jeCSGrOcP/96jADB0ARPgZ+uK1c11KoOcatvtcKFhyxxnkxZKtZ0n18vFzlcz7GevPzWDg7lUWG6rJ5t3k/EEgK++4wDMoGxtL61TAYDxdKJpqW0xeI63KmWtl02akTOeCxtVLOSrXV/U/PiLC0iaBjKJ9q8Trz/lZ982tg0/+viLi3jvx14O+3L/x2cvRHrsquPBU8Adh3sPrm47NIGkZeCpy5sBu+MppCxjIK8vE+kEHB14rpZxfCbb8AJVLp3AdDbRdsDQRtXBPcenwt+HXjUrtf3Ceb+/cxjbRoaV/j1+482zQzfZHmDgSfuA7Xpt680P5tKw3XiyeY7r4cpaOXzziDoRLk76BCOXiVpqywFD9Z64tIqxlIWJtAXb9XYMhejF+aCXdnYsiWzSxCPn+99Dqn/+w7ICpF42aaFcq+vxHPp1KsNXaptpUWrb7aCS/cgwBN/0miP4+AuLWC/XwgxTtxnPlGWGQeteC/AnUlbDwNPzFApVt6MT+7GkhXNLxTBT2syNfAW268HxVOTdkPVqrodPv7yMyWwiUhZ/djyFVx0Y3xJ4Xl+v4J9/4AncemACN8+PY2Ysifd//mLDrOh2us//zsO9D2dJWgbuPJzDE3XvJTXXw9x4asu/La6p0bnM1oxnozJbrd1KFddTKNlu38psgc3Ac/uqnkcvrOD2Q7m+BbijIBucz/Vzmm0/MfCkPU0phZrj4eBk60W2BybSse3YvLZegeup8IWzXVP+IDgdZjz11eQogWerSXfDwvVU11fY85UaXlksYjxphX3D/ezz1EOcMkkT956YwhdiGDCkzy+H8Sqxn/F0wt/HQQ0XSpgGVBdzbYtVN+xrGxbZRItS2yELiHZ7/cpb7zkM2/XwV8/e2Cy17aGn7vh0BrcdHB+6ixHtTKQbB55nzi7D9VTDtoxmPzt9Qeu5a62znvWrTR6/1PkFtscurKJQdTAVob9Te/2pGWxUHH/tjevhR/7n46jUXLz3u++DaQgO5VLYqDj448cut70vvUqpfl1JL8/n1x6fwtNX1sOfQ62L1T7dygUZb6VUsMNz52Ah7cTsWMsLBTpo79dgIaBxxtNxPTx+cQ33n+pfgDsKchkLScvA19812MAz6u8GA0/a0xzPP5VstsNTO5hLhRmWftMZTv3GPRQZT6UDz2gnR0nL79vZDwOGFjeqeOziKlZK3a1B+WJQCjWetmCZBm47OIHP9zE41IFn2jJx/8kZPHctj40+r2wJM54RAqZBBwa6P3HQGc+U1d1woWJMa2l60Wy40ErRHrrAc7fde3wKR6cy+POnrtZlPLv/Hlmm0dFgoX78fvXjPsabZDz/4JFLMA3BdAf/Jt07/kybybZPXFqDADAEXe3X/PiLizANiVy5AwAPnp6Bq/yM3H/56xfx+XMr+Pff9mq86oAfPI6nLNxzbBL//TPn4bV5QSjZLjIJs6fVEfXuPjaJku3i5QX/fdZxvYH9vuYyCSj45cOVmtdwlYp2YiaDK2vlphdvC2Hg2b+AcDxlwZCtgefz1zdQsl3cf2qmb48zCibSCdx7fAoHJlqfF+8WBp60p+mT11Y9nvrzjqe66vFqRweamaSJhCnDEXgG+9qiZjxFBKfnxnB2H6xU+cwrS/AUsFbqrtdWl0LpLNcDp2fw2IXVsD+sV+eXikiaBgxD8PpTM/DU5klZp9nkZrfXJ5jDmPEcS1oo7UKpbcKUrrLgpaqL8SHrk8kkrR0Zz5LtoGS7e77Utt8XQkQEb73nMD710hLKNTfYBzhcP89BGE/vHC60Xqrho09fx9xYsqOVCwlTMDeebNvn+eSlNWSTJsZTFh672HnG8+MvLuJ1J6ZhGdFfIx447QcpV9bKeO/fvYKH7j+Ob7v3WPh5EcE733QaZxeL+PhLiy3vq2S7fe2/1HtSdeuGn/EczO+rXq2my4frS223/86dmMnC9VTTKf2FqoO0ZfS13FxEkMsktgSeet3Y/Sf7E+DudvUF+Rh40p6mJ2O2Dzz9F/daDFnPiyslJEx/F2baMoei1Dbs8exgBPlN82P7IuP52bP+Hrd82ekq0Hji0hpumhuDFZSAvv70DIq2i2fblJVFdXapiHRQ2vzaE/5whnb7PDsNSPUFlmE8wc4E+wT1VXNrQL07yW4znlVn6Hpls0nT752ruxgSLqNnxnOHb777CBxPYaVoD2x9z7DRPZ71r4kffvIKbMfDfIc9ryKCO49M4ukWgafrKTx1eQ3jKQvjKQvPXdtoWB7ezMJGBc9czeMrbpvv6NiOTGWQtAyslmq4/dAEfuZb7tpxmze/+jAOTKTw3z99vun9vLJYgO16fQ08T8+OYSJt4YnLa36bkOcNrNRWVz/p8uETLTOeYwAar4dTyn/tHo9hvcnk9sDzwiqOTKZxZKq3Hao0XEbzFZj2DR1IHqrr8Wx0VetAEJjaMfR5Xlwp4di0PyEulTCGIuOpezw7Wadx09w4Lq2WYytJHpTPnvWDONv1wp1pUSml8MSltS377B4Iynz61ed5bqkYlm6NpyzceTiHL/R5wJC+8DA2ZAETsJlJXi3ZSFrGwFZ/6ICjk4sRSil/uNCQBfD6ZLhUN215JZimPagT2b3kriM5nJ4bg6cAyxzNISU6UKi/+PIHj1zCnYdzXfWr3nUkh5dubKDqNA4mX14ooGj7q4jGg/7SL7Ypza33yWCNylfc2lngCQCTab9s81e+676GZbJJy8D3vOEkPvHiIl5e2Njx+evrFXzvb34eliF9zeoZhuDuY5N46vIaXAUoNZgdnsDmuhKd8TzWssfT/1y1wTT3VxaLqLkqlmqayUwCH39xEQ89fAZKKTxyfhWvG8IyW2ZOe8PAk/Y0HUgeaHPF9lAYeMZQartcCvsl0paJ6/lKX9dvAJ1nvFxPwTSko/Kpm+bH4HpqKALnbl1fr+DcUhHzwcm3zn5G/vp8BYsb1bAkCvAvapyYyYZDgHoZrrRatLFerm05Gbr/1DQev7Ta1+FXuqQu06fepH7SWdi1Ug2pAWafdElvJ0lwvU5h2AbJ6HH59Rmk5aK/CmmvTVsdBBHBW+8+DAAjm/EcT/mBh74o9czVdTx9JY/vvP9Yqy9r6tVHJuF4Ci/daFwl80QwTEhnPAF/J2NUH39xEXPjSdx5uPMdmidms7j76GTY19nIOx44gaRl7Mh6rhZt/MPf+BxWizZuOzTRt/5O7Z5jU3j+2gbsIGAf1O+rrn4q2Q7mJ1It/12HcmkkTEFl20XoquPix//gCRgSzzqhyUwCTtAmdGWtjOv5St/KbGl4AubRfAWmfcN2FCxD2p5M6FLcuEptTwT9EqmghPJym4XZNdfDapc9iFHowLMTN837b9LdlttWam4sPbSdOHPWv0p+MJeGZQg+12GW8omg17I+8AT8SYlfOL/a9aRcTffQput20r3+1AwqNS/yXrwoPE/BEAwsm9gJXba6Vq4NrL8T2Jye63Uw2VaXAw9b5jjMeNYFnktBqe3cHu/xjMtb7z4CAEhE7BcclpO0ftEZTx14/uEjl5G0DHzrvUe7ur+7jvgB4TNXG2cxn7i0jlzaQjphIGEaODmbjTxgSCmFT760iC+/Zb6ji6eaZRhItQkYZ8dT+NbXHsEHH7sclqwXqw6+77e+gAsrJfza994fS1bvnuNTcDyF9bITHMfghgsBfl/p8enWpaumITg+nd1Ravszf/Ysnry8jpvnx5Gy+v+amMts7pp99IJ/keJ1DDz3HQaetKfZrhfp5HU6m4Cg/6W266Ua1su1sF9Cvxi321l2bb2CF28U8Pz1/gUb9RxPddw7d9O839fRzYChVxYLePLyOhby1Y6/tp8++8oKJjMJZJMmJtIWPneus4znE5fXkDSNHQvDHzg9jZWijVd67IENJ9rWZzyDN9Yv9HFli+thaPee6aBpvTTgwLOLjGep6gd2w9Yrm0lsZi80ltq2dtuhCRzMpTAz1v9MzV6gV0O5nkKl5uJPHr+Cb7jrUEcTeuudmMliPGU1vWD2xKU13HN8Krz4de/xKTx2MdrFu6LtYrVU67i/s1Pf/8bTqNQ8LGxU4SmFH/wfj+DpK+v4lXfciy+9eS6Wx7zn2BSAzeF3g7pQlKsbNNhqom39beort/7gkUv4/c9dxD/5yptjy9JOZhJwgqq0R86vYjxl4fZDE22+ivYaBp60p9VcL9IeQBFBwjL6vsvzUpDZ1IGnzmS1K1fVmZTf/NS5LR/v145M11MwO8x25dIJzI2nusp4/von/X/HRoSl3HE6c3YZD56egYhgIp3ApZUyrq617vOs/54/eWkNdxzJ7bia+8DpWQDA58/11ot5fqkI0xCk6gKuA7k0Ts5m+7rP01WdZ7wHRQdxusdzUMKMZweBZzEI7MaHNOO5pdS2UEU6YQxdkDxMTs2OdR1o7XVhxlMp/OWzN7BernVdZgv4/Yp3Hs7h6QZ9myXbwQvX87i3rnLk3hPTWNio4tp6BUDr97q1Ug0iwJteFU/wp91xOIc33DSLG/kqXl4o4NMvL+M/fvvd+Pq7DvXtMbZnzg9NpnEw2CUKDO5CUf1qtVaDhepvozOeT19Zx7/90NN446tm8eNfd2tsxziZ2dw1+siFVdx7Yioc8kf7B3+itKfZTrSMJ+CfePZ7cI4OMPUUOMsQjCXNlhlPz1NhJuVDj1/F4kb/s4TdlNoCerJtZxnPxY0qPhgs4y7uYuB5Za2MiyslvOFmP0jUPS1Rs56up/DFy+t47bHJHZ87NZvF3Hiq5+Dw3FIRJ2ayMLZdFLj/5AweudB7Ka/mdXHhYVB00LRWrg20366b4UL6+TxswVyjUtvloo3ZAQ0qob1noq7U9g8fuYSjUxm8sces3p1Hcnju2saO/aBfvLwOT/lTu7X7gp2PUdaqrJdruPvo5EBWjbzzTadhux5WSzX89FvvxLe/rvtgPKp7jk2FBf9Rs4e9ln6nEyb0W8LxFoOFtJOz2TA7/q7ffRSzY0n88t+/N9ZAcDLYNVpzFV64nmeZ7T7FwJP2rKrjwvFU5JPXhCl9L7XVgafeiSUiOD6TxaUWGc/zy0W4SuHwZBq26+F3P3uhq8d2PYXzy8WwxG7757oJPG+e73yX5/84cx4118P8eApVx8Nqg+MZhM++4geYX3KTH3iG5bZnowWLegrj9v5OwP+5PnB6uufJtueWijg1u/NN//Wn/FLeSq0/z09Xqa56owZBB3G2E61aoV/0BarOMp5+YDdsPZ6ZRoFnwWaZLTWl+xVLtoNPvbyE73jdsZ5fI+46kkO55oYtBJrehazLSgHg9sMTSFlG2z5Px/VQqDpdTbPtxlfffgBT2QSOT2fwzjedHshj6vcYv/plcK8tuv3m2Ez79SS6HPeFGxu4ka/gv373fS0vBPSjJ3oy6ENdK9fgKf+CLPn2U885A0/as841GNTSStIyUOtgqm2UsteLKyXMjCUxUdc/cXI227LUVo+Unx1L4mtuP4Df/eyFrqbg/vFjl3EjX8VLCwW89+9e3pLJ6abHE/BXqqwU7bD/pJ2S7eB3PnsBX3fHwfCk96kORub305mzy5jOJnDbQb8nRETwwKmZyAOG9FLv1zYIPAF/rcqVtXLT9QHtKKVwbqmI03M7Jy3eH4yM71epcjel1oNSvxdvkKW23WQ8S+FwoWHLePrHU65tPl+Wi1Xu8KSmJoKptgtBhc3beyiz1V591K8O2T5g6MnLazg+k9kSqCRMA3cfm2w72VbvcYzS39mPk/H/v737Do+rvBI//j3TJI16t2VZsmRbbrhgG9tgSoAETDGQAimQhJC22YRks5uQupBlN7/NhmST7EKAhJCwJBAgIbQQHEioBmxs3I27rOYiq1ttNOX9/TEFlZE0Gmk0I+l8nofH6M7MnTt6NTP33PO+51gtwrzC9HHtFRkMyO3jfHEweDE6koxncDput9vHbesXcWZJ7LOPocCzsweL9M2Yq8Qx2vedBp5qwgpmstIjPCl0WC19GtePhZqmzgEL9Uty/IGnb5DUyu66VkT8WYtPn1dGY0cPT2yrG9Hzdru9/PfzB0h1WMlNdXDHhv38y6M7cHm8GGOizniW5fmnDB+OcLrtH7bW0tLp5nPnl4eyQrtqW0b8vGPhzSONrC7L7XMVf3V5DpUNHdS3dQ/7+O21LWQk25iV6/8d9P9wPassEBx2R/f3c7LNRZfbS1newC/92fmpZDvtnO52h3nkyPmiHP/x0Lsn5ngGnklRFBcKZTwnwFTbpvaecZmaqCam4Oez22tYOztvyD6OkZpTkIbDZmFvvwJD26tbWDZzYKByZkk2u4+1DXnxrrXLjdUifbKlk83iwHKO0U5bHWkAEPxOmN6r7/lgSnOdWATy0hxcv7ok6mMciWDg2drlZsH0jGGrCg/2+idTdnAy0sBTTVibKhtxWIcvmx4UrCQabbuQcKoaO0NXBoMfdiW5qbg8Pk61h1+7uauuFafDikWEs8tzWTg9g1+9VjmiTMz/vXGU463dzMxxMjs/lX95XwWPb6vjhvs2UdvsL6YT7RpPYMDUqXC8PsN9r1ayvCSLlbNysFksJNst7Kwd/4xnTVMntc1dofWdQasDRYHejCDrub3aX4VxsOln86dlkJ5sizrwDP5Ow2U8RYSVs3Ki3nd/XmMGrCNNFCm9Mp5Jcch4jqSdyrtrPBNzqm2wuJAxhoaOnimX8dQTzMjZrBaCH23XnTVzTPZpt1qYV5jO7mOtoRlC9W3dHGvtDjtz5MyZWfR4fLxz/HTY/RljaOlyk5lin9RFZYKV18fz8w8CbWZsloh+t06HjaXFWZTnpY5bW65g4Okz/jZjanKavO9sNakZY9hc2dSnUttwUgKB54FBGl6PlMfro66lK9TDMygYiIYrMOTzGfbUtYUyKCLCp88t42B9O68cbIjoeVu73Nz14mEuqMgnM8WOiHDzxXO582NnsrO2lff//HWAqKbazsxxYrNIRMH5hj0nqG7q5HPnl4e2pTpsoanE4yF4svPmEf/6zv6B56Ii/1XTTUeGLjDk9Rn2nzw96DRb8AfyK0uzaYsyKxkKPAPBfX9nzcrG5fGNSQEsf8Z71LuJCYfNEvrbjMcaz5FlPBN0qq29b8az3eWhx+PTNZ5qSFaLYLUIlywsjHof/YP9RUUZ7DnWFrpwum2IJQvB6ZqDTbf9867juL2GbOfkb3kzrzA97Hr/WJqWkTxsD8/eHDbLuPaCDgaeMLB/p15kmjwS9NREqaEdPtVBQ3sPGSmRnxAm2y0IcPBk+KutI3W8tRuvzwwoTV4a+DncOs+jjR2cdnn6nMiuX1pEQXoSv+rXWmUw97x8mLZuN99YN7/P9iuXFPX5YI4m42m3WijJdQ5b2dYYw72vHGFWrpP3LXy39Hxqko3jrd3Unx5+autYeuNII7mpDuYW9M0m2qwWVpRms6myacg1u509Hrw+M+z0rrPKcuh2+6Jqy1PZ0E6SzcL0jPDTnIJXeEc7FfxoQwc+k7h9POHdDGIkFS7Hit3q/32MbI2nd0D7m0Rgs1pwWC2hwDNYYCxHq9qqIWSm2CnKTO7TR3i0FhVl0NLpDhXu217Tgs0iLCrKGHDfaZnJTM9MDltgqNvt5T+f3YczsHxksnNEmHkcS1lOe0JPx8/oFXiunKUVbSerxPo2VSpCwRYZvZsiD0dESLZbOVg/NhnPdyva9g08i7JSsAhUNw4M3oLZwNR+BVY+ec4sXjlwqk9D+HBOtHZz/2uVXLNsBgvDfLEvm5nFU19aS0F6Up+CRyNRnpfGkYahf0enXR521LTw6fPK+wQ4aaF1nuOX9TTG8ObhRtaU54a9Oru6PIdD9e1DBovBYC9cRds++xrFOs/Khk5m5aYOOpV3UVEmFiHqdZ5dPV5+tGE/l/zkFSwCmSmJe/IWLI4zntOBo6lq2+7y4HRYx/Wqf6RSHFa6Ap8XDe3+wFMznmoos/PTxryIzsIi/3rFjkCLsB01LSyYnjFocLu8JDvsBaf7Xj0SmEHkTMj3m4q9YL0Oh9XC9MzxK/Y0FjQjG7nEmj+kVIQ2HWmiID1pxJkIp8PKgTHKeL7bw7Nv4OmwWSjKSgmb8dxd14rDZumzzg3gY6tK+N+/H+REq4vy/MHflj994QDGwD8P0cS5KCslVCQoGrPzU3nl4KkhCxQdb+0mJ9XBh5b3rYzodNiwCOysbeXiBSOfzhXMSI7kA9zl8XGstZsvlIdfExJc59nW7Rn0Snq7y8uMrBTy04e+Grx4RhYySHA43LFXNrQztyB90H07bBZSk2y0dLl59K0aGjpcNLb30NjuYt+JNiwiPPD6UdbOyWV2flro5MwYw3O7j/Pvz7xDXUsX1ywroqqxc1wL94yUM3CBYjzPLx3RVLXt8Qxb4CJenA7rgIxnnmY81ThbMD0di/jfK9lOOztr23j/mTMGvf+ZJVn8eddx8tOSQp9RJ9u6+flLh7l0USEtnWNTYE1NPBaLYLPIiJZQqdEb74BZR1dNOMYYNlU2sqosh1OnwxfwGUyK3Uptcxcd/aa7RqO6qRO7VcJemSvJcVIVJvDcVdfKgukZAzI92akOPri8mIc2V4d6gvbX1ePl0S013HhO2YAs61gqz0+lx+PjAz/fSLLdOuBDqavHS0unm69cPHdAAG21CHMK0sZ1nWdbIPvYf31n0JLiTFLsVk53uwcNPDtcHs4uD//43hw2C1kpdupP+4PB+dMGZp3D8foM1U2dfaYlh5OZbKe2pYtb/rgT8GfGc9IceHwGj9fHbU/tAaAwI4m1s/OoP91NU0cP//Dbt5k/LZ1HPreG1eW5w7YBirfgVNtEz3h29HgTrrBQUIrDSmegDVNjoJBZjmY8VRRGc+LpdNgoz0+jod1ftbvd5RlyrfyZgRYZ7S4POTb/3+sPn9uPx2v49uULuOUPO6M+FjXxVRSmjWtvUzX+NPBUIzZYZieabFU0qps6OdnmYnV5Ls/sODaixwYDpUP17cNOq4zkOIqznWGzgqW5Tp7fe7LPNp/PsLuujWvOLOJgmAJHN51bxu82VXOspZtut3fAVKWa5k6cDhtfumjOqI67v/7jVZ7vXycZ7hjAn+0UgU+cXRp2f0uKs3hpfz3GmHGZMtXW5SYvLYnZ+QOrxYJ/3eqK0my2VoVfT+j2+nB5fCydmRnR883KTWX3sVa+8Nu3efJLayOa7l3X3IXbaygfJhM9PSuZLKedez6+gtzUpNDfa/C99aNrl7LxUAOvHWrg5QOnaOzowSrCbesX8vE1pROmEqQzVFxr/J4zOE7DTWfvbSwuUMWK02ENVbVtDGQ8p8LauHjT6XQDLSrK4C+7TtAemG47VP/FRUWZ2K3iDzxTHeysbeGPb9fy+QvKKc0N//k4Vr9zHbvEF+0SITVxTIyzFKV6CfbvXFM28nLbwcq2Y7HOM1wPz6CZOU4a2nv6FIo52thBu8vDkhlZYR8zOz+NbKedE23dLPneX7n2ntf54XP7eGl/PS2dPTR3uvn8+eXkxPjkMhgcdbkHronce6yNU+0uCtKSBi1SsKQ4k4b2Ho63xr7AkDGGtm43a8pz+gS5/ddbrCnPocvtDbvOM7S+M8K+cQ6bhTkFaVQ3dfL1x3ZENHUzuGZ21jCBp0WE1CQbxdnOAdlk8P9dfWRVCXd+bDlvfee9LJ6RydKZmXxqbdmECTohPhnP7FQH+WlJnGxz9WkXNGTRKZc34Xp4BjnttlAQ3djeQ6rDOqZFY5SK1KKiDHq8Plo6e8hItlHWK4Ds/1mcbLeycHoG7S4Pxhhuf3oveWkOvnTh2F5QVUolpolzpqJiZqgTr0T0ZmUjOakO5hSEz3ANJdnurwY5FpVt/T08w0+LDa77rOk13TY4/fSMGYNn1ubkp1FRmMan1s7C7TX84pUj3Pjrt9h/sh27Vfj0eWWjPu7h5KQ6yEyx0+3u2+Tb6zN86/Gd2CxC8RAl2RcHXt949PN0eXy4vWbQabZBqwPTaHsXBTLG8MS2Og6f6sBqkVBT70hkJNv51mXz2bDnJL989ciw9z8a6uEZ/drb/iwWwemwhvpTTiShdkLj/LzF2SmIwP979p2I7t/R4yE1KTGDuZQ+GU9XQlerVJPbokCBoeZO95C9kIPOLMmmw+WhsaOHLVXNfO2SeZrpUmqMJHqho8S8lDuJjNf006lk05EmVs3KiWoap4hQnp8aUYGhHo9v0KmArZ1uWrvcAwoLBZXm+AOM6qZOFkz3rwMMFhaaWzh4wGyxCNlOB9+6fAHgnxa4rbqFW/6wk/RkW2iKYiwFf0eH+2WFH3j9KDtqW5mTnzpkdm3B9AxsFmFXXQvrzgi/pnGs3hdtXf5CFGuGWZ+5pDizT1GgxnYX331iN3/ZfYK0JBuz81NH/Lv99LllbK1q5r+e2z9strSyoYP0JBt5gTV4U/3zICUOGU94t/DX83tPsvFQA2vn5A15/w6XZ1zec9FwOqwca3m3uFDvirZT/e9rMPp7iY3erVOGWt8ZdGZJFr953f+5uGB6BteunBnDo1NKJZKJd6lcTWm1zZ3UtXSxepAKppGYW5jOgTBrLPs7cPL0oAFqTXP4irZBwe3VjX0zngumZ4woQ+V02Fg7J4/i7JQ+zZVjrTwvja5eGc+6li5+9Nf9XDgvf9ipvsl2K/OmpY9LxrOt24PdKsOunUyyWUlPstHW7WHDnhNc8pNX+Ns79XzzsvksnJ4e1RRFEeGHH1pCaY6TLz28jR7P4O1ajjR0MCsvVdsEBATbCcXj1zE9I5kZWSn8+zN78Q5Taaijx5uwazxTelW1bWjv0fWdKm6ynI5Q8a5IAs/lJf4ejT4Dt165MKF7DiulxpYGnky8qaZT2eZK//rOVVGs7wyqKEijrsVf2XYwLZ09dPR4aXd5w/YcG6yHZ1Cm005mij10v2BhocUz/FeGE30qRHl+Km6vweszGGP41yd2Ywz8+zVnRBQ8LSnOZGdt64haV4yUx+ujtctNRrI9omNKT7bT2ePl8w9uZVpmMk/ffC7/cMHsUQWD6cl27r5hBe3dHg7Vt+Mb5PUebewY02m2E11KHPp4BlkswrcvX8C+E6d55K2aIe/b6fL06bmbSJwOa2g6fGO7i1xtpaLiKPg+iSTwLM5OIclmISfVMewyiWgk+verUlOZBp5qQtl0pImMZFvEbSzCmVvo76V4aIgCQ28dfTfYvP+1ygG3Dxd4Qt+WKsHCQouHWN+ZSIIZxG63lz/vOs7f99XzL5dUUJwdWRuXxTOyaO1yU9PUFbNjfOGdejw+E3GxpWynHatF+MrFc3nii2uZN23wnpojMW9aOv/5gcWcdnmobR74el0eL3XNXRp49hLPjCfA5YuncdasbH781/14fOEz1T6f8bdTSdCMp9Nho7PHizFmwFRbpcZbXloSBemDF53rTUQ4oyiD2fn6majUVKOBp5pQNh9tYlVZTmhqTjRXNisCayyHWue5ubIREShMT+Ivu09wvLVvQFHd1Em20z5kK42SXCebjzTy4XvfCBUWWjxIRdtEE2yp0u7y8L2n9rJ4RiY3njMr4scvCRTq2VnXMqLnNcYMmjXs73ebqnBYLWQ7I5uCnJpkY2VpNl99X8WYF+S55swZFKQncby1m+d2H+9z27V3v4HPjG1hoYkuXms8g0SEW69cRFNnD8dawldfDk41T0vQ4kLJditdbn9P3ZFcgFEqFnJSHSP6jLNZLXF7/0dKM6dKjb3EvJSrVBj1bd1UNnTw0VWjK0RQkuP0V7YdIuO5ubKJtCQb0zOTOdXu4sE3qrhl3fzQ7TVNnYOu7+z9PC6PD2NMRIWFEklpbmCNalMnIsJvPnXWsO06en9BVxSm47BZ2FnbypVLigZ9TIfLw/aaFrZWNbOlqpmt1S3YLDJoD9GgyoYOXj3YQHFWSsKsmyzNddLR4+Frj+2kojA9FLwHAxgNPN8Vjz6e/S0uzuSDy4v549ZaCtIHZmk6Aq1KErm4EPjXX4M/46SUUrGmwbgajcT8RlXj6nhrFx5v7NbijYUP3/sGje0uAFaXRbcmpPeHZXl+6qAtVdpdHnYfa6MwI4kku5X3LSzkoc3V3HzR3FCmpqqxk6XDrGUpzXFi8FfH3Vk78sJC8ZRst5Jks+Dy+Pj8eWVDtoAJx2GzsGB6BjtrW8LefrrbTVVjJ4u/twGf8QcgFQXpZKbYaero4bdvVvGZ88oH3f9Dm6qwWYT8MAFDvFhEmFuQRlVjJ1/47dv86Yvn4HTYQuvwhuvhOZUEW5TE+6LB1y+dx+Nv14amzvfW4fKPW6K2UwkGnrWBQmea8VQqOhpIKTV+JsZZsIqZ461d1DR1cay1m911kVUhNcbg8frYVdvKs7uOc+/Lh/nuE7s4WN8+ZGXP0Wrr9pCWZOtTuj1aFUNUtn27qhmvz4Sm0d60toyWTjdPbK8D4Lp7Xqe6afAenkHBjGi3x8eeY+8WFpoonA5/8PmV986N6vFLZmSyu64NX7/KoTVNnRw42Y7bZ/jShXP4zafOYvutl7Dhq+cztyCNjGQbd790eNDiT91uL49treWSRYWhSoqJIslm5acfOZMD9af57p92Y4yh2+PDZpFxrUqc6FLswam28T2OwoxkirJSaO5088DrR/vcdvNDbwPv9hxNNMHfYXBdsa7xfJdOkVRKqcSUWGdtatz9/MXDAFgtwh0b9g97/8Z2FzvrWtla3cL6O1/jH3/3Nv/5l308veM4zR09YTMHY+V0t4cVpdnDTvmMREXh4JVtN1c2YbUIaYGiIqvKclg4PYNfb6zEGIMrEFwPN9U2WHiotcs9oQoLBc3OT+OMooyopxouLs6k3eXhmrs2hqpGt7s8fOaBLRhg/rR0/vmSebxnXkGfoGxmtpPGjh5+vXFgUSeAP+88TkunmxtWl0Z1XLF2QUU+/3RxBY9vq+OhzdXDThueioItSoT4T5OenplMttPObU/t4a4XD4UqMXsD/yZqO5Xg+7Im8JmrU22VUkolusT8RlXj4lhLF4+8VUN+ehLJdgsvHzjFpiONrC4ffCrr9//8Di63j5nZKXznioXMzElhZo6TjGQ7a3/wN+paunnraBNnzYq+3Uk4bq+PLrd3VG1UeptT4K9oerC+fUD5982VTZwxIzNUwEhEuOncMr722A42HmoMBZ5DVbQFKMpKQfA3dwdGPF013vyvP/rAYGlxFuBfK5fisOL1Gf7p99s4dKqduQVpoYxNf2nJNt67oIB7XznCx9fMIrNf8aDfbqqiPD+Vs2fn8rO/HYz6+KIVSSbl5ovmsK2mmX97ai8en0+nQfZzZkkW0zKSSE+O/1eQRYQ5BWkUZzu5Y8N+2rrcfPOy+aFMvTOB26kA1AQyntlO/RtTaqKYCBn5iXCMauLRjGeMub0+mjt7xvU5I+1LeteLhzAYirKSKUxPpjAjiTs27B+09+KrB0/x+LY6irL809PWnTGNRUWZoSmp0zNTsFuF25/eO2B65Wid7vZnJteUj03gGaxs23+dZ7fby/aaFlb3C3DXL51OXpqDX2+sxBVYszdcxtNqERyBdZIOm4WKwrFp39FbIk8pm52fSordGsoq/+iv+3nhnXpuW79w2GmnX31fBae7Pfzy1SPAu3/Te461sq26hetXl8Z9feBQLBbhJ9ctIz89CZ9BM579OB02SnNTE6ZxvEWEH1+7lI+vKeXeV47w7T/txhP4DEtL0IxnSq81nhnJtoSbdq5UNBL5O03Fno7/5KffVMCp0y4aO2ITHAbXs+070RaT/UertrmTR7fUcN3KmSTZrFgswpcvnsuWqmZe3F8/4P5dPV6+86fdlOelUpQZfm2j1SKU5DjZVdfKH96uHdPjbet2Y5Gxa0dSmpuKwzawsu2OmhZ6vD5W9cvYJtmsXL+6lL/vr6ely43gD7SHEww4Ii0sNJk+dG1WC4uKMmh3eWlod3H3S4e5fnUJH18z/BTZRUWZXLFkOvdvrKQhUFQK4LdvVpNst/Ch5cWxPPQxkZ3q4OfXL8dmEdJHGbxMpr+LRGWxCLdfvYh/fM9sHt5cHepBm7h9PAMZz6auiHonKqWmNv0eUYlgygeeje0uKhs7qGrswDvGWboOlycU0PYvXBFvP3/pMILwxQvnhLZdt3ImpblO7thwYEDG8n/+fpDqpk6+//7FWIbIUuSmOlheksUPn9vP6W53xNnXobi9Plq73KQljd1VfatFmJ2fNqCX5+bKJkQIO1X4+jUl2CxCc6cbh80SUbYmKXC8E62w0FhZXJxJR4+HIw0drCnP4XtXLYo4U/nV91bQ7fZy90v+dcgen+HJ7XWsX1I0YPptIgj3pb50ZhbLS7LIGOfCQnqCER0R4ZZ18/nGuvn0eP1T6lMTfKptl9tLrk7lVkopNQEk5qXccfTgm1UYA26vYVNlI+fMzhuzfT+76zg+4z9B+NO2Om65dD7ZcTxBCAaAP75uKY9tqeEjZ5VQlPVu1s5utfDP76vgK7/fzjO7jvO7N6sA+N5Vi/jFK0e4bmUxZ8/O5acvDP4cIsJt6xdy9V0buStQuCiaYwyeNLu9Pr7y+210u33MyBo+wzgScwvS2FrV3Gfb5qNNzCtMDxvYFKQns35JEY9vqyPZHlkAHLzfeBcWSpSgY2lxFsb4A/C7r18xonYycwrSeP+ZxTz4ZhULp2fQ3NlDZ4+XG3plTEfyOge7b6x/VyOZEpwo4zbVfeE9s3l0SzVNHe7QUoJEk9Kr6JdWtFVKKTURTOmMZ7fby4NvVJGRbMMi8NT2Y2O6/8e21JJsszA7P5Vut49HttREva+xyBwG3fXiIQThHy+cPeC29UuKmD8tnf/+6358xmCM4ZuP7yIrxc63L18Q0f6XzsziA8tncP9rlaEehtHweH380++38+yuE5TkOMe8amOwsm17YA2ix+tja1VzaH1nuKzRp9aWAf6pt5EIVp5cOcbFliaK8+bmke20U1GY3ueiS6QZuX9671yMMRxr6aK+zcXiGZnD9k9VaiwUpCczf1r6kDM84snZa91wTqpOtVVKKZX4pnTg+adtdTR29FCUlUJOqoNndx3H5Yk+UOqtsqGDzUebyEtPwumwcXZ5Lg++UYXHG7s+l5Hodnt5bEstH1k1M7RGsXcQYLEIX7tkHkcbO2k47eLkaRc7alq4df1CskZQNfEb6+Zjs0rU7VU8Xh9feWQ7f951nO9esYDpmclR7WcocwPFfg4F1nnuOdZGZ4+Xs4aonLu4OJPSHCeFGZGd6GWm2FleksXs/LTRH/AElJuWREVhetSVQWfmOPnwWTOpP+2iy+3lhjUlY3yEE5tOqZ26Unq9p/I046niTD+LlFKRmLKBp89nuO/VIywqyiAj2UZuqoO2bg8v7z81Jvv/w9YaLAL5gSzdjWtnUdfSxQvvnByT/Q+nx+OjxzMwyD3W0o3FIvzje+aEeZTfxQsKWF6SRW1LFzVNnZw3N4+rlhaN6PkLM5L54oVzaO5009rlHtFjjTF89dEd/Hnncb59+Xw+c175iB4fqWCV2eA6z82VTQADCgv1Ny0zeUS9LUcyvXQwU+VLPdzrvPmiuYj41+WuH+HfoVKTVZLNQjAZq+16VCSmyveIUipxTdnA8+UDpzh8qoPPnleOiJCRYicn1cGTO0Y/3dbrM/xxax3nV+SHiuG8d0Ehxdkp/Hrj0VHvfyjGGKoaO9lW08LCW5/joh+/xGf/bwv/9dw+TrZ109Du4mOrSpg2RAZRRPj6pfNxe/0Fhr5/zeKoWld8+twykmwWqho7Iy7cZIzh8KkOnt5xjG9dNp/PnT9wOvBYKclx+ivbBgLPTZVNlOWlUpAx9tlVFb3CjGTK81KZlescUcCv1GQmIqH3g1a1VUopNRFM2cDzl68eYVpGMlcsmQ74+7hdsXg6L+w9GVrzF61XD57iRFs3162cGdpmtQifPHsWmyqb2Hts5K1Vejw+fIP01+ztf/52iBNt3eSmOvj8BeVUFKRT2dDBL185wtHGTkT8hTOGc/bsXIoy/Sf8JblD96scTLLdyswcJ11uL49FuL71aGMnjR09fGPdfD5/QeyCTni3su3B+nZ8PsNbR5uGzXaq+MhLSxrzNb7jRbMMiW0ij09wum2eZjyVUkpNAFMyfbDnWCuvH27km5fN7zMN8uplRTz4ZhXP7z3B+8+Mvk/gY1tryXLauXhBQZ82KtetnMl/P3+AB14/yn99aEnE+9td18r2mhaS7VYOnjwdWpsIfavA3v9aJT954QB5aQ7K81L5+qXzQ/dze3188O7XEfwZpEjMzBlZwBnu5C3HaSctycaPnz/A+qVFpA7RE++to03Un3YxLSM5ouB4LFQUprHlaDMH6k/T2uVm1RDrO6eaeFWBVUpFJrh2OkfXeKoJRr9HlJqaJnTGM9pKr/e9Wkmqw8pHV/UtVLK8JJsZWSk8OYrqti2dPTy/5yTXLJsxoPJpptPOB5bP4IntdTQF+nsOp8Pl4eaHt2GzCm6vj/V3vsbvN1dj+mU/H91Sw+3P7GXdommU56UOmBprt1pIsVtJto9vTzoRoSQnhVOnXfzy1SOD3s/j9XHrk3twWC0UZw9smxKrrERFYTp1LV38fV89gAaeMTCRM0pq6poIf7enTrsAyNWqtkoppSaACR14jtSH732Da+7ayNM7jnHdWTPJ7NfU3WIRrlpWxKsHG2hsd0X1HE9uP0aP18e1K8NnTG88ZxYuj4+r73wtoqD51if3cLSxgzn5aSyekcmK0my++fguvvTwNtq6/UV7Gjt6+OYfd3Le3Dx+9tFlUa3HHImRnpClJ9u5YvF07n35CPVt3WHv89Dmat453kZJrhPrOLYvmFPgrzb78OZqijKTwwa9SimViCyBz/rsMH2HlVJKqUQzpQJPgJNt3fiM4aZAP8b+rlpahNdneHbX8aj2/9jWGhYVZbCoKBMYGKTNLUzn3Dl5nGxzDcha9vfEtjr++HYtN184h4wUOw6bhQdvWs3XL53Hc7tPcPnPXuV4azeH69tZXpLNvR9fEXF/yfF2y7p5eHw+/vv5AwNua2x38aMN+1k7J5eccT6BCla2rWnqYlVZTsyDdqWUGisWAZtFsI1B5WyllFIq1ib0t5UxhlOnXRFXTPX6DPWnXaw7Y1qf9Yu9g8P509KpKEyLarrt3mNt7K5r49oVQ68PvfGcWfR4fTR1Dt5mpKqxg+8+sZuVpdl8+eK5oe0Wi/DFC+fw6OfPxhiobuokxWHlVzeeNeYVP8dyqllpbiqfOHsWj26pYd+JvsWVfvjcfjp7vPzbVYvGPfAryXESfMpVZbkRPWYiTMFTSk1+NqslVDldKaWUSnQT+hurudPNkYYOPnTP6xw51T7kfd1eH7XNXXh9Zsi+kCLC1ctmsKWqmdrmzoiP5cP3vsFNv9mMw2rh6mUzhrzvhfMLSLJZqGnq5Jmdx/B4+/bb7PH4+PLD27AI/PQjy8JezV5Rms2zXzmPkpwU5k9LHzBtOJx4BEy9n/Pmi+aQlmTjP5/dF7p9W3Uzj2yp4aZzy5hTkD7YbmLGahFSAutedX1n4tJgX6mBSrJTmJ2fFu/DUEoppSIS06q2IlIBPADkAo3AJ4wxB/vdxwr8D7AOMMAPjDH3RbL/bKed2fmpHDnVwWU/e5Vb1s3nU+fMwtJrjaAxhr/vq+f7z74TajOyvCR7yP1etbSIOzbs5+kdx8NWVw2uzfz959bQ4/XR1ePF5fbS0N7DpYumkT1MaXurRSjLS+VoQwdfemgbJTlOPnteGR9aMZMUh5UfP7+fHbWt3H39coqz/ZnZcCfdmSl2pmeGL8STiLKcDm6+aC7ff/YdXj14inNm53Hrk3sozEgKZXXjceypDitur4/Z+aljvu9EHQul4k3fG6OXNM7F4pRSSqnRiHU7lXuAu4wxvxWRG4B7gYv63ed6YA4wF3+Auk1EXjDGHB1u5yJCXloSD392Dd96fBf//sxeNuw5wY8+tJSSXCf7TrTxH8+8w2uHGijPT6WiMI2sCDKDM3OcLC/J4sntdaHAs8fj480jjfx17wm217Tg8RrmfOcvA6b5DlZUqL/MFDtLijO56dxy7nn5MP/65B5+8sJB1p0xjYc2VfOx1SVctnh6RPuaSD5xTikPvHGU7//5Ha5fU8quulZ+9pFlpA3RZiXWSnKcFPmMru9USimllFIqRmJ2ti8iBcBy4H2BTQ8Dd4pIvjHmVK+7fhj4pTHGB5wSkSeAa4E7In2ugoxk7vvkSv6wtZbbn97Lup+9wgUV+WzYc4L0ZDu3rV/IDWtKueG+TREf/9XLZnDbU3u4/7VKdtS28Pd99Zzu9uB0WHE6rCTZLHxwRTFOh40Uu5UH3zyK3Wrhgor8iJ9DRFh3xjQuXVTIW0ebufflwzy0qZoUu5V/vWJhxPuZSJJsVr6xbj43P7yN7z21h9VlOVy1tCiux2SzWkjQmkxKqTGkWVallFIqfmKZZpoJ1BljvADGGK+IHAts7x14lgBVvX6uDtxnRESEa1fOZO2cPC772Ss8t/sEN66dxVcunkuWc+TNtS9fPJ3bn9nL7c/sJSfVwWVnTOOShdM4d24en7x/MwBfv3R+6P4b9pwIHUc0x76qLIdVZTlcfedr/nWHjskbCV25ZDq/eq2SXXWt/NvV419QSCmlJgMNpJVSSk0kMlxLj6h3LLIC+D9jzKJe2/YCNxhj3u61bRdwkzHmrcDPtwDFxpgvh9nn54DPAZSUlKyoqqrqfxfAv66z3eUhPXl0rTk2HmrAahFWlmZrufoxVn+6m+rGTlbO0oI+SimllFJKTQYistUYszLcbbHMeNYAM0TEGsh2WoGiwPbeqoFS4K3Az/0zoCHGmF8AvwBYuXLloBGziIw66ARYOydv1PtQ4RWkJ1OQnhzvw1BKKaWUUkqNg5il8Ywx9cB24KOBTR8FtvVb3wnwGPBZEbGISD5wDfDHWB2XUkoppZRSSqnxFev5o/8A3CwiB4CbAz8jIs+KSDAF+yBwBDgIvAncbow5EuPjUkoppZRSSik1TmLaw8IYsw9YHWb75b3+3wt8IZbHoZRSSimllFIqfrRijlJKKaWUUkqpmNLAUymllFJKKaVUTGngqZRSSimllFIqpjTwVEoppZRSSikVUxp4KqWUUkoppZSKKQ08lVJKKaWUUkrFlAaeSimllFJKKaViSgNPpZRSSimllFIxpYGnUkoppZRSSqmY0sBTKaWUUkoppVRMaeCplFJKKaWUUiqmNPBUSimllFJKKRVTGngqpZRSSimllIopDTyVUkoppZRSSsWUBp5KKaWUUkoppWJKjDHxPoaoiMgpoCrexzHB5AEN8T4INYCOS+LSsUlcOjaJS8cmcenYJC4dm8Sk4zJypcaY/HA3TNjAU42ciGwxxqyM93GovnRcEpeOTeLSsUlcOjaJS8cmcenYJCYdl7GlU22VUkoppZRSSsWUBp5KKaWUUkoppWJKA8+p5RfxPgAVlo5L4tKxSVw6NolLxyZx6dgkLh2bxKTjMoZ0jadSSimllFJKqZjSjKdSSimllFJKqZjSwHOSEZFcEXlWRPaLyE4ReVxE8gO3VYjIGyJyIPDv3Hgf71QlIreJiBGRMwI/69jEmYgki8jdInJQRHaJyC8C23Vs4kxErhSRbSKyPfC59oHAdh2bcSYiPxKRyt6fX4Htg46FjlPshRuXoc4HArfruIyDwd4zvW6/bSTvJzV2hvg8C3s+ELhNx2YUNPCcfAzwQ2PMPGPMEuAw8IPAbfcAdxljKoC7gHvjdIxTmogsB9YA1b0269jE3w+BbqDCGLMY+NfAdh2bOBIRAR4EPm6MWQbcADwgIhZ0bOLhCeB8BvbRHmosdJxi7wkGjstQ5wOg4zJeniD8e2aw8wHQsRkvTxB+bAY7HwAdm1HRNZ6TnIh8EPgC8DHgAJBrjPGKiBVoBOYaY07F8xinEhFJAl7CPx4vAlcC9ejYxJWIpAG1QLExpr3X9gJ0bOIqEHg2AFcZYzaKyPnAfcC56NjEjYgcBa40xuwe6n0CyGC36TiNvd7jEua2DwJfMMa8Vz/bxl//sQl3PjDc+0nHJjb6fZ6FPR8I3E/HZpQ04zmJBTICXwCeAmYCdcYYL0Dg32OB7Wr83A781hhT2Wubjk38zcb/5XGbiGwRkZdE5Fx0bOLO+K+OXgc8KSJV+K9QfxIdm0Qy1FjoOCWAfucDoOOSCMKdD4COTbwNdj4AOjajpoHn5Pa/QDtwZ7wPRIGInA2cBfw83seiBrAB5cA2Y8xK4BvA40BaXI9KISI24FvA1caYUmA98Ag6NkqNhJ4PJBA9H0hoYc8HRCQjvoc1OWjgOUmJyI/wT3P6sDHGB9QAMwLTAgj8WxTYrsbHBcB8oDIwraMY2ID/6pqOTXxVAR7gYQBjzCb80zu70LGJt2VAkTFmI0Dg3w786290bBLDUN8v+t0TZ2HOB0DHJd7Cng+IyCXo2MTbYOcDFejYjJoGnpOQiHwfWAFcY4xxARhj6oHtwEcDd/so/qs5Oid9nBhjfmCMKTLGzDLGzMK/huBSY8yj6NjElTGmAf8am/eBv2odEFzLsR0dm3iqBYpFZB6AiCwApgEH0bFJCEN9v+h3T3yFOx8APSeItyHOB/6qYxNfQ5wPHNKxGT0tLjTJiMgiYDf+E+auwOZKY8z7RWQ+8ACQDTQDnzDG7I/Pkap+i9l1bOJMRMqB+4FcwA18xxjzFx2b+BOR64FvAsFszW3GmCd0bMafiPwP8AH8wX8D0GiMWTTUWOg4xV64ccG/Njrs+UDgMTou42Cw90y/+xylb+EhHZtxMMTnWdjzgcBjdGxGQQNPpZRSSimllFIxpVNtlVJKKaWUUkrFlAaeSimllFJKKaViSgNPpZRSSimllFIxpYGnUkoppZRSSqmY0sBTKaWUUkoppVRMaeCplFJqUhKRoyJyxjg8z1Uickfg/2eJyOdGsS8jImkjfMxvRKQ20Bog3O3vEZEt0R5TYB/niMj2aI5PKaWUAg08lVJKqVExxjxljPl64MdZQNSB5yj8wBjz5Vjt3BjzujFmWaz2r5RSavLTwFMppdSUIiKfEJFdIrJTRP4kIgWB7TeKyF9F5BER2SMiG0VkWuA2h4j8QkQOiMhrInKniPyh1+P+ENj9XcDCQHYweHufLGHvn0XkAyKyT0ReF5Hv9jvO1SLyoohsDfx3xQhe43+IyCEReRm4ot9tnxSRTYF9/l1E5g33GpVSSqnR0sBTKaXUlBGYevsD4BJjzBJgN/C/ve5yFvA1Y8wiYC9wc2D754ESYCHwXmDlIE/xRWCvMWaZMeZDwxxLAfBL4GpjzDlAT6/bsoB7gI8ZY1YAVwL3BrYP9xrXA1cBy4CLgPm9bjsPuA44P7DfO4D7R/galVJKqRHTwFMppdRUciHwrDHmeODne/EHWUEbjTE1gf9/E5jd63EPGmM8xphu4OExOJY1wNvGmP2Bn3/R67ZzgDLgLyKyHfgLYIA5Eez3QuARY0y7McYL/KrXbeuBpcCmwH5/AMzs9bixfo1KKaUUALZ4H4BSSik1jgR/ANdb75+7e/2/l3e/J8M9LlJeAhd6RSS537EMRoCdxpjzo3i+4fZ7vzHm1kFui/Y1KqWUUkPSjKdSSqmp5G/A5cG1m8BngRcieNyLwA0iYgsEjx8e5H5tQGa/bYfxT+EF+Fiv7W8AZ4rI3MDPn+l12+vAXBG5MLhBRM4SkaGCyqC/AdeJSKqIWIFP9brtaeATIlIc2KdVRFaM8DUqpZRSI6YZT6WUUpPZCyLi6fXzYuBbwPMiYoAj+Nc2Duce/FNU9wA1wFbAGeZ+O4H9IrIb2BdY5/lV/OszjwPPBO9ojKkPtF55WkSagEd73dYsIlcBd4jITwFH4FjXM0xW0hjzjIicDWwHjuEPKGcEbntFRL4DPBUISh3AY4HXE+lrVEoppUZMjNFZNUoppdRwRCTdGHNaRJKAp4DHjDH3JcBx/QbYYoy5cwz2NeRrDATr6caY9tE+l1JKqalFM55KKaVUZF4IBGTJ+Kfn/ia+hxPSCnxZRCrGoJdn2NcoIucAPwdOAr5RPodSSqkpSDOeSimllFJKKaViSosLKaWUUkoppZSKKQ08lVJKKaWUUkrFlAaeSimllFJKKaViSgNPpZRSSimllFIxpYGnUkoppZRSSqmY0sBTKaWUUkoppVRM/X8dFFPYRFnoDQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ - "instrument.settings(ncount=1E5)\n", + "instrument.settings(ncount=1E6)\n", "\n", "instrument.set_parameters(wavelength=2.8)\n", " \n", "instrument.backengine()\n", - "data_low = instrument.data\n", - "\n", + "data_low = instrument.data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ "plotter.make_sub_plot(data_low)" ] }, @@ -130,7 +187,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -139,13 +196,50 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": { "tags": [ "scroll-output" ] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/tutorial/data_folder/mcstas_SPLIT_117\"\n", + "INFO: Regenerating c-file: python_tutorial.c\n", + "Info: Defining SPLIT from sample=PowderN() to END in instrument python_tutorial\n", + "CFLAGS=\n", + "INFO: Recompiling: ./python_tutorial.out\n", + "mccode-r.c:2837:3: warning: expression result unused [-Wunused-value]\n", + " *t0;\n", + " ^~~\n", + "1 warning generated.\n", + "INFO: ===\n", + "INFO: Placing instr file copy python_tutorial.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/tutorial/data_folder/mcstas_SPLIT_117\n", + "\n", + " monochromator rotation = 22.4519 deg\n", + "[python_tutorial] Initialize\n", + "Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Na2Ca3Al2F14.laz' (Table_Read_Offset)\n", + "Table from file 'Na2Ca3Al2F14.laz' (block 1) is 841 x 18 (x=1:20), constant step. interpolation: linear\n", + " '# TITLE *-Na2Ca3Al2F14-[I213] Courbion, G.;Ferey, G.[1988] Standard NAC cal ...'\n", + "PowderN: sample: Reading 841 rows from Na2Ca3Al2F14.laz\n", + "PowderN: sample: Read 841 reflections from file 'Na2Ca3Al2F14.laz'\n", + "PowderN: sample: Vc=1079.1 [Angs] sigma_abs=11.7856 [barn] sigma_inc=13.6704 [barn] reflections=Na2Ca3Al2F14.laz\n", + "\n", + "Save [python_tutorial]\n", + "Detector: banana_I=2.58648e-06 banana_ERR=2.11397e-08 banana_N=44235 \"banana.dat\"\n", + "\n", + "Finally [python_tutorial: /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/tutorial/data_folder/mcstas_SPLIT_117]. Time: 1 [s] \n", + "PowderN: sample: Info: you may highly improve the computation efficiency by using\n", + " SPLIT 47 COMPONENT sample=PowderN(...)\n", + " in the instrument description python_tutorial.instr.\n", + "loading system configuration\n", + "\n" + ] + } + ], "source": [ "# No need to set settings or parameters as these have not changed\n", "instrument.backengine()\n", @@ -154,9 +248,29 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plotting data with name banana\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAHuCAYAAAD3MtMPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACt+klEQVR4nOzdd5wcd30//tdntpfrVafeLctFtuWKGx3Tq0UJLRQDCSSBAIE0+P4CCQGS0JFJgEAgGLCDaabjLhfZkmyrS6fTnaTrd7u3fWd2Pr8/Zmd1J13Z253Z2d17PR8PPSzf7e1+ruh23/NuQkoJIiIiIiIiIrsoTh+AiIiIiIiI6hsDTyIiIiIiIrIVA08iIiIiIiKyFQNPIiIiIiIishUDTyIiIiIiIrIVA08iIiIiIiKyFQNPIiKqGUKIbwshvm3D/b5NCNFXxsffLISQ+T+fm+d2a/K3WVPqY81yn/8y7bFvtup+rWDX94uIiGoPA08iIiqaEOJeIcQnHDzCX+T/AACEEH1CiLc5d5zzLAPwyQo/5j/lH7caVfv3i4iIKsTt9AGIiIiKJaWMOn2G+Ugphxx4zDiAuBCi0g+9IDu+X0IIn5QyY/X9EhGRvZjxJCIiSwghgkKIbwghJoUQMSHED4UQ7dPe/20hxH8LIT6dv81pIcQHzrmP5wghDgkhUkKIXwoh/np6Cez00k0hxL0AVgP4Vr7M9F7z7edmZc/NtOVLYw/mH+fnANpxDiHEB4QQvUKIpBDicSHEjSV8TVYKIX4vhEgLIfYCuGKW2zxPCLE7f5YjQoj3LuZrUuQ5zBLfVwkh9uQ/px8LIfxCiL8SQgwLIc4IId5yzse9QAjxlBAiI4Q4KoR4wyz3+fL8+RNCiD8IIVZMu00x3y9Xvlx4OP85/koIsW7afXwi/z39iBBiEMC9i/nciYioOjDwJCIiq3wewI0AXgbgJgCrAHz7nNu8Kv/fqwH8fwD+QwixFQCEEM0A/g/APQC2AbgTwMfmebxXAzgF4C9hlJq+uphDCiGa8o/zOwCXAfg5gL895zZ/CuD9AN4L4CIA3wHwSyHEymIeY5rvAPDA+Hw/AuBfznmczTA+z68A2ArggwA+KYR4Tf79zVjc12QhfwvgzwA8F8b36ucANuX//gUAO82LBUKIVQB+CuAuABfn3/8dIcSV59znJwD8df5zbITxczCbub5ffw3gbfk/VwLIAviJEGL6a5TtAC7Nn/vti/yciYioCrDUloiIyiaEaADwDgAvlVI+mH/b2wAcFEJsklIeyd+0T0r58fzfjwghPgjgBgD7AbwRwDiAD0opJYDDQoibYARF55FSTgghcgCiiyxxfSOAKQB/KaXMATiUz2ZeN+02fwfgfVLKX+f//0tCiJcBeBPOCR7nIoTYAuBmABullMfyb/ssgJ3TbvZRAF+TUn4r//+9Qoj/APAuGEHmor4mRfgnKeXD+bPcCeA1AG6RUqr5s/09jODvHhhB95NSyk/kP/aIEOJ6AH+VP9f0+7w3f5//BuDfZnvgeb5ffwngH6SU9+Tv420wAtTnAfhN/jY5AO+SUiZL/LyJiMhhVZfxFEJ8TghxIl+Gc5GF93uNEOLRfInRfiHEe6y6byIiwjoYmb1HzDdIKQ8BiAC4YNrtnj7n4wYBdOb/vgnAnnyAZdpt+UmBzQCeyAedpsK5hRBhAGsB3CmEiJt/ADwbxue5mMeZNIPOcx8n72IAf3nO4/zDtMex+muyf9rfRwAclVKqACCl1GEEuR35918wy3l3Yeb3E5j5PZ3+/VxQPvvcjZk/NxMADp/zOIcZdBIR1bZqzHj+BEY5zwMW3+/XAfydlPLnQohlAI4KIf5PSjls8eMQES1FxU62Uc/5f4mzF0FF/v/Lpc9yHs+0v8/2ONNvH8r/dweAQ+fcbmoR51jocQAgDOCzAP77nLebXyervibn3i/y97vQ96OU+7RjyhGDTiKiGld1GU8p5YNSyoFz3y6EuFoI8UchxBP5Py9Z7F0DaMr/PQzjxUOizOMSEZHhOAANwDXmG4QQFwBoxvnB21wOA7hMiBnjWc8bxnMOFYDrnLeNwsiimefomP7/+ce54pwewqum/X0EwBCAlVLKY+f8GSnyczEfp1UIsX6OxwGAfQA2zfI4J6fdx2K/JlY5hGnfz7xrUfz3czYzvl/5qbfDmPlz0wojW1zO4xARUZWpusBzNvnhCl8H8EYp5RUAXgpjAELzIu7m7QA+LYToB7AHRu9O3OqzEhEtAd1CiG3T/8AIOr8JoxfyeiHE5TAGC90zrb9zId+HMV32s0KITfkBPy/B/Bm/kwCuF0J058s2AeB+AK8VQjxbCHExgP8EMH39xvcBtAD4dyHEZiHEuwHcYr4zX9b6aQCfEkK8TQixXgixXQjx8Xx/ZVGklAfyZ/kvIcSlQojnwRikM91nAbxCCPFJIcQWIcRWIcSfTmsHKeVrYpWvwQjQP5F/7D+H0RP6hTLuc7bv1xcA/D8hxC35FptvA+iFMfyJiIjqRE0EnjAGPqwFcI8wxtHfA+NJdwMACCHG5vjz1LT7+DCAD0spV8G4Wvzl/MQ+IiJanNtgXMCb/mczgA8BeBDGpNT7YQyIeWuxdyqljMCYdPoyGJnA18IISubb2fhJGNmyAQB359/2nzDaNv4PwC8A/C+MLOb0x3kVgBflH+dVAP75nLN8CcDfwBj+cxDAz2A8d5wp9vPJezOM56vHAPw7jKFF0x/nCQAvgDGt9UkYbSZvBdA37ayL/ZpYIp91fSWMYPMZGEOA3i6lfLSMu53t+/VZGNN//xvA4wD8AF6R7zklIqI6IWbOK6gewthR9lIp5TP5stqPSilLmuKXHw3fL6UMTnvbPQC+KaX8kSUHJiIiywkhvg6j5HWx7RUVJYS4GcAfpZR29Dee+1izfk2EEBLAs80Js0RERNWkVjKeDwPYKIR4tvkGIcSV5/S8zGcSQCY/Lh9CiG4Y+9AOWH1QIiIqXb7M9Op8eettMHY7/o/DxypafjLtpyy+z3m/JvkyXbaOEBFRVau6jKcQ4oswyoq6AYwBGJdSbhXGwurPwujL8cLo/3hZsaU4QogXwNi95sr/+aKU8nYbPgUiIiqREOITAN4Jo6/xBIAvSCm/7uihiiCECABYnv/fSSnluIX3/QnM8zURQrTBeG4EgNNSypRVj01ERGSVqgs8iYiIiIiIqL7USqktERERERER1SgGnkRERERERGQrt9MHmK69vV2uWbPG6WMQERERERHRIj3xxBNjUsqO2d5XVYHnmjVrsHv3bqePQURERERERIskhDg51/tYaktERERERES2YuBJREREREREtmLgSURERERERLZi4ElERERERES2YuBJREREREREtmLgSURERERERLZi4ElERERERES2YuBJREREREREtmLgSURERERERLZi4ElERERERES2YuBJREREREREtmLgSURERERERLZi4ElERERERES2sjXwFEL4hRBfE0IcFUI8LYS43c7HIyIiIiIiourjtvn+/xVAGsAmKaUUQnTZ/HhERERERERUZWwLPIUQYQBvAbBCSikBQEo5bNfjERERERERUXWys9R2PYBxAP8ohNgthLhXCHH9uTcSQrw7//7do6OjNh6HiIiIiIiInGBn4OkGsA7AHinldgAfBXCXEKJx+o2klLdLKbdLKbd3dHTYeBwiIqpFO3buwo6du5w+BhEREZXBzsDzJAANwP8CgJTyUQBjADbZ+JhERERERERUZWwLPKWUYwD+COD5ACCE2ASgE8Axux6TiIiIiIiIqo/dU23fA+CbQojPA1ABvFlKGbH5MYmIiIiIiKiK2Bp4Sil7Adxs52MQERERERFRdbOzx5OIiIiIiIiIgScRERERERHZi4EnERERERER2YqBJxEREREREdmKgScRERERERHZioEnERERERER2YqBJxEREREREdmKgScRERERERHZioEnERERERER2YqBJxEREREREdmKgScRERERERHZioEnERERERER2YqBJxEREREREdmKgScRERERERHZioEnERERERER2YqBJxEREREREdmKgScRERERERHZioEnERERERER2YqBJxEREREREdmKgScRERERERHZioEnERERERER2YqBJxEREREREdmKgScRERERERHZioEnERERERER2YqBJxEREREREdmKgScRERERERHZioEnERERERER2YqBJxERVYUdO3dhx85dTh+DiIiIbMDAk4iIiIiIiGzldvoARERE88lqOlJqzuljEBERURkYeBIRUVU7HUlhNJ5BTpdwKcLp4xAREVEJWGpLRERVLZHVICUwFs84fRQiIiIqEQNPIiKqWmpORzJrlNmejqQcPg0RERGVioEnERFVreOjcUhp/H0wknb2MERERFQyBp5ERFS1njk9Vfj7YJQZTyIiolrF4UJERFS19p+JwpwndIYZTyIioprFwJOIiKrW/tNTCHrd0HQdZ9jjSUREVLNYaktERFVJ1yX2n4ki5HPB51ZYaktERFTDGHgSEVFV6htPIJHNIeh1w+ty4UyUpbZERES1ioEnERFVpf1njMFCIa8LXreCsXgGWU13+FRERERUCgaeRERUlZ45E4XXpSCQDzylBIanmPUkIiKqRQw8iYioKu0/PYXN3Q1QhIDPbTxdneaAISIioprEwJOIiKqOlBLPnIlia08jAMDrMp6uOGCIiIioNjHwJCKiqnMmmkYkqWLr8iYAgDef8eQuTyIiotrEwJOIiKrOM6ejAICL8hlPlyLQHPQw40lERFSjGHgSEVHV2X86CpcisGVZY+Fty5oCzHgSERHVKAaeRERUdZ45M4X1HSH4Pa7C25Y3+3GGw4WIiIhqEgNPIiKqOvvPRHFRT9OMty1rCmAwyownERFRLWLgSUREVWUklsbwVKYwWMi0rNmPaEpFMqs5dDIiIiIqFQNPIiKqKvvPTAE4O1jI1NMUAHB2su2OnbuwY+euyh6OiIiISsLAk4iIqsr+/ETbC88NPJvNwJN9nkRERLWGgScREVWV/WemsKYtiAa/Z8bblzX5AYArVYiIiGoQA08iIqoqz5yJntffCQDdTX4IAa5UISIiqkEMPImIqGpoOR0DE6nzJtoCgMeloCPsY8aTiIioBjHwJCKiqpHI5gAAW8/p7zQtaw4w41lBHOBERERWYeBJRERVw1yVMlfgubzZjzPMeBIREdUcBp5ERFQ1Epkcepr8aAv7Zn3/sqYABiNpSCkrfDIyMQtKRESlYOBJRERVI5HVZh0sZFrW5EdKzSGaUit4KiIiIiqX2847F0L0AUjn/wDAR6WUv7bzMYmIqDbldIm0qs9ZZgtM3+XJPk8iIqJaYmvgmfdaKeUzFXgcIiKqYWZ/52wTbU1nA0/2eRIREdUSltoSEVFVSOYn2l44X8azyQ8AXKlCRERUYyoReH5PCPGUEOKrQojmCjweERHVIDVnDAzqbJh9sBAAtId98LgEzkRZaktERFRL7A48b5BSXgrgSgACwJfPvYEQ4t1CiN1CiN2jo6M2H4eIiKqVputwKQJu19xPTYoi0NXoxyBLbYmIiGqKrYGnlHIg/98MgK8CeNYst7ldSrldSrm9o6PDzuMQEVEV03ISbkUseLuepgCHCxEREdUY2wJPIURICNGU/7sA8HoAe+16PCIiqm05vcjAs9mPM+zxJCIiqil2TrXtAnCnEMIFwAXgAID32fh4RERUw8xS23Pdcdu1M/5/WXMAw08PoqfJD+O6JhEREVU72wJPKWUvgMvsun8iIqovmi4R9LoWvF1Pkx9qTkLNSXjdDDyJiIhqAdepEBFRVSi2x3NZk7HLM5vT7T4SERERWYSBJxEROU7XJbSiezyNwDOjMfAkIiKqFQw8iYjIcfGsBgBwu4obLgQAWQaeRERENYOBJxEROS6aVAEAbmXhp6WmgAcBjwtZLWf3sYiIiMgiDDyJiMhxETPwLCLjKYTAsmY/M55EREQ1hIEnERE5LpLKAkBRPZ4A0NMUQIbDhYiIiGoGA08iInJcZBGltoDR58mMJxERUe1g4ElERI6LpIovtQWMlSpqTkKX0s5jERERkUUYeBIRkeOiSaPU1lVsqW1+sq3KrCcREVFNYOBJRESOiyRVKAJQRPEZTwDs87RRVtNxOpJCIqM5fRQiIqoDDDyJiMhxk0m16P5OAOhpNgJP9nna5+HjYzg1mcIzZ6bwlz/Yg4GJpNNHIiKiGuZ2+gBERETRVLbo/k7gbKktA0/79I4mAABdDT7c88wQfvH0IN509WqoOR0eF69bExHR4jDwJCIix0WSatGrVAAg6HXDpQhkGHjapncsDpcisLotiLvfcDm+8Puj+O4jJyGlRE9zAFJKiCJLo4mIiHjJkoiIHBdJLS7wBACfW0GWPZ62OTGWgN+jQAiB7iY//vnVF+M3f3UjGv0eowT39JTTRyQiohrCwJOIiBwXSapwL7J80+tSWGpro97RBAIe14y3re8IY2Vr0Hj/WNyJYxERUY1i4ElERI6SUiKayha9SsXkdgloenXs8dyxcxd27Nzl9DEsk8xqGIym4Xe7znuf3228dOgb47AhIiIqHgNPIiJyVDKbg5qTiy61VYSAXiWBZ705MWYMFvJ7zw88FUXA61JwcjxR6WMREVENY+BJRESOiqRUAFh0qa0iAF0y8LSDOdE24Jn9e+L3KDjBwJOIiBaBgScRETkqkswCQEkZT8ad9jAznr5ZSm0BwO9x4eQ4S22JiKh4DDyJiMhR0WQ+41lK4AlA42Rby/WOxrG8OTBn363fo2AikUU0n60mIiJaCANPIiJy1NlS20UGnvlnsDQn21ruxFgCa9tDc77fzISyz5OIiIrFwJOIiBwVKWQ8F/eUJIQRqKbVnOVnWsqklOgdTWBdx9yBpz/f+9nHclsiIioSA08iInJUJFV6jyfAwNNqo/EMYhkN6+bJeJprVk6OMeNJRETFYeBJRESOiiZV+NwKlEUHnsZ/0ypLba10Ij/Rdm1HeM7bKIrAsiY/M55ERFQ0Bp5EROSoSFJFc9Cz6I+rhYznjp27sGPnLqePsSi9+SzmfBlPAFjdFkQfezyJiKhIDDyJiMhRkVQWzQHvoj/OzHhmtOoNPGtR72gcXreCnubAvLdb2x7icCEiIioaA08iInJUJKmiqayMJ0ttrXRiLIG1baE5V6mYVreFMBbPIpbmShUiIlqY2+kDEBHR0hZNqVjVGsTtb9m+qI8ze0KrudS2FvWOJrC5u2HB261pCwIATo4ncdHyJruPRURENY4ZTyIiclTpPZ7Gf5nxLJ/Zi6rmdPRPJOfd4Wla3Wbchn2eRERUDAaeRETkqEgqi+ZgKT2ezHhabWAiCU2XWDfPRFvT6mkZTyIiooUw8CQiIsek1RzSqo6mQBk9nhwuZJlec5VKERnPoNeNrkYfTnCXJxERFYGBJxEROSaaMgbTsNS2OphB5PqOhQNPwCi3NSfb1uLqGCIiqhwGnkRE5JhIMh94lrROhaW2Vusdi6M15C269HltWwh9LLUlIqIicKotERE5JpLMAigt4ynMPZ4MPC3TO5qYUWZ7x23Xznv71e1BjO7OIJ7R7D4aERHVOGY8iYjIMZF8qW0pPZ5CCCgCSGsstbVK71gC64ro7zStyU+2PcnJtkREtAAGnkRE5JhosvQeT8Aot62GUltdSozGMsjWcBCs6cbnsLbI/k5geuDJclsiIpofA08iInJMJGWW2i6+xxMwym2rIfCMJFX0jiXw9fuOO32Ukplfx3XtC69SMZkrVTjZloiIFsIeTyIickwkqcKtCIS8rpI+3sh4Op9lNIO2r/zxGF512XKsbA06fKLFMz+HhSbaTu/7DPnc6GjwsdSWiIgWxIwnERE5JpJS0Rz0QJiTghapWkpt06oOlxBwKQKf/Nl+p49TkrSagyKAVW2LC5o52ZaIiIrBwJOIiBwTTaolDRYyKUp1DBdKazkEvC78xXM34ncHR/C7A8NOH2lW8+3aTKk6VrQE4XMvLvu8ui2IPpbaEhHRAhh4EhGRYyKpbMn9nUA1ZTxz8HsUvP1Za7GhM4xP/nx/VZxrMdJqbsYqlWKtaQ9hJJZBTpc2nIqIiOoFA08iInJMJKmiuZyMpxCO7/GMZzSoOQm/xwWvW8H/e8VWDEyk8NV7a2fQkJQSaTWHdYuYaGsyJ9tmtNoKtImIqLIYeBIRkWMiSRVNJa5SAWDs8XR4uJBZZur3GCWq161vx8sv7cHX7zteM1nPbE5Cl8C6juIn2prMybZOfx+IiKi6MfAkIiLHRFMqmgNllto6nGnry0909bvPPqX+7Uu2wOtS0DeehJTVX4J6dpVKaaW20++DiIhoNgw8iYjIEWpORzyjobnsjKfDgec5GU8A6Gr04y+ftxHRlIrJpOrU0YpWCDxLKLUN+9xoD/uY8SQionkx8CQiIkdEU0ZAVl7g6fwez96xBDwuY5XKdG+7bg0CHhdOjiervv/RXKXS3egv6ePXtAUdzzwTEVF1Y+BJRESOiOQzgeWtU3F+qm3fWGJGttPkdilY3uxHNqfj8FDMgZMVL6Xq8HtcJe9TXd0Wcvz7QERE1Y2BJxEROSKaygJAyetU7rjtWrzuihXIaLqjfZR948lZA08ACHrdAICjw/FKHmnRjHUwi9vfOd3a9iDUnORKFSIimhMDTyIicoSZ8SxnnYovHyxlNGfKbaNJFROJ7IzBQtP5PQoEgKMj1Rt4ZrQcMpqOgKf0lwSruVKFiIgWwMCTiIgcUQg8y+jxNLN0GYf6PE+Mnz9YaDohBPweF46NVG+p7c/2DQIAQj53yfdh7vJ0ut+WiIiqFwNPIiJyRMQcLlTGOhV/Pkvn1GCb2SbanivgdVVtxjOVzeFzvz6MkNdVVuZ5dbu5y5MZTyIimh0DTyIickQkmYUQQIO/9Eyb320EfE4FPCfGEhACc5baAkDAo6B/IlmVQdk3HujF0FQaq9uCJQ8WAoBGvwduRSyq5HnHzl3YsXNXyY9JRES1hYEnERE5IpJU0RTwQFFKD3jMTKNTJZ4nxhJY3hyY93MIeFyQEjg+Wl1Zz5GpNL5+33G8aGs3GvylZztNfo+rKoNrIiKqDgw8iYioosxMVySlllXeCUwrtXUo4OkbT2Bte2je2wS8RnB8rMrKbf/tt0eg5nT8zS0XWHJ/fo/CHk8iIpoTA08iInJEJJlFU4mrVExnM56VDzyllDgxligM1pmL3+OCSxFVFXgeGprCD3cP4M3XrMGaBQLnYvndLmRzOrOeREQ0KwaeRETkiKiVGU8H1qlMJLKIpbUFAzdFCKxuC1bVLs9P/eIgGvwefOC5Gyy7T2++z3U0lrHsPomIqH4w8CQiIkdEkmpZq1QAwOfgcKET+Ym264rIGG7sDONolaxUiSSzeODoGN7/nA1oLjPjPJ3bZfS5jieylt0nERHVj9JHCRIREZUhksxakPGsfOBpTmJ97RUrAABr2kO447Zr5/2YjZ0N+N3BEWQ1vZAZdIKUEv0TKaxuC+It166x9L49LuPzGo8z40lEROdjxpOIiCpOSomptGZBj6fxNJZxYKhN33gCLkVgRUtgwdtu6Awjp0v0jScqcLK5jcYySKk5/M2LLrA8APYozHgSEdHcKhJ4CiH+UQghhRAXVeLxiIioumm6BADrMp6aM6W2q1qDhUzffDZ0hgE4O9lWSolTkRQafG686KJuy+/fXch4MvAkIqLz2R54CiEuB3ANgH67H4uIiGpDzgw8y+zxdHKq7YmxJNa0BYu67fqOMISAowOGptIa1JxES8gLIUrfnToXlyKgCJbaEhHR7GwNPIUQPgBfAfA+ANLOxyIiotqh5SwKPN3mHs/KltpKKXFyPFH0KpKA14WVLcHCgCFzl2klRZJGJtKtWB90mjwuBRMstSUiolnYnfH8fwD+R0p5Yq4bCCHeLYTYLYTYPTo6avNxiIioGmi6ESg2Bcrr8XS7FLgVUfGMp5qTSGZzWLuIHZgbO8OOltpOJlUAZ6fP2sHtEhhj4ElERLOwLfAUQlwL4EoAX53vdlLK26WU26WU2zs6Ouw6DhERVRHNolJbwCi3rXTG0wx0FxN4bugKo3c0AS1X+UFIADBZyHjad83ZoygstSUiolnZmfG8CcAFAE4IIfoArADwayHEC2x8TCIiqgGFUtsyhwsBxmTbSg8XMgPPNW2LCDw7wsjmdPRPJO061ryiFch4elyCw4WIiGhWtgWeUsp/kVL2SCnXSCnXADgF4IVSyt/Y9ZhERFQbzIxnkwWBp8/tqnipbVrT4XUp6GleeJWKaWNXAwDgqEPltpMV6PF053s8peRYByIimol7PImIqOI0XUeD311YwVEOv0ep+B7PtJrD6rYgXIsI4pxeqVLo8bR1uJBANqcjltFsewwiIqpN7ko9UD7rSUREBC0nLenvBMwez0qX2upFT7Q1hX1u9DT5HQs8I8ks3IqwZZWKyTNtl2ej35rvLxER1YeKBZ5ERESmnC7RXOZEW5Pf46poj6eUEmmtuIm2d9x27Yz/39DVgKMjMYS8lX/6nUyqtmY7gbPZ1IlEZlGDl4iIqP6x1JaIiCpO03ULM55KRafaZjUdUi5usJDJXKniRA9kJJmFy8bBQsDZjOcYBwwREdE5GHgSEVHFabq0ZLAQAPgrPFworRlBbikZvQ2dYaRVHRmt8itVIkkVHhtXqQAzS22JiIimY6ktERFVXC33eJayw9O0MT9gKKXm4Pe4LD3XQiaT2TlXqZxbElwq8/65y5OIiM7FjCcREVWUlBKahT2ePndlS23Tag6KALoafYv+WHOybSpb2WFIgJHxtLvHUxECDX43xhPMeBIR0UzMeBIRUUXl8v2NVmU8fR4XMhUcLpRWdfg9rpKmwzYHveho8FV8Cm9W0xHPaGi2qLx5Pu1hX1GBZySZdaTkmIiInMGMJxERVZSWMwJPy3o8KzxcKK3m4HeX/vS5sTOMZIUDz0jKCATnKrW1UmvIW1Sp7fBUBqcjKdvPQ0RE1YGBJxERVVRONzOeFq5TqVAgp+WMwUDl9Gdu7Awjlc1VdLJtNKkCgO2ltgDQFvJiooiMZzanQ8tJRyb8EhFR5THwJCKiitJ0a0tt/W4XNF1Cy9mf9TwdSUECZQWeGzrD0CWQzVUu4Jo0A0+X/U/7bWFfUetUMpoOCSCe0Ww/ExEROY+BJxERVZSZnewIL344z2z8HuOpLF2BfsGRmFFC6ikjgNvQ2QCgsgOGJpP5UtsKZDzbw15MJDLQ9bkD61haLWS+JxOq7WciIiLnzTlcSAgxUsTHD0kpL7HwPEREVEd27NwFYOa6jsmkCp9bweq2oCWPYWYfM2oOYZ+9M/PMElJPGb2SG7vOrlSplEjS/h5P83v8rYdOQJdAJKWiNTR7OfVgNF34+0Qyi1UW/SwQEVH1mu8ZehTAi+d5vwDwU2uPQ0RE9Sye0TCVUtHV6CtpKuxsKpnxNAPPcgK4tpAXbkVUdLJtodRWqUypLQBMJDJzBp7ThwpNJLjzk4hoKZgv8PwHKeXJ+T5YCPFJi89DRER17P4jo5AAWiwaLASczXhWIpArZDzLCOCEEAh4XBUttY0kVXhdCipQaYv2fLA5Fs9iQ+fstzkzI/BkqS0R0VIwZ+AppbxzoQ8u5jZERESm3x4YhlsRaPBbVxLrc1c28FQEoJQZwQW8LownspBSWpb5nU8kmUVz0IMfvuc62x+rNWwEnuPzDBiaHnhOFjEBl4iIat+Cz/xCCD+ANwFYP/32UsqP2HguIiKqM2pOxx8OjaA56LE02CqU2lZgl+dkImvJZFivW0FOl2WvZinWZDJraZZ5Pm2hs6W2czkTScPrUqDmdEwk6z/wnK3XmYhoqSnmkvOPAHgBPAqAjRhERFSSx/smEE2p2NgZtvR+pw8Xstt4IguPBfWqrnzgnVZzFQo8VcvW1yykJeiBEJh3pcrpSAo+twIJyYwnEdESUUzguUFKucX2kxARUV377YFheN0KmgLWBkCFHk/N/sBzMmlNxtNsEU2pOTSXfW8LiySzWNseqsAjGbtCmwMejM+b8UzB61ag6bLQN0tERPWtmGfPXiFEg+0nISKiuiWlxG8PDOP6De1wWTzhppKltuPxbFmrVExKPuNZqQFDkaRasVJbwJhsO1ePZ06XGJ5Kw+dW4HGJwo5RIiKqb8VkPKMAdgshfg2gsHiLPZ5ERFSsQ0MxnJpM4c+evQE/2XPa0vv2V3C40GQyi0YLBiOZgWeyAoGnlBKRpIrmSgaeIS/G58hkjsUzUHMSXrcCt6bMeTsiIqovxWQ8DwP4PoBxAIlpf4iIiIry2wPDEAJ47pY59muU4ew6FXsznmk1h2Q2Z0mprZn1rUSwnMzmkM3paKlQjycAtId9GI/PXmpr7vD0uRW4FcEeTyKiJWLBy7ZSSu7qJCKisvz2wDAuW9mMzga/5fd9ttTW3iDu7A5PK0ptjf+mKpSlBazdnbqQ1nkynuYqFW++1HY0riKnS8tLsImIqLrMGXgKIV4npfyREOJ9s71fSvlV+45FRET1IqPpePp0FB990QW23H+lhguZgaclw4Uq2OMZSaoAgKYKZjzbwl5Ekiq0nH7e1+ts4OmCW1EgJRBNqWgNVS4wJiKiypsv43kRjFUqV87yPmnPcYiIqN5E8hm351/YZcv9+9yVGS5UyHhaOVyoTjOebeH8Ls9k9rws95lIGg1+N9yKgDv/tZxIZBl4EhHVuTkDTynlP+b/+/bKHYeIiOrNZDKLde0hbLB4f6dJCAGfW7F9j2ch46lYuE6lghnPSvZ4tuWDyPH4+YHn6UgKy5sDAABPPhvKybZERPVvwWdPIYRbCPE+IcSPhRA/EkK8VwhR/kg/IiKqe5quYyql2ZbtNPk9rsr1eFqQ8XRVMONpZpwrPdUWwKw7Os9EUujJB55uRcx5OyIiqi/FXLb9CoBXALgLwE8AvBzAl208ExER1YloUoWEfWW2Jr9HqUiprUsRlgzBqWyprZHxbK5oj6dRajs2y2RbI/A0sqDTS22JiKi+FZO5vBHAVimlDgBCiDsAPG3rqYiIqC5MJlW4FYHLVrXY+jh+j8v+4ULJLFqCHghRfuBp3kW6AqW2k8kswj53oay1EqaX2k6XzGqYTKroaQ7g6HC8ULbMwJOIqP4V8yx0CoBv2v97AAzYcxwiIqoXak5HJKWiJeixfVWG312BUtt41rIBPUIIKMLYsWm3SFKtaLYTAJoCxvd8PDEz43kmkgaAQo+nSxEIeFzc5UlEtATMt07FXKNyAsCufKYTAF4H4H67D0ZERLXtqVMR5HRZkd7CipTaJo3Jq3fcdq0l96cIUbEez0pOtAUARRFoDXnPy2Saq1TMHk/A2Pk5UefDhU5HUsjY/PNJRFTt5iu1nb5GZQ+ATfm/7wPQaNuJiIioLvSNJQEAQa/L9sfyVWi40EYLJ/O6lMoEnpMOZDwBo9x2LD534GkG8C/70oN1n/Ecj2eRUnMYiqbR3eRf+AOIiOrQfIHnv0opD1bsJEREVFdOThiBp9dtf2+h3+NCNKXa+hiTFu+aVISwPVgGjIznqtag7Y9zrrawF+Pxc0ttU1AE0NVwtoOnJeTFRNLe752T1Jxe+D7/bN8ZvOvGdQ6fiIjIGfO9GviiEGK/EOKzQojrhRXTFIiIaMnoH0/A61YKE1zt5Ld5j6euS0wmrQ48K7PH07mMp++8UtvTkTS6G/1wTxt01Br01HXG88RYAjL/95/sPT3jfTt27sKOnbsqfygiIgfMGXhKKZ8P4DoYZbYfAHBMCPFNIcQrhBCBuT6OiIgIAPonkvBXINsJ2L/HM5pSoUtYG3gqwvbhQjldYiqtVnSHp8nIeJ5faju9vxMwMp71HHgeHooBANrDXuw/M4VjIzGHT0RE5Ix5XxFIKaNSyu9LKW8FsAXAjwDcAuAZIcTdlTggERHVpv6JJHxu+/s7AcDntne40Hg+MKq1UtuplAopgRaHejxjGW3G53gmen7g2Ro0bpexeR2OU44MG4HmiuYAFAHcvfeMwyciInJG0ZeipZRZKeU9Usr3SCnXA/i0jeciIqIalshoGItn4fec/zRzx23XWjYZ1mT3Hs/JpB2BJ2wfLmSeu9JTbQGgLWz0cZrltrouMRhJz5rxBIy1L/Xo8FAMfo8Cn8eFZ21ox917z0BKufAHEhHVmQUDTyHE54UQTUIItxDiASFEQgjxJ1LKRytxQCIiqj39+cFCvoqV2iq2Zg/NklGrArg7brsWz97cWYHA0wjmmhzKeAJnA8+xRAbZnI7lzTOnuraec7t6c3g4hqDHyPy//NIe9E8ksWcg4uyhiIgcUMwrgudJKaMAXgjgNIy1Kn9t66mIiKimmYGn31OZUlujx1O3LZNkZg7bwtZlDv1eF1JZe3c7RhzNeBqP+aEf7sWOnbtwJpIGgPNLbfOBZz32eSazGvonkgh4jSUCL7qoG163grv3nF7gI4mI6s9iLkXfCOAuKeVpAKwRISKiOfWPVzrjaQS4Gc2eQM7MxlkZwAU8LqSymmX3Nxsz4+lMj6dRaqvmjJcM03d4TlfIeCbrL/A8NhKHlGd32Tb4PXjelk78/KlBaDl7LzoQEVWbYl4RjAghvgHg9QB+K4RwY/79n0REtMT1TyTRFPDMWJthJzPAzdg0YGgikUXI67I0gxvwuJBSc7b2+5kZT6em2gKAphvfk7kCTzOYr8eMpznRNuA9+3Pzim3LMZ7I4sFjY04di4jIEcW8IngjgP0AdkgpJwGsAPB5W09FREQ17eREEqtagxV7PDMgtGvA0EQiWxiCY5WA1wVdAlkbM1+RpAqXItDor/z14rDPDa9bKWQ8T0dSCPvc553F3DE6kai/4UKHh2LwuZUZa4Vu3tyBRr8bP+V0WyJaYuYMPIUQPxRCvBGAKqX8DynlIwAgpeyTUn67UgckIqLaMzCRxKo2BwJPm4b1TCSyhWE5VgmYZ7axz3MymUVTwAMhhG2PMRchBNpCXqi5sxnPnmb/eWfxuBQ0+t2YSGQqfka7HR6OYWNXeMbn7HO78OKLl+HX+4eQ09m5RERLx3wZzy8AuAzAw0KI3wkh3i+EWF2hcxERUY3K6RKnJiud8TSezuza5WlXxhOwd6VKJKkWMopOaAt7oRV6PM9fpWJqDXkxUYfrVI4Mx7Cpq+G8t798Ww8S2VyhFJqIaCmYM/CUUj4kpfywlPJCAB8AEAZwhxDiSSHEJ4QQl1XslEREVDMGoymoOYnVlQw83eZwIfsynlbu8ATOZjyTNg4YmkxmHZloa2oL+c7JeM4eeLaEvHXX4xlJZjE8lcHmWQLPa9a2obvRj7E6+5yJiOZT1NQHKeUBKeU/SymvAfASAEMAPmXryYiIqCaZE20d6fG0MePZanEAZ57ZzoznZFJ1ZKKtqS3khapL6LrEeCKL5XMEnm0hb93t8TQHC23qPj/wVBSBl2/rQTSpFgJzIqJ6V1TgKYQICiE2CSEuBNAC4H4p5YvtPRoREdWik/kdnpXt8TRLba0P4lLZHFJqDq0W7vAEzq7YsKsvFQCiyawjE21NRqmtjkw+uOpp9s96u5agt7ArtV4cGTYCzwu6G3DHbdfijtuunfH+l1/aAwnUXcBNRDSXBcfcCSH+DMC/AJgAYF6WkwDW2XguIiKqUf0TSXhcAsuaZs9u2cHO4ULmfkmrM56FHk9bhwupaA442ePpgy6N4B0Aeub4mWjNZzyllI4MQrLD4eEYGvxudDfOHmxv7WmE36MUdq0SEdW7YuarfwjARVLKk3YfhoiIal//eBIrWoJwKZULIAoZT836IG4ing88berxtKvUNq0amVqrhyIthvk1S+T7WOfr8cxoOlJqDkFvfawKPzwUw+auhjkDaSEEGnxuTCbVugq4iYjmUsxv9yEGnUREVKz+aTs8zy0vtIvPXYGMp8UBnN/m4UKRfCbNyam27fny5EQmByGArjmyf2Y2eTyeRbC19gNPKSUOD8Xwskt75r1d0OfGaDyLoal0RSsEiIicUEyP52+FEP8qhLhcCHGh+cf2kxERUU06OZ6o6GAh4GwQl7Ej8Mzvl7Q842lzj6fZM+n0VFsASGQ0dDb44HXP/rLDzMrWS5/n8FQGU2kNm2cZLDRdKP8z8MzpqUoci4jIUcVcVnxL/r+vm/Y29ngSEdF5okkVU2kNqys4WAiwd4/nRMLIHJpBlFWCZqlt1p7Asxoynm35jKemyznLbAGgNWScsdYH7ezYuQsA8L5nbwCAWXd4TmeWFT9zOornX9hl7+GIiBy2YOAppVxbiYMQEVHtOzmRAACsdCjjaUupbSIDlyLQ4Le2BLQwXMimFTCRfPawOeB8xhOYu78TOJuVrZeM5+EhI4M52w7P6VyKQMDjwv4z0Uoci4jIUXOW2gohGhf64GJuQ0RES0d/fpVKpTOeHpcClyKQ1uwIPFW0BL1QLB6W5MuXndo1XMicltoSci7jGfC6YH7Z5trhCZwNUM3scq07PBRHZ4OvqMFOQa+LpbZEtCTM1+N5bxEfX8xtiIhoiTg5bgSeK1sqG3gCgN+t2FRqmymUglpJCCPblbJpuFA19HgCxkUBAOhpmn2wEAA0+N1wKQKTNV5qazoyHFuwv9MU8rkxNJXGaCxj86mIiJw1X93QZiHEY/O8XwBos/g8RERUwwYmkmgP+xDyVX4yqd/jsqXUdjKhWj5YyBTwumzLeEaSWfg9SqEM2Slul0BGm7/UVlEEWoKewgThWialxNGRGN509eqibm8OGNp/JoqbN3faeTQiIkfN98rgxUV8fO0/QxARkWVOjiexqtWZtRBG4Gl9xnM8kSk6e7VYRsbTrh5P1fFsJwB4FAVAbt7AEzAys+bO1FqW0XSkVb3on5mgzww8pxh4ElFdmzPwlFLeV8mDEBFR7eufSOKqta2OPLbPo9jS4zmZtDfjaUeWdsfOXTg8HEP3HHszK8njMpo85+vxBIyVKvWQ8UzmpxQvNFjI5FYUrGkL4pnTHDBERPWtmD2eREREC8pqOgajqYpPtDX53S7L93jmdInJZBatNmUOAx77Sm21nKyKjGfA64LXpSy41qU16K2LHk9zPc7GrnDRH7N1eROe4WRbIqpzDDyJiMgSpyMp6BJY7VTg6bF+uFA0pUJK2Jfx9LiQtGm4kKbrjk60NXU3+nHpiiYIMf9U4JaQty7WqSTVHFa1Bgs7OotxUU8TBiZSiCbrY6ovEdFsbJ3+IIT4CYC1AHQAcQDvl1LutfMxiYio8nbs3FXYG7mqwqtUTHYMF5pIGJNGi1mLUQq/14Voyp5gQ8tJNFdBxlMIgQViTgBAW8iLyaQKXZeWr66ppGRWwxWrWxb1MRctN7bT7T8TxXUb2u04FhGR4xbMeAohfiWEeKlY6FLl7N4qpbxUSnkZgM8B+GYJ90FERDUgrRnZRucyni7LezzNvZLmnkmrBT0upLPWl9pKKaHpEi0LlLdWk5aQFzldIpa2JwNcCbqUxmChIvs7TVt7mgBgwXLbHTt3YcfOXSWfj4jIScVkPG8H8JcAviiE2AngP6WU48XcuZRy+m/QJhiZTyIiqkMZVYffo6CjwZ4gbSF2lNqezXjaE8DZtU4lJyUAoDngfMazWOau1IlkFk01FDBPZ2bcNxU50faO264t/H15cwDPnJ6y5VxERNVgwYynlPIuKeXzANwCYDmA/UKI7wghrijmAYQQ/ymE6AfwKQBvneX97xZC7BZC7B4dHV3k8YmIqFpkNKO3rbQCmfL53HaU2tqb8fTbNFxIy+UDzxoK4MxBSGawX4vMibYXlLB+Z2tPIyfbElFdK2W4UBZAGsB3hBCfX+jGUsp3SilXAfg4gM/O8v7bpZTbpZTbOzo6SjgOERFVg7SqY1VryLHHr8mMp8dVmIJqJU03As9qmGpbLHOA08fufLpmy0mT2RwEgDVti/93cNHyJvSOJRBLc8AQEdWnYno8Xy2E+AOAuwAcAnChlPLdAC4F8JpiH0hK+V0AzxZCtJV6WCIiqk5SykLG0yk+G9apTCRUhH1u+NwuS+/XFPAqSKk5yHxprFW0nBGAV8NU22KZQbKqW/u1qKRERjPWx7gXf13fHDB0cDDGXk4iqkvF9Hi+A8BnpJS/nv5GKaUmhHj/XB8khAgDaJFSDuT//2UAJvJ/iIiojmi6NFapODTRFrBruFDG1uAt6HUjp0uoOQmv27oSZTPjWQ1TbYtlZjzNoLnWSCmRyOZKXr1zkTlgiOW2RFSnigk8f3Bu0CmE+BMp5f9IKX82z8eFAPxICBECkIMRcL5MWn1Zl4iIHGf2VjqZ8fR7FKg5iZwu4bJoHcdEUkWrTf2dgBEsA0BKzZWUJZtLocczUDsZz2A+U6jVaMbz5HgSOV0i7C0tO97Z6EdHg2/BybZERLWqmGe5v5rlbR9c6IOklMNSymuklBdLKbdJKZ8jpXxy8UckIqJql8mvUnFqhydwNoizcsDQRCKDVhsH9ARsODMAaLrx/WiqocBTCIG2kLdmM577TkUAACFf6SvSL+ppxH5OtiWiOjXnb0chxHYAVwNoF0K8b9q7mgDUTu0OERHZzhzqs6Il4NgZ/PmMYVrNlfXi37Rj5y4cGYpj86WNZd/XXAJe48xJiwcMafmsr9tlXRa1ElqCXpyJppw+RkmeOhWFEMaKnFJdtLwJ9x0ZxeWrWizL2hMRLZbZYz595ZMV5ntmXg5gO4yS2SunvX0KwNssPQUREdW0jJaD16XYNoSnGIWMp2ZdxkzT9cJ+STuYGU+rJ9tqOQl3DQYurSEv+ieSTh+jJE+diiDkdUMpY53Q1p4m6NL4eQj7y794QkRUTeb8rSalvBvA3UKIF0gpf1PBMxERUY1Jqzp8Hmeza1aX2ubyA5Ps7PEMeI2nYat3eWq6Drer9gLPlpAXag2W2mo5Hc+cnkJjoLxg0Zxsm8hqDDyJqO7MV2r7LCnlQwDcQogXn/t+KeUvbT0ZERFVnbnKbzJazvFBNn7P2VJbK5i9hpXIeFre45mTNVdmCwCtQU9NDhc6NhpHSs2hp9lf1v0sbw6gOehBImP9blciIqfNdzntbQAeAvDhWd4nATDwJCIipLI5qDkJn8e5MlsAhcc3+03LZQZAtmY87Sq11SX8ntrMeBqZ5toKPp8aMCbRhrzlZSmFELiopwlP9k+e976BiST6xhLoaLDv55GIyE7zldq+K//fZ1fuOEREVGt+tX8QABAqY6iKFfz5/tKMRdlDtRIZT3O4kMUZTzVXm6W25g7MXI1lPfediqDB5y5k3cuxdXkjHjo2Vgi+s5qO/3rwBL7w+yNIqzpEGT2kREROWvA3pBDiRiFEOP/3dwghvi6EWGv/0YiIqNrpusSX/3AMAY/L8dUdhVJbzaJS2wpkPAt9qRZmPDNaDroEPEoNltrmA89a6/N86lQUF69osiQovKinCRJGFvzR3nG85IsP4DO/OoQbN3bA4xLI1tjXhojIVMyz0pcBJIQQWwF8CEA/gP+y9VRERFQTfrV/CMdHE1je7Hc8E2MGcRmLSm3VXD7wDNq3QSxow3ChyYQKALWZ8cx/rbVc7WQ8M1oOh4amcMmKZkvu76LlTQCA3rEEdtz+CJLZHP7rrdtx+1u2w+9xQbVwajMRUSUVE3hqUkoJ4BYAX5NSfhpAi73HIiKiaielxJf+cAzr2kOFTJWTzq5TsW64kADKnlQ6n0KPp4WB53giAwDw1OBwoZb8z1EtDRg6OBiDmpO4dEWTJfe3ujUIlyKQyubw3pvX43cfvAnP3dIFAPC6FGY8iahmFfNs6hZCPAvAawG8I/82Zxt5iIjIcX84NIKDg1P43OsuxY92Dzh9nGlTbS3KeOoSbpewNZPrc+d7PC0stS1kPGt0jydQW6W2T52KAAAuWdlsybJ1RRHY0t0ARRH46IsumPE+r1tBNqlDSul4hQER0WIVE3j+PYCvAPiDlHK/EGITgGP2HouIiKqZme1c0RLAK7b1VEfg6bZ2NYmW0+G2uU9SUQT8HsXSdSrVlvFcTDDWHDT6hGup1HbfQBTtYS96mspbpTJdyDf7yzOvS4GUwGRSrYoqAyKixVgw8JRS3g3g7mn/fwTAq+08FBEROWuufZ2mh46NY+9ABJ961UVVE+D4rV6nkpPwVKBPMuh1W7pOZSKRBVCbPZ4+twuKADS9tjKel6xorkgG0pPPkA9F0ww8iajmLBh4CiH8AN4EYP3020spP2LjuYiIqIp96Q9H0dXow2uvWOH0UQrMslWrsoeqrheG/9gp4HFZPFwoH3jWYKktYGRq1RrJeMYzGo6NxvGSS5ZV5PG8+YsJw1NpXNjTWJHHJKKlRc3pODwcw7JG66o4TMU8o/4IgBfAowAylp+AiIhqylRaxcHBGP7hpRfC566eln9FEfC6FQuHC8mKBG9+j2LxcKEs3Iq9val2crtE1Wc8zYqAv3r+JkgJXGrRRNuFeM2M51S6Io9HREvP/jNTiCRVeGx4/ism8Nwgpdxi+SMTEVFNOhNJoy3kxRuuWuX0Uc7jdyuWrFPJ6RKaXplS24DXZXmpbS2W2Zo8Su1Mbi0MFrJoou1CzLL2wSgDTyKyx+6+CQBALKNZft/FNOb0CiEaLH9kIiKqOfGMhmhKxTtvWIeAt3qynSa/x2VJqe1k0uyTtL9/NeCxPvD02DwUyU4el6iZqbb7TkWxvDmAtrCvIo+nCAGPS2CYgSfRkrBj565ChUWlPHFyEoAxL2Esbm2xazEZzyiA3UKIXwMo/KZjjycRUe1baIjQuc5EUnApAn9yTfVlOwHrAk/zybYSg5MCXjemUqpl91frGU+3S4GWkzWxMuSpUxFcurIy2U6Tx6Ww1JaIbCGlxO6Tk/C5FWQ0Hbv7JvGii7otu/9inlEPA/g+gHEAiWl/iIhoCfnVM0OYTKrobvSjwe9x+jizMlaTlJ8tG42ZgWcFSm0tXqcykchWzaThUnhcAhLAVNr6Mi8rqTkdAxMpXFKh/k6T161gmIEnEdlgYCKF0VgGXY1+CHG27NYqxaxT+aSlj0hERDVnYCKJj/x4H0JeF3qarZ90ZxW/x2XJcCEz8PRWqtTWosBT1yUmk1l02zCNsFLMoHk8nkFToDovcABAIt//VKnBQoBRmfB3P3kaP39qsGKPSURLx+6TRqDZFHBjMuHG4/myW6sUs06lE8C/AVglpbxRCHEJgOuklF+39CRERFSV1JyO9//vHkgJbOgMQ5ml/LHYUl27+d21WGrrQtKiHs9oSoUuK3Nuu7jz/anjiSzWdTh8mHkkMjkIAVxcocFCpu5GPyJJFWk1V9hdS0Rkhd0nJ9HgdyPgcaHB78b+01Eks5plq8WKeWb6BoAHATTn//8QgPdZ8uhERFT1Pvfrw9g7EME/v+biqn+h67Ow1FYRQCVWYfo9LqQtCjzHzR2eNdzjaZY3j1s81MJq8ayG9R1hhH3273qdriufzWa5LRFZ7Ym+SVy+qgVCCDT43dB0ib0DEcvuv5jAc3k+u5kDACllFkBtjJsjIqKy/PHQCHbe34s3Xb0KL72kx+njLMiq4UKjsQw8LqUiw22CXutKbQvTeGt6qq1x9tF41uGTzE1KiURGs22Nyh23XTtnFUF3kxF4DnGyLRFZKJpUcXg4hu2rWwAAYZ873+dpXbltMZfpZnT3CyGaAdTupVQiIipKRtPxwR/uxQXdDfj7l17o9HGK4ve4kNHKvzY6Fq/cgJ6AxwVNl1BzetmPOZ4P1j5/66W4aHllS0Ct4q6BjGc2J6HmZEX7O01m/y4n2xKRlZ7sNwLMK9a04MFjY3C7FGzuasDjFg4YKuYZ7k4hxE4ADUKItwH4DYBvWnYCIiKqOlJKHB+JI6Pp+PIbL6/6EluTz23NhFgj41mZa6zm19aKrOdEvtS2Lewt+76coggBtyIKQXQ1MgcL2ZXxnE9XE0ttich6u09OwKUIbFvZXHjb9jUtePLkJDSLdisvGHhKKT8L4H4ATwB4MYAvSim/YMmjExFR1ZFSYmAyhVhGwz+98iJs6Aw7faSi+S1aTTIaz1Qu4+nNB54W9HmapbYtwdoNPAEj6zmeqN6MZyytQQDYsqyx4o/d4HMj6HVhkKW2RFSkHTt3FfZ2z2V33yS29jTOGCR05ZpWJLI5HBqKWXKOYqbaPkdK+T0A3zvnbX+w5ARERFQ1RqbS+Ju7nsZgNI2OsBevvnyF00daFGOqbXlXZtWcjslkFj1NAYtONb+Ax7rAczyeRcjrqpkM9Vw8LgVjVZzxnEqraPC7Hfk6CyHQ3ehnxpNoCchqumUzAOaj5nTsOxXBG65aBeDspPrTkRQAY5/nXO0bZkBbzHT7Yi7nfm6Wt322iI8jIqIa8ounBvGC/7gfDx0bw+rWINa2h5w+0qKZezyllCXfx0QiCylRsVLboNfKUtsMWmu4zNbkUUTV9niOTKWRzOYc3THa1ejncCGiJeBUJIXDQzFLKnnms//MFNKqju2rW2e8fXlzAD1Nfsv2ec4ZeAohNgghXgygUQjx4ml/3gAgaMmjExGR47Scjg/87x782fefxOrWIH7xgRvQ3eSvyERXq/k9CqQEbl2gpGg+o7HK7fAELO7xTKporfEyW8D42purYarNg8fGAMDRwHNZkx/DU9UZmBPVq2LKVa0kpUQ0qUIC6B1N2PIY5ue0Oz9AaPualvNus31NK3b3TUBKWfbXYL5S22cBeBuALgAfnvb2KQB/XfIjEhFR1ZhKqTg2Gse+U1F88Pmb8L6b18NdoYDLDmYQp+ulZzxH45UNPM1SWyt2eU4kMugI+8q+H6e5XQqGYxlLJv1a7YGjY3AropCpdkJXk1Fqq+sSSiWWzRJRxZ0YSyCbH+pzbDSOC3vs6yl/4uQkVrQECnuCp7tyTQt+uu8MTk2myn6cOQNPKeV/A/hvIcTbpJTfLvuRiIioquR0iWOjcbiEwI/fd13Nrt+YzmcGnqXHnYWMp7dCpbbmcKGkFYFnPIvNXZUfeGM1s8x5IpGd9YWQU3Rd4oGjY2gKeBytCOhu9EPTJcYTWXQ01P6FBiI63wNHxwp/PzZszXCf2UgpsfvkJJ61vm3W929fY5TfWrFWZcHhQlLKbwsh1gNYP/32Uspflv3oRETkmEd6x6HmJFZ3huoi6AQAv9vIjull9HiagecPbru2IsNjApaW2mbRGnKuBNQqZpZzLJ6pqsDz0FAMY/EM1jnc/2x+TYan0gw8ierUA0fH4HMrEACOjsRte5yMpmM0lsEVa1pnff+mrgY0+N14vK/8Ps9iptp+GsC7ABwEYD4rSgAMPImIatjde09DEUCLg71qViuU2pYReI7FM2jwVW5iacCi4ULJrIa0qqM1VPuBiJnxrLZdng8cHQXgbH8nAHTnd3kORdN1c9GIiM5Sczoe6R1HU8ADNafjmI2BZyxt7CXevvr8/k4AcCkCV6xuwe6+CbSGypshsGDgCeBWAOullFNlPRIREVWNtJrDPc8MoTXkXVSPWDHj0p3kt6jUtpJZpEKPZ5mBpxmktZX5wqAamH3G1bbL84GjY9jc1QCv29m+0+58xnOIK1WIqtZi1oyca+9ABPGMhmVNfsQzGk6MJWzreY9nNDT43djU1TDnba5c04p7Dx/G5auayzpDMR85yKCTiKi2nTuJ7t7DI4ilNbTVQXZsOr/HmlLb9goO6ClkPMvs8ZxMGoFnS40Hnnfcdi2++46rAVRXxjOVzeGxvgncsLHd6aOgPeyFIsBdnkRVwI5ptw8cGYUigEa/GwGPC5oucXLcnsm2sbSGy1e1wDXPRWgzGxrPaGU9VjGB5y4hxP8KIV49fa1KWY9KRESOunvvGbSHfWgKFFP4UjvOTrUt/T7G4pXNePrd1gwXMtePlFsKVQ0a/W54XUphwnA1eKxvAllNxw2bOpw+CtwuBR0NPgxylydRXbr/6BguXdkMt0spTNAup9z2dCSFgcnkeYGjltORUnNzltmaLl3ZDI9LFMpyS1VM4HklgG4A74exVuXD4DoVIqKaNZVW8ftDI3jpJctqclfnfMwgrtyMZyUDT0UR8LmVskttJ+qo1FYIgbawt6oyng8cGYXXreCqNa2447ZrHS877270M+NJVIeiSRVPnYrgho3GRS7zgurR4dICz5GpNE5NpnAmksZzPncv7nziVGHlmBmIXjHL/s7p/B4XLl7edF7gGU2pGI1lcHg4hpEifh8VM9X22QveCxER1YxfPzOErKbjFdt6cHCwvjopzFJbWWLgmVZzmEpraA9XNngLel1lDxeql1JbkxF4OpvxnN6j9cDRMVy1prVQGu20rkY/TozZU3pHVIvK6akshq5LVOJa7cPHx6BL4IaN7Xi0dxwuRWB5c6Dkybb/t+c0AGB9Rwhhnxsf+tE+/M+jJ/GJl20tBJLbVjYveD9XrmnFnv4IspqOH+0ewC+fHsSDx8ag5iS8LgX9E0l0LjCFfM7AUwhx4XwfKKU8sOAJiYio6ty99wxWtwWLeqKpNeUOFxrLBzqVXlER8LjK7vEcT2ThcQk0+uujfLot5CuUDztteCqNw8MxvPry5U4fpWBZkx+7esedPgbRkpDIaNgzEEHY50Yqm7P1AtQDx8YQ9rlnPEdv7AqXFHhKKfHjJ04h7HOjPezD/77rGtz55Cl85leH8YqvPASXIhDyuhD0Lvy8sX1NK3be34s9AxHsGYhgeXMAb7tuDR4+No6Qz1XY9zmf+R7lF/N9HgDWLXjvRERUVUam0nj4+Bj+/Nkb6q7MFgB8ZQ4XGsuXdlY68PRbkPGciGfREvTWzfe1Ley1dYXAYpiL3M3St2rQ1eRHLK0hmdWKetFIRKX7zYEhaLpEJKXird98DP/5tu1o9Fu3VmlmdcUorlnXBo9LKWRvP/WLA9h1fBw5Xc47BOhcT52K4uhIHGvbggCM1o7XbV+JF13UjS/94Ri+cX9v0euhrl3fhuagBwGPC1/7kytw6YomCCEWNVhpzh5PKeXaef4w6CQiqkE/f2oQugRevq3H6aPYotw9nqMxI+NZyam2gDUZz4lkti4GC5nawz6MxTMll01b6YGjo2gP+3BB99zrBiqtsFKFA4aIbHf33jPwuhWs7wjhyf5JvOH2RwoVMlY6OZ7AwEQKN26aOT17Q2cYGU3Hqcnkou7vx0+cgs+toPWc9pEGvwcff/EWXL6qGctbAkXdV9jnxuauBqxqNSqmSrnI6ewiKiIiqqi7957G1p5GbOic/wV0NQxPKcXZ4UKlfbwZeDpSaltuxjNRX4FnW8iLjKYjUWZAXi4pJR48OoYbNrYvauet3bjLk6gyxuIZPHB0DG0hL9rDPnzjLdtxfDSOW7++C6cjqUXd10KrV+7PV1dcv+HcwNN4zl7MgKG0msPde0/jRRd1w63MHvK5XQqUClbJMPAkIloi0moO+05F8Yo6zXYCgMdlPIHqJUae5hXsSu83DVhRaltngaeZdR6LOTtgKJnNYTyRrYr9ndN1NRmBJyfbEtnrl08PIqfLwtC5Z1/Qie++42qMxjN47dceLrtaZboHj45ieXMAa9tDM96+oTMMADg2On/gOT2w/d3BYUylNbzuipWWna9cbAogIloixuJZCAG87NL6DTyFEFBEeRnP5qAHXndlr8sGPK5CtrVU9RZ4tuVf5I0nMlhzzouwSoqmVADnZyCcdrbUtnp2nRJVo3Kn3f5kz2lc0N0wo5f6yjWt+MG7r8Fbv/kYDgxOIex3483/9Sgyqo6MlkNa1TEwmcSafG9lMaSUePjYOF4yy6qzpoAHXY2+RWU8f/zEKfQ0+XHt+jZ86Q9Hi/44OzHjSUS0BEgpMZ7I4Oq1rVjWdLafo1ZLauejCFFWj2dHhfs7ASPjWc4eTzWnI5pS6yrwLGQ8Hd7lGU2puKC7YcE1AZUW8rnR4HMz40lko/7xJJ7sj+AV286faL21pwk/es91CHhdyGo6YmkNigI0B71Y0x6ElpM4MhzHyfHi1h7FMxpiGW3OIWYbOsM4NhIr6r6Gp9K4/8goXn35ikUNI7IbM55EREtAMmtcgZ3tybPelBN4jsUzFe/vBIyMZ7KMci1zh2dbHQWehYyng4FnTpeIpTXcuKl6ptlO19Xkx2B0cT1mRDS/6RnSn+4zdmC+7NJluPfwyHm3XdsewoXLGgu3n+4VX34Q+89M4e3fehx3ve86NAfn//0cTWkQArhufdus79/Y2YAf7R6AlHLBwT53PXkaugRec8WKeW9Xacx4EhEtAWPxLASAWy7qdvootlOUMkptHQo8/WUOF5pMGOWgLXUUeJrZ23EbJkcWK5ZWIYGq6+80dTf6MTTFUlsiwOjtV3O6ZfcnpcRP9p7BVWtasaKl+JJZk9/jwqauME5NpvDu7z6BjDb/7/hoSsUly5vm/D2+oTOMRDaHwQUmWRu7Owdw5ZqW83pFncbAk4hoCZhMZtEY8Cx4xbUelFtqW+lVKgAQLLPUdjxhBB/1VGrrc7vQ4HdjPOFcxtOcqHvZqhbHzjCfrkY/hrlOhQgA0D+ZxJ6BCH5/cNiS+zswOIVjI/Gy1o81+D347OsuwWMnJvCxO5+ecz2UpuuIZzRcP89FLnPA0NEF9hsnMjkcH03gtdOyndXSVsPAk6hOLDSim5au/vEkMpqO5iKXRNc6RZQ21TaR0ZDM5hwrtVVzpV+tn8gHZ/UUeAJAR9iHUQcznqlsDl6XgrCvOjuTljX5MRrPIFdqip+ojkSSKqQE3v3dJ/CTPafLvr+f7j0DtyLw4ouXlXU/r9i2HB96/ibctec0TkdmXijScjoe7R1H/7ixn3Ou/k4A2GhOtl0g8ByNZ+D3KGWfu1iLCWqr8zcpERFZ5v6jowCMqXhLgZHxXPzHmatUnBouBBgrbzyuxV8TnqzTwLMt7HW01Dal5grfm2rU1eRHTpcYi2fQVWXDj4gqaTCaQkbTsbw5gFWtQfzVD/cillbx5mvXzPkx8027lVLip/vO4KZNHZb8Xv3z52zAyYkkfvzEKXhcAj/Zcxq/PzSC+w6PYCqtQcD4/X3F6rmrK9rCPrSGvPMOGNJ1ifFEFi+/tAcN/up7zmfgSURU5+4/MgqvW4HfszSKXFyKgKouPnNorjNpd6jHEzAybKW8WDDLUVvqrJS6LeTD8QX21tlF1yXSag6N/up9qXR2pUqagSfZqtyVJHZ7pHccANAS9OBbb78Sf/79Pfj7u/cjmlKLGsZzrlhaw2A0jb+55YLC28r53IUQ+PSrLsZv9g+hbzyJv7xjL9rDXrxwazeeu6UT33jgBNyKWPDC44bO8LwrVSaTWeR0idcVOVRosZ9Tud//6v1tSkREZVNzOh4+Po7mgGfRT7y1yq2IkkoPHc14moFniX2eE4ksGv3ukrKl1awt7MVjfc70eJ6OpKBLVHXG0ww8//pH+9Aa8lZtUEBkt13Hx+FSBIJeF/weF77+J5fjIz9+Cp/7zRF0N/qxqjWw8J1MM5bIIuh14fkXdll2Rq9bwcauMMZiWXzxDZfh4uVNUPKrTr71UF9R97GhM4xfPDU4ZzA9HMvA61JwzbrZJ+M6rb6eoYiIaIY9/RHEM9qSKbMFjIynppee8XSixzPoLT/wbHMgYLZbW9iHyWQWmoWTKot1NF/OZl4UqEZdTcb3POvA14eomuzqHUej310IxtwuBZ973aV423VrMDSVxomxRNEXJHUpMZHI4gUXdiHotTZH51YUdDf5cenK5kLQuRgbO8OIptRZ9xs/dmICsbSG7iZfSfddCQw8iYjq2P1HRuFSRFWXC1rNpRg9nosNVkZjGSjCmT5Jv/dsqW0pJhLZuuvvBID2sBdSApNJteKPbQ7wqObAsz3kg1sRUDUGnrR0nZpMYmAihcZz2hQUReAfX3Yhljf7MRrP4s+//+SCK00AY0hRTpd4xWXVt/d6Y2cDgLMXxqb7wu+PwOMS6Gyo3rJ7Bp5ERHXs/qOj2LayGe46K8Gcj0sxPtd4RlvUx43Gs2gN+eBy4EqxFaW29dbfCRg9nsDZdTGVdHQ4Do9LVPW/HUUR6GzwMeNJS9ojvRMAgMbA+RdYhRBY0RLEqtYg7nlmCO/8791IzPPckNMlRuMZuBWB6zcUt7+3kqtKzJUqH7vr6RmbDB7vm8BDx8axrMnvyHNYsar3tykREZVlIpHF06ejuHGe8ez1yJ1/0o2lFxl4xjKOlNkC0wLPMjKebXWa8QSAsVjl+zyPjsSrOttp6mryI8uMJy1hu46PoyXomfff67ImPz772kvw0LEx/Ml/PYroOVUUUkr88fAIXvLFBxBJquho8JXdM29HQNrV6EODz430Oc8VX/jdUbSHvVWd7QQYeBIR1a0Hj41BSuDGTcVdta0X5tXeqfTiyjNH45lCoFNpgTJ6PKWUmExm0erQ2e1k9q1WOuMppcTxGgk8uxv9zHjSkiWlxCO947hmXduCA/Ret30lvvqmK7D/9BR23L6rcMHm6VNRvOk/H8Xbv/U4ktkcNnSEsLJlccOIKkUIgQ1d4RnPFY/3TeDBY2N4z03rqzrbCTDwJKobak7H8dE4RmIzlxPv2LlrRjkG1bfp3+/7j4yiOejBJSuanT1UhRUCz9TiMp5jNZrxnEprUHMSrXVYalvIeM4ySMNOw1MZxDIa/vw5G6p+UmxXIzOeVH0q9drj1GQKpyMpXLu+uCmuL7qoG99825Xon0jiwOAUjo3E8bIvP4iDg1P4x5ddiN998Ca0hX1VPQV+Y+fMwNPMdr7p6tUOnqo4S2faBFGdG09kMRbP4uN3PY1vvGV7Vf/SJPtJKfHA0VE8a0N71V8BtdrZUtviM55SGn09jgWe+YxnuoSM52R+h2c9Dhdq9HvgVgTG45XNeJqDOzbkB3lUs+4mvzFMq4QVQkS1btdxY3/nteva8JZr1xT1MddvbMf/vPNqvO7ruzCRzOLPnr0et920/rzhRNVqQ2cYak5Cy+mFbOffvWRLVa9+MtkWeAoh2gB8F8B6ABkAxwDcJqUctesxiZayqZTxIvt3B0dw55On8doilwdTfTo8HMPwVAY3LbH+TuBsxnMxPZ5TaQ1ZTXdkhydwNuOZLCHjOW4GnnVYaqsoAq0hL8YrnPE0J9qagzyq2bImo6eLk21pKdrVO472sHfR/1YvX9WCS5Y3QQjgwy+8wKbTFW8xlRXmZNuUmqupbCdgb8ZTAvhXKeW9ACCE+CyAfwHwDhsfk2hJklIiltbQFvJifWcYn/zpfly3vg09zdXZo0D2u/+IcY3vhnx/Z7WXC1qplB5PJ3d4AoC/jKm2E2bgWYeltoDR51npHs+jI3E0Bz2O9fwuRlejEXiyz5PslFZzVVc9I6XEruPjuLqI/s7ZeN212XFoBtkjsQwODMbwty+ujWwnYGOPp5Rywgw68x4BUBvhOFGNOTYSh6ZLNAY8+NxrL0VOSnz0zqcgJUuvlqr7j4xhU1cYy5qW3sWHUjKeY/lSTqcyni5FwOtWSgo867nUFjD6PEcrnfEcjmNjZ7gmWha6zcCTGU+y0aGhGI4Mx6vidYXZP3pyPImhqTSuXVdcf2c1sGLS7fLmABRh9L63h7140zWrLDqd/SoS6gshFADvBfDTSjwe0VLzSK/R49Dod2NVWxAff/EWPHB0DN97tN/hk5ETcrrEY30TS26NikkRAoo4W35eDDPj2e5QxhMAgl7XeSPyi2GW2rbVQHauFO1hX8V7PI+NxmuizBYAVrYGoQggkV3cMC2iYg1PpZHRdMQzWqGnshrsyr/2KXawUL1QFFGokrntxvUIes8WsFZyp2gpKpVj/hKAOIAvn/sOIcS7hRC7hRC7R0fZ/klUikdOTMDrUuDLl4286epVuGFjOz79y4MlDSuh2hZLq8hqOm7ctDQDT8DIIC4m41kotXUo4wkYfZ6lldpm4HMrNbH6oxRtFe7xHI9nMJHI1sRgIcD4WQ/53Igvcm8tUbH29E8CAASAL//xmLOHmWbX8XF0Nviwrj3k9FEqLuxzw+MSNZXtBCoQeAohPgdgI4AdUsrz6kCklLdLKbdLKbd3dCzdF0lEpZJS4tHeCTT43YWyMCEEPvOaS+ASAr1jiaoojaHKiaZU+NwKrlrb6vRRHONSBGKZ4jOeY/EMPC6BpoBzUw0DHldJw4UmEiraQt6aKAstRVvYh5SaQ7JCGb2j+cFCG2sk4wkYL0KT2RwvNJIt9vRHIAAsbwng4ePjeDIfiALOrWxbzP7Oas8ClmJVaxAXL2+ake2sBbYGnkKITwG4AsArpZSVrZMhWiJ6xxIYi2fQ6J/5y6enOYB/eNmFiKU1DE3xn99SEkmpuGpta6EUZylyK2JRezxHYxm0hXxQHBye4fe4SgocJhKZupxoazJLiCuV9aylibamsM8NCeDA4JTTR6E69GT/JII+F7ob/WgOevCVP1Qm6zlfUJtWdYzEMraU2dZCoOpSBDyu2huOZNuJhRBbAXwcQA+Ah4UQe4UQ/2fX4xEtVYX+zlkyNa+9YgWagx4MTCYRXUS/G9WujJZDWtVx0xIuswUAl6Isao+nkzs8TQFviaW2SRUtdTrRFkBhsuxYhfo8j43EEfK6CmtKakHYZ1x43NsfcfYgS4xT2b5KUnM6njoVRYPPDZci8KfPWovfHxrBgTNzX+SIpVX0jiYW1e6wWObU8loaLET2TrXdL6UUUsrNUspt+T+vsuvxiJaqR3sn0NngK/R3TieEQHvYBymBwWjKgdNRpZkXGJZyfydgXA2eWuRUW6cDz6DXhdQiS2137NyFQ4NTaKvTibYA0BYyvi+VyngeHYlhQ1dDTZUue90KPC6BvQMRp49CdebQYAwZTS9c3HjrtWsQ9rnxlXtnz3qqOR3v+96TGI1ncGwkft4FQKuC9am0hmVNfqxuC5Z9X1Q5tVUYTEQzSCnx6Aljh9WX3nDZrLfx5EsHJyq8joCcEU1p8LhETfWn2cGtiMVlPGMZbF3WZOOJFub3uDBWwr9TNaejNeRs0Gwnc9JwJTOe12+ovQs3YZ+bgec5zACn2ssmq5nZzxnOt/M0BT1487Wr8fX7juP4aHzGbaWU+NhdT+OBo2PobvRhaCqDf77nED79qostPZOUElMpFS+7tKesC0T8uai82isOJqKCvvEkhqcyuHqeITJuVz7wTDLwrHdSSsTSKhr9nprK1thhMRnPW7/+MIanMmhvcDZrGPC4kFrkAB1dl9Al0BpybiiS3cxsrrk2xk7RlIrhqQw2dtXehZuwz43+iWTFV89QfdvTP4nOBh+80/oJ33H9WvjcCr527/EZt/333x3Fj584hb947kasbgthWZMf33+0Hw8eHZv3MRabBU2pOjRdssy2BjHwJKphj+b7O6+Z55ev2Xw+WYEXbeSsE2MJqDl53qCppeaO267Fn1yzGllNL2pYj6YbU5+dXKUClLZORc2fvZ4znn6PC2GfG9/d1Wd7P92xGpxoazJLIfedijh7EKorT/ZHcNmq5hkXM9vDPrz+ylX4yZ7TyOR/Z/3gsX588fdH8borVuAvn7cRALCiOYB1HSF89M6nEM9Y0+85mcjidMRoHVpq+zvrAQNPohr26IkJtId9WN8x9w4rl1lqm+BwoXr3SO8EAKDBwZUg1cIMvosZbqHmjE1fHQ3ODpMJlNDjqeXP3lrHPZ6AMdlWzdm/Fup4DU60NYV8biiCA4bIOmPxDPonkrh8Vct577vtpnUQAjgTTSOSzOJvf/IMbtzUgU+/+uJCkKooAp997aUYjKbw6V8eLOssui7xg8f68ZzP34uJRBY9TX6sbGV/Z61h4ElUo8wdVlevbZ23rFIRAi5FYCLB8qt69+iJcXhcAv5ZBk0tNQ1+I/gups/TDGjaHV5JEvC6kFbPW3c9L62Q8azzwDPkLVwgsNPRkRh8bgUrWmrvBa1LEdjc3Yg97PMki5gXMS6bJfBc1hTAay5fgdF4BkdH4riguwFffdPl5634uGJ1C955w7qiSm7n8vSpKF79tYfxN3c9jY2dDbh4eSODzhq1tOuxiGrUjp27kFZzGIymcc26ufs7TW5FYCLJjGc9k1Li0d4JNLC/EwDQkM94FtPneTbj6XypbTanQ8vpcBe5n01dMhlPHw4Oxmy7f7OEN+B1YX1HuFApUivMISkfu+tp/PypM9B16ehO2noz15AiKe3Pwjvpyf5JuBWBi5c3zTqI5z03rccPHh+Ax6XgW2+7slDufa4PPn8TfndwGB+98yksa/IX/e9L03UMTKTw8q88iLaQF/9266V41WXL8frbHynr86oHtToYiZfFiWqUWUJ4dRHN9R6XYI9nneufSGJoKr3k+ztN5l7b4jKe1RN4AlhUn6eWz9bW8zoVwMhGa7r9Gc9jI/GaLLM1XbayGbG0ht6xhNNHqXtpNYeDgzGcqOOv9Z7+CLYsa0TA65r1/WvaQ9jS3YALexrR2Th3q4Lf48JnX3spzkRT6J9IFvXYj/aO4+lTUxiJZfDWa9fg9x+6Ga++fAUvrNY4Bp5ENWoqraI15C1qCIbbpWCCgWdde9Ts7/SzvxOYlvFMFZPxlBACc16trxS/d/GBp5oPxprqvK+3PeyDmpO2ZphyusSpyVRNDhYybVvVDABcq1IB/9/PDyCW0TAaz9blnmwtp2PfqQguz/9MzaUx4Jl1j/i5rljdgndevxYjsQz6xhMYmCMAzWo6PvOrQ3j9Nx6BEMCFyxrxiZdvrfvfcUsFA0+iGjWV1nDVmvn7O00eRWCS61Tq2iMnxtEW8iLg4a91AGhcRI9nVtPhdSmOX0k3M57pbPGZPS0n4VZE3ZdVmhlds6fVDuYE5FpcpWJa3xHO7/OcdPooVcOOixU/3XcG33u0v/BzecfjA5Y/htOODMeRzOZm7e8s1YdesBntYS9GpjK46bN/xJ9970ns6T/7s3psJIZXffUhfO3e49ixfSUuXt5UuIhI9YHfTaIalFFzyGp6Uf2dd9x2Lf75lwfxrYf7IKV0/MU12ePR3glctbaVme28hkVOtfW4nP93ESwl45nTzxvmUY/a8qtu7BwwZH7da7nU1qUIXLKiiRnPvIlEFsdH4xiZSs9bCroYvaNxfOzOp3DF6hYowuhDvOPxAfz5szcU3ZtdSXP1py7kyXxAONtE22LM9nh+j9FDvaJFx9XrWvH9R/vxi6cH0eBzo8Hvxku++CBCPjduf/MVeMHWbtvXJ1HlVd+/ECJa0NQi+jsBoCXkRVbTkVzkqgaqDQMTSZyOpHD12oUvRCwVIa8bQhgl6QtRc7IqgreSejx1CXcVBM12a8tPHLZzpUoqm4NbEVjdNvd6qlqwbWUzDg3GitphW8+klDgTSUGXwL2HRy25z7Saw599fw88bgVfesNlUIRAZ4Mfg9G0ZY9RLfb0R9AW8mJla8Dy+/a5FXzsli3Y9bHn4h9eeiEyOR1nomlcu74Nv/rLG/CCrd2WPyZVB+efaYlo0WJpFW5FYHNXQ1G3bw0aL9qYDatPj54w+juLvRCxFCiKQIPPvYiMp/NPh/584JnMFr9o3SwTrnft+YynZnPGc217qCp+FsqxbWUzNF3imdNRp4/iqCf7J5HIX2y9/6g1QeEnf3YABwen8O+3bkNPsxGQNQc96Gzw4fuP9VvyGE7bsXMXduzchT0Dk7hsVYutVVJhnxt/ev1abFvRhEuWN+Fbb7sSnQ7vUyZ7sdSWqAZNpTU0+N1F93WZqxYmk1nuvqpDj/aOoznoweauhpodsW6HBr8HU6n5M55aToemy6ootTUnRxabqcpqOjKajvZwbQdKxTB76WzNeKq5mi6zNU0fMPTZXx8GULurF8rxrYf64FIEGv1uPHhsDDldlrUmZyyewaMnJvCem9bj2Rd0Ft6uCIEdV67EV/54DKcjKSxvtj5DWGlaTkfvaAKvuXxFRR5PCIGA18VWoCWg/p+tiOrMUDSNjKYvanppS4gZz3r26IkJXLmmte4HzCxWY8Cz4B7Pyfx+22rIchVKbYscLjQwaUyF9LlnX3VQT1qCZuBpT8ZTlxJpVa/pibamzgY/ljcHsKdG+jzNDJuVBqMp3PPMEDrCPrSGvIgkVew/U3oGOJXN4cRYAttXt+CvX7DpvPfvuHIlJIA76iTrGc8YvzcvW2CirVPuuO3aJXkxpR44/0xLRIti7gwLzrFXazatDDxr1kIvygbze9GuYZnteRr87gWn2o7FMwBQFUNBFjtcqC//u8C/BCYZK4qAxyWg2jTV1swybyiyfaHabVvZjL39EaeP4ZjvPdIPXUp0NfoKazgeODq24MfN9vs2mdVwdCQORQh86Y2Xzfq7YkVLEDdv6sAduweg5XRbgulKimc0KAK4dEWz00ehOlP/z1ZEdWZoytgXtpi+LvZ41h/zhY25v5ODhc7X6HcvmPEcjxv/JjxVkC32L3K4UN94csbH1TuPS0FWsyfjaQ5e21TDq1Sm27ayGacjKVunANut1OAtrebw/cf68bwtXfB7XPC4FGztacT9Rxbf5ymlxMfvehopNYf1HWEsa5pZRjs98/bGq1djeCqD3x8aWfTjVJtYWsPm7kaEHN5tTPWHgSdRjRmKGhkabxELm00Nfjdc3OVZlx49MY4GvxtbljU6fZSq0+j3LJjxHE8Y/56qotQ2n/H8xv3Hi7p931gCLkXAXQVBcyUEPC7bJrUmszkIGHsw64HZ5xkvYrhWPZgepP5s3xlMJLJ4+3VrCu+/YWMHnuyfLJSQFuu7j5zET/aewYrmAJqD87e3PHtzB7ob/fj+o86U2y42UJ/r9lJKJDI5XF5kma2dZa8sqa0/zj/TEtGiDEVTcCliUUMSFEWgJejFRGLh1RJUWx7tncBVa1rLGppRr4xS2/lfaI7GzMDT+a+fP38xqdgkVd94An63smQGcvg9CjKabkvwmcxqCHhdVXEBwgoX9TTBpYhFB1q1TkqJbz3Uh01dYVy7/mz7wY0b26HmJB7tHS/6vp44OYn/7+cH8NwLOtHTvPCkVbdLwY4rV+L+o6Nz/ow6UYKb1fQFh6xNl1JzyEmJy0rc37kQBpNLW338hiVaQoam0iWtT2gNeTDJUtu6ktV09I4lcPU6ltnOpiGf8ZRy7r7A8UQWAqiKwN3tUiBgDLopRt94YsmU2QJnS4pP5kuMrWJmeEKL6JuvdgGvCxd0Nyy5wPPxvkkcGJzC265bO+OCzBVrWuD3KEX1eQJG7/effe9JLGsK4N9u3Vb0xZ3XX7USAmcvaDltJJbGgcEpHByK4Z6nB4v6mHjGCJqLzXgSLQYDT6IaMxRNw+te/ItkI+PJwLOemGWkV6/lYKHZNAbc0CUKu/xmMxbLwO0SVZM1VBRRVOCZ1XScnkwticFCJnPq74mxuKX3OxrLQNMlgt766mfbtrIZiUxu3gsv9ebbD59AU8CDV17WA+Bsds3nduGadW1F7fOUUuL939+DyWQWX/uTy9G0QIntdMuaAnjOBZ0YjWeKvoBkl2hKxVu/+TjUnI6g14UP/WgfDg1NLfhx5p7wte2hCpySlpql84xFVCdKz3h6McEez7oyldYQ9rmxtYf9nbMxVw7NV2Y2nshWVXmlIgC9iFLbgckkdLk0VqmYzIzn8dGEpfe7f9B4Mb6YSeG1YNvKZuSkREqt7gFDI7EMRmMZJLPlZWczWg6/3j+M11+5ctaLCDds7EDvaAKnJufPmA9MprCrdxz/9MqLsLWnadHneOPVq6DmpKMXelPZHN7x7cdxbCSGjZ0N2NzVgLDPjXd/5wlE5nkd8I37ezEWz6Il6KnoxTiW3y4d1fNsS0QL0nI6RmOZRQ0WMrWGvCy1rTNTaRVXrG6pilUg1agxH3jO1+c5Fs9UVeDpEsVlPJfSKhWTK79SpdfiwPPAmXzg6auvwPPSlc0AUHZAZ6doSsWJsQR6xxK46lO/x8fuehr7BiIlZWmHpzKQUuJPrlk96/tv3NgOAHhwnnLbyUQWg9E03nj1Krxu+8pFnwEAbtrUCb9HwfHRBP7uJ09bHoAu1Ceq5nS873tP4In+Sfz7jm1oDnrgdSv4+puvwFA0jff/7x5o5zSSSynx2V8fwqd+eRCtIS/WMNtJNlk6z1hEdcAo3yltAmdryIvJZBa6TXvwqLLUnI60qrO/cx4NfiPrMd9k2/F4tioGC5kURSBXTOC5xFapmPwel+WltgcHp+BzK3Ar9fWSaE1bCAJnV8VUoyf7JwEAq1oDeOHWbvzfnlN4xVcewi1feABD0XTR5aq6LjEay+D5F3ZhZWtw1tts6Ayju9E/Z59nJJlF71gCQa8L//iyC0v7hGBcINm6rBFdjT7872MDuPmzf8S3HjpRkdU2Ukr89Y/24Y+HR/GpV16Ml17SU3jf5ata8E+vvAgPHB3DZ351qPD2nC7xtz95Bl/543G84aqV2NARglIlrQdUf+qroYGozg1G0wCAv3/phXjulq5FfWxL0AtdGlmy5vxeT6p+U2kVfWNJvOLLD6LB70FjwI0Gnwcn8hkv9nfOzQw8p+YIPKWUGI1n8Pbr1uBjL95SyaPNSRGiqItDfWMJNPjduPO911VNf2olBDwu9I5ZnPEcnKq7MlvAWLnl97iQquLAc3ffBASAzgY/Pn/rpfjHl1+In+07gx8+PoBDQ7GiJxgP5/t03/6stXPeRgiBGze149f7h3Hr1x+GEGJGeef/9/ODyOkS69pDZZewu10K1rSF8N13XI3/97MD+OTPDuB7j/bDJcSCa1lKJaXEyYkkHuubxIdfuBlvvHrVebe59cqV2H8mim88cALrO0JoDXnxFz/Yg58/NYj33rweH3nhZrz+9kdsOR8RwIwnUU0Zzgee3U0Lj3Y/V2vICDbHWW7ruNlKpWZ7W06X6BtLQtN1NAe9SGY1HBmO494jI4imVPjcCi5ZsfgepKWiMTB/qW08oyGr6WgLV8+FGEUAxRQl9I0nsLY9tKSCTsAoLY4kVcvKF5NZDSfGEnU3WMgU8LqQsmn3qRUe75tE0OcqTJVu9HvwpqtX4+4/vx6dDT6MxDI4Pjp/hjuaVHE6kkJTwI1r1s1/Ie6GjR2IplQkMjO/JvcdGcWdT57CsiY/Qr7zfxZK7UHc1NWA777jKnzjLduh5nQcHo4VLiBbKZ7R0DuWwPBUBu+6YS3ed/P6OW/7dy+9EFevbUXvWAKHBmP4+VOD+NgtF+CjL7pgyf0+ocqrz9+0RA4zAwirm+XNJ6zuxsUHni35wHMykQU6LD0W2eTOJ04hpeawoTOM//7Tq2a8z/wZq6b+xGpTyHjOMVxoPG4EL+1hX8XOtBBFEdC0hUvy+sYT2LbSnj171cw/bbJta6j8MvNDQzFICfzjyy7EC7Z2l31/1SbocWEikUUio80aUDkpo+WwbyCCljkqcFa0BDAWz+Az9xzC7W/ZPuf9fPXeY8jpEqvmKLGd7lkb2iGE0Vsazv9+iGc0fPyup40MoA3VQEIIPP/CLty4qR1Xfer3OB1JYTKRLTwnl+uJk5P4qzv2YiyexfJmPz7+4i3zBpAel4KvvulyXPvPf0Aso+Ezr7kYO648PztKZAe+YiGqIcP5ibatJTxhteU/hitVakMio+FzvzmMsM+NVptKs+qdOVxoao6M51jc2LXXVkWBp6uIUltzlcratoVfaNebwCIm2y40hAU4O1jowjqdDB3IlxAfHbG2L9YKz5yeQkbTCxeIzuVxKehpDuA3B4bx2ImJWW9zajKJbz3ch/awt6isdWvIi4uXNyE67WLU5359GGeiKXzmNZdAsXGfr8/twqrWAHK6xFfvPVb2/Wk5Hf/xuyO4decu6FLiwmUNWNESLCpr2Rb24cKeBmztaWTQSRXFwJOohgxG0+hq8pVUDlPIeHKlSk34xgO9GIllsKo1wPKnEvk9LnhdypyltmOFjGd1ldouNFzIXKWyum3pTZ70uRVLJ9seGJxCo9+N5c0BS+6v2pi9q0eGYw6f5Hy7+4xgcq7AEzCqe5Y1+fGpXxwoXJCZfkHh8785AgFgRUvxF2Fu2NiOWEaDpkvs7pvAf+/qw1uvXYPta+wf1Bb0utER9uK/Hz6J05FUyfeTVnO4decu/MfvjuLll/bgl39xQ2F9VLF8bhfCVZYFp/rHwJOohgxNpbGssbQXSGYJ0URi7gmfVB2Gp9LYeV8vXnLxskW/mKCZGvzuOYcLmRnPaiq19boVqDk57yRec5XKUlt5cMdt1+KH77kOq1qDlk22PXBmChf2NNbtxR2fW4EQwJGh6gs8H++bxNr20LztAi5F4EMv2Ix9p6L4+dODM973zOko/m/Pabzj+rXwLWLF2A0bjV6TaDKLj975FHqaAvjwCzeX9kmUYHlLABDAv//2SEkfn8zm8PTpKI6OxPGF12/Dv+/YVqjumA13ZFI1YeBJVEOGoml0lTBYCDBKrvweBROJjMWnIqv922+OQNN1fPRFFzh9lJrXGPDMmfE0ezxLKV23i3mh4YmTk3PexlylsnaJBZ6mdR1hSzKeOV3i0NAULlxWvwO6hBAIeFw4XGUZTyklnjg5ge2rF+5TftVly3HhskZ85p5DhSm3Ukp8Or9z8j3zDNKZzeWrWqAI4MR4EsdHE/j0qy+2vP91vmDP53bhbdetwZ1PnsKhIaPUu5iycNNYPAMpgV9+4Aa8Yttyy85MVAkMPIlskMxqli/tllIaGc8SA0/AyHoy41ndDg5O4YdPDOCt167BqiXYw2e1Br97zuzhWDyD5qCnqgY0hX1uCGDOnjbg7CqVliXa+7uuPYST40nkytxJ3DeeQFrV67a/0xT0unB0uLp6PI+PJjCZVHHlmtYFM3IuReDjL96C05EUvrOrD4AxHOjh4+P4wHM2zJvtm43XraDR70FOl3jN5Stw06az0/YqlR18383rEfa58dlfHV70x0aSKhr87jn3lZaLGVKyU/U82xLVCV2XODwcx4mxpKX3O5lUkdV0dJUw0dbUGvayx7PKffqXB9Ho9+D9z9no9FHqQqPfM/dU20SmMHSrWrgUgZDPNX/guURXqZjWdYSQzRkDlspRGCy0rH4DzztuuxbvvGEdhqbSiCar56Kj2d+5fU1xk5mv39iOmzd34Mt/OAY1p6N/IoU1bUG88erVABYfLLU3+BD0uvD3L3Vmf29z0Iv33bwBvz80gkd7x4v+uIGJJFJqjru4qWYx8CSy2MPHx5HVdKTUHOQCQ0IWYyi/SqWcjGdL0MuptlUskszigaNj+MBzN6JpiWazrGZkPOcYLhTLVlV/p6nB78G+U5FCWeG5+sYTS3KwkGltexgAcLzMPs8Dg1PwuAQ2dIatOFbV2tzVAAA4MlI95baP902iLeSdt1z83GDyY7dsQTyj4eBgDCk1h4+86AJ4F9HbOV1bfrptpQO46Z/T25+1Bt2NfvzLrw4V/Vrhj4dHAGDJVjtQ7WPgSWSxO3YPADD6hyYtvMI8NGVc3S8r4xli4FkNdF1CzekYmEji2EgMz5yOIpZW0T+Rwuq2IN58zeoF74PlUMWZd7hQIlOlgacbak7iyf7z+zyX8ioV07oOI1g5UWaf54EzU9jQ2VBy8FIrNnXnA88q6vPcfXIC29e0LCprv7m7AbduX4mUmkPY58YtF9X23lW/x4W/ev5G7OmPFP1a4fcHR+D3KIV9ttPxOYFqAecoE1kokszi1/uH4PcoSKu6ZUvOAWAoagwFKjfjOcnA03LmUIhinvRPR1LY3T8JKYEb/vWP573/Y7fMvIrPFxLlafTPP1yomlapmBp8bghh9Hlet759xvvMVSpLbaLtdG0hLxr9bvRakPG8cWPHwjescT1NfoR97qqZbDsylcbJ8WRRF9jO9cHnb8KvnhnCipb6WDP1mstX4Pb7ezEwmVwwi5nIaNh1fLyqhqERLRYDTyIL/WTPaWQ1HRs6wzg2EkfvaAJXrLYq8ExBCKCjofQMTWvIi1hGQ1bT6/4qf7V67MQ4pASWNwfwF8/bCL/HBZ9bwb/95jC8bgUvumiZ00esKw1+D5LZHLScDve0IUJZTUc0paKtCjOebpeCLd2Ns/Z5mqtUlnKprRACaxeYbJvRcjg8HEP3HBUiI7E0RmOZuh8sBBhfr41d4aqZbLs7P7G5lL2ZnY1+bM5ncOuB26XgIy+6ALd994nCXuG5PHRsDNmcjmaLymx5UZOcwFeeRBb64e5TuGh5I1qDHggAJ8asWXIOGDs8O8K+siZwmldKIxww5Jh9A1EoAlje7Met21fi5Zf24IVbu9Ec9CLo5bVAqzUGjK/puVlPs+S8GkttAeCqta14sn8SWU2f8falvkrFtL49NO/v14ePjSOSVNE3noCa0897/8FBIwir58FC023uaqiaybaP903A71GwdQkE/cV4wYVdCHpdGIym5+31/MOhETT43Gjw83mCahcDTyKLPHM6igODU9ixfSWEEPB5FEsDz8FoGt1llNkCZwPPCQaejtl3KoKQ110XZWK1wNyLeW7gORY3StfbqrDUFgCuWdeKtKrj6dPRGW9f6qtUTOs6QhiMpudcW3XPM4MAgLSq4wePD5z3/qUw0Xa6TV0NGE9kCz/3TtrdN4ltK5urao2Rk4QQ6G70I6XmcN+R0Vlvo+sSfzg0ghs3deBH77mO2UqqWfxXT2SROx4fgM+t4OXbluOO267F9RvaLQ08h6fSc5aNFaslP8FvYoGSHrKHmtNx4MyU5cvKaW5mduDcAUPmC/Bq7PEEgCvzZYjnltsu9VUqJnOy7WzltlpOx28PDKMt5EWD340v/O4I4pmZAerBwSksbw4smenRm8zJtg73ecYzGvafiRZ+vsnQFvbC4xL4zwdOzPr+/WemMBLL4DkXdFb4ZETWYuBJZIG0msNP9p7GLRd1oylgvJBZmy8F08tccm4aYsaz5h0eiiGj6Qj7zp9ISPYwl8ufH3hWd6ltW9iHDZ1hPHZi5o6/pb5KxVSYbDvLxb3HTkxgMqmiNeTFqtYgxuJZ3H7f8cL7d+zchd8cGMKWJZLtBIBN3UagXok+zx07dxUGrp379td+7WHosrT+TitV2wRYJZ/1fPDYWCEbP90fDo1ACODmzfU/DIvqGwNPIgv8ev8QYmkNt25fWXjb2vYwMpqOwal02fefzGqYSmtlB54tIeNFOCfbOmPfqQgAMONZQWbG89xS2/FCqW11BZ7TXxBftbYVu/smkctfvOIqlbPMHtfZMp73PGNMFm8KeBD2ufHSS5bhGw+cwHD+d3FOl0ir+pIYLGTqCPvQEvTgiMN9nrG0CkUAl69qdvQc1aizwYeg14X/fKD3vPf94dAwLlvZXHW/r4gWi4EnURnMK7t3PD6Ala0BXLOurfA+84VRubvmACPbCcC6UtuEdftFqXhPDUTREvTAx4nCFWNWIEylzi+19XsUhLzVm32+em0rYhkNBweNDAhXqZzl97iwvDlw3koVXZf49f4h3LypEy7FKEf+yAsvgKbr+I/fHQEApNQcgKXT3wmYk20bHN/lGUtruKC7sdB7TWe5XQp2XLkSP913pvCcDxgTmPediuK5W7ocPB2RNfjqh6hMaTWHh4+P49YrVkJRzvZdnS0FK/8KcyHwLDPj6XEpaPS7MclSW0tpupx3GqFp36kILlnRvOT78ypp7oxnFm0hX1V/L65aa5QjPprv8+QqlZnWdZw/2XbPwCRGYhm86KLuwttWtQXx5mvW4I7HB3B0OIZkvt9zqU1V3dzVgCNDsaJ+V003V+nsYkkpEc9ouHJNS1n3U21lslb602ethS4lvv1wHwDza/8IALC/k+oCA0+iMo3GMxACeO32FTPebpbNHLci4zllTcYTMPo8x1lqa5njo3HsHYjgVCQ17+2SWQ1HhmO4dEVThU5GABD2zR54jiWyaC9jJ24lLGsKYFVrEI+dGMeOnbvwyZ8dAMBVKqZ17SH0jiZmBFL3PD0Ej0vgOVtmvkh//3M2IORz41/uOYRENgeXEFjREqj0kR21qbsBsYxWeD6ptGQ2VxX9ndXIDKZXtgZxy0XL8L1HTxYGYkWSWfQ0+XFBHe0vpaWLgSdRGaSUGItlcePGDixrmvkiRghRGDBUrkGLMp4A0BLyssezROde+Y9nNNz23SeQ02VhL+Rc9p+Zgi6BS1c223xKms7tMsppzxsuFMugPVSdE22nu2ptKx47MQEpJdJqjqtUplnbHkI8o2E0ZvTrSilxzzNDuH5De2GolKkl5MX7bt6A3x8awUQii6DPVdXZbjts6swPGLJ5sm0yq2E8nsGR4diMHarmxZ/tZWY86907b1iLWFrDDx8fgC4loikVz9nSueR+Xqk+ccIFURmiKRXZnI4dV66c9f1r20N46lR01vctxvBUGo1+N4Le8v/JtoW8OBNx5op3PZFS4q9/uA8nxhJoy2eRj4/Gsb4jPOvt9w1EAACXrGie9f31WjpWDRr8HsTOCTzHExlctLz6Sy2vWtuKHz9xCilVR0bLcZXKNOvy/9be+s3H0Bjw4O9feiFOR1L4i+dunPX2b3/WGnx3Vx/ORNMIVnFvr10KK1WGY7h5sz1lmzld4shwHBlNxwv+/X54XMYF2E1dDRiJZeBzK+ddpKWZLlvVgivXtOCbD51AyOuCLllmS/WDGU+iMozFs3ArAs+bo+l/XXsIpyaTyGi5sh5nMJq27Mm6Jehlj6cFvnrvcfxq/xA+dssFWNlqfG9+d2B4ztvvOxVFT5MfHQ2+uu5RqkYNfjemUmdLbXVdYjyerdpVKtNdne/zjKVVpFWd/Z3TmH306fywoHueGYRLEXjehcbv43P/nfk9LnzoBZsBACELLuLVmpaQF50NPlsn2/7h0Agymo5VrQH8x45teNcN67CqNYh9pyJIqbnCsC+a3ztvWIdTkymcHE9CEcB169udPhKRJZbeb14iC8UzGhr9bnjnmFK6tiMEXQIDE0ls6Cy9P2N4Ko0uC8psAaPHcyKRhZSSmZM5mOW0cwWH9x4ewed+cxiv2NaDd1y/Fr89MIyg14XfHRzGbTetn/Vj9g1EWGbrkMaAB7HM2YznVFqFpsuaWE2wqjWIrkYfoikVGU3nKpVpepoC8LkVpFS9UGZ79drWwr7i2bzqsuX4+n3H0bxEA6BNJUy21aUsrPRZyLcfPgGvS0F3ox+vvGz5jPe97msPg085xXneli6saQuibzyJ5oAHfs/Sy9BTfWLGk6hEo7EMMpqOsH/u6zdr241SsNl2zS3GYDSNZRYMFgKMq94ZTUcyW14WdqlKqzn8xQ/2YnNXA/7l1ZcUgveWoAdPnJyctddzMpFF/0RyzjJbsleD3z1juNBYfodne7j6ezyFELhqbRsiSSNw5iqVsxTFKONMqzmkVB29owncMm2a7Vwf0xryzphAvpRs6mrA0eE49CIDSQDon0hi70CksAd1LkeHY3jo2Dg6G2efFq0oghc7i+RSBN5xwzoAQDN7uqmOMPCkmmPVaPdy7emfBHB2auZs1raZK1VKDzzVnI6xeMa6jGdhlyfLbRcrp0scHTHK1G5/83YEpvWJtQS90CXwx0Mj533cU6eNPl9OtHVGo98zY4/nWNz42a+FUlvA6PM0wwSW2s60rsMIPM2BaS/YOn/gudRt7g4jpebwqq8+VNTtR2JpjMQy0CXw+d8cnve23364D163gs4qnxZdK27dvgKrW4M183uKqBgMPIlKtGcgAoH5e4Wagh60hbxlBZ4jsQykBJZZWGoLgH2ei6DldNx7eARHhmNIZnP4wuu3YdU5JY9BrwtdjT787uD5fZ77BiIQAriIgacj5s541sYLumvWnl0/wVUqM61tDyGt6RhPZHHF6hZ0WVQZUq/MAUOpIitevvVQH6Q0Kjp+9MQpHDgzNevtokkVdz15Gq/c1gOPiy8treBzu9Dd5IdriWbnqT7xtwNRiZ48OYmg17Vgydba9hB6ywg8h6LW7fAEjFJbgBnPhUgp8cTJSfzj3c/g6k//Hm/71uNIZHNY0xacdSKkEALP3dKF+46MFoadmJ46FcG69tB5Kx6oMhr8Hkyl1cK+x/F8xrOtBkptAWBDZxhuRcClCK5SOce6fDtDSs0tWGZLwMZ84JlUFw48p9Iq/mfXSbSGvFjXHkJTwINP//LgjL2pph/uHkBKzeGt162x+shEVEcYeFJNkVLiTCRV9NVau2g5HU+diuJ121cuOJ203F2eQxbu8ASY8SzGWDyDfaeieM3XHsYPHh/ANevasPPNV+DyVc3zZlSev6ULyWwOj/SOF94mpcTegSgHCzmoMeCGmpPIaMZOwfF4BoowyqNrgRBGwBn2udkjdw5zsi0AvJBltgsK+4xheMU8h/7PIycRy2joafLD7VLwgedsxIPHxnDv4dEZt8vpEt95pA9XrWnF1p4mTu0mojlxqi3VlOOjCQxMppBW9YVvbKPDwzGk1BwuW9W84G3XdoTwoydOIZZW0VBCxmtoytqMp9njaWZ9aKbJRBYnxhLwe1z4/OsuxQu2dhW+b9988MSsH2O+yEqrOQQ8xnRbMys6GE1jLJ7BpRws5Bjz+zeVVuH3uDAaz6I15K2pEjaW2M7OzHgGvS6sbOXE32IEPS6kFsh4ptUcvvlgH27c1IFM/rZ/cs1qfGdXHz71y4O4YWM73vSfjwIwVn8MTKTwsVu2zHufDEaJiBlPqin3HjYGt0RT6qzlPpXyZH8EAHD5qpYFb2u+MOobS5b0WEPRFHxuxbLJdg1+N1yKYMZzDt966AR0CazvCOM1V6xY1MUCv8eFGze143cHRiClxI6du/DWbz4GALiE/Z2OacxPnjZ3eY7HM2gL1UZ/p0kITgSdTVPQg5agx7ILc0tBwOtCKpuDmpv7Au6PnjiFsXgG77v57Hoor1vB39yyBcdG4vjB4wOFt3/74RNY1uTHCy6cfZ81EZGJGU+qKfcdMUp8sjkdfeNJx7IAe/on0R72YkVLYMHbmqVgvWNxXFxC8DE0lUF3k9+yF52KItAS9GIioS584yVmKq3i2w/3oSXoQdBb2t60523pwq/3D2N/fghHPKPB4xLYsqzRyqPSIpi9tbG08TM/Fs+gvaE2ymxpYebAnGIt9cxb0OuCBHDXk6ew48pVhbeb0+K/986rcfv9x3HZqmZcvbZ1xtfrhVu7cNWaVvz7b49gTXsIWU3H06ej+PALN8PNoUKWW+o/q1R/+FuCakYqm8OjJyYKi78fPDq6wEfYZ29/BNtWthQVDK5qDUKI0leqDEVTll/Nbw15CusH6Kzv7jqJqbSG5c0LX1CYy3Mu6IQQwG8PGNNtExkNF3Q3cgG4gxrMjGd+su14IltzGU8iq7QGvWj0u/HRO5/Gfz7Qe977f/H0IAYmUnjvTevPe44TQuDvXroF44ksBiMpDE+l4XUreMNVq867HyKiczHwpJrxyIlxZDUdXY0+eN0KHjg65sg5JhNZ9I4lcPnq5qJu7/e4sLw5UHrgOZW2bLCQqSXoxQRLbWdIZXP45oMncNOmDoTm2c26kLawD1esasHvDw1DSolEJscyW4c1Bs7JeMYyNbNKhchqiiKwubsBt1zUjX/6xUF85leHCq0rUkp87d7j2NgZxvO2zF46e8mKZrzqsuUYnDL611+5racwtI6IaD4MPKlm3Hd4FD63grv//Hq8+rLl2HV8HNo8PSp22TsQAQBctnLh/k5TqZNtpZQYjmYsDzxbQ16uU4FRWmaWl/3vY/0YT2Tx/udsmPP2xU5rfN6FXXjm9BSm0hpyUnKircPMjGcsrSGVzSGRzdXMKhUiOyhC4MtvvBxvuGoVvnbvcXzsrqchpUQ0peLQUAzvuWn9vKvCPvzCzQAAXYIrVIioaLYFnkKIzwkhTgghpBDiIrseh5aO+4+M4tr1bfB7XLh+YztiGQ1PnY5W/Bx7+iehiMUNi1nXHkLvaGLRA5EmEllkc7rlpbYtIS9LbafJaDnsvP84rl7biu1rWsteB2BmCk5NpgCAE20dZvZ4TqVUjMUzAIAOZjxpiXMpAp9+1UV4/3M24AePD+DoSBynI2n0NPnx8m09835sT3MAq1qC6GzwYWsPKzqIqDh2Zjx/AuBGACdtfAxaIvrHk+gdS+CmTR0AgOvWt0MI4EEHym33DERwQXfjosox17aHEM9oGM2/6C3WYH6H5zKLM55tIS8mk1nounOTgcsxPVNphTufOI3hqQz+fJ5s52Ks7whhTVsQ8YwGRQAbOsOW3C+VJuh1waUIxNIaxvMXXJjxJDJ6Nj/0gs34x5ddiMmkinhGw7tuXAdPEYOCupv8XPNDRItiW+AppXxQSjmw8C2JFnbfEWONihl4toa82NrTWPHAU9cl9vZHitrfOd3aDiPwODG6uHLb4fwOzy6rM55BL3RpTHGtJ6UEpFJKfP2+47h0RROu39BuyTmEEIWsZ8jnrql9kfVICIGwz41YWsV4/uJPGzOeRAVvf9ZabOgIoSXowY4rVzp9HCKqU473eAoh3i2E2C2E2D066tyUUqpu9x0ZxcrWwIyrq9dv6MCT/ZOIZ7SKnePYaByxjIbLitjfOd26/LkX2+d5NuNZ+pTV2ZiDIMZZbovxRBb9E0n82bM3WLon8Xn5nXYhL7dWVYPGgBtTaa1QatteYxnPcsu/iRbSFvZhU1cDgvydRUQ2cfy3i5TydgC3A8D27dtrs+6PbJXRcnj4+Dhec/mKGYHBDRvb8fX7juOxE+N4zgWVWVy9p38SABad8expDsDrUhYdeH713mMArH+R3JIPPCcTWaDD0ruuKVJKnI6kcEF3w5wTHEu1fXULuht96OC+yKrQ4PMgllYxFjcutnCqbf1gQL44/HoRkVMcz3gSLeSJvkkks7lCma3pitUt8FV4rcqe/giaAp5CBrNYLkVgdVsQvYsMPLOaDo9LWL6Yuy0feC71ybaTSRVpVcf7nr1h3gmOpXC7FKxuCzF7UCUaA25MpYyMZ9jn5l5VIiKiCuMrIqp69x4ZhcclcO36thlv93tcuGpta0X7PJ/sn8Rlq5pLKslc2x7C/UdHsWPnrqKvOGc1HV639deHChnPGt3lmcrm0DeewAd/uBcbOxuwoTOMjZ1hSCmL/t4MTCTRN56A36PgJRcvs/nE5LQGvwcDE0mMx7McLERkAWZOiWixbAs8hRBfBPBqAN0AfieEGJdSbrXr8ah+3Xd4FFeuaZ11iuz1G9rxz/ccwlA0bfmuy3NNpVUcHYnjJRfPP2Z+Lms7QvjtgeFFrVRRcxJ+j/WBZ2vQzHjW5nCh05EUYhkNDx8bx11Pni68XQgg7HWjfzyJVW3BwtvNgUPmC6VoUsXbv/04dAls6Wzg8J8loMHvRizf48kyWyIiosqzc6rtB6SUK6SUbillN4NOKsVgNIXDwzHcvHn2RsTrNxpTSB86Zn/W86mBKKRcfH+naV17CBJARtOL/hi7Mp4BrwuKAP774T7L79tuAxNJjCey6G7045GPPxdPfeIF+L/3XYd/fe0l6G70I6Xm8OqvPYR9A5FZPz6j5fDu7+5G/3gSmzrDCHhZcrkUNPo9mEqrRsYzxIwn0bk4wIqI7MYeT6pq9x8xJh3ftKlz1vdv6W5EW8iLBysQeD7ZPwkhgG0lBp5r242VKmk1V9TtY2kVOSnhtbi/0+RWFGh68UFwtfjmQycgcHbFTKPfg8tWteDW7SuxqjWIC5c1IuB14fW3P4LfHxye8bG6LvGRHz+FR09M4LOvuwSNAY8DnwE5odHvRjyjYSSW5ioVIiIiBzDwpKp235FRdDf6sakrPOv7FUXgug3tePDY2KJKWBdrx85d+OaDJ7ChI4xGf2nBirkKJq0WF+ztPzMFALZl5NwuAS1XW4Oko0kVdzw+gLawF745MsEBrwt3vfdZ2NgVxru+sxv/88jJwvs+/9vDuHvvGXzkRZvxim3LK3VsqgKNAQ+kNAZKdbDHk4iIqOIYeFLVuvXrD+PX+4dx06aOeQfG3LChHaOxDI4Mx207i5QS8YxWcpktYKxEcQmBVJEZz735UtHwLL2tVvC4BNQay3h+77GTSGZzWLZAP29Hgw8/ePc1ePbmTvzdT55B/0QSw1NpfOWPx/HGq1fhvTetr9CJqVo0+M/+O2LGk4iIqPIYeFLVimc05HQ5Z3+nyezzfNd3dheGyFgtrenQdInLV7WUfB9CCAS9LiSyWlG33zcQgc+twGNnqW0NZTwzWg7feqgPN2xsL2pFSdDrxs43X4E3Xb0Kg9E0+saTePbmDvy/l28taSox1baGaZUKHC5ERERUeVynQlUrkjQmrl63oX3e2/U0B7CuI4TxeHbBTFip4mkjWLysjMATAMJ+N4aiaaSyuQVLaPcORGzLdgK1V2p7994zGI1l8G+3XoobNs5+MeLcwRhul4J/euVFeODoKGJpDV9+4+UzdqLaPUiDgzqqx/QSea5TISIiqjxmPKlqRVMqGnxuNBUxAOb6De2IpVXoNvV5xjMaFAFs6Jy917RYDX43JM6W0c5leCqNwWh61hUyVvG4FOTyJcTVTtclvnF/L7Ysa8T1C1yIOJcQAsuaAtjU1WDr15Oq2/RSW2Y8iYiIKo+BJ1WlwWgKiWwOTcHiBvlcv6EdujybmbRaLK2hwe8pe99jQz7weeLkxLy3MwPTf9+xzbasWdBjZFyPDMdsuX8r3XdkFEdH4nj3jWtZJkslmT7BuJ0ZTyIioorj5X+qSr89YKzBaA0W9wLxmvVtAIwA0WrRpIqUmrNk95/bpSDgcWH3ycl5b7d3IAK3IrC1p7Hsx5xLMF/qe2gwVlbvqt127NyFg4NTWNbkx0sv6XH6OFSjzIynAEqeTE1ERESlY8aTqtJv9g/D71GKXiXS6Pcg4HEhZkPZ6BP9RnZyeqleORr8bjxxchK6PndZ8N7+CLYsa4TfY88qFQDwuhUoAjg0NGXbY1ghkdEwldbwp89aa9ugJap/5r9ft0tAKbNygYiIiBaPr+Ko6kSTKh7pHUdLkdlOU0N+Qfx8AV0pdvdNQgCW9Afecdu1+OiLLkAsreHIyOwlrjld4unTUWxb2Vz2483HmLLrxqHB6i61HYym4RICr79qpdNHoRrmc7sgBHjxgoiIyCEstaWq84fDw9B0ia++6fJFTZEN+9wYiWVwbDSOTV0Nlp1nd98kLlnZjB+/9zpL7m/7mpbC/V7QfX4p7fHROOIZDZfaHHgCRrntwaGp/7+9O4+vqrr3Pv75nZyMkJEMJAxBNEwiMoQiWK1ja1UcOjhrtbVV29v26X3dW28fa33a3nsfOz1PrdoKtV6tWpVqxbHqdaiKIhIkQJhExpAEQggZyXjOun/kBAOczOfkHML3/XrxCmfvs/demx9J9u+stX4L51xUzp0sq2lif2NHteLkQQyPVHVZAfB6TImniIhIhOg3sESdV0v2kpMSz6lj0/p13J9unAvAql7mT/ZHS7uP4t01zM0P3RzI8RlJZCXHU7QjeIGh4l01AGHv8YSOxLO+uZ2K2uaQn/vKRcsHva7qC2vKAchOVhVSGbwRcV5GxIdv+LqIiIh0T4mnRJXmNh9vf7yP86fl9Hse1oRRSWSMiAtp4llSVktru5/CCRkhO6eZUZif3m2BoeLdNSQneJmYOSJk1wzmqVvm85srTgUGN88zFAlmd15aW8GIuJiwznWV48fk0cmMS0+KdDNERESOS0o8Jaq8u6WKpjYfXzh5dL+PNTNmj0/no12hSzxX7ug4V+fw2FCZk5/O7gNN7AnS01i8q4ZTx6YNSQGUziHJG6Nwnueu/QdZV1bLKC19ISIiInLMU+IpUeW19XtITvAy74RRAzp+dn4a2/Y1Ut3YGpL2FO2oZmLmiJAvOD830INadMR6nk2tPjbvrR+SYbYAyQmxjMtIZNOe0CWebT4/r67fwyeVDYOKw0vrKoC+L6kjIiIiItFLxYUkarT7/Ly+cS/nTskmzjuwz0TmBIoRrd51gHOn5gyqPX6/o2jnAT4/bXDnCWZaXkrHep47Dhy2NmVJeS0+vxuyxBNgyugUNlUMfkmVjRV1PL1qN0tXl7E/kHB2VhkeSO/tS+vKmTkujaXfOX3QbRMRERGRyFKPp0SNop0HOHCwbUDDbDvNGJuG12Mhmee5raqBmoNtIZ3f2Sk2xsPMcWlHtbOzsNBQVLTtNGV0MtuqGmlu8w3o+KqGFtaV1fLFe97lz8t38JkTMnjoxkImZo6gpd3Psk+q+n3OHVWNlJTVcfGM3AG1SURERESiixLPYS6chV9C7dX1e4jzejhzUtaAz5EYF8PJeSkhSTw753fODUPiCR3zRjdU1NHY0n5oW3FpDWPSEskawiquU0an4PM7Pqls6NdxLe0+fvS3dWzd14hzcNfCaaz43+fxh+vmcM6UHEaNjMPrMR79YGe/29Q5zPaLpyjxFBERERkOlHhKVHDO8dr6vZxZkMmI+MGNAJ+dn86a3TW0+fyDOs/KHdVkjoxjwqjwVMGck5+Oz+8oLq05tK24tGZIh9kCTMntKDDUn3mee2qbuWrxBzzx4S7yUhM4ZUwKN51+AhkjPp2P6TEjKzmeNzbupbymqV9tenldBbPGpzEmLbFfx4mIiIhIdFLiKVFhfXkdZTVNfH7awIfZdpqTn05zm5+Ng5y3WLTjAIX5GZiFp7rs7Px0zDquA7CvvoWymqYhTzwnjBpBvNfT6zzPzt7zD7dXc/G9y/h4Tz0PXDebcRlJQf+NnrplPktumY8DnvxwV5/bs72qkfXldVyk3k4RERGRYUOJ5zDX3ObDORfpZvTqtQ178RicOzV70Oeak99RYOijQQy33VvXzK7qgyFfRqWrlIRYJuckH6psuybQ8zlzfFrYrhlMjMeYPDq51x5P5xx7apu55o8fkJLgZel3TueC6T0nh+MykvjcpCyeXFna5x7olwPDbC9U4ikiIiIybCjxHMZ27m9kze5adlUfjHRTevXa+j0UTshgVAiWLclNTSQ3NYFVgUI9A1F0aP3O8Mzv7FQ4IZ3Vu2oODbmN8RjT81LDes1gpoxOZtOenns8d9c0sbP6IGdNzmbpP51OQWAN0N5cf1o+lfUt/PeGvX16/4trK5iTn06ehtmKiIiIDBtKPIexJ1eWArCnroX15bURbk33Lr1vGZv21A+qmu2RZuenD6rHc+WOahJiPZyclxKyNgUzd0IGDS3tXHrfMv68fAeTc5JJjIsJ6zWDmTI6haqGVvbVtwTd39zmY29tC+lJsSy+fg4pCbF9PvdZk7MZk5bIY30oMrRtXwMbK+rU2ylh8dQt83nqlvmRboaIiMhxSYnnMNXa7uevRaWkJHjxeow7ni3B74/OIbcHDnas+RjK9TLnjE+nrKaJitr+FbXptGrnAWaNSyc2JrzfIp3Dguub22ls9Q35MNtOnQWGNncz3PaNjZX4nCMnJeGoNTl7e5iP8RjXzBvP+1v391o599NhtqH7EEJEREREIk+J5zD1xsa9VDW0Mjo1gfEZSRSX1vDEyr4XeBlK1Y1tJMXFMC4jdNVjP53nWdPvYxta2llfXsvcMM7v7DQmrWNY8L6GFnx+x8yxaWG/ZjBTRnf07HY33PbZ1WXExhgpCQOrOHxF4ThiY4zHV+zscYmfF9dWUJifTm6qhtmKiIiIDCdKPIepJ1aWkpuaQFpiLJkj4zhtYga/+PsmqhqCD6WMlNLqgzS0tB+2DEcoTMtLISHWM6D1PIt31eB34Z/fCWBmzMlP52CrDxj6wkKdMkbEkZ0cz8aKo3s8qxtb+cfmSm5cMIElty4Y0PmzkuO5YHouz6zaja+bnvdL7u0Ycn3RDA2zFRERERlulHgOQ6XVB3l3yz6uKBzHklsXsOTWBfz7ZdNpavPxny9vjHTzDvNccRkAmSFOPGNjPMwYm8aqXf1LPK9ctJzbn1mDx2DWECWBhYHeWY/BiVkjh+SawUzJTQna4/nSugra/Y7LZ40d1PmvmzeeuuZ29je2Bt1fHdj+xV4q5YqIiIjIsUeJ5zC0pKgUA66YO+7QtpOyk/nWmRP520dlfLBtf+Qa14VzjmdXl5Gc4CU+NvQFdebkp7OhvJbmNl+/jqtvbmdqbgrJ/SigMxidPasj473EeMKzZmhfTB2dzJa9DbQfsezJ0tVlTM5JZmpu36rYduczJ2QwKWcklXXNh213zlHV0ML+xlaS472MTk0Y1HVEREREJPoMbMKWRK12n5+nVpbyuUlZjDliOYp/OruA54rL+fHSEtKTYvGYRbTC47qyWrbua+TuL53CVZ8ZH/Lzzxmfzh98jnVltczt47BZv3M0tLT3+f2hMGV0MrExRmri0CS63bYjN5lWn5/tVY2HlkrZtf8gq3Ye4PYLpmA2uKTYzLh2Xj53Pb+e7VWN3ProKnZWH2TX/kYaA0ON80eFbp6viIiIiEQP9XgOM29uqqSyvoWrgyRyiXEx/OzSk/mksoGK2uYgRw+tZ1eXERfj4YthWjqjc6hsf+Z5Hmz14XefFicaCt4YDzPHppEb4Z6+zgJDG7tUtl0aGAp96cy8kFzj8tlj8HqMfQ0tbKmsJzc1ga8WjuOuhdOYnDOS7OTBr+MqIiIiItFHPZ7DzJMrS8lOjuecKdlB958zJYcLTh7Naxv2hHxeZX+0+/y8sKacc6dmh62nb9TIeE7IHMGit7fy1qbKPvXu1ja1AQxpjydw1BIlkXBi1ki8HmNTRR2XnJqHc46lq8s4bWIGeWmhqTKbkhDLrPFpGBxVqOiVkj0huYaIiIiIRB/1eA4j5TVN/GNzJVcUjsPbw/qTP1k4DYDdNQNb4zIUln1SRVVDK5fNGhPW68wen059czvO9b6GaUu7j711zaQkHJ/zDOO8Hk7KHsmmQI/nmt21bKtq5PIQx8hjNuhhuyIiIiJybFHiOYwsKSrF7+DKLkWFgslLSyQnJYGqhtZu120Mt6Wry0hNjOWsyVlhvc6c/HTa/Y6Wdn+v731udTltPhey3r1j0ZTRyWyq6Pg/sXR1GXHe8A2FPtJTt8yP6JxjEREREQkfJZ7DhM/vWLKylDMKMhmX0XuBlrzUBGI8xq9f3TwErTtcY0s7r67fy0Uzcon3hr6abVdnFGQCsKeXOa1+v2Pxu9tIioshJeH4HYE+JTeF8tpmqhtbeWFNOedPzSFliKr7ioiIiMjwpcRzgK5ctJwrFy2PdDMOufCedyivbQ5aVCiYZ759Ov98/iRe31hJ0Y7qMLfucK9t2ENTmy/kQziDGZeRRE5KPHvrW/h4b32373trcyWfVDaQm5pwXA8DnTK6o5rtH9/dxv7G8AyFVs+miIiIyPFHiecx5siE1+93h6rUej3GeVNz+nyum06fQFZyPL94ZVOf5kCGyrOryxmbnsic8UNTOXZMWiIxHuPnL27o9j4XvbONvNQEMiJUcClakrHOyrYPvL2VtKRYPjcpvEOhRUREROT4cPyOKQyiM6GLhgSgO63tfmqb2vjpC+spKatlQ3ndoTUQx6YnEuft+2cJSXFevnduAXcuLeEfm/dxdjeVcEOpsq6ZZVv28e2zThqySq5/+/bpPLRsOz97cUPQ+ywureHD7dX8+KKp3HzGxCFpU7TKSYnH6zHa/Y6LZ+T26/+TiIiIiEh39FQ5QM1tPnYfaKKhpX1Q5+nPkN2SslrWlnVUGn3yw45CQl+ZM5ZffWUGp4xJIW8AlVivmjuO/FFJ/PLVzfj9wXsDQzms+Pk15fgdYa9me6Tr5+czMWsEP39pA22+wwsNLX5nK8kJXq7q4zDl4czMSIzrmHc7FEOhRUREROT4oMSzi4Ot7fj7MOT0rU2VlJTXUVbTxNf/ayUHWweXfPbFx3vruf5PK4gxY3peCiU//QLP3LaAn146na8WjiMpzjuguYmxMR7++fxJbKyo44W15f06diAJ6dLiMmaMTeWk7JH9Om6wYmM83HHhVLbta+SxD3Ye2r6jqpFXSvZw/Wn5jIzXAACAtMRYRsZ7mT1EQ6FFREREZPiLysRzqAv3tPn83PVcCevK6lhXVssbG/cGnQvo9zvue3MLX39kJfFeD/kZSRTtrOYbDxfRFBju2h/OOXZVH2RjRR2fVHZf+GZHVSPXPriC2BgPU3OTGRHvJeaIYaqDmSO4cEYeU3NT+M1rH9MaZNmRNp+f+ua2QSfYC+9dRklZHZfNjExP2jlTsjmjIJPfvr6FA42tADy4bBtej4cbF0yISJuiUV5aIifnpRzXRZZEREREJLSitotnqIrd7Ktv4TuPf8SHO6rJGhlHfUs733ikiDMKMrnz4mlMyknmykXL8fkdo0bG8er6vVw2M4/dB5qI8Rg/OH8SP1hSzDf/XMSDXyskIbbvy4MsfmcbFbXNGHDhPcv4/nkFfOvMicTGfPp5QFlNE9c+uIJ2n58lt8ynICc55P8GHo/xwy9M5qaHV/L5//82b/3LWWzaU8+bmyp5c1MlH+2qAWDG/3mNU8amMu+EUcybmEG73+ENMk/zyLmyPr9j7e4adh84CMDCU/NCfg99YWb8+KJpfPGed7jnjS1895yT+GvRbi6fNYbslP4PUxYRERERkb6JysSzvKaJuuZ2fH53VM9eMP0tCtT5/h9dOJVbH11FTVMr91w1k7+s2IXfOS48JZffvr6FC377DtfOy6e+uY1tVY20+Rx3XjyNr58+gasWfwB0zFVs9zv+9ek13PLoKhZdP6dPyedLayv4v3/fRMaIOPIzkshNS+BXr27m5XUV/OLLM/j5ixtobfdz4GArdc1tPPHN08KSdHY6a3IWyfFeSg80cfrdb1IeWPfylDGpjElLICnOy/nTclixvZo/LdvGA29vBSApLobvPP4R40clMWFUEuMzRtDS7sc5x2Mf7GTZlire31pFXXNHb2lOSjxZyfFhu4/eTB6dzDXzxvPw+zt4YU05Le1+vnnmCRFrTzSK5uJaIiIiInJsisrE0xtj1Da18ctXNvGjC6f2+v7qxlacc7T7/Hhj+jZ6uLK+hSseWE52SjzP3LaAk/NS+cuKXXjMuOn0E7hs5hh++/rHPLZiF75Az96j3/gMC07MPOpcX5kzFp/fz+3PrOO0/3yDgpyR/PXWBd1ee9XOan6wpJjC/HSMjh7H3187h1dKKrjzufVcev97ZCfHU3OwDTN49BvzmD4mtU/3NVBmxvhRSWzZ28ApY1P5/nkFnD05m+yUhEOJ+g8vmAJAU6uPj3Yd4IdPr6GhxceGijpeXb+H9iOKE63ZXUteagIXTB/NZwuyePi97Yf15kbKD86bxBMflrK/sZXzpmZzUnb4EnoREREREYnSxDM7OYHGFh+L3tnG1NyUHiugPr5iJ1sqGwA47/+9zbfPPonLZ40hNsZzVE+oc46Ssjq27WtgX0Mrnz0pk3uvnkV6YO3Grj096SPi+Oml07nutHxueOhDclLiD0s6j+wVunLueNr9jjueLeHjvQ1s3dfAiVlHF9DZUdXIN/+8irzUBBbfUHjYupEXTM9l/sRMfv7SBp5etRszePzmeczJH5oiLyPjvcwan8ai6wt7fF9iXAynn5TJ2PQkoOPfot3np6K2mR37G7lzaQkAf7pxLhMzRxyaK/h4l6I+kTRqZDxj0hLZVX2QWz53YqSbIyIiIiIy7EVl4gmQPyqJCZkjuP2ZtZyYNZJTxh7d47ekqJQ7ni0hLTGWrOR44rwefvj0Wn73xhZuO+tE/M5hwIfbq3mlZA+vrt9DWU0TALmpCTx809xee0gLcpIZn5HUpzZfOy+fP76zjZ37D3Lub97mjIJMvjZ/AmdPySbGYxxobOWmh1finOO/bvrMYUlnp9SkWH791VNZX16LxyxoD+tQ68vQS2+Mh3EZSYzLSCInMF/yyMQ7moZwjk6JJy0plrkTMiLdFBERERGRYS8qE8/OBGV/QwuX3PcetzxaxPPf/SyZIz+dG/js6t3c/sxazijIpLnVh8djPPmt03hrcyW/e+MT7ni2hNgYwzm4YtFy4rwezizI5PvnFfDkh7uIjfH0eVhuf+SkJJAxIo6zJ2fz2Iqd3PznIsZlJGLAgcY2Wnx+/nLzPE7IHNHjeVISYkPett70NzHs7v3RlGB2x8xI7EchKBERERERGTgbquqxfVFYWOiKiooO21ZSVstXHnifGWPSeOzmecR5Pby4tpzvPbGa0yaO4qEb5x5VzMc5x7JPqvjuX1bj8Rg/u/RkzpqcfWidxv4WI+qPrudu8/l5bf1eHlm+gw+3VwNw79WzIlbVVUREREREJFzMbJVzLui8vahPPAGeKy7j+08Wk50cT2piLNuqGpkzPp2Hvz6XpLjuO23DmWD218J736XN53jlf50Z6aaIiIiIiIiEXE+JZ1QOtT3SpTPHsLGingfe3kplfQuzx6fx0E09J53R5lhqq4iIiIiISCgdEz2eAD6/Y+5/vE6bz897/3ZOROZAioiIiIiISHDHfI8nQIzHKMjuqJKqpFNEREREROTYccwknhAdczVFRERERESkf0K/noiIiIiIiIhIF0o8RUREREREJKyUeIqIiIiIiEhYKfEUERERERGRsFLiKSIiIiIiImGlxFNERERERETCKqyJp5lNMrPlZvZx4GtBOK8nIiIiIiIi0SfcPZ4PAPc75yYB9wOLwnw9ERERERERiTJhSzzNLBuYDTwR2PQEMNvMssJ1TREREREREYk+4ezxHAeUOed8AIGv5YHtIiIiIiIicpyIeHEhM/uWmRWZWdG+ffsi3RwREREREREJsXAmnqXAGDOLAQh8zQtsP8Q5t9g5V+icK8zK0ihcERERERGR4SZsiadzrhIoBq4ObLoaWO2cU7emiIiIiIjIccQb5vPfCjxiZj8BDgA3hPl6IiIiIiIiEmXCmng65zYB88J5DREREREREYluES8uJCIiIiIiIsObEk8REREREREJKyWeIiIiIiIiElZKPEVERERERCSszDkX6TYcYmb7gJ2RbscxKBOoinQjpFuKT3RTfKKb4hPdFJ/opvhEN8Unuik+A5PvnMsKtiOqEk8ZGDMrcs4VRrodEpziE90Un+im+EQ3xSe6KT7RTfGJbopP6GmorYiIiIiIiISVEk8REREREREJKyWew8PiSDdAeqT4RDfFJ7opPtFN8Yluik90U3yim+ITYprjKSIiIiIiImGlHk8REREREREJKyWexxAzG2VmL5vZZjNba2Z/M7OswL5JZrbczD4OfC2IdHuPZ2Z2l5k5M5seeK34RAEzSzCzP5jZFjNbZ2aLA9sVnyhgZheb2WozKw78jPtSYLviEwFm9msz2971Z1lge7fxUKyGTrD49PScENiv+AyR7r5/uuy/qz/fWxJaPfx8C/qcENin+AySEs9jiwN+6Zyb7JybAWwF7g7sewC43zk3CbgfWBShNh73zGw2cBqwq8tmxSc6/BJoBiY5504B7gxsV3wizMwMeBS43jk3E7gOeMTMPCg+kbIUOJOj19fuKR6K1dBZytHx6ek5ARSfobSU4N8/3T0ngOIzlJYSPD7dPSeA4jNomuN5DDOzLwO3AdcAHwOjnHM+M4sB9gMFzrl9kWzj8cbM4oF/0BGTt4CLgUoUn4gzs5HAbmCsc66hy/ZsFJ+ICySeVcAlzrn3zOxM4EHgsyg+EWVmO4CLnXMlPX2/ANbdPsUqfLrGJ8i+LwO3OefO08+6yDgyPsGeE3r73lJ8wueIn29BnxMC71N8QkA9nseoQC/AbcDzwDigzDnnAwh8LQ9sl6H1M+Ax59z2LtsUn+hwIh2/JO4ysyIz+4eZfRbFJyq4jk9BrwCeM7OddHwa/TUUn2jTUzwUqyhyxHMCKD7RIthzAig+0aC75wRQfEJCieex616gAbgv0g2RDmY2H5gL/D7SbZGgvMBEYLVzrhC4HfgbMDKirRIAzMwL/Ai41DmXDywEnkLxERkoPSdEGT0nRL2gzwlmlhLZZg0fSjyPQWb2azqGNV3pnPMDpcCYQLc/ga95ge0ydD4HTAG2B4ZujAVepeMTNMUn8nYC7cATAM65FXQM7WxC8YkGM4E859x7AIGvjXTMtVF8okdPv2/0uyhKBHlOAMUnGgR9TjCzz6P4RIPunhMmofiEhBLPY4yZ/QcwB7jMOdcC4JyrBIqBqwNvu5qOT2s05nwIOefuds7lOecmOOcm0DFP4AvOuSUoPhHnnKuiYz7N+dBRnQ7onLNRjOITabuBsWY2GcDMpgKjgS0oPlGjp983+l0UHYI9J4CeFaJBD88Jryk+kdfDc8Inik9oqLjQMcTMTgZK6HhQbgps3u6cu9zMpgCPAOnAAeAG59zmyLRU4KgJ64pPFDCzicBDwCigDbjDOfd3xSc6mNm1wL8BnT00dznnlio+kWFmvwO+RMcHAFXAfufcyT3FQ7EaOsHiQ8c86aDPCYFjFJ8h0t33zxHv2cHhhYcUnyHSw8+3oM8JgWMUn0FS4ikiIiIiIiJhpaG2IiIiIiIiElZKPEVERERERCSslHiKiIiIiIhIWCnxFBERERERkbBS4ikiIiIiIiJhpcRTRESOaWa2w8ymD8F1LjGzXwX+PsHMvjWIczkzG9nPYx42s92BZQCC7T/LzIoG2qbAORaYWfFA2iciItITJZ4iIiJ94Jx73jn3r4GXE4ABJ56DcLdz7nvhOrlz7n3n3MxwnV9ERI5fSjxFRGRYMrMbzGydma01s2fNLDuw/UYze83MnjKz9Wb2npmNDuyLM7PFZvaxmS0zs/vM7Okuxz0dOP39wLRA72Dn/sN6Cbu+NrMvmdkmM3vfzH58RDvnmdlbZrYq8Oeiftzjv5vZJ2b2NnDREfu+ZmYrAud808wm93aPIiIi4aLEU0REhp3A0Nu7gc8752YAJcC9Xd4yF/gX59zJwAbgu4HttwDjgWnAeUBhN5f4DrDBOTfTOfeVXtqSDfwRuNQ5twBo7bIvDXgAuMY5Nwe4GFgU2N7bPS4ELgFmAucAU7rsOwO4AjgzcN5fAQ/18x5FRERCRomniIgMR2cDLzvnKgKvF9GRZHV6zzlXGvj7B8CJXY571DnX7pxrBp4IQVtOAz5yzm0OvF7cZd8C4ATg72ZWDPwdcMBJfTjv2cBTzrkG55wP+FOXfQuBU4EVgfPeDYzrclyo71FERKRH3kg3QEREJAyMjgSuq66vm7v83cenvw+DHddXPgIf6JpZwhFt6Y4Ba51zZw7ger2d9yHn3E+62TfQexQRERkQ9XiKiMhw9AZwYefcTeCbwOt9OO4t4Doz8waSxyu7eV8dkHrEtq10DOEFuKbL9uXALDMrCLy+ucu+94ECMzu7c4OZzTWznpLKTm8AV5jZCDOLAW7qsu8F4AYzGxs4Z4yZzennPYqIiISMejxFRGQ4eN3M2ru8PgX4EfDfZuaAbXTMbezNA3QMUV0PlAKrgKQg71sLbDazEmBTYJ7nD+iYn1kBvNj5RudcZWDplRfMrBpY0mXfATO7BPiVmf0WiAu0dSG99Eo65140s/lAMVBOR0I5JrDvHTO7A3g+kJTGAX8N3E9f71FERCRkzDmNthEREelkZsnOuXoziweeB/7qnHswCtr1MFDknLsvBOfq8R4DyXqyc65hsNcSEREB9XiKiIgc6fVAQpZAx/DchyPbnENqge+Z2aQQrOUZ9B7NbAHwe2Av4B/kNURERA5Rj6eIiIiIiIiElYoLiYiIiIiISFgp8RQREREREZGwUuIpIiIiIiIiYaXEU0RERERERMJKiaeIiIiIiIiElRJPERERERERCav/Ae3nsSk8kUsLAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "plotter.make_sub_plot(data_reasonable)" ] @@ -165,19 +279,55 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Adding the SPLIT keyword\n", + "### Caution on split value\n", "It is however possible to mismanage splitting, mainly by simulating a too few rays and splitting too much. Here we do this on purpose to see how such data would look. " ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": { "tags": [ "scroll-output" ] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/tutorial/data_folder/mcstas_SPLIT_118\"\n", + "INFO: Regenerating c-file: python_tutorial.c\n", + "Info: Defining SPLIT from sample=PowderN() to END in instrument python_tutorial\n", + "CFLAGS=\n", + "INFO: Recompiling: ./python_tutorial.out\n", + "mccode-r.c:2837:3: warning: expression result unused [-Wunused-value]\n", + " *t0;\n", + " ^~~\n", + "1 warning generated.\n", + "INFO: ===\n", + "Warning: Number of events 2.99e+06 reaching SPLIT position Component[6] sample=PowderN()\n", + " is probably too low. Increase Ncount.\n", + "INFO: Placing instr file copy python_tutorial.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/tutorial/data_folder/mcstas_SPLIT_118\n", + "\n", + " monochromator rotation = 22.4519 deg\n", + "[python_tutorial] Initialize\n", + "Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Na2Ca3Al2F14.laz' (Table_Read_Offset)\n", + "Table from file 'Na2Ca3Al2F14.laz' (block 1) is 841 x 18 (x=1:20), constant step. interpolation: linear\n", + " '# TITLE *-Na2Ca3Al2F14-[I213] Courbion, G.;Ferey, G.[1988] Standard NAC cal ...'\n", + "PowderN: sample: Reading 841 rows from Na2Ca3Al2F14.laz\n", + "PowderN: sample: Read 841 reflections from file 'Na2Ca3Al2F14.laz'\n", + "PowderN: sample: Vc=1079.1 [Angs] sigma_abs=11.7856 [barn] sigma_inc=13.6704 [barn] reflections=Na2Ca3Al2F14.laz\n", + "\n", + "Save [python_tutorial]\n", + "Detector: banana_I=2.56161e-06 banana_ERR=3.73111e-08 banana_N=14737 \"banana.dat\"\n", + "\n", + "Finally [python_tutorial: /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/tutorial/data_folder/mcstas_SPLIT_118]. Time: 0 [s] \n", + "loading system configuration\n", + "\n" + ] + } + ], "source": [ "sample.set_SPLIT(10000)\n", "\n", @@ -189,9 +339,29 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plotting data with name banana\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAHuCAYAAAD3MtMPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACy9klEQVR4nOzdd5gkd3kn8O+vquP09PTkndmd2SztrrTSKksrgkQ2GIzhMAIMGOwDGfuMbbDPd7bPh302xsb2GbANwsARjQXG5CRAiCCtclhptbvS5tnJqWemY3VX/e6PqupJnbuqw8z38zz77O6E7ppY9dabhJQSRERERERERG5RGn0AREREREREtLEx8CQiIiIiIiJXMfAkIiIiIiIiVzHwJCIiIiIiIlcx8CQiIiIiIiJXMfAkIiIiIiIiVzHwJCKiliGE+LQQ4tMuPO7bhBDnanj/W4UQ0vrzd0Xebqf1Njurfa48j/mBFc99q1OP6wS3vl5ERNR6GHgSEVHZhBD3CCHe18BD+F3rDwBACHFOCPG2xh3OOoMA/rzOz/mX1vM2o2b/ehERUZ14Gn0ARERE5ZJSLjT6GIqRUk404DljAGJCiHo/dUlufL2EEH4pZdrpxyUiIncx40lERI4QQrQJIf5VCDEvhFgSQnxJCNG74vWfFkJ8RgjxfuttRoUQ717zGC8UQpwQQiSFEN8RQvzByhLYlaWbQoh7AOwA8P+sMtN77JevzcquzbRZpbHHref5FoBerCGEeLcQ4owQIiGEeEgI8fwqPifDQogfCSFSQojHAVyb521eLIR42DqWZ4QQ76rkc1Lmcdglvq8RQjxmfUz/IYQICCF+XwgxKYQYE0K8dc37vVQIcVQIkRZCPCuEeGOex/wl6/jjQoi7hRBDK96mnK+XapULT1of4/eEELtXPMb7rK/pfxdCjAO4p5KPnYiImgMDTyIicsrfA3g+gFcBuAXAdgCfXvM2r7H+vhHA/wHwj0KIywFACNEJ4KsAvgvgKgBfAfA/izzfawFcBPB7MEtNX1vOQQohItbz/BDA1QC+BeBP1rzNrwP4HQDvAnAQwGcBfEcIMVzOc6zwWQBemB/vfwfwgTXPsw/mx/nPAC4H8B4Afy6E+C/W6ztR2eeklD8B8NsAXgTza/UtAJda//4QgDvsmwVCiO0AvgHgPwFcYb3+s0KI69c85vsA/IH1MXbA/D7Ip9DX6w8AvM36cz0ADcDXhBArr1GuA3DIOu63V/gxExFRE2CpLRER1UwIEQbwGwBeKaX8ufWytwE4LoS4VEr5jPWm56SUf2z9+xkhxHsAPA/AMQBvAjAL4D1SSgngpBDiFphB0TpSyjkhhA5gocIS1zcBWATwe1JKHcAJK5t584q3+VMAvyWl/L71/48IIV4F4FexJngsRAhxAMCtAC6RUp6yXvZBAHeseLM/AvBRKeX/s/5/RgjxjwDeATPIrOhzUoa/lFLeZx3LVwD8FwAvl1JmrGP7XzCDv+/CDLoflVK+z3rfZ4QQzwXw+9ZxrXzMe6zH/AcA/5DviYt8vX4PwJ9JKb9rPcbbYAaoLwZwl/U2OoB3SCkTVX7cRETUYE2X8RRC/J0Q4qxVhnPQwce9SQjxgFVidEwI8ZtOPTYREWE3zMze/fYLpJQnAEQB7F/xdk+ueb9xAP3Wvy8F8JgVYNkedvxIgX0AHrGCTlvuuIUQ7QB2AfiKECJm/wHwApgfZyXPM28HnWufx3IFgN9b8zx/tuJ5nP6cHFvx7ykAz0opMwAgpTRgBrl91uv35zneI1j99QRWf01Xfj1LsrLPA1j9fTMH4OSa5znJoJOIqLU1Y8bzazDLeX7m8ON+DMCfSim/JYQYBPCsEOKrUspJh5+HiGgzKneyTWbN/yWWb4IK6/+1MvIcj3fFv/M9z8q3D1l/3wbgxJq3W6zgOEo9DwC0A/gggM+sebn9eXLqc7L2cWE9bqmvRzWP6caUIwadREQtrukynlLKn0spR9a+XAhxoxDix0KIR6w/v1jpQwOIWP9uh3nxEK/xcImIyHQaQBbATfYLhBD7AXRiffBWyEkAVwuxajzrumE8a2QAqGteNg0zi2YfR9/K/1vPc+2aHsIbVvx7CsAEgGEp5ak1f6bK/Fjs5+kWQuwp8DwA8ASAS/M8z/kVj1Hp58QpJ7Di62k5jPK/nvms+npZU28nsfr7phtmtriW5yEioibTdIFnPtZwhY8BeJOU8loAr4Q5AKGzgod5O4D3CyEuAHgMZu9OzOljJSLaBAaEEFet/AMz6PwUzF7I5wohroE5WOi7K/o7S/k3mNNlPyiEuNQa8POLKJ7xOw/guUKIAatsEwB+CuB1QogXCCGuAPAJACvXb/wbgC4A/1cIsU8I8U4AL7dfaZW1vh/AXwkh3iaE2COEuE4I8cdWf2VZpJRPW8fySSHEISHEi2EO0lnpgwBeLYT4cyHEASHE5UKIX1/RDlLN58QpH4UZoL/Peu7/BrMn9EM1PGa+r9eHAPyFEOLlVovNpwGcgTn8iYiINoiWCDxhDnzYBeC7whxH/12YJ929ACCEmCnw5+iKx/hDAH8opdwO827xP1kT+4iIqDK3w7yBt/LPPgDvBfBzmJNSfwpzQMyvlfugUsoozEmnr4KZCXwdzKCk2M7GP4eZLRsB8HXrZZ+A2bbxVQDfBvBFmFnMlc/zGgC/YD3PawD89Zpj+QiA/wFz+M9xAN+Eee4YK/fjsbwF5vnqQQD/F+bQopXP8wiAl8Kc1voozDaTXwNwbsWxVvo5cYSVdf1lmMHmUzCHAL1dSvlADQ+b7+v1QZjTfz8D4CEAAQCvtnpOiYhogxCr5xU0D2HuKHullPIpq6z2j6SUVU3xs0bDX5BStq142XcBfEpK+WVHDpiIiBwnhPgYzJLXStsr6koIcSuAH0sp3ehvXPtceT8nQggJ4AX2hFkiIqJm0ioZz/sAXCKEeIH9AiHE9Wt6XoqZB5C2xuVDCDEAcx/a004fKBERVc8qM73RKm+9HeZux883+LDKZk2m/SuHH7Po58Qq02XrCBERNbWmy3gKIT4Ms6xoAMAMgFkp5eXCXFj9QZh9OT6Y/R+vKrcURwjxUpi711Trz4ellB934UMgIqIqCSHeB+C/wuxrPAvgQ1LKjzX0oMoghAgC2Gb9d15KOevgY78PRT4nQogemOdGABiVUiadem4iIiKnNF3gSURERERERBtLq5TaEhERERERUYti4ElERERERESu8jT6AFbq7e2VO3fubPRhEBERERERUYUeeeSRGSllX77XNVXguXPnTjz88MONPgwiIiIiIiKqkBDifKHXsdSWiIiIiIiIXMXAk4iIiIiIiFzFwJOIiIiIiIhcxcCTiIiIiIiIXMXAk4iIiIiIiFzFwJOIiIiIiIhcxcCTiIiIiIiIXMXAk4iIiIiIiFzFwJOIiIiIiIhcxcCTiIiIiIiIXMXAk4iIiIiIiFzFwJOIiIiIiIhcxcCTiIiIiIiIXMXAk4iIiIiIiFzFwJOIiIiIiIhcxcCTiIiIiIiIXMXAk4iIiIiIiFzFwJOIiFrSbXccwW13HGn0YRAREVEZGHgSERERERGRqxh4EhERERERkasYeBIREREREZGrGHgSERERERGRqxh4EhERERERkasYeBIREREREZGrGHgSERERERGRqxh4EhERERERkasYeBIREREREZGrGHgSERERERGRqxh4EhERERERkasYeBIREREREZGrGHgSERERERGRqxh4EhERERERkasYeBIREREREZGrGHgSERERERGRqxh4EhERERERkasYeBIREREREZGrGHgSERERERGRqxh4EhERERERkasYeBIREREREZGrGHgSERERERGRqxh4EhERERERkasYeBIREREREZGrGHgSERERERGRqxh4EhERERERkasYeBIREREREZGrGHgSERERERGRqxh4EhERERERkasYeBIREREREZGrGHgSERERERGRqxh4EhERERERkasYeBIREREREZGrGHgSERERERGRq1wNPIUQrxRCPCaEeFwIcVQI8Vo3n4+IiIiIiIiaj8etBxZCCACfA/A8KeVTQogrAdwrhPialNJw63mJiIiIiIioubhdamsAiFj/7gQwzqCTiIiIiIhoc3Et4ymllEKI1wP4uhAiDiAM4BfXvp0Q4p0A3gkA27dvd+twiIiIiIiIqEFcy3gKITwA/ieAV0spdwB4FYA7hRDtK99OSvlxKeV1Usrr+vr63DocIiIiIiIiahA3S22vArBVSnkvAFh/xwEccPE5iYiIiIiIqMm4GXheBDAkhNgHAEKIAwAGAJx28TmJiIiIiIioybjZ4zkhhHgXgP8QQtgDhd4upZxz6zmJiIiIiIio+bgWeAKAlPILAL7g5nMQERERERFRc3N7nQoRERERERFtcgw8iYiIiIiIyFUMPImIiIiIiMhVDDyJiIiIiIjIVa4OFyIiInLLXFxDKqM3+jCIiIioDAw8iYioJc3G0oilGXgSERG1ApbaEhFRS9IlYEjZ6MMgIiKiMjDwJCKilmQYkoEnERFRi2DgSURELUmXEow7iYiIWgMDTyIiakmGlJAAdIPRJxERUbNj4ElERC3JDjg52ZaIiKj5MfAkIqKWZCc601mjsQdCREREJTHwJCKiliOlZMaTiIiohTDwJCKilqPpy1lOZjyJiIiaHwNPIiJqOYn0cpaTGU8iIqLmx8CTiIhaTiLDwJOIiKiVMPAkIqKWk0hnc/9mqS0REVHzY+BJREQtJ6Ex40lERNRKGHgSEVHLiWvMeBIREbUSBp5ERNRyksx4EhERtRQGnkRE1HLiKwLPdIYZTyIiombHwJOIiFpOclWpLTOeREREzY6BJxERtZz4qj2ezHgSERE1OwaeRETUcpIr+jqZ8SQiImp+DDyJiKjlxFfs8WTGk4iIqPkx8CQiopaT0HSoioAiONWWiIioFXgafQBERESVSmhZKAKQENzjSURE1AKY8SQiopZjZzwFM55EREQtgRlPIiJqOQlNhyIEpAAznkRERC2AgScREbWchJaFagWezHgSERE1P5baEhFRy0loOhR7uBAznkRERE2PgScREbWchKZDFYCiCKSZ8SQiImp6LLUlIqKWk0hnzYynZMaTiIioFTDjSURELSeR0aEKs9SWGU8iIqLmx8CTiIhaTiJt93hyjycREVErYOBJREQtJaMb0HQDquAeTyIiolbBwJOIiFpKQjMDTWY8iYiIWgcDTyIiailJK/BUBaAIwYwnERFRC2DgSURELSWuZQEgt8eTGU8iIqLmx8CTiIhaip3xVIRZaqsbEhmdwScREVEzY+BJREQtJZ42M56qIqBYZzGW2xIRETU3Bp5ERNRSEpnljKcQAgDLbYmIiJodA08iImopibQ1XEgxg0+AGU8iIqJmx8CTiIhaSsIeLiTM4UIAkMow40lERNTMGHgSEVFLsfd4qtYeTwBIZ5nxJCIiamYMPImIqKUkVk21NV/GjCcREVFzY+BJREQtJallIQSgCDDjSURE1CIYeBIRUUuJazravCqEWFFqy4wnERFRU2PgSURELSWh6WjzewAAIldqy4wnERFRM2PgSURELSWhZdHmUwEAisI9nkRERK2AgScREbWUhKajzWdmPBVmPImIiFoCA08iImopqzKeghlPIiKiVsDAk4iIWoqZ8VwdeDLjSURE1NwYeBIRUUtJpFcGnubLuMeTiIiouXkafQBERESVSGSyCPk8uOMt1wEA9v7xd7jHk4iIqMkx40lERC0lkdYRtDKeAOD3KMx4EhERNTkGnkRE1FISmo6Qf7lgJ+BVmfEkIiJqcgw8iYioZRiGRDKjI+hdzngGvCoznkRERE2OgScREbWMpDW9NuRfU2rLjCcREVFTY+BJREQtI65lAQBB33Kprd+rIs2MJxERUVNj4ElERC0jqVkZzzXDhdjjSURE1NwYeBIRUcuIp80As823ssdTYcaTiIioyTHwJCKilpHMmKW2bb7VU23Z40lERNTcGHgSEVHLyJfxNPd4MvAkIiJqZgw8iYioZSQ0O/Bcu8eTpbZERETNjIEnERG1jIRml9oy40lERNRKGHgSEVHLyGU8/SuHCzHjSURE1OwYeBIRUctYzniuGS7EjCcREVFTY+BJREQtw854Br1rS20NSCkbdVhERERUAgNPIiJqGQlNR8CrQFVE7mUBKwjVdJbbEhERNSsGnkRE1DISWhahFWW2gJnxBIBUhoEnERFRs2LgSURELSOR1hFcMdEWAPxWxjOdZZ8nERFRs2LgSURELSOh6esyngEr45lmxpOIiKhpMfAkIqKWEdeyBTOenGxLRETUvBh4EhFRy0hqOkL+1YFnLuPJXZ5ERERNi4EnERG1jLimI+hdU2rLjCcREVHTY+BJREQtI6ll12U8/cx4EhERNT0GnkRE1DLimo62NT2ezHgSERE1PwaeRETUMpKajra1ezy93ONJRETU7Bh4EhFRS5BSIq5l12c8PdzjSURE1OwYeBIRUUtIZw1IiXUZz+VSW2Y8iYiImpWrgacQIiCE+KgQ4lkhxJNCiI+7+XxERLRxxdNZAFiX8bSHC7HHk4iIqHl5Sr9JTf4WQArApVJKKYTY4vLzERFRE7ntjiMAgDtvP1zzYyU0M7AsNFyIU22JiIial2uBpxCiHcBbAQxJKSUASCkn3Xo+IiLa2JYDzzXDhZjxJCIianpultruATAL4H8LIR4WQtwjhHju2jcSQrzTev3D09PTLh4OERG1soRmldqu2eOpKAI+VWHGk4iIqIm5GXh6AOwG8JiU8joAfwTgP4UQHSvfSEr5cSnldVLK6/r6+lw8HCIiamW5jKdXXfc6v1dhxpOIiKiJuRl4ngeQBfBFAJBSPgBgBsClLj4nERFtUHbgGfKv7xLxe1SuUyEiImpirgWeUsoZAD8G8BIAEEJcCqAfwCm3npOIiDYuu9Q26Fuf8Qx4FaS5ToWIiKhpuT3V9jcBfEoI8fcAMgDeIqWMuvycRES0AeUynr58GU8FKWY8iYiImpargaeU8gyAW918DiIi2hzsPZ75M54qM55ERERNzM0eTyIiIsckC+zxBMzAkxlPIiKi5sXAk4iIWkJc0+FTFXjV9acuv0dBihlPIiKipsXAk4iIWkJSy67b4WkLeDnVloiIqJkx8CQiopYQ1/S8OzwBZjyJiIiaHQNPIiJqCUlNR1ueHZ4AM55ERETNjoEnERG1hLiWzTtYCDD3eDLjSURE1LwYeBIRUUtIaHrBwNPvUZHKMONJRETUrBh4EhFRS0hoWbT58pfa+r0K0llmPJ122x1HcNsdRxp9GEREtAHkP4MTERE1CTvwKZXx1LIGDENCUUQ9D4+IiIjKwIwnERG1hES6cOAZ8JqnM01n1pOIiKgZMfAkIqKWUKzUNuAxA1L2eVaHJbVEROQ2Bp5ERNQSipbaWhlPTrYlIiJqTgw8iYio6RlSImtIhArt8bQyntzlSURE1JwYeBIRUdMzDAkACHoL9XjapbbMeBIRETUjBp5ERNT0dGkGniF/oam25umMGU8iIqLmxMCTiIianmElMoOFhgu1WMaTw3yIiGizKbjHUwgxVcb7T0gpr3TweIiIiNbJZTxLDhdixpOIiKgZFQw8AUwDeEWR1wsA33D2cIiIiNbL9XgW2uOZGy7UGhlPIiKizaZY4PlnUsrzxd5ZCPHnDh8PERHROssZz0Kltsx4EhERNbOCPZ5Syq+Ueudy3oaIiKhWdsaz4B5PZjyJiIiaWrGMJwBACBEA8KsA9qx8eynlf3fxuIiIiHJ0M+5EW6E9nsx4EhERNbWSgSeALwPwAXgAQNrdwyEiIlovl/EssMfTzngy8CQiImpO5QSee6WUB1w/EiIi2lBG5hJ46NwcLt/aUfNj2T2ebYX2eHrtPZ4stSUiImpG5ezxPCOECLt+JEREtKGcn03AkM7s1jQMCVUR8Kn5T1t+jxV4MuNJRETUlMrJeC4AeFgI8X0AKfuF7PEkIqJi4loWAKBbZbK1MKREm0+FECLv64UQ8HsUZjyJiIiaVDmB50nrDxERUdkSDgaeulF4oq0t4FXZ40lERNSkSgaeUkru6iQioorF0mYQaPdn1sKQEmGft+jb+D2KI2W9TrrtjiMAgDtvP9zgIyEiImqsgoGnEOJXpJRfFkL8Vr7XSyn/xb3DIiKiVpdIO5nxlAiWkfFMZ5nxJCIiakbFMp4HYa5SuT7P62q/iiAiog0trlkZT4d6PEO+4kU6AW/zZTyJiIjIVPAsLqX839bfb6/f4RAR0UZR74yn38OMJxERUbMq2eMphPAAeCeAF8LMdN4N4F+llFmXj42IiFpYLuPpSI8nECqww9PGjCcREVHzKmeq7T8D2AngMwAEgDcDOATgN907LCIianVxpzOe3uKnLL9Hza1wISIiouZSTuD5fACXSykNABBC3AngSVePioiIWp6T61QMKcvKeM7FmfEkIiJqRkoZb3MRgH/F/70ARtw5HCIi2ijiaeeGC+myjB5Pr4oUezyJiIiaUrF1KvYalbMAjliZTgD4FQA/dfvAiIiotdkZT6PGHk8pJaREyam2fo+CNHs8q5LRDaiKaPRhEBHRBlbsLL5yjcpjAC61/v0EgA7XjoiIiDaEmEM9nvZwojbu8XRFNKHhsQtRCAG87f89iOfs6cVz9vZi/0C40YdGREQbSLHA82+llMfrdiRERLShJKyptoYEsroBj1pOd8d6hpXEbCsj48mptpWbjWuQANr9HozMJfBXJ81Tf0/IBwDY2dPWwKMjIqKNothZ/MNCiK0AvgPg6wDuldKBmfhERLQp2FNtzX/riLRVF3gy4+mupHWDYKAjgB+85xaMLyRx36lZ/PD4JL771AS6rQCUiIioFgWvAqSULwFwM8wy23cDOCWE+JQQ4tVCiGC9DpCIiFqPlBIJTYdXNfsGl9KZqh/LMMoMPD0qMrp0ZJjRZmIH63aL52AkiP9y7RD+4tUHAQCaziwyERHVrujtZynlgpTy36SUrwdwAMCXAbwcwFNCiK/X4wCJiKj1aLqBrCHhtcprY+nq92suZzxLlNp6zedKZZj1rERSMwNLZc1wIbvUNpNl4ElERLUrZ48nAEBKqQH4rvUHQogb3TooIiJqbfYqFZ+qIAF9VdltpXIZz1J7PD1m4JnOGgj5i75pw2V1A3GtOQJkO1BXxerAU1EEvKpAhhlPIiJyQMmGGyHE3wshIkIIjxDiZ0KIuBDizVLKB+pxgERE1HrsQNNrBYNLqVoynubfpUpt/V7z9a2Q8TwzE8eJiSUspaovQXZK0vp8CbF+nYpPVaDptZUu33bHEdx2x5GaHoOIiFpfOZMeXiylXADwMgCjMNeq/IGrR0VERC3Nnmjrs3o8aym1tTOepfZ4BrzLGc9m9vhIFPMJM+A8OxNv8NEsB55qnjWeXo/CjCcRETmikhGDzwfwn1LKUQCc3EBERAXFNSvjafV41lJqa/d4BssYLgQ0d8ZTSokPfPc47OTi6elYYw8IQNr6fK3t8QSsjGeTB/JERNQaygk8p4QQ/wrgDQB+IITwoILeUCIi2nwSdo+nA6W25WY8W2G40E+emcb9Z+Yw3GUOhz891TwZTyVPqa1XVZA1JINPIiKqWTmB55sAHANwm5RyHsAQgL939aiIiKil2aW1yxnP6oNBw8p42qW0hdgZz2YttTUMib/53kkMdwexpSOAgFdpioxnbqptnlJbu1R6Jpau5yEREdEGVPAsLoT4khDiTQAyUsp/lFLeDwBSynNSyk/X6wCJiKj1JKxSW48ioAggVsMez4wuoSoi7/CblZp9uNA3j47h+Pgi3vuSfVCEQMCrNkXgmcrqEMg/XMgeDjW5mKrzURER0UZT7PbxhwBcDeA+IcQPhRC/I4TYUafjIiKiFmavClGEgKqImoYLpbMG/J7SBTp+T/MOF9KyBv7+rmdwYLADv3RoKwAg6FVxbiYB3Wjs2ISkpuft7wTMHk8AmFpixpOIiGpT8EwupbxXSvmHUsrLALwbQDuAO4UQjwoh3ieEuLpuR0lERC0lYQWaqmIHntVnIdMZPbejs5hAE2c8v/jgBVyYS+CPfmFfLsgLelVouoGL84mGHlsqo+ctswWWS6UZeBIRUa3KmmorpXxaSvnXUsqbAPwigAkAf+XqkRERUctazngCqhCIVbmvUjekmfH0Fp9oC6zIeGaaK+OpGxIfuftZ3LS7G7dc2pd7ud2z2uhyWzPwzB95eq0ezymW2hIRUY3KCjyFEG1CiEuFEJcB6ALwUynlK9w9NCIialXxdBZtPhWixlLb8YUkJFBRxjOdba6M5/hCCjMxDX/0C/tX9VEGreNt9GTbZJHAUwgBryowtciMJxER1abkWhQhxG8D+ACAOQD2bWQJYLeLx0VERC0soWUR8punmFpKbS/MmmWo5WQ8A7l1Ks2T8czoBsYXkviFywdw9fauVa/zqAp6Qr6GZzyTGQNKkbjeqyqYXGLGk4iIalPOPs73AjgopTzv9sEQEdHGEE/rCPnMYFERouqpthfmzMCznIyn39N8Gc/5RAaGBH7nRXvzvn5PX3vDA89ipbaAOWCIGU8iIqpVOaW2Eww6iYioEgktizafB3fefhivuGIQsVR1pbbn5xIQAHxlBJ5e1Vzd0kwZT90wj2VnTyjv6/f0h3B6urGltqUCT69H4XAhIiKqWTmB5w+EEH8rhLhGCHGZ/cf1IyMiopYVT+sI+c0MZMjvQbzaUtu5BHwepeQOT8DsR/R71KaaapvVzVUpbb78pcJ7+toxF9cwH9fqeVirJLXCU20BwKcKzMbTyOrNE9ATEVHrKafU9q3W37+y4mXs8SQiooLiWhbdIR8AIBzwQNMNpLN6rhy2XBdmE7mhQeUIeBV844kxPDm6gDtvP1zRc7lBNyQ8iigYOO/pawcAnJmJ4dpQdz0PLSeVLZHxVBVICczENAxEAnU8MiIi2khKZjyllLvy/GHQSUREBcXTWYR85r3NdmvIUDXltudn47k1KeUIeFVIKSt+HrdkDQm1SDrRDjztyba33XEEt91xpC7HZktqRtFj9Fm7PCe5UoWIiGpQ8GwuhOgo9c7lvA0REW0+CU3PlZfa020rLbddSGSwmMrmptWWw+9RYDRP3JnLeBayrSsIn0dp6IAhs8ez8Ou9VuDPPk8iIqpFsbP5PWW8fzlvQ0REm0w8vbxOxc54LlU42fb8nJkFrKQ8N+BVYbRQxlNVBHb1hJog8Cyd8ZziShUiIqpBsR7PfUKIB4u8XgDocfh4iIioxUkpV2U8w4HyMp52iandm3ne2uHZ6hlPb4nj39MfwvHxpTod0WoZ3UDWkCV6PAWEACa5UoWIiGpQLPB8RRnv37gxfERE1JTSWTOYsTOe9t+V7vK0d3hWkvH0N13G04BHKT7Hb09fO75/bLIh+0eT1gRgpUhsLIRAT8iPaWY8iYioBgXPhlLKn9TzQIiIaGNIaGYwE7IynrlS2wqHC12YTaC33V+0VHWtZiu11UuU2gJm4KkbEhesDG892atn3vH8PXjLTTsKvl1/2M+MJxER1aT8+iUiIqIyxNNmgNlmBZzlltqudX4uju3dwYrex+8xV380g4xuwJAoOlwIWDHZdjpej8NaJaWZuzmDJVbW9Hf42eNJREQ1YeBJRESOWs541lZqOzKXxI6eUEXvE/CqMJqkydPO8Kpq8cBzd5/5MTZiwFDKKu8tFXhuCQcwxYwnERHVgIEnERE5Kq7ZGU8zmGnzqhCisj2e6ayOsYUktne3VfTczTRcaDFpBtqlMp4hvweDkUBDAs+kdZOg1ACn/g4/ZmJp6M3yySUiopZTMvAUQnxPCPFKIYqMvCMiIrLYpbZ2b6eiCIR8HsQqKLW9OJ+ElKg48Ax4labp8VxMmYFnOT2qu/tCDSm1tYcLlSy1DfthSGA2xqwnERFVp5yM58cB/B6A00KIPxJCcIUKEREVZPdy2utUADMIraTU1p5ou6OnwsDT0zzDhRaTZgBeKuMJmH2eZ6ZikHU+dnu4UMBXqsczAKC6lSrzCa2he0qJiKg5lAw8pZT/KaV8MYCXA9gG4JgQ4rNCiGtdPzoiImo5CavU1u7xBID2gAexdPmltvaE1+0VBp5+bxOV2laQ8dzT146ldBYZvUGBZ4mVNf1hPwBUNWBoLq5hJqZhYoHDicp12x1HcnttiYg2iuLLxfLTAKQAfFYI8T0p5XsdPiYiImphcatv0O7xBMw+xkpKbc/PJhD0quhr91f03HYA1QxZT7vHU82zJPPO2w+v+r892TaZ0eHz1G/8Qq7UtkDG0z7OsWgSADC1VHnGM5UxJ+c+cTGKgchA7uV2YLX2c0FERBtTOT2erxVC3A3gPwGcAHCZlPKdAA4B+C8uHx8REbUYu8dzZcYz7Pcglqqs1HZ7dxsqHS/gt4bkNEPW0854llVq229OtrUzkGu5lQGzg8JSPZ691g2AycXKs5b2x3T0YrTi9yUioo2jnIznbwD4Gynl91e+UEqZFUL8jjuHRURErSqRzkKI1cFMu9+D6QqyZRfm4hWvUgHMdSoA6t4rmY/d41lG3ImBjgDafGrBwNMt5U619XkUdId8FWc8l1IZZK27AEcvLlR3kEREtCGUU8/z72uDTiHEmwFASvlNV46KiIhaVlzT0eZVoayIuMxS2/J6PKWUuYxnpXKltk2Q8lxMZeBRRFlZWyEE9vS1I2llIOvFLrUNlMh4Amaf51SFGc/zVq+uRxE4enGhKW4IEBFRY5QTeP5+npe9x+kDISKijSGhZdHmX11QEw54sFRmqe30UhqpjFHxRFugyUptk5myBgvZdveFcoFgvaQzOoQw95+W0t8RqDjjeW7WXBHT0+7DQjKTC0SJiGjzKVhqK4S4DsCNAHqFEL+14lURAD63D4yIiFpTPK0jtGZYTbvfg7imQ0pZMgN43lqlUk3G099Mw4VS2bL6O217+tqhZQ3odYyakxkdAY9aVlZ2S9iPZyaWKnp8O9DsCfkwuZjGExej2NlbeQk1ERG1vmK3OLcBuA5ACMD1K/4MAHib60dGREQtKZ7OIrQm4xnye6AbMjfMphg7WKkq8MxlPJsg8Kww42lPtq1nn2cyoxecaLtWf4cf07E0Xv+x+8oedHRuJg6vKhDye+D3KOzzJCLaxApmPKWUXwfwdSHES6WUd9XxmIiIqIXFteyqibaAuccTAJbSmZKBzoW5BBQBDHXV0OPZ+LgTi6kKA88Sk23dkMoYCJS5vqU/HIBuSGQNCa9a3sd1fjaBgEeFIgQu39rBybZERJtYsVLb50gp7wXgEUK8Yu3rpZTfcfXIiIioJSU0Hd2h1R0Z7dZOz3haB8LF3//CbByDkWBV+yzt6azNMMRmMZmFJ88Oz0J2WlN86zlgKJnRESgz47mlw1ypomUNeNXyPq6zs/Hc1+TKoU7c+dAIsroBT5nvT0REG0exdSpvA3AvgD/M8zoJgIEnERGtE09nMbwmW9nu9wIAYqnSk23PVznRFljZ41nVuztqMZVBR8Bb9tsHvCr8HqW+GU9NL7nD09YXDgAAMnp5gXE8ncX0UhpDXUEAwKHhCD593zmcmo5h/0BHdQdMREQtq1ip7Tusv19Qv8MhIqJWl9B0tOUZLgSYpbaljMwl8OIDW6p67kCT9HhmdMPM/LZVNosv6FXrOtk2ldXLWqUCrMh46uV9bu1eXfvxrxzqBAAcHVlg4ElEtAmVrHURQjxfCNFu/fs3hBAfE0Lscv/QiIioFcXyDBeyA894unhQpRsSMzEN26tYpQIsBzmNDjyXrMzuO56/G3fefrjs9wv5VSQ0HeetNSRuS1aU8TQDz0y2vIyn/THYPaS7ekII+z14gn2eRESbUjlNFv8EIC6EuBzAewFcAPBJV4+KiIhakpQSCU1HyL8m42kNF4qVyHjaZabVl9o2xx7PxaT5cXYEi3W0rNcfDkAA+MTPzrpwVOslM0bZGU+/R0VnmxdamaW256yMp996fEURuGIowsm2RESbVDmBZ1aaUxpeDuCjUsr3A+iq5EmEEP9bCCGFEAerOUgiImoNaWsPZdvaqbZWxrNUj2fayqbt6K5u12Mu49ngyHMxZQWeFfR4AoDPo6C33Y8vPTyC2VjajUNbJZ3Rc+XJ5dgSDpTd43luJo7edt+qXaZXDnXixMQi0tn6lRMTEVFzKOds4xFCPAfA6wDcbb2svNujAIQQ1wC4CWamlIiINrCEZgYUoQI9nrESpbZ2QFJtqW3zZDzNALsjWFngCQCDkQA03cBn7jvn8FGtl8yUX2oLmLs8y894xnOTem2HhiLI6BLHx5cqOk4iImp95QSe/wvAPwO4T0p5TAhxKYBT5Ty4EMJvve9vwZyES0REG1g8bQZcbWt6PANeBaoiyii1NRAJehGpImADAI+qQKDx61SqzXgCQNCn4iUHtuAzR87nPp9uSWb0kntVV+oL+5HJlj9caMeawPPK4U4A4D5PIqJNqGTgKaX8upTyKinle6z/PyOlfG2Zj/8XAD4vpSzYrCKEeKcQ4mEhxMPT09NlPiwRETWjuGYGSu1rAk8hBNr9npLDhdJZHTvWZDvvvP1wRQN6hGj8cKFqezxtt9+yBwvJDL708IiTh7VOKlP+VFsA2NJhltqWCuyTmo6JxRR2rvlabo0E0NvuwxMjhfs8b7vjCG6740jZx0RERK2hnKm2AWua7fuFEH9r/ynj/Q4DuB7AvxR7Oynlx6WU10kpr+vr6yv/yImIqOnYgeXadSqAGYwulejxTGWMqgcL2RQhGl9qW0PGEwCu3dGF63d24RM/O1t2T2WlpJRIVTBcCAD6w35IANkSn+ALc+ZgoR29qzOeQghcOdTJjGcJI3MJzMW1Rh8GEZGjyim1/TKA1wPIAoiv+FPKLQD2AzgrhDgHYAjA94UQL63uUImIqNklrIzn2nUqgBl4Fiu1lVJCyzoVeDY645mFqoi8AXi5bn/+HoxGk/jOk+MOHtkye5BTJT2eWzoCAJA3GF6ZqTw7Y14mrM14AsCVQxGcmo5Bb/TdgSZlGBLjCylMLbk/XIqIqJ7KqQHaK6U8UOkDSyk/AOAD9v+t4POVUsqnKn0sIiJqDUUznoHipbbprAEJrCu1rZSiNMFwoVQGHQEPhBCl37iAF+7vxyX97fjYT84g7Fdreqx8ktYgqEqm2vZbuzy1Ers87R2ea3s8AeDQUCekNPuBqxm+tNFNLqUgsXwTh4hooyjnbHNGCBF2/UiIiKjlJQr0eAJmFnSpyLAcOwM3vCEynpmagypFEXjn83fj+PgiFpLFhzJVI2ntTK1oqm3YzngW//yem02gO+TLOyTqyqEIgOV+YFrtgrX/NKNLTDPrSUQbSDkZzwUADwshvg8gZb9QSvnfK3kiKeXOyg6NiIhaTW6qrW/96SXs92B0PlHwfdNWIJQvS1YJRTTDHs9s1f2dK736qm34u7tOYnwhhc42nwNHtixlB54VlAP3d1gZzxJ9p+dn4wUz1z3tfmzrDJZcrbNZjcwnc/8+Pr6IvjDnXxDRxlBOxvMkgH8DMIvKejyJiGiTidt7PP3rg5mQXy1aapvKGhAABqw+wmo1xXChZKbqibYr+TwKfuO5u7CYyiLm8GoVO+Pp95QfeAa8KlRFIFOy1DaxbofnSlcNd7q+KqZV2YOZAODp8cUGHgkRkbNKnhWllH9ejwMhIqLWl0hnIQQQyBPMtPu9RYOnVEaH39r3WQtVEchk3JkEW67FVAZ7wu2OPNYbb9iOv/nuSUwspEq/cQWqyXgCgE9VimY8UxkdYwvJor26Vw5F8O0nx12b2NvKLs4l4FPNvMBxBp5EtIGUs06lXwjxeSHET63/XymE+E33D42IiFpNXNPR5lWh5Ake2wMexNLZgmWw6axRUfatEI+iIGs0OPBMOlNqCwDhgBcdQY/jPZGpTOVTbQHAq4qiAePIXAJSArt6C2c8rxzqBABmPfO4MJeA36ugza/i6TEGnkS0cZRTavuvAH4OoNP6/wkAv+XWARERUetKaNm8q1QAoN0qv01k1pfbSimRzhgVTVgtxKOKknsm3baYcqbU1uZRFMfXj1Qz1RYAvKoCrchwoXPWcBy7V/fO2w/jztsPr3qbK+wBQ+zzXGdkPgG/R0HIp+L0dCyXmSYianXlnG22SSk/BkAHACmlBoC1MUREtE4srRcJPM0MYCy1Pss1n8hAl9KRjKeqCEiJhl2wZ3QDCU13LOMJmB+T44FnFVNtAbPvNJM1IAtMDrZXqeTb4Wlr93sQ8CqIcbLtKqmMjsnFNAIeFW0+DwwJnJxYavRhERE5opzAc9VZQQjRCcDZZWJERLQhJNLZvDs8AbPUFkDePk97oErA40DG0yrzdWMFSTmWrMDayR2VHsUcmORkT6QdmAcqLrVVIAFEE/k/v+dm44gEvSWn8Ib9HiylsszorXDRmmjr9yq5nyP2eRLRRlHOGf4rQog7AISFEG8DcBeAT7l6VERE1JLiWhahPKtUgOVS23yBp50l8ztRatvgwHPRel4nS23tgUv5ssXVqjbw9Fs3B45P5A+Izs0kimY7bT3tfuiGxF1PT1b0/BvZiHUDxu9R4PcoaPd7ONmWiDaMkmd4KeUHAfwUwCMAXgHgw1LKD7l9YERE1HoSmo62PKtUgOKlthdm7QtuB4YLWRNBC2Xk3GYHvE6X2gJm76hTklVOtY0EvfAoAh/7yZm8rz83G8fOIoOFbB0BD3weBV96aKSi59/IRuaXfw6EEDgwGOaAISLaMMqZavtCKeUXpJS3SSlfL6X8vBDihfU4OCIiai3xdLHhQsVLbb2qqHmVCrAcpDUs45myM57OB55LjmY8zbLdSsubVUVgMBLAT5+ZxuMj0VWvM6TEWDSZGyxUjBACfe1+3Ht6Jpfp2+xG5szBQl7V/HofGOzA8fHFgpOgiah6t91xBLfdcaTRh7GplHO2+bs8L/ug0wdCREStL57WESrU41kk8Dw/l8i7+7MajS+1tXo8Hcx4elzKeHpVkcsQV2JLRwCdbV585EfPrnp5OmPAkMUHC63U1272gX7l0YsVH8NGdGEugeHuNghhfr0vG+xAXNNzmVAiolZW8GwjhNgrhHgFgA4hxCtW/HkjgPLOKEREtKnEtSzaCvV42sOF8gRPF2YTjvR3Ak0QeKbc6/F0MuOZ1PSK+ztXHs9/fe4u/OjEFJ4aXci9PJU1y3fLyXgCgN+r4rl7e/Hlhy8yqwdgZC6J4a5g7v+Xbe0AAJbbEtGGUOws/xwAfwhgi/W3/ecNAP7A/UMjIqJWIqVEQtMRKtDjab88rq2eYprK6JhYTDnS3wmsKLVNaI48XqUWXezxdDLwTGerDzwB4K0370RHwIMPr8h62uW75WY8AeBXrhvGaDSJ+07PVn0sG4GUEiNzCWzvXv7cXbolDFURHDBERBtCwcBTSvkZKeULAPyOlPIFK/68Wkr57ToeIxERtYB01oBuyIIZT79HhU9V1gVPF60ywoBDGU8hzF7RRmY8VUUUXCtTjdxwIQc/pqSmV7zDc6WOgBdvf84u3PX0ZG7lRzqjIxzwoDtUfJXKSi+9bAsiQS++9PDmHjK0kMxgKZ3F8IrAM+BVsbs3xIwnEW0IJeuApJSfFkLsAbBn5dtLKb/j5oEREZH77MEKd95+uObHilu9m+0FhgsBZrltLL06eDo/u7xCwimeRgaeySw6Ap5cn14lCn0dXCm1zdQWeALArz9nFz7587P4p7tPAQBSWQM7e0IVfewBr4pfvmorvvjQCBYaNIm4Gdi7bFcGnoBZbvvQ2TkAzv68EhHVWzlTbd8P4H4Af4rlcluW2hIR0SoJq4S2WKYv5FcRT68utbUvuGsp+1yr0RlPJyfaAoAiBBQBLDk4XCiVMWrOMkfavHjbzTvxnafGkdB0pDI6dlRQZmv7leuGoWUNfP2J0ZqOp5WNzCUBAMNdawLPwQ6MLaQwHy9cOs7pnETUCsqZfPB6AHuklKzzICKiguKamY0rtE4FMHd5rs3anZ9NIORTc0OBnNDYjGfG0f5Om6oIxzOeTgT7v/7cXfjUvWcxGk0ibWU8K3VwWwSXb+3Alx4eQahAqfZGt5zxDK7KaNoDho6zz5OIWlw5tzrHGXQSEVEpdiazWMYz7F9fart2hYQTPKqCaMMynllHJ9raVEVgKe3cx5TO6Ag60IfaHfLhLYd3YM7KyFWT8QSA1183jKdGF3Ml25vNyHwCXW1ehNfctDgwaE22ZeBJRC2unMDziBDii0KI165cq+L6kRERUUtJaKV7PAuV2lYbrBTiUYSjg3gq4VbG0/yYHM54OjRJ+B3P2w07Yb2rt/KMJwC8+qqt8HkUTMfSjhxTq1k70dbW2+5Hf9jPwJOIWl45gef1AAYA/A7Y40lERAXYmapCU20BoD3gRWxFRsswpBV4VhesFGL3eEpZ/92Qiym3Sm0VR3s8kw5lPAE7OAoAqD7w7Gzz4WWXD2Ampm3KnZ4jcwkM5Qk8AbPclpNtiajVlQw816xSsf+8sB4HR0RErcPOZBba4wmY2dCL84ncIJSppTS0rLFukmetPIpARpdIZvTSb+ywxaSLpbYO9niaw4WcG+g03B3Ewa0d6Gn3V/0Yr79uCLohMd+gHayNohsSo9Fk3ownYA4YOjUVg9GAGylE1HxadaBYwTOjEOKyYu8opXza+cMhIqJWZZfaFs14+lXoK7JZ52fjAIAdLgSegLkbsdjxOE3LGkhmdPdKbZ0MPDXdsd2pgDl5t9hgqXI8Z08vfKqCmdjmCjwnFlPI6HLdRFvbgcEOZA2JpKbX/DkmImqUYr+9vl3kdRLAboePhYiIWlhcKyfj6YUhkSuBPW9N8nS6x1NVzYAqmshgMBJ09LGLsUthnV6nAljlw0VWalTKiT2eTlMUgY6gp2ETiRtlxPo5KJjxtCbbJhh4ElELK/jbS0q5q54HQkRErS2RzkIIFA1m7KDUznqOzCWgKgJbO50NDldmPOvJzki6VWqbzhpIZ3X4axwKlNENZA3ZdIEnYGbMZ2IaZmJp9NZQtttKVq5SyWdnTwhBr2pVFWyOzwkRbTzO1dgQEdGmFkvrCPk8RdeihANmQKbbGc/ZBLZ2BuBVnT0dNSzwtJ7PrT2eABzp80xZva9O9ng6xV7Hc3JiqcFHUj8X5xJQBAregFEVgf2D4VxVARHVzjBk3kFmhfonW7Wvspkw8CQiIkcktGzRHZ6AWWoLLGc8z88lsKPb2Ym2wHKQVv+Mp3ulth4HA0976FLAoam2TrK/h05sosDzwlwCg5Fg0RswBwY7kND0hkxqJtqInpmK4dmpWKMPY1Nh4ElERI6Il9F/lq/U1umJtgDgUa3AM1HvjKdVautwxvPO2w/jf778AAA4slIlnTEAFC+LbhSvqsCjCJzYRHsrR+aTBctsbZcNdkA3JLSsUaejItrYUhkd0WQGZ2fijT6UTYOBJxEROSKRLp3xzJXaGhJLqQzm4prjg4UAQBUCimhkxtP5Hk/7c+doxtPBqbZOavOpODm5uTKehQYL2ewBQyy3JXJG1roB+sUHLzT4SDaP5jzjEBFRy4lr2ZIZz1yprTT7OwHnV6kAgBACHUHvhurxDFuPuejAx5S0gpdmzHgCZuD5zOTSqtU7G9FtdxzB6z56H6aX0gVXqdj2D4QhhPlz8+l7z+b6dImocrohc79f/uORi0hn+fNUDww8iYjIEfG0jlCJjOfKUtuR3CRP5wNPAIg0IvBMZaAqomTmtxpOZjztoKV5A08PUhkjt+e1UeoxTCRtlc5uL5H5b/N5sH9LGH6Pgvd982k892/uxsd+chqxtHO7XYk2C7tloTPoxVxcw/ePTTb4iDYHLoMiItrEZmLp3CCeWsW1LLb7i188h1cMF3Jrh6etIYFnMouOQPHJvtWyBxYtOtDjaZfa+qsIPO+8/XDNz19KcMVk29197a4/XyPZmZahEhlPwPweuCzoxXtecin+6cen8IHvnsBH7zmNdr/q+Eoioo1s3ur/7w750BH04t8eOI9fOrS1wUe18THwJCLaxEbnk44FnokKM57nZxPoDvlyJaROBzSRoBfRBmQ83ZhoCwDt/s2T8Qx6VSjCnGz78isGG304rrIHPZXq8Vzpxt09uHF3D54YieIjdz+LHx6fqnm3K9FmEk1oAMxBdK+7bgh/+72TOD0dw54NfqOr0VhqS0S0SUkpoekGEhkdWb32SZlxLYs2X/H7mR5VgSIAQ0rXJtraIkGvI/2QlVhMZlzp7wTMFTHtfo8jGc+UPdW2CdepAObHurMnhBMTy5NtN+oOvXRWR9CrorfdV/H7HhruxEfffK31OJx2S1Qu+6akR1HwumuH4FEEvvhA6wwZklK25GolBp5ERJvUYjILQwJSAudq7KWTUiKh6bmsXDGqIqxS27grg4VsjenxzLoy0dYWDng2zFTbO28/XDTLvX8wjJNl7PJs9YA0nTUw3B2sujzbXj+TceDmEdFmsTLj2R8O4KWXb8F/PHqxZYZ2XZxP4unx1pv8zcCTiGiTmlhM5f59bKy2nYnprAHdkGjzl86gqUIgqxsYi6Zc6+8ElgPPet4VdjPjCdiB58afagsA+7Z04PxcAgltYw/PSWeNkhNtS/GqCjQGnkRliybsjKd5w+dNN+xANJHB956aaORhlS2uZVvydyMDTyKiTWpl4Pn0eG2BZ9yarBkqUWoLAIoikMjo0A3paqltZ5sXuiHrOvVzMeVu4NkR8DrT45m1M55NHHgOhCEl8MxkrNGH4hopJVIZveafA5+HGU+iSqwNPG/e04MdPW34txYpt9WyEoZcvonYKhh4EhFtUpMLZuDpUQSO11iyk7BOfuWsEVEVkesxdKPU1i7hjFhDfupZbruYbI1S25SmQwjA72ney4ADg2EAwMmJ2m6KNLOsYV481hp4elUFmWzr9XsRNUo0oUFVRK7EXVEE3njDdjx4bi53PmtmdoXDbDzd4COpTPOecYiIyFV2xjMS9OLpGktt41bJT7k9nrYdPaGanreYegeeWtZAMqO7XGrrdWydSsCjurL2xSnDXW1o86k13xRpZrkdnk4EnrrRksNGiBohmszksp221107BK8qML2UKvBezSGezkI3zJ/12ZjW4KOpDANPIqJNamIxBY81KXUmlsZUDSfbeNrKeJYTeFrBjs+joD/sr/o5S+moc+Bp9166tU4FcDDjmTEaOlioHIoicMmW8gYMtaq0NchkuLu2HZxeVYHEcvkgERUXTawPPHvb/XjZ5QOYjmkwjOa9ibOyTWYmxownERG1gImFFHweJVceW0vWc7nHs7xSW8DM8igO7RDNx8541mulyqIVELpbauvFUqr2gUnJjN7Ug4VsBwbCODGxuGEzeXbGs9bhQj7V/DmabrGLUKJGiSY0eNT1YdCbbtwO3ZAYjSYxsdCcmc+Vx9VqGU/3zo5ERNTUJhZS8KnLgefx8SXcuq+/qseyp+uV2uMJLAeebq5SAYDONnMvYj2yQLfdcSQ3xMjV4UJBDzK6RDpr1DQYKJXREWjSHZ4r7RsI498fGsH00sYMqFJZAx5FIFRGpUAxXusCemoxjUu3hJ04NGoC9pqgYmuHqDr5Sm0B4PDuHrT7PRhbSOGmv/4RdveFcPOeHjxnTy8yupH7WWuklYHnTIv1eDLwJCLapCYXzYynR1WwrTNY02Tbv/3eSQBAqJx1KtbJ3s2JtkD9ezztnht3S22tLG4qU3vg6Wn+wHP/QAcA4MQGLbdNZ3T4HSh59lpDomoplyfaTKKJTN52AyEELhsMI6HpePVV23Df6Rl89dFRfP5+c9rtnj735hKUyy61FWDGk4iIWkA6q2M2rmFbp9lbdmCwA0+PLVT9eIZVCllO5sbu8XRzhydglv2qiqhb4Jm1A09X16mYn9/FZBb9NSS2khkdQYcznm5kZfYPmB/kiQZNts0aBubiGqSUrgxiSmeNmrOdAOCzsjAbNTNM5CTdkFhMZfBrN1+C97zk0nWvF8KsQnjH83fjHc/fjYxu4OjFKF5/x/25lopGmlgw5zOoisBsi5XXM/AkItqEphbNk5XPypRctrUDd5+YRFKrLiCxs33l7PHMldq6HHgKIRAJeuuX8bTG27u9TgVYHmRUrVTGaIkez66QD/1hf8MynjNLGs7PJXB6Ooa9tUT6eRiGhJY10B0qP+NZKLhXhPlnioEnUUmLyQykBDrLrE7xqgqu3dGNgFfJDQRrpHFrPoMigJkWy3g2vlCZiIjqbtIq1bGHklw22AFDAicnq7vA162MZzmTUoNeFYows6xu66xj4FmfjKf52LVOtk1qetNPtbXtH+zAiQatVElaF5mjUedLWKdjaUg4s0tVCAGvqjDjSVSGqHVO6ApV9rs64FFzA8EaaXIxBa9qtslwqi0RETW9cWs4QS7jaQWB1U62NQwJRaCscsT2gAfX7ejCYKS2FRLl6KhnxtOQUBWRG9bkhrBDgWcqo9fUI1pP+wfCODUda8hk25QVeI5Hk44/9sV58zF9DgSegJmVYY8nUWnzCTNL2Bn0VfR+fo+CdNZAVm9s8GlnPL2Kgtk4M55ERNTkljOe5mlgqCuIsN+D49aAodvuOJKbqFgO3VguoS2HG/1y+dSz1DZrSESCXlc/NudKbVtjnQpgBp5a1kAqU/+LPTvjOebCWoVRK5h1IuMJmNULLLUlKm3BmnTe2VZZxtNv/c4cb+CaFS1rYDaehk9V4FUF5uLNvXN0LQaeRESb0MRCCgGvkgsWFUWYA4aqnGxrSFlR4Fkvde3xNGRu+I9b7MBzscbAM9lCGc991oAhe2VPvcTSWWR084JuzIWM5+i8HXg683XwelhqS1SOXMazrfKMJwCMzCUcP6ZyTS2lICXw7hftxX993m7ohqzbOc4JHC5ERLQJTSymMNARwJd+8+bcyw4MhvHlRy5WdfdUNySUOmUxK1H3wNPFVSqAObxJCAd6PF2YauuUtQN09va3Q1UEEpqOnjoex9npeO7f4wsuBJ7RBFRrMmWt7rz9MP75x6fwwe+fbKkyaqJGsHc7lztcyBawA8/5xgWedrXSlo5AbsLuTCyNrlBlQXQpbu2QZcaTiGgTmlxMYUtHYNXLLtvagYSm43wVd3P1Js14draZgWc9SpGyhnR1sBBgZqbDfk9NgaeUEqmM0TLBid+jYndvCIk6T5M8MxMDYA7DGndhuNDofNKxMlsA6Av7AXClClEp0WQGQlS+c9nux77QwIynXeY7GAmi1wo2W2myLQNPIqJNaGIxhYHImsBzMAIAuT7PShiGzO3nbCaRoBdSAktp98s0zYyn+4VE4YC3plJbeypjq0y1Bcxy26RW38Dz9JQZeHYEPRiNJh0fbjQadSfw5IAhouKiCQ0dAW/FN0uFEPB7FIzMOV8BUa4JK/Ac6Aigp938mZ+Nt87NptY56xARkSOklJhcSK8LPC/ZYpY0VjPZVpcSShNmPO072ot1KLfNGobrGU/A7PNcTFYfSNsBXKsMFwLM1TvprJFbWVMPp2fi8HuU3AqF+YRz30NSSozOJx2baAsA/cx40gZT6ZC7ckUTmYoHC9n8HqWhGc+JhRSCXhUdQQ962s2M5ywznkRE1Kzm4ho03cDAmlLbgFfFnr5QVQOG9CbOeAKoS59nPXo8AXOXZy1TbVPZ1gs8920xBwwlVwwYOjmxhPd/5zgeH4m6Emydnooh6FVzwaGTA4YWkhnENd2ljCcDz40gqxuYWEi11MTSVhFNZioeLGTze1VcbGCPp12tJIRAV5sPQgCzLbTLk8OFiIg2mYnF5VKdtS4b7MADZ+ewvbutosc0DEBtwluZnXUKPA0pYUi4PtUWMDOetYzztzOerdLjCSxPtl1MZfHpe8/iK4+O4snRBXgUAd2QNU/5XcswJM7OxNHV5lsVeB7cFnHk8S86PNEWAHpCfigCmFpsnYtQKuzBc3M4P5eAR22+G3qtLprQ0FVt4OlRcHE+iXg6i5C//mHUxEIqd+5WFYHuNh9mWmiXZxNeJhARkZtyU/EieQLPrR0YX0ghU8GCbCmlWWrbjBlPq5wq6mCZZD66lZWoS8Yz6MVSuvqPx95N2UqB51BXEIowA7b3ffNp6IbEn73yMtz/xy9Cm1+FlnV2x+doNIl01kDQq+Sykk7u7rN3eDpZaqsqAr3tfpbabhD2yo5UnYdqbQa1lNo2erLt2vkMve1+zLTQzzwznkREm8zEgnmSypfxPDDYAQBIaDoiwfIuiu1hNc041bZepba5wLNOPZ61TLVNZcyvV7OuU8lHCIGhrjZoWQOfetv1uGxrR+51PlXJBdNOOTNjrlIJ+FR4FAGfqmDMwZUqyzs8nb3/3xf2c7jQBmH3EdZ7qNZmUFPG07phNzKXxP6BjhJv7SzDkJhcE3j2tPsw20IZTwaeRESbzMRiCkIs94SttBx4ZnNBWylxa2JsMw4Xqlfgmc1lPOtTaruUykJKCVFFltnOoAQcDnrcNmhdbK0MOgEza1jLsKV87Im2Qa8KIQQGIgFHV6qMRpMIeBV85V03V/U1LKQ/7Md0C/V7UWH25NRkxtls/maX1Q0spso/v63lb+BKlbmEhowuV9007mn348mL0bofS7UYeBIRbTKTCyn0tfvhzdOU2dvux5YOPxIV3GW377Z6mjDwDHpVeFXhfuCpm4FnuC4ZTy90QyKh6VX1GOWm2rZQxrMYn6pAl9LRnqszMzF0BDy5wPANHz/i6HCh0fkktnUGHQ06AfNm0rEqplJT87mwotQ2qxvwNGMTfQtatKpFipXa3nn74YKv8ygCIZ+aK4Wup9wqlZUZz5CPU22JiKh5jefZ4bnSgcEOxNPlB56nVmSHmo0QApGgDwtJd0/MWcPMSnSHqivfqkTYGmBUbbltK061Lcbuk7SHZjnh9FQce/rbc4Hh1kjQ8R7PbV2VDfAqR384gNm4liv9ptZ1cT4BRQASwMh84/ZGbjTRhHkuqLbUVgiB4e62xgaeHSt7PH1YSmdbpheYgScR0SYzuZDCljz9nbbLBjuQyugwZHkXr3bg2azDaiJBj+sZz4yV8ewNrS9fdprdR1rtSpVWnGpbjJ25n3QwMDwzE8Pu3vbc/wc7A5hYTDkW0I1GzYyn0/rCfuiGxFwL9XzRegkti5mYlisHtX/HUu3sfbyRKoYL3Xn7Ydx5+2Fs725ryHChcevm2uCa4UIAWqbPk4EnEdEmM7GYyjtYyHbZ1g5IlD/U4tmpGPwepSmHCwFmn6f7pbYGBOrX4wksl4xVKtWCU22LcTrjGUtnMbmYxp7+UO5lWzuD0A3pyOCehJbFXFzDUJfzgWd/bpcnBwy1Mru/s5OBp+Ps6pfOGiaQmxnPJGSZN2edMrmQgqoI9LQv3+C0/90quzwZeBIRbSKpjI6FZKZoqe1lKybbluPUVKypyzbrEXhmdAmPKhzv2cvH7iOtdndlK061LcanOht4npk2L/JXZjy3RswgccyBAUN2r6gbGc/+DvMilCtVWptdxtnm98CrCgaeDrJXa1VbagsA27vbkMzomKlzb+X4Qgpbwv5VN3l72s2Po1X6PBl4EhFtInaPSLFS2x09ISgCiGulM2q6IXF6OtbU2bPONp/7gadh5B3W5IaOGns8ky061bYQVRFQFeFYqe2ZaXOVyt4VGc/BTvPnZdyBlSoXrX49NzKefe3mcU4x8Gxp9mAhv0dB0Kvi1DQDT6fYpbbV7vEEgOFu82e33pNtJxdT6/Zv2+0dMw5mPA1D4txMPDex3kkb46xDRERlmcjTI7KWqgi0+VQkyhgwdHE+AS1rNHX2LBL05u5yuyWrG3Wb6huuscczldHhVcWGmpLpUxXHMp6np2NQFYHt3atLbQE4Mtl21M54uhF4hpnx3AhG5hMIWTtkg14Vp6didS/r3KgWEhqEqG0C+fZuczDYxTr3eY4vJNedu3MZTwd7PGfiaUwupR0d2GbbOGcdIiIqqZyMJwC0+TyIa1kYJYapPDtpT7Rt3tNJR9CLpVTW1UmfGV3WL+MZrD3jGfA0742CanhVgYlFZ4KtM9NxbO9uy/WOAuZAp3a/x5FS29H5JDyKQH+4+M9gNYI+FWG/h4FnixuZS2C4uw1CCAR8aq7veLNJZ3Wcm40jozu3yzSazCAS9NY0k2DImkh9YbbeGc/0unN3yO9B0KtixsGfeXs4WTSRKXkNUKnmvVIgIiLH2Xcwi/V4AkDIp8KQKDm5zy4Ba/YeT6D6DGE5MroBr1qfjGfQq0JVRE0Zz0ATZ6ir4fMojpXanp6OYXdvaN3LByMBR0ptR6NJDHYGXBvG1dfhZ+DZ4kbmkhi2smr279bN2Oc5H89gcjGNkxNLzj1mIlPTYCHAHMzWH/bXdbLtUiqDWDqbt1qpp93naMZzzuoXzRoST1yMOva4AANPIqJNZWIhhXa/B+3+4tNX26zXl1pG/+xkDP1hf1OXbdqBp1t9nubqGdTtcyCEQDjgwWKy2qm2RlPfKKiGT1UwHUvXnNXWDYmzM+YOz7W2dgYdy3i6MVjI1tfuLzrV9rY7juC2O4649vxUGyklLswlMNzVhjtvP4zP/voNAIBTU84FX61CszKdFx3cYxpNaIjUMFjINtzdVtcez8nFwtVKPe1+R3s8VwaxPz4x5djjAgw8iYg2lcnFFLZ0lN412WYFJsfGFoq+3anpGPbmuUhvJvbd7d/6wqOuXHDbZUneOq6TCQc8Ne3xDDRxaXQ1fB4FuiFrvvgaiyaRzhp5M55bO53LeG7rbKv5cQrp7whwuFCduBHEz8Y1JDM6tlsDbPrCfoT9nk05YCidNQNPJ3qrbQvJDLpqGCxk226tVKmX8QV7PsP6m1a9IZ+jU23t1SwBr4K7TzLwJCKiKk0spkqW2QKAYg21eLpIxlNKidNTMVxSYeBpL+GuF3tReFbPnw2r9eLRDjzrmfUN+7019XhutIyn3V87UWO57Wnr4j5fxnMwEsRMTEM6W96aoXwyuoHJxZQrg4Vsfe0stW1l9ioVu9RWCIE9/e04PRVv5GE1hP2zNupg4Dmf0GoutQWA4a4gxheSjvafFmP/bsu3g9sstXW+x7O33Y+nRhdz2VYnMPAkItpEJhdSGOgo76I35FeLltpOLKYQS2ebPuNpl9rqhjsXCHaWrV49noA5YKjawDOV0Zt6/U017EFAtV4gnbZWqeTPeJo/N7UEtxMLKRgSGHKx1La/w4+EpiPmwioEcp9dvmlPTgWAvf3tmzLjqVkZz1FHS20z6HSo1NaQzmZji7F/7/TnqVjqafdjNqY5NghoNq7Bo4hcZtjJclsGnkREm4RuSEwupTEQKV1qC5iTbaeW0gWzJ/awi739YceO0Q124Jl1aaptrtS2nhnPgBeLtQwX2miBp1pb4Glnvc9Mx9DZ5kV3aP2F6VarUqCW7Is9jMTNjGc/V6q0tOU9r6sDz+mltOv7iJtJOqsjY1WpOJXxzOoGllLZmnZ42uyMdL36PCcWU+gO+fL+7u5t9yNryKrPCWvNxTV4VXOH7GAkgLsZeBIRUaVmreEr+Up18mnzFe/ztFeptErG063A0+6t8dQx42n2eLLU1uZVBVRF1Lx3zp5oK8T6r+WglaUcr2HAkJ25cXW4kBV4Trmwg4/cd2E2gd52/6rdyHv7zN+xm2myrZ3hU4RzgacduDtRamtnpOvV5zmxkCp47u61dnnOONTnORvT4FEFhBB4wf5+/PzUTK7sudbWFAaeRESbxESRqXj5hKwLn6fH85fbnpqOIRL05k56zSrgVeG3hs+4YTauQQBQ8wQrbumoKeNprLqo3QiEEOgP+zGxUFuW78x0HHv68t9IsdcY1DJgyL6AHux0foenzd4POu3glEuqn5H5RG6wkM2+uXd6EwWe9s9Ku9+DubiGhFZ76XjUCjy78lQ0VGpLRwBeVdQ141loPkNPyLzZNOvQz/xsPJ0blvei/f1IaDoePDvnyGMz8CQi2gRuu+MI3vulJwCU3uFp86gKhrqCBfs8T02ag4XyZYeaTSToLThcqFazsXTu7nC9hAMexNLZqnp6kpmNNdXWHla1pSNQU49n1pCYWkpjd4HAM+BV0RPyYbTGjGd/2A+/x73AfznjycCzFV2YS+TKOG3D3W3weZRN1edpry4KB7yr/l+LaMIMPCMOZDxVRWCoq61uuzwnFooEntbNX6d2ec7FtdywvJv39MLvURwrt904Zx4iIirKnr5XbqktAFy+taPgZNuVq1TqPam2UpGgF1mXhgvZ/TD11BHwQkogXkUWIKVtvB5PwPy+rqXUNpUxS8n29K0fLGQbrHGlymg06Wp/J2CWEXpVwZUqLSijGxhfSK0aLASYQc7u3tCmKrW1y9LDAXOntBPlttGEGZg5MVwIMG8IjNQh45nO6piNawXP3T25Utvaf+azuoH5RCY3LC/oU3F4T49jA4YYeBIRbRJa1oCqCPS0lzdcCAAuG4zg7Ex83YTM2Vgac3Gt6fs7bZGg17VS25m4hmt3dNU18LYvxhar6PNMZTdejydgZvIna5g4m9TMwLNQxhMwV6rU1OMZTbra3wmYq5B6uVKlJY1HU9ANieGu9Xte9/S3b6rAcyyahFcVueoMJybb2hlPJ/Z4AuZKlZG5hCv7XFeyqxcKZTy723wQwpkez3nrc7RyPdgL9/fj3GwCZxzIuDPwJCLaJDTdwJawH6pSfkno5Vs7AAAn1vR5Lk+0bY3As7PN6+JU2zR6HOgZqoRdfrZUYZ9nRjeQ0eWGzHhu6QhgKZ1FvMo1IqmMDo8isKNn/UW/bVtnsOr1CYYhMR51d4enrT/sx9QShwu5LZaq/vstH7tsc22pLWAOGBqZT+Qy8xvd2EISPo8Cn6pAVQRGo7VnFqO54ULO/L7e3t2G+UTGtWoam13JUSjj6VEVdLX5HOnxzE1pX3Gd8IJ9/QDgSLktA08ioibm5J1ULWtgS5n9nbbLt5mB59o+z2etwPOSLc29SsXW4WqPp1ZRFtkJdsaz0sm29kXrxsx4ml+Dasttkxkd27vbipZND0bM4LbSgB8wh/1ouuHqDk9bXzhQMOMZS2dx9OJC7gKTqndmJo5nJmOOBYN22eZw9/rvkb397ZDSHIC1GYzOJ+H3qBBCYKAj4FDGU4Miln9/1sq+QZDOuBt4jluVHINFzt89IV9uwnotZuP2Xurl34PD3W24pL8dPz5Ze+DpzGeeiIianqYbFfV3AuYd1u6Qb91KlVNTMbT51Nxuw2bnVo9nKqMjoel59z66aTnwrCwASlkXSIEWnGpbqpTZntY8uZAqOJm2mFTGwO4i/Z3AipUqC6lc1rkct91xJPe1qkfGsy/sx2MX5vO+bmIhhWRGx/HxRTxnb6/rx+I0+0Zco3vKDUMildUhJfCFBy7gN567q+bHvDCXgEcRGIzkDzwB4N1ffBQ97f6Gf/xuklJiNJpEl9WLua0r6FCPZwaRoBdKBVU/xdi9uOmsgZBL9x5vu+NIrq+82I3jnnZfLmishR28fuiNV+PSFTeWX7i/H5/8+VkcGu6Ep4bPHzOeRESbhJY1yl6lYg8LEkLgssGOdRnP09ZgoVaYaAuYgachzQsaJ9lTBOu9UqYjaJfaVpfxDHg23unfvqlSTcZTSjOIKBWwbrPWoFRzEaxlDesxCpfyOqU/7MdcQssNFLPNx7VcprPakmEyTSymICUgAHz0nlOrSm6rrVQZmTeHT+Vrh9jVG4IizMx8KyvnczMX15DOGrj9lt248/bDGOoMOjPVNplxbLAQgFwvrr3j0i1a1kDIpyLsL5wv7Gn3O9Ljaf9+WHsz9QX7+5E1JBaT1a3xsm28Mw8REa2jGxKGLH+VykqXb+3As5MxaFkjd9Hw7GQst9S8Fdjj853u87R7arrdut1dQG64UIUXAfZF60bb4wksZzyrCTzTWQNSonTG08pEVTNgKG0HnnXKeEqJdaV3X31sFPZPwEQNg5gIODdrlrxu6wpiJqbh0/edq/kxL8wl8g4WAsx1PsPdbUi6XNbZDOwg0x7Eta0riInFFLJ6bR97NKE5skrFFmnzoiPgcb3UVtMltkQCRW/09rX7HZlqOxvXIARy2WbbtTu6EA54cpOBq8XAk2iTcnsKGzUXO9tSaaktAFy2tQOabuQGCmUNiYnFFPZuaZ3As7OtcOCZzOhVT7y1M5499c54WmWelU613cg9niG/B2G/p6rJtvbnpdhEW8DMJCoC+KcfP1vx78901kAk6EV7kayFU/rtXZ4rBgxJKfHvD11AyKfCowiMMfCsyflZsx+zN+TDi/b3446fnMZCjdmgi3l2eK60p689N315I7MHCW21As+tnUHo1nmnFtFExrGJtrbh7jaksi4HnlmjaH8nYPZ4LqWyNWdf5+JpdLX51mXdvaqC51/ah2gyU1PlkGuBpxCiRwjxHSHESSHEUSHEfwoh+tx6PiIiKkyzd3hWlfGMAECuzzNlXfi0YsZTXzNg6CfPTOPJiwu4WOXgCjujVO+ptn6PAq8qKi61tS9aN+JUW8Dsgarm4tTOBJf6nvaoCgY6ArkbOZXQsobrq1RsfVbguXLA0GMjUTwzGUN/2A+fR6lpHymZGU8BwOdR8J6XXorFVBaf+NmZqh8vns5iNq7lHSxk29vfbvWVujMorVmMrs14Wn/XOmAomtQcLbUFzD7PepTalmqTsQfc1To0bDamFZxZ8MJ9/cjoEvEabn64mfGUAP5WSrlPSnklgNMAPuDi8xERUQG1ZDx39YYQ9Kq5Ps/cRXqLrFIBVpbaLgcMj49E8a7PPwIJYCldXaZizhrmUO+ptkIIhAPeiocL2V+7jRp4DnQEMLFYeblZMmPAowh0lXEDYbAzWFXgmc4adSmzBYB+6+f8L7/19PIwngdH0OZT0dPuh9+jsNS2RudnEvB7FQghcPnWCH7xykF86udnq15pYa9S2V4k47m3z5xsm3Y5w9ZoY9Ek2nxqrlLF/rmpdcBQNJ5xtNQWMDOeZqm+OzcDpJTI6GVkPK2qm1on287GCweez7vEHEZW6Q3PlVwLPKWUc1LKe1a86H4AO9x6PiLKjyW1BNSW8VQVgf2DYTw9vhx4+lSl6AVSs1nb43l6OoZf//RD6Gn3oSfkQyKtV3XXejamwedREGpAz2RHwFPFcCHz+2AjltoCZp9nVaW2ml7252QwEih44V/o962UEumsXreMpz3sKmNl+GPpLL55dAyvvHIQqiLgUxUOF6rRudn4qhs4v//iS5HM6PjoPaererwLVuluoR5PANhj3exr9QFDpYxFk9jaGcz1NNo/N7V8z2Z0A0vp7LrexVoNd7dByuWfNadldAmJ0jeN7Z/56Rr7POfiWsEKnv6OALyqqGl3bV16PIUQCoB3AfhGnte9UwjxsBDi4enp6XocDhHRpqNlDaiKqDrTdfnWDhwfW4SUEklNx67eEDxF9h02m4i1MFw3JCYXU3jrJx+EAPC5X78RXSEfJIAT40sVP+5sXENvyNeQ6b7hgBeLFa9TsTOerfO1q8RAxI/pWLrint1kRi97xcy2ziA0vbIMhz3ca6hOGU+/x8wW2TecvvnEGBKajjfcsB2AWR66mMrWdAG5mUkpcX42sWo69N7+drz2miF89v7zVWXER6wy0mI9nnaVyUbv8xy1Ak9bwKuit91XU8bTHsTW6XSPp/Uz7Va57fJN4+K/O3qsAXe1Zjzn4lrRmQXtfg/iWpMHngA+AiAG4J/WvkJK+XEp5XVSyuv6+tgCSkTkhnTWgK+GQPGywQiW0lmkswaSGb2lBgsByxnPVMbAWz/5IKIJDZ9++w3Y2RtCu98MOB4fiVb8uLOxNLrrPFjIFq4q47lxp9oCZlZAN2RF5Y5zcQ1ZQ1aU8ZSysgnJuYm2dcp4AuaAIXudyr8/NIJLt7Tj6uFOAGbgCSwvpqfKTC2lzZsVa75nfvdFl+R2UFZqZC6Bdr+n6PCbSNALryo2RcbTXl1k29YZrLoXHwDmE+4Ennblj1s3A8ptk+kN24Fn9RlP3ZCYT2hFp7SHfB6kMkbFNz1trgeeQoi/A3AJgNuklBu7KJ2ogVhSS4VoWQNLqUxuBUc1Lt/aAcAs2UtnjZYaLASYF9qKMFdtnJmJ4Y63XIcrhsyhST7VHNRTTeBpliXVt7/TZgaeVa5T2cCltkBlK1VOT5vTmoNlZoEHreCxkqxWPVep2PqswDOhZfHESBRvuH57LjNv34RqtQFD0YSG4+OLDc/UnpsxV6n4Pat/joa72/CG67djeimdu8lTrpG5BIa6giWrJ4JetakCT6evPVIZHTMxbd1Nmq2dwZoyngtJMxPo9HChnT3mDITxxVTV09GLKbdNJuRT4fcouUnr1ZhPaJCy+LC8kHWj9qnRhaqew9XAUwjxVwCuBfDLUsral8sQEVHFHj43B0PWdqd330AYqiJyZTyXtFjGE0BuPPw/vP4qPNcakgCYg3pCfg+eqCLwnIkV7odxWzjgxbmZREUXfRt+uJB1cVbJ4JzT1pqgcj8n9gVxJQNetIZkPAPQdImppTR8qoLXXL0t97pcxrOKfaSN9M2j41hMZXGxwf2p9iqVf33rdbjz9sOrXvffXrgXEJXvkx2ZT5TVNx/wqkhp7g2zaTS7j3Prmp+VbZ1BjEWTVX/cUTvj6fBwIUUR2NYVRCpj4FtHxxx9bMAMxIUoPTldCIHeGnd52hNxCw0XAsy1VUATBp5CiMsB/DGArQDuE0I8LoT4qlvPR0RE+d3zzDQElnc/ViPgVbG3rz23p66VJtraBiMB7O4N4VWHtq57XbvfgzMzcSwkKssgluqHcVNHwLtqSm85vnD/eQDmOpaNyC5Hm6zgov/UVAxClP85sadLVpbx1KGI4hd0TusL+5HJGpiJaXjZwYFVE3tbtdT2W0+YF/bRRAYnJyrvyXbKudk4PIrA1s71WagtHQGE/ZWVwb/+Y/fh1FSsaH+nLehToUvzhsJGNGbdDFkXeFrBXbUZPbdKbQGgu82LoFfFh374LLL68u+FWrPBuiExF9fQGfRCUUrPEehp99XU45lbD1bknOZVFfg8Co5ebLLAU0p5TEoprHUqV1l/XuPW8xERUX73nJxCOOBZtxC6Updt7YB9r3lXb6j2A6uzwUgwt99wrXbrLu7jF6NlP15CyyKZ0Yv2w7gpHPDAkKgoA2BIQBFoyDCkeuhp90NVRMWltkGvWvbnpDvkgxDLJXDFGIbE1x8fxWxcg99T/nM4oT/sh4R58frG64dzL7/z9sP48m/ejN52f0uV2k4tpvDguTls6fBDEcAdP6lueqwTzs8mMNzdVnDAWjjgQULTkShzCEvWGj5VTsazzcrMH7emjLeSjG5gNJrM9R7nY2c811YH1DrZNppwp9QWMH+fDnUFcWYmjm884VzW88jpWWR0id4y13X1hHw1ZTxn7fVgJc5pIZ+KJ5st40lERLVbTGbw1OgCYlX2NI1Fk3hmMubIXV67zzPgUdb1NrW6kF+FEKio3Lacu8Nusnt2K+kr0g0JZYMGnYBZTt0f9mNiofyLr9PT8YpKj4UQ8KtK0VJbKSW+f2wCL//Qz/C7//44vKqCXb31XT9k32TxexTctLtn3eu3dgYw1kIZz+88OQ4pzRLi/rAfX39iDCNzZslrvWccnJuNY2dP4a+nfSPriZHyLs7tftDh7tKl2G019tg10s+fncHF+WTR4Gg0moQQ63sac7s8qxwwtJDMQBFA2F/9rINiutq8uGywAx/+0eqsZy2+9vgoVCHKLg/ubffXlPEsp9QWMMttz88mKq4QAhh4Em06Uko8MRLF2Zk4Tk3FNmyfyEYxMp9EXNPx+IVoVe9/z0lzTVVnsPbg6DI78NyAE1E9ioI9fe0VDRiyS74a1eNpl05XEnhKubEDT8Da5VlmxjOV0TEyn6h42JLPo+QttZVSIprQ8Op/vhe3f+4RZHQDH3nj1Ti4tQPhGkrdq9EfNi/c+8L+vGV6g5EAJuqY8aw1OPzW0XHs2xJGm0/FQCQIRQCf+NkZB4+wPPYqlR09has+7D64x0bmy3pM+yZGORlPj6Ig4FGqzjg10j0npwAAi8nCN1JHo0lsCQfgXZNNHupsy72+GvMJDZEyS1arIYTA77/kUpybTeCrj43W/HipjI7vPTWB7lD5x9zT7sfkYgqv/9h9VT2nHbQWm6wMLN9YqeZ70J2wn4iazkwsja89NoovPTyCZyZjuZdHE5lVvT/UGPYF2cpBFY+cn8tlOp8aW1g1EKdc95ycwrbOoCN7Gy8fNKfAtm3QwTRXDXfi7hNTkFKWVRI5Z5cllVkG5TQ741nJWg9dAsoGv+U80BHAqelY6TcEcHYmDimB//Hy/Xl7fwvxeRQsJDO479QMTk3H8OxkDKemYnhsJIqMLrGtM4i/fd2VeO3V2+BRFXze6q2tp2t3dGGoK4gtHfm/PwcjQdx3arbOR1WdsWgSD5+fx3tfcil+fmoGfo85LOnfHxrB77zoEseeJ9/v4bVmYhpi6WzRjKdXVRDwKniszBuG6YwZeA51lZcVb/N78NRo65Xa/uQZ80boUioL3ZB52z/Gosm8vbMdQQ9CPrXqlSrRRAZdLpTZrvTiA/24YlsEH777WfzyimFe1bj7xBRi6SyGusJlv09vuy9XXl+NubiGrjZvyR3dIevm89HRaMXXJRv89EO0ucXTWczGNTwzuYSb3v8j/OW3j6PN58H7X3NFrkev1YZLbCZ3/OQMPIqAVxVV3VnUsgbuPTWDW/b1OdJbFmnzYv9AuORY91Z1aLgTc3Gt7AubmViDM57ByjOexibIeA5EApgs8/eavUql0mFZfo+CjC7xpk88gD/7+jF87fFRpLI6OoNe7Optw91/cAtef91wyQs4N/k8CrZ1BuEpcKdhMBLAUjpb8UqeRvjOk+MAgFeuuDnwzufvgaYb+Mx95+p6LOdnzVUqO0r0ubf7PXjswnxZVUXprA6vKsou+Q75VIxGk7nSyFZwbiaOc7PmrlJdyoI9qmPRJLblCcCFMKfHVpvxXEhmEHFhsNBKZtbzEozMJfGVRy7W9Fhfe2wU/WE/OipYg2a3fWSqDDxn4+myBqB5VAXbu9uqKvdmxpNog1lKZXD3iSl858lx3HNyGumsAa8q8OvP3YVfuXYIl2wx757Z0y0nFpO5EkpqHqenY/jB8UlsjQSQ0HQcK/MX/Mo79g+fn0Nc03HrpX25lRG1ijg8ir6ZXD3cCQB4bCRa1nRJ+6KvlXo8jQ3e4wkA/R1+LKWziKezuZLHQuyJtpUOy9rSEYBPVfB/fvkKXLKlHf1hP4QQuZ+/VuiBtveRTiyk6l4GXKlvHh3H5Vs7Vn2d9va342WXDeAz953DpVvCNQ9PK9c5a5XKziKltoAZeJ6bTeDifLLk75N01qjoeya0otTxlkv7yn6/RrKzncNdQRyfWML9Z2ZxcFtk1dsYhsRYNIWXHcx/c3NbZ7DqHs/5hJYrP3fTC/b149BwJz5y9yls7QxU9ft2IZHBPSen8ZbDOyoK7uyhQMWGNxUzGyu9l9quBvjtf3u0qhVkzHgSbRAZ3cAzk0u49v/8EL/774/j8ZEo3nD9MA4MhHH1cCf++BUHckEn0Lrj9DeLT/zsDHyqgi0dAYSsC5jFCjMTPzk5Da8qcPPeykt0N6N9A2H4PUrZ/bSzsTQCXgVtvsbcw7WDhUpKbe2pthuZvVLljR+/v2RP4enpOIa6ghXvNfWqCvo7AnjuJb3Y0hFoySnB9lqYZh8wNDKXwBMjUbzyyvWl0L956x4sprKYWqrfx3B+Ng5VESV3stp9cI9eKN3nmcoaFa04sksdW2nA0D0np7Czpw0dQS8CHgX3n5lb9zYz8TQ03Sj4ud3WFcRYlX3J0UTG8R2e+Qgh8PsvvgSj0SSmK1h5s7IH+jtPjUPTDfzyVZWV69rTb7N69aW25d5IvXJbBBfnK8+6M/Ak2iCiiQzmExm8/vohfOVdh3Hkf7wIf/7qg+gIevNeFHlV82WVLFqn+phaSuErj47iv1w7BK+qVH2Rcc/JaVy/szt3AUT53Xn7Ydx5+2F4VQUHt0XwRJkrVWbjpe8OuymX8axonYp0bbhGs7ADz3LWnZyeimFvX+vtpHWCHXiOV1m66Db7QvxbR60y2ysH173NVcOduHlPD8YXUjDqNCjv3GwC2zqDuZu3hbT5VAS9ask+z4xuQMsaFfXhe1QFO3ra8GSVuxSdYhgST44ulFxxksroOHJmNpedDQe9ePDs7LpqjdwOz0iBwLOzDdFEBvEqprwvJNwvtbXdcmkfrtneibHo+u/LcoZsff3xUezuC+Hgtsqq0XrtUttqM55xrexdw1cMmdnqStuAGHgSbRDJjA4B4H+/6nJcu6O75MWlEAI+VWHGswl95r5zyOgG3vG83QCWy6qOVTBMYnwhiZOTS7h1X2uUYTWLq4Y78dToAjK6UfICYTZW/t1hN1RVarsJejy3WAFVvqmzKxmGxJmZGPZs0sDTzNQ2f9XLt46O4dBwZ65c1b5RZHvXrXuQ0WWu59pt52fj2FFksBBgHuOXfvNmXDkUwWMlMp5Pj5m/1yvNuh/cFmn4ZNuTk0tIaDrGF1JIZ/WCb/fg2TmkMgZu3dcPAOgIeLCYyq7r88zt8OwqnPEEKp9sm9ENLKWzrg8Xsgkh8N6X7oOmGxUPQxpfSOKBs3P45au2VVxJYQ+KzFSR8dQNifmEVvbMArtM+skKdl8DDDyJNoyEpiPoU9eNIC/G51GY8Wwy8XQWnztyHi+7bCDXz+RVFQxGAhVdZPzEWqNin+ipPFcNdyKdNXBifKnk287Fyz9Ju8HvMXePVtbjuXlKbUvd9R+NJpHKGNhT4WChjcKrKuhr92O8jitVKpXK6Dg2tohX5cl22p67txdtPhXjC8l1PwtO7/eUUuLsTLzsnuBrdnTh2Nhibk9nPt98YgwCqLgM9IptEYxGk5hv4IChe0/NADDL/b/31ETBt7vn5DR8K/bJ2m0CD5xdXW5r929uLVRqa027rbTP0/4ecGKfdT5rb4YAwHP29qI/7Mf4Qgrfe2q87Mf6xuNjkBL4JWuQVr7HLsSrKvAooqqMZzShQcrSOzxtHQEvdvWGcLTCrDsDT6INIqnpVe2ia+aLjs3o3x8awWIqi9tv2b3q5Qe3RfDUWPm/4O85OY2tkQAusS6qKzl5bWZXWQOGHi/jLu5sLI3uBpbaAoBHERX2eG78jGfI70HY7ylZanuqyom2G8lgZ7BuGc/xhVTFQZK9V/AVVxQOPIUQ2NoZRCpj4NMuT7idT2SwlMoW3eG50tXDncgaEscK/O42DIlvHR1HpIwVFmtdYWWcKjkvOO3np2YQ8Cjwe4qvDPrJM1O4cVc3glbbiN9jlgrff2b1Op/RaBLtfk/BSa7brF2eFyvMeNo9j/Uejrejpw0hv4o/+PJRnClzxdPXHx/DVcOd2FnhwDObR60u8Fwellf+Oe2KbZGKW4AYeBJtAAvJDDTdQJuvwsBTFRhfSJU17p3cZ0iJT/38LG7Y2Y2rt3etet3BrRGcnYnn9nqWehxzjUp/Sw49aaShriB6Qr6SA4aklJiNa7memkZRFVFxqW29pn820pZIoGSprT3pebOW2gLA1kigLoHn1GIKF+YSGF+s7Llm4xqu29FVMANm627zorPNi7/57omaBu4ktCxmYoUHwpyzVqkU2+G50lXbOwGgYJ/nw+fnMbGYqqpy4uDW6nrsnKJlDTxwZg6RoBdbOvx46Nx83hUpI3MJnJ6Or6u+uWlXDx48Owdjxe8ve4dnofNWf9gPryoqznhmDfN3Qb1KbW2KELikvx1eVeC3vvAoklrhzDdgVq49Pb6IX76q/J3Ca/lUBQlNX7cmqVT2v5r1YFcORTC2kKpoiBIDT6IN4JlJsywwWGng6TF/QS2mKm/UJ+fNxTWMRpPrsp0AcMVQB6Rc7gcqJpbKYimdbZkx+81ECIGrhjvx+Ejxvqy4piOdNcouS3KLV1VKBlg2w5CbYqotYJbblsp4np6Oo6vN2/CvoZtKVToMRAIYjyZdv/n4lUdHAZiVOeU+V0LTkczoeYcKrSWEwO7eELpCXrz7i49VNXwGAC7OJ3F6Ol7wQjq3w7PMjGd/OIChrmDBybbffGIMAa9SUUBkf00jbd6qdyk64bEL80hmdHQEvehr98PvUfC5PFlPe43K2vPRjbu7sZDM4MTEclvDaDRZdFqwoggMRoIlhxmtZVeFuFVqW4zfo+If33A1Tk4u4U+++mTR7//ZWBqqIvCLeSY4l2trZxDprIHf+eJjyFaQ+bQznt0V3Ey1s+5v/kTpCeI2Bp5EG8BJ6xd3W6WltlZpD/s8G09KifGFFPb2t+MFefoyc438ZVxkRJMZeBSB5+ztcfw4N4NDw504PR3P3SXPZy5WeVmSG0I+D+JatqzSqjMzZoavFXZM1mpLRwCZbPEA5/RUzPEy20KBXrOWum+NBBF3+eajlBJfengEgBkATJWZHZmLm29XrMx2Ja+q4P/edhXOzsbx5988VtVxLlmfh28fHcv7NudmEhACGO4unoFd6ZrtXXkznlndwHeeHMeLDmypugrhigYOGLr39CwUYQ4K8qgKfunQVnztsdHc2i87w3bPyWkMdQWxp88M1u2fhRutfs8Hzi6X25oZz+Kf222dwYLDhQpl9exS285gY24y3XJpH373RZfgPx8bLfj9b1fRPGdvL/rC1Z9XIkEvdva04Z6T0/jLbx8v+/3sn7dKbsRdvi0CIYBYungmdyUGnkQbwMmJJSgCJce7r7W8y5N9nrVwYoBFLJ1FQtPxzuftzjuRuD8cQH/Yj2NlXGQsJDO4bmdX0y+Fb1Z2n2e8yMl0xjpJN3K4EAC0+1VIuXzzqRj74je0CdbrDET80HSjaHbh9PTmnWhrG7SGtbh58/HBs3M4OxNHn5VJyVeOuZZ9ER4OeNBvDYsqx817evHbt+7Flx6+iG88kT94LMS82WR+vxR63/OzcWyNBCu6eXP19k6ML6TWnWePnJnFbFzDq2rIbh3cFsHIXBLRRP0HDN17agZXDnXmelPfcngHEpqOr1rZbcAs7b/v9AxuubRvXfnsts4ghruDuT7PhJbFfCJTOvDsCuLoxWhF51z7JmJnqHHnxHe/8BLccmkfzs8mci0zWtbAqaklfP/YBEbmk0hnjZrKbG1bOgL4r8/dhU/fdw6fvvdsWe8za2c8K8i+t/s92NPXjrhW/o0rBp5EG8DJySW0+TwV9fPdefth/OuvXQ+AGc9mYN8xfOGBwlNoy7m7rWUNJDSd02xrcGioEwCK9tMuZzwbG3jaQWQ5u0cfH4lCFQLBCvYFtqrlybb5A8/5uIbZuMbA09qXOObizcc7Hx5Bu9+DbV1mX2Q5N0nGFlJIZYyKLoJtv/viS3DN9k78yX8+WXSa7FoPnTMnrPa1+/DohShG5hLr3ubcbAI7e8vr77TZ/fprs57ffGIM7X5PTSuv7D2PT1WwassJS6kMHh+J4rl7e3Mvu3KoE4eGO/G5+8/nbvgspbJFz0c37erBA2fn8PqP3Yc33HE/ABQttQXMUtKMLiva22pnPMMNvOmmKAL/eNtV8KoKTk4s4ZYP/hj7/9d38eJ/+Clu/9wjGF9Ioc2n4qWXDzjyfP/zFQfw4gNb8Bffeho/PjFV8u1nYxo6qxhydeW2SEWl7Rv/7EO0wUkp8czkUsHBQsVKvPrD/pbY47YZJLQsvKpA75rSzZVfv8u3RXB6OoZEkbuL0aRZ5sT9ndWLtHmxuzdUNPCcraIsyQ1+jzk+/4mRaMm3fexCFCG/uikGTm2xAs9CfZ6nOdEWADBo7Twdj7pzDlhMZfCdJ8fxqkNb4fco8KqirMDT3g3YXmC6aTFeVcGH3nA1APPrXG6A8tDZOXgUkQt88mU9z83Gy+7vtF022AGfR1m1zzOd1fG9pybw0su3VLy/c6VGDRh64MwcdEPiOSsCTwB4y007cGoqhiNWFnMhmYFXFbh5T/62j5t29yCayCCZ0XN7QAvt8LQNWV+fcnvbAbPE26OIhv/u6wr5cOmWdrT5VBzcGsFvv2Av/u9th/D1334Ort3RiSu2RdDuUHCsKgIfesNVODDYgf/2b48WvW4AzB7Pas5nVwxFkNFl2V8PBp5ELW5qKY1oIoPfunVPxT1E9h43ZjwbL1HGOpwrtkVgyOKlanPxNHyqgn1bwk4fIoDm7VVz2lXDnYinswVLNe2ypJ4Gr1MRQiDk9+CJkeIXnklNx8nJJccuaprdgBVQFboYsgPPzZ7x7A/7oQhgwqWM5zefGEMqY+C264cBAG0+D46XEXgevbgAgcrnFtiGu9vw/tdegVhaL3sC6oPn5hAOeOD3qrh2Rxe+8fjqwDOa0BBNZLCrwsDT51FwcGsHHrsQzbVl/OyZGSymsnjVodrKKrtCPgx1Bes+YOjnp2YQ8Cq4Zkfnqpe/8spBdLZ5c6tVookMrt/ZXbC8/8bd3QCAxWQ297NaTqktAKTLDHSmFlOIpbPwqM1xwy3k9+DAYAf++VevwXtfug+vuXoIh4Y74VGcD8lCfg8++WvXoz3gwcmJWNHgcDaerqp1xB4wVG65LQNPohZn3z3eN9BR1fsPRgIVj7gnZ2V1A0lNL9l7V6qs6txMHAvJrJXJbo6TbKu6antn0bu4szENbT614knSbmj3q3hmaqlohvbJ0QXohqwqg9SK7FLbfKWWt91xBP/4w2fh8yglsyuFbJQbMB5VwZaOAMYcvPm4suf9Sw+NYN+WMA4NmRenbT4Vp6diJYdhPTm6gKBPzdvvXq5XHdqKvnY/xhZSuWm0hYxFk7g4n0SH1Rf/6qu24uTkEk5MLP+uPT9rlt7uKHOVykrXbO/Ck6MLuezrN54YQ1ebN1eqWsv3UyMGDN17agY37OqB36OuOvaAV8XrrxvG949NIpbOIpnRi1bfDHW1YagriMVUBmndgKoIbCkxWGdbmRlPw5D4wgPn8aJ/+AmSGR1bI9X9rNeiGX5PDEQC+OSvXY+sYeBCnvJx21xcq+pG6mVbzeuScsttGXgStbjlwLO6DNdAJODa3W4qz9mZOCRQMuM50BFAb7uv4EXGvz14AQKoaSIemUr1ec7FtYb3d9ra/R5IiaJZD3s9zGbJePaF/Wj3ezC+kMpN2VwpqenY3RvaFDtNSxmIBFwZMHd8fBFPXFzAbdcP526EtflUaLqBczOFA0EpJY5eXHBkCNa2LvMGxHefmij6dnZ/Z9i6MfOKKwahKmJV1jO3w7O3sownYPZ5pq3+e92Q+MHTk3j5FYPwVthPl8/BbRFcmEtgIbH++xxwZvjdSpOLKTw7FcNzC0xN/9Ubt8OQMrcn95ZLi88buHFXD5ZSWaQzBgY6AiV7DO2BWMUyns9OLuH1dxzBn3z1KRzcGsGV2yKb+rx4cFsEXW0+LKYyhat4YlpFq1RsbT4Pgl616DC+lRh4ErW4k5NL6Av7q+41G4wE2ePZYHbpWaE+XZsQApdvjeQNMFIZHV96eARdbd6KpxvTegcGO6AqItczu9ZMLI3uBpfZ2nIDhor0eT4+EsVQV9CRC91WIITAzp42ZA2JD//w2XWvT2Z07Nnk/Z22rS6dA+58aAQ+VcFrrt5m/v/2w/jIG68BgKLltiNzSSwkM2ivoJqgUGbJ71ER8qklA88Hz86h3e/J/Q7ubffjOXt78Y0nxnIX6nbGc3t35RnPq7d3AjB3LEcTGpIZvaZptivZpY7HxuqT9bz31AwArOvvtO3oCeGWS/uQyhrwqQou3VL85+ym3d3IGhKLqQy2dpaeYOz3qPCqAlp2faBjGBIX5xN4xYd/hlPTMXzwdVfi395xY019tBtFe8CDjC5xMU/puWFIzCe0qqe0h/wqYkVaU1baHGcgog3s5MRSTf18A5EAllLZomV6VFxCyxbd+VjK8fFFCKCsss0rtkXw7FQMv/LR+1bdxf720XFEE5mKVg9sNpWUPfk8CrravJhPZPKWdM3FNfQ2eLCQzasqGO4OFp1s+9iFaG665mYR8nvQF/bj0/edw6mp5UDHMCTSWWPT93faBiMBjEdTZV00lsuQEl97fBQvuXwLulb8nOzpD8GjCJycKNynfnQ0CsC5tT/dIR+eGIlirMDuR8DMeF67o2tVi8IvHdqKi/NJPGr1Zn72yDkMRgJVBTGDkQC2dPgRS2cxG9fQH/bjhl3dVX08a11RwY5nJ/z81Ay6Qz4cKNLe85abdgAwd0qWavu4ydrnmdFlyf5Om8+jrMp4npuJ46+/cxyPjUQxGk3hlVduxY/ecwt+5brhTdd2Uug8Z0/0ffj83LrXRZMZGLL6YXkhvwdZQ5Z1A4uBJ1EL0w2JZ6eWqi6zBZanGrLctjqxdBbHxhbLHmCRz4nxRQS8KpQyTpAHt0WgGxIJbfXd3s8/cB67+0Lo2CQ9fPXQHfJBN2TuDv9Ks7HqJgC65dBQZ8EBQ5OLKYwvpHL7STeT4a4g2nwq3veNp3OBVcrKlGz2iba2gUgAyYyOhQLZ/WrMx81BPLddN7zq5X6Pit19oaKTbZ+8uACfqjjWP20Hvt8/lj/rOR/X8MxkDDfs6l510f6yy7fA51HwTWu6bSpjVNXfCZgZ+KuHu7CYyiCazOAXrxx0rMy7K+TDts4g7vjpGUdLate67Y4jeP3H7sO9p2Zw856eov23t+7rx2AkgIFI6aqQoa4gfFYlRrmBp9+jIp018L2nJvCWTz6AW//uHnzi52cRDnhwYCCM/3vbVehpb46KlGbR5lOhCoGHz82ve92cvZe6ys9Zu88DRSxXBRTDwJOohV2YSyCVMWrKeNp73FhuW52fnJyGIYGFZPUZ4xMThdfhrGUPGFo5Qe7Y2AIeuxDFr964Y9Pd3XVTJOiFKgS+/eT4qpdLKa0ez+a5sLlquBOj0SSml9LrXmfvD9yMgadXVfCel1yKn5+awfePTQIAkhkzU7Knr/JevY3Ivth38hwwtZTGts7gqj2Ptn0DHTg+XjjwPHpxAQcGw2XdiCtH0Kvi0i3t+F6BctuHz5sX4tfvXJ2BDAe8eNH+fnzrqFlum8ro2FnhRNuVrtlhDiyTEjVPs13rigp3KVYrlTEwuZjO+3VdSVUEtne3oc1X+kaoEAIdQfPtSu3wtPmtjOdvfv4RnJqK4T0vuRT3/Y8X4tItYXQEvWU9xmYjhEB7wJM38Jyx91LXUGp73Y4uHC6wNmclBp5ELazWwULAij1uDDyrctfT5sVMMqNj3lqxUYloQsstji7Hts4gutq8qxr5P3//BQS8Cl53zVDFz0+FKUKgK+TFXccmVpXbLqWz0HSj6pO0Gw5ZQeXRPOW2j49E4VUFLt9a3eTrVvfmm3Zg35Yw/vLbTyOV0ZG0qgV29zLjCaw8B+Sv2qh0OE06o2MxlcXrrh3KmxXbPxDGaDSZd+iTYUg8NbqAK4Yijk4E/YWDg3jo3BxmYutvzDx0bg4+VcGV1uTdlV591VbMxDTMJTLIGrLiHZ4r2aXufo+Cqx2+CXTFUATprFFTy0c57Kx4of7OaoWtacLl9HgCZoDUE/LhX996HX7231+Ad7/oktzu3lZVjwm4Yb8Hz0wtratumLOuXaqt4hGi/B2pDDyJWtjJiSUIAVxSonm/mP4OM2vDXZ6Vy+gG7j4xhYDX/FX64Ln1vROl2Hf+yw08hRA4uC2Sy3gupjL42mOj+KVDWxFp451ep3WHfFhMZXHv6eVy2zn77nCTTLUFgMu3msOQ8g0YenxkHgcGOzbtgA2PquB9v3Q5Ls4nccdPziCV0eH3OFfK2ersqpexqDPngGkruPuV6/LfCNtv3Sh9Jk+57bnZOJbSWVy5rdORY7H9wuUDMCTwg6cn173uwbNzODQcyfvzceu+foT9nlx/6K7e6kptATMrqQigt93neGXKQXuXYpmTRau1kMpgR08bhqsYsFRMT8iHwUgAh3eXF9CG/B7s7W/HSy7bUnIKbrNp5IqV9oA5Af3RC6uznst7qd0/p7XWV4uoRTg9vryQZyaXyi5nKcTvUdHb7mPGswoPnJnDUiqLoa42CGH+v1L2nrhKvoYHt0WQ1HQYUuKrj44imdHxZmuYAzkrEvQi7PfgO0eXy21nrX6YZujxtC9i2nweXNLfjscvru7z1A1zNYXTGZZWc3hPD37xykH8yz2nsJTKbtogPJ++sB8eRThy81FKidmYho6AB0Nd+YMTu0LnRJ7A0x6Qc0We7GMtDgyGsaOnbd1024SWxVOjC+vKbG0Br4qXHRzI9dTXkvEMeFUcGuosu4+xEgetaoaEtrrcNpXRMbWYKjpYqVxSSiwmM45nO4Hl0lzeDHLPnbcfxn/+1s1QFYGH19wkt2+mdtXhnMYpFEQt7MTEIi6tob/Txl2e1fnB0xMIeBV0WsHJg+dmK36ME+NL6An58J+/dXPZd8EPbo1AAkhoOj5//3lcORTBldbeSXKWIgRectkW3PX0JP4qa8DnUTBrnaR7m6jHEzB7OL/71ASklLnvpWcml5DQdFxlrXNo9DLzRvrjVxzAj45PIp010O1ldYBNVQS2dAQw5sA54NRUDKmsgYFI4bLHbZ1BhP2evAOGjl5cgN+j4BKHBz8JIfALlw/gkz8/i4VkBhGrD/DxC1FkDYnri0yY/aVDW/Efj1wEgKqHC9ncWnXV0+6HT1VyGc+ppRQ+f+Q8Pv/AhVwZ5dGL0ZrOE7F0FoZEyf7OZrSZf++t1Obz4PKtHev6PGfjaUSC3rqs22LGk6iOnMyEpjI6zs0mcmVLtRjo4C7PSklpLgF//iV9UBWBcMCLp8cW8/YtFXN8YhH7B8MVlV7Z4/MnFsxF3m++kdlON73iikEsJDO5ctu//s5xAM2R8Vzp0HAnFpKZVZMFH7dKb68a3lyrVPLZ1hnEb9+6FwCY8VxjwFqpUqu7rFLWrrbCPxtCCOwbCOeqPVZ68uICLt/a4Vj55Mqyxl84OICsIfGj48vltg+em4MQwLU7Cv983LynBx5FwKuKmqqL3Bbyq1hKZfGHX34Cz/3Aj/GRH5/CNdu7sG9LOxQBfPbI+Zoef9EaoHd4d+kBMtS8rt3RhScuRlfNLZiNV7/Ds1IMPIla1OnpGHRDOpLxHIwEMLHIwLMSx8YWMbaQwksu2wIACAc8MCTWlbAUoxsSJyeWsL/IPrR8hruDUBWB2bhZ0rZyQmIj+0c2qudd2ruq3DZjmGs5mi7wtLIZT1yM5m5yPX4his42L3bWmKnZKN7x/N0Y6go23deu0Zw6B9x1bAIhv1oys2cGnkurdofqhsRTYwuuVW8cGurEQEcA33tqIvfz8eDZORwY6EBHoHAG3KMqGO4KNv3wmpDfA0038K2j43jDDcO4+7234hO/dh0623zobffjm0+MVTUAz7aQzCDkU+tSjknuuX5nN1IZA8fGltsy5uq4HoyBJ1GLembSLFNyJOMZCSCayOSmPVJpdx2bgCKAFx2wAk+/Bz5VwQNnyw88z83Gkc4aFX8NhRAIWb0wr7t2mH0xLvN7VLzYKrfN6AayugFFNF/W7NIt7Qh4lVyWEzAznoeGOrlmxxLwqtjWGaxLSVkr2doZxFg0uSoQrNT4QhJPXFxAd5Fsp23/YAeWUtlVlTZnZ2JIaHquosNpiiLwCwcH8JNnpqEbEoaUeOxCFDcUKbO19XcEyl710Shbwn7s7g3hyP98If7i1Qexq3e5H3VLhx/prIEvPTxS1WOfmY5hKZ0tmsluBrzxWtp1Vnb/kfPL5baz8XTdhuXxNy9RGSoeJ5/VEU9nazqJl3JiYgleVWBnb+276Oxx+sx6lu+upydx/c5udId8uPP2w/jyu27GoeFIRQOGTlgTbQ8MVr7mIuQ3S75+9abtFb8vVe4X7XLbUzPI6LIpAxePquCKbZHcZFvdkHhmamlT7u+kygx0BJDOGphPVNYqsNIPyiizte3PDRhaLrc9ag3GyrfWxCkvu3wA6ayBaDKDRFpHMqMXHCzUajyqgr6wH515Pv9tPg9u2NWNz91/HrpR+XXJFx64AAFzEFW5GAQ2p/6OALZ3t63q85yLa+gO1WdmQfOdOYlKqNfE2Fo8MxnDU2OLuPkDd+PPvv4Ufvbs9Kp6ekeeY2IJe/raHbkAHiixx41WuzCbwImJpVyZre2GXd14cnSh7EXex8cXoSoCe6sYpDEYCWD/QBh7+riL0C0rL5xy5bZPjiOjG/CqzZlBPDTUiWNjizCkRCydhZTA1dZgoc2GF77ls/cnvvWTD6x73UIygwtziZI3Uu86NondfaGyKjDsFpGVk22PXlxAm0/Fbhd/p92wqxs9IR/m4xqW0maQff2uzdH//NbDO3BxPol7Tk5V9H5JTceXHx5BV8jn2nAkqq/rdnTh4fNzkFLCMCTmE5maejwr+V3L7yAih12YTSCh6egJ+XDlUARfengEb/nkg7j2L3+AU1Ox3Fj2Wtx2xxHce2o2N5a+VvYeNyeGS2wGdz1tjuR/6WUDq15+464e6IZctyOrkBMTi9jdG6qqZNOrKrnJjOQ+u9z2+8cmkdFl0+6OOzTciXTWQFLTEbNugDDjSaXY5wBNX32D9JnJJTwzuYTxhRTueWa64PsvJDK4/8zsut+JhUSCXmzrDK6abPvk6AIObo1AVdy7qaMq5pTq+YSGhWQWO3va0B9u7t5Np7zs8gH0h/0VDxn6xhOjWExlsaWCbCc1t2t3dmEmpuH8bAILyQx0Q9at1LZ5x3MRtSg7KBnqCuKOt1yHVEbHz5+dwV1PT+Arj4wina098MwaBjTdcCzwHOjY2KW2dobcqezHD56exP6BMLavGdhy7Y4uqIrAA2fm8LxL+ko+zvHxpaLTFKm5vOKKQXz1sVEAQLu/OU+fdpAZS2cRT2exqzeUt/SOaCW73WJlZc5CMoN3fvZhqIqABwIf+dGzuPXSvrz9wj8+OYWsIfHSy7fgf7x8f1nPuW8gnGs3yOrmsJNfrcOE7pcdHMC/PzSChWQGL7t8S+l3cFAjM/BeVcEbb9iOD/3oWZybieOPvnK05DFJKfHZI+exb0sY4UDz/M5jJUNt7PLyh87N5SpiOFyIqELNUoL7/WMTaPOpuSxWwGtmSv72dYewtTOAWFrHuZl4WY9V6GOyhwDtc2CiLQAEfSo627xNWWrbLF9XwDyW1/7LvXjo3Bxeetn6C5aQ34OD2yJ44GzpfZ4LyQxGo0nsH3Tma0jue94lvbmAs1lLbe2JrfF0FrF0ltlOKktvux8Cy4GnYUj8/p2P4+J8Epf0t2NrZwCPXojivtP5f7fd9fQE+sJ+XFXBRNp9A2Gcno5Byxo4NR1DKmO42t9pe86eXqhW8LxR+juLWVkG+aYbt8OjCHz+/vKyno+PRHFsbBFvPrzD1QFlLIuvr7197egIePDI+fncXuoe9njSZtdMAUe5ppfSePj8fMHhCj3WwvmvPT5a0/PY5bpOZTwBs9Rqgrs8S4omMjAk8JICJWU37erGEyMLSGWKZ7btErMDFa5SocYJeNVcX2+zltoKIXBoKIL5RAYZXTLwpLIoioDPoyBtBZ7/+KNncfeJKfzvV12GcMCLvnY/tnT48eEfPbvufVMZHfecnMZLLtsCpYIy2f0DYWQNiTMzsdxgoYMuTbRdyedR0NlmtimUM9F2I9nSEcDLDg7gSw+PlDVk6HP3n0fIp+I1V2+rw9FRvSiKwLU7uvDw+Xn86deeAsCMJ1Fe0hqYUeqivlF+eHwSUgLdofy9d36Pgo6AB199bLSmibfJjA5FwNHx7oORwKrR9pTffELDYCSAg9vyB4w37u6Gpht47EK06OPY0xyrmWhLjfOKKwYBNG/GEwCuHOpE1rqoZOBJ5fKpCjTdwA+ensSHf/QsXnftEN58k1n6qigC73z+Hjxwdg4PrlkZdd/pGSQ0PW8VSDH2/uIT40t48uIC2v0e7OqpfUp7ObZ1BjHcFcT27vL227ZCRq7cY3zrTTuwmMpitsROz7m4hm8dHcdrrxlq2tYCqt51O7txaiqGpHU93cseT6LVnhpdwF99+ziOjZkX7C/4u3vw/Et6ccu+Pty0u8fV555PaJiLazAMWfSO7l3HJjDcHUSwyLCY3nY/zszE8dhIFNdsr66/L6HpaPN5HC19GYgEcmsYWpXTvZxr6YbEQjKDVx3aWvBzf+2ObggBPHB2Fof3FP6+PD6+hM42L7Z0cGBDK3nh/n7s7Glr6n12drApBG9sUPl8HgULyQx+/87HccW2CP7ylw+u+j33phu246P3nMJH7n4Wn/uNG3Mvv+vYJNr9nqK/7/LZ3ReCVxX4m++dwGIqgyu2RSrKmNYi6FMR9AU35X7bG3Z1Y9+WMEbmE+jLE2zY59EX7O+HljXwlsPmzYdmD7ypMvY+z3nrBkRXnTKeDDyp6U0spPB3d53EVx69iM6gF9u72yAA7Oxpw50Pj+AzR87DpyoIeBXsdmCnZT7TS2nMJzL44fFJvPTy/CWWS6kM7j01i7ce3oE/feVlBR+rK+SDP5rEVx8drSrwlFIiqemO/5IY7AhgNq4hldGrmrLazLSskSshq8Vi0iyzLTa5MRL04rLBjnVZgbWOjy9i/0B4U174tDJVEdjS0dxTMO0+uZDPw/UHVDafR0HWkPB5FHzsLdeuOw8EfSr+6/N24wPfPYHHR6L46+8ch5QSZ2biuHVfH/yeys4bXlXBnr52jEWTSGg6rqygP5SqJ4TAWw7vwJ9+7anc5Ou1pJT4wgPnceOu7tzqG9pYDg13wqsKxDUdqiLqtpuaZyRqWrohcXE+gRf83T34xuNjeMfzduOeP3wBBiMBDEQC+H9vvwGP/9lL8fnfuBFve85OLKWzGHOpVNTuqfynH58qWCJ7z8lpaLqBlx0sPk7eY41z/9bRsYp2e2Z0A49emMdH7j6FrCHR5nBwaO/ynFpMO/q4jXbPySk8ObqAp8cX8fTYYul3KGI+oUFVBG7cXbwv6MZdPXj0wnzBr+/rP3Yfjl6MMhtFruhp9yMS9BQs+d/sWqFsshGCXhUCwD+98eqCbRxvvmkHOtu8+IjV6xlLZzET0wrekC1l/0AYiylz3+wVdejvJNNrrt4GVQiMRVNIaOuDz4VkBiNzyVy2kzaegFfN9VR761RpADDwpCZ2fHwRo9EUXnigHz967y3441ccWLe3MOBV8dxLevHHrziA3pAPM7F0wTt41VpIZJDOGgh6VRy9uICfPjuT9+2+f2wCve2+ollM+4Lntddsw3wig58U2YsGAAkti7FoEm/91IM49Od34bX/ch/+4QfPIOhVc8MRnJLb5dmEk22rYRgS//jDZ/D2Tz8Er6rAowj8r68/BaOMgQr5RBMa5uIZdAa9Je8M3rCrG6mMgV/+55/nHZCVzhowJAcLkXv2D3TkfqaJytHb7sPV2ztx897egm/T7vfgN56zCz86MYV4Oou5eAZeVeDWfaXXR+Wzb8XvwHpMtCVTyO/BYCSAaDKD5/3Nj3HHT06vCkAnF9PoC/vL3stKrckut63nsDyW2lJTGosmEdd0DHcF8c9vuqas9+kLBzAd0/CNx8fwphu3O3Ysx8bNaXvD3UHEUll85EfP4vmX9K4qkUxnzal+r7xysKzl18+7pA/dIR++9thobkrmWvedmsGTo2aGrs3nweuuHcJNu3tww65u/PYXHnXgI1vNznhuhF2ec3ENv3fn4/jpM9N47TXbcGE2gbm4hkfOz+M/Hr2I1183XPFjfvynZ6BLia2dpcss7UmJi6kswoH1NwjsDHotq1SYsSEiJwkh8g7NWvu75teesxMf/9kZjFolsof39KIjz++5cti/A1VFlD3oh5yxrSuIjqAHveEA/vq7J/Dxn57BO5+/Gwkti2gyg3e/cC9L9Te463Z2419/drauw/L4HUVN6ZHz8wCwLsNZTLtfRdCr4osPXnD0WI5ZwV+734Pbb9mDh8/P44F1U/1mEUtn8bIyy428qoJXXTmIHxyfxGIqs+71s7E0fu/OxxHwKrhmeye+//vPx1+8+iBeccUgetvdGUZjB56tPtk2ls7iVR/5Oe4/PYv3v+YK/P2vHIKqCPS2+3Dtji584LsnsJBY/zkvZnopjf937zn0hHxo85W+X9cd8mHfljCWUvmz7/adZfbOEFGr6Qh48fabd2LeqgaqdJrtSvutlWAhn8p+9wYIB7z47K/fgK+862Zcvi2Cv/7uidwN7zc6eAOfmtO1Dch4MvCkpvTI+XkowhxmUC4hBPo7/HhydAFPWjvBnPDU2AJ8qgKvquC264fR2+7HP919atXb3HVsAiGfipv3lj/V7zXXDEHLGvjuk+OrXi6lxB/+x1FEkxns7WuvW8N3u9+DcMCD8WjrltrOxNK5Ps7/eNdhvOnG7bmLGSEE/s+rDyKa0PDBu04AKH9X7L/ccwqabmCoq/zSxRt2dWMplcnbE5zQdAS8yoYb4kREm8Pbn7MLdnFPLYHnQEcAAa/ieOtIKezzXe3aHV1WAHoYnUEvBjoCLNXfBHrb/dgaCaCnThNtAQae1KQeOT+Pdr8HSp47oIVOGHfefhjf+G/Phd+j4IsPOZf1fGp0AW1+M0AIeFW88/m78PNTM3j0gpmV1Q2JHzw9iVv391c01e/QUAS7ekP46mOjqwKgT917DnefmMKfvOIAQnXendVsuzwXkhmcm43nHX6w1ueOnMPp6TjCAQ++/e7n5p2QeNnWDvzazTvxhQcu4OjFaFnHMBZN4gv3X8DrrhmqKFC8cXc3DAlEkxmks6v3ztrrcIiIWlFXyIfhrjb0h/3or2HKsxACh4Y6GeQ0iWt3dGPfQBg7elj2vFkMd7dVVF1YKwae1HQSWhZPjy9WtbA4EvTilVduxdcfG0XcgSFD8XQWZ2biCK0IEn71RnOq3z/ffQq33XEEr/rIzzAT08ous7UJIfCaq7fh/jNzucDkqdGF/9/encdHXd37H399kslkT0ggEMK+hS0iQkCliuLW1n2pVq3iviutXW9rvVZ7+7te9dfWWlsF69pKca96XepWNxQIArKIiGyBsBOyJ5OZOfePTGiAyUomM4T38/HwEfNdz+TDJN/PnHM+h7tf/4KTx/RhehSqyeVmJsfUHM9HP1rL1vI6lpWUM3v+hj29h00TdeccD763mtv/sZweKQmM7JNOjxbWWLz15Hx6pSVy+0vLmq1Q3NQDod7tGSeNaFfbjxzS0Pu9amslo25/g6P+3zuc/9BcfjhnMXX+ICnt6M0XEYk1uZlJDInQEmYi0j0p8ZSYs7h4N4Gg4zfnHtahoTAXHzmAKl+AV5aUHHBbvthcjnNw55lj97QlNUxVP298HNM6UNXv7PH9ANhZ6SMQdNwyexE9UxO557xxUZnv0jcjdno8a3wBnvxkHRlJHtITPfz8haXM+PtiKprMiXXOcfcbK7n3zS85e3weI3qnhV2AvGkveUZSAredOpolG8vYXtHy0jHrd1bxbFExF00e0OzyAs3JSU/ksH4ZDO2VyowTRjBleE8M45M1OzGDjCT1eB6sNExPRESk/fTkIzHns1BhoQkDml+WpCUTBmaR3yeN2fM3cOHkA5scvzw0X7Bgn/XFpk8ZzMwP1uypvjtleM+w1UtbM7BnChMHZbGipJya+gC7qnw8fc1RZHXhePumcjOT2FFZh88fjHo1u+cWFlNaXc/ovumkJ3o4bmRvfvvWKpZu3E1aoocUbzy3vbSMp+dt4JKjBnLXmQVcNOvTNl37rPF5zJ6/gYXrS8P+rBt7U/N6JOOJN246YTjQ/kqyKV4PKV4Pt56cv9f2Cx6aq0IaIiISNfrwTKJBPZ4Sc4rWl5LfJ43MDhYbMDMumjyQJRvLWLbpwIoMLdtURq80L30y9q4km5mcwPQpg9i1p6pfx9e6OueIftTUB9hR6ePmE0Zw1NDWCxRFqsclr0cSzsG2iuj2egaCjkc+Wsv4AT1IT/RgZtw0bTh/v/YoauuDLC8p54vNFTw9bwM3HD+MX59VELanszlmxq/PLiAQdKzdUcWWML281T4/Ly3exGVTBtM7veNzmJq7v4hILFFPvohEmhJPiSnBoOOz9aV7Sjx31DlH9CPRE8ffF2xoc+XScJaVlDM2LzNsonBlk6p+za3F2RanHdYXM0hP9DAj1LPWqKsfBHJDBR7CJWJd6c3lW1i/s5rrpg7d62c/aXA2r33/WDKTE6io8/PTb43kZ98a1aFELr9POv2zkimtrufYe97lh3MW76mIC7CxtIZUr4frpw7rlNckIiL7U8IbWxQPiSQNtZWYsnp7JeW1fiYOyj6g6/RI8XLaYX15aVEJo3LTiW9Hb1ij2voAX22taHbuZs+0RPpnpVBbHyAnveNra2alehnbN4NET1yXrqUUTt8YWMvTOcfDH6xhcM8UThmby+Nz1+21PzvVS36fNHwBx43HDw9/kTbK65FMdqqXCYOymLOgmBcWbeKY4b3YUl5LaXU93z9xRNSGPYuIxDIlJyLSXko8JaYsDM3vPNAeT2hY/PiFRZvYWeWjdwcSw1VbK/AH3X7zO5tqTNQOVFcvm9Kc3NDruffNlZxxeF5U2jB/7S6WFO/m12cXNPuBgZmR6AlfRKi9khLiueOMsfzgxHyenr+Bx+c2VNKNjzOuOnZIu693oO0R6Qz6tyciIq3p6r8VsfG0KxJStK6UnqleBnfCGlKFg7IY3juNzWU1HUo8l20KFRbKaz7x7G7SEz3EGfj8wS6/d+Nw6LRED9mpXs6f2L9L75+ZksANxw/jqmOG8O37P8AbH0dGBwpGiYiIiMj+lHhKTPlsQykTBmV1SvGVxiJDv351BdW+9q/puaykjPQkDwOyD52Frc0MrycuKoknQLUvwLy1u/jBSSNISojOOpdeTxy90jo+dLot1BslIiIihxoVF5KYsaOyjrU7qijshGG2jc44vC8ApdX1rRy5v+Ul5RQ0U1ioO/PGx1EXiE7iuaWshqSEOKYfPbjF41T8QEREROTgoh7Pbq5x+OLB8JD+WSfO72zUOz2JFG88ZTXtSzzrA0G+2FzOZUcPavG4zvq5xlJ8Ej1xlFbXU+cPkOjpul5Hnz/Ijkoflxw1iOwuKugTSz93ERERke5MiafEjIXrS/HGx7VYzKcjeiQnsLmsloraetLbOGfv6+2V+PzBTm/LwaBnWiLbK3387dMNXHlM68V1OuvDjS3ltTjg6n0K+kQjOVRCKiIiItK5NNRWOl1H181cuL6Ugn4ZnT63LzM5AQfM/Xpnm89pLCw0Ni+jU9tyMMhMTiAjycOD762msq79c2M7oqymnm0VdWSnJDCoZ2qX3FNEREREuo4ST4kJdf4An28qo3Dwga3fGU5aUkOl1vdXbW/zOcs2lZGcEM+QXmmd3p6DQf+sFHZW+Xj0o7UdvkZ7PoC4982VBIKOvB6HTiEnERERkUOJEk+JCcs2lePzB5kwsPPmdzZ69vopnDS6D+9/uR3nXJvOWV5Sxpi8jGbXkezu0pM8nDymD7M+WENpla/Z4+r8AVZuqWBJ8W5+OGcxT326nuUlZfjbUZxo0YZS/jZvA7kZiTGznqmIiIiIdC4lnt3YipJyFhXvZnNZbZuO7+gQ2XDamuA1Wrh+F9C5hYWaOm5kDpt21/D19qpWjw0GHStKyik4BIfZNvXjU0ZS6fPz0Ptfh93vnOO2F5dRVlNPYkIcH3y1g9tfWsZpf/iIcXf+ky82l7O7uvmkFcAfCPKLF5fRJz2J/lkHvnariIiIiMQmJZ5R1lnJ3r7XWbO9kumPzsPnD7JhVzUvLyk54Hu0RcnuGlZsLufzTWXU+QNtPm/h+lIG9UwhJz0y6ydOHZEDwAdtGG67bmcVVb4AYw/BwkLw76VKRuamc874fjw+dx1bwnx4MevDNTy3cCP9eiQxKjeDBbedyIc/ncb9F47n/In9qfMHWbW1ko9X72j2Xo/PXccXm8v51ZljDtneZREREZFDgRLPbmjT7houeWQezkFBXgbpiR5+/MwSPl3TcnGdal+ADbuqKWvjmpf7Jrv/XL6Fb9//IZV1fmrrg8xZUNym6zjnWLi+NGK9nQADslMYmpPa6jzP7z78Cdc+WQRAQd6hmXg2devJ+QSd4w/vfrXX9ne+2Mp/v76S0w7rS7/QvEwzY0B2CmeN78edZxVQkNdQKOraJ4tYUrx7v2tv2l3Db99axYmjevPNsbld8XJEREREJEqUeHYzOyrruPSReVTU+XniysmkJnrI75PGgOxkrn2yiK+2Vux3jnOOZxYUs7ykjM1ltdz5yvJ23bO2PsAd/1jGtU8tZGB2CuP6ZZKe6OGBd1dT42u913PDrmp2VPoimngCHJefw6drdlJb33KbqnwBvPFxjOhzaBYWampAdgoXTR7IMwuKWbejYZjyl1sqmDF7EQV5mdx3/uGYhe+p9MTHMSo3new0L5c/Np/V2/b+t/erl5fjHNx51thmryEiIiIi3YMSz27EHwgy/S/zKSmr4bHLJ+1Zg9ITH8fjV0wmMSGeyx9bwLby2j29lRW19fxgzmJ++vznpCV66JORyAuLNvH2iq1tumeNL8A5f5rLE5+s5+pjhvD8DVNISoinf1Yy2yvqeOrTda1e44rHFgBQOKjzK9o2dVx+DnX+IPPW7mrxuKo6PyNz00mI19sD4OZpw/HEG+f9eS7n/uljrnpiAamJHmZNLyTZG79naO6+5lx3NC/e9A2euvJI4uPiuOSR+WwsrQYaesffWrGV7580Ys/czuauIyIiIiIHPz1ZdxOBoOPLrZV8ta2Chy8t3G9ZkgHZKTx2+SRKq31c8fgCAkFHVZ2fMx74iFeWlPDjU/IZlZvOwOwURuWm8/MXl7ZaGGZXlY9lJWVsLa/l0csL+eXpY/B6Gv5JZSQncOyIXvz5X1+3uhZkZZ2f+DhjRO/I9jAeOaQnXk9ci/M8nXNU+QIU9Du0Cws11TsjiSu+MYSdVT5Wbqlge0Uds6YXkpuZ1KbzB/dK5amrJlPl83PpX+Zz1h8/4uanFzEqN52rjhkS4daLiIiISCxQ4tnJmisW1Nx2f9C1a+mJcHZU1rFqawWVdX7uv/AIjsvP2bOvaS9SQb9MHvzeBFZuqWDF5nKWl5RT5w8y57qjufmEETxz/RSevX4K951/OKVVPu58ZUWz93x96Wa+2lZJsjee12Ycywmj+ux3zx+dMpLS6noea2EtyPU7q9hV5SM90UNchIvLJHvjOXJIdovzPH3+IIGgY6zmd+7l+qnDiI8zqn0B7j3/cA4f0KNd54/um8Fjl09ic1kNSzeV4QsE+c05BepVFhERETlE6KkvCipq63lx0UaufmIBn60vZemm8lZ7BRvtm8C+tnQzp/zuAypq/Qztlcqph/Vt8fxpI3vzm7MLqPYFyExJ4LUZxzJpn97Rgn6Z3DhtOC8u2sRbYYbcvrFsC7fMXkRaoodRuRnN9nyNH9CDk8f0YeaHa8IWLNpeUcf0R+cDMDC7a5bSOC4/h9XbKtm0uybs/qrQnNSCQ7SibXMyUxIYnpPKsJxUzjw8r0PXKByczZ8vmYhz0Ds9kYkRHlotIiIiIrHjoEo829ubGEv8gSA7Kuu45skiJv7X29w6ZwkrSsrplZaILxDk92+tatf1Sqt83DJ7ETf+7TP6ZyVT0C+zzUuRXDh5IEcM6EF+7zSyUr1hj7l52nBG983gF/sMuf3n8i3c/PRnHNY/k5G56Xha6aX84cn5VNb5mfnh3mtBVtb5ufLxBWwtryW/TzrJ3vg2tf1AHT+y+WVVdlTWsWFXNZ44Y1Ruepe052DSI8VLr7QDW+5m2sjejB/Qg8E9tWaniIiIyKHEE+0GdIRzjjp/kKo6P9W+ANU+/565hbFiY2k1RetKmb9uF0XrdrFqayUAVXUBLjlyEKeN68sRA3pw0axPMYPH5q7jvIn9Gd239bmFpdU+Tvn9B+yu9vGjk/O54fhhfO+Ree1qX2s/L68njvvOH8dZf/yYE///+wzvncbVxw7lpqc/o6BfJk9cOZlrnihq9T6j+2Zw+rg8Hvt4HVd8Y0hDou0PcsNfF7Jiczmzpk/ca5hupA3LSSMvM4n3v9zORZMH7tle7fNz1eMLqA8EGZ3bsAyIREasvVdFREREJPIOmsRzwbpdrNzSMI9xxG2v4w+6vfbHGdz5ynKuOmbIniqZjb2g+1bKbO/2tqrzByjZXcPW8jqO+Z/3AEhP9DBhUBbVvgAZSR5eveXY/eYyDshKJhB03PbiUp67fkqzcx0DQcfaHVVsq6hjdN8MnrhiMmPyOlYEpy2vcWxeJjdNG87973xFws4qbvzbQsbkZfLkVZPJSEpo871+cNII/vfzEk7/w4cMzE4hr0cyH361g3u+M65Lk05oWGvyuJE5vLpkM/WBIAnxcfgDQWbMXsTSTWUMy0kjLemgeVt0qc6qOKvKtSIiIiKHnph8wm6aAM5fu4v731nFx6t34okzeqZ6Ob+wPyleD2mJHlK88Tz8/teUVtfz1CfrefKT9Zx2WF+unTq0XfesDwSp8wfxxneswM27K7dy1ysrKC6tITPZwy9OGsWkIdmMys0gPs72vKZwSaUnPo6fnzqaHz+7hGeKirmwSU9co2DQ8YsXlrKtoo6+mUn846ZvdEnP0U3ThjPrwzVsKa/j8P6ZPHnlv5POtiYQw3LSOHdCf57/bCOBoGP+ulJ+8s2RXFA4IJJNb9Zx+TnMnl/Mog27mTQ4i1+9spy3v9jGXWeN5X8/3xyVNomIiIiIdGcxmXgClNfUc9HMT/lkzU56pSXyy9NG88ayLcTHGT/55qi9jn1u4UZ6piXyu++O59GP1jJ7/gZeXlJCRpKHjOQEHvt4LaleDymJ8aR6PZTV1OPzB7nnjZWs3lbJ19srWb+zGn/QkZWSQFl1PZkpLffoNSaSd583jl+/uoJ3V25jaE4qI/uk0SPFy+XfaN8yEedN6MczRcXc/cZKThmbS3aTuZfOOe58ZTlziorp1yOJ/lkpXTZc0euJY3hOGtsqannyqiPJTG57T2dT3z9xBM8v3Mj2Sh/Tjx7EjccP6+SWtt2U4b0A+MHfFzF9ymD++ukGrps6lOlHD1biKSIiIiISATGZeDYOJ81JT+T208dw8eSBJHvjw1ZYhb173n55+hhuOXEET8/bwG/f+pLyWn+zy4LM/GANg3qmMLx3Gt8qyOXFzzaxuayW0x74kAcvntDikhH+QJCSslpO+d37JHriue3U0Vw2ZTCX/iX8XMvWegfNjN+cXcC37/+Q/37tC+49/3CgIem8+42VPPHJeq45dghLind36PoHItkbz6CeqR1OOqFhHdEB2cn4/EHuOGMsZpFdOqUlGUkJpCd62FZRx92vr+SMw/P42bdGtX6iiIiIiIh0SEwmnj1SEkhOiOfNW6fuVeSlrclVZnICNxw/jPdWbsUBMy8tpMrXWIgowH88/zne+Diev3HKXusIFq0rJSvVy+7qer7z0Fx+edoYph89aK8kaf3OKh79aC2LincTdPCdif356bdG0js9/JIi7TGiTzrXTB3Kn//1NRdMGsCkwdn84Z3VPPz+Gi45aiC/OHU0F8789IDvEy19M5MBiI/wep1tkZmSQEWpn8lDsrnv/HF7hkBr/qGIiIiISOeLycQzK6VhmOmBVhY1MwzISvXutWxIY8/dvovXNyYdu6t9/OiZJdzx8nLmr93FlvIaanwBBman8uaKLXjijOxUL30zk7gv1DPZUfsmOjNOGMHLi0uY/pf59ErzUlxaw3cm9ueuMwsws6gkRt0xGeudnkgg6Jh1aSGJHlWwFRERERGJpJhMPKNdPbNHipdZ0wuZ9eEa7nnzS5xzBB1s2l3LDccN47Ipg5kxe1Gn3rNRsjeeO88cy9VPFlFcWsPp4/ryP+eNa7bS7cEklhLYhPg4BmantDqXV0REREREDlxMJp6R1pYEKC7OuO64YUwclMU1TxaRkZzA698/lhSvp83X6KiTxvShd3oiQef43XfHx8TQVBERERERkY46JBPP9igcnE1+n3SAPUlnVxjSKxXYfziwdI5Y6n0VEREREenuzDkX7TbsUVhY6IqKiqLdDBEREREREWknM1vonCsMt0/daSIiIiIiIhJREU08zSzfzD4xs1WhryMieT8RERERERGJPZHu8XwIeNA5lw88CDwc4fuJiIiIiIhIjIlY4mlmvYEJwOzQptnABDPLidQ9RUREREREJPZEssdzALDJORcACH0tCW3fw8yuNbMiMyvavn17BJsjIiIiIiIi0RD14kLOuZnOuULnXGFOjjpDRUREREREuptIJp7FQD8ziwcIfc0LbRcREREREZFDRMQST+fcNmAxcFFo00XAIuecxtOKiIiIiIgcQjwRvv71wBNm9p9AKTA9wvcTERERERGRGBPRxNM5txI4MpL3EBERERERkdgW9eJCIiIiIiIi0r0p8RQREREREZGIUuIpIiIiIiIiEaXEU0RERERERCJKiaeIiIiIiIhElBJPERERERERiSglniIiIiIiIhJRSjxFREREREQkopR4ioiIiIiISESZcy7abdjDzLYD66PdjoNQL2BHtBshzVJ8YpviE9sUn9im+MQ2xSe2KT6xTfHpmEHOuZxwO2Iq8ZSOMbMi51xhtNsh4Sk+sU3xiW2KT2xTfGKb4hPbFJ/Ypvh0Pg21FRERERERkYhS4ikiIiIiIiIRpcSze5gZ7QZIixSf2Kb4xDbFJ7YpPrFN8Yltik9sU3w6meZ4ioiIiIiISESpx1NEREREREQiSonnQcTMeprZa2b2pZl9bmYvmFlOaF++mX1iZqtCX0dEu72HMjO7w8ycmRWEvld8YoCZJZnZn83sKzNbamYzQ9sVnxhgZqeb2SIzWxz6HXduaLviEwVmdp+ZrW36uyy0vdl4KFZdJ1x8WnpOCO1XfLpIc++fJvvvaM97SzpXC7/fwj4nhPYpPgdIiefBxQH3OOdGOufGAV8Dd4f2PQQ86JzLBx4EHo5SGw95ZjYBOArY0GSz4hMb7gFqgXzn3GHA7aHtik+UmZkBTwGXOufGA5cAT5hZHIpPtLwETGX/9bVbiodi1XVeYv/4tPScAIpPV3qJ8O+f5p4TQPHpSi8RPj7NPSeA4nPANMfzIGZm5wE3ABcDq4CezrmAmcUDO4ERzrnt0WzjocbMEoF/0RCT94DTgW0oPlFnZmnARqC/c66yyfbeKD5RF0o8dwBnOuc+NrOpwCPAMSg+UWVm64DTnXPLWnq/ANbcPsUqcprGJ8y+84AbnHMn6XdddOwbn3DPCa29txSfyNnn91vY54TQcYpPJ1CP50Eq1AtwA/AyMADY5JwLAIS+loS2S9e6C/irc25tk22KT2wYRsMfiTvMrMjM/mVmx6D4xATX8CnoBcA/zGw9DZ9GX4biE2taiodiFUP2eU4AxSdWhHtOAMUnFjT3nACKT6dQ4nnwegCoBP4Y7YZIAzM7GpgE/CnabZGwPMBQYJFzrhD4GfACkBbVVgkAZuYBfg6c5ZwbBJwBzEHxEekoPSfEGD0nxLywzwlmlhHdZnUfSjwPQmZ2Hw3Dmr7rnAsCxUC/ULc/oa95oe3SdY4DRgFrQ0M3+gNv0vAJmuITfesBPzAbwDk3j4ahnTUoPrFgPJDnnPsYIPS1ioa5NopP7Gjp743+FsWIMM8JoPjEgrDPCWZ2CopPLGjuOSEfxadTKPE8yJjZb4CJwNnOuToA59w2YDFwUeiwi2j4tEZjzruQc+5u51yec26wc24wDfMEvumcewbFJ+qccztomE9zMjRUpwMa52wsRvGJto1AfzMbCWBmo4Fc4CsUn5jR0t8b/S2KDeGeE0DPCrGgheeEfyo+0dfCc8JqxadzqLjQQcTMxgLLaHhQrgltXuucO8fMRgFPAFlAKTDdOfdldFoqsN+EdcUnBpjZUOBRoCdQD9zmnHtd8YkNZvY94D+Axh6aO5xzLyk+0WFmfwDOpeEDgB3ATufc2JbioVh1nXDxoWGedNjnhNA5ik8Xae79s88x69i78JDi00Va+P0W9jkhdI7ic4CUeIqIiIiIiEhEaaitiIiIiIiIRJQSTxEREREREYkoJZ4iIiIiIiISUUo8RUREREREJKKUeIqIiIiIiEhEKfEUEZGDmpmtM7OCLrjPmWZ2b+j/B5vZtQdwLWdmae0853Ez2xhaBiDc/uPNrKijbQpdY4qZLe5I+0RERFqixFNERKQNnHMvO+d+Evp2MNDhxPMA3O2cmxGpizvn5jrnxkfq+iIicuhS4ikiIt2SmU03s6Vm9rmZvWhmvUPbLzezf5rZHDNbbmYfm1luaJ/XzGaa2Soz+8jM/mhmzzU577nQ5R8ExoR6Bxv379VL2PR7MzvXzFaa2Vwz++U+7TzSzN4zs4Wh/05rx2v8LzNbbWbvA6fts+8yM5sXuua7ZjaytdcoIiISKUo8RUSk2wkNvb0bOMU5Nw5YBjzQ5JBJwI+dc2OBFcAtoe3XAQOBMcBJQGEzt7gJWOGcG++c+04rbekNzALOcs5NAXxN9vUAHgIuds5NBE4HHg5tb+01ngGcCYwHTgBGNdl3LHABMDV03XuBR9v5GkVERDqNEk8REemOpgGvOec2h75/mIYkq9HHzrni0P9/Cgxrct5Tzjm/c64WmN0JbTkK+Mw592Xo+5lN9k0BhgCvm9li4HXAAcPbcN1pwBznXKVzLgD8pcm+M4DDgXmh694NDGhyXme/RhERkRZ5ot0AERGRCDAaErimmn5f2+T/A/z772G489oqQOgDXTNL2qctzTHgc+fc1A7cr7XrPuqc+89m9nX0NYqIiHSIejxFRKQ7egc4tXHuJnAN8HYbznsPuMTMPKHk8bvNHFcOZO6z7WsahvACXNxk+yfAEWY2IvT91U32zQVGmNm0xg1mNsnMWkoqG70DXGBmqWYWD1zRZN8rwHQz6x+6ZryZTWznaxQREek06vEUEZHu4G0z8zf5/jDg58BbZuaANTTMbWzNQzQMUV0OFAMLgZQwx30OfGlmy4CVoXmet9IwP3Mz8Grjgc65baGlV14xs13AM032lZrZmcC9ZvZ7wBtq6xm00ivpnHvVzI4GFgMlNCSU/UL7PjCz24CXQ0mpF3g29Hra+hpFREQ6jTmn0TYiIiKNzCzdOVdhZonAy8CzzrlHYqBdjwNFzrk/dsK1WnyNoWQ93TlXeaD3EhERAfV4ioiI7OvtUEKWRMPw3Mej25w9yoAZZpbfCWt5hn2NZjYF+BOwFQge4D1ERET2UI+niIiIiIiIRJSKC4mIiIiIiEhEKfEUERERERGRiFLiKSIiIiIiIhGlxFNEREREREQiSomniIiIiIiIRJQSTxEREREREYmo/wMJsQXPJ1q8VgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "plotter.make_sub_plot(data_unreasonable)" ] @@ -206,16 +376,53 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": { "tags": [ "scroll-output" ] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/tutorial/data_folder/mcstas_SPLIT_119\"\n", + "INFO: Regenerating c-file: python_tutorial.c\n", + "Info: Defining SPLIT from sample=PowderN() to END in instrument python_tutorial\n", + "CFLAGS=\n", + "INFO: Recompiling: ./python_tutorial.out\n", + "mccode-r.c:2837:3: warning: expression result unused [-Wunused-value]\n", + " *t0;\n", + " ^~~\n", + "1 warning generated.\n", + "INFO: ===\n", + "INFO: Placing instr file copy python_tutorial.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/tutorial/data_folder/mcstas_SPLIT_119\n", + "\n", + " monochromator rotation = 22.4519 deg\n", + "[python_tutorial] Initialize\n", + "Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Na2Ca3Al2F14.laz' (Table_Read_Offset)\n", + "Table from file 'Na2Ca3Al2F14.laz' (block 1) is 841 x 18 (x=1:20), constant step. interpolation: linear\n", + " '# TITLE *-Na2Ca3Al2F14-[I213] Courbion, G.;Ferey, G.[1988] Standard NAC cal ...'\n", + "PowderN: sample: Reading 841 rows from Na2Ca3Al2F14.laz\n", + "PowderN: sample: Read 841 reflections from file 'Na2Ca3Al2F14.laz'\n", + "PowderN: sample: Vc=1079.1 [Angs] sigma_abs=11.7856 [barn] sigma_inc=13.6704 [barn] reflections=Na2Ca3Al2F14.laz\n", + "\n", + "Save [python_tutorial]\n", + "Detector: banana_I=2.60536e-06 banana_ERR=2.63437e-08 banana_N=29248 \"banana.dat\"\n", + "\n", + "Finally [python_tutorial: /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/tutorial/data_folder/mcstas_SPLIT_119]. Time: 10 [s] \n", + "PowderN: sample: Info: you may highly improve the computation efficiency by using\n", + " SPLIT 47 COMPONENT sample=PowderN(...)\n", + " in the instrument description python_tutorial.instr.\n", + "loading system configuration\n", + "\n" + ] + } + ], "source": [ "sample.set_SPLIT(1)\n", - "instrument.settings(ncount=1E5) #1E7\n", + "instrument.settings(ncount=2E7)\n", " \n", "instrument.backengine()\n", "data_ref = instrument.data" @@ -223,9 +430,29 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plotting data with name banana\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAHuCAYAAAD3MtMPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAACsbUlEQVR4nOzdd5gkZ3Uv/u9b1TlMTruzOe9qtauwCouEkMggZAwGlkvG2Ahjm+uLAfs6gi+2+YGxjYkrbDLYIogokSQhlFZhpZW02pzD5NTTubu66v39UV29k6d7pqrTfD/PM8/udvd0vdMzO9WnznnPEVJKEBERERERETlFqfQCiIiIiIiIqL4x8CQiIiIiIiJHMfAkIiIiIiIiRzHwJCIiIiIiIkcx8CQiIiIiIiJHMfAkIiIiIiIiRzHwJCKimiGE+JoQ4msOPO+7hBBnF/H5NwshZP7jX+Z43Jr8Y9Ys9FgzPOcnJhz7Zrue1w5Ofb+IiKj2MPAkIqKiCSEeEEJ8tIJL+N/5DwCAEOKsEOJdlVvONMsAfKzMx/x4/rjVqNq/X0REVCauSi+AiIioWFLK8UqvYS5Syv4KHDMOIC6EKPeh5+XE90sI4ZVSZux+XiIichYznkREZAshREAI8WUhxJgQIiaE+K4Qom3C/V8TQnxdCPFP+cf0CCE+MOU5XiyEOCqESAkh7hFCfGhiCezE0k0hxAMAVgP4ar7M9AHr9qlZ2amZtnxp7JH8cX4GoA1TCCE+IIQ4LYRICiGeFELctIDXZKUQ4j4hRFoI8QyAq2d4zEuFEPvzazkuhPijUl6TItdhlfi+TghxIP81fV8I4RNC/B8hxIAQolcI8Y4pn/dyIcRzQoiMEOKEEOJ/zfCcv5Nff0IIcb8QYsWExxTz/VLz5cID+a/xF0KIdROe46P57+lHhBB9AB4o5WsnIqLqwMCTiIjs8mkANwG4DcCLAKwC8LUpj3ld/s/rAPw/AP8uhLgMAIQQTQB+CODnAK4A8AMA/3eO470ewEUAfwaz1PT1xSxSCNGYP869AK4E8DMAfz3lMb8P4E8B/BGA7QC+AeAeIcTKYo4xwTcAuGF+vR8B8Ikpx9kM8+v8PIDLAHwQwMeEEL+Xv78Jpb0m8/lrAH8M4CUwv1c/A7Ap//fPANhrXSwQQqwC8BMAdwG4PH//N4QQ10x5zo8C+FD+a2yA+XMwk9m+Xx8C8K78xzUAsgB+JISY+B5lF4Cd+XW/u8SvmYiIqgBLbYmIaNGEEGEA7wHwGinlw/nb3gXgiBBik5TyeP6hZ6WUf5X/+3EhxAcBvBDAIQBvATAC4INSSgngmBDiRTCDommklKNCCB3AeIklrm8BEAXwZ1JKHcDRfDbzBRMe8zcA3i+l/GX+358VQtwG4K2YEjzORgixFcDNADZKKU/mb/sUgL0THvYXAL4opfxq/t+nhRD/DuAPYQaZJb0mRfi4lPLR/Fp+AOD3ALxKSqnl1/a3MIO/n8MMup+WUn40/7nHhRA3Avg/+XVNfM4H8s/5rwD+daYDz/H9+jMAfyel/Hn+Od4FM0B9KYBf5R+jA/hDKWVygV83ERFVWNVlPIUQ/yKEOJMvw9lu4/NeL4R4PF9idEgI8T67npuIiLAOZmbvMesGKeVRABEAWyY87uCUz+sD0JH/+yYAB/IBlmW/7SsFNgN4Kh90WgrrFkKEAKwF8AMhRNz6AHALzK+zlOOMWUHn1OPkXQ7gz6Yc5+8mHMfu1+TQhL8PAjghpdQAQEppwAxy2/P3b5lhvfsw+fsJTP6eTvx+ziuffe7C5J+bUQDHphznGINOIqLaVo0Zzx/BLOd5yObn/RKAv5FS/kwIsQzACSHED6WUAzYfh4hoKSq2s4025d8Sly6Civy/F8uYYT3uCX+f6TgTHx/M/7kHwNEpj4uWsI75jgMAIQCfAvD1Kbdbr5Ndr8nU50X+eef7fizkOZ3ocsSgk4ioxlVdxlNK+bCU8sLU24UQ1wkhfiOEeCr/cWupTw2gMf/3EMw3D4lFLpeIiEynAOQAXG/dIITYAqAJ04O32RwDcKUQk9qzTmvGM4UGQJ1y2xDMLJq1jvaJ/84f5+opewivnfD3QQD9AFZKKU9O+Rgs8muxjtMihFg/y3EA4FkAm2Y4zrkJz1Hqa2KXo5jw/czbjeK/nzOZ9P3Kd70dwOSfmxaY2eLFHIeIiKpM1QWeM8k3V/gSgLdIKa8G8BqYDRCaSniadwP4JyHEeQAHYO7didu9ViKiJaBLCHHFxA+YQedXYO6FvFEIcRXMxkI/n7C/cz7fgdld9lNCiE35Bj+3Yu6M3zkANwohuvJlmwDwIIA3CCFuEUJcDuA/AUwcv/EdAM0A/k0IsVkI8V4Ar7LuzJe1/hOAfxRCvEsIsV4IsUsI8Vf5/ZVFkVIezq/lv4QQO4UQL4XZSGeiTwF4rRDiY0KIrUKIy4QQvz9hO8hCXhO7fBFmgP7R/LH/BOae0M8s4jln+n59BsA/CCFeld9i8zUAp2E2fyIiojpRE4EnzIYPawH8XJjt6H8O86S7AQCEEMOzfDw34Tk+DODDUspVMK8Wfy7fsY+IiEpzO8wLeBM/NgP4cwAPw+yU+iDMBjHvLPZJpZQRmJ1Ob4OZCXwDzKBkrpmNH4OZLbsA4Mf52/4T5raNHwK4G8B/w8xiTjzO6wC8Mn+c1wH45ylr+SyAv4TZ/OcIgJ/CPHf0Fvv15L0d5vnqCQD/BrNp0cTjPAXg5TC7tT4Nc5vJOwGcnbDWUl8TW+Szrr8LM9h8HmYToHdLKR9fxNPO9P36FMzuv18H8CQAH4DX5vecEhFRnRCT+xVUD2HOKHuNlPL5fFntX0gpF9TFL98a/ryUMjDhtp8D+IqU8nu2LJiIiGwnhPgSzJLXUrdXlJUQ4mYAv5FSOrG/ceqxZnxNhBASwC1Wh1kiIqJqUisZz0cBbBRC3GLdIIS4Zsqel7mMAcjk2+VDCNEFcx7aYbsXSkREC5cvM70uX956O8zZjt+q8LKKlu9M+482P+ecr0m+TJdbR4iIqKpVXcZTCPEfMMuKugAMAxiRUl4mzIHVn4K5L8cDc//HbcWW4gghXg5z9pqa//gPKeUdDnwJRES0QEKIjwL4A5j7Gs8A+IyU8ksVXVQRhBB+AN35f45JKUdsfO6PYo7XRAjRCvPcCAA9UsqUXccmIiKyS9UFnkRERERERFRfaqXUloiIiIiIiGoUA08iIiIiIiJylKvSC5iora1NrlmzptLLICIiIiIiohI99dRTw1LK9pnuq6rAc82aNdi/f3+ll0FEREREREQlEkKcm+0+ltoSERERERGRoxh4EhERERERkaMYeBIREREREZGjGHgSERERERGRoxh4EhERERERkaMYeBIREREREZGjGHgSERERERGRoxh4EhERERERkaMYeBIREREREZGjGHgSERERERGRoxh4EhERERERkaMYeBIREREREZGjGHgSERERERGRoxh4EhERERERkaMYeBIREREREZGjGHgSERERERGRoxh4EhERERERkaMYeBIRUVXbs3cf9uzdV+llEBER0SIw8CQiIiIiIiJHMfAkIiIiIiIiRzHwJCIiIiIiIkcx8CQiIiIiIiJHMfAkIiIiIiIiRzHwJCIiIiIiIkcx8CQiIiIiIiJHMfAkIiIiIiIiRzHwJCIiIiIiIkcx8CQiIiIiIiJHMfAkIiIiIiIiRzHwJCIiIiIiIkcx8CQiIiIiIiJHMfAkIiIiIiIiRzHwJCIiIiIiIkc5GngKIXxCiC8KIU4IIQ4KIe5w8nhERERERERUfVwOP/8nAaQBbJJSSiFEp8PHIyIiIiIioirjWOAphAgBeAeAFVJKCQBSygGnjkdERERERETVyclS2/UARgD8vRBivxDiASHEjVMfJIR4b/7+/UNDQw4uh4iIiIiIiCrBycDTBWAdgANSyl0A/gLAXUKIhokPklLeIaXcJaXc1d7e7uByiIiIiIiIqBKcDDzPAcgB+G8AkFI+DmAYwCYHj0lERERERERVxrHAU0o5DOA3AF4GAEKITQA6AJx06phERERERERUfZzuavs+AF8RQnwagAbg7VLKiMPHJCIiIiIioiriaOAppTwN4GYnj0FERERERETVzck9nkREREREREQMPImIiIiIiMhZDDyJiIiIiIjIUQw8iYiIiIiIyFEMPImIiIiIiMhRDDyJiIiIiIjIUQw8iYiIiIiIyFEMPImIiIiIiMhRDDyJiIiIiIjIUQw8iYiIiIiIyFEMPImIiIiIiMhRDDyJiIiIiIjIUQw8iYioKuzZuw979u6r9DKIiIjIAQw8iYiIiIiIyFEMPImIiIiIiMhRDDyJiIiIiIjIUa5KL4CIiGgumZyOVFav9DKIiIhoERh4EhFRVeuNpDEUz0BKCSFEpZdDREREC8BSWyIiqmrJrA4pgXgmV+mlEBER0QIx8CQioqolpURKM8tsI0mtwqshIiKihWLgSUREVatvPA3dkAAYeBIREdUyBp5ERFS1jvXHCn8fS2YruBIiIiJaDAaeRERUtY4NXAo8IylmPImIiGoVA08iIqpax/pjUPKNbCPMeBIREdUsBp5ERFS1jvXHEPKak7/GEsx4EhER1SoGnkREVJVyuoGTQ3EEvS4oAoikmPEkIiKqVQw8iYioKp0dSSKbM+B3q3CrCrvaEhER1TAGnkREVJWsjrYBjwqXItjVloiIqIYx8CQioqp0bMBsLOR3q1AVwYyng/bs3Yc9e/dVehlERFTHGHgSEVFVOtYfxZrWIBRF5EttmfEkIiKqVQw8iYioKh0fiGNzVxgAzIwn53gSERHVLAaeRERUdVJZHWdHEtjUaQaeblVgPKVBN2SFV0ZEREQLwcCTiIiqzsnBOKQEtuQzni5FgZRAlFlPIiKimsTAk4iIqs7R/igAYNOEUlsALLclIiKqUQw8iYio6hwfiMHjUrCmNQjALLUFwJEqRERENYqBJxERVZ2j/TFs7AgVMp0uxTxdsbMtERFRbWLgSUREVef4QKzQ0RYAXPmMJ2d5EhER1SYGnkREVFUiySwGohls7pwQeCpWqS0DTyIiolrEwJOIiKrKsf4YAEzKeKqKgBDAOEttiYiIahIDTyIiqirHBqYHnkIINPrdzHgSERHVKAaeRERUVY71x9Dgc6GrwTfp9uaAh11tiYiIahQDTyIiqirH+s3GQkKISbc3BdwY5xxPIiKimsTAk4iIqoaUEsemdLS1NPndzHgSERHVKAaeRERUNbK6RCydm9TR1tIc8GAswYwnERFRLWLgSUREVSOVzQEANnc1TLuvkaW2RERENYuBJxERVY1kVgeAWTOe8UwO2ZxR7mURERHRIjHwJCKiqpHSdHQ1+NAYcE+7rzl/G7OeREREtYeBJxERVY1kVsemGRoLAUBjwAMAiLDBEBERUc1h4ElERFVBSomUpmPLLIGnlfEcSzLjWS579u7Dnr37Kr0MIiKqAww8iYioKqQ1A1ICm2bY3wmYezwBZjyJiIhqEQNPIiKqCknNbCw0W8az0W9mPCPMeBIREdUcBp5ERFQV0vnAc117cMb7m4NmxnOMGU8iIqKaw8CTiIiqQjZnwKUIBDyuGe8PelS4VYEIu9oSERHVHAaeRERUFTI5A17X7KclIQQa/R7u8SQiIqpBDDyJiKgqZHI6PHMEnoDZ2XYswYwnERFRrXE08BRCnBVCHBVCPJP/eIWTxyMiotokpUR2nownADQF3IikmPG0Uyan4/hADIlMrtJLISKiOjbzRhp7vUFK+XwZjkNERDUqktRgSMDjUud8XFPAgwujyTKtamk4P5LEWFKDW2URFBEROYdnGSIiqrieSAoA5s14NgfcVTlOZc/efdizd1+ll7Egw3EzgzyWzMIwZIVXQ0RE9aocgee3hRDPCSG+IIRomnqnEOK9Qoj9Qoj9Q0NDZVgOERFVm9584DnfHs+mgIfjVGw2ksgAADRd4mDP+IKfp5aDbyIicp7TgecLpZQ7AVwDQAD43NQHSCnvkFLuklLuam9vd3g5RERUjebKeN55+27ceftuAOYez0zOQCqrl3V99Ww0cSmQv/fIQAVXQkRE9czRwFNKeSH/ZwbAFwDc4OTxiIioNvVGUlAE4FLEnI9rDngAgA2GbGSV2oa8Lvz6MANPIiJyhmOBpxAiKIRozP9dAHgzgGecOh4REdWunkgKHpcC83Qxuya/GwA4UsVGI/EMXIpAS9CNo/0xNm8iIiJHOJnx7ATwgBDiOQDPA9gE4P0OHo+IiGpUTyQNTxFdVZusjGcyyz2FNhlNZOFWlUI2+T6W2xIRkQMcG6cipTwN4Eqnnp+IiOpHz1gK3nlGqQBAc9DMeEZSzHjaZSSehUsV8LlVrG8P4t4jg3jXDWsrvSwiIqozHKdCRESOKSYrmdZ0DMcz845SAYAmv5mVY2db+wwnMoUZni/b1oXHTo9gnIE9ERHZjIEnERFVVN94GsD8o1QAs6stgKqc5VmrRhNZuPNNnV62rQM5Q+K3xznejIiI7MXAk4iIKqp3jlEqU/ncKvxuFRFmPG2h6QYiSQ2ufMbzipXNaA16cC+72xIRkc0YeBIRUUVZMzyLyXgCZtZzjBlPW4zlZ3i6VTPjqSoCL97Sgd8cG4SmG5VcGhER1RkGnkREVFE9YykIUUrg6WGprU1GCoHnpdf+pds6EUvn8OSZ0Uoti4iI6hADTyIiKqupDYd6Iyl0hL1Q5pnhaWnyu1lqa5ORuPk6utRLr/0LN7bB61Lwa45VISIiGzHwJCKiiuqJpNDd5C/68c1BN7va2mQkkQEAuJVLbwcCHhdu3NCGe48MQEpZqaUREVGdYeBJREQV1RtJYXkJgWdTwMNxHzaxMp5udXK2+aXbOnFhNIWUpldiWUREVIcYeBIRUcUYhkRvJI3u5hICT78bkaTGbJwNRhIZuBQBVZkceL5kSwcAsIkTERHZhoEnERFVzHAig6xulFZqG/AgZ0jojDsXbSSeRXPQAzFlf21Hgw87VzaxpJmIiGzDwJOIiCqmN5IGgJICz6aAGwCQ47iPRRtJZNEa9Mx438u2diCR0ZHN8XUmIqLFY+BJREQV0zNmzvAsdY8nAOQMpjwXaySeQVvIO+N9N282y22jaZbbEhHR4jHwJCKiiumNlB54Nhcyngw8F2skkUXLLBnPzV1hCAEkMmwwREREi8fAk4iIKqYnkkLY60Kj313051zKeLIEdLFG41m0hmYOPN2qgoBHRSKbK/OqiIioHjHwJCKiiukpcZQKMGGPJ0ttFyWT0xHL5GYttQWAoMeFZEaHMeG13rN3H/bs3VeOJRIRUR1h4ElERBXTM5YqaZQKYI5TAWqj1Laag7TRhNmxdrZSWwAIel3QpcS50WS5lkVERHWKgScREVVM73gKy5t8JX2OS1UQ9rpYartII3Ez8Jytqy0ABD0qAOBgz3hZ1kRERPWLgScREVVEIpNDJKmhuylQ8uc2Bd1VlfGUUmI8pUHK6lnTfIbjGQBA6xyltn6PCgHgeQaeRES0SAw8iYioIi51tC0t4wkAzQFPVe3xjKQ0HO2P4bfHhyq9lKJZpbZzZTwVIRDwqDh4kYEnEREtDgNPIiKqiJ584LmixD2eANDod1dVqa01cuSBY7UTeBZKbWfpamsJel14vnd8wdncat7nSkRE5eOq9AKIiGhp6lnADE9Lc8BTVaW2yfzIkYdO1E7gOZzIwONSEPK6cOftu2d9XNCjYjCWwbmRJNa0Bcu4QiIiqifMeBIRUUX0RlJwKQId4YWU2rqrqtQ2mTUznqeGEoWAutqNxrNoDXoghJjzcUGveY2aDYaIiGgxGHgSEVFF9Iyl0NXog6rMHfjMpDHggW7IqmjmE8/kkMkZhb2SD9bIPs+RRHbeMlvAbDDkUZV5GwxlNB29kVRVfE+IiKj6MPAkIqKK6I2kF1RmC5gZTwBVkfU81h8FYO6VXNboq53AM55Ba3D2jrYWRQhs7grPm/HsHU/jwlgKxwfidi2RiIjqCANPIiKqiJ5ICisWHHiambpqCDwP98UAAAGPihdubMMjJ4eR06un8dFsRhLZOTvaTrS9uxHP98zeYCinG4UuuU+eHbVtjUREVD8YeBIRUdlJKdEfXXjGs9HKeFZBg6GjfVGoioBHVXDTpnZE0zk8WwPjR0bixZXaAsDl3Y2IpnO4MDrz/tUnzowWLgLsZ+BJREQzYFdbIiJyhJQS8XQOQa867b6sbkA3JLonjFKZq7PqVJcynpXPLB7piyLgUSGEwI0b2iCEuc/z6tXNlV7arJLZHFKajtbQ/KW2gBl4ArM3GLr7YB8UATT43Hjy7Jht6yQiovrBjCcRETniUG8Uh/qi6BtPT7svmzMDxoVmPJv8lct4TpxLaRgSR/tjCHjM4Lop4MGOFU1VP1bFmuHZUmSp7aauENyqmDHw1A2JXx7qR1PAg0a/Gz2RFHprpLMvERGVDwNPIiJyxEDUDDh7IimcH0lOui+TDzy7a3yP5/nRJJJZHQHPpQKiF21swzMXIhhPahVc2dxG8vsx24ostfW6VGzuCs/Y2fbxMyMYjmfREvQg7DNfh/3nmPUkIqLJGHgSEZEjIvnAy5DAX//o4KTGNJlCxrP0GZ4ACgFOpUttj+Y72loZTwC4aVM7DAk8cmq4Usua10g8AwBoKaKrreXy7kYcnKHB0D0H++B3q2jyuxHwqAh4VO7zJCKiaRh4EhGRI8ZTZuC5osmPh04M48fP9Bbuy+YMNAfckzKFpVAUAZciKt5c6HBfDIoAAu5LgefOlU0Ie11VXW5rZTyL7WoLmJ1tx1Na4aIBYJbZ/uL5frx4SwdURUAIgatWNWM/93kSEdEUDDyJiMgRkXzguazJhytXNeEffnYYY/mAJ5MzJjUWWgiXKipeanukL4q1bUEoiijc5lYVvGBDKx48Pjzr+JFKs/Z4FtvVFgC2LzcbDCWyeuE2q8z21ZcvK9y2a00zjvZHEU1Xb6kxERGVHwNPIiJyxHgyC1URUITAP7/+ckRTGv7xniMAzIzn8sZFBp6KUvF5mUf6oti6rGHa7TdtakdPJIW0VvmuuzMZiWfgd6slZZw3d4XhUgQSmVzhtnsO9sHnVnDLlvbCbdesaYEhgQPnI3YumYiIahwDTyIicsR4SoMrnwnc0tWA21+0Dt9/6mK+XFNffMZTqWzGM5rWcHEsNXPgudEMxKxy42ozmih+hqfF51axqTNcCDzNMtsBvGRL56QA9oqVTVAVwX2eREQ0CQNPIiJyRGRC4AkAf/rijVjTGsDpoQQMufCOthZVEdArGHge648BALYuC0+7b2VLAGvbglUbeA4nskXP8Jzo8u5GJLM6pJR44swohuOZSWW2ABD0urBtWQOeZOBJREQTMPAkIiJHjKc0qBMCT59bxT+97nJk9cWNUrEoioBRwT2UR/rMjrYzZTwB4KaNbYimtYqucTYj8UxJjYUs21c0ImdIZHPGjGW2ll1rmvHMhUhhXisREREDTyIicsR4UoNLnXyaecGGtsLsyMWW2irCHNVSKUf6omgKuNHVMPNIGGusSiydm/H+ShpNZBcUeF7ebTYYimd1/DzfzXamfaLXrGlBWjNwqHf63E8iIlqaFtbHnoiIaB7jU0ptLatbgwj73IUuqQuliEpnPGPY0hWGENO/RgC4fl0rBKprn+eevfsgpcRIfGGltlu6whAA+sfTiGdy08psLbtWNwMAnjrHsSpERGRixpOIiGwnpZy2x9PiUgQ6wt5JI0gWQhGAlKjIyBIpJY71x2YtswXMvY4hn6uqAk8A0KVEVjcWlPH0uVX4PSrimRx8bgUv3tIx4+M6GnxY3RrgPk8iIipgxpOIiGyXyOrQDQmXurjgci5KPtOYyRnwuVXHjjOTdM5AStPnDDwBoMnvxoWxFIbjGbQtIMPohJxuBurFdLW98/bd024LelQkszpu2Txzma3l6tXN+O2xIaxvD86aFSYioqWDGU8iIrJdJJkFAKiKc6cZK/BMa7pjx5hNMmsec2vX3IFn0GsGZsfzHXCrgZZv7rSQUlvg0td0646Zy2wt16xpwUgiizQbDBERERh4EhGRA6zy0plKbe1iPXWmAoFNMpuDqghs7AzN+Th/PhN7cihejmUVRbMyngsotbU+r7vJh5dt65zzcdesMfd5VmNzJSIiKj8GnkREZLvxpPOBp6hwxnNdW3DeEl+3KqAI4MRA9QSeuULGc2GBp0tVsKI5AK9r7q99fXsIzQE34unq2uNKRESVwT2eRERku0LG08k9nooVeFYg45nRsXXjpTLbmfZCAmZw7PeoODlYPYGnlp9B07LAjGexhBC4enULHj4x5OhxiIioNjDjSUREtovkA09n93iaf5Y745nTDWR1A1uWhYt6vN+tVlWpbU43EPa65s1Y2uGaNc1I54zCvlIiIlq6GHgSEZHtImUotZ3Y1bacCo2F5uloa/G7VQzFMoXy40rTdLngMttS7eI+TyIiymPgSUREthtPafCoChyMOyuW8bQCz23FBp4eq8FQdXS21XRjwR1tS7W9uxFCMPAkIiIGnkRE5IDxVBYNfrej8xsrNU4lmdXhUgQ6wsUFb4XOtlWyzzNnSMf3d1q8LhUhjwuxTHVke4mIqHIYeBIRke3GUxqaAm5Hj1G5UtscAh616KDa61LgcSlVE3hquoG2MpXaAkDI50IyoyPLeZ5EREsaA08iIrJdJKmh0e904Gn+Wc6Mp25IpDQdAU/xjXmEEFjXFsSJKgg8pZTQ9PJlPAEg4FEhAZwZTpTtmEREVH0YeBIRke3GUxqaHA48C3M8y5hJOz+ahCGBgKe0aWQbO8NVkfHU86NUWoPl2eMJXCo1Pj5QHXtciYioMhh4EhGR7cqS8cyfwTJlzHhGklkAgLvE+aQb2kPoiaSQypZ3P+pUmp4PPMtYamsFnicYeBIRLWmlXbIlIiIqQjSloTHgRk8k5dgxKrHHM5HRJx27WBs6QpASODUUx/buRuzZuw8AcOftu21f41yseZpOZDxn+1oURcDnVnCMgScR0ZLGjCcREdkqpxuIZXJo8jubVbNCv3Lu8UxkzbEgaolzYjZ0hABUvrNtzih/xhMws54nBipfakxERJXDwJOIiGwVzc9sbPQ7W1QjhIAiyhx4ZhYWeK5pC0BVRMUDz0LGs8yBZ8Cj4uxIouyjb4iIqHqUJfAUQvy9EEIKIbaX43hERFQ51j7IpoAHd96+29FyUkUIpLVyltrmCscthdelYnVLoAoCTzPj2Rwof8bTyJcaExHR0uR44CmEuArA9QDOO30sIiKqvEhKAwDHmwsBZgCYyZWz1NY8VqkZTwBY3xHCyQoHXjndgEsRcKvlLXjye6wGQww8iYiWKkfPPEIIL4DPA3g/AOnksYiIqDqMW4FnwPnAUwhUKONZ+udu7Ajh7HCiUO5aCZoh4SqxI68dfG4VLkVMajC0Z+++QpOlereUvlYiotk4fcnzHwB8S0p5ZrYHCCHeK4TYL4TYPzQ05PByiIjIaePJ8mY8y7lvMJ7JQRGXZoiWYkNHCDlD4txIwoGVFUfTDbiV8rd3UITAuvYgR6oQES1hjp19hBC7AVwD4AtzPU5KeYeUcpeUcld7e7tTyyEiojKxMp5N5Qg8lfKOU0lm9AWV2QLV0dk2p1cm4wkAGzvDOM5SWyKiJcvJy54vArAFwBkhxFkAKwD8UgjxcgePSUREFRbJZzwb6jHjmc0tOPBc3175wFPTjbLv77Rs6gjj/GgSyfxIGiIiWlpm7XUvhBgs4vP7pZQ7ZrpDSvkJAJ+Y8HxnAbxGSvl8qYskIqLaMZ7SEPK6yhLgKEIgXdaMZw7qAspsASDodaG7yY8TFQo8c7qBnCHhrlDGc3PXpcB7x4qmiqyBiIgqZ64ha0MAXj3H/QLAT+xdDhER1bpIKluW/Z2A2eQnU9Y5njqUBWY8gXxn28E4Ql5nZ5zOZDRhjrmpVMZzY2cYAHB8gIEnEdFSNNeZ7++klOfm+mQhxMeKPZCUck2xjyUiotoVTWllDDxFWfd4xjMLL7UFgA3tITxxZgQ7uhsX1KBoMQZjGQCVCzxXtwTgURUcZ4MhIqIladazj5TyB/N9cjGPISKipSWSLGfgibLu8UxmF15qC5gNhtKaUdZg2TIYSwMAPBUKPF2qgvUdIQaeRERL1Ly1PkIIH4C3Alg/8fFSyo84uC4iIqpR4ymt0MHVaaLs41RK62p75+27J/17Y6f5uqQ1HT63auva5jMYzWc8XZXZ4wkAmzpD2H92rGLHJyKiyinmsuf3ALwJQA5AYsIHERHRNJGUhqZAfZbaJjI5KIvJeOY726bKGCxbKl1qCwCbOsPoiaQQS2sVWwMREVVGMd0NNkgptzq+EiIiqnlSSoyntLKMUgHMOZ5pTYeU0vE9k7ohkdJ0tAQX/rU1Bz1oDXqQylam1NaliEUFzou1Kd9gqFKdfYmIqHKKCTxPCyHCUkpuyiAiojmlNQPZnIEmv6csx1OEgCEBTZfwOFxCas2fXExzIcDc53moN2rHkkoyFMvYku2cWj5cik35UuPj/XxLQUS01BQTeI4D2C+E+CWAtHUj93gSEdFUkZQ5smOu5kKLCVymsmLAdE6Hx+VsCWkio+ePufjAc/+5MUgp7VhW0QZjmYrN8LSsbA7A51ZwfIAZTyKipaaYwPNY/oOIiGhO4ylz714593gCQEYzAJ+zx0rYmPHUDQlNL3PgGc04HpzPR1EENnaEcWKQGU8ioqVm3sBTSln0rE4iIlraIkkz8CzHOJU7b9+N7+2/gA9//7mydLZNZOwLPIHyNhiSUmIolkFrqDwl0HPZ1BnGQyeGsLYtWOmlEBFRGc0aeAoh3iil/J4Q4v0z3S+l/IJzyyIiolpkZTzLNcfTmx9Jksk5H8TF84HnYkttN3aYDXbKGXiOpzRkdaOiHW0tmzpD+MHTF7Gy2Q9XFayHiIjKY66M53aYo1SumeG+8tYHERFRTRgvY8YTAHz50tG05nyX2GR+j+diM56dDV4oAkhnyxd4DuVHqXgqvMcTuNTZNqXpCDPwnNGevfsA2Lsfmoio0mYNPKWUf5//893lWw4REdWycu/x9JUx41nY47nIjKcQAn6PWtaMZzXM8LRs6jIDz2RWR9hXnp8TIiKqvHn3eAohXADeC+DFMDOd9wP4spQy5/DaiIioxkRSWaiKQMhbTO+6xfOWMeNpdbW94x270NW4uE5GfrdaCNLLYTBmNqV3V7i5EAAsb/Qh5HWVNfCuNCklS8WIaMkr5p3B5wGsAfB1AALA2wDsBPA+55ZFRES1aDylodHvhlhkVrBYVsaznM2Fgl510c/lc6sYjmeR1vTC1+CkwWj1ZDyFENjQEcLpoaUzUuXsSLIsP6NERNWsmMDzJgCXSSkNABBC3AngoKOrIiKimhRJamgq0/5OYGKprfMZT6u5UMCz+GyutU80ls6VJ/CMZeB3q6iCLZ4AgM2dYTzfM17pZZRNPJNDWtOhG3LRe4SJiGpVMWfPiwC8AFL5f7sBXHBsRUREVLPGUxoayhp4WqW2zmeTktmcGbzZEDi4CoGnhvawd9HPN5+hWAYdDd6yZaInmqlBzsbOEHKGhKY7f8GgGmRzBgwJXBhNYg3HyBDREjXXOBVrjMoZAPvymU4AeCOAB51eGBER1Z7xlIaWYPlmRXpdVqltOTKeOoI27V2dmPEsh8FYGh1lCHCLtXlCg6F6F8/kkDPMHZ7HBmIMPIloyZprs8c1+Q83gAMANuU/ngXQ4PzSiIio1lh7PMulnBnPRCaHkA37O4FLnXHLF3hm0BFeXEMkO00cqVLvesZShb8f749VcCVERJU116XbT0opj5RtJUREVPPqeY9nMpuzZX8nMDHjWZ7OtkPRDG7a6MVwPFOW482nI+yFqgiklkDGsyeSLPz92AADTyJauubKeP6HEOKQEOJTQogbRSU2hhARUc0wDIlourwZz0vjVJwPYOKZnG1jYlxlLLVNZXXEMrmy7CUtlhACAbe6NALPfMYz6FFxnIEnES1hswaeUsqXAXgBzDLbDwA4KYT4ihDitUIIf7kWSEREtSGWzkFKoDFQvj2eQgh4XArSuXKU2uoI2FVqmw88o2XIeA7FzCxnNe3xBACvuzzft0q7GElBAGjwu3F6KIFsGbLzRETVaM6BXlLKcSnld6SUbwKwFcD3ALwKwPNCiB+XY4FERFQbIqksAJQ14wkAPpeCTBmaCyWyuZpsLjQYSwMAOhqqZ48nYM4UtZru1LOLYyl4XAoCHhU5Q+LsSKLSSyIiqoiiz6BSyiyAn+c/IIS4zqlFERFR7RlPmdm7cu7xBMx9npmyZDxzCNm0x1MIAUWUK/CszoynSxGQ0iwF9nucn2VaKT1jKXjzgScAHOuPFZorEREtJXNmPAFACPFpIUSjEMIlhHhICJEQQrxNSvl4ORZIRES1IZI0A8/GQHkDT69bKcs4FTtLbQEz61mO5kKDUTPjWU17PIFL+1zHktkKr8RZPREz8PTlZ8BynycRLVXzBp4AXiqlHAfwCgA9MEeqfMjRVRERUc2pWMbTpTreXEhKiUTWvuZCAOBSlLJlPF2KQEvAgztv3407b9/t+DGL4VLNtyD1HHimNR1DsQw8LhWKEFjTGsAxjlQhoiWqmMDTchOAu6SUPQDqf1MGERGVJJIPPMu+x9OtOj5OJaXpkBK27fEE8hnPTBkynrEM2kJeKEp1Nae3Mp5Wprwe9UbMjrZW9+XNXWFmPIloySom8BwUQnwZwJsB/FoI4UIJe0OJiGhpiOYDz4ayB56K4xnPeMbMTAZt3Itolto6n/EcimXQ0VBdZbYA4FLrv9S2Z0rguakzjHOjyXnHyMTSWln2LRMRlVMxgedbABwCsEdKOQZgBYBPO7oqIiKqOZFkFn63Cp+7vI1ivGUotU1mzOe3PeNZplLbamssBJilxgAwVscZT2uGZyHj2RmGlMDJwfisn5PWdBztj6Enki7LGomIymXWwFMI8V0hxFsAaFLKf5dSPgYAUsqzUsqvlWuBRERUG8ZTWtnLbAEr4+lsqW0h42nrHs/yNBcaiqWrrrEQcCnjGUnUd8ZTEYDbynh2md1s5yq3feLMKAwJaDrnfRJRfZkr4/kZAFcCeFQIca8Q4k+FEKvLtC4iIqoxkaSGpjJ3tAUAbxnGqSTzpZFBm8apAGbGM+pwxjOnGxhJZNEerq4ZngCg5EfKjNZxqe3FsRSWNfqhCDPIXt0SgMelzBl4PnBsCACQ09lOg4jqy6yBp5TyESnlh6WU2wB8AEAIwJ1CiKeFEB8VQlxZtlUSEVHVi6S0su/vBMwyRqcznolCxtPePZ7ZnOFo0Dwcz0LK6pvhaXGrSl03F+oZS6G7yV/4t0tVsKE9hGNzBJ6/PT4IAMgZzHgSUX0pqqutlPKwlPKfpZTXA7gVQD+Af3R0ZUREVFOiKa3so1QAq6tteZoL2TlORc13dXVyn+dQLAOgegNPlyLqvrlQd7N/0m2bOkM4PstIlQujSZwaSkAIZjyJqP4UFXgKIQJCiE1CiG0AmgE8KKV8tbNLIyKiWrFn7z6cGopXZo+nS0XG4YxnMmsGhwE7A0/hfOA5GDMb1HQ0VF+pLWDu86zX5kI53UB/ND0p4wmY+zx7x9OIpjXs2bsPe/buK9z3wHGzzLY54EHOkDAMBp9EVD/mPYMKIf4YwCcAjAKwzuwSwDoH10VERDVGN2RF9nj63ArSjmc8zecP2bjH01XIeDoXeA3mM57V2FwIMDvbRuo049k3noZuSKxo9uNDr9hduH1zp9lg6MQM5ba/PTaIFc3mntDRRBbRtIamgKdsayYiclIxGc8/B7BdSrlaSrk2/8Ggk4iICgwpYUhUJOPpdanQdAndweyQtcczYPMeT8DhjGc0H3iGqjTwVAXG6rSrrTXDc3qprRl4HuufPFIlk9Px6KkR3Ly5He7CjNP6zAYT0dJUTODZL6U85/hKiIioZln70RorkJ3xuc1TmZOzPBPZHDwuBW61qB0qRVHLkvFMoznghsdl37rt5Mp39s3V4egQa4bn1FLb7iY/gh51WmfbJ8+MIZnVcfOmjkI2vJ73vxLR0lPMmejXQohPCiGuEkJssz4cXxkREdWMXD7bWJk5nmYWMpNzLnhJZHK2NhYCLgWeTo5UGYpl0FGFo1QsrnwgP56qv8yelfFcPiXwVBSBjZ1hHJvSYOiBY4PwqApesKG18LrUazaYiJamYs6i78j/+cYJt3GPJxERFej50Q+V6WpbhoxnRrd1lMqdt+9GJJnFFf/wa4ebC2XQ0VCdZbYAJmT2NLRWaTnwQl0cS6I97C1cGJloc2cY9x0dwPr2UOG2B44P4dq1LQh4XJNeFyKiejFvxnPCvs613ONJREQzqWTG0+sy39g7G3jmELSxsRBwaTSLk6W2Q7FM1e7vBMzmQgDqssFQTyQ1rczWsqkrjOF4Flq+xPjiWBInB+O4eXM7AHPvK1CfrwsRLV2znkWFEA1Syuhcn1zMY4iIqP5Zezwr1dUWcLjUNptD0OZSW5eqIOBRHcl47tm7D1JKM/Cs4oyn1URntA5LSnvGUrisu3HG+zZ1mpnOZFZHo1/Bb/NjVKzAUxUCAvX5uhDR0jVXxvOBIj6/mMcQEVGdszKeTf7yNxfyup3PeMYzOgIe+0ptLWGfy7GMZ86QyOpGde/xVKzMXn2VlBqGRG8kjRXNM2c8rZEqqaz5M/vAsSF0N/kLpbdCiLqecUpES9Ncl283CyGemON+AaDV5vUQEVENsvZ4hn32ZgWL4XVZezydy3gmMzksb7Q/gAv73I7t8bTKODuqdIYncKm5UL11bx2KZ5DVDayYpdS2PexFU8CNlKbDkBKPnhzG717ZDSFE4TH1POOUiJamud4hvLqIz+dvRCKiOrRn7z4AZhOcYuQMCVURUBQx/4NtZjVvSecc3uNpc6ktYGU8nQo8zSx0NQeeijDLbests3dxbOYZnhYhBDZ1hnG4N4pYOodEVsfNmzsmPcalCpbaElFdmfUsKqX8bTkXQkREtSuny0LZZLn58s2FMg5mPOOZHIKOlNq6Me5QViub3/Pa0VC9pbZCCDQFPHWX2bNGqXQ3BWZ9zObOMJ46O4ZIUjPHqKyfXETmUkTdlSAT0dJWnROliYiopuSMCgaeheZCzmQ8pZRIZvUazHiagWd7FWc8AaA54K67UtuLY0kAs2c8AbOzrS4lhuMZXLO2edrPl0tR6u51IaKljYEnEREtWs4woFYo8HS6uVAmZyBnSEcCzwafC1EHA8+ARy2MbalWTQFP3ZXa9oyl0BRwz/naWw2GcobEiza1T7rvztt34w27VmAsmYWU0tG1EhGVS3WfjYiIqCbohoTXgVLUYvgcbi6UzHcedarU1qmutlldVvX+TktLwIPTw/FKL8MW1t5ov0eddYanxRqpAmDa/k7AzARrukQiq1f9xQMiomLMm/EUQvxCCPEaMbHVGhER0QQV3eOZz3g6VWqbyJgZSUdKbb0uZHJGYT+mnbQqH6Vy5+27ceftu9EcdNdlxnO+wLMp4IFbFfCoCjZ2hGa8HwDG2GCIiOpEMaW2dwD4MwCnhBB/IYTgCBUiIiqQUlZ0j6fT41Ti+cDTiayTNX7Giaynphtob6j+jGdTwIOxRP2UlEopcXEshRXNszcWsixv9GNFsx8zXdtvsQJP7vMkojoxb+AppbxLSvlSAK8C0A3gkBDiG0KIqx1fHRERVT0rMHOplQk8XaoClyIc2+OZzJpfX8CRwNMNAI40GMrmDLSHqj/wbA64kTNk4eeo1uUMiZSmz9lYyNLV6Ju1+VNz0PzZqLdsMBEtXQtpLpQFkAbwDSHEp21eDxER1Rhr1qBLqVy/Op9bRcaBclUAiGfMgDbkdWKPp5XxtDfo0g0JQwIdNZLxBFA3o0Ossun5Sm3nc+l1YcaTiOpDMXs8Xy+EuB/AXQCOAtgmpXwvgJ0Afs/h9RERUZU7O2KOjvC6Kxl4Ko5lPB3d41nIeNobdFmjVKp5j6eluc5KSq0LICuKyHjOxSq1HeUeTyKqE8WcRd8D4P+TUv5y4o1SypwQ4k+dWRYREdWKM0NmR1K/uzJdbQHA61Id2+NZCDw9zu3xtHukyqXAs/ozns2B+ioptZpcLTbwbPC7IUT9vC5ERMVcnv6fqUGnEOJtACCl/KkjqyIioppxZjgBVYiKNRcCzGxruga72jY4lPHM6majntoqta2PzF4mZyDoUdHody/qeVRFoNHvrpvXhYiomMDz/8xw2wftXggREdWm08MJ+NzKjJ05y8XnUpFxKuNpzfGsoT2eWr7cs1aaCwH1MzYkmzPQPUun2lI1BzwstSWiujHr5VshxC4A1wFoE0K8f8JdjQA8Ti+MiIhqw5nhRGGWZqV43Yqjczxdijlv0W4hhwLPrG5A4NL+yWrWWGclpZmcUdQolWI0B9x103SJiGiuuqFuALsABAFcM+H2KIB3FfPkQogfAVgLwAAQB/CnUspnFrBOIiKqQmlNR08kheWNlW1i43OpjjYXCnpdjmR03aoCv1t1pLmQW1WgVLD8uVguVUGDr35KSjM5Y9EdbS3NAQ/6o2lbnouIqNJmDTyllD8G8GMhxMullL9a4PO/U0o5DgBCiNcC+AqAqxb4XEREVCaH+6JoKmKP2vnRJKRExTOePreCkYQzcyDjGR1Bj3NfX9jnsr/UVpdwV2iu6kI0B9wYrYPMXs6Q0A1Z1AzPYjQFPDjSF7XluYiIKm2uUtsbpJSPAHAJIV499X4p5T3zPbkVdOY1wsx8EhFRFdMNWXQgdHooAaAaAk/nMp7JbM6RxkKWsM+FWMb+jKfHVbnxNqVqCnjqIuOZzZd725XxbAm666YEmYhorjPpuwA8AuDDM9wnAcwbeAKAEOI/AbwcgADwyhnufy+A9wLAqlWrinlKIiJy0Eg8AwBIZnVIKecsMT0zbAWelQ1yvC7FsXEq8YyzgWeD3+1AxtNwdM12aw64MZT/uatlds3wtDQFPEhpOtKaXvGLO0REizVXqe0f5v+8ZTEHkFL+AQAIId4O4FMAXj3l/jsA3AEAu3btkos5FhERLZ61p0w3JPqjaSxrnP1N9JnhONpCXriUygaeTmY8zT2eTpbaujGesjerlTNkRcfblKo54MHxgXill1G0PXv3AQDuvH33pNutwNOuUlurOdRYMjvn/0Miolow7zsFIcRNQohQ/u/vEUJ8SQixttQDSSm/CeAWIUTrAtZJRERl0j9+qZnJ0b7YnI89M5zAurag00ual8+tFt702y2Z1RH0OFxqa2NzoUxOh5TmHMhaUS+lthlNhxBAW9CeMTYtQWvUDMttiaj2FXOJ+nMAEkKIywD8OYDzAP5rvk8SQoSEECsn/Ps2AKP5DyIiqlIDsUslj4fnaWxyZjiBtVUQeHrdimMZz3gmh5CTpbY2NxeynquWAs/mgBuJrI6sQxcPykHTDYwmNIS9Ltu6CTdNyHgSEdW6YgLPnJRSAngVgC9KKf8JQHMRnxcE8D0hxEEhxDMA/g+A2/LPRUREVWogn/H0qAqO9s+e8YymNQzHs1jbXgWBp8vMeDpxiklmdQQcLrW1M+NZCDwdGP/ilKagGWDVctbzV4cGkNUNdNk4WqiZgScR1ZFiLuG6hBA3AHgDgPfkb5v3DCylHABw/SLWRkREFdAfTcOtCgS86pyjHM7mGwutbQviN+Va3Cys5kaZnGF7ExanmwuFvS6kNaMwe3Ox4vnAs7b2eOZLSpMaOhoqOxN2ob726Bl4XUpRY4gsU/eITtUcvPS6EBHVumLOcH8L4PMAHpVSHhJCbAJw0tllERFRpQxE0/C4FAQ8Kk4PxWctYbU62lbFHk+XGWxmbO5sq+kGsjkDIYf3eAKwrdzWyp7WUqltS41n9p7vGceTZ8fQ2eCbswt0qZr8+dclUZuvCxHRRPMGnlLKH0spr5BSfjD/7+NSytc7vzQiIqqEgWgaHlVBwOOCIYGTgzN3Gz09lIAQwKrWQJlXOJ03n/FM5+zd55nMmM8XcHSOp5nVsqvcNlqDezytvYy1Wmr7tUfPIuBR0R7y2Pq8HpeCkNdVswE5EdFE855JhRA+AG8FsH7i46WUH3FwXUREVCH942n43SoCHjOLeLgviu3djdMed2Y4gRXNfnhdlZ8vaGU87W4wFM+aQVzI0T2ezHhaJaWjNdi9dTiewU+e6cWea1bi+MDcXaAXojnoRoSltkRUB4optf0egDcByAFITPggIqI6k8rqiKZzcLsU+FwKfG5l1pEqZkfbUJlXODNrX6fdI1USGTMYdHSPZz7jGbUp41mbXW1rt9T2f544j6xu4J0vWO3I8zcHPBhlqS0R1YFizqQbpJRbHV8JERFV3ED0UkdbIQQ2dzXM2GBISokzwwlcvdpscj5fkxSnWc2F7M54FgLPmtrjWXuBp8+twudWaq7UVtMNfPOxc3jhxjZs6Ag7cox6mXFKRFRMxvO0EMKZ36ZERFRV+q3A02WeHrZ2hXG0PzptTMlQPIN4JlcVMzwBFMp90zY3F0rk93g6mfFsKOzxtK/UVhGAUkPjVAAzs1dr3Vt/8Xw/BqIZvPuGNY4doyXgrrnXhYhoJsWcSccB7BdC/BJA2rqRezyJiOrPxIwnAGxd1oD/efICBmMZdE4Yc3Fm6NIolWrgVMYzXii1LcceT3uCi3gmV1PZTkstZva+9uhZrG4N4OZNHY4doyngYVdbIqoLxQSex/IfRERU56zA053PeG7pMgteDvdFJweew9UWeDqzxzOZdb7UNuRAqW0tBp7NNZbZi2dyONQbxd++ZhsUB1/v5oAHsUzOtjmvRESVMu+ZVEr5sXIshIiIKq9/PIOAR8X337cbQgiM5wOBo30x3LL5UlbnzHACHpeC5U3+Si11Eq/L4T2eDpbaulUFfreKaMqucSpajQaeHhzpn76fuFoNRNMIeFS8cdcKR4/Tku/4G0lqaA97HT0WEZGTihmn0gHgXwGsklLeJITYAeAFUsovOb46IiIqq4FoGl0NPoj8/sDGgBvdTf5Cg6E9e/cBABr8bqxpDVRNgGNlPO0vtbX2eDo7Mibsc9mb8ayx/Z1AbY0N0XQDI/Es3r57dWGPrlOaJnT8ZeBJRLWsmJqNLwN4GEBT/t9HAbzfqQUREVHlDETTk0pqAbPc9uiUTJQ5SqU6ymwBwJvf4+lEqa0iAL+7DIFnxq5xKhpcVXJBoBTN+T2ehiHnf3CFDcczkADesXuN48cqjJrhPk8iKpM9e/cVLjTbqZjAszuf3dQBQEqZBWDvmZ2IiKpCfzSNzobJWZWtyxpwaiiBTM7M/kkpcW6kemZ4Ak5mPHMIelyFDLBTwj63zXs8a28vYFPAA0PaN8/USYmMDo+qYEOH8/8HmvOltrW0/5WIaCbFnJkmnQmFEE0Aau9SKhERzUlKicFoBp2NUzKey8LQDYkTA3EAZlZR0yXWVVPG0+VQxjOjI+BwmS1gZjyjbC4EoDYCrGRWR8Dj/M8FMCHjWWMdf4mo/iw2E1pMt4QfCCH2AggLId4Fs8z2Kws+IhERVaWxpIasbqBrWqltAwDgaH8MwKWs4tr26gk8PaoCIRzIeGZzjjYWsjT43OiJpBb9PDndQErT0RL02LCq8poYYK1F9fxsTaXpBtKajqbA9L2dd96+2/bjMfAkonoxb8ZTSvkpAA8CeArAqwH8h5TyM04vjIiIyqt/3BylMnWP59q2ILwupdBgKK0ZhdurhRACPpdqe8YzkckhVIbA067mQtbc0Vrc42kFcn/5g+cc2VtklzPDCUigbBlPv0eFz63UTOMlIqLZFNPV9sVSym8D+PaU2+53dGVERFRW1gzPqYGnqghsntBgKK3pCPtcaK2yrJrPrdie8UxmylNSaQaeiw8srOD1T168AW/ctXLRz1dOVmYvp1d3cyEr8+90w6mJmgMejLK5EFFZWBe+nKhgqJRq+ZqK2eP5LzPc9im7F0JERJVlBZ5dU/Z4AsDWrgYc6YtBSomUpmNdW9Dxhjul8rpUR5oLlSfj6UZaM6Dpi8vYWo15wj7n12y3QuBZ5V1tj+UvwPjLlPEEzMZLEZbaElGNm/XMJITYAGATgAYhxKsn3NUIIOD0woiIyD7FXO3szwee7aHpswK3LAvjzv0XoLUEkM4ZVVVmazEznjaX2pZpj6cVKMbSuUXtz7QynmGHZ0s6IexzQRHmPtVqdqw/Bp9bgVLGCy8tQXdNNF0iIprLXGfTGwC8C0AngA9PuD0K4EMOromIiCpgIJpGW8gDj2t6MYzVYCieySGbM6pqlIrF51YLI1/sksjoCHjKk/EEzBmc9gSetZfxVBSB5oCn+jOeA7Gy/ExM1BTw4EhvdP4HEhFVsVl/c0opvw7g60KId0kpv1a+JRERUSUMRDPT9ndati4LA7jUWXNNW/UVvnhdDmQ8MzmEyjROBcCiGwzFM1apbe1lPAGzwVA1Z/bimRwujKawoslf1uM2B9zsaktENW/eS3ZSyq8JIdYDWD/x8VLKe5xcGBERlVf/eHrG/Z2AmXFZ1ujDYCwDAFhXhRlPr9vePZ66Ye5nLWepbXSRDYZqOeMJmPs8h/I/Y9Xo+EC+sVAZ93cCQEvAg/GUBt2QNTmjlYgIKK6r7T8B+EMARwBYZ3QJgIEnEVEdGYimsXNl06z3b13WgL7xQQDVmfH0uVVEU/Zly5JZM4gLlqGssqFQaru4jGetB55NVV5qeyzf0bZco1QsTQEPDAlEUxqaq6ybNBFRsYo5M70JwHopJTcXEBHVqWzOwEgii65ZSm0BYEtXGPcfHYRbFVVZyulzKRi0MeOZyJjPVe7mQosRTWvwuBR4XeUNjOzSHHAvurOvk471xxDwqPDOsA/aSc1B8//bWDLLwJOIHGUYEmeGE1CEwG+ODuLatS22nQeLeZY+Bp1ERPVtMGaNUpne0dayZZnZYMhXxvmFpfC6VWRy9gUt8Uw+41mWPZ6XmgstRiydQ0ONZjsBoDlY/RnPjZ3hso8SskbNVPP+VyKqDxfHUoVtNe/+2pNwKQJXrGzCCza0IZbWFnXhuZiz0z4hxH8D+B6AtHUj93gSEdUPa4ZnxxwZz235BkO+Ks2m+VyKrXs8y1lqa1fGM5Yuz9xRpzQF3JDS3F9bbaSUODYQw8u2duLsSKKsxy4Engk2GCKqNsWMK6slp4bjAMwqp799zTY8fHIYj54cxufuPwFDAuvbFz5OrZiz0zX5P/90wm3c40lEVEcGoubVzblKbde0BhH0qGj0V2dg43Ms4+n81+tWFfjcig0Zz8Vdja40K8DKGdVXbjscz2I0kcWmrnDlAk92tiUih50eMn+/BTwqbtjQhhs2tAEAxpMarv/n+9A3noaUckGVH8V0tb2l5GclIqKa0j+eL7WdI/B0qQq2dzeWa0kl89qc8fzojw8BKE+pLWCW2y56nEo6V7ONhQBzjycA5PTqy3hajYW2dIXxnhvXlvXY1h7PCEttichhp4fiUBUB15QO2o0BNzobvDg7ksSBCxFctaoZQGkZ31l3xwshts31sZgviIiIqstANA2PS0FToHazZb78OBUp7Qla9PzzlCPjCZjltnaU2tZy4NlUyHhWX+B5tN9sd7G5K1z2Y4e8LrgUga88cqbwJo+InBFJZpHK2ncRsxqMJLJFV9ScGorD71ZmzGi2hbxQBPDNfecWtI65zk53z3GfBLBuQUckIqKqMxBNo7PBW/amKXbyuRUY0gxa3Orivw5rn2G59kyGfW4b5njWdqltS75ja64KO9se64+hLeRBW2j2BlxOEUJU/agZonqQzOZwfDCOxir/PVpKljGV1XF6KF70uez0UGLWJoKqItAe9uLu5/rw17duLfn34awZTynl2jk+GHQSEdWR/mh6zjLbWmCdKO0qtzXyGc9yzWxsYMazkHGvxgDr+EAMmzrLn+20tATdVRmQE9WTh08MQ0pzNFXWxp4BlfSbY4MwJJAsIosbS2sYjGXm7F7fGfYhqxu488kLJa+lvIOoiIioKg1EM3N2tK0F1mzFtGbPmwUr41mOrraAVWq78IynYUjEs7mazng2+a2MZ3UFnoYhcXwgXpEyWwsznkTOu+/IIADAkMDT58cqvBp73HOwD4B5QW84npnzsWeGzcZC/jkCT79Hxe51rfjO4+dL7kDOwJOIaAmIpjSMzjKKQUqJgTrIeHptznjqBqAIQFHKU34c9rpxfjS54D188WwOUgLhGh6n4nEpUET1dbU9P5pEStOxpYKBZ3PAXXUBOVE9MQyJ+44OFjq3P3xiuMIrWry0puP+o4Pwuc2Qz2qSNhuro631+Nm8Y/dq9ERSuO/IQEnrYeBJRLQEnB9N4vRwApnc9KAslskhmdVrPvC0SoPsGqliSAm1TEEnYGY8FzO/0irTreVSW8AcLaNVSYC1Z+8+7Nm7D0fzb9Y2dzVUbC0tQU/VBeRE9eRgzziG4xm0Br0IeV146GTtB54PHBtEMquju8kPAIXfZbM5PRSHIjBnqS0AvGxbJ7oafPjmY6U1GWLgSURU59KajmRWh25IPHh8+ol0ID9KpaOh/E1T7HSp1NaujKeEUsZmS2GfG4a8tLe0VPFC4Fm7pbYA4FJE1ZWUHh8w36xt7AhVbA1NAQ9yurStazMRTXbfkQEowtxr3uh34eDFCMZrfITR3Qf70RL0oDXogUsROJbvzj2bU8MJrGgOzHvuc6kK3nLdKjx0YhipEs65DDyJ6oR1ZZ5oqoM947Deqv702d5p9/dH55/hWQsuZTztCzzLnfG0jrsQ1v7Q+sh4Vldm71h/DKtaAmUbrTOT5oAbEkCVJIOJ6s69RwZx9epmuFUFjX7zQuCjp2or6znxvWBa03H/kQG84rJOCCEQ8KhFldquaw8Wdaw3X7sSblVgMP8eohgMPImI6tzT58wGCc0BN359eADJ7OTOqQNRs9lAV2ONB552NxeSEmpZM56LDTzro9TW61aQ0Yyqyuwd7Y9WtLEQADQHqnfUDFGt642kcLgvipds7QRgzm8uptw2ldVxYjCORGZxHcmd8NvjQ0hkdbxq+zIAZof24wNxGLOcYwxD4sxwHOvaiqvs6Aj78MrtyzAUzxZ93mLgSURU5w6cj8DrUtDV4EMq32jAsmfvPvz7vccBAJ3MeE5ilD3jaZbILjTwjBYynrVdaut1qdClRKRKStwMQ+LsSLKijYWACYHnDD8frHghKt3E/zf35c+LL93aAQBQhMD161rmbTD0k2d7MJrI4sJYytnFLsA9B/vQFHBj9/pWAIDf40JK03F+NDnj4/uiaaQ1A+vag7jz9t1FzQh9x+7V0A2JkXm65VoYeBIR1TEpJZ4+P4aQ14Wwz4WOsBc/eWZyuW02Z6DR7563mUC187rtz3iWq6MtYM7xBBaf8Wyo8Yynlbme7c1RuaU0c390JWd4AkBzMD/jlBlPWiLKeUHlviMDWN0awPr2S9m+Gze04fxoEudHZv5dJKXEN/aZzXXGUxqO9E3eP1nJC0JpTcd9Rwbxim1dcKvm71RrJvXRWfZ5nh6KA8CcpbZTA9Jdq5sR8KgYiGWKqlJh4ElEVMd6x9MYjGUQ8rkghMCtO5bhgWNDhewYAGi6UfP7OwHA57J7nEq5S23zgcUiA89QjQee1gWEagk8raHr1ZzxJKKFS2ZzePTUCF6yxdwLablxYzsA4KGTQzN+3tPnIzjUG8WKZj8UAdzx4OmyrBcwm9DN9bvgoRPDiGdyePWOZYXb/G4VQsze2dYapTIx+J6PEAKdYS+SWR1PnZt/7ikDTyKiOmbt77RmO/7OzuXI6gZ+dejS7K1szqj5jraA/eNUzOZCtjxVUexoLqQqYs7B37XAm7+AUC2BZ0rT4VEVrGkrruGGUy7t8WTgSWSnh04MI5szCmW2lvXtQSxr9BXKbadmML/12DmEvC50NfjMaqJne3FxrDy/t04NJfDMhciszYLuOdiHRr8bL8iX2QKAqgisbgnM+jmnh+IIelR0hEt7P9Aa8mJFsx9ri/gdycCTiKiOPX1+DD63An++xOaKlU1Y0eyf1N02Wy8ZT7d941SklDAkaqqrbTyTQzif2a5lqiLgVgUuVEngmczqWN8RKpSrVUqj3w1VERhPV8feV6JKsbuE9b4jAwj7XLhmbcuk24UQuHFDGx49NTLt9/JwPIO7n+vD713VDVUR6Gr0QQD4ysNnbVvXbM6NJDCaMBv6vOMrj0/7XWlIiXsPD+Dl2zqn/d7a3BWePfAcTmBde6jkc4iqCHQ3+dEamj9gZeBJRFTHDpyPYEd3U2EmlxACt+1cjodPDmM0kYWUEpoui+5oW2zDgUrwFkptF5/xtMoryz3HE1jcHs9a72hr8bpUnJtlX1W5pbI6NndWbn6nRVEEljX6EElqeOLMaKWXQ7Qgldj3ONcxpZS4/+gQXrSpvRCkTTzP3bixDeMpDQd7xid93p1PXkBWN/D23asBmL+zfmfncvzPk+cRSWYdXftXHj4DAbP8P5XV8fb/ehzDE5r7jKc0xKaU2Vpf0+auBpwdScx4gbaUUSoLxcCTiKhOpTUdh3rHceXqpkm337ZjOXRD4p6DfdDyZXsddZDx9Lrsy3has03LmeXyuBQIYTY1WohYWkPYW9sdbS1el1IVpbY53UBWN7C5q6HSSwEALGvwwaMq+Md7jlTVuBmiWpXI6BiOZ/DS/BiVqW7Y0AYAePjEpX2euiHxncfP4wXrW7Gh49Le7/e+aB2SWR3feuycY+sdT2r47v6LaA150Oh346vvvgb90TTe+ZUnCrOcRxNZNPhcuGF927TP39IVhiGBEwPxSbensjp6IqmiR6ksFANPIqI6dag3Ck2XuGpV86Tbty4LY317ED99thfZfIfMeii1VRQBj0uxZY/nuRGzyYJVvlsuLkUsuHlMtI4ynj63gr7xFLI27dddqKRWHY2FLIoisKLZj2cvRPCz5/oqvRyimjeWzEIRwIs2tc94f1vIi23LGvDQhLEq9x0ZQE8khXfks52WLV0NuHlzO7726NmSL4AWmwn+zhPnkdL0wjn76tUt+OLbrsax/hj+4Ov7kTMkxpIaXn5ZFzyu6ecvax7x1M62Z4bNcx4znkREtCAHzpuNha5c1TTpdqvc9omzo4Wh1/UQeAJmpsyOjOfZYTPbVu4RM6oiFllqWy8ZTxWGNIe6V1IqX3K9qUoCTwBoC3mwpSuMT/7yqG0za4mWqkhKw67VLWgOemZ9zAs3tuHp82OF383ffOwcljX6ZsyS3n7TegzHs/jB0xdtX2s2Z+Brj57BDRtaEfReush4y+YOfPpNO/H4mVEc6h2HbkjcevmyGZ9jTWsQXpcybZ/nqSJGqdiBgScRUZ16+vwYVjT70RGeHlTetnM5pLxUUtpZB11tATNQtOPN+LmRBFRFwFXG5kIAoIrFBJ5a3WQ8q2WkSkrToQhgeZF7oMtBCIG/evVWXBhN4VuPna/0cohqVkbTkczqeMmUbrZT3bixDZouEUtrSGk6HjoxjLdcuwquGbZiXL+uBTtXNOLLD562vRz+noN9GIhm8Ac3rpt232uv6MZHb9uGtGZAVUShRHgqVRHY2BnCsYHJgac1SqWYzrSLwcCTqE5IKTGWzMLgjLclbWK5zoHzEVw5pczWsr49hMuWNxQa8RTTja4W+NwKMjY0FzozkoTPpZS9Q6yZ8VzY+q2utvXAVyUjVVJZPT/7rro6Bd+0qR0v3NiGz95/AuMpdrklWoix/P+dl8yyv9NyzZoWeFwKxlMaBqNpuFWBN1+7asbHCiFw+4vW4+xIEmNJ+/5vSinx5YdOY0NHaNay4HfdsBZrWwNY3RKYsczWsrmzYdosz9PDcXQ3+RHwOHsOYeBJVCfGkhqOD8Txy0P9lV4KVYG+8RT6xtO4Kl9mO1M32tt2LgcAeFSlrGNDnORzqUjblPH0VmAeprrAPZ5SyrrqautWzf26lR6pktL0wiiiavN/X7UV4ykNX/jNyUovhajmpLI6hmMZeF0K1s9TXupzq7h2TQvGkhqG4lm8avsytM8x6/IVl3VhdWsAvZGUbVnPx06P4lBvFO+5cS2UOc7XHQ2+OdcGmHvWh2IZjCYudd8tR0dbgIEnUd2w9iLddaCnwiuhanDgfAQApjUWmsjaA+J21UfQCZglmosdp6LpBi6OpeCb44qxU1wL3OOZ0nTohqybPZ5CCKxs9lc04xlNa9B0CX8FLkAUY9vyBrz+yhX46qNnkbFhXzNRtUlrOk4PxXG4Nzr/g0sQz+Tw7q89gURWx4pmf1EVDTdubEMmZ0A3ZGGEimXqhV1VEfjDF65DIqsjms7Zsub/evg0WoIevO7K7kU/15ZlkxsMSSlxeiiOdQ6X2QIMPInqRir/xuOBY4MYS9g3Q4pq09PnxuB1Kdi6bPYxECtbAmgKuBH21keWDMhnPBf5JrxnLAXdkGVvLAQAHpcKTZclfw2x/Jubesl4AsCqlkBFA89Tg2azjUr8HBTrz1++CQLAhbHKNmEickJPJIWheBav+exD+PsfP29LWfl4SsM7/utxPHl2DOvbg2grcpvJjfk9kwGPil2rZ7+ga3nD1SvgUc2qjYlboBYyxzSl6bj3yCDedv1qW34fWZ1trQZDg7EMElkd69qdn1fMwJOoTiSzOrwuBZoucfdBttlf6g5ciODy7sY593kAwObOMFa3On+Vs1zM5kKLy3ierdAoFQDw549pNXooljW/rV4ynkA+8BxJVmxe5cl84FmtpbYAsLzJj9+/cS1GEtlCh2qiejCayGIkkUVbyIO3Xb8a33zsHF78Lw/gu09eWPDvhLFEFm/9z8dwsGccn3/LlUUHnQCwbVkDmgPuojOkPreKFc1+JLL6ot+T9Y+n4XEpePv1q+d/cBHaQ160BD041h/Dnr378M6vPAHA+Y62AANPorqQ0w2kNR0tQQ82dYbwwwnltgu5uka1zZASB3vGp41RWQrsGKdydtgKPMsfcFhBzsmh+DyPnCxahxnPlS0BxDI5RGxs0FGKk0NxCKAiJdeluP0ms8NlhE2GqI7c+eQFSAksa/ThH167HT/90xuxpi2Ij/zgORzui5Z8oUXTDbz5jsdwfCCOO96+C6/cPvO4kdkoisCmzjCaA7OPXZmqLeSB363iU788tuCZxJpuYDieweuu6J60d3Omvg3FEkJgc2e40GDIOmcy40lERTk3moQE4HereN2VK/DUuTGcH6lsUw6qnGRGRzZnzLm/s1753IsvtT07kkTQo5Z9lApwqZurVeZZrEKpbR2VTa9qCQCoXGfbkwNx+Kqwo+1UTQEPvC4FySz3eVJ103QDF0aT04KwqRfIdUPiW4+dQ9jnKnRZvWx5I753+278yxt3Iq0ZONQXRd94cSXm2ZyBw31RnB9N4qvvuga3bJl7fIpdhBBY1WLuVf/24+fmfbyUEj2RFH59eACfufcE3vuN/TjYMw5DAu954Vpb17a5K4zjAzFIaW7t8LkVLFvgPO9SgmAGnkR14ER+HpPfo+K1V5idSn/IJkNLVjx/JfiqIvah1Bs7mgudG0lgdWuwIgGHogh4XUrJGc94IeNZR6W2rRUOPIfiVV1mO5HfoxYazBFVq6fOjaF3PI0zI3NvJbj/6CB6Iil0TQmEFEXgDVevwGXLGwAJ3PHg6XmPKaXEicE4sjkD33jPtbPOt3RKo9+N3eta8dn7Txa2RMxkKJbB0+cjuOET9+MPv7Ef/37fcZwcjCPsc2N9exCbOsO2rmtLVxjJrI5MzkBKM7C2LTRnt1y71M+lUaIl7PhAfi+SW8XyJj+uX9eCHz3Tgw+8ZEOFV0aVEMvksLzRh84FXr2sZXbs8Tw3ksTWZQ0YjmdsWlVp/G51ARlPa49n7Z/WrSvnyawZTFci8ExrOi6MJrGssbr+D82WVQi4VUSSGjI5HV5XbQTLtPQc6TO7qEaSGh44NoibN8+cefzGvrPoavChOTDzhTSfW0VryIP/fuI8/viWDYW9mlbWdOL/kweODSGeyWFNawDXrGmx88spihAC//fVW/A7n3sEe387c6D87cfP4fRwAmGvCx955WZsW96ILV1hBL0ux7ZKWQ2GklkdaU0vy/5OwMGMpxCiVQhxjxDimBDiOSHEXUKImSeeEtGiHB+Iweu6NIvx9VeuwJnhBJ69OF7hlVElxDM5XLkEs52AucdzMaMlcrqBC2NJrM5n2yrB51ZxejhR0liVeuxqG/C40BbyVmSW5+mhBAyJqh2lMlXAY5Vol9aUiqicDvdG4VIEfG4FH/vpYWRmmLl8eiiOh04M463XrZqz6mR5ox+ZnIGvPHxm1scYhsSnfnkMXpcy72xLJ+1Y0YTbdi7Hfz58elqZ8dceOYO//uHzaPK7saUrjLfvXoOrVzcj6PC2CSuDmsjmkMkZWF+GUSqAs6W2EsAnpZSbpZQ7AJwC8AkHj0e0ZJ0cjE96g/TKy7vgdSn44dMXK7gqqoRszkA2Z+DKlU2VXkpF+Nwq0jO8mSlWbyQNTZdYU8FOv36PimzOwMWx4gOuWFqDEEDQUz+BJ4DC/qhys0qda6nUFgCODdg775DITof7ogh4VKxuCeDMcAJfefjstMd887FzcKsCb7521ZzP5feoePXly/CNfecwPksDsnue78PhvihWNPuhVHiv9odfvhm6IXExcmlf6pcfPI2P/vQwXr6tExs7y1Pqagl6XVjVEsBYwnztytFYCHAw8JRSjkopH5hw02MA7OkDTEQFOd3A6aHEpDdIDT43XrqtEz99rg9GhUYRUGUs5f2dgNmcR9Ml3vSlRxf0+dYolUpmPK2RKidLKLeNpnMIeV1lfeNSDpWa5XlyMA5FAN973wsW3DmynHxuFQIodKkkqjaabuDEQBxBrwtNAQ9etq0Tn73/BPrH04XHJDI5fH//Rbz68mVFZSj/+OYNiGdy+Pq+s9Puy+kG/vXXx7GpM4TWYPGdaJ2yqjWAt163GkOxDFJZHZ//zUn84z1HcOvly/D5t15VkcB4c1e4MAO+5kttJxJCKAD+CMBPZrjvvUKI/UKI/UNDQ+VYDlFdOTuSRFY3ppWEve6KbowmsrYMXKbaEUvnIACz+cISZM3eLKFKdZJz+cBzTVtwUe3qF8P6v3yqhAZDsXQODXXUWMiyqiWA3kgKmr64fbulOjUYx6qWQEVG6iyEIgT8HrUwEJ6o2pwaiiOrG4Wy8L+9dRtyhsQ/3XOk8JgfPdODWCaHd+wuLk+1bXkDXrKlA1955My08Sp3HejB6aEEPviyzVXTmfpPX7wBijAvEH3ql8fwu1csx2fefAXcqn3hWCnnrS1dlxoWra2DUtuJPgsgDuBzU++QUt4hpdwlpdzV3s4toESlOjl4qaPtRDdtakdzwI3heLYSy6IKMAyJ0UQWDX73km0w4nVZgefCIs+zI0n43So6KrgfyKUqaAt5Ssp4xtIaQnU0SsWysiUAQwK9keLGJtjlxGAMGzrKU3pmF7+bgSdVr8O9Zhm4NR5lVWsA77tpHX7ybC+iKQ1SSnxz3zlsW9ZQ0iiwP37xBkSS2qRxJZmcjs/cewI7VjTiFZd12vuFLEJryIvlTX5kdQNvuHoFPv2mK+CyMegsldVgyK2KsnVEd/yrFUL8C4CNAPZIKct7yZJoCbA62n7vfZOvcnlcCm7buRxjySxyC03/UE3Zf24MWd1AW6jyZUWVYmWoFhp4mqNUAhW/Qr6+PYRTQ8U3iolncnXVWMhSiVmeOd3AmeEE1tdY4BnwqOgbT8+6342okg73RuFxKYWtBADwRzdvQHeTH+dGk4imczjaH8M7X7C6pN+/V61qxgvWt+LLD52BkX+v8z9PXEBPJIUPv2LubGclqlqWN/qwtSuMT/7ejkJDyEqxMp7lrOxwNPAUQvwjgKsB/K6UsjJ96Ynq3PGBGFa2+AtXESf63Su7ISUwlmDWcyn44YEeKAJoDjDwXOjW5jPDiYo2FrKs7wjh5GAcssgvJJau08CzArM8z48moekSG8rUbMMugUKDIWY9qfoc6Y9iS1d4UiDo96j4m1u3IpnVcXIwjka/G7+zs7twf7GB4Z+8eAOGYhkMxTPQDYnP3n8S161twY1lntk51UzrF0Kgwe+uiv34a1qDUIQ5jqlcnBynchmAvwKwHMCjQohnhBA/dOp4REvVycE4NnbMPFj4ypVN8LqUis0jpPLJ5HTcc7APzQFPxa+iVtJiSm11Q+LCaAqr2yrXWMiyoT2E8ZRWdKl8LK2VrVSqnDrDPnhUBedHyhd4WiXOG20e2O60Qmfbfna2LZc9e/c5NmfRaeVcu5QSh3uj2LZseu+BV27vQoPPhZwh8aZdKxbUSXr3ulZctaoJvZE0+sfTGI5n5s12LkSl9v07xaUq2NrVgO5mf9mO6WRX20NSSpEfp3JF/uN1Th2PaCmyOtpu7Jz5yrwQAm0hD6LpHEaZ9awrU980PHBsCOMpreQy23o7kRZKbRewsaNvPIWsblRFxtPaX1hsg6F6zXgqisCK/EiVcr1RPpEPPNeXqcujXTyqgrDPxc62VHX6o2mMJTVsnSHwFEJgTVsQDT4X3nXD2gU9vxACf/LiDcjqBi5GUnjxlg7sWtOy2GUvCSGfy9bmRvOp3I5WIlo0q6PtplkynsCljfzlbs5B5fXjZ3rQFvKg0V9/Wa9SeN0Lz3iey2fVqiHwtPYXFttgyAw86/N7v7rMI1VODcbR1eCruddTCIEtXWE2GKKqc6TPzMJvm6Xbut+tYuuyBnQ3LTzzdsvmjkK5+Z+/fNOCn6fa1NvF4fq7PEq0hFgdbWfLeAIoXMkairHctl5F0xruPTKIt1y7qnCCX6oW01zozLA1SqXypbbLG30IeNSiAs+0piOrG3WZ8QTMBkP7z45h67JwWZo+nRyK11xHW8vmrjB+/EwvpJQVb5BFS4NVhTBXcGR1tN3SFbYliJrpOYQQWNcWRDKr47LljYs+RrnVU3A5l/o8SxEtEVZH27neJHlU880HA8/69YuD/cjmDPzuld1LPvC8tMez9M89N5KA16WgM+yzeVWlE0LkO9vOH3jG8/Pr6jXwXNkSQCyTg25IuFRngykpJU4OxvGmXSsdPY7drDet33zsHGLp8+gdTy8qe0S1p5gAsFIO90WxqiXgeBVB0OtCcIaxUtX4mixV9XmWIloi5upoaylkPNlgqG798EAP1rYFsXNF7V3ltdtiMp5nR5JY3RqoaLfBiW+Q1rcH8cSZ0Xk/J5au78DTGqmSzhkIObwXqXc8jWRWr9mMpzUe4Vh/lIEnVY3ZGgvR0sM9nkQ17MRAfM79nYDZnENVBDOedapvPIXHzozgtVcsZ2kdJgaepX+uOcOz8vs7LRs6QugdTyORz2jOJpY25zaGvbW1J7FY1kiVjKY7fiyrtLlWA89N+U68S63B0GyNp2q562y9iGdyODeanHV/Jy0tDDyJalRON3B6OI4Nc+zvtLhVBp716ifP9EJK4Hev6J7/wUvAQsepGIbEuZEk1rZVT+C5Pj9H8vRQYs7H1XvGc2VzPvDMLaBVcYkKo1RqNPBs9LuxvNHHBkNUNY71RyElmPEkAAw8iWrW2RFzyPl8GU/ALLdl4FmffvRML65Y2YQ1VRQwVZKV8ZQlBp790TQyOQOrWyvfWMhiZd1ODs0dRBQynjXWhbVYQa8LbSEP0mUKPJsDbrSGvI4fyymb2dmWqojVWGgrM54E7vEkqlknBsw3FpuKGHLuVhXu8axDyWwOR/qi+NjvXFbppVQNn5XxLCFG2bN3H8ZTZvBWDaNULKtbg1AVMW9n22idZzwBs8HQqSJHyyyEVY5pSFmzZbaWzV0NePjkMDTdKOt8vqVoKJaBWsE94YthGHJBe+FLdbgvVsjEExsd1e9ZiqiO7dm7Dz1j5lzO9R3zv1H2sNS2Lg3Hs1AVgVt3LCvctuRPaqoCgdJLba39g9WU8fS4FKxuCeDUYGLOjpVWqW1DnWY8AbPBkJU5cdLJwTheub3L8eM4aeuyMDRd4vRQApu75r8wSZeU0hm2N5LCmeEE3KoCw5AVbUq2EKeGE4ilNSQyuUmdYO3ujnu4z2wsxB4EBLDUlqhmJTV93o62FreqIJ7JIZmdu0kJ1Q4pJUbiWdy0sQ1tNVwW6AQhSg880zkDHlXBssbq6gS6viOEk/OMVInnA8+gVy3HkipiVUsAmZzhaIZG0w2MJTVsKGL7QjWzgs2j/Ut7tJLTPv+bk5AAsrqBp8+PVXo5JbkwmsRoIgtNl/jiA6ccO05ON3C0L4qt3N9Zte68fXdZL1gz8CSqUamsXtT+TuDSSJXhWNbJJVEZxdI5ZHVzdidNpghRclfbtKZjVWug6srmNnSEcHY4MWfAFUtrCHhUuOq4rHJlfqRK1sF9nqmsmfWu9VLbdW0huBSBY/0xdnW1ydTX8eJYEt/dfwGtQQ+EAH76bG8FV1e6b+w7CwBo8Llwx0OncXEs6chxzo4kkMkZ7GhLBfV7liKqY1JKpDW9qI62gNnVFgCG4mknl0VlFElpEABetq2z0kupOmbgWWLGUzOwporKbC3r20PIGRIZbfaAK5bO1fX+TgBY3eJ8Z9uUVh+Bp8elYH17iA2GHPT535yEgMDKFj+a/W7cfbAf+kJmONlI0w0MxzPTGqtNDZoTmRz+58kLaAl6sK49CEUAn/j50QUft388Xai6mHrc933zKQDzd7Qtd9aNKoeBJ1ENSmsGJFBUxvPO23fjX/dcAQDc51lHEpkcAh61qFLrpUZRSpvjKaVEJqdX1QxPixUEpeaYYRnLaHXb0dZizfJMOzjLM6XpCHrUumiCsrkrvORmeZbLhdEkvrf/It587Up4XSpaQl4MxzN4/PRIRdfVG0nh1FACP3uub87H/eDpi4ilc+hq8MLrUnH7Tevxs+f6sP/saMnHPNofxbnRJI4PxjCamF5RlcjqcKuibBdzGMBWPwaeRDXIehNaTEdbAGgPm3sAGXjWByklElkdAS+DzpmUmvHUdAlDokoznmYwPFfAtRQynp1hHwQcznhmdazvCNVFE5TNXWH0RFLIVTgLVy5SSoynNPzi+T785Nle3PX0RXz3yQsYiKYxMkMWcDE+d/9JKIrA+2/eAABo8rsR9Kj46XOVK7fN5gwMx83A7+N3H0Y8M3M/B8OQ+NojZ7FzRSNC+fPH7S9ah64GH/7hZ4dhlPjz8u3HzkMAyOkSf/Ojg9Ne52RWx4aOMDwuhhtk4k8CUQ2y9iIV09EWAFqDXiiCgWe96ImkoBsSQU/9NpNZDEWgpDdQ6UJH2+rLeIZ9bnQ2eOfMeEbTubrPeCqKgNetzPk6LFZaM7ChvbbLbC1b8g2GUjXcUK6U/aljSQ1H+2N437eexgf++wA++N1n8ZEfPIezI0mcHErgl4f6bVnT+ZEkvv/0Rbzl2lXoymfGVUXgZds68fPn+x3dgzyXB44NImdILG/0YSCawWfvOzHj4357fAinhxP4/RvXFi6wBDwu/MWrNuO5i+P44YGeoo+ZyOTwwwM9aA150N3sxz0H+/GTKXtdk9ncvGW2tLQw8CSqQUlNh9elFF1mqSoCLUEvZ3nWied7zG6VQWY8Z6QqSkmZnnT+zeLatuoLPAGz3Na62DSTWFqr+4wnAIS8LsTTOVuzV5acIZHVDayv8f2dFquzbXKOn5t6MpY0R0vd/YEbce8Hb8IDH7oZj/zli3Hlyib43So++ctjyOmLDwo/e/8JuBSBP7p5/aTbb9u5HJGkhkdODi/6GAvxg6cvwqUIdDf7sWfXSvzXw2dwcnB6qfVXHjmDjrAXr9q+bNLtr93ZjZ0rGvHJXx4teq/qj5/pRTyTQ0fYi+WNPly5qgl/9+NDGIiavSSyOQOaLtlYiCZh4ElUg1JZHX53admu9rCXGc86cah3HAAQKPFnYKnwuxWkNb3orGda0yEALKvSvX0b2kNIafqsAVc8nUN4CVyECHldyBkS50ft78BpZb031kng2d3kR9jrWhKBp25IRJIamvxuXLa8ERs6wljTFkR3kx8el4IVzX6cHkrge09dLHzOQrr9pjUddx3owVuuW4XOhsm/K164sR0NPteCu9supvvwSDyD+44Moi3khSIEPvLKzQh4VPzdjw9N+p1xYiCGh04M4x27V08rfVUUgb+7bRsGohn0jafmPaaUEt967By2LmtAyOuCEAKffuNOZHI6/uIHz0FKWRjftnVZbY8nInsx8CSqMTndQFrT4S+xzJKBZ/14vmccfrdacwPLy8XnVmFIoLeIN1AAkNF0eN1K1Y4jWd8RgiHNvagzWQp7PAEUvkYnZibG8l05t3c32v7clSCEwKau8JyZ8nrxzIUIcoZEU2DmcvPmgBtXr27Gv/36+LyvR89YCs9dHMcnf3EUz/eMTwrceiIpM9v5ovXTPs/jUvDK7V341eEBpDW9rGNsfvJsL3KGRHvYAwBoDXnx4VdsxqOnRnD3wUuNhr766Fl4XAr+17WrZnyeq1e34Lady9E7nkYmN/11mvg1PXMhgsN9Ubz1ulWFkt117SH85Su34IFjQ7jzyQuFix4staWJqvMsS0SzOj+ahARKz3iGGHjWi+d7owh6me2cjXVR5uRgvKjHp3MGfK7qfT2tfYcz7W/UdAMpTa/7PZ6A+TtPEcBT5+wPPKNpDV6XguVNftufu1I2d4WRnCNTXi/uOzIAwGzyMxMhBP7yVVswGMvgq4+emfV5fn6wDxcjKRhSYu+Dp/Gazz6Mm//lAXzi50cxmshiOJ7F269fjY4J2c6JXVRv27kc8UwODxwbsvGrm98Pnr6Iy5Y3TNp685brVuOy5Q34+M+OQDckcrqBu56+iNdd0Y3WkHfW5/qLV24GAJwbSc75c/Otx84j6FGnzZF+x+412L2uFf/vZ4cRSWrwqAqaAp5FfoVUTxh4EtWY/nFz/4S3xC5x7WFzj2e9vwmpd4PRNIZiGQQ5RmVW1kWZYgJPwzBn4nrd1Xs6XD/HSBUrA7EUMp5CCIS8Ljx9LmLr8+qGRCydQ0OdBe9busLQDYnsLJnyarHY7OC9RwYQ9rnmrFi4Zk0LXrq1A1984BTGZhj7cXIwhg9971kEvSp2rGjEk3/9Unzi9ZdjVUsAX37oNE4MxqEI4PYZsp2W3eta0Rr0ON7dduLrdbQ/iud7onjD1SsmPUZVBP7htdvRH02jJ5LCYCyDtGbg3TeuKTxmptEjK5oDWNHkx1hSwzf2nZvx+JFkFj97rhevu6q70BnXoigCn3rjDgghEMvkEOAFUpqies+0RDQjq0GQu8SywPawF5putpyn2nWo12wsxBP67NyqApcicGJg/sDzwlgShgQCVdwhuCPshSrEjGWCViOQpZDxBMwA+2h/FIlZxkUsxJG+KHRDosFfX8H7li6zxLGWO9vO58JoEscH4miepcx2og+/YgsSmRy+8MDJSbfH0hre+82n4Peo2NgRhiIEWoIevPnaVfjme67D/r9+Kda2BbGxI1QYTTYTl6rg1Zcvw31HBopu0LNYP3jqItyqwGuv6J5239Wrm/GmXSvQP55G33gaL1jfWviZmMuyRh+a/G58/O7DM1YXfP+pi8jkDLz1utUzfv6K5gD+7rZtAMDO6zQNA0+iGmOVy7rV0vb3cZZnfXi+x2wsxIzn3PweFSdm6Oo41ZG+fCBfxa+nEAI+jzJP4Fm967dTyOuCIYFnL0Rse859p0YAoO4ynlY30Ximfvd53psvs20uopxzc1cYr79qBb7+6LnCHkbDkPjgd5/FuZEkPveWq2asJGoOetAR9hZVMnrbzuVIawbGktOzqnbL6QZ+eKAXt2zuQEtw5rX9xSu3QFEEcobEu29YW9TzCiGwvj2IrkYf/vjbT2NkQjd8KSW+8/h5XL26GVvn2Lv5xqtXYH17cFoTJiIGnkQ1ZiiWgRBmKU0p2kMMPOvB873jWNcWLPn7v9T43SpODMbnLS0/bGWQq7xDcJPfg1gmh/1nRyfdvhQDT8DeBkP7To/A51bqbsh9yOuCz63Ymh2uNvcdGcT69iB8Rf7//T8v2wQI4OKY2Xjsi789hV8fHsBfvXorrl/Xuuj17FrdjK4GH0ZmKOe124MnhjAczxTKbGcqnW0NebGmNYDmgBsv3tJR9HO7VAVffOvVGE1m8YH/OVD4PRNN53B6OIG3XjdzgyKLEAJtIW/JlVlU//gTQVRjBmMZeFSl0EmuWIWMJ2d51rTne6K4rE46bzrJ71ERS+fmvdByuC8Gn1up+g7Byxp98KgK/v4nhyaV8RUCT299Zetm41IVbOwI2dZgKKcbeOLMaN1lOy0hrwuJrDOzT50ipcQvD/Xj+Z5xjM4RwEXTGh4/M4KXbu0s+rm7m/x45+7VGI5n0Teewr/86hh+Z+dy/P4Na2xYubnH8dYdyzCe1GyZGzqX7z91ES1BD27ePHdA2RbyYlNnuOSLldu7G/Hx127HIydH8G+/Pg7A7DHQHHDj1ZdfmgM6U8BLNBsGnkQ1ZiiWKbnMFmCpbT0YS2TRE0lh+/IGnuznYTUYOjFPg6EjfdGaKFtWFYFVLX4c6o3izicvFG7PLbGMJwBctaoZBy5EbAmmDvVGEc/k0FCnr1/Q64KmS/Tlm9JVuzPDCbzrq0/i9m8+hURWx9mRxKwZ2wePD0HTJV66bfbAc6bfk++/eQNUReD8aAqbO8P4xO9dXvKF3LnctnM5JICxZHH9FDTdwMWx1IwjTGaT0w3ce3gQr71iuaOZ+jddsxJ7dq3E535zEoOxNMaSGt64a2XRGWaiqRh4EtUYM/As/b9ug88Fj0thxrOGWY2FLlvOjOd8CoHnwOz7PMeTGnoiqapuLDRRS9CDa9e24FO/PIrx/JtaXS69wPPq1c2IJDWcHk4s+rn2nc7v75xlFEetC+Uvqjx3MVLZhWDu7rW6IfEvvzyGV/zbg3jq3Bj+5tat2LosDE2X+PxvTs74PPcdGURzwI2rVjWXdCGuOejBimY/PKqCvW+/2vb93TtXNMLnUjAQTRd1ceSnz/aiJ5IqdKwvxkgii6xuTOtm64SPvfYyXLa8AWeGzVFus80BJSoGA0+iGjMUX1jgKYTgLM8ad6jXbCx02XIO5J6PWxVo8LnmzHge6bcaC9VG4CmEwEdvuwzjKQ3/dq9Z+rbUutoCwFWrmwDYM89z36kRbOgI4a7331CXFQQBjwoB4NmL45VeyqzGklk8d3Ecn/vNSdy6Yxnu//MX4Q9euA4NPjdagx7850NncG5k8kUGKSV+c2wQt2zuWNB+964GH65Y2YjVrUG7vowCIQSWNfqQyOp45OTInI81DIkvPnAKgBlMGkV2wx2KZbClK1yWi5A+t4ovvvVqqIpAo9+NtW32v2a0dDDwJKoh2ZyB0UR2wRv228MMPGvZ871RdDf50TxLB0O6RAiBjZ3hOWd5FhoL1UCprWXb8ga89brV+OZj53C03xwDIgTqrjHOXNa1hdDgc+HAIhsMabqBJ8+OYrcNTWWqlaII+D1qVWQ8Z7L3t6dwfCAOVRG4873X49/2XIGOCZ1QV7UE4FIFPn73kUmfF8vkEElqeEkJ+zunsrO8dqq2sBduVeBzvzkx5+PuPTKAE4NxNPnd0HRZVNOsZFZHIquXJdtpWdUawM4VjdiYnylMtFBL50xF5IDFDr4u1UjCDBo9C9jjCZhNBhh41q5DPePY3s1sZ7E2doTmDDyP9EXRFvLUXND2wZdtQtjnwsd+chi6IeGq8sZIdlMUgatWN+Ppc5FFPc9zF8eRzOrYvb5+A0/AbDD03MXxorNp5WAYEv9492H888+PoiXowfbuBlw3wwUAj0vBH9+yAb8+PICHTgwVbo8kNbhVgZs2tdm6Lrv2zitCYFmjH4+dHsVT50ZnfIyUEl944BRWtvixvj0IIYCfPdc373MPxdIQAH73yumzO53kVhV2U6dFq62zLdESZwWNf3XrtgWdHNvDXgxzj2dNiqXNPW3bub+zaBs6QhhJZCfNoZvocF90zll01ao56MGfv3wz9p0ewWgiuyTfDF61qhnHB2OIprUFXwB8LL+/87q1LXYvr6oEvS7E0jmcHVn8nlg7aLqBD33vWXz5oTN45+7V2NAehDJH9vE9N67FqpYA/uGnh6HlO8WOJbO4fl1r2UrMFxKQdoS9aA648fnfnJrx/n2nR/DMhQjee9N6uFQFTX437jnYN6lr9VRpTcdQPIvmoAdt+RFpRLWEgSdRDbECT6tDbanaw16MJLKOt3kn+x3pM5vkbOcolaJtyJeFzZT11HQDJwbi2FaDgScAvOXaVdi6rAE5Q0J1sGSwmkx883/VqmZICTxzPrLg53vs9Ag2d4bRWudv4ENecw/zc2Xa5zlfE6E//MZ+3HWgBx96+SZ89Hcum7fk1edW8Te3bsWJwTi+9dg5pDUdac3AS0qYS1kJqiLw+zesxf1HBwv78ye+Nl984BTaQl68MV8y2xr0YDCWmTardyIrMO1Y4HuAYrBjOjmJgSdRDbECz4WedNrDXkiJOWejUXV6voeNhUq1sTMMADg5ND3wPD2UQFY3ajLjCZhvaj9627bC35eanSsboQgUtSduqj179+GNX3oU+8+O1X2Z7Z2378YP338DfG4Fz1Z4n6emGzjSH8WDx4fwz6+/HH/y4o1F77N82bZOvHBjG/7t18cL58HF7O8sl3e8YA1CXhe+8MDkrOfBi+N46MQw3nPj2sJokqaAB16XgrsPzl5u+53Hz8PnVmpi/A8DWJoJA0+iGjKYP+G2hhbWXKY9f2V/kPs8a4Z1hfxQbxTtYe+kxhs0t+WNPgQ9Kk4MTA88D/eZgfy2Gg7kr1vXiu4m34J/H9SysM+NTZ3hBXe2TWRySGk6rq/jxkIWl6pg+/JG2zOepZQ4D0TTONwXRTKr44tvu7rkkRxCCPzda7YhkdXRO56G361iZUtgIcsuq0a/G2/fvRr3HOzDqQkXwL7wwEmEfS687fpLr4OqCLx4SwfuOdg/Y7ntsf4Y9p8bQ0fY62hjJCInMfAkqiFDsQyaAm54XQsb/2CV6HKWZ+051DuO7TUcJFWCEALrZ2kwdKQvBo9Lwbq2YE1fmV/RHEBHeGlejLhqdTOeuRApalbiVNFUDkIA16+r7/2dlh0rmnCod3xB2ywW20Tv4lgSb9q7D9mcgS2dYbzisq4FPc/GzjDesXs1AKA5UDvjg95z41p4VAVfymc9U1kdvzjUj3fuXjNtj+qtO5ZhOJ7BE2eml9t+5/Fz8KhKyXs7a/n3G9Wf6s/VE1WxaEpDStMhpZx0BdI6Sdv9y34olilkLRfCKtFlZ9vaYhgSJwbjeNm26i8tqzYbOkJ45OTwtNsP90axuTMM1wJHE1HlXb2qGd95/DxSml7ySJxoWsOWrgY0BZZGtnjnykZ85REDxwfiZc3ynxtJ4C1ffrzweodLKBGd6fz5Zy/dhJ8+27vgPgflMnHtbSEv/te1q/Ctx85h+/IG9I2n4HUpePcNa6Y9PpnNwe9WcffBXuxe31p4L/HVd1+Duw704NWXd6FvPF3Wr4XITjzjEi3CxbEUzo4k8YlfHF3QVfdSDcUz6GhY+AnXulLKwLO2JDUduiHLMiy83mzsCGMgmkE0rRVuk1LiSF8UW5eFK7gyWqyrVjcDAOLpXEmfZ0iJWCZX1/M7p9qxogkAyjrP8+RgDG/80j4kszn89x9eX1LQOZtGvxvr20OFfZELVe4s4HtvWgcAODeaxHA8izdfs2rGplYBjwsv3tqBXzzfPyk7/bNn+xBL5/CW61aXbc1ETmDGk2iBcrqBRDYHlyKw97en4VUVfPDlmx095mAsjatXNS/48/0eFWGvi4FnjUlkzDfWnOFZuo0TOttelf+/MxjLYCSRranGQiyVm25NawAtQQ/imRxK6W8aT+cgJeq+sdBEa1oDaPC58OzFcbz5WuePl8jksGfvYxBC4H/euxubu2a/yLMUfraXN/nx+qu68d39FyEA/GE+EJ3Jay5fhruf65tUbvvtJ85jY0cI16xZ+Pl/sZbC94mcx8CTaIGODcRgSGBtWwDXrGnBf9x/Ei5VwQdestGR40kpzVLbRZYYtYe93ONZYxJZHY1+N7qb/JVeSk2Y+AapMFJl4FLgebgvCgA1O0qFTEIIXLWqCQ/PUEo9Fyv7fW2dz++cSAiBHSuaypLxjKU1HBuIoyPsxbf/4Dqsaw85fsxa8Ec3b8B3919Ea8gz5+/ymzd3IOBR8dPnzO62iUwOz/dG8fe3bYMQggEg1TQGnkQLdCA/Py7kdeGfXnc5NF3iX399HB6XMxXs8UwOac1YdODZFvYy41ljkpkcrljVxE6GC7CyJQCPS8GJwVhhv9SLNrcDALYw8Kx5V65qxr1HBktqmhNN5xDwqGj0106DGjvsWNGIOx48jbSmL7pUdSopJR48MYw7HjyFw30xeF0Kvnv77proPFsua9uCuGx5A3zuud8j+D0qXrK1E794vg8bO0IYjGXgdSl4/ZUryrRSIucw8CRaoGcuROBSBLwuBYoi8Mk37EDOMPCJnx/FqpYAljXa22nSChbtyHge6Y3asSQqA0NKJLM6tnN/54KoisD69smdbQ/3RrGi2b/kAo96dLW1zzNT3D7PtKYjns6hcwmOJdqxogk5Q+L1X3gUYZ/LlsyZISXuevoi7njwNI72x9AR9mJlsx8dDV4GnTMIeYt7233r5cvw02d7MZbUMBzP4PVXrUBjDXXyJZoNA0+iBTpwfgwhr6uQhVIVgU+/cSc03cA9B/ttH+puzd5c7OiE9pAXDzLjWTNSWR0SwGXdDDwXamNHCE+fHyuUt5mNhZjtrAc7Vpj/L6JFNhj69eEBSGBJXnTYudJ8rRKZXEmNfmJpDX3jabz3G/shBKAIAUUInBiMI57O4cmzz2JTZwifesMOvPaKbrz9vx536ktYMm7e3I6gR8WZ4QQMCbzlutLmnhJVKwaeRAswntJwaiiBFc2T92m4VAWfefOV+O3xX6Hf5pbndmY8Y5kcUlkdfo+95VZkv/GUuR/tcgaeC7ahI4SfPNuLrnyW68xwAq/ZsbzCqyI7BDwuNAfcGIpliioh/ea+c/C6FDT6l97bn64GH9rDXiSyxXcBjiSzODEYh5TAhbEUpJQwpIQh86M/PAr27rkaL9rUDmWei63cm1g8n1vFS7d14sfP9CLgUXHlyqZKL4nIFkvvNy+RDZ69EAEAfOL1O3DjxrZJ97lVBU1+N3oiaSSzuZLny82mEHguYo4ncClwHY5nWApVIqfms85mLJFF73gajX431rYFy3LMemR1tk1rZvbYkGDGs450NvgwlozhJ8/24k27Vs76uKP9UTxxdhQrm/1Lcr+0EAI7VzTO2oxppt9v/+9nR6DpEtuXN+BnH3jhjI+/ZUspPYWpWK/ZsRw/fqYXHWHvkvx5pfrEOZ5EC/DMhQiEAHasnDkLFcwHm0f67NtLORTPwK0KNC1yn4cVeA6y3Lbqfea+E9ANiVUt7Ga7GBs7zcAzmdWRzO8FZEfb+tHgc8HvVvHVR87OOU/ZynYutmqklu1Y0YS0ZiBnzD93+oFjg/jB0xexvNGHYJF7E8uh3DM4K+WlWzuwqTOEjiX880r1h4En0QIcOD+GDe0hNPhmDgKtk/TBi+O2HXMolkF7aPFXPq2MKTvbVpc9e/cVMggAcHoojm89dg4dYa9tWfOlanVrEC5FIK3pSGR1hL2uaWXyVLuEEOhq9OJIX3TS7MOJomkNPzzQg9t2LodbXbpvfaw9sYl5mjHF0hr+6q6D2NARQjf/r1SEEALNAQ+znVRXlu5vX6IFklLimQsRXDHHngu3KuBWBQ722JfxHLRhhieAwtVTzvKsbv/886PwuVUGSDZwqwrWtAWR0nQkszq2LAvPux+tViyV7M98WoNeNAXc+OojZ2e8/4dP9yCZ1fGO3avLu7Aqs2NFE4D5A8//7xdH0RdN45Nv2AGFgY9t+P+VljoGnkQlOjeSxFhSw5X5YfQzEUIg6HHh+R6bM542BJ4tQQ+EYMZzLlOzj+X26Klh/PrwAP7o5vVLOjtjp40dIbPUNptjmW0dUhWB/3XtKvzqcD8ujiUn3SelxDcfO4edKxoLgddS1RL0wOtS5gw8Hzs9gm89dh7vuWEtrprjPEdEVCq+oyEq0TP5xkJzZTwBIOhVcWIwhlRWt+W4dgWeLlVBa9DDwLNK6YbEx392BN1NfrznxrWVXk7d2NgRQiZnsLFQHXv79ashhMA3950DcOkC0r5TIzg5GMfbd6+p7AKrRNDrQnyW85JuSPzFD57D6tYA/vzlmxf0/MzqEdFsGHhSzal0NuqZCxEEPCo25RuWzOTO23fj7267DIYEjvQvvtxWNyRGExm0L3KGp6Ut5GXgWSIpJcZTGjJa8RcSFvKzetfTF3G4L4qPvHLzvKMhqHgbOsOFvzPwrE/Lm/x45WVd+O8nziM5YWTIN/adQ1PAjdfsWFbB1VWPkFdFNmfgn39+BD860IPDvVFkcubvtYtjKZwbSeITr9/BcVtEZDt2rCAq0YHzY7i8uxGueUogrbmLz/eML7pcaSSegSEXP8PT0h72co9nkXRD4p6DffjCA6dwtD+GhhIGry/kWJ/65TFcsbIJv7OTcybttKH90oWizV3hOR5JtexdN6zB3Qf78MMDPQCATM7Ar48M4A9uXFu4kLPUs3FNAQ+G41n810NnCt1tVcXsS5DWDLz1ulXYvb618Pil/noRkX0YeBKVIK3pONwXxXtuXDfvY5c1+tAa9NjS2XbQphmelvawF6eHErY8Vy1YyPxNQ0rc+eR5fOm3p3FmOIH17UE0BdyIJDX0RFLoblp405/Z1tM3nsJgLIMvvu0qdjK02bp2cw6qz60wk1zHdq1uxvbuBnztkbNoDrgxFEvDkBJvu35pNxWayO9WcXl3I775nutwZjiB4wMxHB+I4VuPnYPXpeIvX7WlqOdhQEpEpWLgSVVrtjfnhiFRqffkh3qj0HQ57/5OwGwwtL27EQdtaDBkZSdtzXjGMpBSMsCZwVgyi7PDSTx5dgzbuxvwxbdehVdc1oXXfeERRJLj+NGBHvzxLRtsPWYqq6NvPI1bdyzD1atbCrfzzZ09fG4VAY9aVfMIyX5CCLzrBWvxoe89i82dIQzGMrhlcwdWtgQqvbSq43Ep2NwVLlQAWKNowrOMCaPy4+9/qjc8A1NN+f5TF7H//BhWNVfmTYTVWOjKVU1FPf7y7kY8fHIYaU1fVJbF2o9p1yDp9pAXWd1ANJVDY4BvMqY6P5qEIoCv//61uGljWyE497lVhL0u3PX0Rbz/5vW2Be0PHBvEob4oFCHwl68sLttApdu6rIGNDerQ1Dfnt+1chk/8/AhODSWQMyTevsRHqBARVQueg6kmZHI6/vqHB/Gh7z0LKSs3g/LA+TEsb/Shs6G4Jj/buxuhGxJH+hbXYMgKPO3MeALAUDxty/OVm5MNpsaTGtKagbawFy/a1D4tuGwLeXBqKGFLJltKif986DR+/2tPwutSsH15AzMzDnIpom7md9LsvC4Vb7l2FXKGhNel4EUb2yu9JCIiAgNPqgF94yns2fsYvv34edz+onVY1eJHMqvj5GC87Gt55kJkzvmdU23vNrtnPt+7+MAz7HPZtjfNCjwH2dl2mmcvRgAAoVlKMluCHnhcCu56umdRxzGkxEe+/xw+fvcRvHxbF7Yta4CXew+JbPG261dDEUBXo48XG4iIqoRjgacQ4l+EEGeEEFIIsd2p41B9G09peM1/PIwTAzF88a1X4f++aitag2bQdPdzfWVdy1Asg4tjqaL2d1q6m/xoDrjx/CIbDNk1w9Nilez+7Y+et+0564VVTh30zhwEulQFL93agZ8+2wtNNxZ0DE03cKQvhu89dREfeMlGfOGtV0Hlm2Mi23Q0+HDVqmZ02vh7k4iIFsfJPZ4/AvAZAA85eAyqYwPRNM6OJLGhI4Qvve1qbOgwxyF4XArCPhfuPtiL//3SjWVbT6n7OwH7GgwNxTK2dbQFgPaQWSqs6dK256wXz1yIwOdW4FJmvy73+itX4J6D/Xjw+BBesrVzxsfohkTfeAopzcD//p8DSGV1pDQdaU3HcxfHYUiJz7/lKtzK2YJEjuDFHCKi6uJY4CmlfBgAO2bSguR0A+dGk2jwufCjP75hWtljS9CD4wNxHB+IYVOn8zP59uzdhwujSbgUM5AsxeXdjbjjwdOLajA0FM+UfNy5NPhdEMCCM3b1SkqJZy5EZi2ztZqYaLqBlqAHdx3omTXw/PJDp3F+NAW3KvDMhQj8bhV+jwq/W0XY50J3k59BJxERES0ZFe9qK4R4L4D3AsCqVasqvBqqFqeHE5DS3Is4NQi48/bdGIylcd0/3Ye7n+vDppeVZxh8PJPD1mUNJQePl3c3ImdIHOuPYWcJZboTDUbTaN/csaDPnYkQAm5VqdnA0zAkRpNZZHMGPK75dwxouoFsbv6v9cJoCqOJLNa0zt3gx60quG3HMvz3kxcQTWtomDJ+4PmecXz6V8fQHHBjY0cI333fCybd71RjJCKiheLoDiJyWsWbC0kp75BS7pJS7mpvZ+c5Mh3ON+MJeGYO8jrCPly3tgV3H+yDlM6Xi0opEc/kStrfabEylQstt01kckhkdVv3eAKA2yVqNvDsj6ZxaiiBv//J8/N+/8dTGg73RXGoL4pYWpvzsQcujAEAPveWq+Z9E/a6q1YgmzPw84OT9xqnsjr+9/8cQEvQg7VtQVZ9EFFVufP23QwyiagiKh54Es3kSF8UQmDO7OKtO5bj5GAcxwec726b0nQYEgsKPFc0+9Hod+NQ78ICz+G4vaNULGbGs/b2eEopMRTPQBHAfz9xAV995Oysj9V0A3/ynaeR1gxICTxycnjO57b2d27pmj+LvnNFI9a1B/GDp3smjXf55/z8wE+/8Qq41eJ/xfLNIBEREdUzBp5UlQ73ReF3q1DmyBa9ansXFAH87Llex9cTz+gASmssZBFC4PJFNBiyZnh2OBB4FlN+Wm2e74kirRlY1RLAKy7rxMfvPozfHBsEMHm+p5QSH/3JITx0YhhrWwNQFYH7jw7O+dzPXIhgR3cTXEUEjEIIvP7KbjxxZhQZzfz5+M3RQXxj3zm858a1uHFj2yK/UiIiIqL64eQ4lf8QQlwEsALAvUKIQ04di+qLlBKHe6MIzlJma2kLebF7fSvufs75cttEJgdVEVjbFlzQ52/vbsSx/hgyOb3kz7UCT7sznh5VIGdIpLXS11RJdx24CAGgNejBv+25Alu6GvCB7xzAiYHYpMd99ZGz+Pbj5/G+F61HR4MPjX43fnNsCIYx889KNmfgUG8UV5RwceG1V3QDAIYTWWi6gQ9//zls6Qrjw6/YvNAvj4hswioCIqLq4ljgKaX8gJRyhZTSJaXsklJe5tSxqL4MxjIYSWQR8Mzf++rWy5fj9HACR/pi8z52MVJZHX63uuD9epd3N0LTJY73l14WPOhQ4Gm9vsf6nX3t7KTpBn7yTC+aAm64VAUBjwv/+c5d8LpVvOfr+wt7Vu8/OoCP330Yr7isEx/JB4FNfjeGYhkc7ovO+NxH+qLI5oySyqlXtgRw7doWDMczOD2cQDSt4d/ffMWCuxcTERER1SuW2lLVsRoLfeqNO+e9Wv2KyzqhKgJ3H3Su3FZKiZSmz9roqBiXL6LB0FAsA1URaAl4Fnz8mVgZ5ecWOWO0nB46MYSRRBZtE2aaLm/y4453XI3+aBonBuOIZ3L40+8cwLblDfi3PVdAyc/yawq4IQRmLbe15rSWuo/3967qRlozEElq+ItXbsGWroZ5P4eZGCIiIlpqGHhS1bEyUluWzd/gpTXkxQscLrcdimeQMyT8i8hirWzxo8Hnwr/fe7zkURpDsQzaQp5CAGUXj0uBSxE4eDFi6/M66a6ne9AccKMpMHl8yVWrmvGpN+xALJ3D4d4owj43/uud10zKmrtVBTtWNM0ZeHaEvVjW6CtpTa+6fBkUATT4XHj3C9aU/DVR+TDgJyIiqhwGnlR1DvdFsaolMG024mxuvXwZzo4kcdtnH3ZkPuKJfNdc/yIynkIIbO9uRCKTK/lzh+IZ28tsrTUFvS48d7E2Mp7RtIZfHR7AbTuX43vve8G0AOK1V3Sju8kHVRH4z3fuQmfD9ADyls3tePZiBCP5TsETPXMhgitWNpVcTt3gc2P78kZs6gxPuzjAQIeIiIjIxMCTqs6R3ii2FpHttLzisi64FIGRRNaR9RzPN61ZTMYTMMttk1kdRomZ2cFYGu0h+wNPAAh6VRwfiCGVrf4GQz8/2IdszsDrruye9TErmgO4alVTYXbqVC/e0gEpgd8eH5p0eySZxZnhREmNhSbye1SoNmekiYiIiOoJA0+qKolMDmdGEti2bObAYSbNQQ9u2NCG0UTWkXLb4wMxNAXcuOv9L1jU82zvboQESg7yhmLOZDwBIOhxwZDA4b7qz3re9XQP1rYF592DOVfGcvvyRrSFvNPKbRe6v5OIiIiIijN/21CiMjraH4OUwLbl8zdomejWHcvw2+NDSDiQuTs+EMemjvCCO9parAZDiWzx5baGITEczzoWeIa85q+A5y6O4+rVLY4cY7H27N2HjKbjmYvj+POXbVrQ92FiuevNm9vxq0P9yOlGYV7ngf+/vTuPr6q69z7++Z0p8wRJgBAGQQYHJpnEWlFbO6qt1opYqtdapXa8em9v23uf2/Zpb/v4au3TOhbUOvZxrnWqPrVOOCEIEkDmGUIgIZB5zjnr/nFOcgNkzjnJCXzfr5evcPbeZ++18zPJ/p211m/tLccMpuZnRqvZIiIiItKGejwlrrQUFupp4nnRacMAqKxrimp7nHNsLa5i4vDUPp9rzNBkvB6jur77iWdZbSPBkCM3rWcFb7rjycXz+Ot3PkFuWgLr+zDPc8HS5TGZW9tWaWQY9Zc7GWbbXRdOzqWyvpmP9pa3bivYV87E3LTWRFxEREREoktPWRJXNhZVkpHkJ6+HlUWzUgIk+jxU96J4T2eKKxuoqm9m4rDuzzntiJmRlezncE0jR2oaGZLS9fIosVrDs62p+RlxvaSKc47S6gbmjB3CqCHJfT7fuROy8XmMNzaXMOeUITjnWFtYzmdPH97rc6qAkIiIiEjn1OMpcWXjgUpOH5Heq+GUKQm+qCeeLYWFJuT2PfEEGJGRSMjBw+/v7tbxh/oh8ZwyMpMdh6qj/r2LlprGIPVNIS47q+vezu5UkU1P9DNrbBZvbQnP89x9uJby2qZeFxYSERERka4p8ZS4EQw5thys5LQRPRtm2yI1wUdT0HGgoi5qbWpJPCcO6/tQW4DkgI/MZD8PL9/draVVWhPPGFW1hXCPp3OwIU57PUurGzCDL0wZEbVzXjg5l80Hq9hfXkfBvjJAhYVEREREYkmJp8SNXaU11DeFejy/s0VqYnjk+NpIhdJo2FZczdCUAEOjmPjlZSRSXtvEEx/u6/LYQ9Wx7/FsWXpkfRwmnk3BEIerG8lKDpCR1L11Xbvjgkm5ALy5uYSCveUkB7xRGU4tIiIiIu1T4ilxo7WwUC97PJ/99jkEvB7WRDHx3FpSxYQo9Xa2SEv0M/eUIdz/zk4am0OdHvvQe7vwWHgYcazkpCWQl5HIuj4UGIqVl9cfoDnkyE7tej5sT5yam0p+VhK3vbqFZ1YXMjU/Q+twioiIiMSQEk+JGxuLKvF7jVNze5foJfi8nJaXHrUeT+cc24qrY9ITdtP54zlQUc/zBfuBjivDNgUdfm/sf0yn5GfEXY9nKOS4+83tJPm9ZEaxtxPChZ4unJxLZV0TtY1Bpo/Kiur5RURERORoSjwlbmw8UMmE3DQCvt7/bzk9P4P1hRUEQ67P7SmqqKe6oZkJUUw8W4rfzJ+Yw2kj0lmybAehTtraGAwR6IfEc2p+JrtKa6joxXI0zaFQp/fQW3/fcJCtxdXkZSb2eQ3V9lwwKZeQA4fmd4qIiIjEmhJPiRsbiyp7Pb+zxbRRmdQ0BtleUt3n9rQWFuplD2xnzIybzh/PjkM1/GNTcYfHNQVD+PuQiHfX1PzwPM+Pe9jrGQw5NhRVsuFAZZfDhnvCOcedb2znlOwUhnZj2ZnemDd+KC2ja2eooq2IiIhITCnxlLhQUlVPaXVDryvatmjpuWqpVNoX21or2sam6MwXzhzO6CHJ3PPWDpxrv8cwPNQ29nMPp0QKDPV0nuf///gg9U0hahuD3PH6tqi15/VNJWw8UMm3zx8fk95OgES/l/QkPwk+D8PSe7ZurIiIiIj0jBJPiQubDoSTvN4WFmoxdmgK6Yk+Cvb1fb7i1uJqctISyIpRj5vP6+HG88axdl85VfVHL63S0Bzk+YL9BEP9M8czMznA6CHJrN9f3u33OOdYsmwHiX4P2akB7nlrO2v29j3hD/d2biM/K4kvz+h67c6+GJedwuThqmYrIiIiEmuxK5Up0gMbi/pW0baFx2NMG5VJQRQKDG0rrora+p0duWJmPn94bRtFFfWkJ/nZd6SWx1bu5akP93G4ppEEnyfqhXU6MiU/o0eFmZbvPMz6/RWcMjSZIakBEnxe/uWptfzt+58kKeDtdTve3lbK2sIKfn3ZFPxeD08untfrc3XF7/Xg731TRURERKSb1OMpcWHjgUpGZiaRkdz3JGv6qEy2FldR29jc9cEdCIUc20qqmZAb296wRL+Xb5w7loq6JjYdqOS8377J0mU7OGtMFg9/Yw7T8jNiupRKW1NHZlBYVseRmsZuHb902U6yUxPITk3A5/HwmyumsrO0ht/8fXOvrr9g6XKuXPI+d76+jREZiXxlZmx7O0VERESk/yjxlLiwsaiiz4WFWkwflUkw5Ph4f2Wvz7G/vI7axmDM5ne2tejsMfg8Rl1TkO9dcCrv/uhC7rtmFvMn5sRsfmN7pkQKDHVnWZVNBypZtvUQ131iLJ5IhZ5PnJrNtfPG8OB7u3l/R2mHS8R0tB2gsr6ZVXvK+Nb88ST41BUpIiIicqJQ4ikDrraxmZ2lNX0uLNRiWqTAUF/W89xW0lJYKLZDbQHSE/1MG5XJ9FGZ3PKZSeRlJsX8mu1pKTC0vrC8y2Pve3snyQEvi+aOOWr7jz9/Gqdkp/DDp9fR3IslVorK68hJS2DB7FE9fm9vtCxvIyIiIiKxpcRTBtxX/7gc5/o+v7NFdmoC+VlJfZrnubU4vBxLNNfw7IzPY3j6sXezPWmJfsblpPCnd3d12CMJ4d7gF9YWsXDO6OOGRicFvNz21WkcqKhj7+GaHl2/qr6JyvpmFp83jkRNvBQRERE5oai4kAy4mshczDOiNNQWwr2eBXvLe/3+rQerGJaeQEY/FfaJF1NHZvDy+oOdHvPAu7sA+Ma5p7S7f+aYLBbPH88f39qBWQ1Llu1gSHKArJQAWcl+6hqDYOF1UpuCIZqDjuZQiMKyOnwe4+q5o6N+XyIiIiIysJR4yoCrbQziNSM/K3pDTGeMyuRv6w5wqKqBnLSEHr9/a0lVv8zv7Ep/DwOdkp/JcwVFNDaH2t1fUdvE4yv3cum0PEZGhgS318Z//vQEHluxl0NVDdz6SvvFhj7z+7eP2zYqK4nkgH4tiYiIiJxo9IR3gmsZMhnP89hqGppJDnijWkin7TzPT58+rEfvDYUc20uquXrOmK4PPsFMjRQYqmmnIvCCpctbiy7dcN64Ts+T4PMyeXgazjkevG4OR2oaKa9t4khtI794cQMAN180EZ/Hg99r+Lwebn1lE2n9VMFXRERERPqXnvLi1GBIGKNhd2kNNY3BqPZ2ApyZl4HXYxT0IvHcV1ZLfVOoXwoLxZuWebY1DccnnqGQo7iynvkTc7pdCMrMSEnwkZLgY9SQ8Lbs1HAP9MVT84469p43t/eh5SIiIiISz5R4yoD6y0eFAOSk9nw4bGeSAl4mDUtjbTcqtB6rpbDQxOH9N9Q2Xj5gSEnwkeT3UlnfzAc7D1PXFKS+MUhdU5C9R2ppCjoWz++8t1NERERE5FhKPE9wdY1BEvzxWbw4FHL8ZXUhGUl+Ar7ot3H66ExeXFtEKORa15rsjq3F4aVUJuSefD2eAKkJPg5VN3DVvR+0u2/euKHdOk+8JNMiIiIiMvCUeJ7A1hWWs25/BRlJPhqbQzFJ7vpi+c7DFFXUc8fCGVw6La/rN/TQ9PxMHluxl12Haxif0/0kcltxFXkZiaQlnlwVbVuMHpLEkBQ/P7v0DJL8XpICXpL8Xv75iQL8XuvzXFwlpCIiIiInHyWeg0xP5n7e9upWPAYVdc38y9NruX3B9B71/MXaM6sLSUv08ZkezsHsrumjMwG44eFV5KQldOt7tmDpctbvr2D22CExadNg4PN6yEwOcM747KO2x/qDCyWkIiIiIieu+OoCk6hZuesIb289xMjMJEZlJfHi2iJ+/uIGnHMD3TQAquqbeOXjA1wyLY9Evzcm1xifk0pKwNtuoZyOOOeoawqelIWFRERERERiRT2eAywW1Wudc9z29y3kpCUwLD0Rj8Hnp4zg3rd3kpUc4OaLJkbtWr318voD1DeFuGJmfsyu4fUYU/MzWdeDAkMNzSGcgwlxsIZnvFGPpIiIiIj0lhLPQcQ5R1MwhK+L4bLvbCtl5e4j/OJLZ/C3dQcA+MnnJ3OkppHbX9/GkJQAL68Pb2+bTPTnEi7PrC5kXE4KMyLrbcbKtFGZfLDzMKFQ93p6axuDAExU4ikiIiIiEjVKPONUUzBETUMz97+zk23F1WwrqWJ7STWV9c2kJviobgh/PZZzjtte3cLIzCQWzB7FNfPGtu679fIplNc28fMXNzAuO6V1PcX+tru0hg93l/Fvn5vU50I1XZk+KhMHHKys77K67bKth9hVWoPXYxpqKyIiIiISRZrjGUecc3y0t4ybnyxgzd5ythRX819/28Trm4vxez1cOj2PvIxEqhuaueHhVdQ3BY87x6sbi1lXWMEPPjWBBN/Rcyd9Xg93XT2D2WOHsPNQDdtLqnn2o0IOVzd02q4FS5e39oZGw18+KsRjcPmM2A2zbXH+pBwykvzsK6tjwb3L2XkovEZn23tqCoa49ZXNXPvASvxeD6ePSCc5cPJ+JvPk4nkaVisiIiIiURWXT9f9OeSzv3R2T8GQ46kP9/HIB7v5eH8lqQk+ctMTGJIc4LEbziYrJfA/5yleTlLAywe7DvPt//cRSxbNbK02Ggw5/u+rWxmXncLlZ41stx2Jfi/3XzuLT922jLLaRm55ai1mMDU/k9KqBjKSfByqamBoSiAmFXBb1u48d0IOwzMSo37+YyX6vUwalkppdSNbDlbxudvf4ZaLJuKcw8woLKvl+4+v4aO95SycM5rtxVVxVflXREREROREEJeJ58niYEU9e4/UUlLVwKo9ZUwclsovv3wml80YyfUPfQhwVNLZIjs1gevPHce//3U9Nz9ZwO1XTcfn9fDSuiK2FFdxx8IZ+Lwdd2anJ/oZl5OCc8n858Vn8OaWEt7cUsL+8jr2l8PsX72Gz2NkpyYwLD2BPUdqSfJ7qW1s7lZPYGdJdsvanT/+wmnd/C71nZmRk5bAEzeezX8+/zG3vrKZlICXnLQEvnjHuwRDrnUt0Wj27IqIiIiISFhcJp6V9U3UNgRbe6V6K1o9p9Hugd18sJJ7397JCwVFNIccQ5L93LNoJnNPGdLt+7167mhqGpr51cubSAp4+fVlU/j9P7YyeXgaF08Z0eX7297LlPwMvv+pCVx+z3tU1Tfz9XljKK6sp7iygZKqBhqKqymvbWLR/St48J/mkJHs79V9L1i6nO0l1TFdu7MzuemJLFk0k5fXH+QHT6xh9+FapozM4M6FMxibnQKcWL3sIiIiIiLxIi4Tz9KqRg5VN3DLU2v59WVTSAqE5yoO5iG4zjkq65u55oGVvL31EEl+L4vOHsOavWUk+r2cPW5ot87T9t5vOG8cNY3N/OG1bbyy/gA1jUHuu2ZWr4eK+r0ehqQEjipIBOHv+5GaRj7eX8mCe5fzyPVzyE3reJhsQ3OIusYgByvqGZae0JpMN4ccZbWNXDVndMzW7mxP2++ZmfHFqSP407s7qahr4pmb5h03F1ZERERERKIrLhPPU7KTSfB5eK5gP5sPVrF00UxGD03u8XlqG5vxeQa+flJ9U5BtJdWU1TZRWt3IDz87ia/NHU1mcqDPQzt/8KkJ1DQ0c987u0hJ8PLp03Kj1OqjDUkJ8NNLTmfxo6v56pLl/Pn6uYwacnRMKmqbuOet7awtLMc5OPv/vE5Wsp/Jw9M5bUQ6+47UEnLEdO3O7vJ7PWSnJijpFBERERHpB3GZeJoZI7OS+OVlZ/KDx9dwyV3vcvtV03t0jsdW7GX9/krM4H+/uIGbzh/faS9dR0oq69l3pJYh7cy17I6ymka++cgqymqbGJWVxD9umR/V3j4z49+/cBqvbSomLdEf0+VJPjkhhz9/cy7XPfghVyx5n9y0BJIDPh65fg6PLt/DnW9sp7K+iaEpAbJTE1g4ZzSbDlSy6WAVj63cQ31TiCS/N+Zrd4qIiIiISHyJy8Sz7dDIF793LosfXc11D33IyIwk8jI7Tx5DIcdvX93CH9/aQUaSn4DXeGT5Hh5bsZevnz2GxfPH893HPjruOu35aG8Z33p0NSVVDRRV1HPzkwXcctHE43r6OrLvSC3XPriSwrI6Ts1NZWhKICZDTM2sV0n1sTr6frTdftboLJ5aPI+v/2kFmw5UkZeZyKd+t4zCsjrmT8zhx5+fzM9f2ADAteeMbX1fMOS47O738Hkt5mt3ioiIiIhIfInLxLOtMUNT+Ou3P8FPnl3HcwVFVNQ38e62Uj5x6tDjEpiG5iD/+vQ6XlxbxNVzw0tjmBlPf2Uqd76xnQfe28WfV+whKznA8PTOE7UnVu7lp89vYFhGAqeNSKO8tomX1x/gpXVFfG3uGNYVluP3ejpM1tYXVnDdQx/SFAzx5+vn8rtXt0Tte9Ke/pz3Oml4Gs986xwu+v0y9h6p44y8dG69fCrnTsju8D1ej7XO1Y0Hg3GesIiIiIjIYBX3iSdAUsDL7xdMp2BfOfvL61j0pxWcPiKdG88bxxenjmDR/StoDobwej2s3HWEH31uMt+aP46r7v0AgLHZKfzuyml854Lx3PnGdv66Zj8HK+r57mMfce05Y5k1Jqs1iW1sDvHLlzby6Ad7+OSEbO5cOIPFj64mPdHPs98+h9tf28Yjy3cDMCw9kZfWFTE8PZFh6YnkpCVw7QMrKa9tZF9ZHVnJAZ64cS6n5qZ1eG+DNQEaPTSZM/LSqWlo5sXvnntUQaPBek8iIiIiIhIb5pwb6Da0mjVrllu1alWH+xcsXU4o5LhiVj73vbOL7SXV5GUk4vEYpdUNhEJw25XTuHRaXqfX+dJd71JcWU9tY5DK+mYmD0/j2nPG8sTKvew8VENVQzM3njeOf/vsJHxez3HVdLeXVPPVJe9TVtt03Ll9HqM55Dh9RDoPXjebYV30rA5mg7nKsIiIiIiIRJeZrXbOzWpv36Do8WzL4zEWzB7NV2eO4q2tJSxdtpMVu47g9RiPfXMuc7uxLEmi38uYoSk8eN1sni8o4pHle/jJs+vD5ze4/arpfGn6yNbjj02sTs1NZeKwNJqDIX51+RQOVtRTUtlAcWU9j36wB4/Bk4vPJi2xd+tdDhZKOEVEREREpDsGXeLZwuMxLpw8jAsnD+PiO97B57VuJZ1wdMK0cM5orpo9itV7yvje42sYmhI4KunsjM/rYfLwdCYPT2/d9u72UoATPukUERERERHprkGbeLaVktC32zAzZo0dwuhuVquF7lWAFRERERERkUE2x1NERERERETiU2dzPD393RgRERERERE5uSjxFBERERERkZhS4ikiIiIiIiIxpcRTREREREREYkqJp4iIiIiIiMSUEk8RERERERGJqZgmnmY20cyWm9nWyNcJsbyeiIiIiIiIxJ9Y93guAe52zk0E7gaWxvh6IiIiIiIiEmdilniaWS5wFvB4ZNPjwFlmlhOra4qIiIiIiEj8iWWP5yhgv3MuCBD5WhTZ3srMbjSzVWa26tChQzFsjoiIiIiIiAyEAS8u5Jy71zk3yzk3KydHnaEiIiIiIiInmlgmnvuAkWbmBYh8zYtsFxERERERkZNEzBJP51wJUAAsjGxaCKxxzmk8rYiIiIiIyEnEF+Pzfwt42Mx+CpQB18T4eiIiIiIiIhJnYpp4Ouc2A3NjeQ0RERERERGJbwNeXEhERERERERObEo8RUREREREJKaUeIqIiIiIiEhMKfEUERERERGRmDLn3EC3oZWZHQL2DHQ7BqFsoHSgGyEdUnzim+IT3xSf+Kb4xDfFJ74pPvFN8emdMc65nPZ2xFXiKb1jZqucc7MGuh3SPsUnvik+8U3xiW+KT3xTfOKb4hPfFJ/o01BbERERERERiSklniIiIiIiIhJTSjxPDPcOdAOkU4pPfFN84pviE98Un/im+MQ3xSe+KT5RpjmeIiIiIiIiElPq8RQREREREZGYUuI5iJjZUDN72cy2mNk6M3vWzHIi+yaa2XIz2xr5OmGg23syM7OfmZkzszMjrxWfOGBmiWb2RzPbZmbrzezeyHbFJw6Y2cVmtsbMCiK/4y6PbFd8BoCZ3WZmu9r+Lots7zAeilX/aS8+nT0nRPYrPv2ko5+fNvt/1pOfLYmuTn6/tfucENmn+PSREs/BxQG/cc5Ncs5NBXYAt0b2LQHuds5NBO4Glg5QG096ZnYWcDawt81mxSc+/AaoByY656YA/xnZrvgMMDMz4FHg68656cAi4GEz86D4DJTngPM4fn3tzuKhWPWf5zg+Pp09J4Di05+eo/2fn46eE0Dx6U/P0X58OnpOAMWnzzTHcxAzs68ANwFXA1uBoc65oJl5gcPABOfcoYFs48nGzBKAtwjH5E3gYqAExWfAmVkqUAjkO+eq22zPRfEZcJHEsxS41Dn3npmdB9wPnIviM6DMbDdwsXPu485+XgDraJ9iFTtt49POvq8ANznnPq3fdQPj2Pi095zQ1c+W4hM7x/x+a/c5IXKc4hMF6vEcpCK9ADcBLwCjgP3OuSBA5GtRZLv0r18Af3bO7WqzTfGJD+MJ/5H4mZmtMrO3zOxcFJ+44MKfgl4JPG9mewh/Gn0tik+86SweilUcOeY5ARSfeNHecwIoPvGgo+cEUHyiQonn4HUnUA3cNdANkTAzmwfMBu4Z6LZIu3zAOGCNc24W8CPgWSB1QFslAJiZD/gJ8CXn3BjgEuBJFB+R3tJzQpzRc0Lca/c5wczSB7ZZJw4lnoOQmd1GeFjTAudcCNgHjIx0+xP5mhfZLv1nPjAZ2BUZupEP/J3wJ2iKz8DbAzQDjwM451YQHtpZh+ITD6YDec659wAiX2sIz7VRfOJHZ39v9LcoTrTznACKTzxo9znBzD6D4hMPOnpOmIjiExVKPAcZM/sVMBP4snOuAcA5VwIUAAsjhy0k/GmNxpz3I+fcrc65POfcWOfcWMLzBD7rnHsKxWfAOedKCc+nuQjC1emAljkbBSg+A60QyDezSQBmdhowHNiG4hM3Ovt7o79F8aG95wTQs0I86OQ54VXFZ+B18pywXfGJDhUXGkTM7AzgY8IPynWRzbucc5eZ2WTgYSALKAOucc5tGZiWChw3YV3xiQNmNg54ABgKNAH/4Zx7RfGJD2b2NeDHQEsPzc+cc88pPgPDzO4ALif8AUApcNg5d0Zn8VCs+k978SE8T7rd54TIexSfftLRz88xx+zm6MJDik8/6eT3W7vPCZH3KD59pMRTREREREREYkpDbUVERERERCSmlHiKiIiIiIhITCnxFBERERERkZhS4ikiIiIiIiIxpcRTREREREREYkqJp4iIDGpmttvMzuyH61xqZr+N/Husmd3Yh3M5M0vt4XseMrPCyDIA7e0/38xW9bZNkXOcY2YFvWmfiIhIZ5R4ioiIdINz7gXn3A8jL8cCvU48++BW59z3Y3Vy59z7zrnpsTq/iIicvJR4iojICcnMrjGz9Wa2zsz+ama5ke3/ZGavmtmTZrbBzN4zs+GRfQEzu9fMtprZu2Z2l5k90+Z9z0ROfzdweqR3sGX/Ub2EbV+b2eVmttnM3jez/3VMO+ea2Ztmtjry3xd7cI//ZWbbzWwZ8MVj9l1rZisi53zDzCZ1dY8iIiKxosRTREROOJGht7cCn3HOTQU+Bu5sc8hs4F+dc2cAG4HvRbYvBkYDpwOfBmZ1cInvABudc9Odc1d00ZZc4D7gS865c4DGNvsygSXA1c65mcDFwNLI9q7u8RLgUmA6cCEwuc2+TwJXAudFzvtb4IEe3qOIiEjUKPEUEZET0QXAy865A5HXSwknWS3ec87ti/z7A2B8m/c96pxrds7VA49HoS1nAx8557ZEXt/bZt85wCnAK2ZWALwCOODUbpz3AuBJ51y1cy4I/KnNvkuAacCKyHlvBUa1eV+071FERKRTvoFugIiISAwY4QSurbav69v8O8j//D1s733dFSTyga6ZJR7Tlo4YsM45d14vrtfVeR9wzv20g329vUcREZFeUY+niIiciF4HvtAydxO4AXitG+97E1hkZr5I8rigg+MqgYxjtu0gPIQX4Oo225cDM8xsQuT1N9vsex+YYGYXtGwws9lm1llS2eJ14EozSzEzL3Bdm30vAteYWX7knF4zm9nDexQREYka9XiKiMiJ4DUza27zegrwE+AfZuaAnYTnNnZlCeEhqhuAfcBqILmd49YBW8zsY2BzZJ7nzYTnZx4AXmo50DlXEll65UUzOwI81WZfmZldCvzWzP4ABCJtvYQueiWdcy+Z2TygACginFCOjOx728z+A3ghkpQGgKcj99PdexQREYkac06jbURERFqYWZpzrsrMEoAXgKedc/fHQbseAlY55+6Kwrk6vcdIsp7mnKvu67VERERAPZ4iIiLHei2SkCUSHp770MA2p1UF8H0zmxiFtTzbvUczOwe4BygGQn28hoiISCv1eIqIiIiIiEhMqbiQiIiIiIiIxJQSTxEREREREYkpJZ4iIiIiIiISU0o8RUREREREJKaUeIqIiIiIiEhMKfEUERERERGRmPpvUeqbkDNtoiUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "plotter.make_sub_plot(data_ref)" ] @@ -242,9 +469,56 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAF+CAYAAABEThGIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADA/ElEQVR4nOydd5gb1fW/3ytpe7N37XWvuGKMDdjUAItNbyFAIARCKCEFQkIoP0gj+ZICIbQktJCEBEIJNTRTDRiCabbBBdz7uqx37e1VbX5/HM2qrLQr7Upbz/s8eiSNZkZX0mjmfu7nnHONZVkoiqIoiqIoiqIMFBw93QBFURRFURRFUZTuREWQoiiKoiiKoigDChVBiqIoiqIoiqIMKFQEKYqiKIqiKIoyoFARpCiKoiiKoijKgEJFkKIoiqIoiqIoA4o+LYKMMXcYY7YYYyxjzAFJ2me6MWZ5yG29McZrjClMxv4VRVEURVEURelZXD3dgC7yAvAn4H/J2qFlWW5gtv3cGHMNcLxlWZXJeg9FURRFURRFUXqOPu0EWZb1gWVZpZHLjTGHGWPeNcYsC9xO68LbXAo83IXtFUVRFEVRFEXpRfR1J6gNxphBwIPAqZZl7TbGjACWGGMOsCyrOsF9zQFGAC8nvaGKoiiKoiiKovQI/U4EAUcCE4DXjDH2MguYBCw1xuyNsd0uy7IOjFh2GfCYZVmelLRUURRFURRFUZRupz+KIAOstCzrmGgvWpY1JK6dGJMJfAOIuh9FURRFURRFUfomfTonKAYfApONMcfZC4wxc02ILRQnZwMbLcv6IqmtUxRFURRFURSlRzGWZfV0GzqNMebPiFgZDuwF9lmWNcMYMxf4IzAYSAc2A2dYluVPYN9vAc9ZlvVg8luuKIqiKIqiKEpP0adFkKIoiqIoiqIoSqL0x3A4RVEURVEURVGUmKRMBBlj7jDGbDHGWMaYA2Ks4zTG3GeM2WSM2WiM+U6q2qMoiqIoiqIoigKprQ73AvAn4H/trHMhUrp6MlAEfG6MWWhZ1taOdj5kyBBr/PjxXW+loiiKoiiKoij9kmXLlu21LGto5PKUiSDLsj4A6KAo2/nA3wIFCyqMMS8AX0eKGrTL+PHjWbp0aRJaqiiKoiiKoihKf8QYsy3a8p7OCRoLhDZsOzCmh9qiKIqiKIqiKMoAoKdFUEIYY75rjFlqjFlaUVHR081RFEVRFEVRFKUP0tMiaDswLuT5WKA01sqWZT1kWdYcy7LmDB3aJrRPURRFURRFURSlQ1JZGCEengGuMMY8jxRGOAs4pkdbpCiKoiiKMkDx+/3s3buX6upqfD5fTzdHUeIiMzOT0aNHk5aWFvc2KRNBxpg/A2cDw4GFxph9lmXNMMa8CtxsWdZS4N/AYcCGwGa3WJa1OVVtUhRFURRFUWKzY8cOjDGMHz+etLS0jgpcKUqPY1kW+/btY8eOHUyYMCHu7VJZHe5HwI+iLD815LEP+EGq2qAoiqIoiqLET0NDA1OnTsXh6OmMCUWJD2MMRUVFJFovQI9wRVEURVEUpZVOC6CSErkpSjfTGcdSRZCiKIqiKIqiKAMKFUGKoiiKoihKr2X8+PF88cUX3f6+1dXV3H777XGv/+tf/xq32936/Oabb+app55qd5t//etfrF+/vvX5Sy+9xA033JB4Y5WEURGkKIqiKIqiKBEkKoL+7//+L0wE3XLLLZx//vntbhMpgs4880z++Mc/Jt5YJWFUBCmKoiiKoih9jkcffZSZM2dy4IEH8rWvfY3y8nIAjjjiCJYsWQLAlVdeyYwZMwDwer0MGTKEhoaGsP34/X6uvPJKpk2bxqxZszjqqKMAuOqqq6iurmb27NkceeSRANx5553MnTuXgw46iCOOOILly5e3rgtw5JFHMnv2bKqrq7nkkku49957AXjxxReZOXMms2fP5oADDmDRokX885//ZOnSpfzoRz9i9uzZLFy4kH/961+ce+65rW17+OGHmTVrFrNmzWLu3Lns2bOH8vJyjj/+eGbOnMnMmTP5yU9+kqJvuH/T0/MEKYqiKIqiKL2Va66BQEe/Q+z14i2OMHs23HNPoi0C4IsvvuCmm25i2bJljBgxgl/+8pdcffXVPPXUU8yfP5+3336buXPn8sEHH5CVlcXu3bvZunUr06dPJycnJ2xfK1asYOHChaxduxaHw0FVVRUA9913H3PmzGkVOgAXX3wx1113HQALFy7k+9//Ph9//DH33Xcf999/Px9++CG5ublt2nvzzTdz//33c/TRR+Pz+WhoaKCkpIRHHnmE66+/ntNPPx0QZ8hm0aJF/P73v+eDDz5g+PDh1NfX43K5eOCBBxg3bhwLFy4EaG2vkhjqBCmKoiiJo1WgFEXpQd59911OPfVURowYAcD3vve9VlEwb948Fi5cSGlpKUVFRZx++um8/fbbLFy4kPnz57fZ18SJE/H5fFx++eX8+9//bvd9ly1bxjHHHMMBBxzAtddeGyaQ2mPevHlcd911/PGPf2TNmjXk5+d3uM2CBQu4+OKLGT58OAC5ublkZmZy+OGH8+abb3LDDTfwyiuvRBVdSseoE6QoiqIoiqJEJxGnxh4YWbQoBQ0Jx7KsNmWR7edHHXUUn332GQsWLGD+/Pkce+yxPPzww2zZsoVbbrmlzb4KCgr48ssvWbRoEW+//TY33ngjn332WZv13G435557Lu+//z4HH3wwu3btYtSoUXG19+6772bVqlW88847fP3rX+faa6/liiuu6PAzRsMOw3vrrbf497//zW233cYHH3wQVzuUIOoEKYqiKIqiKH2K+fPn8+qrr1JWVgbA3/72N44//ngAMjIyOPjgg7nttts4/vjjOfzww1m8eDErV67k8MMPb7OviooKmpqaOPnkk7ntttsoKChg8+bN5Ofn09jYiNfrBaC5uRmv18uYMWMAuP/++8P2k5eXR01NTdT2rlu3jpkzZ/LjH/+Yiy66qDVnKT8/P+Y2Z5xxBo8++ih79uwBoL6+npaWFrZs2UJ+fj7f+MY3uOuuu1i2bBl+vz/Rr3DAo06QoiiKoiiK0qs5/vjjcbmC3dZVq1Zx6623csIJJ2CMYeLEifz1r39tfX3+/PksWbKEOXPm4HK5mDRpEhMmTCA9Pb3NvktLS7niiivwer14vV5OOeUUDj/8cBwOBxdeeCEzZ85k8ODBfPjhh9xyyy3MnTuXsWPHcsopp4Tt57rrrmPevHlkZWWxKMINu+mmm9iwYQMul4tBgwbxj3/8A4Dvfve7XH/99dxxxx1tqsIde+yx/PSnP+X444/H4XCQkZHByy+/zKJFi7jzzjtxuVz4/X4efPDBzk9wO4Axsay23s6cOXOspUuX9nQzFEVRBibdGPaiKEr3sWbNGqZPn965jfW8oPQgsY5dY8wyy7LmRC5XJ0hRFEVRFEXpOip+lD6EemeKoiiKoiiKogwoVAQpiqIoiqIoijKgUBGkKIqiKIqiKMqAQkWQoiiKoiiKoigDChVBiqIoiqIoSpcpKQkWiFOU3o6KIEVRFEVRFEVRBhQqghRFURRFUZRey/jx4/niiy/Cls2ZM6d1QtKbb76Zp556qsP9/PrXv+b666/vdDu2bt3KQw89FNe61dXV3H777WHLvvOd7/C///2v3e3uueceysvLW58/+OCD3H333Yk3tots2LCBgw46iIMOOojHH3+829+/O1ARpCiKoiiKovRZbrnlFs4///yUv09XRdDf//53jj766Ha3ixRB3//+9/nJT36SeGM7wOv1tvv6888/z5FHHsnnn3/OhRdemLT99iZ0slRFURRFURQlKtdcA8uXx7euvV68eUGzZ8M99yTaorZccsklzJkzhx/+8IfU1NRw2WWX8eWXXzJq1ChGjRpFcXExd9xxBwA7d+7k1FNPZfPmzey3334888wzZGdnh+2vsbGRb3/723z55ZekpaUxdepUnn76aa666iq2bNnC7NmzmTRpEs8++yzXX3897733Hm63myFDhvDwww8zbtw4rrrqKqqrq5k9ezbZ2dl8+OGHlJSUcP3113P66afz0EMPcffdd5ORkYHf7+fpp5/mueeeY9euXZx77rlkZmbyxBNP8PTTT1NfX9/a/ltvvZUnnngCh8NBTk4OH3zwARs2bOCSSy6hsbERn8/HJZdcEtXxMsZw++23s2DBAo4++mhuuOEGrr32WlauXElzczPHHXccd911F//5z3+4++678fv9LF68mOeee47s7Gyuvvpqtm/fTlNTExdccAE/+9nPAHHqLr/8ct555x0mTpzIAw88wM9//vPW72XmzJk88MAD5Obmcskll5CZmcn69espLS3liCOO4JFHHsEYQ01NDT/5yU9YsmQJDoeDo48+mnvvvRe32x1zf11BRZCiKIqiKIrSq7GFgc369eujrnfLLbcwePBg1q5dS2VlJYcccgjnnHNO6+tLly5lyZIlFBQUcNJJJ/H4449zxRVXhO3jjTfeoKqqitWrVwNQVVUFwH333cf111/P0qVLW9e96aabWgXK3//+d2688Ub+85//cN999zFnzhyWx1CQN9xwA1988QVjxoyhpaUFn8/Hz3/+c/72t7/x7LPPcsABB7TZ5pFHHuGll15i8eLF5Ofns2/fPhwOB/fffz+nnnoqv/zlL8PaGw2/398aRvid73yHY489lr///e/4/X4uvPBCHn74Ya644go2bNgQJr5OOOEEfvnLX3LMMcfgdruZP38+c+fO5YQTTgBg9+7dvPvuuwD89re/paCggE8//RSAG2+8kVtvvZXf/e53AHzxxRcsXLgQh8PBQQcdxMKFCznhhBO45ppryM3NZcWKFTgcDvbu3QvA7bff3u7+OouKIEVRFEVRFCUqiTg1tgMU6GMnlUhhMGfOnKjrvfvuu/zlL38BoLCwkLPOOivs9ZNOOolBgwYBcNhhh7Fp06Y2+5g1axZr167lqquuoqSkhNNOOy1mu1577TXuu+8+6uvrEwoFmzdvHpdeeilf/epXOe2005g4cWKH27zyyiv84Ac/ID8/H4CioiIAjjnmGK6//nrcbjfHHXccxx13XMx9fPvb3259/NJLL/Hpp59y5513AuKAjR49us02DQ0NLFq0iIqKitZldXV1rFmzplUEXXzxxWH7ra2t5dlnnwWgpaWFWbNmtb5+1llntQragw8+mE2bNnHCCSfwyiuvsGzZMhwOydYZMmRIXPvrLCqCFEVRFEVRlH6BZVkYY2K+HuomOZ1Ompqa2qwzceJE1qxZw9tvv81rr73Gz372M1atWtVmvW3btrWGb02YMIEPP/yQb37zm3G18/nnn2fJkiW88847HHfccTz44IOccsopHX62aJxzzjkcccQRvPnmm9x22208/PDDPPbYY1HXDQ0hsyyLF154oUMB5vf7McawZMkS0tLS4trv/fffz7x586KuG/kbdCQeO9pfZ9HCCIqiKIqiKEq/4LjjjuORRx4BJCzsxRdfTHgfO3bswOl0ctZZZ3H33XdTUVFBZWUl+fn51NTUtK5XW1tLeno6w4cPx+/38+CDD7a+lp+fT2NjY9QOvtfrZfPmzRx66KHcdNNNnHjiiXz++eet24W+RyhnnHEGDzzwAHV1dQDs27cPgI0bNzJ8+HAuueQSfvWrX7WGjXXEmWeeyW233YbP5wNg7969bNmypc16eXl5HH300dx2222ty0pLSykrK4u537vuuqtVYNquUUecfvrp/PGPf2wVe3Y4XGf31xEqghRFURRFUZR+wc0330x5eTkzZszgoosu4qijjqKgoCChfaxatYojjjiCWbNmceihh/LTn/6UkSNHcuCBBzJ16lQOOOAAzj33XGbOnMnXv/51ZsyYwbx585gwYULrPgoLC7nwwguZOXMmRx55ZNj+7eIFM2fOZNasWezevZvvfe97APzoRz/i0ksvZfbs2a05STYXX3wxZ5xxBocffjizZs3iq1/9amtRhZkzZ3LQQQdx9dVX86c//Smuz3nPPffgdDqZNWsWM2fO5OSTT2bnzp1R13388cdZvXo1M2fOZObMmZx//vlUV1dHXfemm25i1qxZzJ07lwMPPJCvfOUrcYmWu+++m7q6Og444ABmzZrFLbfc0qX9dYSJZa31dubMmWOFJqYpiqIo3Ugqg/8VRekx1qxZw/Tp0zu1bW84LXg8Hnw+H5mZmdTW1vKVr3yFu+66i+OPP77nGqV0C7GOXWPMMsuy2iSRaU6QoiiKoiiK0mV6w5hIVVUVp5xyCj6fj+bmZr75zW+qAFKioiJIURRFURRF6RcUFxezbNmynm6G0gfQnCBFURRFURSlFb/f39NNUJSE6Ex6j4ogRVEURVEUBYCcnBx27tyJ2+3uVMdSUboby7LYt29fWOnteNBwOEVRFEVRFAWA0aNHs3fvXrZt25bQ5J+K0pNkZmZGnei1PVQEKYqiKIqiKAA4HA6Ki4spLi7u6aYoSkrRcDhFURRFURRFUQYUKoIURVEURVEURRlQqAhSFEVRFEVRFGVAoSJIURRFURRFUZQBhYogRVEURVEURVEGFCqCFEVRFEVRFEUZUKgIUhRFURRFURRlQKEiSFEURVEURVGUAYWKIEVRFEVRFEVRBhQqghRFURRFURRFGVCoCFIURVEURVEUZUChIkhRFEVRFEVRlAGFiiBFURRFURRFUQYUKoIURVEURVEURRlQqAhSFEVRFEVRFGVAoSJIURRFURRFUZQBhYogRVEURVEURVEGFCqCFEVRFEVRFEUZUKgIUhRFURRFURRlQKEiSFEURVEURVGUAUVKRZAxZoox5iNjzPrA/eQo6xQbYxYYY1YaY9YaY+43xrhS2S5FURRFURRFUQYuqXaCHgTusyxrCnAf8Nco6/wMWGNZ1oHATOAQ4OwUt0tRFEUBKCmRm6IoiqIMIFImgowxxcDBwJOBRU8CBxtjhkasagF5xhgHkAGkAztT1S5FURRFURRFUQY2qXSCxgA7LcvyAQTudwWWh/IbYAqwGygD3rAsa3G0HRpjvmuMWWqMWVpRUZG6liuKoiiKoiiK0m/pDYURvg6sBEYAo4BjjDHnRlvRsqyHLMuaY1nWnKFDIw0lRVEURVEURVGUjkmlCCoFRhljnACB+5GB5aFcDTxuWZbfsqwa4EXguBS2S1EURVEURVGUAUzKRJBlWeXAcuCCwKILgM8ty4qMY9sCnAxgjEkHjge+SFW7FEVRFEVRFEUZ2KQ6HO77wNXGmPWI4/N9AGPMq8aYOYF1rgGONsasQkTTeuBvKW6XoiiKoiiKoigDlJTOx2NZ1lrgsCjLTw15vAk4IZXtUBRFURRFURRFsekNhREURVEURVEURVG6DRVBiqIoiqIoiqIMKFQEKYqiKOGUlMhNURRFUfopKoIURVEURVEURRlQqAhSFEVRFEVRFGVAoSJIURRFURRFUZQBhYogRVEURVEURVEGFCqCFEVRFEVRFEUZUKgIUhRFURRFURRlQKEiSFEURVEURVGUAYWKIEVRFEVRFEVRBhQqghRFUZSO0QlUFUVRlH6EiiBFURRFURRFUQYUKoIURVEURVEURRlQqAhSFEVRFEVRFGVAoSJIURRFURRFUZQBhYogRVEURVEURVEGFCqCFEVRFEVRFEUZUKgIUhRFURRFURRlQKEiSFEURVHiRedLUhRF6ReoCFIURVEURVEUZUChIkhRFEVRFEVRlAGFiiBFURRF6Q40lE5RFKXXoCJIURRFURRFUZQBhYogRVEURVEURVEGFCqCFEVRFEVRFEUZUKgIUhRFURRFURRlQKEiSFEURVEURVGUAYWKIEVRFEVRFEVRBhQqghRFUZTeh5aTVhRFUVKIiiBFURRFUXofKoQVRUkhKoIURVEURVEURRlQqAhSFEVRFEVRFGVAoSJIURRFURRFUZQBhYogRVEURVEURVEGFCqCFEVRFEVRFEUZUKgIUhRFURRFURRlQKEiSFEURVEURVGUAYWKIEVRFEVRFEVRBhQqghRFURRFURRFGVCoCFIURVEURVEUZUChIkhRFEVRFEVRlAGFiiBFURSl71JSIjdFURRFSQAVQYqiKIqiKIqiDChcPd0ARVEUpQ9iWVBd3dOtUBRFUZROoU6QoiiKkjj79sHKlbB+fU+3RFEURVESRkWQoiiKkjjNzXJfU9Oz7VAURVGUTqDhcIqiKEqHlCy/B4BF9gK3W+5bWnqgNYqiKIrSNdQJUhRFURJHRZCiKIrSh1ERpCiKoiSOiiBFURSlD6MiSFEURUkcWwTZuUGKoiiK0odQEaQoiqIkjjpBiqIoSh8mpSLIGDPFGPORMWZ94H5yjPXOM8asMsZ8Ebgflsp2KYqiKF3A6wWPRx6rCFIURVH6IKl2gh4E7rMsawpwH/DXyBWMMXOAXwMnWJZ1APAVQGuuKoqi9FYqKoKPVQQll5ISufUn+uNnUhSlz5MyEWSMKQYOBp4MLHoSONgYMzRi1Z8Ad1iWVQZgWVaNZVkaZK4oitJbKSsLPlYRpCiKovRBUukEjQF2WpblAwjc7wosD2V/YKIx5n1jzGfGmF8YY0wK26UoiqJ0hd27g497owhS50FRFEXpgJiTpRpjsuPY3p8E18YFHAicAKQDrwPbgUejtOm7wHcBxo4d28W3VRRFUTqFOkGKoihKH6c9J6geqAvcR97s5Zva2b4UGGWMcQIE7kcGloeyDXjWsqwWy7LqgBeBQ6Pt0LKshyzLmmNZ1pyhQyOj6hRFUZRuQUWQoiiK0sdpTwStsCzLaVmWI8rNaVmWAyiPtbFlWeXAcuCCwKILgM8ty6qIWPUJ4EQjpAHzgRWd/kSKoihKaikrA6cTHA4VQYqiKEqfpD0RdGUc23e0zveBq40x64GrA88xxrwaqAoH8B9ETK1GRNOXwD/ieG9FURSlJygrg/R0EUE6WaqiKIrSB4mZE2RZ1kcdbdzROpZlrQUOi7L81JDHfuDawE1RFEXpTurrExcyu3eLCPJ61QlSFEVR+iQdVoczxtxpjCkwxriMMf8zxjQYYy7qjsYpiqIoKWbHDli7Fiwr/m1CnSAVQYqiKEofJJ4S2cdbllUDnATsBCYD16e0VYqiKEr34PeDzwd79sS/jYogRVEUpY+TyDxBxwDPW5a1C0hgyFBRFEXptfj9cr9mTXzr19fLTUWQoiiK0oeJRwSVG2P+BnwDeMsY46KdXCJFURSlD2GLoLVr41vfdoxUBCmKoih9mHjEzDeBC4F/WJZVZYwZD9yZ0lYpiqIo3UMUEVSy/B4AFkVbf/duuU9PB2NUBCmKoih9kphOkDHmaWPMNwGPZVn3WJb1MYBlWVsty/pXdzVQURRFSSFxOEF+P2xvLqbFnxacKFWdIEVRFKUP01443J+Ag4APjTELjTFXG2PGdVO7FEVRlO7ArgrXTk7QRx/BlpaR7PEMVhGkKIqi9AtiiiDLshZblnWDZVn7Az8CcoGnjDGfGWN+bYw5qNtaqSiKoqQG2wkqLZWCB1FYsEDuW/zpIoKcTkhLk3C47pwstaREboqiKIrSReKqDmdZ1mrLsm61LOtw4DSgDPhdSlumKIqipB6/XxwdgPXro65ii6BmOxyuuFgEkDpBiqIoSh8lLhFkjMk2xkwxxuwPDAbetyzr1NQ2TVEURUk5fj/k5srjKHlBpaWwcqU8bvanS2GE4cNlgYogRVEUpY/SYXU4Y8xVwG1AJRCIm8ACJqawXYqiKEp34PdDdjY0NETNC3r1Vbkf7KqlxpuDtbsMM2KErN9XRJAdQrdoUU+2QlGUVKD/b6WTxOMEXQccYFnWOMuyJgRuKoAURVH6A34/uFwwcWJUJ+jVV2HcOCh01eHHSeXuFnWCItBUpQTRL0xRlF5APCKozLKsbSlviaIoitL9WJbk90yb1kYENTfDwoVw2mmQ6XADsK08KyiCdJ4gRVEUpY8Sjwh6yxhzuzHmYGPM/vYt5S1TFEVRUovPJyLI4RARtH69LAvw3nvQ2CgiKCMggrb6x6gTpCiKovR5OswJAi4O3H89ZJnmBCmKovR1bAFjiyC3G7ZsaX15wQLIyoLjjoNME3CCGAcjRgS38/nk5nR2d+sVRVEUpdN0KIIsy5rQHQ1RFEVRuhl7jh+HA6ZPl8dr1wKjsSwRQfPmiRByGR9puEUEhYbDgYip7Oxub76iKIqidJaY4XDGmPyONo5nHUVRFKWXEuoETZ0qjwN5QU3+DDZvllA4EL0z2FSzlfHh4XDQvROmKoqiKEoSaC8naFEc28ezjqIoitIbCRVBhYUyCWpABO3zyhjXqSEzwhWbinAnyBZBmhekKIqi9DHaC4ebaoz5tJ3XDVCU5PYoiqIo3UVoOBxIXlBgrqBKTz4zZkh5bJuR7OJT5gQnV02lCPJ4oL4++ftVFEVRFNoXQae285qNO1kNURRFUboZW7zYuT3Tp8PTT+P1G2p8uXz3tPDVx7GNNzmB2lrID90uFSJo507Ytg2amiQpSVEURVGSSEwRZFnWe93ZEEVRFKWbieYEVVXRkunAwrTmA9lMtDYDok1mhm6XChHkDoyx7d4tE7n2B9xuSEvr6VYoiqIoxDdPkKIoitIfCc0JAhFBQIM3AxdejjwyfPVpSKjc1q2Eb5eqcDgQR6gPUlIit1bq6+GTT2DPnh5qkaIoihJKPPMEKYqiKKnA7iUvWtQz7x/NCQJ2+YYxOK0Ol2tw2OoHWKsAcYLCtkulE7RrV/L33ROUl4PfL+F9Snzs3g0u7aYoipIa1AlSFEUZqEQ6QWPHsidzHDVWAXnOxrBV060W9mMTmS5PUASlMieojzlBltXBCpWVcu/1prwt/YYdO/rM768oSt+jQxFkjHndGHO6MfbVTlEURekXRBZGcDhYNvIMgDYiqNDahwHGFjV2bzhcH3CCtm+HZcuC5lVUVAQljs8XPA4URVGSTDxO0EPANcAmY8yNxhgti60oitIfiAyHA5ZlHw1ArjM8bKvQvxeAcSPdbcPhkj1ZqscTFAshIqhk+T2ULL8nue+VBKqroaEBHn64nZVsEaSd+vjx+XQOKkWJRZvEQyVROhRBlmU9b1nW8cApwCjgS2PMo8aYQ1LeOkVRFCV1RIbDAcs8BzKFdWQT7gTdP/52AMaPN6nPCdq7N/i4t4VDud1SGcLna11kp/n89rft6MEoTpD2YTrA55Ob5lEpipICOpMT5AaagUeNMXcmuT2KoihKdxHFCVpaMZY5LGWMf1v4uoFYr3FTMigvh6M//xPfWPsreS3ZIqiiItiu3hYOt3evVIZYuRIQY6e5GfLzRa/99a8xttNwuMRwu4OJVlpRT1GUFBBPTtDZxph3gOeBtcD+lmV9F5gFnJPi9imKoiipIsIJ2rMHdlZmcwjLGOvbGr6uLYKmZ8um/nQ8pIXvJ1nYIignR5RFh1UHuhE78SfgUNn5USM82zjuOPj97yU0rg0aDpcYdXXBx7t391w7FEXpt8TjBF0O/MGyrBmWZd1vWVY9gGVZXuDqlLZOURRFSRptwq8iRNCyZfL0ID5jrH9r+MaBiT7H7+cEoNmfjpuM8P0ki1AR1NQENTXJ3X9XiKhat3GjPM1yuPnNb6QS9n33Rdku1Any+1Pfzr5OqAgqK+u5diiK0m+JRwT9x7KsN0IXGGMuArAs6+WUtEpRFEVJPXY4XKA63NKl8nCIqeRU9wuwdm1wXbcb0tMZNy6wqT8dj0mXJ8kWQeXlcp+bK/e9KSTOdoJ27ABgwwZ5muVo4aij4OST4Q9/iBL1ZosggNra1Lezr1NfH3ysTpCiKCkgHhH0kyjLrk12QxRFUZRupqUFN2mUrPgTIE7QlCnwp5yfkYYHjjoKPvpI1g2IoJEjZf7KZqubwuGgdxVHiBBBGzeCEx9pRlTPb34jeqdNk0NFUOhjJTrqBCmKkmJiiiBjzBxjzFXAEGPMlSG3nwLp3ddERVEUJSU0NwdD2hARdMghsNE5jaty/wWFhTB/PrzySqsIcjphzBjJCfIZl4TSpUIEpaVBRqBtPekERcYQRnGCshwtrVMtzZkDX/0qlJZGpP9UVgbnY1IR1DGhTpCKIEVRUkB7TtAoYA6QA8wNuQ0HLkl5yxRFUZSu0VEN5pYWPEbcnLIycS8OCUx+sNsxGhYvhhkz4KyzROiky/jXuHHQ7A+4QBkZqQmHS0trfb9e4wRZVpvCCBs3QpYz/PPfcotUdg7oJKGyErKygo+V9rGdIGM0HE5RlJTgivWCZVkvAi8aY060LOvNbmyToiiK0h2EOEF2UYQ5c+Al+/XiYnj3XTj3XHjjjTAR9OF7AYGSkZH8yVJtJ8jphMGDe09OUF1dsKjBjh14PFIdbmSECDrwQDHR9uwR3WSwRPjk50NjI1RVdX/b+xq2CMrMVCdIUZSU0F443FGBhy5jzKmRt25qn6IoipIqQpygZctk0P2ggyLWyc2Fl16CSZNEFAHjx4PbSsNvmdQ4QRUVQRdo5Mje4wTZnfGcHKirY9sXdXi9UhkukuJi+Vo++QSpme3x8FTdKfKiOkEdY4fDZWWFO0E6w6yiKEkiphOEhLwtBm6I8poFvJqKBimKoijdREsLnkCKp10UIS8vynrp6TBqVOtTqRBnaPGnJUcE2Z3aRYvkvrw8GDo2alSrE9TsT8PChG+6/B7ZtGstiA9bBOXlQUMDGz+tBPLIcrT9/EVFIiqffhoOHymiZ5djjLyoIqhjbCcoK0ssNb8/bFJfRVGUrtJeONwVgfvjuq85iqIoSrfR3IzbBEXQscfGt9n48YHNrfTkO0Eej4SL5efL85EjYfVqAFY3jsftT8PjkWi5bidUBJWVsWFlI0BUEeRySUjcM8/AHRdV4gD2OYbQRCZZKoI6xnaCMjOl3nhlJQwZ0rNtUhSlX9HhsIox5hhjTG7g8eXGmAeNMRNS3zRFURQlpbS04CYdt9/Fzp2SDxQPoXMFJV0E7dsn97bKGTUKdu9mV6mPOl8OLVY6Tz2VvLdLCFsEBeYv2rjeIjcXFh/0QxbNvqbN6kOHSnGETxZL+ew6k0+dKQhzgiwrfJuS5fe0ulvBhSVtQ8D6e1hYXZ3khNkVArU4gqIoSSYeb/leoMEYMwO4DtgO/COlrVIURVFST6AwQp0vGwhWhuuI0aMBLFr86TJSn0wRZM8RFJoT5PPx8pPiDKQZD7ff3lY8dAt79kiMW2D+og3b0pg0KVj5OpKiIunDP/1GAQC1poBak99aGKFyySYWv++zjS4llPp6EUG2GNbiCIqiJJl4RJDXsiwLOAV4wLKs3wODU9ssRVEUJeUECiPU+bKiF0WIQXo6ZBhPapyg8nK5tzu/I0cC8OKLkOloYWLmLlatgtdeS95bxk1ZWbBq3dChbCzPZ/Lk2Ku7XHDyyfDM4hH4MdSZglYnyOOBTc2j8OHkgQe67yP0Gerq5Au0xbA6QYqiJJl4RJArUCnuXOCdwDJn6pqkKIqipIKqKvj4Y/jf/wILAoUR6n3ZTJ0aLIqwaPY1UcO7QslwuFMjggJO0Lc3/VLCwkaNoo5c3v40lyGuGorTqhk9Gv7wB1k9zXJ3ny1UVtbaKfeOGseW2iImTWp/k69/HXZW5/IRR1Br8qkz+VBZyd/+Bo3+TDIdLTz2GDQ1dUP7+xKR4XDqBCmKkmTiEUG/BO4DPrQs60tjzBRgY2qbpSiKoiSb2lrRKyedBK+/TmthhDpfVtyhcDaZDnfyqsOFEhBB1SYQcDByJG9yIm6vk6K0GhzG4tpr4f334eMP/TxW91Wubr49ee/fHiEiaFvhQXgtV7tOEMAZZ0CG08Mzzgtwm0zqTD41ez386ldQ4KxjSlYp1dXw3HOpb36fwg6Hczol/FBFUN+hv+erKf2GDkWQZVkvWpY127KsawPP11uWdXbqm6YoiqIkk5YW6VNOmwZnngnPVM1nj1WM20rvlAhqttLxpmUld7LU8nJwOCRsDGDYMF7kLAqzGilwNgBwxRUyh+ofbm5gmFXGOe7/iCpKNSEiaEPWgQCxnaDly2H5cvLz4ZTRq3jGOgfLkrygW/d+h337YL+sXQxy1jNpEvztb6lvfp/CdoIAhg/XcDhFUZJOPNXhMgNV4X5vjLndvnVH4xRFUZTk0dIi0668+y4cdhh8Y++9POT/DhB/UQSbDIcHMOzyD0++E1RUhN9IB9iLiwXmNE4ftby1AEFuLvzwh/DiO7msZaoUG/jOd1IbU+b3S2GEgAjaaMQCmjSq4/f8+tD32OUfQa0vhy2M5x7f1Xzrm17ynE0YI01//31Yty51ze9z2E4QwIgR6gQpipJ04gmHewY4D/ACDSE3RVEUpQ/R3CzRawUF8MYbcILrXd7zHwNYcRdFsEk3HgD2+IcmXwQNHdr6dPFiqLQKOTP3nbDVrr4aMp0ebuWn3JJ1G2zYALfckrx2RLJvH/h8QRHUMoYc6hnu29nhpmdkvEmGaaHCM4hnfGfjwM/vflzR+vq3vy01AP7RH+uuWhZs3564QFUnSOkKGpKnxEE8ImiSZVknWZZ1s2VZ/2ffUt4yRVEUJam0tEhFa4DsbHjJ8TWOdnzAEFdNa1GEeHEZHwC15Ce/OlyICHrxRSnCcJLnlbDVhg6Fy4pe4gm+yWLnMXDppfDHP8LnnyevLaEEnIhf7fouJcvvYUNNMZPYiNm5o8NN82p3curwzylzF7LcdyDXcSejM/e2vj58uOQO/etf4Ldi1Nvuq2zbBlu2wMqVwfLn8RAqgtQJUhQlBcQjgjYbYxK8PCqK0uPoSJgSQk2NGBl2sS0si3R3PZenPcqMnK0J789l/LJfK8kiqKICiovtJvLiizB/9Dpy92wKX8/t5rqqX+DDyS53Edx5pyijyy9PTbW4QCe80hQBSHlsNsDO6E5QWIW9ykq+PmUFPpxkmwZu5A9hE6aC5DlVVMA+b37y296T2J+zuVkS0eJxhHw+WS/UCaqp0RJ6iqIklXhEUA2w1BjzZ80JUhRF6ZuUlsp9qwjySDibh/RO7c8ZcIJq/HkpC4dr9GeyeTOcObsU9u6Vctg2X3zBBPc6xjh2UuXNl0oJ994rTpD9YZNJiAiyLNi8I41JbIQdHTtBVFZyxqztZDuaODR9Bbk0tBFBJ54IY8bAbndR8tvek9ifc9Qo+OQTuPDCjkVqvUyMGyaCQN0gRVGSSjwiaB3wBLAPzQlSFEXpk2zfLvetIihQ0c1tOieCXATC4fy5yRNBXq90mgMiaK9HXJEzjqkB4K3pPwq6K0uWAJDvaqTOl8W+fcA558DXviYhWMl2DfbsAaDSMUSq4nkNk7N2diyCmpqgqYnc4bnMzVtHcXq1LK+qClvN6YTLLoMqbx6nNz2T3Lb3JPbnHDEC7r4b/vtf2LSp/W0iRdCIEXKvIkgZqGhkR0pwdbSC5v8oiqL0fWxzxM4JsoVLl50gb46EL/l8wU5rZ9kbyJMJhMPt8xZw6KEwcsbgYJvtD/Dpp1BURFoT4Da8/Tacdx6SF/Tf/7ZxWrpMWRlkZ9NENk0+UZKThtXBjtr2t7NFQGEhICWygajtu+wyuOX/LGrdGSKesrKS1vwew/6cLhf8+MeSH/SnP4UciFGoqwtuA0EnSIsjKIqSROIpkV1sjHnMGPN+4PmBxpjvp75piqIoSrKwnaB0W/N00QlyGHDgExEEyXGD7MT5oUNp8buo8+Vw5plIKBWAOyQcbskSmDuXPFcTLry8+WZg+cSJkJYW7Egni7Iy6YwbQ5NfRNDk8Z6OnSBbBAREUBPZ0rmPIoLGjoXDzSf8k0vxb48jzK4vYItAW9DceScMGSJuUKzvznaCHIEuijpBiqKkgHjC4f4GfAAMCjxfC1yZqgYpiqIoyae0VELh7Ll2bNHi7qQTBFIcodaTFba/LhEigioDBQK++lVg5Mjw92hogC+/hEMPxRgY5KrnrbcCqSbGQF5e6kQQ0OTPIDsbhk/MjlkYoZUIEYQxkr8Uw6k6h+fYwRiWv5NkJysVxBOiU1kpYsZ2CZ3OoKixlXkkkU7Q0KGyDxVBiqIkkXhE0CjLsh4ECQC3LMsN+OPZuTFmijHmI2PM+sD95HbWnWqMaTTG3BFXyxVFUZS42b49JB8IuhwOBxISV+MOiKCAs9QlysvlvriYRl8mDvzMmIEIiIyMoAj67DOZvHTuXAAGu+rYvh3Wrw/sJy8PGhuDjkIyCBNB6UyaBGbMaFnub+eSGCmC7MfRRJBlcbb1HACvvdVhtHrfoLIyKGZs0tKCr0XDFkGhwmnoUA2HUxQlqcQjgryhT4wxg4B4JzJ4ELjPsqwpwH3AX6OtZIxxBl57Ic79KoqiKAlQWhqRhtHFcDiQuYJqWgI7TbIT5LFcpBmvOFfGiBtkh8MFiiK0iqA06TS/9ZYsvqniOnmQzDmDIpygyZORMD3LCg/TiySWCKqqCi+jDVBVxQS2cghLeW3pUPoFVVVtRZD9PJYIiiyMADpXkBKbvXth48aeboXSB4lHBD1njPkrkGeMuQR4E3i4o42MMcXAwcCTgUVPAgcbY6Kd2W8CXgHWR3lNURRF6QJ+v4igSy+FRYsCC5PgBLmMj9qWjLD9dYmKChE8hYUighwhY3AjRwbfY8kSqSc9bBgAWQ43EyfSmhe0zrl/cL1k4PfDvn0wbBiWBc0BJ4jRo+X19j57Ik5QIDzsFF7jox2jIwvI9U0qK4POj01HIijSCQIRoCqClGjs3Sthqe0NRihKFDoUQZZl/RF4H1gGnAr82bKsP8Wx7zHATsuy7DA6H7ArsLwVY8yBwEnA3R3t0BjzXWPMUmPM0opEZp5WFEUZwJSXy7RAY0LPvklwgpz4qWkObJ8MEVReLknzTmerE9TKqFHBTs6nn8Khh4ZteuKJIvA8HqhyFLHHDIelS7veJmidU4nhw2m20rFwiBMUrwhyuSA3N7isAxE0j3fwW45WZ6tk+T2ULL+nyx+jR6iq4oOG2eHt76wTpOFwSjS8gfPEli092w6lzxFPdbh5lmU9blnW+ZZlnWdZ1mPGmHnJeHNjTBpSeOH7tlhqD8uyHrIsa45lWXOGDu0noQKKoigpxs4/Hzs2ZGGSnKCaxiSKoJCJUt1+F+kmwglyu0WQbN7cGgpnc8IJYiB88ok8X+vcP3lOkC2+hg8PlscOdYI6CocrLAypSEHswgjbtgGQ52hksKOa115LQtt7mspK6uyy4DbGiBCKZXXFcoL27Ol4olVl4GGLoA0berYdkejcPr2eeMLhohUq+GMc25UCowL5Pnbez8jAcpsRwH7Aq8aYrcA1wBXGmIfi2L+iKEr/JwkXUnuOoOhOUEbbDeLEaXzUNgVG9ZMsgqI6QT4fVFfL8wgRNG+eFBALC4nbuDF2RzsRQkWQXR57MjBoEGRnd+wEhYbCgTyvrW3bod++HTfpbHRN40Te5PXXrXZrLiSNVHbWqqqoM3ltl6elte8EZWeHC8fhw6Wza7tyimJjiyDNC1ISJGb5GWPMJGAKkG+MOTXkpQIgu6MdW5ZVboxZDlwAPBa4/9yyrIqQdbYDQ0Le89dArmVZ1yf2MRRFUZRYtOcEuUlru0GcuIyf+iYXPhw4kyWCDjiAhgbw42ibEwQS/28MHHJI2KaDBkmE3FtvQQawzjUDWoBly7rerhAR1OjPxImPESOc0o5Ro4LCLBqxRBBI5y00X2bbNvY4hlPmGMkp/gU8VXYeK1Z0vfk9htsN9fXUZRS0fS3GXEmAOEF5EcLJLqvtdodMdqUoBIVxb3OClF5PezU4jwIuAYYBN4QsrwXiFSnfBx4xxtwMVAEXAxhjXgVutiwrSQHbiqIoSixKS2VgffDgkIV2OFwXq8MB1JLP4GTlBBUXt1bKTosMhwMpUDB1KhRIxzpYXW0RJ5wAv/sdHJ7rDBZHSEZekC2Chg2jwechx9mMMYFJYkePljCtWFRWBid7tbFFkMcTLoK2b2ePYwR7HMO5IFB/qE+HxAVcuNrIcDhIXAQFKvNp8ns3YTuDrZVUejHqBCmdJKYIsizrEUTAXGJZ1r86s3PLstYCh0VZfmqU1bEs69edeR9FURQlNtu3iwsUGl1kh8M9OeN3gQmEFiW8X2cyRZBlSad46NDWStnpkeFwICFxEaFwNieeCL/5DVR7c0lL80niTjLygtxuUZAZGTT6HRS5aoEQEfThh7G3rayEmTOBEMFWeKPce73h627bxh5zGOWO4QyjnIMnVvHaa4Nx0kcJiKBOhcOFFpKAcCdIUWxaWoLzdKkTpCRIPNXh/mWM2c8Yc6Ix5lT71h2NUxRF6dds2NB+KFWSKC2NyAeCYB6LI57U0OjYTlANBV2fLNUOaQkRQVGdIIgpgg47TAyEKm+g0z1nTvKcoOHD2bsXPFYa2c6Qzzp6tLweK2E/WjicbcmF5re0tEBZWcAJkg7/KRPX89FH4LX6qAwKiJw2hRFAnSAlOdg5f2lpUlhEjw8lAeKpDvd74GPgF0hY3A3EHw6nKIqiRMPjgV27JMclxdhOUBi2aOmkCFo0+xru2e9eICCCuuoE2Z2X0HC40JygnJxgtbCI8tg2aWlw3HEhImjuXPnwXe0YBUTQmjXyNNsRIYIsK3rCvt8vHfr2coJsAtUryh0jqCcPcnM5pfATfD6o8ka4In2FVicov+1rdnW4aJUfojlBublyDGgnVwnFFtJ5eXIsaZlsJQHiufqdB+xnWdYxlmUdF7glpUS2oijKgMUuA5ziTl2LP42ystQ4QQWuBkDC4bosgqI4QW/Pui58nYwMiembNSvmbk44AZr9GTT50sUJguB33ZW2DRvG6tXyNCfUCbLD9KJ9flvkxCOCAtUryhwj5DOOHcthLe8zaBBUeqKIiL5AoIO62T8Ov2XCX0tLE/FYUwNEFKiL5gSBhMSpCFJCsZ0g+3jRvCAlAeK5+u22LKs25S1RFEUZSNQGTqupLPnb0sLO5iIgihPU0iICyJi228WJLYKS4gRFiKBMRws5jqbwdbKypLOTmRlzN1/5itzX+bLh4IPl83VVBAWcoNWrwYGPDBPym7U3YWosETRokNyH/vaBOYLKTSDsa9w4XDu2cuKJUOnN75vT41RWsoXxvNV0NDvdQ8JfsydMjVbCvK6urRMEEhKnIkgJRUWQ0gXiEUEfGWOeNMacrTlBiqIoSSLVTlBpKXz8Mdv3yowGbZyg5uZ2xUQ85DtTIIKKi2W6oLTqtvps6lSYMaPd3dif022lSUd6+vSuiSCfT26BcLgcZ0t4u9oTQfZnKioKX+5ySXW7SCfIGJ446I9SQGHsWNi+nVNOkc/S4M/q/GfoKaqq+CRQG2lfpJtlV8WLlhdUX69OkBIf9vGTnS3/qf5SHEEnWu0W2iuRbWNnoF4dsswCXk1+cxRFUQYIqXaCAiOipU0yAh/VCcro/ESpkORwOLdbXJvCQsrLRQS1Ia3jOY0KC8Hgx+0PXN7mzoUnnohduCCedkGrExSWDwQyuasxiTlBIMURGhuDz7dvF6fDDk8cOxYqKjj52CYgi0pPFFHQ26msZGnGUdACtb5campaK5sHnaBIEWRZsUWQOkFKJLYT5HJJNUh1gpQEiKc63HFRbpoTpCiK0hVsd8LjaVsqORns2gXAdvcwIGhYtJIEJyjL0YLLBTUMSo4TVFQETicVFVAcTQTFgTFSWtttBQTTnDmy7862L9Dprskbzc6dUUSQwyFisj0nKJoIKiwM/923bYNx44LPA6p1uKeUHEcT1b4+WByhqool5lCc+LAwLFwY8losEdTUJAnuscLhbGdOUaCtCOovTlA8VFW1nueVzhFTBBlj9m/v1p2NVBRF6XfUhqRapqJCXODiWOoezpAhEi0Shu0ELVrU6QkRjYH8fKhxFiZHBBUXA0g4XHp1p3eV7vDQ4g+IILucdn1953YWEEFrGkSUhJXHbn3D9MSdoEgRFFnCz368fTs5zmaa/F1z7XoC375qlrlnUpxehRMfr4bGj8QKh7MHB2KFw4G6QUqQykqpGmkMTJ4MW7cOjOPD7YZ16+TzKp2mvXC4Be28ZgETk9wWRVGUgUNonkp5eXAelGRhO0HeEW1D4UCcoC6Gw4GEN9XWDUqOCBo6FJCvY+gPToI7T+rUrjKMh0ZbNMyaJR2k2k7W97FF0D4RaC8c8EsmZe0kbHLZjIzoeUcejzhF+VGquxUWBp0iv19E0FlnwZ49ssz+0bZtI8MxkxbPIHy+YJXwvsC6XXk0+LMZ7azAm+bk1VcHY1lgILYTZIvVWE4QDIxOrhIfVVVBQT1pkvyXBoIweOyx4DnX7+9Slc+BTMxvzbKsCe3cVAApfRtNOlR6mtBOud3xTSa2E+Qd0bYoAsgFtIvhcCAiqMYMSs5kqUOH0tAgEVEBU6hTpDs8wXC4zEyZX6aLTtDq0jwyMmBC5u626+TkyOeP7NB7vZL7E62DEuoEVVTI7xGqVkeNku22byfT4cbC9LnIlyV75PPkORspdNVSVgbLlwdedDhE6AS+s717A+kc6gQpiVBVFRTUkyfLfX/PC/J64fe/Dz4PlJnvFvpZ30mlo6IoSk8Q6QQlG9sJ8o2K7gQloTACBMLhTJImSw1UhoNWU6hTpBsvXssV1GV5efJ9d6Y4gscD6emsXutg6lRwmiiTe9olryPDCr3e6KFwIOLI45E2Bcpjh+UEpaXByJEigox0+vvaAPfS6knkpjWT7Wih0CXHe1hIXGEhVFXhdku/dedO8FQFxGqswgigIkgJUlkZFEGTJsl9f88L+s9/YNMmGBIoO79vX8+2pw+jIkhRFKUn6AYnqIZ8aq386E5QEgojQCAcrqvV4SxLBEPIRKldEkEOCTPbbZs22dmyf3vnieB2iwhaDfvHyobNyxNn4+23w5d7PLFFkL3c52udKLWNWg2Uyc509EERZFksaZ7JISN2SbEKh5c5cyJE0ODBUFkZFtlTuiXgjkULh7M7famcW6u/0c9G7tsQGg43dKj8F/uzE+Tzwe9+BzNnBgcFVAR1GhVBiqIoPUFdnVy8jUm+E2RZsGsXpYj6SaUTVFAANf4uiqCQiVLtr6JrTlCECLJHijsTEud20+AqYNu2dkSQwyFuUKQIas8Jspd7vdGdIOjTIshdWc9yZjFnfLCDduqp8PHHcNRnf6Fk+T1QWIhvXzW33RbMdWr9jNGcIJdLvutUVFNU+iah4XB2cYT+7AQ99xysXQu/+EVQ/KkI6jQqghRFUXqC2lq5eKenJ98Jqq6G5uZWEZRKJyg/H2r8uUkTQbZZ05WcoAyHdJJbRZDdw+6kCFrnmI5ltSOCQETQunUS02UTjxPk8YgTlJcXMolOgLFjobQUJz7SjZstWxJvfk/x5Sf1tJDJ3Gl1LJp9DYtmX8Mpp0gOd5U3IHAKC3lm61w2bAjqvy2lgd8qmhME8p/REtkKyGBPaDgc9O+5giwLfvtbmDYNzjkn+LlVBHUaFUGKoig9QV2ddM7T0pLvBAXygbYyHki9E1Trz8Vq7oIIsnM8khUOF+kE2SKooSGxHVkWuN2sRtTP9OntrDt4sNyHukGJOEFjx8pIdihjx0JLC4OtSjId7j7lBC35SITonNlB12buXJkKqtIr1fKswYX8fs9lTJ8udSAAtu5KlwfRnCCQjp86QQrIZMMeT7gIsstk+6Pk7vV19u2DVavg5z8PXjvs5b2JPhSCqSJIURSlJ6itlQtZKpyggAhay3SceFuLaoWRRBHktVw0NXVhJ/bIfkEB5eXSrFhGQDx8cNDVOPEFq6l11gmqqgLLYrV/WutcjDHJyZEe/jvvyHM7z6m9wggg62zf3jYUDlrVa7G/rM+JoKWfOyhkHxOnpbcuczrh5JNFBFkWvFJ1FKu8+/PTmywcDjEmt5QFJrTKzY0+h5WKIMXGnijVFgMgf1Kfr+vVKnsbdgGV/faDb3xDlqkT1GVUBClKf8Xv71w1LKV7qKuTi1gKnaANZjIj2B19bpkkhsMB1DSmtb9ie9giKC+PigoJhYs0RRLBYSyGp1d2PRwusIP/1s5n8mTRqzExBo47TpwgWwBB/OFw0ey6wLJh1m4yHW5KS/tO/3/JlznMYSmmKPzzn3oqeCwXdb5sfvfpCYxnC984sxEIiKB9efJFx/qynU4Nh1MEuyR9pBMEdG1UphdSVSXnr5/9LDwHyuVSEdQFVAQpSn9l5Uopo6n0TiKdoAQEa4fRBnZ5bMYylu3R10miEwRQ09SeQugAu2efn09FRddC4WxGZOzruggK5PeUWcPazweymT8fduyQxOx4RVBLi3RiojlBgWW2E+T10ifmCmpqglXb85nD0qDjFeCkkwAsNjeP4JPSkdzIH0irk85sZiZsrR4UOxQO1AnqC3TX72M7QZE5QdD/RNDevXIeu/DC8OVpaSqCuoCKIEXprzQ2Jp4DoXQfoTlBbnd4yeyusmsXDBpEuVXMOLZFn1cliSWyAWqbkuMElZcnSQSl7+t6ONzOnbSQTo2V334+kM38+XL/9tvBYg+xRFBWllQ6s9sUzQkqKIC8PIYFRBB0UCGul8Tir1gBPr+DuSxp8/mLiiDf2UiNL48Rg5u4hH9BVRWLFsGVV8KuhkE05xTF3rmKoN7N9u3w4YdSnCXVRBNBxcUSStmfwuHsAhCDB7cduFIR1CVUBClKf8QOx9H5NHovtgiyw36SmRe0axf+EaOoZDBjKI3e+U/iZKkANS1dEFS2CMrKSpoTNDI9OU7QeqZgYeJzgiZNklJ88YggkM6b3aZoTpAxMHYs5+a/yXMzfgX0/jLZJSXwrW/J4zlpK2WOpggKXSL4r//GTjJpaQ1rGj9eXt+eMTn2G6gI6t1s3CjXn+5wYuxwuNCcILtMdmNj6t+/u1i5Us7X0c4lGg7XJVQEKUp/pLm5tbKV0gvxeOQ3snOCILl5Qbt2UT5kf3y4JByuri78dZ9POpLJDIdzd1EEuVxgTGtOUFcZkb6PvXsDfwFH4FKXqAjatYtlHAJ0UB7bxhiYNw/efbfjcDiQz2z/R6OW8Assb25mTEY5xtC7ymRXVoaXBA9QVwfDs2oYNbgxanLX8PR9jEov53sXNwX3A0yYIE+3ONupQOF0yrmtP4309yfs81h3CNVoThDIYER/Oj4WLJD7oigOqTpBXUJFkKL0R+yLg8fTP0uF9nVsUZJCJ2hF+lwAprKubeffntMnmeFw7qzO78TrBaeThgYZwE1WOBwEvlZjwkPP4mXnTj7jEMBiypQ4t5k/Xzr1djhQqAiKrHZmC2CnE0aOjL6/QJnsDIeHkSN7mRO0e7eosoh8tro6mDNoQ5uiCDYZDi+TsnaRM2qQLIhwgraaCbHf0+7w1tR0oeFKyrBFUHdEIVRVyX8nsvLL5MniRHX3tS9V4agLFkiIX7RiISqCuoSKIEXpj4TGY9shA0rvwc7/sSdLheQ5QZYFu3ezqGEuDnwcwUexRVAyw+E8bcOe4sbnA6czKXME2YzMkI5BWF5QJ0TQarM/mQ43WfFqPDsvaO9euR80KPa6dod+9Oi2HTmbsWOlQ+nzMX58LxNBgXa1/nCInm1shLmZX7QpitAGWyAGzlEjR0Ka8bDFF8MVg+B31h05J0ridKcTVFkp/69It9EujtCVCZyTQWUlLF/eNUG4bx98/HF0Fwjk/9DY2L+cr25ERZCi9EdsJwiSX35Z6TqhTlBamlzEE3CC/J+vwPf5yugv7tsHHg+LyqZS7NhLDo1tw+HsC2ZXnKCAq9Eqgrw5nd9XhAhKVjgcREyY2gkRtMGaTI4jgQ7GyJEyo3vA3WoTqhOK7QRFyweysV9raQmKIL9fjpee7uTZnbv161sX2V/xXLO0/VBAkHyh9PRWEeRwwDjnDra0xHDFQJ2g3k53h8NFO8bsMtk9nRdUXi7H6bZtnd/HG2/I/z3Wf6m3TpjaR1ARpCj9kdBRUhVBvQ/bCXI6RQAVFSX0O61vGsOKhv2iv7hrF/XksGT7MIY5AxfGFDpBTifkprdQa+V2fv4WrxdcrqQ6QVFFUCLVEr1evGV72clIsp0JjrLOmyf3aR1UzLM79LHygUJfa25mwgQoLbXwfuMiWLsWSksTa1eysfOZNmxoXWTr7TnuDzt2goyRdULc6glsZWvTsNjbqAjq3XS3CIp2jNlOUCrdkXhC3+zzfFdE0IIFckKMVTZeRVCXUBGkKP2RUCcombkmSnIIdYJArI8EfqcaXw51vhw2b47y4q5dLOYofH4Hhc6a8PezSYYTFEJBppsaCjrvTAScILv/lAwRVJxejTFdcILKytjGWHy4yHYk+LnskLj2XKDQ19tzgmwR1NLC+OJGfD7DzmcWy+fpyZFuu7gGhDlBdXWirYfWburYCQJZJ+R8NcG/iS31Q2Kvb/9nVAT1Tro7HC6aCBo2TI6TnpwrqLIy+P6dFUGWBa+/DqecEnv2aPscoiKoU6gIUpT+iDpBvZvQnCCQi3acv1N9PTT7xcF5+eUoK+zaxSJKcLkscl1NwY1CSaITBJCflRwRlEwnyGV8DBvWhZygnTvZhYRlpZsEqyzaI8QdOUH26+05QXbBhNpaxt/9YwC2/Ozv4h72pAgK7XQFnKC9e+XUU5Dnl2M8XhFkO0FuN+P9m6hozI1t2mlOUO+mN4TDGSMDPD0pgj75JPi4syKotlb+G6edFnsddYK6hIogRemPaE5Q7yaaExTn7/Tll/Yji5deirJCQAQdOsfC7cgKfz+bJIuggmwPteR3PvwkUCK7okKaFCvyI1FGjOiCExQigjIcCXboCgtFpHT0QeJxgtLS5EspK2P8HulYbZ18guTTtLQknueULAKK1YcD1q/HsuCyy8Dr8TO9cams01E4HISLoLo6JiA1wGMWgNBwuN5Nd1eHi3WMpaX17HxSH30k9y5X50XQvn1y3jrxxNjrqAjqEiqCFKU/Ul0tWcZpaSqCeiPRnKBY4XBeb9io96pVcj80rZr33gvXuwD12/axhLkce5yDZjLxY9p2lJMdDpfj7bwTZE/sGwiHGzo0duRHoiQsgkLj/HftYjcjAEg3nejQHXBAcOKbWBQUiAg49ND218vKgrQ0xrz7KMYEBII9CenatYm3LRkERNBmx2TYuJH77vXz8sswMXMXox2BLz2GE7Ro9jUsmn1NcB1bBNXXM56tQDsiSMPhei9NTTLgYoz8p1NZotrvj+0EgZxbe3Ky8I8+krLW2dmdF0GVlXDUUe1XmFQR1CVUBClKf6SqKlh+WUVQ7yOaE1RTE11E7NwJK1a0xnWtWgUOfIxKr8Dnk5BxoLUDv/jLAny4pC9vDE1kpz4cLsfXeRFkh6wEwuGSEQpn01UnaLdjNAY/LtPJgg8dkZEBM2d27Jjsvz/MnUv6obMZNSpCBK1enZq2dURABH3hms3Kpklcf4PhtNNgVPpe8q2AQOmCExRzUlhj5LfUcLjehx3PmhXDgU4mdXUihHqjE+TzSThcfr4MNHVGBLW0SCGX9kLhQAY7s7NVBHUSFUGK0h+pqpKLQFqaFkbojdTWyoXLtjyGBaphRROsdsf9vfcAEUE5zmbynY0UF9MmJO69reNwGS9HHikj7jnpntQXRsj1SzhcZ0RQiCCsqEhOeWybkSPl8Pdazs6JoMwJpBtv0pypTmP/lxFzaetWpKNpDKxZ0zNtCnR4P3McwgU8yeAcN//8pzQp1wo4nbFG6UMnjR08WH4Xtxvq6ymmnKwMX2wRBDLAo05Q78M+f9kiKNKmTia2cI4lgmwnKGIi325h9Wo5r+Xny0BHaWnilTNtUdORCAIJvW1PBKVqEtd+gIogRemPVFdLp0+doN5JXV14vojd8y8vb3vBChFBlhUQQY5mjIEzzoBXXw1WKgZYtG8mc4duJTc3sCBa5z/ZOUF5/s47QSGhgalwgiwLyt2D5HtoaYk/RGbnTnanjSHd0YMhNVFonSvI4ZDOZg+LoCd957GaGTx60Vutv12+LYLidYJAOsx1dRhg/PCW9ieFVRHUO7GvNbZL2Z4I6mrH3N53R/Pn2OeX7sTOB7KdIK83xJKOk8pKOT/vv3/H63YkgpSYqAhSlP5IqBOkIqj3UVsbLoJsJyjStautDbo2773Hnj1SgeumsU+waPY1nHmmrPL++7JKvTeTJe5ZlEzaGdyH0xnbCUpWOFw+NJKDpyHBKmoQ5gTZOUHJYoSk9LDbXRQMPYx3rqCdO9ltDe9cPlAKGT8eduwIuFvZ2T0aDvck32CTZxw3uO7iBNe7rS/ldeQEhRIqggJiffxob8dOkIbD9T4SEUFdxd53e+FwEDYHVbfx0UcwZIgIIPscm0hIXHOzfL6iovgSJFUEdRoVQYrSH6muDuYE1dX1bKlQpS12qIRNqBMUysqVcl9QAGvXsup9ufAfkCM9xOOPl+vsSy9ByfJ7OOmz3+MljZKDQ0Y/23OCkhUOVyD3dVWdiMEPjNQ2mhwaG7tBBMUbErdrF7vdRYlXhksx48dLZE1p81DpbG7a1PnS5DadSWKvqOBufkKWo5nfTn0sbK6gvERzgkA6qwFBPGG81b4T5HSqE9Qb6W3hcNAz4uCjj+CII4KluiExEfTFF/J/bK8gQijdKIJKlt9DyfJ7uuW9ugMVQYrSH7ELI9ijYXbCqtI7iHSCbBEU6QStWCH3o0YB8MUCuZDOzJFZUrOz4YQTRARZFjR4M3Dh4cgjQ/YRzQlKdjjcIBmtrKnqRDWoQNsqLJkgM9k5QQC7WhJ0gurqaKlrobI5p60TFJrP0gOMHy/3W5uHywHg97fO09Npli1LOHm7clczyziEoWnVpE+b2NqGRbOv4bIhL8vx3dFksRBdBE1yUFXVjs7RcLj42by589XJEqW8XI5J+7zSHU5QR+Fw3e0EeTywbp2IIOicCNq4Ue5tMdkRPegE9fV0IxVBitLf8Pmkkx0qgjQkrncR6QTl5Mgt8ndavlx+x6IiyMlh1ZImiouhOL26dZWvflWurw3+TPb6CpnLEnL3GxbcRzQnKMmFEfIHyaWkproTSciBjm+5X0RQMp0gO8pwt7tIcmggPido507KGA7Az8c9Fizn3AuwRdAPNlzLd3b8Wp50JSSupUWOhwQreb2xdSp+nBS5amHyZHGk7GpcXm98oXAQLoLscLjJ6UAHcwWpCOoYy5JclO4aBCsvl1EMW/z2ZDic3YbuFkF2DtIRR4hrsuovcv5ORARt2iT3iYigqqrUliTvp6gIUpT+ht05sMPhQCvE9TYinSBonSsoLNxgxQqZa8LhgKOOYtXWPGbODN/s9NMl6qLcM5jd/mJKWBS0QKB7CiMMlktJbXUnLsKBTkOFvwhIrghKT5fQ/ITD4XbubJ0jaER674q1HzNGDodmfzrbHeO6XiHOPjckGDL7yt7DKKCGPGcjTJkiwsfu6Hk88YXCQVAE3XIL3H8/OBxMmCrnrZh5QbYI6onKX32J7dvld2lq6p4Osi2C7P9aqsPh0tNjC4Wemj+ntlY+/9y5wWXjxiXuBKWnB7/Hjigqkt+3C3lyfd3R6SwqghSlv2GfCNUJ6r1EOkEgnYfQ38nrDZSCywHAd3QJXzZNZOak8M7qsGFw2GGws2Uofpwcy/tBCwTaL4xgi+QuUlAoF+uazhRissPhAiIomeFwIHlBuxIVQSETpfY2EZSWBqNHiwhym0yxhroiguyqVc3N4WUG28Hn8fN6cwkHOL6UvO3Jk+UFOy8oESeooECEnMcjLnZuLuMnSHhluyLI54u/yMVAIbInu3Sp3Pv9iVcna2wUEZWI0LRFkDFyoKbShbEnSo1VOKAnnaADD2w9bwOdE0HxukAgIghSL/i8Xv5a902O9byV2vfpRlQEKUp/wx59C3WCVAT1LtpxglrZsEE6poFa15snnUgT2cx0te3wnnkm+HHgwMdRQ9cHxe+iRXDZZdLxD+3MtLTIseFIziUgv1A6HDW1ndifLYK84hwk0wkCMcX6kxMEonua/YH/9v77dy0crqws+LjdkmxBPl5YTyVFTHEGwnamTJF7OzfJ6w13gtrLo3I4JAHc6xVhk5dHYaH8PWKGw9m/ZSIhcQNxqHvZsuBjO88kXvbskeMh9PjoCFsEgVx/Uh0OZx9j0Y4vh0OOk+50gixLzmd2PpCNLYLiFZS9VARZGzfxvP+rrG6eyOOPy+GV6PRHvQ0VQYrS3wh1gpzO6LkmSs/hdosI6cgJsosiBETQKseBAMzct6jNLs88U+6ns4bc0YPCX8zNlYtvY2NwWUtL0kLhAAqGiOiqrevErKKB8JFyz2DS09tqw64yYgTsbumECMqYgMMRnn/VWwgTQdOniwPT2d5IaCc3zgILr/zXgwsPI5yB43XoUDmebSfI44nfCQJZ1xZBubkYI5+xXScItEx2RyxbFhwQSVQE2a5gvC6jZXWvCKqs7Djk0uXqXieooUGO4WgiqLExpkgJ0+cNDfKfTCRfs5tE0OZ3t/EzbuVZ/zlcdBHMmQMffACffhosZNrXUBGkKP2NUCcI2naulZ7FDk2L5gRVVGCsQOz+ihXyGwbm3Fi1Jg2Dnxlrnm2zy/33h0JXLV83z4XnA0GriArr/Dc3J60oAkDBUOmQ19THGcMeSl0dFf4iHt1zYmskTTIZMQLK3IX4HYH/Q7wiKGuCpDeY3pdsPH48tFhp+C0jP35LS9wuThtCw6RCyly3x4K3M/kKH9DiCMwHY4y4QRs2SGc4kXA4kHXtcLjA/2LChA4KI4AWR2gPy5JwOHuumUQrCCYqgmpq5DdMtQiyFYMdDtceqQ7JiySkKALIT+CzjIggiC8kLtGiCJAUEWT/bdvjnTekUuar5lS+/BKef17+pz4ffPObwSjrvlRGW0WQovQ3VAT1bmwRFM0J8vnIt+dYWb5cOriBkLVVq2C/wiqyV37c5mpljJTN/iH3thVBttgKzQtKshOUUZBJGm5qGjonghpNDh7LlfRQOJCvw4ezNecobhHkHNM6z1BvY8IEAEOLlSZOEHQ+JK6sTDqLLldcHeXt22HV5hxOYwF3TPt7sHLe5Mkiovx+6VHFWxgBgk6Q19t6vI4fLx/p2GOjrN9XRVB3huRt2yYCIC9PBjwSdYI8gdLw8Yog+xpji6C0tO4Lh4uFy5UcdyTe3622Vj73xIkA7HQP5aPaA9idvZ+8Ho8ISrQ8NnQoguIRJRs3wpIlwZ9dNiwJ+9zvLB/MCHZRYr3L/tMtvvY1GDsWpk6FL7+En/40/ib3FlQEKUp/IzQcDuSipNXheg/2aGFeXngse6CYgcsXGE5bsQJmzWrdbNUqmDkj0MGM0vlzWl4GW/t6xAkyaS4KqKG2MY55YSKpraUhhSKodcJU71DpoMRbGMEa1mtFkF0mu9mfHhRB0Tqr8XTeysqCVbbicIIWLJD701gQXlhjyhTp5NkOQmfC4fz+1uPVHmGOOjpthzZqOFxs7KIIeXny26Y6HC5SBPWGcLiecILy88EYamthW8swfDi5941J8vq2bR3/JzsjggoKZLCsk4Jv1SrYtUt+8g8/jL6OZcG7O6cwj3fIojms7HphIVx9NdxzD7zVx2omqAhSlP5GVZV0EuyOgjpBvYt2nKD3OIbnG0+hpiVDwpQCIqjJl87GjTDzK4Ok4xml8zfYqsSBFdsJCu38J9kJAigwtdQ0dqLaXF0dTWTj8XdSBHUweaktZL615qfSwe6oolhgbpXdLUV9QwQVFMhv3tkKcbt3B0VQO06Q3XdbsAAmDq5iGmuD+SYgTpCdGA6JOUGDB8sQdIQTBMEQmzD6qhPUndj5QDk5QREUb2K+ZQVF0Nq18W0TTQRVV6emNLdlieDoSGgnywmKh337pBR54Lz+5z+D13KR42jigX9lUZ9dHNsJWr5cbiC/09Ch8U00bONwyHfRyc96ww3ydsbAK69EX2fNFz72eIcwywRyVSPCb//wBxmPueQS8Pg7ERHQQ6gIUpT+RnW1VFuykyuKi2XURidS6x2EOkGhDBvG3/kOAOubx1FLXqsIWtM4Dr8fZh6cJvWwo3T+ivyBkblYTlBoOFxzc9JFUL6jnpqmToig2loaTC5uy5W88tghwsgWMm4rTb6Ljpwgtxufz6K8MafXiqDRo8Hgp8kf+A2nT+9aOFx6uuSelZaGF9CIwOeDt9+G08auwuTlhVcXtCvE2cd3FwojgB3ypyKo0yxdCgccIL9RVpaI/3gjAqqqRGikp4tFEM/3HE0E+f0JT8IbF7Y9GI8T1F2TiD7wgNwPGkRNDdx5JxS5apicVUpVleGf+T+KKYJqvdm0+APH9KZNsN9+ib9/UVHcIijUjHrjDbmNGyfdhlgi6J1nxVHLcgW++4iEvawsePxx6WqsbxrTZ6bwUhGkDDw8Hvj88+6fP6C7CMRKt8YBFxfLRUNDR3oHMZyguqxinudsJpotNJHJb/glzJpFyfJ7+OaaXwDIRKnHHiv7iIgTGmIFOiHxOkFJDIcDKHDUU9vcOSeoksH4caY0HM7tj18ElVOM33L0WhHkckGus4lab2Aukv33lxH7RHselhUeDgfBxOwoVFeLKDlt8Idta5nbcwV1xgmyBZPHE58T5HAEJ0xV2mJZ4gTNmSPP7d823pA4u2LgoEFyH48bZIugIUPk3haqqQiJsxNX4skJ8vuDwjxV7NgBt97Ke655lGx+mHvukf/KuMwyClyNHHkk3F1zGd6tO9psumQJfN4wmRUNk6SZGzfCpEmJtyEBEWTj88H114vmGjlS/oZr10Y/BbzzppfxbGFL+lRZEKUQy0EHwW9/C3u9g9jjTuD/34OoCFIGHjt2yEkxlfHKPYntBNnYE2dqSFzvIIYT9Ozbg2kkhwtdT3KiWcif+DHrq6Sj2eDLIiMjcG20M8UjLuwJOUGpCIdz1UsYX6LU1bHHDAeSP0cQiNZzGS9uyyWhQR2JoJaW4BxBPSGCOgjvs8l3NlLny5L+4PTp8vvGOdlpK1VVsk2oCGonL6iyUr7CYx3/a/tjDRoky+zjLFEnyCbwvygokD5spAgqWX4PJSv+JCvowE50tm6V3/aQQ+R5oiLIdowKCuQ+nlDL8nL5He0QSfs+FddZewAonupwEF9p6q5w443g8/FA1rV4LCd33w1nnQV5TpnY+vrrYUvTCP678YCwzRoa4KKLIM14afJncOnFPqztpTBpUuIV1mKIoKYm2Ng0kn2etnMPPPwwfPEF3HabjCvY9RXsvD8bvx8WrRjEPN7hztmPyfcacIIiT1fXXQeTzCZ2Nheya10KXMAkoyJIGXiUlsp9oh2GvkJk1Rw7PEFFUO8ghhP0r0cdTHZuYq61lF/zazKdXq69Vl5r8Gey//6BNK8jjpBQx4gO4BCrAh/Otp3TbiiMAFDgaqSmJYFkXmiN7d+DHKNJC4eLIN14EnKCelQExUm+swE/Tpmfwy6O0FG+UyT2iH+oCIqRF2RZ0sc6/njIrNwVXbHaeUHQeRFkH69IhN7evTGqfw8apE5QLOyiCLYTlJkpijJRJ6igQDq88TpBoX9g2wlKRcRFvOFwnWhDwsJo8WJ44gm44QbKHKPY0TKUmhr49a+Dq5x5JkwqquSP9T/g5M9+3ypurr9e/m7Ts7cxMXMXz7/o5C5+Et0J6mhwJIYIuuYa2Oku5ovG/bjoIvk/gbhAv/wlHHUUnHMOsHw5WeuWM31625C4FSugqimLeYOXy3eamRmzfr3TCT933sYt3MyIKUme9C0FqAhSBh62CGpp6dl2pIrq6ugiSCvE9Q5sERTS2duyBd5/H7499DWGUcYcawk3H7uIBQtgnyePBl+WhMKBDMXn5cnvuXBh6z4uHvwKzvSQghg23VAiGyA/rYlaT4LCqqUFvF62W2MBKbeaCtKNV8pJxyOCWlrYbUYBMHx4atqTDPJdIng++ggJh4N283miYs8RlJ4unZvhw2M6QQ0N8nOddhoS+B9NBNl5QRB2fHdIFCcIRFP5/XDiiVFOXwUFKoJiYRdFOCDgPNizz8Y7V5AtgjIy5EeI1wmKJoJS6QS1I4JKlt/DD7deL09SUByhZPk9zPv8TvjRjyRJ76ab8Pid7GwZyjnnSDrnotnXsGj2NTidcO2Zm1jCoeCVUL5XXoEHHxTnZLCrntHpFZxz5C5u5A+8X3dQ4g0KiKBQEffEE/DQQzA6vZxxGWU8/bSMl5SXS6n7PXskd8mYYFtPP120Vujl4p135P64AwLRBhkZ7c5Ldqj1Ccc6Fyd9zrdUoCJIGXj0dxFUVRUeDqdOUO+itlaGuEOq/zz6qFyIvjX5Y2Z6l+PCy48ua2DyZNjYNBq3lRYUQSBB3A4HnHCCDONt2xZb2KSnty0NnYLCCAXpTdR6sxNLSwlcaddaU3HiC/+MSSTDkYAT1NLC7lzJb+nNIijDeEg3bhFBQ4eKkEhUBIU6QSAd3hgdZXsw/dRTrNgiyM4LSktLbNbbGE5Qbq7043ftgpNOCpifs2fLTcPhYrN0qSQQhv7HJ01KzAkyRgZUpk/vfSLIzgnqwG2sNYFwvhTl/57ieRE++wxuvx1yctjhHooPJ7/6Vdt1v32RjyFUsNE9BrffxWWXwYEHSg4NyNf98BkvsB+bOO9X04KFEtohLGSuqAiamkj3SQjeunXwve+J0zMxcxfjM8v47DOZwmjNGhFB558vdXZCOe00+XpDS12/87bFVLOOkQcHToiZmXLNiVZwwrIY59vMVufEDtvfG1ARpAw8QkVQf6uYZlmtTtCaxrFsbh4RnDFcRVDvoK6udbS7pERSfB55BObNg7HjHWQhF7H0Q2Zy993QbElHJkwg5OfD3Lnwu9/B66/DtGkirtJjFCbIy0t9YYSMZnyWM7GIrEBe00b/fuS7GtqYWMki3XhwWy6snDjD4TInMHhw0r+ipGKM5AV9+GHgyfTpXRdBU6bEdIKqqsSEHJUfyD1qzwlKpLwvhI/oR+TKFRTIzPSrV0tYkc8X8oI6QW2JLIpgY4ugeEYp9uyRY8I+rjZtknNGe7FikSKoO3KCOgiHi0cERZ2HKg5yrTq+03yvqIxvfIOPP4adLUMZmlYVdTAne+oYruI+Nvkm8kXjBGprpZpaqE7N37Ga53O/TV29YXXjePyJDCgFEnoKvPvw+eC882Tf//lPcDzigANkHqD99pO/2W23td3NkUeGV4nz+J28/77FPOvtoOOcmSnHg33+CGXHDnJoYKtDRZCi9E5sEWRZYRN+9QuamsDtZm/aCMo9hZS2DOPTz1xyglQR1DuwJ9QLUFMjkQXf/jbBToTDAZMnc+qpMNglQqHNhdXhgJ/9TOL17d5hrF57bm7qS2RnSo5dQoWYApXh9ljFFDgTzGdJgAyHBwsHu8yo+Jwg1+henQ9kU+BqYOvWQFTb/vt3LhwuKysYQjl5spwnamrCOrxNTbJo0CCC58z2nKCuiKAoYXQnnQT//jd88IGIIb8fzQmKRXOzDITZRRFsJk2SP+fevR0nvtgVA0FEkN/ffiid1yshZ6EiyK7glyoRlJ0de9AnQJ0JnGdjhMOVl0tKz8EHS1jYzp3xN+Hi5r9SYFVT+rMHuPAiwxFHgNP4GZ+xO7hSaB7PiBFc6fobabip8+Xwhz8EoxXtUDQ2bmTGVC9//7uh1pcbVmo66k9mu6LQKoLyPfvYtAlWrpT/zOjR4Zs4nbLs4IODFRhDSUuDk0+GV18Fv2VYVj+V+gYHx/FuuAiC6HlBX34pLzk7Uea7B1ARpAw8SkuDQyO2IOovBMJD3to9A5Dr0A9+AL6hw+WMn7RyOEqnCXGCQAZdc3Ph7LMJVvLLyQGnE2NgWtZ2pmdtbVP0rZUxY+Cpp2TkN9pVDbrHCcqU8NKE+qV1dSzmKNne1YE46QJ2/sy7FQfI99DeaLjbzW7/sMREUJwV3ZJNvjMkL2j6dIljSaTgS1mZxPzZ50NbxER0eP/3P/nKCgsJF0GRn9tO6A6dRDUeMjKCcw5Fzp8V4PzzZSqWyspAZ1XD4aJjD3ZEc4IgvpC4UBE0bZrct1ccwc62DxVBxoi4TZUI6iAUzmcZvLhkwCmKE7R1q5ieOTmi1a6/Xk6lK1bEMTZaUcFJ7pf4luNxpp47k+eeg5//HA7NW0O2M8b/z+GgeGwmlzgeZXjaPq6+Oso6gfLYF1wA4zLK2OMp4qabOmgL8t+sTBvGCg5kw65sdu+Gn/4UTjkF8Ps5r+VRhvjjHwQ9/XS5Ls1Z9iAXrJbpGUpYFCzAYl87ouUF2SLIoSIIY8wUY8xHxpj1gfvJUdb5pTHmS2PMCmPMMmPMSalsk6JQWhocbdzRtm5/nyZwwXl9w364XBKd8tln8Fff5VBennjZzYFOKkRjiBPk88kF99xz5WLc2okIGQ1Pd3gpTq/ueL/21TwakU5QKkpkZ0ucfkIiqLaW/3E0DnzkORN0MRIg19GEy3hZWDpVegxRJ59BfhCvl90thX3CCcp1NpGeHlEcIZF4xLKy8BJ4djhbhAh6803p0xYU0L4TlJMjHaQORuijYgunGCIIJMchNzfQ5y4okGO6NT5OAUTkp6cHbQabRESQHQ4HMDUwL0x7eUGRE6XapEoEeTwdhsKtbJjEsvqplA+a0iqC7NO5zwcXXyzrzZgBn34qOTQ33yynxtWrpahALHbd+zyH8BlP+C/gzDNl29/+Vpygdhk3jh+ZvzA1uzRsnmFA3LatW1t/p3EZZYxMr+D22+GOO9ruqrpaohQ//VT+E0Vf/QqzWcH/dk+moABuuSWw4mefcWXz3Txb+N322xbCySfLmESlt4Bqbx4HDi5l6DBnsIZ2e07Q6tWQlsZLB/867vfrSVLtBD0I3GdZ1hTgPuCvUdb5FJhrWdYs4DLgKWNMgnVWFSVOGhvFGrfDkfqhCPJjeGPVSAoL5Zo0bx78bMsV7NnZyeBnJbmEOEF798oF+ZJLAq+FOkHJJLQggC0CkuwE5WeJCEo0HO5/HE2RoxqnSd0U48bAYFcdCzdPwILYIXEtLVhAWX1urxdBi2Zfw/sH/Zg5cyTOn0MPlRcSUaG7d4dXf7Bnqo8QQW+9JZrD6aR9EQSS7T2xE/kAtoAPGQCIZrAVFckxti8t0O5Qca/I93HggW2F6IQJ0rPtSAT5fCJqbFGakwPjxnVOBBUWps4JakcEbdwItb4cGvxZzC9/kopdnrDXb79d3M3Jk4OV4adMkbLWc9JWUOCs5/LLJbUKwgsQ1NVanHb7MexmBAfmbOQ//5GvJy7GjWOYf3f011pa5LsPiCBjYFLmTs47D264IZh+4/PB3/4m7d2xQ9r/ve/BXb+q4RnO5Uejn+fAA0PGw95+W+4TGBwpKpKZGPZ6Cqj15XBcxuLgIAvIiWDYsNjhcMm+fqWQlIkgY0wxcDDwZGDRk8DBxpiwM6dlWW9YlmUPAa4EDFCUqnYpAxxb9OTmylmmv4mg6mpWMIs9VRkMHiwf8b77oNGXwf/b8aOebp0CYU5QWZlokaOPDrx20EFybCYyx0o85OUFO4t2ZaVkO0E5IrIT6YM37m1gKXMYPDw9GNueIga76thZnctapsUWQW43lRTi9jp7vQiyOeII6ay1ZA+W3zmRTqcdDmeTlSV1ykOKI5SVSX7BjTcGBElHIigrK/FwOIjLCYLgX+P17YHQHM0LCmJZ8j+PzAcCEUXjxnVcJnvvXnElQkVURxXiOuMEVVRIhbHO0EE43Isvyv2UrO1sco9m/ke/bT1s6+rE8TnvvOjzkjmMxf7ZWxk6FL72tfBUWo8Hzj2xhlXNk7kg/TkGJxrCO24cRdZeXJan7WtNUhAndI4gY6Ry6PHHi9tUWipRjt/9rhh0Bx8suaJ33QU/+Wkm5/IcMyvewbFyeXC/9jQKCc4hdvrp0ODPwo+DeTX/DRdBIKHXkeFwliVOUHZ2Qu/Vk6TSCRoD7LQsywcQuN8VWB6Li4FNlmVF7ZkaY75rjFlqjFla0d8S2pXuwc4BysyUTmB/ywmqquJ1TgaC14hp0+CGr3zMo54LqPckt+OrdIKAE/TRRxLSMHx4MB2CYcOkA5OVZDM81AmyQ8GSLYJyJSzpF7+If5tPvszDSxp33eNMeUrNoECHZSHHt+sE9YWJUkM54ggZRP78c6RYQF1dx8UfQDaqrGz7QSPKZNt9qBNOCCyoqJDjM9mjvfbQdQf7zcsTvbRgTcBt6s15Qd2dg9ncLFZBNBEE8ZXJtidkChVB06ZJLzxWLl17IihWZbbdu+X6m1BN/QAdOEEvvAA5jiZGpFfy8jF3sKF5NPPny9ezZo2ccx98MHYV93SHlxdeED147rlSIMCyxHF585NBPJR+NbsyO+F2jhuHA4tif5SqarYIst3YABkZUh0xLw82b5ZAlv/8R+aVCxsvyMiAnBzyrergsuZmqSZijOw/IITiSWE8/XT7kcUxTW9I3GAoEya0dYJ27JDzjzpBiWOMORb4DXBBrHUsy3rIsqw5lmXNGRprFEpR2sMWPRkZcuuHTtDrnMxBMz18+GHwRPfzr69jHFvZ0Dw6sbKbSvKprcWXW8CVV0o/I7J6T0oILYxgz4+VaDhcB1fO/FyJh0+k5Oz/1g7F4Oeo+amvRZ3lcLPfiAbe4oR2naC+KIIgkBc0eLB0Kt9/v+MN7c5u5GRIdpnsQOf0rbckPOYge/7GWHMEdRWXS0YDOqiTboy057XlI/DijN8JCuR79WtiFUWwiUcERZZNB3GCmppiz61XXi6/nz0/nX2uaM8JamoKht4lSjs5QXv2SMW3IWlyXMzffzev5F7Ahg2wZIm87aOPyubtndIOPhj+8Q8Jm9vUPIptLcP55z/hV+m3ctk3m2k0basYtlZ5i0Ugbm6YFSUkrqlJHJTA/zF0X3l54vhMnSr1Kc4/P4aAKyoi3wr5P3z0kQghO8w6ULQgHmbMgAzjZrijnEHURHeCtm8Pz8mz969OEAClwChjjBMgcD8ysDwMY8wRwGPAWZZlrUthm5SBTj8XQbW7G/iQIzn5lPC/dvboIv7Ej6n151HuaT+hVEkNJSVw/DFuaGnhwbXHsny59Ek6mhunwwtrPIQWRrA7Mu05QZ2odpaXBwZ/Qnnq/9s8kpmOLxlU2D3jcccfWssiSvBUxwgNaWlhtxkF9B0RNHKk9K0++ghO3PpX3KQH7Zv2sDu7kSJo8mRxV7xeLEtE0PHHh7iVqRJBw4fHrm4YQWEhVNen8SFHxi+CVq+GL77ofPv6AnV10jsOGbUPK4YzaZKIEk+UcCybWCIIYodU2XMERfbMBw+WYylyPj63G19zoIpaR+F5kfj9cosRDvfyy6Lfh6RVy4KiIubXv8jLL0obxoyB444LrNyBU3fBBfD//h/scg9hW8twLv3KBn7l/hlcdllibbYJiKC7R9/V9rWmJvl9YthTaWnyF2lXXxQVURAqgt5+Wy4wo+ScxooVcTfVGJiRs4XLXI/KgmgiyOORmYxtVq+We3WCwLKscmA5QWfnAuBzy7LC4tiMMXOBp4BzLcv6LFXtURRARFBxsVzRbRGUiglTe6gU9TtfFOMljZNPi+hZFxdzBi+Thod6X98ZpelvZPvqKGcoP397HscfD0OGdNMb5+XJiKDXGwyHS3JhBEdmOnnUxT3Y7vXCR7vGcXTm0qS2oz2OP6qZOvJZsjxGzkpLC7udYs31FREEMsHhhx+C22Syyjk7mAzdHrsDo9GRH9SuENfYyJeNE9i9G048MeT1VImgggLpocbB4MGQlmbxCqfHFw7n8ch6NTUx54zpF9TXy4BHqIAJnUvGzjexQ6+i0Z4IijUPVeREqTa2MxlZLWXrVpwErrsJiqCvLf9VcN9ReOEF6Z8vOfj7MnhUWAiWxfFzqjnyyI5rdkQOOv3+91CcVsXQtCr+6r8CM2UKfOUrCbW5Ffv4jladsrk5LB8oHtqMVRUVcUTW8mD7Fy6UgimBKRdYuTKh/ec5mzjc+lguVJH/+QkT5D40L+jLL+U46ExOYA+R6uG37wNXG2PWA1cHnmOMedUYY/u19wNZwF+NMcsDtyjz7SpKEigtDZ6IMjJkTg17joN+wOvrJpBn6lpDZFoZNgwHFkNNBY1+zQvqKbJ9ddzIH2h0u/jLX2LHpCcdu+JWfX18TlBnyMwkn1p83vgGFZYvhwZvJkcXxD862Vnsjs284ywMft5aMij6im43ux2jyMnpMD+/V3HEETJ3TrM/jWWuw6Sz01GYUXtOEEBTE29WymW6NR8IUieC4mTRIklzOPYIDws4LT4naOXK4GDXW2+ltH1JoTODaH6/OEFRJpttJR4RtGdPsNNsM2SI3KKJoJIS+VFCRFBr822hEhkSFxqSl6AIyrOdjigiqK5Oft6zzgo5t9qOUWVlh657NJxOmJ69jZMy3iPtw/fEBTKmcw59errcIkWQZQWdoK5QVBQM+aypkfi/+fPly8jJSVgEAYz3b27rAkHQtQ3NC/ryy7a5Q72clIogy7LWWpZ1mGVZUwL36wLLT7Usa2ng8VzLsoZaljU75LYqle1SBjCRIgj6TUicZcHrpTM4Pu+TtgMxgQvUKLObRl/q8y96lF48IWxdtZd/cSnXnbmhdQ7CbiFUBKWoMAIZGRRQgz9OEfS//8n90UO7LwK6cHQ2h7CMhSujjFpDIBxuZJ9ygSCYF1TrzRERBPDOO+1vVFYmnaPIEfwJE6Tn19TEW1VzmDYtwqDpYRFkc/qZDlYzg81b4hhJWLxY7h0OeO214PJ4zhUpPp9E232n5nPbtEnyMyLUu2WF1B6YODGYJB+LsrJgDkko06bFdoI8nthOEMQUQTWmoBMiKOAqRQmHe/11Gdf82tdCFtpz23TRATzF86L8L7797S7th8zMtiKopUV+pGSIIDvU8b33RBjPny/PbRGUSCEKy2JcLBFk1wW3RZBdGU5FkKL0YvqxCFq3DrY1FXNS8fK2L+bmQmYm481WWqz0RKtlKknAsuCTbcMZw3Z+ccnO7n1zu2NUV9f5wggdERBBPm/HF9mSEgkzmZi5k5FFMZKto9GJXKUwcnM5gbf4eEtx2+llLEucIGt4nxNBs2ZJwbZaXw4bnNMkQb2jvKDdu2V0P3LEJC0NJkzgjV0H8GbV3HAXqLFRbr1BBJ0l1eQWLB/V8coffijn+6IieOON1IRA9zT2pDYhIqixUdJAVq8O9H0zM+X615EIinQHQULiYokgtzu6CLKFShQRdCfX8i0eo2XtlrbbtUO+LYKiOEEvvCCH9JFHRmlDrCp1ceC0vJzkfgVOOy36d5MIBQXi0jz4YHBZlPLYkee6uE59thNkWfL/z8oKjpDk5kpIaAIVcQutffJ9RxNBGRmSkGiHw9mV4aKt24tREaQMHGpr5RYpgvpBmeySkmBJy5PGRxlZD4z4Tkbm/1in5Ue6nV27YF9zLnfzE3KKJXE0rgtbVzv+0G1OkITDdbyqZUk/4Oispd0bd5adzfEsxOt3cuSRESPwtbVgWez2DwsXQcn4/lNMWhrMnQu1vmz8ximZ3wsXtj/qG6uzCzBlCuW+IfhxtM0Hgl4hgvbbD6Y51/PKuskdr7x4sczNVVgo4V4JJIgnFXui4iTQxkFaulTO84HMeb8fvvUt+Z/t3QsLFgTWmzSp43C4WCLI6xXBE4rPJ28WIoJaD7sYTtC7n2RzA3/kZet0LljzS7weK/pnisJw/06ayJQOeAhut3zGM84ImSgUgk5QF0TQYd4PKLL2wuWXd3ofrYwfL8fhlVfCE0/IshjlsRPG/qxer+QFHn108DxvFytIICTu+QnXyYNYwmb8ePjvf+VHsyvDqROkKL0UW+zYIigtTW79xAmqrIRpro2MH+mOvkJxMTOQE9Xatd3YMAXLksNvXHY5Z/N89yec2O8XmhOUKicojupwTU0StXG086PWiWO7BYeDI7OWk+nytK3cG8iR2e0b2uecIJAB33pfNj7LSDm3bdva73C3J4ImT2aFNRODxbHHhizvRSII4LT8D3h355TgZMPRKC2Vc3xBQdAVCA2J60527oRPPpHQtRAsS7SE2y1mi89yJD59zrJlrHbMoGTlnwH42c9kfpmJE0UX/eQnAf0yaVLHx0W0cLhYxRHs8KuACPr8c6lUuGMHrSLojz+vahU3FRVw4bKfMJqdnOZ6nf/6vsq3z2uKu6rkNvdI8qnlvheDcwuUlEhV8JoayQcKw/7N9+3r3HiG38+5LU9QaYrglFMS3DgKDoeIimOPhYsvhpdekt/DmK7Pl2CLoIYGsf/sUDgIF0HR1GZFhbz28MPBKQTs3zqWCJowIXgs2ZXhVAQpSi8lUgQZI6Uj+4EI8vnkAnCyeSP2JHLFxZyT+RoOfCqCuplly0R7HJa3BgPdL4JsJyg0HC5FOUEeb8c5GnYu+9G+d7v9u8jMS+OY4evbiqA9e6gjlwYrp0+KoCOPBAtDrS8n2PmJNUcLSDhcrA86ZQrvchxFzurgz1NSApdeKo97iQg6fdgSPKS1+zFb84Hy8yUp/aCDJHmkGwjL7WlpCV6D3nyzdZ0tW2RaJ5erdb5LPqg9kC8bJ7QxXcJYvlxuIE7MZ5+x3ilC5Z//hD/8AX7wA+lX77efpOH8+c+ICPJ4os+Z5PFI7kw0cWwnMUaKILuRxcV4vXDFFbKbTZvg7sflOMn3iAtjWXDJt/1U+gr4Xto/mJq+lVu5iSdeyOb73+84XWX9OosH/VeQjpsf/hBuuCEY2bhvn4i9sPBNCM5d1Fkn6J57ONi3hMJJhcmreuZ0ivg5+GA47zyx6rKyQurQdxJbBNmDFaEiyOUS5yaWE1RaKueLyy+X88J3viPfmcsVe7Bk/PhgPpNdGc5uQx9BRZAycIgUQSBXiH4QDldTIxeDkz0vBU/6kRQXk+GpZ2LWbtas6dbmDXiefVY098FZgZCB7nQ/INwJSlGJbDIyGM0Omr3ODnOQa2qkPzG5fnn3fxe5uRw/dCWNjRFzP5aV9bmJUkOZNw8c+Ch3D5Yy16NHxy4fbVntOkHlQ/bncw5isiPcsWgd9e8lIuioUVvJo67t8RY60v3hh9I7tgcCTjlFlsU7v1CyePRREQzGtBat2LFDLj+DBsH//R/89rdw220wOr2cfd4CLrss2MmPHLz3WYa9nnxWrgTv2o1QW8s65/5UeXP57nelrPmf/yxvV1go6Sy33AJ7hgRG6qOFxNkVBaMdF2PHSie9HSfo3ntlwGfaNMnNufamDO503ECeV1TqPffAq685uJPrcLlgh3MsN/EHfnHaZ/z97yKcYgkhrxcuPr+FTJq5NuN+rroK7rgDvvENGQTcuxdOPlm0RBj2JK6dKYywbBncdJN8mGSfFPLyxJG0wxPbNLwThIqgwsJgaXSbWbOiiyA7n2f8eBk0+PrX4T//ERGUnR1exjTUTrPLZDc398miCKAiSBlIlJbKSTw0lnj06H7hBFVVgcNhcQzvx3aChg0Dj4fpWdv6hhPUi6u8JYJliQgaNAiK7WnS2itjmwq6yQk6noWA6XCampoaGJTvx3jcPeKKnVDwKRBhlOzZ06dFUG4uFKdVU+EZREOjkVHgqqrovcrqaumQxxBB/1w1BwsHX7VeCH+hl4mgtMG5HOv8H5WV7dQ6WLwYDjss2JE7+WTpNcczoWyy8HrFmsnLk9Hyd98Fv59bb5WXp06Fm2+Gn/8cbrwR9svaxYSMXTz+uLgdkaxbB5/XT+HLxonMmgV5sydyGB/zL89FrG4cz5Qp8PTT4bkxd90lfe1fvHI4AP+35ry2Ow4pm96mQp3DIR1iO1TKJuAEbfeM4Be/gFNPlY84fbr0pa/3386b1XOpq5PPdtaRe7iS+9npGEO5GQ4ZGdwy7UmuvVaiBTduDE87Khm0nJJBy/nDH+CTFZk8wA/YnjaRv/xFRNAzz4hWcbujhMLZFBYm7gTV1YnCGj5cBhXimc8g0Xi7oiKp6Z2TE3vwMhFsEeTxSF5gZE3wAw+Ugycy9vD55+V+6FCxlB9+WJziqVPbz1Oyy2SrCFKUPkBpqfRuQq8MY8aICEo4ALt3UV8Pg7NayKK53XA4LItpWVtZv77teVBJDStWyAjn0KEyTxDZ2RGZu91ANxVGmMsSMpze0GifNmzcKE0Ylh8Yie4BEXSg4wvS0iJEUFkZO5FKY31RBAEMS6/Eh1P6NMcfL53vyE4rxJ4oFdnk/kdzOch8znd994f3SD0esfC6272LxaBBnMqruN1SF6AN9fXyBzzqqOCyww+X9ic5JK7dMZunn5aTwNixcn7et4/tr6/mb3+D4Wl7yVy7vM0mYzLKufpqES933BFc/uSTkv/SYqUxPWsrjz8OVx74AdmOZjZ4x+PEzyuvSAoUBPvlU6bAj38M//jvYJZyMGP9W9u20xZB0XKCQDrZNTXwr3+1Lnpo20lYwA9/NxzLgvvuE73gcEje//l5C3ik7hxWrhQ98Y+zXsEAf575d9496FrYbz/Mxg3ccYeMSe7aJekyoQEadb4sfv1r+MaEjznJvMk2x0SMgeuuExFkn9Ls4kBR252oCLrySti8GR5/PLWTf44YIT9oV/OBIDwULTQUzubAA2W0INLNe+45EWLZIROp5+XJD9bef90WQTU1Ulimj1WGAxVBykAitDy2zejRMjLexydMbWyEooxAZ6edcDiAaWmbcbvDJ3pWUsdzz0mHoKgIsn21PTMLp50Um8oS2ZmZuPAxJreSN96IPa7wwgtyPz4/0CnpgXA4R0MdhYUSNdJaNWvPHjYj08n3VRFU4Gwg09HCP/+JxMdB9JC4WBOlAi+/DNu3w7i0XQy2qiR3wcbjETXfbbP8dkBBAWf5n8cYid5pw6efymhPaM3ktDRJHHnttZQOfm3eDLtaivD6DNx6q4ySFxW1np9/d4sPY2Bsxp6o2xsj4WPnnSdu0O7dsH49fPObEtU0J3cdxenVfPObcGfur3l37o0clf8Fh+Wtbo1SiuSXv4QhQww/4EGmeaNMx7gn0JZYOSDjxkn7v/99+OwzAAZZlTzJBbz8qotbbpF+sS28XC54bP9bOSntHXw+0ROFu7+U0K/0dNnn5MmwYQPGiOmw//6SXnLwwWKS+C3D2saxDB0K91lXscp5UNjxd+65kuY1Y0bE+F+oK1NYmFg4XFkZPPYY/OpXtF91o5dhK1+ILYKAsDkyyspk0rYhQxJ/P7s/ZQtMdYIUpRcTSwRBnw6Jq6kJTNOQHhjWbs8JAqanyUR1CYXE9ZPQtO7GsmSksqRE0hDOOLauZ0bRnc5gKEsKw+EAJubsYceO2MfXiy+KMTXUFThee6JIRH09kyaJNjz77IApsGcP2xiPwR9tHsY+gTEwPK2Sd9+Fre6R8ptHqxpgO0FROrt/+YsYFlUZw9ljhsNDDwVftEVQb6GggBHWbooK/Tz1VBR3+8MP5d6eK8Xm5JMl9irWvDedxO2Ge++Vt9tvP9jQPIYNDSOp/GIn/PSn8gNlZLBl4nwe/nQGV1wBmQ5PzP05HJJKNH++CKDduyWk7N13IcPeLlAUgUMOwZj29WlBAfzud7CUuaz0zWgbQxjiBJW7B/FFw4Twr8gYiXMrLpY/zr59pPtbuJa7mT1bnKZIXEUF3JP+/zjiiICe2LhR8mDshk6eHJzoFTm8li6VQ/Okk2B5wyQa/Vk8/Md9FG79jKPHbmPR7GvC3iMvr4M+fCLhcHV1MoHrscdKfGJfwhgR+RkZ8r1Gst9+IkBD3eEXXpALVWf+1+np8l72pGsqghSll2LXKI4UQfbzPiyC7M7mqLTAKF4HTtBUx4aw7ZTUsXq1hGCfe25gQW0POUEg75viwggAk3N2AUQNiSsvlxQNccXqgu3qTgIiyOWSgdEZMySX4K11Y9lhRpNuvL3G6OgMw9IrMQYeeQQZEKmpadvZtzu7EZbXF19IB/vKKwGHkwXpZ8lw/ObNsoLb3btEUOBcN66onl27ZEA7jMWL5QeOPCeefLLcd7JiWOSY0BdfiHvx0Udw9dUy0H7bbTA9ayvVVj4npL9P9Unnt+bZ/DbjFpyWl59d72bR7GvadOpDl2VkSMrGiBFwwAGy37DorA0bpBM6Z05cbb/sMhjn2M613MWK/24Of7GsDAoKWLIqk7VNY9nnLeCuuyJ2kJ4u9vbu3XDBBTzhO58KhvDQQzGifAcPJs9XFWyzLYJspkwJr5wXWPTJJzLPUZ0vhxHpeznZFcjh6kzuTDzhcF9+KTlAn30mg0aPPdY2p6YvkJ8v1/poJzGnE2bODHeCnntOvvDQULhEsK8jfbAyHKgIUgYKlZWSFdpDTlBUI6Wz7krEdnalt7FO6Xy2WxgBKPRVUFyMVojrBuyqcF/7WmBBXQ85QSCdfzsczuFIfl5SQAQV7/icKVPgjTfarvLyyzIeMWQIZHsDM7/3QDicPRKaliZ9/GnT4MyNd/KZdTDp7YzM9wUyHR7mzRMR5C8cIqP9L74YvlJZmXReIr77e++Vxd/5jnTELztouRwr//iHrNALnSCAiXl7ycmRfJlWLEtUSWg+kM3o0aIoujCBJki//bLLJDytqkouLytXyu3GG+Ekx5u8wFl84Z/OSae58FoOmnzpPLLucH7AA4zc8Wlc75OfL/3U0D5mq1BatkwWHHJIXPtyOuHgzNUMopqzvjcsPEqsrIzyIftz9tmQbrwMdtVy222SpxPG3Llw//0sesvNM9a5nG3+y9y5Md5w8ODW6nD4fOL6hIog27HYsCFss+xsST06OHcdkzJ3SB3x3NzOFZUpLJSw0GiJsA0NIn5mzpTY2DFj5PMlI0enJzjgAJkcKhYHHijnP8uSEMF334Vzzul8iKstgvqgCwQqgpSBQrTy2CCjFy5Xcstke70SatFNlQfWrpXBud9/d5ssiDVSNmyYdGiampg+XZ2guPD5uvQ7PvushIC0Rh31Fico2aFw0LrPdNyceKKE44eVoEYiL8aPD+Tg9pQTlJMTNhJaVAQL37KYzAbKKSbd9BERFKUSld0xvvRSyfk7eNPTlJnhAVsoQEmJxFgNHx7s+CxaRNV/F/Hvf0vOSWtnOyNDyn09/LCIqV4qggZZVXz1qxJ62lrHobFRXLDQfKBQTj5ZXu/g/92mShrBeXAmT5Y8l5/8RArQTZwofWmbi5r/wVyzlGef8vPZZ7CqYT82N48kPcNwI7fTYRnFUELnBQpl6VLpiO6/f1RXKRqVrmE8ysXsrsrkvPPkklVSAkve2Mt5e+9n716YkbOFyZk78HjgF79ou4+68y7n0txn2Y+NfMP5bOw3GzyYXG81xvLLddHtjimCIg9pYyDP2YTDIDbfEUd0rrNeVCSd/sj8uLo6+f4WLJBS2Fu2yI+YykIIPc2BB8oP7nbL4IjPFxKq0AlUBClKHyCWCHI6kz9h6nvvieUfkYiZqhzcNWvkOuKqqxJBZyfBR+JwtHYAp02T7fp4UbzorFwJ27Ylb1/r1ye8WUkJHHqohMmcc07IC6l0gjoqzxrqBCU7FA5aRVCa5eakk8R4teepBNFfb70loWfGQI4v4AR1hwgK/W5yc6G5GacVnCxyiKuahdZ8xputDHJFqabW1ffsZr72NTnMyjxDeCv9dPniQ4fz3e6wULiSEommamyUcK4wvvtdcY727pUOU28SQYEBn4e8l3HBBeLGtIZh2vMARXOCQESQZbXJmWrPoPd4xC379FO5ZJx/vpwe7rgjSr/5yy85xPcpz2R8izPOTuOpp6DWl81e7yCuusow/JBRrfMFdYlly2Q+mEScXWPIcPl4cOgveecd+H//Txb/teFi3quZzUMPifjIcrr50Y/EkQnUQWjl+uthW0MRP3Q+yGfph8V+r8GDcWDJ/32j5KOGiaCRgdy1CCcolDx/jZxMjzkm6usd/tXsJL/I4gj283Xr4Pe/71xxgL5GaHGE556TUamDDur8/uxrSR+sDAcqgpSBQiwRBMmfK8juNIdMRldWBh98IEWC7JHKaCOMnWHNGslVpapKOgXtjZRlZ0NjI9Omyer2xNL9hooK+WD2pH9dwecT0VBZ2Sk3yP5uzz47ZGGynKDOdLDtMLAUO0FpuCkpkU5haEjcG2+I/jrrLGn6Dd8POEE9EQ4HZPpC4uL37KGYCi7LfJLRGX27UiTI3/z886HCU8AC11fFxXn88eAKEXMEWZZopK98pe38ipxyinRUt2+X571JBNnVsHw+TjxR+rqtIXG1tdLWWPOcfOUrNJPJsxsOjOutXn9dwt6uvloOoUMOEYNt3LgYGwRCEH8w+yNAzgP7Z2+lwFkvomP+fAnXi/PcEtXlsazWogiJsGj2NXxlzHYu2fMHfnRFI3ffLdeRf/gu4Uez3uNb3wq+3y9+IUbKtdfCsZ/LNev116VexvXXG17IvYjFacfFfrNAePYrj1ZGF0HGyPMNG2Iq0AN8y+WzdrZSmy2CIsMfq6vlfBw6d2B/xxZB1dUyONKVUDgIhidGFh/pI6gIUgYGpaXSK4s2/8Ho0ckNh7NHtEKSke1B2J/9TC6kyRgABOlUbtokOQ1UV8fOB7LJzga3m+ljZLS734XE2dWgGhuDFbA6y9atcuH1emWukQTZu1euC2Gh5T2ZE5SX1z1OEB5ycyUKKbQ4wgsvSGeqdWDerijUQxPHLniqPqgjA4UCqhx9tCxcFC69FPw4We4/UObGeeSRoPUbIYIqK0Ubt3GBQByGyy8PhhD2RhHk9ZKeLlE9L74IDb5McYKOOip2By8jg/XO6UzzfRlz9/X1sM+Tz6qGiZxyinxtL7wg/cjIw7bNuMRLL8l/LmTAYWhaDbNzN8pXOH++WEu2Y2Xj94tYiOf81dQkjYyzKEIYgfPQHSe/TUmJjBsdw3vcce7HYasVFMAtt0iAwz5vAR7LyeWXy8D/LbfE8T72NenrX5fPlZHRNt9m8uSYjvui2ddwa+EdEvN96KEJfsgAdnxnqAhqahKhHFpWeiAweLD8Brt2yfHXlVA4kD/CUUdFGT3pG6gIUvo/JSUS0z5qlISERWI7QcmKDbNFUMAJWrNG+nsTJsCrr8qFdP58WNM4jhZ/15LTN2yQa+b0Z38jQ+0dVc4JhMpNM+ta29avsEUQdF1phn45Ce7L7puEXV/cbhEgPZUTZDtBLS0pdYJ+MPwFAE48UVIYjjxSolgWLJDJDFujdmpre37iWJvA/CiVpv+Ewxx+OGQ5milzF8K3vy3Vrz7/XE4YXm9YONyOHdLHbC3gEcnllwcf91IRBHDBBaLVXt5zqKi6WPlAAT50HEW1L48lH3lZulQiy2pqJJq2pEQMhC8aJ+L2Gv74Ozdffglf/WoMXRXqYpSVSXmz9qplfeUr8qVHljC/+WbJndm0KfocT6HYAwkJOkGAnIfS0kj7dDHPPAP7p2/gGb5O2si2v+8VV0jKx6bmkWxoGs2ePZJWlpkZw6EKxRZBXq+IoIkT216Hp0yRfJxY1+CaGilWkJWV+OeE6OFwH38s79eZanN9jUiFnpMjDuSoUZ0XlqF09zk8iagIUgYGLS3RQ+FAljc3y0UpGUSIoH//W54WF0tkyRdfyBxsFZ4CVjXs1yXtZTs507O3yUUmHicIGLP3c7Kz+6ETtHixXNxdruSJoPR0qaCTAHZ0ZVg+0HGBkJGedIJSGQ5nXwgDc4+cdJI8raqSPkxVlYTCtVJX1zOCMJoIsp0g03+cIGNgRPo+any5vJh7oRzHjzwSjMcNOEFPPil97dGj28kHHzcu2JHsTSLI/i8FRNDRR0tk082bL5blsfKBkKIlP/TczdF8wKFHupg7VwyV5cvFBK6tlRCw3zt/TgVDuf7wD1r/Nh1Go77yity3J4Kys8UqDhU6Tz8tE/kMHiyd1Pvvb+dNkP9QVlYgHjpBnE6ZkfTDDxkyBI5N+4hiKqLOHeVywZ13QrM/gwrPYH7xiwR0l33c2CIoNBTOZvJked0u3x+Kzyf/1a5MWhrNCbLP6QPNCYJg3vDZZ0cfGB5ADOxPrwwc2hNBtjUfWcqqM3i9MqeGwwFeL/6KfTz2mIgf26TIyoJf/xr2y9xFgz+LL2NHY3TImjXS2ZmaXRqfCMrMBIcDx9rVTJ0aQwT1lolRvd6O1wmlpUUq/RQUyOje22/HHFmM6yOuWSO9wqIiqUwUZ3tuvVUiDUaOjMgXsGP/e9IJqquTjkYqwuGMkeM+IIIOOki+uqoqGYDNyhJ3qJXeJIL27AGXi1rTvzpEo9L3kuto5LIf57HzhEvgiSeC57nhw9m+HX7wA9ESHVYEHjNGVhw/PsWtTgCXSzrzgf+m0ym5UFt849jNcOnkByhhESUsAuDBB+G882Cwo5aXOZ2Xr3qdl16SULoDDhBt8tlnMifPxdajZNISZRKidnjppWAZxPaYP1+OQ49H1Nell4p7dcABIh7uuaf9CV3r6xMvihDKkUfCkiXgdjPYCrgktgiKUHonnQRD06oocNYnNoeofU3yeNoXQRD9s9bWynk8RlGEuCgokPNTqBO0aFFwwGygYZ93zzsvNfvvwaIwiaIiSOn/WFb3iaDt2+VkHzjxv/f0HkpLZdK3SIamVQMWzzzT+bdbs0Y62tnOFukIdGTtGyMjkKtXt1aI65WsXSuqMZF5PJYtk9/QFkHbtkmIRWdZs0a+q0GDpMNuz8cRQaiguu8+yfsqLo5yrbdFVEdOUKouIHl5IsRqalLjBIGIoIDwdDjghBPkJ9y7VwRQ2Hx8tbU944rFcoKKi3n3oGvjKjGcNFLcWXAYi+nZ22hpgYu2/w7f3spW18s/bATf/rYcEtOmxZEbPWiQKNuOBHRnP1Nnt3M6w4oLXHB6HV7SuM358zZttSwZgPrBD+C002BaznaONh9westznHEGnHmmCPf09MAGu3czyh+wdeMVQY2NknB+5pltvtQ2oWPz5sl9RYXE2RUWysyoDodcryoqJJQ7GpbVdpLURL/DI4+UQZHPP6fQHxAI0fJmA0zP2sasnI2JVZC2RVBjo0RHtCeCQooJtWLnTHUQ2tguTqccv/b1pLFRwhUHogsEUgXv4IOTF/3Sh1ERpPR/PB65YLQXDgfJEUF2KFwgBODfT6WTlyfXt0jSHV4KnPU8/XTn05HWrAkURbAT+DtygiBMBG3b1v5AY49hz6oZWdK0Pex6zPn5QTEYmIcj0vnx+Tr43JYlQiwnJ7gvO3wiho30yCPwwx9K32dq83LMiuXhK/QGJwjkO02FEwTS6Qs4QSCjxx5PsCpcGL3NCYoSBtRr6IJYyna2cO+9sGjVEG7L/g3uMvlP3fXSJBYtgj/9qfOpFr0ClyvMpZ2z4h/sx0aetL7Be+/JKbmhQf7SGzbA//2fGC7//S84HbDOub/UvI6GfU7Jy5NKbp445pB66y0RFmee2fG6hx4qHfQNG6QywQsvBEVIQYF0/O+4I/r7NjbKf60z+UA2trD48EOuG/aYPC4ujrm6MZ0oJJaVJRvZ+Uu2CAo9pouL5TuOJYJyc7suWIqKgiLo448lLLQr+UB9yO1ogzE9dx3qZagIUvo/dpxxiAgKDY1ovegkQwTZJUALC2kki2c/Gc2550aMgAdYNPsabp34N9aupVMhcX6/TG8wfXrgSbxJnjk5UFrK9HGiAjoxDU7qscuKRSYNt8fixXKBTU+XL3zEiNa8IMuSPsM990jHfPFiiQJZuDDGvvbsgepq/lx5ISWr75es4Fh5QcuXU7FkC5ddJtEtTz2FTO4XSbxOUKqwO/9796bWCQoRQSecEHzp9NMj1u1tIqidEfC+zre/LUUDftV0I0uZwwoO5Od/LOBrXxNB0Jf7c2EiyO/HPHA/p5rXqPAPoaREcu5zc2WKgt27ZU7Mf/xDNls0+xoOHblTTsDRRkUWL5ZjetQoef3zzztuz0svSYc9nvCttLRg5/4f/wgXNMbAT38qI1X/+U/4dnV1wRN3V3Jl7JjdDz8UoZWWlvyJQo2RL9v+v0VzgoyRHypSBCWzglthodQ5LymRg93h6BknqE//2fofKoKUfs8v110oDwIiaOVK0SqtfSCnUzqFyXKCcnMhI4MX075OnTszaiiczdlD/ofDIfmwMYnhPGzfLteI6dMJdgLidYKAaS4RbL0uJK6xUUJPXC75gPb8JFFo/WosSy7kdiK0MRJq8s471FRbfPZBI0uWyMzu27fLtT8rC668Mnourv2lbHNMlOfHHSe9KLc7bH6nigrY3DyCNY3jOOwwGciNWTGpp50g+32rq1PnBEWIoFGj5O8waFCUeQh7KhzOztOwSz6DhIj1ZieoixgDDzwAY0d6+SZP8A3+Q2Gh4aGHujZFSK8gVAS9/TZs2EBxRi1zctewcKFUMbvtNhkTmTZNcvbCPrMdJhoQOGF91A8+kNftwaUPPmi/LZYlLvYpp8QvJiZMkJP4N7/Z9rXTTpP8oNtuC4YL1NbKRK+1tVKneuLE+N4nFkcdJefOlpYO29xhJbhYpKXJecHlgrFjo68zeXK4CLIs+M53ZLtkTGJaVBQ8ThYtEsE5EPOBYjFAxZmKIKXfU+zfgwW8t30Cp54q8/Ts3CkuSmt/LZkiaNIkMIZ/WxcxJq2MY4+Nse6OHQzb9inHHkunQuJs8RImguJxggIiaHLDchyOOCvE7dzZmkuQcv73P2hp4X5XYNKSmHZNCBs2iCIJrQY1fz6Ul/PMn3ZR789mQuYutmyR723SpOD8fLffHmV/gS93u3OCPD/uOBFnS5YA0OJ3cd11kvtc2lLM0LQaFizoYMobWwT1tBME3ZITZDNzZozJxHuLE+T3SyhSP3SCQjutBQXw5LPp7GQUa5nOv/7VQd+yr3SKXK7gf+u++2DoUN5LP4EcZwvz50s+5o03yv896k9sH4ORIXENDSKMCgrk/7Lffh3nBdXWynkonlA4m9zc2CFoxoh1tXq1hLF6vWJlf/qp/KmSUanvyCOlkktdXUgyVJKxxcaECbGFx+TJMiJlX5R/8xsp5DFhQnLKWBcWitvl80k4XG8o/qP0OCqClH5PlTePI/iIkrMGsXQp/Pa3ckGsrw+Wr06qCJo8mT3uwbzpPY6LeAyHiaFudu+GXbs479CtrFsnpbMTqcxmi6Bp00jMCcrKgowMMjesIj1dRojbZcsWmbOiHUcmqbz5pjhp6V9nnxnSvghavlxudum9UBEUSDr+978tsh3NjEkvDytsVVgolaR+//tgFGMra9ZAXh7rffuxrXkYv/roZH7KrVz3/5ysbRzLp3X786c/SQnsublrmZ69reOvvrc4QZA6ERSREwTSr4o6wFxb2zPfRXp6eHhOVZV0jvqhCIrksMMNR2R8zpEZS1tLmPd57Opw27eLC/Od7+AxCXTm7ck7AwMcrXz6qfxn7UGLo48WJ6i90ap9++TYOvnkxD9HLM4/X4TAtm0SxrB0qYyaJatUuZ0X5HanXgRFC4WzsYsjNDdL+N+vfiVxnLFyeRPFFkG1tXKvIkhBRZDSz/H74c/eK9nOWO6/X64jP/+5hEPl5Uklr4YGgiKoK5P2eL0iGCZP5qjP78WHi295/tE6EWMYNTWtMehnr/x1xyFxkVgWa9bISO6QIQQTZ+MZMTNGlNPq1WRnx1EY4dZb5XtpakqsWltnefNNvEcdy3bPSN52niAiKKJjbdPgy6DOmyWx+4MHBxRhgHHj2Dr2GN7fNJritKqwEBh7kPuuu+S6/8Mfhv/01pq13JL3R1Y2TmJrywhuuSObu8y1PPTJgVR68ylOq2LtWgm1yXbGKZ5todrThRGg28LhYmLPCdITrpgxwYljIfj/7MfhcKE4MtNJy+xHYUB2ONyDD8rz730v8X3MndtWBH3wgRwroSJo716xzmMNVu3bJ7lA8QxGxYvLBTfcIMdrfb1McBRzVts4CXX5Zs4Mhoh2JII66w4mIoLKyuCSS+T7/utfkxevWVQkoraqSoSzVkZTUBGk9HM++QT2UcSV5kF+8INgFaT33oPXXpMogNtvR0SQ399xIn57Ts3WrXIxDjhBwx17mM7aYMW4UOwLbn4+xa89Qsmcep55Jk4NtmcPLF7M2vfKgnPk2S5DvBff/fcPE0EhFWbD2bYN/vWvYAf6k0/i239n2bULvviCP2XdxNqmcXzH+1ferJgNq1aFrebzwR/+AMvqp7KiYRL73vtCRjQjJn57vPgnALw7K3os+8iREnXxxhvStwDpm1/44VX8atf3GJZWyVfyV+D3Q8uPb6QurYhj8z5janZpu9fzqPh80j6nM8ENk0R3OEHxiiC7UlRPCkJbBNlhngPACeqXuFxy4nzwQam+MW5c1NyVdvvvc+eKHRw6yLN4sRREsW1MuwBBrJC4piY5mUYrBdpVLr1UQuZmzEj+/l0uOOwweZwqJ8j+Dts7aU6ZIvelpeLMPf989PNUZ4WYPWnr3r2SD9RTYcmppq+EsfYSVAQp/ZoXnvXgwsMoV9t8lqOOkrnC/vhH2OEIJGuWlnb+zQJiZ03agdT7sxnpqpDl0cqv2WJi2jTIzeXr/qdYtw5WNXSQ5FpdLaFpfj9rNriYXvGe9NoTcYJARNDWrQzKbMayZH7XqNx2W7CdIGViU8lbb1HKaH71zjEUOOvBYTiJN7n2Rx6OOUb057ZtEul2000wyFWPDyd/2nBKMBQucBGwLHhs1zyO5n3Ge6II0QBXXSXzDV50kfQFjjvGy5NNZ3HrSe8yNWs7TmPJYORxx0FzM/v7VoZtH3eysM/Xs4m43eUExaPka2vlvifzowaoE9TvsP9TVVXyZ+4Mhx4q90uXyr3PF15oBYJJRbFEkF3O/4wzYr9PZzuomZmS/FlUlPi28WCHxHVGBMXzmeJxggoLZT2XCxYsSE4xhFDs766pSUPhkkkfF10qgpR+i2XBf59yM493uHRq9M77H/4gA9c/3Xe9LFi3rvNvGBBBCzaIrZ950DQZAYvmBH38sRQoyMqCH/yAs5f9HIfD4umK49p/j1tuAY+Hihkl7GMI09a+ILa+XekqEREE7J8eaPOCKOuUlkrZ1ssuk3CJ3NzUi6A33+SajAfw42Bq9nZm5W7iqsGPc/f7c/jsM9ixAw48UPKVH3kEZmZvZopzI3/ix1TPDC8Vu2wZrN2Vz7f4t4jHGLhcMojsdotBt3KV4TnO5qbv14RHYhxzDDgcHORd2rnP5vX2nAsEPZYTFJXe5ATZIqg/OEFxdEg6XeGrt2L/pyZPhuOP79w+7NLUS5ZIB/mww+QYDQ2ZMkaexxJBe/fKeXLChM61oSexq/ek6rxgi6D99mt/valT5QQ/dWry22A7QdC+CIr2H+rjHX0lNiqClH7LmjWwYWcOZ/FiTHEwfjxcey08VnkqH3IErFjR+TfcsAHy83ntf7nk5CBx9xMntnWCLEucILsDeO21FKdXUzJsLXft+DrHfn5P7A/0l7/AiBGscR4AwPRfnS9hHGVl0hmI12kIiKBZvs/J/f/t3Xl4VOX1wPHvySQhKyCrArLJJii7LEoQROu+4ILgVvcqVkSpFvtTcKu2aFsFXKmgLIrWhSqKFsFY1AIiiwKCYVdBdgyYBMLk/f1xZsgkzGSfZJI5n+fhCbkzc+dmbm7mPXPOe96Uo5ehALRO0DlNuYAe76JFRdTOlcOAAXD66Xw4O493Dl7AAw8Ii7oPZ0G3u5h4zSLej7+MQ4cc69drCfuKFXDddTou+W3MNDKpw4TFvQrscto0/WDz8o6riy1z7N1bKzDi42HB/XO4lHfJrzX0qVsXunfn+oSZZRtEer1VGwTVqpX//JVYDhd0/BBJQdDPP+uHFRU5j8NUHv/fvOHDjyqHLZb/l7NuXS3H8pcp//KLfg3MBIGWxG3efHRf/blz9TFFLDQa0QYN0nR4uNbNadhQ3wv9JW+hNGgQvr8JgUFQoaoBE70sCDI11rvv6teLU+cXOfi8/36Ik1xGMB634puQ9ytWRgYHWndmwQLJH0+1a3d0JmjjRm2j6i8FOvZYuPlmhmyfQHZeAr/mBSlVcg5GjtRPGlu2ZE2Wlu+deEMfTXkkJ5euxKlNG4iLo2XWaho21Nhm48aA2w8ehEmTdIKqv6Va7do6eA3TwkJZmYf5feaf6XDcL/zhDwE3nHkmFxx6h9/GvUbHpI189lnBD1vPz3ufi+r+l39MjD9SZZWbC6+/rpUpx5x1ipZfFZOhaN1ag6Hu2V/ooLh166M/NR84UPdVmkBw1y646y4NxMJVhlYSgWmtqm6MEGnlcI0b14AFc6JU3br6N+qWW8q3n1698ttkZ2bqhMHAdpKQPy/I//sLGhANH65Z/WbNyncMVUVEA6BwXQO1ammXt6q8xvzlcKmpNXc+kCk1C4JMjTXrrcP0ZiFN6hfdvSs1FVolbONrevLJ4nL8cczIYH7qxeTmaqlWejpaorFuXcGBoX8+UOAf4vvuY7DMIoY8th0KUve9e7e2jn74YYiP57usFiQl+bqHnnCClnN061byY42NhfbtuarraubP100FutP98IOWb91/f/42//EuXAiUsJt3CVt+D1j+NJd/O4aNtOa58YcLlqYPGAAeD/29n9Iw7pcC8Wx65xF0cSt48Nwl7N2ry4SAfjC7c6euEcKgQfr6B5bEBTkuEd97tH8hoWB9nQcO1IB03TptKTd0qKalli7V7998U1ufgz7nuHG6r4kTNdj1d0CqKv5PzStxnaCgqjoTlJxcMBNk84GqL48HWrTI73BWVqecotfuwYOa1TnttKMH7V266O+sP1ME2j1z3Tq9tkubiTKVxz/HqCLWHKpokZqRitTjqkB2xZoa6YcfYMnyWAbzbon+6DWO20si2Uzf+ZviO8QFc+gQbNrER1lpJCcHlJL7F4D78cf8+/rnAwW+aTdvTqPrzuEm/snWQw15++2AfeflaTOEjh31E0fgu6wWtG8f8J4rUvpSq44dYe5cWl4/gD59AkriDh3SwcB11xVcjTwxUT9NC8O8oCxvLeZ6z+CaurMZeHmhILB2bejdm2vj3zy6DO3AAcjLo+dlLTj3XG157V//qV49XbidAQO0zi0jQ7MyIRz5e//dd0eXwvmlpWkg8fPPupDf0qV6fmJitIvelVfqJ8iLF+u/P/5Rfxm++UazguHqvlRS/t+RcGWCRDRLVlwgVNVBUEpK/jw6fybI1BxlGbydcop+3bVLA6FgLZQ9Hm0i4A+C1q7V5jFXXRW8nDIKBpHVRp062l2votYdMjWCBUGmcgXLDJRigdCS+ve/9eslyXNLlPqOEUcbz0be4VKyvlpV+ifcuBGXl8eczR0ZNChgrOuvgQ4siVu0CHr2PPpTxtGjeZq76Moyrh+aw3ePvgWrVmlEl5MDzzxzJDvxXVbzkOP0IgW+KXfsqPv1ehk6VNccXbsWbfWdl6eLKAUSgT59KjwI8nphXXYTUjjAU8O+Dn6sZ56pA2d/Fzy/gNr9Bx/U8cuTT8KsWRqPxMejA+1OnXRgc+mlRS+Ke+iQBpyhXtyUFOjbV5sk7Nmj8726ddN6+r17NfB56qn8phfz5sHs2fr8kSDcc4JSU/WETp+evy3Y9R2J5XCmaDV9QN+1q37A8dNP+n2oeSNpaRpA5+bCbbfptf73v1fssdT017qqNGgQYuVmE60sCDIVJwzBTFm9+y6cGLeO9oNKVoec3nUk49tN5ACpvPf6r6V/wowMvqcdm3alavbBz1/+5A+CDh7U1mZ9+hy9j3bteCpxDA95HiPRu5/BY04i86S+GpQ0aHCk81HasvFsOXhs2YKgQL7mCGRlccUV+jK98ViGZoGaNQvezrRPH82U7NvHoUMlm/5RnPvvh73eOvyNUTQefGrwO511ln71Bz15efD88zpJOSkJjj2Wvn31bo88orHdNdcEPL52bW3zvWAB3H576EzFunU6iC/qxY2JCf47FRennyaPGgUnnaSlM2ecUezPX6nCnQlq3FgDoVGjil5YNxIyQb4sItu3Wzmc0Q8tTj5ZWyjHxOj1G4w/Q5SRoYHKX/5iQbSpXizIPsKCoJoggoKPSLBnD3z2mWNw7hulapnav8FqmsX8xPR5x4W+086d+S11A2VkMAeNfs45J2B706b65urvELd8uWYb/IvTFTKm18dc3G83b85rwDpPe37bfSWvxf2Wyw/OOHKfrDz9FL/cQZA/O5GVRZMm0P/UXF5/HVxiUug2r337ArB46hoWLtTpMP7lMYBS/y5Om6aZm9/EzOVqXgu9infv3jqA37tXF0497TQtDUxN1YDD58EH9WtCwpFDzdeoEYwZA1OmFCxPDORv+uB/cWvam0W4M0Eimv3csye/q2AwmZl6DFX1qWxKigZAP/2kQa9/EFvTzncw0fAzlpW/JK527dCdNnv10t/znTv1j0x5GzIYY6qMBUFVxQKXsJk9G7xe4RJmlSoIiomBq5ot4OMfO7JzZ5A7OKelUt9/f/TckowM5sReSIcOrmBDoZgYzaj4M0G+pgJBM0EBBgwUnnxSmLW0OQ/EPM6PNGX6dLj1VlidpU9Q7iCoTRt9M8/KAmDowams8bbl2xYXhJ7g26sXu2jA5Q+eSFycfqDft6++LKW1aJGOHwYMcDzr7mBFbHcNGIOJi9Oa7u3boXt3zdhMnaprSgQ8Ji1N486WLUMkAMeOhSuu0NVhg80P8gdB4VinIhKEOwgCDTBGjtTugl9+Gfw++/dXbYcm/8Kx69bpV8sEGchfNLWoVtGJifkZzBdesGYIxlRjdvWaGmfWLGiauJuex23VEqhSuKb/Fg67WN6cGaTOa/16LWfLy9P1egJkrdnCZ95+nHtukJF327b5QdCiRVpq1qRJsZ/IjhwJw4bBxoNNWLS/E9deq83HkmJyaJPwY/mDoPh4fUP/9Vd44w0uWzIaT0weM38NveK5NymVq1L+zY4DiUcqvvbs0UDIH98VZ8AAvf/gwfoy/GvUItq4DHq1Ct20ANCmDF6vNmxYs0ZbvwWJdPwLuwflb2CQmqoBzzeFWqJ/9x00b17+TlORKtzlcH4PPaS/57fdFrxmcv/+qiuFg/wgyB+9WzmTAS1fjY3Nb6ccSuvWWk7cuXP5n9Myc8ZUGQuCTI2SlQUffeS4xM1CzjpTB8mleJM5eVAjOrOC6ZODTJ7/5BP9mpKiQZB/XgOQvqoBB12tgqVwfu3aafbo9NM1UigmC+Qnoh+mN4vfwQkJP7JsmZaenZy8kaa1dlXMkgtJSfpzDB9Ow16tGTQI3tg5MOSUmYcegrkHTmVirVHUTsmjTh3tk1C7tnaP7vTVFPove/pIG+lHF5/NnxefVWAfXq/2e9i/H957DxpMHqcDj+IGoscdp6/dyy8XOUgp9nQnJWkpYGysLiTkL28cMEAPqNzRZQSrjEwQ5F8j336bP9E8UGamZYJM5GnVSkttiwvQ69TRBUCrkgVPxpSbBUGm4uzceaS0qqr0ariB7GxhcM5rpSqFO/KG0rkzVzODhcsTjy7xmjdPsydt2+rclEmTdHtODh/t6EFibC79+wfZd9u2GhTs368rkoaYDxRMcjKckLiVZrV20bWrjmGPWsCzPJKSdI5SdjZMncrQYTFsyGlKj69fLHi/9HQ+uDedxx6DG/t9z83ZEzk+a+2RH+9//4Ounb2szmrFgsyu1Io5RL229ZiUfTWvZl/BCU2yaNlSkywLF+pLMWMGnJS4XlN3TZoU3+JbpOIG77Vq6VyinTvhkku0k4Jz+vsbDUFQZSzaevHFGmRu2qSvbyDLBBljSsKCPRNGIWb+GVNKixfD6tVsjDmBVocPh55UCjrQnDMHtmzRf999p4PxcnIOfjrYkGR+pT//hUHTSr+Tjh0ZFvMmo/P+wowZMYwZ49uelweffqprQfjTHn/7G9xxB6SlMYfXGNhpBwkJTY/ep79Ntj/jUMJMUKXwDwbHjYP27RncGG66MY+dubrmRV6exkhpadrToVs3mDjBQTeYevv/4EYNGBrWzWX+MUN4hcZ8L+1J6NyeA/Va8J8FCZx4eDUp2Rl4zjwXT2wMc+boy3jRRcBd4/V3pUmTyv/ZU1O1M8Pll8PNN+eXOkZDEBTuTBBo0DphAnzwgV7ju3fnZ/CWLKnaNZP85Y7r1+trUdQckOrMBo81h51LYyqcZYLMUUrds8E5uO8+XuU6tuc1yM+QBLNlC3z1FZx3ns4XGDdOsyqbNsHHH5fruKdNg33eVH4f8xxxJ7Yt28A6IYHjOyRzev1VTJ8e0EnZ3wbNv/Dq6NGwdStMm8a6fQ1YR1vOPSs3+D79bbJ37NBBaPfupTqkCs38FNaggda133EHoD9evdj9/HioIbGxeriJiTpmBXjrLUjs3FajmAce0F8U5+DWW0n8eBZZCQ1YVnsgTyw/jwnzO3Fc8n66JGUwfd8FvHr6FCZP1p4DjRoB+/ZpaduwYZUzKA/mssvgscc0LeXv4FfKeWTViv/Dicqa89Sihb6e+/frIpP+zIvXW/rFfStSYCaoceMStdE3xhhTs1gmqCZwTsuZwsQfEIX8IOqDDxj/WWfuYjxCHnfc8zKPX7CP1OPrFrzf119rsFO/vq5m2qKFzvMYOFBH2bffDitXlikrtHMn3HMPnFr7Wx7ffz+cObzU+ziic2eumTudmzP+ypIlvq6p8+bpbf5Vwc86S4OZceP4aO8wAM4ZGmTFcNARv8cDhw/rYyog61VhRPRnChgEtkrYRtKhHK67tzHx8fqB/aRJUK+ezgeGGC3pW7BAH/DAA9psYOxYRqWnM4rPgXRAAzicg8On6v2GDCE93VcG9eQkbcpw993aBSKcivoU9U9/0kzFDF8b8pqcCWrUSAOhpkEyluHSsKH+Em3ZolnQ997TIKiobHG4+YOgzMya2wnQVK7qnqmJhOMP9zFEws9oIoplgqpKTk5+t7Hy2rFDsytz55b6oSXJ+rhly3HLlge/8fBhZt3+MSN5mgaxe+kYt45nc26iUyfHnDkB98vJ0a5ecXE66DjtNO0e5fFox6527XS+zGOPlfpnAF2bMTMTXjruIWKct3TzgQrr3JnLdr9IjDgGD/ZtmzdPP9H2ZyxEdJXPjAxm7U6jNetp0yNESY1Ifhvn4uYDlaT+Ocw10smeHFonbuOxx3RZndGj9Vf1q68C7tS3rwYwmzfD449r7+6xY4PvUERXVP/5Z838DRgA/fvD+PEaAHftGrafpURE4J//1DLH+PjST3iuTjXrHk/VTOj2d9CoU0c7cB06FBmZILCmCMaEW3X6G2miigVBVWXDBl2w8d13y78vf/elJ54o1262btUPwzMyNCHTu7dOZF+Q2ZkvMk9m4kT9ADfQorEfMuzHcfRqu5cOSVtokJTFFxf8hZT9P3PeeVppcvLJsGnE38lb/R33xf6dAauePfrJ69aF66/XlTNXrixVTd4nn2gp3B/vc3Ta+7luPP30sr8QXbpQl19oVXs3P/8MYx/wsil9EwwadOQuzsGndQdzUfI85nMGp0mI9VD8/EFQJM0HKg//SqSbNukE+GefLbqkqHdvuOoqeOopDYh37dLf/3vuqZTDPUrhN+WEBC0LLGWpYrmeM9q0a6eBULdu+n2kBEHWFMEYY6KSlcOV0+mn53dhLrG1azmyGueUKTB0aNkPYOlSrbdPTtaJ+4sX5y/4Vow9e/Qw9u3TJQ/860R6PDomrFtXK4Pmz9zJAW8id95Zm6lT4aWXoOvIAaw/0JgLlz1Lk1q7eW9BUxpdeZnuYNJMlrXpxOPNnuXRtUPYsSOGViv/RErcPchBL0m5Bxk5Uj8UrlMHXlw8leSYbJa+VR/ef1/nCnk8xdfpDxhAlrcWv9v6MW3bOP5v/Y2aFWvevHwTnX1rPwyp8zEvxFzNo4/H8KhbxaAFu/gpI4s8YkjoBitWeGiQ0pcHeIxunm+Ba0Pv018CV4rOcKVSgYPr/PlHRezTv2p6aiq8/np+aVNRx/HEE/DOO5rxy87WQfF55xX/uCMHFuQ+FRlUeDwlG5hHcyBTXg0balb1xBN9E8OqSGBJqmWCjDEmKlkQVE4bNmizsy++0AqvEnniCXJI4OP4C7h47tvwww9w/PElfs4Cc3Sef17LyU46SYOrv/4V3n476OPS0jTgOeccmD8fli3TjEYMXjp39nDDDZrsuPtuHd/6+xQMmLUN5+C2F7oyciT07Akjjh3OB9t74s0T5kz+mUaNmxUYHNb6vz/w8J+GMarDP1i1IZGVtU9l5RUPMfWlXPYdTmHKFC1fU80BGHwL/PXeSbQbfakOkI877sj+vF4dd8fEwH/+owHawOVPsyHnOH44CPN7/4mEma/oOg+leC2DatoUjjmGPrn/5cvOVzO16z+YMj6TKXsfZHO2DtxO8moF1dVXeEg4/m/FN2E49lgdYPs7xVV3depo1iQxMT/LVZzmzfWXy5+xHDeu5q62boFSaImJ0LJl1R6Dx6OBUFaWZYJMQXbtGhM1LAgqp/h4nerQr5/+Gz1ax3Yhs0MbN3Jo2hvc5ZnI7LzzWeNac+GTH3DiM7eVqEFRdrZmbxISwO3dh7z2mn6impAAw4frAHPt2gKTfXNy4LnnYNEiyM3VJlh9++rCl++OyyDVk8WcOV2O3L/wcaR3uE2f1PME57zZgdGvnsg/pgyhFjnMS3uYdlcFKcO7+2548UVqr1lMX6DvO49CWjwrXlut+9zXFa9Xk1jnNF/N9kN1+eSTJnSafQm/a/IOY9cPp+4xjfj0P9qRbNas/ORZvXo6fnE5HcjJi+eGxh8wcPFf4YUXNCtRXiLQpQsX5XzDRelAv3cY2+MgDy56iG7d9OZly/yvU3x+eU9REhI0OCtLF6pIfVMOLCkKpfCxjx6tJXHO6RwxY6pKSooGQZYJqt4i9e+jMSbiWRBUTuvX6/zwyZN1bHfBBVqZduyxsGqVlpn5x71eL0y/MZ2H81azkVbEyyFG81dGT4DWHzgOHhTq1YMvvzx6fJmZqUmfv/9dK74AWp4QwyVZj3Np05X0c+vxjBihd3jqKZg0icOHtWnXww/r9Iu6dXUcvnBhfjXI/L8dKHpgvmaNjvgPHYIrr+QY4EXgGvrhwcupL00O/riEBJ3fM2SINkBISwMKllp5PHpMC7trJ7ftb6Tz8MPCCy9dwlTvINwi4cDZ+lqcfz58840+8qabdBrUzAmZdMpbwZO7b4KZM/W5KiIIAi2Je/llfeEXLYJRo4iJyW8OZx11y6h2bc1a5uVFVpc8Ez6ROkhNSdE/ppYJMsaYqGRBUAVIToY779SpLDNnaqfn9et1rNekiTYq+/xz2Lk1l/05N9C9wRaSs9ZTL3Y/Mx5Zz+yRc3m/0Z+Zs6g+P/2kA+1TTtGyt7Q0nUs8YYKWsv3mN7BtGxw66Gi/9StelNsYn1ELT4aXNqd7qFN7NXVfXseqd7LZk51IdrZOQ3n1VXjkET3eI2PPTZtIz+mj8zp+Xpn/iejy5fp1VZzWxzmnpU+TJ2vXhIwM0p55Rh9X1JoqV1wBPXoUvyaJb5DUGM1YjRgh3NhpNW3z1nLZ4z34zd0nBV3g/vyJ15HGfOJnvw9nn12ic1VinTtrdPvqq9ra2tdtLlLHcxUq3D9k7drh3X9ZRcXJNUf4/y5ZJsiUlv2tMKZGsCCovAIm6MTFwbXXagIhJ0cXoZ87F2bP1iYEzWJ38UrMCAYvfhK54SZ93C0fctuDN3Bb+xzSYl/hl1806/HZZ5pI8U+fuPRS7cjcs6fveT9NhzPO5MCLM+h9d1/2HU6lS5cG7NvWmF92bCcvcz+xiYnMmgUXXaSZizPOCDju7GzdqderB9epk0YgV16p2ZoDB2DgFp3w3rWrRk5duug/KPnCpiUpmSqkQwf48tR7tSfza23hD0uBuIJ3mj2bQbkf69yCwACoot6c/D/n009rW+wST/iqZsrzetlAwJRVJPzubN6sXy0TZIwxUcmCoDBJSNAg6OabtfLnnNpfMOvXs0i6YSi0apl/x6Qk7Q43YwYLfp6g2RWfAwd07F2rVpBeB889B/XqkXLdpax67Rzd9kY6kATDnoF//Qs694GLPz/64JzTtNWyZZquSkzUKGnoUH2ivXth9WodHHz6KdxyS8W9MCUd/Hg80KaNtsueOFHnGPllZurxJyeXvwlCKB076qT9DRt0LZuSTv43xlQP/jXKAv7mGmOMiR41tDVTJcrMhF9+KbCp8HIgMTHwn2OGkkS2pnMK3+mGG3SC7ptvFthPSgqsWKFdrwvYulXXF7rxRo22Cj/hffdphmfr1uDH/PzzMHWqLm5Zv74GYl98oYtezpqlk288Hk1HtW1bmlfjaOVZG6V+fTj3XD3Obdvyt//xj/p9u3bh6y6WlJS/MGrA+kBBRfv6L8ZURx6PdraxCX7GGBOVwhoEiUg7EfmfiHzv+3rUiFpEPCLyrIisF5F1InJzOI+pwm3apHNobr9dJ+0U5vVqwLF1q3ZxCxZU9Omj3dymTCnZc556qu73d78Lfnu3bjqxaPNmGDVKsxl+X34Jd92lHRzGjMnfHhurAdrXX+tEpi5d4IQTQh9DuAf+6ekahI0fDwcPwr336vb//le7wI0cGf65Jf5SvuKCoJKwQCmfvRYmEhx/vGabjTHGRCVxzoVv5yLzgcnOuekicg1wo3PujEL3uQ64GjgXqA8sA/o55zYVte+ePXu6JUuWhOfAS6NfPw2Etm3ThQCfeUa7lIEuDPngg7oKaUqKzrtZuDD4fsaN0wzH2rX5a8msX6+L+uTkwMUXa7bo1191v6mpOpcnlD59NPjZs0fr8c4/X1sS33WXZjmWLNHWbMEUWIgoAowZA48+CnPmwIgR2qjg22+Lb7hQXh06aFu9ffvyFwM1xoQWaX87ilKdjtUYY0yZicjXzrmehbeHLRMkIo2A7oC/Z/HrQHcRaVjorlcCk5xzec65ncAs4IpwHVeFi43VTxO/+kpbQQ8dqoHLKafA5Zfr/Ju33tLuasFanPlde62WZ4wdC/fco5mhNm1g3TrtB/366/DJJ1ofl5gILVoUfVwJCTqvZfNmeOABrakbMgS2b9dSulABUCQaPVobIFx0kXanmzQp/AEQaNeonj0tADKmpCzLZ4wxppoIZznc8cBPzjkvgO/rVt/2QM2BzQHfbwlyn8jXvbuuJzN+PMybp4sEvfKKTuy/7LLi686PO07nv8ycqU0PWrXSffXqBf37w+7dsGWLrtvTvTvUqVOy42raVHtjb9mi+/7sMzj55HL/uJUqKUm7tOXm6jyoiihPM8ZENwvYjDEmqoWtHE5EegBTnXOdAratBq5xzi0N2PYtWib3le/7+4BmzrkRQfZ5K3ArQPPmzXts3ry58F0iQ26uTtj3eEr3uG3btClBv36Vk+moTpzTUsJu3YrOqBljjDHGGONT6eVwwA9AUxHx+A7AAzTxbQ+0BQis7Woe5D4AOOdecs71dM71bNiwcFVdBImLK30ABJoNOvtsC4CCEYG+fS0AMsYYY4wx5Ra2IMg5twNYDgzzbRoGLPPN+wn0L+AWEYnxzRe6BCi8Ko4xxhhjjDHGVIhwrxN0G3CniHwP3On7HhH5UET8aalpwAYgA1gIPOKc2xBsZ8YYY4wxxhhTXmFte+WcWwP0DrL9vID/e4Hbw3kcxhhjjDHGGOMX7kyQMcYYY4wxxkQUC4KMMcYYY4wxUcWCIGOMMcYYY0xUsSDIGGOMMcYYE1UsCDLGGGOMMcZEFQuCjDHGGGOMMVHFgiBjjDHGGGNMVLEgyBhjjDHGGBNVLAgyxhhjjDHGRBULgowxxhhjjDFRRZxzVX0MZSIiO4HNpXhIA2BXmA7HVAw7R5HPzlHks3MU+ewcRT47R9WDnafIFwnnqIVzrmHhjdU2CCotEVninOtZ1cdhQrNzFPnsHEU+O0eRz85R5LNzVD3YeYp8kXyOrBzOGGOMMcYYE1UsCDLGGGOMMcZElWgKgl6q6gMwxbJzFPnsHEU+O0eRz85R5LNzVD3YeYp8EXuOomZOkDHGGGOMMcZAdGWCjDHGGGOMMabmB0Ei0k5E/ici3/u+tq3qY4p2IlJfRD4UkbUi8o2IvCMiDX23bRKRNSKy3Pfv7Ko+3mgV6lzYNRUZRKRlwLlZ7jtfe3y32XVURUTkKRHZKCJORE4K2B7yurFrqnIFO0dFvS/5brdrqhIVcR2FPA92HVWuENdRyPcl3+0RdR3V+HI4EZkPTHbOTReRa4AbnXNnVPVxRTMRqQd0ds6l+75/EqjnnLtJRDYBFzjnVlbhIRr0jxVBzoVdU5FJRJ4GYp1zv7frqOqISD90DbsFBJyDoq4bu6YqV7BzVNT7ku/7Tdg1VWmKuI42EeI82HVUuUKdo0L3eRrf+5Lv+02h7lsVanQmSEQaAd2B132bXge6B366Yyqfc26P/43GZyHQoooOx5SCXVORSUTigauByVV9LNHOOfe5c+6HwG1FXTd2TVW+YOfI3pciS7BzVBS7jipfceeoOrwv1eggCDge+Mk55wXwfd3q224igIjEALcD7wVsnuErR3hOROpWzZEZn8Lnwq6pyHQRel6WBmyz6yhyFHXd2DUVYUK8L4FdU5Ei2Hmw6yjyBHtfggi6jmp6EGQi3wTgADDR932ac64LcAogAdtN5bNzUX3cSMFP2+zcGVN2hd+XwK6pSGHnofoo/L4EEXb+anoQ9APQVEQ8AL6vTXzbTRUTkaeAtsCVzrk8AH9q1Tl3EHgOOK3qjjC6hTgXdk1FGBFpApwOzPBvs+so4hR13dg1FUGCvS+BXVORoojzYNdRBAn2vgSRdx3V6CDIObcDWA4M820aBixzzu2ssoMyAIjIn4EewCW+iwERSRaROr7/CzAUPX+mkoU6F3ZNRaTrgQ+cc7vBrqNIVNR1Y9dU5Aj2vuTbbtdUBCjqPNh1FHGuJ+B9CSLzOoqG7nAdgFeBY4C9wHXOubVVe1TRTUQ6ASuB74Fs3+aNwCjgbcDj+7caGOGc21YVxxnNRKQ1Ic6FXVORRUS+R8/NR77vQ567qjvK6CEi44FLgWOBXcBu51ynoq4bu6YqV7BzBAwhyPuSc26wXVOVL8Q5upAizoNdR5Ur1N86320F3pd82yLuOqrxQZAxxhhjjDHGBKrR5XDGGGOMMcYYU5gFQcYYY4wxxpioYkGQMcYYY4wxJqpYEGSMMcYYY4yJKhYEGWOMMcYYY6KKBUHGGGPKRETqi8iHIrJWRL4RkXdEpKHvtkUislxEVovIYd//l4vIFBEZICJLyvB8XUVkSBmPNV1ENojI6BC3Xy8ib5Vl3wH7uNz38+4qz36MMcaEnwVBxhhjysoB45xz7Z1znYH1wF8AnHO9nXNdgfOAfc65rr5/N5Tj+bqi67mU1Qjn3F/K8fgiOefeQn9eY4wxEc6CIGOMMWXinNvjnEsP2LQQaFHCh8eKyIu+DNIKETnRf4OI/NaXSfpaROaLSHsRqQ88ApzpyyiN9913hogsEZFvReRdETmmJE8uIvG+518rIvOBXoVuv09EFovIUhF5X0SO9W2vIyJvi8gaEZknIlNF5KkS/szGGGMihAVBxhhjyk1EYoDbgfdK+JBOwAu+DNKbwAO+/aSh2Z7+zrkewJPAZOfcbmAM8IkvozTCt5+7nHM9nXMnA6uAP5bw+X8HtAJOAi4gIAgSkWuANkAf51x34EPgb76bxwB7nXMdgCuAtBI+nzHGmAgSW9UHYIwxpkaYABwAJpbw/mudc8t8/18IXOj7/4VAF2CRiAAIUFR25zoRuRqIB5KB70v4/AOBV51zuUCuiEwH+vluuwjoCSz1HUMs8EvA4+4EzYSJyKwSPp8xxpgIYkGQMcaYcvGVg7UFLnTO5ZXwYTkB//eS/34kaOZnTAmeNw3NPp3qnNspIlcBt5b0sIu57THn3OQQt7kSPocxxpgIZeVwxhhjykxE/gz0AC5xzh2sgF2+j2Z3mvn27xGRHr7bMoE6Afeti2ZodotILeDGUjzPPOBaEYkVkUTgqoDb3gOG++cXiUgtEeniu+1T4Le+7ccAF5fmhzPGGBMZLAgyxhhTJiLSCfgT0AT40tew4N3y7NM591/g/4D3RGQFsJL8QGMekOxrpDAemIN2pFvj+//SUjzVS8AWdB7RbOCzgGOYBswAPhORb4CvgdN8Nz8CNBKRVcB04AvyS+WMMcZUE+KcZfWNMcbUbCKSDjzlnJtdzv3EAR7nXI6I1AY+B+5xzn3iu70lsMQ516Cch2yMMSaMLBNkjDEmGuwBngy1WGopHAN8ISLLgcXAWwEB0OVoOd/2cj6HMcaYMLNMkDHGGGOMMSaqWCbIGGOMMcYYE1UsCDLGGGOMMcZEFQuCjDHGGGOMMVHFgiBjjDHGGGNMVLEgyBhjjDHGGBNVLAgyxhhjjDHGRJX/B3sg8Fmd5MyUAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzcAAAF+CAYAAAC/GeRXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAC0HUlEQVR4nOzdd3yb1fX48c+V5L0d2xnOciYhduyEBBICwSTshlloKaGUllFaoGW2dECBX1soM7TsUr6MBmjL3iMBA2FlOnvHWV6xHe8lS7q/P64lb1u2JXmd9+vll2zpGddOLD/nOeeeq7TWCCGEEEIIIcRAZ+nrAQghhBBCCCGEL0hwI4QQQgghhBgUJLgRQgghhBBCDAoS3AghhBBCCCEGBQluhBBCCCGEEIOCBDdCCCGEEEKIQaHfBTdKqQeUUjlKKa2USvXhcecqpb5TSq1XSm1RSl3jq2MLIYQQQggh+p7qb+vcKKVOAPYDXwKLtdabfXTcbOCPWut3lVIjgV3ARK11oS+OL4QQQgghhOhb/S5zo7VeqbU+2Pp5pdRxSqnPlFJrGz++191DAzGNn0cCFUB1L4crhBBCCCGE6CdsfT0AbyilYoEngbO01vmNmZfVSqlUrXWZl4f5KfCWUuoeIB64VGtd5ZcBCyGEEEIIIQJuQAQ3wPFACvCBUsr9nAYmAWuUUsUd7JentZ7R+PmtwK1a6/8qpaYCK5RS67TWB/w5cCGEEEIIIURgDJTgRgEbtdYL2ntRa53Q6c5KJQDna62XNG6/Qym1CTgOkOBGCCGEEEKIQaDfzbnpwNfAZKXUye4nlFJzVLM0ThdKgXql1ILGfUcAGcBWXw9UCCGEEEII0Tf6Y7e0vwMXACOAYqBEaz1dKTUHuB+IA4KBvcDZWmuXl8c9DbgXsDZ+/F1r/bQfvgUhhBBCCCFEH+h3wY0QQgghhBBC9MRAKUsTQgghhBBCiE5JcCOEEEIIIYQYFPpVt7SEhAQ9fvz4vh6GEEIIIYQQop9au3ZtsdY6sb3X+lVwM378eNasWdPXwxBCCCGEEEL0U0qp/R29JmVpQgghhBBCiEFBghshhBBCCCHEoCDBjRBCCCGEEGJQ6FdzboQQQgghhO81NDRw6NAh6urq+nooQngtNDSU0aNHExQU5PU+EtwIIYQQQgxyhw4dIioqivHjx6OU6uvhCNElrTUlJSUcOnSIlJQUr/eTsjQhhBBCiEGurq6OYcOGSWAjBgylFMOGDet2tlGCGyGEEEKIIaBHgU1mpvkQog/05P+sBDdCCCGEEEKIQUGCGyGEEEIIEVDjx49n8+bNAT9vWVkZ9913n9fb33nnndjtds/Xd9xxB//5z3863ee5555j586dnq/ffvttbr311u4PtofOOuss9uzZ0+5YnnvuOS688EKvjvPZZ59x3HHHkZGRwbRp01i4cCEulwuAzMxMJkyYQEZGBkcddRSPPPIIAPv27SMhIaHd4ymlqKqq4vzzzycjI4OMjAyUUsyYMYOMjAxOP/303nzbHtJQQAghhBBCDAnu4OY3v/mNV9vfdddd3HLLLQQHBwNw9913d7nPc889R0JCAlOmTAHgnHPO4Zxzzun5oLvp/fff73As3nI4HHz/+98nKyuLGTNmALB+/foWZWJ///vfWbx4MQcPHiQ1NZXMzExiYmK6PPYbb7zh+Vwpxddff01kZGS3xtcZydwIIYQQQoh+4YUXXiAtLY0ZM2Zw/vnnc/jwYQDmzZvH6tWrAfjlL3/J9OnTAXMRnpCQQHV1dYvjuFwufvnLX3LUUUeRnp7O/PnzAbj22mspKysjIyOD448/HoAHH3yQOXPmMHPmTObNm0d2drZnW4Djjz+ejIwMysrKuPzyy3n00UcBeOutt0hLSyMjI4PU1FSysrL4v//7P9asWcOvfvUrMjIyWL58eZtsybPPPkt6ejrp6enMmTOHwsJCDh8+zCmnnEJaWhppaWnceOONbX42H330Ed/73vcAOHz4MEop/ve//wFw33338fvf/x5oyoq1NxaAiooKfvjDHzJ9+nTmz59PQUFBm3NVVlZSXV3N8OHDPc/NnDmz3TkwY8aMYerUqS0yRH1JMjdCCCGEEEPJDTdA4wV8l9zbedtUICMDli7t7ogA2Lx5M7fddhtr165l5MiR3H777Vx//fX85z//YdGiRaxYsYI5c+awcuVKwsLCyM/PZ9++fUybNo2IiIgWx9qwYQPLly9n+/btWCwWSktLAXjssceYPXu2J4ABuOyyy7j55psBWL58Oddccw3ffvstjz32GI8//niHmYU77riDxx9/nBNPPBGn00l1dTWZmZk8//zz3HLLLSxevBgw2RO3rKws/vrXv7Jy5UpGjBhBVVUVNpuNJ554gnHjxnkCEPd4mzvxxBO55JJLaGhoYMWKFcybN48VK1Zw0UUXsWLFijbZqJ/+9KftjmX16tVs3LiRMWPGcNVVV/GPf/yDv/zlLy32jYuL46qrrmLy5MmcdNJJzJ8/nyVLljBmzJg249q6dSvbt2/3ZHj6mmRuhBBiiJImSEKI/uSzzz7jrLPOYuTIkQD8/Oc/91zsL1y4kOXLl3Pw4EGGDRvG4sWLWbFiBcuXL2fRokVtjjVhwgScTidXXHEFL774YqfnXbt2LQsWLCA1NZWbbrqpReDTmYULF3LzzTdz//33s23bNqKjo7vc57333uOyyy5jxIgRAERGRhIaGsrcuXP5+OOPufXWW3n33XfbDabCw8OZPn063333HcuXL+eOO+7gq6++wm63s2bNGk92qivz58/3BClz5871zM9p7dFHHyU7O5tzzz2X1atXk5qayq5duzyvuzNCP/vZz3jqqaeYOnWqV+f3N8ncCCGEEEIMJd3JrLjvgGRl+WEgLWmt25Q9ub+eP38+69at47333mPRokWcdNJJPPvss+Tk5LQ7DyYmJoYtW7aQlZXFihUr+O1vf8u6devabGe327nwwgv54osvmDVrFnl5eSQnJ3s13ocffphNmzbx6aefctFFF3HTTTdx1VVXdfk9tsddDvfJJ5/w4osvcu+997Jy5co227kzWN9++y1PPPEEw4cP56WXXiI9PZ3Q0FCvxt18O6vVisPh6HDbCRMmMGHCBK688krOPPNM3nnnHW666Sagac5NfyOZGyGEEEII0ecWLVrE+++/75kD8s9//pNTTjkFgJCQEGbNmsW9997LKaecwty5c/nqq6/YuHEjc+fObXOsoqIiamtrOeOMM7j33nuJiYlh7969REdHU1NT47mgr6urw+FweDIZjz/+eIvjREVFUV5e3u54d+zYQVpaGr/+9a+59NJLPXOCoqOjO9zn7LPP5oUXXqCwsBCAqqoq6uvrycnJITo6mosvvpiHHnqItWvXejqTtf4Z/d///R9jxowhODiYRYsWceedd7abvepqLJ2pqqri448/9gRjZWVl5OTkkJKS0u1jBZpkboQQQgghRMCdcsop2GxNl6KbNm3innvu4dRTT0UpxYQJE3jqqac8ry9atIjVq1cze/ZsbDYbkyZNIiUlxdPJrLmDBw9y1VVX4XA4cDgcnHnmmcydOxeLxcKSJUtIS0sjLi6Or7/+mrvvvps5c+YwduxYzjzzzBbHufnmm1m4cCFhYWFktcpe3XbbbezatQubzUZsbCz/+te/ALj66qu55ZZbeOCBB7j//vtb7HPSSSfxu9/9jlNOOQWLxUJISAjvvPMOWVlZPPjgg9hsNlwuF08++SQWS9scxHHHHUdxcbEnmFm0aBG///3vWbhwYbs/487G0hmtNY899hjXX389oaGhOBwOlixZwvnnn9/lvqWlpYwePdrz9VFHHeUpLwwE1VF6rC/Mnj1br1mzpq+HIYQQQ0IAq02EEH1s27ZtTJs2rfs7yhuF6GPt/d9VSq3VWs9ub3vJ3AghhBBCiPZJUCMGGJlzI4QQQgghhBgUJLgRQgghhBBCDAoS3AghhBBCCCEGBQluhBBCCCGEEIOCBDdCCCGEEKJdmZlNDdOEGAj8GtwopUKVUk8opXYppTYppZ725/mEEEIIIYQQQ5e/Mzf3AXXAFK11GnC7n88nhBBCCCH6ufHjx7N58+YWz82ePduzUOYdd9zBf/7zny6Pc+edd3LLLbf0eBz79u3j6ae9u/deVlbGfffd1+K5K6+8ki+//LLT/ZYuXcrhw4c9Xz/55JM8/PDD3R9sL+3atYuZM2cyc+ZMli1bFvDzB4rf1rlRSkUClwGjdeNKoVrrQn+dTwghhBBCDA533313QM7jDm6uvvrqLrd1Bze/+c1vPM8988wzXe63dOlSTjnlFJKSkgC45pprej7gTjgcDmy2ji/tX3/9dY4//ngee+wxnx63v/HnSCcCJcCflFInA1XAH7XWK/14TiGEEEII0YkbboDsbO+2dW/n7bybjAxYurS7I2rr8ssvZ/bs2Vx33XWUl5fzs5/9jC1btpCcnExycjJJSUk88MADAOTm5nLWWWexd+9eJk6cyP/+9z/Cw8NbHK+mpoaf/OQnbNmyhaCgIKZOncp///tfrr32WnJycsjIyGDSpEm8+uqr3HLLLXz++efY7XYSEhJ49tlnGTduHNdeey1lZWVkZGQQHh7O119/TWZmJrfccguLFy/m6aef5uGHHyYkJASXy8V///tfXnvtNfLy8rjwwgsJDQ3lpZde4r///S9VVVWe8d9zzz289NJLWCwWIiIiWLlyJbt27eLyyy+npqYGp9PJ5Zdf3m6GSinFfffdx3vvvceJJ57Irbfeyk033cTGjRupq6vj5JNP5qGHHuKVV17h4YcfxuVy8dVXX/Haa68RHh7O9ddfz4EDB6itreVHP/oRv//97wGTWbviiiv49NNPmTBhAk888QR/+MMfPD+XtLQ0nnjiCSIjI7n88ssJDQ1l586dHDx4kHnz5vH888+jlKK8vJwbb7yR1atXY7FYOPHEE3n00Uex2+0dHq+3/Bnc2IAJwHqt9a1KqeOAd5RSk7TWFe6NlFJXA1cDjB071o/DEUII0YLn6iajDwchhBiq3Bf8bjt37mx3u7vvvpu4uDi2b9/OkSNHOOaYY/j+97/veX3NmjWsXr2amJgYTj/9dJYtW8ZVV13V4hgfffQRpaWlbN26FYDS0lIAHnvsMW655RbWrFnj2fa2227zBB7PPPMMv/3tb3nllVd47LHHmD17NtkdRIa33normzdvZsyYMdTX1+N0OvnDH/7AP//5T1599VVSU1Pb7PP888/z9ttv89VXXxEdHU1JSQkWi4XHH3+cs846i9tvv73FeNvjcrk85XxXXnklJ510Es888wwul4slS5bw7LPPctVVV7Fr164WQdWpp57K7bffzoIFC7Db7SxatIg5c+Zw6qmnApCfn89nn30GwJ///GdiYmJYtWoVAL/97W+55557+Mtf/gLA5s2bWb58ORaLhZkzZ7J8+XJOPfVUbrjhBiIjI9mwYQMWi4Xi4mIA7rvvvk6P1xv+DG72Aw7gZQCt9XdKqWJgCuD5H6S1fhp4GmD27Nnaj+MRQgghhBjyupNZcWdsGq+dfar1Bf/s2bPb3e6zzz7jH//4BwDx8fGcd955LV4//fTTiY2NBeC4445jz549bY6Rnp7O9u3bufbaa8nMzOR73/teh+P64IMPeOyxx6iqqsLhcHj9/SxcuJCf/vSnnHvuuXzve99jwoQJXe7z7rvv8otf/ILo6GgAhg0bBsCCBQu45ZZbsNvtnHzyyZx88skdHuMnP/mJ5/O3336bVatW8eCDDwImYzV69Og2+1RXV5OVlUVRUZHnucrKSrZt2+YJbi677LIWx62oqODVV18FoL6+nvT0dM/r5513nidQnTVrFnv27OHUU0/l3XffZe3atVgsZpp/QkKCV8frDb8FN1rrYqXUZ8CpwMdKqSlAErDbX+cUQgghhBCDi9YapVSHrzfP/litVmpra9tsM2HCBLZt28aKFSv44IMP+P3vf8+mTZvabLd//35PGVVKSgpff/01l1xyiVfjfP3111m9ejWffvopJ598Mk8++SRnnnlml99be77//e8zb948Pv74Y+69916effZZ/v3vf7e7bfNSLq01b775ZpeBlcvlQinF6tWrCQoK8uq4jz/+OAsXLmx329b/Bl0FhV0drzf83S3tGuD3SqlNwCvAj7XWZX4+pxBCCCGEGCROPvlknn/+ecCUZ7311lvdPsahQ4ewWq2cd955PPzwwxQVFXHkyBGio6MpLy/3bFdRUUFwcDAjRozA5XLx5JNPel6Ljo6mpqam3Qt3h8PB3r17OfbYY7nttts47bTTWL9+vWe/5udo7uyzz+aJJ56gsrISgJKSEgB2797NiBEjuPzyy/nTn/7kKd/qyjnnnMO9996L0+kEoLi4mJycnDbbRUVFceKJJ3Lvvfd6njt48CAFBQUdHvehhx7yBI7uLE9XFi9ezP333+8J4txlaT09njf8GtxorfdqrTO11mla61la6w/8eT4hhBBCCDG43HHHHRw+fJjp06dz6aWXMn/+fGJiYrp1jE2bNjFv3jzS09M59thj+d3vfseoUaOYMWMGU6dOJTU1lQsvvJC0tDQuuugipk+fzsKFC0lJSfEcIz4+niVLlpCWlsbxxx/f4vjuSf9paWmkp6eTn5/Pz3/+cwB+9atf8dOf/pSMjAzPnB+3yy67jLPPPpu5c+eSnp7Oueee62lGkJaWxsyZM7n++ut55JFHvPo+ly5ditVqJT09nbS0NM444wxyc3Pb3XbZsmVs3bqVtLQ00tLS+OEPf0hZWVm72952222kp6czZ84cZsyYwQknnOBVMPLwww9TWVlJamoq6enpni54PT2eN1RH6bC+MHv2bN18QpcQQgj/yYzNBiCrLKNPxyGE8L9t27Yxbdq0bu/nzzk33mpoaMDpdBIaGkpFRQUnnHACDz30EKecckrfDUoETHv/d5VSa7XW7U7SGjhNq4UQQgghRED1ZVDjVlpayplnnonT6aSuro5LLrlEAhvRIQluhBBCCCFEv5WUlMTatWv7ehhigPB3QwEhhBBCCNEP9KepCEJ4oyf/ZyW4EUIIIYQY5EJDQykpKZEARwwYWmtKSkpatJn2hpSlCSGEEEIMcqNHj+bQoUMtFm0Uor8LDQ1tdxHSzkhwI4QQQggxyAUFBbVoayzEYCVlaUIIIYQQQohBQYIbIYQYIjIzm9asEEIIIQYjCW6EEEIIIYQQg4IEN0IIIYQQQohBQRoKCCHEEFXnCqLUEdXXwxBCCCF8RjI3QggxROXVJ7CzdixlZX09EiGEEMI3JLgRQoghqsoVBkBxcR8PRAghhPARCW6EEGII0hqqnBLcCCGEGFwkuBFCiCGooAAadBAgwY0QQojBQ4IbIYQYgjZsaPpcghshhBCDhQQ3QggxBGVnN30uwY0QQojBQlpBCyHEUOGJaDLIzoZQVU+9DqK4WO5zCSGEGBzkL5oQQgxB2dkQZa0mVNVL5kYIIcSgIcGNEEIMMdXVsHMnHKe/ZaLeTXFBQ18PqV/KzDQfQgghBg4JboQQYojZvNm0gj5Rf0EiRRTn2vt6SEIIIYRPSHAjhBBDjHvqzZmu90igmOIiV5+ORwghhPAVCW6EEGKI2bABYqKcpLLZBDdl0ltGCCHE4CDBjRBCDDHZ2ZA+qggFJFDMkeoQnM6+HpUQQgjRexLcCCHEEKI1bNwIGUFbqSISpUBjobS0r0cmhBBC9J4EN0IIMYTUukKoroaM8s/ZZksFpQBZyFMIIcTgIMGNEEIMIdWuUADSD73HVmsaLouZb1NcpPtyWEIIIYRPSHAjhBBDSJUzDJvVxdF6M1usM7BbwgAozqns45EJIYQQvSfBjRBCDCFVzjCmJRYTSj3bralUWyIBKN5R0scjE0IIIXpPghshhBhCqpxhpNu2wpQpVFhiqbDGAZK5EUIIMThIcCOEEEOE3WXFroPJKMuCuXMBKLKOIIwaSnJr+3ZwQgghhA9IcCOEEENEtcvMr8mo+tIT3NSqCBIsRygukIVuhBBCDHwS3AghxBBR5TTBTTobPMENQEJoFcVH5M+BEEKIgU/+mgkhxBBR5QwjniMkhNdCWprn+YSoeoqrQswXmZnmQwghhBiAJLgRQoghotoZRhqbYM4csNk8zyfEuyiuiwKXqw9HNzBI7CeEEP2bBDdCCDEE1NVBjSuUuXzToiQNIGG4jWKGQV5eH41OCCGE8A0JboQQYgjYuhU0ilmsaxvcjAmjjDgadu3rm8ENJNnZ5kMIIUS/JMGNEEIMAbt3m8ep7IDjjmvxWkJKFABHNkvmRgghxMDm1+BGKbVPKbVdKZXd+HG6P88nhBCiffv2mcdwamHkyBavJUyJB6B4e3GARzUIyCQcIYToV2xdb9JrF2qtNwfgPEIIITqQkwNxHOFgUAqTW72WMDIIgOI95YEfWD9WXg5hYX09CiGEEN0hZWlCCDEE7NtRRwo5bLXOaPNaQoJ5LD5QE+BR9V8uF2zcCHv39vVIhBBCdEcggptlSqmNSqnHlVKxATifEEKIVnJ2O0khh93WKW1e8wQ3BY4Aj8roj5VdR46YAKekBOz2vh6NEEIIb/k7uDlRa50OzAEU8GjrDZRSVyul1iil1hQVFfl5OEIIMfS4XLCvIJQUcihV8W1eHzbMPBaXWmWtm0YFBebR4YDPPuvevv0xWBNCiKHCr8GN1vpg42M98Dgwv51tntZaz9Zaz05MTPTncIQQYkgqLIT6Bivj2Ue5ivM8n5VxA1kZNxASAlGhdrPWTX19H460/ygsbPr8tdf6bhxCCCG6x2/BjVIqQikV0/i5Ai4Gsv11PiGEEO3LyTGPKeRQqaLb3SYhzkkxCVBbG8CR9V/u4CYyEt54w2RwhBBC9H/+zNwMB7KUUhuBzcAU4Jd+PJ8QQoh2uIObBIpxqmZNMrOyzAeQkGShmAQe2H0umdlLAz3Efscd3IwaBcXF8MUXfTseIYQQ3vFbcKO13qu1nqm1nqG1nq61vkhrne+v8wkhxFDV1RwP9xo3Maqiw20SRgZTTCIjXbm+HNqAVVAASkFSEoSHw6uv9vWIhBBCeENaQQshxCCXkwPDg49gt4R2uE1CoqLYNlyCm0aFhRAcDFYrnHUWvP46OJ19PSohhBBdkeBGCCEGuZwcSLEdbNFMoLWEBCjWwxjhkgQ7NAU3ABdeaL7+6qu+HZMQQoiuSXAjhBCD3L59MF7nUN7JUmMJCVDlDCfWWRywcfVnhYUQFGQ+P+ssCA2VrmlCCDEQSHAjhBCDkHsejtMJBw5oUup3UG6J7XB790KeGkWolo5pzTM3UVFw+ukmuNG6b8clhBCicxLcCCHEIJabCw6HIsW1m7IuytIAiklghCsvQKPrn1yulsENmNK03FyocIb33cCEEEJ0SYIbIYQYxNxtoM0CnrEdbtc8uBnqTQWOHDEZL3dZGsDZZ0NQkGZc7XZOtn8k3QWEEKKfkuBGCCEGseYLeHbVUADcmZuhHdy417hpnrmJiYHTMg6z3pXOHbW3wbRp8MwzJs0jhBCi35DgRgghBrF9+0ApzVgOeFWWlsfIIZ+5aS+4Afj+uLUcYBzXhTwN0dFw1VXw3XeQLx3mhBCiv5DgRgghBrGcHEiOqyGYhk4bCsTHm8f9ajwjh/icG3dw07wsDeAM/QEAH6mzYPVq+PhjCAmBnTshb2j/zIQQor+Q4EYIIQaxnBxIiSkF6HTOjc0GcXGQy2iSdEGARtc/FTR++60zNyP3fsVwCkxTAaXg1FMhJcW8uHVrYAcphBCiXRLcCCHEILZvH6REmNZfNUR0um1CApQwjFBdF5jBuWVnm49+wt0pzWZr9qTTCdu2MU4doNLR1DHtgpwHzCfbtgV2kEIIIdolwY0QQgxSLhccOgTjg3JN5KJUp9snJEApcYT08To37jV6+kphISQltfpx7d0LdXUMs5ZTp0MoKjJPH1EJVBEpwY0QQvQTEtwIIcQgVV9vFp1MYV9Tx4BOJCRAOTGEEtjMzWF7LA7df/4cFRbC8OGtnty8GWjK5qxa1fi8Uuy3pkhwI4QQ/UT/+WsihBDCp+oaY5QU+w5ITOxy+4QEKNfRAS1L274dttWO51B9UsDO2ZWCgnaCmy1bAKgNigI0333X9NJ+ywQJboQQop+Q4EYIIQYpd3Azvmar15mbSqIIoS5g67esXWsejziiA3I+bxQWwogRrZ7cvBlSUmiwhBJhqWsZ3FhTzE6lpR0es69L7YQQYqiQ4EYIIQapujpTRjW6bLPXwU0DwdQQ3hQZ+dm6deax0hneL5aLcbng8GGTucnKMh+AydxMnw5AtLWaVatMyR/AAUtjxzTJ3gghRJ+T4EYIIQapujoYO1ZjLS32OrgB0zGNmho/j85Ytw5sygHA++83PtmH3dNKS8HhaFWW1tAAO3ZAaioAUbYayspg1y7z8v5Wwc3Bg7B7d+DGLIQQookEN0IIMUjV1sL4UQ3mCy/n3AAUkxCQ4MblMsFNYlAZIcrOu+/6/ZRdci/g2SK42bXLBDiNmZsoq/nZuJsKFFhGmcU8t22joQEOHDBregYoPhRCCNGMBDdCCDFI1ddDyvBq80VCAmRkmI8OBDq4ycmBigoTLAwLquCTT8yY+5J7Ac8Wc24aO6W5MzcRljoiIvDMu3EpK0ydCtu389FHJvOjNXz7beDGLYQQwrB1vYkQQoj+rKioaf6Hm9MJdjukxJaZJxISmuaPdCAQwY17Un1WVtN8m0hrLcHKQV51Ap9/7pfTeq1F5sY92AULwGKBo44CtqMUzJ5tghvPcp7TpsHq1SxbZuY5ORzme1y4MNDfgRBCDG2SuRFCiAHuwAHTUnnDhqbnPJ3SIhpXm+yHZWlr10JQkMmExNoqCQujz0vT2i1L27IFJk2C0FDPU8cdZ6YFuXTjSp/TplG5t4i33tIkJUFUFHz2WcCGLYQQopEEN0IIMcC5y6Auu8xka6DZGjcheeYTLxoKxMaCwhWw4GbdOlPpZVEaq9IsWmSCm9ZZqEAqLDQBV1xcsyc3b/aUpLkdd5yZhlPlDDNPTJvGG5xHba0iqXwnMfWFfPedzLsRQohAk+BGCCEGuIYGCA+HjRvh7rvNc57gRu0znwwb1uVxLBYIUXYT3FRX+2ewjbQ2wc2sWU3PLV5s5uHUuEL8eu7OFBZCUhKoxoQMLpdpfdbYTMDt2GPNY4WzsTBt2jSWsYSUpCqirTXE2qpoaIBvvgnc2IUQQkhwI4QQA5rdbubXJCbC5ZfDvfeaLl51deYCfXjdfoiONt28vBBMQ0AyNwcPQklJy+DmrLPMY18u6FlQ0KqZQE2NCXDcmZvGpgyjR8OoUWZ9HoCC6Cks5xSWTF2LUhBjq8Zqpct5TkIIIXxLghshhBjASkvNY1AQLF0KI0fCT35irslDQ8FSUuRVSZpbkMURkODG3UzgmKOqWVZ5DgvtHzBmDKSnQ0lDjF/P3ZnCwlbzbdwZrFaZGzClaZXOCABeeSMEF1aWhL8BgE25OOYYCW6EECLQJLgRQogBrKTEPAYFQUwM/OtfprnAkSON89+Luhfc2JSTI8QHJLixWmGG3kCy6yA31f4VDhxg8WIod0bQ4LL69fwdaTe4CQqCyZPbbHvssVDrCqFhegbLlsGsmN0clbvC83pmJjLvRgghAkyCGyGEGMDcwY2tsbH/aafBL35hPg8NBYqLveqU1kRRS1hAgptp0yBsj1lDJph6uOIKFp/lAhSljii/nr89LhccPtxOcDN1KgQHt9n+uOPMY2EhrFkDS2Zug507sWoHYIIbmXcjhBCBJcGNEEIMYM0zN2733Wc6n8XHY4KbbmRulCJgwc2sWcDWrdQSxqOht8Ly5cxZ9xRBykFJgOfdZMZmc2LsJhoaWgU3NTXtlqSBWesGYP9+83O7+OxqsNsZ4coF4IQTkHk3QggRYBLcCCHEANZecBMZaeauJCTQ7bI0i3JRQ7hfg5v6esjPbwpu9ltTeDv4QjjjDKy/vYXR1nyOOKJxOPw2hHbZtUl/eRoKOJ2mM0OrNtBuUVGmS53DAYsWwajjxwMwzpXjeX32bAluhBAikCS4EUKIAezIEfPoLktrLsRZA7W13SpLs6D9nrmpqjKP7uBmn2WCSX088wwEB3ON81Ec2tZiUdJAsGsTIXoyN+00E8jKahmsRDcmmJYswdTZ0RTcQNO8G6fTL0MWQgjRigQ3QggxgJWUmLjA2s78+5iGYvNJNzM3tYShq/0b3CgFGSnlkJvLfusE80JyMjz6KOfqNwGzdmYgNbhMhOgJbtwBXgeZGzDLB4WFwQUXYDo6jBzJOGfL4KahASoq/DNmIYQQLUlwI4QQA1hJiSlJ8yw62UxsQ5H5pBvBjRUXGgv1lXYfjbCtykqYMgWiDm0DMJkbt0su4ZB1LCHUsfnbKr+NoT3usrQWmRuLBSZM6HCfhATTNc2dwWHaNMY2y9zMn28Cz7Iy/4xZCCFESxLcCCHEAFZS0n5JGjTL3HSnLE1pAGqr/FdHVVXVVJIGcE/qS2Rl3GBeVIpXQy9jGtvY/F2gg5sgbDaIi2t8orraTKppLy3WkWnTTOZGm5+je96NBDdCCBEYEtwIIcQAduRIy2YCzfWoLG1MMuC/4KahwTQU8AQ3oaGNPaub5FgnMZ3NbNod7pcxdDg2l43hw02yBpfLBDcREd07yLRpRFBNgi7yPJWZabJVMu9GCCH8T4IbIYQYwDrL3PSoLK0xSVFTrXs5svZVVppHT3Bz1FFtaurqVBhj1SFyK6MpLfXLMNpl17amkrRnnwW7vVkax0uepgJ7PU+dfLJJ5Mi8GyGE8D8JboQQYgBzz7lpT0xDsYlWYmO9Pp6l8a9CbY1/ght3p7SZMzHBzdFHt7tdlMV0KtuyxS/DaJddB5ngprAQbr3VNAhISureQRqDm7HOlvNuoJ3StMxM8yGEEMJnJLgRQogBSutOgpvsbGIKtpt2Xhbv3+o9wU2t/4Kb0FCIC6oyq192ENwoqxnI5tW1fhlHe9xladx4o+mUNmVK+50aOjNiBFVEtmgHHRlpPtxZKyGEEP4jwY0QQgxQ1dWmcqrDhgKu0m6VpEFTcFNT658/D9XV5kKf7dvNEx0EN6XWRKIpZ9MXgalL09qUpY2o2Qsvvwy//71pJtBdSrHfmtKiHTSYqTvuZXOEEEL4jwQ3QggxQLkX8OywLE2XdatTGjTNuamt62bGwksNDRAcjKdTWkfBzV7bFFLZzObN/skgtebQVjQWhn/ybzMP6LbbenysPMsYRrjyWjwXEWEC0aKiDnYSQgjhExLcCCHEAFVSYh47DW56mLmprVeedsa+5HA0BlBbt5qBT5zY7nZFKonUkN1sPhiD1v6fnuJZ46Z0Gzz1FISE9PhYpw7fyEjyW/z8IiPN48aNvRqmEEKILgQkuFFK/UkppZVSHS/zLIQQolvcwU2H3dJ0L8rSXKEm1eBDdru53rcezjfBzdSpZvBZWeajOaVIHVvBkfpICgp8Oox2JTnyARh+1mxYsKB3BwsONt9oebnnKXdHaQluhBDCv/we3CilZgFzgQP+PpcQQgwl7uBm2bJ2YgPtIlqX97wsjTAzqd6H3BPqbcrZaac0t9R0M5hN2f5fIGaO/SsAhv/hyt4fLDjYPObnt3gqOBg2bOj94YUQQnTMr8GNUioEeAz4JRCYwmkhhBgi3MHNsGFtX4vUlVhx9bwszY/BTQj1sHdv18HNgngANmcV+3Qc7XFoM8doxNSY3h/MHdy0SjlFRLTM3GRmLyUze2nvz9cHpIu1EKK/6qCYwWfuBv6ttc5RHbTTVEpdDVwNMHbsWD8PRwghBg93Q4H4+LavxerGLmM9LUsj3OfBjXsRyxHu+ShdBDeJJx7FcArY/F0NZGc3Ppvh0zG5VelIrDiIi/PBn8VOgpstW0xThY7mSQkhhOidDjM3SqlwLz5CO9l/HjAHeLyzAWitn9Zaz9Zaz07sZvmEEEIMZSUlZqK6+1q6uRhdZj7pR5kbd3CT7DpoPukiuOHoo0lVW9i808+RgNaUE0M0ld1ZEqhj7mYEzcrSwPxb2e2wc6cPziGEEKJdnb2NVwGVjY+tP9zP7+lk/5OAo4AcpdQ+YDTwkVLqtN4PWwghRElJ+yVpADHuzE03bxopZebE+CNz4y5LS9E5ZnLP5Mmd7xAcTNqwPLYcTvRH47Ym5eUUkUiE8tFCNFar+UG2k7kBmXcjhBD+1Flws0FrbdVaW9r5sGqtLcDhjnbWWt+rtR6ltR6vtR4PHAJO11p/7OPvQQghhqTOgpuelqUBWC0uv2ZuJrh2m8CmvZRTK6mT6qlxhlLn6nrbHjt8mDxGEa5qfXM8pUz2plXmJjzclKNJxzQhhPCfzoKbX3qxvzfbCCGE8INOMzeuMvNJD4Ibm0X7taHAVNe2zkvSMjLMB5A6JwwA7XD4dCwtFBWRxyhClQ9bXwcFtcncWCzm25bMjRBC+E+HwY3W+puudvZmm2bbjtdab/Z2eyGEEJ07cqSzsrQyagk16YJusli0XxsKTNY7Og1umi97c/SpyQAEO+t8OpbmGvKLOUwSNqvLdwdtJ3MDkJ4umRshhPCnLqdOKqUeVErFKKVsSqkvlVLVSqlLAzE4IYQQHSspab9TGpg5N+UqtkfHtViVydxU+2gOSiN35iaGcpg+3at9oualksJe6pz+ayqQv7sajcWUkzXX3uKi3goObpO5AZgxA/LyoNj/3a2FEGJI8qYvzCla63LgdCAXmAzc4tdRCSGE6JTTCaWlnWduylVcj45tsSi/zbkJpt6sv9NVpzS3hARSQ3ZT7OogivOBvH2mHM1l8eHqCMHBJvq0tyx1S083j1KaJoQQ/tGdppcLgNe11nnIgpxCCNGnysrMUjEdBTfzwjYwNaZt5sArVovfytLCqcWJBaZM8Xq/1ORSchmFS7e/Xlpv5R405WhWa/eP32Fyx90sobCwxdMzZpjHjavqeLTqJ0x07uj2OYUQQnTMm+DmsFLqn8DFwCdKKRv+X/xTCCFEJ0pKzGNHwU1vVopUVovfGgpEUUGeZTSEdrhMWhup0zUOgmhw+mIRmrbyCq0ABPuyoYA7uGk17yYpCUaMgA1flpPq3MgMx3rfnVMIIYRXwc0lwBbgh1rrUsx6NQ/6dVRCCCE6deSIefR1cJOVBQsXKmqVfzI3sZSx35LSrf3STowFINRR5dPxuOWWhGCjgSDl9N1B3cFNB/NuNm419wjjdInvzimEEKLj4EYp9V+l1CVAg9Z6qdb6WwCt9T6t9XOBGqAQQoi23JmbdhsK7N5tJuV0IzvSXFgY1KgIv2Ru4jlCoWVkt/abevp4bDSA0z/toHPLI0mguE0/gV7pIHMDZt7NlkMxNGAjznXEhyftfzIzzYcQQgRKZ5mbR4CZwNdKqeVKqeuVUuMCNC4hhBCdaFGW1voK8uWXzWNiYo+OHR6OfxoKlLuIpYxS1VG6qX3B0yczmV1UObvf1tobeTWxxKky3x0wKwu++MJ0X+sgc2N32tjJFMncCCGEj3W2zs1XWutbtdZHA78CIoH/KKXWKaXuVErNDNgohRBCtNDhnBut4aWXICbGrLXSA2Fh/gluKstcRFPBleM+6d6OVivj1X7y9QifjgcArcmtTyQKH5e8BQWZBVQ7yNwAbCCdOD0wMzf19W16JQghRL/g1exMrfVWrfU9Wuu5wPeAAuAvfh2ZEEKIDpWUmBXvY2JavbBhA2zfbmau91BYGNS4Qv0w50YTTUWP5gKFq1qK6V7Gx8tBkcdIIqIskJHh22OPGNFu5mbqVAjCzkZmDNiytLz1BWzfLgGOEKL/8Sq4UUqFK6WmKKWOBuKAL7TWZ/l3aEIIITpy5IiZb2Np/S7+8stgs/W4JA1MWZqDIByVtb0bZCuV1RaiqGyaj9INVuWinlDq6nw6JCpziqkkuidD6trIkZ7MTfOW0cGuOo5mK9mkD9iytFqXyQrKej1CiP6my+BGKXUtUAh8ArzX+PGun8clhBCiEyUl7ZSkuVzwyitw6qk9bgMNJnMDUFvt6vkAW6mvB7vDajI3PYgkgpRpJlBW1OCzMQHkbqsAwBbqhxUOOsjcsG8fM9hINrMIow6qq31/bj+rc5l/QwluhBD9jTeZm5uBVK31OK11SuPHBH8PTAghRMdKStrplPbNN3DgAPzoR706tju4qanyXXBTYWKIHmdubO7gJt+32aS8PeZ4KqxnneU6NXKkCW50q3Wv9+4lnQ0UMtyU2g3A2i4JboQQ/ZU3wU2B1nq/30cihBDCa+1mbl5+2bR/Pu+8Xh07vLEpWW2N7nzDbqisNI/RqqqdWrquWZUZS1mBb+vScnPMwp3OsEifHhcwmRu7HUpLWz6/dy8z2AjARmYMuOCmqgoatMkMSnAjhOhvvPkL84lS6j6l1Cyl1NHuD7+PTAghRIeOHGkV3GgN//sfLF4MUVG9OranLM2HwY0ncxPUs+DEQmNwc7jeV0MCIC/XHLc+Is6nxwVM5gbadkzbu5epoQcA2MPEARfc5OSYxzBLPdu3m5JDIYToL7wJbi4DLgJeQ+bcCCFEv9Amc1NaCocP97okDZqVpdX6blVLT+YmqGcd2JTFBCGlhT6ec1NoI5pynMF+WENnRGPr6tbzbnJySEwxmaJiEsy/2wDiDm6G2cpwOGDr1r4djxBCNNdlcNNsnk2KzLkRQoi+V19v5qC3CG4OH4boaDir940sPWVpdb4LbjyZG1sPy8qU+XNVVuL00YiM3JJQkoP8FFx0krkJm5SMFacJbgZY5mbvXvOYEFQOSGmaEKJ/6TC4UUpFd7WzN9sIIYTwLfcCnp6GAi4XFBfDBReYOTe95MncOILA4ej18aBZ5ia4Z8GNdgc3R3zX5AAgryKS5LAjLVo1+0x7mRutTXQwYQI25SSPUQMuuMnJAStOoq01hIdLcCOE6F86y9xkebG/N9sIIYTwIXdw48nclJSA0+mTkjRoNueGMKj1TXeyihJTThYd0rMJGg5LCCHUUVbqu3lAALk1sYyKqvTpMT2iokwarHnmprjYzMifMIFgi4MCRgy4srS9eyHUYkcpSEvrPLix203sLYQQgdJZY/+pSqlVnbyuwB/LRQshhOjMkcZF7T3BTVGRWddm4UKfHN9TlkaYqX/rZYMCgIr8aiCWqBA7ENbt/WtVOLGUUVbuu1I5lwvyGxJIjvdte2kPpdqudeOu6ZowAZtycJikAZm5ibWUc379K2ydkc6rrym0Nt9uc/X1sGYNjBrVN+MUQgxNnQU33hRu2301ECGEEN5pk7mprITYWLD5ZiFKT1ka4VDTswYArVUW1qCIJuKBu+C8c7q9fy2hJripsPpkPABFhzUOghiV5Nt5PC2MHNkyc+MOblJSCB4WzZGixAEV3GhtgpuTXev5dd3feDzm5zx9JIXcXBg9uuW2n38ODQ0+S/4JIYRXOvxLqLX+PJADEUII4Z0WwU19PdTVwfDhPjt+i7I0HwU3FUV1RFKFZWTPxunJ3FQl+WQ8ALm7aoAIkpN9dsi2Roxo2U6sWXBjs0GJjhlQwc3hw+a/xHS1GYD0ba8Av2PDhrbBzdtvm8cG3za4E0KITnV/JTUhhBB9qkVDgd27zRdh3S/16kiLsjRfZW6ONBBNRY+DMDshxFBGWXWQT8YDkLfDzLVJHuebjFe7WmducnJMwBMeTnAw1OkQasvqzOSUAcAdm83R3+FCMePTpQBkZwOZmeYDk+GR4EYI0Rf8+I4uhBDC1zIzYc8e0xQtPBzYscO8EO67dVr8UZZWUeoiikoYPr5nB1CKKKrYVxvik/GAO3MDoyb6LjBsY8QIKCsz2bXQUE+nNDDTpMCsdTPm8OG2qY9+yL3GzdFs5Z3g73Nu7atMSChnw4YYMrOXAqbTUHY2HDwIFosEN0KIwJLMjRBCDDAOR7P5Nu7gpnXmphe9ja1WCLK5fJu5qYRoS3XPM0wZGURaaiir632ra7e8Aw0oXIyY3PuGCR1yr3XjLj3rILgZKKVp7szNePZxbupemDmTdPsaNmxo2cXu7bdNg4HERAluhBCB1WVwo5T6UCm1WKnWfVCEEEL0hYaGVsFNcLDPmgm4hYdp3865qbYQ1cM20G4RllrK6sPQPuoGnZsLwynENsp383jacK91c/75sGCBSWekpABNwU0RiQOmHXRODoyIqCBc1UFEBFx9NekVX7BrFzh10yXF22/DvHkmoehymaZ7QggRCN5kbp4GbgD2KKV+q5SS9s9CCNGH2gQ3Ppxv4xYWqn1bllYbRHRY7xYEDVd12F1B1PVsHdA2cguDSCbXpBf8xZ25sdtN8weXa8BnbibYDprAxmKBSy4hPWQHWiuqnSardugQrFsH55zTLIAr6sNBCyGGlC6DG63161rrU4AzgWRgi1LqBaXUMX4fnRBCiDYcjsZmAlqb4MaH823cwsN93FDAHkJ0VM9Xc8zKgoljzKT70lKfDIm80lBGWQrNhbq/uDM3dntTT+RWwU0RA6cddE6OJqV2K0RGmieio0k/z2Si7E5T4PHOO+al5sFNcXGgRyqEGKp6MufGDtQBLyilHvTxeIQQQnTBk7kpLjZX+n4IbsLCVdMinj5Q4QgnKrp31c2xEWbyRllZ78bibuqVWxFFcviR3h2sK0lJJsNht+NJOTUGN+5KwmLbyAER3DQ0mKq6CfZtLRZ2HX/TBURTTkyDaeP39tsweTIcdZSpmATJ3AghAsebOTcXKKU+BV4HtgNHa62vBtKB7/t5fEIIIZrRullDgY6aCfhAWLjFZ2Vp2t5ApY4kOrZ3C3DGRpnFNnsb3ICpDiupjyI5uqr3B+uM1WrK3tzBTXAwjBoFmAn3QUFQFDZ2QMy5OXAAXC5FCjlNmRtAzZnNjIg91DmDcLgUn35qsjbu7w8kuBFCBI43mZsrgL9pradrrR/XWlcBaK0dwPV+HZ0QQogWnE4T4LQIbvxRlhahqFW+CW7qDhzGQRBRw4J7dZy4aN8FN/WNvQ1GxftoAk9nRo5sKksbP95kchoFBUFx0IgBkblxd0qboPa1LOVTivTZQexiMmH2Cux2E9yABDdCiMDzJrh5RWv9UfMnlFKXAmit3/HLqIQQYghqtgZih9xtdYcNA3buNJmAUN+1R3YLC4NaS4RPgpvKfaZcKTqpd+OMjTWPvghu3GtmJg/vXZMDr4wY0ZS5aSxJcwsKgiKVNCCCG/caNymTrPDlly1ajadfMJFKosm1JxAfD8cfb563Wk0GR+bcCCECxZvg5sZ2nrvJ1wMRQgjRNUfjtbgnczNpkrl69LGwMKhRvgluKvaZeS1Rw3uXYYqNM9+nbzI3pp/0qOQArHLgztx0ENwUO+MHRFna3r0QhJ3kY5PbvJY+1/zbbtPT+N73tGc+kaf0TjI3QogA6XBhBKXUbOA4IEEp9ctmL8UAvastEEII0SPuzE18PCa4mTYNXn/d5+cJD8dnZWkVhyoAiE7u3WKZMfFmzk7ZERe9XYNa19mBEJLHB/XqOF4ZMaKpDq69zE1NNFQUmZpDa+/mJflLZibs3lzLOA5hnT2zzeupqaBwobFw7vwSIAEwyZ30dAluhBCB09lfh2RgNhABzGn2MQK43O8jE0II0YYncxPjgD17YOpUv5wnLAxqtG+Cm8q8SgCix8T06jihsaGEUktZce9LyXRtLaHUEje2dwGXV9xr3UCL4CYrC372MyipDcfl0lBS4v+x9IKzpp4J7IVZs9q8Fh4O0aqSYOo5LfSLFq8lJkpwI4QInA4zN1rrt4C3lFKnaa0/DuCYhBBCdMAz56b6gPnCj8FNrQ71Team0KzvEpXUy65ukZHEUkZZce8LCJz1TkaRhxqe1LsxecO91g20ydwkJoJLWygljmGFhaZ1dH+UnU1V7STTKS3jknY3GRZcydn1/0fUhgPABZ7nExNh7doAjVMIMeR1VpY2X2v9FWBTSp3V+nWt9ft+HZkQQog23MFNXME284mfgpvwcKjVIb7J3BSZjmTR0b08UESECW6ORHa9bRfq62E8uebK29+aZ25SUlq8lGCqtygmgWH9eN6NQ1uoIpIJwyo6/IccE1rMzxwvwLctG0ckJEjmRggROB0GN5jSs6+AW9t5TQMS3AghRIDV15sGabbd280Tfszc1LlCcFXV9HJ2C1QcMRFZVG8rwNyZm9K2E9q7q6YhiFHkQeKxvT5Wl9yZG5utTWDgjq2KSGRqP+6YVucymbKUqZ3PUdpincGMtS+b/6ghIYD5HsvKTGAeFIApTkKIoa2zsrSrGh9PDtxwhBBCdKa6unFZmx07zC3x+Hi/nMe9LmhdtZPerqJTWeYCfJe5KSnvXYczraHCEUZyoDI37uCmncVWm2du+nU76MbJXhOO6fz/21ZbGtQ8D9nZcNxxQNOPuLi4ZRJLCCH8ocsbckqpBUqpyMbPr1BKPamUSulqPyGEEL6ltakS8wQ3fsraQNO6oLXVrl4fq6JCY1Gu3q812pi5KS3vXS7Jmb2JBh1EsrUQIntf4talyEjTBa2d9Yg8mRvriH7dDjrCZTrepWSO63S7rdY088k333ieax7cCCGEv3nzF+JRoFopNR24GTgA/Mubgyul3lRKbVBKrVdKfamUyuj5UIUQYmgrLDTdggMR3LiTDL2ectPQQEVtEFHB9t4vx+Oec1PVWUV11+pdpjZqVGy1X9YIaldKCiS3LafzZG4ixvXrzI1yOomhjLgFaZ1uV2JJgrFj4dtvPc+5v0eZdyOECARvghuH1loDZwJPaK3/CsR5efyfaK3TtdYzgQeAZ3s4TiGEGPRqasDVSaJkW2MPgfi8TeZCOADBTW1tLw9UVEQlUUSF9759s2fOTXUQWvf8MO7gJnlYXe/H5K3kZIhp2wo7LAwiIqAodEy/Dm5qXSGM4RAqYVjXG8+d2yK48WSnJLgRQgSAN8GNTSk1H7gQ+LTxOa9WGdNalzf7MgbofX2DEEIMQmVlsGYN5OV1vI07uJmid5pPAlGWVq86j7i6UlhIBdFER/rg7T8igjhKcTgtvcoo2XVj5mZ4//iTlJAAxbb+XZZWouOJV0c63ygjw3zMmwf790N+PtBOcJOZaT6EEMIPvAlubgceA77WWm9RSk0Bdnt7AqXUM0qpA8BfgJ/0bJhCCDG47dvXONG9ouNttm0DK06mav+2gYZmZWmEQ10vMhyFhVQSRXS0D8q/GjM3YILBnqp3mbK2UckBKknrQmIiFKmkfpu5cZVXkksyYRa7dzvMnWseG7M38fGm+k/m3AghAqHL4EZr/ZbWOkNrfVPj1zu11hd0tV+z/a/UWo8Ffg/c3/p1pdTVSqk1Sqk1RZKzFkIMUYcOmceqqo632b4dwq11jNP7zQT1VgtC+pKnLI2w3k28aczcRMV6lfDvXHi4T4Ibh7YRQRVhI2N7PyYfSEiAYmec+U9w0kl9PZw2iZWCFVuoIwyXxcu5TjNnmn7ljU0FbDaIi5OyNCFEYHT5TqWUCgWWABObb6+1/k13TqS1flEp9bRSapjWuqTZ808DTwPMnj27F1XUQggxcB08aB5ra6Gysv01YbZtg3BLPWOc+0xgExzst/F4ytJ8ENxUcgzJCT4Yq8VCbEgd1PcuuNEaEyQlJfV+TD6QmAjb7dFmYE5nXw+njQ1v7wfmUmHzcrptSAjMmmUyN41RUmJilgQ3QoiA8KYs7X/ADwAHUN3so1NKqUil1JhmX58NHGn8EEII0Yw7uAHYsKHt6xUVkJsL4ZY6xrj2+7UkDVqVpVV3+ZbfsYICKlQMUXG963DmFhtWD/QuuEG7THATiDVuvJCQAEXVjdGk3cvSrwB65L1JJFBEcHcW4Jw710wia5yvlZgomRshRGB489dmktZ6Wg+OHQH8TykVATgxQc3ZjZ3XhBBCNHPokKk0czph3To44YSWr2/fbh7DLbWMdh2Aqef4dTw+zdyo6N4v4NkoNtIBZb3M3LjoV8FNYiJU1wdRSyhh/Sy42bDexUfFx/Bjy785oFI73TYrq9kXc+fC0qUmMI6KIjERdu3y50iFEMLwJrjZq5SK0lpXdufAWutCYG7PhiWEEEPLwYOmJXBtrQluWnMHN2MthwihPmCZm14FN5mZ6OwNVLgi2y2z64nYSNNSujfBjVNb+lVw41nrhgTGNDT07WBauf/2CiKxMi44nwN0Hty0MG+eeayogKgoEhLg66/9M0YhRC+4J9i1uDsxsHkT3JQDa5RSHwGeljndnXMjhBCiY4cOmakKNluz4KbZH51t2yAoCI5y+b9TGrQqS+tF5qamIQgXVp9lbmKiTfK/N8FNA7bG4OYon4ypt9wxVjEJjLF30lEiwPbvh1c+iObXPMzuoG4WcIwZAyNHmuAmOZnERNMtzeXyrh5eCCF6ypv3mB3AS0AJ3ZhzI4QQwjtaNwU3kZGwdWvb7svbtsGkSTBO55gn/Bzc+KosrdIeArTfIKEnQqKCCbPU9a4VtA4mhvJ+01DAnbkpIhH6UeZm6VJQ2sUNSS+Tr5K7t7NSJnvT2Ns8MdGUXJav3W36njt8sKirEEK0o8vMjdb6rkAMRAghhqriYhPMhISYD6cTNm2COc222bYNUlM1v859EnSI3y/Mg4LAYtHUunoR3GhNhcOkgHyVuSEyklhLBWVloT0dErWEEUUHLen6gCdzYx0B9s19O5hGDQ3wz3/Cj8LfYsxJE+DjHqwJNHcuvP462O0kBpcDMRTNPZs4134I7dm/nxBCdKXLzI1SKkkp9W+l1BeNX89QSl3j/6EJIcTQ4F7jxp25gZbzbux22LMHpqkd5k74uHHmzrgfKQVhobp3ZWkNDVRiAgifBTcREcSqCkpLe7Z7dTW4sBKM3e8/Q295MjfWEf2mW1penvlZ3Vp9J8yf37ODuBfz3LWLhJvNGt5FZ//MPNebhWGFEKIT3pSl/RNYCcQ2fr0d+KW/BiSEEEONuw10SIi5oR0bC+vXN72+e7fJ5kxb+U9TLzZiREDGFR7ey7I0u50KTFTjsyRJZCSxlPa4LM29n031n/Vk4uLAYoFi1T/K0pxO03b8zIw80tjctnWft2bPNgFkcTGJx08GoOjyW836TPX1PhyxEEI08aahQLLW+kml1M8BtNZ2pZTLz+MSQoghw525ef99E7csWtSYuWmc97KtsYfAUYVZkDohYBmHsDDVmLnJ79kB7Ha/ZG7iXEcoLOvZ7u7gxtI/kjaACWyGDYOiyqR+kbkpLDQx1m/G/w92RUB6OmT0YJ2isDCYPh2Cgkh87n4Ya0owCQmRzI0Qwm+8ebdqMetPKRUL9KM/C0IIMbAdPGjmuCT98GRQmllzsvjHP2BByFIsCk7JrgdCOOqERLDUBmxcYeFQq3qxiKe/MjfOYnaUaXryp8gd3GgV4J5dXbRZTUyE4sqEPs/cuJtbREXBSTnPmaYAtl4swDpsGNCs9K4Ik56s6j9d4YQYyjKzlwKQ1aej8C1v3t1fU0o9BUQppS4HPgae9euohBBiCDl4EJKTwaJMm+OZM03VTo3LTLre/uZ2xrKfiAfvDug8kfBwRa0lsldzbtzBjU/n3FDW87K0ElOO5rL04oLdDxISoIgEUxPWm0VTe+ngQbPW0pjEWtSmjT2fb9NKWJhZx6moiKbMjazpLUSfm+lYxfOVF/Suv34/02Vwo7W+H/gCWAucBfxda/2IvwcmhBBDxaFDMHp009ezZpnHKmcYw1yH2bbFxVEjyuDYYwM6rrAwqLH2Irix26lU/phzY4Kbnlwbl+WajEGDCvLRgHwjMRGKXfHmi8LCPhtHdrZ5zMh93yxK09P5Nu1ITGyWudEaDh/22bGFED1ziv0DxrlyYMUKz3OZmU3LrA1E3nRLW6i1Xqa1/qHW+gda638rpRYGYnBCCDEUHDxo1jx0mzzZ3OWucoZzWe3TbNdTmHbGuICPKyyssSytNw0FLHFYrU2LgvZaY+bG6VQ9qpYrO2R2qrOG+2hAvpGQAPvsjWvJFBT02ThMcKM5SX8GViscdxxgqup6u4C5eyFPQszaRxw40LsDCjFU+DHamOlYbT5pFtwMdN6UpT3QznP3+3ogQggxpDT+sXLPcWieubFaISPDrHM4w7GGGiKYNjc24EMMD+99cFNpjSEqyofVdI2ZG+hZFUVZvpmz9NdJz/loQL6RkAC1hOJCQX4PGzj4QHY2hFnqme1cZf4T+nAtoISEZpkbgP37fXZsIUQP5OQwSufixArLl/f1aHymw+BGKTVJKXUWEK2UOqvZx4/w9PARQgjRG0VFpkFW88wNwMyp1VS5wviOeQAcdVTgxxYWRu/Wuamvp0LF+m6+DXgyN9DD4KawnnCqCQ4NcEOBLiQmgsZCKXF9HtxEWao52rnJpyVp0Kws7ZNPzBMS3IgBaCCVbHU51sZszXvB58GuXYMmm9rZu/t84FZgeOOj++Ni4Bb/D00IIQaHzv7AuNe4aRHc1NUxK+shqonkLtvdAEyb1viaL+qDvBQWBrU6tGfBjdZQX0+livZtcNPbzE2J0+wfHOzDQfWeu5tYIcP7LLgpK4OcHBivDhBKnc+aCbh5gpvYWJMRGiQXUkIMWJ9+SrFK4I3gH5qvB0lpWofBjdb6ea31ycD1WuuTm32cq7V+L4BjFEKIQcu9xo2nLE1ruOIKZu19FYDdzhTi482FYaCFh/ciuKmsBJeLChXty8qm3mduyrTZ32r14aB6z/3vu4eJfRbcbNxoHmfTWIPvh+CmthZqahWMHSuZGyH6ktbw6aestx1LjmUSDB8+aErTuuyFqbV+Tik1EZjYfHut9fv+HJgQQgwFbTI3Bw7AF19w9N33oO5w4dA2pk0LaAdoj7AwqHGG9Cy4yc0FoEJHEdePMjflFRZig2vh8899OKjec2duDljGQ/6ePhmDu1PaKa6PybWMJnnUqN4ftFmWsflaN+PGjZPMjRB9acsWKCxkXdgc8wdm0SKTudE9W0OsP/GmW9pfgW+BP9JUmiZlaUII4QPuBTwTEzFXffv2waWXEvTH3xJpNau498V8G2gsS3OFoKt60JasMbip1JF+y9yUlnZ/97KaIGLC6n04IN9wZ24OMrbPMjfZ2TB8uOYk12dssmb4/Pju77GoCMncCNHXPv0UgO+s8yiwx7FhykW4Cg+boGeA82YVsx8AE7XWFf4ejBBCDDWHDsHoZBeWu++GbdvMapf//CcoRaSlhkpneNN8mwALDweXttBQ00C3Z6jk5QFQ4Yry+ZybGMqBHpal1YUxOdHhwwH5hjurkcfIPg1uMiZUEF94hGzbHM7w8fFbBDfjxsGRI1BVBZGRPj6TEIOI1uZOTmxs9/d1p2PJaPvaihUwcSKbcqezu240GXeOI5YSTrz4CAdr+6YU2le8aReTL4GNEEL4x8ENRxhTsAbuustc4aamelrlRlpN2+K+Cm7ca9P0qFmaO3PjCvd55iaYBsKD7D0LbhoiiI12+XBAvhEWBhacFKoRZnFLR2ADMLvd3LDNUBtxYuEb24k+P4f7Yqm4GJO5ASlNE4OSTzuqffCBmRB35IiPDoh5f8nKgoULqY4bjc0GL7wAF0Z/wvZ9oezdC+vWmTlyHgOoTZw3wc03SqmXlVIXNG8J7feRCSHEYFZfD1u2cGhLGaODCs1EzqOPNjVqjRKCyhkRVMKJvr/O9Ep4Y9P/2monnHRS93bOzaWCKCqcEb7N3NhsEBJCXEhtt4Mb7XBSpqOJjetfbaDdgpSTEj3M3Kk9fDig596+3QQ4GYfeZbM1nXJLnM/P0XzODeMaF6WV0jQxGPjzwv/NN81jZaVvjpeZCcceCxUVsGgR1dXmvf7HP4Z/LslipzqKjPAdNDSYgMezW/ZSMrOX+mYMfubNO/wcYARwPTLnRgghes/lgo0bcZWUcsg6jjE/P9NM5mwl2OJgavhB32Y+usGduaklrHGSaTfk5nJAjQeUb4MbMPNugqu7HdzUHCzBQRCxid5UZAdesMVBKbHmiwCXprmrV9IPvE36uHKyMm7w+TliYkzsvnQpXHRLY3AjmRsxwJSVmWrKgHC54J13zOfV3Z/7WGiPpdoZ2vaFxjdPffJCamogIqLx+VNOgaoqjucboqw1PPSQGcJA4023tJMDMRAhhBgyPvsMamo4POkEGnZbGT2urwfUPk9ZGuHgdHZv57w89kdPh3KfLnJvREYSW1fV7eCmbHcxkETs8BAfD8g3bMpBpW6MBPsguAkLamBKw05ImO2XcyhlsjcNDVASPNJk4SRzIwaQhgZTvul+b/S71auhoMC0rm8WUbmTRJ0teZafD9trx5EUVNb2xdJSmDGDwzoRh6MpS09mJijFbOd3fBacybad43n/fVi82DffTqB0mLlRSh3d2UcgBymEEIPKP/8JNhuHIk0btBYLePYjnrI0wrp/+y43l1zbeAD/ZG4sld0PbvaZHWJHhne+YR8JVg6qdePY+iC4SQvbjfXoo/x65ZaYaC4QXcpqFneSzI0YQD7/3ExXqaxsnDvmb2+9ZQKbkSOhrs6UknnplVcAFFXOVr/PLpc5zsKFbN1qnvIEN/HxcMwxzHJ8R0JQGWPGwIMP+uIbCazOytLe6+TjXf8PTQghBofqtdspWp1jvigqgtdfh+HDOdgwHGi2gGdrGRnmo4/0OHPjdEJBAfk2M2ncL5kbVc7Wrd0rcy87aGrWY8f6OtryDVtSPPWqsYQkgMGN1pC93kVG5Zdw7rl+PZc7cwNIO2gx4Lz+etPnH33UyYbZ2c06lTXqybyct9+GBQtMTSfApk1e77psmXmscYW0bApTXm4CnEWLPMGNpywN4JRTmO7cRAQ1/OpXJju0bl33ht3XOgxutNYpnXxMCOQghRBiIMupG8m2mvFmIvXzz5uru5EjOVRv2kf118xNizk33cncHD4MTif5tmTAT5kbyrrdUKws19Ssx46P9fGAfCM4GJwuRe2w0QELbjIzYd48KC2zkKHX+z24cWduANNUQDI3YoBwueCNN0yAHhQE773n5xPu2WNq4M45p6ld+oYNXu26YwesXQvH8h2g2Hz/B003qNwp7wUL2LrVJIaCm/f6X7QIGw5mONZy1VXm5tRDDzg5xvEt0x3ZPvrm/Kt/towRQohBQmsod0agUbz8koann4YTToCICA7WJREc3H/XE2hRltadzE1jG+hii8lM+SVz4zqCw9G9PgdlBWZR1NjkiC627BvuRnmHE44OXOYmO5uqTXsByIg/CHPmmFu1nRXz90KL4GbsWPN/JcBtr4UAup1J+eYbM/0lMdFUb334YbO3xbo638+8f/tt83jOORASYuaodRLcNP92XnoJlNI8xE0ArL/zTUhLg1dfNfNtoqIgOppt28z7vFLNDjR/PnaCOalhBTGvPcuVw9/hPy+7uLH6z/yo/nnffo9+IsGNEAPMAGo1LzAtdh3aBmief6wKdu2Cq64C4GB9EqNHt/rD0o+0KEvrzh/uxuCmxJIE+Clz4ywBuhdzlRWbq+rYuP75Aw9p7HOQEzUjoGVptc5gFC7SzkkBi38vCxITTSzjcmEyN06n5/+LEP3Za6+ZDEd8vPkoLYXvvgP27YNVq0wZWuPvrd1lY3dtMuXlvTjhW2+Zdc8mTDCTfebP9ypzo7UpSVsYtZpklY8VB9mn/sa8eNFFZsJQnGn1vnVrq5I0gLAwNlkzOKvhLbjiCn5V+RdcysqFtjf5c/hfe/ENBY4EN0II4UdffmkeRwUXs25XFJuj5sFFF5GZvZT3jxzXb0vSoFVZWg8yN6UqHvBT5qahCOjeTf+yIybN4y5f72/cmbLdQdMCGtxYHfVMZheRF57h93O517pxOPCsdXP9uQfkho3ol9w3E7U2821OPdUkUOLiTDnX++8D//qX2aC6GmbPhjVrOFifRK49kYce6uFJ58+HlStblommp5s5N128F69aZSrallQ8wZshPyTSWkd25USz7wsvQGwsDB9OSQkUFsItt7RN1D4V9mueCL0BsrMZn/8NF15kYY1jJlX0z6x3axLcCCGEH335JQSpBlKDdmKjgRcm3+2JGupdwS2bCfixHKgnetwtLS8PrFYqMVGNXzI3DWaRy+4EN+XlmjBLvSdD0t+EhJgs3i7XRFP/0t21hXqowhlJhnVzu2st+Zq7BNNux5SlASPqpamA8B1/VDesW2d6X3z/++broCA4/nh4/z1tgpv4eJg5E4KCqDjhLIrsMYDmkUeapri0uwhmR4M9csQEMeec0/RcejrU1JjIpRPLlkGIxc4FkZ/wUfBiIq21bNwITqxmpc70dAgPZ9s2s/20aW2P8fQxT/OL49abbZXippvM/gX2+K5/WP2ABDdCCOFHK1dCjLWas51vcCYf8O+DJ+F0mutWuw4aEJmbbndLy82FESNocFpQCt8HE5GRxNYVAt3M3FTZiA2t9fFgfEcp8zPfXZvcuBhMid/P6XApChlOxlG1ENrOYn8+5g5uGhrwBDdJddJUQPQDnURFr79uMjXNY42zzoL12Yq8fPhd3R1k7n4GVq/mmVF3UE8IP7c+Q3k5/P0na+HRR/lB/QssaFju3ViKi03759nN1pxKTzePGzZw+LBZAsfd7QyA7Gz0+mz+87KTs/U7xPz0AmpVBJHWWmpqTEV0c+59j/ZicZfjjoMYaxV1ruCuN+4HJLgRQgg/OXTIlGPHWKs42/46P5nyLflFQSxfDvajM9Cofh3cuK91u525yc2F5GScTnNB4PM5RRERxLrMhb/XwY3TSVltKDFhDV1v24dCQ2FXWWPtVgBK0+IbM2AZp4/w+7nAU4lGaSkmNZiQwHDJ3Ag/6002R2sz3yYzE4YNa3r+rLPM44exP2KVbT4AjrhEHnFey3S1hSedV3Mub/Lw2xMov/4P/LLuYe6uuRX+/OfOT+hymV+Qs89uOQdu+nSwWmlYt4mcHJPEWbjQzOt0K3VEcbjYyhL9Ilx7LQCRVtMHunVn6q1bza9g4z2GLs2I2M2ksDzvNu5jEtwIIYSfuOfbHKPWMs6Vw+KbpxIXZ8qe6+vNax2ucUPfV6lZLBAaqrs/5yYvD5KTcThMfbrPRUYSRynQjeCmuJgyYoiN6sb30QfCwmB3YRQaAhLcRDeYlQgzfjbL7+cCSEmB4cNN4L97NzBuHMMlcyO85M+GOu2WjWGCiB074IILzNdZZJJFJmnR+0nmEO+P/BlOZd7oXnsNDhxQEBrKxVHvcvsbx1BGHI/+Lo/vRX/Bh0GL4fbb4f77Ox5IWZl5v2023yYzEzLPCIWpU3nlw1jq6kyfAa1NgLNzp9muqCGGWFXGmac4YOpUsjJu4OuZ1xEU1H5wM22a9z1ELP2zD0u7JLgRQgg/WbnSLE+wxPE81UQQsuRCLr7YrJXgXlStP2duwFxs96hb2qhR1Pqr0qlxnRvoRnBTWEgZscTG+mE8PhQWBrX1VvIYFZDgpsYVSjwljDg6cLX0KY1N2W68ERg7VjI3IvAqKmDjRq9+x4qLTfb5/PNbPq+e/Rdn8QEfH5yGS5tA48EHYfJkGBZUSYElmWPOG8PixfDQUxGUE8N9YXfCxRfDb34DjzzS7vne3HEUtYSaqKUVV/pM7tl8NhER5sbYp5+a98CTT4YqZyhHGqK5UP+PkF9fY3bIyiL4i+VMnw7r17c81rZt3pWkDUQS3Agx0LS38rHol778Eo6f5+Ik52d8HXQSRETwk59Aba25cw2dZ276g7AwRW135tzU1EBZGXpUMrW1TU0JfCoykhhMj9VuBzfD+vefPfc8p11M9n9w43CwT48jWeUFtB15SIgpT3v3XXjfdQbD6/YHrHmCEAB89JEp/dq500TZnbyRFBebhW5Hjmz2pDaNBM6aVUBllYUKZyQVzghWrzaHa/77dMcdpj9AXn0CLmU1qfvzz4cbbjBZbjCp/KwsuP12FjZ8xGrb8e3eGXrT9n22OSYzJbkKpUyl2ooVZvf1VVOwE8ySEZ/CmWe22G/mTBPcuH/NKhzhHDrUzeAmI8N8DAD9+11eCNGGS64B+jV32URpKWzeDCeMOUCMLmNlUCYAxx4LU6aYrqEWS1Nr3P4qPBxqVTeCm8Y20EXRE3E4mi7WfSoiAhtOgizO7gc3if17QqynHXRIqt+DG+e2nWxjGjHWKr+epz3JyTB1Kvz6q4uwuBxEO44EfAxiCPvgA1Mzm5wMS5fC4sVE6so2m9Wu20pVVVOXNI+SEsjLY9GtswgKgpK4SRwMnUx8PPzkJy03nTPHxBoH7Uk4tcW0WnvlFVi82Mzyz842vaVPPhn++lcOWcbyQuhVbcaiNfzlm4VMYhcnhK7xPJ+WZgKcIBoYwwEW3DTbTHZsJiMDiopME0aAbTVm8ptkboQQfW7HDlhZMYMyx8DoNT+Uff21+WN0YsV7oBR3zXwLMHf03H/83K1/+7OwMKhREd6nSBrvRO5wTAT8l7kBCLE2eB1z6fwCE9yM9H9HsN4ICTELBe4KT/d7cLPnk73UEYayBv5SwGIxVTm7i+N4mBsZvvHjgI9B9JG+Xolaa/jwQxNQTJoETz8NK1bweNVlJDtblki6Wx+3LkkjPx9GjiTqwtNZsAAOHzbxzi9+0f573h13mMWcc+2Nd7OCg+F//4OkJPPeeuWV8OabUFLCLyNfZLf1qDbHKC2FdbtjuI17mVzdcjHP9HT4p+0XfMgZWK74aZt93QmX9euBrCy2Xv8E0Elw09cTPntJghshBpCVK0FjIc/ez2/3C7O+TZDm2NWPmT+izWbWX3qpeQzu30kEoHEOiAr3PrhpzNzsqBzl2d/nGpfUDrPYTUthL9TmHqGBYGKT+ukiN42UMhOFd1un+D242fylacpQZ4v063k6cvrpcO5JZfyZPxLmaHvXXIieyMszk+Xd67i0sWGD+d2Kb5xndtVVsGIF0bqMJ6t+DMuXmyzJX+BA/QgSbGWkpDTbv67O1JldcQXYbJx1llm3SSlPgzKyMm4gK+MGzy5z50KcrYJD9UmUlzc+GRpqZvTPng1//7tpINDJpMADB0wZ848TP2Jiq+CGjRu5xPE8m4NnNX1fzbi7SLsr2rduNTdSWnxfg4gEN0IMIJs2mcfihhiKi/t2LKJzX34Jx0yrIXz/tja1Z2PHmmoI95of/ZkpSwvD6yjCHdwUxaOUnxoKNGZu4oMqqfVy2ZqyQ6b0Kjaun6fKMDeTdzWk+D+42QwKFyHWbiwW5GMP3e/EgY2v7XP6bAxi8KiqgpwcU4KVlga//KXJqrTwwQfmsXkQsGAB10T+myLLcJynn8V1J23kj3+EpKAjTAtv1fDC/Xt5xRVAU0vopKRW83JaSQnNp0Fb+X//r+m5jjq0tVZWBuXlcOutEJxxNBOrmgU3WsPNN1Olongh9Op294+JMTdNmgc3U6e2qV4bNCS4EWIA2bjRrHavsfDvf/f1aERHnE6zwNqJURvM7bzmiyM0mjTJBDj9nadbWnfK0iIj2bk/hLAwP5XdNWZuRgUXUVvbuNp9F8ryTHu6/t4tDUy3pd3VI9B5+X6daL/pUCwjKcCq+m4i34TZ8fyKv7PWNdMdFwvRY88+a96qUlNNidjTT5v32gMHmk0b/OADM8O+Veq8wJLMNRHP84OkLB7/cga3zPiY6aF7sLh/P1atMqt4Hjhg3tPHjwfgqKNMAmbChGYHa6esK+qYqYwYoXjkEVNi3h0HDpipOldeCaSnk1K1Gev6NU3fz/LlPB9yNVUqusNjZGSY4CYz03RZG6zzbUCCGyEGDK1h40bNFOseoizV/Otf5rm+Ll8WrWRnU7l+Fw0NcGL+f+H44wdG/VkHwsMbF/HsTlnaqFHs2OGn+TbgydyMsRWgdduVt9tTdthEQAMhuJk0CWodweTVxkKln8q1iorYXDeJBEuJf47vLaWYq1YBsG5d3w5F9DOt/rhVVppSs+bZ2uabOBzw8MMQHW1ij3/8A7ZsMR2Vc3Ia14IpKzMTIlt1EwNwaAurambwesHxPLTwXe7feDoP1vyS4xq+hNNOg+OOg6++MkHNUS3nxCQlefc2n5Ji3hdvvLHjbepdNoobYrj7brjoInOq0lJTkhYeDqSnE4ydFVN+YTLqN98MU6bwVvBFnZ575kzzXmm3m8q67gY3A2kajt+CG6XUMKXU+0qpHUqpjUqp15VSA6AIQ4j+KT8fSkoU1zge5Qfqv2zebLID0hq6/yl3mIvv4/e+2GIhtoGoRebGm7VucnNpGDmWPXv8NN8GPJmbcTbTT3vz5q53KSsxt20HQnAzebJ53M0kv5Wm1a3exC4mE5YQ2eftXeMsZShc8jYmOpWVZUrMduxo/63ojTdg376Wa4dNnWrm6Y8ZY/bd8Mxqk8I588w2JWH76kZS7ozg5ZfhxhWL4cUXme7cyN9qfmXKJu6/H/bvN33Me7g6cXAw/OlPJtny3nttX3/rLVhVeTRbalK4807TAGDaNBMUeZYNcE+gqaoyqant2+H++3GqoE7P7f41Lyoyj5K56RkN3Ke1nqq1ngHsAe714/mEGNTc823S2MSDzhsIC3bwr3/17ZhE+8qdEUwfUcIwjsB55/X1cHolLAxqdePEGc9M2E7k5pITk4HD4cfMTXAw2GyMt5iV7bds6WJ7p9Mz9P4c3LjvjE6aZL7251o3O1YcwokNR2zbkkl/a30HuMoSwwT2SnAjOrWmsQqrvJw2f/vcC2hOnNhuFTBjx5p45I5/JJg3gblzW6zbsnMn5NkTGBlcwsUXN+506aVcG/kc94XdYVI/t9ziyRr3xnXXmaDrxhvBpZvqdp95Bi64ACKiLMycaTJVu3eboG3sWNNhEDCpHKXMD+JPfzItpM8+u8vzuoObwkLzKMFND2itj2its5o99S0wzl/nE2Kw27ix8ROLlXzraC7S/+Pll1ymb77oN7SGCkcEJ1q+Mn89Jk8eWPn8VsLDmwU3R7pYi0RryMtjh226Z1+/UAoiIojW5YSFeZG5KS6mTJta9P4c3LiNHQtBNu3X4GbTd2YOkoruuEY/UA5bRjCLdWSv9yIzKAa+4mJTbVBT063d1q417ykxMWZiffNfja+/hu++a7uAppttczajrXm8fWAmq465pk3m5Te/AQsuxocUtHh+l3Ua7wef79M0dHCwWVpn1y44NCwdnZ7BX/9qmradeqpJzERHexLUbQUFmRfz88178kMPeTW5MTnZ9LaprDSbu2+iDEYBuSpSSlmAXwBvB+J8QgxGG7+pZjQH2Rw8kzvD7+eKkH9TWWWh1C5r3vQnVa4wnFg5If9/Az5rA+ZveqWr8f9YaWnnGxcXQ0MDO50TPfv6TWQkYc4qIiK8CG4aF/AEc2HU31mtMCHF5deytM07gwlSDXz9dd/H3futKcxkPXtzLF4lB8UAV1hosg6PPNKt3dauhagoswhyXR38+tdNrz34oGl+dvnlHe9/ou0bEiji9oLrWjyflWXKwcaGFBJsCUznwDPOMMmWAwdM1ugPf4AlS+Dtt73sYOaOfH7606aUTLNMVHuUano5LMzESINVoG75/gOoAh5t/YJS6mql1Bql1JoidyGgEKKNjavrmMFGVtuOp8AyihNf+gWT2Ymur+/roYlmjjSYO+En6c8GTXDjwooTS9fBjbsNdPVoEhLM3Fu/XThHRBDmrCYiAvbsofOW0AVmAc+QYJd/WlP7weSpFnYpP611Y7ezuXg4RyUU94sLnI3WWWSQDZglSMQgpnVTeeu995qVL6HLzjh5eVBQYKrCwsPh9tvNGpjFxSYB9Oabpjtah9kO4ATH59zGvXy8JZkvvmgazs03N7bnnzMqoPPPHnrIzB0qKDAZpxde6Ebvmbg4E5006yvtTYGA+9vzW1a9n/B7cKOUegCYDPxQa90m56y1flprPVtrPTtxICz6IEQfaGiAbbnRpEXt47lZfycr4wbU2Yv52Ul72aqPZmbd1309REHjHyp7PLPUOkYnA8cc09dD6jX3H8FawrouS8vLA2BH8TCmTvXzwJplblwuM6e2Q42Zm9jogVP2NHmyYjeTTDtoX9u2jc16OqmTveihHQBllngSlPm/JfNuBrmtW80ftNGjzYT4v/zFq93WrjWPUVHm8dZbTbvn3bub2iRf507IdNBk51jHV/xyxleMHAl//KMJbAoLTZe+v/61/YxJ68U4fWnSJDP3ZsoUk3mydOeKfPhwmDcPRo3q1jkluPEBpdRfgGOA87TWcntZiB7ascVBgw5ixjFBLWprf/LiKVhxYK2vMXl60ac+/xzqdAjX6X+YLmnd+mvVP7lLy2oI9z5zkxvh/+AmIoJQZ7Xnj3SnTQXcwc0AWMDTbdIkqNVh5O33cvHUbqj4div7GU/asf6sG+yePNsYktRh1q8bOAFonxqoawC4UwujRpkassceMy3OWissNGm8xveUtWvN26l7Pn9wsGkUVl9vNl2yBEaMaDxFOwFJpK4kzbmBsO8t5I9/NIssl5SYPgFz5sCPftTN76FVisSbrEl72wwfbhb+7NF6YD3Yae5c89gPptr5lT9bQU8Hfg+MAr5WSmUrpd7w1/mEGMw2vrkXgBlnj2/x/MgxNqZY9rCMJThzC9rZU/hb82uMZ5+FEOq5mFe6LEkbKD0G3MFNLWFeBTflxFBYZA1M5sZV5akd73DeTWYmPPIIZZZ4YuMHTrDpbgf95ZoQn1/DbskyJeCpJwW+U1pHNtlmMVOvI/tbuUnjDW9Xtg+0LmOuzz+HkBAIDYW77jIRyx//2HKbw4fN4jRlZSY188UXrF1rmoRZN2V7sjLNExc33dT5uI5xfIsV0wL6iitMN+etW82aLw89NCjuQ3ll4kQT4MTH9/VI/Muf3dK2aK1VYyvojMaP8/11PiEGs42fFBKEnamXzmlzVTzamk8BIync1kXJkPCr8nJ49VU42ZIFKDjppL4ekk+4MyNlxHZelpaZCU8/zc54c2swUJkbi8Vc9HSaubHbKbMlEhs7sDI3AMUNsT4/9uZsM2k6Nd2bmcuBscFm5t1s2R2CvX9Uy/neQM22+IrWJriJjTVZh9Gj4YYbYNmypsVqi4qaVt2cPt3cXbn4YtascrZb5TtpkllbMzW181Mf2/AVVUTCvHmEhMAdd5jhJCTACSd0smM/uQvly2GEhPQwUzSADJFYVYiBbeMWK9PC9xOUFNfmNWUx71J5O6sCPSzRzCuvmMrA6/XfWWeb042Zof2bO3NTbBvRdeamvp4dUbMBU0fuV41zbsBcA3XaMa2hgTJL3IBoA+02diwEWZ0cco0ieP23vjuw1mzeF0mErY5x/WRxhqyMG/jfrHvJSMilwWll27a+HpHwi+3bTVamecvC3/4W4uNZtTGEc9fdAYsWwd698O67JvI4+mjySkIoOGzlmFmuNiVnakM2oduzOz5nSQnccgvfc7xNZGKYpwX0ZZeZwMidIe1P+kk8NaBJcCNEf1dczMbyscyY1H47KKfVtDvK2yvlHH3p2WchbWo9Z+r3WW07vq+H4zPu4OaINcm74CY4FavVlD/4VUQEwyOqycoyd2337TPzk9tlt1PmihlQwY3VChMSK9nFZOJ1ie8OnJ/PprpJpCaX9btSnIz5ptXV+nW6j0ciWvNJ0sl9xd78FzE2Fv7wB451fMNTVUvM4i/vvGOyNwCRkay98gkAjtnyovfncjpNs4IJE+DhhyEpqcXCLjabWfel+T0oCSoGj3721iaEaCEzkyPzzyaX0cxYENvuJnaL6W2bfzAw/flFW9XVsGoV/Cx1FQpYbZvX10PyGXdZ2hFbQtfd0ux2djgnk5ISgMRVZKQnmplu1gxl69b2N9X1dsocEQMquAGYPNbOLiYzzOWjZRIyM+H009lMKqmp/SiAaLyqnPy9KYRTTfZnXQTRA0B7wUCP58m0PpjWzHSswqp932zCr7KyTCnat9+2jCKuvZYCNZI4XWoCm0WLWuy2NuF0FC4y/nW9mYfTGZfLtE9ftcrM5Tn5ZLMC9lFHDZpsOiCRWBckuBGin9tUZFrAzDgzud3XlcWCwkVe/iAvou3H8vPNpPYllU+RaxlDrnVsXw/JZ9yZm1JLQueZG5cLGhrYUT3a//NtwCxoYbdDQ4On3r7d0jStqXNYsbuCBlxwM2ky7GYS8a5inx3zcEUoRSSROj/WZ8f0FWvmicxgI9nfSRa6U3feycPVP2dJ/bN9PRLvuefbZGa2nfAREsJNEU9xdeQyOOWUNruuXac4aqomcvJI2LbNBDi6neB8yxYz13HnTtOw4KuvzAI47rsfYsiQ4EaI/kxrNlaMB2DGzPYn/yoFCZSQVzyI7koNIC6XKSM/Z7GLxK/eZNUgytpAU3BTbonrNHNzcfZtuFDsKg3AGjfQ1BO2upqUFDPOdpsKNDSYZggw4IKbyamh1BKOzeW7Gfaby8cAkDqn/7SB9pg0iYywnWTnxLR77TrQjXXmtH9R3h3LlqHvvpv/8APOqH+ri9VrA6/Db2/HDtOzuYNGK3nWMey3tl/LunYtzD7WalbtdLlMi+ijjoIHHyTGVUqwroM//MEs4rJ1q+lmkpEBx/f/8mBJwPiHBDdC9GfV1Wx0Hs2wyDpPD/82MjIYZiklv3yQr8rVT5WUmDXpfjZnE1RXc/7kLX5b9K0vuMvSylVcp5mbBNdhDjGaWrvN/80EoGkp8upqrFaYNs1kbtqUA9ntlGMmMA+44GamCeDsLptPjpeZvZTPK9KBrrtL9QmlyDjaTnlDBPtyBll08957vFB1Acc7Pu90s07ntnz1FfzsZ7wy7W4u5j+8yI/hxW7MQ/G1VoMtLYXvvjOLarbZxH0F352JO1lZ5L+cRX5+43rIM2aYPsZTp5pmA7fcwv8qT2dZ5TlmFc4lS0zTghEjBn87MNEpCW6E6Mee3HICG5nBjBmq0/fqWGsledUxHW8g/KagwJRyn176ipmlOtCuoLvgztxUWGLMHJeG9uv8h+kidmBSNgHN3DTOu0lN7SBzU18/YDM3k6aYP9FVLt/cuAjWdeTqZBLCqxk+3CeH9LmZJ8cCkP2Jj+YZ9Qdaw913A3BSw/KeHaO2Fs47j/oxk/hDze8BeIar0A88aLIZ/cDjj5tFNfftM30BALMmTXa2KUlLTu52p5G1a82jpw201WqCl6++gk2beDv4QvZbJ8Cnn8Jzz0Fiok++l8FsKGSLJLgRoh87xv4tm0hjxpyQTreLDKojz95/FuQbKoqKTKXW8OFg/eRDmD8fVq4cVH853MFNpWoMnjvI3iS6Dgc2uGmWuQFTVp+b207sVVs7YIObsWMhiAZKXb65cZHi3MMWppOaUt1vb2ynXjQNC07+cd12MmOz+3o4vvHJJ7BqFaUqjrmOleDoXvOXxev/H/vWFIHTyVM/+oyc/VYSbGXsZhLrdkWaSfh+5nB0XgFXWwuPPGJWvrdY4Nprm5WoaW3eE086qcOMSq0rmGpny79zmZlw3XVml4yMdnZKTeXCeXnMnh9qGgcI0UiCGyH6K4eDCFc5tYQzY0bHm2VlwfFzHBzWiThqB1j3nAHu28blR1KiS8zdyTPO6NPx+IM7uKlSjZmSDoKbeFcxW5lGVJTuuITSl9rJ3ADU1LTarqaGMosJ/AdacGO1wkjyKNRJPjleinOX6ZQ2q//OzwuffTRTLbupdob29VB8t+jmn/8Mo0fzj9DfEKPLzQ0QbzU08Kea35DsOkjFv9/m/z2ZxMKFMCX8IBZcvBB1HTzwgN8XCN2zB9asMXP13Zp3f/u//zM3e1JSzMcnn5gpMgBjXPtNiruD8blcsKl6AuurprBnT8vXKivN9Br3r3uPtZOuGAoZjKFKghsh+qu8PLYzDYC0tM43HZWs0Fgo3OK7rkqiHa0uIFavBtCcvOdp88Tpp/fBoPwrKMjcOa2m8+BmmC5iC6lMndp5CaXPtJO5afZlk+pqyoJNcDDQghuAJFVELsm9n4gOxDqLqSKK1HnRPhiZn1gsZIws5JBuvztkX/M2hti/38xtvzCziHO/vJmzor/kiYYr2cMEeOutjnd0l3GB+Te/+mrmOL7lwbDbuf+bEyguhr/9DYJmpjEs0cJLrh/SsPJbqKjo/TfXgbIy0zTF5YKrr25bBedwwP33w7x5Zn3OUaNg1iy44QZwaAvpzsbasg5+cO+/D7WuUJxY+NGPTBNEt6qqZiVpQnhJghsh+qv9+9nIDEB32cly5DhzJzZvu//+wIm2Vq2CCEsd851fmkXi0tP7ekh+YbFAtWoMJjromJbgKmI3kwLTTACabuXecgtgSrgiI1sFN1qbzE2QqcOPGYDT0mItFexgKjU5hb0+lstpAqS09P79p3/mTMgjmQhnWV8Ppa3mwUcHdu0y807Ki+1sW1PNPtskDoeM5bAjnivVsya48SZYvesueO45/i/kGt6yXcBDD8EPfwizZ5uXhw+H4upwPoy4EA4e7O131qF//9sENKOCi/j8c/jXvxpf0Bq05n//M9/vbbeB2pCN2pDNE0+YZM2+uhFkONbAyJEtFtFsbulSCAmBadMUq1eb5WnAzN+x23sQ3EhKZsjr3+9wQgxljcFNtKrydKzqyKiJpnYob1fr29bCX7Q2mZtoazVzHN/AaafR75Z895HQUDhijzJfdJC5CXdVks/IwMy3gabMjdMJmOxSamqrsrSiInA4KLMOIzjYfB8DTaStDgdBfPd6bu8OVF/PEVcc0P+X/cg4w9Q1Jtjz+3gkPfPaa+bxotB32FKdwoa/vs+adRbGhhSSpU/is5xxsHlzu1kgrcGllanzuusu+OlPeT7kavbXj8Buh7/8pWnbuDgzf/750X+A4uK2k2LaOUF3q9e0hqeegihrDZNCczn5ZLj1VsjbUMRT1Ut4oOoa/naPi6OPhsWLm/Y79lj4+c8h156ItaGu/fVtgE2bYMUKk+1JSjL73H8/fPSRp+K0ZXAjgYvwwuD8SyzEYLB/P5tII8za9RoXo6aZW9L5++r9PSrRaO9ek8SYZNlDrC4blPNt3CIi4EhtY2TQQXBTqmPRWAIX3LgzN43BDZiL9haZm23bACizxBEbOzC7wzYEhaNw8cWKXs6n27iRb5hHvDrS7zNY6edPAEA5uzfxvr94/XWIslbzi4a/Q3w8/OIXAIyeM5LwECc3sBTH62+32a++HjZWT+SbiqM5/4o4npt+P8V/eYoaVyj59mFcc03LZmMWC1xyCbyTM50CkngjO8Xn38u335oW6yODi1EKnn4a6us0152wnvHOvRx2xbNhk4Vbb3K2ubfz179CKHX8gb/gWpDpeb55gLV0qZnXN3Kk+frhh83v8WWXNSWJZ870+bclBjkJboTopxpyDrGHiYRau76oSTo6AQtO8nIH2doQ/ZiZbwOZrs/MJ6ee2neD8bOICKizWykjpv2ytNpaMy+EAHVKcw8KWgQ3qammW5qnZt8d3BA3IOfbAFRZYkhlM19u7N08mfqv1pBFJnG2Sh+NzH+SRtlIpIgyZ9/ODbpy7S+o+nwtnHUWvPCCV/NaDhww7w1TrbuZ7/gCbrzRE4hbrTB+opWNpPPMsy0vv7Q2WYsyZxTn8harbfP46ZZbGD46iOzqSVhxcfvtTdu7Exg/+QnY7Yr/Z7mTs+xvNvVj9pGnnjLDTwoqA2CSNYe7wv/GG1WncV7I+/za8iijOcglX/6iTaldXNYb/IPr+Ybj+fPeH7U59uHDsGyZ+R6CgsxzYWHwn/+YH3Venllnq9NmApLJEe2Q4EaIfqpgVyUaCyGWrjM3tthIkigir9AagJENYVp7ZtOuWmXKnM5xvs4OyzRTUzFIueOIzWHHtp+5KShgIzOw4ApccONu49YqcwPNsjfbtlFDOB+XHzdggxuUIlVt4ZuClI6WGPLKNx+UUUMEobaBkQ0ZZclnF5M67z/sZwsalhNGjQmSf/ITSEriruqbmdPwdYf7vP66ebzB+RBVRJpexs0kJMCC8Qf444GriK7O8zz/t7/B88/DzTzA4+o6Du51sGYN/OEPEGppICU0v923mIwME9S/wsXstE4zPZinTDETY3q4/k1mbDaZsdmUlppAY8kSsCoXo537YcECbtIPMnNqNZ/Un8Ru10RuOnUzwc//E/7wB7IybiAr/demQ9wFFzDP8h1jbHn86f4oXn215XmeesrEYb/6Vcvnp083baXBB13SxJAkwY0Q/VTePhPUBE8c69X2o4KLyDsyACcVDBTV1WZFuS+/hOBgVv/jG2bpNcx0rWV10Ly+Hp1fuYObTaFz2s/c5OezlmOID6nyxBx+p5S5Fd4qcwPNbrBv3cqBqKNxhEcP3OAGSLYWUOMKY93anmdmP14bjxUnsUEDY15etLWKbUyj/JutfTaGWY5V7LBONzWo33wD11xDqnMjf6u5Dr77rt19XnsNZkysZonzBV4PubhNiz6l4JEHGjhCPOXr90J2Nq+9Br/7Hfxo7Eru5TbuDP8banQyxxxj1v6cFbmT5JD2O2Eq1VjC5YrjitBl8OGHptPAlVeaFFJxzztoLlsGdXUmozTFuZW/V18B9fXYPl/BMy9F4MSCTTm46rUzTBu1e+4xqatt2+D22+HSS7kx8hnGhxcxb54Z5/r15tgul0kynXEGTJvW9txXXWVK8EaP7vHwxRAmwY0QvuaL9Qa0Jq/A/HoGe7kkxajwcvIrI3p33qGqvX+z1s/ddZcJcMaMwXHjrazlGOakFPN50Cm8H3RewIbaF0JCTByxyZLebuZG55ngJi4ywFkBq7XF3emRI80k64MHTUkL27axP3waDsfAbAPtFmk12Ysv3inv2QHKy/mkZBYpKgeb6h+r2XfFYrOhsbD6rbyuN/aHigqmObew1naciSDmzoWlS/le2Ar+wfXmir/VYpwFBfDVV5rvV/wfBWoEL4X8rN1DZ1wwgSuj/8tXzrkU2uP48Y9h3sRCnj1wCs+G/IKttlZdFzMyOljF0liyBEBT6Ig37ei/+w7eftv8fmzdaj66yd1IYPYsJzOX3cLTVUuID6qEL76AGTOYNQumhe3nqLD9REYpE6lccAHk5JhGHvfdBy+8gF2FYFGaN94wWatzzjHZmqIi8/O68cb2z6+UCWyioro9dCEkuBGiXyoqIs9uFh4MCeli20YjY6rJq43z46CGsOxseOghGDECJkxg65K/UOsI5tjbz2Dh8fW8dMyDfT1Cv1LKZG82O45qN7jJ3VrOYYYTGhUU2IFZLC0yNwCTJ5sLs1/9ogFyc9kffvSAD26KbSOYwg6+XNHJXIpObqqUrMhmLceQmNjRUu/9j8NmstDffN1Hwdjnn2PFaYIbzOKV550H39XM4AYe4a0N45pqpxq98QZorbig6EkeCbuNOtVBGlMp/rxkOxFUs712HMPj7byZeyyhi07g5ZCfdnuoo0ZBnK2SQnu8ifWVgrPPhhkzTIBz7bWe+TCHD0O5FzFyhTOczZvh5/t+Dw8+aO4czJ5tVtRslBRcxrCgxjlcVqtJ9SQnm4XZbr21RQeP4cNNvHXkCGzZAocOmYyNe6qiTJ0RviTBjRD90f795DEKhcsz0bIro4bZOewY1qu6fNEOp9PcpR02DCaYLk6rVpmX5szpw3EFWEQEbKqZgC5pW5a2bpMNAFtMgDOHNhut/8OHhcG4cfDa20G8w2L2h0/D6RzYwc0+y0QW8AVfbozp0TSKFf87gsaCGp7o+8H5ic3iYgJ7+WZXQsDO2SI+XL6cOkJZr2bxq1+ZeSCffgrjQ/KIsNRyXegzVN5+H+zf75mj8vqyWqaonUw/bwr3zHmDrIwbWhy/+QV80o8WcR+/IYoK3g37AUlRtfDii2jVs8uyEUFHqNfBvPlmsyeDgyElxZz05ZfZuxe2bzfr8HQmVNeSVLOPKCq4OOlTU4o7ZQpd/jEKDTVr2cTHt/tyRoZZM6ey0rR5vuGGgdnBUPR/EtwI0R81BjfhQQ6v3/xHjTBXPYV5zi62FN3yxBMmmnn4Yc8f99WrzcVyB2vSDUoREVDWEEluSdt5XWt3xWDBSURUgP+kREaaCTatyoNGj4bpyaVcx6PsDJ6OyzWAg5uMDCpnncSJMZsoqw1l8+buH+KTbyKJsVTw+broAXV3fJzlAN+WT8NV3wd3bJYv51HL9XxVlc5jj5kpLLt2wbjQw0wOO8ihukT+1PBHT1akwWnhs6+D+b7tbdQ//t718Y8/nh+q/1LIcKbvfst0E3D3Q+6BxDnjCQ+HO+5olcx0Z1xuvpk/32FHa1Ndu3Fjx8c6uf5DvtAnsmTOTiI3fAUnnND+hl2Uy7Xn/PPNXJqoKLj00m7tKoTXJLgRwpccDlO/UNnLdquNwU1QiPe/oqPGmE5pedu7blcqvFRfD7//vVmg80dNrUxXrTJZm6F019HTVKC07QzftbkjmGDZhzXQzfri482VnLsvdyOLBZ7OfJkDjOPLQybbNmCDm0YL0kw54Jdfdm8/reHjQ9NYmLwDm80PA/OjGGs1pcSz86OcgJ5X5+Xz4NYz+I3rb4RHWdm40dzjGD68cVy2Gn7+c3jEeS3r38tlgWMFw+x5OLWV71830rtZ8FYr39gWEEYd3HQTnHkmAFllGWSVZXR7zEqZjOWWLfDf/7Z64Ykn2F0QyQsvWUkKOoJCs2xZx8cqsUdSRxhXPzXb+0mfHWknABo9GmbNosvFqYXoKQluhOiFNmXur78O+fmmsLk39u8nzzKazFOsXt9pHTneTM6R4MaHdu82ZU+PP+6JZGqdwWzaZFbgHko8wU3D1DbtedeWTWBS0P7AD8odsXz8cZuXjq/4kGvi/0NhkaXFpgPVuGMSGK0O8cXnuls9S3atLOSAczSnze3/69u0kJGBc4qZ3/HN20UBO63LBT9fUsUtPMj42DLS05tajLvHRUYG99wDiUmKq8P+zS9rHqDObmV8cC6z/vZDs50Xk0j+G/Jj/hN8qeky1glv56MkJprpLnfe2SqZOXs2/2/KiwTrehYFfUmcrYJly9pMVwPAue8gr+kLmKj2yOKZYsCS4EYIX3JPMK2p6d1x9u8nTyUzapT3qYFRU8yCAHl7+m5diAHL6TQtU5ctM+tDPPYY7NljnvvTn1osC76+ajJO59CabwOmIi85torNpLZoKpCXBwWOREZ30KrW74OKioKPPmr72rZt3HPiB54bzwM1uHFf2Kq0VBboz/nyc2frtRI79fELBQCc+oOB12ykMn48MZTx7Xe+T5G2FyA2NMCmTfDPrMn8PvQhxqbFdJiNjIuDpUsVa2qn8wxX8jkLuOBCCyrI+/RYjnUST4Td3PvsSCOlTOvonTvNW1kmWWSSxY4d8O/dx/HLsOf4Q/3tjAgqITcXPv+87THe+/N69jKRkSGt5tb1cMZ/bxoFSJMB0VMS3AjhK6tXw9dfm5qY6t6tJVGXk88RZyyjRnm/T9LUOCw4yT84MBbpCxhvbnPn5Zl6jksvNcX1111n2vlER8PNNzdtl5XF6ssfA5oFN0PoL3Da+Eo2kdZirZu135r5EAlhfbR+SlycaX1bVuZ5KthVB3v3Eps+zjMvKiWlb4bnM6mpnMiX5B+2UVfXzuvFxS2aK7j/23+SFcQE9jBxcTuLifRjWVnw2RdWjovZzjc5w/1+vn37zBos5eWa5+Ju5C+LvzHv5Z344Q9Nxert/Bk7IVzwy57PmfGVc8+FY44xnevdzSfuvhtCQxW/+dswpjs3cYleRlSUmdzf2iP/G8VI8rAEB7jzoRA+JMGNEL3Q4g7qI4+Yu8jJyWauRlVVj4+bv8+0fO1OcGMdNZzhFJKX3+PTDl1lZabN1s6dZhG6w4dh/nxTgtKsQ1BmJvz1r+afuDv/NoNF2pR6tjENR1FT5mbtlzUoXPzxj30U48XHm6u4Tz/1PDW6Zqd5bto0EhPNfOhmHWwHpqOPZgFfAO208l23zgTnO3e2eNrlgs9yxnFqQrbpZDUAzZtcwubqFCrKvGsT582SVa1lZ8O8eSY2XDTlED8pXQqnnNLluVTj8i4WXASrBub1g7V83dmbnByzjkx1Nbz8srlfk3TdD9hsncHV9f/gwvMdvPpqyyKDTZ8U8GnFbOZaV3s1n7Dd+zpD6GaP6L8kuBGiF7ZsgQ0boHxHgZnF+bOf8ceSxlXJerBwGgAVFeRVmhKzbl1Ax8YySuWTVyR33LrF5TIdt2JizCIpY8aY4nWbrd2OAZWVQ68kzS31aE09oeza2pQhWLfGxVFsJyIlqW8GFRVlPprNuxlXs818cvTRAIFvdOAPUVFMG1vDsODK5kkq48UXzWNxMbz7rufpygoXlc4ITp1VErBh+tq8+RY0Fla9XeCX43/6KSxYYH7dMzLgLOc75oVFi9rdvvW1+8SJMC18H1PCDnaV6Gl7rIwb2rSL7qnm4zrzTBOsHThggpyICLPsDEqROh0SdRE/jn6bykp4552m4O/vtxcRRg2W9LQBsx6SEO2R4EaIHqqqgpISc9P/lJOdlDREw/XXkzN9sdlgy5aeHbixUxp0M7hRilEhJeSXdbBwnGjf1q1m9m1MTJebNjSYufRDrZmAW9osEzhv3toU9K3dGsoxrO1VG9tesVhg4UIz70ZrsrLgTz/YZp6fMqVvxuQnKnU6J4aubpm5cTjgpZfMOkzh4eYWfXU1ZGfj2roDC04WnhPZZ2PurePOM/+vvnmv7fpKvZKdzeFV+zjjDBg7Fr75xgQBx5QtN23HJk70OgmREFTBsKD+08hFKfh//88UEJSUwK9+BQnu5YLi4iAmhpP+dx2jk12e0rSGBvj3qin8eNgHFEdN8Ov4JLkj/E2CGyF66LvvzOPYUQ425Q8jM2oNBRETyQ+bQL0lNPDBDTAqsoK8quienXeoWrnSPHoR3Lg7fA+1zI37YmTanEisONi0ywTQBQWQdySs74Ib98BOO81Mmtizxzy/dauZZDNAS7E6lJrKidUfUldnLlwBk7E6fBhGjDCZx/37zZUtUOqIYg6riTs5o8+G3Fux86ZxNFv4dq3v+liXlsK+uhFsqx3P3Lmmvfbo0WBZv5aZxctNSVog+rz78Sp/4ULzlma1tpw2CMD48VgK87lkylo+/BDsdqg4UEadDuH6JUck+BADngQ3QvTQV18BaH565AHe43vsbRjDSSdBTb2VA+FH9Tq4CQ7WHS303KGRsXUU2WOx23t26iFp5UrTrciLC2F3cDN7tp/H1E+FJkUzmV1sOhBNZiaceqp5/hi1HpL6qCwNTHADTaVp27bBtIE1gd4r06ezwGnmFnmyNy++aOYdxceblnA//Sk8+CCjHPvJ1aM4LfhzmDq1z4bcayEhzIvfwbcHRnWrS1x7Nm2Cn//czJnbXz+CxKBSPv7YJDMAJju3E0VlhyVpHerBYpb+ppSpypw1i7Z/R2Jj4ZRTuDT7FhwOExsfyreyiOWkXn9yXwxXCJ+S4EaIHlq5EiIsdVxq/z8WpRXx8ScWCgrM5NRVISf2LrixjGbUqO7fPByVZOZCFPinPH3gOXzY/IMUFna8zcqV5hanFz/sykrTd2CgthXuNYuFtKAdbMpPBMzPQ+FiZlJu305smTjRZGo++ghOOsn87jXOtxlUUlPJIJtgS4OZd1NRAW++CRdf3NTZ6777IDqa1JrVuLBw6vS8AT/paO5R5RxpiOa4Y3WXjQ/t6zaz99tCfv1ruPFGk7XYs8e8DcyYAS+8AJdcAsdEbufo8P0t7mkc42hMxy9c6K9vJaCCg9tZKNOdlrnrLtJKvyB9ZCE5e5yUOaP49YR38bQXFGIAk+BGiB5wOEyN9gRLDpNcO+HXv2b+CYoVK0y5yDLHD+HgQXPx0V3795MXktKtNW7cRjVWBuXn9fIW50DVvC1SVRUsXmxucR882P72Bw+aMp7orkv5ysrMoaKifDXYgSk1ch97K4bhdJof8dSIQ0Qmd13S51dKmezNp5+a9k9aD87MzbRp2JSLmaHbOXwYyl58B+rq4Mc/btomIQF93/28ps9nKtuZf+rAXwZ+3gIz18t1pKzT7Vwu2FY7joP1STz/PDz7LDz9tOn0Xl8Pf/ub6fD+zDNwqeN5bq25ywSDb70F27ZxdegLZuLNcP+3nu5zxx8PZ5zBpeWP48LKRHbzvStG9PWohPAJCW6E6IFNm8yF3W9D/27a7FxyCWDKlSIjYZujcSJzTzqmeRbw7P6uo8aauvS83b1cRHSAysxeSmb2UjM79gc/gLVrzUTr6ur2/y3c823++9+2ReatCs9vv90EtaNH+2nwA0RafC4aC9XVJnNzTPCmvmsm0Nxpp5lfSnfacjAGN2FhMHEiV9Q/htMJTz1UZebZHHdci82+mHA56ziGm3gIy3EDf4LYtDPNYp6O0rY3i5rfz/j736HMEcWUsIOemxGVlXDiieZH9JvfmLcD9u3j+rr7WdjwIfz2t3DeeSbTV14+tNKyd9/NJTX/JIwabuEBLD+8qK9HJIRPSHAjRA+Y+TZwQvVHZq5BWFOHsqgoyK2Lx4XqWWna/v3kNST2KLgZOdHcpc3b2fM1dgaMjhav0Bquvho++ACeeqqpY9Z//tN225UrTTQ6Y0anh1+/3qxnMWqUZG7SRhYDJpNlt8Oshu/6x6I/Cxea0qz8xoWeBvzCNh1ITeU0/THDrcUs3XsOdRdfbjJXzYLxh5ZaCKGecdbc7s8f6YcsM9M5ju8orup4XtzmzXDbbZBgK+V09TGdTtD5299wYuHHUW+Z/8irVpm5S+PH9+juxYCdgD9nDqPOnk0BI8hUX5jyTiEGAQluxODhzUr0PvLVV5CcWM9Yva/Nnb7oaGhwWtkRkt794KaujqqCSioawnt0MzxxUgxWHJ5FQIeiK+ofh+eegzvvhCuvNIXnsbHwyittL3hWrjQLQtg67sTkcsG115o7vuPH+3HgA8SEUXWEqVrPNKZjqr7oH5mb2Fhze97pNP/mjd3vBuyFZ0emT2e06wA/tvybAkby7/CrWry8c6dZu2RESCn3RP7Fqy6A/V5UFPPid5LXkIjD0fZllwuWLDHf6p2Wu/l7zVXmPaA9ubnw7LN8GHwOxZYks9OcOXDppaYF9CDqsOfV//277iKSKj4LOSMAIxIiMCS4EaIHVq6EE0bsQUGbiwf3nf1VI87pfnBz8CD5mAvFntwMt44azggKyDvk7P7OA4ynBA1M0LJ5M7+ofYgf1z9jMjd33NG0cVKSuerLzm56rqzM1BeeeGKn53nuOTO/6r77IEjWR8USH8t063bPyuYzWdc/ghuA0083j21mUQ8iqalYcXJHw+3MitjB/f+XiLPZr/vSpeb/6ajg4j4boj/MS61EY6Eye3eb13JyYONGePaBI/zM/iROLHDLLaahSGsPPghOJy+F/DQAox4AZs7k8shXeTX4R309EiF8RoIbMWhkrn+YU9ff5/fzHDhgJqXOb8gyF1HBwS1eDw83zYm+C1nQ/eCmF2vcAJCUxEjyySsYAr/aWpPmWG8uYiZPhrQ0Ztm/YZntMnjssZbdzxISTHbmlVeanvv6axMUnXBCh6doaDAl+fPnw2WX+fF7GUji40lzZgMQE1JHNJX9oywNmlpCR0T07Tj8KTUVgCiq+M2PDrJzJ7z9tklaz59vgvFLL4VgSzspjgHs2EwTsB6uj+G992DvXpOkKy0178e/+AV879vbCcLBH8MfMpNtbrqp5UGKiuDJJ+HSS3ll1v1kZdwQ+G+kHzpgnYBTyZ0bMXgMgSsgMVSc2vA+b1QsMn/A/Mg9B/2Eff82a0q0yvt//jksWACrqo82JRBlZd4fvLfBTUICo8gnrySkBzsPLJfXP8U/qn+G/vs/WB7/A85K3c8UdnGV6ym0tVWZWVCQWZSlsTQtMxP+fc1KE/Ace2yH59i3D44cMbGSRd4tjbg40vRGAJJDG7MD/SVzM2eOCWQ9y7EPQlOm4MCGnSC+/9djSEkxXcC0Nl3BamvNNX1Wxg2D6uI9bv7RnM6HFDgSWbzYTA+JjDRzbcLC4IFrc+Dpp7GNTOSeOW/A734Hy5bBJ5+YjG12Njz8sOku97vfDcJ6RSGEm/y5FgNW6yk2pzW8SyRV8N57fj3vV19BZLiTtLpVZk2Ndhx3HGwoGE4toWZBQW81dkqDHgY3Viujwo6QXzGw71x3OX3q0CEuqn+R2yx/I31KDaeu/itrD49lmK2MWlcoX37ZbFv3RczFF5u027ffQnY2aXkfmhXuIiLaPV9lpblYvO46SE9veaghLS6ONDYBMCGoscV2fwlubDaYPn1wd7wKDmabdTqfBZ2GLTGOW26B774zGYy8PFOZN316Xw/SD2bO5EPO5G8hf2TlSvjnP81cuPh40+gs/J7bzU2McePM9r/7nWkmcs01ZKVdT9b0a+HRR+Giizpe1FR+wYUYFCS4EYOCPlLK145jWcw71Lz+oV/PtXIlzEs+gA1nh8HNsceCw2khm4z/396dx1Vd5v0ff11wQBRBQVGUzCVNSwUVUnMvs6Zs0WpmKttLm2pqnJoWa6q77Z4Wf03TVFOWLXNrTrs11tRUphbuuKBl7hvijiibrNfvj+uoqOxw4ADv5+PBAzjf5bqOF5fnfM7nWio3NG3rVlJDT6dp06rPA24flsm+w2HkNuQ1BR57jJe4i2eL7seaQN56y21Xc0azrQRSyJtvlnDNZZdBkybw/vsE2TzOKPyp1CFpc+e66ThBQfD44759KvVOZCSDmM9pkWkMb7LQDf9rDPuC+JF7QqfwXNPHALjxRpeoWrPGrV53773ekxraG/WoKHYEdOCmvCkMDl7CrbfC5MnQM38FsWs/gPfeg7vvdhPk5sxxCwO8/robv7Z1q8uiZ2TAww/X9TPxO3PS+zAnvU9dV0Okxii4kXpv/34Yc14mE/kbX3Axn/23qRt64AMHD7o3vYNtottHo02bEs87su3EoqChlQ5udoZ0pn3746eMVEa7VnnAse0+/EmNLGj300/wzjvMMOMIDcghOdmNDgwJgUBjaRt8gA8/LGE0YIsWcNFF8MEH9ChcTTB5Jy0mYK0b4nPuuS4JEBfXsJMAVRIRQTNyuPiUlXQvWgNRUVppoZZ90/d+vut7H+Dm+N19t9uDKTQUzjuvjivnQ480m0wBQa7fTpt29PFbD7/i+vcDDxx/wYgRcPPNbrPelBS49NISl30XkYbFZ8GNMWayMWazMcYaY3r5qhxp3NLT3RvQr1ZG82TgY4QF5TAt90r4/nuflLdggXsDPDjl/VKzNuCGlMXEwOLm51Y+cxNQtQ08j5bdxk0kPrLdR4NQPCp68EEKmrfkZ3sGLTyZxweBffoQ3as1hw+7D3JPctVVsHMn1+VOdb8PHnz0UEGB28vvwQfhiiuOjliTE0VEABBekEar3J3+MyStEbvjDjfvpGPHqn8oUh9sCjyd3zWf5pZvv+46uO8+4gqWMqhgngtsvH+bx3n+eRd8FxYqayPSSPgyczMTGAZs9WEZ0khZ6yZ7r1wJzZoWsSBoOGe2TaNV2yC+5gL2vO+b4CYxEQIDLQMOzyk3BTFgACzK71fx4KawEFJSSM1vU73g5hTXrW+5per38Ftz58KsWSRfP5lCPIR3iTrplLAw6NuXkoemjR5NYbMwNhecwiPmSZ56PYqHHoINGyApCb780i2l+/77ZW5907hFRgIQVnCAVnkKbvxBq1ZuKGzUyd2hwTkYEAH//a+bDDd5Ms9n3cl+09qlr0pyZFLOaaeVuXiIiDQcPnv5ttb+CGAa8sdIUmeWLHHDqKOiIOnxLwgbt4D/a/0UrYM9bEmBf80M4W5ra/RjzBEj3II7cdG7CduRWWbmBtzr6CeftGFfZi6t09PLH9+UmootKCA1uwUXVyO4adfJrZRWdDgX8LNV047uM9On8tdaC/ffDzExJHYeB5w8L+nIFINXX3WTjZctcxmYo0JDeaLL2zyx+gqwwCMuiLHWTceZOxcGDap81RoV76fjzQsO0CovFdrH1XGFpNEJCoK//x1iY7ET7uKNkN/zYFl7G7VsqfGlIo1Inc+5McZMMMYsNcYs3evjJXyl4Vi0yH0/7TQI+88HEBnJX5OGsWQJ9D11P9MOXnz8ho01oKjIzUcdErTYrbYTHV3m+Ufm3SzhrIplb7ZuJYMwsnKDqpW5ieoSRiAFmJzsqt/ER/bmt+Dn7I5kZhZ78ISJOBkZsHYtHDp0wsX79sHixfDkkyQuDiYmxg0TLMk117g5OCdmb775Bp786XJu4B0eDXmGvDy3l82QIW4VYQU2FRAaCkFBtMjfR0Tebv/L3DS0ifRyTJ8+7uuI8eNpMrQ/D/b3TaZeROqnOg9urLVTrLUJ1tqEqMaQU5cakZTkPrxr5smDWbPcRFHvOKJrbwlmCf1Z+1ZijZaZmekCnMG7Pyk3awMQHw/GWBYxoGLBzfjx1dvjxiugXVvasZOi3Pyq38QHrIXNh9uxNz+CK690QcWJcnNh7Fi3GML27cUOFBW5bch79YLrrycx0U2XKS0x17KlW/F1+nQ393jECLdY0rhxbpncmJA0EoNHah58VRgDERGcmr2WQIr8L7hpDBppAFfi09YGVCJyAv2vIPVSUpJ3bsXBOW5VgcsvP3rs6vFhBFDItI9CarTMI5mEwTnfVGjJr7Aw90Z6MQPgiSfKL+Dw4RoJbmjThvakkudnS0H/+CPkFIVwHt/y9ddwa6+F2Bf+yqQlY7l4+RMUFcH118N337nkQFqa25CQggKXysnJgWefZduOQFJSjlsLoES33urabO9eF1hdfTVkZ8OHHxoSm5xLQTk7cjfS948VExFBp2xvwF6tP1aRWqDOLNKoKLiReicrC37+2e1OPXTfp+6d8KhRR4+3awfnddvGtF0jsdtTaqzcQ4cgIvAQMaRWKHMD0L+/YbHpj83MKv/k3FxSA08Fqvl+sW1bOrCdjLzgatyk5r35ah5hHOJl83seb/86/1w3kIfvzeEv2RN599Dl/OHKHXzwgVvcqIvdSFERfPffQrfO85490LkzXHQRid6EXClb1Bw1dCh06+ayQJs3ww8/wJQp0KOH759rgxcZSbucTe5nZW78gt6/i4g4vlwK+iVjTApwCvCtMaYS6+GKlG7lSjdK6aUXi7jMznR7l4Qcn6W59uZgttCZxL8trbFys7LgzIA17h1zBaOPAQNgv23Fpuyy5+cALnMT2AGo5vvFNm2IJ4l9+S1JS6vGfWpQejp8+JHhGt7j+dD/4ZGU25gw3vIXHuKc4B95xjzAy5/GcO/wpfzpXktLTyaBFDLzvh/dfhadOsGpLvBLTHTxbHnbVRjjsjcHD7ohbrfd5ubiSA2IiHBD0kDBjdQtRXUicgKfBTfW2ruttadYaz3W2mhrbU9flSWNS1KS+54QsMx9LD927EnnjL2zPc1MNtM+qJnsxeHDkJNtOTt/XoWzNnBs5dFF+X0pM9LwrlaQ6jmVsDA3pK3KgoPpzSrAzb/3BzPeyCSnIIi+gclsCOyBMfDKq4ZLL4U5eYOYbO/jug5zeG5uf/jtb2lOBkNMIp+vP4PCx55wG3h4JSbCwIEVW6r5hhtckNO8uVviuTR6f1RJxfcTKWdhDRERkdqkYWlS7yQlQdu20P7Ose6d6+jRJ53TPMwwtvvPfLB9IOeHL6x2mWvWgMVwFksqNN/miF69wEM+i+kPy5eXfuLPP0NBAamBp9TIFIbOZisBFLKw+k+9Rrz5/w4Sxwom9FnCnD4TAReczJgBEZ4MWnvSmbphOAHPPQsff8wHhy7kDvsye2nDgvMeOXqfjAxITi5/vs0Rbdu6PW9iY49P7s3pM/FoPaQKvHvd4PG4NbRFRET8hIIbqXeWLoX4eIvZv899ghweXuJ5190UxAEiCc/dU+0yV6503+NYWanMjccDYYHZLGQgzJ5d+onz5gGQatvXSHCTHxDMaWz0i+Bm2bdpLNsdw63xKzBLlxyXImnWDGIHh9NzcEuCgg3cdx98+y0ZJpy04GiCgy0zZ3I0tbJwoXfFugoGN+CyYCetiqZUTfUcydwosBERET+j4Ebqlawsl0VJiNnlxoq1bl3quSPvOpM27CY1v/pLjCcnQwg5dG2SAqecUqlrQwNzWU5f8r6ZW/pJP/wAwcGkFkTVSHCzO6AdA1nIokUuGKhLU/+0hiYcZtyrFYxIzjmHdsO68buzkxk50jBzplvtDNyQtIAANyxN6tCR4CbYvxatEBERUXAj9cqRxQTi937lhqSVEdx4mgbRP2AJybY3Bfm2WuUmryyiF6sJjGxR6WvDPVnk0YQfl4a42e0nshbmzcOOvbzGMjcXnPoL5/A96emwbl3FrzthP81qGdFyBZeFfcv0lT25sstyIvp3q/Q9xoyBjRuPbROUmAi9e5earJPacmRYmoIbERHxMwpupF5Z6l38LH7hK+4NVjm7MDYPPEwWzVn9781VLtNaWLmskFiSj59IXUGRnkM0M9k8bSfB3BKyN5s3Q2oqBxJGkZtbQ9uGhIUxEDcmrS6HpnXMWctBWnLrU52qdP2ll7oYduZMt93NwoWVG5IGGoHmE8rciIiIn1JwI/VKUhK0jcil/a4kaNOm3POzgloCMP+D7WWfWIbdu2FfehBxJJccnJQjsG8cp3QOZjYjmffPLSefcGS+TddhQA0FN82b0521tGhyuM6Cm6iiXawo7E3X8N0Mv6r05YLLCj6io90QtJkzYdUqyMysfHAjPqDgRkRE/JSCG6lXkpIgoflaTPPmLo1TzkfyB+NH0pbdJM6v+p96crL7Hts1u8xhcGVp095DdPB+HvtPCZNF5s2DyEhSQ7oANRTcBAYS0Kwp/cPWsGhRNe9VxbFqCYd/5AeGcevtwRhTyYuLRTxjxrh2/9e/3CEFN36gc2eXUgsNreuaiIiIHEfBjdQbbjEBS/ye/7i9bZo1K/eaufMMQztuY/6OU6s8s37lkjwAev8qpkrXAwQGwoPnL2dOdn/mfHLCfjc//ABDh3L3RNcdayS4mTMHfv1rBuZ8T3KyJSurgtetWOG+qquwkKT8WJqQyw0TKz+Ur7gxY9z3yZMhJuboXp5Sl2JiYNCgKg3TFBER8SUFN1JvrFgBRUWG+NxEGDeuwtcNGgRbijqSOvuXKpWbPHsfMaTQ6uKzq3T9kSTEhAciaEcq//Pn/GPJkJ07YcMGGDaM3Fx3fo1t+B4fz8CsbykqMkfnKpXHWsgqDDn2S1ISbNoE27ZVquif3lrER1xJvGdFtfd4PP10F8ceWQK60lkg8Y2K7KIqIiJSyxTcSL2RlOS+J7TaAiNHVvi6wVd1AGD+9KotKpC8CuLMKhgypErXH9H07D5Mavoic9e05cAB74M//OC+Dx1KXp57v9i0abWKOSYhgQG4MWkVnXezJTeapZk9eH/Me9C1KyQkwPbtbtGD1asrXPSjT3hoThZBCXFVqflJWrVy3zUkTURERMqi4EbKVpNrA1dT0oI8otlJ+2tGVOpT4z6/iibEHGb+vIJKl5mXB2v2RRHbIa368wsCAxk/aivtA3exdYt1e7fMmwehoeT17Et2dg3Pz46Lo1XgQbpF7qtQcHNg0wH254ZhKGLCZ6PZHDMEpk6Fs85ym8tMnlyhYpfMzuCTlP6MDpsLTUKq+SSctm0hJAQuuqhGbiciIiINlIIbqTeSfsginqRKDUkDFzCc1XYbiVtjoLCwUteuXXiAfBtE7IDy5/dURMj5w5hU+BQHDxnS0yH5651MbPV/tD/VQ3o6NG9eI8U4zZpBz54MDFnJwoXHNsIs0Tff8FKfqWQRyp2eKZjwMK7Oe5f8625292nXDqZPd1mccvz5rnRas5eQLjUxecgJDYUBA1wySURERKQ0Cm6kfGW+K64dWVmwZkc48RGboX//Sl8/+Kx8lhXGkbNwZaWuW/mh2wEzdkyXSpdZonPP5VbepIUnk59WW+I2fMw/dlzCyJFuc8oePWqmmKPi4xl46L/s2lXKtJlhw+CUUzh4/pW8mDWejoEprAodyJtTA1i0CB55BDdhKDHR/R389a+lFjViBPTpA//9uQOTot/h7eV9tb+MiIiI1CoFN1K29HQ3YaPa6wlXz4pv91FEIAnnR1ZpRvmgK9pRQBBLpq+r1HXJ89IJJpful/esdJkl6tGDkHaR3N30DdqFHOAl7iL108W8/77bk7TGJ8snJDAg81ughHk3GRmwbBns2MHfB0wnvagFrZq6ZdWuvBImTIBnn4XYWBhxQ0e4+mqYMgXS0kocrWgtpG7IJoYUbp/YpEafjDbiFBERkYpQcCNl27rVTTy59loqvp5wzUu65VUA4u8YUKXrzx4dCcD873IqdV3y+qb0bJGCJ6SGVoYyBkaO5J7MJ5hcMJG7gqfQalS/mrl3SRISiCWZkODCk+PTf/4TsrLI6J7AC+su5uKLISy+u0u/4JI0PXvCL7+4PwHuv9/9DfzjHyUWlZYGe7Oa8ah5iqY3/tZ3z0n8gyJOERHxQwpupHQrVrjMTevWsHEj3HdfnVVl9v44othL+2FVm3TRujV0b7mL+RvbQn5+xS7avJnknK7Eds+tUpmlGjmSljadC/L/7YbYhbhJ9z55rxgbS5AHEtpsZ+rUYtkWa+G11yAsjJfzxnPgADz66PGXNmsG77/vpiktXw4XT+rNDTHf8MenW5GyOZ9t2+DJJ911kybBxo2WzmzmptF73AoAIiIiIrVMGxVI6V54gRya8uu8T5j1x5nwwgtwySVw4YW1W4/ly1lPV9oE7AWiqnybwX1z+Oz7/tilSZizB5Z7/t6ZiezkWmKH1/BnAN5lrFvadDfnxZdCQqB3bwamLSExo9OxfUznz4fVq3my6zs8seUGLrzQLYp2YnDVsyeccQbs2OG25FldMIS0nP5kbAsCjgVEHg94CnL5O78n6Jbxvn1OIiIiIqVQ5qaRqPSKzjt2wIwZfBEznsy+Q+Hpp9073Ztvhv37fVTLkq179lN+pieFQdVbVnjQpa3ZT2vWfViBRQVGjGDV458AEDuqhrMQHTqwPeBU9/PQoTV775LExzNw/xdYC5mZ3sdeew3Cw5lWcDUFBSdnbYpr3Rri4tw+Q1t2NuHQgPPZZLowLGwZ+fluc838fPjKczGDzAIYPdr3z0lERESkBApupGQvvwxFRXwc8wf3e0gITJvmApvbb6+9FdQyMpjySWsCKSCiX/VWLBt0QRgAiV9llH+ytazMcOXF9anpWf7QIbrAzb8ZNKjG732ShAQGZn4DuClU996Rwx3vDeGm9l+zKSWYiAgYWH4iyzEG7r+fznYzkw4/hueWGzDnjIDOnRlaMJtvgy6CoCAfPRERERGRsim4kZNlZrpP9seOZUNRF1avdpPK6dMHHn8cPvwQzjyzVqpy+J1/8U7+NXRsebDaG1x27w6RIVnMX9cacsuZR5OVRXJRT6JbZBNV9ZFwpevUyaVDwsN9cPMTJCQQQyrtQtJIS4PXpwbyYdHlzD7Yj5AQ6FJOzHjSXKDLLmNDQDdG5X8Js2dDQQEMGsT0JrfwXpObfPhERERERMqm4KYRK3Wo2jvvQHo69p572bDBJWvOPRfWrcOtmBUeDhs2wJ49vq2gtXwyeRP7ac3rH0RWe7J9QACc3TOD+YX93Y6QZdm5k2Riie3joy4SFAQtWvjm3ifq1QuCg3m+9XMMH1pEZsde7B1yOVtTg4mPr8LGoYGBdB3SjsChg92mnj/+CNOnc93A9Xza70mfPAURERGRilBwI8crLHRrAA8cyJcHziY9HWJi3Ifz55wDGzYHuhRIYSE8+KBv67JoEa9v+xWnRR3k3JE1MzRs8EUtWMOZvLzmnNJP2rqVnNT9rKI3sWdVb56PX2jSBHr3pkfmUvod/B7Wr4ff/a569zTGRYvFaWlgERERqWMKbhqgSi8eUFxcHGzaRMHEP3HffdC0qRu29N13biTXOefApn8tdstCv/02LFhQgzU/3ppnPmMew5lwV8hJ76OratDIpgBE5213y3+V5KmnWMfp5BNMXFzNlFvnEhLonrGUy1L/Aa1awRVXAIpHREREpGFRcOPPqhWlHK+gwG2y+PLLcNddcP75sGheLusX7KWwEDh82G1msm0bhITw5v6xrFnjApuAAOjd2wU42dluus3w2Y+6lM6dd0JhYU1W1UlLY8qs9gQFFHDjbU1q7LZnnQWGIj7gNxy+/Y8nn7B+PXvf+je3mLcB6Nu3xoo+Xm1HFQkJNC88yPB9H8NNNx3dW6fKFBWJiIiIH1JwU1cqEg1Yy7GNSSrPWjcd4sYbXYJl1SoX2Lz7Lhw4AB1MCql5UVwb8QUFoS2gXz/IyOBQzBk89ngAw4a5a468h42Lg2+/dSPS5q8I5apT5zN1eV+2/WV6lZ9iaXLenM67heO4fFQGbdpU7R4ladYM2scE8CG/oddnT/H1Iz8Cx+o6a/xn9C5ayXL6cdppbvXrBiEh4djPEybUXT1EREREfEibeJbiyJtyn304nZ9f9pK5ycluY5HCQjdHolu3Uk89sa75y1axKz+SM86IYe1aCAtzG8ZHRcFXX0F0W4t59BFY+jSP8ARPZTxCwRlJvPfnNQS9+DzP7r6LPXtg1iw3taK4vn1dkJOSAvO2dOB9psIjEBpSQGi4h3vugehoV17akg209GQBlRzbZS0f/XU7B4jktgcqd2lFdO0KUREFZK/38KunhnDlqjyys4NJ33yAS/b9ibg2qZzSwVR+or0/69nTpeDCw8v8WxIRERGpz5S5KUXKoh3kLvup0teVm63IyYG773Y7xK9c6VIrxRUVwQsvuPFT+fkuuBk0CJYsKbfspCSXpVmUcQabDscQxV7efsuycyecfjpEREC7NoWYO++Ap59mVtBYEsMv4oUX4KM1vfjtR79m44zFvLDnOq65xlWhJM2bQ48esGOHYfVnG/lrwL2caX8iIwPeeAMeeMDVY1V2V9ZnRrN7TVqp/0Al/nv17cvruy6lW9uDNTvUrZgWrTwkzznAU+YRZs1y/7wb94UzKXgyi5Y3aViBDbhAumdP94cgIiIi0kApc1OCLVtg2+EotudG8eWXcNFFpWRyKpveWbkSxo2Dn35yaZT0dLdD/ahR3DF/HHsC2vHRgOfd2K/LLnNLLRcUwL59bib/xx/DBRccd0tr3WkpKW7kUWhIAeN5g/FMod/aFfDWEIj7G9APT1EejLse3n8fHniAyQv+Asbwxz+Cx+Nirs8/d/HV//5v6U+j+NPteelp9Lw3kInP9+G1kD/wu18fIvObBexOyWMBZ3Nb0esMPHMPX3YcxxnDomDHDrdKwS+/QMeOpC9NIb2gOe/9zUOvzIV03/gli1eGk8gQnv9D/kmZo5pwrP59efhPM7jm+e7cHP4xTx26i8GTRkH7Vg1zOklkZF3XQERERMS3rLV+8xUfH2/9wubNNpletjtrLFh7773WDh1q7fDhJ5zXv7+13btbe+iQtdbavDxrO3SwNjra2jVrip03bJi1XbpYGxzsDn71lbvZkCHWTp5sbVSUzSXIrqKntc2aWTtlirVFRe6c4cOt3bnT2rg4az0ea3v0OFqRnBxrx42zFqxt2tTav01YbdM9rezqwN52dPg8d5/Wra01xs4KGmMXeAa7k599tsSn/eqr7nCHDpX89zp0yO4xbdzFkZHWXnGFta+8Ym9o/pG9KuQTGx2WYVsGZdjZEZe7c8AmcrYdyTdHfj36FUi+DSfdBlJg9+6tZD2qIivL2tNOsxbsQRNubXp6LRQqIiIiIlUFLLWlxBN1HtAU//Kb4MZa+3CzF2wmTe2dHT6zYG1YmItljlqyxNqgIHvk4J7xD9kRA7ItWGsotMYU2ctHHbKL75lhVwf2dueNGWNLese+cVWWPdVstWDtqMGZNjGxhAqlp1s7YoS7T3S03fHvJNu/f5EFazt1svbeXl+54CkhwY4efOBYIHbggLX33GPz8dgCAqx9440yn3f//i4Wq7QBA6zt18/awsJjj3mDsy1brD3zTGuDgopsr+C19tTA7RasbROaYW8JmGo/9Vxhkye9Z2c8s8U+PKnQtvIcsF1CUqpQiSqaPdsWEGBfDZlYe2WKiIiISJWUFdwYd9w/JCQk2KVLl9Z1NZwRI9w+KOvW8enQF/jNgolYa5g4Ee6I/ZEud17ohoyddhorO17KZV9OYBfRPBAwmc6BW9gYGsfL6deSTgSD+ZFuwVt5I/MaPEHHj7P6+GO4+WbIPlRAdHAaeS3bsGcPjBoFe/e6TeyPDpHKzYUuXVi6M4bL7KccNC2Zdu3XrPhoA5NyHqVJnzPgu+8YcbkbflR8aNW4sM8It4f4R+Z1tfCPd7L0dLe1yuzZ4DEFPP2MhzvvhNExKwCYk97n6Lk+X8yhJGefDcHBMHduLRYqIiIiIpVljEmy1iaUeEzBTTn+8hd46CH+0fZ/eKzoUQ6kWQoLYXTYD6TF9CI9oBVbtkBEi0Jmjn6TLlMfoqnNpuklozg0/BKm7Luch58NJ88G0b6922Lk5pvdhPtNm9wUlLPOcquSNW0KX3wBr70Gzz3n5tI0awZDhkC7dm4Vshkv7iIlN4oOrbL5vMPviV3xTwA2BXSly+4F0Lp1iU+jTgKGE+TludWmW7Y8eR0FEREREZGKUHBTHdbCPffAiy8y3zOMjgUbmHLq07x++Hp273GLzQ0a5DIw0dHA8OHumnnzjt5i2DC3gWanTvCf/7gJ+8HB7s3+xInw7LNuU004FnxkZUFsLBw86DbS3LXLfeXnu2zO+vVuTQLWr4cLL4Q2bdwKbH7OH4IsEREREam/FNxUV1ER34Rcwqj8L2HMGJgxg1wTQp8+cPiwW/irSRPvueW8e9++Hd55x632HBMDq1eXXuyJtyoqcoureTwaPSUiIiIijZOCmxowssUS4gqX8UL6LS66oHpZCGUwREREREQqT8GNiIiIiIg0CGUFNwG1XRkRERERERFfUHAjIiIiIiINgoIbERERERFpEHwa3BhjTjfGLDDGrPN+7+bL8kREREREpPHydebmNeAVa+3pwCvA6z4uT0REREREGimfBTfGmDZAP2CG96EZQD9jTJSvyhQRERERkcbLl5mbDsAOa20hgPd7qvdxERERERGRGlXnCwoYYyYYY5YaY5bu3bu3rqsjIiIiIiL1lC+Dm+1AjDEmEMD7vb338aOstVOstQnW2oSoKI1YExERERGRqvFZcGOt3QOsAK72PnQ1sNxaq/SMiIiIiIjUOI+P7/874F1jzKPAAeB6H5cnIiIiIiKNlE+DG2vtL8AAX5YhIiIiIiICfrCggIiIiIiISE1QcCMiIiIiIg2CsdbWdR2OMsbsBbZW4pLWwD4fVUdqhtqoflA7+T+1kf9TG/k/tZH/Uxv5P39oo47W2hKXWfar4KayjDFLrbUJdV0PKZ3aqH5QO/k/tZH/Uxv5P7WR/1Mb+T9/byMNSxMRERERkQZBwY2IiIiIiDQI9T24mVLXFZByqY3qB7WT/1Mb+T+1kf9TG/k/tZH/8+s2qtdzbkRERERERI6o75kbERERERERoB4HN8aY040xC4wx67zfu9V1nRozY0wrY8yXxpi1xphkY8wnxpgo77EtxphfjDErvF8X1HV9G6vS2kL9yX8YYzoVa58V3jZL8x5TX6ojxpjJxpjNxhhrjOlV7PFS+476Ve0qqY3Kem3yHlefqkVl9KNS20H9qHaV0o9KfV3yHverflRvh6UZY2YDb1lrpxljrgVuttaeW9f1aqyMMZFArLV2jvf354FIa+0txpgtwMXW2tV1WEXB/QdECW2h/uS/jDEvAh5r7e/Vl+qOMWYIbh+2HyjWBmX1HfWr2lVSG5X12uT9fQvqU7WmjH60hVLaQf2odpXWRiec8yLe1yXv71tKO7cu1MvMjTGmDdAPmOF9aAbQr/inMVK7rLVpR148vBYCHeuoOlIJ6k/+yxgTDIwD3qrrujR21tofrbXbiz9WVt9Rv6p9JbWRXpv8S0ltVBb1o9pXXhvVh9elehncAB2AHdbaQgDv91Tv41LHjDEBwO3A58Uenu4dEvCqMaZl3dRMvE5sC/Un/3Uprm2WFXtMfcl/lNV31K/8TCmvTaA+5S9Kagf1I/9T0usS+FE/qq/Bjfi3vwOZwMve34daa+OAswBT7HGpfWqL+uVmjv90TO0nUnUnvjaB+pS/UDvUHye+LoGftV99DW62AzHGmEAA7/f23selDhljJgPdgN9aa4sAjqQ3rbW5wKvA4LqrYeNWSluoP/khY0x7YDgw/chj6kt+p6y+o37lR0p6bQL1KX9RRjuoH/mRkl6XwP/6Ub0Mbqy1e4AVwNXeh64Glltr99ZZpQRjzNNAPDDG+weOMSbUGNPC+7MBrsK1ndSy0tpC/clv3Qh8Ya3dD+pL/qisvqN+5T9Kem3yPq4+5QfKagf1I79zI8Vel8A/+1F9Xi2tB/AuEAEcAK631q6t21o1XsaYnsBqYB2Q4314M3Av8DEQ6P36GbjbWruzLurZmBljulBKW6g/+R9jzDpc+3zl/b3U9qu7WjYexpiXgMuBaGAfsN9a27OsvqN+VbtKaiPgN5Tw2mStHas+VftKaaNLKKMd1I9qV2n/13mPHfe65H3M7/pRvQ1uREREREREiquXw9JEREREREROpOBGREREREQaBAU3IiIiIiLSICi4ERERERGRBkHBjYiIiIiINAgKbkRE5DjGmFbGmC+NMWuNMcnGmE+MMVHeY4uMMSuMMT8bYwq8P68wxrxtjBlhjFlahfL6GGN+U8W6zjHGbDLGPFjK8RuNMR9V5d7F7nGl9/nuq859RETE9xTciIjIiSzwnLW2u7U2FtgIPANgrR1gre0DXASkW2v7eL9uqkZ5fXD7kVTV3dbaZ6pxfZmstR/hnq+IiPg5BTciInIca22atXZOsYcWAh0reLnHGPO6N+Oz0hhzxpEDxpgbvJmfJGPMbGNMd2NMK+AJ4DxvBugl77nTjTFLjTGrjDGfGmMiKlK4MSbYW/5aY8xsoP8Jx+83xiw2xiwzxvzbGBPtfbyFMeZjY8wvxpjvjDH/NMZMruBzFhERP6HgRkRESmWMCQBuBz6v4CU9gde8GZ8PgD977zMUl50ZZq2NB54H3rLW7gceBb71ZoDu9t7nD9baBGttb+An4IEKln8b0BnoBVxMseDGGHMt0BUYaK3tB3wJ/D/v4UeBA9baHsCvgaEVLE9ERPyIp64rICIifu3vQCbwcgXPX2utXe79eSFwiffnS4A4YJExBsAAZWVjrjfGjAOCgVBgXQXLPwd411qbD+QbY6YBQ7zHLgUSgGXeOniAg8Wuuwtc5soYM7OC5YmIiB9RcCMiIiXyDsvqBlxirS2q4GWHi/1cyLHXGYPL1DxagXKH4rJFg6y1e40x1wATKlrtco49Za19q5RjtoJliIiIn9KwNBEROYkx5mkgHhhjrc2tgVv+G5eNOcV7/0BjTLz32CGgRbFzW+IyKvuNMU2AmytRznfAdcYYjzGmKXBNsWOfA3ccmb9jjGlijInzHvseuMH7eARwWWWenIiI+AcFNyIichxjTE/gIaA9MN870f/T6tzTWjsPeBj43BizEljNsQDiOyDUuwDBS8B/cCu0/eL9eVklipoCbMPN05kFzC1Wh/8DpgNzjTHJQBIw2Hv4CaCNMeYnYBqQyLEhayIiUk8Ya5WFFxGR+skYMweYbK2dVc37BAGB1trDxphw4EfgHmvtt97jnYCl1trW1ayyiIj4kDI3IiJSn6UBz5e2iWclRACJxpgVwGLgo2KBzZW4YXW7q1mGiIj4mDI3IiIiIiLSIChzIyIiIiIiDYKCGxERERERaRAU3IiIiIiISIOg4EZERERERBoEBTciIiIiItIgKLgREREREZEG4f8DSNzqJHJNdhkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzcAAAF+CAYAAAC/GeRXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAC2FElEQVR4nOyddXxTV//HPydJ3aEUqOAMLRQZzigyGBvM7RkT5vbM9Td3FyZse7Y9G9NnLkyADSkbMHSU4RQoUAoUCm1JNU1yfn98c6M31iZpUr7v1yuv217Lyc3NuedzviaklGAYhmEYhmEYhol0NC3dAIZhGIZhGIZhmEDA4oZhGIZhGIZhmFYBixuGYRiGYRiGYVoFLG4YhmEYhmEYhmkVsLhhGIZhGIZhGKZVwOKGYRiGYRiGYZhWQdiJGyHES0KIYiGEFEL0D+B5RwghVgkh1gshNgshbgjUuRmGYRiGYRiGaXlEuNW5EUKMAbAXwJ8ApkkpNwXovIUAHpJS/iyE6AigCEB3KWVZIM7PMAzDMAzDMEzLEnaWGynlMillifN6IcRwIcQSIcQ6y+sMf08NIMXydyKA4wBqmtlchmEYhmEYhmHCBF1LN8AXhBCpAN4BcLqU8qDF8rJGCNFfSlnp42muBPCjEOJZAG0AXCqlrA5KgxmGYRiGYRiGCTkRIW4AjALQFcA8IYSyTgLoAWCtEKLczXEHpJQDLH/fA+AeKeVXQoheABYJIf6WUu4LZsMZhmEYhmEYhgkNkSJuBIB/pJSnqG2UUqZ7PFiIdADnSClnWPbfLoTYCGA4ABY3DMMwDMMwDNMKCLuYGzesANBTCDFeWSGEOFnYmXG8UAGgQQhxiuXYDgDyAGwJdEMZhmEYhmEYhmkZwjFb2usAzgXQAUA5gKNSyn5CiJMBvAggDUA0gN0ApkspzT6edzKA5wBoLa/XpZTvBuEjMAzDMAzDMAzTAoSduGEYhmEYhmEYhmkKkeKWxjAMwzAMwzAM4xEWNwzDMAzDMAzDtArCKltaenq67NKlS0s3g2EYhmEYhmGYMGXdunXlUsp2atvCStx06dIFa9eubelmMAzDMAzDMAwTpggh9rrbxm5pDMMwDMMwDMO0CljcMAzDMAzDMAzTKmBxwzAMwzAMwzBMqyCsYm4YhmEYholMzGYzysvLUVlZCZPJ1NLNYRimFRAbG4vs7GxERUX5fAyLG4ZhGIZhms3+/fshhECXLl0QFRUFIURLN4lhmAhGSomjR49i//796Nq1q8/HsVsawzAMwzDNpqamBllZWYiOjmZhwzBMsxFCoG3btqivr/frOBY3DMMwDMMEBI2micOK/Hx6MQzD2NGUiRIWNwzDMAzDMAzDtApY3DAMwzAM0+o47bTT8J///MdhnZQSXbt2xR9//BGU9+zSpQs2bdoUlHOrMWfOHOzYscOnfX/44QesXr3a+v/atWsxY8YMj8cUFhbiq6++cliXl5eHuro6/xvbBN555x28+uqrbtsihEB1dXVI2hIJzJkzB+eff77f2zyxZMkSDB8+HHl5eejTpw8mTJgAs9kMAMjPz0e3bt2Ql5eH3r1747XXXgMA7NmzB+np6arnU76zc845B3l5ecjLy4MQAgMGDEBeXh6mTJnidxud4YQCDMMwDMO0Oq666iq88soruP76663rCgoKoNPpcMopp/h0DrPZDCFE2MYQzZkzB+np6TjppJO87vvDDz9g6NChGDZsGABg6NCh+OyzzzweU1hYiJ9//hkXXnihw7pQccMNN3hsSygxGo3Q6U6sYbPRaMR5552HgoICDBgwAACwfv16h9/D66+/jmnTpqGkpAT9+/dHfn4+UlJSvJ77+++/t/4thMCKFSuQmJgYkHaz5YZhGIZhmFbH2WefjZ07d2LLli3WdR9++CGuvPJKAMALL7yAYcOGYfDgwZg+fToOHToEAHjsscdw6aWX4uyzz8bAgQPx1VdfYdq0adZzNDQ0oGPHjigpKfH4/jt37sTEiRMxYMAADB48GPPnzwcA/Oc//8HNN98MAFi9ejWEEFizZg0A4KabbsK7777rcq4ff/wRubm5yMvLQ//+/VFQUIAPP/wQa9euxa233oq8vDwsXLgQGzduxNixYzF48GD07dsXs2bNAgAsWLAAc+fOxXPPPYe8vDx8/PHHKCgowNChQwEAhw8fxqRJk5Cbm4vc3FzccccdOHr0KB555BEsXLgQeXl5uPXWWwE4Wku2bt2KyZMnY8CAAcjNzcVHH30EAHj88cfRu3dv5OXlYdCgQaisrHT5TFlZWTh8+DAA4PTTT8cZZ5xhbUtWVpb1u7j77rvdtgWgwfXJJ5+Mbt264dtvv1X9LmbOnIk333xT9f+ZM2fihhtuwIQJE9CzZ09cfvnlkFJat91yyy047bTTMHz4cADARx99hOHDh2PIkCGYMGECtm/fDgBurz0AvPvuu+jTpw/y8vIwYMAAbNu2DQCwZs0ajBw5EgMGDMDIkSOt94Fi+XjwwQcxaNAg9OrVC8uWLQNAgmPKlCkYOnQo+vXrhyuvvBIGg8H6XlVVVTjvvPMwcOBATJgwAaWlparXxN3nsEev16Ompgbt27e3rhs0aJCq2M/JyUGvXr18tiQGFSll2LyGDBkiGYZhGIaJPLZs2eK44rbbpBw3zrdXSgq9fN3/ttt8atMtt9wi77nnHimllMePH5dJSUly//798pNPPpHXXnutNJlMUkop33rrLXnJJZdIKaV89NFHZU5Ojjxy5IiUUsrGxkbZqVMnuXv3bimllB9//LE8++yzVd+vc+fOcuPGjVJKKYcNGybff/99KaWUmzdvlm3btpWHDx+WRUVFslevXlJKKZ955hk5cuRI+eyzz0oppTzppJPkzp07Xc47YMAA+ccff0gppTQajbKqqkpKKeW4cePkTz/9ZN3v+PHjsr6+XkoppV6vl3369LF+L1dccYV84403rPsuWbJEKuOuV155RV511VXWbceOHZNSSvnhhx/K8847z6EtAKRer5eNjY2yZ8+e8quvvrJuKy8vl8eOHZOJiYmytrbW2qbGxkaXzzRjxgz5v//9TxoMBtmnTx/Zu3dvaTAY5Oeffy4vvfRSKSV9F3fddZfHtiifadmyZTIzM9PlfdQ+u/3/V1xxhRw9erSsq6uTDQ0Nsm/fvvK3336zbhsyZIisrq6WUkr5xx9/yNNPP916jX/99Vc5atQor9c+OTlZ7tu3T0opZX19vaypqZENDQ0yJydH/v7771JKKRcuXChzcnJkQ0ODLC4ulgCs3+2nn35qfR+z2SzLy8utf1922WXy7bfftl6j2NhYuW3bNimllI899pj1mtlfP0+fw5mbb75ZJiUlyWnTpslnn33W+jmkdLz/Nm/eLJOSkuS2bdtkcXGxbNu2rer5lPvH2zp7XPoWOmatdKMn2HLDMAzD2OCsVUwr4uqrr8Ynn3wCo9GIL7/8EmPGjEFWVhbmzp2LhQsXYvDgwcjLy8Ps2bOxZ88e63Gnn366NWZAp9Ph+uuvxzvvvAMAmD17ttXy4g69Xo/CwkKrlahv377Iy8vDypUr0aNHD9TV1WH//v1YtGgRnn32WSxatAglJSVoaGhA9+7dXc43YcIE3HXXXXjxxRexdetWJCcnq75vbW0trr76auTm5mL06NE4cOAANmzY4PU6jRgxAr/99hvuuece/Pzzzz65B23fvh1GoxEXXHCBdV3btm2RnJyMXr164dJLL8V7772H6upqVXeuCRMmYOHChVi5ciWGDx+O4cOHY9WqVVi4cCEmTpzo9f0VLr74YutnOHDggN9pgwGy8sXGxiI6OhqDBw/Grl27rNvOP/98JCQkAAB++uknbNiwwRqDcv/991steJ6u/YQJE3DllVfijTfeQGlpKeLj47F9+3ZER0dj0qRJAICJEyciOjraakFJTEy0WgxHjBhhbZPZbMZLL71ktQItXrzYwVVwzJgx6NWrFwDgmmuuweLFi10+r6fP4cybb76JwsJCnHXWWVizZg369++PoqIi63bFcnjVVVfhP//5j/W9W5ITy3mQYRiGYZjQYOeW4xVFUBcUBLQJAwcORMeOHTF//nx8+OGHuOOOOwCQ18pDDz2Eq666SvU458H9ddddh0GDBuHMM89EZWWl18G3tLg1OaO480yYMAG//PILysrKMG7cONx888345ZdfMGHCBNXjXn31VWzcuBGLFy/GBRdcgDvvvBPXXnuty34PPPAAOnTogDlz5kCn02Hy5Mk+DfZHjhyJwsJC/P777/jkk0/w3HPPWd2g/P2MWq0WK1euxPLly7F48WIMGTIE8+fPt8ZsKEycOBFPPvkksrOzMXHiREgpsWjRIixatAiPPvqo1zYrxMbGWt8XILctZ3Q6nTUIHoDLNVHOoZzH/hz294KUEldddRWeeOIJl/fwdO2/++47rFmzBosXL8b48ePxzjvvICsrS9W9S1kXExOj2qbPP/8cy5Ytw59//omkpCQ888wzbl3BpJSq7+Hpc6jRrVs3dOvWDddccw2mTp2Kn376CXfeeScAW8xNOMGWG4ZhGIZhWi1XXXUVHnvsMezYsQNnnnkmAODMM8/EW2+9hYqKCgAUR+PJwpGeno5Jkybh4osvxk033eQ1wUBycjLy8vKsMSjbtm2zzpQDNLB/9tlnMXr0aADA6NGj8dxzz7kVTdu3b0dubi5uu+02XHrppdbYjOTkZFRVVVn3q6ysRE5ODnQ6HTZt2oQ///zToU32+9pTXFyM5ORkXHzxxXjllVewbt06mM1mj8f07t0bOp0OX3/9tXXd0aNHodfrceTIEYwbNw6PP/44+vfvr5pBrnPnztBqtfjoo48wceJETJo0CXPmzEFUVBQ6deqkek3dtcUb3bt3t16zgwcPYsmSJU06z/Tp0/Hxxx9j//79AACTyYR169YBcH/tjUYjdu/ejWHDhuH+++/H5MmTsX79evTu3RsNDQ3WtixZsgSNjY1ek0NUVlYiPT0dSUlJqKqqwueff+6wffny5VbLypw5czB+/Hi/Poc91dXV+O2336xCtrKyEsXFxejatavP16wlYHHDMAzDMEyrZcaMGdi8eTNmzJiB6OhoAMBll12GGTNmYNy4cRgwYACGDBmC5cuXezzPNddcg4qKClxxxRU+ve9nn32GTz/9FAMGDMAll1yCTz75BO3atQNAlpu9e/daxczEiROxd+9et5ab+++/H/3790deXh5+//133HfffQDIovTkk09i0KBBWLhwIR566CG89957OPnkk/HUU085ZIW77LLL8Pnnn1sTCthTUFCAQYMGIS8vD1OnTsU777wDjUaDiRMnoqamBgMHDnQI4gfIGvLjjz/inXfeQW5uLgYOHIhff/0VVVVVOPvsszFgwAD0798fHTp0wLnnnqv6uSZOnIj4+Hh07NgRHTt2RFxcnNtr4Kkt3rjuuuuwf/9+67GKyPSXU045BU8//TTOPPNMDBw4EP3798ePP/4IAG6vvclkwsyZM63X6ODBg7j++usRHR2Nb7/9Fg888AAGDBiABx54AN988431HnXH5ZdfDr1ej379+uGCCy7A2LFjHbaPGzcOjz76KAYOHIjFixdb0zP7+jnskVJi9uzZ6N27NwYOHIjRo0djxowZOOecc7xeq4qKCmRnZ1tfivtdKBDuzIotwdChQ+XatWtbuhkMwzAnLkFyD2JaP1u3bkWfPn2adnAE3HdPPfUUDh48iNmzZ7d0UxjmhEKtbxFCrJNSDlXbn2NuGIZhGIZpWcJY1ABAv379oNPpsGDBgpZuCsMwXmBxwzAMwzAM44HNmze3dBMYhvERjrlhGIZhGIZhGKZVwOKGYRiGYRiGYZhWAYsbhmEYhmEYhmFaBSxuGIZhGIZpUfLzbQnTGIZhmgOLG4ZhGIZhGIZhWgUsbhiGYRiGaZV06dIFmzZtclg3dOhQFFhSTz/yyCP48ssvvZ7nsccew913393kduzZswfvvvuuT/tWVlbihRdecFh3zTXXWCveu2PWrFk4fPiw9f933nkHr776qv+NbSZFRUUYNGgQBg0ahM8++yzk788wLG4YhmEYhjkheeKJJ3DRRRcF/X2aK27ef/99l0r0zjiLmxtuuAF33HGH/431gtFo9Lj9u+++w6hRo7B+/XrMmDEjYOdlGF/hOjcMwzAMwwSc228HCgt921fZz9e4m7w8YNYsf1vkysyZMzF06FD8+9//RlVVFa666ips3rwZWVlZyMrKQkZGBl566SUAQGlpKU4//XTs3r0b3bt3x9dff434+HiH89XW1uKKK67A5s2bERUVhV69euGrr77CzTffjOLiYuTl5aFHjx745ptvcPfdd2Pp0qUwGAxIT0/HBx98gM6dO+Pmm29GZWUl8vLyEB8fjxUrViA/Px933303pk2bhnfffRevvvoqYmJiYDab8dVXX+Hbb7/FgQMHcP755yM2Nhaff/45vvrqK1RXV1vb/+yzz+Lzzz+HRqNBQkICli1bhqKiIsycORO1tbUwmUyYOXOmqoVKCIEXXngBv/zyC8aOHYt77rkHd955J/755x/U19dj/PjxeOWVV/DFF1/g1VdfhdlsxvLly/Htt98iPj4et9xyC/bt24e6ujr861//wgMPPACALGtXX301Fi9ejG7duuHtt9/Ggw8+aL0uubm5ePvtt5GYmIiZM2ciNjYWO3bsQElJCUaOHImPPvoIQghUVVXhjjvuwJo1a6DRaDB27Fi8+eabMBgMbs/HtF5Y3DAMwzAM02pRBvwKO3bsUN3viSeeQFpaGrZt24Zjx45hyJAhOO+886zb165dizVr1iAlJQVTpkzBZ599hmuvvdbhHAsWLEBFRQW2bNkCAKioqAAAzJ49G3fffTfWrl1r3ff++++3Co/3338f9913H7744gvMnj0bQ4cORaEbZXjPPfdg06ZNyMnJQUNDA0wmEx588EG89957+Oabb9C/f3+XYz766CPMnTsXy5cvR3JyMo4ePQqNRoO33noLp59+Oh5++GGH9qphNput7nzXXHMNxo0bh/fffx9msxkzZszABx98gGuvvRZFRUUOourUU0/Fww8/jFNOOQUGgwETJ07EySefjFNPPRUAcPDgQSxZsgQA8NRTTyElJQWrV68GANx333149tln8fTTTwMANm3ahIULF0Kj0WDQoEFYuHAhTj31VNx+++1ITEzEhg0boNFoUF5eDgB44YUXPJ6PaZ2wuGEYhmEYJuD4Y1lRLDaWsXNAcR7wDx06VHW/JUuW4I033gAAtGnTBmeffbbD9ilTpiA1NRUAMHz4cOzatcvlHAMHDsS2bdtw8803Iz8/H2eccYbbds2bNw+zZ89GdXW1Xy5ZEyZMwJVXXomzzjoLZ5xxBrp16+b1mJ9//hk33ngjkpOTAQBt27YFAJxyyim4++67YTAYMH78eIwfP97tOa644grr33PnzsXq1avx8ssvAyCLVXZ2tssxNTU1KCgowJEjR6zr9Ho9tm7dahU3l19+ucN5jx8/jm+++QYA0NDQgIEDB1q3n3322VahOnjwYOzatQunnnoqfv75Z6xbtw4aDUVbpKen+3Q+pnXC4oZhGIZhmBMeKSWEEG6321t/tFot6urqXPbp1q0btm7dikWLFmHevHl44IEHsHHjRpf99u7da3Wj6tq1K1asWIFLLrnEp3Z+9913WLNmDRYvXozx48fjnXfewdSpU71+NjXOO+88jBw5Er/99huee+45fPDBB/j0009V97V35ZJS4ocffvAqrMxmM4QQWLNmDaKionw671tvvYUJEyao7uv8HXgThd7Ox7ROOKEAwzAMwzAnPOPHj8dHH30EgNyzfvzxR7/PsX//fmi1Wpx99tl49dVXceTIERw7dgzJycmoqqqy7nf8+HFER0ejQ4cOMJvNeOedd6zbkpOTUVtbqzpwNxqN2L17N4YNG4b7778fkydPxvr1663H2b+HPdOnT8fbb78NvV4PADh69CgAYOfOnejQoQNmzpyJRx991Oq+5Y0zzzwTzz33HEwmEwCgvLwcxcXFLvslJSVh7NixeO6556zrSkpKcOjQIbfnfeWVV6zCUbHyeGPatGl48cUXrSJOcUtr6vmYyIbFDcMwDMMwJzyPPPIIDh8+jH79+uHSSy/F6NGjkZKS4tc5Nm7ciJEjR2LgwIEYNmwY/u///g+ZmZkYMGAAevXqhf79++P8889Hbm4uLrjgAvTr1w8TJkxA165dredo06YNZsyYgdzcXIwaNcrh/ErQf25uLgYOHIiDBw/i+uuvBwDceuutuPLKK5GXl2eN+VG4/PLLMX36dIwYMQIDBw7EWWedZU1GkJubi0GDBuGWW27Ba6+95tPnnDVrFrRaLQYOHIjc3FycdtppKC0tVd33s88+w5YtW5Cbm4vc3FxcdNFFqKysVN33/vvvx8CBA3HyySdjwIABGDNmjE9i5NVXX4Ver0f//v0xcOBAPPHEE806HxPZCHemypZg6NCh0j7YjmEYhgkxwQx+YFo1W7duRZ8+fZp0bDjcdo2NjTCZTIiNjcXx48cxZswYvPLKK5g0aVLLNYphGNW+RQixTkqpGkDHMTcMwzAMw7Qo4aClKyoqMHXqVJhMJtTX1+OSSy5hYcMwEQiLG4ZhGIZhTngyMjKwbt26lm4GwzDNhGNuGIZhGIYJCGazuaWbwDBMK6Ip4TMsbhiGYRiGaTYJCQkoLS2FwWBo0oCEYRjGHikljh496pAC3BfYLY1hGIZhmGaTnZ2N8vJy7N2716+ilAzDMO6IjY1VLRDriaCKGyHENABPAhAgK9FjUsrvgvmeDMMwDMOEHo1Gg4yMDGRkZLR0UxiGOYEJmrgRVOb3EwBjpZSbhBADACwXQvwgpWSnXIZhGIZhGIZhAkqwY27MAJQKWKkADrKwYRiGYRiGYRgmGATNciOllEKICwH8KISoAZAE4Azn/YQQ1wG4DgA6deoUrOYwDMMwDMMwDNPKCZrlRgihA/B/AM6SUnYGMB3Al0KIRPv9pJTvSimHSimHtmvXLljNYRiGYRiGYRimlRNMt7Q8AJlSyuUAYFnWAOgTxPdkGIZhGIZhGOYEJZjiZj+AbCFELwAQQvQB0AHAriC+J8MwDMMwDMMwJyjBjLk5JIS4EcA3QgglicCVUspjwXpPhmEYhmEYhmFOXIJa50ZK+RmAz4L5HgzDMAzDMAzDMEDwU0EzDMMwDMMwDMOEhKBabhiGYZgIo6YGMJlauhUMwzAM0yRY3DAMwzA2iouBhoaWbgXDMAzDNAl2S2MYhmFsGI1suWEYhmEiFhY3DMMwjA2TCTCbve/HMAzDMGEIixuGYRjGBosbhmEYJoJhccMwDMPYMJnYLY1hGIaJWFjcMAzDMDaMRrLcSNnSLWEYhmEYv2FxwzAMwxBms80lzWBo2bYwDMMwTBNgccMwDMMQtbW2v+vqWq4dDMMwDNNEWNwwDMMwhF5v+5vFDcMwDBOBsLhhGIZhiOpq298sbhiGYZgIhMUNwzAMQ9iLG3sXNYZhGIaJEFjcMAzDMARbbhiGYZgIh8UNwzAMQ3DMDcMwDBPhsLhhGIZhCLbcMAzDMBEOixuGYRiGYHHDMAzDRDgsbhiGYRjC3i2NEwowDMMwEQiLG4ZhGIZgyw3DMAwT4bC4YRiGYQgWNwzDMEyEw+KGYRiGIfR6QAj6m8UNwzAME4GwuGEYhmGI6mogOpr+ZnHDMAzDRCAsbhiGYRiiuhrQasl6wwkFGIZhmAiExQ3DMAxD6PUkbjQattwwDMMwEQmLG4ZhGIZQLDdaLYsbhmEYJiJhccMwDMMQirhhyw3DMAwTobC4YRiGYQh7tzSOuWEYhmEiEBY3DMMwDMFuaQzDMEyEw+KGYRiGIdgtjWEYholwWNwwDMMwgNFIgobFDcMwDBPBsLhhGIZhgJoaWrK4YRiGYSIYFjcMwzAMuaQBgE5HAocTCjAMwzARCIsbhmEYhjKlAWy5YRiGYSIaFjcMwzCMzXKj0bC4YRiGYSIWFjcMwzCMo1saixuGYRgmQmFxwzAMwzi6pSl1bqRs2TYxDMMwjJ+wuGEYhmFslhsl5gYA6utbrj0MwzAM0wRY3DAMwzDq4oZd0xiGYZgIg8UNwzAM4yhutFr6m8UNwzAME2GwuGEYhmFsMTcFBcDDD9PfLG4YhmGYCIPFDcMwDEOWm9hYypYWF0fruJAnwzAME2GwuGEYhmFI3CQl0d+KuGHLDcMwDBNhsLhhGIZhyC0tMZH+jo+nJYsbhmEYJsJgccMwDMOQ5UYRN2y5YRiGYSIUFjcMwzCMulsax9wwDMMwEQaLG4ZhGMbRLY0tNwzDMEyEwuKGYRiGYbc0hmEYplXA4oZhGIZxdEvjhAIMwzBMhMLihmEYhmG3NIZhGKZVwOKGYRiGcXRLi42lJScUYBiGYSIMFjcMwzAnOgYDvRS3NCFI4LDlhmEYhokwWNwwDMOc6FRX01Kx3AAUd8PihmEYhokwWNwwDMOcoOTn00tV3MTFsbhhGIZhIg4WNwzDMCc6irhR3NIAEjccc8MwDMNEGCxuGIZhTnT0elqy5YZhGIaJcFjcMAzDnOiwWxrDMAzTSmBxwzAMc6Kj5pbGCQUYhmGYCITFDcMwzIkOu6UxDMMwrYSgihshRKwQ4m0hRJEQYqMQ4t1gvh/DMAzTBNy5pXFCAYZhGCbC0AX5/C8AqAdwkpRSCiHaB/n9GIZhGH9xly2NLTcMwzBMhBE0cSOESARwOYBsKaUEACllWbDej2EY5oQlP5+WBQVNO14RN/HxtnUsbhiGYZgIJJhuad0BHAXwqBBirRCiQAgxJojvxzAMwzQFvR5ISAA0do8ETijAMAzDRCDBFDc6AN0ArJdSDgVwH4DvhBDJ9jsJIa6ziJ+1R44cCWJzGIZhGFWqqx3jbQCOuWEYhmEikmCKm70AjAD+BwBSylUAygGcZL+TlPJdKeVQKeXQdu3aBbE5DMMwjCrV1Y7xNgCJG4MBMJlapk0MwzAM0wSCJm6klOUAlgA4FQCEECcByACwM1jvyTAMwzQBvV7dcgMA9fWhbw/DMAzDNJFgZ0u7AcAHQoiXATQCuExKWRnk92QYhmH8Qc0tTUkuUFdH8TgMwzAMEwEEVdxIKXcDyA/mezAMwzDNpLoaSE93XKdYbjipAMMwDBNBBLWIJ8MwDBMBeHJL46QCDMMwTATB4oZhGOZEx122NIAtNwzDMExEweKGYRjmRMddtjSAxQ3DMAwTUbC4YRiGOZGRUt0tzT6hAMMwDMNECCxuGIZhTmCiZQPVsmG3NN/Iz6cXwzAME5awuGEYhjlBUBuXx5mq6Q93bmmcUIBhGIaJIIJd54ZhGIYJUwx/b8KRRgP9w5YbhmEYphXA4oZhGOYEZV9DBkoNGahAKtI45sYVxcxVUNCSrWAYhmH8gN3SGIZhTlAqjeSKVoIczpbGMAzDtApY3DAMw5yAHDoE1JhJwOxHNhfxZBiGYVoFbt3ShBDxPhxvllLWB7A9DMMwTAhYtMj2dwlyXMVNdDQgBFtuGIZhmIjCU8xNNQAJQKhsU9YfBJAVhHYxDMMwQWThQkAnjDBLDVlunN3ShCDrTbiIG45/YRiGYXzAk1vaBimlVkqpUXlppZQaAIdD1VCGYRgmMEhJ4iZNp0cyjqtbbgBKKhAu4oZhGIZhfMCT5eYmH473ZR+GYRgmjNixA9i/H+gZWw2T0Yj9UiXmBggvy00LkF84CwBQ0KKtYBiGYfzBrbiRUv7l7WBf9mEYhmHCCyXeJk2nhzTUokTm2BII2BMXxwkFGIZhmIjCa7Y0IcTLQogUIYROCPGnEKJGCHFpKBrHMAzD+IDRCJhMPu++cCHQpQsQqzGgPQ5jP7Ih1cIrT3DLDcMwDBN5+JIKepKUsgrAFAClAHoCuDuorWIYhmF8Z9s2YPt2n3aVEli8GJg0iXIGdMAh1CIBlZUqO3PMDcMwDBNh+FPn5hQA30kpD4CypTEMwzDhQH09vXxArweqqkjcAECmOAAAKClR2ZktNwzDMEyE4Yu4OSyEeA/AxQB+F0Lo4DkRAcMwDBNKTCZyTfOBigpaTphAy2zsB0AJBlzgmBuGYRgmwvBF3FwCYDOAi6SUFQCyAbwc1FYxDMMwvuOHuKmsBPLygHbt6P9Oci+AMLPc5Ofb6towDMMwjB+4tcAIIb4C8AOAX6WUs5T1Uso9AOYEuV0MwzCMrxiNFEDjBZPJ0SUNAHJkCbTChP37ta4HsFsawzAME2F4sty8BmAQgBVCiIVCiFuEEJ1D1C6GYRjGFxobKUuA2Ux/e6CqinadONG2LlFUo2NspbrlhhMKMAzDMBGGW3EjpVwupbxHStkXwK0AEgF8KYT4WwjxmBBiUMhayTAMw6ij19v+rqryuGtlJRl4xo61rYuXNchJqnAfc8PihmEYhokgfEoMIKXcAmALgGeFEB0BnAXgaQCnB7FtDMMwjDeOH3f8Oz3d7a4VFUByMpCQYFsXJ+uQnVKNDe5ibjihgAP5hbMAAAUt2gqGYRjGHT6lghZCxAshThJC9AWQBuAPKSULG4ZhmJbGR8tNeTlQXQ2kpdmtlBJxqEV2m1rs308uaw7ExVE8j4/JChiGYRimpfFquRFC3AzgOQDHAJgtqyWAbkFsF8MwDOML9uLG3orjxMqVtExJsa2LRT00kMhpV4/aWnJbcxA/8fG0rKsDkpIC1uRIYWTjUkTDAJR1BNq3b+nmMAzDMD7gi1vaXQD6S2nJF8owDMOEDz5abv75h5aJibZ1cZJczrLbUyKCkhIncRMXR8sTVNw8XnsviZsO9wK9ewPjxmFcY3f8qZvQ0k1jGIZh3OCLW9ohFjYMwzBhio/iZsMGIDYW0NlNaSniJieLjPIuSQUUcXMCxt3IBgOGYC2u1fwXeO45oGtX4PPP8XjtvTjZuKKlm8cwDMO4wRfLze9CiBcAfAGgXllpSTLAMAzDtCQ+uqX9849jIgEAiIfFcpNN/7ukg7a33AQRpV5nQUFQ38Yvju6vwybkYre5G169OQGJ990HHDgAZGWhg/lgSzePYRiGcYMv4uZyy/ICu3Ucc8MwDBMO+GC5qasDduwAcnIc1yuWm445Omi1Hiw34ZAOWqnlEyKKtxsAALVIwPvvA7ffDqB9e5igRbo87PHYcBRrDMMwJwpe3dKklF1VXixsGIZhwgEfLDebN5MucLbcvNHtVQCANjUJHTuqWG7sEwq0NEVFwNq1KindgkNxEWWISxbH8corlvqoWi2OinS0M3sWN6rk59tUD8MwDBM03IobIUSyt4N92YdhGIYJIno9VeaMinJrudmwgZb2yQQAACaTdUN2NlluHMbg4WK5WbcOOHgQqK8HDjdBWDSB4mISUROj/kBJCfC//9H6ck0G2pnLQtIGhmEYxn88WW4KfDjel30YhmGYYKHXowop2G/q4FbcKPE2sbFOG+zETU6Oh5iblkwoICVw2222/7eEJtyzeK8GbVGObtp9yM0FXniBrF9HRDukyyMhaQPDMAzjP57ETS8hxGoPrzUA2oaqoQzDMIwKej1qEY8aJLp1S9uwAcjNJQOPA4q4SUqyWm4cvL7CwXLz1VfA8uVA5870/+bNIXnb4pIodEUxGjSxuPdeettffgGOaNojvSluaQzDMExI8JRQ4HQfjjcEqiEMwzBMEzh+HLUiATUiUdVyIyVZbi64ANi+3WljI9W3QVIScnLIQGM0kocbgJaPuamrA+69Fxg4kKqPlpaGTtwcjEEeilEv4nDRRcBDDwHPPw9cqslAAmrIHfAErP3DMAwT7rgVN1LKpaFsCMMwDNME9HrUinjUigSg6qh1tRI388knQEUF6QMXcVNXB8TEANHR1nTQDQ124qalLTcvvQTs2wd8/DHw6KMktkIgbsxmYO/hOJyDYhzESYiKAu66C7j1VqBP9GDaqbSUCnsyDMMwYYUvRTwZhmGYcEWvR61IQLVQd0v75x9aDhigcmxdnVXAKGmiGxrstrdkzE1DAxXPPO88YNw4WpeQQOImyBnTDhwADEYtuqIY9YICla66CmjbFlhksrSltDSobWAYhmGaBosbhmGYSMYibty5pSmZ0nJznTZISeLG4npmb7mx0pKWm927KSboxRdt6+LjgWPHgp4xrbiYll1RjHrQNUhIAG65BSg2dcYW9FEpCsQwDMOEAyxuGIZhIhlLQoFaxXLjZNX45x+gSxcKWXHg6FEKsLEImA4dAI3GSdxERQFabejFTXU1CZg77wS6drWtVwr1BNk1zUHcCFuKuRtuAACJr3EBW24YhmHCFK/iRggxXwgxTQiXPDsMwzBMS6PXo05xSzObgZoah83//EPxNi4UFdHSIm50OiAz00ncAGQtaQlxAwBXX+3aFiAk4kbAjBzsgwEx1vXt2wPJ2hp8j3Os4oZrczIMw4QXvlhu3gVwO4BdQoj7hBCc/plhGCYckBKorkZth26ozbEEt9u5pplMlERANd5mxw5aKq5nINc0F3ETFxdycTN77xn0R1unx010NJCaGvRaN8XFQGbicQAal/zZbaOOYwPysH9nfVDbwDAMwzQNr+JGSvmdlHISgKkAsgBsFkJ8LIQYEvTWMQzDMO6prQXMZtRqk1Cjs/id2SUVsGz2bLmxq+yZk+NG3Hz/fdDME8eOAX/9BZSX29YlyeMwQwDJyY47CwH062ez3ATJbFJcDHRLOuLgkqbQVkfi8edtPQL+vgzDMEzzaUrMjQFAPYCPhRAvB7g9DMMwjK/o9QCAWl0SqrUWcWNnuVG8u1QtN0VFJGw0tseAYrlxKeRpNge44TZ++w0wGCjjs0KS1EMvkh3aZkURN0HMmLZ7N9A1rgwNcBU38ZoGdMRBzD00zK9z5hfOQn7hrAC1kGEYhnGHLzE35wohFgP4DsA2AH2llNcBGAjgvCC3j2EYhnGHRdzUaZNQq7NYOezETU0Nhal0765ybFGRg0saQJYbs5nyDFiJjyf/tiCxYAEt9Xpg9Wr6O1EeR7VIVj+gX7+gZkxraKBwmq4xB9AhrgoFebc7bBcCyNVuxiLDGFRXNKqeQ6+n2kIMwzBM6PHFcnM1gOellP2klG9JKasBQEppBHBLUFvHMAzDuEex3LhxS6uuphTQVgNIYSG9pCRxowToW3CbDjpIlhspSdy0aUNJ2WbPpvXJsgp6kaR+UN++tAxSUoF9+6hdXXUl1CgVumn3woAY/P6Na+rtxkYKCdqyRcXFj2EYhgk6voibL6SUC+xXCCEuBQAp5U9BaRXDMAzjHYuQOSbTUCFTaZ3FciMlWW5U423Kykj5OFluQi1uNm4EDh4E2rWjTGRffAEcOWLnlqZGv360DJK4saaB1uxVd4sDkKitRxqOYe6Prtdlzhygvp6sX7/+GpQmMgzDMB7wRdzcobLuzkA3hGEYhvETi+Xm55KBWLApE3vRySp4DAYaYNvH2xTk3U5uVk5poBVycmgZTHFjnwNg/nxapqVRGmqDAXj/fXJLcytuOnSgA4ItbuRuYNQooKDAZZ8KbTqmYh5+/jPFIfSnoQF46ikgKYlKBH36aVCayDAMw3jArbgRQgwVQtwMIF0IcZPd6/8ARIeuiQzDMIwqFnFT0RCH+gYNJmAxSktIiCjJBFQtNyppoAHSDYCKuAlSzM2CBeQ2FxND9TknTgTefhuIM9eg2p1bmhDkmhakdNDFxSRMMhv3urjtKRwR7XAm5qL8eIy9FyA++IDc2rp0ATIygJ9/Biorg9JMhmEYxg2eLDdZAIYCSABwst2rA4CZQW8ZwzAM4xm9HhJAXWMU0tKAI2iHiR9dhrIyWy3P3FyV44qKaAQf65gNTKcjoeEgbuLjg+KWVl0NLFsGTJliW/fvfwMlJcBSjMNxkeL+4CBmTCsuBjp3BrR11W7FTZVIw2lRi6HTmHD0KK2rrweefpqMPWlpJG4MBuDbbwPeRIZhGMYDbsWNlPJHKeWVAP4lpbzS7nWblHJtCNvIMAzDqKHX4yjawiwF2rQBfm03EyX6VEyaRBaD2FggRU0jFBUB3bq5FKgEqE5mKGJuCgpo8G8vbqZNAzrlmPE2bnTvlgbYMqY1qmcraw7FxUDXrqAiQQkJ6jsJgZTsJORnbLGKm/feoyxrTzxBlzUpCTjpJJtr2q11z2GCYX7A28swDMM44sktbbTlT50Q4nTnV4jaxzAMw7hDr0cpsgCQxWVMxg7MHfEsioooFbG7sTmKioCePVU3RUc7aYYguaUtWECGkTFjbOt0OuDGS45jMSZil+zm/mAlqYBingogVnGj5NF2Ji+PXllZmJ6wBLW1tOuzzwKnnAJMmEC7CQHMmAEsXQqU7DLgLMM3mG44Ac04QSq0yjAM4w5PbmkzLct7VF53B7dZDMMwjFf0epTG9gBAogTJyZgYuxzff2+zHrggJbBzp1txo9M51blRLDcBdgGbP5/GvE6ecbh6yn7EoB5LTWMcNxQU2IL7lXTQtbWuJ27iYDo/Hxg7FigvB7p2kXRuN25pAEjcGL8HQOE/Bw/arDYKl1xCl+1/b1dCCxN6mzY7Xlwe+DMMwwQcT25p11qW41VeE0LXRIZhGEYVvR6lMV0BkOUGKSlAVRWmTgWGD7dlP3PAYADq6shnSgWt1slQowzwAyhu6upIX512muu2dqIcF+MLbDD2V/IluKJkTAuw5aaujpZdsxvp87o1fQHIykLXspVISJCorSWLzbhxjrv06AGMGAF89m0MACAOdcCmTQFtM8MwDOOI11TQQohThBCJlr+vFkK8I4ToGvymMQzDMB7R63FA1wmAzXKj1LmJiXFTpkWxdrix3CjixqpllIxqAYy7qaigpX28jf3GmZiDRkSpZWEmhCDXtACLm/p6WnbtYFE5KpYbqwEpOxuor0dmGh30+OPq55wxA/hnTwo2oj+t+OuvgLaZYRiGccSXOjdvAqgRQvQDcBeAfQD+G9RWMQzDMN7R61EqshEVZREyKSlwyE2shmKe8CBupLRLKhAEcXPsGKVLVm1CRQVGYCU0MGHpUg8n6duXhFoALUpWcdPOkkfbi1saAJycvhsDBjjGDtlz4YWAVpjwPq7BMdGWxQ3DMEyQ8UXcGKWUEsBUAG9LKZ8BkBbcZjEMwzBe0etRas4klzTA6pbmkbo6CnTJzlbdrNNZT00o4iZASQXMZsrkdtpptvgU+3AaVFQgFg1I0VZ7Fjf9+lH8SgAzptXXkydaeqxF3HhxSwOArB0FSNtb6Ha3jAxgSupqfIULsUkzgMUNwzBMkPFF3OgsmdPOB7DYsk4bvCYxDMMwPqHXo9SYQS5pALml1dV5HvDX1QHdu7vxWSPLjeXURIAtN8ePk05SdUkDgIoKmKBFkrYWf//twRAVhIxp9fWUKU3UWs7pg+UmXR72et4Zxo9wCB3xo/ZsCjY6ciQArWUYhmHU8EXcPAxgNoAVUsrNQoiTAOwMbrMYhmEYrxw/jtKGdEfLjWW9W+rq3LqkASriRhngB0jcHDtGFpsJ7tLSHDuGapGE1KgamM3A8uVu9guiuLHGJXkSN5mZAIB2Zi/ipqICZ+k/QQwa8Lv5VFq3alXzG8swDMOo4lXcWIp55kkp77T8v0NKeW7wm8YwDMN4ouF4A8obkm2WG0XcuHNNk9KruFHc0qz6KMBuaRUVZGBKdlejs6ICepGEZG0NoqLg3jWtfXtqrFo66CYgJYmbbt1gO6cnt7ToaCAjA+nexM327UhALbI1B7DL3IXazK5pDMMwQUPnbQchRCyAGQC62+8vpbzX1zcRQjwK4DEAuVJKzoPJMAwTAA4ep8G31XKjKAZ3lpuGBhrFu0kDDQTfLa2+nuJQ3FJRAX1CB2gHDcTJjR7EjRD0ecvLSbAp7WwiRiPpN2sBT8Cz5QYAsrKQfsyLuNmxAwCQoqvBLkMc9vc7FdksbhiGYYKGL25pXwO4EIARQI3dyyeEEIMBjABlWWMYhmECgdGIUkM6ALi6pbmz3HhJAw0EV9yYzSQidJ6m1SoqoNdRzppx44C1a0lrqNa7zMmh+KJ3321226w1bnx1SwOArCxVtzSHBAnbtwM6HbRR9O/ijIuB1audKqUyDMMwgcIXcdNDSjlFSvmIlPJx5eXLyYUQMaB4nZsABLa8NcMwzImMXo9SUFD7Z59ZBtOK5caduPGSBhqwiRsXt7QAiJvKSlpGRXnYqaICel0bACRujEZgxQo3+6amkqB7/nlbHucmYk0DbS9uPLmlAWS58ZZQYPt2oFs3xGmN0AkjFhtGk1rjYp4MwzBBwRdxs1sIkdTE8z8B4FMpZXETj2cYhmHU0OtxABTUbolt955QoK6OsqR17Oj2tC6poBXrRQBibsrLaelV3ESR5WbUKBJbHlNCd+4MHDwIvP9+s9rmIG58dUvLzkaqrES0bHC/z/btQK9eEAJI1VZj8c7ONNP311/IL5yF/MJZzWp3S6FqSWMYhgkDfBE3VQDWCiFeF0K8oLy8HSSEGAngZABvednvOiHEWiHE2iOcHpNhGMY3LJabmCgT2rSxrPPmlqbEpqgWmCGC6ZZ29Cgt3YobKR3c0pKSgCFDvIib1FRg7FjguefsKo/6T309tSsxEX65pQFAW+nm2WUyAUVFQK9eAIA0nR4lB3XY1WaYelKB1qgYKiqa9b0wDMP4iy/iZjuAzwEchX8xN+MA9AZQLITYAyAbwAIhxGT7naSU70oph0oph7Zr186ftjMMw5y4WMRNVtsGq1bxmlDAh8B7Ici4Ewy3NEXcuI250esBkwnVOlud6HHjKETFreFICOCRR4DSUuCDD5rctvp6qm0KgMSNVgtbGjo3KLVunONuFJGybx8N7C3iJlVHxUEX51wBrFzZ5LZGDCYTud/t2dPSLWEY5gTCa7Y0X+NrVI57DsBzyv8WgTONs6UxDMMEAEXctLcr2BkbSwNyNcuN0Ugj+PR0r6fW6VQsN6FwS6uoAACr5QYgcfPiiyS20tLcHDdxIvmwPfss0KWL2wKlnqirs0tPXVNDVhuranSDRdy4rXVjyZSmZKeL0zQgKwtYLPNxXdHNSEmqQJXG3YdqBezfT6LYejMxDMMEH69PACFEhhDiUyHEH5b/Bwghbgh+0xiGYRi3WGJuMjs4WVSSk9XFzZ495PblzdUKZLSwjke1Whrkh8ItzSJu7n02zeotN2YMaRV3nnYAbNabkhLg0CG/21VfTy+rUau21nsyAcBmuXGXVGD7dlpaLDdK8dLF+3rADIG+po1+tzWi2LWLlrW1tmQWDMMwQcaX6a33ACwDkGr5fxso+5lfSCm7sNWGYRgmMMjjFstNtpN1ISVF3S2tqIiWPtSD0WqdTqHVBkzcCGGL63HBIm5sQUT0cfLybJnW3DJ5MjB8OLmC+dlWZQxu1X21tT6JQKSkoA5x7i0327fTB7Ar7DNhAnCkMhqbNQPQ1/SPX+2MOHbupKWUwD+t/LMyDBM2+CJusqSU7wAwAYCU0gAgMNXcGIZhmCZRWdaAOsQjq5OTd3FKClBV5ZorQHGR8lHcOHgS6XQBqctSXk6ncuvtpYgbJ/+zceOoPR41i2K9aWgA/ExO46L7FLc0bwiBuDjggpTf1LdbMqXZf+Dx42m5OPNS9DO28gG/Im4AYN26lmsHwzAnFL6IG4cnmhAiFYAXR2SGYRgmmJQeoG44q6tT0Ls7t7SiIlItHvMwEw4xN8qKxka3+/vK0aNe3v7YMVqqiBuz2X2eBCunnUZLJduZj7joPl/d0gCqoOouG5gibuzo3Bno3h1YrJuMPqZN0MpWXMxz504SiVFRLG4YhgkZvoibb4UQ/wGQJISYCeA3AE1PScMwDMM0mwNl5NuV2dlJLXhyS7NPA+2GggJgyhQncRMVFRpx48ZyM3YsLT3G3QAUnNMEK9OOHdQuaxY3X93SAErgoCZuTCYKqFfETV4evUD5DwrKeiMKBnQx7/KrrRHFzp10zyUmsrhhGCZkeBU3UsoXAfwBYB2A0wG8LqV8LdgNYxiGYdxTeoQsNqoxN+4sNz64pAFk/HHQRwFyS/NJ3Gi1lmIzNtq0IUOK17gboMnixkHL+OqWBpDlxmBw9ZlTAugtmdLsmTABOF4Xjb8xGCMal/nV1nBBSi+XWUpg5058pT8Nn9SeC2zezEkFGIYJCb5kS5sgpfxMSnmRlPJCKeWnQogJoWgcwzAMo07pMRIqmZlOG1yUCWjwvXevz+ImKSk4lpvycuDss13qhtqoqCCrjYp1KSXFx4zCTRQ3DpfGH7e0+HgayC9c6LhecY1zcksDbHU6PxWXY7rh24Ck2Q41Bw4Aq1YB1dVudjh4EKirQ6mmE3Zo+9B3wkkFGIYJAb64pb2ksu7FQDeEYRiG8Z3SqgS01VbYCk8qKG5pUtrW7d5NlgUfrRFJSZQa2apnFMHQjIxpUpLlxmOZnYoKh0xp9kRHkwaor/fyRn6Km6oqoKxMRdz4arnJyCDrzYMPOl7z2loSaT17AoBDgof27YH+/YFfxDR0kAeB+fN9bm+4UFVFl/nPP93sYElBV6rJIXEDsGsawzAhwa24EUL0EEKcDiBZCHG63etfAHzs9RmGYZhgcECfjMyYo64bkpNJBdTU2Nb5kSlNOQVgZylRfMm8Br24p7qaxFLbth52Uiw3KkRb8iaUlXl5Iz/FjZIprcluaRoNFQ5duxb4/nvb+ro6oFMnt9d8wgRgjzkHB5AJvPWWz+0NFxSLzaJFbnawZEor1eagTHQkVcvihok08vNtplYmYvBkuRkN4B4A7S1L5XUxgLuD3zSGYRjGHaV1aciKq3DdkJJCS3vXND9q3ABkuQHsxI0Saa9kM2sC5eW09Chujh1rMXHTZLc0gEwxvXsDDz1kczGrrVV1SVOYOBEwQ4s3o24H5s0Diot9f78WpqbGFj7jUdzodDgsOpAFa8gQFjcMw4QEt+JGSvmRlHI8gFuklOPtXmdJKX8JYRsZhmEYJ0ob0pGVpGJJUcSNvZWlqIjcvXxIAw2oiBvluKMqliIfUQ716pbmRtwoTQi0uNmxg8beVnFjNtPI3VfLDUAneOopYOtW4NNPyT2trk41mYDCsGG0nKc5g45/913f36+F2WQpx52UBBQW2oSrAzt3Al27wiQswnjIEEoq4NWvkGEYpnn4ki1tjhCiuxBisr17WigaxzAM02pphrtDYyNQZmyLrJQa142KT5mz5cYS++ELirixniIAlhtF3ATULc2lUimorWazzwkQduyg2jMa5WmomCT8ETcAcO65wNChwKOPUmpok8mj5SYjAxAw4yjaAtOnA++/36yYplBSWEjL7GxaLlmistPOnVTQR2HIEFtSAXb1YRgmiOi87SCEeAbAtQC2AlBSukgAvwaxXQzDMIwbysoACQ0y26ik1nVnuRk3Digp8en8bmNummG58eqWZjZTrudAuKUBdK527by2a8cOMrAsWGBZccSS5cwftzSArC/PPANMnmyLd/IgbjQaIEY0osEcDdx4I/Djj8CRI+TiFuYUFlLG7vR0EsKLFgEXXGC3gyUNNEaNAuryaN0Qy/e6dq3rCRWh4zaNHsMwjO/4ki3tQgDdpZSn2LmmcSpohmGYFqJ0P2Xlyko3uG5UlIkiburqSNQ0wXLjIm6CabnR60nguBE3Gg0NqP0SN16Q0iZurCgpnP213ADApEk0UFeUnAdxAwAxmkbUm6OAU08lK8eBA/6/ZwuwYQOVItJoSDO7xN2UlwPHj8PcrQc2brR8Z506cVIBhmFCgi/i5qCUUqXcNcMwDNMSlBaTqMnqoFIfxTmhgCUlb7PEjSIYmhlzI4Rb7UIuaYDbVNAAWW8CKW4OH6bL5CBuFKtLU8SNEMCzz9LfGo3Nb8sNMRoDWW40GuCGG6gxbgvHhAcmE3mWKXVWJ04kI82+fXY7We65XytH4dgxiybmpAIMw4QIX8TNX0KI/wkhzuWYG4ZhmJandHcDACArU7pudHZLU9JAewhud8YlbEcIEg3NzJaWlkbWF1WUc7tVP2RA8lncVKhkknNC9dLUNtEtTWHECHKHS0qyC+RRJ0bTCIOMogRrV15J1/ngwaa9b4jYtYv0n724AZysN5Y00K8t7AuAQpAA2JIKREhsEcMwkYnXmBsAJ1uWt9it45gbhmGYFqJ0nwlRMCC9g0oXrow6X38dmDsXmDqV/m+O5QYg0dBMy43XZAKAR3ETHU3WFo/4YblR0kAHzHKj0KePT7vFCgMkBMrKgMzMtpRloKyM2tBUcRVkNmygpdK8/v2p2YsWAR99ROsK8ndis+iPhSsSIISTuDEayTqlKGiGYfyH49Q84lXcWNJBMwzDMGFAfj5QulGiIw5Ck6oyQNRqSZ0o6ZCLimj06cdgMioKiIlxEjdRUc2OufGaBhrwKm4C6Za2Yweds1Mnu5XNiblREMKn3WI0lNGtpATIzARZfMrKyHXrlFOa/v5BpLCQLvGKFXSPAFSQdNEiEolCANi5E68lPIBYI32dhw6RO5t2yBA6QK9nccMwTNBwazMXQvT19AplIxmGYRgb9QaBLJTaTCzOJCfbikn6mQba/hT22aTDwXKj6CuPWZ79dEvr3t3JVa65bml+EKOh2ClrvIpidVu/Pujv3VQKC8kwpQgbgFzTDh2yXbqjWw/jk9pzcdlldBmldEoqEOZxRQzjEU5lHvZ4cgj+xcPr5+A3jWEYhlGj1hDlWdykpDhabpogbpKSAmu5KS9vnrgpKAD+7//ob4+uaRoNmQ98tNy4hCIFwi3NR2KEzXJDK2LoOiuFZMKQwkIgL89xnRJ3o1zy97aNQb05BrfeCsTG0rqSEtiSCjjcWAwTxhw+DGzbRgrdEyx4wgq34kZK2dXDq1soG8kwDMPYqDbG+CZuTCYKUA+EuAmF5SYqyqPFRCkB49E1belSsg54EDf5+ZTCeOdOFXETCLc0H9EJEzQwOZYfSkwMW8vNkSOUrdpZ3HTtSq+KCiDeUInZtVdiYo+96N/fZuGxWqeGDKFrzEkFmEjg6FHqcP78s6VbwviBL9nSGIZhmDDBaAQM5ihk4oB3t7Q6S5HPQLilRUWRYFDc3fygro7Gsx5jbo4dI6uNh3gVn8QNAKSmenVLa2igl1txEwK3NCGAWE2jq7jZvNkuCj98UJIJDBzoum3iRLo96g8ew37k4LYLKeubIm6sn3HIEJoFP3zY+2w4w7Q0ig/s66+3bDsYv2BxwzAMEyb44tlgsNTt9MlyowzUA2W5AXyKZXHGawFP5bwe4m0AP8RNWppXtzTl0rh1S4uL8/ImgSFGY3AVN0YjsGVLSN7fHxRvOXfixmQCVu/JQHfsxBkXUfyQTkeeglbLTX4+KZ7t2+lEc+awFYcJXxT33u+/dyrmxIQzLG4YhmFaggMHbJXs/UCZ0M9CqS0A3ZmUFEfLTY8efr+PaswN0KS4m5CLm9RUr+JGuTSqlpuoKNvn9UZBQbPSscYIFcsNEDrXND9iBTZsoLqkaha4CRNoWYNE3IrXoelB3utLlwK9etlZbtq0AYYNo5VSUn2fVauA0tJmfxSGCTiNjbbaYbNnt2xbGJ9hccMwDNMS7N3bpJlAq7iJPea+ImZyMs041tVRjmFlwOzHQFw1WxrQLHHjNRW0F3GTkEChMIESN4mJNsFkpbY2ZDVmCvJux/WZP+HQIZtFDnFx1DDFTBImgcr5+TR57Rxvo5CRASRo6hCHWszs+JtDzFJOjtOtrtEAHToA//wDLFhAWQd27gT27w/mR2AY/2lspN/jOecA771nM/kyYQ2LG4ZhmFBjNNJotqbGS15jV5RBcGayh3S6KSnk6lNb2ySXNMCD5aYJSQUUA1VzLTcAiRGf3NK8uM/V1trVZbGnpiYkyQQUcmIOQ0o7w4UQ5K7lyXLTAoLHbKZLo+aSptAjbj9e0NyP5J6OirFTJzhapxSEACZPthUaYnHDhBMNDWQBj4oCbr2V+pTPPmvpVhF6PaV7ZJdOVVjcMAzDhJoDB2hpNvsdW1FbC6SJSiQku7HaALYCidXVzRI3NTV2z85QuKW1aeP1XO3be0kFDdgsNx4C1uvqVFzSALrAoRI3BQXIeeNeAE6D/7w8styE0cBFCUVyZ7kBgFRdDf4l/+fiBpmTQ4LUbY4EJeuA8rtgmHBA6biiooCxY+nmf+218EiEceQIZcL02hmemLC4YRiGCTX2I9l16/w6tKoKGKDb4j6ZAGDzEZeyWeIGsKu3qLilNcFy41XcmM0kRgJluUlNJRNXfb3bt6uv9yBuQuSWBtDAH3ASN4MG0YXfvTtk7fCGch94EjdxshZtZbmLuPFqmImOpiXH3TDhhL24EYKsN5s3+1RDK+goMwWHDrVsO8IUFjcMwzChxn4ku3atz4eVldGgfLC20DdxAzRZ3CjGn+PHQXE6f/5JD/gmWm6SkmxjWBeqqkiIBVLcAG5d09wmEwBC75bmTtwAYVXvpqaGQry6eahy19FsUS8qlhvAQ4iZMnhkyw0TTij+tIrV+l//osDBcBDhirjx2hmemLC4YRiGCTXKSDYx0SpujEZg61anIH4n/vqLlsPEapv6UMN+WzMtN9a4G42GxEcTY268uqQBPoub8nIv5XaU87iZYfUobkLplga6BdLSnMRNv35kKVOSCoQB1dVk0NJ4GDVkmS0fwo3lRjXuBiBhEx3N4oYJLxRxo1itY2OB666jPlDpRFoKttx4hMUNwzBMqCkpoWnw1FTKGGUwoKiI3KcPHnR/2IoVNA4cKtf4brnp3r1JTXQRNwAplCZabgIpbsxmL1m0FcuNF3GjqvtC7JYGkGXDYeAfEwP07Rs2lhspSdy4yzyuYBU3TvdcdjYtPSYHjIkJjxlxhlGwd0tTuOkmWm7dCrzyCrkVK7VwQoXJxOLGCyxuGIZhQs2+fTSYS0qih9Tmzdi6lTYdO+Y+XnXFCiBJU4M2DWWexY1iuYmJaXIxSge3NIU2bZocc+MxDfRVV9HSR3EDePHG8CJuGhps2tKFELulASriBqDglhYSN87J2IqLaTzlTfNlmUpwTLRxsSrGxQHt2nmw3ABsuWlJwiTdeNjh7JYGAFlZJN4bG4G77gKGDqV+8Z9/QpcmuqzM9pBgcaMKixuGYZhQU1JiEzcAsHYttm2jPw0Gill1pqGBPNiStTWIkzW+WW6aKGyAwFpuvLqlKTOfgRI3ynncxNwYDB7if0Lslgao1IEBKO7GoQBOkKiooJgnDzz/PC1VxaAdmeb9OKjJUt2m+hntiYlhccOEF+Xl1BH+8Yfj+uxsYPhwsjR+8QVw2WX0OwpV/Iv9LAHH3KjC4oZhGCbUlJSQ/3ZsLI0Y163D1q22mpy//eZ6yPr1JHBStXrEob5lxE0zLDcexY1S68fHVNBA8yw3jY2Ok7EOBMItzY9iqQAN/I8dA2pNMbaVSlKBag/1jALBzp0es7ItWgS8+y6N57xpviFR/6BfW/UvxqHWjdr1iY4mkaXknGaYlsabyTkzE7joImD2bOrL3WRnDDjKLIFWy5YbN7C4YRiGCSX19VSjICaGAmiGDAHWrsXWreTNEx9PRdudWbGClhnaI/SHJ3ETE0MP3oyMJjdT1S2tCZabxkYas3p0Swu05UYRd27EjUfLTQu5pQFASYPd96VUywymuDEYKADJzaCsuhq49lqKTerSxcu5jEY6T2ys6mafLDcAW2+Y8KG83EvHZUdcXOiSDCizBElJLG7cwOKGYRgmlCjFPpTB3NChMG/YiG3bJOJrjiDNeBh//OH6nFyxAujaFWgjLC5EnsSNEDQi9eZH5AG3lpvjx22WFh9QtJBXtzQhfLI0JSeTMPEobpRYIzduaW4tN0YjDfhDLG6s2cTsxU1qKn3hwRQ3O3aQ777BoFph88EHgT17gA8+sFkV3aIMuNyIm06d6F5y6wGnqE0WN0y44NXkbEcoxc2+fZS2MD6exY0bWNwwDMOEEmUQqIibIUNQasxATY1AvKYebXR61Nc7unlLCSxfDowaBXzd6yFa6UncBICYGMqA6iJuALeiQQ2vBTwBEhU6HQkcLwjhY62btDRVy43RSOJG1XKjDE5aIFsaAJQ0tHPcoBTzDBb2wV1O0f5VVcAbbwD//jcwZowP5youpqUHyw3gxnpTUAB8+SX9zRnTmHDBH8tNbCx1Lk2ISfSbkhKgVy/gxhupL1aZmDjRYXHDMAwTSpRB5Dff0KBu6FBsRR8AQLy2Him6asTEOLqm7d1LE3SjRsFW4CXI4kYIspK4JBQA/Iq7UXb1OEbwGATjSvv2lDbbI6mpquJGLQGSFSXeI8SWmyxLDH7JJfc7xqLk5ZHgClaq2S1bbH/v3Wv902QCtm8HOncGnnnGx3MpcTturG9ea91kZtKSLTdMuOCvWxoA7NoVvPYo7NtHswUdOtD/XjtDL7TCbHksbhiGYUKJMrpTin906YKt8UMAAAsG3Is/B92GsWMdxY0SbxNKcaO8hUsqaMCv2UlFTPhkufERnyw3bsSNcpyq5UZJ5RpicRMTQ59JNWMaELwg+82bbVU57cTN3r2kqd57z3ttGyuK5SYmRnWzR8sNQDdbQgKLGyY8MBhoZscftzSAEnQEm5ISmi1QxA27prng+9OEYRiGaT4lJTQbqDwMhcDWtNFIa6hCRhS5e02ZAtxzDzBiBHk79O9Pg8z+/RFycRMoy41XceM2wt+V9u19KAGTlqZaEVWZ5FS13CjiJsRuaYCbWjdqGdPMZvIZa0YmPCubN5MIPHaMgmtAenD/frrGkyb5ca7iYrpZ3bgWduxIcTtuLTdCkAmL3dKY5qJYIfzIWOiCTyZnOxR3zGCLm4YGmqHJybFlV2mmuMkvnAUAKGhey8IKttwwDMOEEsWlwI5t2r7oY9oMIc0ASNwAttCWFSuorIJOB5uLUkuImyZYbvyKufERxS3NbPawU1MsNy3klga4ETeZmaTCqquBNWuAO++kHQsLm+/+0tAAFBWRao6JsVpuliyhGC9lUthnFHHjBq2WtIvHjGmZmWy5CTU1NcCqVU1K8d6q8cnkbIdWS7+jYIsbJSFNkC03ke6pxuKGYRgmlJSUuIibrVWZ6I2t1hn6/v1ppruiggw1GzZYXNIAm+XGqQp8MEhOVkkFDfgtbmJjveiFJsTcGI1e8hpEkFsaQLfEjh3AuHF2K4Ug8XHoEDBsGPDmm1QRPT6++ZmZduygeykhgQZlFsvNwoXkqeZ8e3kt3bN7t0dxAzjVulGDxU3o2baNUnj7kSTkhMBfyw1A93+wxY0yO5CTY0v1z4U8XWBxwzAME0qcxM2xY8Dhqlj0sRM3QgCTJ9N44/hxslC4iJuWsNwkJ9MMpR+zvOXlpIncJkIzmejlp+UG8KGQZ2Wli3nn8GESNn/+qXJMC7qldepkuxQOdOhAFrP336cP/OOP9D00N0OSkkwgPp4GZRbLzcKFdOk0/owOamrownoRN15r3ShuaVL68eZMs1AG41w81RHFcqMibvILZ1lduRyIiwu+uFFmB3JyaFKiTRuPlptIt8A0FRY3DMMwQcb6gFEKfdiJm61badkn+YCDkpgyhawTSgjCiBGWDYpbmpeBZCBwETdC0MPUT8uNR88OpfBJoMVNWhoJG6dUymVldLyq2GphtzRApZ5mRgaQmwtcfbWtyGlMDAU8GwxNf0MlmYAibvbvx77dRuzY4VMtVUcsVh88+6xH806nTuRV49adMDOTRBtbEUKHMhhXhD1D+OuWBpC4OXzYqdMMMPbiBqDJD04o4AKLG4ZhmFDh/GACeYUAQJ+8GIeH4qmn0vLoUaBvX7t6nHV1HgO3A4mLWxpA4sbPhAIePTs85mZWx2fLDeDimqaIG1Va2C0N8NEgo2Qka44L1+bNQI8eVFDpoYcAkwkLv60E0ARxo2RK69rV4245OeSB6PZ743TQoUeJ3TIYOO7GHk/Bgnl59HImFOmg9+1zTEjTvj2LGxVY3DAMw4QKFXGzdSuNVTuPzibLgcUvKT3d5nlmdUkDaAAeIreppCQyfDh4CflpuVHc0tyiPJj9EDc+uZq7ETeHD9uOd6GFs6UBfoobjwEsXti8GejXj/7u3BkAsHCBGR06NEHbKTVuvIgbr7VulII/nDEtdOzcaZsosS/qeqJTXk4doJvU5i4UFACff05/B9M1TUkDrdChQ7NjbmpMMdhU0xW3307erytXBq+0VqhgccMwDBMq3IibXr0A7TCqdWPv+67MoFvFTX19yMWN2ezksdK2rd+WG4/ixmOEvzpt2lDoj1e3NMDFxcmj5aYF3dI6dqSlT+JGcUlsqrhpaKABWN++9H+XLjBDYOHqJEya1ASjYHExXbN27Tzu5rXWDVtuQs/OnbaJgE2bWrQpYYXXWRkVunen5c6dwYt1cc62GQC3tLLGNjhqTMZ77wHXXguMHAksXw5s3Bi5IofFDcMwTKgoKbHV87CwbRvQpw8oCxbg4JqWkUE6RkkNbfVhC5G4UTJmuRTy9NFyM26cD2OEJogbjYaujcfC3CqWGynpGK9uaYGoIeMnSibZkFhulExpiuWmUydsRC6O6OP8q22jUFwMdOvmVRV5tdwoCo/FTWioqaFaUCkpdAOyuLHh1Z9WhcREEhuhttxUV7vEFvpDrTEa3cQe6CuM2LWLcpZkZVE3//rrAWhzC8DihmEYJlSUlNAAzuKCVVdH48LevUFPk6goB3GTkECaR5nQtg4+Qmi5AVQKefpouVFm/TyOERRx44dbGkACxV+3tMpKivnw6JYWG0sDvRYgJkYloYAaWi0lYGiquFHcjxRxExuLhUnnAKDCnV7TPjtTXOzVJQ0gY1p8PPDyy25mtWNj6f5it7TQoMSGxMVRn9JaxI2Uzc+4V16u2nFJSZfJbVhN9+7BEzdVVTTTlJNjswx5CEA0GIC1az1nKGxoAKpMiThHfgvNn0vRrRtw5pn0Mdq0AR5+2BZSF0mZ11jcMAzDhAonl4IdO+hh2acPaNZbCXJxx8aNtF+ILAuq4qZNG5rx9cHE0NhIS6+Wm6gov32hvIobFbc0ZX+Pbmkt4JKm4LPlRtm5OeJGqyV/SAu/a6agT/xee6Oib0hJMTc+iBshaNLZ42fkWjehQxmE24ub1pCGe/du4J9/mncONybn5ctpbufAATdzPD16BE/cKL93Z8sNoOqa9sEH1KUdOeL+lOvWAUZEYTSWA99/b10vBNCzJ1nJb7wx8m4LFjcMwzBB5sABGk+a9+1XTwPdx7IiKYmeRu5qTmzaRINvv4qQNB3FLc3FcgP45JqmWG68ihs/XNIU2ren8YvbmUSl8XaWG6/iprY2LMSNTwOJ5oqbHj2s7m0NDcAf1YMxKWqp/+c6epQEuQ/iBmimuImkqeNIwFncVFSQm1qkc/w4vZozInfjlvbiizQvYDYDc+aoHNejB1BaihhTEFJr2xfwVFDEjdNMT0MD8PTT9Hd1tXsX3mXLaDkay4EffnC4ZrGxwDPPAAsW2HIlRAosbhiGYYKIlFTbo7wc+GrPMJc00EIAJ51kWZGYSMsNG9RPtnFjSDN5KZYbl5gbgHwXvAw0FcuNV7c0P13SABIoBoOH8YtWSwJHRdx4dEtrgUxpCrGxtrggr8TE0I3VFLZssSYTyM8Hhg8H6kwxmFTzo4ciNG5QfFa6dfNp95wcL+JGKeTJeCYQQm/XLkoCsWwZ8N57tK41uKbV19N97NMPSQWDgTo9p45r61Zg7lwgO5u6lnfeUfm59OgBAMis39209/aEH5ab99+n7kGZc1i0SP2Uy5cDOdiHDByh3926dQ7bb7qJ+ofbb7f155EAixuGiTB48jKyWL+eYmuEkHi48WE0Zna2btu6lR4+1nqcippYu9b1RFVV9HDzdfDtd+CEK25jbgDXJ53KjemzW1oTLTdSWjNnq5Oa6iBulLFOuLqlKd6GGzf6sHNMDPmb+BSkY4eSKU2JtwFN2Gs1ZuQbf/c/85KPNW4UOnWisaPHQp6HDnn5YpmAsHOnLcOXcj9Euripr7cVt1XuTX9RrNJOHdfLL1NfnZlJr507gYULnY61iBvtsSMoLLTlgAkI+/bRpI2SeAMgAabRAIcOWbvg+nqyuIwdS5MJOp1KO0G/weXLgaFiHbZp+9K57VzTAFr13nvUjQazfE+gYXHDMAwTRL76iqwzYzqVYCd6Ys7OMQDoIfTLL3YuaQANWKOj1cWNEgQeQsuCqluaYrnxIUeoV3EjZbPEDWAbx6iSluYSc6PReGhPC7uledK2LigZ0/yx3uTnA6NHO2ZKA12i4b0qkQw9sHev7+cDfK5xo6BWz8dBF2dmNm/WnfGdnTutg3G0a0cmzUivdWMfPd9UcaMUFk5Pt96bBw8Cn3wCXHUVdVft2tHr7bedju3eHY3QYf7+fqiqAmbMsPVRzZ6YLCkhy6Z9whOtlhpiNynx7rvk2fn44/TsSU0Ffv/d1cq9fTt5303Tzkfv9KOU3vKHH1zeNjcXuP9+6j/9KHHWorC4YRiGCRJSAl9+SQ+XUQkbMAJ/4fHvclFfT9tqa53EDUCuaU6uAQBs0/kt7ZbmznKjgqJ/UlLc7FBdTWatJrqlAV7EjZPlpqyMJjrdJkNrYbe0qCiaGfZL3Pgbd6Oku7aIm8ZGEq+Txlm+rD17/DtfcTFdVMWl0guKR41bgxMX8gwN9fV07yjiBgD69498y429oGmuuLGbBXn9derP7ryT/tdoSOjMnUuX0Spc0tLwcvzDKDVkoGNH4O+/gccea1ozXCgpsc4OHDgArFoF/PQTHAp5mkzAs8+SThk/ng5LS6NDd+xwPN3y5bQcbfqDOp+zzyaX1R07UIB8FCDfuu+DD5JluZkldUIGixuGYZggsXYtjRUzMoD2hhI8gwdQeiQab70Fq8Dp3dvpoKQk8ldzzpq2aRMNIH2tmB0AlNwFzbHceEyE1oQaNwpK3IxHjaXilubWJQ1ocbc0gL5+r+KmoAD45hv6219xU1ND6s4S6FVVRatPPcciTvy13Cg1bnwkN5fuqeJi0rUucCHP0FBcTB2Qs7jZvNn/uKtwwiLOjdA5iBu/rCZKGjRLzI3RSBaac8+1efEBwPXX0yVUwpUAMoY9Xncvxkf9iZNOAq6+GnjuOeDPP5v8iWxYsm1u3Urv09BAoY83HXsStaVkoT54kATI44/TIQUFwLx59Leza9qyZUB6WzNOktuoDz7rLNqgYr2JjQUGDFCZjAtTWNwwDMMEia++osF924MbkVGyFuN1y3DqJIlnnrEJBpeHRVISPTHXr3cMm9m4kQYfS5c2O5bGV4QgPeUgbhITyYnbB8uNUjbGLc0QN011S/MoblrYLQ2gr3/vXs/pWwFQVDPQNMuNXaa0igrSOsPHx9NMdVMsNz66pAEkSvv0oXvqyitVEkKwuAkNSqY0Z3FTU+O/wA0hXkXKnj1ohA5F2l5+W26s57ZzSwNIMFRVAffeS6uVfrlrV2DqVBI3ZjPdy9dfD8ToTHhZczcAYNYs0v6XXebTfJDbzzh+nBmG4v0wZnfBFVfQb3bYMOCuu4C3S6Zj6Ib/oqqK9M+ECWS5Uejendr6+++O51y2DBgzqBYCoAdVp07AkCEucTcKsbF+Z+xvMVjcMAzDBAEpSdxMngxECRMyzGVAdjaefkbg6FFbcKaq5QZwdE1TKsf17x+SttuTnOzkliYEDYK9PKmNRhrAKnE7qiji5qOP/BZsSiIjfyw3ZWUeMqUBNLBrQbc0wObdpeaZ6EBcHF2EplhunOJtUlIsnoGdO/s3sDWZaH8/xA1Aze7alVw2lRlmKxkZZNpht7TgonRA9qYIpX+JZNe04mIc1nREqSYnIG5pZjPdiuPGASef7LrrjTeSpeToUepfFi8Gnp+8GAMa1iJq/WokJgKffkqhcUVFTf9YaY2HES0NeH7bmVizhmrQxMYCL70E/H7he6g0JqCwkPpDl98UgFNPBZYssXXbhw7RLTD6JMssijLBdPbZwMqVfhTcCk9Y3DBMBHHwIFBY6L4MCtPyKLNuq1bRLNpFF9H6duZDQE4OTj6Z3BsMBhpQKl5eVqKjKe7A3jeprIyenrm5IfoUNpKSnCw3ADXai+VG8W5RtJoqXgvPuEeno+vnNeZGr7c+0b26pYWJ5QbwMe4mJ8e/hAJmM/mCWcTNoUP0b2qqZXuXLv6Jm9JSug/8FDcANX3mTBqIOeQO0OkohkDNclNZ6caX7QRDr6d08Q6zDn6ycyepWvvsGq0hY9qePTgkOuKgJos64KZk3Tt61OoCfOAAjfMVq40zU6fSnEBJCYmFsWOBay+sghZmdDDTPTxiBPDww3SfNzVPRrv6EhRiIB6fPxwXXeQ4STNpRDU2IheZ6Q3o0AEYM8b1+EmT6HZZvZr+V+JtxmTvoT8UcXPOObZrEMGwuGGYCGLuXDKPR1JKxlaFH47bX35Jz4szzwQK8m5HXtQWazDok0/SPm7H0UOHOo5ulWQCLWC5URU3bdt6FTcrV9LSJ8tNu3ZNalt0tJcJRmXUfvy4tTaqV3HTwpYbnQ7o1csPceOP5UZJJmCpcfPHH/SvNeFD587kluZr8UM/a9zYIwTVCRk7lrI2OYzT1Qp5HjtGvwN/3eZCQajz869dS0Jv586mx8comdLs/YySk8k1adasyK03UFyMJ+WDuNvwDJ4z3oVDfzfBvbG8HKWp/XDuufSsTUkhEaOGVkuuaHo96ah33wU0Pcka9kmXh637Pfgg9aU7dtD97i9t6/bjcnyMtqkmzJ7ttLFDB7TFMUzsWoxevdSPnzCBvmol7mb5crL8DE60ZBlQkrr07Uv3hWK9ilBY3DBMBLFkCS0rKoDffmvZtjDukRL4+mvgtNMsA0cpaRRuETd9+5JbgX2haQA2Z+4hQ+gpqIz4lJnUFnJLU7XceHFLW7XKlv3LLWVlJJSakC0NsMUDuR2Lp6XRsqLCewFPg4E+UwtbbgAnbeupXlF2dtPEjWWGfulSGpxZrWtdupBlxJeBTX4+jeqAJlluAAr7+e47EqmbN9tZpDMzXd3SPvyQBvL+1vVpjShpr/R64Isv6G9/BZZ9Gmh7+vULb9eAwkJ6qVFbi8WH++FH85mo1yXh//Acskdk45xzyBDhi2aXEpi9bgT6HFiIefPo1h4wwHOsydVX0++oSxeLm7FyXe2sjDod9fsaDU14KaGAvn5ta4uSsRED8N5rda6p7C2FPNsY3Kcya9uWHiu//07v9/77FLMTffQg7aDMdAhBrmmVlb4HCYUhQRM3Qoi2QohfhRDbhRD/CCG+E0I0bXqOYRhISWOcdu1owHjPPTRTxEU9w4/jx2lsprikwWCgL9BOzWRmeqi3MnQo7X/KKfTlbtxIo3KPASPBISlJxfvFB8vNqlV0rMcAVK8R/p5JSaFmuJ0JVSw3lZXeC3gqA/8wETelpeSG6pGcHBol+ToYVfazZEpbupTEq/U76mwpMOurdaSujkZr9hXT/SQ9nYS+wUDtAUBumfaWG7MZeOst+pvFDd3wGg2p+//7P/+vSWMjfcdq4qZ/f/ot+Gq9CyGVlcDW2s44boyzrrN//tVt24vr8C7aROkxecAhbEMv3DVlE1asoPmhLVs8f6yGBiq6/O8tN2FE2nZs2kS3tsbLSDkjAxg1yu5noOSbd3KhjI0l7VhcTM8GNe0gJc0t7NlDbpvjx1uSAZgm4grMwbR/0UyEw5yHpVPzJG4AirtZuZJ+a3o9lbxSnWA65xxqiFNRmwDUhQ4ZwbTcSAAvSCl7SSkHANgF4Lkgvh/DtGq2bqV+KC2NOrt//qGiYqqw4mlRjhyhWenp0y0rFN8pF1ONG4YMoaViMmmhZAKAh5gb5yfzwYM0MtDrUVVF96tHlzQgIOIGsE06umAnbryG9yjipoXd0gASN4APSQWU+8lX642S6jomBuXlZC2xxtsANnEzc6Zv/Ud9PVmP/LS8OQ+SUlJIYFmzOWVm0lS78ruZP5+KhcbH08jMY6DVCcD27ZRQols3iit57TX/jt+7l2bG3IkbKcMytumHH4DDjWnYWNtddULj8WejsQs9MKbTXhyLz0YvzU48P/Rr7N9Pt3Z5uWPRTQdhVEfdbG0t8Em7O7FgyqsOuRa84SCAhKDvR+UapqSQO+bvv1OmM3t27SIBsnkzfUULF5IOHTUKuFIzB/eJF9Vni3yw3AAUd2M02rqLMWOg3gePGEG/6Qh2TQuauJFSHpNSFtitWgmgc7Dej2FaO4pLWmoqWW+GDQMeeqhp8ZJM8JCSxM3pp9u5+/grbjIyaF/F52rz5hZJJgC4cUtr25Zm05Wb78MPbW50K1ZgzRpqtsdkAkCzxU1cHLk0uRU3/rilKVaNFrTcKIP+vDwaLHmNu/FX3NglTHCJtwHIrwbw3RJQX9+keBtntFpqh7UOh5IO+pRTaPnmm0DHjrYCn/4kUWiN7NhB32NaGs2gPPOMf4JPSQOtNnpXJlHC0DVt3jwgShghIDFliqNxr7AQeOm7rrgK/4W2XVuYNFH0+yguRlQUiZs2bagI54YNjueVErjhBiot1rs3cGnDfyHS3ZnVfSQuzu3v6KqrqB2vv06fQUrghRfo0iuZ0MaOpdt82TLgs8+Au8XLqNG66VDT0oCoKKQZyjw2afRoapZy3UaOBGU4cO4UNRrq4ysqIrbmUUhiboQQGgA3ApgbivdjmNbIkiXUQcfF0eTNSy+R68r+NQfc+yAzIaeyksYZVpc0wH9xA9D0fXU1PSBra1vUclNR4Vg3waGQ52efkdO5YgJYvhyrVtGfwbbcCEGD4qVL3bibqLiluRU3YeSWlphItWB8Fje+DPbr62km2fL5li6lvmTVKjsrSmoqfWlqgzI1a3B9fZPjbZxJS6OZ84MHYRMxBgMNxOfPB667jhoMhHUdlqBjMJBfk3ItXnjB/9o0SkYaNcuNUngrzMSN0UjWjra6KuTG70Z5OQX5G43027/mGiA9tgYvRj+EimhLn9K1qzXphRCUqKNNG+qb7T/e7NnAxx/T87V9m0aapFFyzTcVRdy4iVt54QVq/86d9Du/7z6K0dyyhbS9sytchvkQykQH9fcSAujQwavlJiaG5gvMZjJQp6XBfR+cnExtV+K7IoxQJRR4A0A1gDedNwghrhNCrBVCrD3itWoZw5yYmM0kbsaPt60bO5YKCpc0tIfBrGu5xjFWpKQxRlQUMG2a3Yb6ettsmK8MHUqDUaWEfAtZbpSaog7iQRE3Bw4Al19Oyqd/fxqVr1iBVatoBnTZMg8+2rW1JN6aIW4AEjf797sZ2zm5paWmWmtXqrcHCAu3NMCWVMBj6ENWFg1sfLHcKH48ls+3dCm5u7jUT+3SxbcaFyYTDbQDKG4Ai/VGsdwYDORHpNWSuFGyU+zbF5D3jEh27aJrr4jw3r0pscPBg7Z72Bs7d9LxHVQGy3Fx9AozcbN6NU2ytIk6jiRdHb77joTApk10O6xbB7wx4F206ZIMKSxDWztxA9C9/umnNF6/5RZaV1kJ3HEHBfl37gykGC0pkC3ipslxJnFx9ON1E7+m1QL/+x/tZjQC335LtTMVXe+AwYA28iiOaNyIGwBo3x5TBx3y2tZTT6WldeLJk7gBYJ2pijCCLm6EEC8B6AngIimli31LSvmulHKolHJouyamA2WY1s7GjRTbN348UIB8FCAfAPD884AJGuxtaN4AkQkMv/xCWqRLF6cxclUVDfz9Ke+sxN0o/lSW9L2hRnnGOUxAKiJt3z7ybfjpJ3paJydD/rUSq1ZJDB/u5cTNqHFjj8e4m8REapdF3Hgt4AmEheUGIHFTVuallmV0NF0/X8TN5s20TEhARQXF7DlY4xQ6d/bNLU0RQAESN4mJNJ78/XfYxE1tLfDBB1QYKjPTpkzDzXKzd2/oUlQrM+mK5QYAHn2UJk927/btHGppoO2Jjw+9uPESJzpvHn3EVF01ACqOPGcOda179pA4Od/wP6BrV5sg6dqVJmDs7ucJEygt84cf0s9myxbyzvv4Y7ocyY0WcePPRBRURJDScf7nP273SUmhbn74cLrF3VJaCg0kyjyJmw4dqHCVF5SU1mlpoMkzvV69D46Pp75TyekfYQRV3AghngYwBMDZUsrILnfKMC2IEm9jb7kByMzeMfooDhrSUV0d+nYxtmey0UiuBXFxThOi+/eThcLpYel1RlARN5WVpJa8BrAEB+VtHWK7lImopCTg119pZAoAKSnYW5uOw4dFyMSN4l6hKm6EoNeHH3ov4Hn77bQMI3EDkKuKx9h+X9NBK+ImLg5//kmTyqripksX38SNEiwdgJgbgL6miRPJciPT2tCKAwfo/v/3v2knjYYEXTiJG72eRP7evU0rYOIvlvc4I34J8lFA65QYvaNHbfE07sjPBxYvVndJU0hIoO+3CZnpgpXLZt48mkeJEraOaMYM+hhxceRaJvbuscWNATbh7XS/PPooxZ/s3k1eET/8YJskSWm0BNE31y0tPp46nDfe8Ghp1Gi8Z2NTMouUajy4NXfoYOtTPdC3L4mp9HTAYwpJIah/Z8uNI0KIfgAeAJAJYIUQolAI8X2w3o9hWjNLltDsklrIRppODwmBoqLQt4uxMWcOzQJ27er0sPr5Z1r6OROI9HSbG04LuaQBbsRN//7kDjNggGNgTXIyVmIEAEq445EAiRshyEXTbVIBnQ4wGr2H9yiBs2HiljZwIE2cuiRzcMbXQp6bN9OAS6PB0qVkBBk2TGW/zp3py/ZU46K62lbBPECWG4BcZg4eBLZsFdRAg4HufaXkekEBMHhweImbb7+13TtPPBH899u+HWjfHjW6FMf1ymD8zz89H69kQvOUCkz5DWzZ0vR2+kl+4SzkF85S3VZWRuP7qadJFHS6HAUDb7Nuy8qi+zg7RU/3pP39qPxdXOwwmaTTAZ9/Tl1Xnz6W2jQWAiZuAJvQethSzNNH5ecy8TVnDhAdjdeHfOz+oA4dSKz4kGEoNtZitPOWZSU5mUy8vro7hhHBzJa2WUopLKmg8yyvc4L1fgzTWjGZyD9+wgT17XEaMoo6TNiFYY2CiEdKym+sUnzEZKLZwJEjVZ6JP/5IU4tNsQgoFpEWSiYAuHFLE4KUgs4p1is2FqsSJyFO2+BdjwVA3CiDgFNOAYqK3NSFsRM3Ht3SlEFBmFhu4uLoaw+YuNmyxSGZwIgRbgqsKumg1WbtjUbg6adp0HbwIFnw1OI2/ET5HidNov9//x22YKB//9vRfapTp/CKufnkE/qysrMpiGLbNlofLBPG9u3WOkUOxMfTve5N3DQ0UF/myXKjzGisWWNd1ZLVBRYsoOXU9DXko61moVDcAtUsN3ZxNwqdOgGDBjnOORUUAE/c1jS3NFViY4Fbb6V7xDlFm68cPEhmq/btPbs1d+hAfZgy6eAL3vrg5GQ6p9ec9OFHqBIKMAzTRAoLya/Y2SVNIU5DKUCLdkja+Z57yJSsuKEwgWHePJoZU3mw7t9PHjQvOpch0OvJBaRtW//ibRSUQUa4WW48sCpmLIboNrjoHhe85mb2HSVjsOq4TqeDoVGgosJHy02YiBuAXNOUbOBuUVKGK4kn1Kivp0D0hARUGROwfr0blzTAMR20yUTH/for+fCsXEn550eOpJFh375Nu6/d0LkzpcFduBA0MNRqyffIead9+4KTotbfEfz+/WRWV9zC4uOt1hs1S4RPp/e2044d5I/sjJI6cNkyz+dX3Ak9iZvYWBJKYeKSNH8+/XbztnxOKyoqXHdSxI295aZDB7IA+hqLBNhquwRC3ABUZDU1Fbj//qYd/8kndK97m0RQOrfTT/f93N7EjdL5R2DcDYsbhglzFi+mpbvnXWdzMVJQhZ0vfU8DjlmzqDP0NNhhvGM/yJDS5nKi1zuYMQwGmjg/+2xLxWd7fvuNdmjqg7JNG5rBdjlx6PBV3OQXzsIp61/D31XdMbzhD+/pib2mL/OdQYPIk0bVNU2nw5HGVABexI3yAcPELQ0gcWM0ekle5ks66G3bqE944QUsf+AXmM0exI1iuVFqqfToAZxxBt3kaWnA339TAgmveb6bxqmn0gy6octJVPDH+fvo3JkuiBIv0JJ89hn1De3b0+/03/8GvviCLLzBoKICOHIE5dl52L5dxVsoJYVMmJ5iL3wRN0LQ97t6td9NPHy4SaE6bjGZyHIzZYqE5qcfaWVFhaviV6wz9pYbjYb+V7HcuKW8nO45VbNmE0hLAx54gBSaiijzGHspJWU+GD3a+6SLIn78qXfkLT9+dDTF1IWJyPUHFjcME8bk5wPPPUc+wR07WlZKScLl3nuB3r3xafXZGIhCFJm7A2+9RWbsrCwqbRyGVaYjkoULqYNPSaFBot3gZd8+egA/+yz97/CwmjuXHm4OlRL9IDGRZsk7dWpO65uFP5abalMsGow6jMBKYMUKzzs3s8aNPTodPf//+ENl4lunQ5mRxKVPbmmBGtQEACWpgEfXNF8KeVqsuFe+2Bc33ECpyt3GRKWn0/eSnExJFv77X7IGjBoF9OtHSjKITJpEibpWNgyyuWXao/wWWto1TUqaVR81ypa57O67Haw3TcFT7Am2b4cJGlz64wU4dMhWrsaK0s8sX+7+DerqSLxkZ3tuSFISuTIeP+5r0/H119Q1bthAhYyB5ruzrVlDmUKn9ish60xyMj3bNm1y3HHPHrr2zll3ndJBe+Xo0cDE29jz73/Tfbt7t38u4ytX0sTElVd631cRN42Nvp+/rIy+Z/vMe84MH86WG4ZhAotigLG6pJWUUEdTWAi8+irQqRNei70PJVHdUBQ3ELjxRsdA9BO9kncgkBJ4/HEaRCqznZYZzQMH6NWxo11Qqn36tF9+oVnvALruhBrVmBs36E00yz489h/PAywgoOIGINe0jRtVnu06HQ6bSNx4dUvTaMLqu8rNpeb4JG5uu839KHLzZkCnQ0ncSaispABstxPBQtDN3L8/5Zq/6ipSjlFRTf8gfjB+PH0Nl217QH2Qr1iWWiqpgPL7Liyk63r55bZt6elUQOXLL9HF5Kw8mv+W2LEDT+EhLFifgeRkGvQ7/MwSE2mg6inupr6e9vGWokspcGWJt6itpZ+su7H5kSPATTfRfWUwUGpmf+bWREMdzPWOJsr8fODii6mpk6u+ppVKIoSFCwHYTSYVF5OVxvn366+4KS8PvLiJjQWeeooScfhSz1H5wj/8kC7ohRd6P8YPy431mnnqg5WdRoywVAuPrLEEixuGCWOqq2lC2ZpM4I8/qPPq2ZM64d9+w23DV+K67HkoK7MbBCmuPi09u9kaKCigEcR995G7gk5nFTc//0wPe6UshwN//UWzgGeeGdLmBhpl8tyr5SYvD8eTs9GxI5A9PIuumadp20OHAi5uABVvTJ0OZZJmc72KG602YO0JBDExdMt5FDcdO9Loz5Mv0JYtQM+eaJDR0Os9uKSFAampJL4qjG5Sn7e0uFH4+GNy23EeeN59N5CQgIF1f+GgoQ3+8x8yqL/+OhnVfY1dU2PBPBMex6O4/FIzBgygt3/gATvBodHQTLunuJvaWt+sk3ZFHE0muoW2bSNPAgX7n/e//01Gnr59SRuvWgVceqlvhoriYmBlfR7+bBiORx80Ohxz7Bh9pDYLv6IbIzmZxJlF3FjZs0c9c1/XruQOpuKmreoSVl4euHgbe2bMoB9zcTGlN1dw10eaTOTieMEFvpUBSEyk798ftzRfJpiUnP4R5prG4oZhwhilD7T2fYWFNDPVoYODq1PPOJpVsWZMY3ETOJ54ggaQV1/tkvv/559tA1AX5s6l0cdpp4W2vQFGo6Exv0+WGz1N9Ikxo+le9TSSC7DlZtgw+i5UxQ3ofby6pXktOBF6kpNp0Og2G6tOR/enp8CczZuBfv2s1yacxQ1Arml6UzyMUkVspqTQq4XETX7hLExc/xJlRps2jdxO7UfJbdui+PJHcY/pOeyo64QbbgBuvpkMazt2ULKzpiSzrK8HLvnufPSPLsLb/9FAqyVPpz/+sGSXU9owZgywfj1UC59t3kw3Ulqa9zeMiiJL9erV+OADchVMTCQx9f77jrt+8w3w1VfAY49RX9iuHfDyy8B333mP5ZcSuOnqBuhgxEX4Ak88o8N999F6g4H6lKlj9DShpEwUpaVRyj/7gfyePY7xNgoeMqa5kJ9PqY8DYblxVk4aDU1KNjSQOcpbh1peTh9ecUnzWhgN9LzxN+bGWx+cl0fnZXHDMEygqKykh4W1r92wgVY4DcJ6xFEZc2utm3Ct5B1pVFbSA+W++2yznUlJwKZNqCuvwcKFbhKhSUkpoMePp/19eTCFMfHx6mMle5QQr+HDQXEIJpN7f/36etoWQHETE0PCyp24iYs1q4ZwWDGZws5yA9Bv32ymhGVuyclxL27q6ig4o18/azzzqFEBb2ZAOfVUABCoNLr5woKRDrq2lkSBD6l0hxhXkji/7DLV7a8YboYGZnyrOR+luxtQVkZj1a4xB3DkCPDMM7Sf2qT90cZk7Klrj59/tnkwmc1kOWk0Cnwz6hWrS2HHjmTIcrDejBlD97JanMTHH8MELc45/B+vnxEAMGwYqv7aggcfJJE9aBBVuL/+euB7S9VCg4Hc0YYMoUSdCrffTh56+/eTV5M7vv4amL8kBk/hIbyFm3Bz2y/w4ot0rHK/nha1iP6wFzc1NbYBd2UlvdxZbgDfXdMaGwPvlqaQkkICZ8ECx4ulxqFDFMyvmKR9wV9x48sEU0wM1ZaKsLgbFjcME6aYTDRQS021rJCWVM8qIzRF3FgtN0olb7bcNI+9e6nzv/Za27qkJMBkwpIP96Cuzo0HQ10dKc0Id0lTSEkhLeLJh17RMcOHg5Ig2K90JkAFPJ055RSXZHYUc4MMtE8zeA6nCUO3NIB+/1FR5KHiFk/iZts2QEoYe/XD4cOUgM+jyAsDRowANDChwp246dw58BM3n39O96sP4mZy4y90IVXS7paXA//9LA59tdtxrvlbZL50JzIyqJ/IiTmMjKhjeOgh4IcfHI8zm6nW46babthr6Ijp08nS2L07dft6PTBHew1OGkIuSgUFZLV57DEKi+nf3yKURo6k/t/ZNc1kAj79FKt0o1Gh8dHtavhwPHPoSpSXS/ToQaf9+muykv7rX6Qndu6k5Zw5jmWvhKCw0LZtaZ//2OkpRdRVVZFFa3DablyC/+H9uFvwxtF/4e4L9mL2bOpCo6KAIf98SN+5Uu8rNZUao7imqdW4UfBH3JjNdJ2C4Zam0LEjfehZs1xNYAp1dXRRZ870LwYwIYEu6rx5tnXu3N4aG+le9yUV//DhwNq1/iUraGFY3DBMmFJSQn2t1eXp4EGaylMZmSRo69Gxo53lBqAZFxY3Taeqih4w99zjGH1t8UX/+YdGJCTYiU97lFoJ06cHu5UhITWVtLWnybvKSnoODx0Kmlnt18+7uAlAAUh7lElO+7e9cO8LKEN7ZERXej64oSFkQfP+IAS5+fzyi4fYG0XcqPk7WarMzz82DAaDXdZFf3G2PgbRGhkdDaS20eKYpp26C1egxY2UwOzZ9LediVJtXBgnazCmsQC46CJboVE7Zs+msWlUnA7/i76CAm4++QQAfZe94kowbBjFoyhvVV0NnH8+xZxfik9QgVT88eFOvPACWUsMBqBvZiXObfzSpcbNpZdSjMuePZavPzkZGDjQVdwsXgwcOIAF0dO8Xo58FCAfBdiVORazcDsuH7fPGvaRkED3YvfulMDjyBEqYKzoDvvbQqsF+vQhHXjDDcAddzh6qj7wAHD4sMS7xquxLmoEFkadDpGRgReqb8Ijj9C+6TgCzcLfaKJIGejrdMDJJ9vEjVoaaIW0NLomauLG+QtWZkWCZblReOklYMoUMnnZx98oKP3jFVf4d95u3egLOu88ivn0hGIW9GWCacQIuqlHjGi5Sq5+wuKGYcIURahYszQqFY7d1OHo2dPOcgOQGxWLm6bnIj1wgB6iN9zguD46GjKnE34uzMapp7oJ0zh6lEYlSiarCEcJ7/I0lq2ooP2s2nvUKFIZaqPTIFluRo6kAVVxsW3geFh0QCmy0N7owTemspLcXIJUu6W5ZGSQJ9/cuW52yMmhmRA1P35LprQPfs9BVBQNNCOBtm3pM6vWIu7Uib4zP9IUe2TVKjKPREfTfeAhHqJXwwYsxyhVl7TaWuCNN2hOI0HbgPdj/019z/XXW/tvjZD4/nu61TZvJsE6Zgx5sc667yA+xuVIRRXGbnwb99xD8SwjRgCnt7W4YJ10ksN76nTAk0/aspkBoBOuXOk40/7RR0BqKv7S+e7mdO+nA6CDEc/0+cRBtLRpQ55VUVFkyL73Xvfn0GpJ+Nx6Kxkrzj6bLu/x48DbbwP/Pu8QhugLsEo3GgYRA9x8M8S8X/H4v7YhN34Xztd9TzeCYgVXGjJpEn1vVVXqBTwVhKD1n3/u/TmgXK9gixudjkyx3brR5MOxY1Qz6bHHKPFAaSnNKPlbAkCnoxSLWVmUpdMysaGKP32wklTAY2aT8ILFDcOEKS7iprCQlm58Snr0sLPcFBTQrM++fU2LXmWoI09NVRWTG3tfgJLadEybpjKBbTDQk7uVuKQB9MxUQofUKC2lMaHDwHn0aBrFqEXCB0ncJCTQTLEyE97YCEAIHEIHtK/a4f5AZZYzTMVNcjKVJfnySzc7KDVL1FzTNm9GWbeR+OkXDdq3D8ucCaoonkFKbIcDSsa0QE3evPUW3eCdO5NI3OF4r9TUAB98QHr9tYabMAmLMGeba6GgDz+keQ1lsG8SlkFsWhpw3nlIlDQ4zMwkt7SGBqqJWlxM1pDbsr6BALBN25cGu3biJLvO0iYnyw0AnHsuPRb27rUkzRszhhqtPDP0eoruv+gi7DTkoLzR+31eWQl896MW/5f5MTK3LnLZnp1NxpO8PO8GTyGA114jq9a8edSsHTvoOjzZ9QNAo8Gjg+aiIO92KmcQEwPMmoU2UXpMNs6nH4Bz7MmkSWTaGT2ashckJblPlNC1q2+VRZXrHUy3NIXUVCqGKyWZwC69lJLXLF9OX2a3bk07b3Q0FY+OiSHrkLvPrRTw9KUP7tKFZlgCNZkQAiKkm2OYE4+iIlvoDAB6InTt6ujYDFhH1z170pjR2v8olbx9yavPOFJVRWZ4ZyFpudY/a88CAJw+rNz1WMUlrRWJG4CsMitXqsfdzJ9PSwdxo0Stq6RgDZa4AWhcctJJNLN8zTU0dqhEKjKqd5M1Tg2lWEiYihshyAvKTZFzm4XQjbj5JOYaGI0B9wIMKjEx9HV4FDeBcE07coRU4+WX48qDlkj/9esB0Lhwxw5bssSKCuBh8QSGiHW45lphve/z8ykD3csvk/Vw9GigIO92Gqy3b0+BKnv34ueoc1Aw8DYAFLfSp4/td3XaaQAWL8YBkYVPYq6h38iCBdZmdqrdThdE5Tej0dBYuL6eMlFjzBja8K9/UeO++Qaoq8MnGXehuD4T2+s6qf4sFaSkHBQ5OcBd03dQvIVK5kOt1j+xfNNNJOLq60l7vfEGkLz4B7IMKAqpXTuqHfTRR0gxH8Mo4x+UxcDZBXDkSJr5q6ykE3bt6j4+RRE3nib6zGabi1iwLTcKPXtSJoZ+/cjKUldHVqiBA31L/+yOrl3p3tHr3RT/gq0P9iXmRgj6jljcMAzTXIqKqO+29tcbNtA0mRtf9549aWmtWh0ulbwjEcUF0I2V7OeSARiKNei4zyk9ptlMZozExMBUcg+jLGupqWSUUou7mT+fxh4OhSF79KABi9oDsayMBmq+1NtoAh07Ut3Vjz8GiuqzYYYW7VHm3g9dmS0Nw4QCChddRGMUj4N9e7eR/Hxg7FjIXbvx34NTMXIkVXv36XYKk/suPZ10huJ1ZEXp25ojbhR31Q8+sKb82qfpDAOi0bDmHzz9NF2vsjIKYVi2DNjyRzmekI/i0ugvkZtL1kFLjUscOUIWmHvvVRljjxpFyufoUdvkB2gcn5dHIgcmE7B0KTLbm/D0kO9p45w51n1zareT1cbNAD4tjbyRZs8GflidSWpHUTAff4ydnSbgpld7ID4eMEodZs1yf2kOHiTr5/PPA3GjBtE/W7f6d33dMGUKJd/q3Rs4e9RhEk5Tpzrec7ffDtTX4966x9FGHlWPXYyJIWtORQUJF7V4G4WuXalvdhcQv24dKdK9e0lt9unTvA/pDrXfVWws3eh9+tiynAaCAQPIMqQIJmf8nWBS4m4iJKkAixuGaQZNDefwhaIims0rKABNc+3YQTM6bujRw3YcABY3zeHvv2mpMnt25AiwcksypolfrMU8rfz2G7lhZWeHVaX7QJCSQrO0S5c6rjcaqc5GmzZOH1kIEjCVla4zpgGucaPGww8D110HHDTQLGx73TFgxQrXHRsbyXffrm5UODJ0KI1Xv/xSpd/p0IG+gJISxwF/bS1WYji2lbfD1VeHuMEBQJlA//FHpw0dOgQmG6SUwDvv0MXs2xcmEYUPNVei/7u34KGH6JKefDK5m40eDYjVNJlRrDsJv/xC7TvjDBrzlZSQxdBqsHUeyN58M4l9xR3ImQ0baKCuZAKbMYOCrI4eRUEBMDR5h0u8jTPdupFwuOoqoGTQmSRu6uvRWLAMl5g+hk4nkJtL7X7lFQr1cObwYRJpKSlUjsVjEcfCQpvrmx/Ex9PPX/xmsUxNneq4Q9++wNSpGG38AyZoXbcrTJpE/W1trXq8jYKyzdlFy2Cg5+rJJ9OH7tWLnrEqiSIikrFjSfWqmXvLykhY+WohGmFxw4yQuBsWNwwThhiNVPxMscZg40Z6EOfluT1GETfWpAIsbojqat8qUNqzfj094FQecvPmAVIKTOu+jcSN/Ujz1VfpmHbtmt3scEOnI2OU88TjypU0hlINVE9PJ1cpZ3NPCMSNEDSL3VZHs9cd+6Sqi5v162l0GqbiRhkjC0GDzUWL3JSyUDqLm28GpER+4Sw8vfVc/BdXIyHOjAsvDGGjA0BBAY2n+/dXsVZpNOQz1QzLTX7hLNy/9nya1b7pJuzbB2zS5eEG8zvQNtThtwUS/fo5GRdXrYIJGmzX9kNmJvUFBoOtZubdd3tw09JqqV84dkzdmrlkCS2V9IszZ5Lw/t//aJC6b59qvI09Gg2F+DQ2AjP+uRfGRjPm/90Oj+AJrCnNwvvv0+fp3JnGqC+95HqOe+4hI1LPnpbJip496bfhPJHjIx6NgPPnk1vU4MGu2+64AwCgTUl0nwVj0iRaSunZcqPEryiuaatXU6KY1aupnswdd1B11Q4dWt2kFFJTqX87dMhxvVLA09fPO3QoLSPENY3FDcM0A73ee3HDprB3L43HreJGcZPyIG4SEuCYDjotjVaeyOKmspJGHr4WcFP4+29Vl7T8fBrAZGYCg8cl0cNRsUps3kyWm8zMyIna9pP8fNIp9fWwjlrmz6dx24oVKoOY9HS6Fp995rg+BOIGIEHWJ34P+sTtwejJCeR+4jx7G+bxNvZcdBENPMtVQr0QG0sz1L/8QjEWADqY9uNLXISLLpLNcuFvSc45B/jzT5XQQTfpoNWs6e4s7GcbvoSxQzZe3Xsu+valCe5pbVfgH3M/nNpnv+sBK1eiWNMD9YKyvPTpQ54/JhMZZdzU9LSRkUHuUWpp7xYvJvHy11/0Qxo4kPr7OXNsgW5exA1Az4y33wb+LOqIp/AQohtr8Dzuw7XXknsdQF3bRRdRkL+9IWnJEnLlzMmxy6Oi0VCA0GefuVxEa1yRvxQWQrN+HcWFTJmi3l9OmkQPNE8ZJwcMsMXqeLLcKMLnwAFSy8OH0wdt25ZiXl5+OWwnN/xCTUkqn8vZ5O5vH5ycTDeFp2JnYUTrfAIzTAgwmcigsm4d+VkrY6ZAuKopAsUqbgoLfUoN2bOnnbgRIjiVvCOJuXNpMKEahe2GujryL1cRN2YzTbyecQYghg+jf5Qv/rXXaICZmRmgxocf+fmuhph58yikQHVsoNPRAOLLLx19tUMkbgBAKyQyoiuhHTOS2qC4HCosX06Dn0D6uweJ3FwaULvzbEJWFs2C33orEqUeO41dUI0kXH1t+MYSeeOcc+h399NPThs6dWqW5SbTVAKdsQ7DxSrceY8W+fnknZSTIxCNRmtSAStmM7B6NXq01zsM6EePJg2Sm+tDCFlyMt1nloqs1rFoYyNV5Bw/3nH/mTPpAaMoOw/ixn5ce+mlwOWXSzyJh3ERvkSvjsfx6quO+z32GHVdzz9Pv+tTTqFEZd26qTxmhg8n12iVpAJNpZdpC8UguXM5E4Lc8DxlLtNobJYuT5ab+Hi67lVV9B28+y4FFvXp47a0QqshKYlmn5xFT1mZb8kE7LEGiIU/LG4Ypon88Qc9k5KTgRdfpDFFEy33LriImw0baCbPiwnZpdbNiS5uvv6alopTvC9s3EgPcZWp7qoq2jRtGmg2EyAzfWMjFeq7/PKwLATZXJQB0ZgxdAsqk4BlZaQVTjvNw8EZGWRq+P13+t9gILEZJHHj1g1m5Eha2rumSUniZvTooLQl0ChZ06qq1BOjQQjgvfeAw4dxXf1rWGSegF5JpdaPHonk5ZGRxsU1rXNnGqA6++h5iQOpqyPj1sHaFAzHapQa2+PLL0k8xcYCxYm5dB3Xr3e8l7Zvpwv/zDMuN1hSko+hC0pF1gULaGCvsG4duQBMmOC4/yWX0ARBqaVGk+J77AOzZwtk4gCOIxn/+0rnMobv1YssTW+9RfdSSQl9xNmzyVLm8BGVvi5A8RYFebfj7fSH6XqcemrzTpaRQcLF27XJzSXXqr/+Aq69NrwtNYFM6CEEfdbmWm4A10ytYQyLG4ZpIt98QxNHAwbYsi6OHAnsXlkG8/oNzTp3UREZDtq3B42m//nHYzIBhR49nNJBn8jiprKS3MSUmb1FrrUaVFFm9lUsN0eP0rNi4kRQ+s74ePriDxygadDbbgtEy8OW1FRb3I2S/hZwP/kKgPzl27Sxuab5U18hEOTl0at9eyqrbi9uiovJFz1CxA1A4gbwkOF98GDgttvQ3bAVa3Ayrh6xJaLDCISgwo+//+40tu7cmcTpfkf3MSmBSmMiFiygn//vv5OWPngQOOss8pScNg1YYx6M6eJnbN2uxYUX2uaN6rSJZDFwFkiKuVIJsG8qGRnkc/zdd7Z1SryNs8m/XTtqrMlEA3g/rAyJicDQ+K04N/ZX5I1Rz/r4yCPUlKIiekycf76biQpncSMl9adbtrhcf585dozO29y0y+npFOzu7dokJISnlSbYmQkLCoD77iNvBCVDmtlMHUio+uAWgMUNwzQBkwn49lsas2m1wOTJwKZN5EVQ0tAe+w3NCygvKrIL6Ny1i1wCPMTbKKimgy4r862AWWtj7lya1e3Shawpvoqb9espXknxfbdw7Bg9D6x1PXU68teuqiJxM2UKZflp5eTn06VRvP3at/eiuzUa4MILqWphdXVQa9x4ZdQoEjdKnJQSbzN6dNikP/ZG795kJSgpUS8hBADy8SdwA95BMqpwxUWR/9s/5xyyLowYYTf+V0kH3dgIbKntgg01PXDaafSTnDyZ5oZ27CC9cuWVwPznN6Ac6RgYt8Oh7qP1FsjLc3VLUzLq+RD34paCAkp9fNJJVtc0ABRv07+/eiKSmTNpaa3m7DsVURk4GOM+FqVbN8qspkzauE0P3b49iavKSnK/7dOHYmKU/NeqQWAeaGwkoeRxVqQFiJA+wG+UWag//qDlsWM0iGFxwzCMPcuW0RjtzTdtfWFKCvDf/wJJ2hqUN9qZvJsQhKOIGwA+JRNQcJsOuqmzaxGGw6X++msKRk1OJkWyaJHnIm4Kf/9Ns992090GA1UBb2y0lRQBQDOP1dW0gyW7T2tHibupqqJnpLt4YAdmzKB0rT/8YBustcSDdeRI+uEqo+Tly+n+6Ncv9G1pBj160C13993q2z/6NhHLMBaP4AlkTAlAvaUWZswYmqB3GENbfojP3rgP+fn02/zXv4ByYyq6xBzAihX09f75J4nvoUMpMdqbbwJTit+BhMBK3Rj1Nxw0iESTfa7klSvJatPcZCFK2rslS8ic1NBADXV2SVM4/XQSFkHKCPHQQ5TgsVs3CtlyS3IyXY/bb6f+9OOPqZ80mymdtj8o1zXcxE1rZfBgMuUpgxV/CnhGKCxuGKYJfPMN+WefcYbrtra649CbElwyL/pKYyM9hB2SCeh0PlkFuNaNhaoq8kk5/3waTKSl0UDCWyG6xkaa5h082CqUpCQX7aVLadLWwVVbcdeIj6cpYqD1zv5ZGDuWLun+/eTS4tP4ZNQoGox+9pktsUBLWW4Am9/m8uUkeMK4eKcaycmk299/3xbKpHD4MHDXXUCythpzky+jmksRjlZL9WOOHqWxNABrFq329XthNpOw+fZboHtsKTrHHsbIkfR1jxljs7YKAatL2F9Rp6BBuLGGKAV4lYmlmhqKxXPjkub3T/7ii6ljGTuWzllX55pMQCEqijIdeMoG1gxyckjre82Dkp1N6mftWhJ6l11GgqtNG1KM/ngHHDxIgm3IkGa1vdm08r7aSlSUzToNtKz1PESwuGEYX7GMds1meohOnaoSltHYiPtNTwIAfnlmAz0U/aS42FZnAACJGx+rFyck0EPKpdZNcyp5hykeDWKKS9oFF1CHPn8+rffmmrZ1Kx03yDbb/dRTNEn5xBMqz4LRo2nElJPT+uojuCE1lYyIyuSrT/HASlHC33+35U4P0YPVYfzSvz/9aJUkEJs3R1S8jT2dO5PYvvZaSyiE5YPefjtd4pPiSlrVLXnOOdQvVlZaVsTEAB06oG3pBmz9qxLffktlprpEH8BJpi3uT/THH8DhwyiI8nDjKlZyxTVt7VpSVUohw+bSpw+Zk44coQ8khM11SA2ttkn9i6+pmn06dXIyzZ45C5LsbBosf/65b41av54mn7KyvE8qnCjiIxTk51OM1OHDoY97bAFY3DCthvzUQuSnFgb9fZYvp4mnCy5Q2bh4Ma4zvo1O2Iu5b+yhNJb//EMxGb64RMEpU1p+PrBwoU8uaQo9ethZbrKz6cnVyi03u3ZRqYLCQstn//pr+uzKTGvXrvSyiBu3wkhJJmApKldWRkG3l19O7hsuZGXR9HCHDoH9QGGOcu2SkjxnanUYnMyYQaPTQ4dI7LREcK9WSwPU48fpJSVN7UcgWi3wwQf0077/fvpOcnOp5uMDDwAJWrV0apHLpEn0mTdtIheqU04BZjTOwdPG+1FuTMUrrwC332rGA3UP4d3qGcDPP6uf6KuvgIQEPDH4R/cD/4wMmiVSkgoEKpmAPRdfTPfg4cM0mWIf/BNJpKZSVp1XXvHtGffqq/RFduwY9KYxdiid9h9/NN1yE0Fik8UN02qQEmiUwXcv+eYbmjScNk1l41dfQWi1mN5hLX6PmYa6624jc31REZl7fMBB3BgM9PIhU5qCQzro6Gh6iESYuPFFqBqNZOXKzSVBd/fd5N1x4ADw57xqckmz94+fNIk6ZqPR9f3yLX2/UryzZ08cO0apUceNo7IIbmc3Iyg9ZqBQnpPuCoer0rcvDeJMJrovW4qRI8m0UVFBgyzFtTACGTWKEvS99Ra5bBUVkVHg/vubUWAxTImNpVsoO5u+QiGAv+rzsB0noXvsfgp5e+wxTGj8jX73Dz1k9WGzjsmMRuqHp09XyXfshH1SgVWrqGP1qOT9REl7V1fnPt6muYRiMCoE+UFu3kxpQz2Z1EtLSX136BD6fjOCBuZBYcgQmlBaupTEjU4XuYLaB1jcMBGLfUzEDz8A66p7YeXxfjarhf1OAcIsBb75htJlusR3GgyU3jM9HWe2+wt1DVosmvw8+UvHxFC2AR8+UFERxXWkp8Pm1uan5SYs0kEH+No7U1xMH6ttW5oM3L0bGBa7Ack4jruMz8F8/oWOB0ycSO4QzkUc7Vm/Hlt7nolzztNg40ZKUPTddzaPwBP9+aigFA/322A1YwYtW1LcKHE3hw6R2ArH9LB+8NRTZMnYtIli0997LyLqkTaJNm3os372GY3Rdt/0Mo4gAznRh8l39Mkn6aY86SSKl1HqXCksXUpZCVTN7k4MGkRuqnV1lB4wkFYbgCzJykPEXbxNiGhyv6YcePHF1CG8/LLn/WfPJsHpMXNBE9vAeMY+7qasjDLzNTc5RhjTej8Z0+qR6wtxdM0uDBtG/tgSgAZmPP5o4KooO7PyeF8cOODm2fj77+Q/3a4dxqVuQGKipaq2EGT+XbDAp0KSDmmglfgEPy03gFPcTZhYbgKld8xmGqOkp1NfffvtNFbQColbNG9iDYbhq71OgxFldtRN3I2h3oxrV16N/oWfYNEiyiA9eLCf1okThPh4Gj96rcjuzMUX07IlC50qcRMmU8TG29iP5xISbPMmmZkR+5GaRqdOiIYBpxgXAddcQyKhZ09yK8vNBR5+2NFSa3FJ8ykLRl4e3SPz5pEQDlS8jT2ZmfRbGDvW837hPoCPjgZuuYVcqJVnljM1NZRV7eyzm5TWmgkA48bRLMjXXwesIGu4wuKGiUiqq4ENNT2wqbY7ysslPpxZgCJzD9yFl/D5/wQ2j7keePFF+gH7GOvilUOH8PX2XERHS0yfrrL9q6/I5JKWhhhNI047jcSNWQqaTZQSmDPH69s4pIGurqYHhx+FzpRjL73UskIRN4G6DoGmCYpnxQoylDmXhUiQejxkfhx57fbj/gc0jgl82rUDBgzA7p+3YNMm8jg5+WRyF1+9ml4fGS/BLZO2YdcuCtiOsCRa4U9WFqnGloxRSk0ldQa0GiWQn0/edX4UsG8dWNJBP1z7AJl0vv2WZqOFIJNWURHw0Ue0r1I488wzfRtcK0lFrrmGlsEQN+3bk49dkNI8BxRvAuv66+l35Vx2QOnfP/6YXEHvvDP8xVprRXnO6vUtO8EUAljcMBHJzz8DVaZETNYtwnZtP8ycMx6ZydW4p/v3SIxqwGP/nAvcey+5IP3zT0AG9muKUvFN3RmYknsAyclOG+vryTfunHMoYK+gANOnU+KBdfqT6GE6cSJFAFtzmbrSYI7Cvn0WgVJTQ+LGJSWbZ7p3p2VdnWVFp07UPn8LrQWB48cpcZunrKF1G3eir34lejRscrvPN9/Q+MXZqvJL5nWIhQEvP1yJvXuBN95w3L5x4KUYs+J5VFVKaDSkd7p3t1TzTi3CdvTCrBcbVWvpMQGic+fmVyVvLsoPuJWIG4C6mNaUHc0nLOKmRiTSQ8E+hmD6dHIle/xxyj4wZAj1gRde6OZkTnTtSrMbFRVkohwwIPDtF6L1fGlt2lBF0MOHyT/SHinJd3jYMJtbKBN6hg61CfuWdA0OASxumIjk1x8NSEUFfjVORnRCFJlI8vLQNjsOd/xfHL7RT0Hhb4cpRW9lJQWPNgezGXpzPPYjBxeUvuYalP7bbzRyV4JEQbXXNBrgp2n/oVmqq6+mAjZLlqi/h9GI3QdiYTYDPT95hGaYa2v9ntVLSKB+y0HcAC3ummYwkAv7nj3kheHSHCmx+4VvMDqvGm+bb0BpfVvHInoWlFTcZ55JxVQdKCsDoqMx4ea+OOMM4Omnafyan09u86d8dzs0MOOS7qswcCDw66/A998DfQ2FuK3mWXSNPuBTPSEmwsnJITOH1+IeEUwrnB13+Ui9ewMZGUgZ2MXVbCUEdQAlJZRl5MgRmsU47TTf3kyjsU0sDRnS6me6A8Ltt5OQWb8eeO01W8yoku3izjtbj5iLRKKjbRM6rfx+ZnHDRBxmMzD/VzNOx694LfY+6kinTbN2mnfcQRN4j7zRjmb2dDrXKXx/2bkT8zAVOjRi+qF3KaLVni+/pJmriROtq9LTqR+ZO9ey4pxzqGFqiQUsge5Fu+gz9Ew5DNxzD9XlUMSJH8TFhZ+4eeststjk5FAWsiFDKPwlv3AWpq1/Ej+PexFD7puIYk139NDuxgJMwY5rXnA5z+rV5Plw/vlOGxYupFnW7GxAo8GLL5LhSyk0PmkSkN5ei2XafJy69z1bmlcLPc3byE/f0un7PDZshYPIVk98fGCDmpmWITqa0sPZV9a1/z1OnEixdvv2kbg56yz/AsUUcRMMl7TWSPfuZOGKiSGh07kzzWaVlNBz6LzzWrqFjOKaxpYbhgkv/v4bOHI8FhOxCL9En+OS8SM1ldIC//QTsKqmP/n3f/+9T8H8blm9GgsxCenaCqQO6QE89hiZIgBSEXPnAuee6zIbMn06Je3Ztw/0UJ0xg/y+7S0SZjNwxRVAXR2K2lNgac9F7wDPPEOpwJqQ0SQ5mdxqKysRFuLm2DEqgpmWRq7xa9ZQzO/kyUBDrQk9jq/D9D/vRdfMBvy9NR7t4muhhQmvfZ9DVjE7vvmGLrND3JPJRF96bKx10NqnDxU4PHCAYih79gSWrdCgy/D2GGxc7dhAKdHTtM1a34ZhIg3W2G54+mkq2Go0+pYlzR5F3AQ6U1prJi2N4pWWLSMXtL17yavhlltOyLT5YQeLG4YJT+bNAwTMmJ7yJxYNuse2we7pfuutZDmZuvF5XFz1HzKVv/12k9/z6B+bUYhBiNM1UqDqnj02C8y8eWQisHNJUzjzTFpaDTpXX03+yMOH2zqZF14AfvwR6N4dRZpeaNOm+Rm62ralj/zrr6CTxceHXtyYTBR0pNfj6afJOLV0KX1FvXpR6YjzTt6HlY1D8Bpux9XTD2P5zg7o2kOLaI0RGVEV+FBchWNX30N+bPn5kJLEzeTJjpO1+OQTUpFduzqIwcceI7f5pCR63/btAUyahF6mLWhrPmzdr6DPjUiRVSxu/IAH00xEMGIEdYg6HTBlin/Htm1LkyW+ZFdrCq35R6S4LQwdSv3yTTe1dIsYgARn376u2XhaGSxumIhj3k+NGIq1aJfmWoxRITGRCtlVGJOxrdvppDLefdfOV8s/li6lhAQpuhp6QI4eTSJn7Fjghhuoo1DJ+NWrF7mIHT1qWZGXRwPogwdJfSxcCDz4IAmjrCwU1WXZMqU1g+Rksm78+CPIXa8l0kHv3Qvs2IHdfafhjdfNuPJKIPeWfGtxosS3XsCXqzrjYfEU8uK24v25GQ5JjDJjjqFOxuE/+8+gojYA1q2j0zq4pNXW0jUcPtylw27fnmJY8/LIogcAOPVUaGHGt/opturaW7bQNiVDEsMwrYfevanf9Td3eVQUxfL4mdSFsSMhgZ4/SoZCpmURotXXuAFY3DARxrFjwKp1OkzFPJqt9zDrdeONZHnduxdkEj96FPjiC//ftLERi3d2RkJUA1ZXnGQLVD1wgII/jh4lX2I3Jve2bck9zFpU8+qrKdDy6FHgX/8i/6n33weEQFFddkDEjRBkufr1V0vimlCLm6NHUVtyFIXawbi/4l5EGevwROwz5IInJXDzzcB990FcfDH+SpqMlGjH7DoFlXlYo++NyZOBN+Lvg6H0MFBVha+/psusWMQAAK+8Qt/FSy+pBqtGRTmtHj2aYpm6dQMuu4xSE5vNZN7xo54Q00Ra82w1E57odFxbhWFOIFjcMBHFb78BZrPA1OjFVKTEA/HxlAypshI40Gs80K8fJRbwNy30xo1YbB6HsX2P2UJqxo0DTj2V3NPMZo/pRdu1o7d86CHLiksuoVmTzZtJeXz3HZCYiDpTNEoa2gdE3BQUkF6qrrYkZ/NR3ASqyCZmzUI8avFg9Iv4uuYM3DtoITJnP0jJHzZtIhfBe+8FPvsMjcK97++ddwIHa1Pwpe5SyO078M2XRkycaHHby88nE/tzz1G805gxqgNnl1VCkOLMyaH7QXGdaMrMLsMwDGODJy+YMIDFDRNRzJsHtNVW4ORRUZSRxQtKOY3vfxBkvVm/ngaxfozgDy7cjK3oiwlTnd7vqadoGRVFdRTckJxMbttvvAH88gvIFUpp2EcfUal3ALvepsB5B3HTjAfFhAnkEfDDDyBxc+iQa/2BYFBZCbz+Ogq0E/CnYTg6dgTu/vMs8pFraCDz25tvAs8/D2g0KMi7HQV5t6ueavJkcg9+RXcP1tf1wu69Opxf/g7VEpKSxGVDAwkchmFOPII5mOaBevPha8i0ACxumIjBbAbmzzNjsmketOPG+HTMmjXkbv3ttwAuvZSERWmpX+9b8GstAGDCeWmOG4YNo9l/H0rZd+tGoR1XXkkaAz17UiDIOedY9ykqomUgLDcAGSGmTiXDhDmHit15EmEB4403gOPH8YjuGehNCXjySRJZOPNMsrYNGUJuaT4gBFlvCuv74Pak/0IrTDh750tkOVu7lmKXbropcBeNYZjWBw+wGeaEgsUNEzGsXw8cPqKheJtx43w+7vzzKUvXkdoEqqB85IhfFozF/6QjVadH3iCV4mPdunmtl1FQQIaG//2P0jNfeSUwbuObyC/+0GG/u+6iZSDH6WedReP/NbX9aEV9vcf9jUYq4m02N/ENjx8HXn0VW/JvwvKGoUjV6jFzpt32qCjX4FwvA48ZM4Ao0Yg/9YOQP0GL9AP/kM+dRkNBVQ8/7H87ebBzYsPfP8MwJyonQP/H4oaJGObNo+UU3WK/iqqddx4N1n/8ETaLwYEDvh1cU4PFFXnI777fm3HGK337Ai+/DMyfD5Qa0l2219XR2N8hxXEzOeMMMir9sLEbrfAg6qQEtm2jUKCrrqJMzn6Rnw/k5aG2oh4X7nsRWmFG7/i9zb5usbFAZnQ5AEuWtPh4SsoweDDdB+mu15JhGIZhmBMTFjdMxDBvHjA0YQsyhnf1K/PNwIFkYPn2W9AfqalknvCBvb9uxm50x/hT/B3pq3PjjVR8cnd9JvSmOKxcCTz5JHmLlZUFPltmWhoZuX4ssCgmD5abDz6gBG4pKRQKNGMG1b7zGZMJ2L8ft2R9jy3F8egdtxcxGqd03U2cMcqOKUdOTBlmzLBbKYRqdrQmcQLMZDEMwzDMiQCXi2U8owTet/DA79gxYOVKiQfld365pAE0/j3vPODVV4GKCiCtbVtg1y5g924SOx5Y8u0xAMCESzqo7+DndRGCan9mZ2vwd3UvjBxJ6wYPBrKzLUUmA8zZZwO33qrBjtgBOKl8F4kQJ3PKzp3AbbcBqVo9BshdmP5iHu65h7TQl1/6lLsBb609GcmNnfFB6RQ8+CDw1LJrLFsKmv0ZdINy0Q2UrZlhGIZhGMYdbLlhWhYfcw///rslBbT8xW9xA5C4MRqBn34CpQEGgJ9/9nrc4pXxaKcpR79xgXN9ateOXNQyM0k4HD5MsfHdulkC7wOMUhPmx+TLqL7OnDkO241GyrUQFQX0it8HIYC776aEZj/+CHTsSLVK7XH52qqrMbh+Ba7Duxg7FnjsMQTUGqJ6Kra2MAzDMAzjBIsbJiK47TYgQVOLYZp1wMiRfh9/8slkGfn2WwCrVlEKtZ9+8niMlMDi/T0xIXN7wLyfFFJSKHHAhRcGP2Skc2dg0CDgqaM3YJN2ABXc0eut2595hi7JO+8AqeI4RjYuBTZvxs03mPDf/wIVFRKrlxswfDgwcSJZgrZupficyy6jsj0X5W3HJfgcEhp8/rnbeqYMwzAMwzBBhcUN45EZ6+7EV39lU4axFqK2ltzSxmpWQDt0UJN8kzQaqvO4YIFlXD99OqVQO37c7TFFq4+h1NQRE4ZVN6P1vhNMQ8RZZwHHTQl4MeYhykX9/PMAyB3u0UfJcnPR2Q2Yrzkdz9beDvTvD6Sm4qqP83GX7jV00pTi/9u79+iqyjOP498nCYEQIAQCKOiIFRCV2wgWK6BgvaFg0SoF6wW06jhF69TWW6fUtmoZtV0WrVq7BrSCWktxCoroQoiABRUkeEGkVLkIiKAhSICYyzN/vBsJ4ZwQLsnZCb/PWllJ9j5nv+85Dy/7PHlvrVqFYWoffRTeti1b4PXX4a2521n6r2zc0uiS/QlHHVU7r0FERERkX5TcNEQJhnrVeOf5yg9csYIHi3/AJV89DeedB0VF+1XmPm3bBitWwOLF1SYZ998fJrb/tOzeAxqStst3vxsWC5sxg5DclJaGbCeJOZM3ADDoopYHXGZcDBsGYLyYdSk3dZnJ9eM6Mnr4NpYtC/NpHh5fAaNGhYylU6ewosCoUbBzJ/eW3cby8k68NOovvP46vPMO9O0bFir76J1t/DOzG8s7DaVL8w3kZtRNIigiIiKSiJIbSezDD2HgQKb6RWSxg3EF51J+wYWhG6WqTz4J6wevXLnv6+5KgubNC7tabtgQkpyoJ6GqtWvDqc45n3Emcw5qE8p+/aBtW5gyhTC0rVWr5EPTBg5k9v9+zFGspdOFJx5wmcnU9XSRHj2gRYuwoMJTn57N38uHMPvFnWRkwAknQM49t8Kzz8Kxx4Z9e668MmzGuXAhmf2/SXpO87B82nPP7XnhO+6AVatgwgRKrOYr2ImIiIjUBiU3h7GknS3bt8OgQby980R+yCO4pXFHxb2c9fpdrB183e69Utzh6aehe/ewtPK6deH36lRUhJXKzjgjLBPWq1fIOH73u5DJVHHHHeEprzS7OBzo3/+AX296Olx0EUydCgMGZcD554dunAQbupyx5EFe2d6PM3MWYy3q/xJdZmHezYABUFiUxqd3PsTq7W24gqe4ZvlPwgY8N94YYlM160pPDzE+7bQwwWbKlJCc3ZUfVh246SYYMID8Lb3I39Kr7l+ciIiISETJTQM0sOBBBhY8mPCce8hDli4N81j22tNx+3ZYupTNpTlcnDWDDCunT7PlTJwIbzXuT8+545nS5obwQXfEiPDX/BNOCDP2W7QIG7msWpW4YitXhiFon3wC118fKpGTE3oL3MNE90oWLoTJk+GWW6Bj8fthZ/uWLQ/qvbnkkpAsFRYCQ4aEjV0WLtzrcVvLmrKFXM7slrq5RrXq9tuhXTseLbuWMTt/u3ut7EQrJ+Tnh562GTNCj9eIESHmgwfDccfBPffUefVFREREElFyU98k6m6pfKykhL6l87io5BkoL2f9+rA54/vvhxWxsrLCUsS9esG778Jbb4V9V7zCQ5dGQQFlFWmM7PwWn36eyfw3M/nH1u6MGgUF7zWi87+VcOmXExi24FYemnIk86/7M1tfmMvApm8yomtBqMPll0NZ2Z5Vfffd0G3w1VehF+DRR0Oykp8fkosf/QieegqWLAFCAnLzzWEZ4ju6TQ9zQQ4ysYHQYdSoUVjp66bZw1iRfsIeQ9M++CCsAFawvTMtKOKc8xvosl/Nm8Pdd4fsNicHJk3aa++bvTRrFhKcvn3DG7hzJ0ycWDvrV4uIiIgcAHP3VNfha3369PFFixaluhpAmNqRllZphE6izSxTscFlgjIvyJlH39L5jB1aQOmLr7CguDsvMZiX2l/D0vVtAcjMDJ9hr7oqTKno0AHuHr2S1TvbUVTenKHt3uRPG4fSLruY25o/wn2fXsmECTB69J7Fl5bCsKyZLCj/JoW0+vp4kyYhcTq7y2py33iJ3P7deG59f/Ly4I3xb4S/8mdlhc1dsrP3fs92TWTv2RNmzWLSZOOKK+CJH7/DVQ/1CQX06AHz5x/0W3jKKbBmTei9KS2F87LnseroAWzeHDpysrKgX8mrPFl+OUe+OS08oSGqqAiJZm7u/r2vW7eGTXmaNUveSyciIiJSS8xssbv3SXSugf5Z+uBs3x56NPLywgrIbdpEJ8rLd0+A37YtrB6Wnh6GVEXDeQ4036nx89zDX8yfegoWLICFC/nj1s94hXO45O+XM8snUkRT0imj34YFjPtJGoOvyOPGG0MV779/96Ue/UERozP+BOlw+8Zf0i37Y5qWFrHm0yO54Ya9ExsIvR4v9h+HO2x4Jp+CAigoCCOaSkpg6ZZjKGwyksL5WZQCqz8q45cDZnFbh3Y0mT1jr4v27x/e7+nTW3LEz+8i/eYb+a9ur/DIynPpc/xWrvjDqWFZ4qZND9nmKdnZYVTVs8/C46MX8OjMTny6PITyzjvh5jaTybv58vAPoE/CdtMwpKVV+se9H1q0CDERERERiRt3j81X7969PQ42bXJv184d3LOz3X82ep1PT/+Ol2PhYNWv3r3dn3jCt362w49pvN47ZH7mc+a4l5VFFzzjjPBVWZVj/fq59+zpXlKSpFLl5e6TJ7s3afJ1uZ9nH+03HjXV0yhzcG/fvsKvucb9xKYf+dBmr7rn5LgPGOBeXr53FbZsCefB/bzz/P2X1/rJJ4dfW6RvS16PJPa4/pYtXtHxWF9Kdx/Osw7ux3Us9Zkzw+mSEvdp09yHD3dPS9v9NjZqVOHHZqzxTqxwcJ/f+Ez3bt1CQGrLypVeQiMf0/5v3q+fuz/3XKhUbm5470REREQkVoBFniSfUM9NAnl50HXHEi5osozipkdyz8QzaclEzk6fzf/ctZNjO3oYkjN2LOzYQXnxTp4YNZef2WA2+pGkU8agQdC2dTkXDylh8VsPc5x9xDMzZoR9XVasCJNgOnSguBjGjw/zYcrK4IgjwqT3yy6D038xiDTzUM5Pfwpvvw3NmlHWqSuPD5/Fzx9rz5b1xhGZmzkyczNvfdIVMxg4pYittArdKVdfDY88AozZ/QILC+Hcc8PwouOPhxkzONGMhYOgR85qWmVsJTOz+369Z3v0OOXkYE9Ppsdpp/GX5tdy7ROD+eEdLTjvvDA0rrg4vNa8vPB6c3NhzBhYs8ZYPR9Wz9vIMJ6n3zGfwKy54YG15bjjyDyhE1dteJSsrU3DAgnf+lbo5krTlDQRERGR+kRzbhJZvx66dAmfwjt0YOmIeznn9xfwWVlrAE48MewBOWRImLNxyy3OkiXGabkf8NvCUXTjfV5iMH/lUl7kAraTTQuK+Davcg6vcG7zBXTYsZI/lY3i19nj2FjcnFatoF076N0bnn8+FN3UtnM6c+nqH5CbU0Huhafz8F/bsu6rthRXZDFwIPz+92ElXtidYAxsWRB+L+wZ5rrMn8+Ik97l06xjyZ+yGc4+G5Ytg86dQ+JQW3OG+vYNk33mzaOkBB54AH796zCqaeJEOOecMMxtD+4sbnQqR/gGOqz+B3Wy3f2tt4bKmYV5PXPm7Nr1sm7nU4mIiIjIPlU350bJTSIVFWHvlby8sB17ZiYDB8KOHTByJLzwArz2Wuh9ADj6aLjvPvje98C+dWrITMaOheJitheWcPNtjSio6MnGvG6s2dgYgHTKKSed03mN33T9M482v5W1TY8n/+USiic9zwvj3uPplaewhH9nS+N2fFnS+OvqNbavmPzXTC6+OPHKvXtM4FmzBk46KSQakyaFxGblypBBjRu3+3G1IcFEohrNLdq1UefcuYe+TonMmxfKzMoKE+Tbtq2bckVERERkvym5ORBVPoVX/VBeVBS2eiktDdu1ZGUlfl7lYz4nnxUr4OWX4d57w2fopb+Yil13bVgtrG3bsGjBpk3QuTMPr/0OMzMv5IWiAZSWhodc8I1lNEkrZW5Rz5q/lsceC/vPZGSErpLp0+Hb396/96Mu1fUqdO6hO65ly7BIg4iIiIjElpKbVNvXh/V168KSvIWFYbzbmDFw1lmHbs5HRQW0bg1ffgmzZ+/uGZHdUrGst4iIiIjsNy0FnWr7+sDcoUNIbtxh2rRDX35aWrh+WZkSm2SU1IiIiIjUe7Wa3JhZF+BJoDXwOXClu/+zNsust157rXavX1fzV0REREREUqS217p9DPiDu3cB/gD8sZbLExERERGRw1StJTdm1hY4GXgmOvQMcLKZHcCW6CIiIiIiItWrzZ6bo4F17l4OEH1fHx0XERERERE5pFK+BbuZXWdmi8xs0aZNm1JdHRERERERqadqM7lZC3Qws3SA6Hv76PjX3P1xd+/j7n3atNGINREREREROTC1lty4+2dAATAyOjQSWOLu6p4REREREZFDrrb3ufkP4EkzGwsUAlfWcnkiIiIiInKYqtXkxt2XA31rswwRERERERGIwYICIiIiIiIih4KSGxERERERaRCU3IiIiIiISIOg5EZERERERBoEJTciIiIiItIgKLkREREREZEGwdw91XX4mpltAlbvx1PygM21VB05NBSj+kFxij/FKP4Uo/hTjOJPMYq/OMToGHdvk+hErJKb/WVmi9y9T6rrIckpRvWD4hR/ilH8KUbxpxjFn2IUf3GPkYaliYiIiIhIg6DkRkREREREGoT6ntw8nuoKyD4pRvWD4hR/ilH8KUbxpxjFn2IUf7GOUb2ecyMiIiIiIrJLfe+5ERERERERAepxcmNmXcxsgZmtiL53TnWdDmdm1trMZpjZh2b2jplNNbM20blVZrbczAqir3NTXd/DVbJYqD3Fh5l1rBSfgihmX0Tn1JZSxMweMLOPzczNrFul40nbjtpV3UoUo+ruTdF5tak6VE07ShoHtaO6laQdJb0vRedj1Y7q7bA0M5sNTHD3SWZ2OXC1u5+Z6nodrsysFdDD3fOj3+8HWrn7NWa2Chji7u+lsIpC+A+IBLFQe4ovM3sQyHD3MWpLqWNm/Qn7sM2jUgyqaztqV3UrUYyquzdFv69CbarOVNOOVpEkDmpHdStZjKo85kGi+1L0+6pkj02FetlzY2ZtgZOBZ6JDzwAnV/5rjNQtd/9i180jshA4JkXVkf2g9hRfZpYJfB+YkOq6HO7cfb67r618rLq2o3ZV9xLFSPemeEkUo+qoHdW9fcWoPtyX6mVyAxwNrHP3coDo+/rouKSYmaUBNwDTKh2eHA0JeMTMWqamZhKpGgu1p/i6kBCbtysdU1uKj+rajtpVzCS5N4HaVFwkioPaUfwkui9BjNpRfU1uJN4eArYBD0e/D3D3nsApgFU6LnVPsahfrmbPv44pfiIHruq9CdSm4kJxqD+q3pcgZvGrr8nNWqCDmaUDRN/bR8clhczsAaAz8D13rwDY1b3p7iXAI0C/1NXw8JYkFmpPMWRm7YEzgMm7jqktxU51bUftKkYS3ZtAbSouqomD2lGMJLovQfzaUb1Mbtz9M6AAGBkdGgkscfdNKauUYGb3AL2BYdE/cMws28xyop8NGEGIndSxZLFQe4qtUcCL7v45qC3FUXVtR+0qPhLdm6LjalMxUF0c1I5iZxSV7ksQz3ZUn1dL6wo8CeQChcCV7v5hamt1+DKzk4D3gBXAjujwx8AtwN+A9OhrGXCTu29IRT0PZ2b2DZLEQu0pfsxsBSE+M6Pfk8YvdbU8fJjZeOBi4AhgM/C5u59UXdtRu6pbiWIEDCfBvcndL1KbqntJYjSUauKgdlS3kv1fF53b474UHYtdO6q3yY2IiIiIiEhl9XJYmoiIiIiISFVKbkREREREpEFQciMiIiIiIg2CkhsREREREWkQlNyIiIiIiEiDoORGRET2YGatzWyGmX1oZu+Y2VQzaxOde8PMCsxsmZmVRT8XmNlEMxtoZosOoLxeZjb8AOuab2YfmdntSc6PMrMpB3LtSte4JHq9mw/mOiIiUvuU3IiISFUO3Ofux7t7D+BfwDgAd+/r7r2A84Et7t4r+hp9EOX1IuxHcqBucvdxB/H8arn7FMLrFRGRmFNyIyIie3D3L9w9v9KhhcAxNXx6hpn9MerxWWpmJ+w6YWZXRT0/i81stpkdb2atgV8BZ0U9QOOjx042s0Vm9q6ZPW9muTUp3Mwyo/I/NLPZwDernL/VzN40s7fNbLqZHREdzzGzv5nZcjN71cz+bGYP1PA1i4hITCi5ERGRpMwsDbgBmFbDp5wEPBb1+DwH/Hd0nQGE3pnT3b03cD8wwd0/B8YCs6IeoJui6/zI3fu4e3fgfeC2GpZ/PXAs0A0YQqXkxswuBzoBp7r7ycAM4LfR6bFAobt3BS4FBtSwPBERiZGMVFdARERi7SFgG/BwDR//obsviX5eCAyNfh4K9ATeMDMAA6rrjbnSzL4PZALZwIoalj8IeNLdS4FSM5sE9I/OXQj0Ad6O6pABFFV63o0Qeq7M7P9qWJ6IiMSIkhsREUkoGpbVGRjq7hU1fNrOSj+Xs/s+Y4SemrE1KHcAobfoNHffZGaXAdfVtNr7OHe3u09Ics5rWIaIiMSUhqWJiMhezOweoDcwzN1LDsElpxN6Y46Krp9uZr2jc1uBnEqPbUnoUfnczBoDV+9HOa8CV5hZhpllAZdVOjcN+M9d83fMrLGZ9YzOzQGuio7nAt/ZnxcnIiLxoORGRET2YGYnAXcC7YF/RBP9nz+Ya7r7XOBnwDQzWwq8x+4E4lUgO1qAYDzwEmGFtuXRz2/vR1GPA2sI83ReAF6rVIengMnAa2b2DrAY6Bed/hXQ1szeByYBr7N7yJqIiNQT5q5eeBERqZ/MLB94wN1fOMjrNALS3X2nmbUA5gM/dvdZ0fmOwCJ3zzvIKouISC1Sz42IiNRnXwD3J9vEcz/kAq+bWQHwJjClUmJzCWFY3caDLENERGqZem5ERERERKRBUM+NiIiIiIg0CEpuRERERESkQVByIyIiIiIiDYKSGxERERERaRCU3IiIiIiISIOg5EZERERERBqE/wf0PKbzZz0Y9QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "import matplotlib.pyplot as plt\n", "banana_low = functions.name_search(\"banana\", data_low)\n", @@ -260,18 +534,20 @@ "plt.legend([\"Low statistics\", \"High statistics reference\"])\n", "\n", "plt.figure(figsize=(14,6))\n", - "plt.errorbar(banana_reasonable.xaxis, banana_reasonable.Intensity, yerr=banana_reasonable.Error, fmt=\"r\")\n", + "plt.errorbar(banana_reasonable.xaxis, banana_reasonable.Intensity,\n", + " yerr=banana_reasonable.Error, fmt=\"r\")\n", "plt.errorbar(banana_ref.xaxis, banana_ref.Intensity, yerr=banana_ref.Error, fmt=\"b\")\n", "plt.xlabel(\"2Theta [deg]\")\n", "plt.ylabel(\"Intensity [n/s]\")\n", "plt.legend([\"Low statistics with SPLIT\", \"High statistics reference\"])\n", "\n", "plt.figure(figsize=(14,6))\n", - "plt.errorbar(banana_unreasonable.xaxis, banana_unreasonable.Intensity, yerr=banana_unreasonable.Error, fmt=\"r\")\n", + "plt.errorbar(banana_unreasonable.xaxis, banana_unreasonable.Intensity,\n", + " yerr=banana_unreasonable.Error, fmt=\"r\")\n", "plt.errorbar(banana_ref.xaxis, banana_ref.Intensity, yerr=banana_ref.Error, fmt=\"b\")\n", "plt.xlabel(\"2Theta [deg]\")\n", "plt.ylabel(\"Intensity [n/s]\")\n", - "plt.legend([\"Very low statistics with unreasonable SPLIT\", \"High statistics reference\"])" + "l = plt.legend([\"Very low statistics with unreasonable SPLIT\", \"High statistics reference\"])" ] }, { @@ -308,6 +584,11 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" + }, + "metadata": { + "execution": { + "timeout": 100 + } } }, "nbformat": 4, diff --git a/docs/source/tutorial/McStasScript_tutorial_3_EXTEND_and_WHEN.ipynb b/docs/source/tutorial/McStasScript_tutorial_3_EXTEND_and_WHEN.ipynb index c37d5b61..1db44f13 100644 --- a/docs/source/tutorial/McStasScript_tutorial_3_EXTEND_and_WHEN.ipynb +++ b/docs/source/tutorial/McStasScript_tutorial_3_EXTEND_and_WHEN.ipynb @@ -23,8 +23,7 @@ "metadata": {}, "outputs": [], "source": [ - "instrument = instr.McStas_instr(\"python_tutorial\",\n", - " input_path=\"run_folder\",\n", + "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\",\n", " output_path=\"data_folder/mcstas_EXTEND_WHEN\")" ] }, @@ -51,7 +50,8 @@ "src.dist = 1.5\n", "src.flux = 1E13\n", "\n", - "wavelength = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "wavelength = instrument.add_parameter(\"wavelength\", value=5.0,\n", + " comment=\"Wavelength in [Ang]\")\n", "src.lambda0 = wavelength\n", "src.dlambda = \"0.001*wavelength\"" ] @@ -103,7 +103,7 @@ "outputs": [], "source": [ "instrument.set_parameters(wavelength=2.8)\n", - "instrument.settings(ncount=5E5)\n", + "instrument.settings(ncount=5E6)\n", "instrument.backengine()\n", "data = instrument.data" ] @@ -160,7 +160,8 @@ "for reflections in reflection_numbers:\n", " reflections_string = str(reflections)\n", " \n", - " acceptance = instrument.add_component(\"acceptance_\" + reflections_string, \"DivPos_monitor\")\n", + " component_name = \"acceptance_\" + reflections_string\n", + " acceptance = instrument.add_component(component_name, \"DivPos_monitor\")\n", " acceptance.filename = '\"acceptance_' + reflections_string + '.dat\"'\n", " acceptance.set_WHEN(\"n_reflections == \" + reflections_string)\n", " \n", @@ -195,7 +196,7 @@ "outputs": [], "source": [ "instrument.set_parameters(wavelength=2.8)\n", - "instrument.settings(ncount=5E5)\n", + "instrument.settings(ncount=5E6)\n", "instrument.show_settings()\n", "\n", "instrument.backengine()" diff --git a/docs/source/tutorial/McStasScript_tutorial_4_JUMP.ipynb b/docs/source/tutorial/McStasScript_tutorial_4_JUMP.ipynb index 8e679da4..563bd6a1 100644 --- a/docs/source/tutorial/McStasScript_tutorial_4_JUMP.ipynb +++ b/docs/source/tutorial/McStasScript_tutorial_4_JUMP.ipynb @@ -65,7 +65,8 @@ "src.dist = 1.5\n", "src.flux = 1E13\n", "\n", - "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0,\n", + " comment=\"Wavelength in [Ang]\")\n", "src.dlambda = \"0.001*wavelength\"\n", "\n", "guide = instrument.add_component(\"guide\", \"Guide_gravity\", AT=[0,0,1.5], RELATIVE=src)\n", @@ -206,7 +207,7 @@ "outputs": [], "source": [ "instrument.set_parameters(wavelength=2.8)\n", - "instrument.settings(ncount=5E5, output_path=\"data_folder/mcstas_JUMP\")\n", + "instrument.settings(ncount=5E6, output_path=\"data_folder/mcstas_JUMP\")\n", "instrument.backengine()\n", "\n", "data = instrument.data" diff --git a/docs/source/tutorial/Union_tutorial_1_processes_and_materials.ipynb b/docs/source/tutorial/Union_tutorial_1_processes_and_materials.ipynb index 9584bf80..3c4c662f 100644 --- a/docs/source/tutorial/Union_tutorial_1_processes_and_materials.ipynb +++ b/docs/source/tutorial/Union_tutorial_1_processes_and_materials.ipynb @@ -232,13 +232,15 @@ "source": [ "src = instrument.add_component(\"source\", \"Source_div\")\n", "\n", - "source_width = instrument.add_parameter(\"source_width\", value=0.15, comment=\"Width of source in [m]\")\n", + "source_width = instrument.add_parameter(\"source_width\", value=0.15,\n", + " comment=\"Width of source in [m]\")\n", "src.xwidth = source_width\n", "src.yheight = 0.03\n", "src.focus_aw = 0.01\n", "src.focus_ah = 0.01\n", "\n", - "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0,\n", + " comment=\"Wavelength in [Ang]\")\n", "src.dlambda = \"0.001*wavelength\"" ] }, @@ -247,7 +249,7 @@ "metadata": {}, "source": [ "## Adding geometries that use the material definitions\n", - "Here we add three boxes, each using a different material definition and placed next to one another. The *material_string* parameter is used to specify the material name. The *priority* parameter will be explained later, as it is only important when geometries overlap, here they are spatially separated, yet the priorties must still be unique.\n", + "Here we add three boxes, each using a different material definition and placed next to one another. The *material_string* parameter is used to specify the material name. The *priority* parameter will be explained later, as it is only important when geometries overlap, here they are spatially separated, yet the priorities must still be unique.\n", "\n", "It is important to note that these three boxes will be simulated simultaneously in the McStas simulation flow, so no need for GROUP statements to have these in parallel. Because they are simulated simultaneously, a ray can go from one to another, which would not be possible with a standard GROUP." ] @@ -350,7 +352,8 @@ "metadata": {}, "outputs": [], "source": [ - "logger = instrument.add_component(\"logger_space\", \"Union_logger_2D_space\", RELATIVE=\"box_powder\")\n", + "logger = instrument.add_component(\"logger_space\", \"Union_logger_2D_space\")\n", + "logger.set_RELATIVE(\"box_powder\")\n", "logger.D_direction_1 = '\"z\"'\n", "logger.D1_min = -0.04\n", "logger.D1_max = 0.04\n", @@ -361,7 +364,8 @@ "logger.n2 = 400\n", "logger.filename = '\"logger.dat\"'\n", "\n", - "logger = instrument.add_component(\"abs_logger_space\", \"Union_abs_logger_2D_space\", RELATIVE=\"box_powder\")\n", + "logger = instrument.add_component(\"abs_logger_space\", \"Union_abs_logger_2D_space\")\n", + "logger.set_RELATIVE(\"box_powder\")\n", "logger.D_direction_1 = '\"z\"'\n", "logger.D1_min = -0.04\n", "logger.D1_max = 0.04\n", @@ -715,7 +719,7 @@ ], "source": [ "instrument.set_parameters(wavelength=8.0)\n", - "instrument.settings(ncount=3E5, output_path=\"data_folder/union_materials\")\n", + "instrument.settings(ncount=3E6, output_path=\"data_folder/union_materials\")\n", "instrument.show_settings()\n", "\n", "instrument.backengine()\n", @@ -1111,7 +1115,7 @@ "- Get newest version of Union components (Both library files and components themselves)\n", "\n", "Since the Union components need to collaborate, it is important to have the same version of the libraries and components. The newest version of the components can be found here: https://github.com/McStasMcXtrace/McCode/tree/master/mcstas-comps/contrib/union\n", - "All libraries for McStas are found here: https://github.com/McStasMcXtrace/McCode/tree/master/mcstas-comps/share but only three are needed for the Union components:\n", + "All libraries for McStas are found here: https://github.com/McStasMcXtrace/McCode/tree/master/mcstas-comps/share but only a few are needed for the Union components:\n", "- Union_initialization.c\n", "- Union_functions.c\n", "- Geometry_functions.c\n", diff --git a/docs/source/tutorial/Union_tutorial_2_geometry.ipynb b/docs/source/tutorial/Union_tutorial_2_geometry.ipynb index a15aae94..30ea3e15 100644 --- a/docs/source/tutorial/Union_tutorial_2_geometry.ipynb +++ b/docs/source/tutorial/Union_tutorial_2_geometry.ipynb @@ -16,7 +16,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -25,7 +25,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -42,7 +42,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -55,7 +55,7 @@ "\n", "Al = instrument.add_component(\"Al\", \"Union_make_material\")\n", "Al.process_string = '\"Al_inc,Al_pow\"'\n", - "Al.my_absorption = 100*4*0.231/66.4 # barns [m^2 E-28] * Å^3 [m^3 E-30] = [m E-2], correct with factor 100.\n", + "Al.my_absorption = 100*4*0.231/66.4 # barns [m^2 E-28]*Å^3 [m^3 E-30]=[m E-2]\n", "\n", "Sample_inc = instrument.add_component(\"Sample_inc\", \"Incoherent_process\")\n", "Sample_inc.sigma = 4*3.4176\n", @@ -79,7 +79,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -89,7 +89,8 @@ "src.yheight = 0.035\n", "src.focus_aw = 0.01\n", "src.focus_ah = 0.01\n", - "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0,\n", + " comment=\"Wavelength in [Ang]\")\n", "src.dlambda = \"0.01*wavelength\"\n", "src.flux = 1E13" ] @@ -108,9 +109,42 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ___ Help Union_cylinder ____________________________________________________________\n", + "|\u001b[1moptional parameter\u001b[0m|\u001b[1m\u001b[4mrequired parameter\u001b[0m\u001b[0m|\u001b[1m\u001b[94mdefault value\u001b[0m\u001b[0m|\u001b[1m\u001b[92muser specified value\u001b[0m\u001b[0m|\n", + "\u001b[1mmaterial_string\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [] // material name of this volume, defined using \n", + " Union_make_material \n", + "\u001b[4m\u001b[1mpriority\u001b[0m\u001b[0m [1] // priotiry of the volume (can not be the same as another volume) \n", + " A high priority is on top of low. \n", + "\u001b[4m\u001b[1mradius\u001b[0m\u001b[0m [m] // Outer radius volume in (x,z) plane\n", + "\u001b[4m\u001b[1myheight\u001b[0m\u001b[0m [m] // Cylinder height in (y) direction\n", + "\u001b[1mvisualize\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // set to 0 if you wish to hide this geometry in mcdisplay\n", + "\u001b[1mtarget_index\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [1] // Relative index of component to focus at, e.g. next is +1\n", + "\u001b[1mtarget_x\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m]\n", + "\u001b[1mtarget_y\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // Position of target to focus at\n", + "\u001b[1mtarget_z\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m]\n", + "\u001b[1mfocus_aw\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [deg] // horiz. angular dimension of a rectangular area\n", + "\u001b[1mfocus_ah\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [deg] // vert. angular dimension of a rectangular area\n", + "\u001b[1mfocus_xw\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // horiz. dimension of a rectangular area\n", + "\u001b[1mfocus_xh\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // vert. dimension of a rectangular area\n", + "\u001b[1mfocus_r\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [m] // focusing on circle with this radius\n", + "\u001b[1mp_interact\u001b[0m = \u001b[1m\u001b[94m0.0\u001b[0m\u001b[0m [1] // probability to interact with this geometry [0-1]\n", + "\u001b[1mmask_string\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [] // Comma seperated list of geometry names which this \n", + " geometry should mask \n", + "\u001b[1mmask_setting\u001b[0m = \u001b[1m\u001b[94m0\u001b[0m\u001b[0m [] // \"All\" or \"Any\", should the masked volume be simulated \n", + " when the ray is in just one mask, or all. \n", + "\u001b[1mnumber_of_activations\u001b[0m = \u001b[1m\u001b[94m1.0\u001b[0m\u001b[0m [1] // Number of subsequent Union_master components \n", + " that will simulate this geometry \n", + "-------------------------------------------------------------------------------------\n" + ] + } + ], "source": [ "instrument.component_help(\"Union_cylinder\")" ] @@ -155,7 +189,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -166,7 +200,8 @@ "sample_geometry.priority = 100\n", "sample_geometry.set_AT([0,0,1], RELATIVE=src)\n", "\n", - "container = instrument.add_component(\"sample_container\", \"Union_cylinder\", RELATIVE=sample_geometry)\n", + "container = instrument.add_component(\"sample_container\", \"Union_cylinder\")\n", + "container.set_RELATIVE(sample_geometry)\n", "container.yheight = 0.03+0.003 # 1.5 mm top and button\n", "container.radius = 0.0075 + 0.0015 # 1.5 mm sides of container\n", "container.material_string='\"Al\"' \n", @@ -190,11 +225,12 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ - "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\", RELATIVE=sample_geometry)\n", + "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\")\n", + "logger_zx.set_RELATIVE(sample_geometry)\n", "logger_zx.D_direction_1 = '\"z\"'\n", "logger_zx.D1_min = -0.02\n", "logger_zx.D1_max = 0.02\n", @@ -205,7 +241,8 @@ "logger_zx.n2 = 300\n", "logger_zx.filename = '\"logger_zx.dat\"'\n", "\n", - "logger_zy = instrument.add_component(\"logger_space_zy\", \"Union_logger_2D_space\", RELATIVE=sample_geometry)\n", + "logger_zy = instrument.add_component(\"logger_space_zy\", \"Union_logger_2D_space\")\n", + "logger_zy.set_RELATIVE(sample_geometry)\n", "logger_zy.D_direction_1 = '\"z\"'\n", "logger_zy.D1_min = -0.02\n", "logger_zy.D1_max = 0.02\n", @@ -216,7 +253,8 @@ "logger_zy.n2 = 300\n", "logger_zy.filename = '\"logger_zy.dat\"'\n", "\n", - "logger_xy = instrument.add_component(\"logger_space_xy\", \"Union_logger_2D_space\", RELATIVE=sample_geometry)\n", + "logger_xy = instrument.add_component(\"logger_space_xy\", \"Union_logger_2D_space\")\n", + "logger_xy.set_RELATIVE(sample_geometry)\n", "logger_xy.D_direction_1 = '\"x\"'\n", "logger_xy.D1_min = -0.02\n", "logger_xy.D1_max = 0.02\n", @@ -238,7 +276,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -255,7 +293,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -276,16 +314,320 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": { "tags": [ "scroll-output" ] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Instrument settings:\n", + " ncount: 3.00e+06\n", + " output_path: data_folder/union_geometry\n", + " run_path: run_folder\n", + " package_path: /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1\n", + " executable_path: /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1/bin/\n", + " executable: mcrun\n", + " force_compile: True\n", + "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/tutorial/data_folder/union_geometry_49\"\n", + "INFO: Regenerating c-file: python_tutorial.c\n", + "CFLAGS= -I@MCCODE_LIB@/share/\n", + "INFO: Recompiling: ./python_tutorial.out\n", + "mccode-r.c:2837:3: warning: expression result unused [-Wunused-value]\n", + " *t0;\n", + " ^~~\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1604:105: warning: incompatible pointer types passing 'int (const struct saved_history_struct *, const struct saved_history_struct *)' to parameter of type 'int (* _Nonnull)(const void *, const void *)' [-Wincompatible-pointer-types]\n", + " qsort(total_history.saved_histories,total_history.used_elements,sizeof (struct saved_history_struct), Sample_compare_history_intensities);\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/stdlib.h:161:22: note: passing argument to parameter '__compar' here\n", + " int (* _Nonnull __compar)(const void *, const void *));\n", + " ^\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1613:20: warning: incompatible pointer types passing 'struct saved_history_struct *' to parameter of type 'struct dynamic_history_list *' [-Wincompatible-pointer-types]\n", + " printf_history(&total_history.saved_histories[history_iterate]);\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1434:50: note: passing argument to parameter 'history' here\n", + "void printf_history(struct dynamic_history_list *history) {\n", + " ^\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:2030:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:839:1: warning: non-void function does not return a value in all control paths [-Wreturn-type]\n", + "};\n", + "^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:883:1: warning: non-void function does not return a value [-Wreturn-type]\n", + "};\n", + "^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3274:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3274:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3276:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3276:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3278:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3278:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3280:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3280:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: warning: format string is not a string literal (potentially insecure) [-Wformat-security]\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^~~~~~~~\n", + "./python_tutorial.c:14851:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_zx_filename\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^~~~~~~~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: note: treat the string as an argument to avoid this\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^\n", + " \"%s\", \n", + "./python_tutorial.c:14851:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_zx_filename\n", + " ^\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: warning: format string is not a string literal (potentially insecure) [-Wformat-security]\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^~~~~~~~\n", + "./python_tutorial.c:15094:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_zy_filename\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^~~~~~~~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: note: treat the string as an argument to avoid this\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^\n", + " \"%s\", \n", + "./python_tutorial.c:15094:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_zy_filename\n", + " ^\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: warning: format string is not a string literal (potentially insecure) [-Wformat-security]\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^~~~~~~~\n", + "./python_tutorial.c:15337:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_xy_filename\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^~~~~~~~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: note: treat the string as an argument to avoid this\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^\n", + " \"%s\", \n", + "./python_tutorial.c:15337:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_xy_filename\n", + " ^\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:788:15: warning: expression result unused [-Wunused-value]\n", + " if (volume_index_main,Volumes[volume_index_main]->geometry.is_mask_volume == 0 ||\n", + " ^~~~~~~~~~~~~~~~~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:788:90: warning: expression result unused [-Wunused-value]\n", + " if (volume_index_main,Volumes[volume_index_main]->geometry.is_mask_volume == 0 ||\n", + " ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:789:92: warning: expression result unused [-Wunused-value]\n", + " volume_index_main,Volumes[volume_index_main]->geometry.is_masked_volume == 0 ||\n", + " ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "15 warnings generated.\n", + "INFO: ===\n", + "INFO: Placing instr file copy python_tutorial.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/tutorial/data_folder/union_geometry_49\n", + "\n", + " Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Al.laz' (Table_Read_Offset)\n", + "Table from file 'Al.laz' (block 1) is 26 x 18 (x=1:8), constant step. interpolation: linear\n", + " '# TITLE *Aluminum-Al-[FM3-M] Miller, H.P.jr.;DuMond, J.W.M.[1942] at 298 K; ...'\n", + "PowderN: Al_pow: Reading 26 rows from Al.laz\n", + "PowderN: Al_pow: Read 26 reflections from file 'Al.laz'\n", + "PowderN: Al_pow: Vc=66.4 [Angs] sigma_abs=0.924 [barn] sigma_inc=0.0328 [barn] reflections=Al.laz\n", + "Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Na2Ca3Al2F14.laz' (Table_Read_Offset)\n", + "Table from file 'Na2Ca3Al2F14.laz' (block 1) is 841 x 18 (x=1:20), constant step. interpolation: linear\n", + " '# TITLE *-Na2Ca3Al2F14-[I213] Courbion, G.;Ferey, G.[1988] Standard NAC cal ...'\n", + "PowderN: Sample_pow: Reading 841 rows from Na2Ca3Al2F14.laz\n", + "PowderN: Sample_pow: Read 841 reflections from file 'Na2Ca3Al2F14.laz'\n", + "PowderN: Sample_pow: Vc=1079.1 [Angs] sigma_abs=11.7856 [barn] sigma_inc=13.6704 [barn] reflections=Na2Ca3Al2F14.laz\n", + "---------------------------------------------------------------------\n", + "global_process_list.num_elements: 4\n", + "name of process [0]: Al_inc \n", + "component index [0]: 1 \n", + "name of process [1]: Al_pow \n", + "component index [1]: 2 \n", + "name of process [2]: Sample_inc \n", + "component index [2]: 4 \n", + "name of process [3]: Sample_pow \n", + "component index [3]: 5 \n", + "---------------------------------------------------------------------\n", + "global_material_list.num_elements: 2\n", + "name of material [0]: Al \n", + "component index [0]: 3 \n", + "my_absoprtion [0]: 1.391570 \n", + "number of processes [0]: 2 \n", + "name of material [1]: Sample \n", + "component index [1]: 6 \n", + "my_absoprtion [1]: 1.092170 \n", + "number of processes [1]: 2 \n", + "---------------------------------------------------------------------\n", + "global_geometry_list.num_elements: 2\n", + "\n", + "name of geometry [0]: sample_geometry \n", + "component index [0]: 8 \n", + "Volume.name [0]: sample_geometry \n", + "Volume.p_physics.is_vacuum [0]: 0 \n", + "Volume.p_physics.my_absorption [0]: 1.092170 \n", + "Volume.p_physics.number of processes [0]: 2 \n", + "Volume.geometry.shape [0]: cylinder \n", + "Volume.geometry.center.x [0]: 0.000000 \n", + "Volume.geometry.center.y [0]: 0.000000 \n", + "Volume.geometry.center.z [0]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [0]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [0]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [0]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [0]: 0.007500 \n", + "Volume.geometry.geometry_parameters.height [0]: 0.030000 \n", + "Volume.geometry.focus_data_array.elements[0].Aim [0]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [1]: sample_container \n", + "component index [1]: 9 \n", + "Volume.name [1]: sample_container \n", + "Volume.p_physics.is_vacuum [1]: 0 \n", + "Volume.p_physics.my_absorption [1]: 1.391570 \n", + "Volume.p_physics.number of processes [1]: 2 \n", + "Volume.geometry.shape [1]: cylinder \n", + "Volume.geometry.center.x [1]: 0.000000 \n", + "Volume.geometry.center.y [1]: 0.000000 \n", + "Volume.geometry.center.z [1]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [1]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [1]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [1]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [1]: 0.009000 \n", + "Volume.geometry.geometry_parameters.height [1]: 0.033000 \n", + "Volume.geometry.focus_data_array.elements[0].Aim [1]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [2]: sample_container_lid \n", + "component index [2]: 10 \n", + "Volume.name [2]: sample_container_lid \n", + "Volume.p_physics.is_vacuum [2]: 0 \n", + "Volume.p_physics.my_absorption [2]: 1.391570 \n", + "Volume.p_physics.number of processes [2]: 2 \n", + "Volume.geometry.shape [2]: cylinder \n", + "Volume.geometry.center.x [2]: 0.000000 \n", + "Volume.geometry.center.y [2]: 0.015500 \n", + "Volume.geometry.center.z [2]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [2]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [2]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [2]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [2]: 0.013000 \n", + "Volume.geometry.geometry_parameters.height [2]: 0.004000 \n", + "Volume.geometry.focus_data_array.elements[0].Aim [2]: [0.000000 0.000000 1.000000] \n", + "---------------------------------------------------------------------\n", + "number_of_volumes = 4\n", + "number_of_masks = 0\n", + "number_of_masked_volumes = 0\n", + "\n", + " ---- Overview of the lists generated for each volume ---- \n", + "List overview for surrounding vacuum\n", + "LIST: Children for Volume 0 = [1,2,3]\n", + "LIST: Direct_children for Volume 0 = [2,3]\n", + "LIST: Intersect_check_list for Volume 0 = [2,3]\n", + "LIST: Mask_intersect_list for Volume 0 = []\n", + "LIST: Destinations_list for Volume 0 = []\n", + "LIST: Reduced_destinations_list for Volume 0 = []\n", + "LIST: Next_volume_list for Volume 0 = [2,3]\n", + "LIST: mask_list for Volume 0 = []\n", + "LIST: masked_by_list for Volume 0 = []\n", + "LIST: masked_by_mask_index_list for Volume 0 = []\n", + " mask_mode for Volume 0 = 0\n", + "\n", + "List overview for sample_geometry with cylinder shape made of Sample\n", + "LIST: Children for Volume 1 = []\n", + "LIST: Direct_children for Volume 1 = []\n", + "LIST: Intersect_check_list for Volume 1 = []\n", + "LIST: Mask_intersect_list for Volume 1 = []\n", + "LIST: Destinations_list for Volume 1 = [2,3]\n", + "LIST: Reduced_destinations_list for Volume 1 = [2,3]\n", + "LIST: Next_volume_list for Volume 1 = [2,3]\n", + " Is_vacuum for Volume 1 = 0\n", + " is_mask_volume for Volume 1 = 0\n", + " is_masked_volume for Volume 1 = 0\n", + " is_exit_volume for Volume 1 = 0\n", + "LIST: mask_list for Volume 1 = []\n", + "LIST: masked_by_list for Volume 1 = []\n", + "LIST: masked_by_mask_index_list for Volume 1 = []\n", + " mask_mode for Volume 1 = 0\n", + "\n", + "List overview for sample_container with cylinder shape made of Al\n", + "LIST: Children for Volume 2 = [1]\n", + "LIST: Direct_children for Volume 2 = [1]\n", + "LIST: Intersect_check_list for Volume 2 = [1]\n", + "LIST: Mask_intersect_list for Volume 2 = []\n", + "LIST: Destinations_list for Volume 2 = [0,3]\n", + "LIST: Reduced_destinations_list for Volume 2 = [3]\n", + "LIST: Next_volume_list for Volume 2 = [0,3,1]\n", + " Is_vacuum for Volume 2 = 0\n", + " is_mask_volume for Volume 2 = 0\n", + " is_masked_volume for Volume 2 = 0\n", + " is_exit_volume for Volume 2 = 0\n", + "LIST: mask_list for Volume 2 = []\n", + "LIST: masked_by_list for Volume 2 = []\n", + "LIST: masked_by_mask_index_list for Volume 2 = []\n", + " mask_mode for Volume 2 = 0\n", + "\n", + "List overview for sample_container_lid with cylinder shape made of Al\n", + "LIST: Children for Volume 3 = []\n", + "LIST: Direct_children for Volume 3 = []\n", + "LIST: Intersect_check_list for Volume 3 = [2]\n", + "LIST: Mask_intersect_list for Volume 3 = []\n", + "LIST: Destinations_list for Volume 3 = [0]\n", + "LIST: Reduced_destinations_list for Volume 3 = []\n", + "LIST: Next_volume_list for Volume 3 = [0,2]\n", + " Is_vacuum for Volume 3 = 0\n", + " is_mask_volume for Volume 3 = 0\n", + " is_masked_volume for Volume 3 = 0\n", + " is_exit_volume for Volume 3 = 0\n", + "LIST: mask_list for Volume 3 = []\n", + "LIST: masked_by_list for Volume 3 = []\n", + "LIST: masked_by_mask_index_list for Volume 3 = []\n", + " mask_mode for Volume 3 = 0\n", + "\n", + "Union_master component master initialized sucessfully\n", + "Detector: logger_space_zx_I=17768.4 logger_space_zx_ERR=30.9103 logger_space_zx_N=950589 \"logger_zx.dat\"\n", + "Detector: logger_space_zy_I=17768.4 logger_space_zy_ERR=30.9103 logger_space_zy_N=950589 \"logger_zy.dat\"\n", + "Detector: logger_space_xy_I=17768.4 logger_space_xy_ERR=30.9103 logger_space_xy_N=950589 \"logger_xy.dat\"\n", + "Detector: banana_I=1937.6 banana_ERR=10.3152 banana_N=108657 \"banana_1643033933.th\"\n", + "loading system configuration\n", + "\n" + ] + } + ], "source": [ "instrument.set_parameters(wavelength=3.0)\n", - "instrument.settings(ncount=3E5, output_path=\"data_folder/union_geometry\")\n", + "instrument.settings(ncount=3E6, output_path=\"data_folder/union_geometry\")\n", "instrument.show_settings()\n", "\n", "instrument.backengine()\n", @@ -302,9 +644,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plotting data with name logger_space_zx\n", + "Plotting data with name logger_space_zy\n", + "Plotting data with name logger_space_xy\n", + "Plotting data with name banana\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6UAAAHuCAYAAABnIarAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyde1hVZdr/Pw8gW0BBQUFQSBJUEAyTSUfNY6PpjP7SySw7jDZ2dKaDNTNNNTY61dRM5zftOOVUYzaW9uo7lpbH0rTBpDRQUTFQEBQUFHEj8Pz+uJ+11waPleah53td69p7r/Wc14Znf9d9399baa2xsLCwsLCwsLCwsLCwsDgTCDjTA7CwsLCwsLCwsLCwsLD48cKSUgsLCwsLCwsLCwsLC4szBktKLSwsLCwsLCwsLCwsLM4YLCm1sLCwsLCwsLCwsLCwOGOwpNTCwsLCwsLCwsLCwsLijMGSUgsLCwsLCwsLCwsLC4szBktKLX4QKKX+rJRa9n3LnC1QSi1TSv35NLbfXimllVLtT1cfpwtKqf5KqdOaa+qH6MPCwsLih4bdK791+3avPMN9WFicKlhSeo5BKfWAUipbKVWllNqhlHpOKdXM7/o48w9aK6VqlVK7lVIfK6V+pZRSZ3DoTwCj/MZ5tI2qQZnTAbMu/Y9yfrtSaty3aGoUMl6LI7EKiD3Tg7CwsPjxwu6V3w92r/xBYPdKCws/BJ3pAVh8a/QC/gasBWKAl4HmwHi/MjuAnyAPHVoDPwOeBS4HrvkhB+tAa33gVJQ5W6C1Lj/TYzjTMD/cgrTWh/3Pa61rgF1nZlQWFhYWgN0rzwrYvdLulRYWJwtrKT3HoLX+udZ6ptZ6k9Z6BfAn4P81Klantd6ltS7SWn+ptX4C+AVwtVJq6LHaNk9Gb1RKrVRKHVJKfa6U6tKozCSlVIG5vkopdbHftQuVUh8qpSrNsUYplWSu+dyNlFIzgH7AQ6bP7Y3LmM+hSqlXlFJ7lVL7lVL/Vkq18rs+Qyn1T6XUo6bMTqXUHd9hWRuvQ38zrgFKqVzT9xylVAu/Mg2eXiulOiilFiqlqpVSJWZMAX7Xtyul7lZKvaeUOqiUylFK9fuW47pWKZWnlPIqpb5USl3W6PoYc2+qlFJvKqUeb7SeLZVSc80Y85RSQxs/DVdKXWzmVm3G/JBSKtDvuvMdWQYcAgYda/38Pv/ZtHmnUmqXsUg8doK5LjPjf8vMZ7tS6pfHKd/L1Nln2n+70XdlnGljjHndq5R6VSkV7FcmVCk1zdTfp5Sar5RKOE6f25VraXGOZebav5VSH/qV7WTu++DjzdvCwuLUwO6Vdq9Udq88WvmzZq9USrVVStUppVIalZ+vlHrmePO2OD9hSem5j1bAvhMV0lp/CmQDI05Q9C/A08DFwDfAHGfDUEqNAaYAfwC6AV8DC5RSYabu88Ae5MlzJvAcUH+UPu4EPgOeRFxXfnKMsTwJ9AWGIxtzAjCjUZmR5rWHGfszqtGPg++BB4FfAQOR+f7xaIXM+swDqpG5jAd+DUxqVPQPwPvARcj8/6WUanIyA1FK9UTm/gzQFfhfYL5Sqp25ngy8hdwD597c1qiZZ4AOQH/gOuRHmn8fUcAi4P+AdGCcKXdXo3b+jNzbFCDrZMaPfJ8uAgYAtwD3qOP86DO4Hcg1dV8B3lZKJR6jbDNgOvK9Gwq0NZ/9EQ2MRb5PvzTHr/2uv4isz1Dk+7QbmOf/g6kRfoJ8f2OBjkAhsNJv7N2UUjeZHyr/BN7SWi86wZwtLCxOD+xeKbB7pd0rz4q9Umu9E/gYuN4paNZ2CPDmCeZscT5Ca22Pc/QAIoCtwIN+58YB249R/m3gg+O0p4GHG7VfBVxuPn8GPOp3PQj553Kz+bweuO4Ybf8ZWOb3eRnw52OVQdysaoDBftc7mzF2NJ9nAF81amMzcOsJ5tj/KOe3A+PM+/6m3MV+1+8HVh9t/Mg/0Cqghd/1W4GiRu0/5/c5zvTR+RjjbG+ut/e7dzMblVnt3A/ETW1Zo+sr/NYzHDjsP3fkB4RvPYDJwKxGbYwFNjZavwdO8L3sL/9aGtzX3UCw37lFwGPHaWMZ8Gmjc586dRr3cZT6mWa+gX5/F3VAK78yLzvzNet9CAj3u97E3NeeJ/G3+C6wxOnPnBsFVAL/Y+5/8xO1Yw972OPUH9i9cgZ2r7R75dHrn9G90qzbdkCZzxOBnBO1Y4/z87CW0nMUSikP8B6wDTiue4d/NeQf5fHwufNGa10BbAI6mVOdkX/uzvVa5OlfZ3NqOvAP45pzj/Nk8jviQuQfnX9/G5En3Z39yq1vVK8Yecp3KuDf9vHa7Qxs0lrv8zv3GRCrlAo/Tnscp82j9bG60bnPcNeiIxI75Q//J7MXIj+M1h7jOsgT31FKqQPOAfzD1PXHupMcsz82a4mfcXAy9+nzo3zudLSCSqk4pdQbSqltSqn9wHJkvm38iu3SWu85xhi6AMFAkd/c9wIhHDn/xn3/DnlaPEZrXeec11rPARYCvwEmaK33H3e2FhYWpxx2r/TB7pUCu1eeXXvlXKAlcKn5fB3WSvqjhRU6OgehlAoCZiFPSAeZDe9k0BlRezseTrQRH7ui1i8opRYiLh/DgSlKqcFa6xP1eTScrPrh4UafNcd3S9+PPAltjAjEquU21FCU4Hjtfuuxaq21EoHHk30wdKI+TvQj6mj1G5dvhrg1PXqCvg6e4PrR8G3vk1PmZDED+WF2E7ATcV9baM6dzBiaId+N7kdpu+RYnSqJdfozMEBrvbvRtVAgA3nqnIS4KVlYWPxAsHtlA9i90r1u98qzZK/UWlcrpWYD1ymldgKXAFed/HQszidYS+k5BuOz/wbyI3eoPkkVPqXUpUicwrwTFL3Er0448lRxkzm1Cejpdz0Icf3Y6JzTWm/TWj+rtb4McYm5+hj9HAYCj3ENxNWqtlF/nYEW/v19B2xB4i58MLEXLRB3pu+CjUAn5SfuAPwUKNZaVx69ynfqo2ejcz/FXYtNHLlJ+H921tN/7pmNyn8JpGqttzQ+vt/QvzMuafT5J7jfxcboBTyptV5srARR37KvL5EfYE2OMv+jWjiVUnHAO8DdWuvGT6oBHkc277HA39U5mEfPwuJchd0r7V7ZqA+7VwrOxr3yn8BoJG51uda68FuOyeI8gSWl5x5eRmIErgeClVJtzOG/aQWac3FKqa5KqXuB+UhMwIdHadMfNyqlRhk1tFeAIuAjc+1Z4LdKqavNpvcC4AFmAiilnlZKXaYkmfWliMjAsTavb4AeRn2tZeOL5p/ba8D/KKX6KFEunIHE+XzXDREkvu8updT1SlQAeyOuIku11hu+Y5uLkPnMUEqlGVGCKYhYwqnCc8BopdREpVRHpdRUxAr3grn+CtBHKXWvuf57RMRBgltkw58JPKuU+olS6hLgYVPXeco6DfnB8KJS6iIlirFjlFL3n8J5fBtkKKX+aObzR+SHxsvHKLsVGKeUSlJKXY4Ib5w0zOY8B5itlBqslEpUSvVTojDY4hjVZiNuYfP8/g4jQVQVkSfR47TW/0b+/v6h1BnNf2hh8WOC3SvtXmn3yiNxVu2Vps1PgDLgXqzr7o8alpSee/g1omC2DvHzd454vzLtzLkCJKB8KKIKN/Yk2n8I+D2iPtgB+KXj+6+1fhuYiiTC/hJIA4b5PYFugvwj3IgRG8DdCBrjKeQJ3TaOHXdxDxKw/3/Ik+QdiMLf98EM4HfIP7+vzBhzkKd03wla63ok1UAY8F/kqd8MRBHxlMC4df0auBvYAFwB/D/niaLWOg+4AbgDWc+uZgxev2buQgQFPgH+5Tc+r2mjEFFwbI+oyP4XuQcFp2oe3xIvIPPIRsQwxmqttx2j7AQgGVmbh4EHvkN/1yJuTK8j3+HXkf+Rh45RvhdyH/z/DucoUdh8DXhEa/2VKfsbIJUjVR4tLCxOD+xe+f0wA7tX2r3y6Dgle2WjMm8hFup3v8N4LM4TOGpXFhYoyZc1QGu97EyPxeL7Q0mezK1a64nHuN4TeXoZo7Uu/UEHdwIoye22TGv95zM8FAsLC4sGsHvl+QW7V555KKWmI6rMJ/NAyOI8hRU6srA4T6CU+g3ytLwKuBIYDPTxu94DyUm2DhE3eA5YdLZtshYWFhYWFqcLdq88e6CUaoa4V18P/PzMjsbiTOOMu+8aH/jPlFKbzWvyUcoEGn/1rUqpLUqpCX7X/qSU+lop9aVSaq1SasjJ1LOwOA/RFXGp+RIYg7iT+as5BiIuZ18jipRfAtf80IO0sLD49rB7pYXFKYPdK88ePI/EYv9Da73iTA/G4szijLvvKqWWAK9prd9SSl0H3Ki1HtiozA2ID/tQJLZiHdBHa73dbKyfaK0PKqUuQnIuxRqZ6WPW+6HmZ2FhYWFh8X1h90oLCwsLi/MZZ9RSqpSKRmS33zan3gYuVkq1blR0DPCK1rre5Dd6HxNsr7VeqLV2ckF9heSYijpRPQsLCwsLi3MBdq+0sLCwsDjfcabdd+OBnX6KdXWIrHp8o3IJiIy4g4KjlAFRVNuqtd7xLetZWFhYWFicrbB7pYWFhYXFeY3zRuhIKdUP+Avws+9Y/2bgZoCwsLDunTt3PoWjs7CwsDj7sXbt2j1a68bWt++MJKV8prljoRgWaq0vP1V9Whwf32evtPukhYWFhd0rTxfONCktBNoqpQK11nUmqXWcOe+PAuACJBcUNHqqq5T6KZLj6P9prTedbD1/aK1fxiQbzszM1FlZWd9nXhYWFhbnHJRSR/3/+F1RDRw1x4IfHoRWp7LP8xRnxV5p90kLCwsLu1eeLpxR910jr52Nq2p2DbDOxLT4YzZwk1IqwMTQXAG8B6CU+gnwDnCl1vqLk61nYWFhYXF6EQCEnOAAIpRSLyulhp+ZUZ79sHulhYWFxfmLk9wrz3ucaUspwK3AP5VSk4G9SKwLSqkFwGStdRbwJtADyDN1pmqtt5n305H79ZJSymnzeq31+hPUs7CwsLA4jVBAkxMXq9Ba33zaB3Puw+6VFhYWFuchTnKvPO9xxkmp1nojshk2Pj/M730dcNsx6v/kOG0fs56FhYWFxemF8/TX4vvD7pUWFhYW5yfsXik446TUwsLCwuL8hMJuMhYWFhYWFseD3SsFZzoljIWFhYXFeQrHJel4h4WFhYWFxY8ZJ7lXnvf6C5aYW1hYWFicFliXJAsLCwsLi+PjJPfK815/wVpKLSwsLCxOC+zTXwsLCwsLi+PDehUJrKXUwsLCwuK04SQ2mfP+6a+FhYWFhcXxYAmZXQMLCwsLi9ME675rcS4jhgIASkgAYAz/BCCVXD5mEACXsZgiYhnPDBYyhB6s4f+V/y8vR97E7/k7Y3iHscwEYCsduLP+WQID6gD4kMtZygBiKKGQeNaRwRjeYQbj6c5apnM7HdlEN7J9bayiV4Mxbqc9AOms5w2uJ7c+lU8DevMQU+jB577rHdjCVpKOOdd1ZPAcd3IHz3IZiykjimEs4BHuJ5Uc3qu/kmcD7gTgRW7hVl7iRW5hAq8CEEQdJcQAsJ/mlBHla/cyFpPOV2wn0TeemfVjCQyoYwoPMZXJXMm7pLMegAd5GICObAKgFWWsohe3M53p3O4b8xje8fXRl0/YT3OGsYAFDKMHa9hCEmVEkc56PmYQqeT66j7EY+QTxw38k6k8xGSmMJL3AZjENK7kXwRSSzeyuZRPWEMP5nIFE5lONhl0YCsA60lnO+2ZwKt0Zy2vMoF0vuI2XuQpJvEQU/gDj/PH+r8yNmAmUZTxMYN8fc3lCrqRzTuMYQzv8A5juIK5jGA+APMYTg6p7KMFd/A/ANzEG/yLK/mYywA4SAid2MxfXnsEgOgb5XtbVx/IFQHvs4mOAHQjG4B3GMM2byKXez70rYdzzwGKiAOghGg208lXpiObGMn7vntYSDx7TJ3c+lQA9gS0PeZ3zOLYsHulwLrvWlhYWFicFliXJItzEZfyEa9IGlhBoZLD4vzBomPfzz00/wEH8h1wnLGfacxhGDEU+B7oWJwc7F4pUFrrMz2Gsw6ZmZk6KyvrTA/DwsLC4geFUmqt1jrzVLWXqpR+6wRlusMp7dPih8H5vk9uIZ6vSGdU8QdQZk4WQtXAAMLerod+QCnoZLeOmgdV1wQQllcPYYBXyuzp2wyAVsUHqIwOJryoBgrk2oqRl9B31udQBQwGioAoYDns+XUzWhUeYE98M9aTDsCARZ8BUNsTgpYDaTIuyoCesCe2Ga1WHoBypI9RQB7SfpoZqBd2JkXRdksZRMDO1lGUEUWng5vxZEm9qtEBhC0382iGvB4y9TcAKabPaDm1J60ZgdTRcm011Jo5FEDBwGhqCKZD+Q5qmoInT8rXJkJQFpAALAAyoDYDguYBvYE6sxYR4E0Gz2LYOTyKthvK3DEcAroBceANA0+ulN+VFIGHGlrmV0sbXjlPqRl/vLnHae0IpI7EJcUUDIwmYWUptekQWAuFkdEkPFUKw8w6pkif/xx6Fb9a9G/p12Bv6xBazq2GpqB7wMGwAMKK6qmKCyBsbj2Vo4MJz6qBONNWR6DE3IoLYUtoB9p78wkrrYdsv7XNh4KrZYHjy0tR+VCZEUx4QQ1USV0Az5vgvV7GHZQLlZnBhC+vgWSgKXI/gsx6RkJtBAQtdu8dCfBw/D08uOhJ1g1OodtzuXgnwKbQjgTjpfOKbyjoGy1jyJPvvCqS9QuhGoBl9Kc/yygknt/xNwA+4Wecr7B75emBdd+1sLCwsDgtsLnXLM5VzGMEE+peZUtsO+IjdgDgyYf9nuaE9amA5UAxqCCEHEUBCVAXFERlCtQEBtNq4wGogFZrDgCwskd3eu9eizcKgsNAeaFv8edCFg1Z29PDkMph0GrJAWozodXKAwyoEzLqkIugMqgaHEDYknrojJDGWmi15YAQkSpYNzGFbvNzhfhFA4ukiZ2/jqJtfpkQ1TJoW1RGW8ogEr7u24EuxVsJm2uIdzbSngcqE4MBCI+oEdKbIv1QAa1WHBDStRr2TGxGi8oD7EtqRkJhKQTBf2IH8fMVi9nbV5wUQw9WE5SMEMVE6Te+rpDwuBrIN/MMlLX1FMhc2xaXYTxQhbgCBYnRJGwoxRMjY+QQtJlVwd6rQ6iKC2BzYifSK3NZH55CtxW5EOfOI6l4h++BQzBeiAKvJ4Cw7HoSqkqhNxR0jiYqcQ9ha+ohGm4o/7fMu9aMIwtaJlTLeD8FFQhhF9ZDHvJwwmPKRZu5xkGtB/anyTq0XFtNlwRxBaYpeAeBZznU9oagCDmdkF8KebB3cAgtF1VL/03B86lc16MNIQ8CLoTw7BoKBgrjLCKO5uyXtV1YA1EQVAtkQGWCrMMTgfcypfxRvH2gQ91WIeJA1y8386+Lfklp3xh6HPwcVSftl0U2o9WGA3Qo38GmyAsAKCGGtrvLKGwdz2UsNpM+f0npqYbdKwV2DSwsLCwsTgsclyQLi3MJr3ADQ1jFO4FjSGc9LUL3AeCJOECb3RUwG+gBXAgcgqpMYx3Nh+YZNah8IK6GyuRgIXDGwphKDiwETzTy6ysaITcrEWJabghsIlRGB1MTG0yrwgNiqXSstXEIEcyDsA31kCFtrO6eQWpdjljkooFk6FaYK+1WmrrGMtb2qTI5XwX0Qax2XqiMC6bLNENK4mQM4YE1UCFlw/NqpIFyoDPsio2gzdwK3y/JLX3bQRIkbdzBV5070r5uu9TNh2G9F1ObAS03imXNZ+lMkLXosnGrWDMLYMu4duTTnp+t+FTWuALC5gtJLrjOz3KYBwlBpRAFBa2jiQrfQ9jGeqpGBtByTTUFPaLp9mUuHIJu5PJh3/5c/sEyPHFmHmWwOi2DnkuyCa2rhmwIq61ndd8MVtGLSSumk7ChVOZbJmuiskBngjIPEb4e3oEo9tAqsYKgOMjvHkt8ZTFBgTAncShDvAsJz6qhNgWCFgBXiUWzZbFZhwRgm9xPog2HzYTt4e1IKt1BwpelEG7uFeY7lw30RB4WAFsj25FUsUNIbwXggSjvHjzeelqE7SN8Qw2shp23RBFILWW0Io4iWu6WMUwteBTCwFMKnrAaWA+eOvlOXlv4HpTC3u4heEqEfDc/eABvJuwPbcZ2EpEhZ3Fp60WM5H1f3O9DWJws7F4psO67R8H57pZkYWFhcTScapekrkrpeScok/gjcEk6H3E+75OvcAPprGcrHYiijDiKAAikTsgTNHykfwghA1HwdecOdFm0VcjGcoRMiCYSVZ2NZbMK6AdV4QHM9FzLTRvepCo5gLAF9eJyWYQQyXDTfjouKa1CSJLBzqFR7KMFXYq3CrmJQ9x5qxDCm+KWrYoXGZH9nua02VDhI4GAkJ1SYDWQaV6NeyhxCHF1+o2Uc1XJYlWkKbDerEEy7BocQZsZFVLPa+pHmvqO1lAU7BnajFYfHJBrxmJKlBl3rVmDClM+Qt7XZpjlL4AVaZfQt/hzasMgKN/0scgdH3GmfgRC+irMepgxVA2TNd87MkTIcgWQIGR7Hy3oPPcbWfta5AFDfg0FSWKZxSttbOnejqRZO8RyW45YrM266kSoC4KgCmANYtGukvur+0l9VWTuVyawzow5wpRJhvmRgxmRb0zcXoS1bjSvzr2thdnxw+nEJrpu2CzXD8DqcRm0J582SypkPcMgv3csAM3ZT3CdkPOywCiCqaHtl2VSrgoK+kYTV1nKvvBmhHgPiit3HXw9tAOdKrdSFwSeKvf7M6f7UDqxmWzkBt1Z/+x5LXpk98rTAyt0ZGFhYWFxWmDzlFqciwjlIM3ZT4bxFd1CB7bQgS5LtkIYfNS5j5AL415KBb54xS5rtvL14A5CIDKB3rDioktYcdElhC2oR/dAyEkZhJXXc9PuN8XqWVovRLYCiVeMF4vcrsERsF4IYFVyAMTBrqERQn4Soe2aMrrs3gpZ4O2Ga4GMRMpU4LN0hmXVE5ZVj4ca2AhV0QFCpIKALGA17L0lhNpkYIhZjHDYeVGUkLoIObYMbsfKtO6UemLAC+suShHinQykQ5sPKmTu6VDbD5lXPmKpzXCPVvMP8N+haS4RzUOsgEHAXKAEvM5P8ECZT1CFIXlh0HfL51AG68NTIA/y42OpHY2Q+gsRslwKOkzKV44Qd1XS5Qgrr4c4caGlAPb2CIFaaFNcQeeN3/is0t4EJI6zFmIOlrI6LUPWNxKSCnfI3CsQYl4ALJYxqGy4NnwGz8bfzNIrfypxskFyqEI58Ao5B3m/NO2nck8SYH9EMMPLF4mbrdesUSlCSD1iya6MljmNrJxP11mb0XFQNTyA2lHQ7WA2bWZVsGtgBHsGN8PbDRI3FJO4sZj9NCe0qobQqhpxvc0vkzmEicU7Ib+UuiCJgw7Lkocltb0hhhKCisBTJg9VKjOCqcwIZgDLKCOKDmzlzvpnT/AXZtEYVuhIYC2lR8H5/ATYwsLC4lg41U9/L1JKLzpBmTY/gqe/5yPO530yhgJ2lV9AUaS4O7ZZacx1CbA3PoSWW6qF+IUhBKgK1602F7FgxZlrFbhW1TjY2zmElmuqJXb0gwPsGhpBm/wKPkzsz+VfLoMDUJsOQXkIyRli2nXcN42YDxWI9TQDKBfyF5QrfWyJb0fSlztkDNsQQmNEbgCIEnfMlouqXWElpNyuKyNo82VFQ0IbZNox7qI7r46i7awyqkYGSKxlNuLOnA+rr86g57RsIWBxZnwlQCF8fXUHusw3luZSqB0thLJD3VbC59bI+KpwRaLC/NbWxMz61rIKKtOCCV9gBH1qEcv0IGmbQ0A6eCPAs1DGXjVQBIiYK018PakDXdZuRSeKW65DuikCb0+J7QQgUWJLE5aU+sSKdg6WRWu7sgyaQm0y7AmPoOXBCjwFZr2jZd67hkbIdyhO7pVONIQU0PGgSs09OGTm65F6RJt2gsz8nfjUIiABtnRuB0Cst4iwwnpqoyHIK2QxrLKeWo98pkzKJq3cISJLudKWI9JVEhkhbumIG3TCBnGJ3hkbRauDZWIRPWQEkgqQhwcJMo+rI2cA8K/KcewLb8ZUJrPOWEut0NHJ40zulUqppsCLiG9Cvdb6rlPdx8nCWkotLCwsLE4LAhSEND3+YWFxtqEjm1gY2Z9PuFRyezZDjuXQsrDaJU1FYp3cNTgCbdxFd42LoCojQCyDVUi848Bon/BMy/nVUAWt5h6ANGizpQIqYUj5Mp8ib1AFQlCSzWuW9M1yIFFITuXoYLFGeoEECMqG2hTYFR9B0geGkG5GCGMEQviK5NjbPYSWX4paLIMkLpIwIB7aTKsQMrTA1EmGdX1TJPY0UY6YSrGqhW2oh1LYdUeEkKgg6Lk7W0jvHSFi3Vwo/XtHQJcvt/raqLougCAvdFuSS3h+DXSX+jhqxp0RQpwpxM1H/gvMUQThuTV4B8HkzvezKy0CfY3bxt7BIZArFj3vEDlX7QnFGwNcI0eXNVuhANQG4ELwisAxOgM8xmq4c2gU1EKLun2sG5gi5LEI2haXifCSUSYOKoM2uyvwmHHqDHNvkqG5d7+QwXLY1T0ClWvu6yGYGzmUdZ1ToBa8UQjxzBf3WUCsutFyj5kNX6fJvaqNgw7lO+hQvoOwonp0pMSqesPEIs5m+R5VhQdAGSSt3QFRsKt1hBDMFFB1cgRRx4rWl8BmyaVLU1n7akLweoL5unUHVsRfQmAt8rAhXb7rqgJeqbuZV+puZlL432hReYAMshnPjAb5TS1OjFO1VyqlnlBK5SultFIqze98R6XUZ0qpzebVTzecUcByrfUdwEGl1Bl7SHzGSekJFsopE6iUmqaU2qqU2qKUmuB3bbBSKksp5VVKPdGo3p+VUqVKqWxzTPsh5mRhYWFhAUpBk8DjHxYnB7tX/nDoRjYt2Mc+WtCrfC35F8WSf1EsZMLX8R3E0pQrhNSTBW02VIilrQDazK2Q+DvE2kYCJHxQSsIHpUJUHevjhYirbS1QAmo27Bpu3HIdy1kE6AjQg6HqlgCqbgmAptBmSQXhi2qERIUZ0lYrJKRNYYVYJitgT2/jFpol/RWMi6ZgXLTETy5GUqOUQpfCrdRmmn57AouhcmIwexKb4Y1CxIJK8MV6loRHUTkhWMYaCW1mVFA1PAA6w+rWGQA0r6yWtpKBcvAsoIH1NWxDPVXhAULeApE4yEjY1TlC3FerTN0yY0k8JOtLghy7hkawJa0dB0NDmDrrUdqsqUAtkblWRQbQ8t1qaTvXxD7WQqvdB8RqutocTWHvyBCqegSwJakdnhJZA5UL5Ekqn7ZzJZg3tKqGbnNz4YCs487YKHbGRok1u0rupQ4Ebay9qkrI/4dJ/QkrrBerdgG0ya8QgmrWYYh3IR29myAXCkPbsStR5p+wtpSlnX8qYkydM6AWqu4PoMvcrezqHYHXE4DaIIS6MiEYVSXW3htD/yGk0ljuw9bUQ5QIMOloaLOoQh5ilAKfyhFcV0PfNZ+jU2DA7s9kDqWwn+aEl9bQZclW+i75HFUEuy6KoCo+gJ2xUexJbMbHgYP4OHAQz335e0rCo+jLCv7IX7/jX96PF6dwr3wf6At80+j8i8A0rXVHYBrwkt+1C4Dt5n0+0P67zeL744y77yqllgCvaa3fUkpdB9yotR7YqMwNwLXAUORf9Tqgj9Z6u1IqCWgO/BJoqrW+16/en4Fm/udOBuezW5KFhYXFsXCqXZIyg5TOanGCPsus++7J4GzbK8/nfTKGAmZxNS3YRw6pXJv/nlzYiBC5OuN2mS+qtz03ZuNNQKxkRYh7oyFUROMTxSEB1/W2AiFGGVDZ0+SxrDBpP56qht5iufMsBsKgqrfYEMIW1IvVsgwhxwkIYSuVmMnweTWuwJAjjpSBEL1889ko7+Z3j6WOQJLe2iHpX7Jg9cgMWrCXzmu/ERLquNFG4qZj6Ym488ZITtAaPER59xBUV0/wIbG+8SluKpps8xqGWJSBfZEhov66GSFRhwzJXwDEgk4xIkDOtQuhJDSahDUSvFuVEUBYaT0F8dEkzC8VQj1Y5rWnczNJx2Ncfr9OFDddonGFlsAnKFU7Tj4GzcON6w1CrLplMq7AWrFGU2vKGPVd3UPGuTcthO20p9uSXPAaV+GN9XDI5PUslDXcE9+M4LoawsuNAvA6WUfCEbfiEYiY0krjKmweUOhIN/8ppeZ7ZFyZKxNFhAnAGwd7QqNo+2UZKy/qTgv2EUcR+2lOQn4pWxLb0b5yB0HrTRtAQVo0zdlPy0XVbBksrt+rL8qgZ36277u8MzGKtkvKfBb/uMpS3gn/JWMq5W9jXvhQtpOIx3zZg6nhJt7gfMXZvlcqpbYDv9Bab1BKRSN/aVFa6zqlVCDy3yFZa71bKXUt0ERrPUMp9TDwv1rr/36P6XxnnFFLqVmoi4G3zam3gYuVUq0bFR0DvKK1rtda70aeBIwG0Fpv0Vqvw80aZWFhYWFxNkAhVpDjHRYnhN0rf1ikkkMRccxjhPzoNuI0VQON2NB6IQgfdu9Pz5XZ6GjwrEdIjgchgSlQMDJaLKJOTOg25Keho5Kb6UdITZk19JD4zEJj4YsDoiTnZVieWL1qPaYvowxLgpQJX1DDf0emyedS2DOymdTfiJCx7ubIBW8KRNWVkbRxhxBoryjC9lybTed8Q0ibAhESL8kixHWzTtRpaYbkBF1TQQ3BhOXXsz+0GWqunPcp985DyKBRDVbZcrScVS3zuFDa39U7As8chPSXg3KUfkskbYsnDxKeKvVZSsMKJQVPwkul0BN2/TqCnfFRFHSOplWx5IXFC8zFp5hcG2Hm4Dw86AYMhKAqUe/953VXyXol4CPulT2D8aw2Mb7xuCTdiA2pOiGkRcTRbVGuENk0Ea7aeVGUWF4L4auLOsIGyRsaPq/GtdZ2k3bmJA6laqK42iZ8UIpOMX2ZhwtqOYRV1rv9O4JWhyB8eQ1V8QHsSWpGYWg7qglh40UX0HvNWrqs3UpgXR0JS0rZk9iMQOrYF97MFZ/Kh4QvS2m5oppdgyPw4sGbDD2/zPalElqXmCJCSOWQsKSUhFmleD0BDK+bj9cTgNcTQCLbuYE3CKbmvCekpwUnt1e2Mt4uznHzSbYeD+zUWtcBmNcicx5gDtBfKfUU0PxMEVI48+67J1ooBwk0NEUXHKXMsXC1UuorpdQipdRPv++ALSwsLCxOEk5G8OMdFicDu1f+gFjK5cxjOCOZK8Iuxm21zNMKj1fyZYb9rV6EiapAzTOiMSmQ3yNWrIrbIGFFqWt1C0IISBCQgE81Nbygxmexqh0El69cJjbuZMTtNh8Igz1pzdiT1swXv7hnYDP5odrUxCIGSts/WbuB2jDgELR64IDrCpuBxH0Wyjj3hkb4yHBtCpAn6UsoRb5ZxqKJx5wfAauvzGD1lRm0WWFSjFTIvJP+ITkyWy05IKlR8qA2EXFtvVDGTz4QAUsH/pSlA38KkRA0TfraHt5OFHszZG0cC2dVcgBEQM9Z2eCBPZOaueliymRelROCYZu4xdYRKJZUR6CoCvZOCvE9LAjymrX4uTnKoDbBtFUCv/rHv8V11bFQJkB4aQ2kQ0H3aF+c8J7YZj5S6qSs6VK4lT2DmwlZLJWcr/toIeQ2D7oWb4Zo6LpiM/SEPcObsWd4M3F3roJRiz5gmWcAu3pEsGdoM7GsGtVgJ8bT64g9gcTcGtK6emAGYVn1tCo8QNLaHYRQLQ8WAKIhfF4Nlf0k523cwWJaVAppXz08g9XDM2QeydBmbQWhHKQwtJ2r3txN4n4pRR5oJMCeq8UtPLSqhrDKesIq6+m2O5dNdGIASxnA0iP/qCyOj5PbK/dorTP9jpdPRdda62qt9Tit9SSt9Z2nos3vivP9J8GLwCNa68NKqZ8B/6uUStFalzUuaJ443AyQkJDwAw/TwsLC4jyEwqfYaXFW46T2yh/TPplKLnEUUZAWLfGgQEK5sdRVwZ4/NaPVlwfE8pZi4h690D6wmKo4k7/Ti1gJHYe7EvNaCuHUUJsCQYuQH//JsC+8GTm9U+m78XO2XNSOJM8OIVFl0MpjrH/LpWyr0gNiNU0ETx5CPsuAbRD0JkKWpiKCRXly3j9HaJuKCiEaoyHobaAnBHUDfo+QlBVmXGngGQQ8Aj3XZEv9ZHxCSCoMscROQEi0BxgFQY8DVyHfrGTT1j0w4JrPpI1PzbjCIGnRDrEgO9bVIOBtCOtsXJXDgWehVdwBN29pAdAHwj01sFLaScgzDwGikXP9oOWCailfZOoNM2My54LyzZqOkPGol5DHOL2BkfgsmQkFpSIHUwat3joAM0wbr0PLudWwAFolH5D7FQHhCTV0Wb1VvgMFslaslHtPPLSKlvvZ6sJscW8+BD/3LhZL61wZO4sRl+RyqLpG3JWpA28y5ISm0K1YbmgSW8T1eZ7EH7ctLqMgMZr9ic0lZ26GiELtSouQmONymVPPRXI/vX0kNpoIiK8sJqgA5qQNZdSWD9jY+gI6e75hTo+hDPEupNoTSqviA2yJbYfX46FLvlih7038C+OZQZF5mvEv7uMhHsPiJHFye2WEUuplYL7Wev63aL0QaKuUCvRz33UyGp9VONOk9GQXqgAJxHVMyo2fBh8VWutdfu8/UkoVIs+tlh+l7MvAyyCxMt9hLhYWFhYW/nBckiy+L86KvfLHtE9eybt48VBDsOQFRQSNyAIyodXKA0KinDQrRoxH5UJYTL241m5DSJpD7etMLOTKemrjJE5x15URtJlbIYqoBNJ35edQCUn5O1zF3CiEBAKMQFJ/lCLiRqWmnyrkR20hbszh3xCS5lgWTS5VmiJEMQ4hSnnm6Au8CYc3QJMoIB6q74eQTGAW7t/yIoQo+qcumWza6y39VD8LIYYssljmThiixgtCxIyFFkdteB4wzsylsxnns6b9CNOOI+9Vh8RjVsDhJ6FJb2TNnbyxzRBS7igY15kxv4nPMk0aQlDDoHochKRD9Xp55W+4ccGlCFl8E/nV7DFjN/eDnuYeZeGmtFmJq5rruHZnm3bA/fU9FVEDTkMeGmSb8b2JEP01wDDY72lOmFcs1J4yaB+63UfQvbEeAkPr+OrqDsRRTNsVZWTHZjCieBF0EwtrYWg7knbvoDIumJ/H/x+zGc2Bzs0BWEc3hvReSHh2DUFVsCstgsvqFvNU0u1MKp5Oq5/uYM/GduztHMIKLqVr7HpCqOYr0ukUJaQ0k7UMZAkd2UQqOVh8S5zcXlmhtT5Zl10ftNalSqls5Jv2lnldZ0I8ziqcUfddrXUp8id4jTl1rIWaDdyklAowMTRXAO+dqH2lVFu/9xmIotSm7ztuCwsLC4uTgHXfPSWwe+UPi0v5iJe4hat5m1oCWUUvVtELgmDv0BCxeEaY2MpSScPCIYSgJSCkxYjokI9L+sIhtKoeimB/eAiqCHJJFWtgoSG9dWYQTh7UQvBmItbWTMQSWiaCNqxGfsheiHw7HGtggrm2DSG2QYjiqzOOLITsFAGlUL7clDHjb3INQngSISQFcas94LdAGe54Vq6WclyDG+v4PIRcj5DhNQiBGy3zP7xIDnqasS1HHqVUIlbFtxDSG4Sbs9Nj1iMOXxwk0eZ1ATRJNGuwAFm/UoRMxuMjiYdXm3WZiBvP+TYwDMpXQsgIKM+CkAsRQhxt5mlydBKEEM8EGsalOu7Rq5H7WI5LnKMRIh1m5pnpt0aOK/VEc59eNe04FtIU019nWB2bwT5asCspgl3dI6AWsk0uUAAPXlqUVxNDKdlkUNA3mhGLFrE09qe82Hoce0Kj6FC+g8rIYNYGduc+HieIOl/8ZxxFhFZJnthdsWJNDc+qYQzvUBUZwPKAfhABgXV1dGIz0XWltC0uoxOb2RfejH3hzYinkId5kG5kk0MqOaRi8S1wivZKpdRzSqkdQDvgY6XU1+bSrcBvlVKbgd+az2cdznRMKRxjoZRSC/xy5byJ/NnmIX/6U7XW20y5PuYGTAJuUUrtUEoNMfUeVUptUEp9CbwCXO//RNjCwsLC4jRC4f6oPNZhcbKwe+UPhDiK6M9SllYOphVljNrwAaM2fAAeaLmxmr1pIVAFLQ9WsKL7JbT50rhE1uIjh95MhJwkgu4tB9kiWFM7AlpuqIYoSCEHiqBycLCQHWP9KhgZLYRusCjw1iYbwaFyYKOIIHmvAuYjd9ohbI5V7lbzOcF8XoiQnChzPgMhf2VQXWs+rzcLkIuQo3Lkx3A2bjxsEEL2NgAzoLdDRgvgcDbu37Sj7ppp5jQPuB6a9JODUtNWIFSuQb61h8w4IsxamjypxOGu72BzLESIrYmlJQ4RiMoyn8tNO+HAGmgyyKzDXxCLajpCZNdA5GSgCiIT/ebmQYhklenHIaeB5lqJOQb6zWW56XMlPkVkDuFahQ+Ztc/Fl6+VGeB9QNaPOuQvOM30sVjK91ySTafyb2hTXEFoXTXeGLGq18ZJvtKDhHIwLICEL0vpwRoSNpZCDERRRio57KMFKg/Cy2sYsPszfr5hMVk+n3IIxktQmaQfalVZwUfxfSAf4srFxN9ly1Z2xkZxMDCEGEoIraphdWyGpBIikFoCGcUc6gikO1lM4FU+4WdYfAuc3F4ZoZR6WSk1/FjNaK3v0Fq301oHaa3baK27mPMbtdY9tNYdzetZ+dDxjKeEORtxPkvdW1hYWBwLp1zmPkzprBM8MFdZpycljFKqKeKcVwnUa63vOtV9/JhxPu+TU7iPHqzh8t3LoEREhkDyXLIO9gxuRqsVB0Rht3U0CWtLXcXZAtzYsGjz2UFTk0omz69MGVAEVaPFRrDZ04n0ylyCqhDy4gGiJM0JQKstB9iZFEXbtWVCRtPhq74d6Tprs5SvQCyOHoTkLEceQ8z2G0emtMk2hDA5KU4KEBIYgRAjJ7eoEWfyxaQaCy7dEeKVjpDQQsTK6JTfhsSbZuC6tvr/nM5GCJ9Td6LpsxQhmGsR4paHxLouwbUGx5mx5iHkdY3px1mDOxHCfsisR5A576TkAXG9DTTtZpjzBch964a41o5DCPpyhCQ6btnppo3VCOGsMuMeZtrZYNapTPqvzIbwW3At4cl+9aNwCXUFcn+CzNrEwc7WUWymI9GUklq+lcLIaKK8eyQ9DPBhYn8GHFxG8CHIjkwhijISlpTKPGJkDbbEtyNp2g4YISJM4eU1PtGknbFRVBNCMDUk7C5lRetLiKaErSTRi1W0KK+mKNJ85+Lgw9j+XL5xGbs6RzCfEQB0Mm67E3keEJXh85mYnk975dmEs8FSamFhYWFxPuIUWUqVUk8opfKVUlopleZ3vqNS6jOl1GbzmuxXbRSwXGt9B3DQz5poYXFcfMwgagjmX61/SUFaNIXEU0g8HICqfgG0qDyAToOq8AASnivFmwI0Ne68DmnKErfLnT2i3NQeh4wgUgRCGIrwpV4Jy64nbKOomG4Jv4C9sSFSrhjIh1azDtBq1gEog+Z1+4XwpACJ0HXDZiE3QQjpOYSQtR4IYZuPECZnHDOQxzUOOXZccAeZsa2G7Y+aecQg5CgMsT461tMMhKiZXJ4UmTIVpt1PzblA85oI9IPq2XKwBCFf6xECOxghzukIOc03dROlr7zxyP8LJ72Okzc1Gp/oElX40tuwXMZ12LFaBiJW0ETcPLFvIm6zBaZuiul3A2LZzUBcfJ81fTskc5DpLxIhrl5zHx0BqGzjLlyGxIUmQvhI0264WQ/HhRgkDnexWet+uO7Bi0EHQtsvyxhQ/Bn7aS65W4Gw/Hrf/cxgHZ4i+DiyD/EUcpAQeWCSFg3r4JX460kq3kHVhABoCoWB8TJek1ImlIOSx/TLUja2voB9tGAtmXQni2CvlwWRg2hbXEZtshDSXnWr2Ns5hDqCyCSLTLJozn7e4Ab68olP7MjiW8B6FQGWlFpYWFhYnC6cupjS9xEZlsaiPS8C07TWHYFpwEt+1y4Atpv3+UicpIXFCRFHEf3rltGBrQRSR7cluZIWoxkE1dUTlAf7IkMIW14v7psAHkmpAQjxyIAe5dm0nV8mRC8Cl7BuMK+JiB3fSUNSImVmMJ6WS6pdYhlmXnuANx3C365BR4O3J+gwpFwf0/4BxMJYjqv+OwyfarAvPcwgcy0PsfBuQIiasfy1T8BVjl2AkMdYcxxCLJJXISRyOUKmHOIaZubnpINxcp7WQshoORiHqMymmH4dK2iBea1CSOtyOLwAkgch1lBnLYPMmEpN346r7BKznnlSv0k/xAqbYeqVIRbSEaZeMmIVNiSQCHNf8hESO9q8LkJIY5x57xD02bhWT49pMxqaZJp1X47rQl1l5hBu5j/OrE+2ueZYcI0FnGjJ17rroghYKSq7xEBCcSnkw5bO7djSuR01eCAQfrb2U+YyklaUsSL2ElrU7cPbBzLJYlbsFWz2dMIbBs3ZD9vAGyNH88pqmrMfbzJ03vANl7CG/iyjVWUFYaX1tGc7rJbUQKnkEL6hhk10Yj3ptGc77dnOPEZwR+V0NtGJbmSzmU5YfAuc3F55Qvfdcx3WffcoOJ/dkiwsLCyOhVPukhSudNYlJ+hzMd8Ae/xOvXys/GtKqe3AL7TWG5RS0UgiiSg/RdoyIFlrvVspdS3QRGs9Qyn1MPC/ZzIp+PkGu0+ePlzKR2ymEzsrL2BV+CV092ax3tMVgJ4bstmbFkLL/Gpx+80MoMbjoeVz1UKKFiDEqAjXaumQRSfHZQVC0iqROtnmfIapl4HERXoRC2MEHM6DJoNNOUfEycllWQUEiWBS5Ag4vBiajEYImRe4DlHvddoHDudCkwhcUhqGEMVPEQLruOHWmTE6JNoxwj0pfVJrzsUDxVC5HMLvR1xhN0BlEYR4oEkargKw41IdZebQ06xbYqM+y5B8po4lNdK0m44QUxCC2ceM20FP3LjcKEQluM60UWvm4RDQa8z5cuShRCVCZv8t7ey9JYSl9GfUkg+YN3AwI4oXURsGB8OC+ThwEACjdn/A1607AIggF3ATb2Bx+nCG9srz3n3Xah9aWFhYWJweOC5Jx8ee77jRxgM7tdZ1AIaYFpnzu4E5wAtKqa5AoCWkFucSxvAOr4dfTzrrqQsKomdhtu9ayw+qxSqYCWGl9YTVmlycDkEzOSdJQMjPGnM+2jQQZa5XmrIpCIkKwk0bMwghU+Zck2hcC280QlbzESthFeAVQsohaOLEeoL8/W/ATYVirKi5FdB1sLR/eDU0iQMeR4jpIlwhoDiEpGYhllEnrrUON37TERfqDeHDEOulyf0aPhixPCYgxG897i/fSFwRpgjEKrrSnFtkzgWauUSYMXhx3a+d+awzYwyTe0K2WT8nJU48rpt0CkJ2nf948xASe8i029OcHyHr1nJtNaM8H7BnYDNG5C+CZpLPdgtJxFEsTbQeTDA1BFLLfiTNSwwFlHB+5xI+r3Bye+V5D+u+a2FxFiGwpIrAkipUQS2qoPaY5dRYOSwszmqcQZckrXW11nqc1nqS1vrOU9m2hcXpRDeyuZcn2E9z9tECj9eI0tRKnODXQzsIuXG2iJUIeVqOxGZegxA6Jz9oJkKiepqjCCFXwxGylo/8LWYBI+CwI4oUJOlSqDX1epsDXKGh9dJ2ZZ7ps9Scb4orAARCzkrgcJYcXTMRsgw0CTJjzEBIWiIQAdULgA1w+EWEtDnj6Imbf7QMER5KQUSVSnDFmirM+Jw5O2q+TnqdPogLcpRp+1WEjA4z8wtECGaZuT4MsYw6c8L0EYdYU2vNPehu5pGG69o7x4zRUQqu8zvycUntatNOihnzbCAGssjkq8SO/Ld1GsF1NbRgL6l1OaTW5VBLIAcJoUfd5+ynuY+YWpxDsO67gLWUWlicEigFKXodADl0YxhzAFjAqO/VbmjlXg6GtzR9zAdA66P/P1IXy6v+4nt1aWFx6uBstMfHd0oIjkSKtVVKBfq578aZ8xYW5yzWkcFNvMJTTKLLkq3sGhjhszTGHCwlIavUZ0GsDYOgPIRcOnk+03BjO416LyWIwBG41s25kpszMhGfW2n5ixB5DUJovRDpuM0uwI2f3QCMNO+LpO/w4QiBqzDtvwqHq6BJiqmfC9XZEBJj6iXI+CrnQrhDInNx08EAIU/KmJtMkLH6xIXAVQUGifUsMfPONe+LcdPFFAi5jvy9ue6QSsevIhIhhumm3bfMGJx42CEI2XSsysm4FuUiU9ch6YVmrRL8yjhr4rzOQFx7MWvq/McqxE05M8OMKwW+bt2ByyqXcTAsmJrAYGYGjiWHVIYELgRgVOEHzIsfzL7AFtQRyEvcgsU5htO7V54zsKTUwsJAqRcA0Po2Rhj9/HmMdq9f7JaNWC0p/PYFt/lOffVgBQBr6NvgfH2bJwBYomWzGaiGoACtH2pQLmXmOjNmjdYysO9CRpWaInUbtW9hcUoQwGlzSdJalyqlshG70FvmdZ3Wevfp6dHC4ofDAJbiwcs/B15FKjl0PSi+s7WBAZBZjycXquIDCFtSz84pUbS9rExITAJCDr2I6FEdQkqdNDGY80ZJNrIHLqH91JDQbQiR9CIED4QsOiQrGSFp6VCSK5yQKoSYVSAWxyDjxluGzyU2xLFYAiRC5QLjXhstfVbnQkgf02dThNx1NuMIM+1v9BtPhalbi5DwDeb9INycoMadNtIhidfji6GtnO3n7utBrJ1OvGmGzIENuLG30cgal+FaQANNmRSEtDrqyh7T99u4aXLizFpHm/IOnDjeMnO+0q/9CGjvzSeoCvaHN6ftljLGJs6kMDCeGoIBmBL/B5qznxJiWEp/OrLpvE7Hcl7iNO6V5xIsKbX40UOpKXTQV/p9fofh2vVsH+FL8DaaY0H0wrr5PvtbSJX6wpRxWW1jMur0kaaHATCAh/zadfpwLaQ5dPO122Aum03Zjscc6nGh5kFwn0oAvJHh360RCwt/nHiXiVBKvQzM11rPP1oBpdRzSIqXNsDHSqkykxT8VuCfSqnJwF7ghlM2bguLM4RPZ/6Mu8c+zTxGMISFNGc/gcZ6WBLaiijvHjyl9YRW1UMytJ1bJha/PoibaB+EnGXjuqFm4BLCOoR4Zoqrbm02hPwBWG/iOzMRUheGbHsLEJJ0wNRPNtfyIMaxEEbIZ2IQErbE1J0HhzcYgloA5fnSRORKCO8t55yUKiEZCCG9CngecRV2YlOjEWux12+hynCtmdG4pDkLWY/eZuwZyA9+57p5DXfUcdMQApuLuOhmSdqakFEICd0ga0UEQr4d0SJMPSfPa28zjpUIqa5ARJ6cdXdcocchj9FAVJWdmNUK933VLQGEldbDSiQfaR1cWL6N8viWhJfW0Dx2Pwm7ZSL7WzfnAR7mRW4jlIOmYUtKzzlYRmaXwMLCQQfdl2BqyFWbma/q0XpMg+uOJdJTXkn1gVBuj5yOGnafXFsAKscte3PqswC8xJGhbEp9IHX00COurecnUuYr02dXv3rzzLkRR7dwql647lm+vo5iCd2t3DkdR31bqSnWgmrx/XByT39P6JJkco3ecZTzG5GfdRYW5w36jP2IUKoZwTyiKKNFeTVbI9sBEOstYp+nJcVDQ0j6YAe6B9QNgqA1iMUvHliIa7lMw03t4ljnHEtnKTTJgCZRSAykF5qMQAhrHUKQ3sQVTHJcb534yQzEzde4yPryilYi7qlLjMtuCmLJHAiR/r86HUuqI1ZUibgFr8e1zFYhbrXrEbLp1G+Km5PUEXiKRiypkeZ8nTnnpMcpxafIC4aU9kMSS/UzY2kKNIOQC01/g81YnH6amnk7qDJ99EPI+AZc8roNIffZCHl2Us0MAp4x9RcB95v1y0PI6isQ9rd6+d/ZE9YlphBPId7iCPZENuPV2LHUEcSA1ksBCKaGy1jMu1zJ/9T/FoA1AX/nOX6HxTmCk9srT/gA91yHJaUWP3o0Jl5xukWDz3fztHknllLHgqhW3QcPQnSvAmIAneoq3flHdPhbSI+FeY2ssP5k1EHGCCfTds9jk8VxoFf59/0QS+nFUhYyAHOh9ZFE1CHUegRAuI/MOnjWzOhOvzSQrep3ArAnoO3Rx2JhcXJxMuf9Rmth8W2QW59KYUA8ndhEy+Jq9sQ2I5gaAGZ6rmVM3Tu0zS2jcrDEGLYqPCBE7ABilYtGXHbDEJIUDyVPQozjElqLz8pYnQUhmbhup9sQAhaESwwTTHvbTH0nFUsVQtqKEULliPM4gkQFJidpDEKYC3FzmJYihCwNXxxp3kJIdtxkq+CF5XDbkwiBLjL9Ouq0kaafPHzqvxQh1kpH+CnK1K1DRJ3Cpe3wQ6aNQzJGRiGEIBkhkPEIUR6JuN+OMmU3mH7fxo1tDTJl15lxO2u2DcnTWmnGl2DqBJl5OylhHPfmSISsZpq5DDR1AyGjPJetke3Iis0klIOkkkMquVxYLjckLzKZ8bxOFt1ZHtDPxpSei7AxpYAlpRY/AhzN6uiPp5gIwCSmHXGtVf1OZjfSqHZcbXUvIZLOw+MkvmYLXQzBuxOdavpXItevdYh5PdJCCvjUdnVCkFhTY6WcNk9119ETdbv87wLQ0xvW9yejAGomcO0XLPkOqYi1foi/cwd/5w5+x3O+8534is1TZSGjHvTry8amWhwLdqO1sPhW2BPQlg8pZD/NqYosodXKA1RlilvmEM9CwvNq+DqtA11WbmVv70CxBF6IRFXnI+6hzyLWQy8wG2IycAldGEKe5kFIP4REOcq0G8z1UsSyV4ZPzKfakLmQxxFiVoIQrvXAaDg8A5r0Q4jmEqheb2JE6xCyuA33/0EGQiodstkZkp0UL02BaLjNURAOQsSGtuGmhLkedt4Pba83/TtKv9nABMTCm4VYMFeaMWSbeTq5TjfCzgXQdgRCSsOASiifAZG9cS24zyJk0bGEJoMv20otLjFdiKuUGmXGE48Q30MIQW5q6jgpYXqbPjDXg8x8nHQ420AlQFRkGSBW0VAOUksgh0zFlxhHKjksYwDvIB5eqb6FsjhnYBmZXQKL8wdxSLBKkS8hmkGLWp5MuJOnzMdJawyb66ENmYomVt/APT5S6NYvm9CWgayCe+WzTj3Sqlmak8ALqeMB6MYtZKQKgTzVcK2XRpN/+mVHL+dLJSN/3gPV8ye01jruxkpFoPU4ltILd9eEu2aKhVSPBSabfuaJhVS96dd3Dj4ybmFhxRssLL49pnAfSUTxCPfzSeVgdvaOou0GISVlafB15w40Zz9USR5Ln0DPAoR0PYuQtOUIAapAiGsf08Fi3DhHx+qZacpkIKlaEhFLagWENAWug5AFps5Lps3Rpg+TW7RJhjk/C+gLIaWmnyJpr2QlxAwxbWxDCFoQQtxmmL5jECtnJkImExEimIeQ3WK3ftsMYD2szIbeUbjqvE+atqJlfNUVEFKGWHV7AveYNg5B254IeTXWWdIhMgWIgMPTjPLvCES8yWPWKgIh65hxRZlxNgNizbijEFJZhBDjKHxkmxG4oTZR5n44RDkDebBQZNrOhC3x7UjasoOWRTvY07cZId6DrPVkUmaIanu2s4lOACxjAAD/HvgrHlqCxbkCu1cClpRanONQORCbegwy6od7Cp5FJzhfdyGlceSTIv6q7ANiEwopIrGB8q5+ze3nWBAS9jogqiuNsUQPMu9WHeWqXzsJfn+Oa42V9GJ/S+tDKPXxcdtw2vHlMP2mK1xwGKWqfZZaf9dcrR9C3QhwJ7w+Q65PhSWTIZMsn8uv9suJ6luLJDB6TNLOTORJtCWlFg6s+66FxbdGHYFcyieApAOJrytkXZoEhHbbkguUQgTU9oSgClyL4yAkz2UEQrTCEILjqL06ESDpULnRCA1lIYQqz7QRgZDCAmAChCQj1klHYRaEvEUiJBh8aWEql5s4Ta/0e7gMvtgGPdKl3Rh/9V0nv2ck4tY7GiFtbyLuslnmWjFuvKhj4QUIgu3Z0H4I9L4eDs8zYkqJCKF1CGEYhDhb8AwzT8f19kIzl0zTdrmZa5q032SiKfcsvjjRw9nGGrzSXAvDTSlzNULYM4C1wC1w+C5oMsqsp7POv8HNMetYox3F3t5mDPlmTYogqXCHz+251e4DrG6dwbtcSXu2A7Cd9qSznjt4zndu0pIjPb8szmLYvRKwpNTiHMSxLKLHOt+A7AFX9niLVfRqcM6po76C4Udx8z2a9a8TX7F5RFeGzpOcpJex+KguwANYxYuMZxPjuZXXuQWxSi5GLJ1b6EIqbo7TGAqIvhhKfP5BfuPQR7eOHlFupr/F9CQxYBz0d8fsj6X04ueV/zGfWroXRmJhcXwEnrCEdd+1sPDDPlpQRBzXFr7HunhDRguNO6YHlsb/lEu8awhbWS9EsSnibhuE/E9eiZAth2B2Q0igQwiLILwHroCPIwQ0GCFI5cgDxhnyOa8U2oUZV1ygejUcroNwRxHXKM6GR8r4SJTXJkXQYyQSG5mLkL/lZgwZZsxNEcK1EXFxzTRjjcQVLcKMZyQuKc2G9imGCN9iCGmyyXvaA1esyagEU2H6LEDIKGZteiCWYa+ZRwbwKWLBfAsht6MRkjzIKBPn4Vq1RiMEMtusW6SZb2/gWWM9fh6xli439+UZ8MkzeICOwGbcfKWV5l5kIw8D+sm8n+p7O71YxX6acS9PsIBhZimz2U57Yr1FPO75AwBPs4VCkrA4h2D3SktKLc49+JNOIYvu5yS+9sV2+kMNc9/rBdcet/35X40+Iv40ia8BjmgX4IOLR/HkFxOPOO+PW40lFVxFXqdNgHRM4CvdjiCjHbSjLnFk3/5QkvqUjn2lLZ1gJqEb/Zl/80CDj441GI5tER7AKg46GWL8CfpRyLpPNMlc85TbFDM/WgQgPzotLCxOGuvI4OG6B8mPjyWjPJeyyGYUxLcAICG/lAErP3PzjpbhpnyZjRCfDIQgpSFk8JAp5zynrEK2zVyEdHU29cpoGPNZAGRCciEiEmSIWMiFEIJpw7HSViDkqUjq+MjtCkS0J1vOVZs8oCFBiPjQcoTUpZg28hHiGW7G4IyzyLRhUsqQKeMLd2IyTS7W8IHmc7SZS655PxJJU5PuzoMFiEWzMxIjOhhx/e1jrg1EiLGzTv8xc+yNS/DjzLjScJWEqxCyewjXPbrC9JGICB05YktV8N8/pvGTf2xw87yCEGWT6kangfLCpA3T0XHwSeQlJBSXcmmsWNNv5QX+zu+Z6bmWf/IrbuIVLM4x2L0SkGU4o1BKdVRKfaaU2mxek49SJlApNU0ptVUptUUpNcHv2mClVJZSyquUeuJk61mcuxjBbN9xPCg15QgVWQfDmMMw5hxxXnc9tiCSr90b5dhEV3i+Ft6vZRLT2ERHnxXUwS08e8Q5cAlpfkl7Akuq+PdTv+LfT/3Kl/YFQC2R4/sgia+Puw7AcddyPC8ynheP24eaKseJ4D+OyTzAZB5AzTSCTBbnJxyXpOMdFicFu1f+ePAJPyPiP168BFPTFNaTzkFCOEgIWxLbCQED9vRuxtdpHVyiFo2IHcUhlr04hOw5rqlx5ihDiNOFiGgPCGFaY440hLj1Qyx1PRDrXZZfu+FABeQtQIjbMHM+F3ETXgTlFQjxdMSTCkVYKaQfQsrWIP8D0pE5xJnPVUhsaZYZq+NinAzlRXJUL8S3DhQgokt5uCq8Rbg5TZ1UK9GmvUJz3GrODTPnnwRfivE085ppynolJpYLZW4sMMeriDBRjJmDIzqFWfta4OemjXhz3smXirTxk99uEDK6HMkzu9zclwxgEKg8qA2DLWntUHngJRiAKPYQxR5u9VPFX8gQagimxpSxOEdg90rg7Jjmi8A0rfVbSqnrEKeGgY3KXItEsCUj/4bWKaU+1lpvR5w0bgJ+yZHPGY5Xz+Icxfyc0QxPFRJ1N4/xjDI7T/OHYLVYE1WXRjk2dx2/zaXGnffvRtHogwSzMzlPlovfJbjsbjxUIruxwf/Jn5DqDzcfxWp4tDyl4FpcA00Gbj2JBoS0cdk48hvkKQVxHwYhx8OYw9C+sIBRxNG8YT/atbA2VslVT8HwSW5fjd2UXz9KlKwyS9NhztfEUkSfyfIjapbx5b2auQ3KeyPDUauAlQ9BbyGmf2qkCHxMkSqLcxsKm3vt1MHulT8ifDaiG6FUkxOaQq+Dn+ExFkYiQEcD0dDqHwdo1fuAkLl5co0ChIA5QkErERfTDFxxniEIkXLyezqCQmEIIcxDyNVG5BuxBCGRTjoXhyQCybea8nPNuXR8CrqRTt1oUz8Nn4WxshDCB5m2yhHC5pDmNbixmhvEfTh5CJBr2gQhfFlmnk1x41BXI4JDExHCOAwhi2HmWj9cEr/ArFmR9OOzygbhChJdg1hOq0xM7ONmLR0twzzEPXq96SsX+Z+33JSJwhfb6nPLfdusE2Zd5pt5jzNjfBS4ByoTgwmfWwPdpWj7yh3oZNhOIl/HFrPf7PWTeIpXuIl01lNEHB3ZZBo/MgTI4izFye2V5z3OKClVSkUDFwM/M6feBp5XSrXWWu/2KzoGeEVrXQ/sVkq9j/yb/bvWeotp6/8dpYtj1jsd87E4tXgRUbS9ldePEOeB0dzNY77Paiby1LMn6ErAOYcR6Wnkq7+AUSgFSVoslkc4u3wIdJkCsS6xrYl6Wvr6hVtM3y6vKgdezrkTunzBS36Ey180yR9ODGldTDe3rRENh6AHOpZWaelYEKGiUT43XIfYBZZUmT7Cjl4RIcMwGpUj/xO/rXJuMXFHdWk+oh8nhLdRypipPgElS0bPS9jca6cEdq/88WEBw5ha+CgJQaVQCl5DxjzbQNXBrIuu4Ooe7wuZckSDihASNBIhN4cQEuTkDs0zjdcBTU08ZjOgH+S9Dcl34lobHZfgbFN3EEK8QIhqKUImFyPEsIc5518nAldoqSlunk8gPMO05SjaJiKEOAvhUoH43HKTe+PGni4y9QIRN1qHrDsiQg7hXmT6mg08gvzFxJkyDrHNQwjfBty8qw6JrEViansiBPdtRFm3GLF6OrGxkxFyG2bm3dOse1PkMVBPcy+c2Ni3EfLqOFCNNmu33vQ7AbgemAPh5TUsfeynDNj9GU+E30Vz9jNx7T8YELmUpQxgAEsB2OZN5H3PSDLIJpsMWlHGHp8Z2eKcwMntlec9zrT7bjywU2tdB2Bei3CdHBwkAN/4fS44Spmj4aTrKaVuNq5NWbt37z5aEYszhGO5nuaYFNJgiGczOUIr9xJaubdBWf1f9zga5jGCgbevwkMNHpOknK8fguJq+hR9RB/di4Bd9xJYUkVA7yr0qIb1dSrQ5QtArH5xvkexZg4zxarrEOkG13rJcTwUkShPU/3sSJvoymblWiWP56LrG6d+qIEF+Vpe41peO2Z5tUiOBm3MkWMLXdhCF2IoIIYCrmYuVzP3qHVOBmqmkPvjKR1bnIMIPMFhcTI4K/ZKu0/+MIihgDt4jqroAP4bm8bei0KoDQygNjAAmsLGiy7g6jXvC4EKg1rnmWc0kiszCiFPyYgVNBDXXfdC+Vy+GMKTEfKVC8kZiGV0A0IkNyLfsO4I0VwpfRGGEFp/IrfBlE1BSKoTc5mBEORhCGGtMm0726NDgOMQgrsIIb8Oed6AWFeXyxjJQuI/O8sYyMbNEbrIzDfb1E1ESK2TIqYpQhBLzbhrzfu1yLd/vBl/Hq4bsRNjew9i2exm2otGyOMEhGQWmrZMftfq2bguz/MQkhmHkNUos5b9zOHE0Uabz2EIyY8CBsOA+Z+R3zqWHqyhA1vZ070Z7St3kME6WrCPFuwjqK4egCe4l3gKLSE9V2H3SsvLHWitXwZeBsjMzNQnKG5xGqDMxqpng1LLeKHRXfC5nBryNVh3a1jAZEs5GN4SdZO8j30lnzgg2BdcAtvpbNoDpd4F4Gn9EM/cV8v7BVfCBV8BX6D1xSigJfsAmBbzG7/OXkeZ1J/6C1DqC9Nmw3yg8xiNKqil/9gPySaDpVwOQBJbTAl3Dko588SU+Rq4zGeJ1EfRLtD6IQJLqqhvIyFi/iJDP49x9PpdK60yyVqXTHJY8ARfeZVqrKWmjcbuwsfC0VSC/cdCl4Yuw4Bv7UDWz4dsIMPmOz1vYMUbzivYffKHQUc2UUg87T3bSWQ7+2lOqEd+lW5OiqfbxlwhUhXg7Qf7Q5vRKvuAkLA+iJJrPPILrx+iJpuM+7dYAZEZuHlJnZjPMIT8BSIkyRHdaRQLuXMltI1DyOZ8hAA6pKvIlIvCdQNegJBLx5oLQj4LoPpFI5oUZsaSixDGYoR8vo2QyWyE6Dlz2IYQ2g2mXB1CGMORB9RVZg5FCKHMRiyeq3FznWaavkrMXMMQy+0CM5YLgXXmfIHMZ/s8aD8IN57VyXPa1Iy9D4RMAp4y8+8BTDVr5TXnBuGm04k254Yh5PtVhMjnmnUvg/jKYvaHN6eIOAqJxxteSkv2UWSSmwaG1nGFdy5rPD0IpI5M1tKefFzHCouzHie3V573oS5nmpQWAm2VUoFa6zqlVCDyb6uwUbkC4ALAsXM1fqp7LHzXehanCSOZBcBcrvadcwik9tPaidUXMJXJFJHIrdpV1QXjrltQy6KCI9O9OHj5lRsAuIk3AGjPRt+1IcxjoXGH9SdKOiFI+tAelwjqEGA0Sk1hmN9PMKW2Q7f2bt1GZNQfMsbLj339+OlLT0gO62LCfG6x/lbGxi7DIO66S/3S4fyLG91r39FC2ThONW3wf9mQ8xM5t0e5LPsE0GNBtcZ1i7I496H40TzhPc2we+WPCJvpRBaZlBBDOutJ2FAqQjpAq0O5VCYHE76yBkrBsxI8iQeEdJbh5vLsh9zVSnPO33h2CCGOPYBaWLYQ+icgJMix8G0z7URA5XwId+I9gbY9cXNp9gCy4PByaGKeT+58Edqm4Ior5ZmyZbhhji8CQRCSATSDrxZC1yEIiWyKkMOrgWlmrN1NXUefMNn0vcHMzbHApphxL4fDBdCkpxlDAWIxzUcsueCLWSUDsWjeatrPwFUr7olYYb1Sr30kQngdV+ZsUx6EGJcgisPJSDzq82Yui5F7mILkYnVyp/ZAYkmnIRbZbFwXZhN3GjQPuvbeTNfKzey6KII2xRX8N9ZRYpIwmlWeXhwklDiKiGIPFucYTm6vPO9DXc4oKdValyqlspE/3bfM67pGMTIgUQE3KaXmIP9+rgD6nkQX37WexWlAJ77yZRB5gMk8mtNQslVtBt1R3k9GrqVyh7nqKsmpr+DJro6AkOQFVcrEfxZPQQEvN+JBjnV0CA3VhBx32qe5r8H59mz01QFDhA35StMmv8y67cA/gYZxkupl4EXo+MVXbH5OpHz1HQ2KUHgSHnUOMTYGVLqxmktYA8DLStajg+7LvYiV9FZeF4tnnLF4FjVuUbCJTr73A45yXakX5M29t8nrCP9r8wFj2uzWcN7+SEv9L+tXXHLEeSfOVX8hca6qoBZVALEJ8tta77axpecVbELwUwK7V/74ML7yTbaEX0A1IexJa0aLygMA7GvdjFZr5D3Oo4koXFdaDyIU1A8hc461M9qcByFUUfhUaPtn4MZSppvzQxCCFmfcfJNx4zcdwaDlCPHsAU2izPVm0NZYcck05T2INdMR/AEhhM3M+23QdRAusTZxpiXjITICmjiOThthe7a8bZ8hn+nh164HIcD9YPt6aH+N+ezkP3XS5WSZ9u5BSOpiZJ9z3G4X+K1XD8QSXGDKOa69laaNKFy35FFmbTfj5l11yD8I0SxHHJScyJsChKDejxD1UabvQNNWmOmzKaxLTGEVvciIzSbDuw4H2Z5uNGc/N/AGWWSy1eYnPfdgY0qBs2MJbgX+qZSaDOwFbgBQSi0AJmuts5DnSj1wIw2mai3JG5VSfYBZiNOGUkpdDfxaa73wePUszgxySGUTXXmAyaSlykP59a/8BLW5YbnbZkpeTz0WVChQbeIlvxQiNMmQUQeOlS6JKwG4OUcI3U2NXEAXNhIMeiZHyOj8VLHCbg2VessPOhm1j8QGtaABSf22UO8A9KT7mJVkspIJvMp60pmu9tNRi4LtJty8NH8YMYVNdGI77X3nbtYS+/ocXcAvBypA4wwuSlWbd+Lf3Ngt2i33N/hmEs4OqhtJnIjw1Chk9wTWHUbrJjQm5RtmipWUsVpIaEmVT2zpeKJLICT1WNZvi3MQipNxSTrvn/6eIti98keCMbzDwvBBbKITE+peJby8hp2txdTZdkmZTzG2ckQw4S/WCGlxRHqyEUKzXMqQaA7nM6ac427bFCFOQbA9F9onQ2U2hDtquysRshiGq0bvuJyCkMs8xNU1Clfhtw44gBDcKISk+auLFsLhCmgShjxiyUYIWjQ+EaWYWxGLrONSXATtHSun14yn3MyrDkiD6rchZBu0vxA3PrQQl7jG+Y1hBkKuaxHCORX5K+uNkM4XkdyklWatUsz8MnB/PTtj9iJkHTOmQHPOad/rt5bZNCTsVQiJ72bK1Jpys5F41DSZS/PY/Uz84B/sGdoMj7ee18OvB6ATm3iAh3mEB+nFKnqxip64pNXiHMDJ7ZXnPc74rz+ttfOsq/H5YX7v64DbjlH/U6DdMa4ds57FDwdX9Ke5Txn20YLJcIVJp/KWXD1WDKE+CI2JjwNlvE8d5VlfHdNWJisByPL567i5P/VAeDJ1IgDTMTK61VNYrhf4yh5LwTawpIoleqG0lyNj+3WqEOWhN8cy5OaFlBJD0R2rmPHOrUwwJLqaEPBzmT0W4tlCe/LZSpL88gSu4H3fWMfwDgCvmKsLGcJ60tk8VsjsT2eKk+6qo9hCb/Ujsf5xsY3xFBN5E9n01hn9+xf0HG6LG37McQ9jDkPHirpxYyhHafdtv3Q978p3oGhSIqpAfvEo487sU+x16pvrlrSeQ7Duu6cMdq/88WAYC9hPc0YwjwWBw+jVehVRXuOSaYhR7SAI3yAuvJQhxGg+QmiiELLjuPIW0zBGNMJcy0OSCtXKtfbXAGsg3BEScso6RNFRrXWsgAmIhTDWfA43r9Fyvnq2cc8NRFxXixCCiSGkvYFCqJxm3IMH4hNkOvwmNMG0F4P8Wo3BjQeNQMh2gmnXWFdDRpvxlSHKw0vMe4eI5+H+8u2MkMp8hCTmIpbiBIRgvg4MgsoHjLU42qyVo86LrBcpZixODtcDiKW51Mx9NPAbfO7SvtyxIKTemdNmfOQaL+L6u0DO1WZA0oYdEA9ePOwPryPDEM/NdOJ1bvSliLmDZ4GP+MTGlJ47sHslcBaQUovzF2oY3LzgWRqnM5FULUENiJDEjLouq3qsEE718ZGEU5mfYH7c0YfG6UmizGNb5c8Drzuy3tbJpt74LvS78SEueG0jsBFPiAnkIYzbtfzDz6c9H6SGMTdnJP+jmgEv8KV+hud8rsZiEX75pjthLbzwxXie4w66mQ3kf8cMAWApA2hPPrfd+Lr8AFgL47mb5uwnlRymMZEYSnl87EPoPyhSL/qCJLbQgzXEUcRw5nNx+Rc8G+nmQg1+vhJ/qCWQob8E4H5eoYwoXmSOS0zfd3bWILT+PWo6MO1i9O1wN4vw+j3avtURd2pzJIntZh4Rr2tERv3JvJ55pEKwnuSoFYNOMK67Ca4Kr/+DCn8y2qp+JwCxAfLofz0/weIshH36a2HxrfE64/g7vycYL9O4XZR2HZfTPrDzoijqCCTBUyqWtENITOQwhOS8iFgHr0GIaARidXP+nTvupnFIvGSEacNRpS1ECFQhQo7KTB0HyYh4UhkuqQ1CrHwXmjqDIcRYZqvzxPoKEGOeDzcZadqPhPCJSGznIkTkpxCapCHkzVHVdfofaV4X4wodjTPzyUbiYp3yjoJwNG7qmWjcHKNZCHEsNX29ZdavwKyJiVcNH4xrme1prjkEPw5XMCnbrMkg3DjWMES8qAeuUvE1iIATZnzJuOl8vAgxftWcL5e2g9ZDZc9gAmtrqSOQTXTifa4AIJ5Cn+jRNG4njiLfZ4tzBHavBCwptTiNENJ4Jy8dp4wjXrSFLqgRJhZy3nEq0JCMNiasjeFz1z1GOccN+B7z+ZLXVvC5WgqvjQHgrfBrWcDPeZEs3GzXsCjnUvbRkjrdn+kvT+JpE/lZRyAfzBzF8LGzMUZaNtGJ3OndmHO77KYpKpcM/SWxFFFKNGNfe40JvArAAzzCZ3ED+GXRv3hv7LX8cua/WDKzF0v5KbkrutG+r1idn6i/lwd2P0xo82p+d/Dv1NXKI7bbI6eTSg43F70Cszz8adIDADxX81sIFpJ+1eR5YhLJxBVoOArmIxbR4+UhvZSPAFhnnsj6q/9Cw1yz0FBYCuQBRexYjsB3Ud6NMQFPx1IDtjgDsE9/LSy+NYqIo4g4WrGH/9T9gqqMAN//6rCsetZwCaO2fCCWvQQk9jADsQIuQMhMink/DiFR4IoMrYfyUoh0LHcmlQlLECtdBS7pclxPvYglFMidDSmOy3AWbjoYx2LrxF2mSzshRRASRsNfnJWmXg8kvtKJCV2Jz7pbshJi7keskcbFNc9IUUQFQaTTz0uI1XMEsiYLcYnzEIQcZprXXDhsfkM0uUbGXb1aXH7pgavCu9G8VuGS+Im46sKO+3I0QmYDceNus82cwvHF3FKOuAVH4MaOYtpaj7j55poyHoR8OzlVw2BX9wjabKyACCiODaaIWJ/HVEfvJp7w/I4iYlnGADqyCYtzDHavBM58nlKL8wxqhBzfFg45bYDXp8DrU1C3u7k/48jnKSbyFBPFkmosoB9xKR9xKQCprCOVdagbpV4nvqITXx051q5yANw19TEumboCgBlaMqB28yU8E0zPmcT0nEn8jicYfOMn7KMF0ZTCLVMoI4obeIMerIFrpzBv41XoOYqhOXNE1CgNUgq2yKE3kn17T8bwDjN/ciO9WMV+mjOwaCk5NSkwF1bRi7EzX+O9p65lKQPIIhP6TWErSWwliV8GvEt9WhjtQ/M5cG8rqu9qSXXPliSxhebsh4893DXpMf7y+CNksI7Hgv/Ic/yWq0Y1YvzZQUS1K0GpKbKWWcDDIpa0Na4LW+MaElL9xdFdfdXUI88dUUZNOWocbvHMRJ9bt3rZCEU1rjtdDocE7wloy56AtqznJ9ZKejbDEW843mGEjpRSx/YLt7D4EWGzEaNbQV8OBoaQ40klLKuesKx6aAajVn4Ah2DdyBQqM4JFmX0t4vqZCBjBQLojYkVOShgnvjQZIjNNHQ9uDtF4xJLXD3Ep7YdLSCPxKdymZCAkFIRsXYiQtWGI9TMIIVRFCMmLMucy/Ca5Hr7KRchfpPR9uBQhbaZcTCZCUjPMuO+B5Ew5goIQwpyBENIIxOXWjKM62/TpkO7Z5nMVNBksB4eABcbFuMqMPU7O4UEIYoXpu7NZy7lImhhnLZ2yEXB4nrSxcp45F4PrMhyBkP4is16zzVFl1tKx7DoqwlVmbpFyf9qsqWBj5wv4T+wgklbuoBVldPRuoqN3E594+pJJFtMq7+J5fsMd/A+59Tan2jmFk9srz3v8SKZp8UMh4t1dAKiZbdDGAuYjIv8SK5n2s4xtoYtLSI0nqRoGHRb4kdRWUDw5ET1VCO/WeR2O6PdnfOJ7n/uym/uz+MZEivyspI6bafbmnvCuqP0q9TF/0F7SWc8/1B5u15DEVtaRwSp6UUcgt738OlwmCkGb6ATZMJXJAAzVX9GercxlJBlkw78eYlhnsaqGUs17r10LO2DJZBGz3EsL1k7PZNwX78BLEg8KMDxuHvMnj4b/g+K0RPLf2A73TGH9pHTe73U1/6uHcJ+x/C5jAG/vHsk0bueu6aIgvJUOtGc7o8rnEPyLSp5JFRGnB//wCIHUMp4ZTJ3zELcaJaTNS7rCoGpu19P5C8HyEADgemPNfPjEokOOyp+WpWB4qpPXR9LR3NpYhMnAsaC+MLZhGX+5G/9UM/p2l5AeC9ZCehZC0VDc5OiwQkcWFo2w3njmzORaJhVOd4nmNvB2g72hEXRbmyukxSGNKQjRmm3eZyMKt3VI3Kfz77wCIWCBCPnpjRDTSMSC51gLCxArX0/gTSjJluox/cz1TKAIDmcbkleJxFPmImSsDCGtVUB3I0LkxKUmQ9cohMjOk3aaBOEK/0QjJHml33jz8AkEheQhlt88qVO5xMSlxgIbIWQEIu7kiCElmnVyYktBCKYjhFRp1mENvvQ71Jo1GIyQyjxT7m2zxiBKugtlHk2Ma3LvWITQbzD1UpBUMd2RuN8ofFZnKsy6xyHENwh5OJyJq1jcVCylAD9fsxidAqnksN8jIUWZZJFDKi2DdvMUk/hj/V+xOMdwcnvlea9Ub0mpxSlDDAV4gqF05vHJgX+soLofhj8qPp8hCw6yYZif1cuQWPrUwmNBKKNFNH3EJGbMG0P8a3dLGy8/3YDM6JtN3OplLgF23EozGj08LCAG+Jfv89s6mwd5mHG8zhAW0ptVrKEHf735bnohCjz5tIe3YMcbSdx8w7MUEk8wXh7gUSKXHIQ28MG8UQwdMYe5JVcw/MbZzM8Z7SOfwdQQSB39L/6QISwkn/bcyktc/FUOv546DaaKINLMnBvh6wG04EUqPvEQoe6nvy4BJKXME9xLd7L4hEtZO7o3/AzmtxkNs+D6ma+QkZNNJlk8xx28p7YwqWA6t8Q/Q3+W8rK6lBf0eN7RY3id8QzWOawnnWL1Bj99YymfFYjVeQjzWJQzArqIgq/kbXVRHGfiQBuln5G4YXf9hzCPwbrbEerHYHK+ft1eyjvfi6NYVD/hZz5ruWNZ9Xf/hmMLX1mcIViZewuL74Q4iujFKpbSX/6/mr+j2hQIPgRtKirY0r0dSYt2iMXTiVPMRuJMFyKWNifWMRmx6oEQtDqEEGUgRMwovLIEIWfhuClglkv5GCNfUP0qhAyB8tkQORqaDEFUar1QXQUhcabdDQhxLAWKICQGNz+nozK70MwtHxiOxNUZcaWS2RBzjXzOzYaU0UiMKdAkDvkRvw3oB+E9cXNcH6Kh8u41CPF13GGd2L1oM+8qhACW4VP5JRLJNxpt6uJXb7KZm9NGPzOvJYhmxWxZCzBt5Zl+UkyZCrMmmLlHmjqD/e7FYuBt2PtxCMFeL22WVFA6MIY9PZpRQgw5pPpSy8WZDfip0EnMZzi/Dfgf0/hjWJwjOLm98rx/gKv0SSa2/zEhMzNTZ2VlnbighY88XKHF3WguVx9ZZqbfh0zApBrRrwgpBUh71KSHMa6Yk5FYyL8USPs3J7gpYF7iTtqzkVCEKOXGiWX0+qJXAHiDm3zxhaW3G4L8G78xdJkCVz5E2uz/cisvUUQcj74zldvHPMXtTDdpazpSSDwvF0wkNqGQ4tBE3j4oMaHN2c9ChvBGzfVUPNwGdsB7rw1jM534o2rBT3VfhrCQP49+jA9mi/rtdG5n/gixHvILOHSdoulFGq6AiEd2sTq4Jwv4OdO5nSUMZB8tuOjiTVzxxSzez7kausznT3o1qxBJ2hbs4zI+pgX7eMMo5AZRB0AsRQxgGQ/yMFsLOvFMwkTuinuJ4UXyaNfJU7q9vD3BTWtID13PZ1MH0H3ySi7jY9bRjUV3CHns89xHfJoj8aL/Th3BVStkd9Z9YSJPATCNSce853qsvB88Vup9Unkp1RE1ck3HCCEFHynlQxE/Aj9i+pg8nIj9g6PiDAdrhBy3ChYhq8Zxr77vXB+bYubbQCm1VmudeeKSJ4fMVKWz3jxBn5mc0j4tfhjYffL04RVu4EEe5mEeZD3pPLf790K0AMph70UhHCSUtl+WCXGsRfbWFxEyVIUQoTLE6pdmymw0bTixnyCkqR/kPgsp6Qgpy8BNtRJh2ovE/dHshcOrDTFMQKyj5eb6QNN3nrjjNhmMELgqJObTEfjpZ9p00rn0wI3NTEAssUXmfS5CQNOheo5U91lcgxDLYwlueptEM+5Ic20b7JwNbXubsTn5UTubdUgxYyzDtSA7YkjLTZlyhDSuNn0662diY6u3mTGF4VpkHSu2x8xhAkI6HQVekPvnuGc6isalwNX4SHStkbPYHx5CEXGUEUU66+WBBZDJWiToKJXttGed8X+26runD3avPD2wv9Ysvhcc4ZqRzALc9C9FJBJDAaU/E1KoP8LNRWrSf6qZwOXADsn9KQUbxQeOM1/RJe4ppb7gAh1K7sxuDYq+qbqTputI57+UOHGG0yVNCUiako20x6Nr2MQyrqt/i4eYQtnf28I1tazgUrLIJJ31rKU72Rf35M9f3Ec1IXx88DLiKQTErWpaye3UTwsjYGIVoc2r+dXBNxgQupQUnUQi65jINNrPzuchppBV0p1uMdk8P28CANGU4lkEv837O/9TcDf7FscyYejzxFPI9bzJG1zPg1ue5N9fjCCUg/w19T5S/rGdVQQwy5D+QuIJpI4cUvk7vyftxi3w+t+4S9dzN08DsK++BSkJ67lr24v8peheBrCMNfQQSy9Q0yecGuCzpgPo8MXXrH2tN2t//TFX6b30ee4jktjKO5VjmJE6hkfNQ4KjIYmvfaQw1SgM67EN782imSPoM/ZI91ut2zf4HBhVRWCJqPZq/ZBYuI2TShGJjOGfgOvyvKcmin3BbeR78TspF/v3fGLHQnGBPEVuLL5k8QPi5FySLCws/LCedGYzmlRyuJQVUAFzkoYC8POoD6gjkLZrysTiZuIZWYCQGS9CDAsQoSEPYinNwE1DUouQsEiEbK2ElOuh5E2ISUYsr8MRcvcWQsAcggXiauvkLY2XfivXQogHmizBlzqmSQJsnw3tf4MQ1yLYbvKYto+Tzz5V3QrTXm/ESphsjnyEwG0DyiAkypR3Yk8LTRsRCCnNQMicI9BkhJ/a9kZck/NxY1unumtRbVLVhDhtZpsyvc381yAEtaeZi0PwByJKw3OAPkj8rmPBdeJ1R+C6GicjsamObqJD+gPNuRLEwrtS5lPZM5jw8hpqPVBCNFvpwLDKRTwXfjtDkLR0Ud49tPfk04J9xFDis6BanEOweyVghY4svgOcdB0OAkuqmFcy/KhWUn/ojnB7x6dO3L6awl9UMFN5xHfuJe70HQDfqKXy9DcNdBFQfKT6zn1MQfnpG/ViKevpyoXDiighmrIdMdwf8ChRv9tJn4SlbFAJFBJPIfFkq2+4/4vJrKU7gdSxNqc3fXKyKCGa29RveSPmV3wxNZX6Nk9wIGwaU0If4hLW8Ao3EU8h8xhBDKU8xSTqAppxN0/zMZfxMZcxeuN8xg9+gVuMLrH6q2YKD/HQA49TRyDrSWdF0iWsohfprKc5B/j8xnTu5mlarThAqxUHWEc3iojj6hXv06V4K2TC83ozz8y7jwtuLCGHVPoHLCOVHOhQyp9GP0GfO7K4545pNOcAzTlAWs5/uSJnFtd/8Qot2EefGz8iRY8giDpaso+FDGF4+DwWMIx7eYKrmsxjeN/ZDO87m058xXR1m48cqkcbrn1gSZUvxysZ+H4EdA/PQusYtJagHf/vklrk1m8QPzocuE9Ekv5dcC1ryaRVcBn7gtuwL7gNamYja7zvCxAkh8WZgxVvsLD41lhHBsHU0Gr3AWYwni1J7Ri18gNGrfwATxWEeA8KcalCiIyjghuEkJzlCJHLRciVk5vTX0k2ESFx0QhhWggx6bg5TucjRCwaIXf5pr1cqMwz5SKgfIb0Hd7PpHEJN3UuBCKhfTKiLjsICIT26XJQAuWOW2wtYi09hBDnOChZjhC6MHMkIMT1HnNUIDGh6837FDPuIMhbDIeXm2sOEfeaNToAh++Rw0c404SMhlxv+onHJfFLzNwP4bpAlyJW1s4IOV2OayVuas5lmD4jEJK90NyHUrMWkebIxn2wEG36CzPvP4XwGTX8q/UvCfJC5y+/oQX72BMewRAWEkMJMZTwiacvcXXF/KL+/0glh8lMPeHvMYuzDHavBKz77lFh3ZKOj8aWJ4d8+Oek9I8J9E8D4u/y6RMdUvK0j69NuS6m7ktGGMlf/GYyBEysov7BMIy3aoP4QXWheXMI/lA0hf8wjH20ZMd0EeR56/YrWcgQ3iwYz08TPiG7MoPZ4eJW24lNJH9VyN+63kEL9jHX5AD7vL4HZR+2hZ9Xu3P6NFT6i63nTxc+SCgHiaeQ7mSxlkyunfUelIFK1Dw/bAKX8gkHkTqTeIrxvM5BQphY+TILwwexjxa0Zzv7aU42GawnnXTWM4FXmccIiohlPDMoNT5D7zCGx/72ZxgEw7q/Ry9WcV/lkxSFR/MuVzKe16kjUIhl3Xwi/uWlww1fs3VOF/jlCzKJ2NtgAnSY+jXprAdE9XcCr7KPFnRnLX1ZQXKBWL+fSZjIE/wOj3lcvvXCLoRk76X6+ZayJve79+Fo34mjwf+75JBSPbhhmaN+vwpq3QKfyn/rDmMbxpdafHuccpekdKWzTpDiSV14/rsknY+w++Tpw6V8xARe5TIWE1dexsGwAIo9os6TtGEHxEBVeAChVfUURUaJ1dS4zPpcSx230w00FPsBsaKWIsTyEEKkKhAylodYA51Y1BRcFV1HIGgU4sZagJDcKMT9diXkZUFyP9PmIYTQeaAkD8LD/Nxuy834nLQrTiqZIji8EpokA4Og5HETV5pl3IGNmJAvXnS9mVe6GVNThCyWmjE3k/59+UCrcC2+YYhlshiIFGtpyHhzLcuMvwgOe6FJijs+kgFnv5tszmebOcWbcQ3ETavjrNl4c34Nbpqe0YhL8yAz7mSEbCeYsQ2BjUMvIPHgN+wPbUarLw9ANHwd24EyxGxcQgyt2MM6usmDaGBo66Xo3VicJti98vTAktKjwG623x4NyEUOPtcXf6Vdh1yMjHmf+eXDqRkn8nMnykvqT0rUc6bdO+BuE8T/NPcxDXGNncirTOQpNtGJTXTiAR7hae7mdpOPtAX7eJUJNGc/yyoH8Nfw+7hLxXGzbsHLS+6EQVMYqsUq+Yvy/zAu8nVe+uAu2XRMDMm9sX9hAq/S+a1vKLgumhqCSZq1g/yrY9lDFKFU06lyK0HOjwTzlHfFRZcA0Hfj59JQLrw2ciy9WEnnf3wDabCyR3ei2ENcXTGbAjtym1HKfYFbuZHXmGaCY/u+9bkvVkb95s98qWcSRxHBdTWEv1iDvgYOhgVQ6omhfXkxqyK7s48WTON2rkXMite++x7xV+axY1sHOlyYwzAWsJ50XuEmRjCPTibXWR2BzFe/gOuNyJHDB9+eT3cdSQkxxFNIonHdziKTTXRFvQP8RP6/xF64HcAnUHQyOJrbrcqB2FTXRbxBecdamnFkPYuTwynfaLsqnfWfE/SZcP5vtOcj7D55+nApH/F3fk9z9lNIPJdvXEZVoji2hW2shwOgU0BlI+TlU4RIvo0QtPmIO2gYQpBuRdKYOEJHjshRCq5LaTRCwhxxokO4saXZyB7oCB9F48sb6rRzOBuajDb9ecRS2WQYQg6NBZMNiHUSxD3VUd51vE2dXJ4OgV6AxHn2gZI5RmjJhP/Q2YxpkRm/k0c1yNRzlHzNGlQfMq65+bjxoJjrdUhM7r+hshLCO5uxpSDkvsiMqTNCYDsDjhvxYr82Bps6ExCSHA+HZ4sbs4+AByHxtA5hdayvA4GfI7lQu8n51Vdm0PPebAqeML8zinewMzaKtvPLmDN8qG8KQ7wLKfO0AmA77XmAhwEbU3o6YffK04MfiUHY4lTDcYvVJs/nsQjALTwLiPuta+m6FrWrYTn/WNTj4Yo7ZnGQUIYATpfqRnjeWEuT+JrXeId+k9ewZKqIAv2V+2jJPgBG1sxhVvA1TOd2ngqfxG1zXidFr2MVtbw9cCQz9VjmTx9Ft9uzuTvyaeIp5NKhi/hk42BmxV4BwBNr/wSRsPS6n1JCDJfyCZOvvp8Sonmp8C4oh2kX/ZoJKf/Akw/Dhr/H3IO/9Cnk3dD5ZZ6v+w0LOg8DoJpQqq4L4FHPAwxhIZ2Lv4HlkDoyh/s9j7CQISzmMtbfcAkb37gAgG7XfcZTTOJ1xqNjbuafXMVMxrI3sAWPTHyQO3mWl703kbi7mBdbj2MM7zCa2Xz811/4NuSq6wL4kMt59UIh9J3YxBAWMp7XyC1IZ0LCq7zDGF7kVgp1PG9xHdtpzy/GfgzAcH2IImBHQXtiEkqoJZBsJJZUrOCOUgQULzJ5SNsd+V1R5um7Lmqophubmk+x2oACtHZTWBbnJPraaKy+C0f/LiolqsUiruSmmrE4zbDquxYW3wlFxJKIl8u3LIMoqAsyf0jRNXAIVC7yv3w9QpBWI0QnzzRQiWtNXI64j15vrmUjpPVC5CGjE4PpWBfDzPWNSIqVHuKmG+mfm9QR9LlK2q6thSaLECLYFJpEI4QxAiGLF5q2HNXZvriuuU1xyfEGM4Yqc60C2AYxcaZcoN/8HDXcfNz42hGmzx5+a3EdhMw34x2BT8GXQ2YNg8z6jIBwrzm/0pQLk/byVkPyOLNO+YjrLaZuESIotQghmC8icaPl0ORWGrro5iIPEZwkBctNf+Xm/QjYc10zWv31AD3Ks2EkfMKlXJv/HusSU4iliP8OTyOUaoaULwOgJDKCGoI5SChRlLk5Sm2A3rkDu1cCdgksTjHUZIidmg+pDsG80712I3CvvNepoOaLG6nKuY1YJxXICNdy6ogn1d9kYiMaWVSfUV6i9XhSXltHLEX8cvoC0m7/L3MZyZ+mPsDrjOfNG2/intce9in1Vmxsw/6uzQnhIEvpz9hRr/EHHqeEaApJYDjzmXfgKvKJZR7Dmfj//sEtb/6D2jgYVmceMz8LjIT+EZ+xNbIddQQydfejqI80146dSXr8eiau/Ie4DSXCgvt+CffArNAxALzx7s2suPISMlhHDR6C8ZLt6ca9PEEZUfIk1FPGQs8QRn35AX+5aDIvrbwLekOOoeLr/vpTuA4GTPuMeY8NZgTz6c0qkhbtYPbg4eSQys88HzOk9UIe+vJxCIdXEm9ixB//7RNsGsM7jKj5X/ZtjkWVal4eeANRlPHp6J/x5OyJvMuV1BDMxXE57ChqxRouYQbj4UFZhvkFIxmUsJCodiXsowX/XvErZvQdw6vGak06cEgJSXTcqht/X5Yc/TyY748WMnsDoqzMhzfJq/m+NCCjY4WkJnGkC68TwyrvLRn9waBA29xrFhbfCnEU8TR38zo3+lxIw+NEtXxPUjNaFRyQvKWfgu4HyrEeehEimomQHxAyNA8hUdvMuSppkzUIeStCLJL9EGtoONJvCULCiiAyEtdLphax7C2ScuX5EDkSDi+CJhGI1bAzQsY6I4TxEEKQ/YltPq5armP/WS/vq5dDSAKyj4SZciWmHggpzcLNseoxc3fyouabcTiW2UhEh6LUvIIQw8VmXD0QQuw8O+8p60tTqZucbtaxCngSeN6Uc1SCa80YDkH1NRDyOEKKI83c+5l7UmvW3ZlHvGkj14y5M7Qaf6BB6pzhPefzdWIHoigjiDriKeRzerDQEONUcmhfuYOPw/uzhh6kBDiiH22xOEdwcnvleQ9LSi2+NWIoILorlJhHfa3qdwKQHrAekdMVNM5V6Q+lphCtJXijNEesX9xHg7pXmHp6npRXCqL1eF7gVgAW0QOA3IJ06hKC6H/7h9zPI8xgPM+8fB9kQ8gzeykkniS2AvBW1yu5qmg2POaBFsBftrNfNyeVHB6u/DNBq0Ht0OhCxZ3el7nlf5/hbp6mc/E3vBR+CwCpb+TQ37uUdz1X8qvCf1MQH82s1ldQf7mSHwdVsHHgBQRRR3RdKeFv17CndTPuq3xSJtQZioijjkAurfyMVeGXkEMqN/EKs7ia6LpSSIZObGbORUN5ikns6d2Mp3vfzSOFfwFgyx/bkawmcIXuxNz7ruGWx57hpafuYs6koWSSxf/xC1odLOOx0D/44omiEsoYGziTq9e8L230aMe+f8ey8rruXMEserGK/TTngtkbqSGYVuxhvvoFf9H30u6LPQS0raK+LIz+qR8CMIFXAegQsJWfNlkHo+HRvqLSu3lJV/428A4AZlFIB7bwE9YfXQn3LdAD5a0/mVTzwDxL4PoxR36H4Nsp63rKKwGo2RUOF5l6h09cz+K7Qyuos7nXLCy+NR7hQYKp4ZW067mUFdSZn2tdirdSmRmMx1uDp1Ae7NUOhqAyhCQuQgjQIUQNdgkwErH8Ge258sUQmYnrUhqNkLAic3jx5e/MWwzJ1+BaHUGIXTYcLgJmm7Y2mPQvhQg5zMUlx3WIayq47rfJCGELNP2VI5bEGBlTyHhE5bYY18pYCmbbl/OJuGQwWq5vfxvaT5DxkGHqLIfqMggpN+ecvNrJpr2m5lxnc34Brsuxx8yps5lHOaLa6+QpHYYrUNRbyoRc43d9JULEV5uxxOHmTQUqZ0H4/WZci007o2V9VaK8D8+qIT6zkLrAQFqUV7M1sh1DWMgWRCujhGhywlMJ5SBDWMij5Sbg1bHmWpz1OMm98ryHjSk9CmysjAv/dCoOnBygDiltHMvnxPwVzxQr15NjJwKwiY4APrnyBYxCGdHcDhd/zdacRtYt/1hC43LpI7Lqda7QnQikjjt4jiLiuKbXXP626g6foNAAllJEHCVEc1eRBKNGtdnDCwG3UUYUt+6eQUHraOIqS3k6/Lf8buP/QDasvjqDhQzhobmP4x0CnjKYFX8FV+9+H4CvWndkYP0SvjmcQFhWPcRAflIsif8ohmjIHx7LDfyT+3gcL8HsoyV9WcGLCKl94oE/oe+BqZF/YD3p/NN7A2F/q4fRsLNzFGVE0XXLZv6e9Fv6s5QaPPR+ai2EQf4tsWYtO7Gf5oxeNB+awn/7pjGfEQxhoY/wLqU/L224iy1p7UheUkhI5l4+DL+cjLpsAMJza8hPiyXxpWIG3PIBr3ATN/AGdQTyv4zg/zGPz7/qy/1dJ/MOY7id6dwzcxpcK0wxRW/k7/yOd7mSfbTg/UVX87fBd/AuV/K5qoJNEvPyeUfRvr9ELUfrhrukEy9c3+YJuef6IZR6lVg9iOKnEuGeKQ3KN7ZyhlbuBaD6/4zY0tEegBjiGtzmSFLKl0d+137MONVxMt0vVnrVp8cv0zTs/I+TOR9h98nTh0v5iNe5ka9IJ5RqkthC0todcjEPsa55gUSoigsgbFG9kKrlCDHKN9fjgRkI8arCFSpKRzx+4s1558dwAUIkjTgReUg86jzYngXtHStnEEIGk5F+4xDCVWb6rUWIWoQ58k0/A3FTwDhxmt2hZAbEDEIsqo4l04srghQEOxdC20waigeF+ZVz6jlxphMQN9rBuKrDQWZOzn8bj1kzR9m31JTL8HstwI0FdVLTrMSNS3UUkOPM/GsRz6A44HFTrpvpdxzi1huE68bcAyHi63FFpdJwc6caEv7PtKuowUMnNpFKDltI8okOfkW66GQwgFt4iYEmh16Jz0fY4lTD7pWnB2eclCqlOgL/RKIiyoAbtNZ5jcoEAs8hZjgNPKa1fvUkrv0ZuB33udhKrfXEE43JbraCFxnPbTNfBxr+2PelgzF7pKOWeixhGoAnU2XZJzGtAdH1J6UgljL/dhzrVofIrb42S+uj+UPA4+ynOftowXrSiaeQ4cznTa5nHK+zjAHczdP8Cxn45+Y/+wvcBsBNvMzf+T1dCreyMz6K7bSn99q16ER4JPIeHpzxpGwkcbCrdQSvMoFP6AtAN9bRnu3kkMpfvfdxkecr8srTUEVAtsSDrKIXI15axM5bomjh3cs+T0va7pYEbStbd6f3yrUATOj9PK+U/4afR77Hf8p/yZrIDHrOyqZqpPzQuGP431jIEL6uvIigRVA1XIJE/uh5jMv4mPZsp2vhZmbFX+HLUdahbisHA0MoJo5aAnmTG+jAFjqxmcs/WMa/hv4SgO5kMYPxXMondGITK+nFZSym1cEy7gv9K1vpwO1MZxn96c5aRn85n1sueoaXc1yXbPbDH3pM4bnKOxgWvoBl9f0pe78tfxr1AKEc5FUmsK++Bc0C9gPwzaOdWXT/pQD8jE98pDQmRnboIhIbklKAJDBG2SNEsY54QLLN/D/boKT8CL/volHs1Qn2ceSxcKo32m6ZAXr5mibHLRMRVHPeb7SnAmfbXmn3ydOHVvU7eTbgTnqwhq9IZ4h3IWHZ9QAU9IgmYUsplYnGWrocIUKO8NBsxPVzM5AOH98Dl12DGwsJrgrvSlzC5Sj1OqlmuiNWTcda6JBMcEmrF3Gp7YbPzRejlOvLQToRIcBOHw6pDEOss44YYC5ikYyAw2XQJE7KlhRBzDCEOJb5zSEa+UtwxJe8ps8UhOD1Nv3XmTKO8i5+r2GmvXgzriLEaupPqh3CGybr6YsHdcYRaOqMQ0iw89eZYPrtacbjqBo76WBmmPqRZjwJZk1TzFFgXqtgS992RFFGy8Jqnoq/nQEs5Wf1HzEoQPQdpvEb3uAGxvAOW+kAwAM8bIWOTiPsXnl6cDb8OnsRmKa1fkspdR3wEvI8zR/XIj9Nk5E/+XVKqY+11ttPcA3gDa31vad/Gj9eqMmQNvW/kP0TOeFHSoemzuEyFrtlc4Au/QG4TP8HVotPz5aLu9CLpfSiFBhw3P6CA2pYRS/ef+5qBt3xH6IoYxW9SCWHKTxEIfGkksNDTOHdyivpH76UEUio2juMoQX7uJL3SC3fCnnwZvz1jOEddnWPoM2aCib2mE7BuGimMplr+Rcp5HBf5ZPcEP4mAKEcpNUHB9g7VNRot6xNY0T3fzNv2lXc96c/89iWPzNi2yLa35LLIzxIC88+fr5kMSsGGvXdf3zOnF8PJZUcXv3bb1jx+0tYsPGXXNn5LSbwKnuubsYKLqV4eBxDWMhw5rEq/BJSr8zx5QX9A49TSDzRlMA9EP/vQnrPWkvB1dHUBAbT8mAFhEKbFRVs7buKTXSiE5uoHBxMCAcB+IS+/Mk7lds8L3IvT7CVJBLZztpQUQCOoQQPXv7FtdzF07x40TheVnfygrFWFxHHUvoTSB3x4YW8N/Va3p48kiGjFhJ6sJoBoUvYWtAJPg1i3NiHefLRBxvcxxcZz7QYuC3ndXlSjEkLs3ACxTeaQq//j7yO/22D1D+OMFYgrjiWysEVvnC+byZmVTf+jwIo5YYv+gspWZxa1AUGnriQxcnA7pU/MjzHHTxX+Ht2xkcRmiwPNRPyS2E9hEbXELQaKgcHsy+wBQlrS+Xh3a3AmwjBGgKXDcFV5B1tGl6NS4ScOEsnb6kTI5mN/EJMRgjqq/jEefLWQ3IcPhEgwhB3YS/yLTV5SsvnQeSrCDF01GqdlDA9gWkIecw2Y5sNhwtMvlNjgYyJk7Z85NMhtYkI2YvAzQdaBbkLIWU07uOVOHwqv3l5xhXZSQkTjZDELDP3IYgltJupH4+48ibiuuMasuyLry36/+y9f3xU1bX+/x4zYTIJmcQZmikJSRNIxKSEBsjHeIkgFioWr9xisVitVntp9WqLpbettrZ6tbW1P620em3lWy3WH1QqvXCljQVBEGpsgJTYjJBAchMzdKbMmB9MJiET5/vHWnt27L1VarGKzHq99iuZc/bZZ58zyVnn2etZzwLuwAoz1SER4CZEBKpMW5teR5veK/NdmL55uu9xPWez7q+F8u6X2FtcSWOxnytZw4Q/H+WJd11MKZ0AFEV7GI7mcVv5jZzH1pT6btpOLnu7+UqHw5EH3AV8IJlMFr9e/xNyzrcyUupwOAqQ9TxfMpkc1ZXcCFCRTNoKSw6H40nggWQyuU4//wj4n2Qy+Z3X2fcfwPi/1dGmV4CtFdJBvirXArSquiqIqMzBW4Rym7z9fx8rAFTplxcp7VKquDCxqiNVT2tL64Ukq2A2WwHYxXk2GmuO54sATEr28H0+Bwgd+Kt7vsu3Z65gmHFM5QD5vMwBptJKFetZwm+4gKr+AzgFT5K4Alo9ZzC9+wCJPOj2TKTsa4fp//I4PJuOsfSin3Mbt/LejoPcXfYplg+vFgl+U8sNwAPby85iLcs4i0Y+3vgLKIGfTfwIH//mL9j7pUpmvBBg+7SzmMJBir4dgavh/neJ9OFS1tFMDZe88jgLT2vgfBoo5yD1f9gtzmkR4pCmwbAPMhJwoee/aPjav6Qcuv/S/2EeW1n71FXcff6naNb6ZAvYzIxfB3jxg+8RFd8gtvg58HK5m3u4DoCv7PweT9bPx0cEF8OU0kn2YJxPZv+ENX/4FEve9yhTaOe7v/4qd37ws9x0+Af8ceIUvqEF2joo43ruYRgX//rJh/nX++8hgo9r+DEAd7GSHf1zuMVzOyH8LGUd+fRyO1/lF60ft38o7cC/6PfcoLVpx9Qq/csIvMMhChF/SQUea+Zv6XdPywKHAaWFdHDYsUZ7zUz1T4NSsRO9+vu+WmeyoWn8a/aZ6Oh7x6/+/r32dvSVaT/55tot3Mx13EMzM8jWhUSAue3Piz8yUT4nsjr3AgIui7F1MDch/sSLgB0j8DOKRCb79HgvxJvBXY38VdXI8ftWw/RzsXmmRojlXMQX7eTVtVHBgrMg7AnAzHNlvNDd4D8XC+Zq9fg++X1kk0ZHgf4O8NToXAoQFeAyXl1j1DPmWupkDv0P6i6vjm/KxPhJUYvjDWNqkYKUyqm08yAA7NbrM5HO5/QeXILkfNZgo81GfbcQ8d9t2HqmTv39It1nti9EqL3otkuAx/Q68pDv6hFEzOkh+P53r+NzL9zLb6bN44I/b+O5d9VQSDD1d7GeJWQzyH6m8rVVd3DOit8C6ZIwb6a9XX2lw+H4LvBhoBSoTiaTL+j212XavMaYm5PJ5ILj6fv32lsdKS0GepLJ5CiAOluzPjW27G8J8D9jPndhK1u91j6ASx0Ox/nAn4Bbk8nk7/6viTgcjk8BnwIoKTk1efi3cRPZDNLELACu5kHgp6/qczO3UEiQiQS5gukEb59IHc9TxeepZh8LeYpuirk99FUgB/5466sEjE7zxfi+/3P8kBVsab0wtf16vs8SOrkp9E1u89+EQa+n/enzLPWv42ZNWL2cn9NMDZ2UAvDNmStZSAP59PKeQ3/ivyd/gE8/vZq8c/7E58d9l+roARwBiC3XGm/RV8j2DPJk8Xwu3LhFnMVHwTV8jOcuqmHdrz/Gig9+m1WNX2RF3k9whOHI+8YTpJAMRgF4b/tBSunknu3/zs65s2A9fP/O61jAZn7/pWkU082V037CUtZR1BFh6xf/iVu4jR2/FqR15IPjOe9rv+PIxybxm7J5XPD/beO5f60BF3z/X69jCespGzrMY8UfIkgh1wzfx9U8YFd1QWqJvvAUOOFKHuKG7/8ELoGO4ols+OD5soIahK2z/onzGn/H1rp/4rx7fsdw+biU4NJN9f/BnYf/gyMTx7OXGjIYZXrwAJ8pXwVHoYZmammCGhggl99OPIcP3PosP/myKODm9L/CY+/6EBF8fOb+7/BDxyA/SO7jES6jiVqWsZZyTzu5DJDBKPXf3M01X/oBy1hLbdXu1Hf/xfZV9g/ks/Ljmta7+UnrDXyq6m6MgvMSHmM/UwEpi3MNd9NLPrkcZYDxrAst5Rb/17g99FXu96+mgfNpfG+MFf4fUsVCfsonQKnjAJXJSanff8rlADQi0ewfj1GNTtvfZ6NvuZt5R9jbwlem/eQ/xvx08VvWcZhCghRyZf8jdHtET4A2BFxqvc1hVTZ3dSPfqMlP9CHg8VmEUluLjb5lAItg5G4LBN2LEeCUgwCvHJheg1BqL0GA7XrsHGLIq20MW+N0vP4MAxUw01B0HwJ/NQKcDXh9HKiBkTbILNMSMjUytuf92PIvqn6borcaUNoE/WHwzCJFx/Wcr3NdDf1PgecaveYOiAfAfa7WKu2zY6TyTNv03o2SUtFNlaQpQSKaJsoJ8HP9uUSv19BtXbx6seDMMffrRf3u7saq65rzH0XowU8At+i9LpAxP7f+XjhH1PcvCG6j/F3tNGGxyUVs4DCFbOAiPrLiZ1SlpJfToPRkshPkK3+F/IXt+Ivtf5Vp43A4pujnsdaQTCa/cyIm9LfYWx0pnYVQht47Zlsr8LFkMrlnzLYW4BPJZPL3+vmLwKRkMrnidfa9G4gkk8kRh8PxAeBhoDKZTEZea16n4grw5/k6uRxlLtvpoIxGzuJafswuZnOWyuWtZRl+wgySzTbmMY9tlNLBYQVsPiL4CeEjwg7msJR1bGIRK0JSq/Q5/9lsZDG1NFFMN+2U00oVV7KGDVzEMVwMkk0x3bRSyXfv+aqspI7NBTHUohrEEYSxUUwX4lSCEPqR+OVyYAS7OOsEMoGiPGhXx9Sj/XoQJzoyCoEhqHBCZ0IEYL1AkUZKo0NQWgg9QVlULQCmF8LOIFRnyX4AjxPcLuiMgRtJvTHmx25LIMLt/cCkHIgPw0gC3FkwMGSPGRxzHXGg1AmhhBxX54MnInId033QH5Nz9/TJebx50NInx3g1L2hPBGaWQGeXXHt9AfSEoUjryYV22jkYkVr32GvwyY2JdoDXRMorkJVnVVA05QzIQlaEE9r6tb8XrrnmB/SSTxUBbg99lVv8ojA8wHjK6OQerudqHqCAEA9yNddxLy2IeFIx3TzCZcxjG9kMksEoU9nPGq5gLjtYEbqbNf6Ps4GLmMoB/ISoopUOyhjVgnfFdHOMcQzjYrO+KZyqoPREr/5Or81M/nfTa0tAvscRTkdKX8fejr7yVPST/ygzQkfl3SLcsLe4kjOG9wOQHXsFR7cslmYwyun/X1z84U6EempqaDoRB2VAXTfWgfiwNUON4u4o8vzOQZxnCZZym8CCTRBA1QKMh/izCmj7EOAWFJ9S6kMA4gYsoPTpceh5PgI8ClyDfSW+AQGSh3gVhTUlZGRqjC7X/TEgA9o2QcWn9XzFiL+pRKLGFyGKuXnA1QgYBQGDZyJ03S2IMy/ROVYgIkhG9bdWr+dRvVZD532/3tsy7Z+l53di68ZegtRHfVz71CIRbPS8OTqeFxv5nSz3cng57MueRpxsRsngvPbf8Vx5DbkM0KyL9XupYQm/opd87uRGnLqAvnVMNYS0nVh7i3zl/wBHxmz6STKZ/MlfmV8n8M/JZPKF42Xa/DU7lSKl3UCRw+HIGHOjTLnnsdaFhEd+r5/Hrvj+1X3JZPJPZoBkMvlbh8PRjTzWnnkTruWktwGEOhDBx1x20Es+A+TyXS0uupzVuDhGCD9BJtJKJeW0M4WD9JJPJ6VUs49mZhCigE5KWcdS1vtFufe7fJ5FbGIr5zFALtdzDwA38U1W8EONgkEtTXzi3x6xRa11RRiQbzsLWckt49UiDW3AzwVsGaE8txP2JExsLVVhhERC+nh0W1SHeSkmnyuzpI9bt/cDXgWI/QggfQkZ1wPsCUKlEzw5kJkhwNLtgn0x8TNRLKAz3IkRYHoBtIUF/HUOQSIm5+sB/EPgd0K/ziMbC2z9CCBFz98TETKqub74kIBjf46M3R+DXATsxvU6ZhZCqEv6EINoVO6XKaaeADweuaZQRMZJJLReHdLfmydjdn4ZSqsRUYssbFHysUqEzciLiVE11O/zx+s/S88SH2EKWOhvYDezhIocEgrSff5/SwlaLWUdA+SmqN8D5DKLJkrpYBQnnwz9hJX+u7iaB1PAdRgXu6kln15CFLCdOdSymzm6kPgJfspt3MpHvrCBed+RcjcPs5TLWUfa/j5L4uAY497qabwTLO0rTyE7wFSOMIHu4mKmIMwc56gIHXV7CzjmHUf5HwSw9vyrj6KnI7amZh62Vue5CKAywkQmLt6MBUxmm5ZG6XkCipYjQLUWAU2Lkee4Cs4R0c8F4M4gVY4l3gJOJ5Qu0jlEdE4VyF/rQ9ic0iyk3udHkaigiYp+GXHeUSRyaMBpDEhAVHNFvQ8iua4Zci0VlXo9/47cC0MvLkYA6feAWxGgbvJNMxCHewgLPtv0epuRKK8T+c/pQsSJEgiovXnMvehH/hMrxlyPWVA+F4nuPqQ/r0DeXYzURoyUoBEJbK3VWmAiuK6FsjWdDJJNSWOYnjofpXTw7vY+GspFY+K24VvpdJVRTDff0VSnL/Bt0nby2HH6yiNvEAgfL9Pmf5nD4bgHONPhcNwHfCuZTHa8Vv+/195SUJpMJsMOh6MZ+Tf+uf7c+38g98eBTzocjieQd/oPgUqhvsY+h8NRlEwme/T3GoRjvf9Nu6CT2EyUdBzHKCRIPr3k08sUDrKQBgDu5EaW8stUtGmuvtRnMMp+pjKbXfyYaxgkmzlsp5UqlrOavZqHejUP8i1u5D+5lhamk8sAM9hLN8UcYxwRfDQxiy+s+mFKtOBVRcDBRtyM0qCh1mjx7LaIBX8vASTg3DwIj5GRjwIDCj4rfNAekUhlD+BTELhzCKYjvmamRlV79Pgi9FgnbEsI6KxEfq+PQCdQVyCgbWaeRCuLeHW0ljGfPYCnANxdAkLbEjJeHHhJO3mzJE+mLWjnUOkTsJjpBG8BxPsEDIc0tlGUB5194NfI7yTAX2JPPBJTsO2Ue5abo/dJgX5RFuzpsnP3eCAegxFDn9KLCAHTJ0P8ELhNbTpDJTOS/THEEfchjrtZj/cCQSj6dYTdH5xFN8VsZw759PKk/5/ppphe8hnHMMV0s505zGYXi7XI23qWcFdoJav8N7AidDcr/XeRy1FyGaCTUlb67yKOmw+xnmpa+ERI6OjrWJqKyN7MHdzLdfzXdxayj2rKVDwibX+/JXGQ4O0l3nAyWtpXnlo2+koGnaeVUksTvuEj5ARfSdUJzTh/lPIXXgIvtBdPkmiqD/GLRhToSf19FFsKpRLUlduaoO/X30c10ngDFNUj0cgy2HM7zKyF/lvBYwR8QABuGMm1zAJ8ENoC/skIGBsbQF+kn5/Dgkx0Xtcgf83TkJqqbYg/T6g/MYEjL6kcTu+/6zaTy5oD8WfAfY6OvUG3N2JL51yN/PV/EfgGttbp6Jh+Tv1pFrhdCKhdhIDTR7GMrUXYFeLgmPlVIuJNRgRqMiLktAl5j7lRv5uHsEJHBuT26XzO0LEDwHw4smY8g2TTSSkl0TAHmcI4juEsb6dUBf+6XcXsYjZBCqmjkTtU9yFtJ48dp6/MczgcPwE2JpPJja/X+USYqrC/btWSE2Vvh5IwZyLJt6cDLyPJt/sdDscm4JZkMtmkq8I/QipOgaD1n+jxr7XvZ8ha2ihwDMmT2fR6czrVaEnL+BlL+SW1NLGOpQDUsJdeTqeBhZynojGtVHFn6EZ2+s8hjpsamtnBHJ5kEaM4Wco6XAyzIPRbtvvPJYNRWqkiohwgU0ZlLcuoZh+L2cheaqimhVp2Uzzajeezx2RSGViq7mSsFP0QliZkKEphCNwH5XkQ7ROQticBM52wL2GjoehPJxaEGgCb0OHKFUSi+9xZEBpSEJoj2ztjltLbDwzoeGZ8v9J+3Qiwy8yQSKUBoW6nrCZ3DsncQgjAjSQkGtqvY4eQiGgcoRyPXUHyFwoI7Y+J75pXC3uaoDwLeoZszWx/JXQGhEocT0h01lxzptJ/K2uAGITahJLbH7MANBQTQBwfkqhofNhSir1KdXa7BOSPJJSKXI+8YFTId8NRxFkHkBXoTdh6ecNjvussePjSDwMwn81sZDHXhv6TNf6Pa1cXhQRpYCELECn8L/AdHuZyghSyhiv4xaKP8+tN57GZ+UxA0PnNoa9zoX8TEwnSSz4L2EI1LYQ1/L6dOSlaOkArUowvn95TjsZ7oilJ763NSv6iadJr9pnmOPgPpe++FYqCJ8Lebr7yVPOT/0ibw295mI+RwShx3GzlPJZHRa3PYUqc7ISuFVJne8Dj5vTdcYm+RRHnMay/u7D1Q40f9SJg0oAvs88AzyACImuQKGsJ8ox+To+v1DFHsc7TiPq0IcDO+O5i6P8xeM6VY/qV9uqpIUW9NUyaniAULcJGJ0cReu1uxO/X86qcUoqRBVAXQik+pJ9rEN+j19v/jOaeGvVb818/in3PQH/W67ZN2Jqt5p6NzS+t0e0mKtuILYczVp23FgH55+vcO3T/Et3frPfrZgSs7tRjDgE3ijhhfjTOsSxoza5kHMfIZYBWqjhvcBsAC7KfYhU30EhdSvsC4JOsIW1vjr3dfeWJpO/+I+0tB6VvRzvVnK0BpRF8rGIFV/MA7Uzheu6ll3y69Qk+jmNkM8garuA2bmUtlwIwm500sJDLeYQ7uZE7+Aqf5H62h+aw3L86FVFtp5xsBmmhmmv4MZtZwFy2M0g2R/CxmI2c/tm4PLBNjugo8vBv1skaZ5cgtUrKMxBtVoBVCPuC4o+MnzSLuwDzfLAvIiAvioQDvDlC230R8X8eYA9Qp0AxjgDPXB1jug86IxY0ApRWQDwoIM7kku6LSaS0RUGuycucpPPy+ySymw0UjAHUbpeAvzYF1B4EqJbnCfgDCCj9uK4QOoNCwd2jFF03EgEeSQjA7td5mlvmVyr0yLCMl5sDmTm2QyCogByh7nbG5NyJhIDpgF5PZZ7Md18ESrMsbdlbgNRs8yMvHGcjTnkIeUnwYnOTzOKCT7b1fMlHAwvJIMEnQj9lp/8cHuAqFrORbAaZSJAtLEgByCpaWcMVLGYj89mcqiV7jHG0U85ctjORILdyW4qyexefJYyfD6lqRxWtHMPFGq5gIU/RwPkpxele8lnLGKXgd7idaEdbVetOPtxU9pp9ZjoC73hFwXeinWp+8h9pc/gti9nIHHZQqIipsF8ems4YDOfBQPZ4JvzhKP3ThPLn+cYxAXnPIc/ZPiyrqAO7+AfyTB4GAhB/ThYXPV9GgJhJu/DJ/lfV6TSAsBCJDJpooqZp9G8CzzTtV4hdRO7HAkijAPwCAgCNbsSZ2DI1j+v4zYj/jyB5n7/A0n87tM8o9DeDpwIBfj4kIlyj45h51+o9aB4zBhplHVvHdRES7ZyGBa2xMfPPwL6XoOcqwYom1WDzZw19OaJ9mrHA33wXTQi9uEv3nz/mvA1AG/zxySm8988HOfKu8UzoPspviucxiDsljFNMN35CjJJBkEIu4XHA1u9O24m3t6uvNDYWlOrnbcDqMUJH/5pMJl+7/uJbYKe91RNI21try/gZ9/BpGjmLalq4jVvJZpDFbGQ9S9jKecxmF7PZRS/5jJLB5TxChAmMkkE2gzSwkDI6GcbFCn7IINmE8LPdfy617KabYropZgZ7yWaQOexgK/OYy3aaqCWEn493/4LTPx8Xek8J4sg6EEQ2NqvJrEAaStIm2NwkAG4EC0jj2IhgKTDdKW1PRABmaY74yT3YKOZZCDCN6zEvaeTPA5yVJ9vjCJA0QNev43S2CXgbQei/INHPAQWKXv1c4YSiAk3bjIiwEQjQS+g5+2PQmBDwOqKX6UYoxG6XtEodqy0oALs/JiJHAwgg7YzYiG9pltCq3E45RzQqLTMPvGUa5YzBvrAWKneKkJN/skSKi7IEMIMc40NaplOowh4kkurOEhDfE0Ryb9qQleknkJcA8yKEfn8x7Iq9rtsVfS3CeWzlE6Gf0u6voJd8ptPCGq5gGBcHKWcf1bQzhXamsIGLOMBUesnnIa6klSrW8WE2cBEA25nLv3EfVQRYyjoaOYul/JKV3MUxXBzDRTZxOimlhem0Ukktu1OiEWn7+ywJJMh4zXac9iuEavo/f7HdKAqegbxKphQEHQ7HFIfDsfkv2hf+/qtKW9refBtmHKNkUNgfppNSnGFwhuH3E6fh6gNf9Ch4pLahp+mY+EaTr1+LANNmbIRxMvL8HUaA0C+AIXBPBk8Z9H8DAUJGPbYFG/ksIVU6JkVVDSKLjQn9PUOjkS7Y2YKALEMbTuh5DfDr0N8jWLrQRsSxBhCAauiwHfrzWWAhRBulUYao/dYrEE7osRv0PgS1zxUI0DYA+lw9TxToBvciPa4bW6ZGc2Tpklqr1GEBeo3cN57QdrHepxrgY3qv/UjU2kRZr4W4yaeNIgsHOVhg+gQCoJ0ITfgBnf/FwO0wtf8gJISt9mTxfGaP7mLhcIMmWeVz9uFmGlhI8eBL3MzXOYP9LGMtaTt57Dh9ZZ7D4fiJw+G46K+N43A4VjkcjpeQV8jNDofjj7rrWuAzDofjAPAZ/fy2s7da6Chtb7EtZiO7mE03xQzi5jy2spZl+IgwgSMcYUKqruXlPMJmFtDOFFaHlnO//1PEcVNFgE5KmcAROijlGONYxJMcYxxBCqWsCBCkkGK6GccxMhilgzLmsZWj5MqrpQuhrDgRcGooNYVYPqrJJa2G/tsl99ONCv8goPE9WAZTqdlu8igRkBgfFjDnQcBVpVcEh8qRSGcgIcf2INTc9j47hSgKYjUK6keUceMIQPUgIHFA+1dnSU6nX2u8BcIyRhHw65jMoxzxz+aYD9ZAW7OCUb2OKODW0Oy+QwJKE0CuKuRuA+YhokdFSltKqIpv5yEonSzHJcy96JLjR/S+luo4/jLo71aVYZ/t/1IMKkqgqFInGZZIql9ViXsi8ntmBjAsCsh+Q9k1eTdG8dEIV5ncpsP6PQ9D2brDdC19D7/iQylRosVsTCnjLmBLCjD6CeEnzHw2c5ByvsvnuZFv8QBXATCDvaxlGeW000kpZXRyaf9jXOTZwFQOALCfqQySzW3cyq3cxhy2A6YkEiyDUypaeiItyWkcSxU3/DvGSSafBXA4HKltSkmaia178CjwI4fD8a5kMvnnZDJ5EEhHQtN2UpqfMGtZxjHPOGaN7ublcllmPZ1eiEBk2ngm/Pwop8+KW0XaAPJQf0h/r0eAaRMCLM/Wfk2Ij/Uiz95pGmnUUi6piKWpY9okfVKrsc3YhWGzStms+8/VUjD1iOBPPQLiDFVHo5ShJ8DvhVCzpJmk8jQTyELlJiRiaGizWTIP71VyfPRB8C5CQOSwzq8fAXp5COX3EqALQk3KalJGTipa+xSy40UkEtumLYwo9naAt0/Gb9sJFYt0/zAS3QR56iT0ugzd6ihWuViVet2mVE8JApS7dP807ftRbNTYhYDUJXKfS2Yd4gnPxcw9/DxdEwvwBI/RXziOT3YLpfu54hpC+Lkz+0Zu0gKoF2qKS9pODjtOX9mXTCY/9ZrjJJMrgBX/x/YXsdnUb1tLR0pPYbuTldzBzeQywHf4IlM5wCDZDJLNQaZQTQsL2EwZnZQh6m/VtFDIYZb61/FdPs9eZtBNMQtp4GEup4GF5NPLVA7gJk4x3RQQooAQGYzyMJcxQC6rWc4oGXRTzHlPaTm8fsQZRBFwaniriTGTbkMcTpPkepYiPisOTM+RQxJY+mmPfi7NkWaYo20JAYJFSFSyLQylCuS8eSJy1IMAXBOprPBJM7mkUaXGhnSqbmQ+ccTHVGcJAB7QnNSQ5miGkAht6WR5QlTrpbXrtbiBeJvMJxOo90mUswgIHZJWofmgcQQ89iOANIRQgUEA84iml5QWwrZDML1CxjHiRW6nzMPtEvA5gtz/niEoLRGgqZvk/vRJYfP+Drn+aEwAeH9MKchDsm1E50YAW0zdvAhNxr7IOBGA6sGKQ3RB0R8iXMYjrAstpYlZrGY5VQRYSAOXhh7lES7jES7jLlaSwSiPcDnZDHIFD7GOpVQRYC3LOMIEqtnHBi6igzK2M4fbPLeyjLUsZR1LWccW5nNT6JuEKWA2u8hlgGpa6CU/BW7T9sZtlIzXbMAEh8PRNKa9ptMdY/9LURBZ/njdPNGxioIOh+O1OVNpS9s/2BawhansZza7mDW6m0iGL7Wv/A8vQRtM6DgqAKYEyafsQkBYAlnkNer11yJgNIaU69qL+FATEfXKMaENSGTxKd12CNpMSZRp2NxNFwKW6nXMsP4cBRYJhdd9CQIqP6rnKNS5JJAo4XOaRtIP/kv0GhpkjP6Ncm58wOew4K5Cr+kpad56UvmZI13Yxes8xI+cj0RXA6LBwLk6d6UaG/VgvHpsQMbiB9hc2ko97xaoOFvHna9j3K2tA1sRACR6exh5V1mkYz+BZGxX633YghVqnKzn/jYCSj16Tyfqd+qCx7iUsw83gxP8g2GeKP4ggxluflM8j98UzyOXARbSQCFB9jOV/UxlDr8lbSeXHYevfMdbOlJ6iprDcRvfTEI1+3AT5yBTyKeXJi2dMUg2WzmPIBNTESVTE6uKVgoJUkWAuWznCBPYxWwGGE8uR1O1RhtYyFy2c68Kd1XTwlJ+qb/vYz9n8N0/PCTOywgtGL5sDULbNY7VqOcuAp6CPU/IAudLCHDzAY0x2TaCAEoPAgxDQ5LfCVaUKKDH+RG1XD8CsjxIjqQbUe1t77NlWdoUoE3KgeyYALXpmnfqzgLnkK09mgu0DcFMjSJOT4joEnqJ9cg19WNZUfOcAub8mg+a6VR6cOzVwkkg0Ug/cu5+vZaiAugMC23Xn6MqwUMSpfXq/Yh2WNGnUlUIjnZJrqihBndGoHKygN+iAgiF5R5kuqQWa7ke780D57BES8mDwCE5R1EFMAql5gXge0hNuWpkVdmHpS1V8GoBjj5kVb0BBt+XzS3+r5FBgkKeIo6bb3Azt/i/llLf7SWfNVzJbHaxlfPYzxks5ZdkM8gO5gDyghekkAg+uilmExeyjLWsZRnGvuP/Ivn0cjUPkMtAqvZpC9NJ2xu3JI7jcaZvVOb+Dds/WlEwbWn7W2wz81nAZm7gbhZkbGaUDBo1yHFBwTYBbVlALQzngCuG+MZuROE1gORsfk8/DwG3AZ/WE8Tk2FSNUpcCtz75nTxobIa6egRsBvR86kf7bwXPJdh6ZyYPNQGeixBAVoikZcxCnvFdOo+LdQ4BrPCPEVvK0OP9CHXoae1Xi0RiZ9k5UEaKZptZh42QdmEjkn49rhJZFDUCe0Y5twIBuUsQ2u9k4PMICDf+KyHnoEz334yNQIMsgYV0bs2w7wmY/mW9VkMZvgpJaYno9+TCRkpLdB4GpHbo+T5Kqo7s3MPPwyG4rf5Gbol+i7rs58kdHqDc1Q7AGq5kKvvJZpBiutPquyehHaev/Ier7/6jLR0pPYXtCD6WsZZe8rmee/gc36eYbkrpYAGbaaWSFfwQF8O4GMZNnHu4ngVsJkghQSYyjmMMkEs1LcygmW6KWc+HNPf0YYZxMY5hxjFMLgPcym1kM6g5qqcLzciP5cYa6s4hrJCCC+s8H4dtD1nw5wUqc2y0sh8rYFSdBe1DIiQ0SVsBEjEtR4CjE4lWmmhrkTqtKErNdUqeZyZQUSgtapwiAlYzkchitk6/XC8pE4kctg9JVHOeT5oBddsi1jeCnCeEgNB2Lc3izlIlXL2+gSFpTo2UDui5irIEkHoRtdyXNCLrLxCxpYoCBfEJG0UmC7zTROjIo0q6Uc2L7Twk95JR8FfIufr75bhMp7REQq4NrwDb8jwt2dYtcx8ZlhsciiAOvwsBpC5e/b0OIc53J+Lg84AKKNoYYTY7NSO5i3EcYz9TGWA8q1nOapZzO7dwC7fTwEI2chGX8wgTOMLi0H9Rw15cDNPELFqppIlZgJSAuT30VSYQYQKRFIjdSw2DuLmDL/My+UTwsYgnWcSTZITGfOlpO25L4tCnx19vHEeezF+xbrR2J6TUZQv537U705a2k87Wsoyf8fGU0KCkKoRIuoAa+NPEPDgErk0ICDSMlADyXxBBopIZiKO7GrhBWwkC+LoR0Jml27IQwFUCdVdBz06sQF2OjuNUJd0urGBdGAF+w1gKcA1S7qUZ4huQ6GEFNhezGnneF2Lrcj6N+IGjcs6RLYifMKJJYR23Zsw5YwgA34ktE2NAHqTKjuHU/V4sTfcpHfspPX8bsoCqasCp/NN6HfM5BNyb0mYV2seA3UqYvkiPvQorWPSoXofJke3CRms36XflJFV+5k//mSdqvo1yrb+fOI0j9eO5tftbNHprGCWDTlcZWzmPrZxHPr1U0cpCGljQv42jWhgtbSePHaev7Esmk596pwJSeJ1IqcPh+PZxjNGfTCa/foLmk7Z/kH0kWcpybuUg5bRQzW3cip8Q3RSzlxpG2cKdfIk1XEk2gwAsYy2NnEU3xZQjK3SdlJLLADXspYVqlrKOFqrppJRSOsllgNnsAiQX5vt8jkbqCDKR7/AFcXYRrGz9ZASQ1mLFEQxlF6Db5l0aKu7/xGzt0ChCve1EAKEXyfc0vtONgD60r18jqdWqJNsYtFTcAQTEDSD5lqZG6ADi92ci0cZtYZu76kZBKvLPNYLMLYpEP9F5hhBwmq3zSyCgsR+JbFZmweYuC5bdus8o+I70QaVGOuMJiZxmMiaXdEjUcRkPmaNS3iWClLVxa7R1XxeUhm3JGz9CwQ33QVEJBLpkzp2qZerxgHfICjnFE1KChjzZlosFzqEWqJgsG/zDEO8C94NIbCqAVS50yXdKAlmdfgFx8C/Kvg/8+Vl+9q6PcAwXm5nP41ySimIC3Be6hnv811FKB0tUTfc+rmGN/+OqnLuM67iXB7gqFdnvoIxV/hs4wgQAfsWHqNFl725K2MFcnuRC7uMaCjnM7aGvkrY3Zse5+vu6eTL/59jHX7vzTbW0n0zbm2GL2EQ2g1QNBnAF4Y/lUwBwhIE+eHesz0Y2C7CRuyASFayFwBVQ+VHdXotIgYE8h10w8hRklsBIk/g/ymDbapj3aWALFF2MrpQiEU6ja23UZJ36uxEWQvsbUHemHOu+GqENh4GF2i9DxzClV96vxxiF3H7IPFuvz9Bc8xCgZubQjSXrtyGgeho2CtlMSuSoZwsULUQAqGHqnEuKvswzEGiGygo9/hyseq9RIK7RbRdja7G+qHPpQxZdY3r9q/WzUZw3tdcLsJFjkNzUHwAXIk+xS+Ddq/pkUT4M+OH/vfgCz51ZQ0bxfkDU5auiB5nqPAjAZs88BsilgYXc57mGOVrxwCYRp+3tbsfpK9/x9nr03SuQ7ITXsiuBtLM9CW0ji5nDDuaxlU7K6CWfQbLxEyaCjyZqWUgDEzgCwANczUruYgsLUqCgjka2M5dOygjjZwMXcRPfYgOLWcdSBhifUoHbyGL2cwYr+CED5HL6TXErpJCDPMANLclQe4aQ1UUVcujZIs/3XKwarhsBa3Ht2oYt1RLFqvCivycQwLanD1qGBBwa9Vs3ku9Zj2UmmfXGChXn6QzL/h5gc9gKK3mxwkgm8BtHAHIp0Nlnt1UiINKYAaZGAKl9COqVuutVwEyBgDsQpd/OsIzhdgo92YtEL/fFFBz7ZNB9EckljbfJvrrJMkZmRCKkA0MyjlcBqdsJPV0SJe5RSrNfAXBRnhU+cuvqeTwg7yxF5h47FRwPjbnvWfo5ijhs8wKTh81v6kIccQ7ysuEBHgL/56Rg+FQO8AW+Qy/5+LQG6WP+jxKmgO3MoY7neZjLWMovaWAhfkI8GVrEEf8EesmnmG7GM0CYAqZwkL3MkDFCywj6C1nEJuK4Wco6HuYyptNCAWHu9H9JJ7uKtP1tdqIoSQ6HYxXyKvhuRFEwkkwm34tkzP3M4XDcgtbuPHGzP25L+8m0nXD7OD/jv/gX1mV/mNnlu1IR0+KKbjxdx8RP9gF+6HpfASXfCAvIMiCoDSrrseVcGhHRORBgFYDMq4AXxRdQIcfOuwQBkGUIiJqMRPyewa7uliE5oH4EeI4i+ZuVWMX8S/ScJpe1Q8YfkcwLMmuRZ34tAvAykEjhXiz4bYN4CNw1yHvCC1h60diIqKEFP6N9DKCrQQBjAoou0W3zsYr+bQioHQU+ApVR/fycju3FAn6Tw1qG/LdfomM8pX1zsHTf3Xpcgd4To2K8RT+7sGA6gIgsmbSlh5Bo7TNyzr3vq2RGd4BcBhhmHGcfbubxiRcxMSdIp0vS4QdxM6hvOoFXqtIcyJPQ0vRdsdcDpU8lk8nbXquDw+GYfALnk7Z/gFWxl2UEKKWTDBK0MJ1CgjzAVSxgCxmMcmXoZ9zs/4YUaGYrAJfxCI9wGaV00kkp7ZQzhYPsYA7dFNNKJSv5AZtZwFqWsYgnuZKH6KQUEPpRiALy6aWuf7c4IQNejKiAF3lIj2IpMUYNT82LAKaAgqN9iMhPpRN26rYiRDgoEyv0ChJd3BOGl/osoC3Ng5190tdE+0xk0olERnuGJKIIEt00+2Y64bcJoQCbqGgA8dWlTsnTCWjEM1vnkInkfIaUKptA6Lc9QyJq1BmRsePDukjdp6JHEQGjIPVY+6Pg8UoZHK+Ouy0mEdx2YOchVRMG6JOapv1RiB+SMZxAICJ05pFRKQ1TVAjxPqH0RvtEIIlhAaRGDMlEmvtjkv8aMiA4R2jH9S7JZY1GJL90JAGZZdDZDKUbEAEKVWBkFHHyfYhAxItIbo552aiBctq5MPTffMf/RZayDh9HyNbM2HV8mDB+CghxL9elyr5U0cooGdzi/xqLeJLnqaOUTsL42c9UhnFRzT4AdvrP4S4+yyYWcTc3kMEo4zjGJ0M/4X7/3xzAS9sYM5Sk17GTXVEw7SfTdkJtBx9gL1UM48LNIIWDhylOHAag1zOerrJ8Sp4Ky/NzPPiGj8hztAUBgi4k0gcCXtsQR2iie30Infd7SGTRCM49of0rEZ97NgKOTDQxMeb4xQggG4bABgXAi2Hkdsish9Dd4F+IXZwsk76m1rZXn++UwcgmyBwGmiH6giyQcqbMw/2MlIDxehHKr4lymv/6PuAjEP8yuI3oU4vMOd6gqrfv17lehSgCG2mzGhh5EDIvAQ7odT+NVf83dUmHsbL7Mb2/m3QMFeejEAHYd+s4BjwXIC8FRmm+CeF03K77P4qNLCd0fs/o9zAMM1YF6FgxkQwSHKaQwER5J4u7snnvdomUDszNpZUqFrOBr5/2FQC+8srX0+D0JLIT5StPdnvNP9lkMvm6dRCOp0/a3n7WTTEuhnmeOiL4eICrqGU3m5mPi2F2+sWjFdOdqjNqLJ+XaaKWKlppYCFz2EEVrVQRoIGFDJLN9dzDbcO3spV57GUGe5lBB6WUc5AmZuG8HXm4ZyAPXxfivJz6GawiUAL627TprlBCupYjC6ROhEI6E6h3ij8tR0BfO1ZxNhqVbZkIkPIg4K8CS9k1Ec//AaZX2iiszyktgszDKOD6kGhoO5LPORMBpfsSEnEsQsSRigqkeZyav6nnc2LFiEIRG9kdSQht2IM48nhMfvcgtUA9HujUiGNU5zgdiX7WT5br70cAcFtYapFGhyRq6c4SoOtBQGUiIaJJgaB87uwTwNkZFAXeQEKceygG/hJtFRKFjQIVtUAeLDAgVV/Be9okN5csAbg9ZsGhWpsLcdIBrAriMFY4oxmmRF/iFv/X+ELo28xgL0fJ5RjjOMY4FrMxJUj0Ze5gPpup43n8hMhmkG3MYy3LGMcxAAoJMoibctpTf9cmCnsFD7GGK1jFCvyEWOzfSCuVLGAzC9jM59OBrr/ZzOrvO1lRMO0n03aibQ6/5QGuJpcBLu74Na4AqTqlE3YfpaQ7DBWQrAM8kPPMKxJlzAJuQZ6tzyCAKQJ8GSiBeIs0KpGo3XJEcC9MyveOqJ4BFUj006u/92O1AGJAI4S6gCBUXqvn3gKZFTKW/99h5Dk7LoeBevB+URpR3f6Csm+aZY7ec1XcbyeiRTAfvIU6BwOuC7CU2jqZp7tEryuAgL8CrUE6Cyu8tFOvp0ZbE2TWkKI+9z+j19cm+8hBxKFKECBrFs/B1tqu13MaPPF+nd8iPSaK1VKYL/eLH+j+RUj+7JOI3xuP5Pwe0n3DMu+ynYc5s/1/mHE4gJs47mGpD/+bufP4zdx5tFDNDPYynX1kMMq/fesBIt8x3KW0nQx2KvjK4zFHMpk8vo4Oh9GLSUVXk8lk65s0r7fUamtrk01NTa/f8SS1e1hOFa00UZvK+7ww9N/8xn8BnZQxh+1sYQH3cD1X8wBLWQfAVs6jlUqqCDCV/XRSSj69rOEKVvBDdjGbbAYZxzHqaCSCj+u5h4U0AEIxWcAWchnggs9uk8mEsSIKRkvG5JnGEOf6PQE/IGBxOqK6m0CAmCnZEkXAYGWOCP0kEEBpxfTlszdLKKsRBJSNYMWRjFBShSrumkgm2IXPIp22EQzqR/4xBrGXVKmAtTRHopv9vFrLKa7HGbXg6QXQE5acznalzBrrRyLD+xJozFnugxF7+mCJgN8QMFOjy6GgUn7VnE7oHJJx23VbOVL2ZV+X1mvF5qyWFohQUbhP7q9H76k/S6Kgxvw+EWyap/ReE2FNAN4cAfxul1J9axBHPwr8uw5QQ0r9kW6kNtxO/dyPrOJvgowvHOV+/6eYzU66KaYztdQNy0bXcvqRKBv8/8IX+A43cwerWc4smsjlKA0sTB1XTDd3hVYCsNQvf9dVBMhmkIvYwF2sZCnryOUon+Cn7A+dwWb/B7hek7FalfL7TjWHw7H7RCrhltV6k//R9IHX7HOV4xftwFbeAZSktJ9M24my+7mSboq5kjW8TD5+pQv5ho+Q88Ir4idN/qXRXHgQ8aUmD7MaAXZZiIMwztBQShtQh4cA0CzdngfsFR+QWaN9arB5qxmI86pDwK9RkI0gDtCFAKwGBFghYDfTzHOsuWReIwGtq71Yr8FQXtExgrrdPPq7kQhlDKHSdug1zgB+AXyEFAWWFh1jEYzcrcAZhO78EBLhNGklRvBoTN5n/wvgORP7rmIYPWAjoF36swVR6H1iTF8PErmOaH8zFsj3k4NEnsN6/ghCQ66Fff96BgPk0kkpg2STTy9L+jeSkdD8YmDvmZVsYDHFdKeYabdzx/9xs9N2ouwt8pUn9JxvR3s9+i4ADodjBXAH8u/0im5OItkGaTvJrJROBsiliVmEKKCO57nT/yVWs5yb+QYbWcwS1lNAmDAFqYdcMV3EcTOX7YTwU0Urd3Ijs9mVemCW0sm9XEcEH8V0s4y1DDAegOm0AHDBzm3i0PoQZ2ZWPA2FyAgGaB5iICIgDMTnjCARxgJEYTc6ZEvAuBEK63QkN7QIm68JAu72DAm4m6TAMYpVxAUBj50JCxhTFFvdH0ZovgmEOlyKREqLEGD3EgJo/QggNQBzktKOQjGZh9slarcR4Imw+Pew5p2a6KwRS3K7IDMhIBKgVClEvw5qNNYHv43AzGEpXeNBAGJnn5bBSUgebWYOFCn47+yTY6cXShT1mT6hI/cnJLJaUQ3ugNCm9oSFjgzgH/Nf3x+UsjehsObV5kFmTIqh72yRIurxYQWlL+pLzjQsp9q805YhjvoF7OKEyU0qgP3+M7mZr1NIkEbqaNXl6it5iG0Z81jlv4FBsnmMS7mDL3MLt7Oduamc6Nnsojb0e672P8ga/8e5g5tT5V5amJ6ilrcwnVp2c23oP1nlv4Ep/oM8xjJWcpdOag1pO36T1d/XdTPvCEpS2k+m7USZREq30k45pf0vUcpL7PD8EwC5rgEOzipmP1O5pFvXcIYRUGkEh4yYTp9sG2kWQaOUuE4f7GyC+vnIQmAQOFeFj0z0T+tkG3DEFuxzexQBk8+M2f8EspB4FKEv1WBLswTEf7EYyRkF+a8wC5wxVXU/H3GsAYRG+37kv6kLcYZ5vFpQqYBUtBUXxJtVvyAP+leD51sIwJwM/Y/L4mrmJdg33/U69w4E5J6Lrae9AVkU7QDPx7Ca3oV6/QbgjyK+yyj/ViPU3izkZWGu9hvC5oo2YyOut+v1diNAt0Wvfbn8Pv2bB+ASqC3cjSso92e4BB7wXIHPK3ofUznAclbzLW6kTpWg/HQRQl8Y0va2t+P0lad8TqmxzwJTk8lk8PU6pu3tb61UUUVrSpBoBntZx4e5g69wM1/nWn7MzXydxWwUqojm7+1mFtuZw1XDD9DgWsgZ7OdyHmEYV6p26fXcw2/5AM3U0EQt5bSnqJNBJsoEnsIK3oQQJ+RCeazIwzoHcaobBPCZ53cmAtYMKDTKsQY49iMg0YnQaHM1V9PQft0Jq4bbk9ASMdhapdmIb+kEPoAAyUDMquCC/acxlOB+rKBRXM/rQaKI8SFoi6niroItNwLe9kTknAPYnNRMBLACePVndEjAa71PaVZI1DMKfNAn4wxGJK+2UQH8B3NEvKlUQbtXI7CVhZq7g5S3GYlJDinAgmpoa1GqMrCtBeZVws4A1CuttjMCA5qTWjRZVH+dTqES+4E9XaJkTEwWDEZGVXU4IXVPvXkw8gJkPqE3cSGWimUipgms8NUoMATlO1/izvovsZXz2MXslHjWBi4ilwH8hLk09CgA7f4KWqhmLctSIl27mE2tfzeL2cDDXMZK7mIz8wG4nEd4kkVs4kJu5M5XRWGzGWQuO1LCSmn72+1UoR2R9pNpO4G2k9lMp4Wgp4CS7WHOmHsAgNPXxzm95gCFZUF+UzyPC9q22VJq9Qh4NDUvAXwqemdyIwHyxJ+kchjnw8h6iVRmGrXALASwPoM4qBA2umfEf8x4z2BLo3wP2ASh+8C/CKsQnIOtd6pzSJUBG5Y0kaIoVqF2Mow8Ll0zlyCgrQmrR2DOPaT7ysB9I+JHwuCpk3lQBjwHnkUIuH0KqUsKAvwOYLUN0OObEfmyRxEaba3OtVbnV4FQbE3/QmyuK/q7Kg/ThgD0Bh3rBb2+Fu3bpvfIqM4XAtfIrj/9II93P9hHrPg0cqKv0F4+iX1UU85BPvnnhzjyLlnwX8UKFrCZUjoZJJtxDPNtvgDqJ9N2ctibpVR/MtnxpkG/lHa07xyropXFof9iF7Mpp537uIYwfhJkcCUPcR/XcC0/poZmyuggn5fJ52UKCHM5j/Cg62oKCNPAQqppoZGz6CUfgKt5gFEy2MVs5rKdB7g6VWVpKgck6pqFFQcIY6XlM7ClYcwqb5eAxh6ssm07MD1HgKKJjnq1+XVbAKXlDsnvA9pCKPDTsQa0X4XTgs7pTtlv6LjGzDlm5kl00e+Ths6hCJlrFFmRDURE7Tas45cWSAshYNUNFNXKcW6n0IpBorfeEq0BqvMNIYDT1Cmd7oN51XZeHiR3dHqOvJdENUIbH4K6ConAVhZCKCD5Ov0xKX8TH5bfozEY0VV0v56vTiPYlU7NXc2RvNCiydJ61CkPxEgh9coczQ/KEODsdgkQDSkNK5HQaPCwNpOf9Jze5FFtxlqQl5fD0EQtxXSxnNXkMkAuA/zEcQXdFPMAV7PUv46p/gOsYyk3cWeKcjuFg2xgMV/n5tSw3RSzlF+ylF8yQC695LOE9exiNgOM50n/P1NAmEGy8RHhc3yfz/H9dL3Sv9Fe4bRU/u9fa7zxOqVvN0v7ybSdMNtNLVWDAUr+HOa3c8+hkbNo5CyogWQeTHjxKBe8uE0icx3Is9LQPwuw9N4K/RlDANwQAnyaIGoUdQMCXN1XYGuMFiMAKg8pVWIWjQMICL0WEekx0dMgAgJLZA7+aiyYq9RxFmMFk55BStMUCnU3d6wgk+Z/ZtYofXi3zmfamFYDRCUKTD3QB0/coucx9Ng25D2jAAvKP4atU/oQ9D+m423RPmcjYDWERGrbEHBaq/fOgE8D/JXqTLE2M/+n9dxeXl3+xQgfmdzYIeSd56NYwaRuOd+7f97HkavGk9P4CjihYDTMbHZRSJCud4nq/HbmsIJV1A0+D8AAuUSYwCYWkbaTx47TV77j7Xgjpbc6HI7VyCMnlVGWTCY3/fVD0vZ2tPP4Dd8nyBr/xwlSyGx24SNCGZ1sYQEFhFnBD1nPh5jLDropZlB1Yzsp5SI2sJ+pHGMcuRxlK+cxlQP4CbGdufSSz+3cwigZdFDGNfyY/UwF4KbQN2ny/z+7wpijLYQ83Kfp9jF0nVDQln5BNnEmEr3MxUZO3fp7ACsGFNXtFxdAv4ZKe5TqOzPHjjGCrb3Zr7+XI0JHL8bEb2Rio62ZMavea85fpJcxM09AWmMM5mkkEiRqOaJRzgSSn9kDeJvkXeKshJw3qufoD0p+6EhMosEG9Jo57IsIhTczQ/b5tW+mE9w5sE/P5XHKec0/ukfptCBA2e0SkOtE6LxRRMypOkfyf+IRqUfq0QH6o+DRl5CiyfK9udVJx2Oq4jsERTlahiYo2/zaN9qneasmV6gLeQk6G1kFNxRus2hRTYrO28BCiukmyETKEdXBp5P/zPXcQzntXMlDhPDTTTHLWJtaMV7Ph7iee3Ayyl5mEMbPXHYwoMV+Phn6Cb/xX0ADC6njeVwMc5ApnMF+Lgj9hjX+j7OMtel6pW/QEqfO6m/aT6bthFgv+dTRyL7saWRnxynkMOWDz8rObgiV5fHuZ/qgBJIF4DgbcSxNSMSyA3l2NiCMkyhEm8B7iZ5gL1Ahef80I4DSw6sil4AALl14jT4FXgNAC5H8VZPnmcDmpjq1DSFRyWKsloB5xoOAtaeALshchPzXVOr+NoQGnENKhZazkVI2L+rxQwjt9xIEWA/DxYsQ2m0JAjC9cvzITsisRgDp41g1/3rwDCPR4qv0mgrQot4Q2ASV55ISHGILIlb0KJa+Va/XNUOuJVXKzpQ7M0+CCr0HXfodPa3blyPvRAakP6339Rm5FxMeOwoF0P6uSZT/+SUi7/JR9ofDuIp7iOacDsCo00lT9iwWs4GzX3mO+adtJm0nnx2Hr3zH2/FGSi/S9lngC9o+fyIm4HA4znA4HL9zOBwH9GfF/9Enw+Fw3ONwOA46HI52h8Ox/O/dd6qaeWlfSAOFmpxRw17GcYxqWghTQDM1LGALR5hAAWF8RPARYTa7aKWKJmYxjmMspIGp7CefXhqpo4wOhhnHndxELU24GCZMAYvYxCI2cYv/a8zYGRAnZ5I8jQPrQxxFeMy+iAA+P3ZRMY5V030Ryek0tNsRBEy6sVRaN9AYhp1D0kb02DYFOga89mDzOEtzRNCnEgHAJrfTgONOzc+cpMcUIKAtEwFdbpcA1J6g1Pns7LOgGiz1uFrPW47UAe1Hy8ggUdJQUJRrKwqgUrPSSvOkgUQdAzFRwt0XhMxCOb+5Lg/grRDabqZTaLruPHgpIc1bKGN4cyQPZwCoq5Ec0kRChCk6YyK+FFIlYbfLfhmdh0QtGCfsCQo49RRIf7qBmADgniEYicjccs0qs1FxzNIvMowtNJ6HOGQXlhqVB3cPr2CA8cxlB2u4gjVcwYLQb1nEk7gZZA1XsJAGiulmLcsAWTW+mgd5mMsIUsgM9jKLJqZwMBXBv8X/NXo5nV5OJ46bYVyM4xi7qAfAzSDZDHKn/0us9Jvc0rQdj5k8mddq7yB70/wkpH3lqWZz2MHn+D7lgwepih4kIwEZCRiuhXe/0JcS5mn1ThHgYxb6OpB9BpwFgBh45yOgags2J7QNKyoURhyeU8cwNFYVL/JWIsCqQvt7kGd1MQKyKhBnGkRAltJoCeo8XAjoNX7eWAnQKGXD6MPSWWfIeCNbtP9Tei2Jv2jo9mI9bhgLjvuAFtFSIICAycVjWp/UQWW53q8zESB7hQxbebHOv1jnZcDiNO17JgL8CxCg34SAzm7gUuQlwrB/8hDa8MV6Pedra8bSgl/Un1chLwLDct4V7/82xYMvEfOcxiDZPPG+DxLNOZ1HXJfziOtyvpLx9dQia8Zpo1QRoIoAaTt57BTzlX/VjvcqlwClyWQy/ro9/3a7D7gnmUz+3OFwfAz4MUKaGGuXI+/uFcir616Hw7E5mUx2/h37Tkmbw3amcJD1LGEBm1nHUkrppJd8xnGM8Qwwg2Y6KU2BSr/qzt7DdeRylJv5BqtYwVLW4WKYYroJa/3RFfyQAXJZSAMh/GxmAS0Iz3Qu28UB5SHOJA9xGkZRz4mVTu+Tz6bUiVmgDWMjhrqYKXRYxFdcgAC7XHVWHhXuMcq3biQyOROrtDs9R/I9ozr2vpjQcA1I9WCVctFjevqEbps5JGA0kpCx9wD1o3YR1dQjHaumm9AxO7Fquigo3JeA+jxwxyRCObMGQs0QD8t8PHpdPiSX061gcQDYE4DyLGAUSnV1O94F5XkCjH3AtqDkoQK0dUlU1O0Sqm1lDox0CLh1F8qFVupKdaVLIqHxYchUgmJpDcT1RagI/T6jY2qSTpaxS1Uq31siLwBxcxPR7958OUPmwhAnDbZeXgQ6LyrDT5jVLE8pOt/n/zd2MZupHCCDUUpC/8Nm/wf4Y3Qmnqw/U5vdRC/5FNNNggxu4k6q2UcL1dwU+iYAt/i/RielHGQK+bzMVA6wmfncxq2U+9uJk80jXMZ80qvPf6slcZwytCPeXD8JaV95ylgYP/+P3/Nf/Avd2ZOYmBEk7BIPlMEo46ZJKPPdG/t471MHiZ17Gjltr8i393PEwahYER2If23GPled+tmLfNt9yrRpRnz0LOTZ3A3Rx8E7DVtPHGHQuC9GqUU6nnFsm0SJ3VuGzOdMrKDdRGwUNoEAvTIsa2o8Nr8SYJoKJM3HUlvNUkwTUj7lGYTK26ZzORMBxSbTIo9UOlBbM1QMY31OHrgXIiVZavSenI8A94RuO1fHO1vvX5feBwOsxyNgtQ3JGe3TeWzS8+Zo/xhChy4bcw/AgvVC5OXkRb2Gp5Hc0jxYtf2L9Mz10U0xhQSZTgstrulcOfgQAKFsEaRspQqAe7kuLXJ0ktlx+sp3vNDR8UZKD2GrRZwwczgcBQg+eFQ3PQrMdDgc7/qLrsuA+5PJ5CvJZPLPwK8QEfC/Z98paTuYyyo+Qyel7GI2V7CGVqrwEWEHc8hlgAg+7mIl7ZSzjqXcxUruYiX59LKUdSlQ4GKYJmpZzXI6KKWXfJqp4Qg+1rMktXJXTQvVtLCdufIgP4pd4SzArq6a6FkH4niGBHC6x8zfvO21I0JEuWP2nYvW3UxIBDIM7FEVXFO+ZQBYkCM5nH6nlpKJyc9cHT+M0FxB/LUXiU6ahVkDUtuHBIy1YEu8fLACnhmS40Z07BYdw/jv8jzZ50cilHGkLEu9TwDpz/o0rzRHAGmm096DQEzaS0g0s9InuTj1JrfVBWSIAu9IQvJF2/tESTeSEFXixoi0ihLpszmm8x3VHNMOcd7RoLyodB6Slwx3no5v8kGdqnTolOvqMavuMcmdNUjcnSVAl6MSTS3N+Yvv2lgWNsfGRFQzECdfAO9dLzVugdRK8C5mA3CMcTRwPrf4v0YXxaz2XsGK7FVsD83hQjaxm1pGcbKSu1jAFgoJcr//U9zv/xT5vEw2gyxiE5u4kF7yqSLADuaygYtop5xlrGUTF7KJC0nb8VsSBwkyXrPxzskpfVP8JKR95alm1/BjbuRbVA/vYzwDAJpFn0sGo2xhAe/e3Uf/onEQg5zmV+T52Y1E8Z7SgUx6TAmywNeoLcKrFwP7tExKDGiBzscRoBQBbx2WyaLMJncNEiFM6FimLEwjUKh1Rft07KexavvddozATj0+jDz3nYjPuEHnNqTjJoAtMLIJeVcw+aDozw4ETJ6NVe83etcmulsM1ELFp0VXAb+2ZrleJmMFjJwIeOzQ61mt8wgg7y7munzaJmLrlQb12KCOnzdmDocQhWSjpRHT1qXtEJaeBQJwRUiXP83NY8JghLpoM/mjvYzjGLkM0J09ie7sSQDkMsDDXMZnWMVnWIU/lciatpPBjtNX9iWTyU+9UwEpHD8obQOedjgcn3M4HNeZdgLOXwz0JJPJUQD9acgSY60ESfEz1jWmzxvdd0raIp5kMRvJp5dBstnCAhazgUbOopROyujETZwCQiziSVZyF0tZx1LWsUO1zVewigFyGSSbQoJkkKCbYvLpZYBcRnHiI8IDXEUx3bRSRStVLGE9w5XIgzgLcWYmJ8WIHRlBgn4gT97ColihomrkeV6KBazGv0SRN0Kn9vViRe4ytYGAq5GEgDQQgBpC/lBGEJ8QjckUQjqV9j5bHsatFFsDMuudli7b2CZ9IkiU9iUsBdhQbwN9NrrbMmRrjpIjdN0PAkVZCuacEjH15kGFz4LryiwLOgeGRIF3Zg083yf1TgeQaG4cAcE9LUJxdo65XyN9Mq5RKe4cskJKmeiLBVCUJ1HZNiPhkqGtSyi5oS5RKXY7Zcxoh5SIoRvcfpnniFK4+vtlzilgexSr6GgErsxLh6F2FyD0pwpYwQ+Zx7aU0NEw47gp9E22M4e57GAZj9FCNY9wGbuYzXP+s3mYy1nEJho4n05KyWCUYVwp+m4rVeyjmpCyAjaxiAHGcxcrCeNnAZuZSJAbuTO10JK24zNZ/XW9ZuOd42jfLD8JaV95Slkv+WQzSKerjANMpcU1nek7DzB95wGK1kW4fPcvoQQ8zx2T+peGJvsLBExdgtVmuBABVVFETOejyDPXgNB+oBriASSKNx5Ka7HiRKMQDY85pgI4jKWX5iFRvseRvyIfAtpKkGd3DbaMy5gFycoa/f1MnUdCxzN03UKEYhuDkTYtJebBUm9zsDmwFfpZ00kI6Xm1JA7dpGqJ+kt0fwgLtGuw0cydCCCsRl4iCpH3lQ16D3fqccZPGcXcMFYDoQw4BKGHdHsGAm4rtH/9mC/bRFBV3Cn1LmToVjvh3R19DLvG4RiGjESCTkp5b/dByttforz9JS7n5wzjYioH+MErK/khK0jbyWXH6Svf8Xa89F0XcBCUhymWPPHTeevM4XB8CvgUQEnJO5f2cFdoJUv9v6SUTgAWDT/Jg66rAQhTwGbmc4CpnMF+1rKMGTSnlHWv5x6aqUlFU+eynYe5nLnsoI5GdjKbTsrYzAIaqeM2bmUq+1mNpCddGnqU0f8eb2k1IL9r1I0OUlLwHAVeEGBWMGQDq+4sGBl6dfQ0gVBhM5Fc0MCQLeGSi83dBJhZIcDRjZRLCQ3BTi0TU659Ssf0Mcq+CVASM7Qk4CzsomokIWCzpc+WdzF9K7UkTSYCGI2ZcUFBL+DXWqC5OZBZK8qInQmtVdon8zKVSUJDci635sm6gT3NFjhX5ojY0swsUbst8kn01OeUUjgAHv0eAkC5zrGoADrDMl6bLrQaMOtBIqkDelxbQoSdon0C4osmQ9shqKiBfiNGgQBrckhRdjOdmosK+A9jSxeYm1xCirKbKkgeA0bhAa5mgPGpUi+jOFnvv5hcBriPaxjPALXsZiENdFPCd/k8YfzMZhdTOUCQQgoJsiJ0N8v9qwF5AaxlN6V0spiNhPDTSSlXsoY1XMkuZjNINq1UMpudvLqqbdpeyyRP5pQRb0j7ybSdEFvLMn7Gx3k/T/M07+e9LxzkT/WyeueP9uEIIorl05DnZ61+LsFG3yLIQ/sQlkaqWkmEEXAaRADXIa0lDRL5K4T+jSpqVwveJbItFaEEAW4PYeXu67VPIzbtohmJYB7SuY3xgZyjx2nZlPgQuCcjjtUE+VxyXGYF8n7gReqhouMl9HprdKyL9T6cC9HPgrcWofkqWI7fpwrDW2SIaIeKN5moLVgAbXJhDeBt0/lM0+sxNOIElpJ7t+7XEjH+jwINIvjn9mPfcYLYF4D52NqyZcgCbEDvXY3cv4QPPF3HeLHsPazlUlawiq7iAiKqQvUdvkgDC7mGH9N7Wj4Aq/gCaTt57BTzlX/VjguUJpPJq9+k83cDRQ6HIyOZTI46HI4MrCD2WOsC3gP8Xj+PXdV9o/teZclk8ifATwBqa2vfUS8SY22l/y52Mws3ceK4OegqZw47qKGZIIV8ge9yhAkcZApTOEgrVcxiNyBlNDooZQdzKCDMepZQSJB2yslXqZhjBFUJdQ2ldDJALveEJFiw2f8BeZA3YWuRgaw6GupKBJtTkpDo3XQfbFYQ87wCzkwkpzMwJIDOg2wfGLJRU6PI24PmRgLb2rQfcqwfWahNIBHBPX3Q3ybH+IGzFGyWOm3+p1Od1yBangbp40VyOtuHBAx7SyDapdHcHFundBJCzY3GhMrq9km0cWBIwLW3D+JbYGaJlGnx5Khab5ulL5sIcW6WvDi0dck5zbk6Y3Kr241ybx54Ihr9VKfbmZDrKtf9mU7YFhYKcaYP/EclsunxWhVkf6HQeUEAabhPhZLy5ForCqGnWe6NJwdZMTcLfBkyFnnYfJwaxNmXaMtBnkr6YkSb/q245Euayv6xf86pWqQvk8/VPEgpHWxkMRmM0kol3ZRwE3eyn6lcxsPcym0Mks1U/wHmsgOA1SynmhaCFHJp6FFW+W/AR4RWKrmee6iilVaqKP5fj6W0HY+dKo72TfST8DbxlaeKn3yr7WoeAODrfIV8elk27UFu4WsAZOfFyXYew5mFOLoIAnZmAD9CvrkOJJpoqKpGNM7It1cigDILyUo2+ZrVCEAzb4bTdPwC5JmdZefYfzd4apBndB4S7XtGf69FwOgzEH8C3OfAngaYebEKFwGZhg1zPpADbiMk5NLtJoI4Tcq2xIcU5Bnf0ac1r5frdZZgxZ2aVNhJ/X7bc1DRBu5aXiWy5K1AgKBLfwZBy1dbKvATOscubMkavx0DZQWxCfii3r8XkOhoWK7FXYIV78tBgPNH9fidep6z9X7fjER/S3RfG6y77UNUe1ooHe5goauBAXJpYhbbOA+Apazjeu6hw6pUpO0ktFPFV76WvSZ91+Fw/KWIwhvq89csmUyatTTz7/lRYK/mtIy1x4FPOhyO0zSH5kPAL//OfaesXTH6EK1Usp05dFNMN8VsZgGXhh6lgYXsZhZVtLJb8/d2M4vdzKKQYErEKEwB7Uwhn15qaSKfXoZxUU0LGYxyhAnk08t6lrDUv46l/nV0UCYPdC/idPL0ZxdwBnalMocUrTcTyX/MxYIuc/gejRbWZ0ktTUPfRfu4x3zeGZNm1HbLkSimySF1IhRdExUtAuorbVRwJCGRwbaELQ+TrecZwVJ5BxSQDgCBQ5LT6nFKvmZdiTQnAhpHEKAa6JI5eXPkvGbOnV0SOOyMaY1WH8zU1q+fo0PSr6ICKiZDZbUA2KIsiXq6EeXewCEFiQlZGfbqPm+hAOHOPrnPdTmQWSAAk/FCL2ZYji1Vxd2iPGmdfVBUoqJICMV3JCZAuUIFq+J9QJaA7hHNS9oTwFKAM7CUpwI5Fy368wWsamNQ5h7BRw176aCUDkopp50Vobs5nV5aqKabYkrppJUqdlPLEtZzE3e+qmbbVPZzJzdxZehnXBn6GT/i0wD8q+MMQOqaFhJkBs0AkgsNlNFJLkdJ2/HbK5ymJOm/3jjJc0rfbD8JaV95qtkDXE0x3ZTSQTaDrN19FaXDHZQOdzCY4cYZAyLwp1l5/On8PAFUNVgl3XN1oDJkYTCK+NuPactDGEk1CNDKQp6zz5BaEPaY6F8Cq8Q7RvXWU4xVlK1HnOG1cvzIJlJA160Mn5k3yDkyy1Rp14AwA+AykJXUPiQKmye0XWLgqRDcSZRXKfZnGqV2HykWEV1ItLYFyU8thgqTb5qHDFSIpdyOkiopw4sICM2A/vU6l2o9XyEiANWHAPlubTV6f67S8w/Dvga9PpNPWoutYTper2+nNq+2DUgd0zN13GY95yVw6fpfMYibsMvP2X9upuTFMBOIsKr7i6zq/iLdFLOV8/hnnmQr89jKPE5Y4kDa/iF2nL7yHW+vFyn9vsPh+CfA8Rp9voes0b1Ruxb4mcPhuAV4GbgSwOFwbAJuSSaTTciaXh2WPHJ7MpnUeM0b3ndKWjfFPJQheueL2UgnpZzBfpawnip/K7kMcJAp5DKAmzgRfIQ0pJlPLzuYy0IaWMQmmqilmZrU2EtZRzfFtFLFSu5iMwuYy3ayGQSgilZxfMYBNGOFjsbmoZhc0wrY8wwswEYIvVkSbduskbsFOVLeJYoFiHHEbxr6bS6WKdOifaIIoCsC6mvgP5vlD8WLbOsB9gWs+q8XUekFCxITut2o8IYQINjfD4khESEiIvTeijwBn2CjuEb8yItEIEmIwq0bAZltbakScaIZlCNKuwB1PujRkjmVhRIBnu4UYDgpR2i2AV0R7jwk53HnCGhsUQpVqRNwwbyzpYZdZkKOGzGxlz6ozpIc0ERCxi4tlKgp2NI0oTaJsubmyM9EQii9cRVrIkPuVaa+5JioNSAULvN3YFawK/UmVWJX9wvht3XnsIy1NFHLeWwDwE8Yt3+QUjrZyjwuCP2G9f6LqaORbcyjjkZ8RGjgfA5Szlx2sCT0BDv956Tou5fwONXs41PJXmA13+JGCgkyny1U0UqQQu7g5tSUbyVtf4sdx+rvyV6n9B/hJyHtK08ZC1HCCq7hm8M30es6ncZZdal95bRDQuTUR3EyYTDCy+e7OX1V3IrjJEhRSBnFChs9roO4ECBqUiOyoG0LVJyrfRPIX0Mj8pZospcN8PPqthaE1RJEntmrVcXXh/j4iG53IYDvEBLBBQFkwEhAan9TIeP0tEFRBDgKmfXIX2QC5t2NRBiNUzyKvC88h7Cv8rBMG6+O9w0E5BkFYqN+a6jKBTqnAiwFuUDGy8zQsQ5hVYOzSCn5pijGGcB4iN4N3vNlvtMXIjVPK5AFAiPYlKPzhlfTfzXflRl6z3KQJ8ZzcGTaeCYEjzJ98AVcXbD9zLMoeFeIbop5olhuxn6msoDNXMe9bGY+gVeq8P2oB9XFT9tJYsfhK9/x6ruvB0qnI/9C/5ezTer2P/09E0gmky8ij7+/3L5ozO+jwL/9lePf0L5T2T69djX/sewmAGaxm1EyGCCXVqrIZpBWqriH67mZO5jH1lR9pHV8mEU8yWEKOY9tNLCQXcxmP1O5mTu4kxu5nEfIZYBdzGYdH+ZOvpQ6byelTCg7QrnvJXmQZyEOR+tQkoFdxawG+sRHuLOkxiiAfwjcQeGZ+fSvNxOrbN+mn92oEq+eu1qdUH8fTHJK5LMHja42w+VKux1B/Kxbp1CaJbShOKJ6a2ye5l6OIDmjcQTk7QuLjynPksjjJLQWeOTVUdxKHwQimqeJ1PnMRei8gRjsa5No61l5Ilg0gkQbi4xDdllRJ5ySOxofkkiuEWHyIaAwEFNQPiqAsVwpWAND0G9We1EKb4G8FLidAkbjQ3L/3bpINxLTHFG09tsQ+H3y3fWE5X7PrAZ3n6j3uvWlqBMoiso2bwn0K7D1GFEIs0pfi5XQb8PmTJWI+uQFod8ww9/MOI4B0Bg6C4Al/l+xnNV0+4vZywxaqaSAEB2Uav6z1DZdyi9Z77/4VWVlLmUtQQrZzhx6yU8trkTwEdfs5Z/yCR5ILYX/vdji1LFTJE/mTfeTkPaVp5Ldxk2EqORLrju5hdupo5GM0VFAcgv/WDaF9248SJErAl0wrjJuQVIlAtQMANO8TIaxJWEOKfXVqN8WCrsl3gTucxFgZsCtib4a1gow8hRkXqLbYxB6EPyaU5oJ8uxWABuPgLsaAWEBUmCUeuBByLwBob4qIb2ohler6xpBpmeR+qFmfbCMVOk4TFqIAdCTkcVOH5ZynKfzL8RKeCX0Xi3Cqgd7gRpwGykxkzptFs1jur1yzBgh8NYgCwBfRNSPz9fzZWCBcIve7+3YYk5GfTCg15On5/kicDtMaD8KFeCKwJEzxzP3z8+TzIDD3kKqaQGgXMv8zWU7c9nO9tPm6uB3kraTw47TV57sC7iva68JSpPJ5PGq86btJLEWplOwrIttzKOQIBF81NFIAwtT4jGDuLmbFUSYQETzS0GiUvuZyix+SSeldFPMjXyLGvbSSRlz2EEL1RQQYivzqCLAXaxkjubu+ThCI3WU571khQ9MHscQgqSysAW0gdJK6AlYYSMvAiRzkQhkj4Kw0iyh82bqvgCW5ZMJbNbooPEjzyNj9mj/sIJeNyJi1K/n8ScEUE0acw/dCPgEAY7lOo5R8zVAtRSbmzqAXbNMIEI/HgQ0tsUE0IYSAiBn+iTS6M2TaGgIqHBKDmhUHX2lz4JcE4Ht137eMhFw6NfIpx8oqoZ9LXIvyhWgewpFmGhSjoDOnj653qIS6A9LJDkToXE1BoTu7PEIqATobBFq8r4EzPNJHunMAogf0jI7Tv0+j0J9oar9lsmX4qnXybv0ux9CXiSi+v3XIQ5+C/JS0gwHLprKyxO8fFJS2gCY69/OLHbjYph/4z4KCJHNIIvZSJBCjqparo8ILUwnjJ8Qfm7mDhoRQLtb39TOYD+5HGWQbM7gAMV0cQOruJk7qA+JQsiof2yYN22vZ0kc73jaUdpPpu3NsMVspIZmEmRwBB+5GRJi8wQjvDfroNBGu4AwOPzYqNwGLDU1AiyCkQch05ThUss0yrNXIVG9en1mG+EfowB7SMcz+ZBA5tlAEDpXQ+nF4K/A5pXGEIpwjozjnqxz2YLNlQSJ2uYhQDDMq8GzieL69RqypF//RhH5A6jow1KWmxGRoyGdQwuyqvyM7jfgukL3NescDDj9ue5bhDjcLOTdpAtRMr5H78GT2OiyWSCuxaYebUIAaQBx8DFk0bdF72WznqcOW7v1I3pOs0AfQnzhhdIntug0crpf4eUyNxMOH2XvxEpm/DnAGRxI5ZB+l8+zjLXsU421/3DIG9Ot6azvk8ZOBV95PHa86rtpe4dYKzN4jhn0kk9I80Kn0M525lDH83yXz3M1DzCKk2wGOcgU1rEUgFk0sZgNNLCQWw9/i+KJtzOMi1+ylCkcJIMEveTzIX7FJ0I/5U7/lxhgvNCNgEGyrVjMZKwQgKH6gDgVJ9ZxRWFbwILJfgREvghcoFHEANCv0cp5qjJbgfiJHiSqWqd/6Z0JaExY5dwoNtLqRaJ+PQr8nNp/EgK4zD+LyUnt1M9xbVGgPkcijH4VccqMCjjMRWt6IuJNJpLbFhNA7amAuCx60qbndw/J9U5CIrtRYIGOuzkMCyqlpihIzuc+PS7aISCzPwGBBNSXWEDqRPNwEEAaR+jIToQybCT0PV7wlIhARE9ARI0S6ngDOs8RhKJbCVAM2REpBePJESXeHiX/hcIqkpQDmaN602r05wtjvvMEtlZpP/IyYlaNK+AIPu7KWEkVgdQCShWtTCRIL6cziyZyOUo2gwQpZDa7WMVnCOOngBA3cwdXhn7Gdv+5PMDVzGYXANnEmcr+lENo4Hxq2U0EH/5UrD1tb8ROkUhp2tJ2Qu1W7sThaOOp5CfYxWzmjEmDYRSG88BlIqM+JNoXQ3ISgwiQehwBZo9B5vnIM1UBHTEktu9FAJnJ528TIaLMPGy96FGEmfOU1ptGPve/CKVXIODKaEQUILmUT+nYYaAEbtsCt85H/IsKHTFD53oUiZrGEB/QR4rKC4hPaJFzeDzguUS3m/k5EX/yon6+CnpugaIKhLproqlhuT6WIH4HvW95co6RgAJ3AwyNCNMm3Qa25I0HKxr1DKkoL7UIkDX3s1avV9NzqEWElIwAFXptecBC7VMt95eJQAd0usp4b+IgAP0F45jRHuBI+XhcDHOAqQBcz70Mkk05BwlSyE+SB/kka0jbyWNpXymWXuE9Be0uPssAuVTRyjFcbGQxl7KWMjqoZh/59JLLADdxJwWE+T6f4/t8Dj9hfESYyn6umfgDnmQRzdTQQSnf4kaOkksx3XyFrwMwj63MoJna0O+pDf2eVqqEdlkHHEAe2iZKZhT++rDiDMi2eqzQUYUiw2okN9KD7E8gz3gDzPwIaCpA6LqdCY00Iqd3Y6OXpahwEgIII4iKrD9Lx8gTUOXTZgqCVGbJ7yZ3tRLJuwwgVNaRYQGTmTq/6JA0owrsL7FlaQItAnzNvooC2BaTqOYgAq6rkQjtvrDMtycg4HFgSKjApVlyPm+hRCpDev37umB6pVCD/Vn2nlcUyvVUlki0tL8b2sIKyp2w7zmoKLFpRE6nUJb9TmkVOZLP6i8Rxd2iQq0dWwgclXl3dknE15+joNylgkcF2nK0md89+rcQwhYYD5JaEbg99FWyGWQ7c9jOHJqoZRf13MVnuSu0kjoaGSSbQbJppoZiulnJXSxmI6tZzir/DbRSRT4v08hZNHIWO5jDINk8xBXEcVNMN9kMEqKAWTTRSz53+r/EnX5LRU/b8ZnUXhv3mi1taUvbq81PF79LfoS60efJp5cfsoLT/xzn9D/HoRhC2QX0V4yzJUsqsSp9wwiQWg5tP0KAmVmlDWubjDiUPAT8mHx+l+ZxLsICw0LAALYKbZNVSb1Zj/Miz+o+6YtX53E1EIFba5BUjC7RTYibVBiTi7oFaILoep1XROcUgKgBdWAjqHnAizCyHguKc/T3B4UZxFM6vzy9HlOGpY1UrVR8elyflGGjACswlACeRoCryQPVlBU6sKJPXmyN0wa9bh8277QEAaNm8X2LjmnefS7Wuc3Cypg9h0RYn4Kq6EH+eOYUTt8Zx9NxjFjxaazhSo7go4ZmavRLmDO8nf1MZQ1XsIYrmMNvSdvJY2lfKZYGpaegrQstpZhuOiljGWsp1CXJBBks5Zfk08s4hvkZV3KMcbRSRStVALRSRTfF5DLAVA6wOPRfVBFgEZsIUoibQRFB8v8/nIySTy9z/TuY69/BMcZRH3qW/nPHCc2oD0VyWMXdav2peYoUqJAQ0iIJAYiZ2NqjCWxaSWmWAK9cVdadhNBi9yGtaMxxuUhJlwCipGtKq01yqmqsjvm81h8Nact0ynFRBc4tY+5tZ5+A3DakvEwAWVD1IFRXj1MApxuhs7pdVlCwwifXFUdEiioRRWCTo+oZwxwtQkDf5iC8BFQWCGXYq9SiEaCuWu6FB4h3CZW3Z0gAc08Y+qMCJE3uZ0IBdG6W0HcnOQVUTi+UY6N9UFoi0dF4QmvGxuR4kALr030Sqe0JC9D1OG0d02ifAOnMEuyLhZHCL0BW5H2kCrYzjZQ4xeN1F5HLUVb5b0gpU5qWywD3j36KO/xf4V6u07zoSqpoxU+YKlpZzXKu416OMIFmaljAFkZxMoqTn/MxshlkFk1sZw5ldDKL3VTTwm5qWcdSNrGIB3gzK368My2JgwQZr9k4ydV305a2E21nsB8XwxzLGMclL27k28NfIOY5jZjnNJ4rq6Hk6TCe6DFxNC3YMmrnIpTUQqAZKq7SfeMRv7pEWwgBUcZ51SKOolL7P6PHTENU1IOyyEqTNhMRVeaOCBggz+42BPSGta+hEm8EFsG+mDQDNkfM2BWaAjNRfqdGzu01GdPXIu8Jv9BWAJlGZXgLhB7CqtxO0/6T9ZhNem3D+tn4n3qd+7lAF/Q8jtU3GJX58lm9V8VjrmsYC2zDSPRzGBFxSiCguhEbvX0GKzbFmHmZfZVI9PYWYK/e251yfscoFI9282L9exguhJwXX+Fzh++llSoGyGWAXGYNN9Hims5sdhF4pSrV0nby2HH6yne8vWFQ6nA40oD2JLW5/h0cZAr7OYP1fIhCgjzJIropoZhujjGOtSzji3yHdsoJUkiQQgoJUkUrN4W+yQyaqQ89y/1+ybmuo5F8emlmBq1UcSc3ciu30UlpKtI6SDaP+T/KwYwpgsIMfT6GOAiz6liCpdq4wLPEzj2BgLZBYCY2b3RmnooUDQnw6tR8yAiy3aPN77TH9CAKJe/BBuecKOgalgikmVI/WjoFUZmtdKqibZYAxLiOMVZkKRMRIDLAdF9CWk9YorLhPgGx03NEybZRQ5L9SEmXTGwJm8wMKR8zvUBatt4PozTcGJbj2vugM6LqwgHp43Gqqm5CIq/mOjIzoC0oQDYalZ9epRh7CqVsTKlPwGbPkIDx/rC9f20RGddrHC2SK+stFEEmd57cK79PqFTeaaJOzDVjvjgvsnJsqFptWHqUcf51cCu3UUiQcRzjblaMgaSSFLQx4yKmcJCJBJnCQfLp5UkW4SPCepYQwp9aWFlIA6NkMJX9TGU/n+N7JMhgN7Us5ZeE8LODOXRSxnJWM4smQq8qTJe24zWhJDlfs6HiDSe7mqDD4ch6/V5pS9vr2wya8REhd/AovzlzHq7hV4i4JhBxTaBqtNVSTE3aiw/ZZkBQDjY1xoc8X+sR4PMCdiH4HMTftuj2pxBfPA1GntPxAuCerxTgLG2bEMDZIaCSDmA3FhjHEMA6hIC78xGg+SLUnS3Nq0r7mYslvzXeBBULgcPA07Bzg45hor+/0Gut1bYIAW7DMmf/v8t48SY95lEE4AaQxc1ndDwdn6d1vD5SNViL/l3vjU/HKEAElkoQp2rG6tLxnpH+/au1v6EmL0Yo1Bl6L87VccsQAGpyWZE5U6jf0e26rRKJzuYBT4LnoWPkcpSt2fP40/vyoAsu3v1rLYzWwVrXpQpPB7jttFu57bS0RvzJZsfpK9/xdlzA0uFwPOJwOHLGfC4Etr5ps0rbm2pbuYBhXNSzi6X8kn1UUyVVwIjgI59epnKAW7idYroJUUCIAvZSQ5BCVvlvYBgXz/nPJoKPMjq0n7y4T+AItezmy3yDFaG7eZjLeJjLmM0u1vFh6VeDOAIjQGDySNuQB38BknMySqpeaSYq+oMo7/ajAkdIbqlHr8+NVH0vRXxLGAGwMxFQWOGUyOe8HAG3BkiWImDNAMgRbBQzU/eXIrThUEKmPjAkfYq0T6dOv1TnFx0S/1I05nV1n557xFxTTOqhTkKEj/xIVDSCtFJs2ZtQWFqRTwDpRT6or5BjpufIeUoLYGaFgGsQ2q23UAB0Zo70r6+Q3NdSFVNyu+Szp0YA/Z5DwLDsiyS0tE6OFjAvkOZzgkcjnEU+ecnwm+RfVVcO9wlQbWtD6Eh5iAM21KVC6Zcq8F6mxw9jxSNq4PN8lwxGqaORXdSzgh+ygh+yiE0pWstm5lPOQQbIZTot+AlzkClcxAaq2ccEjrCNeeQyQC/5SvIdpIoAnwj9lOVIiZhB3DQxi9tDX2Ucxyimm2u4j9a06u7fbKcYJanT4XB8z+FwlL9+17Sl7a+bjwgRfNyZfSNVtHLEk8c4hhnHMPszzhDH1o08Z3MgWYyARONL+7DCQQWI+NEmxL+2Ic6kBnqeQOiqtdicyGEgDJkmB/RsxBE1IyBvIgJwywCP9suRPvEtyHM9pufOQwBps15YH+x5Thrv13NuAaaB+xIEmB0CFkF9vcwltEmvZbH2j2p7VK9/WD9HgApw1+p56xCQfS7yHlGDBezmOjbp8Rch9NkNeg+Mku9YED+kc4tpH7+2o+C5Qce5AToNPbdAv6MmrD7CC1hxxyu0deh1+ZAaqVlyT557oEYiviXQftUkig5HuOCFbby7o4/tdWexd1Ylj3A5j3A5C9gMwHsPH2Q7c7j1ldtI28llp5iv/Kt2vNHOA0CTw+GocTgcHwR+h+i1pe0ktn1UKxX3KFPZz1y2s5V5DJLNXaxkP1Opo5EZNDNDvcqloUe5h+spJMgoTpayDjdx1rGUOG58RHATZza72MQiHvN/FBfHcHEsVZoD4JppP5CHr4mShpHVxyxsIeyjyAM8C4oWSnMjPtXpFD+0Z0iCbZl6TbkIWHsPQms1AkUj2qY7BYDFgQ0G6I05/oNZ8tmDrSX6P0juqMlrNbVFq/NkLoYG3I/gKA9yjukGOOtyjvFhlcDmmEQwO5FSLKGEjPVSTD63RYQ+W5lnqcilTo1m5knUc5JTQOOICglFTZ6OU2qHqiwGPSY/V/fFg9IAAkpTdhdKlJmwvfaRhKgxVlRKTminKgIHwtK8eSL3P2LqrB2V7y3QJcDZlK3xF9iUpVe9GJgXqApszk4bQl8q05uVA3eXfYp7uY5WKlnDFWQzyCo+k2pBCukln3IOMkg2xxjHPVxPE7NoZwq7qCeXo+TTSwEhnmQRe6lJ5aUW081c/w56yaeRs9jEhalFGkNX737V0nbajtdOMUrSdKR+6BaHw/Frh8Pxzw6H47Vql6YtbX/VtnIe57GVbop5984+3v2CtEIOw1FI1iHP0MngiCLAy4C0MAIEv4eAIhOtK8TWL+2T9A0KsCCsi1S+ZM8TgFdpsYex4oNIn8AzCGDtIrWg6P4oth5pGwLCOiDeBoEGoAJm1kuLPiifOVvnexgBksMIONTopP9GBJxtQd4LyrQZEaYCHWe7ntOpY8e0j8ktjel5glhnbO6JAYYX631YrvcSLIurD3k/Gauu60HeV5rlXrFeKgbwos63HvF5Rjiqa8y8tmir0fHMOTSqevYnm2VeJVDe8RIAz02rgSyY++LzzPhDgM913MvnOu5lK/OI4OM3E+dxPffyxGkXU3laK2k7eSyd6iJ2XKA0mUz+B7ACIUvcD1yQTCYfeBPnlbY32b7L5zlIORF8PMQV+DjCESZQTDeFBPk+n6OdKTRTQzUtVNPCUn7JXP8OfsaVfIsb+QQ/pTzURj4vU0sT1bQwSgaNnMUqPsN13EMx3ZqR2sowLuazmRaVLacYQYUgD2kfsgLpQlYYncjDPoGINZwpz/0iJEKZi/ULL2GVdE3ENDzmd9MvkhDgBwJAB5AGAkY7h4Ry60aApqlXGkdyPit8Ern05knOqPFt79FpvkePcWdJzVAPUualZcgyVv05CnI1AjwQk3MZFmx8WKKQnQmJNAaG5BxjabKBPrkWb4787ndqxHhIKLlxNAqqoB2X1HqNRzS/M6agEgG9PW1aE/WQ0JrdaFmaAggF5Hp6kEiruZcjCRt97Q+KeEU0qqA2S5SBi1TZsL4Qm+sUHdMMTTuKFT8ar9sygPmQy1GqaaGKAMV0c8UYVcHDFLKfqUxRQJrNIGtZxvXcA0gJpAHGM4O9ANSym93U4mSUK3mIK3mIMAX8J9fq32mAm7mDUTL4jf8CAO4KreSu0ErS9sbsVKEkJZPJcDKZ/DqSMXY/cC9wyOFw/Hua2pu2v8Xu5ToGyGU/U6nfuZsj9eMFoHRAUUck5Te76gsk2teC+NBuhNYK4k8XQXwT8O/YfMocoA36fw7cgDxzmxAgCbJA+KLWC42B/1qtKz1NPptWacBYn9T6JoqAUBcC3jzye/wBcC+ESo18muadBtHHEaA2hK1Tbtg2HYjzCiCA1YjemVzOPMSnBCH+BALuYnJt3mu1r+H3XaXHJPRnlzYTxQxggWQxEoXN0n2XYMGkU+9ZTPu/qPcgR68riNQXzcCWitF7JDXmdKxzEDB+ts7PRFYL9bus0eMD+rlfFZcZ5sjE8fRXjOO89/2al8vcvFzmxskoNaPNVNHKVs7jZhWbTNvJZadKqstr2fHSd4sRtvsvkH+7zzgcjlMjlvwOtf2hM/ARIYNR7ueTrOVSiulmAhGCFDJALovZSDvl7GAOO5hDAwvZHpqDi2N8ky8xh+0AHNPk0EbqCFLIAaYylx1sYQEPcBUbuIgNXMQAueyinmWsJcIE9n3xDHkIH8LW/noWebibFV2zeqiOrOLLAo5G0Hqh2EVLp/58FgVbWKBqhPIGsMe3qxKuia6aPNCdQwJQK52yPYTQYgMRaSB04UoVEerUY3ORXE83QnP16rniQL3mgWYjoNi8ihfpz3qnUJErKvT8CajM0bxV5GdjWKKVnX2yzZ8FI6Oq4JsQQNyp54giwkUGXI+EbVmcogLN7USuAQTcRvskMloAlE7WcjEKcPdFYF4B9AQFxOZmaY5pDEJBof2+FBMKrzdHclI9HsisECGk/igiBuHDKhKWIE+TMlIr3KlV5CxgFLZPPIty2mmkjoNMoZtibuBuVvIDVvIDlrGW2eziwtB/M8B4SlWkaEXobqoIsJCGVJRzHMcYJJsQftzEadL6pHP0b/UxltHA+eQywDqWso6lqXJGaXtj9gqnnVKUJIfDkY3EWW5F/vVuRpbUNr2V80rbyWVnsJ9uimUB1w++6FGOXDSeIxeNhzBsn3UWjmEo2R2W6GIBovxah60vej7QAe5rkcjjs1g66vngWY44T6PIW4P43DwEuA3rczsCnjMR4R6To+rF+ucsyKzRbcaXm5zWPnCfTYr5MvKcbKMPKAFvvfSLt8lcaSOVyxlvwfoGM24eEhrZqePnAEvArayaVL7mIWw0VUWfiCJgcKxIkUaMGdXz1iOR0CEZJ95k50oJAmIfxdKdC/U8BvBWIoJOhdgobiXi10zaymS97w9pm48sJiQQOu8MBKSaexIFMsDVBDN2B5jQfZRIho8pHEyxeAoIsTtjFjuYQyHB1IJr2k4eO9V85V+z46Xv7gR+lEwmr0b+bUeQR1TaTlIb9ecwwHh8HGGQbJawns/xvVSyfDaDXMt91NKUUngrp501/o9zD9fxCX5KGZ3s9J9DC9Xk08tS1gGwnNUcYQK5DLCQhlT+X67GJA8yhWWsZYBceX0z+RpHx/wO4jwnIw91E0XrhnmLBTxmAxdnSeTSjfioTgQgepFFSaceZvIz3cizvwgBegUIUO1HIo0gUcxSJNLZr/vbhywFOISCzSGhyE7C0naN2FGnodLq2J1hC+b8WaJM+3yfRE1zcyQK2jIkyrVG3X+fquhOcsp7gMmFHdDzuV1KuUUEjOLABwskv3PmZAGM6JzDfTbH1KjvBvrkGqJDWlu1RHJPs4GRiFKPddV6klMVEpF8V0+OCCp5ClQV+JBEd0kIUAaV/e+QiKznY4gjL8BGx0FeMoLIC1EB8sKgX9aRpeNpoZp7uI6reUDAJ5uoZTc7mMM6PkyQQnYxm1X+G1jAFho5i2u4j5X+uxhgPEEmkstRzmA/xxjHDPayjLVU0ZqiA6/hCtzEuZoHmcsOuilmDttZwBbGcYzH/B9l1J9D2t6YnSr0XYfD8UMEiM4ALksmk+9PJpOPJJPJT2KLWqQtba9rB5jKDPby9dGvcKR8PC3eMxjGxTAuYjWnMWu4iaQLW4rE1MRsQ8BpGaQwyXrEYSwec4IAkiZxBuI4C7AgzwC5PPAsQoR8XkT8cos2U84tqMeaOZyDpchWSJkxwsAzEG8QUaMUmOvTeeUpqFyk12ByQy/WcedjAakPSznK031PI/4jQ+fUJp/jj8PICzqeC4n0mshotzaf3g8DYsFSmGPgvgKr2usFPqb9wlhdBJPD26w/jbpvBfYt2USQX9A+EaQu6UK9n4b2vAkJ/Rhf6SUVpX15rpv2WZPgBSjrPsyd3EQv+fSSz9zBZ7mUx8hglAFyU34tbSeXnSq+8rXseEHpB5LJ5MMAyWRyJJlM3gD8x5s2q7T9QyyXozxPHY3UkcsAK/kBCTLIZYBOSrmTm8hlQB97ko+3l5oU+GynnLv4LOM4xuU8nBKPGccx5rKdEH6+wh18kvvJZjBVF/J2bmEdH2Y/U9n3rjNkBVIjY6mimCAP5aPIkogRaADIE+A1iNBTTW3PIiylNz7mZxRLOTURTSNcFMbSZv36u6lPamqiuv+Pe1eOgNMoQh12O+UYkw6LnsMA3Eyda8+QUI/NGG0xEU6Kx6A6CwIJO2eQWqARFV2KJ2xN1KIsiYSWYkvTTILUKnZ/UPx9abX4xly9pmjMguPpJTYS6/dBqAt2dkkUNdMnQ8W7JPfV7RKacZGp65aj1FyvREh7NGk01CVAtefQGGBehnCgzYp8BfLSoi8uqZeMRv3O64Fz5e9rLzOoZTdNzGKQbBaEfstNoW8S0loEIQp4IHQVs9jNZuZTx/PcwN3UIfX95rKDIBPppoTVLGccx6hmH42clVosOY9txHFzjHHk08s+qhnFSZiCV5VDStvfbrL663rN9g6yLqAqmUxem0wm//gX+857KyaUtpPXFtJAd0YxE3YeZfofDqQASM6Lr9DpKsPRhk118WHTIRQEUo04vOsRHxtABH0uQh78TuAh2BPAqvEatgr6U5/VnvfrvlFpUZOnmocAwmHkOd+MRCqHgCZh0Jioqrsa8eEGYBqfn4NwCZ5CQKZftx8COmDPjxC/YESbvNpy9DpzkMgietw5Mmd3rbCKUtdTgYDKSqyCbwABiTV6/0wJm5je1xxgtf6M6vmMQGOWtrDMM1XjNIFlgBkBqhKsoFIXAj73ajO/1yIA1YDZWp2XE7rqCtjEIvLpJfb+03ii+IO0UpUKIoSyC/gNF7CeD+EnxLX8mIOpiuppOxnsFPOVf9UcyWTyrZ7D285qa2uTTU1Nb/U0/iH2OIspJMhmFlBHIw9wFetCS9ns/wAD5GpESV7KH+Yy7uRL3MmN5DLAMtbiJ8wdfJlyDgIwQC7FdDOH7eymlmFczFWabyN1bGcO1/JjesnnDA6wm1kCHv7teSso4EL5p9hQp5G+NxLrTuBR2BZU8aACAXYBE11EqL11TuhXoAeyrwfx1aUIODPlYypLBFSFsAq4bTHZN6LbQIR7QmGZnomemtIsuUgk09CLPYj/n+4T8SKQvNS2iC33YkC1U8cpLZAP/VEBsG6n5HaSUAEhhDrrVNCcmSEAsChLIp/uLInsVubI9kqfKut6pa5oi4ob5SIAPDPDRjczM6SUCwmJjA6oQw8lZK711dCpte2K8uRnpyofe/MgswACbVBZCdE2pWddxavUEVPA1JipV9pBSja/66ICbuU2SulkLttTVNubQt/kJv+3UrV1Z7Gb1SznPLbSSz7bmcPlPMLDXEYtuykkyGx2sYvZDJKNnxDbmYOfMNkqBTWbXWxmATeFvsl9/n+jlSoaWIifECBq1aeKORyO3clksvZEjZdTe2aysun/e80+ux3ntCNq7hvfybky7zQ7lfzkW2Hf53ou42GamcEFh7dZtbgC4JDkk5b8OCwR0GZszuWzWCqrAZyaTzryqAwxEJNnc88zUJAHmUZh14gd5SGCO03IszpHxx6z0Bh/HNw1CBCMIc9wECA2Xn+v0PmcCzwN/W3guUT3BbECPz5s3dAHVc/A5KCa8jdtCLgz0c02JPrZhfUrUQSwVur1mFXijjHzMykkINHZDizd2NRaNeM9p5+NVSBAdO+YexHVeSeQSOiiMXNs0X6Lof/Tyhh6BmGA1WifcxFBqgKdR4W9D9RC7KrTyGl+heK6NtoHKxjIHk875Zzd3UysQOJKDa6FxMkmg1Hu4Mvk0wvADj5A2t4ce4t85Qk959vR3jkqE2l7Q7aZ+azkLhbSQH3oWdb4P84i/yY6KKOQINuZm8rJu5lvsIvZ5DLAXHZwlFw6KWMuO8inl63Mo47nARQobCNIYSrp3uSsbmYB7UxhNrv4ROinAIwuGi9y6PMRsQGTlwI2zxDEsfgQZ1kNXlWRbQuLSi5AfQ40xgREBjSa2K/73Eg5lkBMtrWpsFFoCNq6BLCWovTcmM1F7ceKJnWGBUS+pJ8nIcHcDyD5lCDU24ocES2KJwQUGkElA07jiEBRJGEjuyEgMyw05FI9RwUWoKYCyQk5rynlMoJETuOA1wVFQxIVLc+DPREBqGDzUUFFobykqFjxYckF5ahEPiNYqnOl5qBGA1apOD4s569QkD4Qg5E2OScRAamci32Z8GLpVybqXY28FGhpA5zANDjGOHIZoI5GghTyAFdzPfew1L+ODEbZp2JZbuI8ELqKhf4G3MRTznghT/EQV1BAiGFcHGQKd4Zu5Gr/g8xgLw9zOdXsA6CUTuawg/3+M5nLdm7jVhpYSIGC0rS9cZPaa69LO+pLJpOf+kfMJ21pOxlsDr/lDpo4Si4XHN5Gf8E4snOOAeDsgP6zx+EfDEOJCOAMftDN6Z+MC7CpRvykEZCLIMAuApla8zt3PcJ2MRFDkz5j1O9DiI8NIwApjIBP88b4lNQupUv33YA4wSDiT4xE/ZCO95Qc66nBpud0IYBaS8KwExEVyhMRJOp1nC6EEO+DkWcg04DLS7BR034B2EUL9doLsDTZfuQdYrKeOwsrprQBAdA1WIJ9NQJGTcT0owh4juq1ZOh9MP31mtuegIpztW8M2p6Bisl6bZuUCh3Vc30aG929z143TuQ9KAcBt8OQc+srxG47jce5BFcbBN+XSxw3sYLTOOCaCsBUDlA63MFul9TaBhHLStvJY8fpK9/xlgalp7j9mBu4BricR3jS/8/kMsB+plJGB9uZSx2NxBXG7NDyGQPk4iNCL/kpyuQg2dwVWskt/q8BEn3ayjw2cSHLWAtAOe2M4xjr+DBL+SWNnMVg7nhWZX+GjosmUhY8bIthD2PzVEzeIYjDCJAqFTMdiG4RYGfyRLfFhBpb4YOdEQvwQCi/e2Liswy9NzQkPw1t1oBUNwJsTVkZj/63vJSwJTSNCNE8/bwzJoJDJq+0KAtIaBkadcYzfVK7M45EIEHKxrwUE+Gh0JBcu5aufgABAABJREFUizcH3MMSER3QnFYDjPsRsBtJSC5nqVOowZU+KRNTkCcU3M5DEhENxaDIaZVxQebUE5S+I6OS29ofFHBb5AO35qH6fQLQX4rJuXL1+AGlIhcVynyy9TgypGRM5Wqs0qBB0116k83qs1F89CEvNxfDhrLzGSCXqewngo9hXPgJcYQJXM2DHGQKpXQC0EkpV/sf5NLQo6zxfxyAu1jJclYzj22pv7lxHON+v+CeUTKoZh+rQ8sByPXLcoEpG5PNIPtDZ7CfM9K5pH+nJXEwfIrQjtKWthNlO/gAv+Eb7KOa4MRCakab2eo5B4CB9+XiJ0x9w26oBtcT4MqL2/qazdjnaxRZ1WxGFgZ1dTazBlt+ZBPia+uwtN8aLDW2Ccl3NJFTsBHVhUju6oMI+DJALqI/n0IAoKHeRrC5KcrOQZlBlOkxNYi/342ttaqW6cJGITchAPFsoA2KFmHLvuwkla9KF/QEoKgCSxM2b75nI6C2Uebf8zgUuRCQ/ajeu29jS8fEdJ5GaRekjEwlVEQQsPks0A0VN2Brj1bo9T6r97cFtOqYzVFNIPmxFdhyOlruZtTpFNG9Qsinl/P+8Duee19N6r4M4+JXriU0UUuQiWxLZwucdJb2lWJpUJo2fswNfJ4BcjnKXLaTywCPsYzlrGYTF6ZWb0rpZAOLGWA8X+Hr3MLtLGALfkKMksH9/k8RwUcjdWQzyEp+wHJWs4UFADRRmwKoEzhCFQHWZX8YHxFWs5xl16xl+mMHxPElkFVNQ8Op18l26/YxNFDvLIh8Q3abPNBQAhojEmksxdbs9GdBeMjSeZ1IBLMIUSipRCisXmzZF0PDHVEAmSoz4xSAaii6PQgY9ucIkIwPC8AMAZ4+LYsCMCznMsC4qFBoyPV50K7n82YJCJyk0daXkO2T9PpGEnJbpmuOZ39Yoq5tEbnGaB8k+pQOrDRkT0yox3GlHQX6RLk3kRBw6SmAgaCWmtEFu9wsOVd82Cr6VuoLjydHorTRsMxzZFRpwvVQeT425+g5xPkPYXOPOvRemIRep3yX95dfQZBCshmklE4GyKWVSn7Ep9nBHH7MNWwIXcRy/2oAptPCZTzMDL+UfFnCr+iklHEcYwJHGMZFggwWs4G9zKCbYsppp5DDrPLfAEABYcIUqNjRA+ylhpX+u3RiXyFtb9zSq79pS9vfbhtYSC7DfJyf8Ufey2CGmw/8+VnZaaijZ8PLE91klI3iaT5m01pi2gqwtNfzEZBp3vhMtPI5bJpMFIkaap1SwEbvpulYypjBiUTyHsUKBBkQlQUjHaK8ngKiTmzdTxOlBPHh47Wfqu7iQgCfRndTEUWTt2n86LN67AZ4OAiXnytque7bEeBp6LtlUGQix149j5lzAps76oQiM7dvIKDdidCREwi4/AgCeL1Y+m0bVqHXlJapQUB7NxZkfgRL8W3EgtJFWPXjCv38HDYy+yx4Ko6xb24pve8apGA0TKJMmGdh/UI2sJhSOniEy/g6X2HLK/LOddyqMWl7yy3tK8Xesj9Zh8OR7XA41jocjnaHw/Giw+H459fo+0ntd9DhcPzI4XCc9nr7HA7HPIfDMehwOJq1pdWCX8NyOcoEjjCOY2xmPnPZwTbOo5x2shlM5d+tYBV38BW+yZcYIJd1fJhbuY0CwkTwMUg2hQSppYkWqtnCglSd0kKCrOPDXMlDBCkkgo9iugHIYJT1LBH6bgJ5SJcABxAH+wx25bYQQYGGWzsKFZ8WgLcnIfU93Qggm4n4DxMJdbvEr2VilWyjWMGfHiTCWVErgBQ0/9Qn+3pQhV8n7EvYOp/9SAmZEQQADsSkvmgCrXvqhD1BadE+G7l1AvuCMsdon1JfEfBnLJ6AmXnin9wuaZlIFLctAj1dUn7F7RJAirkeE9mNCZh1uwSQ7tFWmSdgdE9MGbVdkrs6KQf6++W88SGZS1sC6ny25qlZ0PN4dU55MoeBIWTFfWyOUQ2iKGiUB7Ow4kb9pPJ+ti75Jx7hMrYxj9ns0r+aSqoIcDtfZS811NDMKv8Nqb8pgFu5jYm6bL2Z+SxlHQ0sZEXobropxskoGzR3ei3LCFJIN8V0UEoHpTRyFvdwPZ8M/YRe8vETxk+Y76YB6QmxUTJes6XttS3tK09NGyCXPzCd27mFd7/QZ3fkQNeSAhI5cPqv43ieOiZ+sQFhnhxFHtQPav+PkXpep3xmDPGvqrLbb/I7PQgI+yiyEFyDzfkcxT77P4ZlLDmxwFLzNRPmPAXapwxogv6ndZ4Nct4U0O1DANwt2PqiLiyITiBRzjJSCsBxI8R0C1y+XI53VyAR1KPYqHFMr7MOiURWY+tk1yKAOwerYNyMLV+mpWwY1p9Gcdjk6wb0fnXotma9N806dxdWMMrksWbouOdq69D53a33YZNuu0r7jkKiBqYOHqC84yVGMzI44smjqD2SKgnTTTHHcHHj/8/euYdVVeV9/LMEJUDBgCAwGFHwQmiozOBkeW10tNFJq6nsZr2WdhmbblNvzWg21VvTvelmOWVWds/GJk3zXjZSmJQGXlAYUAwSEhQRBNf7x2/tsw8IiAoCtj7Psx84e6+99trrwFnnu383HmEDfZjYbh6723XB0rawa2XLWkrvAPZqreOUUvHA50qpOK31Pu9GSqlYpOZbP+TZ1yLk335uQ8fM6Rkne1BwUzGDh7mE1+jONs5nIeMLPmRBxO/pQAVZJotbAhmkkUwYu9lMT6LJ42y+JIWvWMlQsuhONb4MYwX5RBkRehFTmAVAOAV8ydkAnMcyEsjgTSYSSw4+VONHBWtOG0DlUx0YNuc/skg5tSwdL8oiZHE8gPtkuAqIhi5TocsaiXssMhbMKkTo5Zg1vdD8PAj0MZZJJ6eSU0KmHMhMk5jNLiZJ0JoiPLnsDiLWw76+4vK6swT6eiVFKkcEXd9AiS0tOCDfETqZ8/3NF4QcIzzLEcG3s0iEaZCvxMIOihL3WqekS5dwcYsF1zobgKmjWi2Wyr0HxKraP9jUUo2Crfky3oPG7di5j/Z+4iLcJVisnVVVMs8F+WKpdWqZ4gv9fd3ztxq3pTMCobxE5iAnH7qOgS7X4C6+hWZC85AvOenIwp1GzQIZhfDctP9hWsHTzI24mnyiPNbSfqw3CbcyiSaPxYxkA33ZXNADgHsjHiKBTE+mwb10YjXnkk8kAHlEE00e03iGeUykD9/RlRyiyGcBY83lI9hc0IO3Iy4jgP2MK/gXAHdGYDlODtHOuiQdP3at/JkxjsVM41G6s03Wz0DYfZpkD/IP2k/E/kJygs4grmiHfJYWIg/7FiDCyqn/HG2OpeEm0QH5TPY1x2IhKBhK15icAqcglr103NqbjlXPSbb0hOk7ELeOeDyyLg8B/yWmXSCwETIzTWb7i03/mLbV0vdBk2OgvSNgi834ipDvAI5ATQOukbb+G0y7BYgnjo8Zg3fJsWhz/lZzz1PNeJ10Afm4iYecWqMmJwIHZOw4Ft9AxMLZy2tcmOtFIZbbeCRGNhL5frIJybjrWKknAX8y45lgzn8V9/0KN/s/RNbRZCAUNgd1J7o6D79TKnmfi7gu63XWxiUxtHolAENZSaFPOPfygCevRwS5FHj7PltaNXatFFrSuH8JEuKN1nor8nEzuo52FwEfaa1/1FofAl425x7pmOUoeb/gIjbQhzSSeSbiFrLoTh4xZNCbDHpTRCjl+FOBH1HkG+FQTpEJ8riGOXTmJwBWMIzubOMB/kJXcjwxgJOZzfksJI9o3uciIihkNefSmZ8YykryiOYTxrBg0kgZlCM8g722IOQDOwpMDib50C8BRkLIZRAfLyIwE1hT4paDOYisq+WI+6pjIQURc0Ferw8CmUUSq+l4mYJrMd1aJUKuGLE2hiIxpBGYEjHVJhmR6feMQGOFLBP33jhExBYi+0qBCOOmPChUrKr+vuZhcrAIUievQ4G5hyIknhQfGUunU0TgOm7HpWaBrkJcd51MweVIMiP/QDlYZKzLVEDXKHHN3VkoCYwOlklW3ZwS6DJI4kpDjXtySLhkAu76CCI8c3EzJCWaCTuALM5lyBcdcEvCJMKj0/4o8aIRc6jAjzQGmLjj93mTiQDcX/BXFjOSy5nHTTzHyxHX83LE9XzOuQxjBVl0B2Awn7OQ85nGPxgc8Tln8yXV+DCVF8imK4P5nBy6kk+U5xlzOAWkRfySDBKYy5VcFPG+jSVtQuzT3+PGrpU/M6bxKFOYhZ9JO58bG07YrH2EzdpH4MJD+FRBR/ay5ooB/DA8WNbCQOBKxMrnuODuQv5anFCK5WYrgpwPcWMjiyBoALLWbjf7QhCrovMQsQjX6pmCR7wezAaiYevrpu8lyGf+QNOPH/QeBRE3I4udsXR63Ix9Jca1fW/TZ6rpv9BcdyOQB6XzEcttgdkc4RsFPItYdvuZ+yzEzUvheO+EIFlune8UvqbNPebYRtwaq1vNsQFe7Qtw65J6l7YJwRWuabi1Y1fhxpKWmv7+DgxHvjQ8ZbZrzDXzkPUxzcz7x2Y8KXDmt9sIKKukIhiu2v86b8ZdSGd+IsenKzk+XXnH5xI6s4eVDPN4EVlB2vawa2XLWkpjcBOmgnydjT7Kdkfqo4dS6hvku/jzWuvX6huMUup64HqAmJif5z9zdUQgU+hOmMlKs4dT+Yjx3MjzANzJo4zhE6YVPM3giM8pMEVS+vAdCWRyLa9wLw8SShHV+LCU81jMSBLMY9YEMpjPeNM+gxy6EkU+hYxhD6cyqOALpkf8jU7s40lupc9fNxCbuksWKecJr8lkRzJuoe88ZLEKxi0dMx7iH4eANSbDoKMxiiXG0vOENx7Pou2IL88CnogsFsG4NeCACcYyS7H00z8XTDJYCBFBRzYQKnGcXXKRRXGjNPH3k3EGBcu1upp4lqANwCluKvz+ZqFLyQdGQm8neQMQ0dFcLwhPKvyQIciiFggpY5AvFzEQVIx8CfCFrpNwE0xk4nFxih+IW0DdR+6nC8iCv0HOiS+Tewq5zJxvinrzuNw3hXI8d3Q4MavNZA004+gGFVHg9wXG71gOZ6dEspdO7Mefu3mYN7mcCAqJJo9reYUxLORVruGiiPcBWE8/8onkcwbjsICxJLOOeUbAruC3XEJHVhecS4+IzQBsoC+jWMJiRvJ+wUWe/t7hanwKytgQ0dfTXwb9sDQNh2hH5aEOLT2Mtk6rWSvtOnniWMwoAK5iLmE/7iN7inh/xO7ahU8VnJ5Vwulb18nndShi0VyMfL4nIZ/vSbhWuiLcdbAKupp18WCasVCegpupNwoRfaG44rIf7tPZWDxZ8tvHS//xE3DdW+OheDaExCMuqk5MaQmul0wyFCyUh6U7C6HLBHP9YGTNB89faPkGCEox95Znjg1C1lQfJA5zl9m24iYP8gHSoXg+hNyECMJM3NhYgPfwJEsCasa8Vpsx7TN9DzKvO+J6BF1m5rgU1yU628zXAbMNx31Q4LxXjvV5mWnjB4zHtTp7hbzsvqIjYXn72B0dTDr9uKT0Ayr82rHOT5wbrtv0Oi/3upIXmMoj3AXAg3xmS8K0IVrjWqmUOgd5bOIH7NFa39zc12w2UWoWuPpWrRPhGPcNEK21LjGuS0uVUju11kvraqy1fgl4CaT+2gkYX6tkFrcQZbLQ5BPLDABTp/FiAPrxWASoDNl3V8JMQNx/pe37XmdM5VpAfVPHhYzjmR4MV+RWsZLz0DG+wMOmP1BqCqyaQeK0r7mceYC4Y9445Xmiq/N43edKRrCU3/Ip4/iYJNKppAPdyeK3BZ/yxPjbWMwoPim+EGUS6wTEF7O/KIQxsR+wMOtCdsd1JI9oXmQKL22fxvZuXZjPeC7ifaKLC6n2BV8nnMf5WQGfDBhBCqmELd/nebL72fBzSCWFOLaRQ1fuXvcUVfGwJ6gjYbv28WjkHwGYtv8fvB9wIZdnfQCz4aeH/dlMTwbOT4cSeG3SHxjM5+wngDO/3cbbZ13AKBaTxgCSWQfAqVnlIvZMIorVA35FFPlEVuQTmHdIMiJORxba7cgTWT/Iij2DfPOtIJuuXD3jXVlUk6TtZ5eewzbimLpmDrwBWX89g47sZR3JnJ+6jJdTruS67NcBmBz7LDkmOnbZd+dDGHTv+z3bcntyzuAVgBSAj4rbZf4yLmTR7glEjsyGs+TvKxa430yryjg8hnOlV41QnXD4n1Ec3/MR49mWcWaNNu9wNURA2KGLAEx8zZtcCxABSsm3q3c0xipqhWizoKGq6ufxhPdYaUtrpV0nTwwFhHMHj5FDV/YTAAf24WOeJu6MDKXLriJKYzvQKaQSlYZ8k0tChJiTMdcXEULjcLPgOgmOMs2xQdB+DDAbyteaMi8V5thIoARyFkDXqVA6B4Imm/OX4JZYAdeq6YM8qFwPIY7b7QZEiG00fa6RU0qXQ0Rv4CboMgu33JsTZxoC5QvBfyD4p+Bm1DUPqL+bA30vM2PdiDxEPsWMaZBpfwCIgJAKM+ZxuLXPQdbHbkjCJmf+vHImcMD0uwsYDjtnQ5d7TF+OuL7XtClBHpYXmvMCEXEcjIhWJ2mjY4l1/uO3AjORGGAnKdJ6MxfmwXTY6n1MH3wP9+96iJzIruwOCqYSP0+5vrLYNPbSibP5krt4BIDfsgJLG6KJ1kql1GPAhUjqkj5a641mfw/gNdzqvVcZz5v6h6T1F4hjOkqpfymlOtYOG2lqms19V2vdX2sdVs9WjTxn+oXXKTG4z8C8aahdvce01qVa6xLzezbwEW4OV0sD5BPLrutiUdc1/hyVW4WajmzzzPahbLq/bJyCuHHeAU8NnsJTg6egXgGW+qJjfFHqG1QGqAyIJgu+nwFhsIFf8g6X8A6XsJpzSVTfMMjnCz5hDF8yiEr8GMVirt01j6WcRxFhHDq9mnIC8KWaQSHLZREKh+lB98NCWEcyFEDY+/t4mLuYtfpPHAxrR+yiXdy27nk20AeVCb5b4bXoP8gi7lhY/WA9STzJrbw3fCzEQlUy/Cb7C/6S+jiX7vqIESwFX8gI6kHYH/eBL9z5xD+484l/4Pc0jK3+mM/izoHL4NRN5fSp+I6fxvvDKLg6711i/7mLpYyAA3BJ8UfspRPJrGM2k5nNZBbEjWTYyEWwUQTpkP6ppJKCX8Uh+Qi5EnQIkAa7b+rI3b3u49PYoVzOmwx+/ysGv/8VF1XIA4RN//MLdg4IhUS4jSdkoTMBtpvpyRW8yfl5y6jqDSmk8lnsOXwWew7//PAmVhQMpQMVjO77IU/1nUIFfoyOWUAn9rKNOPyoZB0D+J95b0pioqEV7Hoill1PxNbxVyToBCMuO1ZBxyr3tfO3Zv6+anCRtFH3y+awu10Xit7uIueYvy2ASJ1IpE5ELQC1oPF/55ajQ2tFdZVvg9vPHbtWWmrz7ryreYw7GPztV3zOuVABMXmFxOQV0mV5EZRBUHYlqhByR4aLiHIEYgki3hzRk46Im0xEMDnxp73N79lAsgnlyKVmjdJs6JoELIGgRCQr7Fpzjh+uiAtHLH4gom8CbvIgJ2lDkBmDEX1BKVCeCzyHp2xN6ULceNZi8L8M11spHrFoZsvW93VgIyxdK8n+yDfXMeP11GrdZ8YSLmNf+hZu4sRQ8zMKCt4yfcTgWjXTTZsxMvYug4C3TRtnG2nGN9DMTW+zxcr4yMTNpTDEjC8G1405F3mw7cTzbkKsrn82xwvl/Bt5jt2RHZn64xyKCCOPaJJIJ4l0HvG7m3Es4B0uMXuSPMYFS9ugCdfKj4DB1PSMAQkBeU5r3QP5r5vlHFBKdVdKLa213el1/Hwgs7kFKYDSumUediql7gO6aK2vM8kbvgDitNZ7a7XrBqymZoKGeVrr145wLBL4QWutlZhFVgF/0Vr/60hjS05O1mlpaU12rycTKlf8R8WqKTzBTQDcnvFcjbaTEl4EXDckgGRT6OzjjIvpcLoUTav8NIjIifIBumueiBU9se5r3crD7MefcgJYTxIpfMU/1U3M0ZfwCHeTuT0J1irmTLyEp7gVgAf4i8c6mEECT677X94ccCEppNKRvZy+uoSZg+9iMrNZyVD6sIEo8glbsw9OgZ8G+PMId/Hwt/cBUBULpaHw1MF7+NudD/KvR0cRTiEDv02XJ8XB8H10dyrpQL9NmRAKn512Dr/J+wKAu6Pv4+FZ9/HDlGCe4lb+r/g+qn3h8qA5vLN8EoTD5MRnGcMnbKEnHagkgP1M3TWHNZEDABhcsIr9nTri9yBkPxjJbkKJYxun/ljOmtMGkEECXcnmN098wc7bQglgP6dmlaND4OOQkZ65uDv7KV6L/QOFRNCJvYxiMYsZRTU+3LTrn1QEwylzNL1vXM9E3mQDfUTQA9vuFOtk90e/pzvbWJI7Bjb5Qhj8qf/DfMnZfJV7NpkxcfT+MsdN7e98rM0QK/sLOoeeiJvtML5s8G+tLpQjWJOQJBSAnm6OqUXyWo9GXWuOvWKOeYlRPa7BS/xsUEqta8qEN+2S+un2y1c12KYyNLhJr3my0VrXSrtONh9qHvxh4ms8yp+lXjK+pBif1lOXl7N7eEfCFu3zlEf7KdGfU5eXixBbg3zWjkPElRPHGYzHujdnAUxy3GoP4NaOdgRgIiKmnCRKzjHHtdWEdHgse47oMxbTg2tNKEwoJrW8aedkZge37AywdQ3EjzD9jsONyXSsmlW4SQ2dUJ5U03cEIqSd8WQij1SKkfXgPTOOaDM3TtI9EOG4Co81+WAutHfKl5Uhls9bEGuo4ybtZJZ3xr/VzNPF0gdjzDVNjVT8kPAeX0SYO+FBjmYcb/p91cxfNyQ5klOnNVHOfzPyQi7P+4Anom9kDJ/QiX10yZJQq5/i/PGpribPJ5p3TKj4CoZa991mpIXWyv8Cu712vWS8V+oaXw7wO631RqVUOFLLIlRrXa2U8kHWgXit9Y8NXVMpNQnoqrW+r7H3cjy0pCgNRBwW+iEfJ392FkGl1P1Avtb6RfN6CvLcCOTf/mbzBLneY0qpm4EbkBgZX2Cu1vrvjRmbXWyPnvG8DcB8LkXdKPv08/W3jyaLHf1NHtg78IhSp/SM447pLB5awgVR5t9v0vUieC/hHarxoSebeZ+LSCWFAiKIJpd3X7mat64djw/VvM+FgGRnXaQ2ADBWJ/BWxaUEFh+CrfDJ4BGc/+MyWUg2wIeTRpNABr3e/68scovN4Echae97w91Bf+M8lnFuxWoClxzivbFj2UAf8oliGs/QgQomMJ+HuZsRFeINV+3ry2afHvzy/za6GQz7QGlsB4KyKymLbseTfrfSlw2M27iErMQziKzIx7f6EH4mDkV9q7nn2ulM3/83UgN+RQ828xHjOZfPSWMAAZSTRzTzmMgUZpFCKp3ZQyUd6Fq6A4Avg37Fw9zFwkUXcvnof5JFHGuLh/BlyACq8WE159KTLTxpxP1/1EAAXtDyBr/KNRQRyrl8bqZlMQ9yD9P4B1MLXiAqYhfDWMHr88Tk3n3i9wBkcWaNv4UXuaZOUeqNMkJSX3v4sTi+Fxc3xMoPrkW0LpdfS/009UKrzuqv2y35vME2h07veEJFaUvEyRwPrXWttOtk8/IyV5FMGlX48MsfN/LdaZJxvBofelRsJrD0kJs9tgQ3z8ESRMjEI381fqZ+5zm4DwSLcWt9O7kVAk1fI5HHF8jvO1+ELqOAA9IPgP84c24ZIsqSEUtgMhQshoghiNUvEkl+5CQEykashUDpe1LT2hPTGoOIxkDTZoPpdw1uRl4nqZBMhFzbEZ7JyNodgxuvibl2kunHV+bDk6E3yPQThVu+xXGzLUSSRr2FCM6tZitChKcp3+ZJ2ueMP8SMP938fB35tHGSM/khlmQTk1rwNEQ8ggjj90yfjhv2ZJmH3eM74l+xX76rlEFuXDj78cePSgCWch6fcy4TmccGk+BiAWOtKG1GWvtaWUuUDkA+18/0Op4BXKG1rivAzmnzO8TC+m+z669HErHHS4v5Tmmty3DCFA8/Nr3W61l4mZobc0xr/SySk83SRKjl8lMPl3TjAIXqVQAu0D0B8CsupcMDEB2SB7XEhzc71Jvyy6wZYhXdYtw5dyDxjw/Xfd7j14tV9jaeYwpPU0A4W+hJZ/YQTiE5dKUKH/KI4cJr3ySFVDbTk5UMA2BPcWeYNYEvrk9mM1v4nd8n/Cv89zwfeSN3r3uKBQNGMjRkJTkDunLhIwtZftfZ9D57MyMil3LlJKme0JMtpPilMzhoOXfzML/dtZLvI7tzxdg3eI+LuTjvY1gDOy8NpcumIh7tdSehFBG49RAAbyaOpRN7Kbstg4V+53Nx6seQD35RlayJG8CgTeuI7ZVDDzZDNryaeA0PfXQ/+gxFwiD5/Ng6QGJJsgK6M/iNryAdplbMgSFwZuw2PhtwDnlEk7bkHNRazYDpa0h77hyqrgRf86S6e9A2+pFO1SB4ofoG5vtcwIMht/OXbx/n8rP+STaxVOPLYFbziBoLZPJ/+nVuSJX3/MaUJ6gyGeFmF0xmVMRi/Kjk+nlzWTUxhSELUnm9Ko7REz8EYNG8CZ6HC1fxsuc9ncur9DNm1HQnTf4D7ntew3X3CZyA5ToFp8qoZ7+ayUQtczYv49p6z7c0NYpD1ce/zLT1OJnjwa6VPz8iyGUK0eylE1cxl9Wn/YrB2VLqg0IoTe7A16f1ICEog8DwQyKAMnFddYsQ11FTJ3THKohPRAQSiOXOSXrkCLENkq09qBS2bpdM8f7p0GUgsA9y1kBXxyU4EwrSIeIhYBWUfwH+3eR6Ecnm2iGIWCtDHuqmI+Jwu3QRdAuwFdo/YsZ1pds3JYgFNA0RgMsQ4Vhs+gRxPj+AiDuTW4FixI02ClgLxRshJBkRjI6rchlisUXGe3AOtB+Jayl1SrE485OECP58uY/S5yAoz2sc/XAtzE7pmPmIRdaJk12FazWdgCtogYi7EDfnNLONx83Q+6y8N2F54rVVEQx+VXiSRHYworQnm5nLlaxkKL8i1fMg2dKWaJq1sinRWv8bKSJxwmgxS2lrxj4BPjJOvMIuNdezT2tJdRRH3Rax2qgAYLY5d6IrensM/w6APXQGoIAYxnkeIcICLuZFU6xsBjOZwize4RKSWM+7Koc39AauuPF9Lnj+bc5jqUc4/Wn6LP59/3ksZhT/yJ/Gr6PEKjeT6Qwr/QK/8n0cOv0xtutZRO3fhd9i+H58d858fxtfX5ToyUpcgWRIS6cfyaQRt2kH5MOLwyeRRDoDF4nQ2xPUkbA5+3hg0u3cWvEkgRtFlHIAOAW+G9CDvmu28OGg0Ux4ZhFfT0vkY8aRTBo+VJNABrF5u/guugfvcInHfQvgSW7lLS6lU8VedvlFEZe3g/eix7Iff+LYxgb6MIrF5NCV4d99yVd9+7CFnoxgKafvkoxNayIHsIE+pJBKv//LhC9A5Wn+9t0d/HX6Y/C3d+iuExnFYuYzng+ZQCHhnG2smffyAL5Ucw8Pccb2H0nqlspuwgDYERMHXzTO/fZcPgOo8VS3IUtn7WOe+NKkWvvr6cNaUeunyZ/+9knW/Ovrhht1b3fEaxrr5n+BzzFPf83+5cArWus3lFJXANdqrYebY905XIQt1lo/ao6fD5yrtb776O/MYtfJ5mMmd1OND9N4hip8PJ/ZAJsif0EYRYS9vw8ioSy5nSS324rUtyxEhKmTHTYeWWfjcbPTx0j8ZlAU4oZaJmXJgkYi/TiJi2LNcScyWaJHKH0bgnrhCrdsRBTG4rFkHnwP2scgQs1xcfXDrVPqg7iqViG1RmPN+CqgfLskOCIT6APFyyBkkhmHt9tsNCL+5uNm2/U1WyAijLsh7syhiEgMxk1aOASxJu9DRHE6nqR/VHB4CZhe5joToOAW6SLiIdyyOU5ISLS5bhk1XZsd5/hA3ERJFYhlOxhP3VZAxHiRma9e8MSgG4mggKGspHPFT1T6uYmOAtjPINbwL37PxbzHjuXihSafhJbmoIXWyixgBfCx1vrjI4wvhyZw3z3RtC5Zbmkz7BpnYj/1DI+YdNh2oxGjxn3XOymNJ3b0uzoS3Zhcj5uH90VdB+Evy6qqEmBsRt3jKJwXw994ED0REqjmRl3EDGbCCzOZ/vw79N/+PTu6ncYZ08UNv4IOhFPAU1HTyCGWdJIYGfM5rK1gUtSr7NdduZNHGRuwgLDxRZy/ZBlTLnqKFL7ifz4U666uVFx16Uvcw4PsJoy0Xsns6dUZgIGb0nl69PXc8txLhMXvI3dSOPcWP84zIdfjN0Ceam6gD8+tuZ2+a7ZADKxkGBN8FnE9L/M0tzB43VdkDTiD2I27eC9xLB8zlrnZ1/Na7B+IMo9nV6pUqrUvc/yuoQOV+EcvJIp8LucNcvJ6kxY9gN2EMmzjfzh0huKU4hLGhnyMD9VsiBT3Hh+quf/th6AK7v3fv5JABv6lP5FOP0Lv28m/7n+UczLSyEvIYNfyWHyGV/Eg9/LVRCnHcsG8t/lo4aU8z22wB9J3iHsvV8iP2mK0LhdcpRZxjpZ2artGd1PSplZiI+fvJp/Y+sVkxypGxCzmPGAp59fTyIrRE4oGqtSRWoUppbzVzWFxMsa6iVJuX2ah7Q+epxlvAc8qpU4z9Ti3AefVdUGvOBkrSC2tjiJC6UoOm+nJY9zB05G3eOoUOg9Hf7gomNN3lbjZ1vMRsZOIuIHGIALOEVRRSBIdgO0QNARxKTV1PYOKcEukOZY6x9JZAsWFUCqRL3QdhxvrmQo8jTj5bTXtB5q6o459/2m5BtHmmuDGmcYjgvQc5D84FvyjTT995HhIGm6ZGK+yNp4aoLFmyzf3uRyxzi5DrLYx5rpOWyeudTFiNXVqjjouutGmbRFwM/JNuQSJ8/QBXoUIJw+BqbdNsJk3X0Q8O/4aTojOdtwHBsWmf0x/eF1jDeK2G2h+Dwc9HiZXzybDJ4Eu2UXQEXJOi2Kp+Xg7l9UMZQUfM5ZbeRKGw3wuAOu+23Zo3FpZorW+/qi71rpQKZWOPMJ5w/xc39oEKVhLaZ3YJ8ANo8bgeZyh68hc6rGizosVC2gDolT3Pez0GiVpVAZS9h3QGW5femLdFtmbeIJo8viSs8kijpnMYB4TWVAwFoBDp+fzuH6KbXQnnyiy6I4flXQlh1B240s1z394G1w4kyQ9ij/yDzbQh3NZTRRS2qQzP9GJfQSwnwLC6ZX9Xyoi4P2ACwmliAD2k7L/K3YHhOJHBXO5itvynmdndCgAXbKLyIo9gzyiGZb9H9bEDuBLzqYDFVzEB3TZVcQnkSOIIp9pPM29PARIkqgFyEq4kqH4UM2cBVP5dlxPqvEhizj+8MoCnr12MpfwDnfzMGfzJekkcQ8P8hUpbKYn1yDut6fdvxf84MAfFRcHvEtXcjzW2CvufJ93H5Vr/WHiArhP5vf2Hg/wvnlD/psbR/DpIvandhCD1CPzZrjxv17vFdQvSgVxTdN6Bqq/afdNzX7YA/rGWn8fJvZJD5bESCNiJPDXEaXefVkL6ZFp8qe/ZyZr3jrCZ+lZjb9mW42TORmx62TzcQmvcQnvEMUu4sgCIGyT8TAvQgRNImKhPIBbT/MN3DjGB83xhYiAOwVXAOUhwmwAItoKEbEWiAijIXhKtxCIrPeO1Q/EopgC5BsXWSeGNQoRlsFI7oWFcs3vtkLfUdKeWK8+/HDFs5MZuJcZq3O9QLM/CbF4Olbby3Ddep062Y6orkZEaYm5ZgUioh2LplMSJl7us3QjBE1CLJ0DESHpWHeDzXmhiLA055cb5y3/R3Cz9PZCyse8bsZ0ivm5CbdETDJu4iZM3xuBF8Ck5pD3pRvivns/7O4lpesS9meSFdCddJJIIp2epdsAyQ8BcG7xVywNOYf7Ea9+G1PafLTQWnlES6lS6hnESfx0JClSkdb6TKVULyTU5VTgJyTUZXNTjb+psJZSy7FRBXrh4bsTWM+ujH5udjtcUSLEiqjw+stTJiqqx/3fmT2d3HMTgHqspNvU+6bRmfTkO3NmCs+rG/irfoAH+AuPcQf5RHHoTmc1XUocWdz+4XP8acLDfDTxUq6f9zSXM4/LeZN7eRAuLOctnY4P6/jDPQu4/aEHiGMbX3I2APMZTwD7ySCB8cynd2wGERRyedYHfBI3giHb13JBt3d4gL9QRCgJZFAVDF12yRPumbF3sZeOJLOOT2JHUEAEKxjKM9zCFnrgE5lBPlF0Yi938wjJpJFFHKepOyBOXKQ7pJZyV8gj3Dfubp5hGrNTb8Y/ZT/6O4W6X3PzpbPRlYpPE4fyD/7IaD7Fn3L+038Y878ZL1MxClgM5wfId/PPOZcsusuxdOhKNo9xB0/Nm8Jf9j/IvsDn+EfRrSZeGPjFIqaa7/5OldqHa7zXNelxrbxHansf1yKqR5uj8jOKbCK/EcEZRTZdyeHXE+E/d0pMsFIzidRX1X2BdF+WpZ9fbyZdK0ZbAE2NLJv1EKyUeolGuCQ1yZBaIE7GYjka8omiiDBiyWE+40kmjf29ZP3II5pBS9bBAiid2oGgZZUivIoQ0bMBEV1/x81WG4Uk2XFiKbciotYRe44grEDcRhcgYnEf4k6aDDnLoKvjcjoSDi4U99xOgYjlbyNkvge9HdGVj4hCP+gbSs0xgoi1ahnHwTnQ3qk5GokI0nw51+P+6ovEvjruv7lmXzQiVIsRa6pzP9nmvBIk0VAacDOUPwj+XjVCSzea+qvLzNiGm7kbhwj+IkQAG8G85iEYdJlJHAVuwqdkxEJ7wIwz0Pw+0IzNybrrWFY3mvOLkYcAz5k2SWbsxcAfpP8w9uEfu5m8gDPozB5SSeGCivlsDpL1einnMYsprAmRSk7TuZ/f0HDSHEsro3Fr5REtpVrracC0OvZvwv0EaLVYS2kd2CfAx0YC6z2/Z3oJU11LqHhbt+BwUboZ13yqlJQNceJVa/TjdcwVpXtZZ8xjWvuzgrM5v/QTEoJE2T7NLVTSget4mW0LzmTEuE+ooAOXI+a4G9Tz/F3fRQIZzGAm674ZxI39nyCVFNa1lw/8AQfXcKPxTR7PfELUXWzUr3Pmj9vIPS2cuVxJEWGkksKXG4ezKfEX9Jr/X6lDihRGX8wobnnjJd6+4gL20Jmz+ZLN9CSKfDqzhyJCSSWFzuxhMz14LPuv3BH7Nx6f9xcAlkw8ly8ZxEdcwPrUX/NpylA204M/rZ6F7q1QZ8v/dejmnVzY7n02mDkNYzdTTJjdX3iA7siT1g9SL4ffwL9KR/H7DxdDkqZHtw1sWdCXEeM+AWCimaP/mWeSVDnPCJPM+7m/nvdXzYQ3zfs3UMbliFKH2jXVduVGExmTR1dyANhyqAe723Wp9+9BqUXwLxG2keOceOdg0zYES+No8qe/vZM1c47wWTrwmC2lbSZO5mTErpPNS1WpoiAoVMp++MHu6I4AhK3eR1WSSVi3CkiEim7g9yIiatIRQeS4pS7AFZyJpvN8xHo33OzPx31QvB4RUlWIMDoAB7OhfShS/RCv/gpNu3BELDqlWYrMviTgY0Q4RkDpKggKMn2MMWNw3GaHIwL4FERYOzGZPrgur44rMnjK0RzMNYmKViHZcv0QN1tjyQWzf4k53w83njPX9OtYeuebcTuZcKMRF+Jor3krRASlE6+5xsxXJq6oiDfj3GjmwrnH8bhxrU7Y0xDccjWTEevyPebe18p8ZF8ayXqSmLBuEbsHdKSACELZzTLjvtuVHPbSife5SNx3gTONhd3SPLT2tbKtYkVpHdjF9vhRGdQpSpWaCatEUDii5bDzEKuWygDOFBESqa/ylPsAUM6i8ob5ebp7Xl19/inBTedbSQfG8jH78Wc2k4klhxcLppAW8UtmM5nn778NgD9Of5R7eJB3uIQ/qSje0BJQ489+5nANH+ePgy4Pw6oZ/H3wNB7jDnqwmS+m/4be968ninyW5v0OgKjo7bzNpYA81RzPfBYzilv3PwXAwwF3UY0Pl/AOz3Mj5/I5l779EW9eeiFDWcnnnEsEBbzJ5YCIb4B8IgGYyQx+xyfMZAazmcytPMmrJhnUeSz1lIxZzblsjPolAN3zv+dGnud29RiP6zsAuD3qOa7Mf5k0kunHelYwjF3qdJjpj/+ffgKgPPgZz1zW9bDA+30E9z3UekYN19vmwrrpHjtNvtD2Sta8dITP0iHHJkrN65XAbK9ER/+jtR52XIO2NAq7TjYf5/IZD/O/DMpbxw/RwXxFCuN2LZGDTo3MCiAKdkd2JCxrn4iiD5FssAuRcidDEPEThJR5cUSTk8BoIGJBrEKsc8lgQlY9LrvF6SbJkEmIBIjockq9HMBTPuXg61BeIaVeyJXxEWP63GTG7vyn+5ktz7RNNq+dfiMRi2O6uV4ZYl11YjVLEQumE0LkWF6d2p6bkBzbyYjQrEZEXhLiagtiHT0FEfHeVswoJAFSvDm3zIzxYkQ89jb3jZnvR3ATNQV6tXeE9xDcOt3x5vrO+dVmbgPhzccu5PJffyDi9RTTZogZWxX8kBhMOQHEZu/i09ihdGaPmcoKXuUahrKCIpNscC5XWvfdZqSF1spGJzpqq7Rr6QFYTj7US5iCC+b1vFoNhsyE10FdV+u82u0Avp9Rv7tmY8ZixOtTGXfzJHfzVNTddGIvozNWcOFpC4liF5OZ7RGkLxZM4dfTVzB2+nv8I38ae+jMR4znDb2BAiIoIIJCIhjDQv4edSeR+ioiB2eTRzQTmccX1/6GxPu/JnNuP8aygDHRHzA++i123R/LkPtTeZOJJJPGHjoTShErAoYyN+BKHiq+h55sJlFdyeziyXzMWLIuPYMrrnufM9QfufnQszzJreTQlRy68tS8u3nqkbuJJYd3+1/NZbzNNrWdKiNsfz9xMSmk8tHESwmliJELPuf5ebcRTZ7ErbwNL3Md/VhPD72VWUyRRBpDYTGjyOzfj3n9r2U88/lGD4AkKF95KmcHfckInYzW8r7UtnDWyfczPOI1gP0EsB91P7It57BEWQ2+nxm1BG9Dbc01LC2I45LU0Gbcd5VSY+vrRin1jFJqB+J2u1Qp9b05NBX4o1JqC/BH89piafMUEcrq6F9RTgDjflwiAuUAbOr1C9di6AsFRIgIWmL2PYuIp2wkvtPJ4BqNCKJ4RHxtNeeUQIFTw9NEuRzciAivZAgZIm08LrXOueGIe2+haWuyxgZF45ZeKYTM13HdUpPMeIoQ8egI4SrzOh0RciORkjALcd2A0xAhGoVr6XwcuAk3eVERHFyFWGcTEcvjQEToOm64qYgldoMZj9OfEy9aiFhJxyJWWicONcaMz/l5Cq5VN9SMN9Hsc2q/OmVi3nPnw1Nn1Tm/lxn/ELj8jx+ICE0y7TPl/N29OpKdGEm5WUErIiCBDHyowocqVjCMoawgh1g20Ie5nvo6ljZD49bKEq319SerIAUbU2ppTpLwWEtVBoxO+NB141zh7veOPyXdtazqBBjP23w0RiyMeMWw9sh3XX3vRixx39EHmOBx5fW4AZ8n7XsCPfIl/vHhBOjz49ek8iv20pHPjV/SExG38aeXxL114vWvsI04upJDByqJMGkDr8h4n78nTKM7WfRhA1cxl/mMZywLYClU4wtJ8A+mse2dM+l+yfeE/mUnf2z3DwB+P3Exd82biQ/VJLGe0U+sIPK2bGYwk+4a/sp1TJr7Dv5XlTPy5QVkvHw5OxK6MCJD0hP/g2nQHUiGR96ZAX+BKcyiQndg0vR3ZJF/6wWq5vnwt3l3cNm18wHo/cp6cojl/wZLDbO3uYSebGE881nNYP6sHgHK6T5vG32+2cCya8/n+Wtvo88rG0AyzLNMRcKb/VFApHmfzjZv5pd4GahO0bBWeVx76+UL0NOhD5IKfQO/rLOZ+tD80su8VjNrWGn9ikupvFn8wrR5uHHEPHaW5sfGyVgsR80gU3ZrPUkMzvrKtToCAZSzfnxv+uVlQj6cuWWbx82WYiTBzyOm/S1IfGQ6InycOEZHOI2UfRFTEQG0Rs5rH4Wst4m48acVuBljS5H/ukJEyK4FhhgX30DEajob2sdDnOMa7Fg4nXIsFYjoy0RiPhcgbrOZiCvuGDP+58z5SaaPQeZ8H7MtM8fHyJjb++EmdNqKuPI62XWzEfHb0Rxfh7gkrzHHnZI2C+DgfGg/GbF05iOfYynm3pNwrcYliNvyEESkFyFpZraaY04CqQrTJhM3VhYz9oV44m/ZjghtEEHsC2HZ+wgr3EdFH9gb0JEqn3ZkkEAAEjMzjgUsYByjWMxw4xdcfcjHmp3aEo1bK096rPtuHVi3pGPDsWCNTXiPj7+72H3kke620RNhDKIw9tKJz/nNYZYvx+0y7NBOAHa360Kn/bs9x/cGhKFy3RqYah68MFFcVRczigykg830bdCVc4VJXDTMfAFQq6HH4O/Y0r8vL31zFUkmRtaXavqrS0jUYwDYmNuPF2Ku400mcitP8hh3Gsvnbu5nBsOv+5K/vnwvf8t4kDcSJFPtFep/uF2vAyCaPP6UMYsXEq4hi+4s5HxeZCpDpqXCP2YyUUezlPMoVKcxWkt22kULJpA47ms2LnBF2xfjkrmOl8kp7cqooMVMQ9xqh+eaoM73feVLSCJwURXLYwZzJ48SbsS1U+Nso0qEO/y569GZfMIYfKkGYISp0fMYf0E5GXNflcRGWvf3jKOuOfbOvOsISj3BPe4IWaglZr2oK340iuwatXGd43WJUsvR0+QuSXHJmieO8Fn6+5PfJelkxK6TzYfHfXfNOnYOCqUcf/aaBID9sjOhGsqiTX3SMsRaV4gIonTEmueHWPBmI66tf8CtgZlo9ieb9sFIP07mW2OZPFhm4jWd0jBOkiEnTN8IvdJ0CBqACOEyJIbzadwyLcFmLGm47rvrEXE40oxrEOIym2T6cGJdHUHsCLx0Of1gIewsga4jTJ9bzbGLzXWyEUvpAqRM2RxcQWoSGROBiMMNiBU1Ta5dsBAirsR1WQ5GysdMwM1+7AiIKsQFeTCu+O6DW54mBIlVHWDG5GQIdlyIHWtqiBmb454dhbhj3wUVI8AvF9b36k1n9hC7SyoBvBb5BwCSWccG+hBFPpvpyf8e+j9AvjtZmge7VjYP1lJqaXI+HmeKkxkDZ+1ERwuZwLl8BoB6Hhgq+9uFOo8eA2kIdRXwgPta+pcyJ4t5mwQy2ExPk3ipX6PHrQeDyugLb8B1zOVFrmE2k1mXm8JyPRhYzDC+ZEzMhzzGHYxiMReetpDbf5TBzONyfqIzH7wswu4PCa9xxQKTIXgWPF8qdTxvDXqS0QkfcsN1r/LCy9eQGdWPIbvG8Fd9L5uf6cG83Mv5Q8ybvPvt1QRQzhgWsqjjBGLJYfK42WYOz+e3+z9lX+B/CNehfKR+YkXFh1Qe8APgg5hx3HbbE0xllifuROYkg9eVk2liOxN1GRtZSLs77uDRgjuojgiskbAKREDqV4xwfKU/ap4Rnc7T5ria83gJrwFXHza/cXzvKd9TnxAFqUtb43Utq2ikvuowYVoREgRWjLZOmsBSarH83OhABT8MCsbH/AMl7DeK8hTYGRnKFnowrOo/7DwrlC5+RTWTAOUjQisCEX1rECHkJP7xQSyLG3HjNPvgJjDykb7ahyMCzImVdETpRijOh5BBck57H8SFt9hsCxEBGG/6DIaDa6V2afEy6SIkGHGR3YSIuuVe18g343vbXBtErAUightoHwxdnRjPtbhW4i8QQVeFCMkhiDtvFCIKI3AzADu1UxciYvQ9iLjFCFLv7L6rka8SvRGhGIor8JOAK+Hg7dD+QURgLjT3vhhJ2BSLW7800Px03HjzzL0mIRbiA2asF5t7iIX5AReQ0iuVFQzjtqzn2RkXyl46ekq4+VJNKLuZy1X8U11JuN6DpQ1i10orSi1Nh2Mpq89t0mMRvQLgN1KH8kb3uE9BzfbeT/n2Bkjw/q08DHPhSe72vH5quvyu74f5XMrlvEI/1jOv27VutkGTDMHb+uZYSD3jM6VEnNqrU3lVAtRiYBzi8rqem1iU+hy8CZ2feQcehBxiGcVi7uVBLlywkAvGvc1HW0SRJ477mle4lquZyyuIubEzPzGKxfR8eYtc6FO4va8P+UQxmM959+6r8ZtXyZV9X2Y69zMXianNIo4s4uhKNmfzJUt+GAsPjmVPcSlQSInfLIicQeiOneQQy/ks5H/VLfCvrvxi3Cb+q7LhstFwWU1r4pu1nCUyPEK+n8ei2Yev2ajMU7znbkDfSL28O08EaY0atZcvAh3jEaYBpT952u8POrXG+ToD1HYNTCeyW477/lwL3GHq29aynkLzJk+yHCOHcBN6WCyWRtGPdLbQk18u38gPw4MpIIKuVTvk4GKonuTDsKz/gB9soztdiork21yKHKcCT3IcKhBLYj6u62saIu5CgFLYWQhd0k27YsQdNR63zEkUItKcL82JxlgaDAwB/41AuimvkmTaxiNjMjGb7QcBqaamKUAZlM8Gf8e1tgo3gVCEaROECOZo3HqpjvtvDGKNHWh+D0dE5iikTmg3s+9D03+U6S8eN+mQ46bsB8yHiG7mGoWmz1xEyCaa67yLWJyNWy0gVuFXzf2tMvfga+a7t5n/3qavEDOWMbikIEK6EHHdrULcmF80fVwMl2Z9RHZcJLd9+zy5Z4XTib1U4+PxCssjmmjySCaNOJ3Fk+b7iqUNYddKwLrv1ol1S2paHNGwK8MIigayoh4WD3oEbkWy6joi1ZtxSHXrTwrGMDlitmf/LG6psy9HlDpWWF1rCE94Aj3gNp5zz8sA3oek6Ws5l89JI5n/XDuMRa8M4/yCf3PouUA6/KmU/wv5XwBeZRJ38Bh5RLOYUfRlA7sJ5V2Vw4VazI576cQStZ7Rug9b6Mm23J5wu1kFo4EnZ5KoxzANiVP9nHN5/drr6PCYBP1UhARRG/W8ua8GBOWR8O7D27263vZGlP56Yh1xpw1dR70DQKSWouD5xKKuhUmvvAjgPC6wmXabmCZ3SYpN1sw8wmfp1Sd/mvuTEbtONh8zuZs4U9Lj8l0fUBEMfhvMQcdqWQQLRo5kXN4SsdrNAR4Efo8b4whu2ZYI3DjIIqBEXGA9pV7WIFZKxzXX1/yeiutC62eOlSHi1XERPoCItxDz2il7UoRbiibb7Cs0fQSa84MREfasOTcKEX1O1lsnTtUHseY6S7kfIhyHIGLQSegUbo6Hm36SkNhRE3NKGZik9cI4PMmPcrZC13GIcN1orjEGEbE9kAJUEabvt7z6iMcVsI4oHW/G5SQ92oQIbJMXAafOab6Zv3DEanoxnlI/jJJ+c1PCySCBIkK5/NsP+Oysc/jNt1+w6axfALCOZEIpIoME5nMBleaNSvXU8LE0NXatbB6spdRywohMyGbXvFgURxYRDdUnddxLM+jnEaN1WcsWcDE+BWWHna9yq9Ax8qfvLYJ7L5B+M7/rV6Pdi6a0yu0Zr3r6uM2MX4TvxXCRCMn5jAeg+yvfM1oNBR7jRt2J57ffyu0HngDg+qgX+QfT8DdJCjpQSaypx/nBd5dzTt/P+CLqN0zUu8kijG3XnYn/4z9RPcuHygeM2PzrDDZugevT5nLlxJdlrl4B1d8cl9BPzmYF5Uh9VHYPrHOOR+s+ACxSXaUfr3hR73Zaz3AXVC+cJEUbr/0l3V+RpKiOm67ruj0Mn4IyfChjWMRKlnK+279MC/q2wzPx1rB+vvoNc9KnOr9a2gKNS94QrJR6iZM4TsZiOVqyiOMq5vJ25AX0YQOdUvZ6jsVsKoQSGLdxiYi6bohAuxcRUZm4bq+OO2w1rudQELAO2g9ErHNrELFmMvPmpEPXUEQomSy/5avA3ywh5Wng38ecE4gIMkewOpl0nTqn4eb6sYhocz4PHLfiXOAeOFhhBLLjppvvJZpzEXH6Im50Twwi5ooQIfguEhe6yuve+yDux04c53Ak47CTsCkaEYIHpL+ujkuzIwrzEEFaiIjKyxBhucbcG4gQd+JHnb5CkQRMgeaeK8z9R5prG7dnQKyk5+DWLl2FG3ebKe1iAgs9793TZ11PCl+x+qxfEWrq9+wngCTS2UNnzkP8o5/nOJ4+W048dq0ErCi1nAAcYaEyOGI2Vo+FtLaZsh7c+MfOdR6vjghEzYOXuEXcSXPd//onuIkpuFbPzDH94DHgRWg3wxGzvtxU8KwMqQ4hnU1XEhO+NlljRYg5Io6/iqB+/h1Yfol3UqVbTLtybtQv8JSSQCCtbzC9/sbE/pjsQi+DypUkFyY8FPaA7oE8vcWrts56c20OF/N6el0zJDG+AOqDuo87KOPWrI1FeXe7LihVThEhaO0Pr4AzB3VRHRHIeXzS8EWcsepLDt95jYhl/YpXO2shbd1oGuOSdNLHyVgsR8s1vEoGCVxU+hEAXwaJ18jgdZKNd+34JAauSRexmY/EZ65GEgh51w+NxXVtTTedJyNCrQgRTtVmKwMioOsg83sfOLhAMtr6j8ITk+ofYfovw1NjkxhcK2csItouw82OW4y4wDpxrWkyzvK14D8G2ufhlouRXHu0d2JGHaEajpsg6ABuXoMDiButk+m32tzrSMTCmo6b5TYK15o6wvxcYMZcgrjTbsJ17S3DLUGzHhGtjsDE9OuLiM0xwAYoX2bmC+BKxKpahSReCkQss44LcSFiHS1BBO8c83so7H64Iz5Uk0oKv01dSW5KOIP5nAr8SCCDKpNmOID9zGIKF/E+t/A0YLPvtjnsWgm0oChVSgUg2WkGIP+ud2it/11P2+uAu5BwxUXANK31IaVUF+ANoD+wtbZZu77zmumWLEfizJl0KHJiHVz3Usct9jae87jcLuDiGqcqL+Od/ubw5EXR5Ek7NRetZ3jcOv8v4VbgSUAS8PSIcc51Re9NPMHzGbfV6O/QzEC0cVWtjghEtZc/In3QrX2q82FjhmTDVV+A81GRpGU1SjciUF8CcYg1Mws88ZRanyp3bTzo1QI8iST0yMNu8TD6sZb0a+XR9Z9eeZgnufswy3JD7rK123af4JR+FGHpxJM67RxRWrMPscI6YtPbAlqbOL5n2zRzXBIFi2U0CfRw099wr/0Ap9fbnaUtYNPcHzd2rfz5kUFvFjOKOLJIDRrAoI3rSOqdDkD2gEhifXcxcHm6iJcoJKlRGiJwpiJlVAYh8ZSnmDZ+uF96g3ET9TgCMhwRTCXIN8NR0qa9k5DHEaAAg6VkSmYJ9I1FLIFbceuP5uJJIlSeCf5D4OAaaF8GTDF9vAesNTGl+eYcx4U10Yxho/kZilhDnXqpyFi+WQwRi6HLIFxrpJ+5n2DcONQkJNnRFCR5Um/TxxxEtE6Cg09De8cKW2Du9TJEmMaa/tbgZvrNNm0ny/gPLjCJobqBv5MQqhTXfRdE/Bbjxqhi3p9lZg6yEYGaBMRA2Jx9kAy/LVnJ14MS6bt/IzEFhayJHUAayXQ1gxjFYrqzjXyjlKsPOTVxLG0Gu1YCLRhTqpSaDsRorScrpeKBz4E4rfW+Wu1izbF+yEfeIuBNrfVcpVQwcBaicO7zXmgbOu9IY7OxMieOgNKfKP+3JLrRE9040I+nX4y+X9p4u+s2hLebaU1RKvXeHIaxEoAbco3bq3HlVS/J8R7X1x3X6omNjTKxseaJr3MeH4E2tVTjqOnGCm58pf/vRJR2Dcphj7Hw7poYK9mKj0KUOvf4p4T642o9beuYGzDlexIuZnmGWHKHL5DkT4411Js665HWGotOkGu1++EOwAh6IzC7Dz98Tmr0UcsS69C58gcA9nSwCrW5afI4mehkza1H+Cy9/eRPc388tNa10q6TzUcEubzG1XRmDynF6VSeAn5mqnWi225/oCkLY6yOVCHCJhY3wU8SIsR8xAUXwNcX2ieb9k5JkypEcGXimitKEKEYY45vMvt74alRWrAKImIQEZyOWAbXmn5OQUTkANyYVfPF25O91yn/UoSI51Az5oWIiNxkjoWb350v7r6I2Ntnzq9AxOQuxNq5CokXDUcsk+Gmn2TcmudV5np+iChMQqyvq4DJsPIWGDrGtMlFhGSu15hBLKa7vPpzBO96095JKhVtxuy8P4719T0zzvWmnXPOJCSR0xCoGgLVvlDh14FKnw74V+xnl1+UJ7N+PlHspROppNCJvTyGrL+Nzc1hOXpaaK20MaXNyCWYuhFa661KqTRgNBhV4nIR8JHW+kcApdTLSKnluVrrEmC1UmpoHf3Xe17T34rlePD/3U+eDKyOO4ojSOtDqRxpp7t69nlb/jyZgF8SKylTvkHr/qgb4d21VxP5TTYXxEi5lnHONa8X66zqLx/k6regHzL9fAiRps5mZH42u76L9QhPfb1x240TC58eLsJLZVBn/OwDQX8BxDLsEXPzxAL7bP5k00qyOTg1XR0X2xqYqitPfl2/GK1NT76DB7wWqlplVOoSow6OGHXGtKi/jEl/c/g9Hjr9Mc/7ETlcxHx9YtSDiVetnbzIitE2TOMyCp70LknHiV0rf2b0YDMLGUMfNjAwLR0/ryRFeSHhxGQVwnYI9DXGbKeOZjIiCBciAiwUsZzOkd/9TTkVhph2Q5A4xkHAEti5ALr0QT6LIxBRmotYHJ1SMSAxrMUypohHgMdxXWRfRaysFUi8aiAiwIx7beka6SJkEmI5dGJiQxDLaD4iaCcBDyFCzXHp9c5p4AelsyHoUtzESsGmfba5tzWIcPVDrJu5iAB3shCX4RHX/AG3lE4KsAyGxpjj8bi1RDPNeByBfhkSq7oVV/A6SZdABKjjYt3RjMWxsmLmJRcRs/GIIAZ5z8z1fbMh76xIOlBJKr8i1i+HDBK4oGI+AOF+BYRTwH78uYI3sbRBbPZdoGVFaQzwX6/XucizpGNtd1znKaWuB64HiImJqa+ZpYnxLgeiMoA3THzjD27soLeF1NuNt8Z5hgsT5AP5fS4H4Prrn+Ylda7nuOOSqzJi+YhYdIJrnfW0+QbUPabdFnf/rg9j0RNAfdfwPSkndtPUaXXKoDhJf55w2qly+F7cX5UJH705aja8CDffJ69HN5DQR3/tdU0jJn+1YDUAX2VI1j1H2D2uJavCrFp9fNz/YjgFht8vFtLrpz9db3ZiJ+GTBC95XdsrI69PQRntfpB6pw5HKtXiloc5tcF2ljaKdUk6XlrNWmnXyRPD5/yGLK7lO/qwdmQSCdUZBJVUAhI/WBEFWXHdOfPjbawZO4BBb6wTYZeHCLRYRHhtBx7BdYt13jLHxTUQN7tsIHRJNucUIiIrHtf62gvXurcA11L5HCK6AnGz1h4w7X0Q8bYKEblREDTWq48+ULAMIpJMHdNxZvxOkiSn1EuK6XcjritsEgQ5Lr5O0qFLzeutUL4B/K8xY0lDkkC9jutqjDl2OyJ+I8w8+EH5W+Dv1AlNRgR3H0RwDjHXcOxVZYiAdOa4BPgz8lw5zYy32JxzEyJYi8HkIxLLaLzpJ83MYzpwC+wcHEqXJUVQIHXGf7tkJf1GprOZngxlJRv85AGzD1Us4zx6sJkebAYginzqqhduacXYREfNJ0qVUt/gfgTWJqKe/S2G1vol4CUQt6QWHs7Pl43yw6kVWh/eFtL6iCKbscD1+nP6kc6LZv9UXq1h2asdvwpeFlJHlN5sXpsnWSIwa1r+koavJX3eQOglxwNKfyIqKN9z3I2XfU4EKYhbFSZz7itAmHntEaMi0l/kGm6Ikuy/2u3yMDwp4OtJALSZvodZRx2mmAQJR8Jjtf3GPBBY6R7zFqONZWiQuAUvDJpga46ebNinv0ekLa2Vdp08cTzDNLqSQyw55PlEc2bmNgCyBscxcGE6ZyZuA18YtGmdWAj7IFbRaFwraBmuhTEPcXUFyUDrfMRuN+2cWNAkYB1kboe4bCivgKDpiMhyLJUXI+Jug5xbXAIhFYgVsQwKZkOEc/3JiNhyYlKdzLemjmhEHyhf6JVIKcSMzSnJ4mfqmSaZ84yV8+DT0D4GEb5BsDMduqSaNkPAfy0ihgPNtTMRcV1CzdI2DyFW2Y14rK3+1yCi+R7EklyBuEPHmjkqwBWlaV6/F5k+VuFaR2PMdXzMvB8w/Tkle2IRgRqBxJo6430WuuQWye/JUI0P34/sTii76cweyvHHz/gQP8xd5BPFUFbSz2SzeoY7sbQhrFcR0IyiVNeuK1ELpVQu8AvgR7MrBkzQWk2cdni1y2vEEI71PEsLoROQhaAWTkxpZn4Cvb/JIPP5fqjnod2FZRz630BM+AQAH2RczqqEFFTG5UQmwMeMY5f6lBeO8euT7iHWP9bDoWWu4JrC0yzjPMB1S13PQDDWUNUe/IsgvzSKzkF7jJXRrZittb+J8xQX136sBQbCbtDXupZT70yzDY7zCCLeu66qN06t0ffaXcylONmBXTzZim8Xvyxdy2FQJ1CnAHbiZ7tP/L5Ot12nDAyAvs11TbZi9CRDAwdbehCtG7tWWmpzCa8RAdy28XmyEs8gLm8H66dIsGIU+Xx9USK/XLcR4mF3XEfCMve5tT2DcZMCVSNWwTJEIDlWxnBEoBkBVLoRgnpB8UYIiQKCoPckOb99OhLv6MRmglyro9k3FkKM2+3OfOgyASL8zDUT5dxSE8MZdCnuF+9AKH4PQhJNeZntiCX2FBnz1mUQP0Huxz8UKIXyIvBPl9PbhyIxp6nASOjyd8TCm4iIzgpzv0G4pWeSzHWcuM9U5K891cxbmfm5HRGLaYiYdeJqe5v5PAdX2MYjDwFCcWNvA812F2KdTTb35rgKByPCFtOfE9N6KSL+RyAPAEyCp7LEdqSQSj5RnLq/hJwA2E0Y2+gOwL08RJ/iLVT7wuagHgCcy2d8zm+wtBHsWgm0rPvue8hHSppJ3vBLxDu/Nh8gsTAzkedQ11GvradJzrO0MjJv7Ad/qfC87n3jejYXyAevt2hTGbAqIcXzeleGuOeibwBu8LS5Adet1XFJnYpbg9TBsRxWR4g7a8+Jrt9ufS6uDvogwKms4GzPvhvmmWsY4ar1DF7kGmaZdIRjr33PY7W9/hXHanmLZ3w3rPXO8HA4Thbj29Vjnqy4jmvz8oSzeZQ7WPSEiQO9TRILhf6u/nuQc30leVGDd2vaeyUq0hPdZE+1Y0Sd61t+Bmg85R0a4KR3STpO7Fr5M2QoKyAYOrOH76O702+1SZcbDzEbCsUyuhXCyvaJ2NqIiJn1QG84+Lhxh41FrI8HEDEEIr7GIe6oIRA0CMiFkKmm7TLEqheMiNtuiEBySqmUIOKxCFgHpEBmGvQeglgJR8rYiMFThiZoOFKyxnm2GwSdAqXf8rXgfw7i1mpKw8Tfg/zlJ0NBLkT0NuLVWf7+ijyQdjLuVsHBfGgfjVtzNR6JtQ0F5iNW5AhcN8lwuZfyxeA/Arc26RDcmqi+5mee2RzB712XNRQRss78rEJE8ePIe1Nljjt+D0VeY5hg5ijczNn5iBCONu9ZtsQOB0bto0NIDn4l0I901gckeeqU/obPeCFkKk9yK1Hkk+/xs7a0GRq3Vp70tKQofRSYo5TKQt6K67XWewGUUvcD+VrrF7XW25VSf8Ot6rQESW2PUsoHiYXxQ77Y7ABma63va+g8S9tC4kBlBVBKTJ4XeL67Xuq2S4Dx3Or5vak5lkx2Nzk1UFUlYFx2J/p7jk/lVR4z4q0uN2KHPnwNR8g+fGfB3zl0uhQm89RK7TeD5d+4wrj7bW7ZF0lq1AWlZjKcUYeViKkhImunVEGSPwHoOnIwgWtBVh0bFtOWkxhbe60psGvlz4xqfBnM53waPZQ8ormk+h33YBWUjuhAvk8kvQ78V6xvbyHix1gmKYP2A3HF03LEWucd+pFp2mebNuHAMijPFfFXXAghoYiFrwg3i6zDViTzbKz00bsPIlSTzPFExPOpG7T3MWPxgVITzxk0HNpHybn+V8rP0nQIGi/3yFbkr90XIgaaGNErYaeJw+lShhvnmgkEGxGeiwj0ROQv2hfXrfYc07bQjLFM7tt/nJmHgTJeZiOC1nEnHmHmL83sqzD3g5m3TNiaCfHB5nrBpr9ERGg7YjoQj7uxZzlMN2MagIjZEeaa3ZCHBhcDBbD+rN4k7M+EMkiN/BWd2OvJvvspv2UvnXiRG8gjmleZhKWN0bi18qSnxb4laq3LoO5v4Vrr6bVez+LwHC1orauBMxq4Rp3nWdoujqfbeLbU2H+TSR80n7pNcI7V7vEEk5XHiMW6LKQS4gVau9ZQx41Vx/i6go8/AO/Cf+/1HKt/3Cn1Hqv7+mcBMEuDuhESn4fEmPVs4Jc125rYU8cBsN0Phzh0+mM12gzv/yX6GxhubB9OwqWXucqMrWaSTe97PRoaytxr+ZliXZKOG7tW/vwoIJw0kkliPZ3ZQ6FPOD4poii/8kthaPF/6JX3X6piJTPrTw/7c+oT5fKlNgo3U64fIhQHIYLHEZUhiFhy6n7mI0Iq3MRuBkKID25Jl2zEyueI2kA8Yq307yZ5kR98sxD6D8JNooRc2/8A8m0zD4IGmP2Fpo8Y5DHIAAiKRURuGW49z0LgAPhPlXF06WPOD4fiZRDiWEQdq2iS/F68BEJGmPNDEQHrBwfToL0TJRKDWwpmJCJoncy4VYiIXY8kMorFzfLrh+sCnCvjPCPXzPN75lgZ4hY8FVdsOKV7UsyYwC2Fs9HMcbbZZ+avNKkDPlVVRJJPhV8H/EoqGbzrK9ZGJtEZSRL4PDdxDa+yh85ccUieJ41otxRLG8KulYA1XVjaKPO9LKQAz9UjRh3cuMbnUGMk4Z5TU9TBcTNN1NUUEUYU2Z4YR2+B1luPI1NJvvfa1sXa9UmPVFv1aabwR+CWw74PBnkEuFiKf0lddO//PfmlUQSUwqFZp9YYk5MF2FNex6kcY0TpdfVUfKgtRvsZA8p6T7Vv064OC2kC68k0frzOOI5W3FpOIqxLksVy1PQjnQgK8KOSPXRmYFY6T8TdCEAyaSgj6PYEdSSszz5OzSsXEZON/L8l4VobHZfREUjpEhCR5YcbN+mL1BedjQivbEQoBSJCb4TsKzWJCIPGmzZLIGgIkryoCLrIAN3stgPxlKY5uMCIQeeYU25lHCLI1iGPXuYjos65Hx+vtpm4cbGZEOLsj8KNmS2U8YbEmn3hZv8S6b/9EFzX2RDze77ZAnFjUs01ABGR2bgxo2XUtGr1Af9TgHQ4WAjtA5HkSZlmPkPwWGWpQNyATYkfTkFce0uQpFB+Zi7i5Zo+VVX4Vh/i9KwSyqLbQTh8GjmUZNII2yiZq6YlPkMayXSggn+3+x1P8icsbQwb6gJYUWo5CVEmn5AjOtU8iJzoXRhMhGYfvmZjxi8bdPV14kpncYuXhVQEV0++oyffsZm+HkHb3asvN9tu/W65njHnVnFfzF9M3w/XPGYy9TpxorJPxtJdX+SOqYbNpP5arz1xY2O3qHhP306ftYV2fZxtcq18yTDP/fduBrdpSxvGuiRZLMfEq1zDRbxPNHlQALeGiJfP3uAOHtfRsOx9buymI5g2IqInDakX+h4idAIRsQOyBBZ67c/HTTKYh4ioIij4ECImmLZFEOQdU5oCB+dAe6dsTKmUdmGjee2UXjHxnu1jkFx/3qEggYiLqhGrB180bsc+SGZfJymQkyTID0+ManE+hNwEfGzaxpt2ycAnyBd8Y6E9+B60H2PO3Yrrd7AQEfDpiCh3aoRuxU0alYy4R0ebduOAL3BdgDPN/JXItdo741hixhRi7nkgIj5DgfG4376dEjjBSIbfc2RuKYTdMzsS9sY+SIbVvX7F4NSvqOgDv921ku8ju5ORKAtuJ/ayl06czQam8gKATXLU1rChLoAVpZaTHNWfGtl5wUusZtS0PuoEGIMESm40x15KFxfeWRPFQurNFjWf0boPY8jCKd2SxZkoNRPF+4w1atenQB6J1lUuxbGQ/okq7st9oIZ7cF1W2G0ZxuL7Lzm2LQpG55vgTlzTpVPP1S0tAzpXfvY8bBR4rqcUnMcnACzlfOBwC6nDlww7bF8G/UA3bB22/IywLkkWy1HzDpfwL35PJR3ozB5KB3Ygx6crAD33b4ESyEo5g7jVO0TM5CJCKhcRcvuQOMZ8JH6xD5KB9i1zgSRELKUiLqfzAV/YuhbiR+ERfxGO22+isQA6bq/dZH/7kYgIdRIf9UbEWpLp+4A5dpkZi3dNUV9EjDqWwsugvbOUFUNOOnS9CxFqThKgKjyW0pDepi8fRCg6JWlKcZMRGYHdvjeYnEAiLh1rrbOkp+EmJQI3e68vbhKiXYioDjZjrvDqIwlxfu9l5hk8wpK/m7kOQVyBfRGR6nz7drL1ViFi9gvEov0chM3fJ25dhTAgNg2ioMMByIo8g1lM4RoTflSBH+eymhnMZBr/AOBcrDBtU9i1ErCi1HIS4u2W64qyw0uN1LaQirVvQo0yJ+pM08HE/sSR5dW6n0c0ns0KTHUYHs2fhhMs4lhI1b/MKbWeb3m7xTourmoB8K8ZteIz/w5AFjPc8ivO+F50W6nl5r6G1xSjtamRsEmLRXecM94HYdlD58P7QAN91KY5EktZTgIO4X55q5+T3iXJYjkaCojhUzqLi2bePiiD7rGy/vgtA3pD3OodZA+OJLS6iKD3KiWpTwwiuipw63yOQITlcCg1USJBjoutr2nnA2yH+N54su/uLIQul0HpOggKNRZAp7amcRM+uMS4qsYgoq8Y18rouMP2RlyAgdJNEOS430aZ66chLrMbkKXTxG52HYcbB7sdEdehiIsriKvxGkQQrgJOgfLtJotuGiJetyKiO1HarlkIg67Edct1kiRNRkR0gZmzMebcQtyY04HmOoNMGyNyDz5kxHky8Gqt++po7megmZtzzHnh5hjm+s69FuI+QACPaC4d1IE9Pp0pj97PCoZRRCjP/PhnKsxz7t0BofhRQQYJ3MwwerAZSxujcWvlSY8VpRZLLfqxlr10AtzESg3xJcMgHx5lGgCL9EoA1ERj6Rxas/0KzmZ4xpckJbivoWaNUO/YVEf8Oq7EL6k9Zmyyf9GYCXABEFfzOh734TV/kB2DNEq9YM69oc570fe4VlaL5bjRuPFb9XPSuyRZLEfDuXzGeBKII4u06GT8qCDJ+K0GhpeTHRdJ7Be7iE7aha8TSzkCsSqmAzchItVJTGSS7gSNN6/XIta+Xoj46oOIJSfO8RzoUgUsMImJ8hEh5kTBfAGEGlfbIMQiWYFk4z2Am6RoE26ioQOmTqnjSLPMjDUQV0RXIaIac81JSB7oKES0+iK1PzH7LqaGS69/ksxF+TLwB3GTzTPCcYgRpIG4TkUfIkJ7DiI8fc1YlphzIxCBOtvMUSIi2vMRcQq0vxJ4GteF2qlzOgLXsptu+nXuIxCx6IJYdFchVtRzpP+KCeBXbN6fQgjKrySouBD8oF+v9XSgkvGnvcV0JEZnBcOIIp9H+TN5ZgLryxlhaaU0bq086bGi1GIxONa+fkiMhoPrflt3bOgUnualBbcAz7B83NkMf0LEpa6n0t8wvjTXGoiaB8P5Ei6fCcyESBGaWePORC039UF7yeMzHVUzrhXEKlw7uVIc37NNue7DDJIyOmo68Ncb6H3/ehJYD4i7be2Y14asrBbLUWFdkiyWo+ZzfsNMltGRvZxd/SX7fdx8ApwCsVm7oBv4OnGWvoh4cqyOTlbdfohAGoQII+cbXxmUppokRUMQd9JAxM02EPgQyreajLe5iFV0GbTvZs5Pln1EIwI0GhgJBfdDRLLX9aNxExY5GWbzTB9Oxl8nrrXMvF6OZKwtRGI+A6kp5hxr7QbkS3w6IhQrzJjmGGtpGZ7Mve1NyZuD70H7ZNMfiFh2ysc44wyUe2GJGVuJnEsQ4sJbYa7nFE3qZa5lytIQYvpId98ywhGB65SjSTL9O2NIQQT2YiAG/C4zr0+R+f9heDCnbyxh5ui76MN3hFHEa9VXM8NHvg9MZjYA6SSxAUlPPJ17uZ8HsbQR7FoJgNJat/QYWh3Jyck6LS2tpYdhaYM4Vs/h6kqPNdItMXO4CVIZ4fr4xJsAuM2UqqkdV+rEui70jhutJ/b0E+NLfD5LG4xntVhqo5Rap7VObrL+OiVr+h3hs/Tzpr2m5cRg18nmZTr3kkIqCWTQib3sJwCAmG8LefOsC7l8yQcS21mECLx0RKStQ8TgKYg7aqk5PgA3OY8jxIzo8ZQ4CQWWQU4adB2IWPkWAmMRi+op5nwns+1GxKK4CTeLbRkifh0X3mREQIKM13GdHWn6jMUVqg6ZZjxbzTgd8eq4G2P2p+IKyjTz06kHWmbGVIgI9vmIGBwDxTdLFyHjzT35IeK6Cjf7cLS5/1DEnTYcccN9ETeLMWZ+nXkeZK5bZsYzFXgWEcG9kQcETkxqkDn/MsQSWwzcYq5dhZTbSexA0PRK6AfrL+pNv+WZVAyEjIDedKCSHLoCsJhRdCWHZNK4mPd4gakATKBWiQFLk2HXyuahXUsPwGI5mRjGlwxXV3peq6i62yUg1ko9UTIDP8Yd3J7xnCeLrcVyUuC4JDW0WSyWGpzLZ0STRyopdGIvHaorCa3YTWjFbsiHBDJcN9Eq3JqZjitvOJLsKA8RV9GIFTHKbJMR8eaHCKiOiIhKByqgaxRuuZResv/gRtyEPZlwcI3pq5u57gZz3QOICHQspeAKuhKvPipw3YsHeY1tq7mHXFyLpoMjlOMRl1cfs9+JxXSSHxWb1/Gw1RHTTqztbAgJlo3l5p7zEMEabM6djJvoqEj2H1wl900sIoYdnPjc4eZYNCI4ByHi2HEZdmq13mzuP9hss8z+x83mZXkNur2SinthxUW/pk9pJsSLIPVnP53YywDSGEAa/1dxN/O5gL108gjSJ7kVSxvCrpWAFaUWS5Oj9Q0eK6nOFwtpbStpBv08NUzziSWfWHSC60Ks9YwaFtCFTKhhJa2rjcP5LOV8pHB2dUSgtZJaWg7HJamhzWKx1KAf6fRhA53Zw34CyPOJZoNfXzb49YVkCKWI0uQObqkUp9boNYjgKUZE1SOI4PJFXEMrzLYdN4Z0HJSukjY7FyNiKhyxSFYApbA13WTedYQj0N5xO30XsfYlm+t0NPvMtQ8uo6Z7q6/ZHAtmKWIpPIAI0UTEOum06WZ+RiBuxj5mq0BiMCdB6RIz7oXmZzAcfB1Ih/gJSAxsR0R45kNxiWxEmXvdYOanSJIlscD0X4zEiQLtB+GpuUoJ4sq7CzfT8XLEJbcQEa1+SOyuU+Yjwhx70bR1aqM6bsZp8l7wFiJAPpT58VsPZ+//D7758Hb0BXRmD53ZA8CXnM2XnE25XwAP879spidFhFlB2haxayVgRanFYrFYmguN+0W4vs1isdRgPUksZhQRFFBJB/KIZmBWOgOz0vn+tO5E7C8kaE2lNA6H1Vf8yhVlIAKwDHgIca8tQURjutk2Ad0gZwEUPw5BV0ibLkOAVXAwGxG324FEiB+IGyeZjoi1wYhIrEDqgqbJWOiFiM+7gN4mGZJTC3U4Na0+TszoINNPuNlM7OXO7UgCICfRUiQisvPMeRuA2RA0EnGxjTXn9jIi2onjTEYE7zJpE/KubESbsd5u5mugiUcdglhjndqm8YhINvGl5U5t0Src5FDx5vplZmx5Zp6yzVyUyFx66q06n3+Rps12XKt1PCL0FyIxpqYczqXZH+FDNTnEErG/kAl5i5iQt4j9BDDox3VEkU8+UUSRT5THDG1pEzRurQxWSr2klBrbQqNsdmyiI4vFYrE0DzajoMVy1PhSzfPcyCW8w9jqj+ngU+kRP53ZwycBoxmfuAiVCXSElP1fuYmDcpFYxmzE6vYWIvSKkdhQENfXKhM3mgvFcyAkBU8sZftg3JjQEsTaF4z7EMkPEVenIJbEMkQAZiOCyskcW4YrzAIRC6JTEiYYicXcgIjAMsTSGIInNrOLE59ZhVtj1XFVjkHcZmPMWMpw3XQ34saKTjbnliGisQJMIns5P9kcG4JYbMcjFs5RiFVzIGJpPQexrBaB/xBc1+NNpp9or5+Oa240Ik4XmLbx5vpjcC2oTpbhcDPXQebcGFgwfiRji5egquDT2KEARFBAIeHkBZxBaIDUpamkA7tP68hz3Eg/0llZRw1xSyvHZqoHrKXUYrFYLM3FIeTLV0Pbz+Dpr8VyNIzlYy7hHbqSwzaf7uylE1lnnUHWWWdQjj/n71/ELSF/hwjIPSscvwWIkMlExM1biIXRidE0br0Hn5PN4y4aDiRBiGOpPGBiRw+YvpwESo4wdFxnge8WIiLrAGIBHGL6dZIXrUHiWJ0ERUmmz264LrmOsFuDW5sz3rRzYjodQd0HEYobzRZp2paZfrJxLY0mk+/KBYi1MQkOlphrFuK6Ifc22ypzvSRzTafuaiEi8vsg7r3LzBjzETfeUETopwD3yxzTzfRzkxnTENzY3TeAEXDwcfnJCDNfzns30IxjsozpXD5HbZR7OrdiNeeVrqQDlYzav4TdhLGZnmymJ9H7dzCXqziPZYxhIT3YbGuVtjUat1ae9FhLqcVisViaB/v012I5auZzAXfzCEMrVvC532CiyaN78Q4A9ge2wy8Xnsn/M4RDTFah+00uBYlXLEOEUQkiiKYCl0H7cNMu1LQpgvJ08O8GxZkiTttHAcVQsBgihkDOKujaBxFbzhfjYIjfioizKkR8hSNCEdyYSsdyGIXEjsYiYhg4mAbtH0EEYSYi6PyQ7MF/RqymQebnZEQQOpl7Qe7Zx4zBsZaOQ2IxfYENMNRJWLQG2vdG3IfX4IkTZaA7DwfTjKuxrxl/CCK2NyLiN9CcVyz3Ur5VuvB3LKNPm/ssMK+fM/Ofi5u8aQiwANpPBf5uxnC+ubfJwKuISP6TjP/Ue8shAtYOTqJPxXfsCepIBAXkBZxBPpGMqlgs0x3wK08m3te5ki30xNLGsF5FgBWlFovFYmlO7EJrsRw1c7kSH79qOrGXzuxBGRFUnhJAUa8AYigUsRMIhEDFQPC7HxF+45A4SaecymWIWHvIdL4dj/Dy7wfkQ0i4aVsifUYkA0nQNRTKF4N/AWKpBCgE/yRE3AYjLrihyHiKEHfUdGlXuhyC4s3+ZETAAu3vR2JSqxBLpGPBTEWsm2WISE1CxOg4cx2nLA1ire07CUk4FGv68kNciR3royMGN+DWY003HeQjIjkJ2leYMb5nrhltxvsiIvbN59jOh6BLMvgPdufCI24zzb2swc2w69QjHWiuF22uGWz2m/nmdUT0ViMCNQ0qhoBfPgzcmA7VUJ0occR7fToBsM0vDoAo8gmlyFPDdAqzGFwjRbClTWDXypZz31VKBSil3lFKZSmlNimlftdA2+tMu21KqWeVUu3M/i5KqRVKqRKlVFqtc4YqpfYrpdLNZv9DLRaL5URiXZKOG7tW/jxJ4SsSyCCCAsrx99S/TCOZmE2FlMW2EzETDgSC3+2I2IwFpiN1QPshQjEdEXOvmu1x5AtwHmKl245r0atArH1V5nUZ+I9CBFqa2XJNu0Cv30HEqK85D+BKCAo3Y7oSEWumpEv5PbiZeEMQK2s67Mw1/TqW2ApErJUggi3dbKug75UyPq4w11iAiGMfc09O1t4U3FhO53qOaByCCOExcHArFOea8/MQ62cpUuN0k/zeZbbp1yk90xtmTsetz1oCXIyI6CRznV5mbEXmXjLN787WGxHkiabtMunHb5m510Ao69WOfJ9IgjIrSSrOpB/pBLCfAPZTgR/nsRQ/KlnBMFbYmNK2h10rgZaNKb0D2Ku1jkO88mcrpTrWbqSUigVmAL/GrVB1hTm8zxy7vJ5rZGitk8yW0tQ3YLFYLJYGsLXXmgK7Vv4M6cReiggFIIs4FgwfyYLhIwllN9/36k5g9iERYr6wPqW3CJpTEDdbJ07SEVgl4p7ryVzrxGqaY4xBxFIQIrhCjXtqGSKStpv2iWbrBuWZiGByEg9tRxIFDUEEXDrwIJQ68av5uC7FJeDfx5SiwYw5D4iHLk7caBIiJKMRQRfvNd4SxGpbZK41G7HA5pt9vnIPgFhdnf5SESHqJFByMvumyHy1HwEhkxFRXGDmYTtifa1CEh6lmXseZ7Y1MGOc2R+PiMtliIW0I26Cp2BEmFeZOepjtkDkAYJxm6YYsdY6ItaU+AlMPUSv1P9CBKSGJBFduovo/TuI3r+D17mSCAo4P2uZJ/PuuXyGpQ1h10qgZUXpJYhjBFrrrci/9Og62l0EfKS1/lFrfQh42ZyL1rpEa70aWXAtFovF0pqwC21TYNfKnxlb6Ek0eWSQwF46kcR6hlavZGj1SpKLN3Jm1jaxlBZCVRT0e98EWybhuqxG4ZYmiYcQJxnREOAUyJyNCKVBwDrIWYYr2ILB/y5ENKWbn7twa2tuBf9gRMwVIYK1NyJY8831k4A/GNddgFWQuQAOrpKNQAhKNGP80JyzCRHG8YjwnIRbe3S+GZvzuGW9uYaPubYv4iLbDRF2sabvIDPGKq9x5ZrtZtyY2FDTtjciYkfIa//bgVtwLaEgSYzWmm2c2f84Iui9g+LWm5+3mHm/GYn59TPvUyZiyU0187bGzPdjiGV6nbnuKpg++B6IgU9PG0oU+VT7wvqAJNYHJNGBSuZyFR/GjWYYK5jLlVjaGHatBFpWlMYA//V6nYs8EzvWdnXRQyn1jVIqVSl1dUMNlVLXK6XSlFJpP/74YyO7t1gsFku9aKxL0vHTatZKu06eOPbjzygW0y8vk9N/LCHDJ4EMnwQAsuLOEEtpJrwTdKFYM0MRC1s6IuiiEMupI/xKcYVQLPQeItcpng+EQNcxiIANQh57zEb+guIRsZSLuM9W4yZSCkYEnZMpd6P0TZEZw2JgPOTku9dsP9AroVC46dcp7+Jk6v3C3M+9wATTV6S5jpMx17EoVptzw824tntNYrWZh02IYPRBvtw7fcw2x4PNfWYjFuYyRBQ67rjFZpxRZowv4royO3Gpq5C41UCvdleaMZSYY5fhWkWd7YA5J8LM3T7cpEm95J5fvu1K7s9+iNzIcFJJoXP1HgoCwunEXjqxl2jyuIR3yCCB7+jDrTzJ5/wGSxvCrpVAMyY6Ukp9g5vjrDYRzXVdL74BorXWJcataalSaqfWemldjbXWLwEvASQnJ+sTMD6LxWI5+bGfpg3SltZKu06eOP7GdP7K/ZwfuojNAT2IMvVT9gZ3IG71Dn4YHMzpRSVctP8DKIGqMZB/aTgB7Cds4z5Ig58m+XPqonIRmlfgxnp2Mz99IORiRGAuh4rLwG87IsLCpX3ZyHYEbj0k7qjjzHmLgRhzrPCQCLJw+GmuP6duKndFcTZQCF0XmNcb8PylVwwEvyLIjo4k9ttdkAtZY88gbuMOEW+JiJgMgare4Gusq5741QGImOwDfGHuNa9chPEBPOVdSqM6EPRcJeun9aZHxWYClx9i/WjxOe63KdMV3oWmb+MumzX4DOLyd0BvyB0cDtNMpuMiXDGOGecYud7aF5JIKU6nICSY01NLpL8XEGFahCuqv0AssSDiOx+xpJbA7gEdCft4n9xrLGSlnMHk4tepiICo0kImB82m2seHSjoQym4AxrKAfXRiWvU/SPdJasyfl6U1Yj9Rm89SqrXur7UOq2erRj4KfuF1SgzynK42jW1X+/qlWusS83s28BHiBGKxWCwWS6vArpWW2tzFI/RgM1HsYm7AlUSTR0xeITF5hSz1GUFFMgRUl0M38CuBsuR2+JZBzLpCQov3iWDqCKeuKWfT6F+I8KlGxFQwbo3QGFwX3xTpi1WQPTiS73t1h0AIXH4IIqBiKqyNS2JtXJIIKz+o9vUVy2yU9H/q++XSt+MSWwUkQsUIROx1RFxVU8GvAPCF6NJdfHrWUPCDyIp8EbRFiAiOBk4B3yW4yYACccWpif0svbIDp35b7tZIdVyG8yHHpyuMhX7zMwlMPwT50O/tTPq9nSnz0tvMjVOHNRV0IsRt3EHFlbBzcCidq/fQuXqPzN1WM3+OG/FWKBsurtSd2Eu1L3Sq2EtVbyhLace02L97XKKJhU9OG0Hu+HDXWhsu9xUR91+ZI8x8xcr7Epe9A1UNVT7t8C2CLruKyCeKuB93MIdrmMM1FBHGUs6j0CecKPJJI5knuOk4/wotlhNPS7rvvgdMAVBKxQO/BD6to90HwAVKqdNMJsHrgHeP1LlSKlIppczvIYjTRHrTDN1isVgslhOCXSt/ZsznAkBKgeQRzanZ5fwQHcwP0cFMyFtEhV8HlvqMkHcpFwKfOCTWyxBQxfD12ERx/SyFXh//V8RbMGIh7YbEgg5BxFI3RGQVIpbMcyB20y7OzNtGhVPqJF8sqAMXpTNwUbpHEAa9WCn+dlHww+hg8BELI2WIoIwHHW6sr/mIABtsto4ydt8y+O2uleALvtWH2DkoFEbA2ilJIlCN1XN3XEdX8FZBxZXItYMhaE2lxHf6IrG2vvBDbDAUQ99NW+TaAxHxPQ7KxrejbHw7SWYEnqRGFJs5LAMqwG89dPl7EUGZle41YqAiGXSIbBRDuV8AVMGZP27DtxAC8w7huwZy/GJ55ok/iyU7Svo8/+/LiFlUyA+RwfwQGczuyI6sOWsABZt+wfex3QlL3SdZd32hYgzyHu+TPktjOsAGODN7G7tP62hSGkXRtSKbJNJ5hmlcwyuevx+L5XhQSiUopWYppWYrpeY460Rz0pKi9FGgs1IqC/g3cL3Wei+AUup+pdRUAK31duBvyMfBViRi4A3TzkcptQNZtPsqpXYope4z/V8IbFRKpQOrgde11v86UTdnsVgsFg0cPMJ2YmmJhfY4sWvlz4wt9OQmnufDxNEksZ6qUDg9u4TTs0tYG51EUG4lfdkgoq0bYteOAgrhpzh/EioyJJ40SPaviP41pYkd3OQ8JXjKrXwWd464oFYgJWRykaRCaeC3ChGXRdQQhPgAPRDXWZOZ9vRvS6AbRO/fAX1EFL4dfQFqITIWJ0lRjGxlQaakzQLE/bdQLLVdsovAFwa+kU72oEgoFvEX9sY+EbWGKp92EAM6ComTTZax+FUcghI4fU4JhENpfAf5byhBxPgnEJh/iMD8QxAMWdFniCAtQYR7sfyuY83cXow40fvB7rEd+XDwaPwWw7aQM9gWcgZlY9sRtnofFEGVn8T7vhl3IcTCmZu2UXZTOygB3yIgHaqmAr3g9CUlnL6khLAf9zHox3W82etCulZkU9XbWEqrwC8N9BAz937gV1HJ6pG/Ijc2nA7VldzIc9zIc+z168TAXelM4xnOQzLwpvKrJvlbtJwommatVEo9ppTKVkpppVSi1/4eSqn/KKW2mJ/xDfUDoLXO0FpP0Vo7OakDj/q2jhKltXVirk1ycrJOS0s7ckOLxWI5iVBKrdNaJzddf/20fONsiOAjXlMp9RginroCfbTWG83+HsBryNfKIuAqk6G2keNT7wHXaK1tVtqjxK6TzUcEudzFI3Qlm7P5El+qqcIHgNP/WULppA5U+/hQQQdO31hCRTd4P+BCLv/2A08sKOGwu1dHwr7dR/ZZkcSu3iUCEkQgFkPWRWcQt2aHWC03IDGYF3cgKK3S00/FOeCXj9TKDBE7RmDqIRHBi0FfBioNEZqxEn+6MzGULmuKoBBKx3UgaGMlOhpUKu4YtiJxn/mI+IsCFkDVxeBrMvwSBZRA6ZAOAAS9V+nJhLL7oo6ELdonfRRBWXw7Ajcdkk+BPnIemYiFNB95RNNb9mvzdXxlyK8ZtuQ/IpTTQY8US7MnznSj3DfRsD62N/3yMvkp2p9Tl5STO1IUcsT+QvyWwQ9jg9lFFP0+zhQ33B5yzZ0poXTJK6IiFHYHhNJlURE6BVS6mQeTaOmnSH8205MwdhP37Q6PdXvaaX/n6eI/U3kKpAb8igQyyCOaPqWZ+DrxtQVQFQNLg4YCcDWvmd31hapbjpdWvFaegyS8+xz4nddauRx4RWv9hlLqCuBarfVwc6w7MKtWV4u11o8qpYYBk5FUaTeZzO7NRktaSi0Wi8VyUtNkee4/Qpz+/ltr/4vAc1rrHsBzeC2sSqnuSqmltbY7zbFhSqk3gd3A/mO8OYulWbiEd+jEXsIoohI/sojj9LwSTs8roeIyCEqrpIIObCMOAsHvWRjFYonNLISqJMjqdQZhT+yDIIhds0uEkrFSkg0MgLjlO+RxznrIvSIcUiAovVIEZlQ7iAC/t4BX4e3IC8jxiyXHL1YEm6m3qTbCTyP93dqpvtBlVpGUkImCoGWVsB6UqVOqzeapb5qNCElT1cY3E3b2CpXx+krboFWVBOVXQgrsvCiUnReFEpa9T2I5twJ5EFh4iB/OChZBmYYI7yjgQ2Q/7j5VJtuw1P9AtbGm+hm3XR+gD+yO7gjxEl9bEQH9VmdCFZy6vJzdIzsSs7GQmI2F+G0XC+rpeSX0Kc2UuSmFikDgFOjydhGUgV8ZdFlXBL1kLrKGn0HW8DPQ4UAJnPrPcgamptO9eAdrz0oSt+UqSCIdtVWsyIMXfUVY6j6iyWNzUHdKQzpQGtKB7xJ7cH/QPUSRz4PcQw82W0Ha5mjUWhnmZD832/WH9aL1F1rrGrkElFLhQH/gLbPrLaC/Uuo0c842rfV5tbZHzbEVWuvLzQCSmvy2a9Fs2XctFovF8nPHcUk6zl60/gLA29PWa6F1ah+8BTyrlDrN1OrcBpxXT38rgBVKqX8gC+03xz1Ii6WJeIY7eZmr6MRe3ucixrFAXGCBjIDeJPTJZB+dJPuqL1TcDM8wjZnFD7H2rCSiyCcuawcEQ2lMB4LKKvk+sTt76AzAoHHrWHtaEgN90yETdk4KpYhQ9sR2pu8pW9gd2ZGwvH1i1RwCO/8nlEt//IgfThNxtynyF/QqNIl5TgGf6mr8fCrExTW2I/6x+9ni15NwCtlAH86u/hK/iko6HIDUkCQA9g7uyF46MT5+EaoQ1vZKImpwPp3YS5esIr4f1J0zN21jQ0gP+vptgWKoiIew/UUyEWUiRImVDLvVPj6cvktciLMGn8FuwujJZvIHRHHmmm1isV1SyeoBv2Jw9lcA7E7pyAxmMpMZ6CGVFIQEk04/erKZTuwFH3iVa7jD7zH8QirZHduRvNho+q3LZPUAcY9NIIOwTfv4oVcwp2eV8HWvRBJiMwgsPSTWzkEyR2yAl4dL0qrf7lrJApPK+JKQd8gJ6cog1vF9r+6cmb2NgdXplMW3Y4NfX8Yzn7dTLiCKfAZnfsX6lN50Zg8Ae3zk/exABT5Uk0V3xvOR+SuyJWHaFo1aK3cfo3U2GthpEuehta5WSuWb/fXW9lJKDUXqXyugPeI70KxY9906sG5JFovl50jTuyT11RI01hCx/wVT20B4yZQeqWt8ORiXJKXUAGCu1vpMr+MZwBVa63pFZh0L7c1a68pG3I7FC7tOWiyWnysttFY2+ppNsVa2BNZSarFYLJZmolmf/h4TWuuVwMoTdT2LxWKxWBqmUWtlsFLqJeBjrfXHR9F5HtBFKeVjrKQ+iHP7EUuGnWisKLVYLBZLM3EIKD9So5N+obVYLBaLpX4atVaWaK0PiyM9ElrrQpNd/TIkI/tlwHqtdb2uuy2FTXRksVgslmaiUckbSrTW1x+lIEVrXYhU8bvM7Gq1C63FYrFYLPXTqLUyWCn1klJqbH29KKWeMeW/zgCWKqW+N4emAn9USm0B/mhetzqspdRisVgszUTTuCQppZ4BJgCnIwttkYmPmQq8ppSaDvwEXNVkQ7dYLBaL5YTQqLXyiJZSrfU0YFod+zchlXpbNVaUWiwWi6WZaBqXpLa+0FosFovFUj+NWitPeqz7rsVisViaiSarU2qxWCwWy0lK07jvtnWspdRisVgszUSzZhS0WCwWi+UkoGncd9s6VpRaLBaLpZnQNFdGQYvFYrFYTg4atVae9Fj3XYvFYrE0E87T34Y2i8VisVh+zjRqrbTuuxaLxWKxHBvNWqfUYrFYLJaTgOarU9qWsKLUYrFYLM2Ek7yhQU76hdZisVgslvpp1Fp50tNi7rtKqQCl1DtKqSyl1Cal1O8aaHudabdNKfWsUqqd2f97pdQ6pdRGpdT3SqnbG3OexWKxWE4E1n33eLFrpcVisZzs2LUSWjam9A5gr9Y6DhgLzFZKdazdSCkVC8wAfg3Em+0Kc/gHYKzWOhE4G7hBKXVuI86zWCwWS7PjuCQ1tFmOgF0rLRaL5aSmUWvlSR9T2pKi9BLgRQCt9VYgDRhdR7uLgI+01j9qrQ8BL5tz0Vqnaq3zze8lQCbwiyOdZ7FYLJYTga291gTYtdJisVhOahq1VpZora8/mXMvtGRMaQzwX6/XuUD0sbZTSvUCBgJTjrJ/i8VisTQLtvZaE2DXSovFYjmpadRaedLTbKJUKfUNstjVRUQTXysS+Bdwk/M0+Bj6uB5wvhhVKKU2NtX4moEwYHdLD6IB7PiOndY8NrDjO15a+/h6Nm13+YvhL2FHaNSa56PZaUtrpV0nmxQ7vuPDju/4sOM7Puxa2Qw0myjVWvdv6LhSKhdxH/rR7IoBVtTR1GmHV7s8r37CgaXAo1rrdxt7Xh3jfQl4yfSZprVObmj8LYkd3/HRmsfXmscGdnzHS1sYX1P2p7X+bVP2dzLSltZKu042HXZ8x4cd3/Fhx3d82LWyeWjJmNL3MO5DSql44JfAp3W0+wC4QCl1mskIeB3wrjkvFPgMeFZrPbux51ksFovF0kawa6XFYrFYTnpaUpQ+CnRWSmUB/wau11rvBVBK3a+Umgqgtd4O/A1YC2wFtgNvmD7uBnoAU5RS6Wa7phHnWSwWi8XSFrBrpcVisVhOelos0ZHWugy4uJ5j02u9ngXMqqPdncCdDVyjzvMawUvHcM6JxI7v+GjN42vNYwM7vuPFjs9yVLTitbK1/63Y8R0fdnzHhx3f8WHH9zNEaa1begwWi8VisVgsFovFYvmZ0pLuuxaLxWKxWCwWi8Vi+ZnzsxGlSqkApdQ7SqkspdQmpdTvGmh7nWm3TSn1rEn+gFLq90qpdUqpjUqp75VStzfmvBM4vi5KqRVKqZLamcGUUkOVUvu94olSW8vYGjrvRI3vCGM/prlTSvVQSv1HKbXF/Iyvo42PUuo5c80spdTk4z3WCsZ2n1Kq0Gu+njuasTXR+EYqpdKUUhVKqccae14rGV9rmL+/KvmM+1bJZ96oxpxnads0xWep+pmukydifA2dd6LGd4SxH/X8NcFnVbOtkydgfK3hs96ulXatbD1orX8WGzAdmG1+jwd+ADrW0S4W2AGchoj2xcBV5lgKEGV+DwaygHOPdN4JHF8wMBj4HZBW67yhtfe1orG1hrlr6NgxzR2wHLjC/H4FsLyONleZa7Uz194BdD2eY61gbPcBjx3n/+vxji8O6Ac8UHssxzt3J2B8rWH+RgEB5vezgD2Af1PNn91a54ZdJ4fW3tcC8/ezWitpxevkCRjffbT8Z71dK+1a2Wq2n42lFLgEeBFAa70VSANG19HuIuAjrfWPWutDwMvmXLTWqdoUHNdalwCZuPXd6j3vBI6vRGu9Gth3FNdtDWNr8blrgjHUQElNwP7AW2bXW0B/pdRpdYz9Za31Ia31j8BHuElNjvVYS4/tuGiK8Wmts7TW64GqOi5xXGM/AeM7LppofIu11vtNu+8ABYQe6TxLm8euk8eHXSuPgta8Tp6g8R0Xdq08Puxa2fr4OYnSGOC/Xq9zgehjbaeU6gUMRJ6yHE3/J2R89dBDKfWNUipVKXV1Kxpba5i7I/VxtHMXDezUWlcDmJ/5dYzrWMd0PHPW3GMDuFQp9Z1SaolS6teNHFdTjq8hjvfvrbnHB61r/q4CtmmtdxzleZa2h10nj32dPBHjaw3z15RrZWteJ0/E+KB1fdbXpjXM35FoTfNn18rjpMVKwjQ1SqlvkD+Auoho4mtFAv8CbnKeCDfinBM2vnr4BojWWpcopWKBpUqpnVrrpa1gbA3SCsZX79ydgGu3RV4EHtRaH1RK/Qb4l1Kqt9a6qKUH1kZoNfOnlBqC1LD8zYm+tqXpsevkEWnws74VjK9BWsH47Fp5dLSaz/o2SquZP7tWNg0njaVUa91fax1Wz1aNPKH4hdcpMUBeHV012M6Y+5cCj2qt323seSdqfPWhtS41rlRorbMRN4JBrWFsRzrvBI2v3mMNzV0D5AFdlFI+IAHvQFQd4zqmMR3h2JFo1rFprX/QWh80v39m9ic2cmxNNb6GOJ65a/bxtZb5M0+d3wAu0Fpvbux5ltaLXScb5kif9S09viOd1wbXyta8Tjb7+FrLZ30DtIb5q5fWMn92rWxCdCsIbD0RGxIQ/bL5PR4oADrV0a4bhwfxX22OhQLfAjcczXknanxebYZyeIKESNy6tCHABuD3rWRsLT53Rzh2THMHrKRmAP2KOtpM4vBA+G7Hc6yRc9acY+vi1UcSUAScfpT/r8c1vlp/G7WTIxzX3J2A8bX4/AG/RBbUlGO5L7u1zQ27Th7zOnmCxtfi83eEY0c9f7TidfIEjK/FP+tr/W3YtdKulS26tfgATtiNQiDwHpIJcDNeH5TA/cBUr9dTgG1mewHwMfsfBcqBdK/tmiOddwLH52P+6H8EKs3v95ljNwPfmzFvBP7cWsbWGubuCGM/prkDegGpwBbzs6fZvxBI9pqXF7yue73X+cd0rBWM7TUzT98CXwNjjuH/9XjHd475GysF9prfRzXF3J2A8bWG+fsa+V9N99r6NNX82a11bth18pjXyRMxvtYwf0cY+1HPH614nTwB42sNn/V2rbRrZavZnCdaFovFYrFYLBaLxWKxnHBOmphSi8VisVgsFovFYrG0PawotVgsFovFYrFYLBZLi2FFqcVisVgsFovFYrFYWgwrSi0Wi8VisVgsFovF0mJYUWqxWCwWi8VisVgslhbDilKLxWKxWCwWi8VisbQYVpRaLC2IUmqlUmq7UuruYzh3mlIqSymV1hxjs1gsFoulNWDXSovl5MeKUoul5ZmmtX74aE/SWj8DTG6G8VgsFovF0tqwa6XFchJjRanF0gwopcYopdK9tkql1O8bcd4kpdQSpdS7SqlNSqllSqkEpdQnSqktSqk3lVLqRNyDxWKxWCzNiV0rLRaLgxWlFkszoLVeqLVO0lonAc8BacDiRp7+S+A2rXUvoByYB0wEEoA+wIimH7HFYrFYLCcWu1ZaLBYHK0otlmZEKTUKuB34vdb6QCNPW6O13mF+Xw98obUu0VpXAd8Ccc0wVIvFYrFYWgS7VlosFt+WHoDFcrKilDoLeBEYpbX+8ShO9V6Qq+t4bf9vLRaLxXJSYNdKi8UC1lJqsTQLSqkuwAfAlVrrLS09HovFYrFYWht2rbRYLA5WlFoszcNk4DTgWa8EDsNaelAWi8VisbQi7FppsVgAUFrrlh6DxfKzRSm1EnhMa/3vYzx/qDk/uQmHZbFYLBZLq8GulRbLyY+1lFosLUsx8OixFgQHngd2N/moLBaLxWJpPdi10mI5ybGWUovFYrFYLBaLxWKxtBjWUmqxWCwWi8VisVgslhbDilKLxWKxWCwWi8VisbQYVpRaLBaLxWKxWCwWi6XFsKLUYrFYLBaLxWKxWCwthhWlFovFYrFYLBaLxWJpMawotVgsFovFYrFYLBZLi2FFqcVisVgsFovFYrFYWgwrSi0Wi8VisVgsFovF0mJYUWqxWCwWi8VisVgslhbDilKLxWKxWCwWi8VisbQYVpRaTghKqfuUUiuPt01rQSm1Uil1XzP231UppZVSXZvrGs2FUmqoUkq39WtYLBaLpWVQSs1RSs1phn4nKaVyjuP8oWZt1kqpxxpo1+RruFLqYa9rD22qfpuC5nq/LD8vrChtYyil7lVKpSulypRSO5RSzyilOnodn+T1oVWllPpRKbVUKXW1Ukq14NAfAyZ4jbMuUVejTXNQ34e5UipHKTXpKLqagIzXcjhfApEtPQiLxWKxHBvN/eC1EdxiNuCY1ujmJhKYeYKv+QCtd21t7e+XpQ3g29IDsBw1ZwN/B9YBEcBLQCfgGq82O4BfIg8dTgN+AzwN/Ba47EQO1kFrva8p2rQWtNbFLT2GlsY85PDVWh/03q+1rgR+aJlRWSwWi6Wto7UuaekxNITW+oSvceY70r6WtS/UTXO8X0opP611RVP3a2m9WEtpG0Nrfb7Wep7WerPWejXwV+D3tZpVa61/0Frna62/1Vo/BvwOuFQpNbq+vo0V8Vql1Bql1AGl1FdKqTNrtblNKZVrjn+plOrvdaybUupTpVSp2VKVUnHmmMc117h4DAFmmGvm1G5jXgcopV5WSv2klNqrlHpXKRXmdXyOUuo1pdRDps1OpdS0Y5jW2vPguOcMU0plmmt/qJTq7NWmxlNkpVR3pdRipVS5UqrAjKmd1/EcpdStSqkPlFL7lVIZSqkhRzmuy5VSW5VSFUqpb5VS59U6fol5b8qUUq8rpR6pNZ+nKqXmmzFuVUqNrm05Vkr1N/dWbsY8Qynl43Xc+RtZCRwARtQ3f16v7zN93qKU+sFY7x8+wr2uNON/w9xPjlLqwgban23O2WP6f6vW38ok08cl5udPSqnZSqkOXm0ClFLPmfP3KKU+VkrFNHDNd5VSn3q97mne25FKqcuUUvm15q69Umq3UuqChu7dYrFYWjNNsTYrpYYrpTaZtWahUuoO5eVWq7zcQc168wvgVbMGrXT2q1rWXFXLQmfWo0xznX8DYdRCKTVNKbXdfH5/rZQafAxzEq2UWqbku1E6MKCONucppdLMWLYopW44mjlp5Dgct+HxSqn15p7eV0qdouQ7SIFZm66qdd5IpdR3Sr5fbFVKXVZHn+PM+MuUUsuVUmd4tWnM++WjxAW5wNzjp0qpbl59ON8V/qyU2gWsPJp7t7R9rCht+4QBe47USGv9BZAOjDtC078BTwL9gf8CHyojrpRSlyDuKncB/YDvgYVKqUBz7rPAbsRKmww8Axyq4xq3AP8BHkdcUX5Zz1geBwYDYxERGwPMqdVmvPmZYsb+lKolpI+DvwBXA8OR+/3fuhqZ+VkAlCP3cg3wP8BttZreBXwEnIXc/5tKqfaNGYhSaiBy708BfYF/AR87i4JSKh54A3kPnPfmhlrdPAV0B4YCVyAPNLyvEQosAf4N9AEmmXZ/qtXPfch72xtIa8z4kb+ns4BhwBTgdtXAAxLDjUCmOfdl4C2lVGw9bTsCzyN/d6OBLua1N+HAROTv6UKz/Y/X8ReR+RmN/D39CCxQXg8X6hhfP6XUdUZ8vga8obVeAswHAqgp2scACljY8G1bLBZLq+a41mYlD3jnA4uAJOAD6llfDRMQD7A/Id8ZGhXmo5QKNtdZiqyL/wburdXmWuCPyHqZCMxFvtdEN+YaXswF2iP3+2egxoNXpVRP5D6fA85Evh/MVOZh6zHMyZG4F7gJWYMGI/few/z+NDDLeZCg5OHrAuBDZO1/GpirlKr93ew+4A5zj0HI30Fd1Pd+3YF8r5iEfFeqBD6qtcYmI98VRlDTA9Dyc0Brbbc2ugHBwDbgL177JgE59bR/C1jUQH8aeKBW/2XAb83r/wAPeR33BfKA683rDcAV9fR9H7DS6/VK4L762iAuyZXASK/jvcwYe5jXc4DvavWxBZh6hHscWsf+HGCS+X2oadff6/g9wNq6xg+MMvPU2ev4VCC/Vv/PeL2OMtfoVc84u5rjXb3eu3m12qx13g/EpXtlreOrveYzCDjofe+I2PbMBzAdeLtWHxOBTbXm794j/F0OlY+WGu/rj0AHr31LgIcb6GMl8EWtfV8459S+Rh3nJ5v79fH6v6gGwrzavOTcr5nvA0CQ1/H25n0d2MB1JgClwD/Me9ypVv9zvV6/Bzzf0NzZzW52s1tr2KhjjTb7j3ttRh7obQeU1/G5eH13MX3M8Xqdg1mjGxojNdfyG5CH6z5ex+fVus52zHccr31LgLvrmZfD1h7kAa0G4rz2XU/NNfyV2mse8r3i08bOidf+Or/HmGNdzfELvPa9ABQC7c3rdsA+YLR5/X/Al7X6eRvzncOrzwlexycCPxzl+7UL833RvA4B9jt/S8h3hRIgoKX//u3WMpu1lLZRlFJ+yJO07dR6ItfQacgHS0N85fyiJUZgM9DT7OqFCCHneBViKetldj0P/FOJG+vt3q4dx0A3RBR4X28TYhXu5dVuQ63zdiEWsabAu++G+u0FbNZa7/Ha9x8gUikV1EB/NNBnXddYW2vff3DnogcSZ+yNtxWzG/IQYV09x0GekE5QSu1zNuCf5lxv1jdyzN5s0RJr6tCY9+mrOl73rKuhUipKKTXXuGDtBVYh93u6V7MftNa76xnDmUAHIN/r3n8C/Dn8/j1orT8EFgM3A5O11nu9Dr8GjFfi6haMuNC/3uAdWywWS+umKdbmHsB6rbX395HGet0cDT2BdVrraq99nnErSRIZC3xQa90bRgOf+/Vc5yetdVZd1zH0Af5U6zrTva7T1HPyvdfvhcBWbfI/aK0PAUVIzhE48vcLh8Z+JzoMswaeTs2/m2LkO6b3dTZrrfc3tl/LyYVNdNQGUUr5Ik+xOgEjjDhsDL2QzKgNcSTRWv+JWr+glFqMuPSMRVxTRmqtj3TNumhsJP/BWq81Dbul70WshrUJRixebkc1E/g01O9Rj1VrrZUkK2jsg6EjXeP/2TvzsKqq9Y9/FoOIJHgPBgVCOKBhamjcnEpzSNOulmbXwvI2ajfL1DJt0rRJG9QsLW0epMzS0p94NYe0nLqopCYpDgSCFwoSFBEZ1u+Pd+1z0JwqDI31eZ7zcM4e1l77cODs737f9/ue6obD8fY/dvvzkBTgZ09xrN/zhfFbf0/ONqfLu8iF0t1AJpJOttgsO505nId8Nn5VBwRkn+igSqlaSKpVGdAISROTwbVerZT6H3A9Im73aq3Xnub5WCwWy9lIZXw3n84N8tOh/Djzqfg//3jHqbi9U3rUH/jhmO0KOH1OdRyQ75gXkJuVFXHep8p6T44dFzPuqX4fv2fMM+G4ZAVpNcZGSs8xTO79+8gFcA99mo61SqkrkTz9+afY9PIK+wQid++2m0XbgTYV1vsgaZLuf+Za691a65e11l2R9NGbTnCcEsD7BOtA0pJLjznexUAdfv3l8VvYidQoujF1inWQ9KLfww9AE1XBCAloC+zTWv+WL7ZTHaPNMcva4nkvtvNrQVXxtfN+Vjz3uGO2/w5oqrXeeezjj039d3P5Ma//juezeCztgJe01svMXfvg33is75CbFb7HOf8DJ9lvIiJm44EX1K970r2P1OXego2SWiyWc5/K+G7ejtTjVxQ1x7shWJHjXTP8RIVsGKXU+RydHbMduOyYmsWK3ys5iFN8xHH+7+ec5rk4x3EppRqe4Dgg3zGNj3OcHyuM8Vvfk8riVNcXv4ejfl8m8y6boz83LiTK/EeOY/kLYUXpucdMpKbhVqCGUuoC86j4z9rbLAtTSrVQSj0ELEDq5/5znDErcodSqq9SKgYxl8kCvjTrXgbuV0rdZL6EXgP8kBoNlFKTlbjLRRkR3IITC70fgdZKqXCl1N+OXWmEwNvAK0qpK5S4/L6L1MT+XvEIUvs3TCl1qxLH3PaIWFihtd76O8dcgpzPu0qpZsbAZxxiLFRZTAVuVEoNUUo1VkqNRyJ0r5n1bwBXKHHra6yUehgxdpACFBHHCcDLSqm/K6UuR3qegefu7DREXL+ulLpUiZtsf6XUo5V4Hr+FWKXUI+Z8HkG+zGaeYNtdwG1KqUZKqWsQk6rTxgjZucAcJS6E9ZVSHZW48dY53j5KXIvvRupmPkH+xt465qLifaArYi7x4W+Zk8VisVQxFyilYis+EEH6R7+bExCTxhfM//c7gGs5eaTwR+Q77gKTCgpy47ufEqf85sCbQMUWIgnA34DJ5vtsEGJkB5jCUMkMekaJQ3tDpVScUupR9Rvc8bXW28xc3jLfnV0RU5+KvABcp5Qap5SKUUpdosTJ/p4/8J5UFq8h4v1Jc+z7ECPAl//AmMf7fb0MjFfi/N8M+dzspkKGkaV6Y0XpucediJvZJiSn33lUdIqrZ5alA8uRf8LDkGjOqRiLOMclI06kNzj1GFrrj4DxwIvIXb9mQM8K0VpfRDT8gDHmwSOajmUSEs3azYlrFB9EzG3+D/mHvxdxw/0jvAuMRL4wNps5bgNu/L0DmvqM65BUoP8i6TnvcmJnut9zjDXI7344sBVJCb1Oa51h1qcCA4GhyPvZwsyh4hf0MMR84GtgVoX5FZsxMhDxFAWsNufyIPI5qgpeQ84jGTGOitda7z7BtncB0ch78zTHOCyeJgOQlN93kM/wO8j/yMPHbqjEcfpt4Bmt9Waz+D6gKRVcj81d8DWIicSJ5m6xWCxnI4OR75OKjyb8we9m47/QFynz+Q7ohwiWk/WkHIfcmMxA3OdBROjniGvtQuS6wx3hNMfpg/Ro/848f+6YubwCjEbc8VOQm4uXITfkfwu3IgLyW6SDwVE3RrXWG4BuiKvsRuR7+F/Id/LvfU8qBfM9dT0iRLci1wq3a63X/4Fhj/f7egG5Ufsecn1RE7mOOV6XBks1RB1dU22pzijpLdlJa/1VVc/F8sdR0kNzl9Z6yAnWt0HMDEJ/Y6rSGUdJX7OvtNZPVvFU/jBKqW3AFK31iaK8FovFUq1RSr2OpNFeW9VzORkmQ2aF1vpM1FMee6zjvif2Ws3yV8UaHVksfxFMys03SBuTfshd2SsqrG+N9O/chBgBTQWWnG2C9K+CqZfpj7znCVU8HYvFYjlrMOmp3yO9zbsibbvOmb6UStxzX9Za/56snBONedL3RCk1DolSWyx/SapclCqlGiOh/GDEonqgSUWsuI03cgF9DZIeMUFr/aZZ9wRiplNqHo9qrRefaj+L5S9IC+AJxJV5B5J6XdH52BtJz45GeoF9iaTpWM4MG5HfxT2na0hmsVgs1YRIpByoLrAHGGZKhM521iPfoSBtwyqTU70nU/EY5mVW8rEtliqnytN3lVLLgbe11h8qpW4B7tBadz5mm4FIvVcPRLxuAq7QWqcppboDX2utDymlLkX6E16otS462X5/1vlZLBaLxWKxWCwWi+XEVKnRkVIqBGlR4dwJ+ghoZWy9K9IfeENrXa61/gkpbL8RQGu9uEKj3c1I36TgU+1nsVgsFovFYrFYLJaqp6rddyOAzArurmWI41nEMdtFIvbSDunH2QbEfXSX1nrvb9zPYrFYLBaLxWKxWCxVQJXXlFYWpqfUU8DVv3P/QcAggICAgMsuvvjiSpydxWKxnP1s2LDhZ631sZkqv5tGSrnTWE7EPlistb6mso5p+XOoW7eujoqKquppWCwWi+Uc4mTXGVUtSjOAcKWUt9a6zBgThZnlFUkHLkL6GsExEVClVFukMf11Wuvtp7tfRUy7hpkAcXFxOikp6Y+cl8VisZxzKKWO+//x91IEHLcfUQUeh4ZKqZnAAq31gso8vuXMERUVhf2etFgsFstv4WTXGVWavmtaUSQDN5tFNwObTP1nReYAdyulvEy96fXAZwBKqb8Ds4F+WuuNp7ufxWKxWM4sXoD/KR5AvtZ6kBWkFovFYrFUX6o6UgpwD/CeUmoMYq89EEAplQiM0VonIRbYrQGnVcx4rfVu83w6cm0zQyl3L+NbtdZbTrGfxWKxWM4gCvCt6klYLBaLxWI566lyUaq1/gERjscu71nheRnw7xPs//eTjH3C/SwWi8VyZnEipRaLxWKxWCwno8pFqcVisVj+mijsl4zFYrFYLJZTU9UtYSwWi8XyF8VJ3z3Zw/LnoZRKU0r9oJRKNo/uZnljpdRapdQO8zO6qudqsVgsluqFvYltsVgsljOCTd89K+mntd56zLLXgWla6w+VUrcAM4DOf/7ULBaLxVJdsZFSi8VisZwRbKT07EcpFQK0Aj4yiz4CWhnHeovF8ifQf8Za+s9YW9XTsFiqFCtKLRaLxXLG8DnFAwhSSs1USvWqoilWN2YppTYrpaYrpeoAEUCmMQZ0DAKzzPKjUEoNUkolKaWSfvrp2M5tFovFYrH8fmz6ruUP05RNAGyj5VHLB/IGAO9z92mNU7c8E4CfvcKPeg4wgLfd283ijt8910Z8z3M8QhR7OEhtGrODXTSkKdsAaMM6GrOd0UykNge4kTk8wXhqUeSZJz/zM3Xxo5gVdKIrS4klGT+KWUhP9hHG8ENTyKp1IWlEUYf9+HOIfYQBsJnmhJJDdxaTQQTF1KAMH5qwnTp5RWS4QojMyKFnhLTUTdx3A6MvfJJRTGQ+vcx57GI/dbj2p2XMOb8XdfmZTnvWMq3+ndxa9gEZ3hGspzXtWM1+/sbjPE0cSdzAp6RRH4A6/EIZPvhRTAg5AOQQwi/UoQk72E5j6pNGw7JdbPduzLe0ZiE9j3ovMsx163o6/Op3+Geh1DgAtB77px3TcnqcZvpuvtZ60BmfjAXgSq11hlLKD5gCvApMPt2dtdYzgZkAcXFx+ozM0GKxWCzVEitKLUeh5gKj5LlOPWbdMRf/e4zIgoVHbbeZJubZQ7LfdND3gtpsxm0hP/9HHVoZQZtlhBKA2gjBsSeeYztWuJ8f4Dwe4kWKqAXA11xJNqEALOVaAPrzHp8oFwANdYMTD2z53QzlBYqpAfQD4D36c9vA2bLyNgi+KpMvva4G4B5ed4vZt7mDieYDt4JrAOjOfPZTh29XidCt0ayAWFcyddgPwGJ6oyb9eg4qHnSC53MaXHYX8V4JAExlJP+hE7eUfwgcXzRPYDiP7DDX502O/qxHsBOADBr95vemOmP7lJ5daK0zzM9ipdR0YD4wAghXSnlrrcuUUt5AGJBRhVO1WKolTgrv7MFtq3gmFsufjxWl1RylxnG9FhE5j5uOXrcDdONf7zOB4QD0N6/rsJ+1rk50z5vPkm29+a6pLN9JI9ZO73Ra8xjNOEK8egOQSzjdvRYDULe8OwA/e91h5ptGW73ntMacwHAeuXcy/5zuWbZzQTNYBwQBwUAKhPvlQiSwGnbWbyaXY6VAFuwsbAY1gWzA0bOHzfNC6O23BFLM61z4V/EnMrYL6pfuo37hPrm084OLfX4EoNPutXI8P/jbeTtk/zh5TSpERufAVkg8fIPMJRgmpD4JHeFfWz6ROUSaOe6BG/MXQAgQBkP83oI9cEnILi4J3SVjp/zI0vb/kL/2FPh7TeNx4g3kyVypKe/JJd67JHGvEC5pYPZ3wd8jt/L39lvZ3qwJibhbCNOTRJKIc79u7LWDwbx+Wr+fY3mbAdwZPYtuqSffrhP/ASNgQYSjij/5Pv15j9srvHY+w6NPESTqw8e/+ruwnD7W6OjsQSkVAPhorfOVUgq4CUjWWucopZKBm4EPzc9NWmubn2ux/EkcKS1n108HaXj+edTwsZV1luqJFaXVlIrRxs/VdrQey1Be4P6+MLXvSNQOWdeHjwFHsD7KMP0Sj6jnYbsvjzCZRY07MYbx9KATS1y9Cf45k2d4FIAi/PniXhGV68iBuuvgKz/UVuBigP1OMBWWw3sM5F1uJ4WW/EIdAHK7SkRLrXjXPd/efMd8RMBuVYnclvk+8WGzSJh6B9QFBkiUaxnPM0xPwI9i2upI2XknkI4IrzxECJaZ5x2BLUAssB4RfWVAAHCe2QdExBWaR4pZf9i8DjHLgsyYTgDY2R6gJZAP5CDCOMy89jNjBZntIoFcM04gsLLCeOnAHiDGbJNvtgsx68uAZWa8SEQYewPF5niY/W8Eks05rQSaIwI52WznnFe6zDWhqai/n73CaccKXkkfTtvIr3ll40h4GkLmplOfNGYwmPj33+ZC86b5cYRP6UcxNehJIr2ZD8AqruQrtR6AWzVwOwxhGkvpSusO60kol+PN4UYu2v0/SFPwNLBiHA51h91FvYQiWrKJ3kA33ZKv8q7iwH6Y6hrp3k6peOrpH6mIMv6iu5eH0R94ZMJk9NvQRzc5ajsbIf192D6lZxWhwGcmEuoNbAPuNevuAd5TSo0BfgEGVs0ULZazmzMVyTx0pJSCw6X8cugIoYE1K3Vsi+VcwV4vVFPWYCKY2hPJjKiQreWJkN6Emi0XlwBT1IPs1hcB0Inl7u2Df84kt2s4uV3DWfC5CMai6//GdSxm7XJPrWl8vNSG1uAIAO8+fQ892s1lM82ZuGosdBwHG2DRxr4Ex2YSvDSTUV4TmUefCrP/jrXbOsElIkzWhrXhH+X/B0/Cj3mhJMZLJO/x8hymuEYDshyA3YgYC0Cim6mI8AIRd1cAic5JIaJvNyLQ/MzyLESkgYhEH0TsBZh1wUAzYJ9ZFgKsBrqZfVYjkcliRJgGIELWEZRZFY63G+iC+GHGmu1BRGiMmUcDcw555ucPwBBETB40xwlBRGccHnEcbeaShUcM55vX+WbslYhwTYXintDca4vZOZwxjGd65L0s2Hij++ZCNpGMoxOHqMUBavM0j9ObL+jEV/RnNlcoEYmvlN2PQze9gTK8eZHexDy6iSzCaMo27uEdpnrB02bwHxtcQEKDeB5ZNJlBy+sAMFPtx9/LU+N6LAN4m8Um2g4h7FUXAXk8wmg+0XfzyfLe/Lv8Nf5e/l9y7/Kk9FaMjjpRWJ1wwsNYToBN3z170FrvhmMK/z3rfgBa/7kzslgsDtpUaBccLiU0sGrnYrFUFVaUVmPmmjTMviQyiSF4Aw+qEBZrqRF1ajLdfOxLvf476cAqisr9Oc/rAPfwGmHsY5TXRB6+aioAUYFpdGIFLIfZ5f1pu0PqRqc0Hsww9SoA9+spAPxfu678Y8dSAGI7rAPdnXGIiLhOzQEm8zDBwCoAGup+HKIWbZuuYO1DY+FmGEEHnvd6mIS8eC6KzwagbYJEgoN/zsTfq4j3uRWAu7q9yQUr80X0rTPnVROJG5QiItUEVamPiEAfRLAWm+WOYExGxFtN87O+2bcYEaTZZl1983A6A3ZBxB5IhDIYT0QyH0/0NRXojgjHGDOXUrNfEPCNOd4OoA0iIv0QsfkmEvUMMuM6UVknOooZt9Ts42wXgESJQ8w+YWYe54HfFlhBD4a0fokhbGMTY1g7ohPUAV6UIYczgTrA5+omntCPMZD32FceRgLxJBBPcBnk7gynv5cUhU5XB1gCxOruLDc3Si4wtaPgGCcNZ4OXpAi3Zj0VGaTr8Dk1AFiQ3oc7I2cA0NC1i06sYL+JuAM8px9mGkPYq2pzPK5/+2Pz7Pjpuo34np1cctx1luNj03ctFovl1DiuYQcOl6AdhWqxVDOsKK3G9HWHBI9mmUrifl2L93gfAN1fDGuG8gLbaMoy17UsyhMB0WP8CsLG7KM5W6AR3BtvxEbWELqELaWL11JoDLP5FzCD1rolL/KQOy3zlWSJnOW1EqMil9rGHWVvU8drPw11BtCP7kh96QFq80HnS3iKZ6jxaQHcDcMaT2Ag79MqaxNM9oNweP6FoQAs9urOskQR1kU9ZfwLduZ7xF9HRHCBRwT6IAI1BhGdTiSyPhKJBBGSyUBP3HWdhAGb8EQcA5Dj+FQYN8bsv8WM59SqFiLRyWJEUFYUkph1zcw8vM2yfHP8MjOGU9fqCOguiGj1QSKsPmbMe8Bd8ulEZuPMMVLM+M3MXFLNvpjzzOcoBvI+a707cd5DP3Pwf8HQcDyTk5/koUufIr/Uj6CJxTQc9T25yRKBjG/1Nt6UQeOKUfk6BJfdRQ12kYIUI184AmInyR2DD70eIZRsd6T8kfOlBnTGw8Pc85j55QPExq8jLDKLNKJYNl1+5yltWsJl44A3uV43YT2t6c18pvcZAcCNJoX47tL/ydtcI8ztIqxUCfSQGJ92/5lYQfpbsZFSi8ViOTWOEC0p0xSVlFfxbCyWqsGK0mqO41S6W88D4EGk5u4V9SzP6bCjtn3nkFjF6DygQk3q2vGduOXxxgTflMl0dT/wLDCBpca5tG55JnXJJLduOGvz4CFexM+rmMXl3bmq1X9+Nadc7xIoqyPPk8M51Opryowau3X5G3zQ+W6O9AsEb8j5MoQXeQh2+qGHSpLxKi7nDt6WNi8XwHOthvNI1gQAnil8SuorHW/JIERU5iORRRABth6p42yACMUkPKIs1+y3GE9NaJJ5HoQIu/MQEViKp0bUSfktM49coABJsQVPqnCo2c8Ruo4gdupCAa5FakYLzXZ5Zp7JeKKcMebclpjx2gDv4KlLLTPrCxGh3ROYZ9aX4qmd3WLmZPyNmiMpvP+e+g7UhYMBB2mrtzBGf0Wtgjxe5T4+9e5H41GbyS0PJjg2k1u9PuArrgJgGJO5ra9x5u0DuR8DN8EzXo/JsusheVUbdAcYag46lZEoF7AUurRaSFf+j64s5RFVBxZCFGlEkEFCeTzB92TyvNfD3LljFmwfS3CjTKL4gCMmosrn8sNx1K1dA8JM7atSe2mo82mosVHRSsJ+yVgsFsvJKa8QHC04XGJdeC3VEnu9UA1xzF20pySU+mRRtzyT4LIccr3fBOCR2RKVeuRvZqMf6gLw9tABJBPLIWpx5xioxSFeGSkRz8v0aqArNTjCywymNgeB593HaevaxBN5j7lfbylvTk+vRFzqHdjeH76X5bFeC0kjilzCeXfiPQBcNOoHflSzgXGwYSyMgoRW4sr71sYBqB0akuCl+CE0ZBfF+LGolUR0Xw0bIgMvRyKkjvjbA1yG1GEax10ikbbx+UhabTLyl+JEFkMRAbgbEaKJ5rVTUxpr9g1GxGEhnvpNzPMs8zMVEcO5ZlkoEvmseD8gyxy/OeCUdGab/Z2UYm9EtDbHY4IUiUcQO5FaPzziuMCMkW7mnoxESZ104mJEoOab9cCVzZYwACmuDL4vk2CvXBgFsxjADAbzaOAzZHEhT7z/IiTBoqny/t9S/iG5/5CIqU9iGY3nSn+gHVNbwIA0cgfA0vR/oL6Wb+bl8e3oymOkGVGaUJ5JXl40AK74QzyXIO65u/UMGoSNJSIrg4bsZK5XX3YaU6K2jVewo9xjH12DI2yjKXeWTwNgMd3d69bTAaX2UpGWrGMTbbD8frwU+PudYqPDp1hvsVgsZxmVLRoHd2zAqM+2oBQUFJVwgTU7slRDrCithgQvzTTPwt19GAFyvwmHJ4FOY3lu+XAeMVFUho9FTwLVXfJXxw6V5W9wNwA9Nq6AmyE4NpPWrGcnjThAbd41TTgckdtYSwrmU6onn+lnuMHrU/qSSFfC6KJhKfAygxk2YgbLuBY9CWgF7VqtIIsLZS4vyXx1K1Cmx0fwTZk8y6Pc2vgN3i8aRASp7L2jEWvfbsmNzKEDq9xuvkOy3pKoYgAi7A7jqdksRIRYLp503jg8EVJHAO5ARGCS2a4XEo3saV6nI1HIdET0YcaIMM+dKOQWs/4gIl6bVdjPB4+wLa6wn6ORHBFdiqQBHzbbpiJCMgCPkE5HRG4zxDDJEaqYc45F6l2N8OQwnjrZrYiQzZHzjWu2gfgyEaXxJDCDwazgKvZTh/7MZjHdxRn5ZyAKHuBlQNx6X0gcysObp3LL5k/lc2Z4SkudsdqseTD+aQA6GSsuNVG2qXF3AX93/ZdYkrkhYVaFVi6T0Vmg1CFzkmFM0RL1XKtWod1GXqPpbtJ132QIdcsz+dDrFvcc4ngardvLPNQBYvXRucpqvPzUY7D8BpQCX+9Tb3dmjq1qIsnqBUC51npY1czEYrFYTk5JmdyQrePvy/6iEo6UltvWMJZqR5V/4pVSjZVSa5VSO8zP6ONs462UmqaU2qWU2qmUuqvCum5KqSSlVLFS6sVj9ntSKZWjlEo2j2l/xjmd7fzsFc7PXhK16slcVCKoRMQcp55EUPdTh1EaGD72V/vv3d2Qvbsb0mPjCnosX3HUuk/pRyN20pJNXMVXZJRHuNftUPOIIIMuej/JtOSG+MSj+kt2Zz4vMpKPJvXho0l9UFnFqCxRZE3YQRN2iBBMgq4s5Pn4oegWisu91rNLrWITsaja5dTmALwzjrYbN7F3YyPiSaAuudQl11MjWYwIQNPfk2I8JkEhFdY7ojAHEauOQ28ZImSd1i8x5mcxEu0MwCN0HYOhmuaxB9x+PYVmv1jz0zEycqKTjrBsbtZtMY8w8wjCE1V1ISnH0WZ/p+1MDnJZ/jIekZqORxyvRqLHWWZbp/VNMSLci825NIBYNtFA7aaB2s0j3s8xsXwUw5lMK9WfAcxiE7E8xjM8N2I4/AP6MI8+zEM9K0M+32Ko3H24AugHU+YOpjYHeCL+Rbh0HC+pq3lJXc2XXEkEO4kZtYmYUZs4EjyZXepT4kgijiSUcsLOQryOIF5H0FZ3YJgKY5jyhJrVCHlsKL+MJmx3C8xbyj/kGlbwOE9zNAUkqzKSVRlDmMQQJmH5fXgp8K958sfpoJR6USm1RymllVLNKiw/2fdHX2Cl1noocEgpFfergS0Wi+U3UHSkjP2HjlT6uKVlUkcaFuSP1rAv36aQWKofZ0Ok9HVgmtb6Q6XULcAMoPMx2wwAGiGX28HAJqXUUq11GpJEeTdwA3LJfyzva60fOs7yas33JsUxkZ306fkxn3cWx9H45W8zmAOkmc4BbSc5orMTXfRalm27lvsbvOA2KmrotYtv13Qgr10tOhhL2ekdxEim26r5XOa1gSWA1mONkNjvdlC9KkHqSa/kawBmMJh9S+pzM/O4qtt/6BYmBkdLdvTGK8j0MflGfnRlKWMLxvFw894El8XQWOfSkvW0bJBMFmEM1lk8nFfAl66r6bhjPdc3Ns6qkXhqLn0QcVmMx7CoDZ5oaQQigsPMeuev5RtEeEYgonCLGXc3UoOajScV1zFVuhn4wOwfw9HRTCcS6ZgJxZjlu5FPdMXjO87A3mZ9ABK5rYknVTi5wnFj8ERAI802Dczr3eZnc8SJuCMe8Z2Op151q3lP+sBBakvNLzC7rD8NvXbxOM8wU7/J4wQzDrmJMZnh9Gg8l020ZAjT+OLR7oxgEj8fCabHiLksUn0BGDZgBk/q0dybMAkSajN9YmvajpLP3NvcTreNX3N/qxfoqmvxirqRR3ZEQRMRpH34mCTi2Ksu4l69n03mM9tFx9GE7QDMoTeYCOnlXuvZSUPqjZFa0r2qEQropnNxELffX2MjpL8ThacO+o/xOXJb5etjlp/s++MiPB7be4Ao5C/aYrFYfhf78ov4ufAIrSLr4ONVeXGdUlNUWrOGF8EBNcg5cJiwOjaF11K9qFJRqpQKAVoBV5tFHwGvKqXO11r/VGHT/sAbWuty4Cel1OdIY4sXtNY7zVjX/Xkz/+uRsjyKmB1pgAiPDeWXcZnXBmpzgMX0dm/XpelCpjKSqeZ/cd1yCG6Tyd84xNYdSFpma3jpBanh/JoruV43oTWrAG+WTbqWZQ+KKtI6BqXG8RX+DNJ12LexPtSFe1tNYro6AMCTuogl9KY8P4D/a9yV3v/9AoBHdkj6ZmMdwiGKaMo2DlCbnwnmLt7kESYQ7MplPa15vvFQsp2C0D2IwMpHxGCYeV6GiLYss7wNYmTkrA/C89fiONU6EcUgJCbzAWJMdC0i5CLN/rlICxgneJeLp9WKHyIaTRtV8irMwUnP9UYimsvwpAMH4alfLTPbxZp5ReNJwQ0wP0vNsgI8tbHO+WSb56vNsYLMHH3M825mjHQYkv4W80wa9lWsII4NAHhTSk58JP9KeJ9vl4uDbfBVmeR+E453Bwn/7lKfwrixLKIvwWUi/nJvCefJ+AlwHXDTOIbpCaynNWMZT20O0K3VfJIQkfmcllRgf32Ir0z7mDiS2IuL6eo2gsukX2nuq+EsW3Atbb9cwSZa0niS1K/uR4qjM8wNGaf37hLVm4oO/MFl9ci9RTIJptEeyx9AUSnfMlrrbwCUUu5lp/H9kY4IU8zP5D8+E4vFUp0p19JTNK+whJDapyqYP32c9F0vFGF1apJbeIRfCis/ImuxnM1UdaQ0AsjUWpcBaK3LlFJZZnlFURoJxhZWSMdToXcqblJKdQP+B4zVWq893kZKqUHAIIDIyMjjbfKXopmSvp3Xa4mSfs5N8GExddjP7PL+R237EE/zIo+znSaA9KIE+KD8Vvc26lHgGvgsQYxpBpW/Qe434dzZYRpbjK3tbi0NMkeMkHRIdWMMU3QW+wjjlwrH68UCGuvGDFNhPKn82a3D2Gbahfzt/P087fU414fOo6PpXTqAWUxUEFwmWd23TZnN3hF1qbf7J3IbBDMxciyvppuM7yQ8/UhzETF4GIkQOiJ1D54IZqF51MQTWXTMiAqAixHBmYpHpDptZhKRiOgeRCiaYC85eBxuc/AYJDmRzHykjf0qJB13CfJpbw44rTQ7IAJ2AyKEg835lJn5FCACs41ZHoyI2pAK5xGJR5zvwyOQc/DUtTp1ts3M+1ThTyOFpiQwgGkModSEw+qwH7qkMUq/B8DET8fSr8Nn3KnEcGjYmAkspjspar5noI8luvqoLiOYDKYoMdTarccwn17M5iYWlPfi3e5ieDXly8FU5H79FlMZSSO+Z9dUccx97kuP43KXsKUsi7/W3bvW4Xit4H72ChcjsAvk9R7CqO/+xVp+M4rj568cTV2lVMUI5kyt9czTGP1U3x9zgdeUUi0Ab631f3/r9C0Wi6UiTuuWnw8WV6ooddJ3lcJdS1pm25VaqhlVLUrPNK8Dz2itS5RSVwNfKKVitK6Qr2cwF0EzAeLi4v7y/wocg6MJDCdiufSMnMpIlDrAa/pxAO7hHbO1REqLyv253Gu9e4xYr2QAyvDmq3XhsA4eWD6VpmzjMq8N0GEDn5df797Hqd37fONNXN/qY66f8zEvMpK9fSVy9dxccVTdTmOGdZ4BnSDoP/+j5ZHBtKuxBhDTpH8TRWsdxo7ZLRjWXyJrsJ5FXtcAMGPEPVzNlzzaYCxhZKHjFe6ywGTz8AZ8oGQd+AabdTl4TIAOI4IsHTE7Sj7mDSxAopchQHvcrVVKzCfLNxiyd4P/VgisD0Xzwf8Ks683pH0kmrJVCJQUg28zRDw6QnWrbFqyBw4UyqFIQUQnwAbI3gKh0WZZjiwjBIq2QEkZBIYgArUU0lIhNAB8csDX+avfA3mp4HJaxOQj4jnSjFmACOya5r3oBW/3ime/MY1aNvdauAt+yavDm9zFvQmTmD5mBFfoLwkml6kMRUcplHqSLjqO1zGicvNo+K4lXVospCnbiED6yu6nDrkEU09fRRO2czdvUJsDrFWrgFXumw7P8hg5O46+cfTKFOCHS7h/+QtsoTmL6c5zYaMBxBQpAaATp6Inc7l/+S736yG8Cswlkb6n3NdyHE4vffdnrXWl13tqrYuA2yp7XIvFUn1xOogeOFxKcWnZSbf9LZRU6AmjTB6PPt6dU4vlL0xVi9IMIFwp5W3ucnvj6SBZEScNy7nTfWzk9Lhorf9X4fmXSqkMJOazsjImfy7jmLdEID0aR787BbVZ2rr8O17E6L8fkp6QNYz9a25yXxbRl5xWq3mUZ9hOY4qoJQM+DjGdNwHQHEmXfLdc7HEXTZIL+i4jFrJMXcIwLRGsLTRnALMonuvHlG2jmYak/A5gFlOWSzQsgwhe2vE4i+hLr8Zz0HOfZH6fbkxjCOf1+plQsvlKredRXcbn9GEW8fyoZvO8foc0onj20fEMiX2LaTfdKee97i0RfhcCxeAbKz85jKcNiuOgGwTZORC6FY9BEIC3CM7QQESMpgA1ocQYtvrGADkQaoyOslOMeJS3h7w8iAqRAjeCwNcxJHLShP0gMwnC20PObqhdEzJ3gysA/B0t5geBTk1qGJSkyzglueDfAPybAUlQlA7+sRCVj/ROdUGBEbxpKdDiZsj+CEJjkWhqBhI1BYqyzfGikcq8CLhjWAILpvQC4P6+/SnqW4sOfE0a9anDft4aP4A7l8ziSDc/VtGBusP2ogvroUZooskQg6P90OWOhQBsoymv1JLPXdtDEsncTAvuQxx5DzmfL+QmyBZ3M1nh+cZDmUcf1hrB+cokGYsHx9HdfJ9/yZV0G/k1eS/IWH/jECtoB4jLL8BdOB5oF7KThjTCI0wtf4DTS98NUkrNBBZorRf8htFP9/vDYrFYKgWtwcdLUVqu+aWwpNLGLS0rx9dboZRCod3HsliqE1UqSrXWOUqpZMQG5kPzc9Mx9aQAc4C7lVJzkUvn65EExpOilArXWmea57GIDtheSdM/p1lKVwAizPXbaKbICqf9iwv4D5AHR/BjKddCK1BqHBuAWrqIMnzw5xAAN3SexWdqJ110HMm0ZAzjOeIlqS2vIEJhO00gLoopfx8NptXHoc5GdFyymr3AW3o6YxnHXtWImXogL6lopmgRqMM2zkC9oGnY53ve4G7eLLyP0bWepK3uwLMTOzFs1AR+nHkxy/ViHuMZ0oii17NziOMbbneivkGIyEqGzFwI745EA0OA+pC3XiKHRYXgj7iDFuWCvw8i6oCUVIiJBDIgLRmiIoEAE4FsjdRmRphxgyC0I6xeCe1jZX9XNKSuhuhIKMoC/wAgX465N0cydsMjoSgZQkzk1t8PSkshM8XzOwwPxm3a5BsmP4uKwbcUcfcNkfnnrZdjOs6+gZJFTYtkIAlCIyUi6xsmwto3QN4jf2RMwkw0ty8M7/Ec3iZc+xn9uJKvieO/XEsi8SRwB28T220dnVhBAzWYWJ3BgCfeIo9adGY51/M5s+nv+X0AyQfljQklm2xCaWO8aXZsbAHAF7o7ddhPx5ljWTuoJeN5giaNpS3NDEwqr8nO7tJqIcvGXwvjxvIm3/Oaic5+9kJPXDvks3pV4//g+Bap9FLuj5zMNiRQV5sDLFE/AKD1w7i9XJ2UbMtvQyFp4ScnX2s96LcO/Ru+PywWi6VS0FpT09ebg8WllJaXn3qH06S0XLuNk5zKeY1VpZbqRVVHSgHuAd5TSo0BfgEGAiilEoExWuskxEKmNZ5Lw/Fa691muyuQSrtAealuAu7UWi8GnlVKXYYkIx4Bbq0YPbXgrhNVXpoukxaapdei80SAZlUwOfoPnVhU4X+kk45Znywe4mmCy+4iuRz+6/V3GoyQOrxuk+bTZcRC9z57k5yPXBT1Ou+kPntI2HwHg/TL+HGEh8ufl9UbJJLK4v7UYiEv8hCNW21mx7st2KU+ZbHuzo3Bc3ieh2nMDtJGRXGA2hAkdY2tWc+O8sasoR0/767Hx42ul3GjkTh5fQjviKTl3odUn6WCKw4oBf98KCgQMegbjadvKBDTHkq2gm8QRLnw1F5GAFuNsCuEgkIIDAIyoH00nn6jPhAdDSU5kFcoApRc8G8DUUkmersV/MOQ1FlvEY3+kRDupBfnmGitqX9N2Q0xYRDoknkW5IF/rghMV5AsKyk0gtPJE3DmGGvOMVnOiY54PEqDgBTwjZOfzXtsobdxs+20YS1qlubBSU/z0tzHeaLveFbSgX/xPhOzRrNIX0MGuwgjC9eYQ6wc35qOqidsaMkzrR4D4AVGcpXXV3x24wBaz1nPIxNN/9GfzfHvL+WO8rcpLfWGweNYM6gdXVnGg6oDWvenJ1cC8O9WrwPiyrxmWDuK7vkb/ZnN3bwBQBoXoxtL39O3R90BQIN0J/QNsxggn+XV+xiun/N8yHemuT+vlt9BJUVKlVJTETuxC4ClSqlcrfUlnOD7w2KxWM4EGml1pRDTo8riSGk5Pt6K2YPbAhD9WCK9Y8Mr7wAWyzlAlYtSrfUPiOA8dnnPCs/LgH+fYP9vgHonWPevSprmX44dKobd+iI6GLMggGXvX4seiLt36Ks6g/uuljYbfOnZt4dKBOB5PQqA5nQCunCb1zvUJZcGq7IwepUl6fJr1JE+qG3A98AWaNtZUjXP4wCDWrzMjIxhPBbxBIO9ZvDsDmkkmUQcuqWCn2BQk/cBGJY3gTF6Iq7lh/i/zl15n1v5ROUyRU9gIB9wZf9VtFL9Kc99hDhXEl1YSnqjEGqZiC7zcTvXFmw1KbDvmIhlA0RcloogLToMgYG4TX/ycmQIVzT4tofURIh2HHWjIW815JZCdIyp1QzDY15UitSMIum8riCJfNauCeRLSq8r2URb90BKrojK0ACZl2+wmZvzF+uSdWlbICrYRG4jIG01RIXJeZU4PU9NSxhfH8hMhnATKWU1BHojNX/JMiZORDUESpLBt4tZZ3qaPnDoZTbXkgjmqssu53CMYhOxvNj4CdTVGmZormiwlCvCVjGV+xnOZNKoT73xO5nMcILLriT3v5CyTT5X/2Apg5q+jJ4DqvNkdi8Po8FyYyzUSE4g3iuBshrePH94POeNLIMXZ8v6SYqrAdVIc3/vF0xtseEWeDZxPF16yg2R7uyQNjGjD1E/fB+jb3kSDsub+cqOkXRtvFQ+c+3jaMca/rljPlOajJPPrv51r17LaVJJkVLTa3TocZYf9/vDYrFYzgRaa7y8FEpVbs1naXk5vt6eFjO+3l5u8yOLpbpQ5aLU8ufTk7nAFhqowbymnwFg3sA+tGY9YwCd8Az9eY9VXEmXLz3R02tYQR8+ppsWhTqSqfRkLs3ZQleWcUv5hwC07SCCcwJiNNNxxHoUUG/STvZubATRkGP6kvTjU7qprsxkDwDP60nuOkEAtVz+6YfkSVQrgXjpc9plL//IXMjKsA6007F8Sj+GRc8A4DPdk3n0oFfZAvp6z2XZ8mt5qbPUq9JgidSARkJgMSLInAhmLuKKWwCBzSBwDyJgTc1pbaffZz6QKum3HEYMk5LB1R5YDakpEBVk0n4BXJCXAi6X7B4aDXl75HVRHlATXJG4hV92MkQFSOotzYAsqRX1jYYSkyvgGwIFGSJAi/IlqlqyFaK6G/MmP/AFMrMgPA7IEZHqA6TOkTGi48z5GXfg7HUQWizPM1dCeN8Kx24mY3SqtYIs09umw/JvyewcTBR7eKzZE7B0HOwfyzdqDe/qbeygCd1UV+BOeLkeHYauYrduAHEQdFMxeg4MRtq8qM7w4/JQRjAJ44fFZcvXE08Ci+kOwGS/4fBiRaFoXKLnwyvzR8Jt8O0oyeqvN0p6kS7lWkYj+0xU0FD3oxH92DVRXHr1KFBT4br/LKbGLQUAHPk5EEslUUktYSwWi+VsoH7d8wip7cfKHT9VaqS0tEzj4+VpeeXjpdxtYiyW6oK9XKjmOA6785h/1PLZnF6QuQNf00Nd5XZGzf0wnLWES8R1x3rpW2raa+wd0Yh7J01idnl/9pfXEYdeN+8RryNYTHe3uU0WF3Jv/0ncz1QeYCoAS+J7czPzYDHoYnF2bas7sFZ1Qr+kGDdiFDfMTIRfIHVUBHEkkdY5iq+4CoARIdMlCXw3EhXMR2ovI4AfRNg5+MYgtilJQDBsNPWcrU3P0o2p0DxIUl59Q4AUcIUYp1wfU+eZDuQYQeuk3uZJWnBenqn1zMcdnQ0shdA4IECE7oHVIl59TcTV19Q4Zpta0IIcCLxY0nsz8036b4gcAxeEm3ReekPRmxKhDXUiV3sAP5PWizFm8pPjhDutZA6bY64DOsJM7uZdxMDqps4f05OF9GYBz04dzyLdiRH0Zo7+gGa1dkJRCjH6MPATWUd8WHikJzfV+IhFN4rxlaoFtx06Oow2iRF8NniA+3UC8STRnqd56NcfPoPubWqggUWjPA671+DcHJFI50TGyQ0NYBeXePZ3x98CUcojenvqo02VLL+DM2t0ZLFYLH8qJWWSZuulVKVGSkvK9K8ipSU2UmqpZihrOf1r4uLidFJS0qk3tPxuIthJU7ax5O7ePPeGtIJ55O3JIC0qeau3CBPpbymi4iUt0c4HlfRhOXi4Ozf7SePOBaqcL/TblOKNH0cYcORDatc4yGgmMIHR1DGdULf8+3JJp01BLpbrIz1CnV6dB4EYxL/T0UulePqXgojZVCQt1s+Ms8dscxiyU0X8FRVDYASkpkoNqVOTynmmHjTajFETEa+mxjUzBcIbIDWqxbjTjcnFnYoL5nipZpv6SEuaLCNKMfuli4GSj4+kC/s3EKdeB1+nN6vTDqdU5llgosWOCzE+QBfY88qF7khpQ3Yyg3tIIJ7nGM10hjCHG6l1qIiMWvW4mzdozhbeLLiLov21uSxyPdmEsld9I/vrvwOwS30KQD09gL1qFl9occQdb+yIkmiP5c9BKbWhMtuzxAUpnXTFybdRiVTqMS1/DvZ70lId6fzSVzS9MJAvt2Vznp8PG564ulLGfeDjTSRn7GflSLmx2ubZZXRsfD4T+7WolPEtlrOFk11n2EippUrIoBG1CoLxf+kX+jObB3iZXnfMYUGCFDxGmP4r1+tefK5egT7382DfaVI99paM0cBvD3O4kY7L11Oeq3iTWxnPGEYzgXTvi9hGU5bShRV0otGCvZ6Dm5JFXEidZhbi6XwhYom1FUmbDcYjBnPM9gCpkJYOUbFIL08/IFr6g/r4QGh33O1fCIYfUyG6DLd7LwclygmIIMzDI3QdR+AtZh4BeERzMBTtlt38mwN7JMrpzMk30ghSH0RYJ8s+/i1lPr4BSOTT+at3RG8hHmGbDARBYLSMn5cHrrsQc6SDMJIXeJkHANhFI8YumciGbpdRRC1CyWYs43iz9C7GMZavZl7DV1yDbiQpSasiL6eYGqCh27av2bUNuGQSXcz/pmU7GtFY92Ekfcg+EsL+Ghe4f2VKzHbR8VjOJWz6rsVi+QtRaiKaXkpRXpk1pcdESn28lY2UWqod9nLB8qejEuDO+GkMDjzAUJOW66DjoTvz6abu43rzD/8KfTELyzxpnkHfFRPSSkTrm9zFrZ3fIJJUxjGWRuzkELW423smAOMYywFq83qv2wC4Z/W7MogfErlsgAi/bCAWaefSGol8+iBiNBq32REAERBVakyDos02heDfHTgMeUskUuobAmRB12ggT4yTHPzLZJ/sRJM2Gyb1ogcKwZUrpkq1AySSWZAhrrobUyHKzMHfmB75tjfnsQdwQepKY76UgkQ9D8p2BQXGtKnYnCeI8A2T6OqBQnD5mHMsNu7CAaZO9l2gDdARPt15C/0aSe2wN6Xc0a0lOwJbsL6gNU/zOAC1zjvEw+mTuHPQNN7MuI9fIvxpz2oARjHhV5+HZWo792pYxrXs2NGCoCgxyFabQdubxOc2Nn3XYrH8hSgx/UQbhgQQUrtmpY5bsabU19uLksosWrVYzgGsKLVUCW8lDEHHw5csZKIxRHqDu9nDAzRhOOgmfK6uBl4DsgjiUQB26xnwKuS8I7WwHyAuwZeRxJ3qTT7RYn7z8Nyp0B/qluQy6dCDbK5l6gNDgG7AEkSYJiM9Qg+D/zrE+CgDiYqGQcFq8M0G/1A8NaHFQAC4nDpR85p8YAu4YpHoZ7Gp+QyRcUukvaek0V4BmYshPBYRxoWS7utqhjtN2DcWipJMm5f60LzQ1KkCmVsgPEyOW2RavPinQHRPc07F0poGZP6BLhG6JaUVakrNW+KbZZyCA5AIqx/45pp5ZEB2FmTPhRbdYFajG/h00S0AqJ5Pcqc+yOsF91CMHz0SpIaTCbB8czt+oQ7qUvlSfTXvLu6LfpPbmA07x9FWm211SzKIYPq2Ru7PRv7OC+Q/U01QS0B3g0XxTq3oCiznEF6csT6lFovF8mdTUqbx8fbCz8eb4tKyShu3tPzYmlJl3Xct1Q4rSi1/OjoehvICQ4GpfM3N5Znker/JfN0LgG00ZZmq6245k0YU09U1ADxAU3q9PYcFH4+FCdBs6H85QAKxJHOF/oZ/jp/PbWNe57W+t/Pv2e+whyg212pGBhFy8FJgvfk5GEgEMqQvqbu2shAIhKK5EFgfadmSDq4KkU6CwL8jbEyEVg1kUYkpr/LNQ1Jj94gYLMkXIRoYUWH/FAhvD0XJ4B+MRD29kfThWHDlyzL/NrItGTKGr9k9vA2UpIDvVnHpLSmV2tHURGjRUY7t67jupsPOHIhpjqToOt1+ndTkMERY55h5L5djEwlcDKHtITQZ8IOeJLrTn6foLIaph3mLO4BUlugr6db0aw5u8mYEk5i5/AH4pYjGWg74WWpPmrKNmIlprJ0ozrdvMJBG7KTzJd1pq8U5d626gh4mYLbooJgiXWPF6LmL/ZaxWCx/EUrKyqnh7UUNby+OlFaeaHQMlBx8vKzRkaX6YS8XLFVKI76njhfkMpZhCqldBLrohSymO29wNy9WcF4NNs0+PzvUk8/oR4K6nkd4ApjNW/pdZo25hVblG3n3vntoO30F9zCDz+iHN+aO5hJEiNUEPkaig+nmtZP2WhMRqj3N+tWmZYvDQSQqmge1wW0O5OtjxkBaqhxC2q745oFvBFIjCmTmiiAF8I9D/gqzRJwWpJo023xEJAaY9YclkupvTIxKkk3v0jAkshkAvvsgJtfs68ItsH19IKaiV5BjuBTimS+Y58lI9PdiRJQuMc8jZB4JxHPfhW/K9u9DSb6iQ+ByVhV05meC4BLY4BfHzNkPSNSV5/mS6eyiIQB1yeWnUbU5f+MB1EYZ5LNWPbleN+FzdQXwLHAFi1Qv2ODrnpraJj91UyznEqcXKbVYLJZzglKTZuvn60VhYempdzjtcTW+XkdHSm1LGEt1w4pSy5+OmgQwEj0CpgJKzQXToqNHh7kA3M67ADRIyIIB48gvlShag/LdNPfawjK6EkIOXfRaAJpQxAYu4wDn8ajXszSavpMswug9bAlrprRztwKhFBFbjpNullnmjYhTJ2roh0RM1yPiLR0xPnLIl32i28j+KUmmt2guEAThkYiQ+wERiHmeXd1lKBmyTdE3RpxmmVTfBoiBUk2JcubkixuvTwHkSWkmrmjISwXXQTwGSqXgW9+cX5Y5j2aIGP4BCgoh8DLcDr6zkmFAsDnXGGAL5G01daSpwAYksroVqatdCZffsp6grlLz+UKNh5nAg6xd34niWC8G8QaXzVlNR9WTVB3BatrxrH6Mq+nDjt0mV/j/FPcOncRnrXoe9Zm4lff5/OabgLE8l2DcmEdOBmBoqxe4vylMZSSWcwxbU2qxWP5ClJRpfH3OTKS0hs/RLWFKy22k1FK9sKLUUqVMYDiDdBQz1Thm6l0Mmv4+AK/f+28u6pwNd/16n+uZx7DeM+TFAtnvK67i42ypJy1/MQA6wb09J6GWawbxMgckpgn3AC8hQvQwIjxbyqqib8A/DE/ENB93m5aSYtxpq6WlxtToG8jMgfBRkt7qHwaUQVG61I8GHja1qkZc+pqIUWCgSduNQdxxw5DoLGZe6ZCXInWevl0gZBkUOILVcdsNAFdPpH/ohYj4rY/8RefKXFOzIDrHbB8Ggc55mV6nA/LNceMQo6c24Ao274sjog8jxkj5QKREOvcvvBCAJn2+Y/tPl5LROoLHeYa5Bf/kX4Fv0URH0PLQJmbVGsCO9KZ0iVzM9p2XAqCQO7+P84z79zmJESygF/cmTGIPUe7lF76wh4G87+5bazlHOfW3jK0ptVgsZz1aa0rKy/H1Uvj5eleuKC3X1DrWfbfURkot1QsrSi1/OnqE/KxbnslD5n/wIF2HQaveh3dgyn8Hc5HaANvNDs3HEtRyrKTbXjKOYYTxk67NCjrRmvU8ztPM+u5OZuXfSZ8OH9HvhU+JIo0rtiVx0eYfaMo2kpC2IwNWf+ZJJywGDkPBSqn39I9GajqjEfFXikQM843L7Q+ym28zKFlmTIdyIHuiafFieor6BxkRGQv+Rsj6+sBSIxC7tgH/3bIveaZnqSNKQ6DABHUJAL6BvHwINVHaTMleJjwESJY6Uv8gPO1tnNrYmhAdi0RcDyKC2vQyNRnQEvkNgYJECOyMpOqGABeLaPbxAd9S8540k3EbtMti5ZrWAGx/SoTmjI7DUB2PsF/XoQZH8KaMubX68CZ3oY/4kk4Imd3kBBp320wsycSSzKCNcgOiR9wKepXPAWBRdF8W0ZcLUyWUPcH0qJ1LT+aygr4kYjmHsOm7FovlL0JZuUZriWLW8PaiuBJFaWmZiF0HX28vDpZWXnqwxXIuYEWppcr42SscmIxS48ySSQA0YQcNdT6Qz0o68u/Nr7FgzY2wHzAipSUDaM5mEohnE7GsuLQtN5bPITerLv3DZlOGN/9s+h6d+IrWrGcbphgxDKlbDQSiIfUjqOe46Dq1loniOBsaabYPMm1eTD0nAabdS5DHrIjDSNptDlAqLWHwhsx0CI8D/KCrqevcvBrq+YCrC7ClQt/QAKBQxCxZJj23PYQad14CJOIKQCyUJIJ/pJmbC7JzIDTWbNsTSTnegwhN8KQpO9HWIBHAgSFQsNy4/BYCW00fVMeYKQtplRMAV6z5ko5KVPNa3ZJcgrl23zJ264uon7GPrhH/xyRGMJrn+Bv7iWiUyiRGkEwsz04fz2v33k5TtnGF6gWM43mdy8NMpT+zAZifeiON+B6AnSalux0rgJGswXHgtZwz2D6lZyVKqbHAk0BzrfVWpVRj4D3kVlUuMFBrnXqSISyWakepadHi4+2Fn29li1J9lNGRr7cXpbam1FLN8Dr1JhZL5aI6ywNAqRKCy+7iC72GeF0HVkoYtRg/GrKL8TxBNqF0abeQLu0Wgj/gD2MYz5oj7bieeWwuu5TOiWvIDQ3nYHAtbs76mKkMpYhabCKWVtu2UZsD1OYAZEP2FiTquUwilP6hiHgrA/JhoyNI24vDLX5GkAabRxZyoZ0OhJoIa01EVDaTZb5BULABwrvjEYHF8mjRXNxy2YQI2DARmwU5ZptCc8xYc6zdYoBEjvv0YbWYG+ECVwwQZOZcZsb4CE8KciEiRpMksurMAz8TIQ0zLsOxZjsfOSZbkfrUDLN9cyjDB/2NQn+jaPNhMv9YvxR8YAivsi4ilvf4F5eqeBaN6Es3FjOHG4kjidt5h9R7I9hELJ/SD3FPupiHl0+FpXBL/KfcEv8pqreIUUeQWv4CeJ/iYWpKlVK9qmqK1QmlVCuk83B6hcWvA9O01o2BacCMqpibxXI2c8S44fp6KxMprbyWMCXl5fhUTN/1UtZ911LtsPewLVVOrncI1z20GICQF9IZzxj2qosoKvNnv1cdAOJJAKDpIbFhHbTtfbjkXW6jB3F6Ayt7tmbpT125hVk0DNvJZyob/c6DDL3teR5tOoZn9jwlB4uE0O6IgNwNgb2RFijGXZZAaHUekuq6B3yjEWHXRtJcAQIDgDDp++nKQoRqDp52MgdlfWC0SQ2OxeOGi4wXGgZF+eB/M7Be0mR9/cwcTMS0KMW0i0HGwgUuJ/U2AImABgE/QHauOS8n5Tga8Ibs1RAagwjLIBHgRbtlCP9YIAmIgZR1EONjal9jgCvkHJhnfkbIuGsWdEZtkru3JcMUTwU+xOvcRm8WsIXm1OVnPtEb+OdEmM4Q2rGGLTRnmdqHfuluGo3YxcMqmHe1GFrVN9HxkZ1f4NveYmbVmlUAjDNR8bXqKpmwtpHScw4vPPXSJ8bWlP5JKKX8ENEZj2n6q5QKAVoBV5vNPgJeVUqdr7X+qUomarGchTiRS19vL/x8KtfoSNx3j46UWlFqqW5UuSg9nbQhpZQ3YtR6DaCBCVrrN826bkgfiebAK1rrh05nP0vVoZfDECYxBAguE3OiWK9ktiAOrWsndoIJsqwpIkLr8jMA7x+5lT01GjCu6VguyP0f/3NdgEt9xkr9JF1ZyvgfnuXpix+kt17AXHrQn9kE8zM4v/UuwHxEaBZD3rtQVArhHZGoZCSQJz1HfaPlOaW4W9UAIjD9JMJJDiJCfcyYTv1cKJBi2rvsFqOkLSY9OMoHagcYo6Nk3CZCZJla1HxIyfW0cclebVJ480wdq0MqEt10QejFSBQ4WYyVAv2AYBM9LZT5FWVJ/am/6avqjvgehpjuch6+sWad01bGhSf9N8DM87JiAMYGPsGz6WPoFpnIUKYygkmspzWN2AlR0JWlPPv+ePjXOLrplvTnXe7iTbbqfe6+sYeoxT28BsDl81dxMpTai9b1TrqN5SzDpu+ebYwHPtRa71HKfQEcAWRqrcsAtNZlSqkss9yKUovFUOKOlIooLS4tR2tNhb+l301pWTm+FSKlvt7KnS5ssVQXzobLBSdt6EOl1C1I2lDnY7YZADRC4j/BwCal1FKtdRqSaHg3cAO/vid/sv0sVYRSaUBfqB0FD0GN+wr4mis5EiwtQPhuLDEtNgGwjabEkeTeN//VC1g/Qox25rr6sp0m3K+30uG7b3n60gfp8Oa3RLyYQYtJO2jRcQc/XHYRW2jBU8+MAWDWU3eKkPQDwsAVgCclNxKK1kl7Ft8UKNgqorKgAHy9IbC1mcRWRKBFIEZCh5HIquNYa/qOEmQe2SImQ40odcUht1+cGtYAM59mEPiDjBfqA5mrIbwvhEYjAvRGxG0XJPIZAimJEGNa3JQUGvEaIedCIp5aWRf4X4Ek7DnCudA8inGbONEeqR9tZuaVZfY3c9hz6YVczzwAXsx7CL7xITc+mLGMY8fIFuygBVNeGIzWiiZ8x6iB4wgZmAMsZsSq6RS0r0GQz6NHfR6W6zsAGMAsALKoj4qHHv9ZAYDWIkgt5yAKa3R0lqCUagv8HRj9B8YYBAwCiIyMPMXWFstfC0eU+ngrd/uWkjJNDZ8/LkpLyvXR6bveXpRUYiTWYjkXqFJR+hvShvoDb2ity4GflFKfI5foL2itd5qxrjvOIU6435k4H8vpoXWUMTcaCy9C8ZhAANQGSddkLxxpUYP91AFgBZ1YTTsArhrxHyYyiqRDcQypNY0VdOJbtYKleiM9WUi7F5ezdnYnbrv+Y/7Z4H2+pgPL6URzNsvYqXhcaEuRvwCTbks2+Acg9aUNJGJJmHgikYIn/TYAEaCmBpVIRJxGm31rmvEPm+2jgWII72Je50NmKoTfiKQOhyBCNwR31NUVKdulzoVoEzFliTj1gjE0qgkx94Cj2X2dCrEMM78IKEo1kdEwc771wWnZWlJq6lJNOrITPXb3Ni01yzGv74LJDGcTsQC87bqDCfGjeIO7aaX685z+lKZs47odi+lz0+cMZzJZhPHgxmlc2GoP8zpcTyQZ6HfuJPS2HwF4iBfprLrLMV6uLz+HmmMmO86DPjZCeq5iI6VnEx2RYm4nSloPWAwMB8KVUt4mSuqN/OVnHDuA1nomMBMgLi7OhnEs1YoSk75bw9sLPx8piC8uLTuqv+jvRSKlx6Tv2kippZpR1UZHv0obQmIzEcdsFwn8WOF1+nG2OR6nvZ9SapBSKkkplfTTTzZj6UzSlE3E6N5wYBwcGIdS8tCt4LNWPSEKdm27hDncyKOmn+UR/HiMZ2nMdtqxhoMB05iooB1reE7vB6A/s1mr2pDSPwreVHwy5l/0ZzYxm9P4gIF8wEARXj8gorEmEkn0QcQa5nkYEn/3w2MWFGJ+mqhhifM8DBGfgUgU0ywvyZV9srOAfVCSiog/I2jDo5HUXW/kUxqNiMAGUJCHu140OhYRukGQthtCm8uDPHOsVJlzShKk5pi5hJifxVI3mrLFbJdqzt3Mw7cPEAvZK808HPOl+ubcTQSWPeZ1fThAbX5Us/lRzSabULaqRMYyjv/TX9OcLQC82vgujlCDYmowg8HsbVWXfbPr803C1SSoDFQ7TVeW0pWlJBNLFx1HFx0HD6TBA2kM5QWCP8wkuF423SIT6c58lAuU6zd+0CxnB6c2OrKcBkqpnNN4bD7R/lrrCVrrMK11lNY6CtgLdNdaf4L8N7rZbHozsMnWk1osR1N6nEhpZdWVlpZpfLyOSd+1NaWWaoa9h22wd4D/fLQee9TrCHYCU2EB7B4lIbr7mAZAH+axgF7M+GEYd138Kl7/u40OoV+TDKz4dw8ufC2LfYTxrr6NmCVp8A+Ib/c2TdnGvhZ1eIQJcpAuiCB1ARvMzwAo+sDUeCKOu75xwBbAx6TxOjWnACnGDGg3nrrMAKkbzcyBqN6S/ksOhLYx49WHElOX6uuDtGxJxpMi640IzQYQeJm0mfE3ab1F+VCUA1EhkCm6j/CeSKR2i4jYmPbAPsjcDeH1ZRzygSCICTHn6YMITydteA+UJJuoK0jq7kpZTjCwzMzPB/HqTIKyW7x5UhcBMGLPdMr0/Yzc90/SL5TC04sSs+FaeFXfxbD0aXwS2Zfw9bl06b+QpZ/+AzVN06vxHBJG3uH+vXd5YaF59h7361oAXOn1NQCfb7wJyznM6RkdBSmlZgILtNYLzviczl1+Qv5znAiFVMz/Hu4B3lNKjQF+AQb+znEslr8sR46pKa24rDLGrhgp9fHyckdmLZbqQlWL0gxOL20oHbgI+K95fWwE9ET83v0sZ5AUZa6bdEv3MqXGUU8PcL9uMDGLhqO+5yFeBOArrpLtBsk/6SdWPcZTqgaX606o7ZrGbGaHyuNV/SFPdhtNH+Yxgkl0ZSmdWcEEp4zKhafesz4SUQwGH0ewhYHvHlNbGinbBYaYdebiuiQfSIHSUijKA5fj1FsfonJEfPqamlUwKbJImxiAolzwXwyc5zk+xRXm5mdcd0OAPGk5k5IsKb3hZgy2Qkq6BGjDG+AWxuExQHMo+Qh8I5HoaIAZ36lddYyL8sG3GyJEnYhxA3OuLmTwAiAX8j4Sp+HEcrkm/tDrFkbXf5IJe56kZ/3P2EUjltOZl3oO4UGeYmz5OL6LlLYuBXE1mFvWl4h+qTzFQ9zDDHjhDi4u/4Hcq8JZNvdauEF61fZELI6ncj+LOveVeT4EfAj6ZJfjlrMTxelEQ6377ukxRmt90u8v5Wn6fEpMtNR5/gPQ+sRbWyyWErf7ridSWlxSSZHS8mP6lPrYljCW6keVilKtdY5SKhlJF/qQE6cNzQHuVkrNRS7hrwc6nMYhfu9+lj+BPYTRYKIJPw4fy5dEMYN7YBTMpj/9+JQHd0iklCaLzF6LYFwPmrAd1Kd8m17KJ8t7U5efmayHcyFZDJn0Fi+PGMSrDGEs48glmN7zlsjuwYhYLMRTQ3mecdoNQaKX7cF/NZ5epI4RkiMyD0NeHrhcJrpaaNbliNmQrw8iYLOAaIlkBgbhNnxJKYRW0UCBWWfSabNTxKioIBXyDoMrxwjiIGjVRRyB80yUswiIcaKhfkh0MwwRk3ONIHVJ+xd/l9nOzMd9y8eJmJr6VdbLe7BxNbRqg1SfLQBiwdUcuAty53/JMP0/FtOd7TTm5fqDaMIOjuBHe76hPmm01d/xNrfTl3mspj1l3t6MZRzelLKLRpz//gGWDLySj7xuglWQRn3QMGjj+/TYOJZ6rXayV82Cj0WUWjF6DmNrSisNrfVnlbGNxWL5fZRWiJTWqMRIqdaasvJj0ne9vKz7rqXacTZcLhw3bUgplYjcGU4CPkDu4jqtYsZrrXeb7a4APkbiOkopdRNwp9Z68cn2s1QdWo9FqXE0UIPR5n/ucCbgxxGmdB7NE8sf40uuptn4nfQaM4fmbGGLlnYxCybeCKPHMaD7ZxwqH8hERvEmdzGLAbyNpISq/9OQAiUvKbIDQ/mOFnTv8wUAi++/TiKBJjWXIOTTEYEIMx/EGbcZbkfbojwIDMPTar4l7F1szIgKISXFCMRSI0iD8ERAyyAwAgr2gL8Rpa2aI31Ot4IrRkRooMs45yLPA4MAF6SthqhSSeHNKwR/8xcb6pIa0yinkVIkbFxnxCRIVDTDRFxrmvO6GXgTMk2v0/AQPLW1hUjk2AdaxZljvwtRfc17BfAsfPLFXHKR5qnB/MwBatOcLTzGM8ymP/4UMZv+TGcId/EmbVjHjh0taNt4BZMYwQ2qNTCObh9Lei73wEe9+/A4T9Ow1fcMZgYPx0+Fm8cyqv84JnB0irflHENxOum7lt+AUqom4izfkArf4Vrrh6tsUhZLNcARoD5eFYyOKiFSWjEC6+DjrSgr15SXa7wq9C+1WP7KVLkoPVHakNae+IgxQPr3Cfb/BnERPN66E+5nqTrUjuMvn8pQiIKnJj7D4lHduXzMKhYk3MiB+Nqs2NdD9o3R8NJYasUMZTiTiSKNJTN74/+vQ5xX8y3ySwdzcJE3L/qN5GeCOIQ/CQzgde6RgziprC0R4ViKdLhNRWo6/cz6AqAjlM6FwGYV9gNIghbBiJDD1GyCO93W7VobAtmJYkx04LDpWQru+lGXSQsODDP9SaPFlCgm1my3x4jOmlJfGh4M2U5LmAYQVQbEAZsgLQlaOQ67cbAxUVqlhgRBaa6kAJMNNINwJ0JaJudQsgeKiiGwJuSlm3nlQFQYkGL6m4YC82FbP0+Lnn/veAeAJxo/RineDHn3LdTtU+GL3vTufRf3qefJ0/W4pPH3TGMIAKl6C+MZA7zBdpoQyyZuVpN5Tr/s/hw8nzDULXyVC77IE3fe3iw+/gfHcvZyeum7lt/GHKAGkttQfIptLRZLJVHquO/6KGqUOZHSsj8+brljoFTR6Mi0nCkvx8/L/hO1VA+qXJRaqh8NG38Puh87uYR2SC/Ktauk5lO/LYZHuQSzK1BqEr8acDmZWkRKr95zWJDehz6B83h283gADv7Lm4CMcm7VJdzB29T2PsCVfM1XdOKbG6/m6+e7oVbIl4lepzxRQaf9aSGS/upC0lsLkVTXlUbMOX8lseZnGGTOhXBTn5mSAzFheKqh/cw+eRDaEUiF8FhITZbdo2tCXpapRfUxabvNZU4xuYhYzIW8HHA1g+xkCI2BlHXg77yJ+UiDh3QxWIqKRSJSJiegldOvdI+YJJFq9s1CRDhIi5sGkurre9hEZSNlTkXZ4B8m8/CPQUR5HAzmdXbRCIBujedT10RLL5iXT//b3oXG/+LCdnu4T0UAr+BSo9C7G6CGaLgLdAtFRqMIbuUDruIrOrGC0XoiYxnHB6opdJX+N/pLmMQQXsobwhBjdtX7JJ8py1mKjZSeCRpprWOqehIWS3Wj5KhIqVxTVGak1KdCRNSJmpaWafzslbqlmmA/6pY/nZ1c4n5eZGRWww7fA6BGXEK9SVCMnyRlA1t7Xs4OGgNwP1OZ/+0/2RzZmITSO1jUqhN9mceS+b35cUQoMxgMQCdWMJv+0BwKImugO5h/9l8gAisFceJdBiSLCNu7G6KLIS8FXKbti28MkAtFW8Dfcd8Fatc049SEmJsRgZcFRYfBPwjyksAVZkyNGoiwdCjJN4K0GCgEf3PRnjlfjIryUsDVXuZQlAShkVCSBY2CwNdJz91iHnngG4unTtQb8pKhdgDk7Ibw5pCdDtFxSPpxKKQuk02jI03NqRk/6gEZjyTw7wiZiRAeZ84tWs6vDevIPVQXgAOJ5zO3Xw/+xn5qd/+J/swmtV0EjX7ai+JJ+Hgsbfuv4HZeg0XjeD4xl6d5kC4spcyEzxq4sqiXt5NNtGSShrockM9BX4Bp6Lnw4FTggTdRfIXWd538w2U5u7CR0jPBbqVUba31gaqeiMVSnfCk2XpRZmqPiiuhprRiraqDU19qzY4s1QkrSi1Vylz60mBSFg1HfO9etndEI5i8kR56LotcfWnGTp7LGw5ANqHc128azzGaR1uNoUfWf3gq7DGWvNubi97Nhq4Q/GIms736A6CLFaRCqTEp8mkPOCZGOUjdZ6EIyehQKEkHlxFivsFQsk5En3+wZ86rU6F9c1i/BVoHA1uR1NjzTFTREZ15sl/mFnHIdURtXj74F5s2M+keE6Tw5vLT5YLNK6FFiMyLAIl2BkZAnhGUriAkMlsmxyvIAt9s2FsIoTUl+hleX86jFrJNWg5E1YRoJ93YZdrO5INvCJIUWBN3enH4jYjxk1Nvmw5pP8XQ5/yPZP9cqM0Bsgij4PD5tKq1lui7M3jpjSHE6N6kKJjbvw8AW/RCZgObsmMp/yyAmfd6Ok7sdTViSN6rABxgLos29j3h50VNBD3qhKstZxvW6OhMkA8kKaUWI0UIgK0ptVjONCVu8ajQVF6fUsfQqKIo9fVxRKk1O7JUH+zlgqVKaM0qAOrwuluQNmQX3SdJ3eD0/41gUedWEAu3Ln+DCBMKfKTnZGYmDuRdbudt7qB7mGxfb/NOBjCLiaoV8ZN+AGDq1od56Jmn6MoyRjAJgG0BrUSMOu67LhMFjZN5+R40fUUjgRARa0VJRhyWyjbt42Tf1nFIBHEdFBkTooKt0me0YAME3gTsMW1cDhuzJCDwMFAsArOoFMKNUy57oKBQtgt1BHO+HDcwEIgBl/MXm4uk4gYDAbI+OweiHwA+QlKI/eQ8w7sAKaZG1H0JCwU/SB0rzZGoa7BETrMLISof6cN6HmLcFGKe74bB588AYMzgR8kijDcz7mNaxJ2MYiKxb2wiRj0JzOdOvYYPTLvDN7ibYHIhFCIvzUFtM1+0Jhr+iZKUYDa0dz4gbvRQYOhdqIlYzjUUbtfpk2D7lP42tpuHxWL5E3FqP329vVAm+aq4EkSpOy24YksYk8rrHNNiqQ5YUWqpchqyiyXxvdn10yUsAThflk9ZLqm4jx96hgO1asvCRePYQnMe4kXO33gALhsHy8byXecmjOY5+L4Xwaxm7PKJzOp8Ay9tfpwhLabT3THJKUPEZTESBcTUjRaa5cGmx2gGEjGMMRFO07IFIDQAaA8l88A3D8iHkjKp2Qy8GCgwbV4SzfGA7FypCwVTrxkJLj9IyTKitYEIWV9vIARCDyKtWjbJXLNzILQQEdRItNUVglzw58hxQtsAS8x+wVCwQJx8yTbz8JPzwfQ6DfRB0ph3e1rT+AdBVJDZrtQI8mhgFXCT7OekSM9bdDMF3WpQGOLFfemvkxcZSHR5Ktfrr/l86FhGE8H7RpS26rxNdn4OXmt/Oysd1dlUfv/1+OKoz8QXo7qbZx5zIxshPQc5vUip7VP6G9Ban3YvUovFUnmUlJraT2+FtzEfqoxI6fHdd72OOqbFUh2wotTyp6PeBvZKu1g9xiwDEaMfrWaYlnYhExHzo/RakSQiZsz36mzW05oRTOKJVo8RoTPwZgBRZWks+rEP2l/xJVdQGgetWU/+JX4E3VhM/Jy35UAu5FMfgEQ5s/E46zqRScewKAMIgoIccc8NjzQnYFx2fSORiKWfEX9meXYKhMbhceINECdcR1BmF0KUCyiEmEhTQ5olLWMOFJqUWsz8koAIaQHjbl1jToNipE60TBakrIOoAE9UN9AlrWRKyoxIbgOshDTTEiaqI+72NYHdoGSlLPeNMXMNMa67KebcCmFF67ZugV/aHiZ7D6er91LKz/PlQFkN2nmvkUFe2UunqSvY264RrB3HMD3BXUd6z6R32TxCaoQvnbSdtiNWAEtlv8uWwvCx0OrXn5v3kJTsfzH71ystZyc2fbfSUErdqLWeo5S693jrtdbT/+w5WSzViRITtazh7YUjFYtLK8F9t4KBkoMjUEtspNRSjbCXC5aqoR40vON7urNLXn+0Ceh61CZN2cayztcyYPmHLEqQOsMv4ru7183jeoYzhTSiGOE9Ca+AQwwIfYv+zGZE4PMMZzJBs4rpNWcOT/O4DDofSXuNAQ6aA+UANaFonRGEexCxFgDUh8BCKE1GRCKyPnu1ccw1UUeKIXM1hLcx9Z7FwGERhf6liIp0xGYuIjDLgM7g2ipGQ75+UNvMJy8PXJ/IMYuSpWWLKxqJgoKk3OYAu6EkB3yR1jQlxca115gn+QeAf3Nz7HVAM4jKqXDehUgE1Rwf47hbkCGNf4nGneaMD/hTxH7qAOAb9CRP6COEks1I11OkUZ9gcnkn49+ozMPszYJv1khedPudGyAV1ADNuDxP79EnRjwGQH3dkOd4BICL1OVcN3kYD+oNrOJpXjS/OytGz0FOL33Xcno0Qyq//36cdTacYrGcYUpKf21IdKYipc4xSm1NqaUa4XXqTSyWSubOcfL4FUuZot9nysTRNGIny1QSlMKirGvhqmJui3+dVVzJi0ceogtL2er7d+5Ur/FQ2YsM5nXKZwUQTC7XqXZM/fhhVtCJfQPrsDivO4eoxSFqeYSlNx6jI8csqBBP/eTFiHj0gcwkcHWrMM360sa0aDci9nJh/W5ZRroYJJEPNJc03aJ8M2akPKJCzDGDgJUyhm+AHKu0VMYtKDXb7Bb3Xh8fM+Y68zCClHxYmm+2bSDC0hUpxkclhSJS2WP2CTb7mXlUpCilwrKaEFjfPI8ACqFgucyzrbqewcxgMDP4Qq8hjiQGMItdNOLTx26hKdtQb2huC3uHLmFLmcxwYos3UTvsJ17vcRsX5u1hBVexk4bspCGxbGIXDQG4SGVzkZpPN13CIv28e25qIKjO8rCcYziR0pM9LKeF1nqs+Xn7cR53VPX8LJa/Oo4hkY+3ws9XLp8ro6bU3ae0QqTUaQ9j3Xct1Ql7SWD585kgkbJd8XBhQhYp5U0JLruMXO83GTZpBvjC6EMTaKyz2LFedmkbtobtNCGDrjSqsYvbGsxmb0ldXuQhltKFODZQb8ROQsgGahNxUyq1OcAdPyVQ/EEQfUaIY+w8n5shDNISIeo2YB8SySmV1ivUBAohNRGio4FEcc4lC3d9KIFQhKkjzQFioFUx+PaGgjkiLF3RUPQN+LcRp93U1RBtjI4IhqJ08A+BtN3gKjBGRmXi1luUC1ENEBF6HuAytao+MjcAUmBzOkQHQI9I3NFOgmU7JxXY1QzSkqX/aF6KOPsWpXt+Ff5hQDH490RU9RazIgZJDV4ChEFgLLAV9unJ/G1PEQDb6zfh4R1Tqdd4J9827UDpuptJJhb/h34hmViS1WKe1EWcV3MMXv/zZ8iBV+kT+jkJDOBlHgDgFe6nv4mAJnAHbGjNko2403cX05sX3weVblym7L+scwsbKa10lFI+wCCgMxIhXQ68obUuPemOFovlD3GkQusWRzRWZqT0KKMjt/uuFaWW6oO9wrP86fQaNQeA+dyIUmuANbDQpHQ+OI7zCocA0ITt/Kf1NWwils/oB0B99jCYGXRsuJ56V//M9V9+TFO2cR+vkvFdNCpXk1/qx1QOUJdcyIL5I7oxb9/NMn460BmivHGn2OLCHRXFGAM5bVNSsyA6BhGrFcRci+ayXUEO+Oeb6GiyCNISc2noXxOJUtaHaG8zBkC+RD5TUiTlFh8kkmrMiPw7irg9cBjCXZC6UsyHfJ3eps4coiE1FWoVQniIjJ+dAqFh4BuECNggI3AvBFchEA3+e8wAkUi01bTFYRPQ0xg45QNxiNlRIvh3kffqDt5mTtiNANxbPI31jVtzF28ye1t/LmYru9ZfAo/Dpqi2vKf/SVO28ZV+gesZwQcM5Ag1fvV5WEM7JiqAcdzbSgytGhtzURXfG53w68+Q5RzB1pSeCaYBUcB7yDt8C3ApcE8Vzsli+ctTWqFPqbeXwttLVWpN6VEtYUzU1InOWizVAXu5YPnTmc+N7udaj6UdK1ibCCwcS6+ec1hTXkzuznB+blyXeUify6Wm3vQ5HuF9BnLnl9PIIIJeLOAdbuPrt7qh/q4Z1XkcdzOTT7P7UVAnkJ8vPY/e05YQN+QbAJLaXAHzECG2GhGDPogTUQiwR9q7lJRBYAxEO661WeJQC0CeRC7z8kw/0jAoSQbfQHDFICm9pVBkakpdpcBhqf0E8G0Gvi4I3QpcgQjDBpA3X9a7csSY6MBhmWd0TTOHADyR0hAgB6KNOKYmrE+H1g0gL93MI0vmCkgUNACpZW1e4ZfRAAqSIbAYiY6uAl8jRkmS4/s3MO/VMxBBBgEPmTu3D0Buo2B6qKsg83bqhWXAYhj15TiKD8ESutOVZXzILdRT99NLZ3Ev0+me95Xs7vKk6LbVcdTmAJvxB6AUb2auegDuAdUO9Br7r+qcxIrSM0EH4BKtdTmAUmo2nhwHi8VyhigpK8dLgbeJktbw9qrUPqVO9BUqGB1VwvgWy7mCvVywVDl9mEefnvN4WAWzAEjRI4kpTaM163lQScjyVi2Or3EkEUcSl6ph8F1v+rSYxzTuY9adN1Ajr4A9RNGONUwKfZD7mMZjPMO8IX3YsN70v0xBxFp95NO/B2gvP/NWSrrr3t0m1TYPSnLB9xZZH7jOTDhYepu6muEWfr71EeHnmAKFSD0p6ZJma7JqAePEW2iEYzoSQV0pKbf+AYAfZKdDSBAex10/PAZMIJHdZuKYm5cPoSHQOloO4gqTedUOgJJ08PVBRKaJlDouwLikJ2tgMyhJBd/OnkmWJJtzyjLbDpa5fFAwkLRXpOB0SWJv9BbFKn05HZY/yaqwy4kak8Z1fMGVtb6mIbvoyEo+5BYANtGSHiNWoP+haNR5KwC7Jl7CoFEvs3Z2J0gDouDb/s1ZQzumdBjMsHbSE7VueSY/e4WfzsfJcjahQNv03cpmL/Ifoci89gXTyNlisZwxSsq0u1ULgJ9v5YhST5/SCjWlTksYGym1VCOsKLVUCUqVAHCvfoV4TBsRegFwMWlwGKZsHE1wWSYAieb//gdT7oZ/wI86lPrZA/l31uuU16zJ3a43eN41klBy2ElDFtOdcYwlcloOjWI+YFCX92WAl4H1iDAz7VUckebqCRRDdCQiWlOl7UvB8xAYBqajiZgP1UQEm6lBzdsKrtbAheKW6w8QJGm6LRpA9m4Ija1wvGI8qbiliIgtlHTgwPPMtnnIpWcYFK00DryHzT6mXYxvG3Ctg8050ML5aw4ADoNviDlGqczF3Qpnt2xWki5RW2oaAQoUrDY1sV0QwVzf7DsHGAUfB97EdTtM79AoUOs0y2nHis5taXdoLcV+NfjC+zoumpQN3wDzxvGpvgG4gij2sDeqET07f+b+HNw/6gVeCRsJ++TzMEy/RAIDqMUhnmE8D6wRQWo5N9EKyuy3TKVQoRXMHmCtiZAC3Ih0ErZYLGeQkrJyalQQjjW8vSrH6MikBVcc24mUltqaUks1wl4uWP50hjAJModwb9g0AK4r/4IorzTcvSoBvgSiIDc1nF7957BAbZPln43l0cZjeJynGRCagD+HmMFt9ONTriWRpXTlCVWbK3R37piagPpAs/u/YWzUTWX/YXgihe2BYokW+kbD5vnQor1ZbtrEECCCtCTX9CUFiTi2RERpAJAuUU4KgQwT7QwDUjy9TEObQ8EPsntgIBBkWrn4IMIvXdKGA0MgczeEx0FelhgTkSxRV/8YSJkrY/ibti+B+eAbBi1CkChtTaQ2NQyKUo14DsJjNpMlaccArlizfQ5wMRR8CIGDgSXGpCkS6IIIeW/ABdc9upinnn3I/Wv6vGkfLiSLmOVpLO/cjmL86DFiBfGT3oYRkBA/lpc2A29BbebSY+hcFk3qK4IVeIVL4FMgyReAKQmjeTRemteq5cD/gDgTIW18nA+T5ezGitLKpGIrmE14/iK+w3RwslgsZ47SsvKjzIhq+FRW+q4TKf11SxhrdGSpTlT55YJSqjFi2BCMJCUO1FqnHrONNzAVuAZxG5ygtX7zNNY9CdyLJwlxtdZ6yJk+J8upuTdsGtPjRxD8oScKdpnuSmvWo8ZD/Ji36c9s3uQuAL5zu90k8CIiij64+27KJypUMXh7HWR+aC++SbyatnoFnVjKgKFvsWhoJ+bRx91bs2VQinhWzkfapNQ00cJCaBGGJMGVIUKtmflZKuKxxBgd+TpRxFIk6lhm6i6zgI7IpzhHlmdvgdAYwE/qRAGycySF17cZEg01Itc/FTgItWtCdpKk5HIeECBtYvwLISbWvA3FuGtMC/ZI/akrwERoa0J2sumjehjwgYKtJtpbKi1jADE6ykJqUvMhsLP8LMkyLWhCgA+QdORbZZwHn32aJ9a/CECz1v/lBR6miFpwGDrvXg2vKgZNepmZqpMc42b4sEU/brm0OYuuGc3usPo0oK/U0j4H/FwCD/lCHDzY7mleUmU8O8Ablnl6mVrOXcq9FMV+vqfY6sifMhcHpVQQMBm4WmsdcartzyKe11qnVPUkLJbqypEyfZQZkZ9P5URKjxy3T6nTEsam71qqD1UuSoHXgWla6w+VUrcAMxDZUJEBQCMkaTEY2KSUWqq1TjvFOoD3tdYPYTkrUJ0heGl/ALolzGcwr/MAU8kmlFoc4tW8B1k15ko205zG7GBB5xsJXprJM16PAvCJSmOKTgLgwBu1CWc3++Lr825CfzYQx7U9E2nNeu7hdQBe5gGuyfgK5S15r+NjnoUPkUhnCiLusvBERw8jYnQ9IjxjzPIg8DWXr0WLJWqZliJFXTHdIW0xRIVJJDPGRGDBCNJ8M6YxKQoNQITeHiBS6lP9i4FAicgGNjMCtQyKsqVNjH8YIkKNsKUmIojPg8Be4L/ERF1DgVhETAJFWZBaaCLAGYhoNum7bDHbZpn5ZcicfO9C0nV7IlFSH8T0qDUMZwqPtX4WgNE8R1O2cZF6hk90b3II4cpJX1ODYjboOJL2XMFD9Z/iHW6nmQ7hMW6iwdtZDBrxMo/xLIyQaUSSTW/m8NLbj9NFLyTpyGXUrrETgLr8THJgG9mw4GSfLMvZSpm396k3OgVKqReBGxDX2eZa661m+Slvah6L1jofuEMptfRk252FTFVKhQGJwBfITVZ7xWqx/EmUlJXj61UxUupdSem7x+tTaiOlluqH16k3OXMopUKQjoQfmUUfAa2UUucfs2l/pA9budb6J+BzcFu4nmyd5SxDL4efvcLdpjUzuIcmbOcFRrLD1QKvRhofyvChjIG8T4/lc1nn1YZc6pJLXVbqRNbQDoDP429in6rHZwk9qUsuUaSRQQSzGMC9TGP7d5fyDrfzesRt6Ldqot+qCcmIACsFeuOu5yQfSVUFSILULUjEdKUIRfwQIVhTajs3J0FUNMREA5sgqg1Q39zl8REHXKfVTFE+rJ9jjhMCBEkNamYWZK8zUUmzn6+Zi2+wLPIPAFojYjQHCjbIg1LkNow3sFxSeAmDglTI/ABCzSW6j49crVMIG9MRAVpc4VFoxsoz840EtkJJPtJ4or1Zng4swP3eA4Sxj+i8VHjvLsrwxp8iJjKKm/mY1YeuQDX4kCJqcRUr2Drp74xlHOyFWhQxmeFEko03ZTRlEztphL4DmrKNfL8D7FWaJmwnmFx0AWgrSM9JyvGimBonfZwmnyOusz8es9y5qdkY+cTOcFYopRoqpZYe8xhZCadVJWitrwbaIam7Q4GdSqm3lVLXKaX8q3Z2Fstfn9Kycnf/UHAipZXREubEfUpLbaTUUo2oUlGKWM1kaq3LAMzPLDwWNA6RHH0xkl5hm5OtA7hJKbVZKbVEKdX2RBNRSg1SSiUppZJ++umn33c2lt9ETxayRPVwv34ubzjP5Q2nIbtIVosZwSQG8gGNVu+lCdtpwnaG8Co7aMIwFcbahJbwo/wT/8eapUSQwfPFIxnALJ7lMdZdGsvDk6bizyGinkgh6okU+XQlIWIsHenF6UQfc8zrYog2Zr15OcYEKAw4KA/XbdAiVraju6TjEgGkSj9RUkyv0ppAJPjHQasgcbQtSQZCxHk3PEQyZ32DEcfdJEQII8cpOmxe/yD1odQEX295UCzHS0k128VIim+gS9J/wWwfA+FG4LbqDpnLkPcgC4kKr5c5ZjrOwpugZJ2pha0PBQuQCGoxEA03/rSAx3max3maA5zH/1wX8NTAhxjJC2wjhoTdt5OsFlMz4Ek+0p8ymBn04XM+HNGPtLwoLhrzA/O4nilrRqOOyYf4D07KbzSQwDKVxDJ1EKXGodS40/hEWc5Gyty3mY7/AOo6/3vNY9CxY2itv9FaH+Uwe6qbmlrrXVrrrsc8XjizZ3tm0Vrna60TtNb/RPI45gA9gK1KqS+qdnYWy7lF/xlr6T9j7WlvX1Kmj2rbUlk1pSXlx+tTqo5aZ7FUB86G9N0zyevAM1rrEqXU1cAXSqkYrXXusRtqrWcCMwHi4uLsrakzyBgeA6Ah++ElX5qzhZs7z4O7oFu8NOv8TK8H1rOPMKa1v5NP6QeAN2V0ZSlRugl+FPNk5OP4cYTr231MHEkEfFRO49t2MJe+FOHPzBEDGVDwCQcDa3sm4LjR7kFMhnKgKNfUhYJEUlfKU1cMkGfcdZ1azB/M/p2BZab2MweIBN88RLgGAbnS2zQwQkSeU5Oa57R/iYEWoaZeNMyk3x5GUmyXiElRdi6EBkkKL4B/qJlDoWwXs9y8Xgn+pv9oYLAZJ1gisaENzPaHITwWT+9Sc+6EQXgXJIp8MfjuQaKzKyHwsgrbJ0L3oV8wp0wSEdZ7X87fvisi4dIBDGUqD++YyheNu3Mdn/OUfoJexfK73ObXFH8O8ZHrJm5Yn8hFrX+Ax2XIGQymH5/SjjX02LZCfvcJPSEBbkhMpEvPhSwz1wBKjUNrW2t6LqFRlHHK9N2ftdZxv2P4X93UVEo5NzVPemdRKTUNuFgp9TowUWu953ccv0rRWh8BFpkHSqnWVTsji+WvTUlZ+a9qSg8Wl/7hcd2R0gqC190SxvYptVQjqlqUZgDhSilvc0HhjcSkju25lg5cBPzXvK4YHT3hOq31/5wBtNZfKqUyOEpyWKqC8TwDgOoLPA7vHLmNoP/8j/wLLqBR/E6mqxEsoTcwjt16Bu9wO+1M25jP1XV8wC3s1g0B2E8ddtKQXixgBoOZ2GEMW4lmC80ZzxjGMZb9gedxoeN1FYFEQ510VdOz1D8a6Ql6GEmJvQIRaYdlH1cIHrusEChKB/+tSBVbKCLucqRnqKsL+GYDDSAwF09U1lBSCq72QCmkJkF0DKSkQMw9wGokKtkZNs6BVpFmPs733kH5UVQIPktMj9LuSMg1F8iXdQWFEBppBLM3UBMyzac+PMaM5USG8yvMzzj34ojdGKT2trm8T7MYQJCPFMzeqyfRbdfXvHXpAO5UjblMryaJOJ7Tj9KONRzwq00KTfmY/vhQRgg50CaFHyfEwAqJfL7D7TRlG+tpTb2mUkf6La3lJsQWWLblWobpLQBMmTgaNRH0qON/rixnHxrFkdNP0f3TMIZ356TpnVLqJWA88p9lBRItHqy1/rBKJ2axnGNorfkt2bHHE6W5B89Mn1J3Sxjbp9RSjajS9F2tdQ5y6X+zWXQzsMnUhlZkDnC3UsrLpGZdD3x2qnVKqXBnAKVULGKSsf0MnIrlN6ISodvc+QQ1k/sG+RdcAMB8ejNMT6CHngvTxtJAzeAp1YYD1OYAtVmpr+InHUIDNZghvEp/ZjNsxwzu3DGLzTTnqQYj8aOYf7d6B2/KuHvqB5yvHmIZXVlGV7crLkHIcx9gj/TnBKC5ONeyErgQslMRkZiD1Fe2F7fbomIoSjHjBJpxvKF2gKS/cjtQCNkrzTbNJU3XqRWlFLJXQ3SYvAz1gYJ3TS1rKrAVWkVDthNdNfGfvDx5+PhIP9HQOGA3lOxBikdDwb8jhIZJRJZIc77eki4cHifzL9iD1LemI7eAgs35hZn5euNxHy7AnfKcRBz6JYV+SRFFGnf2nUYYWbyld/ACI0kjikPU4k3u4oIf8um0fi31SWO6OsABzuNB/Rn/HPUePDIWHhnL3kcbsURtYona5P5sDGYGX3K1pBavFzE6ZeLo3/lJs1QlGkUp3id9AEFKqZlKqV6/cXj3TU1wO7Ef76bmX42uxqypO5CJtIaxZn4Wy2/kl0MlbEr/hfxDJae1fWm5Psoht4aPF0cqwYjIEZ6+x20JU7mi9LemLFssfyZVHSkFuAd4Tyk1BvgFGAiglEoExmitkxAv0dbI5TrAeK214yF6snXPKqUuQy7LjwC3VoyeWqENTCQAANjwSURBVKqWJYm95ZYEoPNATYfezOdT+jGY12l977c8OeRhAJbtcAHwXOPR7CGKKTqLYQqG6/O4rPFqXuMeltGVR+ZO5qa+s7lt4+vspCHqFc2TejQDeFMOdBvwPBJVdBxwwyDQ1GWSb4ReMLDbpL4GI3WnJlLq6y0puYDUje6DgizpP+obLdFP3wcgqguERgNboKAAAi+WXUJDgFT5WZQvabquMBGg0WGQtgWibpS5hRonX5dL9nFFyxjZKSZFON/MyRgkrU+BwC0Q0xtcyWbefuY8gyAzCcJNvSw/SD2qv5OWvNVsnw20wf0XVZQO/l2AZRA2Lov/jLgKgCjSmFg+ilpehwAxKerOYgbEf8bChC6MvvhJFtKTrWP+zkotmYVTGcpnaicwjid1ETmEwLO1mT5iBHvj5Xh///C/5Hq/6b59pDfLF7W6cQ9aR534A2U565D03VN+zeRrrX9VR3rKsbXOUUolIzczP+TENzX/qnQA5mqtM5VSNpxisfxGDhwuoVxD9oHDBNU6VesqOFJaflQ008/Hu5KMjo7nvuu0hLHpu5bqQ5WLUq31D4ioPHZ5zwrPy4B/n2D/k637VyVN01LJ6J7QhM3QEw5RCzWxEZiyz97MJ5Frqc0B4BXu1HXd6buXq5Xcq9+lMds5eHg839KaELKJIIN7y6ZzW993qFuQzzu5/2ZC/WFMTX2AGhwhGynGbDRpr7jWlkLeEkm1BSSquRhC2yDRQdPShQgkhbcYdwptUbG44mYmyx9QaCwEOum1eRAdgsRrQERjTQgM8oxZVCj7FxRAYAgiGpHoJkEQVQwkQ0mOREP9G0BJsXHYDTLb5pvnhYi4DpUIbesGkLIbipaZNjI+Eq11xHW404PV4B+Gu19pQZYYJREsr4kB1oF/d+AboCfMpj9Z5uTe7XkPoxLH0YsFeBuHpgwi2JlQjyZGUS6kJ1wMHdWH/KRb8Tr3kKEX0pNEALbRlK/+fo1MZhbsbVyXS8u/Y4rOAgazi0aoJzV8lHbCz5Ll7OU003eDlFIzgQVa6wXH20ApNRXoC1wALFVK5WqtL+EENzX/4uQopd4AugETlFI+nAXf5RbLucahI/K9lV90+pFSf19PjXwN70oyOjpOn1JvL4VSHsFqsVQH7BeZ5U9H7TBPmsyD2mMxvkcwpITp66R5pR5iomNo6jKOxXSTbe5yMf1G2ab7nMUU40fiDzcA4P23g+wMjeamwGlkBYYxiRG03JlCZqNgmp0v9Yp6poKxQDdwlSHpq/UBJxU2F9LSwVXTRENTkGhofdwuva4YoADCG0DabjzCsMBsl4LbHGlvKUTVhMAwRAwj/U1jmkNgPvIXGIiYJ4UBWZCWC6GHRYz6YoyQasr6EpNm7BsGJVngGwepyyA6GHLyIdwPYuJManEAkCxaeuNuaHXQCGEzDwJkno5ID4wAGhj33Y7mPCJx91flCkikJxEmO/KtxAEU4c9khpNMLLvGXIK+XzHh/GE8om6FuFaUL1YkxTcjMf5a5tEHgG/VCr7Fn9t0KKV489R/H2LiIUnPnU1/6njt5xWGUuyodeBy7RS9Rh3/Q2U5K9HgpOiejFNGSrXWQ5E2KMcuP+5Nzb848Uh/7re01r8opaKAl05nR6XU58h/qXKkQv1+rXXy7+n3arGcy2it3aK04DRFaUlZObVrei6bv9qeQ27hkT88l9Lycny8FEp5RKlSCl8vL0psTamlGmFFqaVq+RR6dJsLwKLRveCDEiAT9cGTsn4hDGMyRdQC4PY33iWUbLIJ5W7e4FoSKbvYm0/pR9lz57HzkXqMYTwATQt2sK5RLK9wP3qb+Wf/CSLGEhHBFQLZiZIK6+uIzpom1bYAqdrKRWoqnTTXw9K71LcNRDkR0gxEmKZASaG0kXF1BtcC5BIwCEmPBWJMZJIARJAawUmY1JRGOy7AmNex0hLG39SyAvjmg68fFK2D0JqAt/wxb8yBVjVNSm5NEbhR7SFkK1AmwrPAXGoGOiZISTK/tFSICpNxWW3mnI4M3BJYB/F3JjBy3isAPN3nQbqzmDW0ozXr2VXzEuae34OF9ERnXQZAV9f/0Z/ZDEBqfqczhC4aalBMNjCQDxikGgLTeEIf4cH4aQB0SVjIdpqwd3wjPkoQMXsT8076UbKcfWi8OFLh5oLl96OU+gTp15qotZ7iLNdapwHvnuYw/zL1qCilrgPeRoySnH6vHyqlbkH6vXY+8TAWy7lNzoFidy1nweHTFaX6KKMjpRTl+o+LxpIyfVSPUgdfb1Xp7rsZeYcqZc4Wy5nAilLLn0+T1fxT7+STj8cS3DWTb8tbk7szHLZDt8bz6clCAPbzNxazggvH7Gfv+LoARLGH+5jGMpXEWv0w07mXFXTiSlZBN2i0YS8chqj2KcQFbuAzNQBmwFWDvgLg7qQPxOAnB7fgCu0CFEJekkRBA7tByUpTp5lq2qpEI061AEuMgN2EuPSug9Rccdp1BZmIZSEUfCx1phQjgrUiJsW3aJlp9+KS8aKCgADTPiYXoqNlrtmFEiMMjDX7m5Rifx8oygGCZY6urXJOBabBRaD5C/cNBvKhIMMTKS1JlxpYZ35Rwea5idhS3xzHiShfBn2YB6IbSe7TkicmvYjuo8isH8ysu+9ELdHM7DaQNy68lbt3fsDCQ/8gspYYZefEi6rfm1CXXYh7ckclWfqP6jKe6v0MLBjH/VpuQCxTSQDcNMaK0XOZ02gJc8r0XQsALyNGfo+b1jdfAPO11j+edK8KOILUEASUV+j3erVZ/hHwqlLq/GpUn2upZqTsK3A/P12jI3Hf9YhHLwWVoe9KysrxrVBP6uDj7VXp7rs/HzxCWbmmrFzj7fVrIWyxVCVWlFr+dLQWG9vZ/SGCIlmYBD3i57JIdWXJyt4APNXhISYxAsZLP0uAZGKpxSH4fizTCeMAtflP3nV49dN8vrwPG6a3Z9G9nUhbFYNKE5OjDqxiFR3kOOcBq5CU1XxEnJqfrmggFigE326ICVOQtFYpygL/5AonESNRSp9lIl6jmyMR1Y7gP0fGcKfJZsP6LdA60rMvuUaQOnWhZm6+AIclLTd7GYQGAD5isRnVDDEsAhGKxTI/l49J5Q0xQtpJF74Mae3yA1J9tkRMmoiVIXZugRinvrS+/A4IkHMtKTPpxXmyjBygC6ymHd5LvwagHWuIGrEHtUqjlygK7qoBUXB3xgfcHvEaPRslspjuxJMAwJSPJMybmNCTRux0v5VBxYN5dsQFsEDaxMynl/mcXMwEhjOB4YxmMpZzj9PsU/q7jI6qG1rr1UgOw0ilVFPgOmC2UqoGMB/4Qmu96WRjACil3kT+IyjgGn5Dv1el1CBgEEBkZCQWy7nKD/878P/snXtcVGX+x98PMwMM6GBDwQpCeMHC1MjccLU0L6srbW5ZrWX3sqvdNFu7atr9Zq1lm2VtV6uttHTT1VVLS5PWilUTFVMXEoNiEpDrzPD8/vg+Z8Dklljoz/N5veYFc855znnOcIaZz/l8v59P6PfSqpZljQZ+EgmjlEJDqwleoCml9CD2lBaVVYXcgjd/V8oJCTEHbd82bBwM2KTUxqGBC6ex+NS7JGH2n9Dz+v9wz8DHuQfQq2CRaTztSAHFHM2LPS6kG9sYpDIJ416YAOv+cCoT/vUQKewIGRR9wcmksIN7b3oYgKmOR4RkOYByqCwE9/GEyNeu1yAxgbp+y2iJYykNQEo9g6Cc5dAtRsp0KQVK4MsC6LNR1NbSXGN+1A+Ig4wi6nJOTS6o02ncd+ORMt5qpMurBCiWXtDVBTAgFvpEAxvFCRfEKMlfbY5fYkyQ8mW+X26APgngm28ceq1y3GhjbGT6UtPSzHkmm2NGyxzco8AdAP9ScPVEyoujgcmQ8J8CuqhX616ItGGQ8y1qtUbPUey9zMFNEY/y8threfnca6Vk+WW4ePsLCEuGhXwTGh6nM3iBS2EGzJxxE8vVOrqZ9RN439hTgRoLem4LriMbhxQ0ap/eYBsHB1rrTcAm4CGlVEeEoD4AZDY5UMaOA1BKXQw8BtzzM477PPA8QN++fe0aQBuHLV5YtZ1wRxguh2qx0ZE/qPdxyLV4aE2gFnd4szffGkWgdl9XXwsuR9hBJaUbvq0rlLj+jS/5jSeSt6/53UHbvw0brUWjpFQp9WgLxpdqre8/iPOxcYRgnvnuFDS1oDfqKJ4eYi7HcyGCGk5etZqubKMHvclRF4XG9tR7TaxIdzhzKkyCUwauQql7eZ11bKA3x7f7H38bfjkXV79Ku85B/JvNp8cchO3tAJINScuW34kwhNQp+aTxaUgcy0XgzaXOtbYc0mKpMz9yAnnQJ07IqMthFEmnjKncYI5j3ZQsgJwi4bJ9YmDXdolp2ZkNKf1kHr7VMpdEZJzbCb4cyUEFIFb6SnOz5XS6lRuV1IsQOStGpgshJ93KTw3ZNMqsy4qUiQB2I5zR9L2Sb0p7LSfeauAF6EEOtcVS5TfdO5nX6MhLXMEOUig/OYxEtYt/MZKZmX9hwuiHeLLiDlS+ZgkjOF1vAiCdbNbQH4AJPMkmenDH9CcZOuVDhuq+LJ97BnoswBmo28x8/gTqbdBjmrysbBxiaKFSapfv/kwopaKATtR9hq/SWj/3c/ahtX7NvO7fYvJejUp6pOS92jgCYWV0VtQEiQp34A53/Cyjo3Bn/fJd+b06EGwVKfUHNa4GlFanQxE4SDmlY2Z/xrc/Snyby6EoqwrwG89B2bUNGwcNTSmlFyPmB03hEsAmpTZ+FtQQeG+F/F5AZ9RMeJrb6LhiB73YQD5JfDF2ALz5NF21hyTyybljVGj8xrcBavinnsqrvMJ4nmXgjZ9DHvyHniSwm/8c05OLq19ldsS1dCzYwTJOB+APyR8LwaoCtiOkMpI646FRwGqItzwonUj5axWhMtucAkizsj6tcYMg9x1I7SeLKzcQyjZ1x0q8i8sq5y2BNMvMKAIqSoAdhpA6ZIw3rW49PvnpdNaZMVXmSelvarrMqzQfKAJXGiRmmjkfj2SNlgN5hhhjSoRBvnbGmXNIlTGVeUJ+E/vKOP9KcA1AyoWfgNf+cTHtvVL2dG/e/TyRfDOD7szi4gdfYG9Ee0q2/oaMo7NJuiiXu3iABRcN588XvcI/VCRv6b8CMGSVxPsMHfghyxjGxbzK0Ckfkl2bLvmkE85ArYOLZ7zAxY/Ba1uvkv5dG4cd7PLdgw+l1HjgYeQ/gyWjaOQWVFPj2gFHaa3zzfMzzT6KkFtzR2req40jCMFaTZ6vgkp/EG90OO0inD/D6Kh2H6XUMsv1t5I4BoKNKKUH2X23vDrIcfHtOe437Vm8cTfaNjyycYihKVK6VGs9ranBSqkmPwRt2PgplBjjcs6QRfjfVwRQ6Js0SWyjrKYdS/8g5POcFW/AXC9OqjmaH3j+QYkfjOUH/sJjuMeEU004b2+8DJWn0ZcplPZzJvNZ8P2f+eMx/+Srqb9j4vhniU8q5A/ffywHrgJ6In2dbxqyaMWeRADvIN1WJUBnyfjcVQB9UglFusQXIWQvASG4PiASUvsas6QY8JWDtwBKy6EScfS1COWudZB4HqGe1dQ4RJHMRYhsjImBsZTVgJQZezyEYmncVgtMJPh3QGEVpEabfVSDLw9Kt8ux04yCSr6ZsyHOu16DxDjkv0CEnJ+7ABIHISQ0waivlrOwA+7Y+iS6Rj6Jx1/7IrM+vRL+ABfzKh3YA2dA2LatgKZQx3OdSqGq/DL+QQ2r+IoUdjB54DTWhVyjWoiTQHf/eUNstD3s8t1fBLcCPX+OwZFBNPCOUioaeYf7gDO11lopdSTmvdo4AlGwp5Kismp+44kkISYSpVpevhv4qfuutby2dSW2/trGekrDDpr7rtaavdUBhnWK4cSkDiz4bwHVB9nZ14aN1qJRUqq1vrS5wS3ZxoaN/XA6XDllFtfyjJgW8RijcEA4nLviXYaoSbyn3EA8Y/UWAD7mdP4WvI7pjnsYxxzuSH2SYK4TFVXLxZkvwEzQSS74LyScuZ3d6lXm6ZGMXrGYC6vfQ9XIHUH9uvnHvxIYAoF3wHU8dQ6z5yGWIelANcR3AW+xkNdKU8zmjQFGw87nTHyMFyF7EVC8DryDIPFTpOy2HHmX9YTKlTI+cRRiQJSE1N4GTQ+qByqLwd0TUXFTgR1Q6hNHYPIIqbU+H3g7y3Of1SZi9Y8GwJsgqqc30mSTYuYIsMHMI0229+8AVzlCkqMJGT/5i4xKmmvmcjzc2v1+fqAdAOM/fYY3Si9j/cBeLGcYjyydCiurOTVhJ5/cMhxH4V6YFc3DUZUwzcVrXMw36l266nP5ZsYJADw18Rr20IFlnEGPsK84XXfjPSX3whY9Pk4m2g+0r8VXl41DCHb57i+C7w6AkKK1LiR0S2q/dUdi3quNIxA1wVrCHWEcGysu7+0jnRTsqWrx2Pruu1auaGtLbAONuu+qVhNeCzXBWgK1mhM7xdD32KMA2FvdMoMnGzZ+LbTI6KiB/hXLaMGGjZ8FPQWUmgZTjm5w/V08wO80TGE6I0d/RCF7WL70DEqGitoyJXgfMbvKYXmAAjoS3qGMOApR2zR8B50e3EbB5i4k6Vw2UcaeIUcxseYJVoRLDyNnAguRstVsyfMsXQieTIR4LUKIWTbghPV50NvUA7jM51apDzxLRWZI6YwQy3WwKw9inVA4D+LTgXQofBniewkhdZuSXP9KKCsHZ7n0npaWSyxN6WoIBCSP1OmE3JWionoyTBltPbPL9pYRUzrE94X4AJRuBk9HWJ8NvftCYrQp801GCvQSRPm1PoYS+yFOv1bfaC+zXam8Fq7yunFskJ8TeIofiAWgMztJ9mxnAk/ySO1kwvuWcoo3i2KOZt5TI6lNiObYgs30Yj1MXU/1lCjalY8nnHzSJn7Fh5zBRGYA8DkvASexiR5gnHnvCZvOLd7ZLbiqbByqEKU0vLnN7PLdn4d/G8+Ht5DaD8D+TLZhoyWwnHItg5+J/8jex4m3Kfj3c9+Vn62NbWnMfdfpCGt1abCFiuogACckxhDviQwd14aNQwnNklKl1E2Iq9/P6l+xYaMxaD2Vs3kLgBfzroEqJxw3DS6YSse5knniIMDSeafxGpegoxXPOS4DoAN7ODX5I5LJ51nGM8H7JCns5PmZl3C16sq5D0Zw7vGv8xi30Z81HDu9kH9OGcaHxlhpcP5n0iuaCaVLwTPEqIjlCPk6G3EKmgM7t0PvZKR0tQGlrk8qokxWQ2kRxMWYvlEfkC8KZHw6UCr9nJU5Ms7dD7w7oNREr8SnA3lQViX78BcIOU1NI2SW5IqD3A0mxxRwOaGwGOJzgM7gywZvBhArhLQyR3pZV5fDsFTknEsk3ib0rrdCH6JlvsSYZV7zMwZIhtx50Cka3OkSyXPGu8sBOOXcLGIp5jQ+oSIsijJvOx7/7z1MOvE+Rr+4mO8L2nOMWsgZ5YvpqaexUUne6Nk6yINXTacLBbATjv33ZgDW8VuOUSuBM/mn/ovM8bIWXVI2DlGIUmqbvB9kWKW159VbZn8m27DRAvTu1IE9FTWh555IV4vKd4O1mlrNPuQxVL7bSodcKd/dXykNP4iRMH6juMZ7IvFEyv/kg52BasNGa9GSbwu3AMdprQua29CGjZZiPuej8kSz69r9a9Dn8s1Y2D22M7y5muGDP+H6FTP4iMHMGnAlAVMCeMFYITb6VsX4k5+gP2tIJ5tC4jhdjyUbeIGryCKDY7d/x5dTetBHTZSDfjiOx036Qc50SEtHynatd8EChGR2AX8xpBgnXnyIaZAp3/UkID2gG0x+aSS4I8DVDyFznSVj1BMNrmrAIW6+Hss5d4Mc15MK/jygH5S+LKsqq4WQer1IGW06+JaC9zxINcoogH+dIbPJQI4p5bV6XYNCIMmFYV0QR929puTXa+aOzGvnakjphRDQXISQliIkPQAUQ+oos3w7nBb8hAnnPgTATcwknyR+d+dXPPrgTQxjGf8+8VSeSL6bhzfewzFqPjx8OpEvayiDN/WDXDBvPrNrdxE7exfFkxOZ/O9pPHLTVB6deRPHqEmIjD2MP6ppwCmcoleZyQ7kYSYA2JmlhxlaUL5r42dAa925redgw8bhioqawD5OuR63i73VAWprNWFNZI1a5PCnOaWyrnXkzh+oJbwhpTQs7KCpmUFDQD2RTpyOMBzq4JUG27BxsNASUvqtTUhtHEyo6XDKlFWckgxvcT4DrODMxHobfbSaZzdNhD1ww8Y5Yr0BGBNddGeYxlSOGS1lN/6XFR/v/AMv9x7DRwzm6hWvcuuQ+wmnBp++Ce8isUK3+jjTUhGTohLAA7uWQGIyUtb7lYlLqUJyQ1OpyxgFIWwmJsU9CFEyTU+pb7nkhA5LlZ5MTE+pO1LKdEFySf3F0svqigYWged4YLMYFnWKRkppAzLe2xMhljH7zsO/Q9x2iQXyjCvwCKQfNWhyTGPNecZKf2tluSioIIQ6JdWc8w55HYiVsZQDg5Ay5o2ImjoF5jrG8uTrdwDQ96JPeYzbOOvBt7iYV/nNihL+OuRquuetx6Uq4A03z4wdxw1qDmfpt7ih9hmoguK3EkNuuo/cNpVTZq7iXc4FBpozk+tBaxfKK8syfKs4GxuHG2oJo6b58l0bLYBSyqO1Lm3tNjZsHMmoqAmGylcBYtwutIayqgAxUa5Gx1mqYng9Ujr5D8cz7tV1IcJ3oAjU7uvqa8HpUFQFgq3ad+gYhty2i5Cv/Q6HavW8bdg42GgJKZ2qlJqDdNvV719Z9IvNysb/b0ydxoZbbgLgSc8EOrCHl7gCHoMCOsJjcI7KgO8G0H3IerZsP5GTrpZssexL+nHxqy+gsuCYfvMZqj9k+ZQz6Of5FNbBpWH/IK9nHP8cMox3OZeZ3Mjzd95M2oOGBZ2BFLnlIiTMCWw0pj/JCAmNN/NMh8rl4K5G4lFMTqkrRtZhZZcWATtgZ7GojsOqYGcupAwANgsZ9XSGQK7ZbwCKSiBxJXWqpRM854NnB5BTp7S60xGCmQeuCLCMTF2dEUVzncTBeDJMduo6IBO+fE226zNI9mdFymwrgTRjfOvLgcRYUV1dQ4FC6hTSJIQAFyCkNQa4E9pfWcbtF90LQCaL+IjBHMcWfss6zh4yn8v5O934BjTsJAWAz/RJLORMCsISKL5wDn/WKbz/B6GYNbEePn98oDl4IZ10GRDPubzLBD6hk+9c6UkFZjGefLq14AKzcSghYBsdHSx8DPQ5CNvYsHHEorJm30xRq5S1tMrfJCm1XHDrl+86zO/+1rrvBjWRrv2V0nBH2EEr3w3WapxhKqTupsa14zf1yLkNG4cCWkJKzzSP7oiGAtK/clBIqVKqO/AK8vW8GLhEa537k20cwEzgD+bYD2ut57RmnY22RWXMTBbrj1lEJsNYRj++QqmXATGVjKm+hpKIb9mKl3f0mWRPNKaRZ8Gr717NpHPvY7c+l4t4A6Lhi00DWHlFBlO4kw7soYZwJvAkvTdv5fmHwrnmwWwZPxT808E1yJgH9QO80sfpciLcKBVoh/SKloMbINqokkDuWkitQmJlTLmuPxtSTMYpcSZztBT8ATEzotq49gJcBImrgRIozJbjVuaBcx3EDwBiID4Ndq6ElN2IGdG1QL0rd3U2DEgH8s3+SxAyGQOshT5dJBaGIpkPPikLTktFiCvSv8p2cKXLT3xmHyZfFZDEwnnIO3MojCl9jwSPrJzOFE5mHW9zPvEUspMUZjGe+7mLp5jAIwp26ycZwkeM5Q3OZAGX62I+IoUbvTMBGKw/BmAiM3iI25nNtftcJ5N4DIDHua2xS8nGIYwW9pTaRkctw3FKqc+bWK+ou81lw4aNBlBREyTKVUdKY9xCREsq/SQ1Mc4invXLdy3H3Fa779bua6BkwelQB618t1/XWL7K2xN6HuN2saeFUTg2bPxaaAkpPRtI0VpX/kJzeA6YpbV+XSl1ETAbGPKTbS4EuiF0IRb4Sim1TGu9sxXrbLQRztQ9zG8fk8kiRo79iKetlR9O5anMa4Cp3LJFnFeLiOOZGePoxQYGZWbx4aKh7CaBDfSigij+PPkVuvENWziO+7Ie4NiMzbzDeVQTTq/jP4fVv6XS9COy2pDLannqXyuqo2uA6d0cipC2vsAGQxK7AGsJmR2lWqEKBchVVW0IbR7gMI63XUSJdEeAOxV5p3llWOkMkyuaCfHlQAmsLzIuv5vNvmMh5TxgoxgieXJk36XiA8WAQUCMOO12coLbZJD6C8DVV+bmD8D6tWa/qeDujBDOjbIPV4J5Xi378u8wDr8Os7wLorJ2lvUMhbs993J/6b0AfFQ8kh87u9lNAtOYSurYfHjzAeasK2HsyXOZE1xBx4FT+WzVSfxu1Fdwlhw37Yqv2EBvABZxRqjncA7jSDKNu0/NvB22wVMzrwHE+MrG4QeNsst3Dx4yW7BNTfOb2LBx5KKiJkDUT3pKAUqbIWhW3+iLn+7gon7HAnWqaWuNjr4pKmfXj/t/xXYeRKW0tNIfIuAgpDS3aO9B2bcNGwcLLSGl24Ff5HaKUioOKTX6vVn0JvCMUuoYrfX39TYdA7ygta4FvldKvY84Dz7WinU22ggLOI95ZDJSnS4LLpAfWl8GwDBG8QJXMar7QjpTgFohEqEeAi8uupA/vr0MToJTumex5oshLDh5OH9KXcKxuZupTVVUVIcRvaMWVaI5K+MtVvUfxJMWKU1Fyna/EKdcXzZ486EyV8yE2AgkQeWnsrk7Hsk0raKuTmC7MQ1KNsudQAz4NoqRkDsZKABvHBCJqJWRhEpvd1ZB79Gwax4kJsDOIuidhhBBEHOjBcJhK/NMDmoO5BRBitkmZ6Ws7x0r8wVRXePTEBfhbHHajQcYgJBqQ8Qx5bvkmrmXyNxcCUj5rsOcawFUbhCHYI85l3ZXllHoETHmbs/9/H3zdaQcv5Nuq76Ff0Ns8DJU9l3wpTnG6wHJor0dGDCNl/Um2lPGcoYBsIkeOMwLG8TJHMYD8GIlkAi3qFt4T9/600vIxmECjWpJ+a6NFkBrvbKt52DDxuGOSn8Qd3jdV19PpCGlVU1/zbWIZ/0iWyuztLUuthodKqutj/CDGAlTWhXA46477xh3y1yHbdj4NdESUpoLrDCErn5P6bMH4fhJwC6tddDsM6iUsoIq6pPSZKy6TkEeoa/iB7zORhvhYSbQvf6Cu4ETpjF4bgYfqyyG6r50WWDqRzvUbabWw2W9T+P6MZJtecurs4m4pIaubGNlbgajaj7gT95/kMJOnu5/G6f6/s38hy5gwR3Dmb70QdlJCUK8vHX79QfA3RdYiqiNOwwR81JHFE8iVPZKDHhjoTAH4i0VNNqU5yYjpkHeum0pR8pf42RR7zTZV2KCbJ8SadRVi7jmgDcTWGtMiaqAVEgL1s0nLY5Qdqh/h/S5xqci5beLEOKZB1/mQJ9cGZebC6kJCMkGcBgzpDTk1pNl9OST45EjrwOY5V7IJ4kN9AKkp/S742NoTxnqX5pO32/jW/UGf9YpvL3qMi4c+CJzB17BnFXjGN5/AUt33c5rLMNBkKXKVBmeNgCA4asWAPBXruFm9s8mncFERh+cjgEbvyJEKY1o62nYsGHDBv5gLf6gJrqeUmr1kZZWNl2NYymW9Q16HVb5bit7SrXel+xacIapVquwFkor/cS1bxd6HhMlpFTrhgmxDRttgZaQ0gjgGzDfRAX/7yy7lFJXA1cDJCcnt/Fs/n/jdp5EFVTDLjgrYT7wFu+bdafrDJYXDIZPgBfhRt9jzLzqL6gb5ZJ7OUt6Do/N2Mydl0whnyTCqeFdzmHP8o7cPvJefuBownLKWVPYn6Q7clnFQF4Z/mcALl3xD3GUBSGXPeUnJUjR+GrpsXQVICRtLUIE8xCiBhSuFQIY/wiwAiF0EUiZaxoUroNAcT0332z26fTyF0BZOXhTwZ8jGaTuaCGInxfDKeXgKhFlNC0O6AKFi+qRTqByrZBY/w4ZX1kA7l6ibAK4vwLaQZ8BCElOgFTrsrYCJeLBlYcQ5lRE0c2TcayVc/FEyOvjWw3ei+FjBvMxgwG4kwf4ze4SxnR8m9Me/ASAAUVfwGbYNrATw1lC9aoIZt7yF9556kzGJrxBPOIWtXT2RwB8cPUIALZwHGvoz8cM5hF28N7k8ZxENkyGzvtYH9s4nCA9pbZSasOGjbZHRY3cZW3I6Kg51dBSLOsTOGfYwYmE0Roa4oUuZxj+g+SQW9JA+W5NoJYqf+0+r4cNG22JZkmp1vryX/D4+UCiUsphVFIHUnyY/5Pt8oBjgf+Y5/UV0ANdtw+01s8DzwP07dv3/x3pPlTxvjof/gr0hQLjssqeCLgcnn9MMuLVBA0dpPa0Y0IBu9Wr/O+BqWy6swdltKc7W1isNqDYSpqWHona3xRwvV7IBJ7kYSaHyBDGbMifI8Y/Tie4eprJ5IO/HMpWG7K6AXCCr0gI5K61slliXyGenumGGAZM9IoXfG9CfBx8WQSJMZC7yJDBYtiVY8YPBW8ASrPAMwBKV9dlmA7oB751orqmJUBhAQSKoH0kQhyzZDt3LBAHLoA82FkOaUXi1lu4GrLK4fQYOScCSOluuYmlMS+FJ0mW+0tMnmoSYt60FuhntosH1oE3Q9a/wFXsMfL1qKyljM94gqEsYzbXMovxzDrmSsKPqSGBAi5TPWhXPgL1oWb7Uwl0K8yl9jePw0lTAdBfAixBDYFbV9zP+4+cT8fJ0jT7MpfzMjCWuSEObePwRAtIqe2+a8OGjV8clYaURtUr340OdxKmmi/ftZTS+uTRMidqrRlRrdaENcBKXWHq4PWUVvlD/bOwr8GTTUptHCpolJQqpYZorVc0Nbgl2zQFrXWRUiob6Sp83fz86if9pADvAFcppeYhmtNZ1IUaHug6G22JnhFg+ja5GWA1WxVcqbPZakxwYvmB+5gieZk/PAzAbvdUcE+l6hbFbTwKwNEUA4O4Wi9iBEuoIYJ1+mSSyKdb/reMS5rDb/9r3H3yEDfbztJTauWNkgZsFILafiNQasyHEuq55hr4c40B0mYgHVzF0pPqjgZvOuSsE/dbgFRDHomDRKv8NwcIGFIYYQhpErhM/unOAHgTgFzTI1oMtIOdiyDFlABj9X8CpaUmDsaB9K5iIl8tt/cAocJ7T0/qeksL5YfLyirNJ2R6RHTdGF8JeHfL+nBqQj2gGRkr+XzFQOakj2OC90mqiWD89y+y/pjujOcZ+PD3PBw1jmW5w+iyvoDPep/E43oSw5D7XBM4jqdUNQwWknrr5Pt5Yuzd8EdYSGfeHFuXTJrENgA7EuYwQy1hVDdfvmu77/4MKKX+BTwDfKi1tm+g2rDRQlTUSKlRfaOjsDBFmFL84z/53Dr8uEbH+hvoKQ0ZHbW2fJeGldIlX3/XrAFTS1AdCFLlrw2pwgAd3GJAV1Lp5zcxdjSMjUMD+3tQ12GGUsqtlIpq7AE8cRDmcC1wo1JqK3CjeY5SapFSyrJkeQ0pksxFdJzpWuvtrVxno42xvUcCN+rHuFE/BisHsFjfzbm8y0M9JsAJ0zhn7CLGMYeu338Nhoy2++EHbql4mB1RxxLEwdPP3kYCBXDB6czecQvnpC7i/FnvM5iP2Ulnfkxys4gz6JC2mw5puyFZCGSIsOUjxNSEEOWuNssD0LuXqKRZxfI8MVYeAKVfQGWVqJzESOls1gZgB6SlIyWyxcDxCHksQsyDglBZIkSSIJAFhcVmPsaht0+axM5gomR8psczPtpsF4lc1QmSX+rxGgW0ROYSnwqpXcz4cqQ+oFz2QTV1+aNdZF3hOqhciRDRCLN9lnleYlTSONnHFbzEpbWvcGntK4zhbSYPmcYE75PcUz2dTfSAYujAHo5jK1Wni8lNPknooxRJ5FNGe+ZzNj8QKzcddBnDVywgiwy+oRv8SeY9dOyHnM98qgnnFcaQTzebkB6mCOJo8mHjZ+N54BbgG6XUZKWsBm0bNmw0hYbKdwEcYapZs6KaQOPlu61VSl0OxZ/SE/dbrpQ6KL1yVr9sQ0rpngrbsNvGoYOmynd7A3tpuP9am+XftXYCWuvNQEYDyzPr/R4Ermtk/AGts9G20D74K2fy9Nu3ce+Y2wG4gWdIYSfhVDNSw+1kMOjtLCquVBAG7r2ad7iCs0sXcrxnI/cwnbLrX6DPgk0snjsYpe7lU92XHXRkFtez6K5z2PZAJ76hK3tKOsqBi8EdgxC2HQhZ64koj1kS91KaDa4IICARMRnbYVeu6RFF1NScRdB7EHy7EjwlQBdIdQpRdZca5TRZSmnjU2HXOin7BXCXgNtpjp1kVNdsU0ZrRKXUWCgsgvhI8HaG0pVGWTXqKO2AHOOYWw2e4cA6KF0kMTSuZFlOX5PHOhQql5h4mnSzjwBQIkqtVfYbnymvS2kBeAaa18giw9HwEleQEiYltrO5lke+nIo+Rv5FdEj6kWuOf4ozWMScVTfw14FXc/N9z3PLlATG6yfYRjeWLP4Tj428keqfxIREUcn7BWeTPmYtsRQD0IOvmHxAV5eNQwV2T+nBh9Z6HjBPKXUcMB74Wim1FPir1vqLtp2dDRuHLipC5bv7/k9ytoSUNmB05HQcHKOjmkAt4Q3klCol/aathVWa/NOeUmi+lxZgzOzPAHj7mt+1fjI2bDSBRkmp1ropFdWGjVZhGrfTAXhqzDVsoDdXDpzFi+oHvgGYIOWci78bDcB3e4VQXsWHfFixEFdPzfC8BXxBX+7kAa4ZNZsljKCjvoQo3mYmN7Ho3XMY98AzAMyvOJtzj4kC4N3Ui0QxLEHUwp6I22wu7CqAxDhT4poMfGpccZMhsUu9yVdD7wHyMzXWRMGUQ2VAYmKytkOfGEIRMJRLH2koarMIIXrRss5v3HBdRo2ks8wnfgDyDq0Gj0VirXesBygFXy60j5be0lKfyT9NkIxUb4zkmlZWSWuoO9Wca6nZR5WM2VUF3TZCfBfEYbgXeCx1dxAwh5D7bgIF7DRdnnvowH19JtGfFawqHUIH9rCHDjzGJP70+BIYNI1P9Osw5UJ6MI4ebGLCyIcYyxum5FpwT/LjnJK3iv8m9ObEsVu4cu4sAEawhCLi+TuXc2mzV5SNQxEa1ZLyXRutQw1SbP+qUupfWtsZSjZsNISGyncBwp1hVPmbJpY1AYuU1rFS10EwOgoEa6nVMoefQhlNKFircYQ1pA+1DFYJsBV/Az+PlNqw8WuhJe67NmwcdExFekTVXGCSLLPuCP6VawBYyCiWrzmDLmsKeLn/GC7mVe6Kug+egmt4jtFZi1FXadyf/khlTDt262O4lRlMYyodRu3mLh7k9sKHuC3+cc6y/H3rOc9STZ2lVoKJaKmC0s3giQH6gTsP8BkVM8FsWwCUGBKbYPJKY4wS6oOMONkfpdITWpkH7mzpzQQxTSJfSm4LqyDV6hutFmMjtw88ZwOmlLgwzxBGU94LQAB2bYe4GKOKboSyKkjtK9sVb5fjBNZB/GgkBsZSSdfWnbMnzpxrkZwDSUjfbYIsK5wO8YOAcvjbHLhuQBFPXiaZr2N4myLiqCSKuz338sidU/nswZPIJp1lbw0nMfJbPq6FG/VjdJXbDdzw5Ryi+lTw4NLpADw1/BqeypMYmNsZC29O48U34VFdzG3MBOC2Zq8mG4cqbKX04EMpNRq4AfkvNgvoobXeq5RyAtsAm5TasNEAGjI6AohwhjUbj9KQ0ZGllAZb4ZBrKbANkVKLh/qDtTjCDvz/aGmVVb5bL6c0yialNg492GqojTbD/RYbfRxOLfg3/2Iw/zJxIxbG9n8JBrwRej6QT8AJ1/Ec6o+aM9e/w3pPb+BBruYF3lh1Jd0e/ZYp4fdx27tPsyp+ENcwm+v4G9fxN1H9TE+mLxchaRGIcuqTh2cQQjydsDMbcbm11NUSIFp6TRN7IcQ2IONy1oG/GCrLCZXmUg6ry2FnsZThejvD+hzZx7YqSDFqJl2AKogfAZ5M2PUmQhKdMi0C1GWmAuRD4gBxEKYnsBcS06AyR2JhUhNke29PoFgcgnEAOdLPWlpq5hhESnSLzf5z5JhkyGsQfxn4s6Xv9LpMYASMYgGjWEB7yiijPa9yCavpT8y937GF7ixjGBHFULwskTvDHuQaZvMxpzOHcXDy38ggiw+Gj+DT4X1ZwgiWMIK+rKaCKG7UUTyqRUVNYhtJbOMmHuMmHvu5l5eNQwCSUxre5MPGz8aVwCNa6xO01s9qLZbjWusA4stgw4aNBtBY+e6407pQq5smaJZSWp+0OkJK6YGX71r7bbh8V/Zf00oHXuu86pfvto9wopRNSm0cWrCVUhttivvGTmIPHcgigwe4k0+9v+ch3wTOZCG3qEuADtyn53PZmrdlwIBpwDSKgNe1hHJ22/YtT+kCXmMYPwxsxyUDX2EmN/PduTGEU814nuEHjpbxmcBUIE76RS1zIGLAvxZcaQgxiwZWQsoIM9G9hEihP9e44xYAx8Ou1ZCYDmldgI7yPCUaYZNVEvDrjQG/iWJJiQTKoU8cEASX0+w7CGyQWBq3pYpWSaUuTvk91FPqBf9GEw2zUoiwOx7cCVCYC5XV0L4cXDEyT1c/QuTZc7LZRxGERCzTo5pbBKmRiPFTGpAl/ajxhcAgUKs0u8d0AOBZxrOEEYxjDgAzw29mPmfzUvAKyIWY07/jtsJHWRPfn/euupDrX5jBmTqJv3M576stADyqPwbgbcawhv44CJJFBlkMZKZx3LVx+EIjZlc2Dire0lovqb9AKXWR1vp1O1LHho3GUeFv2Oio01FuAL79sZIOUQ3fKLPI47MX9gktc4Xcd1uvlLoaKt+1lNJA60hpQ+W7YWEKT6SrWVJaW6tZ/20Jce3tNgwbvzyaJaVKqUitddWvMRkbRxaiqKQA6Re9ltlsoge3+R4H4Lel/wFmcp8uA0Cnyn/n1fpkTlVnwsNTuegReGLyeDK6rWQES1iXdSpEwgMn3s3tPMx4ZvEjHZjJzaSUfisHTTCPYoSQWn2a0aY8twAhfzFIqW+B2TYS6avEZHpGyBj/RkhMBYrEVdcdqBfbUiXOuVb5qxXF4iqWXk5PZ+pIsWW4tFFIqtfqL42RPlciEJJqyo1LC8DjgZw8eZ7WxWwTAfG9zDkYEl2ZC05TsuvKBP8i83tPsz8nouoWQGovhLwmA/PMT1PCjA9e/ssYdmPVMUPWfwcBUJ0Km6LSuKviQb6KSud3Q8/iej2XG+NnsogzeO+bC3l200SJ0QHu0XcB8Bc1kdigfFD+O+z3XMtzAIxgAZP4kFtUAk8DD+k92Dj8IOW7zX7M2DmlPw8TEGf5+piIxKrZsGGjEVSGekr3/Z+U2EE8J779sZKeiTH7jYN6Zbb1FE1nmJVT2nqlNKIBpbSufLd1bkeW0VF9910Q5bQ5UvrN93up9AcpLrddem388mhJ+e5OpdQTSik7j8HGQUECO1BeuNU7iydeupsnRt/NReoPzKq5nktqXuE5ruF0z0doPZV71jxOEvm8csyfUU9rTlUfwuVTuXHyY2yc3I1bVRyfq//yeOkkemV8zq4TYymjPR3Yw+CXPyOfJK7iBZxTwDkFWIEQtr4IaetHiPwBog6mIRmecYTKeCkx46pkub8I/AVGWTUlvO40yDUkkS6yz/bRUJoFX65DVEmH7M8TjZDddNiZY5Yb8yNfCUKCfXJ8vyGzldlQWiQPj0eOkZYuGaW+PDPXWHM+VuRNKTidMk9XHOLYG2FcfosQ4h0BleuQnlMrFibXnMMO6tx6HdCZnaSYx30vPYA6popAZ3gg6k6SyGd+1Fk8ziTgRsYyl7S8beyhA3w0jdd7nIt72I+MHf0S96lw7lPhwCu4wypxh1VyG4/RnjI+V+Lwt5BRDNV9Q4RUbZKHjcMHLSzfLdFaX20T0qahlOqrlBoPHK2Uur7e4w6w66Bt2GgOoUgY175KaaJRSnftqWx0bKjM1lmflB4EpbSB/Vq4YXDqPtscKEorA4Q7w4j8yXl3iHKxp6JpUvrF/34EYG91gHP+trrJbW3YaC1aQkp7Az8Cy5VSi5VSf1SNdYLbsNEC7J7bWaLfLcOdj+F6XUpJxGxKImYzjjks3jqaSdwPKdVcVvAqA1hD7vQk/qsHQicYy1ziKYS1UzlHe6mM0TzA3dI3CtzPXajL76WM9kzicb56Ko2vnkoTtTGIqH/lQDZCxnIQkmZllsZC6Qpk+74IUYs1j2gpiw0ROyfsKpKyXjAkUiqLcUWAJwP6JCC2JPGGuEYgiq0PUrpIyS8b5XherxzDcustK5e+U3eMxL24I4ChZp7GMKkyYOaWIyrqrg1mbmY8Bea8nVLqW1kOuWa+RBhn3hKEHAfNvq15LDJzyYf0YDbVhFNNOH+74nK2J3RmlOc9ionlfN5ijO99OrCHD/QFLGEEOcnduG/KA/xDf8FF896lctlRzH32Ck7V/UOPfLpxDc+xXK1juVrHUL2UpXmZLM8bwfIhZ9CdLXRnC7oH6B4HcsXZaCtY5btNPWy0GInU3U77bb3Hb4DL2m5aNmwcHqisCRLhDNvPyfaoKBdR4Q52/dg4KfU3YEgUFqYIU63LKW3K6Mgq6T0YPaX1S3ct7PyhnHX/8zU5dp0hpVCXd2rDxi+FZkmp1rpIa30/opu8ADwLbFdK3aqUimx6tA0b+0LdVPf7o91vguOBW+DZ6RPReup+ZZq3JjxG14S63sITo7bA43A39/Mhmeh3FFFU8Lq+mgWMYlXNaZTRno7P7uE+XcZxbOWMhct5mMk8zGRREAsRdbMcIV4FZuepZlmsrPd4qCNocVC6Wh74EJJmzIR2bjclvEAlUGSVBZcY06ONQIxkjZaulOxRopHS2XJx0XU7wVcAFAnBxYOosgmidHoGiTNvZbU8MDEyvhIhqYkjEELpFRdeMMdwmP5Xy1nXJwTUnQqpyeY84iXWhmqkt9RSS6sR1TjTjI0Bz9IafpNVwm+ySoilmBNKv2Ygn9CfNSzPOoOw2Ht5MXM8HSlg+uYHuZRX6Tn9P5y3eSFDR3/I6aP/BUi0jPVQE+GerY/DlqkM1X33u2bOGbKI0Sxq6HKycRggiLPJh42WQWv9gdb6cuACrfXl9R43a63XtfX8bNg41FFeE9jP5AjEUCixg5tdeyoaHWupla6flNk6HWH4W5FT2pTRkbWs1UpplX8f510LTkdYk87BY2Z/xj/XF4QMkkoPUVOkMbM/C2Wp2ji80aJvBEqpKOBi4HrEcn4OMBjRUIb8YrOz8f8Ta4FE+IsaALwNX4wBQA0EPukAZDBSz+MJdRGMTIGHIfV9aaYM/7aUCd4n2UQPLjvmbS6b/TYX8wJltGdWxQ28uGw8N4/6K6TDPRMf5/UZ50I2nHvme3LsdcYUyIeQyjzqyGgAIYJe8OeZnkuQEtY48KSb5xaRLRAX25RY2YfLB72NeRHRUuLrHgRkidOvN9mMr0LIcRL4d0D7SGM+ZPotE1OlVNdt3Hc9A2D9EjFI8gyQbfzrTO+pyUNdvwR6p4rJUftI8KQSyjK1TJR2roSUoeZ8QHpYs2S8d6g5pySE3MYg5cXWjdFSee1eePpiMsgC4Lz5C/nk7DlcH3yWLmo792VM4m09hrs4m9/X/Jsdx3fhDS6kq+9bVNq9HKu70psNnHP9G/zDI8mji0sHc/mMlxn59kcALF93BgCdxsqNiB4rrHrdUY1dTTYOYdQSZjvsHiQopQZorVcDTqVU5k/Xa63tOzc2bDSBiprgfv2kFhKPcjddvhusRam6kl0LrjDVKqXU34TRUbiz9e6+AJ/mft9gibGzibmPmf0ZGwtKqPLXcsuw7vzt428oqTo0SanWmpzvyhgz+zPevuZ3bT0dG61AS4yOngbOARYAY7XWX5tVc5VSm3/Jydn4/4eHZkrG5e08ibq9EwDamNmpM4CjpwKweC7wBtAJYnvuYkTvOrPJRxScouPRnyj+ffyptGcv/W7PZtXDpzB51DTW04vL+v+diP41rKE/sfcU8+c1C+RYSQp3MkJESxBrXFO26w+AaxCQC65Ys84QON9GQwBBbsOkAsXgiQRioHIl+MqNYpkn61xxSHlwUl28KIjiGW9+LyoRI6PSL8CTgPSxVoE7GkiA0mzwVUGaKRfOXS7jooBEU0pMFfROAPpCvNWPWkWdQdMQxEk4XZZVFso+3AHqDJ1ML+z6OdA7zcwjDnxLwRtJKOO0AjcnPivOuTpOkUEWUeU1POGZyBWFLzEifgkXPDgfOsHRI77nhfirSf3nG/AK/E89zf8Gm8QK8wJcxQt8u6YbHCPP9RBQj0jsDMA2pJX9r0iWqY3DD3aJ7kHDZUh6cUPRvRrscgIbNppCZU2wQaUUILGDm//m72l0bE2wlnBH2H45ps2pjc2hukmlVObaWlIaqNUhU6b6cISpJudea9b1PfYoYtxO8nx+CkuriPccOkWSu0sq+TJvD0oJObVxeKMlSmkeEs69p4F1gxtYZsNGo7idJ/dbtpaTmMtYhk7uwfIsUcr4Zt9tCg2LSecrTtGDeYzbeOn4sRTQkbt8T6D/AoPUI/h0JskVebwQdTUPcieb6EE4NXzfv73syJS9kmuMihKQUtUYQyJLkLJVD0Ioi2VdcQF4TYku2QjZCyIKa7mQyMRoKc+trJKW0gHl4I5EFEiH2TcQP5RQ7ExisjEuSoLKAnBXQW4BpJqe0UAA4o35UXwvSG1n5hBXNzeqzb5XI0Q6GlgLO4sgMQZcq2FXruSa4jPqLdIz644w510NJEHvEuqMjbLAO8DMf7sco/KeKEZePw8A7YMebGKPpx2jWMiU+PvowI90u/MbtnAcSxeN4kre4J+XDOM2HmPPJX9kt5oG3Cn7v9zFt1d048uXenAVLwCgtooU/OwjExk+eQHPcS0LOHO/a8bG4QFRSu0ogYMBrfVV5qf9uWvDxgGgoilSepSbHyv8nPu3Nbx7Xf/91tcEahskjs4wdXByShvqKTWRM60t3w0GNZHO/a1gwpTczQrW6v36bAO1tdQENQromRgTUpi3Fe09ZEjpmNmfsa1ob0gF3v5DOec9t4YwpWzF9DBFs6RUa91oar3WevfBnY6N/+8YxocALOMM4BQAflcgjkc6IQIyZLsdGRI70mVsAfcMnM4t6h4AMvUijmMLBSSw0JCVzt4cZjCRxXoa3oQK9Cr553p9t2c54bpvuP9vt4YUt6M7ZotJ0HJwjUKMgTZKWax/nSGpHcGXJcppfDqQDK6ceieRDGQbZdUQ2cpy6dP0OMETB/GlQBzkrIW0NIQoWhmjRQgJdCIlxEVSdhufLH2lqXGwczmkpJlomFRDbnMIvWML10J8XyDPHNsotv51oqjuKhIy63ICEUZVzSVUWgzgyUTYcwkQgMKVJr4m1xzH+uw+D+mLLYLb//sUp5/4MQBPeq9nes09nB3+Pn///jqyj0nnJa7gE05jBEtIydzBnMJx/HHmMuJuyuMtzmfIaWvgXtnto0OkwdhNBV+o9QC8px+AyRIXBNBFXQPAUN2XhXxorhsbhxOCtlJ6UKGUGgh8qbXeq5S6EjE7ekRrvaOZcbFIlExX5D/QNuAarfX3SqnuwCtIR30xcInWOrfRndmwcRiisia4X0aphcQO4sBbHQg2uL4mUNsgcXQ6Wle+G4qEabB89+AYHQUaIJ0AYaqO9NZ/Xar8Qb4uKCVYq+l8dDSRLkfIuXfHD+UM6HZ0q+ZzsFBWFaC4vIaEmEh+KK/hh701VPqDpMa1b+up2ThAtMR914aNgw6lpu23LJN5KC/0ZTW/rf0Pv639D7Gv7+K+2il8oK/kA30ln3Aar35xNVFUMJlHeH/m+WSQxTlvL+ITTqNTwTZGdPuAQBxcxOu89bezaE8Z/b7Ipt8X2WLc8w/ItWJY8sREiCJTsmtcZr1pED8OUSLXQUqmEMHCteBbCYXF4OqMmB4NAncvoFRKcyk3ES0lkBhpjlXv9s/ODYhxUhFQJYZK8b1knDcdiBVHXiKQslkrmsaU9lIlpcS+bOAkcMcSinZxDQcShIQ6nQjJLzfru5h9lJiHV/peqQaiDSFNM3OtMttHQs6D8hqQCeXH1/3L6M8axoS/zd93X8eqY05h/ooLmM01xFLM37mc59WJXBL/Gpfd9BxFbycz5O01pK36Cj6uI6QAaZk7YeR1XK8r2cpxOGn4S4GNww+SU+po8mHjZ+MZoFwpdQJwK1LN9GILxmngUa31cVrr3kg9ysNm3XPALK11d2AW2LXyNv7/ocIfaLyn1JDSxlRJf7ARUhrWSqOjptx3D5LRUa3WIQJaH9ayKv++n7k7fiinyl9LhDOMuPZS6RLuEKfhnT+U77eftsLukkqcYYqlEwdxUlIHUuPaUVkTJN/XuGGVjUMbtvWhjV8VyziDESxguD6JJYijm0VQN+gLucd3F/ed9wCci6h6XYF+0+ioxSL3/VHnozgfFk7jTh0kbEw5/xh7KcfO3cxY5rKTFN7YcSXTOk/mMv5OMbH0ZgM/niwfOEctrYQukDqaOsMhCw7zPAZ2rYO4PHAlI++SjaJkAlQWg7cnde69XyAkL8O0SvqMqZEXPDFSCbxrLST2kvEp6UCp6SEtAE5CDJiqwJ2OZKmeDP6l5njV4OkMuRsg1rxjvTEmBuYroB1U5hhiXI24+iaAqwoxMkoiFF2Dl1BUDNngGoqUNA8xx7VQjrgUR0oWKqfK67IwYhQXvDofgNxLknheBTlOX8/Eqc+iMjTf056jN+7l1K0Xcr2eAZi+0PMf4E29jmrCuW7ScyGzpNG184j95y7Cw/YN5q4hnD8tWgIfwvbMBGA2nUM2yTYOF2gU1Xb57sFGQGutlVIjgb9prZ9WSp3X3CCttQ/4uN6itcB1Sqk4oA/we7P8TeAZpdQxWuvvD/LcbdhoM1Q0oZR6jMNsY6JnTaB2P+ddkBLb1vSUhoyOGuopNUTV3wolFkBrKdX9Ka4Z1JU752+g6ifqcEWNOBzWH6OUIsLpYMchQkprazWlVQG8US7aRcgXI290OMXl4eyttqNrDlfYpNTGr44ljEJNBAXkzEghR0PaIzuBbfydy2EP3DLmYUawhEt5he66P6co6TW8Us/iRTWepXoZwxd9Av+C8GdK+d9Lx/Pbc/9DKV66dd7I37iW38/8FIbLMf99/KkA/P6LT0UNLUDKWKOh8lOjNlrELA0S04FS8OWA92yE6Bky5w+C28r9jEDeRVZmqUNyQz3Hm/VJQK70jmIMhmgHVEFOAaQlSx+q53jZjvlSFrzzHSGgpQFjNBQNqVa0Cya31FlXuuu2iu7yILcYUjtD5XZDcp1APPjXmmzVBDOPaOoU06Wi/K5fWc/oCHPeTkQp3QsjWAKXvgFA4SXx6OxbmcH1/Gva6dzL7SxjGBdMm4+eqVBfangc83fLZxnDuIsHaO8p4zzeoUglh3SakZPn0Z4y9tCBUYiplQ75i9pk9HCFpZTaOKhwKqUGILfurjTLftaLrJQKA65DDAyTgF1a6yCA1jqolLK8uL//ybirgasBkpOTsWHjcEJlTZAoV8NvlUinLK9thGDWNKaUOsIOSvluQ/sORcIED7x6qLZWo2E/gyaASJfsv9q/rxJbXi3Hqz/m7Wt+x7WvfcHWorIDnsvBRM53Ul7c3uSvWj2kpz2yAl95DT+W13BUtO38frihzUipiZn5O3AyQhMmaa3/2ci2VwGTER6zGLhJa13b1Dql1OmIG+FWs5tqrXXGL3ZCNlqFrpO/5pvpJ8AndcuWMILT+IT3si7kTX02ABeMnQ+vwHC1gnS9lu6ZW5jBrURdUcFRuyshF77JPoGTbsrmuZsuYxtdeWL03QA8NG8Cv8/5VHa+0RzEA+4E5J1QapYVm59e8A4EvjAEz6iqnnTEDCgXKtcap9x24DcdWJ7LqDNUyoPKEnB3QUpoQYjgXugWAwSkfDc3WxRVdzy4oiHVIXExlIsJEj6ERBqy6ImTHlDvKMABlYukXNcVZ9RUp5nXDqQk9yvTX+ok5LRLHKIMR5peWif0Tjbzs0qHfUh0TLac4838leFa+jX20IG3TjyLXqynMzv5w7sfQ2dIeeckJvAQH3Qcwbtzz+WFiquJjNLcVzGJNxhLLzawXElv6NLJpwHQnr0A9OOr/a6N1Uh26QDsKMbDEYcaKVVKnQpcjlzle7TWN7TxlH4u7kFKbFdorb82/aDbmhnzUzwN7EVKgU9q6SCt9fPA8wB9+/a1rS5tHFZoyugoMlwI2hWndm5wfU1AN6hmHjSjo4ZUWEspDbSC9Jq5XdTv2P3WWX2ijSmlXY+J3scwqPMx0SzfXEggWIuzgfn+mli73QfA6+P2/Vr/yDm9GTsniw27ShjY/Zi2mJqNVqAtldJJQJnWuptSKhX4RCnVTWu9t/5GSqnOwFTkg7MYIZ4XAa82tc4M36S17vurnI2NFmGHken0jALWchJp6nK66nMBWDxlMFvozi2P1LUzvfv9RSRk9KfQsLH/zj2OE5O3APOYzFsAdHrpB/57xXEUdqzmwY538cTA8WyiB/M5mze4kMfT7pGYy/qlrLHIV9KNZpkTMRLyAv0Q4paLZIcmgbuYOlLpRPSFZHAbl1zKxSnXHwTfcxCfBpTAzgJIGUAogxTMMcrBVS778OdAaqrZbzVQCD6flAh7jTq7azvExZi+V+SY8YPkGOQZwpwuv1cGqCtFrkKIqVUqXA6l8r8cTzTszIaUQYRKfgFRY3OgdDN4hpt1qUAmjOFtEoxyGUsxxcTyLufy+//eh0rQjD35JXqxgck8zAZ68dqQq7hmxWw+rejLqcpy0V2HXvlH+XUVqIWapY+dts91ksEqAHqxgcuxcbiilrCDUr6rlHociSZLAXpprTea5T/boEdr/SnwqRn/gVKq3U8/dw5laK0/AD6o93wrMLql481rmQqcaW7g5gOJSimHUUkdyH+D/IM8dRs22hSVNUGiIhr+2hsiaP6GVcnGlVLVYAZoS1HdIqX0wEmvpYI2ZKRkKaVVjSils8aevM/yzrHR+IOac/62hg9uOPWA53Qw8PSKXCKcYSSYXmALJyRKOZlNSg9PtOWtjjGIuQLmS8Q6YGQD250LvK+1/t6ooy+Ysc2ts3EY4DP9Pt+MPYFnELHilqjZ6Mmwhe5soTu8BmUV7ZnNtczmWk58ewuf5vUFNuMgyKW+V+h0xTYWkUmaeoDXPFfxYO2ddGAPS+b/ielMgcvhkoznuSTjeQofJBRvQjpCSMsRF9rOSF7pa4gyGAByJTqFvoiSWoqQvQRZZ7nSUi4qpycB4hMQVbOzRLJQjjjj5smDEol/IZY61TLSHK+jlOR64wCfqKxEQuJoU3prmRT1NMcuEOdeUs05AIldzL4tBbjEzCFTfndHyIMEpKvXhxD0AvOokvl6xiNf863e23nwx5nL6DNjE31mbMJBkA7swUGQx068EXbC3EeuYAvH8TkZDFfD4KNpZJHBqUPWwRNTuU+XwZaprB54MqsHnkzKwPq2xqD6yKM+/s7lnLrVVkkPVxwko6P3gYHA/36yvFGDHqVUV6XUsp88bqu3/gwg53AipABKqUil1JVKqQeVUo9ajxaOfQCpTjpLa10NoLUuQv7jXWA2uwD4yu4ntfH/Cf5gLTXB2kbLd91meWVNw6TUH6glokGlNKxVpNTqF23QffcgGB1Vm9LfhkhvhLNhIm4ppVER+75WKUdHN7j9r41graasKoDHlO7WR4zbReejo1n/7Z5ff2I2Wo22VEqT2fcLRh5CEX7Ods3to7tS6kvADzyrtX6lscnYvTK/DiyzGqWm8ZA+XRb2g5EzP2LoTR/yRMV4ZgCLmMWFvIS69V7SJuYTQbVse/40zjj7n8RUQwYn8rz3Ko5jK79TZ/GpfpIUbubvXMaJl2wh/KlS/skZlCeFEWcaOuNvQEhpObAc2GHKa9MRkpkMrjxgEFKCmwmedYgliJVTarU4esG3w2R5llAXt7IdIXnVJjImGUqXgqenDPPngvtUYK8pC04QsupKgNzVdWW8OKRXNGsD9N5uynPTzLHXiQNwZTGkGPXU5wNvO3H+9XoR4rqdULdZ4csQnyrlwQDkm6gYEAKbjRDzfDP/+eZ8ChBSOg7GjnyJufOuAKDTVT/Q84X/sN53CkO8i7ln7F3c1/sBnrllPNEranldt2cLx7GHDty64n56Waz5Yzj1OEs1fRuA3//FlFV/JaZXWUylL6tZQ39ytkp1oZoum+gp2DhMUEsYNbXN9vUcrZSqf9fheVMmGoJRN/fpcWrOoEdr/Q0wrKEDKqUuA1K01rf/jNM5VPAOEI7UflS3dJBx670TaWlZY17LHVrrs4FrgVeUUlOAH4FLDvakbdhoS1QYstmY0ZHLEYYzTO1XymqhJlgbUhb3HacIHITy3QZNlEy2aGvKg1uilFb/hPSWm9cq+idOxZ1DpLR1bsCtxWbTT+pxN0xhSiv9fLTZvqd2OOIXI6WGDDbG7uJ/qePWw5dAkta6xJT5LlNK7dJaL2toY7tX5tfHHW8/Kb/cC/y4muU3dyA7eCc/hCUyjA+5nEW006fxfH8hJR3X7ABOYX74aIaoi5mrx3JHwcN8n3A0I3UvriWTf/N7JlQ/Sd9Xv+APGz+GBXDNZU8xhfvkWBGEym0xhj7uVER1jJCIFNcAhKClIV3JDvBXg8uUvfoLwNUXKAZvBnVutglICXBfqFwJ7hFIkWAJuByEyKwrASGk2abXtETIqy8XUpOBaCjMkYxU3w7IiBVnXlc6lC4y+3AYN+AqIAiVG8Brym+tOfnng6sfIRIe31eOFYIX0Z5Wm97YUVC5ANx9kZLfAYiKejLiMLwI5u64gjevl/7e4GgHV/heQq2DXsM3MH3xg9wXeIB2XwdZOTKDaiI4jVUsZBQnm37QtxkDJ0JscBwAF4e9xlPqNFTcMIbqPWhdl0P6xdgBDJ37IfmdkugQtQemQL7Jm7VxmEBDINCsGvrDAbZZtNigpz6UUn8E7gf+qZR6DrjnMFMFu2mt05rfbF9orb9GvBcaWreZUEq0DRv//2ApoG+s/R/jTuvS4DaRLgeVNQ0TrppALZ7I/b8yO8JamVMaDOIIUw3miB4MpbSpyJlGldLqAEqxHwk/ul04YWr/HtRfG/8rlsgXdyOqd3SEk+LyGorKqohrH9ngNjYOTfxipFRr3aep9UqpPOBY6r48JAMfNbCptR31tstvbp3W2rKtQWu9Qyn1PvI1u0FSauPXxa3aAdzPE1eICVFX3YE9tR0A+Ij+wF0AHMUebl1zP3O5UAZ+MZIhX45EFygGsxj6RnBXwf0svmo0nA0d2+1BJyhGFnzEtwOPJqvnKTwfdjPjaucAkJhTLESrL4R8c4y7LakmRmUzQvaiCfV/5hQZEyBMX6elNuYBPnHM3ZUDKRcjJBBEaY2DXSshsV+9MdmIEVE8EAG+AomQ8Q6AynWQlQen95V17aOB4fDtm5AabWJkMPsqhKwiKANOiQSnIbeV2WJy5OoHC5fAKUjPqavEKLTW//EdiNYSDe7keq+HDyHYO6gjsR5gAOSen0QH9gBwTN6P7E4+mqOHfUtxciLD8pbBf+DTPtI/+pl+n0VkkkABQfOvZnEfaX0r/mMiAPHTC1ms7+ZxJgGgRsPweQtYWjBCXgBgUpRY+N4792EYi43DCForgoFmP2ZilFLPAwu11gt/+TnpfwKdfunj/ILYrpRqr7U+NGwwbdg4DBCKOWkoG8Ug0uVolHA1llPqcoSxN3DgESQ1gdoGTY5ACK9SB0sp3Z/ANdZHW14TJDrcuZ9jr1JKXqM2Vkq/K6kCGibaQMjM6puicpuUHmZoy/Ldd4BrgHXG6Oi31PW01Md7wColYZbFwFXA3ObWKaU6At+ZPDcvEg5y9y94PjYOAPol4CVQj5wAwH2TJ9GBPTzGbfQZu4mhcz+kkDhuYiYAcX2KuGLhXFb1OYWPM/9Ax4IdbOU47nxhCg9un8brXc4jhRzu6XYX73IORcRzZe0s+vqM3W598pWE9IgWSBmsuycULhcDILcxQqosECW1dxx1RkBOWLYAhvUi1LfpShAHFtYBRVJqSwLgAW80Ql6tzy0HQvZMD6s3VQitc7sc+/RkRMktgn+VwJnrIDUdIYsdZRe7VkvuqbsIMrogJPpaYC24q6EwD+Jz4Mwu4C82RNpr4m+sm8RxUJol/aWudCDXrHNAaTZ4BiHvKo/Zvhy6bf4WlSd3hX3Do7ib+/nhP514KW8sP9KBl6eMYcCLX/BfXcbjTKIr3zCL8cRTyBe/HQDvmxfh2AcAyJ+exB2qA111ilwP8wBGyWs3FybxFWW0YxjLWTx2MA3ft7JxqELXKmqqmi3fLdFaX30Auz9SDXpKkM/NJcg7HwCt9V/abko2bBzasMp3wxqIRrEQ6QqjqpGe0sZySp1hrcsprQk0THZBSGC4I4zq1pQHBxsv37WW/bR8t6Im0GiZszNMNRqb82vhu9Iqwp1hvHdd/wbXO82Nh5LKmgbX2zh00Zak9DHgZaXUNqQb72rrzq9SajpQoLV+Tmu9XSl1H9LVB7AUeB2gqXWIU+N1Sik/cp6vGtdCG22IeUj45OMs4l8M5l8sZ2RWHdFYyCg+ZjDHsQWA5WPPIPb1XTjC5INiLmO58oTXuZOpEA0Fi7swY+T19GI967r0pYz2/J0r+IGjOW/WQraN78TD3M4n3lMAGBj4HHohpkAJSMHaailZ3bkIUrogJCwaKDJxMdZXXKO9+/JgWLpxru0LdBYzJE86UgIcMCXAReDLEoLqdoLPlPl6O0OpyT0NBEQNdTuNuVEkFG6H+IuBbBgWDcTCl2uhT3rdHBJjoTQXeicg0S7RwJtQmSeE2mOpvFb/awCoNqTTa85jNXjTzDpLES0BqiSGZtcSIb6WsosXJhz/EI8efxMAN/AMBSTwVsZZXJE/l/ik/3EnD/DOlWdydulC3g6MoeY5D747o/AOqYAnYHjyIpauGQWrp6L7izLK2fDNEDn8iBULAMmyrQ9LSf1DQxeVjUMWWisC/mbLdw9IKdVaFymlspGbma9z5Bj0bDEPGzZstBClVX6gjrA0BHcTSml1I+TR6QgLmRUdCGqCulFSClLC25pImGqjgjbcU+rYZxsL5dVBohshpWFKUVPb9kppx5jIBrNXQRyRAfZU+H/Nadk4CGgzUqq1LgfOa2TdlJ88n009V8WWrNNaP4NksNk4RPEHPmIMr3BsxmbIgDNYxDqEWM5iIh3nTmIPHTiaYv6yaWZo3J09pvDgvOn4X1T08HxJBlncOn0WnAvP9biW8TxDN74hYXwBCRRQTCwD8z+XwelAtSii8ZlIP2gM4DPRKAUICU03y024RGm5IZ3AvO0wzmecdYuQrNHORl3sCZXV4MpCck6TEeJrFEkLHiteJlrGeyPN+FSI74Uoq1VCaCs3QJ9MM5eOdeM8JYj5Ui6iuhYLId2ZB27AuUM23VkCqTFAIdLNbc7JmwGFqyG+H/jWgXe4OR9jepR4AzAPcgsgtR+wEd49+1zijWnUF2oZ3HEF/759JOOTnmAYy3ASZBjLmO85k5o+Hq78chbn8xbDVyzgGp7jaIq5q/8DjKr5gId5hLPmSRvb+1+eDwgZfZgJqJtGwQ8Ad6OtuggbhyEUtcFmP2aaVUqVUjOR2JPfIP4AxVrrEzgCDXq01tPaeg42bBzqGDP7M4BQzmZZlVTpNNS7aUF6Shsv322I2DnDWm901Fj5LkhWaatyUJvoKW0sEqaiJkBUeMP/t8PCFLWtIMkHA9+VVPEbT+NluXOv6kePKUvYU2mT0sMNbZt+a+OIw2gWMZpFDONDhvEhb3Mp/1PF/E8V8+yXE/k8bCCfhw1EGQ76xKq72UMHJveYxrE9NnNnD7lfcd/oSbge14xnFj3YhK5QcDsUkMDD3MHTa27j1FXr6Hz7bmIp5qakR7kp6VF4E/wLIL4LIXJGOdK+WILcpkk1z5MQgtYTfFViBlS5FsZ1kWWuWPCXQE42UC2EkjzwnAm7ihFSGwGl80X9dPeSx85cKdfFKustgNy14DnezMXEwBAjZbWF5eBbKlP1b5SHpWiSJ/PdtRIhnOXixhufLvNzWeQ3AKSBL8fsOxIoApdTVFjvAPN67JD54EXU5GpI7WuW9YQ8XypfqGVCSNdOhY/hCs/znM7HrKcXARys42TOe2gh9IMRLCGCapZuHcU5CYt4g7H8ncu5PfwRADLI4n11DuwB9sC/GEw62bARHpo7gYfmTmjF1WajzVGroCq86UcLoLW+SWvdSWvt1Fr/xhBStNabtdYZWuvu5uf/ewVRKRWnlHpdKbXKPO+tlLq2redlw8ahhECtRus68rTXkNJZFzZud+Juol+yJthI+a6jdZEwjeWfWgh3hLUuEuZAekqrg0RHNKaUQhsLpewureQ3MY2TUrfLQbgjzFZKD0PYpNRGm2IembynH4DBA/Zbd4/3ca4cOAsHQd6qFz+7hePoyxfkTE9hDf35S9ZMGADPL7iEIA4qiOK9/pnsHtiBCx9+kTmLb+BMFnAmCyAIrp7A2QgJ6wt4wJcNpZuRHso8pGS1CCF+1ZCSXkcq6Yz0ju6FnBJIM1ExlduBePAvhcQ0hODFgOdkyS79cq08UmJNlqhx8yUWUnvBl9lQauWEFprjl0BKL+OsGwuuZHkQATvN+l3LoX2kGeMFUs25xAEF4ujrL4fCleCNkfPFAwTBOwj6JIM/22SnDjHzSpOxWJmrccBqmOh9iOf1Nzyvv+HLjB48teYa3i09l6lMoz17KSKe4Ys+QZ2h4VoooCNd+QaOmwZVEE8Ra+jP37mcTfTgDcbSU2dDNowcMm+fv/8dQ57kjiHi0KzUNKR13MZhBQ0EVNMPU76rlDqzmb3ZELyA+Hp3MM83A9e32WxsHDIYM/uzkEJ4JKPKH+S/+XvYXRJquabMlO+2byDb0kKEK4zKRjI4G1M0XWGKQCtYWk0g2IxSqn4xpdQZpghTDfSU+oONKqUje3akXQMuxL8WtNYUllQ3SUqVUnSIcrGnwu4pPdzQlj2lNo5QqLHAn85g5Jh5zGEci1eNJm3FVwDkfHwSDJoGN8PFOoF8kujGNmZyMwDLGEYE1YzM+zfPJF/LxbzGjRlPo9S9nKWP4wHuZIcvjQ3eCm5lBgAfjhzKGRuXy8FND6l/DrhSgZeBVPBajrPbgUjYuV2Wec4G/yKT7Vn/f2CMbB9bhBC4cvBth8RyKCqBxOh6+4sFekEfS7UsB4KiWvoDEO8EoiEt2vSwRpptooF806OajpBEq/ezC7hyZdvEWCSTNBdJLdxuVNftcm5slpLi+FTZvtIoxO5R4HsHvOmGqK9GyDii7nqSELW4yOy3GJ6cegfjpklV/HFs4RMGcqZnAW+UXkY/z6eMYw4PJN7HJb2fp4AEPieDCqKI0/0pugruu+oBeB9YAlvpTdc+X5PCTuInfkg3vmERmWyjKyNXzGMnnUkinxHURcjYOMygqWfF0ygO1OjoSEWi1vo5pdQ1AFrrGqVUG2sXNtoaWmu2FpZxTPuI5jf+f45VW78nUKtD5kZQV77bvglC5XY5+L6s4ejfxtx3nY5WRsI0YXQEtNroqDrQeE9pnZvu/pEwiR0aJn3u8MZLnH8N+MprqAnWNlm+CxhSaiulhxtsUmrjV4eeCxmsooYIlk8/A06HnFUnoQeCGmTUsC1TgReIp5AdpLCMYQDMYCJzGcvk5Ae4qfCvBL9uh3JqJutpLCOJAazhIu+LrKcXG9f8lg/6j+CPfZbR7tMfAChLPwYWgq8E4ksQBbAYIW9xSJlrAqQ4jHK4FFwxUqbrsj6rUmUb1kFiHJQuBY/XuOwOh8QcRG3sDJQb86Fi6t5tkeKIC9LPyXYgBpxW3mkxVJZIP6mrJ7jyxSXX44HKctnEnQuJfYFqKC2CbSuhTxxi4rQd6YuNMD87GwPdaJmD23LT3Wj6XIvk4Yo2Oa3DhdTuXGQchcvN+Y6AVeefwpyXbwDg8sv+xgZ60Z4yXDmazzJOYgFncst7s6lKVeRHdeLvXE4S+by/fQxMAJbBEy+MJ2hyaYI42GMEHytqZia30QO5SWEZHh3NrpZcWjYONWjqXKdtHCzs84oqpTrQSP6ojSMHpVUBfqzwU+kPUlurm4w++f+MMbM/Y1vRXmDfKJWy6gCRrrAGS3AtuMP3J2gAtbUaf1A3ONYR1jqjI38zRkcuRxj+1uSUBhpXSqHhGJyKmsaV0kiXg0p/EK11o0ZDvyS+K5W7nB2bUEoBOrjD2WO77x52sEmpjV8VygthOeXUfjFQFkzNAUDrNPrzEb/TA2lPGRX8m0wWcX7++6gfNZwoZPVEXuI+PZ8i4qn9OJrbx9yLjyhu5yEyyCKAg+cfuZm9tzi4uv8L0m96pWJblIklDAKpEB8BdAb/aiGdxCFKYwFC5iJNdme5IaSdqcsZzQWKTIzMqeDJk+fuLojSWGDGmNgX917knRZjxpfUue6uXytCamKyUUNjYNcCU96bjvhKB6QE2MofBSAZCtdBfJw47fYZBP61Rj3da4yZYsw+NiAkOUaOjXUjPRXcVXKuldtl/q5Ic34+SMk045KRUuQcWEdfBk3Mkr9ZF8WugbF8Q1fIgPN4hze4kC+n9+AmnjIvt5MHzrmPa3kZVamJW5THGN4GoNMauVHAAHn+nn5FrpGJMHSGZRt8EgA/hCU2dVnZOFShgeZvVv+qOaX/D/CeUmo20F4pdRlSuvtS207JRlvDVy5fwKv8tfzhr6tYOmFQG8+obVCrdUghi21XpxqXVQVoF9F46S5ApNPRYPmuv7ZxYudytLZ8t2mjo/BWGh1ZpbkNKaXW8uqf9NGW1wQadd91W469gdpQT+qvCSujNL4ZpTQmykW+r+LXmJKNgwi7p9RGmyDs5HK+zOwB09LkUQ9BHHzC7zmf+SQl5VLbSVFbfC9wCqwdQAQ1PP3lbVw/ZgYdKSCqopLn1R7+Wnorcysu5KHJEzg+YguxFJOqxnHS+M/IJ4l8koRY7iVEzFw95WfOIkQNjEVKVUvM42xDFksRUheDENsIcMcLEfQXIGWuHkKGQIEA4BSFk3hYXyDmRrtyZB/uNNmmdz+Ii0EU1XXAWlFAKwuBbMgqAJIll9SdBv5qedDZmDUlI7mnwu3JNeXHLgd1RkhW72q62baveWyUOWKVDRea18VZtxxLSc2QY62hP119X9PV9zXqU82f+IBtdGM8z3ATMxm0IouPGMx4nuX5Z2/mxUXjYSKMeO8DWOynSHXkbu6nU9YPMpcBO4EMTtadQiZY783I5HpmsVN0WhuHMzTyfmrqYcp3bULaMmitHwNWAV8AmcBMrfVf23ZWNtoavvK6stP6vZRHGkoq/QS1pltcO74rqQqZHZVV+fE00wspSun+BLCmCWLnDAsj2AqltDpYi6s5o6NWuvtCc0rpT3pKq4NERTT8WrmNY29blfBa13bHGHeT23Vwuyix3XcPO9hKqY1fFdoHSj0O/AU0fDmlB+OZxXO8yiXAu5wLwNm8BcC3Q87nhBVfkqO+A+DMjHf4hNN4vY9s9wOxXBX1PHF6BOt4n9NYxXzOZhjLSCKfz/Qn9Nt4LxN6PgTA4LjPpGczFiFyCUAapHkR86JqhIwNAhYB70i+qDcBIaMgqipAQNxrGYIoiT4zdge4IwGv9Jl6IsQYNz5ZhvkLwNUXcsuhdwm4EqTEt7LaKKFx4DZEMiNN9uuNlp+uBFle+A7ED5Ac1OIApKaBqwpSE6AwD3YB3YLgSZB5kI6ouAkIyURKmL3pSPmy07wmycBX5lyzjBocj/SbJkAPNjGeWQCsvrM/3fiGTfRgDG+ziEz+MWQU5z20kNV3nEzu9Uk8xzW8w5ks7T8K8LFC/5FlDOPOjCmcxieg4W7uB0ApP9v1sZwE/J5/t/SSsnEowy7fPehQSg3RWr8BvPGTZSvacFo22hjFe0UpPSrKxY8Vfor3Vu+jFB4pKK30E6bg7JMSeWzJFkqrAsS4XZRVBZrsJ4XGjY4sYtdQ+a7LoUJK6oGg2UiY1uaUNkNKI5xh+5Qs1wRqqQnWNq6UmuWV/iBHHfCsDhyFpVWEKTi6XdPO7R2iXPxoGx0ddrBJqY02wqP0UWM4Sx9HPIXM5CYAagjnn5zBH/kQgPdWZPIxg3nJhFU+yS10YA+FxHNr2CzoCXeun8Jmjsc7twL2wOnX/4uXt16LXq+YdO59PNvzel591PiolCA9ktmAFYPiRcioyQL1Z8PO18S1tjBP4lXIp46MeoGVQDrsWgSJ1VCZA+6+CNHtYrbLg5Qu1H0pN+NdVcAO4YAUA+1EqXSXA52hdIXJRC0QN97KKinRpURMj8CQ3kjwxpne12Lw+aAyAIkDIL4IOUCujHdHIu/2ckJlxMUB8G5AemRjzPZVMh/igOPBvRtRgY0CnMkiPuE0AOYwjt2+BG70zmT67AcJXuOkgI789Q55rW9R6fxP30t7yshdk8QAVvMYkwC4iadDV8LFvArAzmAKv639D8+HXcWj3EY+SSglLDxOX04hyY1cSzYOWdik9JfA48BPcy0eA05ug7nYOERgle9GRzj5scLP3urAEUlKA7UapyOMZG8UICRGSKm/SeddkNLUmkDtfj25Vs9oQ8TOEdZao6Ngo6W11jFbk7cZIqWNEN+fGh1ZCmhTPaVAoy7FvzTe/DwPR5jC2QSRB+gQFU6Vv5Yqf7BNyoxtHBhsUmrjV4fWU/d5Po9MAM4ZvYiu874mTV0Oq0+APXDOGRks1QvYRA8A7uJBHmEyt345C16HrmPFvdXrreAW38P0YBOx/MDHb/0BNfUJWDmRJwaO56O/SID24Hc/E9UvBiGmVnlqECGaqZLvmZoKlEN8JpAFO4vB/ZrMdxfQpy/glOgX/0pTypstCii5sq6yXEpucUrv5/p1Mr53L6BA3nylpeAqF9JYWSXE1OWQY5MOnh0m/7QAiJb4F4CUQbBzOaT0M+vagTfSnE8pQrLzgDhx23UHEBV0O6LqYsyP2knuqcsQWFIREhoHLESIe455fYIwkRn0Z7WcBxvo5v2Gu3iQo6/6luI1ibzY/0KuVN3ZqF+DLbNZx0LOyVrEExnjSaCAxXNHc+zYzYy86iMAhr7w4X7XxzlDFsEkWJw5mMV6K5fySlOXk41DGbW0xH3X7iltAZRS3YDugEcplVlvVQwQ1TazsnGooNiQUovglFe3nUNqWyJYq3GGqVBkyO6SKrrHt6esKkBc+6b7EEO5nYF9jX6aUkqtnNIDNf75pY2OqgNBwp1hjc4twhm2TyRMeY3cRWwsp9TqKW2r8t3m3IotdIiSGxAllX6blB5GsEmpjV8Vo3gHgArzHWq5OgGtF6GGAJHwzdITYMkJkFINN0fAuVN5kl6U0V62ZyjTmEpenyQ+PXkN08Zu4ArfS/h3KrbQlfaUsYhMnpgynomjn2V1z7nczF+JMM1rg7d/JmrpyQh5s/pBsxGlsAT5Em2V2i4XV9rEGBMhA8SXI0Q2D4iRslvXXnANQEpeq4SkulMlGzS+L6wuggG9zIuQBBRKT2hloennrAY3sl93rKz358kxd86D+GjZp8e8Y32rzb4KTCRMCVKaG0B6Nb1APpTuAG9ncz45SC+p8RCK7yzbuwJm/BDzmuQipNgyf/Ka5+XwAHdRbRpye5DDcoaSTTrFjjno6feiBrwFk8bwLO25vvsM9nAULIFbl8zizilTyBy7iDLaE/vCy6Fr4t6CaQxNWEZ6WDbLC4aFlo9c9BHbMxNYSz+6bC2Qr+M2Dj80r5TakTAtwwDgMqQb4LZ6y0vBlCDYOGJRvLeGqHAH00b15KIXs6ioOTJLFAK1GodSociQQtODuLe6+fJdi3BV+WuJqlcdWhMUAtag0ZFRVIO1Gqfj55PS5sp3I5yt7yltSomNdDn2yfO0rpvGlFKrfLchl+JfA/6gJtLVAlLqlj/gngp/s6ZINg4d2KTUxq+KBZwHwGPcxF/URADUVuB1Y9LweAT/nDGMOYzj/TvOh7MgniIWqw2y3jmVuYHfwXVpcN3vuWgr/Lf7cVzLMwxjGQAXV7/KxIgZ3N7zXm7kafbQgf6skfHliIpYivR/Hm9+t0yO8pDcUWMc5IqT567V4Df5nq5+hPou/UXgiQMiTNltArgdknOaGGPKbqNhQBx1ilG++WliXyoLjHNvlZlTUMyMXLHyPCUNCnMgZ7t8GwVITDV9piDv4o7AbkT+LCXksuuxztkj0TGeHPMcoDPsXA0p6bItmxECYUXleKkzfjKlvelk0760EoB3PWfRna2sYiD36TLUaM17OpM15PI+Z7NtdU9uH3Av5MO3LxxNp2PEbbfd/+RnTVU4NTdIPs3yN0VG/p2OghXw2cDBAAzMXMW3W7th4zBFy5RSGy2A1voV4BWl1GVa65fbej42Di34yquJbRdOlFG4ytswS7ItkeyN4jeeSOI8cvPUihCRntLmy3dh/9LUGtPT2RB5tMpIpWz458+3JliLy9k4mXU5VKvdd5smpWH7mDtZCntUM+67bVW+G6itxRnWPHWxlNI9dl/pYQXbfddGm+FRPQO2pMiTxHUMTRBS+ceJy9hED3QfYByczkehMQ/5J8CWNPY+6YC/LYR21SRQwMPcziyuJ4sMaiIieJg7eMQ1lU7qRqYxlZv4KzfxVyFY5YgDbzn4l5odFyHusyVQuRYhqTGIsrgDiANXhDzIAXpJ7IqvBHBCbi7srELIYYIomxayVpp8UctttAR2Fcn+XdHgD5pjG2ffwu3mOCeL0kqCmCSlOCU6JjEZ6Vu1TJmiZf6VhbArG4gwvafJgNc4+EZKluouy9zJqLMpXYBYIdccL2NDrrsxUppMiTmRcpjF9cz2XMlsz5VcWPg6e+hANumMYiH/mDeKZxlPNiexubQnvAzb6IZOUyTOKIZJsPH7bqyN6kdNVcMmBUfzA2sYjF4FepUs69R9G9pWSQ9PWD2lTT1s/CxorV9WSnVVSg1XSmVaj7ael422RXF5Dd7oCKKNwlVRfWS+uSxDowing9jocHaXVBGs1S1SSiMacZa1lMrwBsij0yilB0ocRSltnM0ejJzSiCbYcqTLQXW9nNLyZpTSyDYu3w3WahwtyOCNcRtSajvwHlawlVIbbYK/rJ8pv5y4GKPnsYXj4JYAfOpk69zeJI3dBt26cdnct7HCDu9Q8JS+hnZjg/AwPJVwDccsKOO9UZkcxR4m8CRTmcbTq24jx5/Cn1jAEhIYxxw5Xgb4ngBvEnVkqxAhaduBEeBehJBUD6H+S4oxzkQGOaKKejpD6WroFA3uEcA62Jkn6mbpDvAcDxmm9DWUc1oE7SMJKUiVVYYw5kJinDEligHyTeyL+W7hdNaNoQByc8AFVALxTvAmQ2KJbB8IgKtYzisjzpxbrBgnxVkqcF/wF4MrSXJYC98Bb4xRaJPl9XE55VgUA6lwNMVcm/8yAOPLX0TdrWE17NyUwjm8y/JHzqDr5K+Z6HmUT14QQySGwgsnXszzXELPrG1wFHzWXfJHmQsfczp39HuSM2+S0m6lptFVi7vytwWiknZL+BqAbZzQ8AVl49BEy4yO7J7SnwGl1IPAVdR1e4O80ovabFI22hy+8hriPZEhhetIVUrrGxrFeyIpLK1iryHoLS/f/alSapkF7U/urJLdAzU7aq5HMryV5bvVzexf3Hfr9l9hlNJGe0rD204prQnUUqvhwozmTQ+PirbKd22l9HCCTUpttA0WA7dDnBaSUUgyGazi28dNqebTOXybkgYpcHr/f/HxDX8IDT2JbLrPXU8H9jCXCyEAiziDh7iDJ5mAgyC1PRUX8SJbH+nNfyb9liEOSUu4tPwfeC8A1sq+XAOQvE4rg3Q5UrZaDJXbwW3URgLgM+W73gxEpawCisSYyN2FUMlvSoLEvnh6Aj4pu+1mkT2ABImJyV0HKTHSc0qJENXKcvi8CoYlIKZDi2S/leVCXHOtftBSSO0rxyfObLuOUM6oO15+UmR+Vslxu8XANkPG08oNMV0HruEQPxTINs/LzXkPR0qa2wFpcBbzcYTvBeDypJd54oXxfMHJzC24kDMTFvL65HNZR1/mcxYAO3xpqPR7Q387vV3xXOfLKApZGcMdE58EpLRbqWmAkM/xzOBZ7NLdwxqalpTv2j2lPw9/BrpqrUvbeiI2Dh34ymtI6+gJkdIjsadUa71P9MtvYiL5rqTlpDSyEVLqDymlTZfvHsh8a4JNk0aXIyxEig8Ezbn7Sk5py5XSxoj7r4GyKhEnmvs7guSUgvSU2jh80GakVCkVBfwdsZwJAJO01v9sZNurgMmAQujMTVrrWqVUIvA6Yo+fq7Xu25Jxv9Ap2TgAFCn5Z6l6AT0HAnDj3Md4+lrj43HCx3y0ZCSP+W4EYA8dqCCK9pTx+fqBxPbcRexZu0gin0t5hS+yBnBnxhTCYjdxmV5J7uQkYtZXs7J3huwvGnHf7YgQrWykh9QojKE+yy7gTof1i6D3ICGZXnNzLms1ZIxAYliywZsGvhwpmY1Php0FYkjk3QGkQ1o6YhhUaE66HZAgpDJ3HaSad6Gns8xjmNU4uhKohl3FkNgPKjdAqmWWVILkolbJ76XzwTNAfq/MMWprNKLQOoBIKM0SdTetp+zCv1GMlFwxiCL8hYyprAaXpfiOoK4P1wHFHE1wWzvZwbdAHlx49ouckpDF2cynkHiCOHiO6xi56iNuHvgof9ZCQP+hdqL+rPnsPyfxIHeGroHFM6R/9CsK+VLDSWwCYARLGJGwhFmM52Pf6bKxt9FLycahCDsS5pfAbpuQ2qgPrTXF5TXERocTHSEfKEei+26lP0igVoeU0o27SvCV19QjM830lIZMfPb9mljnvrt/2ahldBQ4gKxSK2qmKdLYWqOj5pTSn0bCVNQ0o5S2YfluWZV1c6HpvyNIT6zLoezy3cMMbamUTgLKtNbdlFKpwCdKqW5a6731N1JKdQamAichRYSLgYuAV5HOwKlIoeW9P2OcjTbEMD6ElDPgLdBjOqEM/7z6sb8ygiUAPH2CYYC7zkLt0bAJuBY4DphTyfP6Gq4+cRmx+my2qvnc+8HD3DjqMSoyonhwzXTcJT8yicf5gaO5vvcMwjElHE8gX5JLkcI3K27FUhWR0lt6Al9Ab+Na6+pJyGUooyNidJRgnG0LDWF1AIMgZSXiypsjsS1pmbKu1HyN9JwEO5dASiykxgnZdEdCVjFkDID1q6G3FS8XLbmjGDOknRvqzTEGOB78q6VclwAQB+4dZi5AYXFdSa6nJ9AZUYYBV7I5784mziZO9uEZBGw3hLQQKVsuB+ZAz6Xb+HSu3PtJoIAzTv6Qs5lPHknsoQNZZPC0uo2ncfCovoks5GbAcWzhbzqf+SxgKtNYqr4yf4+pLOQ89ES4icd4et5tcAOwNgB8yPBkuyLxsIZNSn8JfKaUehN4h3o6tNbafrMcoSivCVITqMUbHU6EM4wwdWQqpXWkRb7ahpu4luK9NfssbwyRzoZLU0NZn43klMKBle9aZLMhsmvB5QgLkdcDQXPuu1YkjBVpU17dMvfdSv+vr+9Yf1+Pu3lSqpQixh1uK6WHGdqSlI4BLgXQWucqpdYBI8FkhtThXOB9rfX3AEqpF4DLgVe11iXAKqXU6Q3sv9FxB/9UbBwohvEh2x+7ivN5i+e33szz3AzA9VqI5AxfJGGRtXCZ+ae9BZ7QkygkjlP0YPJpz6O6mI+Yx8wVf+GFIRezqX8PnnrkdmIn/0DP9dvQPyh+HOKW8TfAzgsMqYtAeied5lEsfZoejFFRtIllSUaUREvBdAInQeESIXxg4mLyERU2zfwE0rogKmkJeJLM+BxIscqC88EdA3SGjCDgg94DoHC1ZJvSDnYuEOV1ZwD6dDH7CADbwZ8Du0pkvpXrzL6iZd+VudIT6rKyTGMQNdRj9lENu9ZCYhdzjh5CRkwksC8hLQIug6fuuYbpTAHgYW5nGlP5gpP55IvhvHLyn3EQgC3AhRP5i7mvsDTvND5G1NCdpMjC90YBcNbotwDIJLzBQl0HAeO8/BVn6eOA8xvYysYhC9t995fAb83PG+sts3tKj2D4DOnyRoejlCI63HlEKqU/Le+0SOSW78rM8uaUUtm+sfLdhsidlV16IEZHdb2qTZfvBmt1iw1+forqQG2TESqRLgdaC0GOcDpCSmlj7rvWa9AWPaWlP6N8F2BvtZ8lG3fz0OhezW9s45BAW5LSZOB/9Z7nIQmOB7pdq8Yppa4GrgZITm6+idrGgWEEC3AAeoz1PMi1PEcWA1G3mI0WT2OWnsoOEgjb6wdnkDNXzQdgoTqKW9XZsHYYIzPm8blKJqgdLM4aDTHQl3XM5hp6Tv4Pj3A7YfHlfNU7jQ7sAeCo1ypJSaUu03M7opg6gFRTShuBkLgBYiREgaxju0zPtxG8AyA+k5Dq6MsCbyohhZV0o1ha8SoJhCxJduZCSqo45SamyTr/OuO4GwSiId6KqCkWArszD/rEUkcoi2Scq9wQ7AIZR7L53RzL2xlRdUHIgZU9isw1sci8DumEemKJMPvvC/4Fphc2VfZ/847nGZcgplHfRHTjNS7GTQXxJ/+Pf/EHLs3/B3evf4L2K79nVdRA+iRvYg0DeFA5gBTO1FtYU9s/dD28P+98uo7+mu5sYRtd4WPoWfAfADbwW2A06NGcjZDXBHZQQGdsHEY48gSbXxRa68FtPQcbhxaKyyVSLbadmLtERTiOSKW01FLSDPm0VL3Pd/gAaBfRjPtuI0ppXfluQz2ldTmlPxchUtqEO65FrP3BWhxhPz9zpiZQG3KibQgWyazyCyktrwkQ7gxr8FxBFEj3T0p+fy38nJ5SAGdY2AH1+tpoO/xipFQp9SXyFbkhxDeyvM2gtX4eeB6gb9++9lX8K2EJophlMo/ti27gWp5DKq6hMwXoZHiOywFYRCYcNYw031fkFFTzKpdyDGWMZS7jMubgKNxLrXqcNB1FUW0cKWE7CJa1g+8BK/plNPhvBVc1EvfiAVYgpNHEtFAOhQXgXggeQzQLVxqiCJQGwGuph0BlsTjj7sqRbFJAyKhD+kGdxeKi6y+WVR7zrkvsAnihcDnE96ozVirdCIVV0KnEGChFQEqVmW9WvRfPB4V5EMiFxASozAN3EZApc3PmAUEpG/YMkWW+deA15xEishlIb60XiETIqRPIrVNQ/WvFoffDzkMBKce9kNcZwRKe+P3d4ILHF01iU1IPJiU9zl41iz5Hb+L672fQgR95Sv/IKBbSZX0BnChmRrv1k9zKDADmLrrCvCiw8ZHfQhKoDrJIZ8J8WyE9PNEypdR2320BlFI9mlqvtd70a83FxqEFX7mllErfR3S484h03/1p+W6U6X/M2iEfvp7m3HcNia3+OUZHYRZp/PlfG5varwWrtLcmWBsyYvo5qA4Em1RirX1KLIyLiuog0Y2opBbc4Y426Sn96U2H5uB0qFaZRNmAMbM/A+Dta373qxzvFyOlWus+Ta1XSuUBxyKUAYTAftTAptZ21NsuvwVTONBxNn5BLGEU6ktxntJ9CLmtjtS9iKsuZB5nEx0RRKlp/E4P5DO1itP1GNoj5TdkB8jJ6wXHlnLMuDL4HQRxMJ5n+PFoL6P1PJZ3OYnvt7fHXV1BXrc4jn22kFpT/qveAdfFiFNtnplUuZSxeqPB3QtRKq1SVi+sXwm9uxBSKVOiEfUnWsp9U5PB7QRPR+QKizP7dkLiKGA17NpuVFGMejkUeE7MhuKNIuqOkTGeJPBEmmMkgG85eOOgdAV4LKW0nawvRIyYKACnFTuzUsgqQE4J9IlETJHKwes188OYLFnWYEmESDZOyTx1VwFphjRfDJRAHIUcZVTnUSwknBru+/ckljCCuSof/ncJF/V7l1v1/TiZxg5S+IhryVE1PKvHw1NA56ns3t4BgCeYyO/5N5wh1wEPT23wurGuE60bXm/jEIXGSnNqCrb7bsvwYRPrNJJebOMIRLEhpbHR9ZTSIzCn9KeGRmFhour9WNFCoyNXI0qpRR4bUkpbYXTUVK+qBUvJPFByVROoDeWvNrX/atMjunjj7mZvaLhdjrYp3zWmRS0mpWGKilb049r49dGW5bvvANcA64zR0W+BCxrY7j2kb3QaYlh0FTC3Bfs/0HE2fmn8W36M7zMjtGgRo1kVIQxpIPCULgDeYpLOB7K4mwcA+HPyG/xj7qW8rK/jsiFvc8+au+hdsR6AmHXVjBw4j5Hb5+EgSPTUWiLuLOKc699gJx0B6Lx2N1hazPGI4VEGJG5ECF0JMAApcXUCcdDbSi+x3i3lQKT0bKZaPakOYDP4SsDrBBJkvTsHSIfEYnkO4E6A3FshtYs435YWSURMaN+G8FIoP71GrXSVIGQUIAl8q6F3KuxaKVOIt/o/o02+aTR488CVAOvXQienkFu/mUdqgvzuqkZU0ww5B/aaKJy+QB7Ep8pPLoYN9KYG+eKTTjYp7OCUVzdw3yWTOEnHs5P5rC/oRXv2EkE1/1h6KZ2GbyNd/0D21t50fUnyRo+qsEJiYeMffwtfmza5E3bSScuXqV7I33WEnVx1+EJTl6Rpo1XQWtt16zYaxNPL5Z+61yKl4c5QtMeRhJ8qpW9f8zsmvp3NvK924QxTTfZWQp1qWFnTiPtug5EwQkoPRCmt6ylt2uhI9n9gpLQ6UNsipdQqxw3Wahyq6d7VSFdYm5BS6+/b7meV79pKaWtQWRNk83dl7PihnM5HR//ix2vLb3uPAS8rpbYhX1uu1lqXASilpgMFWuvntNbblVL3EUqWZCkSA4NSyoH0jUYgJWDfAnO01vc2Nc5G20JPtn6byCzzf7wbX9PBlHLeSSa3qEu5Re9gJ515kts5xyhlD+s1XDh2Ln86ZgkffD+CWYynf9Qalo6WMuDOA3eyjGGU0Z5lDw8jiIN3v7+I9tEiyJcNPUZKVROAQcAio0BGI860AaR8tQhK82W5PyB5nqHSWeNO6+4i2/sLwJUp6719IWuJVMJ6QMhegcTLuPvJ8Mq1kk+KVyJl3BFAJKzfDr1jESWzCHlXxCImSxEm5sWqqikwimuJqLTeBMAJpQWwsxh6m57ZsnIozDFKrwPoAi4rmiYWXJZanGSO1xHYLXNjreyzsgDcqcAGuHLrG3zWXcqrpzKNpS+Ngvfh7j5P8FHP3/EWY3iGG7iUV2S/4+Dbo7sR9WUF73XPpC9fMIDVdIvKZRjLcBCETsDD8NCrE7jjv0/y7VygCr6lG8OvWADAcH1SqNTbxmGEluWU2viVoJR6HDgHSAF6aa03muXdgVcIdbJzidY6t7H92Di0EKjVKFVnThMd7gipp0cSGuo57JHgYd5Xu2gX6UQ1Q7YcYYpwR9g+uZ3QtFJqkcYD6iltUfnuL6uU1pFS2X+t1oQ1zd1xhzuoaqNImHYRzhYbPjkdilotpckRTfTt2mgcZVV+aoK1/Gvjd1x3etdf/HjNXHq/HLTW5Vrr87TW3bTWx2mtP6i3borW+rl6z2drrbuax3Va66BZHtRad9JaH6O1Dje/39vcOBuHJgqJ506jiHbVPVnImTx10+2oBHhG5/OMzudPo5bwJBMA+NMxS3AQYOn0UfSc9x+4G579ciJbv+zNbTzKYD7i/C/eJ+WYHBZEjWJB1KiQC23hIkI+z56eiJEPQD6UfoG45XqBzuJgC4hy2BcxPCpFWGcJuNLB9w4QB7uWQEYsRAHx/aQk1x8EysXMyL9OCJ6rn8zDGye5oHgg1Tj+Ui3z8QeQ2y3HA8nmebp5IGQRjJIaI/vweM1+OkuvK0BaKnVmRgVI36gpD/btQBRZJ7BOyomJQxTTVPnd6ZTXBR/oZxWPMJlHmMyS//6JL6/owesLzuU/PXvSjjKWMIJ3OZePVRZDWUbXvK9hEmyd2Jv3OZtjryrk26u6MYxlgJRec74Q0n0QSYiQLv3tKCKoZtR+xtw2DnlY5btNPWz8mngfKUb530+WPwfM0lp3B2YBs3/ledloBfzBWlxhYSHSFRXhDEV7HEkoqwqglPTUWjghQYweWmqOE+EK269fsimX3FD57gEomaGeUkfLjI4OBKKUNr5/Sz2uDrRcKW2z8t0qf4v/jgDXDBISVWLHwhwwrL/zJ7nfN7ndmNmfhfpPWwO7Ls5Gm+Do2l1MCnscgNt5kjG8zVek8yzjKaM9sRTTgT10nfkNS5+OZYeJErl1wf08oe4ORa6M4W16T9nAIwW3s7JPBoMLV3B2/Pv846pLGfXCQvac3IH5jOakpcZatgSIhPgBiCawGlFIjyekhHoMCbQUSpIQklbf+bYzUuKbIPurNCW3iQnys325xLWAIbelUqoL1GWkRkCpT1TOylyjhFYRcgN2JZhjeOWnKw38xrDJFWFKbANIyW4J4vxbCu7OMkd3Arh9UJhrnIKtOJhyM49c8Jo+V5KBTHAtkmNjRcukicERm4F0+GpiGtWmfDfzxPd4mDu48N33UBdo/ux/hZPIJoiD2uJ7wQf3xN6HXqdQnTRJ5MOceQCc+cICRpsEi79nQoeayTidQWJ77uKH3onMIxOAc34r2yzgvEauJBuHNOzy3UMKWutPgX0UI6VUHNAH+L1Z9CbwjFLqGCtSzcahDX9Qh8pIQZTSikPU6OiXNE6xlLSwekpajwT54LaySpuD2+UIETQLNYFanGFqn/1aCJXvtsp9tyVK6YH1RjbfU7qvUhoIaqIimlYVI10O9rbBTY+yKn+L+0kBOhjX4T2VfuI8kb/UtP5fwyKl63b+SEVNoNH82oMFm5TaOKQQTjWf33aGPLkA2h3/A2/qqwA4n/mo54HZcH1/KfW9dPE/eHjkLWhXJCrPz+TkB6ggiv+9EE841eyhA3MYx5bhX8g+5r8vJapLEXLWEyF+nZGy3HcQRXEdQtRKZZ1/JVjGd74iMUXCim0pgLgYhMCavk5PJrABMRiKhV0bIDHWnKQpu6UcPKZ/1R0t2/lyjRlRJPhyoH20xL6UFoEnAK6eZh+7gYCUGLsc4I4F8iFnO6TtFcfdyiqI7ys9oaUrjJNwsjk3ECXUC5UrwR2Q/VXmGLMnB+x6BxJvBhZCTjGkTYOOFDCCJQB8zGA20YNN5/aA86bxUvV0iiLiqSAKtQLpzQVU33vhQ3hw0XRgGu9pYf8qTz7UOiXvpH045NMNpaahgPfM52/4klLZ9kv5YtG0fZqNQw52+e7hgCRgV/0KJKVUgVluk9JfEQdK2I6NjeKoqPDQ86jwQ1cp9Qdrf7EM1dIGSEuM20WEM6zFJZ+Rrv2dZf3B2kaJo+W+eyBKaUtIacjo6AD2X1urqQk211O6bzZroFaH1N/G4HY5+L6s+mfPp7UorQz8LKXUek/ssZXSA0Z0uJNIl4PC0mrOnrWaJRMGNbhdnq8iZNzVGrRZ+a6NIxs/hCWyjGEUkEAm8/iKdBYXnMHi/qP582Ov8OfHXkH3gXlRZwvxoQeX8xx8DCVXRlBNBDtIIXPkewxlGSOO+YBPk/vxiPoDTz9yG3vowG9eL2EJI4ighguy5nNB1vyQskkCoRiYUh9S1ppNiICSAFRBaa4hpHFIWWucURcjETUxW6JcikqAzeDPk3F8ihBSZFn7SCgslgclZl0A6d6KQMqCUyX/FACvlM26kuWYHi/sykPI6G7ZdlcueOJMb2sCFG6HtHQgKCXJ3hhzLIxrb5Wcp7/cPHLkuftUc75rTSmx6WVP7AWFf5Xjp2UCq6Fj3g/cVzuF+2qncBbz2UMHLrh+Piv1IgZFrGITPZjPWdx/7q081vFGHtWTYdxUnsgcD3vgZD2MB7mLc7IWwW6nPAzU70O/co7KAOBN7/nUnOvBxmEKu3z3/xWUUlcrpdYppdZ9/73NVw829lYHDojcFO+tCTnvAkRHiFKq9aHnPPpdSRVbCsv4Ye/BJzVlVQ2TlmRvFAkxLVPKJINzf6OjRkmpw3Lf/fmvdXUo//SXMTqyiGxLekqrA7XU1uqWkdLwNsoprf555bsdooxSWnHk9VcfDOytDlBQUsWf+yahFJRUNvyBHazVfF9Wja+8huJWvq9tpdRGm2EZZ6AmGlX0WtDdQX02jZNM5IjyXsoTvt50YA8p7CCdrzh37rv8gX8xnllcpO7jA30Lu0mgB5t4kgnk6DFMZAZ76MBHF/2Omzc+z7yeI3k+4xI5zqMI+QwgvZs9wWOZCgH4DBEsABLAMxwp8Y02vaZAIGDUzJ6Qs1L45YABsg9XlZBcTwaUZhkVM1nUzrK8umMQh5Tl+qSvszIXEgcg6m0vpKd1AHUxLdX7f39PTCdEIAkas6Z8WF0MA5LMeZhYGTojBk6+uvGuWPMaWMqpAwoD4N1hngdMmTMICffBmcnzWfislNJuvf44AO559i6mM4UvsgawJeM41tCfxaqU2ODvKXbMYYXuD8BDYyfwKpcwigV80W9ZaB7j9R6yyODbM7vBmVPhZjG1OmfrIn7X/SN+t+Ij1jAYG4chapFrrGnYOaVti3wgUSnlMCqpA/mvsV+Emp3n/cshEKxl0+5S2kc40Vo3a8pTH77ympDzLohSGjAq2aFm8GIRsdXbfuBP6YktGtNSBbmskZ7D+q9Nc4gM379fsiZYGyKHP4W1PHAg7rsWaWxJTukBqFDVTfTCWogMle8GQ+62V5zatNF3W/WUllUF6HpMu+Y3NIipV75r4+fjm6K9gPRlt49wNvo6ZufvCd2U+WjL95x7cqcDPqatlNpoM6jpQAfgWnk+ggXEBsdxO09yh/dJAOYwjjmM22fcZ2GDGV/zDP/X3pmHR1Wdf/xzZjLZNxJIIEAEZBcUBIuCIotLRaVuqPXnUuuurdate3GtrbW1dUerVq3aKi6oBUVBEFk1LAIS9iWQQELWSSbLbOf3xzl3MkkmySQhZKLn8zzzZObec899782d5H7vu8EKFnEG73Mhf9/6G67mNT5iJh+Li/g1f2baupXMHvVbJrISH3ZVVAdU2Ook1G2XExWuaxUZ6oOqqGvlaaKXO+GrWvVKG4h6nPOp8kxOOhtK16AEZRYkjwGKVPhsXCY496jxfcerFxPUektwpmUpQVqzATxaEHp2ACXKy7o3BxgPabHKG1q4GyUwLUFap/YddyowHCZlaVsK9THmAAXg3KqOz5GhPb8x+lxYjZhGwIifoQSsVfzpIEqw5wHjYCjb+PjWqXx861QeEcep6rnAJ87zKJ0QzyZG8/GTFyFnXUvx5eoP0ztcQhw1TGEpuSvH8qi+1/q5jId9v6OALJVv2hPYC9x5H2xT/UhXrZvKqnVGkHZbJOrBSEsv3afUCNKuQUpZhHpUZ/0l+DGw3uSTHl0KymuREpy1XuZvOhj2djVuHzUeH2mJQZ5SXYW3upPCZDvCAN1WYvmO4rC32V9azZ5iV6vjlKe0ac7hWzedEnZIdGyUrYkX0O2VzQo7ewf6lHoCorH1QkftCd+1hGxLotfyotZ6fZTXKI9icCh4KEKFOB8NnDXGU9pZhCpUtFOL0iGZiaTGR1Pr8ZNXUt1k2yVb1c1slE2wOLewwbq2FkAynlJDl3PK0CUArPWPCyyTAY/eWCayhIs/XxBYd6n/VW7meaZxNhPYxPm+j3ANtDGfGWxgLH+Qv2MGCzhl3E95aMUfKZiYxVrU3DfHvKJySCtQojAGJRLXokReARAFjiEocbYWSFEhulZNILJQRZAyoHCD6gmalqbnzNBzuHThooGQ3IdArimo+fNLoC9qbmqBUog7G3VrmKuLHMWqcNoBJ4NnNSRPg2RdjGlvHgzoj/Jl1Ko5PXngmK7EbZwX1dPUpdfv12I5ivpKwxVQs1iHCQ/R6xYAVcBYffx1ULMc4i4CPoKRP8mlnFQA1skH+CGfcAaLcIxTT8k+3zGRDbePIf/2dPquKCH9v9ezkHLu4a/cxtPICgEL4I1zLgbgqTlRPMW98KcHgAeQUolRcTtQDNwT6ooxdBus8F1DRCCEeBK4COgNLBJClEgpj0M9GnxVCDEbKAOu7kIzv5fklaqbPbtNcOdbGzhjRGYgtLIlSlwqFCE4fDc+Rt3audxeerTBS3g0KCivAeDLHcVhe4RLq93UevxsOlDB6H4pzY6rrPUyOKNjt7Vx0XbKGrXTcbeQU+qwWeG1kdcSxirY1JK3PDao0FGZzr20xFxzqPDdo9v/U0rZ7EOH5kiMiSLKJo5qTmlnFvLqTOq8fuq8Pi6dsxIhBG/ddAo7iqpw2AXHpMXTI95BXiksyi1s4Em/7PlVbMqv4AcD0jg2I5G3vs5j1pyVzL1ZRcj59e/N55dh5XUbUWroMuRs9fN3LGEJUylZrkJ5+k/eCcAlvMM7XEJ/4AfTlgHw1aeTeVv8kLf5IfTI5Eob/NY/m0fWPMhzE68lCh8vcj3HspNj5TSK3Yd46dnbkBfqL0MBSqQNp75qrVXoKAclTIPyRRkDrFaVbPtma8OL9PpYVUQoEPqbhfIongyexSrMlxI93okSwKg+pVGA06XatmSmQ24uDMhT+6mp0IWPEiC5v5pzZwX0/VxX8gUGDNJzWqL2LF05d7VuQ+MCR6Le53R9bHl6uZWnnqhsSE4AR4XqmZo2HiWsS1De2BHK28tq4CK4LvsNfpKnujW9yRVMYA1TWEr1jnjKSWVa3jI2Zw/nQf4Ak+AC5rGUKQzKLoBXQMRIpk+bz7X8C4DXH7mEJ7kdHpnKeHI4g/ksvuhc0t/JB6Dkfzq8yxQ46p5IwgnfNRwlpJS3A7eHWL4V9XjO0EXsK1VPLfukxHKgrIa80mqGZia1ul2pFlBpCTGBZVZLlEirwOvx+Sl01tI7OZZDzlp2Ha5icEbLx+jzSywn5FUvrWFY76Rmb/ibC99tC9/sL28iuDze5osFWTmlvnZ4SttS6KhdOaXhzB/UEsbyKKa24imNc9hx+/x4fX6iWggNDpdwhFytx4/XL9tUfVcIQWq84zsRvtuZYtfvl2wvrKTa7SPWYWOgjmb479d5RNlsRNltxDrsxDpsDUTprOdWsrmgghqPnynDezEsM4n/fJXX4CHAgbIaDlbUcsqfFjMgPb7VYkhGlBq6nG0MI4sC5GT1eSL7mc2DAGxhJJ+K9TwkKwH46uwl/EMW8Ivs52H/A/xFlvDLIU/ywY6zGcBe3uIyZvMgHzGTXROP4/6Vv2b7rUP5HX8A4I//fgh+ofZTuAkyp6O8nj5UsaHN1OdhbqK+r2eF6jEKOvTVat8C1BQqr+je1TBAV7d1jIA0r557oJ5HP1yKGwRReaqtS/I4NdeIEpTItGoxDNLb1KllAxKUJ9WzWNsQVJAot0h7cUeAZ4Oyb28BpLsgrQ9KXPvUPI4hyjsKEDceMkfr/VVA2nR9zKMJ5NQGBHsaEAPf5A0jh/EA7Kc/o9nILgbz/kc/RtglH8w4m0wKeeHJO+COB/it9DGOHNbtOZFJ9uVs/ulJMA3+xbUsPl7lE5+18UM+fXAm42fnsFicBXg4zfYlANUz4/lUZCIAdv0AOSj8PCtDBGCF7xoMhhbJK60m2m4LCMpSV3ghhyUBURrsKVXer0irwFvorMUvYdb4fjz1+U6ueyWHL37ZcnrGIWctbp+fQT0T2F3savaY2uNJC4VNCPyNCkS15CkNtIRph6f0peW7gc4rdFQXTviuXvfG6n3ce/ZwIAxPqfbg13r9JHZQlEopOVBWTWJMy3LEWauETlsfOqTEOY5qn9JSl5v46MjK424OS+heM3EA1W4fGUkxVNR4yD1Yyel/WYKzxhMI5X7rplP408e5vPDFbo677xMyk2LZX1aNx6c8oOeO7kNmciyxDhs7iqo4429LibLbOFhRS0yUjaLKOsqrPa2GoZucUkOXIcQDTGQJ74qdvCt2BpYnUcmV/tc5R0wJLJvKUqaylGPlJfxi3fMwD/wl9/P70ofhWrDjYz/9mc2DDGMbl/AOzIG3uIwLmMdQtjGUbapFPLB3LmSejfKW2lEezg3ANJTYy0GF3FohuSOU59NrFUgqBIogd4eufpsBA8bDmjzwWKHBUaimCnnA3XpfOtfTodvDlK5BCb86VA/REtjoUst2bEKJQS/EjVHLHKN0W5gEbZsdBqcAm2HpF1Cpvb8DUiBtAhSu0DmtY1Be01wloONi1TZAfQVgS4Cfr6sIF+ljrwU+By6CX/Mnrit4mesKXuZC3ucjZvLLG55k7vnn88WMCfwobz7rGQNTgG/u41e+R+lJCclPuNm88ST4GSy2ncti27nIjSA3KnF7zOytzGcGUjqQ0sGtPMO8vEsAOEsWwq4fhH9hGSIHU33X8D1gxhPLmPTnxR2aY39pNf3S4vj7ZWMAmoSQNkep7r/ZoPpuhHpKC8rVk9yTBqQRbbeF1etyn84lveMMlXdiFeNpjOVJ66in1G4T+BpV0nV7/c0KR0cHWsJY+4lrIUw7kFPajvDdcDylQgiEAL+sz71sNadUi64jkVeas6+M/PJathVWccqfFuNvpopxZTtFaWp8dCBXtrOpqPawo6iKfSHyLjvKwYoath6qbHJtQtvzNi97fhUXPbuCfSUu9hS7uOutDcQ6bKz6zXRG9ElCAPtKq4l12OnfIy6w3RkjMpGAq87H7mIXMVF24hw2xvZP5Zj0BGIddkb2ScYmYOdhF1sPVSKAUX2T6ZOiBOsxafEt2mZEqSGimMF7gffpvuv5VMxErr6fZ7mVZ7mVCaxRYi8Krkl7AYDom52cJ05jRulibucJ5nATAPuOzyRXfMis/37E1aVvc3Xp2yqbaogSkOxGCa7Rui1MDEqYxqDEY5raD0UoMXeRetWUoPI1M2DE6XpcEezIgQnZ4EhB5WW6YMcGIBNKf4USnnUoL2iFmjsuBvBCoVW4KAEmjADsMGSILnzkhR0rVHsafOqVH1TJt6YOyIMpGXpZis5JdUHmTN2fNFfvM6v+lV+ijzMdmKmO21kAvK9Fsx0lZvfrnwvhY7EJVsfA6hgqSeJO/s4H/zybYWzjDp7gt9kPspSpcMIDkAs/tb9MIZnk35XOgeN7wlbgdUCqCrviUWVyPDWMZQPD2MgwNrKFkfwj+zYWMpOlpVOITq3khUHX8E+T6ta9sMJ3W3oZDN2cA2U15JfXBnL42sO+kmqy0+IDHs/SMIuzBMJ3gwodWZ6aSPOUWvmkWalxnDSwB/1buUEFdXMMcGJ2D4Sg2fA/S7S8/XWTotFtwmEXeP2ywc3/NwfK2aGLvjTG3oGWMKcN6UVGUkyLIbCBnNJ2eGLrPaUte+6ibAKPrz6nNLkV4RfwlB6BCrzvrj2ATajzfrCilpP+uIhL56xsMs6pH0Ykx7XNE54a56DMdXSefi7boWrDVdR4OtwaJZjyajcHymqoqPHwwYb8Buu2F1aydl9Z4PoPh8paDxsPVFDorKOkyk2t10//HvHYbYJ5t53K8f1SyE6L57g+ycQEPTA5MbsHfVJiibYLhmYksvG+s8h96BzeuWViYMx7t07ixOweDMlIpH+POI7LSubdWyaRnRbPiD7JrUZGmPBdQ5cRKGqzrf4ivZ4XubjgfZgXA7c9wOtyE3vow5tCVSO8WA7g4uPf4EtOYyFn4z4vmd+unA0SXuQq9rv7s3n5SfSftp8fizcBGH35DJahEil7zK2BL1R1W8cYAsWNkjNQYnETSoClo0JvXShvZx2wUNkYpwWbZ48WbxnANBhSh8q9tHqh5sEQHR5c6IW0ErW9p0AL1xEQV1hfLIl0wKnEZ3KWGusYj/J8upTQ3LFaLfei5oubDskb9IIo3Zu0VBdSGq+OrXCT2iZzkpofPXff4P9Tet7kWcBiVDEkr9o3KShhvh8OyKeIRynJNUxgG8O47t43uPSxV/ktj3DpvR9CPkyX81ksHmDlZVczki1cw6ucz4eMuuJrhrEdrhhMJnlk/ApOYxkvvHwHuYxF/lTZMZHLAbijmWvH0E0w4buG7zglVXW4tMeoyFkXltBqjJSSvJJqxh3TIxA6Ga6ntMTlxmEXJAWFPybERKanND8gSmPJTktg4beHWt1mb4kLh12QlRrHwPQERvQJ3bfaCu8Mp5hKS1gisMRVR0aSyqfxS0mUreVCR+0RpYectWQmt9w/NboDhY7C8ZSCKnZU5/VTUeMhOTaq1TxRS5R2tC3MrOdWsi6vnAvH9uNAWTX55TUcKKuhstbLuIc+45j0eN67VfWlc9aEJ5gbkxLvYOuhyg7ZGS5LthYhBEgJ8zcd5L11B3B7JQnRdmw2EVY+aHDuqPX+QFk1fqlCrX/z3ib+81VeoJDQC8t24/VLDjnDE8F+v2RvSTU2IRjRN4k4h/rdBxdVi3XY6ZNib2Kv3SZY9Zvpre7DEqnB3ttwc2GNKDUcdc5gPgCL151rLQDg9tLHeEr8DnrEcGPpE3BrKgVaQV0llRvwWp5h2vaVXDX0nwD8mxt4ZOKD8CLsGNmfjdEnUDgtg5NWbGaNnMDyT89kPGvJ0dV3z1y9HOw6BDYLPAt0P88sVeHWMRAlRqN0zukMYIMuPnSyPoBcIEZ5KB2jUMJtjdqGsSgP7AgozYG0BCjNUyG2Hv03o6gC+qYA64FsyDwZcEHpAkgbAcnJqFDeKL18gxabRdBP55HGpaht2aDGkIASz1uBK6HvClTYcDpkzkJVEbYq9Orqu86tel/Z+pjTUaHEsfXvS+eq4kc1myBuCGxiND/8aCkAW84fyd0iA3ZJaojn31zFpY+9SiVJXMK7LL7lDdz+fEbbNgXO/2axAJ+cSQnpgevhXf8lcJ3ynPJT9aDiMv6r105ldJpS1TfwWqjLyRDJ+AnkXhsM30UWflsY8KoVOmvbJUrLqz1U1nnJTosn1mEnIdpOaZjenVJXHWkJ0Q2q2FotYVzuyHoiVFBeQ494B/HRUQxIj6fU5cZZ62mxeE1eSTX905QXp2+POA5oYduYgxXqD01LPTnD4dfnjODm19dS5KwXpVJCc0WCrZzS9oTvFjrr6JvaiijtQKGj+uq7LZ+TM0dmsnp3CWXV7laLHAHERav5Ohq+W1rtxiclF4/ry8RjewJwxt+WUupyN8mptsK225oznBoXfVRawvj9kqXbDzPzhCw+21LIw//Lxev349fXzojerRctAyX0o+02pJTsKKrCVefF4/MTZRMMSI9nW2EVB3UY/EXPrmB9Xjk2oR5iFVfV0TMxpsX5F2w+SLXbx6CeCXz089NCjjlSxZTaM48RpYajzuJpSozKz0FMA8bAzz9/LLA+t3QAACMe3QvALx99Eluuyiv593k3MOLr9VzFa5wlbuZ8OReAkWzh2NIDJMeq8IkZk+azyT0ahnvJYRzROk7wzNjlSriBav2iQ2XZo6rS1ixWBYDYD5mWWBsDcUXU31zHAqXKm7nmQ5iQAQGNlat+1HyoWq0QC2mW11H//Y5zQWEeZGpPJulADKRlQGmuGl+4QXk2V6yASYNUWG1N0M19XAIB8Wv1KcWne6MugL07lPD15kFcnRLGaRW6SNMGNUfyBG1vtjoXVGg7M/TySZDWH9gBcaNh/bsjmFq9lP+efwEAj/h/yxS5iau4kqudb7Ik+VTOmq0KFG168Hj6PbuTD5nJJOcKAJbvPBPWwjD+yxhtxFP+nze4Nm7nMRYwg10FTwJwR1b9up7+fIpt4TVbN0QIxlNq+I4zf1MBcQ47NR4fhWF6KxpjtYPJ1oI2LTGasjBvpEuq3A0q70J9S5jO7lN64TMr2FPi4uM7TqNPSlyr4wvKa8hKVeOOSVfHmldSzai+zbd52VtSHchDy0qJI/dgUchxB8qUWG1NgLVGryR1Lg/r8EufX1Lr8TXroYuytb/QUZGzlrHZqS2OsXJZO9NT2j8tnvc35FPkrKNHK0WOgIBX7dfvbuTjX0xus10WZdrLf/LA+ofUi+6eAsCkPy8mv7yWH/5jGZ/8YjKPf7oNoE3VdwF6xDtwuX24vc0Xq2orlz2/CrfXz/u3TaKixsO5T35JUWUdbq+facMzWLevjP1lNSTGRNE7OYadh11UhFEBePmOYjYeqMAu4IzHv6DU5SYpNgqH3cbAnvF8+LNTGf/wIg6U1zD5L0uo8fiQwAtXjeeG13K48JkVfPmraSHtBXjpJydxz9vfEOew89ldpzcZFwkYUWo46sjPmy6bwQLu4nH+JF9jHhfya/7O9F8pj+oi/3nwMtz2m7/x4dczyRUfMk9eyK2ykAe4j17iHj4CHl0refrE6ymmJ0uZwrLo0ynXf/CXoZ8I7UHlgGYTqIbLBlTF2VyI+xnwL+qr32agciqzUKINlBezQgm94xNQ3tESKMypr+Yblw1xqGJFmbGQPArQvVfTRsG6DZBp9WJNQAneBEjLVvZlZgE+mJQOTILkBarIUpol0rL0djp3lDxgCMTpHqkDdFNVRwzs3QADsqC0SPdT1W1lKAVORnlHXahc2iH6HI1AFTeapM+DF8b+JZdlv/wBl38+D4DCaRnsYjDXXfQG113/BpxbA/uUAjkg3iC65E5OPLQF6VH/VG8/8S8APMm9CLFNG/EiUt7HTTKVDYxlDTCOHMZl5fAW1wCQwyR6+hvmURi6EUaUGr6jlLrcrNhZQkZSDDUeH4ec7QsLsPImj0lXoTBp8dGBqrqtUeJyNyhyBPXhlZ3tKa2o8VBe7eGxhdt4/NIxrY4vKK8lW4tR61j3tSBKpZTsK3ExYaD6p9W3RxzFVXXUenxNerjml9Vgt4kG+W3tIcMSpZV12j4Xfgnx0aFvl4UQ2G0CbxtbwtR5fZS43PRuJXw3ym7DJjqv+i4oUSolbDno5IT+qa3Oa11fjasUA8yasxIBvH1zy78HKSWVdV6SYx3YQoRcL757Cic88GnggY2VU9taZeDGWOMrajyBBw4dxQozPv7+hbq/Z/3vZvKQXry+ah8xDjsLbj+N6Cgbw//wcSDEvzlmPrWcbw86cdgFHp9k12EX8dF2RvROCkRBCCEY1CuB8hpP4LykJ0Rz5shMkmKiKKqsw++XDc5nrcdHQXkNxVV1nPKnxdR6/QzvndThMPfOostEqRAiHnX7Pw5123KPlPJ/zYy9AfgVIICPgdullH4hRF9U2ZQTgR1SyvFB20wBFgDb9aI6KaXpwxZp2OGKz17m31zFFsYilo0F4NeTlVC9e9kziEmSWyc/Htikn/w/ZnAz48jBi52X5HbuqH6CqfFz+Znor0etYZJrBVXLe3LwrFRVERbgLOBFlAhcQaCtCrtRAnQuqojRDlQupUsJyyG14NT1E5JPh9wNMGI8StitV2Mzs1EexjHg/BySJ0F8LiQP1OOsQkQFMFr/D66pgLjdKC/qEFTrmc06V1VX/vV8qMKK01D2gF5nVfPVRZPI1ZV/AQcoD2wRDDgZPLnwlBfuqyOQU0oOqvJuNoEequSgBHoJqmuh1RomSh3DfTzArdOeBSCLg/yy9DFsz7l4OfOnHJRZgXYx7y6+D3e6B3qAmCdJPzWf6SwCQCxoeAnMZSYwnTGsZ2/gSQGIdSB1f1LjIe2mRGD4rhBiJCpd2Y66sq+VMsTdlcHQCl/vVU8WeyZGU17joaidovQvn6jwnf5pyovYIyGakqrwCx1lNwoZttsEcQ57p+eUnjO6N88s2cX76/O5/tRBjMwKne9psbOoKlAJ1bJ5b4mr2fEXP7eSarcv4FXtq72sBytqA70ULfLLa+idHNvhvpm9GonS3IMqH7GlNh9RNtHmnFJr/szk1oWSw25rtZVGKML1lFq/i4oaT1ieUqt9S/Axz3puJfvLaiiqrMVht3HuE1+SV1bNyD7JIcM495fW4PFJ7jxzaMh9xDrs9EyMJr+8lhq3jxq3l5goW5OHEa2RosORK2rcR0SUnvn4FxwoqyEpJopqtw+bEIzsk8SeYhf90+LpkRDN3EYPRn54XG9W7y5tZkYl0HcXuxDAknumcMlzqyh01vLv6yYw7pgeDcbOvXkis55bibPWQ3SULfCAICM5hl2HXazaXcKTi3cAKnz2peV72K+jCPD4eeLyMfxoTOTeT3Wlp/QeoFJKOVgIMQT4UggxWErZoMSZEGIgcB8BfxQfA1cCr6FqnN6H8l3dH2IfW4KFqiFysKquArz5pKpu80ajlu538Qz/mvw1oHqZAkxmGXn058/8iigdD+vFzpj49YxkC2vktRS9nI08UyB+dB+vf3YJj/A7LuMtNWkuqvLsYug7C/gCFY47CfgUJc4sr+gMYLEuVlShiyEBpMGI0SihWYsSlC5UFd0iyEyH5ARgD/TNBkogvwisPwO5OscUOxS6YMAYlAiuBbJhZy6MSEBd3UPA4QKcUFqhPanqoFXF3xIYcrruT5qgwpE9uaiQXisc1wuOKLhvBOobb/1dzlZjHZawBSXEK/Q5WaE/T9L2lUAdMbzJFYHfkbs2huuyXuRLJlNEBh+JLbwkt3PZtLeYJy/gndJL+EvavWqs3vHb6dfA6vtgIYyYvZ77mKnOy4NjOWv2h5TTg09Fusrj+S3wM/XPO713MWAEarfiCIXvCiH+ClwMDABGSyk36+VDgVdRj2BKgKullDtaNEnKLaBKdAsh5qIeTYUurWkwtEDO3lKio2y8f9skznj8i3Z5Suu8Poqr6oh12ALeuLT4aHYUhndJlrrcpCc2zQNMiLF3evXd3Ydd9EmJpaiyjiteXM2G2Wc1O9ZZ68EnZSDnMyEmip6JMeS10D7Dqu46QHtVrdDfgvKapqK0rCYgWjtCrMNOUmxUkCh1tuqBddhteFsI3w0uXmNhhXpntOIpBZUn257w3fqc0paFnPUwBFS12taw8qZrPfU2HXTWcshZS1pCNFV1XrYcdBJlF81W6LUe6Iwf0CPkeoDfnzuSW95Yx/bCSlITojlpYGKrtjXGOp6yI9CrtNbjY0+xi4RoO1///gyuemkNQKDoUHOM6pvCvA0FHK6sCymMP/ymgKo6L4N6JtCvRzzZaXFkpcY2EaQWc0MUEkqLj2avrZo3v8qjqs7L4co6dhZVMueLXaTGOajz+jgmPSGiBSl0rSi9DFR8npRyhxAiBzgH5asK5hJgnpTyMIAQ4p/AtcBrUsoKYJn2ihq6EfJXyhPGmfXeMIA/Tb5Tv/s7AJs4ia8Zze/5IwDF9MRHFKuydMXenDp4R33J/3v7j3lURyT09B1g3WcjSaWcauI59b0ctV+vgAroexWqmu5oVLjqDpT40i1Y0LmUxKAq8mYSCL+t2aByLPGibmfTtCgcob2lpeB0aQ9pEeDTXzQdNjsCPW8UDBiNErSJuvBQrBa8FXru/frn6ZC2GCUSQYUef676kbJDF2hKAXJ1ISNLWKIrDU/S9ru0Taj3Dv1/3VMBjuuhZk59mxpq9TlZoOe+ElZtnwrDdFEifguvOph35QWU2PvCN/ATOYfrXr6PfT/NZDw5fBg7k4ms5BbmMIMFPJT3AFyor4ECgLGMR+WcytmAFqjo/+/yEetkQb2sN3QbjlxO6TzgCeDLRsvnAM9IKV8XQlwJPI/qNowQ4lj9OZiFUsrHhBBTgeuBYuDIN5UzfC/I2VfGCf1SiImy0zs5lsJ2iNIXvthNrcfPv649KbCsR0J4OaV1Xh9Vdd4m4bugCsN8svkQf7xwdJttCpc9xS6Oy0rGd6CCEpcbKWWDgkvBHChtmvM5ID2+RU9pjRY9A7QA7ad7JuZbnp8g8str+MHAtCbL20OvpJgGovTYXgkteuii7KLNhY6sayUzqXVRWuPxMX/jQe47/7g27aMuTE9pZlKsEr4+f1iFjmIddmKibA2q75a63CTGRDEkIxGvz6+9pnVsOejE4/MHqhpb5OwrIyk2iqEZzRcAsiotf3OgnL3FLs4b3adV2xpjhe+WHwFRuji3CK9fMlgXJGtNjFocl6Vu3L4tqGDKsIwG68pcbu6du5H4aDuLdJ6nEKLZvrjBBD/kmHvLRB78aAv/WrHHun3ijMeXAfDxHac1W7U60uhKUZoN7Av6nIeSAu0dF4qhQoh1qBbtz0opX22PoYbORzwK9AH4O7JRK8ofLNukbj2BjDdVg87dBVmMda9jZHQuq6ZM5e7jH+YGXuDnchdX8CYwjzpi2Mmx3OF8gnMu0v1P56G8iBko33sVSvRpkUgySrRFoUJ664BEXYBI+9yjSlCCdTjsXaHyNR2no3JTdaGgZKvXaa0qPpRpCV5QeZyFqIJLVt/QIkgeoyv2ZlD/zRwCexeDIxf6poPHEpQ7VIivY4g+hj0oj63l6YzSx1WhqwtvQAnZAlTQIsAolDe0RI9ZrSoKx8Wg/E5j9LkYSKCY0u6hWQx6tQCAKVd/wn+4nBJ6goSlTOFn4kXgARb99AymsoSN8cdTTTzFpPMaVyGXOeAvMOPKd5mhzZjBWv1OlX638kctj6jlVZe/wtDdkByR8F0p5XKgwQ2vECIDlbpxpl70H+BpIUQvKeVhKeUuArW9m8y3BFgihHgKdaWv67iVhu8TtR4fm/MruO7UQYDyeG0pcLZpjqLKWh5ftJ20hGimBt2spiVEU+32hcydDMaqUPru2gP8bNqQBuvs7QgpbQt+v2RPsYvThvRk8tBezP7gWwqddfROCS2y9pepZz/BfQ+z0+NZtauk2X1Uu73YBIFCR5nJsQhBkwq8Xp+fQ87aI+IpBeiV2FCUntSK2I2yCTxtPNeWKG3ufAVj131E20q4OaU2m6Bfjzh2F7vCztk8bUhP9usHDbsOV1Ht9jH7vJH89FSVgnPZ86tw1nqo9fhZvbuE04b0arB9zt5Sxh3TI2Q+qUV2Wjzx0Xb+981B/BKGhlnBNpgeWmT/aUEuZ47MDNgWTLhVYt9dd4DeybHMvz101drmsMLavy1wNhClM59azrbCSjx+P4MzkgLnor3Vb6+Y0J+XV+xBCBiakRgottRdBCl0oijVYjC7mdWZnbXfINYB/aWUFToEeJEQIl9KuSjUYCHEjcCNANnZzZltOBIInR561l0f6iUzA4JDCBDXqBLs72nZ8oPJv+ar09WXtOg/fXhFXsmgLQWkDD7EFvcIzj9+Lps4nr0MYBeD+Vf1tQBULe3JVzNGMzF5JZMtB8sMlPYZhbo6k1FXo1XsJxnlnRyDCgbUoiytlIDDzqFzNRkCA6wquE7glyihWYISvQfVmLjVwHjqv20lKHE4Hpiu55qu5k+bifLzzNVzDIEBM4HhwGadK2rNEYUSj1koMWx5QSv0HLEoMWp5Pp3AI9TnpYLKsXWp/bAC0q5HCds9ev8FwI/V57LJcaRSHhAZcVTT58ly8EK/u3ZyNgv5Qqdtny6W8oG8AAA7PvY9OhyA2371N5694i5YAD95cw7xVFNCOm/5L+NZTHXd7ySt36v11JEyFi9IKV8IY+b+QL6U0gcgpfQJIQr08sPNbaQjay5B1ShwAJvD2JfB0IBv9pfj8UlO0uGHvZNjWbK1qEVvYWNW7SpBSshqJEzStOezrNrdYlXb4kolSkPlUcY57IE2Gq0xa85KkDTJhWuJgooa6rx+BvVKDITXbi+sbF6U6sIs/76uvrTHV7tLOVhR26z4zk6Lp1+P+MDNenSUjcykWAoaidJDzlp8fknfHkdIlCbF8G2Bk4ufXUFBRW2rN/VRNhu+NlbfLXTW4bCLsHI4U+McFFXVUVnraVNLlDfXKH9OOG1y+qXFs7vYFRBxrTE4I4kvth/G6/NzzUtfATAjyJP51k2nMOu5lazNK2P+xoMNRGl5tZsdRVWt9jm12QTDeifxlQ71Hd4OUdorKQZB056qtR4f+eU1CCHw+WWrhX8uenYF6/LKuWXKsW0uEpQS5+CY9Hg251cElrm9frYVVuLzS0b0Tmpzq5tQDM5IYlhmEvHRdt6/bVIT8d0d6DRRKmVwUGZThBB5wDHU3zxkA0tCDLXGETRufxj7dwa93yOEmIeSIyFFqb4JegFg/PjxpujFUWAhMzmD+ZzBfBZxbrPjvhoymZ/Lxxose2XkZdztry9+FEMdqZTTn/2Mjt/Euxf9H+nv5PMIv2PR4fP4Xa8/AJB/eTp9N5eo/FFdyIgS1JWxQU82HnXVWb1AdQhu4BHLYpSoXY0Sc5aoszyhY1C3uUNQYvd6PeYVvf4nel9W5VzLBis0d4/eZgXqSrf2MUHPB0pkDtKfC1FeUV0llyEoQVqkbbED7wcdl67MS5HeV4J+jdHHuAOwwpszUKXEkiF1lL4R0DZ8/ORFAKT/Ip8afxwvLbqNl9bfBsBD8h5+dMVCNfB+OOVX6qv9DHfx7O/hJyOV67uaeF65+mbSX1HeUVFQxw+ydvGV+Jb35EcAyF81qoxk+K5RfDRz/6WUS4GlR2t/hu8Wl85ZSZ3Xzym6r6KV95WZHEO12xeoKBoOX+0pJTEmig9+dmqD5ZYwKHW1LEp3FKkiPKEE3c2nH8sfF+RS6nIHRG5z7C2upsRVx6l//pw+qbFhhSXuPqyebg7smcCQDJXrt72wkslDe4Ucf6CshoRoewMRFuNQYmlfSTXDGgkOv1+Se7CSC8c2fFCZlRrbJHzX+nzEPKU6fNfyMLYmSsuq3SzeWtimfRQ5a8lIig3rAcazV47j4udW8snmQ8waH26goGpTYxeiRW+kRbbOK00J01M6JCMRj0+yr7SaEh262/iBxNxbJnLHf9fzybeHeOiCUYEQ3rX7ygBIimldgozok8z6vHKi7bZAxea2YOUIB7dkcdZ42HpIfXckMPHPixmQntCih7JI5wBffGL7HpxX1npZnFsUCGX+z1d51Hn9DMtMZMEd7W+r05iFd9bPdaT6jR5NujJ8dy6q2ESOLnR0Eson05h3UXmjD6Bu3W8A3mxtciFEH+CQlFIKIdJQPqHfHynjDe1H3qV+inUwXT+6UL9eOEuOZaHOK7z4ogVKiF1fX+gI4KkH72X67PlcZlPFi+oCOYfgJppq4pn+3nwWX3EuhW9m8livn5NKOTmMw45XCbAolPdxP/XitJb60N4s6r2MA/U4KwxxNirPVFe8Zbz+mYDyXG7V263X83yByue0qt5+SH1ZliK971htRxHsvLwfg18/oOz7SM/rRYlBaw7t2SQb5QF1oURlHkowF6DCenO0/VbxJiuvFD0+AyW4D+rxC4DTUYGQyXruSerYRQGITyWfPlYfunLWm19SsqEvp574GZy1hV1nDcbtj+YPV/wVgI/fnMqDzCZep+3dxBPw8B28ct7NgTnka9BTRyZdl/UimxjND+RxXCzOUevNI6LvOilCiBeAj6TUTyLCYz/QVwhh115SO+pKb/WhpcHQXsprPGwvrOKbAxXEOeyBHLxMXbCmyFkbtij9em8pJx7To4nnxRKRpa20hck96FSFlm5tKiKtkMHcg04mDe7Z7By1Hh8lrjrsNqHCYsN0Au0pVv9IBvVKID0xhp6J0WzTN/qh2F9aTf+0+AYizKocuq2wsokozSutpqrOy3GNKvruK1HLg8nXntN+R8hTmpEUS1WdF6cWMiNbEaWClv9Pub1+bI2clYectWFV3gU4MTuVmCgbD/1vS5tEabXb12LV4GC+2Kb8Q+F6SodkqgcRH6zPp8ZTXyG5MeeO7sMHGwo478kvWXinypnM2VeGwy54/7ZJre7HeiAwqFdCk7zUcLllymAe/WQrhboQ096SaqKjbIzsk8zBihoOOesQqDBwu000eVBw3pNfcqC8hh7xDga3kAPbEukJ0ZS63Jz658+pcnup8/g5ZVA6b95gmoIE05Wi9DHgFSHETtRt8Y1SykoAIcSDQIGUco6UcrcQ4iGUXwqUj+t1Pc6OyjeNQd3YHABelFLej6rUeIsQwoM6zteklB8cvcMztIY8EXr6xwDwsfwrf+fOhuvfgzOYzz38lQ26pUsSlcyc/SF7GADAYs6ggCyKlmk35lPqx6VzXyXxxWI2VY9mVUI0l8qdAPiIUkJvIEo8WoJ0MfXirQQlTn+MEnlWRd4N2rA5euwMlMAsCpqnAiUYY1BCcwdK/OWgPJugckrt1IcMp6DEYREwAgb/4oAaU4cSpnXUF4uxoj+KqO9TakeJUMvbmosSmbWo4kopqG9Ain5ZKTyfouoKVaj9sl3Pl6vt96EEqfYafzvqWD4ddRpnbVeh0OmD80m/PJ/nbLdw6aM6FPvXaxgho/nbm3dxt/9xLnK+x3vJF3HOFuUpvWfkVC58cx7nXFEfFHHhFf/lHtsafpP8d3DCaDYxz38BbDOhvN0fiUrpb5EKKeWNbZ5ZyiIhxAbUN/V1/XO9VRTPYOgMyqs9Ks8xPYGEoBt+S5Qeqqhr8cbVCqmbc+U4thdWhayGmZagRG1ronTroUqGZiaGDN+1bua/LahoUZQu234Yv4RXrjmJW15fS3kYBZYAdh+uIjEmil6JSlgNzUxie1HzFYP3l1WTndbQ0/XerZM47r5PyD3oZOYJWQ3WbTmogt2sIjEWMQ4bJS4/rjovCdrTZnlKs46gpxTgcFUdCTH2VluJCCFC9uy0yD3kJL6RN7vQWdtEiLc0v9UeJb88vCrDPr/E55dcdlJ4IjYp1oHDXhvI322NY3spUfrPL1UOY89mvPGTh/bCbhMUB7U4ytlbyqi+KWG1dxmhz5GV49seTh/ai0c/2cqy7Yd56vOd1Hh8DM1M5P3bJuH3S07582IOOesYMfsTfH5JSpyDZb+cSmJMFKt3l7LzcBUOu2Dx3VPabcNnd53Onxbk8vyy3YB6kPGbGcPDDvX/vtBlolRK6QJmNbNudqPPz9O0iiI6l6hfM3M8DTzdcUsNRxqxDI6d/C0AxbbjOIP5AHyapiuvltZ7TqfrqL4xbOCHWCGg1zOQvawk6OlwqvpxytwljCeHVMoZFr+dh274I1zfk/G6JUyms0R1xrVEXYZ+DUR5HqP0azRK7LlQomwI9f6Xs1Bhr6/osWnUC7tc6j2qZxNoFcMQlAcSlBi0tuuP8kbuIFCYiMwgO1JQ4jCG+vBcgvaJtqs/SryOQHk5g73AoLynX6C8uiVBc2zS70uC9m0xRp+TcUAsHLd1F8exi/Sh+YEhU2xLubSXFqTFawjmb7a7eCh5Nj/j6cBfmnNsS5B+6PemekhwG8+whgmsYQIvOK/mTa5gk19Vi7xg6H/1TJdj6K74gaaVMhvRqqdUCPEkcBHQG1UfoERKeRxwM/CqEGI2UAZcHWp7w/ePUG04jsTYuGg704Zn8uI1DSPOe2tR2loFXiklbp+fHB3CeNKApkV00hKUCCoLw1M6tVE1z/o5oumT0nrxpY83HyIlzsEpx6Zz/WmDePLzHWGF/O4udjGoV0LgpnpoZhJv5+zH75dNwkWllOwvrWkijqOjbBzbK5Hcg01tfPh/W4B6j5xFcqyDAmr5em9poGjMa6v24bCLNvewbA5LhHp8kt7J4VSjtTXbE7agvIZajx+3198gd3ZvcVOPb4s2JcZQUFHLj55ezrG9Elu9VvcUq5zNUX1TWhxnkRQbxYnZPejRyu/dIiEmir6pceSX13D+CVk89eOxIcfFOuz0TIimqKqO8mo3cdF2vjlQwTWnHBNyfGOG90nGJup7o7aHEX2S6JUUwwvLdrO/tJrUOAcLf6HCXG02wZrfnsH0vy2l1OUmyiY4XOXmxIc+Q0rVi9VuEwzJSGz1O9Eav/zhcD7YUECpq47hvZM5vl9qh+b7LtKVnlLD95hdy45DBoXR/5V7kCF6C9/Ok7iJZiYLA8tu40Wm8gkAlSRRdKLykvZbt5P99GdVgRKrQ7O2MfSfG7mWf7GTYwGIsjyTUSgRtxsl9nJRorGI+tYwa1DCrEIvbxzBk4AKLy7Vc2SgPKJRKOG6GiX8rBYtVs7pKOrbsjj1vAUoMevS8xaihGYp9d7PEdQLSif1HlQvSjxaXt5Rep8+/XO1ntOyc4WeY4ieM0+vs6rsWnmlC/Scy/S6UfDfURconaF5t+ASzj88l48WzFIn49wV5AovP7lQ94X9PfWOsmb+h05gDen6wJbwQ86wzQ890NANCasnTKueUinl7cDtIZZvRX0LDQZ+9PRy7DbBe7dOatFz1V72l1azr6SaaycOaLLO8pT+fdF2Lh4X8lk5ACUuN7sOu7j1jbUI4Ph+TUVDSpwDIaC0hTYWRZW1FFe5W8x3HNknOeBxDEWd18eHGwpIS3DgsNuYMqwXTyzewZc7DrfYzzCvpJqVO0vokVAfpjw0M4lqtyoe07+Rt63E5abG4yM7hBduZJ9kVoaowFvt9hHnsDcRmu/fOokTHviUlbtKmDIsgz3FLpy1nlbbnrQFy/sL8Pr1rf95SYiJoqzaQ0W1p0lOpvXwwS9h9W5lc+OereEQ47DTJzmWgopaMpJaF7PfFlie5vAqr7Yn/9AS1ZeOb/56B/jXtT9gxpNf8t66fE7on4Lb62d8iIcxoUiMieKEfqlhtUhpDiEEUkp2FCnv/rFBD1Msgr2gP/zHMgrKa4iJspEU6yAtIbrNxY1CYbcJVv92eofn+S5jRKnhqCMnqwq8Ikfll97Ok3rNueykP+9zIX+R8EvxN+A8ACawjDVMRlwEP3/vMZQrU/Mi8DBcyPsAPNXo3vVFrmeXeAeAqfICLp87T4m3bNT9ciYqFDcWVaAoESUuh6O8iwNRobtW+kMKSqxZbV3sqOq5C/RYUOHA+1G3ywtQHkpLlGagRGIu9Tmh41FeyxEocRqLEop2vZ9Bent70Bx21Dc4CyUmrbDhPXpZLEpw1lFfzGmH3hfUC26r2FJ/lGgdrueZpT9PINBuppAMSuzqRulW+R7vZ13IrTzLR0tm8cpjl4GEa3iLS3gDgHf4P25DFaR6y3uZ3nFf5lCfU3puUO0x8ThM1znH7xsP6XeAsMJ3DYY2E+zdvHTOSgrKawN5X6ByHitqPGwpcAbyK5vbvszlprCyDq/PHzIU1mL5zmIATh3SNBw2LtpOlE1Q3Yr3q6TKjd2mKn4mxUaF9O7ZbYLUOEeLntKtB1X+5vA+zYeAjsxKZvHWImY9tzJkZd331uXjkzLgATq+XyppCdEs3da8KL3kuZV8W+AkMTaKd4PmHKo9mte9+jWf3nl6g22syrv9ezQVpcP7JPHe+nzKXO6Al87j81NV5w3ZniQu2s7Y7FRW7irmnCeWse1QJUIIBjST09geLE9pfLQ9rOI6f7poNFe99BWbQ4RK5+wtxdIzn28tYsqwDDburwjMHy5v3XQKrjovYx78lN3FVRRV1vLzN9cH1jVmc34F0VE2BmckNll3pEiNc+D1+5l0bPPh4aCuw4QYO39ZuJUbJysHgVUgLBzCyT1tjayUOGKibCy6awpxrZz3T35x5AoPGdqGEaWGLsEqdgQ08IIOZj/36vf3SkCvm2lt9x4QGKE5EQha/mQgNeX4oB0GNZ1u4m8J4gT985f654UtjG1Mc/OGO8clbdhXOPRHHc/57djW+h8wvOHiO4A7Ag6Iu3gGgCWo4shvBca9w/8F3j+D+mU/E3Svd27oItj6umi+ErOhuyE5EuG7hsilLaGvoZj13EqEgLfDbERvUVHjodrtw+Pzs7vYRXGVG4ddUF7tochZS4nLjZRw/tPLOSYtnk/vnEyU3Rbon5hfVhMonFJQUUtVnZecfWWcPCi92X0u31lMZnJMIJ+uMT0Toyl01lFUqSqrWlw6ZyV+CS9fexIVNR4yk2PJSo1tsaZQjcfH/E0HeeiCUSHXWyGvLRXhsda53E2Fcnm1m798spWkmChS4pT4s9sEAvjomwIeu+T4gECf+dRyvH4/C+6YzIGyamo8Pl68ZnwDwTasdxI2oUR3Y/brnM/GHlSoz33NPehkohZ0H24owOuXzYZLTjy2J/9YvJ1ouw2H3cYX904Nq99nuKQlROOwiwYe05YYpfNeNx5oKkq/3ltGYkwU1W4fb329nwdmHkfOvlKEaFsLHlAe2WN7JbK9sJLTHl2CX0qyUuNCtiH6tsDJ8N5J7S4OFA69U2LpnRIbVnXfPsmx7Dzs4snFO4h12OgZ5rk9Unz481NbH2TocjrvajUYDAbD9xzLU9rSS4XvGkHavdhRWMnkv3xOqcvN5oKKZnviXfb8qmbXlVTVsX5/OTn7yjjz8S+QUlJR7WHyX5Yw4g8fc+mclSG3c9Z62FlURV5pNcfdt5DiKjd9U+N44/qTkcAfPtiMlHBsrwRio2zsLnZx/AOf4vb6qajxkHuwkso6LyUuNx9syA+EIX6y+VCz9i/YdJAFmw7i9zffh/Q/N56CBP77lSpAsPFAOeMf/oyv9paxYX85Ly/fg0QVMnrv1km8e2vzHqDYKDvOGg/l1W4ue35Vk3PxwrLdRNttgeq/oTh5UDpRNsHWQ5WqF6lGSsmZj39BWbWHt28+pcEDgfTEaLx+yds5BwLnOveQk9yDlSzbfpjCyjp6JUY3EV9JsQ5umzqYEpebDfvLG6yzPKWhquNaonTB5oOMvn8hU/+6lGeX7iQ+2k5qXOgqxpMGpyMl1Hn9zLlq3BEVpKDE+dj+qWFXx+2REE3/tLgGfShBnbuth5wkxTqw2wR1Xj9bD1Wydl8ZwzKTwq7SHExKnIPhvZOQUuW87iup5uNG162UkjV7SjlU0XJ+c0d566ZTwn4YlZ4Yw8g+SfSId5CZdGR/X4bvDsZTajAYDIZOIqxCR4ZuiNcvySut/91uK6zkzMe/ICXOEci/evTi4/nmQDk94qORUnL5C6qIvnUj+/yy3Xj9EiFgR1EVJz70GTUeH7Uelbi+ucBJVZ2XxJgo/H7J+U8vxy4EpwxOx+uXZKXEctBZi8Mu6Jsay7hjetAzMYaF3xbSKymGT+88nR+/sIpvDlRQ7faxZFsRhytV+5Pj+6awMb+CX76zEYCEGDsLvz3EfeePpM7r59I5qyh21XG4sg6PT93kn5idygtXN99Sd2DPBFLionhy8Q7mfLGLarcPuxBE6fPxj0U7cNgF//v5ac3OYfHmDSdz/tPL+cMH35J70Emtx8+OwkqGZCaxvbCS8hoPybEt38L1SIhmYM8EdhRVsbekmgNl1STFOvj7Z9s5XOWmT0psk5zUhb+YzKw5q/j7ou1cMDaLPy3Yqvpd2gTXvvI1dqFydkNx0+nHMueLXVz54mpW/WY6V764hsOVdfRKiiE9ITpQLTeYnokxOOyC11fnAaqfI8BTPx7L+Y0q8lqc0D8Vu02QHBvVbKGnjtJWz/3xfVPZmF/eYNms51YipSoiVF7jxu2FN9bsY31eOT8aE/rYWsP67lz2/Cq+LajAL+Gh/23hpeV7QErevnkiTyzajs8vQ57vrqI79sw0HH0i54o1GAwGw3eMsAodmfDdbkhMlJ1x2anUePzsKKrEVeelXBfmibbbkEjO+scyPF4/BytqGf/wIqrdPmIdNmo9Ppy1Hl5btZeeidHUenz0iI/mQFkNdptgWGYS+0pcVLt93P32Br4tcFLorMXjU7kDG/Mr6JkYzcrfTGfWcyux2UTgpvfMkZn856s8fnhcb+w2wds3T8Tr83PKnz/njTV51Hp8zBrXjz9ffDyPLdzKM0t2kRwbxX3nH8fdc79h/MOLKHW5sbIUesQ7qKrzkpkUy39uPJmYqJbz0fqkxLG9sBK7EGSnxTH/9tNIinWwdl8Zl8xZSXpCdFjhjiOzkrl24gBeXK6KEUTZBOc88SVCgECotjRhtO/47K7TmfDIIgqddZz6aH0rrt7JsfQP4bkUQvDrc4ZzyZxVHDd7IRK4cfIgxvZP5ZY31tErMSZkGC6oojTZafHsOuzixIc+C/y+Cipqm/V6gvKyVtZ6WHD7aVz7ytdUu33MGN2n2fEOu43RfZNxNG7+2YWM7pfC/E0HuejZFbx36yQqajzklarr+d1bJpIQE8Vdb23gP1/tx+eXjB8Qfk5lKKzrfe2+Ui5+bhUHtVd08G8XIIFeidH0TOxYtViD4WhjRKnBYDAYOonO61Nq6FoG9Urg3Vsncdnzq4h12BnROwlnrZeqWi8ut5eyag92G3z4s1P56StfcbjKTXy0nbJqDz/+52q2Hqyk1uPnkzsmMqCnyk2c+ZSqnmsVNnnxy908PD8XUGGLPXVoqavOGyia0zgvb0OeqnZ6wdh6T1SU3cYFY7L455dK4Fk9Ma+ZOIAXlu0mMzmW6SMyEKhKsekJ0aTGO0iMieKDn7UtF625IinjjunBmH6pRLWhiuidZw5lwaaDpCfG8MwVJ/LDJ5ZR7fbhsMO82yY16eHZHAPSE8hMjqWi2sMhZy3HpMez8BeTmw1DHj8gjazUWIqcdfRJieWuM4cGfseted8W3z2FdXllXPniGhJjbHx8x2RS4x0tVpod1DMBIWBIZhLLfzUtrGOad1tk5QiO6Z8KQHGVmxq3j1Mf/Zxaj4/Xr58QOGdXnXIM761XLdXGHxNe9dnWGHdMGgN7JpBfVk3vlFjcXkl8tJ3Fd59uemAauh1CdkLZ9O7O+PHjZU5OTlebYTAYDEcVIcRaKWXz8Yltnm+YDNFiuhFTj+g+DUeHlv5PWqGFQzOTeO/WSVw6ZyVun2TebZN4Z+0B7p37DUIoMbKohYb0Ukqm/e0L4qPtzL+99ZBXi+BKrha5B52c88SXZCTFsOo300O2eJj216VE2UWT6rEGQ2v4/ZITH/6MimoPx/dL4ZsDFQzu1fD6llIy6r6FuH1+tj98jhGNhu8lLd1nGFEaAiNKDQbD95EjL0qHSni2lVFnGlHaDenI/8k6r6/VMNjOYOyDn5IYE8WXYXrjDIa2UF7t5gePLMbt9fPE5WNCttXZV+LCWeNldIj+tAbD94GW7jNM+K7BYDAYOomwwndNTun3jK4QpADrZ5/VJfs1fD9IjY/m87tPp7jKHQjnbUw4fU8Nhu8rRpQaDAaDoZMIq0+pySmNAIQQQ4FXgXSgBLhaSrmja60yGLoX/XrE069H6wWoDAZDUyKndJnBYDAYvmOE1afUEBnMAZ6RUg4FnqH1ZGCDwWAwGI4YxlNqMBgMhk7C9CntDgghMoATgTP1ov8ATwshekkpD3edZQaDwWD4vmA8pQaDwWDoJKw+pS29VE6pEOL8rrLSQH8gX0rpA9A/C/TyAEKIG4UQOUKInMOHjVY1GAwGw5Gjy0SpECJeCPGWEGKnEGKrEOK8FsbeoMftEkI8LYSw6eU/EkKsFUJsFkJ8K4S4O5ztDAaDwXA0CCt8t0JKeaMpchT5SClfkFKOl1KO79WrV1ebYzAYDIbvEF0p0u4BKqWUg4HzgReFEImNBwkhBgL3AacAQ/TrSr36EHC+lHIUMBG4RQhxWhjbGQwGg6HTscJ3W3oZIoD9QF8hhB1A/8zSyw0Gg8Fg6HS6UpRehiqsgK7wlwOcE2LcJcA8KeVhKaUf+KfeFinlGillgX5fAeQCx7S2ncFgMBiOBmGF7xq6GCllEbAB+LFe9GNgvcknNRgMBsPRoisLHWUD+4I+59Eof6Ut44QQw4GTgZvaOL/BYDAYOoWw+pQaIoObgVeFELOBMuDqLrbHYDAYDN8jOk2UCiHWoYRhKDKP8L76AB8At1me03bMcSNg9cqrE0JsPlL2dQI9geKuNqIFjH3tJ5JtA2NfR4l0+4Yd2ekKFsLve7YyKJLPx/cGKeVWYEK449euXVsshNjX+sijRqR/t1qiu9reXe0GY3tXYWzvGiLJ9mOaW9FpolRKeWJL64UQeSjDrPCgbGBJiKHWOILGBfJcdCn7RcBjUsq3w90uhL0vAC/oOXOklONbsr8rMfZ1jEi2L5JtA2NfR+kO9h3J+aSUPzyS8xkiByllRFU6ivTvVkt0V9u7q91gbO8qjO1dQ3exvStzSueiQ22FEEOAk4BPQox7F7hACNFLV8+9AXhbb5cOfAY8LaV8MdztDAaDwWAwGAwGg8EQGXSlKH0MSBVC7AT+B9wopawEEEI8KIS4GUBKuRt4CFgN7AB2A6/rOX4NDAVuEkJs0K9rw9jOYDAYDAaDwWAwGAwRQJcVOpJSuoBZzayb3ejz88DzIcbdC9zbwj5CbhcGL7Rjm6OJsa9jRLJ9kWwbGPs6irHPYOgcuvO1211t7652g7G9qzC2dw3dwnYhpexqGwwGg8FgMBgMBoPB8D2lK8N3DQaDwWAwGAwGg8HwPed7I0qFEPFCiLeEEDuFEFuFEOe1MPYGPW6XEOJpXSgJIcSPhBBrhRCbhRDfCiHuDme7o2hfXyHEEiFEReMqmkKIKUKI6qDc2zWRYltL2x0t+1qxvV3nTggxVAixSgixXf8cEmKMXQjxjN7nTiHE9R1dFwG23S+EKAo6X8+0xbYjZN9ZQogcIUSdEOKv4W4XIfZFwvn7g1B/474R6m/e2eFsZzB0JkKIdCHEAiHENiHERiHEe0KIXnpdq9d8pCCEuE8IIYUQo/TniLddCBErhHhOCLFDCLFJCGF1K+gOtp8nhFiv/55uFEJcpJdHnO1CiL8KIfYEXx96ebO2RspxhLK9pe9spNveaP19bfmdHE1auGZCfmcjyfYmSCm/Fy9gNvCifj8EOAQkhhg3EDgA9EKJ9oXA1XrdBCBLv08BdgKntbbdUbQvBZgMnAfkNNpuSuNlEWRbJJy7lta169wBnwNX6vdXAp+HGHO13pdN7/sAMKAj6yLAtvuBv3bw+9pR+wYDY4GHG9vS0XN3FOyLhPN3NhCv358AlANxR+r8mZd5tecFpAFTgj4/Bryk37d6zUfCCzgR+BjYB4zqLrYDTwJ/pz7tK7M72A4IoCzoXB8PVOq/XxFnO3Aq0B/Ya9nc2nmOlOMIZXtL39lItz1oXZPvbHewvbnvbCTZ3uRYutqAo/hL+xYYH/T5f8CsEOPuRbWYsT5fAsxvZs6Pgn6pYW/X2fYRQkSFWhZBtnX5uWtlXZvPHZCBupG36892/blXo3HzgUuCPj8N3NuRdRFg2/10QFQdCfuCljWxpSPn7ijZFzHnTy8XQAXQ70icP/MyryP1Ai5G9SkP65rv6hcQA6xCPQTdC4zqDrYDidqmxEbLu4PtAigBJunPk4HtkW47DYVds7ZG4nEQQtgFrbsYWBSp109j20N9Z7uD7c19ZyPVduv1vQnfBbJRTzks8lBPFto1TggxHDgZ9bShLfMfFfuaYagQYp0QYo0Q4poIsi0Szl1rc7T13PUH8qWUPgD9syCEXe21qSPnrLNtA7hch+p8KoQ4JUy7jqR9LdHR662z7YPIOn9XA7uklAfauJ3B0GkIlV5xC/Ah4V/zXc2DwOtSyj1By7qD7ceihN19QqUdLBVCWN6ZiLZdqrvuS4EPhBD7gHnANXQD24NoydZucxyNvrPQPWwP9Z2FyLe9ue8sRLDtXdYS5kgjhFiHulkKReYR3lcf4APgNillQZjbHDX7mmEd0F9KWSGEGAgsEkLkSykXRYBtLRIB9jV77o7Cvrsjc4A/Sik9QogzUTcDI6SUJV1tWDchYs6fEOJ0VL/nM4/2vg2GVngKqEJ56sd2sS2toh8unYTqr97diAIGAeullPcKISagIsVCtvWLJIQQUcBvgB9JKVcIISYBbwFXda1l30uCv7MRz3fxOyuEGNzFdrXId8ZTKqU8UUrZs5mXD/U0/5igTbKB/SGmanGcECIDFS70mJTy7XC3O1r2NYeU0imlrNDv96CeFk6KBNta2+4o2dfsupbOXQvsB/oKIeygisMAWSHsapdNraxrjU61TUp5SErp0e8/08ubFA7oZPtaoiPnrtPti5Tzp/8hvw5cIKXcFu52BkNnI1RxsCHAZVJKP+Ff813J6cBwYI8QYi/QD5WbfSyRb/s+wAv8B0BKuQYoBmqIfNvHoGqBrADQP11ALZFvu0VL13d3uPZDfWch8m0P+Z0VQpxF5Nve3Hd2KJFs+9GOF+6qFypP65/6/RCgEEgKMW4QTQveXKPXpQPfALe0ZbujZV/QmCk0zdvsQ32ycxqwCfXkMBJs6/Jz18q6dp07YCkNE8mXhBjzE5oWjRnUkXVhnrPOtK1v0BxjUCEkvdv4fe2QfY2ujcY5mx06d0fBvi4/f6inw3nAhPYcl3mZV2e9gD8CS9CFuIKWt3rNR9KLhvlfEW878Clwln4/FHWDmxrptgO9AScwTH8egSp8lBbJttM0t7FZWyPtOELYHvI72x1sb+/vJBJsb+47G4m2B2zuagOO4i8rAZiLqpi7jSBRgYoZvzno803ALv16jvpk4MdQTwY3BL2ubW27o2ifHXWDeBhw6/f363U/QxUE2gBsBn4ZKbZFwrlrxfZ2nTvUE7Y1qKIKa6j/p7gAXZhJn5fngvZ7Y9D27VoXAba9qs/TN8DXwIx2fF87at+p+hpzoiotHgDOPhLn7ijYFwnn72vUd3VD0Gv0kTp/5mVe7XkBxwES9Xfeui7f1+tCXvOR+qKhKI1421EPbpeiHsquA87pRrb/n7b7G/26IFJtR1VMPYDych0Cvm3N1kg5jlC2t/SdjXTbQ4wJfGe7g+3NfWcjyfbGL8v7YzAYDAaDwWAwGAwGw1HnO5NTajAYDAaDwWAwGAyG7ocRpQaDwWAwGAwGg8Fg6DKMKDUYDAaDwWAwGAwGQ5dhRKnBYDAYDAaDwWAwGLoMI0oNBoPBYDAYDAaDwdBlGFFqMBgMBoPBYIhohBB7hRCjjsJ+ZgohHtPvBwghbuzAXFIIkdjGbV4RQhwQQjzZzPopQoic9tqk55gohNjQHvsMhs7CiFKDoYvR/xQ2CiHOaMe2rwkhDgkh/toZthkMBoPB8H1CSvmhlPJe/XEA0G5R2gH+LKW8vbMml1KulFKO6az5DYb2YESpwRAZTJRSLmrrRlLKq4E5nWCPwWAwGAwRjxDiaiHEJv1w930hRIZe/hMhxKdCiLeEEN8KIVYIIXrrddFCiBeEENuFEMuFEE8LId4J2u4dPf0zwEjtVbTWN/AuBn8WQlwkhNgqhFgphPh9IzsnCCGWCCHW6te5bTjGh4UQO4UQXwDnNlp3jRBijZ7zcyHEsNaO0WCIRIwoNRg6ASHEcCHEfiHEMfrz/UKI/4a57StCiOf1P5d9Qoi/CyGmCSG+1OFLd3Su9QaDwWAwRD46nPfPwFlSyuOBzcBTQUNOAu6RUh4HbAF+rpffBGQDI4EzgPHN7OI2YIuUcoyU8pJWbMkA/gn8SEo5EXAHrUtFPUC+Qko5DjgPeF4vb+0YzwdmAmOAacDwoHWnAZcCk/W8jwEvt/EYDYaIIKqrDTAYvotIKbcKIX4LvCWEmA38GPXPMVyOA6YDdmAvkAKcDvQBtgkhXpJSVh1Zqw0Gg8Fg6FZMBRZIKQ/qz88D3wStXyGl3K/frwbODNru31JKL+AVQvwHOK2DtpwMrJNSbtOfXwAe1e8nAgOBj4UQ1ngJDAZayw+dCrxl/c8XQrwEWF7Y84ETgDV6XgH0CNruSB+jwdBpGFFqMHQSUsp/CyGmA/OA06SUzjZsPk9KWQcghNiG+qfrB/KFEGVAP2DrkbbZYDAYDIZuhECJu2CCP9cGvfdRf98bartw8aEjDYUQsY1saQ4BbJRSTm7H/lqb92Up5exm1rX3GA2Go44J3zUYOgkhRDTK41kOZLZx88b/SJv7x2owGAwGw/eVxcAMK1cUuAEIpz7DEuBKIUSUFpaXNTPOiYpUCmYX9ZFPVwQtXwWMFUIM0Z+vD1q3EhgihJhqLRBCnCSC3KYtsBi4VAiRIISwA9cGrfsIuFoI0U/PaRdCjGvjMRoMEYG5sTUYOo/HgLXAT1AhOxOllAe61iSDwWAwGLoti4QQ3qDPo4HfAJ8JISSwG5VL2RpzUGGv3wL7Uf+r40OM24hKmdkMbNV5pXei8kEPAv+zBkopi3T7mI+EEKXA20HryoQQM4HHhBD/AKK1refTijdTSvk/IcQpwAagACU2++p1y4QQvwM+1II1GpirjyfcYzQYIgIhpfHsGwxHGiHEBcADwAQpZa0Q4jqUOJ2q8zuCx0ogKShf5BUgR0r5tP68FPirlPJ/+vNe4Dwp5Wb9+X4gUUp5T6cfmMFgMBgM3wGEEElSykohRAzwITBXSvliBNj1CkH3AB2cq8VjbHz/YTB0JUaUGgxdTEf/KRhRajAYDAZD2xBCrAFigFhUyO8vGj807gqEEE8A5wCfdLRXaXPHKISYCDwL9AYGSSmrO2i2wdBhjCg1GLoYIcQhoBC4u629SoUQr6Gq+r0mpXywM+wzGAwGg8FgMBg6EyNKDQaDwWAwGAwGg8HQZZjquwaDwWAwGAwGg8Fg6DKMKDUYDAaDwWAwGAwGQ5dhRKnBYDAYDAaDwWAwGLoMI0oNBoPBYDAYDAaDwdBlGFFqMBgMBoPBYDAYDIYu4/8BWDYxeVPi7CUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "functions.name_plot_options(\"logger_space_zx\", data, log=True, orders_of_mag=4)\n", "functions.name_plot_options(\"logger_space_zy\", data, log=True, orders_of_mag=4)\n", @@ -332,32 +697,36 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ - "inner_wall = instrument.add_component(\"cryostat_wall\", \"Union_cylinder\", before=\"master\")\n", + "inner_wall = instrument.add_component(\"cryostat_wall\", \"Union_cylinder\",\n", + " before=\"master\")\n", "inner_wall.set_AT([0,0,0], RELATIVE=sample_geometry)\n", "inner_wall.yheight = 0.12\n", "inner_wall.radius = 0.03\n", "inner_wall.material_string='\"Al\"' \n", "inner_wall.priority = 80\n", "\n", - "inner_wall_vac = instrument.add_component(\"cryostat_wall_vacuum\", \"Union_cylinder\", before=\"master\")\n", + "inner_wall_vac = instrument.add_component(\"cryostat_wall_vacuum\", \"Union_cylinder\",\n", + " before=\"master\")\n", "inner_wall_vac.set_AT([0,0,0], RELATIVE=sample_geometry)\n", "inner_wall_vac.yheight = 0.12 - 0.008\n", "inner_wall_vac.radius = 0.03 - 0.002\n", "inner_wall_vac.material_string='\"Vacuum\"' \n", "inner_wall_vac.priority = 81\n", "\n", - "outer_wall = instrument.add_component(\"outer_cryostat_wall\", \"Union_cylinder\", before=\"master\")\n", + "outer_wall = instrument.add_component(\"outer_cryostat_wall\", \"Union_cylinder\",\n", + " before=\"master\")\n", "outer_wall.set_AT([0,0,0], RELATIVE=sample_geometry)\n", "outer_wall.yheight = 0.15\n", "outer_wall.radius = 0.1\n", "outer_wall.material_string='\"Al\"' \n", "outer_wall.priority = 60\n", "\n", - "outer_wall_vac = instrument.add_component(\"outer_cryostat_wall_vacuum\", \"Union_cylinder\", before=\"master\")\n", + "outer_wall_vac = instrument.add_component(\"outer_cryostat_wall_vacuum\", \"Union_cylinder\",\n", + " before=\"master\")\n", "outer_wall_vac.set_AT([0,0,0], RELATIVE=sample_geometry)\n", "outer_wall_vac.yheight = 0.15 - 0.01\n", "outer_wall_vac.radius = 0.1 - 0.003\n", @@ -375,7 +744,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -384,6 +753,45 @@ "logger_xy.set_parameters(D1_min=-0.12, D1_max=0.12, D2_min=-0.12, D2_max=0.12)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Viewing the instrument\n", + "The instrument can be viewed with the *show_instrument* method. The mock cryostat and detector can be seen in a 3D view." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "instrument.show_instrument()" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -394,13 +802,445 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": { "tags": [ "scroll-output" ] }, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "INFO: Using directory: \"/Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/tutorial/data_folder/union_geometry_50\"\n", + "INFO: Regenerating c-file: python_tutorial.c\n", + "CFLAGS= -I@MCCODE_LIB@/share/\n", + "INFO: Recompiling: ./python_tutorial.out\n", + "mccode-r.c:2837:3: warning: expression result unused [-Wunused-value]\n", + " *t0;\n", + " ^~~\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1604:105: warning: incompatible pointer types passing 'int (const struct saved_history_struct *, const struct saved_history_struct *)' to parameter of type 'int (* _Nonnull)(const void *, const void *)' [-Wincompatible-pointer-types]\n", + " qsort(total_history.saved_histories,total_history.used_elements,sizeof (struct saved_history_struct), Sample_compare_history_intensities);\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/stdlib.h:161:22: note: passing argument to parameter '__compar' here\n", + " int (* _Nonnull __compar)(const void *, const void *));\n", + " ^\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1613:20: warning: incompatible pointer types passing 'struct saved_history_struct *' to parameter of type 'struct dynamic_history_list *' [-Wincompatible-pointer-types]\n", + " printf_history(&total_history.saved_histories[history_iterate]);\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:1434:50: note: passing argument to parameter 'history' here\n", + "void printf_history(struct dynamic_history_list *history) {\n", + " ^\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Incoherent_process.comp:65:\n", + "In file included from /Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Union_functions.c:2030:\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:839:1: warning: non-void function does not return a value in all control paths [-Wreturn-type]\n", + "};\n", + "^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:883:1: warning: non-void function does not return a value [-Wreturn-type]\n", + "};\n", + "^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3274:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3274:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3276:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3276:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3278:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3278:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3280:42: warning: if statement has empty body [-Wempty-body]\n", + " if (dist_to_corner > sphere_2_radius); { sphere_2_radius = dist_to_corner ; }\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//share/Geometry_functions.c:3280:42: note: put the semicolon on a separate line to silence this warning\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: warning: format string is not a string literal (potentially insecure) [-Wformat-security]\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^~~~~~~~\n", + "./python_tutorial.c:15483:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_zx_filename\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^~~~~~~~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: note: treat the string as an argument to avoid this\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^\n", + " \"%s\", \n", + "./python_tutorial.c:15483:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_zx_filename\n", + " ^\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: warning: format string is not a string literal (potentially insecure) [-Wformat-security]\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^~~~~~~~\n", + "./python_tutorial.c:15726:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_zy_filename\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^~~~~~~~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: note: treat the string as an argument to avoid this\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^\n", + " \"%s\", \n", + "./python_tutorial.c:15726:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_zy_filename\n", + " ^\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: warning: format string is not a string literal (potentially insecure) [-Wformat-security]\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^~~~~~~~\n", + "./python_tutorial.c:15969:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_xy_filename\n", + " ^~~~~~~~~~~~~~~~~~~~~~~~~~~\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^~~~~~~~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_logger_2D_space.comp:574:45: note: treat the string as an argument to avoid this\n", + " sprintf(this_storage.Detector_2D.Filename,filename);\n", + " ^\n", + " \"%s\", \n", + "./python_tutorial.c:15969:18: note: expanded from macro 'filename'\n", + "#define filename mcclogger_space_xy_filename\n", + " ^\n", + "/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/secure/_stdio.h:47:56: note: expanded from macro 'sprintf'\n", + " __builtin___sprintf_chk (str, 0, __darwin_obsz(str), __VA_ARGS__)\n", + " ^\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:788:15: warning: expression result unused [-Wunused-value]\n", + " if (volume_index_main,Volumes[volume_index_main]->geometry.is_mask_volume == 0 ||\n", + " ^~~~~~~~~~~~~~~~~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:788:90: warning: expression result unused [-Wunused-value]\n", + " if (volume_index_main,Volumes[volume_index_main]->geometry.is_mask_volume == 0 ||\n", + " ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//contrib/union/Union_master.comp:789:92: warning: expression result unused [-Wunused-value]\n", + " volume_index_main,Volumes[volume_index_main]->geometry.is_masked_volume == 0 ||\n", + " ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^~\n", + "mccode-r.h:219:27: note: expanded from macro 'MPI_MASTER'\n", + "#define MPI_MASTER(instr) instr\n", + " ^~~~~\n", + "15 warnings generated.\n", + "INFO: ===\n", + "INFO: Placing instr file copy python_tutorial.instr in dataset /Users/madsbertelsen/PaNOSC/McStasScript/github/McStasScript/docs/source/tutorial/data_folder/union_geometry_50\n", + "\n", + " Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Al.laz' (Table_Read_Offset)\n", + "Table from file 'Al.laz' (block 1) is 26 x 18 (x=1:8), constant step. interpolation: linear\n", + " '# TITLE *Aluminum-Al-[FM3-M] Miller, H.P.jr.;DuMond, J.W.M.[1942] at 298 K; ...'\n", + "PowderN: Al_pow: Reading 26 rows from Al.laz\n", + "PowderN: Al_pow: Read 26 reflections from file 'Al.laz'\n", + "PowderN: Al_pow: Vc=66.4 [Angs] sigma_abs=0.924 [barn] sigma_inc=0.0328 [barn] reflections=Al.laz\n", + "Opening input file '/Applications/McStas-2.7.1.app/Contents/Resources/mcstas/2.7.1//data/Na2Ca3Al2F14.laz' (Table_Read_Offset)\n", + "Table from file 'Na2Ca3Al2F14.laz' (block 1) is 841 x 18 (x=1:20), constant step. interpolation: linear\n", + " '# TITLE *-Na2Ca3Al2F14-[I213] Courbion, G.;Ferey, G.[1988] Standard NAC cal ...'\n", + "PowderN: Sample_pow: Reading 841 rows from Na2Ca3Al2F14.laz\n", + "PowderN: Sample_pow: Read 841 reflections from file 'Na2Ca3Al2F14.laz'\n", + "PowderN: Sample_pow: Vc=1079.1 [Angs] sigma_abs=11.7856 [barn] sigma_inc=13.6704 [barn] reflections=Na2Ca3Al2F14.laz\n", + "---------------------------------------------------------------------\n", + "global_process_list.num_elements: 4\n", + "name of process [0]: Al_inc \n", + "component index [0]: 1 \n", + "name of process [1]: Al_pow \n", + "component index [1]: 2 \n", + "name of process [2]: Sample_inc \n", + "component index [2]: 4 \n", + "name of process [3]: Sample_pow \n", + "component index [3]: 5 \n", + "---------------------------------------------------------------------\n", + "global_material_list.num_elements: 2\n", + "name of material [0]: Al \n", + "component index [0]: 3 \n", + "my_absoprtion [0]: 1.391570 \n", + "number of processes [0]: 2 \n", + "name of material [1]: Sample \n", + "component index [1]: 6 \n", + "my_absoprtion [1]: 1.092170 \n", + "number of processes [1]: 2 \n", + "---------------------------------------------------------------------\n", + "global_geometry_list.num_elements: 2\n", + "\n", + "name of geometry [0]: sample_geometry \n", + "component index [0]: 8 \n", + "Volume.name [0]: sample_geometry \n", + "Volume.p_physics.is_vacuum [0]: 0 \n", + "Volume.p_physics.my_absorption [0]: 1.092170 \n", + "Volume.p_physics.number of processes [0]: 2 \n", + "Volume.geometry.shape [0]: cylinder \n", + "Volume.geometry.center.x [0]: 0.000000 \n", + "Volume.geometry.center.y [0]: 0.000000 \n", + "Volume.geometry.center.z [0]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [0]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [0]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [0]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [0]: 0.007500 \n", + "Volume.geometry.geometry_parameters.height [0]: 0.030000 \n", + "Volume.geometry.focus_data_array.elements[0].Aim [0]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [1]: sample_container \n", + "component index [1]: 9 \n", + "Volume.name [1]: sample_container \n", + "Volume.p_physics.is_vacuum [1]: 0 \n", + "Volume.p_physics.my_absorption [1]: 1.391570 \n", + "Volume.p_physics.number of processes [1]: 2 \n", + "Volume.geometry.shape [1]: cylinder \n", + "Volume.geometry.center.x [1]: 0.000000 \n", + "Volume.geometry.center.y [1]: 0.000000 \n", + "Volume.geometry.center.z [1]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [1]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [1]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [1]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [1]: 0.009000 \n", + "Volume.geometry.geometry_parameters.height [1]: 0.033000 \n", + "Volume.geometry.focus_data_array.elements[0].Aim [1]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [2]: sample_container_lid \n", + "component index [2]: 10 \n", + "Volume.name [2]: sample_container_lid \n", + "Volume.p_physics.is_vacuum [2]: 0 \n", + "Volume.p_physics.my_absorption [2]: 1.391570 \n", + "Volume.p_physics.number of processes [2]: 2 \n", + "Volume.geometry.shape [2]: cylinder \n", + "Volume.geometry.center.x [2]: 0.000000 \n", + "Volume.geometry.center.y [2]: 0.015500 \n", + "Volume.geometry.center.z [2]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [2]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [2]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [2]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [2]: 0.013000 \n", + "Volume.geometry.geometry_parameters.height [2]: 0.004000 \n", + "Volume.geometry.focus_data_array.elements[0].Aim [2]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [3]: cryostat_wall \n", + "component index [3]: 14 \n", + "Volume.name [3]: cryostat_wall \n", + "Volume.p_physics.is_vacuum [3]: 0 \n", + "Volume.p_physics.my_absorption [3]: 1.391570 \n", + "Volume.p_physics.number of processes [3]: 2 \n", + "Volume.geometry.shape [3]: cylinder \n", + "Volume.geometry.center.x [3]: 0.000000 \n", + "Volume.geometry.center.y [3]: 0.000000 \n", + "Volume.geometry.center.z [3]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [3]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [3]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [3]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [3]: 0.030000 \n", + "Volume.geometry.geometry_parameters.height [3]: 0.120000 \n", + "Volume.geometry.focus_data_array.elements[0].Aim [3]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [4]: cryostat_wall_vacuum \n", + "component index [4]: 15 \n", + "Volume.name [4]: cryostat_wall_vacuum \n", + "Volume.p_physics.is_vacuum [4]: 1 \n", + "Volume.p_physics.my_absorption [4]: 0.000000 \n", + "Volume.p_physics.number of processes [4]: 0 \n", + "Volume.geometry.shape [4]: cylinder \n", + "Volume.geometry.center.x [4]: 0.000000 \n", + "Volume.geometry.center.y [4]: 0.000000 \n", + "Volume.geometry.center.z [4]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [4]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [4]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [4]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [4]: 0.028000 \n", + "Volume.geometry.geometry_parameters.height [4]: 0.112000 \n", + "Volume.geometry.focus_data_array.elements[0].Aim [4]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [5]: outer_cryostat_wall \n", + "component index [5]: 16 \n", + "Volume.name [5]: outer_cryostat_wall \n", + "Volume.p_physics.is_vacuum [5]: 0 \n", + "Volume.p_physics.my_absorption [5]: 1.391570 \n", + "Volume.p_physics.number of processes [5]: 2 \n", + "Volume.geometry.shape [5]: cylinder \n", + "Volume.geometry.center.x [5]: 0.000000 \n", + "Volume.geometry.center.y [5]: 0.000000 \n", + "Volume.geometry.center.z [5]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [5]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [5]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [5]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [5]: 0.100000 \n", + "Volume.geometry.geometry_parameters.height [5]: 0.150000 \n", + "Volume.geometry.focus_data_array.elements[0].Aim [5]: [0.000000 0.000000 1.000000] \n", + "\n", + "name of geometry [6]: outer_cryostat_wall_vacuum \n", + "component index [6]: 17 \n", + "Volume.name [6]: outer_cryostat_wall_vacuum \n", + "Volume.p_physics.is_vacuum [6]: 1 \n", + "Volume.p_physics.my_absorption [6]: 0.000000 \n", + "Volume.p_physics.number of processes [6]: 0 \n", + "Volume.geometry.shape [6]: cylinder \n", + "Volume.geometry.center.x [6]: 0.000000 \n", + "Volume.geometry.center.y [6]: 0.000000 \n", + "Volume.geometry.center.z [6]: 1.000000 \n", + "Volume.geometry.rotation_matrix[0] [6]: [1.000000 0.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[1] [6]: [0.000000 1.000000 0.000000] \n", + "Volume.geometry.rotation_matrix[2] [6]: [0.000000 0.000000 1.000000] \n", + "Volume.geometry.geometry_parameters.cyl_radius [6]: 0.097000 \n", + "Volume.geometry.geometry_parameters.height [6]: 0.140000 \n", + "Volume.geometry.focus_data_array.elements[0].Aim [6]: [0.000000 0.000000 1.000000] \n", + "---------------------------------------------------------------------\n", + "number_of_volumes = 8\n", + "number_of_masks = 0\n", + "number_of_masked_volumes = 0\n", + "\n", + " ---- Overview of the lists generated for each volume ---- \n", + "List overview for surrounding vacuum\n", + "LIST: Children for Volume 0 = [1,2,3,4,5,6,7]\n", + "LIST: Direct_children for Volume 0 = [6]\n", + "LIST: Intersect_check_list for Volume 0 = [6]\n", + "LIST: Mask_intersect_list for Volume 0 = []\n", + "LIST: Destinations_list for Volume 0 = []\n", + "LIST: Reduced_destinations_list for Volume 0 = []\n", + "LIST: Next_volume_list for Volume 0 = [6]\n", + "LIST: mask_list for Volume 0 = []\n", + "LIST: masked_by_list for Volume 0 = []\n", + "LIST: masked_by_mask_index_list for Volume 0 = []\n", + " mask_mode for Volume 0 = 0\n", + "\n", + "List overview for sample_geometry with cylinder shape made of Sample\n", + "LIST: Children for Volume 1 = []\n", + "LIST: Direct_children for Volume 1 = []\n", + "LIST: Intersect_check_list for Volume 1 = []\n", + "LIST: Mask_intersect_list for Volume 1 = []\n", + "LIST: Destinations_list for Volume 1 = [2,3]\n", + "LIST: Reduced_destinations_list for Volume 1 = [2,3]\n", + "LIST: Next_volume_list for Volume 1 = [2,3]\n", + " Is_vacuum for Volume 1 = 0\n", + " is_mask_volume for Volume 1 = 0\n", + " is_masked_volume for Volume 1 = 0\n", + " is_exit_volume for Volume 1 = 0\n", + "LIST: mask_list for Volume 1 = []\n", + "LIST: masked_by_list for Volume 1 = []\n", + "LIST: masked_by_mask_index_list for Volume 1 = []\n", + " mask_mode for Volume 1 = 0\n", + "\n", + "List overview for sample_container with cylinder shape made of Al\n", + "LIST: Children for Volume 2 = [1]\n", + "LIST: Direct_children for Volume 2 = [1]\n", + "LIST: Intersect_check_list for Volume 2 = [1]\n", + "LIST: Mask_intersect_list for Volume 2 = []\n", + "LIST: Destinations_list for Volume 2 = [3,5]\n", + "LIST: Reduced_destinations_list for Volume 2 = [5]\n", + "LIST: Next_volume_list for Volume 2 = [3,5,1]\n", + " Is_vacuum for Volume 2 = 0\n", + " is_mask_volume for Volume 2 = 0\n", + " is_masked_volume for Volume 2 = 0\n", + " is_exit_volume for Volume 2 = 0\n", + "LIST: mask_list for Volume 2 = []\n", + "LIST: masked_by_list for Volume 2 = []\n", + "LIST: masked_by_mask_index_list for Volume 2 = []\n", + " mask_mode for Volume 2 = 0\n", + "\n", + "List overview for sample_container_lid with cylinder shape made of Al\n", + "LIST: Children for Volume 3 = []\n", + "LIST: Direct_children for Volume 3 = []\n", + "LIST: Intersect_check_list for Volume 3 = [2]\n", + "LIST: Mask_intersect_list for Volume 3 = []\n", + "LIST: Destinations_list for Volume 3 = [5]\n", + "LIST: Reduced_destinations_list for Volume 3 = [5]\n", + "LIST: Next_volume_list for Volume 3 = [5,2]\n", + " Is_vacuum for Volume 3 = 0\n", + " is_mask_volume for Volume 3 = 0\n", + " is_masked_volume for Volume 3 = 0\n", + " is_exit_volume for Volume 3 = 0\n", + "LIST: mask_list for Volume 3 = []\n", + "LIST: masked_by_list for Volume 3 = []\n", + "LIST: masked_by_mask_index_list for Volume 3 = []\n", + " mask_mode for Volume 3 = 0\n", + "\n", + "List overview for cryostat_wall with cylinder shape made of Al\n", + "LIST: Children for Volume 4 = [1,2,3,5]\n", + "LIST: Direct_children for Volume 4 = [5]\n", + "LIST: Intersect_check_list for Volume 4 = [5]\n", + "LIST: Mask_intersect_list for Volume 4 = []\n", + "LIST: Destinations_list for Volume 4 = [7]\n", + "LIST: Reduced_destinations_list for Volume 4 = [7]\n", + "LIST: Next_volume_list for Volume 4 = [7,5]\n", + " Is_vacuum for Volume 4 = 0\n", + " is_mask_volume for Volume 4 = 0\n", + " is_masked_volume for Volume 4 = 0\n", + " is_exit_volume for Volume 4 = 0\n", + "LIST: mask_list for Volume 4 = []\n", + "LIST: masked_by_list for Volume 4 = []\n", + "LIST: masked_by_mask_index_list for Volume 4 = []\n", + " mask_mode for Volume 4 = 0\n", + "\n", + "List overview for cryostat_wall_vacuum with cylinder shape made of Vacuum\n", + "LIST: Children for Volume 5 = [1,2,3]\n", + "LIST: Direct_children for Volume 5 = [2,3]\n", + "LIST: Intersect_check_list for Volume 5 = [2,3]\n", + "LIST: Mask_intersect_list for Volume 5 = []\n", + "LIST: Destinations_list for Volume 5 = [4]\n", + "LIST: Reduced_destinations_list for Volume 5 = [4]\n", + "LIST: Next_volume_list for Volume 5 = [4,2,3]\n", + " Is_vacuum for Volume 5 = 1\n", + " is_mask_volume for Volume 5 = 0\n", + " is_masked_volume for Volume 5 = 0\n", + " is_exit_volume for Volume 5 = 0\n", + "LIST: mask_list for Volume 5 = []\n", + "LIST: masked_by_list for Volume 5 = []\n", + "LIST: masked_by_mask_index_list for Volume 5 = []\n", + " mask_mode for Volume 5 = 0\n", + "\n", + "List overview for outer_cryostat_wall with cylinder shape made of Al\n", + "LIST: Children for Volume 6 = [1,2,3,4,5,7]\n", + "LIST: Direct_children for Volume 6 = [7]\n", + "LIST: Intersect_check_list for Volume 6 = [7]\n", + "LIST: Mask_intersect_list for Volume 6 = []\n", + "LIST: Destinations_list for Volume 6 = [0]\n", + "LIST: Reduced_destinations_list for Volume 6 = []\n", + "LIST: Next_volume_list for Volume 6 = [0,7]\n", + " Is_vacuum for Volume 6 = 0\n", + " is_mask_volume for Volume 6 = 0\n", + " is_masked_volume for Volume 6 = 0\n", + " is_exit_volume for Volume 6 = 0\n", + "LIST: mask_list for Volume 6 = []\n", + "LIST: masked_by_list for Volume 6 = []\n", + "LIST: masked_by_mask_index_list for Volume 6 = []\n", + " mask_mode for Volume 6 = 0\n", + "\n", + "List overview for outer_cryostat_wall_vacuum with cylinder shape made of Vacuum\n", + "LIST: Children for Volume 7 = [1,2,3,4,5]\n", + "LIST: Direct_children for Volume 7 = [4]\n", + "LIST: Intersect_check_list for Volume 7 = [4]\n", + "LIST: Mask_intersect_list for Volume 7 = []\n", + "LIST: Destinations_list for Volume 7 = [6]\n", + "LIST: Reduced_destinations_list for Volume 7 = [6]\n", + "LIST: Next_volume_list for Volume 7 = [6,4]\n", + " Is_vacuum for Volume 7 = 1\n", + " is_mask_volume for Volume 7 = 0\n", + " is_masked_volume for Volume 7 = 0\n", + " is_exit_volume for Volume 7 = 0\n", + "LIST: mask_list for Volume 7 = []\n", + "LIST: masked_by_list for Volume 7 = []\n", + "LIST: masked_by_mask_index_list for Volume 7 = []\n", + " mask_mode for Volume 7 = 0\n", + "\n", + "Union_master component master initialized sucessfully\n", + "Detector: logger_space_zx_I=20806.8 logger_space_zx_ERR=38.1707 logger_space_zx_N=1.17952e+06 \"logger_zx.dat\"\n", + "Detector: logger_space_zy_I=20806.8 logger_space_zy_ERR=38.1707 logger_space_zy_N=1.17952e+06 \"logger_zy.dat\"\n", + "Detector: logger_space_xy_I=20806.8 logger_space_xy_ERR=38.1707 logger_space_xy_N=1.17952e+06 \"logger_xy.dat\"\n", + "Detector: banana_I=1899.84 banana_ERR=9.43645 banana_N=112573 \"banana_1643033946.th\"\n", + "loading system configuration\n", + "\n" + ] + } + ], "source": [ "instrument.backengine()\n", "data_cryo = instrument.data" @@ -416,9 +1256,32 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Plotting data with name logger_space_zx\n", + "Plotting data with name logger_space_zy\n", + "Plotting data with name logger_space_xy\n", + "Plotting data with name banana\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA54AAAHuCAYAAAD3MtMPAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3hUVfrHPyeJiQmkQFhKKAYJVXBpSlMMKwKiYsNFUREVXUVlrauLyhjb4k93VRRERcWGuKJiF0RlkbrSFpBmgEgHCQQCiYmE8/vjPefeO5MhoNI93+eZZ2Zuv3fu3Pd83/J9ldYaBwcHBwcHBwcHBwcHB4eDhZjDfQAODg4ODg4ODg4ODg4OxzYc8XRwcHBwcHBwcHBwcHA4qHDE08HBwcHBwcHBwcHBweGgwhFPBwcHBwcHBwcHBwcHh4MKRzwdHBwcHBwcHBwcHBwcDioc8XRwcHBwcHBwcHBwcHA4qHDE0+GAQSn1gFJq8m9d5kiBUmqyUuqBg7j9TKWUVkplHqx9HCwopbKVUge1F9Oh2IeDg4PDoYazlb94+85WHuZ9ODgcKDjieQRCKXWvUmq+UmqXUmqtUmqYUqpyYH5/8xDWSqndSqkflVKTlFJXKaXUYTz0J4CLAscZzRiFLXMwYK5LdpTpeUqp/r9gUxchx+tQHtOBWof7IBwcHH6/cLbyt8HZykMCZysdHAKIO9wH4BAVHYH/A+YANYAXgGTg6sAya4FTEOfBH4CzgKeBHsBlh/JgLbTWOw/EMkcKtNZbD/cxHG6YwVmc1vrn4HStdSmw8fAclYODgwPgbOURAWcrna10cNhfuIjnEQit9Tla6zFa62Va6ynA/cD5EYuVaa03aq3Xa63/p7V+AjgXuFQpdfbetm08nNcopaYppX5SSv1XKXVSxDK3K6VWm/nTlVKtA/NOVEp9rpTaYV6zlFJZZp6XGqSUGg2cAYTMPvMilzHfk5RSLyqltimlCpVS/1ZKVQvMH62UelUp9ahZZp1SatCvuKyR1yHbHFcXpdQSs+/3lFJpgWXCvNBKqQZKqQlKqWKl1CZzTDGB+XlKqduUUu8qpYqUUouVUmf8wuO6XCn1vVKqRCn1P6VU14j5fcxvs0sp9bpS6rGI61lFKfW+OcbvlVJnR3q1lVKtzbkVm2MOKaViA/PtPTIZ+Ak4c2/XL/D9AbPNvyqlNprIwtB9nOtkc/xvmPPJU0pdXMHyHc06BWb7b0XcK/3NNvqY921KqVFKqfjAMklKqeFm/QKl1EdKqXoV7DNP+RET+5ps5v1bKfV5YNnG5nfvVtF5Ozg4HBg4W+lspXK2MtryR4ytVErVVkqVKaWaRiz/kVLqqYrO2+HYhCOeRweqAQX7WkhrPRWYD/Tax6IPAU8CrYEfgPesUVBK9QFygLuBVsB3wKdKqUpm3WeBLYgHuS0wDNgTZR9/BWYA/0TSTE7Zy7H8E+gMnIcY33rA6IhlLjTv7cyxP6UiBgC/AfcBVwF/Qs7379EWMtfnQ6AYOZergWuB2yMWvRsYD/wROf83lVLH7c+BKKXaI+f+FHAy8AHwkVKqjpnfEHgD+Q3sb3NjxGaeAhoA2cAVyEAsuI90YCLwMdAC6G+WuzViOw8gv21TYPb+HD9yP/0R6AL8BbhDVTCwMxgILDHrvgi8pZSqv5dlKwMjkPvubKC2+R5EdaAvcj9dbF7XBuaPRK7P2cj99CPwYXBQFIFTkPu3FtAIWANMCxx7K6XUdWYw8irwhtZ64j7O2cHB4eDA2UqBs5XOVh4RtlJrvQ6YBFxpFzTXtjvw+j7O2eFYhNbavY7gF5AKrADuC0zrD+TtZfm3gM8q2J4GHo7Y/i6gh/k+A3g0MD8OeYBcb74vBK7Yy7YfACYHvk8GHtjbMkhKVCnQLTC/iTnGRub7aGBBxDaWAzfs4xyzo0zPA/qbz9lmudaB+YOBmdGOH3lI7gLSAvNvANZHbH9Y4HuG2UeTvRxnppmfGfjtxkQsM9P+HkhK2eSI+VMC1zMF+Dl47sggwbsewBBgbMQ2+gJLI67fvfu4L7Pl8RH2u/4IxAemTQSGVrCNycDUiGlT7TqR+4iyfltzvrGB/0UZUC2wzAv2fM31/glICcw/zvyu7ffjvzgO+Mruz0y7CNgBPGN+/+R9bce93Mu9DvwLZytH42yls5XR1z+sttJctzxAme83AYv3tR33OjZfLuJ5BEMplQC8C6wEKkzFCK6GPAwrwn/tB631dmAZ0NhMaoI8wO383YgXr4mZNAJ4yaTR3GE9jL8SJyIPs+D+liIe6yaB5RZGrLcB8dYdCAS3XdF2mwDLtNYFgWkzgFpKqZQKtkcF24y2j5kR02bgX4tGSC1TEEEP64nI4GfOXuaDeG4vUkrttC/gJbNuEPP285iDWK6lnsVif36n/0b53jjagkqpDKXUa0qplUqpQuA/yPnWDCy2UWu9ZS/HcBIQD6wPnPs2IJHy5x+577sQr28frXWZna61fg+YANwMDNBaF1Z4tg4ODgcczlZ6cLZS4GzlkWUr3weqAKeb71fgop2/WzhxoSMUSqk4YCzi6TzTGLX9QRNERa0i7MvY7n1FrZ9TSk1A0jPOA3KUUt201vvaZzTsr6rgzxHfNRWniRciHs1IpCLRKX9D4UIAFW33Fx+r1lorEU7cXwfPvvaxr4FStPUjl6+MpCA9uo99Fe1jfjT80t/JLrO/GI0Mvq4D1iGpZhPMtP05hsrIvdEmyrY37W2nSmqPHgC6aK1/jJiXBLREvMdZSEqRg4PDIYKzlWFwttKf72zlEWIrtdbFSql3gCuUUuuAU4E/7//pOBxLcBHPIxAmh/41ZCB7tt5PdTul1OlI3cCH+1j01MA6KYh3cJmZtAxoH5gfh6RpLLXTtNYrtdZPa627Iukrl+5lPz8DsXuZB5IWtTtif02AtOD+fgVykToID6YWIg1JPfo1WAo0VgFBBaADsEFrvSP6Kr9qH+0jpnXAvxbLKG8Igt/t9Qyee9uI5f8HNNNa50a+ftuh/2qcGvH9FPx7MRIdgX9qrb803v70X7iv/yGDrOOinH/USKVSKgN4G7hNax3pcQZ4DDHQfYHH1VHYZ87B4WiFs5XOVkbsw9lKwZFoK18FLkHqSP+jtV7zC4/J4RiBI55HJl5AcvavBOKVUjXNK2iYYs20DKXUyUqpO4GPkBz9z6NsM4hrlFIXGZWxF4H1wBdm3tPALUqpS41hew5IAMYAKKWeVEp1VdLQ+XSksH9vBuoHoJ1RNasSOdM8wF4GnlFKnaZEEXA0Unfza40eSL3drUqpK5Wo63VC0jq+1lov+pXbnIicz2ilVHMjBJCDCBQcKAwDLlFK3aSUaqSUehCJpj1n5r8InKaUutPM/xsinCDFJmLUxwBPK6VOUUqdCjxs1rXe0uHIoGCkUuqPSpRY+yilBh/A8/glaKmU+rs5n78jg4kX9rLsCqC/UipLKdUDEbvYbxgD/B7wjlKqm1KqvlLqDCXKfWl7We0dJIXrw8D/sCqIWiHiUe6vtf438v97SanD2h/QweH3BGcrna10trI8jihbabb5DZAP3IlLs/1dwxHPIxPXIspg85C8e/uqG1imjpm2GiniPhtRW+u7H9sPAX9DVP0aABfbXHyt9VvAg0gz6P8BzYGeAU/yccjDbimmwB//YR+JfyGetpXsvQ7iDqRI/mPEI7wWUc77LRgN3IU84BaYY1yMeNt+FbTWexCZ/krAt4j3bjSiNHhAYFKwrgVuAxYBFwDnW8+g1vp7oB8wCLmeJ5tjKAls5lakiP8b4M3A8ZWYbaxBlBEzEXXWb5HfYPWBOo9fiOeQ85iPCFD01Vqv3MuyA4CGyLV5GLj3V+zvciTl6BXkHn4FeQ7+tJflOyK/Q/B/+J4S5cqXgUe01gvMsjcDzSivnujg4HBw4Gzlb8NonK10tjI6DoitjFjmDSTSPO5XHI/DMQKrMOXwO4GSflJdtNaTD/exOPx2KOkjuUJrfdNe5rdHvJA1tNabD+nB7QNKep9N1lo/cJgPxcHBwSEMzlYeW3C28vBDKTUCUTveH6ePwzEKJy7k4HAUQSl1M+L13gX0BroBpwXmt0N6ds1DBAWGAROPNEPq4ODg4OBwsOBs5ZEDpVRlJBX6SuCcw3s0Docbjng6OBxdOBlpdJ2M1AtdHKGSGIukhzUEtiP1SLce4mN0cHBwcHA4nHC28sjBs0Af4Hmt9ZTDfTAOhxcu1dbBwcHBwcHBwcHBwcHhoMKJCzk4ODg4ODg4ODg4ODgcVDji6eDg4ODg4ODg4ODg4HBQ8but8axWrZrOzMw83Ifh4ODgcEgxZ86cLVrrPxyo7WUppYv2scwGmKC17nGg9ulwaODspIODw+8VzlYeHPxuiWdmZiazZ88+3Ifh4ODgcEihlPrhQG6vGIjanyCA+6CBUuoF4COt9UcHcv8OBw/OTjo4OPxe4WzlwcHvlng6ODg4OPx2xACJ+15su9b6+oN+MA4ODg4ODkcgnK0UuBpPBwcHB4dfDQUct48XkKqUekEpdd7hOUoHBwcHB4fDh/20lcc8XMTTwcHBweFXw3lxHRwcHBwcKsZ+2spjHo54Ojg4ODj8aiicIXFwcHBwcKgIzlYKXKqtg4ODg8Ovhku1dXBwcHBwqBjOVgoc+XZwcHBw+NVwqbYODg4ODg4Vw9lKgSOeDg4ODg6/GtaL6+Dg4ODg4BAdzlYKXKqtg4ODg8NvQtw+XvwO0occHBwcHBwqwn7YymMev5fzdHBwcHA4CHDpQw4ODg4ODhXDqdoKHPF0cHBwcPjVcOlDDg4ODg4OFcPZSsFhT7VVSjVSSs1QSi037w2jLNNNKTVbKVWilHoiYl6sUmq4UmqFUipXKTXg0B29g4ODw+8b1otb0QuXavub4Wylg4ODw9ELZysFR0LEcyQwXGv9hlLqCuB54E8Ry6wErgMuBo6PmHc5kAU0BNKBeUqpSVrrvIN61A4ODg4O+9ubzKXa/nY4W+ng4OBwlMLZSsFhjXgqpaoDrYG3zKS3gNZKqT8El9Na52qt5wG7o2ymD/Ci1nqP1vpHYDxwycE7agcHBwcHi/3sTebwG+BspYODg8PRDWcrBYc71bYusE5rXQZg3teb6fuLesAPge+r97a+Uup6k4Y0+8cff/yVh+zwe4E6GZQC9RhczUhqsJqufEImS2nBt6jVu8lgFWmlG1FjIHbTLrrwOV34HDVLvqvpkLRjG+oF6MjXtGImGaxiEI9Tg9UMYDi9eRPVT+b34h3aMYV2TEF9CJfzMmoKqAehOx8Su2kXsZt2UYPVVNuzDrW+hIStO1BjQI053FfM4feI/UwfcvhtOGS20tlJBwcHhwMPZysFR0Kq7SGD1voF4AWAtm3b6sN8OA6HAWoWNG/3LQCbqcHmD+vJjDTI7vw58ZQC0IzFwD173U598iirF0cG62kZP4/8vtVYTwYTp/SSBXbCnloJ8DFkdswj4fpl1GU1/377KlgBz2y8C57JYbHuzBrqMvC1f1GdzTzw4VBu6fW4bKMXjBlxDfTQ9B3yCvGUsmdOJZr3/JbN1Ih6XMlFW9iZW43UJhsBSIovZoN6TWbeH4ImwOU5AGgd+tXX0cHBwgkmHFtwdtLBwcHhwMPZSsHhJp5rgNpKqVitdZlSKhbIMNP3F6uBE4BvzfdIr67D7xgJW3cAcGbVSWwgA2gfNr9Or1zaMpvZtGXy8h6QJ9MXdmtBtwUfApBHJqXEcx4fsYxGxFFGIckkU0gsZawgiySKyCMTMiXDrXq99aRRwPKbG7NkbiuYCS0GLoRTNDyh6P/tSEZnhWjFv5jxry68eXNf0uILoBhyaQBAMoX0HziS2bRhCp3pyDRu6SmkdBy96RgznfHjL6XjwK9J75vPJqqzZE8zup48loW0AIRAz9OXU0o8m4eEXxu1ejfElcFfEwDQ7xzYa+/w+8F+GJJUpdQLwEda648O+gEde3C20sHBweEox+EmXUcCDus10FpvVkrNBy4D3jDv80z9yf7iHeA6pdR7iGDCBUDnA3yoDkc41GPQ/+6RAKyhLt9sPZ30qvnILeEjtdVG1pTWZfvMmjTtPI8lE1uxtkkmTesthKWQmL0NgDQKWEgLkihi/Y4MMlLWAzB11lmc1u4L4illEzWYv7Ultaqu54fHmsDbZienwea0emymHowG1vwMwOs3rYezFZwHox+8AUI5jPhrbWAU9W9vzjzao2bD9As7ArD985qk9tjI9kU1oWYJyRk7GUdv2jIbgHhKIBtyyWLhnhbEx5RStDOJ2SltqWvGo59s6smlNd5mzPJreODBe3hmzy2UXHATO7eklbuGSTu2UdyminwpMxONPIle/Bt+HIdjGjEKEhP2sdBPx75gwsGEs5UODg4ORzf201Ye8zgSyPcNwKtKqSHANqAfgFLqU2CI1nq2Uuo0YCyQIrPUpcC1WusJwOtAO+B7s70HtdYrD/VJOBxaZLKUZixmMc3MlCZh87OrTmZ6UUe6V51ACQmUEcf899qTfsE68hfVJrvz50xWs+D5VjAvjiW0gnuguLcQryXjDAF7FbgKJr/bAy7Ogfo9mMpZsCqHxO2nU/pUCj889CT0DkEP5C7cADzzf7J+3b/BSya54lpIHS8psNsTasLZkuqqP/WPu/njEoxYyCnQC9JKIbW5rPNS35vgZ/iI+rAC/k199FxQQ7JkOw+CGgVrqULj25cBkFVjhVyjyiU8UXQnjZOWsT4pgxb1FlJAGpmsYsM7GWyhGms/zYIJGho8CPXD03DVGGCSfNYv/6qfzOEYhVJwXOzhPorfBZytdHBwcDhK4WylQGn9+yzhaNu2rZ49e/bhPgyH/YAaAbSR2sxFr50CO+GEgeHEM5lCFn14CgCn9ppCGgVMvK4XXA3p7dfRM+ZTXn/vOuKzd1D6Yops2EYoGyBV3a/LV/uXUAqob5ZJM/PmglI5ZmIIhpuP7wMdgJPM98fM+wVAaBT0Ni3zzgOuMvPONu+fjcZmvGkdQp1opsfiRx5thvDP5n2FvKXO3Mj2h2vKlyWBi9bKvNcE5gPZwCiEHGcDlTXXnziMxTRjJ8ks3tqM0pkpnNbzC6ZOP0uWBXi4BEYnQCYe8WQAMBt4Aljj6kWPNiil5mit2x6o7bWNU3p22j72mc8B3afDoYGzkw4ODr9XHEu2UimVCjwJnKW1/iWidAccR0LE08EhDOoSaPTOApb3PFmIWwC39HucSXSlgDSSKKY341hBFpuowcBe/wKggDQW04yWL85kHu2B2sB1vD4KSkeloD8FNR04HeiUAw1CUIxP1oJYlRP2VTULAX3hPw3hjBy4CXgkBF3MApnypueC6omQThCiOG8UqW+eC5dCQXxNme/hBJjWHzUdbAxCyemQerOJkn5eU2IZAOcCG2D7szWFFBdEHHdl8/6sea+GEMa3gC3AQw+KesgjZ8FS/7intuwshPdOs17t8ZypK/Pl9HPgL8AEM+/S8N0pZVlvUzn/36c/6/cJhdwzDg4ODg4ODtFxgGylUuoJpFdzJtBCa73ITG+E5OmlA/lAP6319wBa6+3ANUqpSVE3egjhiKfDYYdaqeECJe3Ng/hsAad+WkA6W/hya1cy2MAzH95FYvY2SorjeZ8LKKtRCWWaAk3fI+xPvWfWHwV8CsqkhgZTWi20DqFaBybMywFCEmWdCdwYCkwHJpUA9UivuQ7KBpA/qbZsp5sQZu6dJsfQqpNEG88eIES3NdBqAAXxgX17x9M/6nXRt9tPNVFWGCjLvOci0c+CwApNgY/N53HmvRUSLY0D1gLjzHm8GxLCCfB6jlyHS4C/JqDfCUZ1YRIh1BqEPDdGuv/lAUOBkSGoAdwC8c13UGpKatWfkEirPZetUU/R4VjAfnbFdnBwcHBw+N3iwNnK8cDTwDcR00cCw7XWbyilrgCeB/50QPZ4AHG4+3g6/E6RVroR1RHUReXn/fmdV0mmEP5zslGUTaBj1enUZQ2pPTZStjuWuOPK2PNJJY9UloMJNHokFGmlYqE7As8astgAuAKPXAbX4Tlg3vdAX6njjET3UdB9FOoFDKlbgpfzuhFiXpG+mxRQLiqpVA6qGahmEdNX7/ZfPSVyqh+U18UPvhm+8MeIANDxMp95P8srEmtBD0KisxZNgHvNOQcUb5USImrTZ9WjwApoPvhbuAtoDpUf3kLlC7bIY+5GYD6UPpwiEdEfyveur8Fq1GBQg8sfmsNRDoV3D+71ZVRtlVLnHaajdHBwcHBwOHzYP1u5T2itp2qtwxTNlVLVgdZIXhvmvbVS6g8H4tAPJJyf2uGQQjUEJmhS60Df6S8zRl0A72+Cp5ty/aCnAXjhur9y5YsvsqZzXTbPrceXA6TX5mSQKFtvJAU322xU54TXGC4FTsPXG/qHWex7yuM40GNADQIIwbtm+k0AwTTbq2BcHokvpQKwJUYinWroALgnB/5ilrW1nOMmwyPZ7Dm7kux7pUQ9VWtJw60Iup7/t1QR894dcjk8ZPZ1f0i0LQEmgRoInH2cpOECeqDZRoBI68Gg7kWEku4Pyet4YJ5ZoKmJAtt13g2hL5J610X3nuLXv15TTT5cAJy/RFakGJ5MhHfjOO2rL0z7GlixPot08kXlF1BVzbG4KOixgf1LH3Kqtg4ODg4Ov1/sn62sppQKFta/YHor7wt1gXVa6zIA03ZrvZn+I4BSajjQRCk1EnhMa73qF57BAYEjng4HHbGbdrGnViXDHAXbh9ZkzIDLYWYCvFmVDoO+5oUH/yozb5S3za2FqDAvD3pn+iuPM6mtjyGkDyMEhNQW6oiomrq74uPzUm0fQRIYAK4EFkVEOPtDSfEuWecGJNW1LTA0JMdxv1GpfRBU62xJd503Cp4eEL6/fvZYQ2SafFelpqL1AFoxU07ZqAnpT6EuudQFMlgPdPb2A4jgTwGe+BEthXCq1qJw63WTMXEm9SHwQUjEgWYDn+XAZaZGdaNZZohsJ+q16gh6OvBKDnQIiSOgS1Mh+5cmQktodNECpi4/y9teo84LSGcLDR79jhXrs2Ck6Imr18xGr3ICRUc1XKqtg4ODg4NDxdg/W/kzMJeD0PNaa30TJqxyOOFUbR0OCtRXSBpob4hpsIs9l1USQZoeu2FpHCd0W0oGG5gxpYtX4thm5TRm08nfxiXAuDwAapn7dMMpRmb27/IWn70DgNJ0o1RrI5YmysmzoNtFJzlqCLDTTH/ye/ihPtxgngqf4YsNzRsN95uDTEMeC//DV5i9Eo9k8Rcjldu7j9REmtX0IMhAnEvrqR9GMJWyErLrSC35CyDiQ2HXAdDv4K03/7r2MMpEPi8LSarwVLNCAZjFYN4OeNpcm7+GR4a9qObFOX4a8bhpcH8nWISP5ubdtlOZLgQU8FNDTL2oXh9Ip33DvI+C9K7rSI/JJ40CNlGdH2Y1gVq7YVScH8HNCXHmkE/Mrs7B4eDggCv1JSk9u/E+9jnfqdoejXB20sHB4feKI91WKqXygHO11otMqu1yIN1EO2MRgaGGv7Df80GH81M7HFCoB/GVaHtAfJMdlKbvhhaV4F5IH7CJ/J21+WFxE/KaNZH25SuhLdOib7B3JrSFDY8BDf3J2qsNNaQq0n9yUXhNp789n3hJZNJ81rJxZQlkK+AB4HygbX8/AvgWMAdogwjsZOK1YeERYFkfdCOfLDI6emrtfCV9UtTZ+AJEKqf8ggjhbMcUOlJGIjDjki5CgAcEzqUnqFeQtjCY4wNok4IetJdt21TkR0KSatsKaNVJ6j6DtaD32nVvk2PumCLk057Xfcj1KfDVbbVuirLkfyrkT63NlgdrS5rtw3b/ccTctIs9o0Keqq6FPV4XBT0K4CKeDg4ODg4OFWP/bGWqUuoFfmHEU2u9WSk1HynAesO8zzvSSCe44YLDb4R6AVFaXRoxI1PDfEXpX1KkjcdtwEk55MfiRfWU+hbqmxzQVZN8MZu+ZhumV6V+xxC52ZA6TZihWllDZv6o4EuzXKRwjZlOO+AOs4z5C3rptaeBHmamXYIcK0CdwHZmIx1ZQEoZmyL6QU2RKG5zI6bzU5w5L4BRcNkAWIrfl3OVPdDw1FtZR4jW9gdMpPPRwLxr4NSgiJLdP3gptmpgxAYL/PnqIuBCiYqq68z0u8odgpDPcREE9d5AhPhRfNVc8Fuu7KsgfrQ5xtEI2S0EPgFawp6PK8E9iAJuHnzZ2UY6Jcqi6vn70oP2sR+HwwMFJBzug3BwcHBwcDiCsX+2cp96CEqpYcBFSO+ESUqpfK31ScANwKtKqSHANqDfbz7mgwBHPB1+MdR1wNXAT4GJlqhlIj0xJyloAtXfWQ3AZvWKTyxVDiK+RVifTPUY6Lsh5kmpo7TCPF6/y3P93ekTVbmIpl3fppDG37DDTE8h0uej51pBIbNua+Qv/LHUVXrkt74RBvoQOD8H4kLwHfL3BjgnB/5ponJ3jMJnruvgrRy4xczbACbT1rRWMSnFG4F504CutNSxwExWlWaSViqzC+Jrol8G6BymPMtxeO1U9Dum52cWwtesE6ABEp0NXLcwxOGnwzY17/eHYIlP4hUREcdz/Xn6K/NbXh0SonspcGlTibD+CehiljkRIchbkCjxq2ZbNplkJBI1/Rp4ZQdclgJnh/xUZlufqvLkw7uZgYi3w2GHi3g6ODg4ODhUjAMU8dRaDwLKueK11kuRUMsRDTdccPhFkDpFqbNs8KfvWHH8SVAZYk4yZHFXEjR4UBa+P8SmniZkFUiZ1DqEeg0a9VvAcjUXVgij0icSjufM+3B/0vZRNT21VitWZAlmSVVJu7WkJMGopuqAuJCykcTmQFfQvQL7O8P/qMeAWmDWUTnA34C/oS0Z+spGTWsL4fznAHnNkNmVX72JnQOqwRazrUsQxVsTxW0519RqqglyPRTMV5BaIhHdgviaqGFG1XZLxHXZgN/PM8vUr76B1JO2R4hnAzN/Xo5EMp8O+dezg1n+JKS3p7mOrMop3zImMpK9N6QBY83nQUI4wxBJfpcAHwHrzPcrzHtXkzo9H7jZTJuJ0WSbBO8KsVcTRWDK4QiAI54ODg4ODg4VY/9s5TGvAO/6eDrsE2qlRiWZqBqQOnwjZJaw4tOTpLXJVNhTksCekgSIk9pFq7yqAneYUpISqgaC7gfLOFlmNHgQuvqNQ/acXcmLdgKwGxG7GQW0kdrNhK07yh/nLP9Vbvqg8AinN++SQP3j28BsM+0S4I/AH21ENhFIJINVqCH4gkAfDIA5A6S1yx0Lwvp1Vh61RUhnT2CXRCaZN5nUmRtZVZrJfDVBjuFTSNy+jcTt2/zjipYgcZp5AWwwfTuDGA381RzvCtmf1iFoZcjkeYTXyfZBoqmrcmCSFgfA3/GEm8KuU8fy0wR/hleWmKisv6xSAaXhlcBDk+VLTaROdj5y7/xVxIr0VtNeZVIOfA5syBEymwZUQy5/zgCojLwA9TIo9R4qrPGqwyGHTR+q6HWwdq1UqlLqZaXUmn0v7eDg4ODgcJhwGG3lkQTnp3aoEGoxcDx0KPqaZizmU3pSN34NyRk7WXtDlqSKfg58HgcfCRnUOoTKwFd6jYLYTbsoq1EpqnhMUIxHtSYQvUMiemdDKSmkjt/I9tyalG5MkehZdvh2bAQ02AtTDw4QzWB0b55E+/Q7gX2fCBCCVXOBucRsbMyGvvWFkA4dAKeYBcdB9UdXU7i9LsWpQkgLk/w6Tv2p2Z4Cemez/XJEPbZWSIjYfVA0t4q/X0s6TaTTEszT+QKAqVPPkuU+RaKBlYAzQT9u9vEG/raMs4B2SFvSNIQY32DapqxFUmXtOhGRSf0a+w09Pfy7etSPMGud7c+w/UX/ZL73CWzDpmNXDcF9QkaVgqZ6Hks+bAW5SDrxGmCZv15y0RYKk6rt/8E6HDgcoIinUuoJ4GIkYb+F1nqRmd4ISdBOR1T6+mktXXm11tuBa5RSk377ETg4ODg4OBwkHERxoaMJjng6REVbppG3JxOoTZsThVG8tOAm2ALJfypkbUOT66lzhPQZxdMw1JT2GgBppRtJLZEU0thNphemib7JENKHWmw+nA8km88NEHJ4dgiekEnV4vMprpkEQMndKajlFZzQ5dJWJQhPtOg/IXjG7DtISttg6hBbQ1PYczZ+q5K3kAjpkzvg7yneNhO3X0xRShWUEpVerTuFRy/HAVEUfFVV8+FiIEGiyttvqhm2zDec5dd5bgjM2AV8ATwOvBmSaOJ9hnDfjNTiXg0syYF3zfwI6CHmWpg2LOrSwDxz/F7/0ddAvW3n/lvm9TU9TMcEoqNRakuVIeGcs0T6f0bOr1duElqDuqiVqCXvRuqJXwHYAS9dROVLhaGr1bthahy6b/ltOBxEHLhU2/HA08A3EdNHAsO11m8opa4Angf+hIODg4ODw9ECl2oLOOLpEAG1UvqStDkRMmPyyJ9Um6JmScx5rBPN7/4WgIWcAt+DUsX+ipelCOlQxR7pQnVCKYmCppbIpLTSjZTVEEKlcm0aa0TU86RpsK4t/Ae4M8GvWTxblouvKdusxXpqVV0vhGwxhgAbBOo6dTtoxjyaAUtat4JWofAWJ88gaq7BCKhVbDWByMSa22AyFH9WRQRyAGpA5V2lwBY2n1wPFsr5qLNDkNUJ1oFKAl1kSJ3pC5o6U0K42xMmQaeuMtFuc1SOp/rLleYyqu/hJcPSc81y1RAxnyxzrKcFlHofNumtFrfbD0aZ9niEwHVFhvSY47PnvB2YHUUl2CAs7XZACP1iQAAqiHuXSFsVm7o8bgnc31T6jXZpGr1+dDd+m5eugZpcgPGgTVatagkUpMDdsPPmaiJMZOpnVQZ+/9Tg+g4HBzEckBQhrfVUAGVztOVzdUSJ7Cwz6S3gWaXUH45EmXiHX4dyqfxPmvcVwOU58GVInlsFwPEQ33IHpfNTZAQzGa+FV9OT55FPOptH1KPNwGkkUwhAgZH/voDxjONiCqjC2n5ZVH/NiN+NqSf7Af6sM1lMMxZNP0UyROZD4rnbSEspoAULqcEmikhiIS1IoojcoixaJs1jOdKgr6goiZ2VnqelPpMGrODduZdzQeuxFJHExPXdSaxcRNeUScRSRhmxTNrRlfNSPiSOMsasvFpO5ClFrWGr2LC8Phxv+h1fATwLXA5t2k2jD2+zjMYsphkzlnfhgkZjqcsaOiKO4uEMZOqYs/hz31epyxo2kEEsZYzb0ZsBKaN4ZtBdDB42hCmcztS7zuK8x9+hiCQKjbe3LmtYQ11qsImPplzCxZ3fZBPVuZS3eZw7uZDxJFDCBLpzC8+QwXoKSWYZjWiMeIEnk81uYnl9Rz96pnzKJqpTjzXUYj0FVCGNbWSwgYW0oAULeZs+tGU21dkMQCy7yacaHZlOPuksphlj9vQlf3Rt3rrmQjZRnTLiKCSZ6XSkFx8yjt70ZQyTOBOAj3b0YltcVa5LeoFcssgil2QKSaOAYUWDuDPpCYpJpBbr+ZKu1EWy9ktIYDPVAdhCNWYs7sK1zYYzge5ksJ5S4mnGYmbRjnhKSWcLU1d34fp6w8mjPhOTepFd9DkA8ZSSwXpm0Y4lc1vRprWMkeZ82okTei6lFfNZQ12qs4nP1p/DqRmz+O/qjpJJZkpLsF0ZtwBxUPnWLey8ohoN3vuOVZsyiTuujNKZKWILrwMa53Gt/oSXvrpJ1j8Xmhd9y6IRp3DawC+Y+sJZkApt+kxjTs9OMBNiluzy/oIZNTawtmMWYbgPeAWavjOPJS+bAY3t+V0AiU9tozjdDJqeN9NPM/etQfwDO2hTdQ5ztrahdGwKpw38gvlFrchMWsWi1a2oXK2AnfeZ7CU7FtgWrtVx1OIA2cqjHUrryAaIvw+4xtjhaGVCXfNXtqPNidMpIskzPMs2NQJgz9Om7nKoWUkb4niZIWxvTcNTq+X/QIVA2/TbFNJKA8I5KoeYjcJ0ymrIdu387QmGQfTu5JE1j6QYERrdLaBem73DS6u1uJCxjK8qYTttRIbUa8BTZv3IdN7+EfsBqUFsIow5sXIRAMXPViH1TnOcH9eUCOX9/irBuktv/PwuXu9KPddGVbv65whhKb4WaaUb2f5wTW+7Xm9Qi6b47U3m5cjvYK+PIYKqKtKPtLmZ/idQVvhncrRj/j945G8yfS/E01vWtma5JFzox0uhtX0824Pf/8VGOZdALfN5wxK40nx+3e8DGrYvlQNtTVT128D0QYho0m4k6N4SiQZvNwv0AN254vP4veGAN8VOV3r2ORUvo17nB8Jlsl7QWr+wl+PLw2+K3QZ4zUjF2/mLgSu0ln+xUmo4kh/xMfCY1nrVbzgdhwAOlZ30Myjw69CrSQYDl+fA/4yNsTX3y0LiKHsYTjv5C3YaslRIMg2MB6oj0ykjllLiWU8GhSQTSxmbqM6cHW1pnLKMZTsaU7y2CpUzt/B4kvSYeoI7ySSPeEr47NGLOG/wO2wjjTLiKCOWFiwklt2UEUcsu9lJMmM39aFXDfF8zqMlXZjM6EdvIPXOjQyKf4bFNGPynmwyY/JowULS2cKIHTfRN2UMWeQS2prDqVVnkY8MuJeMacW1fYfz0ns3cdpFX5BPNbozgaeW38OtjYaSTzpbSKeAKuSTTjKFLNzagheqXkeeEf8rpDK9+IjpdGQC3enD28RSRiHJHgmqwSb+PvdJ/q/1IJbRmC58zSwjirmGumTzNQVUoS5rSKaQPyd9yD+KbvMI78Pcy2ZqsIkaFJFIMxZTlzVMRzwJBVShGYspJJlZnMo5fEoRSTzBneTtyWRwzKMUkkwxibzC1QzhQbZQjTRE7+AZBjGYR1lBAxIpooA0LmcMJSQwn5YkUkQcZSykBYkUU5c11GcVn9CTAuM1rsEmZtOW3oxjBQ2oTCEbyCCNAhIpIp9qdOFrXqMfbZnNejJIJ59JnEkrkx40j5YkU0gpCSymGT35lIW0AKCUeOqyhi1UI590Sojnh4lNOKHbUkoNy9jQtz7pb6wjLaaAgj1pXBAzns1UZw11acMckiiihHhWkEUZsbRjFtPoSDXyvWtZuCOZpMpFlPyUQFFhIknJxex8qhrUgfQr1pHfuzaJo7eRnFJIO0ToYhmNPUcCwIZP68NC4BItnQfigK67ITdOyn5O+hmWHUedRkLOl3zYilN7TeG/HY0R7QoxN+2iyh8KyJ9am6adDQGdijjCMWMz+2S3vDUXql9vnDwj6lFnYC4tWMBn68+hclohCceXUFiQTOlUM44bij8ms9IXm0Db0qFDhMNkK3MR94FLtXU49qAugg7vfc2ME7vQ0kbIflQsrtaM4o1VKG0UD/jE0PaWVJZ4XhmC13OkbYglUswF80AmEyAFVu0wkU9xgakrwyOcSu1A6wBxNGSMLoigEHjEiRflLS17I1CT+GzTMmVW+VRab/tWeyYLeA5SW20krVQIMBgy2Bd46zm48cbwlWcmQBMorp0Aj8ik7YtMCuzDCDH+GE9QKPYmqV2V6GOOXKOKsAz0AqhrQplryIq6mFL4qrHfmfc0fLGhefgtXjJ3s7e/tpoLnBno1XlLCDXI72Wq9d/ClzeRiGD9plX7ZVQOTDA1mba9yfvI7xbETOCTphLVLcZwz6Ye4Q0EuMoRTgikIQe/b7PLg8pErn9/DaOU3IqZGtbKhr1U5yXhpNXhAGH/vLg/Iw+HA25MtdY3ATcdyG06HGKUlZ+UmFYI50Lx1SGJaI4H3g0R02kXe95EBrppu5m6vjOnZshAeyAjWEgLyoiljFhW0IB08nl98XVc3+xpltOYJIq5MOV9xoy4hvhLxX5kJeV6RAIgj0zWbK1L08HzSKOANszhU3qSzhbKiCWW3SRTSBmxbCCZPR9UIvP6PEAI20JaQG+4On40m6hOEYnk59amY6PpjNnalz5V36ZNymxe2dSfujXWSKSqJ6wpqgvAqX2nsJAWpF+wjqmzzqJOu1yJ4O2GWbSjGltIopg86nM638jxVC1kCc1owUIAptORUQwgm8n8hefZRHU2U4NXuJoNKzM588RPacZiBrcewt8WD+P/mg3iTfoy33h7BzGMUhLIJ505tCGTPPoXjWQ9GSRTyG08SSkJ7CbW0GAMcYrzoq5zaMt6alFGHI1ZzhaqsZ5atGE2t8QMo4w4MljPBLrzHDewmRpkssojbIN5lFLi6c4E0ijgfS4EJJJaQgJZ5BJPKfFI/7FZnMpmqpPBBqqRD0jkshpbeIWr6cwUVpDFMhrTk0+YTyvKiGUbabRjFvGUUJ1N5FGf7kygGCnlaccsz1FQRiwAGaxnIMN5nX7Mop0XKV2+pxEcD81Y7EXB6Q8dY6bz0fJLOK3RFyymGWlsYzexLKMRSRQz8e1etOwzky1Uo4gk8sikO8MYv8AwurTd1E1ZQ0FSGllJucx/uT30ANI0u3fHylhOdSGprIj1MeJoWd7zZG+McNrgL9hwaX1St2wkI34DWdfnMmlHV4oLksXJfjGkluSzvWVN1n7cgA4nToYmEEsZf57+qrmnOrF2ZQOa1phOWeflzFiZTYNrvqPuNWuY/HYPwOhKVIYG13/n3Qevx13H5ul+HU0p8Xy2uhe16q1hw8pMdsaVwbVxMjawY73RCAEdX/7ZcNRi/2zlMZ9q6yKev2Ooi6DRewvI35NOeow8pDsynY/2nOd9X67ejyoA5KVWWj0XK05jIpwMMERy1DQ8IurlTxl0DcGkHf68FoGWKwtMDegmM2HRbnnfEIduJ2QlPn8HpS+a/WSb9SroYKSm47Xo8COPRgzJRBPDxIUU1NG5rP0wC86XQtTE7dUozq4iKSdvmQUTzfvrtnZzElBbPg4dIL1FI7ZvI8zzJBxIW1P3OZtO4cdso5zjEOOwDC+tDEwkdAhCfocCTcx1yjPE81azYAOMIyBwvA9txRa3hvdYDXyPQjwB1EQ8IqxfjiCe/zSfTS2u1KMugbpNabO6/HkG0+zsflRHvDRg77fdGiCh14qYEgSm3Qw8hJTQ1tktaUrWV2mylx3xPAhe3OpKz754H/scyX7vMyLiWR1YDqRrrcuUUjbhrKFLtT34ONR2Ug2CWsMkYL2hn0TuyAJeB3Jz4LwQtIX0+9aR37+2PBe/ltRTgDbMJp9qtGAhpcSzjMa8u743DTJyySSP2aVt6Bz/DR+NuYQOfb9mhpoCV4f488uv8u/OVwHQYcrXrKcWrZjPJmqQRBHxlPDl1q50rDqdeEopIpEkillMMzozhTQK+Np43NoxixpsYg11SSefXBqYqF4SZcRSlzXEU0pd1rCeWrTjv9yxYDiVs7YwKEk8gEUk8fyOvzAwZTgLOZk0tvHvKVdRq/MqNnSuD9Xg7vdymERXHuY+PuI8ltGYDNaTaeo22jKbTdSQaCgtiKeUObQhmUL68wrVyGccvZlHS05mIefxEePo7UXIJpNNJnkM4UFGMYBkCg2dLyOLXBbQglbMp4A0mrGYNApYTDMSKfJSbfNJ945hOh0pI5YSxKFdlzUkUMoEuvMXnqeIRBIo5X0u4ELDNkqI5wnuJIMN9OVNikkiljJKifeOZTHN6M04FtOMcfTmTh5nPBfS0kQrJdpdmbqsoYAqLKYpvXmXhbQgmUI2UZ1ikshmMotpRhmxxFPC/SOe4OyB4rUuoAplxFJAGstXN4PdsbQ8cRabqMGGufVp3vpb79hiKWPJ6hYwI46WfWZ693YmecymLWvX1+XsjE/IYgXzaEkzRNRiJ8nm+hWznlpksIEZq0+HC8SW/3nuq/x71lWc1+4dFtCCUhIo3RNPfu/a0A7a3D2NBuTy72uugvbQ6PoFrNlRV4glcGq96RSRyKIHTyH+5h0iyjgeuFTT98RXmEcrlpzYiuyVn5PBesZcdw1NX5zH+tJaAGwfXRPaSzr7krmtxNlbExLriBe4eEkVeMyc7Ps5nKnb8qXaSczGc9nzWCUhySCpwz9BevY68vMyaHTiQqqzif9ubUfpUymw0yy3EJi0BP7TVP7/ckMAv0z08LfgSLeVRytcO5XfGdRjoiirJsIJ7y0liSIqxxRSlzXUZQ2T6Ep+7CiWq/dZrt6XdQwZUSrHr9fbif+ACNtBikQvR+XAqB3QtBM0TYH6KfBdiHIiRF1T8JmQD5t2axGTUAIbAlG8N6H08xRa3j2TlnfPJBIJW3eUb7myEVFKnUtYyxX1FaS+uZHUNzf6dZKR+KAhfGJywNoj3NK0LOH1aVLn0KqTmQHMHCDKtwb6nejptBaz6eSRsRZ86708vAv8AZ90viWvtNKNQv7bINHgO+KkHigIqwpcxbwqmRcAt8D9IWkRM4TyOBdPJEj1E0KoOiLGYwBeGxX9HkI6b0Eim4sQwmlFkHo3hXYw57FOzFFVUWqJaWWzxN/XjPDop4fJZv9VEUN5rT9LTUein9vw60g65cDIOBEhesO8CuSl3gYVaP3icIAQt4+XUepTSp33Szartd6MyGFdZiZdBsxzpPP3gZjHd0ldew7wSQguB7Igf2M16Zn8BAxs9y/mLO7EnMXy/EyiiDwySaOABEo4LWMKJSTw5YPnsH1sTRIpok7fXGaoKVyrq3HBy2OZUNpdHF0joRpbaMZiyohlRscuLKMxn6ksSrekUEQSjVlGHGUkU0gmq5hFO3LJ4nSmcDpTKCWeBcbZWpc1JFHM1OVnUUQSbZjDPFrx7vLL+YbTiaOM9dTi7JPfIy2pgEKSKSSZBEpokbKQfKrxzY7T6ch0KrfdQjpbuHLKi9R5L5fHBoW4gPcZR29WkUk6Wzidb+jC13Tha5bRmDJiKSLJEMNtNGKZV1/5PhdSlzWczEIW0ILpdKQGmyikMoVUpjfj+HJ9V+5hKBmsp4QE1pNBXdYwge60Yj4NyKUua6jOZhbSgsYsYwVZZjRRlzwyKaSyl6IcTwkZbGAzNSg29aSWNBaQxqf0JI0Cb/1WzOdqRrOGutRjDbHmuluCV4NNtGMWd/E468mgD2+TQCn9eYXpdPTSVKfTiQKqUEwi1cjnG04niSLKiGUNdTmdb7x61hpsoow4+g8cSSvme+T6v8s7czePUb3eerqd+BGxlNGVSfAzlJLgpWcPYBQxCSXU6rOK+XPbM39ue9aTwWzayvJAGXHMoh1zdrRlPq0oJYFJdKUW62nBAqqRTx6ZEFfG6Ll9GD23DyvIgvZrmUU7fljehA3X1Sc/dhZN35sHsyUyOYe28HAJza//VpwdmVXEAft5nIlU76TlkJmUfp9Co2YLyB78OfFphYxZeTVLpreCmrCFdMZt7Q1/1yxZ3Iq4uDIhnQC7YcniVnA8pJ62kTrNcimeWoXivCowC2ggwQyAXBrAm33Yc0UlWAiNui2gUbcFMBbq/CmXnjGfct6J48jd1IDN1KBu1TXyX791t7wAbjFaEHl4pPOox0GylUcTXMTzdwTVDzgJYvrvokaNzWzaVJ09ZXFemtJ/35Y8ft0HlM18LQxEBa3i62UhiZ79bJZpAVwVIHlZKeKdDsCLoEVsV9J1TaTwkU7owYFaz/bmYdcAqGW2Y1JCPdGZ45Fh6et5Zj+ZMt8eq+knqh/0U261ic6plxGe+JYRSWqV6O9vBT6RuRkhXzY3fzI0unsBy4eYPqR2uUyzfVM/GqZsex20fDE8yinLjDLL+CQ1SDgXDTE9Wyw/623e10HqzeY6jawp3sHzkFpH8PgvIBGDAuTh/bq5Lq1CvupsMZ6IUmRdp7pE9uUV+VvYwx2J7420sHW5QVHen/Gzse/5Ge4/Dh4KKNvOx6/luCWw7r3meKuEPBElr22OzoFp5vc1UVMhrmadD0J+S5+//Aw8Ci+ZqLrxJ+qT+d3hgHtxayo9+4p97POf+/biKqWGARchv/4WIF9rfZJSqgnSTqUKcpf001ov2/uWHA4UDnnEcwySml+AEMvH8IXirkYGpjWR5z5AnKQQTp14lr+RmkA1GaW2yZBjnzOxE/Ftd1A6WwxQh25fM+NtiVBq086pF75n8EMuIQMTeV1e33822Rr6CCX2vZ7PYqRlFUB3OzUnLIvIs1X1zTTRQ6LBj98RxIq7pMxZP+6LAPKEeOpqjZBjzd+aDgRaiZkMEh3IKlGnQIdvv6bQqNYs9PqC7eUcRpgPbYD2z8FwKUdpOnAegBCWTm8CEJ9/HqUjjZFvgl/n/wiQC6kDNrJ9lClxsW21RgA35YXt07PjL0P2NSLQ8zU9RGgP0Loh+wurol9WoxJqvWEvixI8fYSmw+axZLkYLd1o79tRU8yHn+Qt5o/+dsPmn+HrV+yp+YS3fszGO9nT3Hh8TWRQX2O2Hcy+SjIrjAe65/h9uI299kpUzHK6KEqm0mPAPeHTyp2PcfJaCmAzh/RWk9EEog8xE4w2F2yL2M8L+KKE5jFhr6FX57kUz/brnoHp4xFHeo/d8FSEs3yheW9h9m+ipX2HiNf4Ta6Jek4HGkeqrTza4Yjn7wRqpYaligY9v2NFr5PkQWDKCa0QTdjyKUChIWS9hZDZiF3YQzKobAvAXFF0BcidBvU7ieALEhWzxNNm5Hr1d4bYRBO0UYuBkyIeeIZ4Jt4sI4KilCreNCv+Y2s4LTryNQAzZnWBG/Eigd559UV6dII8tE19pn4N1EDgR/zUzV3IIMiSb0tkAsprwfRaa7z1QPyo6rxpWEap9YByxgMCoht2DGJUbfUYs/0O5vvtoAwpt5FoPRi/j2eBeT8e09IF+V2WAp3w6yj+gG/gBgeIJ8AMw34tWUxHgtWv+1FLrZv65xeUkjkNeMukzZiIpf4+wth1xL+OwwIDMhDiCf4AsAqewQveM+WMqTWgbwDnQIM+37HisZOI6S+Dhj3vVvIGQL8XHHBjWkvp2VftY5+PHfuCCcciDoedVGP8z7Y1knoQCE2WL89no68HFQOcC6d9KP2Nv+Es//9ukJq9kWrxUjayYuJJxPxxl08Ghpvnu/n/B4nnR/+6hFq3B4gnUL3RajY3lDo1SzzVRHyHYxTSYluDVW+2mk3Ui7CdETbtQby2XlAx8fS2b8nOImCpKIYC5cT2ImFJdSZ5TC9XlB/lPGyG0BzznmneP0dqbTfi6S2UVE3xdRUQR2/Y72IIuPeMroB47i+C9jXqfEPUs0+cwOSJwmKsIF4zhEAv9jyme9lGBPH0lNPXR8w/w9gt4+TUUTiSzbrxiKfJNgoT+puIXzpzqSFmZryxt5IRdZz5sLti0gnhtlJZscXnzDSjpaE64rVY03uibCNAPO2YLmz+crySmaAwkBpkPsQBS6HOpzKw8VR0Z+TAgJA4y3cBA6DvNX6q0lFLPPfPVh7zxNOJCx3jUFUhdeNGoAY0382K1Y2p82Eua/+UhQ28KRMV0tcQZjCibm8Y8HQIPgf1B+DvJkr4j2kS2YvpJNFCHRQcMusq33unTJK3fZh5JGOwmW8dml7ktDWpJaeQVrpRCOW9OfBuiOJJVUg9d6OJkoYTTWW9ioYMTqdLWIqttTNK4Ut/W6LXKuTJhKvWiGrsLSGy7xbv6+QhPQiD4WLe9Qt4xKvtWYet+SynTEtTtN5LXSf4EU7L7U43y3wo6cHbh9b0j7G/WeYnf3XPG2nrClqZbc4z35uYgczjlG9pgCHNGYRdWv1V4BhfR4hooPOiF/G16rZ23d5N4ZnAoE0tkWn4+/Yi2tFIuL1HLAk1wlPqXn9ZrWU5pcx3M7hQ3d+GO/uw4pqTYDfsGV3J6xGrlgNrQbvOkL8esftc4pgXTHD47Ugu2oIvHCBoxjyaDoElcdnerGBv5KkmrKc6mKjnj/h2w7amAmhewp6yOHEoZhP+nESinOCTrA3/qk/M5buISd1FtRpCXvX3YptUQ6T8IQDVEF+0+yP/mVQDUfNUvaKfs1ISLSTncq8SpcFgIZ0rThSy2WDldzR4/DtyOSnaJjyUPpAiTtyBPrlcb1Rug1hPfc8R6x9HnjnmzHLL63bGcdvO2FEl9hCAsfa57ZNdm1UEgSwnmxk0wUwPksWBmUJirG0wbcgioQyx1CPKz5NzmGzOIduP1IJfXwhkd/ucyQv8CYtphRoDCnF0eNlU1glqFdt/wnf8DgS1QX7jLGukz7AeXbNMBdzII5zGsaKNs8USdN0NcdxOjQtrRbI3qLsiJjwSsJvRNBSqYvJH8mT8MyczfHt2INPhIn9cASibWGCc0XoxEOWpHtZT/QbgWcJEDGkC5EKtf62isCiZgqI0ds6vJoQzGt6CMW9dg/4i+uyjCvu2lcc8XMTzGIY6C/EWjSuB+QmSJtQDYp4MpJ40BP5uVqgEGI9Z0HCU2655uEujzQhyYKuG9V6Ig00bmSfpRh5RM+QwMoVJDUIickafSDcz09/Di5KmZoVHOKO1WbH1npGeYK+m0HLk4ea9sX0AhsRQWqLWAd+jOdOcywdmXoE5xhE+6U280RTeZ0sua1gbF084aBRB2LRb7+HdA08UKfVm02KlLV5qC0uQSCXAcxFpXCeaD6vsjj8KtL/5DK3P9pf91Oy/JyhfgA692sxX0VudeOv/AXjarNM3QDy/DqQcR3h2PSNv0p48wxiVeJplfuUjSw0GvgDe3Q0nxFFLr2LD7fX9lONFoAdVsIFjBAfci1tb6dk3VLyMGnLse3GPRRxqO5lctIWdS6v5ba3GITVswJLXjKdwEn7q/248B6ruZkjjBDPtAfPKxVOvLama4pPW0yDoClE22tQdrycwSA/P4tFVvPQ/Lxpk1b0nI8/+yMt0M356rXEY8k0g4nkdvs2ooP4fIMukvKzoZ6Ke+ymu0pGvpVaQ6AQ0iIqIp90WWOLpp7xWFG2s6zWehrUTs4S4mWZHnjicJYgF5v1hMz8K8Qw/3rnmGFqHZxRFktJ0M6+PmWdUXm2ZRWSE3dqkcmUnwajtIvwWZd0oB+ts2ES98jOD24wgnmH7Gm2+3BM41kiiasdpDfx1tXEiXztdBjOjogh+ByOu0WwtgDoFbzzIfYEZNsK5uILzsmMXm+di6zOtYq35/8Y03sWeDyr51zKYEj4QGedki8HXJ0YTgDi4cLby4MBFPI9BqNsRYRUQb9PGBPn+LFS+YAs7Pxe3scpDPL+5+CmmPwOJ5uE7lDCUT6X4G/RO9EiKXi0RzGBkSqkd0DsFxk0Dukr9Sq4vVsS7URRzrVctSgZQMH01YesOSkemsJ2apN650Y9mjof4p0yblcU+WQVzXpdq6G0eYsYW6y8IFxa6LOSr1oJECruLkm667seGWQEjPhIhzgWB5f8HvPUI3CjWOLzucxKcHYJ7zLJBR+mAAWTaUde9TeBKZBAV8Nim3reR7ZeHR3d5zvcUKpXjezxtOemo1kakpzWcBFz6mSz7AtS6fhUbrqnvCRcplQN1A4TvOKAuWHd+UOnW+60mLYFqPiFV1yDpWOlAukR0VV+89G5VD/8eBXGOAL7WeFegU0BsSOSNta5hjjFPJj+SKe/3+ue/1/SinYjjYGkcXAkb1GvALSQ+oGRgiTG27D2VySEKFPtjSVKVUi/gUm0dKkBhUjXUreaLiW4uedAQzpn4z7Ol+M9Eqy1nCUB3oG4JjaYvY/lEGbGXjk2BLLlVmQGYCFGw/s/DBEi8dRt7gxqDpJgiBNDzw7YFPQROR8IyYXWna5F6x5tCMM08YwdEiUoFA5q2/eKTOWQbufYVZgF1In6rsa54jknaI31PDToEmhgrYwebLvZTSzNY5dWFRiOcnhDbSUB7Y5f03lNzE7buoDT9SbM9//w2b60uNbZPGcdvlpCraKTNkhz1lf+5//SRlBo13IrSLMNIp7E1pJp5E820jQEnRQCVL9hCW5bRZjDMmdVJ5gcIl422RaZzK5VTYUqrt9xyPJuvrd7EmL0uLpHGCDMfXF519Ofrx6NEPb3jC6SxdbgIPT0iGlsloGhfJSQlOA+YeT+LLbRO6ajbXy2OXPCdwl6dp/U7JOD35w1gzyOVhIRWNsvbv8xdwHOj4PkB0m+0x24+oQfnhIlXHIVwthJwxPOYg6oK9If0W9eR37w2dP8ZsozbKreYnY8E0pisKu2PgO0EMhqph2sin/VFfnqLlzKTnC2G7h/FEmkzxdJqMASFWNkWYKq9O0lqUm4OKPOQ1sDFCxA5VIsQfGk+ppn3ccClOSK+0MbsaxDwjGnP8l2I7bk1iW9oIpztQM1K8VMp1WhAIntap6AeVdBbPJo2IuiRzksNSRwDytZvTpXpzITS9CfZYMmyJaYPmPfnckjcPoikHSB5LPdSnCq7ThsfVOntSstPZbQ0/5L2pJZIyG17wvMwKocqL3ZnHu2F8OUixnIssAS2/8EIM7zj/y7kIYOYUYEorfEqUwmpyxmNEMGHcqS26TIT6VwLG96rLy1ReuGliJmWZAL7lKiPL14UDVuWwA2GfKYBRrSDTGMYqwJnRlyz+/DrhSpCB0s4wRMPAsDU0QRqpoIpPcE6Ua1DqNeQgcdroHqHoA4UTwYu2C1pTQZqCgTGbA4VQeF6kzn8JqjrzIcbkWftWGQAXIhPIDLNuzVhdlBbCCSbiKWdtz2B3NgGsBtiLt7Fnv9VEqEWU9fJ4/gtwAx0QNVbzaoCKyTaWVIcL8dgRdrAt3kKpD2tRN7A1JoORBx5E5D9rgrJed0S2OGoHLi6AsLypB+JshFPv21ZDo3+dCEAy+ebcNgoyiFYv6muACrjETg1AmoNhPSq+aRRAFFqHPU1PkHT+kbUIPN8NeI+YodFPUnd9ANM6wScId9PAcjy+l+D1PKtVVl+uq3NMLEEK83sy445ZvjrxlPKK16zav96hy0fJJ5WgKoEP626JlAcTjpP7TuF/87tzM7x1ZhDNfmN25S7FOGRXVvCEbAvlvjpx2Hzh8Ybv9f0ahMuz5HfLuzes+dghwwPFYNOlGwho5ugA8uEtTpbJnZcTweltgiRrIKvoeDtX8io1hfBZ0B7c69tDT8vj1Dbyz4aSf39yZDR3cj/9IfdMCkO9XI4qdU9AaMh4ulVWH3yXA0oiXbae9fWEH8MXD1AnEqV4ePrI0qbjlY4WwngUm2PJaiVmkYnLpQ+U3FlnJCxih8WNPEVTn8KTx9RF+F5msJUS80DW98eWNauZ+sNbLRuS/g6Nkrq1W566ZZzhd1djG/fXgFyc0g1dTheqqwluDYF8j78no4b8AV+7gP9s6Q8xdcRklu6MUW84X0gvWQd+bG2KMAQrQk1/JSoJvjRRpvaZTEvB5aFZPr5k2Xa1dnwijE0w41i6kOGsd/fCR4KpB9Z754VDDScJnXURurH58kuaO9FcFu+4xNRMMTSprIExiapb/ppxaov8Japtck2C1w8Ggb0l228GDCM00yh/vHAxWZa75BnBDyl3yhpRl7arTU+95pldGBeFmHQXwUGFWnm3dw7eisoY/l1lMarQbU+b5p6xN8xEaIcXlTUJ95aU07AAfz7WJvzVKcAb0J61jryn60t94S9l7NK0Bn7thJHGw54+lA9pWffWfEy6q/HfvrQsYhDZSc94tkFOG03zIgT5+aXiOMvoGzJSHyVzCF4qZK6rz9obz7wWxZNPEVIH8AEeVZ06/YhE6f08solwlL5p3gfyzmdrNL4Qk7x1W4nStaLV0du0wvvwY9EjQBllbMX5pR/ZvXGE44Lpi5aUbigDYZAyu0IExq1RLSt3/90bym19tneYXAgZfYSaPqOREALSGM99cs56+R4AzWdBBx7VRESbo8jHTp8H0zJzfGuve6Gr8b7VETaZJPwrx6RjHi271dk0WQX9W8tg4bRY8Rw6b4yVrB6CVbNuMJt2bRsE2n3nBjsJVpr19tHLSogJUs52bJcgHjGbtrFnpo2A8gIO+6NeBKFJO4HvCioukgyAADa+2R0r+m3gXKc3wq1ACGcVsdiKl4aNOOQ32nSaLilv/9/iiI+eTDhbOXBgYt4HgPwlEsvgGQKYX4c1Ijjh7wmkhK0ASJtkUckdyLpkKsMUfkUj4SpFDxFWtOL2Ve6tb03PwosMy4H/h4K3/7X1oidJ6HE8a2FVEVJu/DqQ0FqKE4ypO6+TkJ67DPwnhyIM/uZJYfSoOoK6S8VgfSysyg0DZStlD7jCK9ZQA5NNcMnHeDVmnBZtj+9d8hPAV6CRHJBIotDG8J/QEV7KBsP+fb+NZn/lhQQKaZ5wkJqSHuvzpH2xnBdSpjKoUdOB7aXlLE0/MHAZ2ah8/rDJtAf2mMPiUdxMr5Kbe+QZM3Oxtunmo84KOx5Bh/wVv14MIG+m/+WQYFJydVfme1Y72ZfIjVC/PMLQA0hTMkvbF7AW6z1vWIMO4Rghvntq0Zbax/G18j7q3/Y7cq9mk9tSYcrRtJxs8Twq+nhdScOe8G+BROO+fQhh98AK+DaBV9QpSESUdmCDPyfRZ4pth2BjQhdLuQmmAK5aMQp8CSQFRLBHvNcm7i6p6hqZ4U8PYEMLz3EN5LWPunvDfmZKR5EBdQyvrLE9jYdt0r589kI3ICkky7wyYE60Rz//fiCcXafhnzrF/Gcq8E0TnUiNFhplhloHGsD8GzzhkH1OXvYe9SlzNtmmfljrqe+N2i3jzOp2ezCkktaUesduQbeWMLgQsYSG9ieJYg53ENjlpGYJ969IcMeZALdmdywR9i6AHTPYaBORp1yO7wN8WmFlBohojOHfUJd1jB6hJDDtwZeyGza0MIUxz6nRzCcgWTRmC2kM4jHySSPQpIZQ1968ikLacGFvM89RUMpKkzkvNafyjjIoH/fkeTSgAEsh4KboBac2nkKLUhk0fqTuTLjNcqIZRodqUY+y4oac1vSkzw06xG/hRoQk70r/PeaIjWKEKWlyjsQ2WnYuz/XIr/9ndlhhNNizxOVoFYlv/7XOGDDFG97ESb6400PiCtFg3oZqdHsYDzNM4EOpkTKLtMR6BAyUdNHYJk4fHUjn3CWa01nHSQ3h9djqhcoV7+pOppjMOOK1PYb2f6EYZZb8B3jt4TQX/SX9NslcOoXU4BjIA3JiQu5iOfRDPUocMVuOtQTSdEZ6+WfHRO7mxo1NgOmju2fhhzcjtRcvpviR/1szcz5xgp+YlIlLzXTR+MXk6/Eb5+SbIhnmlluTSASCHCTLyjjHW9Q6ttLtzUiQyp8+ciIYerojWzfYgx87aFCniynHW82FSkGMAtSW/kprtufNGmqwZYnjwH/g/hnd1C61BDTb4D/QOLYbZ4oEPO2Qm/DdJoihqMV8hC5ZxSezNvZlgjuAP4Nbw4QwmXTdsdNg5c60eYaOd85yoSjTb9RNvjn7PV/SzPv1jNpWqiwBL/4327/OCTdOTPw/a/yMbVVoDbU1g8tRQxAJn5k3KzrCRjYqPXNwMVL4Gpzj7ySE+4Rh4BwUY5/XllALlS+R9y1hUmmxtga3UlEFRUKU4H8KEq0wI73bH3TQ8EU3Io9wNGEitTteHWu3IEnlEQsnoCUjZQezTjgXtxMpWffv499Djj2vbjHIg5ZxDPo3OkKJzwo3s8f+jXxsyly8UR1PCGgbISMnhT47zc1//unwvcR33YHsXFlFKdKuC69bAD539b20gytWFx8Q5M9832KL7z3j8CGPjHv8+XNc/LZc7HPLfNcihYZ855hA8wyL4YTT3UdXulEuahT8Blpsjn0yxINbYS0t/1sijCCaOUCkWq2ZcQSTwkZSF+Qf792FQBn9pMT/XLYOdQatIp2SJZKG2ZTjXxm05ZJnElXvvS2EUcZ8ZR6y/6VpxnAKDJYzwJakE81MlhPHpmsoS7ryaARy+jH64yhL5nkMXrMDbzU93JAHOmlxPMI99KMxSyjEffwGItpxtv04S88Tzr5XPvCm6QPWEdsTBkdEWMyXsm16KvrUkgy20ijC5PJJ51VZFJKAt9sPZ3SvBT6tn6ZxTRj/oj2xFy8iyp/KKByTCEbtmYAUDo5RZzh45Gsrnn4djg3IqvGCP3pH/3P3ve+SLTeRl2twNJXGA0Gg9PguW5XA3ADr/jbtnWcpouxvff8Vi5mI49ke+Oh4H8rdbKMh7Yn2Pzcn+E/fXy7B35rO0s8EccvBKL6i8wyFxkya1OljVPIS9kNEE/PJ7zLX46bzH/vg5CMP7LxWroAIsoVAt9LYwUOK1C/PIBwtvLgwBHPoxjV9qwj/+HaxN8shjI2rozijVU8RVatQ+EezPnA6+aP/mVIvl9aArV/hICH0KqWqruQh6vtHWVSU7yI3mc2+vl/8tbCPFkWAToK8QwazBSg0BxLwPvsLbsYicc3NjWgrUJhym02RTaMODzmf9Z3yzbiawYIpU0D/jBinf+ZL2/tMNtMkchgF4Q0hoAn7H6/h+cNK7ZKhFYR954cIcR2OYALG0qKawO8SGnLgSZy2bq9pPQGNtJAp7HihYDChBFG8CICdlawxt6ST5uu9NccuDAwWIn1U3S3P2zId5Qoo6131SsD0x7EV9d7AiGeXZp6NTMeYYxsnWLvmXeMg8QqCVbgsLQDr8pPRxDUyDpNz4HxNtBHogfgO1HOCQxC/x64Dln4901FYgmPBrbVFT+tHEc8o6FtfaVn7yPQrK4+9o3psYhDRjyDIiv2OWbLQHLxayvt82UjvjiZyaxIzdrI9sk1YSfUumiVpMI2LxFHJXCCMWA/ZJgdPIw8T62CrbUvkTpn3+GTXysOMz1AME0JghcNiiCeMX/cxZ7TTHpmwM4phUc8GRVuy2xK7b7ap0QST4AVU/x17PM2i+9Y8aFRxDXHp66DBi9+x4o/nARbttJNT6UGm5huYqJrttblzqpP8OinD3JxzzdJo4AabCKWMubTkgasIItcFtOMTUgNfj9eYwqnU9eIBKxBSN+XdKUW66lPHt2ZwCZq8Ar96cJk0ijgFa5m7YIs/u/kQfxt+TDeaiT1q+9zAaUkMJu23MNQ7trxOC1T5lPfRKlPZRbjuZALeJ84ykikmCe4k2QKPTXf7kxgIS2oyxo2UYN4Spi6sivXnjiCCXSnFx8yia7EU0IhyfwwsQnZ3T5nN7HML5Isqp1jq8nvmYk4NGxqcbZ5v3Y/BYaGIFk1BEhnMOpp006tANJX+CVHXYHG4euGbTvDfLAOD0s8A5lB0Wo41RTCiSe2HKZ86q1dp9y+jXCVTRf3RKkMQfXIbETlohqEnLMtedqJRPsz8f/zDfDSgP1jOEqJp7OVgEu1PSpRbc86GsUsJz+7C2dPeY/P5po/4VuIJ+y8EPpD/GLuTIT8gKjIzkf+4FnAxwnwzzpwR7G3fa/wnYYw1tQYWNJpSIQ81BJNPWaovECM6gT3SOSyHKm0JCU5hLFXZr8BwnB2CEaVwLrG8LD5pxr1wpjPdpH8piXKEbJvEdsqfSRU7qGasHUHpVekCKHMNiT1LuDOFHhCekAyNORHA79Eopv3fg9XNoS/fA8zG4oScHtJ/9QPgroHSTceGvIfpHkIuWwTwjqa5w1sj1KbkAKHrgSxYqAZHIyQFNCWj86Uuk8rGLsJT9afdUiKL4hoxfzAhvLMuxlMFcTX9D2f/Y0ncileU2f1HvCE8WBaMYnI8suawLSm0Ml4H+/3VWz1V/jKd28gZDii7hP8VF3PuREl8rgv6J8xUvrt5EQfypQZn9hthcLvpSiI2q7lZXyRAzvofQNfNRNz3f6yf4OM3w0UzpI4/DZY7YCbkcHqbvy0/7Qoy4cACQhRffBqSkpFMIc6QCFsmFWf9K7raBkzny8fCcEr8ENDRC3zAlk0vb9kqWxpZ3osW8GZBDxBHP0hIlZn+w8aqDEyL3bTLvbMqUQ06G4mdfWP5ed5qrajcrChIK/OdRc02IvaaS/j7bQ9R/XLsi31Cl7ZxQXDxvr7eVlSlxpEE4K9ElYsOEkyOzKrMrFvL3jYPIi7Khqs/I73uRDOyeHdN0P8u28vnuQ2ruYVkihiFu0YVTSAe5MeYRWZdGcC0+lIMUmMNj/OrTzJHNqypTSd9T9l0C5lFuPoTS4NaMd/6cokzh8xgRMGLqXvyS+TTCFnNvrEiB3Bv6dcxVedO7KK+qyhLukp+XRlEvmkk0whyezkTCZRZh5Aj3E3j3MXb9LXSxGuzibmp1xHgx0raMFCNlOdNidOZxankkUuuWSRvyed/Km1qdV5FYntt7Fwj/Rvq5skBLrjNW/zUs2bqNVzFRserS9EytYjnhFua4I6CR4BA4loZgaWUx+h9Xned6/FmEnJVSMoV/vKEyZl24YP5xjbq4Ba/n79feT4fa+D0yI/VwnBbD9NNlK5tyKo24EeMpZQL5iJFdgDpUSEsfiNKnJ+iwIzLd2Kw7e7PwE5F0FoGkc9nK0EXMTzcB/GL4Z6AdIHrCP/YxFCadNoGot3iLup+J4q4Yp/58tH3cek2NrQ2NmGTH6KHxHNNO/9wZZm2FrPMJEhG/G5t1gK3pVPWAUm+jk0VF5lL9c8ON7s5NVYhkXX7EPwO/OgtIX0gSiZJ1gz1cybSzmklZronq0bsMfxFlRuIRvdOb+a1AAB8c/voPQfJir6pb8dPdc80FshBO42M2MSkABt7p7GnCES0dUPEtbqpdw52UhoGZK6uSK4D3OAA4z7u8Cs3Bs/JfacyfB0tnxeiigR25ITy11n46e4Ph1+Db00VKvIa64fBTJ4Ad97jum5HiSeQhj/LV+6BEQmvgosYzyreqtJ/envz9MrEUVZU91nr1GQeFZEQq3MuidpbxUkzAajemEr6EsXTXhI1vnZrHOceJvrQJ1GIp+59rEsiWrvZX9HCw64F7eB0rMfq3gZdYnX0c3VeB5FOCyptjZ13jjqbN/MuuSytp/xZr0eeJ5dnOOXeJjZJ3QLpOoWA5bU2Sjpk/gq4DNDxGTuIiGx1DuE4iskjz/mxYgavkArqV90flakJs+8m8gVVxIgLn+GywLOvCjkUxlbqKeUnwd+ymWYzTQ2qIGWcJqNoqopgX3/PQT/gNSSgHidJU0F+OmSqXjKo9kDP6eEBGac0kXs2TaTI/nujZx6kRzIf0d0Jv7SHaKvIBpGnHq3mTe3szgcrO/YpjMPJ9xpmYeMa2yWTd+AU/1Sv9XM5Ld7QAnEdJffbM+6SujWiIjNVLy0zqYm5LtkZUvIVVLSci3+uOc4pKylPuHqtrV2w9o4zuz4CV8OMcWfmeaYgqm2exPmMfeAfk1IJwADzvOcynac5ZE+o9rsCS2ZiKZej6Tw2t7mX+3ddkbvhx0+LRjxtBFRCDiSrdikCRh43VnsGCyQVecRz+D81/AEn3TrwJioQ4iY981v9UglP/pfWcM/FB+82J3ze02Q/++F4dfiUMHZyoODw869lVKNgFcRiZt8oJ/W4TEypVQsMAzRtdPAUK31KDPvAWAgmAIFmKa1Lt8x9xiAMsauVsx6GvRaQQ02sYpMisebYrf2iNCPSSm1ZYeCJyWPHjxDrFLwenN6D5M+SHeTQMRKPQoYHQX9OB7ZVCnAjabW80dLJkJ+ymuun0obhs/xInFK5UBOCEKBus/mUH3PajarNdCqE8qmnyySWk+A7e2NAq7KQ+tMb5/6btg+z1gy6y2sA/HjbTpy9H4g8X+XVizBXp4JW3cQnw+l6cZoJvrXhGSYs6CTkMP+oD4mLBU4LOLWO+Snw1qdhgZAqwCRB19K3G6nBeIlTQfGZkvK1xKkhc0f8CIBiQO2Sd3SZSF5LUVa4cz17xkeMu+TgOeMs+Bq+e28QZ+9XibNVN1IeK/NKFDXycBQZQDHi1GMulwGsCHHr2W1++1g0tYuAi7E628GEdewa/g9pHVrM/8q4FXz+TasNyGqWuXrwKg8Mz8z/Pis2q0+DvWyIaY/AT/C2mfNj16AR9zVcuByXL9PEC/uvgUTjnmJ+IONY9pWmjp0tuM/hwzRUEoU1uros/3lc8z/eyNShmG58QUlMD6BH3KbkDpgI6mjNpIWXwDAD4atxGy8Ex6GPZND5VqqWOgPCWu5cRP/Yji+B1bNEsec92yZb9Yb5BMHT+02GklMplwmDuATvACEIJovp0fMM45YqzLrZdoEiKfWITJYRRGwYWUmmJKKDp2/Jkm35cvp54gtWQvbB9QUwrBSyFRXPuHLf53D2d3kwfzZrIv8Vl1BNABuvLH89Jsm02BgKnSDFW0bUNo4hf+26uw7yF/ZAdOM07ctvmBUEO0R57EnuGTPC9R9ISaPgP4DR9K/z0iSKGI4t3tER81FRrmnATdamzCv3C5iNhoC9Ekl6FEC7SGxchHFTwSEowYAPeBLzoHC9yDxIj9Sb6CuAa4Oec7cMJjfRmUC958nzurrAuv2RWpIx5tjuth6lk1EPVDyAUjm02P4gkEgmVsFSOs6opDfl4GXQtImR+VIO58HdpuyqzixyZYAXmvY/Ze+/K9X4xkBT1yowLy338tyK7VE5k3SlNfHszkS4dwNoOD+3ZyvHgQ+glvOkzHNMzkw8Oh1+ALOVhoc9oinUuor4GWt9RtKqSuAa7S2vhVvmX7A5UhPjHTkyXGa1jrPGNPKWut9iBSH42iLeKoRQEtIb7+O/LG1ad73Wxa9cAp8gZ+GaT2HzfENMcAdOfCISf+0wjo2kmYfnFcFlv8EX6kWJGpma/YeR4SAHjGRvsF47U88Euu5I5f621hhChm6G6uR65MKLzUySFBzjehQoHZA9UUMpE3BmJdn1s/0ZNo9NbVI1bXAd+/heSvw2c8w1rDCDrvh4oAvxruGOTK4Ab/wfQ5QB1J7bGR7QiF8IHWfXv2MHQiMNu998ISAGQ2pM8XCNo5fzrLSRjSOl4P675DOfnTyE0kR45+7YWgcPBeoIe1tItljEFVHm0JtsSHw2ZJdO78AKe63p/o54aiNEFsCy2/EVyiuG0Kv9o1moxcXsLzjyQC+B3O4r8rnXYfCPPPFjOg6GIM2w4wS/tk6/DhfDxBPiw7m/NPw62GutdvNBMyA5GQz6Vbzbgc0Nvq9at+RS1UV2JYHbWW79IaY/rvYs6mSeMgBPjj6Wq4ccC9uQ6VnD6t4GdXz2K9bOdg4HLbykEU83/Y/p164ke1vGGOWifff1X2No+5SDQ8oeHg3LI3jhG5L+WGiYatmtQYnf0fBnjTyL5A0Wv2hDLRjNoafelmNShIR+2MO1fXV3vRN1Ct/jOoRWuozmT/LjKp34Zc6WJLaBI9U2TaTHvG0WT5T8MXzcit+DimVA/8JecTTDtf+wtO88LJh6/N94hmZEVRr7iqvvYrXymSAMlEy2XZ8c9FBqNxyCzuby8E3WPkd1dnMjOuMMMEo49/4Z0OJgNVEnsEb4cy+RoRo0DlS73rSErL1D4CIA3302iWecE6Hl79mhupCB/01M5QNJ74Jt9zo10vaZ/VNSL/PJuIs1vXiSNqxjeLU7eZaZErt6lyJ4A5sLaG3ERNvl1KiTLMdO16IKP2o1U0Y9IYYuT7cDFwKMQ386LdHPCcBnZDsp8tz4CX5veIv2EFpenlnp4XnyD4Xr7bTjgP0g+a+/yCwwnjzXrzJbNOvRQrrI4ohmUZkyIugY8dogRTa0/x5tAfuDdjVTyIcuj39bCDvd7CZZ//yx066kTkGGxW1mhOzzf1tdDS88dAg4NYA1/hclW9h1wSZtgQZ065F/jM3AzPCS3QOFZytPDg4rMRTKVUdWA6ka63LjLc2H2iotS9GrZT6BHhFaz3OfH8W+EFr/fjvgXiq9SWk19xCdsxkJu/JprAgWVTWQNKMbPrkxcXwSKL3YPFSKSIk0r30ywK8iFZYXYBNC2oZvnyksIr3cEuW/egdUUjoMITAvV6ML70KwciUR57s972lqgSikTYqGExrDcKm23q9QSPqFtVjEH+dHGRJVTlotTqceCZ+uY2ilCpCeIeK8atTL4+1lxgLdiO+h9ncrYkvSWi4esomflDWdf89tDIjjd74RO8bKSRKLbmW7R+bEVOgx2bqmxvZflNNGUIW2BPDv4xlyIPaehfvM8ulmXO1Xl8rXmBSdzwDbE41rHl1R4R4ItdW9TWfxxAmZAF4tbph6bbW8zkfv2k3iOG9NNw54O3PEk9ai8Gxj9x9EU/wRIIkrfZV+ZIYguIc4vMlN7qkaoqkzQKcGbzPRsEj4t6VVjF4KpbBe91rDVQNMYqj5sK6gIDH7514NlJ69rMVL6O6H/vG9GDicNnKQ0Y8bV/CtciA9+bATPucOtkQT1MiwdP4z9KhRhFofAINBhqRnV7mPxpFXdaq4tpnnxAaf0RYoUNqCiYyAzEn+am4kZFOb1mQbAurRBoknkbBPDKtNrJGPTJN9i9GcvuFQUI+9TC5hrUGCplaT32vTYxHPE32i9fWQuXAzBDntRMj+lHnSzyHpf7eRG6zNDRQ5hi+o5BkNo8oT8q7DRSmMYFeqBH+9/XUYtGgU/ya+crQbbDMm6hOxj6zu+lWTKAXCVuNonC6GUhMMOsF0k7Vel8wijfN7xSLtN/Z4i9vCdoAhgPw0iwT3LfiUSPlunflE76cJamzMZl+5LP/NSMZ3dooRx2PZJL9ZN6vENIpx7p34hlE8P7wft+xIZ94noZvm7uXJ55A2NgojHhCeXVlSyCfCEy0qrODw7cVOV4Covb0jnpeNr3WZg9cgR8EmWwIq3WIGMe9/tncj/ORMcy5wMcQc+8u9lxhvDnDEecDQC08RetDCWcrDw4Od6ptXWCd1roMwBjU9WZ6sAtSPeCHwPfVZhmLS5VS3RCTFdJazyAKlFLXA9cD1KtX/uF5JEKMRwbpMfnkk07lmELyJ9eWM41MS3k3UQSGeockjdMSSKsoNhjpD5lWfj9qICJos1LDA8ATCu4oJnG7sIfiSVUkajgZ8STeUZ4UqCB5taq1T4eESLweh9xuC5Gn621wZYr07nwDwhpHBorh7cOvzuBcmFcbWhl34Qo5L9UXeEu8sVqLNVcqh9SSv3jbSCvdSGqrCBKa7RNOQFR0C+O86GDiZCGQ6hIkTfaOOPgO1h5vLIONnD1nPMGPRGlMavGfhn76873T4AOj9FvjXk9tVl9kCOL9fhrK9strChGbj+/5T0NSbuPwjdRYJG3rPkSpsXeEsVhLULRYPK0BQhmGCDEDPUYIpvoTnvEP1jmp6/DSbQF/UNglYrvzgHslxUnVau2T0p+ALq39eq7F+Kq1XlEtojT8KOWcKoDfmoCrJPqdBPw9ROkT5Z0lNs3oV2ELovI8p7V4eI2XWQ0FWvLrt3u0Y/8EE1wfz9+GQ2YrD4udTDPv7YE0DQ0MM7zS/M/74zuPbkMceLPxnG6p1UwtyABYMdEQzkvxnW349inMqaQATFRxZvCZUsxpeipzdrSleImJev3BOumV3O8JsCdPBsmx7IKnzIA5SvsUypDn9ZaI6WYV6xyMVBvXOmTqOoVMq0fl2f68yU1+gegQklk/rAdx8LOajqSets/hI0JhAmoAXfic/t3yGD3xBiF/hgBsnljPa48FQnQ3rK7LxH4S2lJp0GHY10JQqc6KESf5NqUlMBkmb82mdGyKqJEXhOg2LIIxgYjlAdW7raYZi5mc20O2r4goIQrge2RckGbO8S7glt0w/iYRMayFL2RjIsJqEHDDOR4ZrVFjMxs61ocBMPrTG8SepkFi820ihnM8HnkrHZ8CXcuX7kTqEQC0YwpRe1Dmm/ehflRXTQem1YCdeO1TIlVsvbYqjU2E8y55RVO7Dfr7LeFU9+6bKLMKOE+ilzZyWSHuwW8B9xFeVp36A9JK5jh/Uc9BfYF5z9LQSUnqrQ1qNjYDoSuNEGEgZb0idfwjGk5cCDj8Ec82wGta65MC0xYDV2jty8YopRYiaUXfmu9/A+porQcppWoC+Vrrn5VSZwFvAk211vlUgKMl4pnBKhqzjCKSSKaQXBrww6wmRonOLDQWEW95D7/WxCqk9cNEG4EvEyVCl4cYGuv3Ng8Lbb3O4KW4en3GbOH7ILPfB8KP00Y4wZDO/mb6sPAoqO3XSe9OXh0CmZRLfQwK9ajWUGduLmuHZElEbwOS8gJwr08yvdpO25ftuxC6WXj006vbMV5GOwgR4oncPRa5+KlUfwCeGw1A4vbzAYyH3ER7tfEgen08g5G172FFFtVPFIW8zZfUk2jmGzX9iOlGfNn0h8yt3zsQ4m2K30qlgzF2U+P8dUEIq8kaYqd570ogNdm8W46caa5BlGoCFSBRwXqVoAiIJZ7gE081EJ8QB4a0+h1oxjyWZJgfbkDgHo0UOzAGSgcD5BBGPMOWnw50yjPTMs1g0uT+vNQ1QvjBXw7Yq8hQNFhBo8q76rHzo2rikd2JH1E5SojnAffiNlF69kv72Odpx74X92DicNnKQxbxtGewhfAUPz8AI6m2cyExaxvFeVW8qCNPQa3XTNrkxPqkZm9k+6iaYf0/AX9QnG22Z2swbfSpaWAgvsTYzCuNo7MAeMqMldYqGnT2252oWX6kDEz005LkJiWwyGREmEiH13tR5UB9Yz8CInu/FGoQVB66hZ2VJE12f4Z0nl5Ex1VsmFufM1t/Ql3WMFpJpO0OHcs/O9/H9VNMZFUViIDTacAfRZUUoPi+KnQY9jUzlnfxzrHDMPEiTqeLRLIL4c93v8q/514ljkYj4lNnWC5rVRwMz5TvA+WHSqIIgGWcLIJ0gO4HVzPSa5EyeUwP//ffiQzmR5vvthaypVlgfBycq2G+8VBuxLuvEruKw6K4wLCkB4xNPQ0/pRj8sdJTSJT9Hznww71ybPV8JqFeRpz/CPGMLLnRcynfesQ4gakNWNLajagRdG8/d0VMCKTvessYsT/S/WmRHQa8ZQOpsV767PvAef70/YEX/bRptK+b9X+MsuzbkH6JeBHyR9aWa36HmTlpsryPzZb3S5fg9/Lk6G2n4mwlcPi59xqgtlIqNpA+lGGmB7EaOAGwUh6eV1dr7cX9tNZfKKXWIFWO/znYB38wYdM7G9QrYuGeFjSKWc5imrHhK8Ms7G1pjJm6BGnl8WXAa2vSeHg30VfT643UhNgURftwuiHcI6wXi9eXOxD12lOAHEQ2uydSIG9TcAPERTVEvIvPyA7VhszwE/u7ifZ9D+hiqJ8Y5gVWDRFiZD3By4F5OyS9dQWSNlITP4IXG2L7k37aLCCe62T/qyWkah1eGqm3P/U28flnE18TSk8CnvejoOQidTw3Iwaza3+oDSXF/iCDy+x2/JRnfZEfhZP3hvAUbN5Sz/M+FsTXRF1rBjyt/N8s9b6NbLdCQONkvk2zWjHoJBoNW8Dy1WK5dF/jKU8zy4/KAc6DVq1FWsSiPeKQ6IA4DCKCs57AUS54vaqvDsy/Br+Gw6ZmTwelRkOH/v5y9l4607z3xp/npY5VhvtNZPo6fOeDWV9vNWk4Kg+lfIIIhNemRGJaJnTKwe9S3RX28YAPQg3GG6haAmn71Ub2/Nx5RjV4Homo3DQXfhQHgXoPDpE9PLLgvLiHAse0rfTqIUcQrlGQB7UGC6lUQ8T2FdeUCGTqAOnbmfjsNgp2pFE8uwqJ7bdR+lOCDLa3AZcGnhk5AWKJPJPCoj6BGkC9WEbyyUVb2Nm1mtjZBg9KZDS4jWHAA9Bsq7CIhZwSJkoE+OrwQcIZAXUN8Mq+y02C6Gr7R2EUVk0/YzVC0kwlygazTKQtmGrrpdtOrw874ZutRrXo9BTumPLwXvfJKOD+EMVPAA/lcL+WWsiERiVMVrOIz7+NGVWFhPbb+iIUiGfy39Ovgk6TzUZq0EFvZA11qaN3s3YQ8iw1aOH1CzvZuw8UcF6/dCZf0wNeyUMGNK/6asZN8PUqnoLUUXKrp8UXwCD4YUQT7/etNXAVGxbXp3KmDDx23lMN7jQkdQvSu7st8BMknmuI6ZlVJNK6AWmP0yEkywHqpoj76DJgnHHS23uqP/BX06qtacRvapcJNAhQE6MTTvCdvVHbDEVBuXZ2qvx95mlw4JfBMOp7+b2fb4h6QcZ5ajkSBQbvN/P616oc0RKx47lqwG3RU3VVBtAb8qfV9sWFRiHqtT00rM2WBYNaFTSF5w9tjecBh7OVwGGOeAIopSYDowKCCddqrbtELNMf+TsHBRM6a61XKqVqa63XmeVaIg0xTgoa2Wg40iOeqi/0HzOSZTQmgRImr+8CS43ndBThRtJGjoL9o7y2JxFGbmzIS1MFfAWzGwLLVCasPk8/iF8neocR/Yl4mHiRwyQ8QRf9qHkY3WketOMJpD7lwHkhP/VlHCLAY3E1fnrqeCRqZyN23wFLDNEcKkQxWK+ZsHUHiZXFa7p9dk1S2270aiibXiQbWUwrLxJavDMJgNLvDem8MXBdvsZvMD4U6G6e4jMb+oISf50GTPKjnTcA54+CoQPgHrP8LQ3lITrZrLMF/zdsCYybBis6Uv3ENWQY0cn5E9v7RK+ZIZntgXMChsMoFHpkb5QJHUxoLV7TIfiOQlsvU2gMhDGc3r2QZ94zzT5fDkQ+P8eLuOovEPGelmbeVGCVifr+CfmHmp5ipOEPCAoAjU9Ixz0DVUxOlUFQzt3CM7SjIiKjarRM/3t/ec/ae9TR6x1rr2eUepGg3D3snXjKvvOgSqZcq6X49S0X71/E4XDigHtxmyk9+/V97LPtse/FPdg4HLbykEU8I1L+Y840tXYlCdSqJ9x6gyGe5CHpjs0lmpia7R/+9qE1fRtzBdDd2D9bC2jH/B3M+wwZmIeRwfN8YlB5rIyik5MKyd8qoaPStSkeSUhsuo3iqVW8GnzdF5942swNS6pttoiN/vwduDZHlEVhr8SzK5/w5XWGXI56Dq1vLP/cT8QvqbHiM5GKt1GQVrqR7e/XJCZ7F3tmVYIr4OIdftrPuw9eTvaQz5m+tSOJlYtIii+mrWGDE7Z2p3RsCh0Gfs2Mfl3gBohvIna4T1VRi3p9xHVGkTRPNjg80xe7sZk4D+PX6o7Dz+R6BvigBHYm+I7P0/DLXKzdao7cE22Bk0RAqkuNyV7dZvV2q9k8tx6nthYi/t8Rnek/cKREd63SfxrENN7FnuuMx9s7BqN6NbyPpzK75+1KvvqwrT+OkvqpBuHbyB/ZZyuuyN6ZuhsoE2ksV79pI56mr6e9Z0VE6z2zn717Qb37/RFzLAH9BX/saMYuzxvhxOtNNPQJ/JrdCwKOWrvN50Pe8mH7HBT40gQJHiTjR0dbwgnXLOWHQeaHfWYJbcyAYI7aBM/753OoNF+PJVuplDoeGAnsAPZorW890PvY72M5AohnE6TCvArio+yntV6mlPoUGKK1nm28u8/iV088prV+waz/KtJtqQwoRepWogwVw3EkE081BPo++DLryWB2UVt6JX3ImGHX+J4kq/oVgH6QqF7SMO+WiUiF9WqyfZFGmvegs9OSzw1IysX5gW3ZwKAtpXwiguBeGZKHy7050iMMJMo5zhDG3ikwrhjb97OckFCQRBtFWt7Cb0tiBXAeR9JkEXIG0galNDNFFH8B2q9F6zqoGDhtj0z879Z2pFfNZ8NjZjBjff423dX0/OKTkE/IpiKDmXNM2HKZOZgLgPGQWHMbxZNNPdD5o/CkCI3irU07afmOWNz5/zIFSnmEey8DTgXb95KmCLm5GfjMTLsN33gfj1zrsSHO7iMX7LOOF/my9S0D7xdHEM8ZOeLBtc6HsfgE+VK8QUFkqxTVE5NSHEg3tnUYF5j3HkiUtyn+vXVfREpQRG+8ct/3w/u/N6gAwdT9ypNL2X6e2X6mfLeCH3tplRLWj20Yks68EP/efIq99tk7EnDAjelJSs9+u+JlVAtHPH8rDoetPCzEMw2q91zN5relvlT38f9zdV7LZe0Y84AsQKIjQPMT5RgXjTB/XiuYaio79O3m2WTS//XdeAI/FRFPz+bmIamH4Pdg7usvlrRDImNFKVXCz6sXfp9lk2Kqp5vnRmWEeALBZ+jeoJRRZjn9xrDnS7lShUBpREXp/6ohciesEkXfFizky0/PIfE0E+VLrwL/gUYdF7B8xMlCEGbDmdM/4cuJhggbm3HtyuG89NpNsBPOHvgen73gk4Q615uU2hUnwFoFZ7wJMy8HAmI+HxjC9y1wCX7EeyPhugPt8X+TVCQjKQ9/rNIViNOQpUAHftM7QzKGOSOHyrukYHXnPcY4WkfoGe8BC2GOqXltjm8/xwP9SyArAZbuhrcM49yCf4/Z1mXRrrV5Puo+EdNb45czWYeBLXkqIKqmAeydkAJRx3lRj8n+88+JuH/MdN0TL3XWEr2weREKtwDiGwOts8vvryLi2aTc4n5q/D+WQLIMeIMlXYcCR6qtVEo9AVyMuEhaaK0Xmel7bbmllOoLJGitX1FKPQq8p7U+LCTosAd9tdZLgXZRpvcMfC5D4lDR1r/q4B3doUcz5gGtSKSYTPJIT8rnw6Je8oBbgoi22HT3yKyDaebBYYrMlcrx0jRVT3+xsIfJc8a7ua43jA2oc1oBARstywX+KWkUajB+hGdfMiGPhERQB6Sus0uKT2oA+BtkJYatomLwi/8XIIRlXsBDZ5/BLTAqeEaVdrHdQgrMhNSsjWxPkBQatXo3EMd/t5a71QR2m7aX5vCQ71m9aRYgT/PqYxJAw+ae9SSymyeLJNbcRvFzVSQFE9B6QGAwYzZuvOzzR7SHm36Gf5rZG6DlsHB1h/nD2stvfp1/LVg1TWogbunkp9JWw6/nbBuC7+Czvhf5ZLk9YpRtrcpbyDW0joau+LWY9yCS8UGMBV0UPkkpc1OcbW/AQKqREV7gZvzIw5fmdTHePStptBHbvR3f08xeUtIC08oZ40CquOe1rRNcN08+3JkpHuOA2AGED9hASKvuR4VoOWgm879qL9f7ODw5fJvu9ruASx86JDiWbWV8D6MQOl6e5ZtXZ/j1733w2yIFcObAT1hICzYvCAggZSGExD7Hj5c3L4W3A77Kp2llohr6z5G9RqMy/M8xZ+6SOk5L/qZCoqnzbscU/rtaPGfB2j+IQkx2gm94ouzTksbTEBtY/8ZyfZWVypG+iAQG9i3Dl+nI117d5CSblmsxGqp3vprNY+rx5ch6dJjyNTOGmSD62cBQWH7vyXJds4C3ZBuqJvBHv0Z1FDfxkrExCzmZmPOFUGbU2MDaiVmSbZML3bp9yESaQi2xy3tmVZK6wqBGj41ScwYsy4ZtcHG7N5lQ1J2dS6txcbc3SaaQ0bNugEqQ2NsQ5Y8DpD9Xw+fm2s5GhuAjgctC7MyFyllbxL4PAM7YgVXF+z+dDwzibzOHSTbWUn+TLE0gtWAj26fWhHsMe7gz0OMyQggoTD/AqKWrS3NgqDmuQMUOmIjnPcj9GT4cqBBe9PMlTIq5OJ7Vg4b829vQ3vc2Mj49uo3VPctN2q95QfEfdTt+Da4l70tMtpS9LgPNPdsbP/PtfbyUcW6yEYem/rjiaMeBs5XjEaWXbyKmjwSGB7JingdsvtcJ+HfWKmS0dViI52GPeB4uHKkRz2bMoxXzWE1dTmYhUzidRcrkdQxPlFvFeE7JxCclJnimHw0MoO8Mn2fh1Xdab9n5O+CfgdpG6z28N0D2AJoEivHvMw/5ZxZA05Nlu4t9z7RNRdLvUE5NUBkBA3rX8MWQAnUI3sPwfyF4CCErlwqRBKP2Oi4QfV1gtnGyXX8B8fmZQKBVSjDy2xdpWD4ZaVgOcL55t0O2p4AzvgfGiEqw5VgFEe+vB4QWnjPX5CwRwAAoTn0XWhmXpn14mgdxy34zmX+X+XFsb/TJ5lweBHUJNHpHTm4ZJ/vXxxKa5oT3yrwAsZ+nEx5BHYs/cADp2fqI2U9EynT5aONo+VC/v0xfialbjd5XyxMXsNHUlsijzQzMuALYlgP0Neubek8jXqVtSjfGAWHhPabMvXF2CP0pItxktuOlfxcQtU2QnI+f+h1NAVC9gJBIa5z3QTzVKcAjEN92h6Rqv0m5lLcjDQfci9tC6dlRPO9h+zzRRTyPRhwqO+m10XjD2KH58ua1bpobWLjN2zTVjVgyt1V5ldhcwjNGrMPNZON6gkIT8QiOn7pf3qml/oVvWzsG7FsPfBJobPCpg00qZ4B4JheZOsKp1QJiRsY43m8crg/ZfdpnKyISZ9NoO+Bni9wKHwzqDkAvJnh1npM4Rwb+xnfcod3XgAj8AGThiyEFkVy0hZ0FyVycMY53Z11Og3bfseJTf5n+PUcyeoqENXVnuW7dun3IxIm9+HO3VwH495Sr4COo9fgqruYVHlW16KvlQMaMMOzZZhD9cC8d6slYecaHhuBWgw4dv2YNdcky3srpW+Ua9q0qoXBPVGhiDxmfpMmq2Z0lHSfTeFpHv3wDfAyV3zDXfbYxtqMQ27MW32a2x3eOZppr9yZir2YYQYu24uep860suHZKFpwxDRKNh3ZkeCZNm9emMdt4b71xWJ7Zz1vmGgwN+a11gsJ9VktwAOGlVHup9YyEqooQz9zwVNsgIfSElzDEMxDBhCjfo2XJWT5o/3u2htnYbk+x1hJPXxMoTOnX21ZlpFfrtXHwvDH0k5SQ0a7A+ftOHT5YONJtpRJv+rla60X7armllLocOE5rPVop9TDwgRWhO9RwxPMIwoWMJZlCCkhjN7FsRno4zVGmwOGykDyQluCnh9i0n8GUk2RXq3fDfXHh/RDbhvz10hCCBWGqZWowfhPs240xvNB8Nw8d9SjiTbYPn38Uo3VE5NIM+tMfXkd+Y5Mbm2sr6CXFlvqBlM+TIr1vXWFFR/iLgkk7oFUK5XCfvMVny8AlvaoINNp6nLpV17DiRDGkeqWvcLt9gBmRWOLeAL+Wc1WOL/hjspv4BHjoe5rrAgAWfWhSumybrRz8VNXzobpeDcDmvvXEUMYC476HsxvCZ4EI8Hn4xk82Tcy94gpNriIKStufrRkuFgT+QKQtfmubywyhiuwJt1LDT0qMrm17Ms5c/w/+5kU/hcghHkcb7c007+3xBoMesTIpQV69UU18gZ7XAoMowAvBGgVDS8qCKWrqMcLqYILr28eUGgz8w06NGDg+ZiabljhhvWm9bf2MDXUGH31eRMM87qOmMJn/VbDvqTdvuTnFj/FSr4EK66sOFw64MT1Z6dmfVLyMqkcuUjHt2qkcRThkqbbW4VQTyC6BXMOg7OA1DtJPWyfqlyYbJ3WAqNemDjDP9C1VYHyCZOMEM0LsIN5m6Vh7eFvIF6m7Er/OEOAdk4IbSMcFiN0U6NtpazkjUm/VLPySjXcNYQs6Pldq+FZ5dfAy33y2zzlLgv8T8hTiI5Xfw67fCPjzQCGCb1M+sG2JZxGiZ7ChX33IhphzdrFnTiU598+gzve55dZdOyuL9FOM+uik2lzcTbKk8o1c6vStHWlUdRl5RVK20iJJxIGm00VIzxmTZUMTsqUty9lIzefwTCEdV70JwyX19uKBb/Kuuty7FlczktGDxLCmP7WO82I+EnJplGP5J0IUraOxGwzhXh5aba7fMxJeSn/MHP+3tWX/z+LXae5GjuNhfCf9TeKgrP64seOrM0hMK6Q4dSL8p4+f6fWE/ztF1nnWJZe1dwUY5JeIqm2S+d4b7/62NlvNwnOG7y/hBBP1fMJEYS/sg34PL309mBIOEVFO0xc7Mhrv2fR7CBePNOO/ijigR3RHESEOFIV42ij9ACQWZx1Fu5FMrET8aOi5FaeOHwwcJlv5A+EutRdsuUSU48vDJ54VKp8rpRKREe1WIFZr/dffdDK/AS5B6giBpAJdyq2dh5JOPmXE8tlKw/aSO0mqUTD1dRwShTMkQA0CnhFSpx4yBPAHwklnJAoQMjEf1GifVPJHiMkWA6v+VUny8CftJb++GnCH2a8yNZvJxjD2B575Obxu9O+JhtSGRGE1Fq/3o0cgLGH4xw6vn1sbLYUyc97uJOmn4AsNfLaVxJJSkuJ9WbjSySk0uOi7sENV/UC/VpO65JL8Wi6bt1aXZbumiF/oLfxWLPNMSsxkxLBdBvRuyCL7QL414jpkYuo6Jbq5WU2EywaUv16ffQ/3d/J/x91+dNMT5DEo3JYsQgYVIRupSXkOj7iqIXgpZkCYYmBUmJpRzwg8hBdYBH+7ZOIRqr3C1LGqj5FKNBvptAzWJnoMtKmvMl2ZFGWbuiXI8z6pQZlyHK+XJ6Y2bVffbQZwtqZqcGQqUXj4MywVqjZetLucWAK3obXv9JAWRYHjaIj8R56TwRFA9T9tlmXHtCpn+I857F/60HatD5UkhMNRhwsM4/qHIv3SLaRlFLBirhk/LQXqQP7U2lQfuJrN62tAc9g+uaZn/7ZvCa+tbDRkAcv7new59fRAULmIs7VHSIjG+TmQFchm6YEMco09UionrN6zD6/SuwbkUR81prM4K5GBvZoiL498fIzXGzJSNIY8Je25XsdrQ1XO//+BKfV4gjDC2YXP6cLnTFaz9poWbEkmlI9wWujXhETv2V6J03p+AT1h+qaOFBSlkXC8HHhmTB5zZkn0Ln9sbWr1XQW5UNotni1UI8GcYGbVPEpJoF2SMPFvtp5Ox6rT6cLncMYJ8Ga2PLtzgdzngBtprn8EfmT51saUThOiyXx4d9Dl0qYKk03y6g08Newv3NrxefJH1ma09e5eiC9SBLAWsq/5nNhNp3NvDWBpnK/xAOQ/VVuciglIxs3lSDlNFjIeOX63jFPuiZNsqJkhWAeb1SuygdtCFPeuQhtdhzlv4/epfgJP6Tgy1XYNWShLTAPK9bZ0xYueBzEHz1Eidkb0JLQ+rtyi6i58Z3kDJO13RbnFUDGg95jPL5ef7y0X0C7QKwPZSwEECadaL7+/zkjw2+8VmPeuhMOW2AzCH/tMyvHFnSprqf9tjmQnXLwD/pPib7OlWf836D0cEdg/W7nlYGQHaa2L8d1YhxUu4nmEILloC72TxhFLGYVUJs80ZPzv4M5GHbYYuiT6CqG2Ru+ZnHJ/QpuKqUeAughf6OWqnLComOdlBr9PZ7BX4iMhj8DY+WCITW/gj0L0tE7004fs94YYz6YR4kk+LkBCkD5YhqBaQhuWWtkAU4PTxGyzD0rtIN50nEusXMT2hBV4T7RWVfG72REuTvQ2vsKgeXB6qV3pC2GCSZsZjX9tbL3oWPws+Gp4qbUlxfHsqbke+A+8agjmWki/R4jHlpja8pCsZn6bLdPgMr+A8uwx7/HZAjkYL0W4Nf5jwRK0n0WMaP4l4oq1wkTzaO/3CNuJZOz/3fyXrzCMLNPMf1hL1Bi8aKBntJcg9Sd34vf7uhIvEg7A135abWQqLiCKsT/5+/O8t1Eig564xxeGeNY3K90DvBOcFxHNDAr62IFc9xxpgo651y2vtFHXayKIpxG50o+aZe1/abR5tylDYZHSHeY4Usodh7eMbU/zCcSk7pKm8gFP7ZFGPA+4F7el0t9+VfEyMeku1fZoxCGLeK40z67jpT0H95iI51DD3iYnUKevSXecKH/w6t1W04hlTB0hzQ/1QOPATcOPZhXglY7obiYKVNl872UjjeYZMTxgR21q6MwQOqKqNmmHUbKFimveGiLOxPv8/XvzeuENwKP1VlQf4mWdlFM0jSYiaLJP9MDoxDODVQCs9xo9G+I5uhJt7p7mZVU10heyfIEYpPTmJkq40aQ/jZffpPnAb1l03SlgBcmfwrNbHTpLiu+MQZaZISSvfQ61TN3Chun1fS2BtpLGunZQFnWGmd93gfy+J5y8lJNNa5VlNGa5VTQcmynv5tbQ/SDTPLx/mGs8EZ/DtYOHe4fw0hQRFIppvIuMGhKGWzsiSxwZL5ga4b8YIrQW0m9YR37sKL99TprZ0MfQaPAC8rbKMZSmP+nbqAjiuTd4KbUWQ8163cxv8r9Kvm36KJx4ZvEdKy4yzgTr+AjszyOWJlOrokTKqLb8FxA7Szx5OMEvEVocZblBERPMfR/zxi72PFJJsgMeMNPe38WeCcbZngXNO8oJLOp1Cny0d32Hg4XDZCv3Ozvol6TaHojjP1BwEc/DDEuAWlZdTDpbKCSZauTz7yFXeWkYIjjUBL4uhrEmmpkGPGTEEf6FF3XUOtFLgQSJYoaRyQAkjdZsIyvwR/5nSB58NoDX3ETkwJehfwaYmejv/4PwNFuuRlI7bzxOooNtkW3egwj89zb7G5eD6rmXh0hWSP42gFLTgBaUpgPrEkisXERqSQO2JzzjeRNt5EupQAE/oPsYpdsXUyQdsyHEZwf2030aWncizZPlrymJDrcC89bCB5LHU6vXKjYsCVFsjcK7punoOIS09Ib8obVpPvhboLZ4TZ+GDmO+ZoaKh7dMim2rTnzW+iLPcKhxOZL2BUKCAgpv+h2A9rR7Zwr/HeLn8qj3EHL6M3A6xD9miPTYFKllmepvg9FKfrdKiKDBJPOK6Glq1fm4kqjw2gFEw/F4PUqVWgL3Nw2r7eD0iG31A+IyYZXxFvzFf74GU2w9r/DrOUAI9TpeWxitQx65Dbb30dfIPa8ejRicReknti+ERTpVHiIYB7wWuGdtz9jjd7OnLM6vGzbmSr1NOTXDYwlaQZmzJA6/BT+aP/2bCVQeuoWdNxjiOc68V0PUbD/GIzmbF9dj89p6kAUNun1HFtBmYAFzRnSSqMnxlMdP5nVtDgrzDLnd/JdvCh/Y2lRapfw6/uQUI8VpyKsyTkO9AD/1tiSwP0MKdDukfi4XvzUI/vYBz4nGcznwdEiiRrb3Y+C4zgyMg9UIYCmcOUzy99Sgc4CTyqX4r6c+HfmajuQxY4qtraxE07vnkUkeaWabX758Mlwrs/P/V5s6J+eSWm0b29+oCReUwEZfgDAxcxvFo6oIyT/jOfjgRiGczYF75CI0zVjM+tJabJ8TYoONoG1DbM1O+bp2RBY0MQ6F7sCrcEI/IZJFJPHloHO4ctiLLB8uqU6JZ2+jXcosJr8m+dRd+JwfFvSQ37uy2W4mvDTmJolG3w4xd+9iz7uVoDEkU8iSia0A2DyiHg0GClFfsdRkOG2E/LTaomi/E2r1XMWGT+uT3mMd+TNrs/xfJ0vmzzfhY6p9Ek6VA2RBK5NKPNd3kIM4u2Os8/dmcx79j9trWqt+XMiuFZME4FqTbttWDI7qWD6N1lvf1Hh66rbRjvkifIdyUH9hOTAyIEaZDX8e8Sp98FO9lXoPbgkcfIG8dfjCOCdUqkxo0lrGLNlweY0xvF75OqgM53V8h4+uuwRayTGklvyFox0H01ZqrTcrpeYj+XlvmPd5RxrpBBfxPKzHkFy0hbpJfv/vDNbTgoW8b0KUP1RtIt5Se5g/Aw2RBsbWqfkssC082gjmIfeuSde5FIl2VjGGbVsxnJ5InSniYVxDVkBoKE/eW2X6daT35oRFP/kJuPcZePUWIZfzzPQ/mGMYAY0RUZzlqio8X8dPe7Gk5vxAraftf/m5pISEpdo+Ygb+JuMl9buNbG9f0683tLU8tj5nBqS2EgJZEC8FA5ksZcPWDEonB2pEx5n30/BlzAN1Np5X0qrpvmSOsQ5C6gzpp37I89ZxlennCUBIiGF7485+14TFLp4mtZ3gp8XMM8TTnotV9bPk3LZSGYCvEGffrereveA5s22dSleE/PQ332vi9ycFvw7R1mPWh1orV7GhnmzIlKkCAdLZMrDfr81xfmmOcyNwuZnW1UQXvwBlPXxnmnvQ1j/Z8pdQRHTTDrSCBPj1HPBqlwxj/ntE+tFMxIDtxO8zdq35PQcjUXbCCWuwrUsQtqWKDahH6/vpLWvJcRpyjRsAp2ji0wpJq1oAmFpfKFd/ezhwoL24bVorPX1qxcscX8lFPI9GHOqIZ/UTxR5uniL/l6ad57Hk0VZ+7Vca0HY3xJVxdsYnfDbCDGxt+xTr9LEZI/3FexupMAuBTAWjbkvTgDPpZ2CCSf9DUmhtfeee/1Ui5o+72FNTZEK1DqGWQ/VGgQcmsIl6Yd/LEc+uoAcFiOeAkNermKfNsdh6+kC01LetS2B4Hz9TY1h41C0YBQVRtwVfcEhdg/QOzQrR6PsFbCqtTt34NSxqZh5+VrOgiTluKzrYAyFoNYHP4PoXn+YFFQ/Db/SOpdswGVBMHNEL7oP0LRI9jY+RiHY8JRSTxOavzDUaL28nDFtKmYmHrF3ZAD5XxFy8iz1fVvLTMMFXxm8O1fvKdU8nnyUprWAkXnQcYK36DNgq0ctxwDM54dFtm4k137yPQ+6ztyDmY/nNq/yhQNJ1z4X0rHXk31rbu+aRCCvhsNNa+/sJm54EFJuTqZXtRcdNgDq6AF6U/tK2dycdTBZVBa1dQMg6wNf0EBJpLtdpPb/gG87a63rB9Nqo39/Dz/QZAiqwqWB9pzoLqIsRFkJ+23HImHOc6Fzs2VTJK91JvH8bxan/87elsys+wQOEI9VWKqWGARch/8ItQL7W+qS9tdw6EMd+IOGI52FEctEWuiSJMUijgAas4MnSWwHYnmCK3qygUC5iDG3E8VlkkL0EGBd0oZ4BSGqG+hCj1pojUUyDYNosGMNnSamtB7SGO9O8323WtZ5b/DQj2ysxqACqGiI1E/ZZ8UfCxBQgEEW1sD0+s1J8wZ2AgExdcln7YBYYrl79xdVsop5EMyeneHwkGvH8QWl4V1hETCczgMivRHxN2aenfmvOKXHsNoqvrcJp73zB1NZnybmMBV7/PryhsuWy90LlW7aw8wbDCO1jw5ZvDwXumQbvGtJ5Jz4JnIcn3gSERyurIb+xma/7BlKknwMsQbLG0xbirzXvwajjcfjKem8GHAnPghmToLWfqrXi9kCNFcg9YdexA6Kv8EV96spb077iiVjSsZWvjhtIfQY/Hdwz9nbwtJVyKsggqWIb3jaEOFovNBACbxwEkmbrn1NYq5V+eN52/Z4hmbPnmmVlYx7xtOlcC3wCra04ud2/Feay3vZ7gGpwQaOxrKEuyZ6CiRj6w40DbUxbtY3R/5lVvgYpiNS4Ukc8j0Ic8lRbi6Xmz7sU6tyey9q54qVq0Po71myty+lVRRn1yxHnSCRukYm+NNkNJzwCE4w9s06870Jen2dvn9aZNiMHuBbOq+PNs+mtVmRF1LxzvNTLxJbbKG4j6bYtvxdjOV9JKobnQDMiK5GiM4BfJvFXyeQAxB6MCi5VvowGEKXRbfK5gQ5Xqw2STfu5wcDvotZ6ql6IXVoLbbr56bY2slS2O47GScuYM6ITZw6UiOqXj54jQ11LQs/dDRsMqf8Ory9pfP5tgGTg1BmYy9r35Pe79aKhPPUvI61qHaSdJgPQTe8QotoSqOnfD4nVCiheYmp4TanI9R2fZjmNAaN0m4rvTC6BDsO+ZtamUwE8B0Et3Y8NHeuLQzYb0rN9AgnI8P0t8wMMHyDlKLZn9j3vUV23ldY9S/Cys6OmlprfO1ovZ5WEpCZb+/yEeR9v3q2DxRCuqMTTaFzY+mCvncq75n1Vzl5Fgyws8Zz8cg+PCJ9uogPRiKfNzAN/rBR2TBGq9J4zJeCA9paNTL21xDNNvtY5OZe1i7OkN/bpxgCPkv93NGG/gwlnKw8OXILUYUINVrNzbT2mZ4n1y46ZzHQ6sv3zmsab92fg3/4KWcBDxTAn0Vf1tFE3/iZ1lR2BGT9H3+EdOdJG4okc1B1Iz89O5dNvGWsG/5cgKQ7HI+RzHZAHahpCVG4GtRQ/2nePTekNkMf7kJRbgEuLQZlo7H0Ywhy5/9sCn6eFzVGXQOqbJow1B6rPFS+n6gl8bx6EuYZkNJSntzLETt/dBDRe3WbccWVSI5rvC/d45CmICTC111kSwUpHUp8va+iRFqXw0yw/gJ0fVPOuf+KzOylOrQKYiOc9IjZDTUhtu5HtD9cUYSUQQvix+XwuEoXti9QyTkWiboaMtus7BQiMZGw9Y0e8ekR4Urzn4Ke4foP8ln8Pidd4ktmXTRs20UX1MnBtDNwW2STW4CfCpdW9GqmrgGK4vylL+rbydIGUrW9sbpfPw+bk2lYqgCfbrhR+z7OXDYF8GWpdA7X6rGKDeg2VF/p/9s48ruo6+//PtxAICqIwgguGQiq4DKjlmoNlappWZl/bF7OmrJwWpykrb1iZTetY2mbWWDk5mpWWW5qMuZYL4wJqoLik4oCCCwiB798f5/3+fD73gubMr2lGx/N48Ljcz34/93Pf5/0653VexwHc+hJDWbK1KWZ7NcU8C7cYoJkOvAHqK3M/6wLXVacZOUJF33nA5ylMjcXNrmL+fxT4uJxvTlxMSK0KYilwVjdmh1+d1dliVUFBP73ROTtnJ7HzW0hQfufS1tTtVMjR4hhHeXTPy0kydkUBHQTMLE4aAG3LHWXb5BHrnWPlLPC5gcsMn8PcsarUDtOiHw7bAvCrIQs/PJKyrPrO+xTWk6wHkW9UuAFXJdfaqppLRsIPH6I0Uo6lLsBt2fWwv/9r+M4ueAcOLGzmAGY/NVwLaA56Ancec5gXXQzoNBRkkEyUpWz25kuySaHP7I1kkcqBymaUEwIDfbScvYFtq8V/Nuy8ixAqIAkWqwGy81uIH0yHlikm87qoPV2HLWHlR71oqa+m6EQ0IbWkRqbTiAXMmX4tjYZKCm86Q6EtJPdZT86kNFqO2MC2Z9ONT51NnxGzWThyEFxhAg+1gRgISz5EWb/6LlADMpf2I7HnZhL7bCZvbBu4DOgLIUWHWbmwl4BRgL/7aNRezt9wxS7pEbsoWBRub5TPCRBEFftuMpOGfCQI8JpQVzvqpqyd2wyWQcNxuziQL5laNQUwREZtg/M1AM6TWuuA98tM0MAKLMX4HxsEcFaj2IILWne4i7xUWzfQMgutB/sJDUk5VwzZpP3kJTv04MIa1gV+9kWigKym3ejWXQfaveb1b8Ac2FM/ifNHb2Fnl9Y0PbybPdOT/NvDneF2Gr6ynlLqbc5iBfhzGc//kMWyi3Zs5IhBLu3YyFrDF1pvQoFqDNAGiSTaQaULzuCrp+GK+lwd5tJQVr4mr82l+l9vl7eu0IpPcJ0FniYb6q35ZIjP7S2ZZV4/BLIqIT3YzbA9Za7Fo3jrRHOfAI7YbGx3nCJAgCGRsDjgphzyOuJHkJYrD8q2QL2P9lNVKbGS2PAC8nZJxJO/yDLv4KzexokK276WTh/Q9XHVsqLVgKfN1NrBcibwB6kvKatnPmBXn9MXS4QqbLg6mbCSlGoCFKoDMplahJvhm+aCs2r/WxEdA0r1BGlQDvDtuJ48N/pBfAflnjkZWxsRtM+LyWSyGrlW+8jPlO9MXYL7Xb6Ik4Wte10hR8Jj3Cbm75n2K9c/Itfm0KHN6+24rQl+QBxFFK79xZ9OezLzAk+372u+2TdB3j+Pm+nNMts+RDXFPj3MMxlL9yyzz7hHbMg5N1RXmDzV9ZrJrB5jJpU2dhINyUPXE89uis2N2G1Swv9p4PlzR3F/3SlYL1hT95TbNFIl/5YorlKqNiK1dhg4obV+4Oc+x/+y/WIZTyUpoLCSOkREHhEQMKm5S+23TAs72W1bTmrj9RwiigiOsGmhJ0r0uHk14wib3ExJoDiYt12KvwL2DYDw4rX2mYk55GxIg18HlAaY2s5AESLwbxfl/3nNuay2QjJSA/cE/mYDg5twW4Ys9T9GoAAbXQx4MVlk3UIGNvUr4HO4tJsAzxDK6c4Kpu290enj2ajzDvZtTwDgmhbT+GSuUZxNLRdxoXszBGBnIkHXKyq5o5mws9698F7Sv5tP5op+7pwBybjmXdiG878zAkBK1OR5toH4qR7QtGUuaaxnziRDg7Ism5XAmny4X67pDxMyeKFgFAAnykMlu23LYHKQcpM9wH3lTg1ij7FfsWzKZZw/bAs7Fxqk9z6u8mpTYAYkv7OenLlpLhW6H04Ao+5thdIT9CgShLbBg93wz1TQOYFYGzA2/sO2PqEYuNdMpp6M9NvG7zheSrUNwn6HS7nlR8BQg+q7wWK7XuvBNfborPGaTW2uvsv4WDvP9OEITOmXEfrsk+Z9T8880AaBvGU++ebVZn6NRgZNjfM9qiCqEl4Mdll43XOq9Q3/d9vZ5Cv/m+xcxvM/YKoD8GIzuGQjnQwSyCaFKIrJHNEPrDhQjvlLRn7sOQiQ6GWOMx2YGOYOlHGGOmhr5IrNdg3M/8rn0lFWIYCzCfAns8xLwe2FG13s7Vm+JliW55v3X+Bn6jLZN+y+QzQcWcDOO83OtnaluQ92HJZs6swMoRJ/LKscB1oL0GVSc5PqHrvktjjZ9jo4Soyrnvpopvzzh3R5/zzCcD+ZRUBJqKilqc0D4UNIHGfopc8bStKvkUzvMWAmNF2Xyx6lKfvkAmjkcwfRp4BcuPHwFLh5OHwgmdqRkROo7B/ENlrRiwgaUgBDboVMeHXMb3ngBnHWo3gGeshsw6sy7KUhN50hI7cakQRxJuwdDEeIoCL6FVlno+02Cm9pTHfKtlyPOM10/NWFwVBtDT1nP9R9wBPKfM/+84gcAxNtjzKLe1HdLL14M0JVWuOJ2itPrWajBFm+F5R6VpY1f9yPYiv7JaBUvtN+xa//ZlYN5zeOUd2CS1te5gZgHOsBXAFqPCI3b4Z69Xvc2s5hOPRrwK17NpQyrvfB96DmIM/qEiRg8zzkXJBGTkw7KJRhtk8H4e8FFTSkKvYn2uScYVb1M7gSpdSLwDXIL6+d1nqTWd4SqVuJRuTGbtHa0QIdDPxNa/2eUmqcUqqT1vo/W0Nxzv55myioqiwLyjbV544RE2EEvPu1SYcklBMdV0hRUCZsvZGQ2uVEUUzWhi6wDKeXJ0DJQBN1248DVJWS7Bw3ixpQzIkfKHqmiTA9fB66q58JDVPNBmLTaNv5OwGGH8m2rdhAEFWEJSfIdktNoLGnB1g+a3yaYdiHJR2iLLO+qKdaZm8WrlhNX7NsQQ3XswfYYcSGLq6+Xk/FodcmsZnEFjW3U1m8YoAwZCZB9xEroDKIT/YO4aLOS/l2W09pLQIsqriUer0lo3xX/zd5+95icwBIHe3Si9+92SdZ0AugnFC6dlvCyv3iGLoOXsLKFb3gdtg5rTWNbthBI11CCtlC270jH/LOZ8/2RPbMN5nt4zjiRAC8n+AXxDzxbB2Z88yvhJ2PUyv0GLfECjf1/aV3u31dnxYfu+xpYMFlAjqDkWt9RsN+M1HqngHP+sjpYLJ9baHp1FyKDkdT9pV8p0ffj2HEiJeZtP1Byc6vg52/CkxXijkZwZvkPvKoCYx76/sta2yMAEt9g/vdWdNjQQ2WP6d/ujLiQaM89SZrPAmFewa7oD2rhovrPRjKQfX0gNGluIr+U2rYx34utRz+3F2eWyNARSfgqHneH/TBZy7dVo80JTIjTaB1sgTPvQDVAZ6tgU0Q3WMvR4ojSG2RxW7i2ZfenMRum8kzLQ+8fXTPVDsNX3ku43m22n8y46k6QPq6+YRRSpJRmPmUq9kzwoTB5puaEkO1t/x4dQPSa9IAAK5EMlkx7rH1aBM9s8wjK0JkxXd0Drwks2r9kAGvADbj9wQyONso1cMGELxkw8jG8pHpYSf3vb7FXPMiQ5NdbuoZLRiy1xCHqat5BNoJ/VZv8D+8q2ZqihSHJMPzGhJNcUnvMAf82imoKN8Ca815f8QVIbCU0/HyUm/mfkpyZYKiU9zIdNkmg1jtPCbLfNYu0HGEHH/tsO5wHdzc5x0+6HAn5MINh6cQTRHtjPx7Hon0ZQGlhBNCOVUE+9X67SaeaAo5QCyJ5LGWjlQSRBnhlCOR2qeyxzug3E/Ux15bHCL8tNgnirXgZNwces0YXGduTI/FaQTNNebV9hDdlwHxJhO4yxPEsOvvw7/dyLVIMMPUdzoTpwLc5tE2c/50PjybIP87j5MHlHrqqbzml6nHPyOppiDPqnW2a5B63D1mmbdeNtpEhe319zDn60+1GtSTmZsB9gBPTIZ6MC59GiAPOq5bztoN8jx2bb+ElRsMUl8F/6mulj93FLd9p/P0F2sanHKb89WB0xFM6IF0H/4GIxFvln8NTNFaf6iUugkYprVU2iqlHgNWaa2XKKXuBA5prWee5BTn7J+0X8pPRpQKQjw6J4aQyw5zUYPVLMu+TAKmR6FrH6nZO1FQxxn/Qjp5lLy9FuUKzhyY1sz1O9a8tZSB/XiN6e8hqsIAmIQ4CY41hrAt4ifiI0VoYNu09lx0g2GhLDVBwRigjRkfbvaJjzTB4bAPDfAE1395BYYC7V0f3OHWn/sJEeHW+QF0Yrko+oKbQQK3nt0E0OzkHRCl15nQ8usNbNvejvQWC8jcbgbx7xRdhy4h63Aq7SI38u0K8/mK4fL+s5j39WD3XMDAETNoyAHeXXGv66M6VcIXZqJtBIGdfV4zN6BrAiFfHKair/ke74Tb7nrTucb3190Nv0XmKNbPxQswrRUk4K5V7DZyHIVEqtX4dtU9BQDXRoLFz8jnIA7/lmlDkO/rGfP+RQOAN4WKoNSzdWg0YQf7LhMw5a1dtGafm+KQODfDCcL6+cQTtA7UZegNl474UuqWQWqXwRHuOZn50bGVW9/plF1t9dQU3gsscrOecPrA0zlfA9ykhMHW1pcplQH3m2dzAm4951X4pbkcnQ/7PH/io1b3Y5zYWoeWPTcQQjmbJl0orXsmXShZ4Inu79wKZv277b/VV57pdg54/sKmBgH3Se1FXxZQQKyz7pMGNzqRPb0dt47jDWRAHAJclwNJya4S35M+T62nGXxMZE3fgB+dwq+35csYdVpPJhKcZtWOGJEFDxZ4eO3hRXC9ZDSd7OMt/psEqoE6dQZ20M0HHt9grr29u50Fkb27O2q5/MVkSP/h2Rf8myib9yGFh6n4ylB0r95PyRoTBTfA0xGPsNcbikv93fERIUUDAWjY4AB7OiQ56rYhRQ+S0cBHCtmEUEER0URwhN3E05KtFJtU614a0Zx8rlyxACrhop5L+VZFQVp7WD+ZsJJrKNtTH2prLm/xKb3IZC796csCP/r1RtpJnQ2ieryGjqw1aD+3IpGS9Dihomw01z45YAIzxCfZO5s5t/ftqoB7aJ1fITX0jXtf/nn2Nrl3NQFPTE2l/X69WXI8lKK3kX5pAFf7XMpxdnXqWKB51QId8PhrnA4nzmcwcxbdH7+ak5pEPpxj2yi1BbDp5jUHv6bcNvJc4zEmIb+pD3Gexbp/LiQlXIqL99KYFLJZ+LaoEZ0twLNdpxD96ZrYU25zgdpz2uf8Z3qTKaVuBM7TWr+vlHoG+FzrU3WvO2f/jP1iVFvD8LhjxkTenXUvLQdvYNvC9pJdsRPWYM1VLabz2aTrqDd8PzEhRabvdYTQcq3ZlhSmFZeTLTMAtJpPMuJggeNe4HrHbC3oKh9shloDTO9ehG6rspGApWXyzA6g9F6AjMVmjNQjcYJuTn/uuxFf7CeWZs5rsp3eWkKlMuioe7N2ZHf/a/0LJP5js9+iHQUJgAFrs9P4w6AMttKKKoJYT5oTIM07mEjFh5HUGuqq+YZ0OkzFE5GiUp+bAZ3MWP0W8D5Ev/oDRb9tApMzZfnydBHSA/qsmE3mwXQqbot0Fdztd1Uf7urzJ/bRmHijHjiRh+Qze2p2e4z4im20EjVcO1ZfVQ5NxjuAx1FN7+vxhQt8bnbtPvfeO+KJtt/4xPNERfdz+T4vusu9yXtpLFnQefVdCYrWLgjy80+e/605359p/6bXIeU03u/cCtQBtDWgd36o33FOx/wEIx9wlweK8ySwhZ3b3MytbvlPHHcVbv9OCzzfxu0B3gR3zpGDG5wGQl70F3W8l5eZWnoLpUfCCA2roGFkAVUEs2dvPLc1fo/3J93t1maDn8rzv9P+233lmWrnqLb/ATu/zxbCKOUIEWQTILVXLC+qATI4X4fTDJiZwKpkmIiTaSEHh87j7Pc61Lr0GGpXKPYrVirDpf2oDBdY2sHaS5l9qYaJ/8MZAnI74UYH/9y7etF3GdLyBWAPosA2EFFpm+k5rw9xXN5rt9GxXIB20NwTyf4RGbC3IODxHSBV6j5LascRaO0abGTtY92pt0WijyGtD1MRLWFnfbLGWJcCk6UYviJ6Dgy5kT1E8sC68WylHYOYQyIDKCKGvTSmkGjSyCKbFB7Z/icYpZwanbAkUwvaHAZunyELexvkM2Q4ZR8iTjdZsY1WzNs2GB6HzMf60bWDFGYuoje38x6FRNOcfHJJojn5VBHsPjdJ0HRkLnsmJIkjuN4nX/kHHqdrlW0ttSsfoXZ9gKgk2wG92HwPnlpHZUE/JmAxzJP1A5i5Dp40SrA1NFN3AKfKgZuTnSwjV5vv/SbgC/x6hCqVYaK3BuW9635fp3LAepen5UHcShS93TovQNnMh4lS+8ETG4C5+dQ1qHJ9VhwpQJ3uPVx14jzgAThaHAHhsqgXS5hdMdA9TgeZfJzpplFU+qV6a7QYpZQXwbyttX77pFu7Fg/8oLWuAjDgc69Z/g9gFvCGUqo9EHQOdJ6Z1nCGZCgzSSdx8GZ2H46nnumrXJIZB7kQct0R5h7sLyqpC5Oc4FBsyAEiRmxg2yQTuLRKmJ/VkCnqZxhBubiZUMMYUnPdrGCNlgvkVM9Mnog7BBxCaxlgdQqQAsqMt2oahK2VTKmaUl/GpM/c/W0NO80T4G4TdLYBYMsWqmHc682XLGKA836tWkRHk0ewAFT/AxqbASicUsClKaYAYemHeH62j66DlrAyuxdXpXzMZ5NMUV0S0Bp6xWayeKGo2bZssJVuk1awmN7AEKJZyhEiyJmUBq2h6M0m8GQll78jPM6N5LLnJnEwC5cOolHPHeyb8xGNZvcTlfJk5Hv8GJqTz9tLf+ewcyblAhN96D6gzCUtu6IXqc3WUJwaBanQt8EC5uwdxP06nBUsZ+3eTtJ39Jk4eNJHw7G7KK8IoWQ+8j3XNvc+Dhq2N1lxtQZ2DuLyZrOZt20wJ+KWws2X03RqLt9OMj67KQwcNIMdkQlsSr5Q5jirzPfXDP/WY3vLwbCWvAJAWvskA2oAs6PHEBCkpS5ChR4U6gaI7bE9tZ3gAbPjffC52WjlydmZSpU5Lfes2TZAB9R7bm/bt3EZQQFTVA5lwFtS56vvEpab+gyZo12LAN1VSPcBr6r+bskQK5UDLxoau8qBick4dV57oKxfHXZG1Ye6mvQWC5hzYiDRd/9A0SKPAvEZaqfpK89Rbc9W+49lPKfDpUO/pDF7pe4PeNGjKODU9pk5rVdAKFX/nawxXZwMp9Y+yYp66ISWsmqzpdrUDYji7E8LvDhslUpc59gP10kPMf//iEP51Zfg1ieuxK0jtZSS5sB1AUIHFkt8agBOLdyM5UDgFc9n7IkAlN+aovtVBpD+GXhjntnucjp5lHDXru7utp5ZBCGpboRNPQ9cACHp/lE3NRhHZe4P4yQKfIQI+rKAKoJIIJ+ttOKpFeMl0mcDhd9D2D2HKKtnlXw2wj0+uk5awsoWvSAVkmetJyclzaV4vQJdZyxh5ZheMLwSKoPgMyX3z9u/8mNc2tJwSL9hPiFUkEI24ZSym3hCqHCi1K/e8qgLOj82zsgKJFngaYcyb6ayGW5EWHuWX4Kb/cv0HMNSoCkz2xrwORI3MLHFZNo9QE2pfKifIOtvk3oQrzy8P+Wsnef/jeYY/s9uYGTZVe6zW+Q72zriRFaH5HZPtDqw3YvNhEeZ5VYogZqBp9PSZTcSRb8dEXPqCxfNMFS8Xd3o2kzaQKzsIJTb/wTw/LmjuG061dZ/XdP0lNu0VXn/asazIzBVa93Gsz4buEnrswG2/3fbL+UnLT0xKqSYndNbkzjU1NyvaEPbbt+xadqFEhi7wnD7vggWYBQH7McBqY1DhKKTMyXNHTcrJdOjJuGO2ctwsmh6KtVahFnzEw/zMIksNfhIeAynY45QXD2kPMbqi9zxBlap5lRTsV7MJ9MWit7sn7W1AdvAnpKBy5Upv9Dd5PqPboyhY+flHCGCYqI48HUz0i+ZT66JRBaXRnH0/RiohLYjvyOcMmIpYM66a6HjGxB/D3W3FHI0KwYWQdMxuey5M4mm7+SSYKRVg6kSsSGAm+D87VuI5YDD6slRJSTqX5E3yfy8zXcy4mVX8GDS6odEayFY7tv9HQR1vXbJ72WMNXOT6BelV2jRH5qIwq0tF0qAWh2PcWJ6HXFXVmS8M+ih5j5ZWrKlkNpSkF95vpT5So45FOhiahqtD/UAT6gOEGsyB3gaPYam/eWC90xyS67gpzPxDntLZQDGEeVdAYmfynpLqbVClF+GnTrAAtWAp5/6u83kW4EuT0mYX9Z3JA7w9GunoszCJ006dAiwBhF/mtRaVI97ridnQxrntxeUHkORSyPnzKXa/ty+8ky1cxnPX9DUIOAKoWxEU8hqapDBszYEmOmZiA/xkXVtF1n+sQ8e84BE7zms83lD9lMfm4n6KM82/YF55rj1A0CoVZb93CfnurIM+oX5S2dbmsxMYLiZpKeaZV1xM57WuY4HUk0arYUBqT2Ah831BPbz9H6eC4EwJMO5OZJ6SfspeSCy+naGauRn+jCoSKgNjRrsle1err5vgsPZ8RcLSCWLbixnG60oJZzpDOWzddfBK2YDG7j6O5RF1Zc+X8qo8VwHK5f2gh1lsOMjYmlKTs738MoFMs8YCCu39RJH9miwiB30BnLg/EFyPTuntKbRtB3sW92chp13cWBEMzKX9YN+sPCzQYyeMoYE8ikimjwSZcJQF7jHZ9u5im3CX8rc1NloLYDLoZma8dDWdiqFiAdl4tb0WnDaK1ki057hUQ1Dzt8JJ1LvrZtyhIUO5cODCdW+B5WCCErZrIIn08nMwX4Nsx3LBZ7LQFmxA6tUu8JzvkCLwG2xMJKTy7yDywTwTOqqZTq9Fo9kPZcg9a5fQikSYb6q2UxySSSCo05NzdlgGkUFIT+12b8axd0NNFFKBXmoto1xuvmes7PBQkOknCCCI1w+dBb5NCfnzjRqPXNMFGsXQfTkHySjFgeNRuygtEJ+VyX74yiZLKyXEuJcFk4c7ngF4sPycYN/hpKpluIOE/8wYNNibTO+qTvxE1KrOB5CxW2RKHBASqCqbY2lA1YBdxh0Ywkr7/BsvwFstYlSGW5LLCD9HUSnIMF7bB936T/hqrmd3IQJIpnObiwB2sF0iO4sugRTC26GLZBZ2Y+wLpKd7Ri5hlYjtvFui3vZFHwh9NNc2mIul3b4ksVJ90BuBkcn+wi56TAdu61l5chekAXt2ECwabg5Z/q1kAaXtvySxVcMYGdKa3bSmqbZFhWWkKf+IVTdGCAOUgevErAJQot93Vx6ObAJXsv6vaj9Pwfnd97CzmWtqftoIeXHQzk6PMbp5+1YEgyPnczbV90Ly4JljDa+W81CnoNHkTrTN0OhyZdw1WARkPtSvoPU/qvIvi6FiKgjFOU2kfnRlTnm+xUAZYFkTSq0NZnDBqrJr2Eo2tPlL7B3tdds0NP7nKntGupbwCkMIq3DajyX00PX9M51QOmymstB/IIeAc+4HmYyoHe4tZ7OtjaW8FKy6ItY4P3r6XD/UIorokgdsYrc0iRyFqZBUygjnHSWMLd0AGeDnaavPOvtXMbzFzI1Bhk8r4aOLZeTQD4FiKz4MpUgGyVdALkmHPdJrAgJWQtUke6E22TYMDmVmgd8KxLt5pCslZceB79i2ezLINVEjM83okGMBsbB7Z5B4rfmuJ1xRWjyzaudpA/BpQFV4neteoYHzJiaSkckx9BTnEG3FqBNJA7TsiPZBzn51CuvDUDJjXEw02Q7r4+UycSHlXBVsEwiagNtJNupdXdUY2CfyX6O7y4ZVKBW9DFOfFRHOrvYT995DGGUOuByIILm61PMbuIZyxhKS8MJrV1OZWUQJcvMxOYrpM5jzssw8SG5BzbC3hbqDdlPyfA4ar1wjBNxpij1TwkCODoiEVzbXaYREgKyuNkkwNPXzWeH+SJ33tKa1Kly87ImdJHzbUKcZgwM7DmDaIrIJ4FSwumLNDN/etCzbj3tO8hzZPH1jTkugLQTtN6gp+CKCpEDzc3DV4x7rGXIfpbY+Htc6f8jSL1spnufnTpkG+g4VH1SpgIpPTn5zr9OttIbUVUZAjTr4lJlHwsIpHjqQtiE0JyO41J+Ldj2OFh1Ia5cvhWZMLVIlsjplbB39rMBFE9NqLc9Qo/BX1GfYnaQ4LR/+KVqVbz2c0dxkzuF6alrkk65zUVq07+U8TTvM4HJHnGhO7TWvU5xiHP2M9kv5Sdt8C+JPL45eDGpDYyq5Z3NqTdxPyWb4tzgZy5O/85a1wi1vnHsPudYu0kS5sNNuG2lNjmrJXtpmBF6hQGeNtO1B3dMmI34EkBL3NLJeob0M8JGnU3Li+/xa6sSfvgQZauMiNAWKYdwrs1T7wkIo8eOnaYTmqMqv94DQLeadd+4YmsCPGExvcmljdMWzNtaDPzVQLuxhCqCRAwpDlq23MC2Ce1JHrmecEqlpydQTH0as5ciotlRkMCJrXUgFGolHOPEE3Wo+6dCjubHOGPpNQc/Yi9yw/IMfenAyGa0nLCBVmxlzjAZIGs9d4wTcQKC6x4r5OhvYkj/TnzdzpHinNInSLqvI2t4afoTPDz0GV668wnuf+cFFtFbMtp35MPEBECEjb4s6O/U2l7T+SM+WSGtYEJaH6YiK9IRwrGlFtxj5r43Kck6vrIc7u8uc5zeGmpXQKFL164VK/dwSOxM/jrtVuoNMVTwZXHC+qoBeKpwz5dgv+P8GrYzz44VTfopQSEAZQHgq+Z1vZ2sGcEHq3Q/093Hm4FV6iNsWtjPD8/Fv82JmS/ou0CZeIB+Gb/2ZQ7jyGQ/HV0J+z/Aax4203IfdJ+FMwnKGEqjMTu4halMLL2Xo4/GUHe86CMEUUV2RTLhIWXO7r9US7L/dl95pto54PkLmRoDpMI1gz+ighCCTETwM9XR3SjJeKR2uCqk80xtJcgP2VMfosf6R5wEeArtFHAFC8AdnN4HPjUDwFofdPwRGOceYxxS6whOAb3T3/PP5jos+HjKPbx+KODzWuD5uBnBIprCETNwfB6GDhBsUJGe4zmNtR801xXpqsP9iIDq+gj4mWcuMsnUtFhn7qEW84lPBs8twDWuSBDAqAYvkkA+R4jgCBEsMLKsWYdTAQivW0rp0XDKXq9P2H2HKCuMgsSxsNlHw5RdHJjSTK77M6jV5Bgnrjeyez2QQEOa1PQCjoLx4pEDXJCZhBtd/wYRBxriOgHbSmXPuCRXqfDKDPlMAKkaPlaOc2g7+Dt6kclsg7a7s4I1dGLb6vbSNseMefLsGM8QbzyDvaZ8s83XnmdoB1gFWi43554HWID6KIQ9KpHyshfryySx2Kz7izkgf5ZnzERUa8pgqim4rUoIcIgqE8tB17q7S1/rm+G24vkJgaKarFpvvwv91/uBS0vBtQIQn2Y4daF6qgGfaWa/0R4wmg/8Gf6QksGX9CfK3Jxlsy+r9lv4d9vP7Uxbd6qj311z6v5qPdTaXCQPfNKMp1JqAtIeJQ55goq01m2UUq0RYn19pDvvLVrrrTUd45z9vPZL+ck0E5FsyAEas5cgqnh33L3CrikEkjQcVbRt/x0DmMvzG3ywHzr2kfG/2CM2kLewjYzJJqOpRyOCP9RQr4aHVZTkjhnV+3q6Y4rTc/FGWR9WIpzWshwDNE0JnW7vUmx1H5ca6dAPvzfso+/d937XZVkWv5PsplxD9esHHBE13bNmQFCTjeFxFtCXBHZQQSjFRBFNEZ9sE8BGJbAHWvbZQCnhxFBI1tIu0kojnepCdlt9PNByPFmkkrlUaFEhbQ+T3iDT0STYc6dxQLfjtHS5bcSbFJnI3py9g2jaeDd7vvZMzoOhaU/jB0cmcf+EF5h8eDgjIify0kKJ7KX3mc9u4slTM0U/4EXttEtp2+07NnWQQb3Ruh3EUkDWasNvLYKG/XdxYEUzF6A9UAn7gqnbzvTuBNr2/I5N2y6kbtNCOoevJutEKkV7YiFXSIOisR3wnYzBDWgAuhSZx3h8sLPt28i8pu1pKtl6RSOd8hKPhsZkIMcA0VEe5pCd063wB55+SrQe2rkXaMI/ATwX/Qh/M8ygXNzEhBFw1Cc884/7k2X+UhsR5eoEF92ylG+3X8z/tZjKESL4prQnEeFuV4AzFXj+XL7yTLdzVNtfyiqBJlBFEJUEccg6yogL0CaZ5yfOUhsXIIJ/kbb536Eq4HGS9X0yKB3K8Feqvckn9Q0DPceZDzx7HvgCHOpi3Ibd4NYGWDC8CkLiDlPxvktbVZE4nwOQTGcPgHclC/U68FiYU8+gZuNp2ZIBET542BzAZq2ek1FSvdzdzaylItle2/4lrbuQ7obbaz2MeH5BvvXKf0vJFxjQ+T5wPnxyG0MbvEMIFSSSRx6JjtBTOKXspbEozuZDRP8jXBz5DRtHt2Pf7OaQY6TZZ8GBNs3MRWRAsY8TxXVcBbkrlxNWkkJZvQns3j+KE5fXYWeP1qROWAXXIb2pLmnjZJdZhVA0o3xuxuw2/C3K3LP7pbBfFIeV1Mb+CNSHTddeyCYuJHWGTOQKiCWKYlp23sC2uPYCmOoaimlwsqs0F2fuUSBNKR23l6dtszLXkxHtggDWNlD2WX23bmqSZ+LUJcFMnnB6cUIgyDRct3cT4F2fvxrgSYCZ7lN9cui1mpQFnXUWXF5WfZ0Tof3gffPPbbKPR7FZ+uX6n1vdgjPpBJcCZWldIXGHWU8aoVSQR5I8T2eJVf20YEKJ1qfW8dVajwRG1rB8C5yqLuGcnelm/eHFfEM+CaSSRdvR31FBKEUnoulWawVzJl3LJi4kvH0ZF7VfSkj7cvbRmEqC2HmLp0ziJgR4FgIfmrHublklNFPctkZeKq7HvGJnzrILkPHC0nI/8jngE3DHbcMKasUGSBDurBMks9u96hlPLsCUvniCbJaWaIOwb5mMkwE4db+Q9O/RN02NqaUEj8Sv9/UQPmImN/p/jhX2v2c5v9sWQihn2YrL6NNtNknkktjS1NeObcPlYwS8FBHDcCZz1x1dpH79Kkh8Zwh5U9rwh2EZPD9Jrv3VbY/yZMvHyfxAgGfDdw6wlZbEs5uVI3vR9p3v2LRCBl+l3uAP+gAFxLKeNPYsTCKk02GCqHS1BMBhErVjA1UTgpjOUMpy6/PS94ZOsgZK+4ST9/s2dNUHgCWsPdiRiu9kfrLtYCsJvB+HfQubsy+hOYmdzWeca2pLuxta7TPAymBqpR+j9EgYjXpKrWoSeVS0DGWbOo+9ujGX1lrEX88XZ6lNiY9qgTNHshnyQHEgAHLx7+lpLR/INaJESbgZUo/VWO+58g33/4cz3HYqXQVw+mU5vc91I/NcLNNuYsJj6m1EtdczalsACrgsglU44ldO6z8F/OZHuP88Z7lpxSnrlwLJyQYcG4d7XM53/i1byDuRSI8WiwAIp4zQ2uX0xxupvrf6BZ8h9nP4yjPdzmU8fwFTtwBdoO5thbQK38oQZvLYFFMo6KnxsF+FUmXwpJnBPp1Bqu4r9Z0gGa/HcNue9PK5tEGzfaBp7XObExuqK3Vx6kCp73MHuRsNyLwnzJ+m+LCXDhsGQx6Rt13xt4fL4NkwF3immuWW8jQfZxIASPYOBHh6wyCHTH3m3ch1PAW1vjeKpffVEWEjG0Urgnrz91MS6vJatBank2IamuZskDRU0/a5DGI2F7GaKoI5QEMmM5y8a8UBhbwl4De+wW7yVrchufN6dpfGc/RF4+CvA+qWwyuh1M1wnX/6Q/PJ7NDPOb/to5qu55M5rJ9D70wcsZm8Dm0ciuxVIz9mSUU6JQ/EQW9IHLyZwopo5zAlH8fJd3VNhkjrG4EFp2b3VVzFYBDZ+EO41OgL4I7BE4lnN9kk89dJt7r050pc4SBLE7bBAPvdF9vPk+EoEDsCPDYbakC/Hu0JhjydD08muMeMAt4wF9UrQSaHEAA8E9z75+nvCYEgzzjWT3Czxc8Fbr8O7jHIL8ps82vzavZxlQENvf1dkTl32rXYSWmOZD0DM6PWAmm3TpbTBnledbe9f90L7KUxBTRk2deCemuKlv877eeO4rbqVFe/uab9Kbe5RK0866O4Z6P9Un6yN18C0JcFrKEj8ezmpUlPQBLU+vUxgs+rcvp13jziHVbQzX+czIxzD5ZvXutSfTxrigTt5iNgzQ7ZhlKvVyC16t+Y999DLEb1c5AEGvVsN8NIKFJ7CM54oW9wqcP5horiAM+PEdbRq7hjlxWDM21SHEqoldOyQTJz/EvHfsliIxCdqIeQSxt6GSWazFnygfRgqokL9eZLFq/w1Mp1z+CPuohioviIG+jOCpbQy+lFvdGIu+1b2JyGfXZxILsZXVOWsHJcL/HrxUI5rvg4koYjdnFgZDNCnjpMywZbHXbPCrqRShYACycNkuDmo+XQJBTuh3ov7mdQyBzWm4nCvhONpYYSCIs7RFk9EYoIKSqjW4MVTjnJ2uzuTq/UeuW/papSJg9H34yRYOgW3P7mJibRp+VsFk4YxP+N/DN/bXArHJpFrf19OfGnOvKspELX/ktY+VAveS7yoeNdpnf377tz0QtLiaKYCI5QRZBDK16NKN/WCDw9pjrg30bOAFC1EPc5tbbDHMcLGgOZOZ4sN/j7IQdgGmyu+xsf6mHnOMfdBtSWh043k/uohuEkCfzuJfi3U7NZzyz8Bfguw+mdrseYZ9FSbf9mnvPfWNCZA3lXwx4lWecHNNEJeyn6ogn/N+jPxLObA8Q6beUAJv9CwPM/5CvPUW3PVvulgWejqTtozF46soZttBIwUhu3VYrXrKrpBxkCCi/FpYFcbl7niSy2GgM87XLfSQpzxX2sZs6O6mDUVQzdiKDfd+VtQCsVS6F1IrC5uM76yjL4swHItv7GAtSPw1zFtxkBFA076NmJvZ0zeLO6L2aAMtfyqll2FJm6/goBE6Z00unX5o0QWjBulHLrLd9PSegMntT76cQadpBAPs159dpHBbSN98HfcOs/LoNGc3dQUCB1uCcm1nEBTA70eOcrlnUw6bKhyAC/Guho7vWzPol8XymA7ZrRH/HJ7BsFJPaCWtccIz52t9S0DIfz22+hJ9/wwYQ7neyg04MzFwG8HwB3QnTvHyh6tQm0hrAehyhbVN/52HX7FXJ0WYwbMT4u9y2553p6sYRsUhw5728PdnYVfS2wi/fQzXZ5KdMu8HQU/0zQQWg7OXC7iVxmmuXb5dVxgsOBOwyfrOsFQg2yk60BUpckWVDwAk/neamUnnkAJ5YLpVkPNiAxAHhac2pn7sMF6y/602edbb31o8a56nHVt3O2t1QpA6OqAU+Q7IYnwDnwOynILifUndi93fwX7en5czvTlp0i9IQ1pz7c5SrzrHemZ6P9Yn7yBuX+Xw40hF5GsTybFA7sjaVp4910YzmZ9CKRPA7Q0FVD9QZJC3Gyjo5Yj4lJ6lLP73a+jF2Af82nynBpt2ZIC8w0hR6UAKUdP2syJ7O4BXc8ft3/eA6AzUL8pQWdAHE4fYMDxYbojaP8m0sbd/yeKNvY2teq2DrVmB8W5C9aeIWr0/As3B7/BhWEONnnbFKkx2OwpmGL3aSSxcK9fakXc4hWIdtE1G5hGxL7bCaRPBaeN4jEHzfzDnfS61EjK77LfKbaiK5BqOczVgXcsCCzzLtNsPmz7+uY/8vN8nrmvaud5Jqhoy599iJ+s2I1dVOlJjUk7jAV+yPhQxgx7mXeLPgtJ66t455jpc0y+6TWE7i5xWRmVwyk8Hgjgm397NXmu/lKo1/Aaf+l9WCnDZm2cxQ8DJg4XLV0CzyTNHxhfgP9ED0GTg948htzvaanqv7OgFAT+LS9Oy211YohOcetAXiCyXhuoZrVRLsNNIdymwUUeoSGjgLvzcJtPN4OJhoqsK0njQYulJ69nz5+vTDagsDT8h7G/zK45Zyv/PfYKam2Sqk/nsYxDmutn/npzf6HbZSo9UVTxFEjKZo+ZT6ZI/rh1M0197lRrqkuhx8Q6usQxAm2Aa7zAE2Q7OjTGX41KoA/4LT1mbfazJj5sffdSI1mvlGn895XSI8mgFVmQm76QVlQqh8ClWSA6MfI4Dq5zNAy5VFSr3iuxWQFHTDt95l8TvY2eeQgcgIlfJ/0QYypVTT1O1ZgCID6UvPZ47uv2FghE/yG+kpiGcsOEjhCBNEUwkuVpM7oy+4TP8DvofSomzUtPhzFiQfrCGBpg1SYBQMPLyfnrRSi1/xA0RcmOlt0iLK760sfzesg+oofKBrfRMDa48spHh1FSI/DVOREwhroO2IB81IGy7GvgtjtB5hdMZB6d++nJNVGBDO4XLdjnhoIV54nz8BxKHrd8GG3QFlcfTcokYSIPbTF/WXXBdZAzr402g3dQDqZZJPMZwfFa6puwEoP4t/tUnXUMDwTOp9f2x7AcZ5+zyo4z52aaj5HE6p/x1uQoEoPZPKAB/wu8EFlzTWaJ76sA3d4azoL4LFYeMxH2KOHCD98iNLI+mYdbob/daT/raWpW6p2ibzocZ46lXE4AQhlsxgBWU4/sxOQGxDKc17A+iqctikJtKM3i9lIO6oI4sDbzTjTTaNOhz501vYmO+cnfwY7Zl5LkLGrDjRmL6vpTARHOPBZM0JHlFNGOOUVIcSEFBLFIfKS2tCwj2QkC5DfkqqJxviovDhjjB3jbkECexZsWDZFbnV/ql7GobSGGGDrBLbc1o0ivpMfgIL2AM/hMkisWbEza3bcNhkmm20FTE2lreH7kbzrWjJQf8ZvWeR3SAs6A02pN2D5PcAAunZbIiCvCAFseyE3PlF6RFcIMEkJySGtZRalhLORdixMGQQ/QklGHN92iaVWnVJq/foYeS3aULAplrolheRNaUOjYXtxLtteymEEPJS494kqBOzVMctrm22O4QbrLPA8HnC8YLPPcbP/Mc82FryaryCIKgiCozExsAYq9kdSK/oYseMOMJMhEsRMQv5SoWH/2zkwqZmc46iAwaVcTOOQfQQXea6hHqiZLgBy2pZ4ah+dez8FN/D5IVAcoHGQa3QaHjV/NST09FR5flWxzwn06xU4Mgv6O3leBJ81gzknCbCqDCfrqHuCbik3VHUzx7K/hZd8fpRnq/WhXqke4HWOnQ28iZvXyDKvr2W4Apa3D0ZPGez26d4DPDcL3h1M9G0/EFSrigTypW7bfq/mGT3T7X/dV1o7ZcZTKbUPeYxOZTdqLY/umWS/ZMYz/PAhyvbX5/KWs0gji3F7JWWkG4f6CwB5mJp+LR4so2im++rScj10WXBrCnYDi8y6UT7JIAL0NjWEnnOFPHPYzXzZCisbCTXb6Wk4Crd6sCcTdhw3evcQotAHrjLgNENBsYOuzW5eUwZ/8mRLn0EcM4hDyTL/e2tdH/OJEEMa1BtlFOVCw2GziTq3MTWi5r0VklDZ8HrKcKIRWtF0hrKVVuybZWrsvsfp61nxqjnWcIkA1got58TEOrQd+x2bpl4Ir8Ll62YxT23kci2j67znB4vmTW/g1+ZaP/fRcNAuDiw1wOID4PeQ2nIVWbO7UK/fflHrBZnMmCx1x8ECntfQXTJnyXD+2C3sXNoaKqHHJV9RRAw549Lk3qwx+ycg1OMfEIBa19y/93HpzlvkGh8e/QzhlDGZ4exTx+ETEwG9xlMf4imZ4jPkO66N+/0tMYq4eL6rfub7vhbJInf1OKffIVnh3HxEJ+ZWUAmgAyiy1mnf4cl4emi21TKahiardaz/8ltwVZ+1Gy0mBzeL4aUb2efZ1MACTrT3VKBTtcCt612Fq1T8pXk199ECTzUXbuv/JlmkUkgMezok+a3/JeznjuImdaqnX17T5ZTbXKkWnrVR3HN+8mewAWb6bEFDPeg79XNSyOaDEzdTWSmTtZLMOGhbTp/GCzhCBCsX9nJpgHYyXoNStBprjvtoAJNiEW5d+oqAfQLGHS/wtOApubMp5Via5gIq89tvOtYI4gxKctk8+eb1JfNqMKOTAbX+EyCqeqbV9qpeO0ECqxeNlLTXtyN7uqC1kmo9PWu0DxXMQCb3GfBy9xH4SjMIrS3c4aKrmkAhNFyxi26s4LPp1wEQdvkhACIij3CgZzPxN8EIffn1StY1a0/aLeYDF5l1lo58XK6vYLlg0TLzdx7S5eogUiYf2LDKJj2DPesig6FBc+Q7CcV9dqwJWYlnnpW+bU9ea5R+RiG9PHOAP8P52VvY2UEG6ug1P1AUZG+k/Um3I1U3piEHWLDvSpGPCAL6g+r7FODvl9QUCIgFOMJ9gXoDSs2BiQPdAO/7Zruagie4z2RNwE91k+8KcNu6GQRoQfE/Y47myFXmmu7CKdk6WR9NB3h6TE84ebYV3HVN9XnsWZoEM6HjhOWEUco3j/eRhyIYP+YQr56ZGc//dV9p7ZQZT2Ch1vrk6h2AUn7Q6ZwFmLoW2s7IZXfteBqzT6I4TUwBee+AjX+D0D29dgS3/u564Bpz3BEYqqlPMnHW3vPUaF7gk8nwuwgwvQ4BWYk4DjDkQ68ikMcOZfgPpsMQMJwK6uuAbdPNNqoMXjJgckilWfajiArtwaGPUJgBPAK/K4MMs/0TuDUvAPPWQZ7UZZJvriPO/D0MJevjYOZyoB31kgwITTKo6Eogdw4KCCn6DakpkhJNIJ9vuJgVB7tRURjpCulck0GiHkLe6jZOlrXH2G4sG3MZzcduJW9IGzaNvJD0CfNpeEsBf+1wK9QfTObhQ5Sl14fjELbqkKgamkhio5472Kf2QlgzHG2HVlCoY2g6KFeaRI8CpkPXPyyhzKjSFJh4pZqNtFl5OoOd+3xQDGHvHmKZ2gKL73eB4RVIdrk1rijOSuBO8/9TSEbxPOQ7L4Y5DOJiviGFbPb9eYCALessVsr37vyqi81rJS7VuReiRPfaYXgyUrKWZvLmZj99sBKnVyggwYXfJ8Dui+R9lNnukGQn/WJg754kojoIf8GGd2P9hYjs+a/Av9G6jdzm4NRsAv6tU6wdxU90RLVwacM12qvIPQjGnUCMQhQNPwnY9j2I7l9IOpnMpb/QtM9w0yjK/WZ8/3N2zk/+nFYC1IGFswcRM6iQojebcPmIWdSnmII+scSzm/dX3w3x5fxfnz9L3XqS/yHUOlyaoBEAuk3H8r4pJXCyor1NJiklIFPqFQ1q50PZsiwj9tNUy6CedzCRijWRDmtDdzZZo3JhOYEHVK7GX48BHIEWNQzxz9YHmrmBOg8paWiFKWHoLtlYi2xG9pJzTDCgxFAa1UhInLCZvEltSB4h4DgF8YMrEF7x3hJcNFcFWaRycfhSjhhW1r7ZxRwhgqoTQWyt1Yq6Aws5WieGsk71oRjKPqwPL8CIzi+zlIspGhHjqHX7WbnnPLWBIomPWtCJWXXQ/F9W7QAQicT0wpApUTDwYyU0OAYcQAK3NuPpZfsArdjGZIbTdEYue9RHEsC/3pTC3AQ7t7cS32QD+zuj4aZgUpf2JUtJmi0ruwvpKfPl2KEIWK8HetVT0Fkcl1LIHK23/OlhuGr8i0xQ1kP59jPLJroNSNKo7aBbKALNCdAOwgmCWCotwIFuzfyyoF7zKuH+lKlByGe9wrNsAn6ikzWZTgEm4FdfrKYBHyWjb6i+vVI5MDEZtsCeMdBy7Aa2xbRn48F2dGyw1qVU/2SS8Mywc75S7JTAU2t9608d4HS2+V+3nnzDkpBeHKEuQVRyl/4Tb1/2O8BTBzca+DsSNdxhhl4rMGTNtALhSZ8bQR2CI1HtZx97/jc9E3kDqQH5ApkYX1pGRfR5UD8MdZ1n+zfk/Jbd6rR7yDV/o7Rk2L5T6KF4GgOb600A1gTLIPqYecRexz8ayR+BB8H3I3we6dQ+OpbVwc3UpQLfLIfh3UUmfKJZ/oNEfUtujISXKmFxJfXiCil5NA4YKH25gPt5jd3Es4JuPNLfEwoehUxOnvQBm6EKoquGA7BsYRMohlSyyHu6DQyB9RWppITkCPBpCmUz60uE8tcZlE32uY4vCPYVNqeHzgW+oopgxjCWV955kN1GRvaiEUv5NrsnPFDJytW9ZIC1reh+MK9XQb0Xf0vJZOA4lE2uD5/cD8WSGV17Z3d5Jv7kk3lIHfOZInCzkMOBAUiLjy+ATrDtkvaEf11KS7Yy4paXmTTsIdluuE9UIFWGq4gswW2Rbb8Tfxrp/ZFuXe1xuV76IZOppsDGDHHGNvNpKTzNfULHPQSOupZqKorEj5mMs5lIqik4Kreqljn2HHMcDzh1wK21dLN8dMDyy4A9kgF1QGkx4lA34dT5OHU0NcAFO5nQ03BBcKZ5jTH/f2HWtfOfGOgZMIhWlBMqlJtrzaRlb8Vp9W77b7T/dfrQOT/5M5i33q82UAk3D3qHDybdSaMR0u4jmxQKiKWKINI7z2crrcgijZYjNrBNfSrtwX4L6nHgLdwWDR677YY3ef/5u6WefLX/Op4Bne3JdBohFkf85yTWqI/UyJRWhBFVAS4tRExt1/APAwWWCTgNKjjGiTs9dFzrfy3qmoP/7GwrBnC65g0QJm3fDBN9Il43sg2nZfVw73s92EtjEskly/SDylsnx+naYQkxFJLzWRp8hATCN0HXzkuI4AiTpj0ETeHynrOYt20wHTKzaTRV7sm+kcIqajhhF59zJV3uz4JdAiAPIlnP8zwf9TxzC2y5ZYT5/zAu6PQup9J8jmYw67HL8ZHBpkkXCpC70RxlF9K3/K1BMv9pCyRUEt20QLK6pu0Kz5Rzaa1FfNOsJ/tGNSdLLYAYeQYuSlkqSYNKJItbxclnz4vcjGVg5tK2VFE3IMKJYQPFZ6cjPrgpcFy5bK1uuIJE4IK3QpwaZVtraf2rusyH1cfQJzz7GsCpmgG7M7jItEL+Vi2R9drHLbzDB2/fCVeYDKf1q1bD4ypzjBVwabcvWdxggHNshy3nMXUZooLsXaamm/MNRetkodzePxhqw97SxpAJHUespRVbZc5YhPyOA2t4z0A7TV951ttPZTwdU0qFIz8LZx+tdfbJ9zhnICqpQVSRxnri2c0aOrG4xQBH9MaaI2IyDlQLA+Cs/7guA+7xyZ+lFSUDT5t9Le32EuAKs+/DZrv6QH2fO+hY+kQu2LpLRplBarQHRPIIvIYjj6396haUM/lWYUgU2CqVbUEGqe9x6bo2m1YO+jCoSJ/7FL1vXmdmGAqxz2mwzZHlcLWAS67vLtm2+xAa5rM+icatl8k8BBNVIZnPeuP3U/JKHOR14y8NBnCAWIKopNT2uvABP0CtNsc4kVkHJkPxU1FQiaOoB1B3fCGfTL9RwH0+lIyKY2XvOEyrT9p2/o4Yitihh1KfVaSQzXITTe7NYt79+l7SL5lPMFVcrtLhh76kN15CQwqYWTAEosphSyi12hyjVew2gqgknt3M22ZoMXug5N44aI5L/zQU7K2lraTm51kftYZ6aoosxdNGUEcBT+dINHdIsiyvDVmNu9Bu70ZaspUnpzzO04OedXtTJvncmkwTkQ89eBj9jr+QhtOHizAISxBK7igkNP28hrbmmcgyy7ub958g4LM1MM+kFp8CiHRKmLSuXiujT5jo6Y0+aTxex6jRDnNpto4DzDLRVg/w1OOqA1G/zKf3veFz6R85qakOQpFVNyCy89OMox6CZHNNIEKNM78tQ/etN/libgn5gFDKiW5RxLfq7+Zk95/8ZP/FJlHckJ/a7KyXiIdzfvJfNhtzKXcXVRFEveH7acdGNtKOWApIIJ8wSikihnh28+1Cw01da1KSb4E2Ii5qHaLgfbMPQuH9O0G/A+/9gWqms2V7dQrKu+39XBH9imTOcDOfe1ZLpKxj5+Ws6RyHehly1qTBVR4ax03m9XsR/cGrjptlN/LUmlZmuIJCk3H7Jxtc25svuXQ7LGIASYhiei5tUObJy3uojRF+STPbS/auFQEtcM08+JuDF5PYINdRtc3vkMANTGNCwf2cKKgDSyDspUNCsd3QjJUbenF5+1kQA2Gph5h352BavrOB+Ja7WTzJqOcOAZLKacdGQikX4BYqP44wXJxdiYBJS7v1aix56bVhuNUMwcDBg0ZDKFLabsSzm/gRu9k4Qp6HBCOcsexPPsd3nt9tCzu7taaoTRMRrCk2B1wVyl+51e29+ZaPRnfJ/t8uNc9ZPPKM1kMyrR7T2s1oAiLOA9WE4ywYVR1wKbizIaK0kKPvmwmeAZ5e+rcah19/cpv91C8bgNrV54KzKLPPNBes2v6c1r5VS2S+ZVoM1WQ6wF9akHvpy2aicU0N+3gyniQDPbxKUZ5jqRxongzNB8v1RsHRNTF0HbGEvTQinFJ3N5tpPsPtNH3lWW+nBTyVUiOBZ5EglY2haOAcfegnrG+DBQDEs5tDRJFAPndsn8i7qhB6+VCXgP7azazo7Ujky1sjMN7nFrRbywGelH+dCO14n4zKPwD3A1/I8ZQymSc7q1+OAIq3fOLEKgOOwyPQO8xZprVPqL3gDJR0wqU3fexzs3X5uJ6hDMmQ9cAVd6iF/2D1jdlniA9m4vaHDKBO+dm7PqkHTfVfXBL6lvwT74N7oW2LNeTTnAR2MB7PbKPLclrqCMoJYWeOqMr2rbWAaQ8MI3Gd6e91XRs6r1vN4l8NkPsTDySU07LxVraNFKe2afqFEAM3jJ7CVloxrcEwLjooM4mNtKPHJV+RubofyZ3XM0JHkI2Azr+qfLi9DmGvHqLss1BOZNUh77ZEUhpkk0Qel7Y0g3pLWLzHOPA9QF24qOVSvt3Wk6Mfxsj3FwMnFtQRkJOO0D7TPd9TF6B1sgDPKlzgDizgdkoJJ57dJM42n/uCgGh5Wwh5SujYDtDsmoxeIfUaagWOZHvdLwo5Oj7GCSJIJtljYUjTbNvGpD9weVOZnNzhmXAhIK3jVFcsSinzg/jIPWbdY0EcrXMUdaEHMKo34H4Pd9aT+VdJSEuVXyOZeq/ao9lFTamhDsdTHqNnISDZwxDQ00wU24pvnYcbIDKTRHUhDhW6ccg+ygmhlHDpsap/w5lsEsU97RjmWWvn/OT/h9nHxwM8oymib8gC/rpXfmy9Gi9hNZ3JrkgmLSSLQqKply7BxlYh21hNT9RCRCU0xgBQw1ywKrSqmwmefajRnV1ColIZkjH12skynat80CUDBvrYMwjazv6OqM7fEepp99D1IZnMZx1OJSEyH1pA9vdpHl9szAZsXw08iRE3ygMHF5jAoJ5irndKJ/fa7bg50f8oapIAUvBvVgW4irDG/9/W4D020p4jJspZdSKIV+c/Ssv+GyAWit+JIogq9k1tTvot8wGYt24wzICyLfVhcgbbJsO2P/kIuUnud0TUESorg1hT0ZGgkCoBD8FyyoO49NlKXBBql2GWWbBp10fggtMIq3J7GKIoZgxP03XFemolHqNbrH/Rbmq3VWQt7MLOSa2JXiYiNgdWiAZDWNtDlGXVl/H6ffGzAN9eJoCz7ueFVFUGUR4MoXXkM9hyF/V7/NRnA81pMWYC8TWVbaiHoO4z0nLv6PgYmSddJeuSZ60n2wQP/PbphgT6LaONdk7vTj7DKReR3ubAl+bZfxPAh+4vbX/O10PZOVc+zAdv2xodFzizBfHRHlvEAMlmlttz+JdmWUae/grUZfLjVoukE4PWQ40GQ47fMcNuOkTZE/Whp9DUQyiXeW8wrpLxGW7nfKXY6d6BB4BWWtfUneicncoacoAoiikmiiTymGl/wfeYCNoew6cPtN7AZvN/DjKZ32p+2P2QiW+lyeKYzCePZggYqQ/81jORNxLrjmJapsnAjAbyzTEs6LQtM17EM6B5bBHoSUg9J0hLF1UG442rsBNumzj0ROesw9UzcISKyMepN3UFkzKBdEjqDp8a8BHRXTKNUYiITgTV1UOt7c6AAh/DmUwwVcxlgGQgr70X6kBDHU8xcGCwOJ16T+zny4r+hCxy611rzTvGkoJ0ml6Sy54pSZAEyY2zyWmRBpmV8HAwbWd8x6btnSgkhmKiaHvwO2KRLFw3VrCeVN7tfCON2evU11QQwsu6jL3MJJYDZE1IZQPtyCKNRRWXsjekMUMRKspG2tHolh0cKY3gaGEU9eIK+XZcT7mnn/tkMLb063d98ClC1X4F6j4g3Jij480XkmDu3R4gwwe+DA5c1oyqr4IIp9S5vrx324g8+0zXiZRPiJRI54ORjkqsGoNkT3uYv3Q4Otyca4jZ1z6XJkDC0/mop0HrBHk/z1z7PHsmnyu6kQVrlRt98XNqN4BSE+VZ7STnVOqw07uV1wR8qpHVnbxh+Uhmv4bghgWdp8p0ciP+4l+BZmvLugB75PfCaBMN7wI5q9Po3XkRVQSRQD57aXSKg50Zdo4+BJzzk/+62TKFozgU0N3ES9ZjfygdOyxnK61oyVYSQkLJJ8FtpbIKviUOpoLuUz1rKUwDD4X/KTcLqbrhTqo7CphkoE96dZ6sTVNnwPM+/LAMJFZNG2AFvZzenTmvm+UeoSA//YSFCBjo6/GVZnqgPXoKSkFDLaqlTq3fy3CphsUKpwTFaXcxCb92GIuQIKbT5sVO6gGCJGO4cl0vl1bZuhKCjSoscORwBGWv1ochkHlnP3gQ+BHqTdxPyZ5Ymo68kT1vJ8EmqHhG7nfRqFCSG2dTQQhFRLtKtrjgEtxYNbgJLru80rOsEgGdh5FMZ1k5nBcM1IEDNOTG0o8gC0LbVrBshenpcRxoC1m3GFGXB6BoSxPh7b4OPKMFdG5Bnr8j8O36njK/MMHEo6/GcP7oLVDqXj97QX3mFSbwr90MzHQqAzxPJhCkFsZA23KnowDfQPI/1rvHs9nH0ea774YwbVb4XIVYu61HpEp1cplKuqVnrqd95NPaPxP628nm2oa7wBMkkPxKQKbVKr+rGuaJJsiqLjPg08wX/doaRSXDawZ8Pp1D1QO9SZ4gn3fT9k70apEpFNsq5Ds8C4AnnPOVcPrAc885Z/qv2W7iSSLXaTqcd0I4ttqogzmgsy2OCIEe7cmeFCHA7HqfREV/BH5r1r0F6nv8M0tH8TMnuhphXmsDiyTbpOeCagDqTfz7dzYB3oB6V/+WkgfixAFH4VBS1Fycek5n0Hk04BhhuPRQzET/JZy+oA5gGuhzQplKedqh5GYCHdz3VwB/yYAsc45UszzN0E+C8JO/T395PlUEE8FR4tnNU7PGEz1diicP9G8moCfYB9OhJD+O9Jbz2dugMbsPSw1m+9iNZPXvwp67kwRM74GcSWlCDc4PpuWMDYRTxs0tJvPBrtvh6WBavrPB6ZHZmdVcxaeEU0YpYQRRRZOlRTIg74UmFHHo12EkkE8C+fQik4SQHbw05QkKhokcX+aKfgzsNoM5xYNo1Gy39BRNBb70CVV6SLko/SYh4O1JZHm8aaQNbmPqfJzMpK3LTP1qFbMLBtIqdiupZPH00mdlRX2fGzhYUyDP0JOxkoW/AglK2IzqMtyIfD5S1/sV/vY0LoMMqtdj4hOaUn8EIF+TIZ/rMZ8ERS40GcM1GUIL9wrjXQ08brIZFwKjTOrSRmIv9GybgUy2is37+eZ1kAs4/ZpwqwxgNDQ3RK8eMol1s6sZKAPQdalhLUSZYybi0J3VtZYObuzvsLdzY1LIpiEHHGEpt1P8mWUnqEXFT9OHztoaT4+d85P/qtlaw2AcKmM5ISypSKdth+9Yu7o7fTqLg8wnQWrve7SBmHLCbpLZflSF+dG/HgfPlKOmhfqrc48vh9+Fwh8U/IC/AEtXTxnLSUytxill0GOldcWRwxHVt7P1fTcggix2+VzE39n3BpjqPv6Td8dnfw5qNq7GQuB57gSSYfHLA4ThtIUa1WzzRrbh0glf4tbuGAvGr21JEdGkdljliJ/srWhEz2bfsOBgXyo2RVK3U6GM+23Mtab5oJ+m5GOhdezZk0TiXZvJU23gMdmkbtQRWrGVhhTQkm3O+X40fxZM2mX2sgLN1n428GxXGbBNCBUc/TgGakNI7XLKjChj4uDN5M1tI3MUW4KSi4j8jU8Q5fqkYPGjTcbL+vt91Hr8GCeeFe5q8oT1RFNI6DGcGmRqg75OQUd/8Ok1Bw8+g/i2VZ51HYAvzDP7itxz3ScUZcqkJIvqn+l05otz7IE3+mfQV26Erh4gmnc13ObZwEvdnQu6v+f9Q8Anw6t9Bv3yScClXR8IoC1jaLe8dGMJ9Orl/9nH4frhz5PhyhwqnorkyIQIdpfGc1GLb1hNZ7nPRgn5bKjxPOcrxU7ZTsXZSKleSJx/Lp6uU1r7dSI6o+yXkokfw+NEUUw8u6U4HbjT8H+80tRONtBm/bxtGn73vbwOuUCEhN5HCvx/GzgYPALNw9wf9CG73Gx3j0+ylQ1w25vYegYDSmrdKJzeE3EvOrWf1MetSf0BN1NkI6N3AJgw80sGLD6MZK9W4nJ8XrRkmT+6mdXJZtGOw+CJzHE/cKvNQL4iQAQELBzBBdL3Qb2b9lPyYpy7/ir44qHeHCGCUsK5Q5kuBsonNF9LW46Sz31+yhZ2TmgttN/rzbr9CGX1JgSobYLku9aTsy0N9kO9LvsZFDKHjbSjkBh6sYSr+JSrD0r6Th1ABtrdCL3I9nmzE6vjQGNzrkrgAtjfpx5lhDMR4TVnkSbHL5B+Oicy6wjl97g5zhokq1YMDCiDrWGy7gok6wuuet9+4LXpkDZUMuZNcag/z614kEqCCKWCRxqYmYu3BnlNDjyZLMBzpQ0OmGxkVwN8rUJ4U5koKZUPSHZTop2G93OzKeD9IANRV8BphaL6E0C7BfC5LQzW5MPWBFd98HHPdp+Y52MmEqCwvWJt0vSDDAHsZjLiAE2PkJLe7gGqyfYaTZi5k4BPpzk3CBDGk30IBJ7ghPX1VDPRaAuUwYgZL9OIvVQR7AhOTa6pedu/wX5uifhmnX6lH15zarn+B9TbZ71E/Dk/+f9h1xgHWIBM7BvCkGkfEko5S+hFEFX0Ygm7iWf14c7cHDmVOQyitCKMkrudokf39/6MmdA3yYKPOosPysLVHQAZfpzxAX9xuyUZrniZ6RtsxYh0ZzNxXgU87i4LPywOt6yejKF9dBoLJxiksFHqS71mgSe1EZaJMSfjaX30lRnUPSZjw9F+Bh23gpvfkQN+oPYK/RfEP2ea/VrL5710haDlxbv60rXZN6xcIR9U71IylwgCHobOl/yNxuylFElL7SaenLlpkA/pI+azl8ZsW9he/M58aLo0lz0TkuB3cJf+E+8fvF3U4i3AmAOXzviSxbv60rJZNs/wBNc+MAf+BhuypESyAHFlkQiwtK9e8OnNjNpa0EoEhCbVg/P6A51g1kOXM47HWTu9Oy2HbhCqJpBnMtJl9fYDfwWkNnfPiiR3vLaAdBV0nGJa1szt7nYUOA6NRuxg774WMAYBQearVfnuHLpamYY3EZllXq2vfALxw1Y8KA73fCY4rGf7gz6/THlAT1p+xC2GfQIYMEuAJ6BbKMmQfqid937XuV1D4tjq57BZT29CY4+bVa/JlOcedJ0iUemVI3q5yRZHG8K+Gt/xN7io51I2Hm5Ht8gV5JNA7qi2Ml8zQN+x134at/wcds5X/nvsdIHny4hD3Yobm9Ra60v+vy9AqZZIY79oJL93i9b6+4BtgoAJyJRZA+O11pN/at2p7BdzqC2VC3RsxGZb9XvupV84NQFIZFWNwf2NeoFnlln2xiK0lhSUeghXsAdcuuw9ZnI9yTOY/NZzTpuFCgCi+iGc+k47cADSFw3Ad5JBcRwyULyBK1RTjH/dzCdulFn3xC1I742bqcsy+zT3wY7lkGbEhoYCjy6He7q7n8sM8jpFwaVmf9PTTQ3Ubs9LcDOu1/uo9/5+Sp6Jk2yinS7GIINtMXI/Y6HpjFze4U76/T1TtrH1McEIYD0G002+w16+VeyzTtVasGddped9EtDZOqY6SAuaKoR+dhQqo+HTyIH834jZ8IYBU/fhfm/XGNBlC/EbIZnnTCQIkIxgwFzzmgC6g3KUkY+tqkXd2vYn/ix0fdx1zrYU0VJe6iLfsYOXTKBgSCTMzJf/n0xwJ3f2OJZiayng9+YLQLVA/Blx4E4k9zHgOXO8xxKcwIdfGxVbx3K9ucu9cVoTeJ/bQDsp7ckIAemp/llTP+DpWRa4H5uA9eAEfTr5/LfvraRtRDBOKwbmn5nONL5TQ/3gmmtPuc3DatLZ70z/jX7SHP8X95W/mJ+80vzY7djSEDKm/oEF9CWKQ3RiLU8vfJa6PQoJCq6kJPQtGmn5se1b2Nw9jg22Pg+sN0jxo87ugJyL+//d5vVWeXGCvp4MY2AfTWvWX4bdZ8BmTn3CkuV/S7kNP3yIspvqg9U+M8C21qUyIaiKreMvLvS76lRbKoHxSLYROFrH8GmN6JB+B6eNSscJApjWID7RW9+5oyCBqtg6kn1CqMC8pSREUg68AaOaP81u4tlGK7lVpUnEhhcQz24yu/UjbP4hyrrUp2P2ctZu6+5oESyePoAeQ7+iPsXMUdk8oEN5dboRdagPHfssZzfxfM0ltLk/D1bBhjWCkQ8D4fhjJq8F4w888byPBBLqQFhf4BKYf286AMOYwr7w5q5fejFD9C8AHj0IWxvIc3IPNF2Xy55dCTRtlg/ASCbwbIUEG0tGxcED5qGYr6g3fD/FBY0EeNbFqfO3dFtvnWdNfsVPDT1gGX/ZAH9v7wZG+1Q/FgCjfP7n+T1gY8GWVn0oA9u/EyMURX2fgNmm5vgeKi4Y4LlIfoOWImyFhPTL7v+OvWJeL8a5z9q0BlMjkfmHZSbV4Ifb8R2bHEeagw0ItNRXU0o4xaVRJIXnsn5UV3eC5E1xn6F9PM/5SrHTpdpeDSRorWtqsfT/a28CE7XWHyqlbkKE0AMd9Y3IdPMCxOmuV0ot0lrn/8S6/7zZmoZgnIiNFRTympM18UbI2iA1aV3Mn/22PjCvycDTMqu3YFW/DHipEcrnTvjB1K2Yfpsv+aA4gPo4CpNJMtczDQE4gOrtEyrlEfMYRITJgGb2c45zFFd8pROSgTtSBjeHicLgVWadBX+P+VCW9ggCVHojaK0J8EFv2LGcpjqWPdcCM8sgMQzuNyD0tQyY5HNrdV70HKsZqLFPwUDcCX4MIurwJn7WaPAO9jUzk5gXkFr9lCWsbN0LMiGKQ/T7R6Y7AFr6x0vAMfh+L+z0rArz/H8e1Z2rpRrZbUDmRO2NrwhLRsRxrsMBxMHlUj/KFcAVPonkXwpcAyFFh6HoQSrW4Ig5EYVkzn9EalbykOfwPqRXXQ+TEV0OBEGduSfQsxRqsCk0STDHWYaAqc7m/WIkOHEcofjaek5rTyZQzeatgwc7uDWdlcDv8p3Vei/+Srae+SSPeY6XKS8q0wBDr3LtNPObOYY8e3dkoN5AMr+4Tl9NQYIiHkDoNafVCv7AEnAdqkcbwYnytkayIGnmb7gP3vPfXV0Iup5nQSBn7AwzjTod+tD/gv07/SSczb7SAk47plYK9TOeXRwglqcnPUu94fspKazPRY1Xc0QPIscLOHORTNvdnmN+ZAar15G2E9ORsd/6iSzzOhCY4xX9eQQG+peSOP55KU7ALrBlZVmOAE5ltQcS6ztZS90T/z6hGIBrs12trQ7Cj9L7mvOkfyfAbzJMwulu4G60jhVg2huS2Cw9qEfiMKqUehatJRWbN6kNta5xlQlXWqSre7niQkHA9zC9+XU0Zi9ZCyXyeUefiRygIXO6XQuvQHzkbsjeTRil9Gj5FUsK0rkxdhoth24glAoKiaGr7smrE3o5wcGmfXJZO0n8dMWIECfYZoc8KwJrRYSs2fWRiAiRzYqCG7D9EfixCsJMX808EpnIvey7szmNSnewb5I8H+m6M5l7y+GKUPhzA3lOXgQeQPQb0jV7tifCKMV7s26nJD9O/NpwhJYNnD9ji3thtZH1NgPnLf0IMBVuyjDGAEmSSPCangZKbZA3dTV1exSZNR7e95fGR5mSFqWWgzJznyhznINeJg7wZ5NVazvYLYu5DycIHEiz1S0UyoBSJxhiP8M4uRyvwq16hWrm105lufm7AmgKt41+k9uB97gblQ1tU8DPgV7tg08z2DapPT1GfEWr8G18w8WuqFAJfqVbZ6qd85Vipws8t+Nf//2zmFKqIVLIZ6rA+QvwulLqV1rrf3g2HQq8o7U+AfxDKfUZUvb9wk+s+8+bpUV6J5etJYt40kxMKkJBzQHuxKWBILViahAyhXgRuKe33xhl1cW0dpte6w2g1Dq4p4M4y+vDYI0Z9F7GATV2YFF7TA1hDE7DbEBq+DYZGJUVDFd6IrSedJ4+bI7byfNe/RE+MwPoZ7jgFeA5k62K8RxkGbA+A1EwaAdDItkzFgE5T4a57WJmZjif24lqfo/7ZA8HSn2QqiFLCTA4DgyBRtt3UFoh7q7P2NksXD2Ii3bJqLubePbd0Jz8aQmQCz1Gf0V3VsA2ZAA8DjREQrZfA+Wi7RNYp+LNaHrfW6sM2P5HYJGZJww8htQUXW3OWQIchSaVRYR0OUzFF5EwQD5/I30L+15uDg9nys5vpcvrKsSrlyNAsRh5thYhVLIv4NBtYdR/q0y2yTIX0stwyPYDS0zbkvqxEqa2DvcZxLHURVRhW0fCVZIG1s3coUV9iNQnHxUatiM09TuQBA44isteM1l37jA0Xd6Vl5vdbR3Q+Vik05LIRl4B1B3VD/vPWE2Ra6fHp2GVO1lOkCznECTTvAyYDDpA7ASQ3qqWgn28hvVnkGmUU9t8Cjvr61b4N/lJ+B/wld7Hx5QlRHCEvTRmacHFdBxh+hYD36b15I4REynuE+WM3yUfGrrtmyYYtd4NnuoVBvTlI1mhB3ADaNfj9gW2ZkAnDwAP+KiWr24KIW0PU/F9JOVlZhL5Fm7LMXNsO4Gv1eoYQQXAx0J5qrpBXhVIFsqAT6eNGAA/wv7zpN/xyWwR5I5pQy/mEz9hN5kj+8ny+9vIudvazJZbHGfHsSQ2k+st/YiWNivZpHBDH/kgRUQzZ/q18HEl5zfLZduI9gycNIMFB6WfWKvYbQA0pIDFGwbAE9Bw9i4uGrnUT0AldkQBieRSSLRcynHXD9ofSwPP+/NwQai3DtRLwbWZ0LBQHDCbaNUGJ2ewr5EPbpOsWObCfjTsswvWifbCnK+vhafgmsEfUUoY81Rv2BpJx1kmdXgvJH61meITUTAdipY1YeeY1iSO3Sy+LsCJO2UbvzfvX6jOoKnJnMz6kzJR0y2gxkLjYvOaJnXDvNDdTSwcspnNwa72wPYxgIZKE0mx1OdWGVDX52b8A8wCUQd4mv30ClnmLC8EPgEdyBgdiiNcpScgqrdLQH/ltvJUZvTa+NWFoJE6ZYu1F8s9C6eMfBKkrY8VFwrmrGmnchq+8qy30wWe3wNfG0flrV05BYnttCwe+EFrXWWOV6WU2muWe51pM9xkEkhL4PjTWPeft2Bc8FnD8+YMIL3MQNUaR+XVsXQc6qi6yiybiURdu4BhHDnHUqoMernxQ0fF7o11aN1B1n8SJtnVmia9JsPJgoDBMwkBnD9hTu3KPvksqhDJvB7FjVpFhAE+A0rLkBrR7u5B1i9HQrqREtXLR6ZcXyB0kSKk2ONqn9zXmRnwJ7Nvbxy0tzy+ozwNXyhq3Wv6XXbJoKG+nX0qGppHwo6XydaDIAK+vcFwUJ7RsAX2vdycxIc2s6zDZYxc95rbdDsYyaqtknPlFFWfcXpBqBds2vcHEexql4GbGQX4cS+cVw8302gj1MdgVKMX4RYYd2sQ/PAo+8aEinbE2nTJ5NmMWl8kAvqgifiCtAO5EglwpMMS0hnMPLmIEtnEZuTVLOC+WLgmB4czdh1uBt7UotDFfEfvyydR6+2nzZCs+G3uTVD3IXXDHtVkNT0AMI7GrSV+tynJw9YDg8iZnebWeH6Q4db+PpeBeg541+dHwa1pAqCWmmMn49QpO/1tLfV7Kk6LI2c/j/DQSS0MYSSk4WRW7IQEPHSs2sgDcJY404qf/iD/C308/11+Es52X2kHQCveEgwFxLKXxvSM/YZoilib1p0eI76imCjenXYviTdsZt9kk/Uc70pequf9n8XADA5bkHjXUSQ4dLNPyhBAYlum3lLP9omAWJIPcv0DUKEHZfMT+XUk7+yxFNaTdzAR/+IKz/UMMhTeWBzVVN3HANGk89Dfe0CoFeyz7SkC6kQBMlU/c23VP68VN9ImG9XY9LUMBwGc1jEdl4xpaUUYa0IkYrxtQnvYDclDNzKI2Xw5qT+r6czNDT4g31BhPlB7keg4PKUf5T1u49vtFzvnv7TFXBYvHUDDngUkkef8KmzWstRci70MywiyPtBmQs/Df79K5O5WVsJ5dYBjsJWW5FySRkhRIqkN5CZ8u6InvA4H6jWDL2EOzSAOal1zjE8m3QhPQFe9hJWqOQP1HJ6aNR7+BHnZbaC2hj0GvN2mRXTJgqRg3P8DTP0eCdDiMmxsplONRXzOaxl+QlOUmf0etLXJ49054fCaz/NTpq20haWLf+6TYxk2lKNma/2sZYC9kgPKpHG1YQL87aeBNIDuZo69FHjSpfS+x90O6ARMnafQa7X2CQNpC7AKFgYPok/P2dIh4BjuSHoWqNqepq886+10gWcoQtJr51n2y5Csf0ZTSt0F3AXQrFmzX+akFnTivvpPQx6RlyXS4wiEiuvsa2tWLD0o3bzGIMI3uTiS1Q4dSGW4SqM8Aq+HwfUdPLUFfxSRnd4+oUxqAwBG28Gltby8gzg+m/U0izmETP5H+eBiQ8V4FGnW/ToClKwlILH5F3EVS0EAI7jqvXTAxu2FagT1yhMpCTXZ0LRIGRgfwI0A5kO9VVIUUTIT2JcBy31uT7RKGFDxhamd6c2J39liQzig3pO2Ihuh3pYbCOcAbISwN+WGV1UGwSKo+CqSvGFtYAgi7V+Oq+1eAqYnNwepbtZZWtrtj7gNsoMR0BlY5wlOpSRHjpnm2HtB14GqYAg+CpUNoaMtnFg+VwBfa+DicngiVDLNz5uDDEWoqdND5XlpimQ1M5D70tzHPSPfZHDl+a74ETjCV6wB3ivD4dyuNH9pZv1t5vUVU2rW1cyYvMDyNgSg28mdnzUABHQ6vWLfyDf//Nl9pi9Ic1utfJAhzdxffZCKB3Drho0YiEM5uodqYg+APEf2Zs+T/ipaD5UIdLFb1yWtWGoArrb+02QyvbU76lrkt9oL+Q1+iZu59dpxXJrbGW7Sm+ws+CD//3bOT/7/Wh2cwF4VQVQQQhVBrDjYjcQRm8kqTSMouBKKRcXUWsPGBRTQzC/Iw41GFGgkEhhLQAKXryP+8wqkFdR+JAvUDxkrM3xoj86CgEMfzPAEVe8VUKm/h6TOUkcZfliK1BMiIbFBHtk90wgq8NRzXodTY6eGwaVTTI3kBQMEdD5o1pkh1FbvChVTsmLK4Gy9FJTC0INtwFnWXa7dx2/ezMFcM+EjhgCfrLgRaE7XbmZyEGrudShQD/qygG4hEbxXKvmpusMLOZofQ87SNHZ3infqS98FknU3cu5Mg/sHiI94H8YWPMl1sdPp3GK19KoGFu98HObDvMmDqZr6OzlvsJvZjKTmoGwgEwj8qbjWnx4+BmHH5DN0Yi3Lvu5Ej3Fr+PZ4TxqN3UGjbjsonRkm4oM9ENDXo5ITq+sQffcPFNVtwsqpvWAiPKXCpDobIBc69l/B2vkSDL+r5wTe3nWvv7P2XJwaAbxhiByjBjruUqkf0TqgetUmNRdRXeRxogeULMmQOdZ6d5G0EssQQaGVGcBGB6CqBmabQ2OhuQ9ls+Wfnxw06v6gtpk3dn73VrIoJL8MTsnVQwHbbAG1DD+RIQssbZsVwK8vtt/yccmQa+erOTiRlYmDadlzAytKu1EVHiQPiAWeZ4GLOecrxU4LeGqtb//prf4l2w00UUoFmQhuEKL1uTtgu13A+YDNNXgjt6da52da67eBt0FEE36uD3FKq407UB079abVJKuH+KSXZxtkMvs3XFCVDzxt6KpDwmrev7kPdpTBX8x20zxD9/0++a3rgBqWl8GpUp+ZIQDzpYCBazECLNqa949nQIRsU6uvRxUXUY9jKOy5IMk5j6qF9Od8q7tEnbuGwUpcgRhegat9lFznRnHDDx+i7IH6MjE4gqiG5kFJ6FvucW1m1zKLKqG4oBHqE/tVixMJST9MSO0Kjv4O6n20n5L1cZTcE0fiOplA5M1tA3ug1pXHZBqZBJePnsVkhjMg2KjwWP9wKfAhXFQPlpe4kVqvqwnGbX4dRnWaUWDtp42TN7jAnKcPqBIINr/W4GPwSeQQpqndhBQdpuL9SJmI9SunIilUgPl6c/Q/nCcg9NIMuPtxWGkO0hEI9cEFsL3cUysVbV6tswtCni8TwbVtVrztQdRc4BUT1WhinpUtSKbzUlza9sceAYKa5Nnf8Nyxd5viOL1xCFfnynwsNbe8gdwl5d3fUIj0d/jXigJKSWhA6wZunectwM1DJbtphI28zTDsMRzH6RURmiR/egROxFh1EDCqRuMGfl7Er8ZTmWytbsTph/3OADvnTP+tfhJ+QV/5H/GTFmlYTYRK2EtjEsklmxTiG0htYXz4bqIpZFnrOHL2psBVkgY5sDcWNQQ/0owf22GVof95tQSsguh8zzYmC+SMH8ongdS7EeBij/29sEHULAhJl6RxULDoSWV7WmBUxRpardE5Yg9Stx8Di4cNEHquRx7KS7e1IoBat3eXWVbT46KaC7BQ+X/e3qbny+JJA/CazUY5KkeWhWXqFlfQjTBK6R8u+6+lE9EphezclcTRwiiu0q3YTTxBVPHtLWnCmFkGdIHRLccwbuRYppUNg5shukocRsNaG2Ec5FyY5lIMK11mj50aeV9/xAWZNjBrL/dIwLpI6+urpN9o1w7r4bNK6sUVsu9t49f6VYr/6buctjqETbvSILWSotwmstzGo9f65Jn4TQZX6VZ8tn2o07bt7am/o88tszEJY5m32CBtgK/RL+AKRI7yB502oKEM6HIyoYEaCTYbuhbx1d5jOAkGs02WgE598CR+9cpZnn2rK6razCg2QxooJOQ14+u83JWaAKfuWf2+ONurHLg5GT6Y4x7w2cGi6hsFe0sb0zl8tQT6LbsMfnL+fKbYOV/5E1MfpdQlWgfK4Pzz25zMtNYHlFJZSKXFh+Z1fUDNCsAM4E4lzYmiEXmanqex7r/HvCktQClTt9apqadnYA3Wxrx+bl7zA9YPCdR8M2ZaRNA8zM9hqhFIW5UJhuKaZgaxFjbDgwBNW/c92XNdmwS0cTdUvOmhEd3vk5pT4ERGHRlLzDH23GmOkRQAXlV3o6r7CCSFuX05rX0q+6gLxMmXvV7fVaRdguiwew/XE/jGANcxuPd6OTAWmmbnsidbBrmKzEgaDd5C9DuF7HzehPBaQ961bdxiBODEfXWwZSPzOg2WyFvL6x06KiDAsAGcd1QymAfMYi+YDASh9jUsYJl1sjZwaSPRgEM/s9G/aecNA5ZTEf0DfBQJa6Di+0gBepOB681ZLZGuuU8mPV0rIT9YMrd/l786TU7IsU30W2Xpk1NAq06y/EsfDMgRlbtChMZqn6FQXNpptef8oKn5zPe/G1+Y7aud6FZRwDXUWD0XmGqeYY/4AW8AF4Cq47+3ugX5Lf4lH25OkGUXUs0cepJ3WQck2JKFI2Lip2LrfQ9+Yk56hecY1oKQ+3mG+6ET1HJ6//0v2r/bT8L/gK+0dePHcX4PrdjKESLYd6IxIbUqyNvQhsvbz2Le3gGEpB6m4mPjg64qhyHm+VuOyQSBWocEwLogzCDv+IAs44MMYb6somZrbbb7HW517R4I73IIib5CxTK5jrB0Ycs4Y0eU5zihSLD0WXmrpwjI9CrogifL6flW1J24QkMeW1HazVW5HeITtkUjkAJysbBnDjH3cH/K2taXsIPXrLOqAo5LTW00Rby/S7idA5t9ypxJ18o9LIYFr/cVP2w/TzE0nLWL4oNRjC/4A+kT5tPQOObmZqIy+cRwit5sQtfvlnCECCdT6GX/BGogeH2jV3TIModsJ7XDQBPrt47DEeqycN3F9Mn+hpLQELpqif5tLG1H0l25ZNXtzqZJwCjoWLqctd26i2L9M8hnrAs8nUFb3Z/P1l1IrSbHOLHFOJAu8M1hQyGuqXSqE2g90H2fixOkdbLwa6kmKmn9gdaI+BW4FN57f4Re5wn4DBDWUXfiSB7YrKlkPC+Cv0kbAd3TZ/ztxpPWnEaUSq3JkXBJw6q3ccWIPGYzm05wvwarBkBNWzRla61rYh+RC88O9Fty9NEYNk5oR3/mypdutRBq17T/mWX/jb5SKVUP0Sm+TGv9i5Re/FTM/WWlVFdqmv+59hKBXW7/Obsb+LNSagxC4rwFQCk1FxijtV6DVE11xo0NjtXagUmnWveft1Bc7oinnlLrps6E19sAWCbhZnLeCMl4fmZWXoVM5jOQwZI/uvVu+ERc51HcXpR/yYBkn1BhjptJvzd7+VGYDGgx7iKuszUGJ1zl22Vm3etQcZ9x9o97jvWAhpvMh7A02y+Ah02e7zGfKOnyR5Qyn/FaPNeOEbWJNBlOf7EipzXLMgR8dsXTj+1B+CQSXoUQO2CXIOArGFgAPAp7piZBFkS/+ANFW5qwc1Zr+eyTIXqrRGejahWTN0uQfuJdm9l7XWPKMuvTctAGtl0rUeePZ1zFdZs+k/PYCNxLwH1wW3D1dio2euul3QZ71nm3+RFh6HS3ALueOfZx3GenNsxvlA6rAboLwNqCfNf45Nc0OcPtwfoKRl0V+U5eDZZ79wwi3hQvWU97ccfurcVRgqhb24RmrWpxJfKcrBR+qbqggzNJ4ib7VSRDPqbhdL4suz9BJmCbJbqr/u55/p6rKdhiUq2fvuv20Ysz538podrWajQwXJIyepxyl1n7HKG6bm7g/o42Ab0ShLZ+R0DG34LQJ+Xznqx5O28iPUtthsRSxjfhytpbiu1MUEa+UZci1L8N+NO2z3D7H4/i/hJ+Es52XwnubwKYyRAqToRwaa1F5JFEQWxDafXxWSj9R3zKZ0nXyUCbGUr0sh+cQxTW8gno9FoSAiJtdnOLZ50vwxEss8qzepj5/wkRdEnCsGFS2kAS0iZlERIEtePfWmmlomKhbWdJKmcXpHBibR0nkKdny/gUfvgQTKzvtDd2exebSfpST5CuuU8ooK3c9YTB0Rik9u43GTAzg0t1J6f2Mpc2qJ5QdkV9v2C1k0W9C2EGGSEnyqElWwmlgsubCXKOpshRxA2PKKNz+Gp2j45n27b20CqDsJKRlJaG07LBVjZt70QER/irag1/60yPnoI+Dv0jCtrCyqW92NezMQRvcmr1wnDBp1cGOhLJbII8CofNMpshBQGf0cB5weZz1IMoinmEFyRrubgBK7eny8aZiqzKGEcYqFHpDtaqRfBDJxo2LuDA+GZc1NPUhPbwEcESLuqwlDUFHV1V9y2QmJIrPj8YmY8YMFgToNLTTPba+pP9ARvY43Yx38s6TNAAB3haim5gcEJNQeaFm3GCLFr7XKrtb+ah9eX++9hsdxJOxwHdXwCnUgdRHBQ20F1uxtPmRpzPdBfQ3TyT2of6lVlxPTIvNWWhaqSwC7jfPKsBYkYP6094SdkI9v/B4zlonYwaCRdNWErR4GgiOMJG2sl3e4AzXvndaz+Hr1RKvYgUzCUA7bTWm8zyn2y5FWha6xJgmFJq0am2+zntlH08lVInkBqVmhyqXb5fa924hvX/1fZL9Sd7hlE0J58oitmL3KaxyKR+TwtDPzWuX12Cw6HXk0wEzFJtNwNPZ0iPRkDfAmoqcKsM2VqHoWxd36MBE/rLfW6vsqGgLNvCZKGoi//gYAHjS2HuchsF+xG4zlM70NY8P4HA81FcoZa7THbVQi0VKT8ZMKq0PvjEvL/NvDYFcsx5knyimrrGPYSeYR2zKYz5JBI6mdHpaDCvpvyWGIoces9t26YL2HpKi9rbKmA+XD5NaCjztl9NjxaLWHaLpwJ+CCQPWk8FIeTNakPdfoUc7REDH8IdKRNJIpfHvn6FRpfsIIVs/sTvaLNPUqSHG4YQOaNCqDl16IvLogABAABJREFUkKleW2QQtc7yGAL6jgJdYH/repQRzhJDhfqAm9lKKxLJZdm0y6h16TEax+5jT88kub+5uI2dN+GKBDTFv1XMU2a7TxGF3EfNMoAcePqFUYRSwRo6Sm1OvA92u8+Q1j55tuzPJcu85mYAt0LzBJl8mWvRL7vRWz3UnUBp7XNBoe3L+WwCejSiegxw+SNun8+a7F2fBBWQLKIXeDLZM0xZp/mou0in4AoGWUrxGvsZ5fW0BITAP+Nql3XAT2Zfr0Ocs4cipEvldRTPEEMR0RSx26Slx9p0yL/Zfu7eZA07xetr1zx4ym0mqYfP2t5k5/zkz2D9zK2zLICG8MLU+3m2YjQxIUUkkkc4pewmnlLCCaeUtQu7E9LpMBVrTL1ln5Me3c8ccHkD/v16Pe1O9A0B+1gQmOxzI4bJAiRbsYFtqyUwmdx5PTmr3fhCyAXCwilvEOnSbT+HsEcPUTbZZA9NyYru40+11d97xitTG8o3ch2JWpx3Lm3k2v7uI729oOol9Dv5Z/dkrHSRkrG0EhgLnTpKhNnOU46URtA5fDWLswfQNuU7Ni29kOgeP1C31hF27kqC9GD6bJ/NESJYOUx8Vp8ps8kmhT0jxRm1nLCBaIpY+XUvtl/SmOYP7IM1sHq5q4tgwWcpAjC9DKEfzbIyBGx6xYaCgfbRSH/pzvDOIzdz1+qppHeeT+Z0cw+eh1rzjN8cnSTBxlzoM0LA9Ubasa9bc/GHNqNmA+L7cLPWt0Nit83k/qMtjDYnH27WdXTn0OoSnEBEzRk+f1OTcAP7PXACIyfrHwseIDpH5i5aD0ZIDBvNeze4q/YKyteNJfKhbsFtdddao1ucPFbm9ns316SRfp8Am5QTlLVtVPSEmv93ALpRnR8lWRNeUtdg08JaR8q9aCuK0S0bbCWe3cx99Bpht9XGK84ML/4yFQD/rb5SKdUDKZP4BrjCAzy/BqZ4Wm4Ns32klVKJVJNCY4HWInloWmvVkO/++e2UsXatda1f4iLOZisj3FHnqyKIx1a/QtPOBs05UunVaRCqBfAcAiasmtdbPrjV0Bfm+AS0RXj2fTTgIL18ki0q9hxXIeAD3Dq+i/G3T8IkIrwIB7A6UdNg4E8+OCrZINXADFzve/a/0sQo48w538ao2IaJyqoFmaYVCo+Zc31IzXYZArKsw7dkgDSfKy6UGkm9LKGNlLwYR1ZKGn1ZQDFR3LfNIJUPMiTmP9wHmVBv834WH+xNxWeRJA9bT86JFCf0mjhjM3kr2pCTnSbU0Rg4emsMrC+AR2Mpnh3Fm/yWWm2OUXQwmqIG0fjI4A+NxgPQqmobx66uRZ29J6RJd2fc77ERMrmyGvKXwv74elQQynSG8qn5gqIppLQijLXHO0GPSnrFZrJ41gARWDoO54/cws7s1ib7jQQmhvhkkvKAWZaJRCN3It76UyQTd0cOjEqGIhjEHGYyhBiKAJ9UjfXyOK8GwB8830culmUm9qp5/QZRMb4WiYIOB3UPkjVNNU55SYbU0gxJcJysTOq8lPHzAdD6Nrzm1M0E2mQl2VOPwu3pyNkDcLM59i3IfQpQKnSoUAEZFCfTqdbBzR2oyRyBpjr4aYeqdXB/h1AqCWKrLaw5g02jToc+dNa2UznnJ38Gs4+PVVo9Lu080kKyKCCWcEpZTWciOEIVQeRsSOP8PltozD5WthYHph4Kpu4z/tRBazbjo1fgKHGr103wqhbS8qmLZ3sbcJ0JbPSUiuSYQKlhBw7hI6AdLTtvIMjWIUwE7pV/KzZFSr3bIKS/L3YCXh8eMkDTZooC8L3qiQs4wQGdXuvNl9LHswVkfihgS2W56/UId7tsUmjUDfapqSLCdwy3TyIi1pRELo2NYt6c3GtZfHQAtRKPkV2QwsCe0kqlKHoydY/dy9HMKBYOGkTH2cvpM2U2oZQzp/21ML/cCTpvW9oe5sMN46ZQToics8rtz2lB549ILNCb+bQWWPPptcPHINLUqIZTCmthacLFpA5dRVYH+UJPXF2HPQkChKN7i6DQwq8H0fSSXKIpZN/7zYU/cA80WreD0i5ytvgQKZ8Opoowykgil8MNQogMrnDF4YCLkezuN1zGqcwrQgcQVbEfiPMrhbIxAyv4o0/DPag7a1hmR6QuobBylhMR03qwCx5PdUw1Gd4a7r9sCnDHFvg82W+5NsrJDtDMAaVc0T5nfweIP4GeAi95+ngqlQMTkyEX+vZcwGo6E26fhrqc8S3HrJ2mr4xRym80eNvU3bvH0XoZgPLQJX+q5ZbWOo8aidS/vJ0FJK//bltNZ1qxlVLCiaaQemn7OVJR1xHF8Zr+2jNZnY8AMhs9s0Xo9YwDnImADG/B9Xjz+rwPDh2GJYfh/kj4NQIcbSb0U0GTWifIhNuKsliKxSykobXt62mcl1XjVSZy5dbrNYQr7/FcyCvwOERXDacovzGgXO5MFK6C2wUecPA9osBq7VfAVT65D6sQQkFtXLW4bcCHVlwoDDY/QkluHDoF2o3+jvdvuJu+0xbQkAO83lIG0PtuNgB0uPwFB1dJXWQbyFmRJnQYkwUuJRy6m0LSXrHQFmq9fowTQ2IhHj55+0Za3rWBVrHbyD+cwBEiyCaFyyrECV0d8hlVQUHc0HwaVfcG0ZnVFBBLFUE0pMBp9l1FMJ9yFdPNh68imCKTjgunlPCQMo4cioDzg1myP92oAj8CLGfnk73lem2k9mOfkPls1rlLOcwPhekIJXci0njhe+DjZFgDXacsYSo3U0x93lWF1UeE/biiPwvswnw4ZDKYI5DvKAZ40RNImQnUF8EDwFVq7uqTvnUrDVBsi/k8ZmoRA9x8G6Tjp4jn2H3yYjOHrELArLUa6bse63Hq1Zag4mQ+PYAzMBvqV88JIgKR5W6jxuAk5J3fknoWFj/OVlpRQENasY33TGHxi5yZdppKff8L7VTO2b9qlkp3HAnU1Ib3uJ0QKgilnM82XMcN7afwZUV/Ood8S2r7LFbQjeyKZKlZTyqHUVUcfd/UqkXhBEu9je/BU289Vv4Cl9t1AHoDOCJnDnPDbJMNn2Tf6DJATKZMGy0Xb524zWCpCaBW47Q30d8b5tIe9z3gqOfaLK635hNg90GJZOU2aEMSm0ncvplcKwhhQHbowcN0MlmwKCCFbL45aKLM3TP8RM+oIzW1KWQzDYOQPoMeY75imVoBn/hYM7gT0Q2KuFgn8NdBMRKQHQVrV3cn5ILDVHwYSY8NX7FMVcLnhupZDH8Yl8Hzk3yMHjFOfNUxlzb7o+cSvPWcdrnNbtqMZwTuoxIGnBeEn/YBO+DER3XYcGM7otcI/fpIcQTDG0xmJkOIopiim5oQlnWIosPR7ClMhEyIHv4DUeuKyVvdxplTlVTGOc9Q3ZsKWX3kIqYeucuP1QIBgNMjBKRuwNNJoGarN3w/xSESoe9mFOlWLuzlqseeqL6Pnm2CwWyUIDoGUF4oVDa/NmBHgXaDzXNc3dR2N+tpAazTsue3k+HL4XhJkaoyGfbjJy7UmB3sm9Uc0kEPxq9tit91B4owaQGwSgETTW3VcZgz8lpqPX6MjrFrpNyogOo96c5QO01fWfgvZllPt+VWNVNKTQRaK6XeBJ7XWu/4F85/2nYOeP6bLYIjhFHKDhKIpYC0kCwyLefmHuPQvLQ9Eyl1aLBmouz3Y/4VMhpn4QKxMYgjsCIJ9SOlncVr+GWvvKYigSNl0NrNNkWUFlK3n+H+m4JyRwJemUxSYJH35/f4ZVXp4jNRZbfuhpdwqaAfADOXy2fWnmbIAJt90j8r8bj0IrWUSFvnuIca2lOUUS9pv4BQ7WMjF6JWwSJ60w2ZTdx37WTHqzXqbAbKCyGx82YKK+QkJR/GETZEBCL2zWpOot5M3iXizJtOyGXPrCSj8lsJdYPZtqE9xJRzV+M3ySaFbbTi3hBB5+Oyx3J5yiwuX7eEgR1m8HteoBNriGe3Q7ueXDqcqsogbo+UGcCm7Z0Y2GImSSYSMGf7EDiqJJP9CZyIqwVbfTIAv95bvu+7cduU9DWvbYG6Joxtf+GfIwGGTogq8WbgKriXiaygGxWEcLNuzAfDgKcqpWAVJGttRQ8CTHUDVi6HJ42U5BCfW7hjxH+VQrKjJvtNTj48lgDpPvQ4A95uDjMtUXrLszHRlaZ0qLnzkeBFnOe4APcDbT3P92OSjVcv44LAqdWv3bvMqetMxqU9ncJs5JpgJNtZiV/NmF5nsr6ewLC3zUPiJZsJpZw8kiimPsWlUbIi/KfP/d9o0pss5D99GefsbLA6OMItNzCNb7iYxuylf/u5QrENKSOCI2STwpFSIzOzCdgUKqyZIdUPqW5BfE+ZAZSBwaenArZfikPBt629vC0xrPuulWAU3P04gK45VETzelL6ZDFQ1wWjftcyDHgvA6HHNIDk++FFqFiFBOECKnTVSBzQEnKdu3zx0gGEtD1sPotPxqN6T0m2sx5QCbkkspVWJBi0VTAmlmXbe0Neb9q2EKptn56z+etDtwpdsy60HfQdxYb+0m6klIg10mnsM0Hq/xvxZ76kP21HfCcT7iCc7LbVNfBmM60on1dQqBIXcB7BxSARwI9VZttjMtciAlgDJ9bUoai4DlwB0Xf/wKTBD8Gn0zkwcSg8A2Wf1RdfaFg3RW82oYgmMtcJBgbMgZiBUCjzlKNdutO1/RIBgrXxyxRXsxycqY8TnEzAoVS785070NpNaa8MF7oyn5nrehPUYE8gw/gQ/QJGwRaYPAt2DkKp2RBhaqhikCjmFfj9HpyM433GeUadIvP54PBT5sZs3211GTTyqNmqkYjfS/ZkOk2iwhsAkhYqCOsKZN77N2AmnD9hC8FUUZ9it5TIPqdnuJ2mr/zF2UFa63tx0ce/3c4Bz3+zFRBLY/bSm8WsoBu7iSdRx5MX2UYGl9b+2zvRVIXIrt+IZD6tdYVa9x7jRFfj7OogQLQQmTSnIgPcBy6Yu+brj/hE3YhEbjOwLSk4Ij1Ek0evN+ecTd1j8uypWZ5z1kZA37M+Acl3Y7Jqt4rgSy7w8GueHSTDeOSpCNhkBjlDbwqUBndEIAb63IztcbPPEhP3TDpPeqllAR8chk2RQot6wxXRKQkNyHTtWM67s+6l8eC9xFLA5zP6cuXqBTARKk6EEH3VDxQFTaboS59bx1EHyuYZDmm8Ubl9Ds7vvIWds1sLcSEMGjbby4GsZrLdi6G8ze/kJ1sEs/sLB6tlygbmPT8YwqBlh63MmX0tFw9aSinhjFsxFu6DPutmE0Mhk7If4vKUWWzKv5ClTS+mZJlBV8chtf8qsuYtgHlIoGKPuQ+9cVNkX5rXjxEH9xFQ6KFz3I1MvHojjRTWS7Yx9a5VpoY0j4c7GHXEKAR0fuO5l5UAGY7Yj/46QSKuK8Upkw98MBmuH+5GJS/FFS16DpMhNc/1c/mSbR+NOPqaspTH8RsGtTaTRp+/GBB46krGeeg+JzE9VYCmt+7UBqxtDUqg+QHTQvyDLEMQYZBOPvkdWrM08uY+f3XL4McpPvED5bVCaUgB8exmYaGJPDU79bX/t5pGua0Sztk5+1fMBjOLzP9VUEwU0RQxZ+8gHm78AnPpTxTF7CaenElphFwntWDZ14Rx4h7jD2ciQPILnKBs9KM/UPRMEymBKzbrhJEr44HJxKilnuuZk4H0ZvmNrEvBX/gP05tTicgOQOkN3vqD6qaWAr+bJ29GesRfjOtUQ8qdWjwn09lXztdQX8mBYc0ksPwpbmBvCuhhEhxVyhw7TY5dsT6StXSHchtocxX7bn7hHVcV1WTwurOCBfSl0ER7U8gmvEUpeV+3oapFMDf0nMJ60qj7TCFHb4qBINhUfKEE3Z7LYJCOIIQK1tKJG0bITd1FPFUEkzMrjejBRY4qurdNin3vFduz68oQyH0EV83Wa5WVSIYyWsSFuA44iijSfiLPRNHwJuIDU4fKnGtOBn10GnkkktdmpogkHgc6QVjqIcqW1YeJA6E11OuRCEBJE9i4s51cWCgy7woY8tQK4Go8bWtOYqN9TlcDPwq49efBOOUrejb+4kIrgRdAdGC6Y0vyVP3BMpe07Ng7MuBh8/+XPml5ZoAv+5H+nUvNPKsFIijkUXfXL+O0GGMvrnDReNySqKEYBdvmqMyaP6q6DKd7j1KzpG0K4KgRvWii2hOHypxyCBSVxtA4fC/TZg3jo6o7XEX/kprPcSbZafrKf5UddLott/7jdkpxoVPuqFQtrXUNRIAzw34x0QQghfVUEUR/5joUy/cj75aV93k2fK6GSfUYJDL3AOJI44ArzcqZAa94JvAX+9yakHt8Ev2ydJRrPGIvlpbxasBFWwBRF+hrakltpHieacxtJ+qPewSOTFRXDxKqT8X7xtklAVdmQG8DXr7y1CHoyTDEjJgRwHsG0Jg+7MlaBHty7MHTfHI/soBX1plzd/DPnK6S84QlH+KFyN8TRTHZpAA4tFarYNt2sHAnrWw/wL4xzUkdu4pSwtnWrb1EEUOhx4yvWHaZQSqLPiKkaCAV0a+I6NOt35truQDVHpkAPQXpG+ZTSDQRHGXlCiPC0G02C2cPInnQenJmp0Gncng0lFovmCh6uQGODxgX3AMB21ZVjvPho9vE6acCrSGs6SHKXjWTH+u505E6zzhcCm4PuHnwO4RRSnPyeWz6K67gwCiJqDoRSfkG5OVJD+Xb3ushPpiZA0/61304AjujDdgcglOg4/TR9FBXlfrI3LsbnUP4KVN2NOczKruWwnsq8wodOMtM1NULMlV7s+xkdCTPcxWofuu0QvIATz0Xtx7VOGlHQOw8OP/HLaSQTSgVzjO51TSI/yXs5xZMqN+phb50TWAjOn/7RN101ooLWVNK1dZanyXVSGK/mJ+8xkyCbelIJAz96/ssqOhLtxBhrcxbOJiufZawuuAiIuofoWSLBOgatt/FgYUmajMDYUGA+LBX5V89FT/fFGhWmE+bWnbnN/+Yz1HD1tkQVHCME5cJoLHjhSMaZEx3ruH4BtTqnjXQaO25/uTzU3rXS2EkLwCuzyow0Sm/wJk9hy3TMRUlHdctZ+0t3Z3P77W+zGbBp1c621pxoXaGmgs4c5XPNlwnYC7xGEmxeVQRxO6D8VTMj3TaoCWmbCZvrPjTq8Z8zGdqKwCjdRXj5o6FKPiiW28G3L8YVsGGNVLjaYdxKyBkM53WfXkBqVdkyL5vUg/OuxT4Dcwe2YdPuZr3190NcSYd+Vko9NMifvg+rnjh73CetfRh81lxsBsVmyLhTUictlkot4txGDbJw9aTs6sd+rzzwNKzTfcAtUk7tbT/rDlqszG4c8FH3RIPP/Er61/+YYEnLvC0wPBQBoJAzzPrLdAzxzPaBLr/aVxbNtBGzkN9k/4c79mgB+iUgH08dZ5e01+5mU8AHp8FxJo33QHJdNQ91pPSI2HU/1Uxw2tNZvyjT8nv2KoJW3vtzBQXOk1fmYvoZf9kxlNJ+wCvuFAmMNkjLnSH1rrXz3HtP6edVsZTKTUNuFNrfcy8b4zkf37zb7y2s8YqCOG3vEUuiUIHAZgpjsehDDZ3t1cqQ4SEspAB6WPcTOFfMuAJ42yqFYXZjCYCMur7XECx3xzrSndrpTJE8ro71S0YNwpt26ZY8AhS23c+JoL5R8/5zbGnAXdHnlQwSNXCFLT8TRYswKWFPGsu6CjQFHImpRl6rSnsewCYg5tVGuLzH9Q8VlZvAgU6lkJiiKKYqdxMGKVsUhXOILpp6YUQCtEX/sC+MeaLyIGsa7tIzWQnSJ2wigJiWfb2ZZz/lfAqd267kQoTOW96Sy4HrpCBVG1DJjyXTobew8mc0M+l8CwCroKFXw+C1pCzLU2i2LVDoQyGxM7kr7tc8MVtkDpI+NNZY7pITUdvRFn4xhwYnyw1m0eRSG0cjrNMHWSA86j2Tk8xGgHPQdXgII4SIQq6VqXYZI9VM6CRB0i2xr8XrMoQ5dsnAA/NpiZz2ox4l7VAIrNrMuByk0U39GIX5Pmkf9nJjjsFtzb5JN+9e71mO2+tyi24PXLtsktw+qzVtA9QY89POpnnfj9wxHzmKiQTHB2w7VXQk28oJ4Rv6ElBQUNZHssZa+eoto7lK4mgvKG1zv3Jrc+Za8eqL/rr3usIqV3OvI8HkzhiM7QtZy+NSIvNIv9EAunt57NVeoxI66MOoOYD75uMjbc+29ZsmoCQM+G/CfFRV/pvZ63huF0ceE5KIVIYRKtYyNkoCDaoYJTZqjrVVr2MUxsftvYQVo0tEKSCCQBfUH252gDsN/zKV/FT0LbZV/U2wmIBF7UZALN2encYIJRIEIEhgEUMII9E/8l8sFBVc0nkgBmMjhDBvkHN+cPsDJ7v7yN27gHibfKkAeTFtKFliij65q1uI6Ue18Nni67jGi2BxHGTbqTtiO/ozWLp8Wm5swg0ijSXfRCXenseroiQFRuKwKXlVuJWdJSVm22PizjS+1PupuGwXQAcmCQgPTphL+WLQjl6XYzj82u1OsaJJ+pARjmZw/rJnCIKiIEdBQkydveDph3kZxxEJeQGo1MRoZ5goA6o1eIg1O8lYAtIzS5I4PkZ9zujKY54kNUocOqNByGsMFPrqyZRHcya4IhQbpfzBw2Pspzx+IR62w237Ka+qfe8AfiLh7621SzfBrolp63i7gB2W1Ji8gQO0PRS3ANj1q9lOG30HBttrsPOfycONscuJC02iyNEsJ40yS4XIAmQs4BUc5q+8icznkqpCcBgZLa3SClVpLVuw0labv232WllPJVSTyHSL9cjU9c3gae01u+dar//ZvslM55qA5ADfYbOJolcJi0UFR8/4Gl/uBZM3eNzlOHajv2OTWPMCPG0nZh393vVOkwGgdc8E3dAeDwmrvi5zy/a67QjeSzSpQ/a8GIj91xa+1yhhGLcOtLzzatt49IR2n4lI9hGw9vw6xtmz2vBiFVjs1/D44fdjTgPOhlPerVZZKLB9Vbtp+S2OCmXjjLr0sx5TEarM0v5NtsoMhTC2z1vcWqDpjOUbW+3l0j26xrmKwFRV+D2ZAPS+8wnc2w/2o75jk3bO8EiRepdq9hRkQBASegX8JIZgT9EBuffGUGixbFOOXfTobns2ZUAxcGyjaVXjwKGQ491X7HMzjwWJ1Cvx345/qo4run5EZ9k38j5KQbsTjA790Cufwjw6wzpQ/dBBnwp33tqfwNW1QJ40uco3jacsYur+JRiophbOgCAo+Nj3OfqXZ84zD2er+Jh3MDIeqRPaLx5vnYjTdELkcz8jSDBj1tFudaYnmGcnCSvqZVjMrvvmknb43ZL+/zeCpd79p9rwGZg303TL1Rrd1trqgXSzsaaoazrcWadlYn/A9XM+V3eXHONqBX70CaTYdVvOYKTBQCgl/8EQl0LyTPW04qtbKSdo4R5Jmc863VK0t3X/PGU28xT1/wvZDwbAnchI1s2Iuf1pf5XaUX/BfaL+ckrzQ+uBMFxdeD2v77BRtrRiq18XDCUlNhsdleIqE5KSA5prHd8KRh/GphNnIYEMG3tdrF5NQFDR7xvhD/odACqypAyEJAxqksNZQHPmvWXmvddMpxgbdhw0QwojaxfrTa0KrYGwOphZ5BurqWGocEbGHOCdRPdib3tv1kVW4fQg+JXL24g9ROLGMCDjOeVDx+TDHE58Cx06/g1xUQ5GgPrSWPP9kT4UBFy32EqsiI5/5It7DSKpSFFD1JRGOmo4ycO3SyflXASzTGqCGbltl5Qt5yvG/ei1/0rYQ0UrJIySCsyBG4m06shYzOctu7Tm/0EiG2M+J1O8NGT13DTro9hTbCAGDOnuqPlRDLNzcwLb0PdwkLn+OHhpRxQ70nQ9QLgt3+EBY/I3Os4pHYzfnRvGomNc8nd3dbNeBpFdHq6P28VjtvKzCaPk3H1LQKAp7Nftvkn07MwiWotgtQgpJ/ri565mZeu6902QEX3p0yp7+FBmYfol3H6eeqXPdvYY63i1GbBp41f2z62L9RwXpOpr3XNMer/qpiiZRIlv7znLOY+cI0bIPGKwb56ZmY8T9NXnnbG80y108p4aq2fUkotB5YjKPoyrXXOT+x2zqyVAV0rKSWMSoJI7mNGatJwdK4/wdSk+KRnpcc2jbnQ7eW5wDiXZRiwILRU1cCIzkT44IjXOQ6Hy8MkDgKuQJCzOlIAkh0gEsxrlruJmgTca475Z587iLZFnPpkXOVTu8/LuKINMaCCcZy/nmGoTa+a9fPtXl4xdY9w+uMZcL1PAFsMlB0NF8cQA/Ve3E9Jm7ifbM3+Cg8ykgkkkstwJvNI3ASIgkYt8tm3v7kAwlicYvZ6V+wnc1Y/8H1P0ZgYyFKEXXeIrYdbSWZxiWzX8qENbFOfypv1TSDNANG/mBOHQdDQStgTLJlrQ22q13Y/JZviSF83n8yX+8GT8nkuv2QW+0wftawtcXyy5kYuemgp36ol8KSP88duYWfP1vL5o5DvfKvPOAKfRFibQNaqLnKi+C5CMZrog44Qz26KiGEvjTla5yikJRgRAh+YsiO9C0fwipuQicUR3J6uA31u0b+twyxEnP2T5joALKNkCCLP3skWoMCJuJoFOWTf/GpLZXLV26kzVf3xa38A+AkKkYMEE041Z34LlxEArsx8omEl3BxZbRfHEvzfOoJCeZ6FtrbFmyV9F9qxgTySyFvXxm0sfhrUp/9mqzonF4DW+gDwjFLqOSSHNgmoUkq9Dkw822i4P6tZoRZT30m0iMOFUi5tVOofIbsghRN/rwNxkN0aVub6M8jU19UP6/TjvCsARJqhSA+TybSa5g82lcdFMicDPjILVhkmhvWHq3xOvaWl2CqAhz37WHsWyIETyTL2qRwh/agJuCClwLN9oAgSJuDVyn3fmy+5S0cB8LbJPtV6vIb0MUapHREQhOG80vgxmdTXAY5D1uFU4iN3M2eKRIbDhhwitcVqsmK6UPFiJFwBBw7Hyucqhr4NZtCwwQG+aSlKudsuaU/YZ4eIiix2sqYhlMMmaDp4Nw05IOAhHmIbQqxtnQMiHHPcXMthXJBhRXzqmP89GVpC8VNDjqKYWqHl0L2ctMFZgNCF3113r7CC/gZs0hyNiRHmUSXE9txMhB5C3hRzrFGPwDPQY+lXLNt2GVmTjJNJh/LGoeg6oA6acwe23tplLnA+8uvvhJvJzwXuE8Cp1GsmA3i/ANUy8ywtMHOrr3B0B9Qg/ESp9GyT8RwY8GzZazDiHFoPlvlXqwzUX7yBWiObvPUCl9YdV+0wDugMNPt7UgZ46gmG5usJ2FvQqb9yEw+Y0wYKDSk1C54cTMOxuzgwshlFR+tAXVdgiHJqZEOcyXYavvKsV4A/XaptPBLn+SsCge5XSj2gta74d17cWWNXQ8O9e1m27jL6dlhAqPGy6nkcQAhAsH89GuDWim02r7ZOLwfJir6R4dS9EYzh+CMg5x5w+DdXumDUiZDeU8PglQ/6IVA/Iu05AkAwMQjI2YQb1SrGmWRvijSz7CMZEgm+FMmTP4PTW1KpMhjvKumiTaZTxQo1MR3J/K5BANEaJNQ5czmwiIp95rqzoCQuDm6Hug9IFFO1MGniHalODQYfQw5p3HP3ezw36UEacoD3Bw3lwKBYXmSUfI5euHTmF6FkURypk1aR9WAX9k0HiqDs9fpwUyW0raRuejFHi4cTwXKhK79m6lKvMMd42gSqug5kZ7fWsvy15dC6O/WG76ckN46wpENkduhH9JofKBraBGYuZ96cwU4LDuoBhfDtiJ4k6mjylkJ9iqm/dBVZ2zvDfiXOej4kjt5MXlIbAYR9wc0c3g2fx3LHoIkUEU0h0eSTwFp1EQwx4H4RjigDWaCewAVka4BXMgCfTNbygCWecKadSo/CdWR2wjTRzfapa81M71cIQD1kvnpvxB6k3QoJsPINmAda3yN1mak+qYG+w9a2uEIf1qk67YBsfWpusoBzQwfW3wkNSk3FpcAOMZS8mcAeJZneXpHSouWDgDpou89luOJdU41ww3FzDxYj4h9XI+0KEuRPz5Asa9v23/0/9s48vKrq6v+fHTCYMAXCyxATDCbMQwNEGUUQBBygilgVJ4o4oeJEW6vVa5xtUVtU6oBIUSkqosURxEKRURlSZjBIhBCGlyGEIRKB/ftjrX32uTdhePtDFMt6njz35sz33HP32t+1vuu72OaoDKfiFZpPYOB5kLifHNXWGFMdeBYJkqYdaftjeN5EJBcyBJlujkJGl4+Bc4/XdZxw5mrUQkCoG9OYRjdR3o7vyAcfXUb1qzdRK34ba0Y2p+2QWSxIypY6PsciqQgk6W/6w9DxM4GciB+flY4aFkUxGcjvtl4ENurv+66IAAgIYqEthnwFQy5g6bgzYQ3EXS8z4xS2UEgD+mjh2wcjoOTDGtgBUhsKlaGpgodyqLUQDTLcuGPW5kivzr5aG7DKjZtSZLqGTD4feiFdR0gEd/rI3sExKly6h4PvSgBt9pBuQcsOQCb1NfWeVYRe1SazhJZcP0iE5mbTkTTWk9u2vdzfTjmU/CtC2wGzWNClEx8Mv0z8e45GDfpDyRs1qDDwALuoyu57a3H+iIlU6ldKV6bxOPcx7ume/Mp+ztvmHDrYteyiCkvrn8mN6/5CLq358p9CJelwrlznnJHd6D5EKMKfz77Ql//U3QenPcnFtjFprOe5wqFQCBkpeaxZ2JwDdYSXuWZ1c5mvNAEuBjI0XVkhAhVgjWlEhl0toPND4Pn9cDvMXH6ejN8qhpRw9Q4OUAGzj+ies2G7uKKcpyuSub9Tlw9DRoJhGpzsfzsZ7ywjk2XQpDkQEQqwKx35E17BNkYJOezzzLr9mN9UhE66zw3A4H4wKgeT0i8qe+r6gpZnrmWZuX4cPBsCqSOBHgpCx4S23x4zT3XnGUWUmfMQUUgQIathMevdZ3tkIlv695MMdaqFAsPNvCRlQGE7YvvLn74dpa/82fa8dna0VNt1wO+ttW8aY05Bqgu7WGuPkGf66drxpNqCZlPmGgYMGE2CZvZeffnWgIIacOXVWQZiJAOA74WeB7DiwdZwIfINuCylo0m6timqBmvtKVE9OM3j+AyQOlMXebqK0cG1jnt8UNQ6iAEHIFSih/QYxSFqIr4uzhhcQhbbERFYOGdWUMPpo16azarli03t/0ZHx4z5Hl4KZUGXAhv1/YRZWOv3NcZRdp/V64lg+gHv6WfYcC+PpNxPa3J5i8vZRVXm0Y6NZixZVnqS5J7bntR/5lEwIBO+gw4TpzFnXDdaDBAq8ZriTEruqSFCFm2RgbXrfjhd+VT/6ETtvuvYcllIqnQCMrGpAB3emcacy0IDaw6S/RoMF38zHoD3hyj664+ntsxE6jXPRLJ7HyIR1ub4msgn/GHjnt/Dk3V+z3tcQgkJ5C7WCO4vRkGagsGbkUSjPk9hkR3/vebAr/X5SvfXEyWkA/5ZVNpXADyNgldnHXT/2XhhhOF4J/a6rrf4liqvAFujwaa/zlm6vJPP1mYRXYOaA1yYI7QqPY/9ijKCQ2FBB6B84AlQENrmN0Qf01FvM3TZOwJ4O1w7jTTWMY92fDtaZstlepX+wHas6UNVsxvZrPkvHHabmabnEc9pjBkOXIo8YS1DggmNEClu7bLKtda6joeHN2PMVOsUOH5gM8Y8h1z/JOA5a+2y0LqV1tomh9z5J2rHy08O02K4quzmABVYQkuSKGIJLSkkharsIo31zNvbjqqJu9hbmkBifAkbp0gNQIueMi4vHXdmMEYvHXcmdoBSaDPxjA3HlHgjdAGvT4V6ocekMk7bzrezcKq35+gY92YEUkUJFYRO68yE6Y2pUlMInl7rgGfsU2xc66qzBdU4ldugj6eqjZc3bZNMJkEvU0BqY8H3+ETKUADmb27L4DqjAhGhOmwR4SAkTvPBlMs4v+dEPvlnP8jU1OKHFaEr/KrZ33j7hus4/5WJ5NOAFetawncVoTFU2bOV3ffqNTSB64e8wKsP3wp/hp7bJzGlsBfdU6aSr7SRs/mCMS/fDNWhSp+t9EicyvurPRWldqN1XMNYnjZXw2PpDLzvRcZuvoaUOjIBKJiXSZWWW4U2qyJT9XquZePIBsEx6AE0ngXLOkHzibBMRXeaT6SDrcGcx9UXZwO9JpJqW1EwOpNGg8QZri9OoyS/BrwOnf/0GTUo4oMpgqoCWreO+YEwUBt8oCOPgClmH0ZAJ0L9DQBZySGoqGG1dG3Daie6DCvY+pI/isp2hvcPgU7bKObYH0f/HxYdcsCTFykDPMuzYA6ryRH7T4I2gPYzotV5P3DBk4kEBOoXLqf2kHUkUcReEqnKLlqymIocIJlt7AsBtpe4o/yLOMb2U/WVJ7odLfBsbK1dFbPsl9baf/xgV/YD23EHnv+UKF5VdjF9e1dKJ0gUMgCejgLRQD3S2u8FOD6FFDl8h69PuVBf25dQZY84tF2JtSSTqEI/1kYkAuaw2l/VWT4W8VHDe3TZ7xUkPK4AwdWsOGrsxwqc95voKLIrZL8Bn/kC7+DvoSzwBF9f851QN4xjNO6ahbem8JgikifxA3hnfJ7+pqm4jK70A5UBLH6bAPvS5Gd1f/08DYVC62xYvFdnGsVgvh3bxNNONCOXenkeB6jAxhkNIF2db25FqvTYyu6pteCXX8O36uDSK4J1Yb8N8K0WLnavKECxMnR4RSO5A7p5ynIP4JxRouzbOuZeNgc+gqyxc8ld2N5TXPcTqC2C3pN2SBT2A0h9R76ExqziAj5mMr2YUtgLTqvk72k93XcMAXWYS/CN1xeCGQTnjxaH9skz/SQ7mo+/jlrI81Te1N59TxEftPCUH6f88UGwPBD8mOPrTe2gUNDjbzEZ+iI95lAPPKmhAQhlEkSp136MB554Jx+lHDgFr0TrQGVNfwzndIP+bBci7WycOJDS7oKabWXV23fALIaBrV4kjwyWlLZk5zB52GJZDj+0HWtnWjm7iW0x/+XDbvOlOedogGdn4Ftkeh1W6vsnMDqk1DfIWnuurstASNNhm2ytfLvHGXj+BnjFWltUzrp61tqNZff6advx8pNna4QokRIqsJ8L+Zg3uYpabGVqcQ8pr1iqY1emhVNL4dNKojY6RePfdfHUdfUxAdU2ZGY0PsClFEhAWEIx5jJOsYHXYByb4UHlwZ2V/bnzIeEicSIluQpIr/dAs7zenqYLvnRBgSenVZIJuhtvXkfG6PeiA3yu17arzQ8CfhrUqjdait03DmrAWaPFEX85tAtZI+ZyFvNYTxo1KGIrtQIBxG0kk04+Y+6+mdrPrGPLvPpQb7+0ExtaX+r5r0ZYMG4usAq4LgeaynX9avnfeNtcR6rNC5hea85sTvevPuLzAReSNU5rKBe29/OCXgQMr57NJtGYVby0/SZKi6rC+4amd8ugWkSS+OUqULvNOvbuTWR35XVy8yf38/OQtdD2T7NYUK1TUDfLny200Kjqnbrstn0QqSQaBndF4M79/L2+gMvhDGPBunZUr7uVpPgioRwDJXNrlKnDdBYGot20nmj6g729MvyDSLB1ONFaBC6wOR+5J6+H1rmARShgG/ikUK1nrC+N8q/KsrEXlAWezmJVb6Oot+rbwm1jgj7zvyaq/tOOoIy6vA9mr0B41coz/3Yg8VX20qzmchZvbkmDOvm0ZT4lJLKLqmwOKfAtP1Jt1TGyn6qvPNHtP26ncqLb8QaeAGYexDcspmXNJcQjLOU5l3ULaHhBRsVdVgNd5n7UDhTd8T10OyWgNEa1uFCQFcjCPw7c76iRb3tQCd5JV9HjuIzPRGRS76iTz4eekXdM1PFBJ+uvhD6oZrMCrr+uM1qkbu/2EeEo4OnAjI6k1taUovtH8ZngYs0COzbRBzqpLyeCbO5DHPHFeBEiF11cJAPyQCt9VmuzmeU0C6K9n1zWTz7/lUAm1Ht4LRU4QIGRe5GwsxYl18uEIuFVnWBcoROMJxHBH6DKnlvZPb4WXD8GGCiDdmukbnXDvXBHpZCwlH6Gd+S1I9OYc0M3sl5R5zxWQ/XzEaDn6NMPRORzZgFbIevhuUET8AocYDO1mfnWeSIC1QKv5nrvCr3Pkuo01yJOTsf0IHLrHEwBAnj1Xtrl6vxCtFnQqL3L9ewnqO/g17rdBR54WutSg9GTu6g2AUcBPMszlz1wqo6gz8QTTuVPU7zXyGsANMtpVVDu8Z1zdgmGJH2dSZDpZA1BF60+//sOeWSSQiGbqc3SLkJLdwJFx8t+CGfadP6rh91mgen8LX5qCfCytbZcDxyWiFfBntVAcqg32TagobX2f490bccTeP4c7Xj5yZYqzdqY1ewlgWwW8Mg/HyMhewcluxNpmrJc1M1PldrDkvwaUMVy+hmrhDlwqj9WGGyaQgE7A1JEZfVNPL0grHRrTI4ItEEAoqJ8iROUSdfXVILAmtVsZJBZir1d4WEkputUGeBJ+eOB+xycJrKs5Y1N5bWPctnNeXQJQCgD5ZrNUGgx4ivqsIW9JLKGDAFvH8iA1uHyaaw+2IhtU08jPruYtjUXMG/zWRycXpn484RVVJpdDYZBvSFr2bgujT713+MDTdH1tMVMuVsRtvq4zh0/Y+aZ54kvuHW6XlA6XJPu6wR3I7wBgM/hkXOHMbx0GJfEvw/A2M3XUKfOFgAGM4pHBjxG8hsbANj24mnUHrKOLW/V5/zLNWBqIMM2Zs0UcXxde37K9Ld6SxAVqP3KOrbcXZ/UZ/Io2pvE7tRaZG2fy/qDaWTESdF+Pukks41VmxtxRZ23yNOo8Zdju2BDuqFmNYG4UFiUB2KYQYTmbSPxZT5uzqVTCXsfAe2WNQQBhyP6pqDVXdntD9dS5VDrYms+Yz9bsF2M+JAdAXVYB/hWQMG2oZZt1jaVz3n7fthfgaZn5LJ+bxqXJ77FElpSRJLvCAHML7cVw7G3H8lXnhQXOmnHzk5vt5Jv5zUhpV0hWeTyyGWP+ZUD9XUT0Y6rIZJh6owHiiA1aNN+C4B5RFWyGkQk9r8WzL3A07rtY00lqrYDGYgaKDj9RqNPup2Z5xT3Kssk+hMHBHTEfN/zac0zBI2nyUYop065rB1euXZPdBbV3qcgsY8e5yqhyZpqCAC+DaCmZF8vw5cqXiTrTENIXqVO5nJRPzOmGDIFvZrlUD3T3ai6MkG4NCcALfFTHQ33LkpXVmMJszhABXZRlTTWk6g06G3vzODL1Y7fBBtNA1JtHrRuqKBihziJ86Gk+nrgPYk+u/rGBRHIhd3jgalQ257LFpMDE6DRO5ewOjsCd0D1N+VaG8ev5ssJcj6j6nQdOkLC0ztEmRbIsFVZ83Fzmb4/h9Tg7kOi9/nQc/QkkthBVXYHdQRvbb+c0ouqSe1JE6IlAz9v6s/3B+Rexai4mtG639TQfkXARpFIp0MkkFg3Jscr6EKQSY8VBwj3yAtotE98ApyFb6siE0Vrr9J6zny4Lh/eTJftNZPI8BzMHRrRdY9nNhKs+QXlWzelIrla1dRDbHcIM9fGLNhfzkZryi7aSi16MJVCUlhPGo1mLD6uarY/lFkMB46sdb/1P3TgacAGa+0BAAWfhbr8sMDTGPMC0MQY8yLwlLV27eG2P2k/njXQQFkhKdRiK6toxK/O/RufH+xBYpW91GEzK3pbUs9YQ8HiTOq1Wkuia6/1HVECKWY5ZfoLButCYNPNfsqUkXQAXs/BNIxI0JIQO+JjokCu2z/VXkVqI1hPJkb9d5DxjNTwvUV1HC2vljP2mFG24V59Uw7gHBnz/xnq20fCWZr57Mg0uo7ex/QZErE131i4zdAMkVOtwwGS2MH0/d2CfsR12EyduM0s6dmSNaubM2d8NwkAXwylv6smVOQPga2w8Z8NuP3cP7GcZnS3ewK1bnojGUwFnl9ub0f85GK61pzOlB59xZel74OtwgYZM+VmaL+P2lZUlrYU1uGBGcPJ6jKXXLIkM5oL1w4ay1MjIzzCY3ARbPvwtODzp7GefZfE88k8HedfhTVmIlzZHB61TDfz4NseUKMiPA9bRtcn4aEdFBSmCbB/MkKumUzcpmGs+R+JIG6beRpbNtYn4/Jl7KcCy/c2Y/cEAeiuByzf4rOn7rtwFUzXPwcggkJOxOpB5Ll9FE9lddTUQ2RRg+P+hmAO5ajfge5BjUgQYLc2gqkZnR11oNKJ6dkzQnVSR2H2GT9H4VOChIF9Bpm/uQDCCglu1D4Uo+eapgHt3cwD9kFcpX0k1irhABXYPaYWS4a0ZElxSzpWm03uwSy/b9z/6ZJ/MnaUvvJnLy50MuN5HM0Bu4PbKkuNRKHUMdiUSj6q9TSgX0mU8Er/iGT2XDQ3Ey/uMyHspH4LJHjQ2X8/PFJRVHORgUcouUgLFoMICF0XOsT5oW1dZMvVyLjjufKJ3cgEPz20/2bglx/A0zoy3vNHrP2tvw/Gqde6WtRq8jl/H3KqT+RAZiSglvBJDrQOrc/Q82Tp/8/lwDK/3oHPnYPrRvVrjBu4h4qniFMs7VwNVuSIgNGE58iyZzJMm6OuJ414StlGMkUkMXKQhvxuwisPrkAG/zzgXmDF13ClXvAVUL23XsOwuuJ4Z0LT+xaxYnRrT52ui/TvGg80zoF/RbwT6g8dLpjGnH92o965a9l4RgMfGX0A2raaxZLtLbmm5uskadpxNp2YY6rjKKz00HuyDZ+Fm+CPX0bD/vUV8LRmAO9GlCK7I8d7oQ/c+ibUuEq2bYI4mVvzkRI8pKelti3BZcW3EdDZXJQXiP7OnwAYAw0Gyv+ODjTIZ0eDiz2/odC/Yydnr0aga7QzDU/K7JBDU+b+r2bq4yelIccaHP+aSEClTv6DBErOjvuC+WSTxA7pHYvPlhxPO9ZR3ITsZrbB/DcPu80K0+aoo7gxGc+2wFjtUebWLweuttbl5E/aD2XHy0/eijiaxbRk9uaO9KjzOVNG9/WBvHyg1xj490Di6uyhS50vqMCBoI9nwZRMf7BeORL4A5KzNrBtoIKS0CZBcNc9ib8GXguNDZkRv1yzRnGbhlEpoZSS6qEfvLav4sJo9oizCpv3cLCzUHDLq0oOM3XKa5HiSxPk/+76s3X1kWtG6s9CwXD1qzeRGC/+deNQcdJ2RHQPTwc4EmoVcXa1L5jSsS9DZj/DNLrRksWUqPptHpmsaNiarl9/Sjvm8dQ3DzLgjNeYtFeymHt3JXDw88pw1XTiNsl4dvCjypAKZ/VUOu/HXYhvr9nRXtXo/NVnzDSzSbXiQwpG6pdyaw5QmwG2EutIY+Y8QWCp7fIoWCjbnN9mIp8M7Sd+51SktdYLEf/+ygjxzxcLJbfIUK+NxJni2ce3bZpICYX6uYT0HZQUiT+Jq7SPg6sqi0/+Dv7c9ybu/OZF+M741ihNoOuQT5m+uLf4+ovwz9NgpNmgBlhtyOcE5UVdkdIjQkGM2XgV9k36mVymMEZUqDwL6K1TfWkK1+cEYpMy1/P/AzDfYs8wUaDTzMBTtAccmfFjXgZu0iAzRANPt81QZH7kru12vaZY8cx+yP0rQgLY+ZAxdhlbS5NpFr+CFApZRSOasZzpIbGh2OzpD2U/kq88SbX9udqPATwB0shjy/badK/pU0ifPNjPZ4mcjnvwtYR+4ODphSPCAM6btQlR/4veBXC7hlyfk9rRYL1jHV4aOta7CT6qux8Blfl6/L4hiqFTcNPlQJSYUfR1fKLXcb4Atc4EzZyltnOqgC5n5+gJ+RsCpv9I9X03sfMqrYt7B1/Xp2HkwEkvh4TUaMEHN5jGbZJQ4MExleFeD+qjMlS/AzbANXe/QkuWkE4+e0mglEoUksJDhTnQv5LUTzSNiPpdmlChUlOEV1lg3vSS5y5YXQRcuBhebSUOQjPPjb5ZzOpvWopKbZFuO1fvrcvp1EOynL+Hnm0m0Y555JJFPQqpQRFvchUFEzP9eVyd6K3qnF3pqauV1VYnXggq1B0pBDxBM89OOr4u2HH42mPwyqxOSOcrdTzPOYT+op4rEjW5ghCNd84YXT5QJOYh6HVmnkJUAp8ofzLmrFz6WQzwPJKFG2rHXiuEsp0rQts9jgfz4etZCGbdfuKryAe5oObHbCWZFQclHbM17rSyOx0HO9bO9NTs5vb0+X8/7DarzS+O+pzHkmp70v7/7Hj5SUcTbTtiFntJJJ21rCeNpY/rDzIJuHgf56d8xCcjJZMVd+keDr5bGS7eF9R/dug5jTnX6gT1TgWej8rvLGiXomNCVH/dcmiqQJTAnSjTih38vDIJF+2g5I0aQTDQtVP5P33usEpp1Hs9Zsz0LAwgo44zVFqLAQHwBCjUCHF5+5nFUK/VWtLJp4gk0lnLGjJZ/U9lYaRb+pwxgX1KZZoyUpx8oyGLSWYbc+Z1o0W7r1g6Vr6j069dybdTVD8rXV6SMzew7f3T4NJ8+JcsvKaL1N5MKO7Pgf0V6FhzNtOn9CbuF3s4uKYy7IaLe0rB7XxVQSwYnSlZvIsQoFIXBjZ6kTH33cyNj/+Fl1ffgepTwaP7qVd/PRtrymfP2K5CPt9oGrxAb65WXFe/RAPEo+rCrToh6tCP5Jkb2L9fslM7N9Xi9Pp5JFLCikI9zoeV/Dm1nCNWHOiIwBOE6TUTmRM5XY1yfJXRRrA25kEzTktouu57KPGfMNh0rcP2GwG9RwCeQVuUkB1NTq68Pu5lthmJfPZRwHMTYUE/EjJ3ULXaLroyjfXUZ87QbnCvlxF2ols/tP3UfeWJaieptsfZCsybVN93EweoSBrrefVBVRN4IOI5/0PwfTH7649/BVIfcqcMGMY8LCq2TudRzQzCg8bxQI3bBRjkAq9/r/uWwD8SyqcIxtp+4BfqyP6SIBLYPRDw6MDNUgJ6UXAdDhRXjQbCUXYvcL+Cx8xIIL5gHgceS5fl9wP80TtmpeyaNlDPprBxcYOAUmkelwkCu6CkupSTmW41xDnMihDfpJjS5OFBHWz8trsAKH0FnzUer/f7nhxePzVC1yGf0p2ppLCRUuJpxzzeTrmMBbPbsp40xrmcy2mqVOYQuN4XbgJS98PpY+CjwcGq6vtuYqfoDbALEU0gF3FQ+bqRK9K/SCK0/d+ZwMW8xwKySSefFAp5kwF8ub0dpcOqyfeepPsUCGXW7I9EU7QrR38FpiMwZwWuh6q1bTBGgyJ3a2nc5wiFyFFqByHffS3gubfgAfW6c4D/0ax8LeABJwYQicp0uvPa2QRNr435Fm6JyLN/J/CEUHnLBZMOcGpPTyciEaXAi+wb68AD6pNOGJx6dJlzjC5/eWALwB48zPr9YFoBH0JGTYlqrCeNrSQHDbL5EbKdP5QdBX3oP5KIt9ZuMcbkItXWb+jropOg8+dlWSNksKvAAVYMbc2q+xtJz043/aoLLK3ExpQUyJSM2jaSWUNzaaeiMbc5I7sJfU8pfNveOC1oaWQeFvBph4B5y//G7SDgk+jrCRQ4XTzuPq9IC2CAkhUedLITzBShSIaBbZoOTuuj0q0h08yqmRK9OBZwelXwC8tVtAUCsbKdTTxwuYCJ5NKadBKZM7sbBrAdBURntMqnEav45Df96PqnT1lPGhU4wIBz5cY4wPnBuMuI710stNj5sPrTVvSZ9A592r3DB0MvE7YR8O0XOh7fjviH+ZDVKJfP654G/06na6tPmT6lN69PuYF6PddSkl4D3oe8Lpl06DmNCuyHOlBKJXoh5SWTi3uRVk2Cubdv/xPPDf2NBPmey1FiUA4vP4H06BxM4Dt37a0afKcB4PxUHUQL3a4AuD+HncOUWbUWaNpPANAw2JafAitln+TewlpJoZAV61tLIBTgDxD3SxWXqlsZMzwUVB3tr4c/UMYHBoJ8cxHK6qcEPVrNbHBDamxAo0wvdjXJcE5Uv9lPtw0p3WYrC2gugME2QmpS6wLn+GNaG8G87DKbOlS/1CfqXKwEc7fSbs8Dpmpke9hgzwhrQqB/YF4uCz6NmQgv9FNBrVnwbie4uR+8AUmPF7FxeQPePvVaEmoVCbNtaQhsppT5+CeM/VC+8kSykxnP42ymGfAipHbJowdTfS0EMjGdTN8gaxgMWs75NkdEW1w9i8s0uSwWSCjBAc8svGBPHuKc71FAeIsCws7I4BAOoD4Veq+TejtSefjtlR6ZDtxUAo8l+HOBgBMnVnQjmDh8r9I38MqrEABfO9tnmpifA//WQfUXJfB7Pf7VSFPmaxA11+cJlldfuYmdwzUT6lq0zMNTPk+F+DeU7rOpmtSduGvqimhouuynE19yoLoWxF9dTGmyjKb1bEX+wh1UYD9LaEUJCVzKBN6lP1nkMpZrAOjIbA5QkULqUUQSb0+8js79PmPmU+fJvUsAXoesd+bSnansoir5NKA1i+iuGdwltCKdtSwgm60kU4MiJtOLeEr50kzzfVi/R5T4wGfHXd3ibuQ5mok8J4/k+LYoK/HOTx8L+yd8K5Akok0nc+H+YMEz2gRxlE76/e+64oF0eETeW5sOKE0VYL3LWN5FVOub+4jKbgZAc3wErnDhXM3kE1FqWvhCZfvT7eXkBw3+os3VVdlvYrKcTpRhLkEUmBZE1b1GHcddW8VI0H4hyv4A1/STCP8isth4MIVtUzUDc4Q6nh/KjnUUNz67pa0z/73DblNgGh6Nqu0IoB8ywm0FtllrmxtjmiDUhxpIpfq1sSrrJ+2HseOW8fynvqno25OU3FMDLoNf9fwbb0+5TkRhRvYm/godyz+tBrWgac9FIjwEcNF+GF5RqP3uspNC751WQgV87fn7eIAZI/4TMBu+9rTY+HnFlH4tmgJntVNK6RSJIoWB56EyoWFFWzNCr02qbqjeQ7NvlZxQswMDMcfQoFXXGZ8yjd6+lQXRWVsPPPOZM1sywQ54HnyzMm3vFo2DeEr5smMXOsyexjZVOVxt3oNVETo3+oxabGPS5j5k11nAZmrzrXmL+G13sf97mUSn1VnPt0ObyBwjS+9TC/2eelQTMb93fRnJ+ZMmSsAVmL25Iwfr/i8Zdg9rN6dz8NXK0b7nVrjR/oWXh9wh5Bnn+1fCnSOe5M9mHySoT5vp7n2OZ1A9CfU+XsvGjxt4vQwX1F0aOs8bUHv7OuIppeA3mTBcwVSHwfCGhU8NyTdvID0un0Wb5UMerLsOJutDo3Mo+33oewoBJFsIxjwDjwmVyN4Xelac6OH7iH/VOV2Ucmz4uXF9Pl32NKaViohK5mhfbKLblu3I8RRxDSZzEcFvxA7wAZMC4yjk0cAzEBvaj1Jq9V71GOx7dy7F/65+7Y8NjhE1kWDi8S8t39kqn7/DiGkUUo9vFzaBWjpR/NDnyY6GvXQs7KfqK090Owk8fwQzQ6D6nzfRLX56oD66HInKTTHneVC4EhERujIi4KIpMujeVvaY9uFoWlBAjbhJJ8a3ROCv+iOvkeAHtpgJtZmERBSz5P/T75aRKZ8mHng+HQlaecQq8JnHiVbLdXTaS5GsotYc2s+Ilv82+QR1gg54ZoX27aP3Q3+O4VZVSaWb2NlcgaeTq3e9PJdV85ndX5QDZkIqwI1ZzOoHhWYUd+seDi6TCHdCtk6Eqm+FF2T2UX3wJkq/kwhcydYkLj1jHGmsJ0m5spnksZdEkiiiKruYRzuasZxC6tGY1ZQSz14SiWcf+TSgMatUMrw2pRppHsVgVk9pJff6IqQVyAMRr6J6R6h+wt2rpOj7YybinYurl9qqrwP19U59nYk4n0MNeV8A+6PVaKNqSHb4+lDu2ewzngo83fcbdf8BAZ4A1cqN5h9a7dYtK7tPun7ob89sgv2qvGPqNV2T7iX2p+triEZbngVBElefNQ7MKQQ1n1wJzISEh3aQVm19EFxasz2DqkmizPdj0Wzhh3GmteYfvihpoznjqGs8T9pPx46Xn3Q01oN7lGf/qZHgX1e/TfUWm9j5Yd3Av1QfvImdBXVoccZ8lk7RH+VcfCDWBY5y9dWNf5vwJSuu7vsu9QPlqHUakwODddwZlRMwZfbVrObXEyrj+KhylK4A+4gW3lNgaIf69+7/pNIY4KnndcrwYQtadLzVO2hbJgtCx1xcdj+AFKTPZfLNG2gat5xt1GLLwdrUjttCYan02UqLX08plcjbnMHBf1cmPtvXapIAzIfqRSGaapYc+76OD/IxUo/j+0YLhauDtrJdTxqNWcXnNS+EHaOQdCWk2jwu4CNennKH7NcrX694A9zeiSpPivPaXVkZRhvuJa7CfvHVK5FrcAklp6xeETKuXcaaNs3hSYj7hT5r/64sgfVNBPiH85Dez9uQZ8kF92tBo56LWT2yFaRD7QvWscXIcQJVeK1gCgPPWDsU8LRD8GVPm/yyQx4nBELluB54HqqfZ9T+IfXaWDXm5Cs2kBAnN6RgdGaZPtPNVNnPtTQRNXwvngSaBXVBnN0EAe4o4LkCmKof+q5+8OwKuL0p9Uaslbrc2U0gV37nADunu4zL8Qva/ki+8iTw/Lnajw08e46U/lSuhqGEBHLj2oN1vTh/C920R+U/hRrkJLajWpf0B/6h7zVqyi/19V3ceO57PYWiXlGTeG1GTG5FX69WBZKfF4rJ1rjTBJSC748Fkr1zwOb+UAbUZVqrxOzjsmY3iROzthpmMZLAGqXes2knEf0J6l1LoLUed5EHlOE6zqj6GAXgGfdpbcfy5tD8j/CkCBwl3LLDC0Q42u0NxaTXzAdgFa0wb/najwBgflJDIqb35ngKdBrw7NcI1wdA7tf5tiWzSzuya0dVDh6oyAMpD5PMVnZRlURKSGYrKzTY8B6XsHp1K6UV43GYqx8ZjNCGfo2P9mbj+7DeHgLqRfI27ipxis3qLJc6KSfI4DK54J1q3dAyF/Us9ovMufrmC9CELna0ZrPBA64KiLN3ky5VMgyep0AEKzZL6Whk5YPIMLU21gmG6XJaAhNkGMKZzGD7+5AJhYswj+eQwJOm5Wc6Y4EnK/HCTVeGNlwJyfdKhBwggzzenn2dXFMokn287Vg704rZv7BJXx6iIZzatgqpP3tn+nO04+Une+EnY1Me70vCbTtIqVYIwJrHQwI6LSTDWVhaTyaiu4H2+3xt/eJMKIHqrXWyml7Xszr0MOFWYKCTeKU4Br2RB/ttY4EniJ/JZhYLZnQKVEUd8HSUXNMXP844luC80Imn4q/tDqf50CO0Qcin3aDX84qMm93tR3x+7YXCBNqBL7dZSTQjpau8ZIxYRm2kBclsutGOGXzZpQuMgoS6O6hdbbPUZ7bYR3JdAXf14gpZuvxMWjT7il1U5VvXn6pBROiqGldMeHoH/avJIO/EnopCKcvVxhcd1rOnAyp8VALXvCKTmddNQwbalYwZqVQk11ruAMJOcj2+N2RzforUq9ZhC2Pm3ey/awdMWuyDlXLDE7J3SB/VAqg9YB1bPla6TS7iQy/W85yKBCa2IgHZrsj345Js+xG9hJciJFyhgeg3ZELmMvD7albzfTHnSvAa5HkIfOUfCPQ8rI0Iu0hrVgHxlVfL2zItTUJ1yFHZzzJCVDHZT+OdubUaLNGEge1C0HbMaTYk997AtrzTfPY4NRroOeC5YrGyDH4hoLPKHnF+uxJrCfD8HBEmTNMd3VzQlY05P6tMoYSHtE3Sfnigzf08MvExMvotY/32NEqTq6Hsa7nuExR4nvSVYieB549k6aykGctpx5cA5JLF5OJeQFgQR7a1VmtAZuIHqGn66rIujiIIItO9Ea9O2w8PGn/pgO0h6ufcdkvxEePevnQxqhfnM/js2RMaMvy1guXR+JYq7id0CuASPf8KrXPrx+jrqXjRIh1gTEPED1+lDshoHycdpB111nb0md/qw9Qhba0Bp/1FN3ShzYhQcatD7d9Jn6ktZ4hTkjYzkl2scu9WqibuYmObBvC+gvO/qzdaBrwuFBNrB0eD34l4p/VnfR1IoKLoenUCMqk4BRESegwPQEPbmQfh0off5F1zlVcsLkLAqQ2d92F8xHRk6Dt4TM/v5jXuu83Xbf9ZlgJrbSSQfve9Yt2VTYUOPbz4UQfk1i5DHMrnut+5+jzuxjueR/KhRrqs3+6OqeAyJ+LB8RNEmbUE7VeCnrOuFnMC2I/dNZYVR3AWAE/wdOTXi4mi+p6Jl7UP/67CNWHhY7bBA88F+noRcBW0aPdVkAXfpqnq49X8+lB2zJ1p21/YKnMmH3abnZXqncx4noB23Ki2jnLYAki1sN9QJXUru3Nr+YzlfsQvbALqQqNWi4UR4syVkzifVAsp7wB4/RnooPxABYPhhJDpi58IQzTwdGCxfWhcDE/cYwJezlwWN1wbGnU+kHYkVssfXgPODm30RfnAE2LmBvq+rRXfGO5x6MBKvRFr2Ti7gezT0ff3XHMwg15xk5lKDxqxipk3nEftV9QfLq8v+gmfQ1xjzRK+W5mmQxR4jGwtQNdJF+xGApeZBGN4fNdietWczAeLL5PvTdk6Z7WZwZdndoE1kLo9j4IHM6E3DOz4YpAtzWBNUA/35dAucKelSt1tVKi4n51v1BUF8wLj/UUvz4wJss/nV5bvuwJwps51/xqqy1Am1Vk3zuDL0V18+c+NYTooxG3qRXadBeRuz6L06mpUf1+cbFF8OGrrzTwYDTxB/cRFcPrDIRaZA54V8QED95rN0anbusBsh2j6bJBsCAFPZgnwDD5nF59pLS9BGhx7zYPBsvLar5QJ+jr/+VlomxAdnBZ6nZlIMqJtAfxLHHJqlzyp9wXWbxbUGkVp5gQGnkfnK3/2wLPikTc5aT+EfTu6CTUGFbEgUCeAy6tJ6KkdzZhHlyDDaUwJTE4Qx7iinIOpmQFIgfptQL0Q3dLkwD90UPpHAravi4wVwNM6+65CVPF3UCupA19S6SZ23lk3EHEwQxDQ4bJYDSIC2J7x+9l3dLuW+KyoO/7IEGjIwk/cs5Di9JnAF59gAK4UBB3XfQ9V92Wws1PdKEElucByrv2MujBTC0r/pe1c5iA0IWXysFOkua9iNOOIQRSP5LC7c4TdY2pJxvDiiiL6dG+ObzauFu7tmFi8A56oIfWqDIA+Df1kyG3/IF6O/TJ8dvNOfT0NaClULKsD9rsPXgUPIM9AEdAUqn+3CbjJO0A3XBUo3fo8pC7mXv3M/8BHMtevgG6hoqaimGs0yPlAVG/rNZXnqlDXzZkKg3t4Ss1WJBCSRCCOZcISMLuFymYeIcZCoPMoLYqqe/7R70em/jk6+P3qlFWoyJyBj7ZTftYUhJYNkh2nhS5M9etTR4h69TZqBdTp1ZfpJDkUdPg5mLWGA/uP6Ep+9r3JTtp/bvWGrAVg44wGAiZeh93Ugl9LRql0fjXolUMjewm0gtWLW7F6cSvIg4SrdwTZp+pdy9LyxHbBnBwfFERLPXrr6iuI+v3aLjLGmHuBuTq+DI5ANzDj/LZmnG4/AC8QVN31w9Zt+pYFEAFFMg5h9ryGtCgrICR45se18qi2oGq1L8Qo3KpwGxDVSqWwYwPSyMM0ywS6yGeuBXlDMtlyZn2SviqCptI7E6Bps0XwvQDMlC4bpWVNJqx4KxQ4awLxqcVS61kHDnYaTvy2uyhNlpKMjvY75pNN91YfMS+zHbtv1uDbi80kgHpOPgWmIvAWnR+uSR4ZFG1Pom1NieBV4IAIRnUCvjJUvXwXjVlF/KBSpm7uzkEqQ3UkW7cswjXNXuH1eTdwMB9pEwfSw3wUMN0Qd+EeDqZVliD3HxCflQ1fLu4C2RBXR7438xsBi3GbJBlw8B+V+TK9iwQK7oSd8/X56oiI7SHBdiDQDzjwcGXMaIiCaR9C/sMxugOxpS+nAVrBbhbi5waAnejfB4q55YoLaHBjK9ChmpQzhRNtRQSzf9tP1gWU28Y+4JFhhba0JkaEz3U4s21ilrus7Gcc2tRf2md0XvFSU7g9VbK9XRF1/ukEAQ33ndArNPmNaVt0othR+sqT4kI/V/uxM56gBf6rZIDr0GUaDVhLnqKRfNLZYuKgqnq4dsiE/nN8jae7/MoK8lx25v5oymIZKoarY7lH014v6Tlu8mI+9nEdRDoh7FFHlc0kWnDIZdTcOPCIKuaCRNUGAg/hRWgcVTTgcrrWLn+EqiFHWxx97dDDZzmzdNGiYrhdI3hOLKi5ZkTf1W2HIZOEO3W9y7gOx9Miv8bTLZ2zaoKnij6KOK4q+v5RDRcO1wFEVf2CCcp5wNL9AlQdnfVS3ebKiKcb/1leTv9G6xHNW4Gqrr1cmn4DzDmlG1nfzyX34fawRPd1vv/+UETyCSOCGX/XZddEPP06V19ddDgPX3cxSO+zu//hWNt+fG3UdPzxhiPfKwgN+H08bcnZ771jCjKlVYFdLt3qxtQtMTtGgobrse0NYi14PrpFpB4azRCokKFdrtu5aGuWvrqs8H1ljxVbgxr8bkLBBRAablTfTldL/B3Ejyqm9LtKNE1ZzorVfqJmGx3+8xwPO9ZR3Lis1vaUf/7rsNuUJlf/2Udxf452vPxkpe1aPzimmh9/5uMDravwY8/F+2BrJeq1WsvGwhQStF1RWrX1JLKX3JHtfT9EpcoHv9N/RYQa64JcHyDz9tdyfPsroimMgOgaZEvmL+gDnRxiSYQotLZdtG+3XQ7DlgjUanX9UUzHzA1Q5S9bqZO4OdCI+HyoB5+xY6YDnp+bs0m1WyhoJnOM5KUb2PbkaeJDrolIcLJ5TqCxULvVOrZMqS+ZxGsiXD9W6ipf2zyQgzdUJu6VPdxc5yXmIWmuBWYx9L+Fpu8sYsU/dczLlZcqN29l96ZkyBBHkGrzKDDOGc+DV7vK22HAjukwuWtw/X16vsMidXgF5k1pDwYCYJbK26DHpqvZTIaMy6XUxokYbRlZn9QheRSsS5edPqwoLXnequxTMKfqNQxEnqF7dXkBIhZVA7IazSV3oTrxtjlerE/9pB2E78v+QuiLeD60frT+r5diJxJd76lBDNsTjPljcIiofujhrHt5fV/7RDyodfOQC/WZVnGhqBpPd45GIZCqrtqFDANRIcc0263nd9nSXfp6NtgH9XOEWszYz4imDJsV8GpTyISMLstYM6O5zHOLgAkwZMQzjDQ6x3tscJS/Ph520lf+MHYy4/kj2oE6lXEaJxXYz3Ka0ZYFfIBTEHtVfsgv6cB2UwmMV1A3AQEOz4cOeH+OOMiny6EbPh0RwJkZ2t5lO6VkAWsTAkVd16vTObEA1H5HdI/OCUpdHZYQvNq+nr4R2HM6gi2Qc9o2TpgBBLmcBbu8oy/TSuOxTgJs8qHeBRodv6wB5EP8GJ20JC+hXCsgWmzna4TG0k/ppVnALJ1sLNJraKECSnP0GC4xPRcBlIvcwWdBa73O6VI/SgGUVNd0dfh+q2KuHYqoEqaCnQHG6LYPRGCZp7XOebibvLkYctdlw3pkUN6ADzr8JeJFhn5vIeNhOU6+rh+PUGAVyAXZzqX6d3Ho+u4M3a9w9Ha6vHdRdAAznOhaIoD3CYQVXEQ0CEyoB7PFqUAqxm2ATtxGEtDiwucJW7liQi9E4NapUdsJxa0svQ3wQZPHy65yNFtzZlnwGbVdOXWfdqxSqboDDaF2zS1UYh8r1rWEU/dj6/98h1prTaBueRj72UdxT9p/bqUP6eTy3n1QpAWRWfo3BmrPWMcW85qMoWMqwUVIK61NQPu9lMytwWpqkNFzGRlDlpE3RAo6XUaSPhEPaP8Vgev1fZK+ZkZgBYE4HSBK1QD7t8M92+HVmhzMq0xpWDgIokCnswN1Kkvt3HOS8QpE71xpTPg8hMeZI7M3JPtZC6iFMXoxL+FF59RSWMvGaxsAF2LHQkcrgcz1yzMxs5G2Tjsgw/ZnjUGCrcvk/AOajWbC9v4yXm64F07L4dWrQ8J2FwvtdiR3U2XgVnZXfoGLbWNgPO+bVaRaAXsFK8UBVjp1H7s/NQLEVkLB0EzfdmRkV7h+Orfbr3gu9TfQqys39pTSmJdH3sEHeZdJsOHDSvL990DqL5cidZfAtCERzCbEXzcAtsGahaEv6iZo8dVXLB15pg/c2xwOVonIM1AX+axFBO3n6s1ey8ZJQk+mLpAPqe3yyB3b3gePV0VcG/HyvyvXi7oc0Spu84EIMw+ZY9wCZiXwnDxU5pLym8MeqpzEmIleVOgDLd786PLonZ2i7dWajZ1LVJYzDEQPxVGp3WYdm5HanHBA1n6GlPu4a5wc0WBzaJtwYOT2phKcyEVaI6VaOLWU1Fbr2dKiNlPpAbe3kuD+/Tlw3/+B3fQTtKP0lT97+/nOhk4UqydpklIqkcw2DlAhiGLG5oEAuKIEXkgArfmgLTAhx2eUXLuUw1k4exn+vxwz9yHUwF+D60xhniHInFkrgDOI8KnZfmCMZh+f6ETUyBO2TCBPI59OsEfpu+Y+JEPorAhIUsDp7MOQuqDLckJA7a2+chM78+piloNtFgKgZ0Cz3y0CWkMuZKxbJrfjaY323r2OfaXxXlhoRQ3/2RYqVXYq8Es9572jYFEfSu4Fa+uQuNMJGLnr/1UgsmOSoMMMmQSYB7vBlXUIm7lMMthkA+9Jy5XcZ9rLd3AqPnoJkoV9NSIgsC7iVMbjs7IA91YMBDCiTFuvmL7qcEYQRKiNyqjTrWlQT2zOxQO3depYHM31bGDam5iOKovegxha+KtyjJqRkCpzO+AD35fsKCXSo6hNt+YDmQLKMyPEzVRazgr3eRXsjyCqdtMMkv2jxIlioqlB9NiJCd3C4W0wUATJgzdQiX2sWd1cqFkAdx9mvxPeDAcPnKTanrT/3JqO8HWDGUOWsWZ2NLrbMrq+jHOOsTETyISE9l4oLm7TMNaMVMCZFHMCzZbaLjp+dND/x5b93ZexejWj/m3R7iuWb27Gwdjtdh669izQTjiEHbZfsStjcSJv+4Evvqe7nSI0W/fTm66v5dXqDQLoFgQUAWld88AO6lHI5j112F35Bbre144URNSpf80JjOs6iD4pk/jgkgjshto91/FrXmN8m8vpxWRW05iz+YKptgfvj+5G6qA8UsPJmovED9WO28K2TPXz6ptdC52uQz6FITCC3/BcFWAWvDz6DvmuWwBJcHvKCJ5bqpOMxjm+VUr4Xk2OQAO4c8iTvFR8ExdU89zSdx+7igNU9CJ7INTp+QioWRWBPMi4exlrajaXwMZInWcoIKw+dxMFCzPlmrr6+12e+mzQ5sSVRiYBRXhtDOR9HdbpBvWj9ueFdjI3ehEYFspyNoPyOoRJoHRi9P81dVtH1Z1ziEBqIzCDY54/PbdxAliOpNQEat+4Ltgs6J5QRX9Lzs89q+eaj8xjuur27pl2jIPnJkovT5DnuMBAxUoU5GfCfijMTpHP8EKEs4YE3OIT2I7KV/7s7STV9idi5hvLWWd8QTvmsZdEXl18q/SxBHggQSb8n+rGbiBRQBAWqin32JNQUSGklYpzwiOJVuwLt2rahM+adcbXaIaotvwBATtr5djWJkTTKBwYHQNsVRRimmIPhgbkvwN5ClAHh4CjTgxc4speDmY5giM0ERg74Me2SKl+16ao9UFdRqccUebD19NU2l4s/cZQYHkZMmDOhyp/20pi4l6Z/IBXbf0NovQKQD70T5e3aXjq7kC91u2h63R6GBrMtK/gleUUnEZRp7PxwgkKjIOMZwsk+6pCUhThazU/RDIGmfga2hqOvpMD/EoXihIvfxHurR0aAp6g4FM9T5pmyXejwkAhgNoDuF9C+dY29N8xBEp+DuyWaaZ9FGZMju+zuhJ4HYJsQahfGRya2gbRwLU84BmbDQ2AJxy6xYrJEar1/1jINzQ9d1HQluBQAhQ/lh1r+pBpmW35xyFujLOMuJ89fejnaMdNXMhlJucCV0Bqx+ho6HoyJROTrwsydd7yqURc4y6NaZEBvrXUAKJrMQcRUBDtpBDwdJPrW3Vd+ckmzAyo10VYN4U0EFrtW0qrDQmoRLVNiZkz2y4Iu+ivOn6dHQmUdcP1nK5ekArI53LiQw54AlO50JcSuGwg0H3ER359TB2ibPoR8/a2IzFxL2mIKvBm6lDQRiLSGQuXscZMABOhym65YbvzasF4iB+mLKPsatACkt/fwLYXFVi6Gr4uQh/tPuSj4JyNWcXIoXeLin1YgG6xbpCLV8QHAX3t8+X9C+ny6mr03XnahHy/1uqTCqk9/TNUsDBT5hqzEJZYFTx1ezAejDZBtBBaIgDfbePWPw+8lyNMI/XVPCqftTwL+8BAoE+BZ+27BcBtDoFO0w+SJ/hOAlHH0vIRVryFtTFZTNSX6XdvxyHAc0fZzKi7V64tUGnys4ds2xNuuxIsU8aPvdYDz0NRccM1oOUziFrCsn6+VCoLqjy5ld0za8FuEacCyKqZCyDaJ8fRTvrKH8ZOQu+fik03tDxjCbuoSiEpdG71GViYWfM8GewuRjJF2cgg6AaIDdE0Dqs//ChBoV/qD75GTFTL2ajQtiCDxnCk/uArqNJ1K7tX1hIaS6b+XVH2MEETcARIK5ED+78ATQNJcXMfwZNX++t1bKaTDkoh4Bl77HEIiHpX/2wx5tbQ51aZcADuzSFh51BKv6tE/Kn7RAGvPdG2VkCMeRyYAPFTIX6qDHLGPCv02QlfU9tKxnPLiPpeDTUqGO8H04RXh1LyUA3KM9OmnIV7IGvcXKlemdBe6mSbQoeHp9ER6HAfzDGzodb9VN93EztfVHGn54lusA3CVr5SlxfgFYJdVnubf286Is28QZyxOrog2zkAquz5HwB2X6TcqhdStecdIdGrMXDXQPmnCvK8vCtcsijQWQ7uKlOT4iZYa6O3sxYvRQ9wvwqExNRbHsrMtRqJDdN0q4Q2CM9v3f0xyoP7fUOZ6DYURx4+JpRDuV0AfGcgW6Xmc3X5UV7rCWsW2G+OuNlJO2mHtLnR7wv2Z1K9/aYgWGhOhYTMHZTsrhGoYaaesQaGQNHeJKomCqNm49YGfsxTcFl171aieKiv5QR9O804ORbXfwDXhCOvWqeZr4AyBoSKCBKYDIDKUYAThEUS1RnFmbJVzBd/hVtu0f7a5WeiQAKjjp5LB0J9s0/BGA0I2AvL2VPqPh2tMQw4XT3t2TWFAptFLutJY8WM1jATshbKl7GfCrAsQmqzPGqxldwp7YNAamnvasS38Gqp2y4+TeYnVfB+5FPg5v18PlKur/uQjxg58m4SHt1BCTV85rM/Zcs2AC7eR+2UzWDj2Lo5mYPv6vIPoesIicJPn9cbM09AVOmd1eQ4VwOfQUEtBdBtlkHbHFG6HQYH36ws86g/I5lzByqfQFpNX4P3n85XbIUW/b6Cc6EW7UhhNOPuWF8m8+rMaL/K2GfAPEhQ1xksG4nUlb4WvVyeW9gd0Wf3eaC7RKjNUE9Zdb1fYx2t3Q6mWQQ2EbTRs9t9drQ0OcQRHpVTrnpymZYuof7w5joCX2xmij+0zyj4fANoASa3/OBvYL/uJ1ndgfp/NuweUysQG9u8uTYHf1+ZL7MVcB4lK+onayd9JXAy4/ljX0aUVd27lb6Jk9hPBQpJCXphLX0wlHK5ENiJDJgui/R0aPDLwzvee3IApWk8nSDCOgkxJ10a8/98JGrm6JCqSmpfIbqX2DOoOJFQKPlcr6FH6DhoNNLRgl2fzvMVYLo6l1MIUSND5vp49kZA50BdPiG0jVMlZQnM1ePOwysUDgNu0vdd/QTCtAEWjZJ/Wg/2tbKd9DpaRzylBgSArICEV6Ugdl9JPAfrDpd1HSLwhoX/VaAdmqT49iPy2bNsBXLN/3K6ldlEDU1P5g5tT4sRX7FUQ4zWRsR5ac0k1yBCGNpHjn9rDep6pKYluB/uPp4uLzkDZc5VpIu7A3/R93/XNGxT9UoOnH8H/N1lPN/2Yg4TkICDqxN9fYxe68CybVdcFiGfKEp3FIBzBc5V03302mUsHbvtUUI1OfoSGrKC7PES//xYG5HzawYjFnhKUIQysvCByvL1McATqD7Gy+eHlW7NEOR+JQG36TPwPxby9Fk4TrLv/xc75lHc5tmWvx9hLP2FyeNkO5UTzo5bxjOcESyArAFzyR0aqqVrgmfdtI/OdlIF4np5FdmDByrCUq0TdVR3N76PAq7XseJNHde+Q4AnwOcKPruHAoo7o1FlSfURwbK91WqUaZvSmMWs7qsDUw8ku+dEZlRPgStU9vtft/gyiFqadfpfRANgo277Al7I7WbJNGWiQiwQVevIC5EoBXk7AropVWqaSvg64PlOzct4jPuln2ctJMP3/H64WqPCfwB65cOsdLp3VIGiMy6EVGgx4yuW1pSBsN72tWyc0YAOXaYxZ7bQkeIyQt/HY0pbuhhOP1cubuP2FEqTtyNID7g9QuqIPApMRQbaTxmzbrAsr3iAa1LG8vpinURswgPFrfJ/xpBlrN2czsFZlSF7P5z+mABCR8sGTu+pAn4jlafqfJIyieI2DePgu3qdSUAtaNFTMlNLR54pYPFTOGuEPKhfdlEgNH6f1ByHMF+5LJtEfTNMt4lh/Ljnv3YXFXQCqnQW4Lkr0QdNzGVAPf2nEjA8xAK6PyaY2w95FkLEL99iZSIu0G9tdKnP4SwMPN25giBwuMbYiRoNBs5ZCB+18cJGIIyzi/R9V933nBzpSd4EuZ+ZyO8V5DcEQa/RcJ/xH9JO+sofxk4Cz5+YtWYuzVjOXhJZTxrLi5tR8rymmO7PkTrIG/CDajhnnS4vtlmIpun2A5/x/B0eUM0q5yLu0eO44n9HkXAA19Ft39Dts4gOtin1N2GBeNmSe/T6HZ20DpDnBiFXv7CQgCeiqnpO9TUQujlUluwm4N5Z0cCTGNqTLotvWBzUhFbaXkzpE9VEvVZrbZkuN7T6FTJa76xUVzJZXyNtXpyQj4t0OtW7N2yg2Mf5YD8OXZ9So7MGzGVVcWNKqlvaWgF28+kkIClft1WHaB8mGng6ipXeEzcg23N9v7iDL1SWwET7YkDrPZ4eSNxVuv58dawXIQP9eD1WkR5reeh+ham24NuuTFsB45vCFSughiwLnNlTej/ORyLKYdGFJ/UcXcCk6LKN7kPL5KMMHcjV9zpQep/PRlrbkLCVeTZi+306IOzu7yGisKYjQS2MO5aPKB8CeOYi97QzAs4djS8Esn9KdsydabNsyxtHGEvbHttznrTjY8cNeOpY3WHENOaM6+ZXaGyPUXhAVYQHDu6n6eiZ7fGT3lP1fT7BhJ+LlF57d2i7PIh7bw8Hl3lBMqv1lHch9YIgdf5x6Xt8wPH3ChRjqPmNWcxq8578k6ljWAzwDDMlY7NMoMATyXCaBxFf+5CuvC40gXdBwbrApbrsdi11ORQzw50jDsiz1DsjH4AUClnQpVOgPzDnjG5c/M143j/jCpiu/vH0x+Sc6cCFf4U3tfA9SbJjZoYo/zoQlzpEKCUFUzKJz1Z67vhqxF9RTO2aWygYmulrFu/FB5cDHQCkBnEG9OkiE4sPhqpiXRNVsx3Um4GjXwQgkb2MNLt80HqCbEeV0PW3jngF8jHIuP0hDDh3NOOeGSS+qxLS+9o9f8DpjRS8znDgVVu1HQJ4mgdD+3fVdeGWJm4booFo0JZnZtl1Ufu6584FM4aXAzwhugXLYuAX+vwcgl4LCK29inw+m1Kp/PMru84+E025Dei2F+vrIwTEMNtR952BTyA0QSRAOoSWXQXsCx1nx0So6ouXT1jgedJXAieptj85W0R77mI6hdSjNpvJOzWDkv668n5EeKepDqqddflMBSrqYMzz+IzfXDytMl+XPY+ne7hIcHigt+K0ynDyH9LXNxDH3x+4vwCyUuGJ8LYRws2r7CtIE+OqITpsZgTWAFb3MxHorMDR8f2dmNHDQMSroEJocAa49xMAqrfWWUhrBQjmr/p5bsG285FeMxGqX7QJSCT+98VC0VmqP4U75WXnKPEkqTaPgnGZftLTOgIXa2TysvrUni11GruKq8JOKLmiHKrtUoLvo3G1VeTe0p4DVGBtaTqm0ij4/WD5PqoQqOWaoURRxhIGKoj/sx7/70ARmCKAyp7WCVTft5ed7QfKP9/DwTGVJUp6J0Jr0WPSG/9MTAVTH2ygG/C2vNTzNTMBLfWKFXCJgs6JIZD6ZExvrR74WlQ1UxMfsZ6bLq+a1TiUiixLkRYx94WBKfB7/acJ8LcIXCcfxvyGwAmbJ67D2vQyhywDTMPKlB0iUWrRZWo0m4aO8dd8aJkOayH+5mJpB7GS/y6z+ADJSTtp/5/WYcA05szrBsukzhBgzaDm8KjORN+vJGNROgI4k2IOUB0/aXU2nIDOaWIDQnNyOFgX3w7rMTBvQOroPArmaWSxvdRwH8yv7DOlsWwhtVW0wvxLM54bBWQGY5u23nBC5ran+scp6tNWSsDUU2rVrgaui14UFaibiJSguM/4T8q1StuLgx6Z0A0yDfEH91FUmsSCFzvRc8YklmhfyHrfrOX9KVeIz5gTmiqeCnwKA2wlxo0kmEsYs4LatjJb3vI1i41ZxecjLyTh6h0kVSsSwZ72UJpZjQKq0WG7gtyhGmwYQxnabRp5pIZL+54bBS8M9v/fBmMW3gwVYUirZxhiq7KcT5k+UTK8LAGWha5/kQY1OwNzoeteAa/jm18uQfSrgcvx8x2AlVCpUSmrR7Qi7vI9HKw7GdZcAuD7hoeFmw5jQUC6PdGq97FWAmTjOwSoT7Luu3UJhWH6HHSIwJwcedaGRUTXYXg+xvzNH/Pf/pk5mnpO4NB1nIcyN1/V34f9LASSO+rcprf8NbpAinvXF6eRXi2fFd+1lt/2m8h3UQvYUQz0gF3hYPiJ2cfzpK8UO5nx/IlaX94hSVNRm6nDF8WS8iq5Xj2WiwxNlhdH6TND8P0Z+5WTrQQ/gKmwTpls0USExpmk2+8n+LGUGaxMge6bGloW0w/U1Zs62sQHIbCZHn0twTFce8/9OdJjTD9T6rV5IjThsnOuNkjBi20WOsZEfx9il1W/aBM7x9QNgJhVXBu0/zhFP/MEYDzUvnwdW9rUF4cEcK/SMec2FLXTRYcu4vfNQxFar4JLcpD7DHRYOI0ikljxYGs5zsMEtbtt757Fggc7+eWOulyEBCK66TkvAi7W33OGhklbRyTaul730QC1i+iDdwqSUSSg8thCXV8Tub+f6A71gI0r9POKAzBurjEQmTh0JRp0fpIPD6T7Z287UXUnsaCzPJXHsLnnw37v9nWzsujsabmTAaWP8z96DBehjhEkMiMJak6dSmFw/jORLPTlSEY8k+B7tb877KX/6HbMo7hNsi0vH2EsPefnH8X9Odrx8pONkQno6imtfPboOXxAraW+3qZ/D4V2Dtdpg4w9Sfs83TYPP+4s1/EuHbgqNOb8KyJZLpBMFwR+yo0licU7AnXzN9rJ7PoqdcRhIaFg209kW3u5z2BSgOgLTNZsU08dcwf7zxhbL+qs3MzoDUgZBgQCN45au08/0GynxkeoX+pKDQKfAyxD7lES9Ow4iSlGBrJf2XTe1kG6hZUvZWnNMz1YLOwIpz1JBz3xHFOXrvZb1pJOVVWxL0E4pmsGNReg5+YAK5HvYNF0Um0qBUMzGThCnPGYkRp57kyQ9btniNCGnh75BxF/elOPUwT0tgw84yUAXuNmGbddBg3gA0h+SnQM9u+XVhZJ8UUAHKAiBYszBeQBtdtJ5HXLuhT4sGLAtglsN7S9YBYLpnQKxB7tMxzSAq2D1OhXewFBHWh5zJhAmFFHzKgMeWyAVpls3bd/xOcm/FuN9omAb10Gfp7YiKCFSmyf6cOJ9EVt5yi4qUQxndy98T3mlU6rMQGeBS5D5pgrEdB6jk7SnNptkds3uszmeNhJX/nD2I+W8TTGJCLl1G2Rx26YtfbDQ2x7A0IQNcj0d6i19qAxpivwMeA6D+2z9lBadCeWzSebFApJoohVNCZRm2SXOGUXZx8icuBuov7XHPgr8G4EM1EHmkn46KyKG5AkE/8otVWXkBxD0DOTe3JEAMFtY1YQjNKUwCXRgkCx0eQAyP0yR2pYthYDd8H51eCTWTqxbwMkeBGFvBzJiDo6biXgz5C6UGYY5jx8nWJ7BOg0l22T9gktaudSn6VqpohgOa3F8X2Sz050ELtRrjFoYRJrr0K9yxV9ZEifzpLra8BHDZXWCtX3bWKnTlrCRf8k6H0rGQXfDpT+n4Dwm1cAg+U+74c5RpXOBreOum9t34nmQhszD65pJxlPkAnM++Vct+st+meC+gj7DkEW2DwgCNQ+jI+cltMjyzyONtTeBxH5kJLB1owoEZk4pem/jyiCv7WNb6cyIV/XeYdpEiNB5tOYnECV1lGSpP5THaZr2aI1IWE1Y9MxFuzrazmAMwCUT8V8xhga7lHbs5/Abb3FiS41fjL0Eweex9wsnrp20o65/Tf4ytWzNUNYBfmEbRfC4DaS9bhLN3LlJd8j7J/nEb2DTGnzAVCbzQAs/SZbWq3kqr+8Dbh1O6ZhTWlLlU9Ag7VfI2JAIDXsV0CVi7cCt7L7/VqYcRDXfQ8Hb1AgOQnMaAGcV4+iTN9hOVYNH2C9PCKU2XB1QK8ceCnizwuSmRuVA0OPEHQL0XCjlo8EVkLXEdHLOyK1lxkdl5FWE/Jo7glJklAmvn0xpcmzmMIpwX5vm3y45Tq6j/yIz2efKcBgOMzpokD2TuDdCHOGQp8R73C+3cEuqvJtXJOAQZU6Io9mLGfNwObi61xdX2VgqviiNCxpI9Yzj9Dj2Dn0+ot8nr74N5LpBuCPQsV87LfUvm8dzVjOmNECVsdcn+Ppx3MQv7QBtl19mgRFVQ15Z8VaMLWiD3JMk223vFmfjBHL2LKyosyVBur6i5C51s2wnjQBzTcraAuBMzOaYI5lCz1N1hRqCj7X01Yd4AzTbU2i7p+A18uoCEafMUdVhbJB7s8NQEvfxzOwwz9Ph7OLB0k9jll9hT9vLDi9GwHISdHL7TNEdzlwgDkdeZY0kG1v1IRAOjJPHa/X7+YUnVbgMpzGBYtd8PhEs5O+EvgRM57GmAeB+tbawcaYhkhjikxr7e6Y7RroutaINucnwJvW2rHqTIf/J9GBn3rGE8Ash6xmc6nCLopIYum8M72wEMig6UQF3tXsYdvQ/84q4pVtn474diwgIPXfeBEH96O4tETauDha5Kmhfe4pEbGiAnwm7fyY7ZKACxU09egUUDqDRtqOzvGJgth3NUPaD4z5HmqdArcDEQe8ErC2jVeH/avUa5bOr+Z7S4YBiWPmuvuhLVZcNso8he/FpY9BGHga8zX1bEVRVas7nFR7FQXfaE+S/uq2u+vGt1gYo8vcI/WJ1py2B0lt9oF39eJzgUc09PuAUoYekc9pbSdPIw5TuVzktZdyQgerk3bzBKeMqO1KCE9LXSuVNfp+goYh371btnvNR/aj1F9DZi7AO+nXvCMQdKnvu3kaUNAeRic2PBKiiK8IAU3w/cWuicDrDpxeRzhSC/gJxa35YNJ91PQTfI9NNxI4ARGQWqwnYrL6phh+H6J+hyxcs+VoUQE7wAkpPLofVlaU77uCBCRAxEZ+6nbMo7iNsi3PH2Es7fXzF0z4oezH9JXHrcYzlMVJtdILOIVCvpynKEvbFAFBYMd+hc/eXKwT+6V+Yn9WTxWC6SvHsJP0PNfoONIeybg4y9NI2TUyniWPkSxZQlwJhZuFBnKwdWVsoSrertKa0DwCpXPbzoNYOyn0+d4i6L1ti0PjSL4umxHNPIm1TB1I82geBTzdcte/1NH8wzWeHcZ64AmSfewwehr5pLNxSgPx42681EwspyJ+qiLiy/OB+/VnO7mP1zYYDL8a8jfeXn2dDwz84q9we6jp8Rwki1xF/o1v4gv0Sh+q5hVqR/cOjtFhyDS/++Ju8It8eDNdFlz1R3l9TPUhHOvpUSQm7kownKggwBUhf/C3UI1nc4SxshbpKpaO97u9gd7qCL8ykADJF21g24en+TZqDXwrnwN1KkeDUBUUsntDwPNFfT6Hh9a5rGgTvN/uLNdk/+RBJ+C1EsLPlgtefKCZwmH9yjB0QJ99bTcTm8EMs4+CZR3xiYpQULZc4AkwV4IwQfYTT88FTRg4exrP2kuFKldvZff8WrIsCRjomFv6QNdoKi2F3HGPE/D8kXzlzz7j+WMCz2XAddba+fr/h8DfrI3OOxljfgOcbq29Tf/vD/zaWnvhzx14ggCkrN+JKE2fapN4e91VcE9FqvxtK7srq2KBA5np8hIoyY5SgKgWbl7MPQthvAKhDdHndC1Zoq7jPj3+TQSDn6Mk2eJQhukPeDrNHUhv0CWAE2RxNXWuziEJLx7jalSN8HqtPUW2W6so8qU2vkbRgakJqg742C1UH6aCQCvrevrVpTrRcC1Q7lXZcM16BUC0Db731N0yCWh032JWz2gltC533sZ6Pod0soH5iqb7N4QJ+uFbK6DUOtWwKqprGr2Z+j4j7NlQ5TakBqJblIBmEK+X94OFw1P7lXVsmai8VzewDySYKNiFSD3j5/7ayMUHDFb65fY+fNNyt34pQR2oWxfUnLjrdM/Yd6GFw5HnpgBPxZmj+1vNVDrKWPAc+MlCdHQ3HzqklxEBCvbRiWVUc/gnym77n5i5FqmPdTXRr+n1lZct/4naMXemmdmWZ44wlv7y5+9Mfyj7MX3ljwE8gwDYZERP4E4gSecpcwV8WqUpmpFAEiRcpDXwb0jgp8WQkCJpkR7X1eL1JchGxm0aFqjRRmUfdYyye0PXpvXurgQhuPYj0BGjWqu4Mdf1IR2oYPoLvD+9z5/TjVdh4JnJMi7mPQDe5xJAgaerLb9CMmOHExfqqE3A50zsBtn7qV2/kC191W84UDZqH4wXoNT97o/4fOSFpA7Jo6BLJnHv7KFdnS+ZM1IdV1sCAaVLx77JB9tFHTi9Zj57lW5bMEXRS12gioXxJsiSxV9RTL2ahXy7WG+QC64j/tB8Y+FTw8VDxvP+IM2+9QCucv54i691bKCLkuWl+iWbpKVaZSQcg4DFg+dXlsA7+MDlYGT+4mr8nQBfE2T+U6DvL9blLoh/a85R+ZbAhyvADEp8HiTwsfY+PNX2FnlOnAJ7eUGNo7XDAc9yt9fsamxG/3Db0h7/jBMNPMvs8zLyLGwK7TMhtEG6vjp1582h4x5CMOtY20lf+cPYjykuVB/4NvT/Onxy/f+yXSNjzEKEgDPSWhuTJvFmjLkRuBGgfv36h9rsp2V7oAIHKNmaxPJqzYirtI+DD1Rk9+BaUiDfAl+s/DWwDMz7QD2wNkHqLRV8mgfxhd/MgitmQf/bfS2EmrkBGbxd9HQsMnH/V0TkrB8DeoW2H4nPyI0HzlkMmUqdGoUfTKb7few3lOltaYwO3v8+Be7VLFsy8KFuOBNPwXGDEVcd+t45C4FOgBTWUuX2quz+cy0/qWgdAi+PA4tg9YBWVBm1ld3TXpDm3hvuhQ2DoHMl329yfgnwL/2nITytgDMT+OXXUvfXuiE7h0m60Dyn5+sfCesvSS5IfXgQGQx9L/ZhBPD8VUOSD9SM+oj2lVAWuQnRWe17CYC6mYin6X5I+b3m3H0IRyhzCUaLoEVMmnxOcy6+Fqt76LqnhvZFKTXOQX0PvgdqRN5/6LKRMTUs4Wty6+ZEgAhV9myl6t6t7Eqs5etIXpfsqmkGrFBgWyV6UhAVmda2Lk6EKHbSF+zTBnnOOyOT2XSCicx/vZ2kD/2Qdlx95Y/iJ1UlPCFrhwSLFiD+5/W34OrLYauResiH9BqLgN6WjCFS7L/GiJOpZ69lY2EKSwtbwSgBTakPuihkpg9MZUeI+1AyVSYRKcMP6ZXEF6gQ3bwQK+I9PXdIhK3q3q2wu5YsV+qkHUBAq3UMH6ZS/ljbGK9QXk6m03QBvsjxLTNitlkzVJ1bE/3L0v2GQvexH+lWF5LOSlLUaeaTDqSz8YIGArTer8gW6lNl/FZ2v1/L176eBsyS87penGmsJ23GeuYs7MacDd24b8iDPP6x8klvhUvbuXoDsdUzdB5wznTAwr+j1ci5VV8VS57eaiXfGkUhs4BcRDRxtyFjyDJqs5kbR/+FlyfdAb/MoYUq4SxdfGbANuo66FOmj+wtY3MWXBL/PmNuuxneh4zLl7FmXnMRiRqMPGfga4Ydi+s9pFPcDrkXrn1OSYEyWnrL/Ym7NKRyrHa4QERAvf2w7PbB/yORwHD/mOUxoDNgFb1FMLcKZyxj97E24tuUDSIQE+JCyZSGKbr/F9AJRPdJvykn6JMbdS0L/XvbRucDQyHufq+CjNOMugdoAm2HCBNsgdkM/WMpxCeonfSVP1zGUx3cobxWHWTqdoa1kjQ3xowE8qyNLtU2xjwHrLNWyAPGmLOAUdbaVsaYavoZdirNaCpwk7V2KkewEyXj6cwU7qN7ylS+2H429WoWUlSaxM5K1eGxUGPO72J2ekRug7U9pM7zl0prfTMBHJOlB+VKuzNqIVyjgK8/8DpC4AKf8dxVgrUKasPfdDtEYQ9E4n1CdP9O+zFCdexQjerTN7Gz0ku6sSvmEf5TdVevmVdXspEuy/m0/HKr1CoCoPS7eACSawoK2LY9mdLp1VS5FnZm1fVF+mMFeO7aK8CT+6HKnq0A7O5cKxjsW9z3FUsXapr2e4TqNcoIPfcVRNTH2ZMRuEx/R/0NdqEXy1hfnMbeajWCWoeAStNWXyeMwqWcrY1E1Xs4kYjpY3tL0f4EROWtKzJAO6qv6+35t4iA05nAe6Hrc6C6P55GVNHfD/MU8BKSlcyNuc6t+ro+pr1KWtOgTyap+HYG3fU6H4jePMgghBxZoIZ7SVOJes7J1/uQHj2JM/n4e9TJ9/+8Jp0qL8oF7kqs5R14LlL3rLUtQUYVTyE+FNhkQcQDZVcT6mhxS5F72BWoa+FRzb6UJ2D0E7ZjHsU9I9vy6BHG0qt+/lHc/9R+yr7yePtJsxBoO4b4bf0o/VRBn+KQR9oMk9ftD1I6vprPkqz0+2cMWSbZvxjROUCyp47W30cFTobpOtV/C4BiedfWN7T9bfjg54dIGQOhTKzDV1qT5oAVf8azZ1y+2o3fkyPQXxlEJgfO1nH7i0MwO8ZHBJw1gbOGzODLkcrB1fvRfYQAzwNUYC3pAfAMiw1dyyu8bkIp3MERznrFF48mspd9VGLOOu3ntVIdh8fycCrEtyimY83ZTB/Zm/griulac3pwjCk1+8KOv8Jjt9D5vs8oVdGjL6/tAq9Pp4MOynMe1uvqQZQCf+fZnzFzpERBmw5ZxIoprWWuU4C3Z6Hr158yfV5vX96R6lfH/SLUcqyutGEBmG7mSQlHV93QXXYPvCDVCDBToF7PtWx8uUHQNqvng4IAp4wWdFeGvhorVqfTKbvwCNuNVED7b9//1O7VdQPw/TKdvEY5wDMI8Oq2AViNFfT7SwTu8MDTfGNhpQkC12X6ag/U5U40yIHX8CjybGxZi2ewxVowL+qE0KFfiogqdVjaIhf4YlToAxOIGv7Q9t/gK40xnZHK90pAkWPM/KDnPJGptuUc82mg2FqbE7su1k404AkiklNKPHtJ5AAV2LJQ5ypP6AauhqScpvWB6M8mfB3iL/V1g6fXBhnSe3R0fLqN70v4OJ4aOkFAbAA83XLK0g7NfaFrJGZQ0ixduL+VMYsBjZR+jq8tbJ4DaRFY777eu/RY1TCPQ737JA3pgCcgNaPNoHqugNBK8aVseVzvWzijC4HKHH/P8bLjjyAg85pIoKlk3wlRZh6J/kyBcM2/CSYWVjPSKZomTaGQBQN0EHWOQQUhgh6XN8NZD2qN0owuIhD0P357HpkOj3WV904c6JYIcZE9HPxDZa8EB8GkiEU5vgZ0up53RihTOhNPId0U2v+1EGBrpdcQnngkh+6Lu4ff+2VHY4eLsIaBJ3RSIJkv24dapTh127hN/xM47fJ+C4e9jnBt8O8jch80u59w/g5K/qoRb73lbkJwItkxd6YNsi05RxhLrzsJPP9T+zF95Y8CPG/Dj0OfIiJuH8EjYwX1PTB6uKf+F0Xvf82QV3h9pDhCO0TZK44O/zWi+n6dbqzUUDuWoK4+PF6Yhr4XdWzttnHY7Ho9bijDGQTAnqAM8HSKtaYhcECXfYOUlDg/64BnyLrbbKbiv8YwKyOoc3Wso3M8sulqtwCSqQTII5M59QXg1Vu3lm3bk0mosleCv+MjnH+5gJASEllUmiUUVf0stb9ex5aR9eFW5aduGMT1KaN4dcatVMneyu57a8nnDGV3a3dcxxZTX+71xUrdvcfxW5vi+JS1bRxbjFxj/LaWlD4k/jv+oWIG1BzHmLE3M/DaF3mv9GIuiX9fs7Ywf282u2c6p6j2vN7vqzyd+uA29QfN/L2rvu8m+dwbpA6lXooA8I1nKlfXcQVcgOOJiTC5n/i/lfj63PsIvoMonYlgrjSRhJ3dKOkqz1BAr00kyPAFgoRu33Jo0uY3BG7QjgNjfNDaUWgDoUEXMO5P+aVTZiJSBwUgVCFrIx54Nomh+IYIVlF1oDEtWKL6ebrfgdZjxqq9B8+tCxyFA+Nd8X1Mbwxld6+IVtP/oe2n6iuNMcORtE460NJau1SXN0LEMZKRnP+11h4unFbmuP8ArorVDzjW9mNSbd9BKgbnq2DCmcCV5Wz3LjDDyGixDYFX4wCMMfWATdZaa4ypCfTEl0P/7Gw5ranDOuIpZeM36ZzeZiXfrsuk6TtLAFgxUVKSZiiepnFOCdRIEFW2LF3295yA2uRAqBnhnSL3lMBHGp67MAf4LVRNwEQ9vj7Tau4DGuLrN+N0xaVItCovGigCoqC7qxgyq4X+D29XDJ9rxPtqoho0kxaR2EyItRN3/R72lso1le5OpGm/RXLcx1vD1bBzcF1qj1V+lMsUdgc+95FIEd7Ra/hFCKT196ATdBCsDJyHAE/NKMaqpbLfFbsOVifUALpBypBC2o6bxQEqkHuehOSN2Yy1dcgqnEvuw7LsyxldfFTdjbNJwD3To89TMUJcwR4O3gYHb6ssQNNRVkZFb8oj+rk0im4u81F0W0yZFjQBrRaEUrtE709YHGgbkKdZ785EmcuEB3Whsa17XGRWMxGmZjl1MjXSgXTfKBuAv8GwiPbszCcsROSoT1IrVnZeHV4eS6e1bcpO+pgM9IeS52uQcNsOSq6uIUyB/6DO5mdplpP0oR/W/mt8pW0DZrw+TDMrQm9l5FwOZlyI0ugyXhfh2Rnt4fUpNwRCKMHE9oXQ/3/NgekRETgDqBehwuY9yIDurQz9cZzUkZasqEFc+h7iGsPBzlobOsKfI+qzfI300wz9NswU5Nt8VReckyNjbIOIAJruMQd5IEL3hyVzGa7zdP1AQQH2SMrtK7qPSsymW1DTWZ7trPQSTW1fVoyGT9b1pWt9SV+1js9l+vXz6Gw7MvMJrbu4FZh8izJc9vFq4WAyush17aaWr4nUz7xlRn3JQHaGKgN3UfXuQri7NxvNd0BTqAFkQQbT2NLBZWKjxYfG1L0ZkrTNSiaM4Wa695TWIVX2ZEOeBByAIOgQtoP5+t0uAFOAqM0PBtgkvvBFoAlspAHMhfO/Eif4iVkiwUdnrftBi30wt5IwqK4SNGSSQpSxkImK/MTg/4TpO45efE4z9WEGFACnIYJDfaM3t4Oil9nZBFoL5gzKtKsTcxpvMUq4TSz2DIMZDcaJIIXBpgLZgG9RoICzAHkumuj/Dl0s4/C2AriE6PrO94A9er7vgDtWlNnthLRj5yvfR3o7fBGz/EXgBWvtG8aYqxEu27kAxpgM/T9sk0MMmQuBFT806IQfN+NZGWnc0RqJ/f3WWvsPXfcwUGitfVH/vwlQCTOmALdZaw8YY25DysK/Rx7zsdbaPx7N+U/EjKezdFby7aQmtOj7FXXYwuezQwFtN/CHgSeSmfRRI3W6T0ekXcpflJI4NDhKVCTLmBKomiCZnwkhBLYqoYzCGSgQdSA1F8grDq19Vq8nInRbNGOpGNMWg1mMp7zcUez3uz0iUbBduugfuk8zURmsWkNW7NykEdDTP4O5Kre7gSAaaMciAjuAayhQRuRHo221x62ThtgOZ7vxz6n6AZAD394vb+fraHspfmrYnkD91/5JI5VOfGhRtChBa+aSO0K9zly8SqsK8XANMnDlh06vFGt7H4GYThAEcCDqgUjQziQAfZehQLuHLu9UFhiGIq/mXGCa3oAOTWHOGCAV+vcAvZ8BhfcbounX2WAnEmXG4OtBHQWuRvkCDVG9Ph+LaJY3EroRDnhGohR5A1ouiCAR6pTdsVSQIqwCGEw6r0dapDg1vafwWfITMNPp7JhHcU/PtvzuCGPprSdVbf9T+zF95XETFwrTD79DKK0OSLlM3m3AVQXQIVXuRr4u76W/5VURv6yJzu6uqBjd89PRJ0NBowqb90QHq+YBO5F2LB8qUEiV+lOAkuojgm2D6w9nPEPZU/NP3eCm8mm8bhzqaVsz5QalbL4SM25DAD6nciGZLJO+mCBKsVfgSyQgoBl3GCtgM0ytNaPx4nEd4de8yJguN3PjjL8AsJrGwbauD+i8zWcB0KBOPgBrZjT399nRWd1k2k1ZL5WsZiMrzJ7VU1qR2lNoMgUjMwUsO4HBi/Q1C3oOUvrqSLkXA4e8yJiJN5PQI1o8yg6By3XMf3uGpLBdH1PHLNr4mwb+njRAguw3AR9B54c9fZeuSIbQjUprKCsGlQRVmmxld6QWDM/xCuvOjkJcyAkG2T8RrXjrnv1wqagGTwLAGXus2HrPMOichGe4jQ8tK6dXtgPGDnganSRae7k8K/rTtyP9fmHgaT4mmvK8EuJ+p7Tmf1QOqOk2NAV0QlHOl7YY8RVLZ5xJcmfJ3m7LPU3KteYBbfNhbrpsGCofjs0Q/1D2I/nKb/E5a4CXrbUvl7epkQnORdbapcaY2ki7rGQd8ysgAciGrkzjkNdlzEAg3Vr70FF+lP8v+9EyntbaPUjr2PLWPRjz/0uURepYa5/H64/919i3Q5pQe+Q6dlGVNcWZpHbM8ys7QsGkTCiChK47KPmHDNRmEp5y+Q8dIPMQ8LmbssIGytk33wH9FXWtAVonSG3MQF2vY7f9LGb/hsATxdC/GmRV89nJJ0LbXKnZznX7g0mGWQd01ccyCWhQTeohXTSsM1AXku/dwLaVUpjTjU85UKc3SaWKSE+Xi6lnmwBr2ThRHJAdK6DWLPaAM7AJX0PrhlHqsgBb2ih6aiLndfULAn50o7kRyUy2XwitXfp0Fvxdb2L7GIfUerCAmfma5TPfQ3+pfzjrnVLOGjqDeXTBLMG3DJkTfQjXA4t0gmxoWKzJfIrQ0V6NyL3LQtSPH8WL8Djr30mvIydQbow10wYRSjpfT1YUWjlhKlTs4X/NV+jzNlD/d9/tuaFrdjYHYCHQB67UDyDlN2WEEspavr560Blcb5CpDZ9M103CU5NiAqnmWuAhC78zvk7ZiXe5upcLOGlhO7oo7k5rD6dxeNIOZf91vnI9MvHWyXdA6++8H76tK0BrIAI+ByLsizExx1gZDTizegoay31eGSZuor4C7NeVMXNlPBDQ0gCqQ8mKGlEAqyS3BtQS6qYz47qiviEvFzAR21Mn8W5y/FzZj2hSkEztgkjQ8qvnK5OYktIXYxbS3Wazi6rADKqyi8/PkOByj28+AtLJGL1MWqsMjT5u/BXFtBwiDKhS4pkfqosDJLG7XrLIzVjEioY3A/Dy8jto0ewraqla2qLSLHYOq0u9EWs52LQyp28XlLBmhgJeBzA1QEtdJEBQBQZ2fJGqmjQpZAlLaAkI4HR2Lzlc/E1j2jKfB34zPFCinTJJvpjfDZF7Mp7Lieu0h5K5NYJ7/O7YC3iUZrw9RZBa157iMC6hiCxyaUxX6ef6J+FDF1FDgOxrOZAdgbqQyRpmIpOX05utpDGrWd8ljRX9Wvt71RlhPgGsirC7oBaN/rSY1cPxwZA8olt3haxMttItPxpNAGV4mZGUq3IfAE43rzoE89ROkufQlAPUwvRZ87H4NRsW/DiVICgQPOczgRb4elb3O51+iM+hYNoM8ccKq97SCRECA7Y9eZqUtgwMrR+WLmq2r1OGVn9C2tH5yq3/IdhNAzZYaw8AKPgs1OWHBJ7GmIuQ2c2HxpgXgQeOBFT/f+1Hy3j+2HYiZzydmYUQn15M6VYBcFVStwZCO6WZ1SRC7OImg/HS4b8GOpXAlQm+lUkM8AwYIpeWEMy8W2vd5EIFKYM1WxSO0Bqd0Dtq7MZPCIrC++v+WplkTA6cH4FPNBz2baK/gNNVW76/Hk/r0quP2cTOq/TgE3Loqghy+lO9qX6XiglVEppt/LZOlCY/G/TwDFu43sBMgepd3b567FX42gMHTs7D11CskPOTExHBCPB1k1qe6rKobd+ZxYLL9B448A+w6I+cZdvz5dAuxN0vUUKXtS2Kr4u5Abq/IpHuzy/TrHZTvBCCm5A5USlHumhNVB/PQCDgstB68JOGT7zjtDaCUadSnmiOq+GUGhNfb2EG4Cdpp+Ij4U7cY1PofOn6GhIFCV9ncK4YGm5sn1FjXMKmhOgm2Tmh//NDyz0dNwCe1+uxRgO990GLStK+oRbi6LL0fD8jsHnMo7hp2Za7jjCW3nOyxvNEtOPtJ9NZSUUOsObh5n5hHh6EukvJBiIlYBKCQBXVoXa7dWxZlwIVtYDyfcna9RwyiSlT+noV1bwcyIwE7+M2DaNHnc+DU04Z3VfU0NdA6gDN1M3IJCFrB/tKxMce/Hdln23VY9mvwbSCDounMWe0RjEdSBsFVjTnBHi6oOJr4BW+pe6uu92owBOqKsXn8xvEB9hXyt43E8pItRjyFUuHijCeHQGVtot/bVtzAXPekmtywLOUeFEEnhuBNOk12TNlstyDeX1p2m4RK7q05r4ZD5LGehLYy8Dlb/FGs/5MoxsLaEs9CvlkZD9oD79qI2PsB8UCIC+p9h55ZJLOWg5QkXdHX8VDg+5lG8nsI54P6MvveJLVNCaPTBqziiKSBDgCFTlAbbYoiM6mG9MoJIX1pBFPKblkcTZfkMhe0ljPfLJ59Te38sc/DeXezRLl7lHncxLZSxJFzKctHZlNCYnsI555tKMB+cze3pHuNaeyhkxWN2xFxtfLWDOlufdV+SJQlFJnIwXPZEomz5WxXB/DEirHfwqdGw7+vnLUOjMDybR2wNctu2fcla46v4n43UNZACRdUPov6qfDoPMOfQDJgxr9BAQ6wr1OfWw4gG1yJDhSJeZaThXq+d5qNTDK0rUT8T08XVnMAT3ufqL8vX0GXxK2FJmHTkCuZyVy36/YB9na97Q/UUHiMomOH8h+JF951OygmIxnW4TJ0jy0fjlwtbWxklY/rp0Enie4mSGQMVJI9LuoytbNyRzckwiDDUwLTdj1sbNt8A2JO5X4bGaIQhsIBhldNitBGLKqThumZAbHj62LcwDU5khEOhtfr1ikr1PdPo4Z5kYW/a19ez/cE0rKX4IMShr5dHULsT055doVlMzSY6tYTriUAZB61E/x4DFcozgBAeuOAvP0fjh9rf4zTmhQFwLt9XO8pJMPzesYF+l8P/qctReu48BB4W/u31+BncPrBhnd8PDgFIaDVik6/B2SfuMio3/Nia5NOVX3dcqKLRAq0QoEyOow5YKdhwKeZjG+gbU6wCgg6IBiJuI4wnW5t66ABzQsq99fIKxwH2VqQSF0PAgUb6XeM5p6W0bt0dnZEfgiP3SQEPAMmbURDzxfryTXns8JLSB0ODvmzvS0bMutRxhL7z8JPE9EO25U2/CE+juguYLIGTowFCDjtALQhDt3UPJJDSkbeVN//y2ATdCi51eAZLp2lcqMeWfzur4Os9cK4G15/2YkEKFxLTPg0GJCtkuIMdIdks9UemCFUR54uGxqEQENMW6OAo+3FHiEy1rCfavD41cD9SffEBWEBKKFhvRYdoT69vH+EGFKoqvzdNRbl3mrN2gtG81Y+thmAGxVxFNKPC1Zwmw6MpQRvMCtlBLPM9zNPCTge4AKJKlDn01H2rKAJHawXpV5UtjIcpqRSR57SSSFQm4Z9xq3D/gTL22/iayauXx5QRce+Ph+SomnHoXcufAlftdG7kMa65lML25nBB/Ql3m04xLeYy+JPLv3Lm5NlC91MS2pyi4KSSGfBlzCeyzSqGFVdpFPA9JZS1V28fHeC2mZuIRC6lGDIpIoYh+V2EUVKlHKLqqyemIravdbR9H2JLkXW6tJ9dx6pGbRiV/NRdp3gagSE7r/ydElHOVZADxBKLwuIJpKEFh2Gc/yBLAOedxQgDhY5nqDqmJsmUBvWFiP6HmdV6jNgVUREuoq9XlmDd8OKKaUBvC1nprlszdCrYP6m7lTpaRdBlSBaeqIPApMMQxrI/OTTGR+9HMAnsfYVx4rqu3xth9TXOikHQOzI8HEKXLIs2ScsZw1C5tT/dNN7NRgkbkMqQ18Eekd2SN0AFdjFyrsNsvBNkP7gOrCu8C+0wlTX0FCVR0gd+XIYNTUURfLp51QglBn/wf4Sq/dRkgq3QTsJDN+DQtcew1Og1mDfZNm8K1UQib7Avcqs+x3HoDEbxMKUUbNRax4qnVA9Q0yucPwLU16gz1IUPcJ+IbSblsHPs/XA31CWdsN3JODuQnfwmRRjn9/NXDPKLYYsHYw2cwir5wPFijmuv+fQcDQVv2+XebySuBSndlcqSlGF1V8Qr+HnBAAHY/v77ki9LoiJgv9bgQ+VAD6WoyK3L0+o1vGwpnORylLf6uMr419kkDV0dQkiKiGxYzkvJBYvIOS6tHLwxO0QwsIgUeR6UgWtASILm0ziUiW88VK8hn2IM9pc07a0dpJcaGT9kNaE3y9+6Mx63bjmRV5sDTvTFKHyKx956i6PiNaFwlATm4Kt0ZIWLCDkhXA3Ahx6XvYVwIH6lTGPA5GRX4SmsoE23apgRlHtBDRGti25rQAuJq+RAuOqYAbHSIcvKSy1Jbrquhthc5TZhxLDb0flcPno0TdNmzhTKcxE+luK0HH8LILg5p3BzgdALWDumEehI19G9DTtuaDLn2Dc9pxIma0mdqkk89kerHCTOJGm8RHXMACsmnHPBbRmm5MI4ki2rKAA1TgABVpoEyTCfTnbL5gAv1pxnLWk8bLA65lOl1pW3MBjVlFn48n8Tk9aMt8ZtOR7m0+Yr8W1n/EBbTjSybTi47MpjabackS8sjggsSPSCeffNJpxnISKeHtcdfRZ8A7JLKXfOXvZjOfLQdrkx63lrcXXgdfw4Lz2lK6qRq7m2wgIa6EOeO60WjAYpa+fCb03s/p/Vby7TxBRLYdmPEI0+hJZB4DvmUPALcH7+zoEMg7gtkuQJdQENW1VJmCz/Ifwczd+Oy5A2R/14nOOB9pdyDYBXRNRzh9tkwYvg0EQEJB3L5I26H2oTlJDfm/ZG4Nz7jqAVRUOq5mOl0pUxCEL0dZN2xVBgo1b/cvJeiRaqtR4Oqjz3GTtiVHrKM9IezIvrK6MeZl/o96CNbaLcaYXGRm+Ia+LvqpgU44mfH8sS/jmJt5ChHS6QRV+mxl9zm1ovUP7/kErjlfnPV75WSMpB93SHZco67WR3odLXewhpBfNYPgJa9ya29Emj5frwsWENRKBJEzV5vwLl5tN6Tsb20kmsLhIsRj8BnPvgI+S3YLRXdfTa0ZrQl8Ak3bCeV2xbzWxDcsDrYJRA3aQqN3hHqyilZlBYfaEADepu8sYsXY1mRdq7VCA9r7zG22ZCHNPKC9hhOv7ATD98FpT3rgCbDI8XOa0tbCVu1F8m1Q1O97eTrgbduoAMb0yhLhbxCBtUp/nnUKdMqBK/UcDnhera9zCL5/2y/kQBzwnBCKbj5O0JrliEIJhULLsikS3TAGXx/7Hd4pu8+gvsM8DKpZgf1diB7kqDk9JJoZzqQmFsvKcBbCCVOFxapk+aFoufn6Pj36czwOVe7cyu5PawmNyEVfZxIlZf9zsmMexa2Xbfn1EcbSJ05mPE9E+1Eynp/iJ9JXybzL2j6+zmwRcMXX0KGhzzwV6WsmkAfJN29g24unSdDwfV3XK0eyUo7SeI4IwjgqauA/Yvxc+Brjuu/h4CoFntdD3EzNZN6gyxyLBA8sgwzpWmWvhDKUwbHPINo0EOeouYcyM5LokoUi3e8wY1ds5vOwx2/lr8OB3KwhMrgvor1nT+XKS+qQPAqGZsJzrq5ni77Whlm3RG176ZA3mcBVwqyamyDzBCi3pjEszAM+Az2wy4vBNq9xs99es4O02AebKskztQkZ3x2g1+cgNoNYXmuUw60PAgbaKcCGgGTYyvOpxmjg+IXU6GOGAgo4klWD8q+rjMoslBENAkRLA7D1K5afyXS2Sq/TlTL/WTBC0FrlY7z4USM8vbYrvtxIAee1qNrw3TdEXaNLGuwcJbSorCFzhbI9VK+3Lj6YpLogxyvLGbafqq80xowA+iF3aiuwzVrb3BjTBKF21UBmVddaa1cdi2s/lnYy4/kzM/s7qIP0ztqdXYtGXy0OakU2TmoAt6jK626dnJ/haanW/tbLeDvg8g/9/1qCSXlAwb3rVh28S+CmEs2Qasbvb5EgowX4Ws3/wMzjwM1ENwNH6aefvKTXHnP882FNXgalX1eLWlxpezGsVbDyTQTXL9SYT6C/3ptwP0qth1xxmbzJ/aA9TPhewFwSwQCcWLyDhKZQovcagGGV/OdeI9dfe2FPejCVcQYWGIBtcL4XgJABWTmq7wO7wUyHuKtibkqDUyRj+yxwS6RsTaWrK2oN/B04hZh2OIewxyJCfQ0c0ekAWDuw3M2Nwfc7mxai3DYhSkTA1ES+w1OBfchEINzXqwY+Aw14ZNw0UJEMkqGDIzC4GowqAX4LHXzQI6A7HcZMMz28tjTYfU4teBUa9VvM6nXN4A8nh8X/k1m8ANNJO2n/iYUFR1xm8lS/KChbcKKr4xuKymU+EuT6IDRx/neEbVNPk7F5ONBiH/VSCinaORRQpdqoLGU1zDwZX2w7guCb6S5jiaPT8t1pHKhTmQrsCVqpHMyvLPtMCgVTlVFknkKmhOcR9HQ2QwlKTlybC9MQqIDUh8YCUCCbWSxo1ckr8naRbOSakULJCAPYOrhahfoyzgFtl0sw1AkNVWJf2ZP8BxYFjl6D1K80BTYH4rd5h7X/+wqSSZ6CqA2nwqX1tRXJUGByglcsfS4fcytwSXqwv514aMpqGGwG1+Uooy1CnzMJ76/zBLwF4BTN1i0Crsih+r6bdKmvFTGjkVrOcvxLAN4UDJf3HUZdn+vV3fUQ6911bYpZsbbsfXCCgmUq+CbH1BQd6lo08BtVLtVYX9+M/qzGKM3ro/Ml25kLJotgrmEbAdrlwIHRa5yc3H7/nJqhQMW6EpR2Ik3gQWcLTV7E1LOaKUdHM/5J29H5yiNmPK21Q4Gh5SxfCcRKZ/7k7GTG82dslbYXi8jQXKDx95Idg4A2aifqILk2BDwh6P9k7w6BzGt0cj8HyBsj7/sPlNcJxdBDAZ6r2wyopnox1+hrKtjH/eDsal+q1tglzZzVGtlLJAvposUT8PWX6tPi0mXfA3UqC4U2NIixA5Hjdvu0fQ5rb5cJjIvWDQhTO3VQ7XO+So8rSpvbEFxpzSNAPUQrSYPFtYesY8tl9f19AGkPYzSzGbRNmSXqsfoV2HFQde9WKlSUKKSL/FUfLN6maryM5gUPZ0r0u0ivYQUC3BxduiIELdomhO69ywQ457UU+AVSn/J6KEPq6DxTCYQUDidgAAQ1oOEm2oFtXCGtVorw1wAiYHAzPtS1W6KfzgnbwsOcL0ZkyIla+R6lbtJ5iRzLtorKdkYdy5RA0wS5jw8AzYUZkJi4ly3Xyvf4c810OjvmUdw62ZarjjCWPnsy43ki2o/STuU2hObugnsggap0/Hh2T2hyPCy0jauv64pMjp0Yyr1IiysdjumDp/1/kCPiOiitUifgcZuGcfBzzWSqgJsdpOwT1xvy99D5n58xs+F5weXbr5Wm6ECyW+U0hXsAd4SAckjkqLysWLYW5S14WICjfdD39ExgLyUksubx5nKvNPtpR+gEvwm0HRINPIGy/Zo1c2nDdfWHsCjACVA3dJwZUL39JnZWeg+AuE3XAnDw3coiejTyTBVTwgvtue/sOwI1/agWHe99APQpM5aHrZvyqafP6w2nwMA2L0rfz7Ap6Ix9b4eEgCfAAWgxQOqBlo4UkaYgCOJGsF9Ef1fG5Pje6AP1uN8QtCMDiP9zMaU9QgKNLrjt5i0TkOczrOZ8q/wwbFjx5yisvHrQgP473LdMCdY5NoELXM+3kG38dXUP1RatOt9fH2iv9xjmnAJPe2OIrTYfL3R4N9Hfx1b8bx1ETGhCaH1/fVXBJduX42InfeUPYyeB58/cUlhLR2bz7sSroP0+mqYsZ8Uzrf0GuXjFMlffEUsxUvCZoWo+eVr8Zu4DnlDVWwc88ZSIqD6dcXgqbZmsGkGUsSi+Lo0J0V/DMt65+l5FcmxHMEa16t/VGotL/SQCDVRzqW7zpGxjf+cpLtam+jYk7vPHUKTc/UgqVUVdR13+u77+Hmj7tR5Pwt5RvdzCPkOpu/adaOBZFF83oHyVjtF7eY8o+3awHZnzoCDdrIfnktu3fdR1QugcFxFF0Q3Wm5wg+xrUc7rI7HDKiC4F+w3SY16qx7RE9XiN2jYkhlTmOCYHuun3kqwLN+AFhgaV3edorXyRIX+90dv9FhYkyAR2K1S/YhM7O9UNaoCPBLp/DnbMnWntbEv/I4ylfz2+ztQY0xnR764EFFlrbzvCLietHPux/KTR+T4P6Ovu0EpXs/m6Ctf1BiLqS8ZHhD2hE9Z6Q4SnuPHjBkGQzA7xtENmSiTMOhAAUSUXZgQwH5LHqCBKYxVE0eb2thDOphzgOQUBgUt0YdVoKmTUZ9Vx2InlOXPgMvC3RtKC1krkNZtZFOls3WU/3dga7ooRnCcELmOBZyzd+EgWSxc2ZrpeW1fS9OavVwRlTD68kC7rQzTRKAB7K8Kumhp9XNlfl5UzVTUasehqhdI7fZ5ytMuh7Qbnc4HncrJn5i3KB56hY5WhqU7BqxurOJAdRCDe5Hxbpe0eeNLdnzOgD7dB/OGtehNe0OiyC7A6X3kICjBAf00dvzv6qqhzR33GoJ7zFKztJ4FdVXAGsFpbGWRDt3ufD97vB3OzxqHyFl1mG4XWg2+R4jxARaAztOgnPTyDz5iEzwRXgSqdt7K78gtlhBuPl/03+Mofw05yyn7mtvGpBrz7jwZkzF7GmnObs+Ki1gy4ezTjZgzyst27iaZFVgN6IYP3E2UOGW2/T4DOkg0NBiRTDL+PdmD2IBgTgcfKP0yt+G36rq4Azo6QNH0T3F9XsowAz0H8tkM4yGHAWhkAU9uJ4yuYKB7G2tul5nQjZcwp4gIkvOEKDWtELU8q3cTO9nWBugIcVdzCLoyJ1IP0iPylp+SYAUA6VB+vx9DB3bQBu7CWj3qWA3iq77uenc/XZc4zSA2pczipoesarnSgtgSToeA7cwDzMiQLugZYAuYUYP8z8Njdnj7tMsuLPDAtz1z2MYhcnhuzwbQczCh1QuHOg2kRmQyuXwH9Q03HRsmxyhw35PSizu3qmXaEa2iuk/VRdZz5ui5d1+n2v0+Q534mcCHsHFNXstD5lFH5O2lHaceIamuMGY6EONKBltbapbq8EVK3koyo9F1rrT0scdxaOxPNdxlj/mGMqWKt3X24fU7aT8NMIvLNuf7NiiWSr9jAth4K/N7YB3kaaIqEKJB5wNn7cIXkGxs2gLtkVcLVMr6bKTXg1Oipj5nnGTSBeBBgh8rYuON/k6Iv8mKwCmS+4Dz4Gk+1ddYEAZ5afVEGsIzgqMy8LBNua6/CXCtZtIyxy5Q9WsR8OvkyBLWqe1Ws5Q+SIooFvYcKNB72OsqpfYztI2paAS8qsgtnT2/Nh1npvia0PCsAmpQFVgOtq+MsS6t1lk4+r3EzZieSnWwhlOTgut5CRo9ZBD7E5CFZTickOF8zdDfA0mlnCqspyQclzEgEtE6OSEDZ+ZTJkWDZoSxKe2A0vpJk+Gb4Ux15fypwB9IT27Gs8ihjUS3NVLPBPgyNWawdU/F1zYO8Lw3YX09fDvdM1OuaCB3Kfxic7w1oxsGKSHSdZ3m1q4/js5Qg2hzPx2w0E5ZuOlOAZpJu/whyb0LiTFX23MpuZSeUVx99Qtkxotqe6HYy4/lfYsaUQOsEGA5xzfdwcENlqrfYxM47Fbj0Dm18NQI8IcgEAaBTvSBjFqfLP9RXVXi3Vmkdy3T5J58AX+IV09wv7xS/fVQxvs4Ulim4jBBFUS3z2SYCw2DgN+KgxswTB2XbgdFAdGxhergFSwD+VhLUSpingHtDc9v+DWnxzlcsvUwioAmvag+rOIRG+ojbUD6Hk+Yv6VrD9wKroD09jUQ0L7WZvDvgquBzOaDm7m9Llf9d+uCZAjxd9DIVHzlcqq9OgMBFemMBsct4vq8L/q2v4/E9SWMyohACpA7wOXpSrBS7AlAXLY21QNVORYc6z/6MmY+fJ7TvHSugnoLR9Jjz7ULaINyk2Y1ygKcXSMjX/9ODbHuqRsIL7ssUB+foVH1032blX+/P2Y55FLdWtqXvEcbS145KMKEz8C3SkfaiEPD8JzDaWvuGMeZqYJC19lxdlwG8FHOoydZKHsEYcyFwtrX2Xk7a/9mOG9XWAaPdeOrhHILWD2Ti21ZskK/SplTy49P9IRCwAxFhA3hBx7QhHjjFXbqHg3Xfl+WaPTyUoBCEAOWrCOvGjUF//SvW3lJ2BzwgqP2w1Fxupn7ZbXTybIeWWXVIc9TNjLEx2dDQhDw7uGnR9Nqo48SI9UStC11P7ATfdETaigC2VVkgcDSZUzOFaMorof+L5Dv4tTsJ5ddx/idmpiBzFQ222iEKSAF26rIby2fQQFngHQUmtb7TdiHqfbnXMTr6f5eVdN+b+84CFpN73txtULp5LPAMFPvnlH9eKPt9h0WITE0Cv3pEccFDsJ4ALzbUBJ/JzCMquRE/vJjSh0IsuRGh5+45rwYN+LkOxx9w/lR95YluJzOe/yVmbQKmcB+NUkTgKo8Mdk6vS6ORi1ldsxWMhw7bpzFnkhYvTgZ2KY326WrwkB6nuJyDX1gM+EHEmBypWykTrXNgQb17U7DLY0FnyK7Gt1EJSZc3ZjF38Sy3PCXFIvZ3YC7dzhjzK6ytyZjpwE4w//D7mKcQ4PEX4O858KSClcvwtSaErqV1BFo3lEnQ61/DhK9ZOulMmJATgMqo9iuBCYot6eoVWPkdQV3tgms7UX1fBj3ipVl51ri5og5YDdilohYmJJbzgNbdPkhQZxRldZEAfQZ+snVlpCy9992I0JDdYB4hUF/kFITKMjPmHvw64icG/YFf+tYqsX03DwU4gYA2Z78iujdn2DaugLOb+n5f2zUzG7Y5OV6ttmKkjCy5temYjnqOf1fT9aqq2BnotRDGtxHBpem6038h8DzmZin/2Yy2WsaYsMd92Vr7cngDzVJiQj11tDdZG3yl3N+B540x/2Ot/V9r7RqiG0SF9x0IpJ8EnSeYnUZUey9AfEkHrV3XpKchhxb2AqFDvhAh/opiSucjVNsXIvxqyN94W8GCuQH53Z8KBz+qDI8p4FSQQGfgnBzM/aIvABDPPtYUZ8JvakSLHzUB7hDVVrMcX5fo6jY/ikA2JHTdwZYbZKCs8Kio4dbrIj0zAVgQoWubTzETe9O136dMn9ebPu0k6veBRiHjNu3hwjof88Hsy0jtmEfqWMgkj+lDetNz5CSuZTazcVxJERfKoDS41DTyaIc4qlLi2UVVssjFFbg+yP28x8UsnX0mXTt+yvSh4Qi0KODOmd2NSzu+ybv/c1VUIDqpdBPVh8PON+oGpSXx2f68zgqWZ/KrZn/j7Zevk8BiRbmHXc/9lOmF3RiQ8iZbe9ZiyuNSuFfr4Ab6xPnzrCWF3nxKO+ZRlV1Moi9J7OAZ7ua3/Incl9vzxxuH8jEXcAEfk8Z6rpzxXtSYFPcLbYNzEaT2zKMWWzFmslCzgRtv/Av5NGAoqxhg0xi3cJD3g/psceuzxG+7i2yWcIAKJOwcSp9qk5S2LVNpcx9BEN9MgkZ9pWxo28Fktq08jbbNZkFqJxFZmir7VNi8h9Z1clnwTUcuPuMtzD+B7vJ8xW+7itLUGBB/GrBH7n/qw7spmJcpYDZJ13dAWD3lZNYChlIqAsIX9KNpm0UeLLrtzFvwr8vlOL0J1X7GbOcC0MOQAPyFOaKKGyuMBLASEj7dQUmezI3iHyqmdHw1acVyt97CWsBjEXm9aSHcHl3bergA0QlhR+crf/YZz5PA87/IpPVFK8xvIG7YHrr3/Ii9JJK1fS4JlPgNXTVUQQK8nwAPRQPOQHCI71VIB6AYa90AGdEaylel7xPnY7efr/vmAI8HfT+jQWcPrO0kFNLmdSXblYA4ekdRvQwaaUbur7/7NbfMU6WCx2rq8fSzWh99LS1SrtP/6sorI1hVVDUXIODtE0jYuQMYGrTtMK6Gcr962zrA3Aglm/A1R3PwLVRqdPJtQVz/zuTQetXa37m0E+/WVYWkTGCE3F9zrUbndV4SRPNHIVHmztC552fMHHGeMEldQf5UZKC+PeJrbsI0V5D6kBoRqdcEqIB3IhNygnpVayMwNuKzq3kxr3ggCUQLDRUgQP0TfLP2CQRZTPO43q/+MPOy84Q0mQWkNpX7MBUZkZZq9PMWjYQ+rtfurANeaAgI9x6jK9rDNALfQ+Fm5WlvAv4tTiysvnfSjoEdHX1o638YxU0DNlhrDwBoY+xCXX7I/mTGmIsQUvyHxpgXgQd+iv3MTppabuh9Hj7g1RsZ21zg8arNsKyObO+EUztDfKqM9Rk9l5FEEYU9RbXs9CErqUERuYWtiT91H6XtqlH763XsKq5KSX4N+ANkTZpL7gwvmZ6/PZ3S5E9oYUPypN9Bn57v8ME5MrAm7LyCAdXG8epyIAtSu+RRcEc5n+tK4K8xy2ZFqN1xHVtilUhDlnxgA/u+q8TeXQmH3kitO1PJGLGGbSSznjR2qWjDNmpRgQPsJYHEsH8H7vzTk2SSx2bqlDneAyPuByCDPF6KyTZeM/sVDlCBChygiCTSWE/hoBQas4qWLGE+2WwjmUXaI21LzPHv6fkojVnNfNqyOlBfEou/uZiONWez5GBLEtkLwMjVd/Ngo4f5v9p9XR4MruHz7T3Y/30Fuvb8lF1UDT7zPbYCI4t30Lha2W4TWW3mstley8aRDY7qfC26fMXS+9Qx7ofqnTex89O6h9+pIpx/7UQmb+5VZlU925uNDzYAir14oItlN34LbimniHcMImh1A+LbL9HlnZQzu6YGvGHE58YGdtBlSRFqt1nHlo9jMvSagO7ZSCZFU069ACoegPxK0dt9FCE5cwPbbtXokJuHXAgJ5+vkKMkK4Gyh7IPNlTn9xpV8O7SJ+OkVwFT9cYRV+reWc80nmh2dr9xp7fGuZj2+dpJq+19sph/wJLRtNIsFzYTecdbyGZQST+6Q9h5cva+vu7w4EPcrEg3XciogdNVXpg0CwFS1z36NCiT0CV3Fs7pxxPeeXBpa3VVfOxOAo/iXFFBqqxTbzveFKooPSaC3wavB/p1AbCi+a1k6UKyAQQDcVI3X9lWaUwlSp/oQ/nov/Br+oeDUPVKPRKv72oVC+6332VrqsJncx3VEvX+UnndwQKMKgKejAM+FrG9k5pU7pD2cg6cx5yPg87nQ+TKIyuLyHT4CGRI1YAMC6nfp/6F+n2GLjTIGwFPF7QJBiBD91pgV0E1Tqk5MyPW3e9htg9TRTPOZVAjVpAyTc5Y5fzhrOkep2m8BaZDQYgclS2tA6n7iq+ylNFu/YwXcJ2xtyDG0Y04fSsq2dDnCWPqByUOmUEeM4hrhTF9krV1qjGkLjLXWNg+tXw5cbW2ZJgIn7Rjb8faT4XHcXIsAT61pJ30/LK0oY14m0i7jtCdhzYOkniEDXjOWk8he9hFPHbZQh82sojHLaUYGeWyhDikU8sF9l3H94y8wna6s355G/5oTmHxQAMClcRMoIolKlBJPKa+arfSxzdhPBUpI1LrKbCqxj2YsJ4tc1pPGXjxIrEQpm6lDJfaxgyTqs54kiphHO5qxnEJSAuCWRS4LaEsa6wOxoGl0I5mtlFKJLBbx+cEeNIpbzeWMZwy/Jo31rCWdViwhgzWsJ42z+YLCQBABKnKAquxiF1V5jV/zO57ihs0v82Sd31OVXfzh4KPcFPcSbZnPLqryJe1IYC9V1fEnsYMSEllFY5qxnOEM4xnuZj8VWEMm0+jKVYwjiSLqsJk8MrmAj1lPGiV6L+aTTTvmMYOzWUJLejGFSuxjEn34oLgvN1V7iarsYj5tg+9rLelcy+sAFJJCOmtJoojrGMszSM3GVLqTzQKKSCKLXEYxmF5MZqo6uF5MZrnSWbJZwHS6kkAJRSSxjWRSKCSBEjLJYzK9qKC931qyhET2kkeGfg7pEZ5OPpupTS22UUQSE7b3Z3DNUcwnm70ksHTxmcSnFtOo5irSWM8BKjKv9Cw6xotT/KTwQs5P+YgDVGQvCdRiG3tJpBvTmEoP9pJIKfHEU0oSOyiiBluoTVvmB+C9iCRWFTem5MkapD6exwEqsLFvA/mNpAMrIfXuPAreyoQEyOi7jDXPNKfR3ZJ1zSCPT2b0g3PeYqDdwXzasnTxmSS32ECjuNUkspd80llTmBkw45LZRm5xFiUzQwyuqZA8fAO147YE17VxbAMJEJ0Kbc+dxYLRSvF2845agOtS8y84q8sMCkmhYHEmjIIWI7SsaJ5OLu7CCxK9QwBgT3hxoaPzlSeptift52tWawJaU4GeyyWSNXtvRzIT8xgwcjTvFUvIrOT9GmV3fkwn9A6cHkaQxpkxs+Dby+F0pzB0l/49G71hCwFf5jJgPVR/cxM7n68L78rq0gnPkmH7QztYM0/mo2HA2Te4GJ/2i29YDA0FbFYKCdaAq/d0c9jyZcsTi3cANQSI3q8L96NZ0IbQfhSkieycXQc8rBldPVxr5uLCd5upI8d4OnQNz4QAZ4wQRNycPeQOUKCaBPxLhC0CqfYSON1ezrdtQnywcE/MIiT341R4bweeQ7KGc7RG5XHKtTKCGI8jkdT7UZAdAxrDYkPTVkBaU5im97ae3AxThKcFJQP9m0YLGl2Bn2xCQFM29yOUnibAa/kEwkHXEtQXl+TXkMjtwIqUXlxNxCFOwpMf1ixlaM/l2H8axV0PnGaMqaDZzgpAii4/aT8T8+OPjOMGpKbzdaRu06mG/jsCuZLZHMJIRtohJDGb/qEUTgUO8AVnU0o8yWxjF1Xpqmmj2aUdSY/Ph1/CuOIBlMysQaMLFpNHJglxkhV8edIdtO07iwVPdaLz7z6jj63NLqqSRBFbqMMAxpGhFJAJ9CePTC7hPaW8QjylNGYVZ/MFj3Ef3z7ehK73fcoqGrNgXTt21a9KVXbRmFXsoiprFOQIyMoHIJmtpLGeViyhkBSy4nL5fOGF5LdJJ4tFpJNPPQo5QEXSWE8p8WyhNnXYwnSN1maRSzyl7KIqd/EsFdjPM3Xupiq7+YA+ZMXl0pHZbKYOk+lJJmtIoogkjdYWkcR60shiEe9zCa9wA4tozRZqk04+l/A+yWxjFY3III9VNGIXVWnJYgpJ0WtYRBFJNGY126jFNpLJII8L+JgG1fJpxGom05Ppxd24pNp7ZLCGLHK5VxXy7uLPzKYTHZlFLyYH9ymX1qymMenkk04+lzOez+lBNguow2b2kkgN/RxvcTkZ5FGJ0gDsp7GeRWSRyF4yWMMuqpBEEaXEU0g9iqhBHbbwBWcD0JYFrCeNSfQljfUMqTmScQwgnlJ6MJWqrXYzb/NZHKAi26jFZmpzYfzHjFsnTvr0+nlsJIXcce3JGjCXZiwnnwZMom/wHMynLV34gs3UoYQE9pLI+9svoVfNyQBMX9eDuEr74CKhTW/5Jg0eguSsDaTH5bOgbicKvsmgz+XvUIED8jxOgNUbWwGw+spWMk6/ezmTVRQiPrWYbRVmMuely7n4xvGsmdEc6sr39vby6+BUS5W620i9QJ73xqxiyQUt2fJMfeLvLmXbdo0q5woY3TbsNBbQSQQVO29i146qHDxQEZ6sFPTNZgJ8SRdO77KSpq0WkT5iLdOLu5FWbb1oT9RFwHQ4w/kO0hf+RM8DHp2v/NnbyYznSYuyZiyisLQeSfFFHKCiRNUWK93kF45vGwMUG0QCRVlQIGOKIVPBaRbUfmcdW4zOFc+XaFj19zf53p39IzAhLFQ5DkehbGoXsWJka6mzAEqT9fzaNqV2u2gBBxc13zm4rgBYkwPXRNNYnZnLkOJ1xda1b1wXHMe0IagxTXhVaCIl1WsoJRdKhteQ+sp7P4F3Nf3nwN2Er4G3ob+i1AklwB8DAZ/qb4aEnabrfVuu1xQGngX4qGF7gsHYPqx1n2+E1mmbGUrw9Z6fR4Ksr+0XyuQuQL6zd1WwxwkYzCRK1j8QQnC1lzcSLcw0CN+XDYL+pg5sWtsGY6RPLA/8VnBqPTzw1LrScI2oU+91qpHStkeXuYz0akTGfXBEaMSTgV4SYCjdpJnwk/Wb5doxj+JWy7a0O8JYOvU/y3jq/9OBUSFxoeuttd0Oc4iTdozsuIkLhQNfXfV1GBIcOz/ihKv9uPZmRAJfXSH5og0kxRUBcDZf8F7pxQyLH86fD95F27gFtGQx82hHA/LZRzwLyGZNYSZ9UiaxiNaAZPd6IRP8JbRiyoy+1O6yjj58wBoymN6wN/d8/SgfcyGlxNOfCTw1O8KNHf/Cy4PuoM/od7R2EqbSg1t5gVEMJoM1lBJPLyYzg7OpyAE2U4csFvHAiOEMHPoiY5bfTM9mk4KMF8BeEgKQVEQN+jKJfVTioXFPcvuAP/Hc8t9wcbPxpJNPBR2ct1CHNNazVSkmrVjCetJIYz0zOJsG5JNACUtoSTOWU4fNbKUWE7iUZiynC18wm47U1rr46XTlYt4nkb2kk88H9CGDNVRlF0UksZxmXMtY1pPGfiqQxnq+oAvJbKULXwCwisbsoioHqMAuqpJLFvNoRyNWcRXjqMABltCStsznS9qRRS53732GdxLFUc2mI1XZxQEqsI9KpLGeCuxnDZnsJYEltOJWXmAHSZRSifWkkc181pLOetIA2EVVtlGLC/iYfA1WbqY2zVjOOK6iGctJoogK7KcOWxR6J7ELCRCA9Esdx1UkspeuTCdfj7+6TSv4A2T0W8ZAXuOBecP5Vbu/MWFzfxrUyWfNbCVqpO6ndn1pVr1lXQoD6o9lMS3JZgGFpFBKPLXZTAmJVGUXE7b3p7SgGtWbbGLnSpknNG21iBUjWlNl8FZ2z63FWefOIJ59zFx4Hhe3Gc8qGrPirdZ0vvwzZj51nsi0jSeYXwxp9QwjF98N70O9ByWLfIAKpJPPlHl94TKot24tRcVJVK22i2S2sX5vGrtza5HQQuY8GdXypKb64n2QW0nYTsP2US+lkNKD8QBsy08JGAhV2cWKea3hTag3Ym2wbPW6ZiSnbmbbzNNo1GUxe0mkYLXy6/V6gzZ/r4EmpA+rJfFD2E/dV56odhJ4nrQyVml7MaUzq3FN31eYRjcas4rZxR1JrrZNIm0zBJhFyZWHRAeEUlsMLCH5QDrbLj8Nx0KyY6OBBCyE/poWfNcdoBza6PPA/2PvzOOjqs4+/n1IDBK2ABEQDQZBQLYCoigqBcUFV0R8UVSkFpe61VLbKrWMoYr6irTuG1VERa2IFBVcUHiRIiibgGyCsm8ChjUmJDnvH8+5MzeTBAImhMDz/XzmMzN3OffcZebe33m2arFYnirVNAYka2cyKbUzgYKZA+PdVosjPpNsODayQHZXiWWrzfqtV6mf+ZnpcOxs/VNdh4r0ID7UXUbBRD+emtO1Jmjbd6Yzt4W3ZrYtmLVX5H9p7C5meR9/8wpiA9r596NRUZkaavgL/96BaBxrgf0NapndHsrIF84mV0Rm270RxHi6UKY+PVb/49s/WV1n/U3ErfKCOUgnP9oPZqTViCYq0jZG+PX7Fdzek5B03XZyNtdQUd4NjYFtC5yy3a9Tslp0RyqlfjOt3sHRbh//pV+UKKvtk0BPdMx7M7DFOddSRJqj5VRqoVHUfZ1zhQOzjFLH7pOGYRypHKr3yoqOudoahciuXQMuA5l2ExwNaxY04Yy+k6hMNj+QDk2yAZCRleGGrcCn0CQW7J6Ss4Ga2ZCZdKYXoDHrp8h2WJmsqcFP0NiDQOTUQ5VHdo4GA2wLamw1JmZk9QbSzKT60eRBRaWq35vgjFrgvv1zQXEZsnDqct9BYqCo/0yVbZqOrMq/fiJrUa2YFTSUwVbEW23bnQTNQd6K23hm7GPNNzbwQ066ZvbtQ5Eslw/hmpYap5lQzA6NIFaj6xqiZW8KpHgfgrqoegsj/4nA8Wgd0qfmAe8VaLJA0qeTI9EEQW58nNh8xS/3cpBtFkiM4EIB9G4rmgW3oxf2QTbdDkCHGtFERFE33ZTCuyhD0DHAIDy4P3A1VNu5mZ2LU+FT4JEaRYpto4wpmfvQPjP1OefuAgoVl3DOLQY6/sJeGoZhGEb5Ya62gAlPYy+4IIlLe2jm3XdyqEyrBvM0zXyP3bBNyKrZHZaphRNgW2UfyyehxnxpE9eihqagByptKJjVblN7LyCboy4iX6KupI/4dUcSjc+Ui4CUGnA/yIbCbpXhemLia005X3uKa/6sqb/jmZMBc0LxjALkfodzJyECWTWPBv5XXb/wffSsb9+IKpN/oso2tL5nezR9+GQVpx1rzIimqq85tGAipEJxlFFXW1WjbhRaN+s9CghXVvisr6mo1TPFT5+JxnHGE4RBBRkj1wCXq/gPLJ1cg8ZU/iaUKXa639ZCtOwL4SzHvs99Ym6wReFWhQRrKEmh9PT7FIzvTdoKtWoTZBaQvqjrza2o2NwIOdNraPa+HtnszKyOa09xobnGwcAy9RmGYRjG3inZvfKwx4SnUSKWPtkGLnGccuI0Zo05k5qXbCDn58pak6k/MPy/Ra8oNXD5oa9BRtRX4xarBD77ucYbXoIKoLFAD7/MVUBGDY39id+MxGpzAiTdVMQyvu5m4M4q8r9IqtbJJI2oa2/U3fYRtXZ2YhLOdS1UbzRresGkS1m31oI9PjHGJUBVyHquFtw7HNzxdHnyIybPK1gnLUw7pjP3xNNj5WyCfg9CSwzsQa2FPxMVoDIMFZ0b/CsoHv3rjIJFoH/Q/kSFay4qRK9po+2OzlAr6Fh88p642qpnRIqswelcQWttfHbgAvvgEwYFls1+nz9PtCr2TDTr3dzammW3F4SSRFLpt7u0/l46en3MBS6vjPu6cJ+Mg4wDssu7E4ZhGIZxCGP3SsCEp1FC3F2gkupM6AkyqD6Vbt+lRYi3wMlO044v+qRdLMPtcDWLyZM1cHd561bAI5BPVc1cGAikucCKXNiZGCtVEuifObHPbnyoRmeHGnALnOa68tWjsebDpVICS6dIUPdD680792e1qIXLtwRlSLoAJ8EZPSf5db+DXhHvXvuTZvr1tS2rTP6JrLa14FfEyql84Dc1G+Tt/kxu77OrtoGUnKA/WkqlZnaQZ3wFbb+fzg856QBsy/RKzbd52vgpfDXIB9YG9Thf8n2+wy+XgiYOahfRoulhGvnjONO/qoZiWwf5ZB3HowMAl0RiZXRCNTx5kILnsgNau5MgQUiG3zcKCt8woeS7/cY8z4hzCtaK4wng9lhbrdxFLBhzKvyTaGyos1HDQ4dScrU1DMMwjMMWu1cCllyovLtRoRFfV5GziNaCPLn3HAAWTWmnwiXdL3M3nJX/KQBfcF7U3bZmk1DdtlX+F7nTj4d4weMu81ZILwrd7KLrdhbZx8DK2TEmPJ3rVsj9Nmq1C4qAB7GlgRCtj8ZH7gCCtCYP6lurkV+zYMqp+NJjuJdCCYXm7IF2R0X7Haadr4o+9yqfXGi0Cq22TuvJzRXNshi4vbqXvcutL6buBse242aHkvb4DHDRmNBHHfwo0VjK6DkJEvy0Q62oxNotCglqYH6EJjYiVpInXGszahm+PiQ80ynI0/69LXqebwfuzYD/i8C9aDr1kCe2K6JetnFglHrChModHMft47/0h8M/YcLhiN0nDcM4UrF7ZdlgFk/jgHFebMiNRIv9LhrUTmsq3otatnrkwq0FL7NAdIZJydkA93oR+YgXoA/oenK5z7Y6x68/BpK6qIWV2oXbio+ZjPbXWzrlKOC80PKDgDe9WPq9L3cyPVaSpYBFtDpqeQMtWxKQCVyqIhm8EAxiXOcM9/1aG+pLMdbAonhFy4ao2K4fFYxykd9O+7jESPWBH4to53Y0E++cIuYdTVR8yqCixae7i6hgL5CEKS6DsHORgvU8w1wMfIjmJgUVpOlw8l/msOiqQTpY0YtoSQVnsZuHPpYwwTAMwzD2jt0rAbN4lnc3DkukIZp4ZzMap9kKTn52Dotmt1OBFtSeDOo/Xg81h29gW7+Q9dK7UlZ7VQtX7jwrFXoD3YEHdF5gbdvv/h3lP/TQt7rvrGLTjIZaC/MPft5kvw0v7HgAtcz90c+/xr+/6WNLAyvjX0NlStoTE3n3qVAvShSL/NdP0/qm4ZIu/M734xwvkEHdab3XMBPGQLuesb7eRqxuZ6g0S8LGXQDk1asaaz84DkGyoVyiQ1EFEgCNIVqfNL7MinSKrb+3TMLVd28mJTmTNTOacHzHZWTuTmFn1R/h1ZN1kOJ0NFbYW0KjiaCMUqfUR3GTOjhS9/Ffuv7wr012OGL3ScMwjlTK6V5pFk/D2F/cKm8Fm4paPY+H1bvTNCnMAlRoXF1wnW3968P9mp02LLwSEnPZdnqcO+0DwFiQweAGgQSxnV38+7e+HzcW08EzCk+q23EVm9o1jJVt8cgUNNvt5V5M/tGnc728RqyY+S7g71uBpwqu/Beoc9Vattx/nLYlABFaua9pzdfM51SKJKhn+keiIjvlrA24wfVVfH6JJgoarcq70oRd5L9dNeYK692F5TZCls+qMHoFwo8EmZ2ci8TEbEAusEbP375qoEZZBhytSYPc53peuABI0yj60xrMAHza4W9gTVoabK4MPAObI5rk6HngLROcFZJ8CrhqF4NltTUMwzCOXEp2rzzsMeFplAmFRUsqMglOeGkxK4c1p+7sVWzeWIf8f1Xl+oEvsZo0AK4gE7g6GlsZFp11/7KKTeML1uyURylMS9QiGRKecoz/sHkEnN1P+xgk1hGfZuxs/9pZ9D5Je6BdjagYpFcEWvvPj9cGIrGssmhcovRR0cni2PQFotmFhOHwUP+opTO6ns8CnJKzgUZJKwCY+31HxHvaUh+1HV2jls787n7FxmjW2yCu9Vnf77AFFeBvMWurGxyypE7271/GMuJGM9n6hEDyLLjbQm0FiYJeeQjoiHzejaLYOT2VlHMySeq1nT/U/gfPpNyuh/mPfltFZMw1KgjmPmQYhmEYe8fulYC52pZ3N45YpBKckv9f1tGA9ec0gqfh5hZPALCT6kyhM/XYyMLtainLmliLKt1+Iuu3voRJyBEh6aZYzU4AOVGnu+/9thoQdd113gIYCFH3o89YC7CyEfQIjcUMR+M5e/nvr4XFagbROptOy67Is6ggpKBLqsTFKWr8ZwY8pOKu7cDpzL1IEwyFLX5BAqVtlefA8gvhL7HCqO6dUDKheEYXHeMaFaBdVTxGEyrtIVai5vS4mqKdgC+9ZfcZn+TIC08ZiVoqAb58CB7/q8Zo3oomNjpbBf2lDcaxjgbMWqoC2zUtos/GQaPU3YcqdXAcvY//0ixzta2I2H3SMIwjFbtXlg1m8TTKBbXqnYncCG0/n04fRjHKC7ljWUdr5pHKFhrXWMZCWrDAu6VW+ddPJFfbzZbH1JJY8w8byNqpiYakNritkDTTl3ERX1LlWDSe8WmNV3Thsi4A3U/yH3JhbC5MToTg5/7ad5qttpcXlzOgyslBZpxRsPbeAoIunug8n2DIuf7+XUVckNk2uvwQzQwLsO3a+jB6gn6ZKJoQ6VO/3Mtx1spFqLXzeOC8SDQhUjPmsTQa1HpyLLNtPEHNVG8NLeSCC+pSOxnkQkdSyg6ghlp404D//FXnP4C6AQNnNJgGwPt36UFwT8Y3aBwWOMzV1jAMwzD2ht0rAbN4lnc3jCKovHU799QeysdcwKx5Z9K0zTw6oSJmEl1YOa05J3eaw4rt6SQdrVa1JknqmzsTn6BnDNH6l9Hsu0EyotGoxTRIctSYQlZCmY1aPAm5rAqxUiYdY/2VGcAK3+7oggJTgiQ9kf/6D4ui88KID4F0cRl/RSb49rrHLJyBa+0Eb/lciCZzAnUzJlZ+JBC+7h2idT3dS3HbGIImQRrrJ5wKhD1mr0aFaQowGZImbidnbA0qXbyLWsdksmX6cepKPJdo2RQ3oNAuGocIpT6KKx1crIBtsUsd9gkTDkfsPmkYxpGK3SvLBrN4Gocc6jI7mKFbt8MHUKfNFibRhct4n5351enS6SMmL7yQaumb6ZA0i89uvBheVuHZhG9ZPr4lHAccB8d2/AFp0wgAN0/bl9FFbPQRLzgDt9jhsVkiQd2UKpp9tR0IeMH6HUw/SRManQz8zQtO8Q281V9jPeefGRWlRREWnEF5EgAyVGXKTajl9mS0fugpOjudxUBzuNonZhpWdPvhbLoSWHzj/9pyM2CWd8+tFp4OXAJkQpUHfiLr77Xgesh/oipbTq+q2Ysxi6ZhGIZhGIZRPCY8jUOW7No1YCAEPqwypjkn9FzMQlpwZYs3yCSFemyk8cvfkkImW6hDdXZAHeDYXE5rOC2atAhABqKlP/YAX0L32WOYcJWqsKSbtpPzeo3Yxvt7y16dGjhXJSYGp4Y6eDLASTAZ6g5eBcAm8YGlD/WP1roMxKxz/RHZg8genDuKMFGX3F1+WR/rKSdqX2iEDpTNDW9bOaHFYlYOaq5iOCWuPYBHnVpjUWsy+P2cA9wJJ3RezMrxzTn+nWtZMwi4Djg6FAE/MVHdaHtBVqtaKkKfj1mCDcMwDMMwDGNfmPA0KgwamxmkUb02Or0BP7CCdBr7VLgvdlSV+Cy3sX5GI1rN+5oF006lzulrObfSRP7d7VoaN1wCQI933mLcxksBSLpuOznLYuIzp45PVtSQWKmWW4i6k2pJmO8g+yQ2yWqYfiZMb4jrqPGm/FTQ7VY/FxSc7ZjODznpaKpaFZxyl76iDAfa+s+vg+vkS6UcDys/aR5ujsYDvmX5qmZUuzUTgJ2PpAJQM/sWuiV9xruf1ID7oUqTnzi7xhd8MuMyVm9M49yLPlSR3s/BVIEbHgr1OZSkaBWGEYcjmr2reGqKyIscxgkTDMMwDKN4SnSvPOwpN+EpIsnAK6jTYC5wj3PugyKWOw6NxmsPfBfv+ywiNwF/Qb0fJwB3ORcUpDCOBNbRyH/yAY5cpnGPY4HRkDI7kzM6TWIdx5JDZY5tuJrl7VuyfERLTmnzX/K/rcoF57zDMppQ+UmNGc0lgbwnE1nUsF2Bpvv85WV2UJ1lNGHRGa3hhCo0HvQtP9zSlvw8XVeuqqwL1+pPpUW7kFW50DgRHtfJbe+aztyRp/N03/6oORNqvrGBbSvqx2pxhrkb/aW21a+p+Wu58tnJvDvsWlqd/zULZpxKzfs30DVpMvN9fZcmyct04cHL+IkUVi5szsIWLTjj/EkszDmZjklfMW13J07uOIc6bGbG7o7sfD8VagH1C2fENYziyQey9rXQYZ8woaywe6VhGMbhQInulYc95WnxvAfY4ZxrIiInAV+ISBPnXHwVxZ1ABPUPfCA8Q0Qa+XntgC3ozfQ6oFAVSePIwrUAWuBddc8DNAnQSprDWUBraNzmW2at6giJ8P6qK+jRcDTZJAGwiXrUYT1dV01iNWlUYTfzacMUOtOf4UzL78TAhoN5w/VhN8lcW28Urz16E3X+tBbehqRKOezYXZ3dO6rEOnU8hQa72jKXH0jXWFUuBuC3T2rq2RR+Yv2TDVhGE5LI5kym8Qq/oQfvsZRmnDXgU7JIplL6Li5I+pgVNKIpS0hruJoZ2zX70dk1vmDZ7iac0WISXy7tGq1R+nH7yyAZQC2iJAO9S/ccGEcKVpysjLF7pWEYRoXH7pVQvsKzN3ADgHPuOxGZiebrfCe8kHNuGzBFRLoU0UYvYKxzWp1RRF4CfoPdTI0iiGaijYq/ltAQfZGI950FfDKe6yN8cj/wkbrhXlR7PNXZwTqO5dhK61hBOqlsoQHr2E0y5/7lw2hM6dJxbaAekJbNWQ0nMfXd8+ALIBVaM5+z+37BP/gD2ah1dG5+W05oupiVrzePWi2rs4ME8kjnB3KozES6UYXdbCGVs/mChbRgPq3Jz67Mv2+6IRYfOopoGCcEArMrWP1Mo0ww96Eyxu6VhmEYFZ5D714pIi2A36PV1xOB37gyLndSnsKzIbAy9H0VhDLBlEEbInIzcDNAw4YN93NTxpFEAVfTpqBKToWpjIdqXTaz4K1ToSUkdJxCPTby2bSLIdOv0yGbUxrMZNaMM5k6/Tw4Gi597B3eX3cZCeQxn9YsH9mSVn2/Ji1pNV9KErnZjek3+HkAXuFW0lnMyhnNOb7jMtbc1YRzn/yQWS+fyUqaM/rGUGcbAnElUgzj4OEw96Ey5aDeK+0+aRiGURaUzr1SRIYCV6IZR1o75xb46U2BV9EUm1uAvs657/baI+cWotlLEJF30Ers8d40pUqZCU8RmY23JRVBvbLa7t5wzr0IvAhan6w8+mBUfNxFAKkQFX+d9a1TeKnKwJnQMTztKmgAcKt+7QtaNBP9PyI0D1hBc79+E3gS4OLQNg3jUOHQG8WtSBxq90q7TxqGYZQFpXavHAs8gfrRhXkeeMY597qIXAe8AJwDICKN/fcwHzvnHhORrmjCkc3A7tLo4N4oM+HpnGu/t/kisgo4AfjRT2oITNrPzQRtBDQEVu9nG4ZhGMYBU6KECZbVthjsXmkYhnEkUDrJhZxzUwFEJDpNROqiieXO85PeBJ4WkWOccz8655YD3YppbxIwSUSeQtNYzv7FndwLlcqy8X3wDjHz7kmo6eej/WzjXaCHiBwjIpWAm4B/l2ovDcMwjL0QJEzY20uz2proPCDsXmkYhlHhKdG9MlVEZoZeJc0Gnwasdc7lAfj3dewjLENEuojI0yLyDOqqt2D/92v/KM8Yz8eAESKyDMgDbnbO7QAQkcHAOufc8yKSgMamVEZHzdcAw51zDzjnvheRvwPTfZufoOnkDcMwjIOCudqWMXavNAzDqPCU6F65B7U4HhTvIOfcZGByWW8nTLkJT+fcLuCqYuYNCn3OQwtRFNfOCxT2WzYMwzAOClabrCyxe6VhGMbhQJnWvF4NHCciCc65PD8Q2YBDMKSiPF1tDcMwjApPidyHDMMwDOMIpkT3ypoi8qKIXLpfLTu3CZgLXOMnXQPMCUpoHUqUp6utYRiGUeExV1vDMAzD2Dslulfu0+IpIk8CPYH6wEQR2eKca4mWRXhVRAYBP+FrJxxqmPA0DMMwfgFWx9MwDMMw9k6J7pX7zADvnLsLuKuI6YuJK+J3KGLC0zAMw/gFmMXTMAzDMPZO6Vg8KzomPA3DMIxfwKGXXEhEWgC/BxLQ+9xvnHOufHtlGIZhHLkcevfK8sCSCxmGYRi/gNJJLiQiQ0XkBxFxItIqNL2piHwpIkv9+0n77JFzC51ztzjn+gNV/cswDMMwyomySy5UkTCLp2EYhvELKDVX27HAE8AXcdOfB55xzr0uItehJUHOARCRxhQuEfKxc+4xEekK9Ac2A7tLo4OGYRiGcWCYqy2Y8DQMwzB+EaXjPuScmwogItFpIlIXaA+c5ye9CTwtIsc45350zi0HuhXT3iRgkog8BbRFi3IbhmEYRjlgrrZgwtMwDMP4RQTuQ3slVURmhr6/6Jx7sQSNpwFrnXN5AL4w9jo/vdj6ZCLSBegFCHAUsKAE2zIMwzCMMqJE98p9ZrWt6JjwNAzDMH4BJXIf2oNaHA/KzdQ5NxmYXNbbMQzDMIySYa62AHKkJvoTkR+BlQdhU6lojJFhxyLAjkMMOxbKwTwOJzjnjimtxkTkI7T/e2Ozc+7CEra3ArjEObfAu9ouBep4a2cCsAU4yTlXrMXTKB0O4n0S7L8gwI5DDDsWMexYKHavrOAcsRbP0ryY9oaIzHTOdTgY2zrUsWOh2HGIYcdCqcjHoSxvks65TSIyF7gGeN2/zzHReXA4WPdJqNi/gdLEjkMMOxYx7FgoFfk4HO6CsqRYORXDMAyj3BGRJ0VkDXA8MFFEvvWzbgXuFJGlwJ3+u2EYhmEYFYwj1uJpGIZhHDo45+4C7ipi+mKg48HvkWEYhmEYpYlZPMuekmRuPFKwY6HYcYhhx0Kx42Ac6dhvQLHjEMOORQw7FoodhwrOEZtcyDAMwzAMwzAMwzg4mMXTMAzDMAzDMAzDKFNMeJYCIpIsIm+LyDIRWSwilxSz3HEiMklEtsUVUw/m3+TbWC4iT4tIhTo/JT0Oftki91VEuojIbhGZ618zDt4e/DJEpKmIfCkiS/37SUUskyAiz/j9XiYi/Usyr6JRCsfiARHZFLoOnjm4e1A6lPA4nC8iM0UkW0SGxs07bK4J48jG7pMx7F5p90qw+2QYu1ceQTjn7PULX8AgYLj/fBKwAahWxHI1gc7AJcDMuHmNgDXAMeiAwMdA3/LetzI6DsXuK9Al/thUlBfwOXCd/3wd8HkRy/T1+1vJ7/8aIH1f8yraqxSOxQPA0PLej4N0HJoA7YAH4/f5cLom7HVkv+w+eUDHwu6Vh/G90u6T+30s7F55GLwq3EjhIUpv4HkA59x3wEyge/xCzrltzrkpwM4i2ugFjHXO/eicywde8u1WJEp0HDg89rUAooXu2wNv+klvAu1FJL4OXm/gJedcvtNahGOBq0owr8JQSseiwlPS4+CcW+acmwPkFtHMYX2MjCMKu0/GsHvlEX6vtPtkDLtXHlmY8CwdGgIrQ99XAWnl0EZ5U9J92NdyTUVktojMEJEbSr+bZUIasNY5lwfg39dReP/3tu+HwzUApXMsAK4WkXki8omInFGWHS4jSnoc9sbhck0Yht0nY9i90u6Vdp+MYffKIwir41kCRGQ2elEXRb2D2Zfy5CAdh9lAmnNum4g0QgvJr3XOTSyl9o2KwfPAQ865PSJyHvAfETnZObelvDtmGEZh7D4Zw+6VxkHC7pNGhcMsniXAOdfeOZdazCsPHVk5IbRKQ2D1fm6mNNooU0rxOBS7nHNuu3Num//8A+oucWYZ7E5psxo4TkQSQAPdgQYU3v+9HaND/hooIb/4WDjnNjjn9vjPn/rprcq436VNSY/D3jhcrgnjMMfukzHsXrlX7F6p2H0yht0rjyBMeJYO7wC3APhMXKcCH+1nG+8CPUTkGJ+17ibg36Xay7KnpMeh2H0VkWNFRPzn2sD5wNyy7/ovwzm3Ce3nNX7SNcAcH2sQ5h3gJhGp5OMXeqDHY1/zKgylcSxE5LhgIRFpC6QDS8qy36XNfhyHvXFYXBOGgd0nw9i98gi/V9p9MobdK48wSpqFyF7Fv4Cq6EW/DP3RXx6aNxi41X9OQDNt/Qjk+M8PhJa9BVjuX88BCeW9b2VxHPa2r8AdwLfon9AC4M/lvV/7sf/NgRnAUv/ezE8fD3QIXQPPhfb95tD6xc6raK9SOBav+vP/DfA1cFF571MZHoez/H/BdmCH/3zB4XZN2OvIftl9cv+Pxd721+6VFf9/0e6T+30s7F55GLzEnzDDMAzDMAzDMAzDKBPM1dYwDMMwDMMwDMMoU0x4GoZhGIZhGIZhGGWKCU/DMAzDMAzDMAyjTDHhaRiGYRiGYRiGYZQpJjwNwzAMwzAMwzCMMsWEp2EYhmEYhmEYhlGmmPA0jDJGRCaLyPcicu8BrHuXiCwTkZll0TfDMAzDOBSwe6VhHP6Y8DSMg8NdzrlH9ncl59yTQP8y6I9hGIZhHGrYvdIwDmNMeBrGASIiF4nI3NArR0QuL8F6/UTkExH5t4gsFpHPRKSFiHwoIktF5A0RkYOxD4ZhGIZRlti90jCMABOehnGAOOfGO+faOufaAs8AM4GPS7j6qcAA51xzIAsYBfQBWgCtgXNLv8eGYRiGcXCxe6VhGAEmPA3jFyIiFwB/BC53zv1cwtX+65xb4z/PAaY657Y553KBb4AmZdBVwzAMwygX7F5pGEZieXfAMCoyIvIr4HngAufcj/uxavimm1fEd/ttGoZhGIcFdq80DAPM4mkYB4yIHAe8C1zvnFta3v0xDMMwjEMNu1cahhFgwtMwDpz+wDHA06GkCV3Lu1OGYRiGcQhh90rDMAAQ51x598EwDmtEZDIw1Dn3wQGu38Wv36EUu2UYhmEYhwx2rzSMwx+zeBpG2bMVeOxAi2IDzwKbS71XhmEYhnHoYPdKwzjMMYunYRiGYRiGYRiGUaaYxdMwDMMwDMMwDMMoU0x4GoZhGIZhGIZhGGWKCU/DMAzDMAzDMAyjTDHhaRiGYRiGYRiGYZQpJjwNwzAMwzAMwzCMMsWEp2EYhmEYhmEYhlGmmPA0DMMwDMMwDMMwyhQTnoZhGIZhGIZhGEaZYsLTMAzDMAzDMAzDKFNMeBqGYRiGYRiGYRhliglPo9QQkQdEZPIvXeZQQUQmi8gDZdh+uog4EUkvq22UFSLSRURcRd+GYRiGUT6IyAgRGVEG7fYTkRW/YP0u/t7sRGToXpYr9Xu4iDwS2naX0mq3NCir82UcWZjwPAQRkb+KyFwR2SUia0TkSRGpFprfL/THlCsiP4rIRBG5QUSkHLs+FOgZ6mdRwq3AMmVBcX/YIrJCRPrtR1M90f4ahZkGHFvenTAMwzAOjLIeXC0Bv/cv4IDu0WXNsUDGQd7mgxy699ZD/XwZFYDE8u6AUSSdgP8FZgH1gBeB6sBvQsusAU5FBw+OAc4DngAuBK45mJ0NcM7tLI1lDhWcc1vLuw/ljR/ISHTO7QlPd87lABvKp1eGYRhGRcc5t628+7A3nHMH/R7nn5F2lq8NoWjK4nyJSGXnXHZpt2scupjF8xDEOXexc26Uc26Jc24K8Dfg8rjF8pxzG5xz65xz3zjnhgKXAFeLSPfi2vbWwBtF5L8i8rOIfCUiLeOWGSAiq/z8aSLSPjTvRBH5SES2+9cMEWni50XdaL07xq+BiN/mivhl/PdkEXlJRH4SkR0i8m8RSQ3NHyEir4rIEL/MWhG56wAOa/xxCFxpuorIIr/tMSKSElqmwGiwiDQWkY9FJEtENvo+VQrNXyEifxCRd0Vkt4gsFJFf72e/rhWR70QkW0S+EZFucfN7+3OzS0ReE5FH445nLRF5z/fxOxHpHm8BFpH2ft+yfJ8jIpIQmh9cI5OBn4Fzizt+oe8P+DZ/LyIbvBX+kX3s62Tf/9f9/qwQkSv3snwnv06mb//NuGuln2+jt3//SUSGi0hSaJlkEXnGr58pIu+LSMO9bPPfIvJR6Hszf27PF5FrRGRd3LE7SkQ2i0iPve27YRjGoUxp3JtF5BwRWezvNeNF5B4JucBKyHXT329OAF7x96DJwXSJs8pKnKXN348W+e18AKQSh4jcJSLf+//vr0Wk8wEckzQR+Uz02WgucEoRy3QTkZm+L0tF5Hf7c0xK2I/AxfcKEZnj92m0iBwt+gyy0d+b+satd76IzBN9vvhORK4pos3LfP93icjnInJ8aJmSnK8EUXfhjX4fPxKRE0NtBM8KfxaR9cDk/dl3o+JjwrNikApk7msh59xUYC5w2T4W/TvwD6A9sBIYI15AiUhv1LXkL0A74FtgvIhU9es+DWxGra0dgCeB/CK28XvgS+Bx1G3k1GL68jjQGbgUFaoNgRFxy1zh3zv6vv9T4sTyL+B+4AbgHHR/7ytqIX98xgFZ6L78BvgtMCBu0b8AY4Ffofv/hogcVZKOiMjp6L7/E2gD/Ad4P/jjF5GTgNfRcxCcm9/FNfNPoDHQBbgOHbQIb6MO8AnwAdAa6OeXuzuunQfQc3syMLMk/Uevp18BXYFbgD/KXgZBPLcBi/y6LwFvikijYpatBjyLXnfdgeP89zB1gT7o9XSlf/02NP959Ph0R6+nH4FxEhpAKKJ/7UTkJi8wXwVed859ArwHJFNQmF8ECDB+77ttGIZxSPOL7s2ig7jvAROAtsC7FHN/9fREPbnuRp8ZShSSIyI1/XYmovfFD4C/xi1zI3Aner9sBYxEn2vSSrKNECOBo9D9/TNQYHBVRJqh+/kM0BJ9PsgQP6B6AMdkX/wVuB29B3VG972p//wE8EIwWCA6wDoOGIPe+58ARopI/LPZA8A9fh9roNdBURR3vu5Bnyv6oc9KOcDYuHtsB/RZ4VwKevIZRwLOOXsdwi+gJrAcuD80rR+wopjl3wQm7KU9BzwY1/4u4EL//UtgSGh+IrAauNl/nw9cV0zbDwCTQ98nAw8UtwzqPpwDnB+a39z3san/PgKYF9fGUuDWfexjlyKmrwD6+c9d/HLtQ/MHAtOL6j9wgT9OKaH5twLr4tp/MvS9gd9G82L6me7np4fO3ai4ZaYH5wN1v54cN39K6HjWAPaE9x0V1NHjAQwC3oprow+wOO74/XUf12UX/fsocF5/BJJC0z4BHtlLG5OBqXHTpgbrxG+jiPU7+P1NCP0u8oDU0DIvBvvrj/fPQI3Q/KP8eT19L9vpCWwHnvLnuHpc+yND398Bnt3bsbOXvexlr0PhRRH3aD/9F9+b0UG77wEJzR9J6NnFtzEi9H0F/h69tz5S8F7+O3QAPSE0f1Tcdr7HP+OEpn0C3FvMcSl070EHYR3QJDTtZgrew1+Ov+ehzxUflfSYhKYX+Rzj56X7+T1C054DNgFH+e+VgJ1Ad//9YWBaXDtv4Z85Qm32DM3vA2zYz/O1Hv+86L/XBnYH1xL6rLANSC7v699e5fMyi+chjIhURkfEviduZG1vq6F/Hnvjq+CDU5/9JUAzP6k5KnaC+bmoxau5n/Qs8C9Rl9M/ht0wDoAT0Qf/8PYWo9bd5qHl5settx61bJUG4bb31m5zYIlzLjM07UvgWBGpsZf22EubRW1jety0L4kdi6Zo3G+YsDXyRHSgYFYx80FHOnuKyM7gBfzLrxtmTgn7HGap09jPgJKcp6+K+N6sqAVFpIGIjPTuUjuA/0P3t35osQ3Ouc3F9KElkASsC+37T0AVCu9/FOfcGOBj4A6gv3NuR2j2q8AVom5pNVF399f2useGYRiHNqVxb24KzHHOhZ9HSuo9sz80A2Y55/JC06L9Fk3M2Ah4N+6+15W9/O8Xs52fnHPLitqOpzVwd9x2BoW2U9rH5NvQ503Ad87nY3DO5QNb0BwgsO/ni4CSPhMVwt8D61PwutmKPmOGt7PEObe7pO0ahxeWXOgQRUQS0dGo6sC5XgCWhOZoxtG9sS9hWvyKzj0nIh+j7jeXom4k5zvn9rXNoihp9PyeuO+OvbuJ70Ctf/HURC1XsYYKJs3ZW7v73VfnnBNNEFDSAZ59bWNfgwpFrR+/fDXUXXfIPrZ1IDeF/T1PwTIlZQT6MHQTsBZ1/frYTytJH6qh10ahuBxgY3EbFZFk1C0qD2iCunRp4879V0Q2AD1QAbvGOfdlCffHMAzjUKQ07s0lGQQvCflF9Cf8n1/UdsLLB2FCvYHFccttp+Tsazug95jH0AHJMMFxKq1jEt8uvt19nY8DabMsshyZ6DyCMYvnIYj3hR+JPuR2dyXMBCsiZ6N+8+P2sehpoXVqoKNwS/ykJcDpofmJqEtj9A/bOfe9c+4J51w31NXz6mK2swdIKGYeqAtxbtz2mgMpFL5B7A/L0JjBKD5uMAV1BToQFgPNJJR8CDgDWO+c25+b1762cXrctDOIHYslFBZN4e/B8Qzve4e45b8BWjjnlsW/flnXD5jT4r6fSuxajKcT8Lhz7jM/+l5nP7f1DTogcVQR+79jL+s9igrWPsBjUrhm20g0TvY6zNppGEbFpzTuzUvQ+PiwcClq0C9MUc8MPxLyahGRYyjo5bIEOCUuhjB8X9mEZmBPK+J/f1MJ9yXYTm0RaVzMdkDvMU2L2M7KUBv7e0xKi309XxwIBc6X96DbSMHrpjZqLf4l2zEOI0x4Hpq8iMYYXA8kiUh9/wr/ISf4aQ1EpI2I3AO8j8azfVREm2FuFJGeInIymtBlHfCpn/cEcKeIXO1vNM8BldGYCUTkH6JZ29K90G1D8WJuJdBRRI4TkVrxM/3D/svAUyJylmj23BFojOqBCkTQWLy7ReR60Uy0Z6KCYJJzbsEBtvkJuj8jRKSVT5qTgSbzKS2eBK4SkdtFpKmIDEYtbc/5+S8BZ4lmwWsqIn9GkyloQIgK4FHAEyJyqoichtYEg9go6zOogH5eRH4lmqW1t4gMLMX92B/aish9fn/uQ29YLxaz7HKgn4g0EZEL0cRQJcaL1THAO6LZ/RqJyK9Fs9ymFLWOaDbgm9A4ln+jv7F/xT04jAS6oQkdXt+fPhmGYZQz9UWkbfiFis5fem8ehSZGfMz/v98IXMzeLX4r0Xtcfe+2CTq43Us0A31rYDgQLr8xCqgF/MPfz25Gk8cBPlBTPXweEs183lhEOojIQNmPrPPOuYW+L//y985uaCKdMI8Bl4tIhoicLCItRTPE3/oLjklp8Rwq0B/w274DTb73xC9os6jz9QQwWDSjfiv0uvmekKeQcWRjwvPQ5LdolrA5qI998ApnYDveT1sFfI7+0d6NWmX2RQTNyDYXzfB5ZRAf4Zx7ExgMDEVH71oBF4WsrkehwmAxPhkOMWEUzzDUKvU9xccM/hFNKPMB+qe+Bs0y+0sYAfwJvSnM831cCFx1oA36eInLUbedr1FXmhEUn/HtQLYxDT33fwAWoO6blzvnVvv53wF9gbvQ49nG9yF8E74bDfj/Angj1L9s38ZqVCClA//1+/JH9DoqD55D92Mumqypj3Pu+2KW7Q+chB6bB4nLXFhCrkXdc19Br+FX0P/Bn+MXFM3k/DLwkHNunp98B9CCUDZhP5o9DU3cUFzfDcMwDkVuQe8n4VczfuG92edD6ImG5HwD9EJFyd5qNmagg4+r0azuoEJzLJoN9kP0uSNqqfTbuQKtYf6N//xwXF+eAu5Fs84vQgcQT0EH3feH61GR+BVaGaDA4KdzbhZwPpqtdTZ6H74BvScf6DEpFfx9qgcqNhegzwq/cc7N+AXNFnW+HkMHY19Fny+ORp9jiqp+YByBSMEYZ+NwR7T2Ylfn3OTy7ovxyxGtMbncOXd7MfNPRxMI1NtPt6IyR7Tu12Tn3APl3JVfjIgsBP7pnCvOWmsYhnFEIyLPoy6vF5d3X/aG93SZ5Jwri/jG+G0VeUzsWc04XLHkQoZRgfDuMVPREiC90NHVs0LzO6L1LeegyXeeBD451ETn4YKPX+mNHvNR5dwdwzCMQwbvSvotWvu7G1ryqsLUbRTNSvuEc+5AvGuKa3Ovx0REMlBrs2EclpjwNIyKRRvgb2i246Wom3Q4o3AC6kp9Elor61PUpcYoG2aj5+LWkiYBMwzDOEJoiIbupAI/AHf7cJ5DnRnoPRS05FZpsq9j8iSxJHVrS3nbhlHumKutYRiGYRiGYRiGUaZYciHDMAzDMAzDMAyjTDHhaRiGYRiGYRiGYZQpR2yMZ2pqqktPTy/vbhiGYRxUZs2atdk5d0xptddExO3exzLr4WPn3IWltU3j4GD3ScMwDGN/2dtzxhErPNPT05k5c2Z5d8MwDOOgIiIrS7O9LKDIWj4h7tdEGkYFw+6ThmEYxv6yt+eMI1Z4GoZhGL+cSkCV8u6EYRiGYRiHPBbjaRiGYRwwAhy1jxdQU0ReFJFLy6eXhmEYhmGUN2bxNAzDMA6YElo8tznnbi7zzhiGYRiGcchiwtMwDMM4YAS7kRiGYRiGsW/M1dYwDMM4YMzV1jAMwzCMkmAD1YZhGMYBY662hmEYhmGUBBOehmEYxgETWDwNwzAOJ3q/8CUAb99yRjn3xDAOH0x4GoZhGL8Iu5EYhmEYhrEv7HnBMAzDOGCsjqdhGIZhGCXBkgsZhmEYB4wlFzIMwzAMoySUu/AUkaYi8qWILPXvJxWxzPkiMlNEskVkaNy8BBF5RkSWi8gyEel/8HpvGIZxZBNYPPf2wicXcs69Xz69NAzDMAyjvCl34Qk8DzzjnGsKPAO8UMQy3wM3AY8VMe9aoAlwEnAG8ICIpJdNVw3DMIwwQR3Pvb2Mg4eIHC0iz4nIdyIyX0Re9NP3OchrGEaMLTuzycnNL+9uGMZhRbkKTxGpC7QH3vST3gTai8gx4eWcc8ucc3OA3CKa6Q285JzLd879CIwFriq7XhuGYRgBJXS1NQ4e/wv8DDR1zrUG/uanl2SQ1zAMYHdOLst+3MWPO7PLuyuGcVhR3oPRacBa51wegHMuT0TW+ek/lrCNhsDK0PdVfv1CiMjNwM0ADRs2PNA+G4ZhGB5LLnToICLVgL7A8c45B+Cc2xga5D3PL/om8LSIHOMHbA3DCJG5ew8A+fmunHtiGIcXh4Kr7UHDOfeic66Dc67DMcccs+8VDMMwjL1iFs9DisbAFiDi8yJMFpGzKGKQFwgGeQsgIjf7dWf++KNpUuPIZFuWF57OhKdhlCblLTxXA8eJSAJooiCggZ9eUlYBJ4S+N9zP9Q3DMIxfQAliPC2r7cEhETgRmOOc6wD8BRgDVCtpAzZAaxhh4VnOHTGMw4xydbV1zm0SkbnANcDr/n3Ofrr+vAPcJCJjgDpAD6BzKXfVMAzDKIJKAlUq72OhnzWr7UHp0JHNSjQXwpsAzrkZIrIZyMIP8vqQlgMZ5DWMIwazeBpG2VDeFk+AW4E7RWQpcKf/joiMF5EO/vNZIrIGGADcIiJrROQCv/5raNbb74DpwGDn3PcHeycMwzCORETgqIS9v4yDg3NuMzAJH8spIk2BusBSYC46uAsHNshrGEcMUeFpJk/DKFXKO7kQzrnFQMcipl8U+jwVOL6Y9fOA35VZBw3DMIxiqSRQ5eh9LLTroHTFUG4FXhaRx4E9wPXOuUwRuRV4VUQGAT+hSYgMwyiC7V54/iotpXw7YhiHGeUuPA3DMIwKjABm1Txk8B4/XYqYXuQgr2EYhQksnj/vsTqehlGamPA0DMMwDhzB7iSGYRxWBOVUsvbklXNPDOPwwh4XDMMwjANHgH252hqGYVQgYhZPE56GUZqY8DQMwzAOHHO1NQzjMCMQntm55mprGKXJoZDV1jAMw6ioBK62+yjkWSabFqkpIi+LiJUFMQyj1AiEZ1aOWTwNozQx4WkYhmEcOAJU3serJM2IDBWRH0TEiUir0PSmIvKliCz17ycF85xz25xzNwJLSm1/DMM44gmy2v6ca8LTMEoTE56GYRjGgVN6Fs+xQGdgZdz054FnnHNNgWeAF35plw3DMPaGxXgaRtlgMZ6GYRjGgRNYPH8hvl4zIhJrWqQu0B44z096E3haRI5xzv34y7dqGIZREOdcgXIqzrkC/0uGYRw4ZvE0DMMwDpySWTxTRWRm6HVzCVtPA9Y65/IA/Ps6P103L/IM0FxEnheRRqWzU4ZhHKnszskjN99RK/kowBIMGUZpYhZPwzAM48ApWR3PPcBs4H3n3PuluXnn3O3A7aXZpmEYRy6Z3tpZr8bR/LR7Dz/vyePooyx1t2GUBiY8DcMwjAOnZK6225xzJbVyhlkNHCciCc65PBFJABr46YZhGKXOtt0x4bl4ww6y9uSRUr5dMozDBnO1NQzDMA6ckrna1hSRF0Xk0v1p2jm3CZgLXOMnXQPMsfhOwzDKij/+ey4A9WroiNrPe8zV1jBKC7N4GoZhGAdOyVxt92nxFJEngZ5AfWCiiGxxzrUEbgVeFZFBwE9A31/cZ8MwjGLIzXeAWjzBankaRmliwrOMkYHQeMi3LB/YMjqt1ZCvWfD2qQBUu3QzAHWSN0fnrzynOfRDiws8AFwCPAacDKyBxhd9y/J5LanbZhWbPmkIG3S9Y/v+wPrZPrfGHuBRqDN6LemVVtCAdSSRw0xOoTNfMJMO5JHA0ifbcMZdk5i/uzUAOz9K5dieP5DGamZuPIX8FVVp2nEeS5e2oXHTb6nLJr4c0BWawG9ve4YsqjDq+9/Q5cSPAUghkxQy2U0VqrOTj7mAjsxgBenMGnUmpMClF73DD6RTj018dszFnPDjYlZe1JxW478GYBP16M3bLKMxWSSzhGasX9oIVsBp508BYAt1WD64JWcN+pQskkljNW2ZC0AmKXzB2ewmmSUbm5K/rSpdmn7EQlqQQB67c6rQLGkpq0mjMctIJI+N1GPRlHa07TwdgFwS2EQ97mEoK0hnHQ3II4GN1COJbAAW5bcAoEqlLBLIpSuTWe1znkza2IWr673NEpqRRwLraMDZfMEK0mnAOhbSgrpsIpndNGMJz04bwPmdxrGJuhzLOgDm04ZkdrNiazpta88lhUyW05gUMunCJJLJYiTXU49NrKMBt/A8f1s4lDrN9ZwH52MJzWjAOpLZzYztHUmpkUl1dpBAHtXZwVdLO9O46bcsX9eEPg3eoAdjo9fi73mCFiwkgTyW0JRUtrAspzG9k95mKc3YSD0u4kPe5mqasIzJSy/k+KbLSOEncrz/ZV020oFZDN/dn67Jk3h/9lVwFly/+yVek+t4wGUwmivpyFeMze/BaZVmMGHdxdRtsBGAxizny7e7ajqZzXDyZXNYtKo1/9PwDf494wYqpe/i9nrP8tT39zDwxAgT6cb87Xo916mxBYA18gb8LQLdgBT9XfUY8xYz6Mh6GUkfl8ao2TfC0cDTwN3ACH8QLte3v3X8K49u/Qudak8jhUzGHnU1/AloAsxE5dFY/3s9JQPOiMCFQH+9XrjE+6O2QqdX06/uMio2lSiJq21NEXmRvcR4OufuAu4qYvpioOMv7KVhGEaJiBeeVsvTMEoPcc6Vdx/KhQ4dOriZM2eW+XZkIPogOhFaDfqaTdSjGxMZNe5G6lyyli2vH6cLtgJSc/XzmkR6dHqL1aQxZ2Nb8tdW1QfZzyKcdc6nrPciZvTuXgxLHsBoegHwyZjLaNtzOnXYQgsWspAWfCYXQwacP2gcAJuoS1020YB1zKAjmaSQRwKbPm+o2z4e2jadzty+p3P+yHFsoQ7V2UED1jFq3bWc0WAaTVjGQlpQnR20Zj4jc66nXdJcADZThy2kRoXNko1NaVJvOVvy69C20lwySaET0/iCs6nGDpbThF6MZj6tSUD/3DsxjdWkkcZqPuYC6rGRObSjMtn04D0ef/t+Lu39DvNoTROWU4+NvLf9Cn5T4xUA1tGAZHazg+qsowFV2E0mKeRQmRYsZAnNaM08Ps65gKydyXSqPY3evM3vBr0C/fUc9Gs4nDwSyCaJBqxnOY1JIoflNKYxy0lmN+ms4MmcO8nLTeSW5OcBFXoAc2lHOj+QRTIpZLKReiSQS2VySCCPFDIZz0W0YCFprI4K1iSySUXF0m6SWcexJJNFJilkk0RlcsgkhQTySGM1HZnBQlqQRwIT6UYDL1pPYWa0H52YRhqrufn7VznjxMl04r/MooPfXg6fLLyM01pMoQ6bmTC7Jze3f4ImLAdgGp1III8dVCeZ3aSQSQJ5ZFGFdFYwjU5cxHjGcxFtmctMTqEbnzGRc6nODgAmrLqM8xuOZzmN2U0yvRjNU/P+RM3mG6iclEMP3uMzukWPSyYpXMR4JnIuAPXYBBDtw26SWZLTlLSk1eRQmaXft+asEyeSSB4zd3egQfI6dlCdTkwj00fmpLOCFaRzKePYRD2GrBpEpcrZ5H9clbP6fsrUhefBTGjadx5Lx7VRcbu0HXQB3vM/5i1AfejS/iMmL72Qk5vOYfXuNHbekAqP50KmH8d7C3g4g+tdA6ZwNgArBzWn1WAdWFnQ8FRYnQFEdPn7wA3Z939JaSEis5xzHUqrvQ51xM28eB/bfI1S3aZxcDhY90nDOJTo/L+fs2prFi/17cBNI2cy6qaOdGqcWt7dMowKw96eMyzGs4xxQ4DpQDVY8OSpbBrfkI/zL4AVsOUvx6nVoxqwAjgrEd5M5MpObzB24NXMkok0qrdCLZr/F+HKc94gj0SWj2pJDknsHJvKzete4pMZl/HJjMs4oediUshkHQ14avaf2EF1/uge5IRBi1lNGg1YRwsW8sm6CxhR+1ZySKI3bzOIwfQ753n6nfM83ZuOYe6o06k7cpW3Wu5gxvaOrCKNMxpMowHrvIjKI5cEtlCH3ySNIIE8EsijE9NYLyO5gI9J8/k/OjCTxpWWs5G6pJDJU+vuoguTmTrlPC5lHElkk0sCS2jGEpoxij7kkEQOSXRgJq2ZTw5JALxGX/r0fhmAWmRyEeOpwxZ+U+MVb2tNYSYdmERX0ljN2XxBB2bRjKVUZwdjL7qaTkyjNfN5LOnP9Kk9ihYsZDj96Tf4eX7b8AV+2/AFckgijwSqs5M8EthNMqtJ41jW0ZEZtGY+S2hKu6S53JX8JDuoTiJ5pLKFVLawjgbMoCMLacHHXMA6jiWLZIZv708mKawmjW5MpBejWUcDksimOjtYTwNm0oGZdGA1aSSTRWOWkcZqtpAaFYF12MwK0hnPRWykLnXYQmvmcy4TAaL9aMA6VpPGe/TgtBO/oDdvMYsOTJ59IRupRz02ckqL/7KbKmSRDENVrO4mWQUezVhIC1ozjx1U5/38S/nXVbezijR2UJ0UMplEF1oznzwSSCSP17ieNsynOjtUfOYmsJo0NufUYf2URuwmmR5t3mLbmnrs2F6dF1fdzgV8TF02so4GLF3Yhvm0pgHr/WsdKWRSh83Mz29NEtls+2t98kjUa+xnoR1zmbG9I12TJ9GRGaxf14BpdKIFC2nBQrZQhy3UYSxXMGTdX2nbcCb5W6pyct85TF14Hqe1mALpsHRaG2ibSwK5NG76Leeu+xCWA8sh6fTtdG8/RgcJJsKSjU3ZvaMKx7+zjEsbvkfS8dthAdAKurvWbKYOK6c1Z+Wg5gBkUotMagE6nzeA+/R/Ql4u4z+isiSweO7tZRiGUUHIzVODTJ1q+tzx8x6zeBpGaWGutmWMjERd96Zmw4OVufKuN3j382s5/i51R1xwmbrccjU0XTWP3SSzg+rQD1oNuYgFs1tCNTi/8zjeXdWbSpWzOa2PuptW67GZJsnLSGmQCai1MZvKdGIa3dpP5Kkxf6JOz82s/L4Z3U98jxl0ZNGUdpzQeTF5WxPpxDQ+5gL++fm9PH1OfwDuqD2c/9n6KstpwtSl59Gq6dd0qqGCsy4bmU8bZuScRmJiHlv+eRzXD3iJHJJIZwUAjVhBXfcHnlrakLpNV5FWbzXV2MFXn3Tmj+c/SCJ5VG+wgxyS6Nf5eXKoTB5ZtGNu1OpXnR2M230ZrZPn04wlLKMJ6azgq4WdeaDFvSylKfNoTQ6VmUtbltEEgGR2A9CVSaSzImpRfG1dX+rU38z1lV4jbbyK4RwqM5R7SGY3jVlOFyYB6t4K0IKF7KYKk+lKJ6bRjCVRC+oo+nAaM0hjNetowG6S2UQ9vqIjnZgGwJfzutKjzVs0ZhnjuZjJ27vyTo2rSKuxmmyS+ILOLKcx62jAatLYTTIX8SET6UZr5gHqcrybKiSzOyqeksihGxNZRwPOZSLD6U8tMvksvxtXVhrNIlrQiWlMoiugbsdfTenM3Z0fYROZzKcNjVlOWvuXooK7E+o6OoOODBw1iPm0ZgXpACya0o7fdn6GpTTji61n07r2fC54R92ql9EYgAmf92TgOYPYQXXqspFMUphGJzajI8RNT5xPX0bycdIFZHZOYTJdWL01jT4nvkIuCcyt0Y7VpHkL+jzWzG/CkhbNWPOkntdKvXfRqN4KGrOcLVOPY2rqcXR/bAz12EQLFrKiRTrjuJS0Gqt5/5OrqNNtLeQmRI8TwBza0pfX+PtdD3Hbk8OYRifObzGOBqxjU3MdECER+BlIzCOZLBZubEF2vcpwr/5Ec46uQU7PypzCTJb/viX56VW58qI3eHfetaxZ0AS6ZNOqz9csmHYqE07syaXfv6MDSn//DoAmg5ezg+qs6dCECTIf3u0JHcAbySsuJYvx3KerrWEYxqFAbr4jsZKQnKQlVCy5kGGUHuZqW8bIyNjnHn3fYj6tWb01jZwFNXTidUGHoOZbG8jamUzOzBqaQmMXnHvjh3w25WIqNdtF5So5ZG1O4YQTl5DKFmZ934nrTxwedat8lttJYzWfzVO/t6Tjt3Np7fd5d8a1sA3OP38cu6nCJup5a94Olu1uQp3kzTTywrEtc9lBdV7Z2I/O9b6gDlt499lraXvbdM7mC+bQlmkbO5FfvyqN3bf04xVeo2/UuplHAjN3dyAvN4Hra4zkM7rRiWmM3t6LjjVm+PjPZNL5gVk+znTJ9mbcUuMFlnshcynvM5/WpJCpLqLDRnLbgGFRN0yNN2xGO+Ywia7UY2PUzROgDfOZQmeasYQkskn0LrzPzhsAKbmc0nAGCeRxAR/z9zEP0bbndJqyhGmcSQLqatuIFfTjFebTmjwSmckpVCaHHVSnIzOYRBc68wUpZJJNUtT1uAHrARXBE+lGB2Yyj9Y0YylbqEMD1jGHdmyiLl2YTHV2RN13c0hinbd4AqSxmiYsowq7mU8bbuF5ZtGBZTSmAeujfV1Ks2i8ZuACPI1OgLr+LqQFyd6mGVgPQUVpE5bxBtfSgoV0ZRIbqQfAP+ep2mrbZjpJ5NCWOTRgPZmksI5jacB6nt16G21rz6UvI3mG29mUX5fdO5O5vsZIZtGBWfPOBKBfm+cZz0UqHKnDBXzMe1xBdXZQmWzqsonWzOOF3bfSOnk+KfxELTIZddGN2ofx07mbfzCNTozafS0XJX9IB2axhTrMoCO5JDB14Hkk3bOdnL/U4IyXJjFr6ynk9K8RjX/mcki6aTs5D9eAFXD8O8uiFtluTGQSXWnNPFbQiDwS6MgM5tOa92+7Sq2YoDGcbYFHgP6oYDweWAyclcvxDVdwL49wx7Th/E+nVxm/+2J2LvPuWW/BWUM+ZTlNWD+vkfbrePCnENdmr38jpUqpu9rWFTez9z62+bS52lZEzNXWOBLp8OCnbP85l0/u7kyXoZMZ9j+/omf748u7W4ZRYdjbc4YJz4PABYxjPprsZP2qNLjbmwem+wX+4d9bA/P956HA4/7zrzP0PVFjwtye4rclkgXdq4DPZeQeC8/TdpzTdmScX+ay2GcAdvr3awsuDyCP+nX+4r8PApr7aX18TCsFY9aCaQA8/B3856SYlednYI3/nBtbzA2JWw/go9Byrfzn5uiDP+BGhbbZMzR9oZ92k//+kv9+nv/+qf/uxwLcdgohx6BukQ/4CRf4Zd/x8y8Dn9sImsXajN+O+D66PkVsw4fZulVFT+duP39A3HzJ0umuCjKs4DLF7ZPc5qc/G5oWd3y0bX/t8Wu4r0vMstXPwVsSO8ahAZaiEMmAVyNwg2/vPn9NLQZ6EPsMHDvkBwDWD2oUayDdb+dGqMcqNi3Ug+JahLYxBr2e/HXLfyLRxEDKMDhWD4xbV0wfC3AnUFuXd6H5/SPUeWEtACpwnOkAAQAASURBVFsSNEa72q7N7N5RBYD8+lrp41L3Ne+PvErXuQGY5ZsNhOwN38F9J+nnhyfjXJfCnSoDSl141hc387q9LyOPm/CsiJjwNI5ETvn7p+zMzmXKn7vScchnPHRFK67teEJ5d8swKgx7e84wV9uDwCdjNG1l257TWT+2EXQB53M3ytuhBecDS/znS6Fah83s7J8K70bgSiDXPwAXIRogECD/CxPAjfficrBfdlBouZDgLArXB5oxj6XXFjEzu4hpi7VvRYlOAB72D+yvRuBVLzrToWlndSldKu9FFw2LXFYAVxPLLnqJX2awF5Zx+1WI5kB9PV7uWRVUIhnIcN2O+xSkjb7cPBVncpG+AnEQiMCgaqDsjG1XhumLPcCZ4MZRJOd++qH/dHEBwRkeCJA2QIr2I554IVpovqsS+xwnSosS0VD42imeE6BRv9jXZcCDfrBqJ9HjJJJVoB9FckNGbNAjGc3sGpAL3mOa9S83UstiD3Dtg/b9NXRjhE1eiRc/ZvYH+I9X3LVCk38qvmtyG/CvCIwGJgTnpXbRCw/PYEujCPQClkC14zUjdf4TVf16VZF58P68dN2v3+pqlY7bpcuNrkrTIfPI7pvEStnq1+lSfOcOdczV9pBCRFagQzA/+0l/cc59LCJNgVeBOmiqrL7Oue/Kp5eGcejinEMEjk40V1vDKG1MeJYx4oXRWYM/ZerS8+D3+lArj0Roum4errf62IlkwKwInIQ+/AI7klORNcB3alHR5V6A3/1VP3sRE7b0wZ+hUZVYmxkhIZcRUfe+oG/n+A+ThsEbMcUiswHawB983xruRfxc7d9fD7U7Ct3Oirhl79d2RENUWdre+xe2awNz/HGR/9V9cn+Orde8YDNyDvhkpfq9Jypml8WmuVUxC150uZBFKxCu0e+DKRlfAHfGWYiLQMYRtYC6QXtP+Smrcgn/FCV8PgNX0W6+rTiXTPGDB8WJ3v0hbOmMTnP9YtsaCKSDO1Fi1ugLgYezYsvcBnzg1y3impGe4Mb4Lz2IPRoHJALrgU9jVnXtRwSp4S2498W16S3KdNN1ZHUNWOTX3xpaboq/xn+dgQhQJQK3hxqaiR7vtepmLH2ANwtb/aP4c7JjVWrBcwbwd/8+OoPGrld08vLxLeEsWDqwjVrtg+RC4eNSEUnY5xL7rONplCq9nHML4qY9DzzjnHtdRK4DXgDOKbyqYRzZOKCSCEcnaf5NSy5kGKWHCc+y5u/vw/JLmDrjPI7t+APr74vAw5Npuk5NW/K9w50oBR5sm7T/1n9Sf9lqd6ro3PlgKs79NbpcIDzlT37CPVXgXd8G39LKXcSCsAUsEgivCHQHHxKJ+zwkOhfGFnfDQm6ewbQ4C2Pg6ijXFZwWiEtALUkP+OUCl8x/+vf78a69EZwvCx+1JPZCLUbeBTPqXpvi3zPZN3tCguoe76rs3Y/le28yu0difR9fgjaDZUPHViQDubdogSJeLMZbMwssW4Sls8CyIcEpPh+V+7rwcnKin/f93tsTb0l0s/e+XHT5kNtzVNAf499PjrN0XgJsKCj8nYsUFPv/9O+56Pn37tbFlRWRwcA93tIcelSWt4HfAd5uIw0pKCZDuM5+mcDN92g/Y2xooTlboYm3dIZc2uVUoEMEgl3tQNT9F6BVHz0Z8zmVhI27qPQ05NWriqy7l+XrwDXQ1K4yHzgb6O+gcS48fhRMLbq/FYZKxI6lcUgiInWB9kAwTPMm8LSIHONc4M9hGAZ4zzIgKaESIiY8DaM0MeF5sPgQ1m9sRNI92+Ge9iwdUAPuUOGTsNG74L1RFf4Ys5DISCAFdi5OjVpBwxYuNyomPqNsiPvuLREiw6BrBJ+8tQBRS+C3hUWTW6ViVBbGxdN9jl49K/yEGzbinCamkfaoBXOWd128Dhge17cLiV19Qexm37iNzyQmOpsTiwFtTiw+FrUUSRsKCY5oLGewf2nezXN5sJ4KTgGYW0KLUzrwftHWQQCZBpzpXUr9uZLg3IViKAPx5D4v3Ebgjite2Doftykz4rZ1E1Cv6L6ELbLuspjl3cVZduUiFdvSEHxOIz2e7UML5RJ1cy4Kt1BdbaXn3l1t3RiQpfqKUi2uP4HA9W637kYQ2QoZMbfXQsdsgn//2L8fE5slwZhCdCwn5N4cCOM5gefnIjRrUIjEiLr9hvt7t/9cOdhGBq3cRfq5J1R6zk9/G3wZz2isLX8FzszQHXz3WiqduYv8ZVWp0Jir7aHIGyIi6LDGQCANWOucywNwzuWJyDo/vYDwFJGbgZsBGjaMG3k0jCOAfO9qKyIcnZhgwtMwShETnmXNW5fqrb8J/M9lr/LvpTdQqeYuLUzfX6j05q5CqyyX0TR1V2gx+8lt4Glwvs5fIDxVTCXCH/4Kk0Mr9/NtNPTZhdoCWUC3ARrT+DJqZZwL/DrY4CD4OWT1CwvMF4kKEnnRTzwrtL104Ncbdf4oCri7RnmdmDtmlSraxxRU0Mz0bTwMEn78+Z2f/hZwB1GrULw4jAqVTOCZgu6d0UQ7LhL9zNSCbYgM1w/9+yM3FS8o90k7L9rPDLnzBrYFv+svvhQo631k4okj2q9v0f1MKWKZYcBEoLkXkuFEOS4Si5MNhGcCBQQaoOeig3f79JbQ+ARPbgjIJ6jT3hbgZ5DASvxeFqRVKeDmHBX/w4hZrJs4ONpfb4u1z+EkUYV5Cn7W45vGMrLyVeBurnQcrjfQ21vYr1erZoGamEFCn581XlT+FYHfrkFkDfBvP9Mn+CErJnAjGWhyIWDmU/qeFoGNaHmk92eTtKUJOXU0M9iCm7wZ+g7I/7aq7ssPwMzKcJROj8a03hehyr0/kZ3lf/u/BsKx3hUNoSS1Os3V9uBxtnNutYhURn0LniaWwm6fOOdeBF4ETS5UJj00jEOYk4+tEc0hUCUpgSwTnoZRalhW24OAvAiNb/6W5eLF4BVQ6Tlv5aw/VIXRbXD+s+P4pKFXlkFYmLcSBnGccg4aZ9gPGB4EsD0V21iHCMz0ouNS71o6zlsoISYMH/Tvq4cBO3S5ouLY4vYDIHh8lGl+xoq4BQPL5B2x5DZRC1qQBXV3Ee2HXDEDcRjvOiq3occkKN/wDZBK1OpVIJtsXIbXopBxQGB/8dapwOW32HWKaTc+3jIqPDcWnTSoJBSwkr6MCs/AwrfRz5tXuE9h4Vmk+28x7rrRpE3FWH+j5/EUVHhCLKuxd5MtMrNxqH+Bi7M7UdSFtlpoXiB0W1HA+Oh2q+gEWCNvFL9fcVmD6xEbidg0pmHMPTsFuHKYb6fgiZTk2DYLTJeM6G8qEJ4AOR/UiF7X1e7fzM6rtYRK9DoIi/cgxnoN8PBWambnsO3q+rr8QYrxLPWstg3FzbxnH9v8vWW1LQ9EpDUwDugILAXqeGtnAvoLPmlvrraW1dY4ErnyuWlUTqzEqJtOp9PDn9GpSSpDr/pVeXfLMCoMltW2vLklg8z+/VUkAVRz5H9YFX7rE+rMBs6CT0ZdBg/AsTf+wPqevpSEj52KT5TDiFjWTZE7i9ysG4d3FwE+8xMfBFYHyWC8TyA37LX7EjwQ+0QwgRiMJhQKMsAO8bF484m5PRJ7kOdBYHNc2974V5TYE8mAa7x7bE8KJRmKbnMgcCqQ7sXxA35bXYCdKka69xnDBJkPa+/lygajySGJJTSjUsfGdL7sCyYvvTDqvtuND8kmiSySWZGfzsmVFpJMFmms5mMuIPADvZaXWUcDJo+5kJt7PkGXcc1oyhJuAbaQCn+7Vi1dwCD+ykbqkkNldlCdymT7GqCVGbW9D3+o8Q+GfJ/BySfOpSPqU7uEZjR9qQ5Lx7fhWl6GDjdyfptx5A1IoAHrGJ9/Ef0rDSd5+138z4BxJJNFSk4PGiWtoIvrCMDkpRci8/Q49On0Mu9tv4Lkarvp8/XHjHr7Ri5iDBP69KTVqK9ZMPBUeM9fkwMjemyLKLECwPAM6BXRLMxdiJ0jij5PwXmXZwEE6oB8TYE4yXDN26JY7Y+7vFv0AEk4rliSgaxQFt3gGj7dvy8G3h0AC/w1GwjCp4EsHdARGQd39tPpT/lBnvczgAhUaU/O8ajlF38d+v2v9tZmdj6YGnWhbzpkOUtoQwO0TEx1dug5HgKv/ekmaAws3/u+H/LsO7mQUQJEZFMJFtvgXNGVX0WkKpDonNvmXW2vBuY65zaJyFzgGvSf+xpgjsV3GkZhcvPyqVpZH4+PPspcbQ2jNDGL50FABqMxjkEsY8tYHOfykS2jy7m+0JEpfNWzs1qBvPva31+6h78NHKrLBFYlb7HiD37dIupCArHkQFPVDOkahrKnjiMqjAIXVfFeh+67kJX0XG89e8I/8P8+IxoPGnbLje4rwCNFWIxeJiq2uS8SiyyKd/mEAnU84xPOFLACBu6/X6PiMyCoRXp1NlWq7aZOjS1UJpvlT7aE32/nTvcCjVnGCH4DQAJ5dGQG83y91amfnMf/nP8qWSSTRA6ZpPBZz4s5bcwUckiiDltYRwPqsJlN1GPp0jb0afoyJ6PZmb6gM+s4lr68xjPcRjOW0oRlLKEZeSRQnR0kkMcOqrOaNJZOa8MZnSYxY+NpdK03GYCOzOA9rqADM0kgjzRWM5Lr2bI7la7Jk0ghk3E5l9IkaTnraEBHZjCTDvTmLUZ7k/nqjWlcXG88U3LUnNs36TWW0IxMUthBdRZd1U49TRcDt/pjFoipIixwhWpd3heJucgGPycfaxvOShsVlcF5qeOX6R2aF4x/vEDMCtqHQiWBNAtwEdcyPp51IQViOSEmPF1PouWIeK6wxTNq0Z0zws/rpzGmHudqx45Bd/97OA4V4mf734QXwPI2NO3tSwa93EZd4jsAv59Md6dtTpjXM5p4q8JaPNPFzfzbPrbZ3yyeJUFEvgUu2tsiwLi9CM8T0RRzCf61ELjLObdeRJqj5VRqocWF+jrnlhTVToBZPI0jkYue+IJjax7Nv/qdykVPfEGDlKMZfsOp+17RMAzALJ7ligxEDWQPQM0mG9g2uT58HGF5YB16ILTsYKh0yynwHvCGn9glm799/xjV7g/KqWh6bzoUrjEYtSx6AREkpSmwzMuasCXK08DlRSw3CqgfNzELuBcgUkhwBrhBsX5EH9CfiMQSC/WKwKUUHc93CbhOft2Qy2e45qMbA8woYl2ICXvg2DE/sH5dA8hNIOvKWqzpXwuuzuBct4K5d7Tlld2/oXqyuhg3Ywl12chMOtDBq6cG569jLu1IIpsGrOezJy8mafh2luQ0pVvSZ2yhDpmkkM4PtGMuq+unMY/WzEAtjdXZQRvmM5/W1CKT5TSmHhvJJIVZ33eCnUKfNi+zmjQ6MJOlZ26lssvmT/WG8gZaQLUOm1k0ph0pPTO5gvf487wnSTp+Oxm1IzyS8xeaJS0lJSmTumzkTp7kKe5izap0VjdMY+UwNTseP0DFbuWkHBqwjqem/ImkVtupnrKDLW8dR803NrBtcy1aNZinFs9Mf943hKzMPjbT9QkJubhyNBAavHjUv4djLYN/miD76Z+g0te7kJGhxDpBmZRqxERwMQMq4AVp22JmfqvXaHTg5Z9+nXC25TNCgjMIcf6df7+jn58e1NmsrTVen0Sv59fQgZPw9r/IgP4Rqu/W36rrnYq82KbAv2ydO9aSe2tzJqyrBZv9yNJ7VGyEklg8LblQyRjknFu5twWk0OhPDOfc90C7YuYtBv8HZRhGseTm55OYoDeFo4+qZHU8DaMUMeF5MPBxlY2SVjA3vT7HNv0BzkfdaX8Ve4aotEEDpQoaoSvHyn6EOQmtMXgt0D2CvF54EfBZaSUDTkDLmkC0/EpQVoRw80FplqF+1uyQa+OVGVr7cGrIMhQkhsGLzpeJWsw4y5uoPkDFzBd+eipRIeB2o8lq4rKbujEqGqJxkh8RzSbq5oFcpS+uCK1UJ/Zx/ffpnH/i+3wy6jLu/vQR/rn0Xlh7L5+9XRlmwm2PDWMmHbiAj/n7ukEc32A13ZhItjczZ1KL1swnmd3qXtsBetR+jxwqU4fNZJJCEtnUIpNnNt5Gt3qfsYm6nMtEAF7s+XtajFnIMppwLhPJpBaggvRvJ97PEpqSRA5dmEQWyfRzi3kvpwe5SQlUJjvahy49P6IFC/mYC6jWZDM7h6fyzF23c1nS+1RnB9XZwaMLI7RrMZe2zGVWYgcSyeOsAZ9Gt5dDZRLIozXzmZvegV61RzORbpAO26bW54xzJtGNiSwY4Ud0HwS+9AeyJrBarZcyELUsE4ullYGoe+5/IrFYxsDVNhhc6O8vsI8kJjzv9lmcqxGLET6aaDbbAsQZXFzDxMKWV3wSqZHADTriIuyIZjLmbtQSmwpcTbS0CvjfR5Ac6jl00GcO8DggtcF591rQ63AC0YRbHOP3d3ht+NedseMG0dJE1a72fsZXw5aE4fBqBG7YCm9UpnufMeBgPEUo+YpCybLaWnKhEuCce7c0ljEM48DJzXMkJuggv7naGkbpYsLzIFDp9xrrtYPq8BGs/6iRJuBpDtV2qV/izqrPRBMNBciJeGuTsPP9r+G+7moVegcVAG/5ZV/1K2R5E+f8orPpFLB07g/poc9ZGdAlopltJ2TAHP/AnwzyCGpBney319ebke7y7pQnEUvuMppY4qTzQwlYOhWx/QsLT3LveKvbaOAv3iUz7Hw2Qvik12VwuuM9enBC08Ws3phG/tWPAPDs8gj0gK/o7ONLmyBve9WzBKgPL97cl5vHez/QqfDvD0KxsP0d9BJWzlGV9ckSzSw0t5kPbr0HRslq4Ea+/E1XeCAXFujPbfLFM3Duhqh4auXOZkHDU2F1BlND7prSWd2wJ9/jD8BcfVtzXhNeS28Cx6JC5zcwZO5gjbVdA6O4EbqFjsVbQFtYdHQ7Ths0hWU0YVPPhiqYRsCXPbpS/dkd3pqNWvKaFHSVjXKqd4MOamkGMZOXZ8Az/npcDDzsheGSCOQKrilIMLhQH60ieCoxN9PtaMmXxWjM6FjwGj6apAd8PPTQUH+eiBS8PhOBNwbEStJIaN4zaPGIopiTUfC3dz/gglSzkVg7Z6NCaxY4PwgedRV+U992JKeqx8C1egx23gJkhOJSXwO61aZLn4807hjUB7iiIlgdz1JGRI5GhxUbE7pPO+f+XG6dMowjhD35+SR54VnlqAS2Ze3ZxxqGYZSUcheeItIUlU510Cx7fZ1z38UtkwA8iUoQBzzinBvu5z0A3Aas84v/1zlXTAn58iF/SVVIgR31qscekl/Tt52jNQNmYO0EH8O4hcI8PAF+1x3OA/esxpABsYf/0wdAMzSelJCrY7vQA7WPI0vqoulmc0ZrgcGoLSKw5HgLqowiZsH6P9/OJWhZksDtcnaoj3cAi4O0trHLK5w8KOyCKSMp4HZbKGPsEm+19cJUHgXu9alyr6gBXhzFl/3gdKhUb5fvRR7LB7bUAYD/hEqLBNvs6V14a1GgPujNcjHwNs71RoJiBOn+/QGBVt4iLBnQzAvwh/wx+iloJQNeqQ6vBN/VvVdFcoRWQVrZDmhG4iC5jwCcqfPuCavIEOvRzLaPEKuzeTy0GuITBe2NicDT2XB0ZZgLnwy8TJNHHY1aOYnFQrpn41yfnw218yPQP6JC7LaQC27rSLT2LPjz+jAxF/KAO4Dm/joYgdZ8nVh0l6UGsdJB10S0LFBo2WgCIfSadO1j3gMyBrV63uuvp4v8tgIeiiBDwA3057NRBBr1hh8mE8ZNIVo7N3rNXQ5MvxNO90mJnq2t1tVuERp/+i3LB7cs0AZ3Eo117eI6MnnghcjAwrHMFYaSudoa+8c7QBIaWJBdzn0xjCOK3DxHYqXA1bbsLJ69X1AXmbdvOaNM2jeMQ5FyF56oY+YzzrnXReQ6NLXIOXHLXIs64Z2ECtQ5IjLRObfCzx/pnNtHQv9yJjWbTZ835ITLVGWtnO7VnI+fy6+vZhwJLCN10Eybmah18eruOv3aGTjXUZML+ZIr0aQro4A8Yg/j1xTsgoyDE3ouZuWLzVVwFmGlcO1Dyy9EY9giwBPZsMzHpC1QYSkv+sunAypEo+smIjeBHOXbfDZOYAZC9n003jN6jELbDglJmeLXvQ7NjvpCjZh75n/8+49Ea5gyApgJ+fdUpe7CVTRlCcu7tCT/Yx9P6D0fky7ZTo53z5VTa8DMiZAWEnl/0Jot3fgQql8ci8X7V6y/Em+N83GmbgpILX8u0/0CQR3LX2XA/Ax4PMKCYafSasDXtBrzNQv+dCrcE4GhBd1IK3X0pXf+7vt/Jyq6VmfAFREaj/mW5cNaqtvqLRNZ8DBwvV95J3qdtNWvX33SmbPO/5Sztn9KA9Yxf1AbFq1qDSc8BMDJ7jIWjWwXE+ApceciEKCfewvlWegvOD1O/D+CupgPJXZe7kP7+AGxRFDXEcuOfHfo8xx/DIZEogMsQWkeRoF0AvqDC0r64IXycwWTCkVZoMsHCbsK1Tr1AwUSjHz84DMqn96lQDNBtlxABfdw4GE4w03iS0Lp9v9P35YPbgk9YpNr3nsLlZNWsenRhkweWYQpvyJiFs+yoIlz7uTy7oRhHInsCbnaVrYYT8MoVcpVeIpIXaA9EETyvQk8LSLHxKV57w285JzLB34UkbHAVcBjHOK4IdCEb1k+sCVJ92ynG5/xr5dvp86Da9ky9zgIbLtvReBjqHnvBrZVfgHui1DnhbVsueU4nb8AeFiz6ohkqHXME00q1MVv03mL2W/RZCn+Id5dFkFmN1ehGJRAKUHUlXsHZIw+satHoF428jWazRPgXxFkrl/+RmLC4gNv7QqJymh852wvVrzWc364ISpgrvNund7N0Y2Js7wFyW8Wo0L9A7/etf69OWzq2ZAdY5bELGWgYgnIGVoDfPfrDlrFJmkNk0MBr/0lak0+d8yHfNbmYhVxY/38BcGCd8JDtVV0Xhw6boH1rHtEj/lq4N4MoLouMJVo3CoAQ9XdU84IxdQCefX0AEngJhpsPy0Cq2H5qS1ViD8K8F8Aag4PVC5kJtXXDMUT4dIh7wAwjqvU6loZtUK+FaFp73ksGtmmwDGCWMZkeZLocQwSCDGVAnU8RXypnh5VYpblEcDpfv5IXb6ABTz4DSSiCaYGQzSmEmJJh3p7sUtBwVkS3CCiNT4BjZtePkhriXoLvLsRZChq7QQ9zsG+zfaWzh7gRnlL/8tEa78C1HU72byxDvm/AyZ6K3pnYpmegaw7ktlWR3/fZKODER2gVc/4tMwVCLN4lgXfi0h159yO8u6IYRxp5Obnc5RPLjT1u81s3ZVTzj0yjMOH8rZ4pgFrnXN5AL6w9To/PSw8GwLhTH+rKBitdbWInI9GDUacc6EUHzFE5GbgZoCGDRsWtUipIzKZxk7rheQMrcG/Hk6B6bDlfi8oe6G93tvjRRAvFy1n8hHMzMB97R+AA8ONd7eUZKBKrJyJTPfLjfPlJsYBKfo52k9fluTcmz8E4LOLLlZr1LUZCIBPMCSy0a/xvFp8isHdDBJqP0gs5F4CCYlQN4RQ8iSvMAMxCVo64z4vdJeG+itZcEUVWOxF6MvAGV489ERdVj+MwNEw9fPz4I5s2ODNXaNjcbf5L6gVcVPPhpqoaGJMjIsXnZ8N9mpyfgZuXkStYlUGFMz6+9et0Kg23BL0L2Z5E8mAFH+swjGJl2fAeyH9CppM6XcUIFoqxLuSym2oYOlFrBTro6hPQNfgnGyIrT8StZ5PhfcHXqXTmqPxuJlwVtNPmXt8O5auahETtb1C238U6I4ObMwPdawqsQzDPxPLIAt6/k5HBbHfXxlIVMgF2ZUL1aclNJASWMbvBW7J0AGIv4UGXLyQDISxexZ4NoKcAyKLdOJ/ChuNZBrRcyezKZCZ1rkB2m5/PyE+szMUzHTr4zu/HNAVNwzS6y2GMbCyfXOkvQrWMJfWfp9334rEEialQ6v2XxfeSEWiZMmFjP1jGzBTRD4mWkHZYjwN42CgrrZq8awkkF8GZQfz8h1rf8oitVpSqbdtGIcyh8PjwvPAQ865PSJyHvAfETnZOVcoStI59yLwImh9soPVwSrsVqtefeC6a9Wd8FdQ56q1bPnIC9DqQCZsu7o+cCc8vJXNQ45DdqEufxeiCYkm+u/4B/QeeCtMwdhJiCU9cbNj4kUWxsSnjAMuH6EzXugHwGcvXqyiEbSf7SK6fg3flqsXE1UvgXjLVHziIrkKFS/LUGtnZmjmBP8exHHe4gXnp6FlmhMTQbfmRms2yt2+rbOqRF1mC22/I9AxQrUum9l5Qyp13l7LljX1NMYQ4CTIf6Kq9qsaKpCCjLuf4ocmULEG+iu5xcdeBtlQn9b9anWZiob5cdYquZeCvBlLXhNYC1WUToR/eZPvA2hG2dNDLqDXhISWt5yd8ux/mXXSmZpYqC1Ue0IPxM7RqdAPWvWNi/FcgFqB3/KhYjMrw0Ro2nceyzY2Zj0N2Dk0VY2M3/i+hRI1yUA0QVEvVBSPBrb5QYPAAj3eL9uwin6It2quy4anK6sgbRJq9xi9jgpsK57ngYciuLDLb0jYh5GGFMyM+0Do863ESsOcKNGss9F1g/JDmcA9anmNZm9Gf2MAjAqVMvLx1EHtzpXyNqz8q1q38ecs1J931/WCt4GZWk4mv/6PtHBBRyqwxbPyPpeycir7xxL/MgzjILMnL2bxrCRCvgPnHFIgW90v44vvfmRNZhYJlUqvTcOoCJS38FwNHCciCd7amQA0IPrYFmUVWhAkMA1ELaDOuahpxzn3qYisRh8v/6+sO18iunZhgReAjc/5luXiE43cB1u+OQ6uLmKdK2pzxphJiHQtGKeZiJZQgQKCJMDd6MXkWxQQZSJoLGTwwC9a/qIApxf86sbHHrrDsXDyYgQeL97SGV22VwRu8J9/F9GyEx38w313TR4kL6PC1D9eyfcOd6Jo36f6Bk9IhI9BFmv2W9eZImtIQsiVcgY0HvMtKWQy6zepbLnjOEiBU975L7MGnqnHoYuD10N/+BmATyAkd0HTJ+cBXn09giZoag6sAa4ZoAMA/WDBy6eqte92H1h7theRQemagcAZEfgyQ4/NCyEhGWRDfSC0E1dR8Pj+8Tl1QO/1O2itk2YNPpNKU3dxa70XABi52yu8IOluX0I2Eu0nc6Ff71cYMe9WtUBWg6UD29B9yBgmvN0T0uE0N4Xl+Y21bz2Pi60fWB5XqKu1+KRB8igxK/tA1DL/RkQHSAhZM48CqBxLXBX3rxNOKOWGAEOIJvBxo0BCSXfiy6jIecDf/Jdf+xjdZQD/1mn3+GPpk/kEAwyyGb0OjiZ2rcUhEpfp1g86uCmhfrxazG/haWKyITgXVVGr+9PZMLmyDn5cUZV/j0wH4O2+hZupEFg5lVLHOVdsrU7DMMqW3HwXreNZyQvDPXmOpMTSEYm9X/iS7zbpTaksrKmGcShTrsLTObdJROai8up1/z4nLr4TNMPfTSIyBo3m6wF0BhCR45xza/3ntuhj9aEzUjxpKyyuTZ01a1m+tCWsVatT3QYb2fR2Q1gErrdfNohbvAe+HNZV6whO9CIwsGZ2j3vQHRtyqW2IPvAC/NY/t/wnoqJzEep9ectGFYIfwYvP9uXWDc+Rv6VqVCwESHtimVLn6FvUYpcMnAkyAU1mVBSZxNwigwf704nGekoNNNazOfBgYB3TP3U3ABjgRUU3oolLouLmvlDZDkCe1Yyq0Syq/WD5lJb6wF8NSAEefoNZ6dfSY8hbjB14NSyTmLvt5Koab3cpURfIpSe2odX3X7Og56k6DPKgbzsQMO/E7e8z3eAHoiVPolbdo1BLYWrovNVCYzufB15VoXT84GWsae9HBsaGG/Yxk+n4sEd18+SWyjz7pwEQeJL+dh5coQd3weBTC2ZsnazHYITcGrVoJt2znYTEPNJYrRa4p7P5apWvZfN8EX8LXjQWsEgGkdl/QZMZvRopdB0BEGSi/zJm3SwgIENCO9p+eijLa9jdtbpfth7qJbAFvQ5uCaW3vR0govt1bWw7zkU0u21ggV/mrf8+kVI0kzL4JEPVY/HFoWcDuSrUnxsyIDHC2X29ub57BE6I0wwr/xr9eGnD93h/9lV06fMRk1d146yGk5gqp+jMvrWpkJirbakhIlc5594RCXJKF8Q592xR0w3DKB2cc+TlF3S1Bcjak0dSYqVS2UZuXj4/+bjRfNOdxhHGofC4cCvwqogMQnNLqgQRGQ8Mcs7NRIuPdCSWimewc+57/3mIiJyCSqAc4PqwFbT8SYQusGX6cXDmbGAC3PdXNi32AXEzQf6kH92qUBzfUNTytwjkGNTadToaj/YpMGEFZKQX3twd2g7xWT19vKX8VE8/1IKbXxwZnV2kLeIDYomJ4tsL8LGpIiP0Q1pouS/BfVqE++Qdoc+LKRIZhXoephLNFAtAtwh87dud56edC7KGmGXOC4kq92qq0qxfz+J415EOvMXYeVfD1epKKgOr0njIt9Ablo9s6TPFemF3X221Zj4IvLdVXVXvq62lRl5Aq+tdkAF/iAkhF0p1JZ/7D3ND7/9EBWcztFJKYAlrC2vGNFG3zR7AZl/yQ7YC/aBbbRi6lTPcN3wpXQHIPwP4YYLWdn04Q497Y+AoaDxIk1lFCZKn/gsV1rdATm4uSVsSGbH1NypMN1dWay4Fy3rIeaifwWLU8tvKt3cJmjQoHY3/LOo8hp3dmxcx3w8gBIJPRmn7QcxmQNiNOprZlrB4jUA7b2neDDzjj9+9Oq9ASRXUah6sL99G9Hd1HcjTsZhM5ztVwLOqo3+PyzpMbgZTBRXQ3YDT/X4N8pbbR/xyv4b3v7wK3oaEMXmwOZGpi8+Dj4kNGFVESuZqa5SMVuiwVlF+1/aIahhlzJ48/ZkFrraBe+2evNLLbLt5V070x+zM4mkcYZS78HTOLSb2SBeeflHocx6FUq5E591Q1PRDh1y4B9q2n87c/zsdPvL+q9UKLynJcPzuZay5qUnhmaCWv3B0VGQFUAOJeEuJLygTHSsPZSYNLHUuqHsZPGCHYtjCROM6q0cKPOyDWlhlECom/hG3YmBpK0JAROMonyZmGQsJkqhAvTWXApdmYP8+JrTsOArU3CzEwxmkDOnL+vGN4LNu5LCKObSNWjRTW60FjlOB9vAerST7IPyxb8yg8LgIfPNX4L/wiK/7MgMV5C3VIsY/MuARbwm+CVBdSM1eG9j2j/pw7zx4ow2sHgZXAu8O0GP0zyL6vAItkQJABGbVVnG3CLimNl+O6aoibygq/F7orn4CZ0fgarjyNi2S+W7ytbG4wo7osE1w7AJx3K02OStQ0Xk//L3NPbzdprc/tqfGjm111FV3RFxf46/fo4kl6dmMnr5QgqLAGh11L74vEj2vMqVgU4GLd3xingLLhC2ma9Dj8fd9DJIE647ayzwZBhkDogMqRT4TBF4HE0JeBaDJogB8SSTpC41HfQvAMlpqnz/WWq2fnRfRQY05BImIKy5m8Sw1nL94nXO/Ke++GMaRSG6+CsygnEow9phXiqbJLTtzSE7SVOAXtzm21No1jIqAPS4cDFIcu0mGNdB2iD7Rz5WP9SH0Oo1dLBS3WAdeHNOXmy/zT+oTwH0ODAosYTWK3VzgjCWjKLbMQYF6naty4Z+xS8EFMXdxglOeRK2C4Xl9AjfgfgUsUzJMX0HcXpBIhg98UqJg+94aJy/HLG0yTPsS/R7UyqyGWpQC69DpwOX/65eNJXu8grdIGVIP+JgRR98KE2HTz2ph7nPjy4z6041s6eJjGPsBVxyl7q294PFR93Nanyl81bOzZrmdAKReGouZfS8D+kXgPwN4/LLb+aM01nlr0fhbn1V2W9X6mgW2Wxvt938GwOW+jdeJpbLthbrcdok71jIMHh+gFsU1qF8AqNvp0Nh54G7gyrfhC3j352vhj5O10/PBOa39KgND1t81tWA9mrX1bug+ZQwTxvVkBPqc25r5LODUWDR1db+twMK5BxWYi4mKsxM+VXPniiLNmp72aPmWD4i5yeIzEnvhGR2oiBuwkEeBXX6ZwXGurn4aAINDLrtFuMi6nr6tIB92mk/aNRZOmL2YlTI+tvAz/j1kxXaP+d9e99p63npFYE0owZSL6ODDF2iW4VMyWP4aMCsSfXihVTZ8HOHF8zWgc2hHHS1aEsQTV0TM4lnqiEgimubsHNTS+TlaUqwoZ3bDMEqJwOKZWKlsLJ4btv3Mzuxcjq9VhZ3ZuWTnWo1Q48jChGdZc19taJzB0scjJPXbzsKtLUhIzINup8Nj6jIaJo3VpL20mt/wik7oQaxExyjg2q2xhbt7S+cEXzriZA34i9ZYPIlYNtmf9q/bQb3EoDZmvPVJkmOxpQUE5ydocqNWsT67Pl58+mfrAq63zYkloxkZlwl1PGpRvdNPCLsjjvDvV/w56p4cZkTPW6kzeq26s36EJnFaBKN63qhVYc8mJiYf8H3+GU67UVXQaWOm8NWj3ifzm2x4zT9ZXxHRbR+Nui+/6/1Efc1NUvwx2eOtyvEuqFcCVdASIXNRYdkBtTzORWNBN3vlP5FY6ZVfZ8CxKqwqzdlF/n+rxtp8vLeK2deBZ7rotDXq7lulw09U+n0SWZNr6XRfGaZSl13U672JCTKf810iEzeeS/62qiyf4110w/aW0aHPrdG41cVEnQFX9lTBKT38vvtzGB0wQGMp3Txv8TzLq8GHfWZZb42PJpuCqPCN/32IZKjg6xWB0T7T8JN+5v0UHWMarBtcwylxM96ElW82R4NCgciw2DoC3OPP8TOhdUYDLYGTYcHbeiDk6gwtMZQOnALHOy0ouyb626lLpYRcKp++m99vf4KsVrVoumoeFR6zeJYFz6BX0qvoEb4O+BWxISjDMMqAXC8wjyoDi2fvF75kw3aNsamdnERObj45JjyNIwx7XChrfgUQgUt8Db9B13Ly4Dnw6QoWDWyn1kaA9x4C4MtjVFx8eZP32QxqeAaJW/p7sTkXdVWc6R+SMwbo2bwh5voJxB6yfwSy0fIOk3WS83GIrmEi8nyoz8MoRNS18W+RqEsjRNQd9+7QdrzgZIHv4x0hoXkJUSEbFVT4bLwjQ9+DjLeBG28mKnQCg1ovYsl+3luBjPONedHSfUAS/cY8z4iBt8IlcNrsKZo452qvUKoNgAuh2tWbSU/+IVZ6ZAR8NaKzCpgNwLHo8Twvool06mfDNypAu48awx+HPRPbj1kRPa6Lgc0gmb6NP/pjlRZRS9tkB61E4/7uDx23sf79IWCDFzpd/LR/AtdEaDXqaxbIePLrQ5Vtd5H1SC11p24eOu5NUCvdffo1a2YtSHewCGr+YQPb3tJMPfmfVSWvTwLVdt3OtN2+vMwd2SrIJ+s+uj4h8RgI6KD0yeYJwFd6XTb3+9JDZ8XEZSxAMnx+Ge6TSL2ECs/NqDswMaEpoRwOgXs4ELVqyii0TivA7zeiZuNQAqw4F/Koa/lfQE70EwO35qEAf9DXG96T4Gd0oCMBtWbj9y+zNjQB92Qs4dfJveewaGA7qu26nTrJi7WkCrBu4z00qbecpu3nqUXT/Q4ZB1lNqsJMaLUqVvZGFlPkAEqFoByFp4gcjZ787UC+c+7u8ulJqdMZaOmcywcQkbcpWEXXMIwyINcLzMRojKdODyyhv5Stu3I4+qhKVElKoPJRlUx4GkccJjzLGNcbruj9FmN7Xs27Q/tAB1j0SbuY+PP1KRM2qMtdns/9Iz4mz7mIPkS/5RsMqlx869/bDYg+8JOLlvEIJ+8BTdATuMjeDAyKzQqERWC9jOL1cGDplBcjseQzLoJcVdjlEYiWh3Fb/cP/00RjTxmNilRiLsdzgjou8ZaqZahFLajnGYjO5sApE+H/fDKZ5ukFYj3Vrbcnpw2ZAulQpdVPzNx4Cqc1nMZXa2/XhfzyOx9MJXNIpvZ5KvB6LgxP1M9BjOR9ETgFja2ksrqZXg0TZvRUt9dUv8+TUZEZZNxdgMaq9vorPJKo8ZsBWV7wzIxozOmDqMtvsB5+nyMZwJlwhe7rgoGnQq9TIQ+y+qHushdnwBMRtRoG7rcTM+Cq0ODDUIHrYNsD9bWWaSJwKWy6djSsvR3mVoazoGkDTQa9NL0Nzie4ZSfwnl4EbV1O9HyJAGvv1WutLZowKcWfnxHAYomJYdCY3/Z+ECI1dL5a+Kyy18Qs5zJEj4mLT0oFiE+S5caBXJtBcQagQvGhp2TAtxEVun7QwvUpHAsaiFL3PRD0JxxPeqcXtiPRAZE/ZrDoOR2Y2PlgKtwP1Xbdzo7kVKQvLL3Hm/kDT9osuL7FS7y24iZNXvVwhlrRKzICrhRcbUVkKOoTkA60ds4t8NObopa/OmjKqr7OuSDRXE/g/5xzr4jIEBHp4BPSVXTWoA7MPq01R1G4zJhhGKVM4FJ7lM9q+8fzm3HbG7NLxeK5Jy+fHT/ncuc5Tfjj+c049/HJ5mprHHGUTm5oo1hkIOygOvSCSlV3q9vnS2h+3oczog+1jeqtIL/+P5GeKjpb/fg1rX78Wh/U+6EC4A7gilhJiijD/SvVv/qhbpcBO4F7VXTKFHXFlUeh+u5Ysc+whUgkQx+Iq6kIkCnALRnw94xYPJ3HbYdzB3/IuQM+1HjOrV50yjCYM6ywCP6AWBKaMInaZzlHX3Tzr1zgEhWU4Wyr/HpiNDtplMWxWNkUMuEsyFpQi/z6VckhieMbrIbhlVXcZRbRh82JKuK7AF1yY8mQ8H2esFUd3o5GS6JcO1EfD4eirrNXRPS4PZyhAu+ERKql6oaSXt8O/4Q66euok9efShvuibXdMkPbPBoVs2P99LQIzOqm5/Nq3T/ygPe0dEidC9cCEbWsNkeF/dFospv66HnfGdsM/YA0qLRmlw4AXDEA7qgMdaDSKbtIYzVLp6lCks9DccdvtKetyyl4rP7QXWtS3u+PzamooB8ROk+5/uUHDaJ1PTej5zreKjmwoBt2ECcsw/SajK/hyd8i8Ld6OFcvZumMX6aESEN98aC+5Dy9hiUZ6BDR12cR6KHWziiPR9RY2hx4CXaekMrOqs+oRfZCzZ7sAhdzyaBSl128Jut0cKMq8GGEpmPm0XRMxXW5dQJ5iXt/lZCxqKVvZdz054FnnHNNURfUF0LzTiA2rPMDBXwpKh4icpsvpfID8KWI3Cci96EpqBaWb+8M4/AnN6+gxTMhWsfzlwvEXdk6wn5mEx19rZyYYMLTOOIwi2cZ44ZAwsYu8DTkL6iqVqGUopdt7HqwfCDQHDZRj02DG6qQ2IAWrX85tmy0dqeoX6wLFSGUq1Gr01tE4xjdjXAXjwF/gvOgWnOd4S7zbotBRtwpQBVvgUlFBSdFZAr9MPZxYhA4SCzerkB/zgl2EHXlXABzR3vLmT9Gri++kI53v4wriBNk6nXPgixWC2ChMi0BD2dQeUgLmraYRwJ5LKIdP5HCGnkDekVo+8505l6k21+T3ERjKduisZ4AT+fC+kQtc9EBeAK13jWpreLqAaj09S7yv9F+uDYgr6BW0bM0ljfHW653jk2FsyCnfw14b5hWGHl8QCyr7eoM+CaiLtmt/bR+/r0+cMpWjndbWTOjidbLPH0YnD0A2sKW4cfBLGIxmKn+8w40vrca+kje1r9fmwWPVyG5ehY7c6tyxphJfHliV/gQWgxeyGezL/ZupyFGA81h7kJvmW7hz8Mwfz2mUojodbo49O4z2EZFaZA4qg2xnNaBlb+o8zrAC8sZsUnxgyB7JUMTeQUWd9IhnVhSJLcqbvk+AAOQF0PTgrGC2ei1Eljhp/r3O4IkTneRFbK5RcXwWxHy2wFLIvrbfBQYm8vS8V6ZXkTFRPZLXBaLc24qxJJ5+M91gfbEqsa+CTwtIsf4es+rUPGJf5/7y3tSroTLqMwBmvrP37C3jHKGYZQKgcAMstoGZVVKw+IZNFH9aP3DTEqsRHZuccXQDePwxIRnGdOND+laDz6rf7G6Xj6SCM/pg2hj14vlA1t6AdWywNnYJA01DnCbfpc+RMfyNastcE/tvW/88gx1i50NMg3u7AR3dn6Mp178EztnpqpFE2jaR60tktxGLbIfEXtAf6ZkboDRh+snvEA4z9faDKb39+2kFLHuSKIixQ1R90tahITldUTLoADwEvT48S3GDry6YEN3oCLyPxGyGcfSgW2o8+BaznUf8tmYi+G/EfgA5p54ulooQS2JgXvr+w/BSh9QOBy4ADgGqvT7iawJtah08S7yr6kK/0ST+/j15DXUUrYFkk736X6PRS224eRCjwyIxQtGqQ6/GgbfeKG+gEIJidaIlknh1QhMHwCnZ9B0yhUALJU2nOU+Zeq482LWzXRisbRN0CQ4nwEPVYHjYOfoVGgGXw7sqpbZtbB0azOYC63GaFafBS+Hnn8ziVnQA8E4ChXGAJP8eyCcc/12Q9dzNEPxy8QEW6Z/n+ETD3mLqPQBV0TJk2C+eyl0XQV1Y1f/t9DgSAHrZ0YJr2OfX8j19hbQoP+rgJtj3gL8kIH73l/rlQD3v8CfiSfsVQDAP+C0plP4qllnmJNB24YXQEOYO/D0Cis88ysJ2ZWP2sdSOakiEv4Vv+ice7HYxWOkAWt9SS2cc3kiss5P/xEYAzwnIm2ABOfc18U3VSH4X+fcovLuhGEcqUTreFYKLJ4qQIMyK7+EoGZn5UQtN5CUaDGexpGHCc8yZiIX0wx1pUtmN6ufToOn+5NSKROASr/XOhH5b1eFZXDskz+wfnAjyEDFy7HADWiymIczNMbsztrwVIZap66JdzG8E+cCQRrRh+ex+u2paX9SYQbqTuqtVUs/b6OJf0Czp4Ja4dB1XTgmtAZq7XnQJwEKxEDooV+8bULCSYq6oglbNqOPi+HKGyGhlbBxF/kfV425uZ6NWhm9wU1eBvcjwNVITb/MDNRFNti36dD6snl8UvMy0iqtZtLGLnB6NjVTfyKreTLcAzlP19D+tAIWQLVHNrPzlt/BTv1JVHpwF/l/qgqnQ9a9teA7yP9Gv9e8ZAPb7q0fcxlej8Z4XgE5m2tQ7fjN5Hyg7XJthrpjpkPTv8xj6aA2an28wK97/QAVub8C3kBFtgt2BPhPN0AtZCf3ncMiSYD7Iizt6Y/hC7CcJnq8ziPIsROL9xyKJiB6T7+e/PUcFl3VjqZ957H0DB1oOKP3JJqxhBk3dmTBbC84z/LrN9sKj9fWa6WLT9ITzLvQ9+FOH6A72f+dLIstE1TjjYq4B9DzHTxa++tObkKj2DL9d28EdEV4oBaILb4EeC5WCDOaufYs1HIfxNP28q8VRK/DFTRHPvFW9/O9pT1oR4ZBmh8M2Iy63AJkbQWe0mXWZWsf8ysjj/4Z7oWsh2tBql6jUdH5akTPw0NQd94qvprdGU518EyEucHgSrXC+1mRyEsopm5TjD2orfh959z7+1q4pDjnsoj5CBwOPCkiDYDxwH+A/7oDrDAvIhH0F9faObdgH7GyhmFQuI7nUVFX29KzeFZOrBR935ltFZKMIwsTngeBpQ3axB6NugHnZrDlVV8a4wIVnuffNY5PzruM9Z0bRd0wg1qb8gXqmvcvL+5+mxGz9LwZuNpGYpbQMKuHwSnq+hqI02g83LTQclkZBdf7VUbxVqIHYnU8g3jTQGwC0VIcrg8wIKLzXkEtcWcX0d7pqAVyKOTP8u7Il6J5Y84mJlK9QI2KgLtDbYwlJraAhbSA82Duk6er2+4d2Wy7tT5XvvwGK0hn1gVnaqTYBt32zo9S4RpUUI8C+bwqp42cwlfPdla35Yloao/7YFur+lqLspsKDy6prALoVuAe2LksVd0va6IZhttC3QGrWHpZGzgTThmsQmnWsDNjQj8jooJtJjDaJ06q5r93gKaj5rHo5XbwL3S5XsACqNN/LesHNtLv/0HrjM6KxFyVr0OtlfdB3Z6rWPSndjAalo5qw7n5HzI3vy1bqMMSmrHoqnYwerKud0UX/147VnYmYLjPeBuIpkBwnk6szM1w/+6Fp1vll1/mE0D9KdS/p/3nPUBVb9Esoqxl9Fq7Ci2n0g6Nsf3dmfBcBjLoTF1uMEiW7keBLLdBUqGeFE9rNOaW6uoG7d3O3e4gJrU2NI/oYMhZwA/zNHfvI23gkYIZeHe+70d2Qu7LmxY21D6vEU1aFYj4t6iw5FOJbJL2sVTWNufczQfQ/GrgOBFJ8NbOBKABh2miHefceSJSEy18dBfwqoj8H/rr/sQL7X0iIu3RX2TYiTyIlX1dRK5D/wHPKWp9wzhS2RMX4xkI0NJwtf3NWY3429gFVD4qJjy37DSLp3FkYcmFyhjpCY3Xfcv/DHlVRWfATH3lf1yVvHpV+ZjLYtE9dwPPhRKqjEDF2NOh9R9ArVDtBsTqDKbVhrTayI2arVbGAcv/oC+AWRHq5PUnNX8tshCO7fSDtlufInGDgMgbiHf1FMlQgRVYqVblRpO/FFivjxcmS/XlPqVgyo9jiSZCcn3R/WuOirWp6EN9JupqnIi6jdZ30MUVqBkajRdsTiy5zmio03YtE76/gmPb/8D1d70E38EZDaZBJrz78rXMuutMuAp1CX0fGjf9Fo6GtqOm03bU9Kig+urzzioSuqCi5RvUyjkajec8bi7dG/hg11TU1XcusSizbKLndFObhioY/w9mzTiThdtbcOmAd9Qa+khE81f+HHcCWqExpgtg6XlxSmwBcBZs2ZCqgxrZqAXyhQh8p4mH6ly4NiYA58KmJxuqWPOeu5/11NjcpePasJo0Tnnnv5zijqLKtl+piL+fgpbpe4iJ/3XZKqzx01L8536om+0lBcuDBMc0OGfuMX1FCXlqikyA+ROKtHYCcDIw2j9/H69xv8UhYffV+4FMdRMWGabuwpuBo73rcEv/AnWLToyoGCY02BGwmmgGZwDuzYB7M5AT0Vd4UGd+6NUyA16Dupetom7HVTrAU4FFZ0AeiXt9ATVF5EURuXR/2nXObUJ/Udf4SdcAc3x852GJc26bc26Uc+5/0Kv9HfQfZ4GI/Gdf64tIZTQJ022A89OCWNk3/WJvAu1FgvzphmFArI5nkhecpZlcKHuPxnMGrraVExPIKYV2DaMiYRbPg8APG9NZ/k1Lqp21meTk3Wx6K6KPE3N1foEEJoGLabO4RuZD0z36JL70t6jV8wW1xrS9eTrtgLarYK58rNbFV/roeo+cBCeBzAXSvVDxrF/YSMfEpxOzoEI00YokAxnX6ufA3fbNjKgVyTVMROqj7qTEudsOIyZQexJLILOYWPxhPZB/+FhQH9Pn+oTcJU8B9TkGFnvL1f1EH9RFZsB9QcN+/SGQmg8MFxoPWcYPpENr+HJwVzgaWt34Natz0ti2s76K4Tth+apmkALzNrbWepYA53o1/eEAtcoBPAJJw7eTM9fn+PimIxMkA5gPF3orY+C45q2+TPT7HMSUjgY+g6xHa/H+/VepqA2SAz08DPb4QYShw9AsQWjZkksq62BDF+AjOHb2D6yX92Kxob/WciHH3vwD66c0YkuKr7vzOlANup8zhgmnqqmv0ge7yH+iKqeM+S9LdjfjtMvUsrvmknS6NxzHrA/OLFgzdQ8xd+af0VjS0ZVhBlR7Xc2hOx9M1euoF5CoAwrRJEPLYudGRE3lzukxdC2AOOEoW7rDjjgrOkSt5W4wMLiKLisgfy2c/Mq5LlHRKQuJJQYKc+0w+HZAzKL7Bj6WOAJvA8u9C1SP0N/knAxN+QLwcHv4l9dRo9tEXa/dEKi8dTs0h5w6NQgcJeVtIFv7uWlMQz03V0RipXsqKA4hj3262u7T4ikiT6LlUeoDE0Vki3OuJepL8KqIDAJ+IpqG7PDHOZcDTPAvRKTj3tcAYDDwunPuh1Cipn3FyhqGQaiOpxecpZlcKMhgG7jaWnIh40jEhGcZ48aAPFsVjocGyeu0XMVJaIzbTFT4VQO6ZGtpC2+NOr7PMla/FNHEO7/VaUv/1IaaD22gZvYtbLu4vo6Db4G5350e257z2WJvotADrbruVkaWEnvY/gAVVqnoQzUg7f1DfHM0xnO2F55/K+x66/oAoXqIMgi1fm1GrXUP+BkzQhawINFMWFgsAHqFRCdoXCte5A7xSYjCfNhRLaTdiMZ3yjCg7XHcNmQY62jANDppPczuEep8sJYFw07VvqX7NsYCPyfCdZC/parGWoKWGumPWl7nAqc7eACqp+xgy/Qa0Biu7P0G7z4SgV3+OP4Tmg7xgwMDfdzsr4D+/oY1VVS8jfXbmIv+Av1x5tsBnNBCTYorLx2gSZ5+hcYlfgDnjvmQz6ZdDB1gfc9G8KoXnSm5KmBegfU00kfJoIzN5ep6O+GTnl5UjSC//kq4L8JG6rHz9VR23FydY2/7gbaBolqgLzcE5HOd9D93vQrAvwfeQKXfq3CluRecoNdPN2KDKQMpdP3JKOC+GrH5nmjiocAtd7z/Hro+3KcgoSy2sZjmvSQN8tlmo8mq/DpVtt0F237D7hq19Hr7NerICDpA8qhfr2Fi1NIZq3MbjqmeDYleeF4Ndfuu8vNeodqu29lZVY9Nb171696gb5WJJWt6bzL8M/C3rZh/xw4hZ5+utiVox/0/e+ceHlV1tv3fSkJCjgQSORMCpBAgpOEkCEhBARGFKmKhEYEXsbZqraX2FXgtY6wF/KRo1VoPSBWFgiIiHkBETSkiyCmFAAETCRCOJpATCQlJ1vfHs/ZhJgmgQpU693XNtWf2Xvu8Z2bd636e+9H3IeGlvvOzcIaufhBQSv0ZIZCnEfuuHsBdWuvXzrPeVUicxbRztTvPNn4B/AIgLi7uPK398OO/C76utoEXMcezFvEM9JsL+fHDgz/U9hJDLUWsHMoh92Q8wYnF0r/sjHTWs4W8RUSXCElLEtIJ0J2NspGqNHl1hqLXmlMY3Fyqun0KXGt2VIhjzGI6zkwDpm2yiYTtyAlyDEFAnhBLi3TWB/2IUZrWY5dHsWsfIjl5tfLy7hUDIlrLS6Wa10JvElmrLEqGvNx1O+02mQhxzMcpY3EGIXexzvqHaMPV/IsUMmC6h6bvHxS1d1yFkM7mEHDXaZgPTWcd5Koun0goZqh53YSERh6CtqmO+1HB5laiOraBNzfcJq7DzRGSmgv7nk1m37PJonLORZSzBxRkKqkNmoWjHN5hrnkSdpjtgcWJHFjnjm9FnplGsKG4n7zPRQYLqsy1uj9Iyu4cRgLykpDcwQFIGO+jMGDYh7ALbtENYJGHprMO0p3t3P6LFykkmhS2s5VebKWXkN1E73v0+oyJLDXEqeYv4XJvknzu21oTOm15JWRLGR/6utqu4LxQj5hn6bh5xZvntsq1bQtDQGuJGnBHDtgK/Xmge8j6/HSevEBI4Wug1N8kdLg8F6Vy7dB3ZRv+eoRLRgO/gxNXxHHifflClIb/Fa0h4Nhpe1/Dxq5k2ISVEhY9HlGHnx8Eq4PQcZcn6QQhnlUEnvPFNwy1/QFjiNa6CLEhO4yUValLt/fFT5ChrP1KqVzk1/cDpJhVK5Mjy7lyZbXWL2ite2mte11xhT8S148fFqw6npbS2eAi5nhWVFUTEhRgl4wKaeAnnn788HD59nYuF4QihHCApkOTHPZs6i6lLW5ECIgJQyxtZFjTzyGvVKSivEMJXLl5HZ9XeYwhieMwq8ukVMtHaosY00S69mmNdT8P0Af9C1DLccJAjcOpfhDoZ+ZdZZQjdx4qTq1EK2LLy1/xfrPsEW/3UYuMWiG72tT29M0F5Xqz3Ah3NtExoZq14C4z8qGZ9kYiUjcrR8XdDNundqcnW1mzYRSMg6v5F2/m3ibn3h3bfCeg1WlOLI3jxBVxxCw7TEGgCVHdihDZRM2BhYkwUYybmupSTsyIg3sroNUcmO6BfGgxcz9HH2snIakghMWMG/AFRAzJJ6RhBQVJrQgeXkxlUBQ09AgRK4SAv5+mJj1cuod9rUGABFh0G5WtRSUsD20sKqgxyWEFTgmVM0iO57V5sLW1CVMWdNQ7WB82FO6HN7kNbpRQz3dmx8GWNJJ0PpWE0I2dfLTmBhi3CqZf733Nb8Su0WrDDCiw2jkO9aUGFCTglY9LhJwn05zrop81JNNyRraUzkfwVobBVrS1ue9aexz35Duxc2ltx9vOwP3etT5r1aKtC+P2mLadxTToXuBvr9iLtfYI8ezlERfh2Sfhp8B04yT9FlI6qMCEmM8N4/UvJ6DbO7Up+034hM96D4Yt6Vj1ddSg29AduSwhobbn/Sv5puZCP3QMBJZrrQ8rpc7b89Vaz0Gy4wEw5PNG42p7N5Ij+xo/gFxZP/z4JrBdbQO8Fc+LUU6l4myNrXaCKJ4VfuLpxw8MfuJ5iXHLqEUEUsXrMyayp293Ro56A/rAO9tuFeUKE176CtKBPw/UY4AZhL7W6th7TL3O3S63UPc6xh3XDu8zxQzUGpnqYa7Ga7HrU1rOtRYxAKScSkkaDDGd+Lpcag95h0Ha619ltjvBkFBDFJWlbLauY1sguY8A06c689xhuv/2ab8Lqgnk4YOPwrtw1axPeHPBbUI2GyNj/NPmUbN+qmSPAdwIBeVL4YCJ9EsMgkHQ9P1DlDUPozQpFh6EE0dMDmhuiIQeVwF94eiadgRMOk3NNLEwbbF8AkdT2sDLQQQ/X0zlmWBKV8RCLgQGVdM09SAnMuNEPd0ONR9JXdCIkfmEVE8BoOCZVnKNpiFhq4Mq4DchkkuYhyhmDyHKailwDJrqGk4oJ/+XU7AvLpmUso1kzOtLh6m7KKyJpqw0jPJjjRm0uQ8VlPLRlyO4sv2/JH9xzvV2aLRSq8z1MUTUiLFqNKKo/m4t3DzEaxmDtBfR0qNcgwpzOW9Oo55pnpk+LifbuiL+pmNbpViURlkDEiaPWP3RUfJth1sT8u3lbvtP82yNNw68C4CXfoXuAirWXMubzHFtOekQzXZN8EKumUZ6z1bWo/tEGh31zfBn4MlBMm8OlzUuMNS2kVLqBS5yOZX/YpxQSr0IDAPmKKWsGJVvgx9srqwfflwozvoqnlYdz4sSaltNSAMnH96vePrxQ4SfeP4H8EHldaJIpcM7P5VigQP0h6x/d6hTPxNEscqGnjM/ZWv7/rC/nFziJcDqlOlAz3FUm4963wC9boDjpmNuEdcHEMXnYTNvAN5qYRrCCbeL6qlSgXhTRmSEtLfUJzCdf4sAWCVZPqReeJkM3Q00MOqW6eirucAex5BIqXnw9lQ7VJiJaaiJOOVjfDF7nuRggpAdyw12rNOkHxvIjYunw6xsSogkYlw+fcI28dHMG0Rlvl5Mg0L7nqK80d9lpZun2qSb7Ao4FsKJbXH07PEp9NjL1rVrgWlwbwUdWmZDP8hZ2FUIbRXUXPe85A8CR0c3hgeB+VA5KYzQ6BJap2aTtzCB66I+YMXicXLv38V5BvKhdH4spVbIcDMkHzjDnGNVIORomK/g1TR6LhzC1tb9CY4vpnJLFNwDJ96Kgzc9BA+SUYPK1VE0yj5Gxsq+0FeMrmqaz4W/eiAGqgjksyP9+Fv7yfxqzd8dxRYJXf2ZPsHrMyY6hlDROOHCAK8Mkc8W6cxUsBGpjekKlbafv5edMkGAkNBosz93qLYro089goQym/d6pnneX0Z0m3RncEVvM8+olY881vUsKqv00FTz2WWKlYWtJNeVn+qGUycX1HhI6rIZgNyydgCUhMXagy23tF/Mm1Nvc1Z+ycO+5eac52rIVU6EgssF+HKCBiuc9lzwK55fD6nAbcBLWutTSql4ZLjia0FrHe96/4PLlfXDj68L3zqegYGXUvEMpKpGU12jbWXVDz/+2+EnnpcYby40nc6GEPxAMZXDJTSzlI1ivnMMY/qC7ZOydW1/KdUwu5wTC+JgLujJHuMy6zI6mWw6z5Yj7XBEBXPn3g3HqQvaxZC/4c5itdL7eN2EUxnzVkq88z9t5cgY5+rF3mG0eip1YwxOmKhRTNVCxCQnHzvsmOkup89ExFkWpH7kcmDWVCEHEa7tguMO+1Poxk6O05RISnl9x0SSkjdTQIxsNwHJzRsC1VWBBBdMoTLmCQmrtEJXt4RI3iSw9eP+0BxCi7pQXVVBcMNKCmuiKchqJfcwGyES/5xKeQZ0HLiDwuXiSNvhYA67KzsTFFRNGGWQBTEUEDPuMAWrW8F4aNFlv9TiTIKmqU7ZvRMHW0JpEK0nZ5P3cQJsCSKg/2lqssJhq4et2+R4K9Oj5DnqBrxURdO4I5SViStOZRIUrW8uJkNLPNS8Gw6L5Nr/euzjPL3m9wwbtpK/cjdJwzaTubG3KM/ZQK7kdtr4MY66nOW67hNXkaqPsnjB5No1PzGk8F0h8rVwm4n/bvMjwKiNyQgBPkcXWR90fbgG1B7XMu2R78XzHrjL/ez6yJDW8bnV1Pvl+bVzl+cDPwLtKo9iG4VOB34KmTNMnK8JWlRXAcaocBm3gfluqMeAcLh9tIzi7Ceeo+1bwjWQbddxufygCaCSOu6tH18bSqnXkSDz97XWT1rztda5OFVy/fDDj0sEu46n5Wp7kc2FGroUz2BDQiuraggNPu/gnR9+/FfATzwvMa6csI7PZwwEoDI3SvLbPGlk3Aak9fVuPB3pvO61Pjdx3FpBTFrAMTfZYmoZWgpZBEK+JslHuyyKGWBT6a59/Qk79FYv/iZn5kCpcvhzqPe8KJzajveb/aQi4/hQu1RGITC72Pn8SpTz/gZXOCemAz97FeQMh3drjxIm9dlMNYHEcYgSIiC6iqM1LSkpjGTYhJVsrelJQfNWhPY9BUD5nMbiChsOwSlGKcyMosXA/ZRVhlK0sTnkQc8uW1g/YygjZy1iLx1p2uUEe9Z1l/NMF7OihGY59nGcWBfHidVxMA5C40/RLWon+37ZhRU1NxEcUAlL4MqF66gkmMBZ1RQUx3BiWxwBrcSQJiCkgpq8IPJGJ8BNEHrTKcpLw+CtVZJLuOh6MTa6xSJXTaD015KDampMzk7+LdPffwLe9Bj3ZOA6uFKvI4wybhm2iE7sZdbUR7hl3iI6zdzHmzNu81bIvb2OHFhE/5XrWWyF0qZg/6q4XWgBaF6BbhliD1J4DVB0QpT7ZMkXdod3W3nN8WRxYFYiahboGY7JlV2u5aB5rurzQ5kzVUoLWcriLo8zCHMPdi1RtRuJFni49iZqGWH1TQMrFHcQdt6yhW5sJnOm7UZE0tjNvHr3nfBQBQNariNntxDOEV2W8z6juVxxAeVU/KG2F4a/IPEED5lyJ28DK7XWB77To/LDjx8IHHMh6TgFXQJzIQshfuLpxw8QfuL5n4BRsk6MjmPY8pWs6Ws6qsbgRk9w8i3ZCBQgHf+3JJcsaZaE8u2cLB1Y9Swuf8P/he1OfKTWIhOp5aAKzXYsgjkQsaowUIuBFO8wRXBCEK1wRf2Ix+5we4VPJlr7dEinWmy2a9W+9C2p4WM8ZM9fgDfZzEfyBwGth3iX33gQVNH14mqbbl73AkMgtNcpMpf3JmR0JZGUsL0yhY5xu4mhAJpAATHEB+QSPKySo79vBzfLeUQ8lE/p/FgqN0XBTVVwBgpOxtC0yQmKngQegg3H+8Ek42YbC507boczENyrmMqEEHo128rn2+QCB7Q6TdLAzQQNrCaQatpwiOM0o3VcLiFUkF8Zw6CFq9lLJ/qxgd0nu9ClyW7KeoSxb6GJOU1CBh4egNCkU1SUB9O25X4OcJyY6qHAYQomtSKmegoF6a2k0t9DeBHFRaQK4ZyC5FfGAn+GEiL5lH6s3zGUW5IXkTpvAXut4rFJeBPPLETZrTbLoq377yoTM6gK1gY5JWJAythY96xl7bBpNRO0/pHz2U02X/RpOxpIMSe20YSE34iQzkTEhTYKUUm/cqnyH7rq0z5otmXleHYBrMGZx5B6pUOBM8YYabL3AIlSaaLGTzelZh4BXnG2nzRBvqeZj/QmacFmMhf2JlO9D/82xPPHaWR+5hEjpGdCWN98qDy7fWDVO6MlNPsyxMWq4+kHaK0tv/LfK6W6INZVS5VSwcBK4G2t9fZzbcMPP/z45nBCbWVQ2ymnchFCbat8Qm3Ne6nl2eBbb98PPy4H+InnJcbnMwZCIzjxZRvaLs9iLx1pOyyLA7sTCfixKFtKiSEN0z0w23TWp5gObQZkXmEI58/NRi1iERoK85FMIAPVg9pmJaXAXatQKSLH6C4XePCfmW261ctZLoLwgZmeo3RFfWG3ttnMCjO9kdphmmlD4IyLCL/t8XK+JRq5FhHAWgidJgom8bD1qf7cft+LHApuw75tydC8gptavkU2HQA4+lQ7yZ+MAEqhdHwswfOLqSyVENU/DnuAPxz5E3mLE+BR6NhlB/t2JwuxSoKeHT9l68E+BPz4NJWro6CvptC+SNCl2W46sY9ISigghiO0JJgKojlFO3J5J+tWIpNLKCmLJDcsnsqMKNpcc4h3Ztxqn0d5XmPRPjKhPKsxwTcVE0Y57J1EQZ6pK/JqGgX3e2h9TTZcA3kqQcJh02Vx5sO9RQF/AkKvP0X5xsZwkyae/Xxw/Dp+lvwKGXSnHxvowyaHfLoLN2QjJkpnzHur7OR8ozbPXguIrbHWU2vXW8Xcwz+bZzoax1gr2dsRGVzP1/yzzsybG8i1L+Hc/89TzrHMQmwd8+LrON6XPPBbn3az04Bfo2YHyUDJEqSARQvIXNib1hOynba9EFXVKgHzb4+cQzRcOWodn+8baLtIX/B38nsIjaLCH2p70aG13g3sBmYrpVogJPRPwIjv9MD88OO/GLa5kDEVskyGLobieeZsNSFBLnMhm3j6DYb8+OGgXuKplPp/F7B+sdb60fM3+wFj9kkpwbEwjsLW0RSNay4hfA2hpkicTHnTdMhXAXikM/tvJNTWKtsB8K5pN18mdq5nqpMMZyunvUxv9yd/Aq70OiS1GDE0sTrg8x3DF9UD6O6Rup5rjVuuj9rp6zSqdpv5XUw4LaDecu3PRBDq5cBz5r3VdZpgwhezsUOJwTihbkPCOad7pE5nHpJ/uAx5crfgkPAkKH+3MQA9Uz8lv0cMAMfLmsFZ+FnLJbyeOhHmVMGNQYSuP0V5ZmNaJ2dDMuT1TKDyySibVM2K/j+4N0QUxFzYV5UMDWFY6kq6s50UMiiJi6SSYCpSQ0ggmzLCiO5RCMDwX6dz+Bk5zAZ1fMvOmtvTIEjeNwiCJr+E556eRLxhZbu7dKEbOyhMbkwIFWygH/Hk8teOdwNQSGPy2niISTlM3sF4giPKYCMkJW9mdzNhMjXTwiX89RCU/6gxEQPyKV0fyypupnP7DF6fMZGUWRtZfDKV1CaLackR55qW4u20PEVDtpKw6AjX/FeGwAphUGohMMD8QV/vUjlXudTPyXiV53E/H2oGdq6k1sIwVRxCOCPN6y1jCvS+x84zBuAu5JmYm4YaB3Qzir0PsdUDXcq8dR4NcMinZaR0h5m2MaHubTyOgVVnRI0+htRq7QC8B3kTF8HNHifvExyifgz57o+Hz6sGyrGaiAC1zAkpvtxwgYqnH18TSqkw5BfP+gVZp7V+7js8JD/8+K9HVXXdimfVRQm1rSE83OkQ2DmeF0FN9cOPywXnUjxvx6YJ9WICjl2MH3Wgo84TxW0FFGU1l6u1E6kl2cnl7GpCYLVG3t+DdEzXhtBWS283F2O8kgBcJ6VT9OPe+2s7TGIkD6xMFDVxl1FZgIAYUVirU8OdXMtt3uvbrqDUrnuo4nxCZH3Kpnihuu7roesYq7cIrVsp81LNpmjYqBz32hsR0jwNR03qhe1Iu3VGfwbM+pBAqnk87Pf8qvrvvB7mcmZNgPInG0MS5C1OIODa0wT/qJjKzCjIhEZLjskAwSFnmwE9T1OTG04C2RyhJR3ZRzz7KSeMMsLoQA5tqg8RUlEpK+yBPUA5Dsk8C4SZqYUGZlloFQzZAr/86mUOXyGkuYxQWnKUcsLIJoFu7CSYSkbxDnNPPkBlXhS8DAUPtSLm0cMUbG7FVX0+4bP3BxMzXOpDFkwLh7kQnCu5q6VLzGjDh4roxwu5ftZy0osHc1eT5/mA69i3INm+RgAMN0RtBo7CmWmWD8B29OWZCrmXLUNQM5Tk4AIBx+TBrm5mQl8XyMtdD1a73Fz1LGrXe7VQgpDDwa7wWZOfrOIQAnjI9Z1K5rzQo8z6y4FcKbGiBgChHoeA55v80R7AR05IOpOxv7cMRZ75t6Dt8iwOqKVws4eAv52mZqspwZNijm92Ardo2D26C3tmdLdNrC5XXCDx9Od4fg0ope5BYldOAlavVAPtv7OD8sOPHwAsghl0Kcqp+Lja2ornWT/x9OOHg3MRzzVa67RzLEcp5f8TPA/2zUiG2S/DR5MI6CrEr6YiXHI5TbmQLmyHAd1hdq4oQVfHS84iwGk48MtEGGRUlz2Ie6mBWiBTbWp6HnjE9JaTkDDNrqYX//ZUajaFwx6znWnm1kaaTrxVs7M3dm6nmokwJ5BOPUJKtfZITtwcj5M3p9KwbH609thkwjaAiRZly00y7HPwUVTVDLwNbeYr+RzEeWtAAhAL5YSRQQq5xDOo32p6lm3hVSZwQv0dtnqgp5TcCL5fTrzqbCCcgUYrJPE29OVTtIk6RAXBHFiTSM3xcJr2Och+4ulOBidoSi7xDGEtkZQQQgVReyrhtDmGM3DcvA1FyGaJeWFOpYG5vEFAGUCgrNfqUAEAzdqcIJd4IimhD5vYRB8kYzSQysJIGiUeo+jl5jAICvKa0bHPDj7bMBiSqigINLL4HA+heacoT2oMz8Ddk+fx9+L/obw0jAJi+Kz3YDps3gXAvh3JTJr8HAuP307N4XDvazoeGfnYCRSZg17vWv6MhFoqS0V/5XoCrjvN+aC2AX/Dua+uMNoRpr7I9QfhfUbbIbj6Y3k21UzQxsDINtIyD6FqAvqkz77MgEpwwW/RqZJPLHVpQWoMAdoj59UzDbb/L7RxmWaZvFc1AjuUmWeAO56G8b/22ldbPZYDj0DN8+F2uZyYlMMUvO2BZbCXzQRSBbMXwWATK38ZK54XEGrrz/H8evgdkOQ3FfLDj/8srFxOi3AGBCiUukjlVKqqvVxtrbBbv+Lpxw8J9RJPrfXE+pZ9nTY/dCTN2kxm0iTIhJpr34CciXSYsEvqKb4XTufJtX0i9DpQKh0GDxI1aRxwj+lFBzWRzv+9tVYTzME2EwLgTZNkWSVqDqOMO6ipHagtwnm3ad8b+KNLNTLlVRxl1YQvnsMIRY3GCS+0zmm5qLW2a6lLVfUyLLLgNrexynZk4pRcOYO4iIKEflpht7FAAuwt68SUsPn8i6vZuqA/eyd3khIjh6cR0/wwBR95pBTJenEaTpm1kYr3pfO857Hu8FfYN6cxHVJ30WHYLnI2deXEvjhWZceRMaI7R1e2g1z409gZPNXsNxyhJYFJ1bTLPCrHFARReKub7i9bKEI6G7heBAGnYXWinNhxmnKUlkzf8QQxSYeJCCihmiDJO42HomPNJRAvC4J7lXGouA3EQmrcQha/ZwYUbphHeZuptDi4n6NL2/HswftoGneELlG72bqvP7wCR4pbUhAVQ0RCPi9/eRekC3vTk2UQQC1zHbh1X/PletvGWHmuexEr88GbvNZnLAXmvnY2y61yJq78YHdoLjiE02v7twJjPOg33Ou5Qny1h5CTxd4rbTTTDB/VfqtHQnfBqZMba16rTgJPy7K+HnhJSGfEa/mUjvdwYCm0HpsNk6qg7Z/oPFNk1T2mdlFbPZbMR3rDeA2LetMz9VOzo/51XJjvP/yhtpcEx/yk0w8//vOoqtYEKCGcFhoEBFy0UNs6zYXO1hMi5ocf/4W4IHOhOnJNLOMDP86DzIW9uWrCJ3w2YzC/0EV8hFy2mubS+96T3l0algI3x5O0fDPdrCS3T0yn+V/AHA/809ookn+2VT7a+ZlhSE6ihVIkh83UOLQ67221UWR2J3IdViHPUXWfgJHo+vEJAJ8lD7ZrXeovzXZHAze7VE53VYh8IMF7nrt2qFoADHfCNOuERXwScAiOm5gWIkTUIkVnoFPYXp7cMY2RyW9QMlmS/I7mtqNjlx10IJtVZ0bLE31W6qtWEMIelQdzRso2lgBbIOdgJ8gPghZVpMRtISO/L0c3tOPaUe/x0Y4bGNLsIyoIoQM5tDt0FFx1UMEhnpaQV4UjIlvE9CxCRDkN7IHhjdKlbTh4ov4A0VUUrG1FQT6kpG6kMjWYExYbnD4VSiG+SS7VBJIzrTGL753shCC/PZXQQaeIppDC608xJGotR2jJ1h395TlKgdSoxQRSxeCwT3hn/a3yLV8B6l0c5XmKFuV5PQ7BB9SRCnCrXdFANigTL6vrLeqKHQrrzsFUs+QFsCputJRZcf0nWy6z+sN6Nytk8w91uOi6SKjdpdhl2hn1VrU283+ChG/7QELRn5ZQ3C1mZhAwF0qfjBVX3bWQtywBlqURcOwB9h6Hds1y6aDHkDOiKwcWIiHD8xX8sorA+uLSLxOI4hn8XR/Gfxs+ND4LS3CSDPz/u374cYlxtqbGLqFiIShQ2bmf3wb1mQv5FU8/fkg4L/FUSt2HOOn5c02+CSbBZ5MGw3p4tXgC1VXWj84T0un1daC10H0Q3D9ICOYfgAqEoaxNg1+ZznJP6Ugro0K21Sa/c3Ei3DYPFk0ladRmGAWZa3qLC+00ONAjUTrQwJrdo5Da9a4SKn/wQFdQS5EqcsCGsYO9CCNIOQk9EzF7aeOppWipx4DbvNVRpfZAUGd4z4MeYYjn6hAhK5ay+VNzvs1xwjkHmdHGTCVl1C1C1NC0y3AdWAKkJi+mIjmYMsIoJJqO7GXfRti3MZmwyWWQqBnU/gPS1SYq/+lhD93hn90J6GTCoR8KJ+Iv+ZS+Fithy9lB7G8eD4HQuc92qgmkY/IO/lV8NTdHvUUlwUL2LP7+hjfpLHcdnqV2VuGE3FaB8LcibNK4O6ojAB3i9hIaV0ZOcQIVhBBDAScO30Oj2FOEBMvF3rc4mRap+6Uu5XzscjYteuzn6Jfx7MlPgRWKd9beyrD3V4qRVTfo2eVTYsmX0ipHBjqlVG4yB1uF5MbepSTr20I+Mqix2kU6G2LnxPLnqbUcjetUOn2gZxhyORbnngaa3OdkJH55ZxpKuUqmWAZDy1xKvW/YqmXglYjkpV5rnvf1eBPM8cCTwJvYv452HqiaJ4M3S8y2lgB/PAm9msBO2V7SjhFk3uoYC9U8Fk7SPFNmZUdvue6rgBxNxwk7gQuqgfm9hiie5/0r8ed4fj1MMNNbXfP8/7t++HGJcbZK08CldoIYDJ29GDme9SielX5XWz9+QLgQxfN+oJPW+sglPpb/Sugao/D1T6PcUle6mrqbXU1dQIAbISIln9yydpQ+FwvjIWJMPoyB0nDzQ5XQRGo2vmw23saEvVpEb6qwMT0P1JmpcAZ2YjrBw7Cn6il56ftqhyLaHfb3sMup6C/MdBQwyoQdLsFrPQtqqLz0h6beZjKoRbWdRQGUOms7l9YFOz90Euj2yjYcarr8ICfUPrh5iJ0/Z011Dwg5WcxSxtKJfbxfPILoqEKpwdkcWo/IZn9lPI1aH5fSIYuGQz6EDjlF+bHGhISKOVDgX8opHR8r5jDvhdNi8n6OftyOjtfsoIAY9h7vSFhkOTFRBXQgWxSfL/CKLrVCaC3z4bPmszW1SCdWmwogAk658gpTyGAD/QAoiIq1S7YEN6wgLLicowvbEXxjMSTC0W3tiBiST2lprO3WWlgcDfMVjR4+RhHNYQys2TAK2gDrYWffbgxpspabWUHjloW8c2aMuAtnmj/ejTgk3+KYFWZaiuMEmwfcthY+MPVBzshzb5G2OnGufN0MnHxZA+sZsvM4fYmt9qB6iAmQXZP2j2bhLWkOUV0PPO+Bu9JEJc8HxomJEs8627MGUnyDAfRY5xggCLYUw80ekpZvJlN1QMbonnb2N8F8B28ASONa3YsNxf3Yty6ZqwZ+QgEx57gQlwf8dTwvLrTW7b7rY/DDjx8iqupQPBsEBlyUcioVVTWENKirjqefePrxw8GFEM88P+n85ogsy2fAqO2s/8jjmL9O7wP0kQ69K2S0NCNWXG83A/+uoLQwEtJDkI6sEECl5nttX2tHabRyIVUc4ooLqHWmnXHf9HKOnWzWd5PPR0D9CLjK+zysTr62HEfHGafPevL2JAQT8DUdGdJZclSnOdmP9jFVOc30ZIQAGdKjvtQwAJq2P+Q0ssKK52M7g6pMICGKI/1aksoimkWJxc+mZn0oGREpDsNGlesy4ROOVrWDUqgoD4Z8KH9ZSrKQBTxTQU1uOHSFo7vbQUNog+z/xOE4SvPDCRtWxgma0YZD5A+LIDar1D68IGzPJhsW6XSfbhUSdkuIvBrvF310ZbsUAAKpZktlT2KDCyQ3eHo4PKQ5WhhJwHWnqSyMhJ5ppOjryFjcFwZIbiFA+YH/g19W0S44F6bmkrGtL0RAx347iKSEGArYQTd204WWHGVY+3dYM2OUU9pmCKIQnkFyMDNwrk8iQjgHaIgHrYeIMZRPfq+dP2wNYHzoGvB404NabvKP8Q6lVf1c23A5KmvtsduBONuqR+Tltd9U4Ocex/n2BepGLF51NO3vU7qGDk8IyXxpKrw01Tbx0hqUOgm/bkLEnHxKx0Pm6N5S9/MJObcEdpEzoyu0Nm69U4FXPGwoPkX52sawBT5bPVgGTfqni551GaKGAFH8/fjWUEpFaa19fza+dhs//PDjm+FstbZrd1oIDFDf2lyoqrqG6hpNw6A6zIX8xNOPHxAuhHh6lLCd9/HONXm//lX8sFASFot6bKgoQ/+DsIyN0GGWOInmbOiK7icEtXR4rHTaWwGPhjDs2ZWQCmu2i+SiFuLU2KwLy5AQxbE4rrX/NKqLjzmLWo7kOPpAqTRI8IjamYKXUQsgzqLXAR+4Oujg1A8FIa2vCuHUO8QFVI3A+2mb00AU0XlgRDy4Y5OzfHIfKcmx93poaChafhAntsUJ4fwgTpxFUxDCfQbJ9QyC4MRiJrCQxdxGN3byPiM4erANHA1y3Ehvr+CzTYOl5Mz9UFMQTqNex4jsJ8Qxb00CTVse5wTNoCqQDnF7yVnelUCq2TdakhM7L99OS44QSQmhlFFGGMQY4hnimAedRd5bOuZZ5DGINJ+DzDxOmmtuVNPBpDOfKaSwndzgeI6XNaOmIJwWC/ZzdF87WncUp6W8bQnEVE8hY2krADrG7WbfX8wox8vyyljdl9Yds0nqsZkQKikkmmgKWaNGca1+j07sI4wyVhy52VEBMde0r1wjUsy8ARorS1JPQMqnAMwyBMvXldgQzg4fyjOvHukKaR70TPMcYp6D3y2FyLH2anoDXrCft0O5MCReBjCuMATT7M9WOmdSW1G9y3wn/u0RJfd5j32e9rZdOdK6vUIxFV5yHcPvgblmO+080AtKl8WK4+9c06iXGFflvCDmYnLOvQl48DQ1u8KJjCohcnQJJxrGQVIVtHXbA1+eqLrMw4W/R0gHelyENn744cc3QFV1DUEBPopngPrW5VQsVbMuxdNPPP34IeFCiOdI8+qIY/OhqWWj8s2glOoIvALEAAXABK2t4E67TSDwFJLBpoE5Wuv551v2fYBaCUw7SXBBEJHR4tRTsLEVkZSQsbSvV9uI1fmUhv8VrvbAAFizYJQQB5AO8tw0WOQBPHDbSbRu4iwDIQafIgqg6QTrgSbX0ge2wpSKtxFLd/O+g097o3RaJS3s+QfxUp84DCwDvVsMhdRoRMF9HjmXUO+cTysPUD2FUYJdy/T1kgN6x1NmjnE6eskjSls+sBYhnlY12UR4NPUhjtCSTuxlE1dy9Jp28Ay07pNNXmSCKEzdQ4gYkA+vQXVVIOV5jSkKeZ4igG4efrfjUf785f/BGakfmpPflaTRm1mzYxQ8BK17ZBNNIWGUUUEICeTQeE25k4EVIUSzGCesFrwJaIl5H2ra0AjYD8rcVppAL7bwHHeRs6MrnZO3cyKxgmAq6Nxxu9SABKnhmdGKgEGnqTkezr4dyRhhlg6P7+L4A80ozY0l7+MEYq/ZyM6T3YhpUkAbDtFUH6QZx7mSTXzEEJJa7iAzu7edW9voYSkvU/RcLKTLWej2ipbt93P0kXbyfPetI6R2otTxZML18HN5m7Ogq1cT9RjwV3OvD4L6HXXCy6zKwtpc6B4PV5jPK8zUhIrX5XqrtUfU10LXzELX/sMQ0r0aCRW26nXegeRiW6G/D3ikDm8vxI33GSTPOF4T0byA0vEm1PkBKesDQIIYDOU835UTx+JgUIWo9NlB8Oaguk/8MsEF5nj6cWHopJT6/BzLFfwXxGb74cf3FFU1mgZBPopnoPrWrrY28azDXKii6vI2mPPDj6+DC+kt3AzEa63Lz9vym+E54K9a69eUUuMRinKNT5vbEP3iR8if7nal1Fqtde55ln0/8KcmXNfkDaIpZB1XUwDsON7N7sgqlQZpHvAYJeW1KpgTJK6ZnbDDXvVkS710ChSqHkhZC0vpWYwTDhnqkc50CjDd+5C8yGg28I80yYeziKepFWqFSepnjSrVGeloG/MaFQU8jNxF5FiIljDeWpgk66oR5nOhmQ4CZptzH+LKF12APKFbpzrOtrPXOtsbgBDP1/BS2DbQjxULx/HHCQ/w6iN3wjRo0WU/seST0CWb7VkpFG1vTml6LGRBo3uPUW59E7rJ/v88+iF4CNr2yCKSEvad7ETml72gFFL7LWA/7ThCCz7bPZguXXYTQgWjgtaAFXJcKqqm9QLHbMgKt22AU+MzFCTU9kvYP7AFAPnEkE8shTRmZPIbvLPtVmgIBVUwKHk1e2anwS4PBVmtIAgGN0tnZ7NuhFLGgaFyQfIrYygtjGRYl5WsyR1Fxrq+kA5Hq6J4edJdxMQfYVNAH2IoYBN9RFHOxc4RLZprSrYMqpLXc0GoOGjhG1pthUsvQcr/vHS9zF+DhJoOc545PdMYBd2GD7KgJBfmxEvbTT6LrXzeL+JliArgH6Zaaq9msCUNpX4mn9t0hjeAvt45zI2ePEZRdnN5drLtRRKSXo4Ybf3TOX9eAstkmnDgj8Xw8ygZYHkXx/wq3emURLyWT2CQ3PWc0V2dckBAh5m7yLEcia0BnxTf63B5QaP8obYXDyPO34TKS34UfvjxA8XZ6hq7hqeFi1FO5YwpmVJnORW/4unHDwgXQjy/xLsc4UWDUqopEjJkaWb/AJ5RSl2htf7K1XQs8KLWugb4Sim1AnH7e/w8y7575APbIZpCjtOMA08lwhho0+wQB+5Y6rTzpMHNHqHOf0SUHOsK3CH1UNTDnU2e28vyWZU4RNFApxryuciDTnXmW/ltXsY/ixGTmWlAG49XnqZNTF2EznYpnQpKmXGIN0O9l+HK6TNRk1aZFQB1i+M8CobMUjtvT6l5BByTQoo1fzGxp4Z06snGcfcTIBAnadK4k654ahyhk04xmHSunLmOz1MHUtArhpQm28khgaKNzSEfbh/9IjtHdCNjX194GYbp7qwxzr1NRx2kDYfY+lh/If65MGzCStbMH8UHfa+jIKMVFMKka56jAzlUEMLp/gGEbzF/ICbF1SKVdeV2uo2GykEcbX+EF6I5RSHRfLZtMCk9NrLjeDdq9oZziDbw3nAaJRwjNlhY2EfzboBWEDEynwHDpN7I+i+HwMuKykeCuXbEe2yp7El1ryBGhL3H6zMm0mFWDp3YSwExhFImpDPL+xgknDZInoVEK9eyHfEzsziwMJGIMfmULom1Bwf0BBjLKwC8/qwp9Tusjtqvi4D7nWfHy6TqMaCPeU7jfNbrhBNuHupBl5kBGCsM3TLd6gNoD75olHCMwuDm0MXJgQacckURTokiepgBEAsvRcn0SXPM9ndG0QfZ2CYG2iqtXm7yk4GcL7vAAwpYBos8jEx9g3c+Nqal16aDHlTrWC8HaJQ/1PYiQWv9z/O38sMPP74uxj4vbolL77rqnO2qqjVBPjmeF6OcSp2htoF+4unHDw8XQjy/AD42hM6d4/lsvWtcONoAh7XW1Wab1UqpI2a+m3jGAe5i2gdNm/Mt++7xD5ksPTmWyowo+E0abPVQUBYLf/ZIPieAxUH3IkrgjQj5nJ0Gf/LYiqKYskQ627+3/l0rd8W3WOBvZv4LoH8B3GY679e7OvyW6csijyw3uYK2ccsKhEy3CZXwRBeprIXDPsfjMjGqC1ZtRnU3sBZqNhnCaZHfv4hjqlqAqE8NcPL4siGgvymF0jyckfetZCKvMIL3iVmcz6p9o2nW5ASrNoyWUMq+UEIkx2lGi477qXw0mH5sYE2pxIyeWBzHCeIkyDwDgm8sZs3Ho2ASFDzaitYzs8kbncCma/rQib2kViwi/FCNE45ZJV+uKLxzPXEWe+V8NgBoBpyGdluPAnCkZ0uCqCaaQholHSPjSHcaxZ6iulc5JUTSecR2SsyzkLOjq9zjFlC6Ppb1zYXFt03OovChaNJ3DBeF7yxwdQUfNRwC4+HzL6+mU/u95BNLJSES/mldU1PORs0wuZtG1bSmbSfIiZQuiZWTnWaWzwASJrp+Lcz8mTihrTucQQdlzH+YhuSS4hOO7TKxopOZp42aD6hrrPqaaXZ7AGU4nTtPuSi7uSxbj21IxRlE4WyNo3S6ket6H2+mRi2Vff4apjQBBkr9U9Mk4kA+kWXQof1xsunKWF7h9TkTGbS8D/ls5hTRDLjmQ9ar+p2dLweI4llPDV4H/nIqfvjhx3eGgtOVBCp13nZVNbVzPAMvguJphdPWWcfTTzz9+AHhQohnCJCDHXwJXKb+i0qpXwC/AIiL85VRLhFM7cPKl6MYNHU16D6kb4PSrFgYBEk9TI2/tb3FQfQ4kqP5rnTOu80aAWxm54ze5hyAn0+VvElw3FwHAkeBKYAxZuWMs5xoJNzWFV5IqAfK02BVGvzcY+oh/i8gyimpLkJ6K/IUuKDuRGqDAup+M7PQTOOB9XWXUeF2j6Mi5QupAbzrhL5tZLCNPusOMtNjCCn/yBzjMpcyOh2CqCaFDJ7e9HsadT8GQVpKkUQAUzQcU6xYOU5KghiC9fCYOYTeeAqA8hWNpW0GdEzdwb4ZybSelU01gdw183ke3jeHRkuOEUM+hURTEhJJ+J4i5zhjhFxaiqfbgtJduzPUNZ8qRCltKR8P0YZCosmhA0XLmtM2NYvCymhKc2Mpbag58UAcPIhkXv8SWKEhV4nWf7Ns48CPE4mpPizs9wtgJIxsuZJN9JFQ7gRFSftIKgmm4GSMmN2sD6rtTLsQqfEJ0HMeTJ/KgRmJTrv1iFKagE1ctVG+1QyHvLph5/daxPN+n/l1fEWtwQlAiPYkV9spZpDEx3ZFJZs3uUjus1FuvQhlKXK/zTyVh9STnQOECxHuZr50mWG95Vhnv4Ovx0vPrz5l68D+ssnwRnTQ+2R7M4BEIePp9wx3aqJmgeVafblCcjz95VT88MOP7yeqazS5+acJDT5/ZEZdrrYNLobieVbWb+hSPJVSBAcGUPktt+2HH5cTzks8tdb/cwn3fwhopZQKNGpnINLtPuTT7iDQFoduuVXOcy3zgtb6BeAFgF69ev1nyfN6qJoayPrFQ50i9r74t7hgZqYbkjkPkqxOeBeESLYzRCvb5LZlNwNPnrONaS9hSYRaj0UZWUmb3rwyTZXKFXMWPEIoXKVMZHkajDEhi284qpHqgZSf2OY43OoXa5OEugin1h6UKYuuJ5vOuLW/OByDoGhgo1HZ9pj2RgFTC5CcuHSkBqqV8jnOTPsCndKomhVPAtmk9NlIxvK+XDX6E7aTIkT8mILWVfTst4mdJ7tROTfKXrc8S2S0thOyOHB3IvwtjdzhvyXm0cMcOd6CmsPh5PaIh3woCmrG+hXNuWfqsxQQS/NeRRKYbuBWOENxiGhdobYNQO5vBbZSGE8uu+lCU45zonkcBzYk0qHfLkK6VHJiRhytl2eTd8SI+8+EMLL9Mt7JvhVuh5jxIjcX9G1FWWmYvZNru7zHusqrKXqrOU0nHGQE7xNINSVEMqnJ33kh9zeSk2hKztglfwZViRFOHvDKVOc+GZdmQFyITW6nnuxtOuVFGHGpk1pCwi1FXc90rWMpl64SK16YhJBcy4nWt+7nNue9pY56UZ+BTgi6RaBt0606BsZ30htlmUd9CPQa6eSa7pXJVrUWWAtLPHBPA3LUx+Y8u0r47UNAL/h1j8dZamLRT/AfGgS7hLgA4umHH3748Z0g83ARVTWasxdA8Oqq4ynlVC6+uZB8DrBJqR9+/BBQL/FUSl2jtf74XCtfSJtzQWt9QimVgfhevmam233yO0FsQu5USi1HsiBvAgZewLLvHHoCKHWWnvpzPj/ZR8JU1yOd9lzI3NJbzHm05Hhmju4tdqfSfycztbdjFmShELRu5ig7aa3FsGUbkGXIYqrpVD8/Ff0LQxJ/C0x0wmf5JRLCmwlkgy4GlWg0uNqpcV6wjIbs3M5oM+1URzuknXoEIQrHJJxWPytql9WGhxDyGWvWVWkwx6hYM5BQSEvBHYOtToUOMSrlMSP1fuShhOUEU0k3dsJoUQ8B2A7XjpVcx61T+8P9VXJMa5Ew4qwQWA8HYhPhAQ0PzKTyC0WbPrupahxIr2bpvLzul9AcOrTfTczUAppxnAJioCrHCdU84x1Ka8EioCBfPst8qIE1IwUqmjntC4ghlgKaXnOQUMo4XtaM0rxYms46SCXBNG0pAxBl0WG8s+lWeb46QdOAE7J+aSvKJzUWha4//Ovk1VSmR0Fn6EAO3djJYzzIb3mCI7S0yb+Vl2sPDmSYn4pCnHv903kOCbXO7o50dB25il7PQR0utXqmDGooM+SkX3TlCp/L8C8b79xkM4ZgVTm0w7sP/J9p4fzk2UqrC80sd6hXhAzqCTLYYSv0k8zUY4y325mk3H/5hJG/J5Of6Shef2SiPPtvpcFbwHQPz8ffRWVWFC367afFrP30YRPO6MnlhRoCqDh/qK0fXwNKqdWIjdt7Wuuv1eM1aTHtgBpEy/+11jrjQhzk/fDjvxH/3CddyoYNLkzxDArwUTwDAr51OZW6zIVADIYqq/2utn78cHAuxXOeUuoqnJSluvBnpLDAt8EvgVeUUjOBU8AEAKXU+8BMrfUW4FWgD3ZFQB7RWlva0rmWfedQo4FdDdj6ZT/o8E94exBtR4l7y4EFiRIaa2E10AtuWrcEgBUzxsE/TBheryaS13gcW41yKzoA9ATeNvvdBwwC3dHkev4WdBdQbwqRa1TREDhG4S9MzttMk4MH8lQM9kAB1BpWqMfI31I46yx9YbWZacJp830WNEdcchNrr0MbHPXNInU958FLhvBkQ/ktptzKe4Yt58MHx6+jU7N9rKwcSZvgQ+Q9lUDb+7IYMPZDCoihaH1zIRF3BNHhw13kdO1K2z7mvuQmwvAKghtWUJkVxd395vHsDNnfR9zAgFkfEkY5a49fy3XNPmA3XbiFZZxqE0rjL4zpUpC3wullIoRjNOT1BawCvoSQnfIx+uZThFHGpuI+lJeGwbEQWWE95DeKoWWzo+RtS6Bjjx0UnomGf5trmQMFfeRGdRy4g333J0Me3JS6hBUbxkGvKjgaxGdrBhM7LJ9ISthJN9YyBN4SCVktHOJ9H142U8uhNQJ4eyp6lMvRdvogSBCSpicDveu4nxZu9jgkzsJ46rYxq694xB+F7KlojzMA8rBM3Io9ADeZK71NBoIAtJa7YKuhZZJm64ZSaVK+pxYWO9EHDwMTAWbAn8ydNar1UibyurXKVg80r4B8qHwoiqRnN5P5sVykt65pV89JXh7wK54XHS8gw0VPKaWeB+ZrrQvOvYqNiVrrIgCl1E+BBUhM+IU4yPvhx38d1hniWVh2lsqqGttNti5UVdcQFuzdNRbF8yKZC/konsF+xdOPHxjORTyTkdHSuoinVUG+roDRrwWtdRZCHH3nj3C9rwZ+Vc/69S77XuFviqu0ZtPx0xxYmuiEBVoVR9NNJ3Y9rGg/TnIk+wLTm0hYXwHSUTftbbVzuyuU9k2csEPjMKqWYxM6tRinTEbIEZnH815uor5QK31qNMab6ZNmufnodrV1w3d+rXqP7hDfiUY1+rMHfjcPiHRI52wxZaKnkc5SxHlUzUDmW0/ieqAv9Gu2gd10YUrwfN5hFGyEwl9GExlcQubB7pBQJXUpfy0lRzgNBzYkOo6u6SFUVoXQaNwxnt0wFRIgYpww5nLCCKOcds1y+Xvx//Bo1EMcpSXdD+2x3Wwpki9XOWIwZMEKr7XUTsz7UJB145B6nkABsURTSL+oDXyUcQNtB2aRQA4ZSSkUvNEKxsLIHm+wne5U5kdJsLn5Jpz4UhTe0PZlxGw5TMHjrSgjjEa9jlE0pjltV2Zx9GRLNtT0o2PAPtYyhLKyMJjuQzitUFsLtxmV04TXqiBEofYdTPBFtOt9BF4lRsAMWAyQC2Q/M23NdD21IM+/R4a+cPKD9VQfE6sxHi9zIeW6GbbJ1mqg0Gzjp3HithuEY751h2t7FgkN9cj3sxR5bg/8n+TGAkmpm8mcacLllyIxGCCKeqcQ+e4fQ6IbtphjWS0DQ5cjLjDH04+vAa31cmC5UqoTcA+wSym1BviL1nrredZ1JZvTCKj5Gg7yfvjxX4Vb/vYpWw8UckVkCF+VVFBwuoIWjULrbV9VU7er7Zmqi2Qu1MCb9IYE+XM8/fhhoV7iqbWuf0jIjwtHNNK5TIfPlg+m0Y3HKMoVExz9oCuEbxCQDUlfbiZzsZGKnkNqev4SGBQkqtMQnNDbuvp6DwO3zINOQkZVLmB5SLbBMVEZaZjrO+9IR72xi3zeAnwiyaD649Ze+Xf6RXlv5XTWIpbLhUSo0XLe7jBIX3iZCTXE6dRnA9N9NjzdRTq3ToVMUBYpLUWe5HTzeS6EjSonlnz+/NRDkAgBT5wmKKiazDW94QwEDyimMiSKK0et4/MjfUi5ZiMZs/oScb8wqNJHY4l4KJ+itc2hEBqNP0ZRXjNat89h58luXNtkLTkHOzEs7n2iKaSKQI61aUTzDNPnCxdiabnaWkTTXVYlFEcBLcY0KsLOG4xpkc9b3ERGTQodB+6goCaGLVU9iQ0uoOrmQPJWJlB+YygFma2E+F2BkLclENCqDIADaiVX6d589u9WnKApfYI/Z030KBLIIahJNYU10VQTSHVNIP3CNrDm3uvg3hAhm4nI82a9T0RCRSca8jlxFbx3vew7CwnDtdxerbBqC6vMfOPyXGsAIlteegco9f+kjRajK3zLsOA6nt+VQ5tQCUo00NojBPODOkJut3pgQAObzKovNRG95IKHNKyAaigINKM73T1yXuXznG1PxphwIUSyKzDdw7C4lZAKaxqMInNib/iDaT/WZUq0pzdtx2ZxYFOiKNNLIGCzjEBd1+wD4BzhAt9jaJQ/1PbSoxLR0RcqpVZrrX93rsZKqfnAMGRscDgX7iD/3Zjw+eHHJUJxuQzx3ty9FS+s+5L8kspzEk8JtfXu/gYFqG8damubC9WhePpdbf34IeFCXG39+LbIhfs3zyGHDrwz41Zb7VEHq7hy8gYAPlefAJBZ6LFVvg7rdpFzUJImreBhNRkx19mJkNohUyEdVAOgytCYB6aiHzcKZynQ2DFVseZpm/R5UEZb1u+bcNujAC/Zy/VMyRFVdzrEUx+EwOOnCTwO1c3CvU5XL3eIqZXLWScMSdFTjXKZ7Srb4VJCQ8eYHM7ZJUIc3EgEWmsIqoYn5XFuuu4ggVSxjoE8eF8aO+jGqhGjKWgVTscXd3CkrCWla2OhSHIoO7fcTcaavnATlI43CaY3QenwWFqs28/RO9sRnVpIUVVz8j5O4Mpr1lFJCLfH/Z1Xv5xCavtFZNCd3qsynTqcp52oUfeXzF3L01JD7WIagcAXYGn9lYTQiX0UZLeiW8ed7HsmmZT7NhJBCTlZXUkZtZGMpX2luk4QNJ11kBOJcuFress9SdKD+WxHb4iHCkLYSTd4NY1PHn+ANs0OUbC2FVcP+xd9Ajaxk25ERJfAayVSIgUc86ZBQGIVLJkq9S6zgOnXy8k1N59vxFEnW2PXVQUTeosrn7ceqKfOvRxMvnI40MLMOFSOHhWKmmUGI/4ONIM6s9emILVIbTNahVon51p6i5ll6oAyyJhodalDzi8337Ut/w8KPKwZb5h0C4jIyqc0OxbuhV4zPyXzkf72agc+ToS18MdZD/DsiHs42kNCbFcNHw2zfHdyecCveF58KKVGI8WymgF/BbporUuVUkHIL+c5iafWeorZzu2Iz/UfLnTf36kJnx9+XGSUm9zKQZ2u4IV1X/JV6RnssKI6UFVdU8vVNijwYpRTMaG2tRTPQH8dTz9+UPATz0uNQ9Bzwac8uXIa/HQRAB1nSULkvoNd+PxgP3RcEAk6hpy7uwIQsVpUtxy1zFYB1R1p4gBqFFK1wWy//zwIMh3joFC7JIVSaVKLMwLv3MnWzltbBTJ1PJVCuict8Aq/tWt4Wp/vlGnAo96fbTV0KGIyZEiYesy7LuO5YBOTWITMzF5Keba4f/Jzj7iqJlmR3i5UBdreLCcWxtFmwltEUsJTxffRM2oLjVYcY1TwO7y64E5n+30hZ3RXmi4/CM0hIOY0NSWGRO8EHoWj29rBVVBaEyl1JofA52cGEjP8MB9l38DtHV+kmiAxhwnH+T9r6BBKt5OtRUYb4G0+ZEWAVoyGQNN4i2Fu13Z8j01lfeCmKjJ29KVp8kFSkjeST6yoo/8GBkFFZbCEf2ZiK4D7TnaCVXDVrE84QVNS2E6gvo28DeGUXhEJDcU9tw2HiKaQ9EeHy4qWWmmF2QYhz9FVVVARRMB1p6V8TbrrHrhDYi0Fc5bcU7XWzDPbdQ9IqNFm/ltpgAf+8r8ymJJMLdRyS/5DKETXbRTktZ72yPO+PQ2e9zhutsigTGRZPqWWq1Usdtke+zsS6hrwuBG4MRSeAH5l5q/ArrXri54zP2Xr3f3p+OwO9qm3YI6HPzw2V9Tt4ec+7ssBUscz+Ls+DC8opRohd2io1vr7U9f5wnEH8JjW+gP3TK11lVLq1xe6Ea31q6Z+ah4X5iDvhx//VaisqiEoQNGmsSTz55dUnrO9hNp6k8OLUU7lnOZCF4l4jn3+MwCW3nXVRdmeH35cCviJ56VGG9j6cX8hgH+5DeJhX2oyLRbvp2fcJtOoPzn9hHTy2XxKj4njkNYeKaOyx5iomAhcvRno/zf5kCak0ypDoSwzoLnAbUJW1WJQWfKZN51ahxa59Cod8Ufw9VB0l7gAF8G81YQMv+Gz3JS9UHFIdhKOkqXvc7WzSsXMwH4S7XlqFWy9HsaMlVxO61IdBwpdB5wFZCkJMV3hzN49oQu92EpKVAYtOUK74Fxe7X0noR+dorzRU5KTlxkEU6C6JpBGiccoerg5rJVr3fPDIWw90gvWhkA8BAdUilqWB1eN+ITPtg0mOL6YfGIIoUIUn3ZgmaISDmXmbQPnsGwS6iad7uUhe5z3fXpuIoMUNpX1oVvYTnbGdqM0KJJoCtlfGU91VRCh408RGVXCCfV3iqZ4pNpuOk5pGoDr4bN9gyEPbr/mVVbdPRp6wdh+S3l29VSqBwaymy7k0EFqV4JtUhXxmhN6zHNBQiSzgOsg4DenqfnAUbv1BJfRkDsv1ITX0hvvOrJ14TfmmU33mX+vo9rbz197JO+5FMnxNXnNltJpmWVpn4ET7jL7sJ81YFesKLnjTZsnTJtlnlr5qzpV1P6a58LtfdIXOJQGQR5KG8Wiz4K6B7Yq4IP+cBPsm5HMAH2c9QvN9ekLs0f9lunrnjjPRfl+Q6OougiKp1JqLhLoHw9001pnmvlf243V5DlOVkqtPVe77zGW+JJOpdR4rfVrWut36ltJKRUBNNZaHzKfRyKFYk8gSRrnc5D3w4//KnRqHklR+VmuiJR0gK9KK87Z/mx1DQ18XG0DAwKovkTlVIID/aG2fvywcF7iqZRqqLU+8584mP9avAZch+TANQQmwdEZ7ThKO+hltDsrR62ns5pdG7OXB+4EXqxj2x6TjzZzinSgP5KP9RoG3ZImuWuA2mZCDiOBEsdARfVw3GEBZ0z859iKlX7EnI8P1N14W0791Zxbrlm+AIcgvO9qF2+Wz8ApmdJzFbxyPWq1+WwpailmauX5LUOIp1F2Yx49TAGxHKEFzTjOsuNjqNkbTs/Nn7L1mv7waw9Xxq3j8+cGwpNQMKiVnFcs8Lac+/bjp6W0ysR0WDSIeHI5eqad+C4DZEFKjwxySOC48ULtErOHkH+a5achDCGf9ZVTcdfxtHI92YM8K8Am+rCCmygrCSUyrIT4sP1UhoWwb1MyNICIxHzK8xrTqcteTrziEZV5KzRacoyiKeJWXDk+iuBexVTOjaLDrF3MZwrcCAE9T/MB18EUzSHaEE0hfdhE+tvDpa6rCQcvzYr1UlDVOCABat4L9/71yDI5u1ZNz78Z6XrWVPg1DhFNMHmS78sLw7lksMJ5Zq1cYaCWKmi7L483FzPaZ7maDxyGP3h/B7T2OAMYgJ6Ho3x2RTw+8xECCVIDt81UeS4edm8/jYBjD5gLhOTBgh05wGZQVyDXbFF/WxVu9PAxdlZ2I/jGYioHRHJ9+7dYx9XwR7O+b53SywQSantRxjBXAH8B/uUzv143VqVUB/PZjQ+01o9fjAP6DvFbxLHdjanIv8m5EA68oZQKRwoRnQRGaq21UqpOB3k//PhvxuHCcjo1i6Rhg0AiQ4L4quTcxLOqura5UIMAxdlv7Woriqevo25IgwBOnT63CnuhOHO2moMnyyg+c5aohg3Ov4IffnwHuJDeQq5SahHwN631+fQKP3yQtGAzJ2jGicVxQm6uS4M0Dx1m7QIgZ4ZROrfAlbPW8flHU4RgedKk42xMWcjEO/yvnXFyne/a2VZsggfG0bZXFQwAHRcEqa7wWZUGPQ3p/YMH8MC7wLsV0s37Y5qT6zYFx4XXjUhgjIQ5astwxdIhjuMQgoeQcx+A1CB1E04L1pOViHkqG8ArpkdfapalmGmhmSaZaRZCVoeAvgb6sY9yQomlgCoCqakIoenAg2xVa4UIREPGyRQiHsqndECsmD9lQMD/naZZM1P/8mQMlVkAg+A22DeuIzE3HaZgbSs+2zaY61OX89HJIUQ3KSSXeMawjLKwUEJ62RSSIIR8nsVROoNwvnS+RkMA9Icq49OSQDbXspZ3im5lTfV1Ut6lNAzelmcFILdLPBlHuhMz/jAF41vBT6FoS3Pb3bh1x2zyNiRALkRSAkDHETsoJJpAqhnW/h2CqWAtQ7iOD4yCjISTWicBDrkCyd1c67oPVlhukpZ78pqCtKmOUm7pM9e7tuF2M8aEa7fAKRW03LVwtSGiVk1RSx13KZnqGuR5iwG2A7Syy63wiIuA3mymR2TghVjEDfp+5Nl7Bvip1T5NSKirnIq6DybpZsCrvDzplzLzLhyv0FVn4fYG8sweNvNmy3EU/dgjSnI0tHh2v3NMaxeZN7dxOeICQ21jlVJbXJ9fMLmEzna0Xg+gXCEY53Nj1Vrn4P10XtZQSvVCXN5jlbIr2YIE8Z/3ImutjyP6e13L6nSQ98OP/1ZorTl8qpxrE5sCiLPteRTPqpqaWqG2gRfDXKhKckcDfdTU4MCAi5bjWXKmilNlZ0nf+xWjftzyomzTDz8uNi6EeCYjDncfKaV2IxrW1y5q/UNF5uje3LH8r7zU6x7prE/3wBkhnEmzNpM0a7Pk4QGbGChEcIBpV4WEToKQrj1I92uoRxxuvwCeMKG3PlCPITmWxnAHl6mLcnXq7XBby2yl1Ryv+eCYuegXXaZBlqPsMmCslI3QY13btep61pGnVwt5SMff2mYVUtYjC1HejFqmZxmykIloI48ipSoSgXgN65WEeoYM5oWxE/gXV/OqOgJ8QXV1FD/T8bz+MdAcKvOjqJyGKFnNgSFQ81i4qJog5CoeeupP2XmyGwVrW0E8dBi2i2AqWbV4NG1Ts2jJUSoI5gOuY8rJV9FNzXmHO661oTiqp8W3QqldUoVmQDUEGVfb6qhACoiFhlVS3iUihLajsjgwpRO5xHNiYZyQrXQo2NhKBgyyzfUyObUFOTFEpOTTcvERdp/sQmVhJAAd2++koCaGfY8mM3LmG8SznyGs5aUxJjZ6gDmy54KEWD5krvsSsFIhSZDwWjAhtuuVnJCJj7Adm683Kqf1GWw13Q7L9gnnVipNan1an3tgK5+1QmeRerPqMfNh2WEnp9Pe3lp5po5a8zyi9pvnXj0p56jXgdplttnFI8/+Z+bZN9v7+1MehwTHAr837We5wtYj4I6pfwXgpVhzHhXirlyzNZyyylASgnN4et7v4c/1lyO6HHCBobb5Wute52tUBy7YjdUXSqm/AolKqeeQfMn952r/PUEr5NcnHO9KuMXUrnzrhx9+nAP5pZVUVNXQKlqGdmMjQsg/j+J5tlrXCrW9KOZCZ2tqOdoChDQIvGihtjWmW74hO99PPP343uK8xFNrfQJ4VCk1G8kAexaoVko9g4Q/+cNwz4OX3r9HQkkHIVe8k3RgM8d5CG5dbLdTCls9arTrGG2CJcY1c4Hpf4wB+jqhsgQC1SZf04TNqp5pMMcsT8R2JbU65bbJz5seR5202gIkeuAfaSiVZpNPK6cOnPIodhikL1yqlpt0eoVO1tXJfhJHt7DCMscgZCcROGrIjbWsxEwnGkad81tnW+/BhrH9+ITBcHMCw5avJIcO7KYLLa7ZTzSFdGIvKxLHSZjjr5BunqXy3Wj2nQ5bE/rDWmg05RhFmc3JWdyVRmOOcWXqOj7fMJDyfmFcxwccoSVvNbmeQhoDMPknixm0ByFi1dj3yobv/09DoA/sSuggzrPAFnoSRrkYJ/XV8ICCURATf4SS4kipH3l4GkSEcP285azaNlq6rVuQjDigfJocT9Nnt7MvX25IROt89o1KJmJJPjfNXEI0hWSTwM+XvyUk/Blk8MO6F7PNQ/TKELkXbpMgyw1q+lRbra7LmRg456+NL5lUCnjL5FkacqiN66u6G3l2zbNmk7ZpLqKZiphR5YLq59rwz11k9kgFbDHysjEGUrux3XjVu67jmQz8j2PuRQZOLdLfnZQ2NIElRsPOhZeevYcOd++iw4Rd5EzoCq+mUWNCuXsFb+Xpyb8X31Lgaj7kX7aod/nhAkJtGxmTm3fOlaN4MaG1vgc7y/zygNb6beBtpdQwrfWa7/p4/PDjcsbhQolAamWMha6IDGHPseJzrcLZ6tqKp5RT+fahtr6OtnBxFU8rD/XTnPMV1vbDj+8OF5SYo5QKA24H7ka6nfOBwcD7mFwbP+rBWydhShNSuyxg8d2T6fjsDo6cvofSPJGNKlOMn+khSDLSZebo3hSNa07RW5shdqQsd4e6GtKiNztKpVUSBSJh2jygh7iwqkGSFWTyNJtxEL5warPZBNMioVuAMS7ToZ9jd7C1m2z2wnHxjHGVWfkmys0QxHyp1Ge+VR8ShOhY7wuRpxHgt1OlfIYVcjwGaA192MQRWjJk+Vr20olBpPOSymeQ7kP6kcHseaI7Nz2+hBXrxpEycCMZu6UsSWjrU3AMygsjCU4pozLmCQbofqz/cghNexzkBHFEBpcSSDX0T6Ok6D6ejvg1BXnNaBF3iE7sBWDypMVi5wHYJQ4rcAioe14IQtJGwS/5G+tHCwFJWr6ZQhrTtP0hTgyM4+5183ju+F20bHaUgjmtiDh9D1BCs2uy2U0XyRGchoRcR5vR2fkKpsD6qUMlNHuazG668iDBVLKdFPqwiTDKSBm9kYy7+wr5vMP5aQguuJLKuVGQZUjlAnO88Yi5VWtEtc6Va68WYKuiepR8dtdsVcnY5kf2fIuKmMfdKz/Tqg06Dwk9t0rWrHIU01roi0QFWCHckUMkDDhJwsLVY8gzFF3Huh4crWkRXtTFPSDDMuSat2si9XdnNIF/Q8RD+TQLO26vkzPBhNOneWg9Kpu8g/F8tOMGUflzoemog+yjUz0n8v1HDQEXEmpbpLVlD/W1cIgfkBurUqq/1vpTIEgp51fdgtZ1Jir44YcfdeDwKUM8bcUz+LyKZ105nkGB6lsrnmfO1tQyFgLjavstSa2Fn6a04plPsjl0spyfPrOet+8dcP6V/PDjP4wLMRd6GnEaXAmkaq1NIBqLlVJZ9a/pBwDTm8B8WHzDZNgK+2Ylc9WMT/hs42BAav4BlK6NJXNlb3haOtNSpH4k5Dsus+r3wJM+hinbjEpjwcoJnTNIpiMRAmfIwYnFcbbq6Q5F9EJ34P9cn5eB9ilXoWcAM7BLqdQFvcP72Lzy9nA5oAYh4ZkTXbUypidDuiE6VlhjIkIees6DY1MdlXYMNhnRPcTYZdNXfejDJpYyln2Tk6lcEExwQTc2nISAwCpqrgphxfvj6DBiFxlHuouCuhen3MyAIFG13vOw3jKkaQ9JPTaTuaA3ebEJsHUw5dnQoUc2TeNO0IZDrNkm9RxjU/LgLxIC26LffkrKIglpWEFwQCWD+YQKQnhzx210SN5FR/ZyiDaEUMnu4i7ELJPkwMynetP5vu3sWdmd69ctZz/x1OSGU90skLazsjgQl0jA5tPk5HciOKKMjg/uYN9QIzNnmT/OKcAS+NnCV8ilHZ8vGEgpsZQukbI+wVRQThgjeYf3GcFNzy5hhTqCLSlv9VCZGwX3Wn/WIXZNTgB17TxROxPwRl3Z4NGGiDY392qYi3h2Q0rYvGPCWrfUsb4Fl9rphenmu2Ftf5vvM24GVKzMwldDJGAzxXx263CTRN1XS8y2RiGu0r1MCO+/TTTA+6CGQuZQqZXKr6R9zq1dZWgOHCU/BfJ2JEi4ciFwE6SMEjem3Se7QJNznPP3HBcQavuNFE+t9QmlVAY/HDfWScCn2AHcXtDIYK8ffvhxAcg7Jd7yrRo7obbFZ6pEfayDBAKcramhQYBvOZWAi5DjWV2rlApIeZWKs9V1rPH1UVrhhBkVn/ENOfLDj+8HLkTxPIgUry6sY9ngOub54cYZxH1zPHAWWszYz2dfDiL4Rgn3KH1UpKFhs1ayZqiQli5sR9ifQKX6EL/jeMOVOaX1VMnD/KuZMRJRnyxH2Ijah6heAO50ylWoW83uxwO/2wNjOjvhjtt8Vv65WccdVuuT36l3OGG2ejkoZUrBvGJ66XX9PhpnW2V1swrNdBnwp6kQDwHXigxc3SzcIafmOCsJ5jhNGcMyZh1KZuvi/rIgEIKHFlNpvCFzCiV0tmh8c0iByAlCuPod3MC/Tl5NxKB8StfH0mLYfo4+0o4TZ0Qt7jh5ByVEEkkJmQtFHttT2J3QSWJ72zFgH5+tGWx/w0p3xkK3fCoIYW3YEGIooGnyQY4Ut+RQVRsq86OgYRWD4taSbbG4aNizWJ6Dj04OoXJIFCzTHJ0heaidD25nz8Fu/C3uTn4V93f2zUkWUpMkdTsBNh2/kpr14by+YyL8GLgaGFIFs4upmBXMvsXJ9ErdygdcRy7x7CzuRmgRlGc3dq73bCffUk0y19lyr51uJG6LKFrPoon0UTMQ0yoTxqzuxVan7YEHc2/1i/KcqNHmOXlEXjyA+Jy6FE4rwlcZUyu92AnFdcPX3dkmnUNxcoe7SI4yIETUqMJqgclNVbiqxrqSpS3EA1cAm4EHoTTDyL1/kEnbZO/xuQNLEu16uxnt+xK85dyhX993iOIZcr5m51U8lVJPAaORoYO1SqkCrXVX4Afjxqq1vtNM/f+tfvjxLXG4sJzIhkE0CpUUCKukytjnP2PFPbXVwOoajdZCNN0IDFAXpZyKr6MtwAe7jnkRxm+D0xVVNI9qSMHpCorLz55/BT/8+A5wITme9drSa62PXtzD+S9ECrBF1KV9S5Mp6RZJi/a5ABzd0c7JW5sxSsL7GsKeR7obx9Y0u0C9WgeMBOtuqB4uNSfURwW18jBfANYLoVQZSB1PQB3yiIPoKx4hpXmu9hayEEOZIZ3FidaXcFr7usbkv/XCyX/DOwdUbZNtaYu86l8JIbFCN638vpcc9qoni1su4Hg0WmSnFMiE6tRwlEpDjfHAVUC+EJ3rv1rOe5UjKHq4OREP5RPzwWEK8prZ276yySZYDuv3DYVSqK4Kkn1M0ZwYLcTyozNxtH4/m7wvOxDw49McXdCO4HuLqdwSBcdg3/tyrEebQ+sJ2QRSxYF1ifSMEga2fsdQSKqgUewpju5oB29DdJ9C8kYnUApULAmmuiqI8vmNaTs1iwOZURARxLqQq+3jDL3pFOWZQgAr10cRs+UwBRmtZOEY2HOwGxGxhfzqywWQrmnU+jhdUvfw2bbBfLbD9FtXSVteBtKAIRAaXULFsRAObEuEJFhWNoarw9bRkb2szzN5hunmIGKB/5HnK3huMZXvRnk/AJbRUKHrvpnSiVqL1KcScUrzXAe84arFeUSUVN2yNnHxrR/rhWjTZvE52tSFu8x6GnuQAhDieAXyzPs42brGgNDbhGir9vJZxSDE+G3skkC0QQacMoG/wwESYbpZllAFvWBQx9WkrxzOpC+fo4RIs/DydLUFpI7tuXFexVNrfR9wXx3zf3BurEqpgcA2rXWpUuoO5N/hcjFI8sOP7wUOnyq3w2xBFE8QA6G6cNaEvF6acio1NGxQ+3cyQEGNFgdepVQda144TldWEdEwiLPVNRSVn6W6Rtdy0fXDj+8aF5Tj6ce3QAjwYygkGlpA6bJYSif+1Q7VS8CKXO7qvd4WRGX6mxiXME7i8JRKA+VxwgNBFKTnnI8qDu+8tIGIZrDIUzszyih/VqkWAP0Gzr6s8ERDKr3CLK0SKuFAA2P6AuhnzXyrhIrVPhknJNOEyVpKpZ07iPd8d1tf2IqZDz46OYTKrChun/UiFQTzuhrJMP0+a49fS0KzHDLKulOaHSuq6jEoaxUKq4GfKjouF7m2kGjKa0Jp0T6Xox+3g75IKZNjSOmSh0ztz3jI250AEVXQWrN+ocnPnLCZ3ce7kBCcw87WYVT9JpC8jxPERXcZlJeGEd2kkNLmcPRkS9F4XoYawmGcnEd5dAgD+n1IDgmUVYZSsKSVhM6ChARHBFE6JFLKl6TIvM+SB8POefAHIUgB95ymZle4KI7RQM95lA+ZSusPs8k7nkDT5IOcWBpHydhIbmYF+7p04sSCOEchTwSaQ/ADPqpcIjI4cZP5Ay9Uzj15ZYjUp90taqKeYJTr5wCH/8vzdXia12aHLZfYW5U8CprVzuFUVgCiZQDkEy5eb/1afJ5ns55toHWNKyy8jQceNqG2FjndngZEolSJM9BjfWXHpcE/ZV6HgbvImez6Lv8PdugvAOuDwAPp9w8n5eBGXm7yS9uB2J5eZpA6nuclnt80x/OHimeAHyulugK/Q36pX8LvqeCHHxeMDTkFXoY+sZEW8aybRFp5nA18iGdgQABaQ02NJuAbErmKs3WH2lpk82y1Jjjo25HE0opqwkOCQGsKTleScaiQnm0bf6tt+uHHxYafeF5q/BuYhJS+iMVWiAKanabm5nByGro6qdFm+iBOvlmvJrTYvJ+jCuBpmafTYDtOyQgX6QRH8QRXeYcBwGyTAPqmSZDbgqg0s9PgH8721F2IuUukBzYhWsM/zmHkAlIv5AOzzwQcx8/bTIJkNyNY7ASW4pROMVGIah7wmZk3ktqV6Cy1czzeJdRfcRGNQTKpfDcKUoQ8vrPhVlL1Ao7TjJrfh5P7ZDwdmuSQ0zqYyvujiHgun5ZhR9j3bif4TQgFS2MAKMhqRc8un7J1Rn+CHyimckwURAfBvVDwRivJeUwPoVHCMaqrgih9LVb2XyjHEEQ1Nenh5N4aT7cmO51Q37XQYpaIFsePN4VlUDknig47dpEzrivkQ9NkuYEnFsexPmmohM9OgqTUzZAqLsfDJq9kzehRkGWUwl4VFL3VXMrLrL6Hti3lwh6YlciwGStZs2GUXPO9U2E45LVPgP2rOLHrehj3MntuHUpcwCFOrDP1Zh821/THa2HRECpXR4nSbHJgk0ZslhDj9cpWrgGnzI6BXYnwGPJr0w2IdhHGVnOckj53Aki4uZuggvegBACPYcggdr1ZW+m3tm2iBfSzboJqph94YLuYDOkHTURBLDKIY4UFK1d7N8qN2641OLIF+IlEJ+Ss7ipEsyFyvdbjhInfBmTCH794AIDP6UPGqRwJ7Z1++aqdGkXF+UNt/+Outpc5qrTWWil1PVJD+2ml1K3f9UH54cflgtIKyeWMCnW6uREh8r6mnrBZy7k2yCfH01JAz9bUEBJw3kG2OnGmqsYO+XXD4rEVVdV1huJ+HZyuqCIiJBCLv/568TbaNAlj6V1Xfavt+uHHxYSfeF5qJAIbYeSEN3hn9K0SyjfdQ81fIHS15AOWRTkjUsrwtCs3rwPg8xkDJadvOoAHZosCqrXLieRfafUqPVojdTu3ANOvh14QOsTsd7TsV82u59jvr7tmoo14s49Z2PU9a+9fCKe6E3E9zcUO47QccNUMJBTTcit1pcTZhCYIyQXNxnEszUKIVjyiWBoC1K2HuAO/d3wEt/RbxOKVk4kYkk/wk8VUxkSx5+3uNBp+jMpfRlGaFEvulmCYHwLdoGB1K/QIUDfC1tX9HaVvEEJKnkHU48wQKISiZc3lmHIRsmHO7dR90bQdm8WBhYkUtG4FHcwJpSD3cwi0uGY/R59sA1uCyFneVUKeY+HEl22kbSwEty4m8tESSgojyZzRm4iH8gm+qZg1A0fJMf2yQsqtPBPCtbPe46OpN8DcEA48YOqRTqrgBE3l2JIQMjQJCIGmD3blxDa4Xx8jl39RRSA/G/gKr8+Y6NyDl4ZI2KiVp2nyMzP/3tt2oHXCxc065pnnK6CtmWcNJBSa6Ssepwao9excZ7bnKt9jwa20A6goINKDLnbWVzPlebWJ7N2u9c286MpjAEQGZ8MwOOR2RcoHPRD40mxPAXgccy/LwOoLQ2QtM6NeHnl2H9CwUdm5xzXNA0jSmWQGGIvcCOi5+FP+MHouvJUu86YPksGUyxh+xfOSIEgp1R8ZwrvDzPtmPV4//PiB4WfPbeCLE6XUaIgJdxy3w4LlK1RdTxl6KwTXV/EMMuywqloT8g17zV8cL6lT8Qww6sCZszVENvxm27ZwuqKKmPAwFk3py8+e+4zMI0W0+Xab9MOPi45vN7zix/mRCwTBOytv5f7lc7i/xxwhAT+G8lWNKW+kUeqkvO5EOvZ94fPFA/l8xkDZxofm1Qt4swn8vImUqFiAdHp7+RioqHnymiFkQI8GZmOHJ5avbexFdqVT3gQxMG5il7Koj3Sq35uO97vIC4RQWK8IROFCwmtt46HHgFsRkrmeumuBJuIVWqtm4NSK/KmPq9JNZprrPTtzRm+S2cm0Zo+xtvJaW6ULblhJwLHTMBeKtjSH/mkwGzHtyXCuj4pDiGKWrBPcsJKIB/KFeCUi24vHJopkIOQhFwl5HQMHnkqUHMpeZvnb0Kj7MbkuQ4CEKo4ebANZQXK9WgFzzX7XKnkdg8q8KAqOxVI5RXIrS5fFUrk+CnIhYlo+ZITAjUGwHjJqUmT/T6R7XY+MBX3lGO4yL8/T0ABOvB/HsB4rWcYYsulAJ/bx+u6JMPsd6eIGIjmi7s3daF7TkYGAKscQyMJVE8TYiCLXa66E3Or7zHnOlevsNWBxBZAD6hqf58YH6k5kAOAZ+awPImQaIaRqpiGhz7rCvg2KnmhO0RPNyVuXQN46IZ0qDvv+qW3m9RgwB2Ce8/xZ+7fU09lp8rLwkIJ4qMkJp+ZX4XBzKJm7e0uN2ieh7eIstu7rD2OBnJ/IC+A1U8bnMkY1ged8+fG18QfEIm6D1nqXUqojdXtF++GHHz44XlLBqbKztG0SRmRDR2UMDxbWeHvf+DrXq6qxcjx9Fc8As/ybGwzV1JPDefdg+R86cxGcbUsrqmxV95rOTSmrrL5oNUL98ONiwa94XmrEIh30QthLR3JIENJi1W9c0oTWY7MZyDoWB4is4x6MUwuBRBx1KNW17X8gJSp8QmC1kRK98iQBbjEK6FRQRmXRZXUc8x/rVlDtfLdra6+ijTDoZVA0x/V+MKKixXrX+vRyu3XnbCbi5IPOBm4wpHM1EpJsronvOarRwKNwkDbEUEDRekmw6xS2Vzr9AP86CRFNJEx3OjAXkkZLTuaYZsvExxlIZzAn4uKgE/BnROm8EcnB3CjH12HYLnKuWwaJHmgNwePkQlT2iiLm3sMU3NvKJtJF45qLfhEBPGwI5yQ53tCXT1H+eGMhrxbx3iLHRkqIE7oMolo+DKXPmbjtm4BMOPVVNLSGiNNJlGaY0Md8c/0eRUxwIoHCX9NozDGCgqpZc3AEZATRZtQn/HHHn8T59uaRjvps7oGYBv0/+fDS/wqRDTLbH4BjHjQcNjBYSqZYodM4TsdyM8y8N0AZLyPbrbaL+ewuEXQeqB5I2G2keWatwZC6Bk6s/fWAkJPFqN0+ZkmZwETH1Eu7HlZtat2q33tsZ2m90PUMzkaeixRgLCSNFeV9ZxdRPJVaKrndnYEHlB1aH/rk5U06awjwh9peZGit30Ysq6zP+xDHXz/88OM8OF1RRXBgAOm/H+RF9kKN4llWWbeLrFUyJcgnj9NSQKu+Rb3NmhonrNYNy3CoouriEM9wQzx/0vEK5qzKouSM393Wj+8X/MTzUsOqC2ly1o5XNqXRuGMUPSyEqPUsGcRePHqyEIibDAGz+nFWDqSbYH3hzJdahS5FJnKqKCwpeOdJPm+285T34fmarPiatYQV1w4H1o+DCvXYeZrqGmzFiUddK1tGOLFIJ9s6lwU45MA6jhE45Mo9rl8FvDeV0AGnKJ9mjmGKNsf6hFPOwxWee32X5Xxe04f1WUPFRfSzILYu7U/AoNMMbpbOcd2UfSeDqPzxE2IU8wBkHutNx7t3sOLkzYDJE81CTJo6+xzvKmj9YDYnTjYlZ0ZXmN5VyOjDUDnAm8jEPGOMiNzXA0T1LkRCr8dA+bLGct4JEJoi17z8J7sJLRImVj5Hzv3KWSYEO3WghNpaiusWqOkdDuOlJqxtDgSiMv8bIbUmf7Eo0TjepFdBBnzWejAteuznKAvhLdfzYLq66kFg+v/SdlYWICHEgJOXHIRteKW+1EKeRzr/snZZnF9ih5aq0QgRjnGpm1OA36WhlLdRkPs51S+6ntMJrgGSkjRI84BHloWc/C2VmVHogdCGbPIeS7CJp1JpBBf8Vj6s5pxakm1oBPDrKjnZ4a55JvzdLsSZAbxVTua4JLQORblJdyn2wAlngEHQIcraee/6D+J7Dn+o7cWFUqohkhXcAdf/tNb6f7+zg/LDj8sEVdWaoEBVS2EMDgqgQaCirLJukmeZDj33zxxu7eUEqVrOsN+mpEq1rtthtqEJvz1z9tsrk6ddxDM+JhzAr3j68b2Dn3heahSa6UOwasloIRog4Xbj0sjLMx3nCLwMVSy1JPPfvSVXbr7VuV0OvaZAIOjNPp1iX7QGPgS1x3y2XMXH4xA14zekXjB1PLsbwtEb2JJGaJFUN1BhwA3Opt1huKo94gL6JTDBFT65zLTdYYhHIugRJs9uPBS9JuTHyt+zDWQspTMbO4+0fH1jCVv9h+v8XpkKg8zI5f1BdujtqkdGM2Dmh3TpsowX1I/hg0GQBTXVQXy04wa5BwnmXIcjZkVrYd/8ZJtQxDx6GICC11qJmtcBGJcuC08PIm9Bgn1+tALKEVOZ5xAV+ktQ77fyNpcB+ca9iF3/1FY3I6rgSfk6WiVU2NWf8knAMxU2YbTDr1sBj0LHgzvYV5os5xBfRdu4bIbwES/damyNr0CUuD/BlYvX8fmRPgQEVlEzIAS2BMGWIAbNXE0/NjBr5SNOvc6VwE9N/U4r/DkIDsxMFNIcgROC+yhO/i7AavPn6nZztZRTywDoWeT5fA65z3NNu8eBIR7nWa0PHzmEU0r9eBwjrelyXytdRkeHSEBNS7NrdAJimGSuvzaeRmox4v68HYKnFxNyEsA1mNDWSPu9msCWk6h3m0C7JhAD/AX4jWk3LpTWs7IlvybInPwij9ynaERZ3gtkQOZP98lF0Jcn8awhgMqa4PM39OPr4A0gGLF3q/iOj8UPPy4rdGgaUWc+JUBog8B6iacVSutLDxsYs6Gz3ybUtkbb+ZxuXCzFs6KqmrPVmogQ2V5ocCCBAYpKP/H043sGP/G8xEiasJnMGb0dMvUoBDcvpk2TQ+SMQxQQECK6FvgXcIXkKTIb+BUw36g77TzYstmWk9LR7t4Euk8VcrQC6AncYZjmm53hRybH0wW1GFhltvmmCSmsJ4irvNFTdvkIq8yKL/SXonKpL4G7FHSS0ElLxfItxVIY3FxcbKPN8mQkXNPkhdq5m8ZMSE82IcZDEFFovuvHOytIzI1MeQ89C7qxmVIi2Ucn2urmtGM1e4dJfOfRM/GiCL+hxGwnD9ho+nVbQoRsAQXWgIBVDmY+8IdB8j7FzDsLFADzzfpnjUwdaxTq2eliHjMOBgz8kPWPGLntRwhZs1xZ/8cDBAn5ygLGmO1lhQgpywxxanFaz1ECMBT2rUkWB+SfA3lBHMhP5NXxLZ3ak0nOOWScTIH0EGpSQqChhhQNDyrStwyn5awj3D7qRV7lTmn8U5fybQ1SvOVTn/M3S2H6WKeddT37IiGn0WZ+BKLuFcqzoCeDtox/zNStaNZlVOUb+q3rKCqhtRMObhke+W5DPYVjijUKp1ZsDydMXP8C1G1pVM4FiIQhrnBb3USOdQvAr+EfJ+H6JtAKWvfLJi8lQQaJnm9C3rYEAlqdttftmfopW1v3h0JoPSqbPLUI3vZw2afuaaiq8udxXmQkaK07f9cH4YcflyOKys/SsVlEncvCQ4LqDbW1FE9fpdRWPOup/3k+VFbVoIHb+tT+c7OI57dVPE9XCHGNcLkfBQcG1Fs6xg8/viv4ied/AEmzTOmJPCAdKokiZ0BXeMWUUrkDIQ8tEOXsTtfKfwNiTae7LxJm64LeVoejbBvv/orV2fcK+VskOYl2bp57eypNluMR0hGNhD/e6ZGSKRb5MSqcO2fTC/d7f1QzHEKgp5pQy7r63BPNdLqzHkNMW5PWyO8MMfqrR9QzlyFRpqqkUUUHrgv+gGwSSF86HBqY43a7xnUFpr0MQZNEneuL41QKjtvoFsTqYzUwex68NNUOvY1YLxewdEksXIW3ugnS7gtYf3QoeNbCkCFCnntCwKoHqPmLhMOQgGNW1MqVHPsrjwwo3G+Oo5GZb51Ha+S5yUVCb5eZeqMWD5iLhEFnQ+VvoiRXNR0YoujQcRfXvfEBiypTWbxjMinJG0kZtZGMhX2l3AjmmKww4+lDINGEgmcBfx7rXB+LnA7AO8y3DqgZeOUtAzDYpWAedAyL9PLa4eD1blc59TQBIsvk3pSEyUMTVnyK0EkuRRnQJmdaLXVtZxuwyINONWHsax0SrhoYM68/mBmFSLmbw1BYFi33cU4TeBcC7jpNzfPm/vaCrV3Xwnv9pfbrjgRCi+4jJeoT0AP5bOXgc57b9xlaK6qrzvtX4s/x/Hr4UikVqbUu+a4PxA8/LjcUlp2lUWjdURihwYGcrk/xrLbSeLznu8upfBNYRDcsuPbvZMMGVqjtt1M8T1fIPsJdxLN3uyYUllV+q+364cfFhp94XmJEUspnjwyWHMCIClGFWs2xCY6ehYSnKuAQJOnNZI7uTcRr+ZRmxcIhsyEjlhGPdHZ7N7EdO73qdlpKVz5CVg6ZTvNkV6f9NlOHcCG2+qMeAT3TbM/K77M+TwWmuublI2rfHqf0hW4vP8zK7qR7vEpg1DIBssjHctPRRwxf6moLCOkcgqjCs9cC/R3lbTSOSmpQXhpGRpPuhFEG49JI0iPI3NSbFsn7OaoawfQmQhJuniRqYjx2mKT+0Gyza5oYEE1Mg5c8sv8VwrKD50vIZemjhgmPQQjX7xyS1GlWE2AH+6KShbC3GSL5luaa1bwZLsQxG8mXzTDn+CeTPxuPPC/gDBBYz8PPqxgW9z5rUkdJ6PA0hFBOAZYF2TVNkx7cTKbqTWe9nT253SFEXGc/GziYnPu7smx0JGODl/LCsd+Q8eO+8B5CfuNBdzT7quM+uhVF2xRqEqLKglzbQvM+y1lHdcEr3NWGr2D2NUVAZUWp/sQxxioN/6vZsXwu/1tjWj+YDf0KyFuXIETVUvxdwq2tggIg/f76SK9agNz7Kih9LRb9oOuUjsOVM9fx+fsmPPoVj4TklgN7ITK5hBw6cGKGGTka9fXO+fsCXaOoPHPeUFt/jufXQxGwRSn1ARIvAPhzPP3w43zQWlNUXkl0WO2amSDOtuXnyfFUPsG2Vl3Pb5rjaRHd8JDakSEhQRdH8Sw1xNOteDaPCiHraPE51xv7vLgA+mt9+vGfgp94XmJUEkzPmZ/SgWxeXzMRrlsKJAoRRVRInQwg4bGZo3vDXE2nsL2wfC9br+gP+XtgqFExbSOTp+FZj8sMKBKrkwyRkGOMU0z9SCuH020epCeAUjsgLdluAybXEyQktY84j+oPXesuMp11t8OuhT8bgmo54G5PE4XoV04Ti2iCUWufMe8zTDjua2bheKcdiQjpBLh5CLyVhlKfOoRgostsZlF/WjTJYt/uZAZ0+ZBOugvv7OgNjeHoFe2EBD6HkOcOSIjvToT05Zu82XuBez1Cwv7tESffX+OYCG2JckxiLHII8BcPNAP1MfCMTz2Qe5CyOJZnQQlSC9OtaSQhChrIvf7IGNYsgxbL93N0XTu76ZqDI2AFBD9TTOWgKOf6uJD5bG94G/bM7C55oZ3hs96D4c0qOsbtZt+2ZI72aMnIYW/wDh0gv4dtSmXXwTyGk68Z7b19tQCHJL4subEFLxszJSvSyTKDSjZ/5nOAaT7Pm+WiC1IuxXo/FDufU5lUS10M6kgFPGNCm59E1Gsf1EUW8x5LEGXaB2q5WcelwqsRtduB63twtUfIdh729fEqETQ2nM/3CunUMw1Bfxu5HtWKEy/EiVLdmssaWiuqzvpDbS8y9pqXH3748TVQVim5jo1C6yaeocGBtjroC8uIx9cDyFY8v2HYavl3pHg2j2pIfmkFVdU1tUrE+OHHdwU/8bzE2EJ/bmYJry+dSMexOwjW7cncZ+SZM067tlpxYLKJF52v2BrUX8JsAWI728qkmJp4O88K6TTTRVNFURqEo3YC3JWGivDYIYQALdkPGw05+ncdB3+/TPQjoGYBf/Kg61Aj1TU4xKSXWceQS6WALWnoyd4uqbxlHEinYJcmqRfNkfOPB15FyJ5RjC3l1DLFASAfqaGZC+s3DoU70uBm4CZI+kpMmxgGmY/1pumDB0VxGgBJIzaT2cPcG/d/1mrgauwyIDG5hylY0UpIwxkkFBbgj+Z6/9YjYcj3mnPrZaZLITTdONYWRsI/gsSgKAQhozGmXbw5p388Df9wzutoy3ZClv8EdwwUm+KX7rmHyrlRkg/8CpKLehOirAKMhwF3f0jcqEMs/v1kkpI3E7m5lH01HTlU3IamPQ7SgRyevHsaHK5gUMvVAKQPHe6UOLHu+WZs41XbSDnaHKsh/gWFHmc+Ztl68y9uhWYbtdQmtiCmTtlGbRwsSrpVaoXZZj3fgdt7KyBByKfeDEqJGKRSQS+mNqztWaHDb3rgFvP+ATMd7Sj/agRwvQdWpXmH+/7cFYYMolRbJkXLQU1AcreXAm+l0VaPla9vVqKQ+vkKZi/iDl3IS6qr2e6gOg74coGiptr/V3IxobX2/ZH3ww8/LgCF5VI+JLoe4hkeHEjB6brDTy0jngAf5mmVV6n6hjmeVv5lWHDtATo7x/NbmguV1kE8mzVqSI2Gr0oraNGobse+ssrqenNe/fDjUsDfW/gPIJd4UsZuJGNGX0fdsNSphywFMNEJoywEUoQkZbbvLfONSSmhSL3CkpPiJgtAiYTOWp3td4Ef+5i1LMFxHTU4QjvoI++Vi3ja6k9ddRDPhy3S6beISS1TGHfOntXBn2fOOdaoQuPxxjFZrkeB+oljcKP6AT9FgtJMx1/NQEIf8xDl9H5giYdBY1eTPmM41QSxZ5OJRy6CEzPjJBQ0CzLX9xYCdBbJpe2MQ/4PIST5hpMUdG8lbUrNqxdihPRvD22TZWO5JHqXptkq16EsqrGooRbRsVyOe1VJfmRmkBxPPqIeG/Op0D+fonxtY1EtgZdG3AMeYG4aPO8h4NhpaprPFXXwUYTIPyrHtf6RoTSdeZCmjx9kJ70JPC6GNzX/Dqc8vzFP9n2QRk8eo2hZc9KXDfdSYNVM5FfCqND6Q0MOLSOoO9KgjUde4537QBZeebfucjdglNJoauOYkzNsE1/7OrqepRUhQrKt+z4UGBJaq6atF6xjGIKdI2vVzFWPmWkP7LBtbZWAce3XLl20SA5Sp2KHIqsjFagjwKshEjI/tLc49JrngVlmP1nAzbfx0gzgpXMc7+WCGgXnD7X153h+DSilmgLzgDit9UClVDLQT2v93HnWi0GG5zogbrjZwF1a66+UUh2R4akYxBZtgtZWdVo//PjvQFGZIZ71hNqGBQdx8GRdBcwdZ1lf71lLLaz6xqG251A8L1KobV3mQs2j5I/uaNGZeonn0aJy8ksrKTlzlsiGdV8zP/y4mPATz0sMtRCI7UvrEdm0npXNkeMtAKhpGF678e+REFCQMgujezt1MaMRkmW5rJoyKFb5EwBumwf/Nh1i7UGpeSZJfh70x8yfaney3floVnit6oFNhtQ2RM0Lwq6NqBqaMFtDDtRQpLRLXQqTdQ3mAePEqVW3DPEy8FEzcAyDLBiHWkAIlFk+ijcAMYZRHyMEMwFRCd1YJutftfwTPvtyEKxWpL83HHrBnoXdHdL/6h6Y3tnZXzyOedOfEDWzKxIGeoz6EQ0YQnzgnybvdDVw4P9k+aAgITq9QD0DgyavJn37JpjjuncZQc75Zri27UmDHGHooUNOiTFOa1NL8nmMapdGzV2mfSyiEN9rPgcBhXDiEckjDLzrNEENqqnMNXGrmUAvRUhwpYT5TkQKOPjiUdd761rk19HODeMyXGd+b4K87Dzg3Po341XP0yi5+g1Q91iEtAkM+XWt9dQIpG6o7/b6meUvgOrpU8fWbTLUHvu8dSqog7VHhdXH5s21J+Gw+U6/BJkLeqM/hHjzICspv0rApNMwCYIaVNOxyV4yt12eJVS8oIGqOiqje8Of4/n18CLyK2/FBWQhwz/nJJ7I3fh/Wut0AKXU40hw+x1m3b9qrV9TSo1HfkHq8If2w4/LF4XlombWZy4UFhxYb46nFWr7l59395rfwFY8v6G5UMU5cjxNqO23LafihNo6+2hmiOfxojN1riPryX63HSzkJx2v+FbH4IcfFwI/8bzEuH7CclYtHE3e8gTYAimzNpKxoy/0gheSxdbzF0PFnUV/COo6pDvQF+kuvIsoNOsRYmqFpK56Gnr6lDmZMlVyzgD1sPsopkou4TubRK0aado85rzXXUzT7WlwC6TqNixWh+AP53YS1R+KMZEdFhmNfUzqVkMUrgdWS0ikMvlzXuUuVlEbg3FcXL8CiuCdjbfaTrf6GiFxrMdR1kxuItmSD1lJMBHNCyhNjLXDPIlFyNUQoF1nUYIPmesQBMw1ObRzdwD/lPcjjdkPAC/DM1NlX9a3Zy3whyGiet5v5t0EvBzkmO2MB8rT4A5If9QD7YYLh16FuNJiziMDb9UQoMPrlAP8fKyQ415Bor6eNetP8Uje4pAqoIqkxdsByNzQm4iUfEiB0jxh7zX3hhO59DAFy6JgPPSc9Sm5NfGUlYVBdBXkgI4Lohub6QYkPWJK+9xmSF6qx3GtnYRT5xOkBufvkZBcgNvNwItxsLVMiPQE53lRljtvbD05wz7Qb0hesIpDzHoAJj4Na59Ga4d82mVVrPqcLgMrUVAjYetUUaIzzLwHpH4n2xFF+ha80fZPMg01IeL9ceqxAqSbnNM7AE6i8poAiTSadoxGfY8RGVxK3lL5Avcc+4m07Zkux8c/z+va+72FxittwI+LglZa6+eUUncBaK0rlVLn7fVqrU/iVNgFGZb7lVFQe+AEnP8DeEYpdYXW+quLe+h++PGfwc+e2wDA67/sZ887v+JZv6utRTyDffIh7XIql0DxtOqNXgpzoRaN5A/2WHHdP9BnzlZTbnJLP99f8L0mnn4TpP8e+InnJcaqhSap0XSwM1b2hVJISd3Is9xNxtC+dlv1CEKscpG8wneQbsIyHKXzDuPaOdlju87aoYhTPFLH0yKTRpZUixGCNbKPUz7CqJ6WuqYaanR7hdYebmOBWd+oQNdgh4razrO3IqGomBxQq6TKE8XmmJ6AMaYj/S6iTuLK73PXbVyK5MMhobhgckp7iSrrpZgZMhZWfIrQl03oqrX8ZZk0WnKMGPLJruxAaXasd/7odoTwNcA2eGK97ItjQGNj5vPLQcAguT5HzTlMBPpOFRV4BVLP01ICf5wmxkIWWbQ5xElgG/xpCIyRHFn1pZY6ohEIwb7NhG+2Mxdxv2UgZSnX/w+m/6+osV8gz8eN2GSwqf4fTmyLg7ZBQBqZWz0QraG5pvRYjOQU9kVMeO6HgndbwS/lT2rr0v5QDXenzmNHXDez16GitlvHsBzU7Ej7s53P+xB2yLCeAFj31lK/XQKhisMJrZ2AV0is1V7FmVIqj2DnzVq5wueCRTit7bgJrFpp3tQy8CkRo6e/Ag+7Zj+AdNvTgV3YxleAlLYB200aQClTx5On4TZMTVZz/4wyXDRHLlgRQCHcMm8Rby6+TRbebDkk9+CyhcbrXvtxUeB1RZVS0dSOADwnlFIBiK3bSiSL/LDWuhpAa12tlDpi5n/ls94vgF8AxMXVUVTXDz++J9hxuIimkQ295tk5nvURz5D6XW0t4mmpkBasUNuz35B4lp3D1VYpRUhQABWXwFyoSXgwwYEB9RLPL46X2u837z/1rfZ/qVFy5mydxN2Pyw/+u3ipscVMh2OTL4Adx7tR80G4V41ArvZIG4vMTDLTIUhmzioT7vojHBfQTGd15pv6m6XAbWkoXGGK75h115jP8Wad3wPpzo+pegSspLXF/3Jt+wEgxvR8CuR9nZgeBbPNOX3gOv5zQI8FVWH2b5EW8zupFiDE8WFq535aaI4QBUPOi0KyKJo+CMbB9cnLSS8eTPkfG0s+JEio73gc99w5QP80eNsd+mqmq87CbxsI6SxABgJc3bTWydnkzXQx2zmg7zNkOQt4C6AH/N9xOZ9BzWCZcsq//MQc00seeBC5r7c0sTen7nM23eKN/TTjuOQK35YGSzxwVRUnBpqv8S5gi0cGKlByj2+sAELoOepTtv50LXyCDFBsDOKOWX/lnbiRnBgdx9rUIeSejJd9zvW+vCoZOCxJxuoRHOIJNtG2yb+lfsab6b04anOhIZZrENL9hJl/O05ocB2wjYwKEfPnPsjAwWrgH2niZOxuvxzJ/wTHACjP5Ai/ANzu8XbBfRhRMRchz9GdUkpGfezazmTnvNUCM88K2V510hmkmQz8TxOhDdZ/+k1mmgudR23nzYNjGZn6BsdpxuetB1KZGQU/WQT6tvovwvcZGlHf/biYeFMp9TwQqZSahITcLjj3KrXwNPIUPgN0P09bG1rrF4AXAHr16vXNetp++HGJceZsNWfO1lBwusJrfqFRPOtztQ0PDqSyuobKqhqCg7wJpmUuZJU4sRBkK57fTJW0SGF9xKlhg8Bv7WpbWllFcFAADVxqrVKKplEh9Yba7jpSBMDQLs1Yu+c4tz63gTdc6vH3BZu+LGD30RIa1zOY4MflBT/xvNR4+jhMbyaqWl+kQxoPNYfDYeJJKdVhYS6iSlmkzjLTP2ymlpumqTcpoaVppOjr7E1sBykH4sIfUx+AVPjDurnogc58tVz2p9srVA9DKm8yC5sj5UPAJrJgFLhrgAJv8yE9z3nPLGN0ZOXX3WTO+15Q63GUr1eklqiegBAYd1mSBIS8WKU63ESxF5SvkFxPJuAEllkhoIsG0SJ1PwCrnhpNzL2Hafr4cXh8LAcWJMIeiIjPp3RcLNwBnWdtZ88HLnUW4O9AWgUdWmaTo9qYc48SpfYl0zYF8hYkyHEO9sBvDIm8zyMkuDnQUEhkx8U72HdrMvSfB22mwjJTf1V77Pw/fuu69gB3GPl36//CMjg6ox1HY9sJsb/ZA0uhw9i9sA5y1MfQFRpV3ErRMtmATgX1WAgkwNYF/Qk4lkJNejichs6Tt7OWazmxPI7g+cWkspiHX5wj6/nmZfYBXg0R9TlDZunlgKW4W3U8V5j7OB5RZS0C+y7eyqEvNmIPKqgZRhWf6SzWU41C7g77fte43C72OGG123DqeT5vjmGLswqjTC6zlc+8GxjphJmrlj7HZb5W2iJVZlu2KdZa4OdNvPObC4Ez0OH9XeRc0VXCzC2Uw57HusO0NN652UPA307DH2Hkh2+APq85z/cXGrGx8eOiQWv9uFLqNuTXcgTwlNb6tXOv5UApNRcZxhqpta5RSh0CWimlAo3aGQi0xLG088OPywpFRtk8XVFNUdlZGhlSUlR+luDAAEIb1F3iKdSQv/LK6lrE08qzDAnyVTytcirfbBzGUljrcrUFKany7c2FqrzCbC0Ulp3lo6wTda6z+2gxESFB3NKjNR/uPl5vmZnvEj97bgO7TS3SU2VnGTrvnzQJl/9Lf9jt5YnvjHgqpcKQ7n1PhJY8oLV+t562dyJ6kEKy2u4zf6aDgPeBfaZphda6zyU+9K+J5wATgvnLKvgsiKY9DgJw4pU4yDA5b0uxO98dhu0iZ0ZXuALpyOaaTf3DkL/FHgnxw8d4RaWh+EDmPe7M/8P7c+2aiko5Tp7Bg0xY7GNRzuGuQPI8n/eQNEqS9TLX9YZ/ehzS+omQADWzbudbFWVO+zkk3DAf73BG3/ZWHqAVBrzSdd7ZOGTQXB89C6csywQztXwaQUhaSjvIghn3CUs4RBtevftOIuaKI07p+FgJfy6APe27e6vLFlqFkENXwKjFceLeqic7OYMkIrl+JuyY7oYIbTdyWOgQWAL7epiyNYfvAaMk23mFI30uyD9M7uza0aKuPgisfQfIg+t/JSU+DHJmdDWEvas4qS5ubhRPUL1MI+PMW7MlXMKLl8CeM0YAWQKVZ6JYnJpKzO9lhEONbuWcG0iMaJYJlzXbtAmiG4l45/o9YJ5tF4m1jYUArjKk0gqNjTdt6jC/4p/mnPfgKOk+UIuRiAEriy2ec+Ye2nnNFo6m2SVzVKj7e/WyvBk5ybv9NJ/93+n9ucNXu8jZ0dUq0SvfZyuFJhHCIssp7R3OOzNurX0tLyf4Q20vOpRS12itFyE6vHvex+dYzWr3J+R/9QatdQWA1vqEUioDyUp+zUy3+/M7/fg+QWvNoMfTiY0I5s27+5+zraVsAnz2ZQHDk0xKQ3kljcIaoFTdkenhhvyVna2iEd4KWmU9OZ5BAfL5m+d4VtdSI91o2CDwW5dTOV1RXWcob3BQQL2Ecvm2wyigTzsZIC8+8/37IT9VdpbSimriY8I4eLKMnK9KyS1Q9br0+vH9x3epeD4AlGitE5RSPwL+pZRK0FqXuhsppdohGXPdEWqxCqEgls6yW2vdi+8prtfdWDUPeCuNRkvuoujfzTkRb/JmrDDFdXDlWJG99lZ2JOeRrkKKPABnoV0DyV+c5pA/rZvgC609qFSc+oiWcrYCycfzMUupaCKEUzVG1Mm7zsLgBjDYg/4FqLDeUL7K9thRYa6V/5gGP/fUqpmoGgDdELVruJmZiChesdh5b40q7qLICqEFuCMNNVHOwTKEAUNUbsSrHIcajV0GxkYB3qY8Z4AIWMgE8kYbpjMWSt+JhfeQ0M61CDn5yrwfgO3+y/Xm1ReoMuZCRvFSccChebTVIzgwNFFK3OQiOZ6Ww27fIY6xUD4iRQO8a+pO/gLUUo9cp7mIi+7/rYUhxhVXmf2bUOyO+mb2jR4p1+IOo6ymmf0VAu0gs7eR+9qYc3kXUaJGAhnQ4tn9hFEGA6EFR1ivNkALD8HDi9m3I5nbk1/k1dGGPVnX0rqevvjK3AfLEXiSmd/QXKfhrraJyPNnhdwOMn/e85UQWCvH0yrBMxXUTLwHNn6SJqpyDKJEdhbirrVHlE7rGfyrea2ofchqJXaup5WrbC+z8qQtl+jt5mAemAofmZMrN23bg/4SdLKQZmU5IafgFYKe84jE80Y8kE9p31j4P4Q0Gzfj0h/H2oq+augoqZcdLox4+supfD3MpXbi7+MIoawXSqmuwAxkMHaD6Xzv11rfjPzKv6KUmgmcwhm288OP7wV2Hy3mwMkyNOcneIVlTi3O9dlf2cSzsOxsvTU8AUIN8bTcXN2oqKohODCgdh1PW/H8hq62lVX1qp0gJVW+bahtyZkqIkJqn3dwoKKwjuOuqdGUVVZxRWQIjcODCQsOpLj8+5UzUVVdw6FTZTRsEMDaqT9h9LMbOFp8huLys+SX+sNsLld8l8RzLJI5h9b6C6XUFqSr/YZPuzHACmtkVin1IvA/OMTze41V748W4jHHQ6/g9/io7w3wGEJEK+6iaKP8WH4+Y6DjBmoUsCQtM6oJYs/dolApI6TpR7BDNN3hsxZJ0NusfE3gJtCjob7fcv0LUMr84HxyFnbJj5cuA69YQVP6SvXwyDmtN+GibjTAIRhHgVtx8uzWO82KEgwrtp7ArZ5aZABcZkQ/wgm7TQA2OUZEerk3abGgRkPeawnwVhrs9UCnNKmN2RpCe0ldzM6zhBHuUStJWjcCZkGm6i35tLEeuSembIjWSB3Hm6dCr6kceMwok8pst8pFom4FbjAurD6hzwBKrYKbr8dSU/UMD+oTI7eu9Wnc3cO+K4D8k/CWGWCIQsjV/abN3xByZ7kGW+VurGO7F45+3E6I/3zImd2VmOouFDwMlV9EwQfwVsLNRLyWT0lYrKMo41xncKmXw5GwcAsvu4yhfMqnMNGQup1IXcvNSq7bAJ920XVcp1tdHz5JE5OrG4FlaV7tdCp2yC24iKVrnj0A/iaoXPOd8IFjZjTVuW9W/unfsFV1ZSmXQ4EfwaDFUicWgK8gZ7SQzg7Ld5GTbBJK9wLx0PbBLA7MSGTkF2+wrvJqAAqD3YmzlxlquBBXW385lQuAUioB6AhEKaVGuBY1AsLqXsuB1noX9ZgQaa2zqD1k54cf3xscKJBORskFKG+WiVBwYABvbMnj0ZvEHK+w7Gy9xkIA4a5QW19UnK2d9wnQwCieVd8w1PZ0RbW937rQsEGAbWz0TSGhtrXJbWCAokYL0XQT6rxT5dRoJ+80qmEDjpec4czZahrWE6b8n8bQef/kzNkaftQ0gqDAAEKDA2kfG07eqXIOF5ZTfOYsUf7ao5cdvkviGQcccH0+iGg1X7ddR6XUNsTe4lmt9Sv17fA7cevLR8jgWPhIXQWkEVp0H+WJHooeliadZ23nSF+pqWE5YPqi87Pb2TPD8YdQI7BD/WyzE1+8AwwybZbj1KjMB/24mW9/Zw3D2yVqTODx0wBUN3PqjVrkVGtZSc2oHXKpy5BSGbcjxPMN0C+6TILcOZuNzLUZU/s89GSHwOhZCIEFUScL8IIais2PbRfTjTBg+YcUEg0LR5C5FCJO30OzsF0A5LzQFcbAnm3dwdRyzFzZW2qlWsi3yI0xjtkBBE2V6/qodU3mwRwPradmm8+LJNT5drPcqgv5Z4QovoYolABvrRKjm0Hm3PcipOpHct3YjJhFWaZ9r7lUblMilInzRJV7AFGV42V2AnKeHfQYcl4AsmHQL1aTvni4qJN7IbpPIQXjWkHXtczQ65i1VEYqlDHUcTvPgkvhBCGdD5n36dTGatdzYRyR6ZkmCq5R/PQI8wzd4DJYwnmmvEjnYI+TMwrQwoM+4jq2KOyar/U54Voh5soiyC9g16/lz67QWvOd0GdNzqgVRv0rHLU51rQ34e/p0eazUfQ7LN/FkeKW5KhlwDKuMqNDn+0YLA16wdriIZT/zdSlPeDtlnvZ4fsXoXW5oj/yDW2GWL9ZKMb2kPbDj/9OHDwpxFMphda63nBZcMqmNAkP5ljxGQ4XltMqOpTC8rO0im5Y73qW8miVOHGjsrq6Vn4nQGDgtyuncj7FM+QiKJ6nK6vs3Ec3Asw1LD9b7eV4e9IoxsHm3BqFBnGsGLbknmLAj2K/1bFcDJRXVpNXWE5ESBBrfiv/n1ZO56fZ+dw2fxPbDpxiUKem3+Vh+vENcMmIpyGD9bG7ZhdpN9uANlrrIhOSu1YpdVhr7asZAd+NW1/oTafoMCGbzIW96aCPIizrCDmznwKgs4krLQp5HoAkLYPcmaN7k5ne21tFsn5LWyPhjNlI/pjVMQYY7pN71xkJcbXCbO93FqnFiFsuwDSPs/5BACGc7rInF4y1afD/2zvz+Cjq+/8/P7ub3dyEJBAIBMIhl4CcgggIihcVVGrV4lmraGm1LbVV+Voj1qL9ab21aK1Vq3ijooICCnIJcsoRDjkCgUBCEnIfm939/P74zOxukt3NQUIS/Dwfj3ns7sxnZj7zmdndec376mC0H6GskdUskReqV/kNCPEj3hS9vamOkWxIPKWOQc6qHkdnlpMhBmVNvdVv3dslq2dfrATu2XOARZRMSqNkZCKcgxK9w01haWRRyoBecqcx7xqv1arzgoMce6qHskSa8ZjfglwE3DcLIZZx5H6ANb79m7/bnwPjgCvn+PbD875EUUYCJjkGxBGUqM3wO44vjVcX6vy/U2TE6cYiJkMveSmwk32c7bNSDjFiP0EJxf9Tu16RNVFtZyBcMmwhSwZPZey2pSBhOROZft1rzO92G2QaMa3zDYFoxmAWqHVZjnIpNbMvX6VehFCmbSlr1C4xMi97M7+uVFM1Sz3VHzaoOFk/q2aKT3j6C85q7MObECgQ1e9hDBP5DHVh+l+f3vbmbf+/ALevP1KqpFjE4XtQcRXqOOOg19yd3m30ktfQEb/EDu/CoXf70e7h4zjsTmLuKyZnZhsvWVE/i6emHhgPTt8QQtwqpXy9pfuj0ZxOTItnfqmT/SdK6d0xOmjbgnIlnNpHhnG8qILNh07SJS6CovIqBnSODbpepKMxFk/D1baxWW2dbu9+A+EIs9TLyhuKvdnFAbPm3jG+Jw99upMyZ3XhabrVmjVKF8w8n4FpX/HnD3/guwcuOqW+NAXfZ+RT5Zb0TAyv9QBiSEocVotgY4YWnm2RZhOeUgZynPQhhDgMdMdXnKIb6pa2JmY7/NplGvso8tvfQSHEJ6gnxgGFZ0tQ3rU9PYoy2DFhKPvnns2Q2esoJkaVwrh+DrvEQjgvDc4bCpfBDlM89AMem6NulieleY9ISsM6FoWKdr0aVcwevKJSPIKK/euAKmb/Miru7QngE5Cm5dOkKz7rFSDSaydeUWLHsHQKI94OJR6rtTN/7w1LECMMsTETdaOeiFcgekuFPPYjUp7ly46Kn7vmbnw1TMGboEXO9ROeps4xRVo/IFHA7yqxWF1MkkNZsnkq3AfRD+ZSckuiLwHNof+D7sZl9CFE3KP++HbMHAm50HnlweoH2AmvMPSW+WAbfDsLPjPiM9fjtXzx2BwVi+mNHVwGnF8rblJ0Q53HKcBnYHhZq7HemaZKvnxILfZPPhtGG751TxrPUt4SYMQMCrEMXp5E9I1GUqWxdnhMsISp0BtWb75YiaYnYOvlQ4jYcZLyn6cpZ/ZADDSmG6n9oMA8FvPcmXVSh6h4yIDtxgJfKNdt8WaN8zrUiN80ddn1wHFlqcSmhKqJLKphIQWEYbqV8nZqMwt4CiGe8tW7nY5KLvUyvoRA2fgeIgxV1mcxHlilru+BcjLbUbG1YgXwmHJj5mq4fIF6arT4EfWl7vXQTnrNVYnDClM7GVmpqR5P2xbRyYWaHCnl60KIXkAv/P6npZSLWq5XGk3zcji/lPgoO/mlTjZm5IcUnifLqgizChbePZZBD3/FlsMFTDknmYIyZ0hX29AWT09gi6e3nEojLZ6VLm9So0CEh1k5UXxqMYtuj8QawEJsitEypwtweOcXeoWnOt4oh41oh63VxHkePamSKkQEENNRDhtnJ8eyISP/dHdL0wS0pKvtB8CdwEYjudBIVKa9mnwErBTK9JYH3AHMBxBCdAaOSymlECIeuIRqEqp1cJBU+MRG99m7OUkch3qqO81e8hoOZqcCyq21R1KGSkhyDeqG/GpD3C3wswSJfHggXsW4vW2IGbMm4VIlWMSbKMuZfykJgH0qi6r4M2qkDQuqHA8Y1ieRbrw+YiQ7Mdwf/W/yARVvJwxR6WcVlUUgHjL69bc58CdDgP4mTVnMzJvsRFSm3TeUtTOJw7DKz/IzDl/in13KXReMPlcY4zHBmLfCOA4zHnSlatc/OZ1dS4ayhKnYRxThjIml5PFEJe52o+p5Gutyt3Jj3fGSEhHdX1LK8JDo5+vPC9BrluGqO+tseMzYr5ylrMdPLoN1Rpzmd3jrhsqHQBRjuN9OUklpzEN9FfivoWDTUtVBbYr3Zs2NLv0tJRn4ytwcMRJCjQT+asy70hjjNOgqb+DI7aYnugPmTIINULIhEX4DvYbtZH+eumDsryrB7ZwUC0dViZpeN++EpVk+i6mBmI8SSp/4zTTPpQuVJCqla7WYX/8HCRjCU/wCZeDubUxP4zvX5jr98MUF44sjFrFAsa+cjdisYjm9WXGNbLdiKkqo430uhciqVGWJuryotilneS2gMWW5lDxZw7XoRZTrcuYc9Zjr8jRvHV2+SIO+aQz89wbf+lHG+g8Y62+AxeIoPHC3Nxvz/tlnK2v7OcCtYL/X1z/nk8Gf0Ld6tPBscoQQc1H/dbtQ9nZQI62Fp+aM5VBeGef3TmTx9mM8uWQP158b3BukoKyKdhF2wqwWBneJY/PhkzhdHkqd7pDJhUzhWRbE4lmzhieAzchG29hyKmVON3GRwUtmhYdZTznG0+2RBEqaG+x4iyqUwHz1Fl9uztiIMI4WlBvivWVLfB0tUEYA0xW4JjlFFWQXV1Lpcgc8Z5rWS0sKzyeA14UQ+1B/rDOklMUAQohHgCwp5Twp5QEhxN/w5Qtdgq+i48+B3wgVfGgD3pRSfnpaj6IOZBGI2SMhEQ7N6qfKUTwK7ID9751Nr+t8bnlmFkwexOuCGf1gLpCoLEFGCRW2om6E/WprBmQEPnFiWp+enAPEIJ+YVTtnIsrSaSYlMi1LtXjZEKMzjJjKT9PgYcM98g94RYQ0a1Sa9ucCv2087ZeYB8j5JK225SeDaqUz/Mt58DA+q6K5/E1VvoMv4edz3+ajJTcw8JIN7FgwEueKWCUADPddXHj3Z2YIFu/hdVs+NNtY2MOvL1fA/nuNc/T0HG+cnxiAOme2SeqBwS9Q4z1OZegVF6Ku3heNGNhFGMLIGJtfzaLXazvZL/bAs/EqadM9MII17Cnrq2qOnr0V1hii9kpjjI3x7C+n4kT9SRzM7kzX5EyORPZWVtA0iH42l5LdShjtf+9sldbr+jk4b0+j1+SdZD6ZwqD47Ww6PEq5F49FWWrNcSXNN24VwGOL1bhtuxzxHOoBxxW+GEUx3ehfjfMpXkPF4v7amGHq4/0oUWvk5pHTQQQSMn8wDigDnxD3x4x7XVN7kUx2qIcqO2d5rfleS6eZ0fZulYSJF4zpX3gt9pww3ucZsakZvm2X3JUI5q/O8347feBuNY7GAwr+k6aeMR0BRhhi00wG5pfAqc0h0a62Tc+1QC9/rx6NBuC6l78DzrwahlVuD1kF5Vw9tAsx4bY6XU8Ly32WzaHd4vjvmgxOGJlOP9p8hLsvOivgel4LYIASI5Wu2rU9AWxei2fjs9oGKnViEm6znFKMp9sj8UifZdafiGDCs1wdv39ynphwNTbpx4oY06tl4zyzCiroEhfB+3eNCbg8OjyM40WV7D5WzDkpcae3c5pTosWEp5SyFF/KmJrLHqrx+WWUA1zNduYtYqvFmzCnH74b8Qq8N/b7rzcEmshX1hLT0rMbot9S7pFiESpJ0TgjucziwIJT/BmfBa+gRkfeBUiDK5V1TQiw5xkWrxWx1a4E+ZCRgCUXJdDG+iyhcoBfQpa6jl3M8dVfBORzhnvqYr99yTR1fK/WWNmGcjL7ABi9S1mnUvp7ExHxrl8s6yU+65qYDXSCj7bdAPfCDkbCv1Fi5T2UuMkw1ouDm6b9m0EMIYckeFI9XZ2+4TXeTboOT48oX0maFZJePdPZ/9rZvgQzg/CK3yHT17F1yGhf3KORREkl+fFZDwewBVUZCJ/43D6H/f/FK+hnzniK3wJ2hlISpQ7sEtmbJUYWY1IAN5x383K+mz2RXRcb2xsJlt+XVh/H++dQcj/q4cCV5fAbv9pXq2H/6rMZPneNcv/+3OYb3weM85ZqjJeZkXg0cM3lSDP39O+L4Fmfta6alXM3Pkum/0MMMya5WuEklKv0JMPVNogbL6DiZg0N7hWNv0nzpSC7FTX+b9cI3DQeWogu+CyTi6nN74wHBEb904EbjHq2PQ2XWvO/fSbsmD2y+rqmV+8PAbb76zlAGsyBiEkniZlWTM4idc2J+X6xtG0NbfFsDo5p0ampiZSSvdnFlFS6+PlLa+qsddmWOGpkWe0WH0lEmJWTZVUhEwz5l00Z2i2Ol1d6WLTtGOATioHwWgADCL1grra+ciqNr+MZspxK2KklFzLdhgMJz0gjQ23NmNaiCuWqHB7mO94Io+2P2SUtLjzNZFHBMM/Tqbooa04/LWnx/GnwOfBCJdFxxZREvQgfGTf0fzdeB/q1fSwffoiHP6mPJUcSkX3guslv8P7MW2CgsiqJyYalzfy98KsdKE8YFstiY8aVRsm8q6coq9ymWbVdcI2YT3mf37xUvKKh6wClojIDqAFvzc2ptRbBbcYx+ieR2YdytexkCGpQoqafn6usmQn2HzW2dyMqgUsivrg7sx9+FemEeBu+VcKTW1ZA3gTsFxfhHOeAXIfK7nrWZYydu5T/iUhmylW8mn870ze8xvyZtzF/5m0Mf2kNm949n4umfsFWzxCmW+bzfPqfmXDbl1TeNp7vvpnIzAufopgYVjKOOAp4eMD9PP36HwAYYd9EMlnYcTLqm/UMYjvzuJNdB4YwffJrzE+/jfO2Lee7w+P4azcnL3MnfVjK6iUX89JeJZju6zOHSDmCYmJIYg9XjX+XSuwsvmwavebu5Go+ZszcNfxz24M8PPh+nvfczd2W51nPuYwpU2a/GBJJIpt9vMH7O2+h/4At5Hg60vmlyexYAlTApoXn033qbrrP3M2h1wIEHKaiBPUIlAt3TVYYr2bM7mXqfHhFqClAXYaVfAgqXvUtfHVctxqvGepl+M2m2dLvxuoZtQ3K58AFxkMLc9m/5sAav8yyLtRDg05+D03K/ETjY8ADRrkbEaMyA/u1UTHNqqkQprg0rcCDGChTfGOTis8fw2DgXEOsXmF4B4wx4pxvB+6D8or2lNPe275aQrC2RisUnkKIsahIZQdQIKX8XR2rtDa+E0K8g3r05rUn6xjPnzZFFS5OGtlctx8talWlL06VQ0ZG2+4JUV4BVVHl8VrsalJQVkWyIUyGdlO/pX9ftIswqyA2hKutw2bBIqAsUB3POsqpnEqMZ6DEP/59OhVXW9M6/NuJte/Rqsd4+igqr6JdRFg1YR9mFVgtgj3ZxbQ0WQXljOjePuhyM+FTfqkzaBtN60QLz9OAxeoiNfIgNnkpsI6ts42sIsaLmA+8Hc/A6RvYsS1eld4w4i9HsZLvJ9+iPiyeg/jXdFSI6x/9Mvn4ED3xlZ34+Rx1c24mLDKtqXfOMaylRrzg/UYW0/vxxo36W1/Egt7YJxThoAhnwtOqHMb9yzB9GqVMq17S5YXaJS2Clnzxb+Pv+nuj762U/auXVqm5nnF81dwVU11EDCmm/MUJPDb5j7zNdHbMHsmtc+exnAmM/XEp3cjkPNmDg0TgPBLLV3GXYn9UGRliKCZ6Ui6V2LnP8g/+svI5IoacBKAve/hu2USsF7rJJYEYiqnEwWdM4Qa7KuT5MVdjp5JNjCBnZTdmjH+WnKIk6PUtcbKAuwc8QQzFpHQ7zHpGkbO2G+PGrOLcS1aqEjBAMTGsLxtFZGQZGaQyjlXYcPPY3D/yFZeykCkkkgfvQsbgVOIsBTy87XF17ZjWxCo4d9RKthcNYuwAVR+lwBLHjpUjsZxTiud3KnvxoXf7wTsrgOMwZ4KvpuwGvA8gAOUU38835kyMVdZ1o3arvFk9ODAT/cgPQBxQf9btumYjXuukfnX6oeInf+2X7XY26tr182Hwar47gHnG+5I0o/asIQRfToOTwCqUNdWmHoiImomvZqIeWBRQ7aFGR3kNOc8Zbfyve2N96b3X8F3nO8ajYpSvMhYZ7rOAL/ZYrUKvpTuNRzZnw1IYu3Qpq5MvZkiW329BW6aJstoKIZ5EhU+kAoOklDuM+X1Q+bcTUHH+N0tZK0VaNaSUqzHs9EKIT4UQ0VLKmjb21ox55d/tN0/HeP7EyTNcSa1CWedOFFeSEl9nedc2gVlKpVt8JDPG9+Svn+6kuLIqqPAsLK9iQLK6h0mKDcduteB0e+jdIZqwQMGOBkIIouy2gDGeTrfH627qj8UiEAJc7oaLQ49HUlblrjO5UEWVu84SMsEoMYRntKO24I40XHzLq2paPF21amC+f9cYrp33HXuPt6zwdHskxwsrvA8WAvH2HaM5O+0rb1kYTdtBC8/mph94no1ix2UjlcXmUZSoegtY5yu9EIH60ZWD/W7qgfULxjNo0QZ2mObBHmfBYyojLn8yRKJZk7OnepXm+qYrrmnhHAWYItNIzFKNx9N8lhvjBty0FjlXxCKnGdlT758Db6QBk5TQMByj5SM+8SjEHF/ZCfySE5klMyrw7kvONaxjZlZaE8OSKy7EJ9KNJDVym/F5Nl4XZu+4fXoD3bsZyYFy2xNDMRllPeg/dwuvp98F0S4Obe1H/6lb2LV+KPaziug6eB8DSGdAvDpgKy46RmbjxsYqxkEJ3Bn7MvOZzhC2MmHulzy/5M8QDsPHr6GYaFLI9IrGMmcEA+zp9CCDl56ZhXO8g/KCGDh6Hh/THStujhxOhY027ps2h+IxMSwqmow9vJKh9q0AfMFk7oycRzLHeI/rcFBJFsmsZxS5JODEQV/2ctPcf/Nh2TVMilzG/tfPZuBTG0jmmPc4MkmhY2w2Pcjgf+l3MHPAU7yUOAvPi1FwL8wY9SzfM4r0F4ZxUfwyYAGLBxuD2RsV12gm+KmWddkI3v12kvfcmOelGrvVH2nhq52w31vkS6RjZPoV/6hhbQc2vXa+yoJ8ud/MEpQV+3fqvHeX16lzPJNqNTC95Vou9F2/0am5lJConPtNgRhuXq/dVPZc8/vwS1RW5osA0hDmr+QQVC1PgL6opEgAu0G+CUI8xUA5jh2zR7Lj4ZFet+X9F/olaoqD7/NHMTBrA1vFaC43npaIN6dVs9q3OZrG4vkJ8CzqEYI/84AXpZRvCSFuRIVdXAhgZH6tGYbxlZTqV1EI8TNgVxsTnUgpJ7Z0HzStD9O6kxDtIKe4kpIAcYptlcN5pThsFjrGOIg2xF9ppVuVSwvAyTJntSRC3eKVSFn8h/GBV/Ajwm6tZQGE4MmFQFk9qxph8axwuZGSkOVUwsMseKRy5bXbGi48i41EQYFEszeLb2XNGM8qYgJYhs9KiuazH7IaLYKbghPFlbg8MqTwjLRbcdgsnNQWzzaHFp6ng8d+5Ka5K/if4w5f7OVl1ZuUE8l+8SHigeoxY2I2yLkj1fxnUNaga4AIv4ysBvKAsY5Rf1A+YViFIgwB+h6wKUAioqFpKuGM/37FHF8MaT+/8io/GGI3QHkMQAnqs+cEWWgQjbcESrWb7V7Gq5kzwUgsJA+DWFKjf8/V2GY7v/evQ8ZUQ40+BL35I0mR2eyapmIh5QKbUWF2KOJDcBLLkSffIFPeTSCfYbNsytOT7+dpAO5X8/+g5m9MN91B/c6dHcwEyy8uALiL138NYOPY5SpjkZyF0Q9jnGOVpXAFlylL4TT4Jw8iF6jiH9V9lk0GIyYDFfAJ1xvlbUYGaAfiOTUmLw6YxYsDADOJ1ODfqze3wuJXDWVp/jLswxe3ipFh+SWqZ50d73sg4C2lcpafdfq/xuuHc6icmwbmg4Z+YOhjtZ25YCYR9n+gAfjio5/B6w2QQT+VvOp6XzOx0u/9P/A+aCnBz7Iq/DJC+2Fa6YV4CoiB38xSCYZM8tRYyAMg7kMlCooy11kPD8xix2zjOC42jnuZX+1PY2ycD8ay46qRXCtVEd3337ylVl/aFPWzeCYKIfyd/F8x6ip7MayU1W52hBAdUWnQzAJI7wAvCCE6SClPSCn34434rY4Q4lYgVUp5f72PpYURQgwItVxKmX66+qJpfeSWqJvs28f1YO6i3WeU8Pxw0xEsQmCxCK/lriRIgqFKl9vIFOsTTsv+NKHe+4pyBLZ4BksuBCp+sjGutqbgq8viCUqkBtt/KIqN6yA6kPAMC+JqW1FFbID2fTvF8PZ6F9lFlXRqF97gvjQFRwtUKZUu7YMLTyEE8VF28rTwbHNo4dncfALT5Sr+1+0O2u07TuHDnVTs2RC1eH+sf9kKo1BjP1RcnGnJExnwQKr6cI0RhxYJGAlxvaU5ADLz4V4jS+sdNfryKjBcvZUSb/ZaudnPFbY/3vIcwnRdLQFxtnEH/oMy+YiZKIulmYnU3wX2Ad9NvbxZ3egL0pSI8csmyzMgnjFu+HfjFStiprHcv37niupj4t2+GRc6DV9inBrsM5L7mLezwnSz7I+yWl35fIC1jLYXGvup6ba5sMbnmpZY0w10jiHU/USU9Mt5Ix6BPg+plfZQXc2brsPmefSWlDHXNSzc9EOJsQtqWw+Fua/tqDIyftsjT+1DbjP6/7ralr/Lsnmc4il8CYbM2/yrDUvnQyjxZ9qUzH4a50bFURrXlJFE55Kb1Ya/YiriIT9ro5FkKonDcJXfhf0WKpMwhoib77tO5EvVBScAF8xRFvwaiD8D96b5Sra8bsw3vdWuAn45S11rGcDlYEbVqeTZAEHih84x2t2MN8mQ5a178bwdpcZvNJALXW/bx5H03m1fcJpIoO7Sb7lSyhF1tqpNCnBUSukGkFK6hRBZxvwTwVYSQlyBemTyuRBiHvBXKWXQ9q2IL0Isk0DPEMs1ZzimxbNbvHriFUyYtUWq3B7CjCQ+0YZ1sLgy8A+LWYOyXSNLfkSEBbZ4Ol2BkwuBSjBU1QhXWzOpT8gYT1N4Vrlrub/WBzPGM5CQNF2VayYXKiyvCmhRPKujMjHvyS5uMeGZZQrPEBZPgPaRdm3xbINo4dnc7IKNjIB5EGMvoRBU8hNz5O80Xm8CSMOSVIrnoyiVhXYrRO/IpeQx6Dp3H8xVCX6EmAMxhqDxy3soBDA0XgmM/xkzDXdG84bemzBlGN74NLEZJYTN35hP05RANBP4+DuprQPunKOyiPrhtXT1Q1mlUKKyVokUm8/KKYzteoXzHwyBU+XrLw8YotLMClxh9PO4IVIDxXcGwL+dqJG0SMq7a69gLvtG9U90o1qNSkBlpX0whIup//7Xg1waYPsPAQw2xPnHAUvj+AtO8RK+8jQmi+dUs+aJ+wFuQcpUpGGtFRejEgNlG+sYOQjEdJTr6a34hKU/zxh9+AaEuXwesN3Pqv0x8Ms0tZ3vUDGO+9U1Jjcb1s030nzn/U3gVWVZFtegrrXLjPO5EsiFnIxuXpdxMRv14GFoGrwAYq2x37G+WGRpGIO953ZTmvGQJY0E91FvV+UTIM5CudN29bPcl/mNB3gf0BCnxKpy3JwLDFPfswemqOvRKHvEzlEqodd6lE3uHTUOnveifN4Nx4EMOLK2N5ePWcDeAX0BatVMbXNIfJUmg9NOCPEK8JmUMlCKqqbtkpSf4/WraDtIKXvU3UrzU8WM8eyeoJ6UFZ9BFs+OseH076zCMEzhGUxYFxoJltpHNlykAUQ5rEEsnh4cYUGEZ2MtnobAraucCihX38YQKsbTbrNgs4haWXyLymvHeAL0SYoG4K+fbGflXy5sVH9OFdPi2bkO4ZsQbdcxnm0QLTybm/awd+Rgzt2wkv2eXiQ8epQESx57Zxt3vGb8wgr14imIUhk+h+C1ivJAKkeEqRx7K4tPgHwCXlHpl9hlhJEAaJNYr5ZFGCawfqgb5U0oT8+dfhsyfuu9N/O7ga+VpVNeCMzwiSOvZc+0cu4GNirXXBGpPntFkSkwH8EnnoMWw5kDk/xEmGntHIHXddM/FrZm8iEz71LNggTCKMAoZaqvP4Ey8vrhjW80rH9yqpG85uIQ65jHbApeP4uncSqQo0LvN+B2ZwIza871szDLNO8xVlvPEL3VBHjN8h1jCYp5nqVMU9bRXxr77ILXAChn4UvI4/9/dYth7dxtPCyZq64pb7ynEdsrarifV+MyqmWADlZ6pFqsqFTXXF5qF7X9T4z5lXiFpeAppJyl3JVXwJSyD/jskV/44o/9RL/pLpvw6FHyHkRln45CZZJOx2ur6l+1hXSG+rIzX1/T9TyN/WN6s3++EpxXzX3XbBhiAFox9avjWShlfQsxVSMT6CKEsBrWTiuQbMzXaH5S5JU6iQm3ER+lLH1nksXTzLIKPpfR0gBWSYACw+IZF9FIi6fd5rWa+lPp8mC3BhaINqulUeVUTMtqfS2ejSFUjKfatzVgOZXYiNrtE6IdhFlFrfank6yCcmLDbcTUYf1tH2n3JqXStB208GxuDGH1/bTx8HE+vBtP3ntdVKKfDmqZvM1PRA2pvnrJk4nw2I/wV+W7Fyo7bJzTKCppFJ8U04EfjfjDEecjN/i5FHZCic0CVN7EeSDNzJ67jVdTVH5tiIwSQ3x9afRzBMqyZFgu5Xi8yVwAZUV73djnH/BmqvXG7hXPgd1pan4GSrDON5b9O00Jwz3G58wF8MA0VU7FiGFlHj4xEuT/V1xsiK4hxoyP/RbGBV6nLqrFvyYFtmRC/ayxpngNZOkMtr6/662/u6mXf6aqdoawloeNc/lVGtwF8hJj/nxj/4vxWkK9rsKmqI6rse9ueM9jqBIgYibeMj38xzi2fbXb2e8twvmMT3yaDzuCYqSdEca2Gp2QJwXIVOZgIZ6Cy33+z1Me+oDPsqYikx3VBLc/CY8eJa9fF2NT++Bs9b6/3G1scw68a6zzg9+69wO7Ye+bg9XDlE6N7H9ron6uto2yeEopc4QQW1E26reM1y1txG1Wo2lS8kqdJETZvRbB0jPE4imlpKDMT3jWYfEsMCyecY21eNqtHC8srzXfWafFs+EWSTPGM2QdT9Pi2ciSKiWVLoQIvo9Iu62aa3FFlRunyxPUrTfcZqWikdbXpmDhD1m46mFdjo+y63IqbRAtPJsZOd0Qi1cB/eJ91o9+aVDou3mXCwyhUYE3Zi/63lwAih86CzAsmX9TP7hS1v7BKHQYyR2f9ctOO8TYvmm5KZ8DxMBilKXHtEr6PTSqlRXXD1HL2oaKpzPbG2GqogIlWu4F/jYHf6ucfzlQORfEXuN9n+qb9Voa1wNM85bAqOZi+0hggVar9LqhyaVM9bWp4R7rL9QCIaf6xSoGiP00kxCZMZyBBGd9XYOrrWO6k86vMT/ItuQsqsf9mlw6p5aACiaavRSbbfyt3BnqzdzUWs3lhUa//AXVOwH2Mxqc18WaFXl81vUAZXPkXGP+Df9PzfjNX+BQDbFdA2FaYQ1BJOajrvPpwGEQU4Ehs1SiK/zH9heILOXOJibjE48mqyFvQhfkSuBmEPeo167yKJn0JqYsRdXrBeR1xn53GOveMAf+amzPhvehSSWNe2rfaqifq22dFk8hxHOAefUsE0LkSSnPRjk0vyGEeAhVOKct5//VaBpNfmklCdEOIu1WhDhzXG3LnG5cHukVnqblLtjxnTTcK9uFqNcZig0Z+RTVELUej8Tp9mAPUorFZhW4msniGX7KFk8X0Q5b0Cy0kXYrpX4WzCLDQhqs3mmYzRIwBvZ04XQFPw/+xEfZKa5wGfHBDU/KpGkZ9Jk6HRi/N/3nblHWj5Q09ex+tIp3E2/6xabtNkqsXOFbXUzzt2Ya86aDeA8SPUcRt4G4DfhVGhGF96gGo1Exe78COhj7MC2F986Ce2chFmFkoQWRVammJSC2GZNQ06UsZCjrEIvAklaKJa1UbWepMRnczou1j92FyiA6EPhdpZq+BH6Zxmzp9sWGAuKwC3HYRV+2qVjFtaqOKZ1dyp3TiPNMZTf9F2yhz4JtTOUDFfMZboyJOf0CRAeYxBcqhtXch5iDI78IR34RvdmJ2KssVuP8DkS8B478IkawhkFsQExT52AqH8DtaWoyuJp31bjt9e0jpiyXAWwhld1MZoFKhDMfxPjq/RBiDs8svZOfL31b1b5coPrSl230ZZuqZpjqt85Thri9Gzr+26eOJ/IlA9iizvEiuJl/0+vwTnod3sm5h1ci1kNXeQOd5c2MYiVir2ojHlLW575sQ8w1xuo2GMo6lUBoEnCeaiN+4bd/g6GsU9fFAiUMxWy4hrfVwjhgJHRfupuZS59CbFPXcDIH6e3v130+MM83Ht5jNb8XWZUMYgM8Brz9FzWZbV5T18KlLFQlVMxx9ndrnl7dpVgsQCXVuh1vAiBQlnyxzTjHHzrgXoda8AaQB+IlEKII7oeIz08i/qG+s7c+N484TuLEThKHlYfCnDTGyjFK3PpzU5qy7O8AJlSqKZW2j+lqG2oyLJ5CiClBNyPlPVLKrlJKm5SykyE6kVLullKOklL2MV73BNuGRnMmk1fiJD7KjhCCaLvtjHG1LfS6zioh5LBZsFpEnTGejbV4WoXAU8Oi5jQSBwWzeJ4oruTbvQ13tPBmtQ0V4+kVno2zMhYHqMnpT0QNV9uicjWuwYR7mEU0yq24qahyewirR3bf9obLuU4w1LbQwrOZmcwCuOUIOGDXoqEqk+aNqMQ0NT09RgH9YP9eFftVsjuRcZHV03VGlxYyXH6P/YWaJj0/VhHQrbHzEwfhr2lc/sSCoLWx1E4kREtmyqdgaOAmQ2aso9d9O1Vm2DVp/FoamYgS4aqH3lUxeZdBu4ePw1gXjPb7EeuNWWmEIXPXMaTPOnr12UlddJ27r3ayIoPu83czZf4HTJn/AZanS2stv/alN7jopVAJI40+PVF79vAFa7zupd3/vRtGQv9vtjDhmy+rNwyH6Ltya28gDn493RDlCXDugpWMlWPoI68O2Z3Ln1pAx6cO84f5j/Pz+W/D51RLADRwwQYs/6p9rPXlkkcW0v2R3SHbDHxkA/wMOn5wmCGz1jF81hp4IxU+Sq3e0O9BCZ1g4NwNdJ8bfNsRE07Sfeluei3dCQ4ljC+RQ7lp7r9hApx780qYVFltnRnTn1XXdRzYH61+/V8yfiGUQML1RiKhB4B/+jVYB5aLfGM1fOoaJfquqNF3UIL7Rrhq0bvwZOD+33rfPLh/Re0FIyDhwaO1ZsvpYHmilITXj8LH2bDRwZTkhXB+PotFPItFfOAdtQVMV9tQk2HxPB2JhTSaM5W8UieJ0epmOzrcRkmQrK9tDW+WWkMICSGIdtiCuhL/d81BBD6X3IZiCZAoyHRzDVbHUyDwyOayeKpb8VOJ8Qw1FpE16pZ6LZ5BYkKnj+qO2yNxNtL191TweCRVbkmYpe4aovFGVmOdYKhtoV1tTwMD5TF2HO4ER2x0HnOQY516YE9VN87OR40sODcCiS74zkZ011xKliUyZOo6Fr83DW6Ha+wfkfFBKvvoxaZF53P35CdYdd04skjmpteUH+3/DtxOTGwxqR9ksGvtUPiDhBWCiPtPUv54e8axEvcja1nLGIY8pHxxMz0p5I1I4qbkN9U2Cu5geM+1DGErXzAZ/gWjWM96RkE0JCXl0Jc9XMQyPuIahkxdxwDS2YPyk7VfX0QyWTwz/k5ySGILQxjRbRPrGUVf9lBAHFmPJLOPXhQTwxjWspJx3MnLpHdTJezySKBSXsdUnuBjrubWbq8yP3o6DiqZcPOXHCSV6bzNVoaynlFcNf9dxrCWVYwD4Iak+eR+kMBe+pJALlcNexcnDoqJ4Z8yh/lsZxLLKCOSLX2ysOEmlQwKZsQxgk3e87aHvsRRQAK5uKdZGUA6CeSRMuN/vMlNrNh2GRcN/oLzktdSQBy/6vNfXjXMaHkk0JFsjpHMeZOXk0gu561czgDS2coQ+rKX81nLZ0wlg1QmXPcl2STRm32MMwIZ99GLUXzPMi6iL3t57Js/8jbTuZSvSCSPtYzhmqSPKCAON1ZG3LyR6cwnjTmU4cs+NWXUB0QYaVvjKCC5TxZlRBLHScazikFsh9mwkeHc+to8yohg+n3K9/QrLiVp1BdMZhHvcR292UfHm7NZLI4yXf7IX157jhm3PUsieSwcM4UBpNP3pYcoI5IUI//LKsYxcPAGyolkHKsoJoYpsZ+xn150JIeY64qx4ySFTDJIZcgl60ggl/7JKmB4BJuIkwWsYCI/f+ht4oxiuP8Z8VsiKWc7gxjDWhgLwy2byHwkh2JiiKGYXVcNUoPwjg3PzigmTPuS4mkxFBNDu37H+dngRXzluZS8dV3gOHx21S8Ye2Apq6Mn8smC6+k1bSfXDVBZgj6eeTW71g+l/Eh7sgYk00t2YA+SGErYMX8k5ELHew6T81w3Vl+RrH5d31K7T5p+GI87iSmWz/i48ioKd8NBUhko97PjoQmN/GVpJXhQCZs0Gk2z4fFI8kud3sRC0Q7bGVPH04zZ9LfARTtsQV1tqzwSm1UEdS2tixtHd+eJr/ZQ6XJ7hWalS4m+YHU07TZLo4TYKysPAPW0eLoaJzxLKl1BEwuBEr0FfuLMFPrBXG0TYwxBV+o87SVVTFH863F1V44yvws6zrNtoS2ezcwiprEjeSSMtvGHMY9zHe8xcNgGAJxHYn0uf+Fwbre10B96R+6DrrB182guv24BCZcdJYNUMkjFjQ2uhOf3/pkskpnMIgqIo4A4zuu5ghQyseJixphnmdHzOexXFVG+rj0d5x4mnQFkkEoMxWzdNpqtK0eTt7ULU7p9zHYGsZ1BXD5ABQy6sXINH3LVqHf52z/+zh768M/xv2UA6aSSwTOeP5JFMlkkU4mDTUUj2FQ0ggHx6by0cBYfcg2PZ6sUoxmkUkYErxYpUbbVM4RyInFjZSMjcOBkIVO8x5HOAJLI4dWi2xnENkaxniHxWxnEdrJJ4nzW8h7XkUImSWTjxsp/+RWVOKjEwSC2s5e+XMpXAF4REkcBi5jMptfOx27sM5MU4iiggDie4C8kkU2SkWnHQSWTWEYk5ZQRyUHDL7KMCEaxnscG/5FJLGMiy7mO91jGJG7iTW7iTeIooAcZ9GI/AJmk0IODuLFyJy+TRwL76E0S2fRiP1bc7MnuwxQ+YxGTjelnABQQxzIu4gsmM4rvAVjLGCpx0Jt9ZJKCnUrSGcBnTOFm3sSNFTdWxrGKOAoYxHZSyDTEeB7FxGDDTRwFvMrt6sEChtAkxzgTBRQTQzJZ3n3sozdD2cqfZCHpDOCm2/7Nq9m3M/fwQ2SU9aCAOF50zuQrLuVPC1/kTwtfJJ0BpJDJRSzDTiWD2M5GhpNAHuVE0Ic9pHKQD50/J5uOdCaLvfTFiR0ndtYyBoC9/xhMCplEUsb8ounwN9g1fyipZLCfXiT0O0oiueSRwHhWkkcCHLPBMRvD71sDvV2s+OYyruFD7uVJCvd1Yj2j6G9JZ8qYD+h/yRb+cOBxSohhSrePOXfaShLI8343ds0eqjwFciGZLPa/dzYZpPLd4XFgha737FMC+CoXlAjl1bA4n46LlFv0r5Nf5fX1d6lY7HPmsGP+SPXb0NaRKJf6UFM9XG01TYMQ4kkhxEEhhBRCDPSb30cI8Z0QYq/xelZL9lPTMIoqqnB7JAlRKgwgOtzmrd/Y1gkkhGLCg7sSn2pMX6DkRU6vxTPwdicP6kRECKtlMMqr3IRZReistjbT4tl4V9vokMKzevmYInO8g7jnmtdYbsnpf6KYZ4jIhKi6cx9o4dk20RbPZkbMBp4GXoVnFt4P4XDeJctxDomFK2D6SypN7XImUkYEPAwnF8TRddg+jrzZm7xhifS3pFNAHGVEcuyVHvAo2BOL6Eg2b2bfxO1JqtTKZ3f8gs7/PsgINlJCDPO33QbH4f9dcg9/EQncLt3MTX8EXHDJ4IWUEcHqJRezjUHcwHxvP8axCqtxt1hMDNxUSSTlxFDMdgaRQiZ5H3RhyHXK2rmciQyJ3QrAd4smMnbqUlZvvhh7ahGLs37G2OSV5JDEuFhlyUuw5JHt7MhLub+le/JBIilnENvZamRCMoXS9yvGkzG1B+sZxRC2kEQOQ9jKJ1zFULZ625cRyWS+oNyw8n3FpUxgBZ3JIotkRrARK26yScKNlejrc8kkhWv4kP30Zj2juJOXuYt/8SteB2B+/nSGxG/FhVUJtgODGNNzLdsZRIYnlc6WLByGlW4tY3BhZTDb+d4QcJNYxhdMJokcfsV/+YpLqcROOZHEUeC1phYQR5azMyn2TMYkreVNbiKRPAB+xX9Zz7ns2DySGcOeJYZijpHMfnqRQiYHSeXGrLfpn5zOekbhxkomKfRhD6NQNVuySCaGYvbTm17so4xIrLjIoSOjWM9+ejGFhV4BPpMXKSHGa7ndmD2cPe37MN6+ihJiyPSkMMCSzutr7+LuMU/wYvZMfpa0CFDi2oqbifYVyuJqxDimkEkMxeylr9cSOpjt2HHyjLAwUE4kj0QG2beTRyI5JDGd+er7AMRQwiPZf+WS+xaSR4Iay3I7Qz5YRxbJXM3H/GXbc3QefJB99MaOk3ezryM56RjDR6nsRVuyh/Dzbu+R1S2ZedzJKNbTZ8A29mb1xZ7sZFPRCPrG7uG57Lvx7Ikic2wKeV92gY8h4WXDdbYfsBGYVMnrs+8i+sFc8vITYIcNOoMVF4vyJ0P3v8PbaXSdvg+3tKo2wCdxV8F+4Is0ldH2S5Rb798Mt+FHYhv+A9MaqF9W28aWU9E0nE+AZ/HmgPYyD3hRSvmWEOJG4GWgZQr1aRpMbolxQx595lk8TSHkH7MZFeL4usdHEhfZ+KRsUd6swG4SjARzlXUIz+R2EeSWVFJR5fZaKOtDUmw4A5LbhWzT0ORC1738HQDv3XkeoCyeqYlRQdtH1BSehuAOVE4FoINh8WwR4Wlc5/H1EJ7to9T1omM82xZaeJ5OCoD74bvPJ0IisA7e5jZAJTaJGVwM98KhBUYg4zH4fuV4dbuAyrx5w4zXOEkcx0hm6+zR8NgcXjHLNXSAY8/14LPjPaAChj+1BvdgK4+UPUQvmc3cAwM4d4CKGc0khb7sgXAoJ5K5Dz2itrED3AusfL9oPDdN/jdbPUOgws6u9UP5x6j7yBH/JV1OhAyw4ySdASSTxVC2AFA8OZpNRSOYMuwDvsq/lLHJK3HiYO/Uwex9YQBstXH51AVk0xF7eCUlnhgiLeWkM4ApqPCv7QziKy6lz9RtxFHAciZw6KUUElznAAA26ElEQVR+9Jm5jY5kY8dJAXGs2HwZY4ctpYA4/rn5QYYPUyIjlQzySGAFE6jEgRU3BcSx0Tmcm+3/Y1TkepYxiQxPKhMsKzj2VA+2zhqCGxv/5VYAhsdvYiLLWcV4ionh5z3n817RdQyITSfBkkc5kWxhCBsZwaV8xTMH7iOmZzEDUO6hz+ffg/NILIce78eA+elkkMq27EF4Po3CPsNJHgmMYCPLmUiiPY8cksgo60FCZC67PMrluMwSyZIDU7hq2Lv0ZS/bGcQXzsn0te/lf3vv4NY+8/hZ8iKySGY9o/h+5Xi+6NuRhKQ81nqUlbCzJQs3KQwgnb8+9CSkQsxtxWx9czSpNys7+nYGsyJ/As6usYwtW8pe+pJMFgC3J73KMWP7k1jGIMt2Yijm52Pe5uX8O7k96VW+ZxQRlBNNMfOZjhU31/AhmaQAyjr4+j/u4uf3vU0xMbzOr5T4LuvLBLmRFVmDocLOxJ7LaU8BB0nlb+l/9/46WdqVMjXpMz5Jv57hA9aQQiYdk7JJIZOta0eTPmYAQwavY2v6aI7t7gGvwsBFGyigvTdj7KSkr/lo8w1E98ulZF0ih27th31rEWx0sOuzoXT99z62zh2tdniFGre8uC7M+Pez5KHil7ffPIi9mwfDKgfXzn2D9xfcwvBpa3BPtrJ17mgOXaBcclUt1WUcuWESbIJLhqkCsEs2T4V+cPmwBTBZeUP0ZRu8CXsY3LjflNaApD6uto0qp6JpOFLK1UA1N0QhREdgGGAWSnoHeEEI0UGXpmkb5HstQcoaFRNu43hh3QV02wIF5bWz1EY7qruH+nOiuJKzkkIlqgiN1+JZWX+LZ3KcehB6vLAipMjzx+X28GN2CWN7J4ZsF+519w1t8Zzy/Cp2Hy/G5ZE4bBYmPLGcjjGOhsd41tPiaYrA00l+qfozqZfwNGM8S8+MWOefClp4NjPeshDXGa9mIYDNNdoNBhiM4VVYHb9sqKZQBWAuMNev3EOte1ejhmckQCL0rLExhhofu8EjNXY4GeAO5Yzd05g4G1SiSbiv5rbO972NBfgFxIP3PmchgA26AUwDO8byWKBL7QOtycwABzjMb/vD/PtwfvV2Zv0WO/iKgGI4mt8AswCur7FOP2Bi9VmxgbYNMJSne4KqBKFqnDwZjzq++aCqQQBJwAzwmgK5o/pmzPPk/d/rYoz79d7+/dcO0AkVUntX9fXHA0Sp+f7bMProO8c/M65Dv2OOBxUGat6XmvVYRvvtwO/aM9fh9wTGb5wZyn/vA7ihepNIgMsgOcD2B/g3jFJ9HQDVx3+k8X25y7fOAIxTEMCFdRhAorLxHAaIVadiKkBvmO3f2Nz272tvYxjALbw3za8/s4HZvu+ilJP8Vprqt3/MDgJtXHCamK62odEWz5YlBTgqpXQDSCndQogsY74Wnm2AvJLqN+Shku+0NQrLq7BaRDXxFB1uI/NkWa22UkpOlFTSIcbR6P0FEp51JRcyhWdWQXm9hefB3FKcbg/9OocWyY56JhdSpUMkSbEOSipdZOSVYRHCyGobOsazrEY5FbvNEtRya1rVW9LVNjG67vMbZrUQG27zilVN20DHeGo0Go2m8dQvq62mjSCEmCGE2CiE2HjihNakrQXfDbkSBVEhku+0NQrLq4gNr16HMsYROMazoKyKKrekQz2ESTDMeEh/4V5ZFTq5UBdDeB4tqFmOIDi7jhcD0K9T6DAK08paWYfwvHxQZ2wWwdr7L2J72qVYhDqGSpenTotnpcvjzeRbVB66/Eq0w4bDZvFec6eTfMPKarrR1kV8lJ38Mv0n05bQwlOj0Wg0jcd0tQ01aVqaTKCLEMIKYLwmG/OrIaV8RUo5Qko5okOHDqe5m5pg/GuFSlRn1i6MMWIgZSNKfLQ2CstdtWI2g8V4njCscKdm8VSWPn/h7q3jGUR4JrVzIARkFdTfvXn3sSJsFkGvDtEh2wkhcNgsVNThanv0ZDnJcRFYLQKLRdC/cyxJRtbZupILgUp0BPDVzuMhS/EIIUiMdrSYxTPGYQtqea5JbomTb/fkNHOvNE2JFp4ajUajaTw6q22rR0qZA2wFfmnM+iWwRcd3nn7GPv4Nk59dWXfDGrg8HqwW4c3mGh1uQ0qquVC2VQrKnLVKe0Q7lHtozXqbJ4qVGOp4CsLTl1zI3+KpRF8wi6fDZqVDtIOsBlg8dx8vpnfH6KDb9MflkXy6pXYNaH+OnCyja/sI7+feHaNJz1LJ6WJCWDDNbLxmnKfb48FWR53MhGi7N6HV6SSv1El8dP0TR9msApen7T98+SmhhadGo9FoGo8HqKhjMmI8dWKh5kcI8ZwQ4gjQFVgmhNhpLLoLuFsIsRe4m1pB4prmJjO/jCMF5ezNLiGnqGGJgZwuD3a/EiLRDiU0WmNm2589t4rzHvsal7t+5UGKyquqJRYCvHUpS53Vj88Unk0S41kRyOIZ3NKWHBdBVmH9hefqH3O9/a0LqxC467BeHy0o97r8AvTuEO0VXSFdbY1YznLjIUWVW2K1hL79T4x2eOOKTyf5pZX1Sixk4rBZqKhynxGW/7aAy+1h4pMruPrFNY3ehk4upNFoNJrGU7/kQprThJTyHuCeAPN3g1HvSdMirDBcAt0eyaSnvuWHtEuqxTWGotLlqeYGarpWFle4SGpllZhOFFeSU1zJY4t389crBtTZvrC8im4J1RP2+ItD/3jEnGIl2E9FeEbZAyUXUqIsmKstqDjPXceL6rWPvJJKnG6P1821Luw2S8istpUuN9lFlXRtH+mdd1aSz4U3dHIh1YfSSnWMLrck0l6HxTPKzs6swnr1vSnJK3FWs+rWxcwJvUlbuJMTxZV0jA1vxp79dJn20hqOFpQTGx7GiZJKCsqqEMBlz6yksspNTHgYC+8e621fV9IzLTw1Go1Gc2po4anR1MnyPSfonhCJlJLD+eUcyC2tM/7PxGYRTB3iTQFOTIDMrK2F1MQoTpRU8p/VB1m59wRLZ10Qsn1BeRVxNSyegdxhQYna8DBLSAtfXVgsgii7tUGutgDJceF8vTsbKWWdDwy+O6DqcYdygfXn4gFJfH8wP+hyM7a0pqutScgYT2OsyqtcRt9h2rCuIfuTEO0gr8RZr2NtSvJLnQzuGrruqT89jAzDB3NLtfA0+Nlzq4gIs/Lhb3xlMq6dtxYhBO/deR7XzltL+rEi+iTFsGDm+dXaSAkf/KZ6eY1jhRVkF1WSXaQs4MntwjlWWMFuI3lWpN2KxyO59uXvyC6q4FgdZZ60q61Go9FoGk/9XG01mjbNdS9/x3Uvf9fo9Suq3Kzdn8vEvh29Frf6xgsWlldRVOGqJjpMoREo82tLsz+nhKuHdiHMKrz1R4Ph8ciArrZei24A4dkhxnHKYqhm8qK6kguBcrWtqPLUeUwAa/blEuOwsfB3gUqw1aZbfCRZheVey2tNjp5U10oXv2uge0KUN1YzlMA1LZ5lTjdlTjeVLk+d7qyJ0XZcHklR+em7vqSU5Jc6SWhAxmJ/4dkWOdXflZrbGv//vmFnVhEH/MZjQ0Y+Gw6d5PuD+fT762I2HjpJSaWbrZkF3lrAP2QWsO1oIVsyC1i0/RjnP/41Qx9ZwrHCckorXVx6dhJ9kqLp1ymGtQ9cxDkpcfRMjOLBn/WnzOnmwn+uIP1YEZkny70PjYKhLZ4ajUajaTz1c7VtJ4R4BfhMx3lq2iLHCstPyQJ05QurqajyMKFvB349tgfj/t/yegtPU3T4u1n6alG2rlIS+aVO8kqd9O8US3ZRBSWVoZMflThdeCS1YzwDxGGCymp7KqVUTKJrCE/T4ukIUtsSfLU8b3ntez6/Z1zI7a/Zl8foXgnYrPWz73SLj0RKda57BrCCHzFqmvo/fAizWuieEMn+E6UhLcARYT7haYrmuoWnGuOb/rO+mhtlUyGl5KoX1xAeZuW9O88DVJkXl0eS0IAYz+S4COxWS5sVnhVV7lN6iGKK1vfuPI/sogoO55fjsFnIL3WyYk8O5/dO5MGPdxBmseCRkogwK3ERYeSXVeF0eXhl5QHW7DvBnuwS7FYLYVYLM9/e7N3+5GdXUVThYsb4ngzvHu+d/8lv1QMVj0fyzyV7ycgrQwB9kqJZ8scLEA8H77MWnhqNRqNpPPUTnoVSyhnN3xmNpunZm11MZn45EiV8OsY03KWvoLwKi4DRPROwCNGg0hyBRIdPeLaurLb7ckoA6J0Uzf4TJSxNzw7ZvtCowRjM4lnTlTinqLLe7smhiA4PbPG0hxCKZmKfULGYAIfzyjicX8avx/aod3+6J6iHCofyy4IIz3KsFkGnGu6kppCMqU85FafbW5uzLnFnCs+qeiaIqosrX1jNrmNFxISH8cZt5/Lehkx+OFLIWX7uwnmlypWzIcmFrBZB94TIZhWeUkoufWYlseFh1dxXG4K/QDSpcnvYdawYi0Ul7an5kMLp8jDxyeWEh1n5+k8TAm63wiiRsy+nmEP5ZcRFhLH2gQsZ9rel3PHmRqIdNk6WVfHKTcO55OxO3r50T1APsuZ/fwiXWwnSdbMvwmGzcOkzK4lx2Ljzgl7c/c4WohxWhnVrH3D/FougW3wk+06U8OL0YVw2sFOdY6GFp0aj0Wgaj0S702rOWDweybSX1mLmzDxworTBwlNKSUFZFbHhYYQb1qeGlOY4EsriWdG6LJ5e4dkhmvT4SPJKnZRWuoK63xWWG8IzskaMZ4AEQKCE/+ieCafczyi7rUaMpxshIMwa3PqUEq/GP5g7rMma/bkAnN87sd796WZsOzO/LODyowXldIoNryVOYgwBHcpFONLuyxCcX09xlxijljeF8Fx3II9tRwuREgrKqrji+dUACAHZftmd62uNrUlqYlSzCs8vdxxnb3YJ7SPDGuXxUFxRxcHcUpJiq1vqP/shSz3wcMOHm45w/bndvMuufGE1+06UUFqprsuaGY1B/a7sOlZMldvD5OdWI6VyPY602+jVIZqM3FJOllURFxnGxQOSvOuZ4nf/iRI+2nwEi4DP7j7f+/Dn2z9P9LZ9cfk+HDZLyGOOiwxjeLe4eolO0MJTo9FoNKeKzmSvOUNZdzCPkkoXyXHhZBVUcDC3tMHC50BuKZUuDw/6ZXhNjouoMwmHyZGT5USEWWnvJ86iTlNyoWv+tZbjRRV89YfxdcZuAfyYU0xEmJUucRFeoXbkZDl9O8UEbH/vBz8AAVxtA8SwVrrcFJRVnVJGW5PocJtX0Kttq3I1oW6w20WEERtu44I+HYO2qXS5efTzdOxWC706RAVtV5MOMQ7CwywcygssPGvW8DTpFBtOx5jwkP2OdPhZPEtMi2foMUwxHnJU1GHdrYspz68iPasYh81Cv04xvP6rc7nsmZU4bFamDevK08v2cjivjG4JkX7W2Iad356JUXy79wRuj8RaR33ShuLxSJ5Z9iNCwMmyKsb9YzlhVoEjzMpnd4/F7ZHYLCKkS/WCzUfJKa6ksLyK/FIn8VF2pJS8/O0B+iRFE+Ww8ddPd/DgJzuIclhx2KzkFFdiFcqam5lfxuOLd/P8L4dW2+72o4XezMllTje9O0TxseEC+4XhCl7mdAW9rnt1iKZHQiR2m4XeHQN/P7/8w/g6x8jfilsftPDUaDQajUajCcBnPxwj0m5l6R8vYNjflnLgREmDt7F8tyqjMrFvB++85Lhwb1bIujhaoESH/82j3WbBYbPUSr7T1OSWVHLkZDmPLd7Fo1cNqrP9vpwSenWMwmIRpBhCKTO/LKjwNGt9xtW0eAYQ1qZo+njzEe656KyGH4wfKsbTZy2uWa4mGCnxkWSeDCwOr3v5Ow7kllLqdNO7Y3SDLGNCKJfFYMLzh8xCYiNq37K/f1fdrp+RfjGebqPuZ3x0aKtilMNGmFV4XTkby6G8MiwW+OZPE7wxsutmTwJU3PTTy/Zy/SvfsfaBi3h80a569a0mPRKjcLo8ZBWUex92nAr+brGXPLOSfTklPH3dOaR9upMjfl4KZ/3fYkBZbqPtNnp2iOLT31WPh5VS8s73h3EY5XIueGI56x64iCueX83B3FL++Ytz6No+guteWYdA1VgtLK+kXUQYi38/juS4CJ5aupfnvv6Rz3/IIiHazob/m4QQwuvG3q9TDBYhAopu09odjOV+1s3Thc5qq9FoNBqNRlODKreHxTuOMal/ElEOGz0SozhwouEufc99/SMRYdZqrrKd20WQVVBer8L3R06WB7R2xYTb6p3VtrHZM/skKcH41rrDfLc/r872+3JKOMuwnpgiIJhQAyg3kvp0j69uHQyzWrAImL/+kHdehuFOGSoBUH2Jcli9dS3BEJ712G5K+8ig7rBFFVWcKK5k5oReLKujhEwgusVHBdx2mdOF0+3xumk3FJvVggDe+f4w+aVO7DYLUfWoLzq8e3uvC3BjOFZYTnGli99M6O0Vnf50bhdBXISqDenxSEqdbiyCBiePSjUy297+xsZG99VESsne7GI2HjrJmMe+5sCJEiLCrEw9pwtndVRZXVf+eSJ9OkaT3C6cru0jSIoJp8TpCujBsO1IIbuPF/PXKwbQq0MUxRUuphiiMybcxtQhyYzqmcD3/3cR++ZOJv2Ryzg3tT39OsV4x2zmhF50iYvAYhHkljhZsfcEAEvTsxnVI54FM8/nw9+MabDlsaXQFk+NRqPRnAISqDPOTGe11bQ5rnhuFQVlVUw5R9XP7JEYVW8rpUlppYviChed2lWPCzVLcxSUVdG+jpi2IyfLAyb3KK5w8eWO4/z96rotkfmlTq/Fq77uiE6XhzX7cpk2rAtfbDvGr9/YQPojlwVtX1Kpbr43ZKh6lAlRdiLCrGTmB49lLa9y47BZiAgghBw2q1eYAt6xj2gC4RntCKsm2p2Gq21dpMRH8M2eHDweiaXGOJqJkmZO7N2oPnWLj2TNvtxacYTmw47/m9y/UdsFJeSdLg+5JU4Souz1ssb2SIziq521k0Nd+vS3WCyCxb8P7Yb5yZYspISfD+sStE1CtJ2CE1X8cKSAMKuFC/slhaylGoiehktz+SlaZwH2n1BxkQBZhRW0jwyje0IUVovgI7+al0tqPFj4/btbWL47h4oqt/cBgZSS217fgEXA1CHJ3Di6O8vSs7njfxuJDbexfvYkwoxrzj9uvKYVOzzMypr7LzSSDa3g2WU/0tP4LXrwZ42/JlqKFrN4CiEihRDvCSH2CSF2CyGuCNKuixBiuRCiUAhR63GGEOIOYxv7hRAvCCG0FVej0WhOGx6gvI5JZbXVolPTVpBSqjgri2B8H5UkpmeHKA7nl+FsQNzbpkMnkdSOYUw2hOjROhIMFVVUUVhexYo9ObWWhVkt9Ur+Uulyk5FXytGCch5YsA2Pp35B2ZsOnaTU6eayszsx6+I+lDndHCsM3t8dRwsBXxZVIQQp8REhLZ4doh2MOytwEp7LB3YiPMx3S7fneDHxUXYWzGxcZlF/oh1WnG6PN1FQpcuNI6x+rrZOl4cTJZW1lnWOi2BISlzI0iah6J4QSXmVu9a29xvu3b06Nj6b7+heCSTFhpNfWlnv5D09EqPIL3V6BTXA2n257MkuYc/xYnZmFQZdV0rJR5uPMKJ7e7onBI91XfCb87FaBC+t2M/RgnIu7Bc8fjYYHWPCCQ+zUFR+6om2lu1SQnvVXyay8s8T2fLQJd7SIaH4xfAUiipcLE3Pxu2RTHl+FcMfXUZeqZOk2HBijTqrkwYkseWvF7PloUsCPmwJhd1mYebEXmzNLOCCJ1YAcMmA+iX0aU20pEi7FyiWUvYGpgCvCiECfatKgDTghpoLhBA9jGXnAWcZ043N1mONRqPR1MCspxJq0pzJNGUR9NbCq6sOcrKsis6x4Ths6gaxZ2I0bo/kcBBXy0BsPnwSoFZiHtONrq4EQ6brZaD4w8mDOtXLOvTZD8eockviIsN4f+MRJj65oj5dZ8XeHMKsgjG9E5loCIIVe04Ebf9DZgEA79wx2jsvlGtqldvDgdySoIlN+neOJbuokjxDiO3OLqZfp5hTqntoYopD0922st4Wz8DZZ0srXfyQWcB5vRqfcdd0K96fU92de39OibdsSGPp1ymGfSdKOFFSf+GZagjGg3mqP1e9uJqbX/ue8DALNouFq19cS6/Zixj592W1HsbsOlbMvpwS77kLRrvIMEb3jPfGK07wi4NuCNeP7EaFy10rJrWhv03L0rM5OzmWlPhIujVgvM/rlYDdamHW+1vp8+Bith8tIr/Uyf2X92Pt/RdWaxsXaW90EqRrhnelXUQYCVF23psxukF9bC20pPC8DpgHIKX8EdgIXF6zkZSyUEq5EiVAa3IN8ImU8oSU0gP829iuRqPRaE4LpqttqElzJnOyzNkgK2B9ufKF1Ux+dlXQ5ZOfXcmIR5cyKO0rLntmZZPt95KnvuXvi3YRHxlGcpzPBc506WtI6YZNh07Sr1MMH9Wo/9fZ2G4oCyKoGDGAyABWtD5JMeSWOL1lKAIhpeShT3dgEdCnYzTRDhvZRRXe2NJQN+Zvrj1ERJiVaIeNs4yYtkCWV5OtmQV0i48kwS9GLyU+kiMnA8eyHsorpcot6ZMU2JLXv3MsoESMxyPZe7w4aJKihhLlFZ7qwZizATGeUDtudUNGPi6PZMwpCM+3bleCvaYlcf+JUrrFR3ofgDSGPkkxOF0edh8r9tborAvf9a5uv48XVuL2SBb/fjwf3HUeQqjr60RxJfd9tK3aOf7ugIoHbhdZt8g1rXaRdmvAWND6cEHfDlRUebxu3iZHC8rZf6LEm8QqFHkllWw+fJKL+ifV2bYmVovwutO3jwwjPMzCOV3bcdcFvZrkQYmJw2blh7RL2PTXixnVBGWFWoKWjPHsBhzy+3wYSGnObQghZgAzALp16xasmUaj0WjqjcRwp9X8BEnPKmJvdgkdGpiJ0kRKyYQnVhAXGVYtI6SUkh9zSqioclNYVlWrzmNhWRV7s0uQgEC5I5qlCk6F9Kwi9p0oIcpuZc39F1Vzh+uZqATSI5/trFYXLxgej2RrZgFXDE6utSwxyoHdaqnT1XbzoZO0jwzj0wDufr0N18sfs4uD3oR+fzCfMqebHolRvH/XGBZsPsKs93/gu/15jOmdiNsjOV5UwZTnVxNpt3oTlGTml1Fe5aZDjBICQggu6NtR1R50eQJaWrdmFjAiNb7avG9251BS6eJkWZX33JhC99YxqQDeZEQ16d9Zzd91rIiu7SMor3LTr4mEZ3SNrLmVLne9stp29WbqrX7evjuQR5hVMKJ7fKDV6kWHGAed24V7HzaY7MspaVBplkD0NZJEuTyy3t+RlPhILAIO5pbh9kg8UjJpQBI9jGQ+ex5VtqIXvvmRJ5fsZfOhk3z7F5Ul9fuDeXSLj6yXm+rFA5JIW7iTuBru6A1hdI8E7DYLX+/K4cGPdxBpt/LCDcO8JXPSFu7k0asGklVYweXPrKS4QtU+/fyesV6L+y/mfYdHwsWNEJ4AK/9y+jPEtkWazeIphNgshMgNMp16ZHgjkFK+IqUcIaUc0aFD48z5Go1Go/FHWzzPVPbllHD1i2tCtnlpxT4A8suq6l1sXkrJFc+t4tp5a3l3QyaH8su8Asy0wK3Yc4IypxuPhP+ty/Cue82/1nL1i2t4YsluXB5J/04xfHb3WFxuyUX/XFFtP9fOW8u189bW2v+189Zy5Qura83fcbSQK19cjdUi+ObeCbVisNpFhuGwWcgtcXpjA0Ox70QJxRUuhnWLq7XMYhEIAR9uPBJyG5sPn2RYt/YBrSZmxtm9OcFLvHyyNQuLUIl+ACYP6ozNIvjdO1sAOF5UwZGT5Ww/WlitlMcSw/Xxf78e5Z03oW8HSipdTA0wdtlFFRwrrGBISvVjNWM0dx8rqrXO3uwShPAJ6JokRDtIinWw61iRN7FQ306xQY+1IUSHVxeeznqWUwkPs9IxxlHN3Tq/1MnrazIIt1kbHLdXk0Fd2nljZQHcHsnB3FJ6dWh8fCdglHdR7+srPB02K13aR5CRW8p3+/PIKa7kqiG1EwX9dmJvYsJtZBWW43R5kFKyIeMkI1PrJ8KT4yI4Ozm20dZOgAi7lXCbhdfXZnAov4zd2cXMem8rUXYr00d14+31h+k1exEX/L/llFS6sFkFVR7Jg5/s8FpqTxRX4rBZGNilaa4xTWCaTXhKKYdJKRODTG6UdbK73yrdgMwG7qYptqHRaDSaRlOv5EKaNkiV28OWzAKGPLKEKc8rl9eJT65gwhPL8XgkU19YzefbjhFlt+L2SNbsy622/qVPr2Ts49/USmbz1rpD7MgqIv1YMX//QtXuyy91Uu50k36siJ1ZRTzx1R66xEUw7qxE/rsmg4oqN4fzytiaWcCWzALeWneYX52fyuf3jKN/51i6tI/gZFlVNVe7g7ll7DpeTLnTzbXz1vILQ4TmlTr54Uiht74mwKR/rmDqC6vpGBPO53ePIym2ehZak3k3Dae8ys1ji3Yz7h/fMPGJ5d7aiDXZfEjFdw7vXjsjLaib5aKKqmrr/8JPLBeUOdl/opRhQdbv3C6cGIeNH7MDZ9p1ujws2n6Mqeck86Hh6hseZiUx2sHJUicbMvI5XlhBbLiNxGg7x4sq2H1cCcSl6cfpkxRdLTHM2N6J2CyCAydKvTGOlz2zkiFzlvD+BnXrNSSlXbU+xIaHIQQs2+Ub6zKni+NFFezIKqRr+4iQYm1A51jSjxWx53gxQhDULbeh+NcJlVKSfqyI7UeDJ8vxJyU+kt3Hi9h2pIBJ/1zBmMe+xun2VHPLbiyDurTjQG4pRRXqgd2Rk2U43Z5TSiwE6lozYzYTGuAVUFRexZL047y17hAxDhsX9a+d/EcIwXO/HEqVW/LZD1le74NRPepv/f3innHea7SxdIhxEGYV/L9rBhNus/LDkUJuH9eTR68cSPeESIQQRNqtLJt1AT/+fTJ/u3Ig6w7kc9E/v2XH0UKKK138+dK+Teoaq6lNS8Z4fgDcCSCEOAsYCXzZwG18BFwlhOhgZLO9A3i/SXup0Wg0mhDo5EJnKmFWC53bhVNS4WL38WLmrz/MwdxSMvLKGDTnK7YfKcQiYOmsC4h22Fj4QxYXPrmCS5/+ltySSvadKOFIQTkPfrqDg7mlbDqUz7YjBfx90S4i7VZKKl2UOV08Pm0QHgl/+mArxRVqXvqxImxWwW8n9iav1MnIvy/j1te/B1SineS4cP50SV9vX5f8cTztI8N4abmywK7Yk8OJkkqKK1zMen8ru48Xs+VwAQdzS73W1ccX76bc6ebcvy9j34lSIu02Pvnt+SHjCCf27UhitJ3X12aQebKcg3llDH74K68w92fzYeUma7om1mTu1YOocktWG4I9p7iCLYcL2H28mLySSrYcLgAIWEoF1A1/76Ro9mYXI6WsJfBX7j1BYXkVV9awUiXHhRNmtXDDv9fj8kjm3TSc7oZb5b9W7KegzMmGjJO13ImjHDYW/m4sbimZ+OQKhj6yhN3Hiykor+KfS/diswjOTq4uPD/8zRgm9u3I0l3Hlft0djG7jhVzKK+MpenZFJeH/n3Yc7yYPceLmfftfuxWC5H2pokQ87raVrhYsecEFVWeert6ZuaXseNoEVNfWMO+E6W4PJIP7jyPr/7Y8NqdNRnYVY3fzqPqAYA3o+0pWjzBJ9ob4o4eabdRUeXhy53HCQ+zBK0lOqFPB/omxfDKygPeBFTnNkB4NgVf/2kCP/59MteOSKFfpxi6to/gzgt6YrEIvv3zRPbPncy2hy+lpzGW149MIdph42BeKbM/3k6k3covRjQ04k/TUFoyxvMJ4HUhxD7ADcyQUhYDCCEeAbKklPMMt9xDgANVC+4I8KqU8mEp5QEhxN+AdcY2lwBvnfYj0Wg0mp8s9arjeVoRQgwAfg9YUf9zv5KBsptoQtK7YzTfPXARO7MKmfL8amZ/vJ1BXdpx7Yiu/O3zXVgtgj5J0STHReCwWViw+ah33RtfXY/HI0mMtjN//WHmrz/sXWa1CNbePxEh1I1/94Qonlyyl0XbjxNpt9K/UwyF5SomcFSPeLrHR3I4v4ySChfvzhgdMJ4x0m7jtvN78M+le/l4yxFvrbsrBnfmuW+UGLUKwTX/WktFlYcrhyTz6dYsLnhiOTnFlXRuF87Kv0z01tULRfeEKGIcNmIjwiitdJGRp4TIn97/gVU/nqBDtIP/3DqSDzcdIS4yeM3Ei/p3pH1kGO9vzOSCPh14bNFu3B5JUYWL0Y99zZheiVgtgnNqWBH9OatjNF/vymHEo8soqXSx6Pfj+O3bm8ktqaS00o3NIhhbo1zJgpnn80NmAVe9uIYou5Xzeibw0czzmbtoF6+uUsLB7ZFcHKBUw4DkWPp3iuFoQTkllS4Souy8M2M0U19Yjd0aWJhM6p/EN7tzWJqezW/nb8btkfRMjCK7qKLOGqYx4WFkFVbg8njoFMQK3RhM4Vlc4eLF5fvonhDJ0ln1E46r7pvIjqNFnCiupGv7CPp2iqnXdVMfBnVR53r70QLOSWnHnz/YBkDvJhCefZNi+GpnNgkNiMde9ZeJ7Mwq4mhBOaNDJLMRQuD2eNh3opRHv9hFxxjHKWXhPVU+rkdsqcX4/dqbXcK2I4UkxThqlT3SND0tJjyllKXAL4Ise8jvvRvoGmI7LwMvN3kHNRqNRlMPTFfbU0MI8STwcyAVGCSl3GHM7wO8ASQAecDNRib0oEgp0/F51HwARBE4M7qmHpyd3I7eHaLJKqzgpRuGkRIfyU3npVZr06ldOE63h8enDebTrUdZkp5Nl7hwVt93IRc/9S0eCf/3s/48vHAnMeE2ryurmVfGDK978YZhTOxb3Z3v279MxOX2UFBeFTIj583npfL0sr388b0fEMBbt4/ivJ4JfLH9GMeLKkhuF8GPOSWEh1l46tohfL0rh7xSJ6/ePIJJ9UgWZFIzQ21+qZNLnv6WT7YeRUpJbkkld7+zmTCrhY9D1Jx02KxcOaQL89cf5umle/l4y1HuvrA3y3fnsP9EKd/uPUGk3RrSytcnKYb3jThRIWDq86spdSrBaRGCzu3CA4qic1LiODs5ljCrxSuMbx/bg/+sPkhReRVJMQ4GdwkseD+/Z1yteelzLsMZJMZ3Uv+OzP4Y7nprExYhiLBb6RDj4Jt7JwQ9LpOv/jieiip3UEtbYzFdbR9euBOn28Oz1w+pt3h02KxB3adPlcRoB8ntwnl7/WGe+GoPVW5Jp9jwWsm1GsOS9GwsgpB1NWtis1o4JyWOc2rE7gZi2Z8msHZ/Lr9+fSMWQZtwWV0w83wqqty8vzGTKQGSgGmaHvFTfQg8YsQIuXHjxpbuhkaj0ZxWhBCbpJQjmm57fSS8VEeri+vcpxBiLMq7ZRVwhZ/w/AZ4TUr5lhDiRuA2KeWFxrJe1H7w+JWU8gkhxETgdqAI+K1RckvTABr7P+n2SNYfyOPcHvHY6nkzn1/qZPW+XKYM7nxKN6zpWUXklVbSNymGjgEsZAs2H6FPUgwDu7SjzOnC5ZHe4u5NQXZRBeP/33IqXR7uvaQPv7vwrJDt9xwv5lKjFEyk3cqmBy8mwm6lyu3h4qe+JTzMypd/GB90/ZV7T3Dza9/TPjKMj34zhikvrCY2PIzl905olFirdLmx+4nRpmJg2leUOV188tvzGdw1rkm33RjcHkmf/1uMW0qS26kHJJZG1lZsakY+upS8UicT+3bkzgt6NanLqscjW81xas5cQt1naOGp0Wg0PyGaXnieJeG5OlpNrvc+hRAZGMJTCNER2AskSCndRuhFHnCWlDJ4Jfvq23se+K+UcnN92p/JNNR6rP8nG8fRgnK+2JbFLWNS61V7saDMiUAQHW5rcGH5KreH+esPM21YF2KaUEA3NTlFFbg88pQylzY1WQXlxEaEed1uWwtSSlwe2WTuuxrN6SbUfUbr+rZpNBqNpo1RrzqeiUIIfwXzipTylXpsPAU4aoRcYIjPLGN+UOEphJgAXIMq8RgG7KjHvn4KzANe9LMevwxc2MJ9OuPoEhfBjPG96t0+LrLxtUfDrBZuMephtmYCWZ9bmtYkgv0RQhBm1VZJzZmJFp4ajUajOQXqlVyoCtgMfCal/KzZeyTlCmBFc++nLWFYj4cBFxuz3gFeEEJ0qK/1WKPRaDSaU0ELT41Go9GcAvVKLlQopZzRiI1nAl2EEFY/V9tkdL3mxlAv67EQYgYwA6Bbt24t0U+NRqPRnKFoB3KNRqPRnAL1quPZTgjxihBiSoO2LGUOsBX4pTHrl8AWbaFrPqSUr0gpR0gpR3To0KGlu6PRaDSaMwht8dRoNBrNKVAvV9s6LZ5CiOeAaUAnYJkQIk9KeTZwF/CGEOIh4CRw86n3+SeJth5rNBqNpkXRwlOj0Wg0p0C9XG3bCSFeIUSMp5TyHuCeAPN3A6NOtZc/daSUOUKIrSir8Vto67FGo9FoTjNaeGo0Go3mFDBdbUPS2BhPTdOirccajUajaTG08NRoNBrNKVAvV1tNK0BbjzUajUbTkggpZUv3oUUQQpwADp2GXSUCuadhP20BPRYKPQ4+9FgoTuc4dJdSNlnWGCHEl6j+h2wGbOI0lVPRNA2n8X+yvrTl34u22ve22m/QfW8pdN9bhtbU96D3GT9Z4Xm6EEJslFKOaOl+tAb0WCj0OPjQY6HQ46DR1E1b/p601b631X6D7ntLofveMrSVvutyKhqNRqPRaDQajUajaVa08NRoNBqNRqPRaDQaTbOihWfz80pLd6AVocdCocfBhx4LhR4HjaZu2vL3pK32va32G3TfWwrd95ahTfRdx3hqNBqNRqPRaDQajaZZ0RZPjUaj0Wg0Go1Go9E0K1p4NgFCiEghxHtCiH1CiN1CiCuCtOsihFguhCgUQmwMsPwOYxv7hRAvCCHa1Pmp7zgYbQMeqxBighCiTAix1ZjWn74jODWEEH2EEN8JIfYar2cFaGMVQrxoHPc+IcTt9VnW1miCsXhYCJHjdx28eHqPoGmo5zhcIoTYKISoFEI8WWPZGXNNaDT1QQiRIIRYJITYI4TYJoRYIIToYCyr8/vUWhBCpAkhpBBioPG51fddCBEuhPiXEOJHIcR2IcQrxvy20PcrhBBbjP+LbUKIacb8Vtd3IcSTQoiD/teHMT9oX1vLcQTqe6jvbGvve43laQ05J6eTENdMwO9sa+p7LaSUejrFCXgIeNV4fxZwHIgO0K4dMB64AthYY1kP4AjQAfVA4Cvg5pY+tmYah6DHCkyoOTZtZQK+AW403t8IfBOgzc3G8VqM4z8CpNa1rK1NTTAWDwNPtvRxnKZx6A0MBR6tecxn0jWhJz3VZwLigQl+n58A/mO8r/P71BomYBiwGFUDdWBb6TvwHPA0vjCspLbQd1Sd4JN+Yz0YKDZ+N1td34GxQAqQYfa5rnFuLccRqO+hvrOtve9+y2p9Z9tC34N9Z1tT32sdS0t34EyYgJ3ACL/PnwO/CNF+ArWF55+BF/w+XwN80dLH1hzjEOpYA41NW5iAjkABYDU+W43PHWq0+wK4xu/zC8Cf61rWlqYmGouHaePCs77j4Ne+1jGfKdeEnvTU2An4ObCsod+nFuyvA/gO9YA1AxjYFvoORBt9iq4xvy30XQB5wPnG5/HA3tbed6qLt6B9bY3HQQDx5rfs58Cy1nr91Ox7oO9sW+h7sO9sa+27ObUpV85WTDfUUxKTw6gnE6d7Gy1NfY+hrnZ9hBCbhRDrhRC3NH03m4UU4KiU0g1gvGZR+/hDHfuZcA1A04wFwPWG284SIcR5zdnhZqK+4xCKM+Wa0GgajFAhGL8BFtI036fTwSPAW1LKg37z2kLfe6HEW5rh+r9CCGFaWVp136W6s74W+FQIcQj4BLiFNtB3P0L1tc0cR43vLLSNvgf6zkLr73uw7yy04r5r4VkPDBGUG2SytnT/ThenaRw2AylSymHA9cBDQohJTbRtTdthHtBDSjkY5bbzqRAioYX7pNFoTi/PAyUoS3+rx3hANhJ4qaX70ghsQE9gi5RyBHAfsABlVWnVCCFswAPAlVLK7sAU4D3aQN/PQPR39vQR8DsrhIht2W6FRgvPeiClHCalTAwyuVFWiO5+q3QDMhu4m6bYRrPShOMQtJ2UskhKWWi8P4h6cnl+MxxOU5MJdDEFuPGaTO3jDzVGrf4aqCenPBZSyuNSyirj/VJjfq1kAK2c+o5DKM6Ua0KjaRBCJdo6C7hOSumhab5Pzc0FQD/goBAiA+iKitHuRevv+yHABbwDIKVcD+QC5bT+vg8BkqWUawCM11Kggtbfd5NQ13dbuPYDfWeh9fc94HdWCHEJrb/vwb6zfWjFfdfCs2n4ALgTwMgaNRL4soHb+Ai4SgjRwXBVuAN4v0l72fzUdxyCHqsQorMQQhjv44FLgK3N3/VTQ0qZg+rnL41Zv0Q9hTpRo+kHwB1CCIuR9e0q1HjUtazN0BRjIYToYjYSQgwBUoE9zdnvpqYB4xCKM+Ka0GgaghDi78Bw4CopZSU02fepWZFSPi6lTJZSpkopU1HJwC6VUr5P6+97LrAcuBhURkxUnNheWnnfUePcVQjRF0AI0R/oBPxI6+87EPr6bgvXfqDvLLT+722I7+ySNtD3YN/Zfa26700RKPpTn4Ao1A3iPtTN8ZV+yx4B7pK+4N4jwAnAabx/2K/tncB+Y/oXRlBwW5nqOw6hjhX4HSpJ0VZgB/CXlj6uBhx/P2A96o96PdDXmL8II+mScQ38y+/YZ/itH3RZW5uaYCzeMM7/D8AGYHJLH1MzjsNY47egCJWJ0fzjO6OuCT3pqT4TcDYgjf+Qrcb0sbEs4PeptU5UTwTS6vuOcttbAWxHhb1c3ob6foPR7x+M6arW2ndUJtIjKGvVcWBnXX1tLccRqO+hvrOtve8B2ni/s22h78G+s62p7zUnM/2uRqPRaDQajUaj0Wg0zYJ2tdVoNBqNRqPRaDQaTbOihadGo9FoNBqNRqPRaJoVLTw1Go1Go9FoNBqNRtOsaOGp0Wg0Go1Go9FoNJpmRQtPjUaj0Wg0Go1Go9E0K1p4ajQajUaj0WhaHCFEhhBi4GnYz1QhxBPG+1QhxIxT2JYUQkQ3cJ3XhRBHhBDPBVk+QQixsbF9MrYxRgixtTH902iaCy08NZrTgPHDv00IMakR674phDguhHiyOfqm0Wg0Gs1PCSnlQinln42PqUCjhecp8LiU8p7m2riUcq2UckhzbV+jaQxaeGo0p48xUsplDV1JSnkzMK8Z+qPRaDQaTatHCHGzEGK78QD3YyFER2P+rUKIJUKI94QQO4UQa4QQnYxldiHEK0KIvUKI1UKIF4QQH/qt96Gx+ReBAYZ10FxezUro/1kIMU0IsVsIsVYI8WCNfo4SQiwXQmwypp814BgfFULsE0J8C/ysxrJbhBDrjW1+I4ToW9cxajStES08NZpGIoToJ4TIFEJ0Nz4/LIR4t57rvi6EeNn4AzkkhHhaCHGhEGKV4Wr0++btvUaj0Wg0rR/D9fZx4BIp5WBgB/C8X5ORwL1SyrOBdOBuY/6dQDdgADAJGBFkF78F0qWUQ6SU19TRl47Av4ErpZRjAKffsjjUQ+LpUsrhwBXAy8b8uo5xCjAVGAJcCPTzWzYOuBYYb2z3CeC1Bh6jRtMqsLV0BzSatoqUcrcQYjbwnhDiIeCXqD/A+nI2cBFgBTKAdsAFQGdgjxDiP1LKkqbttUaj0Wg0bYqJwCIp5THj88vAD37L10gpM43364CL/db7n5TSBbiEEO8A406xL6OBzVLKPcbnV4B/GO/HAD2AxUIIs70EegN1xWtOBN4z//OFEP8BTGvqFOAcYL2xXQG091uvqY9Ro2k2tPDUaE4BKeX/hBAXAZ8A46SURQ1Y/RMpZSWAEGIP6o/VAxwVQpwEugK7m7rPGo1Go9G0IQRKwPnj/7nC770b371toPXqixvDK1AIEV6jL8EQwDYp5fhG7K+u7b4mpXwoyLLGHqNGc9rRrrYazSkghLCjLJcFQFIDV6/5Zxnsz1Oj0Wg0mp8qXwOTzdhN4A6gPvkSlgM3CiFshni8Lki7IpTHkT/78XkwTfeb/x0wVAhxlvH5dr9la4GzhBATzRlCiJHCz/wZgq+Ba4UQUUIIK/Arv2WfATcLIboa27QKIYY38Bg1mlaBvrHVaE6NJ4BNwK0o95oxUsojLdsljUaj0WjaLMuEEC6/z4OAB4ClQggJHEDFNtbFPJSL6k4gE/VfHRmg3TZUeMsOYLcR5/lHVHzmMeBzs6GUMscovfKZECIfeN9v2UkhxFTgCSHEM4Dd6OsU6rBKSik/F0KcB2wFslCCsouxbKUQ4v+AhYYotQMfGMdT32PUaFoFQkptoddoGoMQ4ipgDjBKSlkhhPg1SoBONOIt/NtKIMYvfuN1YKOU8gXj8wrgSSnl58bnDOAKKeUO4/PDQLSU8t5mPzCNRqPRaM4AhBAxUspiIYQDWAh8IKV8tRX063X87gFOcVshj7Hm/YdG05Jo4anRnAZO9YdfC0+NRqPRaBqGEGI94ADCUe65f6j5YLglEEI8C1wOfHmqtTyDHaMQYgzwEtAJ6CmlLDvFbms0p4wWnhrNaUAIcRzIBv7U0FqeQog3Udny3pRSPtIc/dNoNBqNRqPRaJoTLTw1Go1Go9FoNBqNRtOs6Ky2Go1Go9FoNBqNRqNpVrTw1Gg0Go1Go9FoNBpNs6KFp0aj0Wg0Go1Go9FomhUtPDUajUaj0Wg0Go1G06xo4anRaDQajUaj0Wg0mmbl/wO00ZPfVPm3ggAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "plotter.make_sub_plot(data_cryo, log=[True, True, True, False], orders_of_mag=5)" ] @@ -436,9 +1299,22 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0cAAAFzCAYAAAD1znIRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADZD0lEQVR4nOzdd3iTZfcH8O+dtmnatE0HUDbIliFTpgsHCAqKA3EhogLi3ryOn/i691YcrwqCKCgiiAMHCAgoyJC9KVC6d5M0aZLz++Mk6UrTJE2bAOdzXVyhyZMnd9OM5zzn3OdWRAQhhBBCCCGEONVpQj0AIYQQQgghhAgHEhwJIYQQQgghBCQ4EkIIIYQQQggAEhwJIYQQQgghBAAJjoQQQgghhBACgARHQgghhBBCCAEAiAz1AIKpSZMm1L59+1APQwghhBBCCBHG/vnnn1wialr9+pMqOGrfvj02btwY6mEIIYQQQgghwphSKs3T9VJWJ4QQQgghhBCQ4EgIIYQQQgghAEhwJIQQQgghhBAATrI5R0IIIYQQwjOHw4Hc3FwUFhbCbreHejhCNDidTofWrVsjKirK5/tIcCSEEEIIcQo4duwYlFJo3749oqKioJQK9ZCEaDBEhLy8PBw7dgynnXaaz/eTsjohhBBCiFOA0WhEq1atoNVqJTASJz2lFFJSUlBWVubX/SQ4EkIIIYQ4RWg0cugnTh2BnASQd4gQQgghhBBCQIIjIYQQQggRIgsXLkTfvn3Rp08fdOvWDdddd12jPfbMmTPx4IMP+n2/Pn36wGw2N8CIRDiQhgxCCCGEEKLRZWRkYPr06di0aRPatGkDIsLWrVtDPaw6bdmyJdRDEA1IMkdCCCGEEKLRZWZmIioqCikpKQB4fkifPn3ct19//fUYMGAAevXqhXHjxqGgoAAAsHLlSvTu3Ru33XYbevXqhX79+mHHjh0YP348unfvjpEjR8JoNALg7ND48eMxevRo9OjRA1deeSWKioo8juell17CwIED0a9fP4wZMwaZmZket1NKobS0FADQvn17/N///R+GDBmC9u3b45133qn1933++efRq1cv9O7dG0OHDoXD4UBmZiaGDx+O/v37o0ePHnj44Yfd28+cORPXXnstRo8ejW7duuGSSy6ByWTy/QkWAZHMkRBCiBOC0Qjk5ADt24d6JEKcJO69F2ioLEifPsAbb3jdpHfv3hg4cCDatm2L8847D2eddRZuvPFGd7D05ptvokmTJgCAxx9/HC+++CJeeOEFAMDOnTsxe/ZsfPTRR7jjjjswcuRIrF+/Hq1bt8bo0aMxf/583HrrrQCA1atXY8uWLUhNTcXkyZPx9NNP45VXXqkylrlz52L//v1Yv349NBoN3n//fTzwwAOYN29enb+qyWTCunXrcPjwYfTs2ROTJk1CXFxclW1mz56NJUuW4M8//0RCQgLy8vKg0WiQmJiIpUuXIi4uDuXl5Rg5ciR++uknXHzxxQCAjRs3YsOGDTAYDBg5ciTmzZuH2267rc4xicCFPDhSSukAvA7gQgBlANYR0RSlVBcAswGkAMgDMJGI9oVupEIIIULplVeAd97hAEkIceLTaDRYvHgxtm/fjj/++AOLFy/Gyy+/jG3btiE5ORlz5szBvHnzYLVaYTQa0aVLF/d9u3bt6s4y9evXD2lpaWjdujUAoH///ti/f79720svvRSpqakAgFtuuQV33XVXjbEsWbIEGzduRL9+/QAANpsNBoPBp99jwoQJADiLlJSUhGPHjqFbt25Vtvn+++9x++23IyEhAQDcAaDdbsdDDz2EtWvXgoiQmZmJLVu2uIOjkSNHIjExEQAwaNAgHDhwwKcxicCFPDgC8BI4KOpCRKSUSnVePwvAu0Q0Vyl1A4APAJwfqkEKIYQIrYMHgdxcwGYDIsPh20uIE10dmZ3G0rNnT/Ts2RN33HEHunfvjpUrV6Jp06Z4//33sXbtWjRt2hRffPEFPvzwQ/d9dDqd+/8RERE1fq6tYQIReWzvTER4/PHHMXnyZL/HX/2xbTabx/178tprr6GgoAB//fUXdDodpkyZUmVdHl9/LxE8IZ1zpJSKAzARwBPkfNUQUZZSqhmAfgDmOzedD6CfUqppaEYqhBAi1FwZI+dUAiHECS49PR3r1q1z/3zs2DHk5OTgtNNOQ2FhIQwGA1JSUmCxWPDJJ58E/DjLli1DjvMD5LPPPsPw4cNrbDN27Fi899577nlNFoslqM0hxowZg/fffx8lJSUAgLy8PABAYWEhWrRoAZ1Oh/T0dHz33XdBe0wRmFCfe+sILpl7Uik1HEApgMcBmAGkE5EdAIjIrpQ6DqANgCoFFUqpKQCmAEDbtm0bcehCCCEaU3Y2X5aWAj5WuwghwpjNZsOTTz6JtLQ0xMTEwOFw4JlnnkHfvn3Rq1cvzJ07F926dUPr1q0xYMAA/P333wE9zgUXXIDJkyfj4MGD6Nq1K1599dUa29x4443Izc3FueeeCwBwOByYPn06evfuXa/f0WXixIlIT0/H4MGDERkZifj4eKxatQp33303rr76avTt2xdt2rTBBRdcEJTHE4FTtaX5GuXBleoPYCOA64noC6XUIABLAVwN4D0i6lFp250AbiCiTbXtb8CAAbRx48aGHrYQQogQaNsWOHoU2L0b6No11KMR4sSza9cunH766aEeRqOaOXMmSktLazRgEKeO2l73Sql/iGhA9etD3co7DYANzvI5IvoLQC44c9RKKRUBAM7LlgCOhmicQgghQoioauZICCGEaAghLasjolyl1AoAFwFY7uxQ1wzAXgBbAFwLYK7zcjMRSY8iIYQ4BZWWAhZLxf+FEMIXM2fODPUQxAkm1HOOAGAagE+UUq8CKAdwIxEVKqWmAZitlPo/AAXgxg1CCCFOQa6sESDBkRBCiIYT8uCIiA4COM/D9bsBDGr0AQkhhAg7EhwJIYRoDKGecySEEELUqXJwJK28hRBCNBQJjoQQQoQ9yRwJIYRoDBIcCSGECHs5ldrxSHAkhBCioUhwJIQQIuxlZwMJCUBUlARHQpxMFi5ciL59+6JPnz7o1q0brrvuukZ77JkzZ+LBBx/0+359+vSB2WxugBEFLhzHVJvFixf7vKDvypUrsXz58gYeUVUhb8gghBBC1CU7G2jaFMjPl+BIiJNFRkYGpk+fjk2bNqFNmzYgImzdujXUw6rTli1bQj2EGhpyTHa7HREREUHb3+LFizFgwAAMHDiwzm1XrlyJ0tJSjBgxImiPXxcJjoQQQoS97GygWTNe60iCIyGC4957gYY6pu7TB3jjDe/bZGZmIioqCikpKQAApRT69Onjvv3666/Hnj17YLFY0KlTJ3zyySdISkrCypUrcc8992DgwIFYv349oqKi8Pnnn+Opp57C9u3b0aZNGyxatAh6vR4zZ87Ezp07UVpairS0NHTr1g2ffPIJDAZDjfG89NJL+Prrr2Gz2dCqVSt89NFHaN68eY3tlFIoKSlBXFwc2rdvj4kTJ+KXX35BRkYGHnzwQdx5550ef9/nn38eX3zxBTQaDfR6PdasWYPs7Gxce+21KC4uRllZGS655BK89NJLADiztWfPHhQVFeHgwYPo2LEjFi5ciNjY2AYd06pVq3Dvvffi7LPPxoYNGzB9+nQ88sgjOHToEHQ6HQBg7NixmDBhAq677jrMmTMHL7/8MpRS6NixIz744AM0a9YMa9euxZ133gmHw4Hy8nI8/vjjSE5OxpIlS/Drr7/i448/xv33348RI0Z4fA62bduGWbNmweFw4Ndff8WECRMwY8YM7y+qIJCyOiGEEGHPFRzFxUlwJMTJonfv3hg4cCDatm2Lq666Cm+88Qby8vLct7/55pvYuHEjtm3bhh49euDFF19037Zz507ccccd2LZtG4YMGYKRI0fitddew86dOxEREYH58+e7t129ejU+/fRT7NixAwaDAU8//XSNscydOxf79+/H+vXrsWnTJowePRoPPPCAT7+HyWTCunXrsHLlSsyYMQOlHj6kZs+ejSVLluDPP//E1q1bsXTpUmg0GiQmJmLp0qX4559/sGXLFmzcuBE//fST+34bN27EF198gV27dqG8vBzz5s1r8DEBwLZt23Dddddh/fr1mDhxIs4991x89dVXAIC0tDRs3LgRV111FbZv344ZM2Zg+fLl+Pfff9GzZ0/cddddAIAXX3wR9913H7Zs2YLt27dj1KhRGDlyJMaOHYsZM2Zgy5YtmDhxYq3PQa9evTBt2jRMnDgRW7ZsaZTACJDMkRBCiBNATg4weDCQni7BkRDBUldmp6FpNBosXrwY27dvxx9//IHFixfj5ZdfxrZt25CcnIw5c+Zg3rx5sFqtMBqN6NKli/u+Xbt2dWeZ+vXrh7S0NLRu3RoA0L9/f+zfv9+97aWXXorU1FQAwC233OI+eK9syZIl2LhxI/r16wcAsNlsHrNLnkyYMAEA0L59eyQlJeHYsWPo1q1blW2+//573H777UhISAAAd7bMbrfjoYcewtq1a0FEyMzMxJYtW3DxxRcDAEaOHInExEQAwKBBg3DgwIEGHxMAdO7cGUOGDHH/fPfdd+O+++7DTTfdhPfffx+TJ0+GVqvFihUrMHr0aLRo0QIAMHXqVPTu3RsAMHz4cDz//PNIS0vDRRddhEGDPC9fWtdz0NgkOBJCCBHWHA4Ojpo2lcyRECejnj17omfPnrjjjjvQvXt3rFy5Ek2bNsX777+PtWvXomnTpvjiiy/w4Ycfuu/jKu8CgIiIiBo/19acgIiglPJ4/eOPP47Jkyf7Pf7qj22z2Tzu35PXXnsNBQUF+Ouvv6DT6TBlyhSUlZXVum9fmy7UZ0wAEBcXV+XnoUOHwm63488//8Ts2bPdDRU8PZ+un++9916MGTMGv/76K+666y6MGDECzzzzTI3Hqus5aGxSVieEECKsFRQAdruU1QlxsklPT8e6devcPx87dgw5OTk47bTTUFhYCIPBgJSUFFgsFnzyyScBP86yZcuQ41wP4LPPPsPw4cNrbDN27Fi89957KCgoAABYLJagNocYM2YM3n//fZSUlACAu3ywsLAQLVq0gE6nQ3p6Or777rugPWagY6rNXXfdhQkTJmDIkCFo06YNAOCCCy7ADz/8gMzMTADARx99hAsvvBAAsHfvXnTs2BFTp07FPffc4w6oEhISUFRU5N6vt+eg+raNQTJHQgghwpprAVhXcGQ0hnY8QojgsNlsePLJJ5GWloaYmBg4HA4888wz6Nu3L3r16oW5c+eiW7duaN26NQYMGOBz++fqLrjgAkyePBkHDx5E165d8eqrr9bY5sYbb0Rubi7OPfdcAIDD4cD06dPdJWL1NXHiRKSnp2Pw4MGIjIxEfHw8Vq1ahbvvvhtXX301+vbtizZt2uCCCy4IyuPVZ0y1mTBhAu644w5Mnz7dfV2PHj3w/PPP46KLLoJSCh06dMAHH3wAAHjrrbewYsUKaLVaREdH4+233wbAz/WkSZOwcOFC3H///V6fg3HjxuHzzz9Hnz59Gq0hg/KWUjvRDBgwgDZu3BjqYQghhAiiVauAc88Ffv0V+PJL4IcfeO6REMI/u3btwumnnx7qYTSqmTNnorS0FK+88kqoh3LCW7NmDaZNm4Zt27Z5LE0MV7W97pVS/xDRgOrXS+ZICCFEWHNljmTOkRBChMYtt9yCX375BXPmzDmhAqNASHAkhBAirFUvqystBYiAk/z7WQgRBDNnzgz1EE4K//vf/0I9hEYjDRmEEEKENVdw1KQJoNdz97oQNjISQghxEpPgSAghRFjLzgZSUoDISM4cAVJaJ4QQomFIcCSEECKs5eRwSR0gwZEQQoiGJcGREEKIsJadzc0YAAmOhBBCNCwJjoQQQoS17GzJHAlxsmrfvj26deuG3r17o1OnTrjsssuwdu1a9+2zZs3C66+/7v755ptvRo8ePXDNNdd4/PlEdN555+H7778HANx6661YvXp1wPtq3749tm/fHqyheaWUQqmHD+OVK1di+fLlQXmMV155BV27doVGo3E/Ry5ZWVkYMWIEunTpgt69e+Ovv/4KymNKtzohhBBhzVNwJAvBCnHy+Prrr9GzZ08AwKJFizB69Gj8/PPPGDRoEKZNm+beLisrC9988w0KCwuh0Whq/Owrh8MBpVRYtqT++OOPQz2Eelu5ciVKS0sxYsSIeu/r3HPPxeWXX45bb721xm3/+c9/cM4552D58uVYs2YNrr/+euzbt6/ef1fJHAkhhAhb5eVAfr5kjoQ4VVxxxRWYNm2ae9HWmTNn4sEHH0RJSQmGDx8Ok8mEfv364emnn67ysyu79NJLL2HgwIHo168fxowZg8zMTPd+brjhBlx++eXo3bs3CgsL8cMPP2DYsGHo378/hgwZgvXr1wPgg/s+ffpg6tSpOOOMM9C7d2/s2rXLPcZPPvkEvXv3Ru/evXHmmWciKysLAGrdX3U7d+7EoEGD0K9fP9xwww0oq9R+s3IW6cMPP8Tpp5+OPn364IwzzsDu3bsBcHbIFRh06tQJ77zzjsfHefXVV3HmmWeib9++GDJkCLZs2eK+bd26dTjrrLPcv4cr07Nnzx6MGjUKZ555Jnr37o1PP/3UfZ9FixahW7duGDp0KJ555hmPj7lt2zbMmjULc+bMQZ8+ffDCCy8AAObMmYNevXrhjDPOwLhx45DtakNahzPPPBOdOnXyeNuCBQvcwfNZZ50FnU6HjRs3+rRfbyRzJIQQImzl5fGlzDkSIvjuvffeKgfMwdSnTx+88cYbAd130KBBWLJkSZXr4uPj8cMPP2DAgAHuMd94441Vfp47dy7279+P9evXQ6PR4P3338cDDzyAefPmAQBWrVqFTZs2oUmTJjhw4ACefvpp/Pzzz0hISMCOHTswatQoHDlyBACwY8cOfPrpp/jggw/w7LPP4plnnsG8efOwcuVKPPfcc1izZg2aN2+O0tJSREZG1rm/ym688UbcfffduOmmm7B+/XoMGzbM4/Pw0EMPYfv27WjTpg0sFgvsdrv7tqysLKxatQpZWVno27cvzjnnHJxxxhlV7j9x4kQ88MADAIBff/0V06ZNw/r165Gfn49x48Zh0aJFGDp0KOx2O4qLi2Gz2XDddddh3rx56NatG0pKSjBgwAAMGTIEycnJuO2227B27Vp07doVL730kscx9+rVC9OmTUNpaak7wN2+fTtmzJiBf/75By1atMATTzyBu+66C1999ZW3l4FXeXl5ICI0adLEfV3btm1x9OhRnHnmmQHvF5DgSAghRBirvAAsIMGREKcCIgrofkuWLMHGjRvRr18/AIDNZoPBYHDfPnr0aPfB9M8//4wDBw7gnHPOcd9us9ncWaCuXbuib9++AIDBgwdj6dKlAIBly5Zh4sSJaN68OQAgzvmh5G1/qamp7uuKi4uxfft23Hjjje599+rVy+Pvc/755+Pmm2/GZZddhksuuQQdOnRw33bLLbcAAFJTU3HJJZdg5cqVNYKjf/75B8899xzy8/Oh0Wiwd+9eAJw16t69O4YOHQoAiIiIQFJSEnbu3Ildu3ZhwoQJ7n1YLBbs2rULERER6NevH7p27QoAmDJlCh555BHPf4hqVqxYgdGjR6NFixYAgKlTp6J3794+3TcUJDgSQggRtqoHR3o9X0pwJET9BZrZaWgbNmxwz0HyBxHh8ccfx+TJkz3e7gpkXNtefPHFmDNnTo3tdu3aBZ1O5/45IiICNpvNfb/aHru2/VXn65yYRYsWYcOGDfj9998xfPhwzJo1C6NGjfL42NX3abVacdVVV2HVqlXo168fjh8/jlatWtX5OzRp0sRjNvG7777zacy17bf6+Dw9Bz///LM74Lr++uvx0EMP1brPlJQUAEBubq474D1y5AjatGkT8DhdZM6REEKIsFU9OIqN5UsJjoQ4OX333Xd4//33cf/99/t937Fjx+K9995DQUEBAM56bN261eO2I0aMwE8//YQdO3a4r9uwYUOdjzFmzBjMmTPHnWEqLS2FxWLxeX8JCQno2bMnvvjiCwDA33//jW3bttXYzmaz4eDBgxg4cCBmzJiBESNGYPPmze7bP/vsMwBATk4OfvzxR5x33nlV7l9WVgabzeYOFt577z33bUOHDsXOnTuxbt06AIDdbkdBQQG6du2K2NhYfP755+5td+/ejeLiYgwZMgSbN2/Gvn37AHhvHJGQkICioiL3zxdccAF++OEH9/yvjz76CBdeeGGN+40cORJbtmzBli1bvAZGLldffTVmzZoFAFizZg3MZjP69+9f5/3qIpkjIYQQYaukhC8TEvgyIoIDJAmOhDh5XHXVVYiOjobRaET37t3xww8/YPDgwX7v58Ybb0Rubi7OPfdcANyVbvr06R5LuDp37oy5c+filltugdlshtVqxbBhw+qcr3LuuefiP//5Dy688EJoNBpER0dj6dKlfu1vzpw5uPnmm/Haa6+hf//+Hn9Xu92OSZMmuTvxtWnTxt3cAOD5NWeffTYyMjLwn//8p0ZpXkJCAv773//izDPPRNu2batknJKTk7Fo0SLcf//9MBqN0Gg0eOWVV3DhhRdi6dKluPfee/Hyyy/DbrcjNTUVCxYsQLNmzfDhhx9izJgxSE5Oxvjx42t9jsaNG4fPP/8cffr0wYQJEzBjxgw8//zzuOiii6CUQocOHfDBBx94fZ5dXn75Zbz55pvIycnBpEmToNPpsHPnTiQkJOCFF17ADTfcgNmzZyMmJgaff/65X10La6MCresMRwMGDKBgdKkQQggRHt56C7jnHiA3F3BWUSA1FRg3DnCeMBRC+GjXrl04/fTTQz0MUU/t27fH999/H1Dp4amotte9UuofIhpQ/XopqxNCCBG2rFa+1GorrouLk8yREEKIhiFldUIIIcKWKziKjq64ToIjIcSp7PDhw6Eewkkt5JkjpdRhpdRupdQW57+Rzuu7KKXWKaX2Oi87h3qsQgghGpfFwpdRURXXxcUBRmNoxiOEEOLkFi6Zo6uIaHu162YBeJeI5iqlbgDwAYDzG39oQgghQsVq5cCoctfXuDiguDh0YxLiROZwOIIyaV2IE0EgvRXC8t2hlGoGoB+A+c6r5gPop5RqGrpRCSGEaGwWS9WSOkDK6oQIlF6vR3p6OqxWa8ALrQpxoiAi5OXlVVmzyhfhkjmap3g1qDUAHgXQBkA6EdkBgIjsSqnjzutzQjdMIYQQjclqrdqMAZDgSIhAtW7dGrm5uUhLS3MvairEyUyn06F169Z+3SccgqOzieioUioawBsA3gHwuq93VkpNATAF4J7vQgghTh6eMkd6vQRHQgRCo9GgWbNmaOZaVVkIUUPIy+qI6Kjz0gLgPQDDABwF0EopFQEAzsuWzuur3/9DIhpARAOaNpWqOyGEOJlI5kgIIURjCmlwpJTSK6UMzv8rABMAbCGibABbAFzr3PRaAJuJSErqhBDiFFJbcFRWBoRNVZDM3RBCiJNGqDNHqQBWKqX+BbAdQBcA0523TQNwl1JqL4C7nD8LIYQ4hdTWkAEIk3beX38NtGsHFBaGeiRCCCGCIKRzjojoIIC+tdy2G8Cgxh2REEKIcFJb5gjg0jqDofHHVMXu3cDRo8DcucCdd4Z4MEIIIeor1JkjIYQQolbeMkdhMe+orIwvZ82S8johhDgJSHAkhBAibHnLHIVFWZ3ZzJc7dgB//hnasQghhKg3CY6EEEKELav1BMgcxcUBCQmcPRJCCHFCk+BICCFE2LJYvM85CrmyMp74NHEiN2fIzQ31iIQQQtSDBEdCCCHClqeyOr2eL8MmOIqJAaZO5Uhu9uxQj0gIIUQ9SHAkhBAibJ0QDRl0OqBnT2DYMOCtt4CiolCPSgghRIAkOBJCCBG26mrlHXKu4AgAXnwROH4cuOkmwOEI7biEEEIERIIjIYQQYctisiH6r1VVWtOFbXA0bBjwyivAd98BL70U2nEJIYQIiARHQgghwpbVZIN299YqwYZWC0RGhklwZDZXBEcAcPfdwIQJwGOPAb/+GrpxCSGECIgER0IIIcKW1aaBFlYOjo4cAQAoxdmjsAiOKmeOAB7cRx8BbdtymZ0QQogTigRHQgghwpbFFoFoWAAi4OGH3dfHxYXJIrDVgyMAiIvDzIin8creMaEZkxBCiIBJcCSEECIsORyAzREBLcqBGTOAr74CVq8GEGaZo5iYKlft3w88feBafJt7dogGJYQQIlASHAkhhAhLVitfRkfaOWvUpg1w//0Awiw4qpY5euEFwIEImO3aWu4khBAiXElwJIQQIiy5giNtFAGxscCNNwKbNgFE0OvDMzg6cgSYM4f/L8GREEKceCQ4EkIIEZbcmSMt8X8SErjWrqwMcXFASUnoxuZWLTh6+WWeHjW81R6YHDovdxRCCBGOJDgSQggRliwWvnQvAltpgSOdruL2kCGq0so7MxP4+GNg4kSgW5NcmEmCIyGEONFIcCSEECIsucvqop1XVAqOtNqK20PGNQBncPTGG3zVjBlAjI5gopja7yuEECIsSXAkhBAiLLkyQ9EeMkdaLVBeHpJhVSgr48uYGJSVcdbo8suBzp2BWB3BjBhQuS2kQxRCCOEfCY6EEEKEpYrMkeL/hFvmyBUc6XRYuBDIywOmT+erYmK5Y115sTl04xNCCOE3CY6EEEKEJXfmSOcMjvR6viwtRVRUeAVH778PdOkCnH8+XxUTw2M2FYR6YpQQQgh/SHAkhBAiLLkzRzHOr6owzRxtyWyOdeuAadMA5YzjYvX8H3NBWahGJ4QQIgASHAkhhAhL7lbe1YMjozE8giMzl8y9v6IbYmKASZMqborR85hNhaEepBBCCH9IcCSEECIsuVt5x0Tyf8KwIUMREjB3VRtMmAAkJVXcFBvHX6/m4lAPUgghhD8kOBJCCBGW3GV1Os9ldQ4HYLeHZmwAgLIyfI2rYLJE4vbbq94UE88BnWSOhBDixCLBkRBCiLDkbsigd2aOYmP50tmQAQhxaV1ZGdLRCgDQt2/Vm2LiIgAA5hJp5S2EECcSCY6EEEKEJauFAADaWGdwpNFwxzpn5ggIfXBkQiy0UQ5ERla9KdbA0ZsER0IIcWKR4EgIIURYspo4sHBnjgAurQuj4MgIPWJjqMZN7rK6Ukdjj0oIIUQ9SHAkhBAiLFlKuZmBNk5bcWW1zFFImzI4M0f62JrBUWwiD9BcGspJUUIIIfwlwZEQQoiwZDU6gyN9VMWV4ZQ5MpthQqx7KlRlMQYeoGSOhBDixBI2wZFS6kmlFCmlejp/7qKUWqeU2uu87BzqMQohhGg8FqOzrC6uWnBkNIZNQwYj9NDra94UmxQNADCbamaVhBBChK+wCI6UUv0ADAZwpNLVswC8S0RdALwL4INQjE0IIURouOYcaeOjK64Mp8yRs6wuVl/zqzQmUYIjIYQ4EYU8OFJKRYODn+kAyHldMwD9AMx3bjYfQD+lVNOQDFIIIUSjs5h5vk5UXPgGR0boERunatykS4oBAJhMjT0oIYQQ9RHy4AjAfwHMJaJDla5rAyCdiOwA4Lw87rxeCCHEKcBqtkMLC1RsTMWV1YKjkDdkUHro9TWDIxUViRiYYC4LwbiEEEIELKTBkVJqCIAzAbxXj31MUUptVEptzMnJCd7ghBBChJTV7EA0LEBM7cFRyDNHKs5jQwYAiEEZTOZwOAcphBDCV6H+1D4XQDcAh5RShwG0BvAzgI4AWimlIgDAedkSwNHqOyCiD4loABENaNpUqu6EEOJkYTE7oIW1anDkbOUdLg0ZTIj12JABAGI1Zpgtof6aFUII4Y+QfmoT0QtE1JKI2hNRewDHAIwkogUAtgC41rnptQA2E5GkhoQQ4hRhtTiDI52u4sq4OKCsDFoNN2sIeStv8tzKGwBiNBaYrRIcCSHEiSSy7k1CZhqA2Uqp/wNQAGBiiMcjhBCiEVnKyHNZHQCt3QwgPuSZIyPFeAmOrDBZIhp3TEIIIeolrIIjZ/bI9f/dAAaFbjRCCCFCyWqBs6wuoeLKasFRKBsylJvKYUNU7WV1kRaYy8Pqa1YIIUQdJN8vhBAiLFmtXjJH5UbnNqEYGTPyEGrPHEWWw2SN8nyjEEKIsCTBkRBCiLBksaiaDRmcwVGUNfTBkWsNo9ozR+Uw2yQ4EkKIE4kER0IIIcKStdxZVufq2w1UZI6spbxNKIMjM69vVGvmKMoGs12CIyGEOJFIcCSEECIsWawaRGvKAVVpkVVnmiYcgiOjqY7gSGuHyRbdiCMSQghRXxIcCSGECEtWm4JWY696pStzZCkBgJA2ZDCV8VdorWV10TaYHVrPNwohhAhLEhwJIYQIS5byCERH2qpe6QqOyooBhDhzZOFOdLVmjqIdMDl0nm8UQggRliQ4EkIIEZasNg20EY6qV7oaMphDHxy51jCqPXPkgJkkOBJCiBOJBEdCCCHCktWuQXSk57K6CHMplApxcGStI3MUQ7AhKqSlf0IIIfwjwZEQQoiwZLFHQhtVLXOk1QKRkVDGUmi1IS6rK+f5RLUGR86kkdncSAMSQghRbxIcCSGECEtWewS0kVT1SqU4e1TKwVHIsjI2G0wO7kRXa1mdM2gyF0vqSAghThQSHAkhhAhLFkcUorVU84ZKwVHIMkdlZTCCo6JaM0ex3OrbVGBprFEJIYSoJwmOhBBChCWrIwpaT8GRXg+UliIqKrTBkQkcFcXEeN4kVs/BkblQgiMhhDhRSHAkhBAiLFkpEtGelgkKk8yRCbGI1ZZXWaO2spg47mZnLgrhxCghhBB+keBICCFE2HE4ABuioI32EHmESXBkhB6x0fZaN4mN469YU5HMORJCiBOFBEdCCCHCjivo0daROQpZQwZn5kivqz04ionnVt/SkEEIIU4cEhwJIYQIOxbnNJ1oXS2ZI6MxPDJHOketm7jK6kzFtsYalRBCiHqS4EgIIUTYsVq4EYNW5+Frypk5CoeGDPqY2oOjWEMUAMBcIsGREEKcKCQ4EkIIEXYsJRz1RMfUHhyFNHNkNnNDhlo61QFATIIzODLWHkAJIYQILxIcCSGECDvWEq6r08ZE1LzR2cpbq6WQl9XVtgAsAMQm8oQpU0nt85KEEEKEFwmOhBBChB1rcRkAL5kjux3aSEfIGzLEegmOYgwcHJlNHtZqEkIIEZYkOBJCCBF2XGV1HjNHcXF8m8YW8sxRrL72r9GYJB0AwGSU4EgIIU4UEhwJIYQIO+6yutjImjc6g6MoFdrgyIRY6ONrWQEWgEYfg2iUSeZICCFOIBIcCSGECDsWI9fLRcdF1bzRlTlS5SEPjmLjPGS2XHQ6xMAMk7n2AEoIIUR4keBICCFE2LGWcnCk1YdncEQm7lanT/AeHMXCBHNZ441LCCFE/UhwJIQQIuxYfckckTVkDRnKSm0gaBDrLTiKjEQMzDCXyVetEEKcKOQTWwghRNCYTMCXXwJUz2k2FiMvnKr1FBw5+2drYQ1Z5shYwmsXeS2rAxCjscBkka9aIYQ4UcgnthBCiPr76y/A4cAbbwDXXgvs2FG/3VlNrsyRtuaNroYMDkvIgiNTKQdH3tY5AoBYTRnMFu8BlBBCiPBRa3CklIr14Z+uMQcrhBAiDP3xBzB4MGj5L5g3j69KS6vfLi1GXjhV6yU40jrKQhccOdtzx8Z63y4mwgqTVYIjIYQ4UXjokepWCoAAeGqz47o+A0CrBhiXEEKIE8XSpQCAf1cXYedOvurIkfrt0lrmDI4SPJyDC4PgyGjkyzozRxFW5JZ7+6oVQggRTryV1W0loggi0nj4F0FEGgDZjTVQIYQQYeqHHwAA81a0QGQkEBlZ/+DIYuKyteiE6Jo3uuYc2c1wOAC7vX6PFQiTiS/rzBxFlcNc7mHelBBCiLDkLTia7sP9fdnGK6XUYqXUVqXUZqXUaqVUH+f1XZRS65RSe52Xnev7WEIIIYLs8GFg1y44oDD/3x64+GKgTZtgZI44OPKYOYqIAGJioLWbASAkHeuMJi6qqDM4irTBZJPgSAghThS1BkdEtK6uO/uyjQ9uIqLeRNQXwCsAPnFePwvAu0TUBcC7AD4IwmMJIYQIph9/BACsTrgUx4zJuO46oG3b4JXVRcd7mHMEAHFxiLJxcBSK0jrXwq51ltVpbTDba/kdQmnBAuD330M9CiGECDt1dqtTSr2qlDIopSKdmR2jUuqGYA2AiIoq/WgA4FBKNQPQD8B85/XzAfRTSjUN1uMKIYQIgh9/BE47DfMS74BeY8LYsRwcHT1av91ayrjhgTba07RXAHFx0Nq4ti0kwZFz7aI6M0daO0x2D6WBoVRWBtxyCzBlSv17rgshxEnGl1beFzoDmJEA0gF0BvBgMAehlPpYKXUEwLMAbgLQBkA6EdkBwHl53Hl99ftOUUptVEptzMnJCeawhBBCeFNWBvz2Gywjx+LrrLNweeQy6PVcVnfsWP3mAlktfBlZWy8DvR7acu6KEIrgyGiJdA3Dq9hoG8yOMAuOli8HSkuBAweA1atDPRohhAgr/qxzdA6ARUR0HNytLmiI6FYiagvgUQAv+3nfD4loABENaNpUEktCCNFoVq8GTCb83X48Cix6XG2dC1gsaNuWA6OMjMB3bbEA0SiDqiVxhLg4aK2lAEIz58jkXLuozsxRNMFK2pA0jajV118DSUlAfDzw6aehHo0QQoQVX4KjbKXURwAmAPhFKRUJ7y3AA0ZEnwMYDuAYgFZKqQgAcF62BFDPQg0hhBBB88MPQHQ0dsf1BwD0xlYgIwNt2/LN9Zl3ZLUStMpW+waVgqOQZI6s3GShruAoVseNJczmhh6RjywWYMkS4PLLgWuuARYu5CySEEIIAL4FR9cB2AHgGiIqANAawKvBeHClVJxSqk2ln8cAyAe3CN8C4FrnTdcC2ExEUjcnhBDhwGQCli0DzjsPuw9GQ6e1oy2OAMePu4Oj+sw7sloVojVeoh69HlGW0AVHpvJIRCobtHX0WoiJ4cuwCY5++w0oKgKuugq4+WZesGnhwlCPSgghwkatwZFSaoFS6joA5UT0BhGtBwAiOkxEnwXp8fUAFiqltimltgC4D8AYIiIA0wDcpZTaC+Au589CCCFCad8+4O67gZYt+f8TJmD3bqDraVZoQEB6Oto4T3nVJ3NksSpoNV4yRzodtPYQNmQoj0JsZN31fDE6rkJ3rYsUcl9/DRgMwAUXAEOGAF26SGmdEEJU4q087k0AlwN4XCl1HMB3AJYQUVqwHpyIsgAMruW23QAGBeuxhBBCBMGFFwKZmZx5mDoVOPts7H4aOPMMDbAHwPHjSEjg4+96ldWVK0RH1BEclYcuODKWR0OvtQKI8bpdrJ4nTZlNBKC2CVSNpLwc+O47YMwYINrZJGLSJODRR4H9+4FOnUI6PCGECAfe1jn6k4geIqLuAO4GEAfgK6XUJqXUTKVU30YbpRBCiNAjAo4fB+6/H5g3DzjnHJRZFA4dArqdoQW0Wr4d9V/ryGLTQBvhpYtBdLS7W11IGjLYoxEb5UPmKNYZHJV4CfQayU8vb8P/8i/nwNZl4kRAKeCrr0I2LiGECCc+dasjop1E9DwRDQZwCYBMcNttIYQQp4rSUsBmA1JS3Fft28cxU7fTFZfaBSk4stYVHOl0oWvlTQSjQ4dYbd0BjytzZCoMQXqrmrc/0OIuvA3jsBEVV7ZqxX+3/ftDNzAhhAgjPgVHSqlYpVQXpVR3AEkAVhHR6IYdmhBCiLCSn8+XSUnuq/bs4ctu3VAjOKpPQwaLLQLRkd6DoyhriIIjiwUmxEIfXXd/7pg4bvltLgp9cFRYCJgRi2W/VysFbN0aSE8PyZiEECLc1BkcKaXuAJAF4BcAy5z/vm/gcQkhhAg3BQV8mZzsvmr3br7s3Bk1gqO8PG6GFgirPQLaSEftG0RHQ1seom51ZWUwQo9Yne/BkakoBLV/1RSU6QB4aE7XujWv2iuEEMKnzNEDAHoSUTsiOs35r0NDD0wIIUSYcWWOqgVHbdsCej04OHJmIOrbzttqj0B0lJfgSKeDFhwVNXpwZDZz5kjnZXxOsQnc98hcHAbBUXkcAO7AXiVobdVKgiMhhHDyJTjKDGaHOiGEECeoWoKjbt2cP7RqBZSUACUl9W7nbbFHQRtFtW9QKThq9IYMZWUwIRaxMV7G5xQT7wyOSuvOMjWokhIUkgED2xyH2czr97q1bs1/t+LikA1PCCHChS/B0S9KqZeUUv2UUt1d/xp8ZEIIIcJLtTlHRDznyB0ctWzJlxkZ9cscEcFKkdBGedkmOjp0mSNnWZ0+tu7gKNbAv4SpOLTd6soOZaAMMRgzKAfNmlUrrWvdmi9l3pEQQnhd58hlovPy6krXEQAprRNCiFNJtczR8ePcwK5GcHT8OFoO6wKNJsDMkdUKC6IRHe1b5igUwZEJqYiNrfuBYxI4ODIb6y7Ba0gFe3MAdEFKKx2uuAKYM4cXpo2NBWf8AC6tO/30UA5TCCFCrs7MUaV5RqfJnCMhhDiFFRTw4qEx3O3M1YzBU3AUFcU/BhQcmc2wQgut1ss20dGIAtfThawhQ2zdm8YY+JcwlYY2OCo8yIFtUtt4XH01B0Y//ui8UTJHQgjhVmtwpJRKqOvOvmwjhBDiJJGfz1kjxWv31BocVWrKUJ/gKDpa1b5NCDNHNqMFVkRDH193ZXpknA5RsMJsqrsEryEVpPF8oqTTEnHOOUDTppXWfXX93aQpgxBCeM0crfTh/r5sI4QQ4mTgCo6cdu8GEhKA5s2dVyQkAHFx7nbebdoEHhxZEA2tj8FRYzdkcK1ZFBvnZXwuMTGIgRlmU4jL6tJNAIDElrGIjAQmTACWLHF2Z9fpgCZNJDgSQgh4D466KqX+9vJvA4AUL/cXQghxMsnPr7IA7O7dQNeu7kQS87AQLPmbNHFljnRego8QNmQwFvAD6uMj6t44JgaxMMFo9CGQakCFmWUAKv58kyYBFkul7JEsBCuEEAC8N2QY7cP9Q7/ktxBCiMZRUAC0a+f+cfduYPjwattUCo6aNOEDcLMZPs3PcSsr48yRzsv5O50OEbBDKYLV2riBh2tBV1cnOq90OuhRCJM5tMFRQQ53y3MFR337Ar16AZ99BkybBlnrSAghnGoNjojoj8YciBBCiDCXn89H1QB+/52PpbtXX9ihZUtg/XoAXGUHAEVFfgZHroYMMV6Co+hoKABREQ5YrT5kcILIWOgMjhK9dYxwiomBHukwmv15AoKvsIDTd4mJ/LNSnD164AHnWlWtWwN//RWy8QkhRLjwZZ0jIYQQwj3n6IcfgNGjOfNw663VtmnZksuziGAw8FVFRf49jL3EBDsiER3rpbhBpwMAaCMdjV5W58oc6ZOj695Yp4MeRpSaGzeAq4IIBcUR0EdZEFUp2XX99UBEBDB7NrisLjcXKCsL2TCFECIcSHAkhBCibhYLYDRiccYgXH450KMHsGIFl85V0aoVb1tQ4A6Oiov9eyhrkRkAoA3X4KjEDgCITfIhOIqIQJwywmgJYXBUWIgCezyS9FWfqNRUYNQoXvPI3sLZzttZEimEEKcqCY6EEELUraAAADD9h0vQsyfw229AiqeWPG3b8uXBg1XK6vxhLebsRXScl+AomgMTbYS90bvVGYudwZEvDRkA6CPKYLT4MD+poRw/jkIkIjHeXuOmSZM4Hvo1+wy+QuYdCSFOcXUGR0qpn5RSlyqlQjubVAghROgUFKAckcgo0uOyyyrmrtTQuzdfbt4ccFmdpdgCANDqvczpcWWONPZGzxyVlPBlfLxv2+sjLCi1hjY4KkASkpJqfo1feinPB/txV3u+QjrWCSFOcb5kjj4EcC+AA0qpR5RS0r5bCCFONfn5yAXX0DVr5mW7Dh0AgwHYtCnwsroSZ3AU5yU4cmaOokIQHBWV8Fen6/eriz7KCmMYBEeJTWpm4qKjgY4dgYO5zkhPMkdCiFNcncERES0iogsBjALQCsAOpdQcpVT/Bh+dEEKI8JCfjyykAuC5KrVSijvabdoUcFmdpYSjneh4XzJHtsYPjowcZPgcHGnLYbT5MD+poTjL6pKaex5Dx47AgbQoToVJcCSEOMUFMufICqAMwByl1KtBHo8QQohw5GtwBAD9+gH//ov4GF5bx+85R6Uc7XhtyOCacxSC4KjQpEUkbD63J4+L5uDI78Vwg+X4cRQgGUlNPT+fHToABw8C1CoIC8E6HMBNN/GkNCGEOAH5MufoCqXU7wAWAdgNoDsRTQHQG8CVDTw+IYQQ4aCgANngejqvZXUAZ47KyhCxbzfi4wMoq3MGR9Heki1KAVottJryRm/IUGTWwhBZCl9n4up1dhA0MJsbdly1sadnohgJtc4T69iRO3hnND2j/pmjP/7g9nczZiB00aAQQgTOl8zRLQBeJKIeRPQeEZUCABHZANzVoKMTQggRHvLzkYXmAHzMHAHu0jq/y+qMnHHS1rXGqk4HLcobv6yuLBqGKN8jHX0Md4kzGhtqRN4VHeXoNCnJ8+0dOvDlgbggBEdz5vDlxo2yqKwQ4oTkS3D0JRH9XPkKpdQNAEBESxtkVEIIIcJLfj6ydG0RHe1Dl7auXYGYGHdTBr/L6kw+BkfR0YhSIQiOrDoYtP4ER5xBCVVwVJBuAlB7cNSxI18ejOwKZGYCNltgD2QyAV9/DVx9NZCQALz9dmD7EUKIEPIlOLrPw3X3B3sgQgghwlh+PrIjWyE1FXWXk0VEAH36uIMjf8vqzKWcaYmJqWPDUGWOymNh0JX5vH2c3gEgRMGRw4GCbK47rK2srl07QKMBDtjbAXY7kJUV2GMtXgyUlgLTpwOTJwMLFgAZGYHtSwghQqTW4EgpNUApdQeAJkqp6ZX+/QdAXefzhBBCnEzy85GlaVF3SZ1Lv37Ali1IiCe/M0cmTnTU3fBAp4MW1sYPjmx6GGJ8f1C9nqPJ0tKGGpEXeXkotMcBqD1zpNUCbdoAB01cNhlwad3nn/MiwOecA9xxBwdaH3wQ2L6EECJEvGWOWgEYAEAP4MxK/5oDmNTgIxNCCBE+CgqQTU3rbsbg0rcvUFICQ0Sp/8GRmYOJOoOj6GhoYWn8hgyOeBhifS8908fx7xOSzJFzjSOg9uAI4HlHB/KcGwTSsS4jA1i+HLjhBk5DdeoEjB4NzJqFRo9ew1l5uTwfQoS5WoMjIvqOiG4GcC0R3Vzp3z1EtLERxyiEECLU8vORZUv2L3MEwGDJ9r+szjmdx6eyOrI07rGmw4EiSoAhzo/gKJ6/ao2lIeje5lzjCKi9rA5wLgSbwWtHITvb74f55N5/8ZvjPODGGyuuvOsuLtFbKtOTAQAlJcCwYZymmz2b254LIcKOt7K6Yc7/RiqlRlf/10jjE0IIEQYceQXIthh8zxz16AFERSGhJN3/zFEZfzX5kjmKosYtq3MYzShGAgxxvh/YxiU4g6OiABsd1IcfmaPs3AiUII4P4n1ls8H6yVzcueAcPBL7DtCtW8Vt55/Pf8Q//ghw8CcRiwUYNw7YtAlo2RKYNAk4+2zg779DPTIhRDXeyuomOS8f8vDvwWA8uFIqRSn1g1Jqj1LqX6XUIqVUU+dtXZRS65RSe52XnYPxmEIIIfzkcKCwgGBzRPieOdJqgV69YMg7CJMJfpW+mSwRAHycc+Ro3MxRabYJBA0MCb5ngfSJUXzf/BCUUzmDo8hI8vp8ujrWHUIH3zto/Pkn0L07Nt3yDsyIwT+m06tW5EVFAYMH83anMrudM2q//QZ88gnwzz98uW8fMGgQMHIksHp1qEcphHDyVlZ3m/NyuId/5wfp8QnAS0TUlYjOAHAAwAvO22YBeJeIugB4F4DM6hRCiFAoLkaWcwFYn4MjAOjbF4bMPQD8S0aYrRwc+VZWV9aowVFRJtf8eStRq84VHBkLG3lyFAAUFKAwqimSkpTXLoPutY5ie/keHD31FFBUhNUTP3Zf9f331bYZNgzYssW/F8DJ5qWXgIULgZdfBiZO5DlZN98MHDgAvPgiPz/nnCPNK4QIE3W28lZKnaOUinP+/xal1Cyl1GnBeHAiyieilZWuWg+gnVKqGYB+AOY7r58PoJ8rqySEEKIR5ecjCxwV+VxWBwAdOyLBxK2c/SmtM1kjER1RDk1d31DR0dDayxq1IUNRtgUAYEisq595BXdwFIqyutJSFEQ09VpSB1Ra6yiqq+/BUXY2MHAgVuX3RJcuvI8lS6ptc9ZZPLfmVF0Qtryc13u6+GLgwWpFN/HxwMMPA4cOcQOTjz/2vA8hRKPyZZ2jdwAYlVI9ADwA4AiA/wV7IEopDYDbASwB0AZAOhHZAcB5edx5vRBCiCDJyABuuaWO4+H8fGQHkjkyGGAAR0U+B0fl5TCRDrFaHwIJnQ5ah7lRM0eF2fxghuQIn++jTdAhEuUwFocoONIk15npSkribNgBTWffg6O8PDhSmmLNGk58jB3LlWNVWpYPHsyZkjVrAvwFTnDff89vsttvr32b2FhgwgRg40bg8OFGG5oQwjNfgiMbERGAUQDeJ6LnANRxDiogbwMoBQdjPlNKTVFKbVRKbczJyWmAYQkhxMnrl194+sOCBV42CjRzZDAgAXyg7XPHOqMRZsT4FhxFRyPK3rhzjoryeFyGlEif76Pi9NDDiNKiEHQnKy1FIRLrzBwBzo51jvZ+BUfbqQcKCyuCI4uFX1NuCQnAGWecuvOOPvgAaNWK25oDeOst4PHHAao+Ze3KK/ly0aLGHZ8QogZfgqNIZ+e6qwD87rzO91NmPlBKvQKgM4BriMgB4CiAVkqpCOftEQBaOq+vgog+JKIBRDSgaVOpuhNCCH9kZfHll1962ciZOdJoCCkpfuw8MdH/zJHRCBNiEaP1IZDQ6aC1m2C385z3xlCUzw9kaOrHWuixsdDDGJpW3qWlKCDfgqMOHYAD5W18C47MZsBsxuqCngC48dqwYZyBqlFaN2wYsG4dYAtB5iyUDh3itZ9uvRWIjMSqVcC99wLPPgu88Ua1bTt2BPr0Ab75pvHHKYSowpfg6AlwQ4S1RLRDKdUFwP5gDUAp9SyA/gAuJyILABBRNoAtAK51bnYtgM1EJKkhIYQIIldwtGJFxf9rKChAFlLRNMWBCH9OjQVSVmcywYRYxOp8DI5s3CChseYdFRXwuAzNon2/kys4MoYoOLIl+NRAomNH4LA5Ffai0ro3zssDAKw63glt2gDt2nFzulGjgGXLqgWrZ53FK+Bu3RrQr3DC+ugjQCng1ltRUgLcdBMHoGPHAg89xCWIVVx5JbB2bWCL8AohgqbO4Mi5GGwfIrrf+fNeIroiGA/unMf0KDgrtFYptUUp9a3z5mkA7lJK7QVwl/NnIYQQQZSVBeh0PGf+669r2chZVtcs1fcmBADqV1YX40MgER0Nrc0EoBGDI2eQZ0jV+X6n2FjEoRRGY8OMyRsqKUWhTe9z5shGkThaEFf3xnl5IACrD7bEOefA3Qlv7FggJ6da/4VhzmUTT6XSuvJyrle95BKgdWvcfz9w5AgwZw4wdy7QtStwzTXADz8Av/7KCSbj6Kv5vt9+633fQogG5Uu3Op2zS91zSqmXXP+C8eBEtIOIlLOVdx/nv3HO23YT0SAi6uK83BOMxxRCiBPZ8eO8lmSwplhmZQG9e/OarV99VctG+fnI1jRHanNfig0qqU9ZnS/BkbMhA4BGm3dUVAREohwxKXUtwlSJ3jnnyOjn8xcExhIHbBTp85wjADhY3KTujfPycAAdkVEQg7PPrrj64os5g1Tl+L5NG6Bt21OrKcOyZfzmmjoVy5ZxI7qHHwaGDuUmdd99x9m1Sy4BLrqIlzp6ekFXoHt3Ka0TIsR8+aReCGA8ABsAY6V/QgghGtmPPwKLF/OyKcGQlcUd6K65htehPHbMw0b5+chSzf1rxgAABgN0sEAbYfO/rC7WhyyVTococMqo0YKjEg0MKIKK0/t+J1dZXVnjB0cFpdxG3Jeyuvbt+TKtrFndk7jy8rAaHBWdc07F1QYDMGIEvz6rNB0YNowzRzU6EZyk1q8HoqKQ228EbrmFe1LMnFlxc6dOwI4dwO+/A6tWceXh4sXg0rpVq7hNuhAiJHz5pO5ERCOJ6P+I6CnXvwYfmRBCiBq2bePLGottBqhycATUEnQVFCDL0cy/Nt4AEBcHKIWEaIv/ZXVxPgRH0dHQgqOiRguOSiM4G6bzr6yOg6Og9jLySaGRgyNfMkeubYpgqNaP2wNncNQk2Y5u3areNH48kJYG/P13pSvPOovTnmlpvg/+RLZ9O6hrN0y/Jwr5+cDnnwPR1aaptWwJDB/OzSzGjwf27AH29buGa1xrTEgSQjQWX4Kjg0qp+AYfiRBCiDpt386Xv/+Oes9hsdu5PC81FejSBejXz3PXOmO2ESaK8T840miAhAQYokx+Z45iYn34etLpGj84MkUiUVNcMcnGF9HRiIMRxjLf238HhdWKAhvPH/IlOIp3ftMXwVD3JLG8POxHJ/TooWo8FZddBmi11co0u3ThS4+pyZPQ9u34Mv42LFwI/Pe/nDny5tJL+fL7PZ35P7LekRAh40twVARgo1LqrWDPORJCCOGf7dt54rzFwhO56yM3l09SN2/OP48fz2f7qx+/ZmVwhza/y+oAnncUYfR7zlFsvA9ZlkqZo0ZryGDWwhDhZ1SqFPSRFpRaoxpmULUpLUWBc1lCX8rqIiMBfXQ5ipFQd3CUm4tc1QxNU2seRhgMPPdo4UJ+fVUZQGGhr6M/cRUX43iaFdM334qhQ7kzXV1OO43n/S39WQskJwNHa6xcIoRoJL4ER3sAfAEgDzLnSAghQiYnh8vgpkzhtTXrW1rnat3tygg516nE8uVVt3NNf/A7cwRwxzpV4n9ZXYIPwVEoMkdl0TBE+f8VqNdaYSz3Y22kYHAuAAv4ljkCgAS9nYOjkhLvG+blIUc1RW3LC44fz0H2unXOK06l4GjnTszHtSgsi8Enn8Dn9veXXsrz/gpbdpfgSIgQ8qWV91Oe/jXG4IQQQlRwldT168dn5r//vtKZ+QBUD4569uR5ED/9VGkjkwlZprgq2/nFudaRr5kjMjrL6uJ9yLKEoiGDRQeDtszv++mjymG2aev19/Kbn5kjAEiIc/iUObLnFiDfkYgmtTS2GzOG59i4S+tOpeBo+3bsQVc0Tbaja1ff7zZmDK+T+7P2UgmOhAghX1p5N1NKzVVKrXL+fIZSStYcEkKIRuYKjnr25LPMmZnApk2B788dHB3dCICn0YwcyeV6NlvFRlngqCjgsjpHgc+ZI2txGRyI8LusrtGCo/JYGKL9D47idPyEmkzBHpEXlTJHBoNvd0lI8G3OUUGWFQ5E1Jo5SkjgTOTXXzsb37kGcIoER3s13dDldP+6Ew4eDKSkAEtLhktwJEQI+fLO/QjAGsD5CQvsBjC9oQYkhBDCs+3beTpC8+bAqFHc76A+pXXu4Oj6C4DNmwFwcFRQAGzYULFRNjgqCig4MhiQYM/3OXNkLuZMUKzet1bejRkcORxAsS0Whhj/H0yv49bYdTWBC6rSUuQjGYlx5T6XdhkSlU+Zo9xcvqwtcwRwaV1GhnPt16goQK8/ZYKjPRHd0aWLf4smR0RwQPnjsV6w5RfVv+OKECIgvgRHrYhoFgA7ABCRFUBjFgYIIULJbAbOPbdarZUIhe3bgV69OMPTpAkwZAiwdGng+8tKK0M0ypCAYmDLFgDAhRdy0PXzz86NMjORhVQY4mw1WhH7xGCAwZqD4mLflrgxFXOGJSbGh303ckOGkhKAoKlXcNSox7vO4CjZ4PtXdkJihE/BUU4+R1u1ZY4ADuCV4mV7AHBp3SkQHBX/exiZ5U38KqlzGTMGyDfHYB2GSPZIiBDxJTiyVf5BKZUIwL/TIUKIE9fOnXx0c/31QHp6qEdzyiLi4Khnz4rrLr6Yy+oCPd7MXLkbqciCiox01+ylpABnnlkzOEoNJGsEcHBkyYHd7ltJmamEg4jYWB/23ciZI1f2y6C3ed/QA30sR4aNHRzlIQUpyX4ER8mRdQdHdjtyS3mdJ2+ZI4MBOP10Xg/VfcXJHhzl5GBfDpcQurqX+2PoUL7cjp4SHAkRIr4ER98opT4AEK+UmgRgOYBPGnRUQoiwUbI9DR2xH2PzP8OKS14B2eyhHtIp6ehRPl6tHBy1bcuXrhInv2RnI2tnLlKTyzkdtWOH+6aLL+aW3vn5QN6hYmzEALRo7d/8CbfERCRQIQD4VFpnLvUvOGrMhgzu4Cje/+KJOH1ogqN8JCM52ffzmQmJmrqDo4IC5ICjIm+ZIwAYNAj46y9n1vBUyBzt2IE94JRRIMFRaiqg0RAy0EKCIyFCxJdudS8DWAXgHwCjAbxFRG829MCEEOFh34ZCHERH/Bw5GudvfR0D2mW7WzuLxlO5GYNLcjJfFhQEsMPnn0eWvQma927OO3U9AHjekcMBLFgAXPi/a3EcLfHE/wUYHDm71QG+BUcmIwcR/pbVNWpwlOBDfWA1ej1fNvacozykILmp73+7hASgGAlwFHlp5Z2Xh1xncOQtcwRwk4HcXODgQZwawdH27diLLlCK0KmT/3ePjOS5fcfRSoIjIULEl2515xPRPCK6hojGE9FcpdT5jTE4IUTope/lU92//KrBM2cswKbjLbB52fEQj+rU4yk4cq1dk5/v585ycoD33kNWTHukdozjnaanuw9czzyT9z19OrCzoDkWt7sXF1wQ4MArBUe+dKxzBUdhXVbnY+e3yvTxnL0JReYopVmkz3cxGHhelTHfUvtGeXnIQVPEx9Y9D23QIL5cvx6nTnCk7Yn27RHYHD0ALVsqHNe2l+BIiBDx5XTSKx6ueznYAxFChKf0w1y21LGTwpVPdAcA5O/ICOWQTknbtgGtW1ddrybgzNGePXBYy5FjSeC1i1wRl7O0LjKSJ9NHRQHfdpmBizvtD3zgBgM3fICPZXVmvvQpOGrkhgxFeTzXyNc1gyrTx/PXbWMGR/ZiIwqRiOQm/mWOAKC4wEv5bG4uctEETRLrLrHt0YOzZn/9hVMmONqj7eV3p7rKWrYEjke0keBIiBCp9RNTKdVJKTUaQIJSanSlf9cC8OVrSwhxEkjPikCEsqN5cyCpbTwAID+rEY5ERRXVmzEA9cgcZWYiDymwOzQcHPXoUfEgTu+9B+zeDYy2fMu9wwOVmOhfWZ2zaYNPZXWNnTnK4WyKIdnHvtiVxBk4e1Na4n9JXqAK8x0gaJCS4vt93MFRoZd5Vc7MUdOmdf8ukZGciaySOfKlbeGJiAi0bTv2WtoF1KnOpWVL4LgjVYIjIULEW659GIBJAFIBPFTp+mIADzbgmIQQ4cJiwbHiBDSPNyIiIgFJHfhovCDX/25dInA2G7BrF7fZrswVHPmdOXJ2oAN4AjjatgXi4qoERwaDc25NZmb9gqNKmSOfyuosfM4uLBsyOF/3hhTfy9Rc9M7gyFhkAxAVzGHVyhU0uzKMvnAFR0XFXjIfeXnIRS+kpvoWJA4aBLz2GlB2eQp0djunz+LifB/UieLYMWQUx6IUuoCaMbi0bAnkWAywHsmEloj7oQshGk2tn/BENBvAbKXUJCL6rPGGJIQIG4cOIR2t0KopH3lqU+IRhxLk54V4XKeYtDTAYgG6d696fXQ0BxGBZI4yNa0AhzM4UorTUpU61gHg7gFms3OjAPnbkKGMD7h9Co4iI6FtzOAo344oWKEz+D+ZpCI4KkdjBUd5hfxc+pM5cs2nKi7xHhzloCl6tvAtSBw8mMseNxd3xBCAs0cnY3C0ezf2gqOi+gZHAJBpjEPboqLA6jiFEAHzpVvdZ0qpjkqpEZXL6xpjcEKIEDtwgIOj1s4DJaWQrClCflGAnctEQLKy+NJ10FRZcnKAmaOEzgAqxT09elTJHLm2A1Dvsrp4cOczn+YcOTNHPpXVKQWtjrdvlOCowA4DiqDi9H7fNzI+BlpYYCxsvKxrfhEHR4FkjoqNXrJCeXnIRVM0aeJbRsPVlOGvzHb8n5N13lFGhjs4qm9ZHQBp5y1EiPjSre45AOsBPA4ur3sIUlYnxKnhwAEcQ2u07lxxpJoUVYqCksY58y2Yq3V6Mw8LsSYlBZY5ytJ3AFApOOrZk7vYVe7T7orK6hMcxcRAExmBeG1Z3WV15eUwOTgr41PmCEBkdITrrg2uqJA4C6b3PziCXo84lKK0qPHWCcsr5ecyoODIFFnr3CBTVglMiK1zjSOXFi24cnP9Yefr6CQOjvagK3Q6QuvWge/GFRwdR0sJjoQIAV9y4uMBdCQiH6rFhRAnk9Ldx1AMA1p1qjhIStaZkG8MsEetCIi34CjgzFF0W2i1lSp2Knescz2QK3NUn7I6pbi0rsyMoiKd921NJpgQiwiNA1FRvmUnVYwO2pJyWK0NH7AXFSHw4Cg2FnoYYSwJ4L4Bcr1PA2rIQHFcUukhSs3N4gCvrjWOKhs0CFi/xjlJ7mQNjjIzsTdiBDp3VtDUI7kuwZEQoeXL2zdDAiMhTk3pu/it7y6rA5CstyDfIg0rG5MrOPJ0pj7gzJGmBVJTK831dgVHlUvrglFWB3BwFFlad1mdyQQzYhATZfN9DrpOhyiNvVHK6gqLNfUPjkq9dIELsnxzDBQcfq3LFM8NKVEEQ60dNHJy+Y/jT3A0eDCQlhGNTKSevMFRRgb2arrWq6QO4Pd5RAThuGoNHDkSnLEJIXzmS3C0Tik1Xyl1hcw5EuLUcuwgH3FWLhFJii9HQflJOJk6jGVnc4ZHq615m9+ZI4cDyMpClqNp1YRQairvrHJwlJUFRET4l3rwJDERCaq07rI6oxEmxCI22o/Ss+hoaDW2xplzVBpR/+CoEdc5yivTIynahAg/Oo9HRgL66HIUI6HW4Ci3gA8dfC2rA4DevflyN7qdtMFR+fEcHLS1rVczBgDQaIAWLRSOx3aUzJEQIeBLWd2Zzsu7Kl1HAH4I/nCEEGHD4UD6cT5D3KpVxdXJiQ7kOxJBDoLSSIvZxpCd7bmkDgggc5SfD9hsyLImomXl4MhTx7rMTNdp7ECGXcFggEEVIa+uzJErONL5kV3R6aBV5Y0THBkj6znnqBClpY33nskvj0NyvBmAfyczEvR2FFtqCY6IkFPE5Xr+ZI7atOHLo2hz0gZHh45GwkaR9Q6OAJ6ndby0nQRHQoRAncEREQ1vjIEIIcLM8eNIt/EReZXgKFnBAh3MuaWIbSYZpMbgLThKTuapIWVlgK6OKT0A3KVymcZ49K0+lahnT2DePJ6Ir1T91zhyMRhgcBTgoK9lddF+LBIaHQ2tKm+chgxmLRJR6Hu3iMpiY6FHOrLMjRQc2e3IsyciRW/x+64JegeK82sJjkpLkWtPBOBf5sj1GXIsqsNJGxwdyOLPw06d6r+vli2BA3ulW50QoVBrWZ1Sqru3f405SCFECDg71SXFlVc5FkxqyudUCg762wVABKquzBHgR2ldZiYcUMgu1tXsszBgAHcd+Pdf/jkrKzjBUWIiEm15dY/RlTmK9SM40umgRcNnjhwOoMSirX9ZnbmR2uAbjchHMpLj/X9iEhKo9jlHzjWOIjT+zWXS6/m1evRkDY6MRqSb+c1Yn051Li1bAhnWFODYsVq7BgohGoa3zNEyL7cRgA5BHosQIpy41jhqWbXEKbk5T3zJTytGq8GhGNipJzsbOPtsz7e52jQXFHApTp0yM5GPZNjtqmZwNHo0Z4yWLOFJIpmZNVeeDYTBgKTybBQUVCSlPDIaYUKCf4kZnQ7RygKzuf7D9KakBCBSMGhKgagAOuO5gqMy3xZOrbfSUuQjGV0T/G8dbkhUPOeoJKfmjXl5yEUTNEmwQqPxJVVZoU0b4NjBtidncJSZiXRwesyn92EdWrYE8sx6WECIzsmp/eyIECLoaj2FRUSnefkngZEQJztXcNS+6oFgcite8yj/qCkUozrl2O1Abm7dmSOf5x1lZiITnA2qERylpnLP5SVLOIoJVubIYECSNQs2G7w3JHCV1cX6UXoWHY22kRk4fLi+g/TO1WnPEF0W2A5c6xxZGi84ykMKUhL9D44SEjW1N2RwZo6aJPm/39atgWPU8qQOjpolWjw2TvGXLAQrROjIMvdCCM8OHEB6RFu0al31YyKpNZcUFRxv4FP1AgCQl8dxirc5R4B/ZXVHonnGeNu2Hm6/7DJg40ZuzGC1Bi84Qn7d43SV1cX58dWk06FL5EHs3duw1UfHjvFl05jSwHag1UIPE4yNsB4TANgKS1GERL8WgHVJSI70Ghzloolf841c2rQBjpY3PzmDo4wMPpnUPDiL/MpaR0KEjgRHQgiPyvcdRqa9aY36+eT2vEpkflYjzIAXXtc4AgLIHGVkIC2+BwCgXTsPt48dy5cffcSX9VkA1iUxEUngqMhrcORcBDY2zo/ueNHR6KrZh9LSimWZGsK6dXw5MHFvYDtQCnqtFVZ7JGy24I2rNgWZ3IghpYn/DSASEiPqnHPUJNX/DoatWwO5VgPK8k/CrLMzc9SqTT07OzpJcCSC5rbbgGefDfUoTigSHAkhPMo8YARBU6VTHQAkn8azsPNzgnOGVHjnCo6CnTmKiqplbsTppwMdOwKff84/By1z5ENwZDRyWV28HweYOh260B4AwN4A4xZf/Pkn0CE2A80NgWdM9VqOihpjraP8TG7EkNzU/4P1BINCCeLhKCqpeaMrc9TS/9oxVzvvYwUBNLQId67M0WlBqKlDpeAooq0ERyJwxcXAp58Czz3n54J4p7aQB0dKqVeUUoeUUqSU6lnp+i5KqXVKqb3Oy86hHKcQp5SiIqQX8QFM9eAoLjESEbChIF86KDWGuoIjg4EbHPgz5yhNtUebNrzYZA1KcWmd64s0SMFRsl9ldX4GR/ZdAIA9e+oxRi+IgLVrgWHx2wLrVOcUF83Z1tIAK/Mqj8ds5ucyO9tzOWF+NgdiKc39n+NkMAAEDYz5NduA27NykYcUNGnm/+GDKwt9rDjhpOvAZknPRS6aolXr4LRqT0nhvh/H47tKcCQCt3o1T1w1mYCPPw71aE4YIQ+OACwGcA6AtGrXzwLwLhF1AfAugA8aeVxCnLoOH8Yx8JFM9bI6pYDkiCLkFwWnfER4V1dwpNEAiYn+ZY7SbC09zzdycZXWAaEpq9P715ChtfUgdLqGyxwdPMi9KYbGbApsjSMnvY6zrfXNHA0YwMNITuY/T5cuwJNPVg0O83K4y2Ry82i/95/AlbMozq9Z/1dwsAAETUBzjtzBkaNF46TPGtHxw5ypq34yKVBKOdt5R7eX4EgE7rffgOhoYOhQ4J130Cg1vSeBkAdHRLSGiKq885VSzQD0AzDfedV8AP2UUgF8HAsh/Hb4sLstracv++SoEuSXNM7E8lNddjYHQN4m1icl+Zg5sliA/HykmZp6nm/kMmwYP2BUVMWkpvrwsazOXmKCFdGIifFj3zodNBYzOnduuOBo7Vq+HBbxV70yR/oYDljqExfk5wObNgGXXw688Qbw6qs8d+zpp4EePYDNm53b5XFmJrmlf+22gUrBUaGjxm05R7issEkT/8fuCo6Oos1J15Qh/TgH9K5yuGBo0QI4rloBR44Eb6fi1PL77xwYPfwwv44WLw5sP9u2Af/8E9ShhbOQB0e1aAMgnYjsAOC8PO68vgql1BSl1Eal1MacHA9rMggh/HfoENLRCtHRhJSUmjcn6cwoMPl/RvqkN2kSsHBhUHeZnc3NGDyWwDklJfmYOcrOhhVROF4S7z04iowErrySUxK1LkrkB4MB8SiBRjm8jtNcwmc1/UrOREcDDge6dHY0WHD0558cMHS3/Vu/4Mi5uG19giNXdujWW4F77gHuvx/49Vdg3z6unvn1V749r4D/bilt/M90uYKjIg/9GHLTudQukMyRXg8k6a2clT7ZgqNsPlkUrMwRwIHWcVtT4Phx/uMK4Y/cXGDrVuCCC4BLLwU6dADefNP//ZSXA2PGAKNGcXneKSBcgyOfEdGHRDSAiAY0DeTTWogTzfr1wIcfNmzN/qFDOBbZHq1aeT42TtZbkG8JvLzopJSbC8yeDTzySFAPZLKz617/MTnZx8yRs6MWkfIeHAHAW29xvXowGAzQgJCoK/MaHJlK+HnzdxFYAOhymg0HDjRM1cjatcCQIUCEqaR+c470/J6tz5yjXTy9Ct26Vb2+Y0fgtNOADRv45/zCCGhgR0IT/xsEGLjnCopLqh0imEzIKeb9BZI5AoA2qZaTL3NktyO9OA5AAwRHpkT+PMnICN6OxalhxQq+PP98ICICuOsuYM0aXqrBHwsWAGlpQE7OKTNvKVyDo6MAWimlIgDAednSeb0Qp7b/+z9g6lTgP/9puADp8GGkazugVSvPWYPkeBvyy+Mb5rFPVFu38uWhQ8D33wdtt74ERz5njjIzkQaOiuoMjnS64JTUAZzd0emQFG3yKXPkb1kdAHRpb4XNhqAvBltUBGzfzpUpMBrrlzly3rU+maPdu/npbN++5m0DBlQc9+SXRCFZFUATEUArb1dZXWm1Q4SjR5ELjooCPRfZuoX95Msc5eTgOLWALsoWtLcMwMFRoSkaJsTIvCPhv99/B+LjgTPP5J8nT+afX3nF930QAS+9BHTvDpx9NvDyy7z+3UkuLIMjIsoGsAXAtc6rrgWwmYikbk6c2hwO0Pq/+KD1xReB//63YR7HWVZX21nQpEQH8inplPiQ9NmWLXzZrFlgpQu1yM4GmhnK+Ejps888bpOc7H9w5LUhQ0MwGJAUVeo9c2TkYN/vsjoAXdvyXJhgl9atX8/HB8OGOLikpD7BUTx/5dY3OOrShU8EVzdgAMfmeXlAXqkWyRFFAT2GOzgyVet0d+QIcsBRUcCZozbq5AuOXG28U8qCUoXq4pq/lIEWEhwJ//3+O3DOOVwmDfAbe/p0zgT5+kH500/Av//ynKXHH+fVsOfMabgxh4mQB0dKqbeUUscAtAbwq1Jqh/OmaQDuUkrtBXCX82chTm179mBmyf0YkLAX2RPuBmbOBN59N7iPQQT7oSM4ZmlSo1OdS3KyQhESYc/OC+5jn8i2bOGamgce4HKGf/8Nym6zs4FmlqNcVjN1asVqpJW4GjLUmUisFBy1qTGDs4EZDEjSFHst/wsoOHJljlpyrVqw23mvXcvzvQb2cq5vVJ/gKIEjmvoGR9VL6lwGDODLjRuBfJMOKVEeJg35wD3nyBZb9QTI0aPIQVPExzlcManfWrePRA6aoSzHwxpKJyrXArDNazawqA9XdvcAOkpwJCoQ8Zvc0yLNLseOcQB0/vlVr7//fv7MfOEF3x7rxRe5k8q11wIXXcQfMi+84L1+2W7nrjEncLv+kAdHRHQ3EbUmokgiak5EPZzX7yaiQUTUxXnZQCtYCHHisP65AW/jLvyT1gQX73kDRX3ODf5ZnPx8HClNgsUeha5dPW+S3IzPRBUeLgzuY5/ItmzBO4mP47fO07gu7K236r3LsjKgpARoVrQP0Go5ornySp6gXUlyMn8f1TmXJTMTadouaN7cHVM0nsREJKkC72V1psCDo5RYM5KTg585+vNPoHdvIF7jjGjq0co7wcBphbwAzylYLMCBA7UHR/378+XGjUCeWY9kbWCTm9yZIyTwC9DlyBEcR0u0aBF4eqR1R46q0o8GN5AIKVfmqE1wD6nOOIMvt2oHSnAkKjzzDJfKJScDgwcDTz1V88P/99/58oILql7frBlw2228yHda9RV0KjGZuLPdH38A993H3z9KAY89hrUHmmH/s195vp/FAlxzDX8YjRrFQVpljhPjfR/y4EgI4bsfvzaiAMm4717C9u0KYzI/hPlQZnAf5PBh7MLpAGo/CEtyrp2Sn3YSnf2tj7IyFO1Mx107pmHUNQn47pxXgblzeQJrPbju3izjX/6yWbyYzxZecUWVM/queQ51NmXIzMSRqA51zzdqCAYDkijfe1mdmQ+6/Zpz5EphlJWhS5fgBkdWK/DXX875Rq4uTfXIHMUaotAWadi5M7Azqvv387FFbe9Lg4FL7jZuBPIteiTrzAE9TkQEoI8u5+Co8tnpo0eRHnVavRY6bXMan1g5mh4Ghx92O7B0qR+LhHlGGc7MUcfgdvBMTubzIVt0g0+O4Cg7W0qx62vhQp53fNVVwKOP8pv1qaf4DM6ff3K2ZsUK4LXXuPa1V6+a+3joIQ50Xnqp4joizvbccw/QuTMQF4eycRNwNKUPB1Pgk3X3/H4ZhmEtzpg5Dh+c8S5oT6UPXKOR18j75htg4kRu6NOzJ4/3lluAfv2Avn0b9vkJkjD4dBLiBLR7d0gWMZz7Vyc0jSrASy8rfP45sCarM+7PmRHc9pqHDmE3+Ojr9NM9b+JaO6Xg2Mm1kGPAduzAP44+AHhl+6t+m4ZvLaO4trse3AvApm3gdmk9ewLvvcdH7CtXurdzrYFU5zFeZibSHG1DFxyV56CgoPZqC1dwFEjmCBZL0IOjX3/lE7IXX4yKJ9fVyi0QsbHoie3Yvi2w4Gj3br6s7X0JcNXLhg1Afnk8UmIDC44AICHWVjM4OnIE6ap1vTqyuReCzQqDddLefZcP5tq14zkVAXaEyz9UBAt0aNUu+L9Tnz7AFnuvEz84KigAunbl0uBwRMRdYA8cCPVIKjgcHPCsX8/vw3/+AW66ib8LPv+c5xz/+Sdnd4h4flHPnlxKl5nJ1Que1oBo3Zr387//cRn4NdfwImn9+wOzZvEHzJNPYvKwvWibtxk9Bsdjxgxg0CDgrbcV7rzdjrM6Z2Hatjsw7vRdmNHsEwxP2YrmiWb8/IuG9zt7NpeWn3EGL8K2ZAmKk9rh737TTohyOwmOhPDX3r18NubVVxv1YYsyTFhaeDYm9N6NyEj+PBvTNx2rcI739Li/nJmjpk0cHtc4AoDktty2Nj898IOvk8rWrdgA7gi0di1/x4zHAqxfkl2v3bqDI1s6fyECvF4FULHaJ3zPHDkysnDE0qzxmzEAQNu2SCpOg81W+3kFs4W/kgJpyODKHB07FrzzFgsWcCw0YgQqIpMuXQLfoV6PXtiG3XsUysv9v7svQzjzTCA9HSh2xCFZbwlsnAAS4oiDo6ws93WUdgTHy5sGJzjKa+y6zmqysoAnnuADyksv5c/zDh34LLzZv8+19DSefxHMNt4uffoAu01tYD5ygvejev99bsLx2WcV/ebDyUsvceB24YUVH7ze/Psv8N13QXv4w4d5nVUA/CH25JP8ejzrLP7sNxj4smlT4Ntvq9ZFn302sHUrLLdMhyU6gQOcw4d5nlBtZszgRg3vvcffJa1b8/8zMoAlS7BuxJOY/2dbXHYZ0Lw5N7jLyACWLQPefi8CP+0+Da/OLMEP6hK8lnsjSssioYMFkxMXoWDcZH6Mjh1BK//A38sLcevYbLT861uM+eF2lNuC2LWkgUhwJIS/HnuMJyNWOjhtDN+8lQ4LdLhhQsVEyK7dFA6gI+wHDgfvgQ4dwu6Inuh2eu0fD0nteFJCflYAR3gnoy1bsCFiCDp0IJx2GvDTTwoOaPDj37VElz5yB0fIrgiOkpP5THel159PmSMiZGc6YHFoQ5M56tIFSTb+hTyO026HycZn3gNp5e0KjgAuP6svi4WrGMeN43J77NzJZ2HrExw5M0fl5Qr79vl/9127uMugt8o+V1MGAEiJD7yEKaGJFkUw8NlqACBC7lEzyimyXkGAXg8kRRbjaEGIlwKYMYODoI8+Ar74gjt5XHYZN7np3p0P4jdt4glidZzpTj/OB3uu7nLB1KcP4CANdmQ1OXFL0sxm7uB57rlAaipw773hlT347TcuURs+nDMu48ZxDVltcnL4jMm4cZy5qadvvuHzrYMGAVt/PM5v4qef5kzbF18A332HIw+/g4FJe3GGbg8uvSUVt97KlXVnn82bJbaJh+6jt9E+Yx3yrppaY1Kp2cy9FZo141/zn8KOQEEBHKUm/PjmXjx4xnJkjrsdSE4GEfdtaNECmDePn568PD4HO3o070+jAe5/Mh7ZeZEoNkVhg7EHvlnfClnFMbjvPt6mrAyYeJPCoBEGzP9SYcIErmKNrNYEMxxJcCSEP/76C/j6ayzRXI7Mf+uXFfDXvK+16IR9OPOGii4JXfrqYYEORzfnBu+BDh/GLnTzWrrjLqvLlVXbAQBbtmBj5CCceSYfJCUmAh2bFGFnYYsqZ9795Q6OWmmrnpbu29f/zFF2NtLM3IY5JMFR165IAkdFHoMjoxEmcMoo0LI6VwORYJTWLV/Oaxxdc43zip07gU6dEHCbNsAdHAG8dpK/vHWqc+nbt6KSJtkQ+PvTkBKJYl2zirP8eXlIL+MovL4ZktYxeThWmli/ndTHunUc/DzwQEWw26kT8OWXPJFdrwduvplTwE2a8KR3L2+u9GwO6hsqcwQAW9CbU4Inotmz+cNs5kzg2Wc5vf6Vc0L/unXAnXdyxm7ePGDHDq+7CorSUk7TFBQAR44AEyZwhLFkCTc4WrsWuPVWzwEcEc/BKSjgaHjyZL8zjS42G1dzXnUVx+PJSQ6Mu8yBfJOO1837+Wfg2mthvXgsxv9xB3ab2+O0bjqkp3MGZ+dODjT69OEpPo89xnHbf/5T9XG+/ppf5jNmcJXb9u0cf40bH4WOnRRGj+bE6ZAh/BmzYAFX8j37bMWJGIPB80mrxMSKj+D+/fkxZs8GPvmEg7C5czlBm5HB68cOHOh5YfmwQ0Qnzb/+/fuTEA3G4SA691z6OP5eAogewCtEZWWN8tBHjxIp2Glm4mtVrl/5u50AouVXfxi0x8rpPIQAotdeq30bq5UIIPpv32+C9rgnLLudsvXtCSB65ZWKqy87O5dOxw6ixYsD3vWDDxLFKBM5rh5f9YanniJSiqikhIiISkv57/Hii1529uOPtABXEUC0dWvAQwrc8eP0K84ngGjlSg+3791LL+IhAoiMRj/2u3Mn//Lz55PRyP99+un6D/f664mSk/m1TkRE3boRXX55/Xa6eDGZEU0ajYOeeMK/uzocRHo90d13171tz54O/ly49pPAxklEV1xB1MNwhKh1a75i0yb6HqMJIFq3LuDdEhHR6JabqK92e/12Eii7nahfP6JWrdzvnxrKy4n++Ydo0SLafvcHtCFqCN8nP7/mtg4HzYx6mgAii6VhhhsfW0534O1a3jhhzmYj6tiRaOBAfhHbbER9+/Lr6sIL+Q0bE8OfZwCRRkN06FBwHvvQIaJPPuG/p0taGv2ZOo5W4pyKx4uPJ9q9u2KbZ57h28aOJcrMrLrPDz8k9xfkr7/y/x96yO+hORxEN9zAd7/9dqIyo43WDbmPomChiwfkkM1Wse1dd/F2CxfWvd8HHuBt//yTf543j5/a/v0rXj6FhUSPPEIUF0d03nlEX31FtHYtUbNmRElJRC1bEvXpQ1XG4KuyMqKePSv+rF9/7f8+GhOAjeQhnpDMkRC++uknrP3DittNvLr0JvQN/qIqtfjiC4CgwfVDD1e5vnNXfgvv3R+ktzIRdqXxaXtvmaOoKCBeU4r8Qg8rUYa7O+8EbriBO1UFw+HD2GDkJ8u1EDkAdB9swD50hnXN3wHvOvuwCc0oC2rI4Ko39O3LZzC3bgXAmZaoqDoyR5s2udc4CknmqHlzJMdwqYrHzNHPP7szR361Ga+UOYqN5d9t1676DdVs5ukEV1zBzyusVmDfPj69Wx96PXSwoHNrs9+Zo/R0nkvl7X3pMqAPv7aT61HVmZAAFCsDz3/IyOBmDODUSL0zR4lGHCtvVr+dBGrlSi6Xe+YZIC4OdjsnL554gqdo/PILQBGRcPTph9cOjUPf96fg/Mg/kL8tHRg5ktOJlZWUIL28GZrqjVx+GWQaDdD7dCu2oE/4NWWw2zlNW/mzND8fBY+9giPXPsIli2++yU0OHnmEUwYREcAbb/Dr6t9/gZdf5nSHyQSsWsVNCBYvrv/Yvv6aO7hNnszziLKygOPHkXPuVRid9SkujvoNex75hNtU//QTqqxb8eij3O3t55+5wcHs2aBF32LRrT9gxvRi2M4fwV3dLrgAmDKF0y5//eV1ONUb0TzzDGdV/vtf4L1nCxB9yw0YvO51vH3dOvy0sQkuuYTL4F54AXj7ba5EvOqqun/tmTN5+tDtt/PTOHEiVzOuWcOXAGeBXniBu/SvWAGMH89Zo/Xruezu+HH+lTwtNF2X6GhOAI4ezY955ZX+7yMseIqYTtR/kjkSDelor1GUGpFNHTs4aPyIAkpEPjm+mN/gj+twEJ3e2UpDsaZGOsfhINJHmOie1C+C82CZmfQBbiOg7pN3bXWZdFPTZcF53MZis/FZQoDozjv5Cayvb76hp/AEKeWg4uKKqz//nB9mR/8bA971xX0zaAD+rnmq/uhR3vnbb7uvSk0lmjLFy86uuoruTJhNBkPAw6m3Qz0vJYBP5tYwciQ9lPQR6XR+7jQ9nZ+LWbOIiGjUKD7rWR+LFvEuly93XrF9O18xd279dvznn0QAXXlWBnXu7N9dly/nIaxYUfe2H7xSTAp2OvZ04Jmju+8mStCX84N+9x3R22/T/2EmKeWoyKYF6OlzlhNAZDL6+P6zWoPzXiUimjiRKCGByGSiH3/ks+WuBEJyMv9/0CCiESP4/67kxqNX7yWKjOTT/ZWtXk2j8T31Oa0gOOPz4M6pVopDMdmfea7BHsNvmZlEw4fzk9OkCdHkyUT33EPWWAP1xmaKQzFtQh++vUuXmmmIbds8p4h79SI691y/h7N9uzPLa7FwKsb1h3zjDU5htGxJ1LUr3Rr5KUVG2CkxkW+unFSqYccOon79aDe60EX4mTi8IXr8nqKKbYqKiNq0IerRo9bU4V9/8etr8GCipXMLad71ywggmnh5ETm+XUzUogVRRATRs8+Sw0H05JNE7duT+/GGDiW/3nOuzy+AaMAAHqKvCgqI/vjD9+1PdJDMkRCBoy1bcd22GTBGGvDdEoXzx+hRiCQc/rPha8D/+gvYtS8Kk/EJz9isRCmgc2IO9uU3Cc6DOdt4x0bb6uxolqwzcW30iWTrVj5d1rcv8M47fAazvrZswQYMxOndCPGV5pj36MGXO7fZvK8m7kX2cRuaqdyaa0O0asVzIarNO6ozc6TvHppOdU5J3VIBeMgcGY3AypUwt+vq/xqrlRoyAPy8795dv8Tgl1/y0zt8uPOKnTv5sr6ZI+cv17NlAfbv92+qgqtTXV1zjgDg5jG5WIuh9VqPyGAASkwRcGgied7RkSNI17RFaqozm1YP3drz32rnusLaNzp0CHj+ee4mFxPDn30LF9bvD1tayrPfx4/HB3NicOmlPOn8yy85eXH8ODdVy8zk7sjvvstzz8aPB976sTNyr7mD56VUbjX48884jpZo1TnwxYHr0ufMKJQiHgd3emkS0JhWr+bPpHXreK7QRRdxpuadd/BKlw+xFX0QlRSHUU024ODri4FFi2qmIXr29Dy58PLLef+5vs+jXbGCd3fZWIL5ulv4j/jgg7yfe+7hcep02HgoBf+z34S779Hg/ff5u/WVV2rfb2Zyd9w95G/0ityFv+POx1vPFGPSTQ48+1YCVqxwbpSQwF3eduzgbJMH773HL+GM4w6MucGA6+eNxjn4Ax8ubgo17nLuQPf338Cjj0Ipzv4cOsRNEFau5PlF/rznLr+cX7O9ewM//lixqLMvEhP5LXfK8xQxnaj/JHMkGsqf17zJJ+pfKCUior//5rMyXw96qcEfe8qNJopVRiqOa0FkMtW4fXyvHdQJe2uvn/fH/Pl0MX6gvqfXfJzqzm+1i4ZF1nPyQWN7/XX6EuPpi7dzia66iouxv/++Xrt0XDqGUiNy6Kabql5vNBIp5aCn8ATPXwhAa20mTWpay/guuohr952GDiW64IJadlRQQATQGc0z6dJLAxpKUNj/byZpYKPHH6l2GvS774gAmnxxOrVq5edOXRONnBOuPvmEf9y3L7Axvv463//++ytdOXMmv1b8mgzlwZ49RAAtvPsPAvx7WUyfTmQw+JhA+fdf8nmSQi1efpl3UdxjMKdRrrmGLo5dScH4mt335UYCiD6+faPnDfLzK9I4/foR3XMPUadO/HOHDkQzZhCtWeP/pIjPPiMHQDOuP0IA0ejRVCXb62K1EuXkVPy8Ywf/+R8Zt6dm+u7MM6lpZL73rG09bdzo/HP2C4PM0dq1nEHr1Knq5EWLhfZuKKToaKIrr+SpgElJvNmaNUTffMPvrYULa07jqcL1y372mc9DOuccooQEBynY6UIsp9Jn36ixjb2ohAb1LaPUVM6kOBz8FRAVRfToo/xaaNqUqGtXvn7KFKLYWE7o3HZbxZhLS3mbli2rvkboiis4Q3XwIP9stRItXEgF63dTTAzR1CkOso6/nj7FJJp4ziHK/W0L0ccfE33wQYNMVnM4gpdsPZmhlsxRyAOaYP6T4Eg0CKuVxkcvpsSoEirl2IjMZqIIZaPHkt9r0Ic2Hs6meE0J3RQxh+j33z1u89jl2ykC5WTdHIQJzs89R+1xkK69uu4c/pXdtlN3bOcZwycI89jxZNAUEUC0aH4ZH2iNGFGvfR5tPqB6hZtbh7ZWGo8vid55x+/92kpMpEUZPTzgN88bPPwwf7M7v1gvuaRKrFTVihVEACXGWemOO/weSvDMn0/JyKU7JuRWvf6224ji42nCeJvXcrOioiJatGgRzZkzh2bNmkV///03HyAD3KSCiNavJ3clmL9eeonve+WV1cpYxo/n10p9HTtGBNCup74igGj2bN/vOnw4l+X4ZO1a/kV+/DGgYRLxMRtAdOzaBzlQGTKEztDvp7FjA96lm91soTgU0529Vnje4OGHORrZWCl4stn4CPv88/ngHOCmCmlpvj/w8OG0suW1BPBLzmtJVTXXXkuk1zsoK7Ild0ohIsrJoTJEV375NQj3902z4DXeCYirmUKrVnzCpRK7navhDAai48f5uj//JNLpyF3iVflfp05Ep5/Ou0pJ4YYB119PNOt9Bzlatfa5+Ynzo43eungZfYaJpFF2OvtsotxqHzGvvko13nPZ2UTNm/P1PXoQTZrED9uxI7/Err2WaO/emo+5eTORVsu/w4gRRGPGEM17K5c7HIwaRbRhA1Hv3kQAvYvpBBBtvPoFfqDnn/ftuRaNQoIjIQKU9r9fKALl9PAVVT8lezXLoNFY1nAd6/Lz6fPWM7i712u1n2Ke/cQ+Aoj2fLCi3g9pnHwHKdjpv/+te9vbhvxLzXG82umzMOZw0ML4m93HVLGxRJuufYm/vc3mwPZ5/DgtwuUE8EF5dZde6qCekTv5W99P295ZSQDRnIe3ed5g/nz+CN+8mYiIbryR69Q9evVVykBqnV0IG9ymTdQR++i6syod0Doc/Ae58koaO5aPKWrz2GOPEQD3v549e/INkZF8+pf4rHAgxyBvv833u+YaD/X9PXtSUFJu+flEAJU/+yJptb43uXI4+Cz8bbf5+DiuCUqrVwc8VNfLa+fMr/g/Wi2lRBfT7bcHvMsqhiVtp7Nj/q55w9Gj/J680ctcvYICHqBORzVStrU5fJgIoIs77aNmzTwm4b3atYvnjTzU9kui7t35yvnz6R/09TvQDUSPpHS6NCrwYDcoZs0iB0B/PPlblY/948c50wJwM7fKdu7kOTCbNnEwsm4dJ3mvuIIzNJMnE02dykFGq1a8jyWXzOIsjA+Z2nP7FFKLqBwyI5po0iSa/4WDoqI4s/PLL/x3vuUW3u8ll9Q8l5eXVyPOI6K6sy5ffcXB4KBBRG3b8nmqHQ9/xg+kFFHLluSY9wX1ST1OfSK2kgPg17Skc8KKBEdCBOjhLt9SBMopbX/VI6aJZx/k4ODffxvmgZ95hs7Hr9ShhdHr5+napbkEEH0/bWm9H3Lz4KkEEC1YUPe2j0w4TFqUkeObRfV+3Eaxcyddhm+pZWIpHTvGnWRbNzFRBlL5WzQQ331H/8GzFBlh9xhfPfwwUZSyUnmHLn7v+n/nfMZB77ZaSi5276bK3Q0efpjPZnqM866/nhYl30IAJxVCpqSEBuBvGtWlUs3b5s3u3+Oii7xnR26++WZq3rw57du3j26++WZKSkriG/T6KnVwrVvXnDfvjd3Oc6LPP99DNqG8nI98Hn7Y9x3WxuHgbhHt2lHvXnYaNcq3ux08SJV7TtTNNSPbGTgHYtky3sWfn3IpmdmZIQlGm3QioulDN1M8ish+5FjVG269lV/IvrRzfughPhD15TP46adpM3oTQPRcgNVpV19NlBRj5gPxQ4eIJk2ie6Pfo6goR41MRbBd32cbtcYRoqysuje22bjkzd8I0JvcXKLkZPq+1wx3A4vzzuPgJjqay8/uuKN+hQRWK5/gGdStkIMJb8sgmM204uwnOGuU8BjR+++7yyw3b+bO+wBRu3Z8+dhjgbWm9kV2NidXhw11kP3yK7ghREEBbdjAj/3uq2b+XRpp6Q/hu9qCI2nIIIQXxqP5+HDvubii83a07Vh1RmS/wVpkogUy/jwY/Ad2OHD4g5/xOy7AzdNjvS6a1nkQL8y4b3c9W1M7HNi1gwD41i44qVdrWBEN8+Kf6/e4TrvX5OI/IzehcMvhoOyvurwf/sIPGI3rrrSiVSueV51n1GGGeon79wZi40ZswED06kke20937w6UUxQOHETFiq6+cDjw90aFxKhSdOpeS3/gTp14QrOzKcOQIdxx+p9/PGy7eTPWJY2GVgv06+f7MIIuLg5J0SYUVG4c8f33fDl6NEwm7wvA5uXloVmzZujUqRM6duyIgoIClJWVcVOGSiva9+hR0UPBF+vXc7fqW27xsHr7gQM8Ab++zRgA7qDy2mtAWhp6anb63M5740a+HDDAx8cpLuZL1wqOAXB1Nt5m6gjodDiOlgCCt9BpnwuSUYIEHP6qUgvk3bt59cjbbwfatwfARVi//FJLs5EZM7hzxKOPen8wImD2bLzY7FXEx/PuAzF1KlBg1uEbXAksW4byn3/HPFyHMWMUUurRNt0X/UY0xTG0weEXvqx9o02bgDvu4F7OvXvXWCy6Xh5/HCgqwkdN/oPUVF5oNDub10y94Qbu6P3OOxULEAciKooXRf1rtwEr9GO4n74nDgeM10/BY6tHokV8CW479CgwbZq76UOfPvw5ePvt3Atn2TJunR1Ia2pfNG3KjR3+XKvwv9HfcAeGxER89BE3Yrj+Fh1w2WX1W0BaNCoJjoSoLj0d+PBDYPZszL7xVxQiCfc+WvOIre8I7hC3+Y/i4I9h9Wp8c5QXzbnhBu+bpjRRSNIUYu+Ren7wbtiA3SUtoVEOdO5c9+apLfmb5uiyf3ltinogAm6+LB8vLO+HgX2t2HXGNdxCKogWfEUohxY33JkIgI8bbrhB4Wt1NYw/rgpon5a/tmCtGoZhZ3v+1nV3rEN3XsPDV5s24S9TL5zZtbj2g42ICD4Ach78DBvGV69eXW07kwnYvRtrrQPQv3/ov5+TDA4UlFaKQJYt4wWiUlN9Co5SnEehLVq0AABkZmZycGSxuLfr3p3XOvL1ZfnNN4BWC1x6qYcbg9WpzmX4cGDcOPTcuQBHj9ZcNseTf/7hA8eePX18jD//BOLjUZ/WhB068EHfur8jgL59g7bGkUufS1oDALZ8f6ziyhkzOKB77DEA/Lnw+OPAiBHA2WdzF7kqkpN5/Zzvv/fwwq9k7Voc2O/AgpzhuP127sgViOHDgY4dCR/p7gbeeAM/ZZyBHIsBN90U2P78MW4ad3qc/2FJlRMBbr/8wmdIPv2UPwzeeIM7cw4ezAF5fbr8vf46MGsWMm/+D75flYCbbuJgY8cO7rj48cf8egmGm2/mDoLPxT/H3Ql/rnnybcV1H6HXoplYi2F47q146JJrfmjExnKMcuwYr7nT0CZNAs47j4O7Tz/l32POHO4aZzA0/OOLIPOUTjpR/0lZnQiKsWOJAFqBc0mPEhqq3+KxrM01t+GZHvOCP4abbqILI36nHqf7VqMw0LCLLoz3MOnFH//3f3Q1FlCn03yrPdi6lX//ubiu5jo8fvri2YMEEN19xgpqFldK8ZoSWqK5rKLzTxAM1W6gnoa0Kn/LVav4d/gc1/tWrlKZw0G/J1zGNfJLPG9SUuJ8jeieJrr5Zp93bZzxX4pAOT12fx0199On8yRgZy1Lt25cV1/FunVkQRRFR9mqdmALkandV1FTlc0lZn/9RZU7zXXrxqVLtenWrRtdddVVRET0ww8/EABat24dN0uoNK/ro494twcO1DGYjAxyrF1H7dp5eN5cnnmGd+aprVmg9u+npRH82lmzpu7NL7yQm7b5xG7nRa/Gj6/XEIl4onnXrkR09900H9cQwOvJBIPJRKSBnZ6If51fC0uXUuXJYg4H9z0AiC67jCsnu3blZa2qMBp5gsmQIbXP57jtNpoa+RFFRzvczQIC9YJzXv1udKErsZCaptjqve6Tr4b2KKAe2EaOjz6uesPq1TxH54wzqnYiyMnhJw/gN9ecORV1o8XFRIWF3h/QZuNOgQDRVVfRi89YCeD5Vw3plVf4Idd3vI5IKTp0z+v09Xwr/ff2dLqsy05u6GDIolV/hNf8nd27uSIU4DK7a67hKXQifEHmHAnhgwMHiJSi5VfOohidnbp3LKOMPbWvoNZJn05XxP0c3DEUFVFJTFPSaqzupkh1uaHzemqrOVK/x+3fnzrr0nzuRlVeThQb66C71FvuyfCBMJmI2uiyqG/EFrLlFdKRI0T9e1lIBxOl3/xYwPutbP8fx/gY/LKqR6J2O1H7FmU0Aj8RzfMzyD14kOcbaWxej5vbtSO6tu0aPmD1sSB/TaebvAZdbl98wR/jv/5KRDxdIzGx2sO8+y6tx0ACiL7+2qeHb1AzLvibImElR1Y2tyNv0sQdeLRt631+fdOmTWnq1KlERLRp0yYCQIsWLeKDwkpdB51rrdLSuqbhXXEFbYwcWHnqVk3XXccDC7Ljt/+XAKKXp3rvOe53MwZXpzp/X88ePPss7yrvp7/plc6zCPA8eT1QpzfPp7FYzLP127XjRgfO7osPPcSP7ZrHsmoVnwdo355o5Eiizp35z/Lzz0T0v//xxv/7X80HMZnIGJ9KMRFldOut9R9zZiZRZISdbsb/SKssdM899d+nr95710EA0ZYO4yoCwb//5kVtu3Tx3CPb4eBJpL168XPUpEnFQthRUTw/pnrEeeAAd1a44ALe7t57yWGzU9euRMOGNfzvWVLCwUWH0+zUVp9TpcvdaThAD3VeRMYiP1oNNqKNG/mcT0PNbxLBVVtwJGV1YczhqHe1UoNyfVz5y27nqo/PPwf++19gwYLgjy1g772HpWosxnw/BV26arByXTSad6l9BbW+bfKwubQTT/aoj7KyiidzwQKsMA+C1RGFUaN8u3vndlYcdbRCWU5JYI+fmYlD/+RhX1lbnH++b3eJjAQGDFD4O+4CYOnSwB4XwKt3HcbRsmZ4/bZdiEg2oE0bYMFiLWwqCs993ppXwqunuW/kQsGBa6cnV7leowFuuDkKv+JCZHz3t3873bgRyzECQ3qbqiz+Wl337sBOnA5kZfGcgLocOYK/9ycB4Gozr8aNA1JSuH4EwFlnAYWFXO7itmkT1uovAsBVN6GW1DYeNkTB+M6nXAr0n//A9QR6K6sjIuTn53suqzv/fF61s4Rf/64KOK/zjnJzgaVL8bXtckQoO8aOrWW7nTuDV1JXSYsX7kFX7UGs+N8Br/NCDh/mRXN9nm/03Xf85gxCLZHr9fKX40wcHzMVsbHBLRHqMyASW9AHuOoqIC2NF+/UarF3L8/huPVW4O23+X169tlcYaXX80dC3778srnkEmBe1CTe4MEH+X1W2Xff4ZeSQTDbozFhQv3HnJoKXD6W8Ckmw0paTJpU/3366urxCpERDsw9OASYP58XOB06lOsEf/2VBweeZ/P448CaNeB5bldfDWzZAixeDFx8Mdd8vfgiMHky8NFHQMeOfH3fvrz6cceOwJQp/Np/6y3g9dexdr0Ge/bwvLyGFhcHPPkkYLFqMHBUCt6euAEbbngTpZ8uxMH9hJf2XI7YhOqTA8ND//7AwIENN79JNBJPEdOJ+u9kyhw5HNzq0lulQCi5xnfFFXWMr1p3FoeDT8RWX/Pgo48adrw+KS2l/8XcQRHKRgMGcIvPujw/fhMBRPlrdgT+uBkZfLq/UyduBdW/P01P+oL0eofPzW3m3/0nl7ws2hPYGD75hN7F7dwdzY9dPPggkTainCyI4la5fso47iC9xkhX6L6v0Vlp6tV5FAULHb7/Tb/3W5n9UBq11x6jCyJXeMzcONflpFcSnvLrzZZzx5Pc9vxJ72cwH3iAKDraQTZE8GKidXn3XZqAL6htSx9rdR5+mFtFHT1KBw7w7/Lee8SnLr//nqh1a7o6dSW1a+fb7hrah89mE0B0JPI0Loeq9Hev1nSuioKCAgJAr776KhER2Ww20mg09MQTT1TUR86f796+Zcs6ujy/9RY5AOqsS6MLNb/VXBiFiLMYOl3tg6qn228soThVQtYmLWp94y1YwL9a5SV/vOrWjevwgqC4mLuS/d//cYmQtzWoAvHiC5wJyUMSLzLjNGUKd0DzulgocVXY8OHO9+/DWVzTNGFC1Y0uvpgm6+eTweAIWvnbzz/zY57Rq/HXeBtziZ1aaY6TDRr+40ydWqMk+LnneHzR0UTffut5P0Yj0W+/ES35KIO+Ou892t71Cq4tnTaN+9rv3Fnl8/DmmzlzF4y1xoUIF5CyuhPLt99WBA6+1KQHw+HDvADaDh+O813VPAD3+6/C4SD64w8uWNdoqtQGudYSeaTZJ7T7zZ+opNhBF1/Mx3bLlgU48O3bnUeDgXM4iJ4e+xcBRCMH5vv8BfDTewcIIPppaj3aWd99Nz8B55xDBJADoNOSC/xabHHjZ/8SQLToPx7WDfHFlVfSpbrl1KGDw69g3HXg9jcGBLTQ6SMXbSQNbLTvv1/UuO3oUaJojYUm6+bWCJzMZqJx44juuotoyxYvD/DDD/Rz/BUEEH354IZaNxvYPovOwBbfXvxOX3Z/impb36gyV8XPvj5XEQ0c6H1jh4PovPPotKgj5JxaUzdnKSj93/+Rw8Etqa8beojn4QBELVpQqybmGseMobLwKxsBRFvRq8r71uHgX+Pxxz3fb//+/QSAPvvsM/d1zZs3p9tuu40DwdRUqvykXXgh0YABXgbSrx/9e/p4Aojex1SOAKpbvJifw++/9/fX9Inr/bMu8WKiNm08LvT8yCNc/eTTiRJXe3dPKxIHyFWxeNZZvK5LMP30Ew/394TLuB8ycUAUHc0Bki/KyvjPDhD9eYvzzeb6MklPJ5uKpKaxJXTttcEbt93O35Vffhm8ffrqyy+dz9k5T9Lu73bTNddw4OJaEmjrVn69XHYZr8Gj0dSsNlyypKLFteufTsfVjZ7k5fGJi1tuacjfTIjGJ8FRI6tPtqe0lL8ne/Tg1aYb4qCm+viKinidQ+e8S6+KivgArH+fcurTs5xat+YxExEHKkOG8I5SUnjDHj2IbDZau5YoKspBY7Q/kT0iircZPpxKVmygfv0cFBvLC0t7ZLHwN+lTT1UterdaeZltwOOBhS8yMojGjeMzmDcmLSWrxfc/XlGhg1K1edRR7afczQHM+TlyhM92uiYUHDpEu59ZWHH239dx7Oez8S+ODSCStlrJHNeEYiPL6I47/LtrWho/9e80nVllzocvSmbNpUTk09UtVte6VP09Vx6lCJTTnplVgyfXHHnX5Nczz3TUnHw/axYRQFcZllNKks3rweXbT+URQLR5zBO+vXntdrol6jNKjDbWWVvualzx7qXL+OjfW+OH99+nbDThuSgv1z0Mt9Gjeal3q5XGn3mA2iCNI4OvvqIjB3gS9Vtv+bG/BvTrr/x8rGx+jXt+CREHvN7WoPnrr78IAC2tNJGoT58+dKlrcdZp03hlX2cgfffdfEDncZrXv/9SKWLpyt77SCmijJE38cSe6pPHrriCqFmzWl+f9ZWd7fyd70znyTQAN1LYuZObkezaRReeV+57M4YXX+R9pKXVva2Ppk7l76F27TjrH0yZmTzc156uOBv1+OP8NvEng11ayguI9u9nJ3u37rwo8IUXEo0bR2swtHpS8YRmNPKUoQ4d+JyaXs/PV79+fJ6kd28+T5Cby1mekSP5OW7Vitcxdv3cowfH/hs28L/WrYlOO43XKa7uvvs4yNpWy3rUQpyoJDhqZFdfzR9EH35ItXbHKaplnv8jj/BfZvVq/lCKjKx9H5W5y8B27iS6916i777zuMJ0bi7PzRw4kGjFCv7eHzWKP2gvuog/BCs3Cfv3X64qcZ1Uv+8+IqUc9HfqpbQm6jwCiB69o5Dotdf4lF/TpkTvvUdrfjVTn3b5NBhr6bqhh6hlS6IOyfmUj0TOLL33Hs+6BCijVX9qF59LHdpYqi5iabXyQY/BQLlIphl4jo6MuKXiAPaNN/jJ0ut5pqjzeoeDg0pvDQ0cDm7ek5TkoOjIcnoJD5Ljk0/rfqKrWfvNcdKijM5L2uwOrByOSsdTrgX5PvuM/y7vvltxxDZlCh/hVzqYef11/pV8WQOx8i/TXh2i85K3+j8T9PffaTkuDOgEucPBX8QTe23iQT/7rG/BxZdf0lvqLj5rvrL2qCXjuINiNSa6NOonsu3ZT0QcT8bGEl15Jb/m37p1KyWgiC7qcqjioVeuJIqMpKwLrqWoKAfdd5/34eTkEMVpy6gN0mjzNM8rbebm8txnIiLHzl3UBml0Rf9Ddf6qrnU/+3Y18nPkynxkZvLMXdegN24k0mppWX9e2PCPP+rcdQXXip3XX09vgZ/XtD38RnKdafa5LKuBbXK+VL59u2obp/x8vv711z3fz9Wdbm2lVWxHjRpF7s/9X35x7vhbInLHxh6rPddf9yZ1wl5SykFPPUWc/qsekebl8Sn4e+8N/Jf1Qa9ezio4k4nLLnU6cp3OdwCUpPJpytUejlg9GTqUqG/foI7v00/dw6GHHgrqromIY3pX+WNJCceol1/u/37mzuUx/u+lHC417dqVCKCHW82lyMi6G7OdSKZM4eOC6dP5Y2TpUi55c50sqtzIxWLhROL113O/iyZNOIauXmK4fj2/3EePrnpC4cABvl6yRuJkJMFRI3uk7RfUPiLN/aVyZ+9VZP9ygbsrzJtv8vWXXVZxhsxu57OqkZHOrr87d9K+hZtJqbqnKrz7Lu/vvmkmKm/XseLbTKfjs59//EHkcJDZaKdhXbIoWpVR64h0Aog6p/BZ8w8/5FKmyEhyd+AxmdzfMQS4gigHTUlewJ/G119PE9Uc0qKMdqErl9JlZtKyZdxZtH17B52vX0enRR2hdm1stCnubI4aXfLzOec/diz9qh1FANHMRyvOJtM77xABZLv2BhrRN8vdrebQzM/4tKvBQOnnTKD1D33NA/zpJyLi40/XmL/5ptITlZdHtGgRbX/lRxrei7vgDI3eSLvRhWtGqkRmvvv8pl8IILrmzP10+1QbtWtpoehIG93TeRllGCo9ga5vr4su4q5SkZFEd95ZZV8jR/K0AX+9PuY3LsO8+OmKACkzkyPA7Gwym7lWvkrsVF5OdN11dL/mNYqOdniKpes0ZgxR1y4Oohtu4N9t2rTaA7SCAqJ77iGbJoo66I7R0MF1B3JvPMZZsRvjvyVbVi5NmMAv60OHiI/8IyLobd2DBBAtuOILPhpu0oSoWzd6+WkzAXy+oC4bNziodWwuxaKUFkz71X29w8EHiCkp/OtNmUL0z3+/J4Bo1v9V7yvsmfNlTP80GcH1gK+95u4YVdhzGI3tm0a9o3bQvOQ76fEHjKTR+Fnbb7PxaV+ANg24jYCKZmV3383vxcZqN1yXQ4f4uajeHe6ll6hKRVR1n3/+OQGgPZVSCjfffDO1atWKf7Ba+cj6hhuIiE8uAXyg/dhj3CF68mSigWfaKQLl1DYmm1aurPQAF17I93ediXr/fd5BbbVGQeL6+7gzm4cO8Yfxp5/SwVe+IYDoA8ODRPv3e9/RunWcQnjqqaCOb9euio+vN94I6q6JiOjiizk5d++9fAAPcLdBfzkcHBs2a1bpxOO+fdS1ky1YU7DChtlcMwH977/csM7f7H9l7uOI+yo+L665hk9G1WihLsRJQIKjxvbyy+S4aRJtO2c6TWvKZVI3YjaVI4LeSX6cAKJB7TIoTldOkRF2umykmVq04NKu1FQHZT/4Ih84AzS67b/UPNVOFgvR0cM2eumBTFq1vOIgftUq3rRdO77/CLWc8n9YR/aff6Fjkx6j/Yn9yYpIsg8YSOMNP/FBZPuHyDT+Jnox5UVKQh7NiH2Td0R8bBEXR1SwP5fuG3eIAKKvRnxMT166kZIN5dQ0Kp9yI1OJli8nIqKMv49QQrSZIiPsNGqUgx59lMfTr5/zA/ybb/ildsYZ/OW9davn52zVKroG8yk6wsolUoWFfJA7fDg9+X/8u91/n4MSI0uoLQ7TxsF30MPqJdJF2wkgmptyN9GAAZSX66AmTYiG9DFS/w55lKI3Uca9LxCddRYVqkS6D69SBMopCXn0HqaRrXc/TpnUpxbSbqcZbedxEgsldBm+pRswhyJQTjERZXT/qJ2UtXoPH8R+8EHF2WGdrkpa0Gjk5FsgJ6tLS4ma6ktpFJbxH3HqVN4ZQA5DIk3ot5sAPrG8di3xwZazBPL05Ax/q+LcXCVuBXn2irTnGWdw0Pfpp1y7MXcuH/02bUqkFH1z0fs1A1dvj3Ebvw4vTPybAKL/m5bFZxg0GqJzzqHynALqk5JGrXCUihPbECUkkGPXbr9bz2YcsdKQxB0EEDXTFdJFg4po6FB+7Q1N2UX3xH1ECnaKgYkAogN7fcvS5efzn/r2br9XOdOwb+Zc6qbdT5GwUhfscd/Uq5fvY3b7+muiiRPJVlRK8fH8e0+ZwgeLwZ4rUh+Fhfw7OvsqEBFX42q1HDfW9jZ84403CADlVmqc8Oijj1JkZCTZXae6J03iGjCLhUpLeZ5Ms2b8MnF9tg7vfIQewfNU+EW1KGz3bv4jjRnDgxgyhGuPGrgjjmtak6dMobsZg+F8rmtbvpw/q+bO5b/3ihWcJXWtZdOkiQ+LO/nHbud+MQDRwoVB3TUR8ZzVbt04+Q8QnXde4PvasIG/YqZO5YxJA0zBCmv1fak6HJyNAoj69yeaPZv//8QTwRmfEOFGgqMQcjiInnmqnACiAW0yOGMU/SNZEEWZaEZTMIua4zhdrfuOPu//OuV3H0quEhm6/376AZxROStlB0WC5w8o2OnBsXto/z4HNWtG1Lmzgwpue4g+xK0UFWGjhAROhbsOtiI0dmoZmUkA0SvXb6qSN3ds286nnCIjiV58kTbd9QkBRFdhASnYaTre4WgJICNiKBfJNdbQ2L2bj4udJ69p+PBKZ+8cDj4id/1OXhy7/A6KQzFden4pl0YoRT++zfMCJk7kXW36LZ+SVb77ebjxRj74i9DYaQkupSl9/6YIZaOt6EU70Y10MNElWEqz2z5OqfpiUspBU6/Oo5xfNnOtkY9rz9T5dz50mDaP+g+VPfAoZ2u2bqV9e+x00018cBYby7/S338TrZt3gFb3mErFM1+tso9p08hdUhmI5593HkyhX8Vcpp9/pre7vk0A0Q36b6iVljNwkyI/p4PxZ9DhN771Ws5Ul+XL+TF/+YVjv+nDd9JlyasoPaYig+kAaC0G03fdHqYf395HAwdyzbw/FYAzr+SmE22QRkbEkDsD50x3rf2Tg5h7NG/ShtdXu5+LTz/17/cpyymmd8/6giZFzKG++IfaadLoQ9xK9uQmRNdfT7+fO5NaRWdTz2b+LRp7ww1ECfpyMg48j+jbb+m3Xx2UlESUkuKglc/9SfafltM333BQ4+t8o+zsbJrnYT0b1wT1Jk14UvaievQLCTa7nd8PrsYLVisfiDVp4n061hNPPEFKKbJVetG89dZbBICynZP53QuJVks/2e1EpWm5XO/s+oDylEp79dWKo8H/b+/O46Kq3j+Af87MsCPIoiiCIiC44IIL4pZlauaSuWtZampaZpmVZZotX201W6xfaWWLmVlWZu5pmmlp4pL7guKCuQCCC8o6n98fw9wYGWAGEEZ53q8XL+XeO+ce5s6de597nnMOoE1OeyNduECr2QEZGabPjJMTmbFlpynoM3+hX//j7W0a6bIsJ6rNp1s3027yZTSWOaPR9F7k64ZWIuPGmepap44pSQEo0y5YlcLixabzETA9XLhBHyshKpwERw7A3JekZ08yM8NIJiaa7pSXLjU9Bb//ftNwzqGhFknDuZv/YgPXo6yiLvHJRqu594Vv+YjfIgKkQWXTU5/OfV6xpsKfeoqbNpkeoD77rKlbz7x5prSSgQNNM09bfbqUlmZ6Ypp3sb2jyjYCZGjNq7ycmGZ6UXy8qVdrEQMfGI2m/koF+i+vXWvqcFzcU83ERM50fo4Aeadax6Y+x+niYnqSnj/la/f8XRwXvpK7N6WRNH15t2yRSxeVYWph8pxjmsp8716+N/2Sdg/RunURgz7cQIcOmQ6vUpb3NKGh/804P2+eadmkSSXfz8WLZNWqRvZpd05rkfrrL9NAGD1bnmFuz3t4+faenBS0gC66TOr1RrZoYdpvSWc9T001vf5//zOlgwKmGzo/PyN//vAUf//kENu3SC9wP1eSp7nzJ+5g3IT5ps/hHwUHchg50nIfkZH5BgspyR/2zjumSOPrry1SLq9etX8yzN9/N9Xpyy9N56Veb+oDUJoH/QMHDiQAnrsuqsjOduw+Fr6+ppvYrCxy8mTa1Crx6KOP0tfX12LZ999/TwD8x9wanZFhap0MCPhvGEGj0RQdBgaaPpivv154VJ6TY4pOAdPJmphYyr/UNi1amAarJE192957z9SBHsg3HPmpU6a82K1bTSfrrl2msZh/+sm2eQdK4aWXTHU5Wcp5psuD0UiuWGH6rje3lAv7nTtnaoErdiJqIW5iEhw5iMOHSzbw0cWL1/VByM7m8oeXsJlhN3+uM97UQjB/fummZc7NNQU+J09y3TrTPUZepl25ypr+BrtiFRur3ezZ+SrHj7dtCp2kJLJB6DXWrpbOSyn/PRXOzTUFh59/XmaNRCV2+LApjWbFClPKTI0apq4nM2eaMuA6dSr9wFjTppnO7DFjTMFKzZqmuPT6UYgSE039HVxdTQ2HpUnJiIw09ZsATPs/cMA0CIE5SKlZ05TPHhdnCta2bLkxM4inpZmy9xYvJo8cqfjjnZ/RaJonxtwA0L174YOy2CIuLo4ACIB7brJhpMLCTKNjmZ9O2zIK2qBBg1jvuol2/vjjDwLg6tWr/1u4b5/pqYOLi2mIvh49qKV62tJ/6PBh04e5Sxc7/6qSe/ppU8N9/v6dHTuanik5wjx3ycn2t8BWNKPRlHFY0oc+QohbnwRHwm4VdmOZkWGKEt6zf/LPa9esD0XqqE6e/C/jMDhYm+qjVFJSTPeGPj6mG9DmzYu+Jzx/3jSceWk88IDpb3juuf9u5jIyTE+c337b6qCJlZI5a+upp0ofHHbp0kULjn4r4TD2FaVbN1P8MWiQ6WGBLQ8EOnfuzNjYWItl1uY+Imm6m7/9dtOb7eFheuPteeqwc6eppaacbNtmChh79TI1bG3dWm67FkKISquw4MgAIQqh01XQjl1cgHXrSvRSV1fTz80iOBj44w9g5kygXz+gWrXSl+nrCxw9avv2ZbHPV14B7r4bGDwYUMq0zMUFePHF0pd9K5kwAejRA4iMLF0569atw6+//oqHHnoI8+bNQ1JSUpnUr7wsWQLk5gLu7ra/JiUlBYGBgRbLatSoAQA4c+aM5cZ+fsCaNcDXXwOdO5tONHs0a2bf9qXUsiUQH1+uuxRCCFGIirr9tYlSKkIp9ZdS6nDev/Uquk5ClDUPD1MQERVV0TUpuZAQYMiQ/wIjYZ1OV/rAiCQmT56M4OBgvJgXfd5swZGLi32BEWAKjvz8/CyWeXh4oEqVKjh79mzBFzg5ASNG2B8YCSGEqNQcOjgC8DGAD0lGAPgQwJwKro8QQlSoP/74A9u2bcNLL72ktaTcbMFRSVgLjgCgZs2aBVuOhBBCiBJy2OBIKVUdQHMAC/MWLQTQXClVBklAQghxc9q7dy8A4O6774bBYICvr+8tHxxlZmYiPT3danBUo0YN6y1HQgghRAk4bHAEIBjAaZK5AJD37795y4UQolKKj4+Hu7u71t+mWrVqt3xwlJKSAgDSciSEEOKGc+TgyCZKqYeVUnFKqbhb/QZBCCHi4+MRHh4OldfBq7IHR9JyJIQQoiw5cnB0CkAtpZQeAPL+DcxbriE5l2RLki2rlcWwW0II4cCOHDmC8PBw7ffKHhzVrFkTly9fRnp6enlXSwghxC3IYYMjkucB7AIwJG/REAA7Sd7adwFCCFGI3NxcHDt2TIKjfAodzlsIIYQoAYcNjvKMBTBeKXUYwPi834UQolJKTExEVlZWgeAoJSUFRqOxAmt2YxXXcgRAUuuEEEKUCYeeBJbkQQCtK7oeQgjhCOLzZgq9PjjKzc1Famqq1eDhViAtR0IIIcqLQwdHQggh/mMOjurV+28+bHNfy6SkpFs6OHJzc4Obm1uBdZWx5WjZsmXYuHEjTp8+jdTUVIwfPx533313RVdLCCFuCRIcCSHETSI+Ph6urq7a5K+AZXBUv379iqraDVXYBLCAqTXJYDBUmpaj3NxcDBgwAEajEbVq1UJOTg569uyJ2bNn49FHH63o6gkhxE3P0fscCSGEyBMfH4+wsDDodP99decPjm5VRQVHOp0OAQEBlSY4SkhIQEZGBj766CMcO3YMBw4cQI8ePTBu3Dg89dRTt3TfMyGEKA8SHAkhxE3CPMdRfo4WHB06dAi9evXCpUuXyqzMooIjAKhfvz62b99eZvtzZAcPHgQANGjQAADg4eGBn376CY888ghmzZqFjRs3VmT1hBDipifBkRBC3ASMRiOOHj1aIDjy9/cH4DjB0YYNG7Bs2TKsWLGizMosLjjq0qUL9uzZg3///bfM9umoDhw4AAAWKZR6vR6TJ08GABw+fLhC6iWEELcKCY6EEOIm8O+//+LatWsFgiMXFxdUqVLFYYKj5ORkAMDy5cvLrMzigqO77roLALBmzZoy26ejOnDgAAICAuDj42OxPDAwEAaDAcePH6+YigkhxC1CgiMhhLgJWBvG28yRJoI1B0erVq1Cbm5uqcszGo24cOFCkcFRkyZNEBAQUCmCo4MHD2opdfnp9XoEBwfjxIkTFVArIYS4dUhwJIQQN4HigiNzUFLRzEFacnIy4uLiSl3exYsXYTQaiwyOdDodunTpgl9//fWWHpCAJA4cOGA1OAKAkJAQaTkSQohSkuBICCFuAvHx8XByckJwcHCBdY7WchQeHg6dTlcmqXVFTQCb31133YXk5GTs2LGj1Pt0VOfPn0daWlqhQ7bXqVNHWo6EEKKUJDgSQoibQHx8PEJDQ6HX6wusc7TgKCIiAm3atCmTQRlsDY66du0KAFi9enWp9+mozIMxFNVy9O+//yIrK6s8qyWEELcUCY6EEOImYG0YbzNzcESynGtVUFJSEqpVq4bu3btj+/btpZ5/6MKFCwCKD46qV6+O6OjoShEcFdVyRBKnTp0qz2oJIcQtRYIjIYRwcCQRHx+PevXqWV1frVo1ZGVl4fLly6Xaz9GjR/HSSy/h999/R05OTonKSE5Ohr+/P3r06AHANDBDadjacgSYWo/++uuvMp1jyZEcPHgQnp6eCAoKsro+JCQEAKTfkRBClIIER0II4eDOnTuH9PT0IluOgNLPdfS///0PL7/8Mm6//XYEBATgpZdesuv1V69exdWrV+Hv748mTZqgVq1ape53dP78eQCmlqHi3HXXXcjJycH69etLtU9HdeDAAdSvXx9KKavrzcGR9DsSQoiSk+BICCEc3JEjRwBYH6kOKJvgKDMzE0uWLMGgQYOwePFihIaG4r333rOrDPOIedWqVYNSCt27d8fKlSuxbNmyEtfr7NmzcHFxgZeXV7HbtmvXDm5ubtiwYUOJ9+fIzMFRYWrVqgWdTictR0IIUQoSHAkhhIMrahhvoGyCo9WrV+PixYsYNmwY+vXrh379+iEtLQ1Xr161uQxzcOTv7w8AmDJlCurVq4devXrhsccew7Vr1+yu17lz51CjRo1CW0vyc3Z2RpMmTbBz506795NfSkoKvv32W4wfPx5t27bFzz//XKryysLly5eRmJhY6GAMAODk5ISgoCAJjoQQohQkOBJCCAcXHx8Pg8GAOnXqWF1fFsHRokWL4Ovri86dOwMAAgMDAQD//vuvzWVcHxzVqVMHW7duxcSJE/Hhhx9iwIABdtfr7NmzCAgIsHn76Oho7Nq1q8SDU+Tk5CA2NhZDhgzB559/jiNHjmDs2LGl7s9VWocOHQJQ+GAMZjKctxBClI4ER0II4eDi4+MREhICg8FgdX1pg6OrV69i6dKl6Nu3L5ycnACULDgy799cHwBwcXHB22+/jbFjx2Ljxo12By3mliNbRUdH4+LFi0hISLBrP2YrVqxAfHw85s6di7S0NCxbtgxnz57FjBkzSlReWTl48CCAwofxNpOJYIUQonQkOBJCCAdX1DDeAODh4QE3N7cSB0crVqzAlStXMHjwYG1ZWbQc5RceHo7Lly/j4sWLdtWtJC1HAEqcWvfxxx+jZs2aGD58OAwGA1q3bo0HH3wQ77zzjpbeWBEOHDgAg8FQ5OcAMLUcnT59usSjDQohRGUnwZEQQjgw8zDexd0Ul2Yi2EWLFqF69ero2LGjtqykwZFer0fVqlULrDOnBNqT8pWbm4ukpCS7Wo6ioqKg1+tLFBwdP34cq1atwqhRo7QWNAB4/fXX4ezsjKeeesruMsvKgQMHEBYWZlEva0JCQpCbm4vExMRyqpkQQtxaJDgSQggHlpycjEuXLt2w4OjKlStYvnw5+vfvb5G25+3tDTc3N7vT6vz8/KDTFby01K5dGwBw8uRJm8tLTk6G0Wi0q+XIzc0N9evXL1Fw9Omnn0IphVGjRlksr1mzJqZOnYqlS5di8+bNdpeb3759+5CRkWH36w4cOFBsSh1QsiBUCCHEfyQ4EkIIB1bcSHVm/v7+JQqO1q9fj2vXrqF///4Wy5VSCAwMtLvlyFpKHVCym/Zz584BgF0tR4Aptc7e4Cg7OxufffYZunfvrgVy+Y0ePRoAsGXLFrvKze/gwYNo0qSJ3UOkZ2Vl4ciRI2jUqFGx28pEsEIIUToSHAkhhAOzNTgqacuReeCCqKioAuvKMjiqVq0aXFxc7Go5Onv2LADY1XIEmIKjM2fOaMGVLZYuXYqzZ89i7NixVtf7+vrCz88Phw8ftqsu+c2aNQtGoxFr166163WHDx9Gbm4uGjZsWOy2wcHBAKTlSAghSkqCIyGEcGBHjhyBTqdD3bp1i9yudu3aOH36NDIzM+0q//Tp03B2drYa1NgbHCUlJVmMVJefTqdD7dq17bppNwdHJWk5AuwblOGrr75CcHAwunXrVug2ERER2pDa9jp37hy++uorODk54c8//0R2drbNr92/fz8A2BQcubi4IDAwUFqOhBCihCQ4EkIIBxYfH486derA2dm5yO2aNWuGnJwc7Nu3z67yExMTERQUZHWSVXNwZOvw20W1HAH2z8Fjbvmxt+WoWbNmAOwLjv7++2906tQJer2+0G0iIyNL3HI0e/ZsZGVl4ZVXXsHVq1cRFxdn82v37dsHnU6HyMhIm7YPCQmRliMhhCghCY6EEMKB2TJSHVCygAD4LziyJjAwEOnp6TZNgGo0GpGSklJkcFS7dm270+rc3d3h6elp82sAwMfHByEhITa/F2fOnMHZs2e1FqfCRERE4MyZM3ZPCJueno7/+7//w7333ouRI0cCAH7//XebX79//36EhobCzc3Npu3r1KkjLUdCCFFCEhwJIYQDszU4CgsLg6enJ3bt2mVX+YmJiahVq5bVdfYM552Wlobc3NxC0+oA0037mTNnbE79O3fuHAICAqy2ahXHnkEZzNvZEhwBplRHe8ybNw+pqal45plnUK1aNTRs2NDu4MiWwRjMQkJCcOrUKeTm5tpVTyGEEBIciXxyc3Mxb948u5+KCiFujAsXLiA1NdWm4Ein06Fp06Z2tRyRLLblCLAtOCpqAlgz8yhwts7Bc/bsWbv7G5lFR0cjPj7epu8z83tmbn0rjDmtzZ5+R0ajEe+++y7atm2LNm3aAABuu+02bNq0yaaJWrOysnD48GGb+huZ1alTB9nZ2Xb1FxNCCGEiwZED27p1K9atW1du+/v6668xcuRIvPPOO+W2TyFKaufOnUhPT6/oatxQto5UZxYdHY1//vkHRqPRpu2Tk5ORlZVVbHB0+vTpYssyj5RXXJ8jwPaR1MwtRyVhbgXavn17sdvu3LkT4eHh8PLyKnK7sLAwKKXs6ne0adMmHDt2DI8++qi2rGPHjrhy5YpNgWx8fDxycnLsCo5CQ0MB/DcSoRBCCNtJcOSgli9fjttuuw09e/Ysl9zx7OxsvPLKKwCAzz77rNzSMYxGo92jawmxefNmNG/eHH379rU5ELgZlSQ4unLlCo4ePWrT9uYWnLJsOSoqrc7eiWBL03IUGxsLT09PDBgwAEuWLCly2x07dhSbUgeYJpitXbu2XcHRV199BU9PT9x7773aso4dOwKwrd+ReYANe9LqzMHRsWPHbH6NEOLGOHPmDDp06IDdu3cXWJednY2EhASsX7++VNMEiLJVYcGRUmqoUmq3UipHKfXYdevclVKLlFLxSqmDSqmeFVXPivDzzz+jT58+aNiwIXQ6HZ5++uliX7N582Z06dKlxIHUV199hWPHjuHBBx/EyZMni22xunbtGt5991188803NpW/Z88edO/eHatWrdKW7d27F9HR0QgJCSnVxIqF2bRpk90jdzmqs2fP4qeffqroajiErKwsjBkzBh4eHlizZg3efPPNiq7SDRMfHw+llHazWxx7B2UoLjjy9PSEl5dXmaXVBQcHQyllU8tRdnY2UlJSStxy5O/vj61btyI4OBh9+vTBQw89pNUxv7S0NCQkJNgUHAGmfke23sRcvXoV3333Hfr37w8PDw9tec2aNVGvXj2bgqP9+/dDKWXzSHWAKQjV6/USHIlK4fTp0+jWrZtdI0CWpwULFmDTpk0YO3asxcO8d999F25ubggNDUWnTp3QoUMHZGVlVWBNhYZkhfwAiALQEMBXAB67bt00AJ/m/b8egLMAPIsrs0WLFrxZXLx4kTNmzOCuXbu0ZRkZGZw1axYNBgNjYmKYmprK6dOnEwDXrVtXaFl///03q1SpQgAcOXKk3XXJzMxknTp1GBMTw4yMDPr5+XHAgAHa+iVLlrBt27Z86qmnuHLlSs6bN49BQUEEQKUUf/755yLLNxqNvO222wiAANinTx++9tprdHFxYfXq1Vm3bl26uLjwq6++srvuhfntt99oMBhYo0YNXrhwodjtL168yLNnz5bZ/stSbm4u27dvX+znoDjXrl3jsmXLmJWVVYa1K3+vvfYaAXDp0qUcOHAg9Xo9N2/efMP3e/bsWR4/fvyG7ye/Bx54gMHBwTZvn5GRQYPBwMmTJ9u0/f/93/8RAE+fPl3oNvXr12f//v2LLct8XNLT04vcLjAwkCNGjCi2vNOnTxMAP/roo2K3LUpmZiaff/556nQ6VqlShS+//DIvXbqkrV+/fj0BcNWqVTaV99hjj7FKlSo0Go3FbvvNN98QANevX19g3ahRo+jt7c2cnJwiyxgwYADDwsJsqlt+devW5f3332/364S4mRiNRnbr1o0AeMcdd1R0dayKiYmhu7s7AfCLL74gSW7evJl6vZ5dunThZ599xlmzZhEAFy5cWMG1rVwAxNFajGJtYXn+APjCSnC0D0DLfL8vAzCguLIcKTgaP348R4wYwTlz5nD37t0WF9Lc3Fz26tVLCxa6d+/Ot99+m7Vr1yYAdu3alWlpaSRNN7R169Zlo0aNmJ2dTaPRyMTERJ45c4bZ2dnctWsXfXx8WLduXQ4ePJgGg6HYG7j9+/ezT58+7NOnDxcuXKidlOabgyeffJJOTk48f/489+7dSw8PDwYEBNDZ2Vmrc0xMDFetWsWWLVvSw8OD//zzT6H7W7p0KQHwnXfe4YwZM+jm5kYA7NmzJ8+dO8fk5GTefvvtBMDmzZszKiqK9erV4+eff16i9/7w4cP08fFhaGgo9Xo9hw8fbnW71atX87bbbmO1atUIgE5OTty6dWuJ9kmSV65c4Zo1azhnzhxOnjyZ06ZN4+XLl0tcntm8efMIgC4uLmzZsmWhN2VnzpxhRkZGoeU8/fTTBMD69etz5cqVJarLmTNn+NJLLzE5OblEr79eVlYWly1bxo0bN/Lff/8t9obz2LFjdHNzY58+fUiSaWlpDA0NZXBwMP/9999CX3fo0CGuWbPG5nrl5OTwn3/+4UcffcQHHniAYWFh2sOACRMm8MqVKzaXZYsPP/yQ//vf/wosj42NtfuC37RpU3br1s2mbZ9//nnq9foib9A7derEtm3bFlvWU089RTc3t2K3i42N5Z133lnsdjt27CAA/vjjj8Vua4t9+/axT58+BMCgoCDtM/z2228TAM+dO2dTOe+//z4B8MyZM8Vue9ddd7F27drMzc0tsG7+/PkEwB07dhRZRqNGjdirVy+b6pbfnXfeydjYWItlGzduLLP383obNmzggQMHbNo2Pj6er776arGBoRCk6T5o3759TEhI4Pnz5y2uE3PnziUAxsbGEgA3bdpUgTUtKCEhgQD42muvMTY2ltWrV2dCQgJr167N0NBQ7V4vNzeXoaGh7NixY8VWuITM96Y3m5stOLoMoFq+3/8PwMTiynKk4Gj48OH08/PTgomOHTvy1KlTJMkXX3yRAPjqq69y+vTp9Pf31wKONWvWFLhB/OmnnwiAjRs3po+Pj1amUooGg4HBwcFMSEjgqVOn6OzszEceecRqna5cucLnnnuOTk5OrFq1KmvWrKmV1bZtW22/e/fuJQBOmzaNERERDAgI4OnTp5mens41a9Zw9erV2ranT59mYGAga9eubbXlJTs7m/Xr12dkZKTWYnHixAkuW7bM4u/Mysri5MmT2bVrV/bp04eNGzemu7s7T548aVFeZmYmf/rpJ/bu3Zt169blnj17LNZfuHCBERER9PPzY3x8PKdMmUIAFsFAUlIShw4dSgAMCwvjqFGj+PrrrzM4OJgRERHak++srCwOGzaMbdq04aeffmr1hjgnJ4effvopu3fvThcXF+39NBgMVEqxUaNGPHz4sNXjYYukpCT6+fmxffv2WpD03XffFdhuy5YtdHd3Z6tWrXjx4sUC60+dOkUXFxfefvvtDA8PJwD27du3yGDqeseOHdOChLZt2/Lq1asl/rtI05fpsGHDtPcMAP39/Tlt2jSeP3+eJHn16lVu2LCB77//PsePH8/69evT09NTO5dIctu2bXRzc2P16tW5YsWKAvvJzMxkvXr1qNPp+Pvvvxdan5SUFM6fP58DBw6kt7e3VqeAgAD27duXM2fO5COPPKJ9bv74449S/f1mv/zyi7avv/76S1uek5NDPz8/jh492q7yhg0bxoCAAJu2ffDBB4ttmRo6dChDQkJs2m/t2rWL3W7QoEEMDw8vdrsVK1YQAP/8889it7XHb7/9RqWU1ro2dOhQBgYG2vz6VatWEUCRnyXS9N2o0+k4ZcoUq+vPnDlDnU7HF154odAysrKy6OTkxGeffdbm+pmNHj2a1atXt1h222232fW32io7O5ve3t7s3bu3TdtPnTqVAPjee++VeV1ExTt48GCZBSlnzpxh/fr1La4TERER/PLLL3n48GF6enqyU6dOvHz5MqtVq8a777672DKzsrLsuvaRputMz549Wb9+fbsejr311lsEwKNHjzIuLo5KKVatWpUGg6HAw9g33niDALhv3z676lbe3nzzTT700EN87bXX+M0333DChAkMCQm5KVu+yj04ArADQHIhP/p825UqOALwMIA4AHG2XJjLk9Fo5JEjR/jee+/Rw8ODvr6+fPbZZwmAw4cP14KD9PR0/vPPP4U+NTcajRwxYgRbt27Nhx9+mB988AE//PBDTps2jRMnTmR8fLy27ZgxY+js7KxF8Kmpqfz888957733as26w4cP57lz55iTk8MNGzbwmWeeKdDy06ZNGwKgXq8v9iYgLi6Obm5ujI6OZmpqqsW6OXPmEAB/+uknu967hIQEurq6WqT3bdy4kdWrVycA1qhRg/7+/gwJCdFupJOSkhgbG0snJydu3LiRpCnNqEGDBgwODuYXX3zBIUOG0Nvbm05OTnzhhRd47do1rfx169YRAMeNG8fs7GwOHDiQAFi3bl0CoJeXF6dOnaoFBZcvX+Y999xDAAwNDeWECRO4Zs0anjx5kjk5Ofz111/p6+tLb29vLl261OLvMxqN/P7774t90vrQQw/RYDBwz549zMnJYVRUFMPDwy1S4w4cOEA/Pz/WqlWLBoOBt912W4HUptGjR9PZ2ZkJCQnMyMjgjBkzCIAjRoywKT1o7969DAwMpI+PD1966SUqpdi/f3+rT8SnT5/O3r17c9u2bdqyrVu3cvTo0ZwzZ472GnMa1rPPPsuVK1fygw8+YO/evQmArq6ubNWqlUVrpaenJ6Ojo/n9999brV/jxo0JgBMnTmR2dra27r333iMA+vr6MigoiCkpKQVev2bNGnp6emqfrZEjR3L+/Pk8evRogfdn/fr1DA0NpaurK7ds2WL1/TIajdy4cWOxAeTx48fp4+PDZs2aMSAgwOIhhfn9sRYMF+Xdd9+1uWWjU6dObNOmTZHbTJo0ic7OzsV+Trp3787mzZsXu89nnnmGLi4uVj87+ZkfBhw9erTYMu01ePBgenh4MCkpiY0aNWLPnj1tfu2xY8cIgJ988kmR25lvig4ePFjoNp07d2ZYWFih7+3+/fsJoEQpx+bPj7n12mg0smrVqgRQ4Hu6tDZv3kwANgW9pOn9B0B3d3cmJCSUaV3KWmpqqtVW6bS0tGI/w2Xp22+/pY+PD6dPn17qB1P5GY1Grly5ssxaFPfu3UsfHx8qpTh79uxSlXXu3Dk2aNCAHh4e/Oijj/jZZ5/x7bffZpMmTbSHkFWqVNGyZcyf+bi4uELLXLVqFWvXrs1mzZrZ9D6ePXuWPXv21D6vAPjNN9/Y/DfExMQw/4P7sWPHEgDffPPNAtueP3+ezs7OfPzxx63W4/bbby9wL5FfSkpKmQZWy5cvL/Bw5+zZs9TpdNp7Yc5q6dmzJ2vXrl3k9SQzM5PHjh0rs/qVhZut5eimT6u73qFDh9i8eXMCYKtWrSxuystSQkICDQYDhwwZwrFjx2of4KCgID766KMWT6aL8sUXX2ipcLZYsWIFnZycGBMTo7VcxMXFsUaNGmzfvr1NN+DXe+WVVwiAv/76K9etW0d3d3dGRkZy+fLlzM7O5tatW+nq6sp27dpx3759rFevHl1dXQt8yW/ZsoU6nY4AWL16dQ4bNqxAi5PZhAkTCEDr4zNz5kwajUb+8ccfWrAUHh7Ob7/9ltHR0dTpdJw9e3ahf19CQgKjo6MJgI8++ijT09OZlpbGfv36aS2KhVm8eLEWPJgtW7aMAPi///2PBw8e5O7du1m7dm1Wr16d8fHxXLhwIZVS7Natm/bFf/DgQer1ej7xxBMW5ZtbMN96660ij8O5c+fo5+fHGjVqcPfu3ST/S0WaOHGixbbx8fFaqxkA3nvvvbzzzjsJQAt0YmJi+OabbxIABw8eXOC9O3DgAEePHs3bbruNkyZN4tKlS21Kubt69SrHjRunPQDIzc1lSkoKfXx82LlzZ27bto1OTk7s27evRVmLFy+mk5MTmzZtyi1btth0w3P+/HmGhoayevXqVr/szakehaV0kqYLRUxMDL28vBgfH6+9ZvHixYyLi6PBYOCAAQPsPnc2bNhAAFZb0a4XERFh8QDCGnOwVVwqZUxMDLt27VrsPj/44AObgjfzjU5ZpzCSpqBDKcXHHnus2Nab6+Xk5NDFxYVPP/10kds1b96cMTExRW5jDgALS+c1fwcUdbNXmEWLFhGAds6ePHlSu5kp69Y483eJUsqmG84WLVqwSZMm9PT0ZJcuXUp0fbBXZmam3Wl8u3btYlBQEL28vCxaQtasWUMPDw/ecccdVlvqb4Ru3bpp36G1a9fmW2+9xblz5/KLL74okGFhqz/++EO71imlrPaNsyYzM9Pq8hMnTrBWrVqsUaMGu3fvTgB87rnnSnR8z58/z6ioKLq5uXHDhg0W63Jzc7lkyRLeeeedFg+PLl68yKpVq2pp1/mlpqZy+PDh2sNMABw7dmyRdbh27Rpbt25Nd3d3Tp8+nampqQwKCmKPHj1s+huOHz9OAHz99de1Zenp6fzll18Kvc7cd9999Pb2tnjAaTQatQeHXl5ePHLkSIHXbdq0iYGBgXR2drbIrChOQkICZ8+ezVGjRllk/5izVgBYPDw3Xw/279/PS5cucffu3doDGHMXjfx96U+ePMlx48ZpDzvr1Kljc93Kw80WHL0E4JO8/9cDcA5AleLKcuTgiDS1Ynz66ac3vOP/iBEjtGh+xIgR3Lp1q91fTkajkfv377frdUuWLKHBYGBsbCw7d+5MAPT29i7RhZ00fTGFhYUxODiYrq6ubNSoUYH37ttvvyUA6nQ6+vr6Ftoxf+PGjfz777+LvfG9evUqGzRoUGjQsG7dOtarV09ryVi+fLlNf8eTTz5JAIyMjNT6QrVt25YAeOLEiQKv+fjjj6nT6RgbG2txc2g0GtmxY0eLFIMqVapY9Fv49NNPCYDVqlXj888/zx49etDT07NAn4rc3FwOHDiQSim++uqrfPvtt/n8888XaA2ZNGkSlVIWAaXRaOT48eMLNKMPHTqUbm5uPHToEF9++WV6eXmxZs2anDlzJi9dusSvv/5aa/1r3bp1mT4BNXv55ZcJgI899hgnTJhApZT25W5+mj9ixAjOmDGDkydPpk6nY9u2be1+mn7gwAFWrVqVDRo0sHjtjh076OLioqXA5u/rlJyczFdffZW9e/dmjRo1CIA//PADSWotg2FhYYyMjGStWrWstnIVJy0tjchL2y2K0Wiku7s7n3zyySK3++677yxusgsTGhpq0wAA5j6IxfXve+KJJ+jp6VlseSV1//33a+eQvU/NGzVqxHvuuafQ9YmJiQRM/QyKkpaWRhcXF6tPisn/PsslCRDj4uIsWu3ND1YA8NNPP7W7vKK0adNGewC1c+fOIrc1Go309vbmuHHj+OGHHxIA582bV6r9x8XFceLEifzggw+4fv16i++6pKQkPvPMM3Rzc2N4eDjnz59vU5C0fPlyenp6slatWgwPD6e7uzvXrl3L77//nk5OTgwLC6PBYGB0dPQNv6ZfvnyZzs7OfPLJJ/nbb7+xWbNmFteAoKAgux647tq1iz169NBaymfPns2IiAibvnNmz55NZ2dnfvjhhxbLz58/z8jISHp7e/Off/5hdnY2x4wZQwB85pln7P57W7ZsSVdXV7sHITIH6vm/X4xGI7t06UK9Xs8pU6YwIyODzzzzjPYwyhqj0ail3+f/fpg0aRL1er2WsUKaPmPLly/nTz/9xO+++46HDh0iSc6cOdPu1u+NGzcWaJn+6quvtIeR5kwD8/E2Go189913aTAYWLduXer1+mK/00nTQ8+WLVtqnyGlFDt06KBlpQwfPpwGg4HOzs589NFHtde1atWq0AyBlJQUurq6csyYMSRN6bYxMTF0dXXlHXfcwWeeeYaLFi0ql4chtnK44AjAEACJANIBpOb9v2HeOg8A3wOIB3AIQG9bynT04Ki8JCcnc+7cuUxKSir3fX/33XfU6XSsUaMG33jjDa2zYUmZL+hNmza1+DLK780332Tz5s2LTF+xx4kTJ4p86n7t2jV+8MEH3Lt3r13lrl27lkFBQQwKCuLmzZt59OjRAjdQRqNRuyHq0aOH1ZuiK1eu8Oeff+aCBQs4d+5cq83oGzZsYO/evbUblhdffNFqndLT0xkTE2Nxoa1ataqWRpKUlEQPDw8OGTKkwGuzs7PZpk0benl58dixY9yzZw+VUpw0aZK2TWZmpkWKG2l6gvf+++8XejxLy2g08qmnntL+nlGjRmnrcnNztYFLzOu7detW4taJ9evX08nJifXq1eOXX37J5ORkhoWFsVatWjx58iQjIiJYt25dXrlyhUeOHNEC64iICA4dOrRAiuDKlSu1epVmZMLQ0FDGxsZy69athT4QSE1NJQC+/fbbRZa1adMmAsWP5lalSpUCrZPW/PPPP4QN6YKDBw+2OU2rJA4dOqSdH/amdvXp04f169cvdL05ndiW74h+/foxICDA4jw5ePAgR40aRWdnZ0ZFRdlVN7MLFy5YHF9zKq2zs3OBFt/SSE1NpU6n0wa7+Prrr4vc/vz581pWQm5uLjt06EAfH58SD/KyYcMGenh4aMfS/OPv788OHTrQ09OTSikOGjRIS8eqX79+gT6DJ0+e5JQpU/jAAw+wU6dO1Ol0jI6O1gZAioqKorOzM3U6Hdu1a8fU1FSuWLFCC7qub0FOTU3lqlWryuRG0Nzv2PydYDQaef78eSYmJvLHH3+0eh6bBzsyy8zM5Nq1azlkyBCt38trr72mfffFxcXRycmJ/fr1s1pno9HIadOmae+tUkpLL9uzZ4+WamxOaTe/Zvjw4XRycrJo3TIajVy9erXVDvxZWVm8++67qdPp+Msvv9j9XqWlpTE4OJiRkZHaw7fPP/+cACwCOnPLvbe3t9Xz//XXX9eyNPLbvXs3AWgpg2lpadpgWvl/YmNjGRoaalOqcX5Go5HNmjWjwWDgk08+yT179tDb25vt27dnTk6O1kd16NChfP7557W+Pr1792ZqaioffPBBuru7F3v/N2DAADo7O3PmzJk8dOgQFyxYQMDUrcCcffDcc8/xgQceYJUqVXj58mUeOnSo2GvG8OHD6eHhwYsXL2oZIo7cD8nhgqMb8SPBkWM4fvx4maYNrl+/vtRBlqO4du2aRWtJu3bt2LBhQ+1iZE6FGTZsWJkMuZ2QkMCPP/64yBaa7OxsxsfHMy0tjQcPHqSLiwv79etHkpwyZQqVUoXe5CUkJNDLy4uxsbHs1asXvby8ymwku9IwGo0cN24cAwICCk3fysjIYEpKSqlvXlavXq3ddLm6utJgMGgpOL///jsB0+AX/v7+9PPzK7aj8uOPP15swFKc5557TkttNA9ycf3nac+ePQTARYsWFVmWuY9NUU/3MzIyrN5IWGMOyopL57z99tvZrl27YssrjVGjRjE4ONjuz4B5YJvrA3+znj17MiQkxKZyf/jhB62FMTs7m0899RSVUnRxceHYsWNL1SenatWqHDduHEnTQBghISGMjo62eTRDW5jrv27dOur1ej7//PNFbm/un7Rs2TKSps+hTqfT6mlNamqq1SD/119/pZubGxs0aMDTp08zMTGRq1ev5qxZszhy5Ei2adOGQ4YM0R4g5ebmcvHixQwLC6OTkxPnzp1L0vRQwtfXl3q9Xus3MW7cOIvRRpOTk9mhQwf26dPHIuXpzz//pI+PD2vUqKG1UMfHxzMyMpIAOHXqVBvfycKNHDmSXl5ehV4TunTpQj8/Py3Fb/Xq1doDoDp16rBz58708vIiALq5ufG5556zOsWFeUCAjz/+2GJ5Tk6ONhjNiBEjePnyZXbs2JEGg4FTpkyhh4cHa9SoYTVd88SJE3RycrI4vgsXLiRg6jN0//33c/PmzTxx4gRPnz6tZb6Yj01JrF27lgD4xBNP8MyZM6xatSo7dOhQ4DN09OhRenl5MSoqyqLFbP78+VpAbe0cbtKkCVu3bk3S1C9Yp9Px+++/544dO7hz506++eabbNSokU0Pn6w5d+4cR40apX2Hu7u7W/QtN/dd1+v1vOuuu7hgwQKtnuaU4aJShc3pujNmzLBYbn6o6Ofnx7p16zI9PV07X+fOnctp06ZRKVXk1A9bt24lAD7++ON0cXFhnz59HKql6HoSHAnhgD7++GMCpuF8L126xMDAQDZv3rxCh7h99dVXtZthLy+vYue4MV/oAPCVV14pp1raprCb17JmzoHv2LEj58yZY7HOnFoSFhZWqpEL7XX+/HkuWLBAe6LfsmVLLd2D/K+Vqrg5oq5du0YAnD59eqHbmOckuv6mqjBeXl4cP358kds0aNBAC9JvlKysrBINTmDuK2Qt9z89PZ2urq7F/n1m165do7e3N/v27cuuXbsSAMeMGVMmqVrNmzfXRu9q0KAB77nnHt5///02jSpoqzFjxrBKlSrMyspi/fr1ix2x7ssvvyQAi8/io48+Sr1eX6AvaHZ2Nl999VWtT6B5lNMTJ07w2WefpYuLC5s0aWLzMOxmFy5c4F133UXANDeOUopNmjSxqJM99u7dy1q1atHb25uzZ8+mv78/fX19tX4ib7zxBknTQ4QffviBK1asKHDDmJOTY/UmMjc3lwEBARw4cGCh+9+2bRsB0wizu3btYpUqVdikSRO++eabHDx4MKOjozlq1CguWbKkyFby3Nxcdu3alTqdTkvryszM5KBBg7T0OHMd09LStP60rVu3LvKG2TwgUGJiIs+ePUs/Pz+2atWKEyZM0OZozP9TWKaDPR5//HECYIsWLeji4lJoZsnatWvp4uKijfT69ddfU6fT8c477yz0oaK5RcQ82M9zzz1XYBuj0cijR4+W6lq+Y8cO3nvvvQUGgMjOzubSpUsL/dz37duXVatWtdofLikpidWrV2fz5s0LBNvZ2dlaH2FzlwGj0cjGjRszOjqaYWFh7Ny5c5F1NhqNWv96X19fmwYGqkgSHAnhgFJSUujk5MSJEydy4sSJVEoVOgJaecnKyrLIac/fubIwjzzyCENCQiwm1xQmly5d4ltvvXXD0ghtsXjxYvr6+tLd3V1Lzfnkk08IWO/zdj1fX1+LvPPrbd++vcj8/es1bdqUrVu3LvKJoo+PT5H7rEjmVENrfQ7NaS+rV6+2ubyHHnqIgGmutbLsD9S/f39GRkby2rVr1Ol0nDp1qpZeV9Jz9ZdffuELL7zArKwsGo1GhoSEaAFRv379WK9evSJfP3XqVOp0OotO/cnJydrAKebPxIEDB7RRU3v06KFNIxAZGUmdTkedTsf+/fuXuKXa3Epnbg0pbvLi4pw4cUJrLQoPD+fhw4eZk5OjjczXr18/i+k97rnnHiYmJvL8+fOcNGkS3d3dGRgYyGHDhvGbb77Rblz//vtvAuD8+fOL3H///v3p6enJwMBABgUFlXjOmfT0dG1S1RkzZmgBu7XR1ZKSkvjJJ58Umyly7NgxGgwGjh8/nn379qWLiwv3799P0jSIwrfffsvPPvuMc+bM4Y8//lgmLQ3p6ena8bi+heR6S5cupcFgYMOGDanT6XjHHXcU+Xk4deqU1qoTFRVl97DgN5o5WDYH5fndf//9NBgMhV7XL1++XCDl1Nw3EIBN80+aHx4Vl2LrCCQ4EsJB3XvvvfTx8aFer+fDDz9c0dUhaco/1+l0Ns9bQrJM0gDFjZOYmMiQkBAtVe3FF1+kUsqm4xYVFVXkZ8Hc2mhrCpi5xdQ8W/z1zGl6jtYSaZa/38z1xowZQ09PT7tumHbt2sX27duX+QSWzz77LJ2dnbUb7O+++45LliwhUPyAGNa888472k1ht27duGvXLou+HC+88AJ1Ol2RN8uDBw9maGhogeXmyXUffvhhtmrViub+j+aUoaysLH788ceMjY3ls88+W+xk57Yqy4cWSUlJfP311y0CtqysLPbu3ZtOTk4cMGAAV65cyZkzZ9LNzY1eXl5af6lBgwZx0KBBWgDVq1cvZmRkaO9pcUGgeVRSLy+vYgdPKU5mZiYHDBhAwDTYUWkHzCD/Sz8DLEdvu5H27t3LqVOn2vQd9+2331Kn07Fjx4429UG94447aDAYuH379rKoapnr3Lkzg4KCLFIJzRPSWmvpKsrFixfp4eFBV1dXm0ZnNBqNBaaHcVQSHAnhoMz5v/7+/g7RX8ds586d0hJ0izEPtbp9+3aOHDmSNWvWtOl1Q4YMYbVq1QpNEWnWrBljY2Ntrkdubi7btWtHX19fq6kh5mGnr09RdBRGo5E+Pj4FJtw2Go2sVasW+/btW0E1s2QeGMI8LcKhQ4d4+PBhm58Am2VkZGhpSn379uUHH3xAnU6nTZZsTi80jx5aVGtzixYtrA75npWVpfXTaNWqFV977TWr8wvdjHJzcy36L5Gmfkn9+/fngw8+aDHfXW5uLmfPnk0AvPvuu9m4cWO2b9/epv0sWbLEYuTS0sjJyeGrr75qMYF6acTHx1Ov1zMmJqbc0p3tdeTIEZsfahw+fLhUg+bcaOZ09/zDs5unRyjJXEPvvfdeuQW15UmCIyEcVEZGBtu1a2f3ZJ9C2Cs1NZXu7u4cPnw477rrLrZq1cqm133//fcFLrRm5hGMbJ0TzWzfvn10cnKyOvz3li1bCIA///yzXWWWp9atW7NTp04Wy3bs2FHs4BXl6ddffyUARkdH083NjTk5OczOzqaLi0uxwysfPHiQ06dPZ6dOnejq6koAfPLJJ7UA+ccff6SLi4tFK5B5JK8FCxZYLTP/MN7WXLhwoci+K5XJ3LlztVa6W+WmdOvWrRUyim5llJ6eTk9PT44cOVJb1rhxY7Zt27YCa+V4CguOdBBCVCgXFxds2rQJAwYMqOiqiFtc1apVMWzYMCxcuBB79+5FUFCQTa+7++674ebmhh9++KHAukWLFkEpZffnt2HDhpg8eTIWLFiANWvWWKxbvHgx9Ho9WrRoYVeZ5SkiIgKHDx+2WLZs2TIopdC9e/cKqpWl0NBQAMDOnTsRFRUFvV4Pg8GAyMhI7N+/v8D2JDFnzhy0bNkS9evXx9SpU5GSkoIxY8Zg9erVmDVrFvR6PQCgT58+iIuLw5IlS7TXR0REQK/XWy0bAJKTk3Hx4kWEh4dbXe/j44PAwMBS/tW3htGjR2PevHkIDQ29Za4NMTEx8Pf3r+hqVAru7u7o168fvv/+e2RkZGDPnj3Ys2cP7rvvvoqu2k1BgiMhhKhEHnvsMWRmZuL06dM2B0ceHh7o1q0bfvzxRxiNRot1ixYtQvv27VGrVi276zJ58mSEh4fj6aef1sq9evUqPvvsM/Tt27dEZZaXiIgIJCYmIj09XVu2adMmNGnSBAEBARVYs/8EBwdrwUyTJk205Q0bNrQawPzwww8YO3YsjEYjZs2ahdOnT2PXrl1499130bVr1wLbR0VFoXHjxtrvLi4uCA8Px759+6zWJz4+HgBQr169Uv1dlcXw4cNx9OhRLcgVwh5Dhw7FpUuXsGzZMixcuBB6vf6WCbRvNAmOhBCiEmnYsCHuvPNOALA5OAKAfv364d9//8XWrVu1Zfv27cO+ffswaNCgEtXF1dUVr7zyCvbs2YNFixYBABYsWIDU1FSMHz++RGWWl8jISAD/3fCTRFxcHFq1alWR1bLg5OSEOnXqACgYHB0/ftwisMvOzsbzzz+PRo0aYdu2bXjyySdL1IrTqFGjQluOjhw5AgCFthwJIcrOHXfcgZo1a2L+/Pn45ptv0LVrV1SvXr2iq3VTkOBICCEqmccffxwAtBtnW/Ts2RNOTk4WqXWLFi2CTqdD//79S1yXQYMGoXHjxnjxxReRnZ2N2bNno2nTpmjfvn2JyywPERERAIBDhw4BABISEnDhwgW0bNmyIqtVgLnVoWnTptqyRo0agaRWdwD45JNPcOTIEbzxxhtaa1NJNGzYEPHx8cjIyCiwLj4+HjqdDnXr1i1x+UII2+j1etx3331YunQpTpw4ISl1dpDgSAghKplevXph2bJluPfee21+jbe3N7p06YIffvgBJHHlyhV8++23uP3220uVRqbT6TB9+nQcOXIEo0ePxp49ezB+/HgopUpcZnkwt36Y+x3FxcUBgEO1HAH/BUf5098aNmwIAFr62+XLl/Hyyy+jY8eOpe4v1ahRIxiNxgL9sQBTy1FISAicnZ1LtQ8hhG2GDh0KAHBzc0Pv3r0ruDY3D0NFV0AIIUT5UkqhR48edr+uX79+WLFiBaZMmYLPP/8cZ8+exYwZM0pdn169eiEmJgZffvklfH19b4onnB4eHggODtaCgG3btsHZ2RlRUVEVXDNLI0aMQM2aNeHr66stCwsLg5OTE9asWYOQkBD8+OOPOH/+PH755ZdSB6X5A6/8qXyAqeVIUuqEKD9NmzZFTEwMoqKiUKVKlYquzk1DmUayuzW0bNmS5qd3QgghylZycjJq1KiB3NxctG3bFrNmzULr1q3LpOy1a9eiS5cumDRpEt54440yKfNG69y5M65cuYItW7bgjjvuQHp6Ov7++++KrpZNWrVqhfzXywEDBuC7774rdbmZmZmoXr063N3d8e6772LgwIFQSoEkfHx8MHToUHzwwQel3o8QwjbZ2dnQ6XSlSpe9VSmltpMskAstLUdCCCFs4u/vj88//xweHh7o06dPmaa+de7cGatXr0a7du3KrMwbLSIiAgsXLoTRaMT27dvxwAMPVHSVbLZy5UocOnQIV69eRWZmJjp06FAm5bq4uGD9+vUYPXo0Bg8ejC+++AITJkxAVFRUkcN4CyFuDCcnp4quwk1HgiMhhBA2u5EBgLXhoh1ZREQE0tLS8Oeff+Ly5csONxhDUfz9/W/YnDPNmzfH1q1b8eGHH2LatGlYtWoVXFxcAMgw3kIIxycDMgghhBAlYB7Oe8GCBQBwUwVHN5rBYMATTzyBc+fOYdmyZXjggQfQtm3bMkvDFEKIG0X6HAkhhBAlcPToUYSHh8PX1xfXrl3DpUuXYDBIQoYQQtwMCutzJC1HQgghRAnUqVMHTk5OuHDhApo3by6BkRBC3AIkOBJCCCFKwGAwICwsDICk1AkhxK1CgiMhhBCihMz9jiQ4EkKIW4MER0IIIUQJRUREADDNGySEEOLmJwnSQgghRAndf//9yMnJkSGqhRDiFiGj1QkhhBBCCCEqFRmtTgghhBBCCCGKIMGREEIIIYQQQkCCIyGEEEIIIYQAIMGREEIIIYQQQgCQ4EgIIYQQQgghAEhwJIQQQgghhBAAJDgSQgghhBBCCAASHAkhhBBCCCEEgAoMjpRSHyqlDiql/lFKbVZKtcy3zl0ptUgpFZ+3Tc+KqqcQQgghhBCicjBU4L5XAphAMjsv+FkEICxv3dMALpMMV0rVA/CHUiqc5JWKqqwQQgghhBDi1lZhLUckl5HMzvv1LwBBSilzfQYB+DhvuyMA4gDcXf61FEIIIYQQQlQWjtLn6DEAy0ka836vDeBEvvUnAQRbe6FS6mGlVJxSKi4pKekGV1MIIYQQQghxq7phaXVKqR0wBTnWBJDMzdtuMID7ANxWkv2QnAtgLgC0bNmSJSlDCCGEEEIIIW5YcESyeXHbKKX6AJgB4E6S5/KtOgmgDgBzU1BtAOuLK2/79u3JSqkTxW1nhT+A5BK8TpQPOT6OT46R45Nj5PjkGDk+OUaOT46R43OUY1TH2kJFVkxjS94gDLMBdCEZf926lwDUIjk6b0CGTQDCSV6+QXWJI9my+C1FRZDj4/jkGDk+OUaOT46R45Nj5PjkGDk+Rz9GFTla3ecAsgAsVkqZl91JMgXAWwC+UErFA8gF8PCNCoyEEEIIIYQQAqjA4IhktSLWpQMYUI7VEUIIIYQQQlRyjjJaXUWbW9EVEEWS4+P45Bg5PjlGjk+OkeOTY+T45Bg5Poc+RhXW50gIIYQQQgghHIm0HAkhhBBCCCEEKnlwpJSKUEr9pZQ6nPdvvYquU2WmlPJTSq1QSh1SSu1WSv2olKqWt+64UuqgUmpX3s9dFV3fyqqwYyHnk2NQSoXkOza78o7Xhbx1ch5VEKXUTKVUglKKSqmofMsLPW/knCpf1o5RUdelvPVyTpWTIs6hQo+BnEPlq5BzqNBrUt56hzuHKnVanVLqNwDzSH6tlBoK4CGSnSq6XpWVUsoXQBOSG/J+fwuAL8mRSqnjAHqS3FuBVRQwfZHByrGQ88kxKaXeBWAg+ZicRxVHKdUewAkAfyDfMSjqvJFzqnxZO0ZFXZfyfj8OOafKRRHn0HEUcgzkHCpfhR2j67Z5F3nXpLzfjxe2bUWptC1HSqnqAJoDWJi3aCGA5vmfCInyRfKC+QKUZwsKmaBLOBY5nxyTUsoZwP0A5lV0XSo7kptInsq/rKjzRs6p8mftGMl1yXFYOz5FkXOo/BV3jG6Wa1KlDY4ABAM4TTIXAPL+/TdvuahgSikdgEcALM23eEFeWsP/KaWqVkzNRJ7rj4WcT47pHpiOy458y+Q8chxFnTdyTjmYQq5LgJxTjsDaMZBzyPFYuyYBDnYOVebgSDi22QCuAPgg7/cOJJsCaAVA5Vsuyp8ci5vHQ7B8QifHToiSu/66BMg55QjkGNw8rr8mAQ54/CpzcHQKQC2llB4A8v4NzFsuKpBSaiaAegAGkTQCgLmZlmQmgP8D0K7iali5FXIs5HxyMEqpQAAdASwwL5PzyOEUdd7IOeVArF2XADmnHEERx0DOIQdi7ZoEOOY5VGmDI5LnAewCMCRv0RAAO0kmVVilBJRSMwC0AHBv3okCpZSHUso77/8KwGCYjp0oZ4UdCzmfHNJwAMtJpgByHjmios4bOacch7XrUt5yOacqWFHHQM4hhzMc+a5JgOOeQ5V9tLr6AL4E4AMgFcCDJA9VbK0qL6VUIwB7ARwGcC1vcQKApwD8AECf97MfwOMkz1REPSszpVQoCjkWcj45FqXUYZiOzaq83ws9dhVXy8pDKfU+gL4AagBIBpBCslFR542cU+XL2jECMBBWrksk+8g5Vb4KOT69UMQxkHOofBX2PZe3zuKalLfMIc+hSh0cCSGEEEIIIYRZpU2rE0IIIYQQQoj8JDgSQgghhBBCCEhwJIQQQgghhBAAJDgSQgghhBBCCAASHAkhhBBCCCEEAAmOhBBClDGllJ9SaoVS6pBSardS6kelVLW8dVuVUruUUvuVUjl5/9+llPpcKXW7UiquBPtrppQaWMK6blBKHVNKPVfI+uFKqcUlKTtfGf3z/t7k0pQjhBDixpPgSAghRFkjgDdJRpJsAuAogNcBgGRrks0AdAeQRrJZ3s+IUuyvGUzz0ZTU4yRfL8Xri0RyMUx/rxBCCAcnwZEQQogyRfICyQ35Fm0BUMfGlxuUUnPyWpz+UUo1MK9QSg3La3narpT6TSkVqZTyA/AKgM55LVDv5227QCkVp5Tao5T6SSnlY8vOlVLOefs/pJT6DUDMdesnKaX+VkrtUEr9opSqkbfcWyn1g1LqoFJqnVLqK6XUTBv/ZiGEEA5CgiMhhBA3jFJKB+ARAEttfEkjAB/ntTh9B2BqXjkdYGoduo1kCwBvAZhHMgXANABr81qgHs8r5wmSLUk2BrAPwLM27n8MgLoAogD0RL7gSCk1FEA4gFiSzQGsAPB23uppAFJJ1gcwAEAHG/cnhBDCgRgqugJCCCFuabMBXAHwgY3bHyK5M+//WwD0yvt/LwBNAWxVSgGAAlBUa9CDSqn7ATgD8ABw2Mb93wHgS5LZALKVUl8DaJ+37h4ALQHsyKuDAcDFfK8bD5hazpRSS2zcnxBCCAciwZEQQogbIi+trB6AXiSNNr4sI9//c/HfdUrB1FI0zYb9doCptaotySSl1H0AHra12sWsm05yXiHraOM+hBBCOChJqxNCCFHmlFIzALQAcC/JzDIo8heYWoOC8srXK6Va5K27BMA737ZVYWrRSVFKuQB4yI79rAPwgFLKoJRyA3BfvnVLATxq7r+klHJRSjXNW7cewLC85T4AetvzxwkhhHAMEhwJIYQoU0qpRgCeBxAI4M+8gRJ+Kk2ZJDcCmAJgqVLqHwB78V8Asg6AR94ADu8DWAnTCHkH8/6/w45dzQVwEqZ+SssA/J6vDvMBLADwu1JqN4DtANrlrX4FQHWl1D4AXwPYjP9S7oQQQtwkFClZAEIIISonpdQGADNJLitlOU4A9CQzlFJeADYBmEhybd76EABxJP1LWWUhhBA3kLQcCSGEqMwuAHirsElg7eADYLNSaheAvwEszhcY9YcpLfBcKfchhBDiBpOWIyGEEEIIIYSAtBwJIYQQQgghBAAJjoQQQgghhBACgARHQgghhBBCCAFAgiMhhBBCCCGEACDBkRBCCCGEEEIAkOBICCGEEEIIIQAA/w+l9WPYErSHiAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], "source": [ "banana_can = functions.name_search(\"banana\", data)\n", "banana_cryo = functions.name_search(\"banana\", data_cryo)\n", @@ -456,15 +1332,8 @@ " banana_diff.xaxis, banana_diff.Intensity-10.0, \"k\")\n", "plt.xlabel(\"2Theta [deg]\")\n", "plt.ylabel(\"Intensity [n/s]\")\n", - "plt.legend([\"Sample in can\", \"Sample in can in cryostat\", \"Difference displaced to -10\"])" + "l = plt.legend([\"Sample in can\", \"Sample in can in cryostat\", \"Difference displaced to -10\"])" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -485,6 +1354,11 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" + }, + "metadata": { + "execution": { + "timeout": 100 + } } }, "nbformat": 4, diff --git a/docs/source/tutorial/Union_tutorial_3_loggers.ipynb b/docs/source/tutorial/Union_tutorial_3_loggers.ipynb index d57308e0..158b4faf 100644 --- a/docs/source/tutorial/Union_tutorial_3_loggers.ipynb +++ b/docs/source/tutorial/Union_tutorial_3_loggers.ipynb @@ -28,9 +28,21 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'instrument' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mAl_inc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minstrument\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_component\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Al_inc\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"Incoherent_process\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mAl_inc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msigma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0.0082\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mAl_inc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munit_cell_volume\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m66.4\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mAl_pow\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minstrument\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_component\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Al_pow\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"Powder_process\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'instrument' is not defined" + ] + } + ], "source": [ "Al_inc = instrument.add_component(\"Al_inc\", \"Incoherent_process\")\n", "Al_inc.sigma = 0.0082\n", @@ -41,7 +53,7 @@ "\n", "Al = instrument.add_component(\"Al\", \"Union_make_material\")\n", "Al.process_string = '\"Al_inc,Al_pow\"'\n", - "Al.my_absorption = 100*0.231/66.4 # barns [m^2 E-28] * Å^3 [m^3 E-30] = [m E-2], correct with factor 100.\n", + "Al.my_absorption = 100*0.231/66.4 # barns [m^2 E-28]*Å^3[m^3 E-30]=[m E-2], factor 100\n", "\n", "Sample_inc = instrument.add_component(\"Sample_inc\", \"Incoherent_process\")\n", "Sample_inc.sigma = 3.4176\n", @@ -59,7 +71,8 @@ "src.yheight = 0.035\n", "src.focus_aw = 0.01\n", "src.focus_ah = 0.01\n", - "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0,\n", + " comment=\"Wavelength in [Ang]\")\n", "src.dlambda = \"0.01*wavelength\"\n", "src.flux = 1E13\n", "\n", @@ -70,7 +83,8 @@ "sample_geometry.priority = 100\n", "sample_geometry.set_AT([0,0,1], RELATIVE=src)\n", "\n", - "container = instrument.add_component(\"sample_container\", \"Union_cylinder\", RELATIVE=sample_geometry)\n", + "container = instrument.add_component(\"sample_container\", \"Union_cylinder\")\n", + "container.set_RELATIVE(sample_geometry)\n", "container.yheight = 0.03+0.003 # 1.5 mm top and button\n", "container.radius = 0.0075 + 0.0015 # 1.5 mm sides of container\n", "container.material_string='\"Al\"' \n", @@ -164,11 +178,24 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\", RELATIVE=sample_geometry)\n", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'instrument' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mlogger_zx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minstrument\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_component\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"logger_space_zx\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"Union_logger_2D_space\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mlogger_zx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_RELATIVE\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msample_geometry\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mlogger_zx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mD_direction_1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'\"z\"'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mlogger_zx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mD1_min\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0;36m0.12\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mlogger_zx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mD1_max\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0.12\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'instrument' is not defined" + ] + } + ], + "source": [ + "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\")\n", + "logger_zx.set_RELATIVE(sample_geometry)\n", "logger_zx.D_direction_1 = '\"z\"'\n", "logger_zx.D1_min = -0.12\n", "logger_zx.D1_max = 0.12\n", @@ -179,7 +206,8 @@ "logger_zx.n2 = 300\n", "logger_zx.filename = '\"logger_zx.dat\"'\n", "\n", - "logger_zy = instrument.add_component(\"logger_space_zy\", \"Union_logger_2D_space\", RELATIVE=sample_geometry)\n", + "logger_zy = instrument.add_component(\"logger_space_zy\", \"Union_logger_2D_space\")\n", + "logger_zy.set_RELATIVE(sample_geometry)\n", "logger_zy.D_direction_1 = '\"z\"'\n", "logger_zy.D1_min = -0.12\n", "logger_zy.D1_max = 0.12\n", @@ -212,7 +240,7 @@ "outputs": [], "source": [ "instrument.set_parameters(wavelength=3.0)\n", - "instrument.settings(ncount=3E5, output_path=\"data_folder/union_loggers\")\n", + "instrument.settings(ncount=3E6, output_path=\"data_folder/union_loggers\")\n", "\n", "instrument.backengine()\n", "data = instrument.data" @@ -287,7 +315,11 @@ { "cell_type": "code", "execution_count": null, - "metadata": {}, + "metadata": { + "tags": [ + "scroll-output" + ] + }, "outputs": [], "source": [ "logger_zx.order_total = 2\n", @@ -333,7 +365,8 @@ "logger_1D.n1 = 300\n", "logger_1D.filename = '\"logger_1D_time.dat\"'\n", "\n", - "abs_logger_zx = instrument.add_component(\"abs_logger_space_zx\", \"Union_abs_logger_2D_space\",before=\"master\")\n", + "abs_logger_zx = instrument.add_component(\"abs_logger_space_zx\", \"Union_abs_logger_2D_space\",\n", + " before=\"master\")\n", "abs_logger_zx.set_AT([0,0,0], RELATIVE=sample_geometry)\n", "abs_logger_zx.D_direction_1 = '\"z\"'\n", "abs_logger_zx.D1_min = -0.12\n", @@ -356,7 +389,8 @@ "logger_2DQ.n2 = 200\n", "logger_2DQ.filename = '\"logger_2DQ.dat\"'\n", "\n", - "logger_2D_kf = instrument.add_component(\"logger_2D_kf\", \"Union_logger_2D_kf\", before=\"master\")\n", + "logger_2D_kf = instrument.add_component(\"logger_2D_kf\", \"Union_logger_2D_kf\",\n", + " before=\"master\")\n", "logger_2D_kf.Q_direction_1 = '\"z\"'\n", "logger_2D_kf.Q1_min = -2.5\n", "logger_2D_kf.Q1_max = 2.5\n", @@ -441,7 +475,8 @@ "metadata": {}, "outputs": [], "source": [ - "log_2D_st = instrument.add_component(\"logger_2D_space_time\", \"Union_logger_2D_space_time\", before=\"master\")" + "log_2D_st = instrument.add_component(\"logger_2D_space_time\", \"Union_logger_2D_space_time\",\n", + " before=\"master\")" ] }, { @@ -584,6 +619,11 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" + }, + "metadata": { + "execution": { + "timeout": 100 + } } }, "nbformat": 4, diff --git a/docs/source/tutorial/Union_tutorial_4_conditionals.ipynb b/docs/source/tutorial/Union_tutorial_4_conditionals.ipynb index 3946d819..4568bcd3 100644 --- a/docs/source/tutorial/Union_tutorial_4_conditionals.ipynb +++ b/docs/source/tutorial/Union_tutorial_4_conditionals.ipynb @@ -69,7 +69,8 @@ "src.focus_ah = 0.01\n", "\n", "instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", - "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0,\n", + " comment=\"Wavelength in [Ang]\")\n", "src.dlambda = \"0.01*wavelength\"\n", "src.flux = 1E13\n", "\n", @@ -180,11 +181,13 @@ "master = instrument.add_component(\"master\", \"Union_master\")\n", "\n", "# Adding a banana - tof detector\n", - "banana_detector = instrument.add_component(\"banana_detector\", \"Monitor_nD\", RELATIVE=cryostat_center)\n", + "banana_detector = instrument.add_component(\"banana_detector\", \"Monitor_nD\",\n", + "banana_detector.set_RELATIVE(cryostat_center)\n", "banana_detector.xwidth = 1\n", "banana_detector.yheight = 0.2\n", "banana_detector.restore_neutron = 1\n", - "banana_detector.options = '\"banana, theta limits=[-180,180] bins=361, t limits=[0.0011 0.0025] bins=500\"'\n", + "options = '\"banana, theta limits=[-180,180] bins=361, t limits=[0.0011 0.0025] bins=500\"'\n", + "banana_detector.options = options\n", "banana_detector.filename = '\"tof_b.dat\"'" ] }, @@ -219,7 +222,7 @@ "outputs": [], "source": [ "instrument.set_parameters(wavelength=wavelength, A3_angle=theta)\n", - "instrument.settings(ncount=3E5, output_path=\"data_folder/union_conditionals\")\n", + "instrument.settings(ncount=3E6, output_path=\"data_folder/union_conditionals\")\n", "\n", "instrument.backengine()\n", "data = instrument.data" @@ -292,9 +295,18 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "SyntaxError", + "evalue": "invalid syntax (, line 30)", + "output_type": "error", + "traceback": [ + "\u001b[0;36m File \u001b[0;32m\"\"\u001b[0;36m, line \u001b[0;32m30\u001b[0m\n\u001b[0;31m banana_detector.xwidth = 1\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n" + ] + } + ], "source": [ "# Set up instrument parameters describing what spot to investigate\n", "instrument.add_parameter(\"tag_angle\", value=-95)\n", @@ -302,12 +314,16 @@ "instrument.add_parameter(\"tag_interval\", value=9E-5)\n", "\n", "# Set up an arm pointing to the relevant spot\n", - "spot_dir = instrument.add_component(\"spot_dir\", \"Arm\", RELATIVE=cryostat_center, before=\"master\")\n", + "spot_dir = instrument.add_component(\"spot_dir\", \"Arm\",\n", + " RELATIVE=cryostat_center, before=\"master\")\n", "spot_dir.set_ROTATED([0, \"tag_angle\", 0], RELATIVE=cryostat_center)\n", "\n", "# Set up a conditional component targeting all our loggers\n", - "PSD_conditional = instrument.add_component(\"space_all_PSD_conditional\", \"Union_conditional_PSD\", before=\"master\")\n", - "PSD_conditional.target_loggers = '\"logger_space_zx,logger_space_zy,logger_time_all,logger_2DQ_sample,logger_2DQ_environment\"'\n", + "PSD_conditional = instrument.add_component(\"space_all_PSD_conditional\", \"Union_conditional_PSD\",\n", + " before=\"master\")\n", + "\n", + "loggers = '\"logger_space_zx,logger_space_zy,logger_time_all,logger_2DQ_sample,logger_2DQ_environment\"'\n", + "PSD_conditional.target_loggers = loggers\n", "PSD_conditional.xwidth = 0.2\n", "PSD_conditional.yheight = 0.2\n", "PSD_conditional.time_min = \"tag_time-0.5*tag_interval\"\n", @@ -321,11 +337,13 @@ "master.append_EXTEND(\"flag1 = logger_conditional_extend_array[1];\")\n", "\n", "# Copy of our banana detector, but with WHEN condition to verify we are investigating the right peak\n", - "banana_detector = instrument.add_component(\"banana_detector_limited\", \"Monitor_nD\", RELATIVE=cryostat_center)\n", + "banana_detector = instrument.add_component(\"banana_detector_limited\", \"Monitor_nD\")\n", + "banana_detector.set_RELATIVE(cryostat_center)\n", "banana_detector.xwidth = 1\n", "banana_detector.yheight = 0.2\n", "banana_detector.restore_neutron = 1\n", - "banana_detector.options = '\"banana, theta limits=[-180,180] bins=361, t limits=[0.0011 0.0025] bins=500\"'\n", + "options = '\"banana, theta limits=[-180,180] bins=361, t limits=[0.0011 0.0025] bins=500\"'\n", + "banana_detector.options = options\n", "banana_detector.filename = '\"tof_b_limited.dat\"'\n", "banana_detector.set_WHEN(\"flag1 > 0\")" ] @@ -352,7 +370,7 @@ "source": [ "instrument.set_parameters(wavelength=wavelength, A3_angle=theta, \n", " tag_angle=-95, tag_time=0.00188, tag_interval=9E-5)\n", - "instrument.settings(ncount=3E5) # Can add mpi to improve speed for this longer simulation\n", + "instrument.settings(ncount=3E6) # Can add mpi to improve speed for this longer simulation\n", "\n", "instrument.backengine()\n", "data_con = instrument.data" @@ -532,6 +550,11 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" + }, + "metadata": { + "execution": { + "timeout": 100 + } } }, "nbformat": 4, diff --git a/docs/source/tutorial/Union_tutorial_5_masks.ipynb b/docs/source/tutorial/Union_tutorial_5_masks.ipynb index d7a1d2a5..9d9dbc44 100644 --- a/docs/source/tutorial/Union_tutorial_5_masks.ipynb +++ b/docs/source/tutorial/Union_tutorial_5_masks.ipynb @@ -36,9 +36,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'instrument' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mAl_inc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minstrument\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_component\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Al_inc\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"Incoherent_process\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mAl_inc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msigma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0.0082\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mAl_inc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munit_cell_volume\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m66.4\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mAl_pow\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minstrument\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_component\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Al_pow\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"Powder_process\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'instrument' is not defined" + ] + } + ], "source": [ "Al_inc = instrument.add_component(\"Al_inc\", \"Incoherent_process\")\n", "Al_inc.sigma = 0.0082\n", @@ -49,7 +61,7 @@ "\n", "Al = instrument.add_component(\"Al\", \"Union_make_material\")\n", "Al.process_string = '\"Al_inc,Al_pow\"'\n", - "Al.my_absorption = 100*0.231/66.4 # barns [m^2 E-28] * Å^3 [m^3 E-30] = [m E-2], correct with factor 100.\n", + "Al.my_absorption = 100*0.231/66.4 # barns [m^2 E-28]*Å^3 [m^3 E-30]=[m E-2], factor 100\n", "\n", "src = instrument.add_component(\"source\", \"Source_div\")\n", "\n", @@ -59,7 +71,8 @@ "src.focus_ah = 0.01\n", "\n", "\n", - "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0,\n", + " comment=\"Wavelength in [Ang]\")\n", "src.dlambda = \"0.01*wavelength\"\n", "src.flux = 1E13\n", "\n", @@ -77,7 +90,8 @@ "wall_vac.material_string='\"Vacuum\"' \n", "wall_vac.priority = 50\n", "\n", - "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\", RELATIVE=wall)\n", + "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\")\n", + "logger_zx.set_RELATIVE(wall)\n", "logger_zx.D_direction_1 = '\"z\"'\n", "logger_zx.D1_min = -0.12\n", "logger_zx.D1_max = 0.12\n", @@ -101,7 +115,7 @@ }, "outputs": [], "source": [ - "instrument.settings(ncount=2E5, output_path=\"data_folder/union_masks\")\n", + "instrument.settings(ncount=2E6, output_path=\"data_folder/union_masks\")\n", "\n", "instrument.backengine()\n", "data = instrument.data" @@ -255,13 +269,25 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": { "tags": [ "scroll-output" ] }, - "outputs": [], + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'instr' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0minstrument\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minstr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mMcStas_instr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"python_tutorial\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput_path\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"run_folder\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mAl_inc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minstrument\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_component\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Al_inc\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"Incoherent_process\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mAl_inc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msigma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0.0082\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mAl_inc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munit_cell_volume\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m66.4\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'instr' is not defined" + ] + } + ], "source": [ "instrument = instr.McStas_instr(\"python_tutorial\", input_path=\"run_folder\")\n", "\n", @@ -274,7 +300,7 @@ "\n", "Al = instrument.add_component(\"Al\", \"Union_make_material\")\n", "Al.process_string = '\"Al_inc,Al_pow\"'\n", - "Al.my_absorption = 100*0.231/66.4 # barns [m^2 E-28] * Å^3 [m^3 E-30] = [m E-2], correct with factor 100.\n", + "Al.my_absorption = 100*0.231/66.4 # barns [m^2 E-28]*Å^3 [m^3 E-30]=[m E-2], factor 100\n", "\n", "src = instrument.add_component(\"source\", \"Source_div\")\n", "\n", @@ -314,7 +340,8 @@ "cyl_mask.mask_string='\"box\"' \n", "cyl_mask.priority = 51\n", "\n", - "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\", RELATIVE=box)\n", + "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\")\n", + "logger_zx.set_RELATIVE(box)\n", "logger_zx.D_direction_1 = '\"z\"'\n", "logger_zx.D1_min = -0.12\n", "logger_zx.D1_max = 0.12\n", diff --git a/docs/source/tutorial/Union_tutorial_6_Exit_and_number_of_activations.ipynb b/docs/source/tutorial/Union_tutorial_6_Exit_and_number_of_activations.ipynb index b1d26615..6239cd04 100644 --- a/docs/source/tutorial/Union_tutorial_6_Exit_and_number_of_activations.ipynb +++ b/docs/source/tutorial/Union_tutorial_6_Exit_and_number_of_activations.ipynb @@ -38,9 +38,21 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'instrument' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mAl_inc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minstrument\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_component\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Al_inc\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"Incoherent_process\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mAl_inc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msigma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0.0082\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mAl_inc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munit_cell_volume\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m66.4\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mAl_pow\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minstrument\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_component\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Al_pow\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"Powder_process\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'instrument' is not defined" + ] + } + ], "source": [ "Al_inc = instrument.add_component(\"Al_inc\", \"Incoherent_process\")\n", "Al_inc.sigma = 0.0082\n", @@ -51,14 +63,15 @@ "\n", "Al = instrument.add_component(\"Al\", \"Union_make_material\")\n", "Al.process_string = '\"Al_inc,Al_pow\"'\n", - "Al.my_absorption = 100*0.231/66.4 # barns [m^2 E-28] * Å^3 [m^3 E-30] = [m E-2], correct with factor 100.\n", + "Al.my_absorption = 100*0.231/66.4 # barns [m^2 E-28]*Å^3 [m^3 E-30]=[m E-2], factor 100\n", "\n", "src = instrument.add_component(\"source\", \"Source_div\")\n", "src.xwidth = 0.01\n", "src.yheight = 0.035\n", "src.focus_aw = 0.01\n", "src.focus_ah = 0.01\n", - "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0,\n", + " comment=\"Wavelength in [Ang]\")\n", "src.dlambda = \"0.01*wavelength\"\n", "src.flux = 1E13\n", "\n", @@ -69,7 +82,8 @@ "sample_volume.priority = 100\n", "sample_volume.set_AT([0,0,1], RELATIVE=src)\n", "\n", - "container = instrument.add_component(\"sample_container\", \"Union_cylinder\", RELATIVE=sample_volume)\n", + "container = instrument.add_component(\"sample_container\", \"Union_cylinder\")\n", + "container.set_RELATIVE(sample_volume)\n", "container.yheight = 0.03+0.003 # 1.5 mm top and button\n", "container.radius = 0.0075 + 0.0015 # 1.5 mm sides of container\n", "container.material_string='\"Al\"' \n", @@ -96,7 +110,8 @@ "inner_wall_vac.material_string='\"Vacuum\"' \n", "inner_wall_vac.priority = 81\n", "\n", - "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\", RELATIVE=sample_volume)\n", + "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\")\n", + "logger_zx.set_RELATIVE(sample_volume)\n", "logger_zx.D_direction_1 = '\"z\"'\n", "logger_zx.D1_min = -0.04\n", "logger_zx.D1_max = 0.04\n", @@ -107,7 +122,8 @@ "logger_zx.n2 = 300\n", "logger_zx.filename = '\"logger_zx.dat\"'\n", "\n", - "logger_zy = instrument.add_component(\"logger_space_zy\", \"Union_logger_2D_space\", RELATIVE=sample_volume)\n", + "logger_zy = instrument.add_component(\"logger_space_zy\", \"Union_logger_2D_space\")\n", + "logger_zy.set_RELATIVE(sample_volume)\n", "logger_zy.D_direction_1 = '\"z\"'\n", "logger_zy.D1_min = -0.04\n", "logger_zy.D1_max = 0.04\n", @@ -138,7 +154,7 @@ "outputs": [], "source": [ "instrument.set_parameters(wavelength=3.0)\n", - "instrument.settings(ncount=3E5, output_path=\"data_folder/union_external\")\n", + "instrument.settings(ncount=3E6, output_path=\"data_folder/union_external\")\n", "\n", "instrument.backengine()\n", "data_empty = instrument.data" @@ -392,6 +408,11 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.8" + }, + "metadata": { + "execution": { + "timeout": 100 + } } }, "nbformat": 4, diff --git a/docs/source/tutorial/Union_tutorial_7_Tagging_history.ipynb b/docs/source/tutorial/Union_tutorial_7_Tagging_history.ipynb index d81e6c8a..5b5ecb59 100644 --- a/docs/source/tutorial/Union_tutorial_7_Tagging_history.ipynb +++ b/docs/source/tutorial/Union_tutorial_7_Tagging_history.ipynb @@ -32,7 +32,19 @@ "cell_type": "code", "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'instrument' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mAl_inc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minstrument\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_component\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Al_inc\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"Incoherent_process\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mAl_inc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msigma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0.0082\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mAl_inc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munit_cell_volume\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m66.4\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mAl_pow\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0minstrument\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_component\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Al_pow\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"Powder_process\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mNameError\u001b[0m: name 'instrument' is not defined" + ] + } + ], "source": [ "Al_inc = instrument.add_component(\"Al_inc\", \"Incoherent_process\")\n", "Al_inc.sigma = 0.0082\n", @@ -43,7 +55,7 @@ "\n", "Al = instrument.add_component(\"Al\", \"Union_make_material\")\n", "Al.process_string = '\"Al_inc,Al_pow\"'\n", - "Al.my_absorption = 100*0.231/66.4 # barns [m^2 E-28] * Å^3 [m^3 E-30] = [m E-2], correct with factor 100.\n", + "Al.my_absorption = 100*0.231/66.4 # barns [m^2 E-28]*Å^3 [m^3 E-30]=[m E-2], factor 100\n", "\n", "Sample_inc = instrument.add_component(\"Sample_inc\", \"Incoherent_process\")\n", "Sample_inc.sigma = 3.4176\n", @@ -61,7 +73,8 @@ "src.yheight = 0.035\n", "src.focus_aw = 0.01\n", "src.focus_ah = 0.01\n", - "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0, comment=\"Wavelength in [Ang]\")\n", + "src.lambda0 = instrument.add_parameter(\"wavelength\", value=5.0,\n", + " comment=\"Wavelength in [Ang]\")\n", "src.dlambda = \"0.01*wavelength\"\n", "src.flux = 1E13\n", "\n", @@ -72,7 +85,8 @@ "sample_geometry.priority = 100\n", "sample_geometry.set_AT([0,0,1], RELATIVE=src)\n", "\n", - "container = instrument.add_component(\"sample_container\", \"Union_cylinder\", RELATIVE=sample_geometry)\n", + "container = instrument.add_component(\"sample_container\", \"Union_cylinder\")\n", + "container.set_RELATIVE(sample_geometry)\n", "container.yheight = 0.03+0.003 # 1.5 mm top and button\n", "container.radius = 0.0075 + 0.0015 # 1.5 mm sides of container\n", "container.material_string='\"Al\"' \n", @@ -92,7 +106,8 @@ "inner_wall_vac.material_string='\"Vacuum\"' \n", "inner_wall_vac.priority = 81\n", "\n", - "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\", RELATIVE=sample_geometry)\n", + "logger_zx = instrument.add_component(\"logger_space_zx\", \"Union_logger_2D_space\")\n", + "logger_zx.set_RELATIVE(sample_geometry)\n", "logger_zx.D_direction_1 = '\"z\"'\n", "logger_zx.D1_min = -0.04\n", "logger_zx.D1_max = 0.04\n", @@ -103,7 +118,8 @@ "logger_zx.n2 = 300\n", "logger_zx.filename = '\"logger_zx.dat\"'\n", "\n", - "logger_zy = instrument.add_component(\"logger_space_zy\", \"Union_logger_2D_space\", RELATIVE=sample_geometry)\n", + "logger_zy = instrument.add_component(\"logger_space_zy\", \"Union_logger_2D_space\")\n", + "logger_zy.set_RELATIVE(sample_geometry)\n", "logger_zy.D_direction_1 = '\"z\"'\n", "logger_zy.D1_min = -0.04\n", "logger_zy.D1_max = 0.04\n", @@ -995,11 +1011,13 @@ "outputs": [], "source": [ "# Set up an arm pointing to the relevant spot\n", - "spot_dir = instrument.add_component(\"spot_dir\", \"Arm\", RELATIVE=sample_geometry, before=\"master\")\n", + "spot_dir = instrument.add_component(\"spot_dir\", \"Arm\", RELATIVE=sample_geometry,\n", + " before=\"master\")\n", "spot_dir.set_ROTATED([0, 60, 0], RELATIVE=sample_geometry)\n", "\n", "# Set up a conditional component targeting all our loggers\n", - "PSD_conditional = instrument.add_component(\"space_all_PSD_conditional\", \"Union_conditional_PSD\", before=\"master\")\n", + "PSD_conditional = instrument.add_component(\"space_all_PSD_conditional\", \"Union_conditional_PSD\",\n", + " before=\"master\")\n", "PSD_conditional.xwidth = 0.2\n", "PSD_conditional.yheight = 0.2\n", "PSD_conditional.master_tagging = 1\n", @@ -1356,7 +1374,11 @@ { "cell_type": "code", "execution_count": 10, - "metadata": {}, + "metadata": { + "tags": [ + "scroll-output" + ] + }, "outputs": [ { "name": "stdout", diff --git a/docs/source/tutorial/animation_demo.gif b/docs/source/tutorial/animation_demo.gif new file mode 100644 index 0000000000000000000000000000000000000000..a3e2535613338ecacc5304957182eccd6285824a GIT binary patch literal 203149 zcmeFZWl&sUo37iq1WyPMJh&5_5Zql7f?IGWxCM82cXxMpcY<}}?(WvRlW%5!Gqd-Z z+Gkgts`KMpKUS@7y1S^itE=vNz1Q`KONw!E>lMM=Lj?i=;J*g|0AOWhg#rLhUXUQy ze-5ZS$mw+-0G|8%@b4)UY#s#wn1RDe!P4MHfHb%i0DwGEO%EQKhI~{%U=&PO{pXd_ zXYc@U5dfS70CNJ+@AtsQ0I(APYWEhv2?nbG0D)k@{3}=z0KfqQRKNf#FhCp(Fa`q# zz<@+B7#9F&00W%B-~a%i5DcaS0Ko(VU?2d7kpULq26oo~r=@~5dBCl0;LkKH2#74y zxU9IWQ~*{S$Op0ls8|RH2>$s`|Lf{sEAaok0;CVH02aufNx^UAM8AC%7E};rVPuAZ z{1gE6f8O=yX97S31E3HIB&xEyeG%W%Y7SLp_Xc8+Nu^0t=k$l-vYIUqRp$;yk_d+o zNY>;H$5MYS(HySHA5CP|A4!v}Ef`PbvO8QJt}UF*6!1kRl&UM5&XtIz)f%ZQo-I_! zl}eYYFPSSSET(dKp#A?1e)?B+cnI#-bB->JVFkAGsRC~Oo z{%D~}e>6k3wc!NRWOuYW-r9J!*5&(#Sgx(4Dqq+n{eq2X}!uAK{Md3wDL`5T0m_~=tVv957s-?*kp8%UE2x58zX4}IKZQ13oq9vALafL~HX`x(dx*!mE45J44k zAdpA$s&5dJ;6YsgFyl)Bq{w_AKTc(&G^K?KY8dM3HPV*Kfg0$ciz);tEag<`b1d5o z7_2UOb;9^2?IcWlBQMBekKn~8(k@ko+-@=HL%Gv%eFx^r`l&g^RQi3`^Y8V8~u8} zAVfSYZ_i^y;w&auj$pH+e3$ESq3Nm5yjee0`*EljS>ag%H}8mAjc#f%VZIBA4Lwh?cEsySt7KLBrW2 z@`6K_VXnxrS)!Mmgd!MgxqQBjW^OBLshp|$reTt9wjB6wGY5dIUqlNAz_973_yR_5T>`+C*O)l|) ziKC}m($p4_CUyBeLdWl4l|Nb9Qn%p?=|)LU-0SHS2a(}Ka@sK>B!smvatlQ%HmBT8 z@?vw;Rr;ky$iE8B#^g-I75J{37(X4VtYLZeaSB=fLgb+s{U%oGV>3Z=R8#z0|UaQgg zxN^_t?wi4al7LM~FAY#U`K;t@x&RjC8|+ckxuTY+xbgx4hf!IroDw@T!^B0icUXgx zF`4i;#in>>1{2B*zY@&J<@`&&H;&9zxZafNqL!*A+xbBy-ISTgmZ~p|%r~^$l-q=t zYVJubv;c1^oX1PG??x6n9&akWP|I`?q!)XDH~ys4-T<7^_B9tv08~(!0hRR9i27|! z(s-E>=jhUe>uqfoYPpHHG;k*6wysFF+)QN@INx$xUxmsbc?9bX1Osmyn(9w1i19(I zkGG9os1-JW(#xA4?wW>VPmP@L3zt9RG>(Pi7{p7j9ID^7ERI(=HjZi?izSl5I#)Q8 zp0DuAHn#4|R=O^XuHLrXwdXKYiuLel?~N=-@A+4H+>NfiKHhZ#v>7G$HFWkVnLDB6 zs(f(9*5P@Q>hJmyz2B69VEFHQa3`t)IFHv53xj&##YlX(Wj3)=@B647%L6N6H$fFi z!enyQVa76BA9C;e-z75#{VdDI1>Fw{pw&cejOqvPC-sO9L`4RUZBz0*4EM^ih}chU zB8TFRs7}-*G`g$P@cWG@Q&##n%j~kGHjimL2BC3u?Q*m}fX6N6Sp5^+cRzz3Ca4lv zh38TB_*&H_v2s{55M=j-5OAlEH)=Cq!b}j6fKyQsb$P8I6F+L#X`6~VUn1TEIk(4I zMatp)PcM6)d>?-o$vIfFTSh6yra-;`j6!AEBX!VYO*LgusZP2%-1y^s7aB*28$*;< zY|0|yV|`WPxP>qoXfa9b);n(H*h~X|JjcVKK=#*(l^bYca=@!;Q1;X|QUeH|bKAHu zZuKD$w0ut4827|Y>d^SKdcS(!xd0N^(5Y;(3<3s}Cfco++PtozxL1)sPHA4q?g(?X%r~NG z=8dN94n5zW9I_U03$`Cp*sZ)%nYd|aU1`x?<688r&q?1aJnsDb)IK!_KnF?y#GPB$ z5#*Pfn3mW0eq?k>YZDhsr<0fjI_Fo(-H&JxH3aN&woI~qYW>Rlt5`~3u*TzICY28` zdFpkjGWj@P>2bA7`Vi`@%0rBOB^>qz@j!m^sk?CXrpuW37@_WI6+iQ+6W!xHkSS}E z82lh2-*Krm`3&GDeq8Kqx-MjLw=xDlC9d&-@04|Z0knvp_l+Cx2X$V-Y5Xteowtw8 zYaZY>{?~h*+vh?Z@ar-^7+_*P`5p#V)eGL)3vSW#`N9)w(W{rz3=!8Gp~&m0+Y8Ov zJDtM|tI7La5%K#VZ<2irj3#faMem0TZ_*?mrvh*CATP=wV(KCvmLN;AY#0VyZzgBr zPh7rVk_;z}U<7degt+_!lYDQheR-4oWN&>%7X5@w{BFGcq`3SA2K?mq{S+jKl_dN% zlWcMv{Z*3uud4mER0AlD{B^nfeozw|m;_iA=}p2z+j0fks|MON1zb!AST_Zty$^J} z53~;oJkJhvR}Dhi4fH|`^0_DSGYN_SFX{v(1vxeaolXZuItQO&2gl$Btp)~XP#dH) z1=~slpXdc=I)^M{hvZ0v9P5P?-G?mXholaL9BqVDIfoA4SkP33wk?Ks429Me5j6yb z_NhAO+=dSAhju3s^{R$V+-tNXh0QdD?N5hII)_(chtC9s{dOjr4+>u|QU^ALk1Pgn zI7d9QM{Fa8?FL1h?rRT;!BR3uUaLmlN<^-h5Ut%uJTIzUI7b3ZBOg?Wo)#nFgVn&e zQOMj;+lo;L4^gr4QOHP9DBMJ7NYNNH(Qj#@PJ*I|f;B%hN8c|-6RX8!b6|;(K+`tI z&@aW%sYP%8jHY~uxY&>3Sc+i=;}NlN$L_1faz4azBN6co$8PM$@|(sAJ`f5^#x0t} zi3i7$563ArtIIvaG2z93O^z>6j{i;rEqOpFT^!$p8%d^+VC0fuVw#|{M5srTP$iLI zikE2IoUlBdU=zW$Y#U9294O@Y2qb<1c73$A>c} zH!^O5y@xnp@0&BOmojA@GNF*u9}ftgC9_cPGl|Z#Fg|2sA!j223Eqrk0rs=rwq#?f zXOI2N#trfOFp^CWVscGsPI{O`CYAH{(3%t4CKSP8Q{*Sj=QQ$9u=MIVh#NL6Id*27 z)Ks=#U;}g59~0?Pa^C@e>g_S=bLNuaI zMQ_;~1!5#)$sKRx!d}>&`Z^;0%vVkMrT&<256rg3%Mae75Y57`>7Y{e0H*U`_t*p-cX%VJcb-BjNysn9BY=z zX;vIyRuH^Et58z-1IJb+k&$J@G5>QsI2o!brL?7`wD~Z*eA*=+hD#t&X8y;w81>RN zr_#2TvX;ZrGEz5tUl}E28R$k)p};bw;Qv;a>bI$7_h!{Npo;nW>ZX=zgKN?baE1j(AF zkQyQ$Ea9q}7cj7swNBs(-y^wBL<1m( zU%}Z@_r0`E_6T2ow3?EqenX{R1;0TJgm2kgt%whJJgh%JZqPHY*B`|<gx(Q_1oZAY} zR&VbB(_wXmw!<;EHT;ZTPOV&f(=qDSzWvlZNvHX6nD%z6{#d$t?5Sf{10N^2^l2pj zZnWw_y5mV2A59JLdenY1S`8J}d0N_eain3FTAB~)5({iO)9Aol)<`HV#kT04Zfxdc z?jhIgp_J)?`+|>VTBBjsN#fr9(Y=R7vxkNrpU$G`_frq^b1Um|FQ-Cp_0L|os#d(L zULN`mzAwE3DEMg20Q@&yV(xvUP_UBpz0%JgWS{#qKJ+W0U~Yc1=2Z)uP&%mN<%!ehi4&QL zT)m0F(20XE>m!uO$K#1h`VYHpm3L(msjZW+3{WowAFeH$p~gpHw5A^2r?M`_AkFv9 ziq*sM)EUZjruV3a=5+t^6z=$BlDj%%S{qTj6%OIdaoKdnMhN3`H`R$HP5BHxcm=P* zxj_Vf;8VE=N%;&s?@WRJY#?Zy=f#qhaE5&xk5P77)N-0vc2_J)_W93nw65g~ zv?^FymQ6Y<)3yxrV(!d4bP)MI)6YWU8(_^7goZnKn>zLXNa6pZ@* zBbBX3y5{5O-#)TSs+LQs>A>Wbr3Ag;cxhk(gJ)4Wuw)#lcY)4(jg>IesDuxy;l&aX z0M&(?y!uGZ3(7+mf^tyjJ7gET7?$fT3z&e^NP&wJ#xp8yFpwZJMVUq~I0$7Hros%)Y8~CCFzo};5+UYP2>GlTqYO^*u=2*O z`vxu_=!3_a%;Wmv&lOC))%V!0ulifH$bfep`Fm-bw69*1Ka#>)5$#)|?P=q!Jv(s5X}dRQ89px&(t z+QOKUa(nKTXk1+Yjqeqnn(Ch%cC8*(q2Wan9<*n8`x73I5JC06;+~El4KkW`b{u!D z9!Fdp4-lP1bDaEUJXT~-|GKiGTXr&pw!CtBIKPU`EQi&qU3VdS8Z~gTS8;gYfxYvC z8Q`Ir%TPascD9~yeD!*Go6X!3cP6i0$9R0^PkDBweWnu4pyq+K$XJh5dG0%KzIS@A zT+NQ4f8L*82c>ZFzS9Rld_HDH%=%UKZHDFs<0YAnG49&Q2e3RgoWVYI^@`8QC6l$0 z{x}RD_)38InxFqFXk+zT`_+Z^qEP3xp!{{9-Zd1)sf7Gx*ZB4KNfvzegn72`(W^iQuxH9>vd$LVKmc&o%};VeWh0BgG|Fi z8q;kEG46a($J?&uoXR_EoyYXb_PPAWvbD!t@MD$rV}{OyruCD8*kiuuqt~Y}A;QNF zuzuI%Lk}1SiD7uq^N9=-mXG=6x6aGF{LAPW&NTsG0t|l6y1!i@ex1*J`6W1sJoU1w zW(lPjCf=l?TWEfoAwGsEn|0 z?U_X|#mPUl)sZiU38APMR12XVNFi6uO666H;akf{h-Uh9Ws4Jg!p?{jYLM4R9B8M} z!BD_ppovpu`o(mUx@>-upz}LAr=a1TP5^!9tf-u-W=WQvvJRS2SAF)51QVC)`O%MiSKigN? zPx;ph^8D>I)1}DFQ@;5|acs)UD&s|8Q|MRN=4G_t>c4A$dr_uh(E*71b-s8>ui$MqDe5F|B|Y*T zq}J}wxf<71Zze#2mrkPf>(0SeD+cIrr{uXqvB>XQDx|Os$G6?67br@A3-E%8XwnUx zBSL*ti)gAHcX(jQgqp6(AhIy~{So;scv%J;1$}Dl68!2l`gg zxXhd%-)xdg720H!o;Z+foSFHGvR?u|z0Oj!iyZiT)D~mZVvdy-@Y$j_uYk7Lt$hBo zWj$yUc$DA$p68UCj#WdZZef7Ox(MjVW8Aa@pGIF(h*jamd?WVdBJ%#!ZLf>isk#OV z^IZf@KhxkB@)X7OHoHmwvuEoeaTOVM<2QF)c5^D6)TUE9U`_iO;{{Wjl6P_^hVxFw zD-MgEiRq3Ttlv=Y0QP&l52L@pFE{Iffv@DC-t;dHJC)*T54-x29d6SF3yW&UgOeUt zCxV`(|PY3ckFB?mNot|LQn6(#J)z0UGNXO?V9cb*u&nc)= z-b^;}P_R*6u((q`)Pn2K>`7f<0N=Ssx}+BXQP(S4LID6xLMla`vD9A4g3H<>sU@4GlanvwyksPy5t(J8ld7UBj@3xr zRIyYe^5W5kD46n>_#yW@YQo?|jG~Q(dtz+f0&K3gDTKLYZ6laW*#(S0&oxij|6omh z#oS=tNfre-+mWyO%OfrH_=WcO zj(lRgf1YL^{KdZ4t>YH>v8*v|uVVznT&@?zy$`eWsSqp@xG1>JRyXRY18 zvHjGa>FtiR&a01K`<;W8hfdSl>w9N1F$X~(>^5C^y8CwM@95sBU-Uvrn!0hc&wWY5 zh>*T6_F`5u2Yf2qK>b?SODy(DScrZTKDMb(Tm&{8!I%e|__)rTe0s5FnL3|!tdd@*XV zUmBH$w@YdjG2$@pA2V*KNx54v`dryqX;WaEvXh2Oz0ll=IV$)Dme)iG$92ke^-AyY z*!U3|I2Fmrmh)CCNt9K+JtDxqfP(j+`x|g(t>3K_}sI9r??@1`7Z-Xz3ldV@+(kg^`{A z;^eDEUH*%?nTi|r!T^V1eY>Thn})?YTB9E1_NkT=XjwqespSsYfJzNJ7noI z`!rT<^PM`ta2{vBu2QL9Updub_|Cm?me=d0o%@h#Yy$Q`8|Z^bJrsP(Au4I>xZ=qJ zoN~V-+}c)g5V$YIGHe7&yLOlYUB+}GF5|ZBcP_1(#~je?QWlo;I0u{6ZL92ZO0)L( zID?10J!aByw06bCKYvUlIxXNy-&0IXoGB!lD$!WkQ5b~WKGl{JAnQ6d7Iy2oLKJ}F7NT(wLCqaI#cDZ-c{UoEIglispLU!pE{Kd9-RlRC|O*663}#1t(hPs(?#`RkdIdN&k8ml@8Ma$&;li2fTe4W$Cv5&l-OkQMC znZ3UYYj5UWhf`Y=qcpe+BndDS&r)%pE#G?riMb_|A3I*)-S|_tChwC~f5reiJMTyM zSwNljxxq_YRJ(7wy1k0`g+Ib8kQo8iFsCxxq71~dfiei}s18T_NWLmI)*SvQZ+y_$L+7*;{6;9yt5wI0bz2$v< z5||32atX;JiW4NUAbZrO_WUUH5rz$|tB3w~55rgw;kydlZ=K~P)cEwlq-8zSSf3fc z^@16$g_aMgF;RNo*5$t|>tYS7rqk^GV$r)`*5zhKN*F`MlR_hxg2NM6!#38-zAS9b zDlB|VC?X@msM%*`E+YPo@JpBohfGg*jmW#+KAGblS_-tY z_DE*k2v+Y%SzKIs+i=BlRVA#n1mjgV$gu z*5Apc?)PH)byeYtARi}e#tEc6l3rdVtm1cL&~|!eO)QsTACMy*eSzFaE|C3*d-5y@ zT}4LTGO;1jg7HjEPTO5xL=o+SbMtNDPLr=nqhrjTS_4Q*G9!=P7XL(#^eWTgN-OUJ zrJ&B@6=6#Wzb}7X#?6eP@TpAj`P+L$IImAAIe6Cz$4^D?wkgs3<>WUMkYN>}>yt3q zk>KFGupAVk?0UGad$D|4aKfj5xyt=idjH5%AY?{K#4tr5+DUOa?W#mZ5rac`!;4Kg z^WLz5B8}<;1rjQ1kNVFUy&NjHl0xctNWWr85MZ&%!*kyqDt>yIHh}sn^l=s(?JBne zJHsqHeW|HL$S6;)foBT@~N-9NZ1r} zP`|!;(8*ar_vvBvA%!KXTjp-JO|fHraSmOJxSH}lqT3pUsbKPeV$*%$0Y7wnZ691Is69TuGYRmcwHQj?0E z>lfTaljX{hQ2Q4=ZdACv3tGZDVvy%XzkT#Q;q!P|@HbriI8DAoz9`uuv!y{x<8Qeb z+Q0bfMae<27^pP0m-;&ldnuY19jT@>qMeEdS}l}fDZxQ)a{U{+h?P7T@3-({xdHJA%sq!5&wWfe|fn-7Z7Uh;LjNX&izMT z4g$;l1C#p)G6(JhjQoY=AROJl@p6d(aPhx*xj#$yujBu>D*!>^VEzwKI3#3%z`vnz zjZqs!T0BOkQ{{3yG35^mr+%hC zAq3glg`jZe^Z9>JIGzL3-!#gdt1B%He^5A$w(zGstJOAt2nwgkeX&UqN#?oI20`Ic zGKCRHez{s7|3Tr_N(o(^&PoR%C|rj5!=^CD5CnyLeZKvJ!aWcxN5k#)tu%Rogo3$B2-_W!vPWoA4 zGmH(|@rNG9&mYTLTJhQ(U%l7J8|+1YTsk!PK%k^s>Am zC#YZm45Th8E_S67rEQ=jPOZ5GQkB!9n$cCh-FXzup?xelPK6L7W!YH%CiFG9^yUmn z<2h`8`OA*2CUt0K?>8%|w9Oe~mOkvAw5;*<<-41Ij-o8yn+NH)P+E?jwqUmNWR?yC z>1@L9#TuD9F=Tm&+hI7r{OBe>aAR&n&o5?f)BIfaDFDNc^JgPAD@g?mgG=+p@CSI> zcNj?x$Csn0j?IG7WM4xr$6+1EE=RvK64Zoji3MLx!5l7MO(zQ(e1h-8I$?7YBOA9H zlIDE5p4$**s2@f3Pb#Q`(r0j-r!B3!n&)E`DKyt_3{RgoF+PsUAXYuOUFq&7bP`UO z2Z!CQ^&EtAtfBNZd9Qd;X{W4f@V~o;4-uEc-%@fq5oqI(u4p!iBeQIFKe1x`Y?Myi zuF#fs#r=4gaNyp1R5i%Rb6i;ILV480y8C$CHrRnNHMPt5eJaU%a`X%cWmqD z<2TjCU#@<4?mS<05XW`jek!4Hx>;|`zq;K{wDx#FjAl~U-)Lk~S)zgZ`TD%uYR!Lf zo=eXE^1P67{Q@{1xxW|Z2g99vY2cASO&SZpex9O1)+Bi(k`SyCQSbqkX2HWHb;cf} z`yPU_5VLIsQD{XR$Yio*rKkn{Y>@nE!$>9UZ+$-i&jYyXvfp%4^%6Py1#qKmqJo|7 z`H4SZQWLTvVfYR85ffYl+erP8^dj-5Rlf*Pt^4?{@g6hX@FG-oI|sM$qiBo*W|#>< z?gyq#Q8u5S;WlX!_$x{MT)+!bySy#zv!Ox%ZN*6C<6IK-OK|}#16N;7ebO6e2_j0R zXhYa8JgDM+aZ1~0`?_rkGHyvJDS=qu<0K4Mff1#Y%eZ{ld=k;%k?$Ew@xKi6>5P%2 z`9dzCn#S@Oosvh@S1%IUPzo4-nTqQoe@!A3B>$9bJf?rik{qE)$x228Yy2^mY$UGW zJjHZe+srO(`FIzm14+&-#4d6BojzA((&Om1zieNif4Z;07-F78ed3NNx! zR0vxDIYY6Sd`VAS30odLVYal6*>uuKTnd|3u`DOo*Ob$^LauQd8BeM1jE=Y>Y_<}q zX!YM&$n^y>4q4PL0&^wmHzms9CEtpJ=PI<7OA*sbR0fgfVI1iZ-%9*J;l9@=uzML> zmTE3Neg_OVR5+I(y_|-qG#}1+xS!Bzfq@-e$n)iXsF`}`Jl=h@95E(_$LfS{I{Jy; z=b&Uk+BBW&nAyB(+R2e|q1ph+{rX=NPLT(=lkQMorEF;)cn4er105Sce)MpTqYxA> zp;4sIa&zJlwE4)<)boP>GkkP;y9QG68LWhB4wh2|Ia>w|5gkh1YL0&3G*N|7J5}zk zoGIy&BE|1JmzQc>-M(+%)MA<*d0GKh%Xh3;R=PR8S$o=4(ZBAu@=X3-0fxq{;ga}+ z!s)_s!a66j+VoBU*O6IqJ1`Q?2dFJJ(CElvR%xpOj`}yyRPKB65Cu|(us1MMkIG1c z{-ALBc=8JX`zNnZIQXp(PtF6J+SOBz?iEDf`@!>Hq&WdH+va!=L+o<4qln9!l%t2k z3h*_;s(xH_smP;h5f{R$_P9(>$YXkx1j!oE!mOFd;2OOM7U7nidX83?uY|17NVj8q zd{4=fq;J$SMBMk(M3p8zUj|&koo@e1_EFZep5YITfJ~0!!sD-R=O*r*X zO_ZPlB7a~wHFi_U{S31ipU3l5$l%Vf35r49CRLVS8jw7-j_sx2VH>GMF_ODV0j2Fu ziExkEIqs)EE$?!#xpe27_+{d2!3*L%h8cL+XVSfl@mfEQ^XFU@ZUr7FRdUZ^n>oPj zG{ftnw=ND6-Fp4^;kyuE36O%m{9nTN>0epp_3&?4`Vaa0AIb_uL4mj_5K{%>t3ZM{ zL{Nbw@4w2*A72HMxkteC5LpFct$?}ynko=SrRlG%0!iVxe|!~)paPLqAlAws5hd`C zvhu(6RsKy@p#nhU7Ko_=QC9w^tO5~KAhHTXS%JtZ5M||GvdZ7D>R+e-%N6)P4Bv47 z4Bx*6bN_eYJM@1SzK#Bu@GbOT!*}O@4c~7d;kz`~_m77{4F3-gB^H@Tv%YF`G>GgU z9!gi-k@`T`L+u|Ar8k{GecxmzMES3WB0pdLwId*X>2LU!?@NE$wptDN6TZK2{SDvN ze>{|l$!w4)(Nhb=L)kI{2Ug_z{qayT(IFm+Tk%$CqKZ86%M-*y*$c~b^LTlDgoAh} zxEBj4p5S8fKORa@ly^31Qr0iD?<0$H zN=C&y>fgSL_95s7(CjAZS()x8pPP#RPBdtsp-izEph->LPidXW7Ho_ zi_2m{4oiJYz$sWo<@3l#<*p+kSmpIKAxD)qhpt$a?Jda1)#}LRSk?V0A;+}}v>I5L z)Zffc>KE1DoHU3_Nn_P71-LOZZm;e$0M>5NE!VrCtoFN+ z(z8yOj-&1_SR4!HZU9wTW)}jd=D9qaNZEOx>!;(YUJPlOivdeD_ls_VK=<@PVt)F| z;jw7V%P#6h`sHTfGL)K8HV}O682m!nl?8L?`qiWW!pqf!NbY>?lmv{{^-Km~y8Vod zczN=y{2PXwxd=tA`WaQHlf-$ACz-E(aL$$-vdq3&w?K==_FHj;zF&YPT+up3h?jqj(|WQ4Ez$_Ytb3_w>oPCRL>Mq|f-9>uK}d$=%u5 zTanKf4fvDZz~;u)=NqUm=)VqUzOH%QEV5R<+!h*dUtJ6{5qI2oC$hm_o)0pCMa`bd z8ZM7G(QBWd2Xz#e?_fwSFP++7ZqB^GUo(LFVgk4I=zudGT`<;SBb-l#cNJ?E?4EdZ zkV~Z#?sGakCt_!CSEc<=7(GPRdjZ6lC|}HB!pGGHA%q4dA0`445xF7n<>{(`4&UTU zaDYS~?#DBC0$maewfinojEmp|H;K)e!VU_SivR_`989wB?Qhf-?S;mEU{XMLwg0*Z z>9)(k4djYuc|8xyegnxs?=dF{*TZeX^xt?-weUSwM>vLQ5KU9_@I78cX&WG7BjEM% ze#D9v`%OyLy+0)W`ZJIsjhuqmL_*pJJ*r}se0O3_Ql2)NRPo&oB}hf;YXDZf&$pc; ziGz_oUh?>wHUb9ou)cvJCLztc}e5^#qK zm1^H|FWHI}EX}qg@Vx(oZ`FF*wFsIyTSfL#-S$IK8$8Ym$9N4LRCCoqS_w_yW!bh= zsd{Y-X5)9pLL0aQ%{|)h;X~g@Jjaj9Z$}nNX(erxB@1kNHe^s1p-VziLOxEs4F`iCN|xuot#ls5 zUlkE-Y$bhQbXlO&P8H!0*b_Zli5p#glw9v7Q{oAAaw+?s)rweLc z!hPj!36y76*XIW&pV3m?;EhOuY*()UVv@IrTOvJgJFI06BuIKK?xBt@m>r0z{V*Dx zDBo1bNz0Xe#0J6ky=C0@GHTO%1>#yFI93NOl`P?Y4IKP%dl5N{Z-8U$*ZL@U34_tF zoxG0Qy<$IwC}#6R^1Dk1{i%1-AjCt7Pjq6%v zVr-7>5giv#d?;YafEoOOg!?!ZBzK*CL@Pn2BR(?mflb`8bYF@pW!l58&LOYNK$53o zDgo^#L#Az`-`SNc4y`_4e8u~1>f`Us`Pvedaw_KZrrs*XC|hH#176WF=G_DP3f4w* zZ5>yI*3q*n(ik&+CRc?VEskoz6AR(g#GH|Y+x-wNOC)mS5ultzZ7HFZV>oDO=eESw zrR&tO^=aiq&Pj6t^~|+3b?9<+*6L*3ng~O!^+9f?*+?6-UA6W1 zCEsN+#uzuZ@{U^nvIh%v85hj3%tDabXP|1CX7|62VIow9x%2*AD0fpL|8h_m(lXa5 z=TK%Rb)>o1vcSo1gOc=eY$E@(lu2+|-CDY77U>3D(zb8ZDLS^DY+a%9ziS)(byn=t zx(1$z&V+g8{YCr*$n)dAH&Eg{M5k>_AMRl&HT}Xe(|wB0+GT7(>*_($eNV8`dO|$o zI^RMuBE!q>X(_^9r9rwg?@@c}5@9q?j>&%URa}oy31B32;nK=2p z%LKmfE@`?dTyx*grFr;0=^?>p`Ld?V|1=BnP`X;z($0K4ACoKq4@VR)S3LYNN1bj@ zE0gXt@4H4X79O4tD&3zFQNa&^qzneIR0@AQ6hsp*FIX?ADQ74XR+uC&tRSy9Ns`QW zZs_|TF}b`65G8*0dg0-^;}3ab?Rz5td`O3g_Jq91RejJfHSQAmXo8687JV2OF_@bq zSc9BlilF)KeIXtS|GsCRG9ceqoClGJj@nNK*ALrU2sg=ZXTeui)t@qthk%5$naqEq z+E01WPi3Dsrtg<#5aG9bf1yP&Cs=4=RUre_fYc3tlYPH;-d{-8`E67Q=@4Pu7Xv-+ z1AnPv-oijj^g+241;QW(h1>`FP($B<$)F2ZJpz+HxHSbONbr+*@mX^POT`2wGzH<1 z3iJAXK^qE=R1D5U3~I#oUHuwTu!vif6ynho!e<|dx*k%Ah)YKe^T$KE4{e7$`S#O( zu17PXH@X3AS5sIgm!kMkfTDAlQBv5LYB)<3W`B_7%n&P#N%+_zrj}nQh?;0+KfDVu zVl6j(OCos3B%-6~v!sDver?2YQW&RA=eY#xJWVj z(?VpyG0dhhv=7nrc<=WvV?O!g#j?8)b0)`fH^+XVj^Qhg6?kwK;*O(MixXSo6ODp~ z=qCzz@$$uSwEHniF7b+z@mePFs!Q?e#eSMg@hT7TLpTXPlH(1ySs*sb*W`rxpRueM ziMHH{_B4rB4+)HFiLR1~PQgJRn-jgbVKl2_eyL&F;3c_oC$Xs|5&cXGl1zkx`fqoN z3IURkvPuB;pLU8MV-;SH0Dq+Ne;j|yDtP|i9|8cif14_#uR@wCq_0BC>VIgeQGcc> zKt?I_L$-_{Qu_3t$qE4g$i@+5xB}SZZ)Js)RY+xp^i|3~E%Z-i{r4#g|4n86FJ<+A zPF8@lR!Cp{S6Th%*YmHd|Mx5Ke^FL1vi?6WtN+|7x-W$66urUsnEK~VQH|dCpP>n; zcb|;2GcIEO3{5c4ERZjhNx!ZCGc@6A7{gN@8uFi^2}GKWkf8~7SEpK+oELjNv5=t& zgjcq^j@jmg3V((sxK^@)ojTIF?jdDW8hb6({bBzQGBhC)!eZT>dCx+ICh&_r6>cPE zdP0UKkO%>6Dc9W)IQDftk%Ss_UC_Uqkh)@`acnr^IPPcL<2fd**$^j~o zH|%eQGGtJ1g=OcP%!e@V?tg^r6b&VX`yEgl!1KK~CD##9_uqjDvP2JBXIHI5!Th#W*j9QvIOdr}k%!f)HC;+LVk8xRQe0 zf)K;vj`a1z(y9UQV@XM!&~S<5=b;kwvie)I?eg&x+GC`S_oHN0*KGrxg zjF#2@c0?>kBQ+>JX;?PXIBCSz2Awo5`(MxEyDw0w zY+v0yI&*ru#P8{ZRl#BIgriDZuBT)>KJUfgft1yjPXrhJ=wHh|g+xsRTntiL(6gAo z_a(R(q7MCDGmKYwT;o8P*?&3Aw6Kg@CsLGkHSy)Ht#(|1E}(W&viY5>~s_cws71}*QD z>}G%6uDJJt-(N|J>}xr#`R&CuuAAUgILii-G4^am1^Tff#i>|5?8J*#xQNH*n2Ni1+V%5?U8F(oeld_ACI&3mUW$$l zb=|mj`gF0!@A-0@8S43ZenfoyiXiZC;O7C0q1%I~DsW2}<%#@^Qx`DRbt9@^|F$d( z%C5!>O`p;{=CsGdRn z^fl(8x-z*q{53srVL!u++H?@1m|@w0n6MTW`Uq>dgRB$P5l%At64#63?%AKBbdG~C zk<=s@UVp+wh2@b`;Yo^qWcKE=$RmiA7?zW}BumuXKxap)Kytl|!{3*{Ke!XakGa$+ z5HX}uZuXKwhV`i|`%Z88AQ?VY<=cP)V6;0Z)4F6ydhfDD5!^gXeRz>PH8zCHl-y;= z6082!uYiNqC0hD5Dqz0NsJ5nA*3t+z3BPNDx<7cFKVdfQotgo|?2;g~YPA0`+k5V{ zVen8e$yE4y86|9blDy7IZ02&_5UrZ2u-W@>nWrKq_&h=bHhgv85#p&uO{rxt+uz7?v|o2X%z>Jn0_u|R&t}0E*T%5=oq)VYeKJqwMLpW|B#4)-==c!)jgwoxwpGEu3w*k=yp!M zA03$_*3Ey+=5X~BkbDvx0d3l}bM>>~QG}ZxlT<#g{~em(ou&_Wwbp|ly15VaVIvWtXA{D%fyW}TtdjRo zpt@`y1lZhJ(*|XXSqASWbor*`H)JsQ?v}=!MOhOhg7k#&AE(si*hC#=GSOHb8~q|! zAG`pjBEEOU??a3V-pKCAiMx{0qnQMQ!iXSkc?OZ_=1R))@H4C5oFD_BbW)g~@pO79 zqM*L`SI{1`&Ci7|9`=R2VHmn+fdPZ?_TllUrbe}R-V+Jv$rNkv4I$@?C{2}J|nKoF(-ogiApMNH<~EHUu)y%V&=TSg)LND~T| zVO9@YW&VBnS~G4$Z6cNAN%t+>2M1kJkFA_7@f{SCcoo_ok@(wLP{&^EW^M3!k zy{p$1)+p7sdpnij9!;U!PoJmzMb3_TYtyHD<~525aYXR7Xq7X%!rDnxr}OPXr|+K7 z)b6w7um8c`TL#q;sB5}wVF3aJ4eo9U?jBr&1cHVH0t5>Z+}+*X-Q5Z9?(S|OxUbtJ z`^?!hcjnI7Q*~?p?5H{Z|cjfWkvhx_h1xSZ3y($4Y~jwgnNR=T*y z`8wS<2?|nSZoED7_Fi|g8{nxGm5PR#W)EF`7ma}iN^95ir6dnBju*rbgD9Rr&CkpD z1^Q;M4eYfI2|#N6sV=O4bY)tX?ST2Oz2C#Tf3LJ5kQ5=iHq)s0A-|#0`XP{x?F$Vy z*YETBX61`FCMIU|#dOa1>zoqeYo}#l!Tl`1A6&kg{(e}L?*}A^Np}5+RsGCp{AX4D zA0fi;s738wV}Iv+9}sIF5N{M<7iowOGBJiXPrwO`mo%;8@XKxwNX79@rwJ^U#6X%x z^{>Y(6<09G`)-X1gB2dsSRd4!A4H9Z;*qgi~7F_FSEqK!@WQO{tHyMu}`=Z zHFF7T;1F_)#QcQB!hpm~2LoTJ#L~}+MchdR4H#AkNrF~E)eTAHx@M9#N%gdBjr~bg z`$;;u$pg&ET?L7;Y({-jgq01+H3)J0wUMLhxZ|`bdGpC7KT^gDk{9NaSRtQNRuXW= zzQE9iryew<9u=f+OOfx+r=InvdR?db$ zd@PenhYd`Fr%Ojf{LtH<9%PxyV3C27n1L6VLHt=sF(wofk@cn_gQ75l(D>69Zl?L? z49bN}>N^$M!c5clOh)OC%p@vUoWk@3J}ZK;Ph#KQv~lCFZCP_`kijU%Jluft&jUF9#b$ot$&n{<^NwxRxO9Y0Z(TCxZ~=Qv35M08>?X17 zF0hQFq6j@c>pYQ?RKM(Aqx{x5sTr?aO0f)Xv7FVtyr-~SvArBcvz)uV1by)}re?*R zV+AOw!irS_X0YPL%St%%O8W3hx~58oqDm^KO6bK(mch!m_bJQ~yj5J9Ro7AiV(wMk zMO9ByJp6}MEHA5t?>XPeRI`~>BM(%upH{!euTgqgBfD5F!dvr^zUCgI;=?`KWnzu4 zCbZ^ajr8xD&p|c%Ny*SowMI#`b)RcZ@oUWQYsv7TZJp}ulj`hv>j+rO9q;QL=wD9` z)K%@&xjWT+CY5^!@!2@lyC>CaHPzQo)`u3={cpgHEr=iF1m*k(+&n!!0S~-@5)%M7 z0JQN z_?t2SNX=g>CJ-+8Z$X2<;0EwvK3g&Wt;Br3IsZQXg)8u11UK)bF+u77uwANyJf3Zr zt(gCV?GiUqORAbiCP7jU?mumph&K7-MdF%N%hLa8yUhGhY@}?w99Uia58LJS`h2xL zxcF;Pb?IN*CDNI>PPNnR2*ux&!6u%7Gke7sn20~NOY7nO=pYT%qlQ1WOD`0c3zng& zKekIdc9WXYPm_Oam+7_N)0QHfe*b#5UDn}f*-LG7Grt9Fmpqp{BX&%4fbG)mWaim+ zNsQlQalATdNBx{K=-v6ArB?RT0@yBBdkp#0o~|FBZI{aTJ~L@2- zwY>n_Wrq4IJgf|F0Nkwm!D30y`@(wyDFfs{dz^r$3;^8R6vSf(U9=l*hHUiv&!PaL z#LY0FJO9maQL;Qe4L-PntuQf;{cKZ-%$Ti6836#?q=*GfN2|aE01;n~TuN_kRa^kv z%*1|H)QY9m2T}&yGx2zh`#H(>JG59SrV9w!sqS!yONpX2-}2J^sRA+5eD3GHj!wI2a|=zn36z6>_d<&-{q7@)OHS(}w>CW+_?3}d*~`$&m)d|nWqLl$ zwa9QjGBcihKFWE{aA73?jeIdCNvu{q&P{#H_FaaR@M2OWF0Z0o2@*^W)>2C`no^f3 zx0%&>iD*0XHSai~fwKDeYSE&}j12Ba5hLxQl+7M_jj$=Tk*4(jA+z9PHuP8olb-)D@rFrXeHmtU){Cm>y`{Nb& z=d_lKCBI*5=i_d#T5tB;wpwoc@_q?O99DgQxWCY=zJ@j`gJpiM6ha+x4lM|5O`~h7Oam?p4mzX!%Ak!`WZ=xVETpu zvvxd0+&lQi6-{rc4|B+m=2${np*|73vv8j&a$;nbULnLY2N9ucidVNdP)Fm?E|^(D zc>9uE6_%0d*+P`vMj&X5$|#3BeHzMy1f@pw7#r^`I`x7CwGJhP!sHxMeC2`ChRW!= zt{lR*QbS+xqL{P}DQP_%26R&cLVAJ?m?NazKRvNTjRa$`<@C#Su%&}rs=sn5bIY1b zPbRGr?9L8+8_|2(4qG(^33nBYuvPqqeoh%&CqNY19u$MEF{$|v5#I8iou}W!1hZE- zgnOV*NnMNPi()wr+vBBYv^np^kkO5MK~bf`_UDW9e;W&Rym(8JvMcs!e=K69D4R;o zNdF_9Qk=+C=HPSmOSBrvzQdCnm%t*q2*tc%Y_bjJ zZUP>1$XrPfhLV{u{T%}G|NCCgFXnsu1qX{;| za*CKlKid#!ZqGWlI>Di${Y>b4yjxhPLm9HeWjUT(vtC5rvvv82Y_9TBJi%97vf;D! z2~z&z;c|;jyWE}%u5)3M?+W1+O}6~Owk(}s#1fkkRJGfo_iUi@1L@C}<4!8nKDIqfpoeV^1l-SbVmvh#00 zcLXC1=dWL`ES>sn9f>L=9!Jho_LT2g95v z|CuKZs@Ec`*O{8vmW@|SgjW{@I^PYefRP8bzX#JC_i3FyQM~z&`)Ua;~F2-@FQ)hIMNK6Iu&lxmLX1U?LhG>r3Im`xwHP<+_8kNmW| zVbeF5iTMG|!m?f0XjV6@g6N^kU<#3XzK8fgRPJDT=7_WyV(>2bt`{wb&FK!qWgnfQ zIr0sfHER#KzB6PljNBpQORo1%Md@f!j8mBJ;8O<@eZHGXjubDxi5~V@U&pEXC}nCU ztv+Y23^1O%T#mOT=-P=CB+|NTN98Uk(9ipdHbz;>-$_MMnkpK`Jtjd#?w7v|gaJX1}c0(-kup1x%MmE4D2X`~(@SK1iN?l@3oEaq5%5Sqlmk9cHv z1GJfUiu>_yiou9Crugkung4H$X-mhb$My5^x9=WSxMBTxD;+5-~tFkn97rc3~aO9$o;2#G?MjAK$MOX?{& zdXmur-$x-;Da-RIb5zz~s8lDFScROFZS~Y$b<#{V$vJMNliSp#Tl1rDgx=Mu_X#O9 zqNz9gDa2lurI_K1Hfhk(=_GoRFt{3sjp-J+xWf(jD0gyA1sZ5{8DApwD!bo9i6qWu zn{Lu(ARS;4CCc{C5pmntS$1pTH>TImkn+W(gYTfZ60>+3v$*Nl=Fyj8jU2OsTxO^|OP-t`cudBQd8&zd_mz3hj=5pK(@7$7T<3D^ih=l`Kxyg4psXT>+c!g?s zO1X}OA*`uIJVjjLpOUK!%B8u%(nUpx*b!pU&>lq%ci0P3P(6;teTl`r2SuK?dTl(# zEsDhhJSBa2rU<`_#~Se`q)Vm(GfV9?<`PS)DoU0Li&p|uH|}&c)k~KXOM691j~a_l zj2TYx$|%Ngv3SaIFw(CQi>(7Su&0xf3d$0HGm5W4!6%g?HkBio=<0h}lX8{A;N!v# zmcMQ)FOfEvtQ zwv0*UHQXQ+-(r=(eHH&=Ay-lr&tZj-Q?+1{!CRT?M7?Us`|54>YFYf(y!X|Thb~%F z#mbsk@+LJxCWi4jHJXQ*9}a7z?hSEyYLh;f=gigu$i}>=)^4-HLbL9>X10|{!4H!< zXI|;D#Jb9=I%mzgUfLRW84^$4dOI0a636f{1!Ga8MSEk3Ok*!?(Uoeh!k`>=V6O>MuZmF+j9m=N@p)6bivpVz$kmecBIyiGJJKkss3XC$rJ$(e6r+tfxs!>nb4|08qZsX?s8fUhS}^!Ss4~pEVxZhk zA)MUB+}!oHyFZ~YTB5X`ndY(p^=B7;ozZuXZAs) z;hCeMi6N3zrQuoU;rV8g#iilphv6$9ktK$aQP~ll9j@Krk@4b@y{{vHg6u+T^h$R0 zlwfo;3;KF#^eTDud*kR6-xxh;>|kI7=6DoNI}a*l?7Df3lxh^^aTJx`@SYDECuJP3 zWgJ&~{Ppk%0pSGx@i?}@2${Z|yaxY?BCGOKjUl+g0jbj9%d;VC74LKW?4MVDz&y%EII zXhMx;Gns#Kc%d@R;&|@fQg>gk%%^K`8VWD)~Q@KXaulH zM%EcmHg=Z4Y&x49uAA&coA-BouZ1Odz!V8DNCX27T5>%RrF(SKrU0Q3cLF93akAfGWL2om=k%mbM2f6!lm9ao$H zc(?}y@dH8Z|0MT-^+x~+u7Bpf01O7W?=uW8_(y*4F93dSok{!$`ZfH=ex!c}zySRP z7;qv)3)qar18LIuQ#SiI0RE>t^Y7Dt`3n3W0N`)w?*CT+@CMYs3V^r%R{+@I{r?RB zjQtAv{}urLJ@)?}03P&0_}2k2<-Y=eN&goBI0~JD|3{`6ehTY^^jk)wN%mhN*i{wyB;e^{_S+*al-D&y+X_zBY!hpA7+(?wYV>HB! zuMHpkwFmR&cbGfU7BOp-1m}sRu_dM_2{x`|-%>@mpQt`6R)3!~2UXa^pgzSqSHHAI zB(no1{KIRZ0l72gh*bS8N@UuBn}jpBeAyflwSr!c;@>g$EaV8b{ewDpk#W_gUm+F< zgHlgt@vYfk@xMzAnNXr9j8S;#iu8+1a!e-l1n)5C^$&nBD`RK9qu$iq%9wis0GQ8^ zYcNLgRsDI&Y49#D!na`?-~QmUAwxdmO^CR`!g=cPRG!dnfrQ)Bxy%h_zQ8MuMsGTm z)Nu7&dfdPmzVGfvc+E}@o?f^tCm@c9(|#{S2O3is_;P0)TeEl^Y6i`BH>{$q&}Rl z@|<~>Nm%klVXj`85&M`p%LP zOW_{P={IqP!-R~Vap((HZJ8>m`~IvuI+j;!aI7q~k@H_ZNwjN<(#sX^z3=Qyy>6kF z{3Tj&FLvEA+gy}Y_WIcA(+Qk;$cf5Z`+obmY}}hRcmbwmBm&Tr7)cxSioOSi>}S}~ zkanm5cV9i8bwo8Bu_Ko^+hm8IUwPeBk;TgR$pq`3?WvKHUJV8*G=6!lXYYn4F8765 zQx9K8*9bNBx44t39*Gkun~$m@jB$w7j_kHV)SzMvMMydTrK;R-+9S4ZX#34~ZiBFF z7Fz4(Nd~9eAuTv-rB_1kBxy5{AtUkgkwWKr3KP{%`;n^D^X5v9lgJSX7i;}%StI`I zTTqj!Ub?!|oCq%u6y<$Bz=HRL1rx_$zM|4Tav89g)QrciSm$DIZNY*j>(f!#(>#n9 z9-{B2+T>~qIgixfYR1Dvb|h0^BiZN|$0n+BZS?rGQ{Klqg82|~B&eANl&%to6N-gk zt(M>GzPSI=a|Nnlj_f6D`wlfk)mAB$;DHp*0(Bb20a@}l-0OFop$xK=vlaRU3cpyy z*!vOF-te8j_TJ%_s!g*ZQl#69wy=wp_6S}%kj0@BxcJBpw9sI|}b zihwzxAcH8aDZXS{O38r07}&ZTH+@GYU1thw7^xQ8?BI`s90y2sk7BE|I*FC~7S7N4(fwYw~uGZvz-JkKU5viz_*St|G zf|=8A-EB&UwRef&-R)q>juE>?w%10Q0AHtF1%?w@n3grZ)0me8I|X@pcKj+UON#aTqII#;O&l-cL|@*xXwR<>JSU);9J(n~zx2 zh%41Z2R~fty$!HyNUSiq;Gh>CUQn&-`sD79LQM(3cH;5s=+2@du4TJo*d`==;#{w>6O5$#dw^+4s5K{qRdv-T%G$BbDIl>{U`o4g}58R_dm~g z(dd$XW$5Wa>l(Aky3Mju6ISwvP43&dTn8osRo5K z2YO|XyEsn1cgEpgCya$7`p&`whlbm=+7=tt6NSq&Zk#*~$`L2st8-H#irgK0kDEB! zg`~}v1l5xx9v^LwBQDF!>xc5|J^Od= z%zkL(JeVJS86Y>%;Wz=2Tmcb%erg@Qo_%g&AN>g}{QcuG13y9~k@M+o`5&;tM8^k4 z83m|%25j1allKDBXfQIk0(<@Z-rx8a)(53_dZ^8ESa1bZOM>~8{AB&X9h3gxJsX=@ zVBJwL?%p?%SocJDsPA)NezIVx3U4_Y-*{`+*S*1`T%p4_A!;+IlkouocHGOepvwFZ zt~szJD-XSW;Ff)u?JV~Ro4@I`M>~-8v-j+sVWwSR$b2-N?Kn9r`@!`y;*9{rWBS*ua9#KU^q;L_5f%urORn+nCiPT!Byz z^?N&NA@}l4t9R<5V(LEA9?@i$GUqVn%mLh#4yoUzkr^N$fR%(1k!!7!DMd zsXxydh2NV4+!v`aop@7~Us&n9T71n{*G58X(JLLfF#{>l^70nb#5>`4RO%OXGvVlT zg2YTB#87^;Ot7N_g=6SfObMFAOneQN-Ycx01YSJjEKWog>K7&z(^&!w86>RVVjE;C z#IwW}(&^s;e^WI@7qYjnvR|U=Uni(3OXv8h8oN@-#n@)59Hf6HO+ZwV%+1X=X0sjrD2NT;BPlJL2U#NGqsoIGyUNX&C2uHs*IicBFZE zh{kHg!|>$c3&F9D1@VamaSQn@j--bOd44L-$-Q_w_RllAlnb(%(uLU?9O=@!Yy*YG z2ZaUFvPE=72?vrjh$K$x1{HxtiG@Wej%50`g_J*v+KdbQ^oj|*i~Adkn>55m5Q}MT zHGd`+Cn55VOY2YryN(VhqUf+WUkeT;X0Qc9?ET(c6@sWK^3KsddU;;<5jypjcSU%}?Y%;8jp z*@O#8tojsH$rn`RjabcyAt7E41*|&)(t0vLe(xOEj##ZSSp7bTNlCLtqX|mQiAlYw zMrE-E>bypGvHA->lfGuHf>Z51Sq;N!tp$Fa)yq25#ac<;I(zy$8o{oa!^>(HRBtWg6y!uG$qOB=*%0g05QE>aNmdiT*brCLu-ws*%G;Pe z$e797n4;M@W7U{{-%xnSP`ucfaNjsgR>N-5RG-w;7}O+CR9>A#DcRK2QPk9;ng6qi zqn)>TAPJYjvDqN1d4Rro=%xF}OZ-~=mI-{^Va=94d{J@tmU+k`uHaw`oo_X#MeANt z>p@VfnholvOe^_L%OUU2gC=Rk?WWV0xJoiVADp1uz2$q7enwRMeB}KJxo?HiYCY3z zJ9KKhNoouJLyIxB+Fv`jV`){J=vSg1VWJ1O1DlO>#Y!0$+dutoCr$34DyF4L?jX_9 zpnqr4A*=~cOE+YneV+I_+i7HLd z8<{O2rVH)Z-0Qs5>*S0_VA>lr(dnwy=YrHn$f>O-_bBdLe%BYO)fb-J z7s=Nbtkv(D+}|MDpFGqX$5)(sgoVxk{S1Jc2MYKGavr$(hXyK}2g(@aEBFTMwFbXg z4b<}uHXbq7Ee#ew3>tO}cE}EP4au`E{RaSkUVYR%rZqguFpO0*G}Amh7fgxXJiN3t zd^*v&W;(pVH?p8LGV44df5ymt3I#ylGrrN^LnFro62D|e?-)j}mMBh|M?sHJkIrvz z2*&RD##BCx!O4xn^HV^Y$Ih3=G<`cG66j~@up;)3F1O_LIBN`GRf02$*n!f5i-h0IK_KBnUEvEO)@1( z2rWveA(S#D+%nbvbxQtm>V1o<9RD=WBV~kE{RtAZ&f_xx{!}s@@7$~n_+*f0KA24l zM?-&moM9@T!M2*QV4SgfWV+FsHFBB75}9@6pK(rMHY))E=-1a}&WCW$(`?FrdCsq7 z4ryZ~lz$!(H2;!pK6-gBHbm(rc|Ngao@IJI^>HqpkR+aeAwYWpWVMj5Jzwa;lDWJ9 ztSq{2U&xnRWJX^s30bTG_D2sdO7PBA@-Max6V>uBbRQG-9?$nL6Ah-!51TEuhAfQ_ z*LN^3PMa+U^DoV(kWWH}0shOnioCq8O?biwwU@GT(6X|xy|NQBdPKN-c)Sw1ICJK* zN-nfIX}NMkxOykYcDlTJ^td|Ez6w>k0+UJr=eo9+vL=qchP1MV@`V3#WDP@p9hGPu z`vm`F=o$Tz5N!~*uD6V@leun?$Zs@%-k=HHpi5=HS=wNH+Nf^dU?JLI6Tk;BFnQ|c zHrgg%=%#>qixANkzra?0#inrRR-xjS_y|}wbxYoSOYu#ocnkPr>b6Gfwz|%C?r%o8 zw(T#i+d4XUx&k{!t>CXKEe9Ao-`?z)pfn3_?R=Ntv24XP)Y-Ll-A#ztbzIqYUfH!2 z-E}M7@epY9!qC}scinT2+6y$_3q~OhE#3RypyOH~JIwo!?C@W73~*zB9zS#AeGp{! z8NmVFZ6G83d;kC$;J|gyr^OKIG0<~x7&rnUCO}^J?*Wl~juHa}ZGa~OY2v>m8Gy(T zKvD((WNOeKg;^LNDf^Qw9tQw2K#!l}zyL9}`vZz=|8Qe9$a9)l;!l*A8Ug|sGLS3= zLd1V0WdJS)&@sS}0d(vHaRM0fUv&H&9Hs{SJ3IW3oAK|r|MC_1uc2cMSP+iXUp?^a zo3=`z^vx(d@XvZ+L$L^2FT@WBReLgNlK)K)ObbOQZL=qx^)bu%A9~;@`4Z`?tq;Xw zorQn(zzV&wDKFO;7P2hP|LTD~to9>ooH%z@0Ye$Rjwx%oZlU)}H(l9=XFV`1k1GS4 z)%wtL>HFA*)i5(s`)}zxF;^i;uH^1d>6<#3v1#kog0Ia>VtGEcUn}Hp&}mxD4d=VA zVdRjC3_uS&SMqLkq~%_1zoozsLhQEO1Q^O(JmVNs`ED;xHwS;!KmBmJp5HwLO5dMd zMy}V@bb!)#->O>}ERC)Wpa&*#gh$L>^8`xY8P;eM>>2LQ*ks4Ch=hC+kX)JrD z6Lsw#nI3KAfHTtI+zRY8+n-M>xS4c6)eJ*{6e50j|6ZQlQWfuXoQ_=bp{y^zlI>+F>Y3+0A`wixHqS*@I19ms& zFqF25#NErVJCQO>dq;M#mk@|f*Pb1%YD}9GW^ng4o95ACKQGppt}rG!b&EDXKeVtg zA}8?&U13@&gzhl3{`Ubu3Mqu#Wt zN8H5BZ89?*D1F;D9oMXl#Ff--S>c~F?1yNYH|*6OrZgTp9-cIhwd0pHTA0fw^j4%Dii@=g>9Q|3S~TWRKQY`ft3E`0o>-+j??MQ!~wdBrRP z6m`k*{q()bfT2txuA+ctw^(SH?+~_Xg#MbLT2m03|9ni+??d%CHTCh2Z=6j7)dLD@ z$X};g<8mpSL$u}8)$MSrBBXTXEPp=%UQiwZ#F2s-#*=J1^wdRTZ=1uy4iJ0eY!iW3%k8Pje85(zL*_- zdJNw!bGvysOxxkW_JqPab%$ru1tI&@!|l%@^`o)-7-%9nmCTke#kNJW#ow zVy%EtB!kKh&)tA7qJY_kPK92-1#ltAZ;yMJ8w9SCN#N;3z8pF5p zxHDvir>?&BRSvc{ zhFUOGM7F=GN=H66Z1QooED>fWg^Cs`OOMa`VsRv)aD`UpK$^DTS`gms+5MZGy8eH1-G-2wS*rD*94n zKrgfMlxo|`11@)`71F(SP^rQhDfj(gqh8A)GE5<$z#vE&> zK$0=X04<=io_5fURAg-xN$Fk9RjO(SU1|&s2q>}pbB$OA+6`$D?zNTeE)6Pkw}ET# ze)kzxxj-QtS!gK$d}E#e9Sz>$e<7d=m(Wo_9Vmp z^3~a^Z2IS_?xm=?vKbg_-(KO6jCoxcr5MT`YV>~V^Ygy^y7XYo)~PsCgK|~8*(EX0 zqnp5@9b#w~u$!%}GB>6QuDInI_t?W@%`&ScQfOW>cUtWEbZ1Fi#E6;@iN8oTV_V$t zcx?L}TUKyqOL!<{dCY$<)#M_-X&ITyc$Rf+wsokIIT18%u4yeaXV=tnp(0>@w}Oc`k%W)1{lcD2c;O_X&Mk6Q-kjNznO^;nn-ARM%&P!WSV~B1+2Jh93uFI=+GFQ^ z1ZV%SfQ;(UqL5mGm*4y?Ezw~bukC_;y}6oD%DS32AoUoQE0NL_b&f-KI;mtAMLewo zHGQlqDf^h}SExP7>edJz&gI%?8t+mk$o<+Y7svo|I%*;MDoKwTpJo#ZR0e*PyPZo7 z)iLd-83E$^FU0PKHG-92ZHOO0doBtax({j?x1!1+F}#7wLhBe%$T(0e-KKcD{GPkE z`FU20oI((6ckmp=yBSbioi*aPC7}eWYOhJ1p{l002;v+V=_3>hyccS{-5jUK-L5)^ zux*i#$78Px4`3+EcMwCj+0aM574>Z6{6q++uNY^o{zGUzi>rp5Ly1eE*GCH_T`HB` z5u)meFRU$-$1Q^Dtxw}ksN}J&s)@|x3O{bi=JQo-=i5n)Shp&;21B5xiUm4~g$%?I z>?Hy#svw%{OCyPa>F<@d<@Ht4m&eB!3`zeK7>Bw`Wyuw1tuX!Z6+Fj6CKpSUA1yQo zLYH)?kD9(3)GjsJWj09HI*>5OBdE`x=*$uZO|sq&RRwJ4k_B;EDq-jG~IW>av0H9T+yQH6g_oe{Nd4Jl$L!n zI`;5TZv&t{6o8lYyz}g7$gs9qtio9PMSoLXr4fgGLzBs7QfsFfO zVIxctEM;44?JT+DY#icH9AY>+;#{R@c^e``b7aeGhMC7@Qw%w8!F z32DJb`<;D^v!7>TDTqt^MyRS@%kNGoNt(Ep90x z27(LbbVwl-@_F+ynaD!~wlQ%jFP-iH8i_94f!Q&l54AYnuJ_tliQ7j{F9mr&3O$|i zQHp$JKLg!8ij*#%I!cuAb7nz6JWZj8)m8R;yc{u4S($xQw42bGcUkAuYFv2f(Bz>T z@KJ&bz%LdDM&!tCK+C_)kkyb|!p^Zk%&8ks#~%-=?v9RnHwF##L>cs_q zoBk{UJhVcM;DE-MCJQ)BV+tPe6dz*+S?sCDsqCffy}xP>_7NgE#vX~=`~ z2jZeC3xmixN)OP=>A+!n>73*+HHdj~Un2A7is0H+uPM|L3Nkk8lLj4Q{P8Hz8@OuD z{b(pKu(@eR3+28$mRK26P|>EoYA>0|b!wgoU5`o=>J0ZAV5DWG4apIKK0uq3;=+|I zxVX!f^R&M?K)s_wRk&1F-zuP6E2Gp+@jeLHab&Th@tVrW#Mfq=`($D1jb1iqrE#=1f?{ZK7WU&feJtuUcO311_HgI4EfS9(>OsFD)o z6+XgKxo(}8HXzXz<8AMVb{11GZeRQ6o?<~dEULapE@<%JYT3kqC+};O>M(YlT2{MU7L$JRjI{)skQ8F2 zz%f^Y6AA=n+PpiC8@31s~CjKn*nrOVoOsz*4b-<({6Ok zZaxEDom6cMRg5v?RN;@~`%$?ahoCcchZ2U?3PI7IuwCNdR$=fWM!~YuAdj1gp%X{8 zGfdt60lx+%qf_9tq&FKZaD=Jv*M)rFAxhARC!w9ai|L9Fx+=oBj{~vJw7(%>f9Kpi znAF`{EyY35_LzjjK+yBTu-nMA{d7i3MHY1>3EPq&+}gCq#vOx*M2sFhQ$syXVyTi-tQe!+|&k6L)az>_bg79eYLv@~+EG~z&J z9&0iZ`&lWSs_R$s=m`=Ht>3rq=5D{=jg0Ky4vRgOh5AVcmd zd%A}GuErUVM-x4*OAI5!kY2w%RQJu}#B83tUz*%}n9L%8ntF+K90Rg?Z7udV#uG9{ zPC{?=L5OyL>MY1dQdmpF$cvM(N8j{|TFBI^$Z;&vnH&>i5_NUcNB@(UN^`TBdAphO zs)>(sHYWVTY!zCe4&_repsg724?>GR3Omje5XYeAeC+H{)gbr#`B<0vc(eH#kqNjl z5%T6w_CK0p9AvGiU8?x>K4|k`CeIg#%qJmxqM-Vxy4d-pSnK78bjo<=JnDMgs1#`H z1}rUfq(C2Mf=_FvN!KK3L{q|@bW8}Gi$(Q`m}a>jJ35yaF3xP9d==ronQlRBLegyp zT4LKD-nG+OtURORkQIu_FV&Z}gl6w{T2?MnR-|JX&b3!BT~_-dfdui2qww-W3C`2w z>QxFhl)#$5;u@Um3SucefR10K(xaKLVF=IdDo4iFjEHQzF5-T4Y^v`61D zCE7JlrM4j2HF+Z8;@?fk;uhE4H4WW0E8dOF+Hp1CaW9?qgt(&No@4LO9u78j>vKJppg&PW8DR5Y= zb6E9s5dLMWw)L$MvW$lyXoBh7#^F|(Gt-K=h|_0WO^i$(x-4gp`aBgVBJnZZ!!9lPe)aLA(j0?`BaOVhW}FV_l@gs zp0gu{)88b-XJoI=2q0ucf@d_uXOzFlsMF49f1Wi(9>0P7I%9GpV-!3m`*coab`f;vM8%=+`gtpBG|b7er@Avc#9{YZru2mr6e`RNP2a-7e+As1S7C zYmQz@{JJb0Ssg`zHcGoP{(1E+?Q$UU*p&F%ao^$!S%t=qL_+BHh$wX@*0 z>vs}&;u|x;8`w$)J`(8Q)tgYrO-R^Hz^ivbuWn<1-9##o1iIZOzlBZ+V~k$Cjf332 zK)=g;b({T@ILYlUEbZ)sNV|GaPeiSv5(-Y*I` zx$g)Y?s|paf^@f#21-R zz#B(#Lo^VJQKu_jaZ@~$klz&sw=xq1qLfP&O;FmFCW6v#^}bcwl1*ecTj@$r-jz?~ zchR9}P}+MR%N)}2kf5@!lq;7a;Da~)<$dOdfLgx94+pBH+AXfI_^PxYioPm;88%iq z(x^3CZuNN?Q>@+y8p{>KQ~RaU>hk!+$W>>qPK1O+ES`MBq}vlhDCirke7aWXgY`+A zK>gfcB!wR%S=J%{>rlL4ns|!FJ*Ci(FgXt1z+b6!pi^Js>w--q%H&>f$!)X!_WoPrVrpcdv#E?zL z+2hZHy=k8y@9r{>dsp5HfiDlkDk1jxOv13k^cLmNZ#9`j5QXW@7uHufU3Bx%mUco%*i zK8qA(6x~@NMyfZ9G;M}fr8GSy{dhlZUGSOo+n>pA2gmCv&S98FMXl+WeKs;=-%NV5 zj`$`LOb*j-cd;sr&FJ@!@Ls~O$??ozC=UoNyn?kJ6L^_}t|(EYqLRab>vEdtS>$g%C#qUDupA;f z$7h$*x?yq_A2ow~u+$9^wv?3&6kKXGZlhCb)lKU7UoDy{ZgVXCYJQx7u^ep)UHU%$ zHIDnMlsl)6!){2Owv!irEy(dY>sh9oVc^7b60rVE?>Y@X`WIU8C(E99^w8%ba4}7{dy6ro{+WP<5We)0y{X(C zO@HS#T%2H}AD5|Iq%*ugwLkIyu=iF`ZN`naW`b)8#oe_~v^d4x-L<&8ySqCSin~)> zi%W5LDei8CO#1)MIcqLv&di*PxjOGnlC^U6TS?Z+`|M|LGlfDsxsK-ZH8LaQ=H8B$ z%dIZQe+2B_dV|szVDR42dV4sHN+O}3-sXxt(`dc*?#kn|zm)C_CQ<12(LGV`kLLW> zo)fp}8mw{o`ma65zhFzY$MYQw*u^2SxxEk93qYWj+zcqjTFwgsi9ZnrXK_pBh2WZL z5`@NSmF0$!h9TgG2R?&-Mbeg(kw=j?9~Br=&YJE>T=0TQ? zv`dMaGd`{Uxfb@S-?HWR>7wl* zQRj2>QS&&2fCc@BfHD2NJJ5j;u#;0JyT3!Pm%U9a*}wV_XsVch!Ejb(^&v~-)b(S= z9~Db~G|v$pB-DYcA3}C#xG^RP=7ZE8%eY?`QHST;jC*6rgdnmnLE3Y^^jERzvhJPT z{^o`Mtv)4y!+1ASSnV@AAqI}Qo6|+#V4qaf_+2zh&BFg>THU=XWr8#WLcmO-&+k_x z1N9zOzZIT8$Xhl3epqwa!faVLU8;VRb>9PTJZuKI&$nzD!P~Wp2V?j>?P8Bk^z9`` zeCGZWqj5pKNQKVwe2}Db(Iyh-{Q2du=o4o9Q8uLES*Wyd6H z_9B9SpqL*pG`M|m7w3VP6F*=W%Q#W26oUz?vf%|J`#`g{A(ZPs5I4epVG28hGKg-2 zFa`Vn4P<@^AzOus=qKJ(3^(6{5U_9r(OL)rqy0v ze5@8tF$Q7AC|#67oIJQ8W;@3i$xnrN9c4d&t?02CGrRcJ2xOce0CB|0`M`$}2mwos z_dv-4fF&gb$VcJ=V+x> zesxNr_+(0}lqrpey`5SYQ_NsADxHYvkk*=FN<^V0)4k4`-n&jk?TyE#0mYU+P_@hi z8Cx+?w#l4`p(?UCmW{_mMsR~{^t6;*q6X+(Aqe?+}UeIJ~8kFe4=+OfVZWPFcnsgJgWzy9uc7mjR6w<;)_&ddu7qD zq!Fy_{b{ji3$*bQ(}z;r*?n>_yJ%Ek1$(_^7RsSWmsMc?&ie_SA1WdPl)_MYy~S-S zl<|61i+HdqOj7C9khka7@qSb;c9d`)N-wp~x@y{`7+-W}1*}WexyRprg6fp$uk)>~ zj&C&5+IUgtTvSZyNv_nR@m_-Q#LTG+vDC*)=;;0!UlLMmBuv;bJS@drVG5gv`Wz9! zzbfC5Qd}jS_)#VUEX?c^mRbR22Gz$Ov;a_Ex3nif=3O3ItSK!ZeIljR&bxCgRSZ2n zjPYI{6OIboRJkxhpI*=9bFT=N13;gR1URJG=P}DcYL6>7gk85#GqxF?fdq}ZsI;WsFzP_myntdl+jBGt0(~duZH+X3iCkDb$}0~ z$K~eU#sLeU6)5NdxvLbxx$z{8|DptqznvGxExXOL!Qo3qJQC@ev>QAK4yvLV&6eY^j!``W?Ds)2Hth_&oxM*KsDV;*tZ9!apG!P<4=`W^=j#9LCC_P^ z^9HYy+i~<-;w9*l^v~uYYq^Ss#3rbpwifMenB~PvPO9_1u1p^!Wz%&oO20mj<8t3O z81P$1VSeoWj?LUO{AR<5%GsGiE$J7Dif)UuO?npR0JL~Ahz=ug79?%y*5fZGpdsB* z-Q-Z&-AG`Y15N6lKhTV}9ftA#-8uMh*@MA&>5itev#w7^PA2UTat9eC74#S;a{C>g zy}ly_{#*gH$mj@W`#~m}I#QwbHk8O#v;=ibAuIMK7MAz-Fg@mx7)!S=$iW9diPb9N z)O!~;O}O?^sZn^nRYLC3Cr<$0D*$d4L@F`8&&0{IK+@(|^oZBTg$9^&b~umWoIij~ z^b%IL8Lkldp7M2yXCU;?J?SL}8TVJ7=D7QvfnCP+p1;2B&sr zfKFQspl7T*Q{0|uFrW?H=Z9Hdhy6E~074}mtDJrh&4CC{=CE9rRu9ku2?2N@0FDFj zIMo3eL4_M&{r9IAK6+rRsT;3K;IDKF3NsPAKY@>r;$I^`795sv4t{o`K>^|-bRNK4 zcOTe3mxv~VqDK%esTZ2069OfSbxWx3awzvl6EKDI7jq9BS2JjU&<9Sy$&&t;dBA3o zUjU_8I!!QMpp6BV8?y?7_Hw9CYbf`w4>eWTHK(jYszVKqL5Hbf+pQlisTdBJ+0A5F zMp-gE-wg1Q9Imw-o;Bje^wA(YG#uJPet1YJEW#I-6c|wkIQ;^MJ_?H+0mMrN!vz2% z23(T40*Q8XP>R^RT0D0UbXCoVuFmJ?~LXsyx;62URvg^j8<`6>*EIeLl)k-KNX3mGNb5rs>BnTNjfuzB4#;}x@F z7cn3NsLeyk5Y|bkgv6Q;yCNI;qtvSeMz|kj#C;eI*>DL+Ewv_naK~0M!}?}`w>5L zXcBClL{O>@VFK?rmDsfi`8IJ!l0=&BL^c#WzC+1$*EZKiIF%JOBd=!=iv-AFKho++ zI?FX|=bq~?t|kbitPTsLuG6d?1)R{xLDd`3Xkt|D64X0oW+Z23Wd^}>SW97|qdl0Q z;2M-g23DI!Zc&JZJ?q>L0K5JK~HxzSciZ^?L%(!;}z)Bm0Y;q z3{u4u(=T~qh};jJDo>d#F0tu zA2UvDjzjEh5K{J5aB=-}W^GgK#Zqbt0=lwEk@3xUX$lz161x-fI=p}atps3C^b#=7u78hGiy9Rd!{ET*s+AntH`RI)ds0F1;13)6XeX} z^|BHY9x3TjVOO6LE9S}6Kje~W63!hK7_!6 zW~A~>q}*Mvx*f0NMck@B@n8*)>J>__O%XOV(?Ue%B)VxG_-`V&nL2Ls=FulfIDOx{ zcD}=Qlptg`h#ru)BUt2H{J3(HaC;1sFXlA@i-^2c7;Y6B@|FQso_tq$FuGOHDHzxML(M%KJbol*q}ho!b~ra8B{c5hYFn6!2&@4XIg0RDnmU!5D6HZnz3V{6 zw*1zK`MCb_yb->crrar6_g~UTL2-$5RbL29*fG?8uNXn)n;Ax<)9ezUV3gxfz?k#a zAO>Z_qnmI`WvSD&IapgNyO@dZI~5$-BMPceuNda0#{S{@d4d^2aGgdS-Kt;E8jW0Y zK<1tsl?tEVmZVkM!0Va~YtcWLc+3K-ei*j!eRA^meL zAzBmA9i@=CByh5XroKguQuLSw(=5}U;2LB!9 zp2%cf>6j4ncGUHVIx{)JibHn+_QP7NV#Sfnx?|aEf*8IoYXYFMj>QbC zPZCo(@ALblGkXv(%KBBG`vyc=@c{}-@^J-S1098#u$rCgu;Uh9Ff#w*mT7@Kt*(FY+wpRG$Wl9>k~4PZewZd z?g(?z%E#iS>f-u=f0h#bozm_hvot4$h-_Lc1|zGz{55Biy{k;xY3@66)|bKb6o?je zq_poollY2WG%>TQ%z(x}ubh-s@aSDE71lpLkN;@0$pt!#iguK8m&98T;-3?#4p8~{ zm3*QA<}G+0UP;M!vDPD1hH}>SHNFZzA6#EWcqyKH>S#&X=ovMy^W z>iQgq(lRz#ciKj${zsVjjg>f}m3fYp%_`8yDhQLYD#aI_d11b$MI`!srOvmYsI)U* zt&s<>shBau!fjR6HlUIbsB}LOCHI?9YkkOfeTYBTSr6S)DjUQMN=RLS>YJwbg@~vw zNRhJ>;_D+D8>8TJQ{owkCOp4uzExL?U!cG?9~ie)BGLAtI$^cv+E=3$3`B@SGmO5jp+;w7y$7${Q4SKQ!v&sHo~JszqZK- zqMZ>`TF*9Kzu{zz#AQ5mbBeTBc9-t(ZwthJ>k-BlmZ^c1#IE2|bWtw1uGmSU_uWCF zyBEvd=3yigIS?kSM3{ykQ_hcIh&FT+bO~E~@#2Sp zDzAvtb9MH4jPLpijCuVL?FzF813OOvm+88+VJ}jZLA)1=+W&?&?}o!so5rOx1`!Jod#;I+#C zH81J4o#cgm>Q&G9t9Sr31bmI;{T(Lx`-=&Kvi9$E-rwKxbWos0 zlE}7T5G*X5;Qx$(DgTj7qM|?oBtQsQ8lzq}gR!ESQ1btYfW5=;pzq5Rh#9pDW~m;} z776_$U}`6-6>8PegjTARGvu;epS$qY&omoMf9Gywx}L74>GgDr5olcKw!5Cgsg0{M z0b1<4Hem@huMB?$LiXL(mY9}*{Ucz6&j&^W+E`3>^#4V`cvWh2n?_J)i{<-pH$fM*mJ0AT0zIG6+yKk{ymS-@W z+vVtT>{F?;M6Cb!sbResCo@t1&FkT06hgpA?A>e5&l}Sr1nfQWAhEEAN$?$xvQ9An z2!l}&h-y;T2laM}DhRvgTqlgY7tG9oNTYixj3zMfxqmv!BVQClL3BnGq+#O7h5m_x zMGQ~Dre2&t%NxBO*F5K1oWwtdVYtif4~rOSyyz@5OeA@OBz|%T>)29S$fy)v@c^q# zWyrjBIBqu#n=DJ;e1k08VPOLm)36DfY$aU4tt_|JpQP$9YyV2P5C7c$;#q3Pm|}UQ zY*LJe@J)I}p$+yXB?&rV)lXtLZx8~;WJ;@C=%$&kq96dfpdu^Lr3x8dLjAI!AZ7Yf zNhMNPO-)Uw_~(>{L6q8}qV@j$gpS^r+LD?#752En0w%|TaeC;DW|~_9nYLwVvAVWd zE$r+{>W}K?HOqR~C2?D|-9;Vyelhn!M-}>|b*s71r789Wm&bLFOH&6uz-sl9whx#{ zaf`^1wAC;e?K7@n=sgCmQ8=1Dm+=$6U#oE>6L$P=6wy%Y9_Y~5Z7-akx{W(ljHA^g zH4@_qm~IfpeUPqE!rcOy%ELRza(6pF$ZCkL$b;Qa3UxDjsP@_Z=K z^FDn!4EBBFJ~RN2JPH8R6#||q4ELdEdtvCO1K{rrpz&II-=#oKm;-sRG@AU1XfD&i zBry5#Us}0*iAY0eV0IADG=wpmr=jWD36b?YgmIDN!`NhvP+#3d2%{9kefEsd44yyfU2PEb2+{5! z?P~wfW7)srHHd2WU-PK|X>ip)v;(p5{>!$5fJO*z{2#CfLL4D(9fUOg*WgDzWZwfK z+(G!_e~2T*)ce=c#`#aggCItTfA>$IgQ#|c|K--v{PXM}5D{Y7{TuXvG`vCRqXrnl zCjY@miT`r(+`)hnFoZZlYTy1tA0hJH|2FUb$NB&7C;w|F@c)iGlEQuf2>!>stN1&U z|NsBo>c#)Zxm8NrYRJDxlDKU5%On9&T7${XXQ$oiLYZNkzpZ+Q%h?JL^R8p_WH=dO z-d%QeKHn<$Jz@(G^S(S@?H#HzW&3)c-`t*Vq0PT6yk1<>YzM#)i*8vy0Lyd(Q8-$+ z0&}R!e*9bQAPz~8LiiC1LKg&tlZJ)u7z#`q?n1buhj9d|=g4k!TI_NrggYYa#d1X* zZ7EVM9{uBvqZu(S_eT`5|G1-pXqM@pM2^pN`zgj>q;OLtl_A_wNy~BpjW>kuAj2eT zbU)LAdf(Ks=56^K)qW+0xfp5XkaT%qL)k$uCjVOI-X*0fgMHa-oE3a(IMLgAN zkk>w~QQbVzscF2Sw@K>Gx`VF!{-M$)ZjcG_F!X44fywp4AW-Dubc0L08djRkZ%)PJJG5S5wGz@ip zDBj@^^Ny3@+67G{=V|~KL!*8W+5F7Wj=)*=stzjU@3r?^+K-zthL+BT1}bESo4$u! z(U5Vj7QWlbs$$4$2Om6R)|9{=!`)0Kx?aJjDXQ3tbf&nN$0KhV)w{v^H zH-aBfu$qE6M0K8?w_8v&PrXPVLVO{mZT(5+g2*>8!FZ}a2Dpv{(RjlA$S`+edo_g1 z5z*D_bzF+kNG0R*CJ*QFBM_vd(%wpEnXqv zqvY_HUB@pD>xG1`BLf0Z%JD&>6l5)|f#UcdT_a?R@c0);5cwLY&)EK(dDmd*+DR$L zdOWJ^q#PScC`l{OFrXUsG5LYGDf{cHi4AMViYxR39$-Uxu2a19QQ@Ikrk@;NQLE- ze=0P8MyMB`%+`^cRY@{h%kz{e#d$20{!}?u-_oXQPHLiX@g>y`tXQ9?giP8r35%-F)4-ny5X8^`OJ^;eRY(^o>nf+s3xcAR; zNpM9O5$ixh27iDV){jvz_;<54yDlM~xsEm~+;$U-tgW2J_<~FuHW_g*kqu(P3PM7C zGh*vGqElt-22XkuJZ&L7KvTS~f~hzarPgCO8#E$6+(~R{V&`~BCP#nK7}c0>OEJ9$ z{x0a4HSm4+9c$~%%{}=@kHBMCX8S5F{pU*{12lF_Vjs0&S9++OGk9s1@W6reIkwlw z^>Op)Kt7ozoAMq`cN;4Cpqxj@Q5bsy5GDBp08>yH$&`%VF?s;GzDj;z>)lgGN{C_S z5OlS)4p>R6H(^L4ij|Vm_YMp zHi*g{$su)&PANZw{b02Mb2KIbsEpeZbi(p2@?ZCv*#N&k#(s*1mpc;PqaB4pWEOE4 zHrrsi`URJGi*%GD1A}bhNeM$L05)$=!G4(w`N|%gjGy#-EUo+fzQGh8>NuP*om|6& zECz$r;Fq|kRW97m8k}QUsEn+cMtR~Qo#PFF;`Z{|Un0~EZB}@$UJ*g;UMED*q@eW& zg!auZ@`zUgfAN1Tz>~TCM0T=4I`UW{a%_f1U{zql=Cx~^Y|dY>WEDdTi6K5|hG*~& z2!8U2%$}$hw9ve8etad3h>K`ndE<4rR)(c#*6rNqKk{Go?o&0>m09y1tK5a`V~M*1 zbOoKl>y}N9!OpwCx+MEa1qgSIo7V>Dh;LP99QyLURM|6~lgG`m&hWkwAt^H7B(1TI zWQcnrs$HA`RBxiVIDY0OqS_11b?(+QTvcHJroU{mWQfpsE%(Q|2r`*`PvOw&tMogs z{Pw1bQbq=0n}E^x&jU!3tjpn_1M1OyR#+;p^;$;NMnAKhLtP2B{f=wOoLg5z8F3gd z=C|ud4v1mU7o5gdqRGB5ZZyp9k7n-E}u({jqn#s3%;r~Xuyx_AR8eW33}@^Bswy*`3)&=EUZmL8Lqkg?Lv;;0e*|6yxgGr0wmt` zyDa@ex9^LP5wO!DJmBtIY3iRB>|apoKi4SLg5!rQ>A~y@DxhKmKxiGA4|2lSSoVO6 zLrGQV0HoHSwv_3cX<2p-3_qYR8Y5)o=Nbyx0O%Ru)BT5osj}7+#Fpdx+A;jwX3x z`DqdTU`DLeY}i!{V8LSRl?42X2+=$A?=@i!IwZ3$MVH5nSirH3Ee&rz@?DZ7t2Xy# zC;}x*goU?&INhQV^L>B`U%A}kP+43~aGWDFgAJGU7a!x6u;cS0qOoVZUWOt9%o44_ ze0htd-dX{2@UcCq0BLv;l5oQ;lLV+lhnn;lBy^z2P^^SXY;KvzpasY*#Q_Jr6VuS* zK#J&6@}%8p0jl%>AqDXEibY=`Bw9X^uO3>ZYlw4MqUX0LW;G>~Jo`#N@j5+ed=B@* zO#q2lCX1I_hp%eYAJwX`T z4g$k$JLE7%?imr88IMiz(bzy13)7h+KeuPHmXxm~xarhl>Bv~B6sd`@^$tdnpxab& z$#U+n%#1S6jOdj#XrRruI%`s-aSOK7+XGkYV-P~ValWS=i<>vEN=7+ej;MtF1*N9} zZsw)Cgc@vwOp7Sxp%a`0AYMg`sMQBp=ajskiBKQdacpQh@GV4(R~W2l_eU%Dpqz&1 zQJ`ZKG|rtNsL47d<#`clG$G|x_%qtNRkSzsI}{+i64P(P6QFl1poyJZVwsDeojWs< z^(++F-D=n>5{SbgAYt% zas{KTW-WcmK2**?^eQ|kNx^f6EOuNq855fsFi2687rKaU98Ntc9-I3CqV+~#{Nxm=nh3%6fA^h1q zd?gY+O-JJ<%KoBjP{c?fiQ&8cfZBly(sfN@CknOmL6Vnyc ziMTJ|v6vk3YrndmcZpOQJsTo7I)keBYI*VQaXAu_@?J)EX9gdlyY#L_aw$>}=ypFOWt?aG@LkgA3@%iiW9|`buBMyylHOl#Wl=$R<)d!9!(8>G3rh#CX)G zp(;Ku?lAly6|U9fUSidG;u1Gd&^XrAi(ofiSa7oFrTVEk&*NuViyzdq&h0Y2?rC}O zI7yIsHsW=SAgxnClvQ?0MICN2cn{h|LyG1lWzwx-!qoxxS^!x>!AqxjdpT%2!-OcU z_*FThY`MMWwLQFpq~0|J`??8=IW1KBr_lk~*KKGK^CE0(?>TroD4`Bp%$S%;P~mYl zUVnS-YiBhix}!%&2a5pM$<@io2}J>@m)23x zQqM=AMIYyFB;MeFAa83DPE%oya&5ISdjb%qRHvil`P9^92MJbyshnFhM1w(3Xxv@ID*xpf;>5Z1#Shy5JM^K&MEhc?{bL4~azl5qr^1A<~S=> zqv-0nxh9w{@h*u7;AOw`aD1kSKmRVb~SEz){o=8$7E2mP$J4VJKr_g8Cbt)I0xf zV%=TZ<~x7}-jd%YF5syI45usqM~|j*i7LaSD}0XWMQhfYKInWwI!R^nz;Ih#qz1l_ zi6;*s-}#Q$ZPYm?6}1vrry^6=h=xwszHn{Vu(wUjAw=tRoj6WFg8zr6u;7@-5WK?fp*-*@&=5xaZBLx zeG=CKHD#5lVRc0$e@?pn!AM9bqzYF1IwkjE-+_3*6RIfS`_>(I2IB|xrpiR48Ub&4 zklBZD@!yrj=kzo}rf@D}{`C(#}=p5KBer;)k`w8+v{65zbDg1bNN_$u_Im^nRIq;tS z)A?-V!v&Ud`bQ;59!Hk6+xIxaW*=J~`C-mjTTAHJ9Xc_NFvV~5n{o%kh1ozOuJh4x z?pYdCS%1}K)4b|v@a44UC810 z=`yMgjGyw5v-hyTXg;)baV>u?$54V4N)JLI>zZZUN4ZymNiO5Wv4IHMCtYzW$K=OF znFJY|E1T{j;a#HO%padYJm=ALHd2cy=K}sGl<`{(v*Kj;ODv5$h{f@P1DB?#>ZMrH ze~%{}I~0X{#=o>}8Y(D#t}ceJquF`aKw0x-;Ico=7T((`_%@Tn`^O!HSaTre9o1MYggb`d-5Lr3S@Bp6 z6G;04q2YX9=J9@P_ab6IArxgM90mde$ZqB{1&FEaPVCXyySna@&(eo|{qA)jiOKvZRX0o4L>zgptw5NO?)jG4?e z3{EWm(V0x;_s`XAJ=;L^ETopSN(F3}17VnSK?G!A`CkdB$f5{t`G%Fv=r_9S%e{M9 zKVl(<#

z0Xe6$Tej|tOQRr$<`%C?ui*NsFF8YmkWaueGStz)Xn@huMa$By4bOVZ zR53gzEo}rbjqCf{+c(`BZXnR(15fL_2ym{HOk zRW@_K>xzWu<$-xHzbsjh)K%*s;1AhB@BoQDp%}-0fFRfzS)8w`;07PRfvgCH z+>ss@--kKq6?23|nvO17NqoYhiY1t?<;;FKmr^(27fB+DGI{P;utGjL9!~@Hg>gsi z4=N(rAAK}!5c4jxqREMo!Frxeaqq|Ku?!mc!(c5bw4$JqPzj7qVo=Nl2Ersa>UO!% z49tF$O2pGyV>N@yP1F2nuBsr7G~!jH5*(5?TmEuV%pGan4gDNV^_fo+P0j`Kn5t2@ z8p6EdcY;(^W9O!;)*ysp5RK+H9cdMyne8R1I6+rzNg(d4(-MM*aH_^unpnEZw|H1O z1mew5hiultVxF;p(x?GRK@*{@wl{8=V~BDZxn%KE{6t}z0d zsW$A7>b3^#2is{_93*4bz+_-pMPDg6?{j_#9IRKYdG&Q?=0=WduDkV#PaLvEC>n)M zehJAO;wlV`m5vpp$_`DW{_=ol_mjkShkXzDg5a_`P@ncZ{6QO?rV7{{&(ueP({%bR z7|?msLpIFk{F{?W-TpTNyf4foos5&qoI<+njUpXdm(%|tMO9S%wN)H6O9c+ltMi*LXrK$ zZLUWeqcOUN@&F1}wS^dypLq02k}S?R7cX;zSj;!}UHqSgU%3}&f^bkq33fchC|Tp< z++hAdU1tpQtD{Gep_q^-&JF#<6@rZqF`=YFloC^)O`0<*(kA4Vk{7>8%7ZC(ftXoW^?32WE|4!cqD^rSlm~ni^lVew&%f_oWBmT)fi8-$nyCqsG@=HqE$%^g! zWzGSQK+tcuuaHTTyJEgntts2xxxD;&8bC|}bP)FZ4|v8S0W7c4fDf4YXkRRdthLf2 zKc_gOhFXX_lg?;m)fZx;5{rL%QH(>{rk^dRm1LutO(bT|^5-s>zQmg*@9Zt%9JG|T ze^Jh)PbuMnwUYN-Rq=mkFOwjmS2E9%1pHq*1#ox@ja8A>h}OR(0r7F=q_$Efkrvo?VB?&*PY zs|gmfc|@{aZlqqU2TvB#eW2vk8dG;`@bP7!rLfkTRK{-1G(FPe<<%w(SZu0YW3XiO z)?SSJ{IlZT#@aNxZRwYKL*roewnaPC=EGu3&$+E#XvfbDsHN6!B0DEb_4Pesjkc+3 z9OrCg-6QpM&DrmtoyIeiPaDuWR`$=$JJy7=CVM*%#q7PNc=aE|FKSLg?Y-7`w>qgB z5v~U>QI0wc=u$a*uJ-K%E)gbP-!;0R#Os3oS{vR`FZVGUTcO!78zE^d|HAZh2xGz9 zL3UsMg%5Y_2t{v%md-Um^Dq%1V`Gfj!o^Cj?-;Jfx7XUsHAGV480U+-LvXh|ECAOK z@5*PA9m6#u0S9JHOx2YmrdS!332P9KIWwV@SQ*34WK9kBG5stdZrzLr-f+Nahz?e+j$hj5g+3NCQvry}rEuk;(>L0iIw$#`Q?8@xrGx7S4K-5dnxX#jD4QErmp0$tl z^5)=$dl)X5@jO7lV|#q^y4BUkK?_Z5huh4f3L5JFAwQrC$qzv0kRi3bkn8L(5(K}# zpZ@FY9R)K&QUujtDRA4r6ageQ03HFXf$<@4_)lQq-&h;)5%SU&9N7V>-u>?vI1|7K z9)$!0{wqZg50RE3DT4px2YkR@kO%=JKLAM)K-zczr3i+=;4r{HQF-wlxc~4kOOOu! zmliPp7a{o9<%mJc0k) z`~XWpKr|2mR5nsyI2=zZ5=AK0U@`&(C|Br?{_~avzK%eedkCVpi+uji5PB}KsL2-4gO z_Iu%vEJ^f6#XQ1=c*_WBzK{EdTfu+nGLi%Gji`1)aft^>y*>yd7==+9-Di4`rdjMt z5;!g8hrfTPofV@PI^2z6&vi4fWAM}bCV{`=njXUoM@Ol}S&+IHETSx`ktEBSY3w3! zM!KJ(s?KeitZ7zGC8B_hQ=Dq3+y?QMtyZY)48ritGHsgM_A<+h%S%%27A?)g9Q3IV zbBs5S5A$yJEmzPeF|CgBBk+-q3S#tWEDS@a>5ubc)vYWY;ww0gODJ_uj!SDyz0`|x zsF6;}%fzXz?24tcPAcoHz#2u4)mdJ2k@W}kixn0NQDvpAC-hZnowFyE1^v{O45p2& z_ra);{J?qB3>5O8hGo{ZDw!$e)9R*0j943mdx@n~h2rbTGCrToYYtM)G;<5QNI@$99 zyP|%}K846++wPC_uO&x?3U=+nv9xgt!^`e_<}vZ^x1PSdces(B;lF4BUFh3@+wfjEGl@Xtb%WwK2~4DufuIlb z>Mu6fLU8g|0lZ}B8q81VAI+F)z7Pn*Z#|Z_otuV`^5t79w+bU}j)uCt=AeWo|3Y}W z3KvA#MFYD_4jkGrQ;C2IJ_h5q;=+wYQiT|!r#guOC>iWXzjKfwXpCs==$PMbVI-S%H_-o# zL>$T_Ns!v}o|rz#Qyhu0Whn<+%ol#pI+7G?=ZRfaVPOoVlQiL(3oF6+v45PWSj8$( zg|}Y}&rK`rI#$g3FrP2*J3(3bo)WNL?>ulxB2+Qc=OrAFQ(Z>Toj4t&5{c_Ms8m0~D=HcD)or zz%zbWo#nAfED_6MTD1gvd}#LOSa`Z=H9Qp!{j`~eG*=~K-XuxlQ8-{7{|FT~`Dzfj zdM3|Mi|&RtTKm^*gnZ*+kIfUZAOlo9Ab+d;G* z4Qe5^!FvRWFHjP{UhkvAkw5ChwYD}b%U(xmRcVgOmp}=cA;j3D?1W8Zkba390mXZ+ zkuRn8@#Z>22IvCg32z5rxpT!(=k+*WKU%&a z3dbT0?H3`{>Qm3JkMlZofcaHkwP3C+8WX?VYIoV%s!66fgtqfWAj8?co@gry0uqu} z(HW2h&@7^BK(^$bV2cw9b(Q8;fTedH=f*vY0=#%x@5izz0KnpCZKZDn+mXN-ZlMI^ z>2AvbJxP=X@8DD;(RP0WRC7od(_-^OV`lTI`Ji>_io(%1?H?((w}9ZO-rlL$01|A# z4ibEGGLh5tVNjAWiu)5>;PgrEE8nV}vQ;0w-*u=B-*_FhqzS>TW6jfaKN{(u7e2y3 z(U+rfoSnx?{~HlF5GyU*u-d5=@me-`#qIK~Z8dO{n)LD3`66!j?_&6JH0BRML|Sh4 zQXbLYJlJ8ep7%J2mNziEf5MB1SVSzo4>#57okth2&hC7+2_@82*m)^{A@4^N3jrJX^@x9Tp*0jO^;%g)i_7juwPL@h$QG*kBdt z!%}LXYZM0A=sYM^}zz{umr_3WBlLnV@!Dq#4!v68xcx#2 zlm9{ywH87dbr0ehrbpxJN6n^J(@KmUV_rhqy2^aXM80M(@&tr{`bu4306K1u6j0Ni zwx;elR0K^!#@^T*U{y)ORJDt14Ezx{WHNm32mj4meV|7W6c?p{qXAh24rj9$3N7HP zsANG1dWyOovSwfrl`b5sJ{zquT{;ljQ4v4UvCqvPf5sW!5j~016WAM!3yVIu#6cYq zM59SfX91#~4*?2FhBbec#{vFyMGqPHMy_eo2B-UJLEUu3Iu6}gl$IcMA6F{E{cRu= z5f}u|5^Aavs*VtF_bXIC!WJsu4)KQ;KDyLyUpRXhpcnkp2x=zGTqER)2Go-h@#yY0 z-{S0#8{l~lQl&NyUdDnqiiq$CiEN6f|MHFU#=9<6GVWeXkTQ~cU*oa`K;WpD?h%s0 z;TYHFVbu%?5JYMrC~(kBf5`r<04zzJ}i9i?`u_R5NCUrh%n4@RjrAKT)I$U$wYWSlH))ax}>zQ zK*~&g`EN<95lLtkQr9K^^mv-*M{#eoWLc(eSec+u^Y~AucAU?)CK-_r8NLOSx(HXv zPyulQeNnO3u2|w^BBshBreB3A{E;$JP#yJVO2U_xlkY8Ify2`*mP1qBNhQkDV#)Az(ZdM>)7`b4M9RFlaKFLzrF)8l{G`|exHD?- zGBT*NEWdn%H8z3~v=$4;Vk<%Kp@Gu8)rCT2P0)-GrqC_H@y}fJiq&+4U-06@m8^cw zs{KFM`-`ADx(9q0-MEvzad!wF+}+*X-Q7L7yKLNDgS)%Cy9W;*AR!#S->Eyex9Zjz zoauiJx+h)TRco?pt$yC;#m&B#(nzM1LDuH%cuk$g(U&Mq-GOK6`OpU9I_bs<>+3uK zZL~=`*MxqFXWruGFQ0>WUQ$VzmDXR0Ork(r*3wFtwgV;_P|SHP>UsQVAwM%!a<~nY z$l0_p=`S|`2wdX7aPzTrGIf*FAf1$$H-J#=V5p#im(@T)GyoAen92y!kiv)*LDy8u zVJgGgtq{Tk7E zYw1}8;f|D4ME3?@z|%eE_#XFaE4yfj2LvE9aO@!VMZ;Qr<7k1sX9+dX zmC+j+&-pJ2gM0A~X_67G5dp{#o)BC_YwM z4OLYbT}V65QRG%tW&>HV8LXRbf4Lr5i{}CdRjuDpe61mcBvj2BQAXlijRUT>kJkIL zR-I~1LnBiIf13DEk}1Ped9xs1f|V839RJZ$4C$nAewGPx0vTe^Bfn-3xf|p|c;#*e z+G=~~akrxf*?*g*&*4wGn z7fw>#uJV}D0dwARJ(Qc_g`MM zmh>e^N~o*?3Y-H|;14YtBEVB9T9Wc*zeWTmDW19iJqU!Jzr_gT8$g%i z4zDf=OC7lG8nCrVD55Zd%VMf1XR7%K2 zYdVDqI^rbl`6x?-+h)4@+=>nvo{P{~TtZTD(rCS$jQhbD@U}HeLSiEEZ%+!}1Ql5U z=3QHHC|!0ofHQFiXWd4~1LL&wXk>W7G5A^*X}}w=A4^oG0fIk7 z3}8sph~b3j_IVhtFdgk+mhEb)Pj7S}cJPbvbP*VUiti;577YV2g9tBb=xL(LmG^#( zQy*r7H!wT@jc!BFL~?CbQj3!qhsFqH+tG6Cias)5Cvn#LR!hkq!Ss0CC`|Yv!D@8tC~?1 zmhO4;7oFc9NHdAq_cKTq(ase)s2R3aRwA8w#`ZC0DT68v;ZBA4Ewz|UNtCe2T6%(O ziUlWbxm)jR+)!jMvYZbV?C5<%=;Z_0v7;ilK8J3O& zE-RBzYBlUaa7-Mg{tiy$njqSyM*e{oQvK$S-{>3W(s)T5j3iA~@S}GGo5kTfMKN7A9#fU-{Ax)GJdXJB<-o;F?tOr^*a!SS9&4i)EN8 z+O1D8Gelga)b#+!^P8}f3(zBwunt9EZgZZgcawUGxu4JzUeR|~Q{BSc;U!3yvs;Rv zS4^N7Z&+DCHqbKOrw=rsVBfV@cM^7% z4yFx-#hTgG`$26^TH(7ra5#bJrHmtNn>cm{uW+kdo_o9u&b3X|U z_|V`6D0suoyGMNuYzdho8lA4ZSOdf_;!T~1Vr1$s=;>Jgf&fIlDijN-q~iraib88( z2c2bncwn!+H~+j0g{W7V&$HX-J})G^6WVj4Eb_;6%+0c@X!htDG>Z~X@FxA@XXlk^ z$FE1L^n`F1(gRizcyz?z_l8U?8FAN7-FjGs8W1MFL;u!*<^8C$lLD@M%(!&dyngJ3 zdm=Zqp}5ym{{adA&$uY)seuEin*ixy>;$d6%<}ql-sSe)z~*EOVER23I^JW?_ZhfH zjd!;Z0&iCBmwApTKR5cqFOWvItbup+`+gTwD}6#xEy_H4_hht!g)=-(@VDHT!3X{4 zG{@ItRHFQuo{le|$@k`2#%gn|)V@or*z;15Z9*zIIlQ?GV?5Yn0dm%BkjBz-knp4;oLcVj2PvOC{8!W$74b$)ZTy7=hy%qgl5kmuz@VL45c;O$wTZD>XBm${2&tx{f34Yr4iK zY31tpO)FH{76gxse=ed)g7@R;5+@OKUbf2Th^*; zx;mqHidp!hur+tCrqE~^qmZ;pLi@>K@el~}Q*W4GqP1)&MPU>gSyRrSEp!4)HB`>2 z^-_yP;Q~0yfDo5hD{h>p>$KWqgunEXd%-yZ9d5v4dF{lEK8 zEQiF#MM98`q~6p8i(8@eC%gSav4+S~r54F#vH^}qf53!M&$sKWyv`=Ko$8b)2U320l;{OE1j?77IQqSq^;m&NX-9 z(BDEtTQ}oT)`;>~=-j9X@IDmw!urxQOu_ow%?zpItF<=7B5Zl06u9-sx*pQD!zKQq z4GhMmCM;iTG6R+zapgL)sa`rzw;P6-aq&+}TIPM7iJp8MaxL&W%M^td0R|zM7)B6{V zj)#d@3o}q^NvM<|P5<6%Sx-rB6@;2ER@(L|*GCo;wRW#C21Kw~M+$?be&j-Az?-EI zR_~cN1luG4fw~i`EXtSjb!7rWD+7kHfa05%aIBA8G2rjDF%oJ1mBm`(jkh9ISULlZ3>ro?J6iaf`cI|K*HQ6e~!RBpWNg86NtN&xvf6YeB00we9i zxob<6uR}x`VSG)-P>|)Jd`*GTUgSsUHKU(`Cg3dRR#Fj2p;@3H5jMx5F10SB zG_EA%@_(k+m5-G{rooZ;2UZAql`L3_qQJ7Yq=lfFWqK0RO1cQ1`<5l+B-s=>8nBqG zNxNKzDr^b>@$_WpmGd~7l1%|4Q)ECklAiarnP=tB`3hWoQK9%KEFltG&z}TI3cV0FBDtbJ`EW452lV2qPW3ALU0R(0dPq$ z_3eDHU8?m*uw%7aK-t4YPf;o32Ovzkdc1QrD6hp;cwfoX2g}Xn3K8ZK@yx(ICpWRuB+Vq&EC??f1%ccLg|V%sTce z0(qBSsnSh{V6>eReD(fR(PZ#zAA2=rXy&fC*yJ|QLO8gsKdUJuUV~!YlrHh=?5IU* zWu@d1(D$yE+xiX$f3*kSN}#2$4-;$DSyhwqQBew2!7?Yd;GpI20T8Gjgl}c=)zizp zm>_{&X4o)+I2lPz*X zbj>THBh&DaW(lP@5LfyXM!lrENk^=`sV|kize?{Ta{p3M%W6-0d!(nW3@0vbx){fz zSy_LxFcapua`SwU+h{ZyfxLvC3sktt+xg5-=Ho0;FO{Ki-*XDRm6gVu(`M?bqG_}6 z3?z#jMTS^`f~ckNOQ?$0eQ> zk|~vKxL-zRUS;$?On$awvEJuuZ+JACoiEt3su;_V)z=d8E^e0u2s{a ze#Mdz5ulbp9CUET$FZ@tG%>am+^-^t;Fe<|%JUrJJ=MJPQWE-?!W8{`%nN<5MHM`! z)UyPDWi-vhy0A6nqKTK>ChcI0T;*Oe$1FLW=-ZvI{iB zr(xiA(LPj=`M@S-Ceh`ud^roVoe#NRco~!YcNg}7F7qQwwZ=iZ5eLI}!xfRL#S-KC z-(lm+HVn+(m=Q!3V(R|4zQ*C-diN^{eh(p?uW`6#3VGjuoJktJ)&1yA`+M)Y6~YR& zZAkkIst+EwFHZ`X`S#-(zjThS_sLZVhOMJ*0~1P%2j_q;M+-Z4zY%Ue#-@qC`K31r zofJ|kUbYah@~8AA8zFH$5xTqDo{ZFS~)wPgn=44zAEiN7#WgkFr9p+=bLc<393D4!WJo1SnoZ^m#W$2R2f z!qU*$`H%#Ckf5AcEpV7#qzJ{OnVb*&c19a@gs@C1S{5_>P%K;m4=H&yq_i9>eT z)VN)b?|TH47aLB0`KE}Gd<853*~HvPBT-mz9(aO>>|a`-LNJ zh%v_GC*jG)M^p@`jA@8ZNsws5l6D?bJVy5QlT3&jD`tYkQW_648xPl$vSpL_Hy}y% zSp;o4Mbem$Q~uN*PiTASD&SCLN9}QFgbgw8Q6?36q<(pFjAZKBs4^~yEm2MO zbVHiyZmJJ@y3cQt=K%4`BgoV>$rx?Chd#3xd3p?ES|3AphFT6ZUOjl3W^6XS;4C*D zIz7NA;coq9NQ~cLVR~jdXZCTre|q8{sCz(5Zkb+cMQ>&tT0Y-Peo;1KZ#;L&4gSMn zsG}oQe%4Gjxn^bzS%N^7h(wG&T?wOik#8TF`xl;qGM^OrOYhb4?Dg{OF@@OAKeI&} z@#{6SSew!}VsqDz3O#<9LCbvW$aD9hqld$@kIjl|Y?augim#8O56yFr!-@*@N$?^DryXP~!79X7j^Z*mRpzXrNhm80I&ONR*R#)DtCSLgepT^8S@d3((4+ zpZKD_fXc7@q8Di;+v%-~eXf>?WWR7Ky@0v0fRCbVi_V2xN{Lrm`%I!lw30)xqKwJD zxF0L?NWDmTjYlD`f>kStk2y(|_Jd9?_G>8~W7y(j;v&tCQl#9dP|AFz*!0H(4(apX zMV<|5!oVf2v?cC1RTj$e39-rYj{d6KMGk$Lw~{5H+$F$>>f^2aYmB0KH-liVa4Q?6 zaF`k)i5lH|eX*GuoA;6w%Chu`N=(zTtb3B&%CazwdKLAuLE)f^eQXjvB(~FvX4s0B z|H_t~q|8a0n!38B$&^Ogib2@Q*6<3;#gg7Tmd4YHse4c`@+uylhKc=h$g#Rvn!5Q8 z`>)6u^LI%ZH;r8SS*x^F!yS#B_Ej5kHIDajC;1tN_f_k(X_l5B7UFA4*BT^6Yd$S& zKK?SgaceVXE51*fzB6kI=F&Pm>V?$n{^}_K?`vUkYY3Q1{q^s#Jl-vF`fc$~T0WG^+I~q%lpBhs>bQX$8EG4taT}@p>#Vg6V)h#b zml|158<{PtgA`g(JKC4AV`MKIC20`6l$wuD>qRp|dFnd(gmQL-QgLBA@oAftFqIy?QDJS)ZCLI^-?|-N_YOS>}SOL6JdGX^BCfybo|LZd+Z$~78|t{6N%bss_-K9?H)W-xd;k$ElMdo$NV88oalpL*TdySLXnd*2IP*@K|k zhqBmjdNm*j+=mD6Bg7j``0v4%HNutcqkxT&dJU0hc~DM`P+iP+oxD z5GD8!^lCsYa7Z(H_)uX&_s{sx%whb738Tc})w@ysyUE8s%08~r5xd0^hrtmA;}PpB z>#O?_kAo@qsOi{?0q^M%?)Z^l_!!&G5fALKNL@5Pkr^k)vA6&^kHRsp#j%tJ(Q8_u zOzW}isF^JISbjF@*UYivsF?zmIRMc}iNhQrL+ys}q=o)O_204D4Sco!iN(E{=B(K- zHcaij6SXRH-QHsW45|LExrT#@A*y*IKO3Ivp>e#542OlhgoWxWVjR%KVs=j>z(UPI z^D4&FRzlfw_HSE= z>#XI_j%9!Yyx+6Ae=mDbIC607$&mV~bGT)ghxtc%0I@c!W~hMKcSfs82F~1;GpeDp zuvIH*5Pkg3S%AgQ?+)9))XZ)F?E;<7)5Fg*0?w01kHFyb>~QNWuxa+Fb*;wO z_&opLVFA`f4wVf($3?NnXCb-GtNBHthYgK^O^3;)Ikjzmwnc}%>VFO# zpt@?|xN4NRLSww@cd!En*!9NSA?ICn)m_2<+eO{Knti^SySbXS*iTXe%yV4NVO>K} zT`yT&qe@+W=wGjLT(6Dpt%L2C%j_RpuD@=fUT+KR?VQ@LJzw9zIP4NR95T)>qTcKZ z-0U&jY&kfb_&aR;Kh)rq0`vfK|6e%iCrkP{KGp%B@~Qt=($4?XRMH7)K~rgNU3-} zx<851|8UaJ_M15dqg{4UWJV9{r}W zkv23Gqkt6eTCjP7Gkz~-J2yaLxIi>Uprh@_dB%5yYAn9amdo(yFQdI&ocBMQ-26TA zc3xV3?e)p#6QPnkU99w{^u_nQkOen4|75|M@A!GM)y80OGohDx2GLdP8}~9M%hjhPB%B*E%UDHiF?e+YbRs;4BBh zFE$%_qglYO2I6^~9fV@$mF));gK;n-sLCo##4*C*mm=S4t+d?x7O2UEk&eBN;-Om3 ziev?kNsbf6u(&A_3^7+yAz(=|_2Q8*pi5IY-(F0eB`mZl(p2Tg%u@7vIm|N@bY4vp zb;_hq6_+rdPO@s_5G>O)-_pvmT&qgV>=RBtaZ8+n?Ld z)oXh%Z0nkc09zhYpzO;AkJ@OXAHAJC7umSr3yj8PsxCVDncg@06ujOv-Ijfo(kp+# z45OQlvohbCLa??Huo<=RC97>I+}2U;C|t9y^Ka4AjXCs0b#CQvEI!NL;p;8OzG6iB z>;_m#z0(#Jn(q2eG)_sUQG)cyTPG~T&qNs{x7_^%N&tP)_}?Ns7Ax06dR8&om@$@7 zmMt!wY1ZG}N;Cdpeyr)p7}vPNH0OMHz5<;7!1-5Bui< zlj`U8#_Ujm$AICW8;|HYq7}^7rq&>hng)fc*5+lBxO7c=!U|Fzx~OTp;knG%YUMV_ z6NKr6!pq)eyI`sO_x7vyvkOMr6hY5dsqJT-?~ZlfG4E}^;QC8jjw##U`}K$sU%5Ha zkIu(s;<=}%4cT^nxgB3(zgN!Wxql%)d4K%-1!8&sH`KKE-RFT36g2pM>!`H)n$2qT z-$XV3zH#=$A~FRDC8_2cg!gy0e+e$qHj@4Ovme!D{wo?AlIyT$&tHEa7alYKj(5Eu zeKRbS(M%0db9@jk?Kx23$e|#5%5bMFW0VhFuOWgw%ZNJA`sa^uDpJ&i@Y4fb zG+9ra&(hU^Nz-w6o?tO556f^?_+p$fDG6qY1^dZ{R2X#2krJaMwGJ90%${*#Ch%Rn zDIa-8=aTs0Oj7)FBRSDsh2%r5xPrk3UW5-kh6JRF@87L`61YqPntKp=B*6?><(Q~~ zKqGr_4h1gVL)pNDY0JV%-&2=mU8durpyu2Ibp9^L?7|r;mZ4? zrsOXjuM7TSA<;mCE<|jg7Bv)Ah}2+Zn}MDYyH;6n9HeBGrI51cxG2C4-!El~tCTaQ z%}NY*EA-h^pdxnZPMusTA#I?Mr952B#A7dGAE8Mn;3&u?V)%~74)1H!K2iufStvPU z1J6;i{2Gfv8LeE>5L%VkAh%M2D0QiLX|66MkqocHPpj#*8nbA1E$^e zhy6RM#u3j_N7;DY^ERdSSC#?+%90=7QS9`iWwc7L=pBYsf3iSKsdid{8>C!k+2M-V z#$`Mj-v~s^&25;b|0VHn#G>?L-RFmXD8w+pSzTF0tl-BMS+PE|UR!@2>aEm)%f5Dz z=mzrWhAnHj_IRJxxW&vy8>Jf9jmQH8@U`tx)7dKBOFtD;2I=mYoEz-YcJ26S=Rshj zpYIOB(XzX5@tP(Bn>AvyS-UdEX4F%;t3E^C$+Iwcn0I960$}?e4M1O;x!z; zsw#hBNNSb&8>&=l4(|~+M&iZC<3J(@N%Ri%LL7HV;`jSxd)S)b<&p-Azb2IB<)bjx z_o5~>+=?RF5RTecNikC=99`TWn%Z?v2Ad^@5kXvJknF7P7bE)Yf)uk5faaU^t5cC* z9HO49m%i|1R^e915GpXNZVjS`&|B@}#p8=?g_(hL8% zZNm6?770D33sF?C2CUx}0f!8Wk+0Jvn|@?1S`l!6W|7-9P0W_1wEg z5UH>n8DFSoP``A+3|M)RQ(uM5SJmE?wGE!2X!!X`wSSoi91fAO=J{&2JrVETPfGF) zL;P!3-7+UW>F*o4-t&Ep5BZlt>|G~VPM00Epmvdax;x~T44OvWsdnag;8gp)t~Jr6 zuK~kPdOSi>%5UvLoAQ!rKe~6(vN*Jc{T`C^GB!XB(=}B`9SuPKJ;sRfF2&2oa#p?z zrtk1@tBjac#QxK59X{?*^{y7*#V+CYJIhhDR(^aFn~6|+lcEsvilF#qXU^Fr!PMe` zdJD%BRsCoCf$o<6o)eI!75juK`_(K!3~q4u5~g z!3czm^dklN)VmQrVNrTBN z?109>69>+L50r@YT=bFhVrRj36u_3R^ytDN1yI2mUk%_EzC)=3`CdXFu_=XK*iJY@ zDb|@1Q#5|G1&DycmLtMQ4?Hv_K(<^Swi@9U@Zk~eil|GPvg6h$17Xm{f|*O-Qv?jf{Kdn6b!H13wRgQ_f;h?!3c|L-C4Yr@V~Z zpyJ^7J$u>-MUCU$etuUwGlp%5`>`H=P8n~L20X#>Fn&%zEsXabh{rvQ|3&S-Z)!bH zrsvFxp&cS2PzG9f2?+{M%5JsH4NoXw1^TOmY*^7Jrja{Hl2c+PVlyZDm1-oqgV-g3 zFxqHmALBs8C~RbFfy$>u@XJ@86fAUv6vsuccITwMbl_vV+ez8yE7Yx>d1(tE-7K-% z9A4UEx{Vz3N$LP$qhNWneS=_yP_ zWsYwQS2(f|ygG=(A@!t)QgB%Y=|uq(k}?EZvb0}h1hLHDOXIKHL51U1MBD)lciv$? z?L4h{z}}fyZNRJv@~$Xgfp?ng8gP_aq%xFxN!xn{H{2*av*$Is4>xD?Rba$Ahv&m0 zJ*z!psv{Dj-eYFM6<#<9m)f+7JD1{4mY@M(dLTpnGa@N1`Kg?F8L$4SpF_l|?TqpHOP0Ih&HY0_$NDVVU@j%MU|7l4MO zoP3NtBpseG918Lm?LQllXT=kibozo3`Bns zLsc#u4>9w_r@b&-F(`q&uoxPg00iy4;zzI`a$0W0rAU)fYuzfBJ zYwPc9WUi)3mAY1JR5+E$%$3vV(ukWyzne2?8!D+Gk_um}Iydb+&U5Bz(fD|ht9XKH zvM?N76266l>UE5B2e7PGF%Awn=~xe4oi86l=IE}UF;H1>YCw;0v3@U z;ZZoA(e4vqptZ5To`!?`AV{Bwchtj+;w^OT)%H>*3L&dOI`YTehbOt;P=n)o0}5%} zq=W$RpPa^M5MC4j%-jgjZ9I{vmo>(PY-(KIY@YV|F4cHcOLtf|R zUc+}bZBB>qCj|RL&igbhcn!KF=MKaX8q=xsws*h8W{5Q)48%JRF*r7~vplpX;dh{@ zq)<3_z>;u5yrn`fbTmFYu%tKLZxj#=5Z$`8>3i7z>M(`;5Ta}OtJ@m)Hg5KCBZc?8X?7`SYjb@A_92x7>Q9lEksVoAPofKCE3{Q^9D^ zAwE5#UAE>%f4;e(OR&ES-T+47fWi`(3V&E6b^vLAsF1l&dzjSlzOt|qNZH*+=sY-D zR8ALYv;pJIc;(8h<;#01DjPI7iDg7xab2FS{zW-~o1x~-3g)W>(% zhN<<Z zlh|D&*ZX&Bbqgnr0Oaa7N@!Q1v~9haIc?oCE$3nt(~*=Y0ZeGEg@NFy3ypp}cFlw+ zfjnp{mo4F)00_6u;EjRQc|8i@C*$~l8_1GzQ_KhSvx=KDR0}=?^k`8Qs^X%?2OM*W zN%*I}fCP{)PT^ee)pwfgvB8 z5Ut|#K*6L5>8?T>)`(pL%UN}CFj$ws7%NhmiEVJmR3?;8TtB#)a8O+x$VV6av(rze zRvvCy*nSuWt&M4mB7Uh56Ddqf4QomA$DQ4ZzQsu46uNs2_h9KHEN)Qeb`nk;KPJO$ z#JwUp8-ReidzyV_xvW}Y$2i7vtvR?uL3!mYbqQ9e%GWv6oxqURG1AN(-B*Tx3KHeu;f0Ny8%#03pPFPf^Zw%JI zu%@~Fu7l53K(6idMx(YoFGIQ3j(RSvYW#NX{m;tYBc>63PC{Y9fy?Bp@W>z<#P# zf<8J>L-m$g%MZe)G(W2TJ_-8v!H$+7N29xY5`VKR3~>q>QcU>jAFX_P55oX_3&`RAI^#^S9cfBpp+pGINS$+BNRl9aiX?<}cw3+9($#6F{MteSXAh z7y<~94-{jth46NkuuF=KaVg8^6MJVT-)fKJ8DqEBc<5numt-cV8d-)CQsWZtwnA>Gijde?}}W{z|XzN(S>X_Ug*Xv{4G3GZ=^S%6Zn&>au{S z))#?Udu9Y0f~O^{aaoS=sMnK_sv+uc=-u6-MO|w_b*TDOyEQ}2eb{h zz)=V?-xN~m_Ns#mLC`<+qkC~<2lqnC+F!$2$w8zzeE2KtFVg(h2~afWo97nuAy)R$ z*S;m0Js*g<>iL;_TkNB6A6G<`SU_GKo$C=2h-{pL1BNIN=N^bE&!@Zk2EyrR%eeke zz=?n&ixBZ6!7Q>~>Pu z&e$;IJ$T>vJ$)pY{2{eNCIeL$qi#zdd_DMYS*SoWuVMC&+6DW-|74PE9p1lCE^1Bh(rh?7!rkujan!WA{?HO7Gq!Ous;|Mmq{oQbO4A)C*%R( zl8{3tpy3h;MKw~0gh6njYT>Gq4M4K+8<+(q7D8mB3-g@es+}nniN_I%^P~a*W%B>4 z!J$n|Rj)OW&tgAUC?O14bUS}K7!1ey1{=7ZOgbB7G!wr~tx+->g8O||oMf#$Bt_k~ z)z6wqEV3V+G~C`Bcy$nkL{Kb0{Y;`+?D<<~HS2#hI53Q9csh^E)upvQ61h4S2LL^7 zayR_`yN_Ui9c~*3$?JXy9HQS>jD4KC{x!%5e1Z)XW9J|k)IEOG=l0>PkW8qAapeQY zpk7R5Dg3*F!HvWbB>DuML7xyoQN-aIoqv9B;=&1|f;y2fpE|0KUq1vOluhM1FQ5x5 ziyzGn1EE5_mQcvxF>L1B`p$eD87@3cmQc*<{)JQ--(ntdPy8u2%sEz#`p|RD? z$U5`XlRzEC;Iu>hdP(BTu5W^*g_~c5$lw1kPs|__(DC-z*#HaAkwub3P}SJtOEQe6 z>03dvIg6wi>V5_7m!q~5%wJf$oT-V@LRl3`f(aTG0MUH+Qry2OqNTwAUzWgBIhKNf z+z&5A)<9aAih0i6)1nHAtJS}WB~V-<&PoyO_bh?`FeW3#FmG*=+98zi9@Pt?hHt}#^Le}_|QtQqhlP0tlOsXUX&yYn>5hm_1j7HDJA z74T&tB7P~vPzk(TgkVvZCaLq-+~*1tz%-)xhdj7Q60c+eU!=mYe8U&i`UjOS(gX0q zlxk7BT%k*h9zA7>{d}isbcf!m6}5M%elVTPFI(pD#WZFkww%GX)K+tIVu-1HyR|I2 zSAL)n#Q@d2JkeklB>n(>=(yu~iK1xe4R@;`j!8-zNfKa4R&5Cd+oHu0dTEMv91ASz*7~PT8tA68E*qWiz!riLNJ8IIl9@0rT*+CKm_3Mi`DzM`^SElq%Y82r;kIwYaKPhqk7PNW*3- z=1oW19AAf5mI1{j`vGv+yIn?;Z(m2&JBI|E8HW3=Msmp{splGPGpJG+LzcioH8rP) z;#zP1yZbFq=u58DVvEI#TTwel7sZ(=Es4Rlu*Lm6X2_4np!hizc*;mC_ehTtf3Ot= zvf`Bf$qp1i`a92H)82}i{m>s=xlzyVjo0w6lOY6>h$|#%`&D)rU3zOiWZ;h|<&1|wa`b`ig@gUDR$SaJ3gtQ!5=-Gu#q^-tn1vI!?8FI3_R2FS z&Nkd0&Q#5p#}^3`*C>*(&zjpsR!*}ZH5lOmTS&`BH12gj9842qh*&Xmk47<~!i>&B za*n}|U(^N2WpsbXC>6?sNgwQgRD=7B+mVthQ74Z8fJ|qmjL}36XtaKC1Llw@qodLH zv_%#4B{l91#CCSiq4T1r9BUm(l*MqOKHBHuCsZ7Khz~M!WZX{*;0I~5cbN;e z&7A89VFU*e%xc^oLhR59lpU8`Uc*xs=HjoZ4xt#y8sdXxBzDG92+&u2C^p#ScpHv7 z<;Md|FlXBD-hs^|hx$RyZR*)^(hxM1b1>dl79npnRF&-pI6kUW*X}=__HEf;7t?z) zjIE+6T|me`LP!6i+ybF^*Dc-C4)a!TsaJ-E1cylTn7 z3T2k5a{?lE4vISowEU$n{rF49S>TXzgmbNxeBb50-eAyicSaqunuj+Z(ZdJPiMH_DJ8c@1$Z zwyap4R)i=nIsP`BB>rwj@p-$&mAxd9jjTZeCO9Rd#g)Dgd{=R;cA=Wjv$7j*{Ngr* zcgFE4IgFyWb$Tz?L{H<$ePjQ5Lw!|9pqomE9NY9^O?HCfT*|lB$~jRH=itQIoqB?y z-!bKXQ>Y_&V@1jtljB;jN8#*qI$sDGjGTw#6CKpO;8$0_}zys$B|W7$ih zqU}$}wd}W>qyu588E%~17u87$`YisM`0VBIU+miRMD@mcW>0#E|Ne`7XNw@Q${Jqp z(Lv+pZ7q)y;_`HxG4Y~_gyta~;Rauj>s25UK~N39pTRn6-HU%ChCh>w7%`jmBf25y z5Z=%SBemgcZUZ1H5hHjo2Cl!fRVbv~I;E3-H1tS{=8e<+x@BuiKetsnYt z66A6Mlw1{#>o>nDPA{ZP+aw`vpCD{25?WWxcCFYKZd8=N=m=s_8%`|c~oryYA#}=>Tiz>Wm$#yPO{USZ>5{m;Pa3;QY03C-;(A{)PL<`O*xdX;byAM)@Ti?#m5SV_a}rU{TO5TfQmlit zSVkCUxLH69-oTB=#g1e`RoH)kf`^WGdA`VQ3)wnHf*o3%Y-05L@TmPVS1|x-^>#EQ zu^a&8b}|FhMHV|R=kwhs+BRT*$UwvhI|q*G_N}*L8DP|iac60GXTlz~C$JVacKRZ%fWpNN_-pXXWH%m=y*`HiTkyTz1kY#fN);IyRL7UFWX-^gH!<~+#5F8km?2#WA6#HO)f$_v zKvC)wGHL!88Hy1(jRya`5J$r;;7yCm(*-7Fg)cphTDbs&vlEGn`PpSSg67$gDDoCA z;KfxX+%e#*Vreq>C02Q5m!+mEv}D^bW>kWvl#^xsWC**4YbGYAeivsa)lV(bkG1aq z=)3$<6_T_Nk`xe)G82OQA@YZ@@K#tWxoh?+XD&2)o+x^y^^66cf&m!g5BzTg@KQ=q^`;;?Q@D=P?6^<{) zj`b84^w@s#fqh&R8{kDQV!QNsMm=er{$SGqtMj2#P+J8Zz z42>Gnsy(pbF>6+g=r20lp8gYye(Z;MvOQN&Id+6N=!zjzD^i#kl`b1Yq`Vn*2PqBl z5_Lll2nQg*_6Ulx)_UI6b%fGnMy3;ZE2hMtXlbk5-$&9e7K|nF%k$*oE{b7b0x{hY zvFw!>*<>R^l5pfDKAd<;oCrr@jIsDEg2BL^Xo!>EwD1IR{1(#}YCxEE2kMP?ro zFZ-1yE|ny5dRJ(Nqw7hSra30sQKl$lzg=T8*&{L&F0qYBe_Zj(J-`c>R0XFlLG`!5 z^8@8wR7swQk5gn~NYx(IMqiH!&U4_ot7*OjNz14={MB1vHlH%%Tc8+F$YvrslSK*Q z2B1W%rFku(8+8vBl%5VCy$eSgg_5b|BGr#~ZeP+ERm)_|)BWu?){gG}xFQ`lb^QLhXI2HxWlKN8)G2Uu!s`?m3Vih!esoQ6SqToY`=nDhz z+ff9g&=d*xB_QAi?a0{TEkKsae*}#u)$>U5B}khPf3vQ`&|8L_?@W5Hqc>fbq>*s$ zS?}-?kO66%*R*aLN9wVUu%u}xIB93-&mM_z%?6gkrP7F6m)C}IB;MyOAq*BV018_g zn!FGa&kCV#@hd~6lr|GcaH?rf&PT zZ12==f8-DpH@@es7PHo^Z_hGR20727rfyJ#k!+m^X(?{av_}VoBFzQT^>mw+*Wg?R;Ss1619(@r`6Zi;3z=b2%V{K)Hou z_J*Zid+7`%=n@AQH@(x4J5g4-k6FyH@KS||%Y$6nL5Vr?opHd*o_uu#cZwLNmYVDV z%C%4A*QDe`YTaH&la#OOOFTV@=%4_83!~Kp!@zh|%t)7f^Efv$;iz$@M>^9;a;q@r zBc*g*NDaXRDQPV!^8aG*t%Bm{!hhYt9cFM3?hxD|4DRmk?!gIUAV3CpcXtiJA-Fri z-JRfpKr)AK|IfKR`)1$nbaFUkRbAbySG~{gNpS~Ui^&xY5hMEnm_>f-%0zF5 z(tRR{gubbMry3@;V~2D1GAj01b*){d|=ft{TOAG}QIY{3?lKdK= z*ZN4R&47{3)6t%7?0oX{FBB^;bx7w-CfrAKI^(-Dn(>A2%&w* z7CE4ZPD70X4Pg}8r(Q-)j|Rbp3%P>!p@!f)qX`l~>Z4H=G&91=VzI3N#6s^RI-{Ro z%u|L~qtei#drl^?zQ^U^=)MrctQ}yIr-abx+Q;n&*16Z`!_?VRE$^6Zu05Z+`SLOL z^0L0KvT3^f1QoK@9(j&zkG7gkXPFiHh1U%(6KA0YWZSc`_Ge}x^w7FI3|k|I5GUox z!;%G(xMmI$M!YS6pi_*c^mo%j-`=^7FaNvjko@g#wMvh0_=D^tO#u@B4}W^!YK*sWEzENEG7YRisffjHGn- z%c4mY2o79_U4I3-Tw%N2d$%EO>b>wObkH??Pt5UX%=~rq7TR{4qHfjDyPik~{WqK2 zq{zOzfH7E%>S}vF&w+O8v zH#N}BUN-xroi~y4)D8cGs)y?hz1H-M4M@)jfs-eq;Re^bAoZ^$L{sR%rmNxZ zX20=Qt0Vzz5Fo;oWiIAJ5gROpR3e8Lf9;=VPnV8IV0SCxR<&YE43Ay@mz`3J;wB{w zx>lT#IgWvLcHRA)#dT6 zSnzOKk2ZFXHaHK3PR(N_DUKo!q+;%QvQnPi;#&}J*zO>ohsj7pWFlk{Gu5TWgmDX< z&4RJSFf1JpeI6z4>AAekp8I9pUkMJ|j@#Q)*CVORv35TyY@X+)`&s{f4q%KrzamJAeu!H}FA>m}K*=nN zU)lDzdh=LhL2LUoiFsW>hV-8L!e&i40s$Xh0^gy3Z_QIA@`m%kXn*&TrmCYPw27^} z(Bl@!KJqxs_}ZWUG~oL!Fm{lw;VJ`eW|EV8OcG=Q^g54&#FgdgO4sSBT)rvMS_h3|` z$<a{rR!vqRGkkty;?Eo)~<@1p*=`So7 zqdP4-y~)0JSC=oAmc#ud>z|xo1w0GBec!VKj!-yW z(9W&oU6jTzM9DLxMJw5ozp{|U|K!syXXYcZxs)F|#olJ=i9q;713;lcC5h%s`f09c z@z;Cq%L4mQrWTD(>%6Xqjs2zqnd$FcDN579*^jfO2ZicP5kCu3#S|J2VG1m3Pd3&Z z{qhAMmJEM}EQdTahHP4YlH5271z#f_6@|8SUDt5mxg_Gs(sY|U8)QvAObx-clm?J? zsifPLjTyj5v4B3^#qdvQh84PASypb5KXb)2wJ>oUyoWmrgedEtQ3@QpR#-GD#FA7} zxE63Om+9C+T%H#Y#ai)=Fx<@8&U%i{dlSeBaYs#AdI?@y?-pk zEpQ0P4&lfAM*0p12y?G4~JqEB?MFHw`!U;feM!Vs8QyP7Nz@G!ON zkv~UW53&(0ZFgN@>+pQ6PitWWFKPN|jAJ93hajQN=-eof7whsApq)c z`kOrQzSCM7!y;OYf7Q~h)_odh!l|yA4`YfKY(QIk-|3!?cw(;2__Z0y?j=@p+4PGE z|E?A5$ldnWQVP0tO~aDAA{V`8oiAiqE{PioA4&w|(*-uGstLI6-2#IC3=?igR&!|X zyvH&1+x;riBkZXci1@tk=<8J>wW=X6ENkR(m3c}W`!tI!!g)ZT$%4-JXA}clP2>Ub zyXy6MLpoN<@Ztos?mp7$7U&A^k9cZlI}gX%1-;6zr5ghJA6+oxDOy)hv5)_c&)Lgg zvb!HKM?M@#yScQnm<`YrS8Z84K(O!QVLnK`fQZYG9%ibW$uB=%=;dToGKn|kL-YJE zYl7Z6m@5q1^${G6J7tH$VOlW_kPIh;cQsNhh9QX}CP|A=e}o!~--9R_8iXm%rz<${ zB$0QABUBL;5czBnNi{tp)KX&5zl`)XnkPVMc1>h7mr^GdoxU*8p~4?O0%@13x$zr~ zW^DC_S?57a8srQ3)fFSce~$EZM65h}M`gIMdp{z=8E$SY79$y=ILLFAXzvgUG219} z7#z?tNO{T;A8N#FPae3w3MvqSJw?geiD|f+ zLsvP$D%cwJIi`x@f+BL>3(_jQw0ytqRJd;n@*cYw#V=1KT!WLT{P2`J6lqj(|8OT# zg3A@d`s=RHN(1qg%+%_Zrv2cZ@&>ph#d)G;wgh>#(OwvHl1?iiZvk0b_z(pfxuo!b z(m)D6CWyMchOvQ{7HKy#j-ap{*`s|?BIsD{(;rRqF|V?gDrOJ&Dvey^#yGJ{J8LQw zZ7MN*s}GSA+#z<=MTT-;WNkp2{-r--f)_PS+0bAIT?fEQ$}kbA(T@6Zvd)|_U0tiB zy+IJ3?hrm0CHOC^Il{|wS1587v5=Em6;FK|6Bny15}mOxDWpx_hZ>9e*!tW?uiw_Q zp7*rcTna;f8hf}r$>C%{eO>!;PFYdC@WPRr1|*?UZOTmVLLnxCHyfqf-1d;?XfQ#x zOCcdsfH3az`9*qjJgl{wpvJS3$k@-6&bw3wUpt01F_J-`gU#AiIp<|#E+F05twVW9 z+|mRPG}3&CMDJ%ovvu?5p&KAsC2&SP{Qom!D4Kaz4G4qVg_5#_8am^K{WW~jU-{PFSF7wJH!d#owUFX zTxpntKZp|F0Qq<}$kAP)e%7eLO|oqnM67Ixu0E9<9`zf>NUMttf!AC*^Gh)d(!yTG zAoz!E%Ol}@BbShKfYRSKrh3&7Ud|>xc3<5{09OTQHWp2-K#y$DiOd)g?d8t*9|(A? zIJknJ({5}^lKuD1cj6*chNojL&h|bXI@aU>KROjUZSHyYdWe2VGWS#azF2DWL|%kH z6E52}73(7*ihA_|P5Z|xw+n}}5W}BE419`KK?A;Nv$7M^){!PEB}|MdE8ogalZdns zjn=bN#My{Szk~}~5D|`ya5&XwUY@|5++x=@{_&qDP3gIOCEY;p{0M1xzVepR*vPkm z>)L1k3Ur*x49Bg7?9nN_W*IBxN!abXKkOuH~jmXw;9DZvJYZsTA%+c zdW+xJ{kT3c(+pT#pnQnzR5_0w|1FX&$Q|{$d&yk%Wo`N2V^`V9oA!uqYkQsZ2a5Pa znA)ek^_M%tk_J7xh`-0lVK1}4((cRE0^go77U^k^!_S#d1gxVk+x7MrCfuKH)_VdD zKlDCt*TXi3-vPuE-~h-40BmzW(l#JtTeD!M07RH^X_kcc4(^Si6jpa&Di{yZL=Y|r z2NxjvP+{ooAjw8NIPCoMFh`NyK?y(_&ei>sSbz~>^!j%jt!M{5WC#Aw2x?YXkIfE7 zPdeIk0pM}RItBR-t*{&owv9zsh|58Z$Fi$@NL5Eb;&5F6!X?DzrzYgs#ls#)=llAi zQ;26`L1??H2c{;@D}>zV{;Lir`n_LQE}|KqUK|X($L8k(Mi(KoNW*UQPbYW)2h-i%33mDQxgOiB@LM~ zrWIl7uiR8l`L(Zv~Dc_>wf@3H%&k)G|*-CEw? zC&>(2#5P!R*2P_G0C;7Kc~z}=J;}HU!?^j2k;Q5Ge2RHHh_A^fs;!Ip(+WrfXoWQa zf>)zj52|qFiT)2T3n5{kKp8DxfT2jyPm!{;ei@5jQ~Tw)#bR5uMFtb;{vn$x1uzSeDP4(Z)Q$}I!M5OmR8?`i24N&t?>lrYxUh^4rXtx}GfbZYfhHsQ zr~~<}a0S%}NqADlU>Z5`lDS1Xrf{HIorx;8wPJ^btfQ6s8tsX{`hd)`TF;I~nU&@v z_QB+VIp@B5Q?5i)iCpLwSlxzvm*gcRQpeN=qqaoX)rJQ*MUH7GJ)Ax}hThT5cC3$jzqpgP|n`(vqqsf{^9v|gA5sxp!d zeLgCE8FoKx$>MEO!oO$ib6}@R?Wk_6V{EH&MQI#Y#t>en+GJ~sbR>RDi;)Gi>Mwg} zD^u^c9Vx)E^00Us)F{|xC_7=$#I-xnM#9}J2{Rz@42`;ug?Onldg~s0i8J~jTVonB z`s&*G1T%iBwD65PMun97S6N>?1N?oC{afsaqmBa%%LAtw&HC*=X)*>Kl{2gz2Pu{Z z|0`!Lv-`Zq2q8R?y|w#HS`qq>B6RCGRJ>xTvJgd?DO|TAT$3rx*1jEeJKU!t+>r^| zZ-yDb6d51^&9kp?w~zE;ifXZk$)7}-Rzy!%#8%kH=rY9~orJEO#Hv=r{X6-5Z66QM zocQl^M8cMR;#*E{oPE4yMUuF~M6Z2v7E_9Dr8(+5RO`w#SLSrb%GBUWwO)M$FXl{7 z=8QaMrTguSH0JE0%IvhTj3$Td9_HK@qu1KX93O|=t4iZ7hrA@_d}K%P;AwtVWdSlv zAz@WIB}+a-RZ%FQn7=AZ{H#cpC0Dqr2pREzYdt9iXuV;oa{r(8Kmr| zHr_DRH#+srdh&**cEUsyVbyQQ>Kmi#28(#(RbdqX7TDxl*&B}fUp3tC{~=Z10M-Ad z0Dusz`|bMktuhnv#;aZ;z0DHdd?#-Xl>gyX-}EPd<$wQSs>3jtJpk_L5#aN`tSA3N zr@lE(h~93$_Qt6Gr#yM%Sl{qfyZ>c9d6T2Ov8#*#KsoIHVygeG_5U6JXDjgki>Wpi z4Mh|4IBxup^#qL+@b=RD4^ypr-7WkNQ#FZrv!0awhpE0S_y;)Cc*IV5OlK7N}0Bg(@Fixojx55vd7uBro)L09+U`Uy(WvPH%yhX_BWSZ zVct!WX{-hW0@r{-C+ZG?xO_$PL>bMck_g*|L&txjpoX09*Cf~T1qs`nHIEnLN#{|2 zIo}vD8=-VB41}z}*{{PG60W~IZ+GEbt4fGIU2h{aVNkVEblty*X9|3HHf9Z;t?N62 zAT&@AfxVaMcSzw;G3BXzHz|PGPH;@-)Gi2_>Dm78UJ0oq+E-hR;2Y57$ivqb^%9)= z39h%JDNkF?6h4HR@5c%r`O(Ith7j!l5L{8rLJ%k!jh&HZ%SsSN(Mn1@;O*Ne-B7TE zcHGzq)#;+(@e@kZ@6hh)~xNb>^`?cIuE((DDR8=*32){F3Epcp98;S!LU(sUc+IgW!!; z_DPmdJvXvfC~`M`9SwslrHkYK1RRUayzaAj#zJ0!uYTQI--pi220!OX!tt$!V%@lD zyeYC?ZU6SsrTjc9bF*NYfME*)Ki2S{VxB(NQR5-kWE&Z|kcTvphXiloLC#v{59b?;7yZu#12c>X% zDCalhYfF)jQFrBabIR;r1_@nAW)sj{nwELT+8bPpE!X$pV}(zEqsV==M4owdFE<{> z$3fW})&nr4M{~>H>%V21E1mPI4C|KdT`_o7LEECgb228cR)-%X_NjxOcS;NWb+8M* za{M_d{AjANiyxZa3psDBGt$(sll9+kM(H)*H#XY(erox5ljO8FemYS0kzM@cns||8 z_A)NMRp{32S#=qwPcI+g9(^;&&G~|4hVv1R*-Zq#8Dr=5YR8Sf+u)}W&Zj?b>EP=g z>g)bbtL-)zFuC;iPojQmYx!290x6H}YJQ{Zs{zBb02Zv1U~GuVg)Sn`=;~l7U|-uA z71#@aszC$|-dSMF3vX#a_<5c50D|~%s;k2;Vsm+IEP~){QDsl%-6;<`UVt_M1n{fM z1O)~b!~+=~qKL{D;iivD(`Q{PTowUR>Xz^^6=kF?3S*(pcXg9kiBKvoOY1CoS%$}0 z{$Ik>5k;tcEZp?w^%IoMexWka`ibtMDX|i5Pk{H9s4+5hRF32F@{~^(p7x&rNcO%E z#3^)#43i`Sv}=gQGZPvvRmTnR9Jz4&D%)s=WmY7X2^X(28~|7|nvEnn$4?2}G?VmFzEKO14ZwOi z#b$DV;A6!lg;~7j1wKT;k_TbKH=Ka*RF8$}_ek@(7(WqnV!_i0w+xin|3C$(po)*^ z9je6CDY7)kCWsxYx8P^xl`#ioEO_I67QMfC z1?qfbI3?q%r`mjZYdPBn?KA@Q)3f5l1l7``ir~6XmP$1Lb5&w|rdDpIO!uin`BUMk z#aGnK^@A1DPR|h!5MHsMzqXx#6L5&(&_s=Nh8YKFFm_vx+z?yqY)57^|JJ7Y)_agt zNb>|5oDXXRR^vF>!B2OF5GH*Bv%BCI81|ua*6|kAdf7RxJDe^ykl$P?yZ@OZ<2Y=q z-8i-}mYFeo-GWf%vA(R(uJGjT_d_?t~4{*4Br#hT2@ApZu-FM`(*a3dU z2!;u#zKkgo4RYf~c-=kGP6!KiB@%3VAfvKD#w7y3piJ%ySGteH8|86Anj^!93k zBg?a-g^bdt`EFJBBqE`2iC_XimXCC&lWDJg3!bu|8KM8jx^E@FUa3}_N5@6LYz2I` z2T;N_k@vb#GBdvXPvh=1y%f#*?%4)^yrO**(|B`XmO6#5CkUyp<3HW^^uq4fsMP-O zN&a)#g;F{%BWL3%YsF@ocVvESO#7buSM&V2_h{*zJw}rY%|)o!3)MCU)WNReLJf;! z+&a3Y`G@i)((JD_v>kPV-yN41l9PNtZ1vl^O>#qdy+7TPj+W)?ToL#pZ3@B7_=OUj zDOmU;0pr^S87Xgi!k!(_6+?#eagQT1G7yIOImrVDT5%Saw~=A0{9t|)=gRg9>J%Qo zLH=m>9Azda%;mjr8jtQ#FUEU>c59`j54Url$f<*?TB{XjuPLnQNz<7e)^(v07Bqm!CsSa14YcKD|!_>FakXeNhPYvjm1 zuE<}(c!;|ZkEo->ZkI3OLxq|lUHh3xeiM4+cXtlt$KZJ|4J+a!PUY{yOL~Z_-IbwC zd4+F)2zbtOtY%(u{4E?cb>h48hUXh*!Q%E3`Ax>3q0S#BQ}GM9^I1c>zty+B5zXLb z9QheZp<6uH?ApycZ|7BNTW^bnyl%*sPahcpUJ!z)4?$oe?3ENb@bIDr2m5(>UX=rX z|K`_7cB(tFt(I}6+V%bI^`7D@F?+x7a8VFF7!lbo6bTB!>~$>W3c)Hg`STD`_51U9 zU&t5;!j$pF+=8sP-!TydR7ixob{NW2?#Og(VK&0bZ4(y$9f;r?Qi9C#4TV-fAe0Uj zz>x8UsqG6Q6*=y8IBqEj+@{DY&v8lw^1XK(wfREGpx}`LR3g^;0DV`U7NnOEZfFlN z)o?jNFf-DTGMU2R~?Ja~pF% zzT<`x>kmf_wnf!Fc?dE_H|s;;%%k6NK^v3E{-!x~thjYm;9KZ@MFaEDpmI;25dEY9 z6fuzw=*Ju}5y;tD>KqfwED9EBXfSp?8yoEKmh!+~#E+$Cor@EDgge+yCgUPDKSSju~YM-fhnm%ca znAxL7^GN|o2rc%!l@*J0KwKH5Fpq4(z6|~hV*SVL%xAnR8A@S`BnpoR@|#Rxq4DJ{ zUHe=zQKH2<3Ez&i+K(0B-ZLS>AHKB8yo|BDDw`Y}xO^GZkCY_1`ygL*u0#}ze8->i z&+VVo+ALQxbA|EP)|kRW;0t!pKuC(fUrnE#+mleD3bG8WQIX92Pm@6bhOBELW8M+XW65T>JZG;!JyLxw+|&>eLt$q7(j5%?VqH|8`i zE5zJry!4jPaAZ!+bewe!cKD{#&WCR;4ow0+Le&x!vw)6ePA35{8(p6_Uz$u_3^+>k zj>lC9aWJu}s-sFMkz)CK1&@BQLZd@g73e;~qjonRq1U;Lr#SSiLJeF|EnHKzRu!pO z+@J^)s)UZ70tr7dAzKvw;qz@~sl-VnQx&l9*QhQ%OW*3R{_2}W0?r>^%iEbRhfvoH zcGL|E7xx+lXE1%$YV#?7uIbVN&a>1Zz-0pqQ(3;&HiL7~ETXp#9r41AWst~3_Crhl z06#|o5B}r@$*Z3HAv)`*8(6EuTgNjG5U!A-HY=$N@GQ<^fgO6m14Hu-erQw}>deFjCt)sAYq+ zi!^Y6-#r{t^~iK<9_To2$h6N1bkD!WfGe6j+q5L{X7vKh9x}Wbm5J$E0;B771A%bp zLgwRq&e1Z`PCOAqWTT2@K#x2Gk@kwnteS_`gog&9o2rox;)v+Brs_5%no#)NHms~x zWDBykm-quv!5kDUJ;6Dip=MEC56W=1J9It*g}Y~XWB>7=4oq~gDMk5O(}Uhw&eHi! z1kYQj-Wk@{IWgWE@Y4B7oLcgjJ)VG8Bbtt zxuP#!w|YF`{y~WhdINL;3)v;nL!%DDrzz2FULZ;Z&WWo?8Gk=b|tRHDR>?kTBs zY=`XzYA84gh~P;{t7#jJP}L;kI|6%O(slj-TeN#|62Ap2QPU{&iTYLrUyP7(*_57w zzAwak;&WUIsRla9M2kioN0073j(*L|X^V-!t4gJ!mGaU8*eex%SyDTyN-Fr2rT5^7 zOZ~mye!N_Hs1mc?G6vYq$_45KwJHagfjj!TN=7{Zy%@bHH510!P@0WF0Mpb0+t4B# zS$zQBDke`JW;xI*dUJ9t!3I1#Irwo+Q*oSm-*_6IJ8s|7aGec!zB0M4wheSIH)Oj{1}JE@{R?OT#$IslmJ&iJ*&RXRI7aL5El>MTev~9RM>fjA?;>N zS?4%r<9CWDCHF5uqc@`8?`AUSi-~Rq&$O0obL~jxm=tpH@lNHISb=VTePr~OS$6y< zb4JqHe3#G$&V1iiE#ac3Tj=k~8Sd&i_iAV00=~v->+TZO+OXNF5=X;2;T(64O33db ztvU|?LoKKwQX?T_EVzRm&uc9K!GKQ;I2VK`Y-?_@i61t;R{Qrm0;ie;>>i+_3|dyn z0J?x$!1U@RlAV|E_!h}^BvsV4py00>=nwYF9icd}9WVEmlq!@WUaOzjH?^yZX2*15 zBQ+ZSj-k85?RVp^)^0{Dn{EB&*qwUo@^7AUNUJ8BHwrbmVsAj%<&VF$R@1CJw6*3G zs-KF1a+lEL5|`Z?0@b)(|Ed7)Q`458+<0R~Q8||Jz;G!WB5_!|s2Q%}L$Ef&j!dvAW)aBqIJ)Jy{>ltp5}02Q;;0@d^#J?BSGsc#e#6I7 zEM~;=C}eINaQ3vsHv@Om7~=>z6qR%7>i{3R4?!zn*0{r1fpRvO%3=NF;_JplwldIS zi=dF`R2^LL;BlHE&h@E$DZ33M8Ak0EH|kMG#+0h=hSmLfxaIXx=i_A};nP-^B_(Gm zjT(&>$EO2B9<41nq41z`l#n1dQ|dyM9bLUV6IT$$5qLklw>;`}IykRt^0Y*3((WHH zKiJdw<9b;)U_S(&>ADNWV}w&#Dh8da$uvTYgDlIi!6CbaPav~B2Jlj1{K1hLLG?nY zZw37yBcbOS_SS!yj(@`k9L0eq8%HwO%kp=PNN{ZC%Jf_RE`dsv>~}JMdLl>POn-^} z;ojQ9h+HCfd%FvwCx$NNPC#$oO}K*F*f|TNCBihy>r7bB(c(X&5e`tH=sQd^U@Up1 zZ*bYI|IN)Si+2AF;#b=c+*|SB&WWDOn=E~S52P-97wVYT-1Rh<6uZKW9H`Dcw@lZ8QMw$G!;fQ;x?UEPipE>vmlXv$6$i}49NmzOKT56{XpgX-^ zle!$_|E|_7NjVq-i+`hhS~cpiK-(w@e#D3o5I3Din`lm?>w_?@n- zh8B$X8Fo7v94-NjtD8}rV*3t`O-JEUh^6UKo6$v2m?v`rHuJP;?)&c6)G~@746Cgb zp{HKLb2*zh-bRvV4N}=LtyXODNWKI8u>B%x0wRMQ-KK66pf3HX|Mkaca(P9QoS*Au z@l##;Q&<~}jj(7#i9PXi4Qq$SE-ypZ(C63Mx|U3w4L~9l7!ZntfetiR-<1r5N9L6# zF6bQ$M`k2M<&>}*ib4_fWIMS5j3&GjVv(ri98gSR$1wFG(P9{YG7(G;X7ZH70mOp- zv!0x&QvqWsT?BcU;mU+_#e+ILXckH^YFe5*09C3P@F>E7^CaewT5gMeHm6x9!%$Q{ zY}AAlcKJm1^EEz$xg+DAPb0`H>w4}oc~V&K7^1WrH!`qBk|;#)s`^^hO9=}|xmcIR zkOl5!R&=OV8W34oUnjU8w94$5J*~+g7%cIm`Ra-f$c9xjJpeDMf`V0a!x^e}R5ttXx2RB6Nw|bSDgc2vqJl)a z^nG1XD}Dv*0B(NKv@p?^evZ!K7AN^W0)i;@fiNZn)k2KGK{SDN!~zIBE`q&UXt_HE zPF=XOvHg4W3CXcu7^0|WA#-w5QVH9~^~*lc`!MIu#-wU!BaRNLN7wI-u0*;N=|A@E zg1!Mo&Hz}eftb(u-qt3qV*;K$xb|^mzhb7c@uXHt9jeq%5R^_X=+0y3Q$0DmZ#GU>m01+l(UX~7 zjHI-=)VI2<9n}rTq~L~>`PBlquW!$|&6^&R)pnxVN@Evod8k^OB&rXgTlQ9qb8>Ki zCAHlg;GQZVV<(IQh4DsV=vuj|3Jk~^QR_vnjQgqlqFfz-22{78wP z8I{NI6P0eI4MA1o?RW}=4F(fV+DIgJf&j$_v&F_)T98tL#uj`_={*5Yue1P%leq!j}JXrtL2Owe+{Dh{q zQ7}et0=>Z?umAgTJk_q}xkr+SLU#V!Am8o6TwLTY@b`Xi2)W4!kw6Jj zSPg!1@teRk@^^^(i^+CBo+GM9dbAt)?Sa~oip#K1dsEnj3ff%W-C!yQ5-DQ9+zT3z zm=}z$>n>5(l-IG7+zXphE)nZ>%8h;8FWcoE492+0yut79+4_DEL`yu`oQ6y_95bsD zk!7N6`S_!0haG}VLIu}qDN!m-7lMADb4!WZmnYv4s+MCu#M$;^<`k2z8f=nql**cA zW6#4&8;O3dStDz~>Of~k1$Grg323%5v~T1D_^_&c!&;Nqitk2uZc30ytSw z9da<|j-yJ@xn}KSI+u6yctdGBDksgv;boHmx9*+JiVPk!lOnOKsfyNn-o#__%yq6V zAp4ypHUptz4Op`54YLZbk>)tkR+!wNG)|CczfkDO)dy*31!q5@NgYR?2xcMc@g)BY z8II)8spcu3OaaAEM0AGBpNn%DO;QII3viQ(I3Myg6*r};0{=x@tFqj&n#EH3ws43an+Y7$K@Src7T%0*-Vpx zILnfZG7L+>$}q{2nd5mRUSdc)+i`^RsfLH~58KH|1Yfh|nsw=vlf(VWnQkVH8;u;V ze&o@3cd?0emiunGWW79~8mMF;Lqk3*0WYprl<1OGtrUC9LNyy|U6js7Y{Om!TuC~B z>Ut@NW-9?zb)U^vhw(^+rwr!);M*TA3S@10q93X{aSuA-$g z4-shlDJfF#S4w^<(5hdK(Z27-7#xxf-t? z9hQs&N^d}ho8Z|OOny}@RkjIoJ$%icF4I{S7%EhdM4Xg3P#^Vk-Af3VI95$<^6JC% zfw?QQ!|&#(EStkuH`v3{jiTH$sLTuXq%-E$>@TeIeMm&iy44cLig#6ikT<{kb~sBuED4YMcq&N>fe1ft>;YCXCyjo*>T zD#*USlw3$RQmc@Af!kgst$lAnn5{#>253s%#Iw^cNMivHc~1Nizq(Tf>ns+ zIQ`BnMxjyglsJ7~xd|-5sOD*1IJ-m*ec{R=?~N?INMXy$jy|(dBwVB|k`yMTl?z4F z&!90rUg9?@UsdXUameqy7Xh$i0z#ZFw=#3k^AWkTq=con{gsk&3n%y~m;1GT zZtV5=N3?7&&1KU?`Ll83%u79*#aJ8r2GY32eI@#9kMd{bMOf1L`j7tko~S+XaQ);Q zb7J@TG+~VDL^Aid(q$B>u$+ z8k#5+3Pc@-MB-r$w7YxpLfd3~ASr|IO zSu@W@$BV(Yy{Zqb)ZN|kR7#1R>O$}-rwX$ZGtKO zw!fSnpgg)6I)h4@^M0@>p|<&nR^`z|=OF!28){u6s^T1FJ4rl4C6dnq!j}k%9>v(` z#c~*I7cLp*RDd`#4>=utAg>(p8ym{##ZskaFwmy@X)u)hJPbPrj(BvXkbIJx(CWdi zuJUwdKpUuXJco8Qpbu6y$61fU_sZczA%xKcv9EH0odCjyF^Hjj614AhzMf4e$wCSm zX)T-y8Efkt>Qp3!YLgyT%Koa559p9LqhXT!SwNzQYC1QZG}xFNQ#_Ty`=yvWrtLl7 zIrDI%0-<1L>%egBXkvjgP*I4cv4PZSH>zT_TYev zSNACABsX}HU?B4O5BaDv+?X@5&m>seh<;jI=43tsS%H)*5?`E^7C+ zFQQufT9fEEYUelqoL76*V=pu%gCFBY?eZVdbCtw?NvK^R=6$u2np(v{ZjZVtdAE!x z<)BQK3Cwu*Tjl2xInr8Jn%c@{XY z-e51IemYz5qz-z}1P+N`4f6eU()hpwT$uX-BQxQpOhtQ_i$6WbIqUo(ymH=tFI$)$ zRp};*t+sau5yJ6z{(UzKF52XeLe%+vah+nEUy;*L!G&Ur7~b%AnN;a%&hPtwvcDVB zI#765$V*DYo^G)E^Xg6;sYEk1XBK{CVfapqnzQ!JdeU1FE15fKMc%RY1t+#m*fo-D zqk=m1Q=j6{$ax6__pX=Vq2xe#&cJv&$0>(RV@AM2H0gTqTL;=gq%QyKC@wqXpY`I7 z*P=dwo?7Ojjmo?VLBfv;-7o5@6dpfCxM>p+OaGm`DfsAC$l_@Hfit)uI9|!S%wZ+( zrG4teIWgJuuU5>I} z-kB3f))x-@iJs^V=sJy;ZPY`gSSewh3Qf=~1kp^P>EAgge6`H^+{hXh%M{KciLatj zF}lPBf|e#}U=OXt#OfG6V1L0|jkQ?Nh)L~~U#0!Nnij5-zqT5uF!f=~;3ENMem5ZA z8*K!WROl~0CB%qQFr-~9#BFNAJ$y|s9IDfa=k~0FO45zQSuA2$J_$kNxPz{&8uogV zss1qx$W>_J!=~MgG5`U`QqeZSM&CCz`n}Lq6NRTdjKGmb?WIPYGSXdBMg~YUl|u$x zwW(p`@4jTD-pd=X8Yp*s)Bmb$}<~6i-%sl^Ul7TUX+fOADX5lkbMg>$zfXkm9ROb02Vt?R3FQN*yO|x;W8S5 zQ>{s_-%{QBw!OgBTG_fzQz{1tktMlku+pvbDO0!gtwp}A0tNGQ{pCJj;?ZUl>Xu1D z#?DBkxlh+lqZr>~V7Wxe#^Te?E!r*-!>&=%)@Yk4{v(7yyoqqyC_B-R(-QNiLb?^# za8u^427D>$zqPDNQM4WatV!E4;mIPG$$Z1B#}2L0ikg)&4oXL;>9J28&uNkAXNjM- zhg57?5i~O=Gkt}h$~bR+PA^1wc2Q9Vtqp&a%L2+jZAC$J|;Dxn>2VkhIfK-^@!| zdcaF=bx4vq7$BnBW2NSU$DJAPNdOV9jv+}y(-ODk6W-c%vi#<0gQLC+Kwj3QIrikY zTc0|_Lbhxv0D|rgCF7+3lx&viFVl?K)(PPXh>@ThNM!yc|F>x?b+Lbrb*%5I^HKK1 zGZcwQMmXFW2 z+3Et~C2)`>GMr|*J7)3j_7;Wv#K|z#cEp{zVbf%GGK40x96ld~Qr7DtrME_$ zQ?X7P`H((%l03{qi?<37+6mzxD**j7B>S^(N2=<$(96K6&z%OwIWkn-T-po_Q{B0r{~esWSyruT4pYWeAC zMa24Y>s5XwuEINDI;YKL=I7UK~a=dAjl|YBtuKNMjldwFB1Gq1f-{?TSavn}jLsMHD$- zuFnd=_$YfTz%oNaRP3)9;e3iAfgQaAzsezdpdW8U)lI99$7AqG2Gk<*RwSC=h1wVr zXB-Rr>3#)kyCGk?Q98YFl2wnc6i5dFX}+4B*h-2##yM(xBo(ZS*Bg0o+_0h$EmIvt zED^_HrWmtOK(cnZf5q{%W;d-}2rM=V=#klnM)mB!M-zBAQ2mYn8$MKf+?DV{7%>*g zwOv=UCwRL;EMHl=6=aF-NQ$gbk>PbTO8VLR?l|eh2mWCb=uL@&cU2bo@26W|!eM@a zo9<@-*2jkkA+t$^`>$3p26mHCu1hhM=tdUBD#GV%)aFK}b!B7TtKS*{M!DKBp_ge!G6~K`vWi`idU(3oV%Fz8K(V z@`{_tO82;zQNM-iHM!3f_smz18u|4mO7JxL^H6gAqxS{Ta%@}Qe##Gd>|Nsh5_R1k zStyZTh^P!8*=&49;{)6N{ezd2?PoxV;8kCRR-#nSI4bx>KYj_5o?$G(OvNeY?E*G7wth3!h5 z(L59sUm7oVvRE*a$;JEk=wmp+N_Sn$is~N@=UAc`EvE&8tQ3NFr(3Z5e&2t(o%ih@ z$^ZK+za3*NxJcphSZe$&oPwo)S`(w@F@$-Q=dU1(S@``)$mqBnI0wZ7bBVs45(LbC z!&Fh>fpkne=6zv^gbd1UI~D_BC=9aBZ3z%?7=Zxcr=7(A7gH75v4$igC^k8h^a3FN zVX8F_ceX%eVc*+}cAmoV0uCf>FNYMXkP-z9apPHa=CLoD7@8HNJC*=AjPfeBj2$N# z6l|J=*eCbBkcbaPK9{6A#Y(LlKNy$QF#ZY-@M1$kSyn}O@`f`vQJ{zTahTAN`OzJQ>s#T+ z9vgqjq)6Efr!q;WfbzMFnAjt-dnIWqJ^O4}vl0Fz(*johHUq1NAM6=|Rt0gb>0~Ml zK9kH51HL8`_|krXBVF2wKxGr8)0JV+S2smBPBs0Sj+9XfQ&RIZnEy&0h1LtDi}SJ3 z6LCDE38V!N!R4^$9vk|rQ_#_x31@z_%SNp9r%ywB$WVuOUaHtLHV+AdFGl-YSqSjt ziVFPq1rmjz!GdpQF&(Z5^~RwgDbC| z6sulJ+M6S?b&3xb621o_=xC@r6_EWU)+j7HgWAjcgTvp+CA+d*YABGD)g~M|tl{d; zxN6hO$B`h@>aw-5T31RL+S+@c%#&(l)LQBtRR;{8^(x$Ni6qr^CjC6u{DG{*u7q(~ za?zV*FyXEQf2Zi7v`=YsrE!)v!Xb6l1o+i*E1Q!E>t_5>QlIhqn4M6Ap#MrXLPbz> zUWlX})-a8}|6CD|DC(>uy-~F>J1ES`PhbGjM{YKT_g1vlD0akT>f-x&(Ab4OOmy3M zIVQrBUZR_FJNDePkvUNhPk#r-Caxuy8dG_2l0iD2#GRcXQKFQye#f3YNYw?xT;)CMD+)h$v?z608y^GemZ4di5{g36gSzFh8-E)payInj*5*U<8 z`(9b(fR>`7sU)kV6gy1B>-QC^Y-CaX) zC&7aU4-lXyU;Q=nS54K_EM_~qvw9a#oq89i?&rD@t02yo39|ebFia?-h5pAF(}MTa ze(!?HMJakbl7zOtEko#I_W1dq&UOrcY7&>Xsh|8JS9cE$>sHt83AxXP{w}9zGkey- z(h7#?AxA-MbV>sGpGXS`=Z*8SI7zGZ$KwzJjOeKo) z&0Oh{GF%GdE0&i6tUMB8vgB^xmpx~2`1bjj&z#=acvwHA;`ZT`ninsMix?X0g6^` zU3tdR$3mn_ruNY)wrRBJEK8e+LCP{l;Np-z);p0V$vuP(upq1#Ui3(+%@S9GkulYX zq=q_vkK%jctJZdoTbWiw)0OYj>2J=nPn`xNCkI+rM-8 z>v-=NBeRL|PunuAY{Y5imn{&KBc)k}5sMz>XD+a8bGt;&a}bejA>SA^rYi3~U3k#5 zwD}DE%}e|wU=b)5A~%~JPm>(9M8jx!JMZ!hJHjb@nz74jDG7Upf!26SUVU2RHxF&) zC6PR$KE0+?v~$KsAvrP5b`6`VF;i_;JNfW#IbtFl1+;tIg}{!dd)DP{;u{-n*FK2+6#E!ytUN zuooCOd$S9(aV>z{q_04G4^zXwgPq=k1UdjXpF`S1Q>!^YyGZdE%4Dk?x317M+LgiY z#+$h?oRa1EPsxivxvTWo6*p*Hl8pZxZ%iPxTq>A`MkGHFIWRXrM_I^oX@z4~cfrXY zdr*Jo%nMTQDKu7m24^YSoUIHr(juEH#Oy}y5)8;zEt)b2bD*}Mj4KaubIELvIH(q-8W|R+r?N1|wce(=N=*20<7cej-7oDWBK6Q@_#ZR!rdxK^ z$N^mwuLh$0RYQ@}nO5V>zkKMb4*fZOl~lZb$#`HlZsgZC&KXU?DSz(SKt`Lbv%f0- zo+~Xy56_BUT#?S}o4dlJQB>ZX}( zPOh5g(q!dvrLcUJIR;kfP?6uN(EZUxW1qAYYQveZX=MXgb(!85@z3dbBWp{?63H^D z!R~NkX8+Hcs!s^SC04VfX-U9#{3U~C*2U}o$zWB=eoJs!M6T7){bIwTh9xg_$k~KBxCk z0r7U>ONe`LrEtU#hv%6w{5q-#g(Y7Y??~GyRZX%&(LpH!8wYNX$8%OKC>_<)KK)+2 zV{50-UuaoEgBS+Rq<}Or-lGF!by*8aD_BF#AGmy}5o(oO&KWtR3x{7#{s0*(-iYt$J79?t~D4M6c3XGqTBL21h z@i$5FwP;Ch<46BC1ya2DJAAC6GRf~;3LJT@dm@V6LXy86kX+?ZK=VJ>Q~FuD;8T&A zP2m{gXMpWZY+Y{xEPl!pp0UI>)XapoXaOA#em}}FOX1UHSSlqY8Y^74lJVZcPo-TG zq|JgHT!1jIhP&F&HSHwieo7gE`1bpVLk_r6fSHZ)uIqgv<~V)^<6;8gZlJuL90c1S zGo!*yua0c7Ez2|^EOh7NT!Y!(tNk9nR}sM`vCIh-aX8$iGyY@IhOY9D((N2jbQoN@ z%rvR&temMdQf5Y?GICgSj0ZU^mUNZAX~-anyBd<`;lk{sDcEL?Rwt8M6il;UK(na8 z?jZAAn(ZICGJCP_8e3eI3YO<61~DNpyDREmhiaguB{7b(VpzyeQlJHuG`xXf;7d4$ zDS(6Mw9`>;NpP{a8E$V-`NTebE(0Vklm!INl8sZPFUu2150Tv6vhm`UQcor^aakzY z zqp9=RwIvLi)GE_9p_NyV9$t`Fu*sV*%6Vr@mi&sV1kO_g2L_F$%!Qg5QH|>Qpi7e% zK7h7FlD~btfFngH{+qW;^%ym0y-O%kCR3fH<%jU^I~F=eg`6=Lf)lzz$@dQlRl<}S zkJbeoV8!|)_d8<`8>E@PQp`tI^s^O!Y zKcWCbbaIVHt!3K4&sDTp3PJxCuPPx7D$*NNBoHG=2`;q+fJUeY$DGBWrjEgkNhWu5 zG2MP!M}jPemTpM(DqO3~c^<|EpG3k}WK_w+ zNy*u$5ph$B;50J<1P;M!z4~xl?J81t?Vp7;Rq%w9lI7e%GctpYAnZ|0*11Hai2Tp+ z24>81hhsV}Xi}~AqYxUH>sn`&s$qq5bq>pew$T@1mT@^2V`qmkgA0#G!#N#-kqd5Lw|A5SGJB$LO7k)xjp)g%tH-SyXBd<7l9lzSc7?P}N+@`DCk<(b7>WR@{{IVrXllphT10-fyK7c9anpPh56NbNl0Yj?VDWpJyyGSQi_GnqRD{t&unh z=t~jKsw84vkTXJYb8zrxLh($S&L11p?3ylR5(uFB?q)H{Z*tG1_)lL;h)PI_aUe^H zBwvRcCFALWJxfSz;Yk&DFMgmN1doyOpR}9-7$TY(65JWiZ{R1?qK(+KmpN#Y%JMPX z9bakev(Aon6A&#b&uF$mQ~7OE$-QK@`+O>gI zFmrqV;89UTl(;RZ&YG4B8C7k$eRUtzpJ@R8{w6;!Eno0U?cD@c$4-uyht8fr)nC`T zltynlwm40(8RBzS!bF>PuY=G$A3k>I2TIe}zemVfvxO(!98?M=;) zUu3iIzVeRCb9Z*_-e?|RCTWd`_9rU1b0L{4G>2jHGgGw#d|H*p;H_>XX=(HClkf{p zOGsF2mI)g(YUcUQ)MUvo>E9mlT>rLzF^%-^o^VTXi)h^g^;a4acxXrw#*MPce)ifj z@gSc0A<|sw!G2C#&Y#fd?2r0uL1|S<%IM3Mx9dTNzr%T0A#o6y!<|`_d%)<|7&s5d zTrD|qYdnGT)g1eli7P!Hprgef<*AS!NT_O~pJwL+5XzTf=40kM-s0ZrYAa81^D!e{ zU|e`c-_hYRUbcUyn%!~j`)P6ckGdOgwmll<4))=K`!!?Yz2&~!3MiZQEO>uepneON zlU@=0OOW4+Xf9vP^R{lWpZTYCnB+ym$y>5?N9t#9er0i3Frx4$2-D@Ot5skB+PyP= z&>F!z2HLD7Rv4U{k^am0%+`mxxhIA6Pr(OJ%K*;tee2HYg+94hwfNmPg+Z1>lH`du zVG{u%`KK>(q)n$dcxxnI*C^uZbKwpg-}=r!5;6Ng-`H9mE03TZW69_os$*siUrx9F z{mZ6TY8ns_zmg7!UIe@yiy+lCyiHMddXT2Ci#Jh*XqTsx=@+h8i8iC+8;9TyB@xmO&RLIvb@-bPmjIG6=^DviabL;n1s6*s~n3^bDnhG8dUA*7Ooi2%Yu zwB$I71EUByB~vq#EM*fYB*Jk8u`Ne|^z!9eUCCuY0K55ks$h!EH!!Q)@p2b8yx=w+bhsG!r5Ytj>I1Is>;(YoQF6olcv};}yqwYvq9e=Ud#~PYrTq@K`v3F&+{J!*C?*Cr=Lmg9;2>{KOY5 z>U|jU8ZSt1W{F-9iW)3lpaF0q#aey5Et23MFd9C5kxst5bbDeT2$2AznceIl&=o^R z^wm;*tpAJ5J8K^G5dfD#c+5$S`&Vp!fD9??JNJ1LtZIcyx51Z7pv9UYT9kmdQ`{|T za(I3c|0ihQ&0kgV{dng2hQm}Gr@Lm8O(lMFQw99QEnMEIw~ktgAq;a-X{Tv^D0Z%abQGFV5U%n8V^OL% zp{d4?;*EwA!2*QG`hexAc{cC)$lbOrf?JTboXIm|E)e{R@<^NV~f_&oHB^L zgX@Zk;9K(55XIP5C)kN$=YC0@-}vMO#vAK;R*KiBYG zm;Pq%7icj-p5J-hgvmeGMIh>L*XGr_fB9nstBLkF_5O^UU1ex?TjpvKSIm(H8fA$o4A%xjA7Z-j zA(Dir--8KoRbH>#B`{1dJ>WP{kxU5&)$*`ZK7?vZ&{VKqcVS7}*N`6N6IPZG!bOO- z&iv}N>p&y7i(K(9I8Tnu6p;V;<=-7L>c(jXh%3`Z_AE)2!cZV$n0@qLKqu^}OcW3Q zNTaSqK?MyE7|(v%MTqk_q^3HRqe%WmBd@Wq@B?X(4}UzKX1GM^UJk291R=KR7N$;hrrsj5I5U01m^-4lyRtvIo3)E|M z+{a0-Lqowty$(vLHG_90!9e*VP!#+a?G%AlAr!Nw7}m%Pz{nf==ln02wINg(HQOrj zO+(e?RZ=2A&w+A?;u;27-Wgi_%QVw|mx#+coi09fP@vGGmQ_+@Pf-8f?tBcvYeW!D53?-{G_dX}3?)L0pw{SL@Kdszk8x#&+bp9wYqrLF%RXY@x zp?-XtqHavvu5+8p-tz%;(8bVYxM**gowHRZPEgYKuN!6r#n`I6I*56L?Im`rSOm&? z+@rDSYCZASphz$SpjWJ9?J@bI&kENy@W~pTm%bBrn z{)X~Y%(aLD(<&JVi=#I5fOZ*b&a#JZ*aU{1ytV*l@5TiB2<(Tt{K7D^s3Y_kUwEqu zvCKULOW6RujBi78qctVJ(Dt2wX*Mg%v7%)b2yNe4CNHR2VW43A;zPtO;JL!VR3S5= zyNVie8D_<*+BrsmU!U089LRSkJF*Jq#Etrp@jiRn`CE|_NR9;p_Ylp<=5xpH7$yDs z4F4f+>dqRzGh-@#-8{^upfI@X#DvpN+|48%(<;$HyCHj}n(iSE{yJ^)vjY^^4$iE2 z*pvc6vzB%J=x5r&)J6}R6-CYuP5R1CPV&E2zt|wxrx|CMl1Z;$Mzu4?#W^{fevnSi z_iXX4Be0v8+jv69sQ4PUXGU$dzJ2W6-uA`G+mU8WVn`#n=;e^xb)D@1W2&fXr;+13 z$<|^Ve=~AExDE~Q0Zs4ei~Z4Wo%H0-9I&pPKizkv*cEn=3lgiS!_GoFHV@!$ZgrJD zCyzg>?xQ*g$}|1A>}@qtJ0}gS%h$hs3}1y2`Sbie=;~7*!C{OlQrf@d zFLPxi9#yb!r)xv;-P)h;aql#bwPF6Wg*jQ5W9|ZMhx9&Xb-vjXo$58408){o@JD>=MCbz(?3Q-@eIh1u9(4bew^a<_hn=Q;>yv|GL z&OnRajW$znJVwG(q4!tt79OrWIKX*2X6qKW@nf`nLhbio4EM!Q-wX6&x;=z4Z>4e_ z8?m03td92wnF*0>8`r|kt^QvVvZm6c8fi$CjCxz2xkdw0_s|Rt7-PJ?R_)BZZUsQW z9|L+}*+R0;6lq~V=8=2kiVB(4?QH8E;I~uvWP7oRoaS56=NQ(r(S~P0Beg=P6yfk2 z*eoZop$&yGRAYKy&$TIka;dlskXo#I-(a4}@Er`ZgmNvN+#n83Pk5H(FheMWurS6? zUTnOh9-JWwu{3IOG#Y7~zT440s9ej+Tni}7KYDQ(YRpr`JH)$1!L!NL#OAX= z5O7l&s{SD|2{&n)g>6tM9>ijXB&G%iezDB!4(Vr*buzl)eu2bc1Kv}wi8pMC38qj7 zuqeU~(#02mTIGQJVDbVmP^Fj?4xBv~%#{e2Ix7oU22E&`QEuH(`JQ;XP?NjH15ecB zUy~B=LFrGNG+7Q!?NOj_Bbux7U_i4DA*J@Hq)cfs*zXtFj%!Z-e)#Fn656ozi>I|#D9Fb zf3n;^VoniSbp#bmyP;!8O(3~#dpE3uahyE{O4oV0h zfo}bOT<*W8{Qpn?Zxi@G<8p-nAUYcglG`o-29As!o3gN}6oAIS8A;>D5i}DFYk|NZ z-ctPExLgPV0EtYYwQ`|EF2G0cA1@zDr{H-OQA3IuyG&?yxDrFej(_sRSsGYJ z$6l`Gn=T%VytB|)%q zy<3CHWu%TcTmuE$JDyvY^K1;+F9a;ZK-bxLkkN1)<(i9p1`6)zVNOniX+!VpXE2EvY8)9;1ivW@0`A|!@4_9Ru& z-HV_Ew;BU$jBy9;iD^%;mEp42#GPUAv6j5MR>p~=il?ux1d22G8EAhYxY4Fl#+GY51vJn>p9WzGx~y~z?z1LoN_$1KD~rEzZdOM0 z;iIa4dVP=l*ty*( z;T9^5OIKfOL(Ur=UcqeU%uDy}V(YwriC zYU1ol!Iws?Fr)THs;<6NA_d+uLKUlHSI1p zdF0Q2GzXrS5<$FIj6Ksag#y)-6j2IKyMh8rlfJ^Kz4;zC(nI+6B^lqJF5@QhcMjiC zY9%tknr+Wgc_bd*VMUrANoTa4D=!({vaa(Nty}RQt`>Fi8$UO79RfNB2*mkSKp4N( zZuH~)UM192(_bMos3zE->%DzFAMG_0Iv>`=;-OaeGw4RWfBM80=$OteBd6fNOgXK; z=_byNU@2}zoyZb_Vwc02jh>KhI0v-z5P;r9}}rR9$2wJ8@)`LPe;} zkqKaa^ z@o41ma5Q9_18Jg7wE%cInZYt%>c)Dd>zF>`Qwj#R$!VXhRImk;iN?lgUA2hUNx>6A zjW<-pCG!;Kyc~IO?vx?87KVC@g7rLH@YyUnG&{WVN-vAaUAc0yPs3Bcz8wP!X~ePO z_@{Z=-QzAmN9Qn!)5vwrspwPcbKPZ-kkLgd=Atqs9```QW6n(dP1;7k=NZ%DJE~$K zfGGr?;E7==oXbd#d+HCAxBdbp4o4PYkWtImW}f(k>4<|cz|kiAw&pa+10D5?T`9V-wYp#p1!X^6O57^hExL)}_l zvn51}@og8*PPxWlEqk>Iqm)_|{amZ-AGiY=t$uAinRI^~Jh0;hx6$A(RidagU_>#; zkWRrmo#~9GuGl)oT^Q^b;46!)7`9l{N?vrQ1cTJ+cxWeKp=Vt|qhX&AruC<9b=IpN zJ{G}0+o-xB6|_LDR$1bXh%SH7Zv4m}ETKbnG{GJe?lVwpP#HOwbnEP&n?huE&!x1_ zdhS|!Pn4@Nu5)t=R*pJ3q58vo^;HNbaQ@hfDZx0^m9|FS-~B9@D9YZ^aPh+tQ)!Rk z+xBtsOja>D+`xUBy~=0o7JF$t5!!jJPO(19-RSVpFoz-UwtRTq=twiq)khaR zE5eMYEP5QG=%7|*dW&nipygvJB-!P9V@NO;l+LMf``p z2<5_up_@-GgXboHU)K84$xYpCG8SqLz!~XswGSJr?NLe`c5o-jimZvWB!_HH4kd|1 z;1mf_qyv?#j1Y{^rKTREc77-?=UGj@eGICA&PcQ2s*Ocvc7h_+(b$ERm0b zvCOY=poAGZhB)-0?5fry_|SS6(cWw@-gwg^%Zm^3e!D&2{^5Wrbh<>zY^Zk*yHRnJ z)~h0FW5K0J`mXo#8lS{bC>`+e2xZ9`AL)k}pK@;T`Y6R-qlq$|54Kp`=HkWPdHFwL z+oQe*^iuNCWqhTd*=hrcs7)RtF{3eY_AwVTa5GL4j#v-+vi|-3Vd+_1m**S70`J@zOAW32)_u(!mn@X+=>;Ntg%_NO8M;KWrJ_|={6 zYa`yLqYl+y{N^y`qVPpukwIMF+nr$%d?uvLxRQhiK|=6ere#S|^M7#eGDIVn0TN+0 z8~9%qfBDKb1-z{V5RMRgtNX$Duo=mM{t$qRgRMA$LC-P?Ezh!(k10@ z#Q?tyf0(8akMOU;AXTy(R*e-7mdpSMFod)63swq#X$NJHbr2?17-P752$gIAk2~cr zL3ZiDKu==W8(F##O>LQAJ{mh}1`q`&#jjgoLOV+%0bG-(uy|>*?xw;|+BUd`BX2kp}RaE(fbvYuNQE379(P5n5Lu4qTB@)XHiH6xc@Qg1SAP#r> zF>XCGZe5RM7u%b&h~kSyINVKi6Jb~$A?Osr%t22f6h1VR%9@c1Cy)+gP@$Wo`&o|e zlh{ox^036hy}{B+@Nz{QTvpt6CV?!BH$WHkodN6R#5=oE9Hbv{YZuGi2FM;F;|-7U zToRL*6H6PpL8 z!_TMOd6GIYrY?u!OcAOnWo1wyhUp^GpiklbgRGE&E*rNgkwKqen=&NRLX?j(0;=Nv zQw=$9si6;Y(FaY@3CdPwQXK`B+Zf9{8FSFfx?5#sRt5e|GOc~g5etGD)d!)PIcgD# zA-SI(c%xA;YR^~;qk6lN;J8s<{XHGg6y+SN07$XA=H3M)U$rDZrMWHCGZt^kg> z1jeC|ZZQ(ZJQMK=XETZxKRTl{+#jh`6>~VLcM>Z%i&kPW!!&eXvb0ej~hO|$11-AiJY$X1*1TdMQJTRLj7zGqs4GC9Jh~Ch~ zkFM;);Rv6gh?~|(aLC~c(wwC&K57Fn-3!WQ*T4a*u{a&*U<=)T6`QA2SECeCELMO2 zl#V-?0qv-{rUn>pVsWf$;z??+ceA~50`TCo8l_S?v>G1$8YmXY!r?P2d2LxbR3~rC zBP86}7hn)Rgn4z#(mN1Nd4Ayrv9zJer*{0Q!4I#o zLP1%-y5`l-7yL=A+PsmKqZr3V6I(A_o-WxK+6J0Zi1L)O3m|MNlg7H+C{(AaLsM^> z4XHNY2qW%k?Mx+mgk$@-tguZC2DX%-fQ06vuo$zFB|>G)3`*~5lQ-KO1PyEUbo2+2 zTgNtRH6>ax;I+qin>Mmr!zWvbW60`;BQ-F z)yZzs7MBT+mZU3Gz3U*VNB2xELjlhv1}onY2UVezkh{CoUvWB#q%OFdV}w_y%0G8K z7K-53IFr##Qd4P@Bpzwn=5MjS)ldS}6!Q|GfdqGjoFv*B;0^RB4KZWItx2)L(cAb- zdniUHyAM3&3`|PkAj<=OF!eFgXX~tXUv6YK*moUv>(**v{i_0$2*>du^i=;NyFcEx zV~FLsT>pVH;J3eLL)p-{WXki0;isMfg{RN+26pdd-ViGvA z{5hhi=9(80YSarp5+rzKL8jlT{gmvm8axbJsMi@6Bx}nlj&6)neu~i30 zrolFzIk7{EMqr9P#;gw=$}H0*PK3t`Ox{CMe_BLA*fQ=j$$-}xH#E=}eu2}P{+-xy zM%b7SfT7<6-Fp#(Zj6MZo!?GSz6hhmiu_HR<_jjbkDdKQKyf|YCmAON_(uDgkd14C zC280qI@z4+``mgI7o6o3j$;K2k<91Ji`+iQt-?M2cTxwbf9=K2siOyGsiuf^ zZ`53CxnY#&|2PtI!wMKdABKfK280VQJmQ)~<>DyVdTg?Quq%iB_y_K`zuoH=pE#0! zAcWA>8Ea`9W-u~Mp)tb5`RL`XBnr8->c|Lv=ydjv4|l?9YUc~RSvn+M2Hmt(?9a37 ztc+<-$<=jz7&53kqP6_S_C*-ZU}w#6M}wPN4C`%59Gsuk8PkCJrGB&fgWl@Zjn9D* z$UC!Z$6C|@9W=5&i)PLg+ES`?r_fkFO(WC#@$wte3|6}BT2C&u?D#CWbY`uwZY5+vc#=yl_6a0cL6CTkrS9)H8&Y-0;MjL(v%T$N#jj{J^)gHB>DuqfWbAp4R1p+) zvfI{HdNi~74)OKi$ge5v&}LANV+Z7wgy&iCZDkYB^5h-N2>qBs3LE)33Gp#rIc;6D z!#=iP!y{N=!qky5AdMcL(5CMnciTRMH*X{EYix1EdR`7B5c(>COVx|`3n^&ssN329 zBH@X&ACm0S1Wi>X!)ULJl~vXWpJo(eHyMzkJWeeXI`>Yb4(K-0!o_t^p^UO z?XYnfGWMvOdDR^%^0RJK?{&vNDx)0%coJbm&B*0;+O6u@B^f4aouvFp;$FAks9>o~ zo9!P6SYCezp3nGtssUOz;lipp!Qna>3~?eQqxyByLt!J*DDrlA0b449dm@yiTGP&q zhu%cfNAWKlg)Y$x8upVR1JAu*Sh|cGU%H2VT%g!lL~1(2rMfmJ{sIt@DjD5A&nNv8 z|NG}0PVIu_gDB|zeZC}LI6XtS+WaS<#Pw11k$cZ|Ojqom`|-=Ge|->*$fl%a%Iq*? z-W(Knx=`{HuYF-n&ffFcA9vcv&*#U)XTyv%;W1`y&9?NIZzCmyn&-pAbP-F zwVnU~s2558!{yM)A({Vhxo|jmVJAXPDwt?^MxE45^@H&^1i)uFB8@}2WZDP@@hpv_ z=~PlY>_GiS@t_D8ERDgckAri0h_>#BQ;jx5u+p%&B8k^~(i!ZQd|`eZL(5^@6?Bw@ z{|dW9q|hw@=U5h6&DMBaypg!{VWHfpaDnoafrCMC3*%{>;tl$tCeH@70(XEP17Rh8 zELnO@@*QzxV#hJw^n0-em{%U>cXh+F2yaYe{>zo~^Q4R<;V5@!OOfeaer#j_7AQhU zy1Hy?;@|e6n4GP5VRS;^(C(=IxpAXmm&A~K16xEq){VtkOoZ_GRi>*l@Pk;#RhHrK z5ZMvlCdRye%kS`?sQh-6UAFh(J~1&W)ubYC!TYY5tY;MimF^1l5#-|61M6xzu>iRI z1NQFI>Jqoo^X8GnhAeUiwfgecC414R0c?IhXK4bw)+*_KBqgLFL>K`M ziRJB{OK__R#CaGc0&Z6lt%(`69KDBRw?Aw&#GM*%fEvW~L^{X??uH3$sKn94a|6xNA^>y^QHOxjIl$Rl{@O{MLNo)Sxl1CJ!R|q3g7m|OsHCH*@+yt_XZlN+UER#P=akvH(i>Pj zZ9B=egH`?h00@0BdAx=dc>BGIiQT(AR^(t$wexU3KN5GvjKaPb!9K&asmo4I9h%rc zHj%m33zo)oSO2)--u|chfpV9P?fp(E%-=ya+-dGP}#S9jtQ> z{UAJroak|v_d8XUij7C^R8&C9TRPFK&ruz|!+mHt$}ZrHX;4d8ZUl?ZC6s0~d%g2h z*U{v)H5X`J!mN|yR5^)KB^MNDGCD+$J?a|NtplK75OAbovFneC!h5z%gFCqnk!~f% zQs9*p3P++NJ=->Y4UwMPt`Sw0FLa;l0JDAl{i)~~oH#7de?%D@4H}NgZA_Kz&5Z|p zC`!;xX{1VaqsCLDP?JgP_aM+F@P1B}Q{xKhdltlwb7#zu47Z@r%})wvojE|e!5tgu z$DGOMMN0dRJJf@VAeFpoT*D^)<+XF--eUHv3{8pL$-71~4 z3sVrpC21%7k{*{+TC(7mUK=Q*P2lT=T0M&>(3JcffrS2LpDcVV*~i9M)=+2Si)Y5#vO9l$AqvHSt%+<30u)Q^s#Od zo@R`_A6FzZUyY5IbF6ijD$DQHD?a(iwGcz#q0$Euhgv(qy}V_plUEl{Oi8a?4|$Uk zgE#$uJFc$~42;%=VP zKV!FM%~YOAvLDW)XQ3DWLa{GP>RL#&;j*VAoI>;=5M$n=wD*5Zgy&gL$-+m*dTn*G zfvUq2H)i2T)#)K8X0vJ-;AfH)1c~KVdy)D;(9127VF}_vY}~em5f2C zV)xOz)C>3-qoO(3iIh@oW=;&5JBgyeWo zcVEW;G@jJj?_a_m9t|)x| zXZ_&=KyR)`GkyL|hpzCS#z$!4tRh@Y)&WtZRycpiP{kkQD%W2k4Ok1m$8R0TqYD)M zUTE6<*>RH=PFZjkqfKA=y!?=iL+f%!G$$TAC;F}^iUAY&6@Px+CDip1EaRlju$y|D z#S@6U*GNHL{C~#nGH?%0irR1V12jaI9Z;?fQPxKAn*T=LNezsrdx(qQm?wAm1Vs2B)k(CBedP_jFk&8p(ybFW<8eP*}VrSeH zSXP|_r$gw%cww9p`ivN&*{L9{Aqy!0zAzdR8~{0VXepEWJvwpmx$ze^5$>o2Hrz-k zH_hqIkb+_L3s4*$w*Z=}pQP2(vRNaEf{SVnN?%El_}DDY#+Whd23}aK>T8xdL5e2H z%?@*{Xtryc9+bp_#gp;R3zUfVP#6gzp(u9~nlkSihQ%hRtq?Hk70p6U$;sg*5?{`O zEMH53NJhlB$xf*tMVzC&5J=cCAA?cTG_~ZP>L$&m(fAUG!NMrP-e}Y9=r(Munic?t zaBPKfj1V?W%c+8~NWvKuXZ?>*d4)VZ7V_2KxG@EaY9M2>;rVS~~KN;%*h(CaO zCXywYVn?uX@S_CJJ^ZqMGF{Q6@RIWvIVL-)=r9r0Loh-hPoArqiy7;#s$AbPmB6WyKK2?rx zIYp{9DTFMee<5pBERXk>FI1c~#6Bt4N=o$fL#YvVLu#Tok3vZ(`WNCHVV1fIqk^i^ znd;subYYwb8dTTN`1P2`rhCz+eVJ=<vv})UzGTYCavAk`KRQMC53pGr`?2=LO<}0dCYEpMjzYiyAd3Q z5O zex}s^>M;w_4BX|3g_Tx$P@3PsnXDdGRMV zsu&)E%rB7a+6epe1DcwA@JBruyG365)9JDCYqT-=F-6Yu7JZnD=}m~@0zsWa47iX zAb_z*iL8vY%7o(OPQYVL0q@hEDz~gW`kh}oI=L1Z=7}~;ooL!8mEKqyB2iGxFoG0Et-s*7#)OPip930w} zX@-9%;8qsBJtL<(^C4(0NZ3>gbsQjWCiO3i+Pw$swsh-=g6l97N??QBjs(E%12SVY zLuhGe=!M_9be6y7fH)YbEbFg~ zU|7#(npG4FNLk44j!8&>1C;r1^*e5TV&vJX+VZlL{4TOpmpkn%+Syo2)(j^Rrc={; zqS_XV*uh0VbWl{ekZrxJ?`EhsfNh8Z+M%9Y%h<Z_|} zvp_Z9kVSi8MX+@mUYpI83<*1kDv%=W{gE|pzU4&a)q6tKQaRW@%iVkZqq%hu>B|^X zi;;NM+Rvq`%G@MFAF7IfzqSLnjUk)-$8#r4M6aYbcZ5>lwe`ojBhn4+XFrtKY2A(q z-JRQ&8M;^kJ%x1m8xikTRPWx@`Ta>^s_41ZK!rm+Q^PG_-4Eon*(Z=G@FZRB(&PfB zVt%)Mrd1o$Nqn=E45yC=el7yj>GXTp$X)Ub~o|fOlQ{W#;REO#G*>|Es#^AMje8gnC8Ph;zj(yA1##OEiEul zRB?3nm>P-N=sAS+5H%60aTKlYsBupL$XMKjQfu)=^Mr^Z_VgCEV-lbd#U zKH|qVER>|I@aqm$y?DM0rv3%3w4f+wQxJN*SaDG!yW!X*YZ?$cophNhdhZ>ZE1fFn zTR}d@DXD6zRUmTt@6G%eu=+mL^-X9ckQ=3_aj|SbYF6HSnA9c=aev#fw35qa-7zhM zd3wR*FgU_GyzHl7+t0tTpYimg@49nn+*?Fu&niF>S^tm|Z`7J;Z8i8-tb7w+AEvUV zC>~7kv55)QRr~tcPR;)v=b)YB_Wf|A58Nxv4g_CtqErOY+g0$|;aasLeln?Go>jY3 zHmvK>P>d=_z$^)it3^|Uvx?2mvqnNYaS^{7(Q;rhG_U`BYz#j1iCxzlGsNrUn*7H_ zu)I2-~E6}e!i;bcCci=KK>WD95=(tXB<~?y^RQ*_TG?b-o&oFHU?522qEr` zI*borN=XcGFqx#&-YkSMku@a#vHJD+PZJJ6V*jVVhak$d$Z1P5Lc3OuEtrRSNm!cm z_=Z8jy-(|aD65M!`Zv72rPD8XYv*wp@}by`oQblt?`$1!6$GwzMS0g}4LTcPN?E#9 z)VaPyAgg*)e{{vTI&E(Q$}S(-KQrk1V_aRr|sxNgT7 z2*19z-m=v<{|GohbP3{3=c7irhRb)Qb^et_YY#o4;2?LBp%Tydl(!J!bXB<*?6#NZ zZaYt5DvEU9<#tay@SEvxd|6Nc`WH%N_rPDt2e-08%7NAt&jo(>-`8D~roCvdAGuImTC<#9 z>(t8&yuaoYhz)tOE_ydLJcK1!KDi$3osWhGnkE}R+1P#gqD>?$l;Klv;|^TSo<}sc zlAYf=%TVr2uk%LBu?!z|ZjuqH#SJW34@_Ct_-^eZ5&nwWZWZdSwayiBmX}6Gk5=;} zI8df~bLKOQDu(8$IMk55PrIT^C7&&E*Bl>MsS;UALrPW0Oe#BThn zKlnEtLA(#r2A!Vx;!W4p@(+=`XE)+bn;Z7UlzA4?~D*CVP+Gtn+=n z^dC9{7xmHg9i&l~gk#IT=Pt;>NxGC!C2V%ipi^hi@9c9LXStl)8P% z{aX`PbBoT5+3ay*SbOr+U zf<^-Apj;*$D&Xw=H_bwUSU9|^$ph_Di8OLl$&1?0L3lN`JO`Pep_NFaLbvOSKMXqc z%EL-Ea#~jt&7ZV!3NqE1KEgMCE>TrIIH{Gv;VU9^##z*6U1BPhK`qMB{Q{ zU0E(xDRf`H31wt8-=-j-*%12c77Xn-Fg@lG?|TD&@~3AT4K#F%UZH^#@;h=~p5Ur6 zfpgw!U-aReYY9>m{|2aRxBtRX&`}q4np}KR^@L(vPt=7AZrgH$(QC;HMw7!6QH;eN zU$Dc1!X1Di!r#~zMG7j%RREiL7>Soz;sMN$$wYDi$DWi&_Gnw-ByoVVc4H&>#bc5{ zHq9_yfVS$bW)LlPh>0~i7t&G~URygT3T`)LAcXoe(iSA*C>233l(Lp~F^ov4VL{6r zXQeO_w^L^+8(Z{vD^*|Vi+SAB^~8}HJliKLd2wj3ghY%v8r5tZ$xPK$D1%I@5-5*N zm7GMq@>4M@J>SKg``VNWJ?~S#?L0qzmxX*zTRKvyU}lX9@$fM{ib(%jT6^&VJDKB1 zQhwj%vd*pZ)e;m5yV1QW_)OXACS=bkttQh*etN^w`$|jLU7Q8&p#D4GMXe5e z&eR%~P5x5xXsN$-EyGF?H9ZEAPnu!9nSbkKh&r{Hbk@!6(<^0ceK1|IL@93y2u!;c zI@la-G~lp@s~twM8z!960ADm$dkr*4H`GU!)@UI?&*lf`(%RKT!z0G<^uwgKnlc*~fPcy>X@puHQahw|Y^2D~sa2aBY|p z@FdltUwUxKZwGB;!#W}~JS@1DW8H7-em{M%^7t))QGnqz>#1xM{`q;`9DSf^!HNf& zA*O@fXu+@d<;`LnV`aB#Cwu4}yqo>)Px`L$`TNF7L2pS@mF_>(j{Oi!A#REHwij=4 zbxlbD*%oQ1@_IDv+|Cg6uK`|X?4sL@_ocaESu$SQ`0D*|4JhXq1_-KrkDK=OmeSL` zG;Ag<+Hut5J0#!S-B59!zskqbGlS=0`h=Y!cl~CQdRs$gPQPUK6+d_VW4!N4$|$3& z!Y`NxNYh`lv3@0!i+Jk74$4TWCq4SQzsQ`P{S3!y^!IzzUwR!dnjEa8X7nV|=ZsG2 zLB zTr08Avqoq|u0s4ydaj>{^^Iw(Qr1*cXygo=lWJN`Mq&dxs)sV|bFEbbWTsNDz>Pwt z>)6nDpqVrQPD9q8MiC@2OLO_nX{$9GyaNY%T>&v0E-msR%R+_p)a8ai?({28$MXwX znhrI})=x+k3MtvyL23zrpLY&uhS?;WZeI{uQfwokUe&cQTT+DKy3F z?RY2*%hl8AtjY7tccy>9;!aj4!KZAG>FAMY%%6N)f-G3{AA6g<`FQ- z&yo{E)Q`2Jj74i`!&bi3{MT86Axk9679*pZa$nNcmEkY3Rh8v5G`oJ!A~otLv;AX_ z$=+U)qsPg#Y-34W_LE1TjjhICTuHKiO{M)x!(M2=ta7QJirZ7rTX4?qXn=Am8vO}| zXf>c`)SOQmHf95HW#DI?_v62{_^xmC^fp*oUFWL z(!lwMJd^@iE*mjnJwq68Pryf86r!f&B3fjNG_~P!QQLVT*p0bt-c6N99hl5Sk1nA= zN5wt0sbj;r7{KyE4vCR?Q6%h3_A(Z*XMKwLT;zp#-KA5pmB;6!KEfrQ@Odkpe|b1f z>n6MC+TN{qm7Gurr+Gd?78cip^k?FIx0zwK>$lEj{kAA?wx*lMmhS9mr8aJu8?{(u zzwN&BFOq$=&98>(E4b?3ZFtN_yZEiWvoV(=?p7MdI&X(~KX}VI^4#Cen&>yFNh&1r zR%4E{j}hYU7gU6BMXL=2V0q{fz_|&0eXic>iBlp$(+NVh@26_~?Tkc6zk`e)DXi4) zLq9+Le#j6!Klm33)+2rDT<*PbACIUlZqEo8upm`Ve5|=2PsKLuh0=vwigm<2M2S==5u;GT-7ia3T2N*@YGc5lkc1@@$e(wuesPUj6j$?Z__ z8E4uvHf8Ot(<~Xca{eP-3c}4oY(#eEP8G{PUnEQ8WN`>Fg zg^P}&wm;Q1*SBTb`+g;?d(p7_*P9!hPjz%8A2Q!QQGPz@-zsA9vQjSusEhaSwhv*N zWSJm?+N+%0OFm1xE+pA$$Y*?!PuL&~EkWy{HPIH4v5r9K(Ug7b#OQD_kZM4xPBa`k zF#dOK{BeiMy%{G;7z84kknv^7c}r*xtaExAR_)@#YK~7X%W{krAyO5ZaMk=9*mUW|lgp>@&fxttfWVCc)knR$Uvy zo0=+A7|T6K1y&YX%cSDn6iRK7B#DH;$AIyLl2JqtMMIXqDdt}c6cVMG5tX5Q?IDqV zD@-<->%%I-yfHBF*)28Aq6!X$KR%SKAO~hpj|iyTwIadM7Y}fLuLxtF1km(I){pF8gIP<5 zIYMn33pWApX&#!{v0{RB`vxU;BDu^K*~0`{b1A%q2EJs(h}^5p1#I%F2PN^61>{7N zg41qAf{ejscD&|meDMZF2%-R+yZYH6c?#sR)OXX4jgrOB#PCY2c#5z z4}XG4RcXzPF$vbEW!%IGC|OZSUIUFK}MgrA);Yr z@HtWS;q+40io@(gswAPua3(t^?PrOK7^Qr%4bVeO4kfA_L$mykVY#W+y1K_t*RuUY zg)rYfW$`JA+sdC70mVC%BU_b|{@k=3P{rSxO25I;!o4j|D`sj*=~P6jYifuD=iv{& z9|T{}=)9Fl_9U5KrKoG)*c0sKnNLRdCnzMx9Unn8EijwU%=0rY#r9|5Ou-4nNXx9VF6N~fhF$5ezSKKtP z4;IM_z}qy)1YB)rF;`M{(h1L<#*&vy&>m_v$psu*=Jz4a>l9IRnVyJNYEy>5%pgKD z<}p&){o|_2z?il*kaQ>`rlK##milRPGbQY0*T4^3p>)c`u3Ya_syc9?G-nsLRTY0| zCvZ{4tR}%+WYUdNeMuHhV2Sz>goxj0Q(b1-OL$r3yJvr4nYw7xgafgDZoKH?wuhp; zOxOBRBzKt+b@FwFrp<1E!4WMLCtgfyyEK+5E zSV7Y^jHVNVn)MMd5mqx1=P=4;Ai7G3kz2&DCLQ#6Zye{#=W`F*-D8Da{}p zFOjGoWLjP6SwD=~c_1F*GmF#Sh{Z&JoZuw{nGwfu_mr3?wd$srXTHu{yR|Z=1eaIH zj#~L+y7)M``P%ZdCu(rMEy2&v;16E{=j%kHHNrd#hQ*_rzeI2{G_o$VbBYDC2 zREq}UuNzauw$jT5l@(4amJKQJ8LPN?-)@l`g+E4FDPXm?%2uAnhhxBR$xUD+3m6# z$ck^RO4yR|B8!mj45_!uF0|r9(ndYleHSpI%Tl)Svt(p+S2t=6*d$;CXntCLEKAzO zBr;{{D-i<@-Ih!y>1e#4O@DDVKgVg}E}AqwKp4qGRdLPZ?gQZJ40MWZb~V8tahL9b z2vXu2?ny!Jja~W|^o@~ym10=wLZ4$0#PUSaoyYw4o2m6*y8Wg z4Puzd7#@jH>mq#Mo5_Z*O;IAms_hohTDF8d7@Wa!As)~N#$cNkC2LM;61s*W&MHm$ z;++~2m}8l6YH^!g>R>%y^yp6)>VNPbG>BzlNf*VwsXHg!N>w0NZ?*(x-YSK+BBRJ` zdjNg;>r-BtBpDI*au7s8o?0`d*w7sOogT0(zc48@8okLy7eEpVni8a{#D;jz5+O2x z$1^20$>>%k^a;fUok*7g5x43^5bV4R1Wy0&mJ7c`{tE1nZx!H|mPpgcgC+t(ucbyY zEVX$EO3UM(ZFU1ls)Msk`~k^qmaeM^YUg5O2997zki8aLi|d@@th z)S(g85~VH|W7nyv7g{n)?h}9@&~VzmxrY0_tqsNd_sOnP`i6~silgXnuMZW{+1w+o zLE4Pb-0tXDo4S=~++I{4+0km^Vb) z`!+-0@2URDKVATVMZ7^dVDZoQU6ZaMnFuKh@ts@*VZ%6+k&eY?8x2`_jHE~s?2Oac9~0w?~m&uj;;g(Tt!OFoL{^V!}pRC zf23iJi$fHO^vUdy2P&1T7@KgH^FmYCE5ZlHe{i40FZ+X5 z7rB1bJ8_mXhpn?I>>vp#hoxT9_*l(Fs8HxS3#-8xlw~bA)6Tpk^sc zyaw|O;`R(OMC%sEL4yY1-cQ|FHlVRvlIP$<6TIP`n8K} zDe4sYDo%<*uZeJV+Fpg1$;}diqI?eTmNn_TBx^k);xS%6+5?7DkB3Q{JrbNl2k%fm zMu?|ZSi|NKj4aEmg>gu%Zl{z?bvAit#SK4fD64N~zYnsk@iXzl>G*Aa`tk`3yM5HC z(Bm&U@?Iewg0TKMU>nlVm~9*qqhtozndgbvoA!{uu*Dkh%6k92|FdUbS)Ot^gmRfs z%H&9^hWpq&%c!3+ZGM2bT;J}?Czgd^*7hpRS2rHv{Nt7$Jt8ZI*x;kYP zsA7XPt|8XF?*3iQr*squfe4H2gLo4P1^@_PYK@KrQ}J+gB8&t)k>C(mI3VIehAM?b zJP;w|?JV$k5J-caS96<4B^CpxN4`QUVl^I$fh3qy38Ile5jKanlwA^4%pybJ+>u?e z8P8P4ym^QSgwW6Dd=3>eXlN~iu2(6w!WKw#*bIdSlxTLRIer8WM`NW3tUK)1pyE?5 z{KY8V?V?vNdiZ*KvY(Cl-ORIsC&;u=0XNK(cJofO3K5_FvD;I076u`2sl*`D!#3XL zN0}Dt7pKdhGQ}gynf8Ie27q{DFKY+`-Qet zM~Tyj31O|wBm{xT|5P0^3*EDe&oC3R{f%hef-kAcau)7P;8Xxavff9D z_u#7_%AZl2HI#(nbIvlvFbX1yH%(#Dw=9e>u<;RSUL}kIblz@*1kPLTNQ-Q;=%que zq9?|uyixY&5b%L2B{0PfE1XoBF<1bae98&c;eQk+3gif|oP8l}3KgQzm@N#7VcemU z^*RXG@X^USegZcej$u5kopnbrZ-R@wQf z0@d?9Zknn&4}OR?@q+@sWQeFd_SBVNv)Av#iv<%4H%Mzoo z?(6vv1QNgNcID~tPXIg-C^Xi0)Y$dm|6X#~wpen+KEj2Gc%JJ3DT_YF!s zC2ksu!#WN9N-pbWt# z`T$CR4YAbnElTVyVADgTP^7;Mo{V>harteZPDm9gPqNDz+#a)y)-FA*2fdid29?9i z!rm97IhG#1cr0Bqk?;qgP9{8v<|9Q>7IhX?JUqhx4`*jy|;8&cu8_pG7vzD``Qd}~VWau{6APmy}v^i)5X3T@l zn9)*b#nC7t?-RdOLu6Lf#|WdJlh`MI7Nk_(AE0RKMFx(tC6vDhTV44TsJEWB)R-Y5 zNy2$lc>lu?lr)rqu6~`&=uwl?6{pau?wB3t9jGH;p|HK_2+Wl^PJ|`3*FX1M>nioE zO%1Klp_LhdLP;$A?Q8w}aVk~nU9(x1u15T{vRdFS)+E07YMN4jV@gY_wjNu~N_S40la4Az0}k+ywA%)J`T&6?^{ytYJ6INBpU9c3-`w*}z6wZeXXS_PZ9 z(j0)a^M4knApziMS*yMP32Y47kM+qaDJ?bRa@DMD02*ZTeXh;PSHy1?(D5ng%pmv7 z`J7XBYd+nEWk5JhL8HcjMR%e`Yox}`VPd56*FP5--<~>;5fRxd(e=8rf1$701^LW2 z3jMC^)}-X8;h9IjRfm1c(GiL` z=Y97k*})ld5-c=)8UpWOH!px|-vNWp?Vx{N3rTI)!Py-WpN+QixiD`x-1(AUZ=SNg z^leHcM#y0Wrn@1L-bqAhO%Q$i*(CE%@p{hh#6IaqCg(mojEpEy565k3*z1=c?)#5$ z5>AAiV?E|+%!TB6k27oS#a!J-H61uV}AS;gFVy> zmHo?M>|J z&U|he`rIM%-+{6DkqeGB*qhh+z*}_V$M{o-&;pwU1r(tS3yKO9FLDV#Wh$#Qlw%Pq zv3(q61I$Ueuv%?PgM?pRFpTZto!r7!lrrSe8S&(M^1XyulEaY%+LHw8HwE)tE3@~S z8ZB7Z%!U#XKZUDcSfti^L}``Ffdv*3Hw(J#5em2fU~n=Vf%+}xXq%Y!{4L&fYo4{Fia#lgWlUn#BU~y@(D4+DS*K#zEMWWWhUFk=wugJe3^;G@O_#d~<>GBaJ$myv zKDE zhDAXdl#wVCMoS5Dh>(IGroV3@Pa30kqmHENe-0*WwWYw_C+0g!*f=G6x`Vl>dvQvj zW`?;kD4i7g?gs6`t%N}V??yE%??=pZ0!vCAgg}E?Lv8t!y0=NkrkI;h8o)mNiSPVC zLlp|%0VR+kBWxJH1Pf-LOFIw?#w8e^g8$-v z8yc4EE60n+@`d+r{=X+Y$R>w&V!V^lyyKU=sf@qnQ~?>wd|Uw940F!`DOK)KTqOCs z4)ukmfcLA7$Fn;)AkPSdBM0N{8@FC%Ska$rLhYt@A(g}b906tVaddRdRB=Y|- zWKd84jj#CcEE}T#Q9qEpkNV-{eb{#ZK;zB{cpoI*FL(eUWa~c_ zZxr&sRXo7zKd6(({}?=N2q67G1Mfq^`;W@wfqXc5A28m3B%U05t4`goOWH>i-}Ae+K@i8TfybctxYpcpP>+ z6OF~=@uWyN0FkDW$z)pfs<*qs(&=}CLkNvgTyzUn}lg;JxF%+6WqAvC_)ePZe zdczMAZ@FBh*a=0hg;^_sgA3~ z@7~|Hpli^vgjgT1pxRt7A*a{b+_#%}tU3(|+0P=^b@4O^#3rAgc98GYfBeGZKbZ8n zlg9VkBzns8`w>JV;zY*TA>y-98a`-WC);7Q;9`JrquVY?bf)d{Vyei(?|4 z9mp8)kn@fD-DD_+bIpb#mWe(L;0z@6$cBPDc{B&KrlIFW&kIFe#q^@leNQ zWu=QTpK(W>9rU@d5P28ie%E=virmNs# z?#8KZS{L#EHHp!wPA0Tj=`Pw;_?bR@f1L%ZBJ#P?A#-S_}du2|ct2;luq)8#^|9jJ; z0ZcG;>LH>N8H2VJxV8BwhTt;5(f6h?2us#Y)JrK1%O-}6>ESBID2#PEhI(L7+xTqO z-Z;(u9p|?#$1)+860y4wMm)DTK7VoFbU_mJv3^p$|4#Ok=v3W4BdjGLbbt} zy^3+{=1Ptxgs5SU%d>_6VePX??(jhAn^%)RGcj97y1n`Cl}Eq0{L3;5@U}}v7Ge2=5FTj zzNWr-u?b(}3iL;Dv=wdV_dlz`%HS!W!zLhKU>QeHB5lgC`~@ks{*U-z_3mQbsCIzL zNi$nKAZgumqu}dSG`7F>2J-%&R~qn5?N8N`;6Uj9A=c=Qc#8Ys2z&N4HfU6nZEW+rewqC%~ZyTI@>KsU*G) zL_EBN6z*`vT#UL>5%nB{e9vOF(L1fx6(?EoRH9r0syx@zs#@t)&{%M`oXB_XI8P7-ot$MCabsY$oEX+m{?f2@#&A$ue<1wYkDKks{31Y){0|Vq&5e z%bkZw`A~7@Ylo#0q-9$rc)G#$H$+XF5L-H6I!~w?-aaDc>%k zxGuEzB#B-kfE9^HNwRyc?wAk7-60(r>puscnJToA%d%>#qLR?wGE*T_CU2x z4nK8cLY>sa&sOow7nFwos}BFVOcQlsopepME+|(<87X^XjaWY8tb3f2x?}0}p*BAx4p_A`L^k@XNy)w8|bhBIw*zr0OOBW%HaZfY;uP!d{Y4azUjuW_ka>Lwmx@)+jFq5x`Jss$ z0)Z%H8tkNGXjbweEY)D(Z;9qrJw$8AqMX=BJSa-$JJE*dLoAB40eG#1==0`kJb} zv8^Fo(ZRIYikrzsl%7EHh;_I_sXFEMRj>Z_Zk`m)jJ!}$Ymz*d>>y$ z$pJ?R6uvC6vgAjPEE|vzi}|$Z?W+d+W%bSx#(!sb(!?KCZ3y){b`zlfp7^aUQ`uq*YX!rW z#X=b$us*RafUy&bwMQ|2$0y3|_2|vrM^;JLx%5d;DrSR|TaX;ELzh3&i8%;gfZls1 zP4e1}i@lBo_2vjJ{skcHqlgS|k{~8Ynpl>;B3S%;1_BXeml<48zX+a(v-mFmwwZ%o z*x7b5Rt}Fffn`4B7qwBoFfH1UJmV|s*sQt;izG?iTSnzWT zU-&%|-;auQL?BN$4#*V1gkev)V-@}ed;Jr%r;Ry-<0{;aWr5(f-!6}~>~%x#pK5L2 zB1(un;0FWq?ViW)frlVXlX9i$TLHH}*@UUXfjRXP4$=h3+zXn~1`NRoD*f#&H~_L%=GL?ivVWl{f=t-UBxnJy6L;1j&A@P zWxMM)Gt7``1Z7|Z7Zy#Bw6!*K3s!A-2n{LNyo^Os8>Bb^qdXDN2lfI@u;jHvduN3E zc7*$M;7W#u{uWcN<-yG2iV*$jYpLUE2BbGwIc))Zs6=n8aXF_KWoIUX2a7mHL zOp%LBq4A-i9}bqRR7d%QBB`Z1Q|vN7 z#_PAWB*Lr4r6Z=hdIa}8f{c9vaoN&-@T6uXrrCF-2Yunj;WF4C`K&i5v^3Nbry6A5{v6P~)L7y^=5(x@90Kk%DbuZI+Zg&^$2zbTXv}T2SUE@I?g3$Ah|^4nOdtA#M`8ja&h0|ErujIDjSzPc?yr zEOcoT3+WzvJ=37QU3PF2WP(MY14*J7kIYf%#Qw9+F?XJh(wK`anp?J<&3BLoPv&zY zoevX8MK6+9fCP{z$p4STqsQi?Bdi>u@$$*-ti-#0ksVrq4PG(T+CPwaj^pA5E2KjC9j zmI?8=ma%u@Ic8yLdRgB?I`Mz4l&9U52Ug|7QUGXSp+cry<0dtHUlX%K%6QT>e(A;{ zC04+!mH-2Bp8aK8R?1< zvIDQQ=lsV!U?zKkD6(?*SDK06j zCcLbMWgs@iO3H>j)Ew|Moxf%Q52AR(n@fV4F{g2JDD;`K8w0u;*}6ZP(3RVgtfY7V z|Ej=lk-qDk^&Pg6WYy{Az*+`3dl7qZ`jf^xHMbx}c{JM>v4)nzD$L5`mdSA_v}xIf z4hGF^kDZIw=%iGds#b~D62odS8<;lzZcyhlhk158zGk3IHlE#dn?f{Z-8p^$Pdl}I zCqHuOEm!b2a2qCDD|r=G-gF3}OGj>$b8>QGOko@CQdiyIuHSr7spg%}I2g#&IK>3u zf^F0V80j0U1zQbX2H(aLi(Nj&9DFWSM-4w%XrS@vMa{eT_In2+fN2Z=o*-H5#vCXUetozhCx;(ksE#xWg%6 zA~04(77koSw-YbQ;O$@!cMp!~WA2f~6Fd$!MOBFi41FHLqh`cMee2|V2DNmXobp)q z6X4p}6UpR^$T?t+G*TkAmp7cn)8u^moCEs9kaXu|-@jxW_rdJFjmkP;(vFOBc4i?q z4%5w;tYqu4KlC`L_7CaiY0 z<`q_+rr=XsH}v4-qn=%7hJflDj-9?n&(1XB4rnVIRNmuB@)J`qebV1_f`4)9dRrG} zfKL%-CZtDqLei__ZSwEs^w!&SWzU2#kP?G?7Lm>Bi#*8EeWqL<-2Z}IC676?V@;eq z%^x%)A~yOmQ^S>hRpNO@9IdYsewkUGcHILDY2RY2bn{sx{<0HZVEzSPY3 z8hk||O@g|f$YMauZ*$d+51GXz zV_GWL)+|wQV`y>d_!)KdJV&yNDVA$rW9Q1aI>D8TX{Rrw^uD6zv$WZnJcA5HZ4>C0 zQpvLGD(N@}e+@Q7b-QJpKfsib>giX`UBh#rbjBJib66$gpbSc1wV56>=v_(wv61B~~*VyFI;YA1*NVCMnED>NRG1?B=oD5-e#5tRo0WskBsHTGU%tGMhzuw=uf2 zWpcfwaJSW9xGvzjUCvY#u(K_txON&bmQ1lDP*@s2L=fz_Y2&}s=>KUJa=kN$vU`B~ zA;Bv$`tJf0cI$d~cVc%?o7upWj()YP`?KHp!)-h%6oUlHFi9i&1849;f5Mq)AT z2<8#@RJyu1m75CdRmXZ}L0ziblE4yg!ynFUty;i*C}K-fM=(O(KDiKBNfH1;JHRwu z!V1_JjXA)%+f^;xGWg2eJ~jHUxu0C<5Nq&T<05Gm{Y+`k036yLYh45f*^wz<H1LM&jDBAv4YnDbMTQ0@rl4cz~`GI4m1qOxCjU;9!MT@I0sKB zZZ3*Y+p+2dffV|W`4Pr-uQA%G%8p-b2iAb=Y4)svaa3GvKa;0l^#uaQr+(3+v@&1lRqnd;SMTq6n|0V==MLEU9f z%MMNTo@@t=ES1fOjn(iT?x&-h5FT-Fk}b)?qSXeQ|?<7 z=REoO9mNjwA0?$fNZ(BN@E)xldJX!)Sm^kQeV3(PHyoyqzF|;<0jI&GzXi}e_&uj; z({Dz8-@ma5wTj)JRjPZDVBB*)fqmWNhaS;So&=N&HFL!XCkLWPbRvb1okgEPS|b>2 zLO?X^+ka0Ow93KrFXBd#-l?Ld+t0>#FSBH?IAp>J=*6y{uU-o0kC<;mkc=jyJrgYF zIHl|Y)W3PYzi~zX%A>z#nchy<-0}upnM1t|^}m-uSo)>nPEinAC+k5AKgc^EI4kI2 z#P@f!#FdJ;roThex&5Hgx%Zv^^}3)#%Q`H@{>7gxD*&*lNg#j*1p`GygiI_9l}IQg z!ewA20v1eKfwxZ%4FwdW2Z7j+K1e(Q96*BFiCh|!VIORh>Zw8&HbTfs!ZPJ>4!+kv zSUH!&zyirwV#zFx^Q9y*I99_8EIZjCFeyDHt7i3Z0z8U$N*6ZWRJ!HtP)VlOM`{)i z+ye@5-9`q{69(mk-i^|z(f|FQqs=X>NwO&t1?SEJ-Do}nAwumGH^ae5RDRsmD|X4= zF!f{}oIeht)>5gW{Nt9$A2oOsdhrtbbQZ|)damP-HG1A6>Frj?D-M4Ot>YXj5y`-3 zZ11}WWSl^3Ru9wrhR8fa{KG!~cuDy9%n? zf#U^#ptzocySqbiEAH;@Qmkm9xVyW%ySux)Q{0LdC~oKSzxVFWzU=Jm`^`fp$y+j$ zNhbMyzTYUGB6fx;Q6$GN@g$|ZDncB!NI1%UkcR9)VJO0V`sU@Bf0ZI@Vz%|8sP1?5 zgOdf2Y-MPHMa&eK9J=+R5XMlKLb$|cWfEW1Y)AkEuPU`{wO90L(yYM*&ZXqzW-_9X zGZ&HaM^IV|g;cs;XflmOSq&oPFmZ@=g7W;JeCA31C{YnGsyKTA$Kb`(bO{c$DilcV zbxfMCe(>w;IF5=`+f51LL`}qp7}A1RI@_I^x~6%u#0YQ$ZjO{vOnF9Fvg)5oD%-Sb ze>f4j)M$d3U9*;HtT^YlSCe;I3SGiWdQE-p{hu<1umH~d;GpQRwZ~tcB%9gCaxHp& zd5k|-NapWvM8XZ4PYNQ^81L7GSd(0Jk}Hx~YvXp`T~v$dkRKsb$2qw6s@I@Z^@(wR z%slG)4anO zzi_W$hsF8AJb%6-y_cJZsl?>#+J}3#Ta@O;gdL}WqhqiOcN>U9%_FXGa56@Qae{^$=X8wiAiU3}VGse>JC-g7zd>h0jR&`vlx6#`ST}pi0 ziq!1l_%_A7oaHP8epOW$OF=>SPw5@riNm2kD+h5Od$w z<;B)xcfVf#Tc^S-jmX`M?Y4Vg%(;)pGb7&=i;F7rsYf3Llgu~_Qw>H>hepbEc&+n> zD6!H2nLr7YgAXbN$nq++lkH}fMz&$st_QXl42cKSB63vHMJuCGIx_P|o7y%cXiHWT zo(rb-n1Iq=D#0LAazE*SgE>0xh8P$MJovH)F(EM^-)~O(P?=w^qlNa?UZ*X+go=@_ z!g;y}gy2lTzd>mf#`!rHn1x4(fgH#`dPxCo>7|dJjYGy*U`30|KLwn0iT@~ri3!@< zkL>#1N2iVw!bz@=EAKRdQN?OZj*+-@^?fYD$Pr-OBu|9cBzbeM>`rfLMwJ*KCGYCw zgwVG|1}2k+R9FK2%Ix zqMl8vri!w_0(a6Zdz`BSX~NAmi1NENI5=qy7ZRqaUH*rwb7mhymcd9^SBDgIxT39T zNKu*`HJem?Da0md3(k1XvMpih_z7;po;%y?BZ zJd(aUVQ5G$pRy!nh!wF@oZ@-vsPxKFD9{%v2#TVsW^k&P_(qkQxfYNE#Y4*A^~0mfq^rje^1}^*q_thAk-S!I-D0fheBsy^tDp3e`z!dYTy7SbyuBf+kGy@kz>J zQg{o3rOd`TwKr)n+5Nk#yt)#GN0-gR`K;tE+kpNusob?*0xLTZ?e_Z3Kv>?d0a(qL> zfCk-9pGjbHO_`awNvEZM#61=tcUQSVG;g<{r8V0}{6$h1-+AHWwn!TM%S4Z8)USaQ zY%}a2E>yX?45aRtcBePSx!4_i#-f7|#|~oVS%If_D@oU`4nWDmK(QRBfbfPgp=Il(9pk{cal3!B?mT|yrO-jz>ZJy zCFczSCaq6dN;IbTPJu2~*d`d#oPIVE?Cq$bx@qn21ub@2ve&jx@U2&Q|ND15+`=>C zo&Gh|Zm5H&qP-D?*_Sw^NbZyWyu9Ok?^5QD`K}mqwWh$bjua0c@AM0 zS#zaF9d%y~{bnm9x|3an1pzhA#^KA0@4CM?trlDZDTA@=Ra%z!EgpQa?rjVCpEn~# zv0G|8uJW5Yo5w@ky1<#9LuB)>q=yAp-G-(1&hldp2@&j@f^4AYkJl{-dshI0MbBL_ zepEAx&;aI#kSAiYavvzHTocAIf%|SX9*TR!aC-B$T8Lgt7^Oh%BQD!!VOO@Fb5TI%Yoj_yUhal4E&Fq`)!a_sl&he46=`gWianO7nu~(hivEp-*;T! z12tl+ooTjLmreUu=$OP3FE>l1-+sH7yCozzp?|WAEke@367w;;`bRd2e8QW8$+zc_ zDM35ighB!OS#Z*PXVD!_YnQzUHCa29hj~akr|2iXLxT5i8u+c@&zN#n4tx-0b1 z-0OX1vvW)M&DJg;AYPE2h ztO44p0r1iH{@4x?f=LmC8)32qk!s)o6U9I^fQh0CnUx@u|COFyZV(U2&pu+10s^hv zPgH-Ab(4E2*k&-JzWW3e-&5Wv6$JNH4qli*jE>06g7)YGUz-m@gk;sAjtBKt8ItFe zDA<+1Ye^;^#t-HGOP2-I7%o3i=`SRbaLjUtvE05~_X!crq)K&{Soru+1y8ass$+mB zI-e-su$Ph8J28YIPy$1TgEl`=)CdwkLP}BBoM}%Wuk^rfN?H+VAO&2O`?untcKeI) zs-=nQJM26l#Wjgc;#_}dRdERvQlm>O-#Lq()kw9AY&BG2om5W%{A66^Bml?1>y9HO zUc&#m7dAk$NttpEp~aj5zDX}u(u2L$RJO`%a`de&csKEVkR#Zrt94=$v?kl~C9XGU zq#0hW3_^I2r6m+jo>jSH*12p1Ni5NEdNoL1^BH>=P+gHX6=KA%Js{TbHbt_R3tkM0 zvxAZ&?Dp_0ROAIj%7h_pw{bVYWOOi5)~(ehf29APLH z>Jgz&Dr9zHo>k2Rugjx-<dw`a~(p=Fh%F$@dJ6+7gsjea9cfkqtFsl4hS$V4M5Rhi}2kaqOfZB&GoCtrUV& z)&ZPR!l>&;%-m?4xMyI0RzrXk53^pv;X3{NF@lRv39l`ufc{gyyeMWfNxA)2nNhhj zn+y%FSZq_e1E+gp1w)09fE)6O_BV@4h*UHAQ9Z<#QevO-F^;l~i;9lF3b@x)iLP4Z zR!yV;ScC{2!Em9%oUJS>leZ!}^wpaz_NktOah~(%qDnjpWFLsVZ)r=JryCv?JG2E%tn_iKZ~rr}7Y zr=pM6Vvx0}tz-hbF|#XHavjzbBUe=GmBZ~o)AWl6UgabwYw1U8K%QC8%jN|6G+lAH z=;HO1GktF`ltSk!Ojii(!%?R4tplhD&wXvG!A?$=QIBgd=r z-^(_k(3&TQHxJX|CdILfr^z5r^yV{l=C-t~@gwY^6BxHRz&{}36Xl6mw6}=eb*uM5 ztBfeh0b80poAGhteLy9+5^*6$GG{tJ5vaXF$W~gaaiG|uA;6QQ64_xr18XRu2by?JJ4uu7m1L#}V$4oD(Tfv(V#s&!X zH5uxTrgc?j^$sz1RND!0v0va$5_gS7oK8YRzJpyNS3Fblw@m)Llp8TB9MQ6!{03NR z$Qp%VorV%|dew-`dSFL{kO_z6MV26OeyI4nPQ+jhbBZw9y?m#(J&8X)O}K)8TW0Tk zLb*?i7SjFBXoiESbY>iUI?$Y@wjbq*5k7?G7dc0j+H(|ld>XG2(O*82^2~$5W?>{b%d6 zlj^jK6BTD4)MLO(YST!aV+7w(wpzyZH@+=?cF0kS;s|J(1#%|u97athUV_nTzL~x-4Zn-b9%fb?e zIeluvI`t#gN-hiH>`1q5Bjxb7Yv9Vf*fc*5cZsg9ebAFta%3%jV0f9EmS2_9PHA}K zeN|N{+Pz{1F_yzEJDpx!6J1r0g|C0N!(S-6cg+~MLV8Ns?Ey0WDbasi{`XDX z7?Y0PlC;ho)HfjfQ8}0>qC~jZXvqRo6FVl(T_Ng3=Z|U9yX`Q9Iul8u#=WXDONQ~9 zm$F*wqo5|RGe@ZHEvKE{aF5>dwAvvM=!yAaXZHUq2OOKt|AQmTvCWAyR^$1GiXdd~ zEZplPf_;1EN2=7W_3B44_7Ev)Sp*+G^A6+?c|GbK7YdBWuqLa4a4A`oM8*CBoS<|r0w{!N?tP2WyM?3jxpKhFTKV@IzG`Li{CD2As;C$K*^OS>n7?}xg= zSBw`N6sq!@z$f?KJzEVzz{ zminuj?sJCv`j+N<5$eE>)&O64=fEVQ1+!n z2Z>HNcZH^v=+26$-$)Q8%iokW2Cj zv-mP%HrhFMvYAhKE)Ug>+E>Zz=QJ#Kouy%&fL=L^d_)=QhtKd%|067+0za(}JUmn~ z3`|thy!0RGR9yKyJ2yhH-^ES(+7Yx4#%{>paY)2C>hJXd$CPF|V(ZFB`2hrWum!?s zJ*(T0%uK*EVLZ<3R9S@eF>U#J$EQM{H~8^HU$FecK^Tk_2OykUAvi8_1KHy9iKkyC z6oOBd4g^OeaXiO`^N6>r#Xw(50gX_yt>R*Jx3Lf7-Y~7qlz$MJEhHGWNcmYE>r>37 zK?`ds<t1p?0+fjvMiy5P_>+8dscTl@HBumd_Se=y_rzUJz5o9^S zXa*rxcf8P5)#P~0CBr;%8wMaKgaW?=9;=s$tXic5>q?0%Dnw(bLaKy9O}Ow%C~%Wb zYhWm0`(v?Xf-kDdDtIX>>my#RTcN{$GJVme#a3?aV%x<|7+}-+AvxM0RqKbu{R--W z4gaOo38l|x9{$cN=^%NbPlMI^l#_DS8Xe4c)rK-iG8&x3sYsn&FM4L%+>Wc&ifjWzeT% zaV0prsoQGUMb~x6vjq2GjE8od?3cjNqU;~UeW7i4V1D}GyY2`7Xa^J$w;U!y5D?;Z z&6*1;8MJg?0Z(DnXY)@9wd=YiPdHj%;4tK+`tGurn*WM6yCp3LV;|Lc9(H}B;s?L? zyU80_B^j7)-@*jDf4z%y5qLT>^TayY?gj?*7(&MwT&ViJZi)(BdCB{TRS?4%I(#cT zM1^$P%QY-%#GWs@a@Ug0Lr{TBg;1EIf)O+Fz}RQNa;ots!`0K=2pHtU-DSJ7$pvh$ z4uonu_}~^1zahnCMea@j_UXgm7O^s`s!ljyrSlO&%FxWM=JncjYp7$wqlLP<@aGOyzjdg*a&w*!{$i{6&BPi+8i!pLqqxy1f5%5a6pc$+CyZny z43=;Wk| zKonchl$(x(AgkLkUBZ+A&>q*4k49JK;4u2ZRV}5UyDKMN5LFh2YYpDhOI(h{S&ott z0LY2`Q>{>uC}xYSQ1g}6l+pPq{P$v7Lz08p>vV+FT%O(->_OMQz#-%sore0IkU&=&3*2pas zWL03f!M(l0|DgLvyw)7sYw)3`)!G5~vWUoO$5LBsKtTNh*${j#H_Wm;D8^u~NQ7j( z%h{4ip3ee#9EpZRZsv#YQzm63C45-|^MmJ+N_@CF8QG`3Iwu=tmr8Yr7KXXZaV zG)9fyk$z_UoNWX{=K~^3rnXKG(L!(FWn?g2OW~YJW2nv8VL0U+)n=M4|Ej?)qVR94 zR63+Y;md8+hGHj@sPFN2;hJR-A9|7W4tu1ysZ6zig60r#JSj4S4{*rK%ZjX_UPLWm zCHZBBu6tidgOgF>?N>(+Fuz_B1BsJKI{ty6B@;~vA3Z)rY{jXV+nvwaJxpPjW1(U z85BRV=ojLvwr?b+zY3i;jEd#;uS@t6?FTHGlf$-+6{K%x8jg;`vbFJT|EqE9n)FtL zY@Zw68$U?fp*WujiIm`Bv%|^QBzb7rf>f9Q6f}ajXidu_rC-P#X&(vsU5FF59+_Uc z+zg^&);cy}40(Z!ALN>_+PN@(ex=SmcLsbOCz9Vhey={=wV%pv%}gYx@NXwqDUvkV z<;1Uwni(3l!UO(EDy=W(JW9QE#W~f!cI)OQu|W3>JXx0*9|b){6S0a+r33GCy|RNh zL1f4UUfbNcbKI=o@7#kXuW}Jy-{wCa;)%fJp>z=2u1!!)KcUL4GS{~v+4feF%h52p zBVYT`M23i8E~9s$Gvw!jj*vCso1u=7ck%ZO01-s+bU}2iSQ%n{$?Q4uVZ*x&*b-@Q zugx3MaPi?#a+}%1-ATAbPnvzf%J7bPJ4;~b+ug9Y9w2WPV|sWuI;drLQQ9RD*MKyX+t@+K7;}3MV)}Y5CewbY%gVw z)M1U3XrGjtD(Jg|Ur1j*EoUF1zWxn_j&mFW=|)EH(hwwti3ElUd54MADYi>+5XB1i zd=`{OvQp0bDvbg0Rj>&Sk*Nq0f+tH*NY#EYlI%JBiX;H-y8{SjKdYZIgN#ZnnE)X* zdmiY7wNaj5!+KEltH9K+fK4TzcN;vEp=PRSL>^{acx{&_^M;6Pj1Oc}Kt9vt--qSn z4B_i3#6&q1rP&c*8>Q?Z^lbhAej`5 zjVGo>h@`QONE1yWZ=shlPQkBWE|xW^g)`S)wW^gidd`p+S$7yqaP+%LJXj1_4Ms?H zAV_@;fwzE2!^410$6REFQfxOMOMp`;3oj>x_qMxmMz zP~xosU7pNfU`iH2T#n4leB<-{FUI7r4!J6Vj4P&rFhV9UVaC4}C2WyT`FAW*Ce1~X z^|y~~3<^Vx_5o{Q&|Xx+@g*Q@T%)9|(I->qt^{i+Atu)`m5+Q}PAS%gV`+j2n-vT2 z@{z3ywM>&3z5=x7)!4(E>||4L$XWpmT98AGF~~y9i6}MI-B_cKRKBRs<0$;dd!a>+ z+I8TwNW$EQY1q)iq9#bw`2Fb12%OiLj7%AYCi05ET?*4k27q0NOI{3NtW*K7?*}I| zWEV*a#)18VCG}OQdcaAre9@0zWsvOQD{Y~bG(s6r(+7SMkZ3^=jIw!>x1#&~ICD&Ui<7!RAJDQX^(-N}65&g58eb}15EeQT}>7c&g zrcv5s)v}utPXxL-+#wx?*d&wqov>hNlBBX>9r}-oIW_BuXS&uO@KLskx$uC}m*0?m zCbvz}O*M&kO8TZ1XlH)Gm7(sH?f&%LPGfC4LhU){lf~x^9*Yz$!w+S_dX7NhqPfnQ zN%69?uH*Ax>+}nI^g}Z;d33XNGf**SW*!SP`5PfF$~MC~xkE2P@L3EKB~=pzwnG13 z2v_eD;R^m=2>0R*;ZrMqI^0iqI}T?2^tRPtDe&s&vHuXR47l=h<2M)|0P*K2>^_*A#x5CGT`09g6> z58IA_|8u)s{~6m)e*1}VKk4p&*cSVLGTTpk`-yNrHLm1;Ecbu&+fpzuxa&W_O9k)% zd;LEV?tcQ88t{J*?thp3|1AH1uE75*!ky3ei^PFe``-vxG=f0-b`JpfM7Vn64aJkh z1SS(%(yA8Y{}bV^v-r;fa9LrlX_rU>3V{hQBz-Q%%E5~6GTAcC70dqA`qo=74JDcx znu8I9`0=#rjbst!xquh1y8k3@Go3FqF?oY4NCkqHFM-UTSSK^p&o z$&`;LGrsM{OGkD40pfiRSTt_zCMKZ`x(2|EDZBnYTFG{chcDYzIFL7rGk|*L0(xGO z-fgP_b&k+&AL_*c9v|7wyI~Y~Vn+Vqgkih(lr3xXmWayKaY2~oG#XGKI4oUAS?{Ms zc%dFD6G#4+pYf4W8?Iy#y5(&qrqU9)peTfK8gl@*gi>5GB!v5bL1nzfL9&@jGesh^ zK)O-7bc}Sd#kgbpoFk%?*dO7^VGflP-JVtRxccl?LrBvGD;fpMg7(aeIKnfNeAsc^ z`RqiZ&_D5#u1ozTKw+J2A0!--iac>%YdWcLx{8EE#T;w=XfAhf#cm0qOGdfauW)NX zdCdcFUPZ*a!(iPImJLIF&kPK`Pb-=jt!M*PWFq2{jLoHRIppM4{U)BL-A`P>S4O*~ z4wkF7bx3;K){7jz^@cqi8BC8V;|<$SaZG*gSdOg5B#Z)eaaDd=(ZSTYiK4gGkUVc= z=JjBm#H=`vHk6-(a1)s-0>PJ8R|rk-!7{MzBbPFWtj-@FjXubQR()@L5m$6S(G^#7 zzhBib-W(itJVrr2=`6{;&#*iLAAZiJBPkF4RUuCBURw!1QZ;Q|6m*CguFQ`VL zj1OzZ_S4Gqg^*<~wS0NJgbatBSU5Y);Qexx4sqG0HOs>yI zwS4Rq%iaf4B_~8YUdp4%)dtOF9pCgijg#yxpD#>_!N4mF_p7(!K3FCp6>N8umpgLG z+AUP_Am)#!!^l|y(K*GTQUmr#^QS+MYN+$C^#-WI55t38htC@BwfIj*h`Ub)kF{af zOk@}TRHaywcmw9_8DvB^zPOoCLf^(xe|(JtaB)L+Y@HfDEiQUF>nhLDO4HnG}ypdkB3KsFn!13`iW9;Y6R-kJ;TZ_K-KT@a-}p$hEB zGkJ~}127!LT1s{yOyCp@!bB8>%WmeQlR^$-NXLgEOlrQ2B#R?&Nos^FPRi? z8)@hs;NYu_3}-p|S@BOC-{E8t;@s-E^BM#8f7SAQ)=F^xgC~+Shd?}u;P<2;2O8c6 zD0ti^=G_%FjU;9uq&a;~l*f{~Dd8e0ADI-B@0lqH$y%J2Ct$$|1+tZo%U@9?^+6rc zP%BNS-rkbbWJTz+QOFL?p+S!_NE2sbOj-9Br43j4p}B<*n#q`_*GCa#J#b;-3#fW) zMp+1#;ELJ6ENV*T6Hm9D)>>m0rS}wA{?yO{e-q~%vWA#cSzKyYF#K4^&UZ<+T56C9 zQ9AdBj*8>nDpvdnsb<6&NyWz#u4J5ZMk8W%B0_e?;7)oQk5E8v?9rz(1X3fxw}S_1 z2rXu8+?8DNTf++cB9)NZ-FJ<6O3a3QCwifKO&qWQ4=n3seag`)MPl zAFdo9vE-FtX@brmr4>uf68|9MGcY+Oznv;`Wv))Cdqk&De3ul~&;(nyxok;9(_5br z5o0cJ*rp+=kO1dbJ%pZ*x|5O6Ho;M@Tu~{2%2rXLu&kr$O>2|4D$$CkRv9Z`ow*c2 zo`6-<@I_$Eyf|4qh<`d1a&Fn0mrq~>To43DIad9{ZBlnDMuR*YGs2LkwcV8Lve|6E zR7xta5o2Yh1<+?_U)uRwatpy@(2gEO*9K^hAlc4sRU?2D5GD-O}l~`VBk*lT( zWI}7z&Wxq9z7W{d6h)4f#R z)pB*XzO`wp_Uh_QeQo9Kg^jGu#**MqrOfEd+ywjt^D|B4&I@z0u-&cenAWa6yGtTu zX_Wx!`|=jTEHqu)=@2KT*$KYC0h6Aq^7$w|zK{amkE_2+Z(F+|W*Wb=QmE{CegA9c`zm=T=%(v~^mk|fbq9Or zv9B}af{)Z|PoI}%2ptM4t+h2DWA@jGBDAHXzt;p*-`=?H=xy^LKOFlk)r=d_HE;OL zQo6dwA|mWP3CPQ#Cx&9Rx96t*PweG%)oc9g$72?PPkG4f>3(dG4CE?z#|M89gEshO zE!OLdZsP4qb0}$!xE3s2HFc$ozY72bA0Cgnjz&-gP z9{Mw%up)>CHkb0s%|nWD7fdY`Eamc<3mHIk z6J)T)OCqe;1slRd7Q)>hkQ3t1vleU#$CD!ALC_Ln8)iZ>_IW!x4hH%dd?v4}goXSH zg(wU4Y~yfv3grhw1#a~uS2}s&~v%n^TWhS+DOXMB7)l@GJbtd7o*i{{c1cBZ7w5e4U2qLCXY%9f?5k= za0$=Sh#H~sQgEcOD~`griI5tK!aj_`2L(C6vMpgp2kwLV*MMtnVYbK7aKa&BXfgX^ z(IbWQcQ~?%JEp^0{Evvgs1Tza3mD&2`ti4^y3MY zfeJ@(AZ9RbVo0fVhoxj+{!jMx1P~SkLy9kozbvmd+QkXIWU3T;I{F+m)DPBV!E$pr zza(=mgUzsH>2)%$ah=wJI0{g*nsy3s6hpE<866^4AJ?X{LDE(m)66PG^%*F4lWdos zssc)7JT(7I5iMZ-3gwsTp`AwA56RGng)WZo44>xoWNObt=4F+(=1LIe4*Ky6$M+#M zrag&|H9cwE)cY5;V%w3 zxpE1Wa=p`ygs$_Mtb@47ZLl}|sd$|P{mF?2Vw9f?h|kQvz7!h!f5Ru^N^DE#Kg$N4Z%C&~I=x~xqvGbC zVDdRLbDd-@qk2OI2*K+$=TWsaOoS1SaWGc(3=OrBQL{c#y%Gl8LZ}Hr$XtE_DSy6? zpON6-)LdJa$th>yG^HbA)(KaEp>=uTD$(gO z>TEMAAqVOrvC;@83efrLwUQL@WR=paat1wW$m#2$&g-dV$*?<1Nn~+A;NJ}puMP3I zjpl5P35A7#$i@f>phr?Ue~h>N}ngT7G0vx%`F27k|HWxW0luStQ=S*6li z4L?p@IT={ltoyr}wezbIUIRmCvz|>$6JB$xaEk&y=;f@17rxbtqE&>x1xC5m^|iI* z#Zp9wG)T8CWRjrwd#j;tS}k2$$ZK1$tR)qE8&Z9n$9kIqXIornJ8c`Q^m$9l?_}Zn z{0G`L7pIQ0%nl85j9gh@iA;MtEk^oy7CaSHxo2mYCweVnXV-bzvw3G5epgU@0`b?* z?sKL&=&pXx&cVrwbknX;KJWC-t~SJO65%cc)9#cBZY}(Rq|o+euxxkhIWf_B<2)bx zrVS>Q+E>|0;5dCxc_#hQ?~Xs68D6>_i-^6YnRtO>z4wSkyRV%uo*j_!k{_?VU-9~K zi@Uz)^}TmCB1HB){(ZHUtql;^w0$JM}tO3y*GzY zy6CH<&;qNXg3rVv30$)Y0I*mcDE(L|3q5e8$3)WZ6?(pa799<#=9gZH!b8YrmVA+ z+xVx2L%%|hW7KYrH0v@Q>dhSUE5OxHZ}K~BUjTM5y7DvHkNIbhqGpnsd3-u&($%JU z@c}zt6np%Gw{o*k0-#TFYnp`BxT#40sx2Ic2PB+F^L9_?0;WdI8ULxpk8k08wM1o{ zCqbUa==Q+sj>MVHAm|=4c$g<8Tp-Wp#P(j$PiLkD3$)O0EihI$mM|=KNG$eGO`$|D zGTF%ez`2B zJHom)A;~z6Y?E(|zx3;URWxweVx>Q@buo#WgjROly>p@JX+4i{!<&$oda7vaH$At? zqA7&FFmR&=c>~{uFDx1zHajULdUR$m6MM1dW@@?i{daX+Vq7^o)HASIU?aw<^3^}| zsbWDdT6T_bYoWR``3}^iGBze4AXraZ!H87_X588(+;T5nLttG7=7(uyZ*j5K7G~vx z`icWDWrcy;ciFPn)Xp{)+kO4p$ig+Y#{IYYJ9`4#6baie0%&j3zz@c?1x?7Z#t}=nfU~2y@>Uz^LZksZ4yCg zWBrAGeISOrrL0ceNtpoET&P*jRs5Xe(=prWzb7ym^eW=yhySWsbG6?7=_ zV@GC&3e5*oA?FJ+Yb?Uvj`r<=Bf^1Z%#kDaqStg{Cekr{JVuB7F}m@Qh#-i;VtcCO z_<4)$SN=Slyu90rhBOv8Lw+qKf1WUyIjK`bU+poLb1|WS2E%kwJBWc8v*qf2F=22yHgjQfbpfeS6LmVj@^MMg zofE2mFkN%$Rk#WNV+95IYQ-lu^CS9r#scEY<>SFV)!yYr&&8aRZ4`3idkqWN>o;%z z#&gZztdQ`R=F3%tJ(Y&o2 zMskcK;)3aVZy9=TT`F&=6oCX_;=jo8^^_2|n48>wF}*Z9w}P{`puN-N{F$%T|Caau zoP@N_CEtGAxvLSmJC3>AuDtUdxs(6<59D~b3vrK%qfVQHu0s43G!blIaj%Jb2h6`m zCC)UQ{cKWu&{F(2Nc~6M;GW9i@mKDnN9?21w?{tT44U4@fX_+^!(Q2MPhs|un2tVr zzRSV6=(!9b<-X z7!dr?sIN4$Z@se<5z{X-;O)PBP!gv-1<&SCYkyxinBU85pE1xg_Y5Dq4L|yFCtbds zZ_j=#C_K=_etGEyzwLlubI}2$LPmf9Xk;R>G^M@&g>Z3{_r)UMsP(GSlt1Tl2?czh z+LiPC;wS}B{%?fK9w7ROa5*e9km7_a{o=X3KcMiI_J-j_{zJGJq>v?4o^GABgYNMiW!(61a=3!ih3}gVW;F+i0)e*`Chh5kGZL1aMc8$9)kJ@bdqHEMk*Bmqmq8xsFqF%;%dP1h@2g;F^jH3Kpvwy2CF^FJ-K z%R%5C-2e=s+hP4EVRT0PaGi$^2z7ac(*$j!*jM@64!INA-T@by-!wxxTn5P1`_yj0=^wEG*KFO->X-_ zwY)EC_s9V>d#$kX;kljhqmtJnvM%9uU_Hn+zUkX{Vg1%yJSLZ{R! zC@&PDed*Agnv=p<1sy-A0;;gnQpfiNtMITY9p##!BOT7#-V$x*Y)F_yprVFm-ZSpW0cJh|$Fz5o*-9^J>(|1OzaCx8eF8dq zv}E-;{4||(t+!5-5k~p0zwJl2T!)u#y-XrRV)=^}`DC`{lW8O3{Z{fltX-tcv7;U~ zOM3;L#v@P#Y1f2#i5UK1f2`@8jav4Q=ly=#P~e#Uf_?Q^wM% zU8MOzw8$7u0+WWBds*cHzHq<@PkDS$w$s5inWk_tK|P7vMVS3mnPl$u4W(e2Fa;%# zw2TazW`J3dG}3djxJ3g+j0-#kJ)8iS_g zCRF+J`bz}^%R#;+L$Gvy-^D0-=ffIk)C9DP5cM2@A~g##P~J%2f`gPG4ppI09SzXs z*OUPKNd?TwW#WcraZx{(NC@o^%DeV4MfQtIb7ia$H8+Gq2bRj{))MVGap`kLSZTgB zrwNmfs-zMn7bNJMi7Zm9_bM+}Fb`MI%fc+w(?wTW{yWp8mZ{K|v0&`(!qJwd(j-A^ zE@tnuF}Uwo?Xpm%esfHfKxM;ivtF)SFQhZX?9}X~+7$sq%$3R0-?sB46dNMFAm|&r z^j-!@HXb%rqGIvs;Ef?vpypr5{c~C;?MDx+F`xA1jf|hoV5l!rud+HgnXh_|(O{CH zGSEUynN4V7u1m60__C|L#&+A%W?ogNCyEi(gela|7={tQrdQYYua4B6$>mjs79Ep4TO)q$i9ss z%wlVm@e-Wxw}jp8w=7mOnA4Dk^XwtrnN{d;N#k8 zJR)0U3#B54Lc6YPh|Dn6V!B_ltd7Y&OKi2*&RBUWN%DJGW+0hmXkHw{kA;ggN#|CI z^E47QZ=pPBf$t)S9sv#yaM|GCKZ1cwI%Z6bxwv>6BAOXSLNefJNf3WU71DqqcK+2@W&w~BYJMK z&s(L7hQH*pD|;JV%Z6ssbYM-I9hR>%6^!K`O5`Xue& zq)j?fpi<1TfAf;5f)&13{P?-{o&P+3*E-cE1J!j7u$CBu= z#Yo^h$W3Z#ht?sy5YgMq9zE$%&(W4^Y}|1vd;z5BFzD>{58<>qkAVR=Jc#orm_n$X zM8AIKdU`T9)c%h#%4=ZI_I4q*(CIs5x7Bv3foQd&|FIP~zR=h6$&O%bzfsGPH}fAE`{P!ti`32 zQXFa&_ZD{z!QFyeaJS&@?(XjHrUF8A@@>U}1;Z^O-UE74xGR z%X4A?T|W(Q7FGCOtZS$FM^H=X`=p%$;;7fJpBIY9Mu=wZi>r_E`Lu|KqlZ|uCRNZv zuz5mI3wa1T(D}(4{4^zqe`4g{d6G}GQfx?2V4(b$P3!h>qHrzmRHR2Pn)7X@Cm; z5j)^=e|sUq(E2}yhYmF9KbqG6EqVOoHTw7QzkUY(Q^}+3pPJUC*x95LvT9;2o`vo2?kk(;Xl>gJT4x~`1&QLEjRx@1$ zRu;mV*4O)z6|PrjD;?nr4GSuZmzzBi(J3*`EcGj0ZinaxYJW=}>!fd7dCS(&B3_#< z4b<5U!hB-wPX~3CyW?OrA1t>E?tzKYZ~ZAs4!mYn#RlU`gY`AXY1LM#4-qb>$Ll>& ztTn{Cj&f_AT%4)OjY5}OLmuWcLyh$gM^o)VP%0|2dh5gGaRj${!Oe<>lep9I)`-46i#*TU zfEDxXW|_-m#B4+=yfN8~Nq!eN8U68j;AY%szMPl7dY?$P5{#!}zo_cQGJj9B?h>4e zCxz^0gB-V*36jm{P_t4zpQ9}#zO6FJO&ga>W6F4s3yDm( z-5wH3wrP8Qp{4vt0VxVnYhjE&z8PHYo;I6$;~Sxanl?+bxhmmJ)8bmSU-!(l2hN_w zMjLzIi>r@ucTD8PD$y+)-*nFFAj6$2L_u!$?u%MPZtvsUFyI&9+h}ltKQuiLKri#e zFgS?nXjeBc>%wME6YnaI&<*cFW6EOd!M8ET?WBbE*-8vi(wFy6q!*UwBP9#lNpgr0 zy)F|&|5)KDAhmHWu0TYw)`-_neL3+_L$qrAa8?MeS|%v^XQKq-iO=MBjSya!Q}<+( zY0>~u`&nzc!q@I56^9X1h!iem^VZ!^_LBu$mO}mx*K4J#SzC!9@|8$J%i38$d-jbC z`p2R0IZ^c{akyY)xK~>$kdXGBtT;=d-H79y+fDn|RYH=fHIz9!xzqa2dzFpF*gL|z zmhTUA*5&FCtJg!V$BnU69(E&z%ta*l-%@$jRWrP}wC*Pw2A>b3<3C~|uDa#SQ$<@n z-R>lLY@!@Ubv$a~bR4fg2}BP9ZER($#AsFCldVZR4P7+;$Apt^;( zJ%}3lQQ%K(i10|3bcEBqE=9(3l3G-cx_qpK0?4mjbAa*QDY#iC7}By`*f( z(5rhoIh-ScK3w!7SX{IdnVbe0AABWt;qKzi*a|jL{8kpO8Os-GsExf6T+~-fEzoru zM4bWm%u-V3`KoGI*;=Oe!;K8DyKFe9oK_br5Icek5D~JFLFPc$JD^z}#)kxl^HIF- zL*iL<_5!_yP+p&puSGOCIGb5Vi~A*HQybVZ%4*oFKv2mY2f)zRwGMp8dRQJ;_F%}h zIaU`~8p%9dIm>uxr}#Z3GS=H<%ezu8#Z>!s%uE9+zc9CQHyj?V0jrUtKC`zyEgl zQrn!l$l)Ah9yUfDOWj!k3-^MJ+|efDkD~eCUG}Q}3jg@!$Ujd>X;-Z#pEO`@KGsnmPSh;U zyOIr7gGcQON!(9t0gZtlDk?QPfmQsWZst}D{Rth~_J#3oF+XD3X9pX&k-$ntrW#3e zqqLUR>w@fNMg`h}(DcbF94`wg3t6POJ3geI-U4aMARYAHtC~VgOOv2^z5rT>>b@!# zyAX$k?P`0-OtQj^|L4WYAJ_HPvz88K=u2lq%+XSxQ=O;#mo5{p8$Zulx@`CB-^|77 z>|~d?%UCZzeR|n^pM31XvAO)Um%rtZ;v@r&Egz9?rtyg8mCrk%et_0Z8}X3hcgBYl zDKv-oeB=oJGOk}RYk=)Hrzf`U<$AdFH(!ErNIt;Zso+ypwsBJ0eEY7bPRcpn<&0?) z`iuPAvw<5<-siUFqv%Bp!neKhq2;pG_Zuw2TDnxRwx7Y~n;hs2{Z{a=*Z45{upMUm zy>KdGtt7YJao<7*)Su3P)8sLHF97}4P31oTN!X)fbv8Sqv1!OkJA)@AH11EYGpZGK zq+e){sw5U9NgeFS)1i+kMP4K$TI@>SKPy#Cr_W)|FoEZSjQbU%gV`g$`v9CL-U{*N zKU+-t#2VmU`U6;Kq?BK|CNxbww2bYjWLEq{IwLlF)DSypu7mupO}v+_+((PhkpF&8 z>YgZ9wGOnQ*K3>N%3JXHFGr9HcZ=iKdfXj@-qJImeTBsE}ZTdyM#a0T2V#6EUH zuU{Hy;&0k#j+>lK(nv@0o+2Ew_9{^w8CsH?!5=yS4$rO<$8e~#g<6w+SXjgCz6oqe zjxdjCFhqqSJ9XavvhAp9_=MOq*-yu96BF>D_nJsUC4j^Zk$itmAg^xFg~|5*fSlvB znrg&~_9A_|VaGVqX?XK6CP!Fr{XMdlN;c(bTJFQ1!Z0MwnPung2T?r(G3=<(jiNkBe*+G0-q$SdJ{gqn9G+cE;+>duo&IInJFe zsFFMMs!WXFDAiGCQjBb=aye>0EcJF=skxuO(>O^E7B7Ug@^>~<=o~4kK!Fc=Yf~Y z#uV?(BI|vA?U)m1%|h(M+~d7h<3VBL%^mN<1K?$dw`Mx`5hwN)Hg@47wtPeED|_Q3 zCGh%;5gRYg_kBFK0x`AFC4mw#oC>j@tbpG~fsgNP{GLbnX`}e+YI1(Q;i2UBm(=v% ziR5Wv^f#5YHV0dw1GwG+XiSI$ZutVlPrZ_U1xUkM*O~lWjr~1qajc00{NnWj!Tv$e z89bx-9|1c!Ap-tk@oza$s3QP=>GViymw{=-z@)OkxLUphVuCO0f$6otQ~_X=CeYvp z7(EkMs2L<0OOk~WG({W4KNE;}5!6B)4B64nBM$CD3GTshXul!rbPOJf58kZ~{ygf# zM~^gg6FkPmG7&E}TOMc=sz+Kc~mLL7GX zI?Sd`#%d?%N-X@;QgCQKwftYHWH(m2cv8GsxZZps~wBquJ$WryQL zbuD0;XUsx*8$peVPm;h$7HC3&8p*U9L0cDYq!y`E8OWFr$&8Ax#)~by9e@k%C4My< z=r|Ge<~E90GvJw5lpqO_jDvsPO_cm@)Vo=F854e&TBpg{=#L39O3X~ETErq+G4f6^ zn#=+C0x`O%(V?Se`m;20g0YHPv2mXW`+5TKh+P)Iv1U%Blh?6!0DjrJn4f~|d0dh2 z>f*l6#(gr0V>9^{AQ%!DXzMc@XM`%53s!L5jSnYD2s6RfnpKLDi(@rO&|Oc66U0ua z`#vckmE)8Mo=r%v^GXIJ7CR;8YvE+pCEi8=OPrE;Ht;ukuq)(};0fdt5e%N(=So4UJ83>6H6&ySgu zOMA?Vn%hm8E=$FLyn2C_&igVQ$uylG!3w!AyoFhlnlytpKb@~Fogg1?fH{MOG(#yO zjoulDVUB3m;tZJN7y)x+9Wuj4 zb1WeijS|sC{E_4Q@ZU&N4YhMs@5mezd2O|MT;_7Gx-&gV!DUccUq;jS*xQc&M%kWs zE@5c7pCwpaHNf@Apyl(tG}8QdZJH$KJjLz2^u+vBp?r+5w$&MqO0A%Lp@Nn6{FmK% zvH5xOjEXJ7@~?|(ChS})Q@)#~Y(a|l(4>w?fBevJym?oAidJ+! zhqtzef1bhIl392MDH)n8xy321&Bq=vDO~`TUZ;~%B+q_d&Z$7iD_C)W!zWl! zLEm2?vsE!#$J_t}3b0lR-xKzlR0>AO%IRcJ<5eo^lq>ItzIVaf_AX)buXu@F{Z+X7 zJ8QLUMQN!chmd^L`)^2w_toEBs>$oCpxb5EE;TRVh#KpH?E3B8%nWc)D;?2moY7-_ zB#Qj}s*}D~qvOoas)al?kU}#^as69h5*|pnzEY>&bE^zeU*Aw~EFg^7q0`Xi($GoPpm16l z?pPn(Ti!#~*ga3uMv^!X6!;6ia;(1bwRmHA^e-rMk9MxVadaQD8l>5-(9~nrbO{ur zENI#700z!(6nAfd?y2yP>8f~u(gG+R%v** z9owjE3+GL*w{kYLbFt-Ry0p)r@d`Dxb1by;D0+(*R`T(5yv1lo1u=eU?@&@~Q(+TH z|A@pI-l^Ttsax2oZr-V|(D`+s(}0apRiw+f0U=pJM%52&?$|+R(`h2oWd<^qMg&+k zkXwsTx?tcKiFE4)e|1w-@WANN(e1Lq?c{-$_5?5Vgbwro7Q{6kdZG_{!fLB&vU_40 zdg~)PB092tvwM>idy^NMA|8qbMfze~`=%;7@)i4V%-be$IvL*gSG)Gtn)e%X_fWL; zM@aP7kq^{h(Eiv}EO(7u9N_Ekb9e3RD;yYT!0Bd-=p`SlHK#}+$C(TcpAH^` zfXF9x#EdlB+A7<0i96{_hYl8ojs}MMxQ1Lpy9)Vfus4>yN6+VYRc6I zi^Tyo$-q}P7$e7QBUK0X%@MHuG%rz$M(#x@PY%H2tNl#Qo%oF-gpETze1W7P_30Cc zoYrGZ$zv=bV}-gS6*znhjbq%&W5-aO(c;aqi3Bk&(ec-MCNRR&4Jh}bO~(I^k`nW z&6QfregEEv_iUz0Ypg7Jp5xX0rul?1cpO48-+-xKU6jB#f!K;U&lKCuTh`qvI+>BY zP(Ju&z{0`PIG68qVdCQ$`^e%F^l@?Ja8ct!<0K~Ij2@nz!u(qQ;_Bkkvgp!QTro@b zVpq}lk=rsm+_De8mYCAVB+2CwOkPpX<)dWA$48p@1{;AvvR6tgheeFR>~3iT>X=6> zE10X%i!?=;1l!3yFO%V@Dc4{{>NHKkWKZ}M9KGF2Yiw`UB5_w&ZPt`+nBSOpQ7x?r zJgt$Wl%XHsSTS-NpH)oraB(cc~K?GUDQ{}(L+16cDoUw zN@~ilLpd6}ICj$97tt9Ar!)A`qPB+DcXK$@>Ndhgessq|cngV?bGnGw8J>c=E$S5OteXQD)fk4`Y_r3=o3dzzu!)+`tkjd<&$#o%R%_( z9w#WNC&eH@`6T*@cVk#lh=2M*IQzgk$>eLfju`?=z zGa`?(ve>hi!)NRs3oLC^XRkQl3W=Vh8=UhEPZEuszk!~MAD;^~pCeFSNWZv{vZ8zC zcA@A2FZY5@VfjKDdhz4q*axx8k6}&SZkH0Nm)a%cx?vakRASE6E9->oixcw8An zX$-BdERL^Co3Ct+X2+r^TS|2jQzu4KMeEhKtccBsrvg0{QL1gJp=y}(l7r1hV*|$ z{qK_gi~o%DyBYt#ApLPK2>$PqegFdyFV*j^H!I@`lbSgznCmz5|A0ns*)=s6zpV;p{k!fOsm>6OH?@)O0)x{pDKfFw}m)yU9i zp(lZrD9)hUxI`-s$L%aNV#tntTrtEuH*=|VuM~MkXpe!L(xvjII1RQF_PWXCFlx!& z`lyL$xc;Q4MyBDki}Bbs)atlTdFtyUyKl38j?Q}-j^j-ohYgqK% z(zK`QW?_I8E)MgA74-3D-ry;Bn=HBsasM9m;duwg-R809^}GSxokloRDZqW4cPJVadFFc_50_qQFqkK96NCXdHyS(op9y$StDQ4iKetXNbW)0LtQY0ucZfA2= zRibl+B>-+Zx%avQ>18uXr+cJ%6LGjnk#ykaWo7u9PPuG&=E(PZx`l-p!rsl(QSI(@ zOFF*`_o>XJA<|;uVJHs?4$e|TGxnC(K8uX6%(DI2A}440JUqtsD}zj6@8UpEl+a1m z4{^D7s*z_gIT$G{0o#2Vp|-KL3#czGoceX|#u(~144FNg7*P9$0x4x-J5_rX4RI^t zfk6huNpea*-kc{=GJoc+*@ZWER->ESVBl?*Q{JLh0}Zm}3dz_i|KzZPk$#kV-xX!E zuJaVs1S8SqK z3*H#^zIOv9c_(*C0=c;hklWF@-wiVswJN4sh{CZ zXSxUp%bLjxzcHd~8OYn0hZG&uw%tYbf4wS8?969dT$>#R@>FI#;_J$r%|&GJX@f3N z&6Mu7v7t6A)gq_Smi^qreYaONEkzdZzV0W?+fvs+C@eIc(HFMvKGovWaQHD5cL<-Cf#%%wQJV$8G9;M&N0frQj?E7tC#@5H+r;bLPzm=Mp1$HQun7xCUg+ z_o>I}Tn$>eUkfk8GjY@%QLMT>Q#3$OLu>v1W!jqr;|nq?OC1?6gC~LFmpx}gD?+TW ztOmvph%)El@JA<>^$2U&K{M^xkDi|d3%@=>Zr+`ss|OpgHKR`7bOFy`NmRBe{OQ_8 zap?&!je+%(Tg^_nrdLs_itBVTf~vjh=22zW8(0P;s_AG4v6<6`XdbgBDY$kK1mx>{ z^{_an(bTwS-oiTn{Oq6&Y^;n8-oTu`9r7Hi04bRZ?#~g8coFiXnCr$%(ajA3^($|` z_Znj`-+06iRp!uPg0oF@7Et)UL`gQ=;txd0DKeiusGV7H<*Ur&w!rx) z9NSKLKJN)<@j)efepxys_t&8jW1R5pE(31080{Cznfs-iq3g!=#|G#9`{kQ0{`f6S z(`SeeD1{1$@Jp zqq2(VQG?qu?RH%!t8f~+H$2VY6xn6Aa^6gPbLns979h{5(%-&xT3&;FNOpENznx;( z81Q(kLijN8!eh3O$mPc0+GT-COuRm>>M$wwcAHM@AmrmcZq4xHk&cJNsDUhWxn9Nn z$OC%E6t|4sH|)-k;$h$xQ1Gy=0=-6LdXOv=e!Ld*xIgB+t;_Iu;P-rT@PO;VKjrs) z(C|c~CqxB%UUqw4dwJZ_dt%Rc;1V+<*W$l$^l~D=w~6y28uOwg)}ZdOrxoxf)bwUR z!KaD$wv+IBF5yjy;&ZHOL$*V0+U-qc?8E8rRxjg2wBxg;`o%xTUM$>KzSdU}?E6-L zlG_p6ZQA!^kFScRuV9aay@sFe4Wh=4xE8>Z3m+*(!~ch)zd zo54Fc1B5d@C?7)H{y^v zl#p>^GU@owXLv~S0--$PAlThng0aRh z9-S~35{&)P8}n5{z_^#cw=?!|E7nRd<_k@nT^;uK^AHOX(eDXydb4q% zr*Udqk-psVz9zcl~kTIK>Ca528Lh+~`P1c)G?3DEKB;K3mmupVqOnYK2b0UOu}MnluSACp;8}Uf1qtt!Q|gYK{@tzg11e5rZ^|We+7d}Bmu6ZF zzohht1-^DV;a-|8P7;zt3gKKj0WjSrJsq(%ol-l4dXI))JA=YGgCa76WC8gu~4h|yC3!DRAtAZn)^SH$GuD;~O zljbGfQG(|3fOmQ1U*ZyQ@-zCt(S7E`og{ww2(bKSxlln_ejcqhL7032M5v&;FZi%W zst!`nCQn(@W!3DQ-^x-5kuMzG$}Pz+?3d5SveB+TEgb197@NbMkSFt#M_jrqS|Kf7 zcFtJd#hDi(TVyHTLo43MPbP>g-iH*=%2S?@maGYtNL_-jSW0e4DK8-<>vJWlm*7|L zOP{-xqL`H;2$#}*L_)nUMX4{HR0U(}l)a)Zn;tJEL@y&2rogW+L!B?{KP{tnDW%D5UyZDuaJh)R`4iP1pR~+uY(1XDunA*OExRSge&-5$lvNz zvb$6^w{i%cAiO85`XF4T+F#kUTKO@lN^KsTvsc1(QK?NAD!Az zbXsKxrOrNThy7YV^g4Q(_JM=>&t_RVVFN(I4%nIPYUX*`)%)^6E@z{G^01vvo>5w3n}*_4Ba=3kTnk9`*jMd z8n8CbkTp)s7dAOI&fYi9L(#?2TH}<)8kUn9OPC}!bm+HSn#NoVd6}7mTwWgTH;wFn zKF4ha6nN7`Bchx%!;!ZjV6@!SH+x@KA%a>EM2u+zsX8XBY<*kML|QQxuqRz;u?uBz zMOslonrr=@%KfcquJyDN&9n=x^cZ9`u5IY%&LYBGtOIRG2W^t~TwHAJDB*1^4Xpx& z?fI?k+`9IMnSA`@9kTo#Fqkgz&DUfYquS!<7~ZI0o4A+ zl~g$i-ruzc0O|>N6zTDOr~*Fp1P=7%sP=^G_D1TGM(g&5x%Q?+^d^$`f)4USA9{hX zVDLh7mTq4TMjnL#bp|_K2jAXx&zTP{uo3q?47QRFd2tPGn8R99?Z6p>cz!Q_?1M`_23P1SA~gfLVHBZM$K_!lG$ zhXKPsgb?Nk|C0sW`I`{_E{lU9L5IIO-}2!8u)*KV@Q(%jk9hE(UEtqDvF0}+gmJ<@ zkkAF{0;`6D;lT!|&|kn%_YWlew+{S2g=GJ~|J}a`2~pAD#LNHaz#FRR*)Sbg&mZ)c z4vdbx)6rXzJDe)+!$F=`4jzpmi)7L3`cZIyqXzw*R6+ZRu(|08jYf{@UVm>o)?0 zl;GI>xBbzt(G3@B_rLWh^9E5;;J5_Wa766BZk;r9`7bn@LE1 zaoZ-E`4^qryvh8Z>@^#v_lI=} z{z+rCo3TMh_2KzJxb=s&=*Nv-eJ;3-mx)2g&Gvg{xXq7W(N9_}(R6WfsQ*C1;FAtL z7De3OknmL}xtIwT91IfLbkh^v+Vs%M=$`fQrhv|R*t*Fx`Z){O&Ii%PbkDm4t}#}6 z>5$kjM&6s^dV(H&m6%D*1G7=P0HeA%a}pvN=$sO1JfHHcMsIib58oKOle z6s;aL?04l0Sx8oFTlhI`!M|v+eF$1`xQ6Q0EP3K}*DSjuTRP5t;Zzh@4M@VgUJ5j5 za9j=P4!$z?QF(IMWHaEH@1^wRxZBAJ8oJ$0^wPiE%gj82e9x~Ky4$a$BCJ2io-V%E zuUTKZJ8GGqtUpdiUcOzAm%(bm?%1}3ed8|YikuHZpB^r|lnmOg795U6uV(^ECcC9v zt(vai$fY&i9FVtf4V!I9yZ_D?6zupe1KjwJuUC2!trN|!ev-_qUa7@n6|V$ z7dr96R7^us@e@PQKJmgESds2=XvLZm_n~e;K^8S`#ZI)QrK6{LuF})isd$X|DmWd( zh`60_&YFocD;>+wv7OSNF+g}B{RK2Y0Q>A27vL>@22L2bogT|3P!W`l=O+6GQ}Yz4 zIj}~MJJZf$dK#p;v4+`*BK-i?ZBlW_QkqvX`m*_4NlYBYoz#63zpj#a4gZ4)``ZENcMj@fI2zLy*3#>fqcMKoihxleO95VI3`w%G;iXo07 z9Vqu;VH=gI8*510OL&(2Au8|V6n)uRpT-;R*xvGBWoZ&`$i!Ieua3=9wq6ATmKP|o ziaE4?3H|VngHb@C9PV5#f*(t!iCw|u+<6I#X8Pxm6$`;UbtZCFO{NK}y5W4iTFQ1Q zc!?&rGkmiN$_{OLDJl_+qMRns;j3M{)RVWeh|lMSS4+8BZjk!K;7KFA_|nqa1i>nb zQSYH4QR&z*(Hyr4gB^o*sU&{*?*!-ig1mXM0QumLgw7wLpPOb)vSrIS$-z3`Cb9#( zP4qWR##5&7b2CLiVLb6F=4No>EI~0z@`VKS7!-OI#oG4OEe5 zT2dzEoG8pcp_yrV(@qs>C>2VE&B89%lw#yd7G2i;nf_SjiZ@@(zloZqHh5Pvo*j6Z zYV^-d6~|Uy3LcVG?as|Xs|l+E6pAbyf^^z@&*57zi>(957M7kL)pRHoTZf=$hje{( z?EYB%ld5HbQP3fGG}+R&U|u)Up2u8#V5Af5LrLT=3pL-QZs+SB9_9X$zpzQ= zQP-omWt-q9BF-m_2^}E&c%GQPutlkcIYdfx4l2W_#u}a-blr+inI<=m#Dom^`D3RD zmw%%WxEl=*y~xDVlj9lZ?u;DznZ>*al55k*`GV)2BU6N^{JMKQR^J>*)3W!e{%*3U zdN4!DElx$MroD9NvcNFeRJ*@xYS|(d`=^pQ$_+%U;>SgPQ1bptmG)>OpJMqX#QaC| z+-#vgU$FY?LxJ_Vx#{PW-ewes*zh{dfnZ>vHnm8@l&AA!y19Zjq^%KMBulFb;4-@ zN4DN$zg*%CCg`$PPjiJTzfdL3=9T@L_sCM>{KFQXL7j8#t*w8D$Z%h#;7~w{UGnk6 zc2o#xBvAQhCY9Sf>L;P`grf^XH}hS!<~s3C-Cu)m!`8*3ou_P?F6+3FM)Vl@gJqEH zub;UceD6k?8`qDomf6^|o`x(ODmrwWknU-~bYQck>$L|8X<4!3d1Q~}He_@sdx!KH zl4HkqMtzX{wbvH^@a>RQ(^)O#L8qM%X*j9r93@a>M;O(y3F+~o^jc!?UGp80o}OFn zaO07kfy*&?=}>;T@#NR?{YXjj6+Q^|amwkn_G0@QvrhEf@AzSY{AsE$_35a<0DDIv zYa74I5_(dl;(A2abZNdTC;RT(al+Kms@7e5V0Jgpn=!8SiVVqbL>&o7#I zGjIJHzWN*0`j{CLg>UO25%WolBRbaxxXuK)2n76ebd`(8riu!1cLcbi08~_U3E=%k zq4Z7g$RiTmud=jgW052BIMaw$%nRi3gi}2_{+zdZr2( zUl>R_ml+RqsAtyZ+OQ}jEMXjJZK+1Y66yl6@0P-VdwKDZcJ+L({C(Vyh-_K<}& z6JliQVo1M`=?SU_sv*4!k2S4}HP4Ivnt*dpY!%@XYoQfqb{mV26DQ6eXFnVF$}*sEq1v9=Ov#XLRP;$Oc4b!dUQ zu%#oz@2&ODb z#B-FU9L%O1^``73q=ek2TPM#D$)!HrlJDK7!jY!o?xZ5kr95{| zv#UeEx=X_*O@F~cJ|mdo%bZS3nvTDhOgI-$a+l6pn*L*2iX7sFiIzdE?eek@ha;Yc z5}1K&8p&=-MTC|~3Q6lcIgAj> z?1hkA(fkW@WA!y!xyD?wU@?!76 zk)+9&W#G8Eyuf_$+qt}yyS!Aq{0!5)EbaUl=lt+JS8M>IP(A_-5>{##RP5!u#xa$d z7Bt8g#UQnG4b|cqyW-u%V*ctxlh$Ig+&mqGl2exAbLUr^kfIH_tb3M{ zrmf=Tj1olQ;%DemC*Gx~L2%89q*zI%I0~eA!leXcjOKTxtBGY9Hf8sFWqEX^ID1F_pjI3hc1#uR{I5xmU0b{(sC@!=MYSDIePTH{a?%_zEmv{jb24 zIVkxbvI0Xaf8fd=vXTVVg^?8(s4EPy{M*3#`vv>=^Z(=w{P*F?Lc~A76{P@D+ogrS z!4=v+aD^+X4Zp9_WE?~a`ctSM_BPB^wC_XSbiwELPrfXF!4;<;i+zNK8YOb$u&i~> zZ@4mDy@Eea+xN*k!F*d9(})NV58 zv0EPjs}<Gnvb0uew& zuy=E?LS=bK?~BjzqK*!<8>HuQbH3QjFRoGx`E{`A^&76d(Z23o?Y_474Ob*rbLX-6 z@Qq<`g%kyrwdUK2@GQZJU-3m2GG6r~7DA#i!Tlin#h=5bO1v>Q-%-U-j1SQZ1qkS@QvwiHpx5f39M-QM1-6)f3%1kRwwy9FgV8< zJCE7MbT1>n3!2YTVA+UPP+03Nzc2STcx4}!wZ1ni?$Cx5$id!cEA8YH-YI+evi_ia z=u`b@46&p_WaT)T*=h(tH|@U z{gTG}=ZfE&p--$Qtt_~@ubNQ!MZTuK!zn9m#nL!PYs1?%JMChVER5_RS?)jWc`Q?C z>t)I<s=6nDE4A^Of+;F{v8btcp=Z3mUpmcoa{+m_=yHP@E)M=b#z^~W8^R<1Jbc+2;v zi-Gk@KQA|T1if@6(vi^w?yn;Z%B#t6~;*DQOcs=t` z9FF|N8+RbBf{(Zs%Ng632LDT8>93b;Ro%W+Zj!7PN3(pQ;2KrDwIDbg*VoQ)3+ z46f8lQ5BCk(MKy_1@^q9o5BVl$bHq0?dhNq;!(_^?PBKGwqD_E4_ev22I))X2o47h73A3^2bt%_&S>=`NZKWzDQ*bZXhM}; zx9pTJ4szI6>xMmm%xSKqOcIzZjP!)~={&bDF&X4Xf!fg-7?}8|G-!E7`WKmmgFDOg zXk(H35#e2QCURoVV`7vl*{qm(c&elg2Kn1L0)u(7hd*Ej)9uYJQK5gwN^y+a=Bmmduzt(w?_SWECjmRi>4CAdlQ9(9}5X-%s!0HRT(_3 z6j_H9=&trn(fh?PTP7FiuWL_JdqqVIFBE+C7}2Ot`2`&Q>G_qYf2ND0y3}2ijmTnm zrjL)XT;@L8kbfU;U}&cpUY^Z}bzh4_t}JdS>%f>oN1Hu;DluP={oAD9Xd<+ckhbPg z*0Ll+Yj%iFuPS@il8jq-@?xq6XmL0c8l=1Fzf)rWrPwMNopuL-uX-?>!@qD|dX%=N zV$KlLm|3cr=47Q|N2$blluZ9r-dKT`z@x((injXY;rh=%w602D;_4g-^iu|k_BRWfD#AmPe@LTQcKp-VFy$U=)=u# z0OirSiiXUbw~b1++_HT-n;dGleWyrKv1JH`oJn;(@T{CjQv+Lk^$E~H?l9Yi5{o$9f%EjE8k?M-zhPfl778aFtu#C-g z_(Q=!Xkav%CwKM0WcTe|uMj0~p28xVG=Jixx?q)&u7$Ct+Pf*k^O7Kk!F~OCi00;D zRjJdX+1F<-Gd&#k#XSVRr~>!1BcWFnF^6euO~pQgvDMY-N{7$2$a)zDuBvMmEuOpG zGYn8(*Y=ARSQjKM97wA}me~&-`{x%gLaQ6!@gBRXxGY23YMPTVPdvZ5tUx(x%aGn! z`xyXdMFF)PjLJ5F!mg_`#kF0`?x!*muItptj>guHY1TR`Fu0;p*Qd&1I}%Rr#9&Z2 zptf{2+yJ5*NU0lQe{UzT>AKB*?3Ct?^)m+j(TR&wXfSN4F^lzaL(xj8I<@Hn+#R^{ zu}0{7sp3$c8pR$Kyw^;XC1Ek^=&p(fU`9gRK42vJ%|Mse!nX1?WVrE=%IUtp&EmRg zn&Oypv|ec-RMY(a@k9VlooUe&OgcAowq67xd056j~_|DdbEDD4! z&jid8tBwhTE;@#aM1}4-h8!?atlfkz5r;{(0bhrQ-PMLYfWxjF!>VV(5PHL)OguLN z;V4?+U86xL3E^mRGwsxlj+cpKAYC<&tj#tFaSiiupT;jDyF zZ>()ztYre}25y|4VBD`jQip^%r@AmUt%1T1Y>~`{R#KP>kPm($#n0m3Bj8dBV zFq`_+n|dSXRT_l|)k=FJN&6*`_8gLi;+ZBtBZkzM_G~Zh14=rsP&)qHuREu77iOf;5ELHQUymdw|4 znWa_f0{Kc|odR6iS>r#m0-~}QNR<^$1(ZoMBonpY-eswq3jRRN(#p@K?#oQKvwXvo zP3|o8RbI-$3EmWvV?LK-M*3gR{zY&GaBmTW|3R$yKdg#_2lRg&rC@_U@b82FU(IX3 zm5RTn{_wvbz~5(oSmgZ4*~cy`@@EPA!t2J ztbmRGu;>+R{QtLD@sF43-^c&mGw`p?{^ZZ#h~@r>6=yvyuw{C2>=LkLdKEc?e=XC4 z&HgeG%sy!9s1-X3sj^Wpv7$0>JomjY0)_mq9r;YnOw+}_zk1fHl#ArAHq;B>wdX(1 zq#e%v?pedssxI!WFb*49L@%>IY=ZTy#R^YZYBe~0!_rqA;e_?9(cQC|*Rrg2kkJ3` zS*zFvM6>F27G78U?pZs>WEWz3LHxUCjY6mDaK6@#({Pb=(`>HAaGz4Sq1Gn2!DSh9 zh`j6f>@TBI4B9x}s?0W99(v@t+=DCr1|?c*Y!FA<87v69Z-m^OmQFj!go!t~mHsdG z-a0DkM&I|BkPcChAw@*Glp4SQMM*&vX#oZ4?(P^EI*0BYT4HDrkS^&?>CPeNe$i(? zd+)Q(-sjx2?(d#^erxj&v*aJvcb2SqecrVdb&%6^&Hk6uOmps-^ii5-=V&=8Za4W? z=e(YK=nZ?4j@$s)Uw5_Nqu`6w7B;ze#8syr{X zXv7dMQW7WDf>V3E4#4^ht1-MPx{R&3{Y+@HH2$vikCG0?uFbLlA>rF)1L)FQ6)vjy zH!8+iyS5Ofj`*gC+Hm+bY}s*cyJq+M`F8c;yYa$W+d}?=`cW%LK%Wzr+HP~NjYf~X)Sb%9xU}s-cCAJSQ*!?P^={we zcJ5L3#BQE+ zNt@M8V;>F}AKLws{+nzOtw^Ingj1EU3ITRuC%9IPGkm%zZ+m z1y6f3%|y-n9TXrJ-#(fFPlYPYL{`3(2}b-(pjx$l8*8);q_4Qn9Hd@)r<|?lSJpeO z6)$>MZIo5go^SE?Xq;~&POieXYX-N^cd5|s)o!&gnT74OH56VP-2Nond^n_J_VlQ~ zazb}7JDIoTXihD;PBGiGvd-j(U(pp(J_==dw(iw;b%EP-uK{_uBBy&Y6Eg>dg9+wP zhvJO_dwmQqZ>6APD2rTvGWEE{E{bt*(ul)q?s*7Lxk&*LJvK1+!q}Wca#woXj@$KS z=1s-%iArh;<@VuzGLL6A{GzFr+xJnz{XMUtPL?S(iDrIU$&YkN*v8sfn)O-tO-e#Q`P1vSpNe-F1q6g?$0 z99R?NAn%Z&w~R>4yI(1^CMoavLm?~UE{n8-R5HR$4SuM@Mn>Kx)BD(>JaUNxH>T_L zwxxNU4#T-dtf(}46IQznkiLrT{*-0u>ZFs!8*?h%@X9J~EMIrF(Ep8r;eqMYCXl{z zc<}j!ZpbI8Y@t!fUdv|(k5<*QpA3%6Rn{lp;4fOr2 zUUv??O&*Jvp+ZUC-feuGGU&zK)eBuWi1=(v}G z?bq-vfKca1oIO;NuMDZu>P}`Oj@dX7BCjHgAN-N59KbYvd z)fCoV%^}*~6k3K!t2+d`HX-?317UcUE{1MUQ+|=p}KpnvL>b< zc|-ALk=H$fc>_NCZ#JstKA#@W<36Wru9!A|$+@XT!UJu=;omFWU-!BT#QwN#O9K2_ z7eJH9R-U_xL1xa2)U%yxqQ&l^elkn+#N%xh=%ryX>N*UgQXMkEr4gDpe=>79bQb27 zM#TsId}rX$CBFSQx1K;3AL7s*O<)=8@2o2uMuF-!F;$Ek?Oq1Ut@o%^93&1tnR|AA z+UFQe8j6z9e~w+P>daY|Mx4k@_kIpAR+MGj@6i_%bo>Dew$8k?UX#&t9GsT=n*Ef} z@R^O{P&j9KqHK_%6g*Bg-<0pB2BDFBm+D}d#`}D=H_r)`EJ8&Qe1(Zslb_Mm#tM7+ zYJLQI=?VkvZ(C71jJc$*Mg>?9_=}5rOsI9vrH8jG${V&G(pk+-t;$wb54L`0#~to8hlyR$L>z3cK;}HZVv12F!^i{-Wv&Tc(ty| zBsBVH$$}hqxv4LAKHesK91g$SGSG8sogzA^?xK0|rAT;c=PIRk?Os?HlyEOD`N@hT)>*%R>)}a9?HWsn zoKpEb`XR<2OCam22>(AkU`E;nS~^Tb2A+u5cW>gbIK>TD8q zbrka4IxYltHLHmdTX4A&aA&;X-qz%XIp*fD1WI6V$A!4zGk=Kkawpbz!y4n6VZxw9 zcuLt|vR8av_)ZSYJ?7h0^A~EL8k>Z`#~2ef8UYljnWSar`XX`DT>-Z0!9KMg1IMzV064&aj6L zNIydmM1>cEGtVK|h#rhWUbBBl4kTGXB8b@^hT|W}Oc4mMe>-|Sh$0aQ{0nFW1C+F) zlP(burXPSq2Fiu#z}o{NKmoftl7Oxaq_1knpf&o?N`3!&a9|xypuQKh1r|uJ6$ovD zbV>wvufAwU2G)au_<4hd+My$>{0Id43^HgA6g-Ova&Lkx*ay##snCDmT80E~=LFN- zRF7T_-hrrWtg25-gseye!^1+(V8It)@<13mrb;N5L+DM4P;`GN&Uh$xZm4%tD3M^; ztq$7Tf?gtixpx_>t}PWDDqsXCg5TlB zxIY;bqU$d}5h2LptN%UXX;nCn|2;mzNLH0d&Ao7mj&P|eu=sc+(q_}EoZ02G724Cj+3zcEoJxwt;v zRarD!V6_ol2US|01(E=48U&Au=kmPq^|WNFN`H2l(L86Qtm0noOL+<1&UN@I-@zpg z*XXG(ml)J_Xn|de)f0tQ8#6T3yqgiFX81)tHHf`M7Z(&Kg)`E82@tDy@|>$auJmRD zz?!Ic^s}dA616Q`Uwaxj>*hxua$b9WvWuVP*R$vg6oVhkhV(T&KRwMF&YpEgp6bnc zw4)(n-7#-N=DcoIWX)+4@aJfHgLEO|-ku-yKY0May6}m5q_r7~IST+*mf%%-aoiT< zg6zW|HuO+%9(XbMZY%6Y2>&ohEm+L-#!{Gs(8DFISIe-ah_{Y<(;wa}fPf@`XIaJv z0mWQxK&&+_Uw9g3dfP-?DHWwnD@5fR+jt(6vPT-fz`L*r}T4CO$= z4_&zGS6b_ht;#t^r-HzV=*h`QF%pvP>bbZLQ|qZxww)Tc&l{Sx`-Rd)$;XeO+i%yG z;XCyf$6fd8(cPqXzZKq3Fs~%A6W`A63D??d1?f3kv`oF(G-##t3w+eZ;DuG%P9KwB z`h_Vyf3K69YoxU6L7VY`CeNVpUeA+*VRjs#F66LZ^u(A~{rR1OvVL)a9>pKhTw8}j zTB0<30}6UQQNv0+1xKTD7SnwFS}{EeUuiN5jwg)aCdZS{Q>TxojG9dZf>3#4nA6U7 zDD#t9zK&_TNq6$XFEcD#Pr>uP0`*~Y(3&me5;>W$*pl)4LI<&EZ4E%I=FxG$0gA!T z)-wGH9ba500oLGcoc9)(3HQ#n?za~@-6&WLKHDxm*%sbxEaJS_%^){>vc*LBsrjH^ zoa^afC*1V(a7kLinUzT&xd6@SLeGmMOSCt@w{Re$mZv$ zrOlNc)K&0CGHMsQ@jI@$`x%?oJP}0Xl;xIrbUXx;Numk&*)7i_wvJn@?V@-ZyJjSt zDLBvVD{lpadNGv6G) zGxy`eY`hiFE=EtgXCz{rMw*;c&MXz?uh1PwR-2P*SxDP0K&*BgSfm{o6DPdf!|*U(q#IUlkH@tPqcvLU zq{Wq#oCpkumg#hJ3rf8C78v1lsAEc0MfG+sDCAjYaD6o&4-J zcC?B=T+b3H!R@v4w@R2`&#vnAmo?1$s=jH=baMu`p?r=!)$z&|5&v@%j;$@^F zg_B6XC*@(vO+x)Ltbl%BN`=&}&p9t?@Z`Tlm7sxoasUBxAb@BijhZm`^;1^%&;W%D zhUq9txlZ|h3S$R8Omu1a>Z%ykq97i^TDx-IEW)atlm%? z#mlYeJSsHL+(_RHP^w)glXu>NtD_uq8u9pxyl)PDAa)vUVXg3ep|z<+L&elA61l%Eq5&leDYuDKL#Jgif#E!P767Ozk4h zKc@J`R4pDA<~LHk-OI95+I-5TGYFqiZWT!0rr9Yq?(Dv>wQG1Xo#j>npO*PJjEy5( z>`9(5hyHvmpCEYGlO}-yM;iH!^!2+EPdX1GCuB3-vAJ(Z+5D||P|E|X54Q!K7w%@m z#2=dO`3t_7BsXLF{+Q@dkfzZhRS~$2(Usm!;8dF~9SM1Pr4ts!{+R)LEKFLr6w~p7 zo?1G#le6@31j&*t`yHL;=Qv+sZ8Ex#tWIM!l0Fi8y(^5R6Lmy*6Ll`v?PfW>jZ&6KxDk-*@!H06tsLf#av%M=-- z3G{?*-puDNt8eeM561ByYn(XD5bhXtO+Gm+JVESyOmZHLpS_e#BheSx^`yF(yNQi-!wlZ_y{A4e zoO+}bz-R8KM!g^uhEQTQ-GgdRF;Zp|H4D$|h8X!RGN8l}9oa7}ND&u5xkFC7lsFTk zyDpZwvjuB0gAbC@MOOMts`|bV9b)b|uZnS1TX+W_#h#vSp9*ve3j=f$pI_O+= z>qh2heQ%wQGR-c1-w`|YbzMDfWkn~j?K_`2Pdcg8Q@L$}I$t<>hK%Z{+lwK_SbG2Z zw41B`fCA%k_1yLBF;)GMTZl{R(iP?$aRUn3cJFGNY59Cft^wH-0y>0iUT!iC?9QUD zkc-AwhjI;<{$c z5*`*|P9U%cC5(b(%!3H&VH)PdY3_OL{)c!nD0?q5r7rR}{x@HoqYecs^s++p%jfcYpQEC5=4Kc;XW zh(N6Re1Iu@(*LL};VWlv@G;tiFA{^}mY*fy`)Bq`81bEr7Bg4&a|Zj_L3F#0eOtpD%*X5e5kuM?l`mvpcOqTygy0r~1){`o|&s6LS2c?fuQh{L|X~f&Qd$ za6k?-dM1b;1`9|-1W5e|D3k~&w&yPeLz9%D()az@`=RwnXyfX2b%^7yV({i1(pvk# zZdjm5Nnp2rU@u6Z6%_OX9F!p+Gy(}6V}59sgAM@e0vJHmpc$B`ph)mKICvQ%FpCJ@ z9Sat^?|)qk4q|Xr4%x5|K_Y|C+Ji47?u6Ul_$#pH`uzr0o=3lcm4%!@FpNkg%x zHLym=m0-9Oa4WxrzJ>_${OC#G3A_ftjhf6iY;UFye<_yOK^#<^TNA&c;MDXxGt4%P z%0Lv{YPmICI+^wYY#Gs+Y-A>T9R*J+&_wmsy9gr>RtFc!LK2)$SJoGyS0b8MI>&X> z4J)P%&%d1AL&ktyOV=uAEzuc)WvF{3`f)^jV$Ad2q*Cp3fMVGm>J=-hJnwhMka+<@ zVc8Dzqw|zl2w*?fOVeb|QvL+x9YIb*U0Rv7A^gXy>E_`2OfM`kAPOG#>MCa`yzu5Y zDEuvL$5Nz%uU(?9yl$>&l)9}0EJA}Y_hF<)v_aNKt+D z7D@csk#@&x*|H9_50{g~t_)UF@86ubjTZ>GmD7Xh0mTw%-w!7W)jea*Ot7tGP=m0dAmkjL@~Rn3}FIKs-3-_aulFQ`59zqTyXZ5FrO6*ewvpE!j} zHc@V{mvp?ITrR!Ad%pSghwjG1@(~TA{EE4E9R-zRzDC<2i{U^Xd~>9|0DJd4+fMCX zg%KBY=Lfu~_T-rDbN%`D#!e$SF!x)B$&`@NgnaYZ$DoBQ3>P1IjIc~^|%dj!7bAN0ZZrmQ+d$O$Pc z=@<$Qf5@%(oGil;PI51P2;%R^0z zZ`R&Sy>06Eqzs6H+hDiQEto?J+0sb9K*WYvEc~hT)9x7Iw318hS?6Jd0*YlTng9a4}xKt52XC4r)Etd;kLX^=5>I@LYwHt>jEa6tOqTlU}Do}H0!fSS^C4}reO zW0KIPBs#e`2JNp|Z+lHnYCj-6Z6|(h86KI>FbneUcxh;9ny{&Z`#iVeZNTHO4ECQ7 zePObYK z*e0M@;yp^jRI$Zs<;`xrRA?iOeo^jrbmXc{}Kg1HY{j)vuz&K#kRzHQq^5PtolG?dR_ITdN|0m zAPYLZt*TU0xKLE-FlYe&DA}Rr-w+T+BWz5sx+}G z&xUhXq9j16`!iVtI21Wa8=xk$Nai;7mZ`8Ln8SSW`A_>c-tCei9fBn~{8QQIoTWh_ z`Rw#;4jnSC@57V37iAyuR=;;G%`WVoVh7feZT2n0n%KWk?96rR%YKa;kkJ)Lv`6)r zD_X^8e^~}kI`rxZJ^Bj(+Ve*wp=4H{VOPs|aayMm*Kts=sSX5gze~HfrB`nu7!;Ak zo3dhS@K{%MkQBlj^Q^!?UdewblD`~5O=$QM9w(XOS~evVWI*vJ0B(3Z+i&>=fYa_$ zzW|Ug-{cnnGPO|m`U{F|8LFL647*myrV%nwXrE7xj__C45^h^UC&dRj1rUAH>DF+n z$<2zenpu-A`x@xfVPR#R8t;y?mDcRVOcIIiUjPtX{|5lFrHwSw$XY-mBo;`E5Ur@z z-9Q0A>P?<$d3t3Y8Y3~sgp#Q0RO+>iioaN*H>>Jaxw0gXbY2EO7wy6K-B0LpULmNi z>Qf^+you|w%Endg$*}F2B@9rXUG)!g#@!q>n)UbOw+4%PkMhs;HqM% zN!V(}OM;J)5>K$qLu#g0fYI8Tk8{?2=TlpSNtGLyJI)QD8C2m(V|v?;cXrKupBJ*F z%Vlpa3`xi+ciO3zv>&8Jd56czIf@yr|cj0n*oc)z`xQ-ekJ34FaG)K8Ig{aEyIFcL_gFFk~>@&qv?SZ{T9gC7E0dSO0HKmPrP971GanR41ac3 z{IT83c5FORb7Q1*S_+WpuD5$N^vStY>zrzcG=6ROKE+S!w-Mi?D^~U;e;MaC3~Gn9)!~9tv%hI`zC%{PWBRU0F-rU z`_j5N9<5JYZ})P=)R^zgMnq@=tfp{KIgnksU0;8B&O84#`gw!>CDx4vz*9=ThCM+f zz;M0Y%Zk)=$9&EF=_Qt|ua*~x6RCx9$9DCTC>f>gCtnIzV7qtQ2Qms_;D;K%&EnW>9>l zSfz8FCmoG`?bg9&-<@= zQvFvxX=Tl6k*sH{nXt#CxvEjN0WW|&sZf6w}O{m(q<_bRpX66MDfQ>o0HK|rQ5OS*)}7RZ4F?Eq5g@b{ z(k|woZ^fKb_P$fw)mpUD31AnrG1yV>chm;~WnIjbGVz^k5dfhT1BBMWyP_V~Bj5%Q zTAV1=w|+5l6W#$4Cc;=iqWf6(<1NqkvO!sKlk#YC{8yO63YuFsn(wVl4o7w1(Kc_@ zpf1+q#xXZd{`8dEDgVV&`sTxLPwCs=p3-M4<18c=h`9i94XQp+-R>5b1MNP*MLpU1p=Wk$jn8`L63DO?T_V%p5xd`-&nA9$x@1*!b-oz_ z=yYpsMVA+cMP?0$84-VYN{`!~AK;3*;}FoHrH?jX3YmL!8>L{7;57Y|H21{I*V^NR zG@%*x+ht6;!7aYJAfG~h>XGT1ywvn5(tWyAbo7HLE&`XX$OB|vYNI%$K%cWx=u zK%K)hiU)q*c|9$H{EgD7ig3ig(ct6Yx2Mydw2MC-83LInzISO+9>g>Usy+&F=+=2*65CCX#S?|qqfc)Y zCsMO`v!bKN)G;D{tXr23X!JMpJI(5Mq z4VoCR-3!0+AGODUr z<~r>B=?h$a+K{vO#ay9%4;)Brj+&3#6uI|oRPlBUHDK`PG|AVx z2QL5!tuV5HU7c%VtovP8Y0S~4oR=Y^IV$d#TS`rqrxybOf4q#>+`ej80`Us#uM8_P)nBqH2Ujn9DMyuup(q8-}^~u z5AzR+&c4?w@Rz5QQpWMxQ)*Hm%2wSU_#Gg$%M}StgCCLGUo%s^*JO4a2B$2`ve5|F zAJ|L`X7ZQkh(GmEpjsP>^$mATb^c5}b_PgvM+IMK)CEUXM;pKM6+QP~(Zm)WE4-@| z7y@)zZLGFXLn;7?&cr}iSiHZmq9WVHg!+rqg;+8J7eMZkvH5++J(sF z%#)HMS|57v1+qCWq83hYU(4=?$0sb&p@;>K0?qfMYODyx6RrTz7 z9V9e3uN<#c^~n<*o`I%rO2}3Jh)Ft3qe`5W0gercN%T3=m+J~*{*d zqoZGsisb-8TeKq>=>;176Sn|+Y3Ho0U1i(HCs;)_Guq}SyGt%R);l$}S48$T__V^_ zTu-Km-Dtc9=k`KFYM1W!A-^9u?ZaZ6eyPaGQ=xb_Mc!(XBtz8czxGpV&KX{WP zu8xXBE;l})s7AW3j!Uv#I=e?5r_MD_>PqT%EQl{?_FR!ITvuJeAYAAn@p-!C?c>d(VkoG8WsnXV6Y zx#C7SvVlUKwz*}^17T8kbOg_llKTyN_e4>5yc}Q#k%9>6j*Jod`u$n{DEc3sQhkp) zEK!P84~BLR5(LEqWzUE9o}$f8tT{lQl!686NdxkdzwN>+;mMESt<6Ti_LPFWpCi0N znjBx)dy7hV2Y>PgJf%`&AV8=SM|!^-^a4Dk3Sf}Dy^jdYM^*nB;0XN;zRr_suljge zuz%9`HJ0$zhwu%3^)(suHNycJg8i(N{oE}4?Av`ESIL3Ot}jSGEeziW<`4)V&OspF z66A&`1SB*E5(Fj>0r^LR{eOOfM1%Zc`urAvP&ejpCJ%6$KhV8yh(HI}EPpHjZXb|? z<68)Z7T`clA3)1s&Xl@DG<2Cg!b8QR~t7U#erdt<>nXugNA zkOTb?AFq%zWXJ`QbO#x71`3sZ1T6K2V2zUkdD4AEDD;jWQEuq1wL64Bg~8jfyK5mJ z+z?6%3hME&dmVSk1;ZW)3f>+Mqjd-uln*EB2Uf-Jc(zMGXQ_B#yBnYE2DVLlND(IPrf&t4k-JBC#6s3$II-| z^1r~#3V-n=Ey2F2Mw!!TFT*dM3|*vr<_z=`VgK(g#7+I9g*ZF)|Bi*YQKH-bw-(|; zUr&&vvr(-7Du2G8%DNTW1e8CsvgX7^8|J-DuoYU*OG{c`hhxZJ_Y;+UGlb`sW-YN4 zu@$9X8Rn-o5s7c+weeHwmogI8u;=#PZfPtZ_Qc(?8mx#b5E*?ur-qol z4a+N>_Ej~tTq^7us<^Rvqq!F7C*rExUN(AIyFasGR(FP_&d`9mOW@UrGb>Ttbj7$? z48`X$-f1TF0+qBN74u7cE@tNT+UWc)_P#S@+ZPtoXH#2tuoI7!baGd+Te)&IC+v5F z8+v&{V+ z4T+cJ-`{$&=BE;wftsk-Lw%p9rx2su^qc9h%pqdlsU&D))kNSu|F?k)cVgPbW+e9l zaE01rlUDh{x`bptlTfgJ(QEhjhqHlwhS0WHO6W zbjnf^2WQCqWPU^OL?LfKDjze6O*6JrdEGR+Og)oB4_o{;65vUKWiGo8X<@trSQA6m zrlWtiE~}MIxAF3$vd1N%KDl26)Kt1l*-H}$3-qM1Ci+cn%NW=S41}So zLAkc&F(xLh8u)7XsCHZ6|1!rHGwDYY-=Zst54H?FHnPstVUc|s)yy{5X3f%@B7kO+Xz#UkCg zVY^swNtl_>5(9=qN3mgPgb~3{WU|vC;GD-PET|SfT@)J; zs5?1fhw2ey}>Py}SGKz)P8Js}|l17y8epx;fbKXKH1~Ohp=E_~VE5L<*RkJQx_Fcl$ha-xs)h=chD{8ZGi*^l7 zmpfeJPIF|;;Ao=jej@+*OIu|9age#E^pxb(v*hmry@2J@d6t^^^!wA9j6mqc5(Dbq zSUpqYess;nPYyZ3Fa+U2T!Z@Z%e1NW*S0*K=GByG&D8kS z@tszeZTq4c|LtJAs*UN-=gaPM*mB5k#8*4_7Aoe+HSJrRB=!PBY8QnuPusa%_sR2W ze^P~<;u*Le`0YILc}DC=1o^U_MvlKG>UNf&oy5NT_#1()-1)?0(s7aA+fB1Rr^yvp zQ6RLr>sFL9ho5}%7|P-OlIeW$LBp5MBJP7kl=A{M^D$FD8f~+a<4X!}%;R>b%VDYNn{c<@1i`)j6Q}t-766x^2C-eSt$uO++zw(Pd^meKc?1n~joMDLK^ zo%g-pjd?4;sDXYWahT8R+d{8)|H_j}7{0m)-!Bl~1~jfu?Y@?)zV&FojGtqChW36& zFh9o}L5p@jlU2VmG(W~ac~Tjo^%tI`^8Lk=Z})%kB$(g*7f}MFdsv|=1EXcA0jYeAn=EMP`^Y_ zH;(VvSP(}_kWF*YjD64?jA8^FJfIvLW)Zv!4q8VFXyu>-Jb9=ba)1op#ep0nLXIFI zyCfkOpwKI3MqnQ992^>m=7-f0f@1)_SrvLX7V3q@1>p5vhcHlV7&%Lrr)U`EX&6OE zn8$n=ok}=;2RQY8*h5^PmWZ68Dx7jW+;uOU+du5F3OOlC5dFILc|1bcAtIbdP;f3n zY&=3lkX%qDQpzFHGVHpgNQQ-i`8moyHpa0-h$R-?QxN8@0`oeJaUYNJ zt%CXZ!!$+1fMz0=IhY1oYojR6)8{w4R=UrSBdMaO6bNV z?Kn*s5M*uuR^j}g^qwYE#wI>{l-RkJIE$)E9Aio9eVH_GkhJ2ExR#qFh?dm4mL!Ch z+?Xp|C?IiI6@T2J7!jFV!IHe=pR|XYGWH#i^CYYB_B^pL@E8~Swh8SxGPz24Qk|8CPA+GvdvO44KLoX+gL>b$Utyu!0Q3Q~CKe^7?>w}%E4@HgZi9~yoqO#kVj zf&Ks5q2XWF;{RzN|Nr{$`~T}h!_YrEG}!#N92#Q&`wk6j|7Q*jifl|}eQzf7O72=4 znIw#%(-l;-*%~!fn)|{r2sSG=wrjT1*tlTp-;8!@4wj9+)SVo|cN$*pPZrhPAa_o0 z#8@=i{l-k6U|vfgevw)&pkNGSOV!x-zLUR8*lQ!VVz&&)UB}z+5D3iQcc)EH0J5bk zqorN<+l;?DtsABs^gcPMJ?IgMi22$lc0heNFhcmzdO$*;F5!pt`R3tJnICbG6%s>M9e!eZ6np8JXgnyk83r^^XO8mB8dA7@Ti6TD1?l+z*#&(`wa zM^&$b-ba^y28(DY!!;Y(7V%AIU61ggO<}5i7AL4wrYot(r-qL3F+-d_uqy_upWCy6@ zs!6^f9^P7VXG!OuX2K%a8FrW-cW*!&Nu+j5& zeOPqnZ%X4dQ+B@f@qa)h2q>)Iw4O|x17q!=2# zMSybt!et@k6^r43tNJEASpyDmXc+L!IP{0;xflcYYXVBS99oA4PY|UTF;W>BC1cEHXM3va#JdSv)G(J^Ht; z;2EhNU!5Ihiwv*H9*n+Ep&ZVB z@r6n*q*KA2aoAYeBu_rsu_8z6C|kjYRlbOFDBrawPrWBwDI05~IQWCnm!In@U!zCh zg;9nkQR`|Q)x*W~)`cQaqxX9gyh#&tMec<8T4-HL8K*YI5JKZmA+}>JjJ74BM)}&< z_~W&=ZAwGP`aiPa-%E?z_?kkv<<8%w@_m=LEa#?)fwt|$P_=D2w^4zSJpN=9s>8M- zuVAa)6sl&mR>4`nb<51jsc^RUA%fUEI4s+;!^P8;cgAAmFcy`mBPgWWhMA~k5oyJ-4q7(J+{_cIHf=tlFt3}F=Y|X(r`cLCC!Hp z9nz+yMM(rd>7`E<6$&3m6cNDLjRf1(xAy}ZjDK?1barX-AH=rFEOWrCPzw4Z`|%d7 z%luvry>S6nQF{q16z6k&?nGrNXgw=3nfCpVyVj|RmG$=-&IX<-mu0-WaFCi^%$w+Q^_^fAC(+L8mn+ojkj$R;MJlZn% zbDA>1Q@X|4xNTc=KD`BmoQDW^92?YT^wKKpPJ(v0*PLdLwgu|;D^1<8)#sGYDx0Q* zcD?U7&+nQdqezMN@FbiyiHq!OxwaVsUM4Kk^dY`;5be8@IAi}RLRLxwL~LglQLU$3|^Pr|=k6=6DS!U;aik`r0ue_TE2Lu3PzbXk`y zs)iN@+aw#gY{=|5jx?Ck7uqFmGCdX^8PGT`hE8u7C&MOZY3-_-sj=<*YGzK7PO67pDcRt#rI;BOY=#>^5sE+obzUcBQRb640Vw0c5gO$?qXH0;cP(eYX5=T z<*t(3`Ihz-a?Xvlub_3>$-cDP;f{ur{E<(n)cYopKOa%5I z#PL`Rb0>v)+=V^34f7yHc+7iv(5|}E!FXxFo@C0NqaMzW`aL<3p4_XRtO(ByZOljZ zUff`>!Fea}nAf8eFS%yVXZBtq5^^uV-h#^B=L%jDz%c^h-KUMo%k86}?4u~*Bd5&Q zZs((}@1ugGsvq_FEPSKuDJAIGI#qDRU>}MoTOOa2CmM8xl^Yj_}91;hedQ8+RgjP=XPBxPpwa5rS0_ zmS_>raw9|x1fL276N5ENj48!kbCnoJ!5BM#A;zj0_bPOkQ!)n% zn2jJzLmuYa5d&Eha;t(_kHdl;B3RzWMmxm93}V9t$+%-4pWQz^(2 zRpOEy;>upe=EcV5OVXvE#-&iizd?(@4vhy+47IuO6%O%?ry#Sycmi--_|}~8Lo#7#?M|CRVohw~ghAp|Z2Syr{LUmr5;k|z6Zxch|0Lnm zq^XW1q4}gy++@M~$v-5Mq3B5){>l8Gl6yLmFLRT3a8n`~QVt|jmb6n&{8R4FCwFwD z_@t(wa8vKirwmG_u3JTbic_yEkULXB>m=N#sSN9>_v2FgA}}6Sr-97Vs2`=VOQmsE zlK_VXMxk^H`E-6fplX{$s5+fvBAt9MU6?iFrD3?pMC$8+=ag|7RMi>r;b|n?nZSub zQ3@zaA>nq&R5#325h78W$ozbkiD@12Stv^fkK~hMmJ)DiFbp^D%rrG5H>b?j5XvSj z$+8v7w2#ZSsm=z@4fv_qfP2L2EZf~M=Z;P|sdE4I%2eojPQbeK>B}2oj=7;ixi}=8 z(E+(hdAS`5*DF&gl=Q%%Ax1SXtNIyW_l(WUE3pI)4LQIdeZCO9NEMzCaJ@K%Rt&G5 z$f-Yrmv+Mc1EWLs4c!}3=)C{gXfrP0mj`mqfN>r;MEpuL|FLfkG%^1^J^~8excS#^tG^p!`m>C=5BlH(9!>RaU%)sYL3`QptBm>uxK)kNv4iX-O^uI2EH22);kCt(NKN^jPr6DPfmbn^Z8K{ zwe#u8;&2x*#Kd|&vpwHj)CZI?C!DlKC%gW<1iGzoK9g$cW84O5dfs}?JTHp>ZY0HP z{!PxjFOH)9m=DMjh&CTMz{nv);Xt?5cr0X;i21K&%y=tls(+R-8w%4OFNQG_0Atna`%+wIOB>c-B`dlKNR~Sb8R`% zxD)8M5*Wx0Pqbg?SV{4=UDA_s$6D7-4di#Ewo!hVr=Jw8Xt<^qdi&v8hM~s#S~mTc zfGq3`AljUp>6vGk>6a#knOB^Is$S3csc`%OFIkq_D0G@Iyj@uJt#hN;{7m(BaZ{(% zW~n-*^zG7)tj^7{_d@tL$_5-owko7lrCYG)eA%`U^Oi=Y!81S^Gh(Hp=5zJN_l@mZ z`fpT4)rZT%sdXo%!2N+HKvk~+iEdo%HshPJ`;9=LcDL!)XiRZ4DG&8t>-rmYi&l_b zcj9*{;my7F0T1fZR)%c$#74Iy8NleU(f&A%X2|%U2RuoA&|B#cf6xa$VCOY@hGBBp zFJY%xHt?Kj%UV~OhvsllLEvurkPuMDtTlq?VbiPTcd0b0DaUaE)H2%Y=;qx+nF*1GrHbJx1-th3kJzVwar%K!KGJm2T@SxQC?mm|{cX%1KU0)gc^ zyOJghnHRo(i1yajezIKLO=68(H$6T;^ zi9%RJdOE{dpH4YJt8iyjIuq+Tnd-Y2akAwySX5)Wp2S)O<-?X(w60YucWpxi@&){su>(QyOiq>GwynWlPN4Lc)Cf6i$G{R8MP$e+7xr}in9^+vK+6}Wi znS4o~dM#qV#Vy#V-|ctovtjJ@BlXP!TvtWMn#+cp`C0c6j@bT`CF`Ukbk@L+a|2F< z5&F37%=a(+R_e*ZlSpK`LPcvd;G5f%a-n=hoJnTT%g9ET;@OI%G}-6(L08hL)|kZ< zCvF=PyW?{O=E&*)ri_gb%}}A7mo@BCj+qz^66jt1ZZ|QM_#-0lAp=Yn+diBr_(4U` z*XT(`mU5PQd5+QtQ*7vJO{B*sLC|in&3{FnH`Jj{R+1ElE~9Y% z()UKCwA*SGM?!Yub8KW;@>HaOV)w-7%t-Y-Q&Zy?wa*izI_T}pvo2qk(-+~E zZV(_SOU9QscnG-6M4&hi4tp6+I}L`I*;HO4UKN*hlGzN(zP^c&g z6*0N=ynDPm$gU(#BvoJbXo5T0uHHY;)X+HY(dhbKNn?GAMS%0f;!h88g*y;2ZTTxs&fz;% zeB{@*gi%T@P+h2Q$Kq^N}M^hA_ zh1SKY75Bf}D>H9Lo6OXFEq@I$k=LR5!`8ihGUCB?=L;^=N7^NgVE({)UDyU0%xf;x=ksGHiB`lC8FV-r_h7g6Wj#vq zf^&>1_-6{=n&}1~4WnrIZKK>beH4%9FJSkZu(exJFI*P);?vZA2o12YTLMn9sDuJJ@&KBzKE_Y|jz`j+)(wvVn!k&2`M}Qit0G0^W-P?i6b7q3&)F+iIMieB7NF z;~w1XepAYwp807-I1bzI^M_m6@1t7ZgZTrefCua)JD;zIK(>brub9Y+$87>nk7f@s zjE4jT1vqdPukuv6=}Gtd{6UGrYd;)Eb=*rO+Uqr)m$rbnP8AKP&ugi9+ctYZ^9Rgt z`s3cuFy7Y99;_BV4xr-T3piKgc2z!Z(LQgZ`9vvvy{pc65Rkh%_=5R^^?IonjKDX@ zfGmK*&qcsbx7p)X5mcE^?C=A#2vLk*`ifsl2fv1ze{S@dEM~IUD*yCx|3+^AB8*>2 zl`wE!CpZLn(s|-<1~gH?S_oiu2DAXl+(7}md`GwOlSd~8hF=7e<1^_a2<%XUy|IFg zGQ-9l$iRVf+j!vP#}JZv9&=?;EojgoXay6v)Dg5+<%Ki|+GM`AP7t&^eq|LCbYK8g z=~3gsBE`WN<`5jm;I9TD_y@t?vO|O)hMZdsN%aUBWe&aE8G+k>0bLzjg(tpmk*MIJ>{=dHp zuZX4sMGu#j_dh6le!U9sWIm3*|2IWX+8ZL7GM2}Yl7A;2i)Q>J9tZwTJZ}6&JeK-J zJZ?OX7-e@RFO+M7h{rvctl8#gUMA6ic&yhI2%S?`TkCY#GQ6PC`f{S^X?;tio^9|s z{aH7p=T#gnP;T&k`=w%IrpZIOE#YX^+g|*z}7rNFkRAQUCk~kKIu`VP(An1Fl(cPW=h<%AaR+ z<*UC2SeOd$s&4R;H#r$7WN)AWqgyk&9O4~XzMl0Uop#zGZ=b>?rQXKUjSx>AYl9FO>MI?v)SDm_VX2u&0xbty^WkAuB)QEio z6g|j`nww_{_}LO$&I+;Jw%hvglX$$))+fcE5dB%UA8e)HJ*2k90bA*) zk;lesyBeCD-*?B2y|j3~7<7NMDpuuA*!%i8hL~s4M(D#jsmL!quh#yI>=XcAxd1({ zsd1bq{~U~Vy-LCU(e;DH2-SNB3(;S%R4>IVCmtYfm`*z)lB1?WSJE`h4w1?X+Mh{t z!ut-MB5PWjAN29%|>n1V?KqOHyo^-ciqR?Z0E!tZ&lJBAMGGG8^6~r007qU*97bj z$;MNk&D@|@;q#xbLZY&%H7d0S1hH^;lCs&e3<9`>eTp6#tvY8O5(r+r6yll0J%?3_ zuCCph_2Po15WVaW?Wwl#7J$7ZrnPUSTDI^Bl2s+evOH+J30BeKxbt(KzHN*&kNvz~ zr(Vt?5O0#U^q0?{pMm>+WHJgh(?q|z)JRat9`1^VFS;ZPXZ0eM@^4VB4-i@9~x>H7BJ5)U&oq=Ck zTJDW}c>H2IQx0C2lDbudGHb>yA-}H79IFpuCK;?_1l{0OXi(_6#BK@T$0b%#!rex;#)d^VYtoTK0?e^scudD+3~7?IyuL)~o1y$nzC!6z6Ql6h$)_=-cYg<7>397C zUeTWbulhqzfLHqMKY>@)uTFqh=LUEQd6IB#)gGJ$iXNE(0&ZV$PA&7;kFV_I>U#rm ze!;zO3x|oT7e-#q1JyHZ)(oB_Ssip-cFXD2?v0ahnW#1!A z%~2DRuUNFi9o#K^WGClI#wr^>=m6lA=KRh5Crzesn-`m!vf}nNJp~-;fOtG_wEuW= zZQZi*Jj+t-FFmj9^!5at02Ns1^wpVpwrjtEF}W}W9WaAI+CN)f+i=1jG5sJEsK?#A zY@ydQiw9QG#0o_TWJGg>LTW8#PvBnsY&b+iel1kqMLw&!bEE+dZFMZgew?sZcTQKH zgIrTVm0O z=~9ZkWKr0o$Exr6{KF@KJkbT`^MD7MzA|=x=&Ime)h@qo6%3m2@Y3orEi;>a z*(r2TW$kU;4TnPK=`)0t^&5d3?jz1Ki|dt*rcoX^6vwj!ikRlJK}q*nkLS+mW8PAc zZ28Mh-n&wWY2|E4gc%FZQz-_w-*4Cq@yYI^f2ms4si?3S;o-70d(E-yB@InXc>MBh z$?9&|AOIdYUJ%KO?z4aAmVD&0BE(-~`wniIkw>t~VPDgpe9t%SuB**NAauvj*oll#sTiBJ0Jqxz@AqSf2#cGp_2F=4lbP2;IG)SP8owB zKK8E#@qd1Y`tJiha3lGe1#gIJ^sZi}BL7RN!4UAm*#h#c z*2k{1wH5HGT8D4Q-miNFFHTt^`le)0$g`If(MMyZI?b=HLgd+!rCb=L@mr#p^(BZr zOGA9S^i8@DPc~T3>>7QBT$zF6JFAg!>&ndD+RBZYC#Eyrd9_t|vmN0eh(E?yMC1e_ z-YC?AAl{c02jh6Vzk3qI```)A`(yJ%c`sgQ94&vF{sPuBGi(Ql<+-t${zmM;QR|vp ziyJPP!FBf^3=nztv_qU5zJ%I!k1Hw$Hy)8B;-z?Af`T~No9r*%R5S!2h;K8!dQBfG z@Y0{_6Z5pcYx&B&+nwcXI%}Roaa;nxHChaLxNfi*TDOZC4Ho0OMGu1bwb(GT+pFo} zP!NCh)C>f1F(`<;R7Zgzeoq>#XD0L+pBQAG(*;5N+GL#M#kuB0m%UY{Bs)A7W+g47 z3`COe-rbc{SkTjz7(WT*!?XyM+`%*pnb>SVo<)*oIvV+BXQfA~lV-C~v*e~`Rv>TX zvgUyGOd@>L=vF?<#jR#IaAmRJ(~K1!F?D8>y{a}Sk0Wg9(#00w%4FrNLyhLW2K7+Z!usPD-@=Ad`>b5P z*fa4PO$0u^`nhZx0^?~Umyl2wdrL>1UMD`esFP8b66thRou$nK=W!c`k$mwoKo{>)nh zJ4W3Z$E<3`gXx{hoDVG=v!DuGnX@6P_dYC!)0rJCE1Z>YK_vTd2(H9OaYP`}vS?~n z^N&1hkhzr{LMo=U#6sv&1jlDoWdQtWgJx@5Xtjwv>G1$1ec|zT53Bj{w}6qLFw$Pt ze&L<*`<`{XlR!Np`qlcy_x(lMD-D>jsKSN^h_sF4LnPSI;DI#$U3$2`(dGLRzE%rx zWhS3G-En{Wz#MRmbWS(gH{mi`xKD%i3_d|K`h;tAeFt!ju)vkM&wY;6PP7HMGClf1 zl$Gxgy_7oOz+#d@q^V@Wiwx~I^T=>K5g_I zp?<_3U3HBXXO*z@7g|kSt?+$xJ5s@mPb%%Vu?`8|*idT&lQgO^ z%%|RumO<9}X-n(A?R>~$D;G2!H5MaqReLtXS1$eLMd=Pv3Cqxsr@C}k^*f~0t-}03 zJ@kfOXS1PIcoxF?gRV3pUzNI7n@EtbDgy4OP6 zG=6b1^KO)PpN*(>0veVo)P1f$wR|XHw+w7*aD zl~{q5%P+2x*PUTql8kH#Ca1?SdNyg-*9^L;2;IYCchZ@8bEGJ{T5qK9WH4*3c1jTr z#dcjuV=u^&H$S``i{!}=UNcm1B^*vx>B$m%mhXjhhApKt87q(qG!->azVT{G2}{ThkftE^r!EiyVkIZrsIvP39) zHnMwiSum=)z2KQulB^a&V(i%v;2ITv%|#nU)lBk!ux~V;+6*(QTl9iEzWDfPDYLQ; zwRFX4hH^%sm%o1ZgSj(+&>r(48y0uXGs3=loT0=t5r8|?TjI00LYSuWKg^wJ<>qL_ z9Mskl+`RdF=19yjEdercAIZs=q!(n`=oO0n&U(#X33m9{(^VAkf@ndo+~E@yyf{z~ zwm^l7Ru^6`_I4#&B*lB!agXs%j2W9QL!n=%h~0MB*8mR|je{<=ijs(G@g+8AKrzRb7WfhCmRaA508j)8WO>GA4*Nznwk^c5@ z8WY4{&pN#Ba^yU71zFj+MQnk0&SiFsgy3HYzde7p@cY*k`p*+9{~W*ce+s`+{{Z#8 z{)cYT@aeSw;}n{jzXXWlpXCkz>L#&0%~csnZ39grmC}=LQsuf@nbEg1I;hctDG2IG zBNu%`yWa3%Z%w_b7!t)ZiNLCI=RcY=oQUG}y&_mIjHIN1Zc?_q>xp)uCPlnZPM&fX z1w`?vy=xkK6BA9m=o3-AfBoAydg}N+NEA;AMDg_BmMb7pd;<3_a;!M-#JlHMJM+PZ zobwp+?xkh!*K4~R1MeOpo>K$gAA1Uq`MTTTRfAb~iY=yCR~$Zy>rgl8hA5%Rr(_Qj z1<*~xSMdeiB$AFfU-||_iuQGHjE)~$1@n}jV@CG8E61q8f(2JD$i2dQUw>1T1=?Qjhyr_1rXkQKxhh` zES<}o;qeOUCK={_PL01rh|CFL6g0|lOhqD7ax<}FZTMxQMyP`FhFsR9;#3}1c+*4; zs>poL>2qN-o-DdV=Qm@}O_~SYBo#poAc`lXB*U3}f?9hs8s=$QQRe@V9cL!<{PU_) zq`!w>2}LN^W7}vUMU54;?ns#2cEQ;F zgnDj$yq*+Q+)i%|pq^8KnpU06mB*>sCGfhEZXVjKk{;@@eC{BwBY*BrA^bqfTG3;4 z@qkpNMA_h7&`r`83%Cx#ud2xIkeV@B`G}@+!tPkG>6Go5PLzD~_-hT*y$QFJgo-hf zc9E#B=CbVjQ!n>i!bo{{pz!N<6u3WYziN7E#+~U0m_oaXm(7Qa4PX`(MQ9x7BlH_0 zmZEUr2Z*|B+F_*h5x~2b9Y=DA6ug*lh{`VIsFjDenjN95e4f^>6(ZJ!Qd7gl1UKrj zW-jlWakzxHifK1o(wom0H~$pH_v_PM92~PZuiu;HZ>!&5^f7-Yx)46|{QylK(Qr6Z z$%#GMe9h^4v@-^%3K%BN`X3_;v`4-w?;-610Z;O&e#xd22n){(99obiyv^TVkxM?? z?9)snYT@w(m5hHLg0Ng5K*#{sf?5lr_`DY@>?NVbN*#IEruRx}%9e?5D+Tfd>IrV6 zR)lB>ExpBh5-tXh7tqg}`N`SLU-sx|vzE5BQxcxPsuv}G!z|QR3q41!N-jYabkT;h z%pHW^Pkit#SdwfSC89$@z(^s;COwUs+oxT)#xghpl}3vq==fB>c?Jr<y#rg3y+UaXW9T$Xg;e5D=>xTbnAL5YW2b2L~rt`q0IA= zz{r%cr3r1!-=Lnozo4FM8YfWC_iJ9nz99Tc%Nq)QGadj_=q$(Hd_C*9uV}{6hI4&J z{@)B2*_inIW6ErDxnt2Lh;tCsldv~oqYNQ}kjD1gB9-+qPZ9U+$p)-Qt|WtjwD1KP zZadVS%{1K5$SemO)tUi)0 zQ=YB48}*0qt9BcN-$W38f6LQA5UM)=A^eX13ctA=C*fEAXZU^hGyLX2;rH2fm3TCq z#rSy--{aE4c@y1--E4z*BFnn(ti60J%QkW|vOMl%wjSkq4J{y>z^?)_J^Q$?6BA@< zfbwtlmQsC|aKEa}_G;~WCHG~){ptZ*GpontlPl`vHA5oLYzw=m(C>|EC(GgX_s>pm zzOt{2W+`;c2$+`5v9G^sQ0N@qu8Fy)+7Riq;j|UU0@aj`Z6n_GQtF%@vj3ZRuNB!u z6jbz{+9Z2P2Gb&xY>^Tv^vk3- zwM&zvG_u}>fh*v7&xKC57-EST?xef6y-8Zuo{`<|ze89O#1O(q2Yt?FPm-|UGKd?5 z-@eimKhG609H&81qp~y<(W=ytJ#dee1=5Qc%9{&1{vrJGzEb@eeka6pPr@(K+1+Wh z0L~lmD$rONRU=ln&YOdC=AVXB=y3nh{|_PX-#MB6E1dp0BHy3qSN@CP^pQW6bjdG5 zU}p&wPG5KZV?`qAfd?VAOc_L+|9eH^Z%!}}PXA5_{5hHZC548H^OZj*vnNvMpW*c9 zWENB;eumSZliBVQ;(T@Ki4%-Q9xBdfE1yWALDB(}Sx}K!gTm?b$z-<411io##Cd2k zTUQN=^S}vqGMOC*#rZzS2{sE6=M{kz8WiXA0CBz^gi}zFP;3OmdCWHyn9Mc;ss|pZ zNPx*KD9%GpFe1JcAcY3Sc~3BzodZrV5KgJ=z-0D1kV5;?M*`yfi4>ZxVg;&5FfYJ( zKsXH)Sk7JuItiyIli3p|m=q%@&dc!u;=Gc?t)+;kDu#eK|0V|%=j}i^)$sH7BB6=|GABDT7YRwBk$FWx3XRG?38z)dxhQBdiz;lwV}+bx#^~Y> z#yoUM4<8B*RV3ERhEjn#|gxAwnQAde+`|N%1 zseSf2wd+>hsx?2%*-iIss5$AX@r?iT8!~dz`~shgVD6y;0RZq{8vp>{;^KmW8~}jR zC!{|Is5|h&pJORl0kRJTTmN|i01SayUk?CQ;81WQAPRDNA7JXwkE>X~!vH{(0=Ts5 z&(o=McmS9WfN{SMP6B|70n1<#usHx~?-uL|0Jws|0RXTT08kGG1cJeY06-!bF#ihZ z2ZQAR00J<;91Nfb1GK;Z88Cnk45kAB3c)F0y;iUwDR>zG!{!P0WQ7Ijg42Y+EsUH9 zh@1?BT!dWo04@T^>0AJMPEu0RKYzu)wtroL|J@a!dVmGsLf%9LMp2eh|0p4*BE`wZ z0rTgp!1CwZKVK67A{YRLNGc1=>iUI)dPt;*>OCFHVN9jwY7h@_MV zA(gAn8;WK4SfV#noj;Pu@ntwouBKotmEZAbb*QFrB2)AiGMRjB(NwN%ER+6lZShQ@ zO0Immd|k<0sdkOk+HhUzLZwkp2$@2C*;0+gOo{$Tefdg*-S%+0LPNz`i`(y`wULI( z^$u?s6mrEz;AT${4zs~%W7YOR6pccLVpH|*ND`MdXtb$jeln*pR&`Q8A8@7mZ<=(W877y_&dfC3z*inkPN z`{HJpmjERI3YOs_QWSk7hz17ZWO3@fIC55}sHE|AWGHN3P+k;Kv}{x~@*B(O5Ed+? zT}kEXgEt1E_$q*Sz_qLi)Vmx)>|~NUZIwiFIRVU6%FmY52}E5FyBRL;L;;aM(Py_p z;G*4f0h|fJG&#_Cot-)CA@@a*fFQ)q_sGu-JHg4rmQm0$*gIb$0I~uH;i%6ux#@tg z;9MBD1hCFlnoNegXbE&W!{qzeBZjExWMol`Y(EjZ17JUBdAlP0mcKNY|B>l9w}yAv zB=W}|A#-7+&J%TQ!|;K5b)&&DV=mkpzg0f;Nux=fSHE>!xOV|bNfDFaG8h&=bMHeYHg_%t`i}{&CoUP2IFrO_M*BF)?EwdczwR5U``}L06lnjpD^L;R` z4+=tL!t(Zi49lL!1S^wnwU_VlKQ1&r^;$Q5Ni}#J>_JwcE+t_e29()Kpz#HXkO~T@zb@P8c}bNio7_FJ zohwZb18U`j2Os)jGpF59)3sl~4S(5bA$ZA16v14pG&mz6dM30Je>-+=OKoFx1-=+) z2VmP6{R&wYO~A_~?`H~@ZH`93k(Ekju~TR()nAcz;bkd4wdkvvgp8W7A?m(RjFS%t^gDkm~PETDiI@GUik?5@pUifcKScesh{6=C#}n zq!pn$QdGoX9-INr4`TEU#~cU;0}N|RD5xSmdAqf9H2o_uq^xBU9Og1v{K1S$FIQUR zuz2E{&a}Mfs)6AtaVL7k6%G$E4lPF-(O37PKD5@^J2{C>B9`<9tX7&Z+_XFh`z>Z; zV;bFCdnf}1B>`J<-nuLCv@>!u>7v+lD0m}ib4ATjapeV~&Lc|tIVFx(riqJIxYz@7 zF`4i;#g;@?CgU2c-xI89mHkUJ8;0j9JZ?&j&`PzF9sQt^Zpti_N_7^7=j)qq%I(5S z_4ef#nwM`X+{Q``?uHlIA8#tX(aMYv6c)ReZ~UnaeE6@CiDtR!#cOs zNn>SZd?QQa9=A1FXyq0%3d_?ex3xt|CDWPq;OS`pkXwez$9K_?MUaYd2y`5rC~(>L^_cM)~&*g z@nY?rQbWsuQl-bj2cfdpd{pb}pk#z~{@A`s#Fv@iO5Lt~yx3msPSF&CV?t2-Ot3tF!*HH_D zdJvU^#)KPa8KRTK=*+4jTt~ObpBC%b+OfmF=^7NERb8!Sd@B5KV;^Q1J!Z}2DElR!8W3G0uy3BR#*r11R0j27uTnNqP z&C}!JpmM#d9QDcP8bP0I&HCCxrPEn_A*wMKmx9WdEDNotl?`-0v!?G+HrA=DZ}1zM z7shOdb6P0(Ty9$kc1~SZoY3$(}x2Ka>-J-1I??=hIj7WXnsR5h03~Jf>MB^0gFhn+uB0SqC z{94_G@qHL|9e2E&U)`hrhWU#uz0C76G8$pZeIjw(>GYNKfZ&@-(A_HS&o%1_$sl37h#B$!a0H}2VzeDF>$)cx ziU@nS*nprCZ&)#4uX7{6A5ejOmRDYH8yj8@yST0iE`cs0OnZS*wwQ|}ulL@C-_H_% zKCRsi+z&>+F2qlG?FnVRpG<7OO;mn4+JAj~8hQoa4zT||^Xzz-r0aN${Py~Lf&BRq z3;ejhesSAE@%j+`{^c(6+fyb5_&)pRGoSbI-cJyM_Z^itY@_!&ygl=UHzuJEHlh!r z1qJe;H(`+tI=>Gop%0!m1woPz^`bS&q7T`<&o!1WO`|VR)0d9lhk>7hY0#IO!HVtP zmpthQPvb9W*I)ei-ftNwxCVbo-kW2Z!^kH2$v67R5&B)e^^+p>#~83t)b>|6@VkKW zS8Mdwck$D__t(BB*BSITIj~p1_tzv0IC~plx)>m|=Wj9SXSGOfa}eN?gI(5I37mv&GDSk`egAt>emDzu0^{5~k@z%Y^^MqUKf)ueDxlBPL_NjDSYc* zXJs*b`aXOcD`LAbqC_KNFDUGQf&6GN;#ynh>^@=`G3=%>l2sa8(i<8;6a_611w|CO z`8M)7DJo6F4lEmm&KL!cM2=V-h3oza^&yHd7#iz=4ChlcIpZgS9TMYCL!WaQx!kUr`c@iTTlg!OrQd}{;ZXMFxQ*w8cGlLT~rM+lkOV-;Qc5iov)$c15UlDSQq%jQ=sD7QKc)4{rDZ3(TNPM$E~O>BNgE(a?;}dF zp)n>@OC7fioMcR&mP-nqX9{#rUjhqc#MY&+x~JJ%k}b+*m{?@&3#1zjWz-*LoC~BK zej+<&%v2kUqMXcpeaHkHW!}k=Jrrk34Q4{6WPt^;W>mA_hkqfKWFZe{O>bsl=={QB z%7&89p8A|kFzicIl8r)~NpX}&#gy|hls&nb{f5aGjt`chIh%Gl$Lb;HEpisqBPok~ zF6w;_)kUr-ah^DGp1={Q&~Ps7L9Rq|o|sPFn0=n?@K5>SJjJ8DQK)=X`JW%<^ChhE zM||=>HUH2Z&Q}u5{cIKcMZVzuQGVH!rxmwX4K@qcjfeSiBD)}zTS}ovbD{fiL8(|W ztdH|qtSb^!fphbB*WtpDlENS06yjmaFIHNNURsy|9!1lMMWM|_;UUDWhen~Uv|U%8 zh^oa2Azn!-#a_+Dg;T{2@5zi5mBPjd$kTc{_KGQr;ZjaDz!DPJybS-$8| zu`EcMCtp#+SGFHgVK!VLaaeKgQGUooddyTAZC-JcQhr%dd2*kF!~ulW1;Q%;?}$ks zkbytxfe24PxKvP`i*B`E7v6zUs4*P~$q z^hp{lQoWQ%>Sd1W8?xj0yWNxlGcJZ@rX$Y+ufNPQv0tT!!@K3go3t=arw5Bq*_VP3Z3Dpj)Gz=d*cO17) z9M`P9X@lng&VsEQ7g}1Wr&^a=nkR+yKq&24c8%MiZFQdQ2P18(a7_Waz_X`zrNp+Y z(3a|{XlhDm7~L`$l9tDoj!Vz>R}vDOhvxNEfSXkrf=xA2SsMx}37TH5n>-LFtaFsP zBfzt(GP+B$r3+@Ii_NnMsdyW(v$3P-I+N(aNJqu+72;A%I=DlrZtw1jS% zyGIY>XseJ{FZEj%cmws-u8nADc~IiBBI! zSfSo(pO|M;R7=0jYQGIjfAQPMs8oP>SfRy9pVdjf$8-PTimtxU0G3{vYgmta>wqWf zKoM3%CZzj?hdGGHF=#p38elURP3f;OoLVq{X ziQ44nPJ@Dx;h%2EaAP(lo*`sNyiE{8xuBa>?4LIZ5=D| zYN{fcxDuWiYAQv3o4T*34{8}_J{dnBZT(F;d9|9N4WChEiHQMV+S41I@R|_w^Yn*c_pKmPFiP9~TC4>5Yy6}Rq=<|KySGvw!Dj-LcrIg`Z395QZhDFF?ixGMqC56oEdpqrx(kH-3PKgZzn(S1%+TvfUtiGQ+)CIW zIs=ig;iJOh+=j1XdV^?1zS8~JLQmiN4CRd_0tIv2Mnk@h7PP_*0`a2bBfS8m*(w-6 zuYYcv?mOL{qD_KrKz zPbz-ko%-_VV4Lua(Rdlqt+k&tg7%upJ12h}HL^k-WSkwfpB);UYIbR_Y-6s5C|cOE zS&<)&{+L@p-QETH?vI}VD$mZw3FSp<(MNY**sPDqE>PK_U^)m{GXVNeCrFhSV9>?M z>qQ9GCC-O4ybf!W$V(#jjY5qwiO@4#@MR_b6*c?C(`R-1=xqh?_&L)DOP2MkgNjRa zRW|tFn}eoTSd?2ny1#Q>e)CuU{+P|tyz_eiZ;Ra);HYq&Z+6WZdHpe(RWckKD|20y z{YL8NCI9)wZ50nf&vifCb*BE20lTF-`;{gI9@j@Dt=Hdo>3~e7-`3y!jDB9bz$~1hS#eyZicmz^BRbxEmvlAu~F2z(nmR8=;Y(Cb2pQ;R>eC&h2 zu{Oh$&9q=x!0kVEVmx!8CouVd##Cl{hs~$NH&7|`ueT@`RYBGHc|%wB}NGg1266;8%5bE z9)LzB;zy{uB^iRpYS5dcx-A_+_U;EPk=l-I%p0W)Ng_1>Ac0lC-H+&_873OfS5U8| zW4>a>yYH{C#OensIa1-|QYq?(Y6SrJyjlLJEHOXiY=gcOjbqIU{k9))B$_sT=}P8% zlA$$apX$G^wfmE3o$2L#7+|xBY7px}!eLTxB+h?#YkWO3N)M@0N5iwKLx-uD# zXEl_zx;uj&N4dXE&(glOn9f(qluqZV)*XnPs^}-xy#?DW*M(b=KR+0C&9;39!;|aX zYc1ORdKS&ld$`)^`}#hRT>nvT)feRzO?9%b*X=?yMNF(pSQ2c$1H z3KWNV5Bs*a027s&9S$djlB$%>q)LjwkY%hVmu&|qjb@7bR));gD-zhsZw-W=G@`AR zrHNcc9>}q%osxdz?#DTdA=k=0_)A=rQ-QT%XF7*I(70L-y(6w#kt;vffrZ(1r9y#k z-S4*)=P%@sqa+i(TpuuJaF3hYYeTtI#1PQFDQAI?YH=haZcJ)b8}Cs^CU9}6Ytw!iH?HPabX8eKOBXmt9Qs{;H;9T=_DqU3tYRx`YJq=hd@Mud9D!mEOy% z?|iH_3c!7NwAORqm#WiC@SUVG{C>BqW%vOFQxpnr{!OFe*A53hA2o^GhR=c9wFCgK zr+hcVMO;j8Z)k03Z2%N+1dAO#BH6>5V5UX)khkP#0jyGsqhL%^ySOdsaHmz>`7V3t#NCI^)l55Mv*uBAIW z%kR~S!?$?B?5REJy|<8U(|$xMAQF!9;Y}Kp?csJ3Ii}kN5aHXmlL}naYG^$B&g`!P z6bNTuo9Potj>8|!hQ4+4t$*b98P^ns>L&?ob()chO>-D#Wl!-g*WVYug+|*y`VIRk zZ*e{2x}Of5)hJAL2EZ;hnJ+~WtT-a7t7EN#G6UO7*L^DW=-?1Lf8`6`JjWFjlAi^&nH#b#w=flT-4F0}{CIjV{{H1=Wxu2Rt|?{xdDi7UH2wwkLoVp` zv7s~n`5QCzlrk)lxhS$GkP3?n8i~7642Sy%R0day`%m7YU>JJu;c;gJRlpa%`v4;kF$m=fx#r$#<0*d0P zLpFlkRgLjI2YTt+IYJCuM{y|zIdQF~!lJf~3Em@0^D0Y+sqc&u?OF(;)^|p@_I@Eh zzwhN8z6f`OHK8O>lX-`a9qDzFiwI_rl}?F{3gD)t#u@6A;+>8W^rEG`VHlFTt&B;8 zHHG6U9+GgGj-x>~WzramQjM98NE6P#6KRsyk;eGN)@jP-+%%%s&6zNmYRc;0)S`Pe zoz#52%Wg_A`kD8)eV_2&+t^~o@wecak_*SlfROrNiNaJ)3=# z6N-f?IEBmLlugN*GT?HHjo_vTCF$wCCQR2Gm=Na*pKtM=)k76Vz{m*BTVKKG5hE9m z{T&*Qr812FbR1n={>x0-xZajp0^vCn-<+k|O8-p8o@4%dG8ILcy_jNX?{8Fd407?! zb48yo;0@udwfm6g3&n2)h4%8rqa zq(6zPXFP@zHHVeaF4G9N8TJ87SeE(_Q!pxD7Bob=Uqr*NT|vTkNQHVi%-g6N44Y-%W4(B}7a3OT5WqA1v?NFa+8! z#CJ(Fqda0!{=z2IC;|h5Y~ZxWcv4bIf~6q|5zd%}p6xeU0y=Hq9TJoeuLp9@VSQ@m0&q>?YGu`X&ocIavlm&h^6P}Tt z@YHn3gln@9#c7_b7U0hDEVGd2TAqsRSIm3!?u)#Z&SYYLttoe#C7$c@OgK8v8@aY4 zVAA944|wO2wLvQ#g~|r5PUi~ewqv~kop~oB=W>EkJp%&Ih4$CFC%-nE*VX0432B#V ziar~wyWyn?HkaD`(*z?e-L~F-m-+@)g>Q*1{f>;{jeYNIjZ#+D$buKqEjYe;EUbX8 z=XqOHA8dbop#|N+H@1O)m!HGmu56fOhql7BU-;k%Gp>oa*?`+Fy!lo)WqjOv-wWA? ztgmblu*>)Jv};GWwt~RegyW(Spy&p#D5OfUQBx7el#yp+BABJyc6glJ@>L_YZ|<$u zB2Fm_CuWp5C6{Hy+}UWFK#})ElQL{hIa=w?db-RLaH8BrBU(qqg&uQ(Y|{%zrw*o@ zAO&*o#fo#;9m567#Xf`Uj1#m|p>I#gAavK*;qPa>l~4UZ+ojeIiRbW<4XC&sZvA{e zF1u4pr%^Hs+bBTU!LD9=L_e!)t{<(d7htE?3UnHvDWoo9lZ51#*EnM1NexcRcUxL)!1`uRM_xUPsL956yu; zu2ThGjp6LHlLF(OhiVwMC(R4)27QI=70)>=+BMNx)Uenwac zXzU)MYjN?~|*-W+FczP1NPCaiFBmlG$hvMah%*61()a)yU3WYL3MQ;AE9${{_ zoD{~y`#@-ZrsQsxY_)gdY1|UE;*zc9oxZ^`q%2+0!b`cm@@b)DK@w1DJvUKI^~@#J zZp@1oJt}?~Lap5&a|>2FL(N?oX4SDW|>@;7k4(PygQ?OZtGBh4Q{@kyuGD-p_5#Z z32t%Pu%|qKsf}D73wQadyu+b2kLBCkO(r<(-cBDx? zzPWa|<)pfGRw0PE50!GXn|ri}MX@7}vlCTOF_;iqbaYTyu}_k--$qfvU2$l36g5kc ztY&nCHV)EP7(7uVd{Ugm#hoG@8|oe279R`GMH$pnnzvEv@l=Wl9b3v9TfVMX=^X<% zMJcV(j!p|#&0H(-sVZ&KDr0bsZ|}tH%#Q7*0r#AgS$)Qr;*?=&T3R;8&#uSMVJ9xG zlTL9buDBiuw2Hu1bO@p>}xay@ZD3urb1 z+;X#k!m<<9Rp510V4Wx1KTjg+XTg70LC9BmZJN9t8b?mY(=egHxFN?pCC8E?$KIX9 zk($EQn8Gui!grp+k&=L#hR zi9C{%h(=!u8Z#}2XqsS5NQ$;qdZ%~zN?N2BpSf--dAN*4KQT{evO9+{?Jyb41=nUx z^)XR)CihDz15YwSZ5PC=06v!1ESOw^%I?)7pz#5oSjP* z){2~7G+kz-yKxpqmZyD}7TCjk(}PQYZm`${w{kjr3;WOb&&@cnlKY!3g3B%!V&t@w zfEt1RGhWV(gy|*Dy%{d3z3!}&v%{&xZ)RKUXFpu3ev+D|OrQSrBJ6_Kn#8*FD}6pW zUL#4K**E-C1l)2K-g5SvnT&d+ejpcmP+A_T!0oceV7CFQg5TbULq&^sSC?Xivtj%9$<%4yFzkVOT{*b@^ShxPvxBfi0{<6FNdb19O+W_EiK+$bL^KQUMZ@_A9 zz?p5pyKEo?Y#>I2dP5YY|3p>F2V?^jp;Q0(bbmI8xb$y6-`@fs#OFJELW0nceBcJafAINAAU+={#OF%|>q30Kf5?3Oe|dX+ zV2I@R$LE8ndx2nx>i0+Tn}7XV?E9noL99M{a4T2<;_&?~_WiB&L3}=l%m-2W{`UDG zGT$Gi?_WOO-*@O=`~UJ4fT(&f{{>YK2^k>z4^%r&H~k> z_y1GXvqhD!Wl~L$sgeJuswbasRmUP<_9;B%AF5tY437cinbXQTd}o zR6SozU%E|yO3lX2Alm)~DiewTLgQeT`o^{3U-?B_{%rFWGz|s^a|=tghnDOyogHGK+R&O>qaqQMZ0{J1ztSuL`PLN;(IL3g*F z-ud{naw9~Ds%fwPn5LPoxP`41IheBB`F{BLTj+Iy$$1+R3oLyVnj&9vJN5H1M`sW+ z&qW(NiOOeh40B=QPFkf_+dcxV!plKo2UPC?5F0lu+)SN1?GOin1?TW2lO%L^{3h}5 zap-YHjuxc3;cD2}&jY`w9v_|^JK#R00b$ub1YOV4Nv|GHE8^@pjZn2J-Yo2ljb1F8 zB$iLks|0p(EZR8IyDZs7hEGN#DO!A5akIX2S+$=4kBLGfI~qBG{DjP%YrKAkPiB7j zFmJXQ1+I79GGVU}-6j<#f7q)Tdp_9DI<~>wjwS1VI4p4|e>@uG{p#J0rntv*RO?zG zc$`h*#IaGWp#OB9wifZUk7%FbGT%v$k#x}$Dl&OCAXEB$9sG8^6}nkyOiaN@?Yzx! zp6}aaw9A*`Jmf2~an+v9&AFQZC?OA8;Nr=(_Pm zOwFQ0vQf<$Fa?UEpeW+JQCu5w3CAx2-rE1 zVw!2cJksFeaMH5p2hUK$FI@1zWUnNin(*g__M+~~Bb+mf(IrI-l zjFFXsyL;3x8?``#y~3~J5i z88{q8axYGpQ8cGp7*aNC{;h!8m>|551RnROuYvM5-V>3L`|y*~NRaOYBueo~C z7e$YOjznkT&`nMSd)J({$8wVK(=|Nd7=y&q(iC2|eFXJ8TB)UnDH2HzUq+rhW<&Xz zlx6h@p73G{bE}z*Y1~5YIZF!nqmP-&h${Su#VRug^0tCE#VX&AoKgtIXj$WnH^NFZ zvpv*hiA1xtPK`e{$j?_8pXYy;+SVQ_(WoH?lw0CiYc4HodVApI+ox~o96rugwAZG( z$8Q-t438nbohiOVwLyVcd#-OfgN@b8P>4pf2E;WpWALa<4+W_L;N(-1(@*q}j%Qh+ zYX`LyrCDzS8RsQt8f`eU88wHs-A*lzv)!~-KJ%P$ZGMHb^Jcg9J{-L3oGGpJtz_;MIKAw`RL=0D zPxC?kFr*DXZs&(H`WYDmHiH`b(nC&f3mro;eltfDN~7#Eeqs{k>h;Eqq}-Pc)dd7m z^y;WUQWM`SewV}(`_mtaJ9H>ZgZ*{7G4Wx7bV5r*I!{ajjGaD9s_u@nZQe-(ihG=q z0-iYB>xmx-%(z;T!J`&tM5blUdxLckW8WgUruYH#f;ea6ZoD-a^fTt~x6vkj0vyG5 z^4N#-7A8MRIOX&Sw|87B+fn*CfoR_yZt3fcrPz`b;+!77`v~8Z9Z~y}p7r2Yl&vR~ zwrPnw?~y1?@2`B6t{>*%wL06Ms5m3^6U|4Db5>AgW$giYFAtabe>tF&)1JSnsU;VZS0F;G*9}VSD@qv zj|&YnvV9l1EF@2Q!)SxP9%!l z7RbQ%wrI3el!08bWni`6CJJSHkpF6bf~b0Tp1H4im9@w3)V(lTx4q*u3va+c{}(FytpBv44+C5MBdzn#`UpG^7zVRg|64q# zAM!#JB%AYhNax?;Igkj?f2in-0bXE_ze76zcNIMZ1t9U9e^vDVybu36{KNIaVE9#| zFQNQ$SgP4e_*aUxDzW%%#;r+ z8_)e-=~(DG>5zmk8c@WBSm0tWOE3BaIrUG^-u=KD#pR4aGh))|33|qt)>9RaW+v&d%Uv#5<@Pa<7->JKr z{nqdGyOF-uaemGL$`w`ibq*cPWEb1oK^)L4ismc)(7X7^2nlMn zXyc&~-&q^PX4C?XV99QP4bZ<$agRN4NRj%jd>Dy*0XGbA)Qt0YGQav1cf7y|mG))o z28$`cuWn5H6+7(!*Eo?|VA$d6D(z5`K5lVI*|i%xHvFNox7P ztF5LGz@4#_W3IsEp%zzwXpE3vO!iZ5BI6OakY%oz(*0;A$M!&mtw8xXqEDELk)zL8iWo)mLj7~`cRIHvbD8)q_Y&%)Q*e|7qxrDT_j@CZ4jAP z7DlW-*68fm=zqADnY2}{wZ#jfV@>%q1AUSBKB(NrTtRmU?E5yX-1+N^k?sm;{IzFAwlx zYY)WtouAb?&H9al)YyKi{_ zMPXA7dG9XUho#~E)Qp6NXA}0+2lpg#P*S?EAy;M-nDUD-dGLZBKU+)F2z+qnS(4&@ z%hJQRVZiTj3Y7*CoTgFl1cx(H^MipGfhiRO?g`@X1{n!rD&8$`Q+TOEc^cwrd=8S9 z>ea)NPl8i9XUk6VW4t$K8<6l#UD@aKqlBX5Id#XIGFP%=oj`9+$Nrm9r!i{-m~o?) zSRJ7McTQsh&v|5fqL$v#lh0gtFpJ~$^$qE#{(fbgBNZ;)vm>Vt-#n>QU|bse*4Q0V zpVkh3ERECkn7cGQEuZtcj)dStgO{E_zsDNdbKgPNzIbrDJ>K=LvR*hc@5t$uj*8%k z*n08lt)TeukJ573hrpyoi8VI%Y`59}^i0#{S>x(P)*Qb|Xi3{e6PRi!?%9m}#k|Wt z(KJG#mVFd7vp3n@G#*${9`vz)N7OKWGBD$JPGXv`+`!y)a=T;TpqK5e*pX{)#r3C> zv?KP!_}0R07AVK`kBpH%%L|ZysLFTLD>>s?KYqAq`c-mZjt6Gw=QB9R^}&|17gZjH0YytUwr+D(-jsX3eqfaG zIntVVoUas-&!PCsFmSQa=Cy3E%(u&5)!%B%M$2S2~~mpSgT<@SnUsq@fS#??bx$iC_pftUyx!e}(lS z{r!Kn_5a%n;D3D(;7TW5#7eC{Q z!NQQ+ZTR6PBvM+43ui$R_%4l`Qb@EH8$oyp7C8~Qg2-*yS#apleVK}&Fa5ch&*bmhKr%Qi$=?7TJ9PuOwWCZB@+?w4G=$~ z+>19!K+;Mu`#Q86i0x0f?esaqaxcxv!=LW6wFkdy5OMbsRJ=1hlf_3@oqV$lPrAuM zSaE2HF1ZCW9lNn3?FL_x3f-`wqpRJDau^_7kIYurQ#YMn=a0phh z1d{zxIa!`Zk5ig_XF*vfJPKBM#ioaqq_`%pei#bk@ktF5R!dA(fe5WxbsQ@RP3@`+ zbGhxTu~j*Gs~Iy?@LB=$Ndp5^*GbDo|I=hDw&MJB<D=jes6MW0k$Wxq6IbqxQ2b(*01uBMbB5GB(PAhJSCt@lL4)B z-K$aa%GTc#j=-bInNRGmHjCDkZDKGv8KQ+{k>~A}yQ%A5Vwv)W&rkQvO`h_igFi)H zs06)VRuej)+30?}O00-lac7;s>-5GnL50R4gu0fpfPxRrf`{Vjf(=oUyj#gaoT%+^ zQMGf2PsTz-;_t?<&;RvGBO9(x=+oD95x~y!xudtYhx`#3$jO3z1h(?)p{|g!e6N^; z(L|7g0D%BQu^jBe!FSX|NFmx`A=B!EeQfO^loK_^_yhNGtR9zPRM@i7^Mu~}(U;*0 zZ)u3ziu!q^WyS4Ab3g3x%dqKihticDj<72)Jjf9sZ!D0mCtQ8R>A8Ss(P zaZvYbO`>^09Kw=yh>35_V-SL@3?S2nA!M0Q%M8h9nK+oFs&A5gL>kmwzM{_Orlr&% z8rFSOqi#C+;wLI6$M<@blbK*=5S2lR61iRJ(@q?^J5{ zH-NI_F$ZjW%E?tT?yjM6fci|@9_}DlOX9eTZ%s{r`M<*k6r1~>JJ#UK?S`L92 z5SuZZNb}}U;XHXd-oU9~CahT8d`CKQD=uD;%pz#|a3(XPI;B;yM6Dx9HJ6+xUp}1a zO)|1tp#gTWTKG|zu$4wu0dC5l1U}5*T!qL@yaZ;cP7m^6L5g$qoL;G3)2F$H44zoa z^irKQD=me7jY?x@T*Ifw{tjsTGO1?9&o>r}J;aU)p&BM%$VhsbrFkP`-`SY9xqsp` z!w0glTA5efe`*VHsr7#;`EpDoH=e^AI``}Yfq<1|@OXVh;rDW^FV-udY5azYxl>KPChpuTUw0id+ZK2)Rmq>+V)zJ;)d@A8`2$5yhU6`< z0tx?u8A;FRRc$EQEsO(}pw-aVD+UI0{^E&W*bt+X-AxelG63P^7krLn;whv0yiEAnTHcQbKh? z_VWOsGss_y*C3&xb+?s>ZM2buD>+~I%Uii~FqDyW&B1J|85@j>Vu-I}+OCa&;KI@n zMVtZr!-?Q~u)t(!3?O?(c;kJ|1ErGUwE)4|zO>NtIDVL@Gf3gEgQ$6&LQk|weDSd9 zyT=&CXwC4lmemIgH-tYBU`}Su_2HbO+~vm4a_soi%A*;-wPuCV%aH+zE>(BxYDQpq z?Jn`tBGQ!8(*3QdS?Sj%szC?@jD7veyaVvd4T~vXJArb2T3xl(Y0{ZiaiBn3If!Uz zEV!Kxjdk|6P|5X1!vR(Ma|y$u zAvN@3DcdJ}O4~#mN?Af4IEwgiVk!-0@EO*EKtN?H6~?396kUx?tRu=U+l2cF#T9qT z!s_0{9|#a(SDjf|7Y$7K3j!)rcQ6QDr{meiBF= z0@kBW%qgl%AQ12tfL-G<@gzD&eqYfs=xr?dyft%pKRD0^G3t%?N!IVCzI~S__cJ=4 zK-%R(>>$4%`0(TMn_nO(68C;&;`K7qQ2Frug*klk^>Kod@_$1S6%aWn`F}+bAz+(7 zy9f2<=c{Lz2@-K4KS6!8~AR6+OwA_qZO;{Qz%|I-ipiz5Cw zLH{Qp0h#v&0g1MMM-l&i*w?@0puca>zxMy9SK!}K1Qa=g94`#HwnzEp1sUDZmbNM-xa~i4yw*$In+|67`|ce)pAgUI{*r^V zK;Id53p1rWZ}trhpz#09@xpeY^bI-9hfsv=pb-N4-n^JUZGwfd4uLU)B!nVlv8>QN zHo6p0XWbwau}7#Lf>^P*70Dj4vEjmf2w6&yb?DvxF7i4^Ep_tHkRI@dBI40lEe&Fo zn+a7Nuw(^x4YU(1&Ej=52TT*ye^`o!k=yLAB|FVq8mII^scvU@-3}E>@}Li`DY)QU z75TXh7ZhfOy*@;VtJ>0UX9Q|mS$YL~)LZ0+i|0jUz3MX^6-}9@EEc3a9v;GE*~%Q1 z0^7l6OvXh8M@14m^2CL(VSPu(l}TfQTIKc2izqaak-iQ(x{2X0o zzUU+`M@eW;=TsLDk8YN~=)p8MxoGGs8IFR=RJ$;Q#d1Bdm&DoEwa-NRJX+GVDFux<8JuA-w7JqXl%BP zZA^?dMq?+98r!yQyRjNOjoqNJ?IxLba`n0Ky!+u^d+nop4zjXl&C!2OexLbjis*Mc z#-s>hWDJbr?-lClPpB33(z2X7SHg;x8}ABLf_2X3=!`3GCbcEOF)6+96OJaMd}wHS z#|7)V8O7f6%M}kx5aFGa!wM7EDvZ<|yM^^#<$bkxI@bM$Kdx621P4{;{Z0V~O4nA* zx(*t24&v;>eoAr{cjtR&;)lH)QU2D?MT5GfyBXzG4geidqTJ(lT{~9HjaS5kG7K)+=Tnw*FEl!*SR_$ z&U@w2E~tc7U!G|?Nxnb0So(lK*mdH=qVBf1Wx{JPQ4ES8jYhF(xOe`p9V`s7?>o5^iYeC`YVs+8JFw}Gh|UYY9i(9 zHJb_h`=CG?$ZmaR5v z`H4VCGdLt6QNtoBTR>S_2b9#br-vHO1W^x5<$b!0OP)2Nk>pNL@SBc3)FPo%8^-*Y z6&G9DN6BC+m4#bm1XpcEDV#woqxq;T)hGtf?7+?a_=|w0ToF+!8_pwnPkNIgEmtZh{W$wsg1vy_f=;4*WVqaZwzzcrka20>zb*~jRg3E_`YbX7e{O^cBP(_R{M-oLvulLEN5OcA#o#Fad&^x*zJmdr$TXz~lIFFDFuM z$PTX>^3O4Q+D2P%HIH?_?bH5&unRbqc7p&kMN#hg4sXrsu#h?!vqHm2G z#gom%1tTpHsXvUU|F}$i*r_I$OC9!{t4sMdw$sopHvHLy#9(l2m*|`Uq)6*;m)701 z%Mso}MxeL&eV2XjmW%`XwZ{vV$Sn9?Mt0_iHS@Rhz69#>q)Aa%9Y&?u(eu(&N>IH$ zb!NQu=d2##JEX#5g(VUi=!Cho= z56N|WIY&BoRSWe&Kz~JQig$#(PHC)=2t{%y7Fy}cXujy*MyYm8lbM$nP?{R3FseU9 z4y~*Yl-Bo;+X#ISQX8knYW)Cf;}pKKdY&~UqsRZHb8cmAAqhC3>&FC-)wcek%GuQ` z7ux}pk|>gBUd-$83)6bq#B1Ubx2K{W$kEu8%y$`(^s)U;k>^UFcf|11_*fx=#u zg89Fl`F}Zvz(I3tGeEQ&H#w~5eu9G0K&fGG5=iGJIAeDIF-*}NFT`kZFfBPA9cNNaKuNj z=|&6nIPLL9e+6kk!PNb&u9w^9L>hNTtwy>(Zafysdb#;eU9as>%U4XO=I~@XiB2Q# z^Bc?Nzv_Cwi&vyDZw;`J?1iA|SIE6d`>U?^M&d_i3j*0|UGFl!RMT4-OuwVox?VM8 z-rK3AruePKMP)zeX?F*tzv_C+`y;DA{owEEPa+dJ1|^N%wZ7K%j?U@gy56l|Tl?WE z=revkIDD<^{mkG#aYluk4f%tcli2u~3S8Iw-S{qB>huk8MT{d>H3yoBDTfT~7~0R( zM-c!j2Vl6-#LD6FNG`)MdhKt9zc;|n3!#(-lKIkAEgD4d-R^J6vkK6P8HwRY&5IQT zF8p*Tc;4TRS2V!d_7){D-%&?5Z!Yk~GHVt}&;w@xL_XH3?IcQ=wD>suvXkmgu^oUn zNnOqirH)0{NHL7J2Rnu$90^SKG9`IF=|j`8m~UoBaHQ$w)FMmM!lLG?=fq)M@9r06 z6v3LC3c1i7mJ|rE;iUfxe6L?z(a5t}92N+YKCH;&=u6Hj4eHv2tGYd8u&kk`W~i)R z=Fx=K;<-Dj8`H(H(&@#}q8Duwaxy zqHIj~Sw#o)mS>8qPIFal$h9dI(04G5wh9mS4ey!}b9c@fa8ZuWdx^2fs@i6#1Lm7U z=n*ak-l|bvD8b5<8Z<&Q zfGCL@cf4+tzFXT$M2N6!b25Q|iG2`Q4Bc0yZd%zO!s!Th?zR{5-7KQ0MNZFY7Duu# zP~l47u0W)FVk}#fXVyRn^j11|*r$WUoL99zru%Df9$VkHcqU(SZdj5yW-oZ4d);r3 zQ_EwZbr@GY?85P{L3AVppO)_c^g167QYplm7m7nqTgwa5qj(Ns`1RU^Dgs>Y)csGAW4YcCNH1vurK_?7^_9@h6eh_cBoH!HJ6@y}CmD{R!B6 zSTh;O)kky->61h7c&`iPI1(b4anV>q*mT3gCF&UQIkS{_5TzaR zX_qt+3AyxYEmBfhmx)4~6jDK5BbwwTi8W(8`bO{o&E>kJyo_At;D^{xFL8-|vL=ki z2cw3NA5$lfLq24Nj_HYr*-wq_vXzD=acwGpH5o4Aa9xtMAs~&yekkISYmsw^V#z$y zHf3HpkpHD5mU&q~$)8CFLUY``%0^h)`v4(58T_8b9Zt?n7`HXXpZYr2*Qi7cc~dcj z-Z2mF29-5*a4O1;Eg#>wKvHs9$-|E=jhw1fTFy<`xad|&U0 z3$-^7Dk%hFMTUV?6y9Bb)%99?ZXx%j&9hfwSGjyGXP>~BXg!S2a78{wt$6tK-7PU$ z82p1M?&#tG^Q~J;Je&@)mf$qid~J#`qsYsC%&>B!XVQ3u8EcKkDu3U%Y^u*@lHp5U z%d8E@VvLqrgaB_)&uw*G`>_>!+nht^ZKJ>Ti4Dn$)(RwNG}tj@9&XuIm3Y}alvrtx zZHbnCe%3OXXlNg-r88sV9JR8_WYmEBSN~SsbzCHV z!DF%n*Y$S!JRg;NS%)nm;@x+_$)Ef7j))c*ICm-5SNPFn=naja_55afAIOQM@xy>C z6l3juAn)-iD#eFBa@Cr^DG^~zfAwCvDqCU7Mc;In#eQNjy9iv5n4vYiLG0O!sCT5_ z3G#Obg;aB5oFmYnZ;JY)Ue@Cbk$w;^Mu`KX>V6kx7zExYQR`0EyGjQGi*HZBeaVt79AI(7$IWu*`a_o)e-_SKaMW*O zDh6EFOXkUm6B)>1V0fM7zU4gJO}xc$@ka&onZ`ZJf58)fE2k#c26kNL`jgea@Ay6G2Yj zCC=l{Hy)Q4cMH*_g-*dXp`SZRPEDeUq@4cg_63BTt$Ws|!A~-f`d-fan{sDf$z7k` zrl1yC6`hHMudH9gGhhxSqRMQb|!R{ntg|zYjiC!%eqrQ_-ps8C*p9E)L4y)K>ScmKKNh0Y%G=o#v2mO9$eznmRi+C<{vIK zye}8V(N8WopItjc-C=UTb-j`#j}dPzE;F0j86$-r=cBzS^tQUHltDEvZ7;X1i*T9) zEbhywUN_Coo|0BQuIrYgx7{?)=h%uKTWY6Q!`>Z|i>DqY{aUb#;JS&X>}Q|{e(|?=)c-{W^3lhLSq5ruS@Lvl7|62Wc{l5P7`rki+|2-kR75V=?B^>;3b|N-J zGn>B#Jq$=hiRmBe4o1kRfRoyQ`qx2^Ei8Vwor4uD0b;HkO~2z;LI?)7-D><8j3M6-*kmKN--V zVn*hLCypi@L`XlGi$Xp?YZyTpWwIH%Wn7Tw$8^iN6)p6lMqwm+{wf6M&gS}U-3)2R zC`z=f#`t50ZYN66m-ZUT3B>68D}xEa_S3vERg$`H0ckRJeMuLX5Dqj`9Wz5s;;@(= z0O>X(2YcCJQ|3vT&L*jQNeN#c$a5k%%93*eu-$gV$|_UM-r##}fC-`MO{q$N^dq1U zLwnw|xTJ_+t~fT-jk2_e8B~&0RzIJHRjy`Sc2w0apFox#e_?i1)3+PIVBSvMW+`?U zskY>jio6<%(ay@(f5 z7;21{6-ZwvAqJAT<2xCp>Sw&_W6Rd=8RtHfyLH30$fkMt)ONxV)O)!5O+|#LCK1?_pTYpVz47}UL7r2N zZRF0#hdmaHEcU&0SCq#ClDNo=!-}RKts)h|0AG`^d>eP4vbL(zUd#lp6*Nahg?zfxX zy<8j)e(!7-gZTCGjD#ET@(@3ICYX9n81{U=AmE>a3b_v^1pQtC$fyY)YD54eMRON| zSCKCYG_kPyOoyNKfFG$5A`EMapg$vxFY<#boZ5aOx(S*+tx+!0!=?yqPmCYyn7+0J zP{_YTF<2-7aS5a=)<;edOG<4RX+b)jManbv0RjsFEdtn2PW~aZ!#q+n?Y@us(kMg) zi9*z0jQxmWp-Izmv&Nvz zEyq2QZ^NK8ug9zGv|LjGT=E}Ihcl^4pF+_9Ba_}1Vu`SY6oQ1(O8&}5oQPTmV(4j# z35@l5D4w(q&CNm7WVv`V%Lep{5_4&l&rGl)}#Mlk9g=T!EvP{ykjLV<$xjgA) z<-dk!oxouoX+I5NTo;-X;ujeC{L6ahePL z{H9dsFg0fFt&n(I=%I#jirnxLc+f-VNGN)6pk=qdlnNbE7uH>^!-758imm*!uew?f z4+lkB?4AKWqIw*hu+!_H2dkyJ7`3%O4K{e zm}U?`T|?C~iIt({@)9u)S)LpGCfzmFEx6IE4RUAMv|EURQUK&biW6K3= zm7{U7+SsjQ=t95EV}0A|sl7A#tDPvDaP`EE6OiUwZ8}q~dlswKN|b8uDeSVoCBjko zxLOVQdvpcl7vBllsKepewE@F>-;MkN=Z9ILcPnz=gL(?bD=zcvj0vxobl&#o_VTY? z4JJ4O;On4=0d{sA`E#Fj=ojZroRyURcM|WcO|?4+*6#N+99Lzgm4~YDW@5$yZ(NM! zj&xVJ7g|-bOWoy;KL6%kyd>nPRa@QrK+)DCu6tYI{d{Pe%)LBabt7D6eKJbNyHfna zo{M+U8ug0c=P%|V(_~RO`(!Pbb(p&X2&OIP&xAF?LY(E8bw9ze?zPE*I}{lCb3ek2 z4cqwDU+-bgiPIl8&^TRs$ZF0pxY~Xh@Y?lpcKQo`kr4km;4;eg!!CrzA@mTWkvU{; zwTssLwDUgtVN^k04qL-!Cxy3m%$e9B+JQ-vOEB|?tGr`2NzNC1a*fH3Rr|cFpIg5I z(kkGZuKST!4_KTvVR5`Du~k+Nw$T9=QUZW`O3 ztc(RyW_LR|%JI9QeNfvsU`g(SfvYUid%SZ`^7jL%Yv(4}vNASRE}0+JE>eO$T>ToV zN8Y`(cn`L3u`3Y&5EMGiYU0}$7jz3g-qlN#azE5?a-A0>CO;@cnlu%(pZvCQ*M$nM z<(pu9qaDN-y64&ZB=EG0=uJ+S-{nGE?GgR3_OKZIlEp0keApKLu;|^a^?qk$|4|6}+3fCSLYFiWzPX&w|tPjNd0VKma@+NH`ztTzso(s+$3CLnt?> zMR2XE4>pJKrDoe zV3UeO$X6DQMjkFuGlUc&j!e}h&>${Q^FH7p7tjV9L4b>qxReW_It-*c@b~ z9u$rdT)OGZ^|wKf5xZcQWknn+!D3_3!6uUUC&`|Zz zY&8vWTd1u2&>Xz5?2^!QIQ2~0uoAei0xot{hp^I=uyPl+%KNbD6wD#4a3PlP`jD{3 z5SeB?%GT!aTs*Y@#(o1As?*}ayy1-3MuW|0b3Yx&6 z1tu;qcl`-<|50YZ&;>>^url*%!}|N?qUm29P0oL9F8*)DnbKG5)gScwyE5}H1J>Wa zlz;v6|N061JMMzn=u-SohZO(GfE5z*mjR2Lgsba7;k+{OpTdBdl5tQ?0TahrS&2Pi#Z-??AFgo$_UAb_~ zw?lZ=1`MO=+^!8`-qYL8#C}q3`5afmG`t-~n0mJjEh4=X1CDWozD-IuZ`lddf#m)b zw6$Xjj&Z~V6&Z@Om+WPEoR&^`eio6^1-COHENA-cEbZlanK+UJzO!*5fer#2una<8 z3Tg8rEU;)(l;~{_N(v4W>9o`BmuVz)B>?6ng##dZ2F+rDB8y_&)F#3N*3I`v)m`%7 z3ir~rvSRV+j%J1ubZBslLlk*5wYFT9GBaQl1>vOe=R6FV+U#Yh6~y8pb#CKoQTeIF zw0*-baEt@7TAVNm(fHfZZuuASlOpP~?-$C@X3$GfO=sP346|oSB7oy_SV+-xV;d`K ztBZbX&!e+mkTRQYOG`)i#Sq-PpBRHg3fC9VZK1N4qep4&%DuF(eCX{v(#51>d=3oX zq=oQkuP65f5`K+f-&NFq6D-DJn^Givs}wZiqC36pm=WabQ&w6^*CHxUhba$0=t-yy;-^nHBq;hX< z{iud8E9M8xC$G;U%||wT?(My&ior0=9K0g^B=4TT4rh0I1pn}N`RxiXd-iOX5l;%{ zu4KVZv5x|jdw0jZIA8--d~^&nhON+dXlugBmzTN@67Q$0^7ZG-;%}K3XFkan>!7jX z7)WVK_X*J)Xqx=4HzQ}x=$}42zUAshF(|WPgz(z|XDSBR72Of+B2Nmw381!~GiNa5 zBFTlIq40J=Q%9X~lt@Vh0e^}b-&9r%5L}7Jf^T_O+a&+Ywl{i=Mi0)%tg!Yp*1d>kZ*mtWH6D6CojU%6e&wbzZX>dtws>49G@Z(#OoxCnRw@oM4UlnfDtectVDUP{66hu$e~3}|V;jz`2uPXiglR9D zQY!CEKZ88&n8P7QE$=Kn8>igI&U$H}Sjs({hmlB15DEMcpXOuAJQvT!l%v{|)?H$P z;TX?jc<$&jm%KbfDY{XnnLUW6ZGaYxCZ?dF;HC;F_*!Z4bx)M3hyPU0v8rN>UblrF ztw{np5u%1(@0oV7+oGYSTeiRtt$eY+r?xhVy@CnzeZEw~Y+Xd%^dg0WSZ19wPW&qaqDP{ z^#z{PV17Yh6DbiY= zAXUX@@TOunqUtHU;m9v~;``ob_oroz9eJFBa6X@E=;5g%xWk zGaWx9G^}^;@OW1tMRTN4tT{4Y_^WDV!SZvpX14puW`dOUk$!e-RSJhw@r_$7EKSqW z4-=i*!c21jE~$IO=Ze7vY+vm_5y%VVGEayMddbSA1l)rDmCq70oFSiUG zyctM8xlqL|s-&`T9n^7y{iDpdjc*an7N0#$3n)C!hp%0Ssden-o;)s}38nCwv>#9X zuw7|;aggQ@sdDzNl?mRsA5!SNj75#@pxW>tQeeBNHF?_65_}ln1FRQtJkP6u9v3FS zLyCqAo?V_KPosm+ha+cS&GH4Gf@i!S=O(Q;yh_>#N$?)O4?QjksF z`My(A!{qW~-v5AbPBob4$KayMwC_g_=g)Fat|{ivkLkyi;!lt151migv+Ms3DnJP}V^9nPvzEG9AUf*@B2qF*+CUr%Uk$Dxbu)C8Z-m>hLBGj^j244T z)C0`aeJoPmTP+3|nxQj@ei+;IbpQr`G7ENgLGQRAr&|oRybtzK55iSquf~Az0GWk6 zko&T{4^2=HO#+5a)-wj&hs5CdGP;E3n1!aAG3O|UWG*tr;f0m$(^avM#nzD}I)`<| zg_XgD5s(Q~lasxt4tF&4Z@>$CTkEgC$=iOrC1m&tS4?!TANP3-8h$JWeC&;HH0)4JAh|DQ zODu*4=9ZE%9$hrYP%LFC6uTWs8(y4IUMy8hEKR5hVriUlPaM-yEQ^N!E$1g_j+%JB zrFenic+SxH(SmqEjRb!DgjqGUKP!sm#R;;*3G&0viuj4*+=+tfiK++j|7}Y^1{g0p z|2R`6~)BJn-2={*x<{xnntmXX?^!`+ZfjRS4#2a`8O>n*k%$8sv zeC5o);pLxv4_M0kyR7#=*YrT8uM*k1Gymj!q^MU%=BQ?>HG0E{Wd6cSD7>8!r^1+Oy_u0rnWn1MHq(X1Rm)4JpM@?^ zh{UqZHNQgK9vZRj^J}*TV~9xp;N?e5hTRday1hX`!H@yj*7}1PBla)y%MVwk*>A+W zg|yv(7F*kmA&9zURg0v+Ki2Q#KG>2CxoC z@$(b7B|vp?%6EaPgw!30rx_4{p$W!IO6q`L_5?OV>ymJ!lN#@ zTTy(s%@jZ;2{d6Cd;qOsB#@eJEwX%Pe=DBP?RpbZ1i_qAUfQIz&{5WAmoh<7I#no9 z=*)z9^a)zBE4(^jy4~>5?=+{n@4ye@CKwxD+Du>#q5JZqP}KTDI5W zkdmzfij)zIDLJ?$z@DxZFEztSvrwWN9iJ{YCCQ>pBdv}qpt!;-P04ou00bEQ^h)J>9pc0(bh)R%ul(mluDRKszoOkYG5GAF69){DupWP8{7Je{|AB ztP-A3w-6T^n`0!8aN2sTOUe9Y$KK5*u^VUkwBw%snptLhfY4VQIZmTG^8v@IM)R(g zuY5Kk6b1}Ym8?3RyoN~vLyZD~Cj@CdcjPMVoX6i4MI%hH8;yHPRLyg27|~POK_j$jG=D@5*wYZ?m(G^E4HIdoZ?7< zIxzu>kCiT=K8Va*zo7B5Za;Fp=6kR?PF;RtEg}DcgOHV1T=Foqaq~_4VskGVf(yvq z$vx9~JgA>YZas8mpv)a?!KHLN>6&roJw+6%|2+sz!p42v&FTH~yqPz_DI5Yi8Qd4f zdiHeNBwXEkJ)6(pAn=y?^T+JPaA!>6XZ8cZpRQ$Px(omTPRam z!bQn~(Sg<8a1}@!0)t&JJc`bfblJj4DI7sh%)WSxV~|8c!Z0F}yclnR5d4Zh>0`|P zv{+*>yop9Z1!P@@^W{5epAjZfMzF%}tU_eOhbC+`XOsAzixs?=Ga>3w3p>lTAn=xE z3pBr$%I>5i(QwXk$g30s8|Y=Jc%~|PB!hV4iICABBx>msE55Ln@4O|Lvw<0mwt1#i z{YLPqgqX7U?TNhB6~T`VmP861M|5>~;9^spN`XDof%yC~dD*E$O(a#3zW0d4Sd@Gj z!t<^?Yq@k2vae5xoVDp3Ol-rNB9|zYwfQf%R!v(*3zi&jz!pr!cj=?VW0>=W@Ap+i!)d zR+CCHW*bnjY~2U~Rpj6B28va=5`T}M=S!3co_IBfkg1-B%>CAZ&baRDEVK^#&6@^L zfKFrb`VbM%u!YYm7Q~SRG{7z!BNAlk7nna6vS`qiCRl2%PmD|`mNni_TO`Gx&b1AD z+U8128qv$DOMEViVRQ~2)uG->?j19s;$;QJbMF|Yy)j?rT?XT&(>LO8$G+&tw<8Yn zdYKopX1opsb?`ou0T4v{FUYNvfiP0?-=%gXOwXrc2EIuVB5|J)Bu^!Ikrc67?*pEi zW|WQ1!bSN9l;YDmp{8p6HMAMd>oh0pJsXM)S7n60snlvU&Q&U9Sn4EeQV^)T(+ie6 zz5urb;40lPHbj`1P)yEM&krGg#KC(vOkbx z?kRNUw(@)JhWO$_2>Q@v#%ApvrMcrqM>P7PZTiKDxa$qG?a&Qo*p8P?4>rmII1;vr zH_<%s;nbGDbN=fGi@YqFPOc^mk1blzL~|ok=)O%<#xgL-gntP2Q1CT*P21>% z$>!VL;&|?HC7UbMr}nYwKqk^?lcRH?cY>$(1KdF|AijMX!N>XU z_`g!vT!vQ4-RjkTLN-ryoH}R!UQjctOz3n!u~wKTJ%71xBXMpjy1V?9JhnX)-T7u< zwe=U<`UAFq=XJD#Cn9~v`eIWG2y6oMcyGaF{lUQfUXH`-@^0-(hlr$U?z`8;`r31= z^H6DR6Cd0{#|!(6*L|_KGKc8amJ^_a3v%DYKv7v_sweUKF%o6UWYFsl8X-dTw#Tq9AKWVR}XJ=32y+h_vo|Z1IWY@gKAttA=ty4)gu~9!dKt0 zpr3Pp$BTe~Q|mK}7@#$BFNhGtX41r@c z74hD=XWI*jYF^|%a$zTk;XJ*MY9n`6IMsiO!jiC%$=glLHYn4_a% zu-v)Cz@@%>8j8U=h@k+)#&gB`mBio-$Dl&Rs@U7S4Sk3G5DO8Cj!r>4ry4h7A4mHT zO>Z8}$3lm35cduQAIb7Jyu_O#jm4lN42>7bj~7gRg-rPO3I2YZoaPAwoZ*x_SI&ac75Vh z9dsC~S0oY;6aU*KaUnq@D;tDTf)LylyJ zY-daRWkZ%_L%Vsx5D>$q1uM{F6R=D%l=dnEIvOR`z5C{^ahS& z+4J)90wy8wW=|zZ3f##7#&$5X4}qBf;L-mj41<{+`~oY%U||?c?qJ;)%;sQK_^-%b z3>e_3-1grRr&AQh|mrIwSR^e^g``xdldKZWa>)juIP>z9XIR<042n0OX zYYh-$|7`Y*4=03csvft1vAyJ@KZ@ry%h>FzDlF&BZrM=vd1h_At?4YM@k{n`toy~; z)=)e{6P~t<)Mo#Oci_Ap&&}=+cgMva9c|91^S$995)#5T+mrPfXPSx54)?*`FZpWK zFCEXn@7D)R`Lkc{o&Yek8y|lM&S!fcA%pXJNM5@?Rba`Rb^O7bJ-HgF1lYL&xK8`O zg5O{RmxAE@%r--j!(8w}Uvj~Dz5CJ>-0{N#-SP$H@qQYdJE-L+27c!G!K4>v0rO1?Z^a@1~l~C+RC`C(#+D*$!~e zrx3Ir6lS>W(qU&>EyEXN`M@CjOcQG`FU|>}4#Uh2d>k&wi;-AH&u73tEGkGb2_ws; zzp3di&IzKYFG&MqyJChD&tX{}xWl^~N(od(UtZs1QC?bCv`tr8v3AH%)RI@vP@Vr` zQIXe;B6(ak$U$gUM~&RZSo%Yifu?>!Zl$c@XI>~1VA^8kq*>2v1qxvwtO~at#2r;7 z?$$A!wVusu8MR;STAp=sZl+haKfxU5eFs;to_CXAXxp~Iaa!fJ(1|f#^kK;ypZC)h zm09+`{TOjE2qp6KVu&<3BYTL#!Rm74EH|TWka3VNtA%vd>S~;8h4Jdg{8Yx(1m_jw zwY>lo^7SN;M6G^`o92Y=iwrB#^~|T_;@TQzkoL`diFhVEoObX@>VihNb)(5{QqJwN zRa3|9lC5A;#j=fzGJ$t@S=a3h> z{}EsP0<6xCez`arJVV=Onf(HKzF&C^I!b1tk&TVN1I5UG1O>l2C(H6t@1sUh3f(fy!_0&eKa;Wx6R$A1 zs|x9-$%6^i)He9ty4W}C^C80SaUN|bMVw7SA<~L6k8u6Im8@?g%4IB{_=0P2r_?Um zXLifv$KoK#{D+v32w_7wAs?u>dZYo2+YKnGKq2P3*ysexychLhehwH2IK2XDPAM?K z$G%5Y2hfUhkC@JVfPLNUF~yhZe$SFf1_!~QRZ7D?eVP2No(e)abwuY`_QYm~EQ9hQi1+VUBK{;bBQEwUyf8bC*^ru#hcPdp1`M zrk}{-sViTrvrzXu#F21vC`SVnQm}^3+n0W=gt2CTAV+{mpKmA|?qg6Jg&au``C3T! ze3a@!zgQF&7#n!9um8ZU*6$@1i3xV&7E0mdUb1KNS1?knm@m1{*?lY7u~K*0ANq93 zo~-xw1VTbU z{O5L+Q%k#!5L>1@fD(nXb=q^vuDo2cM!gG?@0f|ql}l6BkF%Zj5eH3Odi^nMr(I+R zY<+$h18}j#of9n{?P{$<(%dp&rT}Q|xaXcx7CKCk-$!g)>OqB5bw`XD!y)wasx&sG zVQ`=aGFYuwzsKl>o_rsSxbX`$o}-VP_Q zzzq0KObei(I5tFs;2wfa3X8?O{7gw*JA9G&A>oE0k^ZwQnapWbVrqmjDnI_nr_u^h z?Wa{1UJcNwmd(K@wz0*2pQzKLykNI5AP!QTw%F+gOlj zZb9HEx`PvSw8}m9N`Si)^sJ1KZC-Bpyj3jdb!ZOyeaq~92TQi?yo79>CG(wUxcV8S zyc>mf68>;mBboOm>e+KW!24z^xMK#J+yzzes{Qzj;B3if&yBr+CuAjWe<$ywJKe`7 z!m~YB88W9dXEYTUN8(*$*bt9u3h4E(zIfoefd!vb7~dTncg!JI>=0i{JWoSmt*BjK zi;*8$vv-1_FBQ-)2UniX1;B9s`C-AY=7LGY=Zk>4-4|g8>>abbWdBWwfX)Gb!RCMg zP8^X%gBL36hhP4)MFFzFK;dqWn0j-EIh(#&8&WP}Bx*OgeG@Rw0~awhY0-|T1N3pM z^=XMq**;|WTbYIgS<+&-E(Q^!`N9H%lTAn*Xg_>S3BV2sHXp)tr9~?>f!GB#IvSXe zSX@!y7zPK2goNK?MJ_sa&FS2te-O-LO}h6>NePuFvx6P9X;urGzn~Mm7E%BVSJ3zCZFM|=u7qJn!Awu5Zy&w;@^vMD*MrZr5IZ>ZC+|K1zO*e?x?lJ=yxf41TC>| zTVfYzqF`!mrktX;;n0hKc*pkVljNb>d)&Ia(biN#i4?_eU-bTYVISu z_v3`PAy7kIy559vz+>~^WA9^xv44xf$4_9A!j>9#9xzGRO^p6nn;<|QCg9300!UQC z$3o^xT%>Z_p|&P%c^kh^k+_&haFwX{5N8mYh}i9{f@AGq9OKsvaCG68AC9v-h}Ce3 z`Kkd>8F2JZN-zM*+NqoH;idS&W2N5vT*B&eJrH`C`IxBt#+1gs$45^vcbYCr-Hc83 zeu&ScOZf83^rvLpp$l48slP!_YAL)Mc_^S1%Nm0dy_PQBRWv=5E+)h^so)^JsM}v4 zCS#-}W2`j8Uf?LFmn;aowYoysZQgjnw+%J zg1?RdO>q8-?U(S`wh)dmG-lR~S*oJkr`*{u_}LQ=!8EWs)uq|7Q(2(Y90DI3v<0+P z2^(n592f+W>X~c=o@}Htv{EkZ9B3_V^$bh|d^opUyhE&Y4WoS6+imIbJ!d8Wgh5?(Ty0RyN9HZ6MX1u>yt`|;+v<1` ztD!DjRT1hNKjxB8*318{S3Ig0AN{t&na{PWBOP8SOW2_O8~l!S@7MYOuxqTfL1(4m zbGT(%ux}YxqtOx0iEE=NLt>eeC3H=r>5i}d??zk8Mtj7D?!87BJJ*wm?Yjqm87?pwY8QK zdK{?87El!)CDj+CV-}6JHn+9j6@xrq_*^|VD)LW zH?L^)LMtoNqK#VCjvrx7Aa=C=Zpok1at6Uj)TeiF)OP$_XLcENgd zMYsdr%&8$|C_1Q=qk5E}^L1ltcRwF}gunSty4=mL-%2XmZEV*~->gC~bQs$oc7b3=g zRE)pr8gDAIF=8T{QVoS~;=3&OZTkdt z=0x(f_UZB{fM2khb@GkQWF~qk;`k)w^CT+KR3z8b*wiEr@>FcB>ukkTiSiUt$3$wk z-(|(rjTIE*>NNB7G*c!49sd*q2ziF%WIA2g^nq>~Yn4mfc1Fk=in~L`bt#9h@&_`} zEN3Rcn#XKy+^jV6jQpy*BGDWd|J)4CBxlW>_UfGO_?&v?oWS#((aD^?oUf+NyoKky z#Pp;^$Gp|5i_P=A5z&Hu=Defzyc3h(|6%W~qN;$~ecee&gG{n6SP)hJy-lPSLA1>KcTMX@vIim zuV!^-^J=Y@$*dN4`sZ}6)@-bnU9HwsuGVd^HfXI?c&;r_Pq$gFb!g%J?1N&EUmx;Z zAF*8TrC+ZWS_f~e4|lHXu5wHvZ%or~m`ZXkSZ<6)Ze)NM*VjEaHY3?42{(W6Z0=TW zu+(gxZfu@UZXRah_P=i4o^4)bmLF^VeD?e~llJpj=I4u6#r*5fJHjn)t}W=dO&H$v z)eT6Lw=Gnn?e|?<5sd3-UfV#~?E}dToXu_eoNa%-Z6dF2lBw!Ro?m3zzr5{#QDuRh z&xXlPNG9GL7VRD8w_l&DHrTp$Sfh5R%Xhemc6mQlGZO7`^X{^`vvTY1ibd^eAnr)O}b++Ww& zvmrXL`-Ii6b>QT6kS%oJX0_)Lb>Q`O;H%x{Uv&@&+B~q9Jq$(Z4UamE+{APRKdB-* zDz-m#v^q+DJ4~%QN|)MC@Y>HJ!i<+a%9lM(K{+UX8_2ObF0bk=?b@$KImxIxuK&~> z)DJ~abJDSS(lvF`9Caf3b~12&(i=5AsdYLw1u@LqGv9d%Ua041T%VRbokba4)jI3; zI!ntqTirZa=N;R8J8LI8ugEyv)jr>s?cb3-Kbbn8_k_6Sy|~rBxOqGOUa@iCb#WJU z5k9;ALUf6}b-`b80oi>4{bLZu`|>sGl7(>{$@&5XbO|87y5+r^Q@X-pxWFMsL+!pI z_<2Qqbw$E({jvHA-})LtW&?Nn`V;8-^TjodlJ#VQ0f5o_<}=?7!4*AQ^bK$I&BO~A z&&3V<``fK=H^R|3qS-+1>|2rUTkM%z+3Xwn?iq2uI|iLQ)t?+f(Ra8xcY6jLTG4m9 zazMq4J6zQNee@2d?_gjF=I-DM1{lDD(L0#CgXuf?H~;8z;IDtY$pSyc`uhdO>J9&( z?_do77rleIJJ_KEgLW`|2P1hffd6aEfuZ{!^bW@GVDygjCx-!&_>;f@FX#N3)&X<( zzW^S*r~?M@VEV2G`ore`nZ7%N{zNyxsQ!PD%KI<${`dRxUqAkW@0&GqnM`TSPxrZK-`6C_HuS%XTK3!u=54V7EZ#kdI=pmkFSR#^XqPmvlU#OwWiY*L7?pnIXbc$cQk_ zwWE+v0R{0>3eE^F}@9tM8$ zsD@x2BLdt$4SCME7G70ymjjs|TaB+Sjc&>ybONC*|D>75P1*v+1O!Ttv~d(un)fa_ z+pw#QCD9hdp@$Eo9lR_nQGCYb0EBKzs;nc;7NExBfQ}ItBxg5e4|RCz!~dm5#?vk~ z`*mQS4~lEr4{tsbOv~XYBxk}j67sy@jd*5orGt4fWSu%n#OWoI<;`v(pw4`l4Zu5_ z`gR4M2?Zp8@;?$_m=ow7sYwjD6x-k$il`^4g;^;Svb2>yeSR_JQd)&jLtvFAWu=kW ziJM3Hten$pc%U>MI2!48S8gM)EkQXp?LlN$u2Z+8wv;wigQ8ohPQR-@<3`?C=Lp`h zFM`Aglf|*RNq6v!)4Dib=-`U4et&ra0l;6TKu)T;a~NkE=7MyXl25R=r0ZxySc#Op z2lOhNebd9095TZai#|JrTK}N>jw&(rGg9F%ds1jwVDTTYr0ag+VBW=Es26>-WLds|S*KKP_DdjRAmRvA)jfBf}d z6m@m*Nb6+AZhcU?EbS1x=gwl9%g;%A2w*zEC+Gh2#i+J>8`&m_VmBT-8GwXLWaDpv zzuo!7n94q7+lsN=(=V)7f^TOVaUr@x0FrAJ`zdGuIg#2*alsOtrF}6KJ$0H&>v<$+$`voxX+RbCG^y+? zH(T9xy^e>!F@@Z|TnVn`%{g~+i?*-2Z*q_{Yz)aVx>amP9U3D!Oh!jex@$8Bt|O(AhA6oFUOC|9Y`^HdruV+`K;au5;Inm( z=3~a9^?s7i^|{B?Upy}Y4^tKMg61o{JvYTfeq-p04>aT6Y3*pg)JS+ed1l{9Fa)&z z%--$Jk650^joz9|-Xjm*02fzoTN`8nvjb5x;bNbvU_E3UA1Mf5 zENmfNQG5F);L9-X;jq0j5rTkRcOoD# zAwSR-E?7n&7?L#TkxktVJu5wu94Z zBadby1C}|;;i8n;uomGwpALLba-&iem^TFIFHAVDsG<*-fzK|e#?Ddoa3b*>M2EA{ z*?9p!sA8Z-f$t>Tk3=IZOe{>q3A1Mjv34RasbbNOFi1*F9!&@dM+whELP@FPs6#}_ z)phS<W!~! zmP(menwy0FE*4zs^x}+cE&RINBKZxhJPIU;jwa!Kgg#tKiF!)mw{-!Ms==gKSvnC5 zKe4H|rbMr#M&YI!nL0c=$Amk^5sX3*;WB!_M`x|19VI)z9E4JcIuvmdB99Wjjl=W7DzIrsa5;V6Gwz|fvkECa=U@(QaoMDFZ9yv>3iMUYXzl5Z}Z%r-jOBs7g zm7dAyJ@gC)ImFm~Pr+o2^X`p0)Q|5h3fnl!WZ=}lS54j*iRh;e9fiT4ABaG2jFs8X zx`59zGPWoRw!#!hjP(uY@R5ak)&}6^R3E7-E=$55XJ_Q*AerUT+~+_X+um^|e{YG| zwN?Bkb2ICzLJok$&{n9U7#+k$I)LMr53a) zGiOCIDpj%0BS_vvJGlItV1g2Ee&`K1N|zf40?cSNIdZ>3uPLn-v{8YuG`RG=q! zYOD>cf9Y6_;Z-&2S}jAW#Yu2XT9Q6)d2KmODNalsO?w?(dEFgsN*<1gok-GMiX{bT zjg@Mxj;p(s5@JHGx)dp*&ZdBbtGkW_;gW3iZfgYry+reqq~Q1uB- zB^btw;y2QLY1ELiSX_43JgL??Y5atUi4YnTRvgoy(NqZ0X!5(!%>4V;FO@Z9sW$24 z#$TEhYMY$Hz2%&1-N%~)xSAcz?S-53yER%aXPQkAo6=#7-X|IAK9}Gq)J1*ai#chG zOV=+Dt?GJL2uq8W*4|noSn{Q&tzxaMYP?M#SSj%&p*XxP`(tT!dV3XqdqJa2LwIYG zdtF(1`@rw-NsGa1P5E9}9kGnXVDxU`)PZPPVSkiAK}!)w1G(A`M(v$zQrNnnA{Tkr z;AOW?Eym)_^sWuWF1ywa!8R>t^DaH#u4Bz^?W?Xe%%n4C*G8IdS%L1m^sWcZEKim? zcGaNE<8J))P6)alDcq=?C)?t(9ucV$5DfF4>Pe60yNQ}LiRHS|;aX2XhGdL{fjUM)Plsok zHH$e=50kzJ(hUVqjHFbISlMbX2Ra)cjwYUBsbq{6OhBe1jX-`ka7yo>z#EJA?=Q?4 z%`Q}fx(mSw>8|qVN+uW&C(z9+1k||(w7!gi&lVjMBM_=`Qwl`c+7Nz0 zMqyBma8Z>WhmBmf<#a)eenG!;aeqLbIc$*|V$qy_(b6)EAAX6SbjjXxAs|<;F?{J% zh!gB32WTw^c`gTT;IMr8;gh-O7r7kcxg1HV3bVfa<%-^)a3$>($LC=wDYGpyekBcg zC4=5Ko1VM+<7z(rO0-^c@!4{2=W4+j?y6X0wI?to60)sxtz%=YT??;~u&Ft6t@Lbd zXk)EM1|oN8u0IpC)pLD16VGCOy;gC3+H-y0lK6+`MpxzrJ;-2VJ#u~X)iu`>YTpx# z+cyuu0N#>ABxmz7bF*D^9z~ZCD~A+^%i>&FvVC@}Dpq@u{(D-y`xzZ=iXLt z`vyb@2VwgT+6PXXHEP;WVCe2cbm-l6;6b$S=XK}{l08(NI|$i43?uS3**uJTJLDKY zjQez$pnVkNbp$@a8oBQ=pdRP(9v6H%&U!o2(>^YfJuW6{Ht9O9d4sIvWveDSDdRl} zNn?uD!W z#WU~43op*V+XaC5(wFfPTIT}BdO)oo3cmUh@kis)+vNq(6&k|@M)f(C_f^o&C2scx zz77XY_7y3^H6iGVMCUq)`--gknwIYxik?&5K;ZByX+eG_LL+(zk`&O^(PWJ*rD|=dv z=w6fWUR&VQsQS)CZbqm3{@c%c*33H_zB@a?bRWr;P5$toPID;8-@_vp?i> zQS@U;_EKT@bL7wGj+^HiZ-_d+-(}s;%|B)v-v4eVUNWhI=;M1C(0S zKqmiwSpeJm|9&|5pU!Q9PY(d+KVJWzLj&cX<)8n$Ec~nF{J;ME|NIm9-@GjR(+JP0 zZ+;emX&`0u3th>t1=gl$Yk3MqW?H2;wLt&k)eXcUsf>LoYE{!0Clg=UR(k`?Na zVOrx&m0+pAKaN!j8?f3SzH_`W-dz2&8~I?7e(htxc7F&uG0b17KN*4OTVu_y@sN+^ zn|~79JqafoLlIB)f297COahHVli4s8u+-n~q_|kA)D@Ju(gfbx^j90m{Jm?n85BsX zGxd%0>KA$RM{C*6w!0rca@RzNez!ebY&{r(f;amE|BUctzyBlkSM7u+tH}|+{{H=V za}km4?)Cco{ElkN2k&Yr%^OrI2A2BSN@9F-NmFt>QB+MxeNh!DwgdLHz*7IkcMcpN zZ30;8r%HqS6-K8)sjo#=M70x2zi9H&hG7fkvZ zgE)E7m8CdU)+57EMWfR1n#!so(D2|9p8XU(E7SedOH;A=WWy$E3b52qoth?8dsLKe z3(PSVa6=1FQge)_0_gj>p%CaF3JIoDNb<@fhTzNW7PjWgwvT-nK zqfX6EGNUocEfR)CsAvL9{gqiDnv;qTg=I7qEnSi)RmJ*cvt_L?<0my)&u->5t!U+^ zc|&>7bageKXe%=&vu^1cs$|R0QWw&M2avadXwO@=t<0^GHj-}XTTjDIFyCEf(OMfH z#Wh&9pGi9QbV2k;K@{G=OnmJGtcNqS%J;TkKtM^*T=shbEiQY{dG{CwaQG+~2Tv)G z7Fmd3k6JIsIr=egCb*ZRdnP$yI~S+8$B|UV z1t~KrMmMo|Zsf#2R^HCb0nb>*zHn~wXMa;VYgB`NZ`(M=c~;K4r08AArlc1w!z_z< zgLu2@@CCC8-sPb3Vbk>hWat9{1+D$CCBHHGu*9^&4{R=)3Q%+Go*rrj|*uIACBJ0QmUr&_jVoZlzxk|Qg;K5}~8_QH+}on82pK>kD(?E$~Vzw|{u72jWM z?%KocF@h1!fdQhi!MR=f;;$rMCy5E(*;@Nk?UFo-*Y&(_`y2q9L-OuNb2WO=We~(+ z4kBMmEd1DKdtaywWRPu$AmKTxAI~=*q?KkL61J!i4whd)!j#zV!i!)T0>DU4OK%PR zRX9_{hkH5_eiAlWbD`Z|5S?&CY}&$dyck-^h`S#}AtU5{0_k>1Sx1IMf@VI9Dt&-H7aN&m{p26-phHgI+7)gR89-LC z4VcDhXT$$@8 zl?;Odf=Qw;`%F>pfVn6;X>5-0?OG5@;yR0OR< z4rkL5z#*Eykv*V$-gKrHhy>RzRVt~s1oT0q4%?{z4G zTlgqxZKh;u6`wUcKX*R`qnJ}xRV1u+B*fbU{?S}aQN)3+|45OLf!imBY z0%i9bYfU))NEbr+B7{l2Txh3+5iTP6aF-(~dwYrilDQh`^{p!mBbBlLzIu({eQqqd z_)ZjVivmd+>i&(g3+bxJ%>+B%f{J~o7DWzea9Nf4FZkqVCgCv zHOq<4Qu{j$hJYTdoVj=F+|}V)xmXV!hceZIkL0WVbayRV0WgIavvYp5yI;B)bni#PZ@DNC;~!ld&g#HLRa0G6=9vh3!4Q%_I-^0vx=pzI*WFLeKJWa_1Ifm6fra$JrQq4hLCsBbqH`mN zOrtd{rcq#Tz3KYKMb-=c78({uxBd8x=tuTcxZsdJzW&Rg3$YSZ<12nL*%*!Vv|p&8 zw;Gzn(AY@Yf*oz&)?wRg8y~)b-KHe_lDQW}?J>t+Veh!UB78YYWiQ;nu4)$AYBWeD zLT^G|i=XYiVb{aoup)Wyx>YoVs^k0^ak(+K-eN_l*=IGW)-AKxm<4ok{jzAkXyXGZ zCLmm_MJ>+o(Atg&Y?fo`ao(Wu-Vl1Y1J7>qjk-5IWNn9JB+b|xJqa;Y;Sqn5+Yd?3 zA`09Zn{t2q5RaKxc*gy>l%&n(rkH*CA;q=Bdh@2H_{B@8TfcGajmr&Sp)F7;#xGwocg7 z!*_8X+x8`)^85H`OK#%l4+FICXH|KC@OAc49wG`-fDrr&K`0-+0Z?T&o8Q&nG794YNd$hwKXt>Y9Siy`*QburSfrscWQ~_=+!E7@@ULYJt`kl{b z?_9SWzXd-Kg?@$j-WL+N9IPqsqvfn`WF!q^tR8%bkK+TOGUApYj{bJQP=ga*2NxFa zY=AQDxdH1885dSQ!e99ny_zb#4=%i6#Igxo?S7}@TTI-+5m50MP6CYR=ZL@*P>IFR zdhZk#lY*Dp5;~0&nI3Haiz5oB$s%%zVZzA}rbp6AMANXu*19B8GBz~)F*5DJeJ3UQ zJQ&p@*y`6$NQ zQ07w1O_M#QPasy%Bo@atdagNkm&20tyUe=;>s&Da!cEj7FaXmufD$wc#4C;CphRU- z^D)JW2`nW3{OD_z5`T#v#cgUASzvtytNWDX!Cf1zKjT9Q^;JAI0jV{C^1v8p#EJw4 zQyCWvDS(M1F%hda{#&ZOHgy6gR+0>3lCDCMT4 z1LtJ)+$6V9VE$Kmoe@qLU`jTSV?Ze-2p1UAn!sxsY{w?eAR)$LD6gzy7Bd>{@ql%F z!_W6M^?jWy-*j5lQ(DbYS}JwoJ6|JR9N`>J)x6SF^qD}dSWYBE!P3$+np^i;*Nhs@ zbTpvim&Pb!Cpjc$r#4QAd{@-2QOq7r$UgYwfmGDD;Eb&&s4);Ouq?pZq)CN9+`4cy zZl09?_fjT`z-NIPh+FmSd)Mqc&Mb}=sm2367FX1TQJi-B(95GtHw51mQ8;|=_%nRx@i1CqVQR-P%SN2{aB$2{1jwQXC^UA7vY1xTVeE(T>+*XE{>AO zYLRbTzJX-6?W%=ppf5JNJUe>Mp-YsD2EKJ$fj1SaD(Jfy*I|Z{Q}G&=YS36#v2B4m zbvAEJX~t@4)>vtHTP`(wnXOupOe$VVSVG!!X~k-3?y3d0kj<%ytvyUG9u4>uQtlC3 z#@Sj{xmwmq9hRIVA`h3mw1PV9Rw8MaLoi)2^;|K1T!D0~L&_!QXRI~ahPqN#f!AL# z^IZ93)r|H)r!XXI{h0I`zUp`k;#b?}duYo5x2nF_s*~qR$d)X4U)l3Cqsy`M>oKBR zjp}K)YTP9CNeQ=&`$7;N5d>|`Y+AKf99!tDt=(tvP$9fhIG>GFENc8?Tz2c8*y!!6GYT$$AN2RjUK*@ zTIo%ino(qX0Y1;d3+hcqUzo_tnw;99ENH)yB>FaeXTIWUF7j=1UTaj=ER9#p0u4qX zz_qw)7#=0k^qO@GXaleSz$btYCZ#-jv;^!BFO_72)scy{Sm@`A*@?*sTB zVBI?6zW~$Ci}KYvf4JAp(01n20)37W0zqVMDRu#2Pn4Xlm5% z>o486wB0~oA6)1JWL4Xkj%C2z?&|}^&aX=ppm2LI($3A zDK0cr56ZW0Xp8VCAzK0wo7eB{@fy7uw!OFnJ^0*O;v(uZDhmBleX)9dl+xYvv>XOb zvT|Z#3`qUUS6y_M{rm(2f=C0b+yD$+k?|dq&nmV}8mM-o{c0!uLfnG_-y+2<0MNJG zvLi~%>8Nr@gN$^8%F=_X84}p-gD1;_a94x6>y@A{Lk1RuA27tRYO0qPhbC=%ZKQ`1 zRHdzH?OaX?^gD)CA|$>_53iNh3xY64Twl7FFGpesM&po1v2A&6p&>qvRevDwi>ScE z<{r(V8%=zHNX{6&9v;n%z{@5WtMC8<8o7~#1=XQPN+Ui-O^oGc0Fx_tQ}er`>iZjC zu*)OH<15C~2F4vKOu7l`d$~V1OHbrQ0F$`|V+V>R3CJ#_pjJC3*ViZ4*3JBcMN?iN z8ayT&Y8$ZB9{a|+R`U)E2hvKCem5>fkQv) z8GnFICn0169+akG&PLxdrcX|RYGh*Q&(pWpU0gLY1RFC%lQXyd(^zDAI2&NdI74+d zLkgV2y38UcY{AQ%WgvrBs3AbOqCc~cxUoWGvocY!qR_jNC9{&Z(XyokU1+%~)9WDPvHG=Hu&i@6 z;tZo|W2vUIr%nqBd|BvvUF)=5!|pa^w1Rllm(=kHJ#^#^(PrY#IcHslWaS zrdIs}rv7!b|H9O>-w1zL)IT(B@K3>`=HMUyMoYmM6%13sc=aDJH3p1P|4r7e{VQvO z8S7t|3RbiKnA%{T`q$KM{u4?0mys&ve+N_lc{k&~H0?j%rvLi-*FS-O9j1~g{;&25 z*#*C*{iBeA$4WI*F04+pA*u395l-uG*i=1BwYE&8)UkY~{@)5I;IL_f`3-No{l4!>{w-`;6Nas0dD=3t_v6oQ2C{O!_6Hipa_vbC)+6v< z;docZN`w4-rG0hQpF+yd6wB(tN=^35KZO)nbxn@7UxRzHDP0|HcPG5*U)UuGxXh2{ zYr%ySxvc#AGqQGfXRWTz-w#PY@+tlDy1<2$v;Lnyy1TzUt<5C=^m&kB-GF}Qxd-0O z(1*>jheQ+4@!fvM4}d^mE7=a}=Arr)fVMBT7zk|xhN-o#Cio$wSRuc{KMyU(gca2; z>w7Zoml#B`n2AEe@xxH>#t58)_X_dvTb84R*{BVb$h1Rt6O_{mcTHuD;2{$fRFC$O z6}3{a<2BIW!G#p35N*}(Y%6mBD1sF5ZpJUNeH+WP(s&4%9_r!@M;ICtQ*#7X;Vhwj zXv%B_G#e5>e^DB0VdpYOsyvZR=mP+uLyalGN0#Qe1WqMv0rf*c*>PD#S=bx^feO@f zP+YKRRxTchw|ZPv(S>(XVY5kNQCXxNNK-wsI#3LWA>UIBJ&i(pRxpU>NLSZRV-9#% z>-6QUIac+{eB<)HhEn~yQ#qjJbdkEMYOhIBsp7D#-KzaD>#0goC}ZoQ8vy%aEsi~# zUe)$Qak|$CbY=4(*^r+}};nT}O2Zf9)p_`Y;boe1K(wW}`e#jJpD-JnT_^-u8| zmJ>_|mMxnW?5EC4KGBxGZ2?MJF$=+Jn`@h%44W*X$AV|A@51qH01GDQ!mWEH{XtI$ z70u_aqM2fmpR#>d=v|Ln%2Qp&svh3BL`m=oXdB4-B=pZmZkpOII*p;325p=q-Ht}p zs-Mq0m@nFHU~twgZnNS(72fRzH+9@s7(*9dDyi|btqeu$yuBo5M!#L4d$zr8d7{|p z>B9IVK|>35Lw*?YdZ_0YxrL=w$IVfI29TV=ne-r_!1z9Bl4NW?l*6(~`sL;4yc6TV zp13;=U}zWD?ZL)DbM&#f_(BA4jDwAycNv8F^b-QESm-GAOnrbBhztt;iiN*<8Nf-G z^;@Gv7-C2+L^wiUEy860Ly=5U8foL!>njJfn=OrU#fP>JcHDGCTY?%H+7r7EgKQM! z5&8uH+(NQ`-;78l255c4FK9IE&$Y_S%_jlFVIj2B=%f?ZK%g}q1&kLp#E_ebdUeF~1 zlUn3oL>9_48p}iq4R}1cPzyy-yrd$^z81SJ)ak2y7*3CZ7Ao#Xj+3oWATL*+Y>N>u za)dmp$OOPIb1mFdm-%3~dx?81u& z>8TytHM^|HGBt0BWdqaK;vjQdI#hB6cp?xMq@t)Gh8 zwy#gZp?kXI%E~l#K)GTRJS&MkrZopl?N!+_3Nl3(#fGEDUicl;&i=-O>6}hHef%7T zD)Q;Bn?A7G=T%7e6z|dRX`xz-SW*mzm@J#W0Iz{dcNNlItrna28~MADUs&xp4Omm9 zzXcD3RJ$5Kddbv=WuE*ZYUcPj_^k}u$<2VUIBA$ymMLZspDT4^Mv#Kd4xd&+>zJmX z1}@b?=;E-OD!n91I+n>YLvwG}Xhq>hMI6r_w_Zj>6qFuYSo6|HxBnd5Ix+XfKH~dn zccWrcou_^=|F4d0S@@c%yj-TN@QH1n_@$->9-p&g9OK_a!E)!UG^!Nm?rCn3PU0n&!BUFZ=krn8QDxS{W@9a@b1752Es?u<3McohG=@H@+z%e$!8DZWW7o&bDiB4 z2j964HI-|3ShPKw_iiHEC?=^2bKM77@KXnnl->}dDm?72{JuoD3AD>I!qK>)=9;&F zH}#_uHt9LJ%Ufj;t>aA$Kg%T)h2OI-Cs+ApC1UPth22I6{ArIX@b&DC^`2+P9|`-7 zqpqTZUfE^e$8kJNJ;Z|uFR^0h)*4?19HJ>zt@K~?p5I*7w1s6gj7*Y$kLG+$-MXb1 z@jYhkb{%%^QXuJOaumGi9UEu3Ut;7rR>_81BwoI&rUd5N^2LyNISxrsdN~TB`XO+1 zLlT8_T_E;9ZTTxdevP_g5B<2kIDhu*Bl=6PY$!fc+_I7b#@0hfjD!!&i zd%K(?d)_{4`C-DIYNHID#GEf}ndb@>m1%ibRa_Nhv~n ztzED@#exGkg6UIG73z#$3WQBYh$%oN-o9|bN@^hqR6*Fe%I-LHjJMvu1iXF(yTww4 znyQ5c;<)6-hgz|^;r$Aof(^?R$MP2sbENX3q%cbz@dSza^C$!Ydp-8BJ&7*EYH)(< zOhOt$RAn&z({XrN*aKOeQH4v;JK%tA&TcVO5xtC|gH*v%i?$yZA->-@_AgqZ03-7t z$nJ7o-UUYL2}Z1m8{ZZS9|f2ae)gSnAqa&f3m=Y>2ZmpmgkG5_-)Vn1|ygQ*dA!j5%mU2+tH~Lg`&jTplr+9wc1in&9O&IS&RTsn$b|1DF$eQE% zX5s~L6Zs_)%J+=W0utVG6Qoz@WRK#MD8V{56tYnitx7^ggQr#lsV~qrt3OoBl!zP? z8vk>$gL<-)M6!WI6cVF4>8RQ%5-Kbw;y#N+vHQvyN>;v^swB$AR^fhnb_p`)p6l;+vgX7$&S90y6x z2b^4~X+*VY6{g9`D}2QqhO}zwW^nl2J9Ha`>2(;%ovz7rY8hI0UIA*UNQwp!TY6(h zQWGl~;h~9rEM{AcW=tSRqsx@cRb2Uy(M?YG}q~7#n&ZO&)3M9)Z3kxAyx#0#1IWT3YaATQjus~*9ePrWA zbb(CFG)CJeC^C&a3b#D+wA}YszT5En$#=OWxOv=6c~lzt6lHlu`CqNs;y<}1pbBu3 z(BxCtrLbuf@YUpTg{dbtTIR91VYpcea*+p@LMUq#s=5`bNCsX*>1QQ|`56IQaSI8U z3cqR;f%WY;1w9!SLkNtxGLtaXe)bWDl1qmVW-p%8Y(jOcR-aacbF}UDATT1k$LSml->s} z!&khJR(PicMenCPD{JLbqmGYNT-v65si|CFt=t@|oR&l#!@>EkRJrW-VfDH4c(rmn zOnJu*uxD0!KvQhnT6NzBHB7E)#Nifp8*!6HapYG0Gfl;PQ7P}qs>4m)k2Dt)_92)P z5*5D|?Mp3Cs%Ch^?sCPjI4tCPwdU=r1_Qqi?KdhKt2r7f0Qyj26xW<6ywsMu?(-K& zGEH5I@H%wRvQfxD?et0=GGra2R4uc+rkq0!Yf~`^V>vf1KJV}PkN7gT1u~ZJ(tgd= z?&0K1q<>%-Z$SSdhW3u`JDjSxd*kQ21`XPJ)T=_T`^I&OCKJIX4g3c9SP^7$9?y{` z-8y#B8c4VHW{h~&$J{$df4ici`Y~Y( z{$SFc2hrvYhIj6kcdpY`{yZt@!|%G#>)Z|R^krvCH~*6AQhWOQ!};&7v2h+kGUg_# z3~7gMO8=H;_s--N>U+DgMyM`Gf{!kmP^bjGXxzO(kDlK<%(Ktd$lTx!*Ipv-UaWO~ z9D=ktvqt>&F2a{y8l*2Mw@k%pVsnmtDCvDPr@eF*pXKevA|cC|BKj&c`-!D1Fm^23 zRv~!4F|!~IpwSH+3J$#9my30fxR^sJe;ZWw7*y#n96sVeGS*VaAPWf})b|*~pP`Q0 z;n3D-(eWTq;vTYE2TmG6h|ke&KNgv<*Xx}Q86XWKd}hZ$7u0hfUYr?nix~7c9j>pp z^8-zgfO9FT5eBfI+3oWIrR^iZ<853qqiNtOO2sI#Z-15$1grUI@~MpI^k~V%C@FB* zfq+(2YHZiHxs-dH3l+_XjtRxEy=KBRL~6X$Vw~`jiLhY2-NGj2bUc%r!IO>yUv+}_ zR7S)H>W`-VZF0^69X_LeYMsa(eR2`3X;;wS3r?(kvxV53+(Me-08U_RQD&-7jm=CR zWlWvC@Yr5YT}BXGbN~1mfqr?+Kbi5PMN{!`;>Y$2jSI#I8 z7^&vrh>PSb`DHHI0eieEeGj;o!(^ZWBh`Z=m!~_H{Wq3%UYEIMCgbRrle9V=Ggkt5 zaEv-vux2KimLFZp<^e;*RE2DpW(IWt8`48m;)6BmqXmFSU3_8IE>0fK~-&dQ!Sd-&V zhT;$FRQ&6)yi)nP3NjXPy2OD*lEkz)k4CVG3i=pIXH~+|mD$GRjN| z_yanz0RU`f03{Ov0l~k{yZ-BM{QvP2_}`?QLjTl(4&C}sicui`zt@45|Idk05dNpd zD7OAj#wh*+9ca3LB}Vb_KhlA|`{xdH-hVVk@gL|wxB0+AcYn#s3D$kN8lm)l@#!W0 z{L)yBp8Ik;%4hv5GpJPkdbb{)(0M=S%+MwF(_hEa1*(9LH*YV!oBJ6Y^s~4`AjS0gp}A~)Q5{C!2ts-`>9+iU3G>j@aQuk+ zHLkdHBzqw}y-*)u14uJ|!pZgYVYOWb(hE<$!;TTeWQ&6PJh6@VJ){@!7~X*k=@&dm zKfVj%5%uc~dLBw>3hxV{g13b72P9+vKFYAmAjOOi7HNmVw5!uL!aY7X!{S3sQH-qU zDg40Bkcz|9tH|$klX!C+zV9kxBXv47aJEN=Ckvth&{TQPpIpSa-=-ry0`iGr0pgI* zIWa*UA8^o1#lZ`{G0_n^WaOn{l3k3EX~m;5c8Ugqmj$?_P>`qqCWxAe0-y}M z$XKCbqM;!9cXDcXhOKtmA+{>L#33P6m?ZPDjm>M2_$(FDwqBC7UM*+Yf;%moYScfVReKU8^d zAnv%om-U7IFh_w&`Yp}R=lL|@gJ72OA*4i@Qc@ulp(q0(l9EnyMLc*Pn23o?Ey7^t z|W;VrWz5uhPhZ{C#HlqkWkGrx& z&X;R07i*!!7_SJSND@pr6U)4O$-y>?96#?(sXRS4N42DC`RraI{4$MF=E_V>)x3=$ zRrxm+8&yb>+ky%19%g)88UKmtO5wQUZ=;gf5t|D|z8GXY@YiZRzr<_&Sx>$pr7H~3 zI7QxCR2W!7uZ-wBe(Lo%mJj3_gTmSJ^BJ(vfy!B#>@rDViLA6Rrqyf(0qPQ+H;Sq7 zTh~On6iF)`>BDrT)_yIreQJK!tA}nQ0r@fq2**6{>@i(G*2t-WiJ_ETk@VSoQ*BfG zP~~Wfm>i|3nsB(WFSCZA?V{k^vFj-%W}EI~+%%i|o`c_>aYg%K6|L*aQR;Fwc;Y?IACx>KTG(tbFo(kBv=jBTAMPMpfz_Gk~A zh`Dnm87Q13&OOLU61RjzvNRM4G#rA5x)}VLm@)<@L@=tKg)5!z^7|D>1cx+Y4l^04 zUp>s zIcIM9F>z#TT)*B#G}0=;{hh1&i{6`iuj2FKN@rq|;Gv84eaPCXwk=cb5{KR= zGxutwB)HzSZ|h4-18@%DVC$Mf)C50z@2g{FB-m5jL#5jAdSimh%75Z5O= z0`JN9EQAwB)<*MuG9S212wb{sRBAu7%H~>Gz&>qt z?>Ki-o6eJxc1e*UPn$t*@G|zCD+fUz`ev_BBg(l#Nx!=)k8Dg}v~-E(?;_2PemUUK zdg{~3T1J@R4uyJM*dJUYg?!(6xGnTNn~d{$l7c0d@aQgp!|Oh*s`G443UkHaHLiEZ zRV;YJx)JoW))PFr6)fjb>{AmJ!UmVRO}Fb>)b?Z2+Y@w4&+B^pyMuZuyGIcE$c+?{ zXUcYFYc8 zxThSW5Bj1c(xL6@y%w&X$Bvl0keb;C4nL5x@3S-NT9Tgun=wHMkm%7jqSl0r!=L=C z@yamj8r%0GEMMdq_s=-~8KV9yU)7=-blC6gNSA=%1tclC8g9i%UACf$E`~v5WsG zsbuYfy!=6sHBO*BqY&Pb{|1&3b5l@lQsCH(q!LI(i517e2PZ_c1%uha5kWjKso3># zMiTfg)Qc)KLo^g02Q%5luTI${ZJ9e!oG6P5G6zoHnoGMoUjH% zVNh79vc)Q1JWOWW*LzR|@F0g*Vi}P_P~#w7``vj^Jao7u*elSaRy1gp!qOxKPf0~u z-@(#cEz%dx9Pg|3G0eB+5qu!IC>Ey6{$tRRxDX~dPcfwS{16GxXd6%~cM$?{B_0W` zM_VkT_wM+P8wo2lX=a3=zu^G6OV9z-koqi<*NrIpu8j*o zUit=7HX-?(h~ygwCy*?Y8^6Eb1Oj# zAw{Pwyj!9OetBt!n{po#c=ce7vu{p8jbBsn3F{^WzDMwqBb7)cHEA^Y|6=d1qT*^8 zbU|0)gdl~x1Pc%#gy5dwPH>0d4#C|uXmEG;;8Iv{hv4q+?lqO~`@5%Cujw<>J?EUB zwdSu2*sG|ky>E*B?Du_{<|1FOyNT4gkK$O0TnS~)rzFo~J(*%;Co|(11*|H%Zby z4+7=0uMoh{>SY4iG7_3H-*A}Z&DiJHxrpZZNX!#K8$q})K`3D`s1I4)1lf1VnLGC& z*tce(@V16U*@Ti=B!fg`gCrCOAWDrK3=KKVheYg!c-0%50$hzowOnGmbZxub#dChr z&QGt+VOB$9;*xXd3G;BwbzeK`<^}jLJYYyl;z&yZzYc(&u=1~6bNEYQ0_F;=2@422 zQ-lvZL$~vv_K6HM3W)3qsOa<27IF`^Vr{sKY*RqXaMCIHwj#*3xR4a5(a&+t%>=H5 z3gn%Iyd?#`g9QQHMM}O!mIXzCSrflT4CU?=N0tKF1(5tgp_!yL*LJJ}cIi*D=SFbjl6dqc8tO$+ zzKQsNq8zoK>_g=;6FDP2HLz=zBl%8(hxnhQYCk?!v1^v@={M-~$g%IwhU43@^r*JN=;2C zc%?9}AxR(f!6_M`v$X2``5g`b4t#9)`h8xTdex=8Ocbpwm~61!c}Sk4hP}HDmUL$)3J$*XXY#nD9p$7L zLeQJnc;#?mY)2||WnEiCT^%345fB5wRH-xt4qS_>Tt~PZmcX&NZuz=j^d4?%ssYKg zrZ3nPw(OQzpblTV>T=cEh|lf3M>rbAZa9b9tgo;^?{vkveuX0RU_X5w307I$DXQ3Y z7wPWcylblE5#!*ox;%vSt<43CTv<6Pd31U5u&rcpLqjP4%&s+n^CAg!m)QF6S*dir{7!o%(ADQ(dy zMBfQxwiVQzHa1*6_VjMJaJQGdwm+cPPu#`3B2$Hl?h8px8)9 zf)fLtr0_X)f~PMh!fDl@L`+ zH=$Slu~}-y8VozdV}XYdXpv5Q`8Z>EJYuin62Sh`QD(GR6UL8k4q8UxukDdZ-(pti za&|lINHFa^!Z~IEZGfH&Nl%V;&ISaAj2IO~lgt~jw8!%;P}|P?2SlWhOpVf4Xd^EO za?a<;%_YJ*%ox?dXAbiC?%$$ieah9LeEm7I65Dy7OkC})mH@>zsWVEdc)=e>;ZBf|(#n!ES zgyt_9Bd@Ku_0V9|Mm2>Wln0l$6)3j!b+#RVQ~EPgBEt)&OfqEGhb@?~a<_Po(nV>0%m`S+2tB8f~V z5|{|WEB5n7_c1(X0B)1nOq)rv2PrE%gFVuHt?sW{4=R@rDoFRMGUN%A4Xg;Z>zP~| zGY+HL4hi!$J8up<(frOlVMkw%#z~LIDrTLP71Q}=zqK8Cv20AP98c(|Y8U|p;j=DF zj%E7SRx(aFeCp<@G;vf8cV6(8Do&P9@N(D`akFHoNlyJ(POn~$9qmqY^H2ACPoE=C zAZTam*NTG5HV9<+loha;0_WJe=UC|Y9{8HbM#Jb3j@Q=E0*Z4#&=}oR?u7Dz5Qx;%^dxwj3T`9ZqfZ1+v+Y@ z?j}O_J{)qFZZY_yoi@(qKBJxBvxu!p+datlF2m;j+eg4F=Zm~{tOD4SRR^fFj~o;`XP^n)uI97Pd#HxhM7;3QLsba3;K{J z6uYP2WKT5^yS%y6hl%#*C1#=($TL^=^9J+NmQB*V>iSM5hN>CE zx{7gb19_2y06>Ckf`0I*q{2z^>z{&9N!}1+oUaRq;V|lSCn;=-Mw0M(!4Z7f690h+ z4-icLvMrgwsEu0;QrwYF`5?8@jjZrhHiOUe1&&Z@Pd-OPu30$c%1EZ*<9GgYd^>pkgMx(Fm1SEiHsD8@5K@iiu61!AI3 zB$_u6%LP=0LfPh&>x~5xeJsF==AG?EoXw_JQ;XwyLaxu30l`H1y<_B?sEx-%GWHCT?KiV zBJbMaYJ?aOH}w%%$Ano&SbrJT$UOB1luEPh3jdbjIsJ$+khhf=E6WRki{s>6-Kddc zgTRV>RG3A0E|LFysPyrR1cO0buh?$dM@5 z=i_zaq7S;0T{_p3+IRY}k!NJ82v#;5l7CYJ0Q* zLkc2J+XMiuXLE3;i?%%ypPx>8$PmlV8z~BxILq9Z$?ZotcC{`C1!m8_8Sv1i+mFkw zTC7c~t^yoqr@y2-PU;qtC{JX@d)_QKkI~;OaqRNBlzKq;?AN2b!|pa>OmyCEd)x54 zWoC?NyB*r)=-eDOkeTVBwjm05oOkZFJw@G!=y_cCaI`;1jOz+`p)M6d-rQ}gwtGF( zHj{bZ+#;@hde{}XfFJjvX_oz}^+PYqf-voMz`fpJCI?X5 z!vV0N{zCylkrh!={469d@`33+?4PW|yMJqi|E{z&3s%VRpRq!m|B4kl!vCAi*s%Yq725qr#r0lYey?k- zA8O)YF`5rjYfc^x-Ew5zj~j2>;!av(naF|Nj~VVq!dY2Q7sDLwPd?pPdL9{BJT{(} z8+D@{S1Bsq&$lxKdOkNxCI`@?U}mrTWy+|R>jR>Ww)>Oz(l&g-HOEI^$=P^y$ z7nrJc#4GeKS&u$2c>Ns+Oc>siJmk-B#o!P%s(dkr$;B{TI?-+ld&-9>mRug3>&|EOX}h6V2MQ@ROP-*AvX*rn$a%uGTFbF8eu%y$I(yG;Kaj(d58<*qd1C{ej_~dK}rzXR)3WR zkMkN+c^`;Q1%Snu-)2F?AKwhb%*N*{`h*CWP;?WFFT~CyVKARiHNMKD1`N{)J&b$P z2*&tR(H${`eF-nYjwj*EXFdLraYdK0knC5$eO)Z?SfV?+ zuYfKX2NxE;@+MvqY$SSJDxZD;d_tc1N%}iY{g_U5tXrw7d72p%0#Jas0yaV`BjMx^ zHHNm88~mo3>!$VB zf%yA|=~JUYDL1u6eC1kak~4}K@c@(QQmAuP8bJzf>WczVOeVMoa!KtAVSTK~&A#VP zZrn6BlVlz?68Ma|vBRk2FntJpq~0XGtsj_PQL}O#-u={2F_~}eXyvYb)RrFszCKou z2~!1!HAu`bR+^7#@}2_|!LWb|lU1G-`9Y342cb76$C5*HxGv34fq1SEiv_@DV#nd~ zu`SC+7u;%Ly3t5g5Xb98c6KMgD%i&BbSUPPW~0&2QdJn6G%hb;$FHu4QlHs|6$3w~ zdRhcfkm|5OH3ohZY&a9N6+yymFd+xc&L(oc#(=bRt`C-YU$)T02PsSWC%(eP50iwi zv;ti3CNwkS5T%S6qFlhZ1bGP!#2Ga1T##S#D&Hd9iL~}J*Z>x|A*PqZJH$O`NLQ~v z(szE4(ZUU=dCvxrwkR_mCxq+sr=ox7pTp@!o24E+3lun;l0 z6^3A-v$rP6o6&L`qh+rCO3Gk!LG8MkGb-5YS_mQZ$Q-h>Fvm}=x8pIj_pD*Z{07Mz@V`P?1r75k5Eg58$#`%axUPwy2>= zEC9#w)eCRWqiJ1cRITk`-u{4N6=jvd9lPt~B)!O5J*cMjo=LHp-C{dw_2Vad=;wj| zjbTyh}->vqKhd`ROh7KE34l-zeHtR|7M zk$HF5FVLZw(+7x;a=4j(Vx{XYUab9x7x~LhD-78eT45FhM{vgZRCqp>C zk6pnSE!EvZ3)0)U@oH&sJ`pwHsdExs_twewc@ps{=fK(T!_a3pR1&j3oW*)Qhl6&f zgMsgc*~o|4slH_FDzf82Fh@!xuKjaIo9WIEyvxmg<^JRZ$Ouv*bHX@I1YIDiQ5JZ@ zPWU(7nlP&cJmz~WviifXyQe7`AgJ<2*ZbpB1bmyYQtxqMGz}2h!)@bmY7SBbxR7;I zs?l)f$C=`9x z&b25sr7x7;L@jyN^nx<12B^?JrRS3vR^k%6I2-0@s3(4H#YAJTuIlA{hgZ8NRd4Ft znDiayEnbbP0b8HC1%lUWp>TbCg2E}K_9=((hVZ66|4tlFrCD?HKJN#oh-f=Wu%YOe zY1fsaF!w}t8T>GmYQGea>cXCsQNG)0Q7A%@xm)`L?!o!kKp^inZwxF`=0ui^nf!4w<-$hp7Apv{H?n4IfpMYFo*>~``4`E zZ_~)MY)Kg-(Jn|pG>rZay7^d5JiHrPugJFoL2R)Cu7oAR@|;a_+{w|^_CNSTf5@zR zZ(+r?#hWSyJBZDDXsQ!RsKZDl%dk^K;~4!IaY`^Xiy{$^zDFrBLq&`t@KhX<0@+3$#Bv@tL zDK5l}a05&1&ALXrV*+g!d*Y?wRCnT!&;&nyHUE6{a9r zx+pm%Dl`DUGlg|01r?Z@L6KTZfLZ8}no9?hUo5yfmD+ZnNS@6{FvsnW?P2U}|Iqg% zHw4Iy&B6`A!W_J0HD{%_u}_KNN^jrC!V!(=GWB}B_I1=qw%zfY)E@WGIeeLXK~QW4 zc{aO%Ka&tlRui<{85#RjBG!Zp;}^0{Z@0xnVC3XXJbHElmsmEBko-#%Oxh&~OqIn| zLxr#)iFA;wuC+63AyRAwZwpf}hKsB>Z%v|0>v0tRx?W)3rAg13Z<@ zwGZO{m_?tJOVE*Pj+K5mkTG=+df`yW4|V|uW%_s88M$GYNaivK{vcJz;QE|}Jx;>+ zA)^&?AGdH>6irxc$Ke%LVCndZ$d`~MU;*^1yMQmJNQtoU0II1TIRp81~PV$vuYTL>&Q8!RSUEB^9O zkX=%myTJKbUU0^(e2(5Ro)BP@tczhrQe~b?EF`b+P&}@YA8z<#uDN3N6@F}h>kWqt z(@aivXCA2=SCSP7-agGB6BghYn^BxrXMUl6A3ytu#PVBXYS}NADngTD;CzUvvN& zbErx1ZHHjvep>T>UIcxOltpBhYhq5TuNojnSJC6Qm}{!di588)3{?zGO^S(y;vz{fKzFz6Mm}HPG9Hj!eo`Bi z+euMvGEY@}iMYadB~PB8)poHaaUQr5B?9lkQ<~rzDRB7PysP`~o(!aYrlJE7&elnH z@RlZ6J**1l5aZ_7>TbWJ;2eyL(YAaSx2@SOFpm95nJJ3sVK`%ZHj{yUXTcn1I6UO9 z;$8y_Xa!T1ZY**NWdZ+@hzM_YcF*p%PnJUpvXih{x-Er$?E}vnh?s_P-`Me*w>|E% z1AD0p^PQtzPlSPKF@UpfUn&GSE6KSyy!uxc(@~dVjNjtC!Xsd0)m9R z?a(iVr(XiZ-QdG4aq2iu&7QvOj@Ti`)s0_Ycsob;B)AzQt~nH_i2|sl@%z+5gOCDr zmVW6kbt$UrS}mI5CDt$vbP}<2c~2-=zXnU*_Sj2zI=N(@otb%um}Gg z-&lh=J4Zvw5{_|vOcDN2&JuP|y_f5gmRn=1MJut*ep~Hz5C7TlIPu8j>yfUs;fEb9 zwRx>pn##k?zJbo+-0k7tyrUCZBOFWK%%SnMwIe9B0xRLfttfUI(xY3vIH|4qbG&gR z1B(1ZSkJAlm8~keOF%g7aRkqCc&o9t*SYZe25)*t;BLmaDJCd{_}8Srz($M{T8%Tf zj=n~pMvgDW7P08?egJ5`m;cW%Y&z zEK8vM8_~0EPud$k!IT-SDL~>UX&X zr_lT9&)Uxe2DfQMfGn41l+R~u8E2=QbQMr$ zJeJwKWM*`P0=u{+Ufq6|*PfHKpHt*>3-g>>Gjavth67t?qxtZ3TVb160y4S=`7{$)h9dN5^e79XyTEZLO1S(j!Yfonn|9vp(&e77`xK$Q^$E zVnY=%%!81b+flgn-EX5HJXLsrF@oJeN-jmMWW`4g9t*lRw-4Eio zjyDfPbeea*n~Ofd{o%Err?c-TWIxVk82zp#8;#6C=TC9HR+5*_o^y%yX3EOJ*NcN{ z*@GJXOyN*n>O#-rpu^@i0%(bS0@_@UwVS)O>XPMhU*vLY#ZiF{u714$CW31Vj?VAM z%|AN#{^YN<*pmVHPldt`3D5qQeG98hcp6?OSJo%{qXLI*7OKYInn+HAz+2a(XYBHU zA_bDvd+NyeyDvI~mrQ3@Z5ougGFfUSSj}gUj7>DinSHf9m7t1Be>sKmd5O?2f%geo zfjYik-~{-fhVgb4 z&Q}4P&$>6F0!ob2gJ}7ZINsM*Wcv;ku+YkSFUYOuSO~$5n#fJ9Yx|)T+Fcmr)=x-9 z5_ZuhT!W!)ZSG- zsgFL5o<5E1Dw&@?PC*2?I=!J?_RmYTVaum@tCLS_x=&FcRfa%ic0}`S-RDkpSf~}= zctfr;2@=I%T*x5byPg2R&ws2C5kc@DR>&WKukf`S7EwH!JURyG4M?C z?dpl(gMIts^B*e|v(ed)vGM6B(rynT(X59IjAjx9 zv!|zCS;l%GR*6a_-`Z~UL@?A_5j9vZ_X(wVR>?QoA553)7A8Mke%mRi_P=`8esa0k zhMk(ph^jO_isHOx%)>N+FkI6-_b2yFj(%HL-$_+AJePx^hw%+sT( zATn*Tplaq-ixTy?gMQ%~ z9i54idBb7W6QeH0^dTr)GKy0t4qNs=hJ{c_(iP@?8N`V-{2;}MV*i2fZ7H1nAY&g@ zjdZDGErT?hf$0P@>uSL7Vy3#sZzJ@JR1C6ww*h9OTL-m@(zw~1HS(V!auI6FeW?aszn(97F~4DDc4eDR$F;7mLD!q%mou&BE#IxKKYApC zUOEEJoJIgy5GP}x{e~~XcjjKs&F_>ujRss3#Ht1{tT&B@v5#;BD>14C>xPNCq93||SQ=pz(n25}!0LShRRw)26e8s_EM z70nh=m7{Kl>Ar;()So1&JXWVMJ9ggI- z`9iIb+5M!weboJ|Pe9h=Vr&=n2xG>i-Sc){Ou%b?%DesLX1i~d?cumVz#Ebpm)vpJ z*ABtK&;x4C0Uk{R5eSXFU$yGOQil-3oxJutP1QqKz33Q02@>=t(?UUHM*4)QA`*b{ zPXARdOg(Dtcp!5?Hi|OmuY#)gK^z_wsE%*3i8e5TdEnj*(u;p2dw3rrHav=vtkO;P zW+IeD@y$$<%P(3L1tx{K4Qzc=5vE9_@4VyCG7rw);H&rHMC1m91YdjKmrO*Y-ER;W z-HEdKMZh|D8<1Xyh;h$=z9Y>UkYCUBebhmX_7kR}7%&wVruh=1ZD>dddoM2jqVOX& zFAs;(b%59SOKifHAuZp1w@lCv*jy^=w=%AhN^h#;vR@zLZ1?}Icyd7gZ9wv$ zHE{p9H2?hd|Kbe%KSa-ev#BAxmi51UQ^OsvQo17qi$P~tt$3|d8HLDcyz%GuP!cO* zke2FC{gFR4aOJlwCfOP1KXgW#>kjh@;=W29=N5L)5ZIdyokXc#M$6M&8hCS-4yT|>-!RAnAdo0-U z_O$NzpBgyP$HMi*OxG72(>3Tlv;JfsSdHK{e+=9ra>Li``0IiAB^>K|IA}@h!Q}i6 z`r0Hrc+gFa4fZ$M)NP5-8o0>%9Cbc5z0C;D9T$Ue-W#>~aHHv>&1lXCXbqef&@4V$ z7&CM$R=z&pP+6M2*dR{LxM{^fSlP@dMk9!>z(5OadpnUmvUn$jOJ<%rMfE4$ZW?Km z8BH43WbtlBOFZ3FvgrlgURLUTGG>-8X31X88v?ht8G0Y+i?f_w?mP37j7#VWVx5{z z^69Uu_KQ;7%uCX;NF@(S$kGlDl8SR6RP?2}ZRQpU)eoW;3Vh>n-$}4|@+! zTAw}L=sY0KI zk2Hz=UH3!x#C1C*SQcwHGjYXlugF`tc|Sun;TBL#)WUt3&_e2R1Rj;;+3})Va~G=I zJYm?S#~IO8P5mAyjw4)H&26XT2b)b)x00`4LR%RdeokzACWse6y4VCnesAZ5|!)PC5&PqQ41e?ktFN zcpbF~vxA_%G>H548#IXPogi5XO2{Yd9MEcTH`M_KJ%v`zEz+JaH9vLOmv>}1rFY#7 zD@@-t;`ESup#jO1m~cs7031?>==;g<_9o%E1m0buY(HZF)@gXe+x>kRTM-e6NLzwc zNn$vW5l9|KlyVoi{XA$F-vd8V&0-|?b3WJsA`EjMkq8FXK~+BzrXMAd%}n+&Es04PV>M>)3k9ZjV8V?B7?E=!k1mDArp{j3fO*Lcq>0ozzT~I0S!nJPDI0DCQ#x7 zIp**B*b!>8>zijV-bzk}YFq&bu1($BECqpl$i^x;n7FMbsaj4qI4PgJOR5%H@1>_DBYv`Iv`iA-rc~5c>?kN_)SDw$8 z+9lg=j#T9rVIgLCFRe~07>i$Kp_n|W)|Z1=5d(i{D5kEi{xzXe$FkI9A9i6p42KeE zxvDKQ)XD}icC0JF+*fxVT3oqcrvwfYeM$}+fStSgnc7pH=Ww{V^O8VGLXvMKHs2=5 zR9iEcj%A;IxD<)u3~+LwQao=|nKpKoU)-*+VaDt_4Z@4w1RI>WxnMkGa7gYepV~8E zc1f$;0w5wxDv#V44}^^&w}D^0uH98mF|%?fKQbx0H>>&2adc{Ey!RLQpx15uA$GIp zefGyPT{I%SE;7**mteXLw$P8c@1dI-22Y?mw>wAj7aAwcG<}27yS@(@;s&$k^S79S zDZHYUQNF{56rVr%ylm4+$vx@e($4ot8DB)DTdn{ET`N;OwFMR2x8;n~hlCRP55w-Z zBg2{?o|P?>^h4n#thofeI89Z87dNW{B{AhmJ(+4w(z|=z=t#;kAKwdf&EA!q#|hLS zWzSn|f3n!o2vKp!A)B0A%jQg3AwEr`TQ-s+L;9VvQu~?Plc!)|DrSZ+zqtB!lXPK9 zYFhobGs0(cFw9*XlJRPh$ugzVD&Z{J#HCPw%E11c#ByNxaaAY@r2(1y1SwZOhq9JY zeTmBa)J{xYWx7u^Ty0D)_Ko{5k^(#3#UQbqK6Nn>sdZj0ia z&dnq-;jx)&|3V=c!wPmT2D`FRZBNI!F^%L@boOxtc{Ey3DtRyjwKdTn6}Jm-g)ynV zY=@)rE<`WBD=C64o_3YDt?KE*a^Pu4m07$ev5f*7;$~;SsN31TeN}|_{Xl)pb#|Aq zFG1U4Eil8~fh6U&w6eMtmVDSDvEgo%oBx8X@~OMR{-&-0ymTx5v^bo2fxG$)x%zz! zS{1oHY@5+Uy2M>t98tgEr+AdzdwiZn*M8a*@VOXDRm$&mn{9ygp}6w$D8#x5#yYy? zSyZ*Xso!)Vc3o?su9@DR4%3crX*>|Jf?={PJsJt~Aydj2@d{O2 zL3*6*g6~7@#8r0@Z7mJGgz%l#W<&B6B>UkMT0}zQ``HphLirK3S9ZQB*URV35$D4x z7M&ti9wcrOC~ff3AL%Ci6~Is@S>5pEb*|xLc{h!2b*fV z_dkLLY%2OyDH`N?`x4s=38KVdZswHPK;o~~WH1qd5e58;drE<>Nm<3AJvjQ<2yx1x zabJO4?}Fbni1bzGTqaW}wDr93aOs-RYAhB}FF#8eC$? z6?pj#C}-@jXY?u2{4>re;ov3HD;mFMA!dRoGW93o@YjM-aWReTSrh$8u-$;TDeote zvx!P2ozjyK>gU+xbL&o6|!+{vtj9TS(|es@NC=Qq_Ake zfj5f!ZUQwUh{I4QI7qH)Db@)`#6WST=F>73dOLUupqdk?6|HYeVQVX1|E&xga* za%0tbRlt;z_dYB;IyYNpK}9pTpncP#HZeEtx_~b`1p|T;MW8Rp0n7BxEzh04;8r;6 zU_LS&+1M$W)SlZo%p4<{kd@&f-vw0Q2_4}Wii^1mI_S%~B+FDJZ7{}v zBo`-_u$4xz6mIQ;#t%OHa3gVh$Z0z$G@yh#z^c69t~4erMD-Qm+ zu2J|Y3@B`#$2eHg{!nq*Ty>#QNj+<%f1haAEAdQ-gD9TUkDW)ZP*vbo<*`svQd0Gr z=cfppjIe0H5N=75P)>nM4tY#Y-UBd}5DT1Ar3Hblq#UZE)^yJwaK?GWdzT6<49TI- z%K1=QA*xVw;#R{|TElh_v5F4>(Ix0jZsQ)f6-u{*oG$hFk&~zXe8Khgx(#!%pnqGI*8Xp zt1kU_dt&*cI|*AmiOV|k66~WnFhYv}>nMZ-+i?`{Yw=yfy%#!}hC3SwbE2p8Jw!X_ zX9*Eqy71qN(zkZq&vh{qce7aPiv(zsn&gflw$ajguReBSfyB2Mng|=ZW-;N2ZF|(x zdNjg&K9@BQq+lf6^L(CbvTo_-9B8w#i>8Qs3tESVhe4xh^-;7Ip^J&e zheK8 zJS9Ey`~F?miG7GzP>6_U?ET|_HAucE&0TqTN(Vee9wC(Nto}gX`YjZn`rVLngueFk zv^DsL^j-Xz%Y+5XZ+V#s-^Nkv=NUmYt>->_8+r>b{aKjm8RVH6_vNX!w?+y1sW=K# zFRjxr&26gbh9T*5lAiUx2Cki0BW*iTw4PWo5$@XS#s|A&UXJrg=`D1NDrw~$9Y{JU zu3ACba$R3C_AyDwP9 zbM(t#4IcMlb}l8MmO>!CqT_MP-1IA4cFTdi%c1Ee*>{or&YoM(RZ03Q4k|r7@~bzV zt9Mqb2jFJrg@E*Df#G0}$S&rurNP0ox>?#Rua z@9T6rf$cZT)lT}%Xo)Pcn>GqPJZ)RtC*APAUhM38;%#J-qgyI%w&3BRBjjySE?Z3L zQ8E7QP=#%kwk)?eb{>xba zSh1goDo5u&O$E^{H$)x@8KO4^`>QQC$0O9tLjc)1vA{Xc?K1Azjy8e=bg-NE{EV3F{0UwHmzB|KfNPwBUn*@vE|x5Rc@Y*s}}#;HM&tE-GV1ITU9z1bee zWlWT7kr!+RR5{5WGSMd!P+-{Mk6i+8Q!|gQm>w#~9>_hFNX#^C+8$C#Zz?k%IRw?J zQDl}5JhIaRo~<9zvJaaf4-SFybtq30B)F`yPu{J!eWwot0&+v>ZuCx-GVkKXAaYN= z0?$>aAf!5l3mR#Ju(&$(=NbP4?(vrs2z2`VCE!V#uBRZqQWMik?YlU3QEE zV8b_rQ=m^S{{uZsB;uIMbpp*4EoAbzT_51+9f}lk;S2u?Nd7_3g7PqBrkNzoV|w@$ z)wQ`?gw+>#Vzo0UdW!U>r#2dah$2V?f{v2t#YOH#4@y8zbvv^Z#-^g)DIEV%S+}Qdx{GFw&4=6so_(&!9QD1bf!SQ$tZtxDy?R>6_VJun zYi-Cp^BOIb$FRY9d(0NXrt%JqNaK%Ji4y$>9nf2H~J{9UTGM9qdxvCQO*tT(${nPzSWv4UnAu5UG%>*%Z?U>bI`cT z1#Uj#>u&e^#jXC(Wxp^?bP36ZqG#{C@wHY^lL?`bb?8o7aGR@%xTmO_XqGx=ifPWY ze|6cM|BnLhu6$MVh5fW_6~Tky5`@L}QsqI7!<=8DJjcj9Ud5I*7Aic}b$zm-!Ne!M zJT~C-gch5seT0q^Fyh#v&94{)E!!?+f!6axEL{(~KH6FQi+)5Xdiwv3p57ei1fsNH zhu;!W(I(@nWC_Q~a>2`2Q&GlXry}7fzFQw?F7bbmPyCzeg#JC%NkGGiP^}w)FhcW* zP^W`N6vO}3L4ddaE}sbf3xoqO_7~OtA-UNvV)%_v79_R=EnrP08aE5PK`ZinctmM22DR(l4h0~FT2{^Tadfixr z`WozO;k(Tsyzed>#<2*lTR-fzF+ubWC-=Kq?veL<{MtjVP^y!CIN(mscsQi5Vrr48 z_!aqJ1i!`qxR?^_(0rV=S@C$1eEY(4mZO>A4(!IO)|GRu0wP~>M2Y@SXg{Lh->zqPKZU|z>kWK)IgBZKXDCPCBq=586IWrlarxD(KV1(1TWh!t zd}BL=wKJ(TiwVPQ6dEh}@-rbPAe$sgg8hWfJ~`NO2dIKPBDwJ+rN5R2saIn3TS{yi zm-;qq;J%E3-{p5ORu|W<*{E>|7VI){KF_K;WW;6iGLyV2^lig{%n^&V3s8+zpkY_e zXH+o@ZhMEG01p`WsyheeSos6V!+46)BrN&!HnY9hu#NFmSV}Cd*dZ5|soxarn;w9~ zceA!w+=&$G{$g3@LB;f-fTYsb`+TAEvH}ZNN&`p5UtAx4Bb6xv+q-onhD;`N&9Mum zMh?VaZWYkQ4-IpjgXCT5ffvKr(r#i4C`>rXs@6?cZ zjYN%prm^-_urb+4$1X-veGB)dDjd}s4na_Po|GKWfGUVsSXy9cywkIQ)9Io82YFuBBIuH2=3P;Y7j@k@+ry+Wb_4bgV3Cl#K;iNy%|4zJy%JxL)bo1 zDl~5^5$*0_4pIm=@>mJ)z-fh5v%CLD3=ny6p}0o<5MC~^g<)an;lZfufTiKHz)v;! z1@}XIDeq=jH0F@)^fzPVXddRzDv(ZipnZ~J+;HN;{isWuxN={^|H0l{1;w>D`nKJ8 zkfa-T2@WB+OK^904L z@-e#Nkj#=(bAz1!{6v$l?}CM+<7+d~3t!jHHHsQHvc4h7)&jlE zk2)*M2E@Ju-wF4Dg_;fZSqH7dawZ=V2zY)7aO%%QjdHcLM|_^Miu%Q0;(7E?@u*+e z<2u5nRGl{Ik<_64R_=5N_i=LpVbr0kZ82ah{qH z4uu56O{v#;B&YK(NMnD*#QSxENhX!b++OmX)vrKN>>qrP=&!F{z9$k7EazM2kedv- zEa>1nxJq}Qw2qD?7ZDvd(L2$Up||HWS>w{);29G-KdocAr^Z&xS90}sX?~-(LH6;^ z_d!=mG(MfwF~w~yYo0gVR*$S$-Zh+Fd$ZePZ741CMJ(*Ay@6NWj5E*!Dx8eU0}{k! zZ@-)Y@CnvJC2BV+pFAYqY~Z$=vt4AyJTZ!)T5GVnRMHdYFMX`}l>YOX!6qkg7jF&u$wv0ul=EK9Gy_(Xqr=i_qS0fBg>c%2P{E}f0)2K9Qd!FLkAup_vB z4K~QG?$3z6zxHe;H9+JXp9)NkarTA0=KQ?Qe1l-Um^uA0xfBudJV|lv5f;5}TYL|x z$yr_fv5?$O=6w->+_rQ6*uhF~7o8Sy0@{uI*>HV1a09c4C5>7FMGynl>uk=c1L1`N z#c|>|^;~2i%AUv8CGR zxq;AHf>DD_T|b0Gfb}D(Lw3YNsP{uqzd4K#`oFji#yJzBfb3&e47iovfMP;F&R|=l zriSGft6L*lcwS*dk3ct;lz3Fbt|`MCT*A^@!v_*SNhTXN6nT0ql2l-7x+nRXegKt^ zgs1O^HxIiZ4+bN$XcCi#I&wM6q()K=LcMNBBpS7E?0|kG&(d3rAhpQIRHvEZ$T7D- zPa1HWnN%2sZVZms<1l6uE(|vobR|3DWnI*2Yv6h+ID*|+M;t_2N>ITj&+V))z8{SY zj5*_SVGQ-M6;mB6;T3HOTEfMzNK|>$gkgk_4a(;hWQsLf2(>Q~IoY*P8i`!5i`g;N z#MFw@b&SK6Qo|4PBE(a#F1BP^;%Z5X2`7u+7LBKbw1HsK;!SshS;Bmc=cH-jxQitd zFpVN{m87^SCASBh`TP=P8WU)xpysC86-~5=R+J1d30p~OcSi+dA=ZZ?30EpMGIAD^xr%H#J_uPQuhQ)WTR-x6X$+DIAH)&bTR0OJ%jR#k-aIB{uRQBAJtp zB=vEF`**Xr)i4m?Ro&RL6)BbDaDgW?;rpZfB2!jKJR-%Z!VDi3JJW>4N8itB#VQHO z_6$THOJXbrC_oOhaW|7mr(*Vl@__h2e7k%UwTu_(x!k2m;w8b=+_F_Pq2Mv>Ni5BP z7wF7bN(Sum@)VMaszS0aU`W+usLO%07P<7{xu=|YJxfBJ(0lO#w8u?2HK0!hRwg`D zTZL2hcM{6O;1}kBDRl=B*cD4H^CGqv=Fs@chl8Xk3^(B8;gyQ|zsDdl#c3S^u`c<4 zgGqntw0PLj3wgS+Vmq}W(o{ZB^01iJC@QQWciTr z(nymM+;8zkEm-XML0!%OH{=vTF#m5hSx5NRhzMJdDY(2apGSnmR9xT8STnUeB-Ll& zs^V(5;%zvn!byKpErryGgVT|AQK*8!sG=3QyuH2R%X~%L`%2m$X>jSmKa+iicrp|Y zGthv_drkJFaVm8dzy|56xlh0r19(8$thxjxz6B(9WU9;O2`aM4e~S!d{K zPz2wYqm zygZtj8yXhsn$=cn+scbiF4}Sl+7ZAueH;R@^Tqqj&Ggu9U}pJW<<0yZZGkIoxA^VN zDD4cv0jzUzdX05Y_jS&2ov<>oq-X8Q6}46}9W)*t6A$l1A{5!!LES6Cx^SK2>A(-S zmGr*Nd?1qE>pyii-gjwO=04H4Z>5{EUYYg< z_kOb1M`|fC4u_d7D9a3|%3kKaKcace=*t<;K9x`%P>n7Kt8TSd*k|{sxL12!2`~tU zk;ml0xhxkNQV(jhru!(;8km> z3F(u69C#^IB1&Ii;1SN1*^AuS%V9rA7CXqVYpwSA|9775(&4EX*iu&vul6Y&LR4K^HAi~BmeT}1li5pX)u`tt#^ z2Zw7wO1`2HgZN+)wigDUUk}PPCGNkG5>5Bef8C~YLCiAbwx1*x@+VzR#6lZp_51b; ztvemE{f*3PhJ=3_KP;1~cslt^W}8BitE`-x8$=W}BNT;|z3u8YkxV2uQD=k!!X^m6vRcFW;ps10f?Sp|7w{Mt&e++{2;ejnvbnN#uQ2_@Fm)~ z*4w;{+5q1;?S9^1xLG-r!v_*qTF7l8*leaA8#v1;1-9#7RuRI0i=Zelt^DQiFhdz7Vk(l?``pJAougY z+v|u8xcMTNwO{;!R$e=t**jl&+r@@=xb}8l3hV$-mU-hA2>Ewa^|xNym@Ul&z~>st z-)tKaC)?^{SfvIr<8Hl=-tIwLz8w6)xoC4Z|WUzAa-W!JeoXTaGG^mPa zK;FN|B#7N!f*zX+jV^Z2?udMAfv8kXfws`jd=Qi!p6q>4ktOwg&QlB5Wi85&1(Okwu_+sGodJ+9|y-ayVpUOO*fKQ2?B#$WRYosyp#R+ zU7kEqMSWeOF4*Pnr@-Afl=yC2-W>t3p^&A~vW z2LUkN#_3CiZK=mIQj&90#K}x*cti~6OeE)DA>(}G&Job{$FJ7j)Qf|+d!wBfrdwz4UR}UKij5=|*fURU;#QSdBKxj3q!ul*QO+3GoNdcUqP;=BCKl4h9vvHkuyrsyj%G90eSQ%w7{k3iy^STgi+^>e3t2*1w7%T4Q5d?3fM7?xyUS&~ z)5|jcS`-Fp$Ir}($RW9}tjVzQF;0zHuZg=iZN0C2b>F_!q{8@#XJgS;=t23zLkr`* zl?I@LQ73Hip>6%Hg6#3L!ky`{?T?i2Q*I}?gXa^!u%aL^tB{Q+Xu@=@CW}%oCCcJa ztmpB=$MLb8C$-P~;(+H<$kP_22mePsF?Y;QAEpx$$Rh-1D@G9@&pzZfs+or87V}k5KM}3|9P)k{ zz~V79xm4CW1s2B<7}p`|ABZsdjq2_kDjF1uA;C!_ z_dnDw|MCMc4lsR2MWg_gz}kyQ^@T{X%8(*bqP}_8LN{A0hGQTb{rM$xN1ix=?Z7wj zs5rcrVT&z$A81a#FM%oT{KC`h{DO%JF#q*_LoV(fuq9iqIj zIG1A8nvMq0G57Y0`Yk4c#3I^J8{~O^naYkbTeDtFB(Ixdz|s-@tZPAnoQkq3i4n{= zPOv;oe4`XxB2;B-K-Gi#iJX%b3SFem)09E;n5sZjq%j+^My}tePRhbbirgu;NnOXb zN^KU1P*AUtzlds8sS!fiyclMjWv{NA(lkfwUwYXK3;zl3yf2^XQc~2UWmjFqlvg!b z%Ph}deObSRKjKSF<8iZ|>)=CjuifBak}iBcKaSpa1W7symkoHX&BZNtTm4TNUf~N4 zWvEuI-tfU(#()>z)zDv;Auf|BW&~?rPsAcdwJ-@PZoY8K1~-!=*5pI2*dU;l>h6fS6&YOQ6 zG5dx-%XPWrY20)=_kS057GAbS>^5DsrGr7-j*$?!+jbvj0Ssc^^Sd385w90-B@Gk1 zx8Zu~lRcC2czrrssp>91YWTX&{HrI0|M6^tvDq{Ii-dvukZJHci1ltx*z~E%75QLz1(XZE(?rBWC56x!gG%Z22;nRZkxQW*pd+DaEJ}ojXVf0l#~_-ii;j7 z^l9fDm3Eo7mTVj)VLp&lNUm2)A*3V&suCflPbbv_-^+=njY&L*BoTSOe@lcTlYW{D z-vejH6!c<3jYpKUYW6(~ofs`4K$xOOv_=s|G*|>#vLz?9D4-SJR zIa>h?@i)jNTyoIor|1`%t*RyTPm-{o=4Y~RD$V(>mh#=VpflER3B)&AL*CC9IY6-; z!5dA*fGvzX7`0MNyk$k-;1~H|hAmNA>94;3GbmR0Kcd)5$X_TH3Spr%HXJ%8`Hx_% z6(sD>U@R1MLGddT!v1+R002;x@=p}|y!V^NLJ902K=!vd`EL~a0RTz)Eld7R#kK-| z*JA%rCZX=+pC}e;P5!2_8j#<$*ng&C{~N{rb*KOP<$wPj_+Lk{s>|4S$q<3CxG!<@Ze*g7m&zi=H*IDRdD zMs=DHrJhXvCb3s}IpfQ`<}}`hWyn6eBF*nSr(q&jH80oW(z~diab%7Bp`_}1`D2HA z?;>L2Uw?1sH ziC+BDws*pN*f2xfdFp%R{n*pX`1R8TA1}nSBP%BN>3Y?*$ID>8hxqPl&+OOJ-DS4AA#o-IxA@i zL#-M2MeNicRG5oEZY+fQ$u5BO4dyQHKJ-gUPcqTGM5OZ;AWKO4^DLi5yET#%AZ`w2waG_2QV@dA zB_;Wu;eer{03cE<7d;Gm1pS*r3aP0CF)Eh0h{rAR&#k>u*!A&nt%W46t)rvgz9qQB z711D`4hM7f0*fxSsFglSW@(}WZ8~>ezc`K6;2CtQtJF9T6dc!HAFycYG=04dGhsNr zr#Tn;o}JJlY5~ZLSi;-S1&vGqas{y9Tm#^ zQZ#ewz!2d^s^!jNj;1hK=m=v$vqR}`6k8EAn@+xF24rb#aLJ$5oZ|C?qS%@2lSHaH z-CoI8%aZR-SPM9_ROP+KRI`H%qtN9_1mt*{BVMzYMQU59WZcgJKP2RLpuT_2_$jW! z_)1E9tz1Ebg~Q*NwKBrVM9N)j-aA`O_M=*biqQ0YX+3MDLspp_gYkR^{)==n$x36K zam~SCib_l|Q$xnF$)LtIrx6U^huXgE?I;`=fM%|3!s_8|dIb?9Z+3aD%?YH-% z3X;eKqTEcyvs>@k2>ql5C%E-HM-luKPuoIevv<^zrN-&u>ScZj2r+WozFX%S zv=g%?B&jzH^W>u5-DOtseB1_F7ADzs?FPru3k=E?j)L7;ZCY~ zqFh_$qvsKua%wDQ7sN={Cmp0kxF}K@+?PXapXs1r@Q?brt8_s-Q!H>L+h2ZIi{3U@ zJ&#do^7J7*6n_++>jTcma;^m|_1U)PsU}~=DYK1)(PBrv_x8Lq;&eDo!rjYtu90Aw z1nwnUt>%W|F2DyyEzcSCde6yFs~oqL?oEB|^HjMLvv(B1{Dm&HjA47C!w(u4)h%6W z9{Zl;Y%M96KSQ3LY~jLmHoqdgsDlM85zer$?0sRZe(16f%B@{P^O^ii<~9J>FZBg)3ZLVdLbsZKWKA(@w+}XwcHHrhXP&Q52NfR>i)$(n=@Ahgs)dsh4Y~}7x z{i-!Q_M<88bL)K9-5(SXNhRB#Lnuz1O;f~3$`#SzdL6Gf;_uprdDnLXNx1=fj0ZIE z1YjG2fuH6*X!B&<*Ucyt4YlJte(p=>o!fNBT(%?q?k+OnujWr{g+1r-; zv-zGi;SwnO#J4{1K%PQ0Go9gGNKogw-p>PAbI>A_lfT^S!MM*QNWLuj+QmV>HF>(L zx%T3^b1mqXo`iNg%dk1~iL=kA_0KCe%j^fMAqG&Uzy7P8+igAN>*Mr_XwHKA4CLqd z#M4PZcIWNj^Rf=wvjREZ#=;(#iPfuJ*hqu1arNTon;KBZ>-+mJ0g~TZWWK1VCJx(K z3Hcz4aYz*To+bM{;P{0$g1S;Zv|YNqb!Cr&j)3_j`&dqYic(pb5MRNN4`)~YkKh0@E(;E~fN@j*X9Ql_eTjT$C82#H zwxmGVOL7KAAW^rVp<(ARaxb0{Ov4{RM0s*1 zBEB{>ffwpQT%~4+oc4C#1Neaj4 zh9Qp#V748(v~7I_L>Ch?=;M4{OD@n2W=PDQ;aQ5+_`Gv@Yj`ED89$t?dO^5dB48#eW`*BHN7OMvQ({XSJgl4bNN%T4Wmz*8WFL#96%8Nf zS-0=3qwd-DAy5zOPb3LiPSoU6bHGiD+iHy?92I#^^=r9~gL;>;5Tkf-7-(5k{%|h- zEjOBJpKjoM>Bw1RnR71_dwG#B)DMAh-OR z0~z9cz;%Rg3v@wm@*ZfZ(?7#QaYTHKi)~h_9o-+ zCNsH5u@^ar(~{T(rjRlvv!6M8g+)!fYCGcz2e-xPCA~*-NFh5_;jWXMpEYN^Qq~!Q zd6S#WnUsc<=CG!oY=0GrqZIM!ds;4@QhpntFbv2vm{CsU3-6n5u>@QyPVXB?zur$b zP7Sax3a|eNZsZ0H;bG4wYWgE6<8G>dagoBBb0iYXRAT5NG| zvJcxp>f|}y1KRpQzy&P~NLdE{rhylNAts*U2~94BTdrYZE{a9AW3Zh(P8>6CUhNIX zDMyxLY64Dr9;iJ#k1d@j9Y}I-Kqjp~uB{Ymny(?6t&>uSkQxL%6NFe|H>YAJCk0L& z$<>dO#aINHCTA?{7#tL;h|CI#T?&e*N(hF_aRetU1Qbdy7bEytnJi>iIvHLS6{CME zRERUSDa=9E0vGI>!(bP`EacA#;K&gvrP&m8PSl)-V0ss%@QF+n+mt&pmB+pbF*Hg| zs_ApmbO)KvoBP}sJhO|2eqswo=2>AC-I`5-Q-l$7D~zQplMYX1kT5lMN%LZMWBq3S zYldahftJIcDAt%f&7TA9vRrYXxW2s*#;DNQ+_d64KiwjywHzcjT!PnEvAZ zt^BNANo!ZBgzU(FPmA2eIby3u07a*AfOB5phhj zaN rB}NSfsWg4r*YJcahw=hF}}5d$5g{f{Qh9R-)r1}wdk=-uo`>Ln%Is!`|2L$GAtW@nDUH!#cn@H!N5w#o4UH{ocwPP{&H&Ca%jn(dGS^>9K zaGeI(7w+&3$kbT&m9ralG6u9PK;k-?`sy|vGDeZhEYi9UJGyU%?ATvOuqAfk3AJzt z6&A>V3<+4>>AT-sb}PtmiPUz(RCXWW<=yY{*t183W)xV*$ql*Hl7buJ=)2zvb<-QZ zPetj4?d+=^=&+OVj5b$(^*~g?R)gKq9!t=TIZ;O}6YK3!O~}^^FI!~FYQ@Ih-`;0U z>DdEo-#?tuk1^4cxYD0_-LFXS8D=%N?X#{2a;CaPU^f8{PiNlYA=K+*eU$Ed(OU;| z)Q>m835*7cw#hX5mdDPF858U&L^;3tcfW9hPrL`6H`@_}!sZP*jFlg}hgiI0#@vk^~7 zWMS5vZ`s`Wa)?r~^dl=zxHJrpnv!`NFvDpyRX0ytLnSk^f_@zP5`E5XXGdXSr0T4 zf{$BNRU8UC84RzOHLo?mX7shMGXq<0>~#>3YP0E!M>Ria`ZfPF1;aF=_4rAoHiJY; zmM6hY7!X758+%^XB;-f0s9Irn;TH(X5arqo#aao{aiO-P6~j|8PZtg&(F~W+4E*~U zj^LSEr`dXxG6B6ge&5L}wK7m$N#4M8gqD|b7fyDWroJu)uZj}>T75)d`Wr(SDpCRK zG(I8FxRc(3OBBfMCKi=Gq2zYTRod$)HJ*%Ap5(!cV7UqIRQmG~04h{UIWss~FT~3& zln%*!lbF;4Ivnkb^H9pybzr2?fvCLHWBHeg8OEnZtsk70G8ZDc*hA9!+cUjjvL{P# zCNT1d00mKMMPAGCYp%@F0qoZrSv*z26?1S(qXOXM1kV-KHc;2`igQ*#7=rBQE}0-1 zFy91@mwFs5gm&g@7O4Znnk(9%&O=CK%KN2b61p}OZ}rvhYcvfQOFK^!VdGPFL}a0f zDR(b6&KN-7^fpSXy228Q)iN=Sh_D{eU?x(5Zyz=Q0_!mHsaRE#Qe(aBahvaiM2wcA z){(v=fH$wK!*TjP9fW@GKNE|9k0I3uy_R36SYIZ4EL5;E7JI_>CxXE!TK$Bu^zL+9 zka$P<<&K_MSLCc7@An0HV65o)w(XB?5#n7T{hesn$i{s!zRDfBz8zd&NqKp12Zmka zXIL8fdhvPZlchF0JK{YDeW)w6CM6~ED|ppgNmIr7`}e0G4#fL*>uT}W z&Os~E?vUpNg~wealonBbSHTzi{%`jKpJ%(RX4wUrB8W#g?qfSDJstQD65e`d61Q?b z=`YAg$9l^WjqKkXAK-g`jDLG*FMr6QsgHD}FFz66w0~&D+=a`1)Tp2PGWe*JQk!|n z2F)d`NWce?sS9M~)-UjLplr0YIOJ7%*Vni}#n!cS_T$g;dx8XB2(9%;w+GUF#}3kb z+Qc%O@<&_VzTC}I;WH=U)p#HIg7f5$18k0$)SGmze;wL8z`PRv_4e?Xx2SMmLUeHM zc~W+=8yoJ|aSYD}uiY8ck;IQVdjSCzj?~hH<94rac^RJ(_?+WyoV`3dYvzbhlRwK^ z%&vkco!-JO(fC~Og0{c%L}OU^sIL6L2G8zQ?HzLBv-!N^h`FGyxj;ILEV;U1=!q8o zbp}>Amj^CIWnF3aTz&my^Yw+A@toc}%d0V}1s$Jj?Tssp@804k-%NjzXvSPS)Lg&p zo3m0_eFd3Ak-W6sz_Dk%G2c+ros{Q7a>IOg?)3}9=hf}UcbA>=k%NnwwoaD>e$!#E zup++RMjd;4Zit;OXC6)BB>UWH*j}e^+^TNeWuj^x$lk#*UmfvG7D6!7eD1xhRF7vR zZE7%TW4t|czSj{uK-n&%;^UCdHs3(bw1%XpD zB-oJp_EGNezMsA+ z$}`|h_;)H6{?Alw5G)}}U?`|h6b6fdhfp!s7#Iy?62IgEPzXoEi~omI?4KwWdhmi; z9tiOKYgSSmm6+l7oV>pXg-E;8&giv72xS%Vhw{ts^3{4>-tYwKKQ*DVlKwxXRF9YQ z->!BC5!_f$Rs!jG3c0{F`VlW)Jr-%*{QNT&3!RmmXtW|~V1KRQuv+c)OS>~vX~*~v zYm!KtZE+|@4ke0Dt7(3clmP?R_pTaZwx}bqF_fiqW3#R=lY{V*w8>($Qbj(J4y$h_ z9LV*>rt0CB-#RoEI~@JsYB%#aOyycS4&cAnWO9S`v+dyW=kZ!k2#E`?>+pKd*QC2T z+PM&<{OO@e^3~~x8bR1sqNjy-(7*ji*u;TM!Y{}&rQWTKk@r?FjWvuF!u?Lgf<<&< zp|ny|sUMl-exDJQxk8#8h6k0FClo;N$E;*r5xSfxgBY3CVp!LCGH*;zJi2s^*x{$& z)}+KESTdK85Ph)56r(2pZ3e+;KP@yBJMpu;ahm!~gX*`6C}crp#!0q`DOuiM0~Zr) zM<$N_8P^GM1zd4(wO{xkub{J%U#DbeLJ5e2pw=YW6RY^1>7@hr#Ez+glEORqq&MPK zPEN`yim8{KlF!l^4x_m z?9%<7$kIdl*Ul?Y6brkt`vr;Ur8t*S5V-he9UkOnt<6MsuVEO$*d4vOiK^ea9oQ3Y z;RnyQj|F?a$=7BOsbPjE6y>+QXcE(NsAh^PO1!Y+_|3Y_JZH`0t}*q!e(H}594?-{ zEHaKu^OBr-8-)=_X!epEjOe_eX&j|^jb>>N!b5GY9DP4R!&j&^+3>ks>nJ3xxwIhs zb8&}F^^kX^Rnv_)Z)JF+i{?f=Rda{k=Z^jr=B~RR9&g~R=C$}xUzK#8XP}!~+7HdS z5T0jks4h8tlQ4L3(ZsgVX zqu8sXt1FmN&yXI-Qjvh()3ijY>~4iCO#9^OV@q!-FxCxbVBN?8A#0T;)(;0R>d{vj z4npWO6+i-)he$cXubze|kzYrOpw^0u_8b^M7Wf?zqaY0^yC+3IK-QtXpMW#O6r6RS z`ZB1riU=k*L;%&uT$xLhinu&fLNp(hyJ3Jz{hO>p2VOahC8n z&c_R5{5-fJmS+3Ng1ZP2-9SP1c_j%ervifSp-K4JQ_((!@vvbj!+a-7(Y|5Cq*!UB zeCY9!op&;?akxis*{0*nR-@2x&_$(PlsOdwg=oaMrIo|aBjHa?09I}y3eEAN{*C&y z@1@3W?WU7jc2H@|+hl&8eobzLD_%7G*sXVd&eP2Yxb<(7{k&hFT4WW&LQX4XrVde2 z{hYbM`W|m`-;43nSfd%2SAbmZsUX6hs5#GE*q2*3R?kgLb3R99QOD|;>;o%mVB!k_ zp0Sx6=DanxBM0UrDyOeL-4a)OkN2Tv=! zzXStK$7BRBZCX$XR>$YPSGbNQ-BT1;(FJBhZFwDriTgc@+vla6q zzrGCQQ8mM!E2Y>~QZ5@+&5ysJ=F1gQZ)#Vows4m1DLiC3SW>HZV6QZHPE+&ppQ~@i zsH^*P8&<9oE4{K|5d_wjto3O;W8PjO+N3QgrY?zZ&VDe=t3`OS{HgX{xK;E zCC8ADzX@?CgnI=-00qWSFbs8ff74>k-;<)h#of|B8oN+g*9`!X{1-EZs=U#h8ZuEkOR-Ywy97GDvBt8Q62$^DROv=KrDTZ)>9w(@ ziiH}(&%#9(O>d+twW7lH#+$2FTI_n_*=2A5%Z-xThil_4H5)xBd-Dwc4(#5R{1Mm{ z_`joKw0{J4Epz@6*j4#QVE2*ZAA#NE-+|qKqT;T926kos9oWtJcVPG3KLfjn{|@Y4 zm;5WRoBwxUm*eli?(*M(-QeGWUB!Q+;*rIF1a>|D9oVh@9|m?g{|@XD{!ayV53*gJ zY5V^b*p>cwVD~WnkHGHh%tMQR1a=eu3hY|^9oQZJS70~)@4&A2zXH2p{gr>9V*kGa zyGI6p26iw14D429{~6d_|1+@rnA!5?Z)*z zcp5;j!0-dlv<8ZbEjKhSVX+i@*U>cJ@m#Exe0|d2#Gvp7{xFE{zQ62&_kK9z6?pe_ zu;SzKeAiD5x!=Qn1lsAt5N_VD#&^QLw(~*0)YrkE5=3l9aiku}Mc^C}LTeB5w{F;k zPh03icTfzZi9|w>8xd}PWDFvYBm!$L_BWMQ`!jVCzxb#rT)nAi#Wg|J08tAyb zQ)*Q7Ixs5AbQ^)AEs;|kT|A+(kjAxMiUWql3dPNU8m|O{!F!rL50jEostu^Jd>$Q( z8AWfP#qwjcKAu}jkJi?GOgGpprISMLjZfH!p?C}|p<%%-M;lOx>cX>*0EQLIJz=&E zoSv3Q#Zq$s-FA1(m~0H=#Hp3~kge<)1NY)?gtpic%@6K&qD0^(4e~XEMi98M)B8^4 zrWCs)*Wi;GDwJDuK}2a^f8trPY&J<@tZ>R;p34HZx^0-;7xFNHQMp?M zlH%NS)G^+Td1O!9?&b@vGyQr&d`b%mEzRTe$QSKpmhznUznmv&{hsfksQ8*uZs3Jh`xs}>{rg0I z*a<^Gh-hJd*3R`zX?y-?j^j`)!2&qcVl0CH1N<2HN!tn14&Fpk)C)*0+Tkm&?YELWV zITh`B9<+bCt}}r4lSTP0gfZr4;j8z>%sb80M8f8(yjkUfmyOk)Yv&RAz86?$Wm^J` zibv#|>s_CgKPK1LieS5xEcxpiC(ybKt2Z~tt;J3u|MD7qZ)J+ZVl}9`vdqtX-Mmoc zYXh4>+JA9Ez7ci8T$Zu6?7~SAhi40vy~)o}XYD#7iuc&&UCJ%ulqSL(St(BE1yZ+) zp?aUD*$g;0vNr$?p6tRFB3zfMTL;;|{Sk&bR3I{m(AC}0@kD4Oa%7>`R)^EPJHkT~4o{Zo3 z*b?k`&3F{Rr#*-vWMiBuRqxEq+pgcqyLTzTrA=kMEkHy23JR{h7`mj`A_%y+5P04l z$oAZ&S8!h40&Ockact5m>&(KwT9k+`*^;WbpSyY5kG!D(8p^s{{#^fV(%3cN@ylcU z7k6WA%K9m1*hYPY>K!K@e;gi3+$+RiXCF8@Ak4!);{ujzaRTd|SJcAXCzhfQpVF)W z@-f%qMj4N{i1l|1kl0tYfXjvy5C1~@!8*>YJ?ASb?>kQK32e>WJv$Fqgn4f-MxHqtvISf49%pI}%xB1zfPAKoZHf3zF_vL7xN_Wrm? zpJ-D32^amXL<1UA4ElF0{VA*;Lx`u?Y>f*1#t|I^KFAO#seKcXlX4}qMUcxy4B%b} z5NHK+iE5Bs`>MME$y5B%`+^vdJYS?(7%plWBatDWnz0rIU4;Y_l?LOJ84V9($&P?o z=L{f?A-QH&v#O!NZlPZAQU{zKN#8>7Am3CeNzKi;z=3X|$(o^9b;?rI22PS7-VyvM zCvEgovtqU|b11n?4JUW;N^*4U5qD(Aaca)fe*YmHWMnm!6tUR^stNI8+qeCMt^J<; zlRpynlUM}AG@>Nbx_vQn`$u>!mu5tQH)IYS)c$RG@O|3k`1ZP-`=&s1*IN5&oeYYD{Q;y}u*;(!~1Gi6ZV zqOJ2jOK>TR?1u?{E^vo6H)WJ}*FF2klIc2598pU)HaG_rXfmLIaeHUx8=49*lO);^ z4GC0OrnPAw<%BHz)8-_ z2WWm15r9$5r?%h{&JC1q4>4Md_;vtd9mS0(2xP6}G=epUBx&=N3uGn;$z2vuoSIEh zW($dA%d{7ADtRP{6n|naVnxcT!nO0b2m!cg%O>(?Vz8Sh@P`&=m67K~nG~B#7rp1m z9Qv3b5LOC4EQW{l@dO2l2!<5_l7-yEfn<)XW(C}`rjk$W>cqYZC1N><6r}<9{=|K0 zy^@*MeZ^rVrLpaR+W}GPT7HHES~M8i&3GoWhO!)Kn7n)8*P`V`+L5K7T*J%3mB<1` z)RI=16;wn-Qr~t)1_mO?!xt}e{_4hRuOJmIOs&~gQP=~>4NosER zFf^wu9L7ZB%r#u`Wn{7ZvT!LcDJnOX9bdcXvZR;prDNm;$g*mw-Og733I{@?#TV^_ z(6;erKKHE!j1z*$BTprBQ3&9n@OU&4&eDUay);54ys)esHLeyfmm7tk2K%&@$&x%p zxDGG2W)u=yw|-wWAZ>sl6bPFEHf5{F`X1vO4x$^cXV|V~lBvODYPd-U1{c;8q&M); z1AN0j@}UG$Tlx=&E4?Og7h5U6#0ls<1WiiAAZIi#)HTW;HF_Qbl~DxobjtHSr}VYC zlZ=;hfSdg|a};UIQS6(MQQk_AHz$DWFsE3s2wLt~TLKQllC{7zbJ>u6X+0F2&Ehaj z+E)6b>cEHkV3ay+L-KHxCOeM?TG8y1miEeVE7zj7TDLY^GG+F@wl@!LdGzgt5kTAV z*0X~4N`g+H44B4QqBg>-{s{XudndY4M|KCyd3r|(Z+qByNAXd|57^HBm3G|kQhh42 zW{||6( zamXcO@CQ<*-cOOZLh2nVK1V-}u+hf(W)QcH zRw2y+czDXFH@QU}Inon^yy$?GMPnszdddjfEEmh`u!{zj(yAW4>nrn6=SP#mSz8HV z+C3$o=Eglta&=}$$~rTND{L9f%}Pa$Ty>*{e#-W%HJ4}u;+LaJit3kOM=lepNbrks zKt|D~g-elReG`)u5oXlz-8!q2oKhjeM_`iV2?D>I*|MDYa7q1T(V5i>JZafYI??5y zBYe&B{LG_iVgO14MGpI{>$cJK%7PbZYVz!|x}%(gSu8sTuuMcVEc`RfkVzvIi~7fJ zl8d82t~eeZsTAZYYXLM3qAB3#xoL`vX|}Fe7V8MaIN=GunqCQ$O7a>k1d1sY+5+lIBn3oU?wGqY(+>S&4hi1FQT`W46* zgZY<3vZ6oiiffQ_$RPU+3Gl?s)<`k*DlhvU2d&Q z&#d>ulF)}S#kxeJ&pA3`OE6N^R#`eT*6YD&sktf3ul(i>!8u4$FzZzPC#EQ1$)i4Uhb)L{0prVUZ2c`NZxGo)7snSTS2Z=g z`6hmEuvMV;lUkmL4an~aR=aywcYRkUdmgwFyj|>!`HZtXGN&QGQ-=Ykzy3on8)Vw3 zEK2#~gPE7}BcVC*0J?ZnGG=zp91q4M&6din7J z2Z_W6r?c*N1b#g08+5CiK&DkVKdUkAADq|+iQb3t&tRic`^t%`>=SU!7ccSU_v^S-y3iPJj2`)Jq}=`QB`X8fM-^6yU$AqT zuES{_@n{w#EuBcC>&EwM>_LZxl;PPTNw?*!&s?#A2WlkCIO z=LR^+UrrLgc!VNfzXhXNjFQkh9TT6d4evR29nQPjgd?6FYx3vHJ1BT%UKDM`hy1#W zo_xA_Hxf8_dvS;W@h4O|JBVI+XB0@BaynC;*-IP50TJ`#Q94IGTcY_IVu|4hN4rSPjurk?Hj1(yXhEbdph&4U-pn2RDLSHcFD+3q@$UpF7EL3tO6G7ua&NQ^uL zdi3PV^qrb6->@nTpUKKs_^uPZVJ@3jY|zZEvhB5vm${KH;+ zsKjA6?xfD{a&2#^y{Ag&aqMgEHLF*ups`&toi#BN&kiLHg$H4ihn8RW`&BoFC%5R| zA8>N+dpEEu-#z*>_JRDAql1c*S8f&BuOBPL#vtz=CVL`-G2o^QZl@t<0#y0+2%?t7 zV#^BKmUL$uzaBeHpv?LAs_3mPWalw$4=Yy@{tf^Z{Edpyp!r%sGT~q}qW>ze>uwJK z#Q(V}S`>%Fpw}IEpqvj#hsDA+lvJSxX7j%Y+;PL$SIifSA{P52uq!B09*FP!UbdXc zd_J?(@pEvt+`mz=nJ1lEm1?runm(4G61_$?upM12_U5O4x7X9}z^>tPQ;<@#vy58) zR4B3+dh3Csp*|c5Eedp1^tZK(g3dvR57-(|Ct&0|cI$%~j)&L3Ce*oxSS>ff24L$g zBB8E#c|lIB*8LL`AZcn5fe z0qTxGep5;h=b_B>7U>UEj2LexoUmG<*nx5etB_kAyRGOuhm8d2#FiLQj>Y{lSDB%!qK_34Bz|vL#>rwTe~waU6rc=Ig?QKt(R~$V zoh+_o1IsWpQG^#)apZm+f+eFT6=#PAb`?rI8&4)Vw`ULJvmrKHFO|}hJCLN`kp!_x za8Ns`D87!;c4E)QR7K)@Xue=lR+4zKQwGpC&5p#LFJp4cVa%4z+~fXV?7dY~Tz!Lg zS-6BiRd9k6Tmr$}-Q9z`OK^90cXxM}Ai)xXySuvtNloQ_`nCCb&2*2f@21a9Eeg0f z=b~1v{onfshsm#GH-yQnyu=KRpyvw-?CJ>?gwJ(&WH1ej!1VnrFm(!MTV8Uhu2DCr zg-co7auJ$W(6C$HT&mqoY|(LwE?{G~svnvsy97o%RH_fX(U)sj7d_MQeuxGtv@Dt| ztiheI+^ULSuqNsSV~dS%+yiV|3*RH1x6GO3f54sz!rgD%37y8Y(G6=Ph$wY$-By_o zg6xZ$r1nE|vOuijc1U2iCY>r6L%}al_~y2JK!KC%(WEdogvxZlbhzCj^9y`NpgTDB zL}68oU5v}Bn%@bBrX<@XLjjdzQ`3JAgDdkmztyz!jK5Rv$g0i(E7Lk>My_+9C&H!E zjx~AS=DaRa>-#C(x#`X9=O=eavd7F?9&tGPosNbT`bDgBGnkAg8&1Bhuhu#YAmw3zY9}g`m}VdH{6-pp4JSl^ zPCkb+_gIK#$;W8+smm!bn-*BfQ5+V$ca@#~HV@$%>lzw6kQIUU05DC{2+0igg z&Z3E#ibkO!1N;aZrq3x3hPDtO+-UoTFys*9d|IISDdijd6UD=oW(z+EQAsjnOhwtM z#1e^?3(`p`C6pkfQ_t;7X+|if8on)gO*)bx@KDal`BuOHuv7@=%$lk>XQ}+&She;VRAm5n95$jgPpZ`fZx?K( zvxlq>M2fDib3W0z!&~TZxvL4CIQjhWr2cj6QxOlaN`IOGbz2^;{;MSDeuX}(o!=FDDFdv%mhy}56%AEt;~_gKxf)xf*-t2Kksv zC->*elvce^f{*UsJJ+Mb*t_RV?7T9O)*c*NO@@hQlHHsmLW_zbxqnlt43 zvlTlG0E+{_oPTIGgku8$u@DdX564dXV>&~$=nDkMA5MYI{($R0-D#Y^q3qT_8ES~{ z43VS%_|C3iKnoZEf!Gjs4H2LJ;@HD~^3)I&`i~R+ZzwzKA1M2O0@QyV!~b0W{X6hq zMcK&zK-s4b`TyBg?Ek+gyXU`+vXS}%-w+Y%v|jCuINhAYJ27NRwk6Yq#uR#sLZd0bMGv%FDSJ`7%- zsxV8}KdElp_o(!(8#_Mn&6uw^scXBoEEnkhU12TU^dxrLNWqbI+AvFsQ`PtrRr{=k zlFdp9ZOL-{tc}29B@6zrr1HGu$c4SH6G}$OuYqf$MQy;ri35XE)*VS<}Jql(W`>n&%6}3R#bf9vHhW^)7VZr>hCOCYCf4MRC1P}=pz9KnGIwmC!q+2dybOyB0# z<{WRbjlJ=^TVl9m=mt1CebZ2~K17f!5Isl1h+4$}MpFWS4gDR!)|I~t<|-RNrYH{n z2&)AQ4&&SM--HCH3o!B@6J6Wwp_rP8(9t+Ls67-TRI|4Buo?#G9cgX#WXKR*t{FgK zeW3y$0PvJbV$5o9qAhPpA=a}PyJ2073kx3M4Wd|fQ++HytT8e3frt>+HHE~jAHpUF zv#6n1Ah3Uzl%9-{gyTA%#ewAA)}eSty;vfu;2wo<5u3bELIj&b{s;1-uY3`G36;j0 zl-hmcpP#N%ySu{QVCDfNmz7}KCsr8zM`iSujR6C6B?vLp!tY`j)9JNMnKLC52d1tg z2EDLHh}ng$j~kL#R!!N3sU!`5UuHw46`Bs4%k7vmXZIG3PGAXuC+yUweXeiu4v#sr zJ-3Dbq!gr|9xb-%|-D&PZZv+!o+`KNP(~649JiG9h8v6X6VFAu+!#!YxJ` zSw9q3R8vkSQ`Hbvl$!a1Cy>AxR6=ED-jil(UBbd!F6&Drmt0+y#rJAK8yGR24_#eG zK}X3@DLh#eQk;nMA1K@QL&arB!Taj4AuBxN3M4@*5kZr=%ch1(`@LgzK^MP)xw`;| ziE=Hn0=2Z3WHF8CN_}qVN_hjO(r0H29E-!`ir=bC{+M(+!bd{>FH>bR4yQ&Sbj{H* z%n!!8fDu0mtqCdd#>`h~Gu{)`pQwFhjw}Fj(G0D0aLYUBw(r%pu9+)eBADyRiYi6k zY^zUUw6+)?eXvXI)Xwyqjp!#AXxROtlWYkhoBOUWAFtiH^68=T2SKGAi4<`5+_<)U zmBCfLaP{I7J6YKWKR4=h;LR~?s)VkD%fk3rLdQe*qN<(ZL;1o<&5x>=VmVLniq1lf zbIakHU4ZJIF8s-S2d|C*HCfd<60>DL*07EEap>UN_m9M}Czs+MPPZPN8=(Je#hT&o zL}J|6L}8AYi@*Ptoa~x+-;5Zkot1+<^EmRUrM|fAS*zfyRn{wBjf)dc95H&kh?v-? z1fl>*fzNT@1UmPm$pa*5^_GM+=RZZaR~brE)Pu{sd2VpE%lGL^Q^&aY>IK$cw0?Cs zFdZg0nosK-;4OS;fky-+U9AE!xkb(W)g++c&anNV{L|8YG?g$D#2?2n|A@>9E9Bhf zYm(z4D=l$$jdwYc?aY{QCA`zD#Fby_P?&eUmngqmO_He0piJ>;uEXpz6=N=H;3W7Y zm=ukp2iBtOCv2&VE)rUv`NiQ2}K=;{wlLZVOR@|{(yzr638o(Tq^j~ZSNKWBd` zSv>c`5RBa+ybicsyD)#S*<8u8fx-P<6Rz7Q;C6oYP5AQ}^Ol9;8zDE-fovv042CgU z?q9H`$~tYik_#Ccc69Pm~ViVYEpLnDCh5XkN3$2$VTEA^cmbVp_i!c7A)s6e&B8EqK{ z%SwED3j_O2CB*a*XnHSCOXiPK9}pE9jD01Glcz0!6H*9mYnm47un$b#;o~gEu`dIr zl1XX>YZKxGxf}+$m4&*ufqcMJE_^sl@ZVI^=7H8DuABFA8ExVGCH~PRpM4)equU|T ztU8Qh;e)p<0p>w2<`$Wc5l~;k6A?lxaU7nDBY3w$n4Kb=7PW+-IGEc^6g5rwM@9l_B%-n;KryVQuS^yRLE4(C;crMHG1Q~y5#@uYqk;P7 zC?qkvso{I(F(X?cBO26)8b)oyF);nmbeHn!2L`*3F(pB z?B_CzmXeVA2X&lZG1=hxcw-E0e9mYK6aLYII353l4cNfOVPDKGv2-z`(|I{$0WT5@ zadyp^-4ydi#Hb>QByFa6wQ%6C(j;VJqb@ij_Araj8c7YbM6hrUNmkpy?%3I)_rF!-LFmJyGY9(T7q7&C!Y7RW!oGIP+8BxA-$KbS02LzDLnG z0!F%FK?ddNpK%fy?-PntLnA*h3InuD+%w>r#L9{d$=yG@hFiLeYmcXhCUW{qmT7C6 zq<1B&DkiCBEF}<%%G5uoI9Ui3xo3=MidT$AAWmiE^?MTJ13KEZwUY(rowyb>p%-pM zurL#+K4f{RWr4v?S)<`u<(v+S2U#gh%*oK%@b!8FEZJ@4s`I$eix#=d7QCzF(Cee} zY4GBqjZp97WQwRg;Exm00@UeToq0;*I>Vu`?nFv=*g2WmON@AtZlg0olm*E0V7Qzt znPCw;@(8xl%+2j1kI)MiLYfv6fN`1aCW`aQ?3{rNgAEK$fxPlb78}Mg+s#sNTm`gJ zpiZ^Sa~DHzsvK#-ENUqo-sV(Y)9s8xa}W@lIR#tafU9nETWC<}km(P|H7x-Y=F z6!HE_O79P-!>erIs%+A#L?p&PY+za0Da~3g5423x#;zcg4B8LOt1HEYsHYUsxDP?xGE%b*XTYj2k8nj$Lk>R76q zMSYJe!B3U2o>Ka4<}2`=(BFW}fptKA#W&p0wa0Z-o|XOal~T<0GAi}iPdU9b8NuDSBPAlvC5k_XP&pt;SY#10G4B z{xY2~ZHvwpYw2pONN8!YR-xNw7wuMkk{HX3WG7sU4d+Z>tL7`bwt$nC7Ns`%rrNj6 zulh5*;Mj8uudzP+1s(XUb_;w!n|_a+*aAy{wA}>3fOm&JjCs~0e<6j z-C{Q$X^|2RHOU1%h1cE0)pp;(Trp6&7SX*F3F=ztem+1S@O0XV#=TbsOC1+U!a9YbpXgEk(t{BE)QlEPMJ%0lO$%nN}$ z$`FBcBz_+h;c6r!O|ets&{6;cXGb=1oyDMdo<-I06^Q{MLaIVkFEZ$x6PPF4g{K&I zbI8LBnrr!6#{D;9u3pQo;SQ{!FvSt|3|_{L2m`({t^HdwYOeKaG>-+d(u zK|xkoIKWc3!r8-|Ib;qMi^R0Zw7nV~;|N(Wts0>9}+Eo8bqF9m<8hfC#*dJMJd^(;eB$*?8X0su9d`FiT7-4 zB#UbGyuho>SfrJMjcl0FJRZnSG9yTwuFLNg$ZssoW}T%XyQpTfND>%~DqDp*I)JP& z=0?91!8tV*I-l`6(_^Bp+xp#aOGrD|f{r(`-z_wtd$}sx&*jTFemMS*vI@=S*;Zaq zMfD0~w)6|{_rr+gFwm-Ya+=(4oh zJj4HU6ZQ8d@O+beZLl346N=D8!6B2;C2ZDaRfS-S7wSc00cfaqN^<~jSs zP-?u>`)fKY>b5{L!UM_A=x!#{V7#uo2^_cP{@LyWFR<LoRTnhlmQP4|(J)fd2fH@VqCv9u!tESA%oFClt+h(WvuD@aOqU z56n=D-F|vWS4z>5`nmO1{rZca-S_SNrkU6EbMSfGeHPW2-L!ql zi7xI)d*xa_+#8{ho7mkGgTqmgXz2%kSjpd88o_eLJ$Up!c-21G`xfL)3(*XiSvFsP zs{m=~J)n^=x@|nf^gghWm;#o~s%;;cYrFkw9y=W#VmE$qDg;}~6U*uOWkJY15$HbH zhL+i{DlE3J_h&{eWwG6pSL_qDm8;y-TBia;WKytW7EcinUsmiU{R>iA?ML* zpB;f~ZR}5?*J+~HZ+w;=7vEQ3pSTQunSy`6%z$5K<S?MftwX=I6{ zE0K?d!|K4>OX_a{GT^Q8@;LQ(>kEe+vYA$b_yDy=K#3jw<3Q6)Na?=<$*0eYc`5!q-~xbiS&MZ zJ++qR+F8OvinOnkta< z{U7U@z4M}fkU|6mKgPlWEUju9AN89f+*Tk(Bf|M(J=0Z+pbJJY4uRG14~5RpGvdX` zQ;pwo5&7OyNsv&lmeXFGb1C&zXY4|@V(C5KLGbpf9o0^i$EgsuzcOk|E{fE(H0Oae z;{;LkPZD|Fhh62#f|w{t*bhh};otGVYe{c^j2;>{P5nA$0ZsBzuFc3mw=|aXzIki@ z(T@%3X;x8D{0qi30(o(gl63ubU*H+r9IeU%Dmf%T-N}N7F~NK?SSn@ zu(~EyF7kqo=V-OPR%!u#Q_0RY#CnG9ovU8=ym%YeskTIqp^fz?Kz)S>|9vy?yR4gk z@KjVittQg6nqj;+R^;|1T@TI%GIp98cV@$j?R+REGHzAu8^ajm>^&A-rX*!7?D7gW z?^wUiC;CIvh9p9&gX~<}hJyicL|?vTW$o~?WpM#7<2YM-2$yv|bAktbMWfjBaW&GZ z$4u>80&d&((VT_y#u>TiN(+BX5(->w)e((L*xb&`cK1PeLq9qKkv6V^)h~`yA17DOzfTd;vet>4dEZWF(rm*mnU!|mFDZvw-_5&zeEE`K z*vjj+JRVTL6`8fq`^(Rp2+3_Ln4fllom%L#`$?zC=MM+Dt!p1MDth@|+8WU;JkLWf zDow8zd^5b_CiwMSdWCuv$?lfE@ryt3(-gpi!3g@0%y9aX$*#{YVg2l5cy1^*M!)na zT|i%|0P?lDFX2%x3@cSG7)kACAZZ6N;8R&YyraDbkq8MQ_9OQ@E_-H>i~)*jo6uQv zT~G#7&aNqiFkt{ykf^;NFqlJx6xo4I6G`Aze^Ho%D?DVG)(|6HBQq7FE?iw@6MchH zl%ZoYY#=@y6L(rLFb))HMwgD&x;RATQ%{V55r&IID$X*`M9pt(^gf%pkbHS6*067tB#MgF7kQ`laQhjjgK4LB^xlxkW`yalvdmk$4Zw}vYl4o z9@H%0YnLk0Nk~ecokG&&l+JIvPL3-wVSqCo*XB}6?F~vLwPTbq#F|MPWXY%TZ_wN)|7Ffoo5EVNWKJ#NboWh#`sm+4FSFntx1X=I>GRVvTr;!y!s8be(3 zb+*kFx~l8yqaAAX8LDhLqLo{-V`?qXRkZfeC#(BX>J7_taqi@698i5QJ@c4#p+i~v zNZN}%r1SOQpe4wm&nJyBc#4LEYHL&Ua*fd#)y7=%aTDA(TGIiL<5ToDmKP&SKT=ei zYi%g3v`+ww^K4Y5dzCg{Izg+`Us`*+CG6h5(b*OgX|tlYbtH0J9i~}mM>41}%jMP$ z6ltxV9jXziI$1tdQjh-tuyY&YUcYp~hEQ!gk0Gni7c^?!7vxZ$rIDW>6V!Vqi|xD@ zJoWbW)q6Mh?0narH(ue>+J3**`bS3UztTMR!B8;z5xi)N`t*Ip9<~qp$YX#^t2RLN zgE7=q+W?rVG1x)w5YF#qxKg4qL}JQht^2b5_S<7KbIBEgwU-gv0nPxo8hwlf%I+-k zuOSfzjp}&SDC23G1{nDe$E0Eu6N*5#AfzYaQVvoGj0=w@(#c)-);%%L0(Aa_haLH!p7puPT`zeA>< zAqXDA-~SqbK7T@ltUp6oJY?DVuj`Lc4)yRCbN}m|zbO2F@OREX2p(dML)bcmv;Q5$ z|FOycG|AN=|1kye%OS2ggvdkIod4v{$BkrD)~v#zo_Ke|Duxfu>Xrnp7uv2|KBhG&8zZHm0V-#UsQ6Rf2!my z|F z4!oSa2>3T|CR*mJZhmsyc-2j!0bVP9ilDEpLMza&G0e!Gyg1J)WlDdU6E!<)Hq~~r zxmhsQ!)jUl{zb>7(aecn2g)8H?|ymMqq2X^?Vy@{y-E<=?I&oDE%4Cda$)1P?rp^T z*cD9V1J`+*RfKd6>t2uMZ#S!SD>;sXeh=HW!?NBl^dPdP^QV)#&YY)H zt7-^;ubZiPR&Uuke?ITCo9n!2MX-BO9zf51zM4ps)CiqJw?^U1V zSGRj@Uv#zmeZN8Udh_^{;`{qo1j+Z`cay^4-_KXI{NVjNbO-(ydr+>xZYl`s+)noV zndoVrls`P)ngVhRq3Rd`0H%)fv=&^3mZ9kPtv-h(M#)DM#}R53ptmJ}UHr4c4EhQe zOl?gB7yk1rUXC9R&73e%$0aQ+KIu?|xd@QvDjZ!i8@WVc zh(;?uLSbTCxX5jYK@CJhIcorTDG??8@iWp~1qufn*cK31AC-8bhu3|G0fW;AOA)3o zk$@=9>fjKgR#ixFHiFJ~uPEaS`vEJ}uukxuBV~w+#Cx=(D%_OKgtUnw3Z~Jdn77xo ziA5hG)LKWCEEA{$c{Hd*M}?&`u9Nv4cA-!=`&5rbW8pAJX?=Ic)KfmC1P&I$5G`Ws z7!Ia&!lF=n|B}w(n2!1CtgmG44l>pn%osf#|CH`7l|6Bt9%GHn+BjNhh2)=^xjM?; z|4YJgtj-70(xGtrG_D!3nX@@dZVOEb7IW1a&Z0#ugGl2F{?j)A7oF1n%@En?OJ)1t z6DR_2q^A4{S@IEC`-I;7{5i$LQt+-g4@e_5jk#$IXqcc{Rg#nm?*bJCWtdC8@tFRC znot;hS|<1zSy?LFxdemvkdFUpG)L~NRDhgH4n<)S2H2eKy;ZK*ZS(_QO^RC;rOGSmT)AUug_bO>TKkw7H!3qgl$92oLkZiw%! zE^$#Y--Vh7pyu^kMSY_Y#KKnRB}8k`XsI!X+K|IRQ2I!C66YY)l5jcbXD%+iJRQSE zNo!J}%-Ok^VmjEEOHeE!E4?xeMovzFA21Tsf4?G^-q_MN)F;Ul@ohUJsuBkTP?yoQ zUI*{>G8t#}(?l6GoR`-Zx>9=pDYf35mfu1@sq|`Z*|9FI=+(Wj_d$tOn-DCiA5yjT z%egZK9no%i<)|~qJC6h-eKJIOK+1U^b1BI`kpVm?8l)%*3sKhDD8|BRL5yL77L_tW zU3n~wF{zGOV%Z@)*c}#FuZ{~n6^|F&994*ENXqY0>6N7Wme&6%(duBA+7oi}w)>;o zdm|ZoJ52`N-`A+ zaf6OEZ#CQT%O?1@HrsE zQhDy{YGwBPp_#PzWC{1{k(^%G2ps8kL&M7q-(*8S^;h{qwCux26?zU~3kStd1jpvF z9YQ5Nmm}SeyDtt!#mck+np#geBB8X?W<8)5*UM82`A&l^!uSTy(!-SDowWfz>FB`0 zi+8YIoB4c?tgNh6B4!*_cKC{IP-N!eCSU+2b&EU1W);@lB zwJG(vYr~E_5rtt5?Eh@&;^lbu%iD9cl2AmwH;llOAHZYi{P;pBaTPuJghIYSdJ4hz7(zA@QNx6>b}2RJvjS)6(~F^o4-Jn0bwM(t)aY!p!^j}e7IcvheLsu zMt&^${xssgat;>C`~FPu0qw3pvO~Xj^?tyh0O@+)0!))3Rewbhi=n$f0h}Oi@<5w! zUo;P_#ScM^x5hUn0X%8Md^kZ$kAcF6E=Ym_2QE62Bj_v=phgz0OA`ya5#wUEU{iBw zr725o3A_{vEtEP7-88G>6mMr7C%!4BUnRj968LHRA@**1@;D$TjnLCUTQ8G9B!5|r z5zG{LJx(wV6cn*(*r9EpMA&2#c3p9p$RlPyHq^DKL^-CDQJ6updAOH&KqR8G)gv~+ zLYSSo1?i$~A&27~3~Y&8xNTE7Onk)edPV#ZP~)L|v0J3-qfbW~ZsB1hl7PvlQtx0h zH~1ar_pITXEKwz87!DHlvx~sCeYeLifI|dT0t63fM3bpS=NS&b?^Hz>MCEz&@Q}1< zI8YRxzrCKSyexJ&6|7TrF+_xfe#c>wc5mF+8WU(7mm?;5ArTf5<|oz`8Xm8;h2vBi zr0LWm7m*538w$F*GnPxWP^9or-Sg>eiu*ExbB&0J1LuR}Z;Zzz4TWWLO`eG22ldJx zmjfOF&}k+lxkPS>s6`|u$i{0#r?S9+A|w#v(MbH6kW845l33jnY0?r6=VFkT68Vly zyELNM>ysV)6(4pzp9aKIniDboEiQ-RZ8Z{cHY0!`)&`|ors9Ia`uZ;APAaZZN~Ng> z@!9~SNbWrWxi(-bg`Smr8qQ`I4p1Q-Lm_-Ao^#3f;e)?vx#)sYs%v_>SAs_Uh$E7I zTCAj&8mlNatWfF)Jz$wdvSze%dU^&DdFDuZrHTQTfoooQS^;YYjY0;cea2OCM!K4J zl_tM1qs*{-mLh3j@q^^->=&eVAY*$9etG5+I=8D4vpX~N3XBjGd0aoIw7qlsH!x?; zt@&rvUs(4lt_Yik-mC^7DF3VG6g4=ZS|@hKM#jZ*sFj^el5&g6GVX23oSh>~Y_**I zVAsv`FdGU}v@K@a^0XUw=-Ng`7~%Z4M$FZTys09IX;>V7i51~wz%%zF_Mnu3ufP|UaJr`z1O;a{Yvbtx-y zs3U;vLj`Dn+z8x4GR8vI4k-2v0!};zZY^P637HB}YPQ$*36Lo_et!A0qy8Ic4K22=U>S7}CfRZYAfc7uY=r@Xe^mfgfYv?nNkY zidGvjZwHhvb43fzlyrSBX*k320G6V`v=UlOPc5@NpBqFEy3w&uNhG4$aNDm zb)@4^p-v4<&gpd8O|-OFx5!u@p8-srK=yr!5tByFqY%!{#&NA0Xzn^}eKImD4xvmT z5vwM{$R^aoIv^-?u_I8f(wnZOg#{N%m9~;6vYD^587>mK-Gd#8yU976#pk)z?-|?l z8E7mXy%81@gwX7VDdlpTXH8v*$5`_o(D41KD#S=(X1Ud`v)xC!=ztTyP0XNDtjdo} z%peV5OQltdSLx&lrCAARt*8k@FB=?fZ?Q^xBUtg(KOSK27$^y>#?!+;sa2P1_jqb_ zuY_t4?wn+XZ5?mViTuzN8A5~XbcWS+$=b#BT${Mk*c{P?2ad~iZS3k=?wagupUm$R z*6^OYiFKca=z{5&CaRUvg$Wu&ya7AwqfQBbiflF>PQ0={d1q^ydH0vg{AAEY zDJrNmCZZd>!p$h0`vx}3Am7Y3^OE4eA8PZI4fAL**9yWG97UN@X);TOB?+fbHu{FF z?{PXB6)vfEmw8Q_TpC#+FT*9g2{V#4G1fH!`9<|9Rw29BL$YHG_h5Eanqx*vHF8!Y zB{Yv@)&%~K@zV(h8BnM-a4IWqrYmBu>)SkCc6|GHh6syaBT}i$IG`-++iV2lX1MQG zgQq_+V5b>mK70ZvZm{c+~q2xhDV zM}4|K+bpIyEm$aIj7^y>hT2RO)-U2tEwaM@Y^nk(o|z@-E)fa*sA?IbHvb7dy!6&% zX3%xEfOpCQ$JRz3pU`Z?$KP>o~2ht^C6BHO8)N4A!?35YtcLKCmue<>*C%>+o z1THNuj_Ez7)u!o<(ff(N!Yp^Mt*))DfX~QS7Q?K{EB2~Z(9YHl*VaMlXXS(X4`@9)F_nZo+=vge6?t)5TXdTR|`XEZ^-TZnOFB z^Cm~X{eUdqD|Ltu^#(l2Ci?F!Ow>(kQqQ}jRs8cUB8Dvzxdqg#O#*+b9MNs?Lk~WK zHz;SDMy@2ob&CNtihNAFn9}sU@p6&d4u{+p7sEDB_Ga`82;0Y)7<+1h-I;=K3Bu)J zY^_Y*)}|OR()B@;RpqFzFW;fVYQ*ef`s*VIFHW88()~cUKG@T@1t4naoZ@V%`|R&L zSj~6ttwFgnR%)f0D&x-W)2AJ1fNK^!7M9QqOhOM2Sh6Ffeq;Btdm8k}$rk6u+0L5y z>?7FLe;C;B#1WHO-)7G4ymvje^{*z@^`NS7eFz&Kz5B_naMI#)(q?<|PVM;Z)K1Hl z&e4)et&fo&fp$~Q$%xNMV5rH1xY&32HJFwJD!f?;NKlSez`kGdb)6kuKjUU}%k2!C zv~}x2m4RZcACx;w3;l|be-{7kY(3_bRt-p^cFt{Zv2CoG_7L5K`xz}88bEXj&3_36 zc6m^}5P95X-a6NVIxD}qfF-(uw!5s103r8^SLyEXLS4Q4c;$WIhoU2kjrItnID5BfXd(j1vEyir$?v5y)Tp_J)H=efUI<=mrDhPL2Owg&!2;9Y%J6VR3N_ zG01IWVQ$ths_O5>Hty~C?`h#3ox!GT;5%)Md)L^9$gUQCq+_3p&wfOYs&>_aCAzdU zBB;KPV;J{(pMOCb<0-iy>u(BfA4XZ*juL8d6k>lB`TkP)k>ySFD<6zrsP|Ok`;<2# z?_r!7c97Y6Le}1Bz`^DJgsdaxd zc7drtw6K`_x}5uZ1D1P5`?a8@_p0>nens#1vR!rmyeYd_A2ZYI*2mvESTFnhV0ypb z@XYq*w~Bj950||**YaS%l+b1$78DAh2!y|X1-!xM;?c8A62+@cO_~ zgCP9z#j{CO(Xc$C5obsOmXz$-FLJEgJ{aHVvhH-$(`wQ8!`GWCOk5wul z1JFarmW3{9ldmGARLA{qf}*{ zc5e9B0CakZZdbDB@oQ$g-S_^$k6Jt#ZU&m8#j?3#*;-$u$5M1*`l>XU!L$8v?`YRJ zJkBitsO0d!TkcNA>P^7KZsQwMQ_u2+N8op@6u0#FDa6#90t5I5=eMY!?=5AFjY)p1I? za(=KM4WlqLn$CFvyy$osOVDs(od~*o(T}fhKF-vM5|n+)6Aa&${>c|CA@Ya6v&ar% zxa`EuGzvl=hi*BA)kRbkMK`Q|DvFCTGb=00i+;(M{dhX7%q7SxpaQz)spwa+8@iiS zeYKjK6D|Kb!(Dt%_etF-HrY}A&f^YKjvM`^p@3;Xq(#e$T4lb2^z&wmwq5VpJ&mF0 z%8i!OB=1M#@WV3CbVz~F&YRu(BI8ED?hAYF~ z+YWP@Wjpx1(RUn8f($_06#QbybQR+|$hm9!&KM9H!gZVkj<`QQEK1CY6yuXlh73S+ z7j)28)~>rVS&$_soea@=N9@*aVAYIOj1FhiG*a_QK>A=VV>WHzVH)e2;gU?VPQgf) z3%>U|D-^v@pw5S5(gW}Ha+rRW#c{S2zuX-q1tjhZ<^8gz3)JHy)QSD2rBJ&2dQ*8ey_QaO0^N291*ib0{#HLS(h6u%Ph5-I8 z|2IV(qBLp_5rQ(AD4A`dkWXkz#U?|X@~|OEhp8wzsC=BcLulkL=TUZEl6VU^V(9ds z7+2$bY)|N6PBlfL98GDMD~^%Ck@{GpsJLQS$q~T-d-&KO;}7IWlGMD>@pjI;A6RiE zsW=A{Qdx{B*xN_t9Dzxx7<*KdnqwF_?~=+@$SD!_fOG8$;dN1aWJsdYk>1lOaIgj_ zL7Wi&?vxfps`=6XUK$gACT;QqMaAjJ#4k=TddAPB60CA08Q$w4goUnswxRH9+whj$0nU)^a#?A5 zWaW(evO>;ZR8k+clykVmN>Jgl#5^slatT?=+}>BTM@0NAVq;~Hep{|wyo^=G=Uk!Q zEv0%Bu3DocTFHH8snO{+lXX0sV<=jQK59AdT{2hA_{&mzgKHsq@UF^vh*nBK0=nmZ zuGaU=>NA{nekQaZf}iNA9zy40>?v#gLM)`$NFp)+O-QXFm0raFOg>0%$Q3(F^Zt=mrm{VRpC#wa$}~^S5lS z-G_5@h`Zc+PxG!l7jI7FKsmtlH|HyDx*dd1l|TyA4XxGX=mv{}=GL%72ExA=DefyCKvYqMuiT zB_XhT3`_@sjj{jUQ-^@>KYQ7Kzy9dw8~{i|9c&5!lLP7j09x=kgoZ-~xc_FOL*9sk zNazq7{SO3(;BO5G{@(u!fB)gyLx02E5DpIE-G5o<5CYErH|0F^Z(90aSp4t$xfVE! z9v1Kq{rrDQ>VJO@|MU9ay957y{4KNjzX5-{{5SD;QS7Mump4Rm{|o-!EDXFmS!~n` z{n6d&+Vig^b*F!p)O-I~Qt$oOk~-2qOX^rB3b$^}e(n)cyKNS=F!O=Pdy2gC}hdROTDfei$5U+OJ57CzpdS{^R{aIA&E$!x*k~ zxkK+mv+BQnC`4!&Ax*7vbfqlpy7D@@?sROV@8oIlVw#k>>FqJuyqOe0cx9frJJz9V z6QU%z^*Y6~p_`TxKf9f!xyHAiRXUkx5!6;bqo37yL$9*{9e;NBLrwU-%e0Z}c=L*x z@|*i*VQe#(Rmak5wlx8Euq*reM8I?ZW)QY5$JSRSe1RW+zSZnsLd9*}w&B>QxtZ<7?7kgRukF@YFuHiY-}LPdz|_qe$WHZ z?(iU-BLsk)-weREr6FtC^R;sOBZ^CWeHRl)U#Pu_kc}mT-Vql><>iO0Ue<`!a~aH( zMeUQrLF5bs-B4M~oJsf7v|PP$Ot4(KwvrLX}1pe>2Z0~k9xvqLzv z_zh}sBF-0f_ryaZK#c1;KF+yF38&95>zAS_LP9QS;^2sc$8~&S(JlZZ&yTxiJi2yj zm!f}WRNm*B5|#`K2~kW+nQt(q5`Xqg=SWIp-!8DdNRQSXX*4G+K_6w27=gTCOuxr6 zbuemI&R9}XNhtxUXi$PV+r7f-ElI}opk#-!q|{q;zm%mcM22>1YP*2Ov~4=Tr$oqH zO^Gt;iSa=}S35Ys=jkRFaAzimA^zvoWA0DSRUq`3f*)#93LI-0^t*6{(5uFLobQqy zr<$YAOi@voXSqU58B=a0Cuw6S7ND6Hg@jMH`6(|{qN*P4@f|FAjCY6dg3F0E(@o;* z#{LSSQnLl9Unq-Y%H>@PMvH%AhzPP)sDyW*XOAVo>N*@NGh@t^%Qct6v{{NYbtrH^%#5kK1=5mc0Q>W71 zpC7>kjh>fj?n?WtE1KWgII96eQ9wqr;Yp_)iR=rRLmsEdN&n9?c}O;9!eo85pHU@? zXaf#KA}<_FO`Qulwe@0Up2%|5Y)a|BOLm)R&A9D1WlGuz$P{{fuYzAM(DUBc0Nc(t zwR}0Vf3+L}aPeBO9i&&L%Vvk9E|kTX$@yfz|COBtWyVknAHZt^1I$bsr)R|Ouaq~o z(pm~|bb+G6wShxi0nql?wpVM8zO9LIUNtRk#eHkb>Yrp_=Ht>nnQePgqYagGTHPY9 z?q`#Tns35Z`W5@fWpM7o`Z1}A;FR?btkU)_v(Ij<)RLFcC6Ql|sjWY@DhV*6;dm#1fPCeGs!Err z%_7}p>uapE`f=Ql*D)}>&nx_?0|V#{5PJYjGgUhm3scQXhkJa1^R!L>xJfA%`!F*4 z`92{~v{7z~X4%(K*8IKx8IJiglp2aF8cx?2KRTxk?8!$fTai&uG{AbM(os>}^8`*U ztICANuW9O@tGxe%y|)UAvv2e*yBjA$H!i^f1c%_R!6CT2TX2`)5HSfRa=N7a#`QFb|c+VTjR}pE!2UEdR4a*Om)6eR{sfWUh1EQ~>roO-q zD4(&wcGCxQ`jO-MflPhvZ!u*>B~>Zap@|wK=9;*;K4j|t6mI_N+setV0J>_!->Pc& ztN{mVrsyhxViMrECN9Y>CCkA8eomWfOm}!rGZFJZ)n@03h3|7s7z~@B_#HM&zBLe6D)x6=1jpWkLl?cm)d97;A`WNu5O{C82;=E?ioX1ct@LueO_SZalyb%U7qFu z8#8rQab1l;245=Mio>uOH-hctP^|7?`T^Z{c~Qs7K1&qJ3kANY<~kgWHZ(Vp=D1O5 z=HN9da8`)Xy^1)9E9fFb2hlb02Gg^Cx3rjAL%uog$eFeU~yq@)R;*{=>OgEWil`cnwEv2e0G zGIc>8fcr|KN=s2194;PY@MBBqa2M$|m>JSc8IYWiuNra${px5n8B5Md1kpVFWX$_L z!0nHjc+ot&N}`L+aT*7%aa74Cp{X9*KdlnMvM6@f@rj_C03K@f_J=Gga5gR(W6~wX z?ly~na?S`!4kT3#!y{eLJqwY|>n&@5|3VJ#c@7{Ii1#IzL_c@OKbIpv*S0>LKGnhL zS{nbzz~NICWGlQ@GS%}Y_A`p2Y26Qa4V`_mT%b}ehCZR2ADOTcCuO`FokzZGsjk$c ziCtVF8nA$ly5J5^8se6QxD~~wrbCRHiNBM_4l1%o9Q9aCuvMrFEE>iO zs}IeQ2`*WfOQWi0%6crywZt_{1;#omi+U7>FGK2^OA~-)4w_)mUYiCfke7QINom=` zc7ZQ`A%|jdFj=`{QfX;wzH}=1dI>YDSm&KWiFZACzBu|Nux!?nA*H7*jAfQ$ai*6~Yq7rGPcdHfN#Z`3OAYW=Q*36)aS>t;o5fQMi`ME=(eV z-&O;))Ei30jd^r=2l30AV|%7{e6v!$i(Zw(T}7x*whdx6rV%axpe)K*K>4(#j0+1Can)q3GG(s@?+J=S7?>jYTpDCO%^<7zlP>pE{!9S-YoT4b#D zlFjGg_&!%7$OjsWO0Bpi(E65TNM-L`R?`#I$a*rx22|l_HIO7VdCG zH`{XoK68a}&&xjJPh~Cs4_#n7;_n3LkAH)u zDT1S#qlmF97WcAvq`H7c*?T3R1=t)CN&DOr<3e~3?OQ_8)o^b$odx&Sr4sOPTJ$`H zaInehm3~-xHG7ti%qM`_MH<(N7}P&tTNQ zXOuaR(jTanO1avv%bTU&K9J7&_hU9E<2GYprrZut{7+y62l#)8G&B zKQZ9>IHt*UrpfuJn$4}3t>l?P9pBv-N=Bp*FWE9c4-+(S26&w4KUz=odQES!18%9o z0!V=$AhoS2joMt3J_R#;YqO+Xgq&Vsf*q#eJZ0Qia{_-|CB_q&%qEu8BS=qX`3Q%! zX(3;&!dIjl!=5pfb>tL8w6q>x?M5Rn0B>xy= z!?=_Yk?C0YJ`R3>H!t8A;_jw@Mocswq8BJK8cST{BAkynnIQx&Ib@7xGjUJR6adv4 zeTSB!8y2&?7KlifzpX9kD-66fSk6uvhl^Pr8d{bGyseD+{1b@vu|FB!f{}Lc+o|1Iqt+dDWMA$jC6Z%T^nqGgl0IoQs+-L z-sjBFc<)fJV@#gJQpjQ$q%)|XM088+fDLvyy?41Q8$#xGSp3%BNI9=d??Sz{#iMp4 z83LuLLKtKrgDm=T-T>61X%>dP$k+uHn?1Rjox69HxI*8}Z{rRm_7Mzr%`$f^Dt9-S zn%U|19T>n)x(5bkjCrG82gklX?+*>3gE*=A`}$0W11JYs$Lh$Hi^@@l;v7qEMBU60 zd!*fm@&~Rw#T({{p08~hV*{dMNvW=*EJFH!{G$G(ukYrqHKkOBx-IuI@B(6wlqd_8 z+|xiVM14`yN0pg}O3OHl8F+J&GxWiV0>_iyO?Em_vcFx-nMFTq?>bY1Ww`%u{X8n* z^rIVZXy!hq^RzDO+bhR-Wke;WMKU$>}}O>Fz{%9Y5th!{mdR=TW5{ljGMD zo9eSy^S3PAt1@SSxYG|r7d)RK!N zJgaEkgFq~>e&Ii)RP#bhHYSpl5&K2sC6%}0oYy103QE2C8wA?Tqg7(oA@!y_91DCE&2Da)StKu(+{~DkJ-Phkk2p8 zm(1XkZ%fX6JbE81&mOB8pHN<}n||Sz{d#KKcrq2Z&oF)J-oWgYd#*T}5N~;=>wTDj zK7T5}93Q$Ap?&!Vt$8GdzHAb|ZvM_k+Iqr_dFk>293=W(1dY^?-zDPI%0u71z=YlU0cwCnsQdtER3cmg){w7o#=}UDsm96B= z!3NMOn5z_`^hZ^s)>>&cTCc%Iw-MDVw)EJr=-qt*59na)HfA8{UW-};H!X05dho8Ozc?e7+8n*dBdZ{IzfK2fYX zeRy0v*%9}KB5%BWf4oUZaDIAufg*htY(5`Ft9x-Ekm}5WH~y!jo*&T#GGgvQ zc*EHDx%UkQ@4K9=uz=4Z5OMMgaumw%CBpC2`s_-(5w)uO>UZO6#0ZwSA^nNU#xbHL zi1*UvxCUC`Vj~glOp+95Gc^oEp0nqJp>D#=wI6x3nWgEi$7+TtbF7$X0*d=;8)zXb z|KRUq#X-jIdU+|5?ng;KP-z5h3#_Eh(#NjADvTtAL{UE}1TAQtq4YyV4W9y8_SMNr zQhq)9jRMEUsw504sFOvP5G>|HBrB*_R{By~FDSz{S6_-CfN-O%VOEfkt9+%Epz=ir zs~Dh;RLZ7qVA3(yuI;=QPlJeiUM3qX5h*omP*mVjY*;`GLbPt$Yh1A|v%D_iB4#Ta zYs{};*KrnVoo}@22ufNhIVzt~aM)pS)$zKcsFJK$kK|Z)_t8{^dpC*2py!Qa+FarC z4USXa774p}GvK8)DR(B@y4mQblE-~*2t{Jjj6Z(`OIr`-E3BlRhPqT6BRN0c4@wkG z(Y@#NhK+8Ehb>ipv?6IW&-=-cS|Qi1>7tP66U=QH4SgB6G|#VM*R()SHtn)tEkNWs zE-6VIwk)qP{ifl`gxzM{JA~uSVSTvLVBWKx0 zGKazx%aiN8%HfcNV&SoidpbVTog4@N>?++&eH|>JrPPL z*(3XA2e?Uu$soL7m`0zrqKMSfdffPzp=~2dE4uvvJ+%_;Z2zxK$Fr$hRVN@InzR`S zUf$+c(<^~pC)^LM$~xq%((|4tZwWiVI1RX_Z|YI(qK!ni{i5tnR{wICs_6UW5Z#qp z?a1f6h-@HhlhyGk(;zR)IC#a1c7m%cJrhpkx7KGNyr*=#!EVF~77q~~{rc&H^{1{m zb+Zb#`E^l3-v#(7>4qv*TWgnj9h|S=MI$q<+a)tk*O~>ZCNGwm;qG@$b|T?W-pOv~ zl@s>$)g!_t8?SJBw^3VyDE965_Z`jSkv!hcHj;AdE_;ba>n!TA-=elUDF0n0&(u29 ztzqB}%r9bi`ct(qp$U6%vUxhq-OBVls%n{d8t8<|wteeC`)PMEkmRjKYx1(?`J_BAOF^&@tdcRVg7oq^tOe* zqz)591TUpy;WfCz?b^Wu-B@p4&`r#og!z1mypRt zPf8XcL5(5hq%-U*9PFcExL{U@H~dv>-p^oo5h_QTi~Xk;CP*`h8h*(8K4LyVTY3?B z!(~X2f;`B*ZR|lelt*+oB+lnR5wMeBuMMwdinWVG^GexwpOdf5M z#4pXq*hB%8j|?>?of4-GcGb@X%mH{J0VquI5>Km4f7$p<80x4e)AtukExzjA=4-IB zbS->{{%Vb0owQcIC(B&uYZs+t`Muj%c*H{XG+!F|k8+Xhq9pWp<4~M7wEV#RG(}GT zu`l^OO1j{1B0p*NW)3*AScLR34nckPBdQJ+;>G@Cs0V8<4_C4%jxUo1J9!@dJJK!g z$ElzDOfd|ti7Xi6Bhy;U zIApHtSf(?3I?^DV-mS}ii8dGirk<(pQY+qzVyd)~>Iuc(Z2YH6ZvXT(XCJ-+BZb~t z&1hu}pQDMOq|ENe-;Q9SyA}iq8^ILX=51lurfD`DXHm1YzaJOKy4D!Js2%AX`!CdQ z6Kc4Q60BX9+IQ?ZpLr6D_&zS*b>27Fn&{FdR*&HDUXNG#p8ZYyLlpQ6M}tA+`DtSs z-mMFcq1pv2S3g9#xjVasGLUpE`HhjfFxvWOZ%6K}RJUX@%2zvWR=Vxy*km%~fkHo( z?#Cpw70^!}wiDr_YRt_;64!h)9DV#Wo zm+^8E%>-Ip!|LA5asBOk1IiDhyqOYiOoob-N%v3^q|vOz(dQ(VJdHt1v8u1jbTL*8 zDig+yL+O94FnBib2FLO0zhHhnOu>De#GJj#g?ktC!qhrN;(nb$_Oer4jyJ>7mzIRK zwgdFugyZgHjFsz{9k9e7$AUP7@MlC59t+MP7oU|VS#PNL01A;g8$?50EWn+Qqc!`E zKg}b-T05@a0XL)eD zOpMFURpmTo==yu0Xrig}uEO@t*@FyKxly>Q0wZ-VVYSKmP8Wm0FJyqZ6m{^z+C9SB zO6%I-cAc>EVf@0IBY0^_`B)G>6YT#@Bn}(eQPE97a?&n#v&PkV;&rv)kNvhQm$MKr z$~DqA=J7j_S4pr;q2(gVRhvd(tl2!b`7$1-YfoMj*g%nend%(4PS)>&s%UpX!rUA! z%EA3B=Dk=!lj+`cBDZoG-*jf+3_zj-!4e3Vv&JoF~_9^vrG;NwE>j-<>qRG} zyMGhC{px;0rSOczPik6O-c|yso5C_nrkn zb3O0`HV{63HK&1{bMN;4j^&AR;ru3s)%1t6jv9kyo$#%zPvw-)cQbDUAUh@%7=-K@ zvJZZn$cqyK`LW;(aN|cq_I|qX8%*-VjB)=)34~8Ji=)J1#bA49E=+O%os!B6!``nM z!JeVn58L272~z;;(DwmT*SkB%qL23ciyqs`kccEmsF^REvC)!ika}{^uLKWX(m;Mc zN8~OC`5+@DD)Xl%Oc54EvmqUqq#&D+AT8X0uUkQUTTUlp&P`Z=A7%jUdz`n(ayZ68 zwwxiEv0ARlthVAmbcF(Zn+4gS^X}2Op&|B$RO&z8=!dumg>2=A=yZp`RRgotgIsVz z^Cf~f>Vpv#Lb?5%>8OAUxo)0|_{)f41SDZPs$m6G;B+_A1x39U6_!hJ7KLJ0xJ}@I zd3bJccz$uXS289yGQR#{I6}11xMFb6y>V$XmWWZr0B+bFd)NqasNF?Gs)53^x+U`- z-9m^rsTm&MB;1;M_=a2f)}oiKP*jRR)Z1)tsM}_s8yS`pMkr*?)ebJ(k?%)zfSG4eA?7O8 {rG?bX} zW?B5WNIPKg^F4>B1Pe7ZTHRUcKUb>}NISFv@ zz4d)D##RFFN9xFjTaL>n=WGr+s1rS3i}!qyS}#YWVTo3A;`u%= z@Vb(YnzVfXxR-^5@$E(1q~I!`7!g{4lNXW%IUP2Pxta z?4k}`V)UuBGD~#-u)v41rT3NKI%CCvg&bJ(k`M$X@Z94f*c2z7^;&LVyQ$)6L21*; zde6zJ%kd07lIhz}u7n7`^ba+#P`2LSU<^<`7;GPE&Xx8SM_OX{OUy<`@teinsqR&zok(r{vTiPDGV1WwYx zWyBQ27+!CS#1}WPlDcPPNooNepol$hlwX{wo{lv|jbdxazx)92_GVswfv&DsjmFk)7VV^&k*17k`*q$ECO8n4BO5qgT!=c2XV8)K zLSA4b*aYfPNXSiTlWHS84A$0QI6D9{d1#>_2x)NxGw@k`J(yF_i_!GOo>CxTVLlCT znNcG-_Q)o`P|7}rwv&$~zwP-3*TWTCyXiLo&WqFjJ7?Lgek$KFBkobul zwUi1;Rpg~$T0TMq+)F3won=$~;S6G$O$*TK*|JL+k30xDYZ=V)_(*_-?o<_5QdJ+r z2t+=K#h^M;qRKCT7?g@jMdG3Wf5UGQ#3hU?)puAiq8X9eDmkW$VBhBxU&voPa?jAz zU_dF@VH2qq&FDgViTKG6M z*CT{nTKOoY0Nys|tLwTlyn2uj$9uv0n;;vBHyl!J3^L)s#fy3lhdjz^HsuwF>YJKK z%Q_AM((+yjedXNOg`8V;zxUwCOX{3CM|SJBdh*G7dKj=*EHBv+CxX9~QuBN-Jq~Ys5KuXvbr?30>?I$vNl$N^j|9-odoS&P)&df z4Y*1@`UTZ^I2=?OUQk}f`~d1$fV9lewvkk`Eu@LxdnBfWb9~wCcpYt!MD6mp(414# zQ@#%yS1eg8lGJi7#<)|y83w|KSDu1?&6EC$;{lc!wcUHRJeD;*kA{5Y?Xl{%x=9WD zw8tUC-3d44u7yuRCbrj;>)<(+PBc>f7jZ^lz zn7fC;K=Zb|h$b4&&JDq$-GZQ#oB*WwtvvEuH!@F?W&n3+7>H%GSoC`zxePJ$A8vqF zoUS|loSVYH%7Ex7fQ6>pJFJ#Et&-BCV#dkmqx{8w}#_xaa zm*U7ISDuFV#;p0k(J{h?&tniHqV{yUo)a`wPdhY+fgaTUE2MnLg3cSxBUzirEO3{j zWyRa>Q37Sm8Q4;cOsZe2QR)1x{2-O(`&ccz1AD!M`ACEtr1zS{AG452 z#uL9KW@)eo@uD!bv=bw2kRzgZM6=vfdEf&?T4Q*OFm7lOGdC2Kp;F zHrh|~r72(pbSgH;>C!WYmHw8Ht<|Y2NXB_S7M$#kQEf`HC29ZeB6ScH#kc$K?%wnU55tDqz<4{|M!R%-OX z>*dwPCE_)$MmgIE{HkI-B(K4MAL{%-HW!D}DcYu`Q9h+fC?uggB)Z}ac$#yyn4e{x zf2%X!H#=fxt?y)&I7c_tbi4rHo#9MZB9G);*Ed)HHV3J+suDi)Y;h^`Whs*oU4jt* z(XIa_Srok^3e!H7y~7USTsbH;D>%#s39o{>ejj^Y`v>K!C7P7ilj~97wU?<_1d`iS|g{lSgycaTQidr8!R|zIe1zKwbnjKQtJx) zmeGMBwGOAhP(qz_c_9R}yG(uzpOiYpK;!@EMz)11yTwJ`Rc62C z{5@6}b1=Lp?ya9b@%rj4%G#Frc0KYIW#%?@=k~-!+@H7gif;$GCHyjzzBjI6zB}EK z3D_3&-k=sX)-u!PoTn=qs3O2~Dg%bCxJAgXGb!@#tsdh4^71B%sBw67v0vTN7h=^v z1@Q6jPbu!3o&wEJ*YxZYV)3K5`;zU5u$QraN)N|hLo*JP*YSa()970V?g)ove;gCp z4y6GA?Iv3R5;A*&J21B}!^~_BqWlj`8L)4T4$&a- zNq?q82j}JRARQSHq5MD3aSXNmdl3#yF89hRI1xGak;@)K#;Iyog+lG|Fx6u!v^ZYW<@#J`80_t>Q8u4Bs&+EkdG-<)De*sNlpr9<9d zkPu(=ww?3lm@jf)(BY~`1>>TQr4ll#QxaX0LIrFX&*V(U%`1x4QeUvOE0;w@j+xOe zS>-OfWUr}Qt{AhfP#Nt1l;dE}U5T%Me@A?c#%K^G6zwNg;C5&urZLLqlSzXg-RP~x zBzN=vj7vH=SL7zLf zGg=SgG{+~&I776^M7n0q4y~p*< z?t-CU@45$1>@%vdKEtgClfCIsi)As(^=P!;%sT7DfUw*%-%_8u@{Pi3D9*2Sh+Mgi z#Sc(jhqvcm9GRq|4#x{{*b&t{R!*-70a^m0nUw0Y`L-?ax-0N{5%b(X$hR4LsbrQj z#hBQzmKkaB5{gzW^Xl?@EbCh5^;z!q;MdWAsgh4_0)vt8u&JVjaz#+ECBaC)!*zzih7G%t{uu;07PQ@M$?z_A6E2#RLPN00ny5T6boTk_+9On zf2`;t{Qgvxzp5}RIygT0!q6{_fznjaZ@YZ4mWZo!ubEjiES}uVqd!gU3}!|9ee}Xt z|EydVRQ4!JcU>tQjD#*ggt|~59cdvQkF3>IARfZ7<)6NSducvh@HGyRSN&#_ghm^N zg`aMq7RzurXqfb$U9Hzqg&K|Jr|A1)$RqE>GPNHZf=bi`Y?n1}ofgO3&l)pzo?K4X z5_oefg(K4&|WYe^Ab=>OAuAIcp6@ zZ+j<*L>&0JClLOFd^PBu(^ug>{MqU+Xac-Hdr)(FCOg}&9izX1)r@QUXGA_QwW1r% zyb;B*{bykNhd08qD{lV;&*(lakM-A#HPzq;J}dt@@M^ zs3=8ULSB+hhrv@P&9-2C#Yn00MrrKh@Q1E3<{L#4xxi_wIynI-=Akt4PQ2sD74%Zs zmysW6Qa|+q9~m<#93XPs%wnBuJ#}S8j;bIo;0&IIM4IO)!>s7JS*g+X>rdC%@RMR+ zF)lHcwH`1UgcX(cZj|Y{BJJk2enfs=0J@$uEa(~BjEd=pqbI6cKv`7zjpM%FFv)(? znbI&VLcp1|>~F)?(!*F$m1E0$*Q7%}_^wLZQTj%D4Qpu+MbGuF1EPBvQB11uhxAE( z(*wgq0fvP;=Qa)i44m73Xs5I5Cz!g2TEQH;(_3>SiRy-D&GaW46*BXZMp0@uzl}J* zyl)v8c(0GM(;-hZv>!)k)M9q0P4w0{86~l$CiQGp&MYfw9b(=cNVL3(0X5@~+6{>R zg#0(>zAwe1O2~=(GnpMpn^oO!22a+qn`!*2$|kYLZ!K|eo=R$_23C$${%WV~G#(&o zm$hcJ@|?Bbz3-aooO@a+9)SDNUe=vPvual_r}f-E7`n{s@H;X!y<~)bA&oVb`L6Qn zY5TSPW?C2;~Z_@>j~?e?}4`G9cHs2BD7NYH3zk`3lnFM&8ivBvAtJI7uA(R>%wy=|PZR|G0 z0*Z~%;~m$oRPT_?G>wbz)BBjF82BN6I=)DxfSM%*w3BSll{Je(Cp63iUpSpuT>cdg zYqMA5R#CE{-Q;szoQQbqbkZPZI#r7Bi2k~RroD(Ms}E?*v=FM8y3kI@21^3&g@}nR z!c!t8w8VcL>q>|9Be{PsjR${cNk6+r1I=;$c47`oKJPnF7$}K%n4ZbH-8JDy2*YrH zjLQVgo$k12#mj9?)limDi1OB0JPTA~Z) zR7?zGEns|^mD1u?N}k7*XU?FO-f&a^s7@6MP@u{>9x2|PW2Op&Yc8NpHFn-q z;K%N1n`x-E#bQ-`O3?F8J8x1Y%YVCdYg_g0oSlgHA&FJc3W8t4$lXJfSCd`dYX{YDDMDX^w?Fh5IQtcXYr8XG- zl*n}JiUrO}5Q7j9xOU@xuq1I~C4-xHf#{rEBnkR7rUfeEhImH7==ogospx@!Oihf$ zOh5fJFQu0MF4tK?X=tz8(39nhNJEuPz5TG48Iow4krlv>Zyo>`F^kTT|71z6?e%^x zATPZVV37~pb^lYmL0@W76qPtw_$4>?=twIi7aDAtSGxRgR3VZYmI`XWJ^EYKF~9t& zvhT9wuTrKL513bf9C{fYT&)7iN$M*Isvc|6zg=?2i<3l^ti>O=Gi zt?t3)=>P11;YxR5hhs)}DMt{uTRlh>K=)^ej^|UgEmhI#sN=oX{vm23$w>T`A z&nP!6s>OM^EZgCF&v zn`XlZ9-9Yc$2gI|-E>F0hl6#Yb*}B~B>s%UJh{__(!!<*$WaN#E6(4_1#if4&ETBn zQsZ4Gc$x&B@%g;(P1RFQC#3-7yq`m${c@5ZnF}DoY0HO9_nUyvV@ywvSF0UIgvVmp z)>ij!UEr7MJ$$5X=h{hHsyUqZr2j`K`%hq&m6-FhDM*(pcy zbs@hgbT5#G9BbNe=nL+|XTOBDx9_2jhuMU;=OF^rTjs$MB8YewA-poV@6sgtDTSwg zKvO8j~QEhz8>-vIy~#M=cjihz{(^GsX=`?O()3t{Sg% z{~6}%L5R!E$HSxU8c}V%OsG&!`ef}tqO4dESv|H#>-cdnEYN{T(`Z}P(qeRBOEGC^ zw*cP@k7Sa{KCxeBj3%Z;Izosg)i>o6n}Nkw1L57&#dxj#z)fF=RM=@l)}pT-?zDEn zGe50mig>3aF&?W~So&l_cs5d?W%d(SS?`OBK3}!Od(Ky<5G_#(6yVAEj>N?v2Zama zpnhcLzRr;(r4s*S364_4{DR#<#b>{xVES^Ihe>J#QXQF2Y>h8KQ!HNj7^WCmd|kk4 zO)cC0kVG+DU%1j@A?w&WBc)N8FWB%?{>S5Vt|4NHq|O#+iqveergMpMP>D(&?5yD@ z{W5LqJT;w1l1P6x4r41{&4rQq#!3|vR<96^-yUi8tv8ic2qxNG%xbMP4Uul|tl$_N zs^fy`BD`+O3XW;io6xa=TRg{-SUhY4?Ce$8)W^ExjY|QFjrNHh<(dL*@@c>vK=IcK zOSQD+U*y=V0u(3oEUudK&}G$z%8X+>Ls~7P>D$IGdO_P>i{;IAm*z#fN_!1y>9tOj z(xLuU*lzgpzRSGgtB1AIn_TUq#zyDmwNt^?zdBo>h^BO`Gnt{kI%eEW*`vnD9&>3J zw~7lL3qhz(Id9PCCT0qXO#pD)aXod*t}W2*vyAn&0K#n53R?OipFNaK5OQ*th13Zm zyUYR{0f()D)p-B`*Z^s>Cdfsk20_~4ve44$ARPRHrMn?k z(fQu7Bp}1muxfd+l$}O6n*J{Z2hUfg#C!{!@l%&JEmGV4s|t2)*#<=SwpEzy|WbYaZ+v}=`LG4gKWGK9ZYqvpmJY2?8{agY}% zllXf8?c+?U^z#ObI9IpptIeC2XDcCM?qt0d)dJ6q8A2i3yqXRJ;K6qr!EBE?+qX7> zn1uV7^51f`bYti-cE@dWSS?kO9U9Uyl$mu(QlQ$t#ZP^w2qo7u_OyE?PcLVQxyqs+ zNZeSJ07tW@=HFTT-TbN6hs%SWaS5UK#G;McJoAl&3bcRbDf^aXOIj>(GTZ^FjnmD) zJ5C*KALYeRj}c3_dg*;NMOjGZq-~`NG^Fh}S59x+e)6B??HotDNv^(gzv`gRo?nCN zHdRBnpxbeJOL)@I=fuKJBzK4LTrK^AOHK3&r04Z>Mubgl(oEtB)9Uw;8kzyYpeQ6rb z4zLaO%tXMyZ&Gaj;XB#ugBRi#B;xvhTWR3dlEGXTOOw~<6}!yvXf@LX#a;5jAR#dMXCQH9tNo~urvvaDm4ApuUL_6aGa;` zTo~4i9uTh{>bdAA-5rhrq(ROL5HywDzykD|1CBrWv`~70yKRFOjNjSG=3#%kI0W2& z`WdDAeIN^%H3i^Bk0^y3yAia8K;%FaTjl^_|BS|AOjS(89BqbgkD1M`TueN($n8gTM)Z>!yK zG=AR9tKKvQpxzsKP$q!P6Dkim*;(K(?h@_Xzeo+?Xg!e6*OK$#$|GHvQc#6!aJr_= zn{(~Ot(XC6_7(X{Vgyi(*rzN6-GgutY2HpH zM2W>Pn26u+@CK6c()TG_nYe*C0p&^Yl{1O)k|}S3!+EBDtTuxgkpt4W6f@nwGvlSU z*O}|3C>2|PN?~<{C17QXs*G3~0fe~D0su(iwSMqgeei5S!QGrqzynBa`_Djlk^qdB+JZ+lPeEYo18n$HPBt_;RJZOs|st~c6RK)v|Ld+z} zQ{-;~sQmj;_VjP5E@&y))3!j=l4Y^w@v^7 zkDPIw{2QkHZ+me!!>mL*C8+10T|BZrMCXHzcu8_TFkZ0!rYtVUFVvYTMLf)a_tUJb zFG64TxPW8>k22V5{6EvZesDmi&NzaM5b^u`k_f5C~y+S{AZc=;3$8X21IBiUQi0S9HG^usVHy7dD6rP z{z!p}oD=*d6ZE&`7N+o7Ob%r{K!hEjw%tc*fb*W4Vp z9#s!FHBqw?Vxuz7)U^omPLNbeEr(hVdk)-rifvu3Nr@`s3RCCDx_#j~j&F6SzI7QR zbsx6s7=ZN+b)_?5c15f|^aK4D@d0=0vNVUVCZ|t;L^|M-qP8h_FR=VjvmAV0?US3| zL&Nm41L?l1^Qo=5k*c3X{m4&6aknUC5ih9HVy>Xovc(S8Yc};8O(y}cqJ1lsI;zCz zEhnr|WF#dMdSd$`m|3sYw&)yXDFsfF20EsNt1cx8xr0ITwRcp_=w!Kro~>w(&EU!E z_MX-cTdfShwr>O}4W1pS%Y<-~Nwu8dww1OX=zUw-XbX31bnjCf47Uudlwdfv29CB* zlmRB&Ak!=8vjoLAVI7NUR2!ul!01nCQa~`ZxEELTkKz`s9@QH5*6z6G(=xizHc)9< z^ZgYhGOh6^K^r3ryw!9!(Q|jALj=gr>J3L1@&}(|u>`?u@>0>58x&UEza@bfjqjd5 z*X%;jcA7JDyFtC(u&6F!x>g)5M0&7850sE3UYh!&EmpNlhMARK#?Z2%`jdRGc3S1Y z2vEbS9}GrskF7xkvOWPD4T{REUB24Q@OcyWFebPPX)MTyasNHpKJs}H3(*UlHz1`o5`mfI(^|EQ#|7{$iR8su+P%9c61FtY$PT#lNU9c>uoWJ z&+iTOQU5yaaHGg%5zmHP39;i$GTA#E_uVGnGv$YA ztkEUN;-)BBA{3MSP3D6}{)h=(-S%4jP9;<16<(u}M0iqlaJ@>y0qW#j%ePo7Oi8*; zR$0j?oj+JJ9h>9hT?d@P?RBj81`agcb6k+hQ8s1vrG&wC%t7osCqjPmNxHkP*{k5E z&GKgFy|4*^mr01WKTiAt2xov|O5Ov~RteVllT)yAd>iTQUrLhM-_^qTCiq9vvtMm} zT;Cy?_+@Clee5-^cavFpuxX_U`G_2eD;ZO)V)0=DgVKCcr*4PedoS0E>`pmJk{`T3 ztjM+IL*~1yL2b*3vST~4tDp&x&&;sr*^7$cP>tH-dnH3G5NRa*0hFqKyvx9d(a|-F zduUqa1TKvw?rcGs51fd$C$|*vmc#dE_7D{;YOTyKf$iUt)VF@Pv6)5W&zm%DJG9J#%oSukJrJwvJka<+k^Ry>`X49bGZK)3x^V+X0<^KG7$8gB%h}+oG&=K zPtKrJf9i3M$bGKJe26YOvOkUm$(B@@vZuK}U0$$BS1fy={zXX5E?C>gdPZVs_u!FhcA$q>O`bow77n359qn?;;puS^duPFI@gF_TDP0t%lLs zO>l2;cbDQ0#oY?Uo#O6V+}$C#ySuw@XcWBX)lXrjL{?G5@ocp~lRz{LBaFOZ}5YM#mF;l20l3wibqv1%*8;g1-tur#&kRtqMdKn!|B z3pxOHT$k{@j*|b{g&fl9mq!HOzkUi1>#%snn|R*7Iz+lz<`{cJ0=@-}esV#aP*!vM z>7;)+@FBL~?UbCfu>ljXSO|mQwLNn5rM!!BbVd? zyBte~YA}1Oc|KkWo0%`2qjjOz&T4ZRMx0Th+AY4l3&rvc^1*Nwo&dB=3avVAY>@jt zz&sc>o*2=D-;_lw*ie+JG|t&v9@?2CauvJ zV*6MBK?&!ku}D7l03R-^^WPVHkx#wc+)Jet7R9g%j zh}JJPp<6H`&eh*&emYBx;Gv!r17vBMq*CsGyc2}HnSC8CLy#&IgTpX59cneHos@|o z!e-#8ll+E5U*idH(wTED2cOEU^#02r1-pLKcgu8@Uvx}XD=+3UJy}pNCg(6GrTyTdau!{ zCQGh~u^?7Pou)F670#`$%=c@hOJ1|qT}8#_XWF95N9i^xdC@lcIn}doX)DUg%1~K& zj(+;;n^B*u#>IV#CYzoUZTrT&tHr9O5h{;ooe6ac#a1!919YrBaaEI*+Wy~T<$A5{ zxeR)46%ML(#$y&8dgh`#cm_Uw4%!WF$_5=q{&xOeOWsF$UdB)?-?{6HN4bTs2(y9PXL=VMTM<=EL~ymmn651jZ;O3N&(a$U>h zuddcQDXIxm8kZWD0@fjhhwl!v6Z3Vgi~YuRY$_t>cv(vz$uiG2nVGzsQh9ZU&n(3c zIoYS#J&vAs&GX=sv*Terp%YVC@T7g~Q8_VHTaj7MMdmsj5p5@RN{{2ve18u&wVs%; z%NYL0+^cfLNMYAj6#5J2aW?I5E~&5?y>9c0#RmGbvQD2r&KZ6uY*-Ps>YG|9qa$^T z)aI*lO0{TC-}iUhm53od^bghm%|+1w{}&gXg{P=6$hrF<1Z)g=lIqLV zxe7R)Fi70(T`TmP>FQbZ&+Mfhin<%z4XeeF-Uqla6A3*1QVYcH2M% z@=M@J)P}*Yh@)BXOA<{thVzYn)@Sg>re0Zyw8epvUudQB&<46S=;>h?dbcr{>X3 zlT`SWSX5Q2)ZQuoiE|=>UCe?>vuj!dyp(<;M9XYZrLYlqo8IAmKyCLaO!p5KLR+tS z`E%3^>-bVeZP-`#%`ip_EbN$ZVY>GN_Y{w-kczB18fxy6=xH9cRKE?liX8W@8IrVR zD3-4f=&4Gx{lk`d;8#YvEb!4i!aTvY=`G>N5X#vRO^ArLh zpJ|D%?~ZFdj1j{^P(6N)J9ZYh_rYyTKxlffQdZjbQ(`w=Zof>WWW0e|x}at$=c>Qz zn5{yof@ZZIkBlxnvqJl{W?95)Z8j0JZp|01cD(r#+dNzSUt1Myw-g9oP#yR0nDwqd zZOR@yb|$}1wTE4i8$+b+KjWSik5KV8LiqIUrHIcqhUTWrlgECUGtOwwdbW#rc!*m| z3+XMzthH3o9`O69>aC^VwKc?}Tk8vLZyNH@ehj~mBJAGUY;SKjUj1(2_A-Zt-goJX0sXB%{(+_u9W*1Fn*HfrY*?A5b}-rx-{XLOgX z-FIb(>bt$Y6UTwyZ=QPPH$TIwxB1Wyzf%`5v&{;5!*}(_6Ayv1cm(E53-;>zVBN@l z1a0r3cM*+YC9Z!Sa+ zTA7E!cqmGLJN^gB|C_#N{sZR!F@8f2-~;sZ51aqb1G>bMBq0{M5 zD*vyVJakF@UnCx)0Dy9O2;YD3cqoitdxN^f|KaY?raZJD|1Ttu|DQAJP*k7sZ-w}O z@Lx6g|GWeL_4xnq3jBZM@$mnzJp8rkf6L=z|9A3m%l}0l zF7ZFh!w3Fnc{u9-AP;}6_z!vb?*Gc;(f>PnxLv`2Cl6PL%ESNR@ht}$i<`#Iemb+vp{@bCZo zbZIe?c=cCg{uzTZC@2uF`9F9(zG1Kd^5lMKA?c)U2ucdzKn2#kGbt3`b0ae>Nv*Ol zl9JTqyBHyc*!P&CVE)Xg*QVp-Xv9ftv)C=ew&4WfKgZOGe4J^fNm5&frdFbKCuYgW z=u`#Ym9aj}}+tyg5%YcXLp*)_s;egNtP}70eqf@W_ zx4O1r2*vKaWn%bryLqJ?aM8A58&;dM%9?Z0u`kp5-gbwH__FJmiu+RG*W2?}E}TpD zW$))YA^o1&ZiFi^)6!Xk!BX};Y=7Tj`L6*aFN-T(dhYY<5s=X9RuUq;{f!Qg8UJP+ z^s)AIjKVCp$&e(&FJ$7c>7&aeODs3%6rEFVdGGs<-bN>m8GFJeo`>1huP{d>Hx|O% z8m;qkH7}f)sN5I#%c?>b2aEFBA3zJV9HhV3K7KT;Sv7%g_2u9xHUs$wWc_c2NSrJzbdO})1PVRqN;S*I6H&w1PkkNKgX z|5vq>uDdRwE0U;RG}ofY1DH2s>r;FvD^Oeb?^Wh`+B+v9@;>WjGq(QUd+$blp3=ib z-yV+}PW@jps|G~=tS4YV;&10ainRWrAN%{)f2!cE5^*r(wIS%sK@I}mF|_aRAVs4?q#{+35=vAcF6xmeoW-ajiDInu$x%HXHOh}+-%FuR z9Lki#7`<=XOWkr~i$NT$R%p~^<8m@=?X=3-Cwsu<%JG?5Wh4i8YW@98LV?r9g#9iv zvd|48K^RU0ue2a4{HaM9*5)K?;Zg!wIyhOq=Hw)U1HER3sUN+yDH&*G>iqIVpFD4Q zqtSlR%05k8XWph6KbJCT3p8jCa|Sf$mQkNr%;M|;Ii?`J>+hfQqD0~&zU(d=a+PyK+1&jc%>tOi7AyG|4(_>N>+}~ z>xFA=cRau1DnxdcAPR8{ZpF_GiwP7|WrFJ(}!Qcy$5j_DsOqruf34{Kb?u6C!^AU;txAyOv` zSSlA&2B`E^Eawl;mx|Y&sPYgt#Ntim%lNM!luHg69)-$+$)x28zO*eJ%5?n|fdf}8|NAi7Xv~$AYcqXmK zVDHaZ&0O9TR}1k@99>8EKwrHrAOCK!c}Cj~{IvU!-Hud|c4?=w6X(E;(f)KtUSHjn zJ$Bjl3n$&cbNq#DA!_#9vo;3+<2nf4J{KpQkLsIYRP?86WjDe7Qn$7`KkQm#c>(@@ zlITV;!G+*dy$v9?j7>PT^8uVWfBP`^kpVJ`JjS~Ar{Q838994XJRz}UF@wT);oqdC zG1SM=7C0yzW_P_PJ=-V}4JP!Axn}biv!W3j!wI>%7LkqEXV`0lEvFiusovYQm5C((B!xz*Iy51Mg-Jg znz;rLIM+=sv*Hra%8QUGSYYj|fK7R4(V_B(CU``P%@$&?M2*KMg3qg@)@#0BnJENC zX{6zhEXzpQrPXCkR%@SGmu6z9@#3%|= z%swr9dBM%%4}ad@bJ;*yofZ{MsI|FP8L=f6W0KdS8XF7f@v?zTA=VjAyYJYKw*h$9 zIcTilz=B6oiU{J6cq7>Mq~D*BFt?Ft{hQoX-CAFT_rL*pf1LoEyRQaDYFg@Z9@uqU zPJrCEz~RJWHq>{Qzwn9;I8C`E`o8j}SVl#YC|N|7;w*qve+r6*7-7Wpb6o)92gVL2ce#PqB0J@KuP2DtE7k*luVoOHPaTH@i`zu*Bsq7^23da% z(Mx|QE>t3ob96*e=e^@Vf~&l|Uh<0aIgv4P0P%4SF-%t`32D2}s7+SE`1%R>{>#4t zkTwDeDFcOr0eNeJkRPxjjkfXbpAyz>5Q2i<=mSWie8?6Z#YEQNKeusMo1(GFY=Q&Psnn3u*hR5w+r|*!}S=59CR!&bfjpsl+YKv)yy8eUrr3jM$hKrlhnFigxyaflked`YMkVsMD$F=&TZzeYwv_c2P8|075) z8kHl42TPy^PX*(9BmxCRF+)tg3@EfEhBzbyKiI`(UA&1QmcZMmh$EV;60`HscUv3O zqoV}ekL*W^BM%B5CSc?)mUJ6twA=vhO;`d$;_!;%8Ybi1j^hkE9Y4B8ML}oLd6kIh zSS)X2k@igp9)-w9KGcAzqGbR_nF$8G`d&I9oe9gi5V5Zei6i`&>PSQ){1Q#lmh@vx zqQ|i`U`pj<8x(wfz=J6pZxGy|C--fFkhu1qb~1oF`Bn!LKZ|eX3BBG@@p~}b}@#zDim$O%)=tQ2q6_o!2aU~=Btc8w8jrFl{%NnAV8RWf9yPJ z4ie!90U~1%K8G@vqzP<*5p7fye5~!Pd^MkfThi0@1X6G0l8tNtu!SzdHh{4;B@EvpC4>ZUqc#0K3YGDqq3l-rnT zf`a*@FktLSgB+7hEmW2))sVANY}DP`Y_u5Cn^q&HJ(E}>MclaHytQ)2v$W$D70KJR zKKQ6uA%a^EV=uiT0;Ymv2?6MX77RW~+gV;%`*!Zqo&*qCeMc>9$xR^JxDBVS$cRnu zrA-`)h26S57{SE8$_5m<35e{>X5G|yxy^CuO6w_?<1Gb(!M4f*8E$0>JecVmUZNLI z`IpFed^V|()~R>8nSU5Hs-gh!y4kN?VN^Wyfte}o>khC?Kq!N6KLLZf@;!C6@1lf8 zpwo)apK+KxO`Bq7;(w{uUfi?IM!<|{CHvJCya$N2sxAo zetw?5d+H^8TV`& zqyLob5hy!Or_@{(G1w~OwZ$&3!Zg_el_KTALO3E0TjSe~gOqf@)Q;$!a^>|VC@|V_ z6sCR##TX{J9NLNI;18Wg^2q*@l!7d^VpjXntU^DuLZ7QzM8gp40dw{S3yV7Ub*teo zJsGeD)P|6QZ{biTsEvFRMLr$zgCEcj@o<+c2aek|5u-LZEVHk)RAaE`t5?WTHc_*E zW}p$`T(ND&RUn$fwRuI-WbJW<(c=C^6#Dd3#9Zl*$gVG=-72EdBtpz1jLJhW!z0z6 z=k{BY{S33`7E7$Tm2kOLMX2Tv=4VrSgU~9uQyp$Jp_Du%XIrK!Rc(C+=|VyMcEXyb zn`dsRh+E&cto*WW_SqY9P1=GxH29yQeJotTmsRS~A9uNuqlc-a~;Pr4qFY<2bXesv0EL z9=*&iG}Eb?%5Q+(3KGjwV{C<%OEFhcyJjgXhwPdom+CA8Xbwl^AT(8jf{hrlegp*i zpC3y^>45HfJ#D`HA~a?0ZDQj;G3llI@gzEcTyRD`gIgK>pZVIN=$e9?rC)k&LWIVSn7l6+#?>ryL6W zS&kPsR5@XmhvWZz0)!X)JB@cw>NLAsz$I^M` z6ByBMgA)srtF+hxfp+MA7IsZ(QeZZ-ax}jfj8VQ{^2e%`dFD94Y0>QoyE|i1wW8`z zk4{6K2B}VXJB6Q6jf-729Si5T{y9$rpT{ers@e<~m%9EQ@ z^q#E5vRzOF>yw2St$?*e6Gh5)ObaBb=In>qSU)GI!$eqKjv z4W?=k74AB^UH!n3NVfatwt&9CWEDPC#1Ogs!zSe~GS-o z!2U#@X-1|TFRKkt@JbM42}eM;4XR7)neyEG)2;rz%Nty%mA{4j?T5kK57GVurO&QX z2_TvJ9Z8HZ`TV>F`9`IH=xwh+I;JiGetmTneJ0%>0>Qs9RmK`Q;SAr7e0&&SbNIe? z)o#^Mf*>qapa4JL9467dc6pV|Q#a2vSsm7TS| z-Y75cIM(6Uz7ye(pgjBAciC^PQsOopgUH%TFz2Q8A>DidQ;Ntv z63AoYT4}U8BFKB2Rjrdltxvtmuuh_$2*6@b8Ix^x&QO=saLWm|B$Q2gr<^ZP~k~E2QAx&elJ$ z-LDMa-5Jksl?*kbfs2pA>R}$j$sB)!JjYY<9&qRV6{}Ko9yw(ow@JJd@fetLkEcpH zo#1W<)CL@PBi}N##P9f*b^%qCSj7tn>pY zfiQ5$SOo0HNzOt4=J6bZfEX<5PbB|ZPbcLCY*I*s!6D0FiJhqZpXA|aSQ5vo#nO>m zQrQ|OOPPoaoZLa~=Hk^@3L*}ZSk%j9wBiXY0=E>f^%h^DJf8RcT!F(53=dI9rCztk z1%h)oJM&VCCaO`LH=lz}3N3aVZm!Oa={WmlfA}kJrNMOkd*jPY{AzeqypHDcGyLnI zv`mXn-1g1R@}uQY9$$Cw0x{qEK(C%aoO5}!LGbPsW3a15YPS#@$9=z$Ndbn|!&if! zg2xVFw!nBIf9L!8)(-I7_=gS)mkXk)p7AKLzncs2h;J9$f;U&NOlnl;Vx;yVNx%L= zBIAXwtYO)DOU6;r#Ngo-C;NiQSmZ>8j$0A|2%m^!gWvFeHcIxuk${?E(9wp|(!{hZpH9W5TXoE6x6+pLLN0J(;nlTp zGv(FuFUSLHsNwgt7fEI;c>*-4Z`Xj%$XH(AyqxNAU<_9+9(KGUX~9PETx}1#e$Xdo z@Q8)Z`%xIY$>#gHG}x*UL#q^)=y(Bb2Qd$lRfu`ghlI-s>3<1+T7Tv2I?Ag4khPt0 zDfLV__X%73Fbjh32^w~Bq1!hu={UT$QVCV1v~QZA)3+}U{_#v%R}zLLmZqSGFW|bP zj81F6Jf8EzSDK~AsrgRJ?t*?Bq1Sl?_g+w?@vr5pa|@g?hjB%mo;`e*}e_%dl+Hc zdw?)$>J>jPPl)lLcDM`4y z5Gh(pg1Ylvf(&obl|h3HldD<8ye2#wrq8VFuSLK`2H^nnv8Z7|bM03SaRbz!q zLz2{Dt?rTV{lAZ~jkEi*aQ;XN3zZSHm5Tqs5rTf-DJ$~FCDB7;fdnWpne($THbBap z9QlM?oHZrE>!&;!wt&2>Z5fqItvQ_q4D>sKYf98gscd`5lq%SjHg_eOUbIS1y?rU& zR@_2Gqib4pDItxi%fd71ar$Ts3m`Kn&K?exhohu2_rxi)3Kh?uQKV)J-O;kg3Vi)c z23d}oA1%i!kym#7ZW21@m+;hlGU(vxmc7?|7&0oL0t;Tw9hIWTJ)#yZtxe5)ayt@= z_nDtvNG&LjE60EnR1Lv%FYJ-GG8=sQ7?C}fWXEkSg&L#kb2`q4YN#hcytNRduu=kk zL6=e2T8szd=)M~(krmbJO0wnt$jZYgBvkz=6g&~<6>FoC_-lsh+hBz#ysc`Wtva#{ zT!ocZvtSbd)AahlI?9hPf;#WqR4hTH8 z%`R4rjx1+;Q>eea8e`8UmF}PBaNOO`?+JD1iWgf7e%o1pe*Uxs)`}JWDsFEfq`x)& zM{w4D$u^lvZ~gnb_BQxSd#9SsUA%Sf0dz;__?~Y@TblIJa*nPULb`|F(YqGQF5H{+ zb|?h-=oiKu9gwTGKRIOdDBZIHVpL)Ow6FJFIb3<``x-5md-Yw9HTZfw3EVEN53n5A z1i%}F{SC26>Mj{W^)UsQr$=o@vFA?~))OWdP=08lN3=NwDbs0i>&&B)frdY_m%4 zkdw1dN|bZtFj?#-Gtr4FIdTFD&@AwJkY^|ln;;u=8F&Rz>7GCpnls! zG%m_Q?RO5L{&uhpZ6MITImZw)e#bKA2SgjXECES=5Q_433*(Ut``ScGtG#y4bmrYeF+cn{aM?MvU-#MU!SKqS`Fr86 z-L+GY@X*`if8|HswVRIdIQZg!9oEpfAD!?xN*r+0hb#2Ms@S^#pYJv$5&2if<<^W@ zKy1Q;j~L+p8iJ?+7y)Epg#I%G0bL}3vSa8R!R0eDGywsPLO^#3pyv30LJ-ijLghar z1CTWUr2QYl{NDx&pdkoo*a7;AJtX=+rUw3bw-+J^Jwt5&Nkc$$5dWGc_}3f(Gz0RS=0No{kh9Io|M^OMD5gww-Sz-rf81fZqw!!Q3Y*#U7~ffc zDAa~EU#YA4*NiH$&>D&WC-Q8eWGtC-chTWjIU!kA=m(vxhkq>5Iu)QhuS9U&+x@!T zcE0JPiA1i_`*^)86Y?^8v%C@8*%vN5VaEU;q+%C#_xJKl*nf$rbj*YCi*YI z=TIcdsDlU+iTizfOg#pwa0DjnqzKaTN-D2o7oP92@6)2xBpB+gsUyjY@u=ePo-01b z!vcMNBq1DjZYBt)Z0sd=W1jqskr7-QLDtZ+`IWBuyiuC;(X-1WEl4@~SEg2iRdI&3 zAo8KHX^MP#7FRjrQM_IEYI%-M^Tb}RpQ+A~nRma^In1e4xu$T6l`%^@|SXY zv)D(%_M|LTej2w-+w}CL!p|mK52X}rdsiJRWzY5aOMO>cxm`ndSMy4J@9VIguH(_|>O~(M7x+ry<#G1_{N>yS$m?C50gA)z5L6-0y`;>P$F-Ngz`<+V#YwnhPCpdl_ppcht=i?IuiXycY|!5O z&fV}meXsA1e5?WmiINx(KQn#hxe;=`E}xF_tc;Ss6?1h699Q}pJxi4~%x#}kRa`!w zlMa&!9k(9s7G8AJ)W2N4-Rue-4dRoNFQU^lyxz_-@6m3ILxaTgU$y67@2q6^IBwUx z5-rcR6leS&Rs-j~AKgEG{P6V47g^+aBw_yTwy`gf^8R|h?GALuXAF5VMc&Z8&KPJt zZwOq!0|Vd@24Ox~1foS1!qLl#BMUmy{OQ?OrO+9|Pyx}SO35J=a7x^ntA^UC?SX_R zB@ludjovX*s@_ve;^4)FzOSVSP_Z5%u4a!UJud=5Bts=B^cv}eNs6%qng zzGFM2jMC~gF)*bSpnV*em$Bgp0|R&%vApvD*fG0unQ z7>M<6S3o;vgy$?N*^Audhmg`3>MCkG5TV=%T60pkusLk#u-xKtWKg`uEH&k(ti4Z@ zaONzHDesiLWQe6RsH)Vc(>)k9ic_75g_cs*OjPsIJVn#y7c+i~DB|O7#vs}u+mrc> z;dk3FlAvVdNNkxp7EumQsTXya*cCqDdNqsY&6!VWR$ehZ?&itABmPV zirvesY^oIT6|%LeHK@WQXjKw@_$hGqE9I1{KPBrC73{i45D_z}y;!c4>G4!$VgS{K8S*=A`rMrA$(kY?RYED`G6#7ynb}q5rHZJ3D=27$M;0xw2VQw08 zN<)T==hXI7kE+ZqCRSXZwQw|Wqaerm=cX@=adAmaYT@TbG(wvt*_wb1_)EmwtWe66a%~b8eeAxy7^K-l%KKMfRo7q;JRw2w=*!Nqi zV<`kcYE|cNkdct$X4GW5{>L$*LGN4bgjp~PvK&Av;cNz(?y7Uj|GO*U!nY$b%@CD) zdgl^-&<+{c!$5f!xhOJuLQfk|4o%>aOBf+$b^u3y82n};*h8Al=!b1;FuKuK*R$;C z0d__?anxd>V~Y(|NKdMfJMW^TX@^WHvLoOr4Iym*$#}O`tCOhsgJ`>R9QG%>DZp~; z>~^%hgEmT(n&0${kzlA#e>Y~6Pu!%RpxZO=CcYxhtmQF-vRIQ@I>0VtR;KhbE*Vmi z{&p(%yDT6h-5y+CrmQg;52P1gz!vV=d;cfLL$re@;1lh>Zlglhw8rjC`VmTPh_w&p zcC&*SIm}@=Ad7yEhdn#_n}ATu0}xhv5;-wjmT}i7QPv|U$mQ8eY)@xF5J9mRHpe&$ z@YI*;NOnX6`VpS1+8L(8hLd$Rqt?*6QeN+BgkXpbQy;?uXX26BhibAtyfsNs=n+Ni zYG-&T2$OH=)G)Gb6&j;CxR24%$tPuhof5vW;^;}H-fOP-;zBi=*Dk~V9w@9h__gQ{ zkHEnD%Ye|F24YoD1$|P0aekK%rk|C_4-LD7$7P@oLU~Y+gL1&j_8wqw5TVn3N&|H? zn%*&=40F)X?=teI5u_ct?;*;mym&hpZ{V?$^7r-{`dT!S6+r#u)cC=`i{e1pDc|t& zhH~8C5K`{r6i8xD1hwwbSdt}wn7OO`%Ts5;k=*}|^SIFL1t|IM_YA7HdugPXJEN%T zqI`+YKE^YZJy`56m%wP73Ls9`Er{0hEw!$|`T`M|XY{xAM>X)yxpl|hMuqF~p2*_` zjJ0DeapOfd{mW&yc-chWvs-9w?lnS#HQl>JcUV$A3S!AEY~D2ej-sIHKG!`IJOH^y_K)wqc!bx8!Oon0dQ-jji5V8p{ZL*41r7 zqt(P01g8@O=CoX&0LhODUm^MugN*jm0WQC!XNFzyF`X@n0-rkG56FTJaJ_uOG_3H0 zyfuU9KWAHTh!d)+cFoIEPNQEv$um;EsAW|LB#HwsS zhZKx=h(cxv+yv;*N-q)KOKlzC184OWFK{m7%Q&JQ!$i1OQ7DCpoeK|cL4~t6jTTa7 zgxPo)+3zqtYjyq%VNHf$?Z?j)e*^ice z2DPoHocJXq z^E8)uisZmLSUayjfKHuAF}z^VMmTkFLc#{-IX`G{)ap7);+8*g-kRVKzd_&zHf%{^ z#(1JqWDp<=@E{vtDwhnipuocb5RnTu@JND5PEw_lLO)6J zg(mRFeK^sc!E^#oIKc0JbOHn9ae)&aVC$|F(HrOV$e3kVI90-QpBoVqLOe%;u)p*` z>{8#cD8PQXivXc-7ZSMJJF^ehsNXsgB^?a#09)#6i8Q65ADUDkxqZ~l$g0BgKGFUh z9N?D)u;+Fz_b?!~@gY6(?g+WLOFSfgWnn_0#k%qWfIGF{aok}+skF9SbAv+9dsw&`K%W%n*eB{j{7A&SJqUeW{<}NRW zh2p1fN==*+L4guD)odh}lJ+tefzv1<1+-Umjff-igh}{B@T91M%IHjISuvKHRang>2Ut zxGZq61)TYz$m6MT{OcnRC5h!35I?2ezop$iC#{6C<5$KPD&p4QYBx|$`<3V=jXBLq+J0Icu?%$>Da-t z+!H2mIUaF%yEcxQ?xd1NuftAZS7+HQYVi?DA1Vdcl3i!xOE=hUAi}rLKBiC3!hvF_&+@GA3A^FI4*O>;{#+P^ z7*+Ndq6a38NhV^4sCDyTc3=durQ+|8VP^v`Ih_v60<1Ly_GUI>U%==F@^;I8Y%by` zxn2CgUU%TorWwAhB6N#16lJKRPY1}l(NLe>4X`lX*#ZPn*T20qbNCJ$#@g6s^*MZ@ zOHY$!eG|J83`#h4G94>~{T^bt1^T%)ICfh-<%|)*Mb(>d5f7pd(n9;B5 z{H4U6sYAzakfV1Dae2&Gc#`M5eM*k-?x_nN@_8Ik8et>s*F7|@kZv>uJ3-^ew?f>) zB;2+!Gl7*f#@SmOsx+wy4r=M@H=> z`(B909>?p}n6TK+C-h$XY*F>6duM0uKSlUW`)}!wAjJa3hR$a^jBJ|wwwzWon-wke zH1#K3G5D*H&~-D! zMHm@AGm~jB(Oly{aq{uaAc-QGxYMq^J9ajMc^;2cAJNXhTV<Vlo- zgH^y3fZn0gt#%3VVo8i>nUZ6fiM@+AZ;&~A`KA}T&P0~r6(Dm_^=`ij3q*5z|3$JF z*k_wb)KX-pwnx>5>E}8k1N@{0 z@|O`${-7E8BEs`tb3#|S_EGl>Uag)^hOO~;zP-H3Em+Mhi?H)yb+cbkJ04v&0N@1J zMTHdE3S3ak^Li_PRW!QWO4YREkK8t{ktO8!ktmy;j)EpsMWN#6wXk2dDwQiE?7yr{ zloh8}V`@~KMuy+pbUzZcYlimE4IjXc8HYQNYJ~qrv2VcCO;u2Fw}5hM{4l!W=RVAAmGt-;`X<7-#+=9bX&UOu{`Vz|=` zcbntiHFe=_f#6ZhqcqrO*eFQ;aZLYl^rgIQGN3j(p8})W%+e?7G$>F%awG~fuz%Pw zTSHv-mmG`tI}xm~0H;u*MCR$^+WzB&0K6W86C{@oO4cu?;M5uU?^$o@wRnKMx$i!g zHAVFr@G_?-hS(MT`9ZmC5(}quZ?J4tle*o&0=$sI_%AMV>4DyLKQkkNsK=dzInKz@ zW<+0DoG(Q&-M=DzrD@?32Si+xUES`|x=I3!`$2A}ZR;W+SZ{ErN@D$(`%k%<)sxCx z0|49CI(-pmD%B~8@#|oqBqgc2<-O$BJyYTh3KQ6!9^3+DIXT|b!A z84L?MmHe&w?uu#b(xxf;ViRQeCiV97fR1>RuAZF8EpV=G>s@<o15xsj0maRoSJbJ8s2 z(NrDgR&$xkr0c55(6HYW&4scN=2}!;?{9^oZd&e4Q4XfC^o--UpL zx&0j?zT(67qDe>@q7)orXNN#$@OZtSKuw-VGCJ{(LY|AB%{owMD-TY}tx{qHr9eHK#odQh?iSr-3&ueYC+u_Bb}GIi#pY zdSs%(rr>iFhU3Brb61Xru46%)VN~ARv!XV8;`+h}Bh!!NFjA$^Q34yPMX8q%f(Avl zfnLtpF&T+LHUb;YSRl##Qe9n`s-1%zm0hX4{2dsrz9?kFSH1&j6pmXJ)UtBR&k7lk zYE=}+{}nY?Uu(KV*RV9(6r6D>I4O4D;KiDnU#;D1S3i)&7*mM^d6^K5?fhA zQ-(AhMm;1sG+S1MOv_Mf8OVcE*C zNF|a%W6y$f>nK8z7=QX6$3qtLBf(-OYcY8dyA2Th(Gjp~qZ#tVK1icN__GjFA>(P4 z@Bfx%n}LnsVqMjc4dUiWR(Tc#gGJ=W-OyoYgDZ+0b?v$uTJ_9oh4O_iPlN^KuCkk9 z{!j!@uC>uBHtg8R6#HbePs70MYO?RB7Wz5PXx44-_T2QnDqMpe7@1QPBtbT4?1O3{ zZA2#WbS6C08aH*Cwo$afL`SL=JLJ~y?&kvWx$Z3a0`a_=N$*LUlE5r|!OH~=t-oR7 z&b12Ls3@wgqTGFLyh!Z4OuTM9GIqW1@NxTBDLhS}3i&-Jh##hYPNL2+^16o?c&j%x z2v>^%@IbTw!O+FdkEJQ=6$h#E9@p0YI<)Ww@3Cm@@j@%-OZ;Dz$N|V}@|7W`4k`l1 z?EpZg(6{>s7&sO=7@@Qfu3=jUCLTeXaeBPQ6xdjPIhw+iruH3OV2Eij?$`W%^ zy?IUyjBPGN-$fTiTgpj3N~1bZ>glz)B2o8M$*^E#=SdIJgMu9vd?chw2;IW+TJ9NP z27F9OByq;D;DcSgM$O1>GTTXFj$ zgbIlnv()5Wyz)7{mo$vQ@Le$@a#%ys*qHrh0((mu#LQx2v<({ z5Yk^iQ|0KS+nl4gb>7rvWvAjh`U53%7E&#h7&Q9)%TanTQe)8&5(r&hWjFN2WzRXW*=kUMybbYkLh^2 zmw+zZjAZbPa=Jv_DMlJ#t}z?MhpdInac)gGcn!IrFW7NQ=EjY)HlKLDe<~ept-vtU z2tpB9xmV?($KuIUpbp0>Wzwut`VgaDfTAY8>RzM9Q)3t9o~f$4TI2NLSVibrw0mu} z-Xq+O2U~X~hlHyk5Ix4g_>1=N7H*@Q-q~kdX0}G6F(gQM_&Ew5amHMiM-!X9y&4&@ z?y$;Qa~u}Pm`!MC7R#a~m*?Etm_cuKx}jB4;JxjMf_h#1TBXfjVn+wxxpkO9Bo=_9 zbGXpA{Uy);hrPQBYU^S6Jf7g*;O-Rn;_g}~PH=ZA6xZVJ?(R_B-QC^YrKK$nZ8rbs zdG}qL-HW|`b9E+@i_Do^oSgZb@2_or(Lp=ON8kG4p=~&{)+u&MKd0F~BfqqkCYRXY zd!ty(x-gnuQ}x1)JAUV$LG2eiLBofqSHrG-o%b=Mmx zFgPMLg$~~pXY?~6#Ce)b%b#8LkMfQ>$9;~`dU|s6zal+TvU)SZ&ej@}orQ3iP4gR3 zMB7i~+5Jk8)ia~f)|t3Z`I5FHf5J%qJgJNDAu;-Tiy`XRMEHb)=52y@WeIMB2m$W*lGRh<6`lPC3q$KDT$i?%t9mWI;-gto;=?_8>AI z{jd5?Vc2K;NW4&TPYej;-9EgV(X-@I>>xB4L~e)*`%W;+CHlrj;?LRMBkn1x*9k0 zGHO>lsg&xvuz$ooR?U&l1zZXa^1wXxo4KzDC5Rut7xkJ{6w!_O>|5`H`aJ33|0})R z?R2BZYcAao0dK3zNsaBrRb=-rPgZzmsM&j!Df+Ii?#-yf5aMI7OZJ#QclF)t$K=de z|I?VP|F3vaZq*m(gCSn)pQ)mL#~+NCS%Z7aNKXr zq%#*c|Ml)JdysEa2<3K=4Q`12O@bMYkY!t9z(2x5g8UaY^I;4b1ZG{BJ&h1W0O3p^|95qTLxxZ z+TmIT?c*pvnymBmr~>mC63H0%M_D9&S#Grd_Xf%LIfON?rbKUantJ zpw8tV^8y7gZ2-u~Kb!!{UZ5|iaDlFEK*0-?w?HEPc?Wt&?>}Eq>H>{@us|lD-~|AP zhbBM%cj^K~G|)%?pwwj)0-fN1K;;V*yzoN)tzDq(22mc>u;QtCxJipEtJzMCoN6$NR8gyDwaHps8FxPMtiQ$PXfiiCt$MACaUg9+Fs*j4kADXx z1hpLsUTA(YDp#hn84V}6V9_%2^&gLCe6Yi__TbnZjhk{LoB7Epkw+k3Z8+m?YBgsl z9{zo+vsHFk*x_n-=Y{*auIcd?nR0i#^HJ|t@>Ej&Vdq6GnhbyC9`DoRNo~$|j-(vh z=SyAD5OOwrANSFji6lf4|DM-J@Jznwg<0sI*Qeim;d4;%0)e04B?sJJSW)-`Xe;)E z=8*ZIeKfN1{eQqqR`8iPL7_h$f~HP5Mc6nfY{RCVGKflTc~`lz6uQCzOsL3-q}xO^ zlVaMfD30U&dn$=4hQM%~ApYI@I8jbwnc7|y>!KtyiO z7^{+6Q$KCuD8MK*^CZ?h>%ub1knvO!*>%L#f75XrSiRG}q1#5^d8<|KXn1XU?u6E4NF&H~vtT9qHv|kg?QTA99@AYDS zP3=~p0j5~U(SFY?O@4$!5qiA-JturrgQq9qAz!Z`2>Y#hPTEJxeu?t3`)-+D%;COV zP5s;5ioR%8%c`jCgX5a{+&%ZYxFk=j=hw8@%MEL7Kj$sS@T%X)o@d`4cfHmiH*F~% zzoE?KE55(^e(*cTr$ZU?9_PbIx(=Qrc5000-K5|0caq7ltNbS|I{sdJs^4|z&-@E9 zUTg*Q_Ft~*$NqXRRn=jbUNxR!2;Mwx`j;J1U$J(>E6Li`{*XBo>AoIuiGKUhKiBR1 zeNG#a|7&TEHSa=&u#fO@H68!YBudKXzt88{qGV6XUUh`82W#Aar!Usx{okIF%bWhZ zF(p7Cs~bj;OT>N{GT8vwZln8ctA5zocqHVH`S%3t{fFcBNSGS?ttD`MD7Gg-ghKhA zIcl=mK{yTJ zc)li}^l<=xiKz7X+%%^EaW4C6#mtQIFD(wg@^I6{HLGscFZMIqE8Z1FkccAY9`@H z#U>PVe1!)?0blck&C7=| z!i?k4P3KhTNyBJ$yrkB;_t@D~42so|N!9tl%NzY6((Wg63k`82GsVtM9^rJaE$+p}DwT?s0?>1;%i831>bm1}-yw{la{5l_d=9N-`t5oaZ>uV|B(64RN znI@hW@cKJ?G%U(&)qi-oF)mbz!Q)LESG?g5wxl{m*DLG+JX62D-mv47q8$Q~oBIW_ z*dxiSHCnOO+8Gh1!^M47CLY!#z%7n|qErL)&+Xs%@%Em`whuurk7LMH(;9NqnyYyD zL+qAv4qaZO1bGdTJ0uy-vjDrn z5keem1h2?75N~PeK&T?3ASgE1Fywm8^+!ONcoPVA0K8YPIowd*U+c$ctq+W?x-2?v zC$#uhvLTS*nD%+)%*Eh^HMebBdJEm%_oJ{BxMi^{M~CjFm#zhCerri$fo&BVzLFKK8m{qs7MNKCPbH6)Sfn zp~{w>mEP74*Nq8$zZh|LS^Lhg2Q18A2gF<5>_dpmQ$21TZsgI2S>#M-z#!33^p-x5 zwysH%AmRj=yi}&|DE4fH8fp*5dGOzD#oa5d^U!T5eoqRt4-&IdEUX@rZ_XbR4o z47?{oQ{z7>_MCSk3kz&ytogZDU_yUvK$fk;0l=1=F-d-jHf8zCuC^Zjji zvCE~c86^>sUyk?OOF3bTTKyRPl0o~BuX9u$Bui^o0c=xa(zB1)6{wpykOB`5q} z_w`nSmB{-m3eanW>+gb1m0tsP_c|!3L!%)l@M`*sWxdnUA^vxJaSU(2{10&C{Z41% z{POMgJYCju0KIIWJ>tGI1PYfhE3X$#z-gOrtF-*Zneo+{dj+Re4x$Boq3?x@%t)z; z&ldoZJEk^*?q4g=wU#~>zV0VpU;6=_Oz(!W)axH*!-R~SXq(0S?Q$w$B)m{A{ zm}cA$og)NW1^PU*DW9r8Q@iJ65A0i3(Qn1FLD zz6Qz}pC%awXBd08gfMx^><&lZa_QB9V{5I6U&8UsWW5RGAnaqU0d#;tvU)?tNDHi!#6Y2n^!DTaur;>*^tfXG;OeB5&_fC&z1WV$@h zee`!306rM#P{1$iy)+1bm}3 zm;7Lb$N)sH3_#TZy6|{lKy(1a&=e*(*>gDps7qbT20$?yxcUo+#>lHVLsdqoA|!g+>mtJ z-c*?1IC)3>slzsTSI@%Zno2yQ>QZH?2!Y;*NRFke39gprp4J)m1K98s&P0{4PaD7i zX)6;8b@PkFzKTePBpAjQx&Rm~Yb0RmvG4OxI)Zn>kK_WZ2$1ecFmtH464-atNv~xD^C^fm))>AJG7O>Wv!ix|9=Io~A80i+AGL-RO zV!BwG!$X|QLN4+s=yUm=6BZ=W>NbLDc*=nw(!LBm^JhD?tPDXgU`HxVI}4j2K}O43 z*x0+mB@k>D1&Y4Roax{fv6YQ|al;`>OZ6^HCrW%Sjmfc1R`=G+7XTLO0@~rffQ+jK z?y)PQWU6(AzvyNs;oA-L0e)(#*I^G;H8cX;nf!PMcoyqWe`c`WS#AA-U zkc~iIyLvRmn)%2Yir0Gb>IOulRO{t(Nd+rjrdUdG`Ma}HC2rBTszwIXdad{M2!JL; z%BD7%CImaz76uO?q*h|xTJ5POa=}`f%O(ju`AU3Ojc{ObR5SlXyzXQiZYAbNJ?nFP z(N~mA|LAYXhmJCq5^X5z2B^MYGMlZllj$$ZkeymDH1&vx^O!Qc{)Wl>3Dl-m)F4x& z;>&~7CP13yZYX@kDz9x{QK^`=+}?YFlFz>(JAq>C0OsI?-pWVxuB9>+e8sUy1 zF!@O67Mfi4vlFer*{%l00JWEw(4J7H2G1QpsShBC1}fMOg2VeQ=^WnYc-8(^O5iP+ zLZuIj0l8vfzc!5bFOA2&g=I&8Qt>2pFM1Zgbn`KkI;xIMOx3i7i`3>!g7L*`i+yvi zn>em9C$X?C3#a0SrVOvAC|i27FxTgv6G*gI2Ch zDHCVd8)n4b5A69eQnhEmb3|H&Xp%7kPWAN}>y4-h{Q9+PzE=eWwvL_t9`m0D2)Vd4 zySs1<_hM!kHltv97SEWdRv2tg6-bOG^ZTwso4=IV*}*Zu_1G^EhSIp!@Ee7GFJI@{ z50XSmc4&Z+3SVax{;_vDdNL0_6yowUHzeD>P++8`#*)DxJh8;@o3<_0sTROp*-km- z=lRl(pB2Ew=Ya1Z`oJ?MHUmfrS;jT4v6=WvKCt|%zxYXsT~&C+TR2o+F?%d^iL2GjKq*4uQIO7)tL0Vyj3W>Y8qz%;;h z0=p`gH`Hds^MnOn>*?I+!SRIA5@<{?!x zb!{dvy!FT4mxwCX;=W8cSH~Z1i;5UnE!MZl zvi-&4sNLvOI_gIUR}6>=<{VUkL86AqmmjT6Jks2ltJ0c>w^jk2Ljd8OVZJj!c3YR@ zpTK-OOyLzW9W-n`<|CEZ6CHoXrmFO1>2TX++HS}M9142TVlX6;(=73Ey#C4ke42n;^AKghHT-BW)_2)kd%vD53a)+1ut zTD>{N@98Dj-zGO4CJ59Zvb0me={a|}ykem*LY_{Y0_a|3(x1A^*{IF#^uE(`E8kw% zO3$j?sJGYdE_#p_!Goi2>|% z+&3Q0^rOAq|6ae^T}j-Fc}#ZuC;A#Q@4FkS$8pH{VCr-Uvo9j$9uaTus8t-lys3## z{tZH-WanWST5&~$muI>RN^)U0DI6akMQ;-LD zobx!7ZY|-xE^wfA5$Kdc^RDsTbHmB zUSBOe8s_`<;{}hjEN9j%_Ix!OVXz*AEP{w{_{V*%`?Px-lxrO7h}kC2=40-b`Pv%2 zz+uDn@iY;ui@u?FW0VPet9sZvNp zv3!;pCI(Xv0EmTEa@fUb5P~AHtqo&Kr0lOtGWmvoUYbf(`(%6E?%!5BHmV^Qx`Tg92GGr$<0}eIO({wu zgCxIG!(&EOu)`3*%!@?P{0iUTZGK2D=sUw8h$}db;gkcyAL}9)zx$wY%?cxeB}WAtq&F^!oPx6t zh`X%{pgcu#!uSaHv*~lmv{q0*2k9EL`cYw=!l4YXu1VzP{b8QSkLC5tuD^o{wyqEb zPs;imB19PNcfcQ-Nj1d_zMNm3$Q8#|V`;W93xe3mlWcSo>`06i)3-D&8tMlrA7lis z(55uBWvQ(x24j9PalmLxoYPXGKhdv>qk@q7*^uiQ2D9}gXG>Azu>;u6KHS_@SbvtF z*FfZ)y4Q4Qvv{|nu?OAlz-WK}SOaD#=H}P)v7^vKB)m-hW)wVQ4Q6Jz1Po@qnIQ?F zWk-WHl@haB%VBCpS_8h|TRw4q?h|Iw*CHp++7i3KZ6bM1yg(28vGOI-7v1^E{BXzTGS^K_mMi_|UeN*_`wwfmfM3oRY zP5*^+m!r=Wi!F{(qfs(_(3SAx$2PJ?=+x=y9DM>7pP)(T$*9m->rO3W1i1*Jub8!b(O zQzl7T8*VufBQAEH{njuaX@5z67E~a?Saut!GN5X$KVC;5VG$++V`gbtUQjbK9q_`a ziy4@~JnB48&n1}MLgFMXP|FbIm~D!C4<0Ks$K*2mJ&iw50nmq!QB*LwE@xC=EJkB7YquQzk~HC&)TMabmO3If zC?#2~5t!y;qcH}v#5a+W!Np=-*(%Qr7QQgXU{@1HWJr%gDbE*h)(Lk{O)h~62Uyt# zV38*9mYEi4s*O~uS1?jnyK~kl^4kHU&6MV9rUBg>6=39vIat1cQpjJL3Q4#Xid+iU z_i%xBF!!x$9)DJv6gR4?XmqFNh~C#rHS9=sM&+E=!~q|g>4aG*(hI;PnUq4v0lHL} zDHw~5=yLmi4zmIl@zNOzLqCDaI`mI@(mO_1ibOgXiQpQ(@FEk?*qd#sZ%ZgSQ#5EX z_-ytxvEX!`v7mezIMILLSqDY3u8V8pSx3-!%WVsIWWPU%ZSDYa5!( zJW8PTZYyjgts&)_U+NE7)@2muitaL8dABvVB261}ftQD^%F*TYO5O|uE+xxYJvQ`Z z{ByB}O|c#NjEY;$onI|c%Fx41mD`9i@+`S3wytf9_u;3S#ovE(+hGBlNzXNgeNo$F zB$5!cSbuD2p(6j2GQ8lmHs?Q6WDv6Y*Z>22nMH4Yo_%;g$2j|92ll)#vJh zuDy5K?M&2vhycPohxnqk9mIc~BFyv)Dr6K#1f!jk$U_e_o%zPL{G2cR%a;`cQw9`8 zekZHHKVdZTNU{*Y=@(O}n0)5fJ#YD)Y1VzJ&H=-d+Ur_&<-2?zXjE({f;S}GbN*gb z0FX56TFaEX{cNH$FD-djoh)>v_rrS)Gxl&l)L<8c<+;J;|Il3C6Q>@ou+4=1{bF&H z{|llo;M~xob}zTlJ_uP^`;N2`F>fiD?rl;2`!zTB?$1b(u8&-OUbCO`j@9~n&yBu0 zXM614#4(F9z_S|Rt3tuZiAYM}yWW|TQJy-HZ-a9|Yj<|pN z-KKs@*~Z`dJ@(_zfz8m%iJAYCT%Y(uOP}9&JEI5ePw(!Cf{kW~olDZ1Sd#O45YqTz;Dc`)m&OoVcPGy>p@8cUZr~7K z^PnINzTolDy{7~LXjq(PSb}6&RBBiNRZ7xaN+N}EOL16Ee;5j0LJRw+0*2+JhUH77 zB%7rYmWH9LrOMY*vN3$3IMU?ZA^`dzHS^(U$q^0v7P{d;-R2R!VQIY(X~Gog8od#! z@e$);>Gv7~hW7NjIHTrVsitoJ{j?-$c0*P)X^5G^6-sE#>CI$6I@^B_g z;3kXA6{H0fN<$`ztS2j7`wt{1D{v;`;H0a%CG&5$OCJS(;n!4ZRxdyhF zPqn%#w&GAEODT@2Pqj5qwZC2UnJdo=C=dqBo~O)S z#LS*HD<}IXUoImy-f*Rtorz4nCTYh(+$n1p5^>sTywZnvv)bOp{{d} zINeVvbC(*8dQG2jkK|FH=^Na6AiBzjqq)EO^$?nQcw7}&O&&NU4tNU{gwmFmkom>L zdF1!=T3hcjj0aKQ7ox4qBb+p^y{UlE$BRi8;7?Qz`BiaN$T1C6QLJ0=Ll;1r3xw}g zeS?v=NXW>07J{c$N#RvOuNHQE)y4U4b=AS7ctRAi2c-fBh}Dz7blqU9%|Ht zNYtnddL5ePSsmipRu8bN5De}54Ug|9+sj2bLv|n8TsaRBW zhSe!n)bk3}8K75nq|2Nq>Y^-*lDNxKe#sIeYO>O5a+(^|<{CsT8V$$tShvfc;8#@s zEGwNX7vrp`qid?2Oe#ySXlZIznXhOGuW08^f>T#CN;S)xSM*3%^jRhiPBgJ@SB$t< zjNw;I-YXcNXqvCcTl8pJ&dBGX1=^IZ+O}xfhH7P{tlFKd+Rm(IZm&AttbTTzaKc@) zd%u>e@5zX0c}Dw&o!`=_$SDWgzDntL;0p=H0U9exe<)tnH4z9z?S4!U7Hy zRsb2Vhq@S5nD-m*TpP); z>nRpvsTMl%ZX4N8&GH`x4#ra{xKAt*X)Ez+#9R=3@WYOdL8bAqBX#m9qHo~4;?Z#WuDI3g19}$r#oC`CQ_nxwXQpwFP19QgE9Q> zIH#BE&8G5{Jh<&zYK@k5XS&*c6tsTMzf1J_`QvCjnW>FH-&6i@go7<#xkupsbk;9n zeYU5|JvzAKw57^!w_sp{w~{ zuh60B49)*^TN9D0-5?l8%eqkK9T9F}2)_IIK{!0F+(sBuko93CdXy(YmHgus(`CoQOz&M|yXD6fgD?ag-oMRc@v$giv`LFU@mNVlP{idYq&v02HEZW&(VR=J8=J z%wz4UX%P~>auDD9qDa{|WHVLME*L79(0R@%S1Ui6^=j93clh$%Z z4Cr$&)tjAaA1pzPSwHMq_3e;1XU*U+j>DT9gLN9G@Rq8bt*FL?)~314w!hEhoYXX#GymuuT9Bjr#sQp>y+VwBse>eoo8wR?Z`hh=b_l6x0g{{F+3)7YQZ^}n^Tj$2>O&>vGZ zw;(etyWUqbylei%sGj>@@M}Fo!>M~84->ldTpQ!gNS{xDJciH686N)mr>Q=y-acr3 z#xEBY<^C_{HD`R!PE})h-dD{=j{@C|XMYE)uU8$-E;`5jEq=Vi{LvNNk0{!eI!gY| z>epo5_qV$)_>WR(>sEDt9yZi}2&c5Ay9z%Z+vOYW?J?Q=JztMGi5y(~=<s z-UbtFQy}uY^}h>p3ZdWDK~@3};B@kNp>0oIklLlsmZ7R$@IhnE$)ffrp zVxq66!Wiv8W1V7-h@t2#w^=pLGsKMa(KA`_lp}tR36H$za7=WPBVmQ;SR2JgPMGmm zBB_Zv^$ya6g6*(3XuO1$cS2st+d4dr3zJq*ep0DyG)fTo-b{l~;R9KHN_|K_Lk~TL zR_hlPkr)ex&l8FfF>2{K*QM;CzZ8rSl6it+qFKUivI5WtGRAV0I1d^>S|0xRIu}w# z_ibV(kS`gyk5#c_7#VI0iJ0HbLnD=MJ$|gjwgyGp# zjdwpOq6$49g;P;U4#F&9(7fp58eNP$Eh%LsMdl&zU&?#AD;MU@Xy&BH$~j$57lf}; z^Lt^pDP>NT6=GBy;teU)y$8O#O0V}0V$W9Krkd@(RBO`ZEg-nBMnSFy2Qq2^DVR-! z2)A?=qChRRsg++DZ0t?%YZ?Vgif}J3^)GBeRx3Y#YC{d zWOc}UT21^Zoe`pGJ!DTir2yKR0n63w_3Ij2>iN}P0X!5H+FBbJD zBHbNjV)H5w!wQ8bKDi)B{Heh0j2Lw=yv*ZjOv|hevC?{?{$Nl@3gLi zSUvoR@y<45J6A01-H9c4_huDBKtMKMLbU)GxmAu+17h!`sm=RZtS$mfJnOS+&@(N7 z>b~cP`levQThdG>ZbW?u-A5B-UQGb3h?8ud#fJ2IPr!W(n?63;KB7eXAbp;b9si_p zuv2?kMpa!6TEYGS?eQ>!vU5e%gu%D845L3u{T3V+W;3fiWBj`u0q}~)*>F1J=`4+j zM!aw|SDxxZ?sk17Bx-~F_+QiVTKOi7LVC#9- zv-NjSMCVo(2E{DM=0k)i^GVn=|6IiA?>uA@W?*yX9MSWacud+x?y28jU6q^5$jj*Q z?6hf;Qe8{G`Yub_2`u0@a@ohP+h}6jsix$mRpeh@nq<8!dnt2Q@-`0jVu(#q&qj2z z67PJ%f1zj_z0YN`&^3CDUckK|b!pi)5lbgpnw-5ao{nahGYTowCHvLzIp)Tm&1cI@ zWLyt%-yu4{XG)cfw{gnhyTH}vx}r{73n3>XxwhW!Zw#Zdt5`t&@+RH>Y$VIUjtzQn z$=+8Uu?UtVaCp#%vXRP;7hD^t&r?Vv^on|rtWt^WZ$pr*FYh~;%^T1-tza@B_yZYF2v%zE zZsdbO^1k`G33ZKC-qv$HTB#SqMCDHbCgWf9HE$ zUUK=@{&jnXqi>VzV~2R-NDt%z{sXzL0pYQ#% zalZbRwBo{7M#D9sw+7yih%%iA zfyaZ``HT?hLXatJoXat*wSkT0@>OfW%cs_6!9hr7z(LN?ra>1Y1WR~8Agl?DXGMrU zF9`ENWq(+m77ToF3DwC6{e&5uxDYz`%X(f*2o5r;99m^ejAsG?+6r>y&aRc<`I@Km}{Q@(fo(re!_MkPc9f_W9 z;uJmF0h9Fu&O(@!e11VGGF;RX6wO#-?#dQkU@S#oN?8y~aKh)V9T zx-g#U`?FwfB=3h4AVy?N4}p%5wh{KT*Y&7LkThmEcLGX46y`(Bm`nTbw+2FFK;-A3jWu;E zx%i-SK`Mq=nrD5=M_aEkowpScl?TI1r@qjT54Y1d}d3kT5ynEPQSaEkt-BmnChyiXhatLnl8h^bID zzoD?kJeb?MOI3uFBj^Ho1Wk>?YB%|_;rv8jLwLbUbHWppv8-^E4UL{u}xqPzh0c)m3xX zL1%2MWC4Wk8fWdLajFShfMvwH1s0e`y4i>Hv+n?>|D~mef*5BnD6>yIPbmx(`RZwgZR#utQ_DXL zf7{}qT`0C~=0RIVQ`6yaHataKFM$p@r{qq)>~#bD;zI_u01Br-)iv37fjukV(s+LheIP}+% zrZkaVBES>38HC)aA9FbzR7Q`RmZGRLQxgt=y~&c%{kmi+T>s zgF&FocidsHesfFs7W_9XotY{s_(L0Z+$Lzt%J1opPwY8Af(%J=`UD4GnV4m+XEQIC z|NgSTlu7jBng99(*vVMgK^nqHl_#6%4aSR;)=`~PTYZ1ZgYClQEX-v$vpO+RG=VGb zWDt7ESri>lT3FzjQ{w{yCN3t0E0UH8^qSJ+TVsA$*iStnvHds=f!$OR+` zx4?;SFdA>nR;@x@X0v)`S+T^2FLLIwHj(yKjJjDR+dZh2hFM>kF(PN&A(ktw6Nz}` z<-~&dBB@~Q>){daA>tlDzI`)#BBLmkutD<16w7w|VtR`m$ZuT*5222>f7g&ctKY|p z&3$05Ji&e=(Q9&I$J$vptAcqZ9l_Y+)k^x>Z>oliLv)bqUE21e-$KA(0#b5-HlZ>E zy^gZAt%p82Oeox&v}p=0Gm~p~|5%1fbF1SzM(D&6_Vy4fAT5rwv-?VVQKHB3H?@fR z9tGJULb7jzgbp2s@{n~3HDJ%Rd`+gtYKUmu;PPw4`(4V?b+4*+Q?hw={2B4xU2XGb z+)|F%7-7*vMsmkl%DBD2MP8NJQ+SROwE4)2=C72OS?5)YY)mzxknbl*j6o*K>kQJT zhvr*x-&LYprmJELd__W|?T?$(R4EzHL?q5WI-V(G&>l>K1~S|bfz`qICx%jy1k5vT z_^nPtM{wvl9I@aXzO{8Cps?lgF5$K1(#@FqpACao5MKWB$z5ROm{fc$Nx7cs@I&Q1;Pbn=66Ehmu z=ywg_RUdWk!EbVD~x~=gaj)>eWzjhCHMrenDmy_ zdTjqJ5bnY=5*_FenVX3cSfdA8^#}jKxRIuYgJHWBQ@u5VQ2sW!utqXEMTu8HGYZ9c z_Y;c^=xzzX6&<+`{V7`d6NRFRbwY)#ZlxXl`a>+B+4h&^D4cB%COR{F#rA} zC%-@=Q=8$vPCp59^quz7yVqfUjy4rA5WP$xd2VNWM(4cUI=9g+TU%rTbugQtD9vT# zo1)%6*UDF)SJ7wt{B-LB3+0uQFt{Y;t<2J!G;F)~Km?2p;r2j@$0Ci#;|{YO`LAq) zujoHbd)+Sv$N@!vJmc%aU!xU_ZR>pvzIr^Y2|Ye~ZYBW=#R^~$(BMQoRh$YWf)H>i zVnBt1!zl15XavR!fw0l2LI_Cv&Oo`O_eyy}l@ij3X{7GmQiSTKAOGjdQXUOJ?4PMA zXl02}>KKa7zKVnrX9rEL6^H}U@RuQb^rnJpg#-|Tfm-#pJOBn{{z-3SgZsdl?pomSDv$3 zDV4=wup~?O-gfny4x%)Xo;zf*tR=H^G*_=}qFtlI5Pl-nQm3P5p-P&fo?;L&2lkFN z`sWv|=#>ctB$D;ck(TXeJihA;4vDZBc$t{_)|+Rfo$B-!*4z(gHAe6ur$U`&NSI|t zZ+k3aKtvjLx^+uQC!SJ!vwAT^^5M$1<+v$%R%8SaEA0t^m~}5eC})oCd-GPUR0D$3 zyTBiJ62?UlB*6ffvGJqZz;H5bdKrA`b5vR`qAtCY8EAdVWyp)!j(ierhO@3>k0)3;$x4M6ku zFP=}Ir0@AVi;`+ZJ}4HcQbe!Xo0P?}f2os--mjjmYW#k(uAewV$g!O zH26SU?|84e_DEAdtBoAs;2vnAS5p8sgO||Kfd}PQ>{}J%2B>nv*SiPqHh**7$>@#c z*mjqteWr7nlV&$?OU+5zO)`pOFtpW{W}ph2r>>mI_(!Phl&*q0c+nu1>F(Ch>oi>>9ESSpE0$BaHHNx#R%kXNHu$w4Lg+r#+I4drZ zn*W_nLmU1X&tbyTO_k&HRhMtwbBH=q{1-8DG=5_;rb!|*z$kqs-N(HVUt!uly?HgS zZ>R@y>F%ch(e5jVZm56lZNhkh zHzX$0ld$O<6v)efsEtALg`{}`lCAc59TW&aJ5e%YJ=I}xE+{9@=`)u8vnN>1yOb$~ zWvW_U0t0LvGW0L526Js63%eS92_@OeZ%j+&{PL}7bG(dvK6bZ%4_XEeY3_?w_0qZn z^|Ts3DAF;7Mv886kzb+2IO%P+mqNv_|3RHPPyolM^hC#9KwT(i{!}1p84W|b;de?7 zrlKis(lLVCPmxpPcpnceeF(J#)PA5xGj7k}G^b93-li0Tzqk;_Vmli|MNt6X%p-4Ek#3GsDLv>!dr*XROir;eE%9Q&6|m)7C0zW#IYHsd7Fy1jZ&$nF zN0Qfm55pq8Ls0VEaw|LaYnhnuevIybf{aB4-}*~!X-f&VJH(tinak ze!dPLrj$nOEXfSfz2RdypB5@C`dZcZ9En|p8c_?`y2?W`%=O@$MZ3~?lj*KQgNN?@ zb?xYdidR^8$+5z<-CA$f>sLBaiJWS>4on|SeXFScv)8BD5N$Cy-m0*0X|jXEwunjJ zABpf%x${wd7z;4jWtzT3Mmprc#Wo4|%0Xm7!^S0w-ij`vaO5U@Dn8e-0W`%dBHI*Y zk{x^et#SL)uwfcO0>sMb{iF~3o`8PEtKz2J^r55k8iQTYwI#XX(q8BbMD=n z=%zaa(s&DD3pu_JNa8}q)4N#OD$(*{)>Q|)LKfHb3hQ1hLz7N?h4Y&7>)44r9N6LQ zZtC7YCYjo>J3h{6mgmf)6;F^F6HNV7@8wEZ#lPwXxW883Z3cw5C7RI)4xa(lEHZRb z4r{KPr}hP16exXvxedyjMCoIe$`L`@ZKErB&fBLB^v^<)OUG39ew$OE56X$)v}lEN zO+`Xg(zE7kCf&GgcHe+XX(XmlizAmGKGOF|U8x&?OsR5MWFQHt4MuvG;11*rVA+(m z(+UE6PF?!kIy}CvDc3)a9VWGLHrsE8>3M185C@dB5S&Iqu|oj##0Zqu3e{LjG`&J5xX1n{gRXBI38-A@P_FC9I4M7dRXNJB9-xB}^ z4v|vY2w2qb&C ztq3&;G{F+OkxfN0P03N`O=ah7pI6gpz&YsQG>O`;d}KRCs&(B=pF)L^1Wn}#|8}9Cr{?jy+(Kl53 zilN3Uwg{-nmJvv;0^T_e<%i3dI6~lXOUpYVeZ3oT9F-vy^K0!JZJU#AOCSB>$!-Nr z_ShOCTf@Sd-We(k>g!5RnPW^k8QmzA{jxSXJU2Rc7Tb87Rp`yt-4{aVPya#Brr4uH zZ6rq6BtzRW;_NQTCT#S|c}<=J-RQkmsIV#3ir6KCNes|@1@Wpd{fXrP_(BD6@p@8VZt zlYp&>{kw@vxyd!O*6Tima^^{>^zp~C@q3erhdtTXF+RxB(zWOmTAQ?!yUAuQCJJRt1^A2!;O`P>-zikrDYuxfQ{Me7xj6G>A*8)ifBTTP z_NH8Jl+Y5C(P8AKPSXtkDoWQ?;0R3MCQPH|Pyb-=B;c50{WQ{4gt9HBObjFN`E43a zV2V;e?s{&FL{*tkjh8AzirQBN7%_uDG!Y3^J{F*uoQ8rlHv{gFo3b&U<#hcvv#eCs z!#x}~Lxzk}j$1`1Kg+15K<+U6)%F{=Z_h>?4)!=a9|t@SPltN-`2++5Vb$WU(%=?VCHa1Z`#B-;`NE?#>2is3?vih|^Iuix z)fk(!@8PY4)0Fo^=C0NBI69$;nv6Kq)iBj_`-te+Rg0SxNafXuDHe?L)pZO<`D>i56X<79AKDT=)6vlr)MpRcU`~Fr`b9J7_qz zYouB*LPFI1sGk>H*D%Ifx}MI#*NdpGTl_^?0sY%AIAIAKlCK%^F^3640>ZPIqIK!} z`D`eRR_J_l;5~+#$hX(j#mM}R3EBS9u3EUb%kk&ZYkq18^9sSfTG92(>V$I{`^xF# zS}_rW&dAZJ`3SN1%P4P4*;v{Z6f3O#3MEP`c?k%0vf7T)O2ktu<@+lY>no+mva`op zj@2ur;t6HA(8^=tUaYh$*mGcIeR;%m)$+T-^NBll~Q_ajrL z3<6ksL!Z`WIMzkP^b|wZ=PAnu>it&x*VpFt*5v!a%lYfB_3P_c8*6XFX65jk^_jMB zdXfkm+e8~X<-*%EtNW(<-LCqF`5W`e8)p%@2krXn`x{rjUoYSEH?THuZCeN0{q9XS zA6yL{kmdIy(4Kv?@8k`-eK%iSH=pv=H1ao7#r6NTQ{K;SLKbWQu(wY3*C08!pd)$V zerUd$ZoU3Cgbv&qC*6YIFi@&Dv{73}q!RB=@I$BC#^C&pAu*2v`+Z@54b$yArv5gr ze%XNUHhv-m-oW>K+wTN!+k<5Wi%T1X`pcmVki-|;9k1I9KqFFp2{Q&G^1$y@6=*35 zMidyj+TA-03p;d~o2Umnj+VNN*t-nxJFJ|!U}oZ7cFtW6*w5?=#w>0+SZ2G(PP<%G z#tjL(JU_B|8;rG!=P4I>DpT!C=`YGk?Bgx$sY&dqbFOIo;8vdS(_Prt zJ22H#5P!zf(ZM#+z1TO}*f+Q^_#QbW$$4Nl0bv?wrtsa&oaw-#!Hh1&%<5p@`oIi0 zY-angKO0fBKD2B1o+(-2=c0b-YG&>VyY9FU;lz1(B7Er9aOhef@A-i5dvM^@ap*l^ zPS-*Cqr>dy`=J}kk#yNUIhlnu=h3f$L-3i)zNguuaG-^^grZl9MQF!<=$RiL;5Zul zI0of7oHH(h7|rnD2+q?a*6lcE;Cq7pF{I^jQiJ8)8n*;7PDn`Jt-!kg4V zrd?eYtX1;HY%b?X8sT0Z%8AMTae+jkWCy5p;G}H9sw{G$xZp$%d%qmpy8Obb;N6Po z;iy{u6p{P1VFSKY-@4lEw7CPmDbl*8;Iu6fzO}=;B2YtU;gpSduVdiUHDiP3v@{Uq zY;McCC(^iO3bkMVtO(zx=fS!b=4_ZaW#GbkJkw^P!+KKRW-8Kp8pUQt-+FezdQRPX ze!_Zz*m|+RdMWV~G0|qW;Jh4m8@!5rzQ%Nxa&XS^a9(D2vc6I#B+@vLg!LoAxgn)?B7JoHu0IJ&b3;jeL*BSgVSYmc2SNSQlqTthvd~Gj z;fCJ+hGB4z@z9C<@kRpnmV`O$h6Qzx71fzt(Rp9hi4Dh@)7+Tj(1|C@n78u=^uOE&wgmy>3<&i(6iAWWEQaa{xPTY;||*M!AG<45*F~GX~F9MINA?Q z`;l$@?~XR;Uz1BeYK`Xqz}bH^t;WAXj*?)&ho(&e6M$F$?P&SHtsj*3-;S1z8t~7+ zQk;+KBO8F4m5`9|e|(nzy8W*e_+PES|F)xL_)kZh{r}0)qWqsa+SmV?qx~8G|HIKP zqJI8=>uAqtvuScOueFM@k(JuklZg|6D&bj9OB)e{Wf{L6Iw3C9)0mc?SD*OrF*aeu5ZHsxP#&3T9^KOH z+QAQ}`W;lwt(T>cil+8GP&ln8-PNpw^F0`Gl2^`X)H*D}U3N%^{Q%tb>b?iJGnP~m za97U=L*p6iCMm|Xi|*`b#f1hA@Icgwc#wQX2) z-UN@^Zg~AUf86?9klwQ$OkKgf6A)$UzH5rt@w69$DP8FiB`R3BaISLUiIBKi;@K1X zv*YQg2vxJ?IHB;uD?A-_@a4F2al_$ka=hYcU2YX+>!jsYzy9($|F!3Oh`N&hrjN@$ z<9bvwtL=8~3tao%3|EEQ{jOfr+s%r>xUcKR&#!M!N0;gy&x3`Rg7HmBVgU$ui}v8R z`_9U*RwR>AVDQ6g7JvZjE8qzg1R%_YmO;#n6RI6}+-BbukJmvTJEBmO2O&CGF z-yiqYz`H>b%}czBm*_70+e@QAcFWaoW|wW?*ZOwM5(iC&@EjBakIxtzRR%n3+bH0l zQevIZ%E2rQxfuISViY$HAJa?C=>L#W5xwb70q=9s>VA7LgLd3POY@SICLJT$lsal`IUn1_oxJd|-a z2^AflM?sA@ETMfv6_uAqMfsffNw7aINjC|GOIiliMa4`N!jz_+dql-*=9i%Ez6$H{ zh;)yNPYpBzqqUYa!T@X1*W=I7fzo3}_;Ja+wWQ3XifDw0mNiQ-xf@H2)!X5Tcb)31XYTsc#s&i%yg*2Ck1#lsm;`#sUYmYY;0spah4XP zkiKsKxMx$zbT^fFuRC&dtYW$65Rk`vEeYK|P?qaOCD~uKfGq#GNQO5#T!N)QsNO;m z%Se@mjHCDy)=6V}eM$indKT(XiF)J6hf%o)%s|s9C-I_}x!srPtm9V7!AxX&jFy;i z1b;Z%g@EzWf}1leHRqk;Mg+tP#|(PCR;$HMgivv#@p{T|z9O&C1fA>qciQG_fuori@Ne26V#Yo&oJ@=ODn@sF$LiLn&`3 zTPh1WHOp&WAu1nC6?SN@Gw%^099lsIVw)K5Lnak zBG3He%}94IxG{^T*p?sFaH|VLwHwzB@XJ1p@S51Li!(*XZq;hTZ$J@G zjN8Y7UR?;B+QQ(2?xvl%9B@fn3|c~r-?;e%g)6l2yz)fCJ#qcxkX2`P&V%F+J}Xoz zfAnX2w`!&hMu{SZDGGY6Ub%3onrvjZRtH$!s9VJZ;wSYyVW=i7%o)rjugdUW6 zR};y}p4b0iE|a!0^XDBosA5kqmo{w3!|`Dh;PkIT?ayX03Z1LM==ZISX?|Q(cy#ZIvxH~WuEK(!>*{`&nMWnngGh0n+fX+g zP~PdM5rsWd+*=)23(|6c1|jJXWpv=#m(Q)so5J}>uu8nll-#b=oGk$g**5Z2!c^f8c-Jd}Qe#Tmu483FBTxu@2 zehp~jy7F{uNJM4zE??M4jU}X_(5sT(`YQC)7bF9|<@xOsL;v%6N5AgtA*_uza@H+I zQO6Y7^02bK3KTpTJ}gf(1Fu5n8{Rp70|YKQ<$x zk}U+l0^|P2;-g%2pI=O#Z#=YrKeTk)Az)7&BDc}>`#k8x354+E4;%uuyP2aN=&@ic zigNleQbOQL{aknP{R?Mt$?1d0|`Gs1S!Kh*mTQYdHM+i@)YyiyC`rBO_pcZaRDAFtMk^RdOiACl|0+LOPA zg%m=KD>RxPlApQrt)14roXL|NmJ)<}KSU%L7hp}J-}PWMrJ+ad07>Z#c;NWiPXUo> z8ieE*M7`_poeWY&SBz)sD&3_N;_g~CtD9Z>gCyysi(_L@_C;CwI$kDHT3;z;H6T2oCzAC7BbqF#NNax+) z;zfpDF1o7%hogt@)Wzl$&#v)KkQ6+S^zdFNN`aTK7BA#+Y#~25XoCgK?8<2{GVkSx z@T^tv6#uaLwABPl(?UXQ1!ME59a1F_S_0_Y=?o-eADlvTv~&i6+O)}nCR&NvOP`i$ zusMqpUkXCA_Y*<100-K5rx1V(55O%Y9x6L272fa9Op?fRlAos?lu&YyNNnJ7DpK=L z1saQs+2lwq{T-Z$`R}4CS}8ow7JsP&vz9`!QZx<|<1?E9hYO0I@I1vi0m{RGEK8kY z4V`MZG-@H*4Q{&7*nk`?iwE#;!KUNnH4%`({%M0p=dnt}+5UqKV?iRF*PE0(F_7BU1OQf9m1_oolD!T&x!$<)M6`8h)Wfqd z7`qP?HF?oSLI6MnZE^6THZxpdG=4GWufzgBT_5*UXy#vnVp*_N0cgxV3~)AhD={8a zhP+;OE-x_!GJw40f*(8qB36KEY!lypV~Rd~phFUrvTyi{9rQErId*Z+ildUFM?j9u zo0xtFt4^8>Ac!Ug9W4v5B@ibyrSK)tURy^o1Q7P*Fo&&JI`X56E8nZ(nyUwZgp_v0gGO%m%R1F)y_l|H7OUCFUC*Mmw7 z>4Pmo(m-Qg$;UC}J2%V2rFSDSDuYq3%t-lx;uy{d4>BFD{9+0C*eD!EQ{{750!t4G zJS{-5rZY&g2mptw>?fM04ybSBmSXb#!~hgrAvoh%=i$^a6RzfZx7f^6){Jtau^j~3 zdX=!Gy4_nuVLmwU>J(<>mj1~t4c)18J>>luqr`1a`c2Ywc*R}r zv}`C@Z9y#{Jrwj7TB8zJaydjFsi|k~6+{k+qG@w# zkZz_4#rU%+2_eGAYkS)8U`5M0rT0x;%Do++zd!a8ETqY#GEPm*3y`7h-Hq0w3@{Jk&7p5m9%OuAZFQsy)5QXWaigK^ zm+ny}=z$61`$|(7T7!4)?Lz%Q*Xs3!ErH7PZA6kGBRWY~XpUf~aHXf_8L7G%Z?8m^ zc9jPkRKIqe`xeTVz>U=i5xfpj&JJPPwu3a&qf)>LqWu|tJ+zKrw}eOKV_2(rbG%4r z5iVozuTBlPmewP~=Ko|q)Xr*ot*jMw#JM)@!$mo^RRM4gNQH>T~C3dxUDYGS zD<$1+P9gl9bP8jDL_R>h&$pIb031QJ{A#SrQ(FLL`wZVOTN(Y~0-E!zT6R+)l}K_V^_S`3q_PwX$6o@NtX#JFCa`r2MY~8 zkEH{F8}6UkwcrFb%@@l0^G|(^o&a5S$ha87ctBFFD0c_^SxZ1EKu2a)7$4%c zpo>>mkC?AibAfLIV-9vZ6K$*WD-^3d(UL+r1Nt1p@AC*~za@n1rL3W)jo`Q_qA)HZ z>q(m^&UQfJ`DBT^U1-fREWje;ZCMy^B_%ZzzCBkBpN=AY#iM<`-!w?QO8 zGE_nz?WLoaG7KPKq!!BCcdfahTDyo?aOch2(eA!JXtO$BLq5(EWL$Q)$%3U@+-V6e zddm^_TtcXtr{R}avU-m{f^oHgtdAAw!;0)PuO(JvXFO2A~k_9*?tH~056=mMu*4zHNh=#Dn z^65{2wkv?5Iaqn4dXD33+&C$A^9avPZ}TZCZ0wjY&l&8>2a zXc7H{RlylF%A%2c;&yv)ZjK}QXz8a~nXLQe*2w^rbvOPsm{8wD$4G$E;a@0izZb)Uj>Mt zf{%r0qHIsZA@S>F6AtsD~>fX;l3u5`>mY@ISO)s`5aVK;h4 z!yv~-mwN$u4<&(acTy<0k(+xGIW5fa!mvSU*r}@5ai*0d)uYp%!+W+cr&%sd2!U|c z{vtkGFKscTpO)EwRK{;RZ9doJEed?&IP z!JO-uaR#DlK2+uOE7PEFSSoMZka*DFMp>uXdC$JqhlKYiC{Q{`e_RC3SL|J9Pj2ew(nEqS-P(QIMZ;P z2qL$CO^a!8nB#O~h3ghEwLUY9uxl&K!r<#9WH|YqnEo|3n2gw4$7=MBoCJzByB8sP znbx+?d1Pl}v{fv16TM1}F+Mr-qYL(|&FW>qU)D{OdO((Ss}`{mHuOM9f))m}aQyms z%73@{{wd~|z;jdmuI7>A_!0Ew$>%ZUMqx8}a?oJ%iGJ$|*iw|u@!YO4MYUoxoba5F zH7C6O47>_o(SgXV{2+}l#-i75Q7=0e#I{~ccew!=;QIre<0vqD2joWC>q@ko1=;Xcvudw^6+z7?wxwW-o6@5n}JQ%2&FPVFvLQy8l&k%*N0 z*FtEg0!fs9hvK@PI`yS#TF5lEA1zC_7CL z1&f*?B7Yo{FOm(9c=!NW{4dM1^8#!$5+PAdjU-piTJQC@tuwu0ZV z<_<#vI)8iwTTTFBEJcFG z|CZw-danwrsFu(ORKURG(y~N^mxAe=iCO{ZkO6tcq*GG2o-Z<0T7!3Ap9=s{2fz`Tt(9bR=vyt-TH2C(g*~)^kE+@QHgmZ z2Tvcg|7vfMb6E$ zzw6&tybt4lL3_YZpSNt5uSLXA9}n15iOCO9jL(GZHW~c@d8u* zW$@LiYl9XF$^Dn(k4*ArW+abMZ0~u#wrNew7T21>0 z9P^?MB87$=Yk6gQeR?Hb#sM)v;vj}rY#S5KhZ*@>%(1D⪼ z>{d)|6RITwVwVeAY%KV6y#L!C6lp`#qJXe(l(itM0dW3TN7xaC*QE~dl!iIi4-G_# zSd?QWvJhg3OT`2GGLePY{2C@WQ$jLJikL4O_rKftF%~Wx;>p-iovL zm8GPEHm;G7>gjR0@b;4Vj+?Mw0ae9J+UYj}zn7dFO(G}s#)1Q-zr!>yCasQygixwJ zU-<*3&`$6gh`L>X370#-Llp}QvT%-`BsB>`JR*bMDU?t+u?#mM4961)8aQ-O(ULO~ z>O%1s{ODZpUOgJ@;}h|D8D>ZY{)RH(Y`vqyg+z>4D5lP4uYy=h970M( zC_WEcmMLXeJ{3HZ%J@P-Bi>wZ?Z)<{_HNsG>ag|cejupwZkueoVNkU}HmY=6j_yOO zw3c6HkZO_H;foPc?_5MWtmY(g|KWxfilJbb-a1q$0L7VL&~5}2xz|V!*cvhTK!#Wx z%Y?*?=b@7_km9LY0aEw3svkQ@&=>ohrL?ENueBLvwR z#{kS+$Ikc?t5B+m4+@IW`R=R6-Xeo}3VPtsxOZ^AuFRN!&cd|Nbu z2E!m&k?INn=Zd5H4nAal3q1|UeBNt@k?cwqc$OdU8;lj`enuOYeg%U*tPPh5BKx8 zG%`C?DVJu~d8s#)f_muWDZq&WPRSRyPh|j#`Qic)tW^79!{IOT;2QamY?dyO6##ez z(hT=KRz&IAt^Q4i*v7ndnURdB39|w%q|kd*g1|sjy)f44WRhxHppneisAUn!tDpGV zyn-^8JL++Y3hMr;?Cv~)uW*S+cwgBEPUuQq^sg%F)^MM-&AAZA+O~c!o{d(tV*AG zF}v>(B6ZX>k)1mhRUA3N;fa+U{aGqRnyExw@M4Hcofe$>%xOe9i!ruRRjp12&fyrm zG$ho-&vE7H7+`yPu4>0^(h+FJyFs?H{X)cp9K^*sDkb9a9%BU%Re4nig#~jB9^z|+ zq_adCZT{ek9%LwVjzMQT*ApCRyQavKMWJXIOTn=>$}m z_Lu=NW?ZrCsxtFb2>Jdg0&;|4GCoR;#OW@S5GzUCUkbwu(tz`~aHs|p(*+{aX&U-j z7~8ow%V>0yLP?$`S?uo`U_~q_F8kABcFH?Rn~wA6j9~bX=th$17HYmE*I#5w_`w?f z`LjxKt2e>)Jw=EuN!PPqpiG#cO`879HVAy@==A6cCQCTX?h3sMA(sw`)2xKA&39vE zPg5d(B*pb}NCJEp(M3ed=;~bh-i?g}BDM14V?*R=%~nJgKuBgGj2d*!|GP>w zfTkBFJ86>z#5X3)DTltme_ z<)I@0V)bQl_Rv(WLe!>|WQc;+R1o!A#j?HORdhua_>mN$#g*g|?Y>Ev%VH+WGKa=V z1Pj4$ij-t;#~blR8r|l=FvnCG<0ZZ{MJ>^m)1ZM65SK0eq{0dTSK^IFo!`SzmJOLt zLqV3hADS$jBstEHV#q&Sg7;SPw?!U1LQgdwpb&_oKu>t&#SeDH2Vg3PC6R>iEc>DE zz&BS{Y5UX43s+&r1!E5(p@*SVeh*(A#1-wdv2$B34hSCV7VB@8&Y>JOZ5Uu^B z?8d%Cvq-x4V8J#qK01?B-o_(v4?-mi{!;+g70YkMI5ATDCR)YiC_`gYM_*m&$=*LP)FaWG5TT6dl#5gO zDpQp=45E-tpBt`}ll`ncYHKsvXw%aaP63@gdbHw))GPZj%wEq$3>Md~vyFQot-d=P zq;VVDn=YMNH{4GlC1@#C&{AU42SiaG9knQuJ0Z(4%mcf(WEIP>!1ur#1dJTgP_5-) z_+N#}`!PF0rNsf^f8?NP%1SKQ$b)?3m(nqp>&CZA!dZ-j~FBM=qA#aIC)q`s}I6P36N^pIo4upF`V*{xJULu8n@_g|wYIGm(JVpTIuH zba&1^k5+mWDM6^OKx_{|a*d;@`8so@^!-yc+I+fy ziGQfqW;m=>A_Bnm9zf7=mg^8R;gb4=TN&hO!Vg}=RZceg>W_I9CwFQp`z{4IqxwR^!w5;u18- z8nbCCbR3Jn-o(Yb$6WSXUDc>Vi)I6xTEKfD8SJV=P(ro3u4=#{4a5fN{iF>lM+$SV#I8bMWB z$>$V_9N{EIkp-?Rg|6CpwlRZ91A#R2a(^-^g6lBHgYn0fq(Y>;;CYJ~1@e)lio{n7 zDOa(F>o2&0HOb9xdaLyutI+bRt-r&X%gdZG2bBA=+dWp%mqm@a0_}#mpm%8pr)fG}7X@MT zs)cpwK5(tC-UTpvP*&|TRIH~<5_nV%d$U{*oo;C&W4!=*L)??g%yr0ST2I=!c*9jM z1Y%=XEpdr*V`p6FBp(TdN1-!gBgmriTYC8A{03jR9yy@*PHpp^(V!EQG2{)LVPuo3 zmilF3z$dVIKW}iKkAJgYnW!`q9lR+`sQTjD_tpx0ZZ~igSGrr@guB>0lIO0Og1^5K zm>UPe=x?>Aslfd(d^^XL?h!@^B!G+zN5q~Boiaq;Fhm>KM1}nx`TaXSIquL^2BorS$dEbE$1&!6}r5cCKFAm^8_Qcff2PFT&cTORSWDh+38b?w_Y}5F3AHGG-sxMOQLj@QwOn zz3aZKeUV)58E1I4wawd+csp*)j-4S2yC$-M`L#olyJK5q^fR5rUck3K@kFCBN0Wp3 zZENX~PXl|us|pK|_T)B(TjOnUndm=d{r0EODrzV(u^zb8mTI=F2Q2YwE=*?lfRQ$ZrsaeH^-wsW?INx=eMe*aE8&m~f8*U=tB*33kivzF#%fX$_}!4XpM2+fICBh14EO z9PBAE`e|*!X$`DifEkd+D@wB8IuLZ)6d2Q7aoW;xTDTCFb`kj-*2W6+tXuH3huBI< z!X};br2nB|z|E#L@-*<^D9S^1wByX55t4}He1`LUmdUn@lOy##Z0yNqYQc0`;(S@q zcJ$q9$!u+j$QHbEV7vNmy~b(2d|dE2lV7J7F7P;l*bc_UGF z&_VcCa5-Ol`S;+WWash{_v&46?E%)|wqp~L>&jvNoDg&cOuB-Px`JUc>;3qb-Nymp z&;h>j{CVQ4ckP4HUZHV0E)Y6m6kcJPJEq7vVm)4ACtYu4&X9o|QL?THHAL41TZtd9 zKR-J1so4=ANAxFKTA#x%sG$)sI`p3~W@=^bEB1yV|xV@lOc3qFzIhw` z@mojdtx%TpeejxaP?QMQ9lyB?j@F%&2CC%GJMO}}aI`x)oIn2O5QKnxC7gR@R9A(; zV0o^4!H{)D>U(vZd(}puYLKhqjf+O3D`E1zu11bpr>lmBgqFr9!$ntGaitH7tPH*v z>%{)fwZib(Epq$bSn@#t_0}BKMzPS(X7R!H(9QPqomHcoS@(k-^`ou1JnZ2Ym(LGs zUmo2G{hSA{=D)e?nY+7FKROJ$mlV5uA3pdzx`!;g|9E^Ti+ub^{m^&jN1*id+x#ie zzytim=^_8%5>)sU81)pU5wBMH6wwJ0{`e#??Gah%QJnD@g?dga?-Aqf5&Oj>uJa&7 z!!ykNImO;ZvC=PX@Hu_aGrjORv(hDP^ErFcGmHA=Len)z@&&(Wy^;Pox6(da@g>8+ zD_rGt+R?3$I_poASMlXV>7W;%#B=%KOC_~;hvq$^(BC?Zzx9fLYuvrtxxE{byz9B{ z3x56$4F3DEvA@OsxmANfanZZ|@o#r$a2x7tJ@sqfBWBlEp9YQBL33cQy-!`x>j*09 zK-OzRp_N&qkHz5YSSO(B;B_JjcR0&u=BLlBz0aJ6&-~X{b~yKi#_GvQAKI^JOG$6w zp~AP>sGGs${k5o=bpu~UuFtKFK8vWYU%tF|z`gh2ye~d_sQ11(NdD-KdgsXeVf|4V zwSRBi{Ly^*`3w^S49yzVz=$G6l|*&^fx0hV_ba;Y+KD7Ghev~xu&g(~HA^)xeO zQl?C5R`>KvRYrrcjMnPp>g85?PUpP03~NnJhco5YNk%L6UJ!MzvR6!7UH))jOeP!F zOZ|EQA!fU?Cr9JnSn6*THYrRyeOfr87iUkbM^m|yaUCgIx5^Wl0!en~AA`Y{3Y7_4LLC$h=P^ z3eZ*yUH({fK+-@wtKdXeEoBSRV1iI?vJeF64`b|_=Nt~658R`ST0~qoFx&S#y!GG1K|3l4>fEhl> z{KwND-RXZfs6UF+A7tJJ9P*!Pz6kJs_zyz{r~GsN@bcjPe{TOfpa19bqdWbNn*X<# z|A6x!Wc~xoe~@|9r-OfE`HukgM~oUA1c3a&^5y_Q{l5~^T>lDCf25~Bq&zkFpAz+l zm;b=>=HL(6@^3Q#@ANbQc;%x$&HGAIrnKT-mTCc|}>qbW+JR2ee$ zCt}c=lnC|B^Ckb(rxkQh>dIz6Q_hs=jjER~H9CYCi94_uueEyIo?uBYlo=#gtRm>Q zHdbv1Az>`Sc>PnK_Wb*vfkbk()g8_DSz*ku`d~6!bT?jZxpIHhR=iYSpo;!i_0;n zxE6elg3tGSd&Kb*E^6lK`tC}2B0{nA-Rpts=i1U_XXnrNdl=1WA4u$>b>FAs$4&n? zyrZpOXe&Vmwn*w8q5-&OMc8uUX%V`ek(ubKoMiz%AUz16WvIDSrEwX~C z@VByl!dM;s3814p&Rb`(!p}=i6*?|Rhcz$OiZrvbD9lT2St+a!c_}I`Yk0veF)s%5 zTKSo`SXuj2VN+Y@z%Jm&R5rrW>qN9%cv+-$A(WQsH?!XNB27uqpVv(zB%e7iGNoD6 zGAf^**DXAV88oas44=zP{wQVg*?|?RaJo#CJ!}RQw_do(Hk|6V-6YD`%N(!BGP-Lz zeH4{5-d8ibHU^TZOkfB;vGl~!`CyrcjG2Xm`cJ_ZU`+k9d|fx=;fOW*G+qEvH$7rU=dceHAkZ}(eCp9v){((J7tPx-!p-+tsq#lGAd z|6JTF=?)#OQBP>tMirDx1AWw|yI`5nz5qT&0AK)}IUfBWI59;?q9I{eGesJby3kSP zWZ@f|s$WDV^G_W+HQ0#`$}g?B2+BuvkW{81PM;ijZV6AOkO5onBF8r(&1R_!MplI=ui(YG2? zMUI;yi?}H@(0;81L>u};{5T{jP{0zpm!i0E)P%nANg3eEuuJrJNJ{X1I_xe55faw3 zG4&N1B1q1}%OP-3!Yh^rX(<#xj(qrOUo18`9g&0sK7-!tCXN?ApY{}LfEfiwLWO=64e}8j7MBQx0XBHEJ>u0dSe4leBpqv`zIYrSM zfg~J}#NuoFt~_X>R+T&5RH21?>Nn?M779@zCMw#r3&wu>C)+>b=eVMznp=4^^2IXB zEy`{!N)#}?BRteYqcOaJarEQGGF)Cmrfy>K@$n{9&3}^hcT@|d_KTS!o@SpMEki|p z6_m9+Rr3y1e-oBlie_4gnXbg=y|5LlRr1DOxen&@qaVww!ha(4x-ZRa+0h)P!>Gj= z%YFFlK7Re*~F}uepSTU7gIqAo(%u zwe|fYW-1RPt^KvgX;)iQ{omNTtEW1`|H1Qp4lcpn-7P?Hg1fuBYjB4g+}+*X-3jg< zG)M@606~Il$Qgd~ot>T9s=b(+%iTYqyZWZPx}SbM?@za*HCL}*`0i+{tScjK{PlVP zv_zY?#)#G2pjM}5@SdS%mCi-Me^P#Ttx#u$)q!7Ybh5@Bz?Q5qhgx!7CYbJz@X0$Q3TY%4bqV-48himRW_C1lppiy%A2u*sH>@duWS zkMx(Z7!Q!3+Hs3#j0fgbRHN-akqj_athEeK`RnJI!WJWq)jC+A;$v-fjmAic5*QH~ z!&10U8PT+`+XYx6L7655hFUD_rw$T(9;d{#FO}O^4)X}Qr!mM{9ry$>ImsiS^c{-K znEnEbqk3JlL_>ra$b&~8U!E2MwcW)wP|0Djfi^Oy_*~58F?4*j*+VVGoXJ?5$Ya9A ztbgtjhVC{?KKFy*#T1)UW(cl`-y}TcQh=ZMi9FZAa(2R9#n$S{qR)LVU*E48RMK&z z4kD^puR94-QU}Eaf&6whl_nYK0pRGFj_u$M9B}@<0-3n?{kD5^d_DC`icEYw9mIV- z2bY3c19VIVa3UEc*_-rIjqY|7?nKxh(KySo8C|(KPc(L0-t_*k=3@H(N=s}17NWLB z>^*5Mn{3z`c+&R*M9&T+6!4bMUOx<(IJty5=>NF$QXQc;_zf!|M2!no@5 zDz}H6!v!9RrZUwVrpH^A4*O#kY&SpvkJo8tkbf8?49@JR z0w|CH0O2)_!N5KCuX1kMvgLh#@cQjLRLsxTMWw7zDp7KsT8{=qiM{LM3Vx zL}F@-7=anICbhzgF?ryPHz-RqX_L+qCb{wXZK|!mYgn2Nwr^)x*m@AErjH7Pg1W6M zB`tt#8m_BrufJhq80E|W0b|PmrVJ4e2vKU4a(?$_3DCzVQZL%rDvMoslA{%qH_uKf zr7Jus6R>8sp()1BXT+oHCanXcNV-aKM=`jlOdgm9;3x;&yHTx0CHcfo(nO~pQ|BO< zmK-{RC^+Bq0ca7B6K@|hz&i3a3h)Aovch2?&dh6OpLI>Tk8~>N06{)w`c-jDALEXw z*d&G!!$@0%D`_eVU9`~vw72a7@a96niqU2s-8OE^48d?5QtFTXFoQPykCvDl%4{P* z@PiWlp((ky!4HOngbl{&jW}vCT|7R}_pqd=s>qd0f)#veN{qKJD>Kj@Ck;mm$R+V} zdioCXxOuk^`MZ>#e^BfsBlVbqh4uq$dYT}v7CkJ40MSqg^Pt;7< zj&z5;O-FtVK)Z~7^hx~SlU}YZ>49Y3zn<)IV#AsiPw+nKWZV-y(hQ{t%w(#%(iQqE z(kEaoI9Mu!&o@J~IrT!z&5hesLkgq4gp^(@*iTZIRmQFS5fbn#9{KjdH0#XF}eLRm;Hfl9S){{x+6X&nHY%j9_zXKbyQ5zRL%hmNr zX`Dp52eW{27$MbMSeHa(h++_Y0UQ*f7~`v~&npMR5w&%|NxBJUT}+Rl&3L8B+n3F= zKcTR`OTe4R&NsuDM#3q_k0{u%S0i z#vpu11TPl+v5SgKPePF@>^i2l#toj-%mZ-*6C9hadS~her=dWctE-E^Mfsgks$ECw zt+rWT5zWy%J=ru$NuEEWn0hkbhaCShy~=jEv2zi{D_8&R0~4&AE<-Op;fpI)`V(In zji)T|9>V-9e{BMIUjs~As*2;pe`j>&k`Mfl6~DAZcowau@%&c#xtv{BlkHoE7&#Cw5VB`yPcJSjRqQhu>3r$*r zggw)O#>)eJYE79ca^!(7Yso6#7<^w<@86ti{8D*l6_w+~FpLTk!6B1bakFJM0CAJ( zK^&epU?}cw$g6Ay9Z&fy&0M@ zRY~A$eq_kqCMa03`hrDzJ+N>ilQ{oy~5qs!D#s&bejWzP08fSv3C z@Aag>^>RS9qrzqY(oG#tpI+?oDBYRfxQGm*mY$brjM{N*I1ZohX=MaSv5AP)_rE)? ze^)%q*|R@3{UHK52{!n=R0vzOO$jK8t|>EhS5Rt2PTqR&!RBeT^`4y)MqvfJ-p8gL zWlcUp=z*AW-BRC|M2}5}0Ix{2&Omng;)2-39D`h9W+1xR{Qa?bzm6nH4uR^a##oi; zwVpW9Y}f3sdhHTljmb}k5`HbR5rPi31Zo{34z3S;Qf4{btfSc70&Vv`V-a4N{(7z- zX909W8^f7)_AVO1Ng3@}NtwL%@_h%)Oxyd1EO*8+8Sl;ruVK~A3UA+#pM6WkeTdEMGSC`3_s(`t2PGTmP-0z-Pv2Mw~q zF$u7?tt2p1X9#RyF(n2GcTXs;Y8wG&a^nVZp+@y#Cc*)$zI2z`ZzWNv@M+bJsh}sVD#_I0ruO?V&R=`Gh^VEhX%}|Sykk!#03MTNS=8Bk`b*# z46>jbeY)E#LV^YT=PO^3`|$~V26x{646i^LW-f_iV1TXJSM1|)Q5LB=c;TIu*F{uP zqHl`d3e*hRv_D$-tN+Z8MTFmq+1}a`+&J9s#z(TnJ1JRv$-O%TxEV$|&b|P33K?-A zRa!mSC|eQC7K?lW-d81lQV9vsy<(+4gk4%P5=)d|2)z_lex84Tc2}+M{=471YrV@M z=QgqLvV-K)8Usf1dVb(nE0*~2GAGE=fJbdfBZFx61mb@d)&C6F?xtRD-+gB-0UPOy zb08Qw=)+tf&F1vXUz|Gqg;Z%@$0=F$;>h2ybXj`Apx`joqre@ya`?Vs)3iXQJ62>_ z>6fK6L2;N?_}SIQTekkQsgf z*5%8~mJKNxNJDwBk?%0pD8na8M-0}|9T~CHxzwU~c&i}?-yk1ARq1E}$ zg}xoQ_VyxiqfT}RYZxO$u8#3VMa-lnOyLWh=`9}QcCqx9Z~oTg>g#Sk#$UHHsrn)b z%P;7FA87B>B&*&{-tR}*NzTu!Fe*2?q?4a{BC@4(gk{_?b^BjyeRW;e#3|Pf6gHds zWk|m)dW-ChlC9{uP2*fWz@~d6fp&e{Dzv7?7B;rpoSUVQCrwP|m2&K?K6PbD>*^;C zf9hH8@Kre@1k=V!*qo=0LPa(b2gMlPuh#bTGK!mv;X_&nDKL%Ee}kmB-e z)2sAU9W-Y8hcmW+(uTcYN4Z!=Fn&lYCMxZ8&PyR+rW0`817Jfi$VgC={)d_mBT(D_ zpK5+Q0v-r}B~(9nt4~KFN@lBD$-}e4phBk9-s;l?W@uGWDf@E(7#4$~Nt9te5|4#M z==f_T7)}(417jMn1=T3ltB>gqG6vTvRtwaBOJiQEh6|7uC8j*pZ_^~@V|ekZUn@e% z0^i926)LcZSxmw%?hutM0fS*nRUcEavJa#p5hQxo2k~SI#^a7|ht}z=gne;xdbhTb zLf#P>K3tb?`D``bfY@6QRI!NFLBgmA=Xj^Ne!`hmuoKW|`&f;vRGU$MeQ29K;KWSQ z2&og5xYTB%pq<5_R7Dfb_JP=-kz^@ni8j5ryFcIglIh5Q^LJK4==($=`M;ol=t>%Y z+1SAWAq+faS;GJfC?9#R@ytuZlnt?;NE!5&`%P$Q3Nt{dI&OMy>PCD9%U2b{W1B*- z+-KOvt_UtqI4;pB8ii10DS~T4C^)7={sqBu%03*FHclp=&9G0sgjsURF34NNOM%J7 zPbosGQd~K(v2T#zaPCW->j!?dFp0MYft~AG)BI0a_m@*@A&5l^%(bBdZcGy25HV~; z%b&&fAZM`HQB5Ey7R!P($&z?t5m{~+x4IlN)v~MtNK{>pmj2MAjh^^guIh}UM4pEi z7r>qw?HG1vM$j4Ms$GkbXl3Rq{W-^qAgYL_j4)j{uX5H#>@j`@yekqM>Ov`|MSJ#h znBWmC@6e}X?r)n^{II&9|H^7CryIR^X^KaAB!|#Yq~j&iZ!K1-C!TB>5wZ?okWu6WT2W%DTQb zi%KU2^oF3LTs3NlO;r32^<3YwEM|rNZO|_MYxO#aS54riEvHMFV<^CKM4I3VR_|u% z%`d^q`Hg!d7-s8Y{1}C$-rbq}t#+pfa82MGkalbJ?C7t(i0WAe1_sqor!b zg!RhpVNU?UuKIxiHiaON)pZDYoWK8`cS9{ap<+4I@x4bkf|~P^0$c1S3J9F>sonJZ zv$?%uNHqGzEb0+a9%MI|74qr2qOH9fQ9L3h*~g`YN2p?{PUE6y`-ivSL3-p~L1f`1*gk4cmIyEDO zbbtgyia>@~F+qWKW{TBsHG~pG6H30d2cD~tlndlwmrIrHK}^BxCqag3yUEq{DdiFY zu_@WG)qxT0_llEAT#Z>gG_$HO#H%F@+;8D&* z(xqB815T}?Io9-39AoI>!~)pbet3g$jMb;}lhD?jDx(#SW zBnszJOjrnLf*+0!sRs$1wTe|m2`}B6CwlMKJ^xB@9U|dkD0IlL;$^PL@e|ovv8IeI zHrpML_9vx7kD?syi*U7?_9HB$dg0bynwd)eYKNqY(ugI&%7+Zt;&bJ@ zviSSyoH}RVX64z6n{#Un>}hrN(R!$OugqOD)evY2tV;29C&CF$7d7&%y@%=_8e*&n z=uK;PP%@oRZ0=&O1uQ#ypkYP@$EA!H5!BNT_-0NIyYY$`O-A~Q&(NpJ35IClsBpL@ z?H7dP*58)X65N>!6+g+|R()-rs7IB1PrW(K}Bxha8P%ZqSg-VqFZM&bFj0#&( z4+=vbt$!3f9L;2!yj`^N7INMuCz?2nhnfj27wMudS9;UvR5aDN8iLTCyr!5lgdeQe z_lNxFb;vK#xcQCVkE+_}vz0qXHvCYs-#6u< z>i9i3?FM*u!u$N{{{cYR7{{mNm_Q9MoryUe;-!l}t3XL6BRvGw#6Y9{u_uT}wQ%D8 zSWwam#?i0eyTpAIVmHL@#D6M@()((Mq#*P*;F=P1(k4MRp|#zDOyt3E$(<$iMh=Ic zUa}QDyf4)@Nqyd9Y1lYpk|TSX2HVZk$@hUw%-;eZ5j3X2-?|9y3lqZqi=iZVD;Ls3 zB58qCL^~|#7QZB9A6fOJ?&$0uf)%hWAQ3$;@lU0gU{gIl?vgdgIe7tAU%GI&+*uh@ zb~()aON(U{+t2AA9v+p8ZrKcCc3K#kFzrO6J(gWkJjm7UM)rrs@T=9k9sZU|t??XE zJP2m;Kt~Cm!C^xE5(~R(z+UKys8W-5f`?1o&RAymf{M@+S1{B(@TJ6B&xJdAl_(P`G@WhR=dd{q|<+bkvbN^1)y!H*>yoW4|FkDT_dZY-%TN# z{V#xK&ztpF&{ zRZzB&(YG?~P%jVo(Xu$!ni8##ZKR*q5C%`TzQpngyMt2Inz>de`okVS5}|xiHgCkC zs=6kI+=LEtPZjs-itJ$k52YxNH*~mMEG{MSFEb))#G=HfUk;H6@ot0rwn}kelVA{g zg`X4QG!bLW;#4gdn0iG=eh~H`2~}Kzn5l%g%({aK@oP*Z6>AkYI=i z0|uO#qbX$5*lvf}!^9Q`#lsOZ!+eC#Z$6T0CPGzvnGuj;bJVyCvv?ic_`7q6>kP=S z2>}vHK4$ymL;hw|%mOiz5tfzVN6kkbC_ zFF%?4U=FZ}44H6f{>&Gf4gul$10aH8_Ci%_6o+B&*MU zbZ;IFZ%QHk!6m;e$$$eacD>u#=gplG4bATU6N8+28DD{1jLOK_{#8o9ZY)Vw(hzpU zsZ5gNYRsr^^agXBa0|1PLmCYy2_{ZlM6*q47Aquo*SV;hDHg@M>7 z7#S(l$(SUWLE?9%6yqU?C|N!X^*%h{rUGbKvjjd95Lz>#klNAUkiS}8i*3i06$N49 zZqXHz4L+0p#4_okI29!;i=QnC?dr{j#RYL-)KW(A5oQhCF zA$)GRJ{+@|!hK3!54x^6f$lv1o-?X)yKZn3(3i&1f5tzA!|{a%scv>U%0-eet^HmN zbtDWm#A1?Kyi%}QX4NO({HdYZu>k5{TNU*-HiB?Ggn$*oJy+8vzv?Kr7AGcdKX<<; z6}=oix*e5tCI@CvM!aN@0rkPSyyd9h^N9og$;=2-#Ms@lAP5izJGbaK$*ia>VW>Q) zh@Vvm_>`5ZS5vQ7#dV_7dl#} zYugIm9WJ6BE<(0dvS0Y7CmD(rnaVM~2n(uSa4+_aD)CGwyf|QQn$BLZAU^e}qRuT+ zTrQHGt75cIrHN%>_D69F%>u`<(c(+wnrgN07d?pP@TGbQlm-Z;Vu*~E@=3__X4OcI zl*!>V$eNbJ7NI6#^3&Q~EL zwF$=ow%2Y{IDqWkS29u!2a=KXyzUYGuczD8mf4EjR>@UFD`6Hrq|F-Rw;FF@>JI_2 zca)kP5=xSz$(mZLT3V}+QL$cRso&9>@li@w+4JOKN-K!!;fuH{jID$cF+bxVS3jaK zSXT`Mw2~3Q+E!~?o~y@c-DPspld3%zTQTbaTnT%1&4k3Z;fNN(+EVh`pB&fRXhFG` zYrx2ma^Bj+Ba2TRp(C!kGp#`QVzgB@R;8TI;7-xZ4oxsw)({j)zjotB7{*#$!nb zl8_bZ7F+-*(5ZR_D0 zwop?{EwU&Y)r5C%<=7fd?1)UpZx7^eFAQd7!!gfj5zR`y<7XuWQ*FgR8ZO@HNl0xi z(e4vsL2YJ5%R2d1?yNzvbFpaGc7mdT+Pe{CUg0 z%N~OEe0tg*5}RpGl`=|3+K!b`o~Uj(U4l_w~Y4Lq(PwAeM;jM zb)3q?KzV5I>OPy2Is4j=j{a!wL-gt&oL5Q~1BMnn*83J?=5+6~H|l>v`YeR*v6h<5 z>#$mmSS({~w?9@`xVrC)kd?Js1Z zZ53;pG;Z|E%(+XS$6A3d-sVDAjhpZo*P3cPRw69Hu{tY(Ewui+#+%5%iUSwTAV-J0t^|r>2LI;kt;Bi{6ZT>M( zoYLAtS@LYcDr_^_8z{u^;1iC;^K4^2+J26g#52SC5pKH#If}n1O1M7`3!2)9r;3M3 zQ5LczaJCK4vP+{Q&twfD**ht?KPkMhquV@+bF~W_s{BVFi1YLitWtF z>%)7T6t>=zIx^dd1f0o+v!#NwnTC@%)pw&2-;*sh?d=>Ft)c^0#Xu&1C3gb(}Rs4zvY2-&Z2$WN1o&;I$i5~$cUR$P&Hg2?c% zOHy4aM6M`hu5IsKsYR}7ysy=m-RNYl=qs-WZtaN%uUXcwSr@LE9%m=m5G;$_q|;qj%}isg~)dulNI#JdvWAj2l{)i*gtf53Qm<>u7B>6IXwwYAH2LD zygzv#^b8@d?`fIzdn}xYMm_|7_V%sx4oK9OK6(hw1VMNoy_UU0zIz}3+Y2?hg@)-o z1}$8Cj+C4Bd?Yh@h|2UqI=YXoTu46)Cct<~rhiHy_f3>}szdfjwRuWWdCL5ZD*fpx zI}w!C`IMdHn`86jB>9kw{=*s7H=ozHpwg%C!C3?Uxj1vEgx8Oj_YN8IT$TA;o#@A6 z`CP%iQd#+2pXpco$EU8*sQ$>Wfp<{qn-W*#q*`Jv9c}G zzh*%#-^r&J!M%CmrRK}Vz{AVW;g>=D0PznG!zv{sGJlZ=t;QGpYR`fvR05{nP9+mC z``LdEJz!qMe__FY@w>APeqeXxd4czNZRFKgotG7xz~xBPbrb)^aWOcJK%wQz*KV6f zy+fq!#K29Go!{ty!O}qH+lVj6+Rm@`hSW1*ARJk(&;Zv9(;cE@8Tio z0v+*x(^&rpSjR!_-^l8J%H(grnv09;El%G1pECIv09^;5UH_M{{_k<}|1`<}AHe#J zU%wgaH(mYKB!83E{{hy(#=kdUjsAG_79@WwlfThw18DABkQ{i6kn{dma{RwswKo8~ zmC1F0{{gJ=q0k86e`VJHG1esi-B`b6$=~AS|9_eM|A-j>fBxYAcVk^56@tQP{6CE~ z?Eh`7mm?$pS7VL0k*#4i4ksLnOe){TAeSMVO6AGlYNuGLS}N}pRb)S$567b|C3{#Ocs~7WL;OQ+;{@11DVr3`D|Z8N^%(Z@S7Nkd^F_ zDvs=;N&^Ig!!HWre`_};DPB*Ssf&P-%v0YXA?hagMYqwU8>XyN2dT+FnPwvE$^FW< zHNGwP`*^(fE7xWG$vVel&CW*FA!xlKFJRdBs1O4GTeaZp`KC?b=N!i45)UlWy|`;Xn4Wl`om`Q-%>$jPN`Po~4wRTVW%H6_*v_O(slpp|wCwQDs@>3ZWe z4yCPZ)~Ahhd-nScqh4~q9V@^F4$ZSXTRY7Kw6$mT^V$xq?u%Y@=WTVyr{|qbRw!hh zD3JY?n=_=o4{q6TR2UJi3+ zRoX`JlJz+Zt8xl8jim7qHjg%|_oa=2{a-jHXvkL`xz`yO}R7$XlM}LvZ3+ki-gtuV<6-z{o;D{-!g zd?LMdX++cRSXT;-$HHW2JHOv@=~cQP&&rSYTC%4neb{w5h5lOIf$(N_$~oRRb$t&> zzjNM;Q{d(U!ifhSN@97PeI*iQ*nGc-Xa^llW^ScF{Yo8y7qF~ukNa^_T=+rYB=1XQ zkAvy#>hVhTx%~0XB^GUZ1mlHv5^jR z5p)_`y&ZA>ocg$08SAmUA(BY=)a}V0sCM>%^Z6;vsPNpitnJyi1q& zW6+6;?B6$=1?3&wA`IuH5uixL>KcUeV^;V>j2z9AMR+K8NsUuy3e;=i?)s?Gm{MYb zirt3M-Dtw7EKS?xZK+`;U04`#29b>(>uxaFB9Lh)!B9mB>K0S0P(cz|6kpqq}obYnKt|LUYP|lgYH4OB~syB?OfWl0*WkL6uX>e+O&}I1;Yntt3UyOHw32 zu%_`Oa#X~{`{TSZOZo<*=9+v_6N$&JiHJ9p2Y>mbMe!h^AvDwQ4jvF0=@u$$0UD~v zWf^ICHAzB}g)l#NIl14LQRR72bm-=TO7{n@;+HhIVo&|gXJNduHME*5lf=kyhaUAF zw92N83Y=(TvGbH_$<8MV5r6Bc`|HY*#l;7-kg=^}aE4(!rskaeQggYG%YEtWCZdE= zsVmedlVc?3OpP@-oBmb^^%E)^p+)8GkIL?|r9kI3l(A{T11e8j_!mNy2lb~(-ZbmJ zvUY)Wc1B&Y=n1w;=yWQ>5s9i6!Jt~gH*87+`zkR%JsK=2_mZ3HDyb9xv^cEEvJYkQ zAIZUAQ!22^jj4|1^_Xxn*CM4Q{~n9s#Skgvj8|Zd*#);C1y=~%RjYc|VEFrv=d2`1 zl7!oFv5IS!OGj3#y*t&Yx5}wQHmxA7HUbeOsV0awdb)^n!n+Kzu=IKIz~zM zqcJj*3Lk2H5?DW4xoa?+tBt{WR(T|asdd4R)sgo9w5hjCYJf(pSsqb4*?arzBQD`l?V^-9nB;0T-QIKt zTGoFXcU(a~SbhOh$z~ zWreAlr#@1-1~(UY{o?wKK+MW+paASZpwywPq<~3j+WJ71CtiG$q+|(+Cy*NU2hvGI z_xerfGW`y>_fv z&Dbr>Bs(6**c0Bz#8|HVNH`dWn@ka)B+e!Kb2TA)(UjD!j!V^=E=jHIz?SX1y+-6q ztqdP$g5rq5AVWAl2eyA#?w>6B%Lhs?yW=W3tY{sR^)yTPuPI7!8WQl0uf({)GDYO& zPyps=-pBY{K!xQi%V(*2{*QK|@8St13w>qwNfGlTgr=l*c+KnLJ=huTCUG?c7@FcB zH9B*@wHpQavXvW3)5CxSecuE!J*D&gfPFRl&Bi_9JLcAt-{zfuRL$0Nb>}4}hB@D; zuo^fkc{dj1s7E)kw4>U?`r+hr=&7%56R+!E6$9uD z7$379x`SZ4mzeQ$sAeCYpubK@0#C4whE@~V#}KX+&)i9VUTpDYIGn$p9a%knv2oHq zd;J^fz5DlQ0^@HbbuPR<{14m|H$lTBLkly}6G< zeMqZ}_Sdn^bnt(Vs_7=%F;=;TgyUw=oBI!`Ri>M5afhO-h7x&&Vgn%kC{1h^eIXx= zpA*s~41p+19=7J%nx0{>ViwwJPW6)E6;|Pbv{Ku!Qr~GJ-0r<7WUXzY{O$PMJ%=N@ z4kD7_Ja23y++^j!&`V%TGE%=w0~->#RTjBB8VLqKHEX)it4O#GPb7|*GToR8*_e5C zZOh8Aq$5nALoXH92VImZ=~zj1H2nLD=GZ7`t1Px}BRr1)Bz+CYJ%kdu`BY}bRYa-A zFqrd!Oq&VJ1%t!!?liR?ff{L#S51!^Jguy#Xti`RsUrYn8}~@(F`bowM8SmD;-@_h zz?zwT;<4?Q^vEQT+FsGrm-X=XwvyDLf%5tCNO{n3#^~DWl}mY`al{bu>6KI^Oid?HP(rWB;R}#`< zQutjG2DCd4`F#WtS2CQAWqVuLy$8=jX7ZLSP=1*FbR16E4N!Lj!ImisonnmLDQt28 ziyXjx47^8*GnP%|;ny*sPqI9ThF`M#>neU81^ijFksy4(s}Yx)tT3{!LWrluNthJa zu4iOz#X6OQpz0x|9s|b!Q1Ak!S*k`Sn)+GcLQ}rtIvG~osfqk#_9v+mojz`I5rnB` zQs7kOcBL1Fth^4p*DO_dIly8<4HhX$%7zG(okFzfPaK`LW~;B+oe<8Ok;0gSc!ixl zMRQ#o^BG@ip5h@o$DeY0pVCY|+0^5WOJE&GF>y`Ronrp3*D@6?_>d^_+ z(=XH27oEuM*UKA}i8A8M3%O4iuf~wej^@tJx3uwq%T@)()$m1bIW8s zr09U9Zf%_kaIi4n8itLFq;z8ZPk?W;D2?A^kc8(dQ*-GYtuZ0eVjGo6-WP85#*t5n5C z#)O1Xg7%1RHHq$sm!-2(oREHKA)Ncyqux@ zdRvL#WJf$+hKL^%IblQR-@+(u&LG~1)$C;d79p`}>?`(~M>J%Brqp5%rYqwnu?&K> zqbrMhl)w5kxxN*feVh07J?=NPxnrxqE?{~LPqgE<-0|cj`C@au7KYw-5?Tj&nh+jl zO@|eH_TDz-;EOtc%;V%UEx&W?@p4R_(J?9dv}85b!fFi0m4F34G|O z$j$AxX!a}Ug%r(TIQD|e9D0budO&vC)tfztO!Xx>Km}9}XgLLx^t;+oJY@*eyLx-+ z7khVQln05s1 zuVL%%-<@fQhz0!gsILz5rQOUS{B1+TAh;MgmKW}O|1WXc7{0D$^FJJHV}@HZh*0R_ z{on@ks&z=RGaKxhk@kAjrn~%Nns#%`1ABpa-(J|5tj~g9T&=CX_6%W0l*qzrB=kmO zG@11Y*igsu(mD>?p0vBebO?79vyt@p9U4hr4+{miR!Vs&BaK$|jHphO1k2Y*%VbpQ zW`z=WBE)*&3)UbN**7D5u4J3BWr6uCv=E9)K0`@BN_RtlB|kwl`V6hckh*Q4SQOMF~H+5*4jBh*dT^-ah;^td=`Gz-mC z-i~(ErGsNK^>Y3??H8Z?yp6}zNwG1I8M z^#L7Tb9{0dOn}B&(5YrL$)4uGtb|=qx9e>W;m>OmsGl=B?-x6p3aQ(` z*e)^1U+b(Wsuy(9vnSF}q$XVQLhA*A08kb|o=MueVc&fB==#awI^-M(*%@ij+xYIk z5o*^&B(woDSD&!c(=rvaandjB(p6Djw1?V|%E} z%{oScy}l#Kc8Fq;bY+d4(1t2>dhltsUQh4quhYD^+Wu+<-#4Km;%c=#6?2A~-mMv% zmuJIp$0tGI_I&QBceQOd)n{H&1dq4?qef$}sY$b3C?GUcimKtBx51Y`k$PJwkvkzO zxIs8n(k3_Oom;Fk9#fl%iH5SBu%*-$-B(;M`_%vanUy++bvj9I7`iLUyy%l{`w%tqa5zhJ?xbla`o;=rME40aytSO?- z6dtM>BwLuwUkbiYt<4zgRXqMRuYXL&yxi^g=OatCu$R+ASN(QjqkMj6?jZZ~9*x`L z7E{HrgGb%{p0rE}Ec7xa>d91KPPZa6;8zZqNfY<>3?P2xJT$%<)9GLgks%}x4a%Zj z6;35vxKYI~FjWGm*e^vtR&B;zgNv^Dw(evfuAd4&93q>&+K=71AbZ9{E!-`ug%S=Xs+!&zh1rA zxHpcGU^gT;<$JXB2r7 zt4eQ~?!bzpH~7yrbp9pv;Uuxwc3|#kL+7t5<0Gu<_qGd*5|L-l5W`_M41paLKlGkD zlLcV53;llC1sZS?`TFSU&?MD~UBLMJA6eDv{6c$TZ;)Qo1FD(z_q9ro%~5*FNt5pf ziWhV24?S3~(OFdhCdD8)1pH1q3IK(`Ai%&QV(c}Ef}(JdFd%$O#Uru!*fbkm$)L~# z*pFxode?8A3RYS?Svd-ExiE6fj4+>Mi-|;BdOSoIS4-&_TuL%gKgeD<3O1%yTVhcdU)6&Dqy?gRK9u-WX8w0b=4io4BHXnjM@b>?O6t4Z2L(^5m=ya!Y>Nw36R-?+ zeOcl$d;Rg|@_#sIIUP7c$dqDjsiX8`j@viT2<)eRoBq74j!x3Y2!R(Hx%NEkAmUY?~qp>d1+qj9ARAD+N3}FzI7CO5T526L@y)&yTp}DzAn{ zY}*Ns7tkySkfPJX@Q1|YL{WxSiF0Wv@gCO9u#3P^D00f+wo0Aw?WoW7D}O)~UC#?h z)e7EEOPyblUVQ&iSVeG7WoAB^&pOx zQ|IckhH5`fx~6)4O1go2uX)3Ex3s)`Q6VBTqEtkbfE@($f|PRO)-S%XmFV+9GwrK9 zaYk`94(H0pZ1LC=Zqgmg!D2sRgL(##y6g|?->8!IG@-b3dxps}@bg=rSV{Ip({*@K zEmLy8%4^kTS!7Nn!%m|aj~saJQHAK+4i)<^Ss)J(y5o9LhcSHpQ?kq!2n-}cFH6yv zKy_s7r%7?&vX;6LSxh?;KMpKgwJz|?9Hho7WLtHjh`$(SjhHw5j6!&uHmP>{EHHP$la;R}&dlJh+5V^XLqkx$KjOAW*)}vX*KLUaKI$Y!WB~ZH5e;>(~U)=kpsESrbJhuk_TY9c`;6KKq4S()pf;1ABT=6!WC&}(7}P}u1Pyj?J)A^5^G$;H6^pH_9TeQm zfXnoBv5yp~g2{&(Tl{r?SFurFUNR4d^-~PvEAmtGmqD6EAthvhJAu0_?n`zajEAf~ z=v`HwZLjgb#=WIPlvBW=;P?D{JO%DvgX4(U^uNihVA$?;S!s;XwXm`}2_ki6meVR7 z&k9}PO?wL3xXG{1&N2Lk5Zuo75`-de@TU2vD8@1!)VcN1>-s+?tt*^=2Sx*5v}kWC z_B-KVvp_I-wKnf&0jg(LX*mncRFXUvGHE_L>;x#L7ONv4stzoO82-Pp_fOH4bz$2s zI%C_;j9p18R>iE?wr$(CZQHJ-VynW6Z9A#C^8WwA*Y?3~yY1t3HqJ(C{b2ObpMGE0 zZ5}?4V1%Zw$#C_F?IYh~N-q;J{Ix@Y)kLP=5R*23h?xAVG4D0XHIL^tA(O>dsSk5B z8~ZH-AKDoPfU`;g+Z2h?8iquJ_3$9q6@O4~K&&Et8J>?1b1CX)?XMrZprb5uQL|_j zYg3|9=sd`0cpS~~t5r_B*;P%n8_d@pDVLJsfY-H1|JyKr^lhr~R2E2TsaG62G;GOM z5_)-}=S;bHg5NB3bKYsJFBX=SlOCA_r3J=-?IEgX1QY?+OX^$e9NTAM0upSJrK(vs z4B#pfUSdLuhC&dISvDT_p2$Oaul`PJSJPUmt7({6@Y8KW0I4pgnjgpUEeZ@6=zH1< z`ngbU$O-ZG>MErh5#;`sX%fYIl#D3x?m5SH?v{AI@;J_3dH9#qdrf4SY#+L z!c&T`q(a}>tnXvsav&(oNvYvIF3Gyi9faB#)xlS8R)vu?u+(LiYYZO-2W}cch}i4# z>OR>W;q?Eoz8mS6!4NS3Gx3VTc$(5TOicG*?HbKH9j(M%&yRD; zlV28>_vF-rv#U%O24&jDBCT=ab^2rH`sPt;7w-fz^|{I%^=$bN-#J^UH|TZ|PK?{M z9tda0N+okNcF|qX$}sKX=wC}`D>>!FD-FDr2m`V?mO;IxQSzM8`Oo!{_a0+1dc#^x zA7#uaY1_mk48}6^LFf)50lDm&{Cca)Pg{659~qIzE~I3QAnMZV$`&xXfYxSSG&}Da z&k@@(Kmdu)Zhz>DKBvIC@}Z{+BZw|_g^!aA;iNk0^uF$lKB)m89Y!nW(mL{LAHx8w ze+vDFZc*LuOuBGStRLC1kJao?(Okb@GZ?e_jjZ_)I{Qidn~||E;I$H? zW-93dG8xFu61_63(mf&{PD;UEsvsfxepr>4e&_w2ND=|y){@G>zG%f@i^J?`$5P?b zlj*C!;e{qmZXP4rM&McRF8()=)43S)JCpyWfe!RJE(8hDK2ww%vyh{V&sd}#01b~G z5+ICG^W#03FD;n+Sf+*H0sgEyGof3!(I78-FA|Ra`}Z2&vurw8#G*L(NPcjt&zBZh zcti+7R2(M~PO13#%pU#{Mq0==5`|$^lVLR-G35h zn(aoyYi;bxte6ITlv^J0+o~c!fj|Y2f+=V?`COzO7F@k$L~ZKF5>Qk&QEa7PxPhys z7Z{*DH4L*_Rgz67NE5T!5z;WAPYIAZaWO@*+}8gqzfQP#Q(6bW8LkdMWbY&l{ z=WqvQQ9npn=7_h!g5Ly;XQYg09KZ{i^o2l12aD!1rXYQv=yCYyfvHI9T8Qb=&VlP5 zjlu6h2%zVLi<}jtsD6voq)U>>ibd=mh#x~r)safGk!tlA&%~6;`U{^u)g#JKnofXF zG^P1>uvFNe@E2PK{)q zRaAzu369e%Hsh-)vQ0g58%sTO!ZJMx$RQrJctyYVUxmU?P>CV(GapIc*?H@l}_EtuN$Xe-n~tx9Av2qf(g;rAS3 z;Gys5EELe@=KY&EUx{0eKHZK{I)a%hRmV(+ZCY<^-PY-#h)yY5@HYxKRdM@!?}I`m zt#sG?QVbDM9%4-^$wQ1mWFLqQxRA}FB%m@itfF)^6-6aBM_s$v)RG~N2WY8T@atj2 zV1XZ+qX_kA$BPDlq0zzy#YTq2cgVm!hzvGOlnAw=^V=vVi!8L^DuBn1*s=-4%Csqk z{0wd=I*Z8p318vv&FFW~A;uGXBU0ihT!fuPM)5W%Eb|R!Zd?Yb@u%xJSE!W9eS)rT z4`T~i53Xv>$(#Y91d8)=c99~#ZD~>vQl9ts@Qyz^xhgsoBzjN+`nu7iJAsarD^Bd{ zPFTwTQngwP1`N-HE1m#!GAW_ZF*pU)hqsJc9a4%(qy>J0x8e%4&=w$kwm(Fx0H39?8ZS6#_($j++G z7^N(Y+|l8C)B!al#(H4s4pD3_m~JdWMJ+M5ZRnt_!O5pr%TDlbwbCUC(s$2rW1%(H zi+o8BzSA8b>2az~k&@~yVtswfXs&J70BrEoe-O^jo6$QFE=$GcKDVw2w{B%O8kx6) zgtu!FNS`*NpC7+>Ky6`EwSw1e*Y)UsFb39Jq<{97{Zmy_x8=BC)W-Q37CRiI_TFlW z*u3T0sZQ8|6d2~z{Ryq74f8~ZcB|saI~}3AijbCzLnW1Uwq2qTi=3y6PPv=Lt4Y3E zM~b}%#NKNl?LPX$LsV6KSlV-xF+mg@Q-!os47=NSxjWBpNJ{lJIWqd4iVe57+k={T zHfEsFxCiP@&<<=ULhCd7^=8NvW{mZ+g|8Qj);UU*xDX*`aAL5}(O1nGx6hbo{3BVD zw``xUO(J;C5CYkF%fj#nHl85z0r20}1%5mfV@<0INe{o^m1>-rK(0jC!MBM$DJrAh z6XTvHfk#mzRbjejn&xmYu?On|MdU4#k#wEqLtX6Ixj^AIn@Kf0eT5bR&Oo6gq#-S2 z1lYDi|EWFQFf-jNQ`4FDi*>%A0tjmkEI9KGV#J1Kc4no%M;27amSJMnTi*>i5KiZg znlZj#z!^4`9@V{UI_UA~P#s&y?M%ZVyR~J?hzEETZt{ySubY@DwwcQf9{U^}?v#q; zzaW7!>EZcC)S*hMP9zr;qzG$V;60sty1}33K;`1EZbI&?f zw`#l~=s3Hw(R6@$2Zusu-uXaaz5VSEvaVc3z*kktX~&X z%NNr#HaiORBW5NlV1jPE#{0U*kcJ~2y`$~oSj%-6JsmbPX|~f(Hnd=uY(*C+iq#<2 zZs`cqb8ca?Khu{hcJ&N-m-~8PD=9V|!~6B(hf&bG7lZUGRCWy!wg*QxhchQN3VQl+ z3G#k_mzK}ZI2O)F?AFDn4wrkFqZ4MKH|>b+Wee@@pwaFH?5FBXPO&Uc8g@qiZNAK; zyp~oP-Fq3JG6I19ZSdi0qCB7k_Hi8GrBOcW%LB8YQUn2u#(WKweraQrM-!&s!G9<43vT&m2G^8oNW3In@bJYYfupDXa z-!Xw^sd4T(>;s9hZx;ETN!9Ove>!pE+hD(#o%zb0 z_(4|!_W2j!4@-+ zkB}qZq{HJ-QO4J&&I~R$Ql@NshN-c}AXn)Tex}pF`|jr}@bP{T)E33eQ3DgWu#m zLhJR7_FU`YJR;Lu-0D62>|M=P^kI)*I?7(+)1MP&J^D2IQ@?rUdfgEuyk?faX61WY zw%f{#UQSJ)rjIUtYkw`MebS=Sx&wC6}B#H z_c}p(s2!cLWC*Is_xi!{Fo^A0FP}@DAJ}UC-sbMzM*Vg~zDwqx^qlFS=5Sw{l+X2NUjhfJ zsqN45>(A}-&zBz|nPe*5yi!RY^(jQ<^lQ!Rx1{b~Pqna{Xp9(WA{y20_k zIsSJi@3lYzdcg4)t@bv#5X1N#%|hDu z^a+Zy6w+A$ZoX2j)g#?>0Zy3eJCKa$dLd*$P~=2C?%rqowvQGx_lPBfVa# z;q)D)_A|9Mq(2PkI!F42d2a~+`p6d1z<#?g>OV92m!m8`hG;*OaLwlEKQlR#towKK z`n(_S?6!{po0TT>MZahs_Juz+!^>{)?}FDmgW=~rvE7uh2NUVv)#W~n{~j-tD}VFi zvyVSo&s1N*?d5&B*+awc&trXmdf2D*)4%@rd4G2#UnE~o)Hk^O@_diN1Lvlq0L1?4U>*n=7rh?TCjzy{NymGi7YNY}97zh6U2s`(Jy# zGxTfD(O=TQ5ZF@&nv(`bov{>VH=nN668 zFm@c-z&gp;J>?|${{u3>|9@%OYe3Q$AMjtiz!y01l_LK_2EKTKFFE@cFYrYTe3{w5 zwCw**0HBfosDb|t2!PuESKJ)z`G2O)K~(@o(D;8&_SJv?x0W3+2KoXBzQBS1oa`C@ zCpGYe4E)Cnxc?6!dl=yVfd#&7>^T2H1plX#{R=DjVhYMYUzEWYH9!E`_@ z-{=3oSK$8(GB6B@3uE*XH6TDD`b*1BDAiQ*rDcb}1^j9%o%|0O_y8;VPs?sw_IJFw zd^TSY&2A}Uo;n)obCZQ2&A!lM)EvLi9G!|o~>Gcxx6_SA{JK65G@$rgTJ+;f_w(H1xUgS^No{rnl z4rhtYX@aZUV`MnQaJgQu^MeU<4u9)jZ=qAX-e?d>Jg)cCz=n5neDpkh@G~OSkuAPY z@8>(rbiVtz53gV2B@sa12Yq@}#TP``k>~f`_z;YQDo(Q-f=1V&65xfU004(YWd5ZN z6=bm+LGf?MAQ(ldq9}wCI@Az=?=)5j0B^C_kJZZU(2t_8i!heQB}OfdVf$xskVwUm zp%%|irim5=>3O)D0)a`3nj&XbN$DibG+Gj`EgW)~3aKDv919VPca)`l=0O~<-!yh4 zvIs0W%JG;vHFNuMvGX4?@MfNe^hfHXFoLe7+{qXIjHV!x%7n(!UEGRRDf(#nq&Qv= zUiS+b=u$4Lu$`zZ(3Znrwkc|}BB(6S1bNYwXjRc^>((7<5!9r9It2l6bV>;Fe}vDs^h#9%Y9yIysZyes!X_v`yW z!IzfZy{B=wjttSs2=UwT?Kn|<&E14!Dk1X(^KZc|2eNVsmPxMfhfX6b`FzeE?8R&; zjodiBOEWB=bIr5on=x4P;u1)h3&D(+jlOa+wU5p!{h~t%2H}iPtA_TrPixq&mkTQ< z?Tj4j4x^h1>t7p9+eW_Hl=`yMGl-vagk{Z_bIp_F&x*Lhdo7o!OEbmGj{VBy^Ii(U z5*Hv|1lg@WdGYJ^Ax%#X622te?(MV`XQeYyC^)Xn!sA506rNw;%aM)ALrn z;*KN5awd38X7|VG0vP|ow;1S7}nK$92?od!brsqGo$@xcyaN6q<^((Y;~cu-;O zMTRndkQ&jv;NrVMh8f&SB7qKr=n2xO16?P9uA+td+gW=!7G6fdN;t4>i{Jl7` z5LKV?N=nw-?50#Z!T|kpU60JT`}>FUQfdzU!CJ7(P%mQef?lUUBTNI9=>seBw0CH5c#N5k%rd`S6ND)JdOlj#x2^Cv)K zRC>87E>&;HyGWgUFqO~lAx{5OUSnEXy$Kqspifa%>-P$OsoqdMoMrU~+skrCQ%a_A zMYR#T!%DQ4geuzw1+dYje+LlXKr2>dxEQfIyqv0cHGYvvXf3`VcTKKSSS9 zPqQi1r5byQkOHVE4e-%IL-x3!_0fafX8s5#Rm;8szQjQzUt=U|+oe5**xt&M8{kqd zvw0@>Og&pG3&`|FAG>pHalb2&(ZeHJUefBFttXK2g(C#F|?tRG> zlt1gxdsk2tG1NJ?P5jA_r>Z0Y`ajbFfF&p(S9{j&}8|fn%k}Ti_MXo!`EZFIjD0wqY*wUJ^ z*8cQ9k12vge%wZ-H`mOEWoeFU4S!EB#{7dUqB*Tpwh{mzt;l2jm~go{E>BC=BqqW+ z9WcWZ@{EWlkzAPtN$ev0)u0Q_KdEHy3T0T__ti1Er^ZSf%XPL5QfR7QHSS6hyjJXs-qX&K zZIi~Gi0=WzYHb~f(>CfGM{8J^zqB96Q576bXUJpfRO8eB)bt0RIlb5a-wf z8v(`uihHVYMLBt`__#%Djgu$D_a4yx*qJoi+C$g8*|a_J zoC_8pb4v3v3fVR_uKafCkwg7ux&$xgBV4H-_pTq>%j8 ztcmZPBGR?i(O!S{Owi;wV@&zJj>1pey{+2R&v_<|WS_7rZCgC1xJe%FCs^*6H)M^# zLK4GCa+z*~=je5%j{bFS_QpY@8u6!eV%`BW$O&;12;^E-6T>fp;BheD zcw|#J%BUUcZScW&aWE&pjxa!Qg(?9UUrKryLSO_Fw3P@nz7tnC`E5jkWN<~hAKX_q z$vrqMLY1(TVgATD^~9mg#ZV>OlsEa|Q2;i;`k{x)PBd*WC35~Xq{cmLh1pM_|Q z;wPD+^mQ7b+d@$-U9-Rp6IUoI!$P3M!?Ii4citH_d?-pvJ$#NUctOJn$AW>aNpYzo zc2_lQwIqhmBM!yTB+S_n`A_(j1@{eZJcow|(+R~gYye+HC=eK@JrXU+VV%kqHNTSvxffb4MdWeBP{Zh=6uy!UJP^6ZQ`L`W8yo~~I8~xdp zR0q<-pmu=X$G{H{N4fSm@OeFw!W8n|6bs1ITMsQoiv&1yQfwR_jYw41q@?H)Inc5c zeY+ELlNVfr2}%Lb>=Zz3WU~-zgJNJ~&JF0K0-!dyPqhYAw|P!;vADp+x{aGdb5RS! z>M3iY`dbE#Sx6ED0Rk!_dOb2G)QpW(jh89ac16{f#WIlvow`eL9B6g&DwE7Gvg*0A z#x$}@14-4PGq!;O<>R`*#;o+^EYUGwBXOw)`;~ zs)F)w&s=0j)AsvJc#%+6r~H@9e3aXqtlb>VrSuwZ7i}!FaSe2_BAFX1qMi;dR0ZP% zZm#oVY)VpH?5sk3)XdQ%pm|Uz*gEQmr~OlAKAl&-bp;OfI#GLY z)VWlAo{$)$hKO&d(~hH23^#x?On*epSVbvQWuX{(CmY2o+muol8NVn#GE`s$LJ1!L zpbe$%DxzO68nGm7-!}~#RU<|VmwOiB(lR}k;PW0WG{!1iG_@fd#C20NUGG$7r*TT< zrl?#lA>PZSaYJ;UfIJ9mL4UW zBMEq3tE_*mG=+;SS}!P>$nXqdsCctr;Yyj&3h|QsnJ8wstzJbVC3c-yMqE{vb_NjG zfk=x4kR1b`Pl3eq85Xn>%7Z{Lo*Mem$}cl73SFV_8?ew7Rh1`P<)!9hy<8X=9p6|= zd4^i}Sjsh40Y9I(Ukp@Qu02=>Li_@lkpYgR0j~4Kxsv24lNlF00Q)p+k<2=R$Bds= z#v{-q6g*!ip1Ak*`k5-!bjXG{V1sUAOdrSsmF=|xpVjl*iaVN@F^UXjCkLhL0PwiI z@wap^{&^$WB)}V{o(RDT>)gk?yhJd&4koc#Zn=pGp%!kpA`e|N*{D`iDn+NT7R}1W z9kw1M(Ma5#$G_f~MGGLJFS>kd0Auq!J;M^81kfgc=V>T%hS`|NRKID3>++^BZ{Vh} z5*T%x0#Q4|PwP#iO~h{j7QBU4-k~=1t@bjJLc9QH?RHhC_T8*@w1#$=xpseoj!ny^ zQSACtDggYst4?-Db5=TQcfRIOv9Tl|kpLVZYSui0%VDM~ADw^6LxB?BVt)ioZf_Co zs=F2nwx&U2!PtSk}={=0EZ8Q%xYTPM=MZbK~Ly-BLQFA&3I=cBq{Xg67kR|)( zX>CW%bnyrq!8%%qKH5kavVnX6@(Vx-LagLb_Y8G0Ni=|=$DOICDbAwrSf&$^Cb2az z{dbFLos>PSP}Ir08LC24_Ip3<4e?`iiwbxg_(z+FHYGWJ9llK$*;({&t^TR%WPA$g zEd(%>XaMGvqY9TrM9$bAXn`M;nrP&OS#X>TTRG{%Aq0R%~Oc6 zGZ05Tl*v$cRaN(^Yoesvy*ehX-|CkaV$Fg}{LNb}L8}S!aW?VZ@P+yBQO)p1!pZMb z!xBc55ikNGSUt@+gabMhmew|_RmIfM^(SD8G9dojkkwN%r@v{tj`WDpeQIzv6 zc!xpTXa!YK%AIV?9UB&vRU<~XnLR#yHf_|ioYspRz!hPqbOq-v0|1$M7FA(3HfFX+ zW=>>qgywM;m0;Q)L_hc2t6a)@wC19XuxJhu$qL!GP8qzfzeZuIk_*dr{)(bNLe{8K zN?OellbacJ9l=~s6BSpnHQCa}DyMEpXF)chE6A_O;SC$!@q$N?a?c$l*Av`o&_=|tTjeqHVdv1?%q zq0dkbU(FbypqNJ{cYC19Lq?-EAWk~pH+aRfwlzX%opK-)yZ~^eqeY9bu8t5;Y%_P0 zRqJCu7rEI+wDAY3chRMG2&Q+DnuB!u!bcdo9Yq~SbtQu%jG>B%v&?rLwwpmKwHW~q z@LQ+pbZDdwbl!#w_G{v2SNvz&pXynRjp7cXKAX)|L!x1O4l`rMm2D`!Sj{O~>oHf! zO&u}Jc}C(G9n&F<@+0M{wcbti_05luO=9#dRD{;wx?B5ETfDVfax!!9b6c2ogA<5m zL*KV$HMYTAw%2O6S;n@P-nO^q)v-c_A&JYw**sYXV{!aiorZwp)j;R-N*BVe1dmx( z@EY*m#@U~9mt6zS4B4eMqeT=EJB@?pe7di`W{bY-%{l?HwUiozf43zIQbrGtBt4^e zs=#$|(5n|ey1{H@7uh8vZ|L@k^Z<(l?bUp}_=EwTh)ZBESt%!T?4sm4acK8e!INDw zs(CB5AYn}c$?Xv?0{WX1$1@!LRo1njmv`ZhM+O=pQOd$}$zl`oTV%2(?y!G zla+0cM6P}V`$inx^b+`onj&2*)Fk(1SAw;eLe&Ej zKrmoNl)98x=2L8tOzrn^AvdeTD~_FhfXqq?_atzzln!BXlPkb6e-r=NhTzQp0aCr7 z`*H5yaSxyHR@v+4aX@nItgSay64E{t>OGX8t`E$^i!(RR>{k`CT*?U=Rb>-@+CzqA z4S4K0DsR(A-s16P4?)l%U+t6xUvFx!yFX~dx93!3q4O&+24<2p^;zIuzUT1!$qw{H zxOtOje&x^tKi{rl+y?Q|6 zHdr#rVQT%;@$V-q&5wGtvK)Wf6<;d&Ny)I@KOD9ppy=hM@uP13F(kQ=k)tVCkV58o z_36s&BMR}cUF=^nm{-z>3_;Gzb*n{{y!#RR4_c|ogL!@juX$IL^n$`a=Y6xEa-#sn zf-kE&1R^r&$uBS=a7aj4E)RtQp$G^_cnX@EU6DX|ZtMVn;T`~n9Er-s0bOV`2@27w zh6b=d5sidGxJpAR1fI2L&^p2mdAAl`8=-;PJI=Xmhl zIf34b#G>OvOr_oEp3eOdPR!r6+VZEi+BN(0QtouK*S{P--Fqe*29g9xLBn!v2xu>$ zM#^m*7%st^J*AWAY&G*D^BtF#A{2H#o?->w$Cd)z*?0#y&(IvxzJdP{8IVm{JqJU= zp%l?O^b3MT6ivbm=GCGq zest-^8&>G!CAk974<2G5xJo9BH1KMbd?N%4a!we`W44hLK_8j4@{m3qFu#b;hZCuNP-P@UT zNf!hg0FF+T+hN@Z48`;oEZl}2Q_+^ABxqmwXI6#O5A_+{&MrouYgv-bIssSqoCBHA zhwn^=%pVA;6H(w#X~$(*dP=vtgMlXJVR;H7?z=DZ1HogSmcqVxu)vbt(JQ61{#Gk% zZ2v32(B#XsW|XFk;La+gUEKZam4W=VDaW^Lr7)HbK}ms- z9Y52R{n`S8ln{I$vua`wmO?_nvlQE$uzU14M#qy)A}`9Rl&$SH05vAws@xX?V{9*1 zvyEZnb12tyNrhh6wJeN>-QfrfH`#TZN+PH-;Py4I!QJdxDPZ^vi?4{gzymv34;*E* z=V;*6a|jR6$M4P?#^sCV`4<1gXRCoq2jtOp#tOty?&V z_)jIdZl&Z#mxV>U^U945{*j4GfC5E6V6QOv=Ul{uu>r&+YX~0ue56$54jP2p!1*f4B|EP0EGt0j0zh?HRxNi?O!ybPL&L%BEbNB z-D2?>m#WxGO(5Yt`RHWIbR3qE8Zmv#DE#9*=}hG!nX4v_5OPyOxKEK%QTybvjVN7g zia{Izwg*3T)W~~{82r>-oCh96s#S*gcSDP#t!wv)G}fuOhm4hOYKl6QPBVeVS-Df#|DU(EZ%q z5_F}@_2p>D2S8OVL#{K^A^%|#=U0GqVLK%Xx>Z_n==}3ZNe&#D;ZT5~`TD zpa8=2-y@*em{Vphrb9p#C6VV_97*!B6sddbku;qr;}dC1vFsZQGbWj>yaLUtNS3j! zcA4tSLFMJs@0R+Y*Ogy;rERll71}o~iFvvd;%8D9M$~hwu^NxfPzg2CwAoCPeQ3>a za~G7V%bH7>_n|mwwepe(GT<3)!j--OB-*@Nrx)yEO;9I?Nm6<@3^KI3@W@^+qEdkr z;*G#lCHU=%DtpI~VkLYfYitT&f?JteB+!(HWui@`lEVMZn;wjLNzEHhP=r4!2?BmX z4|(ITH71(T>p5r&`M0FCtL)KMRLRd0ieaN-w7eC)9{q@4LmWpCSg9HG63kWhVXpV~ zU0p4;wp$_M!=@nSr?ZM+3ox^Y#Sp>B(kZrk4!NO!Qy362>_7G=>^WFt961(h8Kg`0NYyz;Et9cgc@`hBR2;2kHe$H&Zg$ zg=ye&nW-h##tW@6(GA)u9Nxk_RbFhF{fphL!ALrq5aI+YdhUULyRGE}(?)P6Vn?ZB z*Rm;_`uB?_!5pp0WrqGpC8Z&R)jZ%`qw+T;!jZC|KAKMr69;5oR~Ny=uN?b^;8048!@@1vfda=V!(x-rAT-vkkmB*kEW>QtKYNB`H7BzPV3Z zdy4}B91(bIYO5q$p3GTbXxa{;OFmW^K~z)DTd!H>ye!4nL|5z~-fN6Bg>gzWP!HBN zq1KV@cD`2d(C!QN z>;qp4)WI(Uv_zeqGeJ7RD`#R`@E~RgHn(+=ETR>&Z^Xxs5u`OVeyr9Y^u#-k)1{Gi zIgJCG4QV&g_|*qc6{33}KcY^R1;_COG2wzj7Y2yfI_?t&Ox}BpgitiQ@WbE(rw{@b zg5eeL;d{E1_HhBoNho+qcxjD=uhnJj=ij=80tTZqpKdeL0l!~Q2-@H3mNEdtN{FD7 zf&qNd90I;X!h-?s1MbQfp(iU5rtjGOoy9e{a0!{26N0&`=k?%|h#B0J1KP#5!UM6S zn3BS*Ld`hLw*;XI3`nToIHx$ddXTwGM2LU#8uB!XPyVhR!!McZ;(jH~-_84>5+g{F zDReL>Yy%f1IFw+NlmcXBckZwD5`B#pZO#(iF~*irsrk7iYPc_YelsM$G|+-DXcB@O z`dSD#fDh+PG{T#=(A|Bb)I2|qGM9uJFN4bbHw`#BthA0I@=!Gi%l4MhykIF*AjsBl z(8>NFWNFi4S`%mHGLo~v9yULERoPOqCt{J^2B_kY=80M8Zi7=`>|f(Lyu$;%fHf$C z7sbO0$<8;5brTXOy+5Havm5r*3k?H`usK$LGb?=-5HE2+j6UjzMOj7(zm3I=XZnbPHkza)-Y3j3 ziZ(5On(a-gey|O%{^D5#I#F@ik1z!_Do>7_ZEaf8Yv+8>0< zI4f+qcwZKQ z!X8+&D0V3Al$jkcVj7}o<dd7)&iNVoNUkB z^G~JxUkOz&W4~eHsj-+mUtvpoD(GZm>8BS6Hx|~H;2gs$Bo2!TKWCwP2_?_cV+%^;v8Hg>W(rgonG*ZsOp=5qrGF{@Ffbt@z=|Az zNaen3v;!hCV@9ack;Z4Ku!YXSQpOpvFB`L~Df7u$`cP1Gqn6ObgjPvme^-)YXF#zO z{?0;Q)h(O_JC$UNzIj_F7Q#^71Ejt>iY66Y_TX1@AwA6uFRlBIHF`FHNcD z`KS@Q8P!hE0%73D{iA_k0F$}0w-cv3PsiD7YcGFZrPpLR>VcK{4!Dg*l`fHU3 zaxKJ2Q2@tURmBZZ8IMjv0?Yr?8B!Iauer9wn=3L5#3O^vSS92BnT0d zY()GeSYl!kwZYSfTQ94QVqWqdW~=@h$_jVl&a`1=v{SBk#Hv@rrlEIh*I6VYYW2=< zE-@Ep*@eh7u_j~~rhR^3K;vd|^TNH~B7{v!<{RsR>I>;BI&>Pwbf&SeXBf3+WtXc? zHgbh^>zOyZildQ=wW~-Y#vta$H{+}Dv&E-M>^BAze<4Y+PysH{64r2}D7V~PSN6s9 z_5ixTB-V3Fy?VZ;X}Fo%1ikwgU9&2^^H9l)L&VG2Vym;Q#gDB!Am>aWM`vEme%{jNKM`PJmYCR=*k_pSm+ zK|bB(-PE1*k{x(A{bq(ulx29bl7z!Y_%deQf`UHc&5=ED$X~xpRYVQ=iip~4 za63imlM=;Ey99o7hNjz3kE~Fudp&2n-s~u#+BqWK;%Hdp;WmfzaNH;v%(?+n&Gh|# zr*Vq(NcO*^SvF#-M}&Y^EhVNj*8ScE5%B|2@dIXJV`Q22>Q!A}89YZE{DUdHxg!rn z+CKFrPP}mLeX-HV+yO(GNs8AtBIJ|p_qV7O0tQBw@G!x!LBJ$bp_md4dPGi zfV#+iS?oHwu)$QY!?5Cf#k_r`xC&+B1C_icRl7sAutkj-cr!Rv;bOCc9IPr2!E221 z=rIP!h(`3SbQ{WJ7|Fdtnm}}b**TObtYn}^S;^f=K&p$`zzeZs%NApXR>p zku*Z&s_pp-a$E!*(=JH0#&zpJ-){k=U|kI>gCcDO8&{~5)XYE-)EjW znb&R=XO$a8Fn<`oibsBw$%{|ed`rW&k&dX$_-`W8()F7x2A9h6i7x9_0=8AcKg()N zE=2Kt&fcHp1*_lZbBL9qH2b33)*1I>ECXe*i|wWZUfSRvMtP88U2A7nM@&=y&#Dml+yra-=@*pSh zupya3X%-Znl($S~8r4nADBu$Xf>#o*UbSj?xtyWOn1#Mf5KlXGoy!N>j`Zl)b(qrd z0QShRu|@5wGY)$Vk+(S3EN!liVeNLA>K_^H_VwC;HFldSSNDB8S7ua_%e@tGcF!Bg zX9D|G4)njfY$>dx2@I<)^{(4CtZ%T<`ibrJnp*(szkbTlvz#B-8>Ee3^XFR#LBlk6 zZsmV0XJq-nm)=DkV&DAO(;<&I{!hzJeY;<0Z#l)r{MY8lPe141jF2(*m4;S14M|zU zHj=tn!_5uKk0MmgThecim@qT9R*r9~shFU+yB!kiCxmwNc<7SxUuD|s%Z%pSP9)p3 zq&Rm><}@0y zEdyWSLEy3@QT?2ys$ppw{`c^Q%7h20AGe(bu1`_ejv|&srnW5SF3{diGBD8>hH)+5 zAGIZNH0@n0U~dN%o=nZ3@D4I;h;apuqrPB?O^X|(e>>f|H||-EQsPSCV`oa#3?%|? z%hGOU67Ht%PaVup?1^q^gw3RSTREa`gs^Hl(pdX7ecI`S3u7yQ}UieKsrq+`(#`gXEtlfX_b8P74Be5u8fJ zd6bvv=UnP{hflE|%e8Ugoz5_?rsdJ_D?|B)yaKcKi>g>pCE8P-F3WKZ)yodD<(`GE z>Vf^9Iq8qyN*+B6L>&s}-4zAx3aOgBUQtiSnc?=7`fqT=YUCMd%@XfhebJTMw9}FG z)$P$WqerDx9>x<7-)1q|NW6XEZ(E+dTYpp~QqwtsuDnwd%tMhoao+S+a`QX9ZT#yd_y|PXq($2!cXu$WQ2-X$8iXQViE0Cp2$07SEFs zPdqCh)B4_^1^e2$*}Q7Q06xh3pX%JO28ZemY2c5oi(@)IJV z6IbQ^oZEem?EPZ>{>`bX36_(kVfRMZYWXK3i_H2N+P)DufS$uaFaDqt3$%;t2KNKJ zzg3K?Xv(k01%pEcu#(Q*14S|+kzq~8Zm5-%`zj0P>~q6*7R6>0THQ(0Z)( zf5|Z)t*>fVwzDN@f**FetW5_kRbMT! zxtcV`S>DH1ZdEPJmtV*LM*G-0yAzZQwntm$tsFp8>p|L0*t zX%#P3KL|_911JUpvq%eoM7J=I1!oW0Rdg1Lz_lolg<4Xf=z7@;#kY${3MUR)B@SXf zGugA(b(Bzu@|hnlGT_1YG;w5|dC`g`A%i0d7Bl7CQ~RO!msY2__`XHrW}1e%P-TZ!ogT?bEO@S& z3oB{PYZHkb;;6(Ti~kMux02Q=2tv22D9m06(+$QEn@Eg`m0Q_!$c%ck@(AL2qOGtQ z^vcTB0uP<9Bq;SF2p#P7qHj!b)uO6xCAL~?@ST9vilN$Yx|Df2;Td+?rq<@L)BoB&t{3eT^wfFN?Co4A7k4? zFcbal_tV+rw@$bZ?FMmsH8y4lx+_oS(FQ8Sok1i{!p+X2Fqr_5!oHRXi@0_awBslX z!RxIDFgoVjxDPe~<#1#xmg=k%72WswxA~l$X--}pHVxsmat&>1xSa=CpwbZQq9%en zo0Am1Z2hv{ZNQC-}KF){3P< zxT*1Mo2G8m8Vq%YJ-zkFb+sv2fQYehBQG6Rd6#a_9T*(3cWej188H1Hl3c;Og2;=B6L=uw3s9=s`^=y*5*P|H%49)%I;@d-V?WoUu zU^dr;+e6jW5KWvyjZ{-9>KOd{MX?RXd%ga%N>Bu9Q# z9{Fc6Y%iy?kFfC~&b2-#>82u!eIJIOv8(83dl86;UO6Vls+8zwL*|$VH7u;8@CsmH^bF~WBQ`OPwkxS=3(#)pb6H?l;XtT~H`$AqmJZrZYFK5NSdjiZ%T zPElxvZRvxGXSa09G|D+Ao6a0!k#;sRq&atw;5OfzZh}>xb0%?L^rj{bO)c=FMy9{dU?H9eD;O@ntxI=L-#T|+}6qg{y9g0J6 zcXxMpcPVbgU5ZvdJm?KJNmj zR5B_{2`sx%@P30qMjiAugF(Ib^M`T?*k2z@WPg_HaFv8jlxzI)7)6S0sx<#>4bdJb z*C>wqP-Vw;rn5)b(A<4r)%rrIb-*wb?b%rE(p9l|9FziuVhBJP0~>TnYxZQTdpQSu zHA1&e8e~YWp*#VaY@BLsiY(Pa2{V}mx2{aatNYo~Gl4#zWwC_dN)}L8StU^l>N=1)iXO38P`@BtMDzq9#{Y#X68c}N=-m^& ztD-81%zsfuMDMD|8WR35RipqZ`$rWm1KxSjyDj?n@gJm!2{Qiv_B~MY@8jJQjX>UE z5yqdx_YleKKcBvfqJLD;y9xRiEP8K|K*|9BhDFVgf5IZ~{Si07dv@f%g+=fF=p7dE z{9}v$$&o;_@IyM@TO|Jqk>GRSbI<}f@Bjcj4gf7XF){J~`ZoV_{+|{2Kdr!jtBS63 z{UV?kbUI7x-iPS@OBL;lK?79E^~U~DMPGzRGi4eMsNe{J^n`(ZMOMAkHG5Y+WY5x4CGd0Y<*Wn{AZh4zu0TGCcMe5H|68)cXHr)BS;lI zt4+sCfm*|nZH;HG#ME$8$A4INTag?CO<&tvE)&WEE6k^!TO3O2D5uf3J(&E1Iz0|G zYBP?n&sLx_aqZl=uDe$UzCa>{QeLfZcjtLFr@P7@FMljf@PzsLE<8WnemC19rSa~0 zUJd=`_Zd}s+duA}XVnWrUb?FE9&Yaqg7Mdg^+z)=-Fe@7Fp3p;WvgWXWhg>N9t^Eb zw;RqBvYZ#n@Mb>{$+=`n8O7Yqg`}rW85y2p5_{!QXFbs z-)5Rk+DDJ^9W#WlSIdv4yi~@EVWlL8mqj*C7xqI)X<@4QnsUM0Tkk+gZU_TIX?il~ zv`o)oExV+knUJBpb{N9IC{yk@QeII#U4B;G$*)#n-?GaOsu{$UJFn@3WjwDK<~}w%CNG;hpU-L$qzLlLr3%sAVU7%XtnnyNyW)G41wgw=Iw zK7J8!*`0COmFm413hM~d?Ias|+RZqx+bX*}=c8c56xk7zbCN*EUHyzS^k;L; z2ejXuY7&|u&T|NxogZ{<5M58^@uc2%7K8*^i48$!Br8jLU(fGlr2^kL{3W&D7FL{Q zvzmvjE5uO$UqwjI@D?7XWG)5Oi<6QAKDgW;g2F1nSt+zgP zmsRL+FPDKj@Pg&dC1h`R3z}cvyw~lDaW6mX2f3ni$_omye*PL3( z|L9C%9&4a8j7|c82@|fFyqj68R_ogDg^0igMs+ys0Xybse!7Z}$17HbH2}-SNJ|y%kOtkp@R_Sfv@c9@B^7?<0x1=ae_^7g79+~D?77^{bvV)v@j4{>OJub!6*k`|eyzpV*Q<+F@Ov=E7ZonD_A&c8 z<*vu=dKOuYZJau0tp7SHcNMxL95+G7kS`@>4_XOgGEZ7t{AVw%AOZFMeyJp|Hkm>! zYReUKFLRm+z480plqeGa{PpH?^B)qs5V!|Ln25om5?DF)w1Ta0vP*i?jj-S&T@3gy z_$>k__I`A)tDr-1X8g_kkUj0~II@@y#Nz3IDOuy+y)Fp&2=DtQ^JRTI5ZOiS48TrpPyX8OHUMTmhPe^^$@irc7eLAtQRx z9B`e2y8z|etPw7-y#kTp2hEfbyXc7IgU*8pmb9+5A@giG3OyHGb5Y-Wr`%9ZOHnru zBm56631gFeY_=7%DDIq46kQ!Ly$=HkG^j?Dy{8%-&x=({GGS?I;ydGwEuu^yOYyOt z+2{KSLg182WWcFfg!y8vVsnK9d!jbp32m^0GjL5W_Krlji_J%$6O+s;tdI{NRa9LE z9cW|5NMva8eCh8Szx3@Erhvn|w3c?E+yCmKk(k@m+h5;SIHrT@fSadsmYLpFQ+)%2 zo(Rm@Zm;sPxG6U1hH#5|F{=Esg@f4In}Ql2;Wo3?C)8`HEn9|`G4wtIB!xWv_tRAa zQZ5kHJ#27K?s}GbW)H)G8_d=1pb-PJGf>GP{VeCm5mjGuUg45IQ)!+$l1av&6BQgC zPM7&Z{OFdNDY1F_zS`;SD8hWs*o+R-`=utt;`P|Sgou?)GRtnLiGNru-=${#?F<2` zU0NtLxmFY8t6oFAm6Yjc2}uU1>yJMuO}~4?=SF+@HkrG>Q|()C7ijt3E=XE_sBTnO zudZz*Bc%OL`lFZ7X|X^?md6;&zsboxoy#0C&-Dui6dyTX`GbWpeiFf!iqsjc1y?<- zS9Aj~J~r>m-8`!f8$7tvs@@`EC4T;#3++|t4**qBu`EoV*@a4L>cJjEL-I)C5@xlTA@Q}j!GlK2o zhI>Y>ht=vV_V}4dL%LGRFQCu&_oHu%1$9lr4=iqV5e}lrP>r9-me}s}rwMup5)SIr zhDRyHJFp7S(gHyTl>DuMf~|old&JFfD&{2^TMurDSl%m*2KiI~Ccw9(LLpp?;7WKu zAdVb0%$E;w?$;t?-YSbw)C1H z_l3H~#_q>FPtY+HQDa~YCuj}x;=;WC^aVs!*B-@7=@Qey9JbnR~*}hBDmf?65YiUME4aB?-MSSwlV2eUx)roh(BnF6>Co9pq zVbG2UQ9Ok&OMBx3eUIY;bRW zMexvsJLs_D;ecqp?T$mTMgYm9)^Oy$D1X51!?qldW3K@`LjU`3-co*eZE>PyaU@nT zX2G^cY8X^9IO8LjpfE=`M5kU(+ebH@3rP&nj&rk-T!DpDQ>ua#wKjpfG&+xT6~3hi zUm_^&J*(iJ4$qzq`(*@A&bkq-UubXaf%8>{Xd)rhlr2bYCG-LT%c?9{bS&A;jC6w= zBYsFL6gMT8Ev30nDE290D2&d07NAOCml^8aU#yNFDvF;=4w6*EXVJ-! zZq04W!{-Rc;5s$OWXQAL5yW1_wi^GsES{{Hr1X+#K);+Q-iPZRq(AbAZC{!*?x7?V zYzb=!#M~ta!zCY}PoI~G?I_Vbg{bB3(qQZ!MQnmG%m}kBJaO?|4AQW^n|j!i^x=ny zgwGBdDFtgZtbj8g{V*Km@i2pX9ssxC1WeH)XeD{AV*x}Y(E?rv7B`GX`mzKNM$%e3 zD%+2CC?^VOg~&F~@BID)aJU7fP^!HAnc@0|{^gq-r7Rwp1bpPd^)8i5F3wm~c>cg# zk!t9}QW%|FaztF%b|CPo$o@}cA7NNUTEXrg9VORFRKqH*K_ZKl5D&g!2P|>oIE_!Rv1(GM@iuSx@ihhGV~Ah~W_Xx?P}ZOL+{0RQvPPx3KqZPsJ0hU& zlAf43UC0i=bWDlG6GI^b@cLM{9wH0;aVZ?Lxaj@RIyX!zFwvt%L|o0Yt6p z*2JN58u;<-DPHa~vw#>zlk8b9M6L?3h7*mYlqvyv2BWE!bvrt1HDkE`MmT^-TYZty zc9IC#Z~!vUEDDB*WoyA#LhaPm!L~LDG_}Z4d6txh&9%HGV_Jk|Oayk)q!MAzwTTr6 zHWHHCg!Uki>Fupieqjf|%ICbDWx`{$7g@XAX86=cVC~hNQH@ZP1cwQ;>qRXe9HA<7lk(6sYL zG+)?Auu(8wTAg^p^<_H;$txKf;J%zCwLmKmUJFze()Y}J0F(mS={lRy4DsW~TziK+ z2W_dhcQu780g3E`^=Cp-nJzMugP!O0b@lG1uudS&!9eSf3JV>x zi2T|;0s+Wt^RQe6gZn@}^4J2=7&{Y4cy}}&WsHa(v{KZciQJ{cj*HFE_uA6*p-cv^ zZNy7HNUMXK`lRATy8)%QE_xZv9N`U9HwZZv2%hcLZ;8w67*3H-8uqGM@}l@V0U%th z9nPpl=3o@f@s{uhvYK9!`S!Z z5mAeJc!z`o`edd;MyjB56^Dt)0hN=qP*Vh}A@scd_meJ_+|{cnwD(5c(w*r$Ow+Jz zE>$Qzs`2ax-hd-{{u7iQxV(w!ooRZ(#2asl`^Yhyl*t!Cz?~wKPWW=Qbe_ z0pbHb=xDLP?3>5zYj}4`QTn4?&DdSWAG%t(2uSd*tHUygfL?`iq0NFsreapZaj)^i zMD5?b0d)F{={BiaSu=lsjT(7rHu8t;Oq) z7hu~LkZLn*-KAg*>6W~`8QbGfUo78Khd(2S<0`x8nR~f1li3glH2D?->dq>-yf)J8if%7+!clzEGLtVe^w<2gltUD==Fvyrz?afj6KfGn6{#9u9K|)?>)yWOpqYpZ=2JS}WYpu?Xw|Nvuo*M;~5qjF{z9wto z%ahoi?@`jDP)}#B#LMI?3QTf@R3)ru()N$>2+rLK&UK-VJ(q?GsprZ~?yAcId?Nfi z$!i>gmPvp9l!Jxg6*|gZ7VLB%C%Eae3JJo9TsFxANRisYG6dAnEagoc2t%;ip{uI& zg+TDzlwXVvGvpUDP!93K$2zl4f_Ers83uM~cU-5J|N3Cqp&fBiA2|yhX^kbiS8GWm zX}HLA&cyAHE|+?BouJv*?WONyLOF$X#|Z^2HilPn>jEkmC;ONthZP54Gw0?}hFQ-S ze)=x*B1W2buEB@^*SZ(R+~X|nep{->i$#&3xXRbsNwMhUhKZg54bR}h&)N-oJB0w< zXagYx{|F=0tNn@1+A*OD^3C(O%t^V*+TNrUt#E~J^>LZZ7;B2aU%ug+Xct?5xA;_K zdm82oSUkBhh*${YFUyJA+`)xyUCYE{wHu4ryfaL1L*EQG*TTolAm=wDOb2w|qc%eG zZi#Kp42n{{SB2}(KtMHri9IOa0-SHxV^Y>a45zOtIZ9Shl6A|9%Yb=h0Qpyv)C?k_ z`hnO?A_7Ee+Uz-Vmh+zm&9sWUy%zxPt^Oh3tKrvk$$f1j2mo6YhYfUJ5F4C&ie#oRji_Q27qwzndtf%7}bgC%T`F);5RhA$;@AwKPD5=mc9w? znuyGV@+8fW27$Ifv=(5GuOwAyg1(SP>WL3EIT%u5w6*IMuB(1X(-^^Z10ngz&yh9J zl~raF9vPQIFy8B8+PQF$+X6llM&H8;Xxtlqa$P1Gg18)iNQ^_>rx#1p?GMT?2o5h* z2`{5EA%=Nrd|5=j6ZY7mXRv_RE2dW?=DZ>FZXuTvu*M^B<`uvuyxj{V;wBST$^`(S zkYE{1OYO;la41xYIHR$703gZ-y6v#5K4=suJ|u*nxqV~M@KBj3SIQ!QbS~S?!8Fw) z#q7^Me_;sKj+OEyf(ZfdO%Ro0g)AZ1eC2ml#EGrP^&cUU&tI`t=x?b<04j_cYGCyu z*)mN`U$x_25tw$&eKcp@ZHiw|2)BpS$1MP8{{UDG8+uIgfKXUTC|o)`qn#lPB3#Q% zJaXthJWR(zB%K1$cKlO{So(${xjJJj9ls6r2Z+sDlkHYB`0m7RQ>pB4wyY|p-L8NU z?&TQk`A8idfdOi@N}o;=@e*9@`-E8Nb{Kd?Ql&aJk>KsFGiEYPhkh^$bVJNJ*`8Tv zYF8k9PK&X{%=sT$yRVedvIS>V3pixteW|Gfh}_7rf$t#_S`^uqO_p;USIhLdvi z*}?`oY=y~_b}ZOZY4X7G4!dE1>ArLk5OSvSl_CV6!;$U!^aZn?3@;d^^J9d!b0@_N z<=1?n4_%djXr_+Q`UDuIQi>3ra_d6)ddFHtZHpo<9`5gE<5N6=6*AL0kK!kqhPve^ z3mM`s$L*?L-foAQa4-^;-Y*2Q5piad#&P-Ch=uN_!@x@c$xmi?to^6fiK>d9o)guA zC9_Hwz={e<{_5zKE>uB-RH|A(Ak2yidaDaAno)Yz)f$2pUCY!Nqn@plP^J_S1r<8+ zrv<3SiOK?XF!_w5441bxdgQ;c3H&7ptmE^fexQJreNvna*<6UuTxBOlr{ox-H3a<1 zft{vUO=%c*wOiTVu&q`lKd{^lQ6Ry9c2I?;nEOu26tNvwt|F>yW%9m!?=B1>uaYqs z1|M7<$BzABQIWo*be?R+gtI2qgLr%75zf<#Eaaklbwj0wQ?uNy?{8QEP&E0wA2dOy zl{_-t7Wkx!=SUD#=2h?vngxHxHJ+Xg8avC0B}L{ZBG(wpRmCH!u+`S56Y1sWEtNz~bIuIL%3F;Mn<|vW@UV0`49_$|j|h;_pC*068;eJ; zz~;BPhR(y!U-e(D;w9h)(jfLEGoFNfq==1f0vB=H!UDqhPb$z~aHD6ukDS6Wdb!02 z&4XRek#%cMmqoKm6`ed~SJYQ1$Z#CQCH;5(^lac;+SSL{KkK0H&^c8j5csZUDq>#1wc>OjqZd?Ndk>IqXI$ zC%hV8{T#?qbSY6rCzBp$O7G~N9ibYv9`lNHBj6-Gr_9W!b%H@uN|%++={_&{B2(Cu zj%CJsSpil<3diD;L1DTY$6~T=#0^{!r$%>KEHqfo>GYV-zmD6zOSr4rM5Cs>n-s6d0aoV~;)%Cljj=#nm$y_Q4=Pi?6UrOW@#=$u`1 zOc8)mzXD4?CpB$Hr*VQE^=ZM_>D*KZG8Ys5Ep zY@XY7y`Un)pbXRP3uN?4xP{}e#FliXlk;V!BNOh^a$z<=BCTBIy4a+n6Ey3+;_7O8 znq2WT9Uf~F_^xrdS_Jaz5nt+iHM>6vjSGpmZ4p8>F}@@*>$kWv5J4ZvRzpt&m^*%` zTbVA15QB^&X~Yt+x;_X7S*z@vH!y$lT@lc|JLIYg9VZ`RPNr2Zr?rANVP6mF&S|(b z2+a7lx~*0HW=j}T$G##!e_MO`YjoID)btQvTk05`7N6E>K>Ll)QO70QSDX)nKK#SP z9BK@xEz|51WXKH8<&WuP1}CI$1aM%h!6|hV-bC0#BLvP)@F4LQ z#4X$yT$kvKAYIX79WOYaxy*k}MGQ}zolu<%S8`c`rnAat{$nW7ogb$-)iiJY$GNmg zA%R1#YQa~KOGwo=(H`9~R5Om-4=<7%HWPLRTa`kF^=DycAx;uvJef=vLXk>+(povp znJZ)lalBGg++y07QWwxEDq z53VO&*H`9vRUAD6nXeLfn@YmrsnY9#sc@_(eJbWl#~j8DEIU`}E8EkWYGuP(DHcnSI@B zeTBCIv#|-SfBK~P^T`W~{{RI1rTZrs=xGL-w)y(#V2bFS;~8wa7$f7EY}(Qb!k3;! z!8ZuG##w2O4eY-%IbcY*GOIE$#P&F{#OiZ!{Ka}y5iRF)Rd8_jc5~h3(hMm(46#Mx zMZ)wa_~Hq9nK&ZdRZ08Yv6SL+lT@i~$|9jK+GC-kn8NAWEh~5@>oS!1Fv*sWvUDlx_MCb8I$)v>@@1)_UY5NWH|~1H?D!p5=lK^h6Mt_i@*mnEPvh zmYryX5U`xcmEB&~9|IDx%FfN2i zEwK!W!snDGByI{)d*9tX2=jumkVFI<6y1}`V1ndV@)u;6!rnD;B^L7$eHU4kOtaQ%KRo4{W;nM zNAoKu3YexkVG8pwBmzX~hIJb_JgH9%EBVw)C*-;$2Ai~P=pnOM@gsV&iA=7(dT}dX_#M-*K3FRq?FPlDQ1NVWN0sMaqFQO894DU8JUk& zz|@w+V1@z0(9fVF=fkPS zpQImAA}<0bC;M44*D=S-`K}BFIx-N{Y^tE00J@CA5RtW63NEpaZ_4Dss$|qE`dAW3 ze}*jsz^0-tbFy>PNnrn8DvH+zI)SQj!u}+z3V*Nu2U$FSR<>RR#Y+c=--kAb1$8Com!Wb7+o(w-f0d8F~5lYj;X5 zW@KQQEj%m`wC~ZB5|*%ZLp9Hbq##K~v^8#Ix?W1ZiN#GBujdcf0l^q6JIX8>^Kj&JuAHCFZ7Hy{ zVCNJZ5}LuVoI$oCXtWZ*rNv_w9;Clw z?bBzg+Zm}I2hEgaCyqFrt_5AOvf!Q-VFoPPSOKZ5+T5%RX`w38^TvOsPx2Hs=RjtFouHo{p6q2pw2N!S3>G(77JW?PJvr|I(p^8~m zsW7pI7*d9@lU6^oBvKC!N$1WnPH^eWrrv#}uOrBc8^bg6I}*<(&WlhaUdfr#eOlE8 z9P9S{UJZej5M9&A+NPKGE<*JaYsg!Nl<=nzlXF7{pt!s;#r@7`ht9Ug!n-fX*d3x_ z)-ADRNQ#%mpzOq}=q!Yu?NZd&&&SaT3f=%U>0ejU-z07Pa>CDPMJgE#KkY&p#rAub zZv^zh>Cy~swM`v;=%SPc$nnVC+XK+}>nOU7{b4aolcLiBRcRG`{)Q3_Px@6u>oK{V z0iDwq2St~#TUSNVV2-V7t#7@r7>}?R!N$V*(vuh4<(_3SFiM+K6*Eg`ThNMO$m|5; zH-c#FeUQR2X#9NJv@}G6Ddb_p60416)NduT6ID;!S-i;Exmph-Mp&(QU-@=4vcLi` z{Wwc;A2xGweT`}wRnW7HvMP2UkreB6A-*EBAO`G>jcP5r0zomDmiU_UcAeg3nnI2>K@5 zYj+s^jcx$3-+rS{M#kJ1q{SW(HL1#xL=&;yQ}{8N!PX%Oy@1ut4~iWQG^1Cjr~9&p zHf&81Rz>iK35VcXSrThy&j#jBK2Nhq@FEMARTGPJuWzY^r=d~|5B%+mjcSAy~LVPVzqL26TE$6}08N627Ak*j}(Wc!+|0_!;;E6EvW*n}G!}WlQ zgBq-C(S}V^Zs}g~-=vi2lZppMhY$?1dNUyooNuekr{3C(t0d9#UGVc?G0uu*uyb_< zKL06f+@MlSVCe&cu=E%*I82#;@d z?AH<+Pr&!T>2!TJ4Zn?M<`T5~O7r143?Vc!fJ>T1_FUlQC}8^iev%5T01tNtXsi4R z{td`_m-zax`lQ@K4JHyP=9 zDk6gmwMrrk0wZz|zo%VhEBz6D5dqziJoF=FNs?euCTF-TxE0A|8qqjXZksS7;|WKX z;|xAmugFe!PY~;Yb?k|=BIw4#!#C3#F_WW)AJ5e3a?!BY_m=I%oWF$8EI~{zWhKo8 z@k`9*p?~Qd{_W-NewPy9#J4|VO!Vy>7YJ{lsZA_ee#g~w=LL16@B>5R;ZA6J%!*OS zKHP?`h2v3(^jzcqN7j%=N*LDA5f<&lW@3a+&gAowjXXW$B>E~4vV3dy zjf0j5Ql8-CSQGVa%eh~}P08!ySGT^fiyeZvJ=Y3^ArOQAGwNMtxXUvio96wi?U(3Y z3UF^dqsL?o%!m1i^2E=mc#=ZjP3x@MkSvU?z~5B`m+qWOt_V)MBENHOP7fQqm7E;g z#aaORp6!d0-uEhF<6rK499#AMcxyLv!7L-U?Oz`Yi~joNIUlSCgFqHR9L+bZn=wjC zf%lwC?O8GO(z)z~^gTLEYRxkSf4R)FC`l#r>B{vx7lIv#?a{3%hOVDpxx0;Pz6!Y} zRM^*|fGr_;Z;bF3_PKqzh;r#=cE+n4LMwll1|5inD`2mqoFvK=L4GScJFp}&+yz#<*Pz(xKD`9}X zz9@LK%*s`j-iZ{JZ@7l6Dn+vJXrzL@e*Sc`2$+$C5<57-b4B=>SX_i${eD0$KKoja z`rhFvJwBLGOYXzrK#NcHwr3B_zgpizBt_N$z-FiC}tK7K-3RMX2(sb6Aib_ZFlj?cX#~r^0~_H?fcGo5W02p#hZXcO$@A|Izs(xd(6TE81n*fPd@#MpFKtGV~1)(7L z>4{T0;^K-KVWtuoBSv!0OCBd7QYj5a;q_Yc(qK@fe97Zk%VeFqBh`Ys3z;*?i*nX; z{3gp!U*xLoablol-lnf>q;dK)1l@BDBdf%gmDuz{FeqD-MyL5_e%N2PdHGLlKdFGV z9yos9G@koqUc!rN74Nf^#u=@k&X0A=C-Ml&Omk!fn45q~;IgE2JCIh%lm-!~C?Bzw zu+@paeXcYO)w5cY0dfCWa#m8;0;r9OVI@nAq(doNGyo zv&ci%gX2&ZYBa_qv%uYbn?rQkA7Jqta+`>{oH=i#*in#QNfDBamoCD%@7qaP#Wdbo zbqAWj&5D@RTcpBPBbA;J;mXfcY-pKX5ERP70pu7S_3e+y9PNur4XTIwon9qvH*izl zYkgksu~U=h3K;7*O`fxbWhlfwCgIbKt(ghh6-w%zk%zWQG{sfp3j7r#_epi>F9z91 zj-t~aS&T|LrJ)!={@RcQ_HE#GyfAEcwP#+#jvFo(+3u7joBsfr7}K86Ey4IV#4wG7 zr@QnZL51KPBGkOmLDA?t246P4`0P&DLAH9-P`+Q}=zE8_gz>X{6ZJ9;#z(R2%60yU zd!r^Hsrj3&7J|rSA4LI03D;^N2K1-u5Y{D(dT?D-G*c=8x@C~6a(#Sq=jUsCO{?XYbRXp=O`un4oKh*kuEh=qLNA+Mw}6i6JMFM-S_yES85uU zlUN1MFbyBw$d-IJ(aEyH7z#`?{d5n3{Iam*5-b{Svk|$)KUk@~m4-T49vsG^QpR+H z)VlF$4BKoR%DZzE&=mLSIac!A7i!e|OR92#=NuV-saCi*mK44lU}fs<$Da>sPs4ON zL~N$bZo#P2fwR#g+0!g8{MZ4a#+B-DCrKrAWj~K{Z*yoAq=j9$l>*>y3lRydBu2+N z=38qDqpkK8FtJM^UGULKY+orRxcT_WZyXWs^->Hx7mimJif9z*`!&Yrtoha1*x#mP zA|G*6SJ}uNu;%JXp-UHek=Rr-=^@Xg?1brt4xIWRkow*!S*h^^f=L^r!7alwd{ME9 zl?yT*rg2C2u%mK-f-vLGu4wG8b4|1lmOh)=a;M5ebz~g5-q?z!)!!y&f38`>9?{Nj zC>wHc7lNjBfLb*ifP>_D)ufJKwMD(T*%U0NM3kYHa>Lo6`p8%TuFKcx=O1l#5U(TaKEP&&Yz-QCu?EsYE}C z#hW~1;7seWJ=urJtxZhtSmNsYG@?2ak6ZV!{RtCm)TaOe@ePK>I1 zA`HH%^BI(3K6ok3T@QT{IfD8Qmwi&B+6s ze4gllO&8R?Xmyj2BX2&0<7z28Uj>elHLJNR=W!-ivirhhKAh=3^_A;3Z9dcd%e%L9F4)pbV@1bDgY6RK=Xd-(euN%FC? zNK!uAJ}l|4qq_}_SwR;5>a0l9Jfx*C+nIU2FuQrKRf?ogMPN97uKT50Alq*A>T{R+ zor$MgUGJnD-|N@k=|>N{jbo#~u^Vr}DH(9TN+Svdek{Q74q`%GEdF`fnrma=<~y8^ zFnpaVCg)NxtGCbbZz;{`aO>kIz1F|T@cQtv#f_{LHXX1jLD^Y;YCu3TH)gv?p})od<%x~!?z{ev z%``tVv-sB;o-$Y=-8W8r-Ue7TPxZP6ZNiQOT|EtEHC2n&-J1=8#hV^Kj7dMGZ@tb6 z%&-XuXP51P)3tJv_2|od?-SoITwSu)9qgW`ft1f%^w4hApAf(3$t9NheDVozBn3#Y z3Oz)`yrSokrZH!#e(U3YyOt_^UY-$p?zwxCUy{DSNo%QAxa3n!$hkh0`tjV=_?MeS z&Z)z$9g$?*@i)TT;>VqhkAID}QgF8KJ5kE+4V>gxfqF#c1lv#KhESlK6xQ7HePsr& zU(vAJM=NQtI=O##07%8TNY#c&EQYYraq!);iJY@A@rH;?TZr|!Xyv(=$^_!zaejjE zTBa@3bbYi7$Tpfr_zUKwXfAP;%SV)=B_^;W<}TS4IVl!J9+oFEJg&UuAFZgOnHw3h zQ2K8l;AVm zq)fPdpL{9S@plX5qb@r?k{O8Cpdi0d@3H%mFtu-TK<%wb7Zkc1CS8*UnZ{+f6ukKq z+>ZeSham-m(Kf~<{u9?8FX$XlL;lvkwkt7gCDikwD z=Mhp9xfo@+N$<;3`ocoh%~dD{MDLh7( zPNz!CGnHN1lbxmt^4@_9C#yfEQlQbkzwbrCDN-h-Rw1Mo`J0<)TJSy6RLOiziH2I8 zq6ihUAgFGPOEgrK5Lr!qhZE<&`q z$hnJJPp9b4OkHPKB5(WPOFO0Vg_(-tM|q@TV~s(jQ$G_S8dJ$b6AJT8duj07f$`r} zo(G7ZsjIoEIkrYLy3+KJS+u$NA+?cbG3XRvnO^i|pY zft>35p|0KOp=tC-bB4X|&3oocevT}(PTWV1@!uRsk4{mGoHQ()WRG-%Xk7VmU35y^ z>@0LGY2Am_-8?N^qG<=(XgoF4J<^X{s%gEe^}O1ToQ6w$plFTe{CqEHe>@!dZqoXB zt}8v$`af9sk(R0*TKKcj1#lmyqaFv~mIf-8Dlu3FJzJDZ&;}Ed1sRn3o3D*7Mtj;F zlcQ0?X3~WhmxkwCmaj%@M$v(HX^g7rqRK5Jc7H{Lko(&jN1`2?FVV%S_-zt|LK#97 ziTcfBeAgr4=%doJ9L$2^rh_zIw;H|8;?twS>?h&;RJdo>Rs_st$;EUj z2Ff~2K`H#g8j)p*z4U2N3dz~@5m=-SwI=|Kp%gT~=;^Y{#j-45#0bzQ@%<4^scK?!R#O0bNX8w@c* zV|9+FNepMn?2M7o;xW=NMeQJGt%@ibD+f%)awYWE{j?TY#MXSPcr?;(EzW`;dDiWO zk!fhBN#PU9Z~By3*4@6CP16;|m1kM;RynI`tImwQ%~R&#fC28x0U?_KIGF!OTl+6q zd;WrC0||dG_Pu+=cU!v#AyR~tz8Cx6h3$XZT1LpkzqKOp@!!sN1oEEf!+P2OPsOMQ zNq^_H{{d^?&;Pcy|G?T-0Mya_d$;c&UTg7>u>GgZ_a5YPgZ!gv|HW%%007PZDEYm2 z`~EZ9m+}v+C4#K|18Ykl|36#%4r~A6wf|#l|MLgF9s4 zwNfzu+tv#GS6e%8I2=L9gC#G_>E~B~6N8j1%_%ZdqEsN8RgQ5mQK4nD_Dd(Be7VLD zj})JX&BVU}X%5#0gi|J5gs|G}!l-Pw(&2u4ifYJJu~qp+8i7>4^=i8-3_FF`YnxmN z%7PNl9l`Bl4&W-Kp)uLka1`nT3AZCyskQ3QQLVuBP_Ew(&u|(xQ0Q>o{8``xP3QC6 z_=Qz-{6BmcuNDwev3o0H-zUefK`-%O?P_)KE0-o@X-vL$Z|2AGSZp z&<#s+Wn1L0S!<3eX$S&t@P~L;BO?l5$pvkc#?*WRqHa19MXKc1Ie&!dQq2g9DlOp% z6gr%&Xu%=r{Wy$8OB2~Izqa=ilqCO9#eX9iG6A9sZu>zWq2gq#I4f&Y{V-0}UW~t& zDKk$rmvvdt)-`V{l7#UgFwby5lu3%0<8C|5@qD;52ReXG09giTJf^vk+@2)qes74S z1>{r78p)|beso2duHo1@+|Tr7iP?@Y#Q^l|q!VpC)L5-h_cn;;X(g=)XuA|N$B(H; zQk;Yto89M`Qdz-Veg?`-ei}fVe7Cg?Q>2W{al?vd+Vvk;kbgH%>%8oUEP5hqwC+-b z*!r(IPT00#a!KQ~oevWox7`(0ur%H{F5sm7d6=N)c@sjbQ9%0xMfkXPiMwzHEYW z2PJNr7!&z+hIp(}e~M9HoJ0DG-I-HD2>Q3PxF|$|V-}0(&2E&Jy6fj0HrLzT@(n!- z_9C}axyz7VU=_Em^0E~7pmjmYgPOr3r`s=rh~IPQYP$Fgj;r4==|y(*J+ zKiCW2ZHI5p&1xZxc5Nb&L{CqLY#8**`<18w&#xhxzJCtVK284F%l^dEF7-mA$gd5x z;Pbp(Hqh9<_w5pS`HWA&Z9$?%H~VF?1AfyBN{RqYP;s8*C+Ir-;}#Ysi)qcO`a{ zMPc?qiUVYTu-E{?wW|=`#+@4g9p7_Qh3j0#)+oeKi=AMOHB`FO$d`dGsX`$JOnE|{ z8iqfBRs0F8CEtftVwn-)&dM-_Y>Zs?#7Sw+28Q@ksIgE8WChi+nRt*BXqyjn9RB2Q zP~KBrkxm3Q#!-ETp?Eq(Xy9K{1~1MQY&t+`T&h1;OT6Kd@#nd*|Sxr$AyqwR0HFP>Bj^p9p<5R}C1ULe^eu`1yl$ zB8>Ilw$_)~FH0U!YgmRO)jXdE8)zvZ#XlQ?mMb9+#G-PmCt&r!DMY}gmyvmF^>WvM6Ev?v{Vi=! zhOH(_cnuS#P-%>pp;f|lP>3=reO^p4UT3;br}lyJ3oMaVKh$j%8XuF1RE5?Ejc`C~ zA+5}LzvdMCy-!vXy{-uI$5}{xa$_;`R}YQSwag;;CT5iVtc&Kf)wu_O<}PNFp2OKI z7Y&9N8~LwakmLGEA9WnmS?r8(vk%!r+9|FJnXRqlb{%FZm%3Oi;wv_W9o=|itY(?u zckBN@_U;>SHTaIvl#771ySbhmani6Yg{Ti!~gfCv% zYfBmAPO!2c%(68lpPZh2CpiJJq(DmI7$o!)H<2AECnEr^@=eF=Fr? zC6;x}1(34j9ly1mbwA7-kF#0i`qeI|ZNvc*ZIM z6*sVzymR;pp*<6gp)5tV)%tU!a^#f-6}+~)$naS!EMfO9wY4WkC}rAPGUpsDS90c5 zZPD@v4AAn{c;>RDZZOVw>6pkVHrp`Tz75FRnG4fR%qelVPPDCXW&0&{8O_L9hw2H( zG9?&0dT;!Db|TUA%eLh5HcP6%4Qbt3i!n6|W$D?G7WbqDK^a?RZx2s*aYEoa!;X_D zsRS863=oCi7)~ongy0D5nS*1vjWFlGM4YegY&=Gdat`0=Ku;Y*Zgq~c3!z4$=#M-z z{?(8{7Edh<*yHcocGhWd&J_2uWp$S6Pb9a1STz8AFgefr_M_%My@lgZeNsD7ciR4) z5H`v^+ZzR5`FC|4Xku(~eT*$KkiCbm49XSv0pHm(CF_wCJ^7ofF%eBf4z4I!c5ntB zJtD4eP|(p-L)5OkSW#%@i4gS2J6-dM$9}=sqK2pUdb9MvPr2a590)?{uGcXzqzio9rQGwoVj0E{1WWV-Iv8a3O%*`?Dl=-P2;T*>) zAH(t=QVVT8w8S}%$7u&9u)~(_DPU>iTl@s=Z)()XFcqR?1^8rZNi<_mE9C$$-w|)C zR7zB9QEHh(HPKZ)msOQFPt8Gg>FX;&c5AnAN2s{Ukn z(P6mBzwj@t5eZ;);)nL2F-#}f99rtc9v=-r4eeRuESw8?5PYIreKC6tEaDK8blYQL6iN^fID!A86_w}4^ z8&d)rO={XF*dsCq1{nWWCsBl40V^`mZW5IhM+&h$6rRMfkJ}HA^qUONC*K)C08G|l z7tFBqJO_XGBc_(drj621O~%(nCEQ9zQPB=~QfH9zgb}6A{f!I56GT<5>Y0H}cOfa- z?COymmb#I`@$7`o>z7{P7txX0xr%LG9Jhp)2wj}V#xZJ&Y07R&{K#|mZ82}=$U$Uw#UA2}Nv_9>> z=nH9&1sRh<-8^IwdIb+p-&2>_E&FY$+zeI$MDIu+p8WddIJtk85;EAEZQk<_+SD|n zXkZGT9c(s}5x(zBjwXG>v;4r3CU5eK3U*lm>OuQuE z4p%@fdcowA6yW@m;!2bYE`Td4xPl8Ey(n;lE3~KzXQzrnJQH&Zj+gT-te}qb=qwaj zEyTMo{DD^l$5P}vnZ*rZr55$GxZsW&T}Vza-?q4Di#E{1 zDx}IWvCNsLveeSHkc`6i6}=R{Iekf!xOpoDtq78DQ5BJ!h#WRq`#1S3g`_Q|DDIu} zC9Fq0DML0|87XVo7`eDe5~0r}J{DK}a;(BeaVGwuF9HzENbkELD<`M0R;)>Pbdg0AA`%MfyT_ zK}AfB4;>rc3)vca^k4E?WL80I*4z^uz~GSw!!SStPgnH5_5hB`HaPgkEAoKG=M+Zl z#s&fogoCpcssvw;(VeX4S-GA=h;|qij82qi=NHH&`a=)(6~4S-n2usHk~b@${+|42 zPRiwWqK=h(_Gtq=pmDVt?a!q>L{ih^b^>%z07|Vt97!(omW6|_;Tm64BN&LLJ4p*C zU!KV=>Wv4Ow#m%WG~%|4P6^dQr4=Q(Di>^1Zr%dI6$Kjcwb0{9WUsk&TKNQeVveas z{tN#GylaDSje<^Y9eGxOux~X~W8(6%N|tHg$tjEq`2<;;yKLMU$-;(#$qM7%eSVl? zG{zdWv1q<#Ro}~IF*DXW@M5&Vmhw#5sB!X@qPnfg`pUUmne8)#mN;!G=3PRx4Fsg59BOB6d-qNw;$deumHG5fi9hOuY>yGkJC44zl03Y^gUj~(aNU-6wezRtyZ>}j z$noURfVbP?*1?wWBy!2DfSXOSlQT15l7ic&?(d#{h^2lmdA#{c(k}w_g&lyn;QUJ7 z_UGLAfD_Cvo{p&wv`v`ECeRRSSNSdi)kZEh!4tqaBxR94EK4?~QYm^XX97@G@$U1<2UvA^;@t4$E<= z2{&fK!qsSMLMCe5usQwEB48-ebw^~qdZAPZ$A`W{57MiG<4|?4RWu#ywRd~k*mR%I z_&&ej^qVdUJa|Gg(WnS9{n{g@--qBy@Ula^vQr#vIvlW?%xesQx*=XJ&&^XCsSrV( z4M$p04%DRtP9%g}Nd#So_yZ|*%ssIhxBPm5xe9N) z3m?6xqMWU*+SDVYHK6;-skh-hEllV>?ff`8l&;!S--uAYp(M{pb5R;(me3Scn&v#O z#@^{#0|<7WcD#sa%M!a)MJmEh0Z~s{ zUK-tLpQ=E{zI5-OOKh++5zA}CONBP3OD@Bd`0s!e(lA4!`C|s^976!kQUac9Bcx7) zpdFxP$|53eajfnem*WO^eDNP?Vbwh4KcO^-qMIYN#c_hDXm7DiHSzJ;^R`b*$b$<- zxh3TewVA_P>kOsw&s$v=%}}31n?%&^YTuW^<(^Bl?e=rqL?)AEb~>*LJ758N|N3IZ z$LbaN7z+DI$b%i6I}$wCzFgK_RoFPmp|HvL-I;uaxxP(v{Jj*@&)&=4$UE+~BhBtt znji5C9D067hO0^jKMds;l&8YI_&UiEG*!?xPCV#5>W0g4-kGW^M&5U3oJcn&)hJ2~~)lUFoyU+Y{stukNtc`8%zV&VDGTd|ZoD zQK9@*%O0Y?lN3-SzG_Gb-uzfbY`Pge-o@BGtxupt0o?Wr-TrdAHIK3P5;(}cUc33| zihn-->NIF7^$XeLmpOjBioMwwSap(>Va1qJFrEqZ-|LSk?7M{@RQ6m1EpB&(FgOmy zt1Eb?5{HmNET|ze)}qUFM5vf@?-+f=>ui$;Z69knjE4%7(uQA~@ow-zarcH_@A;Ls z&(O5K&p%K$qG=+J;h9e2I{nal+GejMsgscO}e zFjt}Ckow1WKjF<`G~fsDV)RMz>%wW^zzRwS36WTMG_yJ5?~M;M;@ssEemI=|;omsU zC&Eh4@o?1UUoeG*eoqDeE&~@<>WjUL5u6;5hY5eYW4|vmPxUC%=X(7TC%^%^6~BtR z&Q={?LkKq*!~7fk@@CBXhLqj}Xf^>tLPLOHS(1_f!C}x43>2s$Cc{81NR2ul6%il^ z9u|}4?jRTvhV0XgZc3tTS|0a>WVilavYszQi+j=w{N+gIr$Wv4* z2SXz3RhOkw3Jiur_Zp1h6cLBShYSD_kPL6a!p(l8B+zoyX@y(w4=2$6Z(`q%v0Uw6 zMo@sa4-lcwoyo8W39(cjZo@`jJkf;ZTNaa4Px62rW)d3va5w~x$@LpA?NBVXyH=IR z@|j8*B-9JV^Y0VzQh1#$@nbX_jWnn!cb-d5Bj`F;p0vft=69J3P`|qUCWw_(rvdp7 zS6ZIotJm#b-@uK$&fC9XsJTMvz>inIM}JFVpU$SgL7^_RfmkxnCTiJPNG5|Mv?s6t z)KI{zy<-r-OI-2$zD)^jRe{R110dU>C%Pzx?3$7LKmf{iBp03Eq@$E&*RgAxsvDj@ zqJqDQG^_%Fz8KNT0HNp6>!exw%N2a00O=GYnIQSnE2}K=ek^mz%;m~t5xk+k2-y+` zhDvuB)O1V`ZWlbD^%(n7rVIw(BWSi%gb#K&Rc5#e&>E*!G?yzz2v{g6Sgsf6vkY|y zaO#=|aUO%w$rCC$^k-mlsDfcJ{qag>jPno@3itE7F6zl!XmI~9$ON)W zRD$aGT$Cm{+8DpJZMd^~mru5zi(G@pHxZz}$F?Ht#<3P=J9Zth(`T@$b{7$(0SMg}{$ zobq(0-;%0Itah3{_qFA$32_72wU>`?r+YKXcHc%Ue%5O zLjuQ{yl%ud7E_|ddQ=UU5^uZ}aw$`R`6U3un>$tRS|KvHPuGxu4=HZ+Da)p)(%2)tOLRE z9wKxqM@Hhnx>`Fgy_!EcFy4MP2{y3$OR5sAVBxM`>I4uhnxmYZ~E|-)jpNuuJ$igL+mSR`41ll;LmKmK9 za%ChrnFo{CtWHWBy+kE=Lah-|Zp^4XqeTW|0#1=3xLcd3zT!j?1VObVK^TGu1#n&U zWIetU{*bNZu|Jv%%b6^WS-hYo8JZq4$gE26xd+Hetl}VqCyOvbaZ;j2TSJ*-U|ULN zY{h8kA&O))&srvqN>uF!;qjPKoze?y95VfKQ|T&GX3U6AX-~1v@XMyOG00Y3gl!Rj zp*{U(HH;yHJD66)GLuKwl7o$4!oNyXlWG}?4Jqh>i{{&`IFxH*FQTm$9H&H4RXu3c zVhISelYrp^*my3dsMMrfW+J>JApZKd*jlGjlKxy{_|m%2Fkk89nro?%0*%(1H3;Ph zT+D=WD~Mp2^VnIPYxwt_o)76RMuq)=;--u$7fO=%vW?;rRZ=~-9g_@v(W))Y)~R@g zci<27q0_KjCG6H*Yt8Pa(*hQ);eK0}&Lk?FUl;3Ng-|X?LnECCfM%IHZB!QSt8Upn zDGFv~aU8Zgm#fUsuL8;g!yi_*;@s0t*}S8T5HrqH^Z<>h%S9v%wYJ~w*_Qg7itF~A zzU+H;(#C&g0E*d%8`ScG#gu_id(h}EwRC$abDfo;3_w1v4jiUIuE{$)MSLBD z3s_Db=e&D!vy*&aMBOyx6hohI&R(1Xd7Ear?du^>3GRHX8p0FZoKJ)tl9Q4ehg)zv zhlKr4Kcp4pS5hhB#m1NvJ^8p)H3(#v;0DMkFuIRO=Jmha0Y>mNx}iRR11_?#xz6Da zpbMKv4Re%a{Z1_Mj)%$Hm(j8KF8!)R!<*GMiG-n9^dN&b1a>fqX??r+I$hYcUBaRF zuv&I2dzb7N&LFUVDrKOWrPlCw=fHhq3!m@c0a7Dp<2H(&%I|{CXAFKWxnhF@ST+Se6AJaRop?5!rM z-PNf#!W`KamLxyX+w;6i4oWf0-+d_jdP8c0K<_hRgsA|I+vBr9K_HW&l4)D*a4}Vd z>RN*)6CrmnRkGLL+4VX^Rq1sdZ)-f-Vf40}@^&JbPdUz2-Pcj%=?-ht1tg8q7q~*$ z^tDS305sw^TrM{y;H;?yFQV2QhWSp`sr0b$+T9uD+J6rdtkXH?V&wdgXmvPJn`pCeieZEM<1sYg|M9j)M*1+;kE^6ho`sr zUnvcY;2A;nRcpfg@^htefAR<3{!Zm;nQ~fBlaf!u$Ts2?bge-d!{ykQ`$&waqwdFW z?wF2VeETlT&?)*2fFs(rvAYD&`JwkBvslp-b1-I79k5`f{-%#9Pzv+9h-~MK9d3OLBRG|hq9!jx4C)uIK{uT4hsi5|#ms~o6>4ycrKYGr zSfymA=VVB3`5TjVf>#^xT*X)&^-q)}mnRBbpd*Shgy>_zsxp;WKRSecYF7db=u9Sr; z8@)+}8&$4gk)9$jxjqa4hou7C;)l!jiH?2F-*q4QT8ji7GL|4RhO$&&4B3WG6D+7s zWQ37i6f(AyMa|$U*-8rcCn;C`y6%pECS*9*UL7GNR>CMpLb+O^;k8A*2O0XhfWQvN zKRA*4eiXA67F{p+*`<8rs^1C|sq`n_TdSz^5m}y!sFZkaM-OmZlD1^%zZ7v zRV`&p^^<((`!xD2F1)#EDl;7S^<+8tJT|DhN2>0M>3(xOb!IXOvKAh*%P#K=_7poP z`;#wAE9xSvl}!Vf5veWX+fBtE%4Y3e)#ng21?M)qAAK1$Az3fZDPxJXh>Jq>8L}DsfPR0|)C7g67VoIxA58sZ+c?Gbf2lSMcq9@!>gJ=L5m;(M+6j@Ll*>xjO z+v&xfvXqw?IlD-?KV^Ts%0@qTyrRoUu*pG)OdoY2!60xqHl_V)Wvc3JaUevm+3n0g zYklOUX|y4nreXi*(}J>09$)o^juw?Y8ilxr{_tQRM}i2sx^V?q`NlU1RKqx(?Ab+Q z>xZb^cBwaw6OQ7cJfzDg5deVscS%s(U^jF4eog^0Sy}BhX2Z-BNL>{YRz{O)Is1|n zVBV;I7pKolh|GCVHj+erPo-ziMw_$g_ESg;PowUDfNMQKEhOwc;FC?&KE{j9(@tgm$6@ccKwIvR)_EX)ltED;J^{UVL!H2$%Dj>m!^AnTJ>p0G2C9@2L}#G zeHZB%$88<5e07?FejJ+RGFAF?b=tDbgVaj*vgBOc20c=&+3<1^;deJoZ`CLivv^$l z9D&wm%;GE|0WLFLeD*!glu5~qOC(pe270lzBDWz6#GGdH9t!ce@*0L|n&pz@PWYZh zDNwyMRval!j#YgEt>)}Z7|NVU3ThZ8BWX?N6nf`9q7EBizj(rtY+)M_K2nt|kAQ&4 zvE2r*^GA$e*J|{BRav=fKJa1|h^CSKC#8yA%>e^J!ZT`)t=3#jOIlNF&_v5xQ^zJ; zZaN?{nIH(&<2(4WD(NZb%Ww1KUi%yqTc&^r4=JSCVs*lIf9L4l(I_S{+ycoiI(E@Ecuse*`>;Vrcp#nc{VJ_Fz*++7bI4 z!(v+N3w%lPAUyl-ZjP-HnKt4yuFQiDVZmPTQT+Rh=$D5Dh~AOBqPUY*J}bA_;yotn z)5#*w^_v;4Bv!&14aUgJUI?^|a>1wy!TIi%!c?_{ZQ5kYqc0>qaCL$l^<&iymTLfb zeQwV>DmMLA)j~af_V4wL?WaXh*UQ>};$+kH%}Vr#WpsMd1r)A1`jF`30LzojSmi0` z9)$VfE<0d6Rs zE`7XQ6)G4=j1dNd+Lf)<@`AN|xedzo)4%Y)4;8jG`JiD1lizUEJn*1>*fQ-CLI(?Z zHEXqZCtkWm-&49gG$|p+@jDoHBD1#;*m}bx5a&n>EEE8RB4T1kYLT7E&7B0j_uVl3 zT7TZr{u*jMeBDcQFpjjVe|ldL^F`r2%J$QRMT5`jd=@(|YE{+KZ(I+p>f0;6Aem7ArbQv!>Jhew+ZwPj#CX(x ze3t;bhvoUP)=my0fAFve|Et-xdAg?c=eopzL9>VfIV*pv%w2m;rlnGr5B`Xi z{8LC~%Ni~H@i@~=K*WCtoBz37{E%Aj;||+-m|>x1C2L^?aIxCx8@0L3wWXT<-f0CE zo<8&C&0)MjQ7t!Ykps}0qTLWxpRlA_DzKEYRA)|4ybTX*rD6;aG!UdAg&dR(l6Q(X zbnWF@f_C;KKFW$F;fV&}nJxe_q_IbYHq2V{A<&s}(0XhYXc5r-(?wY3EjCR)b?>JI zE%HGeu~djjMbg2A2msrntE5c{MG=bwkQNgt3*)?d4Kk)HxJQ%Gt!;O7?n~TOL~e8F zB!lE%Ejc``=1JX5G})+A-Lh|sp~NBfs@G#qCsL>S1%h_kJ?$yoRzMlOYZLTVsFPSz zqUsC5<*;u__HI_el+Qyg{%Ite8YS#HHa|FJ^&yJWT((FR}4()!%8(9sIjWXhN* zgu6BAyyCZLvwG88T`hE#{Y~c6 zT3$eQEth;$WlqI9Pt8=#(Wn{xhejpV-$TYDGV)R~;B6UM`yKU}DyRrH2(BR}i)lMU z=TP7fqrzEE=qJg+I!>gkJXULUCjz+tk`hES7sRkFD29?&>#JHzsD;~z1b>q;P?N3B zcCSZU!JFnpL@w{>b>pHfWdWyTku+H87?Sqq_xd~=g6#>%C(DTScHV|H+0XWis*fZ}p8IPgc(j8fMalh>|^TzTUi=uu} ziaYqj^WeVgTSS#e`>j7(EHF!4+5@;IU6xuY#h?36Ax5Uqqk@cL*>O}p@PtyrirGs{ zNgG`m=0PR!el6!$NCtX`eGfC^3VSZHxZGncNu787HiO;{FsJ$H4}QCl{jtdJyis+p z+f9Gy8q;&j5plW{K&yRn8Zvg(MOIC9iC3uAnf=5g2HDiG(jzz?5bYu$s6@DfeMgEMNuy4mxV1eoHhVC#$p%0 zX3Kmy)%2+4R)|-|Z+*Z}iLVW0YrI;7jIJcZil9?6{+o5)ydt&?=0yqTrC8bBMbz)= zI(J7iR`hN6IXeNwEd|Ykx=96FCWlm1b*1t9T40w|lhMR7IzVvkixB%LpOoiU&ZmT=D+{p4E`xT@p62UHvl@MeIzE(Z z*Z42*$;uxrIRWo}a5EDw0SX_hy8(WcqE@c~b7=480!Pb%X)EAmQM=}5TAJ8lpLVHm;#%PqURH;>})!RMLt=H-OC$SF`7}R7ok-}*I=#Z3e zx6$%&`Jdfd4O=;nthUPF3S=U&Q~tqU;Rw(yV3R6(0I4Y=qF+tgCfjLHFgaX~f=>lr@vRLese&)$X zNV`&smoek`-`!g0p@MoRBF3F-`*QbRKLkWW`lLN?Ih#5JRPGMmkq3jcX;xRT{HeH_ z?wU{GUmiYJkh{!e8q-&EWGP8cP_6SoGP>4P=@iL9gpT7&4yer%CNg<=TmT=&HWDKhC(A2Xdxv6;FBBO1i+f=s(?YO3RE~J~X{w?m5Yh&&>dF7C)g&cJC`zK~@U`Q)`Si3Bgyg1=OGImMw4;FrIcahd zN1g=$ncIxPlta$wp;RIXUdwbL16vU*eeA_kMH6faD+voeovrMu^6J5y*6&jyAq}iL zB6+o@Hre^^O1h-dc&caTKsZdiAQd90qEO@`B)cP3WIR3EuG5@cjnc##1d*~-rAtf= z7e~F@UPE3Dv+oC_AcNi!tnaDG#Xk`8tgs9Zs+Abnyi)-2V|GD-x>P5pGEaxxl?A8| z*_Mg~#!-6Nguo4Ic|3KW6mW2c=4#XE!jA~OuuuBnhsrOwiFzMtqR6yP+Jaa1MUjf0 zhEh>nKaOSD5qecXn3tyWqQTcIk7&5sPLYKIKmSeHK~RQan#gmwMMaw+2Yr1bFtXAT z+gbMG&-aFupAC^IXOw2_rud=u2!vvA+CIS3`7 zqJ*vi2Lid(WrdA$puZYU@%f~l7fXkQo5zR)u&a9F=D*5C4?dKw;B@oFE5ZjSNH&e@CrlGXnfrn-RG><_W9A^Ss5b1`GYOTEJ(ymeLK?@$(!s6(yYJpHEI+N5gGiYo; zAqJ|h(N>I}pJ95M`hc1mUBwDG3?cMm8GxBJUo;vC5cF1NAu?6#Suh)-$2K^QN;7Vb z^veQOLN-rpd5Y5tiZt`&&^eE)V2nkIS}a@psHj>6mlz}4RP~H4w7Oq~QA4$i+>jBZ z!W``&omFr}$j$jIWKCv4QTTRpO|pUt{0qb8rcW(*>5B*3k4ZV?9whsOfzJ>w1K4`m zeOu=a!dgns#1f=C#=lgFlKM+WCvh3uE~To9M_VecfGfRbmN^7+VUA}dr(7HPo|l3} zU78&Q7T5E`XCL}Y!KR4!W7BS>_3$t7mDS`Pc5nq!L0O*)(XOhc8*u5!UaXEsrGbG! zUQU);J)=?QAYbc}D5zm3VWp(UE%J#y1#iPgr#btc(x_~Jli=AfUSt$DV{uHigsf?O#b3|79f7!>f2{9I?D=MB5lkGd3(YmajooZ5d+ z1CtqjZH{3gT-F|C;-nM&{?u08XFo=a(VO+x!fE-48Jf5CN88$W3Yi=-V&!_KLB1e^2pQ{G+SF` zQEgwdXGxrH^t6~=$NQ0vCU2H~wQ={M^2|pVlKjaI%4|9_)p%Rg>vm2h^)089Yuz%) z>n-aHvX<1UH!{7+3*L28XG_QcK7y69zp~T$E-oRY%>!l+^FuRCML|w5Duj#d(umw`f+{xtNEuvRt<36iiLW+Q75D zycAe?MI#i@#DVCwY?)Bzy2sb$$|YJLIumERy&I#R+h?yHtiexl4Hyu-x_u75Eyhx7aBMs?v1->I%p1N^=*ro5=3f=ZR0 znTBnRtIO5m=c?|}4_Jo(9IH5IRTu&Ixk3C}AkCyeEc%Up=WuaVf`!vQl==-btd<^@ z(T{Jn^oPrh5$HlT`Ja|Zd8cY{B^d?vtShX0VKEi%oWiiTwP<=!DofA_cIjLzAy*Hq zLo1nI#d84#x$-SUmOWh;U|h5<69Kg%ni2v9(5Qd%M%4DxtL@q?o#`3C0)AIjO5{5$ z6!N_g`4Bk1puyH{-NQpsN>qLlfA4uI``H0393;W#|7F|g~jY8alJGe88Ye*Kn z#0P{>@IgdGC^%NNn}-(gpN>+YXu z8ZF5fpJ|S%`+}NTGyCI=5U|h&H^&^pvU5nGa`Mx)C3lih@kIJ0ZYfdF9MKQsqOZQk zL;MVT!-|{6TDnAfYV6sJt zU(Jv#P6%^jW5R5C;2E9zSRGlNHW@7#yRbCIbpbVEA*ISPC3d1$^Pu#WEu$P%0N_}< zLQK2Op7+hyoqy9nJv-D!Jp6}Qyvmq^E+tLEwKZkAR>YdES+}L?LX!Ki-dm*B!5IPj zj>}t&XFUa{rXVwF0iS^wcQZjn<;8IUg8}jsjH5ul)&8kzE|RHV|ucrIvOX3VK~h%ia7a@qMg4DZI@D=w2L#GIfDBI@;a|7KzmpQ z{iZoiS@K*VenR}s-qfVN>tiVB+D2TC@+VE>3PsPnkC|>QX3u?YH|`^PsZkL zh*DWe)kjM;yzn&jA~nq@wU{c598R@daMl?WQHVh`mf#BYxS93AQ=pGR4r#Q(vZZR6 zHgq2a%(S#O?`)1Gyi1e?M+nhl-ifd62AOEN1)ZU})`Yp3mCWs#<9N6wnc93^cAzUf zywzEbuNBkbj#7jb&?nE7L{>G+3QB|GWeHj&U9D4*6ldH@+GrW0OWN@)e6(7{37*=y z;Yjz5%EhXDh?eTy_KRE|5wr&hmf4}k9M(qJs6(CQ1w|sfni^q#(VQhI(>t}?fqbWB z1c4j=3eQr9A#&#TB&X>G(=950F)inQ>i{Fm<)upIK1r|QOzZ-=t!&~zx1vBHiVaRs zmm;|hFJkI!;b7D3R}T_k+GK*4{@qs-V~BimN-(8y7wK9$S%eWh2wyMKY%?+^9IXjC zU8_392^3AW4s^0H(pl59+q@6gWhod{ipyM&pKdJ*Qz^>R@+Bsu{b>NYF#StD{XU)z zT@g%GZb~+mj=aM!WZNuhtE*6*j(y49U>?zOF5Yip>6ZGGP8-cjkz!-In~XCFJnbw} z+PYs)@Y~nbB1=h8^dlyUgrI|fr_)8PDb}mjkJ9|vr;@=H=~Jdn=@d={qEulD%4VV| zZ!ah>2~)D5BhO!qkI1;ZKJ{|jPk#G?6|$9)V+YY)nbu%eJPeXmI;$mjS zxzs$dQ)xd$c)2LJG_z`2uVVkRr8P?Ki{Bm|#;9YZG~vs)}A|$Xykw z(bqyxeHYV;>)t{)C6t_tMIVp+PFi@LKFKp@GlYte;51=W6>d;d-eabq>}r~fd^*8Z zwoZg>`9e=ua;Z~QGx%t$El}G`DkNeH>G|mH^R=Fv*S=D)~#{a{pB2 zv#RS$V_*k9JJno_yW@}*SubW(SW@BSj>a4>(F#Vt zWLRaj?m*WexubS0H%c~yFV3nU7rGZFggh4b$|m^ICKo!Eqf_h7;OkLJX0r9t=qlWe zAS&MyQyt!dTP3R`%jrP@@K2uSA2caV)j4Lw&+B!LOty9%A16@&l2P>DG8Cxs!Eon~4L(U-B*!xAU# zrL3P6Q3v;HfE(PMl2I?#{_9u~&0BnVOM;$zc<$ds^bT05tVsT2sP4@JtT*F!l0VtX zDah~1#oaJcnaHUPf5uEc&{pCLpO#G=enzF{Y66ZfDDv|Vj|a@wgvF~ z&Cm@0P-~NvKNE815ccMf32Y-(%y=BSWy_?1-nb$ZvI*hxAXV2BV9%y@q7)hM@HcBi zoBXS=AhS-qM*KjxF~-_qx6PBS<1zkgd)-4MbSs?lyBf16Hx3Xvk5jMmyI$#oPAcJi z45#*iD})AtuaM0PW*ynBifW{;j{jdBX?m&L2R#%oy^e=hzB1z;5HgdQ-EzXBtDZ%4sRG!RCcvY88QvaFJNce|SQ*A;Io zdJf-=KUxr+7W(x5l~4ZsY;OAlF1b^X)p!PvJ z%hj&!;5@g-f!K19HXz$@3BURiZr&Me{V2}Vj&au9r}Kwr??+#R-B+)F(cH!kwf}S5D!K zI@aH3R42yquK9US`)<;CKk1h??m~jRLP)+Mf0W`t<^1#5_I1mXv%8YY_GdMpGRVU+ zb-$bu6*Xf&jlR}dKbQ*{ZV}d#K>Oz^3?GwRzw!Z<8hy^w{;N9U2MtCSsrMKCYu|cl z-Rk4+?9vyn+HSJY?#NfZu>F5Yq5rJdg7`w8nss>EX+i(~>iM z%EQ1+HeV0h-Mt-RdwL`JyY_u0_Xzb;V#!@M^rb4x$DVtHrF$3nhgx}N+H|{$I-(ax zyR1lN=H(>7C@}G%xbC?NQ01GU_yf4fM0G^WlM!V;jryoMjB!0bdJ@qb1 z3ocr7`TQ(vwnzR*=vW!xSe5TvRqw;xI9QYJjHWnWKX>2o?^`4YxIDDU+TcOS7u+WA z*baO*ewECFy4c~b+Z7hv+j!qbXlrle|4Ub2)Y`-KBnW5jgt8cPEG%>){c$Y5wwVg< z2$WWIL+?2%<&omTV;HdTJr=^l{|eejY0HX>*;@w{RAJP;|6F z!fP6G2wX8!9ghfI&wTvU4l`xhdVs5j_f?BTIE6m&$9%w_ zr=?%w11AF=vBqyNvmcMn#K-4=m&$>c#=sYX4#fnyRS)E6VgF}$f9@y1>pA$PXP{OM z?C$YJ1PYZW$wV|128CE9D#=tl5`|PMjVIYmG8Tu`YPD091Oo6yG~z$?(J5kHl?sh6 zHcIJCX4CP2ERtXVkOSrCsBPOqG|4##$b~pLTkFaErP5*rOq9r7w>2Ii z_=P>%{m*4@G@evCBjBI2$qc}6b+I?w{d_J}lsiDcg>|pr%P~T$FNbq!IumI9D3I%Z zmCp;)X6caY?YuvL&>vx_#pSp?$a}Odi0|uuzVHD5rN6Dybzza2?$_m`)q3A-b0p5b z_KQdAdSYT`Ku3>v*Y$o)rm(Ps@1KyRg^GP#q5V;WKz5PAcUa7s{#UU}({K=;!=flO zf&e1@#~qs^ClD!0MZ6wa;*K2j1+jSu={bjm4MA2xbu5DKFRBEZqyZSMd6kC^jSbUs z)^!XUEdXsC#&Z<5mn51&O@R2eaNv=v$AhwByPtR#*FB>}kiR#F-QvY;Rc z_{I4}X;R6Uc|JHsj^z+kOBq!uS9-vNyl6Sw;stcQ$D9hS+23HzFD8H0HB8rBR}bYl zIp=i9)zUS!fun2My40Lg>*|4yQK~S6I#{}ra3nwH%!&osbW-eyGD2+7)G)U+@hsPM zg_=1hmt1snvD)n-DLY7@aW@}<7FbamQl4n|nMRAVeTatozc_CuE1a-HR7IP&K58Wn%<^z{6Q24A)cSpwF;Dp% z3Svp#3d<%-^NgYWk>3|DcMz#7L{ggRn4n~pOxNCK)8&=WabEf@!TthMl#AY0pwdXb zxB|;W%Q7s=i^lG$C85dg$VRBup*ZS?9#HBKI+3YxcwVElX`}tdfqiA3fTqMf2FIxr zz8Am^!fB6qxb)4Z;4uD9nFF7{X6jB8`V zdp=zlMkoL+8w@NP&3{A~YQX~FO=k8SNxl*P`C_IteDv4|yF1K5m%x{yGVC7i3 ze7Wy6YiTT>#l@JF%8df;kr<+x-#>#OY!EnfdN?RUIxLQ-^X0j1v>JT6K4^wI8utgj zUcnO+W|oaZ!7Vm8COr-YM>?aC#04zhn@6R=+5ec$KG^FmvcCl>Y&)N?R2houu2T*Z90**zbDP4^@V|wF+6VrI z`?()dxfi*w^>QrU8d}y-teNk> zVjI#AkhvX>Z5Wy;rJUE1G`G^JS&{@g<#8OlB#miuXkP|7P=>OMG}S^;_B0)aDB40n z_~*fCrb)yzWrnNm-)%ixQWsT#RtnyMhts%jQii@4?ODFbG+u_3z34%uJxJn=JkJl? zj>go3%$B;qhnQ|P33#`)U1$S0O;wyQ53;RLpyE3&iHn)4mSYl&SuaE_(iPFKD%Lrv zD1`=JTtpT{tq)3IknpKAesBeU3cR8h+$zGcvIb1TN!?!A~G9K+G*?RZOYobfzH z&w}#721Ot1j1<&ha)up1+l9Qb*5LdL8PRE!%9nyMDPMP;Wt?P%)72SEpTT(&BYgDU zHp4LD_l#>i;Wi5Gs>7c-o*l$i2RekH3lqj)3?4dc_L+Z{c$j-wT3visf9b3tGkU5@ zo=dVX>(I~LuOK@1a;zqNWlY;tch~d$rej^tw1Hsw7kkT$_Bz?ze8}*z*!n7+YuP&! z%n#VHKw4~>`HGXE_5=0y>)$5T+7qu8dW4GmgHHek{YcNS{@+|g&4!O$hG+w`DV@I4 z%PHWhkM}$rqTpWo+39REr*cCG?Tlxy==HYuso(#GF0glNyd4Jx?Uw8P;PrPOP9y6L z(Td~S-|Grw(m$K~CVaC04*+dIlE2UY?fOu$c?>=Ej5qsmj_ z$HqPKv5z(RBOxa#$OS>rD(!pRB~?O_mLbJ}K|75Z9od;LQu355uq6F9^A;sCK#w*& zfKqZqIZ@h?l+`gMDkoVx#{iIw(NiHV4X4Xp4ziaA_@( zS~ac3u^OWPX%a3*%D z)S*G0$~2^+b%!|2Ar3c^L(4YQUJEfULtHzyz*;o3wN318XG$H90C20y%@Cnt^R}&p zR-PIOE?M{afbuTHp-=H_XPwJW=th^bmLn%e)N2s#!s(?n+?ZSgP~HcWB)#l?ZH3(X z-olzrzTpiCbsu71$yiaY`jy*$`}<#x(O1C4`63E7%;64un8T)1;~Jf2sfUSlw~v`$ z`&0%%5$Dup3y3jME{x&LX!yf8?(q7$IXEC0F)G1@%11W zSz}Y3iP}6rnn%zCvxPb4>Q|@v&oPnptS>z@(&~_gQz`0^@0?#e4-SCdLyx~1H(qea7`+6|z(>3!JO@)MsirW*ICWd@c$9U%1K}?prFMabuZj zHq#1{$pFOWNpC@mi|_o91b6({I1I@`_j%99gv11TGI+#Nu5yJJF02!*xt-5Fk^6@B zZ^0_flcN4&rGl2;hN|0WYNY$oedea%+Hx@IXyE1plmLb;N zS#mW;B=LHnxD5 zU!=cF6d(3K!hDU3xU}LGF8)97daa6h8~fGODKCICxH{8be9!t z9k7Rd*oS_|hee@j|6y`F^%h$-B_Ie*T?l6+1~I|^Cs&}fM*Rgl-DP3|QC)P97RTyW=vdiaN~*oS&YN2{nOmq&vJaULSLCb5TTmSTuK zxDm&3e;xsD(MNygbsj2{RY@UF`=m!n=ns2SflJQ$%&u0wuaV-y@ij=|=4DFj|X2v})>5L=Z*0JMbiC~|p6a04k61!<75 zm=fpMat@J@E@3yKICTm|MtF6RG?j(HQ&vy^A(1^;ZrrvJ5)fk&5R?q)5gBQ7sn?0Y zrbJK|64JuED?W@;fP0Ob{rOr&}T@Bj_taS&FADw6>?^?!27Y{Vy!gqe+o znV7QaCyU8M3-N~S!;yyZgJLOybx4zt`72p9c8I}-k#+zEU?!W0ZejBl^@oaRL6kTp zV#-EtnTdkZLOG8KDZLhuuW3H9Ih%?988Kh;k|G%?OEa3lIeL<{Z5YuW?b99$fEbX1 zX#8bfG*z5|33BylkIj^b8YpZ*COq8Pgx`5M;VGVnNuGiA7NS^j67+#)k$7UIR|nCX z7B_UfW&rVN0P~pu1VR8Y#*6(Wi>p_h280xA=%08+QnDnVCTU^^5YXKJ8(Hj5MJqr|psI??N=l+Ssu0i-wuvinnoy?-XOfYs;l-!F0%4KSku)U|Gr5jRC96f` zoQ&xaxEf={nE-3ltEmZ^79;>lqyZUVozXXk+C(nxfvlXW5beQdc<4pkw-^R{um~%y z;@2NBR;_-iuGfgI?3telV4Xy_Bd#=|c4i(s8J(W#5#{Eo z;Uaw*rV+FzZ&A1{z@Fi_MufL`@(4f&a)FRq04lQpN2?JhZ~_45c_J!fg!%xRICkr} zjz!i?c=;p~P+ltkyH6boU^A+^fXcf6dZ2{~g|XYSv)imNV!P<;9=VHyZy14F{{oCy&tO-;FbW@d%y(*z^_WdSH*$!18zYL$iylZhbuy-(iMtW3mQa85mB<05oeRO> zHj@OP0(R$d#fbo3c4Wt~wfR(>5SD}{P)@+tGMn4CX=}P}iKRk`rF?5I$vSCI1O%@! z#$;TSRX3QVLx}Qdv*Bi@F?vL;4a%hBkPwZ-CdOr4%FB7i zTFFs)3z1IC#`Ab7DCn69=5_bW5%m|MZ^5ll@;t&e0Bo2=d0JBRX#h_m!9KIVOFTct zTmV%XY=W#zCfm!1v2RVQLn3BUmjWpsVYLJzc#)x~=ex=TA+{5sacx{tPr|JLG|gm{%l^D#WB337bf^JJ0Ka?| zTiT_>%6eg^nW)tR7|np@B6!pb&UQo2=B%ddM#}0;#_T*D?o5eExKJ7~&oNxj&lz@0 z469uKx=;G`*MmgwZ{q(X_+S;Rcr> z(S!~K(gIPl7?#c@ZPF`=#ucK~tlY)$iWD#`#}*5Hqk}{nk(|P|k@>5e|G7qx3yF9& z!ARkCJ?PU2Pyp@fwHcdGeushwfP!zhRoDq~n>>2~i=1(swgq9rWLl%v_;_61)vqxw zj?#f2yM%BVVU7`FYB#}o#=?ZnE7-UNWWE#}CH{Wk!V z0o)3v_{O~j@PPFzz9T7sF#vRoZu=0@)t^ry9DA~ma z7w@SQ4}H_S>*)STuTR?K90|u;Rj5dT7)sOtF($#9+t;x1q8u5H{S3L8RB{iykP${v z0QAXr&S^X1B6-e&Vq1SPz12Sc0AYjpa?yE zsze;?;cn9&>74+6OaKN;#)!cfX|Wc{WS7$X%axp9NYU73e(nYkKLIN!pInFaY{fV} z+3u0+0_NwK-Rpm+Laq`XF7mKWON5RW4@*29h_>dtemL0eoEBt8i^BLvd;o2 zr;?a^=qI-a0U1A=VlKmLl)FB>Rqa98L6hRCeT`xpI{=5P9Yya4hwokg&0w^PP~t3E zDRdj9g^G_!hX9{X0-sK-fq7U7HlEsw=7U+)j#B4R7nuNB5WJolYT^YB|GS0q4I;bfcgYeFF2!-8lJ&TqK@_DS#x(O>5E_RD?mBTe_Zp8);gx`C+?^$9Up?QC+t`*Y7JTqvgDxo>W|T-kAOZvoClcTY0YV3s9aOIDknyBU0vHQ4 zXpoU6!~zL)>cokYV9*9CaT+ZO0cQe%A)5|(T5!Mts#FIO3?Og;$%70NCM1aMxpnQ{#hX{}UcP<({^hFxz+l3K4If6F7zjtkjU6`z99i;Y z%4@5xeY$Y(!3AT#G9>skAyo+yJf8)L_29z{88q(obcg&kPIWk}% z^&!WT9B~e3tW)Jr+zmL=WFGxzRH#=61R!|XszA(LxugAhdTqjk;q5*^FPUy-_U+xj zhYwe9V*2$JKgRDE@8$UY{qwgiw5Q_YYyqvhG7Gfo2pa8x(oQoVwd+R_`4h3pXw+2{huBQZm6Aq=0CNi!8uHUYfT z?6a>VFsnSXPU9>9^qvH4J^!YpvP$^ovoA~gfY`80FZZL$N-^EjOsebPDo`_lG|-^Q zgQOzqgcI0IhydW~q-Zq{J=&=z4F#%=I6nu_sU?^HV3JX$j6l@rDxP2@iXa$gB+A7b zZR`@#qh7*^y3!sJC?PW!l7L9=N*f7*(#Yz}tg~3{tSuI*F=>@I>h(o4O2%!^Rku@g)c{g7G#`ri6i5XXqB8I*3mFQPyT&+^ps{NWkaWeGS1fbh1jI#3 zC5~*0_fmO767(mkgeoYgcbS7RT^nVNk!N!MPec(^0jy>@tm<4%s3Cw+4eNxix$}Bp z@is;~Z7V0P_}7aumQC%naV6N{yA&c@0Fy&Cz|^OvC9ku_5(;=WlC0&>CPz6GcT*gv z{^`=jy7luXpd%UpxZav$_wmM{qX|ZyA^3T!1EdlN)toot2s5u)4nR(Y<(ge?+i#bQ z?Y6Ug8}4FphnQ|>1Gr4Hw^~MiZ?FBn3h=%w8vJVs5+C63117p^(QcFKd0fwHRMf=M zwIx)i%L&rFbD|y>zs7f+9=&v`P!~Y;g#=_Q@39$@J)yeLtKC}yco*XV&w#no-R|ns zJKr7fcEuYIT3Gg(Afd%nB*{$KGBBwB0JP>Ih_e%gc*3Zr0Ouj~dI|e}A}AJ7?Kccq zVREE%Ih|xG0iEj;3n|CBph&1XLE;d<6j>6k|xF0-S@Wt9=P@R@C72!RrwKhfk{!19-Bu zshtEkG-A|-)|C{R+;NXLDjKFPbw}7SC~$x4%Bqfd8UX9u&Ru{tY$YDjoTNg>v8vi}TY9~p^3;RR>?3^$s1t5`5UPvRz)lfw> z5(wfVXGcrL5F(SZ5se<@zDq^_E{5A;rurICIH_=^DhFUl;Xe6E|HXx2n+yOtQMpb8 zlG1Iatc_d%#LoA~i;f4l+t&(`w}ntpmS@ZW1)XxWiR6-MyR3;XGZM_H{n0r!g64}B zB>-g_^ElNs(KEpp&4*4Cbk-DR0_^M&4N_==&82lt zP%Fv^a0G=-H+Bwa+H6ima|qF}G9W*L{E5Lv0vsRV?I3c>T9OvfmI)d_rb(>T1a6vB z!cJ+FI~@!VfU{V}HkPsfx+ zO^|}b2Y6JG%e*MY5{Xq~GDk);VOj#H(nmXubx-KR=ua>x00ht#oTqxwWy;7Zz7AJYyOyxzC9;I=Ze4ohu^%D;D{SmaL5^FXkKt)#ew=KOrj;T= z)eCe^vq@?XsmPiYlPAPfr1z#qQXK8pMwG*7NI=&j9}Zw_W-MTW1Tq1VFsw9gG0T$< z7C5+km%D1AZiwSz-JN1ryV`wAcnR1n5vw>Z!i$Ub0ubM)Y{yJyN=R!AvVeyigvROI z3Icc%l1e!fqg^8ZX=KAM#Z(vL(-^eFWTs1aN8UPF(fQsHmYVA2BpH; zCUDlfsfW`7ViC7F03>!N5NxfF^BAcN;}AN>JvmQRf~4fi2@PbQ>+s4dI(eHA1>ENI?Lbh$^J8 zP|(a~0WoO*y|WhS4%^^;@wF9!9qbz)JfF`KFQf^eY#}YAvTz~^aQ>al0}NL{jV{ST zqRIeQT@GI`>)w5F!1sR^WWZp9fvC-;$%I*ppq(dN?1b)vQUJn$xrs!CV_ zfd*|yl17Af$Xzu7NdkERNi1hfXF6Z1mmVz%SKz|2E_KOl9hJDE&a)&a0ONjkT1~Q= zlJKC9-vK3WR4<+oagO%Exyo+7C{b_Swmfdgo?Z{ay0{99& zdWZ=az7#6H0&pmr3pY$#5wX%aLE4<4A(!aGkt^#tQlqpDxxVb%K9*sY@Mx}t2)_qm zq6a9ygAlCqL%*q0zqVn&)q4wqfIoI(fg9|LZ^Ealkhs_wlpo@xia4zU2ppJft*Rl*fwUMZrbOBh7$KVEvk}^Y2(;>rO0l_6+q=?PrjW=NMp-ET zmq-mTq9`KtpMWudF?)c13$g?GmxLfcw`f7rd%=o{L9Cm>>bWz*x4D5}1wZ z@WD}$uR7xzF}k=^!94O=4+wj2}yx ztEjk>(~+m5ifME%L_p~%MTkTPEW5r`yks8@T%E=cB zk&1=7sHpIa@0_@8+}Bd#ljUh+$W1Hv^&wr z&FZI)?6J){0FYF&ktD!FYCx2XD&9KDl1vdCItiF8NtpyZnv6%FYoVJYMDp3mHoU~2 zbgrVyyrT4sC+VbGktwL;HKyb#r<6K1D=eYv5qt_6ip!V9f|m8t##Fhn1JSHJG|R7O zGEGsp%E6Fxy9#U@r00vp0%#-5!9r$oBbsnIN?E+^>oJILS1f)5)3Zu*zr2Aljp= zu$!?(GtX=kBWrxaZt)tp(h10OH)C=+`ZOjyp+2gqH~iE>ox!v@g2yr}7xGC*m}?aB zL6OoVl4@KvL_a?p9*FFa#iFb*8A5#e zG0fbb2cwy!N(eEu!mW}x3FJF)Jb+kqJi7e5xIznL^W%4y0&Tavf`pK0WpD) z=r`1uK)R&Dkc!Q&`lXt@k$B@R7@>;VY)#w(HCa7~PHE!R!;RH{R#T8bd(j7A24AR!_dej=z08bSjw z0TY-RuB4fi*h$xlxr!~r%OTQJ8y0l?Pppy`&>4zfGSG90Sc6Rw;V>|oD7svnFayMj zkL?$jDG(!ZQ|@HF5BpS=RU4K?43~Y`PHn-#GErkAo-i>kd@2}*5Sh?(&&oq80#F@m zW0MYPj@!DFKyoNKc}JWeiMEv5-~v|2gFrQ$)9BcN9cU}sQpwgiHLg+-@)=VN!4u~A zH?D!DUu-4kOpgea%Dg~Vx8)VMJq)>>TM^~8CNUoWs;o%$nxDNzDZizPHtib$i7&yG zh{9a}HqijgNnGz4A##fLi4e_>9GbCn`lyYn)%(5i|rmhFz<|1Fi)F)Il2IFbsS|#bO z1aaL5=mDZM8}#tuAEr(%71sd1*S4Ly-dhqoJ5!CDvr{by^@LNHny)E#uFZ7Kl=%sj zc*pTUBrYsN6$+ZsOaOyY*d3*mKH?!>RmX1m;?`88-y=YsS(;RBC8L`jOVWz4(BnNO zzbZXhu*)?--cUhqSwenL(?et=UNf;+SdCla%Xnn`U1M&lz9=@Xlh6R_u4cyBXXe5Gsw_`KQwRwo+ULRM1Ar0EpxlH_0B=4KaMnNz zoFOfq-d{!MD~6YKhDDidD8M^M0*vQE-M%esD>E${d?oAyT#Tp=b&mB_`;$=GSFiYo43f#in^7*-_InYn8p%;2I zs`YPncMuPZy8l{U{?9qaf$f}$TK;y=y+QpLsG=EzvQ)YX-AWjreD_F0;DkwTCx z-z(cCQ?!{m>k^dfFU;Y%RtlK^kSiM%M32IuW@Hm;!^R!N1^^*owd7WA+Fe9wmNuqp z76ZUcf{>FFAh-$OIF2KU9x0o=jW0Pu(4T;30K+Ys`_%|+Mc{%F%ni3Y(k4lh$0|hF z`dr~m)9i0LBv<2`J6;lpBr_8v?sYP5TvxxM>vCR^|D4R27KK(dVQY|B;p#vCTYw(qPXn$T~r!9`c8 zQ2zTX=~<-!*P;P8a091ZTvVU=*S zk_=&^`4;M3q+*p0hx#S|oR9$-P`>)cKvOemKk=tn?RINR$7|^@emPBf7b2BU#TjjgshNws&Ea_ZG~ve77toG!x@;Q5>NVh+#py14;hCS*%#2sSHbxg52}iKNh&JeWk{W z{nd-Q?{U8fAn^l;009ON6d2$DLWBbe9x&ig06_r`4IB_4U;##n1~3w2cpyUtixMPk zTwoC+0t6rl5P$%oK?9d83lvC@faOe^GiesUNx&il20UxpOhB`!QJ*w-F2yI-L@|>GSJOpBBeL?AQ@0ON?6t zFd<;rY(27VixPoZvwH^wz!_jIQkXKeQf<%_>eHQ43&4aLbnH;DObZ0vNswmH^-bhncJC@3mbeh)4 zQcwiB2kUxcbrjZ=9ew8IM7$ah->>qWm{(j2g_-7m82Py@v(3Iqr=8JWhG(9gIeRU$ z2o2g1mL3jdD{m7GAd&i5D%v5==Y7gcMImZAIz;pB9CqPL__xRg?N! zl@+M0wgiE_Pl8pjrD-joq>9Atlu%s)q&R>>y8e1seG^S^Y<+hn3Rs}nntU?<%78&D zEz1B02xqx(z{C*P${NP*%WJ$ zLq&cwGM>|*T?k* z5T-`I(mXifgRk6jv_h=5IOC1GIdkEC*?byog^t@6x(cbumqRBEJ;23rA>d}-hzArDw9gfto3n0Z4e+A>=LCg5!RQ8* zZougbq@KX)S_c77F|1y(+m``pH#G*Z6p$#>iIQ^G))aj$ zkX92U2-UJ?lf@mc0Ba%Qp)`^bWyJ*}VH!yQ_%?yUbZdu(jNuGvn3*7~u91$MT$#jo zNSe)tH|V;UMg}Fn%f$sGq{~&iF4rSovBV)kiC4UG1eLILBx+XwoJt7C*r)-d5rR(} z;B>xYq^7u$IJ6wnt8lUvEHOYuHhD?bf>y+l1g$L=NeLY{5|_`w=R_FlOCcwz&B!HE zk(XiQBg3hzZC-C%mULfe3_y_EFl_;WG)Y;Qhmb`Hz>^axC4OweJX4L0CJO-zzHsEK zoovg3Xv~#MI^{Z^bc!cI;o3w070fgKl4|g3KnDzp8a?)~h@p9=g!(wFVY%=i*CZ!O zuh&g)RtB8nd}K=H1WCl0)1)9pp*rV>A{4sIor@x(N9bwKPfkPw`phXmou(vBVem(| z8d5Dy+PCc5Eu?WU46Ik6l7w~|) zU=Bk;D-aN4s#n6Sl%~i&XBN6KRM6M)FA$p{QaSVTlGb zK$B0Ra$c9}9daVd&#i#!UQzob7bp0|A?XV{9t^0#KD(*eMv0gcq)7)lFu($kYprY% zOl=;}nFZiwg%8*$ngsHhyH*H&gMF?+`s!D}26m><9gtxUo0!ezCN*R++VUz!HAi8D z04bSg(+IGT)lFwdS|X0y8b*Mu;LBdt`DHNGlU0Wvi72Rq3VlJFyCOZ6079AyLgLtf z9qgb3HYs5dB|^6%uEn^XG03p$GR=`)x5L@rZ%9mbu85(y?4;iZB5%bY8AF=|b6tuE6efTuLHU>99Z*jR!P-j*ec z!aU#vgW{6hLVzIb+Q*1DcGz6DfkZ{GT)KXh)s7XzE0@n&1W{t%e)lRuAKEVC9dfeFgu zFrS#^f2MVI2dFww(-QD2WZ8;meWaZm?FedU+a-Uka!LtaIc+<8?JdExsI{Q$&+)!@ zAVXHHF~`NY0sr}F_N~Z%i*rwT1$toyu09bRz&EM!@(B@gUdZ-301i(`kQuOm@%{&& z0!%rOKuhf_b4zYR`dR~~Tx90B_S;Eq6_Rsh+6n5?N1o%Aqw3af=V91FJn!3akuLbg z2%UyR4`&Xcd-MyPR8VbE6J+Tb$yD?I@7OnuPe!1K5v1HRC{wSIaDw#EgXXS)_rUc2(cwpN{igREp6*f){A+$3hpSPuopS(Jqwj0o;;XXDQg;?hP85! zo#OaSEo;R#6d1r@>f&SCTPVx0nU8X>C! z%Bdue7~zVHz|oPA7DCpDvylx*WB_tO#ID#4COJ&b|`U>ayG)W5hQ489$~1;9wCMLMaK4w(;55(Zvamq{idO0tYfuB6Yk zWP!jW;UI)e($odsRWl_QTlGq>?Bp92;ZNcdP8h&YA^=MmB~mtt3*?SfHDxTF%4|s` zRXSQQ{ukSM+f&B>oGhusvbjKGK8FBVk!S4=vn4>d ziQK6~$uEu_LB8H+Q3|4AO<7>ctvh4B|!?0 zM4g@OQQ1^rRa4kfj%W}J!qHMzQ8KZjD8&kgq$e~Y5ov_RNWl}B)ThX74B+ACH-e*O z@F#8}Mgl6vQ);#Ykk1LbOT#$mV_e=t%uwe-BZxu zsJJP3yw9zWko@q}sg0%t;Auk$1`{2qyd6uKHL0HhoqpPhkiw;5^kxDUXn>^SC{kmj zE=sXQ>aht97Q$7Nh?=Mzkf%|NO+Y70Y*}vUmZ!R0*KkW{sCp(W;^% z>wO}yU<7FjA?9VoGD22P3eIcZD6bwYzWr*56>M$_ty~goM%G3Uz0+Q1QaxqBT};3R zrdI;EB2|TJk>p-c+}TiYE0G<@N=xpdFWaDP{tg9EsbKjBWvRYqx@}w|Z86Fu<6RMP|VU#F-0ms>MiLUIE^e zBo#*A9l z)Z&nZ?u?+WslpyppswnMt?F8pO}uXGj>YUUXv7&2M{X4Eo>hRHrl}>y?*i}70WO>s zuK>T=Vc1zGDlK93%DcHs$^6vIW!9Joh6aomuoM6hzEKoqq}5ID_(9e88e<9;iO7EK zZgFd;e(Cz2a79vCiI_lK>rv@3{=@`nu?j4NkXTuHd@%t$K-~BbvXO2Z?qMbujT)ny zkOXEyjFLw58e2)oEITM-R&4L}tYM4^uoTN5dsrZcV<8u_As;LPpGLCo#)SPOUqGzI zA`SRqDK0CS8dj`&q!E=|&asRHKC#Qggy@Y)culF+T>X6>%anGGREO4!`p|D^Yqnb4NgI6u(hB6Qf{Q za|f3WSsa)#LX1U($$Ln^H%DqX1cuaf{KwGoHPeuF$j2BAa^YF)t@D zNj>5*^Rr$J^EUx>F$=Ua5wu<@?Lg;Qw89m=Hu72sNjq_1mIXz8ti+|x>7F%@uo>aM zL{u-$p2xA+2Tzcum9qVDi$??nGip*$7|oM5Xtf!QWU(hT<{sre-^k!afb#St`E-y1 zbs_s{GE+|xx6AXIrehhv#n5m=C`(euM~y@%=H>=0D+#hVP+;2s#0jYLC!vc&+(kus zkm|h40v#0RqIH}u8IceK2gCDFuZVBiDKlM8T;C~%7@$BLtzQ4HKT}2!_%$KtwqkV1 zT6_jQG0I&9U|~#-(+PkKQi*yw_nmnaS$H}Lb%#eLLTdefX)Lw>Cjj!OD{G2yyz()Z><7cop`2=ly|L}VQKySzQ zP9s*4S`U3+i&{o#PTk`H*l3f6vO!!V#03Boon92FmuoTqfX-}7R9kcIN?etw;j{*s zbxfr9dc@3{1&xae5sjH*)vYsnI9P&D{wN{=_OcY0cuetiWf(zQpE;U8>CNN}@T#Rf z$>R%GEwAFZK-k2S9zc&T2|54xM)?Mmlie?|^D!#ReTZI-a4x%TGwOwnig`ptuwMW4 zh$$iq(_}dyffSdNq#uj}iAup%0NpT&wrX-8k>s-@-FGsT8`l2>s@B=*Z)iTH*8vuAov07?-8*o4|4&u%m~loiCp zH2VI$W5Kb74-qGM3pSc)d3r~Cz)d>WT$LeQb#Y_}1Pyif>KP+h~cF z#1E}t__LZ&cmI^vo|Ig_1DS+}w?lFlt7O+1P{sU;AV-*J0fRU8Gf)x9kEZh)0$~tj4K5 zyIj(Jn*seru0HFxe%=qYOBzVFzYyP>V>#PQ(_hZGi?TdgYEoibM+OXbE}fMT$5Y2P zx-80=#cYc>N+{<>&EZ#hdqkXSA)G?)e{e?5XZ`+u`01m5KfkvTv_AQ>{vpl&U>zJh z0>%}OyFeIPWV^rTvfI<6-p8f~^Bl{4OvHY%Dm=&7M!f1F&^U_^rfn7Spxj9iwjM3<(m%SexPFxQYiDAitR5cj0T0_A<^q9S!JF0+9S{3CJf2E!0UPkxUc-BWP^Y(MKIMRMG(r!bqVksXWW3j)udm zOBS_bjsc234Iof~B+Tl@EIArLyaP&ojsdH*!V{yIPPJ*!NqOy6G(;6Wl2J&Bjnr3^ z<~uf~N)Ncyppi1Aveg_>jdrV!Bs1W(PtOZAOyE9!z)y)%y=_(PYIQY%@wRM8R$5yu z?^Z1*639KKa;<4sW%=#@S0-SC?Qhs(i}g1%gJS|0N2so=_S%iA1PiY7THSG^>=1k? zIRQjs%UO}?dLTiGLVkdN@E{ZbWw8V!03i$6-Ey$n8qGl70}L2SRRQj8iqK>c4thX< z12%17f*}=JX_oM^IIwyHXt+w3o~tq~3NwS1b!o2cW4+``K-+u*kFy*%^g6r`P@j>&JtY3En)!ILbU*xLWbYwsEy-w8aERNX&-g~dOGACjcrrCK< zU((xg=g9~X;E!Ma`Quj~VUgylNTfVLa{Z&Tgol!|Ac#v6VG;A-qL#E6gdidNkn{|K zrsyr8I?{^Q0QR!3$1tlRk3kbfViuVk6$e*mT7dcNm%?7LuYEdsAN^n`zt3a|g(`ds zX7FbKjbIEV{sRdQSK_#=?; z-Q6`Liv|{VcXxLQ?(UZ01P=rf2$4Pf&pCDKzTCQX-%r0x)znl?RoC=X&vgGj-%72c z2kSlSuXr>tO>eB__`;#hijV1XW+34(Jh;Y?@MaW5qN`SsaN0)lR)ifT!}N36b9$=q zOiEg`w$1OYE%}!y`?LaIB}%N)X6=!&50v-hKDZ;o;Lo)RN|9Tr76?_lTW4+$-(x_k z5MCYZ)%QhXW-M~7GE26gP;R4&VNF(m-sKGw(Y7+=Zy*md>^68GRuO~-nT=mdRqaYA zGZsvvF_UjKn~orZM6u$QYmPfm<*13r<}4zR`gl&MGX1$*Rm~FPV?#(@=5kso<8c4BAg)ka1$<&#zod|HF|B zw$9bdUhw5(<)nKqUTeL1hAMtJ z{+1=yMmvw(?NvMm8DTuYw`U92 zKRxN~hu{?VVzE)~Z5`Zu8?eY^?tu5yD3gB| zkwtMvm$JdHsO}v)&cTAa@5%QC_B~n7r|gNwmwR{F7;IC2dgN~uXR*d(hzKEoROKwG z^L$U4dv}IS{F30GQ2Sm#gT!CtY5@(6*Z-7gN+Lv~T*m6Ls?6IF&S1Qp>8hQicCl6U zH+!PqUJ2ZXL_xBy1V<=Qi7hl35kLF_^D0LE(PTh(`Hw&fd0g;kONyH-b4hR7p0$77 z1B-2b<9S#31-Q+t0gpNw960pTzk1q~%$hlGZ_@l{vD$^JZ`;`BR?B0=L zjKA^}>Xb-BAK%SCf99yrT(7LYJ-9x4#wnxSf}=d0cfq;*+}CeY<>w*hNRR1eZg=S@ z{c}jn-6aI(q8{6C-Zpo%>lq^%iRoc6@-$9A{rTg%U2k-}f7abCZhps{^CvK0wSfI_ z@0;qUufCvQ@>!{)@8!+dXIxI+^B+QeiZR8$o_*WvF{NCMFujaz>xsuYDc~^Yo*Bqd6t@32Iy-fAoUiX<<4*L6W|5mT> zNX@|55DT>)_>|4A}Vc-v@toe^Wa5!wER+8k1gB zeZMG$r%kaOG_v~iFB=5^b58xmV)GkeM?;a{A->R%JUmm5+av9{%l6;?+s20=Z6uQG zBKY5@xA0kwzmb)y{ryFW&iXM5N^2J?>v|vzri8Ra3)+%0$kqr zj`!~{fh}BL;I%vhI7X7qSB0=hF&PAlrL&Q5zl@ua|3+Qm zqS*K1plvq2`^Ry{!oBlH-Nn24mp=p^yoCHa3hkGioNdK7;fQB|hEKknyQ3y3ulYG}Fm)eM?!Ml&zQzPZD`U&40!h+c3~_XiUbRF2gl?Twr1^eDapZa1^{2&9|*oa+r3il1j=j+)nW_feF~+{`O6%4S^ks?OPyxnC=qilmCrrZ0}t&}3fU8k*5Ve6 z8u21O(#T(4rhJ@+2TY5PN9}W0lj%V>9W~^rLdV04Dd0{2qXk52UG<`M&NPxs7EAsR zfz#K*P;|newL+QK+;tRd&?rk<7S8l(i3#VF6gY%xOv9St&6=alDpSXJ>LE6^tjXr_ z&6c;=x<#NkmBr+pBZab8h$JBC9979+$E zxca?kr#ENB82dgRhmJEh28;t^OfXOZ@=Lp-aG4X{%8Hlz5UH6_4M$z>bs%DilhjR6rrvZX*+YqsT3{$9fPm*?+08gMV5QSFYrq~ znJiZs5nrji=D&rjcsa?kDmsLr2eSC>KbIUhFm!L_*W_ZaDL9K2LLU{v))buhi41fV z+)@=H_?15RDheGJQjAqwKS*mdE4sxf54Uk<@T+iIzU1q2&+$@K=rT3<(t4zGr|7Cg z_#(6+($WAB%u&Q9+H*JVXlK_H7td9feU)xJ)G&(GM2iv0ih=0#3UDU%8{g1oevL3) zwSpKm+5-(lKg}!MD9j(47|0rgekvAATD$FP;27Z4vNj)q4xs=lh)#2tUvr;d+}<$+#pOzxC6N?J#`mK$AMMKqR6?@z=)d zwDPjH;#;>axv|nfv7{FiVYMYjB zuY-xpLuXA+V||=-k?WeaMCbta<0)G=jP2}RW3mR*Wy$h8esFb6%hYrgRIBQI%FJ|P z{fZQ(|07cWN26c@q*He^lW}O&1_OF+-RY`zNg;ROb|~n6O5~1+@c&0id?ga&;ZDy>-}W?l-4 z|9r>)+x~A4{D1bq|GSb{3;-gb5o~3H!zRN)()tuit^Y?!EI|N3Z2p&$NKNB?xi_uj zFkAGWlE~&c9G>vH-Hc;t`FI?Fh!UwP*hS0gT=Q>g|z8Z^fY|AP#7w;WF!G9P07P4-Nl(R#Jnj8CPmns;VB)lE71W!|LJZrN+s-<|xa^c<01 z>&bkf|JT@dM;T&wfoRvmm4RMb<&LMb%YjPNCpaUQ(BnC5hFo6U9Wo#}yLCLP0Wy2z zcDYWwxWBmBB)P2Pq>v0nEXmZBC*#a0RzOSd_!9Ju@!*Ty-o3+N6!y9Uwe|C96?rtx z8`~Ubx)x$U7(xlla%A|hP;wmYL`+FE`TO;fkMYyh$5LD)&-ihUz>DKV**6L{2||a} z7Ab#vNc55_u#iuTq~)hiGUg~_%iWYEqU}7KN#&C5pdCz0W)_t-Oex0htg8vajUqV; zZc#l$cJ*p8_Ii_2EMJSDnQN7KkiW&FB{593ETv(&6}muQcOv2_LiHTIqA7vei%L?w znZwdzwize=B>yu~9nu0}24kkg%gZ`MEVy!YNy!Gfi(ZBQgjOv|eXxFA7s_sRz59wW zd-X`=*}f!c4!QwQ{&Ntt!n-#6y2BXUSJ5&FgSjcyb`WWovsK?+7xtB~r*{nG{Ax(t zp__K=iXZ%)oRL*Rq}?_uUVQ7~KhFs58^Lqsj=A4>M#RAsy1pC5qUNxU0vn$#YZLGi zH#@E=Uwiq0Jh~xc45EMTrJvOaPsho%gqw%c-NZQOm^b@Pr+y}wdQS_|M>bUuNBL?^ zhEo@{WZGO7|D0akJgMKq2?1zEH5awqo{6 z&B`GrNF92jW0NQxYPEa*e9kKAKIFx(p=+;*V_!==sMqmcvbJcmFyrVc<+ghgYSb9~ z4fW5J&rEaGSc{n!t>f?SY9DV2k9+q+dB5VeU}xVw5hbnMzgr#u^JFP%f&aMt^)Jtl z?JU;jr;rf0KXaddWB>cZd{{{G>oiOKLkLhI>aXRp^Jkr(3X-W?Nix4eOo51=;4%OU z@O)Rf4!3;}*;tbfRW}|>aB3JkI62}Q>_9etwJHl)o_8_`T^?7q9ivy1hO~Vd)!}>? zcV>}+k-x;{)|%?%&$lQ^Oi4_5k-{k5&QNrtOzd@Z<{NNhr1+K0XPk)h5!x?fG5knt zEAp)zwOEq;4Ed?}df~nCbEkn9PF6-@3gdqbz1|t-m*jJmQr@VQ$6<&R4s8jiA8Xy& zU1}feKW|Mu_b&^2{W-|sXk!*dVN_+vH!_0>l7+QE{G#3+(mF^-k_LWHE5y_GP8Hg0JE1}H_&hRp|w^wj_ z#VSlowtiH0u~(rwdCSz=KErsgAeMnXXe_6VP@P<7bmKffh`y1%fLg=uWr97=R>517!NwL*8uTt`qD>yD z$@?$9*_HEhS5HDD8XeTa#sQMiuqd3>&!iF=G&+Xh+!D`espFuaG4_T*JfzoEx`}u# z#&e^YG{o9LJTCJCeCD9Dd%nTl%VcO!th(7iiW46Zx){`18P0adtj;H7vXeXB*_Yt% zF88|?!b;c>_N!qCZN)goceBSLywSHJul>qhuNM1c%NwUo=Mxce8`2h=K7Ofgv@>CU zKHj&$fRKU~^;NU8P|Y`gd(C6YmzxkJ0r<4!`*mk6J*X{T1MYXp|K0}lF5Gjg-0iHU zqO{cxJt!*Ouv>HwDrP;|HD1XITcLlO7$F{PKt>hPMtk}pxh|&p?$m{hAZe_hYjEkU zljI2<`L8KC^FkOl{|m53|d_#(C5F2)Desuf^7rD`Npslynw&P;|>&b6= zEP7$4$y3(9;3fJS-nre^cHB4w1sHdb5S=~BZ{6(l@}#dZk-_#QeUCk^j({SWyKmK)0zRGO&H@rYZbcE< z9#Bj)FuoVU))XU!(DaJT~{s&T6-xZzeQQ*OiZOvl7+mfRBqbc zl>!Fzph~!38WTHxT6InYds_}E{%&Pg{bGwH?SV=myXJP|nQ+$w_aV)NYdnN_w!AN0U+!Oy+HEpFeo()R z#W@)Wm{b>yYJT#5qU=NhiU5dd^k(6kcd>BC?@NUa?FMH2{f$DE^xVmB7oMc}7aRND zEqtHz5dX$=`0gu4Az_A}>SHLk&VkymxA-0C!yhVw5KW52PEd+(fZe~YkAH{XwlTM& zan-|XRK%0fbpcz0%rj>$L;rsE!T;WD!tUD!i#l(Y_xCz}e^^*$8@->OU$WOJX$cnf z55-I--eC?x?)C=a8mTfsQy;j`KEA(TCb&ZVKyv>6`&Wl|_C%j2OzGtnHL|D{P-%m# zjMz`0f%X(ghQvkD(AFv_7K>3pNw^j;O!2`N!SX$!=KHUxv;>N#?+wCQf$t!+NTk`3 z0?qQz4usU*xa$OgN?+xEzy9x2;M>qq`;Fj+!_WUykBRfip+?#UnN|+hA(|VJP>clN zLK5tvk0)gqMqC|vr(hPqV;RO1g(yX{Y40dZZ1rJWXuVyhyo(ASAvCoM3{%i}M)JUc z3qk)ykck-r5u2mQ0_fiJsIRX^zKU7^Xr!;;zEOx_g z8OfRz0h?1%sE|13ApkA_`1n&xAe#mm!pRb#&Q7AVil-#Z>@u7kJGdT(e4l{3WHYND zpLiB4y@dE@E9u{J(%%^2x>OnJ4%Znzr@E=P+8Hu{YVZeLwW6O1k3Rz)=mB`1KB1+S z2sGA>Re?K#fMstWv?V%C&;n_MjyW6f7?TuRmIQdsMj;`X3ZOmkrGW4z-ox#JF#}A& zlTd~e@IDKqkJrvPI~bD&BE$?-z5rw&5s-tfF^W(rAtt znps%B#AhG95lhnbf`G_8@dz!cqO3_AtlnI#ncPm^uP>%qds0EPXi$o=hg|~BS6H;PwAb>*$@Sz9MFU*4x#V6Y6Rnx&$W(6{qJHTNk;?Oddu1=l$3j!`JcMa# zTgX7ec>^MNc?MkHMT#Cpie~xp5$*$TH-u&@xxy!4Y`{X$jd(giT7d{yIZ;oPv~yJz(FFKu;+Nni3UvUVu0RpaN%DRw;Ps z1<3~k^{R}rSxUt#bIn;D?t4ltcS>b>)z7N3^@1GlvuzkP5#A67jRq<4k(Af0Q8L+I#kB`m<0oM1|wQRB?`E*1m z!P#ND{4fH?5LMGUbJ0X?2wBZVO|rg0O*R?WqPONp4*$*}Rgr!r9&T-VG+6~K4Us2* z<52;}DZjy)s>zvnIW?S84uCn5UX~K#by?6eBir9wK=!L{_zl@;FvYmD#cHp8pF>dS zWx|iG`ibhAC9(!)uY3~TT6C#~^@-@SkFiUnfuCm@=0y16zoPy|#C_?}OF2zPA|yOa z1wRTBW8)GEp+b?E@VXT=2-01o&kbCvBV2wpS;C(acC<=S53_T+f)>8FN!H1JK&HcF z2U8fwg8M#jAW@GHHuD*#rev`-zEm7H^r1uHj#6J2a`Ox6j$zC#AFfn6>tFW-~ z6-m|wfky{RSxs9ijdD5843}7+qg{`f1V(%CZz5a%NKv}jvl_BjWd*}h9FiNZ|Fylg z9UMRgkUs=cCG%|J`lm$|`dScO zs}s7{p3D268N|d|8LCKwkL-geTP{hH^|U;F*|mdLyQI=4eOaTiNpYEYUoop59t)_O)I^2>PHXksl!x8Ggz+K8BC+kHhr{-ajTC*O zq2P(Il3a4l8KdBt^N;|x`U$}Cgd}hh%d1@=mf|XQ@-nkK%FoRrrr*?$Ch3p)@)3CB zVHm{|EX@(ee8&RH?fLMhI>|AB5E3e$r7wAugGJl7!k<&uKhkhL!VK1JcEybgs%+)p z8`hbXzm7skUcfxl_q*`q5ApxR;Styg7|9PDbDhJzqtWcAiJzMzK=RiTfpn712cCJp z*Q=T;(|4*3!8h(O_8Xby?W?(V%iAO(DOe^eSk7OucHeF|eg~xalaE8pC5HAMh&Z5J zAD)nH86L!p(DDY(T*n5VDt`Mq-Zsni^2$(fjZnn0iLHuPwwTEs5?bF_BAgGiqPb}^ z#@A^vna}#ahY1iA%p-vpKn|)e-OHv8%hPmXSO#-WB(!m{?cywYp}98Ef}sH`1S}2V z_}40zZBb9Nb=ZccmMR`$S&ImoUKA=#Nfc}G{dK2`#`qz6{FP>iK1O2IOIoyJw7Gyo zQQQi#zR9qW?XLjk*md@!8CRcWGs>NiXhusn$l(!Jx=F|1;K26&Lf4xy$lvzvz$#Vo zM8Yvye*1AWP1E17tde|ye94Nk*w$g-v^whmsC4(L%|}2a<~VmO(QMLxPk?rZtfC(X ziP(P3%)97YFM)qvFAIfSk>W8J=~zooIJBA#|4yf_OF;|g@pSXM`Ai_+Qp|u31U!%W zwXk>3Q@H@iE)2|K3nX*`_IuY)B6jV(s1$6Ly-d#%>$P# z8#MJrOh&Tb9G}$+K4nh!>5Gqic8ipT9Gc#+*(n52#>7DH1GRYa2UVPth>cJVV2T_E zm$fNxGQ$xgs+R_Q8iljSf~wkB5`1j|j~k11UyoqfP6}acNk=e8emDH?>Yo`y3!(B* zsU$kDol1D$M{kp)>`>hN2D=+1q#~Y+^g<#C1vy=YV?{{lUoyQEnMGRh2nAOF`7-e^ z$DXB-#$|m8gRotr;#BzOU=mX%jF%Q&OtJ&3>7|umcmoZmII*6QHkwex#rom3*Q8E@ z<%ht*qrSr@65kZ{iimSHnVBtV=A+&9?shDwSmznX;4W%2cweyq)3`&H>-dF# z?REZprKRM<#pOdVx0csv6FEud*OKZz2V>58gYoHv;Oq|P?FE=R3;&x9)asrXdVf}P zk24DpJ11^t8H$*Zrhj`Jz;g8(D9nyCVE+4iH_CZRM*%;4PA~}&=-6|J9_saX&dXgK zF{#{Jb>8TuL+5*-^7Nf_)T7c{)~eI(=3%1?K?@h3(L zn_U>Ev2l{d%dCXx%_X2-ITZY@Xiv0^(9t^cCuJ5&rg>Q|I{$1$E3f-%y{RvJy&c+>sfZ_cU|jA8KuuRQ98uoy_1x zA*|WO6d{ghJHZr69?b5=0!9P6df&*VM`5P7*SY`<0I}n-YJ>1c$;RA)Ac@tgmWUJK9Ec)JuTW zUXRtdeh1m|2;7D0k%~O?Ed}kG6AeXE!mpKlIPeO6@7eDiA2SQR<#(O=UlxE z9c_@t;2y&*->^K!?aZ=A#MUco%Sy+!S?`p!))60|r*<`bq z;TW}Xb#IW=IoN9kv^nZ~ACQ)C*q(6%SxT4cb6HD~r~)nfx4(!EA>#Zo#uOhVI$z*9 z-KfQGC7?7}U@M~9;e-m2I;QpH`ELP7;uL>ZkAdMx{7W#w>*l2lxCD}xpcFA<>^S0| z^p&1E)iKr~1?1{ENd=r{XVyAQnrnHu`*$!~7)(}xwhjS$JEhRJ1LHuzgP|cz0@~K5 z5&bEkOt+2$1eJ7NHw$kk8Ip@zKBl@fix#PiEkl8{h8YHD=>7f^g7<4}w6 z8M{o^&;F{;G>P%t;BHGr%rsQ1|LF~y+BprmhptKw8;uRsPpSlKsGg;0su91ciIeQ|D^j!lfL}^^VeV*c z1J}?Gxr9i6KqKe(w)tjcGEq5=MROWAF_7i%4LT8Q_p~PtOS`roqOJqYdy!v!`Q(Rb zYBx5(y=^-_>9BV{qV+?)rTQ_?C}i%cGI6#XFgW9Lkbv*_NTBkGjTQ6D+SiTT7-XDElnG)Hd)#7nKn%t>MrC9pWs6a*4dxWAL;7&>k}%5GCt7nP_b zweCk0U&b7ZlrWlg#~Y(S32U^Fmm&f%E+vs8q|*~uUGPHE*=2+w2|MhO-S~fyBQZs~aL&R}lQw(%Ixyw1c(2MZ8nWEaFvMUFn{!YDh`o@S>-n zo>ECfvP-1wvDqYOgG!j+(Ik@^u#Mw!BI3fi)n`j}qz;4%Z!stAjB@hz=;XUh?CK$r z_@~E~BZVp}4z{sMR;k{G*|Z}J=~1J2;)ftbG4oo{WuA@j(vzNbHCv&_Q6|YlPu+Z{x@HOhB_-LJFHdgINtrk~d-U;G0cWB~nSc^|dd0 zf5`SSrJanh@@YfbQPZw%PiZA7^3@&isYmAcKK=w~E%M_0d5oyhMYt|T z7Lkg;yu^=IMKaRwuT_pZ0&Mtagu9NrL51i{S`mgjaoRNV^CvcJ+%ExvZCUS;5ppD` zv;jhWneli4nmV*%1Z1TRKxR~a-qyKQOi=AlOTskz%6L2FAJ;#OiHc_C+0x#;Yk8+_ zxP2!j@4+Xs_raEN1i_DkWBVO^3Y7jX+{q4?uX#?_F}ifW|S1mo3bF@29g)5j!f+P!j?t|3Pli>7nap)DcrG_RA%uDpCq|Fv++O-Ct4 z@*kcKW#yKl`sbSI`b>tboymgi$eCk)lMCg`Zc)pXyui6|s9GGJcd7{!-)Oiwu^-_8 z4#-R{w^S3YW2X+B;5P*C**g{7dD$Q}@{u3AZZ|WDrY~ImCKWzlWT59P+QTPUm3&iV zYmpsQII^A87zc2ojvb(k^TLLD$OQ_a>7eXQI_U|sJ6xULO+W%MZ~8bdg> ziO;#qs%v>GpbyS=dw|4;D>7sufBlI4`@HzPfI302p1`c*LTsk@O4NX2@D@RU>Ft+A z6&pXL@kPTIlcO(FBQljgl&J1*4=rstSS*gI00V^|JhY_W;fp7c7*%u6zmMf@TzBdD zf&NZBBCq#zElpe>Oh31*sT8BFrMa<%v?~X4!_elLu@sfduydRk2~wJ01T&c_1Nj&qg)9ptLvHhP zX(fBi+_4l8R~nTButA5FU7H*wDvhZ$Qe!m2t-{Vr4$^RC9H=J7AaA@7Zsei>V6GN$ zrPnRD;NY``;SJ$T;(e+rmAR1V|Mt65yuL7PwuJUgySQxs1vy(59!^kgBL2HBG}TXg zB~9ErSf+Hzc?WD~t*yB1I7+_I;F>YhzA?<{F=X`KS5v?FyKD+TZkmLjf3+Stx$a+V z-%l5?BN)IDToc2Rgv?UlXAKy?OV_^V@F1&I^e*-b5mQ;sK9ed^%xzbEsWIi45d2d$ z08E45hF6W(3F@$-r6~(!Kl7^`rWYUfFIx2ic{vZDY*SNR9+-8Ws>C!j3f{KU28Kcow_G^KBU&^kYRWeU5dQGBApv;naeNDZk&WCB1`QrFkRSin)&c8Eu2b+Va!6 za`lfgR|j$;tY~P-an0SCx>wD@APn)k3Xs-pnB!0wu1eutd=3(O7C%9D{B&`eN)qnt zZnIDHHUPBCk=Bse?&oH4pP7~|QGDx89@d;<-hPjl@%Z?;>M8nL(oZ?5{Xa;V&E^^v z5J&H!RhO)(gDRvVBBG*wnM+`~ljPnAw1Sc)#`x!2gW1{kQkB}2%02!Oz*RiS4ixTw z7=LK}n$D5k2yRay#{)VMInm)Eu*^*x4UQ3vj_Xc5+;hFqOtjN9%{RCg5 zyCuFaW-@dOk}d7&4m5qA2UM>_ZwFM_gDBz{pdxn59*ASc@eBd|1oyhBBBu4Ip0rQDL1C6*GEuTiF7hq;F&}8j zB*ND8$g#exmN79h0Wu0$GAiSm$6`xYuy959EukFi!(69$>WA0~x{Rlqp9X?s#$^G= zy9xJ08FJ(R`jy6PK>mD<@^&`=Eim8Dr`D=o<}zeh+;?v3q^ClxYX*j4xmNShGt8-= z3yCG^0xcKmf^MmduU%EVkqr918`jahmN24=v%IEzwD#{E=UyG49znRxM8W!s`dmq3 zzO{K&8fQcr`!PpwWVh2TSjqzQR@J*cv=p27nv26JJ_n#n#=~@2D3>+xxDp!o9sg?PJVgb#zKNB=JY1c(}Ysa$ZofvWlvg2{NEuA>`{cM|* zH%%m1&(l-megO8X>2sgB?Uqw9_qEM!o6vi%e zijQ(seFsu?8CeFKbYnq!uo965wBa^B67xZjA1`r>QPfhd zxR0&*E>=lr2N_Lh=(6OslRBni3=_piu(}Mf--@tFpiHY&v3jl18|dohY8*fAD3G2!?NE&Ntua}}VMXC8HSHo<;| zK<5pD#^sN!JwI7Y>7CL}jv*<%+!8tXREhHu&sOPU`?UVKfAzNixf%J}5oE2$u!Y7j zQlW9zm>7Ttkz=fZ*+;R*Iv-l8#vrtig(K3l5nwZz`#rOq-YL4_%-!b}-p&>>Ih)Cd zxmLsDi_?seyg8A^Q%kPeJU+u%f#d2ao78Qamh1zt+YGu@f zqH$QP;aHjqpJJu0);S63g|XGuZeM&T!0!4W9P6B72Y3;oY-D8LS7w))Qd@vUg2Vgy zIyRjO6Fr)Yi)O+oRlkf*AM|>!p4;B_Q6aP`+fectF}%FzcPb@uanu>utl^l+K4^j* zdStLKjR$eVF=&f&I|z`LtV886-+Iyt=V<@YFeF`zxj7013gh}t`l0hq2~#zTvo*GDh2 za(FZI_nH%(Nt0ZT)A}Scojas9qt|6JA5RM3UAj*HxyD@^g)zFt3b+|*xrR32KLv9i zvY>4;ZKwU2najQz6f4-_a_Ux(rEM;Tqd>gX>A$>ZSHXsLIj)j+C2B{dW zCw0(}J%f7AjClgclhU_)JdW*DU(;t-IY>tf$=Y<f)du4Lq|_7M9L zRQPzf6lj#hjK|9~>eqRop%E*O$H;DYsGfMF-+2Jw-~1?@s(;1iLp(V;NcN|&*HY2j zW|zH}7JL zHWH9lP2i5TAWa`}UBTVSxhE=@O|Ml(@w)CnIf447_EL+{e$ssV)(wNXqgBcg=GTup z#(p!1A*`OIcL&O{EG}ukui82gvv|D0QWldJifsy2)%0&;8Hyg0xinQ3$ke)ssgHF` z!DEGoRl44J7%`G%!>YZs`UHt{Cj8v$h+E?R!`?gD+sPu|HgpXIE&zCHj30*dk~vF+QP zFydl*U2e7IE$m*+oZBCKRlYR>8^+!dEwOseVMw1=xi-|$?-fK1>reN5F@6$%Gc3)E zi8{cqJeNl8o>1_Ef)RWE+@fuFKF)8(!an)e3vK_id7~f4GMEl-WldFAH~2ISNgTT? z7OGImZGSH2_~xuXnc?>p7z0E`#}&4`1B68);nHZHYaT|Rf{@X&AyS7!VIV&Hd_%91 zAs_+>kL1pi76C?q%4L|GT%rKOknNzmP5rXh$SFAz_^ny z>KY;)tMq3uv=j<3?(#nE<(C5FqjbK%asJ7%)9$?4>UQ;$)3gg6u+-r4#Py{=_~YI6 z)sx5GP&g|56Jgvc=XeE*2^ZSZ1C3lhh=pv7&GPaT$V<#%9xU)M2Nb3!_axydm5;)7 z8yQnvvAWD)FmW+8g9<9;bA!t}3sPt=6On9vT-ChjMsr6@$ccxVf5@g_v;HGwJq+F& zeG`jEi7V-ZFaeC$mat3@vq=e?#dH7mPyElbEiELUTav@^7dHc}~Iv;_DeMhfNvdZm1go%>ogl3kd`J6GJv!M5b?pdiP* zm~mR%z1XqO@<(1s!XKgD11Vd3J`C~>snVqX{0fkWVI2kPVxZF@?RXJMs>n0a(=0o; zmM3a>mRT?7<2)h4Xq*uKi&V0K*-(^LUR@zH@@fXq(6alWUAZAt_aQq3tdy;XxoK06A<>vc#)8u>g9;w&5jBslovYNW*351mBoy$^z)@kdRF z{1d4gd<%C8gkZ>u6gOnB5@wIOaTcOo* z^NOE?_EVFExoyQ`fy`Ix!JbUx2vp6mqTkej8@@<@S4*7TMJ6FAf^~)wOZ{;bCcU*@ z%*JXf71Fy66ka2(=YT4ozLp>Q)1_80ASEF-&trpd+56o%Xz3pnA0tO0>0-5hK8*AI^&@7a7j*EW*P# zyOZ>F0bv62{kw|c+>v=Ni)xE&P1X$$Y!$LjSS97A;j5iVUST~1U}2H5XtNmDtL{M8 zg|cjVDK^>)4}NWD5YE#+*|05ZO3cu4qhBkGN10Ae0l7xE(m@&E=Q5jHnx4XIdh6X2 zBSAa7i70>)z~B*7OdFeJbD175%sM@jlu`V0yTTaeG?##PmNnGA0r@zs^-SaAN8mG>^WLxc+8LwC1W1g z!+8lug30p)s>$)wdX3h;da{>_G1%Z(EviYm5=DN)F+62Bppib6+0KFEXYP>$TG?{S ziXIm=rq@e*QYy%LJ+?uo=uizxz2oEgfakTdV z5I@fv$kw$;Fb(z9TVpwKO>bXI{qV?rS@$(}+}W4(i_Blkkg}DjT~~Ci%ab!`>=c}t zOP&vZV%s|%vtPO*IW0lyUa&??7X7Q%H3~Q4@`-@|G(8XQ=A1i0=gXM}Or=*PfZu3j zEHKs3DnD?W_r0pIk6RMrFxvDCDjQ6iJh@;Py?^ev(Odhxr&`BhiPXaokoC^SmS$l> zz14&Sqxi5^vwqsh?%>KK0U8ooD6!t6_85v5BHB2O#!6zaVEi)P>Mu?j`$ivy{FOIV zQR*!Em8+JlO_@W}ujR+sYSeLD^lY^;W^EOvNKyFP)i8Q`aA`$FwCx3QY#P$3^Z3zO zb5Bs@isJb9w>$-U>4Aidu-?zs$i$!WnE2dn;{Q>J2Aiw@0GWxTV@FK`0IVh63UTU*5CA+``F}h)wXXKZ?C2p7rF^V&`3DqmV(ja_hSZE!oo0nCz?R!JlVCp;8WLAv8 zra8P%&15_IRjsH`$>b5k60GqBVv}3?F0_XFx#?x?Yo7V^6qg6-vFnHa=$Zy(lkou!8PWjH)C?Vc}?#}y0um^nbml+=hQD< zkQ@Z+?TFXwnYQ0Blc)%DqbPLl-xK*2m&rJZP(E>Rzo|T@dHgFTz>KO+U~y@A*>!wF zM$^oqe-pVLb67+X!7w|jg-}-&PGJ1E2+v;*kh*|dj7K0(>u#RBpOjLq0L7Xk3%9Jx(fE~LTh9UV ze2ug=E26p?Gzm)NQXFYFvoVp^=ZLMNNzf%p*$CGwN|f45JkPD?rZbPmN}NjKv{;K` z(_vIAONe)eKF_q3PWwn`rBJ_>8??lSb99Y%yp4BJK?R%iXR-`~`wV1IMr`P451pwK zU4hrpVjvxhvXyUwE^8@#oTTK)!LS60N9C@Et~|;LSu*(|V{-E@C9!>CiDEkis7JFc z%m2nm*J&Gp0JDxE8@n`8e0)knX|XQMbS&L+uX*MJC8mt*ymr0z5C~%i6N+Iup@gT{ zEU5+bQ*SG_X^GkjMFOgPVNmy$Ys=VDcSiOHj>p!_<|A3$8<7)o=_Bbc_3zoJ4QOzR zj44trss~N&o9ThD)W;2zehF+#lE})sq8v_7yj43%=FHr6Jv~KM(i6y#Cz4!ZrPP2( z9xmzrIT_Owo5{Y1d0Z6z8!J=w&wibbs~s^|>96TO+J2-x(~usDy;W@d_+A*MKH=EM{`4)pk(|6XY{4>Owg`&d$` z9!jOE+Iz3{?H0uEex(6h7}f!DEA-MOU}#wx{={ZbNdkIojoCa%JPz4reD(H=i(APE zG1YS}*^`su5CJ8khz`{Pu`Yguj8Q}r{-m$Y8WRb8VbC()6^+}9<=;Qn*Ko9*C^qJ2 zC+4h+iv@+Oi56aqN$n)s^Z0P;j9=iNCj8y>EGDRNnqnjH6-d@K8^@Jw828~ZV{J_U zb`RNhNR<4UHlS(wDvUj}RvWck!+{T~w(jFjNT{DUF>_WF{cmi#e;Ece;d8LexDBD@ zx=;PSC;Uc0tbf05_*&@^hU%FV>nTd7ln3V>Fca$#?_CCmS2(3Wvk<~eXxA|=pm`>$ zDOZaBp3A~mNU8F>#OM2p_Mk8AmH{nBXGu#W-jKRGx7R2}&eV#kvF1ri=y(6nxbp$c zKu4DnB2xpAYFNc1j3YbM_(-yruaLB6oD^`dzcz6cS9g&gLJy6o$w{D(ef!EXVegR% z*Q~v16++=&8t=9u07vUjO6 zR35#tj%}0uW&EpOn?eYNLu2k&QjzIFc`Qjp!c4ool1j3@`DN{|>iaW?A@FJkG7CKv znUZm)uW)vDp@bSMB{qcOJ-1LB;6-YA=9Ito?o9%NfXS3_5?uZfY?|;I^~Ov~23_+{ zMwRX8LJ*T6t|O;NVie-q1~FwG*NyfNsceW+7_r_rq zbT+yn_j#{2f6FmiX6KY%%UAG2*pupAi?&PFR20Vnp*=IPk5fXCbR?%N*d!}xW+z<) zVYaT}wxwaYmwEnHW&UAv-o;>ncWFVeT;}3tU>ajRl5QCu+^nLYG>O7b>3mAxsJFbg z`ZKMWlDQ>|UQyw_iw!Mo75(7TxK%_?;(nWXZyiw{N);eIt$-9iF^_6flGZwpoC&}Y zK*VkYTh0A5KHy14qSX|2SENjhQ=ebX?p^zCLGyxf31g?#7+jhZTx2SKlm>unb36Cp z1Rxu^>IvHzR@j|HEuIKEpJK|tIACH*M8jO!huttCKNfv;poTVP$HxhAkNz< ztnlm4B9ITQNGKZzNq*G25sH%ySedh|ja$y6E%L|DN)({={aIwDiG4ei#E4rtJoA=A z%`Ja&#KPCySjoGa(23WdOD|UwU()Pe;^LvZt4-oqfx@n3>&k~Wd2Tpa@<9v!e@aw$ z%~ykCKEji9BSMeaDKDhy_j|4PtKsjpGjDdf$QIW14*l^+7dOGHIou)|*C04%RPo{r z@!SU{4vbO+UpIn!x@Zwr#PmpTcFPMd3zA+W@e&6~Gkd{nvFhhKV9b;dd@-?m;{bn> zggv{`#QDNWspy9Yjn~P3A4Y`~C+;+xs$JX9;~P{Amh~*}`}KX@m$!04s;QEA)ll9OHSG-HqiGmF1a+!vM@?h zq?U7zY^sw}ew(Cx!K)K|2%=@6DX*$ZwCTkep^0XE_J0^hS*Np}r$taktJ3R3UnrH1 zVrXCWuYf+78%;6JVWy$u`44d#7rL3ud$4?e{Dg9yeb8p^B4e5Log!IJ7hAzUvH*2+ z)s(;N;W?s2KzaqIP7{$DNbZ`FQzgS&%Y9VB_bsK%qPB_Iz0cq9R#d(s%&gSnpd6>^ zPX=l31X@K)#jH^d?1`z*2$$h#g~$tz=$wZzLZ`Z1W7|Ze*sxr;b~X;GSLq%3_O>$R z71d)~#c#~Wq_45KRH?87td4m$6hqhGzgl-q(hGLEHj#OXd<4^tSUmC5z~2iZD`>2^ zaFXt%zaL64;lOPd+%z_}8ZTb4f1iwDL)Gzkj|rVkX`U4f%niAp6&27Uf|S=POG!E4 z(d3{XGK0QUGssH@rQe=RXZtUXbrg@U<=-m9I{Hml$mrA>)E!7rfprrU|KNQ?iY`f$ z7or20l&Klywz-7s0TLKK${4Z2@D?L>8KZZZ165L&w2tLW+tt$k8iFuxscQ94*iRrkx|%^7^j11`f96Wm%F$u_Qw;n-l;I5ddu6LeGW1Ts^Yf6lvcEVR;<&SAEkH$I9NhTMK zEE7`7jQkusaL8{1cW*dZitOCsbO5Ui@hZ0}b{5o3AZI)LWtr`+w^fIrZkIx&(b96E ze+ocyF<%@OEI4EI$EWZ$rteN~_MlbuHxx#-a$LwF%8>ITwrV8sGnvu3gtbrEcNNs> zzl!C)#9zF#sjE^c-$@KE;zitz08XoW9$>|kq}ym@ruZ>7JXZM8j}qgEo6>cdeGG*%C&q$?$Ie6w^m_ts9bjlp4Y$BO2m!YE!x-Zcx&_>!Gy7FX4F-6!MjfiFubmuf(nrQYEy76KTt0) zICdT2n+!>l9$N20`Wb-sH&77nPXbDi9&OU7=NFK;woC2a0Da(?XN@@uOA7|rv>jDh z_xD6Tdpg}q*T+5&(LUVUEGU_2hs2zAp8-#g}YO&+1^XN@Do zJ0F@q|9nf{*;RG(*RiO|_iGA`P9?vXVJn%mLG8f6S_^5syD9Y!lMGb9Vf*PXTo0_( zUlG^86}}=9*)3bH@a&F}5>K%k`kO{nNLHcQ=cMAQ{+o-cY20yXKQ1$@#ak90{c*lv z9i_rLe(s9vr{DzPfC)`C{^4C&#GFzIV=^F)p^dCJ*5W5$dgm6o(+ZrsYEQZbRl;8EVP)-AHZ3^iI?FbDY{mEmKx$V)!-)Blo z-fcuU4CNeg^@A`tSRBlt9}qK{csMW^o!m`)DuGbK=LXDq0)a(D@#1db1i)s~s?nA&F6BGjqmv|I=w9s%$IPp+HOx2+&mH>5kM6;e`4UZEm5+!yL+ zS7mNvA6z};OMzfR1&w&p32m)aTAjqUXv%Tu5+7)Q=CUeD5^K6La~fNmwwGLfOSu@c zr&c>P40G1J0))lLo}H1=JZB|=N}y;O%0d7kcTh1n)hn0mvMw+YJ*azW+a5WyM59+` z(DMHrPdyl5p;bP7^yk<74L_2qLWCzg19vaxZMs_R2SIx?qNT=_(l+ie^09o_Hzvn* z<}~IjDU!7q@)j&A=EeL~Zo~5QBqBWOY*ox!?L7T;#P8`pVH8;lVZif1L_t)Dbt-|Y zuwI(VKb+G{20TWasoz+hEctvRxo$?jT^f+MEaAHHdgNP%g<%KGHi3$Wrv>ssOmC+q zPZB8rYlq&KmRle({q^$5I4!x5FfthG;*;}g-F->0t{O58jHtSY5U33gag+yZHC4fa zZ3%12V*;)={zWJTxzB%f-4~jss`hx8)f*zVy0e>%djwcmTpd*$WegvtxCH%{*j>_X z6LemvU>9GBx$&Y)lSTvp!-X~hS#qpl*bTCyLZd&3)d!9-r2R1}h%7gL3VWrx1*~Jm z{M@S&0U1F8IgVBo_h2z|<>vr<HwF@gebcly(e8q!V3i=FKgzsfZgrSczyF2k$?lDIl+ z7U}`mnBoR;*%UVl=s>y|<$mZEZb4EG69?!EsU4>!`tOPvtucaP71R_yQdwkLaSTc& z-8B4Ldh3tnJE-YdF^Y6e9#-nix!Bb;<27FHSrE(0j|npAMfc1qc;FE_W4=LkMtUH~ zTx%31Mb4vDfjm?|Z)CnAS9WzeaWqzSW5*5@jK8VupZD$BG2 zV5aC%P&rhWXlA7LjM;f|$FU|+j+f)ZGW5s_3PwE5RDdNe6Ky&)_YK?}!kIFHi3z0g z2uqm7$L;IeU@)m4)~ZEyX74+sq`8b&vSd1${gUFen@8G8_Hyg|q8voCB6z*>e&3Y% zmFZI>Srq|RlfFf84jupDREe6gFLjIGB)qM5I7mlD81qh9pTB6})Z7FfZL#69`f6-h zQSct~itOmF)-f4~E0ag19q&pjcpzemCWm2XSx>b(mY!O#^k>aGWHHGe%mp42nZ8QK zcJx!;vU1pqb3ozOz4jYz&$Lf5|4vfVo^Xn@X?P2BsbF=le!NJehs{SkObrJCsbN;> z7m|8T9ITnlk<2rA9jdhHeG*thkR}=L{=r5+I5nPezU&uKuXr>txdynSv^}?N4n92J z2Ni4Y|Ma$J{hCg|@ZCS-IPs_5c5Qm%6KCB^QZjX~l=xj+mL?I2oY&js(iV~%Pg%=G zwclj ztuG4tSb@#KiR(9DzxsSxPRsbl3`@HF!+Qf>&HP&@@{hdRvxJ?{@ff`R0%~`~hYVTz znK2KppY&HZHY*icX(K@nqVx^m{(fE?5CE=X;g=hkGv}gv)?5M8B9@J0AzUx>d(H15ssAk^H34ZiY}{LnW6y@+L1s!P^PVvOuRJ8y!(_(j(GVLUEeK)!X{bk)y?`RK0( z0*$<MI_{(mcuQeWLyaUuf(Vr19=@>pXXU+#~;H% zT$1~W+Wikygj&ACORW)u48S|sL!GX)vMKCKa6Tye<>4@NB4zKs-#{#(xQq<{T*HIpHsDhLK}&#r zL=cKJ5To+d4i-$I{%g{nm3}$(02RhF-X`HjwMw;ZMD38-7IyRpgCcu~Dmt8)+LIwV z1GDRv@Q)1b+L?~AQfU_fdK3XK(CY|IpPj9LfeeF#T9eD?e83s3;L%POQ+iN6vpOT! z`(o?U5hXjl2H^UYF$NSpCi@x(U?fMBn>cu*a-T&Iwqih0-~ddrd(1AQd}(GOb^ROX z@FDZ_!{St7#(3)XW!Y7-Tbu0q2H4lDRTh7S@}N%LhML`Iirp_-vSW&3t4a#$0Q-7! zltSCOSfK>Cvcmd64QYy-u#g-PXNRS!$DUYWR9&&s)WC6!#{trPh-a*$y=DzkLH3LQ zcA?Rb+pwdAF@&TV6;zVpP;pQne5VBGOEanpJAWr8A4{2ZOK}Axo#zKcM_$qL--Ii# zPA7RJ2c)?@q_IQvnJ?qQ7`(~~``n0C+8AbAtr89h4ccg~EB@-bUGLnB^hwhR{$RU{ zlfz{o3tyPKaotCqV1Ttyb+Yo8jU<;E`xR7Or3#q{bM%KS?4gRIzrcvKRR?<5q*QPe z)*;#DeV&v|QL=cTo>^tk#MIYarCHZ3>#}1ea-r?7ptVmuzG$^~;=qKaqCt68n9$(t z&<~(79tC^j-6^ZS8LNp%bEL(bVMdOO>1yc38g#a^Q4is4D~LqMmIjze%;{w?_01hM zl9t3HBy(w3iw}CM9xTR~9Yz=^r)dL{ZrV5H@dY$LUfJ?a62$*`fN{#%xy#N@;v%!o zIhb!?)m_*>oRfTjaYA3!vY|#t41>djpB-=%H>?DaqcQwso{g~}74dv(kmOcq=O(!0 zuBYbFNvARR!ZN1L8XP9HJ>hazi}o9xV2K7&1eXxxu?$v@-l}TCxA(t+r~gs*X^)XZ z{#f;dG7`3yygC|Af5eWSf$!2@r6rx((L(6D_3dIcLp)trVvQNfrS`b$$s>iWXje;` zSS6ZIc?*yc6It1!hRnl1?h&6fq?OyV-_oP5Ns*eVGq=ng)QPUgZU=D{Iau7@UE;bT z;i^3;Ot?u;fJBrsSW3NEY$89@f2YyupsrF7n_z*0&*e>R{S^}c+ziit(TMd4%06Cz zfDC|qI1*L55mFUluEsBEIWI;P1ue>IyE1`)@H7QailuA9wc}u6GYx`H4U$Za4>(H0 z*GvQlG|!&w^=#fZUko^Flrto4Ut2i5D95HJM0w*RHD%IKX)^>f!wL`u%co9C&`ycN zR5H*mII)JUe*8u$-!htSq2$p|2Wep4Y9y{}MCx>WUS)u`fZMX#?G5K{g`-lH6O|dP zbm5l@BWo$R2 zqa74i%OzNgePuN!`N*hn0d5uJd|Kpkr2dR~6+< zLwb;nOBu-SI~v1jT)o0<>8qZ{-YnE_+V{&Ttki2MPA(zau4pF-BV-w>KR z#>sG`xGddC%*)<{X{bD(0513LD>#W^1TV8{uwl1ZBB{+iEjCIxFM-&@_q^dH~n0{1w zWUW4f$tzQWcogz0Wc?@g?`W4KnCO`fhR@tE`BWW2eqs>)ya*|^-kN!o5jS1j^pq`8 zS}+xZTUW|aY$H`1SCX0-w&zxBobPGeAZ2`~UjQNj(-6N!-Wh+>Ec=5e!v$NXho4wm z_V3B@M3OkD*OFfmOj}c=vK1?X16_EoR21cxx}u3Rk=9Tvr<8o@EIfm+f-g*Q07-BE zY=8f3f@+V6<^x5LSiOZ>jl&lo#31N1GHcpufZ2r)aJ*1elEvu7d-FqmK{aK)Qvyxh zjVO+SeQ(yxYDzz4cHpmqU;``2SN9D9rifnx824NvvYwM(Vl)I6k^DFAVZ?rGJ;<8T5)> zr@p{u!|z_x?m5e*H0 z%5I)>VMWyNwt`DQ!wjJ$$$0~tQe$=XA^>d1Wvgz|ok!KvbV?9^ASq5EQ0YR+-p4_m ze$bL?g{*ss1*UjfQkQ`B@w6 z9E=ZMkuS%pdTUu_s^SGb3xVTAP2(yB1Chjx?>iSr!P^(onxE;8NlhtW34Ss|qHAjr zGklt=r5sHrE{z$O7AT+VJ^8V1n^4M-CIVkmaFo&hr?XgcZX(EriU|H~Z2Uc&5R_V50L>l?AcZUo*{&nfv5MSls7&fqrlpzF_u>^0JAC%}5msovaukhY~ndXEB+A;FJ3Yid#6`gpSoTwDF#?E3?#?Ik?YkQp1mwmm7 zG1%@19P(T{b1lO53_155+C|`!!u-8t?!kC+Q#XJq`t$E4p1@UQ(Mc^SZNt#Dz}v|& z=J0ArJ))&}-pMs|bSQ2jIF6KHo3_Tc=V^!47IMA4DY z8+M-Tm>ra-Zw{O+-vuV)!Ze)6-l?y-uGy=y!tDc9Ao5)BDrQO#90x=u7y% z)ykd{xcap`R@tF=ZxeLDQSfU@V8i|GSMl%-mVE$!$Q-bjjtl*t;IMwj{_ly6UlYYo zG$ifEkA3`N!fF40F5n|XQ$vB2kdaVWWI_}-^25Vmg%?8b81v%UP+ILG-aN2r>N-k_&^kWh4#}4=d!hB*g}-nSX`>d4NO&u`U6{ zu(qt$NIZ3Gwc7QZxAL6zx@n?Det(g8Z}jS|=03wZXkTizBV&=`uxp#Cf`A2zopZd+ zdxJs0k;eOYerz;ZAcsE-dE0`zLiApOis4tb0nUbDc6Tiaa%cx z6U#J1m&@%G={g^)91b^uf^@ZQZNg88U$G0^tcDQjEKNcX(_$?M32fb6cQdN;5Wrr> zMPaCl8wFkgR_BHCn6uQT&U$29UI%b6qi*K72ymbH>?Q^gV$)Z8Ji}%-mbD+w`Z9frxvqDnlzyI zu*5!1g@RbonWA&I?K7CYPVEamM0z@i&xSXNNWb)5y6>9aSYi+39GQAWs{&Vg5mO9_ zqyBdOb{Pquj6WE75@d2SuIpQ4YDJEJM_2V|mEDWp(@#G}+jQsaEmTYGcY;UVl{vHV z*v`j3FgDM7%rRx7{1AU-ti@LkifYJJ;pn$HhHzyYU6dmBDSOSa!!Ru`iNVR3*a~HD zv_lkORMux^D~-H1H`#%Nq#g+Aq-^%;2+GPiqc+Dg{m4*Iq#Pur-^w5dbeEby(# z&K5JBJ0ZwhT>)-*f4e2n{@t{Gnkb$1I!wyP>oIdhTYNZ%nZeh~K>ZfHXkZBBK>e4WY@se3^DN&3vHY+!ub~TzWDC!YM=k!J-L|G`oA{M|YX5#uX3T z?uRD}{e>L`3%@beKtvyRZ~X4(=KefQ;eNNCKzN-a16g7h|5G{m1Y`yjGoR$eW>!O3 zLe=_EUq?#5CNq6dHU=Z6r9W4?g3j{i0A4&;sClP~+hZ9B#=epQi762@!p5j@7Fak{ z&5=Ts#XyUg(N>DvXyt+!kpI@$DvvukLl6Mt^5OHXaE&`>K^dOX<2W>xojp$T&ygjj z86NWbdBPG`IZ-^8?0QOTf=k7Q=9)fB9zCtL>y72D5B-$D+dYNP05O?Lq}1_`JzB>1mWx?3|X*Spf27nZf+HvW3G#YC%LL_oD@# zCaziVj?q32&I8l2M17(TLl##vqO8M^X37O~yfMT=l)~dn&`7)ze`MH9Eb)61j~kU8 z!+Ig4jfV3~%9M``ec)c^ozl+$gW>8bKXKBPpwl2rEL9J=z|*KvymD4aks4}{D`@A4 zpxB#$`$U}s)+#;`U4l)JzU0heR{??lzcF=(87Ry39~4Ju+W>I9`TU+&P#7-4+ZNY*v_|Me;5LT>lY)f&kaIMG`JXmL9>fAA8H?O1}L4UEbNXXw}ta8MKn| zlMuh!5=Z(%#No$dD~&5VZE#FXX|Zi&u77n@=RriZt8&@@LjE_V9wnpa?u1)H3PBvV z2V^O2BjTEPu^e1Veo|etO;kqms;mv<*}f==u;{+1kE??QoC790m%~01_%m+X4S2uV zmsG=}H#G3IZP%5y&?+%&XBFvQH=>>NjWqRVo?U_x;e~G6*a?;B+h&GlS=1LyDhNKh zgvv5Bw`NYB_WWqtuG2k;B61vH>SY?~own|1)b}=)-n50yi2FXO65wbv_>(iPMgA61 z7}9%QsWdWd3C9dD#&mqstC8SwEE`38ta8f`dn$RDW$qsEn4#$GzE&sk@8OsUbN_>F zs3ro>+3S&X!!bWtIAA%;O1Hqdf?CDcV8`8^D?XLNQvH40PU7dI8fADK*Oyd+LCRG{ zrVm}x##GcC>&XTS_dvnnz@IyRVvQ-jTK6lzNZD6ItF|Gkz5))?>DJ?(_JMSZg}X0@ zg)ggd=^fV_*r$jqawDCKT`r%2o+r~vP!Cd8gKEpJZmz}rwZGM&4Pzazh&7)Ew(zRRq}cJ2tEk(+3> zlBo?mp45W_RMs9{1`A3F3A)F1#%>31yitusrGocOF`iy4hx@;qa>b;ImJ8f8S_$M` zV~svdb(e6kQ~xPXeEPE~RJO24!MlnK9J3YABxeuGKpX+ltVz_Kd=JHlEs3Ppm&nOX z5z)fZpUOkPp%R$TQbjaN^NNxDQ2T?OnVRGa)Px`XVEQ{BH%eRF$fvl|6nkcCu; zd^3^$ecXGg1gDZ-ya6sITDx}tw+C1j`)6WIYB^v*K51kMf7ZdXlLt4xov(hO$n#k75PW=bo>)u(1oH5F5u=Y?KS;#2OI;91T0m#(6K*tlxS7) zQ$w7HX_#8@)fa`j-0E$9`!qWXm4tRD8xTr>Fx&@7VXKmjv|e3GY+pqgE)Jcn+8aU4 z4o1vf{7h+Pd$SY|GwboiMN zuog|@U90?jmP}5lDI~jI3P!}i{7RFOto@t?8@@Z)#;A^ApImP&vZZG*vN`nj+#DRa zTszI!Q}R!a(qT{@bK-a~ejFzoPg=q1F`#P@^s_Alr$N>fMtj0#gSy}1I*t2We=D<6 zwYX6J_m!dnwgGN?j*130+%dyFl%A$D&C$fp(qBE&2SvCCE>8C&Q{m=k+?F;T8!N?r z@y}699v$gztNx8}BDwN{sSK?lPwnpfqtBvZhT2Ut*%4z`*dI z#R#wvxGg1G*@_}MXL9w|5iO50ql&ScnFkHP_+$7XLH_Hwmpvp4N4TRe25kttmF-`~ z+;M79=d>N|1L^Q9$@SSBlv^$9475NghT+%?RO;i(Mw2w(aO#{^r8soCVn)5TFYl4dd&8&9aiPfbURSG_vC+6YN3pZ{v)(js_QxO^Jn(owy}PRB01)@P(a#AUXnO5X{dD<3SFqE>{b3LkkHBvi%_J^ZT2@o=7hdxO zQNY$5DX?R|2YP#2r~1noO)EoeIw|twpX(4DxF5;Gf6mE12~y_q;l2ny_IBsJ_!%t8 zW@uDK`c}(mA#@Uc!vi!`TPNcLf>tn6Cb5Md873cvuBUt;_aRT+p$~ZYre2@sDFcvG z<=@V*HF&~wqS5)HJ!5?_2(mFcXhn-GEYRIBntZM4Y|!iZ(9vH>$TF3*qUbbF6|mGJ zWFmPfV?x!+ys#%iRbxQr6kIh?4kGTM2%)|Lku2H>M*bG^p7(Yurw}Dfop>K9gIBG} zRCiT#dn7xH$FA_N#~R`j_FG-p($!ot{J??;JYBoU#p(!=$q2>g2x9z5?P=l*9+Fb( zDA?366KGDL8NchtN)FyJ4EHvPFRQ{NQ^82&v4hA|Eyq~loTimhW z7%l3UaQT=g+nAdNx@dX1cz*sLmgvbb!m0A&f9Yh4WVo`yLb+Q`jqbJu)E2N>AR2UI zszZL8tp7tEKiV!x@oSH_C-{kg!CL4r>6QmC;(=k}iggrPHCKVh3#;F<_Dd z)xI!~pZibSq94|{H@ynC@WY<-e?oX^qANFSwC->a2#K=>>*H-FND zq3j89G#0P|=&4~Ty}TUj_+Ho2fP5|h#*6?C0}yMO6hAk@|0%TxD~&2PDb+KLt=oBQ zG{((~rH2}iw?|^Zhp+>iJQY{(SxWY6j+x&|x;nfNnm#so0)u1PNQw`D>xO}wlD!4S zl<}j?N(+N=m%XLS497_0Ny&-p%}J=uIk8IgpK^GrvG3t_o!|0a2&W!ulQ?Nr*qpM@ z#RQ0aO(*+|Vf2!TVUsb%MO|CXr5qL5B#T~emlHZ2A+?;-Gn1ov7|X%=@c=h>LnfJR z2Ag&rlI_nCn5waQ&QQQ$3_i%MqZRg}umDP>z+5JHJYiHJdet!a4eQ`G&iJK3&-qI5 z^TQD{l_c}^C}O&E^Y41|(=Q33X%IMfNd}*gpIg4cbOqo}ad#ZRr(Cn_u9(RS1_6IF zL;|_2G{9P~2#SMkET7m9{J@;)0@YA}%G$^3oM>5jTLibb@2T#{M;QwGIZoNyx0gjd z1UNn%`Pv-C+&(mc_CR1uc0qcoC}Q?QOdet<*WcI}fFMx5jj8xv>pgR|UPWG%=3Yu| zQ3iy`w~_Ys0kG?{CqE0q5$X{FRm9KjSEuF493rx9=qP8Ymru*Ce#PC?mi5k*5%yAW z_GR-p0A*rySb8&!5EJ!11B0R&^TrBVxLo-(41 zyif@?1AgnH&NhTTlFqC)%iS`h+MK~Fv>cuy39Qi=c37(%-neVn`pr;OZKjmVP@YEt zkj0s6Gn$4K%koblx$m>;E}|$_tY$Ke1%X}#JOuXxqcCk};Vm>Tfaoa;puocxF)$4Xu|`_>@!#ia z$Q9?3=-xUsKDKHh(?{fr2WwWo&BSl~#7?`24b9FgjUaz`BmR-q{b4yhFM#1=0J?rO zfLO!1PPY=&($MF}rC@-Up@^<3m}NOD+-TRhR@xIk*C^qxPruT^be~An+bvJodqZ7? zf#3DGQS5;Y$Yt_NwZKMj2qAR@6xUnBDrk`fV#Br+LZFI+wSgt|bDfPJtD&;8tx9<0 z+jyOG(X#RV6s;Lov1MHz!>{?nufO}{@Gz`+ylEr`P<8Q?&UD%1gOEECH#Q)IFrsRn zSRKGuf?;62m!@w9Evm}^ak4bqz1f8 zL3QoPj~UgDC6S91K}v_zR=2$`}{HeGk?m-QY`jHj+5Z8FrqZ| z_3k(9)$Dg_%gQZaHzZ{B*xv1*&QojWA)m|8$W zrwi-2wO+uC@$N3>-I6QKN`g%c*s)FpBq14jQgBJM>S(rU&^pMhV#aGWo6}spzGR$e z_iq7jM6VA%{nyOGUB^~YB7bvos17=Do%KT5lus(g{?@u7Ba0?;J^gbqF|#wG+a}L9 z3>Z)Ahqy{MCBQF|Rj`|F^|gr?(Ps|^4t*xTq;ZrT&}5R!2Qhw2w$D?FXcyjXi-_Sc zoAcwkaS}!C?)JiNf-qGYG2rM`nae^GDM+>Q+j@~VVYi&ObxZamT`g0Xl(;$JWAOh6*!-pGehc zOWWl#G2;>6Ka#WV+R}<@fBh2V>^Z$P zqN-d1N=zq0C+fNHk9zsgtkuJyeCd`e&mpfmWr+je@hq7-A zc4U6b;9O!;`l#Y*qz3v2!ZLOfFw36P$Ys~D4rzAJsC2X{289lFArH)6j&^FE5%gr} zT#DAV8w046GaijP%=S3EYu;a8thg?R)$X=9x$DpUhdV=;dr3aF62j^t>kFv-0@fBb z7}J55SGmN2h^Ct-Pz-M_U9&Aw+QC$ zaK+mn1s~!;P0=l!?%_v%#m*I#n*J*zqt85CF?q~r+@BY`Jtg4z?1(H>b{N$nwaI#PRb4n{j68M3T91v@EFq(jb z9F{?GJQ5m?$42XPp(zfCXN6JDadU%&!eV|PjzIT1T8>8YK_v-Td%vQ5HmCJfs|2J> zz0qVMPv=^<$#^gXj!5@Lzs;BcAfB&#YuM$yi|UWAcW2b+F~_;?ulL=g3C7@xc$tSy zs~QOSNRQHUC{-+$O50&}X#N?I7!k9^E)B2{0mP*4$tgLUjUtdJ!uG!}g@nWDH4*c- z9zvxP;6%fT1rA2e6Idmhm=z8>eyruG^sU7j&|ZfYrxI@TdK@_b6TB%&cAnm}YA^@1 zg85Uw`#qd46q9}0xDEK}dOcKK&nFb{W^w-MuMv*JNvR&%Br$j(TvQ3d5GfjuLYGpL z&H$O`Wdhgji1x>{ukuo|_C(Y?)|6zi_O_rOCExQ)u4~=Tz)DDAyFFDjes8z1V!{;PXrM{~z@RFVk0Rn~n+b$jHOxqCz?b|OMb`MzLXJxG!wrxvDQ!0n3k@K; z7zav9mXzRFGmgmQnytkyO2QalPQr{o+RKf=Lq>XwlV%;|@4-Yo?9^%tZ900UBuazy zw$6@i7BiYFB!>&BEqp`q(gc(1^cB}ksV5^3G{c#RX&>V|J?+wX7MA9R<5y zpB?~IOvK1vz$ndKdZbF&vFe|)%8 z!d{&j?-Ldx*6vAu9TZ>}i31NSWKf7Sq{tYBr;A@lolB|yIZbL($hC>SD@Qkh4_>&u zRrFNHwMAUim$v?)?4^?&?l#$=+Rsa2Y6;g_o2u+Hm0*RqM48HBc7sk$X`YGD0e6Ep zsy$^&m?obl?1ji*NR&zRh>YBr2%s~xuFFXPfYWCHDMhOICZJKR1*kQhGSPOv-?3r5 zyBf~_CU^4Td?>K~^-gGZ7-rw^2kGDokHbW}Lr~>pPae2hSS50ia(Od>{p$gIoD*-Q z)M`p0r-dNMDG}12t}v+CE+{5JO+gkQ@5&igwgv!;-!Ww@%U2gbb9-pLg@p7vKw>oNM<^a?u8d^zo?AUea>|nb?%^g~t2o-9VufNSHX?&!Jo8+Q}PPPuaq$=)= zN777xtvQNQbyARysM2Ahc_(B@kK-TkRQ^HNAho1F#jf~-uwxA5PbZ2bH={Q*DumDE zBCh^rxteAb3B7}3Ygyb;&%us0nxcYr zfbber%6t5bOHFi|qoQC?Qh0NV${G;YV^j}SzB}WR9!JW)8z0zd_@QMPhcQcfR2Zv2 zLe1A}uwjTrEXz?B!}GQTLgyKQlfN>QxYUy{ik>J#Ow1Yog)RlGNzEIOPu!bPUS{P? z4ZE?UE)$+js#B=ClPBln##-6|e+9tZXeXb-I@B-5E_T*nrHK&hs<(13A?cs$z4a*$ zyEp(eaAkmV-wJe?*2K51#shpFO71e+=}yHfU6jqqfnnt!9BgX(VnS`Hk?q+C*a_o) z%QeL#4~i7>I1P7e!xH!-l7f;Xh+Vy5+u|u!%^(^RRBCosFZUU}I7zEETV_c;HV?P_ zt|gl68cBO_O1l~})rvRuO0<@+nhOW6e*R0{R*xb^b3k-wZmy-uv>l#vN^_H66Jvzqew<3wzM`2R6cEFco_|OqEd|a|D%XF}aJ*HcuvnQaPZcm+da zB`CqV4HG#90IWF)0GOyGXO((GYV`Z9NjxA@aer35Nfn)OUg~h z?9&?wgbKI5p(ayxQu9{At5n@9MJYGx${qihU@7Ic#!HrU`b9XP1Z4rq8V%YCWcP7x zFnDl`jmrqcs5C1C=cf5E;NJ!K6;Yeo)n>WL|I8wbE@0y{9$hX8>@hEYY&&L#0NIWO zX+<~SGe~bh=Lhh4&=WG=UoE|v02$N+D%Haw)^oiCguNM}y``Ebt6RHTbDF#;soxT) zVVNZQ0}SYisE;E63m6>&XfNHWnvRkhaAA?5h&#)epu5``3PQQ@i$OY5D~)i$jVZap z)0mVR0P9*j|7odBqLh2ujoiSO%0r#kLW+zgSOj201OHp-)fG^5f9>$p2kQo z_cIkSlK`Hp3Rdw#D@;B5%AqZEy)HbxB@;vVa-4edqz1_+(2|>>u%gP7sXKxIoFEtL zP?QQW!2=2#GO~$9{JZf3ybLRVLZqlzk{#?D2=1dsmpjCa`LKx@)R@EbFf8)M zM2nhmT%)QvmvVH8b5sgYiNB-3kqvB~b_5UD8og2s9T_?jgh|DE461vy7$9)7rQ8hI zi@ihw!>*_hbTO_Ty(AwGmFzLmfpr*J~HVwR&B3F~p2 zqBP2KLduF!N~SapfQw44n5U_niH*ZZx7&*U8$EKb9%I7%v#p@GI;`x+D{H{>?4I>3C8b>j?V;C!R_f-V;E2#8IWv zQSs@~gK|n(0n%OM4k677$KeuwF+I&oj)YrM|16Xbsnn#1(qNlXrm50oJ3$j+E-l4A zE~P6+`O@PEQx?I#7~IVRJyTS5k(5+U#BuOCl{XgbE3SrgO9taXA)^`ibEq6|M}ORf?c+!Ohai zjLxwP)wzrq^t%ms)d-!?1!>oHwU)cA3DbDZo#~uwlO3{(&@p|K6WkC_ftq$46%)j`~}HY{qcGpdb33)-_glr=TH55m5= zs7*>SouUajmBh`(xUC;)oUbicgi{(z3#WLTLZna_fpMI#x|^B%3Rde_h;h~&g4WL9 zN1)Qytf;zQY1u@xle+1Q9Q(MIaKa#Rzn_C1aRoNT#h?DjTFod8YCPKEz`nv$PSgM- z1%M^YMKQgMyMv`L>4L@ul^xB*K4Ys_i3BCC+pr>SoOKHdJ6V;XY{F&r4rE5v70K*L^Fj-ZHQ?XT2!N)a;$lcA! zRk6yYS69W&knq)R35nt?G|>I9r8U#jZOhVSoz(rMui>%9J4g51wRKaPRY?Fs8XFkJ zT_j5tH6+;~6|ml2q>pu^;B87Jb2WInq%gbySJR2Asgai`#4^&{3PiL3dz^DsM{>(3 z%wQv*n3@em*xpRUGQHQ#3A7K3sL!y(qsWz7eM?w<$cjSRShZIc868yB42_8k4GKgN38p#g zWB1j_cG2O0Wf2P?9Q&Nk%NrHg)z43f$E+GXA_Efk5)Y2m3PhsfD#nuEbtEoU#%F&TZy0-5RQ;#@awtKr@ZBsz7em+7`UYncO6dVoCZ-N2xf7Ov6 z4!5z1A`xX%o*`7m;#KD71!!fkdF9c1z^bT18z{ ziHXRFj|0LFtRg;6vuhJ)Touzr#!H3RD~ZB87-SJ*Dhc)tM2(@`HYJW6*5TNh*XST3 zPSh0Cxl_hefU7Vh2`Ii7olGOCXGvWje6AsVPA32ZuzxO)fbJgBBIxiS5R*MZPKc836O_&k#A9iV=*^eL z)tF|Tm!|3PvuXUCh@7rPUL2B!{^_9Z-<@K=kx*FcvE6Tk!#+x6P1&`DM!#l^`+pUN&O%ogpe zDCMA%zU|4|mY63k1I?B`)tEFWPOt z6o+a=^6n-9Z?(8=@$PQ3+L2xa3tN?W=xGWRO+~J) zc@X^hq6E)lTt!s{YVfINC;*o#J$B_YInNakKvl+Z_u(IpylMTLQjy zyeb~?u{iqaQcOo3JBS9**|5RDz<^s8ZE-8UV#}8C8Bd-?HIEzr3L&k!9=`xeyWq=E zDPN6LObxHdMnboH7&g1Eje3{9gG&`al<3OFH3e{)%U6Zi8jS&P&lM>GOWQ^2-t!^BxyR8t$b1;r-PQyC^8^m`@E&wg_EuOybgy8lr4zlL z_6c}$ba}b1nvnF5AplD6N=qlgaMpC6&|Xhp5m09lQTJmPDRspgojytRj9K+Wbje}r zLku}Qwv*|Xv-P)Zxm-V@T}SA2^Yu>w_7V{GpujMfII{my;uR!~;$+W~7w4>Imu!fM z_OK|59Peqc3=sTL=KN6_>cBadNHeNL7m#07>mVS;;1U%}d1y>zY0g)bdg+%V^JPZW z@WR!l-8+q(8W&5`^g~#>f<6ilU)}-Nje6s9Eo`CC36F3A7eI=^k^m@_0ETz${acvc zi(*5kc=NFMi^2Fbr19;^l8wK;^pffwcOKXvqLZ1Y;NV)L5WXKQ7xm-B>oy3pOAV)o zX3%BRC^uie7T;P5!gqp9z$FVPuvIl?|$9Sz^`@FHLo|YU12;=`T?(uJYiGk?bF+3Jax9RQ@%`-F< z7E?3qOt(T?Id>IgR;9)-Ief+`C-RLL=6M3@8$&@6xeK}4Dn5$Ggv zGo}EV32FZH$+G}N0tpu|-HE_qO`8Y`-i&&);Lw~>we~C+Rck~70gM7=db4QLuwDzu zta)}U0hS_H((Nd~fC0J<_Ffc_AOYTjdmaBukWjF&ga8@wF6?V@q07dSCog17`7-9r znm2Rq?D;e3&kO*NE^YcW>eQ-%fNbr0W9ZnjV`r@0SYSqh0}CF69iZXE0bxTPs90RU z$%W{Xq)CkxQ`T)+u*7npT({0Fu(M~;p=^V4uZmQ7bEXTNLUlWJfO(?tvvx1~ zHSU1>J;R06_AbuhRSJ!fZt+ZDI2_*EFgM%GV*kOn*X23@vaWueZ z4$d|ri6xqN;%KU=xZ-NBx#-*hC&~y~L6;q*TL3uX7#TqhF+~xA3ZA8&amlTRUqUM- zgco%({g)5~7%5N!cIZV{)B_K6h2H;JJ*AbUR%z`Q)_2}@#}r6W(UctlU@Ao*ncHP~ zlbhm&6%~{G;Y3z*OC1?tPe~4dS8GuUIw*$%ESEq;c>T2!Nf;Jn0E7k*CIN&Vc_NaQnvqMoB_z;t7RlvjS`Gn~BuE>| z)TE*V6y~5^cwL2PSPRIf=6E}iNfiRnb$6e6S+>O#w!+?NW-Q?P&iIT)DT@C`4*8mpcb#MTC;q`A|5H6(Fp_h>afo7fljr7xPI4p_%NV=uI#|LAY8;zyjh4 zN}&P&-B<3O1*mH#nbcBS6q!f$=Mz64Ikr+U)XB$J&r#u)>V7Ei4QK1i3lI`S8b3hK)wIn2rr-@NY+&zG>|f>_0BRtq7rf%Mfeq-cB6vzvzgjZ@qE+fq zBB|c|4i>k|1cH*2)w;8@Y4rp=05VD)TbH2XtmSr5LjYa^ zMINGzsgSBG^5x_PZ`8lchrce?e(jYf|(u;@nS%Q>?MZDS{A~3)fi7X#%-2~ zA}RsL#3r%`eNX>XTVvLjO3IK@G8ws*KoFKo94bID`8$rd#C5Zql`SLQdJXfoI7#@B z=~(!23bm4=M>uUuO--BKQI6EFeGQU3@;Ti#160C2ACL&CD@|A6iW#1A?%OYMTax2?S zjT8{GftHN`CljUdCNi>|ZBJ8VVhlL18I`4_1tR7V=a{x*#|t(PS@T*GmmJ8oGl@-J z=V~T-$cdnrc4t^$G+TR$;t<=wPdc?Row5v5um*5MlNueF!;ZKRhh3(iA+no9!&;(M zE>txQb!h+IWQouk)e@p0vW<>%>5{7+M{{YB)dG6e9PNliIdl<}a-4~m;OLH8EY+rP zhzh$n?X;$UEXs0jdLC%XE{}_y7f^|EJE98GnaxbloS4}#m|H;0z7`RIFon4b_>1x41YN%* zz>}0z33UkI5UYAB0VK)eyT(Pwm5Pm1xoh9owo5DG!IE9y+P6T&@_P>?Cn3OwT_ zpsOjjPtD6=&aOwWx*beClxi(vuxF9lD3hQHamf&GD`8NPHMghPEm|ehR)lI*xE7^S zTV4NRV3@T8sOcppf|kU^{w2f$AZc$x5R;z*Kp?eHr69F3Lcs?tc6f6-ich_iIXy|! zJ!C>5SRhHDs2p>r?gZM9^<-b|9^gNXy4|6Iv)utBa3!uyl&5ltmmX3tfFuL(T5Kv%q z!0R-qfv`Cf1TvKCluqQe$FtRJ;BpWko^_o|$OM8UOpqonYWmTUacQr7E_Z-`63u6S z5v>AxsDc4xge2CXpHuhQ0F{UlM1XxT_ae&XWp}2+ZY~^eSHkSc&{;D(>rKQ43OfJv z0LePm>5xOXX}`?LntBL)Rz!RxHu63V0X-#C02)|Xr-hMrmPKqrBzsf#9N@=J#vQy| z6EAL#DJ{fA;g%~mAx~KnL<(MsZSYcaqpSj#4&fM-{bP7u^XH3eymRCUGEg$+oq*1z`l**5Pw@! zPbOr}?nF(VBOmGDN4iPE`@HZ+Ewf)RR7q_RHSq@2hJFNl8Avova%v-L{J{LmVn|jPr&}IFp&@U^&ZJzBzekk`Ad8kc0x?>WrR(GX=+CW1&w%m8pE)1#5eIrO1q#NA3I-qn29lY$papoHp~&DL(cm;m#Sm80*r3}E z+EGkZlfMxhBDKi_6k&HX5=A7>5(-sWI3Y+t;Q}z4{`5>0GRhV9Qx@(;32b5K^qLno zz`_O8q)h%@O(+P+SfMa z%nOb!lAeeMw%jB;@(EUm3n-pr5P{e23|7DKSW)8C=I#HL`k74<#><2}S!af!>=BG* zsv=f6$iax&1i)VP1d)gEh;JNGT%KhVrDYSXC0lBwTYd_sC>ugq)ZAFg$OuHYL1h#= z3E;ulv9TO3&J0wZ$9@qI1Yj0?;h(!)TDwf59>Gr7WL|xd3wfL)HZdkm{FrFI$IUb) zcnV=TDhPqJKnpD2GQD6}7Q}QRj8*m0&b*#NDB}>(nQzplZ6* zsDdue2S(uW)d-F-n&wbWji4A&9*;h%n`JJX#7V$OZ6!l?S3AOHk?5VA|1-9ZQ;2i>ra=@z})*^#@514eSYu&s@MI$zEX;9%~^CNcd-C z+?fN0rCB~Gl>UvBGE|kC-KSO&R2jrU@J0np3P>OZKZ46#gayj19)rl*uYFxo2n(z! z&HX@SO)e5+9%1R&DFn3JcIJya-9+U54j$>zin^no`pF}5CQ&)odO9Lv_QZ4*UI3mZ zU6dVh_KV9sU;&m+FC7nZX{uyI47q9#aDM-)5{2sdj4J(P;E32ODm{*>cA10S1@)OL zs#XBt(FL-^<1(Qiwu}zX%vg|RVo@+kQffsH!QXgX-c~MLFoQJw^1`mNre(!_L8AH0d?HDRL3B9BvO=%?va zxr~=ofJDbukkn~V>|oO<3d+cmpizX4_1R5EwAFTb(U~??+_cx&MUJOF6wuC+yy_Oc z+SA1#ZD%-c#vD-xRvh&#Epr8t{^0)y)E*B^Of6KpNaGOz)`C+~Y;6H_ZOauFVvdX0 zeht|gh1s?XwWKY!##%+RZ3dz2>bBe5CQIG+<=yUVY39Y={)GxyCYJ?K8r5vzCd%Oc zAp(u%aNUik9xllw?x`%URzYsko)SlJs_J$S--3i)by?BFCxX zjUYnsvz*Ra4V$ARlb89-bKgshU- z8l#7EkQgy7sb39%1&EP4X7Q}KkgUZE6rYQmbWmYTP*D~zwMekF7{wpbDFU>lit0p> zNmfrb66=XmMl@yp0Tu9Ct>GQV#AHt@4j^?&N_$yIaj;gy@kshgFJ`cD8;i;tW2B=6 zvoL#4Z_=G`!QnxmjBcW4gJ6-P<`AT81S$PR+-%PgxvG;kM$hi@ z&-OB?3awcUGeZ;e95Y)79BP6aIU1sux&JToFINZ>gJHTRh{V{SGxBusF#8DF0u zah5pmAED|gO_+0DTAF&18jE63v*MHzS08rCv$HlUN)o0$H;cLDGr%NigglBrV-i5) zoj^xSL2s&9B6Q;X^3XPPLmPBdBUIxgvoT%(qS;CXbT#rNGlLzfw21_jt-uQS%+AW+ zHCD$^5Q}Qr+wx;Y%k9rj6q`QkDQyOO~{4a(JvvUJW`ap$OHrv>4A) zr;ngGj8y&eR1N9ex7F@_r=U#Fo!&gmn1IXV3S9)i-L~ zcYdd~iE#g~-;D1-NX9d#nL>z!bO^X~Y;L0rYeZag_|9g(vhH8 zxB|FohL4A3aya;T_>6%#w2G&I$mu9Y-HE68dsr8P=x6NB5RB8Tj88USSYt=uc!O=6 zj!P7epN5bBxQqvRgOtkAg>sjWi506HXIShm&X z#Ti>L{Y)xJG=>Ctwp|GNM4IrRYfPb=#-Ss+MTttIheo$^21U;b)7JJ?IfmA44ql>8 zvZViSK3&dAY}-QGZCLzaZo|hWhxq`91rVP{>g>B)XoXii){#UWH?2ie_7@$oj`H9; z{*j4VpBFkRCsSkzbsxLAa&faOxWk!du@76a$?|F{z}QVs=?s^A8xgfvJH}jlX=J;$ z_fo5TduULkqbKvYSM-El6(9C%>i#s&r39kk1*a2-lz1CdLXzlSAKvoXflEYAx67HA zUX6;22*pIf@%Ex+QpZlRo=fv8QU1pYC8~l1sUWVzaURSdij*m-#K5dD zgzOrD)t*N9XY{JP1S+(BzkH&L70s7O>7?pLd|=gj$PoRPpT9U>fEY<1)rAyBUy%Pv z8(n@ghoer^sS$>4=~-D^XwV|zMUR2sw1|*o{b|$vMCH}reyQ`>Z@`Knc!RCjLOLyD z0H9`vZw$nMuJusDcs#KPfPX?H-y;;ulZMM{`)v(AXE3d86#l9nzIBw+lKPjwmQLg2 z`Qw*>HcNhjIn(90(a*FW=Xc^!y%z~Vmgt|9{`I8nqW;mTet5Nh$aW@BQ2g1?zPhK+ zmJJ|43=n95V1Nb<1SUv8&_DnM3Sz`iF>&HSgaZT!z$gF$gp40E1|TppKuMD)QKnS6 zl4VPmFJZ=%Iddih05@^w)VY&q&ma$h1{E5VW>KR@RSLYY)Fe=o1T!A^D3bqxz>NVi zJ`|X7BuIh+11wlz)xd!R0?k_8m=)+qw@?L$?J58P0)ZoeA{beBWC6E-2|RdEw{C#~ zf(sYm3Yam0#R3Tm+sPLPwUrx4%II7q{0N#!P8v2 zyd>}B$(I_4Y8E6`0cOR*7pq>Q)dglB61@HXfL5{wfHGh!!_<0cqzWp4>@oo+m>@CA zCVQ}ey2MKCugC~nfUwd4BS^IfB|Gc^2nB->L}$D#1i) zsS8jdsKMl>Ish*A>Kh<{+oTeJ#^K6hZ-Dt28VN3|;<_)+jy$Yt0JmrxKq14#%E$r> z#3FFez(y2oB!OTwY%vr6Y81xC2%yX|Pu(I-LQo~NOtuBO`U^(BIz2H&NgbQYJOd6& zi%;R`q=5#4^1F)w<9-X^t0RT_O@aoDU2>|ao($93XQ5T;$}FkfDF}+N%~soJxowsu zr}hhJq}$$vQ?~(Z-AW_W#zMD0pwx|0tw{$kEH(l#44}b>H0A$rGOAkJpe|VFvJ686 zH2qLn(khF!ugL@>7~j(b@K?mlDs7ly!Y)MM&3+h%y-iZvGC;ngH2jNyj` z!x&^xH)hqck0X0{*&0#^Z^*8?(MQtv>O?6na z$$T}KLm6cFyKNH{cPlhjTck{4$_gt!v%4d+_~DEY2A<-?EncrPwV33OR|R_Ph;xBD z0s)0sMFBc$0IayJT3DjG+D$N8uY()Sw4@c1NgPK!gQ334;Gj*pQNl4LitY8I>3l&J@2EGujYC}yt<)=(!HUn^IB(P!_gc6e&!@&rC zxeSr2AcRE$49id)fk2TSRXN_&MT}#-91eprE7%CfSS7KDNj_poL2k2kdDNp%{20y# zaMM{M98-J_kf=V*@gzNRCVvj#o`=|KO=@BYxe7&tp8-#8Np@fC%FJ`G_#5j~ckO+w?Y8jvxamY+DD(8!|I^fJYQXC@@i6Rel z(*s9HPMLDco8PpSIQ=-&=O9ug=3ELo)v5o^`cTD(R!P8CZbP4Wa;=`c!DqYlc`tq< z(VtBWXsqg!%7Pw_t90XALVr0i_r)rf-lI%JDKpVjxy7Q8BIqRZCnT~N^{5~vh)BnF z5gHoMJQ7IhNd>~viMUibbW)^F5gVqO+B7G8#OVeTdlW=6MR!b@3L@jxr*=UQFJVO2 zN6quUvB70!IBW>3h_z1za0(=}d}smKwi;DNv@e;`P>6bYDXyONpQCExKi6Z*KCvp6 z1&~kvN?V^{(X&px=?Gg42pi93&sfQEic=tK68S8kurKYYHX|F}mn@dCH*xG^uPNS? z+%6?gt1Ov>gGhOGEjYMxll{D6B!>S$V0rY3mj%2-0EGz3t5y+k0y^o)tHtS`A0ns} zi@3yy2FjPDir;363rtfQW+I!?R1IpdDYiy3nfzHQp;5-Q| zs*_(C$q2w4fbc1VRl04?#N2rw6{1!CDLN1ZO$&r`kRorU5cJ0FkEf+C9P(s%l$n1B6CDT!SSP zd#C`zH0aJ{bbC(la*o3*s$3(#KOFl0C1WMTsre70jecO*uErh6e2UQg%Ri8 z?h$f^_1rX{LcnMhC}OJUNw#R8@JtT>J69%{nfN#AK2 z^Lq3W>7wf5nYIyt)*=79nk5f#kUT%EHLGb25Em*^?|q2aOsp`m*-Yn=aQxty5l&kj zV_^M}n@79Rk!tyB02jDmx&u(@yv;*G_h7S0l4kVLjh=LyF8#4h_bxd-{SvAR={?IL z%?q)L;;b~&DrQ-f1=6?}(i#BF)a#{J8Dp5GHimqs`Iw(M^wtcEjO`jHc1AzaN{i_d zZ^aGSn+@KlkLIrAe_1AH#l$0w#NqgqFoX>;4-J<_y5K54L z{qLXu`lr83e(WULh0)5U0GNX$Tn~n9#bp@c+M;LRc!*u}q#$UCD*8!98YD9aLY)Q- zFxaHe=**$AsF(jr1Fay2h=xtLlIWHK;5Sn3id+OPAOJyNV{2~b+A^;^e(cc>>zV>E z0lVw}{?GpO2><%;2=`A2eQbYfY>`~3uqGqxnnO4~f`1lJP zR-}nAZ~`>Y064IQJdnY5D+Ceet764MOi;Gm?0XpMlp@3hfhRNgZ~ej;2z=eUZ;)PUVHsDXWaxY4BFuy7e z%Z6p!!sags!nG!Y*60Pe%0}d1uzG@Tihk<^4WsS~fEU}$7b6B3*(~i2;ELEpLGbGV z;|g+yY3%=e2#shcWk{wsz=F_-!#qyvuu39WBC#7!ViIAe5-qX+Fp-^LBI=@J)Xq`I z2&K{_4dyy;Y=&xU$fzUi3Ff4#fMR2+2w((EBQ)4z@1_Uh9OJk!l(->O6%bJCfJ=ROJrU4~`E;%Gh2<&x;}R!EWnwh&jqOl=s(%v@wr zgoy-=s~BB`L)wayGDk(MXCqZ9G9Cao!ir+<21XPzEpnz$2(L#d2AxL29w"z30t zg#iC-?1qM8IY#IsNaA@E0O$$=yk1fW!I5Z!pe7a5CS?LAjgAuyGF`Nb6II9Gux8f6 zZaGe=K|rY$#js!yFpKgmP<(}bS}8?Xi%CG!|J0(1)Q+HXW7h=DJ!Zo)e5I`nl3mz@ z=gi~UsO(G7q}#qkx>}++s;Lk?r!c$mFoz~F7gI55BAc{vf&vgG;6%sL33w!PHiwRL z$n7?6uc*X`ATxq939Qy!3p7RJBbco&Nb^xlGci!JG4f|M^DlMkWj*LnaAXsnXmfq+ z;!$ujJ3Z1*X3wx1@Zf$k0U#g?h4VX#B=Q{XUf8a>kdrW#6ZDv~TAcGaX_6+2M3Dc! z?Z)~|n_Or)P*jC@1PC|h+}dOSZVx{>WCPnp4QX@%CLl$qr$I1;*x<*Jfa12oCn~4y z&3G*i5dbb8BCTS}?XHLLL`1;n zj*RGZGDF>MLu1E7Ymz2lj+-LwyACTw-Gf}TW+U)N0Gz@u`P5xvR7kGyAl9npG7xw; z#D_rTl>Ek5il^hy$uPjC0q`o|t|sN4%`iH!Z89qaGYjkbWF*iI0VXFiCMTP0gmc0! zg(9>e%18&#<(jVPA;{09(liL!R6}FZIyw|i8S^GP@6y;Q&E~I9>l6~tMIrxUbQu># z1Fx;KSn*zTR7VM*``m`}V2C|8m7$ubE;=GJvd01+%0fnts|15cVeo|tCB<%~3wvZ` z)+0rKvmSZyDJJw@ALv%6b61tnO|#@zffbITvq$VGSz+QM7|2*TG3?kvAIpL-jf7b< z$ypf%;^;%QrWG_Xjw`TrGN^UnE|U33qnE-J;<85!jjc4!H8IkaZx#bps2%||1{5L#s5iixZ*gaaIEo`#9yeDbmsclOCn`5{ z$yak{0@OfHVXqJ`Q`DJo#BftF+cu)m7!y7~b2)^HX7939)J4od?mSyd49g~{CNMQ( zg&zS!T}}hIVAhFlYXqybO%5(o*Gbx_usy^mB0fqa18Hph!@K{ylUJ%~-rjFmzc;)9 z7E8vre9M<6(D&#Bjca(OX+zjnD$gm(=oBHSByP5|=4g6Am#RpjIhKRW0u=iGaW9%< z*ZhM86>`9OWX{B}M+^hk`f&utb|Vn)JZ&fe{&oQ-!kvChjC6Q}TJ(bp%erbNSV*{? zO!$NoD}}LRg;_XrU3fUxG|0l`Iy3P}Yz0Ydcvyl0Om&!mZr3dg?f`}37QJ#L^y4q^V29(yYlZx*{0)_P$xMMleZOeIPuO=Y}z&ruSBM!1%gyWuUr6W>?Aj)X| zG!HOyum#x|a&5W(!dHBEnS706L4O%M&=HW_gk7`FR_4zs?CbP;jv6P2Aw-EJmeq@K zjfseOEB=C%7^b7#1>=+mG|7!BSR_e}WKqNDZy@I&8ix7ir%DMAFY@OBL*+MP4kTQR zgBMgK|D%k^BRHc3FcrYG8bFr$nP3(ApSvlbbHWI2Z>p)fstcOcQV*f?I6N4dyBN(e zo5_%*34nM5G!u0JEFjlvZ30mXGA1dyCIflhqEr7}sU5G)t-Y_4^!g!sv;YRoFtFLR z+NyB`8#nI9@!5gY{1zQFI3jV%rWvse`pB656SQ2C8vFs;fG*r<${C zSz7^cW=tZ74FGk~jZH)upwb#1=WASZqa^sO!~laTJ|<=tpabCqWa=hEOnQIC|lT_m}2 zWiB+*ooens!sT3KCS|aDSm>zSXt}$Q4440{BfQ1is>7?ik0NSIqPkCl+^VxFI)`fm zG2j9>HtIqRb6cAiBt4B6qus-+KBkk3H-Yz;q|xkc4}emo;^O$`Zfqk?-Gtoi3;dpzgw}hh4T94+9H74x_vzq}_6YlnAE0e-X4st{P-V!;Dk0RZx5 z71FtzgH1k)O~`UZMA!jX#XI zdL$%xCpcDU6zkNF*xpB-A&g?6FH!%exj_arURpYNYi|Go2tntl=2%zrP}@$eooGe< zmcJVSjG#flJ>11T+(jMH8sbm4dK=fM>$F^q%yU=}Ad#nV+UDKVAVf{wcOy83m-2^? zYqmb}&oJ`uh7Le+{8x%8I7dap3}Si+d;nTMP6#@57e&y;tQfd z7R4G(+*E?%VfdOe)cL-|#V`N6RyYC9d$K3&95l%x9hzg>U46m6AN?p`Dv5mH)0g)Cc-;d zo?7!aH;~c32tzZwaPGI*w&(>GV`U=Pwgmnnu-oP~@=PH!gIxqiqgd!5ZBH3JF(U#9 z?&4{GZcItVPXR1l8!sR8+jQ$WALQ?ihSNRBM4vE8Kjpd6x~Br%nWH+VqN5{2Gx1Uf zUo3$A%()pGEau+S-rqe6L;jRki?Q;B078I(01FBRkZ|CDz=Q(^Sa=v9qQHp(8V(2` zFhK%~20BLk2r^^<1tk9ibTlCHq{x*lTe^G+Gp5X$G;7+tNs|G9ojiN`{0TIukqJbL z8a-MRXGn`n8{%ZDG-^wYBvo1*KvF?Uj}p3SG-*KN!~sPi5;%!~fZC4}8>l6Kpdo^} zah*zxMci2@4v{VVV-fw2Pwa=gm7?^^+C1X_Wat)0t1{kJV5Q-f|lvN z*T`ObCrwmB2@U`KRTyIgXhhcv=)I>PViWnr*JOh6Wzh(t={3M?0_3F^ZU&(CT5Jc* z77};ZwUiZgF1`q3j4usmT#d#V!Ca2Z!FZjF!C9BkiZQA5P>Zu6MxJ>DkhE4ubF~PP ze-z0_S%L%ICqP4j3Fenz;e~d9gmVd$l>!YVMABRht*``B;IVsRF9-U58hHNps- zEszjwi5Z3;i7Qf7Qbe#p@KIIX#RR2~jy?*hQZ(8~=}$Q7h$)QIMXH@sytUZqOAk>b z;Y6URx0sU%WHrEb8mYyZ0dM6u>qQM6DNsS_!BrQX7k-#pU;=@t7D;3(z}}bwNKj>F z6ICggngjpLb)B68jMtC_iM4tFQI^q1=1CB!M5qE^9hzvNA};z;R}ydvZ@ipNT4}ui zT#9LqntB@VroDyg62J}d2PQ=!8T`?iL2iYTMOE6GAh_2qKp~iMntIui3aHgloaZ$} z5_`~cS%6?#65wo{yApuWK=hT@vcg1ZG;;zy8VcJ-8o`F5Ou5bEuDn7I{UW{gQi^ZB zJHF^|q)qPzFpFg-JOIJYUOCu62#W??T6eAJFab=_Cvia)Tc}yaOr9lc*0o}VtXpE! z`c{{iQD}%Pc%Mjt0P|Y>p900lz?F_+e>h_$XitTnqbmWrrX7tfDCarXHO!GTA zZ~p%>zG9;qZ5T7H^}RJ$02Ye9@>-nPCw5{V(Nz)M1XS$n#knhh-?3M<_;7v)mYlV( z`*B85K}11EaG;O}PE-Ie6Se7~9*GO`)Swrhb4(gN-Ff)p3un2#MqGe?`s%Nr{=N{8 zuhi#X9VEd?(Mu$Nu^0y0^6aTcBrPh5Z84OQ9RT;EF!=ncSY{FkZ1hJGri>0c3dxGs z=2jSLbxkrED^119bASg3W>m}S%0%)s0_i~{DNRvHM-G*(m;DgOIXN7AF6T zuqT3A5=&yzM3<~NrY=>gSe*Q#LFhbWLki+cc@hMoi-d%6S(zUZ{|HFn?2v~*@gWd_ z7)Z$(aU~tu-c<+(JC;SUK2!P{NH#UW=yd8;Z|N8TwrHm<)ed4DGl0l6rWH|sBu)vb z*gyzYr_QJaW(HItwuUvLA=2=0eoUkq1!Vsq1JNwq zMJUJ@yeVs9V>u7HZj}I)1ZbrzYvQiZHZdS&CLskW4*^i9x@MBdGSJ};KU1pDmpBff zM2(z42fC9YuxY7GZ7Nd{8owbfG*T1LrxHQ(C#Dz-VOXsreqe_%0&J9{;GqqQ;L{O- zxKcrCY~p#c0vRVVg+0CsQpLXLwoiIfVaQP!pYk@*(FpQ=(y=f})NfmbL$mt*#D{Y8=T@ zma^7`A4xjv5#(AFkJ*vvIM<>A6|4~fk#va!6A)W(rcAGMD@cLz_?^|X_DfiE3hgL3 zU%W+!f3lQfeY%=lhP{_IjP0(2!w1=cYInO%eQ@Md@?D6iM7&s}54%izp7gFak_Q%v zMP?J<1S*J516#m-b2)$pO!vK&^l$0_3|KINrim9RFeL%?Cvk%0xv%{Sxu|R5BtI6r z#hEaLE34#qxzIZ>gDvu~m;h+DM1kQ95mylho)#l6q+o1JCQ%u;h9v8M`!#C<)P$uf z5=J}*G0fF+DzSm!*Tk-w3gV&+=y@@jI8J^tn*tp^TDtXNJ){4~_7phY>F^88HmqH) ztmPid@Yr-sOs@*sb3+ul7Imw$bQ6!;Oo3G3AxR-kwx(R(A&;oR?A=9FoKd$Y{3^5x z2vWEPhr-<SA+(*<`!HU{N5N2MRSAwLK zh#~r$j_2Od(qrP;KMZGCqKT38_Wn~EZwJz9gEo$~-&%Jg7f8|=oqpn1bYyq*WLp{M zWB-T0N98jvZ|Bc0`{rcC&O85=o_uW(5ZsaFp;!FOySv-kb5I`YJ>wXBaj#GBHG!@9 zeR0C*rCajHVT7FgP}Hie=EBy?qye70{(Wb7UqLp^04r9kG=xVP&zb|`{rbZ%UZp=v zL<^7R8V%>4T++l-ow@c{$KowD*u%>ndsx@#T@a^^=-uT?aAxl7pts^zjjt)Tw`)Nh z-v%B&;e7bHIDt)GbTR?-2NmTybGvR%7D`IaA?uC)Ec$eo&y0VkCEQSo(07 zILQa0G;(HO_$jedx`Ms9wK4eT`&(jKYM_o$vH=zzvwL(zfT6nykEg!2=z55TzpuTJ zY>2IcnY|*^u__V=^hSc;Z;;;U+Lk@RA?!IbN*6i8!-q$7&6mfW_kbRfkcH4e!`C`2 zjZNGzggels2*vD9MDAI-=7XTNO$x>Ni+HQ(<=?!jbbvjn$s~i(hn7N zm&-ZiViJUC+`sTR%94f)Sjxy$CqD8qo!N_e-jQ36u+Je!8fIq-b!Uo_BIloF7lLyN zo-)zkgb@m|`!pnQ6o0Gi*uF=?eJLpeA{srNOl_&`+55DTgNW>@+~~^GH(Dsg(7d8e z!*6tfW`g8=wmzWttall5@@WB$MiQm6%KxY4~x zT{k&%yT!s2p;)=~vVZ34S?D4j?P^y3LpNmm41ee>e|QsNcn9J+eA>kSvspN5qzk|ZS+}8KJR?9i4z52_Eb``&N4NPr z9@+P&>ByANmPn_N?C2TScr6LiQ(@1YP|MPt&!-!ZFB$|_%kzy%^ko`BzbOD20+uDUd|>WTj5xoXY$Va93ydb&XC^%7 z)I>YMV5YcCXl={-bW4SgNrJ9^Dw%orMlBE z+We-3bT0Dnz1)wiO-!n+OPq^SR7$Hvkh^PpduMukwsU2i@M%><4n}+i2Mm179XP+}BV<9qmhim;ExFHRd#_vc6z!we1N)z9KXse*YU{=S zh)7&i8N^Jc?y&6#?X*^j=#$S5QC`;7WXlaaDtrJjK128>YA{8^olnJRruW zAC{FJo(8x1XDc!7)GnSQvtEu+$dwMxsEmv#*NgNUV=|^3HOr)qi0qJ){TX4&tMqV^ z|IiFH=mQd3_YNf2D=G7-T#jO+jcLse&&6t=-ve;m#vH}8VWTt$QMN$;Ij|GIG_ED|Sl zhzG{RcRDwCU0;gWR78AR(hY*x;~{Q}lu|WhI`6imD5xz=bpo^#4PTvBNA7Og$!$>` zZxeg7=rCh>Luf+bfqbdL`TJ831+n%ST3d@!E^fBno*@)j~xH=8s(`=)Ph zSL-bf2E7?e##rDik8<{xJel3gk#jc4;U$4vkJ6V?BFDV(em%gnbk87gyexKh^>Q9Q zJkLt82w@G7b&~n%vhcVwZnCq$XuLSix2R3A^m&N02$kquiS^eX09J6&z?jP(OSngM zlF-m3;VVx3t0CsAdV(QJXPc?$*(J(;_27s1jgvwu@m*}eW@2K~4OhwC7Cz#oYTYbqUm0rl51ER84)YU59bD2^TZyHh zFnP81G6t8{w`QQk`VZ|Q$L zn-_TL#anujmH>d}B>({F^yiDW^nxu>Ah!O;TLNVK$5?vtmPB6QB?H8Nt4lA^lHh;H zrT-X9zW-sC{zqMU5tsl>2*m&Mmj36I|KG>|-3k2vdQ03dQu(Nkvjs zWHSap)~=vnzAgK2Z>iNz4GrLNzBASO;w`1mb||^-~HWG25UwCmqDNe zsEHb(VrKp~xiM&7hxxDM(zuDlb%3aX}aW&d#I> zW^|4aFkZ~n8h_G+aU`Vg6(-u%oVi5NVyu=(xlW&&^GQ2Z7lE__Qp#zSSk7ykY7n2R zE5C$18`oK-C|g@<$e$C|C_NcvlqV2Pm1i0p*0{*EF88FC#Br#Yya%~BSa~=Mfteg! z>UD|q2XD)3RL0jfcDj};dNo_;Pw$amU5~T==)0-uHBcJXlDvw9@<*+iQxvw`_m!y_aX>9PvLOH&6YAhk5$37%zx=3=`_YH90ME$uY~dC8_X@J>L0~X+j@Q9pg%@$MpTbK7s@&H{%!iZ4AGBBjiK2?D^)~Kjl)o z+!MsS+13P>2TQLz-Wyz8GH47ebQ~V`wKfZdu%Or&W3~hix zUFk^Iz=swf=tCrZoY&ozU#@TAlMGIpf$P&r`WuPlFB48mUGfxqaXX(+Z{!EJDV!Tb zijyCNgio7H2A-wUJk*bnCm1Y9ziGesHs21hJ=>g}ysdXiZcSb932U673cLkZ^Z6)S ze^nCSl;@DJ=yE;7`e}zA8Pm5kF$3zqy(&5DyZg$7(xq&oMvahUM;iZY0t#!~bJy+o z@iBD9S@Ukqw;N&k4uDERarRA+=+G8D2zgl(fu$&QiLxmAMll3UaB>LSwJDhB)p((mVWO-6As7(_!ba#)VK%vtJ@){TVVj(dRm3> zVhASf$f`|Kq-M|#$oXDEkJ4Sxtb6j2)EM z7qW{uq(Riu$ud{HgjQqQzHe!NW0o}HYhy?kqQ~#6?GpIYawiLrCsed-xCBh5h#Yw) zB@$(o*&US_PEcf}19%dmWXsSAH+kiWs3q~eK=gVZFr|4L_%k^!aJFPhUD+me#-o(U z8fjWK#v|?6M9Cl#HI@7Jhc&vYWU@wFkSaCDf^ zMoV!$y2eX4s#2qyxJhrzqLBgB)Dh4r2w7_x<7Wr%BUzpPGJ=mCY0PrLx5$|TUPiQd zl*W(}9l`okbcG1mKy>C}oI!a}!T{4!X%USv@%z1Q)VVHWZh z{N%evA4r|eA|2#XN>=ZUSDCW!)J8ro5WOj(-o>7L+YljD{id4jf-3b$b@V$C^avB5 zWvP@l>Ox&r-RDkMpvzAz_-wxUUWij zpg#Z$mJJh+H+gNg9sCdCiEVm3wCbls2+iW+4f4s2s0RSJQWeJO_OdjNR{ z3^g$zA0ZvdgVd2j_32so;HDb5M|dmgpeAZ*HocZT#8**TX+xj!+d`bM3K${oB2FCG zKivTcRYiSAn_U)kRNrP(asS$a$=Mnqeb8-tbb;~e`QxSQLnXA##X3nX3N>2Lu`9mp z9bwR?y%5#B$;;1^NZ_&{F2 z8VkaWUL=e)P~ zK^I!IM&BWEp3pD$m(3~tHeW>@m>5VP(*1osKjd*fLP)AJ>XFT9_^8sbs<1ctm5DZVm$O{*gz$9N2_J) z4eXfc#a6>TyfZ=z2}yBh(_|8(^79uWq$9?2-X;Y2OFOH|gihJ2zg@z6xqYA?`qtgU z+K6EYG(4UzTt34vf{Z|k=0KrIKOqk{kdf#Z(kWic6tnlEh~Sk(&-Pd?1X< zn{&gq1Q;)`}2m zrbHxZ1y2v@z7P*eL>DUxm(Y(9hR{iYBq_>$8Cf!qXqc>NW-?nPDbFBVXMK9c_NYHgc&LX=#`+c_)d~wt z(Wu3=z!FUgE3=qMjf)U2719W6zZ6{~s_)V1Bg|wvx^L{Oh=DCKf>DWDLIRdX83mJ3 zWQ1H2ycVg=8U51i`^T1|PsAQZ05?c%<%4kQ&};UROmZ!i4@w4S3Sy=yL~2jz5#8GQ zj+V@exdTtRgJ-#E>$dhWl%t~_c>DtLQ|twbxHTXm*~$oBBEv#{O1G61uQa?LQaNbj z?vM?n59xT#h>p~nDP>O{{Z2WD@iL1g62;LHgKn^7udw-$QQ=^9BB~pck8a+kR2J_~ zHSbCtPue#u+TMnTtezz*S?vH|I#WrE9##$Hs2XA=2w-1CqGXO{(Kag%18AK%ZJojQ zZn<%wxgQmDI>)!ms%6pz}9}Z#lshc#nEg~WL%3nsMzOnRE z3Q0@)uFFg>`{<=XPPAgB5d7;(!yLSjbKkHYs%;O7<2C@pucV@*GR@(t#2mn%p}J#X zBAn~0PPyv&bKgM!>TD;4$c=EJ&(%uu>IpT*!>F=zQZ?m0M3u2ML!@L-J9tB^Q5$I@$=d7diO8Yp}hy>AuE>+PLnN9=iiMrn&qDFmn!Y33!IqzwBza(67R3d{& zue|lcgXsWnc?I0)>lkU6Awt$_bWNZ!og_vv%_Teq1%*N#BHd>Sg^3(#1IYMf$|@l= z3o3g+_XcX0HvZL?O<5g7GZ_OQRFF<_yV3HEtdxtq^;0%+7ju>*nygq`$K7-zPOa#? zY=MC-?OI9IA1PY6hnrR?V83oy6 zK{tqww2$tS7UYnL=WeUiWt)IA5V_%ZPZN1>BRN@uFuAWuW9o!QJqvZ-Luo;@NLWsR zv0aA5mVpUPK8c_01`52PxC_O%cs>Kpn9maK9aw)ZyYWjULh6gT2(# zVlvP)Lu4sU*Un1b8EATYWbb><00uxYF?2s|r3_&*0J-|k40;%fBmNY387qFGn8;rR z2`WWaChPVWWY$Syd^~Rk?2y}_FV=qJ1}c=Z?EkJlWMy@A9-t0Fb}shdmF}dwbiOd8 zyQNFIkL~Tb{p8uM35@&n_?by^T9Y~X6aF_Qmu#be4c3AKbIBU|KimP3I8jVFz>18Q zWnjONHqlgI**@)PhbNwCiq}QRkW-Hq20%eiB$6D%MJ0%{E~*zE_o%FE z$w8phYVFqLR;T2dW}Hzw9$!U(2r_OWHZH0?Zb#9}^e1IwXdK6~F~pPY{cO_m#%m{m zOqPj^zwU3`nG%Q~B_g>1C2If+1kyuW@CwePya5o&DaaoBNH_E`9Mh7Z@1q4?M^L=Z z*qHCMWh1P|Oh9z}*ktGk4i?4ju=Wx7U+RC1?JZF!;{s(n{%Goo0NzsU!& z0ss^G5tVeaVCNhZO^flJ6x57ajP}`?$0FjJ+28ncAk{hiYxDI#^5+*#n{}nS;qaZ= zmJ%#H&KYEC%4J&dWg1HDeO{VO)F_kUc~NHpW@qP@_xADW!0QwRb4+(OzE*QA*Dd6 zl`AJ8(5ye?kx-3Boj_b1(Z4(~6Sa_xSBG5UO|2XZJrMj}&T2M1%sMBNPa$+_jC_+e8+5UwpJJX0y@(m8&W|!d(YDWKQMvIIxL}DOLJJ|A3P_>J@eK3H#|!y5ZO`c zJ)*Ml^u49qYfc_~w|M9lv--sw;m+%Q!%_2$230H4d-vzAGBA#hUI-7`|3PG>5F}!oPPrr)486h6(|%xXAse;qOEmqXA+l zN|G-@iZ`!ap!tFUBeDk63G%X;eUP>&qOq*yf7N?@Lwi?h%K}5~+fdS7tj4n;nH!={ ztm32}MjGv%xAEa$_*2^b#H2OzM;Xd#7aYW!v3xQUZZ`RekY8=iTl+<;;R?O zSEdG1HRRMEPOkpOQS7e93VL+eYCa5>o3m;i{fIylHnkbIlGM(;Q8Cn@g)X7h+nkSS zOtSgKZ1wE7otZEhGk8i>V0EU$oQCGVed#*yzq=`>hbJi2bCs{$KQQd&zZ=FGVmR9! z;xzf%r~Wk%HSop^>W&sB<|RH*r<#^h^6S|TMhC#kq5vM&VG4Z;j1gKL&M{IML2(;% zZwJICuLAJX5J6s9i2#Y6Dfmo);sECxu|Y2snIuNtu6TJejxlhR6eA>qzr20hjg!RKhhRyM@rzi_ zO!f$4FIk6NJbUlU-d&*o=+OLfq1{OHiW5(tGjX}JRC6=b^b14r$4iF>Q3_%o9O|UH zfBKGe<|oABVvZp`;k>@ z0x&!krvaD#P6&TWOTt-0&Dfi;y6!=!Kc$<0)qdT>^NZ+*H(kHerP)VM46dWuAB3K& z&)nb^B$^eWs|mfm6l51@kWi>6lUOY46u@0_P!b6R1aUh!90a0bU=T2GG)aYpqN39} zY&20Lp&-8^F~s#48cReHpanfq)1!cpaj3A)v?Su77_s~`pc?Je2P70CUUx8zI;fRX>lTk^ibzJb4Z zO9KJhDdkYjQ}cF07F-UMyXw!Cvh@;q&jiEaU>tuUwa`xKgLp&sammhkt+nK75?v0HXKR zaw0!HYjBU4KL3DXQeh2p{UW=4UlTIw;Zhw%pn?$^6K{3KT}o8qQXI*g3kcnM3$bXO zXX|;#pNOlN&#0OM~RM+cF*R8}lUD6EYJ-O7=gQKg0%mSne@)~<=3QU#>a zxl2@dO*p6x(~ZD59}AV21GJk+k%43CV2%AppsyOYOZ8d+?Q|HrUzAa@P?`g=R|nHZ|ENciqi zhY43y!=1G2iOPc3V~IzrnrD5vvR32!iQwHjUvvxShQEhD?sm43dJUU%JEr;}M&1pN|1g(lV>sQ*7Ux^N@+~XvYI*eY+ zo#*vTy~>)DzLYkO9<@27J)?l}VkXaH*-6$;6e$2>-7Qv%#u+ijm7wo)b~hgR#Sqv& zi);o*`Gp_WGyj1W!W@9x%>s{o)z>KR>{~MeiFgV`1yzZj>31%>0Eh`W@l2 zF#F<0dP!?sJFZMFg_B4?8tG0_Mr(-%1Cvd0NuiS=AMPE426qvDOn@;ube_*vI^K~2 zmD7(;AwtfCRLqj%M3D$L5-vGFZV4{-?jsmqk|%!2Z8HQ_a7Azcn60(}c0vWlS|^c# zslQKUNRQV-MVYrx;tfnD}yd0z(Qaty#Kq0)?ZMq!-PJ^-IQN}pdSUqCYredon z`gkOA>tQlsM$UG1A8|{o%Z)Tx3|s~2ecnDrdiN|~btw^v45_J1Sj|ZtamN{qV)A+u zLW+&5ksPW;G*~5FFU1Yg9&n+urGk{GFwBIIY5^+PG`mtr#yk`b6=!&!x^>Jd-J1_4 zrQJ~37O##03(Y$-*xIxC^p%2zv`T&@%)Ah_{TO`sw-cMmx(yOOu^m|p8B-oW!Rk4; zL^EtjRdAjN(h3}(P0FQLB--X)sR;Kt<^7_kR-k>CJ?()=e_Nj7{k9skbh3n{Vi8JfZkJ zsBBfUtg&3{lZ>_dOcieNIhsnM=5rny8U=sZG!P{u?=1y*7>~6Cf0v8wKxSneE9%opCRS2p?~f%YvvlhCf=jfnq> zuESuL#-IK!gTgYs+m;+La^W>Ciksztn|8(#i3nYgI)c%#P05^*&aU;>XX6inJzu1L zK2#tgj^D~uWKrT9ilfj~1Ju^{+r>#tUT0rRp@61)-7D*gHm~Dba_MkB8rIF-vPOV4 z50%b2ZRN2pe;HolU7pX*fApqEkh40vMp7+nZHrY+v!@#eY(g*cy^>$^&~eg~H@7)^ zRC%M@Iw%``at2Z+R`Hl;UlW&2tu#ALAd4_CHflvA@C}+ulO8wwF&P~uH|rud5Bz+e z6zS1k5ysjnXtrE0%$kUVRZ+R09FRle5VubhF zbG6EHw_#{&Zt@&+1L9@Yh2dj8EH^DWBf}xlFBsj=orH>a&2jl+gS2brtu_$Ch=oz* zl)b7LpKOK+p+DkQR@2B0C44JJC%~>#utD9SG%>c=7Y)Szz}51Pj|P9~m{n_-jvP3f zFCX_1ck``cU`I1?#y$b#Y+6E0*&B);TF9cMu6APcZkfHoKjhy^HUfF5eD{Jd=MHJ# zRE>{Ir4YSVfIpEDq%PCb3zQ=CDyS@h)ay25bf~Y9B2nW9&(*ioihthoHS*+X6@USQr z#SoBcMLnUI_Yj>3wuTvNHQPEtyw9*Zu}Z03H2LK(d8tjRutt?M2?s4%f-%J&S+K?G9yi~k`hc7BBiOBEa{zWv7t@)Ly~x}_)t6! zPoqsSrC{=Zm6oP57}A!pDwRwQ$}R)s)XnVnD2>vJ<<}(>H+P>ZGYj!{iEHDOgx4wy zPn$jGX_+cdaCH<$W0WStmJebd7yGMK`)ja@YlHghR!P@bYPQ1Q4Pt5NNR`QCQkPv^ z7D)MyF}3eKs4Ncq5bv!xRJOWEM&mCGv*TGl4TdDdC1ZCYk5Vm>N?+8Z?kC^lWy5I1 zdP5U-9j4ewLjobJKaD6B!QA9Z!qOgCe#+8!IWdvnW(9U$I-51?#oa*3u_a964Q}b> zGU@7C%+)rL)_wLr?jk#zF=!N+N4aX2nDLEREE#0b0us@P3Khv}}%WCNoUYGjD)3y?OGSxw z8uNs@uSTU_BYPz~6@WwtPy(v#Mn`vLx89?SRY&J)nMU7E!y}3XiFzg;f)>i7V_z*( zTQ6}lmvg>^#j-?*x9qczVod&9)NTjJG5%eaL{?GbmKoxDJqVfRP3ScDY}n+_y77nH=y{#U=ZnqW1O~2<@DtW2$`gfYd7~#ouRUEf| z#>_Y}zyO8X!1EOcMwLiGU@~hq_f&W5QK*5M9>9V&AE$1ehrGNstTULMp7FVS9JtXn z-QOtldHc6Q=m~Y$7#TIZp^4BWqMtYFl3D>g67__!(FVWHVoD^hLrAej4D*lO8kUy75AQ@0N&`n_?0mlUV{TLQpYWL8dgM7z}QrtT-GtIoYbYG4=(TG>`2rQDfGNQ6aFU zO-B3-X>y@IO)_jPag#7Q-=u)CJb86VH>Yyvl;0I6(9Gyt$7 z%1dZy>Q78(2VbC=v)1e+O=9NXlhCydjBU>wPOW?8ZhPsN@fW8z2vr1uVP70L$GI>t zTVm_3W6Nf@H-qI6WpUecyUn}192dJnp>y(J8RGL6Uhb*e1IeS1PQTm?4$mgh(&8(j zQTznj&bYPXLqg+{`EMSC$djzYzXhaMI?R?TZE6`w5_pxe$FGq&ZJ`;)_+tV)kW%o$ z;bncbP`{^V=S~2iK!_39XBYKoEK+Yjw`SMJeIGr8BZ5%iucO**iv`%91i>dOXl)eo zQqwK25Sm(J4Mi)g05^ZLHp7O72GW;CRPux{2`Rl8*qwK5=m1h?`ggsHsd20ncEUvM zCGf>5OaIM>t5HoOUGG%FbRx5LTSi{Px*fzGVp~=IitwV`3D^3ZX znH&Z&7hKcJo_fMK9tkYfGjXtY4F7lvOUCQJ{>sAN38}&|ZnD9FcTGbfu-n zVouX^%nQaEr1fL+{rAXrspMP@+Q^6$GW17FVNLnRtXl+4$5rYz>A;!!|bpM8og4$$bOG5Zp_3QlHmJ+Xg0?h$)r#mspfYra`X(Is*7ZR0;7D}uxkGuF;KO}wosbw# zJ0UiIVd$ihi++O>GKKW9Wv0Z$c(A3k$rq3LTqS||IB=EEe9i4vB^{Bxs*Uo`qUaRw zoLe$E`;`n`S-am@uO$M$)ln7HGr}8wIkoEX$Y?Wih-2-z<{-Gd$Sq=HKr<|a;vIEl z!o$k+qdaT!q)AaQ7Q)4t3)F=KI)KB)Sw7Zq2+yVdmI~HqlFvdmwwH4H%C9h}M~OL1 zJ=^GSyjrEkIht&&CB_YYJesb;a@Vr^@4Rqcvhee}aNgZqHe})dO_N;jfNoIXZWg?Y zsJoI%-aS~lYVx}V0CX@daIN1S3;(Y4vEA^CvmPocqWCp? zKq>7*vMBo(cyZnhFGau14@YH&yt}iBvC~z6o$tHx_5s~}0?0$OlwZm^|A8woPyw9lH$h0vLh${v`mD=z>mgON1pakTfYL z7Vql>&WzKwV?;c``duP+szmc1@3|)XjjX(Tb4%7utZFh!Ykc+3=@6EhSKup7K|J&?%@{5 z$>;3oOTrd0!SDR~rOm>H(K^$UpJ##(Ahk=>cETUG39r(ULr7lV)U8^C@vdImNf>O3 zqA#WXPLREFBsZ~EE@hDpbsn5nXhZSkAnl3gvi)eo`B_`2F5jZb6eZ3pbW zs*mAmInG1k+=P)Id%G_u;n@`rO4*T3v^Qc3<{>`g;~X-od_v!cW3}l8cWa$UIBL=O1OZjtVqhdfsXHMXRZAK5h$g5x z6XWrL|LQT6K6Ti0lVQnr=LN=A{T^z) zOc@OHTn!vZI`|YN+>8;VoQ`MvK)x8pr>+{bYxw8AQ&0&ks75c_ZIOVIXcP>7!G z!AX#q`!fP1xEh_3M;#Ctf@`Krr$Lpr&hysnj(`XljgAAMrSR&gfiNO&QilfJAf@xS{0#$6Hz~QAnkl z0{~vUC4*MiD>BgJMvMK-_r5MZ*QF%!nReVFL6mN66{`$qBUoBqVB{ zMs+}$OgJ_j5s5?xOujuHRU{k$tWc|`RwJWVT(MZsTqo8n0(`R5Y+5Q8q_`$P1oOT# zFf-HkM%4~R;Mt@Bd6c}<0T;~^=_*uyMXyc%vI|g4W!(H6bjLa%Adn7m{I+BazUL#6 zfe|iBY69zE8%X5(4~Fq6!fE75;?IwC@QQ8$`ed15dGeHY_YM=d1W&io`vE1p0ykt_ zCZlu|GaDd66U)eg5(t;;%9BI4;2)Gj^M4@9L09x+loC>7faTrg%W3NHT8Ah7ggLCv?Z+3rc4++zqv#|``X0O-<1VAlHWUD0@ z7ZHloI*iF3ynp!&`!e4-Gy<%wA`Os>2vyh@#DDK>w#;GdlHsC|neE!ys{OvRNfVFR zTv@Y=td~ZS>No2&m*3bn)=3~Y>2^b_ZLp$h7yZ#o63NzBj=Ac5+OIA3Tvc`pG|e1j z#tT|30I_00N3f63Zvc?OYI8kT^E|&wY!B6tiFztrPIda3+7@Z32DU*566(GOkb0=k z2biluwJJM{3gflW_%X|O*(^wUzt~=?f4|htR6m$5k=aL=n!#V6{W(S4o(d)FU7KP2 zPQ>0xq)k|S{=Hk0Qok>COi)F*JmQSz7G@pFL-0R2{OXrQ5F#?L2lilvmbj$topHQ00dD1&c4dPM?pbp(7;88) zJ7AStt6TM+6*#UzETf1-@%PzBlep>V=cM-ZKEh~CPEmNbk-pOQWDhnD!j9L^Mbca-cO|!@| zcd?M|O2SK7?d-?WN6*MGGE5|J5y2&E46utPo~36p65ffIS#B9ww7B3wLIACh3Uoq{ z#G*urEhq6Ty=f`Hw!$PBpJ7{Q1ZlP?W+ldPz~yBI{9QF^%xx=T{D>Kzl4JL1)))h- z`~I(IOhKsdEEW2ePeF5Y0Eh=&+2fIloEm;2TD3;-IA0NOKG+7kZC#ZBz!ZAvlF9ZzYTG8e0gmfO36a`eyP)C+jg{^4IoM@?-s zK&u*aTd6QhB}V3MU1$gkEljU|M){PKs0gAsCI#it@*Y|LdyPsX%rkFEbf_MD?9iCD z8WWr>t)zWTTPrbOYCREYo^}j+O`rQ&uvu%nz2g z6(@R)vPZ1UuXPMI-$gey-dP~E$w@gw={eSN>}(#q+OpC!gwYumH%PWS_zCF+@UPVk zB8RD~0I@U#lPqB;`s)9xF}?6caN;_$s;YQKq3A4h0Z0hYPQ^VY&`;^z^Q@81sfb6% zSm-|TKd|Nuo6|cKJO?w7Hviy@ug#c7_$x=A>4$Qp0ohdp(s=DLb^3Z=Z8ozxD*4_< z4BOO2KH2(K8=f0scE&<;HfmPq3@}Tfi_Q#yidi9PCZ8mF^SrM*-$K;bhi8uMQQ>vo zD&fI1Aq6{s=Oxmo#`AMRY7hE_qOj&$ujLZ82hZowc0UJ~fD;BjnPWNaiHtE9*HN#O6724ndV?#2+~tx$BL>aM>-P$<+bq=@i{-H=q5a~HXirb575fxlMVN~Wry z;@mZ(SOW%?|LQJXMdG!vLZ=F#l^V`(L<8=;KyPPr8vL3K4T8>;FuyOuux$2|?WYew zOeK5fD?Nwp1MRJgwLS0t^85Uo|HdLLy{(HuaQte52??w|L`#7sC$Okp~l}AE-I23ltCV)O+nb_#)}52fq`a1wBzbeIjOklLqb+X7}St;Eeh6%;kt=v|QDSLJSU~l>d@U0o(FHDvC5d52OLSWxtO_J7wYS4)9 zgqghnnsdnwSNZ38@V8gvLxVW10v4_c9aGheS_UU_vBM%RQNk~?i|RAR+U7n4p&uux z)xoo`uO?rf9O9<3CUGPCg7WXG<~LMHts-`A%ZnWNzSM)Il=`W$>|ReCn2qVdep0Tn z$W4J$K+<`}h7@WVfQ>#=xqMtQnH>aJwr~1iL+)TdPBu&7pCKxeCi*|_+@G^x5iP9& z5QtRnb12(jm+(fI9+{9_?7umc@tqk_DQvw*^KISTuL&r6%n6`~t%08!l#!}$xWix5 zK;)v+U-Sl5Fd(ryCz8Ty&TG@wP(B4nj!{#D(NdJ!ZGok41(hnX3nI->ntE@DnVO~) zQx+@978P@k!ud*0zlxMXDY_p}NXeM}fq&fQ21D1zL=SK53>w>896qxY0now;!&3aa z7_O$d)^9;59HOk01yZKZ)c=Ma&P~OagHzB9_Klu&&rZBK8{3#n!EWB5H?w|bpKB$x zqV+&ae%iIQpk-7p@z*M07)MaoPvy`lhcl89F@?@Bg%;LEA0or8&a zD@DTh2eo#tO-Z$k5qYBLgxV~&+RA7;=V*5SCX;Q)12%UY(Ij0=QM`lD75T_Naz*iO zT7HNBF92acp1;ur{tnH|=Cftne=J7>N}*3_(_NYh(dooWcn4aR&oifY!UTJP- z#dT&xeI{r|4{Fw@MXAsq1;7J%qs_^Zmn~15l!WPsCEh^NcJ+t*AV*jhQM@ciASDU} zfDMGyNg2MTLGVjgAj~tkyeychN|4M@f1(t z--(>fK0VutS`AK!l|!We8mdXafMi&quvy4dCRK%rnuT9y%;)Q9rhSSResYq2?q|nY zQpE-6fZih|*<%H4L`(4?SJI@lNtiUMQ*`;5Je>*=InY@kkX+qj8wJYsOhy36M-ruE z7PXTBKtyUGSpIF^x1EzqnB2R~pVKYdoLm#0xgl@5RB{QViKK-BydS&FR@Z?LWMmkw zfS^JYqRs4FWPHZcSm~A8RhG8UmU5}9v1&tssW%EwygY|Scn-~_>DbufoUmksyy-YT zCe1BIoqor}3?Vt?=_>XIh$-j+Kqotm2}%&EPZ{dZd6-LB3{)_xo;qskP2e@PVNY2M z(NzcaU~1}UDyO3V&Znl%bO;8Vj%q)Zst<}uPf;c>tz3KcCk?jhc)hCa#Hy?UEZhaw z$SvaE?W#aXz;g&oaxD&nI@O-YEwn4Jy9`~>Pi06J03Nqxs#eue%R=8ifA^&s6m zah)0}%7vlRPC$h+?wS1kR(A^P>-p54A~y-VO?3uP2+g0iQdG%$&te>AygdXpMuea z*$ZmPMv2A$CgY*Rs(99!zyJ)iqS?s`6OQhH1QLt&pbruSfn?akm7sr;#@2G}u@G$S zfbD*Y?PS6Z-}N1oaN?QPOz)Q6_koEJPKbNbZBV#R-PY6+k`LZuc((bI;?$F>aXgbvJK4NK5r4E(d%E)U&T;R`YR)cbg#x8~k&aH!rqug>1y+N29 zamD`4i$NR^q@2&-;77nfh>K(jfbgbOT^Q{Rz*gCd|E*LG8xyUQI>W9YF!G@(Hle5U^58MhwKj>;}mJN2Ls@5&~m}0y|Q~H3tNz zuLP?NK}v@O%S-ZRu!~J#8h0?aesJ}Mut|_G;~EaksjwokaPvayNx(47%J7WRu;Q4? z+XfZg=rDlrumB8VBXbrIJE$Gv3Il~mynYiCOmn(^=g|s!#>qUYBKzVzz}AGrB}xE^aeZ+8YWkU7F$Z91=>wFY>G1CZyVzn(sLi#k2E|v5jS}Hb#PHg4gmSyQqXo+?! ze>{v%;|Dftg);K8A5)sp=?C6I9bQ04o^*x4L?}#TR+fZytRJBHP|>P`4qKH!dr>bTY3ntiv}(N{PncbS!#_FdK7jOnwYtf zVVxni7BvN@Jod6hHUh|ojl`*CJ1}OiP1)d#1*e5ykP>K5j%XX=W0ZDfHci`a6#T|F%fY$b$H4Vo-_#l zQHukt-PCihS^#DxUCDd|C@TmC{*V<6)rz@Bk0w)4sv~)D}qynx&2r z!i~T!h9RSgJ*#G}u%};G%`JUhec+7s2+@fY6t7H@DhoKZRP|93l$aM*mnTaSd$ss! zOO*HXbKt5FA=h#5TXbxWTQw$e#|sht4g{``TH;^gvXmiuXwt`2-RgdPoJ43uj|8-V)W^yif=1md%DVEO+cGbzlXk^U?90;D1k&mt!e` zvxX3ixvXn(CcQ3ch=)LUqb$Yt0w?AH2nQomFI6li8oEnqnMaem^@xr{sH_u?i*uw( zis07Ch{rUJb`x@kDDNO|8bt>Z0idEOD!INyqU$1XA=+#jAyFs)C-tN-(>uSTrTx|rXUt&c`JdbX?`M@iMv86odkOn}RA;Lm!8 z=nA=@!83_s7Xjedo^4gOOVxIWH|!y=u(HR)KPOGFFg81ya&nQxs9B{q3Y-H@`|@RK zE$_B79&=k+f0vB&z}Nipn!=U|DqL~N_IKD^tOn@sF{bj@@QSy+jb9|xDxIG@y3`TpR@~(>(~rYUW70YQpEl>_rrxULzK&z3NfTyl;=b)& z;Oi=!2(L{pjd>bhSG*i{73~OgeJIkv+SP}?3XOh&mp*_8c-}1yKok%dfFQvN2LlW& zSWuuq3lA#{7$AURMF9aUX0+JwfJBKD7c3w^Amjo8BLy5dz)@gGiYglx@Hk*(Lz*T` zjMN#RK?8~-4H!Ux00M-OLx%!AiXdo6ok*8bY-+Oq;?M+12@DOo6sS-HItc5T~2V&>Luvok@^t$~kj zm{6bs1)(J>Bp&mjg@X|%QheZXI!yx6OHzHw8E#0xAWf>=KD6ZmtBEr^y)MzMfs!L6 ztHc_#ECmW+@xv`kH*8SxYZ35hD2b2~3#YTXQt2%K(ZWhU1hxZjq@vV&3PJ(yf(k#d zwi?SU{svSmu;>I3D1ii2I?*`G1X2mGnOGG6s3)9O6u_~@atna4-iSMl$J2%jPRJpN zEON-#Y)ewf+jeU*$c270vb86TI}S<_Ju@)@fexy&pa-f0^MQgkI{>qd3eX6ypE8?Z z0yS-nZl;hVI#DN;LKMhTGP zu`h~Pds50{kxdpjB$sS@V})xtW>N^ zGu3dxuDU8ofKWB$5Uo;A4J*}(Rwc330k%z!H|q#!fL1W$Tug#o8`!mh1$-TVF$vPF z$fKBh7T|&5j9sW`YmrV`S!SJWnl@;o)oohilvXWD&|D<#pcA@?S>6td&3R~9!gcTG90*~r344CKvF#{O8`aH zQ*M0}B|MMuM0Kgis_EomtA8G0}tbRzM)YB~@#|@6Fo_E$|SA_~U?6Ishs7YjPQ#Ac%i>ISYLZM!=ES z2Z3u+55m-wxPi5$VF3(LW?&?p_#D7EF0#mpdJ+@HfUp5F%GFHPL%IyMswAO_(Qc9# zLm8?@c*JX(@s6jQ8KP!+qj{e0y4IZM9K=NfiI3m512#)D3wlZYVYHxv>;AQ#M_ z-3CxN4^41;W(twyI<`fUh-8d#ixgX^SO5gtkAi`-T!RV}py*6xK4wWRm8)5-|$h=i1 z0AURYT}G^vnFQ35QR~6w0(2=jl=u>E!URw;9cRwQ84P1#k>D7eDHgfSRGI?}-KI`* zO$4Y!n>+QN!MdsczL9`4VR*q$1U+ZY;wXTc?PRAq{qjx_#*?D_98OQ_sU|WJOP|Dw z(T;kzP_ZISpaZ?lLD4!UTm8_V|J=?23WAX4Xv<0g=vqUz)R#x5Gi%gLqILdrvJ*+f zO@~XIi>gWyI|;;degIjUAZP5(s{>ichm_wBL%wl)^k0e z3yF0ZyS)nk36N7;LEttA^tee`>VNwirubMEFwBH#Sm884WfqJ8zD=d2YH<+f5Qw?d zDiZ;2niqfs<}l9GXjt0){mebkg7O5J{m=QA;kJ`CD{`W#g9VVOo1|p=$*#LBAik&lxXAQS;J# zs1AIVLG!cF7Uedg;}k9oCZ^E^IAK3o2d)!!FC*(BOle?sWKGXIH9qDv06hKa>XOFN z);e0T3Q#NTVhUcm! ziF1r0VeEl7#M=W01t)M@P^1uOpF3td&11Bq<~&66jPcD+IvD`zbj!URHBx24?3r#~ zEFx&GE;oM>kLN+x&Nm3)k|YO!P*1h^t2~IjI;}8v?C{?^r_|76RUvl${BVYN!U~YgDHDxJgWYDAza^{I) z^VeeRxPRWvrbua#!yDq}p?u^cY-waBL^p1)`zJFMMhC?_@ky@Y_A^Vzs8?{s`t4Vv z^&fM+>j_|PXR2lOq*V#{JZjE)!8=3byQ%e0FV)JU>8$MtEQrluF>=^?kzXAJH@?9zBx2XwCUW71e zWF~A2>OAOO$W26Sq9Pa$G>$7ZL`~jsuL5;Xx_Gba`0Yo8Pid~KcT^%YN^Ri(HZWUQ zEMLZmA|8U3!UqA|4VWmR1@I;B6sxLksb?f30r-Nm$SAb}pe)+MPs9xKy25YDg5rXL zYhEtuDvXR?-~~L!nB0TsC}0Uk4)Kx#Sk&#^ z6iNV~?n&NlH9D{YvF-xRDg*Vc1dWCQrKDDPN4c8E_K0HyPo&_Md9XKZ3#t4F(AnZ}IHNXZnlUo-hhMan7nR z6$OlOP)-XshuW6H3qcM-TqP!i?<$3~TEQhec&xNVj&YpD5xDl_L)SOM|u!kq)J? zAnb6U@bJ@^%f@ufcl;1ImdZ=6r+Or+x1x=i{N_yh$A6@0ips4#B%&xJgE5Q)0*DHY zSY!wDOHuYBGmHvQ{85ZP;?LmbZwybs+`{w3qL}(`JqB|9a8Aue!UH^@m^diQIwEC6 zk= zGu{ybyaSLlCWCzBz%q+-{sNkmZRfSPUqXogn*BqCSng+!Dq>ZA_r zTyoxE(uQPG$V9_STJpJWa;}D>C?LQysHp@ia6 za{*$J*do#cGHidW&72U_V!VPP?oT6ZWh`$ecUA_{RDv=8qQsI4V0F~1Q1r4Ai3L1+ zhdQnEMF|2shetcTvqrx&SfJ_l9O7%3$4$ECM9kAF14cbZ0uT*r+eQLDO%4a6k3O-( zd}sncFRVj~!cF}1{NRX!EbA(3?IfNEvi__?ED<~!)GM$eEu}Ee`pjegtd0^VLrHJT zz~f##w4ZDuL>r?pzE2=bRA?UHeo~Z`;si${X+`&td0^B6?`=tF)JAPoG>{Q6ovXVn zz(36+5zcVpmlUeb#%DMbL#YD1OSjC4g!PHvAy7e;`Rljq76^!D=WaFO4bi> zyrL*tRgdap7yko{KJWT0aX)^lKws02MzNSwGn_mIE?@vwTS`>&%OYMSGgRngFtVK} zLIRBAAta*Z7_cGWb6UBk0Cr}nRPkhxYbJP-4f$|e7phyE=3B!xXL*HOYZ9P3P~8&1 z5EtU%FiI_Gkj9Esx154Spo}-Lg)u^;;T}YR_=j?A@j4uga0JvV*-M#LF)YT*wJP(p z4lHt}En(y?ix8#1LI9(Y{0=U9qAO1J7R6N1yb^voq*jngEWl_sIVWx_u8Sg0 zaOI?Vv*mfPCIrPX;KJnW2q{+xLV5~!xg-^F>u^z(1ZNo+Tpia?N9ky~Mslxb*N`!J z{U|Xqw^~gQ;@a$UosK`CN%=4%F}CkBQg;HLVtHMcAz@cTWOvyrqjmx2b|WQsJ!E&A z@+5jULW4DUVP<#%)L=3fdEtUT@-Bn_uocT@ECF+abZX^#X-0clGCH)eI=z<;6}MT$ zcYJB4e8p2)y4N%Y?k0Uv)gIzM{)pn9=pks(+w!9_U&!e=k~4PjD#YSTd&Yvq!Zt~F z6l+xq>8In~#$fk`g3-b>ORGa{v!y6!e){VQrvh%^3ndnbNe%EVUu8$UEiWs>?C2P8 zT~D5{_et8Vw_NyzxfOhqWQJ*YXTj64ZunSo_*%N=p_D`6HUpA!a1x!u7#%RLFlg6U zMS7OhHupj^uQ;4)a4;+aNyAJE9oCM}Xbad;LXyyd9S4{G%XA1QqmZ)+8S<_;eQ46^_Pb0ZB4R9w{ zXafIfne#&{v-^XP|yMk{fY&o9{Pg`TR7UFA4Z#&mYZGr*)zFCtnKAX@vlB_H>XtNFRE zIefFZhE0Q;QzJ^o4r#pklmb8nWSZdmig~#sBV75(Jae5Z!biYt0O7fFlMjrZ@BU+uXrAlfm-YjBg z$eMaJI*&<6P~&ob%Q=z%MS7&is-y?`q_KB2C?bv%Q#yO6rGF<%WLgCT;5jbwFa8SW zN`gd$l(C!?U*K^7R;PXX$&c`(s&~O?R&BV@D_8Q=grxTcvxq(0&8`DkkZXgG3z; zAMel5aevxFf7n}bSZYJ4$)7t49X(>an3f#TdSm<=GG2vGTY$EdZ%ckf0&H!#7lP8J z8M$9lxtCk74H-xOUv`m`X1bqa;8IPB2A~4w6iN?HGhQn*`tFJ55dvUoV_d)mIKaB-wq^1w(J2YQOiMpJ3Cr{AnPU}+}KIlI^j zR>tc@cw60cLreyOtob^Yq8r1n4zFz^2+Xt1-Tci>!!OM@)6SJNd}Ob|lY7!9^JXfl zin^qzSGNdUz@jXnBls+i`v-?Y(UBZHFmglg_owJ1p8*CIRnv+k(()!xB6YFn>Zn4X zQb_F!N>O4*3cOBn=j_}Ju99P0UMNS3W)7pduF;&{)O@+$JlEYk&QBuI#|qWdT*~x9O8^~A1iebmqR_W`a}Ygke!M@fJ(v6%(zh&pCViSWon826L5&cafA zmmuwEw9qke^lx(}1%dR(J|wb^EL|vc)0SberBL-=_6D0M%V3{73^~JemI^Ys2ii9( zT2QR0w}hh;*hU8aWDBCP51u#>-nnjl;Tt~JO{4v^O01-3HK;p0x#y;#FFJ%u-)oOk zIpakCJnX}o7h5zj{eWj7_#PCTw^!~KS4+6 zX?wvp$fpy_PhI6dD!L(hV#^hy7jxqcL4)99Y0*eyg||L&6@E5?U}s$a^Rz=iCh1B5ZKd2HC6wn`{&NOvK?JVdNn{i^#LM)z<~q{8aybF0f2=J8#;UlF=7x26f0W1SP|jC0Rs*kK!AXNNR1@_ zOPbVJA!W*fDg#(}S>j51CXOmjS4ktfSF3?a#moqfYPc30tBu4w6wsvQ$q(0 zaQ7!g(;QFQzKuJ#?%lk5Yg8C9xNwOWi(f2h^W$OyzMC6VxsqVZmlg(2-kSWt0Iyk} zo|deAfKjAM6$ohh)G}4^p$lLoAQW?fu7tmaB`|h70kiPef>k>JTyDVy)?9V}4R9A@ zdlAr=a)22HS!6UBh5%xUE!W>njv)|Xeb))#)l8Sslo?H03DDUCpM^FWdx4$yQ)&VH z#99Kb6%|_nvjx?_Yg^6aT#!NzNhEK;4Tt1#6B);3Nl0n90Apws*;`Atc@!f}9&Oao zmPDQS9f(q1Wn*SC36LcO5O9PPfnjynRF)$BcVA5>4mJ~=kJ;xHSTliiCRxd4)!mN* z#3!Z!AdyvHn{|qLrbuTl@MmJ&)#sH*ZrS-0XhxxRT2)HDNUBi^kS4)hIlefTRTBI( zRRRXx<>QaFQHg7=y7qQtlD=<@{cTDUMNrduO$9WUCsHi{Qa5=V=Ful69c@pcP4#q{Q7dpS)mE#Sb)}20)wSAjDZiM2 z=azl;0%;qJaB^NzC*U&)9@R~TSEX&^i<^h0RWoS}`N$OA zmC;nHrg|65oops4<6P@J*D=>AaDfFOUFnc?I@C$vBw@1Cltc%U@)V>-vHKEDXlFZ_ zgo-xPI>5-Xb(8lr4n`eI*J3yV5~_*hYFpXUq5ku{afyilu}TyU<6?jfZHi8E!j#q$ zGp-gWu|?YfTZhcow)^-6J=KyFWoUvF^3X4YQ8}DdUc!<8dUa|kOhfi*M22>uAjKnfC&w=vYvFjyT862y%NnO1UYWHgo` z5GrRBg;*~7fiC+{FUsk}<0=G2(=m75Ynquw+puxB@KjO>f3nA*2 zovEpvlY%7yJ~XNotRQ~XTBX@chOq)rraT!dTE?o<%?XmsV%sDL>&A&xa+>p3=v1dV z*?BFc!7QG)nWqZsxs@%wb09<|T<5By#eAa0c|XZw09-gVycusf0Z2>$U;qQ8(CStc z9SGyZ)FJ2XDXLjR%JTA}F0hF$K?CDc4&9=r8j=!WA;PPD41l`{2$PCh(Uo(l4{54X2MN`z;sjY#wT)G=YEOy9WJ^RHO7B8d z)}$!lvSckl78QWju;48-c6}P^^k^ep79B1JLXwf)$%8z-^2dlxr6~(S>4<*f7W#ngT>g>Jbp?Dc zUJhta-eSKhT25P~J>A(nHh=LdV$J~tYbGczNZ>Yo7IckK%56&8rDf_+h)bvv~ z8snD`cI0`9Bxx5lKqQ+;r?R!BJZ|a#XpF@KH-NciD$O;43DPSiu&B?s2MB3gkOH?~ zmaS4^xzvxSh+_PBQZn?jU{TKG5uUcE%04Yksg$J@ip*tIV(zs#$y{b5q-@y4F7|F} zRW0At_BL=HtwvhPlgU^SCnFRq)ku>#%2wq}`>dVy-Xj4MrSza0wdJ^OVo{wCw3O5B znv4s37r4MsY=-elb2Z)RvL$*`7}`@)R0@Ggn(w8Bdmm{aBr(^NQ32QHb$dK!>yD{v z;=Zmp1A&cTVHbPj!w%9`Z?o)NL3<>G(=d=mIGNe{mntKI--jh9lrhdbR{1HS6TSUt zr7;S_122rC`=gk3b2Hrt8*1a$ zP7_Q^Pp)?Q5JeUU-lr}yAaub(FAwb4q zFG59y=SrKGa=0`ADT8O>fjHVS7qX^*5ElUa=Xx8{0RLAJ3BW&NM@J{ub_b}11CfAy zw15n_IlK{0513RD*d+tU9C#*Q7I=ZN5`!jGCYLoCAn`EfM?fJ60oyl2f&9isNKfSGYsDcv)=7 zO-)lK9x-CZXB41BjF?6v<3cC|u#63rJkQ8Wf|VH4hyc~-WI~aR2=E}>_)^|zjNo`( zM&wvUcSUZ2j>9N1DOUhc78>=#ke|XH@i>oJSdZ=DW%x*x2v}yr!H@pvkIi9*rkbiWUoPpZ&6=L6H5sYA;H8ZjPV#}F%tQ;C)%iaO$TJB zR6WY50AOKhAQg$?(>;(PXkob(LUqpP6IbI&c2gB5gCcsCOr3FSr4e%d7j_Nc zF+*9Dm-!n0+EWa8$%(GJ#}OXD7;Z6EyMwE#fj7 z^f{6#fR1N7I9zh} z8gAq=lBp4)VTIp0kl`twnt4v;*^fiwYIrA37uKHa`6Ww3npAl!@%b?vF`ocsOHFg1 zBM}w)*^EYnD5aDb6?z&1ssJihpoMjyeVCyAh5&vcJ^&Izz%+-XB%xh0BI#jB0+69c zH~<_PE16?~CIgE4=Vk{d8>T2LYIdS1T43WzGe!U%d8((e;~R-1lk15`WY`n!>6GmW zPC2S3EHZ2n6N@B9KLn66G~t(Av!Cika@;gghGlAi_>pxp7n;ar;}u1UF(QgWpvr~+ zoK5FLm6CYqb1(x#m`{Oj4U!qkVkbmZrih7}9C4kq)~4(cRQ^Q}B}%8PXs1lIr^(8v z&5^12Szv>DqmncbZYB^6qmz08G8&UrsiuuR2PA~FN$=56numsqNfSnf0DmMtjv_GF z$gVt8S>aJ`W9gAzb18r3T#Er2wZflPq$WfN9*pvds>(v7r$IP%m9fVg#9FMasG<>p zr^=eFaEBd2QHEMIr!Awf)w*A>GHa(%N!0Ql%t19sp(g(^t|U9I@!=JB6)RgLM5@+k z3m`a*2(RBV8A5gw$?+c213dyWZ(2eTcOoTTksRmshxn?2()4mH6mj`9ts6W45dGD# zRl7$I+gcJku~dRgV5UbiiW_ftMgtH$vSKk>R$?bYh*xN`5P-4-g^UA(j1j`0)^$tw z(qRqaV+b-{-3NHObUW%20D5AQs{=Re^&^@h6wl{d1$0V`@)H>fDz(9Slf;C*LA6$^ zxyR}&5v#R%iYr|^VB!R}2T@yMOB-dIe;+dyX}d}I2_+{xHE=5s3`G`Y*|Lv%w{a0F zgrT<-U>AMsZS#h2^U|P%yEBJdA2$ac86u`M2_7jUuSIKPlDjRWah=U{mD;Ns)LIak z>%E$bkDQw%p8L7W>Ks4jB`QaDvL-tk`;cMCO^Ny`WilAYw;AGt09ix-LlF`~gfjrhIKmov^pR*#qI%~HP zzT#`FSle3Ep~5T7!n!h=rE789$+T$EG{6{8`BZgk@*sI3CIHHxc48?hgFW>z5HcVG zg|b6np%fM(u>UtkHY61z`=6=0D6M2LeX}mZOSBobFbA+wLpT8x@x^LVNoR#MlY}_5 zfm7ZYwIUp0CJe^`K)y&~1T1XFE37L)L2y}-E8sb{QfZ=S(Ufu9AEEKZU`&`aHIKCw z6sG!&X0@EYrvLy${&PIj07!6_3;z9@INQ~(@AO+z! zmSzHwaZf<9eJH!i{6YYh_PTOgUm_7tREcjtQcVp)ttd&3;};sG_9A5r@=(I z$dD#6%(zUay1bdae8lqZR9DD`cCYYU0j3X~;NgjW%7G za>m9^iO(ji&*#L?b__Eq$G*Pim2Su-mU%TVx0NiS0FyEQUn8QVwLudr@QjotA=pS4 zT)LR;^o<^UJ_sii6W0I;;D&HPSS5`^+KeZLa?-RR5-|`10tYz(TNQ^)%%vweZpOxc zjI9jU(^mV_5m5wIW!Q&}*gm5fWOvlGJhnUSWMU*rQ#Q7nG_`jT05T;Z4Hc%N>n@E6 zJ)NxpmUDG`qS8j&6N~XZ*<3}RwmN`wEnRsnUz{Z`VB6EA5q9%IIc3Wki@JeLl!FZs zg^k$7ZP*G_!g*9%&RP=oXvSDWzwyyJ%uSrm^Fa(n5Lq;x*C;VhJ-zUO6iQ@8&h>IT zqbeQMUzGJH|E#LL3B@`@*Uqb()Dj+K$b=>n%g+S=q7!B^$qn3_i^2{;+{SI($St+v zwA`24+y`#PJ!6X(LOXFAPTK9z5VLT079N0;7c?u9-*XpcMTRqo75J8JkbFe%Z5qbJ z6r0l&hg=(fM2YgNu@RRdCEVW({@(x|;0!U~1fJNg)P9LOx z*N01fsA^BQWRdMIU!vjPLeeiM5+9B>B(miVAmVWWI4S)k_J%}JF##u{-NokOXaVDc zsboa+gf)JZ8NkC30dJ|tVu7O>e2J4NXpSWngoR4N{gWr={k2u8HTNqi#%=2 z@qR7m=#Jy+9-i#Z(vd2yx=o8@qFz^8nj-+-z ze7i|GvK197F%ECmvT}|Q4~WiX(i~O)@oC;Vu(l=jay8r3juF>0`)%Z@7xE&%?mJ%c zColGSl&STDM=T%mBE0dkLoH3la|Z#;$9@`lp-9Xvkl7Oy942V(ltl@kL@n@gY@;bv zegK-hv#zSXJM$kyaff#Z)eqL~Y5tRSF2l-VIc{{+UXRNpzYy*&_9vf5+Xi88tVhG# z9xcB1chw>Tk3a|UK{93%b}z6*yEBeNeww$d4P4g6X+>^0f{K1&4f7+J7`(1_BemhZ zpOd-euK97y`2gVgpD*vBe})q{PT*NURvBU2hnsTV?^lT0`oTHz6l>g#+LKnHHP#=N z#u3u&Um$JlOEcb3%4t_5f9JLTQqhZtL6K&}SE~sP5EB9nBv{bkL4pMoB4pUm;X{ZK zB~GMR(c(pn4;cX9*wN!hkRe4DSy9sDNt7ltt~5BnB|(=0WU{1*al*}k33MWK*)xCw zpbQBNMJQ810HXnh65t6`0l@e+#32dEwxb?QsFS7l~x+x2VD12V;;HtTzUS_3c# zw0$d}?c4)(A>191ce?cd0DMOX@c9?*0KuRK`lMLcq5071)vsrN@Udk0l8a!bf4Tib z&vLnYy^kNP#nX1Wini8fI_Nju2wG~P@4UJVG^?B=;4=yZSYUyfE))wonVceODFVc5 zAbNS<6;z&jtIY_Opr2{O?jprWc0A=q|YPQ{~qLhmbroDu*inVKu^!ljIwF(#cv zEI_QYKok*ysJ@HpLawZea445R?5xEWT^g;RFDU}@0V^YwbW)0vT=G%?nskyrN(s7f zfuDj(s#AutRA|fpf-cnUKQLKqC@HF(Bd{PgS3IjZKwZRZPMJ(pK%or{3;@Pqv+}aK z1G3_5CJsA`Q$|FM;!nRuFPfFq`>w^-N=q?SQqxWC+jbz;MjiJ&1`X0}KOHkNcc7}Y z*y7d-5aKp`P zTbIfemg0l5{BGSUh0W7Aq+VkRURi@;^repJU0^9>ukupgF~#!N#1k1ZI4Xe&=!swf zj6FDIc6(ZQ+ThsT(a|6$2Dv7uq@FrGi!Y9>h#9)}`fISg9=9i#6H1pot1H?Ss0&Lz zDmFrCj`b-25LZ4BX1w=Rc7S?oB}&eiO%yADEk!g40k!`6O169@gbuLUTuT~FhN>;d zyhmGd_-dBY<~+2lwH_&K(!q}S+QQmZ&+~u%8}K%VJVVfAS2dr_tF~uT;918L)F~>% zMI78G!(sakG(>r2cJdktN_c>}ET2f^msS7#dh7=ZU34Z(_kM=#zZjb88w&j-WIr1O4*f*5Ea1oCG3nff}Hb&Riz#JP>wuYAP_S(#ISwNh!uE%LLg9>v(e;< z4~wFlq@n;C{l{EfqzHi?gfwUkN@$H!p#Zj&lxvaCUM_N#WkX1bN^EA6AgW{_D`WZ1SB4Kr1-Q`!mUunMc_$)+%wSN^^qbsK^C(*X zJc|BWWj8m1(1y}97dy52Pi=COd)@>mIK|n=axO8Dlc1TAPR5m=b$4WKYaq?pPs)TKT}1epGjS5!=3 z0%bz$D(6!tLONQzqN>j)pMoS9kyljg6v>|`r7A>Jsx_9jG@J*t0ME9xM~by5LQ~yo zFsDMGUXdj?&r{W!aGIDhvazWR5}cz6E)mA1DkcJt^IZsze-5l~M z5$Rte5jj!3JqTI5`k?!g%GkO^sf@@v<8KUd&Ao;eWPSCP4|H%^)TUOos1>dMq=3Rj zXnF21$15e$p60Z$Fmobx!>8^1G$$%Ww6(*X8fh_Q+SMjEwQ|H@K9A(c-H|D_Wm6Ar z$(EpF0x-8D+U`Smt1k56?O2M-D{=2;J@abDxR*k%a+S;6(ttNXL?Tek5J|JkYW6U~ ztP%ZEM$eJz$etHjAzgDM-1JJsC$dfOMb^8d_PTeqCsihb+mpNT<`kmntw|-9w^kZH z6fsqrDrg&QRO+4>F%MQ!geAP(f7;9~1{hjdLsKiKO!R#zCU6c}<}n$IH+gX7U=}ru z5EDzPyo`yXifh8+__+ARrv>O|c*{uo77}+C+VNsn0?dCUD5G)BZ)1%A3{B20c`;3P zGE1NgA0Nm-&U2=7o#$NT{ajhP`dposd-5p@hsw+D>d>GG_q)o9GDl}7GI|-EJvA$a z&27%enElcKcBteK)7JH5(|wR-J%XSpiFk8jqZuVkk4VhX;yUx=-U$yUZZ7r_Haz61&psez#{gB%tkA8Kz`|WS_oLeO6 zR`;Dn%RcDbCuULgfSJLX-p1PAKef5rKz2{s9 zy4UmdMU7j;D_rC(uPK_hh5$J2vfFk<$bMKuC+6*NZw${t;&Zx_+~m_VWYY*4zuYA~ z+;Tw_Y@rov%`={Jj{gYcBQNrD=a}i)E}zT_T|-iNa9_sGJ4+5PdfZo9?mdq|?|uJ! z;QPMZ3R(3b5z<`EY4Ca5YSFiU6G}d>%p4ltP!FLg?W^>1vC%+mhTPe5yFb^VB#DHVOFm%K*6vfLafULkoR%FG-iWmQ_bj6_{AuBmGr!&9Mx)vXqMPuB>^|-}cd_rbqnO~#;f$=n2vA~vN zxnrsh8EZqTLdHalM)q*VXN#tN=70$uTT5lE%@ZEEGq3B*${hLwnqx zXZZ?`nZ1lM62YszeJn_Zz{hel$Pg- zAuQX9IQyb211q$Y@w|p8Bfzl9@Ciwv92cK-#Hefxym=kO@;n1*ML_(Sm;=JaSeD%3 zunnuqf0{}>G)v7$w1jCB1Go^i;7a7sin@Wynrob~)Vpw0%i`LDH3k0YyhXIkbIEZ?YJmdluP4KB$oAf#p(>L>4d`X^gGupOasWy#57I=;LbF$ zKZ4}Nbg4K61Pt#S&#DSfXtYlwp~Sg_5yRxNYh<<|kx#i=JN?X_TO?(R;2pa~uzxCIXo zoP;1D0U~qwo_k;JtvYr7f!}`FwI8~7RabRa_3G8@bMlwy!Cih3mvzw95A^aw11|LB z1G@Y`FF&};(BJzH=<^xhE~^0#F!O)tvI&4@1s>>S z0E3qY6W|cU!4+f|VgsmzsDvmV8VUhyg0!@>|NZ2Dp8pwv|Jw-spWS5u1jZF~mhwTA zk0mf*uu}zHFsfj}acT%{OPsRJCI;vK>n}f~)-+D@c!dB8`YTRa%XLEg}zWJ6W-I1!(7(J-Evs-+rGh z)5IX~mh5OTd>=>3m0Z(SxtYt*58WBR9EyJQnA@Z3AiYfbBIxu`%cl1G?rr3U&$F_2epi%@*y#atz9MU& ztWn5t(4txOI^q$uA`KC+>; zLJtD7B1#-*ImUOK3zewCQ@~oT^A;4=In<7azH#tG@mgkt21F6Yl3-|DONnG%h_#O& zHalT4)_#7p2iELSrFVoW{~GjPG;`Kh2I03@YRNk>FS=n$tyrbk%W<$^Zn6BZ1J=ne z4oc(jqnxsOy(TKdkjj$~4?EbnS&q=?;XoB{T>y!u7tsJL727P1)G=V?XSF6nc#C@p zjtCkSo)E3>eiok~$eB}~^6&XsGnQUFlap@@^IR42lK8PAj~%DW%X2k`h&N!|ymW*E zxc*yM_vyM}vz7Pn`j#xH1`}$Qv7Wmf$};yAm=x)3@LJIK_@=%VU;os1E7;@l1LpaX zUA2hbb<0@LjCHY3cF+-#E|ELQo7pxb+B(X_!LR!c{9@DK{XfQ0k7oMsD&B*b3GQ1U z7%DF_x^9r*thv>VGG84g`_XqoN(0kxT=_3zcutYhOL$(IQmhW3SrY-w_|<=sgL%)C z9H%(@JDaEHynB4o3HS?stSW-Gj^|xzv^u?TNK+dVoVwX>yc9)qIoAr3YxS!so6-G0 zXAuO2KX<~Io*zw8CY}5Q`||ONdHMH0srD4TDG>V{Vq+1w8y?GjyW{$F`_rx$r&`wY zkZ%QZLxR%JKW(wZcDpr>$Io=H^+yzSep7H$seVqW6$^`yXRMNxgBI82Ih@ZNifLmp zc(8Xmpv<_wuRlNke$+#mB(0Or$&mh?7xeT3wCwwH@1@fA(!!@uNt?jN8UtD9(inPl zfA;#z-x!Yo!V&<7YT)k)bBIm7Q95k}^}>ZSJ%&$AhM<}pQkHkV0%pSV6y3N(Pbfw-_hA6TRv<)rno!0)W9QYlsfes3)TC>} z2%lALLfssNdci!~K;gqG=XaF~cC*qn9rO-4r?QZB=fY1I=6Q+5sZ2D6v>!!4l=Phi= zinm(LEzSNfWJpYDawJ)%^-EtWjE(J|%WKTsLjfzWrW>&k`;}#!KqC@O<>~I0znNIZ zO90`M!7F*b^k-i})@`i5=G<#}nBgV$7ybzmVdGx~F27GDIwk5H3;y)!Gh>u%g~86W&f>P_GIciwnZDUC_GjPW^f5{p1~?oAIBCd{kaLYL&o1U9L@k zT6(0?k+9q#R(??nRa@q1b7FTO8@W7bJW@ZP&+&1(rW?Iq(!su+&}iT)5UqIO>Uf@ue{w-8&HZ< z4Nt^7$S)e^ zYVdsiX;{6~6&Z&$G`B@-jTDtPV8URJb;+gVSqy#gYXm!dG0paNH@+)F>T9NVY-NH3 zmwIL!7MHhX;gsVYbs8Wm553xVdGc=vHLeD4O?zL@=QpT`=6?R#*Z9FcVgF3P_%cC| ze>lGgh`v)(_wuXVX33vuU6~RlZBLy~BxC%#GoPB=UIFjtQxD|?q43&_EZfb#tR^&X z=~e81g$Xn*xGlv|Tpdz{lBww2FQ-v_a>)4OjNx`aNH9m*{#!aURFJBu?B)Ue-|dKxTxX%GjEKc-7I^KI~T~(5TO+qdCR(@5>XR!$~{re0ihD z>+a(}mf~~%HA~Pu@5L68eJg9iJe<(yOL<>I@+-{oF8cgv3Z$1)7AF=weX2f z@Af(zr|;n`m#R9LpkG9>?A>;rKJjWu|J>(gX~5q@`-)N`WLaUY5RVHLeUo7d5OOt6 zzX)qR;^{tazWZ4@vh`#27YfVSL>?>9;NCQ%79HxwM{`Y#f7!QbQ7}iE{{H$Zg%4i_ z7lF!Rkgx(Es<0@=xAqbpj^UC{apoepH4w!`wF)u1j6r5u?UBJ37J+5@nf}$dmUc<@ z1>*v9zM$@xMYCWz+4yCBOO`NwW8{)PPtp$gG2TP|_VW|*Nm|WGT8~RA$Cbt$)kBsdg#!4*MvaK| zY#*VLW0^fWjv0v<+`Gg8m>ql|3+^@#Wi?e_gF-nLVKu(2=VE$-*De_bqZY)pf%(ZGAOKKUx<)WIOf~5`ts$Rotm^(6GD$n*TZwuL`(Rbue%W z@f%CQsZNeDbil-O#OB}`M7OaKoOlp(JSVA@BVBW+kjM}L7^kU}sqaW@vs{j&V=&VK zf3qc=nfhyY!XMcF1> z;K4_}5w^1)B#9i7nqm?WCV`uX0$i%D-fmH?BGNb!v1toFtdtoGRoO4`9K_2Bg!bqIyUh6sB#p#{om{Ka!jcc#31X{9?!mg7?W2tEe!Q4Kt6j0DBTs9c^ z$>kR|2oRok?MQ}JCed_tLG9&9XJohKCS8`&p-5N*)*hq8R27Dh+Ejs`?&5Dcq460x zHK6COv5Ya&C^{D7&@dO(TZhUhsm&IOLkD0M8P8Ao!##(@C#L!4S9;XNL`w z+%7|LIh`F?nOtALG5}kVR-|G$vG+PgaZ;20M3$2J`Z4rWJ`SeUuN2dBhp-06Vlns_ zNxE{YtMi_E+e8-TfSGu4DbJ0{%LB^eE6UB(_+?H*5$3PXMJjM~ncurr{EB6siVo7? zWI4bEr=v+}bnD`c%F7(^NlfA^lPgOV2P*U2F|1EHD8*kp*5&dS24&&kIQqA;=( z_pRHRV8&+1E)fx^Q&sp>N0oV>Zr)RCVNNTwAb8J8wk1|1_e}bQ5R{Y(WUQoqitBKS zT|XsKV2d5Cr^?Ea;eq{=ieHaCI~p0M28dtRgUX=%3=LeqBxN9xxAAnl_%IC?o@^F% zkq=ozD^R~~pvFP@v4|3^H-6o{D2p1{I&HLyr>PgHjQ6b~Eo~wdXQmv7_?98I51p*h zqLcz2vUWf1+XUX=8pF|-_RPZCa61ND(Pu>UYAErDIz!v($krMIT}Rb7zt!Hvi_|i` zq+#)BgS*qX2v&Mfk#KuZP?M^7NkDjMK(fDUYmo3^)kHGZmX^3Tzub-ZuOavx?Dq%!Yl03wUdh2(4 z0~E8oE1_R;+68*~1K_0Afey1!Axj}`grQK4LHyk7j>w~o?B5W!qwejE?gX@)OE5uQ zSVTV<&Xc84_pbU`q@fGdai^-j;wTg3?2Os+i@p+B^F}T$n;P&gpQ4V9bbzLC7+NC; z^{gXt5j&0Nzv`;O2Q#q0RgnO6IaRjfB-i8>F?~}jf}gGT_7lzbe||EAB_Om1oh$R+>33N7! zut-OnP&q1J2=mpKddVI}z^aBtaNZvaCazOF%ra=*5lH)(Il#}07`+ipO9GSxx#3VY zbHaJ_GX12L4s!NpYUS9Kn!!kWr-qzysVtRmnJLO2qa#WSLX*sLBuVDw2t+TWtK`B{ zO6g*jmH%;r(o|aDdcG1uWyTdb9=^b4cEd$kFz?c{D%@7dsmzRdDRoxl!yUaYN;dwq z;XgwPx*)zzlJE^5AZ`eo8&@O?UInFQ-Ayj$w)8 z)$x;?n8%xY7+ct^TQwvsDs+Wbmpu}9okJB{j)lNhD6d7P<`By^F=EcoW7~aq)v$Vd ze{g$pYWVw>q~lV^?2|-&ds6xPKt9IZeEH50N$IJacZ8Rb|L8OT-W^TrMGQ02ze%(- z#^Dn&@vw4$EA_xBL9#O zJKEdaDbti5FCc_X(_3OKT7CzPG$7bDW9vNJL}n`#*BLb*ORnW0$!TrTQjoM_4_)&~Eo^)w z7$Hjyq;DfDXdY*UoxCrk4AM^8zuV-a-H6tjouS)Dd7sKyf4k#|Z2DS-DFM%TOWr=C z?dR~IxzCMDW>*`q(`l4QaZadL<&;eHlF|r;hA@AeR#p$D47_}T%O_NqGiX`#P0!po za^YaBwdru<@hSZ$4exUd8JB>ptI=*q7}|?nR(9@LXPZAk2_doBN({OA1AW=ZD9l!{|bKpD=38=kS_>(#5Ei}x(ucHp}G0$ z33OqPQQz-$$cuU4*EK#r-20LN`fab(f?vbQZNZJ9q-_k7f3F_oQqxM30S@djg@YMF zgrS~AdT|Lf3F$%JF}&S+JwRdNZ(=~Yf)kWto!tR`60QF#BMkCl_SbmxFXLAKD3f1O zdLo-@qnP7#TcD2u<;bLF;QG&b2wE~+v+;FS70FLp*rhx5ycV1}*MKhWi1&rr-taS` z7L6ZYM>Ip|P#i11&b>3%UB8abW`^m~OG2NW zfl(~t$MOL?;X5Bx`!J0~ZmJyj#*vw^ca7`Wf7J z{I>aP9$)x^pn|JtH@ya;WDB}%mf;J6}T`V5UskfmplKd(M*%13gZ??no#bJQ|^ zm*SfBP?zQ@FZe3Gj+=w316#%GDd&A9#hp0G+vMwh^w*zY01K1(y!4Kl40mvJh`MBo zTEwxj49~w{P976&{$yZKLBoG;OiY2%mS1K`JUDv-t}>+ zWbs-OMG)$EFz{~?ep>)AVXrkuDM%}(Y{-v{0y?Q-=3L+nTz=bkcb;72g1h1Q*WEiZ zbsk*_eSRnJGOY1ySD2jo-9DXJUS*o+KV|)CT9~H3Vpg0Ry#mAt*G-uh9LV>S3SgZY z4z%}8FP2oJ=he^36R0w31a_f;>GpVsg+%rU^5_d|;X7LIwi)Q?ug*1Zx*Ji(qy8@8 z)w!wE(xvvyx7+V7hz2AZ)PMTvfFO>w;X}yZT4f0}+UFoXFqc`` z?6%dyly7%O#iOL-A_HGu6=lhsjkS`bIf? zXn~U^P*mo<@V{`Vg1VK#yfag+uixyyGhm-Q&}UxbXbYnI@puS-Yqv$Rck1_7CJtsW zsp|}={ddK9#Bs0*vMe>J3YKojn6@}Y7=WY5V4^72!<9J`Fe6XrTlXmk^WDCTHJCvQ zY7&k%xEXUjd_7>k4vw%;ssT)dY@YA@K$Q_8m{=O-?3%=Keph_ekdQ1QFbXJMa@6uJ z&YN`{Qjv*m)$)`Nfz$>LL-7JR_-vq?&@GoI(PYP1e756XMmnTNN*esMuHw}1(>Xn{ zX2L~k&9Iiclnc01BTR#LPKHRc@aV_<{p8k?_yapl`_JKYo7S6%E()x!%BbgZyOEfX z(bz655Y%m#fMwxrFr95oyWIFQibw@=BClA2lTt7?*2o!2T3oTzUKOf_i9@tiQ>R^> z3`a~!az+I(nc4$;I|1X-Q(PFgWmLcYhmvzN{Djw*C&4*f1xu+(vm?1QpH1m;#?Y5$ zpOINCq=>=UT|H4kcipEU{>4y6MS+p-Oy35^w9h<_mShp(&uWxEC@I?t?7Vb@!&}6v zV4Cs~-5b%=LtO1Q1jzLHt!!rdxdEvPYrhSXE9`I}R!|+_(LcBmr=YN~uMF&yJH9_w z>u+>6yeP$f^s9YTQU1biDyyFYVc%?;y5WBqHF~I1#zz&-1BuM*S=K0d<^Ep;-T#Qc1 z@C2drKQo!&GbKewzi4$MPAeIf!>U-aL??u*{*5!! z{L(PNjrDa?Bhh%s*`B4kn0!_{X!1>ImT}DvDBnaV@WbxFF&Cu}hxgK31`yCz>}Hni z%WWIc0ZEseR#>vZE^nE1WsZ*-tU)lagzImgF;*`bs$!9fc3WK;&OE6%Nqq_Mk^f5H zb7o zZtXrDLDp%XAlr6U9Z*GZn(Uq#Bd~ zLyRA1N37krDcOO*=*_q05nsJN&UF6H=uh5x>!}GE25*NZlYNKN&~bla%Ac71J!b5= z3|H81Tm5}#V%&H7UB}qMmiMJfI}UHW4!NZ{wvZTzIQfxFDA=x9({D(q%A!xRI8 zn!x24l<;ZI*98KJXp4}#3YZFfdfl*{`W2GsVI&LgE!piKEyHn@o}~&yIs|x zB!$!?Xo-jK^?*Dnf+W7^T4eragE5mT%ijV^7yDi=`tsLp<`IEsqXXK=K~Nhu_-#VYW$6 z|5R_+y6(zUe_g}dk%j(KCvpiIul_3rc#4FVSGv1&FMZnT+bAeJX8JT)a4KK7c+aX6 zzx6HtM(OD0wC_h$>SV+8?B#39nvE^7sOUw5O1-@ruOH~ZjmK+D1_#n!3aAB?18^ctelkT2) zJOQCYRFBxuL0X~8ePy3r>4?(H7r#HbA+nHG^6gjT$XPw3+^CWMS<3qZzmw*qUrzyo z(i4cHl1XNNHz^_WPfupd{@uDjLSBT-3F+YFj>t9S^>6t>GDEq#z~c1#F5A+FET9x1 zP7Xg1309*XUyO&rktmuDOZ&LA`es4}!ldvguP@*?b?h_#RKulB{k7S&YRs2+t&{we zs~7NmCJ}76er(-BISHU%u8gqs{cF3N*vbB`RuZ&6BgZfM+EqcA6=ODEF!e`uJd64` z*G0aaFXZJxgLyy}2`10!ms(Q8K?TLZlAZEKe<^q5Agp1qLtg+yBDJB4MEedheWcST zZMF$cPnGOAIDydrj#E;TtSv8nlSipqCjV6+8A;vzGOw>4AUc~6Hl$6$+G$<5t_w~m zq!|?cecgICI4r)@pK@6ZXNI!8r2aWfmnJ8Zc^el{M?U7yIlE2_CmE6BmUEXMc{;*Z za?EMx(5Ottzg>bGS610-L2GCRw41U0ZR2c5j9p#lSSG$NdQ#A9njn}a=_UZokphoy zJIUE|DddOmG05WQSU1!2IYry$Y0P3ZJ5t&(-+!JtgO`J9QaqFyNUmW%-d9DUh#t|1ovh!wbtdD8LO;FLtQqGsQe*sr+t~=#-4P_oXWH4dC zpPCY>OZmeg6J$FHK>?YO>6N6JVoTjroa%jL$ljpgxI5YU60&6!7yTInUQa2~FXx#c zfr2mB_8Va#OG3WO!BT$}ERKXpdt#4k)?an~ejLc(uHxr$$j3o(Z~Y~i<*J10DDwN% z5L~#OUcsFe%pJb4B7b-CFL9G;a~f}3CJULMFSuBq zX{Zha;x#u2w2aiWMkTc+CcgQ@kKPv`{Hw3});=kWgC)_oIFO^+S1~TnBCb!k*L|_r zM1X^Zl)U>|V$n7H7C(H*vKEZc#4(+;7AUdspZc)WG45D0Q85LbZ>t8qgM%RHmc_F0xFCs{Fh<eWcTF*t|6q}J{nQCGwh)BITw z2Gm!6_Sj%{9t4hOUSJHJ)w@fFk)=Q<`S};{NOH4&=cIhTm6*7I_jcve>H*6klc3we z$G*(5LAYDDaZgF4>mTY4z|U0@WTdqql;g zH5zq~@hf_WtbmR*JQ=5U;%?s9&Bd5n>DYGsmG+vX5#HZBiQj06ouz6&xl0~}tJeu2 zAGnYAxq#|21U#hA%tOE*ph1=;$M+n6ssohRzPFglO;NQ{(jB{QxQ>cP$-;U5%E42B#~Wu!8Mr^d0P z!nNrb^{eDmNeX-3)U`=EWl+c$LAxtFu+(c5OG*7d{Ju?-j;GzlMLkbKo_hi;T7o!T zxYit{0^P`$qn}(BJ~`}u3acE~#acBXqImrb_)1lkZ%T{AtBy8eJ`Y;8xD-QL0aR{M z2{*u|K9Cwx7uMZ6!A|lMnLmR|*ye*sC#uYN7M}SmJd4M`UyxWQ(+nBR9@e(jiYan5 zZ`QHD7S57fgth*nJxvhL{6&TSm;heIGnGm&^B09ev4QI~{mHeBCizriX`wO|J?pNg zW0kAsO-5Y(6rj@)&h^47tibqzN)NV3iR8@=Ss_#L|dD=mQ%wWNYT z+f@fU3SrYd%o~zh?88OYJ!l~RF(cRw=-lHJiK0(l+7wSpt1>J072yDNBxFac)wd2{ zB|kyCV^ZO0L+Pyy(LFn}lRI2%w%a#5-W^-`^4nyc;UEmQD4trd9AD`{Qi`9L*pqj$ zr#+4G!)JCgZ#P$|Gza*CxJ;xZal%coN?ISLy5yv+<6_fyzZ^~2Tg<{rx_@FFhSu*p zHc)Pc<`#8NpP4OGB5m*EMzoZx$jwBFx5W;}Hnrj<4%a0+*$If#NtJh{jO`xdJrS~4 z4Qs1JI6q#4?>h@Qe*KfjZm6Inv!dy-4_~O740rrDy{&Z86WXw^F|*IN=4hm-{r79N zCVW_zShW+0r#~|*CVkM4XQd@&Vmvl75}yAi;$T!7ue zCNYR;KK-*6S1k`&_#>au*mZ`lP$!vgfW5sYwQRH2K|5mZ(2n9rb>d@1d;C2|uK77X zYAwrM$Q~Rx$&Y&SS1>cu^aozZu9TGut8HwDeIX=JLZ%_Yzqa*Zgp!2TK_0UN~*K$V=4A*AK{rRT>aiTR)Rq<>{~)RjUsbT@GEzJ$n5N?2CX)W5=9 ziP0k)&N(8eO`MepfAGM~HAkVf()Ts}4_Unw_K(kjcgMnU+oQXT631w73qwp+KmR0= zu_>SN&5QD5pI4)J5SI*mYG0ZLxkuu=q3)^o9vXngUHAJEOMa&_%nH+XlWqQ4X1w7A z%}wt)(`?+bwv%y%rGH%a$s!KIGGk?R_2djbxZ1=J}3= zDOteNgQ45D;`%iRot5L1L*a77^63ZRuE1}IYVg7t>`Z!HqboEj?oAQb+5XFYWEyrJvHGwDL-H$m}3Bxz|?X_08ott)8b>+`c_P2aGJDvo?Nj^Q-sO$Kv!l8xT0e#6pGa&@#Dc99GQY2t@UH=ZG;pfp@u={{+l5jKGGKfN$loF_v*jHE6PSyIuw5WxkdYUL7sE zAg|f}{XuYCfB%eXbH3>pHZn94!6Y|*EulHIDX{Id02IXD`|-i z%m=Wzu~ihXRQ|9CI6F~W0KoW??4{uC>c?gGAU&pXnz{@)h=tymUE{ghz=8?LaZ>j| zq6sk0Jp$2s@j!@ajPp>}Ch{03d@ae#t z$kL?`+#z{IF>kz{B3k8~50bPVAd}Oy9?!4}!Kzxvc`Q{=le13!mh+iE46rIF%|hy0 zpPG?dcotAVHq0^RHf&$`b7sIbLQo?pBYVAI{-G%PJoaH}p7oknDSO8}>Q5fI ze%&1r!R(A5IAun?Pd=B{z~e|jcmlPR>?=uju2U%fXnFL`wO`%j&9&Ay@3(nh@rdNj zIA?U<8RzddHh7XqY=cp6nK8+b9Mkpd*Evw>NBTPKp9rjfQk5%GQCGaYxS|V?6o2G4Sdr>*?*|={yS_Z?Cv`M`1vokKCDw|jJ_`bfh$50&L5GyZtzV; zs5??A^%XbAgacF%NRYw?7rud5Emg9#+|60s*(bU}z@T@fCyFa;8{UNJsf^R(;(hW! zUJMj|l-nk1fOed!CuDrxd3@m+pl_TBwN1rtPk!DUtnY#PkrRuH5@}LfNR)AHJ2S0z z432=_lgW2jq0}VkyKOwrJI8)+eGer9k-q%NrgGnn6CN|dBuUiqVf02If(yRkd;d_o z{DDMCDFtStnDYQrKa{mx;x}9r{Y?m~=c(Gp`+*;W1oOUdQYicq+lTU)Y{0@cQq}Xe zJQr8aO?hNbtCg^%F+o3uw_S4q#BWbl^@o(7YIW3`X*GNXBbIci+fTDe8UYb3Ea zVYrgB@zT@T*EMx!EWkw#yiKLDQM}-HTJrc*f1+g3+`36-x)s1Eq6i866 zKA|Jc%r-M7k1=dBXK^bU$(yZljn~90oM6qBOcX`5PRf_{SmS@PGn!@E_Cq-nX&kya zrM#4T&H>G3rMfs|d3tED5xf2xQUg;2-_~1Yy`!QLw3_dz^3tGIS^&=eoR|GzYMB3k$(qh!S2<%QJpcU7ROg)DBJeDt?8;62-D{i)((3XnT~Nj~+zj zmXkI%>1fnfbzsi-*>KV;Ffg*N`KkxEve5KXdvTteD5XV!KUZ8QiECW@F8(|GVJb!B zFq9jW{F+I8TYZ|t@Reey&y?Uoje?002K9`5VJ>2m9Vo|=Y$o(2cxErm^+C=}X!uLM z4?;4-ZBRehf_mW1UmEx*^=go$L7SU>Q$;>TmkNX@&Hb1&Er}hc!=00-c14*}Sb*BG z%1)KSA(A929KduIh4&v3X(LKCOYZ*#8{ak7yh78Y#*pBbs&bRohmS^!(H{r1I_deO zPg`t^UX9Tdy|_rK{qCKY=a}3N=RhS~;HZ9V*RAlIZ{HMeRg)NTscP)WM_>3>wZlVS z1cKI=uZ*Z9Sh$KQYoS(LYW1XVXRoT1*Dw3sw$rS7qn5NDNP^He#nMWQ2#<$A`xy=& zuo|i3)_R14yCWl`ZWuGtPD;ysZjUD)@znV3HQ6}}=s4$OhN3qm7YK~Sw^)f$djH$| zSvWd*hXoOsr!H|xz@My3^*LwS4|Zj!5%k>sXpP8ZE0E+Ob3>(E@oRcD70h)6&+{t#Bx^G*v>i^D@`PiOhB<6z*(Vqb==k;LdyDxF4%%wU-Slet(HnrR*z|_C9IZ z#~YQg#A{=KH>*P#%WI>^o5FW=;Zn}o;2g|R7EDE_TnO(5Rpq7@QU3FeWH+A-fZ1NY zBQd6hBrBxi1?Z8wKs4^EWk?co&JgN|EwnE>MbjyJMYoK+kH9beh-)&EYBNYFYOuf~T1CwXl^R zPLH9pPb+39@xFkXJ}eK~ICJQwO(b3i%znF2A@4v#KPu(Agu=m8w5qt7BG2Yxa#Q3) z$c&e!7hCl(i?X2O7=hJ>V-d86+*3)swQ`posu`v zSkr(u%;kz@H}p{1h={HO$L)|P3q;<-Pew^J;J%>Y0af%2ERhU0DQQ^ttWxw+U-mj@ zy7VPC?Nl0osmV}Gy5X_Q-xaAF(qRQ?##J#&dAnNl8SM+?u69jE8^*n5m>@?!wjE1X zR2y*CDpG~pZZjVS3646LMmf@_=a;g+xa9L7$C@#kh?ei9X z#3}ai8(@go);PlCt+KHg4`rDB((($-Y13bnmH0^0LG5^*_vzt~9`9{XmT1kfoc7OzLe>wcrY zzr_`xww&h1d=X{gmwezyPbWVByg`lZjMNrnQ5Bx26}B-1^tr~Ys4Nb;sUehz@P8mtf9?E)i4`xQc26K&o7mJEjeM1)V-39xpvLAW*qrM zw&Yl`Nh+r(PCdZIIFLA*VM}FfbGi(wTceUp;l^HI2BmAn?`DvjDPmUVQCVdpOwVrZ z9Ed&C#%JhRF}sY?rJ(L=?5YZhZf43Jl3Mj3Bd)6()@Z~C-I|_HRg^h4f+>xwpkcO~ z*HKhCCcia%_Vu)}cxG+DRz=CQ%2%QVMND}|%`vHl`b(#!xa|s`3SJql1%1t9B=$0p zCFo`0@{Y%*PFa+G%wbNcX1n?=nMQ`U)gX-JGd$x*0j8quPUv9moAY(GxrC9;Oe1{F zr*bvZc~moP2GOh@0(W152sF16$flc~Z9bW+DA$9B_nVMX?V>W~l6m;jy^>B@%<>T4 z3ia9wr|PE_?8cLV)iUfg?DVy=8q{bpM#DE|tJ+>?3c@X~cDJ!jMsCbi9>GyB)P7^w zx5ntnoX^RRciN_QdcHKx7dcpszZ0$y+p7DBI8$GB-d8`50xKQ-!`==VBQz(TJ0v<{ z#KrQlB9^hN#4dUSfBaCd>;=zhV|3hjE~C7(8ni8Wl+KoeB#pNyLmL|2mNV-NEcP-Y z*NFC0uBC2Gi$*Bo6A4&4ARD3}dsnF&Kx+IgCS( zygD(YS?UVO*o`DuL3`fYFYj~CKrl<8e7+dU21BOJcho%h!BN!>A52WcP2!Xz1L#so z_8R8$tmA0w_PH$O>a71MA5(>6E8uy#Il#(4tKyb84$a+9a8gj4T5Bh_i34?p7T$=c zHqYFo0xRds*tS1YX+|lbr*nU~iR^bc(xP!|5g%|e`8R2scyhmfI4McXir%?zP~J;| zq>z$O`qDQx>o8wJo7+BVWfs#Dl0CNkQHyCvMHt|8DYI3Mu;cP6cnBtaOl-I9g+6Ue zJrB9V7J|h-#|+1b^tELd3OCbeR!*2{_~1OkzsOx?%P?`3^GKL-8cel9Q5D;1%1>B| zp8;3-H-WEXhQ^g2^)dX>46vV5>+Snnrwt10DxomNIW&wo4!H6KCFy*JYXrIYTDe|v zRgSa~?3uxrubx+MV5Kr*RV>R$r1a`BA#$6?^E7GA4b* zihnJCqni>bk%6Wh>;$;I{sV4DB#_GqO+mU6Oy7U_ZC`kB>^`rwF1_`1+B2H;h$W+- z+Kvov3pQ1_d)SR2mT%HejvxD^YGHlIPNXnBxWTc}T*F_kL(RnJd{tH^8Nu{u=9MpZ z7O3^rMVknFjMZOMv?%KQ+F@U;&_>V|f7kTOZP4_aBvcro5z90dU7l##)S1nR88e#N z@NA+Ttj&LZV-)(VEb7J-M=aaS8RgdfXW|{$H=_MNf2Li(v2~w zjn~zAlzbbn8@=FMNqZrQ2w?$&dQV$J?eM-3c?etVkQ522e^;ngae^a|x^>f3OoGl6 zKic&>o@u#)DM+PDY(lUiTN_f?KLj}z;7n%zYS)VVWA^dBm~Pth7Wjd2`IGKWvBz!YI60O2AKrC~R-)}Z9b|IEhPo0s5|rhbYZyO22Xi~YX=Gb;P(11;L( zNl~sv&CxVdg3ifM?AZAa0V>a@FSrd!_)Pj*WE)nzXatS$xnOVM~0 zHv1{f5Q|{wiuFBM?5^t3)7oDjGBYh|hAnqncL(!=vr2NBfa?N zISb5`EltQ)4z!vVpT^c7M8QD)zSbVs;$G zcG&b1>{;wCnZBhw&n{vyEr^}MEY%wmQgt48$WYSg2(%yZj>bA3d8K@P7>(LV^0nOJ zn8!vjsMS~9Hv=)g>>rtU-SCH>f=oj-IlAS#_YY>OKSO{=@9dJ;t*bv1rwfdnE{qzs z=%ktEaB%83YWn{X28ykMKZ|--i>w-dXx8ZZ^Km1#=z3)8S5WWr7ZW@?jW{$Fi3Qdq zPJCQ$-t4Tp$Gdp-U&Of>{2JDjgY>Xkvw;vDWyYkx04ru#wT}6dN8ipwaK&{rVe1V) z6MX?Aly~S4sSO1Z?1Eigg4nn9rMyYH98E9zXGh7yhg#eZ7F)8vJQ_-34|V*fMYW}y zQzinia(RU7e^4`hI>-BOcSI^o>R;?5v6A``_U5RABZ}CC1{Onq%<6hfR&dlm0?g316y3%umrKE2!=2~2-N_`*J+q+ z)P{jO;fP#ZRzKky{Zh4bVOhTlv(^d)&|?xRT8Y+*S)>Avlr%yY4F^{k6U}ARp&ULG zSFeriuMA-jNE*3Akh@cl& zY|)?qj%%R>lm=UH0L~mbPXOnJ>rKfenQYQY(pHmA$|+~V%}U&Md(yKVeftZz+K_y1 zIO7yRP66eZJF>RP_A`Jw>rBE<0Q?c^xC?q!S@i1kHh&W+z-DB zHS(!H6aNd4tpN`xaDW37)Tp*W1$c0(6D7pxD+}E;5xtM(qwYYdLX>Vqi$o*2}^;3Ekn5ZPWpJ>=>!zup9TSy^o!QQnHiBYWBK0zj!o6YXoOszVQ4aM8Z` zK9t`CN@N(Usx$mEJ4W|w(4fH&O^?$2K3r)*RjV@ULccRd_~yWbWQ@h=Nc^%qb_XSQ zbfpYdtaPP9y<1|2Mm+n~FnLG%>feE9vgxOZ2Ve+*kx&1=#*xY#Z^+=6RL+9WiWPV0 zGS?e4E)CU&h#(d>{<7GCIE`p@ISmr(Q@e*8@48D70LlPQZA9;5nhYwjqz^t&FhnFH z1h?^csz?et(xPS}7qbY&Q|g1y`wCD#iWQ1F>RaFd9KfxY4S;zr^O|3FGAQRE$uA>e zkzDxl5N8#sGTkdu%)rFE&iD>`HMC)9hF3hN9Zz{Zya@A1mNgrqYyqGli1ZXdnU@IZ zGIL>G0J7(v?bXYL4gntmEH%E3Fiu~QsYv<~U?29ui)7=O$pJn>zm(Z;QTY?q{`%J_ zQ!S=wCb|#<6+ov#MFfHIQ(#r_ND~KAFitmMh+`_5FUZ8JgC4}4H@zn=sG!n|U)vfhL3%Y;zH&-KNaaaUTA3GBk2knH z&2Vx?8Wk0j0s+WkbM#cqMZ;N9j$wJwxhWX@-Q+ZQ+sOg>ql}|kh=;#2t;?3`=>!7tU*n+fY z02Z(ScFZDOngqZX=J91c+%hZ&k26evjyQGnlbT%lp>}7BRy~#9-m!m1> zj%ri@OZ`PTcw(wKnKIC}0ybCf8xNbzcT`kWZY|VlVj|7i$ERrVM6)%}hbF>K6FDYh z{&Sdc4-`)AoNA*G!1ki0grHrIrmBwtk?(JsIs5XGZG)D;29 zfbnj;#MvXQ_8jhhlsNQ_?0uCqS<3%H?Xs7xjR*j&+3^;!GMyF8XE8I(1lx20rG-Gw zBEu1yYE3yN2|zg)^wps<#!n7=qGsquk=I>@0A$Mx$<7F$uwe=TciBqgt_#psIZQK` zEF*S-ik^gE#XK2X)Z&E zkjdF;0T9_F&U~Cy%;FFwCxHJkHnYtFR;Q;Z??*FDJh7gz+yE^{;E~MJNMQML8AZD+ z%!|cy6YE@NX{YAQXl9L?*KAq%DlIqZJeNm#Dc^1{z{ERM&Ur>sOw{$3D=N#-H3cZ* zpltd?wFzHv9RN^=G;vUOd$CX{g`POm>wy8^Tp{TNRgJ8*nqYOvj%^%OR40-n5>Odg z5ug?iu{eluMcf*rGntF%X;wiM@$2~FSBEs9S8zKUCl!(y#WVnlTy!jx!IZP}#c);2DcmMJkK-!OTJ&RsfM0Z<}6sV|7+lzEK9T)VoqbY#A_JJE@22Flv7 zXo-*(P}e`!GLuymt&IOeNpvvYNC%YVKOREw+y!2MaAG_o0>O_0Jegel{B|K9QJ6GG zz2oYdD3K-t@8N7$x-}`={4#Cl?HZ$<#NbHB)D{>FW7bDnzPSQ{~4g8S?EKL z%zU4xv}TE$F&UsCXAGho9Z7F!ob2fUiYeElwBlCUZAk&Nm}F$Dt3>13uTq_y zF$dzGPYCD`I*o+Y)cJARbKD@vH~K=jT~NsOlYRI||F`YlNWryVa0(sy_43M>1Eha< zxjR6sE2m?!?ZPO&>qHb|FX-qoDuP#zq*=!2b#Tv%K*PXNFZEV$zglnTCeO=$CtPwP z12W*Tc7#Px;=})lshG}V-HOB{m}C4}Yb_LjBREO>4&dyFrBf7u)wrdcCITgBrQ#$Y zsuZG$oC=`6FPst}02D+Z{=<1DVhIan&lW&F;K(ps!g4T9;TENWtja7JX75ZQs%)c3 z>W4*=4^QxjY~+S?pim$@i49rqesseCafEc_;(vlBzIbi|^$;~Gkg_f?+cNOYHgIc3 zD*!x@G0v^P$m{M#aM4OInBWHbDn`3#tJQhfGgu0G zkcTolLwcAllc2DOtf_-2L!ug|xgcUB`VAte@N8rTR{W}M)S@BqMc?k{02Bsu1cbH} zL_P-Tj5I?&aBccT>_4vPah~c^o}#T{?PG@VY}lt{PUUQh>q8cA(B`EekqVIRE`yjO ziArUBT<63Hf-f|&bW~(VFv@!}YD=IkNkAhU$q}T?@s-fAzr0ZcfhV-W281F5F!Cp+ z6mciZ0|Gt*PducI_^A@x#zWf5BwnPjkSd!t<8W3&A^1-LoN>xJEK$(IM|uKt$|GXP z$bkPIt|Q{5DxAWZb~1IE;wGeG6+NdV;6~I4?hAoS#yrBB3;?3kl)xx2m?r^z z1iUZ`Sw@5?1>;*(v*%c|c!q$k9P~leMNWva%;?K^a??D*W|>kDLk{Uea)loi?>zrH z4(AjK1VCW+ChaogEmQ`Rwg}+D_|6w;0!GIQ2^E4mCs6=|OI=`eoIb`V96%w~Z6U2O zEsrhnw(gm3j4@>_Yyxsql=R6wPKw--gpA|8?rulALTq%$NJP_XJP%fyE`9UqO?5F(&Z3~ zq73G!vXnmJ3U%O%4tYm1$J86gu}ppLOrIuA*Azlq==|1;+njAzB@i5eucrShV<(k^ zc_4uIP%tmIh#0x400W?f8 zX~Kj2&Yni(@II!yrf=P_Q!#(4UrnOwZeucbDKqI%BS>dtT6O2@aJc9w-!_BGB#qa2 zQb<;a=;~});FMQe$=a+X2r4RMMRr)Z;s}FBD8;e9Oc26y&jL^a0t!GmaxJzNLJR#= zt30Vya%WRV$^G&#GPL8DZ00+qVjAV?#mIA-1W@>dkF@vU>kuQ#PT));MEMBHAU-UyxO2nDM)kGX~J|d_Ra|JMwuH4Fm`GgN*TJ%7C z1V0pn;XDLFY-XS^kzz3eK7K1za8!=!^&u(8M$O_vh$Jy*w^Ue+DGn4f+~^rAVpr&q zn`Y*ytVTCX^I2|hZ_BK2ujOw8cVvx(G4KPj3UP*Z#F$3xa7QO` zUuAKDrg6LCaUVkK*vk?nbMi3vQVz@H6a{oYLQt52hXl5V+c*O&9M{m81!+8HqDS5-BK!IjKocA}Z zN5Q1GS3Q> zf{~I!kysxhFG3|cqT_JwZ@p}-b{efD4n#oOL&oeQ#PnBa$O6D3rCh;JBWG|I9l`)Y zm(m0!EXW3+uy`fi1EhD1a>UO|EcY)c={HWPB<^_f)&sCo32yrt6NiISlyz5g+5yLT zddpch7WtgD28IMNc#y}P<*YVMP=&Q-!jLZk;-Vz0 z(&V~DkL<O4ICbYlAzDUCacXB6b%2w<7hv#a`$D251ezypW2D>4C zV(V~oFnqj3LXnO|rg26b02_~LODiL_#o02v%=Ffqy;ljdU0Aa_NF7Jy zMvZkyEG4umyE87rhlj>@&;;s$bp z%&E@rgHe8~`w*h!4u|1bbbo`cO4yMU-jhQpgE4>F9Rcc2$RlU&K8g~_J`zG2wuNM}8M=klN}G_o9-Ji}R)Y2S9@ z_u%H%$s7fN1{60!Uk&z`b6Y?$PEsY~92i zBtL|I6^Zezeo+A zo@82j=HN5s9!8Q5Fw}!)^t#@Vzy5~8{=Lb*_eH>a4Q*pdBRIUiu`0vufn_Iamt{{- zuIuv7%cBw>NyOSFJT&9PtnzcLtZl~2dFK3Efzc}}jc~dUKVn;bK1FoKr((h#LoVb( z6sF+pBZ9j<$U1j1@$tkAwpeV9GYx=E0YZQP0|p8hENC#HL4g7lC>SuHK?8yV7A%11 z(4a(y0tk2%7$BsCkplk|hCB&zK!B7dTe^G+Gp5X$G;7+ti8Cex06cs8{0TIu&>#|v z8a-;Xr9p@S5hQq;vt~k?DIvOas33qr3K^HG3@I?70gey}S~$y*<5Q*#KQbg}(5-;A zRR4hU{Mn6LoBPX$BNE4XRew2j?*WQ+K- z#K#8+dVJcLplJeh5zk%R5pZP$jT>JkaGRrQiv}$g9y?GqTY>`XLW~gMw^!sE8{kDQ zkgtH`(<6uw!Ms4*%>q^qAo~?%)ss`Bnm>;|z50_og}Q$~6si29F9mu8-hKT{mM!^T zbr=!_Tq$r?N(KKo1XlsX3E+@GPqhV@TCfdg0A1fXxENb(6?Y*=p+zVF1Zfe_8HgTb z1`=fncys`ZwSDLrYfmKr8UYd+;M!h!0R|CXsR4)LTL#ot+iWEg0Gx|%!FE~#joC-Q z1s9Zv;f5t8Se01dL3Eb`bS+d>U)p))5MI4qbfKAl5fH&fAnCb#i`eWX(8GmgAb*| zkyjWgAW&nKNrYHe0*%y~M*+As*oFZRNhE45lDMmj7V&y2UMDJ+0G%b0#^MJb=p`kx zNE&chXr}*p$Sbb3jfMb0Gr|TNhq@WSR;V1}*$}EFX?JdU2Y-%6I6Bf$MhSlSx>OI_ZG`ev9e144Dh1gqwkC zZlt6#WaTDHtg*W~dw{acUf`@@ z2z)p#gw_&?t+q2d2;R5hax4IzSNA1mLJ&!Grn~S`H!n-}TAH7nS`WYizW~1tH+ljS zOg8`qA55Q1P%_-Ge(K(2(E?f(5WvJ)wIrZN3XLp)fZHaZngQaz26N0ZE|y@{mY4fm z*Pj16q_}p`=Gf7Zydq|q)gZcOkjdjA7eqQtN*8k%|rJ0J`!Pgk0o8h7d_gE)tBCh$I*YK!9h6 zGF@Y6Xd(v226-IZUT=PbA{3zzHy$Ypo4zG7>R|<4B>`JPJfIMXY|BdB(U-kg^0)u@ z$#0Bg3<>?}7pVK;uK_VZ)UXiHKdaOPKrg9O{sJJN)gaFR(xFI)Yv46}${KNr*%u zT?TKXB2Ve*OdP_?AqPhnH7SlQrnH#&8o)gSZm=SPbI5f>U@5cV>msYCl*b#gIqJSQs#YYDW@{ic^lpk3Jy8#^XLbrj4A_rh3 zz(~N6j)A0G9+@*35x|l&a?!CMsX!qbuPhaU9F7hc$_BWGl=yVg0ZwVrR7U>`QN}YJ zM^ZPeZS}=2>{>uA9dO8V<5-pB3!pOk5xAHF%Ar9LhqTe_-h%0)12jc4#`{oh*wVciweEt$(j$|E zsI;dT4KRnCAbuXW08dd!I(Qj?U=p+(ED4;pn5r~_zmKK*d&p&=4 zs%?vERQs(lZ!Z}PU9XChZ|3Bw;lxXs)PzTK62v_T-jWh9s=pu>T^4DK4jV(KHKA}# zIb$kBe)Lbr=xhOkk;w0&6`9v{28gaST?++JBG*0bhI;+sl=>-1MQ$sm_IoLDNV=OoDhFy# zZ{4xTyW@>@n#`Nt_Qp59XEMYb>F3`wF}O=ytPrfEML?TL(1R>=S??0@kC!P|1x2>F zQRgTlB#8~OKYEzKrb@h%Q{IoIW>{k%PoPc4m5LrYUZwcz{auv{%c7E#mM zs5eh^Z=@)x^|SS|^H%S)VD;!bG)w~bsI1Fg-t-=n*S$WI#2|E;@-sVDU9uGlY-S`< z!!A=8Ds_^fiy#B;7W2{Cy@?H(dRV?)#zGT-kr=+x)rJvW4!Rk{O#Ynx4fBhtMe^DV z7WtN=b6eavSjM~ZT-`=%^Q|YU!JrAOrs~?MR;&LUKt(AI0(#4p63D@Ao3ddr@nN&) zfI3lo*VIfCNP!i&AM;040sD%uq)4q-%K<#U!pCJJys zLN;Bbb3i!r7+wWJ$fg$r!81(pT4{kTDk3F?bvne>Wc8#vLWF9V!E(D-eCMJ(Sh0HQ zHY!DS0MTPp?AIX81a%juV0U#p6C+GQ5&%Ax7FKa}52%JRv2~0V1QiH}6i5@O(^m(O zfixBX10)l1;va*t5+f)fM?!)ep#W>8g58oX-eC}JMj37OJe4*q2Zb0C20>8LV?yL2 z=N2QO0VM<>SL3yQ@&tI1=wvg)=05qJM;A*6&UVLR(ah*6h^CKXR7rBma97hdHM zFYp4{5r!{u5C&)!Te615m>z9NVs99S%Q%O+S0uS6O=fp-7C`}+riX2j60k8C-~x!z zWl_Y#MGRtyxKk>ovWOzrh!XG@j7VOPh)#l4iLr5sP|_Hhh>6$tET0$|p?FzX){e@P zU#Qq|t+lHMT8-+ z@qASi95(_Se$i*^RuwUckA0KBNKj^ z9yAtw0|He9VkM}yML1a%wR4kVVkuUad_{L5AOHd};uV)UL?8f5k^wrp2W;Wjc-+-k z59Joq^B1atMWt6R{`fkD5k+^!I~n9D)B+JA@){_UBQc^tngd$Q)s`+*F6PJ^MS&2; z@f!xv09`>i;*)pRF)wAq7HHESLiLw_8JN~In1tz5HGvqAmzdu9FEnOw19CVB_hKy} zHM!;%vNc=k$%lVbf(x>d1O@*k$bpJC36u)pnTkRh9c3xS=9|MPLob(vRuXxXL??n# zJh9OjUEzna;$uK_o7@&8+W{dJbe0OU8lfTq*WnSB!cd)cKGfDd4ys3rs3+e;o$upP z99WmmR39L5Hm>)b;2DALF`ne9qs>@DsRI*=X&%9sTpFlp0cR=mNlAsVYShzonWs72 z!ByvyJeCQd2%tj(3IPsLp#F8BVAdE3nn?>PiVezG5ISCfF`*vxi1c^>7@Cz&Ns2NA zc;UC8E_6vHYAz=#0x2q!qsF3k;-csRqpm4{UZGkTd6ze85rflA4RAIY1`@{cqu&{x zXf&kcX%ld&q$VQ}Bln-R1zFnE*Q(-9?TC596l6#9r^dO#`REdC_{ zx6y;!1X%`kSLf7x!?ISP87+Ayl$A4Ggb}AeBX`e2Bqc9O2K2S1ob zAZJmH3CAS{XD;e9A~*(F1^_`<6JcuxUe7{P!{kDtk%TvyWf%2`M|zeW+eZ?MR*V&l zx3L;eVkJ9wo(}q~1YmJ3=vh-~Eglk??e|a^G7`I!Eq6ss*I`o>loCTXbP1uEV`GaQd9R)tq(ZT;|H`!hdlSmDEe!}Tn3k~8D5;MbuR!}OAV)bs zOD{QjAx}ZHs?j||=9UpzG8V#Q0wED_7x$$QLexHXdZe!-e+T4re)h4$d6TCj znxsf7bLS!O_ZrQ0bQQHX6B0}iSr=;3C0KG+d7==rgB3<$CR627QyUUF+oRrbwLqG+ zK(V!5+qJ=E6`Jyqy$7XO^`70SC@^tLA@QnR)S^|}GX}A&1)xhFD;ZV6R2QlM%JKoX zX1&HHf0c)(j@xQx`9kyxJZSc_AHi=f;+aY#cp0P{n!1WA@-h;_6t?41Re^&1;zx1| zwEChF3Q_+qS+TfE7ZS8;pTx*0eG|J6n6GtHySDqUxceQtJ9YB26}^kL1suEtRceP6 zVGY$l9YS}fqP)P_B{Ilk*!r>#LA|}=PfTS{*?XAV8${i!xi1t*&pQB+H@*y1zPxh2 zq?W!PiXZoQa+3GHW%(WQYaI2fZujd@#xcLK*1tU?Q*Ox+*C8GRY@Y{gj0sFP3(UY? z8?f|et7D`m6#NnrMmd%;8?1;Rk%Nd^VlJ`OEzuKw9-%V4Llw-bbHyK{pFCO|#9WRFk|qv7Xe8xT1prsL7M2+Vv40^l z3zQj8maQB|hdELs_7Qn;Mba1Y()Gu!=>~MKHoMH%^I>OQlX4R8YrrJXYJHlA^lp{lJ7(a5R=4U+U3&Y>a zZ}8jEq-=us2|-chqgn%e1bY&9^vh+qw1o4tr5e`oHr9et)@Kdd{`SEJ%qM2&q*U7- zO+qbi&6jZvtBtP@ z{S&VZ+h&~}?l&&$$)1jBn7J*Qi0RgzfIv7G%f?%&w?Sr2uaFxHC~al$Vt#U9p7F9bWCd!gA-!_G}unA)=-{kQV#zgR9@w&haPQ5 zYClUxTYfJ{m_7^&JK`bL57UJWvT!cth(TVa2GO%tXoqfYs=VY#)mu94zZMnp@n(`WWbtLZYML>Fu2 zF)vf(Q+I^WqF#)o{vJl4L;KF}{m$>}5uH)$<+jBk{G+KKxos_><7$WQ1)xI{>paI^ zgOCVo<3&k95^_UqA4v(mZ6=BC2pDF!KscX@kk)5bTI0Us zNclmL^q24NeF7yM$5Z;zo(E?W^~#+NL@#K(xzDCecnxwGK072}GIdlu_R0|7|S-P+c&0LvI4MzFfIojr0T5(8qi9@z9=Md zQc5e$ki!o%{m=*tI`#BZP(3B_N(3^ql&}A@T$B;Diyr(_0YkIeYK0ZnD$X$`ArP*B zvwV!GHvG0isG;$2qHZOv=p5=!0T%eOIE2!hh`wHvWiQ$ncYP7Ronk6TD^(w=h=7e zu)X=91ym*KK6RPe?=7mNi#~=ZU?~22oQ4wl+nCWGnbcyY={D~oS`J(zyd%}f(E3Z>$n3u z4D#y$44DYlsJx>@in#xb?GfA!I2DP>BFKgCD$s z&1)rT$VIj(9c!5>D&YU)$jLIPGj}2~0p4PXx!C!(_AmWz1@|ax4avO*qN|p+k zXUHHL6~{njKFK3mEWd*#tYPhIR9RinWK_E|LDFcLBo^=7)h6k%WL_ZA*&WHlyOlgg zYT3)oV13Y&4SA=msnFVVO$P=eO3tg`;z&D_=bNQHzaKuOvNH+Tw$_ z6e%Z`cp((aWEvO8+~zCbD&5{L13s8(1p?hHh^@%7l5Rc+tVHc82Nj|@GgXxUT457L z>~v6?HY;9?9g6>!O64^CFmIbK?3V!zqN;+}Y%*$N$l9`%BLS!~EfJy0OVT1bg5@Q- zWEmWy;G)vHMpu`2#p_{=u-CmhY)Ylf+~HD08N>F4WetjeY@(-DssP6^HJfa8Doddc zf{h~01r`A`ry0?lMXLyDSJ`@sossAix7h^Y0VpXh6KY32QHx|ZC07u!F70Nbi7m=b z#ywe;NP(RRuyJjvQNP&ILC}?MiR(w*>K5j@*d3{MtCth3kT`Nfc@SX2tC!O$=`H33 zfn``KfX4v2z0VPDRM{h60Wi!wClL+z^qVf+Er6#L0k8oC93w9k_`p9)aCsIyIs6>! zb`gGXnKA$DMYam8Mp)snmD8A3SXI=cVr%J)ChC<8bBIDCNknCSH^d-T%L`cOBAQL2m)btvz^`SkEzK` zMLgU{-1C>#n5@PGL-dada1r1sNjA(x4FRG@5$uQ{ocF2DM&_g^?zym&Q3-Wc?4(l^ z0{2WKiAW1;yXkFeQ=bn;&C;Spfb&7gF$Et=_P}Sr0R}*#I5Ciil_+ektPg(VWsqf$ z{qg_9CA+%Ies;;B9kGhUXMo)`akdxup!GUdvJiOY@`9^?aYMy81vz&}K3HMp5Dk{x zT=#swe4+%XiB7?Lb%70%$8A1jzyKf9YhUE^qY_OvHbctsP_~xv792fHl(@zBmKFLg z*W-_3l%v!fMv%wdQXvVLWL|(B%SM69G}VjhEAO~e6dtZzdsdE!Mh6gAVJ;Q) zU0Oq54f9?1R^0Q4?0)xW=UpwE&9kKL@)$myF7PxX%UY9Cc=`-2T391mRXusT^SJ+7 z$~F|Ui=vDAn}#X2-Ah2qpu3OyJ>WYz;k!B-qpPtnKF5m-1A!n&8=%nv64wC^%b~D- z5*zv(7tX4PkijHyDu};P6*URCog`I0}Rs|}oxLsSx(Fq@WtGoWL^qk9>ha{512GO!qtp@aWuo=vkh zrg$XVvIz!TmJ(DO48xJI;EJ{h8RKf8)sraoak;~?LQtGLEbNdXU=C9}MN~Y+DH^bc z7`C`m0McW*<};K8n#E6as^Snq`&x|w7#zC6Lxjkuf{QqVFui`NEsAg-0g$=_GL)Yx z4~{s1xZsJ&aS^2>Fy2uP-GYE=o2T^&lLJX0=#rw=aK%tOM+;%VUMj^@Y)4hBA67ho z0n|NMT(6hX7eNPMU?BP0}%Yx)&mF_Z(!i?@u+ljKdmm`lc~ zOS^o>RUE5s;*GBhjK0LS*%U)!`;`SjKwFeBq}oNBm=T1i4fp>zN~t;&rhKrWdWm)7 zN3c0d>|hvGioq$dj1B5RtfG%?8Nrswo>&_wqKOZbSS2*15H(6d&CE^T6tC3_(7pi9 z#SzZoY>r$SFkAb?!*NapS-!l;p6ZMX02Rv0!qA}0P|!M*gIs_DvJ*#44N$YW@7NVV z%$C$ckFju!@yN@46dM-R$d;N#2^0<3Oudz=Jp%2~h%wNLDFT%lQX(xQB1FFteSslt$Oaik|1Nct(B%~3&86Fxi+d$FSOD*zo#v@~| z7ag_q;wkzosxt%27gL)YMZK>$OHcGsKNZDMR16_4QbPY7QeA?jn;9gE5S52<&RtO- z3L%)ukWvxazIYqKF$~7cNT4@V#PKsD48sqydCE4)n~2D_*AUM}L5oK+QKB=mVOo!H zi%Ro3pXlKV-Eq#hEG{LrD7Ki#KMmFZ08)w>)Iu#(x>7_iWmGDXqDTc+TTvSPysx0d zQ0}NO_s~VTh(qT?)Mx>mo8ii+I18guH1in9sxlIpl(3+Bsw9OH@7WIC$WsjKIn8Ji zl(>tx)C~jq6$+_1TY*+#^-*Hg6k|PBBb}>QfhXx`)&Zpp!t@O&s>ZPrEP`x98pENc z!wVEV(d{srmY9;Eq6(w2mNXfF{whWjyh!_!i;n+MFf>7pjkqwDs?W5U47q?H!;_1B zJ)IKq6Aaue zSlicX+Z$C4)M$W)gG~X5SkgTs&9PhIm`TEE%d$I=fxS?^)eEEby%z{x;T>M$72Xn~ z8=)beMwP|C$d?KI((Rktkx{MbmBhgV7I6QHr90HeB|{Hz{VL9_tiOpvA0wkmJ2F0; z7Fun}Gr=WrRWGD~-PEi!2w^NKQX^ffo1yhn-tAqy_}wflUI8XvV~eqva?qMY;4&N| z`Di>2onE2>G0h>4x%f3_$y}i@sz-{iis;NrZBherlhxr+{Jb!mP~L0_0P3j^nrV{2 zf|5vKIdXhh|Mg!0CdC2H;TI_20id40k}jM@plNF0Ol?`ZFtfd!5fEFsM#He@SP!6R zGB{y51iZ|K$PK+YR0fug9hkodWj=P+4fNU|49y83kQnV4(XS!`Et>O#i z0AZ+^&yJiNW&tZ&rozYDBlQ2!o#JS{qZ8ZtJxX(?59M0Dg5HaqK4=0>=ro3Cpnhn+ z+b-%kFN~%ubJd({8?=`j3Rptt_}pS#KD5W8;hnM8>n*MCsMrqvqt02Bx zQx+qU32U*AOR_c$vp#E}-aP|J!e0zw6SEUlq1p$YkgxVquCCNy6QUTztXSbUC^A6B zrHf}=2-;9YNOqh2)KRYzTLo^53R%v^7S_iujL4R3p-w;r=oGt2I9BP6=t3oHlApe? zS|x2p=2fG_T!|8PfJXl!U7(~wRK~P*O$~tVrxLyk9@>n<%{>Lw?cM&1-Ufi*2JVPf zK;1YC;{G<)G-6$Pk+Wz}zNkYlEsUm14>N$Drjc4@ng$y4euxp@9+^nauF}_x;gRN2_gD2W zi&`8=xfq~3ac2+sLW`*JDd!6u_gGNn@z_mb$N2HgkrOhGJ0TzPkSlV-@Ngu*bGRfS z8=6S_{urVCP~!iKVF$f(x&UEXc8`?p?&)}{fNU7bxWEe(*Z3-D#ENE!-JTkib4@3U z^|tdnKXSN?4~aAgC#RwTvtYmIZ@?G}8~IM?T@O`>SuG{3qrUNHW>OPIrsAkxCEj#j z_gy+K3{U^`B#+CBI3$TA4=OU`1fmUExeLYy>C9+C-JznB#GRhDf+cp@9Jl_b=j>DL&t9hmf{Jd)@aX* zK{h`9emRFZcVkO;b>E9lhXII>c!{6*i04gtkH&WG?1!=7T&5d*uN8f_kTr!He|Ns! znc|Zfc)b58cmV-(5I&S3CJ}|t?0|20!FYIz&v}XO(dSS#^0+OT|L-jy?d+L(4KZ|b zH5viY>_Uu{t=?~qXFcfd9j19IPddYcCfoY#4s_tWu+7G@lCz+i5|5gEEE z)%m$)3V9ZW^EvQMG8=DkFP*m7Ew~FsscEfYt?zod_AN{Dv3&!Qc5mHT-sx^yQ`NUwhCg32n&N^Nt(|%HRA` z=H1J8+_~WU%IEw|_x#U?_<_x;m^Dt6uawgmE2HQ4X}9{&9)8*w(XP{b*ar-O#&rZ% zdEEck^iJ0S?9YDf-~Q~c;q};3Kb{n)_~pKLu|MWsJ$-37{%6>HZQ8dG+IacIuYUUH zbawXv?$7`2_x{r9P(SuafCwOPAi;tL11wk|K!5=Q3l}ytaBw2UiUkuc7%(7!#*G~Z zVjK`rq(hAa2q;KNGNQ$n0ay~$IC7)Qnl^9Z%z3Z@Pn|x00u3s3C_x4Qjv`H}bScxO zK6F5hDs^g9qE@f|TzE1;f|Cyg6bK76;noBTHDbit@*}~tF+0K~`H-VVwG-po&8xQ{ z&jx${0uFrBXw$-mol;FaRWReBS_yFV`Y>#Pls?HqHY)&aLZWOdcI?b~LBY6i8$SOe z&~YJMnm!xKY&Z~adslsO#shHcZZCg+&EUiDFD-67G5!8@6IK`7R{}sl z*-gxG?7dZ2T+b8ly=Sn&2X}XOCj@tQcemgg85{-;?qP5b9^4^V2<{Nv0)#+*1Omw% z{%1Y+&l@;>)3tl;-FvOR=+)I#_5CPWc&*tj*}9x65hFl>L*?0_t<5Jk)+o`~9yub$2iMRp zG1RQ1JmWG!b^i@(qp1^IXO=8Gl9d2f>_J@gUr}VF-S2DIQ%n5yVFP56hJg#19;w80nvj1D=ENGify+LeFSiQl#%yHPdCb*m)hQfSfYW=|=hHRNgYo3TXf}z;Wi?7#W3qLHRoqj>fZL)ov1uIMS#`f$qN$#od;-v`pd^>3z%Int! zg58(?I z+*o?m#I+iYESHrjj&pkCFDn6WeVoU`0jzHn~c)Ng|Ez`V&2;#1t8MtGKOrWTEPcHKE%>XbR6ClpYTO@vZSg8Hl#B07T0%vw zKA+_-?R*RVMWS$gO;jEM$G{tZh~M%qzxXUoczaUAB$%Yx&B& zEKh{u%PN8-U0fKJunGG_m>D0U6XbleOADXz)OzZodga!nBPL25R(c+RPtZL)+uBwM zl~8O6i@<^>L^SR@)zL^uWRUs;bM*<#MPjdj(>gRC=dKY{}FYf0%D)#3X~s_mb5W&GvAY#rxww{tc= zDA8ZLjQxz_#OO9ZwRuI{@t!0haBT~bG0CRk7?@MqzPe{>~) zQV}h7EW~grx&Fo7+#s(@UsmCd8#`q?dIbi7t2~eC++L=?J&#qkW8@vV0h&*sW0Z?D zQ5+yES*2h<>8c|d1|zB+FY8uk{jN#!{yU~417RAFOwXTIJ1blV4&_+E!;)zLC%VmP z6yK!e7_{ICfUdu5=qN%|iSpqZ%V!RBYV2QCX}oF)0WO<{%7Nk0fPgnfxjN6%F#Xtr zM81fDXa&qCjZ#=74Sq`N%qeF_12mNlXP&QihJ5mPMO9^2GJ`U72qsp zQ%qy&8hQ$XqxT7^00(?C5ycET=;;7h`}eNWM3I0A5~&6tV*%tR06^j8K?OJjF(88MLTmuJ z5V;W9^J_u?n;-pfHRHGhU9l z!n#>V8H{xrIyeX$utveA)$F|1sn8?h%7(Z9G#W``(s+9xJQSH8@;!1!Rg_0FwPeJ5 zwnsn?JpB#>^&XqZS!>>2E*obv48?Qcoy(4}m0!${$-(Dnc}ht0&#{-f>^8H#4>x;r zW#J94%>e7J_7_2oUQ*?EX;emVBww1jtV^1}a5}N>3g9`1SkABP+H3&6aiNyu(IWp}7mf$MGxKwn)FDUQxz`Q|YXl|hS5AM!1Td^no|L?e1_ z7hl@0TpDjz#J(C#-+Wr?%|De(naoc*myzaLDUq2XO?rBeI$OiRrr#Q&0=)0qQ#4Vd zSSD4#;SU^tMpZ_dE!f0?m6u%2QkL1X+>gdw68Z7y#rMj+BX_>#~vAgQ50j9fPtpxIXD_WEGWX)?_3rdts8xS$gsB{>%AZG?-uh zU9C!)in$uWDau(hrB-(-$Kw5q%#(ptUG^i2X$Oa*5*9zS>jlN2LDPsFFr?&pCPAbw zb`*Bi@dQ@&YS*`;av7LkS>^$KgOhsa9_C~7I33mW5cCWbQ~c0)q! zTTE+dl3gs2r$bvRw@F3PDH_NreWTJU|F|xhwuW_7|9zBVU^AoC(#$hcy@fSRxRm2> zMS4G&`x4kR`i;aTSkmMBFA67`%=>;X<`LIwnBK}uPMPeBFncViDzoT1$TkJq71j}M zFe}&Pm3C^e{kMLbQv$XD^kUln0eCn{?k})FwD-I5C*IfD+(+3fL$o+>+5HK`+Y<9UR~ptqsp)S?ryIN zU3+9Ok3?@KRM7vnE|AfLYiu9T-04>KT{7^(tn}1MT^DH@hmO@z+2LzF}xcd_WQ?OcfX^o3e05h4*0g3Y^-cHF4PuHc=yUYgm{Su$`c{4@!;J;a)3D+ zM>?5{j?6o%`c?rc{vTPL9IElV$N=F7VASpQicCeD9LZq;x!K$ zP%wud{&UoIl9v64Ri?bG*%J9gg+ue*MMZm`-GmHL3`X9QatZ2dM|m1BkW8v8785c~ zNft4E*{@c$PG{hLQe%;$sGwKoga6WCgoFourVqPOE)j-dsZ7rFfPQ9y)mc)F*Qbo- zGZ-e*f$edU0k!03F*Y}*#M14vw`l%Co#B;sdSTp+sQ;|5EpiZeGzH+X5eghDS z)IwMDS6QmBWPD6WTmAXbA;Ep}{BB}AZ0F|nSwT5Q!F{7TBBN-mkZF@$Tt0kio(s~D z2^x1$k3>KHfR0ryYvr~OnWXQ~z;%-K=eJ&Cxo>d>vt6I;DoIM%c`@gnn}!ahxL(C> zwW?OF{(DJ7lfE`5%A-oHfZXmh7fRhL;S^@nDOQXYjt{k%)p_b)Lc$~r z_lZd)G?MG|AJxQ6Xaqn3-_Ln&-9NaXk29Ywo>NkVnRurxTey#!HHmhuMK%6-<0n|; zxVpjcyWL2TJut&ktN`qKE~2QjOujbf_MsuxD8r-8b&XQ}!_8J|uCv!f-qxhVAky48 zw^F`nn-L1Kz=eJC?5npG3@@bfF>Z{ArUKC)a++l=Fm$;WxzTlJ1<(jI5m*%`EukBq z7)9I5$RV7zj;*G*g9JxsNPMKqVY^r+T%#iAzB&0@VBNqMl|Mb?Bk!6{RS9}N!R_6b z9%dVRjS~*Pxc;2w%0mlKO}_B@7`M}tbw3=~?_Ys%%Y3XzKg=1zGTWXNq@ck67Yssg zB2f+{t!SVBnMj9I`SEqE9Gb$f$RS@J6#6Y#c4yA8a&uEVf8pL0MM+caf`O+(Qhsf^ zX^t_C#UEBIDYU{#vtXy`taS>fs4eUat#YrXsp*e0we5gL9W0*>=dctaffN{L5j1F6 zO=n^&F`bb#erLsL6#aD6dZ8F^OeVh_c`q7WId1{nRmt(E5ZK69?8x_fY7RctE{Md` zD+|4#h!GW5N4fVch`MpEx!7H*)^4xWv+7H3E9b!sNw=1G0nMY0PNCJ7)ghO5EiEMC z|83Y@C&%2D_c|>sJ+>t0Yqi^d5&t13ECdlf(%lY}EGCac|5fAP8hbSS*{t<$KctK? zHD4s+PmmOFyc_vu^6H}aZun9*T??wtH|j<5LJfh*=+&^+8Edrjy92r6B_8#-D+LYK zo=E0*7m9YdBj8J!{L}PSrzb&)+CgnA*);jAGMz4cyM?Lx;_sG6hdff#g1Ui5Q6N7{ z`OCk_fsZuT1J~L6ceLUP>bO~S^we8#sBFrpmpKb13-`NrAb)t>n3?^APaczfpVCxb zw1+0S@F`DdD*Ewde9$v^kq|gCRI{5H|9*vkAbs#?yNB~u6l}0TJ{c%e5?S!)q%O!@ zIhrfpam(ZPCZT_qz*0`pj@AI#$zE-dWF*yJC`q-FlMiHSi{ce8ag+la=TcC z27VVx-=(gk4>}jQvD!F%5Pth&QuH51>W6#xN9NTy6BRms*uu%%%ipF8_7qQ5=4&p{ zniJwJvbTiyZ~jI~wt;!kk!3h136b>0KbQA>;o2nVXZC#q%zd zVDz03gCTp4Xz&qfvIvZhU;D2e;mv~Dxq?R(84cE{VDPXat|=6MjhH|@f~b>62}8)z zKO}a~@(<}dS|VTyEt0L7?`Nj{0IMi55!c0%kMo+37=fijyQhhKl*5Xa^iSS|EG~XF zKIojk28|#xHpo@~ zm>;?y(HP0z8mkQ|i9O9EKm&!LM~Kl9X)-A~vHpC;UlsR8lugZ9&-@-v%o?vD7ayY< zF;7UgqsPDiqQMdIrOA!>YfO`I$p3CHQeXd-kbqOC+zZ)qkuve%iu>1oDsYDK*9aHy zg$18hV~@6b>kbIenVYyB%t>`Z*as29;Ai$k*k~9hndTUcle_b(5hDo4;XU<(PO45&1d08Bs}}dpssf=hOhbVWwLzvvJs&*c3h}XFawmAYM#OP zBpla>cZ4x5?9TL!DQznz)9{HsVO|U?LZwzjpX(>TVZfW$=z{SztdEBJ`_;LL>$&<5 zx$opa#8Ae+7)hKp*?2=j=O_d}^rHz51Iz5v_K*S0JT*~?$3QWurFn*}%zTEez6pFm zAcNUpN2G8`Nx#P>eTgiEM=bfg&bf?By$I4RV1L)i`f_G9 zy_--9&sLHr;x%)Xh&>shgCdchA=}sC*Wfw28^MhD(gNnpqz`UTc#tnP!lqiptRS)q zJX-jv8a!%VKOR;;7RL0dSr;*u<-Z918}Z?3k1oNT{R>vqZ?v#dv(#&qA{A2#lRvy~ z$QTct0Eb|LmbiCVX)68(bzKCC&~&+HI`s^p!~k*7&9nMjC)@?yStv*&Y(y9pk+%?5 zHUbL$6H&T)_+etB>2qy8WrnBnZ$fYE+B&?OW63Z!dV zupk-cRA^ub;8zM|8gqjH!d*i)6{MfCbO0;t&XnGtmAl;HY*`tkQH7FN9_U^@sF!j7 zOJ!=ZY*;-7kE)$>mmbj$KRJOCTR=&^wWJC3;*aBM+!SdDiG`DUW*T&HkQ(mQ7G`nQ!@-h|< zCu(Oxlup{@j_#+JPv}j;6a-S~Wd!D}0!m^)3Rs&jQq*=yn_@9ac)-d5JQ_HvZTzxi1DJ|>YV&aC`vFHNlF1K8uQEI_6`#rK z5gWABRdj}(zwJ(&&it+%9;^ObIgR}$IgEmgz;Jdo_U$IGl30{&R!cW}T;7_^Z9HEW z^Ds|h|I>}-H?DfcK@|7ianG%B4{G`r0#>1j;klS<5-!kyz&%VLeMgvYF0TZJ^$dg-Km{!DujUIOhCjEI@%NhtL(5AO~Zw z-&MJdrO+ZsTI%1~c;nW1mIdIuWr-^Lc@rY_@lg&_9m)x+gO+?g82zjh%txA3kUp&7 z%o)jMJQ&wY3+E1MvvgwFn;4{+>=Kw9dX_HOtL+LR@}7RqJ=2)iV7+LY-esS}q89}{ zc4DPTR(nq4>eC`TUNk&S-BHt2XAn$@yjRs5QB{K;b3@~>2QdHW3$X-O*_lzj4{~-S zq>l)Y=H~sQI?yY^!4T;J^_#ri@TqHk*~3x!ZV%X16l;C08@0etCn(0hKsVFF{clqM z^dhm#ukSlDNwPJhn4ZbtI?4L0;MZk?uXh(y_fOo0X!Qimi;I8yU%JkXpm$=v;X?8B zRO}11x~Yyl;k3UUS}B~YejuIEkA6;oMF}Aaqp*t+B*Fza9BSCuAguO@GoHRdE+`dr zPI9f}>Z2ywUFKCW>iRM~)T3ugvNTIgI5ZKPK2ns#s(tNXf<;tBj(?Rz;l<~I;dsWi zx8ZDg=t(^ki`l46-N=Il9YKM{1qP8GfxM@>@k9X4C&Vx?5*epQ%vnJvthU4yX4FQg zS`@8=(jU#UG|a#?;j)D6wYig+!fI*{V(0tEJy-R;fgoDq6%X9rLz7Klc-jsAd9C=?f{t&4mo8XWO|iQ6XaDznN^n8-dJkcj zSJk^On<{%BcyxEs-|j-ZcZU#`zSK!rLwdDel07pF4gsB>_(V}DwkRZ)W`)JNGR(ZfNA?=;fv=4*StIOhfvKQUfy*DQfA;*zjzFA-5dVBl3 zlVS-(ZpmonXfT;7jn}vyx!(~B&942eO<)8W{@0()P(%zZBt3FNoUbxv9_#-*Lv6O! zFZGHRIJYx7ukt&uEb^Jkn;rloITudt7b* zU>tj0+IW^Dfb(h+GH4t?{1dxuMI1Yn8~5_TQAteTX11rz?rjmB^x~N(#RdHM5$QGk zN(_2~M_~q6+>ZM3(0}xO{0Ai!0X{y#zb~_BzI|;nr*CL9au2xC2EJ1<@+r|q9aHsU z)6J*PzKr+MBlv2QS}*tc!kZ1U?UGBN*CKhU-aj3--N@eSgbES?{`a`^TDGO{I3we0_*8mCI270Qa4Gv2dLR zQy(|zK7qT=N=P*l(AR00Wn}&4u)ktQ_?G=dWBTGgYi=|>MJzz4ZXwRIAHdkCsoE57mSNk9#g;3`<`G7TDp^{y_WYrw~>yAOeVh zfzcq)XQJl+^pDVS#C@Jicj7ScWh|RY5F;Q`46I!8pFm_h7(ZLl#}`mY!KUMl2JH5R zlhK{AbVJjQW=w%D;5a@vvihLpQ018rgAODRL4pafbe+E&iIl|j zQ%)!;8(Svvz<TTuvCdR?!aO`2bvqt z&(N;Or+u*qW}w`9S%~x*ifMkqx6CIC!uPM^MZs^wMn@xaY#Ktt(5!=PsY|I2jM95} z4mR{tP4yM?CQh<{$&?xt1A*7hOQJd3o_Rg$tzVj=j7=Fz3oI>@steGG*kMR?hl{e< z?#F6+qV9NKO_s-|vQMfV+ae}f zsQ0T^ubzm$xfVo|xBSRKsMR}DN`jeI(qw?0NFYq<70rt%_kMI`pe1NJ`!tkJn9j8I zRw})7AANASk`*)Lrj5OdyP2P>t}vd77wtNodt!^)047KiQV$cRTKL5vx?bScS}|O} z2T1<#faxgxSju3K_*NnIQVw%0m{)<|=#zD6EVt)y=#PMmg<3)?K_<=h5ol{JsqI$- zH2U#cL{zQ?$?|z=o%iy3P~=q!`sAUb z6cq)9)B0>s+1#eqxL?vgDr4;yjw688eY2o&_AV}Yf> z@W)>!FZ0FWd|sdCyTzWl8EZM;6c())J~5BrKn-Yq*H7+73)RBK{%I$vw;BHw{tPzjFFDsyZ*DGCix_Qo7zbhPk0Un&KzWDT?kRPacV@Kw7 z-F`9Ex9&^rrEihmSJE2NfA0vclX3n%E>vx4_I{7-EUOKV4ON0U4MtJROtJ#u247|c zb26};D)@0JNZkIRaHZ1IGfZy~6~RvmkS7qBe}~1y4ySGeI|*xW@8kCGtzY#QP0<2P z8Ow{{YjI%)CqVcR7ng#x>g>NJ`rmn92SjLL|__$Y=# zdQ!-<8Ck!^ml+xoW`)o*{2I*q812MuWA?EbcC7iIetI!9qmF1kE-Bqz(=d0uquO+y zVVelzk2O-bmFe!^&oFZx5Je4*MP4}8uIn}IhO`{93o!~LsVb=JccVe$R7}-j!UCs+ zFL@6Q2dDLa2nN68=WyaC8<}DjY3Y2e?4+PCz_PlP*+}s=U7%Ev#dM~9EP6#FtFA4P zn}u>Zcv&4}dd((W>GP6FEDnu>3$5|k;1k8`aFcHc6C1tl79N(;~ zs}%8|3JwIe?Zo`TO%WooNTkHNr=+QhJRv<(t=s%*$w>7I@hj2KUCzfr7}8m7X+{(4 zmQF;13{|C9RcoV|n&pcvAWc%{8)}WE+&hg~@++yU!ZmQId~*`>c!1+kmGjj2WJMZ} zrzJ;$hvpyS^X^N8Z`QQs8K+(k9$TPjD{Rv{j}0XtnO$I%Si$V%>)0rN?93LCf7@?^ zWAXojK!83(!URDsfZp+}z&M%G-bEZ_G;mr^;~Mtsn==Q$dfTHBmX|?;YfHHjIDXPt z*q|NB9TWV`4IVo$SsBSY$OWlLHSZCuNi$v@^BKD$d{!gBDqUpUtyqnz`rfV{h}(&C zbQ#9fS_A6O5h^%BYOXWO+U)vhGh>n`x&HPLK7_c4H-UW^Fg#UuMcd6H88Ee(rg!Id zyqS$@lZ1cN2rxc4M-@$8yNhvCD7zhxD3RF4C81UckicS3jDR&!Ohq{xe9!xJtTj`d zN-{A@-PPou7ST`?b(4*SoW`~f+IP+xF%^B7W*UkAmfbR2jvX9orW^osTBbKAz9TjH zO5uO%&Q$^5N*S;7;`Oe|%j#Xewo0w z&+)40FSn(yi&i?G>?`2vVC=2_5j(G7&JvZbsP444XiSE8twqwSmJyzXn491Y2cN2m z9ns+sN%2r3+5xUBK@PP#7ejSv<9qJy@S7CbKw5(f8xa-|1;w62?w^G>xyTFk;Q!sfQvabU_4kv- zBfj>sp!zc5P5lGyzaQcvrgA&Hv-_FZ?6%sf$0Vi`e2AP5&OK(C#d`s7H;w97N$j73lL%vfWG`)A><$7+ z(POio?Wd{yNf9p)+6~J^ix)!Jmn^6zdAc)%F4V24B5XK#P<#8TI zo?&5(#lU8l5Tm3;506+2so&3+llQ4oOe1xOT=z-J6R^OoADQlA)kls3h!0s~wL(i- z2DDQ_T3X6@1LnCj?scf_^=o7=mkGq6705EqdTA+-hVF-S;mNX)5X=?dev&=*7e`3o77@FY1mngl^j6h;T4u``9p5Cjuu zIEUp^?_5HDr3P>4Qa_Kd=v(vnGF$2wi#S0KRSmB3&H;7Gqn{piVQ%%~A14&z2_wCi z)Vy(^vYI8dc8LVFFkp=x!9Cg;KAys;xI)h%Hc7pSrFtoq%5z>{K27%$yCZM6V^%ia z-b0F83f6$5v>wvx!a*AWu%%6tm?65{xmp{k8@A|^<`sB0fhK?T;R!pu&C)WgY24Z; z{E-CA-wdBB0Y0tLRtYMstbF)%bvLb~@RN83!A-$SkD(+mabDp_em%UvvZ8Qna_(Ys zQyx>#0=tZRia>J8ZR*WVQYP?C(u8tOe?J{UyU*g1YIPNWaV>EyJ>P_-*V5+|CPw2eo|VFc zCHWJ`V<2J#2B{}zI874q*JZ_g?!5K6n#(g-(}!3cr8(2PGmY1pEZ{G5OOwwcyqW8H zeG1r1{`zC3DsXcwlI0DbLi%yNGSVuEC|O?}G|w0$_X!<-xmO|bXKtb8w+gDG2k z-r=54b7ZMB<}sTN)6RT93wX@-OvQhHQoB6VUb&s!1itP8#Sc^(h5R~SLprJC>c<_w zRw@+x35g9B=u~@PeSb&_dc-jznrc4Kc^uMI>PkXin~|cPL*8)cq8v?*hz~B+!1=$V zhJxB56+i`u!$Dr9SXaapwXqgK#Ji3MIi09kQ=b(tj4sKq(9=5}Wm=IRFrz?x9@5+K ztqsAV#E~zHhQ`|tRf%vGe+@0V^vv!vs}*{j50EVDY2gr7M}*8%#y;Zg)Qi?UNsagF zWJH%Ikrzw^@b2ojnJ-I)M}3JU#QMVB31}^LnHh-wH$HMbX(g020Gq?nT&d@uisT=S z_7IIPNUnC9l6kZ6uhXcu8t>ma=a(h{;dGtNJf@=fgi}Mz44>Me+1K3Oi703 zAB1(_C&abn$GRGtTb%&UYN*Bxzyf#5DsT>5!JWY0L^KHCCc2}wd9-5{ZCAKaOIf;H8)O1%10(FBzq0gj{P$;Q@O#C9~!H;UCztp zZV7|ti;?wD?g0Ox*=)2~SN^)_U+jWDJSO$^;$9pk$LnU^TJ{22AZ$P<6IJ@eAWQ)Cbg{gT?xq=f+_HF3e}&m z!zlTa5sZslVhhf*&d%I(#I!Cc(!gw4qo%-^ku*p$GIU8gF1__!+00|KG4^JZnqeh2 zYztl5K&sI47WDCP?AueH<#(Q>>7~>LV7n1mWl6w7B(Vi>H@H&`e2^rd9A=y0CwpuD z0&6~>{Q`IUeSCs=i9Si|Vz;V!^G8A+7&KduC1BpFYo5&$Hm{x+!{0Y81#=s+uqso< zORv(<0%rBUX4!Xc*0UVj4Ud&ej#_?d)!(R{pW`1&a}WO(TS}zkyDr;)@!#99g6?e_L4-Ji0`GT0k!*FtJR3V0h+Vf#S!+HPMu~G??Sqsc8D^LL|f(*CENLx<58g zlI~3vczCt!i|}ogW4qq7yj4VI^@&Li$vPF;_Y59c2H_k8%zpWjDr7W{zqii1oWZeS zkcR2doL^o5Rro1VJ8OsMWRErA+5AZ%S^T^(mTBAVxbW8J!?!$1roYLOUD~(h-Hj{Mz`LAVrxo z_kB~*MalNl#Fd<+e*2DGYlFWTyJa{GJMd&ewXoTA?~0R5Qe)(GQVO-bRg&AREK`2a zgsf)6PJ3?p4Q_EtStNwA#2ZE`*-;tE!I`aOxt(ORuz+M%1+my3z;cU-klz{ zw<8*_c1#N3e-GH+GJZ#HqOg;xc@W1;Vxv`#E3r6MICT|!bgz7Ci=VfMkShPR^HRxg%Ox7e5^jk12*PVtwMxs>}?hK*esA3Ck0GJU%uYj>b`9blX!U zrJ=;l8>LFxPe{*144@Fxk_xJ#_F`f_>t{F>sG4n?8Nq$HcvE(nvxePwa+ML}WKwQJ zx4&FzsThefEDy7>>Ek;H*nHb3SQmRUeCy%KQgP`Q0iei@uP4kMhV?vimqUyaD<)+r;a9(Y#=X1VS?h+Mi+K&t~l_JuGZ& z`2M`U8MajlaHPP?)F8)CeDg10Et+>FM8BL;Cxi_&AIQTL5^<}@@IOwP(-IS~{d}1U zX&XG=xpa~}t4)@-*EEOq+f(sRreE>0(PT^|LunWGMff=y$-{i`3CNZ8E`g~_RTE4p z^lLR`S-W}e3cD1C2O4XoVddlL;y-y!mY4P1H;B3}b(e&Y4QuSO7Jku=tm1@ZdKpQL zT@X+}Y1tjRPM6=Y*S1r{6 zxus4Tzf#JF5XxmAox5xE%1ynJ^odD7Y5|?NolI=F+MDrcq_joxIrnC^yZO+S$@ol( zmKQ^1NIr>?-cphXODii4hAK|Cgv+1f^uZ|c3b6`7O#M2sE%4g)_;X!>%P!`?)m`@f zprh$Kl=UF*R8cuTVAymn_>7aG6m})h>_-Rl4`w5>dkEO5SdN9Kp!$cnkS`*B`?vni z8vK2w$o5uch~qJsrU5eoUn%mWB2_#Dsd0~Q8gk-!PZWCp{Yp1}VppK&7iQ2rN=9JX zE{Q)y?`OM&R2T6eE++%^Z$SbNv9b>e1&}QKYL(wBcmD|w5q`+w>&X>M%c}}q5>Kr6 z^mys3Q`&1F_q1MH!gEPFmZu9Ki^H;2LO|q{VD6lnU78t!Nh7-=*q7a07|&*C8QyRq zl8x?ockf1*8Ydy#f6jH<^*?Qt3F&mMVzD}iFk&DX4 zNTOAhAY_S*#jxO&UTdu|OchrmGVwfml}aBbH*o!KKTt>9DOzEfS5!5?_$^N7vw2)yJP4i6m8xX$di@bZ0cuTJy)XZWc+v~FEH-Lc z1boeC)w#uM$^`q&p|Q&Y$)sM(Q6MZ%A2nI8>2!miJKLQmad@X-X8bgIJC1`S5Nh0q zFWJCqHmIrgCHd{qEbt?XE>*@*R;S+Hp9o61Q)98U90#)k&y6p8&Hs6XG`I0y}1(N>IW;B!k)%Ad;*EDm-OV6se+#ZEXTaVmVZrH-@mVKDX?= zlox;QnbKq`(W%}mjXP7Nx9=V6#$1gtZ)juxx~KBdK-(=seUGc6hjb(fF&i@b%z{Dg zKkH_~VDFkxy$fD*`vjBSiC~j8_$y*$t$9*$LKv{w8A#s*a(tCJ3}xJ%f2i)^VFm+89kObk+-;W z6)Z?9Tb4|X1qB)7`g}HX)W>bIlsiZuqfC{PeB^E`!F6M9SDwmd?kJ7GGEON`dT>zI zknpJ}97GFV&#|3V1fo$x&bDM1jDD}0Z6zP+D`FBuS#6R@VJ3cPe-3GSFhjByL%Syr z3nTTmJtEKq)XW!cKBzk(Y_MaX!*aA7vV+vqA% zcmnXUE}W{7!o)BjtdP901|7}A@FQLTQ?eS{3)pAS969&==UNx;mQ5>VZs%#`9+6c! zZ3~{YMyo`gbOgn2`6&3cnt5w)9u+L7R#LYDh2%AMUKkb4VTGw}o{^0*E{kQ8g$oL4 zR;(Vnm&e{@LskYrd}%dQ%uID3REdPVdTsT|Cd3jn6 zLb;M@wj$!D6@~wA)vf@4aLthmGk?$ey`#Cow{KeJ$nK0#%mjs8$-k#&e)Nck$`$zdARl14XJMmCln*=51YKX?m+5ql!N%*J37jkVrE5J zFQjLLVzFACS?VQ$B~rGIboshWzLBbu9B)C4>q@5*R8Mohzp1A0Xfd)gWQNu=H_&S! zj0WOG25JI-2!a@mNj|Sq{B-m6IFh1UTd3;aCRfpo+Q)S{7Rzt98dpDEphLS4uHQ17 z1-9(cua^S4akVjGs3kCUJ!5JQAuLR3;dB8{)oi7*M`}z-d$~`_2#I7jK|$ho?;xuVBK&TJqnx)c;Qyy zN}Q%NVfi!MN}5%$0!^78?wf=G!3F(r5Lqn$Y4l#tA?ND1C>My$>aoWNG!qqOjY?%2tBr5zIWKDwh(E#Zu6avN^dU=| z^gIKPm?auZe=4x(20$@%0-LT6nt)@B#2KfL7z1TLtwBtv_jOf(b3id~QJ^?4i9dNg z&z|qzVujOqP(0$$P%l;%M#6K_clQRtfB8Y@%fg>B1G zZCyE9_PLC&V+r+fyy6dTjOO~6Kif+oAeORN3~$~LvrjAF>0bYV)^GW7bgJ(cS+)b! z^RA(EG)~}H7Lu<3k>DqN0&RzBk)o?iRoQC}Z-X0(^useJnRJe)+%VoX5?ilrEb3WG zQJVLqn(R~r#a3!J0#bjcO^I7PLD_z3r}`$GQJx8tmDsfhPna(lBk&qSLW;{?w>jNW z7y5_wWbgdUcG_BiV-&SD>TBnx;(R z`wn2NAtat+SDxCoIfH<{WY#TS<(~zq^7hp5wIi|Ls?!Ad>~){b8P8a}f0thW;m6p8 zG`+$MqB`-V2FJWTZmJ`ve>*DPj}5j%+QX(}mNQ)N2(-CVf1nZzSsH7Ay{c~$ z75a zeU^xS|1zeDS}ZligVK>eAx^ViUTW)ldPleuJ&Jfzbvvf!xiF@!w*2UoK4Xc71Ib#e zp4WU53Y7k;#6(FtNiZ&frP%w8^S1(!cLfn|zJ^1-2-nK5A(_Q9)Yls-<~>Q({@le$ zhkQ)GzaQnG54vMMeT7L&wC6DeZ-7#VpuQM1$W~fyT*nyA5`jgecjHGxV_Nk;7scwm>XQ0?9rS0 zFTSstkOifiMd|PH+%MJw^MAO~(o@}8Lmy*(Vs86{a9(w~!v=p1=~N39S0;N8p}7-E z+|M^@m?$@8vh?X7l`NTXxvYm3cjgGN%3UNI28ziRztCM-qg|_NhV35-n4O)IoMW<; zF%ou-&utQMBHk3e5lq$Vs>hCCu&{9*Ez#l*j*h!kQa_g0B~UDeo< znUpMDUni~e%3*fk6ZQ9*qQHTmg*PveZvXH?hUh+A$5!3vM+Eqe2lENh{?ylJ`oPjn z;{BbHaWWu&B0CTJt18C1>9RIIbe<+962}+;QF0?NLsf$fi>vX~7~wo*$V_UtdriOA zEQmDAdMlvcj?nUx#W@L~@KT+~HC(z~SDJ>d1+b6@ZBMOjPjZ>*ChzLch0NeYPAG84 zOl?`n{ldg$L1H^QeRVlZ>gPfI^TN)x+GeEL=22k#(JoE1-1wE|_>%x)CsZ*LrfR@} zy{$RU)u+*OwjKaAJ)udi;xBQ{iuS+98lz9!Q-%0N%sg)`y18Zny%aHrihk7F8qb~? zF<=2G{g@f|ol();(od7Hy3*5pyy$RLtu;B${9wx=X9-s^B1e?3{0f{9zX!NDp;@Idi*p}YjC*|_VhQ41%PB&Utc=TOD-YYa% zF9h%jLB>!h#qX&asS#^myhy=*u{ec8*Tj*e%0c|%e3`>9hJO}{*ji}5z&T!@YA#Pf z`SqobS7a){;N<9~1) z@qaz2>OW@SjHvWWLg?~G!^A`b%M%TPU;w69kr(k2);vjk%-pmU$lIdR#)OSX*<}mBO)@CG*!tHeOD{=CIUrRZF8u46se4?U0L`g7H z>3r&)r%_$WQhb22L>3;eyz(NDp_Rb=Oc#fvm8lU9I@Ql$GiXxLyqHZ|w!0lfy!l$|xs*LUSHVDVDBze=w#;Zm`9W@>TJ?PEp> zOm>=G(cwJR|D4}6=LB#7=yEfRVRJZYpN%N#O=naTngHx;6~%db4bNqL^*Duv1(q?a zgrefx(XV~WYC|w1O|N*lhCwWGTYkN@eHvDK)>T z)sWZ<#n$NbVpK7f=R{?&P-3fAt~j6H8_sT*+xV3RWp@h6~R<5yWy=rS7*^Gtq@}vvT>@+^TGedl$%b~ zRCl8|Pq6!RBG|D`M2N2uR9_HG^;_>_mv$2ZPE>IXe?st+FBF@63c#pKzXGsD7YZJZ z5?$M}Gw&F)cr&t$8L~-F9%aY%npegr-CZ2fbB1Sgj0bCs1~Klj>Z4hm*HtVI8Pv+% zcs4#;NkpkHA6V`O=Drl+8_vn{&@P|oG!1Nla52y-LEDz>)|+yMpQ znA;Yc=2?Pnw!qw23=E~%|4lMl5o%CdYfgOM8;!x7{}G;v3sqgLo+3A<+FzN{OPy*8y#J+va4z*x0hdjd1v37vNK&Xn*S2qV}DlA-8Y(LX2q8tnzE;V8MW zgOz@A_HyD-V=%h2yV+RZMRXtH5-WMfA}c@Is@#fy?GVqiJ}uM5-DVCo{@T=Y-1?$^ zfo*StbieV(9s4wsR#~emY+rR!7gzB$4&g;eK1GSrT0vVYKe7RnhaTBUd=!If#yf+S%-Fyb=qnl|g!}*U$X-CqkXQwavJRv1_*#CHK+stpt~rOW+i)LXYI^6TxW-ag5K)HW0=>DCQIN zx_BVxeQe}&geWh`CqAWc>-{Xrv?O;Fhv7S;Q*9qx6>7?PYDNjF*X?MWQ_Q^7as`bl z*3sz1<9wBOJrB3!KNYVOS35BGwPiilcDBPo#HxRDHCg6GH7;bIibhSInRB$A^Igi@ z&1I2XUR9IDDd!yz{XYO@K$^ceV4vOaXYLoxI3W|VDbZ!d4%c0`tZmh_ucZAg$~rOn zL9zJ&LEh$V6`SXI{FX6gaj$MGu5|HPg-aMC#h2g(o0_ozps~I-3V-njS8&c)z_A>Y z932Ch0pRghW~X^F9p^afA8TOm335DTl>pq8ogA`|CGu4?{{SO5+at$N!$c>H;lxH% zvH_sk>Ch-iX!7uK@>h6rWYOS{it;G6T?3i2icpuJc@=@J?S`dRco3{h$@2NpvWneu z=ebs3U2%`tuatm5Fdy8u3M&OH#o9W>%ZexF&D#;)3vi4Q$_2&}WhK10(%B49zc{47 zRY<>~76|5MAc~!Mj-Y)tO;8TR?EsNY90ZFFSg698@m-^sP#6U;9iC)TDnWH64h|L) zVk==+C=LzuSw^h55=}3cswB&`}CC!T5 zBp^b6)c-mLP*m$04_75U7g04XFti&%%!M%?VWF5O>|h%={!dTMS-y2MZ?_Aid>5taDkWi~%tn zD8=PaH%yZxfV>_D^saM#5oPF#Cs`pkc-=&E5bz(og(%7mfx6+5RK7|Gy8v@u>QuGc^){BBj z>w0Wh?#72DrDgw$RBdYM(k{SSZe9cji~%6tSrT-G+X~9f-9UI2BNrjQNy%RF%3tWm zBx6^PQwSGPqnc)qT^G5LCnl1=hIuQwnlgDi{s?De210WOd_(q1+qjjVbeLrM;cWR@ zM2DBx5)g&CRegw6jPGBV`JJZHSgxez@5{tQ0h65_D`RS z>jBW7MkgI~N@8z82%;|lN)zAf*-WGB|JkFTaHL0;U{E@W7NollO{T+jvb1iUZO5mB zhTw*JY>_v$l)9-yMqMVJszYg%Z?BCVYiHibcxpt2hlxjg6Pq4K>1dY!|ihAs1gUB50;f+WaoX zU^NKNnY4{OPG6+GMM)jUrFJ_Ib_qF$XsS*`786APRZ;pR2g_?IA$J&DX7rlL0{r+0 zytSA*&#YG#1_^V+@_gqas&>{b^%&`#B7>GiV2m|Al6z15*R^K^MG#SPcpLA!NY4Tk z&sSR{g=@zS-fT~oc!^ffS`HC;{{>oz4B8}sHKNQ~5b#?O#4|r9CiAmZ0#O6)rF5X3 zkufzv?Q3AL$_~<;yF*Wgk?BUnb>9|Cr~ep{OYRej_f467;iA2Q+}zAOOO;1%g|%dG zsQ$Px9;{D!=0r$RxxS2+Hkv3krQSqRXKO1#8PO`~uMfa{ct>B^)q%7zbn>=0j#kUt z2mxdm)4gFva2J*pMd=VeLtJI_P1G#CAwUoyAb_9%fdmC6NO0hQK!F7c3~)%mfB^*x z3KoPIalinG3l>!Dc(Fjni3B@>6c`}_#Eu#pG}zd&W5tXL6J!j4vg1wx5ChN*FjVN! zjRB4dJvx+WQ>Ra%MwJ@1|L9b!SFt)}0Dx;(uV2B26$>O|S+fO)A|!wS0otrsHx_{U zalz666z~SPsNm^E2!8|EEGSaqKmm9K3s5*QvB9-%3wDePGJ#;WBQXl-$dceifu0G( z9N@r#LWrFeuw^S4Gh2ln9THS1JEwq(Ckw`mnUSVI(zqE46g?pLG8AM zCM=aUDHG6?!2Uw2$SIJ71nEA^P;?Kkiv+#WfHVnWYbQ1p!%3kRdsGxTf(SDU1Q0gd zwSb38!VDsXE-Fr?i5z06S8W{=v`ac0`#@X=x+6$dBMrk1If1xsfT05nc(*(3a_Z<^ z!&Y09!!;@D|B)>lr^EJGf%g1%09a`agpMOQC5VhR?ZdhXP@u;48tX_QmL~e~F_6@%@!!z6eAA)t93X&D zwJH)6TN`_X)#-~mvcLk4+11WzWC?mVyTY}@(jnC#driImd{R$Zj`;2_-UISX2~wJN z6M!@(3m~lW(Kf2hVAL`bz(ctLOgK3L4TL@A*-u`%<=X*xS?1jZ3p~q|b9PF0r|{|t zq*`@S{|I58oGv=#wW)MGV0!;smjG5H1?k=Deu5TptmUSOaRdTj9H&GhaHxC)z<%0l z@OvaoK!(P10CDVSQ>g8Y4Y-zDu@w>kwE4(aKM9=y9Ji7P$SGK7s!?y!B@jwo#A@nM zpH9LCB*;n1Lo9KL!klxbV{wmUK?x5~jPfv$3h_EDPJ?!mi0o%*Svk1T> zhJY_p<2!))jwJxH;b?76qf?~d=SG^)FG=?!fR%8vzXSU306aP00H0*QiX@N#EMcHR z{~VYAqZMX4?xA4EdI(0jl_i50*&G}p;=zc3kRu{A-C1Zdr4zEwLz?rCp)6&ysl3or z5V=nb6Es5_hH3~Rvn5RgqY%}!@MQe^Ay5#eIU)LN0D!>@YRn=XlweCQcOnTGqw_KM z1*<01O5J;U^vH@xKmy{U61K#6fNw^yIO>zy;t+7A_Dm#F?Ez6q@aG;+W-S5QJAkkh zz^x)7@{G*!TdxqnO{XDHkp$r8@(RK@+7xFtbXp=oT;KvavC26JBTbL!aSA}mtkY?#8u$W82&JxPixVR;o-UL>XnlI1KPRLfi1QXq#faA25}FRCdxI`K;%apS|a$MMNcW^Z!LEd2*MUw z7`Bkc0U>A)0x%QS$FPK|*9%&cVuFAgg&+hxG1@}==$K{IY9ckd6FZ6XE(;xGoL>xS zTsTtEyEgEi39wK_9;qWH`NV#1a~j5I`ms+YM~MDuoq$3npttrs~o$mBf z$&}#iAP2dr5RIrwLRbJ$B%UE6wRDzc9|4Mp6N#_|V;Y$cy$WibVD)sGQcb{L#8sq@ z{3W^sjF{0Di>)>yRwMdrKt;|(C%(E>TnGV8ba)bzB{GDcD7lkR7{f2>|5k)8*Rsj5 z_*K`prn8^zvxtjs!=VyYs#%bd-*XxRlFkXUJ9nznWC_KR_4?#KeyrJZC>6ZavXGQk zVXet-aDx}T00u2~?Q3J(vf0x1Qf8%HZdYia`l%8xM@$iw)S|F<(o-!!=FT8%bC9Yw zX@E_1+}G0L7>F!ujo@PvGa2HOiGUSfs=@C>ln5ub(di;zI_o)4BN)il6}|5|K!^iC zFuzJrx&okM+2A?=$XEw6e3@y;5NDGj#f4BE;cHy>H9-9`MSgIO@(%ZtoQm*Fc&SwF z>RxQ16tB3&Fvzr2U>oDF%$UYQX6Au{#~)Zh>L?tN%8rW(w;m4{|EWfHr%($MKI<7- zXao)Nk}Ww|_s|A_QL zc_mEF?onot?JQ1e|7g!{>$8VO=Q@T6ngGvq4q*V#SC#nDh;0BRfY3#WK zBi3!Y#8fBt+AQBB$X^^=F;sr;fRc2`NX>2RsTF`B8`uDK3!+%(Os1l4m1c9mNYT-`Gl|rKO?hUuIHz)d|1HQxJm@+DE?F^eESFEJ z!%{fAI)!pM=E5soV%N$*1}R8^3J@>xiC3JKr5>3T)ps+XEDHodfh?sql4B1wtK>B8 z8q3KuDZcW=LI4&C9;b7_!b&Wj5U?$L#9pp+OM8qBs}1;S9~=30H?XP;y*=H8U7AE6(<0kQ&PWk&z9gaaxE&+gyoT9ngd8ADY<4u+Z#a==j7wc z`X~%n%pbs$k>hb(zqC>zp44hP4okw*fCh+Hf#RQn;u!DZXpHJKE>kGa^5P=I`bYCz z4J1UQ0=#U6IPW8{Z95Dg~e%XWkmnIk-ia*he)4Xobv*0M<+0V&gRkBaPDNOk5DN&`oO|Nr>!D zJYtT}FiQc3qd(5iCDyM_aA{yNi#CuVm_Cl<xz25*iyd~oChb0s^LrARVDH&g^Ac5eu;?V=jc2eGL`&?1dgCvZscO^QtRx+Gr$2b8)a zPmt`HrjR4%q*6GD3=ie}M&c47BPR0j15YYd|Cqup9L*^}?!*+2|J*R~;E*WS!>s zLW)Ho02wp!F*cD(@{BD$ks(5{-cm=TL?a4M5f#-!6)D5GTCw-^YP7Cz7O7^VY>_)~ zkpQ?Q7>$omtch19F&HyvVlZhqjX;j``+(0&S!_vLQvS_2`3Th+;gGofceI zFg1@d#*&h!uH&|vBGm#95HBrrUPbc`j+^pA$OZsK{IOy}Dl4}m&cX-X@&_j-0$yAN zJ8H}!5r=MiGH|M;vR1D~jz#I*u0oCrX7a8qn#-E_f{*r*0Q`ns04nLm$!}Z`IwgYX ztYdss+A|9&flIH)OfD+v9gDk(rk_`*aNpopAf`o8XW+~hnT z$p@9mCkzzwmMtUJMn$YgK}{zB1m!x1awZ0}WvG-fqFtCV>9K>|p07 z8%`=Gv?(gID6{c3V`~UF^iVsLIl)XCVQMZ~2x2CYCUBs%;t?u|>mo#CRv7F>DPR(1 zv|rAxMmbSBgN3ThVn^?$xv1(Qf^@+KrbzQi>CB?^6je@{)H9uQS)hquqO@OvrAm1M zOVf>xxYS3y^fAB`oy4>x|HyRO1QiYm6{m)vT)7sqx=wu>)rC+fm^|*%`tCH%l_ON-@ANGv z2?)UOr#q9hF=fwj{~ig92*piiLNUclYxqha5R(9k=K844&7Kc4kI!C=5N{~Y{irQW zmyIpR?m%sj+Nk6rn2RH*4l|ynSteF(2&|l@#FzBTt`e3z&~QG|h$fC!k3IxK=c57Y zBPJ@R{q75bg7M&b2;_)ULjM#{Y2X^!^+Me>EVj05kyp&919&b?D9E-cB#ZteMFM#4 zMhHeUHKRS~GL3jeZV9wpFbRN8aL_DF00LLL5({&<={?s-ErRx(stV;6ASO;j1<52> zXhVDT?6{WAKJ!Hf+ss<->aMQMXy~h;F1Ad_uswp!YrmC2laxx&k0nq^!rG?vZYeXG zYp0fuLB|y+|8_ELCv^X;c6bN1c#Ri%k(VISb5Vh+Y=e+oHAh71l}@l!sldV~H>XQX+pi3|)Zm z&ZHx++U#Qi3@+16FsA8|loy>O_W*`N%MO=NRI(>RxU*_5+fv8=MyN?Z=kuU(DAvyq zSIUT1sL_5GD@fQvPZ)(qO@+Ibg)QJiGexrC?49^jvP5Key8}xVfHdwSVtBZ>ux4h1 z7;*1rK?gGu+EQ}zxRIV5T1cI-&I7#uCjo1f_+e3^mhm3i| zjCBxM|Hv#e))<%xY&eoEj~RDbs*53tNRGGHR}bAV+>Q?~tP+ zk*^j2vv!t_*OBj4Ih|7POlgIX;?J@o+%7H$68ltI5f$rCUAXZFYHi2sk&$904{jK<=oJO54B>VfH2bl0;XW1v!#dHn#3F^~s^GOP7(4e>yZ^ z{~Tjrt|(h*`Cy+byxQYT1Pmh8qP=2+j-rWab;XVBmwYxhVcLv3Cxk9r)-lEeuIB8_ zCaWT@B`(s6X{p4L3!uNw2|`T=W7I8|bjdA!g72V_ws6=1nA#~GuG1#8ooVQurcuyRb|nxBm;|$rXvCViGUdECJVUQa)>*LlSxijv*;ue zBcmjnqkiZj*Z@>mC>U{}1XYmp1#i+}d?>^sAhj^XHnZ_W|CF|I$F^@kM%Fg z+X3t{=t8f4YMO|Fm4E24SZb39XZqA=GeC9Bo=7wc!3&rf04iZtp& zNU95|V+anxV2bF^7l~@Q9}|$-L7qDV?$I0LdaDSN_>M{Xo577 z9Q_m*N!h~5Ns>D)Cw`>-Sh2fs40JClJA5vw%e!L|n+77YYRny=%m={D|JNg@mnIkk zLu*`Z(jpwr-`s5F{C6?@cI+IUzx8(*mD&^Jo}u^iS`?o%xg#iGsePum6hbiDq`A=> zB;WlbzmLmkd1ra9ApGlc)JGF*Ilq?uTYV7E@3A04V04rlRU+tGm?y5b!)MtfbRlmA zYlI=T+qj&MUB1g919zs*)9#u>S7aI(FYKh^BEW$JVT;i$Nye%`Gvp5L49n2ltNp_1 z+~RJ#07uO0nqu$v*c>r^)e zD<`I6?igkbV}R%)lOg~eX%`EPF*ouThyzI4p7CL!_9PGA+bw+aKdtj?h}Z$bfxv+T z2NozGKmY;+1PCM)5Fnz&i4-eZl(-;cfP)1#B1{+{~Ya+H`5>cNB=7X(NM z0t8g32%t8Enjk@l5NSs)9RPKvfdD9V=6qQ9VS@%dYyKoK5^9L80@5yA*l^}smH`;g zTyS@$$%cm+0$m6-;X;}=X9g&0w7}ntM4gHrP&0Kxfd@10B^`QXX#pbz?oHTsfWU_y z8AoIZ+P6id35C1#dNH~3<;^r}6<1Mt?Nn1<3GKySasB}Y*8zilWY}Se8L*gaED2};WIag+0cA2? zmZ4?{a8_E5pb^**Y%>w4T57Bn;93K)F^MB>x;b!LVF}dcKurX;l-mHo$#xY|#97%A zMdc}H+<0!j2`6*XWk+Y7+I5HLK>ArJSDemW#nC|_El^;ffkI&DNBQBl<&})4#*u>p z+9hOK`}LIBUx|(sK?GwGHj-io@kAhI2iT>UWf7jm-;Agl;1&WOd|+2b0iuZjN;9Q( z*MALJs*qiO$@UOs8fYytty7_EsoqQ<8IcU30r01KsswTe6iSR+qlA)s}* zJy#61dIDu6vuKnS&7#flQQ2wQP=5(4)Fq~LBD|7@>RFjcNyONf4iE0{;Bg8}aN^e) zoN(g@M-(kkhO4R3L=sm}0pQ|ZC6MMQ|6zUaRCX_oa%%h?1o~{$_GI&@1myK3Xd5E9 z)0t153KFAfnZ(;eXgQb`+CMj{VoM|KMOc>)DGT~o2N*alnk^wsK;)lE&0<3oP;j5K z31Pl1e^)0ExkC-1WD|7MY|f;l;#0@7Eg^%)>9>Jd}?yfwe$H6T&_n;%i^ z(!a5t27vC04Y(jOHtB7yBMU5~A)C{{2PQ6p5>(h%v}CFST#zIe@!Q`zI4+IFuss?X z;X$_dp1h1?dla}Au__ilWohatFO!M8pq3Z6%`A9263EC1AiRX!%vfQJ)(zPP7)FuE zYX^{k1hmGYhhQ#et}|IiW)dx8#pf-&1P{Y_Lad%ROPWw~RU<=D=;iEdHE|ZSYD<7r@g!$Td|?u?`4gmIaaJm-nzXWXPHlJ-|??7DisK4F)W}oJzgt+4bg zjI{;)j>8c0|8PU@wG*k1SXJ1gEs84>y}Pg&1~_{00kDTm;nA3jffmq;a;ak>Mi0V2 zzNW8CwQ2#-P?t#lqaH;`;U-uiUbQuLm6Wf;l+`Ewi&Ja%MDJ zN6n4Ypf_;`Fu#_^UX~01DJh`NjtrnZ4lqer2;(Y4s}5?wQdU_-dt}k!CL?w%GH5b# zv$AqzGC7H=q(e3%OfSna>;#q(PbNDd4=b;9h0Tnvm>*t3lZ?(A%PUhDt4l$}0vxx1 zjjj|~D7jPsa7~SA*e$6f&hdWoRL@>E)~PIc3|tXV4N@)^CX(c*Pjk&zv!4z0@kCqN z)SDP<6((Xf1@_#n~oS zdx^UZZD0c&pHLB z|3&l1af|{1H!?FEK|@`UGKx|+L}6v&$@r7qdYhuV5 zBSD5{IE*{tJnRG&Yp4@#7;A7?aREYyqhp5xfn<5OK}pt!`Oy_CLLlm)fa3-q-O@9$ zmtKqbamELH?IkGo!ex)hj{&251yhLu83HXR0F`Gw|Dq9I_Fg)8S(ww1+k-jV6GMUG zVISdo+p-YK7#@E#BT?8wbI~g!VN4zJB0Dj1*<_Lna1h3188#Im1t4%d!A_%689f+U z4)Qg3QHVS^BkPg?ETb|m)E7Xw6ZtnJoRNk-#S$h_8D}z4R#Z1U$Sx{!|1j>OA|>-g zX!lw>Q7=~4XQ5FXZ>4}>NtSO&JXTVB1R`fLfiL^mkB=CM(iQ|6NSAeadJ{pEa;S$0 z=@l3yDBDI7R}pR#(;ni|9%YGabCV#Vr9Ir^Li8eIE|nsx^$|0(N-DyV2mq6F=qt){ zek2t}9HDq#1z~MgL0#xNjM-8Ow<1UN5z#^#ND+sXAs1jZYIQ+0wgnX6GaQ8iwrTX_pnjagiiR z+4g3PfjI-VJ<1^v+jEEbk#>6m5kzThKJ-XAb2sBeETY3c3AaKgqX6o{7u0x~N7fKE zPy^Cs7C93m6Nh7K(-0m;7wM{RZ4O?(nbMrhx3Chrqfbff-i(&oRN}YzNaNup`&KP{~LnC9JUvvA~>XlRis8r zmq=;>N=iw7(k|Whq=G_qjB$q`eB#f%2j_O;G zS``D3z-1+fQIK&=Xw|7cjUdZZMA ziHq?sHT7l@Q69VMt5fQb;Z{%gK_sVyyAS=3+F>+2j5du&#PFnJy z$%H105*iz_p(f)rJ}V?Ty8sIzJg&1gTGF5uO*c=8tA5!7kE-p$xRz5u6Ba}dtnkyvlnaOlK-(5{)7|GqRVGp*$8=J8R)T zK0~ujHvpU~a-S<8FNbwKqkxr#MV?m}v}ZYQ)@^k=f_JM(d8@Y-0Zz90XmA3!_~=2* z))93Et)>xm5D>M9NLM@IGSfmjq7$`2m>Tbv|6!wNDm1&BriqC!=qr#GYonR2mZ2vB?*kXpyH9v`Hb^>wf-?L50a-{h--2yF8joc0?;XZLoBoE zUY&A>(Zd)awvVIwCP2!)^yR$|1ilz6z5?vGZgRfa>p}DNfeOIB5;y?-DHmtCAN9MD zX0$CVOJV$*01X%#|0^y#Grnj@z!oG_s)4{&sGAI2G&1tQKBJowOq(=@0caMMjvFa-tH&XzkNLdV`{{RwEeYcu4zC|0(@<^%(94>^M?*kiz7BZ!E zGd^+@uBLS0w==lI8^kDGIWxd{?6VA#zvMf<^+Juf3nCk4uZQQE`?rf$qN(ddBqJxY zu`Cxc^hW}rdIOM8J%bWTv_ZU!0IH{8V$+Ak$B>DLy_EcHJB(j?JF6CfiS`>OLwpgY zJj&aHD5{qdtM#H#<4&oxcUiMMwDuSEwx0#a!Vm~9K!!ye@r$$KdJqtI6x~z2^o2rJ z6Q~v~F#<#FqlL~gRi$xN;It%LV;K{bA3TI3hQVW4V*uKc!cBWD<WidSUI*h(NYd5(c(O8^pq_jz$K!(gqvEO`xwGmmX_%8 zu=z68m2AmrHY>3$+p{g(Sq)UvRla1VsDv0pU@Z|8>KFzP7V!43pb0t=k#pg)71aVq z+!8T9a?3H2Pc%%0IW#@w8y@z^8{;Ef^h;H*rC~08Q!HXK9m<tbACAt35e;`2I4B}^1;dl?Y+&v*b&K)Sw-Ne#;u3Tj|XNcL@y*#g1b91x>X%ajtRSXr3UC*y6kA@e6P=iL5C?8#iyvrBl8Aae=QBL+}JE z>|0NlGLCmL*>>DNpz)zZ^m<;emxg^F`;V zm>;=;>NoGADQBe-y&w2;GcgbYj6MLybf*$P(;FQljHVjAL@X$Dk90}^TDY)2V>4-U zFlFDxZn|0w>LbBjK3)89OS3jhU#yPY8O)@xW)Igq?LJtC7|^ic z!GSeuM0|KqBLV~*2M{O-av*_^2wxU7u(BaT0R>;aY{+q^N1z2UT8!Ayqe_(#3oc;l zz$4QIK!G-h$TVWr1so$paNuCTR)r0(7U+qTV*rj)JqBQFHo#T3aplgXTi5Pgym|HR z<=dAo0|0>q4<=mL@Zlg^6)$GIIPcDZDA)S!3j#z&3KZgI?#i)3X1GEXq?J0;Bgy~- ziW)6@QGr#m0x*ibsz9-V)eRq#Zio`)RRRwaG?XAA;=$esfbK*tpg2&b0dBs0i1MKY z{|iik&KBSkXW51rn=dDD(B%T0J9WYoAlc*kgFegB98hrjK<~*Tc6BO%soA6oXv!;< z9@@`=m$d7SH31YFE20o0Tp*(91fZ~?w;~FFrUbYX04?6Y`;e{G2B7Rj6jM}jMZ5qz z>_r$6Yivfw@|x}-lwLZEMY=2lA%M&%&=4-RJ_}N_g02#vf(q24sl6N*B*=h<3No;O z5RuXiA}lc)FrtAlS}mgDyvwm5?{M^OC<0It$vpE=f-0)}%8L^Lmk9Xay%Kl&4a=46 z#0aH~&|?oN{t7}VPB^PmPN0EO3$CRD${fHw?{H%3p|Vt>$p9}E6rd|HW5b9e|BNhE zU^R$ zGJvVb5Mb(q4=}P1-|!Srm*5WqaEVQT+Y~q}{<;dlH;nN#uPpO6G=RM=CmIe?$OwoS zsQxazuvbV`)=*qvcRLGLt+vWA)Bt7;0JZ|Q9g$y^fC?HzX^S@c=oXPx`bA}zov~S! zo{jeCb|tD7f($8O65Aks?N%*@!UfgboIXBu0CO{9FWs8fjji2xfr>YQ|9Lg4_g;Np z%9~p$XZqJrITs+uN|7IQYYR*Q>DX^@`i5zP3voxuI%_^36F3e7ovV{M-&WU<4p* z2tfi^&>ym{4vJVkvu(~!IKaV9FcP5y-77u=5YCMzXRpq24o)0#$xZH4I)(@*0UQCH zue4;LqR^&Y?JCz;xWkcIp$#J=t6BlV0>Z1zX#uS(5y?R0HDBR{|46>$VGrd3JmD?P z2tFcW5skQ)e%Wt#!g5ssIMbB^Few1e!$`JBQ!UbP=R0MS)E0ZyHqsQwK%^lJNjB)V zhHPbvK1o&keshrG6vrib;>rCS0H&Yhh;#A#AWGyzGJoAiB6b>xc|ax*dP(eHlv~us zNS2=kS!RnrffPsXrMstO#VDnM&AVFV$*Uv@P-aA718C!sh-?KbvwI=mmPkeutwniq z*`W_}rVv{i4TwQR))0;OOCt6qIbNL0)JW7bzVHWE8S0s~GU7xEWXUMrlZt&d_asjd z?t2fRk4oOPnt>2(OO6uH0^^6r`RT2GgiKH&p~b)mQt$xf|H_CsK{!5&(1Gh*a06_(eXdIQ~4uBPobVXF`3ecvwR-<#UCUQrM1W<^O z3IN4r0;{JD2@-!|dZGx0;IqTp@SGl{`-Z>>veu6cDP*u!x16VnN8*Q8_j$kR6h{t~%Mu9tc+jh=688 z7WCaZF!k!t!Xb?9a%I>IDi9@z+Xrt_abWlTp#DVYt%Qm3y*3@L_GO#x6sDWK@_ zAh~(Z!9pamk}YKcmg)~5jS@AJ0?4rrz{vDU|GX}yY^9r)1QwYyB9#y*CN?blP!1ui zmsu$Qrguh>geP2>3R~DRltFTnk+~vZMUO34+l*%5GOo2WaJSAH-*2s|fB*=m05r*N ze`tfB?+&enSOT)!{0qY8APi3PY);2^(k@%E^~O@3XM;=$$XsekA+;M~ z8Ip6PS~5er{49R)Y7Gu$6CXjQUMcA zz|`v`0~pSRK92a#qQjOKB1KdiLW*k$n^=MuU~r+b{iX{t7llBYXjrei)PDqusq~*Ehe5AEdFw|7Dq_qPvO6YWMnx4U>-L`&GsKcMt@A0E0hc;Z>f# z#20Q+I`57iAwMz6bDEv?n$G1%wp+~`F?i>$MiyQn3kK_C}OzU5;+v5S%C zgT8u85ofC-VtJ4$s(|dvjEpck3=tbDQ5TxX6;BxpbrFsQ(3RR_u~E7m7`loE!Xrt- zxb}$&t#YI&Tc>;TB0z$Sy{RZaBC^T@!$7%^=6DvASO_~2o6RW+jVq+1x*&&WKlXT% zXCr_t3^P$`7k}Cc5rH;}{{xg#vl(1bh=5`yl>i3sO;9)Z&qPdTv=aVjM#nm+P5|i@-N3wwGb6Yfv`kC2WRZID z4Pwa*MLQlCVmz-DwX=w{rJBmi0>PeH5HgW~fl?m`YL{ii2{rK!h0r4c=%Pr04ALMg zV2R0{V2U%WHD^SCh-jp%Ly1&V30ljW&2dYS(Um;BI`Se7$>ca*aXnH|0Dp=x6>67i znZl-A%Gx=m7J?lOF&D+Sr3e9*mKwh0d%CggvrhCxwM@>mWJ`4#%Eb&8xRfHcc)hwf z9lDGQFZ;5)|Llo~1QAifthaHS;t0$pvyL-Tx#>I1KuOGX@|-bz%%un@_9z+3ObM}a zpg+;fpx{gi=#4~J&B+|%$48WK<{3v&M2p4bx#l+0aR7{B(NuD4t1t}Sl+qf?>2pka^JR&cd0T|wZ zL!N^Y12eOh$AYLECmRy7y?oN$p{C43R4S!BptBb#E9hEp*=gr zqFccQ|5FGDh!Cta(GxvR3R_VYS$bBOllB2#_Q-(!i{$`Mr8%rd#SSK#7Y)#mBfnihRtoTPjgS{R>7l z3>9_MwS?3<`i|bg7UhwpBHYg1`A~BsH?}yPtKf(aFtZ(sKe(7O|8h&YDShU`kG>K3sfIdVL+ZGj5^ z;;(4ylF@LRreliP93(aI5cDD31aQ(cOb+ajxkY)RfVnsQOo-N5j|e${ciE?|{|Hb7 zFq;Kh50Gt+Vud*k+K%x&#%|JKNVm=IlGM?eY2mJ2)VOCP+5zK(9FmfR6RW+uL-)8B^wW6+)0L$*!lcnhYJ)W zJQ$5iMz;MR`ankz^pTZOM-0W4Bn%Tj)mEL&J~j2PY1uf#vBU?K z%X#gaPmxG(8A7nVnGKFj)^Rzf7VrJx=j5R?UZP3#7;*%^gv7KRGB7mp!D@*Zjv_Dn zOBhUB$!XjPj%`?@Fb^#=N>M>uPIe~?0wEES&kPBeg<53B+^ysokH9s?0MZpo(x7`; zBi0DVlu{|z>o;*F66;*u4DnnWFlEo8i{7-0mWt&8o@HLDWm_&?Ts}rY;vIY~x4D=^ zBCOLY>Q@s1kYj$3WHyv#j=*LPa;XplgHYsennQ|J5n2j2TbcURX;*Hl-{Ojq}PUB3eTPzTWDhRm*>-@jKY zwq#3t4xtDUMrdjK=m>oVspFAKXO`R{FV*bFjE;*)!e7=RMkj<+9gdjoM+;tBm`lqo z+m50)^}+R}@J0qY8j@1aqx3JTL5Z0~&D21T6JR~$3CcpN0a%$< zrHnE8ZMst>ng=6wD0oylW0V6`lBSJw(^xA)v}K7a>D9rOiOPd$d<4OuL1F`~D1zMJ zsbNPI4y^tyw~aYxU7LE+W;VB8=d*>X&csz#4N#>^>#5BUPZ+(i`|_BL%>>2W5p8ql z=uyhDv-)_Z@_3b<07owdI>2`ba#p8Dw+d`42&y8Zhm+-i3htFMn?V$SU9o~}wo&2` z!h!SGmK99Kt!bVQD3N`vaduMMJ9}>$d6xN)qXpl3qdKM}Vn~QLRRS}!&%~{FRD`6H zG+UrfOpRh{Ug%6--W||7Tjn}nF?V_-bFwjxx5P2*EKI=pq4?;x5Mw1krjto2SeC$J zaRQCcQQMUHb^OL_r`1W>c&QA>kK-~15`_m>@j!R7B_RGe(WkOj(}5dcAeH*SdzRDJ zIi%Z>lg`wS@quj@`fFR?Ko^@=Px#lLZphiLnIH}}B2OTo^ouJ8{<-Ws@`i%jS2j%OSzg*S6% zM91ESW1SN$zkk>lzA0+BH_vv=>lDz03mU?gKrFBE=tD3wIFG%f7!95naKC@Em*CD1 z4u^CY?YE|oHg*z7XDcj~4GiF9$h|ob;>0m2Sr`dQQ^F;|R_1^v#1q9so`*P7{+X#) zUC$=osGR!tRbOs{ZnUKEEttrDVP&0po!6yX{r2KCb-pp3@5^)J9tx*06Yfr{@q~=W zB-f5nMQ2d{%Kv$9l=U`a>Tglu)6ViacXf3~M4CU2}I*|b>d9@!RfD^7lf=d z8dvb5D|UTNKJmMpaG2Wo-y<-oU6*4>dw2hIFO5zDv6BrWU|tINfoT4YR&L%V`Wc(` zCGA-g3T{pGRnLnMoV4`L&c{TQPNMz#YJvrw)g%YKdYLg#rY+q(~5!Q;q^ zrAz^b@L0XDpgXjbt_&C*|7A1P>SdjP$4m#Iu_}khpy3201kBmK zT&<8N$BH+klmgKSs*klQo=Qat>?a)bvVzATnRU;KoYSerqthjcv);h;Y8BA1601|o z0W=&PAqG|*_#g;#ChKN$sbUPvV+sedy<`tc^fm1@t2W#*|BQk$&pB&#{^Ls&F1<#5 zfc17;C?-b|McMhbpON(`{tY^8t2 zR;=zzqZ|QoCJ{d}4TykXd$FHG_-y9l$%KDXrg)34~9}Ku*K+!1Y}QqhOU2E4z_x8=zv&GG!zAu4Nip z21t(?TD%7-tXN@pkF7>hQ7^B;Lqm;9V>7I8bK}^<4D#a33t7nEn-y|;31+E&r0&Uh zPV{D;c;$dHPN6WZ8z!NinIbabzBWiCkqAhvySOzEFs#%o3^4Ez-BL#`5Yz^%2S&^R z6hhnc@=|j`+Hw;+i{*;U*aDd*J$V1`}b zdS`05<7h;qBKGQowu%6Fd?{lc)#N{bK2i)8fkz~UZ#IA@h+l?Uutd`@@dBGfO2ru5 zv(2D0n2o~pdOUG1Cf;6+CidB+t*s5)G{$33F>9S*&fdJR{xdm}<~pz}v{o;5OAaf+ z=a8#LZVnXWki|wnH2Z=n5|=fFJ;#DzDqc`g=5#lFSUr+6nJ2CEPn)b^>;#C*=Yj>O zwV+BMwMC2fDhq*4z^5(agYHC0M;JhI;Mj(YMREFOs5de5O{xXRzGgU0xxQwy`aorO zC*JhdYdjf=hi@`H|68{Ohh;3eJF38HwalmAg8WDRTLo7@C6d?0-2mTHO5c$&!5)5YCA#R3VVbCoc2x~D(ry}$PQMQ6k9hUuuf z2Y8)0&VMk7fBbH!6l`IaOvu)6v_okkNfs9V)$)T)k}OW^eul2cfK1Cwxf*)2nwwY^ z-omIF?WmagJt4pvuEz2PuLm)ePnko~NNDfxVUyHa%qNtcXvb4Gfv;T8On~RX8bO6T z>w<~|11T$t8swY!DSQzRc)(=xjZeJZjV!y%kfTQ!Z+O6U1Q@pD{X!R%WWe-ni`{mz z6jvWD=*lTHwRz*SCoKQnewE75zA%~Wp(-XtlN}a-#0#?nko6c6%*Qwut*2~h{ItCJ zV+T4N>uJdFUK3WU9DPs*dTs%jg_2d%0`2}K-P8y!y{yc{>x-@wCc}6~i672hlZ9R3 zk0(`=Xlh=%GGwuvKV37U)2v)J++0mEtB+x0!lC;9sI=dB2LFSZ*%HZ9_NY^;7BFN? zsl84>Vt}C`!-cMqg21}$0i@4-{n=xX%^dh^wpr6ez;;tQM&oq?C+Pty==AwI%+m73 z;o)l=feJRo=`bBj)(Z*)*gRp$F?;IczDjUwblD(_rn|p%$|iMIKkgQzXRz{7{V5Bj z;|#v9VF4Z2uc|5Y+VS|$YHJ){{g|WqW^zid<|0nV#c+vKh4tAAEieSTyk-~}g2?Q2 z$@QD+Vk%y%UrfpiiR4he|H`gX2B5TuS1NhT0O+|!YDc5ulIHUUF@!K#87NpW?m&_4 zd5$mqs#)<}wPT!Dg$&F@n`-*B{$C%9f`l$I@t|O%ccH79*RggL4KgR?UZ#?z@_dNI zA|rE03ViYq@fwto6vc%?6ObdTyS&<-+)2KtK{dO;{oKwVhIeunOZd-Fvq2!Nubteosh|7zT|w>b~wCOxAHvuy4>mgv%%NA z(abB5_*Bj{lz4CH4M`l&Ez!1vCt(sCd3L3BmPfJnfyrloB(0uW74~jKhgQ=&Kk(nE zxHhM%3TY?Yxo{cSDk%w8p0}jD!HbbAaB+<_D!(Gru0T4EdsDF5Hh{C(mCdH%g`%^C z(L~f!tHb4!8@$Zs%#ahLzZN-lsXr{lAe$ns#mpF|e1mVLtRI>d*mXU@(&C{CGJ(}2 zd*WLmW{@=#KB>r&vKmAd>~lD~&Ij16T4EXvO8!_Y#*Kw^AYV`QZKuOB$7P8X-qU1Z z92-9z?Gk+=Ozp;_UW%ZHngQ0`-CvhH9Yi**dkwl({)Ezc4J&1&GAj7H+q!PF z@@hrsG`5M>=mEpqZbvSvzL`TU*0Q3oceJO}r?Rc^&*tW?%du$R*nw3fQahW<_evy< z>r)38%?~>n>&PrKfp01rhl6U8zb&*XXzV&)@q8P{fv$qHHfgdrl-bgSZv6R58ToR# z5I(0-Fp8D>oG&kqTEmp=^3KGiVd)~a<7vLl9U^YnBpa)q4W6x4T}y4PT-+#uw=&;; zcCcNg_OG_0cU0uzd+;mH|M%0byDx*e^2Jx}m6dLa5cG(+wWz|1vi>q6Ec14y zp)RH_z3%u;jJr5fCV4=R8OWycoxj&`&YJMNV1n#(XNm)wuw~lrqw(h-2F=+Lx3-8k z_ua7~gr#BQ^-d8yHkHPY#p6cvevUZwRm@#2=1HPjlP)esx<*-oZv_pAG7UZ%47tXJ zv@@qtX|R32di8-Xh}|jqqMQ{3In~k>JB&3FCs8$hT`c|4Vz7b4+jXI>KOEOqg3CNv zdv&Vlw1pZzi}~9x=C_v`8n&EQv4yqV%bEf8icEo%)lB!;Frj04Yb)w4k4`;AF+61U zw~;#Pmg04@+F7dH`v?@&1{&iSl%?soC-m%a!l}PY|K$|sF0~jJoK63`_&7YbR*P%} z;LzX^S!thH*%hFGe_MQx1vG9d1W%OVdFbhsy*UEnb2Dhao1shfb4$_ zMTem!EueKy$PFr|aSozRkEG=kJC|57C(2 zqu945#K#J_o!@cannN2Q01oZibMb6_6lgXQq%n5Hsj$?NRMH(mNGI11fvD+kSO}1J ze$&3(GVyoHeB8`FSjq+)W#%!!=np1_>giD5X3iNeWm_q0)GO2kX6HDKoX4U`c90`; zP#R+)|N2XtT90R^l&xBx@n}ZHAgP;ufh`O!VF*)T9Q%R0Zup>ut4(Vi%|X{>Z+P!% z)}~*CMmNT$l6F+SWGzBfo~t}3YSHa9^2J;=WCF+iJlFReTbve%SEoQo*+kGttICGp z-|*OeTQo?8!C*qh8O7<{kz!)<2gpqZ!@(RZ2;J~&TCR9@`EROCX=Ja!PuofYqAwBcRLg(1V?ubNb*jgx-I=U=%@R<)rzq{oXULZ% zR31AiN@lGd9p`x{WUSZ!^y{c}?f>aeUG6r|Xl4LIaaxl|Ob_x-cza>r?|!K9h`GVC z{@<2D8MeX?1`Ly!(I0w63g;QQa_N`WR*##iVfZL=r1A&$TJJZjLP!hO0rU6mslw|R zDeVT^dW9yfnglkh@?tx|CVC-EB=43TUDok~f7oK>Vt^l+<#;U*+?8#VibGX0G4mW+ zfFFY?uavP+h5Bj1dOymB)-47pJoHimIms8tktH)f_Olovo{X7MLm?Tc1<^2@Et}q<9YxzHuaaRXxTV3jU+3GrL z-fpjC5E|Z0sN2Pi+W#vI?YGZ}u@kmQ3xON@9xY^MRV9-$nh;gKO`38)PjUY{dk4)^ zrA@E7wa22Z?5HKGl}W1YKk4dpsW+Mb-9DwJr>EZW)n=cqlX{T}ZAxhFeg zEp7ug-NJ-LQY+dYtP->mkcd9FxJ8}qM?+&Z$z}MG@ zttrFEl+Ke7;(KA_`!8~h7_JBk{6r%j+HFClj~XLitgCU==l!rpMmXGD)zoY-oWmij z>%PosY4TaxM5>8;?hL0E92~+r`JobSo?gH9)Hp`_PloZA^qlHZUVJ*s)f0+-#yoF; zd2maq&oc21?H_CAT&U964#WDRQ^L}9=c0B96=XcWMq#mZ60a88<$k`yKm9HGtM5l9g+m$78SY zHa*uyEN`-9w0=76FMS}`P$F0a}51JYgP&xKJ zBq&`1^6egYBaM?hce9$&tImlJ2Z@9~A}%!|^T(-vlPf%^jD2y&{D6}UPxD&AS8v(> z%6!au;g^0v?iuKXg*M zeK}Blme#H9Z_dpdC-PBfx?CnoWY}cTdUMazeu`^JZiI(5GYZ2k&LwlL*Dx7hgA4rcda-dLtQh2lvOsZa-!{rhlffFM?PAmh)dU&H^Tmc>x%Dh<<*va+mCm#A6lGkPN!LIxIk!> zw;m1F7t;$N+&_ifV1j@oXvG@Bi0IUdRUOfvC0dP*`U85#a!xuYsDSK1I zLdvS#oV-c1`=}5#{@;f*Uy;rx+?Z?K=xZG$Cm_|euU0j7|Ld0?R}sw{ORyPzSnH@V z8f$94oMOW1J;U|-iNU6qAbSppzy3;r2Vu`Fpe(rXRzUC9jrn21_YN~5)2J}&IS%*M zc_B;D4x{3r))toa{dxQ!J(j&cybX^PqPlScE(M>mnst8(>N$48?r%sBBCbyM4^31h z|L98+-(Do3*tq7#5~mw~t(-t0Rb>R9-9DiL%= z67FTg$kuuJE6f_psPk0*RJypXC5kTUNoUGXSjIN~avk@sjcjmP!{HnZFM& zi(^V4LP0m46xLO&$K8fSx!yq z>V2d{T8iz*Nc?V+|GOJ8AU;;?^d}WFP?sbycMqP!EJDXB>Ux5b{xKk5x68)pf^9TX zLGmcxR5deo(wfsJC9UhrSfE#=zv~4gXP7h3_97);G?o6bUZ0zPeqVdN8Mb_x&0 zL}Rdir_CsU**V$MDZ-}`JV;V5QpH3pZnJAOlcpX!8~N+MKDL<}K3r&PXu4W=wEGf_ z=If6A#&~%vR~VhwOl%)w&CWkY2YoQiIm!4czg_y)C^KC5DaW!qY&*FBSMcYurJS$= zb;|RqI<>Nd;A|xeMA3L+mnv$XY<}<8+&)K({(G7M*;9vKPosygM>m8Hje>uL$qh=~ z?Lz;?B+d?@;Tn~^esK?Nty>y|{gtZ_t9JPmxloO3^>^BF@Y^q?^pi1Vvj!QDr$*N~ zcH+jOxx`nN=9?U-!-(P)o*F6ow2?PuGZZUgd*Wld5;jQ3^NY0R8@RoWC?eask~lZ{{KN6@{-2uv{NHVNd6F*F+4e>GlJ(n&AF55Z>@KKm zJSD&NjO=A-nNs|R;Iw`}D%^2k`R|loK@HBkl(w1S2DdJaI^yToLs|T zxLNY^fy#io#BZPW(T)BvrGbLiQ~&+xm!X4yNBg%Yn)a>jStMHQlx}|A^>YpP^Mwx< z3fG5GK_-*MtDAJsGed;w?0_AMoxhp;o$BZkI06L|8A8nAc|Hh4f=GpY@1ZtwF&M1m zJT!nUkU+>NX?EUXtCUKwtS}NVyE_3U#wHw$xu93bLKVqs4btZDNxcZl#XSCCp$-LE-Oqr z(S&i7Shx2O;I80@+Z$6M7M-E+bVo+!|aZNVgCOhgPo2=0j^aJ2loAn|Sd08?yySb1dNqFTJTaS#=*G|~uRR5^ohZKK0#=L#rXbyRP zqF^I*-2_i!(6O*17tmY5f1XTY!p1QKro@g>tvErcERP;+NJdvp#r0n(G~x9|s_qTQ z9P6`Od9c^jz(2DPysp8Me6Q-Kb6Ko0${kmY!9!~Lak@BEanHK_ZnkFW@q`VGhB>au z>Ryls!lX_l6q!w97+Hits}8BS?i7g6qi132mdRKCDzLPvszC18exXpkT)^MmO}ah_ zLW8hvmvN&p9MzE`CxZCsG0!dr`;?wyC%GEhi@U>SpWd+ZqG7>4jS6k1E*MkrUd%74@e4u!{5+{dKah8-ZN2iE^}FQ|*6p}; zrnuFXUz1#M@fhmgOV|ZZ(CtPTwg-!;JKEmuSUAJmopEoZoUnO zH3M_9@eH-Yp+4S*bfE8<>(@Y7r%MkENs+!M6cG70&mIa{_xD6LTF6xW{jZ<$&F3z` z(5o2<#HTAb0MI@l1BAd!jlk59*VC1i){^Jr;z0tvba7Mwx_}zk6cmm4zfq4+NkF(v zAUItSarp?-lV>bVL{%R`EEo~Ij-Y(GfgLeripb~Z=O_5P2dw@Bz9Rk|0sk{n1p??m zAXZ*l006pwDJT)^FQpiw4}5sD@ISr(FH-)eZUul8#Mnz?t_1*oqXIxS0wD|_asa>| z0mL8x2L!?q0GJVgAp#Ia0E!5J1c5LF5Xu0e20%ms2vPvy4u~-eNCo8=L2A^Fy0w2VN-CzZdCa20?s-o9%8rn9AWti!w88 zwVp1Pji+w7<8>@4x=6Ed_X>4gLBoO408g+pWOU@0vqdZTAE3=vll1-0m-FqG^gacP zV4*ii^<`5M?m~Vh$E%Kg)YN?<{u@msBZy@#>JYch-oPhnntZtD?ie$TCQeac;Nd4` zxPJqMKll{*XGiYmsGemA&)oT$@6kr2_{0Clu|E)U@lMgwZ3+)=3PSNEvGgB~WZ6aT zATlgKXUZ`udB1ZLZ5q5cEkqF}5F|ho%JiJ_B}x4Dh(1~Hwjv)Gq^;Tpu<(m_(_T>z z?xXyfbF}uRJQ@24uxV^>#4?RUl}4+T=2X1D%0;sc=EIrTNRjSDpGy=;E8k1@y*;Y5 zaGNAGP3!%F?=rNKh`Zu}+?i2IL~>{T{3PV{a$tEBT$R?;LpNh zCS=C~pJijmYU}AS$B#kO&9xul1_-v@;w+0G>r!xlvrHMD%!yq{2I^#aL(Xz%Ol@U{UZ0R9;Qb!Su0ueVESbWAjPvT;h_iSmh?ybsfdJvu+Lj!TbYr*$X zgL9w|@}=Icc_!|_>s{6TNy=qP@^4iW;%!U9crfdsq+PeuNZF{v|5`Bscjzc4zWeoD z!DXd(FBz}7ca(;r`t__H34#WWgwy=Z&(_GNQgARlyu5k^C!e%p#$QSuka6PPfR4%| z96Wyd+Aanv;>o2HfyN%+QUtAgV~9)@FyR>Oq)_>k7YwcDqe6;bJK zCa!_m8>A8{fzc7E71L2v(t?owbLRbj>jT!N(s^B}_Ke4N{X^4vQSJQy$N*0q(*I1_ zS8~sdp&|IbN)JV-B{JyI+Q;$Ja*zH!J8Rs=i}dq~aAI+An4D+a?&9@~uo%R_Q_PDT zGs>|6h8wN;p%2l(PG>-aJ8{NbFEyV-677eD_8bD|?%HqNh5E7B3)2TEZ z$Ow;8JjwT%UnS%-I7}e70*c3t^G-sg{j<%s?~q z(ayXVDo1N*Qbpsj`UyS317oCokTG>(tBB1v;=dZ)%5>wxnC3CU??J;R8{)Gn{A)oy(#;LO#X{IHgRIHcmw>s^A`#dcAZkB{A+yne3 z$T)Epq$5D)M7H> z2IWU0okpsh^I<#`kZrsiQuW|wz7sx-Su_SR_gsn$F_&y)`~u*eHmWH2pNtiaXz<7V zEJrZEe^YO@&yb9%_#WmALW^VHR~I^R zopIF1MQ;}^U2>Wg{Fu%ZP349iq$Q zm~kbKrAF#51>-FgJ>zXnPCuYnyzKa0&Y~_q$=s@`{n7qKF|sCmbN-i-FmIMT6@-JZ z!*O9*@Ls+^%iLWg-{K&!sdIq3=K68yBqa>#VXe*p#-2??;ehd7&@w|CDNB?g7Td&w z=xbAeCF?X4$bu{5Vh-TFl3@P;NoLw4!nu;S0$EF$Jbu6s=-F7dvVrzflU0Z8>H@Lhp z<+LtTy!|M1H~J22tMn8l3&nCvT;O8v?)!J<{h_S*RhSK%BJv?-4W*cgclbwBNKqMjkPa?e}>{}=*hB3OJwT*u5j=7GB;A7=U!o0|Lr1Khahc}PgGg1?E3Z6imBdE zBoKqXXUh$QdTd3R3tPX-`YO6cVw8TXRqsf$eHWC=OR;ySAcQA(YvSjMahEkLaGZkjLCRDn5351%K zuvFY=a$L!aErq(?g?jpvt;_I{%tM(Vc(=@eq%Bk@T%1OiA)mpLq?*a@hCE7077R1k zC*rL|6XE~q8(=5J4|Xg_qm6v)^e0m(zCEIsDaf{ygpt|e&d+iW5fN$99T^{L-SFl0 z!H)HHg@N^vPHwo+J9)dhTbFrck91pCv?cfTOEpX1cZJ@e8jBp=CGQ~c=s;3HPY0-7 z7L`?sox2hUBlY^83Sc{ZC|UvNzmlXxze4ZyUtI{5vqG9BO`I1=oEs<2FrvJ)V`F-8$>Hk8q^Nv1WS4k-6<3-El6ZR7p?^70>5+4YJCF0x zuYzERf65_5)lKFdd1}fdDK+*;LhN1&)HpMSR*s&Jad^icOe<382xVjT+>WuFBaWE8 zGwtkDnI!a`6-dP(=3Skq-aU}t9i^DD3kT7pQ^C?zs-ja3bq59Y749`(ePu1759&eH zpm@RCIqQQ#(yFX)sHBw+K$_8tp=Pt(CC7r#6=pDgu#Xy!SHn@~Fii~w0Tlj;0gf;O@$?#Dp6XN%Ch0{>KU z3KZ~L`s?t4*wG?@hb(-}B#9RC?N8BmEJgZG?;TR~+A%u#-J&!om zj+tg4NEVM3R^*kIy(FI>sEv<((wtN14>RfF;3jWvyxXZ+YNI%61x$V8;wyCSWvL0T z(v%c{?}qx4D!htq)M%apzKic&3A5u7{2rNA6g>_eMWt3LK`|OmT=D4MQ(%!xBxy&* zB8eT&ZQ4lZ$%?ILd^wuRTJlOSTF*5lz5-up7ok{}UP^D2e29qqd%^y6Ym^Wg<8&6I;|B6}-T4qf`?w$IDtC z62Dk)xli8G4T?V`SE-;1V$MSX*@ui$_$r5_r-R6NT9jAbocc@lhkC?k!11hjd~Qq$ zuPDRP-^*9arR%*#8LZ)hWaT2(31%Z56~l6+TN_VnYk$YFGxC>^fb4bRnoxMOe#D4( zMmZv}`zb1f)Ga1a%vO!&S~rw=p*aEp&dH)R0pHnVd?#Ca@!r}VxtUBcDG3A0)r#ev ztuXqw3zXV~2SVAYWK#?p$)~pZbz;geKqjBEQVDN^0i?(ddN66Tj)|f%NLsmU_g2uA zVuDiB7=ntM2~bVCj3sKuJN`^cxr{f#*8#b^_AU8NuvO=4N3L*r3D=FzUpFo+6)#>Y z!s&!jg(tf1Ir@Cx=i7$w$|D$c9N_E|6uLoO)an-_gSu8dfyih3w zH(25lUqdtF<1yks8zL~0T1RNYoCQ!-f%-jiepC}WJD$vO3LuEbY03~pA(r8!gs^Tk zW)?nLu5_ubL;>uLkaI7Dp*mvT`$27Mkrn-h<~p%7!>XTnXo&eR%{o%Mj&589So7#t zI%8B6HLpuuxg5kKT5&{YpocxnGLtsZ0$2^*#uB1Y-UdTTbv^!C z=ln@@qBl5K*1*h8_9g}(1B)Dn^35aVv@WLK$x2k+8I!F9ru5po$(RI^Yh}w9x=IU1 z*(r6Yk-9&n8LsX^rV@OKcr-3@D2 zyU^n`XHdT|g>^LrIwyBVfaT$^e2sBwz&hJs*?0;8Yp5LHp*CU0=;^G>{nu>#6P^#s zBHlhcM6MEtB1v4S4L7z`9N^R-`Lf#kp??^aHo>$vs)$yCn z7HvZoBkSGhsHD|vhHe;_Pz?Y;VhNQs^qWxdvs|-WT2Fb5qsNmcZTzbhW1|pM@t9m~M%omdxgsWq;Y@55)IN zALe_m{a~U>9bwmeI3arAe+dJn|J;6>R01xNfLkN?tAEq3kE_fl4Oi77zKyf@GV}qBhvUBqeb*embww?awRZ-%Y609*$iksE6W>^H((yt33uB_8|%&Ev!UW`#4|ekv7viF zz9EoWIn0;F4-E6}nE3ihni;)6`*Zy|FmKOv$_9k0DV4df_193In5hk|X6R*uh^BvV zuM@uNbvj;jsMhimXWKT)U~MJ|FT&jZu~mHl?>`V!ES^Mc+H`44L-{DR%@~2fcWtU9 zcyLDa#xF%kAcN(P-~=a)55q>pVj(#D)_naFp4eM#KEpiPe&+I^LeZJIeePRT`X|ll zGy~Z*AfBblqn>-&BkV%Lywt1<+5{caAUI9rGktrQjSX-WU62nDqI7KFa>%Rb$v*1&o4(CLRINE(r%v(NW=~urh@(Bw-JM7^}UJL~OP9a=AJOlbPrcsM2;COd(6q z{l`eIZj}Zq5b_V1T<=J$RL+P}K2MKzzEIt-KSBithgS<|lk>nYcE+N0QHm2pwto(% zn02Y7@MM;Rp(5eg*{%AyfO?QD$JDgutN<_?4$S;q=eKITMU~3UddV=*1ZtKHIbQj* zm=nj!JXm{v9){wDMjBFM5V|?cPlgF0%e<1E;WosDs1tc1)P}*-(V42IgR<#HwhD|; zS{c21q&XEQBdc1OcAVjPs%8W3p)TCl9;Zgzw#JDB5_xXhdg5cNy0jLrK3Y5nWl6;L zM_c+Hhg6&{+3Hh?)J}gfP;SF==5D~kUSAlq~?GJF#>JE*WJ{$ChyAgr2ecf7IY zA6>CvwMy^=Lmx5$me33_#ENrO%xsWn0LZU{bLZHB=LB#~!|SuVjIdbOv#JSZKg z)z(Q}^l)V2^ZoCH?<|kE<+{vK=e8}i4Q^l^jzmPWj2>evnBlzb1VX+&_-j+9xF?jZ z8vn~4gC~e{O9N}L4h0r}GCB*FtruzvI-OH$u!&C?CLqyb5lRPKz1WbE^_@njMRl?C ztEs=RhhmFz%yY}x(g}g)-@fK7wejOu7r+(wYy~2zG5C8piFlMkV}mkrbg-rw#)0G+ z{RC~$Q~Lz>7CZyTBKWDDK=WPXywCTC-yO#)IOYq`E z3WVw=4??|Jxh01`6V*IY@RTycez} zWz!S_spVm?@0{zb3CXp&+%^l*CvHy&Bfc))6rZ-!v(vNgEsobFzW@>Ye7Z29Rx+Q{ zOl;d$sJZ`p_aADp<%eIkPxKx{Jek|+uH@IX1(`E!JI%yJTI?;98lK-`c&Dp(7+CN)NK^$!D^B;f+w=ps~ttt9q$6O1rn0`sD!K2f< zjj7mSWlfNYNDXVlqsx)x>o=}%J}a#7`i)Xoe;MiUF)Z(unlunVY3}WR65BzQ`rU)L z`L}}dH%}1t#yxJ_^U!sJWsdPx@7Xyw+P0)@{VaYF4LXB2j>+FJ;we!KHWa7n101XV z)o-=F3MZI)_*Q9{X2nWPJy2f*6f(pFmYY$P@|qrD^&pY_fl;8W8XBg4IsUY3xHNwP zh%~JsVUtsILG%Yu!2j9L+)>78p+vFQp&HPGfEQ$yjT4SOlf@+fF(>(V<@b19k$*H~ zN&nO76{fpBM)MIHO5Ca3{Z!9T>u)!bm=7HrCgoJ2!(q`wrn#hbN_C;R%EN2y?Pf`p zW8ljMB`2y?^x$xL%6JmO)GT~B5^|v?FurNP?toAE-*{~4m5N%%BGHzb>swz2SW^-j zXUpapon7gxyA0hI6AzXc*r}4*n4LtH94?s2xRlU1CI_rOm#yDU7t)+FTJDAyddO~P zyE@VX`sV6fLT)?PjE@iEK=9?k=2aAlm!v@TC}KEqurr7Qbh@xQG~E;^CKP3NB-09$ z$A@E@`NHXT8nta(XmsR(#fGc)34y2N9-qxJIlA9Ugdv6!@@;7EDPijwS^q^daYPH)8VKTSdCf{0+BM?B^SQZ zH8_LNkA>eH3x=Ey!S;PsbO5_KR$`4fVP=l6b_t$WDTI|(U0)E>CtF%o&O?`u$GTmc zm(CvgA!elMohk^iU|Xc1mZzHSVrSPvW@^8Jx{!lmUnzpppx%@XFXSq&QVt<`$|EBX z_(D*QN^@d}VK2A|QLLG>c9AP!Ynzn!E7#4$a4e7bf`0(f3$UKk`?Nk&W29DZ_xu8^ z%v#28T;g$m=L*APTlqk|*x2*MRrId5y}$9cDOL?;Ma#FUG&$S6Bwg=OvZtN=ceW*k zvjC5l$N1P;$T{g-{f9rJYct@3wi0a44Hg1+-5P9$;1?94enqC7HoErty9F&-d}1fR z5&rC;@ec9r3jNO7yw|b`o}s}U+tnVm&||K6mWkS>EQRzB?CM|X?xi_)zJEpnX(DBu z6lm+?C}D^rUOX@K3~?sBfR$aU(zur|HgaMQW~RdoA$}*5j4C_Wt5yh23&iK>)0Ox+ z=6&M*WCq{cxE6duJQOS*Fv%)2ngWl;^s*e;N2Oe$*mJ?1nsysJ;!aSn(vl}qd6JW| z2t|rhBrzvN7}QFR+j&NnBi-nCXSF>&lJf)vmEoiF3{Q&c1y~_sD1ntmQD+CccH5+=z50HZSg$!D%E zW?GYCJ-fvHB6+TLc zkx_{e9o$r3XoCUtg^E1~$*J2UbDQ`}c{oC)#~$=hAoKI%vpkbDKDQxZE6VW_jXn1| z2;BY`g^nzYgE&L-3PYML_i)P@3-00Z8i*v^0MXWbXvtqql`|d$#~=jLcRom7pvV{umW#j zG88hfAvv+iuo2EMa-Ok($AL6XkEGQi{e;20_Bq-U4pzqDMdsh6i9v<*BVaZ!IaGjI znm|K(k-$b1(>&z9CtHy13ldL)MI7ulXKe6ALInr?k6P$VG}@ zuQ(JnDv zk#HK0itz)n)xq`cuutq9)d?)PX~3|rY^)4kzv5b&0&N>NZ#<)SbI_u~i8SD9O6T!+ z_`jjJ0&&GErLR^dif=~-MYZdC_(-e9IquT=YQZ(N?TQUfr6M~?WxI+<-7TcG_;54A zGh=wND^_?0Sp;QnBr+L}mlBkhS21WXe@;R9?@%0hYQndSMDZ6SqSDgpaFlqp!$W=! z4D()kg2HP=FE{4sJc}B+U?8l4?yqKFI+S7@+Fu<>!)89^J^jKL#cJ(b zom}u`t!g6^wN>{O_MkJ)4=0cXxmuA1&r~Kp1o#iJ?p;h$xK~YhM98}j)<6$_{0I35=Ppb0Wmq! zD`r~d*E2lm*vKq)xhf^n+&z$7@zzT0Nxp+{LPVMpqaQ85us4o_8`dNK*!~(2PJ{kx zsi}E_V^(%rpmi2=8hr)pBlg)W&a+kvU17$m`boDCp*i|WYi?7*_t=_5IWNYRVkXtp zJoH$oQ$5ZjCB%kZR$Y{70sk|7eZi->WJWih33}1{P3%{M39Iz+YC+<^)0jB1Ne+U$ zjg8^xG&=Ow@?x!IdM!#-Z6!6diRAg@e8Iw0678fHOh?K^0A~efl+gsBw}(WGaXdu2vqkMf5f2fSf@w?t?jn_ZeTj+av9@ZK*toH~8O9R9 z9ns;%=kwCFQ<{_<(#t3{Dyto*E52qyPx)$}t*JZ!y;QR4h(Oxblc1~>{fcnKHWTEU zHPO1nL01e_SI=r!LuC(ORH1yVC6dZ4M$wC*sfjM*}#lUnUc8-Sw1|mk>yhSBu2$d z*-s?La8f>(#SdvI&-y_@Vxiedu~|rI7(~m~2IzpD4G$w~GnV4EbGe9d9gm{@jy5~m zl@L_$Vb`U#&8AI&S&0>TR0(qo0IE%ix??y0h*(14VT`t-w;r*W@Jb~W^RX5b$f0Qf z1v&s!3y_IG07Lo^Dp|M#ijh_%8B|=^s!PBv8V_3lLgD$Tb$|+Qbxe6KIJI zjQP5d@L%|RmKcl?8Oa-`t-jdMJRj@M``yDFQL9~jwG&zq^SLpFQmB4h8m!HvzKzJK zI1Xq6V8vOG<&_$Mbw>G;Mf62qn^OS)1B9?2wKkgZ2nGJl(bKH;deHEwVAf4q&+6bj z=HT^++qJ^o(&SGIP>2z}%-yY2$vmh(yFD6Tr}gw%|JsiVW7{YvyB;b>5uVO8*ljmkhKb zL7LzBiaQ*mjS^=Vl`w!Ev>e^ye3L3vK}F#ZT-_*(Lb8#=Es>;AvS4|lOhF-89ADjg}&@$ucI00Hh^~{FcUm z!>uIgny_78vWT*fP-(v4x3T7H&f{zzA!IrLZhjYU1~YA;2u9TkXiDe2AZPMA40J9` zbv|VDMAhK~P8+8rU)~zDIcYM{$wY%%JgiEcmXnsY z)0eK}nBJF}rs+K%5A(rimJr942vyR&mXN4`tvJR9TIc*lTxgloyMf6bhE}6CG3dOY z6M4NW?qnC~<5MA-%P{EwWsMakTMhQQn|!;CA0!roLHC*qhVocH)vZN|L*t>4>^Oi21*y|m>;^7pd8H-xXcseN6lvZF$<`Oj zu51lX5A&I;n%L}pw9rL#)cQ%4Y7sOXLx5Xzl}USv7kGgvdpy+ELXz1*siIGpmhcVOlP~C*2yjUyg}_r18;Fj?8EBFVkYcS8Elh1SQInOk_Z5gmrlfGZ2} zbT1f!rkEfV3G1Mf;Bc?VzAnvaT5Tub?#de@t{Z_CpiHHX$X?s|3WK;yIZu=!zKE6M z5>Y}W(ViHc3@WHanxA8dW>$~!T`c(yfGWQtEVt~Y$gXqiZxd~G%Pdii0P_k6EHcY< zt(LGe-!PV2s1a#%M0s=8P9@K%4G9<#Qo)>%@BloQ3|Y$?KCkVj&h4jb*{!~eLRX7k zY>-5sibX#+M^7ahlO{>ODoQs)iqK0;Uvrk?bh+^K#{hMQ5Or`Nb=m^H`T>t;RqwA@ zVOC!WS5FWBSbrtbglTFvFeI_~i^uqj7Y{(;(yhJSpxuZ?LXGttRkHP2omX|0+Op^edU$xFC4G}vL9h=)%E31X(xYOWRnQ&4tyqlQechyur z$Vi=x%cHQ$Yit}s$4gk;uDjqYWs1;>8Nb25bxktBlpHd zmWY+^9+>QGikNtczq5?zdyL2R2tP!RUkL|W#CO?EgJ3o=BeO;9Pf}8vp9)ShYL--@ zCO6qNP1z)9wXZitWx!db(y*#op(rMcGiDu6>r&RP9GP)f8l|%2(;1|x$hU~-OD031 zJ!(?_v&1!e^N?cQddQ$CMGGR~XAHRj$f4X=#0X8L_ub`*o}8t|$HVtE6J354i`!By ze(jU*o3Z`Od%Yimz8C)q_J;fofnNuVb&zmu$DIl~IyDdgBSx763P6A$kl)t+OuJU z4Id^*n-Df^f_MuQK0F{W+yE-ACZNgI0K@=dkw?U+aW3zZP9;d__&9EKi6#*$&@DXX zUW+0<7F|g|V8aCgsJ;X`v+4kl76ZIQNq}I31}dl0G$^n_1^pTH-B|`K6hQ<8BqR_; z2OPD~P2|~^UPw*>2a$0#O=QtRgsJ4;b#e{R7*rBv1pp`@O$8p9;EoMG$dFKna=Cz19BCNmo9vb6VWuj^ zB~gh3oH!O>EJpVtczfx1TYfg;_-kH1LI7lbjTuR#vfl}i7_%{o8RcY4!sR5j*(N!q zmEBsIT9)B@W)MN`9WZT@dzCq61!h|C*O~yXDc4a3mC37hXt{V?TdG1t5PxmPS6%@K z0-Pd>2>Pn)iyF;#o{b%nCtycDQAO2n+|ed+el%HZkO2h|&@sdYC1eo)R3NL`QGOjE zfKjP5E##EMVv86zjX(f65(L$C6Q<`VRqGM( z@W=3hwH;L*bmL8DrRyPPLkL{NID7DoV4R5kS8M{MuuqQ437=Tw|8CX_LC zCvHa=iu@WN;`B{JpTKr`xeeW2zber5*uH}G^+^~#yX4r0#orkJ<7o>X_hJWMn;HK7 ze^xgDNpm;75pW@#Y1~yFHb2FvMFCJUlLQKPm@;{XZAtMR(F{eM!91%i?b}dCsB;wH zTtqDh65;A%1`~@!pd)o*kWpY#7ey_qZ@J5m0EE}M-koRw4T#h1@*_Ew5JY7SAsJU3 zz$Hjsjyp-AAwz&;ABj}wBq+R!>I4)gwq;B$^%IP>IJiCmEGarJd)em@&^`4*2Pp!{ zkBYqW!srAEI^HRaZhA8rwxP>^is>Pf!sf^R%`Jd+8(;zTcEAGAbV6OSl5>uJ1N$|Eq zLzU44jssBOO2#%b1GJz8jqFlVjxv}c4hWcFi4e&$l$hfnW{Ys*nTAdh%LstwS71ZY zSY#y^l{}{{jbS5PARxOABxE-QNQ_VF0)ca;4Kni6qhy#hNXp11FQD5eAq{CrL?#k% zi#(>uZo`;JMka7;vu6M%2_XKx1#1pKfH`leGU9-UFrQphD650OgqRYQfKp}CScx!K zUIms2nq}X*lp&h@GCjInz)J!q0AB)AP6-%hF%b$AYc7*_&deAz8xXs(fhC-UI!fZQ z*|S)7b4Gv)WWW0Km~oz@oZ&<#M${>Q*|jrGj1)-!JYVRx4Qzl->uZ*n^a;?&^pi)} znrpTSDbQ{aw4i&_43~&Pq0Q{2aDfA(+58!RB?ag{72LHJ;Vbu-HNKls6CZ5 zKzsuzE7nZsk^?aFd>L!d^9=B?rCz0`IoZ$+kI6v~+J~8ix}|i2WLk(ss3yM?S@2XM z7l|oNwF}@TlW;2lR+-0x@CmJkmScb%72vB<)R5P>vzt!_6Qx!OF^L4ri~?Zm z2Da8FXhB9=_6vYH*(+DIxl?Nt#VfV+y4Nc8)vte}%zIolU%HwvGGN43_sqm20YENk zZ6RL(j^`Nr(55-98mggoRyig)r9faI$W9*rJH^v3H7pW4NeykNl@i-$JN@!d?D8W< z5HhbJCv#m*@swO(o}?kFplwB8bM#mz#SpexIb@{hp@3e$`A+XgFB7c?Vld zI^5Yz7!%2rh^ zm8}r+v2RxEIugPJTTZDoX2)N1n|pTtXz^ zD-rFH&50S%J=ymxCZX+}i|M2P5J=wtWW_nZbf%k~3yNpg;*?bC8IrR#Gtta=hk|GX zbO9uQ##^;*X_7lMOt`FQ35@WAm~-@X-~y3IGiTD|OHZa0M>$tHXw!!3G*vtpY6U4^ z)D(t^sm<-!pm;80?>S>Z8uIGZe(^W6ZXQ)`y`fx7=Qy^J%dfc;Y`CaI!o{x3wRTci z1t@#jh$-(SF~aTdK-*bHr*>u1wrpzyRNFrEWw)U;=Wh$pzXshS6iGE7bPF;75{wb# ztm;5_sVjukk@uG|m(}d@CqnC^SecFdqAzR2dP%kqzL&Eb^O&9ER8cbVj4USsl}S1; zxldC1#U+anhq+}U7w;14my5ptXX2|(v4`Ae9;mRIoWmndVCvTs8if-@-7C{CyL<Z>0z1?FI+UkpL)+lD!9mScIxgoUI{<>HyQoB~-s%#ZmkQRa{YXRM=0E$^fWF zLv&38_D;Wi4^G*i3rP-V3PR+TM+~& z${4JChtbUswJ{s?;n%?NNG!qG4o*f7CLa(I5M>Y#-Z0^lxQ!V_291cx6pjsm1lWL# zO(G^o7UkQDH6A^^lND8w*{z)o^$x5UgwN=aBVNp4Z5`1aqlWlW-|!R+Dh|ta1W~{R zOi+kAt`PnWNQN-~M*)%;tXK*oqSf#12(3T`e5pzsPL1Nc2pd5~d4bVMph@?!N!;Dl zG)bF*K@_tMSe)fYFv{XAN{J8hm(>wPF6Ip{R#Lh>)DptTnox(%Et?buPWu!iY+XcG zC1V0?3Z}GUkBT942D!876r|)?wR2g^h|V(mPS0ub7o$ zP!p0R&ZeT=O3pzz9XKHj0@)UhwPB(dWdf87&M<|lu^3Hck^D^nT(H#{ zwMgm_09$oOnv91vY1GA>gikC4bG=E;BtTuLOm?6MbE#CPgyup7oCboNX_+7+4!{en z-<#-5UjE6JrDa?~KoVs@2DHovtr7A2}xepvg|~qhM-AEmECfCZ>L(8e`xD zVrmAuL}uY2*li$&Pl%ZUY@c~uPfc;5(oooSc}VwMmdZGxFS3npq!3Oe69MpBp(MoN zF`n0ms15a&F5-k*)YXz`rW?N2QY=L4%p}{`T&CdAp#)6jK?c5LC5L9?cL-W>bq{|S zqyW7CfRTRBh#iM7g`gQZ1zU+oU#Qn|#@c(GL0b zs;zapUL0b;MSZ*&-!Tt`*CVL-S+TB1C-nV)P?y0M?%2MLd=fGB7{%W%C;fKyJjiP=@C=)CA3140t89S z$_<&C2DMge@Sq#E7M-@nNPE>2Wc*bqp(JF4D{QH&QM!(@3`|O(Yo$V{m<7!kEsToE ztKtwPse&ARlt;eS#=g2^zy6E?0Bm+aN_i|5afsXl!c3_cqrxrG;vXy3pY1}0L1kKhg zWk@TX0YNo}E&=dtQCwXw4j4vQz(*)3+WJJ;aarNbtDNpdy5eDm)f$AtouESA72X&a z351YY#7@LSeK8Yi9)wH^p75}Q#84KDM&jn#06Y{VroX=1d@#G2%y26j8xC>iD1}_1%DXC*}?D9 z3Jp4@Eljk?ctpr-l%>9?h+0hP@+`plmI{isVeEP)RjkFu9*X|(Z`NA>M1IgHRd7(5 zplxei48%&6=cEcKJqL$WC5!#cjDe^6av9SIu5EN8?UK>$b<-<)6Lw)!O#nz*iPg`L z4VnoK%WiA8i5bj7>jLjp13U1=Fvi0y+~{)MVn82a6qsQoL=p$ByL6yhzS*fPt#J%d zq+&`!WF?|CB?R`1Ttsqf;ttXTMukC4h#JQ-j_%2DXxj--oYvIi@#Y2)F(|Sv$?$QH zwJf0E7THjkfgHe)B5Mlsl0}p(mHmc#W-&%=$Bw{CR2f=zWo(nZqEiG3(k@+o*hynh zl24xE%Pt+WT_nvSMtpH@9ShVQ<8ij$)2ZR`Ll$3W#1(`YMwwjyQeBk}^SA}RaM3j( zqT{4%71t&6_T;qsgz2pG|coN4Lz4@bwZ$eVXWIE#vC1}(+I%t6_;BqDSHuP6k4eQ zG#OzW9fYA|0vkp**X%bBlsM<{VwUqqO61SJ@qhS4J9ou9H9L#ZuF9OL9{?fbb3*=+kRS#U^FtyC`b2> zM{ie423OvqYXX!sy$N&6UJI7uN+-SaMaA??V?>26EKXN|*CYf_4@X$|; zEOK+d1a(mdP&gm;Ws*nUJV`~?py=I2_n@%@6f$Cz382_^N=gKPAnEzp%T*vEhKU(f zUNzQoM`s7cc+y192wCHdil~^dF?!jFjK{*37~o;n!wOsi3^2)P4~UkBW3+I&y-HBL ziAr1#qMe#bDc4tgcXVAx_vF!0go4hPaV@@DnnV>K$ zK#?|6U*u^6P-=_wYU9l~cSefJM4@GDUR?N^DcD&YWEIL>TU=I0#P0tt33Knv@OWMV zJVxo26?59iltLbK>@i4TM_?TQTe%N>WMv(uW&src&6fej7#@tHGO;eZ2#S2EW`P-a zsD=f(Nc$b+1WEwgLiBc@ZFXHLS|-H)3LY~Oi~J^Yis+mfr>jJi?3QKMdbCga3LkW!@o|)3CxN|FyRA!`ir~71_+&lRa}@>;_xY|t7Cmbi z#NhQQwxh2!#0C{amM^0KCQd^#qa6RKN-{#mQGy4lwrq^VlH_`bPgrt*U#R)Dh%f&rrV2nYwSej<JKJ|W#jN`$cE zxnbxzxbbTsIN8reWo@jGP&h;!8*92Vp5kOr~I^=cjjivBV(q?!J zhN|tRW~R!a&ASQ=Ph3L`Zc&_#nHB;(2j!g3t)gwq+9g}4`0&{HLR=5PV<$d_wSiMM z3VStn^~!!TTZjD#S(YPsAfO9DKsH|gVsN~z4pgsRN|e^qP_|ftpnZ9v&c)fK0A3MG|F9Am!eh zn>U1x%vot;vRt_mH89iwV!x9`I*@9ZfXJ0DSBm6nA!Sw7140Mp8la}?$}$0$B}>+G zg9Z+u3q;zRW=)6AQ;Ov4vvW_cBi|-SuGAp;g4FbXso|XQ!B60ma8p+o1}AYpp}Xdkv?gE^KW8qM90M zAOUy;P=N8$lWw-6Hj|I4o1n{as|5rkX~_eT8z?vyk@HL{p%@EsvF>yVfI;?Ts);z8 zxQyocqaR49{`101bjC6~rftXZ4Od_kIG)X00Q>`@4Bpay9W(yM%OqRq{t(od&Y=Jc1U?$xdsR$$*aqd^vlu%wuOx0v&kFHISWnnH7^}a zqE0FS{fgiw1>9DR&YsG4`)3EZRT9I!=%TJ-naPz33X$#6I# z1YD&8^Rit5pyL1o1Pft8gU!O6m4GCYWmm}C%t#uDyr}?hOK#yyL~`X8=*T2lZpu-u zj5MwMx$Q2s%h7}sKpN;Q3^u@HInk-6&BLCC07F>5v6p6lfm^Q0dz?ul;VVt#oWp>H*s9V+Cwpl znCyh|I-z}1sKQ6Fu!RM=lz>R+6CNEbl_nz?d2$65RY`z{FBC~~q%x{4A z6&|T&}WJW1Qqgm*SQ<;%cQe%MnWiybBJlhssHZI*UrvOB8&LRPKE2(&r znY>hu0YtJ#K&4WYk-N!7_qNM2#ZHwIVdV%F^-7q;QkMFmW$A2rOOmZlmn0$d4-qgD-XKqz4{Ii8o>@H$8EtD@$`0@X*{#6wMR{rL=3Txy6|@jglKqsT zIc+mWux_T2?G)fU!6HvLlE$7~BhBMVv(Nc8uqgkus?7unPlB?`F9#J4Q5K3P3ptcJ z5LL`a`>86FG8TCpC8bAI6H-r>@-uHT8%p_76<)G5rU-ed#CTL%nO>x(p}T3v3R1{h zz9)x0MbNw)*V)t_3195lz*Xu86yXhTGs0o(K>zyQWV8*h^2df@$TbwG0_>`|0=Ng)b!2x>IPl&ymah*}@T)`1TH;16Mb zDPFP~2)*3upindmO&}_f}D&PxU^y?M~iUhQf@tEO;W-`f< zmZVxz-D)Xz-6WxSrmfZ3YZEpQ+3qt_G&EtSKJ}A7ju@zgs)-K4$0wi+maX5xDoEj3 zT)c?nXIcqle*-`=_OB}D)0Rkfkz6$-9XV6zHwAOP2 z8|CBBU}M24iBv%d%4AgxG9MJvMJEk#C5u_>Vo1SQTr!R!E*CYZAFovZCj~$YeO-n! zpU&!8*D@Aun6()sW6zYOe6mTG=M}Wjj6D!`jssR=mcdZ(sWYmw>cmEv<4NXvQbf{= zR>S1${!7XCB9JK!Zd+*x*L>=HLPv+Udv<)aY5D0#SXCqYOY=EY0{rXsT+Cu$oeK6cB1O2kMn| z2Q6{>m#z<&6q->fMpt^GlT8;*0h5Qw;W3MaYL}u7A`CiU(_L($Bin1cxy>go4+a-w zkduf=k`B>Q)W|q1D>gA@eJ;_TzT|GDfUsht@#f8wm7D@Fx38D~t=GT$rj!IsyHF{i z=FhsC#hJJTrMiNgX1$q8^VI! z@-D{INOohd&NXeU<3(3n$EO0k-oz<|eKuYpyOnGtN%=ahGi)bU0)evuxGPxh(>{*f zeS~)e%=%Y+FP{z(hF8FY)rQ|e(7g<=@`E5A#ftX;;~Nj;ATLr{=uP&?ot(}+FfS(< z#31r6w|I!RaBH-T>FfmHDXi>P%Er33Z~G3-`0nUdRBY`3%mqzwCAtg@F_bJtBEp+6 z<#7lrU#6+}0E_nANHGlTy<~&mzV30Vr+To=_PVQGP9rsxLf@*XShg?vlmaMpMKv-C zLChwI%Ie%I>A*5-I~rgyY9hk)rge^`dSZl^s6)UY!?ae);}U|JK5lEqB>)|70QEx% zKB^Awumo@EBy6m64kAcUX#mnK03w3G#0PJ-BX_a_=g!3rdBlxeLsdZROU5RS7Q@q+ zjXlK8CSXVcrh*f7#4lt*KxjiMR6qsJjW71fB??hXCg?8w?#q6LE__2XxI(|GPXKh{ zyo95_NFzqrrq3eh*1m7Xny!HuM2#}a-%xQe6cK>`pr^Agr~sU!3sDMeR$|Zs3K*pb zN0Ni=Vy?G(>PXJ8AgJlIVCrmc1r8PB@dl6%@9-Uo0#jsb@GQa{L#c+?#vpj;Di)}M z?k`CI>p!@Uo_Z#Vp2tbr==kh~1OrFFe1avkq&dn5iwYnjq+*Sb2U!}!nBXY^%fnXY zqhYQ^J}i>17P5ZuNn47d1YIpt<^!^pDFF0K4>>FThQ_e?ByhwIugAH-Bw_^p+(eaFMLl}#)JChsFozFci5KZn9q&U9^TQqC@ebwjUAA(S zZYU?jKyn|Vj)?jAy;oNSOR$@vLZ{RBry{B zYJ_Jb<0IG0c&3XaJ(1G#MtA%%D#wL7P-CLfLw9cC0A_LwbIT^#EXdes6xWK4dJ^K^ z!mor<)9%G6Apj{2CTW(3DUHP`BZ*wPu_$6I_mD$g?gis|EG<1pD|>@08^tR>LI_5z zIbGub$LMt^;?%A(dIkU}Qfw!BVjlzGDm+6bh72f%%mAEcDlE|YkSyL5>TOgnUxrXS zkPmz0^8zJctB7PIdart1t-Z!*dk#P((82=@=TGK`alDO7+|Wim<1k61;}#&1EMyCN zBWix*OTO!>R^pRv@=AEoLQ$hrhECiH7o0LoUt zuocmhz6SIKOU!U;NDXW29Pwu{k+Un6vm=<(IVA^w1Y|-iLT^-xHvdID4I)lzf`|SD zxYToP;s`o^W+1%t+XMh3*+^HosaV|Psj^~IK?tA)t**ORgN}ks`sN4A z+NS}2j_^La9x1OfW$1XzOh68^bYCdNa#uLWJOt&B8EzbQeun$glX;ma^vpJk{Bq@ip9VZY%}Hp0Bt-@T z|8$5%hypE8BY$dTM!2E{8i_EZ51#aEzbI%gx?|6v$hycvOF;~6DC=ONX~Nh8FOtYJw5cbyM(bQAqr9R|gYOK(W#>GrVhu<545hR{ zk5(tfB}C>{UqV-TRpfm2S39%vgjG}QgqO_mAkZg$24dZ!g*>{0;jXGi$~6KOAX1qH zjM^n1&&D&h4_lk2fwV-ZMlz?`D{THEGI-HQ$}j<%RqQHcYoo|$YA23F4Lzd{GZ#Q! za_8r|; zaHtn<=N2w=?XJwmR`B*8k!NrBi2VLGa5?Uz2p9c^&t^a@0A^qY*obkb3uhZ}A~tEY zD7SJi*JU-ABVv|w{mZ@xgi${4Nq24iRAzx}M_SiNPSXWVK58_K=rH~_MTc@|&&^Ws zY1zQ)eDcCF+U#-vk}Y}t^QxeW1TS?Ub!V{b5*N#lfg)$_z{)}riYdGzFnK4TXfK-L zG49MXk~RYYtt!||>RZ>s4twJw;p<9Hq(V{zcM8BIJiwyf4?*IU;~L zwB+};N^6r$$YMUAjLo==G52Lvt$$@!NntIQfNJkbc2<#NtZ++8WuiVI<9Zs7gj1L@ zZ#M&rWxAxORn`u#DCyuf13Gf!FU=w@ylF+IWHdszNZ;g|zzVe3#8!seOkf%ERzkx#*i1N<3wU%0qvR#S?vF1J%*nvRgnbw<5bJHCWozQ1 zZ^>d^IMo3EI?h1<1VS}KD4b+*LwC21gdrjqQO@{`(|CV3f{lOmmP8GX3&Q2@W+wv4<=B%956o4Gk7yctRHN45?? zrl^#_7N~|e`8t=Xga%9X#KUMvd9Jw2^_+}@Sy75?PNDH+G~_u~Bq%OCfJ%fT(4^;> zK*VbQ|LVBHnHP;F)NDi}LxY>$N!+PVw%&e}E7dR*^-BqJL(do{IuQ$N2-?uda+m}%z$&kmejZa`_aIa{uvFUAS=qR!w$#ySGZy)2b zLB)0cb!Ry{VhMDo$tSe`dXD>ub1s!a^v|WvGPUbtwOd<%lNtbEyEz*fS%#IjZZ@d@ zFekTZ$4>SUBWuC}f=GyH@pT2`G~dK{t!cqXBZBLiRb(OvD_D^J0(}q?HSk1N8UtZa zV<8Km-D2{`xvUoxz|0m>cCTc8$ZtXr%UmDSu0CUsAp=nD&`4&vc*HEoP@G(Xxhk4O z;tXT!R-$3K6+_%cMU`1XS>$~+3jzdyF34#m4fzTyW|QhKwBpt(hx3&rJeyscn=gFC zbZVz)tF)!MAZnln1SK>BKo$vtw`&|NDnKW$qFE@4VkxBk+v&Erlux5 zad6g&ymJIK-o`o31UK;QQr$_v9(%&3da;9X1ri3mc~USK01w>1Awjf^?(B~ z(6yPuU;CWpecoj|oDU^X8vW5@RnlM8sx6>9Fa20Chm1Hf0fI!>o^0#9=&zI)pM+Uc zrzAy^h$4MLHTtYPg9ss3+`F_yjL73>fI{qeTeGE3Jd!p5Ub*d%7(KOzG>9u*0^oBa zeUFwk>HtmvY_V$q*fL+7j@AWa#eCcrxA_iECbV=!tHVQZ(;@oIAtYT|q-z<2*4ifW!v(|zJy|xHtBYx#8awYt^!mg z?k%9HChjVTJlGV|%1h57fgdpv(QG#RsnkMHIU2`t1uX*Ho;}dHH8oOOpatS$=>S52 zfB^&v5OCn2K?8yX3K$efP@n<@5C>EgV8B2`0SGz(#5lw{+b`t(!J&-MxJK2KWFtFkrug3me|c0D$7f zj2kCGJomZ^y!Nr&F1!+ z;P?QAE;p7pfLSwefxJxy;2k`Iew3~Y%*UPCOFKzKkpL$DHPloAJSn&!gVIIkkaw~b z&_M?VP2^Qqtqt@QPpFlZRBpJrg&Ra?T_uoOC~~+NU3YcXB4L6F7GsSqCI(rKI!0Dm zkCxqZKzugRC0+rbi5FUtQFWx+WD!Upfdv*c1tnYNfoNrNVi~xUYdsl7UwY>8#+*P< zVzpdW5!j}oK~S31k$xb#1X2M|Di@)LbJo`0051)M8G#kvg)np1n3rDO@DT0WtdSpV3dD*_9qa7VM_X_0}m3UqCyQ+l`3l)A=Hyn z33MocXeDm+s)wM8G=N>F^>x=>LmDR zq5xGvuoVFT+(Zy>g&kM`thE~15mW`Nloo;NjhTRIrQW+zM?f0voudAUxutF~fwU6A z1OyqAOpO|UO}CbGu>(h4>|5dP z^)<9IHv56tW(OcGwQ4(N?X{F;yTG>GK1-5E;2x`DvEy1$?nD8cJCXuXsS8pC?hY6) z!1W1G?{4^FbR}-v@ynsVQ2~sn&AYXBFl!0_UW=dnnw5eS*zbP&Yvlg=M;U?0?It2=5dzcVx~@@% zBo%r~(ehS-&z z>b7md=t!N#aCl%;Swt zXc0~UR8#@+^P-7%y8S-pA zXsAP1u!2P{3xAHB7XKjmvA7-oATw;SQL;`m8-$KW02S(h-@?@p)!c14Kbhu)eiae! z@I*>zq~dm%_Y$lP;7pK<%ARhbr>J#lgpNDON_4qR0W1JY61WLbu!B0F9yLYc6BvUI z;2eeA&YaB=hzh<+fC>qOjNfAm`hJ#^aSCK58yHY>u%yAYdg^pKfzQuwvK;A1hgQ(r zkU?5_s;N|^R0YUN82Q?(67e-bW?fMr1G$#voGfn(9pqFNnUSfPzy#Zp=#VH{Q5{_r zlEl0jrNkDl&t#H6eN%vCrDT-61)xb0>Zlv@#gi>DXKR;YWd>WCm6yyBIYjM9N8t!C z^}&jrRMp^A5%Mmhe99pIvI;}LJKn)%o^Y( zQ&X5{Z3NoT@(80pQW%f~xGX|JE^ygwZC$1UTL@LaE3}Q5S#Artp6E7n*ZWTiaT#3i z47aYuHRWfJ3l`-@hqOM%s@rExjHR3hN0fwt7AGuzsBfC|(=5&*m9_1v)a`zPL5RY4w0RC_-M zqSnk{+B%(_)gUrlIytbN$WAj$qIRk6oP|SrJxwMRz^nHHYoLSe<8#{Ep9l4{019CX zeFqSmD{kbEAa1jj1Nz0vI-0zu-Oj*o6lrRWwtv90^fNgz0T=CQ|`t;vX_IQI~MTZE-^`BOLdctz*Vl_x4_jR*;l z;ybe4-6v;|4wE03Og4B>1?F}`5Gw##HGn7{Q1!iyIhWjQAM%xiOM?wV$RVv(@Q)^Z zwN?-RfB`6g;-oN)_bmBGBnkjQbarNcblq7IjhKH|HaUjt5)f!4^-pDGz7>tHB@=I8_yR zLcgO&bEF>s!GX5HQXptpBA6o9Mi3=1BCTdCZX@9mr||^FN|< zgFx{T6=_uhp%4fWP4ePJBC$BN1Z!%gFHvX`rEx@2Q$`&GjNn9&8{s-0rgJbT7EUE!|lENQ}4= zROuJr=zl?gab4+^P@*j`I3y=S8YdGPs=-*@2SEd6U&uE!7^p$W(Hgw8MKQ)Gssuy7 zRFXm&6ynw&M<@W6<9ZQLlmW9b4WJr{B2Fu$G~1DTW*2%7BVY8fC$N_Q04R4swmu0^ zAY<1@+Tu<>SsbF77RTfrUNIoS_Bn~NO|lXp(veC$aWt&v07wK`(LocWNfLa8g_MIT z`a&I0v2P7(f|RNf>F7o0_4Vi1CIw!j)c0ogNVYVQFd5@*?UIVZ9eFYxik< zGf?>TFDYVRkfSiHNj)cdJo-2?w2^1j)N)y&8HDGJn(mff9pVFbEr+ z5hgfin=q6pPNP(!sZNFE5ti2$+o5y|vpT(^AJPO>pW}HxVRLPXPX5V*ZgDATu_Yd( zAuBNvWmFZcv0#^Dp7XVoCzE~(@gbwL7s>}>&si7xX#nh}qjjN`gg2el>6LDQo#|*J zWXYYE<(+r~p5!u~k@TV*8hz>6YWm2YFyo%O1D{wVpM_aQ%5*ut79raKd(kzTEa4LV zsfCzPI0H%$9WZ<*VW4}0ppK)UTZJ+10-;I+lyQ|J6>0z%Y5*4KnBK-GW-=Om1Su7? zAv9N4yAly4T4g7?04eH4E1EGa`Y6cP9j~?&u1R^zcwji1quGf6fM>&_KKi3?5u^z> zq(q8wZgCTvB{z+ihj@{rRTE+ELKiBf00@DW1^_`85CLOFDos~;1Td@}G9MTtfnj2s z8-buD;vB5Dd$rX!4G}`1)_IUgR3Kr4qq!0F!V?vu5UIqiZIpU-xs*TSd94A6t+5h- zqZ<{n66<;u5`daJ`8r#IOqua*4#ZOlLK+5?gCqs1oA)#oH=bVPM#C3K{1Jp-Xcdha zf7(<~{>DdcbDX2=8i3sw0RWg0 z8%JtTBO+JSaMMMQr-D2X(u^KNju?Y=dln(>x-~u(6&)b|SK<_|5;`1N1g-?Rlm^rt zSt9^dK&rp5ej`Qb=9l>zAqkceQ#+%!*b<=vHKhf8f2dscCUiRnsE?umZd4U08m!4W z5o=USS>b&;20m=0YGl$qadBMt=U_VOvLj0uC97d4i?Uj=6_YdBg@nU(l$c!cOIjGqo69FZ6v=JXiAPid@st6%U_HRbJ zZph1Le8omClL6~Xu^!>I(wL2mI}t?TxIh}6kRiD!>lP+4|4CQ5ENKY7oNHoxM_Z~f zh5`VkXrx<}a(Nb65de#Q766ImheseXM=pU7c@-59aC}48C$r{lHN#Co337K?iMS-Z zG0>mAc#;yslr{A;6peR$F#lbMznT#p6C!3APWH6>6Q>M0|PU08d<9g)J{w*V~sik~7$ z)VnD$j7_jY!|#H&N^`W#$iqI2AOwPLW3)y}bejy~|5EdXcOKKPpgR>6hcp&TfrfL+ z6Bmu@rF``m7xlXlR!qf^8(LdTq&BQA7Pc9P_AVMhEL>J-58?p}s2UTb0F;EOPqVHW zL`j#IAhxMW8z`xWGecu>dsj9UICT~3VW@M_TQK=2a*Rnx5o|MKQ_nO)z*`a2rIZ0v zfRL4MEx^yj!>p>&0?o-5>17eJf_&VJC;ST}Aff>EW_;i&Z&S5yM^$viYgTSnSAYaC z_~jnBlo8ccBA1oRGibvZY-L>HxT^~#SL_zPTv5PWo%UzB5>w0~op&NJUX;-hM6rPI zBP9S>oEXFYR@W>m-to~5 zkR07~Y){q@HxY#fFjeQwTx#YgN@N@S9M*Yu98Py0?F?-IzXM6tA%XH+a?xibk*}Aui^wH%xqpZIdkbeLU>jc{xqOS^?{u z0p>AAi#kSXE4ZaHg_O}8Q`VCLAy)oW|4$cdXn6z3JvmSTP+f?Ys{H3J1+JVf?MOjT zQVs6l4^9`ue96$#Ai4apv?V2}z1qbBtghA5J6bqN4HE0SFgys)7+WR&>QA4-TWVB~ zIcyMev}9$?Lqyd@wlOo;S(mQ!p@HT=LMNIAxE0lmW&~0e(~2TQov{S*RVacSTf&Mt zH#O=;OWx&U>Vc_qq`f$b$FE!=rB?vt$Y33k%T`!O{IOcnIN+BhTR(c>en+yI-53o1 z;C0^M5$R9g$)fJ|)Bo+lIps9ge^>bxO98m?NG6Ex92TaN@R+;uq1; z6A~{b4dVnL<2h`lJ%;1hGgUn9|58!YqCox?rd6LvS>!-dAPxLO-ksYV(&TZgh}RgA zQ+}FPHhNc%(|3zsw?dAl+U3&m<@IGWwG!)prXpF9ZzGlFF$F7Yt}OA}hHoyi^{e2G zMCW#H=X9aaIdr)Y=6BnNsrdLD0K+?1#t<%8D3K#*`l9D%A_1`+FN@tE57Aq27X;&WMala}_UYAgAOQje3MfF>paDXJ3LQ)g;KGH$ z0S*Z&+(=M>0EGw;C~VjO0)&qT2{`G2y_l$ zE40Ghx;{m^^!QQ0(vKD_5L~)o0m6?E6)W}|0I^?$E*1KvTv-6l0SIfhbeSN+XPp}a zN_6m8fX>7a8-FBe_%lSEdnD8m_s3|LOuiE-k2lb%F2EFJm5XJR*3?lR*~9d0XMhiH+wD=+FV7$l5qR)~FFQ z09T#}>I^BF=*kHx|DaOvsRI{u@Ij=c%4$LiwfgEpufjTDtg>qQsj0NoQlPGdMjT45 z0^&lTJ%uc|tAg@=N)Z9sD8o)L!VD0OfYcUaY`f_qOF%v9D8r05&RqH|0-QusfVAoQ z`cb;?2yiU|)dWmH%lzCEAh#*2tI0P9fE!>(;tnv5J>(8hjydiI_y{^VQ!6sH>kLRu zyXLz4F1$Jm#L2vb(DO^Z<7~SPJ_jgk0JHk;Lm`I$J8H@g${=Bm%IL$*}K4`bZ<3EJ!X;0{DbzfTetd45FnB;PK0WGJChLn!K%! zBP0drEZcS`IxoM}>P+|DznJ69EC;Y_S3D^Ru1+N(x%)^0349~ZGJ?z$uR537B>>V6 zd=tPSdmE_lJqVB`Xri$$SWiF8I6d_{p~#!bzfe^z)gf+A)%oY6By4qPtX_rn!lHOH zOTMJKd(yVGcFHS66Nz$9Ct?+fGs-#vuI{6yQ<`%DEvenk0NNbZ6JGCZR)|iKh%6LK z|A-uV)}Z{Y`{4pmd(@YV5Ot6}zir zrt+@QFKQtUAT^Pea*xRI)B}ECmC&X~Y>5-99D|SpZtpPxILUy9@)*k@P$h*~fL~6c zk{*3*Hv4+lbb5l2IKj^V_p6o!^%FSCbuLG+Nn2%l;+Ert1Obf+QM&?QFVr!F{{TAC zR`5ph6WBN;bp~(<2`2))lR)5xGxQ6K#73DV7BEJlVv_-_R>kN!#d%reB2T7QJ)&I? zdt2;@0%>)YqkvC*I(Z=sZ?nXl(5wKZ6M%~uShfcbGoCO?vt{`P02 z7=7e_DwLN1_eMbH%tSX3W{0SpqZY<{#;W55)`6t1m=Ji-j% z768Bev`=58G}1)06T=z##Q`-03=X>!nH*WhckEG(5EZZ#jVSVnA4%d85lI*I1j>g} z42l5~Wi{I@uZuk)<2I!SMlgzTj14%7W`?sP1Yxl#wu;(Jh_#}du}L8m{|n4&n)6H& z(oZ&8!wD0E^tV4zW{B40-OJi!rt_R6D3t+Z3K^#!!;EE+>>Aj>QZ!t(UmcYv&XI@D$S*?6k0n1DHsiR^|ZP9MJ)~^OFGLG9&#VD^7rt ziF$@v#hyJzKlz&$dGdJ{7iuj|0Wf6p3@A_Nd6Opv6p2>92~O&XbBsqJPMTnIlu|akp+U{PWS$fB6tzVL|SBl_GxfmXY&^Uyp`IO zR(7T-vDb07RwxyyfTNRg*y|LNCWr|*f{ZbX0zSIEvrJ@lra32=2KN~FwbCz-lGn#- z@;Sc@%rIsWs7erO;yy^yI_VysN|DwGi%MDIM=vFVkSy_7|9oS3lDzzr3p|@P>CnL2z7`z5Hb_9|glZ+F^Qi|GeI#yfY_)xh6$GB>?r! zGGLO#t!-4fDfs=Whp>TZRRds{lOXh6*vjcH1wyeMl~!tD(jCRLWTTr@C8`^#b$fLX|lNd`4pYW|_C1vF;Y_zsF9 z*oiZ0H7KXYbSblz$@5(H`E3gbG&~aj7SY^E?9Le74+Rk$o|q&KCKv?4ZIvB)%_{Nygb z3Q7d#X*%~*fOHaQ*VlB}s1)CsFQqKyUk4^gfns)|6HQdP6mZ1MWzJp@2RK9~oLU<# z$KNAnNy8MP5k+^pkqJQI!(Y3AINcqDYeUFqdZw+I4(V+o)myX#;DL~{X*BXpRA2Km zuDDT)nwrOK&HKW{%X}w^Of*wmHfT2cCGFhT)#lE*=)3L;y;MXmI#rI2^k_H5m1adC zh~TQAMAat%pSgOk3ea8)@JTS|JX}iY=f&q|!Y@oaBLjiF~{0Q30HZEFFJOSPv4z(nTA6aBLc#8`|J${erDpp!xy7^9g; z!YEw}6rB3L7fTPAD~}wqpxbDGqAGyF5uWC_roZwTsB^V!lA6AGCam9uK2sxb@kp_(faiu&k)0Jw|$3YNP1A(^NW5R$44vJocqnzTWd z?W;Pv=|Eh{kDd{Uz)=j@Fbr&QA?ENA1p2FyOO1uPsOkWYvx%I?87zn(v)N-45KIl? zqoA6QjX>F;k0`$a{39Qc6DcYn7`v|e|C+!+iI=|kE8~(Og$jxy0uvrVl;g;!Okc%w3jMT^* zYzlU?wrk8bzzjn9LP?>pC4s1bdo;qJ;46rrk(5fC9l8rmJDU+qiR_~m-^oOpkpRW= zo6k^*)_ASO*t?|c06`HF4Ehm~aK&+iE4T2n@sPy3c^y3T%Dn*`kuXSQl1f)XmJ~~j zzE~}YNT~^8K+ZS_$^w*J|M@YsAPR%ZWG%8IS>{!6%;U3;k%2 zo(oL85{MQo%%(WZXG=`QWW}cFx5Zc^5g8E`%nM*F9R!%G7rDoUdMTPJlkih2j|juk ze5S5(yW1@Cxq0Ty)KLMbp>TE;I!WK%27d^z5{yH0Q@vIPWh=rn= zz+w&4U<(&=wP)Ite|w(m5;_@5&LYB3i#)|G>rYjL3Z20miBOp^4ZcF)g9S zFgM#umwk%LQ^P_w|G_-&fQ`-@Mr>)luIdS7(Hl&g&Aqdn;JC&cl`PC*EXG-jP2q`i z@}=`|s(CA-TeFz}L$T{x;5PFIU4Qp%4kn%!&HKDA8jI`@9|FLQ_$E zqsG9}(}}0rlcv+y#5HohD7!M_Do`~Y3jNeF{&Z6%dWtwTwG$DMrx3{ny;IWAQ=eM9 z?eJ4%ZH|Vr4a+E~XB_}Tbq>`?)OJ}^c!~=H(2hs_n@DX;1*+6kJEu(LNfG%7<@;17 zg3T(L&;l?F>C6#R&8_M{)dT1p6k}Bha8-<{lUN;qJOaqcuvG`}jeC7NT}`R3>s9Bv z4Pf;Wz6;iW|GOqA+L(NbORAE$ytpz#h1O{GA~w|uYpp@3ki#x5iUQ4{s!@^L14d-C z*GP&cw<$@YY1Rk>}lmdtVidzcpAVc%A2_&VANU@T0N~)E3h{XVt zUl~vD7(&VWsByuTo)HlSgSDqrF26|8&#R;sXn{JDCYkIUg<(0I0MR^hQi!!zJ7c6K z<%npcuKW-YnEMWc%+i6>v6$UMPsxjUZPsIBofx^#oh6EC4KE|WJl1Vp*KJ*>PzhJm zw5Su^za$Egc&Cw|m|#ImbeSEw7)JP<+JE9c|I({+l} z1*_G4T@Qv`1>udjW16&bkY0Qq-u1Sw5{x^mqa5iBKH?w=)-)m2pzahgk?O~c5*Q%k zjSu~f{*AxvP=K+BJJQ-(Ky1~%Xfy{^E`)HL*>MQR$)%Cuz?66lo{2k6-J5|4EeRc$ zJXAHy@uQEjAxFzJzj)0Hh06^UCV$Fac=6GAnV5>ftksJlVkOpsBGxEVO8(j0oqR|P z|GqLak*X5TV58VzaO&U>{@?}4AXxOKLk72#lM5UPlwc&gQX`li4LY5(neLDwu(6n4 zLnT0=3))aupYhbuqzRh{Knb?2LSdR6%nuEdi^cOB>R2MV_`=kPlVKd%4}w&({5Qoo zyRh@ooNx%{$YBz~2n|g*jPQ>_o)NhS5dS^38ST^nP)b={FYEfmAT-kw*}ybKBJkpcv*>lU%13*%SIa4;M*VCZM z#jP&&L0A@IS>_+cb+HHiFMiQw%Ye`s^5yCP=BI@W7S%LWEf7D-Wwq(LFlFYw|I6XE zf#$Zs3GA5WpQz@zz{?f!Uk9MUIurnJo>_uWfp8w`ab~sv zOMVVd+S6|g6$;cs(6SxH;J?>86vd(phFvk#o0ICTBuK8L&gq#vN*nPQ>-dA2x~vls z$q~bTTp$}>)e@rj`l-xKU=o{%lhMQoexmW%>X~q=`IKj`x((SVNu^F?rf%w|_TUFu z>>VVPVVW<@L;%eciUb2>g(Kd9^P_%BKp{pJIttv3^+c7Rm;wH0uXzz{|8ZM;BP>4k z-n4b4XL?EpjUl?c6EMLySMA8e9%1S@<`$j~&@7a{!au?-IX1zlWAeL%^~AR5U-l3P z=i0pQFo1&EA6c_PCL!SUiskn#YOU(LL7wfRP-HMNf+eYN3%_tuiMzBV#Z)<>U=)eq z4o1!`kRsiZiOLq?$;;tYkFr*{%{$`BO*RtqLL%KBvlcL^CUMJnO2`mE!jU1|;vmUF zh$K3I0cn`G<4VkMMH{b-^Ah6fG`t+=Q?=|XnwFx8QnDP1Mhhg!@nqmf{NuTJI_M-w zofW#!YHbLo?b@aa3cqkTuW(YK72=~vpvmeei%I$1AY|@Q5>g!t|41^Yfg?-$z6iMls0om=kb8?&DjUxsyxn7U(6D|q@S%WD?26XfxH?Kcqtm6G>E%EA; zCTRqM!s)u~0dU%x(}{_o7_Ee@kv;L6MHwa9JP!=kW->Wh4aKC^xe`QVd$HUKUUO+} zb2pE3Xm>~mp>vOvbe+NTp3w6giH#JJP>(sA+!geLt2vP1Y|r{tMNgK{!Vh|d^!KiI zfWoi?0%JJ^%2EmmkX}5)o(O~Kq)@lp*V>*{1Y5@sOE^441JyH@=!MUjA(H!B8LEI8JjTNl(dESj|tEc+msrn z44snDl`$kpV-AqbM_QR3_)D=cDJ2xUr&(ecX`+@0VjaN%p4EYP;2E8zIz*Y6*QIYJ zV(nEvX2D>kBKG*eu96Sd7H8wTy)K`kln)wbp9+?5c{zs=*wnI}X+K3$vK?;hT#|BA86KK-WSfIJBL#85n-2 zP4KK)ocv|I6Av}64)q37ipn5EC6BV44#AXH_zaQM|6Gs92;Bl0a1S&v127Yy?QAtn zR%MOMX#F9mnZ?CN-Npxi$A^5-C>2T~Gj2AD%de|-vK8IkDg$uZ_O7gRB@BQNARs{k zfdvW(958@j!T|ymC}1c+f`kDO4-&{oK%vG33J)4AaA4#Cg%UE31Sz1SMgkZ!23W8_ zqe6ihId+selYl@21~N*VFu~^lnH@UZ9FQ@jLZ2BA%G4-8rU8-%fEEeg@|Br0SJ!W z4rm}bKwrlY5I`Ofz^qw;0cdItAbK?E(xy+N|4wasz`?nT5vYzWdp7OV3;^KHt$R1` z-oA|t4laCnZPYSH9zP&ZKylP=OG|DbnyA76%dHDY+i>}Ej-0WQZOC~scg6*<<*br^wn3|O(cOtICZ5{Qhf>J6=x%*1(pFqB_|L` z*p2j%0zP>KQ$|~a_0S)|DIXvwU@wqDY-RY0SnldkxmQbchy&KE|isk zXvIml z#iD-$AYdax0(HP6j|chK0FaSI*XwHt7>Q(BNS68KmkK>;K$O;UTjiBnf~zHPU6T7H zN>(}ApL6t)7A0nZ1yDf+oXNZ9odU=!RZ^E~wwO-@-D~2nofW9zcAPbI5TTNVwAiAH z<)r8WTv=d2hc2{a)tp>$C9yyf=?9vgCVm*Oe+nNUlR{!@bkI>L7PV7@h#KHk$Wkpw zQFzNq?B1NM=_~+5y~YR`l<&@U|4?5?+8Sj68*FgYK|=$J07ME{R#*XxNtRdEmNf>! zbvO##ZIv~}D5TkI*Y<6=Z}T=TxmNhOXK?+D=%iBhFd@ zb2)bGTeE@qx>+O-(b zRLlaUNlNvQ^f)Bd=Uzry{|rUg#Gl2$=zCS;6jcnMH}%NGIvt|j0U`9C4E+i_plOLp z76l^f*@tHuVIGM_Xe*gW1_8-|%9uPSD2Z|vjFlI|D3rI|5}vT>XK;KslH4Tf6)L>Ek&LqIU@ z&0hgXAhfE(z=28Yfr5KsbtotSHYp$@7>p4HrP!(L(T8eckqJUZ_?iHw1%*cH7=m0f zEEhU4EinWj4JX#AmfUawIo#o)dg!@~kx7U@WZ4pr__0|Bt?-r><~n(LL#bxW@V{MfLC0lle?^pJt7k2_9WGxlIew*nfZ@A zE#j-oQO7Nhd#48j<2^0{22F@j-)rKDImeWSJ4#B@Xaqt{YZ?h^%#sc_x#`Vsii@0D z9jDnOMntcmMx7Nq6TC>{JL$+0mqG*(E)SQHtJz6!0!s@0p!lqsD(F3(D+s0H5`mZA z2Z)YR*?wdg|3IJVWCNZ29Zytp&>sSCOdj)3&15#a$@)Z0_`&5NTbd|J?NTU)8!dqj zQn8Q_NhM2zi27`_m82ahF$xI4)!d>iqzXxDVS@lu$tX?JyzhRyLIBh@P}SoG;Hp@~ zQaHEjT($wQW6TL_#Y#gzC5>h)Ho^|fu0v1g@uxaX98VwTNn^wm zD>8vvNo~?0og4`(A`+4D47&gnVTCh3fyh|}!nFpRYh{yMK<>zNt_Sxgvt%+$Ttwu< z)!h4t*3quYj0d>z=;YM6>#>uT^d?7FcU zmAl;D|1{URT7_<>JZj3+s8cm%#L;QK5<%-tS2UX>*_?zo7XqKRrYhObbw%XR3VSGk z9aG_?j)UJ$&I}@>v`-Cf*(r(GN5V7HXb7?8$l8$vmW<<%ohI6|ACe_P7PXU~oLL^s z4eKBzPGLHF^d1`rBGo+sbysWB>fSGpZ>X<1fl^|7z3C*37 zw20VjN>w(1JDVj-$x!GOhp8-zDUR>C80V-ymuN(c0yLpRHE8PedQXQ&pQ7>9Xazjl z|JOn7m9Vr{>Bn3e0-4@)Q~eWa(hw512fyE_Nu8S@n_8Uqn{$H5g5&zRnly0~4M?VC z(-ws&smoCuwL)a48}-Up^I41n)TfZRD8#+Fa^y%H13az>uT`CzNyzB*m60e;AjPfh z(NfHvrF2&Sd+nG%Mbx@Zby6tka9$?FZn`c@vX^Yd=Ycu38HhwZp+>gn9u!@PfCW#72^z?NXXP8J`UkQA|dV zM>*dbY@msbq^H{z;3k)2xr>KoQi|mKJ?9Zn=p);@-o4d&K*vkCFEz7cbDM+$|LMzq zG5MbgaL|+)$Uxyi)jF9B=Jo3qSe$>d#Fr2N^C@n0w(Klm0}O4zzOpk}6|$^Y`#L)F ziE$25PXNn6z~5SHQ{DA`KU=wW$$Mv8!~6bs!NVW$W|Y`*a3+4y)T_F)K|GV8T&<)f zj!MKFE{#k?%|+5Y%LJibDp7>95x^_e+7f+RAH{`NBmhVyh|V3IC*_?dWgZG?jzw`% za-c*;u!m&G*~zsOUu9rUToCG|3VV1!dI6AjfJo7}1@_i z90WyB4XjCF`bElfI7Ud|46Foz?&#VA!9)Wf)B$NoOQ_E2{1<&-)ErKV*wLU2VIALu z%$tCSnDCQlP>R3^+8>5S+(Cfj;F4yX-E4WBCcd2py_ouOTmftoHu+m!-Jg=#SQP%hCk6*U>t>x6;)mJ5o?&ob%0;^UCSyq$t}T33PB_l%3_uj z0X6yMUjimKp@c(KO991(XUNEnkR)POheYrVLug0Utlh}Whx)uz%ViMuHH6*t2SxbR zUI36^iPu16#Y!LufBXX z0L+bMp0%Kngp8&Pz+hn=rdZUn8J1unUkA;eBdyLtNl0rXMXK%EgQkl`8J;}8QuEA- zL-^q{Iz>Zp9%n$2Pgte__6h*js7=+?{8WeBkzxZp!)SClRZ-wfb(y;lTKgv)fm{{&6XnE4fdU>W^s+(~3gX^c=N zrORg+Ny+>RWUc8p=2ZjKl;I`7OArJ^^yWli3V&Ew0tiJXHYBVJ;C}pJt!d4df(RR; zkF>;y^uZ@tt=Q#US6%HWQjrGxjHh0xg%}>GUhbuDEGd%)W>r0@04!yG#;1)@sb>V8 z`C+MRFvgZnT94EpaT49x=Eb*c}p#aiJ{?kRcnD<=j)*#vu($7a& zMs)<7T;>s{9UQ3sQIw4;d6ufFqH2>Kmw;^6|2^GEbJ&M4LC{Fzk;K+3y~2i(#Kki9 zQIS}z)nE+-#0Af2+X8^zyZDYt%@Cb5sH&*NVzfXD5DatbSASq=sGd$wE(Z{v3kI&x zxnKx{;#up2j(~XFEd>p-#f3IfqK7fn+I699!Khh)-HWASq&)`_?iK=MjbZZGDEW-t z4J?utY;TaryxP%E= z<%r^JNCDzqXjWbo&jx%J>P4&4q28wyXoES_ldhhg)|avMM`;bIK(NOx#fW>jNGE#6 zOxcvb1)E{$3NrcVdBCU!nU8dc&*fO!|K)VroNnNchOM`ZEpHS-=>Tu=3UBc8Sfj)j zKXqqsnICG5?$g%K2Ms`(n&NbzA-v@6Xfj9N62O^y1!J`i0q_}P`rL&8&`l1Yo>0mI zx|E5|>>rs>n2K4&X%muIkRIghcXk4`A zOd5pta_>%fFX5_bk>UjT&W`y;3i_@P^RTb_!sGiw53`EN{Ei9oVZ~a>&;S+`m39ci z#FUEwumik?5yEai!pi|8Fjak#|7E~fX>ct!amAduG%V1 z%0(7ogprgi^*Gs<@kC_lODPL6Xq@SZ`01FS&V+hW;n^UOgeZaZ-X(XC0W`oUyXVNY zl*&XPPXvuQQdx@H6n`=;|2q#&cj#CoVI~&eYqZF%G#$$lPDTR%ve^g^fC@7R6EndY z^D!s08y{SSkmkZRA#g=AuEj=PShK;oQvuv9upx~yNywk7!m7dEMcB)??#)=~Qi&3;S=SElnssn1=eTP8Q%5;a7~Tn#);28V{I z1xgAk6GQ+Y=*z({|4Jf=8$u9VN02iOlTGmn-O|T()rJ!C7=f5IUgvd4AM?v9_i{7$ za{slu1$IhHnPv?3jTAQj9X1ihmIf(y)%YvNH8#tUo#7Bb97*=DP_}!%DQIUlS#$Q+ zrrT!^TJ0HPz^a#{oVGqQmSEN1B-M%f-jblicJ$7+yVf?zQOjCCUrZ^Dv(&WroFZ`3 zhHxWS%ofwz8n?CRbsH5yb9*>*!{S}qjrpx&MsN0wL}`)e>nlHp(*#EKdXJ9PR?*7P zU=S;su8w5fjG!`=LFtn{Cy3ABS@&kO>@A0z)rr!P1qrTBkTgJ5&rGRUokW1y?)--k zIjF4MlVe>C|9T+_?x;^c9b|+TM*=@#Kfh;&_ZV^mK!<<$o5P~5;4Dnnagdrutr{tm zH8k!V1dL;9qQS?c2r6xLk(*hz&i!75I^N@{MXIQyh!|+Jwqjaq)LnR0qlJ*PUX)0Q zc*zWET1Z6DM3(?~fLjPlj08Y&8HSzJR;{=gnIGgU?zSE4F8qW}KEkJ(GaQ?{`I~!q zUYb|+?6xo4`K*_)bW5~h_IU)<)^;xYOsX; zmxPZ7|9EvO_*Io%GE}kay4WIjulqWPkEfu4*03{)i7TWo6L1sy=X=i9C_~ha35XMt zS>@G6e>bE=bHxT2sDU;FWBIoynb1Cu1emN|oC22n{wB)#(dLG001!kR1<0)7=#FjT zi)53nzKfRnb^&jvSzUI*d+J4=5{VS{!%r};PyDY}yt{$cD`yuSw=^|}M#N%QmvSEc zU`B73SRGQ`$QOWL^<+ae+n}vt2#H2l+w4m5j-a`Gu@L~w`-jZO%%FgZ%^$#3j|rQE zHfWT}a2g+^)WpzxX3@h50n6*zDSf~VKr!3;QU(liGW1i?=-qiw5`jA9FxNuu8z9oD<7h_LQXx zBu3c1lnmLCUEu)}>qJ$@VQF=cZw8PuXi= zxOmhXkQ4$xL@F`P)H>?}L;!&U2^KUckO2UN3mGbPIky*1w9YD2Y-~l#4K8EFru^uowASS)|T1>I= zKq9Y$tjt17D%~cSz$WoHQ;I7OJSd5>$uiqcCawZ#p@ptyGfg1*_Hy8~m-Z4WD1v$` z=*8xm+v%(YOOg@C9CbwKxE_6!NVy<)-0`^tqVq2)m2LzMw3j$44FS6f|Im&*1p>H? zMWVn<;68!MJ1;%>*u(3r0Qe*6KPL(5swDf+<5E1g@{4LelluEFK)(otPc@O4QjjnP zMRE{A10)1cvyv>t&;XF$5`aSlJOnYR5qD~`02yRB5wrkS6zH|qV#JNMA%CM$tw5JF zmDN^<^AXnKfDAG@S8<$BGbFzahO&+e)OJlDcX($r?BpUBDz8K!F7STMJPeKa(!01v7gTtjrMGRkM6~ z1x?h_0M1m?yL|l>D53%;v8HHkJ&3a!7ZB^=id`ix){GaLmDc4f|7Pw|M9&0k)s9|^ zOHJ7dxGY(kzEhdu$`YVT+@!>#>b$bnb&0VSbG|WK1roIhDkJ$7z+OYqOdw&RjSetr z0|Na^0R}^&>Z+2k9stm@{(JPZm$qUVEXf#U)IyxP%Mhd)W}wL?yAB-7N`g+7Nhi@p z73iiM{1{~gYS;baL?DA_GvqF|4%vc_Ju<{aab3BoPNmN z4-VB-7nEH%^W)pxMWrf;=q9!*_z+|yXDVH{pt7E<4CH{<;vIc(XEZr+iBdZt_((XjG7A02;wj7NlSVjB8dN_r4)kL1#bpp-~BuS8T2uWhd~Su z{NmT6`PHv}LiA1k2D87C`Nn^jp@~XX0y+WCP&GcZVa^JYK+_#*f{A&cK;TnA+D#Bn z737cfGPr<7neb>J@t{;fSbz~$rGzgz;R;i@s}(NbDb13Azoy5P7%uN$2W!oQ2J$`d zg^z|x)Eo+bC__nJvLi$+qH&Ih#K&RMHkBESZV)*n|CSwyidTdfyM$&sz}cx<)k4!2 zr6nJ9osJ?mIun{eG86=yC2Nc-jRELVl7u0k0n~d5V*&st#&jnwiTV%kKq3K|8EHEg z#1Lnwl1-6V(@{4Gr^6O0M~1CNG<(?_j8s{%+=1&&q-iH8=@|e`ZZaaCOkzD*qBKBd zRpPf*?ypAPAy zJ{f0JmRvoS2Hrxn3g0E%fYbgZ<}P>PB$ zoSLdbV(gYQo!VI*CACLBpuuQKTUyhS*0Ua|Kn02i&<9O`nK`;DOCqW++Loy!kJTLe z_P90p#7Qpp3BWCLQb&d{GeBj!Wi2n-ttR3p0ug1NowgIW1pLoQYY*^R*y^S^EW=Vxwe+&uR?R&ei4y@F`$RlF zF-7X>ZR_v?Ctw1|KIl4EaqS9})=CO4|9c%&x~%jc-AHU=Hi_<5@I$R{t`vROWt*9_ zYsa6&Y*;YKI|^QK;Qv7HD$9m;tK?&Y1}+_1puJQ*y;6VVhlo zMaIq=A4E#&+zX{6r=YIsm@SMp|Ma0Dl4wQ4SK9MQfNLK#RY}{)HJLLRjgf_EV} z>W|m!1Gjx0>|qDH)-_V{`ren@6G&BlFQZEM40XjE!PPGP2cM|Zt>y=~`79Bc*17ha z+&@3p0``7uq7O<}K;xxg|K5nfr@h}mJ*ZnBO)x4XwF@D^Kuy#mWT%MyDuNjdqxx5hU@N3^yB9Up-j$tSDq^K zv-?k28B}}3Jd1xc@!Ww{6HZ_^X^%_{DiDBs_NxDOYQg|)Jo+j_NC%5{DS^_$J^l|s zc#OGVO(VKbW!y)~>;!pIPW|Yq{F3VY&`<0_P{6$9>^$TBsIKbxW={4GfZ&5aG;n~} zC!AtWxE^qMKqx4>|6;kePt(T8HYkR7=*(fl=`zlWw-78NY%qX05J}>sfl!eALQnKe zF#W7BBM`6srjU0y;@oa3BWNxLAL?&t&;vQ6HcrhA<3<6BW+aLYSCnQbGD9hDX{Uzp z01V(<5P+GW1$(-JK9+7*nnc84>dvB0w=&SCp5z5hB}3?i3ImA?K@SVrOAATw5x;Q-dtOr@DX^;}}-L6aS9#N9|ZLX$??>Md#C20il$p>P98@tgPzp)#yas6z~ z3t8|paD-}v|AyecivHTMB_4{qOzkCT&EE87mew%=8txDeMj(JrB+#XVx+kS3Jqt~QbR+iCqTqa9FHm!8Dbm3kt4nFB2$nYKg?>LFE~!|GaT@h zvdldg@-~`89?4`iM1n3h0RIAHtOT$53Xf~@Nb$g;AdjN@w#lpf>UoyX32*T7BF84t zXYQ^n56(vLibZDmenc2CYBVML4>OB{O0azp@RlZy)pLAcU?KZ}J&a25h*< zAhjtn8t^6_r6~7H>#DCQlkzItM=FbmDytG4_fjLWGO7@dD}UpA2(r(hPyd9`5|J$) zjw9=$g=x!!H<%%6)&}`_lK8vk69?{>ff_(bzYzRpyg6;BXFXn3KM&>G<@I%i| z|Kl>ouzfDCqFO5aMCK?x^pavTaeRP7n{-2wblmnx=umQ%D3C>iGe^wuKd9_~y6n@8 zDgMIB9ToI6dXz_>=piL3&X6X=44|t96iOpUNi~K^ozza_bR#kg0>vY(tg%ds(SM-v zR#?ffBx{vS>`R@}BW#rR#%brG?JwxNY)v5p4$bK)@sx+=G-K-2PMg$I zbBj$wv>F)_o?IdxTjNNpqf<8TV2G<8ZI4xTlT4q{g;1>#QIeu8RX7SxPKq$$?8G!=8z zHj1-5>ZnQLvEe?m*P;hr=}+D!b#o>Zi~4L7-KYAf#fNq+#sJo{mK9cfAOlvGWn0!| zS=MBWP)gB+Dj+SWxRi`C_6D)E4D(agVofr*H2O$K4~_9+JtFRit>aYaO%N7LJ2hs_ z(?V7DWvjMjqn0I5(Ti&K0v_aM;}L;$wqt!`HS8iY0Amk3)}-2Gw`!yJ?45N}Tu;#N z&n~(wwz#{yJ7IBmcXtUMB#_13-QC?agkZsg22XGZl0X7UkYD!ZdF~6iZ{W@!J?EU7 znNu}YQ#IYy{r!l-!9K*KGd$)0C9=L!C-CSxi{Z)=)@HO85EY9iZVANA&K5mD5A<*8 zThbBjuFnfN5zXdtYwRYS88i;Wvth+@5Dj+A8Eo`e5b?6>5M!NidC*s0`wh?h6c)%J zNKI(5p9j9}`*8kS%wQwj*eL1^#Y2wCg!6#n!x%my%&#n z$Vo}4)3i(@O=yzzD&2=EknNVVC&7&KgZ7?D%0o`d&Su6@4hIY3O&(d+_e&MCHjyQ= zq*I+&k37~EHL-rj>85-y`?zoWBiC65j>O288OWn83(PqmGQV?XePvD~<$e8%b9Iq8 z`?sUaKz@3H_?vevR0W@;VZAx71(FC#JL z9x?fNq-VA!v!-EJP^L0d%wn8x+}LzhVc9^uW3cyGu=075&Uw-Z%f8C&6mz;pQNqn@ zkC&6v1KC4lWG5s{B+(;l4{tUO-^}>9V>f8un*LWluzf{dWy!2ntS*HsFG}JNI3%)C zt>$w*=c*Y=(t_zWGwTYTWznGUu^g*l9psaIxi7MqDItL>{77G25E3@%&7mw>tyBqB zVWO$V2tmB*6RpvH96|r~phKW_a?E}OUBM^4Ui3=X(I^|(8jOErj4-Hrm`pYpvazP@awlL#lm3x~3#r+LoIs zk#hCMeH~e(yeblntq*Ok8>wj9BfjE|+x2aNq4#u}KI&#ZFCUu9xI2>KDy#xJ-wc*I zKJ-LQS1QVND?Z6~zbe0O@^z^NwwrhU^iipYywM&?g;5d>L}octa?qMHE*B2S&Mdcz z_Y7SZ{(gAV!xgAp6bgMB{P?X`(`@EOqM~X?q@?I=`OYx2>!9e+;Psy&%cLICGu}-wiSM$eM9MhYe7qrnP`^ zL5p!wsd4t*aTzK!?p+MA;t5fz32mxL>w$Rn;z@0~No%Spef0_R;R*ZQsh3n)PKCu& z;#40(cRxJ%PQKcmcvC!`G;HW^F)g_}omV_lgff%0J6U8gTQ@9HDmBwUHP`h_*K9G} zvpd&gF`){d|4=+X_j>*v)k2-r{6g`-+06>p~YAG7%%ggF03h?lufc|~rssZ!?4X`;V4*9>W38|Khbel$UyCV~ekmg#* z`pakN5KVJRu|IPp3f&a%2U?Kq&Oe&T3^7m1ggd7&r?G@v3_>5}BDjk)RNo0a< zyVD(2AJXU`A^^OzdM1lazwsGVSu>Z%XBk_p+Eu$yB<6RqJJVJ7F`3a2i+WI?RySWJ zi^FoZyJ59Xr^*Xkt(!wPSGh}VZ?>mtqs?Yqt;Vf~ORd>7CDC%Ow`Hf#dpuKEofO#a zRyn%Zo9k=)@($6NyGkoLntNsa)0N^T)rSitc7u>?LxVH5>3l* ze&>qP+e|A@Sj6Q9CMG`OzkQI$M(4{ftqVi)7+6F>GA8Y#0iIu4F|hGRi+lVA>K1CX zo`wgnwg+P_Q>CATf9(wPQ6fpdQTBTu9%V4$fh<3e1Hn1c}^%1BW@`ll}0ZiS^v-m(ETuj4_f}XSJT#G{ME*#F=rnnL!*0_TF&0 z{)(b@%>j6h4N0L+u9@%Gn!MOpX7d8?LlH_J2OgW+Qdg&Z#x$aluT??5SSrqS3Y7(Q zrI=$6CDDix7MIY>S)?<(Du%(WvNEYx#oeIWM+K2gk+l)RK@-xU#Ay!R|7KR!^5>xNGVky&YEg(hhf0L|s2WE@$9JEmT>!LO z^xb!sCzRK3(Wv3OVka)sm$wJ^YArz!Yba&>KFhu}5M4`2F|b?^>Xk_H)a`|#+&S3( z3XgEf$`6%TBYosIP4h0Cm{N#Og^d=K$M43h(XBc{i@o6umX3wrhXUKzg;SJ-VfwvS z3^vt63{R@&Gpta2_!A$e(jB zf4P`GtaXnL4LKteOD{Um<=wfC?JtXV*(AL5``3`i#FHJj^&WYHN8n}`mQa^$nwG20 zP6;Uw5I?_c2?ql|aL7KVe=TXcpzxurE*vE`KRfd`4}Um7m2Lfg0OzFpG9!0+*?Cfn zhk7Xc*VJpcIi*jkOsCn*}X|ex>e(_<3MkLHwV5(T;tz>o?f&Vo<(gPY$^b z!ZB3k0;wnRzD0VDWdOwv9X2Za?Eu|V+QJsnSt*Ne5}@Oujn;Ke#({hC+E{^} z9?chlQmpKJ{fOK58Lg%*24?NRrE>G=D1R!ppJlC|>XAJ@)y2H;Mku60MYz%l zN6v$EIORT2EP|KVK0H}|E2ea{$Z5P&jkwhTQ0h-_{yGZJx#|bg7gpij=JeAps+kH_ zJBs58OvedzMzO`@V;-0y=w`E6?y?tgoYYnex3g;>c3J!T1FCN|prGOIQdwb9y%d|p zV$dH4WwiaWbN(jl`uQpyl=9^mg^$I8gzR!YV;?RXgz|V7R5c)etDW0Kf%D6Cpg^-? zkN>*s;3;R|qK8f&hU)qk(WN8V6x_drghT!|>QQB}QZ|wp(fM4t%oT?$J*dFJzeAd} z1}RG0WiY*F^PGBGEMR0ZZMVAcM}^OCa!RIh0yUbapW6|4n`>Jo(I6)tcQViCDKwpub<(_~s(FS*!#2@GOn_IVGc#}Af%!X! zDV0_o_kbWXEGz#*YmeEa@4q@>f}FP)J@kmq5>PVw6Nv`w0AOB)y@ul@BGW zkO>DW{L#PFK_09Y0~CbHIem3Y@;JWwSAZ7pT=x5?_%@Ns~LPQ#Mz7L3Cyp4@|ElW9*T>` zpZ~N~At~vM*38S(;qP-4^4{WtF=owi$~(OmwoeVbotnC-(E0Yc@C0*wq%`0PvTXJ~ zU*^`Z&uL}5#g#p1`$|G`x<64gQJK~mem=Of)oCcnz$D$z?TWbJIZ?Z^qkLqNQ3OmPWuM(P7W;`aV>2vcySk&T>C_|k@N*sc{u=%8{kUqbF%cSjk7 z?+T3pU#-@K-`z%bJ{r&G!+$}_bw5AOSoiWT)KlbJlI_Zu2C2ON?XwaLSC-fVI9_Ll z?V2hR|7gZdvR2ddjWj1{KQ^MyJ2PA{B+>H;HMfcf){)RKye z#9E_Yx-~~CS+Aa=bp{z`>2bH00{z?G_3wj0L7eoj)u$-dySY7?DIp>-8N2A+`1szR=Awe(Q*WJ)3jG#9HDc!=qWB4#_BJ~gT2AD(vC9g16 zb9|;KK^GwHUO<#g+xQ+IzUo9FYgrv2Aoj{l7V|YTQZ`zZEJ3+HdNPl@WhIbI%q1=F zmHy@%LK8uPX`gWAupvYBTSt=_Mp~L&yT1X}F5cBMuUrqB>u3?T|bRJ_~YN*k3PA2nssC;PoEq!3ma2qfgZx{?yln2mT!OR&HmLOo?94X8+eLt1u}KY+77L07vH>aMEa5xd zu=ha%<7|Lf_G?c6WX!tc%zW~beClH~djcnStc*l9R#D>HV@1s5Qk7X22y+$g9Z8*<|$=kdwW)AR+e;u-6=B0VeqIE0oNZ z^VCazCwiHh3^GgIpR0XcbG=&DP9fsv6bFz$RsY^r*j&h&L{X&e5eSiv)0%RUl3o zwh(b$Q%A2Uz)(Q#(`Ih0u$)dz+-*+$7Zyr1av;S&xK}I|a|ZZk5<@4%jE!$a7tOmf z9?eQ9vyZC%%O&sen0JR=#V|6PFLC-m~8c0ukwNx`G4!Cc}sfiTjLbvO} z9!b^xC1n(gwhRI_w^ZVyq5{S(V(yKN&NJ8ps%-*_&g#tR|2RiXSr`06WdGCi=?eZV z#+bKZUS2KyT$7{CA^O9}0_-hYxhl3Y81c3*PP{h|ZM^)gVez0uy0EUgCmN-WP{fcx z^MqN|lo~MoNJDpl&s(SMYbN?BN20DD4i#~-k87ziEk{3~9Urj9Icv<>RJcNA*fDZ5 z9@Oky)&cK3TDW!U)HbFg-7E(E1>Q^--=jsPFuK}(_2cC5$198yfz@v^`eLecVhy$b z+9IX<(f(yQi9`Y*QWq6QZ-K;i983qdy2K59Eq#5Li3(W#$KHu?W0uP3LonHk@NeOq z%j+fYx>5r8IJ;(4yWHc8%TATVcW5Mc6z+4{JPkxnIBZiC9275O2nlPHnqVqBf^-Eh zsk`a~ya)1&1`3k~LOY~O4|(|S(xhLh!fuivB(V^q9_Xx-5^3-90Pj(Mz2lCyIUC@5 z2FgXv*|Y81C+4p@X--z|tNf%Ae@2^627EKCslJcaCFSH~lNQ|&bEW8S>+u7#*de3( zg;_f1@5q%|F zUB3vAaRMYuM{JNR;XeLmrrtp&kDSy*k@-a917P^WH`&1cSqYzOcmj=oGLcH^=ahIA zd*#A`J%^Zt>_1|YbKd6_?KZX8hA1VC2Cj))8JoNMTT+K>m`p%I=PA1QRDi7dI@cHS z78zG%m0+#ZCxLCw_M+*DmFIrw!8BKPcWZ=Z$VL3E>x{xKNoDp-(Qa&@ziyeuELQsj z>Ti>|NsF_80#gAk+in8?$w}C(&vq4!w`p<78-6*9`$1N-$N~0UJSbuw!LqgI08zlXEBCx097)=7!XwYsV zMk$4u&Z|htSBW#KXu&Boz}mNDGJ{VeOMEm8KxtcJ~s6^JxyrgW=;``OJ!km$;#T* z{lxH^ci--1B3s*aUacvytt7ev7guMv>G;p)=@+CU{0lP#vh}z|uLLwV6-H5Z_x3&` z|J&QcAtA%rd>+8>hVCUMfByD*iy%<;9DBOlGWSa@V7bt2sN{Fl%e!GID7K-1b25Y~ z$^5liUBq0tHY%=#D!CfV&M|JX#4l4ft_%O(Cc@v3AiU&6WKDKva*@N%TXKKS+_5J^o9E~p-s?-okCOh4vxhpF$;j}ZNjZ(>=c?f zX+Wi0LyDT2>%M~FYbGIm(E!v_TOIBd?qFc(xtLOFdnR(q#h_D{bj3QXB(`P_w&ym6 zqw8&Kk?a52A;0t!lihLfXI3xE%H~($3xPk$d_O0TY-=7N7E!F|X-T7x-g@XsB5C$y zH5Z6nx0Y~@Nfk2Wc_dEA8kKoW!~FAg$8rrnMd&;nhj(x92%cORoRs9k%{HI%x-N#ehLs?O)nAro`uvUHQ5w3<_75DH#;T}Xe|{0_mAm&- z)`sCI;>D3ghm3kQNf;SKgguPG_fKxE@{DP z6Bb@L%2bKm?4u&@8%n*F35WYyb8+m)29J9+*!*k>RajmF1pC~-L- z>edS#^S36t>@N|C5;}^a#|g`e4Bt+8YFxlph+ff%X2 z9NuT`dI!F}%FQXF->|_P9ZTsBQ^l)y-d+gWrF!FU9oO~c%PdVTZSc>}RKV>)6etoM zor+5bF**id;9=pz`6|X^F;MXR#mW)jRFIT}ce;1wWCn^<=^a}q97x5|LC?n*L`>%i zdwy<)_`HvdktTeeAU8PIsZ>m%QQQJX^=dUsUc^x3sNgjkwpg_!8eAI1%Y^=#ck$(v z%dy3y3JT6`M(q_eOmt}4=bGpWfL>W(!j88}p$yN=2;j;%9-owE-kfawFbg{TsBv?D z1C&4s7~rG)2d3CLq<>$t?bDr>#X!GLXdrkaaxwIN3vm|!$cZ>qLdsI^eZR;t2r7w? zO0Vu?lk%_W8h!_`vYi>~B7)~>Y#16_o zO@IlPNt7D%K$M8Br1M}vHra>PJI9mSmHUFVjph}!2fS%ldu==M4jYUy^U`t-XG zvzt{ukWdR*1*7b*YKNAAg_eGwuDj8%1zETZ0VMZ)j74`p*_xBEZHQ!454yiKM`vo_ zYl4aYxC(r6XiQh`De)VG+HEP&i>KpD-?{#uO}p*}$C( z-@Hu+_Boox&#lO{3QRvMbioWFvK`ii+>q4!D)6iq#SnF%p(vXro9#y{OQBK^#4hli z8_YI*Be(5y=ofT4>#!sHP_}LuT0Rf~@gfrMICsyUXrFReZ&4S`YmLQGJMJ}smt(K9Z&c@tWEns z(3)gMRB`kK>m|#0p|TyBP@=~rGgj0laGu9UNzV>`2}=D3J0>A~V3RzGpxei?7m!k` z1tg;APU#{+r<)0)6!s#o@+zEP35y8t5-`&iUkGnS1&uDMp8yR zGrvi&#m~j2iy*^E;(GAYGOawK_7LBv<6hSIWi-~4LBJ1eB|vHuD@9tLE08G^>8PP&XgbT6cR|3-AAGS*rD6b9QLeK%cGbSUUv;kJWu*2em-iwN zH0DW`!nZ7RAsAar7Q3f=1A$vapBw+BLNvB=Z5y()7qw{BH;FzqK7U)q-$7e(P^kHY zp%E?DOM|KQk{NEH8@GY}l^7Jb&chPG(!Kpa+}=7%rGPmnF-;}Xv9D*ZOtxc^Cndu5 zX)jxaXw;m6X0&s=U{s%wAxqZt7iZ~z%|!B?+qFVj-R44`OM1U}Q86d!)sLEdNsQP& zbEO5Lob$SUaW!gQ$E+Dkg5 z5n?xMNmcKiMbdVL^a;j|P049Fy|e<0MC_3_4prz9$Ts%^Ajj|1a>-1q&se<)-3mY- z_EO$rO$l8v!W}g=FUjTnAAtSkdu*#jd>W4z-(U+#96fyT{1%cmBj+MiN2gh4A*Tcz zy~~ipFK-kM5o2tq{ufm1sIeYoijBM(6&yTS3dVIS4p%_Yz1uI6EPQSGwOSdF>N5Ng zgcr1}l|XKkDcS!~pF}A}R8HVD-0nSTfuLjJwH|JPQ{`DY^E|_r8E7h?HJ=3WNw;`I zrSNsxpY;OkS5sZ3zp)Pn4Nt8 zI;O(l+f~bCtjuB5$#gojf5%Vr1;S%yg8{by;AvWY5rI|^;yfI@gcKp6B`D_l{8yy( zi7A>wXz#0b+~DfK+2qD`4;w$UcDo(YFq`50Sr(auc;+a_!?Sry*)*Ru?bisr&U4+| z%a@j%rvKqT!FYIE9=n*?xxU7{VJGq@lVI|YnjUT@^wU&6FHCTEIn_3EzT=FfZ2>hx zp>Kz&6c_ERKJy~(%=;IGrT`_-{rA~jPINUGJ~`4(FKxB&#J5`Y;;HWCcO9b78y-o@{5CouaTZklu~41hTD4JM zlf`oV)muC9&d4u32LUYH$#E*TZ+CE%sF2!k-thes`_}#IbcvW_te)E=qWW_&tfX2B zLXq~d1zf7)ugZHGd;kR~*7RVZ*Hh~H5zNEytyqNga;Eflm2__h&8vzWtfGb)#sY!& zRTQw1;MEFbFs~;BdP;_WIFMo!N`Kyk{d8Wvywoe*DH9ecn)ZmL7L|#iR)A`Py&Ht1 z=u7`8gc!#a;?F=r^B^&9mZ_9ju;jyp!c~*uS3^1zpZ-|=XOQ>LAeozO_sNzx61AHv zKOaE91JcPzQM(eBCDXz~lMhg8v5V7it{QOfM(a`DtB)n8g_gg2KU&1bJX-`0{P|W; zo%zzPJHaL?qnsegEHk;C=8ZU?Iw6GfXXX7&k(^H@YJb0jYevKS%xJjqa(T~H1%Oqb zHaX3I!^j(R$i>ptK)psqn_RIzBhMx~@~?`O^Z+x>wvIZHSDk8{zcV8m&VEV{o%F%{ zvW<)C0m-ex_UMwoqbtO0zdkwzEcwPn(#gs%BJbjB;gn1*=JM0-j-L%$9JfT`$Ee>-R%Ok zvbT*_YQQU^58vpOfAM|r^NMY@Zvc-Pyi{vS=#jFsn^xwjr1Ae z6N`Vb28@ky;+M)D#R3^IYMF%`;#_>|*jX}z%?U$$b7 zsf_5%%saXjtx9p(S|$B(Wc{{W<|gS5an{%dB<2z)q@N~_N!6Vx07nXD+O`roe`X#m(qMD5=8b2yusBwpn zjp+DP7;#X{^3BB9XKsB>z*MP2UCQPclCijJ%CmoAJYEMjO*ptAc9ew^yHj=F;K$Q< zuZ?GU`VB8LX}0iba>^}ynpj%TCf!;pXn`WOsXDO!==&V>isV zA2S=6G+}PC$8M2A0Aa#Kv=3|MrjNJn!1r#R&;Kf$y3~mbAsmN7)m-ONGk)+TfS`Vm zO!LPDAvZ>hlq^2x+Qi*)h-O-)MH+Nr3Hx64?k8y(WH}4a-K83gr7r;U3#JeV9pf*k zCCtjfMv}ej-c1wy^`2|n%sex}$v9`dYJ7qEBd=T+L@Xwtf<>X|#sj*^ph#N(x!Pr-VhrZj?nE0tnRZr6rY+`wVnS(4#9UkNW5iT6%#x8L5xP-(F#V^*Jo!$tM?-7ZEDj4E z6iP9j0qvQnf@gnKv_Fy(mv1K-h5L|C1NhaP$W>wX#r;3AC02dD2u%zuqZy^zv&urfXRO_ z6ElX*{PvZMx5e5+DV?3L7ijO|ao#0Rmn7EoC&d&KR#5YKR;LOhd_Y^$1X~&Z4YG=_ z?~(!8p3OPevl!0;hxk;5f~h(6qVHVUi6yhZqoyTj33+Pp@0&XT!OFR4X5GZwVa(f= z^-JGjk+_Jx&78fhls&18MTVXH?O_CPLx!A;$Zu!?+Dc{_O_%N7;(g~!efDEMawxnl z*Ud7|pXlVpHAARzb(mLLsdkfVSE*lyl3zczj@kXo;-?UI04O0i7Be|f=kpFTjBz12 zO|FGcI|*3rBQLLTPoe z*qq))N=~I;#uxA~NsV~U5`7LP4EfpsQV!EnRVYTvc7yswM6X+l4Pd0}eGseRV!JA3 zX-LJ@(J0D0tVNq57t8)&OFSh9=t#kvhfi5_9boSbK;@u|ZaGFZIk7x*D3N@AnA}?5 z2IMiIJ!yL>aF{_?|G}0#)-T;@VC5a5B5H+jA%9AA$W)ic*kvR64HSn>SR?Va5_Kzq zCSb_&$&5@o`>@9lKT4+@H7C~%x6J{U7)5>-Q*dv(l+M(A_qvUQ=&D%H9CLsD~vg42?7>eQ_wfI**?{$^Sjp{3n84 zENV^3s>lI$9P}$bcqA{R_Y6-d%`%)iY$QSP{;Y6m59p9e0+3}TmHnwThbKO_H_KYE zLN8NcsIjleX#lxuQi_XP=2g{sRQ62oh8DEkpW2P8dI5TG>fMVO=zfuBa#n@72n&Tb zghLv8Nt;G4wihmtpg;YMKXp`Vx0U|8$cwL0Re~N932~#Po?LLViVKhqEwc33p6FEh z{DK(~(Q{lYbS5Lv#%Qjv?D~sRQY8h<2q#&$_;&#aX`?2ae8KV-MC(`GDtnEsaLNFX zlj=Un!!$*2&W^@zo`Wgyq&u!EtB=AKL6EOB`QG#zp=987vt-!?!u0%$pP!u$FJ&sQ zZiIjou`UxUz;MoOtwfwaEc*CKBI8?PW1k1Uf|7%a9i|Q?;>)i6v&RVB(;UM{^s)Na znR|sqt2YMS{}8L46#C(vH}XmC=9fjw)1^K`%nCB`L5g%5xwKm9*kqYUgBfq2nU*;3 zQZI9r)C!Q)oScO|^!$$0iR8>8w9HmV-^cPTkR=P`RHM9vl_XpZPj`4IcSWw|ZcH3Q z|BV-_MNK`=4(hyz;B6#6yRMEh-V%uV)WUs8`tC?X(*i8CpQpJp%KzQpkE6&sC@vH; zJ0|o60F4k#S`f3Gy~jj~i)y7h2s2Yv0|92orf*BCQ| zAgeQ@>|7(y+&oT*lMc3GsWBB!U>uW7KKb+I49gLc9UBXtI%x8#-0L0*N^rCPcRC2~ zL&k;0i|IbzyXO7;@Lmlgz)gA&3*Wk)H^G1BSC-nlJ9QbnMoQjq`eImA%Zirgt3}&N z2{Oq1T0xEiV+p8CeRF42{A5A`z!AVTO8HeO7<+jwLvoO?Z&bLnAaJH0vs}gS5v?gf zf;IWC>s`}N{pxrb^GrgY4(xG7XWs7Ty|-1at!b~Ig4+Z<>#ix+oio(=sP%q?u%(Om zhPU&k6qXP{tb)8=GHcGG{Aac$*__5q0C zw=}r46Ul|z0nqo8;VTd13Q2{Zne;xcj5$z5;y)H`SsAlGipWvL!$VRGALs2uO!Nbh z^?i?h`H!rmI`ytv&1)gF8lBeH(ml&~p(jVa89LdRPZWm#$Y)Q!QlSxT@J)wftdZNa zKNfG$(K>f$G>6ZB&U6sHXVvQ#YaJ*R`(cdL>Zx8G&%689{&? zJ{NjC2n8FTsT}@3678Qbfe=1|4h0>I!DQj0doTtfXXPQH+qa2C#lWRA$@h+kNQcO? z;M-(WfKV|BuqMQO5Xxy#N-X^PRlDg_Fm{j!Svjy$EgnaKAHP=j0gR5T#g)EvG=ZW8 zrJ4^Ga*Zg)V9^MY06ahu*8Dc*aQedqKr{~vlN{lN7`93|y$;op{in@^f+S4E)Tf(> zk0urLy86R^JPo1%>OCF=PUj0np+1)ng6AJIDc@zYui7ErRZ+Locpn5rXJFu>*XtbI zqgBeYqGPJ+*r=poI1-kd8}BQniuN%~ChEi8KN+CWn8e>XPG@j2qH=4!X1vHlr75ef>AsTki1K!7>|KcAC4)_Qb#h=ow654F5RUQH@*$7<$SofL|MrmKR#YeQfEFGQT z=m=daPhvw*GfZetQ$<*KRMshYVq0a-wHqIWQCQ)ViYgA=Na5XsL#_u#karaTsxOc9 z;o3Wa*+!uiWV=;ypT5^aopEBy(v;XDbu3a9XLhbIg=}X9bNf>uK`1Qg6rPy@CU8{P zvm&Jzp71)pEa=Jsp#v*Dw=htT=vhkTcy=j{2CLA$HwIFVSwJc!cZMKP_E&qk=)*WO zD*6jf!`+D?qEq#vZS{cIZPq8;vGP@3x+oQhO%_XLXR*%t^Y}v-Srl&X_JPM%1CUA&z zq)Ubne=C(|Y5dlU;t;&1M=&DE`&LIUn0KVaa^QOwF>JIZ&jzeS=0$4IWN7G680-YN z{+(jceL3aI;Y%bV>e-LBKTy^1n&GkzbsH-LF%@H$qk}}X;ig!b;RzUkPom!CBC4|r z-M+RITo{wqp-}(%3Vcd*EY@kR8FXu+7#@T-%WA5*e^lQqylh3KU%G7L#V8tWmnVMm zDWh_mYwpsQ-O1@*q<+nfqN>R!(zg?G=h;t~JXbzoQjtXJ7s0>LYNlm3TxNo?7Wxn4 zc{tSXB&YExcAO#q`8(LcmtD{Sjn;xu52GUnG-J~+lkEu=nb4ER-Cb*pRQj^}FJ#Vk z+0{e5)4&(%XlC50u`uBLFPW)*J_med*lP2Uf<1m;4(oUVQB1RC6yXDT?<`Q$F4MUm+^yFBknMn z7@GO#04kkI(hO$6L7dE#?~d{F`K03qUs7APO;Q{YRnJv3f73@)Z&= zM!6)|;-j^T_$U!+I#CiPmK2g>hSU+Yg11(U1w%GNLFWlx2n@M=% zD3_FeVz{z>!oZtr_G|9>KW90``I#Q}N9$PfY*X7p>MK#K0D3puDF!#TSb4V=Q#z%z zBKz<|f-%WCF}-4JREBAJ+zTNDWkP#S3X;A8LLMha+}N&aB#6VKT9Egi$VPS5eG|>( z2vF#8*9Mc#xKA*47q_E|whoNekU(-S`FsF8wRK#)a=J1IDjM6U(Tsz9c|IMTB$Mpu z3=hUs*;=)9RC3ne_^C<#0OdDw5j0n)Kcvu)9kiZ&Ho&-gwCGF|uPnMt=JHiIbQv_hk28j5k4?5lJ1+W(y*ZCfzpGqS1m{5ryV8o zLlSN`UFFL~(?n1%lgo7*vT-|&RGHc2AM-!c`G^HqD7IH>??g|>)lDZOm!R&oz~iCf z$MkeT;e3sS>GUypwU%wO?F=Ici-*ZpX=YgjF=creOzjcG-=3 z<6Ack#8Rg=^?8I1wb9IC_vFQkD8xyxRhl68RbKehD($fj&0*Dc0UAz?-M$dHJ=aUa z(i24gH|JJp1E)SVf?)5sry>;1GUPwAj(3eKJOW1`gb+_J!Jwz z#~d7ai%i>H;@{P+*Q=o+nbVgG?`-IJ;5#qG8rK&|ixWax0@{jJ6vSghd%{*cah^yg z&wF!*uUoRip}QX-q{cad7seR1EOEyt!ovQ(1q{Hv5YDOa+*)oSU1E-+otqtY;*H+4 z8GkOmwwT0(gWQ#?0(kTE<=2xR%Hcmgmy>+}#^&p^xqK@RnWBaB2EUV?iStKfe=M{s z*;5Da55|n|yt8d~DhN!Y_nN|Z+-IT4*` za`WQ+4aoz=5INmm;gahEt40o*-(u1Kn4L}t_^vHw&-8>6VwCFW_*m=XY$rXl7lX}E zY(AFE*z>aR5#|JPf9=9vppYfw?iK6kA!}mtso8A3>2#V{Tg5lYHQ#98w?Ws1pMPsC ze?NWL%iHzMqS+UP?FFdgmxW3fMXFXkJrv8l2&AVcj7R;!(XuG+Gci{|*i&2cvGkme z>%`NU2?^;duc+0horPdAH2FAeN$3sx^BmS5y$`sj@Og(W;uIa`VW)nY%d=~hN>Vj9 zTJIF1ga_dK94lnY^GZf&;9AlJcGXIL7}`Vc^ZWd(7_Bjw4=>PkCQ$jPNNP7s_rAWdmNA)C?I4ULoT0;>>NAJ?aTg6S_x>e*7pI7K+zeOZ+xf#Xr~g&g|#- z9@Say^21`nj-M|XaR&(vCb_)n3 zU;0)L(W6`TJ^yHIiJ4xX`oIOfPFIg|S(A-kGpff3OCX!OSM2IWsMkQXdMu)*(=W+Y zC;w=9EqoqYE4>B*-%eGInW+9!N^L7f4SyOaD=#m57DoLq zEa$(0Y|TGeF;`#UcV86R6(R$a{SYQZTG1dZd@xM~m}ehVWdEl>)~yQNZnOegY;H7J z1>jK5phjZ3nXkFE#v^TrnL353r4A|F&nhp!ZlQzDMmvyw%&0&&<1^%+`6o{~GuOgk zVq$cTX&nX9D|0cG+eEKADe7y`E9b)0drr7>P5RYhp?4Fnj;W4%x7a?R z(tv1vT4fW@h;91GVHf-!6Gdp{G#b|gKizcggZ*+$vye*D-DJRlSz8LFk?SF(mM$mg zkX26Ul|~|zT#>!8@CsDM!JvrNznN``z^7kDqax8LM>o7KU@5^2=Z{IyA&kb%Cq0dp zjmZgVr=Gml`YcqbJZ~s|8ed~bNOXa#!k$03n*nT9D+eL!h3yR{zD#>hG}0N=Sy+aT z&da^93tmX&YgoSG!h10mZF;pxi;D^qo}l?uP5Ma8P?NbCw04s`E%7%?lLRn@p}!S2 zu3Vx-D@fy1oRHPP!WD;O%T;H1Gc4*dLCu&Jm`rSKY3;j>tQ;!YIgBeel?pwOF`hQ_ z^FfNgF%|nX$$CzXT8F74m8F^?ImFbPWi`* z&Mat7RtP6Ea%Ur8ip)$VrnVuOK=Qli3Ae`N-vcbW0~#LN)SlrPp15-@ zTrpm))S{IW-=CdSmM6R!PL#-;k?e5a$~9j)RmEjWEk!ble~e3RJbf`_u{BsL&?zR_ zzb?c^CCCdZoWYs`X9&@PYlLBk2q`4;moKtQ-bPArpPEg6|rKGBff=$lj;Fi>?n$b#I^4Y*x#Y%I&rwNpdyqEQX0ZM(;Q>U&R-GG_a() zE|?ViFkVkU}id8%zt+)ow!^QxX4$=7u#QwOGbs!z`^?m-b`owO#LI7{i&C%Bt`c9$r}D}jCkss zh9lG#KPI6qf@x8dfx!Jxf)`JOOB!;pZSe8tHHh zVb>#7IGZ_GHCSgig-g3etc(;Z{ilJ(Je^%Q6`gl65*x-1$us>}PUeC}HLZ_@XnPH4 zCoi`!>8k9i{DEN29X9?&-Btc`y^rnoFMi*b?710}>KZ`10ER=lSTx-Aue|z;}*|q(mpl5I9pgurD10b)oc$pxS1B3XeB|kd9>pOdpD!|VqWrm+&+3=+>TM* zZf$Aw@eW<*wd(V04faImEu~7PPjfg`jkw=$*3r#_yE{4YZtb2O#&h`{gboUJ%f%yX z^~AEAm=k;aX-xx^f9_QZO2qGS>_)QFMB`*K#BN#|6_Q>~1bBQT2%Pwc2IzcKrVxw| zJ)D%8RYKGG(1nF+zIpA}O?YyMs$hBb3mbV#BZaF;h;AWk1oIG)9yZrCSgF zi7{FwttNy75cLxRodBfCTqT}_%_K^(adw8vwuv-$3~d@olR$inFc*rNiH8+l&%fwQ z8_P|8F+iI^r_21JPlUwy%xC-+rbR8BkJi`KoYqoc(!_obT#j|8K|Aqz$iAe_^B;N3t_@YaPq=f7<)$vT2 z)e1{gOzDao+BUWS22G1#$eVbU*g5kb6-yagEC#sG!R4Jfo(O%3N1HU|zkyfy0M_=% z$VS*q-r3#V@u+Rc1YTFb93j9VIz@Cw#4o8wcQ{(qK@6Pii20CueT%(8M~woR2OV-r)N zL8#Bfi+QMY|-V+VK%4LE_9hk^f`ZYG-s;bGsHqCjkB zFDIL{NH}#3B}i1UkWy$P$_bXD>hY#UxFm7OggCwmD$lI5MU*%OZ1r-y@uM3KRK(NC z{>F=QaEuqnn*`^ZtcrlqYL4Rxq#4;0Uy5_i53A^FMTyzMeaLTw+{RP|d8%h?F!`1x z#gp4l(@=SzCx!R?P2l>T5_eoz=nCzV=L^<)d>5O#&cA zseMJ6Acbi#d$l}rF}5&9bPODQ2cc|d1G*2WPHR84H*M(9@0dte3d-zsu_`q$W3_V8FM@5pA;t^~7a7TqmmQHGq;Sb*HrVIx(6UE`4 z8|rV;cN5CEp^x`vN{dVkeAU_V07XZfF18tAoi2p0co0BlAqHI4R*ER6JctTEJ{K`+ znP`*m_zM#)2x2K5mI5eZRA}&^K!*haD3GY2pu>U<2M%Ds z;GqKt0|p4ZZ~^25lLbM7R2YC|LWLRa%MwJRg|7caKSFP$quyyN#1u2h8v`KX5PKYfFNCY`?W=x0&4Fotivh6{T zLK7qyDNyJ_0Rj3}EMQgT%annI7FHl(27uwd581PUHFfS5quyenDeC0H=P z%D`Z43jOfG((VAb2TOyk4K}c2lmj$to;})g+sl`|Cbn%rAzPd<2L#Y; z6QoD5p%;Gk>ro&`>L7Q5FP!(F=7M=mZnWw5deZLT(ZWwUpFYd2nGb-jzn}k7ss90- z3abHO%ZaP5zLHO;wG91=@lRxC0)l?xU1EN+3Hqw{zgV?+AMD058kS zPXP2LP|qb4Rf4WG(tdjnwTx~ei@!(j6Tm#u9<4Mf{{qZ3K&lAr6sNqrdflMjKr^s{OLMtBm#Z?SgUB<$GtUC!OS=_8$`va@*SyV5p)@-vIRYl~vmgZg z`ZKQxB;x9^AzezzD-1BGYJj}9YBC~;447yrBn4mqtGfu86fQOg8*Zx!Q$oS3XbF`- zUjc$m|KPSNU()Wh(X5Ifg2XhN$kqW+K!L%B%Dl);1@aOq+~EerK%(F%GR%PB(q%v} z9j`QL&@0dV4Xox=_VYrQ+QQRP`ap`5-{@w}xhG6D?HMXgJ00-T1iU(MtEAdv>175R zT-9l}9@6Y4Rtp$O(gSLP3r7(>swx2wN3v^Ip&}*}-^E@MRG>)+3pdliaUsErr^iS5N?R2*KQZdPcchWie{=@X(Q+^bv#s9dyf zzsBn_0t>qdBaAj0QZRuIqR=A;%0^KrZZV=TLJv-67x4+AO&vVOO`0IhjssuwfSC1G z|8sx{+Dlqzv^?7F`RSGN+4`q|4!S^=gen?=2P&UA!U6V5OCsdYl1^%toR*8Zyw(e| z#^J^ma)1N{`rOdi3({ApLBZmswZV&Q2GEz|&egpItfX?kG24&0#S(pyOduW@+yW_e zsKTi3FNDg=MkL}plC8x}?K!~--KU=@A!H>5S)^Xh4g2yG36ef5%!H*LKV7mgqk0(9};PMQX6X!ioGZ)hj^>W6u>-j8u z+N%mq6u1@ec?Es$k;(YVH<1eDEq%d(odKLyfih8XAjg?szba-w{7tb(YGO#V|NNIS zl@*dl0}RnY4!EWS5`b`j=^L~nXPAO;3rGT(Ae{tb!Ajo5fj9G!-fs3m281wipd*w5 zN+_Qbp5TWHVdDx>>B0}du#hq&01XY3rkmUl1C$|>$|mqS$@tJ%K^)?_-ebfyA<-mC zoB$I~(m{ntt%Xs9WlZ=8HKM4=V9djrFu|xkFD@jVGZW(&HC0A45&$ROqW}dSa7H@b z#9)eQR25~?ETQC4N)T~VpH`KZj{W6HgmX#k0$He9!G&bE=~cYgMI`;j#Bm^5*2N4a z0nPNyc;1|sLuS{>(+DO=65(V3UK*d$6*Q#|364K0G@Sx`j8LX2}q=wy8%%K=6PM(+w zojq~RKhu|#=v8SWUu@@o-U-i5?TW8`EzV6W#udo?L;?NGNQKaZliIZ9RSGf-`CRp? zkV;@JRk?sfw6l>w5&!|pAxOXQ6+5d?sG9Kd&O*||0BO?6AuZ79NEh&+jC!*wtJ%rA z*hM?sxD*3JGMDdG6hf~kh5=nfKnq&%l8KnILVrVR04}DP*CC)bh#MC}pj4GAt;#9~ z`dn5SQXIx4XaEif3~wP9Cl6&6CIV60%@7BJmmvvqFZqo}5XV6V|9q*NDjSXRG6FND zIhL^Bge!jrc-Ff55Ke8^FbW z#U##zh(|=kPv$UqvwacCLr*0Daz|&%zJ(54ovrO^s#3Wo6;L6d{4i|^09^HM@dBQc>f`IkGPi=z^%q7@0uA9islE(`9DgUKji z3A2R470wxh+|mvz97Er1GJ_)+gs%R|Zs5sUCJB^M~Q$N9~pRJ(H3B5HNS0*R|amSn0>qBX66 zb8Bc~P1gwQbsRBi^j!7;nyrB=S9vY&~+;AB;2Fne)9%%;M325`W+ikvg3n1RT|5+G?YNOM54JF@o-FGe@{+^9S zM`Z**tT@dg>VoHNyjiWZ!so;AhC2la4?kPPMI|Z((PzVqepuB&BqMlx1YRQ<3Dw{Y z%m-S9e^o7VAw8=)k|7mek*qbr+O?TUR-h_=`ds8a&bVk9t{}q|tJM`SbT<3GDo+ng zlfycwaYby(;NezPb}E@4B4o}g@lzxT!oT@>Zy^p)2xY-@5adETJTWOAaYENG;I|nj z7JQupXl3Z#C26YyF-ZXpU=mri#WP~{FP^UGoJI{T(uc$LBT5e7bv6R=E@kmDrSTju zT6}H+DlCJHf~y{c05xuW1R{^Pq%bsNH41`;|M+djSS*wJuQAq3TC7A`dJlti%CiFF zr2I=T4x))>$SYurD?rC;o`v*$%8#<_P`H9L&ZKX83$YYHNmM`uJYrdp?R^r`eY}p z30NBK2KA3LU}85`q{Ggsz0zl&7DPS_us)1Pr>u(sk3#Vr5C9-B0@*15`i26z0ymJt zA*gR9=m<^JjH@iC0?LQY)Z$FYiXnodGt%!0pGL)g!_2NmHdIc3(BOIXbQ-JJis9GBBo+v78Qb9|5joOt0MtC!VT%~b)fI>6v6=r=T&NCQ50zP z><5(qu{L@!jW8)#+^nr8Le4sZ-duzgVM2;NXMhyq7`@4x;-_<-i~;)O^_WCGhJ=bz zY&6hHCg^A&_RftqFs|lfBN~gO&dCvd0umi?5-E{VCXV7trQYO&X+UxC+$S!02&Wo^ z-MT3bZ{sooDa-MxI*4+xZsObA#6eI(D6)wV*}^Z{ z!h*VECE~~T@WXXs}U#4;ynMU>qKmv>sDY2s3;9>!ql2&X?YYL>?{sjUvxl9_8}7BQ1$UGo0q=7z9Eqz=#r{ zoB|*(KCc4iBn~z70vbX)|A1;Zg6eEo?_|tS_M${S{szlp&slWPPrPC^KAaJ3u0mXn+PVV)Ftco4(5~*@d3|@31nEX%1|_1P~-GWv= z%L<0|lJYUGE{G-t$4qGfTeJ4erZC2bBhf||7YbJSqD*N(R?Ltz49&|H1}^ldN&j$b@tOR5wqbGlM-vDF^eL@XyPCdrO=+u6)!JYbnPN^1VsNe6;sSAKEp$1 z%Sm8wU_5JM4j_{JEi#w1N*uzl7^O|yA`WxROhUxEJgPBX%rI2TI`jucK<^%r3`xhu zv(f}!7BT=RXIZZEH=Ks+4(2MN>VMd!O9dlVxX|*@u>iDksd#E7w!&WxK(#PJP5vx- zCWRAYVj&O*?-&O{-s8%wHt^0hg4E3;bcRsOOiy*gUiVU3_48J! zFCNcFGYqCW|3Jd?a!;SoPhoolyiU(1z>%I*?vA3>F*wHpL$WL)?l0REGNA1$iAZmw zqfeSBY1$)VSEbF|jzKzX2-A@z9D^-<vzK5XZ1orc<$mu6h@&fER%B*C53Sxcn~g_6Y+Aa6Xt9 z6A@Qz$=1Ql*6{-C>xQi-V#Rht@gbT|O#;C4)XuclB;!y?QNK%lzeQu`XJAKDVZ)4r z%VZ1l&pZEOEAj@{c2xGNFRS9vS|+0~L@)LLvC3xbgyw6ZIMpjt@3RmKvHVF&SP#0; zI6AV9LrN5_N^UrSXd_zZ$YvxkwFd6qr~m$InhI?~xN6GcXHxWVy71$)`mO+=QF+QQ zLOAd}kheY9LV5YaDt`ERabk$|Y6zb7mj9)Ci!g{;Vu`zI0iWZKl?Oc7uXKvp6e&Uh z|F}y;;w<*~>hx5GIh17qAm>(q#$y z^kYOFc9W7Y0Q<#=e22Q3E5&qk%~qJW*-?qn4k^j|3YnR zp2RI}c&zR3gwN+8v?F&l$kG0$l>Eqfo##5(s)z3?utepaM5Uw$GqL#;;imXn~f-f@(#YM66-D(b|J}GZ2gz`vDyL0U+C?B^xS+ zV3-AboVVhhBBeirS$E+!f?K&t4Y4io^C9%5YbgY_ZN;~rM7!`=M|ium|2YFDg*LXf z;w)8cXX9mA9wLbj05yG@^_*Ep=w<;GBNs{QB;aI4BePAtJ2IHV${bnx2s4riAwq*DavfzFj#d z6uT%2LR31S16Y6s9viYxdW-^mz?Dbx0QCW`gQGv1X#(ne#1tkJl`TFsZ<{O(^mu)OhpTk|*k{lsqCy>D#Fo`*B-mdWV%x-#`ck_HJwr3{0yQrrs0MOPd@K%a zY`3vF_H2-+%p=H#%%Ty%8aYS;DhV=5x%@sGaSFo51mkrQfYxWdcgb-|?jkRx%WEU# zjE*Dgc4B-}r0RUEk@Dtqyv6-AeNK+nS!yF%9E9Zrf?KLBoQr!pj;PQafIX)-??5_d+PntHz6RdB-T!;C<6TYgoZjn0TxCl^|E{Qg25hbttspp5etNOR zz;eo0q}7zKuMQIET-JR|`L)&ut!9%nDrY3(P{;&TU%Y1s+d~|P!`t&<^a_XUT| zLR+2zOkyiY^Vy!OtdU#6>H8?meP(VT`lUbm(LU{)0^ZjiB-(ydG;$OFj;jt>%xe}W zmo|9w9;)cXCHcOEp_!mjN${bD@GU~z)yK`UXq&jHfBFW}FW~XDl05-Jf`kPN5Fj9c zP{4qN3k5iEfFWW4h654`xF~=D1BwU}cuY{BfJFfT|5TU^;ISe?gaIxdczH2E$b~Nt zw2XNZW6TIVF&Z%7(ICN<34RKIiBW-4iUTxm93V4f0fq)HR@EuMXjY>km4+!2~NOQpEbx07bhD6)v2)H$YUWg9RHtj5x7k#5Wo{ZoD|M zxOAamrhpj+KzdQ>&k7X;(mc>mfCQ=`f376( zkuCwB2!CF50IvoWO*qzmR%T9^i!8Fr8d?8V<~Xlajgwd z)KxF#<{MFMBBa&=!{K#RN;}4w+yY3wBvl0xhQwlZ0`L?POtSqnfm5&5q*GnXsfH0l z7+6%7U}gTuo(H~NM4N(sDfQ+;+C>1JsRTqcsZt+FWD#Km^|MV6ORg>}iHUOrK4=yA*~q-LNMlq!Hn z7d8A6odq34z;VBYE3u3S9S~=#Nc|)bLQ7d!(*d--cN%a8q3?N`lWw2+j%ERrACASrNn-?KyD6h1>v2)4Mo7N22v&L zjv-#<*Ov!V)p1QKt*fn6TLPw$s>!|A?0!O~t3by(-M8=nF~ne3nNYbV7~+V%Td!d9 z9@%*0h~1lS<(uuxFH`>hD_NI}|7$8R;&U6yT*G1>u%_7sgbG{&NSzm4ZVJBCu~HT$ z=XX{DRoh)oUW)gdQnVeQXYM2kmL*bDKYDri#$ugw^ktVM&d6!eP#!*yWb_ z?9Ejlfly&wV?EIDB}h<7%;)O$xFkt#gOszJ2LXV&%rRthqoK@LfRs2hh3+o_2w1gB zcLA}$3{d1!9qT;ux~RENPy6{80b`?p+hHYl2H2gUx}$*gElnjh8(#4efE5J@MQF;4 zh@UFP5{s=RdP19C_zH);{|0V}dkRoX6k*0i(2Q?_fkR(W)K@9hv@baD^Naj)1jPXQ z?tVF%kZ_7qHuVs|e+bM_9NFU&+7)nb2dqv41GvDxHE>5HF%bl(G{H3yW=N9DAP6?d z!4HZOgd)@&2@yaU8g?m#4fIL@0&pg!JR~oxs{lg)w2+7Z1|w(VR_lIpAz!L$CDxkH z!K%WXIE@Q$fWcyFFyftO)x;w!LEXkMVl#t`DX)EOM2GYkf=rdP5CHT*pqkOzLheSqZu7;u?ak zvnCz=)q4bz8h@tMVzwe1oH}%y>(xX7bpz8?MD#6J#${cuEPzwOvRSJtQCndtz*57d zz#WZLN12qSO3i0d3bK@5E`@1K8#hy$LTL!G?5%Hc%DHlSmH`*MBw&KHr4&xDR2xOq zRDz?F_YhG$|9>mMtgh)dlq8^fu`*P0U@5RVc@MT&%o3rr653Z1B%dU49<+Ri6sM5| zt{9MO`$#e>G=7A6+rtP!w$xN}B1kZGVO=`~Gho5IJ3v5$LKB#O|aW6&;ja&LsdEFMby0si{ zeG6oz0JnsZISX-*n?mv(*RsD-*Z|Tb0p?26xorAKbUilR81*M>*v;b(xqGK-B}auY z6EAo-szqyw1icfG)x|2MAOg6JlGkafeAOJ+hg4uC47h84-LkCr=ET1X$O}@PrJn>L z#K6S7|Hy7`!(aon(3cN(Bh!RM;WGhdLk>tywHn<+0u1&5XmkzWG(6&`e1w-54x&X; z3=;2t*TPbFo zHWi>OLObS7O7bT=qL%b~mdTdophY?GY@hy$_-Hy4#yY#YW?rnL0S(*-h+`tvS7eqK zKSGg19SgZD`%+p}FLM%fCkcVLx=&mE7ejF2{M$F~}4j*$j%+^)Fcn1SyuiVE+>Z&`5 zenA#DyQER6bcco_xd;kSfDr`j$Gd%wSY5PPYWLleB3+7~5PfKqfFlW?gtw7|?MkSEsOFic7~v zXb>jqarJQl>iAS@qPOn`k%BICCJmeDnK3%jpMOeJn#MKbf-zy1Lc_cbaI6KO z_L+9*tty{qmFL_q5yi6&3#c=wCs(_J1gs7DAK|27rJ zOAj$V2JtBIQ)?PFZkfkTK$Lk`7E4iKd*N3llQKT@fi`M3Zvj|G2~iU`qh>i#XEu>K zGj~^$G#`EE6jz}UU;%r1Q!rkJQNzL<0jFf%#V%b3N$+PO&PGYPCS0%7Ng0%U%Ex^A z@_f*DO3bDj)dybCf**AEb0~8FMpP`T^G?blgCwD1w}E!pls$R0UoWvggT`M77884Q zC=rk{>19MA;%EX96=#PK*uoNqfe=4a7a!*U;8jA<@+l{%Jr7YmxuQZe)?0g60Q+PZ zR-zTjl|qlGc0B|(TcR3g*HbL@drD+K9-~qzH)++vhz4L}3&Du$$7-*%|8V$qJQL)E z0=9PZWl{(TKtNc80f2nBXd26RgdmiJNEdxf2o+99R6KPXM;8@TXoXNGC|SrcL)3+J z_Jz{5YT!qP!a`1v(j#D)8$8j5H`jdGu(zzF84fuWB|4_01<$R>@pvQv59enTAmnG zuQ!gQXej#xGNm{((t(Qi69B7t6GPJw)u)jbu_-G;i&j%fKUZU*l#9A(FTMCA&i9Ky zvR(*aB~HgA|HEso@pC%&BeW4BZc$b=awl3rcFPebAu>lFp-7x)|5O6-GgMeq<-##7 z1Vy-EopIfelZe;QYblxa{?e86v<5=u{Al9jB)grBf)O&ah;cxmKXp;WZ^7s_g$l@ zLdZ!@4H*Hkvm;Oc64G&fBb#4hG2=%t;Y2PU=MzMw|9!fG01m{FVis}3^%O!< zU6m3SDT8na;#Sg`T7XGD)Z=-l`C{u5Qw#AJkHMOh;hM|`o3U8{(U)sMC|o7=N+FRZ z()1%Q0aRgvCdi=>2yq-vk*O@X7X87)uLk6Vx&@GL~#fpiug+H zQ-T$t6Ch&%8J8ssv2fi1p4I_gX#ygA#{k{ABUknl5atwCBs7G95STZTpOq7(q7)wh z9^p3^Z4z$#7fxSd5ceTv1_7f#@h29cOg|Bz(&!h|_Hj=U5}~CkF_Lbf@lH&UNBaXN zPvkKHHLGY>t0#D?4nUQ)ou71Q23gEEkDiKhbMGJDAdgQJM z0k4QYFdiLce6ueis32;me80I&k<0SHpCL8Y8FNEHby9t(R(4vV5Cx;QzQ zsY^1k6i~4>aIqM>7#~V>AsU-vI~rD^P9Pf@m0C7vdq`?jg%Us}Xe$m_qV@-wWN4USm|nH zM-nenMip8BR5MZHrh!)4cS_VP+l5v-bTD0dvUUNd2V@=5l~x=vaA?LNoi!EJVww2i zf8U~Fjb@w&R1+F`Y88|^6U1{VTDVGb{}D{bsh(;jjN7;xdpR6yPRe#Adgm*Ku}Y}< zVV3wZAI1>0!563!LE<85T|*+_#A=WkepkjZYA8GEr~pV|g1zd6+(Z!j6lF~nm-un7 zkfI%C^yg;Fq4 zAxqaLO(bY2e#%pPqkSF%7<8i|KLUF^B}hFJHF;!JA!ULASA8ls5h@3Xq1YdQp~Z@<$_e5&5pj)yvmt=Sh(r|; zmlh{=;um3AXcrf#=7d8BpqAr$99^0m-I_-+6C(5!b@Le&Cd?-9RBJ#)fKr;7r4q*Y z!Dbz!Ct`MmJp>w(Iwf%&TXP&af83MOm&b>($2~R#wM)#b~&^fiaq<0kQNVxdhS9?>spKtQqrc&tv@%_zcMU zJh(s^W1yQCxw**yG0;Y-(g%Hl{N}=7I4%vXzzVdvlqVs}iEC1}iUxqumlpvZu+er0bF)r8U#CTUJ}85(itq zH=)Q)2w5^V6NS9o#J9ghf}EsrhtVAX@vK`xV3|wKlhAUI~_QdYa-G$>LR*C=VlS~OP{by-+e z4{j*-u`ame|2FjqAXtPH6y_1)xMEirSQNZphY=GWmSjanxcaNrOG((-ZRAHj-I$@| zOfKxDGMmBGVz$mW5H2tPRuc`=FcfW6BTN`^msZip#zd>GJPt82k+0zwrCZEKx71W_ z=T7?(t-&KO5Lg#r(@x?;K-x1YjLs`W`hSAqC_EFlB}{7DWHaPP+r!c&RT|@f#vD`B zF*aZWy|FVZU2`7MZfHcg+ftF%8*s+~m!SB2<<3oN+2wHOEl!AedqL1yy%=b1>-6F) ze$?xNf#ft5?8DCF0NTzzdF&9(<2@MLOTp|f;p{Oa72D1%(%$WeR_3u5+0RN$eF5#y z(d~>1|L!`16mA!A2>DbiQ6}o15bREPisU-+j!<+$@7`i$UyAP62pdy=hjp_IvR5?Hpe%NSqSYw}v9c zZ$Tv)ievJJfvG6J6-2!9zW(a~@bWNknSv30|Ew4`ALSEPzan1&_aW-(Qd(bkajBj@Fp%Wln$q!1E#H+;|rRu<~l@Y)lsG=Y@5ocs%9dMdX7|~R!f;}2B%F(JSQo74~ z(-&O=QYsWo5Q>K^flcL%A>qDVi?cspwhJ`4j#J z|IY6npC?Qa`xT833lIeg3?LYQ-~fRG2?`95Fu+5I4H-tHSh3=Q1p+h*IB3!1N01>S zHULo4h2M-Jw5D8JiPlX*5E(|)LLIr^u1zx!DlfhF5 zKOIbUfUv+utXY*_6_6l-#+n)jU?o6+VA-8z)e;apVCTjF8wEy)@but-vR)I66@Za$ z+p->rZp5n=E?Kh!JS-;Y)uq6LU&TIUfB~-B02m9n+)0oy*1JF7Zgk04K!KexVl?&| zz-!r#tUY_($lzd$vKn6#s96@{ZUeEcCKWJK;Le&qy;60s*DAr9qcuXUYE@&||ECJ< z@+COIdw{hXVQM|7TXNg6UK1K{_;Bc5iI9iKr`XYbfu0q`A3&eq|NoIz5^z8PTaxKO zm}s(TL5)JPPold9fG8oLf-=Z0_5?aW!vm)J>8J{{3QK^s*g^pXrU*)lEfQH2U_`VG zKg-BNGV`J>$=u!~Xh*RsEC7M2 zA`D2NOUv16-nuL*l?&OI^$!f@?);U1T?aF1=uaiAdI4X(8q$JwKuLL2_jc3#F%`tt)muI=%<2fqDo1ZAj+yE(1wL*JEs`f zw4k51Eg4hW3fgIAceSc-zKHCTPr~~i1gX7R@paVapoON-AN#4PlL8aX)UEzFUj$o$j0*xhh z%Hu*`YH;LG(PL;Tl(kd&)0SQI66TI(?hInjr*5?XuULIg!mlk931|R|T$X5~jlMN$ z=uO&n>6nNG76GU&f}E%aId14BtA#3nsiWi*XsVZj(ugUSHBw+V^J*jjqr_ToGe)#C zCtxR_A{@Y_4}2hBwyT#wwsj~6yaXeeS%6w1;3bG1ge@vci~D}EGPR%pesWO=i!dWA z%$RN~>thPN66UXgNhom`;t5p-@Dxy~r6Ajy3Yjp%q}>p}|2rBh9%=;g6qgJsRB~zy zam@3h0#Ky@1suq64B(w*UF9h+^A2ea;J;#_XFdW^kF4;MyPY&Ic?T$qOZ4&-F{bf( z(SzRfs5cXc)g&hi3dxp!q5|(dh#`=}Px%S}qNDgk0UGh+`3%US6-CKfJ<3Rnj99$h zVaQ=4v?Ip`DFC`mMIcNX7#F3KL zgfeLq;~LqBG&jES01=Vn18#@_WO+mdcnqJ(^yv@~#m$Qe0Z}fSL@gu6hX7$CPCL!B z8*8a80Ss%)o`x)SZh*OIvbCiIDG%`mLSeNRO)HJp1g=2wx7z~A(rP0(5g}QW9 z3Qe<-dcm-a{6Xs94pz**ZR7%4nJBfGQZ`PqGbs`%&rme^JJY2vUITc5R%(Yt?i~bB z6F3nHWOab2?29c=85mz-)1dO?NKo~(r$oXOANV||pB9l7fDV~Lf~xVL(F?+2EPGkZ zUN#~RwF&Y*;zf%Tgeez*$S&i9&x63!iCJ-t|CID+M6#I&wq<)$Gi#fG1MFm*t=ow* z#X8#nNPv;0jF-r;ax=c=X5+8o(>AzI^ z$Fn`@S^)+c+2$E^vIMGZW-Y8)h;X(h3uf#_Zx(>j%I%5;*(lXi%ebsy3rS^xt;@Oy zPf#7PSdP(c0!NIM-bR4M3CRipgnQlvbTE587EW?AvRnaBrgrywZgqJ16Y6fux~awP zQ%N+l4;}})c!}4+z)L~#E^{;*W@OpS|8|h|=2uo8aIZe$tG}5QtG?z_h??(8Mi$LB z$(#ExbVjpNEC$-cSWIw!IQ)_AEbGA#E}DcVT%Zd_+5?+iKtmA#7k@g$A>=%5gbsW@ zHIKH0MB($Eyu~5&z-uhqN(i4z#g(pXYenNyz;>&Jk*RE0$WeBY7wZQxJ*9A+1n__b zPjG_$zzTA^Jn#M5R3*4jx64{V%a1@-V`{yLlvXC!z&1iUOOa_r6r35R!PFV(3S>x8 ztaWhYQ`2U~*@7H8tG@sRD3iWPh$9{p0_1JaFA=Lh@&VPM8GSMa1Z>0@I(VZWjZj!c zT;hvX7qE_*X$o1bLi~wk!xScuoE+fhzhq++>xx# zRRD%D=P-97 zDj4rsFz;y^?>h=#nlgqsina+he)*r}TRDkwDLIjhooFUATBK1iDc^D`K*0?C0hxs= ziyVOqzcM#;nhL$~AfaQfr4y;d@Q$e{3&L3@($8$gm|BFBgqzF=~G@D?qZz32=62nNL5Q>nx+UdXw_&^L83=v$hYFVMB zLqRc7!98g~=XgO=I}aJuF&UC8-GdGNfeE$P!RzS3#CO`i4s}Sh&q%xxL}lIih%cevp$R%qA0+K$`AWnIRhj_k7z(c1ONy`#E6?fU@^Bx z{3eQ!6{{I7WD-4dbTfPEzm+Q+aJ&<^836ie5|fG(=O`PjKpoG(FE!h;!Z->eV-+j9 z7U$SVLaG4j{~DLGaT(tEm-?}c7U38tW0wm|Cq5&Hcj7);^NbkLqUYNP16Yh!*CNU`J!(UA~}SwYluj`GNm ze~O6rxEY=a8vmlRxb(-K07yd|NP<*A2C}#X0*MX8!~X)Y5_*V2ijPYoh!io6h_s0d zD9VjMyB3KIHd!vq+>@tp$;;G;0Gycw&>hU6iztFM5;3yJI-tt5AR74;mutnR!wTkb z0N-jtykdZqnMPZS5QbSq+89Oo+ zt6;-A|ErD!G&vUn3?bYOtScGWhzz&n3%CSC?W@bIF&gNq7v|ARkl;%P^vl0wfX^F% zn)to!i5jc9k0-e&R{^ciYfO_-I42tbl`9#oNX5JWPcthxmK!eyIVCz2RY3F=sWZ94))tQ@|Z_z@f)-Oni9)P z$2%);lARfq&%F%D0=Z9E$p&W|FoQoIZP$l_iakLv_-DfKsU18STRx$gt8o!P3pR zF|mjw!s=4pFvU5PP!G$Q!#fr+1qtflkd!%7G_@5qWeGL~Oa-}~gUKU(s!L51){3~2 zK$4URu%nwx3SrHdGn>1O@J!Y*$$DYO;#*V>iX7kC4$T|L~uD zV@dOgX`}|9f02T_M0L(DgxT(bd>0Cw$RD?V#5^LN9J2U*L9+V*c9{#zY6WT#6pOqt=2T+ zS-mi=sZG;wmAr68Ba83~o8T<4EisA6z<(OssnH_LP`RW~TR){XqM9b`{~6Iep)>MS zRP~DtPH~jTVU2t#N4+>z1Aq}BRNCaTmu<-uweTo!qcuJ|B>&pSy9g7^0MYpEveSdF z;MlIQXq_uDfZ`OLwlOpQg3=$+M);I7{&H43@})?*3%h`%m&K5|sv^9@Pgx4wyg4Rw zQ`)&~&wg|)u0W15(cRyrh^l?KAShiKo?#mHh)tTK?2XeuG_WPIntZ&P#%fs7Vv3kM z(#8wE?Ntbl9Wt}LP_@L!;5$L7pbFc%kktgKe<~)55K*{TGN8JuYJpXb*^{@D+yx?; z2EmL_G&cl@rfBlaY&(dFqPwHDs&ML-^T-m2DJfSWw;*Mq3<;T%|B=3r5eOK70rvYL zYcr`N;oYqmC>~?3nz6?x{wa#+jQ*&I6aEjF{oxj_h!=je7^Y!TmSGzn6dZ0v?U}?T z>fwUDa zWyJXOT9bigjRvHstB@R7imgf#D3y;z6j|4)HY*F`j-{65{}ijo&>egd2!@f5cxAbX zELgs=iC%lTKcSWxwA+qIp~R??4D3Pzn2O=_fUvoXI~0#c%to%;AuMaTjR>F|>y8N+ z4P%xMoGO3-iamJTT=8_fCcK}Kg~H-7ywV^^FQPVa84umbqT;$bKekp+PNOAhL;!AR zkqG4p8)b>E;g6s|y|(O~)mI!}5a)XacXtUgxVr?%;O-0#0m8uG1hZbT6 z!M=LD3YN3u&#%J}S-6pW!Cv<%*J(W^9#)nP zbj(Fq^rSL5$_fd0o472;1TQ32J?e6{WuKlR-T+35&K?ByTUDAXas6-c`0IH8GuPc* zn`msP^W0hyjPDjMC;g>`|C^pg`a7^#xV>UqJ!cKr_tD%R;ffkcd>tkjU|)(jFn3KP zAKL$K>7H|4f=Rc$l%rCwWFv*|JniuUE@_=4*-)MWuNkY2|0<{a^mcfZ*6UK|41NDx z5bgM(g#TxXm+0&3hdEol&g(+Orf^IK(wA|m>43f#lD}i}k!+|(fuXz4#IK(2yAKe8 z#`eR=LB65_K$+gN0@QzD1Sc%SZe7LH{#lm2oy!MDm;FrCjJ&h|4mfro7e|A-qRi_mGa-+@Z}_N?Dsuh?5a8J=K?P(rIr3BGdf6My@UQ61Fo)rpZ;J(NToY zarW=TA83{~?e&3T&bSvfp!)^E9ztN6Eg{|r#Mkd;xoQ3!j`$vq>*CDr+7j?kjVKN% z;Q!5*lW**h9(UR>4X0~LqYE7Li6@nr2B-48U85lNuy$Eu5|OOX%hAHhL)!d;vf_{-i z@0^{XZUH1I%K$P06AzbESlSNx&l2HV$B~u|B!I~TJIw!yL17U{2|k)5OC!=Sh^!%` zFM+`n0un}+NxLJpJOXO+Mp}Rs1Dh>0lCibTSv3y_Q%Bt54mtto6-yHF_zx`Ci#IsT zCafM#MHBbC67dD_Z?@|(02&Pe0^41ld)WCbfr7iezLSC~rGYIUe@XP?%nhG}NdF2BDkFP1QH|zkJLM`T#%}ZJZ{3AsPqRkDK5yQzLW^B;^kfNVR zp7>R-)hVfJfoa37PJaECa-0H(4p9!!wJ*ow`Q$R&k$oKkqVcqfCRWQ&z}6yqRlTo% zt7N~ax$sM{s2L~)Gr6nu^otr4Fw2ork(wYt=~%s~-Au?!*osNWARddUhPa1gPLw|0 z3YlV&;rG&Lnw;o0D+V9jT$?9r(d$6it%RYvJ}4*KE{$i+&OTPvZWl|KCkCvTEH7E6 zjiKXY8=0G)QwkEN%NkHBq2jhdXr((91cEEO=yjT?ZY=%U6lDs7J9nwc{J>w9UUJJy3Dv{4uyh3H4MMm;Od|A52!g7Z z1$)Io6NolNjylw!!xgV2I|93=O0}bmX8?rF5xdfbzd=9&`eulI1ujaLHPk1}tI2i4 z)yO^#!ed-BP}VN_?Ctt_5e3r247TIxMu=L~gL-1*_TFL*jO?edEM}byDl_rtYE&0c ze+({gRb_(dDn{4W4>aFh&MR9@)HkSi!_g=YZLwYPWv5BCL${s_%g&HVW|lQGR-1u+ z*mF9Q!C-2|N-wSD^sGw1F&;enAUI9pR}h2!`VXM)AQU5tR}n}YRaKV??6gCZvttR{uNhtbKKVvKnG{OBOSwA@WEu$hBcK+^HI|(5RgOjTLt|LhIag* zW80Ot(t67DcbQo0Pjei`NHR?M`779lS|lA6u(3W@XaJ^4ZbSy4#_$Bq#-*+}wUj0> zn7tXXJDgu|f_B0E;LN>CbrALgTC3M_Snz{1|FbMIyHd^!nN;q0PapDl3~uGY%Eu-y z@O!2@-twyCi184NiFA-~DXGqG3!4B!ar0tL>ch)uFy(?t=p*IOz`+zCAJ2*?HI}NI zAx^--I9R)X+W-zz<$8#W*Y?&Zy=CDRtu0u2-619E(LZskl8n(i1{I#Otw)WxN zX%?l7s>4@bAgR|lk3hO5;S(#Ki?Hzk4oj^*4W9~5 znxLtC_~6le016UNFH!=sd% zW)VMnOxpUu2SimmL-J>(_W8wU7Q_^>2wIgsDohiY3M+3eMUWvBpalwL)e>~E{T1Ho zg~kWf;66Mf?-Q*e@kOSo8J9F%q#;jeJvAC!QobB``Xtp3+qF7pO?O!nfxwmXCoZl#q2cP7zp!npZJSVzAZCKI$>M%fzASX&X<> zFZ>N9w${yB6a=2%!Ne6EAc&N|dK2RhXd*9o+rnV)c>46{K?(aDic@*=1jJV=5=h7h`)f{1 z2Wof5PSLZMHU9vRwR_zXv~^Q9Jo$Kg{vX${6|s!63TbMNNoXDX4W>hti|kx@s!em! zi$0Y-J3H|%_)hYhjzRBTbs*F2SAw*9w_FB!TjDez{`174Qg=_*S(PbnErSjh-|=%SIyp)g z-1Z9N?wkqQk##s9Ebd-_uLTvv!Yb5Vr$kdX#UbHizZcS~BrR#xG=V4*aVBhm z!W0vZ!Qc0`_}<^r3u7%cbYxABEbFsl-+$s4yh3eu0tIf9C*{9;=7Na}*v0TU6w%Lm zfH;Nc6?=H+^I6y5O3(b>r|0VleI{8A4gBuy{0d|>k4PK3_m5qc=a1}M*l5ctZ6E)3 ziO^5n+SKzh%%=xoJ^KIC;N`EEsT%%m(bLsP<>&!}#5yHEXoUzk_*kh34zilK({z)` z_p9TvrZ!KS-xTG$k1U-BtEBVOfQ}PiV#b0pwu?=s>j+B>nhNxe=j$VIe1&b&MxPU_ z#zR)~d^D}*J7*^I7;!B&vDhXfdosZj(VgGbueq6ezI+TXLV;M~#IhLz9Y^o57-MwS zOLmxkRHgs$c>Xi^&3|NNvFAIfGI4$f_~s_~W$=P9GONvvl8ZETm4~7WyBM_fhONQn z9zeKL#YBfGflKDU(4Vwso{kF6!^D~0&;l`lbufDk^F;nL-!#YT*k=S6t^MPXK0Z(} zs}X!GHgQ==_24HlW1$kI%Ty)ZG=`CVqooZK*DmTS%|Lv7oWY{5-+x25S(Q%rBQ53y zRArHM{<}TaJZ@R7T>SL|1G#4^dHKIW82cwx_(!^!JA-T%BP0X<`GE^6TjrSF`8ceT zC5C0FPX5X9I@spMOjW1)JE#t38kN*bYwvq)RepSNHFLOJ%AulZ52aZSqh7z=j)tn0 zpC4P$zLrMTcz{I`Fq^UIsF`xSFmhMa%Bn*1^+<)(v4e_+GMz4}mI^Hy9z%Sk#}PaW z+8GyMLRJbN?>Fk{LnlJ=3849-{65Mn8AG8(CUeI)KLh%~J0>GY9^r zDI(H>g`poc;DS_aFod@H87qiVO&|X80!nSsZ1Sf`Zy5o3fXZ%M_Uq53^UvlcttJqA^PtvaB`z)UZMNE6mwa{|{1IFZ;@HTB!BYllM zJc?t$lsVR{I`IhgNs|TBf^EdY!OqeF8{S%FWX-}_miw=h^E3aZ(neLsW=3^uDb<&% zuQH)N;5Y8x;2?JQH&RVt#wAyjVO3Nn>?%?#AST~q5?ffCh*$FEd zcdSfiG=f}v?RX?+mc!?d%{-Bc7BWpOsp2;te%U_iWVeFqR(&_Aw3?Cl`Hd57>xeIW z=XfVRz(B3TaKwuRGl_iQ)m=!it(`Q|&>9Hv!$N_z;IBp!;@N!<%=<6nFd-*+lhI4Tq(R5p zYIf_T6V~rhj0o0LoK;;pNxOdJ$W_Ex417F{e~B4CQQq{zEg6?JVXo)pXc&qR-ewM7 z$*7vq_lr<-=h-#$w%9i*?8h86+fi2@fwt+Lo4m@$cpMYAAB!X=!B82H;aMrZBrFCe z{ut2gvS=u1P6)qPFLbE>5l0=rl5Rd=tP8eQ!qUp%Vf=b$a%Zk3%!$pwzd*^g>`{LEE^cfGcaqn zUUheWbYbLYtpqoh^v`T{8d$ByzZthU*(}p2DKL8ZuuD)?h|`ij+rKJ>COZv&!Ddod zZtw3Jngkk4F&lL^X$RM82d~UAOdB<_J%(*}o~!cbHj|IyXOFsajs2KpBwof5E*(!9 z?=EsU-24}$7i*VZnopjX&|*2oqozflRPMyi5aZ2;s6RPZF}`EAIBTr!(N%eH7X&w1 z(MC9wdS28EcAab>&YLF2^bsfL4#EOxmd=US_X*Q}s(>9u<{y>|MvIikFT-KWCIieM z$8+PV9W%TU`{S|!XpYA|r!N`9{!BWmle1p7st0C_K@MQ_u?OH0;&Z_7|Enl@G(f>! zOUzG!jj^~_7rhRqugz6%3s5DG~ylPB&C^jNC; zi>GG^_=P9y=k=ag6`u5~JK(Jo2BV1vmy1#%z0L z*D_@5NG@c`>`)h;PM)KC0Df*4?b4|1=aH8~9(oEK`ym=L7>f3D+=&bnzwm*6q*ZHmr53 zvB)A*Tv6S*U9veL)B9*i^0>M?BBFA5tB={=#{I7+_-nuPxD07Topmu+(z81%4nM6) z^QuyK-F(Fa{KQKJ81vEA!U=o?q|b8q5TBw&+X&7jP+=?Pi|IR$n=5(-Bsxi!=nF4~ zmUU8WpzCFhM%Xe&<6gzW$XhLU0eQC(SDYky|?G;-Z71LXMD_^}Yua7h&MJhZ`QqEO(|MT_@YA=}3 zZ=2qa`PVF46H1AJN?BbzN1|k}XlbwSD^zymgZ15)Vlrn4))D4_eULb(J$;ddB^-qV z%j+N<-%zU+FT(<~Td;47E?~jScO3H=QBR(&QR-gY&1(qTKHTX~d&>P+taich7$jMq z9=)f8{g;+5-|`G?UqRM|ICuxyCrapaz*{ZD)axbv2k{_6q~T&OO#7>@6mBeit(D-z z!{Y3K3TY5%?tlg@YPSBVJm`Nx@0W#;m7S0vwo|jdX!t(6zUgj%k0=5@lG> z(vC)l)F2WlCZS{zCgAyZfrXyT|L^P-(;Sx3%WN#9^;rqZRAASSI*?T}jOGcoUOU>; z%J_zttE>i%#vidEj1z2m`8sjxHAw-<{4J73H^TRM9tzwBwR+Wb|n49qVO}1w4c+wO(Tr5un$EQ zH?VeYv-+E=0u#rc{=UHUr|RuZDet+BA*cRoa!fFH+V_UVU@{}Zej4>40cR@NC|tnn zHsm(#*0e>^ijJbmHJ~1vSf$-i5G7goFDcXaP}pGguzwk4pbtMIjBtFvr87?yQ{1Ai z9)dG1^=h;yiCv&FV>tHQEPXgik-+MR4 z^@|y3?60Lh$)$BO9|yK)pQ-BqzCZ;??7prw>d)x_KVg22nODU~fbWNs_p&kz6@5Y4 z`AQ%Zd}Go6^mi00Kwk5A2Uk$1HjyTGlPHhNZllbwCxpS&sQp}KkR z71Pc48L{7Y!;#BVP5&L)&eZq&q5ks{j>2MoXJhw4=sFPS1LKC7DDXG@HScygMG45U zOZ0_IvJ+g{UB|PJ?#bZ>duUI8GsPmF?l{N{3!8WfeWf{B7XTqH4zsCxoZ9xAUKc4G z@0)qj(>p2CkRmeo`DO7{m>Q-mZN~N*uc@#Ugy6^x#5h*1KuTv%(c)E2=fxs(=b&MnHEm zt5&C2jtrO4fTDIF%Mx$@@!o$>FBvA{#0E4tSi-Ssb`0w^N=ZieptptK9yTLio*}F1d;(Lu&)?RwcW`2;u zyc8$^NJgqA?u8YL~NP(>D!)-s8 zZNNT5l+zI)L@F>YhiZ|Nf?qX3$;28n+$6%om%SKjA?}(Sy4zRM>uG4EfqrmV68SWL zr`&AU$G*oUslyRQPi_9XU$q?g+^xLRgUt@UZ-1(N(_witlTcSWhwGX+OY5Pd35wV< z;sJ0edbBkG5(BTAHOU49H(0P|Ko&i;d+A17o4ZNBj#D8hS0Hsk=C;evPoT8jAWvSe?;|OAt@j>YaTY4|MzG0Hw z4YYD33^pN=K2@a4qC9%|W7}u8xJg@h73*8K$gX@~ml%zPukNW<;T?D`#6R;nhEl^E zujv=LYazOye%dTJk1DtZitGk>AZ0RvR#r9GuLNEVq2i7u4I%VLo(Ns4GrxL$9zuT; zY%Tbg70fr}u+_Ax-h0@myu{`;E3;)7@X1}2KsFa|z}%d;Og?G#8>P`2uTx<_j(n21 zsNEL0{=c&=_hc=E5ZBXhrq2uZiD-si{)ztAu8pA)xZ4%zwr(S`8j}od&3hlX)Y`z% zrsQcx6)HY(zZEA)_q!v32VN`*RcW{DlpO@}Ut|quSsIR-bk zw2R#7Pk_o74-~%C`h3_rwp9c~TRsV~<@Neo`yrols#Aux=GV4XB)R$GAiY`Nj3N}H z>D&1XX-2rpF!Byh6kFWN$n~V=^_MBp7enU(W~T~htFB$N?GvEqh?C+E7Z%XKkqQd* zxNdV2psevw7dMwJ{Z?`lG$Qdv`V7EjU9j4ZBux~lVFUFR9eMl9Et-t@IhE~(_Gc8^ z{88tnsw4Atif#v2Ir`&^4t(*8eV;RnDZsbFRFH-7l*)7xk4C%_W>~aB0(S3Hla&5x%p{Hp5lkpdzQq~Aj@j-liAgY9CV$aSw zBeSSBl6crbhd59oNuveu-O@R1jfI5LjiwqCo;Wd=3rI!?gcCLtABC)|xzRf(Ihy3s zt#8bV+h&S+^_eh!SIPXxI}QlI+>NtymL447@oqFKdFr90q0Ed#DQY@eQ*TbJ+%<9y z7*9iR00@XyoFh-X82_EpRCAbU)-!EVvn>~%eO8w2h7}t=vW3aCQBm0rzajw+UxC77k<3sG?W@P zoQ9uCT*_^`0BXWVcw}+zy!t9vhoxhTXhU{ECR;FDIT@JpMxH}F{+qaFd8B5RBh{m0 zA|o(DLhn%ug`}lfp1=9kNoesa^8^|g4fJHGa-52P(8d~FGj)G}luF^p> z2*Q@qnKy+CVT(6QYEVB?3=-PWbVF5^{9&#uy_yW%{h3M=I&M7u5#D_~zk*&4Tw~Mj z@=k28_vM9q;11EM6CW&<^r1=Baxsd1kdY6O3xNSA`7l&gG@drU(HFh~36&sHFI}BU zSNWaB1dGwo4ViIWR#Vz|b)1N9gI~D2{FdAnl<3<3atN>)(M!JMOL_gU8)lP0QO&RE zI6+1C#^HkHD~qA`y|`Pr%1PU57nTniGacd;*pv%BbAF6sy;7Nx8K=XFlP@|+Ku;+1 zuvfCl8$x5mExU7y$x#EK1Uwz6WakB(pPJuXG;y>OINB(d{zwKlp0cx(3<66#%ot{5 z9c-piOFr2iG5Peqh)?d&keb09n@&BzmEd4iCg`K|x2;!^WZ6v?0^zV3oX!2#r;m*3 zer82>iz{5aq58>7N)cTH%B${viX--xBmQj>Re&|Gr&kDV8(Z;Den<-(Z=r>Z=Jcz{ znbH&b#cm!Yf-@Vh(7pE`uLABomwoLT40?B8iWV`6eG$;}HPtK`)2RI{dSPT1$XD}M z1MY)*vT71PeqYy_^sl|qitCfyyOM;Xu%XXU*yjKyxU1D)YPVKpYUABg?RElcqx`Co z&2yVZi?fN2^N1MrD8n4T5>D49z0`;zyq~ILuTCd$>vYZ~+sX#C^#Y?PKHio{^}qAH zZup?pH-vSpWBa0KIj-_d)B$Q9QBFJlozu(=Qm=>+BL)Jf(*cgWx=~dY~H%h%w zkEmG-P1PjqK`n%>U|gWq*}KEH8uV^;f`qV_^fCi z*Ux<{T|{kJ*!2anWf02W;auT9<^zr5taPoHeZjv|G0;3;V_wxLsSRQq;#K=R zMjr`Zd%QU2E*J$@zXh9O2aH*GVY)W~>yHDr*%Q*dW{-T)R$^_wJo8!WH7#`G z2*xfEri(VF`od?hA>n&|_pay#og)i;rCQ68rKuO89aT@Er-IP4Hn#DaX7)EmE@Jz{ zikw>FTNO>fSquF%`jO+4xT64yI5Z$KTbMTxahq0sUZ>FP)q7o};WTyoUbaHs;<_YWBOuY4`O@>tN|O9v3;#g5q|byuc1@DL6J(%hqmK2!!iX2IzSU#9 z9fhEi$!o^Byf4VjI4G=~C@AVFVhxJKu`G!(RjQQ@^+fCdd{oj2mX$~^b?M(r6>5F& z>`FIlpO=8BBh8xz8i{Kfv=H0nMbpk?rP7O0b1Y$U;qg}I+Y`dMuQzUCT2^{Snnvw9 zP7d6yA`E*T44cu|u1lO=Ju+$m5cjf{R^q6-uzmpIMX#sv+>L?xihpE29_ilN%f!EtrHw?v}KzG7I{V z!DGM&SRRMuRK7bVJtuXZUlTlt8R7OMk+<;Cu5LB?K`biaPMVq^DzL0@BxWqlMTJ3Z z?S9Pluq=Lccvdf@ZqTIFGqkB8#G8*n`Mip2oj}XTLyUiNRTxWLEuL9yQYqR=y@TJ` zLEQou{_Kh02SjUSWim`y+=Z}JqC(kghNoI^!L3?VuIrl!H(qES&d+`gaw)XHZ(=Bm zxrfMGOn%IIvRmKU6XU{*Wd%M8O)Ix&ZLyMRC#U!hB3LWixGOc51j-b5SJg({TNyIz zmziM_*MkU-Aa{au&_1GVqCqDXC$_ zs!@%p`D3d8G*ZXosfyuYDsZ>JQHL)*e3D(aEcXH64+-)d%m#D9Z zMTmK{G5fOd9=1twmN7dRWyzz;Te?)Kl2&x|J*0uSP)*Sa-$yt~N%8HWiSo1x<+1gN zIexk9NTVI|3Pi;tQ16pP9$Wd?*C)E(S|zTUqK^36{?FjYD$y{GJHxFT#AqarlIcr> z&gGObj88MVnkO^cS80P2x{{SI#nvPwWhDPpjZeRO*dbjC*IeFoxuoYjbL3>a z9bTF;qkE=Qj2}hAZZuNJH>rCZ{NxNT_89qye^W8S1!b zbryg@AW=gp6aWrBJmYXFwOy2*Ycz{% z6EOe5`VR+KpSb`Dq!WQGpXi8t`8j|0mXr$w&x}N$RG67dxnxT&n&iH=NBSFo^7pTX zI+_iUM{{0~iTMNuE@lU03#v1oyl|lD*OCmv1qZ`!gFpUgwVnN!qTsF!jB0Wew#9b% z8n25fU^Ec<5|~6FbX2QbUKtRz;m8a|Uh~HK{!qr6lz!$Z z=AljOgq?r`kAXoozSS%KNhe-sxGA%TFtZi7>yIL}5kfvpt*IBR zNeK18;}Ev|xDc~EyC@PDj0JNgR$m;2^q}Fapx1@8uJZ2;eAIL+^T7Q>t=ty1Aqjy$ zTSZT#=gRCOv}3TkXj~}H*Z4T_>pMCbZ`E>ks`svb#UIrn;bs-&xFKtqs9+2OVI z`T4Y=qRp@(L_`X3D~^rmcjgWT|*I{ARjRn=%YGP(o{tKZrh6 z*0KxGNEKGgD?zZe=A!m{W%K4bYwMiWmdfTu)~rp?}BB30Z_MFJL>G zLTFxo=y8p@rRvMbu_Qi`2^wV5Sj_q*r0{9pRIoZEyD{;6yZ*hkcWi}dW#+rznNJvi zeulnW`qA!BS>N*CSjCHN{#focXZJ)CvQN>LW+3zC33Q^1L6Y=S?wT+}1;f2}zDXbagr*lJYi!3sqyWN>lT&MISq&z_ z(ZER=XvuRC_W$$EGOe0i$HpK3%7e5&Rk_&ZMc>x_ zVphf2ZeOxa?yE!Vxm5b~r^9{Dk8_G#lK2G)vK~w0TbGVUxh-9nNhpz@1k2winLK#L$(-P~_}5-b zU)s0yKW$|nkNh}9;Xy5w;$^H;g3vCb&A)qaV$x>8yHBJh|9;m)3XXu5pVDJ5cmzrw z$|nMS(K>ybppOeTyEu=9|%K*;RL-FEk??>zcV32 zwGv_^)jl)5z0|Z?woOG5^Y|tG11C+2o!}vi94OFgf(QQ3x||1)JqxXOeJh7+4A0h+ z!*4S`-Wv*x6@D}wa(?$p{3c3!Lh)_xx8rVt^32aRcm74Mp~~GGm@Un!tj(k8Ts9E? zy08KIJh)@zBL{Cx)5Bc2)ek|oHO=6dA8{Y_BG_VFKM=Bz;}Sw!O9!KHDR`|XTFZuG zN!hgs7XajFBCVL~&cvd6QYwpb0;Wt`my~zkb9Epx7dyo=jmr=eG3g{vD~()4`5C%$ z=21D%w1A6J@llfaWV%A5+!S8Wt4{`z*sNG3`9wUW6#x#* z)l}(_4!UKsgtzj>K(@0g&yLovG$S*^B`-hx)$OOMus_+ZfIS%NM?EOVu#O@elt#^{ zI6h`UT3ShL=d6gu=t8dtXa&Q9GGs2kbk{TSdaA_>_Hy@}v56xqMPyc+jY;eiP7BZr zJjZo?*diySHm=2%$62pzB)=Gi(*>Utp~>@Y;SK^QGay?At0ZMK($xU2%$!wJSPLUK z=)|(?hQ7iJ;~nTYuP*W|J7TtMe#cW^^tJc0HxX&OWl@yYr?&K-y%=Lh+r6J?J(ToA zH8EwWpMwCL3j{+`nE9Qfam3ij-6X=Le$;pfs{oF=fZUMDKzRm5>Q@ zdV!W+YXIs`R!Oicb)KUM{zyWEKD23TWerOR+N&iSDY+F?DfOP;#ahoor~{oNbth>g zCYi^jOl4xX)-}w0CAS}$svUH|q44JF(13hE+SXAfoI(#b!&!FANA3IDW*A+QXE3&- zQ)RuLDAT~o^auKEoRRLU%TJcoIJYe=Rsh(PqmjEU-kkRLI-FRt3NAlwF}S^c3ts3} z$72bu<4v$wDQEp0yr3MBXzLb+j3O_%L2-*8;4DT{Uc%~)HhEw-1H*i?qj<9OGS8L6 zGobenWK16~ferrg({o1-dBoseL}@nP7O0gMIav^p6TrJf^yT#kJ#0G$L!p#4iPfjV z&gu~BU+qb%qlrZs{ZmRMvH(c5x5@$ivP40D-*mj$%0|Hc&rvEWA+#|*K=i^vHSZeb z!6VI6VtJ<4QGZ#_Ypb&K(GQ_oWe{&}C8vS;WJ5g~Wyq%aHS?ubOp8nbxrB!wd->sn z7Gu#@EB}#cCOqL1IqK=yEIwk0K;7HeM>74$4m{S*7a9dRqUmCm5S#GH57lx$&e&5^ zP#x_2NpnMBddUzj>XN4GG{gGF9ak^OLJbrK&%z6l?7TIh#M~14CZS^Vl2df+*?XLJT`ny9dCd>`1+c0tN4i%@ zQod7bF*8}!lK<7=Z~qdYx%C4v{^wlzPsA#h_~q*qqmx?F-sv|R%_in@8n+3j%O^o3 z9@;Nbw0-C-;`UW)1?YiwTUx3dYi^Cass;qjSJS{>P>fpLCRekz274;!I?2 z-S4+POX7F2XL@+LYDaAMR`o90@2Y5nYuVpr^LR;61vhN!avJTrU45x(lUmb9{ zN4j_-#JFla0}RC~;yv}@GSIt_pM#W>SGe!A?TMg0&GFkr!IQsfvMEXAE}}h)&N8xC zIW-HOF+%m*5brx*HdxuNS@0lX>dm z*j|*(Z@&hynA|OXTe0-*c&m4$OUP%^6H{wtQj^%ybor7p0#^l@gZ=h({pC^bl+*bc z7pQ3W)c5=4F8ll2xgbx08k|vQ%(S2Lh9753UC>KhOnNG>AXjwZA zvRxCh<`K;wlP0zrX>_z{gaV%4)FxiKkVVR_P}~0Kwp01Y^VYEsDXCS@9@$v&MS zt7~JD%YtjlH7mR;rGVUxsm)zbsZg|QqAOMmoQCKBBvUf8km*0?Sj)Zj<&Tx_V;MZp zfGHuZ?{pR4M==(YiyXpBpO1ZeX8C8U?L4OX*{F3%OcE>;EAAlcN?wa5fny!W75jj7 z>LpiW4R0)=tmm=w;O3L#?Pc{7%$}5(>D3#@$ymx`aDg!>5g6p{9-3qH07Z^9^P6p4 zMR3JBi*mVrcN?3n{I+chOxlMa4(BnQTw&lSYkV>d(?2&r&5e zrlY)#StQ>R?7ndPsk6NF6}cB${PZx;u;!yzh`@ao(Fc3?(EnB~7L%bGGkF!p{{s3l zgUDa;A!LPuiMf>AK@hAEkkQjAeKW@P=a0XdzS&q?w0M6nmMTzq5qcQ|LT@NitnlrP zovx=Rr9_4gtTcvd1V%49){Hd&ibAVy9wfAPd;MAUg8Zf&d;KKKzFN}CpUXQFjCgh8 zk5r=$m!vrEV4UKBa2>F>Qw0c$z~jk6(0Jydp&UHDw}P}w!Qi}*^;6NNSWAu|EjtW$ z$ta}A5cxl3;#;XuF{vO_4THRt!meq=({l3IpXAuN3}4lQURAqBR7WXwN9xep|5X>{ zq4m)1Q4)xIJ%bE3;07ja0(DbDj=C3AD!P3%(J@M{TUIb?mgyvS*W(gV^C{cAD+6`x8(|9rNC^3zw4rlK=?f?=y zF$h*d=|((jd#v_Y;yP8F7XpRGx(C|skuQEmj+-VZoyAN{fDKH2GtEO|7JY~ElJO4` zx3VL*&MZgnV~_zJlV|?ZLD93)RwvS^Pl$w0>Co7~13obaK3O0*iF&;PlItG-8=_M!Iy`hjbRY z3|#xvfVFhaU@%*L2CqdrWRr|*Go6nvQ*<&>;Ni8>rmRJzL_D{YO!`y0ETzrY z^cKd?c+!>gv$Q5%F3%z00@zQYv>hhh>^DFW4^LYw53<~Pw z^J;hs8XgK>Zx$5Lkpip_m;faJ0IX;NJyjE9Wkmy3Q9)r0(7z%6D!>}h0V{xF(f{jc zKx-wTT_@0j?&yRjHAhaAEVa+VB@ct zm>AHB2CC5iUdf2wLXZ8s1&~Ge0id7YlkflY0sxl&xA|XZbPtgB&&fpt|I@Ysf&ZMv zwtpkB=xb~MFhisB0Kf^2mIBaq0KkPtI|G0e8c;_AG-xy@fYt=iW&oNNK*s>+KmfoH z6u<;{L~(FMxy85uS}|HN8UUaX1Gq#P85#eN&;Eb+|Ifhxa|UqH00u6j#{a#-Ez)>d z3V;Zx<)BDtBxVYWq5|zZL&zi{x0nX)`6Byt4x?2UWBwv?HbL6=VrTMg&HS5xAq4>K zs9mhk$mIP4Dz96vF(}3^*6OTZt;eTCK^_J^MJ3W{hY-HYcHB(of%V_Ni_PNv}nh91R3}utJ9-cwKT81NR~VEf9>Fr$rVlRk?eyESx`V!ysVc z=dZp;*Rr`|5T=o-|Ng#C7cfzY2S_D!HbuoAIH)VIrslaSA0o zc3H^sV^#+&a7}1fk!8uToX*Y<52u+Xk>_U>V0c}XhjoC_ryVLpxHo2cQ8Z+YY@XP1{$x zxP#lDiv#gj9RB-hnsXh46qV%|#~ycw4S=WBz5jKX=W`BuiNw=QvoMJ}C(;J#ylhfW zm4i3ZY|6GZVL(@|$J<4l+?F|%Z4BxIim}Aog~str6R%F(CH2ME-LpEDONyVg+QJbP zC>5}LCseX&x*1Bdh)w`u_Y0CjO9)#p+CVh#IBS-53;C~ijrW=)Z2x06=~7L8(t)rL z*#6C@PM7XM0s7kO@k`mIL3f4ZX~)&C&#mvnWxZ{pFuM`8RaE)Y$-I?6KPK%x@PS^x z(N5FFU@Ywe+O{Cj#HlA~1{)??3g1`fx8uXs0u}zGHGc^IS8jHo%+GO-L2CDSdC8E~ zd(k*9i2nR#-1NOwnT2#Mrm}jmaTY}TjZKGInyq}3mxk5EeMol=h}s*do5KIqu10!o zSg9J%{``JqTRPWvi=2IL)>PH?bKQhrl;!(!kBC;J6pI-@<7}FKr+R z6nV&_$8J)Y?79SkRvXAuN=f{LHcK1I4VpoX58A&f13Jan3FxZn-=Ez`(Ect{R5K-& z@#J?9D2JIkSnv_15Npl*=8ofzBf<9>ap_iDD{?clzd zOd*0&bYFyle(Gz+lX20F4>j+!{a|k=F?)001**PfnVO!04C74ZzH@!G|7gTn_8o&U z=&pi==v-Yaf#PL#yuh+Zrj4-WV9Zxk8Rn>l8u&(vklPor41sQin#h>>YFfP1V&v z5?NF_?em!hfokn2O4Y0^&Z{B9s+P3MRjy)|A!2$`r#x3Tb2bE*IbkJ1_!_pnC7_0J zwb)JPX(tB%xUxl$_0_s8nmtBhQ=S4?m1PxBxwGRn%Jm}S%2SK- z6srwvU?7U39s|)e!GTJwz8_QGVJ&+R#ugH-0(tBzqw8L&Ry0`%$V#jv3|`=Dmqgw5 zZdW_pNAWJIOvhI#vzW&m<}C+wvJ;h3%k;M5 zTDjQ&Rd-s})6&~cTS>5z5Nz6wr=;UNrwT6&(AAF@Fk}P_d8ohDp2Y0AJ*F`^UWk3N z0GfG92nT?}TK->7udKl=`_iRb77;gbL*`PCIlC&{93?5rH3HoBcTR1oF&UXoqIz#+ zQIjQ(06mXTrqQ@!%t>3v-VCB{(>%FY~!FYgpZfi&~d(~erE#YL`; z-BG|(`W0RfuO7-3E zVr-GAIM=dR9f0tWr{UX)dP~JFytR!VV)UR(y~)Sa@_=(u<_oZSy*1s>{fndjody`R z(65GyI*k`zPQOFSMVx8@aN@dbOkM-jb8YQHCD zViYf(11M7yJrM9|*CRkvk^ov3IR>;Wktce7rAN`jdAIaitQ9fO!)WnhF;B+;+tX7m zLSNvcC)33d(lsTYHf{*8V-?pwO4NA$w0`q9062$jS(A1FAae8aQ;)@A{--&W#al0P zbNp9;J8^(6mw;s!LVpx^4H#=qB!NRTZ#`5iiF97eVoJhwbQ9!!FotYC6nZ+SUwMXp zahQVG6I8zBN@!MSMD}l@Lp@g}Cv-F=5g;c{bP>_hcsg`*FhmeUXfeJ2gmcPshY4ha z2q9t0BY9epVY?;(`}9FlSP@hx7(b8$q*#ikc#5UiKEgLX4C8=G7lq8#Tm>-!%cnO_ zGlqV$bBnVocotYxl1@7KXo_=m7%(ou<`|c^F*P_Yd1WhkVs`+@C;$Z|Wm0k=!E1NX zWCP$tb`b#)aA#;YZ8o7{JQR*{1x-K*i~8hCZTkiUWW@_yQ717=+hm5VTl(M|TjBr%W7yM*~Ddp+kW$Hf2GGjiL89`K2d+ zlT!~VC(XEc*rX_WWRhqGNhI@iL+6bWqm3=n0q+N8v4&~CQ~>S&h?5OKdrK%0nulYn z0gm|yi~Hyhp|}(PnUpy&JH|wiDr1m0iI9x7dLa5O8Jkb^D| ziQ}Dqk|*Pm6^WSuZM8rha)|;spaGB(cUEwJc3qH0Cy4|ucVuF-6idAVa!PhX+R2^3 zbD@?*fC|Bm1ZQ8>sBh{i6qVVY?+Kp!B-pjGO=P^*Ox3yl}K4}qP@j& zP2)q5h8LxIbMrO;9^;M;@KY5~0nyWK2x^^`_?;O435zdNCfB%qJ?cI`iWEek1DKkr zn!2f(8Z$)tFvgNn2;exrxEcM8#Smctxl?_z|<=*^On-nkmQE| zX!whIW>K`-TTwH5yPB&4n^WM}t1rV^D_U&BDpT51E5_=JskvitN+-vZXY9v3&l;`Z zH?0K#FV^afwt}q*pgh~ElMT?ay;&=tDPd6m*cjvrI_BE2=_!TjdK8z+u0rds2Vf}V z(VR%?MBaFFvj>GA_;!zFc+xXeL3MNkIjZ&fgsm1|K}RbyR(N z+NuHsR=*TX8W^m`$y&F>5ps7bIXWlQ!=ZhcmP2!wa@%H8m3~sCb!6ILk0vJ(Cjig* zZ+1FZOVdnYC|B~LR)5-ptGVsUES;+_4**#T5s%#q zd5(p1yrsIk1cL)~Uh;NI{F!q(N3i?BX=vzL&l_CHB|!YucmokMO!t~-m@0lEcY#Pc zcDg;+7En-j5eTQOh6T96W=VCXld77ZwRfZXXrqhTfb}_<=SvjntG=CzDd7_u8}h!f zhLQ4nG5hp`$7jD{gTJ#!IC6_+t@0$;LsgG@K3z$HuI9W7K)}9gz<`Osp|`-UqK9_E zq39FAb27nE44jl_!4vRx)~msjR>sgWvo)g$3XdG{}7lV0F-?c8kO(<|jZIQ<1<-o%BOiWa+x7ZdDOrL6HObjL1$84&d6|^#JBuM~y zk^n&yy+J3oi?WKHoOOUpmX#xR8kf;?=+Xosnk(&{O?$53no5HW)d67G0wLQCv@N+@ zWZBi&j-AL?(lwF)-4Z&;NZA&?$DGUx5JeHF)Tp}Idf6cu}jSJe+Jve!yvcP2Bo`YdEZPVzx-Q2w*M+YS911}cmdOGaht76n2 z+tN{ki4W(i2Oc&J3&ykg&%Lv3aBNIm{FUJMia7;G{@t;`c>p1J03mU;ztvV^oO^YY zXNnUixC(ZNbHJSF&PCV&iB#0u<4dkp)-h{=&`jq~Dz2-FZG=+*9`jQteh>lHGM<>- zFdpMF9?l{EQiI+tERvHdgZE1llWp#duL+yxfl99spgi1Y7aQ=^FT=%pbb|oLU;;fg zi$>(YnrCuHLmXVO3+`)dIeI+Aq49{XM(!u9-o~yn(H&Y>i^fB%A}5+`0s~N}bzEnZ z&VRq-MsGCd?hJCze&;8f=Qlf&)J+iH*f}>gSm4#oJ@D<|9`51}?jYiwTd^rvxo;k~ zs@`d``}D)1yL`~;L^XAF0pMSFQF{WYs~u7=jw9NqHLaaEdI5bp) zQUz~bI({L+(fkn?b_wNHyf}7i%CtoB64Ypc6xW}2F4;OXzoa+Y)2DTQ?9-Y`+qO@7 zQV`ewj*;G?%7lek-ahU+AMWLTwU9az;oYbuW^vO@Os{;&@m_o0Ia@=Ham$Cv5*&cz zHLA!qqIoefy24u7I#hR=f$~M=yflo9Q)vNEo@aYSfiAEl*fba&r>idJoow>-`!poo zP?E?laDH5ueCavt(lh@M*lZGX`&l`^^E;m(*(Oyc5#DqXnT>y3rTe!>5AXE)QxDqi z{~j?;->cZ>8ssDOQ1Zxn$A zQY!pwtB)@$S!1pI)O5lqo%>hk7N|TA+TlQG*b!sZsTakwc|X)>$^!T+yVA*b7GUr! zod99L00Dvo1`H5zus{I;4HqClKu{pT1`Q5EB)DJ!MS>7D79^liO#%xQ7B~( z)dEHRw~Z2O)?}iLzk-=7tbZ zYuvCwK+W9+F%odNk$_8$vUv_yaIoQT*)CjU9sm*~gOL?A7CjJ^cf*SaT%LuPBE{K) z#S;#gyc_}Tg32=!bV)m=g6jhoPHa!R;lijtLl3BkJE8aH-DmpL$rqmLv ztFW$$Fo4n~JS(q`N|LUi$36rxL=olci!c*UENn3q6&ta|yEJ-hGL7ash`_I$DxfON z1n}xJpbmiGH41a=OrQWz8{okG3fL}y$vg})D3I1`D1Z)2vhp(N)G8=G0lcKmOPQhz z=_K|HA`?CZ2zqKMk`NFnO9G@M;5YXma%swlkgG9I;LZb+vj7gnDLI7yj5~CpCHvE= zs-uWXprVBcC2}FE?0Xbb3DY`CP^@P9s;dkk1Zyw#eiM!W7guGq)e=#J6-6R=ptV+8 zZ>_b}R`oQ=LznInutp=-3MwRp$pCq6$~H4ULDI}U z)QsgS00I9S;H#M~Y%l;xGoAE6xj=1g0G%QTK&J~Q)G4YEVSH;#T~}tAuUKC;aaLSs zwzXvuKk}_4oK^kx+$xExmq4wsDosCUg;kbFW`Bg%C~0@2wu3eQk;4`OZMl7~Jf*_z z?N4%_ZHR$0)7|r^ZK<4z0RrAtAl{dtE0Q;&>dRNkeS7Oyr0oFKY~U{yDA=YB6Fzj| zDjR;-w1X0OinP!gM5+O+erizDPqpg!V+KSPD%z6K0uf~n5$4fm(@lRBX4UPtXPF}8S2!9Ky!fqP^o1q1S}nw>I5gt{40d8 zLt%?jw>p@$&ULs-Azp~GA&6uk1976wq0TcjIT5fu5$hD(jv@eTDNbmkaolGPgv2-z zgn7$zniCID6P>9EB>B4{&Zfc=0qDdge)5xfcoUW7=uZHO5`ab)!lnYS>pbl79zotm zo3{ifBln8VO!Q;MGwlr~`|2N$Y?qm*>_j#~+teGh3!V^@9#6~_tq6k$5Do~|`kXKm}#73jbh)u|N zsv=0m4uU+jV9QCuIVP4!S3flE3@cppV`dISkp@8j1dZ!sfc!AkN04O6jc&vn9?iD^ zE`EmrSi~a!4z;&v>I5X@G*XZ%cDZCtOekpF&k`GDIRs*-LIa2-4@YJelhNfY0|ik~ z-~y6Ys?wo%A!R9Lh02*dG%Xge04w)285_9=iA6e&plbP*TRv@rA5EeX8Td=%L2j6N z`U$q+giO)hZ*O+8mxunRlJ0SBnro{j0c38EfJMy%w8~9!WP!Bg!O9xFxtvHa#B$L1lkPJUdowRHqJd7Y-E9cG%-qL45-*! zh#HSlE;m_4n;qKeW*B=_I5s4a0&wFU$+@$0rm3i6#4j@eFac&fOI$SqS@6lm znxQq69?dhKGbu?kA~_gqT`QU-F_4nM&L*r;(w8;!AgCNZrjvelpp(jtYoB-sXFe9?-^Ze??( zGdp(Pj&4X$eCsEpVP$6=?$G-G*o~$cqN#*tD!3a9E)d$O41^%;jhBv7y8%!um3jEF7oZN4cP_Ph?hDP*xNillh>Yjah20bx+ObsksRRNPK&pR@6FrB zF3E=g=c&F8a3FruCM*ArV?hM&aUJvIAP2A4Qg=uuhQn`gTr2K*{$BA8Ts-3y*!X5U z4x5l`cI1T2x6``fs11Cqx(N`}BR}Trm*)m#Sef}Mb!c<{;aumTQQMSs7a9V#3-HK=&|ggWfJ;0492NJ zBsVFk=lT=`FD$A@APRS!fPOmDu-dEm!I|opqYnsg)6^m&AvY5PWqY(zI3%J-53_Cp(Nhp=yEP(+ucH^(B0u|+kAXN7*;%fbP_~FWHQ8VmM;Arn3(= zGLWTkq|4(SjNyv^M=L)ibD+yBfT*YlV56WN2_a*%ivxkc_j;QNM4g^PkqgAY!iu3o z;lP<%0GbQ1`%w;I$(pkhKAPYPBtjqoAw$rxGb9`#9-IK4(3X0OuvFPZJOL-cyDhlk zja2N3Un+?4VWY^S4^jNFlyH-jaKx^mmKK|V83-7%IjTGAxS5bT!27Si0g1I*r>i=_ zC83R`oI(dp~E+v#Ehv3%o-Jhvcn#6K)cw$WhyT}T$u`_FCmbDb!5kO zbVqh9M7`p}y8xAXk}+|)jDWE!(TF?%V>uEu0L;pih=GWK(z}wgk(!V+%X37f z99C4M0YoxEISWd;wX2xF18}5J0gD5)8I#zuk1@w{1jG|j$9H7Pc8tf-nMY!Y3?#D0 zLGm5~T0%teiGD=E)W|HzQm{!>h=L4?OEVsDI+QI`NU>u`sk0t~`4x!tMCcJkioCvA zvMuSrNFve5?<bP;q6EZLmRcdSh&T&T;K z5P_7F5ro02G^3X?!i1Q!-UN`Oh!z6DBVkb#)HsmRAh=L*9G9pVJXw>>*pr!HfeqWl zWXu{jVX}J*Pc&gS@<2jMOf8$*sp+{44ha(caHHi5(7(xy`w1uplFc) zW;8-1nu@z&yX5ki2(L_@QI*YF8HxTSN18a;8>5zueP!Zu!iSp17 zbxPRr2$P5txxgq35ERE67PTOz%ZZpWHB*gQFK}x#^Ef`Qj8U0v05SweQG<87>Y;2!;6{2g8B*&WG`*ykqT{$GgA}w zI@HHV)KXehMqS6#;V($lh{#ZjNv+f?6NricM`A)EP6fl)0wDuZoKQ8BQT2)cZ9IUA zK-Ck(mX&H%y@FL)T}|M)BKCVrTz#z-XNA+{)5zgr8fm&#LPAfHyO?e@fNw3HAA5?Z$q{p{5=ueW2I$jhQMwSSxfcz` z7fCkZ*vn0+S9^s`!Vm%yFx#_5+q6Afn;A!wFgk$M3me(i0Nqs>y;));po^g{-@?<;F`pD3jCw*(FVFEfP9Ss~-!u^^+j3&`d_!Ai4UrXekI}?4S)~4D2#Fz4uYk9>83_2nwO%Dq7mJxBQjB&)2hrh zqR=Kygv_U@HtD$B{4~beNh1Q?mjw8?^_vYjBsuvN9}Fmz^OO?*zs#M-iz^1WAM@Y| zX!?_=Tay-3#l2}iGIYC{s9DQA2qw#v@z(P6I;*nzT2ONGJX923AhVnsruSWUc9owZrC zu!55!G}@98`Xm~2toPcRL2k5;PT!Rl)an(0 zb6eRsrnch_eG+Ews7eYJLHR(iL|bN;ZRXc{=DC>+1OTgS4P={D;J?e}Z8lS?>kbJ9 zXO$4=y`e5mQI<8P!)VE~IAmv!8?F9yVE>Fv_VSduaL@w486b7xdnS>577QVg*|dX8L{07CyUJmJ)u}%TieEJ&r6M?{(8#wD526^a$U`GHPg1|1{TGqJn!Z*|>ecY+_k!dhB0P#qH<|0=mi){kvF zVOHIg7V{pk)#|P0YQXSnv8L{^UKO5b3kbY2*{gukfLmZr03QCS`H17Fvnqp`m|`6; zD)|re3~2-rE0jwJ-OsVV8dd5LjB9%6)61jHUak}Lqxhz3!BA?u8)N-e7p9-%?Tr_jD1>Fx58 zBR0Mtd=z0~lT3J3#GJb%tE$82{;TMg?&=ou3}BUi9#IRsl*m{Jfj)pqwSY7gkP&Ch zql-GM_R^-AIQYmkM3I-DfETB+7hy5d_X;BaV`SeQWne43O1=3Po;VP>LMOhf$`E64 zAsx~H`^X#>ia4QMJzhV72qd~p74SjmFtLfKsjke>jq`|>OL3b-*NoZLql^L0|IEa( zh$~)mq_HSRZKX0R^SG&w=hNKUtSCjd^KrG%WSE)mAs1^_d0)}VVN*?RtiUMNF$b+H3lt}TQ7h~ z#a67?^#O>CpZxWR+z*uSlX4+;$-;N!MD~k5E@=G|9K;A`mrQ6^+@a9k77cuho zvjBkA^9b?@-TX8I5ZL%YEut{kD7|ugVm=W|;Jwx?OR)$YZNsuB9jj;_G~$r)fxE70 zid6pj`N5;9urAvEPWU#8D=7*80qHOMYY=492v;PyxsHqiC&8?52x`%m=;9(|-f0*; zvVg(&&y-07JCx4)3ehTL?z!&>@H_>~OwE$3a*;gF*t^+aT(`1Nlsi`SkUD8k^}&Y~ zA&`Lir~mr5fBL_8dpX3T!l>`gpaTF16D9@>C{Vxx!T}W)4lrOqfB*#w2tag5fB?Y( z1R8J*P|<)vh!8Il+#qqHNC6I0Iy4wkWP}JAEm9mw(BQ?97zZ3Uu<+u71s5*{NRZ$n z1`HcE2p zx9&=j3G!adn=+!-p?UNFLV)PfAcDhrlahrhgJs@*|0J?Yc-u<|@Ziqn%3?~ZwIP&Dmmorc9008vp z(x+3eZe56k?Ao_;*WO$?!MfrR6enwRx77+gT`mle5Gz5yDlaQYc@d!nh*JgBl$i2> zS+flQ0R#rUCQ@lD5k!E2vhhcNM0FWNpg|HHR##3#?KhW5bp-`iWg_jAkpdafCcpvm zZRL=OwDrW;Qv}fD;Q|D;rC(3d)LN?$#dNA|1Nf&QP#i`|p0AKTSd)(Rfo0Tc0dQnz0Lcar zlTHf~D^hp}{Iy$Ky|JiKO+le1*HjK!tDlAh5%|}zXA#r^Yz=Okk#8*$WTv$78PH{3 z99^la0?8WG({6A!a9B)jy>x2Rl3E{J0g4Jy1*Gm|>YLQ2n$xPSzRISoCb-l{3M<<5#?_>-d6nY9>73(GBTdZY@`9swDO9NO8CY&}m@Rp3IS}KGa00^?)v>OJ zg>oJ2f(QWF&CXF7yNJm&geQX}z&#e2p+PDz!wNtIAqh$ehe`z@W9hIz#zI~M(KWvT zJm3K>amm>JcQ*#{%q&XkNl>;ol*2HnX9B8=ocJaqJ)R|o#6sPbw75kO*)4=965H2e z=otVG2VMb;kd(M}HMAJuBwuODxkNOS`$dXpbrO?7yq1^8=;tOSi==>haz^u{sX>?j z!{AL~GL#4;#d-`_Po6j@paWS2H=~0XpY((kPN=zv zk_7U=VFkcgr=cW3BT2t&jtX=R@)J=GLoZbtpaGxMOylZVQH1s6Mx6U;BAN7^VDjdM z!t#;=dYR0na*UbGbmlW9@F<-m(KrEch&2;1umY^c0@{?~zq$#SZ;~XOcG6`3_#Bwd zbsC_Z?{o=0O*GFr)f1%s!Y9=9c>sR$?4KhEDEiWs6NBC;THG=V=tNThhxWy05k0_1 zCc2v9#3iG`6AW28YAgZS6(S;?mK#GeJ(N~tNMPF6epX2vm~KR-9`uYuY^q3{y7mCC z>}d!q2(PnxR6jh_&2NAUpJ5&+YZ9>vaha;z-7M3oAS)wuqbuF$PIYP~<0o&TVib-T z1V2_>2!S}mUF2a?E6@|;Cv~zuyPhNk(mK*mh9^7)iRmIs`HDeWMUWyjg(G;>i6*0l z#b6z1CE%jgZM?}Xp+P2WuN_N6gx8_MDo_Ce1q=U*bKy2crBgn_&t?VxB$2QXBx!E6 zq>n&iBm=z1UIG&wL(h2Cs2CPYqGLcz$^=5cBZukbfea!Lu*lgefMHuo?&smN$@i>H>5_xS zHpyNwv6XyY90r17N#SJif#vh!L8k(uU-z$1tjqBX) zEq;XJBc0a)7@Qk4dS+D)xo;iK(jz#wrYV#S_ikLso36kA#BB#!lS+`ZwxM*1GW@Pu z#R;JD>~>o>lgv6gkqjG%5Qrwyl8C0v^_#7kIRFHL7mQ^1rre#BnpdY`gyE&Ig$Z|Q zBEco#Us#e2u=QQ2!c*cZF=9q;mqEPs@gm*S){@UDU);2E9)AYRRA-1r>80>G8yAsXbB&wjK9 zv`DgDL~A~9w=$h0GOFk z++IfHo|sry!&Sy;#go01$?yfhQj86(A)jX`-vF%tnw>dca-7+4h0Y5?S;P#$^_^BL zX&*9iU-u0W_??~jCBSvnO%pzvyy?dbs-IP$S8MRLbcwmLFAOsXi0aSpxM3_`CnITOLv*<>esZeamR&7LvAtJE`0l^o3 zBLWCYIf2;&1PR2z3!T+Q%Xp3B^o|9HQyrrJh_vX}i6mLV>DY=HfC+HQzD${=?OJS^ z2*sfhYUt1bcuhA2prRSoq+CR+K+QxJ z2-*usY>=IpMIg4?o>63wkyME_njs30?gh@itOjHWWahz@yokoUaLTS#o|vGdZ1CD{ zIS6LlT`8iAFB#SE9c48lhmw$@HuexVj-5AxquMbCBvqB@AxB$eRr}T3nlV_JoP-4k zntycIwje|<+9SaYz`kY8OhlG^RgXxDmukt?j=|9aqy=m65mC?@3&e(L4aMEG%0_CD z%e{tRNQIq@R)Ce1R@BdAa75JIW3sIOhtbX07~xUI`J7*Dg_AUpPWIVrz#Lp<9t?p^ z)*Z%4VF1B>6tOheUci#V;N%QZ6brqCCDCLt<%CdC;NPeiytGDZI3>l%33M$*Rc_2x znp;+C<)m<>0(_xz>c&9AW!{p>Sw!B;j=f>Sbz6|= zktojMOB_b4#0Hz>#zvXeZA=>h$(;$#m{d^CdFlsxFqVcag+v@wsF5L2^%DWPO>M+o zZ@~-%v`VP-iZgmxgbEk3=?>ME&cD6ImIO~Q2^nVI5+cC{F5#qlCB?N++bMF+ZtSJj zfoP#{ijpkF20W+6L?@O_Cv^t@iFINpRs@rcWD9q8mv;&tP9DH`ic@)t7Ab;WQvl}P z)I@utoJ2NQRLm#eM8-~>*?ty4tH9rWu90D?R3U9Cd+Fy1c9?-41+g?yQgFmYF{lC< z+k-02FA^6zX_1Q_fY#_8foSLhacIp|1kX?j1!CVXhRKMIRu_#CiiX5RsAvOhMvF!d zUUkXS$mnb|$&*akaVCgMDXC5l3Xd9#j{<4N2&r=sX_1B_bCgrNJ*u~nnZ!6zvZ$e( zEZJ5q4<+f5sM#rm(8pzKWSVSDD}td0LzS8&evLSd zq^XDt0vKv&_KaV|h91S_SEx{30t(MX2G|&^wuw{!2whEW6}n)i;5As3O5m>1i@~7l zrx2$ABu>_4o!avM;8Z}Np!}hUaNgIU?02XvGqEgnx~z4L2e@F2?|sf7VoLTE6>rWI z)Zk17Y}S5ICVli*1E8iDeQu<^)qb($ka5KNKnam8fX=p$gsS5jDr!?WPUymh5 zB`BeJ*jMIm0x6s8o|RD;ts;?O0!W0Jo!CPq$f*6ywY1#n$XtjKXl&fAaCuE!6@)XY zp03FUcR5?b9a(}rBAw{R1Gvoq!~+%*3MC-nC9C-AoDMna& zHs7eg%)4fr{nFJnG3P3(aDhQYQn(9?%T`L}v zrJ2PXvzkHpRg1V(P{afmBLprvq<$p?-+W5Qf@@Rc3WVLQnSDgkK?^R$(2qdzvzDx5 zpoZ6kiCN@X3Up3v$OW|?2`YjF4Z^Kii1Edypj0Rw46a6&Xh~G)pZ1<$gLtl(_@XcV z7`1HwMO#?UmyXH(^s!4xoga_h{PvuPQkkFx254p{BKL+O2N5HGqjE%z$w1}zCMor` z-{gLzVu9Wcf2#hRQf|g-pGPAc@o7|ui z^%B4age|e)Em2@DdP!zfBykGC2v25^hA2Q(WRu`V-bJk8yT0LLe9iNqScefvBSn~o zNDviYro2FaUy2AX5!;y5r%Uu=n$ZRbp(LyslGc1;1zFoZ&%`;BMRMp4Zxoi`{8m5% z$3VkQL4V;v8#L(bW;CKv`(cT9$;(2#M_$aF6|LC)lrU~^Qoj<5&d7~Jz{s=i5>I^p zlb(W9Qz)v|U?M_k$VK*1IaeT4U~wNmMJS#JY!D_xHCbD%Xr@`3Xf=^8Mg-SX)CkGb zYl#(qIAd(&8ETGSQ=i%Zw94%PB`E2~LWvfsuJdbMoBI8 znxM5&8TKelj`jvz3(N32TME^+p;&ODk}$56m5KOv`d|K9X5^z==iccyAK!b=v{ zUrO+yE@KHv{BVBqQ9u1*<8f*9*sB2&9q=vLLD6VvXQ_K?k^>4?uMCt$4JNHEFjiDz zx5njEoD`2aVz&{_jM4H0Ajd>Gqs=how-##X?n{I0iyI>uZh(t$#dB`Ri)&5)3Bp)0 zCh7-|*C<1;)CW!-af$cIHiuv4j#8<&U9&f$xVO6{M|?w9kkI#6HxYf~_f{2v(Y&q{ zmB}T)#((z~AG+~YWVVCIkzn$SAez%iGL?)Jy;n zCMR=_h~G_Inv`V9OEqH?yc8P0UM`ZPBrE=|NML|pP?QJ86OIcA8yf@%gYua^cg>=i zkTY$pC;+njd69Lus0T{T0+o}Ox1dCMVyM}gQF)bHd36ARKoz^O6BAXmTkZg#{7Ryi zOYA{*hCrBrFV$0#@Ya_kQXKjSf=pSn;@r*Louy5Zbr--j8=$n%i{s4yk*^a})J!$Z z{n4x^iPIdPs}UZlVZcd9Mx8JelJ!_-?t6lCz?AJ!3K>(#QES#l)`(a&x4@J~g+)?y z7;X4*1l(kbJOqqB;|%SDK`>*Q;Zo2w2nwwjbemwZXsPqrOFd7CZe`HwkoyY)yFd&3 zup2whAGxqxS3PT8Py$C^X9QS5`xupSz^x)!Tm*&mj6{@CPrxIngzGG(7Yrv@($^81 zwj*yE#RQ-Pl z#rEVHU;xRuENX3j1hWWVS5R?p;n$d)spBMD^ctEG3w_}w3EFU{Ze>kxa+<2-yzlXxJ{FM3;uX5&IP+%`E;!woP=KpKf95^q~9 zfW;TGUcHFC)kLy87du4KfOV0J$Tjy<*VTnH=k6@Y62xp`M_5TK8U24$bx}5$4$8}J z-1ftNIYF>3mNdY&$cNr*@6DabR-6h6%T*cKI2x*Dh*>cdNw1c4@0ofYKnM^xkU_x$ z0}wJ0fN-Ed1_~4)9I%ifLSyTc71Q{|2B$*)p0m%X@H&RVdld49mB_~Xv zI&h`H0Tn91Y$y_NG-sY>~DlqqYFH~(Yi|R0w4mGE}f)9g@DBiFnDmH zfTG=58XryAHf!TKZ5BklRwRD^|MA;Nr~wHaDyajJT55r&o{Flj0+#zKC5^PYFQWmv zlIW}H!qV-xkIX^~GPV?OtG&4VqKhzr@bXJ9iwyh!E3gO#V=qR;8kh`%uS#oZAebgA z%`)xY65uw?ILpq+&zeI>w6{ou>9h(`D?l!*5@?Np*M2*0w)Sc(47UYztF5;Qew)mI zw}^8wOp%nU%Bm(sdQL0ps1qo;-3GvJpolbrO`?LH9AE<$6-ckV2Nx|!#`M->a{=qZ znsB4}*t^cE(EvTCZ`aPfI$QV(2BiHzoZXB!Z!U1 zF_94a4xx`AvS3k&d^Dgqh*V>N1!M(^k-{w7Tl7ho?1~H_swTrSJHUzpY$TGLf-Ocz zqt%ioj9|LW&VewHD1jzxgG~SvoWxc&LARy?lj_TO)+DHNZ{}2 z3-sSb7aPb#k^KBqfkhYEU;`%!J%A*SH#n)z16o9=gAN87-~bonX* z*9}Satbn5WO`xEjiO$JXRFMWsRaTj9ccoWhMc_RFKBCXd@CXpn-nzU|!la3qzKJN|fUJo(I&{mcJz5CwSZqPKMtM7$)%`|MD z9V;4lgn&MNXz|fs>FA`{2Vm)@TYZ{Dq>1%b{y^KW_Phvib@ta5DqqxETchQLWUNof>0$r z^x~JodTAR!UdT4ci_d*db^zhXE^TX*AYC|f9E?>mL!CR~LJ)Nkxar9Nh{+!#uh;-G z?haiLF=t6KLjVr~MwSmM(u3UDfV9cbJSb_UgzPwgs#UU6!5Y9OcbJ$z{xOh(JQX1e z2^vcw5&=4cr*6)S)qdgG}T3 zF+;#CBUXSJP3=UcngoCrHYGPRZc@ve3o}bNWk=3;GEYub}5!$(hrmvw6B@jd-x~>a3r6~0ax;p@lG8IFLu+UWo$ zhPAnpgs|7AtC%;B|8Y!*%fi6APL{HkWgliEs*b7KlM=B2NiATf zxsDKo2b<2G_Bk$6Vz2=aY17?)Gq)dcW{JLGplF!WF2GEN07R`=4G&OXT50Sepy`W6 zVB;ZAn#ESwfgDu|(p?Q-hi~KEQtq-y&Y5JV?nfEH-4jA+xR-Q6~un#~9p{6X zI>p3B@~VDWq)oypzgXgO$PqIocDB-xS6Ua-N3vI9xB6L?l#-rRMB_9UDH61#txbJ- z3sSXnTd!0S+|)`>01z`~fo+G8=+V?Z3Bmxvc=D(g;TTvI$*2B;_}ZhEP)bbg*b5a8 zqpBtvt6Tk(SHmyXvWEDY_@9eXc%Pg9i;a@Z|RcLzGA0@<>> zD?slBtm@uA|FX&+HT*VBanxnj4LG9*o-+*_T*C-A&%zm95Qm>KiErey@dzW@k`#%a zAg;5vO2}; z!3{aFOV*13<8;2c%q(mJEP4u^x4Jq;NPh8T-z+7Um31I(Rz;K_4Z5F%?*`wjTv)v+ z)UO0Kz&Y)fUkXDKJ%lTbw9bia5HQ6)eE=)!Uxg%9+j9>zM%IL0dkl_Z^%#{)@XJ*=eo$l{xrPNGc5 zhmcQQd_?-VCxJKuCeTG&!jD>@qi)9HSNa2almgkZ=|T#Ox)xxI+Jmzez$v;)04AgM zlw-A^<>3g9DDPXN%O3Ehrz9PBMPV<1RE`Uq{%24*`f zgw)ha)EY2s-a@h<5I`hxShgx_?A^@Y;$U_fJssI*) zfBx^bU;;-P;OF$_%Nodt3dI|-cfDIx3Mge)xAqY$@P^ewtCc2QZAzrNN z|5z$oiY)+@DI|7{VHm(DmIzPWLb}M}ISMQ#jN$;UFcv*;2;IUWykhsH$Na2~Wyp{q zR*s}JrC-!=xH_l+TBPu%u|9@p2dgRpfNw+ILiHk`Mf6L1+5<)etX@ba?({8CIM70D zZ4n(SkMc+#fhiLIV-hj15--sbmC7ktY!ev}6i2LzHe!k9E&&3nND%RB(2F7zMoYei z77;3hkflXv0w!tz7mLsO^hT6I;{ZU2o|H?6LMAd2XRJ!YnQVeflBzNY0C_Hu;4lJM zSPNiKhhYf7pqeCfY9b30YrJrRA;JWd2mnQnOaNBKEX~K%LP`l|$TkcL$+QDn{~m6J zWNsnUuyc^7Ac#c)K0;I8Dxn&{T(a>&a*0n|PN5R3GsF_~sOSSNMBR{UC=1UiH4-N{ zGUR|D1wk{ZGI1myVAehm+~~-$j!PvqEcH}Nzyb^=D@-Q4NK9&SCLrP_mn$dvLM?dG zCs)NpOo3ro7iCcfvoFvBz^sYFrltceVCNJEHxs4WhNKV;5HLI@fPTeS8eqygD4rJS zIZ?;FoC?ew!((}4)eh9OXdDxj3nS`;5St#3+#PWppvSfKGLX*0-EYY>9P|H|YymJX~S2Lm4T z25vxm9#cEiEWAQdJ;XD;j0rtTrdtC*DPE*RP_W#*@JuO{Dl}+G*h3IE!k|oKEB6Un zF72OM3Oh`KJ}N9x1)}FprcMCOP0|e^8V6rea}?cjG;B>m_$}#Hf*p%vGA*?xFxA8~ zbyJzKQ)5K}NV8HeGb~Hh-@*n}eXUKyM1W5AJ`bmD*6!$9QcNz5HWuif7J~{C2Wo21 zf28R}tYSwBAS{GXAe@Dss^h+r11b*(Hp~-ux>5LCGMlJ%Zv6B|I)|sg#5f9NHQU8w zoN`RpV;h?!0NAgd5T%n80Jx5aJOm1l-fv|tlL#k5T%N5V{{{;d|Fvq$445)xFwF<} zcveQ1V>zdX*xu-e94;CW0#+(BQc2~7*s&@rwk0msvNBdFwlUMp&SZYKJ4up*=QT+$`=vEUljzr;>4fcBhP;%H+;X$da97HKb|ax|h9 zBOp--naMa7^E-2AXhHVxg0(xUaxug(0U{Sr;G_wylHeSJ2x+e&{>4L%3MIngD`bUv z7-_`x<(}{oi3qMc+%LVXMlu_h#K3TAC)Z*(^s+E_V>OpzFLRe@V)zciF+f*zSqqL# zH?>f=0;q*Q&a`#$k|BNFzRw(Oy@VuOHJ7iCJJ5G3S z242*RhcqKlrb>1M1uQ{hYNApu|CjN@I95L^>cxHNdxzfRV~Z zSegpey0$D-B_f+3$9`<%Ol$`9q_Hv8WpvI`H$VeC84as=y+;hGA?BA5b-h z$%?c|So>v*#-!dZ8cjBqcW6$daOa&^#1;cAc31Bfnp zf@*G`s9B?~*_z|7b0KyUqXuNT*_+!3oHsQ$-B=|ol2Ji=ia+aN3@SrbaYG6f;UuMH z66c`1g8ih&la>hK0Bwpd+9HsX<``4M|5oafUuINogt&eNA^A}mD6UIH zR4H>{A`(-AGMykeJ%SCADf)HKlqQsNiH4IY9mcA}mtC4jd2aWOl>064ny1A?DWaux zK!Zs;(KrI}yr_^ozY+>ti>DxGcNWRLF-Mx_J8;<29ap8^ma*f+a=#DYl^_wfCYw32 z*>28=NEcX?2I@(cL#%W8A{+yU|DDQV#U_gddoq_vcUyufJoW*gg2jd#jrVszq`E_? z+EW*RB^HUfmDRZeTl?6UCu`N-{xgB>=DPuM!KW*PzIu0*jJ+=! zI!5MW);nC<8_f)fNsm<}?*_jTpuUgezJq3?sYSspSv$g)V<9NZ0-T0cCcDSPknDDt z_esHvXw0z)F6x`fWSi6k=Vd6o^(@?NF}x}?+?5Z)!`)9HQ!dy>{APIPG$B?cP@Kh9 z`~g~=xLFq9ERb(YS2+*5NIHpicxq6YZ-!a$cPIUKsmF{Z10G# z#7d~M$aN_v?!eNwBm59^!YO1$RyMuUF`~GWW(X$x;%%-dfLpmw)7OXf>wYyo0L(E| zkJnE2btAe?O_}4;Mv#{hm^J3kh5Em`6FYdrDp1-;isGw1=wS^oIL455L1Zp?)^;7o zSy+J5SqM6W+IJsjG%Aem0)=&-J2AwCWCQ?mW-_#bb75+`RhdMu9X0zB((in@-WerA zQj%_#r(mifs4`z&2zzafc`B5NN z=FTp2#CAzR`B5vRoB$4%Y-v@grWDQ-ZFFFNdvkm=!u*(|t$YAjvNW7?G>B4zkc*ys zM6DXDsZg%l#PGhNb~A3+yk#r=aX^jjLHMQOz9TBPY9F;}1TFLN+MRP*q9~vODr7(g zpyKcoA5|8g@h{%-o7ybm`#S+*fWQF-3JkQ6Ai=-^2?ID3Sg>G)i2@2H6d+(?g9Z@` z2v7i0fdK;;|4Rxua6lkNl>$bt96*4;$pbMl#;hp-r$Cn`XHF=%kRV0|3?@t%7!hNK z4k!;?tXOaX#DW15;*2?vfW?GOVG=L_c0kAg1xq#^nGoc_rU5__9T;FFN}xe6jx?~~ z-qzVjRa$^IBJYU`{un{9joH=dEygM=g+^Gdn#x>9};YPVAG4{ne5M$;95iu8x z5V7lM(gleUjSvANPoOVLddx{6bVKh?3*Ea1{pG< zJHL)SyY}tO9RTUvt0utT5k?bD zrC9@W{}o_>KpP1ZQ$cDCP}oNyf%H^Ki{;jv08^P{lt}{_g;Z;@8yiHq+y1spM3~MHbF=RFpJ+r6-4xu&14=xl57S{bXA%LjkK|bZpQtqpbD^k zQc3!4j*&zC|Jml) zZUJ`gVoL_N%Ua?4;uq2kXD#XwNL`KPkliu$^`LBjn_U0_f~A1tdI=HbBTgVqNmWb> z!U>ykLltS;y?gR0w{H=?1gJnEb)I{YHUE`4VQJ%7ByvbQG&Ipg%W!`C+$qg;{Np+O zG;iW zCCt(ijv$9F#!(Gj+1U*S9%q`+d1xSlVUF~e^TEi3uQ@pK&6qydxz3f3Di?Cm41Rbu z=8R=#&T-6oViLEJV2DHl5h2h7k^+8XA;(wN2|u5nvZP%=OZ zo)B^>yp@7B5`YuFkZLIW-){brzldNUW~<4NNq9pzboDSM0r=qzB5)Vr3=w?mVi#_X zNPr|#Zdw~?qH7rN!~sMxPgGnJO+bT1Hn~BVET*Io4fKftYL`fNqDH<&;q$j^( z35iaqoZmEOHgaszX_}WEIywZ8c-*5yyYt700#cCnliGV8aGkZJ|FS<_*;xW$;K&f^ zYykMVS3(4`tFovBB(ox^1@4k97|HGcB?TCOZo?CnL^GYbspLY&S%5{=C}C-m9xNld zFaqrFE)98zi`+GU6EY?;2{|DK{1eSmttUfL_0 za4CRQ*Q(H0%@H~7!kKe23xd#!Hnb0YXdflIv_MjH0EMIxGqHn`y^1YQCpr;+EYKwW zFeCvaqfAT-#jH5WwOAP1$c1ck8+bt`j0}t;P&^hCx+DfS{{mUjO$PX{7Gg7RXA~dB z{=y`?Z$gWx&1(Yfq|5u_3XVbm`LWU-(Sn$db7<=Oh6 zSfu;Y)M!UrT8Ew%wV+ZhMWcpe-h4JWCpu0dAw<5vz!kBq!cR;F^s55g_N5Ih2~lw} zPrs?~LBTS>gfh9_zF=em*o&te9ptZqTo(f7a>_+wvL2Z2sba?jZ@RX!o4!rPEAdI7 zm>#6t^{zK}=e4R1bDMyPlox19b@1L;*nr)5=E*hk|B6-!j1h;OZMXC3Q55gBfTwgs ziH&yd0KS>bgDr{yO+f&NKX%UnG(~4@9+jEIl$=yXqytt9(U^qXkj!4^#iEVz9%oEr zQLR?1I9`vAX_%Z55-4@XS!-}^+S2=2fG%n~(*QQopaN*QbIqCHND^(qn6gd4$WDa(%h+Ygmh^<8=ol>t8fdgyFIS0$&2 z9!%`Ss3M}qEso&~Zj>@)HH<{DY%A2uUA#$`19^$94DcpO(kuYj{E~Sq8C`cTGjH8Q zlS=7=%ThY9gNHtD81)vw&J zou+N$<}%*46O0%G@i_ACa&jXPx)Gr60I-_?EE~W8Rees!WO5;{iMXGDb~R5cip%&q ztQ-T-!m~CA;Evqwzze=|gzHn`hK`wF5@3|LeI}b>he`)PV{vNZOT7ZvxUDqQak-__ za`83io4#rC1E5^xw_?3PlRFc*i8v_LhRT5FOpu#5YQ;%!_s!a!9iM{$=s_Pk(`+or zsI?XWLAlI*8;70)k}a9N<;`siKoM;*tT)H)FPN>wWECn=OMOYogfiG=Gp4Kn7Dn;y z{Bo0&Eajap$~H^d9-11|An$)xHC#$Z|6ThL6Bf`yM7Bwm5i?}ve{M!1V#Z8ELRSQ@k=tVf7Jdv|fNxSP{WYBNG8*ff9?6 z8g&;lzR>^xsDA^-BoD$C4#5G3*n$yoU$?~{w1sP*XF3B>a-TMECDJ<&*cX~phW-+B z`*S$aBv)Dz6Oj~O{|6eoRaOVE{}BnHBnuHCr5(o8c!N4eMS8|59Q%0Agb^GwD+17=!7^UF#Tj?f8yiWOehVGxRt*H!*wo zI1>Fz97zBlryC;}l0MZG1|o(f*#Qy6Aj+eXibj(z36mgki2*q}fYOp)=1sljiaix8 zl(Boh$7(F*K0!H@MENt$$b>_Xlu4<47nL2j#~Y(Ti=hERMP>mkzye4%b{?@N3!yMl zCYl-;Q&F)1DL6)IQ&@>)EwX7&GsQ$1ayX-ukIK?ENWmYb(?Gd_5nvG${c(!!hEx*t zBqhND>xExT1sXt-|4G-PSSx~1ZL}Mdxm-E45^+;y3t@4c!yl315Jqtm2_P810VtJs z7PpjWNWn?38VLAsRT7q1>(SIbyb3~MENP~pB$tk>Pd_y2o zJ6ZtC*BH<1@|lWn)cKofFZk0k)i znV;w4r1jAxpaC0qVFEFjT*Y~bf#VfAqIEu%A&24|r}&iJ1{$N*Rsq1A@uhk|(hxHP zVI6=Yn642%9xwC`aVYaDZ9$6$I)8Lhi_@R9nDue2DEq%L97npoE4cZZ(^Eb z_+d|L|12sQix(n$nwL(?BUT2tMFB8>yyq^p!);6(kc==Q+7HQVh`{ zVq<705&*YlF9+b979gQbn@M06wF=;Xc2iz3VYOCfyoSY|Z=$tbQ7Co>0beVtP-RR2 z^+^LjBCT|`yizeB6@LXInBdeE(B-xP*cNe{OI?*;kP!fOYZc5ywAfKC6uMa8qfcq- z|F=yxN)sYy31l^9^R6xr$8xfDYbQmYOWGJF95jU5cZ62Yy^^r>D%AzYl z6rr0?JNjm5yKA<3y4sPtG`6~|TLAad7qDxMT&R#2w-sz^c-ZHSC{icqvb(@*6d$*p z344xe!$~Z2B~w^IpQ(AOv=Ga~Cd_gi3jkg7CbwPXE91#s&SMiL5pZxvQ|p+-|th(Qk8Ubu0;6d8cvyC_|Ajw@27qd1iUu@t%mT?ZqkaikUpx}tkA zhqWtRf`JknK_&PY5zI+42f!>7Co@4oOYFJ6E-Q(aW2mp19KT1x%wf7G%ttzF{~j#d z5ld-ongv&}>Y|;K6y|h{-Ix%9#v0dGb;f$7ucjmw3pm#45}z3%EqiKvIZ_$(7bLQt zeF0stFM^N2H9xrc53y%(|+~e3d*g3+8EMV|XdGYI{jJ<=6ljn}w3*QZ_FA=Yr7FL%WO@7KNP2zVO zVKOKI&J0kZvbQHB9F${Z~o9^JFSxmAqK z9265X6w|;Kz%8_bb>D_3KAAi(fkP)*P2Z!A1-q(mf)f!k7Ph2W`ew(U`6NUQ0b4c! zI58wH@)US^EMv)%44`}ZleX7EIC?!y{Z%9}3D$H3!^wGQTqMnd1U`e-)*&eLS}0 zh(UGRQ5qw<&D*}6i82!0S5h%usn%yi6uNgV14)B=C9x%nWY(epE~>=0$Q}mJRn*-} z1##VeaxmI$C8pEe5U@SE+mucmuN70dF$ZK@gBjp&5K|1xp+wl6`g1OQ;K)f{4j z)6P+Pmy@SG>q%h}Q!GZ7EL@a#YPd%b#JSi+TH!p&=GOro8DJ@RP6B%F9DE*8e!inG zjAKjE%A0*s99Y{ZRRK)G$h0M<*#~F1k-%V~u%B67pJAQn>`A_yK`x^b`$l05y4!vC znK#ZS!^LLlW&l)#U*W?TjR~vDLPUOsTv_oH+~NZ1QXvngua+UU(ZoRiqhL=d5GJb| zSLSHi3hm58TP`Gq$GOE&(LMS;z+S8&@hT85D56y2|5r_%iyo(3jtSc}5&$=FoH}@G zYwn0m0+pJw9ugn{{#_jz;O=`)*_DmT5dr8AVDDK2qpX%Q{9XajRiU)3)U;=%=oNZd z(NggC?3CVzlBH*Gx)Wj;U)l{U|1MLe`5Olk63pbK_`*!_$ZZ!ih3V21ZWF8}L9hv6 ze}_G!yTMzjra913@prKSV=>ZMF;M=P|sY;z9w2oN1&Zz*Db_7Ii!O?W5W@BM-i%?r?4cuA`Q zw<-(z{LOq1|(FNasWXF3|L0QSdyVi zkO2}zh!B$jLxB*4ZalDI!$<=Ge2Ppu5h+QH2~}3SNI)RU03!veL|Rhi%!LaU5d5g} z;nS}Px~d%DGG9H0@T0K9f5x+IAArb>nrxAqli6KLa-8XY@E zfIz}!2^lnJnB3X(XU`4*j3!;$^l8+ohsdl#nx|K-aESZ_OhFM)~*8aPENAgIvo-{+FG`rF{| zgf829gs7J)M1ul2hSVE!Vb_IJy6PdeSh5Z#nG!k)qJ|VJ0H=v2*r}(O9uo=zqKra{ z0G|*W$vFX@GN3q?rn2aw0VN92fW^8RNjR1cP)RKI02=_hk%k-+c*QLK6WNR^H9W(6A z&%%^ow#zD`c;hqEWb*}N(h4ND8iYc|H@`O_S{}aS`FJ%&E_wNpRZ3aT_-qR7J(FskJb-p_4%7m|3Zfpb@Tv{J zBEiTnpt6|YB@b!)e*TVD#Ap}5Y22)IiS*&TkMhdF8XS8tZV4qP1W*YK47j%8+2lel zA=gsqGd(`BMMMGk*UGj8I2(24aER$0!59~vi-_e?6x1L={`M#16peF!f}M?=^cMh8 zP(Pp=53u&ckd`?p|5x9^$fitaCtZzjA$@z;?UE8cXz5O39PHm`=!AfWRHli=qhdom zhCD2eMtRI*p7WlEfav`Vf{j^BU#2&J>=hs;+dG%mV5X9xDMy9RGT%hZhdu_VZ$<1= zQFi)sqyWf|eg`SgV(`}&H{uE;gOeeD2si)%0y(M0lbz(a&r#rdWK|YvP(6mkUIPGEtMVlf0~#`G z2Vfm{6caC}651Y0Yvohc=2LCA%6iA5YF3fUva-tdG2u zsF*uSzwvgRZCT(L-x*kICPo11R8d^#`pvr9HDq~R9(}%8lieIOKJ9$U-zoqtnt|3N zf?7!e3e^BXS@J&YGmB=U7Tbf`zy_|2Y`p4)lY4p5YXq2!)rg|1?rApw=|Y-nnWiFO zjo2p@aY?0YHIw(Y%O@D&ZFdb+V&N9)U$)awg;8ix=rjZ+1RaS_qBbvy43$zZdXhi@ z|62g`bl54EN|ts__$f0dKp;E;5(73cGMpjmX*@FBZ5d!k<+QYJJaS)*2X)rsERjn$ zymEwX5+^9q%YFwgUV;^zJO-OHBD2{hgzM+0nY7J+C8=OVHyo(Pya&iL%t>Y1#bM~| zP<3&mhDUi-}kubT~>=(bAVj4PG-%A5H^rc%NoSi9#)B|A$$} zB&8lKW43o3kgNJHc^ZJLI{<4F<7(FK12n81Hv1$fW7f27=%cL-~ax%gTnil@SGi#07f_q8w2g@QLN#r zOb^5(PP~az+%y(v@UovLmNQL{W}VY+htnd@dhSVYni9aE;rADz=p|4UfZs!6B1K>+ zwQJc?iBuC`;){q4fS1JgU{VgN0eDnawnrMN|3WRxcO~B)(T-9~N4EJ6{}4Y8>y?e( zk~)g2lqU-W`}q)%bGJbaYS9s~P}LrI2;_P&f@uy02H;q&RjY>Dfokr#B^Zf%5LZDI zow+*KX&C7EqxCVdenKlVS_{U2mVS|s|1t@NlP>Ra83(#Nj>$aDBMr{WEB-;J2LQb* z(-Pm%nIanrNU0suo1E7&rh+J~%CftE%0Ne163vn{T-y)=_%Vq>ipy~ie2aIC)QihWwOy)Y2AYp4Qf4xc!eCv=$i|Coyo;fa=s91{?} zxJkTA;w7?jokfe8g|eQB0WgExsEL`3_A@XJ#Jmsum=G+dhWH{dQivOhGu>b`mzWft zDZnxcItPIl)sYT@aG$S%j;mXMU^0G zsix4m9{LMUx)DIDLgeGM-l91cxC#U8Kj<*3&jCIr3LgUOIs@=17)Y3-3l@SavDn}% z1P}`rgrT1*qb=+(R+J$VsWomft+|UtfoK=dGA5n*6|O1(_p+3QiU}qWj9tr;Xvrs6 z@y3Ls4~$rh6LJi#iXA@*#f|a6Q4E4I3vV>#);S-3n)Ht zDXZ`*p@FQmiI|uD8l@aMsE&NR6zshQ-~bMYNt9?I|M*DlgD_%QfD@6Q7y_;Y3V_jK zfw7~nn8G0wQXlIJo3oOk@G(fHND2cYiG6D#9;rui<474o36&y0HRK<~z?DkL7kqk; zcA>K)$v2*eiLl8=IEtemu}UJVHvD2D+Zh&2Bnn{T7zpZ&^a-ZvBS}#l#Wg|6l?=_4 zY{`^CDh(^6REtHka_E@_OwkNcYGDYm_@X%Ll9<#Pq;i=U z85Ml8!hA!Ef(xh`*f?$qx(ypXgLi{nVCxqDaFCdE$+>v7Qx8l$i*;5>biQ${d)Qsd$M__aTUc zio%Lwo%w_xT5A=P(yqtDiBIVWt*{guX=$d)LL&o44Wfg!x|EY`?{G*n|Mr86F6?uw$Q@_qpFRVcnM1daX z(FmmZALTGeSkw%@twAcu~kbDV-+_4_|f22v7+EB@XgP2%fNuiaf^$9n5y+sgcXQ z{c+5Z^pXnn#P3KMi7m+wO&*M$+@B~3RP+jV3L}_Wx0$MdnfS2I2|~?e7+Uku1z^+~ z{0{bDph7#={$o#(Dx&5H*#bbW0ST!0NC-J`l7&gh!+9at4T*EJyoA89F5DHzauBsC zF$e(*K4SnzLbf-Ann;-#f(0h>|DZKRDP0-rlI%#G#V8C#vJp3$7{6PHPXVpQ5X_JW zyy9CWBLhhL=|rA;r!egx`h`@7{W{f|lE!COPRsfbrO*|ICsZC}f^vjbIWQYV^`zqDAh)lhRV8s`x!XxvOXFWT+BKz!>(HCgdL`*75#q2nhUF#bz(byE8E#t91@4PY;g(^- z8oNkKuq+imj6jCc+59aNInGe51I0W3i~zp00p8;cq#IO3fSC!Sh8Pu)3jlnorSi4a zV9GmToVCDNB=2Zq1IWRGLgh%o*@GI8k%*;l2^@Kv61Fmz+)M~ZL68xq!;nM@9Ud{G zln)oamBE0Je_JJf|5iGTCOHw|4p$MHqm>U17>T5{tT0?Lk^mYMOJ($6yJ5XP5Q(Y3>+aQVG?jQ#Iq&1SdP?<@{E>M%XgmGJl11+&RFM5 z8MRDj_2mtrITT_{V7y5HM`2%9+Y6}*CW5U+y$&jsFpBVCkLxX%TdgRwlELLm66;a5 zcr4)!AhHtLq5ZL>4>@H4Qz-i(87K;B`hEaN|I2OAnPA zYj`f})0pS8|9-SDl#{i-rF{ltc=cR>KBO1q=nAlFjLPfw&L$3QVy!|;>*E0 z>F5oUi;m%j$ zmdLxHQC@ksg$=;!gg^)s?kaljz-a*Ko^I+c4eO@oYeGfWTrLZOamg?U3viTJ^he4; zITo}4a{0*(c4!E7ndJks>avb=oCrE~6`HXQ^Erw4IKnh^6($8f)Q%8oHGp=3ml7iw zbc`}{{{gs~g1#9v> zo{SRBxIC5eick`f+iciNef`HY6pzhJJUbP55p!M17VNakj9Cc zi*#{;i%<{adkD=fWdXY5w*no6nsm8!Vz$=XUTPB|xG!uz5)-Vt_=nyeF4|h9Yn6)qiL<-)5reRCr5n5+1(N4L*nIMv9ht}9 z|3r*yldJHGOkY>>CD)>}Mr)gh4U~D#e-u3rTlP^YA}w_GEHP5y+)o4Wa?YX6%zC5_ z{-A-!Ma~-Pu_9v_V+{C#nS>y^2@tRYaF#4IN{qM|1{Kc9cI|t*EP|C$h`A&0dc0~ehfz|3E`NC*+}P@X9!@ot01U9)n9$qXWZa%T*QqGi`Owo z6^gldErDnbYv-P@3p#?`?O2^5KF{L8NK=B!&Bh>zt|=?Bbh!M{m7kjk*XBqn|IR?( zXkqPm&ZU6WFe;zx;(P0et8861GPY2l+8iQ7(aY~Hp%8Tgh$QyOj#2g|Zp}heQ7t!8 zA-%|xcvZ9AI3R#P z0t7-1cqjm40fhn!U>y09}#odpskcvw^HOA8Pn5PVy+>O%{51qeiF;h{+deif)B zfEFl4geZXmCGgk4Lxd(5EHL@90mTUu3aCtwm+?f%A`4Jd8Nf2d13;}R|A1_AbpXFJ z4~|ceT&I83iiDDBJH_ zzl{yNoxWPJZ_5)zzXcB5yIO(f2T-ipz%OwDp;Zc0NtS@;>jelJgpg1KIrLBi64_Ug zMF+UFkw5`_gpy1J)Q8}2F1hsJXEUvpoly_Ygp)x&0X1MlNuijcia0GLm5VPYay~!Q-*d~a8?5MWoX$051{0oLWZeCkV(rafZ&s}t(H6pojGWsqSefN|tOhFEkFi1yrH5s61;a$T0D|G-E28JOb$&s6}D z04A7FB611nNPt2giA3m})AKthi)5NCp>eP=)b6)yUh0#y!>9zp>Sw3d*J zZa9#ZzA@QfdyNusz-AH(gjQ*74%C1}AJs=uhCV{N5J9pH5M{Hj33#lA{@pZ_NGs-K zkf&(zh^@EZ-qa$DQ*GB}Q z#ZUuh*2aKE2IY$&aQlfhTL(K=Fy%<9t)?DA52CeYY}4gQ|G=hHA}Er+FlRZ|Oim&_ zFmW{@6rYb6aQjkwP1?o)pb&8Q)}T(Qn@FIR7W~bCGAkOVnmyR@ zbL|HJ|oD>Z6eWywqewkQ&yi4RH?p(29B zf<@v?Ng&q5m75j-#-B)Lj8xKOV7TZZM}}&Aua6^O6m|jW-S*D)&&8FU<+G0JP%FHpQk$4nD*Ltm&8m zg~l1gKmdHR!lZ?6hA&MSKp@_8-uLP8u>IJW+*0=L=m7C%M*~IHUJ_W>5EEg(hDLbd+I_}Oe7i8`NfncH6hah2$d?G z@^%40Y31&;_?P}Zmy?DzyxbM2h?L}gdeJ_KZH-JEP#NZ4axHN|K&CSGqpfW^7xj!h)-kVVdGd~v(9_|5m0oL5MbK| zREY5QA(k=8P>h2U$Y{kpBkZEPMz~|R8pyruoz+)cPx$V4LVy5);#O#Jf)@AE;1*Kc z3&EWN#iifi?(XjHQc8mscbDSYmbSE1sO0cF=jPm;|KQxr%-U=A-fPXpta;~spXW0n zkdV2(vME=+=~dOnt$CS1mAcE}hcnA^t9$F%=Y_#52d&)4FI|U>Xx?NwP=FTY?LY19*S%eMT8}jaVs1_zzK1OnVB6Y?F$Nv_s^6CT$RWgbmL9lT$Mx(D|vA`$g;I4*Ij3YGU+!%!Y8TX0nULPw4~} z5-p5-Dfh!y|5Yzl!&pi`rg$~76V`U1F|K0HV5uhsMiAN%(nf716s zk+K08=#_e?RXV08vl=}3CuHGBMQgKEqs6u1sm5tuRpfC@VHBB3mcbtA_tlvCc|22Mw~U7gR^FZ z5K+cCL3ZT>w?+tYo!&Srtg&+M3bVG2$pttJv^P}4d+Am9)m0Gma`x!osfG9IEbC_9 z=_W>rS8c{Eyi?nJ_Ys7+`eI3T`7R!?`b<<3KbE=kjHIm4!f!wJ5%asR2U8iIC8vpM z>B4!HT`?-i9Vu(=VW%vixcHx&ssXEn1uSb7$CJ3*K*CpuNy@gl43j8eAoB}$Jws

E+Kc>#@`n zOsWYzM1gv|UM^B$W4!oey8kg{R#M~_gK>zHftG3PRNVw+^*pTHi1gh9vddDkW~ebn zg@+ZP_fv0&w1~bapTc{KFl%DVF8PIf%x+_*8BHR{&gK#Z_>s>4wu26sEPs%LkhCKH z9!#u!Asqi1tue4e-lROUhyt_36H!k{{UvW;ngC2jiyI-j1}dGcYJ*bqc7dj97W4J| z)Q93!x?X8Q8dl06l{H-wX2X)7eVZX6?6_>?KB9|Zltt6oUhN$zeFjWr@*uJ>z~~m6 zUk^HRZeq*IovQD%`M9~CFmcHLy*Pe@?GR!~PZL#0YVcg!kOBp@ScM7OlnE;m35MlJ z3D}ByN5_Q5M2M4#%OrRpu;LEvXYN~@i8006YEm|(SI}r_ws=nlGpfI-VAzsue%u=f zhNKtq#~OHi8~s=jGU_t}-Wiqmp#N$|6xKu@2swt$l3P(%^4tH4F48}hRrE{}0TouzV!#Di>*rpMJc{(umri{z@7T-6J z4%Ev0D^V>B5uKYl6*{Yvxf3@DqfsWpm^N?DolJj#PEDefe}3KxDvOui%_7P!cyXFs zmst?BlQGLe6E38j%R*&?DQj>e$RS-CLKntHktUmLRU!24-X#IA8NK#RD~{JXku34* zlP;-=kHfgQG}4F=R%(W-1zxN+K2K%;{Y~1y!+S+2tVP z1RhWTyrcG*aiwoD^9Y2t&#ctR)Cf6pD~_3xbJ0YO3M~L*@x#CsW6Mk?423HLbfQOu zc@!;ph|}km$bmAU0^GCC*@vpr!=W+HyK96_&a4^kUAo0r(oi{Y(4DTNr-l$FLsAyv z?45kW`2>N8_!nxk6snR+^L%d>MX``Sc?us|J`Dzo~YpJNBPl;nqz z_T)wQ=ViRBD_?Ko>H(Ne>)Xs+%^Q&YbGgwusU=E5D^Ty;e{QNT!)Ii|h$lnVdy8Vs zaw)1fDC$3RD#KHA;E+bWP3UT(R2Zky=W}r5_9#e2Rc7;E63qg~nU~yT(o}lKLT&zF z{-h2A<98GAjJ=+r^NPiN#}7t2HfjnAcK=3Uc*w=-F{DSm3zf!-9UFaeEN!6oz3z=e z^02XrCA4P$1g_G|Wkip+H#5CjWC?ja`tVDl>+t9t{m!lrBy{B{%u?&M^!?E99AjUy ze-L3MV&EH64a`hly8w4N?+9Tv*^GG3r1gUohA>;gJ7miC(#nzL70VUVg0>qF2_$mqwp`S8*)oyfV@ zv(@zOI3LiF4s+IUEcddUd%{|bjE(uMiNKnC;+n^U^={Hr$l5v?Vx!t}JGIFzx5-A_ zLYOt0rM-z!JAFG+eaF(EynMpvd~^4(=^eb$;IsRlfim3)IdL!3di5>(f`I%GOtz zkB%U!4m+pmDrsQkT53B%M&QgnoA=ML(K3qY;K6yKvdKr;<5{QN;Z8}Pj!%Oem`(zl z5u2XE7pxhn+Fb3VUA?(bRy1)Xmaq$*#);1r_>?N=6JF7CgUXg$dH#0+1xaq|C}jZm z_Z@`(tGZiqUIo*-5^_G3Yd-%bLFr`jGx|!tx1w; z(c&Nsroc3*WTA4yK(OGm`vayYvpb{y*$7ojxCwi=;*Bm5Q5`|nR+R4jV6xz#nP@>Y zfaC5hXb?=oYk!7Sl&v60)k&g2$wwmUGJ#D1WG;fn^g2A7vIfED&GnN~<$3ltHMbkh zlQA0Gwwgoj-LnJ5ot5m!+tRG|krP4_7Y#-aiM@8xv2WAx4@T!i>sAmep$T>q`2z=z_VFoK+`b z$GBm!TGmq`w^(L1-?Z%R3I)it7^+aNhx1X6&)AoP29s}{m786?#(A3`%Glt#sgImF z-8+Y?kn>{NM-NcJ-?iU&UV^Qjngf%{n)uKz1bNqgCctbjWN?R2p4kcKrgfFEu%`cZ z{2IA!aL>T-cjhTkWqC52uEj(dF$D z)SIJ}AJr3%_fJKA?+RGF{T%=M9xki%J7^nRyF=d3RrYhERx#$8$reh;mU~Y>)al(b z@hs-`uX>ylE;`g%)^%h2OcNVl@^85R8|YN}x6tah=+VuM7jUmqA<=0?0#AwF=t-J~ zXH|h1@ipowKqqa}MbkV-vIEnzCT?9UHm=oJv&Nk9U#eL6%$E)w2Hc8BmKnkVZ@tc@ zC#wJz>8^|!%CvYXKdKrK3ndEBv$Nq+ISZ?>3*Xxh7Y)GErb7;YcK(|Nl_vD*#Alq= zk_&6^NF0a!xiYiigJFR;SS^x*kG8C^3isRxII-sp$FK`)|DLm&w;Zl;A88^w(11lJ z*IO$z*1yaV-5Df_;x-6pAix~>C69S^eht8;rr9_nE%L0;M}xN{TmnT(Ek)m*o^`^~ zbA>iB(J9FO&sJ+^DzcOrZFzuQ*tO+c(k0 zh4RrBRf=5lz{c}M4dR(WLqGc8Cc801;@cLu!)>?mHyOIPCpM<03tzQF+A_?R*nLS@;I=GVl??4aKo z67Xg_Z*682Y-hui0!g@7V$v;7zhCbj#>KVS^r!q)&-q7n2GFaX-(0U{P3#QS)bAfq z64w^P2cHlsZ<4VjXW`?553la*Bqp$YRF4?sI$7l`4JL=V-A8_)Dh9+V{NLk8m%Mq1 zv9bt}b{zPx+4Svi*oj6_kIGY{Uti_;kW8U-^2^S~s_)H*s34x#n1#q0V}@BttfbXd z#C{0r#h+D=_*V$~e}zAD6Qa@`v&%pC08UXA&1O{peZ?*I_$=uQ7vBdR@4vj#n&M*p z=2n$K589k3-F0dC{;lin!|_6N`Q}m2*;~Ke&!s9&|KLrx_R(S)4PVG~+z`qsG}}q5 z!=P42xtij@kWL|uP?IrfXXfXNXZQQc&W7T9H2Ufq&VsJ0yhHwEaXfHb_`AK)`36wN z3nL+#NNES1_OiTCWFkx702Mb^3KiQI`P1sL8y~@8)(@ z9lyzQ7v}b z4{)K2p}R{65_O8r@B0z$gpoc8U(h3vr2A|h0iN#qUHIFAu~NM+6ccGziB&DrunMD( z>Dtk0fruke3Zccr1>yclPzcGwd}3Saw7iHDCWR6!(EHm?b3!iI+UA zj;U}`gbCEH=pzIYU|RJfl-hE-yp4lqX)3KVL2dlhH8u%NQAnW!pe>%UHS8`M!UBT* z)lBS&P1Pb69)w}xb*cF--tE;+IFd;YFbVMm>lZUkxX?UVkVhFnEDLl)X^Fi$fox(# zQ`BgCZ257J3sf8?Yeoz@J>-LHoD%ak0$nm@6N9f|=mhbED?8HHGYb||Y%sP%l7VA_ zkFX_~DhoG`EJja01RmL811KHVK7q)Lzu#IDA=95eg(peBiV>lL@>Bzs0_b%-zp=#E zo3u7hRm+Lf6A-)9n9dD{qAJZX+A4Qpe)^`+@9=AK&xG+*AGx*KFh)kr{sIw;r|MhR zLbi96HRL1_X#JLRQzjTL2X;d6DkVSc~2V3yE*&?t5+`-5Xe z5$(t3`mXO|?O{vV=G_BL*o*$rBEdHo97_IjzH0VMq6O5pQkJ095twLjM2PW9%=erObfKuTQrJ;glviPLGqyfY@mvdBU{Q!06YF1(mvLGl%c-?^aQ8me~!?)2_QTs9e zsk{^DwdF!$g$V~ix2b$T2MnA>6%_Ra<)Zku4}V43G_Gu>l|{dRS@7fuzw=a;m{LZ* z@LPFEcr3zWLODs<&R94Ms;wwemiRdy)JhRM>pfD~;O-8WctsSl62nGG=Aiv`**5Od z|4Apqfm#^#G0ROZwOErq58j`wzDm*bpF#F`{6^RUngyP(ZVTr`WF^ZFFoh!3ORa-fzFj)wP4vg z9*_)*HFv0PXO!Xf2{$Ds;dSKY5^-{-aM8>X>v#;cb`teVj|(lg#ioo_f?E3w)IIT( z@P&cUFCpyAMfg2)0u4Uzw~yq@PSl=&y;DJ?$MTz$J!^lPLA2-UQ4=b%Bu%Q$_v&fy~GyP!9kO#9Z0DsejJ9LyT4glh7%qjusHHSRq^G&u9AP94-xph z3!#kZ0_YBnXLHw?qzB8-gT!fGWO7J-7t(cQ9ZSUY_B|YR;!%75e$EWw6-*rY9Bf+tj*DQ%@gVd|Q*A!irnD5k|SS8iueLQ@9Fu$bjimUiM`DjzZK z(QU)6WT0l6XGJ20!aWP!Lft3!m8}F!^Gvxt?O)stA`(n`THEc;r9FJ_za3g#9A}&B zA`OvQUfj|)mYL|Xj%qdE^k+tUZ8bFLSK4xYBC0g#we}A5SE0HwI+;d$l&fsH4*x9v z1^-(0$mGh^nD(0}LLj$TLAp81($NgnJ3Sj)-u^i*A$6!j4X`ye53 z{yLURI+nlaQb<)%gEB|Y^qCJ@=G>@&lTes%GYfwpkkcEve zQ*F~Q=zhj#L`;DsRT9l#9XM^KK2W_d`q95iYQ^}NI2mStSMQgYMxcrmmE<7{;8R4| z(Lltwb0W`GVILll*% zMqfyJh+{)=&uDSSC;azP(y50UFi`POs?z6EN@t*9pDb(5WJ_aC)~sDzt_7M6^0}>5y3z;o+__KZH@$@n->&y zH6st`)?_yBuxzB$YZjhwD8bU6FIz|7!u*Y_5N>r{Z~=#dghlT0`6f3SX~@UoHW**6BYOD;d-TP0y{9?uF`QVd|@57WLFDCEAE?B#W>+VCRTgh+yqB*0__5jJN3TDQ+7d4 zrEcx5mrpMXhkt59bRn(V$)9Gr1%CnPU%4r}g)Op?>bJ=_woHjb_4tV7R)-*3q-m!E z7ESg?$TrTe9++wYIyo{~?6lXOgSVdB+>(J@YSA#L_Ho3)Rm(FWMI1UD$2N?U007o8 z0qEy3yCWb5njJm8`X@fphRkM82`m{~*E}nq3s3iRz`GB0cnsr_l;fRODe9Cfo?aSz ze@ZG&gjgxQZk)Jf(rS4}Fv>*$awh-f;i=-SLpUNhNbCZdK31)|}zvY$2juQ`6u zV`JiHby}nS7Aoy@(&8$=Xt=<4c%v!{p=dVTktbWE(ILmDYuh+aw#-bfvsSlYYV8D@ z6ZTSV_U^aNA?zIaC{f-EqDskU?8%A--21_zfi9 zmtW$^GorbP+3@wSI;U-C0o?Z&E37hA*kAJM%P0DZoV}BCm{;bAOPpONLvyRT^Bi*Q zc=Jn}rNyOIc)}q_c+|;xt0;!V^H2vXUul=$fVTtXjdL5~h&S>%y$P!IQfz*u9&X9; zCGi$-doG^NRA7s&G-pLi9T{m zF;l5z=f{UEci_C2O6T;K?45}ac8ts-v{+eRXw2>Bmc8KHCc)W{fvOt>~FO%pY!5A$#jSs_v#BSYefxus*g~$j=z|l`YJb1^?p!SL0i4$ zry^+Us=U8lR01iT6VA@{DI{Q)-l>ZymQ0tG@MM)R-Fnf>iO+qLlCg*ybI zDi-k+Z(dz&*b7@-uW70+>YxuiU1qVY0jTHJf?9d}B0$b~Vn0cQ=g1{<5A(=6G643; zt7>rumW0Bjg9qg*(;hMb9#1>J?)~wC2-qQQqY~B03n|mLzj=1`Q)%EdH7*h~3Va@= z+|%3)7hP$d8+ClZrfy|+AZVu^l8_0=mZv3;9ilJPOAaFqJfd6-# zFxdUAo}+%|s3q(Ch6k*XaUZG{!JRZ?Yk)V+6@)Pkj0ba5zX zK1b8&Y%;O{#o|UEj`RrK4f;<_gpP~}(1tC-T>bp=;olSkL~T1bx#H&2k>j>X6n694 zcC#-8_XIp%;vl?~$8h>1(Ja+mMU;G@5Hj7y@ZseW0TdqZ4PW{G(Mc4!^Zs4rofqkX z_gI(Klu9f=m7EU&gL}hg)Rl=7q#BI1^fUDbfUH;UBUpZt zdQuJL*p&Ble0k*|;1^s>CGpQ4&h{k`&Y*XyuFOo*}hy+<{AUQq^;b-D4MnS@>;Ykh2b zG93KtbVmG`Q@*P5_)Esdnl*5LjAHPOdDNd85a%zJEQtuM_sU+M!n$&luRa-^cv`!@ zk**cwfDGnuI++NbjPO;oHXZ(U``FesLj7g{e;R|_~4ETu*MV~vH3-*S)t2~PL&8*j? zi&~+K1xnqG@Ui$7Xd!r1ZF4tCm~O0UwKfbNt}^$z)!9TnQzEu0T+Vi}S=(7YJSozHVYxyza!v5i#UN@u-may+;UIcyg!YlDiu$jlEVOo zh(uS|l&H$|#~y%1Bvk7oiqp$;$1YutV5E+p8FhpX(+=D;;|bW!?x&1A5c8O69|dr~ zQnw)5KgTZ(2=r!-9DE|2AF{b{eP(6D&ePV2AZmZS6bwpIX>R@!YzyA3!EetI*&_D!C71e-v%i=_X+)8 zu5&$_ti~#v{AovrkJ*YT+2)?(Y^E{vWC$jtTg;mA=SuWMn~;T|zKfV@q+VOs-??p($3mn$V3u}aIc(NdwYiS$*lh@Z zazET%sZ%BX&Zx$pEaQY1M!CXs75*czKg6TfRIM?OPubZ}@%1>RDg{M#O71Yi zR406K|DJ5oObHZ(-zj~W;YX7AHiP4X-+nCi=)>p{UDfKjih!$HQL5pS%fzQu=V1F! z>}H(?r0`0Sk%fQ$&I3Jgrb?ILT9?v};gTF)se%8F4NK%hni5_?Q9JY6f3n_#b8K5< zqARyOx4D|N`ea&FYzY=+R`JSQGWoef6Ekg%YT&sQv0qGNK2Uc@#vbS?vY=*YieeWa zP5bqEu?u)b9qgx_E>Ti2Uqxj^riztolGcd|`?nXFFW2oSm}Vq+kbbqGmgro zA6_H=5lbN*WpjNuF+~K@)WXtcsyY4NgMqC>wGoBQ3C-5$JyZga4DB>rscrm#K8Uh*HN&KX7D|qA zUC*$20$e|BqekR7*%OoG|wxnvkpbW5x?y=g8^rio0-Stkq}LC%8YXCZIEWVAig zij*2c&&LowCg-p##((CANTmQ+?IQs-c&J{l_d<4yIcFfm@3+l zHl?J=cgw}Zbp0R#P0>f=SH+{epE~|A2jg`^M2Hh8;RA} z_+nt{?I3SZ=zC}Jxur^5r3^fKd_kx0Y#|`-pv^xffsR3O*%^jeE94>^%a{RcMFNE` z8uJc&-<()i0h+M8st0;wq)0UHWvzA9#9BO?bgpG&BpXpUS27G=5AjdJEdLi-T8Hk1p`^6r<_73KT4 z_oWq#4h3EnLRXwE`@UOGW&pUw+Y13_aAsa=X%_ANPN$JO;@lnI;v}yEACKM{kJ)IW zMJLu0N^73~FDj$PGwkwmoaw7QZ#~QX>dSgTzX9Q-`?~?`4v&bajVko>d}*ANjU)j# z@^c?FQYOp(K8laCvDnm4k-EBRnWD6yI8aa)q@_78DbVvxv#1Fi5x(1c$VsEY3ykE~dnn8q7Yax`%jn zk>+zXq1oge-OLQfSvb`MZ7QEFfuhcrmlqt83W%(~#Y*Z7#QUl+izIzz50~E$D+iqk z*AX|*wAWYB?-H07kV<^wfs%$A1K)mTDI<*3Ki03lqf)U7Pz~jNi5|%vUU|k#z@Ziu z6~JP{fNbaJC-DAYTST&Xh9G1hjMrqTnnn zzizeHIYKTbj@7iTREbfTZvC2y;;i*rVu45#p>_hsq71yW!IMz<>$la{4704qHk4Xx zl=q<%&Y`IGV-2@q_?mc!)|3pjF@i=~lK68P7w^5;WXB1Q`1q7iyTyk@8YqPzQPtR; z(kWVoW)2=6xyA^F2n@IpWZ=z~?~=qXs*%-iJ!W4VIU#7QAt9i72<0=;3LJA>GN(w9Y2u5NBJ zJes@X8s80w4X_4!coX!+0EI-#I1V8zDtzURG(>@`^d$ z2!@FnRhA#JdeNU92z3@f95)KA+WR_IvSh}&n{~&^9C?O%4KV8^C6~pTEK`o$j7upd zYp}haXA`A2c4HXdNsR4r=YjEop5Ou6oip$SRWK7(Y~oRidg?g z`0>k2uLfF$^aFNQsl2fMgE2r?N4xOEavceFwyww{CJIzuFfPN>v#q* z?GM3nu^4L6IIi>xUqO?wp5cUMzpe&=I-`rhlG<32Xj2cR7Qfe(^-pY?HetnHY{I>q z>J|R@VdSL4CB?h=I{LGw(~YI(xB_!m8$dN_T!vS^F80Q!)NXA(3MizGG{rR-^0P-7 zn3HYW(_z%aw;5IJ<+JX&VBcH*zFmJk*k!jdfX3&e@2Jkh7GAie67BS1V!-)+tJ__U_ETi{HaK*Ey1GHQ8BOa%k17zl;eKZYV!3N!F-c z%`6!~x%$Q~5f5VzhhD1C8+Ynw$3BSLdwfRZ{;avH^||(`#V5uM`X4u=oJXk=_k)dU zI|PVHgszFzviRDg;EoQ78La_JsL6O?)Mse@>j&J5q@1y@(sQKe?^b>?|upcG90I?u_>eBDe*W0hNDYFXe zvbESoiw$kmEEYH`0(A2!xUWs(SbS}iEunG;htnvJa{pDuzM9%-AH*m2R49pqMhxVE zB0-;K49ly_twZ~<{pB?awtT;Vgup9M^Q+x3_dgV@0cp?2m+L6(vum#`=Xbkf;{*b8 z7G;@cLJlsC$!Ol2pR@kzV4i&iB2j*#T5JEIP}ANB;Wd$a0b#>jVF;Blnh965l-uEu z|H2P|;>G}7MwRx}ZI)6Su%Sc?zku0mMR|vl{RqUdJr*B&`J~o)^H5pThh~@}5ZfU$ z(IL^QOiod%jb(rSl9RC#L?Qm|89%GwB!|gAf9r!Vn$lc997U8~E^r=3L*@^e&XM|9McZagOY2~b?eLM* z)g1kyxOwoBEXE?AGigbWv86}zK32oy@ToZ=B{`U)QHqn?ntRq(R{{=br6HNbS#H}Y zlvgbI!~x4rJG}NsJ0bx4x=D5bJcWk3)EizZlDc6WOn`~94l^V@k1+0V8KHOR-%uN% zPo)2qKqbvazj7B~QYCfLO#ft<-AEi?l8dk99A(u@eVYWM*0}~_tnewg(s@ZRdOGY${?Pe$4`97Oxtaddy$gQ0D^NW zmPm&d=IL4daw(P8R;JWEug-4^3~9Q^Z(&Hhk!E;sk>($zohHg4)i}RU^dyEwPu5+MaP@u~zVce`J9M&SIvoR?H*lcJuY{T7F z#M0F~p!H7hUQYbDWX+?>I2GGSJYNDpK2H3BCI{2EYHu1_rkx6JtSFKMGZr7K5wkV7 zF$`sy=9qF^4uuLz3tV%%zpl#(bfDP^uV#nS^sPK!z7Fg@%lmi}tC15e{7uk**!e%s zC!;S4^T*`*HJ|^iWg!;gfG`%~I@alo2uz>#ak<#O&{aaDGDgSM*Cxv}rQ9~Md+V}F zxc)gYBYT_K3df|-6%rb1e#x-byMDkq{s7S?#OdVsg|61~hhixkd1wsNMAd_}Wu}qH znqwk3Ubtn>GAnlvZBH#-?UO>hB(`B@&a`Iw6|X+aN$$7ui7JO-!>4Usf@yCi)y$TqkJC91c?tdFu$Vw;PCKq zMAE1x734iiSwsz;CI#zzYDp>J&-u*se%PW5y-{#il3AZwLSgQh`T`sjk(=18(k(pR z_BW>c!E_;Mfwf;>#SS}?`BfQdJDe(%h#*uxHk^ z|5Py275uHtX;4|IG2N#h+y}1iOV)hNWkcSP7uGSUV5LPCI>l@%**S0A9!MCv*@_Itz(D$%fYfYF(^H zc&ZdblyXCqGgx7;9qyZ%8)d3GtlP}Zt6O-uKrSp|#Ro7~vI^AG#NRHEAi?}OdHHLI zvI2xDa`2tE1?IDDCY@@%3@X(ttUl@0ExQgaxV&~y9a5JYQg&mb|6tEJGek!W1e;7y5)WYgyV~QvFR_St+p;0+&Vx=F8xQ|!y~K%e z$%&VC6EQQ>xT>t=_G_!>y0##zc9>={sJUS1PR@OTWpRC*npV#mY2JvrCDW<%&Y|Al`Z(3$wwILbIX3dS(} z+8O$7F~iKycc?a)23oKXrqz!~Ugm%DD+~ngPbDgSZCE%W$oQ$IX?1C1cUb%7YIwuGW&4y%Aa)9&I!?IHb81=P$0>34uLR0f;|;^$~KDO@h1?Lx(; zi-t1e9At;3icB2dE))F?9tcXwan=a|O-K@ibf`Li(ke0C#TtHGG0RjxOKCHB7+u#jsRc1Ob|&XZi_HLpyg{XIOZLFT?zn5ct_W6(H9f zylDQdOuzjO5aYW+buryb^5sqM2J9?)A6g9;4=M@0ou{zWy{r*T6J>oY>?FKN_nY z3N}6(g$+MxK8n~qV)}fNUlBGg$46gb#%dI3*il%N2s%k%E~E7|QRsjCn$Aq>1jR^Y z)G5=^=Wo$8L?5wkXIUbfOi%f8HOfQ5wLHwqfs2?Rlu;SXfgK8Vq`B96XWjXRv-x?f z{aN79&Qkl_*kcO%Vo>+t_Ckz77S)ACkr-y+d?et!l=HOxCCcK;tNy_r1LER(_7WG4 zQdy%NAYkeEkM&Yh?K02n66-EA{?ox#y?|J3vFBf7XL4V+<;UpE_ha4flRv!w8ah+8 zY(HX2Wt%pQy_%4;p{hlZ+cbT6lXRf;((K!Vk4snR&g_*fkEV4&^yc8F$7A+Q|2}3~ zUd##}UtCQv22@^HF3r4qPhj;KzeSzV?o(RxsfFb(P}21mMIZNX@&29_51g+CbuoZC z?p$)n9=z-*zrGaPdr)%)xp%eyZ}mGF+YjbzriZ7Go4~ z!t(Fc8|JUcA2;5h_9g}>R<6Dd?0oq;@XqLw17dGT5jQdL?t}Kjj~es-sm~IXtYoB~ z;x@ht?CInD%v%;s9??I1I`8#g7_D%fYcAsF)%C#OwQDQK>7O^c#8uz{)vi;0^K;E z3de-oy89~bEdV`b&(yiH+I(sTn#Dn-S!cxJ8ca>GU^eV5(% z&c^K?&!ed#tse)QodKXm`-aZuy*C&PL`;eiNBlX|#Du^m&DG z%fHuufB)PYcYIv(@5dj20KTvPJ8G@uzxSlI`{A&cr#ps(Y`xDSsEwS;Oz$z$ltt3{ zogc*D)2MGoL&Kd8<4EHJ?sm$u^TULnb-8p2--euyk`5J3mT6+{PZIDznwt zn#mE=9jB;BTvWQLm1iBNYsovGWEH8zt!5e!#GT}zC8{|ipBXWn<~glpTkBe6^VsEk zj!UoQGWK6o6$YI0&=k3C5mgpr2#9y`mAjm4O2dS)2rv<~4gyTBObn{HCx<<+N}?s_ zsYo+oqPsH`?~sY<5B)S^RZahKc~E#baH_yv|SycO{xm+;DTJr|zp zyi=LWnzH1}y1Lr>e*T7J33HcbJOlIhg^|s6wFT?)h9AKs20@oiecr?hRm0Um^_|Pb zTJ?Q%!>(6#>52evEr07>guw8D&;50xku0JvSCb_SyDLG{&@CkP;qwT&Y~g1V7zzkh zrMOhfa;C$84U*3uwYdnddl#AWJU$e-)i@8ug@`iSWHKUeJw3JE_Y zY51lzs;u)iN${*?SR#&o!xBBLGyRMz-$zQL*pO;#SgQyHQ(d7}5 zt*?tR_(e+#DsN{c)SGAlk0lZ`zw`2+TipGw6(i%_o7H~J`kOwB`9ED7=#*K-O^1iC z{I`g{6}mROpv!Jr@R~0ArSe%`r)TL#!d&K95AU5v>nQOI2HZ-h(+1%2Od%AK9~?W4 z4a&QC*Rj4pUf0%}zYhA8&xVs$^{9aOpHV!zN3mX}Z`J!MZrwtpf=o)ss{!_b>=l?G z@jpy?2O$Ok6Lz-zyX}3&OMaUBU&$*3c>byuZrFe)?~{$8|=rQobb9 zIfZr@+2n)CC2=X7F5iDN8AX7Q8u>Op7FZQQ{GwhM+_d)${V0q5O`jln03|jW6k7>Uuc|&mc>yFEM+l*u z@xQ)Hz{{N?KrT-qf*uKeNNo*da?Egz{G3ZtzNJBq!_IbY)s$Hu{AtQ<85pYRaen-acOCCu& zn)pf7x`BGX_G+lvjQOS-5X3xnj}`?!b}-8UlF25~V_ z3S&kVb~a@9d1h?3%Ve=r}8aDt)U!y_vt?{nXBA zrz)h0Xn>9|C`#hix|)yfmw_$o*1w(1x8MPdpCGau0pIlsiDcbuX!zi2D)DVs<>+O- zarhn?&=B%$LhP^9n89tc;r0NgqLY4mgAtSA&hO4gqSr>fHh-5KEwR&v4`Wu>l4@XB zcW(4l|FvJ|T7MIPFfaN3?Q)*l4Krd)8qgZl?3)g)FTUK8ZKgn_jo!M*x7^_(3DWK& z>MT#!%T=EImCARJtH;`WMwt&vZQ`%b82|INT6)*i==c8Q12x*xAilLZx&Nb}y;G|M zu`-rSHP&}ETaxQX<0My?9Voq!8>%K%@8x0zf;WyH(&%7lXDg$v`1B(~16uI=47IJ_ z!Z$**ae!u1GjuXvfg*hw#7k2lLt(PEB2QJ5o@pzGFEsegOETiJDR)Q=d;Y-uI-Pv+ z+B3LDOfAfHz^w3^_Q+@Be!%T=DcMcUNu~WHzK#iW=1Ot+L#-8~UHWyQqbCLMDmDHl z1Mk9xf7$WaJnrUy0a`$%zji?sm@0#45c`?5t8ygquJ>wE?&`O$ex!0ms@2HKHMzLb zMpLIn&23P_Nra`w99{GV#XI|kj>Us8l{^&T3M1^ki#*%$gO0*A8smA$b>*n zF=}x&zL1@C|NTKQYpt%c7xy89*>V|tqty+%IwSzo^1Sh|tX8c@0?Un}_#*0iST zW%&PnG1+cIuXpAF$o4=|X!@~}eBB2XNi9NepmG50^n=L_4B&a7KoGnlxMAQa4}aMJJ|7 z^hH|tWkNqSM~L=<=;vTr$6_1kV!$O>*%Vh^WF_>Me?EABM8Z3nqH)BMaXH3-pwxSO zHFffId`6cLNa#mM_<)l2Rg$JfIX6280Db~cfm+ypb;Er!rb&Eeatq*H;50&mR$2pa zdE3W=2QxksV1Bf7Xk#~n?Uh1gL}f;oW4`i9CFgoW(t|(vgE*o}#8o&PWJ=scfMfq> zcNkNO%N@eFM=wg*Q6MmrFFoO*cY_g_wUY zl1qVwgUY8u)&fZb=7_>4Y>8!p3kpRcN#WJC-B?R3<{hcuDP3P8S6~0-=oXQ!&S9ZO9{8 z+!O&303*^kjX>xkUiXU66>!qJf11YSTDFg8^Xih_*qL|Vt@Mk_XUp0{-jxpnNdUIaFM29aYV zr~t{wksbLW9|@B6ha$a0gyw=>2!oROc!H88Yv2`z>6kkR1C8QXMejqCYM5^zgp(a7 zPCF?uJ^7Pg2tGsEXYFK^=9ZLFWK&yIElt^IPZ?;kG?kcCm6v2*(l&$AR7u-KI}qt$ zUb#_VnP6h+aUfEbW(gt#kcgEQhM;IkLHTTRc#y|uk_cpC2sAzfP(v;eycQejuK;~C2I`VGb4m4n-y)5`AIOw0F(c;UlR}j5>S&o zW=W3taF?icqvrrJNB|hsKA$I%0Wg}IhH*^Rcb}ww6~dYz=^@&bL+0{iuyz2TXfW<& zX|PsiZW&IxlueoDS|>P_yf?s-WZ znqYgkoPp^fhm`|Znx$I0rCC}bBHu>FodZCR>_?Az*lO2QR675toUa*(oit>AWL{H* zic{BYucU)8XaFjPmF@YX-L~=80B5R2 z5cx~422+>VR!HebzKVd>5^vX(QCHNA0oP#6`JtcKW(ts}lgfrxlt%1VQH~0AQ%71N zxQh>GMU4ikP@1d)_kxni0HOy&*C~@@S4n2NS_tuICdFhY$f^P2s;~;H4YFXul5tUV zs{~L^?BhPWx4;DAlU4 z6)G^0H%Z#+Mcg`d-)c$M%7p@;0eT?{Ynym_Z z!gR0qx*$&$I=@qrrU+DZWkwO8Xa+M7S|p_g8v`|TfH~%guW7M0#eE;@Dw&#S_G5;y zlYD*nrr>gOv?W@BI-!8aLK%62e#DQD>ZmtoQk{jK&)S9)prbkiUW|r8dljFSq<&QPeUay|mAD}GO0-)#AWUXUI+QWWdP)8z0eRRy9GR}EwKhwuqmq_B zjTui0XKwsQhuw;T5Q}g(C9H#IO$^sQfl93Ng-^EQ012>)1-o};+o65=C<_*U^0jo1 znv1W5qjuG|ag{&N_JuEIN#OdghRbf<OfTKIGOl0aPyofsA65LTD-h>^E_(sIrolrt4&&#M!!V33n)%L9~^JQ%8vcX`Iix zjw4h>1GkF_fU6DwWn?&9I3|QjQ(saPtruHcvvY~IE2K8d5I2~5uV`QFE3`zg142B+L|nu}9KQ#EHqJt9`0K7zwyVpTQ@RT-a5s*# zbX>opy1S{GjQ2h-6mJu|08=bN4CrRIL#R|)WrP5+>99KkM4EP7+|_f(yT+9o!3A(i z`gV>l_@nOWg-q(M21kRXcetBrj@ADs&i+FzW(%zEG0E-R&h61ZOBBx#Kx_ix&7bG5 zn(1QTWk#t?eR&6@b6RTGzU4%AQI?Xb;!{i~@N# zXJ03#cO`8A1|zJw{5_q-x*)7nz}1uOBgnHRg_T950n4s4?VdR7sR~gzKeUPM!P7lm z$v<5HHbXe;tFv2FSuFIVS$R^drmF3xVq|twm=QdZV0arl(PXE|)`wc8D6j*O zbnHf#c5pS?0XbCyCBSoTw|W2_PE|cu(bsd;GP;5s4^v?!nlNUBu+kJCXmrJ>9IC#)x;A&91*4a1l^bo>+L|WX1}J&< zRNCcy+F(h>s{K){O#rT~0I1{<=1*CzwdTxD^jw+S|F+S@>}Qumjqn33|kytS|bjM_X*;r+U#2tt^PT%;o3~C)3w&o;*LJ<)sbUp z12DQ&s$wffFHDT28nx|{rVL(%2nm6p2!UwGR~(vCMb&-QvX~o0)p93USe-vvE{bfe zY4*jn0?lD@izx?}yhxe8A}e2g>as1X0c+TBdspSP1zZRzvk-mC*gKteZUEqmcY1Dq z^$D(kuAcVEk*EK)McpG<21MVA-oA`J?v7sW%d#t(0?S)hT4E&h*j`Wm+fk`Dp*6HN zQ%l8ZguYa)uo)?WpkzwK=HP;6ms#yyDlF@gC-I7ct&hr95D1ZT`%JW`r^Y^=aqY9J zG}blsQ?wP4)lvZ!Ftb;ANkA*4cgFJ69gH;{pIb@jx1&~QF93-sj>{qLJTK$Z;VVBM zT|wX3uz9xbIZY(N>>eOUH9-j+9;hj+(}z zRNL`bEQ%%ydBc15-NOKBPjV3*PZIq0ABs0xKk5%IM|e5_c(3=I`gxz2KH&TJ(!TlO ztjK|1_!0kLJN~UGA8t+^>r9k5xys@Aj}PO@u}_SWN2dZVHHcQG=fATC-3hszbtQVm z=vR%ovzT+`05M=dfdT>v8aya)fdByl5f%urV1Yu30TLoe$dKVh1QZiqxIj?iMu`p_ zFmyOzV}S!LH4;P+v)}*)1Z^HjkbnV$oH+?9P>?g_(3AvMGMq4BsDPh9YZhS2@<2kT z1T7=*gu`pGKWpF~OVlP@l0O6tnP9ubn zQVKhUI&!GE0Su4}D*?zezyYpYV#p+~z`BYnlN_*%D~8lEv8@u(B94IBHq4KJoftUF zHn|8R%%+M|%JmtZBBun9NTT@$LI^0CY!av?@?xs5IOYEi zNNFXYTG|Pv2@A9-r=44;Jj(19)$2&e?fqfemQ1QP43KnZ`x0Rq_TfC>c|Ouzv11n)^@mqjf|BA+Fa2qmXYl38o7bxfcs zseC{!rvjKwvDq|&GC5!w=qsk?7)-Dwbq{c=C4zi=u`Yu8N-(LOEP^P(=@`QBw(Cai zcedHk%XCmPqoPWI>k_JyJL*;)z>Sh?Qf7{~Zv#x`lCorSh(&7`F^YNh|DX4c{a zsDz+f2)=a)!vu9B*U*M`N*9531xTvh1Ky2yDg(zHU;(-AMJ_pgg{o6Ls4gULAw0no z)nJ1VE?>S>RMp2rF* z;8?BJx((N6uairVII?JGRl~Zp?BML$08?PO#A|-5xjOd-F3!?*(+*_D3&@!xfk0|2 zx&L$oT*N{Jlws9}ASQC(bS^NMOc_peLzxNUh5{4^o~}&-fz<#A&@%tnsqTR$c@P5r z5+T%mC`4r$5s73)mlfrXMzbOS2x0UUUHOb?bHb5!qPIiUByV|5Yo7C}#X}-SW_sHi zjB8TjE0n0QLILPY2+#MuoRR;>H(Lo6L?pyS3B|3D zXRO)LB)7%|bqXqTn+ZrBg0emG3n+XfkO5kPp8pB%W*#Yk2K00o^b8C@AZsJOT9%T1 zIu3$1*+}BjmYiymCjc?I*@)~SLa=bCIRs#$qsY}gx!49V9m~q7ga{K~`A}3ahfF)j1NG)Wxj2Onz|; zB`wQHshuYS`G51?1#gHyvh6UD}zNww9)-En?BGmbIO(aj!moAYF)}rQ6)|s1kTr zQz7eA2|yJ(j2)Ok$_kN8fi0`0?U=-Rl158;)ggcS<8eh)R<%+@BHh*B9UCaOw=N*A z0n!nF`u4GzwDD2(Eagk~Y5?E()pR}$tf>YYFb)|tiVR&?i}K`v{w{U6BhtuZFYuKJ z(C)GuFsx?DWs>96>n?tY>}-q~Ak*3rwnbF!YM664^*(IY5y8Mrr8aqxjK8_EVL zG#2vMid?>-T}!~!B1g4F0KQ3zS?@xx(uvVT-sS(Eg2uWXViCq|EC+RCyAI{ZJc{tqa@X4qlvGN6dXStXYwj{^AE6oTvoR0`mVnjA^Hq)ec% z4|LR(WnGrRZZbpS!<8v*)o8ftict)}i;Vw{69F4;_Hn<865*^A>Zxs-)0Xk{r(etP zqzT4oC?deOPW_f|(e;L3t@0Fmn!YI#nRc?Es746iu9B?1=O{4AgdWr zO0e^!u1aFewcKczQ?vI;xJPD0bR5;M2>Qv1pKdHFCKZoR1K-U*-^cW zj4@D!gX-?iuV^491%Hc57w*~NMfa-|zm~%v9&w4= z6!6!wIF2x`@$S^T;}rwhxUg(kY?53|-;*Yma7BQX2N;K=g85TqUPzjY>WomylK^zi zbGN*VV6O+z&>t2ZLl(f?rBgZrn7;p!m_Xfad!0JRtlqVhobJU|@45mIf}x0guQ&%v zwb}C=%GR01QENBA>7Hol2nhFPvzohsxng$&%qZmsU!s-zj_JcMOYoc~LJQc^e5Qv4c zvy{LW&|3hfK#!KFFI4%OJA##aIvd)-tGzLgj^aK?0k=XsfEjTBpTQNwx~NF&EXEKV zZ|WyxISl+$miH5}__Mz>q(A>MY?4qZGetTKK`D^!fk2dD9av{=BEC2^kr&2P2Ho8E)VVs>oDD!xsU-1n^ zl8EV<4rT(Ll`N z9gkX(y1+1G6qoc%30e|E^G<30s>TfjEH^@GhJfj8XZ+pR<}vTcbP~m4iAvIKzrjTBJR40RAACGa5Gt zc^q3CB#WDlJkgv!8kqn1$P?Ouz~sP4Dx09Eh>Den2_j1gKpR1;m@(S<3J5tItOy?x zDF7o2Ar;XG2A~})yr@+25?Jx9NfR7XqsVV^Adl0=W_h?@!bWTyO4W!79C<|!2}c+U zn1qZVp2^6s0;S8lqd)-+9HgS1$uWCO06PRF1mKs1`p5afoB`+}1LBuHiWo6NnU63? z@u5hha|n~bAOrw2*Mk|Qk{KB^09x9*)9F0361E`pj;&j>HPe#r@ws)niqpXguCM?L za2L18yX{Dozq7E!2&v%74?jD)&ng!fQx%>p7w^!RpWG**Ov=)zMwhzAqpZKzG>s5q zN}I^TDSFC==%D|GfXl?$yQ}=MF)0q);L7hq$%+C?cpFP(Gt2vFujpFKn%cvdw%IK)VpY6wF5EF+iz6U07jk;=SG zvZPN1X(rvEAsG2gEj$3xw3Rp6%2vxBD@h!%V$E-IP1}r&*z~2@q|N)IP|1k4V?hsa zD=c!PG;cdNbW926gNO{eOuXot7aN~L*(9w@x2NE*0|2rK$RKcOqwyj)-7G2yEDwM5 zHrFFSg4nqdV8{=-95OjH2mwWaTS1h;kg79)3v^4?cnI+@r+-Ps#cZ4yTMD+o&s5pG zk}Rs5X%7E6a!25KA}GZ$vXZ+710Gds4hR*Th59?ic*E1%(8;jS9}ClduQiABBe9fxn+e-lL(8xr`OL?Tn zDULqOk2^V&l2MqHSk45&mw~el+}Xp*YN~ULbkjFPm{2VOC*;sBRM&fukduC$bp&T(7RFD7jk*71(-DJa)=_F4obo@kZIhV zv5N>cP!VPY+BMXwyj+ZsZ}1T&D#Io zy;|HwjL`~12Lf9e8(V`CGV16iD>+s?V_RBtTQI{*Et!BvwUvC*fVyorsE`v)vCh5a z9JUCrmPA^?eaAFYpME6>#1(+ieK9Uu!XwU|%&uU_ zUo1d55nTo#T@nOWF%3B2p-I&RQ0{ZxP%KUEDJ9)tzj{qUhydQV&|RnDUElTH4vv&H z8jP=~0M31}Qlc_XIfy2#%2maS5p)z9Hplq-9yDo-zeoxlYmgwrUJ3lBfTdSfj3%fQ4eoN12gblqCQDE1560 zngqzy|K*t{j3EL$thQjW2Z|h6OE4AbVupBA0d9^ywlm#QunQ=^7b;`Z6r9vyh)Q`o z0zi)yn~4to;HC*-5zbl?E&vF~O^BGDm$86c-H1>r3bXs4masDo*o}mMJV(5ws|cy@ zBa;KLGbs8me_;(jsiXRs9yXg3f@mj@F(dvf7yAe)t+a^}JWDb;l@Wnb_0r#4BdWWD zB?h2H0azeT0g%X1*fY+cqBxUieV~KDT;F(IfZ-&DY&$VsU-6MXl#n%<$v0Yy5X{RR zU93!L&REl|PuNA70H_odSd99($M3=2Nrsk6w&dRh-VHkzF5WD#O;rEtXiFBX*j7`i zHOZ@%NkAUc%&1@sw}qKe>xq2*j)zFD#Q^34Zp+}k(k{XegebUa3M!D;iSRVdjphht zx>&h1kN60fSR`Qhva@F%t*{z^2?&_Hs@eISD7{3t@!3uI0_k*AQ`ogu-$7b9wUV8n zEOA9*q}@BzyrIa*lof+Jc{S)~LFk08THLL{Lv?6S3IK>!GU~7o`{LhbTC=m-#huki zu(0Kiu4MonjC@rblSb6M0+jSU<_F0Xly!lZ9+hR2IxLxInq~l-ejuEV)d1V8op#lp zj;^0R7OarNgc$0^+dn%(YE)5bJnBO+om-+h?Wydha}MCE{tN%rB{Z~E39eo+s|Zik zU5W;EMzZcBvyLpZZr33Z0uq4k=$7v3j&7(uOu}F~iZU!c9=VM4t0SBc!NKB{$Vae& zk)*hpO**VSV>|GPw~ zb)L={hO(_wTIEWknYgTs^tQKQmssh_ft*ovgWisI@9!xS1{sS@vWt2H5ofB6ffOHs z_`#5#ypJoD(|ioBxSmTZ=;juZ=ceu*mu~AO798m^e1nVPrMa@~%17}>4iZP;2oct$>jkQ@|77JQCc( z{J@w^1yHd(t*}mvYlA~g-_W#nR~{F25?EK+!VwFoX|afr1ZtdzEqWbX1|Y$3S()$bp>_j9(Dg7FLfO9P=TmSEOaGxlrhGu>{W%C z$QzYje55g6sN(pf6Y8%WTS>a8)wL0JM82V39SVt{ftj~cM>^IoL>XxRG6%gmr}NLN zNGh_t_^%GnZs(Wy;2Lv@PrW%~qm~$fsDY^enG=d~v-psb`ZujS3thYT-2wQ{5-#_( z<@6=j$T)aUPbR)OGjfvgPsef2(D8?#?ub9s=&E>K8KV&dbcQJ^j(4-ToG&=)XaF5~ zJSurwJNfG6n@;+QmG9=bkrS9tv6-gE*Z%F#{yu%=Q@4QWsQ^@Bp~UIroMpZ~&!&7P z_y?z^06PFSFLVTG6>q|j19gCF;zV3`kqdM_jt7VU0|pK#U~mCJ0RjRjXsFQOKm-yM zY^W&UzySjWFg`3WP+@`u1`HZ>;6R~(kp&hkfJks4ON0gqkR*Uo0m=XdQFr|UA>E=Fi4rXu0Hem2K%@UI{D?B4!T^dD=gg@XW=p3K7gMfm`7-9rnm2P+ z+yDUR(4t3^E^S&!hSaK8vsT^tHSE~31B9%dz+gy|6)FU<;Cpe_019_EEFK_m!2${h z9$$NSphE#|4Jed*AR=^!1~FcTDnKGxx>*5J=UHIyfa(NZ`nEtaaoY7H1rCVGfUr)N zPKy^nDVD1M4QWKu01P{fhXdPJ%awkAh5e&dlR1Gp9-cigk_n2Y$ zS=Lx$!G(m|Z9N?|8Zb=qHtAC@<<}%rh(6epMl{fXA+T#rkQAUy zY2ZLzyCHj&NhS?MB#ki|jUf)zGyHute#VX8P+dmtP9}C2C?C{4c^?e zG8$H1c4@`vSOCF!B~|}VE7H_cgHD;$(3GwY@WKo833h5_HrI*rsCB*@Z)FlSS+Y~4 zK9!kzCjF+^r$N$}6IdnWC#yonrDdv&h}sG$#TrQq=tArMb->p^jdwu09U(WPdgdLq z+g#!`s1SNY67+4Icfqxg)jl)SkY!6|7F^XKDi@;Q2`dg;zymu@TEPZ~xj5yUF|{zm z4g>Wg&=ONj&|2N*TAqNU!_~3JUB!r~woQ&$@=*w!?2^hZwM^2>3dD@+%r#^D>rC_M zoG8!eeWYjrcmpLg*g6(H&;>tr*HLuPI^df|$u}5)(?ds%GSvb48oNYmarmoQF_QOn zr*sa9QQ0M&oi_iFALCRearT0pRtlG| zr(~~k7Q9U39;ZP7L{4&Jx*!M@!xV-l1Fn+V&~BsBBI}QPy`5pe_L<@c>U73Rq%95WwXGY_B>YsAvSIn!?H~17yH0 zE!av|3JjLDJnAfiO1Y!(l7um-5nX!Ip8fG=R`{~e0gu8Gna;F0Tt(DS(3KUJM07;i z^UD980u!wRsBDevN)ASXsxfV^K$*`c3fE?E{M;PYHJP{F^{XE(vlbj4l5m0PGLk6g5txB5Q%gQ&m z8CRn~D=HF!q-z`M9P@-RDgwb;o$4jr9l{P~PWhBl7dKR*dda9rMQU;t$C7n240hFd zQ+r$(Rp#WWCm0LBzP#HLQr;AvD^V0e5WJd1khJ9 zib;x7==0Ex@Ha+ma-viA**O9fxHjbh^8pN3fHm&804h+yjA9}Yfk>DDg909?EG)jL zMCg8KY}X#GC0>o1k3@ozCyB{t7)L91$An?A0OnMe#CS!<+@Z0HZLGep={UtaX5`*n zyBV2US3Qft&5(V`g#Z(!Sb_$bz>Zek zmEcTyhrY!N0c!p3A#O8){d3<86Pc)8OVdR4Qp`$Xf*56&so2IAjdPKmRHA1o$|TIL zZ-@y}y2LF;$l{O!4B&uPeU>26gp6b`T_Ua{rnCt)fCQ{lmCtI*lV}5T+ixy!;B_{9 z3$gQVFvcGhA$D^C@5pBna1w13JX=S(fMLXPfVtTS0Ucnt-?Yk-m8JhOW^8;3^YDGU zi#Jov&*?FYQVrOI4t~CgO^W*l5UIY?2)1rf5A)KM6b0s}DlrO9UjIm#l$x?KIl)mW z@80{MI|U`%WBQhkKCq-KJ(kGFQnRa+U8??YY%aBq@e~Q_e6dk84-yP35Kay zMzk#!l_UVD(20G4(jOIvzAQk9aTAGY*j&*^aHz~xe2hw~zlqA&iUFXCcnC}EY@23WiaDJcXTN>#_LSN0HuSXd#Z`O{<_&T^= zVQqaPjksHbkWqn=1p2KVnR%ONfz3=+%?x4~Ad%N)REX(ij4*13E*>2(0;5j`V@_g* z=r~M8;2`W>8kfP8wTJ{^U>2=4BiO3H4$i0htEuhIoLASXjVVN*q7k4-1_I zMDB;-{FAR-)$KtQovaZ?xL*RaqI48T+U?L5y(Iv-Q~=P-T@BQ&@swl`3rR45422#` zrA2luheQY%-3U=M;aKK*U_wnG(8XDQqKZ#lonaKFH>s9W)EcW~rHu?Hli3$qR@6UIpb>eF&XR>854WCX(GI zZUQ5WRt9w?KrGEizg0%H>7gbWlPnU)1w#MC4GG%O$eQ@I%fua$;B<`ve4}0d%Er}6 z?bH|ljpqv($MEb5K1#+SYEP|c65iCyN9+?`E*g;Ghp8+Ukh$4^g4e^z&?*{DtK<=4 z#s`jJ$Yq#Hx=g_87|u)FWN`IM0dc6xs7$RnjTMdBdMJ;WT?xM3WW>1Knzo*g{oE;$ zggD(OWymOV(P)hV<&E+tlr2C=?5L~sD1kWu+#tw^L`!=BUwIHImmTR6J;!0BCD@Q% z>U<4(NGW1zT9vZPmDU?F2>^KlPM7|~rlC>=2up*EX$zLAp`IyyrYQpC)PLkuVl;}I z-X(vfCzu)}oeGBeY|)+e1hy>bmDvB-d`L+GsLG!PD#j4%MU|3{kyHvQ>V}$D1Z+T~ z8eV~bXr$T%K^)XgQktdu+PkP+*k}ujIz^{?s%H=(!HlX;TCAy(&{E(Yy zS9>_4jZr0$mRnR%YL#cX6%a%p=0g9Vr#>JFRfgN8;BQdVt7hccQb&Z~i(xQRe+Uy#WZyst zU{SPNVx^08W*ngUR!E^lc&SRGB@}tI5fBxCu$)=LJzV}Rkp_e*`LNLtMQzWJi$XkB zV$F)F&E>17X@zNnqD*+j3L7=Y zoVBJ?_|OFS6i!;vDbv|>8b++b6I;d8tVG2!x@HXeS`6~*8y|^yC=-d9lL;9|PK4V; z)Rkr+E@zNTED`^sK~&_83bF43}026Js!PSSsTq_pl@zN+nA(=RjSOMZ#wD4ajUoJW21h^UGEVJj19wKMpPAF$DRO4JdrR*>`74! z&mO_4IE()?OPnk$w$XzbUpae6=xNe_*jO!(4SxdQq8Y|AZc~Ch#M#>G;XHQr$t;hZ9a+nD47b>$P+3;cEM$1-?Q{%!fL}+I-3X?{osgIwc?>$qRE{w0p8U|v z;mAkwj+4d29GZ(3KUmHb0Q=;iEK>&KeFvzmr94^)k^GT~IsjNu^{=gJY6HrT;K+K# znRno6jEKb#VcE^`msiKdkF1ORWyf1Zg(rdXgdVDkiwB`_1bm**4}wxcz}Ejdw|4ek zP8k1*p;iVWR>{y&F2;I^b{8^trx9F-L|UzAEi3Yy;I(!52Fz*2OPB@ytZUvCfNyNr z1mOoEPKUN2N8r-0%f(IaKG3HeWPhq<_Cg#=7dV*$rT~Ad;E}K`KX`kkwBn{3Se!PY z7eGZIkGIaB*9P4jwPc7fq)T;eAjx9c;7v!E1Q|Id!)p2KI)Dso#kBq_Myz3+*@)9H z33Eet3A0OUs^|@pj3QHpM#Rhkp>>jX$&xd0lZV8UtC0jqIH_%`cvJv!Rk^DY`^;ha z7%nGd;P@mv#g~Vz)pN*sgEHCR<4D&f-u`6iDt}tmDDt=DE#7rJf2j@Rh73MLa|qn(P9L%_O#|VN>gdowxKx1TcwAk z`POrPT$H@)MQmevv|P4FEQXL*F~bfdktVs+bdJ51K}1b?g?lr`WLIo3-gEyb<7x&m zzC^4eA$AXp%wz6smNl>U(i9Vy@Qic?7)cXKO#VQMS9tRIY1;aVVW$u9p#1e=?w8xL z;6;JTk2IqvX_Gg-TIK0q_zv#)dw&=l*VP?$rrxYiio3_6X?wybT?jBVSw*e^tr1l9w zM2J9ufWQF*2ogBBP=SJl0R%)`c#uHEhz1N0)S$tlfsP3SgcLb)WC4=}7A!a!kz`Ak zFJZ=%8K40Gn>TUh)VY%KR@MGk-f;pfty2%rkUcryP$Q~?z#M6|GV zt3?7(9XNnW5NpH<6EJSYn9*c~h7AwGoj8}^!Ig1MVvMUmU_%Li5h`40F~GqJ2M`OW zJHTQAf(#g(bWHHC1jvFPB1Swn>A}JS1fD#2c0vHEX9>q#3^{<@h;IczooG=2V%Y-} zj3pQVWXQDvV#ELnRV2oX1_G?jSWy5)%o7zr9xUK(0K{^`I)G>~>~xkV<*rryd;sr+ z1Oi+pm>mH@+KL6zJ}8}WbLaBC+n-3)Zh`j%jbkab8F$iM9RSjMXHIX z2`TJps0)RHP{Ric7%HU&wo?u{sIYQRKobc<3`GJ=lE|}&!Xp33B!>o&EFzQoI|wn8 zQVP&6!dk5Dfa4yL3n~OY)6A?1G&9XVmVPqntiPJc1QuvQgYD)qAXxa36x|hGtIQzu1nAi(r-8L6cGPuGtXKAiGZ+7LNneq?Q8Qd z1C(^K0OAM}@1(DY`%Sq<#iOk?8V_=Gu2=ijtiAK>mG@IM5mod_Mjcf^$Vg+G^nfE7 zu++p%6N(_mgFMC0*-_6kV6aa=E!iuW2Ye6IkYH{oR#knCdL&zMty(7_KFnI{t)=ez zAfcA(c-W;yI!?3Y5@K)JiXf9TQ^Y);$Yuh>WpqYZnLDVl$@ZG-TD>i*%z^hto4`cU z-ZYcol|kk2TFDBq_ku$ib8gd(`wi*eEu92uqk$b*$>4>udQZIHSi;E8q**f4VyHwj zNnL3bXm_yNj&rmsh*Nd0gWq?Pt)aWb9=2^E*AoBCq_!c0EIuLWqtqa}B04@If&^OD z#p960j3n9ybrou*NqUTdhJF&4^RA<&+UoZKzh$ju#qMy5GV#XOQ}Rc zrs5dj0+XW+#*l-;kTlO>GVGjtHiD5*{j4kkpdoF(9-Lm?CFI$U@%gkci|OL^q_Mpy+9L{BtJR;6#?v{l!?wT6gm zBPQ*QR#OE=+C)#FjCmS;to6pGf)72oiy4we;wC=IijSAGVomLYQ4L9Sq7j^DIlJ2+)iM z5+VV@AO@)C87lq~P^xMj^__oO$Wr%%%11#JP9f=w0;tNIt4hEmfCbfWtY-kIB+q+A zEsv$fTGnd{0Ilbuk%)8{k+%PG45kA>UFula!nvNXBN4HyRPah8rR`OTeZ3>w%)1@I zT7}~heeAN&UUsZP;@cmQj8SzU5H{98QJA@ zgC2s6MUn(1mP%c;p21BQffZN?0c0S9+az|n{b>k5#TI4SI*mC%9?w|KxDk_71~Avj z4Fbj*+=KunRa_w=dg{bf$n{5>y9$o|C`{ zFcitHUPRPpMkZh(#97EDx4Pjx5{occ(M#@>_{@88(T5QUB4C$gS1-jUJIN9ZqwZDR z=|IqE8sn&gNX1LJ_&EQ@M_Dn8ul8bHN3PaInXypJl;c!^>d#peC%v|*-yQ;1G7Vjf z`mo|86C=tY*yNLGIV}JO{05<8y`$w)RWRKw%7~F;W}G4?rrwf_s7}1;o1`SpM!SIC z+IB#b#Fb{qqAJi<>}PpYI+4z-&c;j?ml%&T-L=NaOv*;gS^P9pm`Vys7QCKG{fb7M zLZ*covuAc*^qy3j$KuIR+IeV$xK>#<)}8rD$$LGMTjLrhK-l$*V?L8bCqQMqZZ)c; z^5>|aTmV}DT|lD0S=)}4>0bkIrLd3A^mLVNV?dk5S zKBS#pEq7NDV@;$wa$ z{@+p7Dt78WRKBGCw(KuRg7NrAm;g$zoczNaDR!-C3=oT`d9o=0)Q z;!YSQUYsT4v`FdyFyb$shwOsuWI!dXnrZENW1(QCUE0Oxey=5RPxpAQ_l~LtT|)SV zulPJ8KuqMEI%z~;>#7psAn@<`Dj@nSK%|(f0;~`4BB?UCPXN3RZJ;9j#xJiDVpz^E z{pjUGs3Vkuq^I2F?Rd&cLg#K!Xh7u8B2>VZG;P321OJf3nl=D2_K)HwDejJ>!vGNg z1!5_jX#geQaqMu|NU1pzP_dMQ0ppHUfUeIFpaUa?0x|4knv5bCOJFuIR!S`ZF#=2Q zV~*UTcnrV>)tz zEd-7*tcfbfLiRcd(uQywu*S(D+$F$ng}B}1|(>> zYQ$p2sT9DjfCBz_@djxw2Z50Wc@cktFDN_%Vb-qE{OT{7XY~FL%tlBM7iRzpO|c+| z!4|>-7KO_GrShuliZq3%L@-(+r;^?y1>dSv{6-h$E!j{zifR`x4Zx72Wh}tS%k`0siOo{r#iPl09 z_2j`+Z_n&*Avh>z<^%JB>MNYXGRKCUCSz01!*US7CHZHeMyw@VBcwEL z4FkYU#1h`*1Tik4@0uzkh~g#mM$$~CJcy7k34;OjZiZOn0Us;>W&$ia(7onFXjo+; zW-BEmLu{HSTy#iK#0N2`go8Q*BCVyS=NxczIW^!inR7A5?I1!AS4cm#qtI+rt^9MG%rZb#f-NzkK+i=v5R{G-6kZq42 z$#T;$!#;v)IVyAmE;K_Aa0r>IS?CmWXKaa(MJ| zKw{ChWdZ8*HeIwQRQ7bMh!+XsLjDWr1nw4DA~6K-1nv!|-ogU7tc&m~BPQZ3DoK-) zuGyC3Ndlx>J|wj=4i<&vC*oz6=qUn7&F0=%yLX+?V@dUtr z2?``SG5}ubVb2sXOf{d#&_0?+>8LTUCeE1xeNz6(AeRFw6w`5D#bW!(o zS#))W0%@RzGiFj5B_%r)c*vwre+2O$P^#>h43ws`U;3kGH*7W8c2ocMD>j#-Hn;3X ztVx2g{;DH8w8L`hZ=rr8l^#MO%Xh18)B!aIPX0xNKg{+zLrZ5y&8*LEZo@Xa*gGFE zUoSK{O74Bt=c6D+9Xl{Ul9sn7BU2mztQNw13B++wg^pLwD6CV*24zMQK#XtCWIGE8 z`YV#xrv_CR*a#v9{$m6O16gQe5K9fPYM5|tcmQ&kEO+>JEr1<=cp-5kd55?@2zJM$ z36p?M&{B|t2trQRSeMdG5kck>K~9PZj*9idiai61n@5ZPJGtQS*o)b>05}s#L}XQn zr83`S$S~C9C@N3S(0IjMGrzCAs_=XfTe;X25#*2LXhYV!02qF`AVcm zO{Dr3wK*2DAv|R-#;=WZ22fz53{}ljdZ@Ot%i<28g_06W5<-`2NUS!(mj-R_AnPI8 z6+hc}Bo<y zEq(I$2D*?6+Mv6%1{FC4$=b9$ayyPpH!KnTB%lf_dwaOU0rsn=Ap2S{HCz0`^z`_f z#&q*cYFf9W>q@0NP4CaBbg-$3bpq-D%C#kES~giiuG?~QFf|s5C7Pewts~IJ4w9>y zS}bElT%OBspolXJZHP7U6g{IP2db0kIzJ+MxGV>BUP&Op2r?K~FLNa!Xl{0x-|L65?Ir7D&h#)r5qN?d4ij4(Les>~woe zR9t?4jG;`cHt^8G_a#QD*&@=ZP!K0s?Ur^rVgvFyB{wW)*SI6v$lAOD&H%@|2@5i& zH7rCjRyOpW@jJFbhDJ zYxzNBB{tib-+1c7xXZ-p)4+C|BveRQPoiZYGM5@|#Wy{0N7SaoJVme~CA?eXOr&8; z`X7C4B1U$@;_0pai^Bt;)?u>c+|NG$$;L!{@XVu2Rn`1z+Fam-5zfy%#RVh0fU2od`PTc&;y};C9GfD#Fz*9M(x@xMqC; zYF&HEaC$0`Q-7w{*Bxj+h6GE%Y~Y00zp$T8O*IwDR%<>Ymc733``On#+WGtT6#8X@ z?*S+Av?N8^?Bjs1>cNJYOd;?CBjnLk8^rYSb(#Gul}2{1D*j$P_>`c1NgURox?;k|IINm!7>;_RmCu-?rH#7{_q zJp!?4mRbU-;_|D=P1qv82 z;81|Z02(tYP~gBpMU55zFLorLQNYBM8V4|V8PXvF1TQs4xEaCWft?3l;v690<;$Hj z5fn5yfa6A_ECpl?%HZPDlqfekygIPqRfk$rY9*lbYJdk1GGu@N!R*F~Y}>kh3pZ}t z1_0{Xy^A-m-n~GO`u%HAuHeChwUSMMI5C2h2)2Sf3HGXhiw3j`wO}D;Rn3qI6h$y_ zrpAv7Di#P((tyU91QlRTjkM(GqXrFpOsQbPgo-o8rZjj!V~iMACG32~N&2Ld3~ zJ;C_^%1Q_FL|qYk#jHGcPIP!NvC@zZzJDHQdScPA1O{HXAX9&Q~;X2G!ThE zX{3QhJ6*(-LpAmH(MT;(rIATa322a58tllPS7I5|m}6aa_7+)Y8JR(Lg)PaXM0D*1 zWt4mYMrB}4UMW~bXeGwwgc80r5M*CDw2(uX9aoh`3#|s)iGdN6oP;Iep?T|sohr}g7p%im=53= z0Xrt!UWi%$)mq&E1fGbTve;#+(wE@rCzedZ8XKUtZJ|X131+2>7?$qF^`w;YO4(PH zRKANZTUtWEWnwA~T2)&MWh$9tWfE{^glP(}rU0~RIDiCjZYQTjwkc5Oogd{15p4_l zX%L2i0(>L01ax<3qTMm7D_fKSYg$DLPr4Rceg)87aNR~*p8%Ym~*F5_EGgs!?7u$w@>mIn~;yqf1# zuf2c&U5@X*{U)$ce5WdOu+Z|Qgqa0YMcaA+3oW;>Zirq)+W?q7w7^9rl+c=K(K9rNTS5dZWpM1bfL=V@USc?uM!NwBZCO~>qcLZ|L z-3;e2(?tMU4#7zTq(T7Nfe=|n%bEc+(=56v4niiQP6O9R8OZ>xS;lJImyl!@7O(&< zpu<<@HU~ri455HTEMgDc1raWx#WbdypVc5!vrO%zDTqNK0S;D?fhoj5&~u(aDuSs0 zSm6zDz>3w)E)ptiH7ju^^Nj#_lBf#p#CF+JKm^j~G8T~}SV5$*R$6fTl4a;V9!jsL*I5^D`ZGR3m`C^=E7G zONj$2Rsf&e$p%J?c-XzQq!)aBEETL){engPm*LY&Lt$o8UAw z6Fec(Xx%G-^$vham7wV{Hwu*mB88os6yPR!Y)gq=;?M#7F**`?&jqklNYxSl#(V)l z0M`5iNlDhsqHbxZ_yi}<0ceo`b$Vwm&Gj^uY{y16ij9)&$Eo++s3IW=PXgR1Go9@$ zox~Kt?^uEuPk!=q#GHr<30lc79ZM?>6$@gZ8BMcv^Gepdro6JbO(Sk~N#6`-1{X8J zst9v!?6J|`))u6vsLh=^`(go7%Fk3PsGlLTD?W`9qth^@pZ^RfPq18d1%CJVGW)+Ke-t5F()ecpS>^bTfpXzA0!cGe!oaO-ufv%oGd zDc;*ja4VTINW)Siqv}G4o~is8gBH-qr9nnv{)C<@$7V9H0Mlt!`R*XyqN2%$c1N1k z)6L|Pz5t%4C{Ph?Pe^OF(^hM*Jkbxpi1oYaehOlI4b$&7>=%T%m59lAu&m0jmjdg4qMQI zbji0c>t*j=+za14&w0LyK?_+N^O?9BXg!#DuLUZgHsS3AGb-%=Q)h;!C{8Bv#*a;;SCR>o&EW@+i=Kw0C!bi$Q))IM71o{< z&SxlrGqYb9V8X!`=)_71^R|nb-LHf^MdC*zn9-~K}-_; zC8n(qZauU5i~x3rqk+!stss<f>Jx!lV?Hxan@1HZ- z$&NJez85n9Rh5F+u#$a|pFCA=Fi!H93>__XniZ5hO7&gX<38 zIIs}$nxJO#BB{RRoLqSzm7Lfgt;>}sm~08&9B>mfJrpSfFp-8{w6!Z&Yw70HYr?N$ zqhsFGTaWt^zHxv9I1^kh{{Ht}0xt0Q4!$i)5*maYLeiZO4UaGNFp6)EfQ3}R)d6VKOVX$HTSvXS zXC-!2G5FyCP={!4iCtVCc|63}2-C{vreL1E5+_Trz*+HMTckW8jktXyG+13fPmALADk9VM8M-fMh)SA%hU{7TiNp0WgC!*HoD& zYY-zHxOUL!#PU{L|JKr}XS zlw=?e6%sw;g&jd|&4F#B#Q@&XA>Y#_*7X)H?`svzu`-X2Wp4p5Hi4z;zdyD z0|EglkO4`Ea{+)~C5Vbgh+8r`cxWt55hQ`JODC~58H6JjNdO^tBQpUJ9H>P$5djS| zT!FQURT5MYk}0|oR0Z@EDr9k7ade2{WwM7Ty*B|GAQq)Za|=Oq~dX6(IM{FPcu?? zfFT_Y@jF)$S6;^w14RJ3!4nK1m1|{cX^1t<@iCRAjdV9cPb7z6K~94-C_Mv^11XRN z$rgWTc!4;8iYXBc*)Kn+5+Kxw_MtOU!9^IPmnk7&s!=5brbaOnSRv+Xe-dkgGZ5qf zH7rsT*U^;$kamlr8&{zK5^{{IhLl%S0nYV40|As%DG>|>S`tx|S%FZ+G9i=4HG9Qd zN#m43_gNj%dK1wgMAcMBSbd*Cn)0+%1K@qY7Cq%tGn_I-nNnTOl_QSBStm$$z=4iq zQgwSIBXtrO9w;V=(u0l$U&mtqk&I)QkR=z0nV67?IR_~vj+uA{iWUv(c$LFQ{~~0i z;uXG`e1EkQoRTSCXBx*zS(s6Y@^di|qKOs8J@!yxdE6KW=cbA5xPDq@klHId>;0rfE2R{z;=AhEUrf6dO_h5yZ(D$D}VxqLMe|qi4nz8{-v&(ojVTAX%AY440^-_bpBe ziO61EgzNqkh%ruPvf zL&7J=I-qlEpa+VeP=cp=2APuCB_AS$JL7Qt^&3JMA2&D<_2o*4iWCAd0M~gv+!s6_ zwMUiesJ^xV#$;g*R+GC0T@e5s34XTkwJuSlTMAo7IO*$>1wBT)~@{tnT

8*s=^7GpF6D>(jRdf*lo8bUNq z*A}ycx0{w~LUSD=n|efM9rGzuN{Efdg{l?dAtLJn#(6O&y8&mI9XFi@li2%i?pUwH4~nB zgeNy;cN~Tm#iOO?C8)9U$z{M9kzqd|ewlId$VHa^huKQRO;ws{I zL5&k4rOHPlS{X-YHDUp~$LF7QF|mnrzb4ZZ`ddc)3m7KqF>f?k7c;;G+-wK@aS5D30q_wnwX&hxz?F-G6A;1M zVkrl3oow1_pPLfzv8n$ z#E^Nm>@@^bOvQR?h+z>QJ$q#xrh99ldx}$jMd4or0JuwsdVCW>Q6nP*TL9ICKk)Z~ z6-Gg82oyMxT@qLnyr#!9ClQF^J>yv^Ng=k+7l(l~l@(HpC53V+!A`U#425SSQhk9RmNNw`A{m_ zts22U>AYWkslf4=hlJt~JHmB$I1$IJn91x_L$I}5tEUbs9u>A8)p%wDQD~Y1adZp+ zfd#$I(6P-ZaXhb+DGhQl%Q(Sxa%MVxBYwLpU0E{UA{2!KA)&&!qskFQA)OypVWjH0 z0-ypaU^V_s&>L}syA*Akx+%$}AKmOQTz1EA0e%v3iwgM_q+|duQJPe!ItJk(MWHoq zqEsG7m4ecVf}?P(vK7^t6+<15JV9pY%+9T}Ah=A0Qo*pcx7edhq1&c)65-PY3Dnml z)I-g^Yio!<6_L3NF2{;p_R%`EWC4QxfQ%N3mAx1UV*#HWL}FLV{!(-tnW-s}UPO9njbyc#F)9VBNoq0CtU@!<)W>r@F?}i<)2JH4xdPCUOd5kzI|1K)0b?Vx zf^D7Vy%Ed@7vcdIRUC7&Mc>0$KW|t|;D;=p&2iwvw8*4ZTc{04U-C|c z*{w-YDs%iYK^itUhS5An&q}cq?~%dXog;)T9lRPCs`MiinPGXp6__^v6+AwqZBg5V zc-ujg+dE!wJq}I~a2P+uwE?A8eK$M;a^#EnaL2vm3qjeh2<0Xt<*ws#K^2Q#$u$R% z<^8ecT^@oN0^WdwYG@<@t4zpfPQPhnS9uI_L9VIcg&%-~*M*n>0}?W^B+9o6! zpZ8gk_a{vOGEi!?Pgyujx0TiS9rUBJJts8OVc)O5HDccsSyA?1GGXZF zx>iYVpVa_c5d-XK_gSfm{%-a2PJge-Zbc-`foJedtFOImcWJf*XAT5Ca4b z6i~1r0fYnu9z+6NR%m6u4Kuw0RWgW zWzM8o)8>$bId$%A+0*CG011Q+6>8ApQ2`he76gg#VMYfI6ci|c06|oS9d#Z!V0EE@ z3Kc8}v|zy^!mT{PT+cg zqJoVdsTMepbFu-0kev#!iU6X(j}N(q71$X;+|2?4;6?CIaDdLA2YfUTJ7a9bR6j;_ z0Nbj_yi7B`wm5mRLF5Iw9{u<_BVYz7xfV3g)~dz-tOCyFY_0tw0R#vmM8G&+dF6zF zQxl+A06GDxfR7rWXmYbd$Uk_yQo6`Q+H#g0JAuK0o8biss0H8yOHwUU4 zV7outax}KXuw)Cg@wieiJq8f+@+*+uQtL(k)spkBpoN0WXvhA3drC$m2h6EJrXoYI z02WwSu!UYb6xO8+i!~M}4U-*qS&>8(kwipeR5eu(&Y0>JDZ$h;%PnKhe2W7Dn)*<>>`n^_SbcmPEI<9zGL>%qe6%v^^2GO?hcVhzu$Nl`|qxOLer zprEi=Equ`8+&!0|%;=iWW5p&wXs>*yWNJ!L4+t`$1ER8b0_dXKRb%E%6KsGIVi!_2 z+I}wcBNtp?&Y%q%3X<^IR88FD=j4mFRNV|T7vh30SQ$}*e7tx`ACH{0AgVZ?*j<#n zjWMOkm!uA-5p>&bsaafe7&*{(s5S@Fk z4^{jY7OMCNhJ{i(xm8A_rvgRI%7Q<5D+;J4gh4VVxCsa<)xgA$12c?fI#enpY!}jAVSHB z?PilXd~wWeuQFgm_OhvsSP5@k{D@Ez*sES8@PfmFpaj)M!3yeXmJlKeQ7*%=5(URm z10le6Qlpw+9?}4PNuL7-X|91FDlw07%Uc>Jfb7wyh69)qkrZG?9O?%-LgA4DxbheQ z6y-b`Frol*=K_o=05DenX_7$-u&F%;ph+9hjj0@V9gFzz0<#iHko48N6&WO9#~ELW zW+k2ou*+%IQW*kNpaOz61vc4qTyUtyqqZ!Da!|4eU=$^og2>7{1t=*49A`bysB$Yv z1KBeN2GL3`Qb~{5lpePezr&S?cBlf|rnH7CC}HF`O1Tv=a~1#)CGeFj$Up{m*`Zq6 z@>r1KYFBx4RS7w(mkD4__kv110&d4DL>ytY3YH{KLa|+}ljuXDBBvuEgf0XLQd=PA zqWhVOli9h_NA|*{B&kL}V=|MR`q#gVkcR+ml2c0hC&q-@DFAI6WV<~jRrG#Uyg(6aFE1C! zvtlc#2wAHHSk*PRQUtE-l4~{l`?|ZnMYnsc+I{>QEouTNen%`NavEdG2_V)14_R#g z;-@iU@^7L6kSt~2^4QV{1hY>~sb@GFwBbcdRUi>9QPDWEdp1ObO3fx_Y{-<>mXWy) zoo($*$`vpQEw}E%XEa60Hx>y5xDg<3L6Sy*Clwi_JYsHVka}aNMc2AUUGYO3vebqU zXhYqVYOlioyI!D>x4acPZ+g*-=ATfcy$NUt`2dv@q?TAGWJybsK$MfcM5G~YavU}} zSdgd)`YU1C>w=AO39qM5Deu)is``x zsoy^G>uLGpX$XaEeb%663NMlZQ74askdZ; ztaa67o^uK9Hv$y zmi3#B`pDx0+bMr^e0r6diV@-?Z6jIaXa`T8GAa_cyS@2(7m2#*E)%=s9p3a;3E#yE zT8|JkZvhFy8zdcJ2$p#fPQxe0nnQvyXSVJdl%s%p)s=F}Tk2j?aTK zu1J8wusRWhjsh^f&j^c<11x!3q>q51jyt{BlYpZ@fRY0#hhmD`W3qEG4ZGpJoBIsl z<1IfLzOtwt%rU;nKt7$r3<5$3u}cbEQw^#6i~xYXwy3p)pgwB(4v+AX*U~;^TU+?01>|< zij}Atl**80yCx+Gjz%1#YB~szlAdZhu=ALgV`~e2aT?QU43t^`uJA$v;Ee(h3a*F> zV;Z%4>Z<_|p~?!11mF##OAeA77?vmt3$T-tGag)V6g!i=6%vk#d#Wppj5d)%g-Z)$ zf*9)gkpZZqpII>}oT9U`J!BU~LM1#yI*n4L<;xWf2>`iiJGV2$lmNs)97IAaIfBfHIZFVIIW3{tmJBHi z`r3@L03NXL8&yfZt#N<~&?y#D0Af@ZQ#qCYfu>A!nh!drZV|wQn2a$0BY?1gBsh_b z;me_i96c5GZAxP#0QKb zGD;U4a>gYIGyu_~YU)Y@XcCa(3exmE_z?gf(U1r6 z^u3G_Aui#PC;Au^o2Zb<7L2qcED^w=%!ofL7}M~K+n5#7%8MTVSpefeh%*!n^a-br z!y2v(5Vn}D3M(8D!V~2Y903@Q+RO>Sz&$DiLm;Ay!YVRcqZ(BzG#-oysL9U0^bK8F zx&lbV$7IZmFv$B$%!E|X9FiMn@v^e>M;d$z(?GOH0Ymk}$s8i1#d0(+nUa@rm-e`! z?XW=F=_%Pt6jR%wZ_783P?U{OliVzT-P|X@B$bq)&lrr(EHs$oES~64lW&_C7C}vo zT2BcX&=>ox>XDzO>7sKwBbInS7Lk+|(wOmKlqY?dCwUUDd@W^(EO?|)aGNW}+A`Ra z$ULOM9W11jpo&C{(wr-w9WojS^cWrvI)E3oms=zl^q|obu~AlPG(~RqivP_nNsH7=Pj>2(M5M9%iWYcj}J6yriU8z%Jz0-xv({a?gAJOQY^60O_fn$bhz4BtPp?i}{$V zK~d95k+^G#Q7A&ICW(z|G_>4M7lC7oppq=x@yf2~JsD5V;#;qE-+ppkqSX(QrnI;Fb`o z0GOFFX$`7lV?~M5rwy1ggYnq`P=T`~I@Cl!ixEM>U zkMKh76Ai^1T0oJUuh|0=G0QwS=wOH+GYyDZB#wH|h_bmVq8u&%Dzakx+fp(YvCS54%eOD<%dn|ep#aTK zd)LFX5V*ZN2yM(>+S@F}4uW_lIn+##|HNsI8k$Q+12;tFd%GOD(#^^ zXp9OtfblrV0L0#^IY~jwJ(mN;Pajsc^I{BN4Svx!_mh zqTUo(F6rRB`;3f&q(KHYUUWH%@StV|A1KizZ(9{R*}{6QM>65z@%buU;z~K$t4$GL zVAF|tBH!47PmayQNDd2N;x7UG-myitY!uqa@Z!@`SCoik$gG?9b=&eiBLHiqL~ zl4A=cAcJV9XYyW!n&6)*3oN7fR7h-5*V z zY*n8Pq2+1Xrdu8qgcg9SlTQZ!2xkK5Wyzw+Cw3t|rVmd7UyGZTyi8`jSV=-ES77t9 z*nnn-lx7H}X05VjY{up@F5?fmjGaIZc6ugAL;wI40ABPP{0ha`GR=1Jq|+?FY)vL6 z0y1_vfa5USa3uhtILq=00IqSGlhh=s&m;8#IW{2;SLzMzpFuty~M_5I&i0S2!sn&j1W(%$6u@ibSvgH{6S~YhKh9*r*~8N`wuvA}9pp~#?Nd;D z^%2{|v}I#Ul>!M!^qPnN4vyWl2v0j?Ba5L02$vgr9Zj_~oF*ry`ih;QUf*LH2jih6 z{;H?w9~O;1F5RMsn8J_=fWMXj;!>Rv#xt$7x_C*Rio!P!vI-^AR?kSj$i6MBM&`Zs zR*HyH6Vb_hBQZ=7|QJLoH$sg>Ald30N(IcqN%1I^W}H3jt93k zuMTmuE#mYAOfjpoLZ(v)7&gX4YFj#PYZ?nURQoAT7y0-C=&B!L! z1xEWklGRpk2t|hA5rZiyCMk~7>0737sKzN9%`r^@71`!;v9(=y^-TE!<7namc3UZ;?hEl->&(Hu?N%_7rZ_0k`mnSN#@U#K=>n+Bc zBxCs{q1dLYF-zU17V5|*G-(3xk&1CRB+=f?)t3n%qBNgu0?-$z+l$nT3K440`SC&3 z2*(cp$ozqO45B08us@#L$Z}QjA&6$|<`sZXmfb?OuKA3BS;S-Lz|AQWx+x9P5+0wE z+@~E9jFW~buY8?>L#0pYNPu7$y&oIqbb6yR_G!?_kL%-yh| z;l}|aBi`jm@+Qu{CmS9fVA6mC2XzUHoKSGW1dtplJLH&R314hYc0fS{8#%7LJri|k1X3dal_@~rNz;hu_KirHumG7P zR}v^F@<0Ho0VGJE9-ui|z6Hpae_op{$A|$MJ6IUAHv#$S2P9}HvNOVoE(VB1*kA(m z7JyHg0Yx5vFtHYsayU6CR!%jU*HA%vZJ?Eg8`gx>Qy+o|RaGNW#i5BBk^}(+U0ozp zYakV9lXy9SbXQc^LgEErk-tr=0H1gY(4UUFkOmer2_C@NRY68E}B1 zh{~msy1e=8k)tQk>2IWy-XxNx4q>W6kk6Xsk*5XRq>;A>f-9U%ISDKOW1vOl#Hy>W zLcpukG|_6S)lK1=>xffxEt87C20JVQ?D2;XOax@A!G!QR5b2E^RZu}=5$&gz4EJ7~ z@uBA#uqSXV4Vbrc>?JmU1e}6*rjEaAt1R52dEnym@)~(_@iR}L|H*?Vhp879P_I*&jf~i6747v za9F6?{=8VnRdgbl&MThw_zW9hF7uz z)+IXfDhqoKIKArBM<58`h~zkOm(S2C0`qE?w)O}{>ZI*n?O`0w-dKVIy5(=El3zv! z*_Ye>Z&&!!pVj!+zZ*tUR$t)?)X;SR$E>hAy#eEQz!Nt++UOv0dmwellbFM(>2e3T zh`7%7Dd-4hfHjL!Z!};&<`K{|!OF=3MB*ls84f&+2@040%mcLeHSh%$AtXpH5;xg6 zX(u9?R6{`jRVYkn7NC0^p_2q_xlcZ#=g7BG_!ZfBZO{uIRl7O#uWhRX|py;MFA)VZ%AU9HF1#;=k0DR_q zL%SS7fpVpT@rhcY0ZIotkWmO_>QmKe+d(OXuCL^Ti35NSGh2chk4`9>-O=b)*jWK= znn@-FqK;VCv>b6JPmBym(BAMVR|MoHCLD=D3<%Z#S1L6mRQF0upR|-G12CsbjiD1+ zC6q&B^$1VKimR!V!=96JL_Xd@*KXJ%K8R@sJcAV3W}Mov(mac^5As;4umT;vVUngC zS}99GOrzvI-GD-WCZ*wSTeF5WUfwIjEfhuf)-Y_?scG?wdPyt)smKtk$|hIS7_z< zOTF@SbD|3@LIzt{kuEcLc)$<3(AR6d7ByD5uE_iB?s)2R^uVK@>Ac+iuP3H;0<4nR$(2LQx*U0^Phi*@ww z<=1=B$V}cr4VVfU01P2-j__LJSRK$1yM-}z$vzd6IPLLyHE()}Hd;daI_V692exHN zH1m|bV>}zE;DhAjwHhf;ehDq9Z8>y)4?@uc&`BzEUQB`csL^?WOJf6|L9G|rpk{|{ zr2hTNcmLGwtYACaO9?_A%Wn3we_caQ4qyWQHMo?M<^a>7j*SG+81SgLArVBTMS)|U z#0>JPwJ99m{fMr*yz_by2O`Wxl3Y56IAsg?%xvPdoi#?9g4CSJs$Bync?yzAZ{+U6 z$hcXSHA_4+F|VBqpykXIvTwEjX_2+0dZ0`_?j&)m0F_XqUXgNsn=m%KX1YB50YD%p zD+wmj7yxQOmA`O62J|LMwXDkujY;Z1Vo+u23jhtePbE*L+^#dql+UIb6I<*hxT=Opwb%*%n`=iRmY}H0OJIofHg|Iuu8QVi^v?6OmrTjTm`!94VrP5*NG110LPmpO#rZ- z==k0i9n=_g(*gX#PytR+omm*4D4F9K?gNJt?X!Jq`t3CCe!erX}ma3Kq}QEa`@0s%^d zkfCO^;jFk{OReD=j-ydT1k{w2qDhFq=tM?b69KSNMrfQU4d0N^6LWkQQ<+IS(UT*M zSUn8}yycR&;N8-}iGaOS{{j3Ac)Zu0rQG&V-T;7AZ29446wdKE(oA?q9z_~wy%cge z08(ARkR4za9R!BSq06XWP%I$cs0VbI5lb*y=WtzAor?+p#aReT1yaTWyjF}f;DGE) zndAh97)My4ks?x`TYyIdOjR|i8Jq>4Avy#E_>^+>Q%qzU4&976rXx|Hq1dV6Ihx&A z5(Ps9Kbu%X7g*rlO9AMGb7&Zj(20A& zMvuS;8cBugZID9bP62#|AJPy$@rUub%q|H9NY)Rjqzp%VhCrxLwG;&D`Q&ZH8kSJV zykzFftPg7FMMGdl|C$w2jh%~J5YgHA*viR7%(#ZUyvxeOMItSmS(KM{9DrVsN6j?S zx}D9_i6HD{pVw$5ZJ^vt#3WXf6d`@3TFOLOX4_e!B}j_rPy~>Qh>@VYm&lnO0~QjP z7{Gx9B1GlQ7SauSBAI!fX9OszP^@Qm0^e5(7+t2$3uJ@? z=%b-rP<;-~|9y52Aw7>q`D1PL$UzQGfF={XzJ%sA5|UhiRJ>8j7?@C8W5a>qXb$5}kSIi*XnW`l&b%F3Xkc(c z%!{^1jP~b`z{fC+#f?f|Q|joO1x>-Z&hY(c2T_Msnfv}cqC0F(BX zlb$EA)`b17oKxPMj!u_79z+A3L}PR*)YZ#(P1wHN#XZqYsfHYpK$K>pTquoCTqu(R z&_~)707T}C%P2%xW~1~t+(7sch_+x^h)zhEj^5d4U#(9?0-mFy*=zj?M+DN&ago7I zz)CCt|6$mUR3#cc=}q5sCEDoPd6geqbR2(*DRR;Xge>N>B$5Q>M8UlmZ1~Nu6=FkV zN`KOpa)y$~#g9--%jOv?)s$n17(v?T?9TFR&2py#Tm-AMqeIqO%`K|{)~I$A#LBKq znhL-*)eE)#CErA#uL_t-gxP^nq6f?of!bBUdj(TmBO9GR|tpd?S!qGRq4zckup_dz|0A0XyRQDU8Rc+E**UE z<$2jxl^IJMaaVGw5USV)JbhH1WFdgki3WfRo*-#}g-uA+T!hSoTh^Ia`mC_BRL=5j z|Ly9m&(ehbNhDf~VNBe`xgkvjNRW+Gz`Ok6ex6shJW`k%06-c>-!RpI%-MJO6IU^+ z^1$bID8NOU2W4d9XJ80HX{a;J+f?GFnSewdZ4mFE?<{_XE3U*qd`57%(n)CC*;bL? zie`i`EJ9I<)ERH-WS>KX2a<%}&gkg(d6LPjj`e9A2=VRTIAvX^i%-(y$pwwzVNV{d zPqC3N`HZR0wN(NL2W=^oP`Iwtf?(|4EQrvq?bF}WsN;F-}$W$AziNr3H}9bIZ24xflo{|}b0 zXrPAOY?d}{P;ME^OA%4#5ZQ%^+WX!w1Nf~QMo4kKkxXcqF!mW?(x(AD&hM@em=Fq6 zIt!lc2AwpPX0X-}#w<1s@(NY2UQSHJwXbZ=glM7{S0(AM+SaJ;=^V>&u(t4ryf6&+ zY$$(nNpZy+O~50Qn+}s(PV8O{teUG%v7}V- zn@Ru{PlpyaBQI%K+R7&wLsSkKfZdQ1x~wfqr7;|Dmv>wkA$s#&>8}7>WLK=FyC_nr zb+I0oPPbt3N&K-92eMC;n~oOpk{ogbBr-&(*90rym4H&DB-g)IZftFq|I`K87+o+9 z6QS6ICz|!iC%a=P%Pu9AvMJwgC|d;E1qWq3vI?aT0RS>yo`j9mMw2WY@O+Bqf$@Pv z$rc8VwkR`m>Ir**ZLPK}0fj~@7sxhMvAkR%6j2LA{jU&Saxxl}=HN18@SVlcA`P{c ziGXCxYV8fUpbVLM%T*FmlO)nF3B>;m&^Ag3W(4fs%vk_5+h&20{|>1Umk_lLzEq1w zKx?dXoWKrXK{fMSNywoN@|aG`8Z8)qPlEKt+({1aV5Zdh#Z7RO0*mGtk=6JZCkWld z&}^f~+OOQQ8!g2c0hJAB+$st^l@pil=@P7CU#QQKU%PRTCCjj4=Z_Hp(SGxHe?PXn zT!e99#AGvPz5pDJEDNy=)I8w`MwZwfli~5+mhN~jB(IQigG*gxKn7?OzoHdvbClKQ z(6^fF@ts^tEFWophHg7zvtaC)KJ5@M$B)=%!sg6QoWKbbpL9EqstSXV<8H+K%|B5?DkX~AB{l=cSNQ59Z zih`-sk^~yx_b5Mwe)o5r@ArR?FpIER%n6kROva0ZTq2c4!}6`msgX8+P8HTkfIR0g zlSgS0K!t-etA^ie*jr8BTXlRW=0T|F3?@lD(7^uKUoBE%y!aqW9O-FxLz)Z%ekCedjRNey5c!>={W)%_-?rMg^OsFJkP>0)u+JQ^3e>U z1CydN52HJJD?_@v)Dm4#y6Ix(gu92S4jf^2I)B{8{{`s8SDa8IiF$gFdgg#jkEBh? z&}9I8#f(|{+HnkDVdF#0dS%3gwx-XLOb>SW8*lFtcl5e+|N3D_r1He{um?!7s~`pi z)@CSs>FsSG`Ux01akK;9w69&YcRPMxjka&Qe_MM;vt1P3g#lUs3?8^VzSr^vTd3^I zv}kq&|61uZ$-el`uAk7G2*zNdrbocFRwtg_R%bZ-C0r;>vY2E>$gxnqQGJz#R5;TH z3{XQ{xdfchkW;*CUVH=)&s`kgYYE2B`QJyy%YW)gW_*04ocvUmjPeBHu*u?CRqm-$ z3Z8vz>*Vvr?Zp7-J)9)*v9-lPn+j`P_q_xV{|i30(OV7DC;gmvySF#J(<8n}(6gLP zy#>S#k{DZekGYLCFHG>r_AY>V)Dq>4Jir4Z#}q`tF$A4rS8F!q&V0qA8$4ko8W+(J z2Dzf-dzcCu%U$@Itw#igoL3eNUyUhvq)bGFJ_t(3%T4&Ls9^l*RV~K=M1cYV1Pm}p z(0~DhFJ2fNKu`by0uU(*IB*~#Mgs^q3J{o3qC^HG5rm95Q2<8-6eC0kNnoS~4KF7e zlz8ESL4^hn2ps7UXaIr^3qB+m;Gjf;Ap9VBaCk6EnHnsBlvqH4 z0*MP2cq||>A;F7K2ShGW!eIe}ST7R*DiG+wq7Nl<+-xA^MYpddUKA)Xa>xY^DThoz z(18Pi1g{48D?`S`1DzEZL^@!&0H~{{jxGRI0&1XcSIr*UDu%!y|%g?B)noN-K^sgWjV|FRUobjm4%Y(k?%#9IA4lqx|GAy&z9y%FO;Y`cA6oRFew5 z0-h_bI4Ye&Nvg;cI5WuT#_VXdgdU9QPyqt?&L#rBLtxYHE{*Y`H3^tXsiB;sX+>Rw z1S(gKo->mvT~!HtRC`sGAWseOmB)B% z=9g55OeHhss#qPMwO2#x4o031uoYL7R>SasTn*}RIfsHRN$CR^pwK>JkD3%Lrg+`- zR)L<4F81{v=ui}AGfqAhBxNS)AVp6T-JXH;^_3EMl_bRLJNWzr|3Ln z`2dyDBlNP12F(m1#nbz&ghSc0j!QYmwC=f=f?jh~NP%;JBLZr*%sRasirVP_KEG(g zlUfSyLV{nqp7YXP{~C#b6$y3@U|pZ1i|dozZx7lSH@2JquiS>%&iiKC1aukAF4L>kFe{RX78lVAly25}3IvV^bq zT*W!PVbgrB!lL51j8Lk<$wdUG8i^dnCnLGlX|Qya;2f)92pGv#c2+c4VTC=q!b*cS zK#|D&EOM#Qj^bEjIrTY>az}Af`6k5?;OUA(LS$2LC`3Ynw8SO8OX5h@R6`c!ie~oN z7!e0$sF~$aRX;q8`=pW(3l`^qiImF!0{FH860lo}Ok`e=^qv4f&;n+169k(@$mKCd zXO{60pSYO6|AU~2f|!zBMaE^t$TW?O1USqRA%{Op!O%HcNsY!R*OjbLMpMxP3QiC- z6=L1$XGCOQ03u^X2vKThpVA5xQ}(8)LNCPIMl0G0Z^7gDEWvMJnaR@erhy`%*v&))dQG zGTY! z2o-)+|Kyz&*&vx(IDnj$Xq@R%iaBqFkn#~ko$qX?7nM4Ic)DsO3v^mw&euQ+E|4fz zL*gETayfR&437aqQ-I)_P|;2FfDLtMj*QSz%U%|f3?!?4-GtWAY7EWK(BV$fEOY_$M-fl8q+hQ>3Zsg#8xQBe{w9k;x6K*5X3 z&!$(sQO>J;)vZuXIYbkqD2k$tU)|1@%W7! z6i^-^=tr$o`O#VY^{C!*S#ArWtJMx=qHjM{>vn>uKWHz%Z)aF*9-XWuHkO zBqLSR6>ew9xfu>%Hr#s<#q`3b`FzRCvE!ZDcvEKtXi+BUqu}Zev{4jkvCCU_|G~e0 zcG2R(S5;f$S8yEjQYP|fXIXkDQonkX*Ekc6*#u8SI8-$*mKV=25obsO43VV;MvZs1 z=S%#IA$~r4n@8y+)3h=sN;=xpY{PV>&r(@VZ#dz0bKC+#oPatN^O(2V)N78H(v$+P zIHk5u?Vy~%O3e&I6gl7KEF%*>-Riw5(Q291nZp5y_$#o5kHkENy?Dulrep5vs+~rmVj_{_4nC20V_=OpcEr&n6!+T%b#4CRBre?f>GWO7#|C4rDIpI#; z@gliSOx}}^0GWg<4~(2#KCy|!{KW&!HUywGaaNF3u99+(R6$co%zh?@uJx}X1ZRvTY()m@3Y$2%f8pMvm^p)XCT`h zumHDn#8VVG)5YelmAVHqB;bXu-UUysh4)>6fX{6E*OoVnGjJf5Kx+_O=b?EVvRH$0QZ!wBGzeR zDuMw7=Bi@Na2g9MdM)?@W3@tK&9npW+=Wco(9lN!sHh^2@9GMP{V>mqV#hD&kMH1*vJk@yzYq+y@LMX%FA7CD2%w`b zsRBGOJp=-RT7^3%CyOG3FG6Ft$^;{VN>}njz6?OO2o0tZKqA~C#@s?;w1Ycq}8xQ%_bW->EiVAV>`n|7SD|;xiP7P)mUrMe?VUQHqv<4sZnB}nO+m<`W}Fn5maupUJ{ zSj4rmi888Bj?APfg5xK4>l3?X7F8w9_UY05NKPO|&lGALhvfbG&IrQMDlH%?sU zf-*9IFI0pph^QAW19W00>X_m|v;!yZi@N*LAL42oY&?L>?B`A`p zD&Xz`wc{b12Csf6`nW_|2x%yo&BsP?nOL$Z((V8vU?hOY$M!P1`04SeF;1A$GPv?R zDl98)#2ay>Dz6e8i<3yU(&84tD9u{Q_gc^2p$@h36aGO7sTEgd2*31Tjl zW9DAwi}>cJlnM`fqAw#-bjb2KTx&i&rp|C?eC`FmfXWrXnu$ z=1itvmSZ!KsDnH+G(dAHY$knT!$NM7!rqA%L0F@2Yj5#L+&kHaKa%N zzzB=(CM5uT@J@>Cv6T`?K}AC#8pN<-3Q#&TYZA|Jj;7WM;_+To^kU~1b3CplY-OOc&rMM3sno|Ku{b%>YIM&d5x}&eVd?L{;=FJXjF`IV32o z>pre3ps=$dE~4lB<>-LI&LW~!#IH0#Q4=`?2`9oLg9=nlYy_PnFq5UTAci<&RV-9B z!&voIKekmhR!BHPL5I}y2x*sK5ddFtURoun6sJSoYFHsvjtYiY4|Yu|Wlx8#X7?sE z>=dDnY)mTvmx9MSrgWQ*B%dUrKq_S7m<=e{5MCFcL55Aw((O!71v_sBW}Oy$L z%$~BSK4k^rRZdh2B2)>Ltb-sRNI|c4D)<5d{)p_@CxKY(Q&4E^>}=Kc6(Xpp!7PP6 zEXiRO4Lm1+N;>GiCQUwLW;`2pP=c^Fa*!@v)+p4JHR+5bT68rpH88SJSg;o+K2^Gg zL^#PX0T@?Dk8>>&S8-t#erLpS^#XG5NOJ21`BK7iH+P19kyktSu;OPBL)Rup*Pcwb zG6di$BLEgxH%$4o)gI4_04|hhmo&kTAaGZAGqHCs#;9UUHH7zp&Grc!Bv1p?0N$fv z?!?U?qFti`df^ckb*8JZ|6?Ebiq1BMz)oUjg_V1c(J@Q{d>O#UR3d!H_ae*}0qV9H z1x*Pg=qt zQnV!);8A@Of%++4IxEIBE{y5oa2?8vzxXqb*)AGOTySYV#gB`2VtZ5O`iwF^WNbM^ zDb6{?4l3oRkJzhLVOS}hIV_U7k&2)|dfKOd+NW{aE^JiP zqz*d+Kqe;0kKoPA#%~vuHD17tue#^1)OGp_H9JUSO^B!kEiQiyOJyuDH4JXpSg-&x znLnSCq?|C@SWDY>#vlR=D4W88r3`}il;(C$qNViS+B!NK1SJj2Ya5NC+itJS@|iTX zu1pfp_AQ75|G;?V=>cDYBm8VoMgoquqFkZUcw!n}FIF#vx^1|)i-Fp-e_FKZf~fVz zsHr5W2g$m|@;Z&OAfVczCE%8`sj4^hstMqZqwUrtkya%d=}LJP2W6~VE80E>trb(P z#f+^Fi=kODKjfM&|E8{IZdN1aaW0duDI!<_TetzOCW& zNUbUrLn_-PE?cF0nJG3qMGkB!@ua4+Fts<9w9$g6PaDApJS>1{xIN2J))__cnR0gq zrgh@a0ArhC4r+r+#%SVm)@LMg0&|fjINg~y&Zf+&0-LO}GqBd@;`NKtaBycGQ|38a$zhU&Vi?BYKByzZXP7SFUL4Ti3Z+4I$^ksZ z#IGk$*vA1GM!Z-{=kR1F1e9{E1E6P4o9>h#*3vqkv`WW0U~Coyoa)dG`cf3l|xW%SL#LZ<_W&D$KcryVSy9l$T<-2|i(bz-ac z|FvL2sUn=FMRRS|xOw*Yg)R}jL=GSeDJf{X{j~}u3xgJhNTWm3xP)~DU`2dyV(gIz zKwyHSsEZ5lu0v03di@MQdwx-rJw=VR`*q0+$-(L~TzpE!YR(*W#PzDMnaydUk8hl> zMS^%=*(bB<7TMR=ipxAD72r-#SKFyw&CTN4vAw5nJ}h8MTx>U(1_~E<;@19+#SC6k z+iaiK^xibOUW?=C^TW?)l$lHkMsO}!E+_R4Dz%XGZxf<*2!gv%L)-F)*;1=q?=&O% zl?nrq+Y@TBI_^$WE5=tn>PY2Y1%PakD0&1+Aa-06Nu?q=#W6^6oSB71$`!Lw|Fk8Z zBeP+?V%3jU3D@VlqS^td2)K*$JKys=|MGK==7N4OgC;tz4s4I!*^|CuH=Jm)h|0iq zX$;Q$T$Jh$;4NnO>LrqhM2xt(-lo4EPC_Gi#$Eu*UNp{LBGaA~*FI27rYe9(&uny} z=^jz+-XQV5t-jXhD5CG9u_*H>@Fzfx2p?W^L@g<+=hZ(Q6 zKJ+m^=gVUAKi~gBA0Pq<97wRB!Gj1BDqP60VZj0g5=cw{QKA3=1~LY?2ywuG03JVH z6c9jxNdyN{78p5_0D+VTLJn{_VS-1OE;AayNgyQ5m$6!&;XHW*99K07BG3y7lT$i?89&ibl!9bk{LuQ>g5u#;>(4$MAKD_~e>)5kv z-_E^zkr?2^iyt4Jy7}|yp;xG|HX`!`GUI==JYcDVfkCe}UhVRx$&{Vpl+s1INg%;Z z1k}V)0Ra$|l7mPg@Lx&+1VxlYR$(`CE6+|`hCX;g>8s*VuFM1YKO&etu zQcyyXCIC+$<`y9WN5RGtOsVVlFii904kMTYrIG~}BwJ%dkg~6|hxi4~M#{ijLjFcWK+s-o0YnCJLCX@rt3aiZ z>+6>UEM=#c0lIkR0ZVmgQgAhSq~id5GRNzVLVDDot_+?mP}Fpl?TU#fWxp zdY~I8(DBE$iTqe_u_1VC+~cx*cgqgQ3-f9+k7PAd{|i`#Q_fKbNfD%cI&Bi!3QW70 z@$Vu~9NG1y9{-j=9gAdzTr!>N|~vr`OtC}0-=YAc8OMq?fIm`VNW&=$ae#f;>5C6eln@Zz=% zVKr4W^-7JpI)Pa6N2sMiz*rqn)*IGvBwJJ00d=RixMqZMJ%YtZi7L##-rRZMy z>Ycw%G`tlxUdJ+*P@M$zBX(?S|C`EH*#Wc@O{d~bS%X5iK@t+P&3se=h84xc1ZHg` z`mBJp*~}BUi(ZR+nz+8$Jgy2AsPZAwg~(KZZ(ikm#zbCH7qA}#88K@hVvH2W^)&se zW~YHeB<`N;G%GzfH*Lb*eFFJU-MEBcFe#39HD+H0Fo#1yLoZ&(OJ32LHknZe*M@g6snvC)LM? z?Givu>t64g)>1A&LLrcW zjM6GYGXxH~${I^FrNlrkUW$Rh43qlRsE7n;5#4Ai;IdpRntAymuz2LRyQGtt*E-&Q zo+jW7VGA(2f(sB65VmUJDAAe1%!0w$=qy17Tb^Y%Vwp4n?HNlZmU^YmXjVY{kw%P; zo%5;Q1lD^^9DoL7c;XNOrC6)5o4~I1ttFOgUz?oQArCf24_d)Yg0(jEEF(eOlqHnb ztGX|FVuiZ2Gc21~ERs%YC5cQflLTlWS}l|Nk{T3=e32*wI19OIq^g~-m}@ffh=-B> zEvR-;svET%XSw~N|MztSO545*mAto<;Dn~^LZ!BASUJeU9mH=u9?0+PZje(ZY}P4X zsI5od!IK-_1%an1qzbD#2(-MKiGz6}NA|Z}?uShhuqBzJw189f+}jXtvoRGc6S70b z=&O;yylNyZ>k*~t!gT!tqJ9C$P<>nxS}`{B;$ffEPK22V?&?_>0~4q2jD(s%ws#w^CxW;NQOL4w#18^@O?e}$<43$0%U;YnbRDE z;rBPn&s;SGcQJo6zkOTPq^UvEB6|TWBeo;f@?i@=Q&1#D12Ao7=1vK)Q})Fh_F+8` zfnmPnEX=nb{{|3&Z_^%2VHwBsTL}0@mT@Zw2oYKYcetVe8DU~&;wCr46H~KgUZza@ zM13stCT{XSs>Tz)kvR4d0lD)NEOcxh*D*82ew#FSBUf_j*K16ucpZ}g#a3mG_W*S! za|=-u_5oR=F*7&RCMMx25mrPJFd=7gfbkI-P;y|9v4TOuQc`pkXVFEmrz^=K7AI&< z?gkhhJ!>QYEn<9$*l}xtDsj{q&KF4eIAgUV0Q1y#@Zvl16)&6yR|ZKC zO=F4$695EuN~iQ3wkUY$S13Lp0~UFa7@3h58IcS{6zr9S@u!7EQ4o}eQetN(cH%b% z0xCr$KavN748l55lyoJ905tU&ywVX<^B6VqMITWkYLoy05)xI!lM4_wS0sFU!6jcI zP(0*3NQPT(@f<2RMQ+nt@lj@aw33CfZDi$-%%vs!v=l*MDK>^pG#D@PMR5ngcavlg z{{*&+!PJT%$C0o&k%Ur_8o8GkX_uwskysd#nKMBNKsyA1QnC~^;0J0b!IetUl2thp z&{y4tWq`01Q!nBv4O(PlsC`=|AX>wi|L|fT z>B3JoX_jnxI6852y@C_G;f;CdUEh_R(}|beVV&2hkt|wD5W$@x*)bylB51-gJA)?W z2@^YX07TRu5cVb}Q9nE+8}{i-o~2@okwgkOH2ZdfQ{^G=sGuImjlA_<5tla9bQIzQ zDe{qY!H1(LmRq{=7@l^ONm3Y85>I!*H#x>nWI1O`QZ02LqcPf-hDu5qL1j1UG2caEI*2#7gh0ashB^ZoITRlw^CQON735@9ZZV&5 zf|;M@u!P{~cjfNCH13 zVIVvCT)>4B>4I<7x0V(+XLe$Ymdch0;c2u=SgI%yje35FnjMO|s22IH3?&g($ekV2 zR9N>`_cCh0p?U4Phci@q1~Cy?QX}yRa;;@Fg<29fgOjj@MmrNUEK-#OW-AP`aBa00 zHF7+V$Cll=7bygRE{Gx`HAna8e6g|@_oA%$#!>fYPp&boHfbKM@`DTEX(&`AnIl)` zs!7yIUOwOyHhZ%;d$TdCoe7Yxg1N4&_Y;96YD3C{I~ZRu0X6aQrxP&}Hgy%fI+H?k zEiUk${w8n^3aZ4kaHj>9(Zd)F%K#3mD-c_x^tJ&L`!p51N3^0x{~7Bd=)AgvdC1GuH~b7vXq0HZq+WHd8{ zh5#0M7UaVgv*{j?;$B$uKClXR4+e=_c_3SKx5x5aAX6KD1TR5>ADy^yeHx02BNK#* zi<5h(;ffuP8@ZADy*&Goky=dM_YxvCPdI_33Q!XS_ocnGbfTLVa%iu?5t*r5RQC9# zDR{fr@=c`zdCx^gz{H=6!H(Es6}zP+Vm6`jk)uy@A~GRk|7evOECoP2N4?dnR)K4f zS(ZRic}eCAzTpc1<4e9dd%}OY0O^Z49fKeuCIdi1q(f{0^FC6+P8o3*hwDVAk~Vjqza>tT|T_a;kI zK*-_2_X5Jz+YkdIsKOh^W#+;t9KI{e!jenJCIpxtiBU65o>*eT_fi`BU^dfm8F$YGl! zAsJvyOJmF*XoVAJjK&(F#=rrhesgs8=d33h$L%r4|9UL5DJ;Ht47tO+Ni`anRo0!P z=@>K-$Q1HcFu{vAGH$chS+Es9K50zSC^Q`5CGdh&*#?@ zG`d4PX+@@W0CP@7l^9`a&Z~46I}?O>p|Er|BJH87!IwluhI|F!o)F=lTfu=c;TJV= zBFkDD8Udnkf}BaJYJZD3iUc@#!Dt8=tshOy|HZ7r9sSlEz1B1;Y};vN$79kqnG##U zDR#syAfm8;gH%O%(|N&=eTGH{fmC9Ll~KbM?Xwu4cV~<-A$t087J!4@xO7y4NnF%B zJMvq^Q&m}UiA%-ATg^s>?K0tqFCJ`=Y882vu^{a++cquNciGk$4cEGD+cZjk?@=3i zy%h~Dx{ORvzceQcax+9%uNG7g6YVrJ5*RV3H&rzwG_{6Uq1v{>$gyOb07z8#DQlHP zdQEk|`pIHh5-Ti5L-zNT1wou+Z6}~uq7fZ*I?US@-PUfc+i;EF%Iw?Bk)y%Q6}53a zUCb+#v!p2oRg_9D0Jj*6U6auLXVN`+|11O4$}uBGf!%tV65IVYGvnPy618J-N(DvU zY(pYY17rOxf!aqBdgR^?4d3w6uBlBjF+-*HO}PGTIu`9oxy|1l-Q$|nHI3(S;?|8~ zr*{!T$h|=&J44C7x*$;feeaZ)w*15pZ90fjylSqzWNn^b9<|XK0pK1 zUhUR??bQzLq-0Iqx{8;$02G3X52m_=&2{k8+{P_51|cT_r0Ef15>*s5ej@;9@kQ?J zVcO+4Ahb{M$;ePUf{C~pzojV?%wkoyFEB!16Cm7NA~g519u<(<$U%t{N0Jse<%_q zB8LOfG)8k)L!+x8=X~VCN0DKlG9hMR5}! z0JaM^Tx|fiXEa8yh&G+{Q-V}Xe?8sfrkP?Oy}pg?ZT0Jc^?O5!S!O&z=k?ER_W6z5 zWKZ^@U-E?Maq=f@3L8DzTN@L^VTH~0zErQup@4BgA8^<8bCPhfodCYOyB85Q4XJ{& zja4E0Hd1<SgSFJG`Ie_|LLR?CV_*8$9{vk8 zFSPB)2_+F8Jk~;gg#O7{bxHLy!GED~L<5kZNmWFHpR@oWKtKV42NWD6Xutpi1_Tix z5J-?A0|5jG2uzSM|AD{-3?Cx6IFMifg$f4@$Vl)c!36?K8aR0Jqyz~QCPW;0QlSQ( z0&Q9pD1c{xpf?4QR4BnBfdEaNehgsoBSESe7hJ{4a)E-9PQ88w8&>RCvSrPlMVnUb zTC@!SyoDQA?p(TcebB(0SMT1uZ2kTP99Zz+zXvrYfROmXgN%s}JACLgXaKB4MUJF8 z60FPsG$ja_D3+kWl?4PkaBxt;fYAa_A26t(Wl)^36DqU}8fU?)RHG8msqk_Eg}n=8 zJSgC$0m%Ypeio=8=zyRGJSU|Yl&1!#HjO%^xm0w4s}>0!MxTIS@}q>^zlR@RegL<1 z?ccZCLH~aK|NZyR2QWYZ2L#Ko#u9_zz{L`)46Mo~bBZ&x1PX1eldd``ChDAHO|t+P zBJZjIGAjtSuP9{5Dc{Cwt*hHG+>k@nniBvi<}~E2EAXHr?IfpwY7Z@~(sL{UtQJ_2 zKqZ%C(y#jPgAzX<{G+nJCa=UY%dZSX3_%4SVDKs}B;x>Rg2TNktHDhQ}DlQRi(3*gsZ!(wPR z)Ak$y|2CN%ILXh}PMU~;*ADO#B9T%Gw1B0K^^GGWkDXH{lYCT-PJw6|7fsJ3Nb{&+ zzY-6shYrdr#4yvl>LBrA<+ooaRRvfsR$HagUxN=;3qc5OU2tJAy&MzGOV{-A-Le>Z zDck`bnv)>Z9%?P9i4=g1p{1w=je&=7(kOt)f+Eqy5Yf!c)8J?m7e}L-6~H?Q)>^6} z^X8T9JdMOW8qs|bX1ZywPz_ksfeE(KX{)V{^VWaolPlFk)dPOqjM z|6!=3j&f?M|Es+7ezUf9>#iOCI)ktWc!0AcEfyk_|3*78r{|e)L7W>5ZChxIFG|3*`on%6l!L?~24IvJ0HidwzfXp|( zDalbXLnzX)Cq~C>j_eFD0GddQZ)lgeKFc*9EXgxuXc#Bu1Ta(PnTnnhZl`bhiQopk*P8|3SBC zvpoNm=6{w_4Tm~(IM4X6c&953w$zB8Zw0P;G=$@oT=+t|#Bg(Q#AB9_7C#c~(2qQP zKn_osfYG5xECTr*0)mqy-^j~>L@X4v7|@j{GGL0uvtmY?6N4;{#81nc(^0y@Gc%q` z0=`)n^#*_-qq%R8>G2-6@|Qa6xjKyR!d$oNnw4=z+(QmLtz&3Foz6Mk8}hq zuk7ZF%T$Ypz%nXeg;FHNtKwun*%X^-u|^tESdn0vw9Kfmm*bGBotsWtbLiQzt2z0iaPHV42awyH?Qh097-(1l6@zYMUCqwjlIk-{XZeyY@}gdyoVPwJ|xc9k%$^dnSH zs5KLgvv~^f9&IKffZYXaa5Ni@;wl6v5>eADl(du^QKGQL#Hm(X`^Z>DbtU;nuf+@heBg*|5?LQ+|NVh#-5Y{}JpFPMbmU3h~I2 zT8D)dwy*^xZ5M>b-*)$3CA|-C(dS+Ao+Y@Fb){_SnStX5^MuNMr4Kt)sGvZgzPFNJ zW*&xLU{bf3ExqphvJ0{8$``5SMX*?O`$F;VGQkfni*aIVLLIUfn2TvIfCEh26K<5h z43lk!EzANI$gjO7?&EC3`97E`6v8hi%Yw_-VE(|^#%B?T!q%G@KFXG18jkIX14)9! zw3n$ECUSNEh~g6i)4gIl(0~HC$8;0s@kt{k33z(krBQcV* zyWBA?V9Redi;OWxW6r_Z&RbFddcO>25F_Y)@*^{R|GQ)o|D<`yYkp;e?!4%x$T@0s z)(@j4T^7`w1e^{Vtix(`7?(o8z3YXq{AiniNtb#ojt-a)Qm|@Px7yXLHg&9JJ!{XQ z8epn^b*@`YYhL%-*RZm+)O0=U6#UxQ$42(4tPDe9>pI!bhIX{q66{pry4kLlcDA*> zZTc+RF4ulFx5Yi~UsF4C;Knw&)xGXXn;S~jMt8B~TuZ+<8E-r>#n zs{1`~g5&nzFhoJZ6~1tWE4<(jhqzS_ZkL8voZ%72c*c7<@j6=E<0#O0$VEOwj<4$D z79V-aRbIK03+&_-UwO=BZm^ce#Ro5M_{?>_b5hlulASoeIM0PXbX$76<3M*f(Urb* z_xSuRH%EHHnLc%@v&HEqjk?sUzICoE*ytwDde_B1_N)8g1ZPKk+SQKsvA2EeSI5BG z<*s(O*PZEbpL^a_x^awM?CV3 zuYBeUetE-d-t+wCJm5b+`gw<5?*Rb-A^8LV6aWAKA^!_bMO0HmK~P09E-(WD0000i zb^tv9djfm`hyVZo|NsAt|7xrMOKbm%$p0>z|65M~sC)l=?E4D4|2o?L94!CJTmPE? z0095i0RHFz68q!;+5P~>|1&c)0JZ=B#sC}t+5o2i0RR9x|GWa`_5c6?00Q^`00000 z0MY;e00000000000ROlE0G9s%hyRcO000270CxWX0FVFx(f_Fcu>b%7X8-O60RNZ( z09XG2NB{pf001`s|7QRIC;$H@000;N|Azqo7y$oC0RLA2|91cY11>ED04XvD2r?)$ zCjb~T7&8|D02ea=Co&uy?0wZ&6kNRa%rFB(58X&hH^>k=bi>fy-AJbnNDkeNba!_N zNSAa-r-&$sg81^ezPodE{(*C|Z}-}J?RtLu3EKbP;r})NHv|963_za%82^I}QT!nq z#;lUB)Lb$aM=9jIJ<(kHF^NG|#RpJSHkrn*Q)8O5A2FT9Z!}{k6Z*767cXt8Hu89YkT^(&PPbH*X8RpJSQnYCim!d`SH=M5OtEBt^*O z^Gvt*>|}bJvHoRu+xe#|op%JGw}LavO*Yeo>i!}w?F|;6KF{`cekkCZ{QcYE zL>gBorD=fj!I%KwdyRhapC@x~+t%m$d;PCgKg2yfdq&gi`E~b`|MU5Q{@{-%9;F72 z|Mma<^LuyPLF)Z~za9aY?0Y(YB3IwP{eoY$7moMlWLpo5smtsgslH>e5g|2MaRi0m z*?u&HOlczu8t!-yi;oVVjQy|p>>%!Ubv8xZ?Xcrv!og(B8X?2&*~WT*Xa#G8nLgD?j^k>km6mBHhi$Is zID9pmy63z+Kj4Ie>|an1c3B|`6K6YDuHC7!C=CA}1c?{K0fGtTIM2(lb)Bmr+4d?R z?9`Xy=cP&3#^+@z#<{2x3&ogS$;%FG>VEqZyuUAjgrRdo1_NH$NZzN>5d^wQwcubbDVkFU+-?USvq3eZ8_dzUg4UwSR7@e$SG^9ny~;q;=m zc|4x82(k9>g&T&6Mf)#WBZ2zXwKU4WxN*#$Ciq45IdO02GBpi@#Qw}*+^)TMpZ-hk zxcl*$qpFOJpl`9y+4TH0-gqCVvZjsaagf*EYrL0C&78+MBU_`&%LJ{2Pp z#0&8;)3!CHj)NjCT9!Q$Yc!uI1dHn3?OsV1f$e<5a3hjJa4ieLkRtZcF-<_hAJ$Ua z=UfChuYqKwP#`D!$o(ByD^lZEU_xU<~F0~mus;0n$F@mh0_(=tlZ*(E@*B0#2zJuBVC!X$?# zI>C8gwwDZ$kU44oNTO3m4% zoRl%DTF_Z|L#%H(UScRAK=OE~V@zU$FrNmK-l;sm*7;oCcT&KQ$7;*Q41@TUxT*jf zqqEPPVJL!ShHjaaI*t2buFRFX$hM2tHnbkdF(b%So$cJ5ExE}rAK@?u77M~yCRzumV zdlK1@lQF{re!KAz74%&WuR0kEujI9~SoPTjC6)`IjTr_5wXeg!}D7MY%(<^zmU@|9USZ`+Lf`IC1zff|aVtwTOJ{WjWPm@m1eg6-e-NLkkIr??`0Z9a4$}YHfpcmmR*9; zHG=+M>s6zilICgsuS6D#h5gxOv=P5?54(LjGFyg1L(78+=~fN2|G2w_{v#FT4i;~@ z?vOFevA=;WXWxjQHWEnZ)AyYA+t#z<&Y;Z2+fo!Me1N1hDB^TLnwtXI=JPCN&~#vM zQ-Q}CoBEG|t^1kAoqSBt^)E-A<&7JXK7=i6KO$2+J^C5TIu(lb<16!B{Rf7pImHY< zDv8nYJkpp*7f1DhSz4g~2^W8-#ssF=#=u;kb3h=06uxEfR$DX>G-2i~v@f|Fs_vci5Wb{Z9cMO)TU5eyc?aJGPO*552%C$_w@ zl1WSIq4Ik8(b8K!>IDWtUllz+VZEieHo1ug%rHy+>eN2OFvsnJ(`3PWN(>(P>Jfee#QETnjBQPK`TO_M{tu-Ymnz_f)$>k2!qWZAp(xf z9+c6q9hvddm3^xWikI2F*k1K_`7w}+8;d0M(E1sP#KNARMIA9=agW;mq^to@Kc!GM zsYMaJ`zo~r8F;3U^80A!?y5NU-%R^{(L;tDckBUK6X=9hjqQqe-zOxY(TW#id}K&q zcQ_m$;ENVZrf-kH=1=r=a04Np{@Vv z-H~oD0L#b7OcJ-s_N0mBB>W~cCz})zEPy~n@8xay*HcBuC?@RcWUn(OyqjcLU>Fw6 zfCns(-)6zGfyQJD1AjMnyn{arl-H-SKN^tVbVad?km%ohtU&`H4ElUhCX-Vh4r zJG5dt<>q3KM__AL%R4>0)rUB$b=t{oj7wElyy3|S122j|*^ncvQR|V}?ATdZA2SfY zXw9*s*;AFRoj9xw<%k#HB&f`%72WD%KjTOh3X!DDEZfhbS>Rs|7;Sv6c5iw8qzp#0 zTyx+oeoA#v%XiAweGZ8+IRMO}?9va}rIlPCs*F;e0%OuRfUw`zSw?>MS@4x;c=#!r z)DBRh99k9&*l2rEF`1G@9{y}8qaKdIAPD$l9lhb?k|~>)0rCbfAehoUJto-&7;F(6 z>59Mm-Gh$Kp6@~v)0tk-l zSNas31|+U374#XsyETl@y0zCg_!m}LS@3k8Q=F-Y-&BVBD7|=I2p*CqEq}dy=jW9D zem^jdqa_#Bj!|Y@QxQ~CZp_#!%xRG8ZFD3>vM2R(js5;NGS%2&sKX^0TL!b5efg(L zZ;=K8OvPP^;pxu;U7C%*4Ao)Fluwc$Qa<0hrl{}}OKp$s4EdCZZbKKW z#K6@egzL3cU0on6T~n6o-`xV!vwztI;G=0JhIJkZ#a!Ad@Tqv|v!c1%TA{kNl~`@z zSrG+rYb<0fRg9%#T()u^z*WQmZ>ddVx)GO2>kQ0s4i11K${=?I<& z`@(zG$$q`&uy5IItx$QYF3Co}o@Wj)?&-<;Q&{=4SVI(n|Il6XfKj~Fh|$7#D#U$2 znbE@33T3FS7VV?-iOC`5@UQCBUXwJy;^Bh7J3Ve4p6-uyQ9x@eCE$2K*g7&lDg8A` z{fwbPnx4vyRuP=!|2Qf5CNJ`ZL?`nM!U=BCl88@Y#^-yc*fyXlWx!D z#If4Zsq3F|<7nKVH~{hlR${rQE4{hJP#J&+vtW9WG$+%ZxWUfy(LIDs z20dNQuh*m?_hIYlo!NENhXNgt+?I$q_n7l`lXQGj$C>PfEhp%Qf!q*A5$#lop3XJ+Kil-$8boW_{(i8_S)B(v))VdE9%#DCfcryw~`o4hE#8^%GgE&Iw&Ty4?(=J zu>@n7+j`V97DW5fWXV628ZuuJ@{B)n>Vk>8woWqVVu}DVjf*SO8V?}V1O8(Qb8r@^ ztt+bZBKjUbZez-|SSM?+X~k>LM2+Ud?ewP90K@ICGqvrxV&Q8Xv-uL^4tBG|akG~d zvo16;FP_8!pYxUW@RkltlQ^k^PVgqrYR5rEbC<4@-~Od!oFuRL>lohA7sk&cXEDAt z!_7W%RksR8vP9voS4D-G)aU||%CjKXDa$WX6V6J)@427Xht8775xXQ|E_Z$ii8=fb zlWz>TXV)SyupAq=3Fcb8>P-Ds%C2o9ws4mU>xr=79}uX5Y{*~UF3@N$%$E=s4J z$&5U(1dn-WQfDb|rQ$ zxAUK(w?Z%*X0f`qm;=}>L7w)2Gwy=SEo4X62U6d38L5qaw#=?m`ijua()>*bLR2yx zptdXnM0B49Pv#rh5?O|NMB3lo{L=??qtik%>pMG?|3KcIVP(-NE{^*3wO#D( z++^uzxdiOA<{PC~x1`2Pxy~MKU1MZ8?g7dXJwgD{kZVl3haefjKT_$+Mo*-QyHZi;fyqllppz zeh2#g^;<%ItH0W_^v{e8Izn~#=O`n`$X|+A=;e<)Ifyn!M{T@R-^lrTd}}=OvNz)@ zemSN?jzHc<5F$~Uxdhjqum1e4%AHQ>qb3uxh;l=^jncsDNO*g9567x6w0^}_uGz>b zNj7_toRDWE>uZk9hgJLSNZkF&HwW7U{+<1u#;j5>xvFm>DcK(YGk?>V*K9vNVVni_ zsB?0e@kb8rqirvo1DQ4!t*XXH^jEpW3&;&;s1=)*(vu=OCO>B_FY z8CuZcAba|W4=}EhRQaR@&kIv_ls=2;4a%WZU#08{E$)<7Xo?1nvdYSz$4cey_d9H0FQC;gzUL$KeNZ{A^7eljDpESg7}k!~P1 zxIyxa+GL)+avi#j~jpgJnESh_INIyzNbEIH* z&b&YDt73gb&AO3ySa?za=oWwsjV=9a8mA|cSe9^_m^VM?0E1BTO<{ZHrv~(?QbCp+ zmv2q6^QQOmQyT8AzLG*ZWFh1|Mz{9%^52-Azg@oR>iP+)S{@3kgu7A7tT4bZN*Wvv zBxP4hM()c*0%>1HP--2>p~-mu+3{&HD_{X6-+-yKkCam7ob%;!v{|PTc+3VOs6H`) zp*Zy0A&48cSqLrxF#wGiLSkTo)Ux^00orA<86Y$9{UKnHP8>DFxCnp*8h2_yf;@)| zK|1}I3(opqPyn0$AUX-3OBBdElrw;>gL!?88t3h}VmlRQ6RU#I+mOcl$j7>l(5%uezIWNaQqEwW|Ko#P9 zj5F5U0RH-h+%Ezonv$~$L^d=o!oU-42Dz$SpQ&mmf~4A|a4bsmJf+`~o;wW^z%l#9<(+Zw}JM7wn+t0`N>YNBRQmgC5-! zh=~?17{b(ORa(12c+JyKq$;ZQ7>(SsZ8PDtv!kaB!v8YWC<5x(x7kqKqwn-XlE?H3 zbsN}6w|Cm6-TGyCM}1j|2{YyO!`?_k+3L@KR zZLYm-{~fch^-b5rS|ZR`!6L!qApN@2r>7V$Aq@<$xE}yBruT9Uwp(&;;K{@4+*(5L zW7-6mb?Ap$>xw6qQ>_&)T4|XPPDBBL1ZXjeL%JFSMilje5I+4#BA|}U0U#STjFIGl zH%wAh8OhD(!JqJ=bKWZE6&B(kPO&lD`_rds!th8>@mjr<9b45SUOJ`*_9ktf8u*FE zShurK9BJyf(UZ?j-MfJXs=z^GEaUEoJ8}W8E{$7G(F!h-qJSWW&IV8n3f*4Jn%8ls zulikOeb#NCRY{EVyyR-CdlPS!JqE<${@ z)ie)_C+#&}NM{ES_z;rNohvCyKM^>~$w73WUuF(_%E{FIY`u&yTouW-sSy4TBs4X) zie=`-3IP!uGYvIatoLDc(GbJW(7b5W>HRmkC5%mi$WPheK2E1e6188P7%%gsT|%Y= zcQ@urI)3770KUFk_=5u*-0>`bBQ`~pGM@UXS32@7<}%IJC8TR4Fv=sA8HJsDLwW_P zR{w7#chInk>zzDIoKEgYo;zSz#t!+8Le-Xqk+>w{+KKUB@PwzDPYvU_2S=ZP&Z6_l zcr%z?$h{Qy+^LPnu795AbZO=75-Tgq@R$KJ?a;=80~2PzF-Refd24))MD)Rx8$%}E zrXrx#V4wQ0J2&!s!JN_99FI4dR3BXm{CJXo;Ea&iEP zwoIwd==@O#;xhFxQz(>-Nm^OOD<$41iTRmP&l@IU^JFxs#!>*PBQOo1$#D#1pw{~Q zTRpM0*DOm|R^DQ^BDYEUS)Y<6Le%EjG0sYH7LoGZ`z%qwIlj4O?hKX)~VBIcqoHN>IR z$zFzrn!$p57Te0Fxp$e|QKV{bA?io3fX1m|i3AOFwg+$Sypy9HQ&rs_*7RB(3Zj+B z)Qj){;-Ta~?UcCOCz2+s2IqIA&2HmdQx`dQv&;p6+p_$s_|z7kYNLw3SjwX*b_R-3 zQjPZWVNb<%_2Q}}@2>I0-w9Cgq)`GE(Sin#@zqAGJ)g>?*!^FZnXDvEuV7r=B0x@i zvS95Dg#B|p`3IW-*wk};qP+&X^e?8&nHWDZ*ZNL*zWH;+bce{G^an$A^cImX~}K6_g1!-+MWxNV}wrwWQ@6zM}Ob|Wrak0 z`M1$BEy8-ICTWC#V9% zi!-}Qc0b%^MFKEAUuztb-U91~!p_OUdrS6Oi>ij93Qnsaqk8NwUwNYP3LTC+>jep8 z6hKOg>k4(^F5hR&HgfG}iCe78$%n>}D!H=#5-sJS`Y5phKI_2vqLU{431hRC8uTIS zF?%3`T%ig$Hy;q%G1F_DDVTw8XU9!JvyMk%!uqE*xtp>)|N3Ayg8qZ>tC!F7H%Kfc z<4ET--Ei2s-_0bJ-RTa4&own~ab$~c_M3Gv1^;`8vjx2=n@ZMEkovNTtc#}Hzr+;) z>9)l@$;l3Eo^2^)J|r!9(U|-un2l1lORy-gu2&-{@-tVXh={qV*>I&zPtN?6M|91H z_jmC%^1Ip*XsBQa9#NmJPi&hw+r)t@;WH+BH$(9=`@7+iuv#8XOOcBESCqG`*So3g z0%FYy`EyfN4}u3!gmU@5ClE_ivn}(dP9@ZiUqMb#+eA)|EN{c*c}Fw93#N6kVzk_U zqMqE+bei0menF?&0Lnn0(-l{j-8Yb;o@ReF@Iu!0`6lT^ej1;o{LpJW%4CYlExs32 z1xh`uxroF|7!h6F^q=^OISM^*D-xR1GqV1osF5_tnGj=B>$i>`ma8-0jBPBm5IDRzcaOM1 z<@68TO^&^U54kcyuDHgjh4+Z17uuS&aSHpimCn7NoW;I4q*s?QKs1SJlr2=L>)@~2u3MRq5e-ojZkp<${)csml7v5?nbE)4UqbCSN~8f`_3W7 zwQOMpvk~oGO7TuzItnyvu1&Sb_o?SY4g{s=N7>aBgYRVOC{R>VJP;J%OAF0MO|^FiRus}qQJ!}2Fn$WSC)iL%EyEXlV%x}5tfs=m3;^xHGc<3%Zhaw z7S|G|sC2(N%TAaIZq+dw(N|5wdtJKQ%j-)6z+0zUOwNtC#=E5AuL>xdS;SGqr8Wj7 zmCJV0^`H`JyJ&}b?uodQIRVFK)WnSM)w$5~Uj_uI-m~5oml?;M(j>EjIBwy|@iGJ$ zP%hKuns;3Sa2gm~RlHJ+m%+QV_!=+lI^JWs1EYy#*1KVG>7`vQ`8UlH^gMUL!3`L|OSPS0n*RJXn={KmH9+Yp>jzWyJw=xz z)suvBx)oVdiKxljJ8-BkKk64a^vGo zl_IL=W5~?M#t>|pA1z_;C`hNtScQdXB$YDph^UKzB+6(=3M#p+0XLgHfg80!nOxOW zQn-}n2&AWE;Mu-L2<9qk3v^bzA4n$^LW zKRO%7n`_)#LdKz*3L{MQCOE#28;9tIDNwRVN+pXKW8_G?J~|nf53UIjuZ3p!U2?|6 zjO5l6A=8TaNs6J~I>eCHxrCTG++2-|<&Si;&`UY?87I*zQ{mD*VF8(0ntOf>rg=ap z&R^#bKW|BkJm+ulh@Nui3#;czCO@<~#>}Ev%`bacZswmztOVoo7Nb>X_TfmH?*29F zg;stNsGHha4DQA~VZ%Glp2>w;04<_`?rDqo%hVWeV9vT&gOF5mc^J-LuU00;7;?R$ zj4uR~W4T#ju)4rhr|-nHv$WhY42lWOQw2nHx%Ggni`!=76w zI97M6amhSLzzAY98Yan}1>w;I)xag5?SxOB1KU4lkMHNk;Vf`I;S!memL|ouvW|{h zj1v4H{kNzoghqA8Q#Dt-I3W|%&@d^?Wlrei;?vA|gT9nrUN9k};mSqZddzyS^Kcg2=;8`%+@Fb9!X?Y(Yt` zTZlrs-A3VNsUQgPw)6uEPEBu2MlKH3ZKW6>rm`KDnF$<9EQjj;rA^pbXMk*lhF<6o8`JQ(x)TK-x{_ui zkLe5Po$i9NOgs*A-_FAvkfG=ry0ACJvDMCuHl#Us;>T)j{3N0UFe>i)K(;PnF0fcV zKQ#fY$XictB$l$|qrwTRk_o(hMta#y{I~GyEPcbhc|Cye<9Y2#l?n4ITi5G3G)#{y ztR=BvH@e#5FU02Y*rKzyTva9R$=eCw+fJ1BLl~nWmGDjVnw6z6x)SRRb3l&eAwL7| zz+QPU?oKI@omH=^yd~@okH?ldY=Q&GPdn?4)Ka4@=iujU{!|{f-_G!Ar3+BvJoVzg z%@nQDOsS<`_stAC8m>Y)jQ`a!(ep-M^juT{_Q8s5ne=Vq@SSAqoBH&5G#!^l4aM9+ z@49u|S8Lh(1AcM}=OY?85>>lNtLrCW7{&oRWpO%71m#-3xG>l9I3!iWAQz)xO4cwk2A}SkgtQ=c&x!+= z!ibK>vLmr0+I)5WbAJ)VlMZiri(Oyz1I?GBnk|kEf=K4nNAp85lvlnaWLfgMDUbb8 z_wKk#&|VaJWF7CDWTRmJ_v<>~yQH^{WPK9>i0P%tj=jcBt)NXxrDKkuEVs}>XGoyVVKK1bY&)|{D0Kn0^;G@@`NdLp^~M8>F$o@ZVqb_i-UZ|zZjN`l($-ygU-wK@;`}A5P@e2t%T?hIj{nly z*M1t}o?hKM<$bfCexmi@TIIZPXFk*V)?QqFNB^NA{99YbzAjBoTg zwr^6ORxl^$uRecrKJ1ON-$Y=WJimeDa)#>tFGEZ^yv?-j*corPwYBWC;(FuS^o z7w}V3Tl#0b&{)%NA@7v?@tS0@s$8kta~Y)588GHqoBsX_AQuo_RmtS@v7_NPgjvvv z**YZID%$$MvU|Bf;AV0!wkv-=uTV(QI|X_3V(m^e$y>_xd`JjZ&;W?oNX2UHDRL3_ zHfH>)ngKU1R@x@5U>8aLMA~#Qyrq>Yl7|W{Au@I*J2uDFmTeLLjyoA&4eEEGp^cxo zb9YfAc~V#fbf0Zdzaqc@HeWW0s|7cY86M_>*G_&C1uDC}{rnQ?+(ALoGsK<4g>8{# zMiMN@{2obN_s66Di952(lZ@xyK}*cb=|#lqtH$+xO=NbFd5i~4MQMLEYiZyMt8=2x9sSEM6{f@|8lX75_t z>x`6b1uKD!se?qiG|_yW3%@(CVRs{+=V!ZksPHS2fmDwB7>UQE;S^fq!gDgkBoR2o z*t9iuoS&S%{vsz9xKo;!R}dKQ2*p zfAK^y{UKTLIrEzdQez|M_~*xtby%-`zTq^7VN|fkO2ifo&Syd~&b4Dvr?WO$n;9FU zmUbNuyO-y&{fm2wc9R5T|GXa+K*L!Tx#&@YkRclqB)G5gSMwDi@8Qgw>}T!julwND zA86utEDs#X(lPzeKSm$)ZHWv-$G5_~hbE=64h5f7eA%^EMuoCG-YW5gL;xV#0W5fZ) z+SN!Q`h|xy%XgT{gfMQdJqN=uMF{)fDgE=XV#Vibzd4ZM;36QJE&rd4&7xPQ_K7Kf zJq5Lz08-ChDB5of1HQUv(?#ayM7WI|EJ>38m(0EqEAz{SE$)T)z-=anp&>WVeJHbBj0V!lzgMLm z*M}Qcb#n+JHD4`w-QyEY%was*#sB=j$9vV5%Ws3_5Fm~iLm247pCO!qOyQZPBBY2E zlk!Y&%K}NXtP7+h7|+suOJuv_+9S1|p{H+WVB)wS525gu=kZ+j3WDn{1AOFTOx)S% z(^ml`Jg^~%^wn`rAQFPy1jLg~W+Y|?W)?V^`HEVg+crAr?SO_KQBTf{QRG8fm|`7t z{ykEj#UOfOTY#BcVf3m86*dZHi(eI}ukco#LLY z8;O-pgtOSexS5-_RW>XdgQdtO7VQ)_x2j1-a82PGPF%BQ`_7mhl@!Lbu~0r2 zE)Kv@$`vbfpm9Ym1EtOR%WYbkw>Itajeb=XQH6DIcxl-Grqc59`blFoN*ukMwe$t>>o+^RQ@KeVZ|u8NC%(u?*X)vRJ7E%pa_ zzSwk4hEtwc;8z`+kJ&Fep{6G4rC0{IXejiz!H>sBCh10hGKA2-6n?+!MK!~_g+ z1i;bu6u#K+O!8LQG&xb@!XwTJuEI#koI46Q+a7yJ%YosWLrTe-SdQR~>Y5g5TL>0K!E)XQ!}u3b z0sz;Lk}~b6)4G;h4aK+9=fsQ0Tz|Mk%jB-54EUm7nK8L!>5|~ z;n^K(H{7M0sRplf8*Fh#^Qc@9PupG?LYR~esEshyV7Z>Whe&xV2kBX?B)gsveYe8f z+awqZ+xjrEUsFiG9^;KMQFMi-wt0En2}(9kX--dl3Y4xJ!lGraJ;UKFFrAsL!}{|Y zpWQP|*9A6I(6B$|v6l-?kZ~mUNg+>Pja>^B2a$Ex9a}@4@ZBl1$%KuRg^E+CJnckF zOB|!pk77T|lv$I}2^#SD5aqJI##n`YcLLN?#h65u@N(rqgArkKhS)#a5r0R;xA!l; zZqm@I2wd-^=WFLJsm}K~;>LN90WnIauVWj^=cy2S`I+a>k zq&wT}m@@wD2;GE=@;`KXte231%HshW22Fjf7tmP?eT}y)N3KNYuP+t`qj`~v<1QFS zhf;GZ^DM`yG5U{~<;jdkSf2gOJWi()@9TkI0O`8f2>#k$S1+fjlJE()K91xjN-E{> z{lrEY7D}n7e`Vr8CBMh0`pb)QlR*5AvhN?x6iQi|lFdCwZZND=-v3&{_(omHY;1by z$-Zn%=j*LPM_reHQbMdmRvR7id4rc-ytNP!f9d5y_$Fj+S2(B9?dH?gGSS57K-s)c zn(OP&YrTsaz%-Mc%Vi`D)2b-cuGJ0YcG|vG{F2RFR4%PHsBprQri9X zXtCNb>PFubUOWDz%tfE662TU2P|HH@s!`me#nx$eTbIp8cB`gGQ>54M->A1t8i4)d z7<}N2I32qFErun8ImQ!9xxSk%#xK_pHE$ARrwsg2z&ocR7|c#wb}TCs1&F+Mjmk<{ zJ-sI*JCl0v{RbyFiSU}ldnaJpV{<)gyyVVHLIWe%cP2M8L9||&PBAqMUqtAybCfif z-M_B~G7fqTZqxlR!UM8Qz-KuLY|2TP`o#)aF%ij%7DZ3>MxO{OYDQ0wa``{GSba4> zaT9iCLcacn8Cf;S2*Z%~ciapJfKy#pIt15Uci#0UGJAN-am-xy_ot?v&;RAi8yPA> z!if~O$G@dKWp2vJOB0R5t(HgacJN=04zS~dWGfh%BHWPjxujXOPU%PTifw@_-#uep zMC6={@uj3xQ_@_uL5=J`=cF?JzR#+O;?oqAp)78HZ)*LRrZ@uNgj1tl&J=XqF5(fLP?KfF#YHy#dn;=F?wUiHAoZ z9-oR=NdXmF(dbYT1HD~F^Cj|JwN{uMv%)g7c`CCq(+dp(Gt&bw_mY3I^79}v4-V9C zD)fz$sk<~Ozd9kOpj`5bC7|g5ScR*GKg1PO`Zv<@NH@;Ul$`fqNFkf)>HC50y)_%K zv`2Ec(Mrom?3wvroe5;L;DBn-gkJmYdT|IN5HHgAH@Q4p8jKpDG&X;AInQ!ujl~NV zi^>o?Ab|HkLyHb2yflGRXxWT%qr!5dsB%SJv^nh4&)em1T8pfk%A$k86A`a&TgHwA5Wk;{m?FcEV6$7xxkrX@L@G5r$t##5 zhA89DNr!NLXj;qZcK94RQ!4N^D1Oya8cW`7eT10f9lGymY%H&MJ$|;JJ?2f=8#%Io z6)K91MAc;|!xDG>=@c>2V-32r`Sebz^0A1Fb#TS!W$R2&`zfi^D~(@{ii_sLipm2D z?fhlrB>wKpHIu31k$ZkU$VX@#k>bjb&UGfQXvs%;G$&=ui|H0n$b7EQdPJe0d`7Jj zSt9p&EM|c~#nzOz+!L6E7)2F|kA_p5*ycJW%_5s#S2l7}oXX8X*t7xVtG944h7or0 zHmt`K6FGA-sJ;#*DAfWMeJ4^eI)c2sOZ?~aEOs2LyD;{YO#vKL&67t*jp3K>6XOWSzfAIijP5`BI3oWM%bY%-~kvS`v>*eU$ zaH$5LsgtO05n{#nic$wovBz&&ZRrGWWcCbxgZx{bkn`B z$uh*9FqWrfHPf8?!VDM4|2#9cI+_~M-m|QzKa>i*Ts_tV9et4yxXV$>E}DC~;;U+nk&C6L~ z;g~f2z?J&^axRlKUBmQH8fC8L8WAz(L3`}MaEkr2#`Zi}+qQ`7UNw7h;u!w66OnPbd4hQJv6nA?BV zI87(J5<0-Y<%jSq$nA!N^I0BWT2LvvNp z`isa%hWOY--lmaV*YX$!b6OW_#Y;|uz?!RH0ARTmb^68BqT_0inyZf-6tsanTK+Ap55hG0 zf=JviljzrEk+k17#@W_G&4aA-vzu&{`ziK(uw~+P8>t>#>ZxRZZg%f$LME5;+t4 z^lcI~-jg4D;YgY}<3*&oV;22f$G@MX;6VeoGIgl1y z2Dc%e`4}2|X&OctIQf#%4ar1rpsAK+F{UcC<=xU-a-a*j zt8(DG7GDGtf3!@jM>{vgA@`q({_$j+f;h=s`i7)k7gQx;t--A6qwvfgWzL)mMifn{WN z{b~i;#D9^Lf+euT^pvXGF*(>jCsJ;Y32b&&Ht#aJEC7Y!#YK;leR7e2G%qU%<*PUf zyM@=>d?(d@HS?;%IAqEGaoswb&H`sIcd~`=b+@8&+{ID-dYj#X_fL9IfLaA$_bp$f z>8oeDV`d7ddf~0{z~QGPlAUpw(_|KuS4J#d?H8l*D|Np{UlT&qC^tD6m5*pD0X!-& zWk9&UUIC8Wo5P(T(CZ4*u(Js~983*%Sb7&ZV&`ns3qcm+S4{&g8cP z8w+nBl3)DAMFZ<3yAg_k@@j#ak4j?UypgjChUo}wTYAxVyymmoQ2Cf^ch0$Gvh`#l zFcz5uZr)_^Q^OY&=VuN;4ceX#O(R`#Apa#ZNx-Oq|67oxckrx)p86++qx3S(U7^E0 zUJp6!#Xs*ME3x)|J>P_Tb>a!ix6Twk{%G2a8zk#ZI&9zcOl?rK)*yUytRbdPddm|S z8EhxQB#~zE!q4S}rdTitA)%%}?V%g&ZW`PnOYcM@wErjm;u_>Iudw%jYNwux9ZUOliRm14ENvcy6IT6=53&i@CQXfR2XMdw< zqyCi{g$ax7h9F4U5vU?SI2go2+q8fRiy(Z)iDXE&4vWNKuwU*xm?ZHy+}b6Izoii1iUIJEg(RH29pC!Hb@bw>;ZrqE(A@yDe=Js)*fVQ zw0MKrVqp_t5Pg8o82m=hHy6PbHz~f85=L%r| z%7D&l+YLsECR(kb(%_>_fQmRY%7mOII{-4{V!Mc<0Me6fE`)j`Xi2WxaxEjv7;p@t z5jEnBMWK?iY_*|E8_flz>SHpngi@RDAuFLmE~xcn!w~`aE()Nx2$b^dNd=5Ut~#L* zP-`{Q&I>Bf?83`Vpd{zA%&6X=ia-LXER%}7qzJ;Xv?ZlVfK&PA^iQLpOi1@y5W}A~RBEWeK5XE`g?!4?HU+*Th|(IH3{0vQ zolGbxznmLD$^x)e6C;f@D0f8eQq4)A%pL+(T)!?*6Vx?l@>8Q?iQ6*PjF6lEtWW{4 zOpZ)#wImp_JR!PGAdj3HIDqQTt9B@MYaFg%jXXt81{sVxj!eD~?oLNIRWl%|ay58U zyScC(V9y8`h>fog)g&x1KLg{BUb(DXwdd9jl4zxhLhjY*jB34AX_Io*^`)bshUnLI zkFrnz4~r$}Sd5Zgc7SFXunO9+q~()Z7`q*yWhb}2pxbZ5?T;Yi1VZ`T0}4o20;=); zwgBVa^-JD`i+(b)qYedYGXwC==x1-2ddlB0FH=q;oa?KYU4>hHIPo|ghInj=5uiBF zGzmi4b2~NW_yCXZ1eqa;j2qdo`l?g?I_gAXT_)ee?!-gCpH5{Q?ml_>1&h2;f99oRe7O zcaQ;6CMhQ>Amjj3NfbTNQAFF}v$ztQs~AdWU@1&c6e&qe!b)J28H(x>5-?K&<~dTi zB4ZZdu6D8LmXJ{)p(ts}$ZSjo4r8Lfh*HCgX{2EXG{8dG=Z2zk=J<|2>>oyT5;Tu>kVXe&SpQjiXvl|mon690@!lWj500x|GB?fgqSI{VfT z3n%~pita2&l!`M=hM)dG#YnZ$O$!gwCqlt80E)q-RCZba!BZk6PlZz(-gxOBqgrb> z!x1BQkVCLM@vcS0@sk>fbCHTAM4H_3+@f~GKNfv1D$n!WH%lPB0GtQ|C#=f^C?q3i zo)SKIp(X+L#3Oc^(tiESOjRSdDQXE8EvBqZt8%KS79w$hY2v3rRW_76EZ%2nO8^u#wM@6G)P_*vPje5#W}v*80v!S zIo60UyW!1GCNCdnY(Fz>Z>M5X!4O-}Rh>8Au_8stX%aG&IY%bK|D|zVu84 z!jg=NszwAbie*3}7XdEh0u_KyB$HCCi%g{dRTMeEm$Qc`1-ytN@fF@VZQQ9{_pmy3 z`K5@DGO=4nCCWL1QP8d=dO^7* z!2LoH)rv?vg!0Nuzy0N~80VW?9vvqo+p45ci9{Evjy9`$%HKR%$Izx4WMZ>$q>ho= zk-oMa3HRjubltnc5jS3xy2$QA1nctunU2LOrnP#sV;O#W42ok3t6Z zAMF{k>nYg)*^}6n8K>O51D*SLT#sf31qgH3ZQCeHFyug)GLZ8E8S-sz+C4X!-yAS}Z;PHg~3#59bA z+y<>jU_v1H?rg**FdoT~dZhaQ>_ebpgDX~oE5uLs5<=x#ZzNt1_Bf3NIie*%%U#kW z)eb_&s_&I7jsS`UNve-?J`nCkukV)R_zIx+q9OnZMwzmVI>N)O<{~|S?7?cPAy8lo zA>#XXY?5FzGhffme9*3U_V zk82u$yxyubHX_il1mHkpj20$HGN(lN?MGO|;Nas3qmZ=x?li*CGEk4Qu!sC;5NTcz zS7h+yK2d5!ZDXlZQPra9sxJDvw4 zVnZOB4LQcBWVR3my08HM!4HRI1cM6D+a8b%xdSrP@7;nVJv?y@AHrdHN+TBH4Oaqi z+>0_+L$~IzstPM97Q61V^Y3D!L**a%*g8##siye$phsTB)xHfJlZy0(NH} z{iEqrX1TsiMixw$hO2Nghygu^Op=RWUPM?328O8YWX#1~$fLbz<{Vdt%aD&foXi~; z!};_m)_x-W$mEg#*zJSSV6F7;q^n@_7z`-CX9cLZ&*}%ar`CrX2C_3QC0j zl8!>pRa`=QKG6k3(IY=HBR`QVMh$yl!ZfaFDDSc;3Sy)Xfafe}HBO{hvO`n8Nf$RM z@t{pRd_o1!f*Y9!|8xX7%H=HHq5$?JDJ8%{G{6{(%Qyl?F>uI9AZ0-$GOD~y;hxf~ zlB?~~sScyc%5X8ruq-21Xd|8n5-EsYzKpnZ0k}ppqT6~KvD53;dthuQ0;CeFwtb{rtA~acI1y@fqUyw6DQX>;W zBoFBUxPrX@@Iyiwj2@E$FSyMsj!BW4tEjqZM!rNmD~5`mnJIJ3@L*uXOG?rq ztmKd+C{ivXmVhTeF9^m2kXs_K0Spr(xdPf?_1TW{E}tC@Crw zN0$U;IIc%q=tq;Y0ELt#iIiT7lwLqGPmq*EJwh?OB=0zcIvwj*p_KWqL)pCaJ9HHu z>+~l7xAYFp&_4{#dC)6{IPXhgG)xVUOh;o>@=%_{L(odaGTf8_7%v0Q2`heW@8oGA z@Kip?t2|54H2QR9CL>lHDNv^|GdU8&IV!Q& zL$baFEEI-QO@sse%p#m=-Wqae?(FZTg9II8CD1AWQlMn3)7v_a7tblEC?s4YtWxk=_o@k#)ygT%>$vLWPe8Qbg~{5tf2rdT94`|V5&G;raoGQvEY*- z%&Iaa9%hF z#Y`h_;*k_T4niIJRRJY0btE=ts^2!U|y3wqgO;>TeoAVFKeBImzi9 zVs|1FbnXQ5c0&SMqGUyv8XconDF`#d#YMOyelDb0DMTnc;`ipVN#Q3}$V--L1OZZ1 zXb~z-I4vfrvSw-59xc%iCAR^JBOObIaijC#9)bZRA`g|VE~e#;b_A%X=!V=^e%K?Q^IcH_ikwrpB^Nm(64$xsukOgi8ukkOkwcDqd199rj1w!gP$TpK2GN}6ypF^VssN`e?P(~@S~CcIJLVt zSR+!ja$z?p0B%sS%VHd+$RL7U(#;$jDlGpc!uC>%Nb_SbG3^+%pu|S2WTr+KNDtNI zGW-{aCXU;#Hcz&-AyeQtgh{vvP> z0yAU6gLedk*)St~YK&>7XymhD&)d@7ZiDWdYJh#!vw2qGvo=F6tKoKJ)?q#u(<}Hq(G0 zZJ^oyR!@yv0t9zZQa5ToYLaumW+IE1j#&&mIFLQ`*eCdya*byJ3M`OIw{mNWA`gn| z)Q30`!zd;oCk9b*Gy->Rme_!=;7WOtmnkVKS$i&-P!8f>?zTIV6g&+uGiv!EiYp;X z7BWKFIg~>RVP`jJfCfw%m{HjhVXTkM3Z2;R1H&$szjc;lNbsJ?HYmq3a(N1&LMVB; zR3FQ!GAAg8If+uHmGuQ7jyai^8ReS!!k#&r=d=_ODUmqo5f$ZmxpLUpW!YyD)RNj3#?_&m$17G<=oi_s)~KlE)&@u)E? zsg*igK9dt)BCodwjQ(?z9O-iyXPbjV0c{Jn&_;E$P9(U%goBSOV{p>t#1s* z{8J(Xas!k@F64KUOT(vL;>o; zo+p4C_il7An1KzIV>Ivfv;D3eftpp%dK7>*?z~=m8y+xQWq6;H}6Eet&ly4}@ z*yXWs#kRInDX4Rb5FQ$}`5oA3XCSuXt1 zKi-WZ%1vMLB-?i*anf>T`S5%pBL2YL06XrzzYzh-9X!91-q%`@n%X^gtoq2aVB#D2 zN$3j~!qCpkh{$V7KiOa; z0W4D2jf+ouQi5J(u24<380kq9G6bUBXc_8P#l<%Qc#~D11ouKx%IH97 z0g%IuvmCEI`RlLdLZ0Q&EAdc1=n<0u zQpTLM9AJFr>i-4NN8sV6cEefih$WWZ58qM1cws zOk7AHA;ACy6$UtZ6sLxV3Iznvh=6Fw0s%%=2rxB3#SI7r#0(kWf>@+Tn>r9cT82~?7 zpl8&krZt*n__Fj+fflM;uYPc|_U+uedq3&`fcWv`%bP!s9tg+v>;->+58t~$!Vn

x0D z2;{X_LKg_+mtX{GBp6`{bafbF6(!UfRJ#qJ+X73TM34bJ;q>7FiV?usOWHNalvnLV z5CLDXB?cEkKC+aMj|>Fhr)3BDsThk9)&=JPkU@r3a<}33l0iOlCg#)aGQhsouxfZ+cX~yeODh)uV zbPcn)W&m^oY%zx~cHCir67iZ4WcG%(=}?eX1|V|%%G+zjT5SNbz@nB~YGJhg%w2e{ z4m~uiv95WvQl$C#qTQSVz%(lxA<;wb8mGYwK=~3{Bl#VuEEQuf9cwrFU5Z;49a@ zPip32&JWeu=W7K26r8}p2qc_QZ4DcV0K`=82ZOKxRM&S=6IkA}35Cux6B*mYM`r zHx(J60~8e4j+_#tMo~pOF^B>ALbk!USu1fvVHj8x@~2NZ#x$#7uIU3X9eQtm8CKLsp?Aa5xfyB}Qv124IN< z;WQgHIfg0((ThMR*a45xX-&c+oV7mK6(s_vO|C=AqBbKI)Fde`WYNfvwBsw|IWj65 zX$u0xvNFQaOhqf}Noc;vvP~j~S4})f5Fc0~>22qWkdcUP0@I$v^w22@P)G&nl*Jr{ z$RSfp$Oc|A5e1ZtM$(Gjg5HKaHq8xrFl(7c+8EAG1)x5pnj;J92*{s#FOPWKqaQDd zu86AtN|1vDRYqxMGdBWIBWRLN@CX32XNgUNFcE3BLbDUiL`X_A8`rnEXi5$6id`sb zh(siY6wqu3mkCjk27s8+@BET1!3@{W9H&WMHFE;bjNH-?cN7(65H8oGBnB_ZBHak* zC4c0OFwdnKw6!N$8p0NDhSJZ$V66gFL<|9Jr_wVDz(*B1NXiso!?z)^l8$UGRU-Wai+PLE6o!HK&x&WW>*yp*4!*$th=2lQU!C?#s+CJYGn^w9|9+z z)>p0s7)f0Tg4eQ|6HQcIx3O~>ljDA=5#0cF zyefjOPf)~Mz8PgtDh)uwE@sjODp@cmeyO+;m8p6H#{iyF=RAw65O@&)M}Y$WNdelj z&lQeElBo|Btr%Za436gUubLifSGI0Ue_k62MDe_eo0T zTxFGSFM=9Bml(U_e6`gsoCXuoVI#Lp?>edelfImPPKhwvPIDW zhvw!TMnow1w-$}WRx!dyKvZ}OcUOov6a&ah=7wL1GI)_E5I4Ah!SfRi$Pf@Hgc3+N z$cJneXlutqTL;H0>oH&-XiqHzT;qlyCwPJ}xE(9Vg5u%-g1cvmn?Zx3LKy!ch)pq8 zbGE4|SNp2QcR~1ESqGqk6h?~(!UtuZg=vCbm zj`im}eDiq#@^J((fGDLI3?VY9L2CfwCkKIffAUj;K`D;nehmhPACYCulRu8-6i{Lj z1NJElF>(X}0wYP1BiV|Zfr_cPiZFMQGT1csVI_0(AAGSg6ofpp@hCK6K=?zD-tsLG zd0;TZRwU6j!8jRCxJmNULV_U>3yEAPavDx$jYAUuM1}@`)b@YzvP}KgjoV=q)yEx! zRc4%bVNihq+++YT6&He`5rM^1vk?HgF%g33je%Aqn9@xnBvfh_G75NAr!yQz0W*^1 zXg}3RHZ*WzBujp>F#;(8NF#8%^$-d*FmJRbKruIXd50{~K?2iyY*LaX*^)?+k}SBA zt2Ua0AzBGA86n3ez|%eu87Cp4KNz4cW{b+mRNCO>@pzlh*Z1sRU@>BWLTFlXcR)m ziCVdp8UY$L1%qS}U+XiR4l+}k(Ry~(NR4FwXg>Km3@{acB9FGSRmjmP74laK5ElW} zLM>Ai26-w0&_OY9nNgM)p-Gad833h;d#A~qqe+7`7l%mEFPTIfEJ9&$s5YBoLREx6 zS%DKf*g`esn>3;l{TOI}LwvJ{Afosk^~X{w#AT?GhB6l-Zr51-_a1BJ9iO5k9jMWcfbt_hqMHHW878nD$(IvHAsoPg7aWKGls|=Pq~W+;BGDAm#bP_e5rPh!*dK0LzJ-= zgT_T?`laDgTEiKfkoRS;8E-O)6m$Zn@YFfRfkb6`rf{mJzT_KjN+lBJc&0U{?z5t< z831>hr>VK8sMe53kfCuSa)>Ib>Sh2#12j-gyh10}iEjpoE%g_H z6tahviB#wmAj)&5#U)I5Nl8-1UdZZ`C>3uF;978X01)^ggEdp|N|3qwdD(<|-{vye z`W(#mMi=%bItH$xsi&#vD&@-mYAs1~F9`vKvLo*Eegno3^hyA2VGsj?6Sau}6>u@e zScC*1wzw6xyVfX1NiofqaLdSfCgZB^);dxYfO8j9ilG-`k$8HcqylqR4Qo?S3 zsc~HAt#1J5)q~qL70Dg0S!nu-!ZuO_BZjd zxF6dcvG3S!oC}W%1d)41Cp=xkwpPB(z_8W3KZ2FlGiI> z9iqK$bvBdPy@IDe#u>h)Wqi|kQ?B!KHub;*fW8IknAD{ha2YbNab#@hsacT%R~(LK zHNS~#R!}KJZ+aG8xsMdStL7M!~oc{`n!S|dYiBvTZ@yP+X0!ns$%C48=gAu93sA5f8B zQ*t(dN+T1nEQ7W@a}^TxLyQpub&5K~{gM^Kw!%__a{#FM#NP`I22BT0myxPwuxv%=X@JtB$GL|Ja)27KZ++8$;dS$ z$tFq3mE3}iT+pMbydA}hO1uHUV*pT5%81o#Ug5F>0TubtKZhYRaPoIViN@Hc!y`c$ zGsT{&8x$0T8h=w4?9zptCWr$WVIVuqB2y6Yd!>Vtc6CTEeB&B_($PS=%>>{XfLsDg zV$BDjzU!<1CebB$f&oJp?0&v!Yzh$0K8z>=)15@(ZlQt3w^1?+M416l0(zle1mPJ% zw}$#vUk5gTce^B_WEvO}MgK8{5zsykmXR6hnwHrR8j8@PIj$l$1PtA2sVQ3ZA(Mkv zgv&F1904o|fdRlXlVml2r(3V0 zoWT9UXBkUO6{;@qwij4|te z7qGzCM_b0jO$ajWBqV^mzy0KFrTp<&<5+*3h;wkL+W2K*9tH@@aN+zBOuC{7mq z?ce`B9*G^`IdhV*ro2Ld;9|q6iwvO+POsy_7cW+Xj+Chs&LGjVL;FS*I@&xPvf**k z;n+$5ARcxiZYgJYBsaqqCoUKJl~uW|b7YK2TL{H+aodHX7_cNT=#{d?x1^0_EbScp_C?Ld3JFrgvJ1an-%gc zV6ZfQo}TJ6D~hd^7!ea(Z!w)0u9FHAVSNQEV>lI#Nq~nlLQ6;?3ShR9aa$Xrw33so zoHIEWlpj6hj8kY>lP%GsK_fUMN`CIgI4nYl!g_r z^m?csNO4Ug`l955dIe%Ne zdT|2fYNeDjwZoDa_;#_#Fbo|k#VrlsjE@NOCU78O=T^jy5DT1(leAbZk~{3O73Kc8 z2|qaZiA%qQUkURQ{FlQC<+h;&xj#)PF*43n~DCWxrfyON<-;jwTYO?YBuq zmX~A!5CsYd5MaOnK>-02DkRWwp+bZL5KIg(z+yy#7A+b)s4+l80s%M@WJmx5h6oWf ztPDU9B*+Fa8!%wda6rZZCQLNMNB|)NoCG-vOi)y#Py;**8n}oMq<{klIKB+|kg89T z1YvB2ks}8S77xXaC0o|4SqA{ru4UWS?OV7*uFj=;*6v-r0g4ud0HG+xrU?;dOyEec#vov>~H#Gf4sCpZy-LV=NS z4rm?m@b2p+L&p3am1blG*_DQl{MrCviwy-5zi^@R0D%S)AU}u1)2^x9C>wA90#b@j zq2I=;4lJ%<082OwZ%Yd<4m*sCE)c8AaKy6qN}#X5A_}ZFgeICwsh0@CfHA5ZgH8Yg z6GNx~%^J9@fXp`A=)cJbut+qTkP3_?nFd(x0F6pG41ozIkWGRBuAG3f3KA0$uiOmE zt-S+!qbb7H82pkf&6o>-xU!6kNv!1V1C6}1FcRxV+w`1hx&o?O0HcKJ^O8>2#xkfo ziUJ5vvITGQY$WuYdx^cMB5;oZ_#&7{#{uCRfTNoh)USa5(Fo}8zW{N1%0SQ#RWLsX zyKAU~63~2ULKZ5#kVIg|+R#H{J(MfNxq?+zArnzd;3ySy3ks?O>e8%&k51C8A%j*U zz@QB_hzdcF1nTiogbawxAk9uPZB&jXimB9uEQ)C*4IHxQN!f7CjY=zJt1^HpCs;@` zFZ&C?ySxla;bGOHiugvt$U?6nh81elwcs)i;JAg*gfJ?@4gv`_^pK->p^WjpPAKmX zATp!D>SMMjMDY}hBjq59^tJI6@UGMV379CQ2o$0TG^8~>U?Q4QVp!U7HS$QH@zlJk z;K1mOC_Rl}^Abj*5xBJkk6$VZEDB*DfrMq39ky8iy4^Y!*}CEewmN6~3eY2qyb~Z? zj1jQOtfp^YgfI|@qb_k&KujY`HBj(wtBuCP zj88BNnw{bjlCp*Lg>Aipfdwp}w_we!ZW9E+-SCD$2;PP-emM~Y0yL5XVnr#OBTz#U z_c|3h=|&B?mIA6nAkdZSB#;w;W+KBvA%({OYX5-^sa^;=Qz<1&vdPy5ArLXynD9vh zW8IZ%r;yu4ry-*e$i!%q64wX>cqBSa%+QlO-z@|_Avs}oZ1bB+g^@M{L0Dmq1fNfR zjU?NX0ml-BJF@(yR57HFd3q+Q{yZsSFS%VxKvKGwj3#RYA3CZ zIFC@qE)RIX0>R?I43bEK6r|e_WO7PWrZSWn5{R>kQXPjxr*Uz_&g`UTG_oy9j+#pi z))q9cZ4m%IPkb*IBU{}geR03p0;AF9i zq4c8jd{)bnM2vS~6d8#o5}E6f2a@6cB#)cyqDS&fB%ZE$mpwB%n3%Z01s6M{3U9ZP zJ626+9vKWnBS$}yICOv$CCN)BfJSqg#eraX+uQoG$_$N?l*BS+DouJykP4@j9DL;h z6hxR=8t^lTnaC|ss2yDrDl#&8pMXR+fM5=@DaI@Sd=&6TW#Z2wg0dqt=>^-EMA%Ubsq-eAg~Gp%nB+3bx`*JiF#9A=KkvxQNk$}~18vCYv;&$<84{sZQ>eZ?W3`t_E`?qL3ZW_r zl8bs%T7~%zdN#^}j*{S`Db>*bNGVv-lb)2dd5MgPY}?S44TeTuS_&<3Sb?MvfQB(c zfclQI5vIJys3%dXW{YV$$lS1}1xS+}EmAN8$VMPF`s`L4BAX}WhH#AY)|$NPKk{O9 zO?WKJS?_Zg>D&>Z4WOl3DKeOFZ9pt5`IBoHW&pcNY+3>OAXDI_E`(^NN=FIPK?DF; zdipGET^s5+7lHy5AS9+{I|&%00>-QGu_iA$T@Za@HL)#dT8tdAtXNbos48V@4rvG{ zQ~NfY%@!{rbuEX2@FXAyxt%&D3sE|F+lMBICnsUlcNjIc^GU_QCA5h`OXW?UzUw3y zDAkXwR{)4=hfs&?X8|bx6-$C#GtE`ij}lpXqt&%zv! zP2^53A&&B*!x5Sk@HJ@)K7PBm75{6e(CQP6Bc*Hvg!Ka(8 z_^;Oy2uh_o(~Uq!$%itCnqhuuPIaRgTwleEYI0z&du?GNqov1n`>~LXEwNym#UL#; z5sOOrG8{JVS_IQff8tm;(4B;A`(lkp?57a}%}a7KQ|+ag=4DxS z0;<#O6vk+A)LYbV2QYzZU*Oth%eKZv*tw_}m_gruBSFNy!=vsoR)9IM0n+_g0j#^- z38~V%MTBkFd<{MG)m9c`7#bcM#H?SBr=&zLpzZ(d6qRB#VN2B|1rBb*A+WMM? zKM~?f3kkzy0+^>D*RRasTx|lNZHLgYHoHTBA!DhL&K)Lv&>D@_aBK3&R6s$H+|6KK zWbZ+{+yXGSfXsI;mYUm~EjZ6PkZ)g>zVxjxV+M(L(tFd#g1&Pg!9Zdv-;f2w@LNCP zmI16xo|p*#J~C0Scy$}w0P$`BlHk0q8GJ(}*Ua46X5>hyb$U zQlF4eq)5V~1B-x%A`DSkB;4X0Hc~ysaEb&h64=u-BSzR>%Aev zLECCJ%exb;DVyp$8JXami8zU{IYI)c4(WQn1vv>{sxt!9oXx4Q)d-NRJEXXiD{4xS zJPNY(h@A=WDuHOfcng`RC;@I;wS{tx`ct$K(LW0dAfch9yfdThprM2q4TcFs;wl-b z^BRl)a3cJnE{U2Q@9C=Ox-6mrGk5_FB_l5zVU%lXi2f)N#dsHkKpF-pF%;`3kWc_8 zWU=k_c9!Mxe-xeI?N)f3hWkWgeOVlA*qw3?ouC|U_;1qpXgYy!}_Kxi6}sM4U51P z4_*pyI=wd&JIE}Iyns16$c zw1BC3s-ni>B#oGez9ObqbBJ$x z47!6P0%=6|c@E=p#q_$h_1eGa_@3^`#~;&a)Ioy0m5V^t80MUsTy5sh{QYq3u_A20i1Gkjn?BIi_@8h zK#KSBx)@WQzF+7B&-E7h`%W`s~Ali zEKQw6O`B8AoMTNRL$clu&WlM4Who>-GSLodQe4bKo9O==ukahksWi;2&np9-|l zhng0P*s`>PKpjbz9~vvDl08o93uiJ-6CE}bJvP=P2-ozv1&G1=+B&4D5)cAU@*+Yk z+n@d{M0mlBRU?#9l$?HwP_Lnu*;x(8I=RD`PS6?{g}4%>WKs+W09cZw0Z^oGO3J|y zD>lqNja-U@*rIDO&n}gzm5CWKogFEqE;12_Gt~g^Xi~n^r2fLj)A&w~u#UVy6VQvg z{xB>SJDEy!Q36mT&rp!MU?icF%!U}F`N&mraf;Jv$J{}_5E_i?c&p$GKBhb@U)r`W7&6{~xtf@qMOR(`O9L9*F$}0@esFIa(%-Yo_;hKQ`49V*gvvxrg*|5eA7VdyxDg-JiaVi%P2$v9K_bJJ+wrVe!9G~LODp| z2y8?bnt3qls1DeWE`b{v)=;mUa!5eYOpRnS#&jCXJIqgv0LJr)%F`P8!I^htv9Wp9 z=@Zz+wukVzpf+$EeLd&AKRF=Zn)6B&V2?BhHT*;kW#tqd3c&jy8!H;cI!Wb=_ zh$D+=7t4`E(>RQG`KD>HLR)f6~&9`OZ+mJ8_op4Bq>@;}9A3U5QzZ*mKd_;}^_&Np*t~G03Rm>rj^}4mhB~24yT#9uq$emmOj@-&UvJ@!{ z{~5qi(TvUI+fos_&o!XXtpF+{U8Wd`(-qg$ov!EYIwH)Gi8+8Pna%mdrt>4C)ySsr zsvXYRS}AQL*ATdkT~&wR-LmlA=X{OewT+=U45TV8=Sicg9m$CsMg#EPeX81_K+gLR z+eB+JHgrscpv(EAmr2A5+3?;FOPugEfN!%A^Hrf$n~L$^Od@Q`>U-bZkiL^~zL70l zia;Q~&0pK%U&r;a0KQ`lVB8g*ALFahpJ|+H$(-*0&vIU_) z`lwr;SyS+UDqWJm10I?~&P3Pw4)Btgh5%NsT4AZ(k0d#Yv85?&&6&FhUU_t$bL$z{ zL=T5k9;@OLYK6*XioVhz2z<%X39z-($V}KQ30d{PDW=p4grUQtEZ5Nq6G#B7^3pXG z6N6-912e&_TgdT1GgzEHrnpz0z#u-13Rl`+jP2i%3WCvSXLo*Q#{Idy@E}Pn99W?- ztk8)zTEPnNyuEO&k)SedBrJ2uq0*V)L%m>Vp+w6fj}vl6*`U_KC?js-Cg~zp0y7KL zowdU%L7!PWiG7f<)ilqAK)M4>vT!(&g^gqX_8A_2DvKzJ>!FFkRh)v89ecXF9|j4e z$r^@f_bh>5!m|&XHquW=(Y_ zC3b#iv2JI^jp-ni<|Z@bgoq=LxrnD|oF?%lTJuY**%($CydGT&a$H?m1-*#iw~1H{ z0T3vd^1x6wm|>lbm(VT(qpq?Dkm{}BZacuvb)Hgt+r!;67cn;}{Z8~a3D{*sYGuin zP)o5OFesF{ycWv-0Jb$M=E`o{2+$=d<~qVFnZ)Si0O$)QgqOtlHdqt@Tw#Ei&{snK zIH}xV=yj|CDUz`%Ml>56ubhk864jLdrQP`pD?JT9EZ!nH0v7#CQ!@G(W_SL5{tr7>(>PT!>7Sw+uwN z_zL2TildAR?eB5GhA{1iFskFV50t}Qa&AQCrk2UxtlPFVw7e9=TvH`$oZ()?&m5ja ztRg;AzN~%;^y1jjdY-fE9C^lFP0eoY=5FrxZoL4;@-ZOa(v}L~CMD8K?LcqeR_|SA zZ{*sttjiGtkZ<>e4}^OXoXBs4$d|2}js70o+~68mWLtdx60?k$k-pNmbS8WRxFSs1 zq`B@`mS46aEdz>h*|;NyNr~70qYVoeBlzei0gw&&8VnAHw>`0v%TZVQIOF#{2&yY8`E+K-gf#-emqJ!q0WhRbem~&$ z4krSg$AriGxGrHWab$HV=cO*Gwy>9gY^h0E%$~0XxKC_76n2!uJp7K^0f{aSBQRpw zHQPei2syC`&?!6cwMWXLAcxCu>OcVt%>n8Q9H}xx@k$;{w|3} zzuxbq@sg0|hRy5}eRWv>mvylga(Uj11O(H=%uPS!b>IrFYiT~N^IXSiQ17Wa$tvd9pyzyGF78P8HMP3++R&=a}unJ>mn`)UfX<%p}J%zRC>*g-qd!7YaOw(%9DtWSvjYaY`8 z>V9Lr$1i@{AgC|naj(YwwTN}iCk@VbA%IwrVBkOj1_KaCh#+CY0S*}^tWd$AfP@$@ zNHmCGA%Tkr4meaGvVceh14J4mP@sST11ncLY-!NpOoszL8eA!W=FR~vdD=8NAZ5Y; zISUZjm{5X*k4z;5h#GamgoHQ`Qk@W$0fP-*rGj<1V607w7i_+SX%no`gHahGBtWq( z#kzA}(#^}Z=EnnUqn4D~mu*X#8V(BxTvzQ{rZxxAJ$N`_;Q5G z2@pV5TXp4CQDGgZ8D?uqMI&2*fkjk)QE6tEb2iLIABZ$@T8+dRDHyimHFKlz(p7c(ANP8i9}jm z4)x|+o(EA#|K?-M$%UMf`B4VtendU@Vq{`1@E>*6xfiLV0dz;6rI(hMo~Gzc+Npa4 zfw~f)fNo^aRmwFOCskQW$daEmy+m4T2_03yZm}j8Xirj#IVi1GeRSK93H5f^nG?wN ztD&=3R4d(TYjbWv8{}0`uJu?+eqM86{&MwLMZQJxVbh$q7ZkXGk$4o5Jhle>uW49l* z)-Zzg@zhd+0x~p^n!A2TfM~saRAK|h{TZmgq^+A zW;GKpRm(3UFJ2I;G2guN#X~RFd;^U&7tj=Kbp2czK{S_wLi(leNSvRfKma8vVB6+n zGQB`=(VY}{*Af_)J4AHx9RO2FzphvUgB`=BqSf2B$$UG+!PkIob-U6%# zC+s0Wdk5j(q3%SJ!H7=*V+)B%(5F7NG-xdE3r zj?T7{5|m&qJG>7_>R3Rd91v~#lK{VTr?-Oyi-Dank>3Q6f>fHtMzlU_1_Vi3BP391dIFhZ!#Xlc*KI4xBKGC;F}ltht& zC6_YniJZ#ROUCskOTBs4s2GB}zEEo;3~&@tFl4^^t#NoZ;Uy?%X(TIE2%6VaQB`y$ zfOYQDS?7GBIK@fMaz1aZD-%dM1M1F{5aotmGRQ?r#F3U<Z>vZq>~^#v88e_01?aDXCogWm~i|gk~iwajwDfI0kX2I@+D}O@mkEIbTpxr>c%M_ z$%m5U12v*=LZ&mzw1MR!crjsASgTu`{~%y=lEhuR@Y5D- zU30V!#Lk!uK--lh7sOto$__ua0Jylo1q8(pLjcFa;u^OlChBsb0$?KSiY8Z0y~=T9 zdyr>RwVBTBC216e$1lriB`bt%TxQ9S3WCcCggYDt&S%r+N+E%d~GVXln`>z4;g1uv$xUB8_Cb=p?6^2v;C}+80pQ{^hQu&g)}}~_4y>`2Fp=00!pewTl_NRtjL9Bbic@*#uHYb5ddim=Yoh5aa;Mg$S~Snj(JM%LHYE zDX?eaBL&wh>Tn1-bBAxB_}>n(EbQ|NF7w5jd|X|4qeVE=&Ykvf#B` z1nGV$k>Wgt|J{|*N)^ue#YOtn%7hJsDB0h7z+e1* z$NbUXp}paH{0^v$9{{CG(-p;FINg{u*^Dj7ZE##oj3I{Dn2-p|jE!NstjLKy7gg+x zhnP(VdWG5ig&qC{3I2_BxM2!v;$N5u$0<{hs11FA#SJ={D9Rqb?9Ih=TMs!|N3EBl zoZu=JhKUrGleJ-CF@|-x69gFmW|&6!$<5AO)JZ8zDsG}KOr6*NoQQ+CN zyu|PLT38xSI9`eo#8`D&=XF9Sb{Ir}MU5BvO?ENF1hgYu3`AkjBZaw{iaA7LJ=TE4 zrBGmqoJl3S7=RJd-F?)aqx4J#@PrYT!~k%`s_Y?-NrgmUi4f`0x4D>BzzAZR+oqwS z<~YO!G0Rd$1#L!U6Lf><$)}vO_bF>72hqY#9Z9Rf$XJ|Y|L|s-d8A?Z1P`_ z9h2#-j^uR4-VF%%d7lqHR@qcqkr~OcXa%=y+F0C7C}t;Hbfp|p=XFA9buKA()SJS! z#b5wnMO*}xB_;Jigz!kr|Gan{9VrP%@ybL63J?lKZ>AT(P)L?QTtW~S@c2rgq?AxH zKvtB=giQzVn51dVV3Hv~RxDLl{ly;^+sujicxYwB2m`>Tm>Wz=M2!-&_ z1QYhD|Ky-%Bvkgj*tT$L0o++ja7D^whwhnA3;tu0aNI7fRYXrounq@_a1|4u%W)XZ3y)a0i=#=sJ$hRn`X-r{Gb4YeFb_C?a05zWF_75EI1 zY^6!Dz4TCmcE zace*pmwc6lxb~@%)Y-W%9tmB=y0)tUyz5wOK(?l)yzW^ey3NBzMRo~5o9sy}re<&S zD{L`9N$n6%LL4cv$ahJSpcBv52G3P&f@KKCj?5nINLic) z0d(x*iB(-xOvs*XU>G5ie%SY*?3{s+6e|fLyUl~|O zT*SzLNae+%{}~0AlZ4u63g>^^U|F!y1KLHR_5{-1*xMNP<&WpI#^(jc4QU+HLrcFGTkE}0npag3mVhQ%iepnKP#D#|0M9HnL z>AD;0rfx>AE?CstOElPhOa#+81ydvnm}D-E@&v%$?pmO#;IvtU73UV(2|P9qNhG2b z3dvIqlfq4_CK4vBWd-m6tY+X2?ywPNq*My9O}b3`XNhUkg`KkqR9%SfysAYf!D9Ua3sD@M zGM=nTeAtRG1we!5&pqdfO=#?rVlvm@C<2KV8gVrF>*VwsTeR^(XXu9!CIV?xpN%0m z*+{^Ov*yz8T9j)c%46QS^DtKG1&r)O!&E~o8sj(4jD0lP!QK@^U~X8O z&qISnLbugIH*`bGH4Vy#&Q7%JVnBCUG)9+|M&q-X)SyQzK(oZKK#ueck0ie|$j+RK zeLMt9i|7&>1WZc+KtJ?fDVqp{jX4Hjh zpmkjM%`mbfJiWEOAxU0yhq01}UEeh(i?>LSFb~zWg+r)D z-Aqp7l=4gRCH9~uc2HAO=4w&k3TOnyV}kK zPzwaik-{wR0fg4R9mdhns1gwit!@s~x!Q54#@qTJe`NJ#Z7X;)BkA5O|6Pldd7rmK zi+5CfFd?ZXLsS5RA@I}a9*aB5(7?}p2&974ql%X6T}{ojM#%(7OhKaRBfVI2YO!+A zY2PkUPNb;%2si5$TU1`Xi4(t{}R0o(KT?j`**Bp z4Mh9qE|;OOueogDpi}~i003o^`^GUcu&JbU)iK1SA$N7S)5DBkqeJ*lU)CJk5!=0R zvr`IrkB1Rt#m(b<&dYo(x1G+8h1^Jl*}%6bA3W3Q9=-kt3BK&54%}!wQsWRC3_}Kl zu&E>&-feJcisa{@q`F@?3W3f$w(uCq(%`yL&}Z9rR3&Jld_-V~P@9xysc0rOvc)LR zO=09MW`^y2S)3}8x`(3uvm}V6HSjkZ3Q%J&vlY@YqQ-45-j7G)=nUva^w%D8$zejq zHEzpeus0*GgaykrvPY54=X~kk{LUl5UUQKh3qa8O#n2zX|0tiAqYRRCpv40=EC;1o z0UZUgh1ptA{UN8wMqGWoWWCG{uT{|IA}1zf^rNoY%A4yjHcw;1@5JY;iQn{O+ZV^% zmr8|mM*SlF1%Q;@*Z4{1J(NQk-!u9ERDh+K&)@TV0eGoG48CK*I4d=uPoAjc=F+SK z1Oo;F1Rgj*fPg^(3l}O-AaLP;0SpN;K!6}Z#sCr-a$HEjAwmKhB^qED;3UF`5(g|O zP#{5qmjW3Cuz3?_PMte>_VoGlrUL*&i54|_6lqc;6PPx2`m`xfsZ*&|jd}Izf(0rC zDD1jn15*hS5H@Ha(O`uNUJV#vIp8JBmlqKTh&uq`|I51rNIF~z_oYJxXbloDyU?Is z0T)%iL|9nl;{zcRPF5gNB1r*E_a?YV_&@-?Bu5XR3z(rmlmamGed|$x0fYg(-W3^O z>_v*YyLvro^TLI(5?%%XJG!lb04bQiZOf8j+s}XvCMT&jfZ*6}2b3s5F{4@D0s=7R zx{_gmwlB@Tw2m{cdKoe@mTmBn0K|_OBLv`|A2jap@`$FzE+T0nmMGJXJe#az>8A4l z)61c&s=5%v3V2rRWKFm3~uFc^+I#12?5 zuI-@v%Yc^_(#t)G90N%)!4x1eGKnI?uPx%@|1v8w&I+Kb0Ed|RYomp%)GDTno_me2 zVD#%*-a|f-Ims1X5f`D>oOKuC3dABTp^50^qR#3666wxC?I5Km(GZ zq6i@)3-CxUmf8wHKdy$O%^(*jGRrKjevDKi1dbeY00Zcn4MGC?EQ?VM9%8^g$V6hm zNdkH+$pFaS5^|x{D53~XVG&&I$DAZhpuz-hGZ9)7IsA~?50?@V+i0~VQLC3wgkUsK zsU$!~+{OyP#f923NTL@Ha1kxo1c=E!0e>WvNO`N{?n%}nBjBRA?ppUC0`?NEPzm-t z(53@;UCE)+-nvPmh!57upwMuFaN~)B|Gi0|m$VYpK~?Lbh|>d33Y6iSHmx_&n}Urw zPLJQR64=*(3r^VWlv~J!pjQ)Ds|8Ss=_K>yB=|N6gI&lhgB%iwzW^9Dizd}3u8&oZ z{Sv@wum|{huwpyrYuJx(qPGB-h};%#45zJ@?xU{7HpIB~ma1Er5=fCqaT`FW+~EdD zcRO|u$G{+X2XNTqh1f>*-Z_b!H1giY?Dt=QO`UY$UJKsK;Di@OAST)#7TaPvUlY6H zGco6@W*rYG;3Sp~L~mG384!7aRn;}Q_l#GrfaCyTG92dMo(4N+?>xGB0wVv4J<*eg z|5<>bT^JhFqIE?&BBd=&&Q{oU|NXQ9sb}TSfU6tGx~8}O>$)KYxP(}L0m??ZBK4CO z%1XvIw~c0R3GB(->efI27(qr6l;8vvSizlO1uHKpjEm@k02g6^B)&@3oOtyb#k9pC zWKx`BxRS!REQD)Zik*ZcqcZ#iKqR*-K5}0ak&|^E^RaL^WqyTk0g`x+TJHgx)EEy}CF%1AxUyUlY{u5b~;#;Ac8b>LFkx zA`o7Ag)2-!i1z%G5r*t*Op1HUW4M;F*TGI^{`=n{1E`t(M4)$V0o>&*SV^2P(1CP= z-~>4tK}%ZFTYpoLObU=O|E93)gR4Ok5*Y%j3Sf?RavIVQ@l!&UtPgB@1W8C(V#Af> z(1w1>m_drB6@=}Oa%2LGVDuuWdI^$};}HO(1QP&I1q*lz=^_FcJ9=S2-wLoLv9)D*cM+52(8(2ej-@Hjgq;*3apucW&D}hvocb!Yj z4haAo!mM(MIJsU6bC;RURjngHbjSj#`N>LRGLzKWWG6f6Q41pE0S~|+DJwv#0h|Rb zW1`$b)FK(RT#k2l@lEO8qLs_EhF6;dCZ+oMmYtaFL2jCmq+P+Z29CRkG(cp~5?EyBhjhHI5b;EA7x4uEYj zF{VjB8d3+2l%y0SZ3TfS+67n$hlVi=r>5t%{?#^OlG3dZg*qBh#ZDr>U7ZYVmKn6V z&^34wNk+tSF5Uo3l|z(g%jC*2oFK4H2&faWJZ6x?q{h1Kxhh&acoFaX>6kgu3Z53w zM4w$MC)T+Ok$6O=qS+*L%GoTWK3ggTNDYP>sn_=E#5q@)Pi3xzvE?k1?Xc<~Ez#TFUnPGD2d?Pqi?=3njFq`JlWT&4JOMeQ-zyY~Ta9VH^( zz>v4R=k+B&XH!h}x)-mVB?(;TtC#w|MtnRSp?-7qSeKgSzmo}Y1U}c<z-*!Zx`!xu(zh(}zv5}O!1n@%8Bw35;Su*_D< zMTq0_b-utnl*$HC(`aT%8F=1>zqtaefpm=@V37yW2eaNEGj`0j8FQemp7QK=qNj|O zDMtp8|Lel`l4rs!Bvu+YnPW#%Ot<-t*6$6Lyn>TV&;~K6COMC>bos_>~ zZ0^prg-VohlVn8F;K~THzk?j)`W`L7XZOsy1$_*A4LDj+bGp;jGQtNbUU7>*d~a=W z?NvsTF${Pl&D*()cKmWVD!(v)3czdZ&g9N(_WIYX>tE?IESLig^GLcHb^;b^^7{^u zG_#vfYZ6H$EJ28JTHY$7AT&>+ruiZnE6zzq6S5w?*JMv#4XT)E7tD2*DQAM~H|K~K z&nnj=bm@p$g4^DA%I06Z>9@ZavRpoEPq~O~`vRhj5V;z}kBC&}K*>|*n-H^Tu6+;2 z|KTR$h#O_%7MDE58NW9cr)b4sY7qt`>}LeWTu8Zc;mFH2;~Sb`4c+*9;jwJbye zh>eV(AOm5{B9~lCg&ie^@tTc)NxbvFY&%G2tt_=9@>Cowxg#|UyHtFCoaT#44 zpS!Sl*827qAQ7hEi+|hMjhM#Ld47EsKiwCiSmorx$o$FoMveevGSX{=@Ml11*T3Hj z1Um+U(Yh?G=#DLeilg%4#_=AHC?aq2Chq{_1|didD_l&12E}rWEoaVcHNGaocEyCI z4vc6kGXm^3rek3!LIQeiAyP?$3I?efpv_uB{T3?W^vSSFBWO+nGJ+$#8sKXv|EYf# z4^0vb!HNyasE(mV!X{>E@w5W3XrQCsq{r}O@Yd{77SB4K>bst$OMHZmic6-5XISto zY9L2Y1VT`1D7HAFv3{pG0ubTGW|54=CnSfI%uH<_Fj^8&0UxLV8&D6oB?7Zz0$Yk) zB1q%{!{k;XCi;g1iH%Gu<$4}xtr&u9bj1V>1O-)406qu?OUVT%K)iJ8w`edkj%0X< z%5`#ZPj>JESi+dh;s@U*2rp%pP!4Q5tJwN)mVha`{){i2Fgc)5OVDHr>1puJM>*h% zJhIRPwlFffa7=LR?RZ6+$_D|;(8+u!4galR*wCQVNoSTYqmT=L8f4Ov|H}@6XT9<; z5KDv)6_5e{u;SivTZ-w2v`=mFCwA}(xduZpJf^d3iIsLsnec<{y32-oZ7kLYA-akr z#EVpz!rS-`SDuY8Mgw?+t@-e)pVY1`v?5eQg(6Ijss!M^FjD{6t3Y_s>snA_vO@uc z3$KpJ`>Ln;@M;34F)pmkumEt^dWpYqX*R@aaQe{z9uaZ;Vq6vi4L@U;LIXb(hbG3N zo7#jXTq*(}#GzX06X}G)QiR1Q$sYHx4?Uy^#7HgIk}b<}TT&`3UMm3@LPmgPg`^8} z$fk=jV<3xbmj2?GJ}btU0n!19Au-j7NCC0E)}FE)TAipFnb|AI@dYj!3je|~MS zjD$cSj4ikXqWE#%M~SEn)6Pe*<&-5i3f@Te%U=_TB$1^MX! z?#rc&4JdTS|O9V=Y`f*_xg%J~=v!tmEMdG^%rp_?OJ`kdsKI8oq|H3{pLiYY8Iv9ZXg35Pl zLXd>T=I|~%$4v$c5Vpz_9?!Bv!gD;wQ%a-d*h0xd5>imc1PS5Er^@DfGVn;~b7|nN zw$=?Nm;zK^Gba0EiR&mQ0TU_4_Q7eww@#ta|)IO04%uBJVekiJBN)p zYfLWD!ITJqkV~T6(I#Ar#qKLhrG-k9!b-2SEqk>@wsbP-#Y+zaO#M?#If_id$V?du zO_fnii>r#NL=?r#R@TQiBmj!oDK6}Es;Ej>GGk9O|At3w6;R8NA!vXGx~}a)6;X+g zBCJD4bmW*U2l&uQxX@`|yb$HiX*xC)0Xj7)KlL>JA_7#;RZEq@s4-PlqJvZ-#uUq* z;I6Q^Lsq#^0QnJ4fX*XzRW5mzST*E3BQ98ll{`z9L^h7&gbuG_&b`oyyG|6rE_E*g zlT#;Pcyxp-`sHRRF;`?!0SuxcOGhz^iA2$b@`T9P{7WxfBsmb^HtbaZ+?57+4bKv- z?b;$ZTF_J7>t2hkUVbb67ND~vCUOkm`{*e>2vQ&k#R@MqBUFzr80R1oa$)9Ecc^xK z7|XLRAn^2J{#>xE0`D^tGO^ro90MRx!iGGE|AfU{>o-_dZhjRhQdVWX!*Vr*OXG4w zfv0zVBpF{rKg}(30L#fvW;hfTU>$-tUNh&K!ZH+qQ~n|bC89w$qAWIu96u z6Ig&Xgw*7cZNg?I7@(T4F+R=Jg7ZglmQ`p6U@W}ijuNdoUva9UQ9`wg3vERN@iYM1 z5sd~QD*O?xEaXSfQQ-tF9W5$9h$J}J{{~Wd2MLD-EGEYm{nKo{&Qm8%^=xyh3UVR_ zY&)z@Y#oU(EKPZw1^v9xjcCpx_eGivP1R=OHXQ3F%%X@+B7fDSCoCA+Cii6_b%8I0 zfJe-L6PS(<_>D27feR4jA~+x^xB{#b}MQetOEK&-ql_v25{7#22fQLc&|I|fhgP4?(!|h(Oi0cKdY9@(O zaEaN9Bb>M`pm;RBmw9I|Chj*3H;kb^f{U-riy5;GMM8dJMd@TxO=3WeZI|99Zl@J`=Caa!nEeay224bQHkoHJD=VrOtcv4txI zct^A&^nzLb$J^`*Fi3I?)fmsZOv`{JIQ)V~-n1YRO)I=Yd8=5%{LX7HKr-3UZQ8N$ zQiTc0C}>4@p1sgc$E1wkE@;TAE)YPa{T3nGQC=?AVuvLO8S{%}FIJQbR3NR7tR;X(h{S$d z@Gc@cm@0!&Oir0hkw^NOL^BXB{7WKMbML&cP}>Z5SjmTjWf$v3IZTc#+$`n7%2I!1 zU-r~e2FR%X=dGP2Fw-s@cx=C{gga5lRz%1I;=;GsK0nA&K5v&IE0t2EJZC)zQO zNr|Xw`zMY%q+(mPpGv~3Ld8}Dtrl;VLzU%LBgO*Mi22j3s|b+I1z%6INdV(zii1}< ztN`Xi1{}4hCd9_o|4xcZk~TA^)iP3S=Xo1#c)Se|18>+m`lcou26Ei9u=~kkRPR(f z5Lm!M!uIRO#_7uTM*zm zw)-61`JCH<|6&kb7TvB}jpd7~MhJ)`15eSTHe>Gqmd{^uV^t~x(GGwxA;&gEVk|y) zy_OqH*lAzsM7UPCy|Qop421U-<1Pe3D|Ga(F(;T|HGll6D=J&o4M34ERYA%IqGa>S zh7F9SBVxJS{$|f_x!SW3pjm!9i~BRQX~H}TvGK$8A*t#` zaufcu+K~g9Z6y-&r5eI}Nt$F1rSGlHRDjeJG6n=)v9e zfx-^qQk2G2LE!sGt}njp)!2daXmiwa>Vi-TX{R2m?Tp8}e+^++iM4GEMBlyVggkD) z3(}-#0KkGWSgwDJKilBV-6c1aZV?vSDF;=3Ifx`t0AV6?fpkl#`7&B_z z$g!ixk03uf06?;&$&)Bksw|SCrOTHvU51=Vv!>0P1P2Uo$g`)z016ZgP-wtFMV$i} z{|Y2f5NQCN3I!rSz)+#pf(H%=%nH@2fT{!~NI2+KU`2&T2Lwf1u_DC+PSdu1I&>k@ z0aGouEl`xG(E0&FOwLRt}^-vFHb^cjepb#<3%r=^C#Y768xz-zEwH5*^XB?cT@ z!4be4Qoc0+oN&YqXrckfCFh@)%@OcibkS8;fI!({7XgAXLi4MWutRGO0j^Ad+UPq(~t-mrldAg)5E+RD_+WBCg7+L(xS>qklU+RH9#} zMb}`5MS+HthBdB9Kx|*-#OhQCRM{1RUQXp=fJ>d06lUOhI*@?n3Wyzl|7rfV6?Iuf z@Mex>>WHCRjE;xszy$Bv=fNobN$A3Y672Ay7(VcTLlOlHWl>8paGIAyx)><|17zjm zK_x19?_I!EbbvxO*f6C4Vo6XyR&U+aVQ7c(gL~fW0MhH{Hqt93-tpusOEk%zHDCm7)p65Ce)l$E8$sr$LE!7Uyb~-{BF30STbHO?!V?~i_^Ub||XrcEzpBsR=vQ>4}$8aO? zG0FpZ+rgAz5%g)5OkI>6L1+?P0RD$F`y?Pq?W3Fmal$yq9Sm}jBh&&XXcNm}4g#8k zz{Tp~InW7^baf%u^#qc---xVr4S3y}U^9WX1dDdqx!nRBqC4L8E>?TNlC7A;nrs;l zc^5d^@)`h@9IEAWdYhE=Km;xXRIeyP8(Q{!b{FosN?qU!U#YG|J{`uUcjpoS`&vgJ zufR`?@*4oIL?^BR+>cCEN!#7*R+Kia&SbdB4#;>kL;E1G|63FcBuEG|CT+3q^==rUDcNa3_=M`x~$bG{R4H@^Aa=OEHxi~!)viUjl}mNaE0ZU+!w z^s)jrz+?@V3z+I1p=PbLIOaq~913g-AQ~B2q(Ec^=>V{!w5VwSN@nC@-=>zvhsct4 z2T00gb=X79Udk=10TK9e3A|e#(Ptc8W3J8#EAFJQKiW)?Rpd#QU!k!A*u7qNGP$L@ zr4u;%g6skGwJ+Ns2%!=ysYU!cSG(RdVSJ76|6bYa*SA*et-iA^It37&uw-*Vw!w_( zmZGx$u+F9woeM!&nSj_G%|Gj-<$4)ntfZKhGTt)hKIf9DqXFx-nSzLBcXSugXr>}I zErE(v4B;m_M7b2Mi)xufo4=$;Ggnb

^cW_)%p_k43;%UF4#i2CpD`lTN1c=9RPd zF97;-(H#fK08rx2tql$eed+4n_nM>#@(ptgwmet+223Jc)Ru<`gr)To~-&RwV!_3lLEOenJ}kIEF2bNfB&fWq=O1>ciHd=u}_WJI?qrsCQnm ziZvz}7h6r0NvZ0Lkv1zR!D!6}(6It||6C%p0hzW#u2PZHn3Sw0InGSBijxZxZwV4U6CgXfaAwe19>`0Hco!j47l<+vaLsTC*<)f6wAXYRcBXQoq-KpS7kW!A ztE$6z2Df8v3^m*mLp$fj^PAk23TY040E%lXF%rVxMcT%u>=fm#7gVsb`-$viFPqu( zUAaLMP_dd=WGY1R0C^b?&J zIYd)wfWlkF8I7gVh+D-~r0cgC|D~0>#&%ATZ516G6yKJkz9W*PF02!uf9av|yHsv( zT9?BHxhN`70sFfBW5gbIAm<`ee+UBXrQF$oK9RXWTkhqT!#uB&Hz>6sLhbbSL@7vL z%0a|p_u&8wqXLmY(3w*AGdhUCN)MIWi*$C2(0~S}(z7)wa~Ecvafl6gG_2Hm0GmGN z>8s^5UTzc^NwzB03fOvy`{$b89$tW#w~;oGM4F?&@tLco%aglwZe z{oVRr(qViIB`Iu_$1?MiPd1-?AcOw<|Nj8!fA}|ZG&gM2=2jfR9lP;d*_I=tlzOVy zLKZOql2v{G<$T#^Zp|Ya|C7-aIMzO0Q4ntD5ZEDN{(^kQavhv@GzSqoImIMOWD!q9 zT!v);Yu7A2^d&n&BG4C8k3nL!rbAhwER}&i9s?|PLu8iGW)XH9nSv3BgJfh!5D{Q1 z_E&Q%H-P*^dGE!40r-Xgr-l7we+M{hKs8DV=r;MXFZZ%eq$h#LLxEdlfic)x*5q`g z#Tk>)O66lB&-4=`m;fc1Stn>iJ)=g$fb``AELs>IJb0LYur4ten7!AcoY{3{?WG&RFO<%M#H@0RB zF-G8nD{_Npu$U$5w2=6tM6!rj7*ccUg<-(BNV^D7z37VpSdsly5ykkC!>B4qrdSae z8Q{_%bQ2x;v`4W=jYze3Hj;;F5lgifS_o$q+Q>c})hI~86AZ9*95oehw`$~s7N!zg zz+^i-;e0#k6M&TfjG=Bkxm;<%QKVumHbrhHRcf_SRiHyol_XD@!WgWRDWhZ+Wx0^8 zNG4C%U-$%X{}(is9LaL}#~vA}kzqKO{DfW829m>gEjSW;JvRYqQX6Q(HO?0qxKdd& zQ(!>2A$?>yAk{qAa+Kb4X$pZIl2~qus4gJY79F=oL{%e#mKijYD%moR&B7CH;f}YZ zA0+~qln8x7fqaos0B_b~-Xj4%RuD}@8XCuDtb=-1k{EK+U0xDkQs^YMv2JhC6WXJf zigb~MbeDM9f701cLD84rQHf?OCI7p6~UiP>PrABlNPa7 zZD9fh$^a5JlUb%bAYxSiSzPydh!1L1bvFSLN}*F2VJGwzfoT;RdU^=pp>N|(A(|yp z_+)tWl=+kZCn}@UsiG?iql)^XhPp@!(U+Y!F|D)}Z8(d}h;+?4S*avC(ZLypcP-L~ zGcg4#bD?78HcM1NT)I~P4FE-ZrxtBtJ9da?RcdeJlN}4d0EqcYCg2$0;!B`~q%hb+ z|NnxfP|+l1LryZnK3$=Y6F{D*$X}+xJOU72p~+7DktNKzr+}n7uPCQW3V9XUs1!t< z4#c91ny%y;j1Cd060-nvY8z)&6t2@BRf$B~g0GJepC2cJ@TN3Yp#U_9lewf~^%kbJ z8eBC(t!e;a$*mC}dM+YDy(D_wfe_!Sb4vjx5@tXUP;BdJk%+1i=$fvII<&!9j1sAE z%892`@gx;;6jRl&F{2T>q!>Zu7WL7P)9KxqJk=mg~9Ynz@?Gxk;zk@39dgs~C20jB{Guo11ii9Sb`Dbd9*{KHjg;%dqGr*c~n7PFNJ3%{7l zz9r!UEi=SKT*O4|!;3_Z#5im_%%kfBVFPwNTm{2DnEub3@cM_h7=#6%0kL2Sg7T*Q#vPY`imw#b?vM_X6x6x`7&ri8DzwrEu} zx?>x%-jhG=W+bO2vOtp}XlFEMBVlM_E5US4f`%-62ULY4J6vgl|Dzjleqk-gVcUoO8*MEXe>M#FaeG-rSLp=MzC@jTUBT zS9w1DMG)Euwj7d!H>o|$sd9UPX*u<kH1|JkI3I z(uxF^=bQlP92LF;JOR+o>Gu=yY%F<*lVckz*4RDGlbV5+M*K{x*7VP0`x*k>5Q4~B zY(X`*Rf!61czgR7(>u@y1kpvAtQ3vH7Cjj?au>=XrC(wx|8;>SA8jQeU6df|P+L*b zPtAD`z|G?-(+gy-jw8-6ZNz-dPvViu!^R|L`B=9nhtJw7a?5UE<1;nFlMsYgaF+N{M8%J}>f|wT4A`_OTZikaaSR!;=Xs=8l zbj@IPc!%hd8P9P{avY`$+-R98$iwZ}!`+Ro#ogmmAwzn#u)^KR;Y)U-J2DYJ+NC8+ zK{Wx6dT-gtI47da9Y}uNI6i;_4*uW}9^nt3;QWLc|1~|#uk&t3_L}YHEu;Yv?WQzs z9V>)ob!h~4f6)>!$SMM+7F|(F0uXf^mr1Az91cOl_F4cen}IaeHGxdh9lE2pOkzuPU>kJszecz=h zJ=){uC1x!kRg;-fa{QC87XlY~&U{W1s|@hA|2T6@s)|5mYJ>%hq$zUfMV{y+CZ*!J z5GBN|=9S~BgHO44Tb%snp8n0q&FP)K?b<1@eWb$>AgGRw;8F`h+BY1n$QT#GCHz67KN@b?x?7fScnMDyMr>nzn}a<~m_d{-$#TZ=Z_z zcvEe4$sw_hcN!QPes)^gm*^Ab!%;45ROJ?Xs%0w=%PmD!8f9Y{1Y$Riws|<$6H!I- z$EN8bzvWs#SCs2kSoSpU&Bsq80IM3~|H|hd+`14{6JfgxaVs9rS&=+hC$Tk!KsT~? zE%}pwCPkLU?rYsV!q>4_Qa-cYrc53i=@K(vlAluFFCRw$W`<>Nf$m?A7l>u(YJnlbxiQ~R;oB)G42y1$A?!X)euFQt=ar{UPek9+`8pnw7e0tE^X zI6&b50|o>sSJcSxnD%7D>tzN~NRjbtkF<)A+06{E- zm=DaBbZJ200k#4b26*^#paKL4-V#(00HoW!G8a^oIAEs21`QGpsGCqA;DZ7hj${k@ zz{&z6>mm?1(xS_nCTBi895=y2g$*T0pgi&61ce?OiX8cxw88)*2{i24lJd-!Wgqxm zuvPeQ;>C@lEXq{*@}^UrOFbT4`gH0x70w)+eJohB-5<A+h#=M0I}f7)-ZM!dm|B_%xCOjwY`yAUgfYgel4Gt$=A3#iM;UkIu}7Uo(hdT% z#PW{2?q13YFPsD-NCOStVoSin7Q@XX0t6(DvC2q#=%j}Rqb&fo4mhbM(mv~QCcsuY zkU@bs+{;A**YoHhf;jZD%MwQ%=_C_lDj>y}W+I409}h)TMjCBoR4E*DbS_azCyfqB z?S>SxJ0s0{$*j&&ddns|@2m?x(B^V-p#-92V9JXc`tM2xvXs!Ekv9AiLfQ(9GKCb( zTnNov*Bl_Qnt=Uq|JRV}6yVO;=Ij$T0u1`|L_uL9Q~^UN<+j`Gy;WD7Pw*}L4DJjv zxD4)YgJ$r--JReTTmmG6JHg%EgFE>R?gWAa3lJnoNP;IJGAIA{;$7!loiA|eqPkbD zmbL1lFLv*$O-qk0)u_%Aw`3LY7BXj|okB#2(Jm>0kaKz#o!C1_)K1DeO!?#1G?Bk* z2Ef7VY-qi8N$Wyd$5iV>L6JI9QB)sPuH^FZ4!;azvW@9mtiz1VdqHwd-t5@Ry9>=& zsN2s*fp+nQ4Zf~8_SXK5$BGRY zQtH|*wc=-AQP0Lhf;ITt5ztZB@|YKZo34!qHToDs(5S&UlUgQqE}_oF@PbgG-coXa z`Q0|V`4EFx5Q%HitGzTS%|F;_RNbZsp)1Lor z-_nAQ%{3M_sm?n|DVbroLh<&l$yL7HUMOIPkLs`Qkvs-c4|zy| zau!UW<+X6r#)TCil?ueup-u{B6ssUCa@4`hGtaK`#RSTXCuxO=FP~nQ+Zi82ze_JC zDk#}w)A(g)XoLH(xLK4hd@ZGv<9A61|#bYe5 z2=zLJp_06q%AX01cfbLjEz?SNl9yKi!o{vB|CGTH?7RlP3n>IFkS#XQ{k2~t5qW01 z_yFxia-!F4K77-#pivbM-cJa}QlV8AU3ZG8l}W19yqPk(uZOmk5MwpvB4<0aj7;y2 z%q<`4R3H4+HN@Es3-EaCsJhhCDPM&^X=k|!bohaA#4&#c3{TuX$dqrkz&vD3dbXYO zTSrF4LUe62sLoXQd|!a$oN?0I!%a=hMa}_h!Jf{!Kqkvo!FjD1YLLy}J719jR)(mR}6M6xC*pF_HO(byw8UwI!$^^g^l0=pW$1Bu$ngk&h5WEU6QKJ zIBt5vim<=F{>c!tg<@3WRjko5^ zraE)0hn)pOLgplH6!RuiPXzO~7SOrZ&wMWOpG|xc8Q)q8k*q7pr*M&R zrG5Jnr<>xw1*OpXOL{p$t@|41Lyl6m^vbJv@dc{ZPimgh@A9YaYB;|%Xj;jvmgC$f ztuCDF_DQeRtKIua3bYv(%dEeSmk3smq-1VDZS+kAwLN3>wEh0b)vTt86DWUa{cC%3 zx);Cw6|0w{6#dp)h2GAzu}c?H`tA3hdb&aIFCNtNJNs%qy#pV<*u?DYmQzU$1V#D; z+sS;mmI1NLf)|Ra8(I z6Z9{{Ukexk+8Fwv1oZ!Bsc4U8w3a72c?K<5jJDE6H-w|ZFMksZp=Gww41DOhe|xOZ z#pw3{*{|cjrvNaG1~&hSiHQNdXa@8)P>cR|DtZc#K@Ve`-v3(+fWH5a|KBYi4g9;U z9{@tp8UGW1hc5W%J68T@o^gc>pc{dXe^WCw8U_GrXut&xNTJcR0NND*xX=JK8m$4K z;{mi8fDQrBoB)6+D1Zglv`M%ft{}G>V2!vC=)L6xw!`D6nOJ`CJr6FT9(W*qIg+#JjNhW_MTGIWJ^GSBw5wImF5i0?JdB#aul|MjF= z>xqU9-;4Q$v_8h*?GIBQf~OkI82q{+{Y*X+Kl5y3$@A z^RakBa@xZ*>?<7lV8WRO4i)Y?H|kXTH~k!T;@fz8emkYpY&kO>TOUKEd0i`>DGItd z#J`aqsEPe_|D&SF%u(u71wl~ZVX_0KrknXf5W=dklO^9JaiAltq?mPTqq1ZUQm9xO z=GfqX^IT!}v?g2A!x_U|vH(a*@j<(vy-4IFaA`4sY`WEXTu?E;`si0*QS@x@tjLpq z+ZP4G`X}?ywLtEB31SmP0RfvVNO;#POwNM zK0SQj^XK0tC;Stf@MqzB8wD-H)ji?cLswHX{(5&0(#JXbRG##CTO*e6&N~NJ=3r*3 zcGSObOILw_MRH;A^jjQzyGcXp_P|M)hZnE`>W^ofQKE)3FJo?6@st}<6}MoBC43Tf z6`tNz+L8KmVYRsPp~boc`vx7sw&n122)?4u?0LPeg9`|+;jpJk1mFsX1WmT9UhV<5 z%sL&Lm>J%Zv2MR+OT9dWP}XCCQV)_&e$yp`>U)x~lIW8UEt~;(%k|!qv+3`cL0Po)WNs`_o0Cjf%V^%`1Mk ziBE6S54`@>^Jw2XPX9!0b0z-88KM86RI}YG)9K zwB@b>|9Cvo8(FpiM56L%HJ5B`Q` zF1L(|l3{@GP<5HZWJ|HEv><+iG$>KE9>8w_I<*nb4rc(kh=KM`Q8)I^>?a`YMge!m z6l9Ba5f(NWJwLP93GGp_-}2Fre2n#fg<(#AD*Rom2HPm2&7u0d6Gu6jQ_P}dd{4ac zopzU;SW)6Gw_>}|;Cb8d%s z+vCh=$ z-~ap5BLF%aYC_0EorhZ3!uU4$?JTcqs{=Q2aak1)-sl0F?(MKUlPu7_t{H7S~IpajXd{>o9Wc}Vz zpeI>4eYSY>gh{a%C-dX3x7X+m=!(gD`mI~06?&i2j=y~aH$_D#s~vxDy_^x7edbi4 zea^H@EU72iv}AhU-zac5Y8jjMk=0ULF=$1B81we~gN#1)Q=J%G{9YPz+6AYrZ9piX+tha2s3<`SE!+yA0lF_oxuLp?#L2S6YT4<`i z!i5j&3o=Becn_DuED_*!PUz@Cko1qhEweH|Qd!&zJzZR$sVFS655f{fgH1TiBGck2 z(b)sf>s^tTW!d41IY695;k64k(u%`}%J15xB4_ebGrQ2h>`#iA-l0EVd_!d03Xc5j zey*HoyUM64n(yKYJ!=8AOYcird3@zaIkmbEGol6u21$}eBn!$+a3BNmb?<76Z@X8Y z5MMOB9jY|$lL_na@v@Ry8?jHQ+BDD#{$p@=+40kLn~U|ldE(E5FZ0?PJG+X_a@|3@ z?~f>^S3TrXs`BaYPY5BX(Y(hwSHF3nFGwJulFBID(KAv$Ko6Z@SJJ|8 zx)pACGWfupu-rPx`8hVf;$cv`e7&#FqJGyDSMi@vX)twA*EEOcba1~JQk3;&Sg)Ie zm>E&FiAIo3$t`S@O<}=7Lv+gUoLtW47AA!u{J~k63MmnN@5c{<)ZZRJ^vRhV_a}ByhrZ0>$6J=5zra9 zC&U!n?H~9kx91q3kR82fsB<%=!bSx<#(r|k0@JHEQ9prg23VRHy?`N@i3%iem0>EF z(oUG36zq-|%lvQ5M9$OzJ{JcEBXJ9Cg}l|63yCnY@BHN8c&l|0CiJSp`IPiSp9x7$ z0u~_55D$DY)~plv1RdEFW5)M9#Nv^~HHgIZo3Z+b#_iqdfb@01_I7xg(hd)Xw^WJC zobl}r>eQ2xvr5W6XTG0uV)VGwcBiFFxZx8IFff)PYoMhcyZ&Yt+=bK4&{aN}89Vfptr9!M8;$kRLjY!6ENal-5?n_{P)?g_YBY_2^tUJN9 z#5KFmVBhjA@xHTcu6haJR~Q5I?p?L?l;qc1=i(6Wj|geuPQ{ES^1I1?U@#|9oJX zVY9%Ek;Q|0?2I!|`+}5}q2wG&ht&bz=2^~XiB?DQQMtB%H=asJ3pirsA*uyT?p#)? zH1@`9{=3N%r_8~0BYy(V8R(miRU>nFvN*M0gi^F}#xDIfqvSIP!CJ!~_dlvX^Q8!_e-_th_p7!yQo z93PRVNwF+`c^9g(sY?P?Bk|SD!^{4HEzFzvatB=%o!3)fG45ybJyt1(8>Q z^RgNT`m`~j-}TW9Q%PfS92CCNQ&jXV?qT`VlH1tD?KJUV>8Nx}MQm`Ug>oKl2EX0F za|;zcxj4Y}+}*uK;?ESYda6e5^g`?2G2-OKY?tSqfsP)hf@h2^^N|}V{# zZc%Ve838x(KKN<0Hy~ZSs_+fZ{qrpIby&@nbU8Yp{2_;bo?L~9E}ohTSnAbMG}hM^ zw`JgoC^gNe;83_$v0axm`^%7 z%l?>AALDwc9Qi%urEYcMiMirBr{mg#ToRfMGkvgO;RqPbmv&KS8~UWlZdQ|(R8vxf zS&_*jd{|x3yG2U+IfR0 z+;QifZXTlXwQHkkK;CX$Bk#LLL=o*u0sYWu&7z@#LQ$Z;t(bTq`$$4~rm$BNyXyO~TB8-Se@eXAxzr>V{cOxrrm$F|EnmifREBKZCFM#T zEaROs*c$rUg;9SgCDVK@EZO!qmpgC1&c7+vl7Ec$?oiZw zOj7(V1KKdsnU7{v6gL>5%C`{J)WeOOK-g0E1ggfoWN(y{vQU)1&u2agv!9Jv*~%KZ z&~SJtzVJv{R3BdMtZe2fnl}LyoigV;wd6i01*ya)TGjpF>tT2pN&Oszb=}`gEz&gE zCoZLP{_73=@=dace5;hqj8@xs!Z$yM{?iEq{_=qUBKpBkHj^f(&mk!Mf%NSkO;i)8 zjRsq(S!uG%Y-Z8XuWX(xolV;TLs_f3Z^skd*G5h5(`p`ynaFk7<=i-j6KC*5L?4X! ze~Sn*2nc(%Cz$BTT8%%T#T!2ibjdJG%2@;L{n}3$Ci3Ja{(R>mg?gT?+5UNM?mqk) z^UA4)V0ttl%*4onQ{13`mO*hQP{hrt`e)$i44n8oONmB&Sh#0$FF@G`ytnc+4**FW z`fr;t!w5@DCFVFNjo!*C#B;-U3pHYJ`r?x0v-`Wglz2xB_T`-67(^37XytRm*USFNl9)qK4Y6!Ra zvy3ziTP2pTS?WpHIGdV0!joD#z$XlJM#t^t2AJ>$5ph{od>31&RJv@)YT52q3kBB2 zlZwJ(V~XS;+CUMypp>WNwTD`I>agPeim)WZlTQ&#N|)3Z3w&x30f#@0%AJ7Z-2ZfC z)tI~$w9cz7q>46-6kI-!DutUJO&U|x2yA4-uyxYb6J?mKz>hel1=;H*Vnz+W+<`=S zz+A$kH9&;p{mO7Wv1^O0g^Aw#Gy{1Mre9>J%~LBg)%B??7;jmF6PPzqCW)e?Q;|yn zBd3vKO^Nuwi0iIqL!qI9H66@#9Ub70=Bi1J(ou2H*MN13jP)m{77?GLZnii&JK4&|5HfniJ} zCH|31j^s~7Yj;smNBkp!*m7-kC~m!35q}lDm1#k)Vvl*nxPK$Re?3ASQ6t2hpOXbi z&$>67i%D8&7Ep{`Pr&vF|B!6*r54((N}QcD33(>oWHWfQj-VL3We>WFbMPq41phR% z?(SLd1qQ8P^6Ly_6y{xx`8VND+iBnZmn{8+CY?CIHX*nz3(^s5nUpwWdzJcJai}GcIJLGPa4rO-4alHE|wu9{k$(V;8K`(PbBJ|pT&J1 zQz!HXnle_x^N7NyD;MEdx~u>FeKnS_aE8v{UN($3RI_hZNj=h7b8k=Q@39^Uby*wl zE2W}=#KJS^*U+d#q_myW609tX+g8CGxQhT_1> zn$#B1Nl}N-S#N4|FY0W?WHC$>de=7TR%O)+Nb6r8Lx9;&M(aNcjaMCmp7$IcyI*u> zd}P#Rhhwx$ukc*L!at*qaAO{vK@sWp5<$MB+3BX~mVp~FSo`I@OIl-CPb~9n#*Nh_ z(5-U3cvn0)i~GAzle)fYj(FQ|oePBI_A7n6|9b4>SJ+hb&Bj>ukIxbMYdZP4%@2?OfOdgBRN>U*|c%IaAt34 z>vfbj2lQM%A5>4^{mBqiTa~c5)qifwaE+%?k8%C1(Vt7mRxh(EinP4QDD5p0m9+gM8>N3_yWAK-t6lxE z!Dks~2Vw-8ZVJS^wES)6u(AM)Bz|mWHz?e&$vRtHvs4GR?e~b^$n(Nsx_YfD4QXg= z2g$Z`D>nh~GJlVxk1gay8;o1!*-!l?Zi@gZbhgQ}*%KXQjL(yQX7V)FC+tbRT|FN+ z0S6R38lM6WY~BtXRl>k#pn@TwQPBz5I7Hx#%zw}+t-Op1xD!5xfuZbj$$e0vjzw+r zhGF1WyMS*FeJdU?^24(!eQXF2E)%)qu2@gy$0b>qXZsCUVWrLd^8!O z$2Rr~QVrzeK;h=0AIG#4{%L~vW?a{3Vmz~Z&i;$Sc`7#?ds7aHdW!4XZP zWcW_jG#38R$=ErzQzaI+E=#5IFL4+x?>^xG+U07cmiHbTDxt&ij8>B9%atDQ6c>8M zkl0yjS&)zr?q{l*h;IdDT^zN|qY!mB;V z0r<+IkH;?F2?e)bYI^3qF>MF^yVenU(ksWUfWxqz&J*=%oVUM>hzJmRedE~NSxdCMqSL0o3?-_#h0dwTkI4 zUNSQ*v*cO)^&lT*Q4Nm#%NFsCve?d^t-72v4LD_n5-<`o;1mzWbCo~u#6djL0$m^>w(uhX= zL0(H;MG!9*nJ(kNkQf5vSIO1eQ9%ed64%Cm4PF2nMAWGh3q#)J!zVOB;3&(>J~rxk zH<4`rRHKSXhW;Sg;bfC0p$dTScJg0GQiJ117Updta%KiYOe9ZiUmD%UyD;~o+1Ag)rm&|ZK{-wrlgXctVA){p@L%q zRvv&oNY-9tA4}Q24HMiNgpAvpGM|iP;ujIct?HU>l>Ig#Td9s8LhIP;H5TDm-~rjf z*tsQdh#}dd^N_~Cz?((Ju-C(!mR`B&>f|$u(Q)T}l}{PK#L~Xy&+k_*?we_O;_vmX z=hL?5H3*Qs_riX^b8hsqi&y8ADWnqN62=f^xp@3lWVeyX;_z3@!eVQ%K;7B;|2h1ixv0n z`MR_3+0eo+zL*n+3C9eJEysGTQ=u2q$v7i!XPn= zfXCu%-PzVq&M*Rn*DG^*kDT0+rsx0-7df{6#0pHG;ML;&%Q^|=BZUV6EQbg_csl%8 z)Pxb&hkzSzH}K?jj_(Q5*$U2@YY3(_`6Oyidvbt*%zfGm79&~tfWh-XAzeuxs_?IT zRvZlM_#u#aKPkE<$onvR}(sjh?7($RUjP-yO8xtfkhn=J9i zmTZf;{%biRo_mwzk*w1CrzB(LRm7S8EK$X`!dv-g3mozRrRGp#*0C=z z=QtxRW&8bmNn84!3wem#seD~d>wk^S9`fiv64zcY z*G7=_lwVtBM8Lw4Aa!K{hlA^{e~s**Wdom4ck`znKArnfFIBiDKuDzJ#@b9|Ptaa$ zJgMnzLG`L__=cQR-eZB`DAAldfg4l^yjQ&iyiAu4u@I#>kDbSB2PyckY#QOHA%rsN~q# z_l)VgJo=KA>dNl zX$5d6AnaoWtr2I#Ig`Ur}c{ zqxq;>qkgx&(rOobx}Z`w_wtVfeT;zDDtKt~)GuwD_})@QQEzPH;u<~; z3d`Gi@7U17zG4}?ej}Sqzt652{;WZHwN#ZU|AbGuIq8OJ1)p8S*6hXh0tNB$vyo!+ zEXvXu{+Q|3(YMA;sJnXg$P2yytZn~WnagO(P_5F*e&K)YY`&7) z5R`-7?%fOSzMTYT2v!Z%R)rLhfSd9yo*yWF+B!{oOv14iJphC+*x)rZhufm1V^sDc zg(K|zeks%-l3I)zv#;g7rEjO1GKMYwA`G(jnL(5`GEc7uccz$Mw|bWNc)pg8(oYeW z#_u1<6pV%r(g?-xysF7A3)2vCBWo>sqVTvVOpmp*(=>SB?|gvld4n<%r&F)@$FxFd!g{rW8}59SJY9&I}s z%$fC_Bx9 zE8eQ3=3O%N@BCch=B!&uM@xL)2vl*unn+TKb#c!RD6&hxe$z6w3p_shQ9@cKUFD96 zBtn!lP-Q)4;&O(GM~*zWNC_LkDyU3qv`tjkK%p>4=#h=Ay~(J659HWWp$&J6pWr72 z-pa)DO3@t7#HLn`3bU^i(M*vG&svh@RagA?Pkcp;Q96lN)UT9=H?N>6*R&IX7XV|M zBVuIZq)1^QQ)H@0{fAvq{ISxgh0nR*7gZ(}1;qkEW2vte#6bwjx?hapSmmme`H{a- z9)>CRzoy?BL8Dr7qxlD7*ui(pjB&eaub_fNWOBt<8ASy%9qlb8sfDp*_`T+Rzr$V! z-XeqDMi<$)Utr-fm6Fn{)zgO|N?6#XvOqe+3(gspiY2cR= zan=mLDtFbKGfRoZG+&M?KU&SzS`gL$mJU`C3Oy&q)=X-4`mbe86Wua8efm!QwY9vY zVai%#=fRbc@|$n;;S=6BAsaCpkWFj zP0rT?%JixvBj4jN&8CSA@O0K{|sNm~`k(VWDcoj6qU8R%&S_D;pouEI_USi=~*G=vtIQ zM5SW^oYJmYO7_&i$8W_edWA+{>Dx7)?qpk5Kc0{_O$rUqSp;QYXhua9zEO7)zCQR< zKefFg@K~9W;x3lh&gIUA42mh?;h@yqYG!XujbO>?=qCy*j&dhPGHJ{?P)gV~8i841 z7xsDobREszO+-h98#5r#*h(~_2T_>(2&`hJP#K^1SJLv1%gU*+Fo~p^Vjq`mIT=&< zlR10zghi=eNF&GE)$-j)78e#x3@C|yuZbRNqPfX1sM|MFCO1<@HbrE*JRQnutZKw2 z#4o@dn3|2h7AWz=fS#M>KPfDMM}%Plrq&!8wdA6xN6J{^UNGZ~Jz)1~_TntMLp#~@sQTXQ-%%M&^lkC1Ly8tlX_j)yX z)iU<9OgSdkJqpy14~x>Dp4O}qciLpLs0k}sNF2%1m#hctel-8;XqLHH ziOs{b%Q9;|vCwI6F`dGSr$IB2yj7SX#2bmC60JoOu<=f2=uisJYVp>hk}JMw@GHFn z9WjhZZ?kDwUbBPi7z-xDEKicRsdx;~V2Q1!IPO;yl>Jo{ZR;cR!XMg4b~|(uJ4>fP z@SW^N!A!wO(YJNX6V|8z8R@YiX=xttVjQp{aj8w2(m?yIkeT&4wxHF@#5@$v@b) zl(RvTEN1r(@$c~Pr+k|Vc?g<=xJ$5w6BH575K4@{jQNEr1)@+v2y(D!>d2r`QSo1* z)x`#uD7S2yiS0IH_2PZ08myZZKI@}^6t~~fhazGX6=QOADJ&XoHxm0hS3B1R`}gac z4~&TkLAkH5*6Y_QM0m#joHU>{iCU>xB#<_R@W>CC{e3cicr?f;T{5xH@Z1H~d78ml z5cWqE&ABHI2lM*%Ue>I*C<5D##czb9w#QHQFHI`PLrv_grZF_M& zQoR43EOA{-&HO_3#HJ|x8nz&|D0!K}H7GZu2oY3H?Lz782Ph>fnygyX@iL|HQI+#= z9FE>Iv7V1g{!~mFnBCmMn+jT5j)v$*9qKL+Uc^EKvo$LY)0=-;N(ON1XC}tYq&8S; z#LDsPz*%%?mrLYMO<8LRlC#SNT>XEo;-x_NA|;c4DxPj>(PGUtAAQtXnas3VoE?yn z!y?#WLD4C9)Kfr7Q!3H&cYSVuxf1A?iM&`UV%b{mPPPG;*JPg@djHWdL?I@oPHmdb z8!JgGm6w(}1!1}Dr7j#B1fFGp7YROo!Rvj8u@Zg0XS#j9FDhkOTw4polz87Z5@}AM zBn014Rydpj77Am(N||O6VR@6%Mjj%(WTlTnz3_g6b5}*yHO#3_%-mt6LJ!kbnOIIB zPS81iiYCEFEU~P542+adm7Q;QPSAQCwL!SJd$xCZW~XMi0gfiuznpZroU*-aX>5*3uwTd##W?M4x?J*K_@Z>yV?gMer^ z5qTn*f3UBXGY?InQA5tkgsTO^F;|c##P`G|_zOqqTNuN|hd^Krt>s11JI*#Z7xg6s)a*H0)3q$9da;_=QSG2%aKbcO%xa$K6WTeej z@RC#davk9{jpI8N@71i*)*kHxxgN-xV^}ggPlm&!WipCw5w8$VxXa6h+V*-K7I-E3 z3Ba36Fn7z;5Qm$-59YU=A=NlcG@IF%eZh8L1z%qBc=@!0=%J7tyVb;RsNjIK zGacbTd9=Jsx%#DYh=SJBrIwBdBG@IzJDtS-kb5DJo@4*4|B^xQ^jafW$wALTk6 z*cq~mC^gP=7egXRUo&o}6tf%uv{)!eQCK3{+$FO5Mx-gU@-hTpvrqZu8={0Pi+ybh z^n4Y=q?Q@MqUD9kJ9>ADAW=iSMB&`k&sl8$IlMEr_a)UvHkv~5qo27A;jVhgQB&TQK;vO5Hcah^FqR; zeHvGsV37D6du#s}ZX&{hp0xKq8Mwg%7pp~c)vv*o-u%`m{P4W*d4ElbS!R%PeZS|Y zBj&&5Axcs~a}uj^!<0W2^YsaP?gm)tW}-I;YY9nT`Z>2Cd-`yGV1;FD7}nA?wHfH3f2zE}Ee2oNStpmBx$@k}zEP8mZ5 z`LS{irg-|ATPCmw!XfgSpfyBd;nT%vZn{GqRdc}j+KFd5sPTksc{_N88-Ybv&x&WC!-Xis#6YL&G>CWry+q^* zxjev8>`WT2_PX1hl4&uvS|_D+mX}_JEXBs!%w~fg$eoRqNZP-CHpfn0_V3R-pXnj> z@^~s?i7GW5wRwNZfx$aOeHvzVWFuL>d#oPU^HQ1-mWRvjzJPCU+Cj*x!|80HXMcym zF&Bi-zx`bnh)9N1etzJ!x}8t%u;JvgHvp_i9aMJ#OiLFOz!_&;2r%OV#TYaKa9Ruu zR*B*mpUC(E7jP&yNK@81F2fAUQ(+EJk-^|ju9fTCL3p#!7z3yETKZ^81?m+L+jSf~ zt#C3CY_~PSUJ2sHK~<LK!py_dWFEPL4@#wY zYR_6j+;K7-rN|>_Iw;}TkQOz-f_m;#jh8iu*W8!L9EQ=tvt()xWTstE+c%9i(3RCf zuE18-#IOQOidib-L}^hvz)|;w=AlcBk`+p+dk%5r#wI8YQIgextSjT|)Cwpav$8t` zQyW?xDaodt_}Djp#Wi|mN~bU24VuYa)@778b3!~o5Ww)0hx{UUkYG@ON!{Yl98)sH z@HP&;8xFq}KFhB{2aJUsibjIQTCf^KXYC!jv#4pK&T zVHEO6?XB7{cnq0q&a3rRX-~hhL&>U23hQ2p%9*}){_`B(F2yL5g=0r2dpBk3g8dZ) zf_Yl2YiRKC^_cV8djn!PKetCB8b5i*9bBByV{rRf`REY!(;#CZ9CwX_{d>)sn7D6> zJ#$4PckM?SGUrZRf4%!6RG@uG-Rcv59dxCaY60sR2k%mKOc1FUUr(BM)w*uhw648N zPayeG+ZHQi?~lRlYAtrnKSU&Ub22L@7B1mQS#A|53RP6mOBpfg7HxEUXGajr%lSd~ zq8{0VpJfOCk4+j+c7$7}!obN;8DfC8DGv$Ei>_OlrgM1iLzS)lI1R(a(~$TpTjJNR z+!vnfBJtBG?NsG`-{`Q4uj~1~j%HQYq_!3k!)-Ss$C11zZQ}V;T1p)vh^Texl^BsM zFdWR9EAIUz_*s|!S%nifWfYbpH!I4xHZlg01C2o)uB&@dM4rmO;!vr`l#$6}2`h+JN!ON1p^YCc72v`q&6wwg(G zS_WfN@@Ri0a4dP=-ve^ux5Y&FL-7&d%t)R(fKA-mp$U%#7o@3;wpeiu?W4O2YI$N9 zlflWHQ;qpyo=1^(KArXU&EAP1D;U1wbT`R?;pA=FRLEGV#!6`$=?~);(XpXC%1*Xd zQBW9Sl^e;P6kvUw;yBDjV}Uaq?9ssQUr6|jm5Ty1qREZ~`f+*Lm6E6M*povmnIV^a zc62S#>wb*oRi3|ey&StJ1jHQY#?1%Hnu^2q`q;U#F`L<{##YJTocWi%wFIsqG9I3o zLIT#JxVi&8=*uyDa!UuU{i6Q$#7D?sMWts3Agz-t0L3C`3RqY=kB!hEITp+&*ip1G z%xT41Rhh~gq*_n5g4SnWChG(Tx#{0DsT^1LK&HCdhzq&o?OgOC4vosOuUI4g{wqa{ zZo=>wC9}f!VAx8 zweF`EQ$NHv$KZPs-=0iJlDI_u;ALDle@dn*Ki~Gr1kd(XvvK6cB$aoS$o^O142T@* z+A^By3Z*ojB0+Uz+$RfYsaw?3tOJ0YD_lxzZa*}yuOioboIAwo+OXM?4S(JJiA8Y% zir9DFP$2jct%MA$BbQJpvN!dbQ;hRX^e>5}Qm5S#M4d@ilDsLi5M$U~Aqsg`wxZdP z>N%gs9wJ5L^HsX?yl}kEMdG4G5Nj#P=D6Y65Jr!g#y&4Rtut+yUQVcBwb}NryYF?; zJG>_!#UQ`P4>01LlUWph_2y=Pg%e6{my@dtaUY+V`no59glA<>-so4$Ya9o@($?@$ ztpy-EsD^%zkDyph<6=k1NzLTD7H$a^-RR=P&yFDQ^L6o4{&!xqhJ&oN$r%=<9Txtg zGNw^$Yp)@7O8=B}p`R0CRXv|RTdQ}<$n;>HlO~K|ewSJ6=0Dg*i;Qu4gwHNoNOXey z*vbRC&|bo*a$Jdoe8Wh@B}c6G5hYZnXL z`4rd)PUb#UeB^iImC_Us_&$}pt?*pJ`OiYiP}WEU3l@$r0?()Kf@L-0Ibw&-e)MIh z_8Sln?><4k($pBWb5e?xk;Z}2k|Bel#W`F;D(yp&4ErT{ix2MH{z6AzJ>$tSph<6% zO~JD|w-gJACTs`F{{m-+;#Hy|4mRj?`95~4f$V-+&b=Xi>zfiTcgfL5ZGs~&hLfAN zLYC$8<3|>`E;4+s>L3H#y>@$UNTrQ&fpFH}-`ibfZJhOZpXGN(d`b{&8ZX%-rv3Fp zAliH#`m62GfBnhuHOD%h;)?p~*wP!`V|8)YI$V14y}1yryTHrxmB;Zs+T|Bk+`5Sg zbW8Tdj@lj@oEjz?#qy>u+S=E1>}zHP4u)x}ZP*A(wFw`y&U|?}S9RH%Ihu0zLHSkA zw4vqtiK;<9poS_*%S0$;IRbt94H>qYM7mHk#vI{=`{S2t_01Wv_+No9QNtPLyPiFJ zBQ+({0u$oWao98^*mCJ>US*))h&_}(Xe_U#T}zqURKK$9{7;dnfbL0anLDiFu-n#q zVh^=o`(<%kJ67}S=+ajnwQq_`8)v0gv$2i^tJfVLbYN&ZK?`5Y5jjUERw6SHN0Hg5?$y5XQJ!A5^L!mUN z%-tTUqd|QU6-$e+LQDG*!s4*SQ%QkyM4_;!%8#TZ`G|oPXC09Nv1NHjrXA5w-fg1G zUq|lY{@6xizoNS7 zSvuK{jmxO^{zK~28(|ebe1M<=8M5wp7Dj!^L&mwJJ}QjIqLJv?n3$)HBlS)tv{kLv zJMB&w`AX-#Wam3@rG=V`Zfq_k^9q?3H~j5-)zZkikG%23byeMus(w(lFhO;-8*>Dh z5fMALc3_qM!|4|h@(1^t-5LHxLs~2zYIPAyi32H~riQgRl^I1eO_U;zT_xR#a~feZ zwacVjkusxS5MX>@?r$qgZn(APfG&t_D0D)z@0nvcoiIXn0?7sO*%gb7)10e6IhTR3 zCf!<(t=91}QW-v6n(IRMO?qwCgrvtj&)=-i|$wL3mjDn4q+mO*)R?Krp0G}GCx8oo#dC&p~m=3wPjAm zC}YD$RH1ky$J}+wXA!mFL}%sLy%D+kz&i$6Tdu~MB1Zp&vw{@HP9_b%tiF$0X zx3=BlW1|cg*%j=fA7_&V8mh$`p38H`3RcDj6U03voYk1<5HZ!709FXdwTVgt^c?~( z%_>YyH6uyoc^uDAtYr?$MD{|en|bUcLv9uHPLsbBKc|3v?>8km57N6X7YnI|zyk6)vGfYzylou)EgB<# zRMX6NCzFUq*e6EMPj%(A4I6cxZSq1I8@08Irn%7w(Gf^aC|KGeYg?Zz{gEf8$)y$; z-Tu>T_1jKFQ#<00G<%YE43<>Dolh~~;O$_VrBSnN@vit7uZ){Fcet6uAl)bw4=QRX zO%8-F<=OwX(05Shw6)E4+~sm-z-k~1=y1x;F$^6f561KSw)|9y^0Nms7=Ht9+(O-M|u`HaC?D0y-NM zO+53cg_=7`Ep5T3Q~%tNgSnC0ghdtSO9Ogck}Pi39pzP8jTu3}g->PFVI0=UpA{5~ zHAYOAb`X?9;@!$ogU6h6NLaIN-HBC)^}DoHc*1L&nk5KJPdal%B6Ils)LML{bY(Bf zmn8oNdL^$CkFo!PiFI?%RY>)qU%Yj3Bi`eFb9?Wd3W7+hn}62_x8f7z!-l}!?iT<~ zI@oV>V2g|iRSB>?{k=zWEXc3NE_nPxv&<2ywT7qnfZIqy|4wm}jOWPGV&$8c zcf=#4q%HW(9x~qMc~Oe;%-8DWw(PdEr29BycU67iO@GJf3mW^!bt^x3!v6weK%BoP zLd~DuMaD(fv>HmaY6dtdS;^YW^^nCa{gy)f|0-P7=mJQLOw{oC-j&==%KEY|e7GNLWiUx?@N1b%k@iG(YRou=V`+x)hlZ3gm8^#DE)AvdV0K^sw6NMJuj4FP z(kSn4JOv|GExI}#4)c@_rxKL(a6*a+5RYw@q;1c_h@tQnMj)}z(A5&ROcS5S6GO4% zafkMiFUs@}My1sOd}Cnvo@Y{9N}5LgtY41M9H7ibxk7-Fg{*N(7jytKqG6OzuuZnu z*dH#ZlUNtjjIg6vFac{@og!7_vE_~o|1v`0ECib`L%3E9v0;JzMRv3ht<=Sz(T$4i z2%x|UV&FhE83ktDSLaF(n(}axCDV;AM+&V{BFk(zN}}uDC3Wa&eB^5_Ger8*Q!eZB zb_ii$^@rK8TS&~;RLBL2-Pna;7nt3@3@JKrE(Ra=cm=2pUj7R^V>6N}qQ0 zcigghgftY7bTL9-MR4u>2|%a-{|v}Xg_AIdz!2|jRE1>3Dloxd6Vw!`#70|Fi3gPL_1HvWk3-n95J9nq6S4g^*ONFf@oY#9yEKs|an_@oWimW>J#z*9>=xX7r3BLuxg zcrOtP~e>RoExq=OD3drT1Z(KN~h^xP(bn@nqq9{ z^RD*!TkZ-?q$+N`|F-2NI=8%~k7dl%8Had=7o!jJQs3Qv5R)riM^yAKy_yCiF%A1A z@ha8CsWZ&SnFhvil~YW>S$q|8RTb0>ALh)2Z-oinbP4pHt=}Gi@@{*A^=0Vc`eN() zc<{R28p-%ZfSUPOz#TxS$VCNI>IEcVn_YlfsHX?gja0lj$57?PJdZB#E>vF+H zC-jK_hc@QuYX)=G7eG{~Abe}Be3#JxKcm>hX=GK#Ho}g1G5yZaz%>~!A1lu1(KEOGJx5Ya+z`spm(K9 zmnr=k;K@}0+od?oGT=#7!(f(P4**@T&_Le-MhmPoThKBAt^@SqEC{vW0tgTmCZxEK zLBhl$`F_59GGgYHsS}12S3zGxdyNbs}XoQ z|FI^>z$&pt3J>E6FT>UnP^q`>$}z7M5i`pwhln$dsk0EEjIb3QS}3gmeJsmJ(K@to zu7&h+={5s&ijAeMEK5=(piYB;Cy@^5us8x@I!(5%xD>!5kO~6HsN+~#iKs7yGtbj2QVu@tmznS)KR9Y<4)2^y9>`!@Wvw`0ieoDfU5?BEU8YV1VBI_C;fWKvW0j9 zFrf?ng9+Ay91;j5i!ifOtk;Tr5G=a_w5-Jqh~3Mfge-(}J%=PPOQ)!ugVwndQH-g} zMV+H;O#-NO^gRUVTTxpUaa@Y54$yV1t0C7-@qmm7EpkAvDkHMcK6P!8EWIpD{}Q?{ z7XpbSfcK)Z;0cL}3D|&IIjbwIFa0&?_;IY>SE54Z0R!CoCU4NL!-V3+u*0r7iSrEvQ19^qP7A9mEh33noR+^37VI=7>&gSuClTHiU^xf+-3=QRyy5N8I>j>{rk;~L@HG%8 z4p9mLU=<%&DGOE?klueTQoRMXNoiEeo(CakstP0oeBvYD0L;fV*hEMo!r~x?cH+YL z)hKc7X<|$U6gTMXDFBR-TXgm(kp3}FT{OaxAIHMSJ~HZn(y`3r|F$>98d2sZnMxng zjuObj_(f3{p&$w`A{aiskWh)yAOvpL!Tw0iXG#kneN^X{4V z5{UsGD8mHk(uO$nC3JMi!{GrTQN=W-b3h_QPo1)C?ekm`fwV-5)IABtzSq+lf{}m5e1OC6MV@ zN<3*KcakY3NUP*!^fIYF;ZzYc4IIfMUL%DoL-2CSSj`IQ4SR=PO3(xtoe1YE5jX* z-m0|zSiosoGmgO8${4#A!~&L{r) zBXykyss@E{#so-{)w;qtkg;TjhnittiHk$y9#>MyRcx<7t{4or5yfoAzQJSh^*^ z0j`XG{$mMQ`W$5cy3N7+va@q0+-5f`dPrpYZGIG>;3RR#I9_7_MR=<)2JFU2lC{cA zUs=0<))GIX*4bF`rAD5hY{^VcfS`*@u>fNcR_Sls=flE{%YOX`0iD@pKWv zmKoYrH(zEFnHllpQyiB~)i`1GlFI{YUk+K;+A%V%hr5tYJ)k_J)ftcgHUMgdOlJbv zwZ7ohA6I#~0s`|?0*f7KknDOT;dSXt>}K94snJhUc0er!8K|m#n*?DA(Fj%cyYAxr zzxggKQ&wYUrc`Y@dbwPW1QV|37!k{?|1_ue_Cl6XItMQnaVt%+wvY@dt&dP$kw`$P znKANxLZ@MI0ocPn+7*59t-?=yhDMW;LWVNHAylh;+^NTk9C#&1D#|g#6qO56bz3W| zT2!ZE2~77%5H1mWR|h^YH|@EoI}q#!hE-Ut1bk5@Kzz{0lbx(I>lB4fLU!`qgFbX+ ziiIP(x22>xCI#PRf@~$9vzyR$Nba~1FmGR%RwVtFEblva*Z*!D?=2)H%^t0e6UTSv z@z%8>V-IhMW0pkKxhven7*zqzm0Ya7{Dd&}BxA0x)eeREIB#W0&hxJ0XI2XE3VJ zN;a)GvT!pHW>C7Y^|a~z|8~xPDs6RyWx6sB5Fcr@)Q}C^@YUY%QQ{B+>5$f#!e*E( z0+I$8HN_2GND)hd?JiDNJ|iUx!nLX@$43Dcq>^YWgch$a*hyL5%|S9z#WI9z zz~W2%&CUQ%O+e9*9>W#k?f9^f;08>R?#R%v4J~*}FPbRcq-Cwrt!mi9j=n-LxFYay zF~ah#K#(nWNkemu4Lrx>js0dE5E=*hs;@Buq z4D%$YZk8+)GAYxE02CwX?nmN-qO=G9;K%BuL+3chjG)V2*5-a7PBif;RU(W3@W}u= zhU$m|Og;o&|EBH!U{ifukpLQ~oa{|?Xv9uR@DRT+um*)X+v{_p@lZ;j1d5ZdkP|1U zvgE9?IhnIWpz~&^(_Kc*I8s8p*6J&lhyZ5f)XppHNNG4sX3U07EM}y32(t-O!aj3M zMy1bzQ!PObrX7 zwB;wWG)_IV0)n$c0xdq@?jz-iUD_1Y)P;6HEl>f>y&O}Xo-{Uav;^2NPJ7fUepJ?g zpb;yENXr8%sgqIdtz?$eEFHv2FF^9ZOlNTH-cmz27T`*wFiSzBCVsLoqUK8{Km#X0 zTEx&9|3&Bk4nik-hndi#V`>n7M3Ta!gDi{!G6l&%f$yO1w0@XRPltq0J!j0UsYMD^ zNk|06NtS zKQ&Z^YE+-2REg|VQI&QyM!4_^@;oO(8kR7y(*R&4T;50^V8tjn%xPFqO8D_)!U+MI z=mNqn%m&~FgavXOfHKkuR8n>T%nv8zu|wErMwq3Mrlef7P!t(02cu62hma?NZ9oaM zJsd#v`ipU@wd_*xb=p%CX-8Y?j!dvHUb5)}5oroR0#-7FzS0w4sfaWv!;^kPSRCw5 z|1yNkYUxv!BgQJuqTrDU-_h($lrxm9DGfIRqEcd=gJO@%VlUPyga|6x;vI{lSC<`kE|kU+O6n}?KVCm=CTeiAP-wa0-DIP zFeb>7#3F4kVDCf%2nmY-z6~Vkj{)doZdYfu9AL{{tSA|RJowORI>c|^#Gc^A?o1Cq z3iogk*9{eSah0>k9`}_{rc+vHg-Qe{8m`pH#AKoA!Bp=jJx8O0diL`!h%047X|{0k_c!+5DS=*nd&BG&G* zcF-IHdi|<{D@l94S1gjodH*PXnkekpFK0K3dkzf(Zp!ouh?de<0d8~QE}~Fq=>vI> z52HzFI-^5QC4=b#IO`I3J*Z4fueGCxIbXnU?Z?YE+Jos6pvT6rokpMI?Szpa6&j zuu$ySjuTgpeUy*;*pF{yEB%CTIcbnCE26EqKd1w zlJ&G~*`+OP!z2re34h0vi6nnM40O0ApCqG*yDzs)S!5iec`?W4q)Sb|_fCDH%$}G{ z=uNj+Xw=3wkMf8q>%%pnbR}!W@iAR zIY+0Nni=<~95;dOSBOgHXp-bf!mduk$0E`ghSv+DpLAJ@CMEXAWCVgL=yv=JVCGUV zT$m226FPw2XWcNUh-cZOO0jA20tL`I`Un~=3P{`f5?Y2)Iy$C?|3xAzO2k}OT1rU8 zVCJo&<*gUx@)rdoTn~;y^^HSWtBPe{u~9;gTEj2KNh~nzV1AL}@KROUc6%(YV>dck zMM8ixV9BUCIjtExdirsHI(g1j+IEcQn$(bk1We19id}hw_YuHg$1M;*0UToYDlPz< zb*+}V<0!<0nc`;yZF|$QQAXv#Ze(4TYO!VDInWvf4BLSA%&qMuP}&+_=K7gmL}I=d z2J7W>eW$45IQ7uNZnjTQH`=876@FdIXp*G>PJ=Q=j9J5X-~=N>`L8cpdp6XlL2#pF z(2xM0<+C#&nhkf9M>_y^T9{7zVkH79H{}8ofYNeDX#dqt|5joKW?(;HB1rz%m>aBw zo(^+e0xKLMIb3J+0=pxiVshT`eP&{Ep3G=xvRz^pEk2Un>ID@!)2}E(x{D=RD6|LL zds}3fP5Vf|=2MWjE6j*UL8arJxbO5X4AOq_i0tkFDHP3odD9Tt0S5CyM513%u>eja zPCuh+!p1L7tX1N8By?j7YsrKBg(#Ym!83q|A3VZ&Xu?soxe~y_<%vTYs1hYgo}@S} z{X!vS&WbhBJn1(k;Z1u2BuNMD9b;l9`ei_I9PE5Ndd}^Fg0MiBqRDyiy2n=f3WC*} zPu>bkSL+40eh16l+iJ;YU0sM2XXLw4hqpRX^&}uH|0JT#BNmnh;6MuVrO(r~Is0>* z16ZE#zxuocT)+i#RLLG3!b>|l2)z*v9no3wD=XtC=jASTV~bvbA}DxsB)$C%U^FA~ z(gVYlx#X;%C3!vlB|!Zk++)!$v$7;fWKCVqP~A5;J*9KESgtku3_CUsT-L2(OP@$U zS41vq-ND@NoGx-YbR9Im>bV9R9Z#*#%6!d;W7r4tHn}2Mh;lZRJ)r2g*>eUYG(eei zZNqI;JsrT>-@TX#AltXS+auuH1$~Fc{gNuY)tIbfL58Oc;HH8^WZ=C5F2H+CZ*NMc z%dQ$9$>(p)f=LO&(L5-eGvZ&|O67 zHq3XI`!axP_w7mjX~RN#x2uo(6;29>19=yvBYjQ~02A3r`8#-bzcNP)V8Y> zGVA}+StUR?&XX;xi2vk90I&j22w;P&Mt6!vSpM6?&&bz^q9*7EtTks%Z=QyCecs4a z`iz3DC;#2vMk&ng>WSnul)`8k?S{VBNeV!$F(Ti-5I2~vnt3Y7&{0EL6-|1o>xm0rPwgDhg6;qd5%8`(Rf2Ha#HZ%< zDZu!{(Z#J2O+J?8%$=!i8`Nzf>Q25HQ{Nn^JLQ0tEyY(3(E0o1m=Ik*#LYAL>i6T3 z3JmbzLDQxsN;LluAXZ-uNFZ2c{~buyS!u1+)?0BMB*0vC6$Bw(6z+8Z0uBNu7-5)E z2%2Jy%`}in0zf8NU6fgt;)DjsRKR90*_4rkvq8jMX{YrT0CQpubstYRLNt?WJVL~g z2C!8%Q-O!dcQrmqQD zV5bER@m#2)o~6`U2{`)GVh|oGkcKxcl#!eSEYvEknW-flqk;+4VMq))R3cv&3|n7j zjnYM9WebpaB~dpXML>HR|M8WjlV!#h6q-~u)RqBr9k~%lqE-7}lf-E&6>h7wwq;d2 z%{jna3^*phOexCv6Hy~cl_R~$(N>a)v~pGwv;Ddj=K(j)RneUW@Hm%iaP@g#tQ3p) z*a(FQ#VTBiL5dKg@7gC4K?JC^5OPLol#yCYr2umZOleBb622>%CkUfon>lJ z_T_t@3^Mdq8$k={X3$@Y+BfV41PE5a#fBM>5!Dr>Y!F{Q5nHTX-$}TtKxeTuTByNk z$#O^=P%B&q=H|KOloB;GK>!5F8J|Hc>9LS)qh({vve#L{08%{F+#L{$WV;_{Amz(=knd4Nw7dR

zft_eWifAL7zx!6|P_?2!i10)6A6CqT6-$LOYSVl(Uo!UBjHVSAn{m%Mc-*=%Gb6oDdL#KlHD?Jwn(d{Je z?il5IFci4)*5|buTP#PK5{i?kCQA9TkV~LE(Ix?8~y*SBXkU?a7 z`#7Jp6kMkDqPq`^olPSZynDf-q(Q5X1cf>xloXOOh!lPySq{p>3{g|NC@o|QF*RQ& z&_rqBq?d0BG@etEQ6Em15^;Z-pm^#N#N-yB2D!r! z`Ytq73|3IIfC<$dZ<~aT*-%JN7d#SpntEqZx2Uk&73zLEJi>>B8J2GzsZ`xOJg~O$ z+D<6}y{MuhZ9W*y3*p2G;rox($%v=(fu^YnRwjO@9IfkmVd=Id>!Gx#UgJ3yxT-@Q zuzT)#mY8-?#Lf=22|r|%S*_2^5}5=LM2z7IC9_Q8Y^}~zMf7%Iuo0L~7js23ebfmH zFVA4^B-&DjRfF9|g!89LH{av<13{a$90fhVbJ!BH2y}vU+4*O2AkVvSwo+H7(-Ap; zh)_1v8Lj*3{zj}qvUoRk0op0KO=#eC4GA-XF|55h9)7^EA5jDr#;-Y5$ROqge-Rq! zI{gyq(jZNl=E9&69<1{24iZuit%b0YhEQH9rKkFpBk+AdnI#cWFCy5XrGGNLwkY-)|`ShBE7uXUA>$6qiutpWpGflc|ltFM8HXW2+ zVl74ZdN542O8E?~9+bs3eSPNy(U1Tv_L6rCOvpD-3#Gqe1h4vOguy#0fqS9qN^ZQr zd7kU*(9lDkXv-K3Dl1UT2bG;>Q*hc+_p2&{miUVrDU<-v+FX*6 zkq-RQal<_nkrXQ%{EGQ|H07F}Iel5SoBo}8EHxT@*5S6T?2@Te&)v_n!!0SkbyfkU zEibrZb(>#_IkCWWq~#}qTg9#MEK`&45uG8dMSdF zM-h?Y*7xnEJ+#~SY_z_|7Aqn`vPfMP5JHcBl}pWFb0t zF?c_5^fm)DrGM`A>L6%AtOQr`bkhm8m>zvdVk8IlxskaBO>$Lz8iJ89ri1c ztBUhkeaS@vXW#O^PfS~X7J6~cmS4Lwu&j`u*FtX0!qO%A7QPb1P_@OH@xGJa4WV09Bf@tAWZ4}3?$0d27PI+^!%JtdJ1^HpR&w?fO_0+fM* zBmL7%CAujl>N?GCpE!N&YuDTl2NQvaYD1%5z@^Uyaw{J5Qq(5T zM)OrxEa%4Wt$<*D*xPU%c<&7r(&K_Qw~IjQ?`*#Vs~NH~GFyGv;cQ4;L+{s3|BNb- zb3-o88%gar4OqOW6l5}(_I!b+^5lzj82*HlMKkJK2BXR8pY`}6uf5*%oda5e_UoQx z6tQo1MAwfZrVWO3c`NG1&ps@$K2E0!wAtX>{3a|$4nt&pT+MNdQ!q7}~GMuHI-l{~?e|5ksO( z&r^d$t}DfLqy#I0%5s`Xt9N)j(`RbAC8^`|-*9gl7>HDV0 z#r7{-tOmJD`o^-SC%Qm_V7NH=Ise&Z0Lmafeh{m)ox6u8h>wHw{|Sog4V+Sl8&O|Y zO@5Gr4|H3p?*vi~6dmV29?g4gQY%jl!QV5ll{MqbOwlLiBK77W<+n^dr7XT$N?Yrmty{HuNb6^5Tprj1M!}8sS z-TsigFA|vmg#K@sIC01PIMYw?zm;eq)&rv#VBm2i=&5|C&_!vJXds_s-u+~Uh_H@3 zOP>&NSe!U-?CZN!n(ojInm?!9G+|B8oViXY2nT@HRii2*EJ@MVo5p8bQ6lj5Br9*l zS`yM$^QLDNR|Zp7)=2!W`-&xtVRLWu=1}vKFUuETT+33prMa&gU2$4O&!s_7nL+W+ zp8rWpayNytSJ(1OOcwp}>&g9es%WC-&j8#YUd_o~xuSlFr$5E3B-rNC64H>|xC;)8 z$UihF*od443ZD5$p1DZc=k8%mt8GO6?Y%_n{mJ5U2FdQ%H{4tO-NVBd_Yyl_Uix}F zMf_g?)GGfUzYAh_;COMLB1jT-mg>eHo=>cMKl;1yS#x~hT-0fF@dnyV@~H!f?vsBg zJ^DX;`~28>7E611h|0|gd=4vG%J;OuIdEnq17)ThZ0cC>2uO$`lWo_+YYIkm?TgOl+Y>k zOL|j@AjFMe$hh%-zWv(XeJM+x_^uAxPbsWqR3$K{=l4n9&tqD|a zWZ8Um%Oj+Ms0+C$TnppgRqVjY;v?$C$9kaj#tcejv-~Ki;kka0hCz#>fHJ;6S>bD) zXi00Ghx6f_1dBL11BApM>=M+UbGcnwCtcB{eGKoRR> zrO!5@Tcg+dZJ_yWG~%~C*^h-giovPDIf6G-vWxj%>kv07LLuhur?e@4{?b^4rLptB@mB9A!W237W3Ffh}dreM^O^bKoPJ4%jSl^jHAt zlNoUZi7_>N4u|%GpHE6o^y9aK0kl0!GNB$ST-P7XQ!jeTTT7hfJn#FrrVDl+S#^#s zk)OWS(3T9}&e+c_JBYfF*C#G@Hk$l2X;4`Lewx%zEa8Jim(sz!;EJ22o7S7h8?VRr zt&VFyZNN+3GaU|VmB9I$%X~}o%FjKpRI4*!$GTK;)6#C|Ql$faym_{->+oB8S#(}> zYBd6E8`DSLgdBYEGiSDeHZpx*@d~l$>;Q=x{2zEPnl>Atur&X zo}|LexA1fkH&Nzn%L=!*#4^lC?_+aZv`1F#InlAnFv)bQ1PsgB2t^~f_zzJigxRX# zBaZf16ir2truV?TSad2kpDvDVzd!w&ys)kldbFxecT&OV{_H`F-6!_a+*3HYh}0@{gyi zE{y~UovW+I+AeE`Na(N0v;zl+_U|4Xbvi4nP7{`HL@UO|gk)N)d^}5FU9$ZB1M$E0 zJ2we>zE(STj0~0AOqPVhxcd!K-~(-)Vwu%T0J$O1E`1vums0YATk^6{^$VPMsj7UP zT>lLF)Sa?*B)O9EGI6u*arFl)yGDBC6Rx*~?F#`{68#vOf?_(|?{ZJBjuNeWv#Abj z{adx)@+4qh&_}E%5}}~8v%u=b;Lr?|7z2-XF?jqU#w#x9hd&k6cYIenpQmPS(kpgO zz6FH?6-p8rc&qlEFbWc_`X+16HWCwK;fkk52ZutNYSu9AZTLjeS9ir%gDfAmUaqdV zl$1*<(%zqZO7+ldNCq5skoGXkbi8x5b4_8@4^yfV@&s5Fovjje*#i|ZhAOEm`=0A9 zoApo|0#8pV)0k$S)0|$Nom~e+e2;!XzxuTTt-m4~$scDP?Axh6-IA?k3H#O?IJ506 zw=Pr8c{g^5muK)Qw7@IrzPkGy?W@ObIh+0=D z0E0tD3RR&hT3)n;l7Xdm|6}1;IJQ-vaiKb|95Id@9b0oxO#>|p{proHv@Fx^>APvnm z6@dNN1{sqX(gvA9xs6%^Ly*MVW=(b>4X75oTdMHFCm$6jJ-I3Va{OlQC36z}CX`Uh z_xqDzGEdlY{yR?f(Nr&Q{8Bc^omT9;L2^Ako`k1QX;SNNBy_|}&Ek~g3y$V9oW zp-#RALsM(F=K$0Z&qWpt3R(0)jC6{jN{o^T#x0aclucPE-O@QpH@n+X8Myx_mrxMJ)2 znI-m`-;~l5$_~x2%fMnwp&~5J0GP#mYa;2ncy}aIkbVTra|5j7@&lFm+CMO zYh7gB3jNtgQT-b#T^m4itoMW3#Y4{x=~Us0?hLmNS!z-gK?<{X_^b2h0SVk_H#Kst z{^Mc|(AjVSz9Mc!dJcOGuOFDOs8}3nNX?!|ZQ={RLA}zn>jw>*&o#sax?IRbkz-^L zx)#vJ%Kfto=y9s{j^DC>c$j0ABOyP13}ij-pFKdKzHtQe6(#`zVxb^4#QLqS5dv6} z3LDdetuB>15o(ri3HcVm&|Y}(dNftWqM!;%26{25Sq8jM2x{H~-*OQ>YDL*qveT8R zQ+r%e{XfdWyl40lEs2L7!-|z2BVFbYEm>kyRD($x-*^d0X%H}CBm8q)A>P6~| z{BqIqQd@i!i^}5J5$YpmV9*$U)y$wWcx@E5Y&O@2O!nG-(+N5?W6tMWJ4ZTZ3`akb z)wuj+g9M&3g@tzoj!sVa2xCODkA#}42i6by?5*~=vR;Efb>8DQyIY?1eb{!AO_lBj zy_6JlKl%g#UiyJ>dMbMhNkX*|(=pRo29UBtvgf94?`YolFVu{)c*@_*!RD((*|ooX zZ9I*f;Iv1*JZ|iai*8q0Cv@m~62E3)T?DRs8D%fj?i&`2e)EXus2hJqE;gp%3$CDI zUNL_B$a-TrZPFx*PUp>eobRbyt9Gz)iyA!to<{Z*sB7nQNGP`1Kx}s}clNwqS#yv_ zH_?w0M?bxOKf{-ZdTr{^A`Y*2eg_$*CtC?VbZqQs&cVwT7DjQ3v@gm>C{Jn0FDPw0 zICXyfIOO-tUfjZUV^6{pG;ng zPC*p_iG#URQYB`B@vnGYCrCCTk@_po4+|AW@!P$!K5@eqbfNRF!jcU2j?JK2no%dW zl6T_H8mFm*ztL@$W^5-ij zg_ioAi1;x%T;8nqX_t*+C|LB=(x_yQ{6bxTzIrFmgAR6f&f?JmtP4ujQBZYfNyR}n zdKEp1kth~qQ02ER$BRfF$}{W}E2GOZtP?Av?4l1F{UBOL~YrbwdMBvf5jOfJUsH2QjLap{iERxfEOP(OCMPT1JV4Wa9$)AJSok?H`~ z@PB?q`qcnIpOLv^n*Y{?t4HO{_P?*!!qGk-gRYIEwra?9v2e-x0{dvE?kzB(M|3 zZOPfB^Qp`f!?>g?V49=VkT-*3Cw`*W+N~jBpZ!qQ?JK~ay$Hsby%a#o#OkL8vicVp zHtq;ZB0Q4zWSd|_Y(CH#8*J#I?|o4DJ?n?5>tOm`F=bTtDG&=&cPlNr?X>n>?2K)x?nT55ibhHG3v~$e7wAmVE)vQv$Wgh7 zA=hlvkBFwqh!Pum>Sx)AkSPdsK*V5zC0hWFC2dbpA!NcCLpKKWK(ZRd7Nj|ThAq3< zqZyXohfzs3gQTwr)-u20%aa-v5v(T~wjhyUBqTpW{o!(bCxv=|IEtyvfjBD1PB1#e zK`_d|PQYhHfWpqm!RPjq|EDVKNf%6OAu8?f5DeTAe`3e#UUX3d>%Db@9e{s*5Q1AO zmF**mz;^WJ7mDWZyIoy|6$^c&^47}3rYE@wZ`2~1Er>Epc8MGK`UaWF<>C251@m)v=@@dW}MQbc8%UX$1SicaCuB8wuQ9uiw?fYU}L!d+2)1w?D&zw4EUXQI~#IQ^R6mgS;(nS^#;o< zp@jFIIw-1s%BDA?8%r)1)d8-eIq>uO;)l(HVc&Cis(Ynk6bFuoOU&=m!;yws!#LX? zQfI8%J}}8&MYMGf6~4$stb*NemdOsDQD$lF;#hjWef;VuzS`%W zf4dMMgN6*eT2Bjxqc(vTC5+Qu*O<5Ko3t`HjN8T(Ube~+VhfIpPUerz5ot!tY6-CA zbqi~C*EuMJ(+(8q5j8)f5#ffaSYYDehQ3bG_k5!~Gx2SmuNjy``FeFNn;n&Z2M>MH zbn`zJ;{O{6l5P?T$^V}~3cUY-6i6C}LLu`pp?KKR$%-IZ8Z%NL!!ZAYI2RjdBYP2K zGdj-y#5-`Yr*tC|HxkxEl3`*0&tjgGE@aY1n*m7kH)W20fj9pLEWyY5rcBa!KMPs% zpNjeU|0#Y$Qsgk;{!eXou7A~YF`y(dvHwGPN+&W|BMv20DJIr`!8!~;>~G+rzhEGv z^cGGiq5ou+m+dcrgCw1f3yJ~Yc>{m^Ur3(CF$2BCEgr1kToW^tnh+vcrcEWd`KYYc zg+90i%a9=1i@b&%XYgP$)zCEOYw%H?<;d0*<~Z7J_bx@bE;F8<$)_T7uU1BFAVBTc zRfP_#$g6Tw8ipU6bd|A_4&(N0W|{|MI*~n3g-Pvcqs|;KHSgF~!Ddmr(y^N{r!!?W z)B4DCP*=6)YPGON=B*W*DD7;5{!|Dy?^BJ>6(7gNR>}m=KIiY0962{KEy;pAoQbML zP-eo=Gf^!Tj6XVRNX&J%KMd@x5xNQBy>oO)7QPIY&xEJ}RO8ec9n$o+Fs$ zCpNymGE)zHrnrqTG(ygHaJnz*Rc(B0lKj#4Z5XBuq)Wap9mCaC^|uQXGkpEUp!cRE zebM(nwr*kQg1AXC+}0&l`fr%YzY82BNrry)ntRbl2nyJ*K%G1O(lTD&&}LUYg2f?l zyNiiB( zEY@z&_UeM+$DPrH(d(l#!oC8P0NF^WN%aO8?@ykcJauSTWJgDN2AbA|$j#(M?938Y z#_5d`^&h9L%Xydf-gGp@n0_5*_jyc=ZQpQv7&w1 z65>97uH#eE6c{$#kOm_Os0i_ouC zQ`w^9fn$l!x+WUrEl0{J58H)gGGIx|I&K26 zGGV@$88g5&rb1a$*e@BvI2k-cT|T+zD<-x>kT9t;$=MglR^sgJd^HyN_@~yVG$zfXBt%=9bS&8alZt1g5|Q42-S z)$Ico7o0D>5sN3uWrg6c2>sFba37kwkuci{0{_&H368H&F`qolEt{kM{(1ChFMQ!4 z?r7GUjJ=-V%H`=d0Sk7jn$L3T=sN~x5i8(0DC!LRUi80Q`m&c*u# zX*oweP4RX98vA3(8|7B07fPDG%v-v2TPV=v;n-xo6iRlR1>abk_|if-A0}t8!WmCP zOpj<_`Pxhc%f};n$xxQiE<3n983^^xxbM4=BZlpA&7JoQ9GyP@R6laTQYw`<&1N1* zSPxyEeifxA$4dd&$6g8R$!z%+R2oz1OUX8Hh)(z$a=uber*t`od;e&uwaLcx-1)>E zqMPzDY}_$&zU|loE~mEPkHf|DCu`oxlgJ(4F-x6!=)LiLjb#>7$emcJhx27O=s{il zTohH_h~f7biLF~KbI#rauVEO;7|oO_ZwG_bG~&MW+*zK0AwLVFgR)qqP~PW&Unj|o z6cnebAf$fvzM}Jjv4or4KV~1%=vMFF2d6^#R3Olm(Cn2^c-Xa<3gtw~p7CDz>P9%H z(&jGLmRK!J*B;yH-5kGbwNCopoUAgK@seGTKuP5GtxV`4#{z@CBZCxcS$dg-;LURiwb+vJyVC84rE=&TAb^KgcTFdNO*)K%*_z-{+9LiP zhSz#U%028YswL*~6cTv}rU{)c4kfdDP8Gv`LYO@A8U)iOD*Sef?LFoUpMXi1ei+FY z!V%)}KkrI@bffluc?`|NQlsYLu1EO#5E*L;Zmw`D+tJ3< z^IoC%H*mh|?!>&O+q#TX;~!m1(qN2EUdm z@RkW{nMQwCv!fQvvcuB~rI6>eLPGhZ#98{5*2_Iqc3~8$Lzop4YQlOCwoqTg$p|*u z!D)q(_GqNwV3|faW{7LqMopoVOAF#8r)m_C%5#;4-8CSS_W^TFZreZtxY=IZxe|(5@FkYPlM>0`0-|ISkiHxEP$~=$`NdFI)BGsLc`Of#dHqoeeRZ9d<;s&ou4$t18)i9pmK&h9Z{W&1j@DQzr5Z)l4ATw{~SgY32ILRfcp*{C!_`Rd)Dogm{ zb7eC1>PxnD^NNghO@e*mb{r#dg|lLKHbdACWD2DiH{sBivv-Ujr{TTIYHY^Fo+qjg zJrP*n+ia2-r2;%JlRpl7l*5nZ-^aid8L+Ilafqasw}a$=SF?)Am>%G?wYV!k6@5`< z^Vb)~IJWh$8oPSB_xY+H)fR$=*ZB3Qm;|mvd;6%tg^g^Bf6lk>;^pMjsP3bW_YO`M zfG0}J-#QihiG1EX#w!zQfw9I~gCz4Va+>9HcZYEBKomP?ze+(bGpw~(OgHIhd@ldl zLc^(dmZ1B-%6rSR6m&EYyGZRp-QC4}Iv8T#{KXQ12@!jgJi!#!=*I7%6eh+71Jb_S zJz8nxx;dt^S4kS3>9V(S73D` z%Yc2|2L`&x7CQppGuUI4j0d95DMGSNpI$15u2#xLG zRMRQEAgBW=@^0kUp4vzu)#Sgp&Vx%X7A)wiT7BUS8!u62Vx0qTPLh>_mTrIcw|T1^ ztl3~XUT!tZK0i*su;awZ734Ie>$<1wJ%nzZ`>NqSvFkCvyN8<46{W}DKJpa~?jd3i z$ny$Dnd^n04vUeD{OTlM;r=24pqvLkH`udC1+>3gn_5KD&K~~r&g!s-s!gR$aXaY~ z*zId>k9F$VPv}2_NQeY?OFtEsWVt^pLNIIbF(gx-?=nO%*H$OW;|AC&(=!WZi@AG&aGjJlpSMn*STzmYyjNMS;Qf@4i{a-NnoGZ3D}n?zRib`k%J0eE)3g=@}&KJUvvc z+~2!6xw<&NU049|{k^;3=;E&7YGz>tVwJS=wzIHOmy!4v%_eJQXJhLL;%DOmv1%xp zc{qSLxc{wE!^_;$&-G11&dJQ?Ez|sm(N!_Gx3cgAvFg}a{=F5#!Tt9l&%akhxY&3( zxVitIJ@fI(YvR&k=vvTo&C0iD1*Gk;`5s@SWAs)ywcB)?IaArUo4duWTjZfC8Z{iRQV(|#4>WWiA4rJ*^lK~S0}_Cnx?JJF zyR&~p*4c`Nn8r-(kf>r<8ap~V>g#c#|7xO{WOPp9NaGl>pk6;|{(Z8ZCZ|E5mYRq3 zmx0j=WBi+k10MRaU(Y9fI$vk1;Y=Qe$JU+;O4!A{K7vbph{&r&x9HH{l-KuRX6{PB ztWPU06Hj{zYxh@0AG&j&x^HWPw1FBus!sc` zFAGGU)UMRS4ih`6-1m83_s`LTuSAoFrh)TTjuz)3_{_@0DZr`2P;xxGr1PuDQ@9dt z!RwiWU19r6iQrCq@Xhwb%Ts}9ONz7i#gZuSQQYfsBW;+hgmnctpFTeu9+KY~?R_7u zIB^nd5qujyP(5%iBwT_7Ub$TjxV<{}QI0xVs-`W9JS`#*Fq`PQ*uCds&wc#@_qW}? zbzz5=SC_58+H(&+pi0&nC;B{@UcM%5gxv807BqSJMzr%Z0X!VnLBq|QzVLkw3V!nR z;GD=ADiM7Mi_TJs{fkw?QAuEwy=5cStZU3R#?S;_3I;lFv&jRm3c%rTGub6RELnoU zOV2&$!1N!F3&V$MkG<7b%PlLIndt*G(S=~6V1SH?WMcg0<|Z`!c>I|QBDd}0jP2Wg z^43BdRb-lqN##K+D zTI$J104+;A21h-r763)QPOuyf1=}chG7Gbcwl&w+(Ku z&zu8wO50DXHsmI)?gwG?St+MRP3{a{8^iFqIFs(rTTJc}HH`VweK`u26?&Hlo|BHz5!)Jwo={$Y14+iKHDzwm@KFU@< zIZth{og2wbQqGT-AI*H}i!Q>bbN9JY1bmA#-eNukr&nX?gy; z+XvI`kI1>HDZA55r#a)C8^F-*cstYUv+{emww(d&0hNi0N|jEZoyB?&d)@(7M@#YR zzzkrGVf9LxNdMBM<@s!MwLPaTIenv;v4cy{r1>moxz}>@JR4b0Nc3_wz~*8lceJX- z$Xn>1Vuap*_Ze2rQ=@<0N5pryzWlBKU6_dFf{8#s-rD)JLB4W-IQMdS`kbzkvXYLcx#ig6xRXKD zy6l(LKj|}Wg)dr;8($?n`fci__cl>SIXJ7R3>-gJLf)26+v2kd+<9)5)toy9oaQhM zObDmCoiFrHkImQsE5i#78sb{PrA-LeclXz%UcTv)U)t-MPtS#dO$v`W=V;S+R-0X0 z5LQxzOYEK{-gns8Y#sD(j|e?V1|GwHs`V-E>>jU+zrOZ5*UQYjt^TNTFGjXJK8-Fp z8o1YP4s)HtM0r6b`Z{Dkkh1&dc3Z0jc_2@;xv*BK4uFIJAVR2cHDmpnfB5=77s1S& zC;qYToqL_0HaQ_xc#XB3Zx325aAc0D-}`b?6zcB2dh~39Dm!o z-<~=Myr@kE;z!AH!QUcOJtHFT`xif~U0|gRS_hoji6FtcIMDDo7 zxCwNvNY_)F6{<5bS|*8i+zTVaQ*eW@{Jot?MSCcEeWn~z)J+v;tgl8Y>7b?*6zd!1I;D_)M?-=2yZ0}r0h9>(nNum2IN8Dqc!Xi@}MKT;F-hQx}D69 zw|BbpesZpZR^&W0AYETz)Isx>rT8bXHImAPv;L zMjtk`g-;wX-P+;(^#w0YX@BAj&T`pn*2{QFUz^EwE^vF5F8W%KdEcwWs*z2unfols zLVKJpdR}oKqzPQWucd6|@91nSA%3dFa)x7$;-K>D_PLt-zoz5HR3>UYG#{$s||tmfIf?enciazj2U9jpxM zg80O~XDOAA00xvb(Oji4;YJ3ZfSs6!rWE`sbY&xl(eL(;XZjtAlY)D^3U1(Vru3=G zYD0nB1VdXLvg0(BoMOzAh3s3_A^uvM?ah|Ve8aN4yH@-Yp%vp`KFRDfC$Tf2NRyB8JMi?9rm#0*d7FdFT3qeCt#{F6NOwO4Pi`1c zts8%^-JIChwSV(yQ)`v`OIbsW2LxrTkhoT5zt~B^2aIUmGzi}bWVP`*|Xi?+qfn7(Q>W`XAeZ{ilyVmsCl8fEl z$5SPiDIvdILtm44f)k_g+pE$2{kq3FO>aSuA}&8I<=Pd6(U28C-Q}^JyNIjxQ+$KZ zRnu93(B>8y@9I0&_kmAW5x1vbtGi?ITv99HH83KvmBhI>W}jtb8jTRsU~j8Iq?DGvfk)1#e$994>c?W+sBC9ws|q zPh?DV+rCUOepY-IuE_?EDe-^0UZ_)Y<3AV=tIR2C@X4`xow#mzzHQm}&2e&eEL_{N z3f@lumUni?H^Uc_a`{D_SOm%Z+Ff_Hv+r-!oJdT(FNxkNgm5uZ4Z1K9c^G3g#!t@+ z-gy~USaNte?c4eJ;u1Xh>VFBe;fdqsR@k`HKW!KBkI)1K8gKu(B~Q`#yF7&*5{KmZ zrw&F$Oq>#Gth9k>Ve8_s-U|MP#+x2MO?!L$X3F1s5Xxb+{^tKXR{sAHRbSg0n3$|B zE^e0m6J=M6{dbuDt~B@g*an?kB=8@Te2R7#@|QXpJ<;F(;s196{BP?2n+VZ*5;5ip z{wM4|3lmS1$P@b8vk+4$zkg~)&`zcMtBvuUUgaMv-7yz1e~B>Me;D(2BA~Ts!ns*nSe|LIUisOeRrIvg){decF+LPB3fDN5qc zEK|&EaA>K3t?mKKXrAcv)o;1m7vfj0R~R3jGTI=8iesxLAbYOi=azUuc}M(oG0Wc? zU365H8eB|70*>c@)Q_OY>@}PS41CbIk$OyhN)HO~xQQ1;pWRllaT?GUq@Pk7CCAnO~fTTn; z=QW`9OUJ>*sI-fepL8%0c7?dm>xSb0qU^on+3NrQ|LeM{I;^&;Hm#~XYQ!E@MeUW? zqNo+CHc?JXOYPbfdq-l`CPrID(NH3GXela$+O>bt>$*Pg@8`RIzu)->=aw8NuXE1x z^}IhHkLN1}sps;&28U^+FP67*1z|m;eZdZR>e``%G;puilqTmWvF+)Ys-@m*NNUB( za!fc%nwJ+Heo0mSkPW+OxltpOe8Ny@Fu^+gztfzEeBHQ3;Pm}9%i%9N>WZ_J<5;4#q0Jg6JAyj7`8_e4pC{#h( z)T@3?`=V8ho)YejefAJKv3177(WJ~}>9MJywWhJVTdHC(yi6P+Hji-}$gDdn+oE>f&|d<8~CfjZVufJf=K1pFVmqkA~r(v7I6Z`PzP zp2MKz{M09VTzfq{-t2vovy-S$Nnfj{MX8yX=_fCjX&Ny2!1Yrd|5CozS?r2q_C16l zJjN>Za;DnTmBf7VS1b*4I;)MizqHXUUBJ6>RXVn)5U_$~U7KO=YNKOx7$LocB2z)^ z31ll2K=13!JE%Yc;GIKvC77tyxuO5PP z=2C1Z@-!LAZP=8oNab8xq*P572K7(FXcz z=SysRS%dBE++jwIS z6bkMfjtRt-=-$hU zP|Tm!xDCrTL#Q(x4b=JBaO*1)_BQii4iy6Y_0h!5ZdZW z>+DOY(lrtdswc}%_-o*CL||)x*Vo(DIWRℑHdkv?zd#cPhZO=E;?6^;LW?I$x-i zVm?TH0fVN1bSB*3Fq4!U}%eH((t0$r1b)Z0*Hp%zP|rbA@2tHFg>}BLLSjU^wU#CKg--e1r}aR z{~-BO0)Nn!3-Hu~Vj_>GYDk#V^+NJ#GbQ zW5f+9!ym6}^iy5s*=ROp3^wk>P=ygc>1*dhB}LD9fyx$79&$v0F0B$#6k-vAPB&Lb zN14)HG!AiG$VD544xWN0l*$n{f6hNwSotg>${%1umC9wPatMyX3Hkt5lxh_S@i4T`Zkj&Gb4e8#rLh^VLXDUkiNw zeH%K>ivAbM><)jZx9W^6WLgw7ab$3G_#$Y2v?9~A>)N|wx5I{%rEPJoxcz=UMN@<9 z^4;1}ts9AVGyk-t>MwIKH^9gC{z3v@M>3Bm@>q1cB~4+fNjVu66p&mYYRG|Q8rmtQ z5zEdBiK%u0@m>sbb8n0;zD5emLs;K(g{xo)v>{jJyXvW7q>}BRMyRANZ1ioGxp11a zr{Cm`TfGl6Sbia|MLvoC{_rsERJI8+esY!fFzYObWt(n#m{dIVWt9d6sEZv9c|Ok8 zs;6}R!r)RX-Fz9evMEJ4Vi6To7L5OR;TIqgG)1mjK{_=TQ7N1vbf|7O1L4#9QWV#4fk3l-_Mh3y znfKV8#qNkr_#Hg*w|@&1Jpp0%uv+d956)-7LQNTQ2xe|}sdCwVzEnin-TqP{$`~V& zgOg0XQ`q33)BYUl*D^mBR1rw_O+^n4wV0qg zoljJumw<($3b*#`m4N%oKVF4eBq0ZyP1fwu@2S!Z;hkZ`0wDK(Yb`kirWZZk_&DWV z*jTF&Ip533Nq1o((kC1>7D85)X~B`fId6Xq52(7RcDJ=G1*mtS&q;L5Lvm)9gbM5S zN_mvIls+X$B&|POA13x7+c7w@Ov(<=hCN@9S<#>T8XG^Da?Np#6)MY z(_({5qZI(Y#a%`PW-OFd9_zU3p@YrJl$h&TYK#^e%|aN|Y5Z=Fv@E@Dt>EFO%0t?O3NdGP7N@G{fHXWEd zS0c+w)h0`yZGV+s$!D0}7f5G3JIL0g@z9E#3zO?FrYWXf4_Y#U0=(EHMC0?cg4(m~ z@Z6sz>BX3T*Ujf41Y_w1^heOdA$TVpFBJxFpIo5bPvz0{H^ z=Z8A4VHIwfhAW!%>H_}p$|z)Mwal1TFUw3K8^bE^(+KxIY-#oOj@WUe&{PJ`VP09b}M6*-)93AOPaI80>R84OQcG!#Hvzv z=-y3F=6w((g%+SCpG+XX3dH6Pk|>T;C)Ej-$ht?99$vtc(5^i%Bnu}?j>gI`mbI+z z1iumOe-R;hGb`%(KR~c``HhL_Zywm7QbYT<CfL* zNDhf>QCaZaZoL~1MN1MyW->KV8#}ejI9?C;zTBZj;Y7$-<+?%6ox(KhGH2}2QKXtd zD#On%Cw^|OXp_3`C!1iPhe51vhW=913NwQ{c|wqfh&>}FSCnLSjgJW)sD#0W=~eJ6 zhGFE97!>vxBe^x?dr-!~Ws$oqIf=UGN3yFeX;Fjl=lQ*3lGf60L;JcB`K~wU8C~_7 z2D2I;Gs)Duxpu;K9jav4%v-)i*oNvL78;}Ti<^7s-$bzcPXf<{b9CjCy=EIx6Dev_ zbPBk;;lf^ZEjXs@oHJBHy6KU+1_W~P@QMn)B|E!rXJu|Ek`MeCl0R`-3`>VH>@ZJhh1Obb%DsXThU->4 zb*ezw2gx2k7B!NjlHT7P$jxQTca-~fH|CR~vGfNOz)Fq^ac5w8W{!P?R2~RwTWmb& zN07tkvoWaU?q(f|{Y7%ha&M@2Bh*-Qf2U60yjL`+Kb)B7k_nl3J1ji4(xb^2tO}Z< z>U@`0Ww!7w%lx)!s0DU|m_s}wV(Wa;^p#Q~Q~aeDHhc?1;(1phAcUXs6=j6c&UX@< zv?qYfa%O6IKf-Uaep5A!cr7zs%}CL2zcY9xVGXK~$@9f{;?pvB*Q>k1#Le)zC=I)o zpDZeVc1$LHJ`9c=19Ye$>$`-!wMFHv=!NsoofsH1c)|^g8IunDOz)_4a`s;_`I|HT z7tG)ZiD!@?^N;7kXn0-4YfPE{yxTJ~Y&Fffj*?0GAajo~K_yG+?C#@zjV5`wN#Z`7 z=|BLx9D0z-CCee8ELM&#$O*{zn5L`wymrv;iUK0TAAi|)758B&alpiR-$HkAeA1`3 zg1mBkGg=&P3hBjf;m#Ri^X2;hI=v0~MCD7&8BWoAfQN}lLvAQT{kc+*#rS7(#BAL~ z8Ml2Tqh=VkZ|Uf3W~ps0|GIy z@Y7NKwdu&e5k=u`$htSe>JsW@{6*@~NAEkyd1dW~BCx}1YhT^RmWS%R(dRZWmHwMz zjiEQMCC}0`)ZHo2lsaq_wzEE1e|(zP5_wT8*S;&OeMX8n;#!jKF_ZeO(xPS2w2}g{ za%V!jg%IoT$mYq5WsNZbM0PIlGBGtoi|x}38#c9(jm7hj`ivX9wOoc5Y|5gxQgx3> z1GI0@=X?+oPEyvmZHu>Bb1lYCNe!0R$!{5I=XNO|kX8Y&u_LJ0M^Ml^s?6Uv?u<_3 z-9&o|mkz#x?(34OjMS<$4MY<1I+(Yuq_uR^BQPF$-ymOOt zASYJ^*%O%F+YI?pdh$d&7?OPhp_ZSzU+3m^kbnuaZ0?kbP$l-_`@;R` z$cl)@`v!O+=~>Kp+xmG@prcsE^2yKXd4ADPWe1(bw3&gR^?^Gy#_>fT?HckI>tqhm z6nG8qjG|1|F5ma0{?Z401QAc}Dtl{;96eZ{a2u)hU$}#Goa$XIWCYpEAz=+Gsjfyq zTXFX)rFiaWr1<5GZ;vkqEQ3&?bwA%JHAc&>*01Ck_lwR`9~cHm9j*D7gu!-)=WYw} zOq;Nec}jM|WRZHsvR-v$R>Dh(TtW%#`dj9^E-_j-?;hxXG$_Y$q-zJuA#ZevbVDHq z!i=7~A=-Z`b0ieXn2&!RCjLo|aXEk(K@=i^`<@~(bbGkm@vVb$HM&H3GMfek!`tA+ zGPhr7(6}#$y@OREq?aw!{A!6Wj$hus7?V&s9m)2oSTCmYA?0(E3}2pF5m()(%a7i@ zv=BUxCr=Y;l4D~r67{!6HH}n2nsa6qF)g++{O=jJ_}^PHcGYz3QZDdE2^a%{x{BHG zUtubs%KoVGV(M)?dzTJn9LkYmpX7+Awj{WqyHUPX z<8NCzjHy5AIgG#5khx*oY`1VO!=Bj(w_X`N!ly2SS4eI%2Arh&7bQ$rHs5ThTw|FXIP2HA@r z@X72ro^F-Dsre`XSm5bciNg=dfKdlvE zR{0kj#YBxBgZ2Y|zkQTUl8J-g?b6=EAT!8V7I-f9ui%rlnRn0Y2Jn2^w3n^XJYZpwmsM_aBECr=1Wpi3eBM8tyS+Ka}!` zq!Y-3Vu8vBgmxGGQ7emDPY>gqlAwwA71*EYgX>R466y*98N=G6F+7Y@zON=XGaW|_=d)~P|s%GJsdu~>F z-48>UsoTy7eXCr57`PME)SuuqjSdcV0=LS&mY`+r<>sl59ey4TGx;e$Rkq+HkO;7n zK3-ZdmtxZoeKP+o@92q#!A{Q71q54B!P>5Zy`DkH)kvrq&O|@}c*Y{d5F`}EC}nfV zX=~(hSfX^#>PK^5D4ofsS~x3-;8XLJzE<>2dEm8OkHD{vWF_(Is~Fa~s{KjHAn7<& z1YF*zmcms9jazAOvlma3Tm!A-SOYq=A63EyplU%VS7rB(A-TGa67E8i+t+cNo2>1v zmm>|tFtt>YXL?6f6&c~uO5VxtUvG*>{8=^?5@CD^Rpn_wTBN^6CmdELU(iRzSt#9X z*T-6oP((?P-!sGZHp^0)5UD%&Mo(BJb+gFsjLH7xHL^eg{3D16{&&23_UQb7$E#Mg z_m@Q(|Hd)$5&r*e)djOX{oM&?^4}lOyGWyp{~@%$`S1UXnEwhk|3!QMYCnDt`Xrd? zC<`ACsovtCeesPC9u+C67a*`Jzx5mbSw*7Y*?OMUHcPV10rCW|QP%jUg+^knuZHEh z$VMjOV!dx@{2DVV8;k_=gL(UUHwraqI0Zg?-8 zhsVtO_!Sq%@t>Da8n?&-eWPfuqW|jnlBXN#tZlHb z$i8wa?zyI!zoBdFQRgVTYrazzJf+d1kQ}NDezkTKS^Udh8a_W1=;^Tzp9A!jN#SEi z?r8NkgG@#!*Z}0-<3}-8Pm=-jEA@Nb*KW|G+34N9--t`lc_x>&ZX{BP%uK63u~ON& zm`c9G-YF>(D%sdcYqgL;?O+q@MMjRYycQqTg@+70ykr>(^{UWm9p%fcER%U*n5-Oa z46?3lzI1P%D4Vjx1ryqVV68Ph#pCZKpIS$;yc$gk8p0T(Aw=OmUFq#^9T`nVI7XQ81J3&xPxZXQsc_{l9S4oqF=s z4uf^ItaRr})3Ed-C}<%sT(Rxlm+wA^N>+bSlG>flFQ6FNXaK~kgL%-_QrwI6wXTxG zK9;^Lq$+(5UlD(xi$S!hR!sP(34-sJ6p zd0R^SuTi!BI=6lW5Iwjm#+mrNFmEbdzbI%McJQ+y`NWl^63W%MZmrXZIeO$IaIDlK zF!NM8p$gb2to42%C0nz=@ASbmJn*FR{MFmUAQLH2BP_VGj6ns&Q5Ss~QoqvK`n8+z z1#DlyK-kSfL1_**l71G15q*E@5|@2iq@h+md*EGy^A~TJ`V2P{v^JM=rtZ%#_2u7w zViL>O;cbi#npNMJgDmak@((U|mbi{gJ9Y|MfY zM~^HqwYI87PwgBn*IB!c?4>!iSn8rdG0AV`ebI323i6y@0=Fm!xt)Epq~5}_K4b%O zQgyo2SQ72(4c>e@Mp{kJTLyKIuLCV#)55_I*KV4kQr^Iuyl$V-sf?bH~2Q*^T@X_Xd=i{NsbnMfI zXL^-0S+DY5-faW6qcUPF$2^Osa$DpxRxmyxx~n0F$h4)qi2TXRG z(6k>m!t>Vp;N^|EJBm}NULlLxtWkrJy*Va1;-p!{;y%!BoV>3epwYFJ8qMDk{xp9y z6T7vQnJ09zK9;vIYa!ZRk9aJ|A>xrZ8K0=E9QA3&H>f+r@FYU3WX|{3<~vFZrf@Y= z21+n?G1cEHZ@mn%&)O%R2792Icr@ze>p(kejcDq$yO)C_|NC@95x=ytatRT z`3mcNX9!BQP^#oMP0DD4RZT0hzbFpPTkSSo5p&wWQ$T_iTx5}J9y4-Mq|P|*T!AyK zOL}HYU2M#h0v{|dp|V39xGFpte^G$Umq2H;ir<&&=tp;e;}Gp4hC=!-6$sDhQRyt* zgBRPumg4QpUA}YBwubu#1k9VH>E`h#UfAr)Rl~6{a%tCQQL}-2g3n#l{k*Se#=gIR z?ef4~<=6&GNF*x0$HlRVTJ6@4TGJ0AZeaxstaTY)kC~Yk@Od#7MXS$varu_wjldfJ z;9KgV-6xxo^)Trf_TJl9hm4p(U4P1xgvff_Mo+W17lTGBka(1S#qT2?>)~YkmY(b& zem8Ux1#h@p#p2+cdhjA-NFT4Zr?oo^X2HVCNfAqCklU>0cfV^VpUi*_;#!AGk?G$h z*38!Yhk?xFls2#ic>5>b`6aFdkl00q5p`yCay}KO=vf{8e7`t48crvQh9r+BD<(>W z)=49ku9;R=Dh6tYoe5;5ODJ{-XU~E`*<5P5lHFxwK9%{Mx=iI%V`{Cjv^4d*>G4Qd z+R6f3{d&tMy%^UuH;43OgHE_om<7MxqcNPIMSJ8C)5yIF0=b$IHwmEDoMzv?@sQu* zFHS;?QK$(@Ig`sfGdK9x4)*ihy=cRm?dQV3Bmt5SJMPWu^bdLTb!fl3kEii#A3m+B zEP5jS*q|QKIlTPlx~UgKBL%vmkx!QPrH5ie7@lg-icP`Wv;0K3;dC7C{lKwst554jaQ8?`8m5;bBPhS^PGfhf4Js^)Z= z$~qX*U#}R?!-i`02!|1;Z}1zb)Ti*_SL2(L8@pV5#dzj z352IfFLQTRN*yS(GW4zLdt25zzQKOeGa2dzFvUd;Mh4k>VYfFlZhFNL=gvlEL1(e|YgLxF z8xryiyczA(o{g}z%$~-ec<-k%^;z9Pig^5fpejWr+&GRAX;R8_48lorUx%>`C4K&g zX-kOJXq9Z?>e0CP>l=m=s7wg&Dq7TNMzgsodVMC{xQTbZ+569>Xo3Y`wtD6|dQulg z^ca@ja?oLkyH_Drh7K-8fz+vSRESPq?+}L0%a$a^ywQtg&LH55Q=^Hb4zC+s^fxB4 zU&Ds35lql=w+PsbUDvu=@TiRS9pu{X)B3=Yna9nugJR@JWUX|E_Ym6Zb+|@aVO&sj z(~FwIa%Xb(X}({K11uXopbXl7aLVV4m_q{U%#+hg96bX(rbC~sm+&vq%uc^bcpRiB zS~!9fx^#7cC2<=ZQg>X9hc!*Ww7B#g#-xajUto=yJE%0}Dgg@%)=qUr8~aiDCk7C} z&O04HO(^S|fn54h*(gss@&WN)&(PGhthervi0$vmyP=K)V0u?5LU(VtzFw`o22Oro zz{6+pRwY>?S`dzPk2+T=k|incl9*ItHTY1v&7_nbj-!HLvs7i%1gb>W^f{vzM_4ON zj4QgxO|huJetCXI)1dn`7D0WN5ZV5>E$7PUg@yco$9y{#5J^97(j@e4@(<^zuHafz zi%R0aGC<<f(|K(*<8&z#2y8`qTJxmG=D>99a*VarM!LfHzs)M{n5u+Fi^THm|(W%ZukC=|SE$sYbYhbfR@DV=+K z8po9?le9fMbXht|^LzXrL7aKFh2Y_7aiC+=PjD~x-re=CdtYAkNgr2g^C%b+!>)|OTj1Y0FCD5TpWdIf5NYW9+Jx$rpo zO4a5HGkKxk&GU#nH5v;pn^(!_jwcJ3lx85AqvzU>gQD5VWHpFqcYXEtf;)mq`{275 z8fq$?Vx_?I(v%gvA>MCneck0S&SXz^Q(a#qx*`*bnOcz?dFTw(v+@!gZ&OcSE_5Rw zW7?S_#|GWtvgtWRHAZH#Sw zmM2BwGMycxu$ct9bs=7#(4tywZZ-E}XXP zbEIR`|CS?{f3<#70kyku(2olBD4|aPKhI$Ol(v;m>3S24B;!q+U6O8}kKDwLYr%cr zC1s&5&fnr;@G0Auod*#voUQ723?+##C$k=N4tu&rkPrWWP39z_Owo2uf;C2elr143diTeiTRS5#!j|m!^0&M`3lh_`!3|}W5|3I#NDCOj3#VcJEwR--I4H>W*kl02K+RfE!E|8*Ja_2g#My+#V)x6p&i ziwpsAWT)K7YMC5sfGby7%Y3@wMDX$nNK{G7-8Kmn6%!5%fc1~P6L5Nd_6S1-pSz6P zma>o6I89E(0g=y*`xh_4AXP*3$D`0k&YQBjV>Fm_|9~XhABZltE(CoEp`I+IeRpiB zG|hIbVLhLgpZT2l>%nn}HFhR{Y&8v`#*{<}`Er zbWUL~4xk{%$-&qM-LQnPxC)+EK_d+y7^TlKq0=H z#eo2rN9{L;3WG1~*q9g}MBX-^iOZLd8yC``elg9}F7&0Yj?&N>t}YV%#CNh1M5GEQ zD}o-vqGFBd>7*m6C%bP>Wjv+2wp#MRFSnOlV&74f*bhIS6p6&0A08e07` z{vP;~B3E<2PE0&v$4Rbz-DIJ|bq9bdI8To?yY-|B{VCM{(o~bMbeaEL-7Kj$ z{NfKYc9?;6hb@P^KXL7G<@&%*{dQEpaWXJ}VYB%{7kxryiGKN2FmHryaTehETSYvl zJsOXgk9?lXn+#*Qlcd7O$y{j@07(KpH5`KPM8n%TMr)(f*4m!$5<3*$5ro7I}f3DzMHz z`**7P8MmC=Sqg^@po0<+J{^T`R1{WbDq2l*)wACQLa!yZ1(6N$#$V6d9&~+|cH!2Z zd^cf#VmRa0jjj8&nldjpQRa(S4qy{GFxrao2;LQ<&TKf~+PSNI-#W|nY_boeAv;%Y z*xx{%Gv11!DyRIH?~ZUG;?+A^cx;tvoCW+2M#vQoNad|QTZY!LUI0x9_D3q!{sVX} z!op5R}X5O9A2s7R{zAs(#ax~u9_lqS{fzDg^sn=ODIPdrJuWP{mbeU z`1=~)DP60-ew!w%4Q6VTi93~^QFXSy1u{rSpwjT*`9<+iPwj5$wl{jy=rMAJ8_Wn8 zC&@Fiic~h^QWYywE!5CU{R+Kl+^ofCkI?d+M|USZAnYhPj*L&=D3lJ zkb~R8=NYAIm^1*;<0dzVJ{uE3E@pFq`o0MGfe#7-iW}9GRm8ggPQDjZ{5)f>_je@ps!YwXQIg$C z<6iX~`q8E#$9L|?ChItbqqIs|2s$Q5MqAMyM4{ES_`~dX0ay!=vMI;yvrz1J`v4FP zx|;&L&Shz3dQoDw?(jxO<5Pa2BM~oD#nHer<3j=284h$@ev?XeVtf+4Ui(4G>1TB~ zag-3#6VHxmhdv%4s{Q65^9BNL$74iiwHYPJpHXR@Oy~)dcO+O4LPM{NNdRRI8K+ha_ zbdzLE1T#Ix?S^J!_M^4`Bk@HWP$hX^%TTal0z*P1!%uwW=#2q~m*TuY3A2=I1Tew2 z_L#xliWWqc4VMGOubHYuyMh_VrkDFfoW%7hfrYFKg{=BqMhaV`5$Y+U6JnH`V1&5o zB~(mio^uyv#Y%rux-^HbpiME%Fs6uh{LQ6U^aVWm2G~l|G|;8=X6#fZqdEI|Y|dHoFAU0~luwkx*fo}^gi$h5|2yht1Vh6l z_MY&B;SlWP=72|q^BcW!j_aLbc0bjGpQh~I>2#C;Z`}|K6`ic@URF{8S*ogA^GmsX zQemqdbU;NigK;B4<}*zAX0OBdZJCRgHr6v)3kDDGQD<^sj_#GCxq&e&Isbnxm96r+ ziSDxpn^{oxGDCB3(IM}+hj5hAWau~yH0=hullTB^MDIG-FiCQ3LoE!Vqtiyas|^ES z##AS4H<9Y0VjTg7SVA^x)tVt~6^_9TD4Y7+zY3AJbGbwCKOVR%!l|k~5cA~>xh9g7 z7|xgr_#dDPXV;a~D(v+R-)pt-QrKv?&SA>_x8zyEh?-PJitzVNVz)cX0|&U||O`pCON1&8C+u4f8$Mam5t@A=0DZ?d~ICkiyrguLH6UKImt#e{St|DdKpeY9+$ z-K6L8x0*ZwldtX!jgQKlBgzpFhC2r|0Y>>+drz3_SGu@>ng-XZhBw1H265-SIN5~R zK2o_>Uc6u2mva(4?7OP%61N=n-rr);#QKAKyF^#>f{I8V82K&$wRihYg?Sk)<1xiP$coU{^o&Szl%631u zeJ-JhFV@{k(+2DGzN^c7-49Bm=}ETxhpPS;s2ccWG9R)3%Wcd|Jn2vz=E0^r`R4?8 z`CVZ^IjUzK-|+M~kF#NT+9yWZZCBksPPp@({b7scg~&u8?ng1(6*3rEUP)oKd-fnx zidp-^(lzjgK;M5M)dvIpndJx4ZT^j8F31fGOj@r6tIpJvxD*yh zUGCDLxM3%VxAwkY?Zn`^c(OH6)i(=2d({;%|DdVp)!HYwZ+s+=!vD~#^uI`7|Fk{* zuSUnK|1>}awuLc3MgDG>Iy?6NW&7XwFCVFOB&0{%Tt9nPYoI~#6+WG_UvF9(zB&8( zM-9Wv-%V7H1uy@0VBTvexO>Ke&)m-cz2lR~b)K^qzOJ}udxnF5Oc435JBo8qtM?W} z25QdnMcen0g_^IVv{(#~z4q%~+lMB5umDurqE+q8ZwY;{aSfbcVC!#HVN|x0yieD) z-o65%D3nE1IOdndFt!eC>L*aP=>Rqdk0{5nAPOWRzeF zx!qCHEAHD}wfIz7PJ_C97n*W&BBlb_@>Dv^_9mnL0rpaVwoqvQ{i2y_#=!UHb^NN6^NM!uRe3TqY~FrUoIt zJF9P9c=a-*0ZzBRf$!n<_B|rX<0VY#jEhJIQvnMxu-w)Y9`ct!Ihnzs@rEWQ%!Z`m zTZUV6>4&K~f=HCqEzKm;DYmFQ;?B%A<sWNbUeB=NuE zO5|0f=ICiG^st|Tha$#SW0Z^t!;)e{dSg2%+;t$k{>&u#R1iJEsF>Zv$YfDJ13R?q zfFGI<4)4JA{lmx{2CwivHaUc$Pv<|z6FWQ-ljw#24?f9X|a%VKe(z?Iz9)Srit;z6un%rgrh;T{~H z?1z+`_qU+8V^X}9nTEqFr}iy(5VORkj3;_i;tUg;i+m37ifxSgvE#|TTMvkriN}ZB1HMJR*W;xIKk>3s`k{YZ zc;mrzfSNa0FSacb#IQunUr-^Wu3sTkpK(no@;BG`Yg7W2a26<`c0qY(@oq*eeeaAL zfc_E6oxd75>LyBk4sZCDg=~vlVFcqIx9lP%-Rgq+HN%Nz{d6^X2M>42>*)QO_!j*0 z>wBAHybU&lKjdVlEf{@c@l3s%`P{jjN32IUP9`>Hn#=qc!|{?FOQE{+xjGP^m3fod z+6qKD@B!5CLX%AH2ZOa&+XM*j&;nU;fsVHCeOU&-KQIsr@>2oXTnCfkt2hGA6xeVi zKM7Pa5KPaXd(#+10w?Ecp(1 zeop;Kwz4YEHwChjeYE4G3@vC5T9`BH&u$7Z22(`su4+PJrW@CKCreyJMSE!s%&v0z~~&` z;8WJ9B}kRGsp5_K%X;!uC`4*SF4$K&No8`ryoJ=-&m;0N`5YSseoPEGGsPcZ(G@!j zB2U49nQ4{0lRnbcWNQwKy`5+(pFJ>plnKK1=M3+!HAyhZLWgP|Ac4%;4{*Ccp! zC(|*Q3W-dUj`C1;F*Bc*_!2D4ee!obrE3`@XtcXHn>)3zqUv`q#OFAS&oOPfZ}wsg zOL?k3TaPq+zWzvR$MkxZoPzMG)2#9u-T`qrSpf+rP252b@0mJK^Z`Ieq9|vKZ|1fz zb1gOVm!qe`P2T5Za9@OFbr*b2!i0a41KGatPqUMXcdL)JHFgLH^Yz$Wm+rko*m9LN zN0wz)Y+9k?^^e7;#b!^TvGBZu7D{~CRs0lV%vJpA0UmVN9Vsn}Hh=GG zn(z+%b*j;`R0ZN&Us{XODkCltWd=@OHh&P;T43Sz9?cU$>r4i%sMS4xkoN4ysP@9Tq_GU3`nCn$DXb8Br&-3BNKIr#4dG2FA?qu=Xmx zYsX99ZD_SXsgG#pNmFx^8QY!q5@US@tac|mI(j3Jn{w&~$tHe9_hpO<-=fTt>4odI z{@1)0^m+`lgkY9);bdnfD%L?0wl%76@|+L*2wL`8L6qrJ0(0Y5Mq53+P6j~UpdlpT zBPsqMf@x;Q;%takJlorZH8>quX>JMhrq5YVCDK@RU#mIFWmH&K~TU#XJEg z0lkx(v-Igy%o7%DHG_q6xv179XKjZRTF_4JCWfXD0cXn8#0I& zE|Pl8uBg3B7a}%0&Y}96L{^OZ!KTqiO}E5=;qvhcHTV9xzW}h!EFTY*(|kS|HR@Y7N0xAs9;sx-MLe+#8{B(kCR)kO@MlIU_KeN_nZ5QsbjJaDIbqB5xT2%DX1?PWhpD} zOxuRa1S{y{|rtddgFh^|{kRdOfN*OERMy+^(0P71CGqCy?dxBQ2{05>CAQ zJJb=Hg`fDlS1q3>`O9w$>r$R(-@*R6Y$L2Z&w%x1)fKZ4o9tXaet~paO1~SWa^7_3j-*)p>-Hl3N=EGnVQo>9_HwgO!5d?2FDGn1Y3CNG zD10V9>ZY21|+<~7&$Q-dSyAb?9+H>Z}6(CiW zaT1jeolaNpz04R5=Q8Lu)NpP3+6H?*+gie%Usk3q<3x|0JCIrXg*uUinKgXVL)nLB zGJ&2*v0HxcRKpMi1XjyE9x-}8+%i<15m(pS$ZkB{7K{TXN59_|0KEnOT9xwZFwAr- zm{9SjOKEoRcl)zXwxBDY76DymkC&D5##|HraVlFx2 zJu7zwuBy#@rTDRQDbIIV#v6Op5JP*q29kO;zUp2=!NiK`M;9y`J!e}z`ZadD69tQJ zUJP9@4PEHBIoVX9@{!3IN!fT}5c*4tXwQYVPib9+L0j#G_JG&7XFEd7>ag!8)53w{ zvV>+ta7V4eS6Oaf-(aZ^gOFX;0 z!|aqCLb3O7Z(X#df=GOM=@Ac71VMeaT22^|O54Aou`$5zaNV-#yPi0KZ@JAEYw)%~=0Or26;h?^s_~{Jgdi^Bb?u z5bJ;5o|(GE-X?uIeP)hX{v>)y?Hk$qe+8^!5HcSoQ2)z0ojBzmy{~zW-2Zn4dK)>Lzj+T?&@%dTK*HBzYOVRH))b)O98DA1VwK5cp1tKQz3A{WVJ?Ih*-N5CZZ10k$PB)ZKdLBK`l=cigJ)B+Nfu9}% zr=B(B(l!O2aij5ccUCW$F;~csG+962lR&R`iG12dzdS3HPq&l-ayAScdY+P;ln*CL zb3+eKNr_6bOw^&9$+<^ABb9Yd*KJM~Y>b@G1|%1lsyd#mIzC!bwrR&E07vt)zv5=c z506T7tq$rHPu?pZbZ0Biav|IK3skCb?A)Tm=vi{mdsEM`M3>CF8)Y9{VI6wKbGkv- z^@E;y+SWH(^X1q2HJ)IB2u8)z_inRy_1WZuLn1!_F~_~RN4?}#+D?{Ek8)l9(!KG} z=D-FxT>*+UcN0#3B>)>SHbO^g{%u;tbAAOAjB|Pi#yc%TE92m3d#RCIqA;mH|G0^4 zpUayh`KO=9&%SNnhy#S5&a;lLv!%P>55!bReSY zOYR+M3Ebc8%9^)oJAS-0w6ncWe?Ilm;7lxV2^A?=X^InRIGtAUJC5KV7%3ySb2OUQ zPCVURogiPwhNrcsTfm7vi=*9mCcVtpR3h9v_(1wNe> z{QJu78lC>+JR!FZ?F_eJhkYyo=VSka?;UM>{3<(fU$$bS7rO?B&K&Si4 zr%N_RbByWaMSQ0B&G&)c;M3iJ2k^G7<-n~O<$V(HlQT4{XB-dDy{dI}}K_t9}U zu<3dFQ~79R*0A;^aL5@lAJ<_gW zTQ7*ZUK#pPKod<-Pf_uwd&;#u3i6jn@zK0ADt~F@TztdQ`T1Y`ckW#|S&6my# zdv-iSUi)u5OIE_ik%xE7aq;uj3r*z~siR2&diN{HKp$_f#is5TJ7g;zG=F)-%%^Xl z#m5(xsx^5X2^f`Om-HJkPpW2&*+lhc@m&#PJSaw{5c)#&6fO z>|VSAP}ajhszc+$e&Z6(i*jsxDk*!Rqjc@RU~93LhNt*r`dG`5EjrL|2ASnjwLf%S zNI!^8ROJOL_SNI%JpT`CZygn7_k|7HVi3}eAP5YNw1m>q12Z5<2nf8T&w|S&Yb(4efGZgwXbtd?dYAr_SbAb zFFVSX4x>pntou&XIip~AzsF}uC*L~@t1(TeA%I-mOmSmn_(eJE%WC=+U%!5R=$e6_B3Vmp+C3%fbUyedhl&2(FL-_*{an=k zFjb(gMXk)-T1cPX@YEAmmdSZ9%kNGaFH+adly@f6fZlE_CZLxX`!%#_>hm;ed0XYg zk?iTLU-F#2YH9!Jn#{|dSl2>>Yf&wkTFI8P*n5zc*96Td{$`y%rw=Nfyjt30ftdduq&iqUD3XzyEOQOXsx_ zWR`k^`gMHT(T~a>K7anaHPdQvY@{%`m*v{1bp0@_;wWHQ_X(m^q{dxgq2u8`pC&wp zwCV=*U8ojbl?5Re$tveg!#eb*akXMiqpKffZSOyN_V(wXZ)saHw=J0>vNni`BR%R~ z5T;=&B)7R>2ahjF?8EzA#K+Xqcy$vSYm|=n=T&>n#MHZ2pS0y$S;hJKRYs!4GfF!* z;&7EiD^72fT}1WCND)eC`>$8^SK#+&yE^AUoUS}s9ajBT;q>LyF_c_Eu>PXl!EN zC>XV#4@d6nC9K;yT^NGY>PyDK1ChwD1HeFiP;T1N<%)5fC%+F`smz1fM0MNd!y$U9 z=Q(|oi)oK(9y;a8Au=2u%zI7Buzw`x{{gQ@E8N2vFR)g8vN?XPmP<>wYTbDcLm5=< zRxdwZz*}X33#B-?NNM)>wW$A=M(XVGe~a_`S=gH8(8O7R{%T4}Mh2TDi`6=^8j32c z^{;Fo#_lX{>Fyy*RpPYgm@#ipZ$UK(d3)bEzg}*54CYBH15EhsJq$6{0D4$c+(y^55eBp=W)P&B3Q_lqDD3g%!zgd4u@Mb-2fn^&uB2H<0=M4Z9~SN7Zk7qOkkUM<4Mz_Y zGk#>&zP@uqRbrH!>z0;20*jYrNIZPWvto>22|+YXL`cL)NHlG1qK9S9jCH5fnu=m$ z#(bo9_Cy5|J3?lSl==4w>R=;|0it1pnVopTD^*nV1mky#QHj84`M50XKrDmcs`*jq=@y78*LQN3YFg4x>=c_cOW$H!8 zGti?q-K%YOBaSdz^pOmb)<$h9WIm7ZV2&6YzWDjqFX07$MI{d6hM6X+8D51rIHJdZ zA}0~uQLjBjgI6t+Ck5+C+6`^g;uC#fW4>&gEFrFjV8!6xL6#3Z=ViT|ESu4;?^K5l z!&93vThmtBO;?aV6MpHCx&8~ew^&!g{7KEEhUNmY zEcBac<*!k5WzFm#<_{FBRv@qY5RJ2|e8x_%9&kU0Hij6n4N+L}>R zRLoXM)~QFwns(>1V%(`8WW_|z+cf{q4}wft*w{mo8O&F%EN$`e%kX2ccLOo0F~6?W z+vOcSGC5I*8CZ8Gkcw!^yeU*slqKBtQ*|dgtA*vd+3q##G+Sw;h7_XqO!Gy848m_G zdrA+5mNj_Ala)rGtbqD zTq|fr8s>l#I)>_@`X5WuZEP;u(Oi&CPmg%>J!_}RQHdQGOip9U4%(SV{6!C6H>a9b zz^>{V*XaOeSR3{Za(`JHL&k(D@7^#WDScwV3Gi^K`@y>B@BK>Mf*D6OZS5P1GDVGz zjT+f1#ovL4CkV9g7IxX3bS7gE6g>EzE)}g22&;^h!RBqH5_ZB&qv|?8kFBFnsLsw# ze#?Qpyvy&QrYQ#z!<_Je2QRye{*Pp3%vtxQrQo8x)8~!x&|NIAZ-nswht^VIP3K2+BJ^;}q5`~J4-*YZs?!JSr5E9e(>{7peg}hX^USA?k<$LtK)U<2{X146cCep|M^j-_u ze>1O9#rSqC-^q9c@|w6ezwT>8pc-GS@s?jE>6FYf~b*c z-hdUqS@Y=Rqh#SOXQEu@R-0{Q3cP+wD<%c@b;4ZwuN88}B?|#vBv<5i<&mS=SoyzcU@7caxx$!_` zC6>cEw&(VqCe>|aH@5Y~PTqF+OU59w(#s0S#=xEG3B9c#XIOrNmB7u0kmA{7#|5+I zB%>g#QQx-@{M%~Q32>%)+7Cr~(z7f%AGf@d#;3|qk0(MaS&{k9Ykt-*D((<)CQV&+jP8>EmiOQwX-%8X(27oinNY< zn2S7`P+@3g(ktO|;a1CJm^ZKSka@p9T7lYa3CBLxRyE@Betpel6;@bGPUA{jEO~y; z7tc>hc((FvJJ-1E(V70qSZQPmiu&IC-5{$g%d6sJ0{VB&1-lU)DGgIywgGzYrIQMF z*5P}pNA3-1gxhtJn15!U^PwbRt>t(Mw2*Cb)z#I6bEAL4o|N@0m)A6aDSo%ZNt?EX zQ`-w^?gb}(YMjYo!X!JPmZ?BvTs9Om%dNew8KaXQ2@;9EFBTdWdiPyW<5Q`)YtPL$%`Cv!J zs@{Dr&AX=jDu|Th9Y2poJ_S=Ajbz)N@2X|pRj(74qPCf^?whHtl@|V(7OF2Bfr~`Q z5a*&kxd`Q3JH(}~irYz~QS@I0odQwl6yj5+GwDRSk6brOUfB zYf;NT=c=a;e1Y_VtPPZQ2dzqft_eid za7XdE4pE7Je_ouO1qlalE7ZBkwKMr!#A+c{l#W(g0x%whxjL3b!a<#Ff-lXD?c?OOcQtuaZ9U9mtJmh=gK z3)+HU%AlcVhC6!9bFCeVF={Ei*(KbCvo(DTRfIBlQ5{?q`R(+d+!gv9ydEB>ywONS ze|0H+tvSlQqDPPunmIQtgq6nrP8+gkUhMdh+dW4AObg)}OCI>gl>rOdt^UN6jjoYa zLm&_kgQL0b!pBq7C%jbOB_DKIl&bvjH?K6L;4IXmJf1J|bzSQ-!Mn9-p7Yg=jr$r~ zk3#(YdfbAoJfBjVxNjUGG@lg%?K(BGX0nHao<8;oUm@0#N$`MkRF}0_iLKw9#LV5T zP#l@r?-%;wOT*dI;%AF9X!^(a4zWSYhh>l&BO>L9NrI2QbM|+6wdBA+5&Idpqd(?J zU3=Lmk8<6Q4(BHGN-0WF{(kX%!B%n)PAc6ik^ih>$_%uEop~243v3gvPM@bCkIrtp zk85)@Hi5XS{G$p7j=NuF9SbiRm@F!Ko>0W?s`SaXSQ8gqLfY|7vBc_{@OOx>;P`KZ z#-R^UM_AU%VcF7+4qMI57f2_&qGA{J$dGfwxB7;136L7xO8xE!QS2CwkD8FCq#u;H z9(g;XA$m%X?x{FT$lICY9~UP-LyXi)M!~*5x!f52{(khgZ?N|FpELC|X!PGZ&c)aE zJdcqjhrhS9z6;;1p;wHTuNW~O1n(U$;%C=U*p*f5d0In z_(b5?ekP3J!n%Z`6j!Yx^;JvUAKf(S&jnc^OK$VB$WI;kLP7?JxtB~zxZ)K$Kl*i2 zV${Txh7gK3;(QtZK?v%%*4aM{Co*+y?6u9u3*@)B+OSC|H8|eEr}`Y9O}N>9^`AFN za{7E@)STr1X}@h}C41<)t3!qScgEVVjT$K?{x{|`b^kmk1bz<27b^U)(@To^cOw36 z=l>d)R5o_r^Etllg8TP@XBGTmx84$XdHij_Q1!$AUem9d6E%k6|9u~L4gK#IA2Dmm zUt9l-*neLaWh>)Ii2v==`Rl3H_kYcAzwE|;U(+A|`ule~<^3`?B9!+#)C`-px>i8P zs0-qe0PIV05GFp#Gv36`x2?Nd+tt~j=VXvg5q^#9KYE?hwM@2|P#Co3Xf{&cT%)K~zetr@ZB>{n27t%NDT3gM@ z{!f54|Fl@Z56@>;;%{z@Wo#_>+cj!27)uCvT}N}|OdX>Am zwZ*UXK3P=@&mrs9xY*;V*X@-IzKnWh^uiAxwBNN(j?$AW5Up&t_h|Jqn~78y+b%v@ ze0q}fODNx2E>9fUo}SI;8ruCqYAO6h>V|7cl!q|>&B3lGaM7Yqt5_8;lsKcP4guSp z{18PBm1H7X+E77S_#?=-y?Bbg%4fAIV{0~>u^FZv!2crFodr|R$jZtJ{c55+*27My zXDfejTB4)-`&4Z)BuHn&$Rg2`Bp)APkuCAcr;*^GdNb|YxKG-j_&qgr?oEh!Id&K@ zeUj8XE4@LlkL^(I50oM#oN?^yeO#3(X=}%@yf`G>?pqGcFTFBN5)$AMHV@UOPFfXy zMnSi>)6txn>EfLfw%M;f`#p;NTkZfs>gu<2@hn8Ut6G^j4+R5T{b07sa;N?parW1h zy=w%5%-tWZ3QO2gKlbb2E`51xE-I`m?c35)S&dA(rP?V|K`l=~*Gg;qX=d?^u^b3pVc~t#mtJHUnW$024KNZYO z-6N)I^fp@fMcS03giqE~&ag0LAKi;37K8T9?Aca2#(fn^Mfr6?zkhI7P1h&wHgiql zqpzsD(O-E(XSRHZEW!a?a$y*_%+=kOrD$8VbiZw>315PpeJ?9c-(vCK1z{%xxPn5_ z4O3*XN%!077p|j4h+#O(4OVF+9s%z{k~Y!}`7Jqhl7=5Q&YzTlj5tLba)nnkyD4Zy zKdC7eky5uPc-C$qpOo50lR|`YK|hpuz$C6hx1!9(;->QHm9?kB>+)YK-TJk|B1sf% z_#fx1PXvxiC_ltQ4OK$A@yXHLa@l*KPi`G#qffUPnV800W)M3XN%Ht?rfQ~A-a=Gon77kW&|wf&il&| z3zD^&alK1(*jfJZ-2Rc~BYweWwD3DvvY$ zI1hLaGD7Th^ykeX;SL-dOs0SDc<)e}naRhk;ptg|L#N)RlJMoo7}s*vzKdIxFWDYs zv_P!CLcQ($)FM)LU&-OCx) ztz!5d2n(~q!=v?GKk2HlO79!Lo+vmNwd8s!yqT1_yShtUdmxP>D*eWa8H9HJXS_^q zBiob;bv&)p{Vo$->D%NMRlJxbl|7E-TLvKy{B!F2Lbp4mO=t|7sHMIOV@2|W@T4O1fdk*%A;<5%Ot#qtStsmQoG`@&s+gD3LI2>(a|g)DtS$f-s_b0~!#k%rh}{VGi3@ON`xF%QBbAC)oB6m7e@1X`Fve zPj=!5sr~D*lo2NcZGl5+*$oh?!z~j)-MM|vj)a)lYPh6j$zgteUK4>x0#5hFtNBif zD?>nuC7Tc&91H;}C@Cq4&g)mhnv=n+oK1sZ$CUwGa_-5U9*II`B_tA?By2C@v>Kn9 z8b(x)IvlQt&OTZHblMo#vwqk?S}g$dAv0kT`X00}Ha7RYWqz=d0n4u6YjrREU;=`^ zr#*h?wEB7c=ci#Syj!;v6%?xaZcKS|dmcIP)o*~tQsRguaok6IHfN-84i9No3+qos zU@(m3V8P?ZkJnx>Ffc?$MTJodqvF|pZn=K|yj7K>z8j!+vKqjg@~c(ibPH6awlI=7|AHph*9kmu1Zs8}?7 zN))g@>Qm%e8!lbI;OB!=T9rNsSa&7z@5R$F_S#fPHSe#Fxo6E$(z;D}9)!?5{4}x; zL)$6DZ77W=F1%;csjzAbn3<0F{&)`>vqA?f+ zWo4O-s*)1*I}B0ny9f1WdKtZ6w2x)@VX);^I*7R8xvS8Ny=APL&K0kj5J6o|t^6l< z8K>DfI9d!`D5gijgucCeebct<3vJkS2EPlx_tzfU&B}LOlxtRl!;1~(CmXy8uCxel z)z#EcSH9zgq~v$Dx5567Q2kmrlb0`>kj08uWG}p!pKXsiH4X70;2@MK6N<1{Vo($s zl{ouF_N0Gfo{S5FzDkUv{uqAGvDrXV(=X%{7NXadQdU!MFfKjJ@L40r-&e#tUNm!tWV4R`N=w$ zUqHSAtY1kfsi>$Zdpo<2s;PKay_R#bW7)Oejh8_34(ZOTLx$YsvLTfGcC&5g2zsGA zd5Gm`jr(5BM2+jtd0o2JUpg0iA7W%oQ{}|#>FhjTA>f_f;nmI?wA|0XYEKY-H1&wP zR$s!X*&o<@44c-#vL!A7Qu?9I=x6Ox)3vecgN!h7N)BUz53el(BcZzzP4DrcJ*-ws z;dRM0f(x!vrVRJ)F{`H3cpTa-`Z3&P(Qo#adL;swAxZ984^Y==X=y=62azG8C1%Zl z2^ZFE-!%F{(Ul@brM(wNIZJfpEgBZXlc0oFNV>!O>17WsT%nD;q{3xu8W=D&_F&+d zZTj1m*7NJyyw;$R^3xQgn%bMj1}6j`;aHVpZr|-UEk=)(tz#O7=@sSC18?V>o28{o zj9P9+92MwQ`{B`uIIrsxw}IAzdF2k%IMd$mbzYWBF>smkjnj9#Q7Pj?ppIy+-lz*w zLJ4D;Fz7;#XP;_zx*y74_1y$jIc6rNbpK-_$tWp!8kE$_d#?7B4!R$b@hZ=*WSVq) zb=8Vbl$erN6r@OJnU*jPaT}JXR}z5ezlKZc(*{>Cvyw+-|6rw~&WwqRdmkbs_Zi0Z z#^;|rE!>i5R|klc3)OR)JGl3PU?N!HkH3!NOB@#s3=vF%xv$y!N=2`roXBTB0Oe@| zlRDdut3N*Mf&8Aa&d9l3zUcaE>irq;W}mEvd0AK%W1rc)a)-?SNC^Y1_hQZiL3U&wU zPxrv^w`iYBd0Z}U_zgp>gf~rOC5^uZFMUtHY=;vhM;opxq#`!+8Z2^d)+EJOuecQm z-`{NlUb=_wbo2U9h!GLilsDu1-I?#4Z9>O5+KsHEUccAE#P-RpqKItqi>B`jkS&m=hH&3oIaf(aj4tsSSZU#<0Kj#jzInDTOcQWB>TU zBZL_Y`u%g_d0b#(!v?`+-hgGB@fugKL6ttTL;Lp(6b3Vr^*h_mmUwK}>q6_X`B*x% zPxe7jXsG5cRDXX{!-G_(+`{+1j|05Fjk}vTA~P#1KvrD?5kVR_y#bv)Y|Qu)LC}q( z+$ND4E|Ul6`hE`~3RG)y(JhxmQzb>~Kqbz?@s$Xt_%;)#NtW~H_ zLrFRE?K*Fm>L@_jZ*B+mZnA28ylcxMyY&D^ocQE7bkIubQE#wBRdIu!?8lG$K78c* zAPzh3^vcma#{IrUYJY!)47nSdetWYuJH-t{3qR?y^|}l$ErZT(?Y#SCHC9F9X-w^_ zXXJoSN zz4p#y%{fzo`wl;rRf{y@WU(Sfg@hPDCyx23n-i|5hYM5UAm|gm2eBDHLoUp(KqXlO z$O#~z;{&&WQ6EajOTEXVztJ`VifJo}7)Vb85fvG^$rXKF#z#JsT6lXYJ5@4HQc}`s zeUuf?btS)I(k4veRH)=VxBLF;WB1R8^B+!R_CWS0ojyfeL}u80(%UHIi$=Wz=OVu4 z7IWWMQdN}`&e*!UU}$J4^aCtrxGs0z*ArTbCj@v`~!<`Ca+;G(FF($B>{S>Dg{E zJteq?m&<92g`D8{PQ))&?PjOBYhNvLPY0^v)%oEq^@Vju%VUu9gqZEPsEHLBRj;{R zRgtg^A{}2OSp|LZ(S2s6_&3K**_=UWhJ{V>#Q@$O*M@gjg{YbCenLE?$qW*C_bZK0 zn!jN?Ef)A1zmcX!Vz_l*=8b3rMjs8o%)7J*6TRH)T13dqP~O&h1CK4=_>~}zO&Tjec424svnr%iGHlhAy$ZsT8he!zEb^7}Tt7^_oB# z?wr>%J`xs~=&i0t?31_QCo^bYouiAhCRN9dOuO-s{XGi07Ef9IDW zaV&n(PMB4k&XmS^x>pEs7}V8h!ez4VF0kBD|Av;kHr{n2a`vz`1+NB0b}E9Yi@3K`}pcsM@PrF%M5Px<~dLw zO$pBUKATp>p;PwdC6Vi+0$_{{Q|Fas9|AkvcQ(raiie2{=gorHtA4abMvMj4cT4<| zJ(MGdnDTS09Y2$m%)DCtcGVy2)!5XOjsWb_X)A-C|21NA!?bH4M%S+tR6l2V)wlMu zf=<-sJ4Bs-5q0wpIq!=$Z+!7Z$eY9CBEuWWM|Oc|RIY9D)9Bf7L&huGYBmMO38+AO zXtlWYSPOTg$gt@$zUYP5M1JaP4y2sA5DteMK&mIL{Xlm6US18yDES#Zrq*pwJ!K9S zn{c!OuEz$;7}TtT?jVVI9oSh|&?9c2Zrr%xf8F;&#k&g(z2Cp9on0-tn-7*-AX@TZ z1ZZ9AA?S=b1SOi0kr5F~fZg8S2HVmyUffqs+%2IyJ3Xkkt(=Q(Ym?`(g-B6>12_@& z&!Y;E2xDX8m%)p>>e+sn*;XzmjOI`=n#BD=IqM|M(zM0b+OxJAe0%@doA|Zj#XjLp2}Y# zev+@*#6IZsXi)+qHeOL9|nsemkE=!lEr9pRvgvj;pn(Dyvbjojzxi1DV zU|2|-Hw<*YE3w2hO`&t;=?#Q#GH8}QQo2tRdNS#af4l)t7IiIwiU1-c-v!pkCEJBb z?gmn480oWpi7VGKe=Mz6E~Egz0z=(=mN%bCpkx+T&pp6|F}o~8niZHx$Y#mPZcs-} z@rDno)a4Z7pZ3W)(ohsrt;P#%q7y1H;16>y9ysxG^tK=3U#B!NOFK>w?rev`$2+;W@YesK6rxy(Piyds;X7N*ZJlz-IDBXQwA5 zaG5x-UX)B6Bj)>++3UROYqFBj=4ba$!*og`*76!r#E zPT;-j#LfrF`CGWSxbWk?M@XJ<$|8C?O6|Am+$4>NlZ5VMvr3c1+`1~2o{p$U#%FlT8}y4FBh=d8-|rWI zIqQlCP_Ch&0pRx2pS>5ztpaQ!k%I=^BKPpr0IZf*|pb8iR4GdSQ$YAHjm%>@|yn(;kC z_$oB5pQI+=Txg61GF6ln7ZitPI0Yu1grm}WmcYtF)Vu=#2x`+X;vA(?6Scw&CryS> z{xIIl%HD!=v$MY{LV&;+xE3vcO#GPVPwR?w4s6YD^?*Z+KkN$82--@zSah#n1K9l+ z=2Q=WB0(hng;2YDD%LtKr**iei{10`Iq>rCtpl#ynA0Y<=nu6Dfw?s-zROmx@fHR zOo^3&;gXZL9?s0h}e8tde^P?tZY0Hb#%TrV$t@VhlvRjHPMaQv(w)MVo$xH zaJ5}@?;1WXu8bGKg(qne63@R}a5$ZrnejDyPNqaOC36ihOu;DvNiy=v{BW85$*XF& z9Y!Kv`rOH7J`93Q^8uV#(3>GART9pL@{LDhEzHvF&di&nNhC!;CqNcPl^y2LLYT)H zXSp@q@?9NAQAWo1Rme5}WsuCdL3_)474;{$3DQXnrsNbiD{Uw0roEcJF<>TRwDf@& zb9WF)eyUGSQVSAEvu=R+%e+pGO1CeZlLF@{(ukD+JXmOgtL~SiC_=^`rob*BKpM06 zmCDw??-5)|AR@dZp70YRBjXn)xDA@0(dW5Qj2>f1yo`4Z3>AnEwMDaPd`C-n(`N#@ z%j{UF8ssTLhI0h3hYE z=Jfb5=ma8ArP(9Hf}v=n066%$KAp$rMYn$LJJi2dOM3>&ee&wjsNZ9ste^Qa=FR40 zr&NJFwm1uomLIzA*3ZMkQ!(N7aMl5&J0Odt$RyFBPjO+eLW9Nh{cV`|(PD04U80z~ zz@;zVAowy8V(w$Ojf5x}aZG(g3-xO$d7yp|QCuIhws3mDJ?sDp9Q;x^CC=SEX^OAb zMd<08a2C8806bD$=PCTDUQmy}E%ke;%}&bn;<7Xem7y;Sl(hZKw$?WuB;Qx%=|tt* z`{oFdX68L9Vi5yF#l~=Fz-$@<5(>VtQTMxmoL$!3YV`A+>_gxaPxb~4TA>8VYtKOP z6(yMhm=tOFOz?9jZs(+>M&Da6yORQL`fg4WM=zjJo&1zt`4!`ogoN*Y!Fx?hDYE@y zy$OlgO?EA&E^-p^cCoL;FBzh7umkN=;eK#h~{O?_ekp12`8`%>bV+B zRh~Au;=3UE_Gh`}`wpFw7f-}8%Kp|skB!p8C@CloKY$Q^efbcU)y;u14Ovc~g>(%Fq8e%~{NG8PUQ8JowROn}E{A0yp4-8h8oP zKBA{>U%%c0yd9m}B0b|x8gHV-*mRNw6Lo3=HJKo?*n#6+Slk7 z<&9Io_wdovr-SGO<_<-14~8}Y1gzRN3jy&hjBQ`$6aVawTGKOrM9nX?J#=Ei9*AEO zx=MY?Qg#ld46_uWuVCo}xZ}!8X4>Gt1^zbdRrSkSU4^)28SzjT8{Z3HtsP(mI;9`r z)e{ljTA}lWlWIufQ|Q^q6LnsVWhC9+!w(P_W|X<|h|uL8DGI*NAZ+EM{haHR;eCgL zn&H!-+|g@6y7XRclqG?i1o~Ir@X%j4ZJ}TtmhBw!CmQAOHp|Ts>}#1iCA#;T9q)1H z={G5?^z22ay9|(Am5Vn~;r<1+=HNy|^W#ao%2y)tIKvd>$iP-d;ANVl%(W( z-ESKoL?Gp`l$V-~zg)k+PQG8>;WOq-8IK6O(L&9BrH`PgyZ8*W5m8mN?#uX+47o=6 z&m*Lo{Q@;8W6*aq-)Zba0&2?e^IWrpUV$n>&NKa8G~pMjB(j^DtPtZ{2RQ3=(>qK< zJ8CFKt}D=h@Kqu3wuAlWze()S^E1ZKwcEeW^+H z&V9hij>K>9`x0PJPkyuAOaDi(0mQcZ!XCdiGoM5OPFCD@yyn-hUjVXRyLy!$B)LpX zGB@lOzo!FSxiA-Ja5@{M+6kHN1XDaX&sl&E32K>^AW(vzOO!$4rfWWGa}dd-2xvN^ za-Ee#8-)UA7!39`glbUpV~kS0*9pj<77b>?hX?iD^MNY()sTSoh$u+c0h7y}poEy}i91d3Jx{Y1>|C>kKO!+cVI@DRlDNl2cv5iw4w&C}|TveE1L%QEb@c z2jFgcRqj{~JE=lPPtQb|Injuesp&l6Y?iAY?2a_d*#Yv&87$C+9`=8p{%`AlbQd`E zT12XEIl0p)E%JG?B@-iOJ9wt**|ko1K5v(lYzOMbvB?#nYVwj8pp9S_=U9=uU!rG> zWd4;888g@V>!wA%C?t$PLo_euPfpVXk zX~;xJXQZd+i-xLLOiWBm;hyY0%>6T-ZkgQJ98`FHz(s@Jla-1-enHg!IkeibTN?x#%dec`{=l5PJy?x9?^X3nMB-URz1 zCe>_p?QLCsrcWRG>!{6eKM@WWDE_mJj@7kvKH9bEXRyLAa_@4VeMKDeX29R`2?%@w zkr$AuuIGBAO6kqLw_JBTVkU28T{MuQ4SNYfKAWw$7z)W(I zcz8}KUNK<$C23xS7T^4GMkC5Mv8MmMNK5u>@ObS*H3U@v8Z&pXlRW?KSHWY}kYX50 zXZpM1(M!#1!$G%Uh4?9AADC57x^gMX`DFz(QtPUA*h{1vN%c&ja)x}n1J+jdlS0)f zRFinj6K$n-Hq1J8$Z9!L-B7Zu`DLfMHk8FHmxJgbN1O$RG|6!6D>dp$GR|g z!kQuS&QRX4O}Rq!y!^d13}5|y?Yr7&Sbk@270kFRV0ybKr(+gV*YcEJn*aNx;Kb)f zauz3g4&4VF}NV1u@&PJ+P;m572QLC09t$76M(?h32=OJCc~_cZ13IDkF@o^@VV zuEd~@Ai2_}sgVm%BaNqisRg?p5iX?6bg&<%QGRM2Msi4)EdE=Do6X5P(bOSsH_J`yN}b02Pp zmEPkbAxTXVJsfV2N)?=(b5L0st#p-_Z(~frU|<8^3Uv`s`9M|nsoPw)#(e)_${qtp zz>BiqlxXHImUVk1mb#GLE*{arbJ4;+k$j36g;9^SiJad&(iFqA@do8zn|OpFK&}=a z(!RV$f!5&?`1T_*Hvsc%(By&HrDMDzA;qUt=X)v6wE}HOVyqO&{ev4j0oQ7IlL`-3 zhur{bha}pPL>vS6By03nFc;PptAG5sM>o6uP@WWd`1NU+;)v^wE!R=I7wbXzVOMlH zyKmkFs=Gh>yMj72t>|vVZ)uMveTwe0-K8HX2k1z)K|S7_l_Xmw5C{Iuj20W_x`gQZ zX{KRe2t}b9qMc-oGa+lK%5VLSDM(ZN?dpA(Oi!H(|$R;&=4iiot(IG<-z?VaxV&&tWcXD9oeCk*QE2}mfCR!d(~Q$HdI*^h2(Yhz(&7qy$kx!tdEeaLZl5gxyKw6_AP z)!mZ!{^`~otVGO03-#}*9AgR5u{T<7c8oIRy$-r1{TH=l5J)ltWE{~Y8nag=fs`b8 z?`HrPkgb|p;J5*@B&`D7goK1ckdi(&)ymg_99M^UNGX8}2k>n$1bsTAI`@!PLX$5Y z^SE$#7AMfcxFI>KQa}b9l@Yrg(*(0XWM*c5d1N`}yJlK?nD8>C_$m9#xoT~2UJWpp zKXG715rMzzl4qf6g-v0m+Eg$Qhz1@pMz_~S{ra`GD;5CCgxMk9YG>bh*bljtVl$DJ z`B)T zl+Ywjc7K4e0UU{tNk=qbc5j^T^=JBDN0boutw;b9_dKQamlPX+Uy)FNThF2rO(Kze z++SY^P#HmpKKGbnr4fzHI40h&&x^H{_3@DjFbs{&?t1T{vOuo3G=VV((1t7CwnO~c zDr6yD7Axu;Ayr6nmgC^2aS;sss;zl2)P=SCBa6Km9HfeX>iS<-G!V98 zn`1+m##X9*1p~qXIT^V1C~6t%j`);&o2d?0C8Mk%9toe~n-0;`R0$xgRv^V%@XWTQ zVFi~)`aIdWrSUu@;#2e!3ZnMn zK+0_N2xRpMWG}c-FUdr$dxdO9g3xP*qcw%r6qG{2Lpyu>d-v`=bX@KSNALjKy?*`r z%NH;DkNmUF+&asX z`_p->O!*Dzy=ThU_1CRbyCa{4%EB;^uuS>uAk5VdxZO9;!cS4lFVi@qFr09)4GKQ( za(~Rn#7@%TvWpkrh7#h-lt%eV^<4`^*DM)kvfJcGHf}P zItiRRRJ4<5UtUQ$a<}o@9KM;sm#-ByBhHLrfF*Omd?IXJV;cQ$zrs$)vSAk6 zxtXpHnR7$f5j@Pf3PG$vc?am#Kf5PcQ}_&W-Xvno+-6!+(q?K z0@fPIMVC(4qp~MHiL@*c=@8A!mSx6#mIl6hAxc%8LcnSW@Pa_Zhd?6d=prF7Yxg#< zRsb>J@Ac{))6#&gA3w5HH%2RW{HSbxfpQndb1YTVb=#Lr-wcbvo|D?Kp!5nP0pxE1 z`SdKkKhI`%9484 z9UxN#8Cx_|4q>IsuYJu6EPcslr7uAe7T5cdmFTUW@U@VG2wsc)f{~%zRP;5AJsqZN zA>*1;Vk4QIH}|839qZ&K0LmKsSvCs59wq#6_5QkpW!genJz4p9h ze5DNVdOy!)E%%w3jk!MMJuQ~ZQU@gEZMrK@t;JAP9*5hN;y@n&JaHjBLl%yBGLy+y zz4_CGiq|Ss%(4XEdcvO3T5l>)`L|~FSy7*M4a|506D-CiFlD>6yz8A~o|P*Y3keHQ zD=0rqnsOjn=g^JNPAu6{+wV4(h@}}S%lGIyDhamL&h$ZzJc5rA&W($A)Mn5Z1{eM| zFo(AcH>d+U4bnF=GBR>=6RGpp{yoS*D<}dd;jACYX)BHI)L!rt4w}vR;-u;bkNLPh z?^46_c{yLdLQ$c)E8>T251=F=AV_`1kA4|=m7TKeoQPxe1oc#z?uMm9XnJBc2c13lPeHecrd`_KsQ;lb?{2*4mJMrDy9~TW10TDw{_WF>=gvc1W-Ex$}%dE zq+jzO4_xu%t#+xy@N=+nF)MTRobU^M>jvinP(!zw;+jDu0(G(w%d4F1tt)9@&p#RN z6*d5Z0Fb*CqDzLd;7zcgf%}^3cls{}lCU-VF9S8LX?M~vh;z}=(LkIK7aOaRB1&;H zDIr07MQ{mJ`*%DhgM@Va&X;#6ogEE~CBN+~z2tdM@7P3~^-t|z>v@>+p!!ru*s_A2 zbK*HWZ`}vWcvG6K#_0%KkB3La92v9*q#`D3Ge;(unYmV|D^0$n&7GtutqJqV(UjEu z{vJK~77zPoH~jIE=k@7{;BjwFN4g_q>*k>~st>W;Pdk-^;ijHj6o27ZL9Zwx^U)!s z$T{Tcm^He*$sarRUgu|6kz=p|v`l_y&}dRF9~I>$ZeuNB@nrB~YQ_KI>Mh%<`l7y3 z8l^)(8bLz3yHmP5r5mJs(J9^C(y{685~RC9x>35H^}p}yI_Ej(1MD|@%{j)e#+dj# zLY5;xG<@+8VzpT>mv?(7D^YWk9!70V9j;DD9RO#y*VX!en;DH)XWCXZLz*8_NH*#( zMydZDWmZ+9^4F* z1vog%EA9;mMtGNzsL05vJ%f7l@loC$*P$bqK9y;PnkGHkPm7hMj5-a6q;L0#U2w@I zuu7ULP}S0wWXxj@&7KsngNj{wl3NXyRl-5rSsbHh!R)5g#Df3c|*2HY({k^Q{m zN}=Tp^kPolsP+WPcUSg)r(;XSs=sRaReBgEKRfw$yARj>IDM#S>g2n~{PqSx_x`?K zYSE-fL|QWQ(Q=pAsg6ifT*p*dAFRg zpYs+;f6-*?8(%zaWy@q=SI9-^p~7g7O&nUtoa zeP8`wp#;IvcjbaMaBGA#n2O8c=K(jsfc?j?&83XBC*a~w75M&~+tExh@b)Ur8iarv zIAgz5E8>H>gN%1EO%Vc#`N#qj0M^w^)fPtf;?y|Vv+}H74!AZQb#>QDH1N)2{78|h zE)0D+Yu?-dQ2-cOYtmvwk+kB>1VM$l5BeYEzu*Fr|9X-Q$CmeV6jPV*77m?8xYbuP zGc&M>0^Iy}U`ge^1j_~TE$HLMf^GN$%!t};cD;aLPGa|iy3_h|sPpK~cl8{4p{*6| z7Uvwh!KI^SoqDj9)0-Bqmk~Z#83|Dw&rcFj>6qLh1QPacWrZ2gv zsf2CYw4-ZJQySZ!d>U&PuatV$N9dX@7*4!v)}43Ndh~xi>J*)QMA5<{%2@FoAy8jh zs5MB*E9F=ZqiQ5UIxHRokp}T2p~Yvl#R6j8(IlPQ ze^XC07FCD4{(O8P*eLqp>3ZPI)Q;pwGr4AkaBhy9AGe``1>MM?l2OUR=#+0<3y5V$A8| zr-SI_2d0h=za`Z#>!DT0g1Z$>@v^* zCtX{jbCEbGtrUb6vf|+_K2dsZFOprFMR%!n{rFcRlcl!rdLt;I9Zh%Y+dycq?*c-Y zFCK1P!C0-?3~+c*yE_pdzKq4rUk}s_u6ys6t8=f-Ih8^lMru~k4J!ytFE~v_;>`Uj zAiuH;G~Do;I-J#Hnx`yCPN8I9epU@lGZ>3GmKHw6H45~1y^B=nB~11*xe&qc6kWW1 z7dCHy%I7Gy*=yr1VRlQ*{M_~Pb}Oz}KeXzUbGJKI5@50-bG#{w*vyXfSKSap&o^yj{|y&O`SY%2Kt3A*T#mijJT zXS+}b2yb(rOD!&8A{IWVAA%(6zaU_F zrJECQf4N;-%j~0ivD$nAYIxkewCT^!&*0z*<>$|}w;+Ij)(MDqJ6pjqjJl^ioyzYQ z0#VG|oEnR{b@M7Xz;XqSrhEy&qu08e5<~w_Okihk0CWCIIzAN(9q>2c<>xL3_fd_a zR)H7U?(b}Ru7amRyJC)@-yiYifOX))uR#PyuzApgw3!IeS?}WqyAy8ycHk|EM9f@> z_k7)aM`~?dev{u+;x2!z4J~I~gw+5v7y4nUK;C9E?4#W&o27IZCUTG@04!Kny1ZFU zGFyz~nXMyqUMj8LHwknfF_YKd`A7HWS9k~O2C^gb22;6QSY6=8&-v|YicF93O7gU! zuG3Spd-zV)*6>OC&1=+`z4`xsebMYwS3g$NiP2s69m%lA%=AWI!QZfPRlHg2`JM|G zBYQ6BG!~qS>xOK&;F(rD4jj4)^lP{gKibz%t7fw&u-i8FS`RS-Y2KA~wX3-DJh8kJU5InNc`QsB9N4A`~J4x@DY$ha=M>U~*mFUA)5 zAIKOs7+~XaeEw(uO&9T642#oh|1x}c%3?80Ab!nti9mh8Js-A8e<*!bafx}aQ;e{F z>G#MDRXLYtQCQAzB%xNDAMZfJ6n1Gb;aV*&(=h6a38 zQn@qyCb=04E1jB7*@5SUjQbQ5+=ki8V?k51#eC#dN#AL&hGKaa&v9cGYNi`C~d zah*9_V3}VK-B?w8LtY8#HBEK-2rVsjEKMxA)Q(m!OG|M3cDnBFg5w^@bpL8`(3xF- zF}@7O9%lt!hSt$O7mvE0>}NSov}t0An#N=D5N0tO)x{}I@K_{KiidK#!E$Qz$iBno zf2xpmSDZZU+OP-Q%vWZsFUo=jJ6(aB3bM*rzp}K;Imj6fku$@p!4K~`On_%qb?|D= zkzR`8MuJ|7_Jcl@bwQoWF>Go!BzmYgq`YytPQIJbKJ$$98;Jy!kV~oCp=D{;{6Z$> zhgv^RkPcRKrvi;rt8dh5;5I@9<)pE_#}|QA23<*v0RY4ty>Ge)`};&iN%2!2YCQI~{1dlY$3jMWdHUxwV1Vlyt`d*tXsa{i@+ z=%M9lM`BvLr9!!=X7}UqV2+9cGhzher}e?4PUXB`{x9lDh3ZD-2TT5Nu~Kj%AAvlW@jnm-rR8%FPT;;mp`RC#bRQxqsmw;s7Ft(O$T1m z{{%2z>jVNgg77x+m!8kUNXOTn-2P0DBof{Y=f-q;^**PK?;;}1yPdhGqBu0)m?N2X zJb>`7#*YbPuJfSh5iU+%ruI1bme=XAefRX>BRD&j`rqeEWB!&mx+`R5Ffk!O`jP0k zHDhPV&`Qhj=c<^kpJrN1g-Oo4ekSf=hsq5As=aP= zj<)0ZoU=MHRcVe~{}^ugZBX~1hGFc-3xy=mEvvS5Xtl0)d$#ERz2hoX5j=+m;5X>E zwPh`rV7%L6B|hqkBPdbT+NH`Nm+KGI5hJOl##I+8XK;p)X>Qegxc6u87?_n>foQuCU( z_RPbEGV}-#JIPml?R@oBMnkKn_KjDR^iYuCE$0~`B)Jea(d|#!rI@*qV9C8E{_Qby zwYT=M9^-Q&DS{gCx@cmTaq$R#JLuBU2jtf@ZQu<`4G{qWRQ16{he7~9|MPzG>#JX} zidFOKoA3_(|9-o^-~if0QnfBHAKM;rluj+i78_=sgA&u+q^Apc@aowl=S*_8{i56} zk6akJT#g&?5UC>_+x1!h3`_sd)8+J6EBMs}7;n0zrYP1k^(vUSv-+>!IW!H&idk04 znK}N^^R!g_FtJGh4(YgWjZ@eVub?DwjSQd~=m_>CS`jdCM$l?M7@@YHW7Mb@TqGSc z($1;F%r}KZ@&**7Sd{H$>Pmz%Ms(57wYNk%CB;o-@-9nlKYv)##|!*4F3`jg%fK6E zDXZP!6ZIbb(u8Gubhslu{DSDu?@w9tdUTgxroJQmsVO+^0b)O`dim1?I9Dt!V5P9Y zBLKY6(a;Q6%nrE6bjCcrB1a^BX-u(mSz<}>MP+CoD4Ds&*dK}*u_3-68GjAQCx5Eo zyrlO`W1^&u3z-@~2=V_%Cu+^u!@o7CwqziuBlFIkVG&^i{^ltD*t(?&W-T+yTLnXk zs+!3NUq;%Z7*J9ggP49xsSoec`JivVp=2x1|KaB^@eXZAmmFiUgMd@1v&HU{3*goz z@9p)H&K#GD3J@%fX|^`do9kX*$eehi$bSS)35&^`=-AlQu1~CTMhG;@UhmOcv`;NjPP<0j5M#+_YORkn8mL*e6}S0_rbh5Wkr1|| z*jVo+Lba=#KGWzWN9!JvRPoDZjwtmv;bALyjjP5()NM<5@R1!Yc*fw7x(if%0V`b1 zI;+nMPE}B?#Q8&0RFLfg8SOqN^?#M?NT`l1P)yAK1TrzST9WqYDcAEfmP?y+Y>re* zp%ZmOBpvB{de{e2qxhU0$MKh@XcunFk{uR!>@YtGY3Q2mjH79rW8BFClYFSY>h|;bv>q9+DngAHO)y#cFa56ZG)|G;~5{?neVjZ z`>6Vp6#FOx*|O+I#nC>jv~7ZO*dMddjQlwF;SGZXu2}Bid75>rNBadj0b2FMsU)Jk zo0lwDdLNQVg%B9w!}QV`@vi6Fa#zh%how?pW~Y}5yneCGFe(y@zFi@La=bYvFIR`= zkUZYE*Z|rs3oEN5P&v`8)cU&!yexvVQBpBP(4<*8KfUqRTAih;G+?v9eLIh!oWdPL zh!P5JOGs!P`>#Ux1q1J4)v1J*Ix@UpeVlF|mImgyVrzV}oal~(o1L}mdsK$mI7SmSr<)wVqvGfHtRmK|i;kjW5_R^7;3M3&dnf51h*R*rODrQNAy5)A;nKm@Ti;~i? zi)n-e_1fZXJt?x>&@YGDjv-V~EJpnl7&U1#FzOt#*Egch6@Ykdj5wZh6DI`ivOd!3 zwoDB_ye8a5?TS9tH4J@oBccy;kwVSdiD_)RG%x< z=z;{hsv=uTIG{9?0_SI{Is^HdL{DZ>r*`EpbE|}JvhS@BE#OdItD-a+=1K}TL}xrn zT+biKngVRbMV_;_^v8}>wi8@vc=7+;(X!)QhwE6N9oy||vpOE#J|t9KFnk#h2uZsW z_gM4fRvK;$Z1x{klz=;VkaYB9dM9`7qv`?}ITNq?i2#;uKUI?bWh1@)m%WR5$(H%o zR%uv6SH3X}(o4ZFCMeEC^}}=k9V4p!oI-1jet(XO|MqVG?Txo6RISMo0ABv=3B61X zKeBxL=KweV=Gr0gP@sENAoYZ+d*NA~_F@2rHXUgIqo0Lg=%g8PKfB*jr%!IcaH_9r zI;aX(0pR2@m;!<(-LT1qT>xfGZLeto0Dy@&s`n$-S2EedTcy{5w{u?%c}qAw0}58 ziy(14ij6d$Dq*`M~dlk10HF$VuQ% zVYn?C-E_QRw3?k`0{F$UVS&D^sKR#(o(c57eRvc6xT50xU&d&t1>kV*pnjQ~gxcz@ zmuPG_{~Zg?;*99Xa3Vrm%ngg)13nE}^gug4M*ASwItw6b&7+KX8s$IBiIb6D1=d#> zuLjgW7eF73EyZX+w(DeEasT0AOjO9sQ?~xZxHI3`nC!bLD}{)a!#5WOI7mk$nSbg+ z$FpWEFUl22e9z`8^IP0oQZ z^6MQKOQt4I+C*hF`(FT_#;j!aFEw>h6}wQs)7|-G74L!(k5cUt_92N0?@nDQ24)TQ z^E)H;a8JJE@)RX!1Ij#7`w^<$gKsr^CEM^tt@4%~mFn#8qnArhEI$Y!uu;!>HnPrP zHU}3i^22YH8|i}F0>C|%mRc_<^Z|Rz`=hoZHA9tBCOY+pU_#+KsdAeSX>=h}k2WD~ z+LqQhCo7-Z=p>gZi_4Sj+RHVXB5rW5KYxv3=YHh36+%6-Zv6?vEn>vO3zeX{QNp;z9DAN7N&frQIlTla6V(%TH~`@|yw-TkZWcgPCzaSwum&NJ$ZjmVTR|^ZtBnTjKB5BS1o_ z5Ndbhqo1gh83Bj91j)A6RMgq&oIz$o&tcvCAoog~53GDH$$!+)b)c2%^JAi>wjlpt z9-{g`@cn-vVE3F4m!Rif{SO7%Jh7ds{ioH>US1(e{shqlV&x}EhdP6g#xv?a+Mz=- z;I8#rpd#?pM|oq)#L5NV#g~<$`jl%J9fR9+kEXLz&?35W9IUr=7AIntxMTTYm;b$U z&jjY?OrkE5(nZptlFO9xlr3Qr9%slpf2z4k-z=xyxtPj9Tge14T<573m#e??sBlO< zw71+NR(Ualm)B`S;~&GR3Ot9Cy~B62Fm4E+HG12>%c3r@-6N8PH|wrc!Kq)_F63dL+W>5~IgM^7#9|PPDro=pLScEz;igp1O=oFLa{gb!CY^&Qx z43~$rmB4!*$a{FETPDik#4V}sr}^{uQ?#dxB)1|y$~=p1vedAeg>jcqF797lcuJck zOyy#bQn1eJmCyUX1<28E|I2rQnn8nfX_j~TaTliHAq&n>u@+I}IM=?in~n_H@&Ki5 zh&O5wVoLgh^bsS$eH%Q2fIz-rm%H^{nz#7cL(w&7DpuUQCvkClBL`2**J5YoSF`S| zz-DW)e$5l^Tl22sECW)`wj7(Yc&n?!^z2g(epLkT?{&6f6@r4qF^p7egGD#CN!=NB zsTk+BpW9Tce@VQMlG{W|$jYkQJOP4ZfFS3fk2~|jo&T|T;;C85KeLi!hNh@8TX=^J zQlS&3|BDd3iF>}B%*ufK4xsu zpvExv9J#7w6qR$9-HzXn`}D1o9KU7^7p^qS5cTPgE|5yLFaYG(>-niR$P8bPY4X|4 zY+b3U+pAOc*+%(Jr#o3;F*F#XYm9JK4X`ta%0e8@6At~Sosm1lEN)9NVWQ&CYl`+618D>i9pO!`RKbbIf=Wt-zu8D15tQXRl63}unyWXc{qOW=7h_mf2wM6Qf`AtEy3@PN&!M(`YH~9s zU$0o8q%R;})n(N3Y<3_rT^BHUbaYCeP@w*m6xwf{umiM$u_!51ao1)uHsu-33}mWg z?ti>H5aQe9D@&wG5^lw!<|KlVwQ%m6LoKTC(xCNEc&>FIJ@@lOHk`-BH7K2eF_g&p zh`AbdM5z2Wm}6S~^Bhi9_~F#K#nl+ny@MAjqwPg2yb{-YOipZ`0R*G*Xz)lZ=%vCe zW7G6S2Y?E~D+4@6OgPv;5}b%E5Sw^|3@-%upZ9`}0{$*Cr9-^sUaRsR4XFvtnD~+$ zn)T)KKbEqB$Ppy@C~E1?duI1mz%eAT7;!Rd`ay>%qH|xken~;mn~vR0#uZOIl((z( z$KLNAcKkH>5s0>FvNcU=}O4%J}oU{(#d0 z5YmQZk-vcyQ>9@1Oe=Zq!C_&94=u+FfhE?7Qm_vh=KO@M8y_Km=t0h#4X0=;E}639 z-nsU7{PG^b^ka)FF>e?AYh&(HW2{gEZsr<_VzpRkDrO>KyhVGyTcV2#A8!X1scukA zW#2jCvY1V6*!Ma3s#3YnW7PW8fQwsrHOBof*i2nb-!^ZSxE;TN%$75qGu8ll z7*T;Ib*kD|F{v+la*v_nn=U#%OiBZ;YA907d%e{UBaIGSXW~Wm819C;kTNlQ_+y7S z0@kfV9j|qD0ByfIWkBtp4}1$^OJi^j4=urSdeGzX-YeT@?zqMzr08a_A zKZF5BA9+)c$xSmH)_cFAPT86B&loJnd-+KCYC?Z&;zfkl-+N3II4wx;C#k<>ylhvR z$J2?`v$_BM8`EzFn+m+F!_|MJgPnidRC)<}m-y_uEGEX^=1Nlu&zJ3(`qLx$kLkwO>uiO8X|5O@;CQ5UN9RG*T_fwwKCz7O-ZT9$=yUkC$lx z*mV+X8Z&57-cg=?`-p03a;E*#@>WSDTguGyR-JI~Rq-K`h}Uuj071!T`ZFw}4eqhb z7x~PksgKrH428cfFve3to;$BhY&=tTFmDT$L$M+ayc$JpM=00S`DJTFVK=PfK6=U5 zIbfGgGaUA?I{6T@HV~06i742GmAH$l@@*{#jeI3%fsmvxqsCT?gr#hEyZuF6EZC90 z?AN;O6rZ@1Gd75WTyApmT=j3uXoMReIyEq;>wCI+<@A@unorwDjJhq^6|1rM^Lk;>{3&8+7u z2-0PQ7v;DeIazP{KYR@d9Hv;4_|t+r7Ks)OS*@HD@8}u(6;~YY!tTWI&~m^}k~$Va zM@6)Ha8-|izIC=dLRPBFvARIZ42lHNqNsBXZjRnQN(Y)|LeCyWd@UKMLJ_*Wb5#)3N?@Z|EV+w<99U%-C4e`>-W3v zV*Qi3{EQrS2+vkH_%)?Tpbp3u&*BQ=fzH>@r;g9CNuh@+ol(~#bHC!cllE-)waa;K zIn%4d9a9sk`G41c&$&r_cf>OSh$t3EEnD9|66ADAlzySo+oQ)*vJjX|i1vc^lYMt5 zk$&4BGT{?wa0yS;kYdwHHqY)z?~V5tS*xjrD9|haKe2TchA~-n!l3N7Tt@qA%jj3? zOPxYtM44*5vdrQP&U_a9y5im@tiGG+zBD8+YqFaziIl5SI@G@ozC!1KoLU~(yH(4o z35xq8mQLL)y^#6q3ES{YK{$e_i9xYCb)n~=uyBi2Fk=OIth)b!2ah&9Tk8wR(_d!CMzk6M!a@9Ie5%U-z`Mr3}R z({|vHXa~Vu##BpnxgY^u4G~?^WEJz}ihX)p3{3?y6LHu9k=e= zUA4A>%K%-9_)uf2^DX3@vVUAs_v_SNMbM~oTEnI>xLwd_KBxl9s)ar8>~Xnim@hnO zwCtB>%-%@U9pC?#s>$=9&PY@DG<>h8(NV%vp z&}5dsVIS1J*7yY1#5&e-@NIVRAeJOZ>SXZrYOyA5+4f`UYlKo2PG<+1_wpm>>R^3Q zk{1^rpEv&pb5=^=|1D2%dY&);=6_F#Z{ihquek5t)~TnmKPp62OPF?4Y8Xt9*{_H* z_&A4&1M`IRn1gf3D0q7r2mxPEzq`}T38<{AcUF=$sK~{NUL|Y$Nat7Y>xlW<_=Xgn z(CL~h z1&u5fD(_>Ro99DPY#2(2Lg=Y!@TX3N)4mWpXNg492`Z7GEm}BpyAnCq$mtG3T*uh8 zOAn$hp_H7V_ieVc=~_6q4r!~a#EPr;SG%-DCVY{`PlJaS3)x7?C(%R_b>ohFFZ;8B zxl06?j#pdK>t}3BYeLqRq_nknljr_DxfCbU5Y&-fTn{74TRW5|8?HBdn443v!{y<_ zYd;T5V&10rM}`4_6^@X;DjzL8l~g_$$IXOI!%>Zg6d)*&_@65{0}H06z@E$#C#BLjIih=gY19Hk?it3 zVuEY$Zz;i0rrT7L=OH+H@I$30`z|=9H{zD;m<`XZ)PdYn54tToIx^a~)=dng?iSm1 z-7ghyZd859l^M~Gg1Qa&QI|_71Ff#mEgUJdDWJsk0o(r49v2I>#S1q&1{bg-kf6GR znyahYqxS|u+Pk}{3V7uh{ zBMqrIZH8wrANY+XC8>^Z>_Ec&vXiev;k8We>$z>$6lL)a?OHXgAHtQiysW+71?p|P zv2vra^uLKM`ao|Boy}wuxIS3EE$M-H(%-2!mdl$~9_XBSrpUxpMOs*;+H|?TW3<9a zCK~=5o+eXW90`g~zEz^LcAeLO;(&5FeB2ic9%$)v-iJofD~`s300(>YXp^&~!&UK6 zuWCvj+B7U2`o2!7eq;CFv$*j({$(h?*C`fZ9$<_(BYtoYd1G$^PTKj5CaoYW8Y3{n z88+xg5JWOJ5%k}4n#o3hx8`X=gFq8ir_BJN1<5`;I3cvDj_Qu5IL7+;d)(M&Gq2a3 zBO;9{kh25cXtxTYh8<$;XL}H5(4ST15BS*z0`L4ph|Pdajm9EZvx{ z$wmm*#rgGR_@9`qo!Fka1MX>a2n@yUFc8cH^%PJld!UsAJQ1y5q9Do*JE_BXJBXuyCEoU2g8r;E*t8fWfCp%vGg`DB!~dLBo|Y)8k5E*! zMCs5Ta|8p_Duun#d;E5e++2rY)HS^qn1kA_s`A?#|K*50u5px{rD4{A1j!M}3h)b~x(|HpxwOa!yK z=SPY0F*)s-Tz7|^$@~E3IVc?PiH91`XakeY*C85YRXaL_a6cKV3Jfe)xF?nR<`@3b zgF-BnySudO7bUV>$K047`6XwR*@HwjgtgAf;ij`85*wX>?OKVb7yOO5H=x{V%Tmc*qViJRB=wLJ^ z%E!fRiVEh-Wee~82>Fp&I43uBegLkv^#g!aL~`Gv>K)e_bUCMRzY0|{NJgX+2~xov z#{OI?3NF_DPT=VzJn)NKNt}lqqLoZl@ z4N93|4-VBj8lzWgwM5!quj6Y6zbMuEqvS**k)XzYp;~kGuO`xsqB_q2fWMlIXcrc5 z!^4{s@PECje`6$1tH@d4Wx{-U!kd#^++`Y*KX4;Eo)kuTe&+%6 zOms1d8{TU`K01H!Z!U7!c_Fy@+?Ui}w7nHne^>2%OPKMW*1^!&vQk=g_kU>rbSR7d zf8^s4PeGoi>zPH(n0=1c1@+Pt>faU)kHTw=3+^)vhWmPYi2%~WMBzSGN^5|F6(;__ z@0zHKdZ2RFlHqzaRRn(+`rsjW)K;9RuSUm5*>>gV5~eXt#pyE24*Ec<1yz{gbXrZE z@hsTICDmtfhfg1@!LIF>?}>hUds<<{76AxxOX}*0M*MNqqKLT=_Jc6A>v$ zd^92c+==8`0f>5#%&J|@Z%yvh)&^Jz;Nc`jc|z;+4Lq6$l*tzW7^dzO>ZqdFP?-L9 zsKZP2Gya8!7-`nrx3<5Ziq+wM-@AN)cI1WNkZelu>qkryN5b3^=?9=P4LhucBof92 zz!|%dicc0b;CMBWdc7)t$UE7A@-}7TMdNSBCRp}I0jP}G+Vdk&4|}kjOz{PwciRaI z*4rY}ctithNEwC^{`~qie)*MLuoX4^YhakBadUQHiOBIUEG!>4Ti6BCVFE-6hEJiX ze|8At!=_I&8J{)Szvoc$6PYh_G5ySP;vCa^D5{Au5x~K02mItX%bt9c*Gj%E5R-aD zN}tT@4+FZ3#B|@hSCgB(x>#^jFR~R^F+6H9?oy^Sm*`)gayftDQ2yJK$Ou+sxf9{1 zf(135j)Qz*gi}6jeAOS`1aLn|ip!M`PYv1%^%~n$I@_`?5b5o3`IxNb4&quePu$s~ zDz^+8B7ck{0Z&6r3gY)JLQ&ida=#C>M!8q)TY>U8$In;TPDwU(N&pG9{bI*p81AFS zn~E3JOfmv|PbWg%1T0)A>;bunN}+M2M-<;_#j#68_o$W6%`^NJ!!O|*bdg4t%W~!G z1toRIO$#bjV^Etg;rg%sf%-M<Exxuj%lL6er=)n|-{=JA8AV64t@@X9*y zP3_C}sPIv5s1!xxUQ+RoJ(vc1vNim0uEeRk@;yA$Nb(e3V#qG`xh{fLtX{pF$gby- z`e5V2zsh7EZA{rk8fMNfWnR@hsEzy1#i-=2@S3X(vjz(^Hr!2EIc8%%%8cer6zgD- zb8OTthL`gqjE!**>GgTR;8Kdc&c^q8<+R3K z`cDQjpx?1a{s<{**EX`>(k}lZ#W1Wf%2JhCGf6d0OD{u>T7lHkb6O4X8bhAQje3dmk@s|>Q7yxW?`er<(Da7i{Sc| z_SO`OwH=Q@OD4vi66&kPt+1-MQID4JVnp`gJ(UMWQWI|Wk~k@Hnu{sUEzMVf$owHJ zWu=K7xPMkK<65*9C>HY*gmhrXU3JE zzr`fywnwy|I;zsf?}(ddpXmd@G``1#Xe{5`I80HQUP_Jpm#Tx}kzFr6$_rYP4P){Z zK7~j{m;72Ya<0j+$7<9J^l@M}QAW~ZXRAsr$b(wpUfKh70&bw}`3IcYc^1ufSfJ`} zh*sg-78}}iuu>K83E=lRA^8TUWgm2fP-k;P>E~C}vz^2+j}W-X;gJ9zlGYYsQ@Wi} zS{iS(V;=l%#ANLkS(d!-Ea#x^EIe#MVZyd8OmHgWWtb3P-R*xJT`j*UFDEZV;5BiL zXrA{d6l4wmrXF;7*3^|q^S^S3n~6fo|M;qw1rxs&`0>joYet$G6c4Dfq9P}ZzS}(f zeYJZ`}f_opi8&Nq_t~ z)wPuVbX}HK7wP1`$fk7BTDpa|y>S)S40TsT@rv8^kO0WIY8P^cI%a%cA;@Vo5WYfE zYm9RtMvnbLuHVxk@8kS_I3?C|bg79prs_ZMe#Kvx4fAdLvL^$b{((rIHOgHmg+Mp< zhkYn%O)pgwxgvH%y8hvoq!(mvo8$gk!3CtVcbM#ri77|@A8&U)-u{O6u;%(_O3Bg+ z?bjq^4H#1}Ec~jPnzAO-bFoEc?IOuu2|;1}B!xX4FYaQ*BiM#Ss2zsN)IW?pU4}aH z+s%?$e6EJ54+5e^86U7>HXyZ|(v&Z&5 z`j#vFLF&`dgy(2|TuHcr&5)|N7G8J%n20Ya!1RNOTu(TIC+&b}SN|1xFh2z05f2SB z;DdOs;^Aa}*VN~pb5%^1FQv4ox40N7E^}E(e7(aW%F+C?0*eT??d}G)1gA9^C$iir za=+6eGLYU|IH~0wquxqWx2*gZCCbcUf4}w@DMo;J)?WK-peU5N2(d~&lm|c3dw1SH zz$vzVK|zAEA#KXc1 zX(_8%^#^|fuBjPP_d|!%9n=xZ-w4Y0Iy7(knpYnc@{rK}f9J5p=k4+7Koz{90wk4o zqj$b7Se&1`Vw)mR0r(cWpt#g}yDHHgvt%sc#uytr+_YXg%A%(Py;;gx*Re*t;A`$F z!Q^svQ%g)6Cfd2dBuZr0uoT6crtlxpqGG9P?j+x#d2eXgQ|CvKn!fGyl`_fyaZCTH zSy=i<%O8BY&7GyV`X`YEc_%*6#`lqo(DW;5Y;Ld25l~`s1bA67-jH$ES;rtanD$27 zUYG*q4N^bhjYma&dvdlUlyZ?$3jK?yq3y8=bO$qRQ>bEV@5=V9TAJdV^cH9tgC7a0 zr3QDma#l4kd$x?QI2sb5;<6M1bI$^D0Ho;3ffAwNpXg+>tNDMUM=p6!m!Z9Ai_$wC z-)Ntwv8?Ie1DP)$h;^kDJ;k{qs)b89dwYs@Y^D&Sv}3WfRCPZYEyatUey8WC4NhA^ zflXI%2>Qv@FE;kQ_G-lG`3UP@OzvBw;iV-DM<;B~+K;vGNayz+iYeHjf!MCld+23~ zQtQs)HcRf;5KN>aib79KGN8Qa;ei)DBc}(j&Ll)H1IXI9^lLhk5FCtiq$UC6hzT)Y z?eH3eHI6R)k3y(OrsUU@NaIzz{Mbi|VX#{W$+dc#$;b2qxkwMJO1>ofG!*L=uLv!+UWoMuHz`Ppf5M}#Zoa%$!kJXB_mGBO z3y}byo=lG=J0%Gz$S{HZcp7I_(XxOnsv4$+Zi>YGuTgBOcuG&1?&M)#vg@H-X1+>o zlU2Hjen94n7^Z@IJG}AAt)EYHPwlyY1I{Ac)HM0L`L|n?rVk@`U$xdOqF?|+aWAKL zy7*?iB*hnMrS9}bT$eut^0fmATQq9-j10DtWRYB>dgdsnVf|n#+uk*Ec7u9%plaiM122lXUAhi3s(=EQKN|+!8wMDMb8q@L=lHVqk>8 z_L}1PueGrerKbgpg%dJ=7iw!e0?8(nP=p0^9LzCV%^-rt78_rFy8hG>fr~XVyE{h4 zI=sAH=)tX2H1yJtl49Uop_bd5my;!;02nN$=cp&_!W)Oy%hrnZ!8QW!s4-w=M@pi8 z<>TCsNSfNhimr0TzaBxTiGrJ&k=tQ6!yvj1Qj zuloRqu665{zQOAa{UriWx%S95op7(|tbqeQXO&#w_sS1V5%7 z?oIo}J6FY(|zgSZ^Oq#GFu>nWvoPh|q6F zqvVqDq1%*dp1|Jwwn4s@8U5(2MB4I{OYcG&O03->{K?`wLK8Qj*j>f{di86Vf+^Sc zPN4pr7Iq$MqJrSHVx@WcvCAJP>+b(PuHb16fP3~3ntH0R$t_xc+r=iEl?;Fc+CaNi z>@3YNt5fAeKUcnUJ%J~H(O~$j9|EQtw%ZDl3}=5a$uv^ZTh#ZssL~;7RGF@NiAEa^ z1_OkpxHM(Kj*E^}P_Z|9HoWn7VQXIKJD&`DEYrVr}o@jrLgS!Yho z70z9cGd!fNoHz6!RBDOx>R4%i9)5*=hj3{I%p^=_Dl4ljfJn1E{$A zUs&c+{U&^c4wU1(Fk}PVFA#WMDj=`PmA_C&u1rSe6n4L(a5UlL>&C9tBXviVP;vEj z$Lwz!_IZ9B_WCG$hfAU-y2d=hTfE}c1?dCVr7BXea5OMZ9(;?s`i?Gu$ofY%tdLM_ z36WVY=7)65k8#Oo^@elT8$DIFNnmZDF)M~WJDimxfN#PH2Ir?pfD26;8hqEgSUz<4 z@~l;Fx7@0!Dn4S&tA~Pn_9b_Eeon%x`R{f;30sm$2?|Q|9%?es%F=fdt@}2GaQq0@ zOza*D<`7K&kCbrh*dI?5BM^F}GCXnpm-XgyW2b#vqsoLgGdi=M*i@J3pn-rBxCNDJ z0n{6fTB5QzA)J_;yY814KZ~{T{$Gm;Xen4ZNu@?CN3@%1UKGX04~KAUY|OCg1mzBm zH^f0^b4=hC``nO!0$21bpeG9<1RMWOT?ZMMW zlJA^aqM8STEZO8@6+OUQi3U3oYPPX2tL@dBiAS{BQ?ay@bhXvil8*RL6p}oL8KSKf zHbJK8BUg|Z2*|sb#W=s6s#)rUgzAZABkBGV#eOz7&f(Kg&eZc3F{P)@K4Wza64#wz zJJ>$AhmhDpjg=|YhB`pc*s6Om4KWH~V!mjn+5h5O`!J#{y$p=eAPW3dP`gYJ@scRh z5n%fFnW}|s`uZ1pw6VqJ%y=V=O{&@=+?HHh9rFcFRe@$XEaja{qpR&x7;>XwaC>I4 z7g=w<`qHj~hcOoq$dZ>)6>UX-Huss(K`h$y{*K?TQD38c4YGmsHgXGC%}Cz=qFuOl z6V`F@U_i*@MFIr7a7fl+CW*r{mSItA2ErDm?S`da3vCJXsnZNqf2=0LB^lN~zpaJkPHL88G_mzFXaI!wj-&Csa zOroVE$Ak|bGd1i{QEC91L8C6Kk$=4WZfnUfc+s(Pt7a=<-`Idm%8{#AV-R9S{z~4b zKj@SbT?daBQJ?DIeRUFO-BcJTF*$^?n;AB3Q@bBVP$x@+NCpDZkYL2M1+RcIe@Cz) zRfsYy0wG0os7QgVbip|)s}pR>QPBF6BE4W}PPWE<2Qf?#H+`z>HvCOs!s6Q_fv4Wa zzt2tv1CXyA+;B^+;k6gX?UJeefyM$J= zAM0s}ppqGI9Qz4-vHE6lZd3je_m@OSQkSw3Ld=P(r9V4gQ5&-84m=cZ>(6+Du(>&^ z8N-<|rmxp#L}#F;6zTaUC z*v0>foK76v;)yPAh2CBZL|Gh0x+9_Bhv zh@9`18W9kc?(s5ywJWQAlS`@zt~JE?*gg=d5&t(*Qu)I%`WnUJ^|5$y5(l1hs%p#$ zf@ki8<1|e>&Ei}XPO_eA>HH-8M1_GVP;R<9Lk7UFu8nYQTsc#7l1-vZjGy~UHuu$g z=O5XP>{7WHQ?S)#8=4sS-+cAxer_KK^(14eiV-0Swt-=(J7VvF0Rd{j z1=eZ&^O>PUjDw`#-Ut2&>ac}x*E*ciQ#BnO3dzS^v8(y2Xq4M8QPNQJB^9-N_OCsl zKC_))d>y{xa2jaH*McglPa;zzsvF)eD}8|9w#>fY;}g4oaT$H#HG_FKfsSkO$NUyeM~f$Dbn0FlkF{pj9g@tGn*IZ zIi!!N?8>i-i={8gy9o54zQQ!VqP(!{sfsPj_WG(-j&Rsc?lX=FXH8!?>Dtn@7e9iK z({Byxd6EV$tgr_HkCtPCrkc)h@rTYJWh53ke(|$+%+e zEH7@Q#`{D<5k)GYd}(Vd%p>cTA3v`eN$W|e)wi?vfWgZZQC{{+qOH^ zQwy@Qbmm35Y5ut!N%?~y={Um|aBnnL8)o-EQ}=fcIbI7nlVWc8$V&JqQ`iHC)J z3UQ?2Y6jov1g<<;%7Ts3U77P?Mfm;1FqR6zHkV?*8Z%IM; z$^oXyl`*!z3pGsIN|4Td7^wDmt%qpTt*WK>;h%yaPsCx%f$lW4V}^zvJ3Ey zdyy>1nkpDsEv^uE^m)HOB|eP4dv&i!g!f1Q*J5sbw2y+hEU<%t#>RSYHBpBv!OECU{Y(u zU$WN|R;#KEq&d)Tqr#VCwU3gmHJSGGD%I5LmGtPO=%dSpyMHGny%8Cn&I3b!!X>U_ z8dAkR-wj-iyh|VOi1)xR%G}n~pvOy(U!Y(Gq4gR>DN*Fe?#LeyqjSqLG zCDzF9_Poxn8Z}cN{UrU_#;rX-fg{Tx&YnAEb=VoNFrrj)7}LaKv_{$Qc^|>^wI+j zOq3@HA8Up;OlJYP%|~{Hf$g5|IpvlepXOf@m(TJ(XLl%y71?Di47(%Xi*4RydD*yg zz?&SXa(Oj~x(2!9LH~(u-+Lo%=F`VeAtl#7&gb`$R(VAlRh*b8oY1eQo{nU16IP}` zqg-^Ano0sq4#t{n2^4UuZcJpX;3`wbUUU-$=um(QU+kDbY^&7=n>-GIK3sw1UV;F`zub0 z_At9vm}k>Q#nRDjK`zJp+2VQmYNaI|7sOv+UjF4=S&XJCA2QOW{JQ{Zk}UsHG1`$j zNrBuGvaC$ItwW1@2knZP1$x#%BWuXw7);#tq;Z1a_GtTRG^=vRa^Y+?F6LO!_jJf& zyS5`oFs?4(8B8YLM#P+r2woltP)S64L5U?Jmi4?g@R@(?CsRh{06L~7@a!$9s7i?( z00iGRe%h7<5)ov7Q3gO_c@{nE6FX}Q`cKcCGo`H{Ap;roGV;FE=s?oT4YiLEgXbzO z-tS-p(!Bwxl@nYW4+O66pPuo8{Bop(45pyfQ$evj?U+F4pC7hXLc?HxeP&m*oh;>w z4qrjuE-+`XE_=A1U`UaJ@1tZQY@NQ3qweDC_tN}OC3nIJ=K)~CXz1`RIVm2P@uT}( zABA5?3f+RPOUj0fHTpKN7;U zd~@tC-Z8VAg)@K4T8_VV2A+-tIKD`l9`D!@7FAjR1_DYO{ErDaVRoG#`#lQZ@F`c& zMlBT-z91#9`aPbFA^as(?eD+-(*S|o^>vfs;VqOPh3$!c(~&E6C8?I~FRR)9lyWjS zQC&QsUc>Ps3w4vNsx#iW%4mHmZyYu|4hn90ZLkRhCRyc4*KlFi0Vq`R!DVES&dHZy zDxT1y>kc)i#9z&@N+gqAi+@Q|oF`dZL4f?MRvk@Ju)-7b&lK;SBS?E%iYLQzeS>W- z&@S#OPBGbufU0g1u4~mgD94PDC&^dnk30q#ewR`D{^?!##cYz_EgVSS8F@I~r@QDg zWLi|OQeLsQ!cF>SG_KUkbe(Q4Z)#kWX!|Z~hhhl|x#V==Z?FmLifeSGPGxs$LT9u| z5f`Er_i6R28Ue0$3-9i9J zesg=7rp=1l08v&`u-%DIGoF_lNcQGmSzB>&4dYLk!4oeVAGEHGGhhO=11^0fidRbv zv5FXK8MWYirY>rwSIf$Q?8}4c{2avHhlRNr%DX-h_jfQ-O)oU+XrHK&!_O{Bgv~s6 zD#vwNzs6KBeRy(Y|01N1OrUX`Py~R8z4%i!xKH%Rh-o8O^YXJ~r#Z!Yfbw&k%A+yS zX0a@yEuh*pbbjXqb*}A8cjQ!Z+LIE5@;M|S%0~uc9TeD92&D0h8cw!ZX69M$-b}mH z6uLt}6h9jd6Nb@Od|7E zWO$EYjqEp*tECKB_t{ZSCixE#>TM4nl2^{ixz)Qf!rF*OCrho;n-jg0RmJ$Gg}{yG zf5Q0ztTCY@2L=zi^n-mU#?rrsRY!B8W<=C0C}o&YRGNOh4sT7ZH`GC7A@V6p( zZIAr?Z-M}GTo!)j-aR{V`=>o$J;1wTap9&6-v$Y);P6~Z?HxVbJrZ;8^OIOD?akkRc63_$75 z*mp)q$rbzM)7KNxZO8i6yx8WHbVTIGBn6s6Q`bidn>;E`G&(xz=aWcDy4?mP5Bh7y zIO)>H=Oo9%!e_I{ZOHbMBYUP*`};cTRWZ5ecBjosmX-tcZ0v6k{`Z{rg#y2ez=%$;1>^I#iQR28~#rcW0^>AX5)z7x=ir*&6OL$t}mMK>Zb9Ok5Dhgj$ z%f(rZs=gW}-^~9934RrJ`h9(L&+~e+#C1JExWY_K`#3pMXOM4*ZTXS)DT>Mb!MLiG@wTVQR`lmZE*13CV2ECf zI(j24>dsZmS^c*Nqc1?klY+MiFM9)4?yA=usc-*Wu~zOnWTb`oQwFAYu8&Og8`a4H zQXWZk6L#`4_=rCQxbYcP)gO|)U*O-aof`_EIc2jrS@nMw1ZK9sOe_277793@UerA- z$oQL~z1vfP%6|T_j#iBS9dt6{VjVWM5RFngqSyvzqX76tL3Mav(Hj!4|i z|4_i(?y(x*BcGoy+oVSZQ8e3%b>i;&cST-PCn$5iY#-pw0J{NYaa_bMh! zVdx+XjfU(?xIY;mgYwr;XiON^Zwv7aI_fSYAdg;-`>S;ma`CJ2bATMj}9nc(cb+OnGOMG1m zEs^oq(!uBLI#Lxi{<3^&e@4ISdCy%*SG-(bY~5Y3`5vt>cdj|kX8Feb2nL9-rTFMd zcWt_z&i{ZM5`2`1Ti0Zbj@J1C@Z0a{0xd%%k;>zU zo*~NYK&da?RkZ4}cSj3uzu4OT`I_-HZ37ae8a1bvrMD!~jUfhjj&`PkUE* z|2Zg_^glqB{PpYc{F=OYr2XxRoJ=ho3~)wt z@6^S_hJAgTvR1V|6EYP^F+b#z^4DgQ&N*AvUbOBEDdX~8~{r z&waVLF&~*7h<&D2chx!Xoay%;#wVv%7a1VlMsU1Mz(C_Gpus(-PszkH|AfQnI?6*| zuhV7Sc!23T4kA7lnW!^#n7tcC zT$0ReTWWT5p2gkGJ!BPWo$oOwGD21TEg^0p#(C=7!2kC&p61BU88(v7b%(vy0Jh4b z=GnyXfPC6WhcJdoQBUc*X!&-;jeNZjc9NB!9jR+$i6;3vX?@wml?8Fc4L;omy>p8G zORy^d#CxZ6^?uXqIhX(&NILmr-O#u+xP{({Rz1qc~b(9}zka zQ()JbmE?zd=s|$TCJo94SMkD&l`9c=@p>l!L$M9gt>v1{<=Q)z4K~w8)ii;&holr9 z&FNXRJM{AQRNN9!_ zsp#u=I?>eJjh(Ev0J{uw{JwYp00tNJiB-Q30rE*`{0j*Jws#_r_AupwhT{Ue3)j8? zSkWgwRTgmpb&@HOn5++D=fyrxAJ7`UE3tANG=PopM=MsG-QLNwqS%n1ERT!bmT!2M zJAd_J20lg-(@Us)TJ_V^#KZ9O-x7hR{72&K&+gOfwr?5sdjioRKl`m13bgNmF?ixL zaeC)79saXx#UcS0dtd*`5Ly6JgbOnus{AX@?NNy5{hFWqa|F%rW`Lt^d;N)mPxd?a z^qTOI_Y zZPJ=jZDqzZJIH5QOqoK|O7a?Jw%x-%uuk_@jL=7@JR`EQeZ?LyZ*f_qWU= zm&N+iP(5b4TUdqQnNQl8Qb1#b!RnW*g}8$S{~Gwmixv2ToxsziTVedes?~-s!>J=F zC=RYG#s@L(?0LoGiiYEhM%_vYQ)}q?F7)|M*(-TpjIb2Lk|9G#f<3^CN<;TyB<@9G zw=mRtR3T-z#NAj=bYObfxWp*WeBxFCRLnTVSa4Zhh>B^wM-p1pXJNIg>6XZb0J+q6~Q}1L}~&=SW^rqZ)H4o;!20K z`w)?!!l}by6}bibf@4MAYYL_F>ru_EOK=e(D~zyy_cr@?N&FEW=wZIpIV%;4w^)^~ zt+s3a>Mvg*RTcHBEzv}uHQQ8&TA!#J<>awd^~Dldmt;T6)g7ws%E_baZym3Fs?vvZ zt~(+LFdX7sX9@!`D!^-)mOniLs1&){_Yymg#5_a8BXcpE+-G1>^s`bYruXU~r)UQ{(s>T5S z?CSzh0rvc;h?=X<|@J^}A zNdtoZ&@Kk4uF&jaDi(3T)0!-((!WgF+YzPD&ED}!uCodlnc-Zl+^{u-QV9$zbHuqy z1ZKWsXPk3P3FV;oX)TW!&32t}>E?!U^LL5#N1(Mf0CNi8Glt$D= z-&5<6h%FB*B047ecP)DChd}PJmp_@}KUjf3O|t*1kXw<68|5r%!C$~*KT1&ZAO##= z6Tk}+8thESDJl%knd33pHxpa?wSaaLihI=~YD_9Mv#^=Uo)%baWNfaucQAq!Zqt)& zI4R{+_44TlcsF3+L_P+Dewe`>nbJZOdTxq%;z9yiP~I(QzEA|u$xnu~UQVqxTxmYX zoHqVazC`?GMv=-;yze{OnGQ89TnEsfO+>9|Snn*~U-&k`a2p$K*3Rct5BlN>aTe|K zLQg?P>i*4GxUoyeHa`fI2jxS+B>aKd94m|A{{$h!GNu#Ua;1-}9^_aI)#1EN6|y=%kdb zl>OjkdaNgHp`2TV?4*IZfs-0*D+3vha<0eceFYHvV9wKu_*UExEf@G|*rr1Zd$)N# z{(AX~_2&mg(yIzcxQ#(^`1SI4Y1LMa#ku^xLSt}*+?3=OKl9!FJqw^*B4=uzc^}Ej zRzDNZMmG98@0N!8EBaa>;7o%33rErScEIyXG#dDE;cza7_i>mag&pxJS^N{dTtI65 zug)W(;A3b_@t01i{3oUMI1@O8OFSqtDOvH-;PU-z^d%>Da27+`L$x%}beu~wSA=&dzCFI1x zPFHaK@zJCkV;xLNK~Cyzh!XVSB$7Z=JSdb^{ILqn8BZQx7hzqqypo^nSAs@W$&%Qav9C1tkqBBzqilBIyIN-kl zqy2d_VGXk+Tv?VxkGDI~o_a=|UltP#?>RrIx_}yasmjN>uGelC7DY;5Ej(=2gg%f= z5K@e7ZC_Mc131xa*<4uG&NXLRS>H|MaFoQ`DY14?;4sRm3gX>I zw@!2JJW@3+ME$;Cy&ahERy;?q+!t~*pWUJG{xBCXfQ>h1DDM$@?`G6zX54qW6~_1* z2b^0|be{=v0J2c0SqT75{*65GV^jPjFx`7ys>?2K+f6Y?tk2-6I?8Rcx3hA$QzzzU zQaD3-8x~t;g3+!RbX`a_7%km?_2mw+rssqM_j=8#r-cUI5aX!&Q$tY~ttrX@n0srI z4Ma{bAl7*m>w!cF_r502s<Gjou~s_V$dt>I`>lj5!Z&`26hMX!vxW8UYdb6ttY zFNJ&ZU-!t*?T{5KT z1MD`^u6xJqKK@8AVinyRCy^6R`l8g=0sPONb%juRzbpjTC2S`-3LuF-9R*a1l$r;J z@c^O|JeT1%+IKNp=VEtoG~W&eDVBwNciU8eoX{6zvdSu#x0;YMh&il>XSS+)U6-We z;_pj&;{_k{RUQH4dfZ2M0F!D@PXyHg0CVVx|BLD}NpgO>=Vj@W_!1LR$BNWt5j`C5(Gv8Nz3tv zKY7hsMBVr^{p_(`H!$xix?0W02FplZTE=eHb@o)DzB=IhRmnZyD8GPdi%G+c36G0I zFRI$`O;ar)@ddvs&^bz?sJkUR}>UsU`qoIZ5{dy7x=oE-LO z!om6RD8#ut#@s)_#;CZvAbz3-|0KqGwQf4t!oyUv&uEWim{SvaO-J$zkd#po>m$8f z`Hd6YS6Fg?-=e#qLj9%5=iNK%hb-)c zE$vl@`R;@8VM2y@aSX)X^A;bLX*aXfA0iC5LX@ZS*td8*uEMnZ1;`*##4@~z9Rznl zst-|ryfPWUL%Q}0vzLLD+vzw4$IJgBz3S@_?N8OKDTg{Dh|EEU)nW1G19|b!30;>4DCujWBn_d7Txd>7rq1)hDUQuq6o z5(A$vHB&6^Lkus0{h?2%@B5NIea}G-{eApfs(UGxsPXAYy1c5*ekb`Ca{2esdDb-d zVDvb4W~#-%m(){>E$eQ)dq6I#%sMo*w*Wa@#I^5D-P{vELU=1xgK|7$g`bmq-EK5qJ1snO0YEm=pXDe-&G^web_gb+x$)XECm7yS?vH zy%f+c0lej%Aql8{-lm{E4utZQ*b9uy;IVth-1c1qeA%{`dzGSZicCe71SFP(=GFS$ zh?)!E`An?%I~G}y;eT<0)wVrvsB&XUHU`x%dy z9jC-mfz>ziKgoK4olnv*-A4U3^nTSQe&r?q0E_Xyp0zc|0$I{Ghr2$nt*gv)HkenN zh8ONUbqq#%-b{%sc@JpxOH^$3s-%|0co7c6@Qrz?l-2#3f9sY`YE(nPFa3q(Mu|w8 zrRy92R#%ghXg|DTZ(I&ns`d1(?sqG{+i8?b~oD`orF+I^YS7wxz z1BUUW4G~_b!KT-zDaJJflHKB!zxzYlhf#7ydbTMpYR9m`h;F*5 zifZ{o9unKi za_*L;R4U^DyKMgN5$++Q2eUZ$@lk0^gNA#(8LL^WB)LIdZP#W})z+!DzFyMEi) z9PHmCZY2N+HRPCzeOrNQT#T57a6g;Xb8klM_k_>EBNEMces+gR&gcDm-o;dl_p!Xh zq5^=hiMtnzUpr_8!)p*pl#YC7%*y10Q;3OZ> zUHLXws4!j2Ufq`zb4-_m?6xz2m{Qc1?R(OT)Yt?Y4*tt)PljdWp`21Nq-2`ero%L|nNR!=pUgVoIn3&OiZgy^TTf z#)QpBeN3RnaKjDFj>|%$@}IrN-c=}CF}q<{vYGN~P)m>jp!$!Ux*G&{|* zj50a0I*tb1%Un{8ZfJ~^%avXK{lqM<`iliN(b90x3{T4;(bggXyFxQ!QU-nf@w^xC zMWn2i8>fnt08( zXH0b&4s@X@;n8MOCi7?1)m0J5s=FB@CD|?`5x7nEPX4yp?h2)*Y9O7EsjZ_lvj5}c z8ESmoRJ>czr+0%*3Pq`#gBBlD0fz&4!wUBCg9}+xVx^lAQS&GWc7^tVi)>Ffiz>FfLb`lO=reVgZV z@16d}Kv-<*Wpy^PNjw5la=YhbDgHIMPl)7d-c9B3UP8FW!3O~Nd_T5ar5FM@wjX4W zYXDE1u>T?L|1@P5RU{QF;h;J8b!zB(OtvnyX=fRqC}Ul_JhuF7rhBzbfMPD zLwL$INt*4dnFb8WlsR)6$7y!szW8^;1ACGm+bd=JPP=kg7&x@97*|T9-5E6PhopZF z1?!h}8}ZbK!zAwjoPmsm2RUkY^5bGi>L>)Fd!dK@>uzhMie7p{-pKNumxWukvwi9< zeIZU?mQ@Bp3<7j00ri|DShAF_K-7+BHmplwsyxtXlAkm0KySU$A_t$lUx7R2_HsUf zc_$TK8kN^(XR_5e8wcuD`UdBh0`E^Y~Is*fk|sxPF^F`+~m${a1_?WQOQ!dMkwTu`|%_BwttkYmB% zhd&yuExJaHG%>RDbxK{k#JV)jTVlSxy8%$1NEgC zPsJ~+B9^iqeaaqi9lA-rxNfkP2Lv(PUI0JHNZ#I(Eiiwo1*>W&fuZ*pWAy| z0Gb5hyM5%g-Phm${f=n%-3j?$w&VqDt_AFwo>^E6h^4^CR0Ca$bA#nnSET}6A{l-H zj3(Ys(XY^E^dD709SD*}(!yDv?U|bhPXcsM+lyThkhOUjRuf!Dfu$;^@ z(ws30+pO+%c#NwEQC|R&WdI3NHn#>unJ?l|vTfv?Hkb66h2YP}r(FX@Uzl~nY zqEm02HM{g`{O0BOs4CV?B9%pvdC*#P;ire(Sg=UzYa@HesU>M9bdjel8H75xrgf}S z79u+moYr9{1Iv@VBEwf~39hM)K2;kyV)2h;XC2Ca0hJP9d@!I|m-bjXO|#;F*F72X zBdWSqebP3&0=|b>LeJ3{k}wAKzGYe2!g-4yr#SKIDIUx6U4{mFv2X<9$X6cW%esjb zm~VVYuk~5%#fIi}DVfXj!x(`)zzSxp!@wjZF*N~*H#ep1sv+R6bM=`fQp&zU*pRtu zCwKjBagyIqZ~Jax7DsI#xvwN3+H^>aq~T9dd$IXu-Rv-FzIgS4C%Vt1oMrLp6KY_{ zP^K}yCY6$}*Z>zDMxYT`uAMz#>aP5d`;U4wKVN zv{!st@?PmtrPbX9u8RjW2Ps>^B%6l}hP_&-xdN`QFD8B(Lg1q#aWxT;ypw4OEuLwY}GglZ|3{*&ft8!r1j^NNJQTdhhW;Cp$jmklsk%ltltcv}* zFA*azOw)(KO+9$PQxqIvNE2edEK4&*np>jzP?d#5+VP1uvMR2;hM3bjJlZ%p%Klow zkJqbPwuNb;vooU92Fv3bA)Bw8zbYO(9p9p~Fl-Gcz2HD?1n#YTIi=I@WAku$cFc4_ zp8jtc8vS&iw}L%SVz84rgm-*u1_g6^$TFGQZeQadpK2hZ_-<>0;L`q=FF zqb4PXM)kgyQ2I89J!`FN;lGDgHT0*?2k-2eE*`C7`t^fj$e!bS=xyM?KP}#V-8SsU z!9*139847Tj*G~>^Az)0iC;C&=7xMn>|jqbdEwN+_7SV`S&gz z-i>>w1Ls>E09+^Y!C6^#sbs**mJ0Uex{+n~W5@IJP5gm5RZP5C%px^ogL?F-^zlw| zW5dnsjQrMW!VUV#kAh(4Z>Vn{xOLf|={zT&&PC_r37{Sa%Y{vZjZKPjVoQh|X@hn6 zGW~5%BSzRm*%)mxD%@s-dD7Igi@w`rtEx-Arfn`)TJ+1mYEZN9T5eIG!FhJ-1oG&l zhO}2-vouzxu_HLYh6IP5;m2mJA}9Ibwwp2q!iBThaEsm^8J)TEuU5Mf-P!sY>@*O6 zAdEAZ2G|dTF=z~ETsE3lI40m;(ZPK>Vx#;M_(1|_!Q`nStv=P52-4o> zmdJnSUQ0ml#gWxVtB(*ZoWe8^ShWDof#dO73`k?5#?W7O@X{;=Jz8?6}yv@y&$W{1PcG;%d`q z0=~^=?Mxc#0WT_gyYVcuBC#t3sqxKeP~gB?(rZ2&PYPv0;E$+^7S|whL|cY`>#hzs zVie!zIw{Vh9P=wkNi@E_v)yT8?& zcKgvzP~;d^U;)lwbecX^Y?oY|L2+qJ)sYqf+T9pe3@*;om%tGlC1*l9V8y5VTNHJ2 zUrZlSo12SSFx#)#Op?mm&7V<4G_$N=vT631TB_TPop@d=q9*4#FZtqp*QbEjIS38>9*le9xy4V|46fScv05|MA86^l3Pn0{KfRHMNYB6lr~ zWaarCM4su|%}B3uWUA0$d(hY{zV;eP@cPM6&o1Q3Yt&X)=pp5bcT^3mP1=)5>|oTc zxHz(CXbi%WbDDoHJ%}U|#)qGR^IV5^l zLU<7Uw)2}|?sz7QL)wv5T&ZHM&MI`u)aveQ;%#;odW+S4*ewLS&*EUmWid}|ab7A+ zca}yeQ6C-&#$Gj|#za_!zk@YCQFbV-!exL=}vWx!6k9OS_={7Fn(~Tx<39DXPZTS}|L%l@?`CT3LR22&U z1mng=gt7^#$6i}=vH}!L*U5(=A;05MxmuL!3ggNn;l%aT9j7CP5@7wXM4Xk0aT9OF z3p-`3?8wGkl>4p?ET$(QmlrZwjBYidHdUDDzTSc%QjPC(P)E0V8rwZrSC)*^9am|!onWXft@dRlMJ}W& zeX}qpjP*TW{#QUdJu7ypozB(Xz=NCn;rHNH9vxRxVysW&yP|;yIeBIBh26Z3&8+=p zv+X2tnbWBuxVKCLPDMsK+;xd|UI{{1_SqiS>3%$)YpIa0?w`Ub4i-ycBXTm(`V;Y4RZ48iD8k2-tf?{YqBrcUDInof;7RQ^8`eP@ zSsux-&VM~ClRV$%9@oKuiA9r2R}~U<(2C6Af+bl^D3>z$slVmpz5te46A|g6LidZv zG7(XvA?>EaSJJnF0guNS#H)vpB_m=1P)ZEmcOl*bo)el2OpmjKGF`_Qm?Ii(UG{da zfowX(c|rCIcUBE2D+=pohr{SUlJQ)$!21{YH5Vsb{~O|D4&0>coC%1%loM6?HGK4$ zsTR&cLGM_YhjA-YRy}OyJ&4;FmbRa!Gp}R^C{=4oUYVDzQ;nALX|QDipeJr6 zBXpr3L&9$b75p_Sf*S`@qj}n*n>eBMWUO1vE^Zq2g^+$lM@&q&pk5m6{c zK6K=I^Ewui6~7-nX7!CVj)$Oo0&#A%uz4TXLlM)pn;G-kO|!xG1#y@FN8^x|LiZcp zNmXmeDIICY=D+=YzUPIO)0nQ?gk2wZb5%T96!*WG{2SRIy#E?&T=&iKzTKhfNFt8w zg)gfoY)qa-72JB39kAUFhM6c^P~)f3thzK9H(HCh(XA@cudejRP=;ilT9h0)PZbZ% z8A-|35#=jiQJIAv^+x{zfHn`L)^@+_ZOM7QE57{{l2&7+2yN;7;bc}IVpVF$_hc*a zgGPZgkzhSt-`_2%Zz`(Kn&+9rf0U!z)A?v*Rx;o%PV$n zl1)fS5n$O@sCj4zv_gEy!+y2|VpEwQQJ_Jviv)PNJnH!kc*#49>B%f*x!(41wm0$C z(mwg}N-sz&E+xgLhDqj*FH1L|8d>#9Jwwg(5~by&L4&_BxkUHH)65Yuc(@;$B;99J zSn5+m-yalg0wQEuQ#e=!ksga=}5u9CY7e*tU~ z+$1R6TTF@aMw&?v12QbXCK#_C`|buSFjkDeSrNf{;>LiS>RwPhz53br!({dLGI)D= zF&t;2p|7GNo5=2L16vZjzjf_e>2!El?SL|C=h(AS=Y6lIh)Wrgxj%g2wft$c+{hOH z#5#a!$@Y`lPaY#(_SaBf*X_Q z3>bsMR`Amq>)FrGbe~!KUH&V;Wv&;jG*k5k)akmNk`I5CNWp7e9xoxHeKkVc42rUe zInYsOxWmFAbIzfrBRq|j*8jdRo2_^k5e8Dj22hB`ynCr=)Dq~aHv%TuU2d8a57TF- zK=V2RS&ta)B>by&x0scAaYQtp1}JX|a?_%z?p4j|<3>ZRHvFKeU&Z@tvhKt=TdW^$ zec|nXzZvdgPdl9@B<6ICX~fqQpGpu%0)wGG`Gcm&<1ZzOc@^(SMIA$l@4Y(q&y`fVhm>O$H} z_+GUlb>(qrZm~8~>h@&~7h`!!yA{+)vyj*tR2P)P-u`GY zuuC17wMY=y@uC^>DefsO8mhY&VzCwRm;k-L@C&3>z2U#|NU(B9h~b($kM;lFZz}e| zBik}>2(sH?$8Zk+5m(Xnw|BG@n#c2%B_6U7ds9X@H?)%=IxRV*s3q_k!vs?#Utgt! zu>H{Bz}@G8&v25hv*auc_h6!EU&h;ReV#FVO-IXM$q7K>>XH z{{xI-@Sl6lHQTf9-{?{z9GO@{q1dlf1X5!Gnaz;}kgCR67djJ_i{%gU`sTkyk$KJX6-O|friYiHQrNhRZ0>6T^T-=eaPT7Ro6we~`QRYT=GM9v^;}2(0t2G=4_a#U!mFp{iFbM(KX= z!#<7w<0VUbdO#VV49Xii6z|MEB?tXjAMCg;)KzS(KjWZ41M&QGA++L$hU~utqgyuc z^X?3Q(_$~Txry&NnI2oc9j65rYi0)d@c!Y8jMh_F1P462P0=w*q^asU(UO4~Jxti=U2SQVR%WLV2dOpFb=;M}{-Uj`r8P@DK%$yaFL{j4-4cY#46H zFHKsVMe*F}A~+itGFnM_$wrmvBJ7xlAJaJ8v|H4|^4TG*_fmd)HJh;4vz9E`O(ul` z$dD_^E*3AXS=OJIQWA97JkH~Y_Qx3@h9Vx-(xVVay;G>$N1N(Y>&Yds7aQMZqRN*( z``{;QYN6RG;1=tQn|vQpLj6V7gR*y{B%Ee`$vH}>8=&L-KAvgrgligE|CeDMr1XmI zPQRwMx6y%CG&<11GHUH4MH4|}t(?mY0KFqG$O;A5@lN@z;Ws7`k6oafMk!;o5;6)R zmBw34Zgf6%Q_7)YpGs+UJsS@WA@_4YvwCf*K;OCL^QGuc55)G!JT+o5oNsAzrVsQX)_j z&B_R5zqJKae5FZoj>g_K%eC^`{s8kU74MKsP!Vm(29~5aJd|%%olQw)Rt47F7U>8w zOs|}}bZXkNb0)}x;IOkDVB@mTSTE?7GwXq*a(6%XNz^JH8{3$Pm1(qO#M;Y_1|%`8 zaKIMZsG0j00kWb6glD55wcS1+vbb)=VZ7exJPGiV#li-kt0W+WsjI9%a8k)(n5g0f zsUUg0f3Rfv`{ww2_7L8i;T>J7|Es{Z@ZvDD!aH&W1O5HDN$_9B(_E<)m?lX`x~Yho z(Zwo?EvKhQJqtgIG%!bzR}qAj(y@|*0psY)M8H!AKvSYIGB5Vz!qq{23D8f8S_9ii zK}}>4*g=YcdWfZk7{Qt&B~c}^wSC@LRt^dxH*2%uG zrGNw%Eygj+0XXw68{c_y8WTN6j@nJ!tc={hd(7clMP`^4i(-9_T7Ovk3>*^WtDp#H z@i76wuXr8yT05MyW7ST_w43;}**_+&%Gt={^1lY=6`?&~1xK0kT>PtWvHr@_yd0Yb z(ooaCh^E`ZnHUR?5h*yTlSAl1NeEQzZO=4JNd`-ns3zmeZo*$m{V%HCu|2Og>J|| z33-uvB|mNpt>~*8Exd=|qu9xolmlEeW;-~d;sV|luq_5e8rT?nTCH-OK2^L`gqOsv z`$NhCe%%#0+q-W5)x{x?dR@^DXPZ|dH=)_r>PuP;{C4^aALZI)CrA^=h``IzgLY3a zq8Ugdwl|QG#u|00DkzRX2YDrue!U6};%?lWDd@{3pYQuUxoJLLKB4Xgl-?$c3#&Ps zf*EshlToS6t5mZ#Cp_cU6fAZ&Y{R!Yw@~S~BpyM==Lb1)nUV4^wHpC?g@t`c`-xZZ zOUo@EaW5`ARf7-V6dGhA&X`!qQxSq-_<%gZ2u(|zwYw+uCdff}J}+FYd{!S;8He{W z!i%GWgr|Y$dAj-NU-r06$eETmT^)=GsOOvcIj6iRt9`l@e_sVzc(*^_QBr&;YW*cn+x{e#Jw3azMX=uol@PhfPC(cGZ2sLci{SuQU0fg0AhuHkLJ#b z8Zc9{y-Hk4_aG-9Mtxmk_MuiyK+X+AZ&8i|5ssXKTnt!>LCY=r9bTYdO@R+?PItXP z67vQ!yhP`5wk9*_-7s`mFNC{=B5v<*eKXIN1)+*v@ zMf(sV;nx%u)`oy=z}|@i93rn>ILHksMq%XA#Qrc4cL>3D!XQruTOb?7(avGQErPTXE(0GK@~(=#OvsG6`d+vO)q7ACfJ@U!WD@#RNH-=s z?zZ}9c_U;xC&CNRplm5K(W{?kvf=@O&@1B@0o{935@+c_Ry+dJ@e;-tPU1s5j9q$G z{W2f_a&9UNFzqaC=^=2x!aj|%j|MeZWG)&E|NC~_6&>ssXrAt0xe(&e=~0mb#S%Nx z1c$+DthDiWwdyH%XYC4O3^33cDpcw)AGYSsl7$uE$z=ePgCMHm{+n3OHrS%4%zNqG z0a@_=zNZ_(KYay+O`HzWGZ%GE?M=K^vM@WrZIE4}UCutm6lE;sH+r}dar8;6;SD5(vYEHYBwR|{q! zdC8I-O4$P1(LeQ0a|6|e>cm8h_BR^Pf47Gi(U^WW`>jC*?PW7cC=9wXwzidZV|-l% z-(Mx8{j?ug)IR(-gXz?+V3lc~!yTVftww{>UO=113B^`!Dlo;D&AC@T`LHJxKCnJx z%YN6JZw*c&_=+*qehPivh`Yke>?9;K-udsz=u8*TBtM#2Wq0WE)!E7@HI6a`&#lzx z=qdS(@$m1je7BG}EQ-50b?eoEt&!6(MHkPFVBvQ|UF}Zu*`>c3BB!DCVPhMDp3by| zRl(mu@C>ZTc~Zb{HNR z;Tr7@Xzo08i_;w3pGPZ%F?VU9E>XF7#^u_nV?V22+D-eyzM}8UYP{&8SX8B-pYD_1 zR^Fi$wzSHPEQ*V1za?X!W+bEfa3r<@3Jba{MvN%mZz!?0E!eh>$)D`d{i>|H#yD`Y zqN zndM`yHUZuOK{>F~%wm^xsFC~D(VR=O2n>CJP7IJEJ`Z2&IcUO;2!oBSm znR7iC99IH?9iPw zYZCqFriwHdEQ&oz2+2&0i23q!Hb@jd6Aq?zRi|*AFR|SEj*l_<;UHH4PBw#vTA~kK z^0KHSw4Vaaa=mo@`5b7nlW+tH@nzeUZE+gwhT&6)?iX-sjenX`w)FNpN*rRd2`4Y) zip4#?8iy?swk2-zCGAqPCtB5$Cl@k^HiIIg0nT&Fq<=jYjtFIL{x}7e>g;oHYyUF50o@wGE@GkUu zy0TBFE?w&8ql497yV_XB`7tth7W%Pt24SUJ>na;>Y4%Mz1wQ?y)BBG0oT1Gg~> z{$du5RXL6XR?fN`)a!0-WaaN97|0GR^3{6+Z{V?gb8<55bN+4rNpKKru)_XDby6D-;Oy}R7RK9xOwAsqH~I=rlseacZe+SVHP(D$0%Ixn zY#e&@^XITPpd_^|-Rk1sJC11|$Uu~P%;1t}HFBVl=}(-pYAMmzI6U%92O6gr<}*4f zl2!n}wEh{&;F;er^190wWLF{B!7NS=idKq;Vkld#yKO9MP$HaQ2If#K-j&c7t*|ElCi~hFn+b4 zElCN}4z?dro2CEQq+NGtYp&XADTX$r9_seZga+gySmdv-)87|_I8FB9COA(H<`7bD`aUWV#+@eRIQUOsIm)um#LYLnVIS(r$pX{H9FMvAGB4hLpKAX@=9_ zAD*KWfoOaq`^S3D(QE+p8q92A%tC=!s0}wuf!x{J&IC$Vh(m41bVD< ztzw<9sLcA%a`!4SgvJseJ+f!(6AV>&MAQ{(_7VgHE?OANK;@QE5pR{C^LPWA+36vp z+%76pMaG48k5a){EM+RKl-TRNEiwc-@8?hB@O^vyasmZq@W{h>nnoBkcR3e38HTfQS^58;>p1aC`akczR|#8}oLmWr43lBXOH7x}dS1 zFK^+`PZdQhWdm79sn1_Z-<3F}HJW)J&GSVg!_hL!f5(2~&WMWT#zoy|EzOZ>tW5s8 zLR6QZUUph|tX)9o&1E{T^8j`WQK^Y)>-4kTBfb@?n5JjNoyn=JRx z0k&oiQrx7}(u4$4TNL)x=;Z6@0eM=zpQ;9$hp&v`(G3%SO2q03PrO80^f3z@%H;;6 zCy%?Wp{M6SHqui!joR!%F7P5f`_v=>@pjnQ*x2>_w0`M#$b|0WtU#Gtg(!XHGjk6?M$1w>8{=-4X>=&hRROOTR z$S9{C)@mzhLr$woDYT|MMKQXAj>}IkN{{=MMQGT`l=l>I<$|OJ7@)wE@|>HJuo1|S z2dLn?R3)=6{=G8WjWe<=`!xc3wvQ7!lAd0YRxbXon_`4LJ=)tFHu6qyvhRhJ*nrR; zl-r6bO$*8d*PZN>zZ~vb5Asb31nTi$t??hOzbtuRvbliWDi^7y6B92quQEIAGBauH zW>p7tuLc&pWh#IHKL`?YrhxtwIkCS8nUSi(PDG3&2g;(i57H@kNkT^wNH7Ws*0Rh z$?##GH*BoE(zQ>a0bVlH&^4KAE?>OrW{t1akq(>ES?S}DuJ=(o#dEfle;Epop6rh~ ze8nqfj}pvXL_R_q3E*WNnQOi|?pplww-g7vK&L{PrsXRVB^~j{n;Hz>v8x z3oB8<%7pd?nc)~0N$PjuqET#+W*d#->R{zIBNv^rYau^uz&G@UBdND5MukI?F$BUO z*Pe?ypYJ$cS>mJ1RnpaJLH4%5pj&;Bueg=H*-{yBr67DjA0_=@<7!=Fz4^OlVhfdg z5%pij@FsWGMh2XhHyOs*b(I`-9-C6Tm2{I z3y~54194U=Lc)%-K)eP>%vgKW9saie<)l{Ns2Rb9wzTANvn`dz_+E>t+Dq_ zW!W0HOg@rgFs?kN`Q~~lMCbkRJN(ZvPn&WI8*NgITVhET@ALfLUl1A1sixLs_;hd& z!8zf$x@V@!ij_X^_d7+r0d2o&Rp|XuMi%se^Yo>Im@4Y(JF$DvM8@VF*5xXu4>i-H zqx+pI7VZ7FE&ex(|JmdyJH635lEDuN)^-?!{FI4^w{hA{eog$4tWA)4H<$u)lhV0+ zbuqr8^wtHIL(nrUxtMP=7X`SXUe5jtK7l!*L!&_}`gP4Kn2|U(f ze=x%2r^HI$wk>o`z2fTl7AS~fq6k-aXe_si1L}D<6&NNRX$~YIOrEB2!|c}mR>NnV zzQ`9L*_fKZ8+w8dZH}*)5^W8*#;0k+Y-p72Nmr_Iz)fwQypzl=aB2k%<;d|&>Dp7v zoPHe@{rcAzuQ&p|*+QKUag4;Y-|-uepK7x!G+3;Ual!J?P2>zMN-qV6W+6dCaZc={ zzxP*K=~wr^;ibaSRdYJ5CznpQd?C$v&d4y3o|#w0viqhipuXCVO|(l5&R;H7l%aB1QhkXeG%~Q@@sXa&R(g)VrulBynBf&LpBc!Qe`S78(|}MW^BOujxvh zm_)=;0<4>*-o#}3`>X`KN}fdZ#t!vHwW*$$28HnjpC~>e_+wQdxKS$kaHsE);hGTX z22*SSR5H-Pj^tug8uC4tgA?cdbl2XcRoBrFzTr+Jf!zNKk39L^D^24YufaOd+4eZv zb9HU!^;{=!R;1x>p)Z;Z#Sf#7oI*c`1^cvlIyGC9w6p~R0k@ilVDv7a zlrM9yEb%)L`JgFAKm4C@7_5t5ovF(eM-9Ybk2WtNTCO2}9$l`pMT6UB199*N5u__+ z{C`7_ho=~^-S^N)70>9)cB-o82hGNJ=$>t2hs`l>I2YIe%ugZjOYl{VrUNfd<{n07 zq&r6Q!@*L`-YQz1_>Kvl!wd!qbAl$!T3zx8OE1-DEA$j>NHmMU#r!j7(l29Q=};+~=& z7hu?&4~kU>rnlEl^FBRkemxh?Zpb4h+H#*z#@lK6Hn!EMJsp-rJ%ZW-=NpIAAuaMP zSyayoITFnA8&(Eq{wVZDasMVc1dJEzD4}VeP(hEuFtMPDAEQzn^#ndg0q3pp1zjrFypb&@a;Q|J{!3@UteQS{AQ>tgNtkX z9u(H|g{;=*t08dJcR8MlfVhm6Wf)kow8h2*)GwER^TSVl)I+s?ZqPjbBH2K-Corw@ zy`DQJ;-R@ES*x zrQX0%zA{%!Aatl@I@y|eWDgPsyAf4Z^I!BJaejGlpv@5T4Nx&YSBYjXB`}p`+7?}c zPN`OlfHwH7^7&KcDUb7~HX%=51XB;43R>NKO^3#11g*K~uY^mm!R8QL_7a7StFD$3 zWPIb7MiPFTQNQQEA2?G#3%2?WnAE=b0%MUcx;u|>bc=r(A}boh#n89Q^qVvIQmXf? z`>jXgkqW{o8>&NaR~W(x)CV@;kWS~!qCNG>C_=H8z3*#9!+co91oJtF)x_w#2N9BZ zf=g6X9AS7IbrYB?Wbs|5&QuD_m+^i7dYdu_c23opWFT4@l%=7yWj^I$wwMY~0+05O zK9Te!@h9=Iv-sZ{P3TQvI9doSvhL*wl!v%_I%Lj#zZwozB97;mRvN{w`8^NPJRZ4? z4{(hyu1bG&iVWUQZm?p?` zE}JHRCi12G)!=kJ3{)Rr)Gx6owh6u3;RuB~5$VU8h{L*7^Aggp??wCjTTO=_R$urn z<1nJFrp-OkK8c}&#OR>kavyhxI6+7R4GBX+p1PM^nnOe-Aa+%^my4tT=qFhjrCwf< zd~3w(_~!X>q-6E3fSQoiLd=h7N6beuT_X1>S$rZzP~w5pu(V zEH)xHnf>xNvDnt*v6AdpVC062Fz=s7>6Io+xIrE&Q-6H-0BKK>CQgpyNj>o$O4rh5 z5cB2C_GTMKa|k~|AH^GDGj`SGK*=fiWJrA|b^-n7-?`2Mr#Cu?jjHf^QVT(++_kv6CW$p)j_0;Oc=RK)G+V{7 zjV(~@u*GBk?()56^VOKh8@;(DP`%Cd7vn1SRdY*Uy39~nIG+^uWw;g}{|9Xt$M{Zw zLl=|TrDL!+#Dy;sfD}AyBYFX*P&}c7)Tfo0Jd3;H!nvd23ol-h}fr3i0y@7gSTh2)paJ z|3;4TT=~;Dq>Q-RI2$mydT-K<-E>iDU?5{_Z8CTVwC^jl6*U-6P$27v{3XmRT1%f) zt=F1-UB8_TD4e?VGkG^OnFqLXw0C?|kc3LV`1QA-KSJZ!L8||Uk^cc@K$-k!eb(jr zxkfP}8{)1whq!>;HMw-7c!EQncss<#H+4aIW#pa4U2%DwnNEUoos{WE(>wcyE~p~! zBj9_Qh4j!>8b9AGZl+#j?_aj1S+!+m<@!F%OFAB+6K3LM?c(DFzdi#tKM~f(CS%3W zaMTP1rQAUh2&szcP(gm!0!fbI_}MQdHna^hiri)51V}0*4u#n4YB4JTzA2Hsv|xgJ zB(dcmD}q=x8p54c$Twi9Y9yhR5TM`fE&vZUFoROsqs-F+3najb9IcY0S}8mHM(YkH z6Ef}JEF#q(gkb86Cob%Y3G0p#?udrzV%gcG=m+KH{BDLj6vMiwz`JhAb=Cj*OhLFY zb0OqR)_Rn>YM5uGn61ptPCc7u-d4Iiq*0Vvgr|W=ac;yMJ>$GJ^en|(ANP220WQX? z1JV@8f|=w7FIwVs0luRmdj5NMBQ%O~+;LEsBY3g8C9(H=r^d)5>3W!>4A3S9LmijW zYaY3R*Q9H+st@dUzC11x5I6L8QM9Z3xAvnyJoe;JogKzf7x(BD6Mi0YiYH00f73IJcw$hl`U3-}nuZLGT2Jb>mf{{7O zpb3b~-Peio>D@ZVqh;>(@Ym@OtY6A#+@ex7Kpz@x?{UbvxB8Y^b2L|>0+)n&4`L*> zINi(|eC0MZU3zCD+WLKU-b)mGo7$*X%55qzVv+2HgXOj)bvx;;=g_rY899|?VUtgL z`c{PFl#=?tO{cyjRZ(%-nz6fG??Rj{Gk7*@RYy6PHv?Vo>H$ICDU9tY1RILCM7elh zw>H*IT`1L46y~v5Ok}Nafb^?_@76zJ>1%QE;Ij;q@=Kw2R|7aNbWc2A?`N}{>^Dvg zDgxT)dl4C)ddxGH10Suw<4eL_-0t{)x6OI9Sdo3mYHab>Fn?+TPG&c9h|CUYw$b3{0qi^Up>tyS@QhIVm!d2Kh8y(L18JfhKgw!#k(^i&Ts*iE2VWi+104 zZ}55J!vxwV2YgLqyBzEPMND~4rN(1mPUv&|`nA6>r$aveBstMdvG<3G6eaAKenuO@ zajmd&6uPcC4KQW}+oel&T!+>n%e3N_@i#5c*@8MkE5av}LVFi(h`P=%$`7I%+{hx8 zVkGbu#)&YT>{$9b`^xP;#XpANrl@0K804S0Tt@{ z$A)`E?q=djJKPbuQZ(P0*swQ05eNoJZSU*2&lzGgR^W*Nx+1B^iQ}dQ*Gnyohf(sI zPR+vCg2of}5^Z=6DS?TQZYJ?;_FMxB(pVY)eqG!-jYcp(T|^ivBIf{{-VzV1o-nni zQ-mHxkrFPJo^*t8uIu97g&$jP>^owVYO^o(Ob4|wGa>UowpO;LN&9~LRs(J~7b30EJ9?6^_LKe=2z?BL@ogq}#}-hrY`)D9v&}&&uTB>!Zt?inNgay+ z&@7gAgjN|wMuff_Rmm*b*s_FY$F57i!Vd{xz0+Y37IdTiwoWV{q$sPtdQOMfFiZB# zWNKkBk&jFAFqK2atsYP1gV25i_$5QJo3S1ZUuoO)%v1t%7UMvcO7QLKR>AQk@x_>JZ5sCWB(cyn zRO6&JVA6=g3|X*|dA4S;P$TM*Rc|I{QJi<|iva7U;HOz}L3`>q?vkl9je??VloG&& z&d=q2rG3@IUh|P@FwvD&OyDz+rN0$&rlqnXnPz@4>1tZs`QwfsN zvEAC1zoRMv4g9YTOBY>kh>*ZbS$&ZcXN8Yk`kkx&{pn!&cxm!|!;3*|wmFSRzb0uA@ zZ^KF9{SX7AV7)8;FIeI$+CAEk->~~O56MvAQDM9s;}k`>-{YdWM*@hF$Tkv9^baAX z^3lSym~EgPb>RVTw7NHekx(LR5(7z6VWszla3B*504}^N8@rHf`Pu-{*gw) z=xfmTWmrt$IW)L)5c_=m$K%?_BKa9s%uyA-R|o)eU*6fbyBSw!Plwx#H37oXbcU}( z?RW75?@(SRDL-Rl|Fw%=s0#wWXfJy$@xdR>gI^gv-EBvZ5jx%iLSF_FJatCFQ0zl1 z*3hmj@aoLk&f4PYCl7<-yx;F`#_31dC7(Kl4$8vY>Gl|0o@Nn0;Ke{-{WL2H%cyF) z55SAHF`DA!hoI{7d=vcF@W8aVzvuO#9fP;4B=HUpn_s z?exq}c;5P`Y^8>9q2nt3wrcm7qAe!7PFt=T}<28d8U_bYR!&-bcQmKZCV+M#ok zIco)zFkY8xt0v{RnTeQAJ3OGt!=c#L5NLI*i6vS`_5@L89PSIcUai){chJt4u7!hO z!djNcsIE%7GgYd?av(WxhqRRQ<&Ov18heySJ9hHVr(H#STZ$)22}_i9NtxyBBtoK5 z{>%YQoA238P3HY-&&V64f0jCH%Qr6tj}9e&80yPAnm|r)W9afTG2gL53`cvp0nDn& zK|Gon`!}hrJ-y5XN{$Yu_vO9++U^3IDrRmHXIPqYVfI&Oq%Bnr*0MJ`)fZaN(np`! zWv1_o^owW#9zhA#y-?*cFi2mwa{$zVgRCrnM`9Zbe(C(RojaQSg;BMkr zFP6e*B4uFMauIB%;BA4$2ZMN24`ffAAGl1wK{PuQbLs1Le@=COShuIY;|E#)`-D;I zwETa0u3i|^W<}_MBJ29%@^ATM&mg*vs@%$2@ps&HepPtUG42hsZ`BvVZ4dc+tEhy; zb7#&WbnMH>+1-PnC!N{{;*hr+=+vIgnmj`o^>U?gXd(c7-RGr*5d=CX!tQvt}O?YONBEpF) z{{B}@*-witw6JBwwI3^CLHgE`LAODqGWX{rxhCt}GpE)#L5oBH6c8oeL9Q0|n3g6t3%p zn;moOmNwe4jx!w&ciwSI9~52Bvww(WpCBO@6uSWB0^%+=Df-LqRT2+b?{6c5MgzWB zb|DNK#=rPRpVV2*B*t3uO)FrR-JoV-qMn5%TOkF@tPs#mSs;9O8^-0BzIXScfqss3 z#SA7Fr=yDlQB?K?4(q?@bbG1w1->g)I|k#^Uq5aNKieG$JR z0KWv1gWm^2Sfx$4Fv98hdudf!MW)XXT0y%iqaw3xirvk#D)~KxDsR-h0SKhUC-kG- zqbf4;MzQfSoN@W~`5DF)669{Wd0KhUlvm~8PWQeH`iNZg|NPN{mihb7a$KIDlTupW zCaD6x^m(be!3jlLwV4iQ8cw?2jq~4E_iZ3r!k%PEaT$sEk+(&W>+f99t$p81G;W<_ zBZ~{1eB<1aRheJ#k@mjr#g4epX6Ld93)54Pde8*1xgiL zwS`_hFP-W%Wf-{fl6F$Y?wO{T1YZD0<_VOroOE=@an?6iBbOM9r;o9B@RYk0?^h3P zNqqK{1^AbCngA~R;S;p3Lgb>-=?I4I0k5*3(l~9&O5V*j7n-NP&O;v@5X!3IGb;A4 zHaVM^e0n98h3EfA#RYwGtY^Ewbqch!*DQ`i|2QnSr^6HYaUS{y!Fh}t5Sa~fCkXzj zaq?JLAp!x!&}NXAQPPaz(eBx$d&V>gr%b3OZvDxp#-_PpXmT{@lkpI3%y*^Z|KJyU z5ti;Iv#^zds&1nhPMAv=okgF^ovopPEk>wFfV%-2-!gN494g5B7h6*4{h&^7zG$Fs z1oxVOz0c>d645%1>wYiyy?vHx zhFGhmPY>^h_sd>AmR>#5C?Q{oAb%^E^PuT5LfavRbccPW@7Ud&J}Ji~hb`Fj zLho{-c()z;FdXWN5*9=e{@e@dEY5wm?Gt1{%}T4yclC;{*MwOB+EY%1CS23wUZdjG zw`9;4e~@c<17C=WTjqQDZ8AH2g|_`ZVu8`7UF?-pa-au?w^iq8`#Gj6K}|V1vu#Cd z74}c4G@&Z_z8Ha7I>SjnodhK>76=7I_fXtH6s$|o1x0`GGLQ2a;ZJA%bZ4_Nz8OwuX&JKFNE2fTOtFlfa z67iS;>pd&2ZESZ#jXCA04xjWdltdGQX;49jRDy$3@D@C5O*_Be8IKB)G8D(8krWPf zgpTzJ2ijp;6r2FOCqDf@c4^)SP1k%^b=YiP6;BG@0&r$P%Mm>D%%8JI3GNByw}AJr zA-BfUKink{_-iRj>%os9KZ|A1dFN8aa@{h2?{Nl8Qp~gu^p3-tXgLlsCY};6dw08g za&eo*nYM8>T+dckFXTs*XC&brieFgJ%&+v6TP0!FfpPnhp!j&rTv%{-~I;}Y6 zwS9A>%YDWHy}ygoHTQ^y2$?tHCMK7{+G&vRcK>wa{#~_{76PGP?pe1i;JL|c!NNoi z+u5+2^uurJEkeU!kDi9fTH#^u29ld0bY!g5Jr8`{TdP z?R!D<5j&#KFc;1CeHwMxO_>%8zTTzL=x_HjI-_b<~m-O&YZQbv`^2hHLV+5oL;9!tE`$J%&gg3rHWo_CTKo=euz zgO_EI+vDlt_xd`ys#q;xt#CHxN@ue_tWdIxjYXn*5?7f@Cv+*aQfA+Uo_W80%(gmt zzWGHB_`IblN$v$!Yd|v6e`+u2BRpTED)WAI8!ai8_N3KTLnx+GAS)SuVpV4yN34g& z%*ow1j(AL&-93u_n$d_)1{dbIqTDeK;)N)c**UO9M`xT3rpby;s7_poh^TfNcsq6^ zm5|3xR8I4qO|2?7)TZd%$UY1mAH#0Tx+~0KpOl!pRmoI;(EoR&E!kTXB=@y_5|{ z;_xdc7TmQJ0ff&_-4K2d6UGwt`S}Ndk1<3D1?06rY!vqjnSzBa*W^PywL?7tB45vl zkv?d#ul1-O4y7hmJ-56ex3$1t+~^?&RzZTW(6e#Yvk7r_q2<7%;15(a3)~rvU`ZV9 zOc(tW^J?v1v{vGHbyKfDmg41YH=|st-2M(}fZe=CbN5H`j>qukkJTo?`GrOBG`rCv|Lz}bWX1!sM-O;B&%w7gI6m$J(!u5oKEiRQH|uARwT5uJk#b00#LdE5{vq`CxdpmgZ3)d_)k z%C7@7#Uo<`wNDR&!8-59;ProtV(6=Kwo*GLYfEoF&M9r^Vd^HyD)9P07 zo^4G2$0A`$*Q*qJdyx!KG7c`>^ih}%(qY|^wz^=ACXiZ$1ds=E`jl*xm+ z$mc?HTw3=etH>{k-sNT`(YvWOuqyH1{c1AlpaeB=%U)x-fx9LPx2XjA&3u0)==qc) zD!go@f^R;v)cpj}LKSPxlVZGXX~jU1%@utz!Jmtg+t&%ad^P~Ykd9*TM(uU1@kv;*m+xEX*iT3Ek z-ki@Cj4DTQDq}v)3h@JW?St>D{wEYvHZ&93@SjK~d@CTs^nVA~6hxXo_UGTLi`IWr z;_2^-n^7t7N+z5K9Eqf8$E6{oKNn@RQh`hd<{lskJi<_HL{rDj1d$6zJ8`R-h%66<7W(P|iuyowUF~o`;QK!bxc2 z$AtlAQZ{UfkKTw?b7YDqXv2e7LG)Y1M1C{Dyz~-;`~4^`hA_)DD5*8Oq)*ClSDZ+m z**~oz5c{mYoINEPZ4N;=U~Dmw#tTX2Y!>!z4nS_c7#oC=7-YDs`eH?U5=Q+*i~5Nb z<8u<`brS7eP`KutdvAOXIz%%ruyTnp3N{NgLlu>~aIzb|g+cdXMU}AkaJ^O3Asi>u z+)g>EqzfIGXD;gVhsnO_CV6i(k8BjD+cLuF)@RB;hxA7@2Ok|2^BF1$`Fgz3Jpzt2Ll2?LM(ogF0f7@TQQZv9vMqFMuu&b)iokgs2@qL9@DFi@C4bkh!V9EzlD)|5Ra*qVP=-W z$a1Dfo8xg7Y2}VI$tx*2*j*T7r~zYqaFZ1r{b%s}rkl=s?B55Dcb@@u82xBV4mGBpN`mhQOm;`Eqyp6>}lwB@R-Qz{RK-jobHr-n0P6lrs z*OUoL>o)6LoPm5>L&;l;OPY$sK$ZJNDb;&^R?iKeMyI)ysi%R6k8 zO;<*0_8T_T8^@z-L#DD@pyTK^WIei}!d}4?<5iS`qiL$V29bzo2nqB|`bUeG z3rB;YcDfQJoa1Ns?_JxAc*==}7>2}H{Yw1J%C8?+Z%OBjj}DM!6hO@;Cx{^bU%GL7 zW&0}2vyJFEyB3eav@3~#xz!C`9enV#RT?6ByjMgA0#j?1;oa`QIQ{k)O>WV6c2Yfa z=`t+pk`vyDMKwNejXvEX%QrY)fn$D$v;y1jEkWPdWu_6g^@e_(D2I;UQeKR5FaNZT zgi3vni35lYHkDa1Wud8v%iRqtg2+*Y0D(aj$Lpm)@MVk@Hqeor`M|(G4RA=;R*>jr z+IAvA7&aJROlMHMU~QN_O0a#^BDkw0GyQQENRe;-`yrl`SsZ^rvC_Oz6S>DB0GY7g z4th~!K5U5Qxo`qdN^4L?9jPz5Ai=Uf_F}yVU;vi0Rj93d=q)YG8+FVbIuQ24o_N8Y zcw-=&&V#h7?DyQPGGY`zhatD$Jo`|ONfkrk^=HOZUUYr;zdHq2{<*N^o3YH#5NXGm zRA=_s@Dm(8J3bHAt01f~i~LUEIk`EPbNjoYb?8%`*%5grFOuC__c2oG#G1&{vPd$g z2~b4AXrIJ{w-4e>Oq(_DPn@D7k5sm^K5$T&K$@!OnFp8XZb=dPM?!3T6?4{<=%%o! zsuzD$Z}3X9&0@^Tm+2MLH9=r1 zx3^0B!YanAm@xG_N$1-(V>Z`toV^qD7GSZ2<*fOq?>pjUQA8Kbo_vCOzS=dZs*n7@ zx}nt2h`o)Ix`h5exI-W7_gfq`hR(o0*iJGOJjS|5s{s$cKfrZD*zX+kFHx$yKex4* zR(7?&o8k0UB3)Suzqq;Nr7?e)#T<|td(!n?wRjw8e1C4C%uCu{{2OI?C@$Ylg#w`R zbCJT^>y@p-!FFwpjC$NLk?LCJNi^hlq>rxH3JXTL)S^Oa(!RD)w}3~viW z!~2Y3F0EY+-He@@h;#efD?)s8A%VmC%#EuY@1ekJoE~Zx#Lm%p-V{~0Ml1I4oQbAc zl;>n!JYD&|=XvG+*R`8a3Y@Cshx_Zi6>^%zH1h-By0GAYeeT=uYNLvaL;~&id*5g8 zJgwCQIBKSpJf~Q1Obwg(+O>U?SMb&S0LT5q_u=<=d5_RV_xn(+7~42JW`Mw=v{;-| zg-kNFtKU#IoMbR4rTS!uy{v>fhG`!S4I{-RtNi1ohWR)s)>+V51#)n!(n5 zPY<%rnss71YmPoIVWLLvR+N=Z7ntwu4LH~R|E*b2h6&K*_4$x3CO3*G$toU;B#0t_ zeI%){kM2JgZGAAg0}xCHxs{hgl^J0z>oFyS;%9?`mRuAES{aQDQfh}`)4sGE(o5A@ z>Ivz?bxnO4p%=X%m4`Pzs)zn$EwtV8)vQt?FvEKd87M^3NhdZb%!eQN1?{B< zB~&UY{H5D0JfC(hjP%aHdoqKaG90sexPJJD>=DIm*156p2nZI@1`sp?*#U>`n?~B6OL9(wo02+1K;ob{(n(p! zz`BgV{tr{$8l0cgD=^*pfKriL7V8ni^ObeMjRk*=M;<2$Vn{jy`3)@7(u9aF}UY0($;1)n6Lw z56pEpwFLH@a0C}jC*TlPpHIvKpA3H`J}dg}s#>$U`~BsZOV#Ea_K~sRHAnKxnWDiL zA4-}UHZHJ@1lw$^$3GHY)5ObEF9?i}h=#eIQ~z9}sbgtB=OAF*vTY9X09Td;rNLi* z&d{m-!Jv`ItBZu-QuIwpK_3YgLsCe$XBH^(7`D- z>0@E_?N+<%5R)5(1beF#6Kj3`x9#uimTZ8aqwr6so?=H@VsGBA0r&P-{Gbyi9);nM zn%%rj)+W;Ko{V=Y?r)6T^W~aNe_H;}j(mUl{qt?An~+d1dP3WzX)Ho++gv{X2s<3a5_(JH7caG-FV_!t=nw^qAk1Dw zlXARaME3MWyJkfGh=%)gfjv=Y-%&@rBE`Iy#l3-XSi2R*jCQdM<}%fUaRY?WG_Y~?c4*{925e@=@+lrujCebp z$X6K}NIMKCFwROmCf$LS)>OKdD)Po{+;q8XPFYt)vG#mJe+wr?>F)fTDORXPsJ|Q> zW*HS3xzs}=b*z7YkF+?x-h&|grlmYRK_IyTf~5(&N-rlu^2Z;qP|E}+Tnd`Q8W6c7TANV|@+w#Ymd$7x?$I<_M$&{fCF|m5LJ9&38qI8P!d!kav#t0Q`Ib3$@&LHam&(cA>6crwD7K?Yz1e?R< ztbC|-v+4mNkBf;fDV#kWFzi;bFgSdvXwWg{k<9K=csK}=tz1o=i8Jg{57yB9ors%V*1% zZ6TsX?&CB-I~IW*pjY^u$sg%0Mnq%YiD%hO%RqT_FvPRI`#1X%T%J7oXUeyZz(;lY zg~sHBdi=-H84*IP_Sj|TKlb^k8?6o{)sS0-`rXHWYfZ)xKb0;rVNpil;1Ajf(uKqy ztK4r+dQxF@XT~yp9?)fHm3eRQ)Nm=8hkKcp8JF&WS|F9V3jcH=l>H907hRKd@@Hpk z1(&uA`DJ*w);r*Hxii+4MdNVcYh3sLT|b=4x_3pdt*oJzJUptA3Z?=vg2$R;%AG|(X)e-&#R#g5)037Z$GKpvR4@!6nP zo=0rCg!im>eTJ88kV{y9<{)L@LGq2 zc$iXV>P4=v{~uH5*q#Z1H0#*T#Gcr;ZB1<3cAnTaCpIUxZQHiZH+%Mc*gw%%b@g4< zw~biuEI{{kpkGAbUwps;8zo<9sd?}s-Qf9lpO^v*~5-*&o~k)8^z zk>+Xai6u_x0Ag7De_#OeXdnK?pUeelH>D0tO?leX*-=F?e8EqA@b<#Q8x?r_jn;B_ z1?E~n(~jcNXR*eB%^U}nDJG;#Zlu2(+ni`z;Z{JRbEy$b;wEbzC)7H}(59~)@0w%8 z@Gha#*P<277ZyJx=CbGnx8@iv>m?+rYcw@3nfV$rKCikB9)gFKtaok!O@P^0+>cBB zHv1--@0m!9OWYE*tJCu+nv#n|r)w&)?yxuRJem=_EzWj?qKHYKnlY02V0bUd}r%QFUt^{Y{+r3QXniYFFFrONr04U zz7%?k?v9=Xx29oJ!IlN)76n$AA!Jh!T5wN~-8AU|Ts!^|tI&)p$16*JCl#(N)^XAy zn3`K*<}`VlYL5>qNn&j7ixK>+83^$OF)C(Rdc+Mt+s7StiG%n~N6to*3bRdfsaa)( z+j8Vwsc4fx^K@T4237lwp*mY4mM99JmBQmN6vy z3$&MmS5@Z4)e6{50|?lL;J)nb7VX!cvVyGRr$0;QN9K^~%Q0@@{{{&FdUahtYsgt= zXg_tc%AG}>X-Fx4&snZq8Gx|jk9%)U{A#yTTHZb6O&{BDhe*)$&uRvd0-6gH*)_kp ziTT1$^;DB$caWO&-{woJ`S4incm+DSW9;gCDk<*aRC;-1p|x$2`Q-!$geeDkA#XIe zOd?!=O|znuVp2Vj(qoi-@qTAH8^{%x&YbiL0WYDCTwuV|2gqUW1@X{(5Upm#Xf!sPc%}sVvH#4#eHh5n1Oqu4RKKvO5m!hxrh` zA7~&Kwp{N{_YP1!Vj6>eNWQS2F2q{dQFw)BjVDSShlo^d0XZ-aNKdb zQpZ8=a+exlXoh}~!x#DfJ9jDR@)4^BovzH@ak}{#cjyGed<}d#@}FyxU}f9JEc1O< z_21kUJ%iO6{7RQ6O1GPzb&d^aW`xfUcfhhHqNQ2oLH36~Bw6JJzOD{vrQYG2L0*3S zK!>pkpz54Rl1W%lGDdT!d)GYUMVv!Yfnc(LRBV|#-b$)#;^>3UxQWU7CzVRaM4}MG zJ_YXGHe{C09}ln3(uw)=pQ3FH-4?oa{r3`5Hhai?Ox!{{&li49_f(uU18Ju9EFM-p zXc4X3Lv>IlU~c*yog35fvZEra|p{TDx^>Gvyn)0(ZS8v z4ucHqWJVn*ZdqePuJ3Y`sp&!C>!09yk71;hD3-<^_|JrvbXXTr1U}L!J|FeTxZho> zS+he3bPkU6CZwtf1y0BY*{jiunBA6UN_ZRE!B7{hhc#1lwvSOfC+W>d0bY^Z&*-lB zblP4Ffcp8o(Jt18zE4z;OO~2WcoSyqMV{Iy09G934s0FW1Hx3F3!d{-*6Y-FWBo7B zHO` za}ZcxtPGzFa$1n3#ie}?9penD{1Nj9tF3Setw+-eo$4Cgn)Bff>11Vq(0^-;2`v~^ z*S!%#;R(7Orh1}!xfE2{GM5r=u=*=I(54mv8WH9hg3)qAVam8e zyJd^TpSGq_%-W{hs>?Khk{T(Jwc?UyP$RNS65@9pJgy2Mq1(35z&q}NBC@?YNMi{n zh2NN36@2MF)xo;Rz&gjy4hm4h>Cf@19So@a=e$i|+=qC-YiAg5hmvQ!qlOHHq^2kO zd#j`e05`w`N%;tJLj`jiNdF|xKT%;`sxo;$U%8`p+tUouhsq8>fjX6CsIe4Ry5e+- z$!-9%J?p6mf!_Nqj&VeAlC@pIw9_V-?$Fd`Qf5&YfUI>|xa<>TNeXtr?I3m&Aq0u_ ztfWkGIA#a`-9&>~GWU2NpOYPg_IS2)8ow{6MN2J_^0m~;4|?fBddM)nkeUoXb0$cw6Y^VZFXKeQQNv!iIfZYJZfi_xk5 z>5IJOlL7+}KRF44PE;UYk~b1hxxjU|JYUXJy9v5dH$0C9h0-k|sNNI94xVNkL{|W( zTUp3XQsmgFJr9HT>X-}Dk2NM<@E6A*>|(?8D|LTte=(_TF_XmBII=8;|8W{Db9vbL zoSQ3x5lk7r(O}eAOt8-vrx+NTZvV zTr>uZSP#8F&4E6jk*~cvoF0p$W-ac7_%^&dyDuFbnylm9*@2YHA(eg=8~hImcD9`v zvqi9lr$tcg@ne3QQrto3*TD~`6@-_BosBCGLMSl_|M7oe7Djv6ThwuXrBPuMRGs{D zm`Jh+r?D!UOUDfUbHT<#^9cf!j?|~Z8#I1m>X2(R2 zH}cX93mI_cKnziCY9pj|E=LOxOsEnUd@L{OaiG0x!F5-IC;|@L&jkXwXU4c^LZans zQVY2K|!Wn0~#& zzF_))aH8CDLAc{V`ccydC`*0F zRTY*vghoc7h;??H?5MHSOfE7l-{2{|{E5m!rA<%wL^G^ohV%fYPPSzyZjHZgE~>*? z2vwK!OsEatFfrOI`nH!8m%uwX%MBxmJID$Ulsv|@k4*4=!s#)IO9gT9iCeTyVTL8{ zT!V&xEgE&t)SaO(VkF=~F@zra7Hs(WE@#nso)AuU?BMCxbUc_JA3avDF4hL925>&W z$@_+E{nA~EYZ$uwC&*E7J5~t z`~2%$bz5+^@H^ohXN*#WpI>Vk-XAAEwNc@4%ICU4;VcI~=C6#pHUVQX{LHxhntmdX z_cW#nNo9jhw2QSx3|=DjzDjkNs-Nbqkfd_Z>{xPe@@-$y&e7&V zOX4_9T)PBhyFpjb^n|2xx!bA6Oo=Q_h$_dtAIrOwV{nX@M5QNB4TXXq%GYezrjQ*t zf>hV&dfdK*Hu>e7uwVL7ShLb}rxJJ}*OvVLf*(h(1)gxh{GK zL>73$m+iOTY!&Ewc##ZM>qcm&5a~GDX=Ps9+bZDeYXUl#>LD za`&uK+}{qz79XU=<`Fb2M=-_a8*&Yn>6EKzH>sy{1_8ww6)!CxH0`)>F?+hyGDoB&v9LSE-v=emq9a}>!o2B)ex zSO|y(%en&<2+{7|FNd`RX@cA41bi$B$u5V5^9VcfwR3CSV{3^UI217|0{b7|8s=`S@PQKmI)jNy}X$#x6B| zUna@R4>3AUaUe^&Pp)@yZ@-{+RoG6~pj*x{x=MZAF+Ira+j<<0CinOBm`4-9QwQmD zFOBz@j&LXAWdbWUA9HxjP0`6e7w#)>73B46HS_MWBNJKS)e?RTAdt9JB4-tX19Q=V zqd$}@kENoX${KEvVNxoL8G?qv75~?XZxxm189Kr+gQ%L!aarWeC8acWWCgi)Sv|p} z`lk5r+e-F|IPz3nGPCv)wsZr4Qr{V=><2Cb5%(4!1tM~j@4Ff@XMgSBrL>8o>7X;w zLv;{`%0K}F{GDv2G?`>b6NX!&5#|zAxQ6kl|5*@{bTD-==4_HK+KviV!^dn9M<2zh zaU}R?3*!(RXL6}p=Vn_@_dEd3E;UwHqleUqcWI_ARv*W8l}@&&NreE@EIXXOs+lcX zg5vTc^JQjDGvP6a4X0uh9HzM4qO==ZTl4gSx)sHY@R{a_kE41VPcR~6Gqis>R*BQF zYZQ6666wJQTJ$kC1MSPGLT|F9yvp6UULFi$^FuIcyXhgK@kU=osZ*KnwQst+!Eyma z7*N=bk{Yr$e{V;v{Ja3cy$il1K5V@k z(53`sy7VPxve;97K<0=6D9g5Oz8U#y0rKh6QHK4^-J@ll$sfG+z9_7l78VS%Q)93s zm;h{vUD#RHqJuOxhdt8_6M8PQ-na!J*v%-qi)2!`x#&-l{uY2;ude5$@~yp-x)IT> z5F)X;IuaX>hU&=k)IgZjZAc5fj^+laE7jXuW4MLmec-2-8ZB|hG_-AwzNP+~tFLuE zLmy)A)zM3{f%niKFZ94Wt&{k3jmy-)doKrDbh(?Yn>o*n!~E=)1k}ylF+YMjcx-JE81Yd$}??>O?-QACe(VIB*RZaY0|E&xFlz6^wMtb$b)}z$?!CZci z`s9(_0xPYSUZF%7vrL-;SzhkdCJT@7<}ghrP6LJp1kBeS9l z%trm9&!$7rZ>$FyqseTSNhIUS9WJXx4lu^7$R;XN6O1YvUs~zYL3WF#!~&5NAOCU* zGVh%5A5+9gTk38q!6H+~&_Id~uwRSeJ01ARTFu~!EZ|o*qFEMMHs%sZT@DG2_7E;2 zpu|W4kQ7!eFc7?Xss;QiVOGJ}1tzU>C4c^81aef1;id{3D2>QaLf)xz)$VLz5dPE( zAUX5t#P=g)rD6?fq$K)*B@BMF@Rc?vM_JOZ}-SFg~DX3~Q$BvB6kN)Sqal z*~!B>^pCk)!TCP>ee)aa%&?x`$md+}V@bdra2D83mAA}9krI>u;$@SUEsv_b4b#&8 zf#FFaw%8Yo^aVWl8aVS%W*Ak9*+)5^b-3^y^!z5V?H6a3#XRV13-^zCfw*HFuj6MX zIR0>OJ44vs?l~M&0e9!aCncEpmj^x4F<-O~H&kXhMIB9!))MiZ^67zY^rIcsh+R~G z-OAcQ`G*4^XsZ}H9b>8Mb4j&@A86Grh3smG%FH~Uw#hu6Zaw**?b&Fg^C_D=gKTn@ zG^Sfa(hn`}!gw4K*W81y1{9$i0LRmURqh-@r&}zX9a8+_d(Yy6GuIhuu9@`O{M)%Y zhtru#iCsGM{5CJ!xSN`j)~F+nPYen$GMgymgu`5yf~QIKgo`T9Ld-+Wh#$>h^slol z3Tf5<_Cl!bXth2p8+Q62gEGF;LjQMOOg~Ig>ItJ zMA}ZPRkvBEl|nl%1((ZH6Om->Cf{DN-hBL|rS?)&Un{4Q&81SJ0KOFKmD6c77KM*X zOy0^#IQi_Swh=EdW*1jw3ll5+a(Z!OF#Ur6yka^QUcJ+&Vscelc}BZ$-K{qkBJr4R zvpcjWhDU4`kJ9w_5BomGrgRtp^CnEItUfA&3R`>eHZ(Y$NTUlXwmK;Q_9M(i<*0<( z4ql`I!9C|?gvXJS%t=?n(!@*;o9lIO$j%OKDhkO2U2~#T&6-zm$SeAnxMIVN61yb? ze{FXA2FHf{44rvJYNN^ihIXV`fPaSNqXdHiDTLc*5z2f54S;c8VRsCW8Ef^^$-kRK zV@9OFM=aCX>F(P(<6UN23yK5JqlM!auFr=)5rHctG_4!f|EAN7U7$LQ7o!P2xh+llRMWEf~ zbQl6%HOY_8rnKPXVr~QA69o9|Im2)fqGGc-=NtIA-)>yAy3y%;9u#E85Da}YDSQrl zfyY%btvtz7oimE#<-XmS--o#5$gv*!Se@fYv+-Kl#jAARV)#*gegi4^)G8uIxqbTY z>)MYHh2rMEC0I(REC<9>=!UWj_RB)u@{leBJ++P*Y9l<<8G-|t2W~u=-eu{(E&jM8 zayf^itVQo>Ic(@Q*vDhn$-rU_I{8mSgV+u7I{Qy_ot*NEo4Vv;F@}blVfw1|n`0rV zUl2*5Dtpha+hvXL9pZZ~ZhIwT*GU{^KS6iU6b7Oy%QFceG{*O6loErzL(O(w0MlhC z=F++Vk<4!@2KWH{5$M0*AnQSgzC8fHIrT;^d`v1U%CG-Ias9lc2G6dnqKb!rsXh zfWEgPg+Y_)i3RPpDul*1Nfr{dIm~sU#d#4QuimF|cMFqU^qVxEqC~?mVZM zJD;!Ut52(K{H#hGNHl$mB5A()i6UT-7dv>{s^=O z;v)2{au5JjnS%;uULAH=HC_R8evnUtJE*oVYtp|x)P}uL5V|jxU>{kDbh6;6-M-0_ zokW(LNZl{yt2}fVuY_MP3wHLUIK2=fh|hcCJIkH441uY*4(?1Z#^x7v~5=E*vIfV*qX9AoF+&E2i{paAZBN zt~WR8Ur>T_l%uZBouW%NFy87#G2?EMsUaW;3u9I`;_PAcs(4^q-TVA$O{>#@Tn6q^ zLE^3G>NHcW#sL9WGw#rb3Gh{)h!JsOpm^YS+VdjGgL&2pNwkmK^Kin1Q>!?p#`(9~ znU(l8o56#YsVNe3HDm_9K-7t4Hu&QSUupnKIQ?XxdO$pe6w{a6?KCklwfZ5aatuHX zE$r3Z?CikVwB@Jp>{&uPyomVkK0{H_G$=nZ{-fC7YV-E~IyUFB_grphi9L0BDKY7l zFWBf(cvF&eJ+>LQJNjECHv@5%D%j?`5F~(V4!E3tJTuZFR(gEd_S;XV#_~zwaa#D~ zn=#k28v)^JWUN!<|kir-6P?|6#`0cBbddhi^dKCY{&L8E2rKLq-c*?YM!wD;3q;`tm7 z&m*n&B|TVH!|XC)7?Ui|K|U-B4F>kny}R$a*l(VK(<}nlgF@4Z8uLlLZUivPdB6yq zlrLYM@Kq#SMmo=wa$O?q9rH|X1^#n05-ki(4UU76R64{lH9{HsTkU4C~Pn3}&*-hV}TJ8vYw#mnBfSiNmBLRhB`W@D_F; zn|^L*JDIOH<#fhcQ%~6wqQ@bOm{*Q^;qcGpKb0yldxaxj<7*$`}x*^ z&`CASnB9Ioz78FU$%}y~IfX&Mxfu>gs}Qj4dG4!mJ1DxAcMe_nzX5j6`=kVS<<3Vc zT;pn`M2k~vQf7~s@tc7tCqxmhrG}W)7h)ADNrO18vX?JV%zrkfB+_jN)Hs5DJ+Cq@ z6oj}%Y)yu;7y ze9f8pb`rXuS?M077yt!mWc-;+ELd4hG*cM`_Evd!$Wf&aEln3Kbe|H=1Lw%)%g!#< zXJWObH14*nA__;9O*c|iS$)qX%hQW7*m;hFRxDd~BahX4jV}?Ifz0qKK>o=>6F*B`F>yHc$lz1fI?9>)DkX?C9)Op3J25m?N%2*&G(5x|$q*%Od!2SAMW`Y8bxi{SO02~gvB|D7 zCCxdz5|f1^)SIwc@@#I+Zq;c=G<^|Ne@M=bhm&eNfP?t(Q*4|tFt{!1JB*5qRl3y- z3I6=K%+DgTuQ64TWmcY4FxXJ^W*w0C9#M-`$g#-iFa~60C!=NTGNEeg#ztwBWpdbH zYEhq^{uXiRFEVX${zZ*Na(*-b-if&w?Y~-o7sV(Tk4(mYO4@CJjTdckK5*uV6)svB zm9|W5H4~2RYQU{sfG9~5B{yv>YCOIt9TtJOTn&7D@e=<*54@;7qRMFfPM-Wo0a@Bb zQ@6dwTmrDP28dWJzwZGc&}cWev^qW3HLE?2u;9>6&1$}(6+Y)}@YVMm z>!C;saL4%1PJKM*S}wLGr}KG#Q}N*ZttV|y@8gYYuo+?va|gD z*G*cUJ$+20@($;z+xdkf99JqBAP!XdTi3I#{{2v^JNtRQ za<-q&{S`EqOX@(C+o}yYfv<2O039JO7^qDyezj-GO_;|NY6Hs=vqveCW$930x&m1D z8UW_516)E8a+=qduzx2QpvRifiZ29N>YDY-w|CtPWxDfXzh2C&YA#UqwDMkeOH{6l zS>y>Wo;l+9F`pFG_g{tf;3gA`K(YKYd6C?eEMIo<1xO{#n)+z2g^S@dq(i48WJZz8oKzkQ|e)4Bo&_)H^eLrCfB4TfvnW z#`q8KoNeC~OOKo7PG)j$;*BdQu7FycOyq8+$Bi9|qI`t@b}=FTu|GGT45U3;mriI4 zMkIt&$x+X9;;c7Cp*J15ccNd%XbF%E%*CTD%AGCAQH8_=q(Rhn$ULBga04k318~wy z)>1g7k{2o^6*~_4HOaX>D*S;>_ZH^HuE9b?PvN2p#KIMXEQieTDd9js>8PA#_Cry% zha7W-%Au_GjLD_J>Br#*!TD7plrr7H$5N%n1@(h%p6kL_-%&=qG?0CJ${vF$%@656 zzl$8U2PyXpiP?WRM3)ZLA4e6DUrh#DVjqjUgGI$`|&1$3wx zx1d|d@I|OJ&Ci&;g&&^e2Iw&<;Fu-nCAJA_0rvC;NC@^iSkQ`W#HK8^mQrUmh_zJW z^i#RqpAJhzX0fPtI7ehQ+G=aZ9W?cmCQk*71QxnFo`@IcRcyi*TvRf~j#Nw%yRq@5 z!OH8!PMiyl%abp$e zrAO^U2-KEhfeDXwXTUW_q^BK!lK zN9k_L8$0DP{FP&_5e-3y&y+Zs42&ImkWzX@&o9Q-zMq%n<@PaCi_Cu@I})vQSTEB` zlMjkr09VW7<0&V10OREy)38!Vx_a>9udm5-;jBF(*Dq%gS#F~0B^9mHd|Fo(%3VQu zH#a=~WPp>xrzfH^K-0nRO!{G~4!GxN`V8PF|1H=&p7-9NX3Mk~`E-`ibq;_k=U+NX zZ$&R;PbuAUJxo`-ofaXp+K$xt2PC;>UHsYkRt>sg+I$%gC?(UgtJk=HW-FZDg7Ea} z;_mF2wp={ECb-9v{T9G^zf?c{A~=0oN}$vQn=2vXo`GIxAW=ZwvT%3c7Hj95B4GkguFiS##$+Ey9~>o{8x5e-`A{7X18B& zdUJRG1E5y9lP58rr=Idp_8M8{niC0vz8h zW_>7XASmuvaudim7G2=uto`hXL&8N~DhttT0*e04~WUdPc$NEv)BFjdCAE<;%#Q)&XFJ z#y$T>eW67rFNU*a`DSR7+~eYPq1F)!OX3%gyj>7&%&L71c}gDHM=qw?q#gjhH`uDB2A< zAi2jAOduE0NnoC;r~G+O!L5KHr}QRgBur0Cf7@*S`lR-UzKCVo-5$vAR@enj_!J87 zCe5v!3*^qN3otsvHgn+?;f!CK^N&xD=V2D&5QiopmD1WU_6*C%Aj*ah!^tZTEzL+y zXd+8HhDu=%L$6GAWh)?_fYKnK^8Wchqi|YC=lTaR*WIY)#x!h2WX6?A-Z?k9Uox4t zrDbD3U`Gu~bn4IIIS;QggI@wmYuOQ{0YuscRAO|v)Yz@R`1iG53RissqSqj$T|fK1^0jlLnK7~4CY%a6xy-xDPbL_Z(!gU$wNk`rqYW#}KJyCXjqzzuiy7gIaGi@8usvvND z7Z~4PBWDpz-$Di@@bs93;tMS&0L$z}6}kvrmqj7nRA2(HR)ZFtigwOc*BG4DNF`^& ze)aB<)V6=jF~N-y*5I8oj2Ia`y}UK6hrWSyXC!ROEf~4S@wp>VyTb? zS(0(QS_?f!*$r?g*%*kq8M9Z~#MNecNMq0b+qib+fR-fyaxatw_X8z~tbGP6a-H3<7d4csT z_}#}kuZ*G17kpepao<*p%`CMl9Lt?uc0EX82DRbwTO2W&wdZ$6?%H5sidID`#HUhQ zEpmyWmDq>eLLTw@PJ&$80w8QQy@Sbb+}Fl@P(ZS7(2d2A_`PGluB*B5dRm)YAfC@xoZ)cz$z8YxorPPL+Da~62fcICN5tquHwI0hB?tNU71tN z(t6x4v!DC|GJ8t(3VSmie;Pnq;S&Q%nLScpi@z)@*4giDJio&02JqwD6y$n(K{r5H z%FrKGY^~K(S_0*I1DEq}9buK7E?-}ClU~wVR$t*D6I6m$<(}40$G3j1rmxr?&I8EG z^#EU%jbe~h|8S<=Lf340iRU5JWWD@zmcDMVTBz2TxA_PXeAu!P@E>+#UEV{hyPwYU zd0Bkqx)Ei(#+%um0c|FyIs7TlPt~~RHCSJGab|h1?|e(=j}OOL=l_{k2SAJ6fmhof z8`x=VlSwo!_0yi!SK`I0@fKl*~AX2WkeTxatlekq4I8Z6 zbK?V(lw&Y|c2U$=CKo&;QG!1lXE}cmA}xYP$ZkIX;29^*xgGGoV||1Z9VLqW-DBDz z{}wu&&7xeMi}+!|#-4I9t{HTI`Mn_v^@R5uq>HB~k|6PL=iUi6n6C+cs$L4P^M*Lh zFz-TD^#rGQEYyIH$#NZBe@eUKh^#^m5Gyl^QYi?xAq$FDodcV-iC?-`%< z+&(l7u)Ke(EthMs^-FKTRZ=>wg#Tt;f;-ll-Ggp3_0QJ4{!Pz;uRo)T*6ObzH9cU= z>h9zX0B7tyFl{-|G}*Vvv+n1(|7+nH;L-=B2G3NGNjVEkUQV`(g|1XOzs4y12en7Ipo$SouOjO6DD={}3lYLO`{BHUpYNX&3do5T2 z;M_j!#+*RzZA2cJAUBw*Ns*Oo>f~4QZES1R9lIowBBgE4in$BL*Mdq1=QUUbUvQpJ z_O#Dxbg|)N0;;2a+0w#r61UDn>Yk2b>azT(xW9JekoXl|GLY^wVLa;K@;9*I0bZtpcZYokkF~5C3tHx9 zPBz9lS0%l`c^`n#nvly9K&>qTL}NFm_e>*+FG%I>pl_iNPlyC>A+zU?#}Itd}-v6A$2!mBCA z|M=@uW(y~GH~DcH?t9yAb=!V?GqJ zr1Hw+!!{j?`x6Y{_s0!xC7X?fLv}F$bZ22JcDq{KmOal^*1R1bI-wG|vjB4c)3!O+ zUp8|vSNg`36a{EH^e}CbYG$QP!{0qEa-&@AYN5AzOh2>ehFsKs$EgD4s}Sgm1LsQ? z#j)bolMUD2y7EDw^}!~|L#pHndGHNAYfB9=<4?8em54szM^s&l8Fj^oZin}HR}T5+ z4Q(#%9r1wv?9W6ArIA`JXpVa%>?VwDe2~d&2W01B66B?0i(&a2M!u`!EH(-jZ^!^* zIZv@f-mzc5@DNW!#-*|s(39NZh_i?tXfSQ}di`LIb5+CoB9L8n3f}E4sRjR?lw>|d zUZ^GqcSZmz`tB+ud&Mft7btn2&D}>GL=SKp#MC4sGYx@AF$v3Qepw{Lt^MqQ8>}II3*#eJ@8!7R-4l+CxtD>`5H>GIpT6t~kqNdC z?-;yW_FmtWN(4Mn(RalbVjGBQmd?uBN&)4-YP$m(NnYF0Y>2z!@f2<)1nv}!E0VF; zu`>R8WTAOslHTiw>tG$y?HX}>!BKKN!Rt~hXE`Y+dWonV=a2Hxq;{XB`jT|aNG|Oa zf6TagQdHzm2rJ5S%|`!`@j4en15Z?*C6Tqb55vwMeqh?8?e&<)&mf9wz#y6=4{|F{ zF#P}&0HxT4j*Iaukk05c3+a=V7ptHR<$f&Ye?dExAs3Yi4%UdI(A~__vK0L#ycCqk z++4U+Fk$^;c_WW=JEPp^J?z~tB~r%QhYIc<4orRg1wri-jpP=lyE`$()5qLPYP2E5 z9K%Z-@x6JMnOgDg_`ROW9QDaJD(zbi?qS zsnU-0%ju6=oL}6eGCYE4!`IcFI7D{?o8v$dp;b!eW@Ma3SlwE~p0|VmwTOFH!!mXX zdtUk9DJC?^`G^+D?)IChVI%7GX97-N&TrM+Hx+c_dZ4Fy7^w2FKm-LJtcKRm&~L_` z>uA0iU-d5E>vH_k8G!lAdI9apoXtA`QQ&cSZ3A@V*PG8VVdO_tS+dTp zx2;V5_YVSRFFcmUy047gz*H@;{HM3h&VsaRu8Xq&Z(AX}9YwY;uf5X)?pOS2oWpeciQWF>qdWzu{m zYVhT9ikW~sbzBh}k^QQLjyL+{JUrzSdIm_Hl+k-?sTblHv-Cr7yGHaM^*Q%n6jp&R zFylLa)LPHK&>Mq-U*FUKf8C#%*6c*_WRU+!f=V*aNp%9zA<+Eu4O5~!@t2>x+Y#oI zB8oW=c>SXOrH>buvN#mCSX3vfO>_JudY>!#lr8C1LqV@I8?Snt3jE2Bw{>!|9@3E6 z!_lLa99CsHu&@16Kr;~N$ndMS6R&YTWUX4%TE)LN)zwm8>+l9pgE}ieh7{|FtVR01 z`}2)Hc$*%Gxs-1L#2)Rj1@o2x@~a5Jiyg#^9{IH_z+ODElQQ4Cdf;0(vXg{xD|`s( zku|o5udooFioyxC3c|_`F}91hMKf3$+jNBb-%oq7Jx#f7kMwFZifoVx=4U-N9Lx#&f>V&lxf@#;PsuH?L4j#(D!1u2!hZK|8qHn~D65(-w0S z+z}f~PtfadKTk|v7nF7x<@I!&0u?6Ve2M*r{9wr(9e3c6?Bx#rVVpRJzU}zHY#IVAQJCMatrp)GiI$P(^g5G5oRM} zt6NrSxY-~(YsgQL1TF0c#U*wEA6KiZJ{tbxk8lXT;`g`@>}8;7y?jHBJ6q2Ob%nK{ z(5a!BN>zjfl4G`P3O*Z5g5(r$pUb7IrSU5O=m$IKqRdF5_sWqx)p5hm#Pawm@h0|( z-Lhu)MOrYs_vGT3{p0L%pN`D1`P3)SdVL3D>)Gq}vmPRjKG1_MeoB2rZe2|X3HF~a z9_Nl}w%zk02|Z_g`Rm;EzHRls>qeQ`S(YDNHv3ktn}K?WWxUg*cRlddYu$_97IOo< z%-)$(PG5~Y%n-da0FyU@Re|lZqF%+j+%fCZKLCNF-`Te-@8;GiMfqv5<4No#~8<7epwj3BJiAh zs4U{(r+m<9kJm{QP7j5%L;W@I8b4M~2Kxs@j)p2=kTh%;IF_mai$AHn7yC(@7H$k$ zlW>cCVs+DVu2oTwH|8L(vGHxOu2df6+GVk40dnUUpT zfXjow`S9-_p%zRqvc!iVbl|IU_}x_q(MK&H-Z`17yBo=$!PRc7 z@sILu0%|rL=u3Q4haiddfocCNcg@!A(J$BC5BJ|JkLnJ(j=eTl%rV`ZdX>E|s&bmM zNF^5;yQNmN;$mO_Pt$%k+O%E3_`WX2c#Qt`xt6(jXw-3IdfKhk zD-3qB14-5`?6POX)90wuvb83~Fxi+Yb}OFW(>v-lTDUv5H~y_R`r){C`Fqy6gdv zaTi5r{u>ku@wU9-Yz|^ARU#+5g5K7^8wjtO@8&UzTd<>Qv*}VO~fGW8p zcg|-O#nQ&2ptRuCvSDKJ+|(X+NdAQid0|3Rmj^74-1(|5xEBeA7-P)kD z1XC2duqFzQdWO|Omut_cR--RyZ1`ks4oan%`@BZYWg0oAsZ!srU0I(`nDhf=Y5=a}n#=)dM;VwePy@zTPe+bn|!xidFv zC61zuz^iP>@aqi8Bs`m1S`l!3zSp7=*J$qhE}F3``?tag)a5t3>^Fy|UN1gacmAFR zj9V)&uD*-`e@`q3JD%_pXd#(xWpy+BrX#qM<2bFj>bnD=BD}G-TJUFZ+L@T-jIvF5 zN^mJA$UT=bFZyhLX&6emXNu2R$bNNJbZ>gRtN@n-Koutact!(lj(Pz?tDq{O=hx%; z+~<$)zO|>1OONmjv1h(Ay3vnse4|6xv_s3!lT#oQO#~C>pW6WQu#Z_b0DP$}59p$q zf0)K;QzPJ!)atW7t_OR*Y7*mLxQI`^v~<1CyMgO7j|HG~lGpwNi+a1Ep=qHR<2PnT z_rv}sUnc%|1buT=U~OvyMiKOikE_K}xjX&9)K?L@`{;ba`P%3+U>^qyo=q@ z!H)a<_rFHg_vG7D*AFq>+}@)26J6t#Kn4QDnu2YIAo5E-$6tLL2fTzz=O2Fz@Ojuj&%7Oejv$ z!QTp!FJ$nyWl1k8zuuHcyJj?a0(KvN7lMjxp7I!t5lMb2PIAO71F2weiW=jq9t$fM z=eC>^@ewpWHX9jX6Xj3rU(k`%;Egfnd2hqsdUspZL7*vJkjB( z!5{JlCXpoj4Bns^&3mP7jSGM9C}E1*yzejRZavTNO>Z(IDzDiH3!xW|6k@OBYR(>( zxKY(V<`|e<>VI}n{u$_Akd|ZTt|4ccgG^8IjzxO&lANe9QR`azjXpqG@QRpJ%jE1(V(DeXvMS!kcdPMrwr$X2c#im6fn$=%mIIq>+8zcMt6src3 zbed^$;9~89gPVwbR69P_bLW7Q++&8;Ptv4v?;Qhvown?#W{qLb&jcP!BMHmeJ2ckU zZAi|>qBIE^n-&%#joS7O$55AJC=a5tbcYeY*lG_fejS=xm%io72iF6B1gB19{IfBe zdTkvurAa^7ZAP^_MFkn+I4a(6wRUh|a?UVhw$?JISgFEVAZceCc1_JwnhLk%C1Ktn zXn!Mh+s=yLZ}6>HbZ6q@?Ig*MabZyf_>XZrifvbpE_yZB;kqQRev%^I~kl^~;7+xXz22GMch)eLu0@1K4V?tH+;7@iD8qWLE zPS!Bv+xk-CQrt%J#1omFY%BARG`td!90oz<$JK4}8~_zr{kcx;gTu!G;mFlaNaN*; zKII=A8%l3kW1fmhyvHR-;sUY=PlYOIF;9``I&g<91z^#62LaNnM;02Z45FNVN-|dE z)$%z6sJ~)Ej~@)tdZHZ|r)ypFXQ2|)cBDZ6%mXL7<`Qe_Ycl`goKmPZU4H(}xoPe} z{|78fI6HF9FQJgJNXK816!SE#uC05~_%TIx*CVp`R!{G>=l{(u*-)NQfBw-=%EPQ7 z14W-vb(j7(08PZ@eG=Vc{kC{PIS+%RvU8?oTJTY$dXd25J}0pJ$YW)FvXi34 ztGYW=`Z43Woocz{TG8a|t;8!=Dt39Mn}529pA}=#cm3D2=PW37ryV`RO{|O8^)`X_ zbjfu#kMnlq%N8usrW0Cq_t%96m}eLu{-Kyh??DX#@VzR!(hSS}e@wjtb6?;4{hc(n zKd~Aojcq55ZQE?D6WeKQ+qP{rYS7p=@Ar4+KXd<{!kIbOUVE+AUe^FM_x{|Z<)rtk zi@Q7avka2Yw};-Y8~1JBCw^<+r_Ct2FQ-Zn@6eUwbGwGgTS!Pb;bNZLagA*WvdzLK zNr&b%#-P#d`}tiWF7@CB;|zm?sK*J??Svy3p*?aRZ-@tOwvkGkMaT!aK5=qj94Ami zdj}A8%>Zb6<)B%nAob%aG!aGY$i*;Z8ppww!f&Zh`hY>b#|Qqa3&CKto|B7}7<2T zK5D5)^Jg~*!$DcicSrt&&Kl{V)!;7#3^r)ZhO*HpvT)!NTN zKZZDIsJ*G+SD%z{Z!2-8TD8I@Jq;@|V8+KJ)2|s_o*fbso-h&&C<=R~#X-pD3k#ZS zI-t;9{vB}_l7p`mgOXLqtQ+VXXe3?sGE&Vcx3R}PxZOWyxz~gphA**9 zchzDY4@MD=Ks3ZXNb_J@Qoe^p@C~RIYXEjyfp<6CajtYdx!7a5a4iPK$Nl4{Uv*|K zc+G;SYEs3iRf#hgA?-WT%`pI|xsrJ3D#l-uKk~$0AuQdifHtJ^tVq)j;z-fAwxFV~ zoR^%6N`=+$IyuLWI)J)0AhTp`brGYZd5h4#<1A684 zVd-~>z0oH6c1#am%EH|iEyHAf;iPACW-d&-$6u$1H!`+xh#KeUDbC@!&!Nz=Tv2yf zMPq`zPg|Q$f|-Zr89TSuKNvM|Y$U8?|6%!Ro)FOd1xp$w+NCfttt3TT+`q>BkMXrk zgGyHQpa2&QYu2=>T>oyIZ@@Z;762Qn{G~Qc*=*37&B-j^B-Fgeh304h5~cVg0S_SV zjFaMed8v)s$4{8rN%_VP>AIn5mfuTFgC`sTGBC{Hqm>BC1evh>1Z%fatVnHCjyHey3S>Zw`cZksH^5x zbR%7zvl*`DSomjYU=pJl=d4#bCI8Y9{Im)?#xJDBqm0syF(>FUV@fu&LI>OLKlvh4 zrz51Hmc^Ah%nKkJMRwuMTxccHJs1d&su{W5c2;+R+-Qg z7cG%T;~~84{Nga5@s+;UfQM5)p23=qw|*TDdl{Aew8HP5@qOIY|1=k3nGH-3mzjsBqmyd1a(MD~_R-tjKB(i4iq$(1gZ~QTTs6)EpNSj*Q2zMpRR_?z<$d<` z#CiO{Nb5TUsg_yd(H?*U<@`&l6>wwPcG&(~mtKYM{+Pq!=!wMEB>=J9YyQmnI7rQX z3F;&8T5D==U)$cEHDxjIzF)S-$w4tXu+ZiOB-e)g&WG>c1u9x_fi} zm-Wkf7y|Ou1qVf59qOkWsxG9jujEg|L%g{K=~XMy^-R>xi=RxsAcmq8uBmc86YY_b z3+J;Hsl5=8{$!<(}n!H zhkSiPTOBP9zo4CCdE-KvDtYy$_)O9~KeB$`q@L1&Gh%Q*SS zYyU081>+h4lI4_am0NPEr{}!lNq@6+IMI#q^541O zJBff&R6+) zQ(RM&%}hqadIB)z58mr2SDyghx8?qAsK+ zH?*%mi{U%9?@nK8owYpg0D1iHc6%l(Th8vxHIAi|%Ef~UhDc~yQVkFgxLZzs64dW9 zg_|gIPgY2Tl+ZeL9EX>heZ4|+H=t7Q{IH1b>9p&U3Xt+yja>9B zAHGvn&&zEL_&TMv(v#Jtw>V^d6rR+7t?8V0 zOl$XAj9zs1oILXoIv<;12$ciWn9}8{v9Yn{rltgfeqBXH`wHJEuS@xOc%l%Ewv8Y#Sn}sG%w@VQ%NLn;rPfFz#F+op9rkVG#Ro+8eEK& zyCHzImfqu?mZJqe*i`VOS3EjcDp(pn@eXV3Ugp0APZn>)QT&mcl=A!!%S*8SjX*Sp z&aj-jTTT)&s!dT4qL29VpSZ&|F3&VrDxygU!hW5Z^%$=C4i1HB@_$(ufj>rrx2*au zXXf4P$lq8nrV4rF*Ma5)VVzTgWdY&(xCHlgCEjiirjY5TPTzRLtJTZ~9{&yd;d3)x z3h7W% z3g5se8NZylG-rk-kPsRcFJbJ0?M^zvM-ETiWsyy0FPR$;6}2|~x&^`PZQ~f*b6H$PQldl67)6C#@`4iFV$0+N zw=JlcjYJjTU4Mh)Y=0?SB2T@2EaMN76VK4q1OsldfLAu?A5!PBq0PoRnE5xr`7WJp zX5LnmS!G2k1|H7&b16;A35#I@&$ui7zm>oRHLmjY{M%@<4tSTpZJk|E#OxyI$viiK z0F<25f0_db49RIo_ZSInOobK=!;I5H3fZe~+u@*xKHN39RE{H3-|3WCX76bNUsF0m zm;1g?13!loOATq*yna&@e@11Vf{D7WN;;?gjZHwBBg?p9MtTl*=Pk{+fy1iNWu+DK zPFojM0m+;&r(LU14+b8SHG}mKb=-g7Ky=z!GShJ_s}g$clGe=YFNw5-y>}O~NWs(8 zI@E2R<7|S9A@Z+Em2~`42vVX)slPZ`qwhS1fQg}0TqHq>q+4i87pI?nWHz&`QZv); zNYJ82AZ9(aAOyvFbQCpzjg@#=WSS3zda5s*aheJf>ipy7>dR*z0jq@0E;+s9txZsa z9Mibw&%+Hp1bWm594&i)nkphE^Dd@mtoyo}b6FQHdexP^T_>B8G zefa-0`S%py8|7)EutU~@h~S{T)>nu>?YCsu&$H{O$Ms|v6d+4C1@0b$K(yNuZYJcmoGFUCSq%VwJuFs_gNBn39S>3q>Jfw%KU!CUaH z&CPC)o8A5(n5d{I!LRqbFcjjRkH-yF+T>wlaM!&4YMoYr=N*VVQGeNhni>P3*YEk- z2ssRb%?%_U=P&=vz_!i>rp8>nTxNi?4BsfQLQv6=V*7l6psgs=N6%S*ap~2Lxb4u~ zxR^2fpfLq+Xpp-fb{(LH)9d;DsH^mgF9@zrhEoJ&rskMK%b~Wh7CC|`DJTa~!F44q z&3S5%F~#j0oVZ3EM??K3D|k&XMM4TbC?VGr_>PCz#B+(JO$l)NivO}UrN14O zA@BA@S7uu>z0oRO32*Q!kqkZ>UYOsj)A)3PH*bX0KmBvp&KZ7&iU67k;SOu9#K6K| zsj;IoAv1I{(K5xaFL;Iq35Gb!%c}VkH-AX-(fkk0e>Z2`zbYhn{=gV>SVY@F{DX6! z^zGRJ>e67Opf^&|mzK=0e6R=qoLOuKg?ag-%C=k59G9=+TOLQltE$8yK?uM9@0vLg z`Hrx)>v!|;yg&4?BtR{+hUcTwxM}Q7>!Jl`#VbtTTH&rWwp41TeTie-VzB3r*F%^o|yLNur^YDdLd;pt)R z5hYAt!}5#G69Z{~{A0>SCAM`te1_Qs|4X}d`x+3^wC~h#gZfc|L77YHc(&;QhTJMt zgvDTV3o#@iMty<$jf<_0g@}Q5=eG*xylq~~LI|%IY?)(X3RlPziDzN-u~VWgEZrFu zNHtnR#QqD5_y@|n+soq73Y-b(jzuF>Nc`~H-kc@$I01bVigJ7>c>V!zOsWhx8Dc8w zQ5tv%?cck2t3pcjk-rXaUmLQ9OI8ypF*%RYj`*m|qzKf&jua$0kkEZLX-YgG< z!nyrvayT#kKIrvfiNVtWj;{x@@TFpi9_4y8O`E)II<0OtE!BD*Ua3JO52hYG25#Q% ze&N6J0^q)qFhvHA!eZina)fyYPaeZlbZT`rl~J}liuXntgVm|L@3)hzVN&YAm%$My z%n^ebN3=%(a^I%MvZ}dEtHF$md8wS1Rjn~~i@msIB_hNY1AsPnDc>QK`;?OFSiay(bO2EgieDnoxY^U*e&VkRx&ofu zZ@O=13;4eF1wcp?qCI0hKk;+!goK0u@1p<#G4Zy+od_>4@594`WE>H{_v5+1;8v$Q zz(_}Tb|m=q0u-%(%xpfn?2RD7lzpb<*kAe7yPXtak49qsP!cVn3DBdyq|qKDXZ8W} z7n5Gag+BX12D>v2V!Y%GWXo}R=ocfltiw{BcQqlXOjlO>Ie(wByO^pe-I0; z-)(&&T;}8V^new|Vn8rHdqK?cgk!k?WW_4Mj;s?vI4YMvLIyeLP!yGv3fK$Y5&rEF z^50*%qN&9|(1R7f-;T*>Y?3G~{|3Dsn;2M(!0_ETvR)M9zzd({tG$-g>5UtaKgv*V>QG;} zh@(H=sIfoI*bX-^_diVc2N8!j;mSZ=svxcl%(5Fl1pE(}j)TV zXosB0GUCFqXeOt>PU@9x{ecGn-oGwnoKk$Obwsq~&X7@}{#LR<@mh~!qJw6|q!M%_ z*7+E(vZ^IH^|&~@kP52rcq6`rRI66qkapN2@fWgsdn3bx#RV(nc3ktGMymMHz%CP5 zMWPz8w&8@!kytb?r+e^&eQzl!pdLe3k5z0jcsbcHXk;xyrD0d#H`67+WU-*qh>Gb- z%Fv5OChfY{@-JB;Z7LWOyFeUjwT{^xv>z4%wgaE6j4X_yBdkTZc#rKN1I63FNH?|tg523-TXtZruW#{G| zVnNY^$R22QUKUsWES($>7jx!ME6envqqb?TD;5*g0bTP$w5;O>t#ncQuxVLkVgeyK zMM~ZcMiqHy15CXgHANTsp~4w@PCvn!ob82rEgae5aqgjG)Qx0Ftp_e8Z%LrbdPvVs zmRHHTO?L2dJ)3bLK^4(;ORXLp2G<5oU9svnAkKZww$*e;fB*I zmBo%u;GR&Kc0H%%`69t(@okn>1Pg+C98->a9|L0))lDK?6_0&(mQ6l(mKqUUk8pnkz$LR!6J zG7ZLJg91{%IO2ss<^)($3E`myLE)cHnu+X#%J%9~it!`kN$UftZv>9~#q@O~NeX|5 zW78{}H<1J)MMD1wDa`QKXx=8jy(<{US?nv$MbNluV>1_U=Q*+zcJne_`Se(kwc`34 z?^I?zM0s^iIWiaasApQ_Rlr1iC)542PdUwZD)^51k3kg^## zok7@Bpy1RQK%lQWN6xj)tY8D5jS%%hw!C%7@$z;*D{egakP~{C1Bt0rnmI|_>rs%H zQsWX@{vWFVVnIJ8e&63)IXGN_B#?!Lg+bNJ=9S-*!q>gR@bK`{)%KUsUUfBnwtQH> z;TFhO2R_*2hy{rV2;RehXBdCC*4EaqGK;)i(J*8<$Us3WrH|bxMti=M4ToN&F2nHQ z-Bcu1cg|K~KbJEJ`9D^(@o?WQf)3jI?rTC+X1pQ6%t8qSA`fO0SE0!#BM-7npljy7 zO?lLsd5wLe0MYNv`64!XQ&z?vg4!PAvoL)d0L^!I9I_@uk3z_nm@&PgQ2qOx3n8!E zqJT1+VOZXO4K&7@*esBFh8Q9Z6NWKKBI;>=Agqfhcq#NK=hoGr02;)#<`jfZB@BS8 zXOlYHdTbR7F&cj05^vL??RQ?_I98lQa;AlvN4N2cKtg;W@8)RVrd9 z4ZWa%$^pO5Fl`%|T&R|0>lAInH9XtCsv8MPUXE}m$W4tOJ$OwW60AL&>G zLPF@o2=_pZ@|lkJB~NWP9j0_dJ1+`gUMPaHD;R+oSR=A5wZnl4LCOl}gH&!9Mon3BS{RK}w+pKw_j7ru`PJ+_Y;Q^f-6L**HVKbc2Dau-KwM ziJq;Q&GcpM_B-mr-Q#t2p{~{3cN~^RSwo6jM>MZUz(@b8D7-S%g_d>tuCz-2v%1y|$1}F@-y_-6|a_f;!#XNatC5QY14t=g_UYv<7N2 z%G(`$T|dUZw#F9B|D8~`-aj7XGubBlM)`FD=BjST8FL-eDbB?83B%1N@#xX0%cyn3HwaT1LDTAqd*lWmgxmMG z=0Q$;Npm{hGuW28e`6GjJw|?3ylbc4F%h3w|5o)SSx?)4SIa6MjJlnLXc3lurB)q++k9~eWo%?0QylT`4qj@6drzx@3@T`~iE}8JJ zRDqt(;Bn_6FCSncGr!A;>EQP-#CfHvQcQk(Q&)P3Zgo3Q6UV(?iqa_ zH{!njj;MW^D)NiHpL0Q0y<)YnsV*kOx)hNSo;+iSG#3|Bkdc}A`hK7=`rXe<0xzk6 z=T2XMpfu#o@jO}5_|QK`zvn^X&wv^m8ym0+fbAU~89;~!NwKvRkP&ZXbrL6GZZHJ8 zOqzZXh~!^GS$%coy`Ha)3O{(hdZ>>a{`H>h3%n7HARR}C|ifNDtwAP$1lRJf-;;6SG#Y) zXb9>Pkj<-stMCo6!x5`$wDk?#P0Q2b6t93h?V^~~`De4Gegr-en}=+;%-(Y2Rr8pm z+A_6LbL$#Zhfe_MZx&iRleZq%la!{Fy{-z$YN2pLm*4FA2^B0x; zn{)7^i#S+Ml$zXyXx)(X;BSk?Dk|1@3;%j2fTxaDouoM?T8^AZEccOwH|Y0h_3zSZ z)AL&T{p}S+x6rb<+5rV`YK2qMD!ys0+dW#?_oXDdqFF}axXiJ*it)J0{80@O!v)3} zlPFC=UKk%~(DJxty^jy2YmMVV(d#3N{J6)$UigJ8{Ir%8r__d~MnoCRdWo?|w4nr3 zfEHR)cY0D$PTh~L-;Y%0`v;Fp%0FW24mL4nqH)-nvB@*1mt}GtjQRC=49np+-P(1W zZ4&lzS{_6*AwzzLGI_zO0_{KyK4EU(1zVQt%#6DT~fR118P@Iq>r_X_vyVtTD z2u!2MLr9niMLy=Cc{%6i-R{P~ceSSzy0v_q;rbztsso%%Q6!45~MZROQ=$z*2Op zczM6N^jbtW1)9~#PlnR;owA9k+KC2(P{M;B+gy|G43n;l+H>;LC@Ob*Q|~yez?O^g zh{|TvKJlwt87&6ec<)$aE&M)vnGwIsW%c^cC7*`mGu(s2?N;u+Dxu&UAmYL@EO621 zD{zjt-$kzk^O-!BRBTP^+R9)8xTH8Uc`p#RJBI%lD|@qse2g$?X=;!Ob4i`KQTVeH zG?I!##Y#TxKpkbZfEMeXb}rYK^Gbklfxq@&{pCeV0`XAFnIbTbFa7>ie+IebRlBQ8 zH%}b03HGo<)>48vtVY#QRO%i?Nt-xj4KOd@_=8<>Vsg8&5EnLXR;A>g(2OT@|=>?1AG z2yse6y+~GU`wyOa-=6S?o2xx6lDhs%%Pw-PXJu? z-LBjXB=GOl?Hv2|*2ez<&-(1y{6k}Z&p6?IzC{=AMiCsiGbT9HT4GtsO2xO_~#R+TMGlL&Py3lcEXdN zk~|9uv4Xg&nHd=@tgK(K6$WqXD}BHdvCnlsvGB4XlVkf|;*VoMl2PCDc7ObTZk8$) zCFN&4^9k|S4YAEM|P$7&^pT!?{EDEjTi<@Y4m(u%mx*wv+uys%7Io2ta z>1MdK2i7YdudQmv*TcN<!VhG z+g)Y-};MH60A_1OltunKKP%-11>vr7RB(J@H^C&dCMLT(-L*-TKCZ9KzX$|!<% zqB$HQ3a2>^G5*DxFRIrMdz7}Qk5&kWe;64=a&y9nS448N$pL4?&nEQOU4p|u+r$At zlERxOF7S{eC*!Jyo z?a$_IQ>2PG6oON>UTa!Ee%RMv(RQ9xJJPp7Nr)Kg`bp?*)Pm%19d&R=7eQTgx|`n? zQN;;9On>dD=~4A#w? zq6m__8AWS6u>Gf1b9NCv(bi|Ap1ink&}yaX9r|B7}o5l~?UD+w8R4{5p%FPwp5#Dwr@_Yrijy zmD_-{6kyQ33fX{5>~Y4qi%j(ka@tGB3TX3fv7vB0batCRm6| zWn(E(n0`*F*6y?W_tfeueTN)=6ac1@YlgU1_e=iD7V-u~>Gp^p+q{COCi^1y4`KH& zZoVlxJIeJq({zpO(l3yjQ1d&$G{q~*7__|h^kUoK(fBf`?S0tWO7JtcQjxb@Q2RJe zQXuwyzMvc)Eam-r{!+L9fwU|bY7KR=XtF=sv*5OwnI3A*1AwN~{{$33 zTNXO_Z?n^#k&*E$AbqFz?dv`F>+WQ+6nN^~{%GYD^m|`Dx?{$Pe%kWB8m0p)RZ&p^ zs{je9old~R$;<0CSwsKEtGlo3OF2CgTU^6nXp|VxRabwsXqI@mLlJnfS3BdCK4H<( zNT$c9?DUrE5pOYqbOoYS2sD#1@?Qz7Vfh?JX&$+TGla5OWhX_`?#N{^?Y(n zA8J(V$5*OkAF5;)QSLh5VZc{uyN+@b2hBI?Vk(Kx~JITrtx1M00b0Yhm8o$233 zuN7%^_D;jlj_AvM(kpXKGB3wWg)sEM@Yt^1Vv)zz#9THLCx9A+WfbyTsG7?ZS)NG_ z|D#9HE;iiR9urhxecG#o!Lwxyf@>K4>s#53Q~fR5%~7)ob{nrsRW>=qBp5*{KYp>` zWr=`QpgZ(jDL-|J8;$U28;?+b&vBpiA29E4@qx7gLjAe3-+zy~UN5TS;FEVFf+q&Tj4i2fpL{bHgBt?~XUs7<_PYG}XevHdi2$u}{E9|zJ-cT^lyS9o4Nr-k z>Zg^ac|F!2D&Je{q+C40&vE_vGD{ld)z_GIaY#BPl-#NMb>2%#XnE(PuMPH2D9az2 zO!*UpYbTTg{)^3@Y0#UZ4D?a|<*3@!n|gdj2~(?qMDbi=14T6oHIw9x#jXWK&((W` zbpdaH6brx={gJu-RwJ)u*XS~dzQ`8X@hT-SYa@#_MT`#pha%^KZd_&U5pBus&f~3m z$Ej|RWFKNZhO`H2a$MNjkALP{o_i=J!76r-1}D!|ZH_T7e{I8zg>{Bwzr6LluHWVf z{|o=>ToK(h&(SK;0ejA;Ub9DfEjOr=`pZs>svjVv@IJgBEu|=41UVWxHN$PSER7zW z%+2asy2)l`GtR;JeVCg)eJpZ|^mMk1;$0Okt?zvdpY5`HJ9nnW2c7fKS(K3;-uZ?Y z0*<7U{D_?!*C74Un~IaxmDz9pezs z1!k!&hblXyLh0-M#?pGnnh=$nT)95DUCZK<1ZSpufhx*CFT7tOJ1#u1esg+*b(PFi zOraeeQUO{i?K}wg6}8#NTx~j=D7+SHGiUvaHg7t-bH1aG+8xuw?(!|g&-v~;7H?R!#Lb(Y(dH)IHX)*^L=Xt3a>jGOZ;) zYNUWo3R|N`jH%1ehG(7`ZKV5cvK!G)Obi6Wt?lStlF6Q?9EV&0=`0`Zi;)ac1c7jlP-d8?YzGj)y7X)p) zT_;a{WhjtEb7FLtDGh+kJT7xwb^i(a0G`;G+O^Vj&Cp`BNRvo=Ic7P@r{icwj8>11 zX(pC(k1J=E-Lgy*Fyq>ObV=1zT{8eH#}lYaEiHL3|E?U zvADQ|R1o?(M_F1?n^_SDeIwpe6uXDKX7oc`a;$nNlnG~xW`6+(Prr9J5|46AH6u;f3U+Z@$Rx1c;}Mx5H5YtcH2U)$V3YxuGuY*xDR#v8Y}d6O>$-nc z%UZ7uoD@Bro}i9Djr2>mp9W#SqM55N9c*4n74XYRgq`RQp;DI*k}!`Thvy}4!Eh;* zjhaZ9moH9Q2 zx9|P)zJKdnDSpg6>QuOZi(afUN}LVB2niqX3iJSC%|LEb>;*&kKrHMUlow6t>#I>K zJ{{xa=la*H2Fjbs=75Qvq7$Oqqw?)h>>~q<+}Y0MfsLfn+))kAsNfM-ay*zfbOv0c zk}Aq$bbpSY_W0B|(S$()^5r4NzK2OTT|nEeDv+igZ>(eetEumh%!TTB)wgr{W$I(| zuQPD%)RuUGTdLC$4nB9tPUL~`Mq(@=QzWl^;j6lQU@ID5oGZA+GhVl?g5N@m$6$6Q zjE~+9DlIU`sw2tKO})kJ3hd3(&lM7@ITRcHFhDU?&mJ;;$IR1$bP3A+&>F>A>0tSLhrn3t z_m=5wK0!78b_Unt)f@(8M_Ir9xA7RI;TvH#Oo>|<5{1Nn+_f&*f<6`MN(qKK7Egp$ zWFbWN^z!TQBbp^l+Ky-%9NOz@_n|In=ci<0r;hf+oO6rmSzK}~Vh_6Bm-k8%J3!0V zs)gW-CukT!m-$@)FVlVtS13t>AJQ8wysUA*|No%`WIR9A0@>;5xQNie%cMadh#dGA z1_Gd7HhMpF3}-E7a{|6zx4p0UuO9^Y85J7q>%mnwHa9=UsdC>J@4VQI>(eF=dVY4^ zKi`<-slta8D3|xO0-we8OKhrw?>DuFgvqT%9p32T1ofKw+l{n};Lem*73ztW0d`$U zrJ6@4_R^SO$x%NRWB3mEBYZ@u@e8d2cv_!%>QEdH+-l4t?E2zmn&XtuH$>P|IMd7^ z6+TVMekGfv8EJy?>D=^qmRNRu%9%hzp)rrTx|18e9sm(phLVilR+raPr? zAd2@}aC8tmDdHKO+0Q(8btLXP5}V1D8Ca$r#*0@%PCZksLQJ|cOS@>4@8j9&oL?L= z+vCtRv+<@%XOEshbfUj(y4gYZ?HfzA1f8}u_=|mDGO9~{H{PszI zZgpreEg#bd*y7{PC4RyE?PW5{5R6^9YuI(dvSvODt@ZL|Xt&N+IpWx>S>bq8&uItFp2i zX*BCgJ>fk=i zzr;NNcPrP_HsipOEB`DAc;DO|A+pYMT3bS4UHV|dwXN@t@1(0pOWYFmxl^cew?!{p zM!d?($yy%VlL?r=r^Y8U=XS8NT2s4wXBF3G81c-wcz)*Klu}PH#5zCfH4@_%;&s3R z0i@@Op^df4FTqda4pIzSlY3jQ`WUGWk2DVf8``H0dNPcxIj&j~3hK1H&Vs1|IKY?gY%C%= z(falieC_1l-b0{9L#*}RVy#^$I8JG$rhj^HFE>}AN0PYx_633g{@#O&3b%36Pja|) zy959tyGqZ4xm;{%x^{_YO!`-cV=yk>qDGB@G$P5P*7=jt=WCV_1u4mvctS5Af4OK7 zsoW(f#}E^NV#|x-^FH%L4BWp7h5;I1zd>F%wE73U4qnCobCg`(;UKO-qa{I>QbSc$ zR!&Y$Ljx4^K~(lU_xk<%g`s#4a)-X|eV(zpjvcuy+18WkG$<)4rDbGTSy*;&o}+&E z8d^{$MGXF1Utd?(&;V9)MnB%3zNo#gbGcP>-!Gp8b-e4y88!FIB+5G;bPt&1ItDZx z?%0(o{IFmXOu%rmOftZ!I;CRn2*|6swq8X}I!6+cok{M1Q_%re(Bd{&>IOlE0`C z_D3|kY$tphj*|3mH@G8<+_ogH7Buc4kYz-zl#7>@&z1|T&LstD=(P!dc!5E#zRsFm z=~SLEkOKTN1Tgq5>-%3mpA{*fA9i_98fU%3XuV^Ry-(#jw`f06Sa~gHQP%pX=}<5cS9Wz_BVGpN_I)}mvyHM?h$HD1oh&yOMu-(9NpD5F&c^cb5d(--B!Uh zMG#RF5~8^snv}85Zpv{&G9DRJO_Hda85(Fmw2p-PHr|08=)Fy(qO8Fz?;6q$lh`6N zc&?ncEW34rD zjw_{PJD`V!TL4*V#bMi&uzxme?*CR$Fi005gC@-s+os}jhB)}GY9$hd{Sa~mo>8*w z6F;SZYth-Z7G%F_jSJ%ETT+$(d6WC#q;EM36$(7XU(7nDeEnYc3lhrtX*yD5Bd74! zcUzY>ENncq->$+h*}*~(!U@Kf1^&e@Hi^c)iNHly)(LJy7KHPa$?vLXM*5A|I9!w# z(MRErPgZg;ifyp{bJC4NU2Ja>3#xwJk(&}kETs#nojJIYv%`6i|Lw@~b(;P9oK{9a z(4I=5`KS@2k`0!uBdJ|VFX>HcqlbKa_s&q@Aj6Qp4`c6*63e8Q$|7gvHU3fa;{KiP z7w}z^#ed@H#~`#+Qwg1m?lmrtaChpSkENO*WoLKvzSD2L|g&5CpDej~E= zyjtT4lPecF39+ydsNuU3(U12;(m^Ys9bny7hqtQ!GI|J21R(`;Y4?fM3--<4e>8^LECVHCm`43 z%=Qhol4OKdyO#^|ztrN`miPA=lu_KChuw9jgZig|#+3;hKd&QRtFq6t{MR#QboIZd zbapy5|0jG?8L0(6Y=o4OrIS-rsZu8cG=ZBa1F*h82Rl1Esp5r?MB9_E_s z$UMF>dF}M-(TY`fh<6ahrpdLPr0U;-$jcwa`_y8cf@-_T)D4~YPbqN@8O9KZ%)*Q~ z;}2VeKJ?VKc%^R;bygIT5%XtoOFYRmxCfQ0>tdK8brxaRfDYP+A2&Z#vbr!;dSZ*A zI35RLg&QogODm@!6?#jgDtsdfiAyuFwGKT?JVQz$1e?c}w||edhMdafxaGu{;pCWP zNZ_0zK)#Zz=!=>%+_D>0n1)()&?IcKM*u#-Urq=| z_$G$M)+5KOz>3lR+T8?u+-Y5KA6VV0*f!3E74d5m_9ku-NFfn(lFoK84+_+T^&>0b z{iC|LF4R7jVtu(|o!i5M%|zE#@N(-_Uh zJEca%|Ks?vin8YQ(_AP5QqGe?XM1wpJ%T*f4DYZF=y8&VC9#j!S&*-z!a4ODW2ffD zHG>Q@q)Nes;~-cg7+W8igsG8bpc#h}%__I2`W9K?vC(mr;b(xs&^E#BFT*F? zDtprf&?KyV!dGUHI3#DK8@Ge+nxFhB?^>vIG(sT4zlg~PIX}3hCQm|$ZYxKSym0*; zS%KQFbpeTj{SPx^G6AAtG@o=!x9bFIjN^;KD39}UmAd@T39!*f#w~k6-C_Vt|FWdB zxK%!EC3&bGh^LQZLWKU3OBi94KrPhx>P_!HVe>d%OX%3D9*@XfjWq%YaWPuurR2YV z9Im0z0&lBVL0rk;W14N6V)@ZH5s2m|jNh*vhLRORE1?>8RaxY3o8+RS>{^x7-5Ubz zBODQRd$QvmoV<}r;((|K+uKLfHP)YQ*)vRmlS`7@D?$G~LEwMOEtq-DQbc#1ffspW zAs>C3ux|K^&DynDq=-`Z?$T0-M^!`G8RRYA9d90Cru`3}gHGo^k5%eNpE8c`f`0-= z;m5u?an2)??~fMVCczy!qa2WD=ymvW&2jq#~!t+vo7r1bEGzYjjniy<$+KMUn*PXT4UyUzgc@ED%b{!ph$!YL z66)}*vWqe1?1q{X935?9r(RIC(s{3wET$u>akYMHYLU~_%xfske|7M;#=RdGey#+K zpQ`^ee-@$p4i)@vlR#0~=MIeE^Zla2*Y)e$Rqq!l?!S&JdifVd9JsmV_hxrZ_GR~? z+PBfV<#jd#5E}xs*muE;ioVR`zMGzoGR9pArH~tlqirKA3sT4YSC*8f1l(mtwZ__~MX_xpp0=prU6hy?xr616p)UNxRrq2sODyxx5e) z)i=V3-8b|3Fpc!w2j-mEy87R}g)X)QS5exPqO%AUlx3?G%Q#p?%VG^_o)NAI(#bX#I8^BrHJTC{2arxd7*I_BTn~xrBA*JD#%bFdwAF}u!KbxbUW^kHDL30J z6Ly#VB{`Sq}> zO+8>qk(FNavBV40wFN^?X_cGwN5njV#;<5OE(gTN;PI{G9uI7OwlM~xqkWX5{-{fa z0u=wIu;VzX*rrBWiIY$A%~qPmn0cmi|CQ`o7VR5k!!7y1S`=ov@Ta)Une2&2U1Du7 zO;9^RFz!!Apn3dbs(PS1hXl;G%-5KH&R#PT;!QvoUxKY zxk#yUY|5LKa;|4onmoCkiCNhIcLlc)OtdN8jYLP9x`ev zJi^SbiatoY6Xx=3)XUBNE8=J?%6@XP+Dc7PScfTb+ObQh^nELv!F^2UQuEWyL%@Q# zvyJ}ulC*W`tZp(I7Tjeeh0{(c2Hmy; zZjKq3MUnVmPJ>%PZxpKSh>_1F*$aa?<`RZXYQ+dy#@&bIzoy-t%{yO&SfCM2pPPds zvx2X2rCuMOxKY>kKh-4}l=s0PV$i^;4LSv09|Vq*;GdJ=_vvhPX8zCALBRqj6@6dt zPfVSC;`d~k5#5V!VXSYyuQ<|caF3wPG(1H4$VD2Zn`@5Xq)_DerP!a4wo5SSonDO> zpM8@PtiZ9520-htO>Noik}HYx*9S2NqtnuhPDaaO-Bowp*$Os{huL%7vTMDmQ$fjn z?M?HUp~4c!=zProN7grg$KiiZ$F`luNn<;W(b%?aW5bQn*iIU=v2ELFY_rj`@6Yq& z_aE4E_MF}OnwdK@ch)Yj1Y{G+`aWj=%`nawTX)AM*C;)a{U3`Q<0p|e4KQA2(fe1-ukLR3$4TkTr8F6p9G-h$*1OsV5Dx8RgPs+7h(!B z?4d^C)0y-+n)2E?`<5fj95R4wW@wggdK2HWi?%ZA5GvQilnww(w<>4!ZJ7n)qgg5VUFER_K&&Y)Fy2hKaZKOEkAz1TjeNcl^^{BAKe9=W zfB@4(kjz|AJLZ8DO+W5TGR3{*&T|YWSofW!)@qz9Y?+^YiDzjUh>9#kI$JdZ?~eXX z2LNncX0Ec(a7;eTNIy6I_1l7C2vKF$UW#y)9NTs%d|P!m$BUZkx1SuVH6|fB#6c0> zhS4*Ma*&;cK>u4nsksv_9Z3Hc@hOxD_+`C@Ga6qvgznG>x5OUB*ME^{TTLgtt5HZH z$__N{3A+-n<|q|UFrRi=+3ZvE^y&FX)`3E5qC+VJkhzLD|Q#O zZsn6{_XsXZJBaJm06QQoS?Udhq$E8F3RwQUG|dr9`2C$mOY~W7AEDNa|Dkr5NDVO8 z6;>@CV17&ZqyuqY*ty40S&V->f=^FaOk26ij63 zZ6WUR9>PFOzM(mUe9j_iEKBsU*BOA`>~D~xZD#&EzP-dYcex-X4a*(5M&NL+S(wJ8 z)b)2aW4P6wE!d3nTT!Q-+zHzDpS%wmcSqv|HDp(xu+>Snup8k};emU3@nh}G7DtL3 z(^aV)a;-K58B+hkMi!JlG({gZsb)uD6Kb37K^JTytjkJ4e#QU!gMeo}fJU#oSKR2S zoGQnHtptG}K5myLLI`)#3+dY>dEP#h;NRHSITkt=Z9wBe_~N=r4##M<%C>d^#alA|GnycY0F&DHbqi?jn3dx{bmTw`{t2O=)xezvAm>RV(9SCV`$ zc7(kXI{W*B*z_`n)x&~E5eDBdjy)H-Xoj4&?mJfvU#L))#Sh}*OMqM7491_|U9=im zrMTV%r4VH%+KD>5mV$6EOsP)gm;v)hrqJqHqj~zFKWamM@XLO_Lp*de-gGD|mx?=6 zXD!7Hz;R70aSK1J+fgWCdv(U=KauqXc`p=@t)d4B$^iXCZRov1bRS9^!cUNr-nRz9 zzS)3;2c{&*=%v3+Gypc2j>uGn!ryEI#UD8E`OFfH%#CteloPLV_RM40KJ2SjyqgkF zQlqQu>a)BHNcT$@vrtPoVi#Zp^hEx!#rCDxzY(%%XrJ7>YeG&kOfr9$P;CGU(HEEg z`F+~cGc8KGk?!bofEoAro%F)aSRRBccU@7Pc?;0|^~`JeX!R5#{#Vkle9noGTlwH4f~V4Ak4*5y?U;{TPQA5YYA|lkGeQgri*Cf`V!olci~^pDQk~Wu>0# zdz5F{32J&fnj14HBx@8E19WoCzeGGAlio)>-tG-mvjHJZO;=HPT>a!AIXzjcjZek9Z#9Ws4FE@jxqq+UX+{`)SSatBUb zz`$-D699n}I`=B3-Z`|k4CJ-b;kIz1CSHr->swO`jdy`JkQ2qXzv@nV<5cE?x;}f8 zo@r<3JpAI#^SmTI{!C1ls=wu421&j`eJ>f{oZJYGEI!INi2iJ z!fb911f~{pCPqO8$K93KQ>MJpRnH|2=5c=s6kF(K#nEFjCiFhYH{cRldsku?>;T3M znD5_aLEOU)^eg3eZ4!GlD@{7l;$-<&|mNNudqc#qqnY+SBCh{Jl?P zq;7}el-SKa6~HA2Y8Ut8Re-I%i1{&tmu+S=P`-7uz~n|Fx)r(5LnPW0qgp@KOMFx0 zb1-Lqw?JJLca{b@nuG$C|ESFQaF1{zkW%HJAtc=l=^?Ld58C6~cYDM+0KkdTEg^LH z2%WB|;?Qq+C05iD?;Nxygt>#abBnc2XE3h^(O145SWz4@HpnTjE<}0KD8Z)2rrKPS zwbQc~M>9}-gKR~}5w|O`!CmvQYN?DxtC*m}3)bJA7pGfR2(}D0xw3FVy~5zeaNk!u zN7~|xYHuey50hIUp8-Q*14Qv$%OsVs+ijvUM z^Z5$vT66=b#~$Lp)c}bs85IJ=>@u5jG1i z?YorfVs~ptHbAREydjma31Z5QW+aK7uGMYZ@0C*?YL>50{`{I>jLG*aygA~SCrQpx zuH-FNa^7yqduN(oVR!qs9>0Mw^^B|6J$b@*^a}z$?XaMfE#kb=|%nN=uFv zDR#2r=+lf-6MDllQQWU$0!6cV*B*s3iF-{H_eV5H;o1);KpBkTy2AK1%`5du9B*7> z2%6O}^n0yOHS>ARQEO5u;zG?tKK@6-vx|jD-tKDtjS>5_X81yuK_MmDaim~Hl;9-g zl7OT$qt!Di97+osLdUPYsXL%^GqVJ2+PBrH8OPxac)+U)caF0><@q;!n^-FSDkc7H zQmT&dZ_Ei60H`|@;cmPbZTEzWbIRA5zb`_)Bfg^ZkssZKby^0r1TeIVjKrR?duD3rrYabqvKiuAsQEd`BKjw zYR)6cTvg2%$=UwM#xXeDZ?LUzpyApfDtQV@k!FrRa5Yt{G^;I>=d6=SW0=n8yb|i% zcCAQlgkj4A`*%Cp%+TEj#6UwV$XDD!PL+C^W|CE?Tjwl@Cvdj$W;8*m%Q>Vr(|`n7 z<_-pMX1INPb`!lZLglIJ=d8MOuY_1CC$dn9=&U?$!d&WwCiJ`X&#8gQuYe^IflE?d0oV_-D!jc zV|RaMYTfI1y)>)5#;HHtn$;`kHsgi5MYm63 zc_ebFthB;1x$YW;4y>6EopCSk2@V=3M#C-t=DlcdF}Mp#5dU5)EW5Oc!+pR$k@+^u zGsQB)77Sx2TVly>Zi@8=H-zF-8f#Po6kTC{m~mqGr}=D0>{vsV?1t_SU(uamr1uwK zJ5pZiT;m*gVLt*3dR?(|g@!mBqXsL|JUI`%3>Iy)%`$^*-soNtM|{E5!RWy#`+ULe zm;|oFMFw%gF1ILG1O}j(7Vw7fkBITqiHHh#r0C*M{8*5@|BclUVt7Xx+xNYNqcdRMWs=OjSGASP|5%$zZXw|*Rlkg?<&{ugU>PpL=L`E_9FSFd$kq536 z260n}I}(%^Wp36Cj`T)v+|dB3# zCh4{fjGSxD;H!E0|BlmrhPWH~B6b5b&J4(x_y3HrG1%7`M_lMbk-`?V6B1?&Q6qU` zLhh^iiYb(3o$$BOkUn^0Zm&aU;kpp(CtTP8+du}sAs2&v!hI|!iA{h$lqJ0oiwrw5 zMKd-E*NkzTdG!6b2BTCzB_J4PdkbGATR&77w$GV&Lg@k6j1c5NdzX15xnH?xQCNB3 z){*6GgvjytopbHTqtg}2{VBl@w^4RD>dcY$rHDf;bgxT8jsG_-tP=DcbZH#9#Rpsay#IdV1`AaNlvBu*f0tEwvMmAm_P%Bxgaw~YBL9T zmItr4kdpwi3jYu~l@@#aA?)`#v9ozcD$7bVv91(+WH6>Kw;<0wH11txR)Hb#9zND? z9*2^}Juye4G(tNB(@fZw$uGJjAM~$VjVn~ELuOf~)FjRr9MGR*YOUGYt{!KcQyZ&n zhZ;ox%J;35wcQ=eLuwR{${`Y)`%Vp{sKR2rBL6zmsX1zwhBk;%o|5-cCG11g6PWrF z$VGXQx$*sqT#2+!$1w8!4(YO`Y0+?bUI+}XD@y1pKVUAx&j&hSQ|zNG>{FTX?hSEP*WiE> zHYa8DcUa~d!7Xxzz!(Sdl!?L(^kGJ^LIYWFEBMIv5+Fi_0n>}%nufn_y(nVr<2&iY zJ%J*CY{B27)-_?Tn~Zx~8ID;bl&sV-%AB|~ig|ApQSVf++zuoA7j-Q@X}SfWWnl9+ zTRhfjR^*R5lxzm!HI69{6Xu@p6Y~n=q^7VMUhP?{nM%IFx}B%|ZGA%s|0Y@FSyvY% zQXdoSCIEi=$OZ>~A(+O%z>sBczCh+{kRN#MpG2y4ws9L-%Cl&VGq4T+8ul8l<^^iX zMVH+0@QlXVW4G^kKR%AN)H3wYmgXfe66V`A-qboM!I>L^PD>rd*Vpog*?jp}E8Iv5 zcWf)zvl)%3sEl~lE9AEaX20yxXXoevwED-HFxZO_I5Nv$`v8^cL{(!_i{X*|AUZUCu zgf9OO%Tr=?k=k3cFyxcA5n)h+DhFY!rN*m|(eGnjXF~EkpyqRp2KdQYq-srUm>disdA3mxiEtFBa zdaSu+&pt9Ua`W>i2R|qzF&TxrM*J#T(JfZ3zpHG|b8u zxXDsx9FAM8-k}342-)J5iCyhX`Nu-0>@6~SA>YC5`18thE%8A+C_-29%iTVb%ISeQ z@c12!i5>OGk&Fge-a^TA6oID6g(+vGM!S95A(WT}_;NmJpIHk)9b>~|Zv}`EK$7Io zaENd}{*pJ!%MyL$7-%4OF_>v&XbiNO(rwEmNd#n;Kve4=o+i4#vedV zfeGuHWrAl1RR;njH*UKfq?dr6;bex)oGeCsKae_b*MM-?^nRE{cr)hX;8WD6XOa>4 zAzPq14#huG=Fz*#_{%%{_$*Al(r$pua6_R^b6*^NHB&ri_eFW|7ep%sR2`9C?!d-V zh^*ZG_Yp9M6o*7myedw)j&~l@jj+|-vaXOF$4LsgzZ5`K;{!B?ZifZ7Qz(lYGc;Wz zVZQ1AjIkzUPc^j;E{mh9faH1bv3~sXxr(qOG=_}Q`{};WEfL52bDfn@^H%8hw^)5v|Bp z(TrBn@(2J5&26}hkxvLndxY5f#Quim9-tK44mv<71pYeaK4wrAoLQDrBJTBMU2U9( zemfa%dtDG1SR=v-bV6-bz{yJ9Pz1eH7Ip{8)(&Lp3dc%){wVJ#KD!;zLoJ6uWjlz@ zB1}5(S;4e?7-8nA;CO+B&Pi2ui^CeHrpLifGC+fEm_5`bl9<+7zVYgk$j!4@E)J2# z1&khqllF{-t1vf^>=~@tW=T0~{|q;kF)|y`kJHQZrrP)-cpVht5lSqI%jTxI2}3tU zi>I#sEqRhFnN13YpCvf$F}*$$JHJWcjr~Kvt>=DdpF{17s_e4??Ngub-%>NOtOCf@ z2B5k8pQsV9_&-qtvR9@=&5K8FVcx~+ zqlm_Y6~bX|B4(P!L^A z%Eekhl7{NAU9bpUlXGCbUzBt~-(0a@aLEK39#Xakicbq2$RFfdF&&L1;wT6SoW>yqdI&PDY1t|jzmZvw5n z_b+M4>7T|WrhPMKX}pp~0|1d#9|5s+VIty$3bK(ENhc)X8klVF7>iY$appaq{Ej^= zcY73`e4k&{(5n|Tz77X;MPMRCVp#RX>EqTl?EQ4@B@KbDP>hD7*tNGQ!d3Zs$8CGj zylv+*BYk~K*H+4t^mZS7q@5I8 zO?X5&2~HZjib{S1W{Rjwn4^1A=$Lf}a7##^aw_$6g0r1aHaX^*y|}xzuB&+5sTx+X z_SyM_xLz2u*t;ZPA6!GTLEUF$#?LefY^{f2;h@6;K1G2wy`#JHn-~?sN$WQO42YP` zar2GCLrl(~gohH5J%DnbRzIkVd4O#Qev`JFN5M5zW?P{Uw)5rPZ4weG;D-bZA42vc z?OCQpCit<)OpFSnbGuul{Ym&FYZUMFgFGE7gev3+vT>M~fb$@9K0-0?jJkyK673R9 z%@NO(Mjoa#n|x)P&dr*(kxp+sm@>)sRGz7|WVyy{*Y55{8-T#cGe{N85_#Gr(-^M^ zFRd zNvbGuZ;vVxCZH7_G=MWiuofL<(KUWUc`xg|*MM zzuGCBX_OqczM3)>WvmZziZbCNP&m*W(=I$Iol?OCzyq&PM~nnv7M^s_Z41Svu;<4s zbn3a>NGh0FEofW&*lj!T4}`TF81oM?-Q0N{hw3a{p)+={Q0eh@*9IohV!l&P1Y9aD z>=Y|MqC!+egR9*~=2e^c*PD*#R!9fhnEcMMicGbN9HE)R$p5!88xZjIcPP=~+th^1 z2VrIvK&Jk*6D!3HJOVPY!lck8sZPE78)tJJ@|K_Ag}}h%g$@H8m@l5G;heenD+*XD zeo1E-TVL~Ql&Gh6ISHChAY4BEY5@1I0I;P>f20y%f_8;0!c^7I zwXEDjKpb9V7NXRU#VQvnf_z=Zwd4`k$g7(_>-C^#}6*uRL5WnO_xKPL} z!2OEacQoP~3B({IV}HL5XJBVoSfG_&!PV~S##%(Pa51FIAwIB3(F!jm9h`~D!fKjD z-+10H*kM5sWZ76r7Ao)%HoE@HOCY@wgr(Xu3)cCRsUk?l4#p%wr-=C%)`u7~i@8iq zIEPcK4CYz=FYtRQ&4ar|sJ&G|3~OX3Ad`g~ts8Cz>yUnijX|G$NJejVh8wb0U)_>( zuh02cNwD?xUi$g#L~UyGWcxi+>A7Vi$91bj;H$FGx8}-}c}MNSP~#Qjz6_)-_i!jR zRM)B@(GS1#<&p-U&9z=Ox$kPkM4r0Yi%Jsu_2w8;)9b^Wv2<==&An2@MCT{NfCdEv zxX_(G&YWUGU0QYA6;|>;2BRu@COQOk^uqq6I|K#UEFA`MZ{#ZN$f;}n{6UpJ-Dz&v zP6cx_H^y1*6jPh;C-sAcf9$NHVlmu4-zl59@w3q3KzYE}_wx+IT%e2#GO@ZNUR2*g z2ws-mSlze)9W?CEFuiT+cI()l0dJ6L+AOKfPvlIsWkgLeLbTDnJa7IPyNIH}d!&n8o3>P290JOIvun&-5 z{B2D@)h1#(v=ILR&Ip*W^f#)|MYJTu|L8s z4T#b+%rT8`$aw!<6BvPm2(Xhhmsbu&_GsYpqJETn&Fk9h{r@If`!@Szb_(McehVokR z>rm=A;N1X1?FXvb7e(HS5!K^R+!$0Dwa5B@!ywhm4}%eO6NBm!Fs2DUy z&>zwG7?VJEjD;9cQ2)9PJfZu`GWP@i%HlXo>PL!sf4b7vOye_RRqc604FMbV;1T>U zZ#5Hw=>)0Q3g>cXVVi8UtX;~O--<@3e|3X8jZAlDJbNv=gRM_7%Z%@LhMe^yvTn9# zEs!H0kr||tZTXY;1Z7tGs=>+s1!hXLrzJI^=hjELfzM2v0m@|Y`Ylo`IT$;njIMr- z)59->$;lJn6}o{Q449WEO?J)&6$(Fp6|-C=D_FDfdzBBC9St!pkGa*A*eJ4Y$o%}s z!#kmw&8$LjkuYaPg_tJ5)z1oiNG`ws1OGkiCjc zSrL+MDm)kmQz;=#tHR6Lu*>r;BZcTa8mW5CYaDM^h%F%of8~wRoQglq%Bfgs zb_=4{w6pLRjrier^I)SqF7@#$n9j~d$poF zL}wzW=NmS(p5P9H#+p@W!!cNn&NK3bd>J9Q0fbTK4-a=S^oDYrepKZtF2wRbBE&KOQH=r9}mteQh9DE z?_5{8eO_Qm>|ymt$Rz{myV%@MZ$92D9|pK$0Xoj7L3XQ0XAry*^jk4YEr7W{63XId zT=1+H%sH*>!NmVM1bmW%{`_7_O(ov}C-6%07k@Ar=P(#=Unq4T)V}67m_hD!(#s9j zq;h-e_d}!=CW8AVBzZ(bzVFL_RN^egc^Urn*LZ1JK~~WgS*{ob^vdJ|btb)WX6(rQ zcU+?o)1-BHOA%c@yu+@5^6PMRGjumRq(d9U_>qW21} z^LDX+&0=?%Km8^0cq^x}=PUSL74U`$fic=8K5Sbo49!SURRe5df~U6ot)*;B@^&9G zrJthhx4JMx3A5|NcO3PdwdE;}WguXiI)=oEhPDf4*ZjMrln%b3j0-&%k?r7aeaaO{ zMqX2`f_k2RP|DoE(hLSHAyyWEWqDe|Con782Erzu_t}^#ric@+5v64V)ymD5c=lWV zmR6tXy?U8AoAqk$981{7-e+}aG2l+9Ym!0Yt#Lv^E-|4UElEPV=W7h^KU{E@NQcCQ zovMog!e*DhTnVN5-wkBa-v-aT4>xw$z5^we;kYX!tAhXv!t1K1|2{aB zsW3CspnlQk*T`|*>{N9O#!w%H~4 z7{dV#32&fHf2Vt7K`K7PnK+jxup;K_5=Tc^oAx0QXZ_D)D?1&)_gW=T=&PpWpUos+ zs0s#e7Tg!wjB{W25h0bk=3R4)^i&Aw?Z{YX+Lf>Q_}SU-D3i(In_*JxYc5j(!%~-Z zJ?d{j@eY_rFvLoxJXUA@U~#@@H$%k5Hw&jK%|Mc8KZQQ+GvfP&zqle==)y=m`&-!5 z2lzaWF__Cac_9PH_?svSE6k0>yc=yIkkPmBM^B3^?eHJhxKD5?G*P961+G9I{P!BO z{Dc{}Luj1~pm|8Ay??%;5=Ye;eAxbyyKkm;pOyd~j`tHez-30Ron+AW8x_wtaqA$| z;*&S3jGd-p!(@Vy(39%^xnuz^qYY_hgtu7!42r)_`uX_)k=!DPG)JA`Y#Huemhbo? zO7hG*&b0Cy!*j{(+1g)n8+qS}Q}Ct<)8bE7E)=J9y3%3)*_(R{ch(663f6vK!o*M| z=62)q)sK$w*`Op&%N%}aOR9Mk6V+uTfv7i}UhHMF>Qz=IY*l6?x!C95#Sc$PQcLpDqMe$?cw@ss0lzm3q8GkWOiw#qItfDNvf0 za)GaWHZGb$6RRD^L4#BFF%=+kYw!Axka~<)&tE;wTcjW)mevJQqr7Hq9)P#ErK7mT zY`nE2_HKs#7E-;KLwo?Mt3{eKe0@ztO45HtI(YPCxpKD+26(Wgo{gPZ8?#xt>^v4d?)`{4=rC|Y-u1}=PduxBh~FC&La1A3 z&3Jou!PVY+2X7o#^T1=15#k2CCQ9^VY;t4tJ`rdEG4{B?HV{WCH5c8iliHl+c!`^# zq(O?Md?E$jEFi^rR0$Z`Vp+tr_C^ln?swK;75fnICEY=I$1~rUG0HGU0&xCqqg_G1 zA*PK@RAaB4vHPuLw;MP(D_!`9mva)$NCES-oJ_Du%V~++8GB)A@(u!R$!Oa+s02w> zlD8SW9)1`Gk1fc=NKp91{2?1blBM4zoE4C~4`x+i61sbGR0vR^8#$XDH)x5YtVD$p<1~?s^_QbieYppzTj;Ao#JwmTRyRvvgr>eR+AT*{&uSM27%l zb7%@T1DlI6055<6h5_VDU2AAvL=ew4fM(+QfrHh0we5U8^jgtxOiK6C1NSuygl z`1RO-hier=u1_;^J3c?TB+IHa1vUfTsU811GxxES{tV!#L1y^*QOb3%W%H!%gXV=s zTbpCQEkYr30hZ#M$|Ut@5C4N@H+gY&q%mzSn5773T)l7dN|>xg;e=(FoAkG36WTVh z%)faK$0V<%p_DhHgaw2tZ5@))S7cKk8U&eUeXf^MB14RKPv6AlFJ6eP|0J z99<^51atr<`O>a|}xcv*9vqZrwYohSWarW)+98@(|&2j(cFpOOhdRF6Pg zcDY1G9IYZO>`$ep}=}C5kkI+?!O&vg(C2AD%?H{9VOt+aQ^9qNIOTxUTsOD<$*J^4be$=mFayV1zlO^)dTPOzZ`1z85nVa zxT@7J1{1Rbc>xJvONOvZU-zUAM+w)=mVkQG{=`(Ur9lOL5XhLrh*vD65`JXv>0+3$ zGY04~51j|R+)IHp&EAk=AN(PG=cYDgdz(0<6_6ndiG9JtJ=6=71VZs}tlT^8R{t%y#XtW{k#b z100@Ol{i^Bur19;d@<39x=|LYg+Izy2HhWi?cEs<60}l|?ZuJyr+;}iv}zWRP5{WX zt4QMT;xNeshY$$f;J0ToS^L_1!a95rWhl?fM!Cdedpi9-aX~hI;?iH*Iv$}e23rAl z>RqOM6zq*!YJl zAx7T#xK>iafyp9EcAlLZz zRLB_2-cXDk&AiK-#1o81000r)YVdX+UMtc+dgd$ApQ!tN0Vp%f6xpyU55KK= zPksu_DtIeb(T)=y)fC++%-zrQ{9*p?=I+w8eVm>mN61hd9f2S}OSp-PhwsD_1N}^M zOe%+R_@j2lJJ(PFRgJar{H1dH`!&I0?X^*daYo95t1;H_5&X2pao=)$>%hVX`IvUcH^meZ&=ZxDWIeGpO0j33o(WW|o zL1uP{B+!>Y{)IEn&d4q&9b0X8K#zEA$vLi>a<+zanZn?Xy0bc-CQpl1(tiLTtvz`6 z!hGv!3+~{r@6f${^Sybc7?k=w`ueddB~||%q{xl_>}iDRVf^fA{A|#7?LaNGDZafC zv*VxfvIeufDYW;AekKOCw{n8n*k8Vc2Dv!si1>eX(n zWCcA4R0fxPM63c+64awXA_M{!#oJdH8uI1&H?+mHZRyTakc27qX;$DL_{jc1#Alau zL?;o`_SN=wMweP0SH{iSGZwdmv8kJs5=;t_*TuqBO@&%YTZL#tVtX`fh4{HLIyjPF zmXz~?ePivm7B{o9+)!>pZ|;b@;qQ@5E^ULQ>_*S<6|JZp*0Vef;%WvI#al94`Vi74 z2Y3iu(VN0hFgU`lAiOV)HC`z+FEylamd%&_PQ-`$X@9(W4krs~Tss88+P$Btusw)- zCEvKTzs)y+qN&m&n%_ls43R(4{k9~P89P7T2&$0W>&p^s$gba2cp*1ZK*oVUW0INvA%+;5 z@!9w%dtmWjLGKeba}?OJ56`rXz%1oxo`Gv!{JE&`)EyIuVw(6G8Ox0!u}HUq#IF_M z@_QUpkXzVBVH=RZ=g6$7uP|f%tqb|xNN{Fncuw4VSS7O!{5g!(HMus*MG5&ET0p4% z&P`!m%++?sBsNYpiAwDWi^I(iDI!bh^SWbvy9Er%-22uF5?XPc2_mWe#-%+{~& zf8#Y#3d#<|S9E?NtCBt*H1s~L9=pp6Zepk_5OwdFT$QnRP3D~s7=r%N!3Lax4Vl{8 z#=n{fCSCy^@_>M-1Guv_&ZKgYN4MhA`%_?a2fd91Z%X4}l|gjHL96Q*?> z*EoS{^{GSm0re>z5zO1h}JddBMv$!3%a($BlXuf;5GJnM1bfK3F-|u`zhK${5$K4CP zB)k2U%%X1C_}l)Sx|tbC97>0l@qHhU$C}~eCu;_=XihC7aT5X@aD+BKo|*~#^*Onz z)=i$&f-eJ-$NlODSgDA&jayjQI#{VySN_{qjQ4F169?E^Bh&y#`p-TM3?(-QLZKD_ zq!b=vYda>f>&C6G1dpC8fTp1`zzr&kUwZnI{K%m17}e;x#q_$Sv^!uG3)>PnNqMi?$6@mR@;X zSaM!P!E->;hN{l})P9oyS~NEWxyb<{7${5*u-kkyYJ#c-qv<4nSr$Q3Y47n)v-%6u zy0?->lqRAJB-+^Y`%9^8im5EoDq-v_GbkBOs^w8)nYVJpoQF%mm`%m}Hj1qi_*O6L zvX!8I%NU#}q^)QiM?LNzhmO=(H9&rE*8bNhYUfq`?=1)501iQE zVW1J4@i4CtnvZu{V;tI$G|JKx<|1}@s&oKiBbUS3nE>$9#s~Wlfos|1)4B~MoiC;> z&|!Msg&wbfc1DPC#S@IwSr1pOSwZG1VRSwa_Mi8(SUGTNqReGd4;E5krO6d3MUG$2 z9)rrfVT9PWi;*GJrJC{%A4UKmka{MVyax#+-rXROnQ?9}$c|%ZMy~;Zxd&HbL81}5 z$>m9PJDsR-oH<2S`#>G}P)p(BGu+ioTG#EBA#*wTyw#nQ?grHcfyq%AGniDO#PD{B zJ`0St6%VD+<2EW1+qL*jH|07rYznBo>XG0N(AYmJ9@WijtI^GbOay>qgwpG3Z5yZ= zjUsv(jOouAZ>x#IkK^|_r^l@d&_4e`xYLzZL|s`6g{{cw^KkyG!_v-!4b|AKB`Ii% zVl1bSJIAqvaO85mW2)NJPwMvjV*AqOJ6T-n)tzHTkzBjtV^|D*lf}>cD90yGHvMVS zSv)I0{zp9>(+Z{3NeJL6)nTXJ(W@J~rbCAqagHRoIDE(DYNt(yS6>y*Mu6e|EZSr!!92Ftg0^Jg6x#--#;v!Nf&_5-$Ktp>c_LbstT zby4$gw@^@5Ml4ckel1RN|N44ZRLei34^0z~{B=fIbKA5Vaxg$-;%rvdlSFLoAC*s? z?K2?>k&bV_6HkRQZLBG$I9r=?T#72>icx*6_6hh0#|hMmmkfv8P%K-SYqu9D#%gFF zetBV?)!mk`Y@nyKhnsbyvwnZq34yIKv*N#tTg9=BE7sYQ34x?-!>4GGZ7$563_3O; z_k1qV|Em%3*?I{$G@h79v3o70s!(C;NVMl4xe@1_=y~qC24M{VML`9CMG3indt%?O z-gHxLpUH>%$B!?$PC>7mZ?|7>Uyh#ZD+AC6mRbF3cwHXnGf+OR+%@_g&iB#FC7C@} z6k`pxo&k@QZ7?rWxSxXjQHXt>_E+4BIC@|Do39xin-KsUX1F>m=3*`{AZ@ZqktZcTPOBmw%hrbX_0?M(023#7*~D)bYF{gq^F=4wTSXReK(G zt_`UaN>AM$Y3!;PyExj=;TaZ*#4*=WKN$&KRxZE}o0b9Pj{ot^V;=HU!lT+{_3UGI z8_Iov?jN0RiJt9Ktj;K!-22vV5NeTj_y2o=Y6$OciE{_QlFy=YW9%R!>==#&)aA9d zWW8+L2;H2%lN@zbufFLdV>P6H;dnP zNQ^r+TARtrU3S=Z&TvQ3f1%J`7wQ?#xLnD&_jVJkDN2;uY|alibErNE1=YujVjF?$ z#+9zc7klYQue46W!S(#$?KqK8q>qe>baTpKtuNQCa==W7W#63Ab7$oLIHasdY4B8W z0OS`d7nlnhWvN-6Ydh@z^Rgx}8@8wXm1a$GS~;Tpx%$iPBVBakr*|n8%kfFJJ*8#7~=9fhXwF0zC83KsafLlUSxHC*M3?cG8|mjPVMbQ4_-( zd9zbT1=sl1#4nkt+_2ELfPpjJbRV%fpnwy}E5gsyevqq;lu#Z%h9X59)lTIugz~X3k z87bNC$}@$e5(eD{7HDkYfjF|0UVqAf47Z5r6kewmVNjhs*9g+btaX^a>GHFbZwl6T zxXgFd!;42jem`LWJepn#B@ev&Cgo+1X8dAj z1I+g3-<{E>PeO`F7Npt9xs2KeQ zc*{w?9;7Jo=$V?10X`#cFDcfRD4!~Cww+SRE#6=Q#=aU}k1QzkxvDERtk2;GsXwGN&E z;)tM`&Q7f!E9j3c`%j_d_3YK#^rvA53$w-ds{Z%3==8!b&$&-5_0U86ZxCCjI9+-l z(T4A_#a|y{L1(BTiQl|B5 zx&ZMx!FK%E^ARp4Hkvvn*b}?dXN@50^*=CfoFTlF4!=7G#ems;jm$ zb(>S_6Yg&q!wRKju+q-OMlcSX6n*e(ta-N?Uw!*LA$r|~L!kRO;rW~sIeHg)?{gqR zd;IHg@#$fP@lghRyKfu}$ywb>i|8PXg!R4k<&O*>0Yt>dvm8I0J{$Hq;Hseh)P9Z{ z4X1jM3T*L>eAE3E>;8$y)(A1Py%Q$p=)`<-@QHFUfIJBK(w6al%JXAQrOJl#yPewX-*@WXR>`j=$^rHmn@xDL72#IJ1${6Ee_E1djD227 z@zgT$rlhN{zWSscHd=%K2lYS-zf&tKFz=wy3@i^YRmB7l$Sq0E*_D(NiPx3|fEo}P z3Kp{fje+zhGi>!l_L#_WF)j&`ddhdU>W{5klrpwryAl5Em#( z_U>M$pUG6sW@#oRrU>Z+OlV_yI@s=77#qV6xD;jv!Z@&!Ey}aj;C>*QL7{b0Vg&jd z6PsVl(hN&}C{o=RjTP&g+@^_3;L$5LJ9 zXUIyX@e~bzKpO@8!g>Ir1o%3~2uv!JUHq&zE&#HvgX5l%ntJ(;DW&^@A*YG(ou&oK z={e1$AJ79(6tuHF37{->1SKE#JD;Tin82;e>7i3J_vU4sIvm+&YvKuY!_43z#;Vqg zmq457tpZ9VgpAa%ZjYuRP_3Zn3`umrhEcX7%w0Kus>$sFqGWm7Sq^~237Mf0)r57O zrMqp<@|(DM9h9#Mx3}<6a;;&B@iZ+2V%dXBJF?d8r#lLsH&rkLQ(`lyrZb)<_liQ- z6h~TM`~jY$mGt+aHQXKgvbPY|k;B2a?U9=UJT`Z&VnX zRp=UjExT)kg_Vq)4z6z^-EoGNQ%1`=(J31lDrC?6kz+ZQtIZe5qT1l+(_&45ur~m|mdB2xVKngn2S8c$Su1 zjiOoofc(QkE66s=wb!sTpomt!^b}tj$;@s_f9VXivWyA_DtKO> z)5CSbQ#K;BRx*5zgg0J;)fZu*Wm(A#ss078h^>AD5FN~W`l>Ds}xy#4LBKmPdR1gL%nRC76B z>;Oqli^YrvCi<(i<=~Mfmro^gk(os9wE#^&kK7AM^9`f0I?=44nVcm%bE_GYfVi*Ku^lzY;6Z>p6*bHk|4qiaT~e$&p|%b~aM z<)?7{HFegjS(?>Lh*P+DHbV=5_NG4boi$uwNubDwdohHQ2Uz!t@%zQZ&uiI#AD<+C zUdg(@H*OEzg8ytC`S1Y#;2{3682RzeZO0z&M;6it#mE9X_X>`pR`+6aJBd4mZ! z;QZVU;=`B7_t#Q$d+`sq5Fe~%-Q7a`$^_L2WzNzm$NUL z6j6!1nXN_^LsYEOJ}k5WeD#QbwSxjnB_mYM2=?*pC$QWx*UQJ4&KTd?!PQjY#%kPK zjr;or2Fq9Y`%^Od`G$D*9!Hd8Z)e+9Es`kyi8&zA*5N3V5+G6ysm@-MIx4b^NlmXQ zRm0+V_+FO!-;9cjGQ+UIR>26Fo{@)109BwTS2r6uVUCLpQ*vVyb$wq^XN%Im65t6ujbb%0+&#z>FP~ z>kvb&{8vWcIUI-#IVV$pp0l)^Zng`6RQIo}9n16$gyT3Sc06P6=Gay(cJEpW0t}sF zgmxsk#Q*eMFUQ$NIqPv>7v+wyJaET8fob!Lh6$0Wo#i{n$f?DGZKSUyo~7z2gI|mJ zK^J{IPlRJUnx=u16_jK;OVcee#)PPb%YeYv#x-wx(FC{+s|&t=-ovxQN#M0!o}-!a z#E?6#vxnpCpgc8%7nW{Ga$c0{Z?<9Tmv*fW*kY#{^nSg;kqpYniMy5sdvFJ~!H zPA!3LNa&~~vb#8cF3>N^TTA#m($|ccRyA`CYm@9(4eD|%A8-}E0*}x3B-Pp%i7QHT zxw^Pti1H2r_M%8wdFV>^#$K+g0S`>b^%u6CYZTX*kA`nOgVj9Au9Y(Bkiv0{6Q@OWwfxr+<6yGTpdmaxPvaV~A4mo=u)KuZ)Qt)Bd8vZ1%2X$$>O+2j#A0dO%7$lT5W( zU_fMPp*+BtHCW&@EqfSM`EkSqw(G{M^DDQH2DhEpWk>a!JB6MqX7*`XUIQ7LQs)er zHylevRjV3*S=obp`+*c!hd|TCbAnW18PsE_((70L@t-Ecjjv|E9Mx|cwQuMO9on!s z=N#s!(G~V+b1Im@I&JJR+XPjk3m>=-l96QG&^)u(anGj_v&xYMR@0aPE|ik22W_AvDoPrZY# zo4*nDDGDMpvkgVSg(mp!og1S?KE=XizQWQ^Op5b2XG#i83+D?;BDWTBc>YGQ$yXYQ zloUMvN?~af{uJ+4vEY1c@|E0}N6xgSg0d&Rr04>ZqG-Vvckbp)Y2gzGScNY<_0Dev z)%Q?;pQh5$o1el|v{+$6o&Og=H9p|7SghpnR20PxGYg}L7W+&^(RXh|J{`HKC=QX2 zu8)SFh(u9T8e5n<+}&3kd*?G6F^BGIx!G!Qg}B2!W1##8bs z@|BFvf4=%|!I%rnrbfe0CRY%>e*0JR*Fh5T?ve5kM8g{84O ze{xWrnwkPo{ky;WyI*6~1xo$9csqFTU;3A??w_kA4ulP{*>2ip=|IoG!k9 zp@pYA$7N5Z>j9cZq{cpx^?bVFb)|Y#mif{W$w`L(Eq%s_$nv^M1z+jq+JPNj)o0$> zNIa?_=C&Kfp_x6(?ZYAE`%>HOU^W($J``hq;dzq$8I!Ary?rDjBE8xZIYq={;= zPz&kLUqqHOtUzJ=lCx_$hJr=zF{vTU3<7DMml-Bx#;Dk|J2?js>^RL|Pde*=S?VLH z_R=(G!Q%8jk+F&yoR%0T#g>JtD;MM5w%r`(h|~n!)JA!LQX`am5V;LosxjpM2}E3! zWL&jKdyp_srOZ4vsy>w*i_>icNKd2Y!LwI4~XXS0BgKN_tT& zE!$m9$zR5_27@&WY-O+5p=|+3pDCji>!_l{2!>(6ZZDo>!7Ge9sXjDR!WY zI>I+3vh?xo)hz3_rJ9ly_c5Bci|2rgOH&I#4#2rvma6*rrY%XLtxIJCJVf6hs1s@V zy&MW+Xl1*GMAoyIa@8V#(J7h-gxP@m zYvR>TEgP&)Ei^!wLq-r=qMKua5wNcAm^ySIx2U! z*!Ok%4vk2i!$R9B++0hb>{4Ak+wrtq&{u@A15g8T_s7e;cC$TyusC6|VF*ZU z`^1(o?gI>OCH$lIEscVeF@gQ65_y0F6gQ$$yuK<@Rhs5*ldkP{?k=O}Hj;rT+jB9n zxsF``V2&KfMv3aPDk>jlULXBmGs(Kt#DFobgH+4~>W|r`T(vhby8yR4*wOD(R4}Y9j5M zleo1U)nx9TYCI3lpP}VdF|tu=Yv_&VI7`bLUw!x-wW@gO%2V%9gzaTX>lYUT2C)+hCcXiu;cfsubJ$3>9;Yxt&6HsOU zB%AxwFLaD1Ks5oXpT)7ySX8GYDkKQSYPv(gS>a7yR(;t67P<=9B zML|h47G2=Tc=Y95*c8X%+q0#gjJzxg8^mi1k-v(FAXw zAB)40h9@rs;9Cu`$6)uH#^u{HrBC3uVQTjJt=pe}8T9o?;lel@BH;zO7DW-l&)sNP zka$@n770I&rH#LfKvPgWWj((h|9t0HpR2xWPlB3@P+yN1$c;PigiDGGwA_D=Z1eV$p@S6UC#q{`9WDqobq$K#%$Q17-OS;BxCOtxl706Ta{e&>!Ftxmr|^#s;q!-xkB;CUpTK{968Mq0e*pRS zK0HD^JW9g(`TfiX+pvY~zW4Xy^QTxS=5!Z-24BCuminPb^nH);&Q{`Qn}~le;LVk= z-m=R+K8fGkj^9B9ir?RjBeU#!@`r2Lw>MIEHxlozwPIG81$+AjELe+q+BnuGj-`bH3 zxjNk2!?(iktt@*t&om)6OiB#>JlmER@*4@yQKlho_45L3jtZ^ALTfGVtHuK77{LlU zGS!`CXlrnD563+zHPvChXxu6q_hR*b4hT%u9MOzi|AtD{!t$cLy8>%zT6To=))T%O z+;s-CUr;LBkWtJBifbgjy&}^f-!dXHHS*<69F%qH97Is!0^Hst=(Kp6X72en=i<9ZOGv01#$HW%wf!b2b5Y% zST`i`My0N|UwXNY2wjMmoldl9ayUtk|kH+JjS_KAG36yMThO)E0; z7vnpY>O0wvmU#B0Xq>X60`2;L#g^AHv;ecHK#af^i>EjS&DMadMA~tM`ZcAhIi5PW zhvORL*@wj5AGY>iQhTTC+WM9s07M-?8MJ)E$kyxvQl63;0RWrGP&s?mAZi65R>97Ns&KeO&@Oj4Eo|b%H7c25*f!bp!Rc5P@bQP>-WA zH5bS>zPzA%wnOJol! zLX*W+TX?GjOC;4)`uVJ^YBHx5&pDZvQ;&NZc)8b3x0{~h97-|1vcy=)%bQ+bdWM!= z$p~#*Dm#s9A{WNT)2PfD@dI}e3ryHV6}!L=u* zzjxvustq^h04EE7o`Bmzn<z_rfr$)ZO(WcT*ZZlg}5SPiF z$I>pDntw|8WwQ&Cn2TfUC+V9IV*geL?004&Pi&))4Y8$vkvPpix)F~zjy`$oFc+VC z(alG{uA{kY;io~>^y{DsGn)TA^(~CKbn0OUd6{qn#9<15l1%BbE*{-1F_8sj zPa;6)W=xOg^`{0^XoG`;U;gr!7g+T_|MNdTq15f$w|}w6C(#lu0jhs2Q2qD+c*C1B zE-@abXLa#^46Ph{ly99@Xs_whw)i#Hp~Sxcun%_O4-ew- z*N@<`{n-7jIPm73&BWcE_}!h@tsL&$R+L8R-X8pagSFJ%?bt_$nD1=`BBtQVxo!CE zRn)uroZByx4-WzG5)TicpWpEdeptZy!E(-byrPHunSiUeRQLh-y7o)<~L8(gMvaAI$wNw|EFBQepxw>*hHx zDRfPLl_MUhD{a5NQ} z{QCK}a@-c7Twy}rBhb{7uF#_N!)c~It_w5^b8jF5K&fzL8|ei+2P!G2=fJU`dH}tP z3f;v_^)Z@jOl%yN8i&N@Miz=~92HrorKo^QBg#B%ZRhCQIO-vxqjb%nzIMu0 zjoWvnv0qNgTJZuA<(Vs)p`&Sr;-%hya%NyyqJCYO1*++QB`r1shIdh(0fBQ+l~=-$ ztCNYC5>-m=<+%H})-w!q4FL~`x|wu>`g$cuj}d+j%xh=T@*H|rgAnm1=(>>=?3Lt1 z#rf4(u!6`skdjrBYT2A*mi^08xVR1r{F_xaoo*NrSO@vGUY_|B!*Yh^?__y@PSbMt zEVGrS*-?@!xgO*RQmUp3PS8Cym}?;q7>Y~fI$_05#vPbpBxSUm1IamK660BhBj(sT zrtnUo_-oTyLC%%3mU3Ed7t7O#2ijz-IQLxx7IFIk^UJ4H9v;qDH9%3F^+9ABd!OjT`LD(&Uk3l?!YWWgb2UIRarnFdI>^)qE{ z`?$d-wmX*YJ)drig%0#twlrjHp4we^hFXcdubIB!v*HtJ!CJz(Z<)t``87_9Fw`Mi zUPrq2E_0v3)USJT9{%uV0#p&G{?9Le-^+P7$ot6`I!1I1d0GNg6QKGjEBOjOZAB&F z1>fDcmnmuT`AqTVTVPm4*^lC&TKpJQ;&^2$`wiS!z%Ei@TKKwe!Sk~Oz7^-bqS&X; z@Wq95u1K%BH!N!R6hmwPY3zb zU7i~G{5xnmB~Pa}nwwqt>w=AV=FVqt@dSWB3vP1_rr#AQJU@5)o$IsFaLHq9Z}I38 zv#H{-#2gCzGIPNj2DJrmB%2ai6jpyb1*-Y(>%rGjj!ajLeWSNK`m*u)|+U0kP@jIJ{54Mtb z50W33;y*uu&F#Q{?!AICCfzQg?(S#Zd4;^c9~DBqy@o=utNXDBd-40bi3i2;luAeO zkB{LWAHg2(!RAX)_$pj*X9xLU5B6XmDyRy0`{5Si&Ia;s5pj15{y`BwSB%}?Pu|^5 z&h5lL+(^8)l6ts@`QbJKDE0Pg6q@?|9RA#4*1LI}dqt>!ho5aG-d|7tD2Mw^gQA@s z&+5Z<0x*ut)WBDzqw!m}jFs{EK zHPps$(aCmyBUenZx5K}4P-sQDc1ho$zy?$`Ah%pGI!@9;6SB;6c&6nmcuAV3k7sXZ z0d$xyrR!tj%yY~@H^&)fW*tON1)5AAFhfGx6^ryJT> zC``2h_t#>9K~w|9*u~W~v%Eum8w{+I=NMJ!$}s=&w7^lCxsJ5e;y%FA7Ph64WvpW< z&r9`Z**xIW2Eq@LZx!Zui1MqLA)x-(l`7!P4wkoy35UCk;jd#kPB3(XJRosrCFa?& z%zcV~UpTU}p-i^9L$RV7M>hSiAW+Q>gfUMOX$73TlA%3A4}~#547-VRl+rBc7_KJL z+rzh?pamyo`VmF2iC=(XV=2&)GfY^USr(x0YG!s7(;sG{@}rHUr-m@s|KSWhZ*ut%2mA7G^CJpaINsr z0s6%RrYlP2IYwxJ=h%@HIFjmVr1T(gSS=$$%a#`n74#6G?uI3t({y`LQpQ<&sE6%; zMm1vC9-u!M@FYB*$UoM1hMp7AZrQrbc#aeUfgTcNf2(_Z#Im815jdF^>JsG)IJPx& z^I8aBE$$9H$Em@*HSzZtXJ~=bwvCt1G_Ow*9;auva+Ld%Esn2pj-=@T^CN6iH&5Sy z+q>D$c1d=P*t1utsUj6EoU9JEcf`GadG(8`qiMzt3KoX-43>Es_xy0jx;DdB)z^|* z_8lKNST~}AhsD@N`T7lo6WW|kZ}AD%@^f@l1E`h=Rts}R3Qu1yuC9{jo+Z3TQ$6QM zWti|*i8j=bwlj2BGihz*2FJ{6djxvpGk6yp747|C_RasC|Labv^alaeMgQ}E%kOwN z?*@3ls$bwpfNBC%e+|d3|F&YB3*nH(W#O{NE!@!15RT5i7YEhw6JkWTp?KPvcK*)o zJC7cdj-up~ugAX~nYp>Zbe}P6-WmnmENHm?zX8>2WsfbYHzEsoT3AvRiOoz!ihdWU z{_4?aQQWXNk8G5R(wWZ_!nOH-&jrFm=Yx%L#OembMie*AS%4gVHU zjYq{6$38pKn{j{Z;_t>m)mKy+eoExwaP;PUTo<3w(I=h%+Fc&SiWbK3x$65JZx22P zRBx3o_&ygFhe2DT;Xf~^LW6(${{HX(et}XqY}oMMd3+Kr(GsBg2XC-{&HM26*Dg8p zV)1~=Yr4#FvAL7-^z#tP^`WpwcQ4O5BD7vn=&odHCl$JOo@G>Ixun!w(Pe(P2fud+ zzqgOLvzvT)n0RkH_3?3(gZFL`{@@@vcZm9MD{KBJad$iZ(JA7`E4X(y6Z0kb!$bJ{ zJGj7@^M~irGmhdYV)R#86+@#c2pKYN+{*+%lc71Yff z-s`4}eq=ZF!Ou3z4NMwg$2~By0B~6g=?8}G;@PSQRFkw04^-lR{vMvagX=gAXb=w< zZKYge8OCVF@>a>}Hg*ueb^?W_y1ICJfUi2z+(bFgGCYS;+y|2F8<%9%ljiec^98AK z6s0+GMLEt9iFsITKZ@LdE&Y5O&@pgOkHmeHA-SBP?cpM6N4Waa4E=#rZ4=8~hx;QO zdo|&Xa$IK^?tLkLt~$!u%5p|{*2{sl#WY?A+c6}zc5*C-)08b-eH~#vnv#1kRar|o zM-<+jjCAkUxXTxDj?#?Vmg(xmIRhD{a>CTiHbyz_KB4(I%`_0VCby8THp=C*mx|>mHTy7IiUkt9Zc0$ zVz$jm(i+@6B(O|n%3^#Qvdl65U0AudQT|f9dSe+=zkO*2pyim*+O5fMc9!ny5C!|i{%Xt);(axL1xi%QGM~kCT|#X{m~-i+Bb|!1puWRt=FLmwXXxHK z!qdaIH4xSni$v$>*^_xYOBwkUOmD#=>Dm{hfW0k$Y}b+0oP)~>8VP?BOW&um_iNUo z39>!e$?D}V$kB@h(sz;;T))J1AwyS%@*M#+TMwsNj?vVuY&`&Y1s>`sIN0UbeT43A zV5=M1x+AIH2GR?6JVQg4?kYxh4emP267>po^`yH7_gC`PW~XM>rfZ|Cw!OCN-1Odt zVPy_~XsU(uo|hSVc#djjC?2eBU-@-aC9dt3g=$%O2b1js!Q!_oTRV8_k~GDb*tmMJ zG~=I>z0ZnD)BK}S`$et4PhK#bnLDxSNKvZV^DI&LBCn03i%|YH>6#|hiv6T~P+)9h z>ozCJMkLO+3;YqTzn-mpZO^f99jh+qc-OywkZ~x*nzM+Aa?LP?7G8cUFRu;@R4{_a zXolX5{6SUT`en+JRQ)lUrf>;;FCzwJ2U88W!K+}#Qjd+d8)fYU(poGniTh>eO%QAwHpnEkE1>p@;E&S%#3^O znr5Hef2vrqFw|=(GV)WqXSdb6D=tyYPh{nMu+r$ zV&i=jxA}hJ`U|?4fAWWTNH22z{XF&kZ$Wkbv!J@LT0S+P-$pMb;wt{Lfhx52_VzD* z=}T+ZuKjO5K8coS2~homxA~vGe{FqHx5!!@uiFBM6n6o2^swDAzWG9CW;GUnXe9lk z5;IB}Br?`h=JQHbm%uWSCI5aQ=fiFIhkLOfZzt{_!|$DD|7;WSsG7RJ6Q2Waji>OP z+kwv?#F1NX3GrY*{!s~Y{v_+}Rsuls-F(jf$KHEK#g*OpzW>f!@2+?6oj2o|>vji4 zQdON;r*ah)$W+cbP=EjhBoIM=2nmD)0t7-L=bUrS0_B#v)!iPuZFk#kw>!5I2#}Ck zw&(3#YIl3)`p&G^Z|->Jb^X>^ET}rQ&pvza!`h$v{eIscpvZd%NdTCSvhcg9B;eVN z9PGn5-lu8gS~mQ1{TTM72z_=Afu&T>;h?q8QrYWSkX|=)(T$V%W&w78Hyfs`Zswr( z50PtG#G_0C{PM*S0)XnrUiPEYA1Mq?lPgfQkx0GHt z%yCb#O#l`ExleG7w`B5v>tXWCQpKU&tR~bj##N1SVwZ%PS+4$uMA1*_3WM~u3`k6K zTs`2j5z1Py*8wndNR;?SO75~)In2@YlEyinep&z%LIEwd;{ctURWw)TE-wJ930_oA zu;MHY(pC@4(=Sc&ybM1w#x~7E30!?v0B1?0AD1MwqMnO%%V?B;Iyc<5|FsC?52-P> zp%95l*`>E#10rqCp2C(<0R8hk)j`5V$gs_69>cCtREOQTG z%iQT{BekHPvwT&5EiMuMb@0WI_%|}kx>+8WhDljw_?Cs}#5T;?jJUfAr~))1N?eJK zn+)?#3L^&DmXmDF2Yr*H(qu4G?PN?FuCAiFhe-QDJlwO3-GQ42`3cL>-pfi@@&?df z1wA@thhFn?bR%Zy#+(a0eGB5u-EFLb*^aJrL2)pB7XJYU#7&EKmzA7bndPaBn{)X=T%QAZ}jlj=zC;T_h08LqAo({@uaow#8bj*{#8(aOsy zCAG2cDl$I)6=_MZVO6G?lX+$%llw^LuRF&E6bb!IO*tBF-ou;>OZrvo=yIrO0L(Ab zI?vTNBbLnF&T5v8@qfM4ff)Q=EFV1Y~_SZIn1@q^K^Y&NgJjE zYYe7;;)Wht5*S)BLmO)9#9W<(r;C?VNi%?>m#|z*Is5d%BR{DA%HjuAzy0q8)vvLI zkW~yUUcbKjLf)r%^|Kclj^BXW*YZBeSlnZ{HrMNc<+m_XSrb z77yHpufNbBl2uIqbo)<0)fepA{71I@S``Wa(x1m7U-~Ur&HFGQ14r=R~ZDHU{R0K75X`SnmXzx}lf6?Cq1_3hh> z`F}D>|EuZy7eLkLf>#&UcE0`D_BVs}b>UZg{`B?RtD|4fgDkc4Yd`O|_xtZ{Z@lrw zAO1BNc|WN7%@3;o{`TN!AKY=p|4b`?c{4WRk_77HycHF-EQH(XLAJV)P^^TimL<`% z5*UNpORAeuE!ezVMPo5#^#Sp^d!Z7mAuTlKz4bUgy>+g*Urr?~n{p~|;n z!>>n20#{A?FA&v8TSoDp5$mrVk%<+sB4h419+MA<$+Fe zOe;bSXmeRAuV&~f7~%7L)q+Sd%5~Mz<1R~$ZKS#h53i&dn-M5>bP;eCWvOLonh@KR zKt0Mb472rT16}o)evGRw4mQq(g^ly{T{zVKJr|TvL-Y1AO<;m9OXcH#K4B{WfCEfp z8)odr?Ja=0ScVSVvMi3h6&*XLN$w(St(fvufVwb9eSEj$>v#NvrOl=j-p0!)qib6McKY!nB?4b#ksSN|| zxUcFDG*jOEy_OcXYC#52+TMn^qyH|Xk()RuNLUgXSHdjgii3TBl%|)`+=z^_y-c1C zus1T?y@b7=Y3U+N)PD`GrJGxQio`uQluaJ=eaSG%)mMbXHS!N$9iHkt^;4Zf(}fUi zGZtS)-`7FuG6Gb8^$be`!)taSta`dYrbt~!`W7%$*ldtGKeZ07Fo^?iG9%LF* zcF8k$S(ikrX3W$?n!71**QSdhZr7`ZQ$gZh!q$yjM$H>lUH5BfEG_3{PEuXl5&wxDsaS<|#69ZL>M+ z0!=f>G+zjb?;-4C9Ag8+Q;jF}r8U*i+*3R~cm>Qpn8Y^BHqBFXLIG#zuK)9I^7d-M zkivqwytuc|xBa?r_L9hW%X*+8%G1EHEQER9spy-RA6yEB;??6YB*Q)@0K;gkLKC{f z57#4>QCPr#$TrS0k1#ELgnblHupzmgYi*78wDY`6U`AlpwriMWn&%rv)j6X)PZw?* zZ~xfHXz{my;y&u^#SgxI>x0GGZ$JH_j>#XH zF14aI^_$PA^KajM;Uau~y*82fM#c9Z*9N|+Y69>J65k6M-uH^_-+b6!QTqaQWw-Ca zmVHF&lMhN9_{JIR)BO1}GD_dNDnD4wxBrPk5$Iv<;^v>YQ2)fE`kt@t_x{OMeCNRE z)M0#TD7IZ@ip;cKZI=g7Jas*MF|P-TC7D3UIgI z4%+r=?YBdbTG9MsMHS!v{GZLyf5ykhZ+`QCgX+Jn{r-2q8#>Wng;?)IM!%~S_c6`W zp~{~srK@7q5Yqw>bxEw62#x9HvHQ5fX}oOn`1JU)Rw$w$7bB_PJ;q7O6htrO^jbmCcm zDe_eX3aix=0Hj6Nk7Eyx65!*HkHc!JPfno^j}i|72%jdNl;Mw##Z+@l)4Uc zlm)vNM9Q+D#Hx_E_+83Tu6l%HSd9t)u|^6gwIGCL{Sneb>UvnZGMe!$U0TZE_H#nZ zSy)bhs136WQr1yeYsOfQ=uRLZnR}eobdUV+Sed)@b#!+fqG_W-Q+80bH19Q;yo(i` zx|=m5wqElb>t}ne*)uwE&lCrLiuR1M%w4#1fCTVvyd{;d2(&Xi{gsHQdeqW^Ii}dg zTDtpAcnm=AQC|3g9fAuq>m1*BRic>X7++*l4pQa`u5pxYX+dr2yH(9d+?_Lxzi=o3 z4b?Nejfl4**lv4?cQPQXpJ@hTK0sOlTlJInVXpq@o=5=W!%W*SWo<%#?aSJPj|WEw zDbp0oa#gIod;QK&Y6lio<_1EO@G8sp%HD$k0WGNU&<SZ09Rl_8!{$^yu}j4n^z5mAE}nh+-#%oDVj zT4TngQ=M<7oy|wXt7v9_fKHPF9l*C1SSrXDw@lb46d8SzLzN-%X9MFBcLfeG^`$}H z!#ksUe4)HxrA@#*T(jcu1B-(!W9sZNS#l3)$_|kKx4-(^Sz$~K-BHa?D2;K~F?1EM zAgQyDw1E{^%TRZzlLsX!SEY)}VpR(OPnvgHm2vOdo1f3EtXhwMOmPfXMQSkM;J&&r zdlSRef;z@n=3&z2D|KY^xxyV+k5*nfSO!yBp`5k7m$a0JxGI9(&4{ZDx6gC+;NGig z@Rd4xTsO=kwx0`$&fKkNL7Y8=WhE?jh-Cqf!xCTDj;kBcs988}rtA9)w?6*jr=`uq zqJ(+(>8n!RkTHLMm>btg#?S978wyQnKrAV{SXsN|s=sGcgurq?-MC|zX#w4CWVpt; z_V>#h-zsRB3UyzXD8Xu6kto44QW26kl~h^EH~>bYfGM9!${z?nGR3nlB$iAaseAOv zz29v=`~6qH`@`@5vldkSHw4vB?7Z)G_(9bVs{gNSdvgtc*!J^(A?Q83HvkeeAA!p&VO2!W^?n;&fTAzzW)zv=K{fl_;k}HFtCH=WWcVXVL9b=*BVZaUO)qXBW_?CFsK}98l!bb0}a^@N+8%8=H|eYv#@)I$j_2lzjbrx6fyS?6Yp9C{p{FQX4tKWn78G!7G_KzpWDIJ z^iigNHbOr@8T$xZ1H-i}QlAfwYh-vD5qB-aQ4;9s#GGK~-+{Wi0os6_KWV#2v$$WD z9iwvwbh+(>v!7`hV3}GlXA2=8u=}Asp?PwUTa}0r=)C3|fyG23Up; zSaQ@^Pxnj<9E;{G-AiaIW|)mi?g`JhNV6Y*+!+Bt5=Q3|wiaA|foAF^?3Y5-S0suW zhIK)x?4?YX!MyNv00ytgVyAhkoIR>VvAm0EDpGp8gsx`P(uixWhDU+@{|MV?dnxoH zU2$}`pd=(_gsVFr;%vg4&A92ZG-g4l9%iY|(s=_M*#rj$yUq%=&8Q1-+z@32pgIVD z=!R)o5@{|8v|!nMEk8vXPY22YZj7)^159%*-PIRyWK|LW53v#8Ou$DlcojDKWxbB#;yINxdCz3(&7MBjj~OxsB1PXZdJQ~man@k z)QnN!1ly`q(aX}=UkRzX4$`J1)50=OQogZRaTM;*4rIJAJJ1XhvKz9utdW2hXbwPl!mv8`v zeLXS?U{p6@Ee(wC;w0WaaI6_~ouR40&koEr%`pJ*1anu9z{;c@(8F$ng2|+RqZRek zGd!TRS%JDD*qal~u0g=8*+w|>^NiS1TG+BseMzJQm^Q~V_OmqUyTYn5)y;&|aW2I3 z0hV=!r>{lihj(#1p)hZJJL-;mSyB=bJ;OCkuwigMtn33oTb})<-n}d~O>*H^AG18e z2n0Y|`fkp#J@Vsw!AdjC^K_kmgaz~sd<5KA4dNML!_e+#hG&9h8E0915w?z^ps4Z? z&B?&X8L_&a9@jxy2VtpM7r@?8k*71|qWwo~?ceh%Y0ezBdO_)YT_zvq%Hm$5FYvUD znCx^&*a*+kLYT95$8_QD4$NYIg?}xt>B^bjp6DE~@@pB+0m@Js<9j5;LY{oMRHvF&oGdXi%-3$~}cDhF77J~*+T=>((Qinyw1af6g?o^J#z zp%eF{?g^{F>;sWUZ=M_6y1V{82i5mY>`!dG?{>^Z`$5$Ys((5AXOXo3n{DmA)q&<> zUp<`L{`K$;m^S~5lEQv}^Mk72{Gj?5vEMGeb3qAL#L6kIew<^t zDp9V6#dg04GGtoEImT(8;igRf5AyIYkK)^9=vTG)-9&1uf_iwIxqTLj9c`Y*H%jsC zGw8Dl>{$)*tQ`HS5_?jBJ}pB(O{Jbz;17?GYsavAspMJ~{;o@Zu$hmo9U-0+AY1uR z`**XL+{ni^a`CTPV9M&}Y0Tg56KodXTZI^S{c(X$qbVJKaF~2>hy-+e?laz^%V_ z2yUsvW_a2*%sIe+v~}UOHq3fOtQhC&PVRM#u(i`%9bm~Bj%g{Qt_n*m4TAouX2dni zHM|`aS&PE@o?y882zxuO)x8ub`$2FknK;HaXYP)^5Mu5iboQ6AHbTA{9bQOK7a0nG zoYNfRC4puRfCJ{}ru2Yr0Q*mIb%4Kyd`CAGzmQmbGC*^G05^KrkyG}Jdc@vNScdpe zbZCGZ)B9FQJN*~p)sDJi7jr$OwFjVC?vEQ)8y=tW$zB}C9GYTql@Xh z9P3A2<=nb-zrEQkL=%=aHQeS0phvWU*Hziksn4quiKg zBKne011PC~mhScyfwgsD&IZ&D*1)nr3l6}fmqhAbpSNz7s~;duU?e9v#s!}KRDh}= zNZ&`f=Xv^G(mG06dkFhdw0p&sHO95fat!^XCFQm7S*~u7Y3slpO}MEZH?<(n3&F0i zzYTt?Wojle8B7Xzx0iHH3yr5jsAGG1<-rgh!GJe^qqYgIdXS|r2#5!ab~7^OvMjob zGz`V=|G8H;%F{F<_9n!?PH$QiEwJT1ob64r`A7j^}n(j`6E zg;@bV*3sjtXr3{)VU(pGrVJyLX-;T8x+|)NW&;4*j9O|@eKRNFos6^Z53Vd&kK1?g znlWubps@k*F)7E`jXRem#`BEGD!O{XkUkTC6Td2kzR2qm#anXGoIue>*g#Lf(a7+W z2HR_Bu6aIO@C^(%EKABVkF!kmsJwyUnhHQJ>v(r!8qHt-aa3daOTwZPLY3zS1l(-70rf!X><^90}ZW?s#I zg%IbRqNXN6S}83B)-56|;6i;qRjy{l-hzg)FsObe_x!()62n6XuK=MdYpAXG1iR9B_SS)Soqc+4Qv3RrcNZJOa3 zruh1IG}4XZ=(BU^SM|)z^-m!{qslvMm2jH)QKnvL67Y0QPP=-a3 zx&?K16PCQa_HNwXLs(|SjzP*f$h3@5=3%CFf^EJT7BeqW%=2|sbbBLe>!FP8l&XgU zT;KrIc7dkuz$|kDWi7*ck>=hQmRW>hlF6C6Vu zW^nw7T}wAlaxMMb1n_4QN7K%C4Dc*JDaj52=T>P5HVNf##~rFe*uG$8F;r#UQ1)B8zFJ5{KB} zj&!|*4uHcnPgfD*oa5_%Zbif_g@R`Ft%PZuuK@V$t50fZ!fcfc%b7rVL7-xo6Ak#N z9d-6It$^uG#y&Yv4YZ&^95OXu)X+T_8B#H@^`DS#~s?0RXg>_^A z+4YmwUed70(*dfTgR4u`Lm0=|x?z^i`--q%oHWF7U!-f!2I;GR=YEU4 zFJbbP^>lU-_IA?KAUxX7biNrGRZ7ga&N6mw7( z*f<54j-v(OKO1p0(yr zn04M~@BP}>X-0WC=wikDhLl&~H3c0xsC}`_|A*UK!YYBlB1=9L^qgudN#QU0$I}@4 zs~84rvEDuuPp;x;v9tz!*F}y?YY1}z)iIsRLam?0$XtLpL=TRi^Xz`Z&{@4nwH;Up zLsb2WA@*Dxf;Ca^;!$nLp3P>@IXy`!D-_c#YCpVO`Ca_~*47)%drV$VCFuhrPU~_A z13rAN1mt9nBkBb&GQkc)R*E>hJMB+vX@-~jqq5_lQDTy;UYBh{DhxA_IOH;yse7GL z8iVEV_wWF)8O!8p=3MhZCoTg_zf2{QHKc!qEmYd(`SCAW^g@0tj&d(9MF`A$kLIir z>dSGgP^5XW?lz`)eM656puMJByK$X1Np%g99RCLkU+c$*heA^oPQ8@`+B2+J7D*EkDDA z_(MdxLfGA$}#%u_{y! z0Qk_L$D-o?HTk(3N~#0?W)ux(8mQ%4T2VBX08LZ&@vZt9oOso@k@^c_c1tP?Hb@73S@L(e_UM z$PbT#fV8TM16c*MIYAY7!%CghZ)F{$sj8Z~^@t8KIQRxyqcbo`f?$RxYrD!0Yy;+hO* zM~tL)wY8CzJJInr)QmOd#mTb((rtQXBp^R&jte&{cqlx|MHTSY08CC)z-0P6I}(R! zt*_L4it5JMP(1cezqrQWkp(e4E8kgT7!9#C8c`m1g9FYDs7@%bKEc(%v}3=aBvrYl z<@o`ytVtWSqYNkY^Xuog-M{euTm;;T_=VrN#=!nAhYCDU0jq`BstWG`ViRDpm1#~a z2+iLY;^X6Z%Ogg(7!f=$#aE^uIdGx!P&Vho+d=6%EK5Z!W*gZoyw2%?1rA)f~P6-?2^%@u0$+k2H$V4DVO-B##dVfl!BU{ zswzASJ!FehcZDSnMY4ea4jQj-4m(sUejJQmz&b*6+Y2;L27FDaSW;GNR0OQ6c6`NY z3S*w@sy%^$r41uQJVimR$>!!Hw&MM8CnGoFq0Fuo_6fFblM}B+c>c8*UUsj^{_lC# zez2?DtmyIOz33X)5w|MPr}N&GG<^JEg<#4TXF!-KVOtgmRY7ThZW*5{V_Rq`BPw^Z z=_tykpIu!OW|Oxo<_zm%nN5tG?O@7q*SGm@d=khs*JoylbNej6Nc#+kWHZ=)|FULB z^~0=4tV!rn=e9Uq zUYK!Bz>O2Z1=S9Z=go zw$R;8*Jo7iH4wK$I*0+B-~$s!HYa5AH4hTi5r0lEjIXN&2qF6Wp_tHg8iokbOXg#V zss_5jYzRg>CaH-JPP67Y@6=yp__G~L7xCX$v};{FmnXcj)-DF#xTtIn;gc4D|v64 zvIE$w5^Y-y-0a}i$0DvwCaOks7wovVQenQ|TK;GgiKSV787pZ?(hD%rK6AD1;Et5A zgC{jsA9(^rIFcn$s2HV~*@>2JKKLDqB!2xbB(?8OSjR4xdFzifR453l& z8J8y$L?KySY2H!gd6;&GMD{kbPT|tMLnBW_DL|zX8;D(B4nY{vO-^GGrbY1mO0*^N+IFz{ z3@ z#u0DZ5E zTnA~e9pLa&zR4O`<}7B2YwMcZouWBZSXEeQ8B&=Ua|*|0P?Funx`FuP6>Wiiv_YwA z0Zem=Ly?bD0h0C?E8X)gv#G#&DEVwT;UlTba*^3i)a=^t$JTpPqOA&>F{0qP-R|4R zCh?04x1m(l>D=l@_&oQlGFbB^0L%(1Paw;3)Nro(21n@d2ayu4DX}?z7TUpC|0;b5 z&G`+)%bZ0`ia)jo%hcS+6UhdlTI?C2nhf&RcE3xoB@FRLupQrD9L4-jjd_KPEOZsj zeTXWL=sL&;c2PZ3D!zqzkecEkx~epXoL^K}Ha91t)oI}KFVbgoXE7xOoap&Oz5n?! zti7ehQ)T)%iV0fRV;LffrEMOAu{<;B7crVcc*O_oEES-JpqL zOm?^shrLiEg`ZA7&m(sl7Y|p6_U{m|x#${vemSy>u;fk?ZpwfeiM53m$KZFR6S!ck z01lMiZM9+Q1b7LgOJ3|I!27|49k3Cd?kK5N=wpINK*LF+{!4baG#L(Z2b-&^7u^B9YA5wkj_$_3M&l+hX zs$8P9{Wgy6PkI^uoM0N#qy>c|#O0Y_Y@!1*;{hqd9o}$};LbVyBFa{dN8qc&`G);@ zX=bEErdyN4`B)SQh_fuo<+QltSFyuh@KkHGZ>Ps>mumdIhTsIl+$sh3XS`T46a665 znE%`1vf!f{Os^LpV|8kzb@Gn33>?H@&1c^DyRA^)8c{PbEHA z@?&fqcJ1(h<23!fe9StE1@-3(`z>m2H!SRUOV}{(UA4DIlFV3xH<&Bwh=_`X5N~Af z5t#rhhsOrG*R8u$HI##=ZZ*-N4a+RDV|i6#Z8rsI5Vr&LRb`0xPm7Uy0{+BDjaSV_ z(F1$YUE`y$av2>F_ie_e0>cZlOqI5YH-g2X!oo*56WoTJC(KIUOu|iT5}5~Q`&}S6 z?WH&AyUYk(&Nc@$G}vciR3V8Yq6mYpE`FL~8hjwF@J?&Ax~FidYqa(E(5a2~NI$YY zX$XFBMehTYJr194$KA39-w@p7h}Kjp9zv-oQyPGU@qfi+No|d=E4ttpiKld9?aaS~%R|tNk)kg^59D>N3ZggE<(ud3R{GO(nZWj^B1g3* zgj?#*kgFAnz)f!-K@|v%tvsQ%3b&T!JJwmR7L);!Ku;9DB(+|szsdWY$_Z9S0CvTr z5c{{9RTL|-OuI#!Ja$3Hm}-H0x7`%-tN4wKsSsw+2g}iXS$IzU^xkF^CVLn_GoymP z(Yo$qhdD>*xKR9}6}#;imFHAbxMyi{c}|L8oL(Ms(Dy(Y8cJ(${ zhHrJsxH$hw1b(te-ihE9K#jg5rN1>k@!GEdZ089?z3f3S%^X2Bxi>*!3HC zLSRa*^nU;4E%Eq} zogH@xhUOUN^fW1r<-CB?N0DvaISH;U@%5v7QMH*@^uZ`N>)8LZJ^RW%xE(3Z!!HV0 zM+dquW%CTqAveSor@R@Ud8~M;!#{<3u--5fp6l~=V738_(l?wt=VuCG|4PIw6n?uUg|DW#-E7&*<5s?x zm9)b>Be2r-lUu;k=NOm^%`^-Tflb31<|viRUmzvHq4sJz0L-yJ2f{4nU-P`L^%H=nI=y#k~{(8qqzA(nrbL!up#6{FU0d5(V8AoSn zQ0w*>)CGkMruRnqqn9j9gEeMI%fw3#ZzE$LHg899liNj|Nb@ntax*UF<_2JXHjmCqzqsO+zLqq422M?Z1?RNS8AjBk8OCi>t6XnRW(wPWLKNJw#! zYl+GkUY@!Stg`_rcoI_^^f`ZPe0^u?q0uxz(KN=WNEbJE3tIyN)GA;Fmb5UgYM~X> z6n266ak2_dN15l?<5}Q??{>pQIf@gR3o3CD2r#5=CH@|Wh+I9NB74d$ws!hfyPh7<4EIHf_s7WM2P4x4Es*Q}@QHwMTRqOhR-HaF9FTuE=*>G>c>K;?)r(yZ& zJ2%3B&K9N^d+D6$q`nco(Me~|CDb@*qsdLZU(S((dN3GodUGfg{ZW zlY!#51C|B;r&E-J?lW&$0xu0ZYlZSjWRf8}rZEpu4e}Xu|9QZcbs8;aP1)ufeipZZ zhL|=odyNopwUir!d@oU@{Yc!q(NVnG=s&W%-(=Td+9?gRooR(6RF2pKu1ZL=Kxh*^ zYyu+!i|jV5?fG>X@E8cHy^K-5QR>1{x^cUI4hKt0+vBI zLc);&oVRxafXHM72v3EJ$Mz5))L+Zi8%SLfkYi60xkDmKQ&Xt_@M3o{I~`#R#ZjQK*7ow@xJrWWPmgNTzTP-}qy+jU7Drk=}VX--Rx?Saq-q)!Y zwokVOmcbh6ipE}%u|uNcxtde@Qp5 zH+zxS`+mdsnLf`kv}R^?hy{r=1zMk0hX(8t(}CkvS0%w-VynmDhC2FFP$CtVu|mvZ zDCO8e)q!|uJ+l38#(4^H!0(+T-H>_y&Mro}hAbRZ<~FP|zpr6i(U)&Bq8l~NBnpv(SCOWV>{ZG}9 z8tdjJrOa}v2M~s^3WR-O=hT`_21A@7(|+x2V4b~xSv0=p@+yv+Vs4Rc890gMxX z?U?va48^xs8Bq-CBbADuUJkFk+9Fe2L0-WD>Y+nuJK`3Ugzq5xr3*AtiVZH+m^%Xr zz+r=jpA7!l@--M9KK#fdTS@q-5}P=EaC)$Cx`0rg^tc3#)ZG;X1@H)8o%-=tA%R6* zzs%(JRvXv#)bxt8qEf&;~ zus#mqNTGs=p0S+u!x^^-mHjSXN9sm5A^~WMsva#PbH|cY{&HC)GZyuuB3vaF{;wn8 zXcv&v--*t^P|)0RB2fCA%QEyx8@gu6d6c<(Yxxsqb_{C+DbZc3oEZ)UP$h~D)(eD= zx{;K8KUY{kZjbcUX`Nq>3!m$*a`(;yIY zzY~qfm>`3weid?fW08ktbG1rVJ(?0PDZ+vKEBku|r;H z$0$VSjL7Q8`3%2eDY#6QI!;r3ujat#g(ulS-&?)Ns>tIWbexSi@tJ!(ODFN^F-S=; z?hRLeL?;MEDg1BoWi+E^cVAGU|%X(oj2T};kEuzgG2;B0Hy|8Z1 z6l!l$aceiq3G!&W%wqHkZVXm_);OlmBk?$RIxQyzLA-N9{S?qK2+L=Ht`|`^`>KOlM+%xOBn)U?5jHSl|fHSxORB%?fP96X_&DVPhVC zC<3iZMIS&P1hpK~qSO(4V?bnwr~>>1FBYUab}L6%J{8-vB%jkLTJ7!TKzxhW^f2^| zYK3+UV}tVPVw`1$_c#%!Sn#^jlDyySF+IVbSKdVO+mKrA_xTeg#F16)v=VV3CODuWXKf71ux`~J~X7v$D?pEMPqS%e2kMx)k?kIpeT&*u#&7z@)uEL!D& zy23K#9o1akD-0}o((;)~Qf=~rsibv02Fa#jP=qA}xx+jHiph;>)bwfRXy3rT&t0+q z)8+CA>pj`8BOSUf!}JC>IW|Fck3QjAU1$5}iqDwbnVKL(Kh|3r3Ol98G~6~b;Ib1> z^v@OjuPu>318iUbL?9qz5~{s3EkZ3A<2bhCH9D@tU}VB!2*mrp|KrKM?Xc z`2`g{f4Bj>p_VvQ>O0TOZo=g6A3vg5UN}gJr~o|)eL-29<5B=81n3?^l_Ap7B*L{< zT9Q8}@8v4{YkhZaI8>!rNz%%kZ8V1K)aPrSpij!D&57yz4in zTY7JzOHj~J6{aN-l)9P<}^T+69vnDlVKw+o3IXa&AsZGz!?7}jE z=b~VC(J*mr9;(C5ks#ValhF^6MF=w!WI>FiH-sGWWE&O`YB)6?OpGALQ|J9R}6LVG_SK)d9xDKL=4Ahy_{$Y+6QC`tCCDG=Vh786Vn>@T?Z*+^~=6r(Sn z=(;pi(&AQ$N*L&fakC*@$TfGreKG`CQ)k5NI6-6)vXv75$*bNhLBIMfZ9ljuHLP*6 zahlYN_?qTqbip_ub3j{q^Y=Lq%Yja zB)%G^eH+vTe&nab8tQtwvZ~1I%>8ri2s^OK;$SFrT(BY|kUzb^$u4L)kVi7#%Ghd< zG=^H`Zif#fQ1sU&`KyqA+?JdUOARZ%+KNljpG-9UY3QQ`<}FuHTR{K5itdSo_XQ7D zpWGbpj{Fb+5F!)n5A;srunWgGS*|?eXALu<@RM^Vw9-c-u(BixUImK>*HV$9nu*E1 zwFigEFkbP@43Gnp9(q;&c)be5FA&3n`V-fc8`zNU@n%tRS>KOf3myz$=0#Dxwam25 zafEDxTm~Z>;P1qpHGmv)_j4Yko8*<%t(B5~(bxq7Fp`Y06Z)N2VMpGNt2>6M7-=@f znw4&m3OJlKpFQsOA70K&SWG!0kR>k1-8x%x3P~;WL;+w-++b5B-9i~n--h+E5@#dz z1Y93#0@uD~`F(%xbp#$x`6y0EUhdKR614Bolt#VpKu(4lniCBzsbU8&fS*pqSCx%% zkvp*hwgO8UAQx2JTO?TLS3M*SUVUFSkv0~^Y!D$gO-y-;OQqA+#FLTHfXY+UZ-jot zMOS1sCfJ6lzX#ma6xw!xDNOkl8R&$}HzFH!f1I#?am^k?%7UPT4T3B$-RyfK--UO| z^e)i54;A6UgILczv6`(u8-JA6370d4n?2R?` zl{N3d^4ps}&x<+g$*0)85&MG?dy87|_RL7%>P&!3#w%llU!pjK`sY2|U9a{lYi@uG z7RXfBOgJ5D@09Os1)4%huEp>Rz`t8Y7v-~0-+AV?o2Qi#S`R6z18yhC^o=9%&hc5W z%;G;B9ARPTes4#1Xi1$LsqaMMPbQ8p3Qg@No<2On_16by{FRMj4JOrhStw$xj983o zP^1^g+zRi7Zy4?wtdl_IDW(*FvllYMFX5C(fe#*~o7^0CNrxE)dA_C-jRcUhtBVp@ z1ge2-Tk8b*TOk7o0IuZqN51!Hlqn-Di)@Qb5Ypw>N!X8NvZohWk%SWF><|BrG~>cX z^{FUohRyURy~Y-rV>`GU9IF|<)CnSO1m8LnynXtflQO3qQeZex(Hysep^!dHZ3Anp znNba5)F9??X-|!*yat@jxI`BRdYvA~Y+on(E)w-E5*%k6fIZe0K}!6c__Bzx4F!iW z_Nm|tY;*?3w({)QYfy7)!Os{I3${}aji=p@X-h*|Q9vw946vRnAeaymVAZu>^2N3fE?rK7r~u}JS!E4#7C zUP^9p5(d@+00!_lY1_o3MjiNIVlXweg5pS1f|GT>!2}3VLK8h0UwA|e0X)ZBdY7;v z#!02jZse6_1Qf-X0y9>hs`RsN97{eGw@#N0)`j&5fiCzl`SM2MCdk1aqRMMTrA&U+ zwcl$zPz+Ff{Bq9eodp?rt5P~3+if#0E)UlR+|~#V;2P%+q9^dxs7&lG zt)oBuQ$khK0bR`uD&=_lI)1+JhN10lk>-Mo@S6}iKX%#jcPA&s7dyYi4zJbP_G;P8 zjbIl5T!>aV<~lL=pVh5^DI=)93NmC*4_v%jaQSRp2M_c);tUS^bPB%Bx&AQUE)yxw zJs`%^ie>hO7TR7VGt;xC<~+T@7CqA_)T2CoQJU6@evtiTBmeCM+V?n+9$i!Cfpt zT3eI<$p$U!D-U`b9ltdh{nKY5FrDdV!r2eJRq_K>#56~~T9hB{4Ntv!X)MG4t5p1# zvxAK1uybRQ?>w!eDl04zwxd4hn$iE{zklzmgE?KQUp1}QK-NqEC77lSpbxw=Kt|d) zL{n?&iwxCR;7@>7v=D!E9qAY;?p}f$2!)=Kp$$0Ii*d>s6c!$b%IL@o0VU!P?19^& z4(a3{+s^OM>b}=CGD90-etR-sdeInei-2Ltca< zc7IH5KDFA*GY9yup#6Oav|jJ1f6>&B3t>~noxb^3=7ERD+Z!@lD%3$u37$Ohum8w= zU(nv($nVw5&$Vp52qL{PmzST*D4W|?5+i(okaHgs9amXJ zJ|(`Xc~I{e9C?WXEGt~b`8nMzlUSXIc?R{eHB zoHY!bAViba(-NmX$MKm)S@aiodG`02`zH|T<@>WU!A&c=33m9mbE^4F1qOFg)D-)0L0mYmBU4~5PNb{I)NE4 z$y%tn=;+ozS%87jE#)k74K@#mw;8;lVcHRe=sOK^@=z94p?ed4nUF55F?ndmqPD2R zgJlY^X%l1YWVrofl-Nh?!kIFs_#f=99Zw`FZLx|4{K^#IDZH;aI zdp@}e0(A8DK7XgoOHXa!C%eLFofxDu^nK^;9W%NSrplPf5HyY2MWjFl>8iIk;7@E_nq??qEh)av+&oEBs zZsol>B-;Q9ydT90al<5zM`hd(K*b6m@K%s1qmz@WD1;OHB1vD>TBx!r`j5>KRZH`rq`7NgA3EqBBhF>!=P@bRYbD z;FBF5$V~h2_KEMbknRtTOP;phltAqRmUpd@*{1lh9TC+Jk)TS903Lbhv2d*5 zN@K;}|HWQA|Bn9y2_vq~*8d8u(X#vo32o^GQP!FOX6R>)&U?SNB?5+xvA-pg@#YGv9Bm|De$$^gfLXG9>jqcsx zUAWa2gX}2{4dL)z+tN~t<9sFaEf5=kH~#q0vsq*I?~MNMneX2@_`ge*mm^Y_y5PNe zDvmgXaU3l2b7<$W?E9L~4Z7hXzp3+%4`!4TS>)?I>n+$m_t|@cLUm?_@`-4`D--V9 zQBl=r?r-1MHsb?0U0-~`TRl-W7{k5Mv#D1{>HmF_Tx;WZv&_F`m(30zoJg$#aJr2o z1qBoZg~WvgB}Ig!2aWTw&~EofZ8M~2~(U#mTlVUiwga6~A=KS*wkc2=v|9p*>V=12?GhbX(;uOxt1S5%cVY+&m~vC>jEedI*-71Gkpx9@ zeU9yfWY4DZ^UeK&EXz!Co>lTUKeX3JOY)N7uE=KUX=E}*1=v(@ukH5R{pA$IB{m!J&Mqb{4U6NaK$Vu(VN6iNHclw2DS$83^t}HMYj$GhvZ|+YKJU~J8 zl!Mv(A1NrXGu1aXHiD=e$v3;FT)9?#dDvz}+`Ufps`XKpf~mRj=k#Pgo^LRb9o(z# zS~isyui(N;coSa`b_|wOsgl7^j+8M|gwK$$-ZZp<`CPaMDC*Au_R>AGl&)Odc8aN* z;pf4^PIwt60mtv<-8jj~*viv1rJF)}>#@Dyv)>nLC&e?ETS;ECrx_bbA3v9kk{d|@V;xRIq~^LP z#T{dbZe?D){9y>7C{)su?NS)IZ`J13#KP9NQ;SE$>*FMfIlf)P+bgg~v5_>S3gx?N zsV_iL+2bsr=){!A&S--}#^+#@n0u6)!he(3 z&Ckqf5U>2>^Qv@#fQ@O>)5eQ!h2yN}pVQlH`y#+6{V)LV{a*~by`q275B6;(xo_6r zviX$TRchG+q)a~%)n;9kG<=@ z5eZmvx8S!0uo$c~ukwnnH}0tBBYVfY)G*u~ll1n*W^Yr!Onj05lUE%5`!Tj7RvuLS z^HaI*)oMeM@fVyJ*LQL1|NB8LIk)^fQUL@#XRAb(R1!uuiYAJ332xC#|~{ zp84h2Nfr7E2s?@=3HGnl(tS56H_h8qt_HQn00ts*0Y8VfzHJ%()C=kBR;XZK*`-@mqwm!W52I`QW0rubn*H`#EOGdtu)1t{Icfg5P<(h% zwc2zrTt>22Wrua}qAT2>E8kODD4GtJ;d{8OX;uXnwnKVdm`_ATN=$BK*l(0pu*mH) z1(;s2LAVQJybhx@c)hS9Z}5c&ii$8580QQa8II)VQMLUk8mZqkTP2l!_isB*0RL1W zo_{hQrse*9aJBcn{u~wuS}+7PR%1XOGeDGD5WYC06I4zOwbccxak+Fe5pf=`DrYei z)evX+=Qx9tD@R>f7qg41-;~gBnl7WL1AIf!IVQN25Ey$>ATMX9p1m+ymtLElHaQ~p z-wJdaZ|k=rJ66o*Lqo&8_)WE{uPGdRN)8A%Sbr+k$v@evZ!@3l zjf+3#Q!2JTFA-{LNUhcwG`|h>t#v; zK+EZU$KEOT9;&!7{iGC2Z11K74H#OH;ys44DtABD{|BDwdF^AljDlrW9?z=HE?7e( zg9@(vBTFE(`HEJ0uA9?Qt}=H&dxxdG+i5~K*;e~7OE;Q;0DqfHwh+6Rt7K;&2EU*t z7GsFl7!?RvhN}9^F!w1R`LJ5Mh&b0tq9-%~U3oE?QHs%e^xQ!b>@GCM3&6`Zq7-4z z)zBOfSd8fU;d`8H+R#dRpSHLh6pbpn7_q^C_Xk{T{&X*id7W!QO59;YV`;}43E`u! z;+yj?q2vG!u1Nztt2)b0n08z5{ds-SQqQn_C0 z@fOZv*8p$a>rTAPZAmMoarMvuC4ntA_7aXzmujw(x$2dgLHrO+M;Yfc1>gzf%y($ID~*GrNo zQMD%GCb{ldfl1z{kpS+%j8+h0HmUYmHFtgb_1B76;EG_V%cp>!Zi{2EB>|B$FE>u2 z_j1g5^J@~2ms}#6?Ai z3A3bfBhiFtb$(ZETH9~>H~LXc6Ekf6Nqx{AnT zF$wl;zE6Y-YLap3Lq0J@-~C-a5wyX9v1PFZPgBDLWEYmBg_)Y98S$jn%yTowGh1OT ztKw438m_tKkl=+^B9XTUuWThTX4Y{@rGLZ`BO7tChG_K3aOCzCQYw$xqIp1y z4_1lpfSVRu0GK8k0+E+dk$$2btWT*C1{0SQd4}XD_&U32_J)fFZti+Whjjbs!ki?c z74dO4?qL>vh-J8a2U;q3{mpQqpzREb6GyG!jHqc!mdn__mrssnbPzPBBthkx9H!tT zD_|w`UT>be-fRdoY!TXA2#1CR$T18v>c_ z=93>IDeMPZA{dZMOd*SyxMd=7(>(lDV`?Yekk&t8}8TkpTRK z2xj{Je$cy=?Jv(SJ9AV%B`*y|WSEdPZHMv$Gg%y)pQe*&Y?}Az*XiOUk}=_RwG~4h zYfHNB1blBrN}*8mf*<+dPIQM}n?}_XTs+tkzt-;SpDE={_$%(D9wLsb551I*n@K+oGF^(U7n09DRNoru@C!- zw)*;f7kzU6oc!@^&Dn!($AJ*>zwPH}M@xLqMIr+ ziRkML7UC8E+@$w)h1nP%A|)-#C!ttLI8aHz0L60F`2WWID{3e%@5JuU;O`TH25^PJ z>tEoB_7I*+f`fcX07oVto0I{5P{a>M)JT&5e&v64B2ag&@rnrwM8X*H+|R9EPa+cS zUXgAN(#jMP6qx_hB|#~BcSC&<H4c^xy&v2~ zrfkGRK3`eUIGHv8d3d;mX~N@{QXL5eHGp8j7z>?ae1U0_i>{Js$ABOc#eW&xeZjp5BtaHKzJAABT8|kLlQ^MeVzz|^p6@zefn{364k9}69u#P>eza+ei zbe(p)G0}bQz4X9C$3#79A4ROmAch^*ORjYDq%Ytm9iTvews96Ds6?bfKSZ#K?jM5B zLA%VQKA1GV2;X2TZGkWkgfH}!s@&+pyeVD?-546Ea$_oJ4@EysyH}2!yrvrKC9E?* zBMjx7Sm>l!=((6CPHxAQg1O}i#@dF4ffD5dj5`l{*zj|vssEV^Fi|FI!qPNBI5lgB zdWGBk4zMXTBOYy(u^ikZ+9ZJvQtK~2)r=F3*Qz)Kgb!D1tc&TY;81Ke^BJ!uy8-b^A zkH4#aV9SDttx3wfi>(A|er#7UJ~SBGt_hr?05+kO_!(Gt5^aOuu85pj5SB|s@J4fX zv)`AX!;%!+6;G>!2A86{oEbP*jyl!yYEoyhA_xi0Ra$9s^VW?U}!!DCbeS=<$XJ9G3XMUF||n6;8bZc z09g4!4t+M#ZuY^ZP|}?(Be{6DKNz*92uE(`esuw^%aC23=~vdsrL+ivX2LwKfNrk1$HsCGUixO8#70zg8yYYVq3>3Txi5z+ z`GF?|Sv2o0G{-CJ&W-W(;;P80s&8%LT#ImpKoro@BlfiOSJmUj`Xk^aR0q{g2Mu4# za>Dx{N&6@ZJHk)1G7NUEDyMzk=HLfn$C@z7?wuz!;O-vd z?w;uR9OJn&vr99yh^nV{I6r+qpX9KwT|6Ld2%r|@m?M5rnQdL3{%bha{WX8xH@nQW z|I82k`4z51Eh=dd?Ay(WI!KdUbl8YpEI-$uO~$UCoOQovZpNF_v79$i9$wh(dqTeX z(x5&Af(ZP5f{kV<^NtscFENDyEW^e|{Uk>POO4skuT90n=C2E`ZWoNtmvDE{#<#vO zq%H`3#hjdfGs@m8%HGTK^({mehK0rp0r}G(@rG^!yTRdYDqz5Vi8BSR7@|BQw z$WAgY(7sFxPxc7NvM003x`fA)qN4PAo0Nj?TnnBOg*iC*J3wt1TMmbzX6%|9jgp+G zUGB!|X-Rcd+YB)Kg48CUoAkP7={W^uVWeZFSwUFNcJA8nv$j;3HV5RS`c|W4A02l; zei`*|xg9`p>cQVvhofe|pfEjW2h^-M_6+hs7GRcI|18y%5-+z`ij z;B!#ZpYMpZGkc|hRq1Xo3pVXU1&cu6?8A;+*RfsPb_N{DPNxZ;e6_#72emmL6vW{#i1U(tQvd(sO<&7uhh_Or3*v+ff*2U)eCfecv_cfFT{$2aB`4rYtpe?tg za96MS=4!Ci{yPd@P1tO!hTN>Ty*jbZ%@9YrzsC>YL0-4)k5kyvgP+mX6dI0SRCEVN zSfwOWz6(^J&X@Lak1#kf4@fU|u-744okW>xB)KRj1Sk5PbBks>9X1g_99pSFTnet> zYvJ`E1|vQ|l~8lZ#>;24f>3)G=7V@~jV#g!R#pq*R$Ix|S8`;u7K(u~m>v>JZx7yD zC!N~B6(=n_L?W!Bb=M>H5hLMdzlPbyMgmQPNfyBfO#`RdPssD zEFjI_Eu~C^v_cTm2`bf_K}F>A3U`OA{F6%QlOgz=XMOaLygX9AJp3QVxBo^FNO?^+ z`hK0=_c9F8xx_d!Ned0MJy0o!rChXA-1=H5kD+W z1ORsv(+|9-_iwuYjx_I&d>ttBSLuqxB3S;A(e~E%8>O1*<2KBo+_(KPNdV5WD9n}Y z)G!Pm9MIL?d;~sLAz&aE<_)hrG)#lq@;w{$S_*e3C%4o84+%l`zI^P-A!?(5*f>r+ zFF@ICo}b6JE)cJ-AbUPJNW#Hi*Wka;;lI3$y}U|)Y+WT`=dE+tvyvdAd~y}F!8uZ@aPEj zIG1>Mg!oV$GoCCdjq`4qAObX1av1#{G65mfv9OqlnC=buvfa_xa zA$&xCkg_b(bQ4bWC{DV7RN%E<(gi;4pcTNV2DbBLgyu+?ae{CDu`=OiY*N-vd{V6H zBAl}#!=hB%L)icw**k<+7`6$asfTcPS2D`s$A1W z>FU^)F`;r;l+;D(&qcZS>@qCLwHG2XZziOFUYBdoXr0hFj}D$zhrvF|+ex}U+JnY| z#l}U6?n<-^*n2K2)%eehDzP7f&$osIB!lA1NS8ZO}))6zrg zJ8(-MWvpcQ+lj!i^7x|60@}L9bPw@=;M(O^-Fu@0EPVVkb&Kr^%8aUc!%rq@TL*d$gih#3>i@hy>q^XNA z_L8<%+|-GqrNnSctSK~;JnMwST|=bbQ^ns@sAojRC6S?;)LmvefrRattDCS5bM0`~ zjSEe8Qgq8l%G+dFHB4tcW~yP?+i>$(T%d}-r(BR8RCvmwQ7Ge1TG@f4s8(=S!y7wr zTUnH~n(1r7bYpzuHJ0@R+g>4mR$sw%4Q$(q-3enn%V2EIs?z^smF{ke78(>Y?Z6cqS-M0=Wr`|9Y-LG!8i(hND#{5JXCan;cU?V%Q_E%67@Q>p$Q($mFH zzkRy-PtRX|x1g#7sK$P?ZB)(;K{ZrDCFGY-33YU+grNE@mgk>+d2i2=Wr^-atZGtZ zY{NaH0&N{3tHu;7isW&Bv3`iQugSH;Ld~Esel1xJm|c{cS28cINcE4766@RRMuDZz z;pavCNiGH6+&G3mKZU(6L-T%LoWr&*;Ao_^61<6Tp2D9OB8UDllmEwb!RBf5!AW8r zP??W!7U7#`QAFQI`{{>Azn&zFKRrRL!w&hxi(>3`Ih=@ibb{J{I7MunB(_j+BU=_>$t!&#acxNBk^_7LD)> zZMd_8)c0{y#|6d#e*Cn+X!$3)I7%^(#0d81 zG-c7oYL+(pEkzHd>mhZuNW0qZ?LbeRxTlV7@a`1!$C=wGWxr-$4eo5G6B_ZPMoc@z zH(rWX)#FNk&<&utj|(s~*Rxy~A}zI4T5)8;0Bwf03exrg8m-K&;pk6C$OpNmdX{(3 z8-^B+ZHQ~06sh1`7bA6p!q^E((v(2I?H5xGmQc&K7DgmY2@OGUU^%OF znf2y&Q?5Z;-;9AGq47N^a53&06&Y8hx@NX_#8KRTAu-k9$;FWxKv^f@Y{j*Qc8R-V z_bg?X2D#>0St0;-7_3U$#|5Ud5uOH?cZ_Rm#avC8wH5P#WZ_O276oSG{9hxt0ZZy7 zEu#`&P?7V0Mi}lUobzH`A8BvF&^H4UJk+NPGJUl~UxR5XnJVQ!vP+|kjU3Am*EAwX z2y(4|1EjMZvrlX%t{vJ=2{cUGI!WibXzS{s(p$cQQNCp*LH~Yk@#Mbh39;(}Q*wo& zYhuGynD^}v4pL6&_Yt9CHC7cA`GQhozbF=cfe@Bj%Q6n7rne>^D3|yrtwnE_1#6gr z4k8V1sy5t|8zz_#s=ElY;Rn2{(ScrWVhiSfE($kYCCo!AcMZ#SJj~uj8g5(nE!y%Y zL@u~_`X~USZ!Iw;Z+B{0lph@pbB_tkJv{HI?$ku`fe}UKCDHL7`TiTHTUw+CYMChC zYYW?VjS*pQsij}IK56B~nE-7ji7rsDjoappu|rH8WD> zfKYK=p&1dldZam%0?VVr6iNzn7Bq^#D8~O(gTK6ly}XER6=Tnfkx~JtPjU$qWa%P~ z)~=o>;7_mtS2s^%n-__frTCYJsV7I#T;Gi%d<(5_#UA9)&ragcP7zxd;4LVBHR{W& zC`an6Qf&P+wqA&DT;i>tBA=haQEHnD_*MyuIsEt-`PDx9tNrxnIf$Ikj-Vy3&khrR z41kFFU+v{SI!->nO#Z?n`n^;9Xg~E}FZ~d<1Jvd@6pjgge|DJM$U|eb53}jdy@F5u zf|WQG_@V_jPw>s~4Bt%};i{W|5el5$l)Z+Go0cR_i!}W_RT)S4+@#6%2nfW>x*8tdeE!5offJjv=n0jWmr&Qx>J#4!)|IX{+aDjftFNd~=Yms%2XS zxYl0U3SgP!Tejzg+LmOhVV=4TL%CLO#;BHM+8UPoLZr8oKp9@91?Jv=?Zt^5g!w|0 zwvTJQ6|Y}R^uu%h6yGu_1cs=Vq}qPU0@iNFQEVc>Z^oP4OVP2Q<3X z!aDjWM;)HhKuH%B8UWfb&patq*0U`YOl>b^0(ngfENIAVJMZcM<)~%3%A(Etcf|A& zj!KUDywFllc*ljRf(S`}EA3c_cP)qw!(7W8m_lHwz!fzdg8Hw{ELmS5n zH3zc;-{vH`CQ5UBcibr7*unu_y1+qWLfukKVjIVOJ}Me=3z zSl5Wud1$BXVw46L+XW3s>IVhNHhIokM#(78be<6d*o5|hpD5-q<^hVrr=t~jjtF(# z6ujbIl;{V9fje1+3sOr^mUUpaU{RU|ZQg@>Ci&KBk*OOx1#_=RwO6D4bu3@&Hp#(v zous2%m)$BgcMH{jO_-sGVeZr%Z^LbKLesKbi)KE9b9vSYv3owoGrhfRwvDu}CMM3L zW!_BlL0iqr%^#ZWZy!E8D1@5pS_m`^xD7Kqe;C_^dv3%5?VTfh^OVfhnrJyf3cEzv zuv-;NeVR-z!@R9r|AhH;v!3XY~{t^56 zTjs1Ok+Cc)kRRqmW3{na<3bnQT~N;!j<*AM-Azs^XB)OBu3H<~9yAiovvpw3^O2@0 z5&Dv(j_nJI16_iwYG!&ToSowv7nqT(F%R6*15)pgbI;FOPIO8SUY8r1IhKPvV><}s z^zN@CA(PI3g#_nBZ2Fjb&tRN&RAIixbd2+C*R8p~Y#AMtW{t@m6R~F7k62^E#A)~( zQO@_&=EYbW)MS)v8{)eL6*+4$+7BJBRqLUDnY{HKgR0_}s<>~qjmUV4$cPYBLnTx~ zehHOOM~6xXs^3a^x$)v>HNEepBrVI;t8(qKSU)L$FyDw(!9(~hh5GHdv{|8XPO6=e z#otRxx|^6XBQgSMdr2ptW?rIyaD?6}MoDL0UBzErL$iN33-Oni@r@$v`4#fz6_nT% z4Yn5H>&3*266|3vZ|f`$z}z@V04@Jig}o{#9-JgLPUD~Lr=J|h*K-Nv+0!6jl;Gy& zc^r;^xmAR1=HUXpaz5LS zKiEeU*%9w4v^3CQJmp-Y@&}X^50oypZNq|Wpf`NBH`!LW8{~hY) z92(FH8@&FhTev9KRLZ+kBp|{z%(X7aGz%hQH{n{6Y2iT~ED8Jp`Tz| z&oRE<`=;jLF7Xg>QmO%n4GNNa_zCZ%B)^xM&_Zah%hjXXX*9=p$j(y&GyHQ&Y#5~M z@cRX}_)?UymvCQW_~Fi3Om-~B=z!9Ht1``vWYfpz>&683w~c#l#p*_ATRq2_zEgcA z+S7@8E8%G6CdK|kIPBj@Xaixs2FbxX zuJ>Z36Wj#*4ARz|9lQ#L`__qTJyJtiytiB72~sGXYbW7q<=FeBSxc^yZG^gik2V4! zhbRX^H^Va{bqw;oUr$92(zbDd1;pJzc{^xtH-VD60u|@w+Et}*m~R@Qttc`x%U8+t z18E0n`>Al}HKq?589WHmUy4;Px{4Y&jyBxVg*&%n{veQol*dt)Qs)@Y0(;hT&@%7^ zbOSh#?UwElDZ9j;3BGw;=IfAudCo?f;X~I;xXPo`$M}{$%CQ({|M*WlBsmE_iEWs3glC$P*hiBy&tncaJKTiO@5SMPDeu`*vDr*X zr!A+awpWHWbA5wi%ZfX1OrF`qww{VgT|Qh@hh<)41bVku!gk{J7R)+-fKt%f&V~n; z4g1zKelR}zat3$Li%jDZ|Ek;oH`ScTI4iNuC+~s(D0(T|Fwe3q*Ytx@`IePf!%RxR z8cxk7r3bmr6}blf-)JKPUGjrL+SMi4vnJQU&D_fNq2;L3eIGSVEbY16j`@I@Ao@#@ zneDg>?xH1$zMkcW?Ou6*Uq}40%!t&aH&{JKN^96@y`+04i z)UZ_Tn6*db9ZL>O##!bQodc9}a(l`F+*hCW4h^Rr{jg=~FR%af-GS(AsDw($FQF3Z=uink^;;`n{`|8U%aIYjsVLI^JO5WZ^x(o%qH5p!a+{FM7+3&t>>ZGM9+(`_4D}i zO6p}LwRwsFY`&hVE(qkw#JoO)e}zq*8N6yjeUpdTM4UzMXt!s|!K zty9?MN$f!m_2Mdj{=5Wj&yErgv+0-TInRy|C~M3?3gxva#F2SRP-v!&V(QsZa@@cD81eWZ`LRLqTe}3vkQb%$zQLb~Pk^R>m=c)UaA!Byv@F#wOZCls zK`mPkmTY9(y>Adrv}}lW9N(p?VcMH9^B^}3a8b>&YyVNc|1Ha?^3X~w@(b{AMqs|3 zpu8QI2Jl%F>r11&m2Cf%#C9hxZG>lCk!ia~=MdLAE!H(-u9LgnHB9fSL_b71dr14` zXw?O#w1c#N^$XL=nXWSoX(v<(O%Qc}#e&<>Ry%Rey_Dp838|yoL5eOj(yCeJI<|XK zV7jePPm1HuV)hQMuae=L;+v)g+C#hXX`%i`tZGi8@8_YA#URsuuH|ebnAbWl)_0Tk z5rOq~q87M1D>BW?>{C*GkZZ2TG}UZ1a06gR*ckm?xYHGgdHM4Q$I8U(?L7 zw~?A|(%Q;#)Z>{wT-Th~&`mksQ6_bu_*DK*uD_S(?<5@!Y-c6Y>3Nf=WXDhOEPbT2 zis`9gIXi@zU8;jRhP;XGUl1FI_};4w@6~8uS+uE|O8)Vgx(U9epLCQ7v+QAFXn`Pq z_k`$J1R$J@vXw33-YuEVsOml>7V6@M^jKa=^E^kj6(aY2eps7x0I z+Tst53tdCBeNn0#;975LGG^ieA0IFI^OGmvC8);yLKXkbHh`);1l3Rpm5^V5LM7DE zp%Q}Xw^Sbg>eHK!L(4Mtm`GjA3Vf(cn3bpYQkE%^p#`_k%Cx^WNoV5I?!+rWrZ;0% z_fnD;CHgs$@lK3-Sz_pphl<`NGw zdFWh6$xpn34$5A^%pEy;=+A zlQV0Wo-u);i?jpTQ0@|c%2LO%5772j%(EgzNL-faZ^f#n1m<~(?nZnn&Y8KoeYn=#@5#mno2yOk4_um zTI+EX6RCmagQ^ZH_6`}2U5@rtGQD*yZ!5=J9G+1b9cW>D;R1*F)(&91z|hSD5Bjcf ze>EV3f+gfB|(vMRHT^{qG89PaC6vy-E}cqvn1A@2HoH?#=fsdey~k^a9nw0N@$oDnieE~nl@6I{-$s^*|VVXoo6VH z?9iRu<*$fN2fB8Vt^s4or27JRxs~IqW%{$;ick0lrt?SAF`gNSS{yAdiIUFi_Vz3G zwPW5s(lsqK*Rumoa0;@oUs=zeRWR>P2JqIdOT%9U~GmKqkOZ0(oQ~}Lx^hmNh3Fu8nBgeKXGj6@E!o+-D+^#yv&XO$V0Ug_8nnJMIS*Lu)Lg?D=E= z=QpP$0Fitx>U zbNElJ60|@yllv4rdz`qR&U=zeJlse9!6E*1KlS)D_4qLL>EOrOLX9rPQrGD6`II3`5K4%~J$Ok72XK1fao``f>NcfS=i z$X88^jPUjbJpJc+C+FkzfY7VV^(_CD z$c(E|p1p6yt;!88guR;OZ)AhPp(eIIo~?@M=tc2+y`_2SfeJwj< zoNpcHp((z#Ec>1}RV`=^t*ew7w;)Yfic_9vi_9ExFmeB>2w5NDEQ&~fx+?Zf=U0uZ zk1y@32-5C)wi_H|{vq>hv}o@RUMH!AllIV-D^ckeBQjCCQp1^U$=-paoNKX17e$7C z!f|w`vQD~xOmz@!Udady@hx!qt1)RUVxor^KQA^w7c}zr_o@mS*eL962kEKfxSQCX z4$M7BIly#9VSBD0s^}Ged9QFJEmUejgyvF|1MY;PNX3ju-$i(a0iFW$O}Xa%l=!oZ znBwqsxLxN&`kc3tRR1%+Bs^%Fu8!l=MALZj;~j}E{N^D@Vr_ri?tTu|Vh6PtTU zH%eE;@lK;}AJtk+nX^&I!4=R$vfjQ27#zJig_M*3m@ zI(9~H%#nAl1Xm8%^bu|VICNzjIGv?$!wf-r&W~%yetZ4hwEsyC(I|QnoC`2JB{Z%` zHBgyRuCs6ID^D9-!xo~ z3N*2OZJ4i%@B>kQ`+0%2y;lZl6#c0cbB`zN`)uYv!7|lhU+F}@w2 z^1d=*fM>oQmt4*A{>ChOJ0bOYT-uFP$NTwL-%m{h!L7=FbfbL3N^;8MJdhyq@&b?( zQ4}Rqy@J0gCs5MTBJy=5wtf_?k9H1PtA(Y_S3hMQu;|d=;<;;qxkR4RuO+fqO4}yhsCigat+W4 zteU?&wH}xEP=*e|vY&xXoInv-r$yQ>!nz>U086ib%e6fe@Y7Keq3PkvFGj11BMjyr z665izPWApvk?Ad@zLI6T6s_+e4PcW?k-kcXXPCClfofw^ONxXce(EsS4i*dYjNODA zShpxP!jb1ihB;~4kudJ6RChz6Ivti?&hRzkx;|PBSO)t5yYj+gDmnTOZTjEj9fzY$ z3ys}>lx0?=?ZBM%SjG_FIn1@yv7G0kG;b^8`cY&g(%s5viC!wQr| zrwDOkfXNZE@b&7h0{o_AH{S;;yNnC+m_-#%XPUTR7c$9o~tc`8f;dYu*Pppr*- zWX=c;x8l-%qK|39T@?%@moD7Zi=gCzcD^029ET%d9u(S_Zyw^IFk;ZWa9wE3lxLcM z6tqAx&3dDdo5pofcp@|@m`QC-7it(dkKt-Xb7@jz=_j>_ny(-)=2 zDUp6mU}yoh3k@g_tVq{^yUL<%M|UPSa&#*a-L2TPNujP2b3;{^4%c*vG6reWHq5=? zxLo|r%+R%XlNx>W8>N1x0RgR17!#pd0+#aR0 z_FjF@oy?+TiN2QUZQ*zuFvHZPhM%^y{QTIFpS4ZaFj10L_<4opc87_YXcR^HR$R)# z9Z7rMlvgp#m*_(?f&2(4Jtr?_KS` zZptoT%J=PvS(d8rp01mS&HBZ~y6*~9zxTcOlHz`vn)uDOpjZ%s>UZnu<+sauYW83K zUxj_9=bb_7I|S8#=YRP8p6~FI zOt%)729Mv1GR;p?6DLH;?YMPHXdD-qhxmpwOe)B=e2|j#USjf^T(h9CF2-6vP%HWb z$!iML?HKhhb+J!NxUZ_ntzztt`{|cwv5kCk{Uia#+$zLClv`&o@abj|T9FDMg&kfL zqXjn5$A^y4+P3!%az5J*7XsPM5qr@*A(v34D zK={RF93TuDeR7okB7^trB>ubr+c-fy-cP|1o*Y2YfL|1&x1dVDp*e(|Fm z>Z`-Vi(<}ZA@*f9|Jix&Mn3WMFu8dOThAq+GM{Fk_`qLe@;=Rf;H|`{`$=0FOIMGX zN~0`Ybn>!HwJcM&lF6N11%UK?q$)2wsgj)v^b69KcFMXCZ(I-=fjnQ2drtB#0G|dn zn8H=VGS*?bTDGB{ZEMENt&}R|4G!<`$o$=|X{qXBw7G+@-i}WLV>YurCw9k!@_HzH z1ExQ?Gp>$>(v{wSh*J)b&MpFI>4u;4BIANYJ1 zMaDtOF)fR4#cktq{fJaGDo{av1}F!}tCr=3hxti?37+S>2}d2rxF|zGe!k9zGsHCo z`Kr7~d`W8Rk3HN=dpdA8T*c*R=iyzluY(CM$+bhV0`O*k2WglT8fwuTW>*(w9pjsa zdFCmhsf#p~Gwf9iKiFhmqMebbf{Lsg-cyreTP4$2#YB-{D;XI-J6m}t(Ks(nnU$oh z$hE-9Zc^WhyBgSj5M?tjyM{;)a;-NM>K2X*>e)$JTlt533qRN?%nj< zMz(L1Z*F9x=(0hs_H={-uBC?QZDRX@_V2_g-%m<@Hz5_|*u-{UWtcPHNCBJo5Y8E) zaW&bql;A^oYG_9{8eum>WdPVlXNL*n!`xnWj)Xev2pLSSsgwG#sM z9EzW8zOA+Qi0#guR8!)rG6KJ5z z&V;*8g&E+cDrcB_a3_jKM7joP2UG*zH7zu)$+c~0wXdZWH+9kK8Ic}r-bXnKB89=2 ztWNQN{x&KwCp1Ejx8o=-?o2|~oYZkcu7S6dN1J*n-QKrSmnFI@3`Y$M$n2o;PBY>s6VY`+!%hf|0LF1ioGDt|p1f}?b>CooPJ=X~I5M@5vIS|= z;a%dK9ir>8s!8;1iLr}RLL0Woj&#X=jZ{K^4cmJs*?ciFvx()Oh|B1gxT=`8cCmlf zc)XYN&YJQMM#x)v<~6H#JTa#e_dsR(NHl+-mSswRi)z9wDAz5^6r`Nc2-oA%;9{$x zl7y{Gu%|dN>3e?V0cg6cQ&%Vw98B%Ljr|9aPa zx|m6#5?66I)TI9b<%17C_{(4Z^8flLc>V6(yCJBCN(id|K~VkVv%7l=mSa+GCC1)P zP~M44yBVi!#Pq{F-Ho`kdnrlpCMGR^E8@F_$)m#5JMk$C68#9@vLMqf#im{(;^(E> zcjJ|-a?K|h!maZlM|`V{cvXsRoW}1Tp|>s)kMjsH;MOTL%=-8Q`MMl?l1G3m*YmLl zM@ZQ7aW1uS9Ebg1mTxC8JxXlk;}4FJoB8-=IsGh;czT?8dV+YChf=jZIzm2wI!V7M z#b2C730t?$;Lnbuv@)BgQ4pt%65_!=`q4i6`Dy(5X*5ZA^8}cee0B_FdVP4D_r-qx zvt07&5#o1l(eomx3H{^{^<+Pq<@;bSy_tur0nFG#8tOPGkqw%>%Cp{(Yb)3Z-K4pR z;~5nimbO=?4)ZNRk+zM}ma*ceV@xe^08;(_9r9YXzMC?EFS_Z}VNvW_oN`i}X-*4F9faBTBVGe757O3udOZ1jl)eo| zsYak0*JaxI%)|3Bx&hjBg%vv^PFt4fy9q?OUdq`h$m|#T+c58#z_KVY^iz&8t_|>2 z&Ga{6t`UKLN|d@FPwY~=4}`@wa_na#oyFnSPC~OL(}9($*vi5v88~Q3qQ9<7AC+ee zaczKiINF>e)ppEv;WSt%5S;12sq;Wof!8wqal@~7Sk_3V& zM=PQOfU?U`ew6)|GL8u~^(=o$cqY)Mp5qGgEK_3rf>a002gO%2eN7zmq`){M*0Xv;P?knpepN>z*H9PswV=2^6U}tenQN!rLdb0 z1S$I%7wzB7_QIXnOY6q@M!4VV+4jp(&;{07mId5BA~5%VqrhCQ6T4KJ?+f7CgIrr{ zs;iRY%z8sr&$bNEM!0P{Dc?IKWlJ%pDS>8~4<8UcN?pXW9^k1jvPI*3!;HY(%rP}k zt{d6s2e|H0%b6hUTF5Hvm+fm%WY)64+TI}TxD=UH!%VMZ`37iv6Wdjrl=a)GJMFSV zH}+q?kzZ+l4db83^-GR?ko(nWXA8#%cS{>)&Dg;?6)A$o?7}>-^%3qF<^JUZ7rJ@g zPRt9cZNlw3cI=gC>x{s#l9Ash_r8Dj+N+Hh-xa7P092E{*)}NpkANyX_-$=%6%`fn zcs%$CzlWY8zLh7Jwr!VQy7Bq{4M-nlY*Y1LM`#Fts{aP4z8nOCI=lXLsD4lfnk6rF zjjnz0MW{*tSC{wSfB$>m`(8#y#{bi*@Cv;C*MI%jgM))1sD?@is{a9H{gcm^EV(^` z*a?yHZBS~gYLJT_Zijf*d4=XqV(P5Gv?x^{3g@2)i(QRL12VMXwn4t`x-xN5rkNHi zK@j7AeDn1LxJY- z5f0nyN*s8*agtd7KiGTk=s1ou(bs?Mde7ebcK7+M?Uj`%F(6LpI5}XD!{nS3A_)dC z6HEY@L4qVe}%PwcGqEr@ASdx z>8`G>uBsl?Z@#pXynh&W@Vk4kx!wLKNk_1|`|*1RQ9@NfQ2^NYw*Zh5?y52&5Wka!&u%1VcM;b!sP{K>@8%!_;P;ccx3&=T+4y`mc6%3oBZIuLk-7nY zJi8OSwt>2}9e*!{do7*1ww6L6mC|XzRpj5ANqn%H^DC!dGA0fd%(a+vKwzpOt=&9h zHEti1Y9_)o&9r&lvvT*7@%6O2Q;;wqQNjwpkflmr&S@f1oTV1zXlZJvb>%GNG}py5 zw(<-kVqHD%a6c27vP=o2Ga|9|My6JOVy^80{4$oNM-VqH(bf|322S*VSU)5*z*dc+ zpfov%b7-C@4BU!vX8_f>ILW$=1dPy zQ^K@XW7a0h20d1XxnVj1ssLxf-{T=J&+_oPaKlhcS{d6tA~aND<_1#l;~0?HEeDZl z7f;>FF|?6(;4%Q=vockFh)4T>0~WBDPn_7ubriGotz!LYttpog4owB%t>vz6;Uf>< z4$=Y051j+gax_G_KOpgNpz|nO-z0Gl@=e1+{flvNKU%xBGfI7m>Bm9dwxZLJ(#1MNB!@2KIgg{N*H^!u{ zH;hCiwnlBL6mQzclC)3=?#9CH7Zui4+MFE})lONvI5rr^7SdV8a_?cRsY@*I$TQE z;_pvrYBlB>mB#K2=9FQ7n!`cXJVr{TIO9ZUN*n0}I_{5M-w}~s=PevhJvOY`(Ct`V z%XRHop)HMF*B-OAl9^b@@YcrJw*|yjvaR)m^GK+okYOli+S8tqb|h>$&Wf<YR)_ z{WEdm@2?n+a2B!cFPh9PTvs8(RL-*ac%DI-r;1K#-@31mvQ=Y$`VJZZ+*ZSO)|1*p zLAvs|s78)DDjYTtM!%3C4{HG7Di+E%TgEbN zT@hc(N$k>Rk8iCQiC^7i$j*)3UMF8$#~QgZulF4mT*vS${Q<)(agpUkPZ{zf_Zzl2}jsCJN%)k|i-e;JvXnE_Bm zZ^Q4h>LR6oE>5}J+}tHlU6LhG{R_x%reBy=xduh5Nr@I9;<>$bhsTkF>WwYb^$qmR?Zmx3*axYcU#Ifkut~4&B4)Fw+ebOqHqf_s z6F{2R(m3<`u=#`Jt=;(SPS(v0C`WOog%3GPA2gH;CDYUyMex}k{o4gDp=l=A;~37@4487D$F?~(wvs6+bBmTPhU^P zZCM`I$uV|N_Hq=q#W@Hh7@^p^DrHP)C}cSDg1xZp9}?@Kk}9@)OsbrgsTv4-UWmE| z(?G{UhquwzVz#A+XRKnonh8r6M-Q;s?RV9GJR7dMs4$<8Rska{!rGKn(?Z(QpZ4a4 z*k&RWbtq4YqZNUt_hhKO1Vzeq!@+6{7}E^p8##$1JF816>#-1P3u&DU(_Dy&ufbd+ z0z(7lYQW*3xr%Mvwo=xBxqCTgA4l0qTgN2I&8v9FLu~+br7TAk6?P^}JsqaW3xQUD z8M`@_I@|^5J-|0Lk&er;@vXGIm#-QS#{*>ya4p>^sg1c3QyCv8DskPYEPgaBp@FdY zIM#liWm>Eq7wW6no({@-*6-vCEZG5A%2zm^BFfq3QaoiKX5BE~Scr*xg~}3^y#}-O z`xEW}Ep~GC)wuO^yeBu>(oE_vST|gMADbKzp*%`}IcFcy~}vpS4Grw(_TDU50mZ6!CKDu7~5B9vsR&h7*GY6t3c?n zJ|XjBv8OOYAuIM+uo=Z7M(JohS;68<(Q!bv)ok;S#C9f9KPXCQq4d*Yq>61r>Ue$l zzcUU5>dUFMFYG?q$#WEjCKpF#4JGbvA`R6X4R00mhwJy(6W(URH5{2T9G-YNCSgjV zsbISf1)2A(QXC4>4{peR&llUuaqFPO)kPzR=%c~5qbz5>V|%XYZ=$inlPdx(F zxUaXh3k1@@uLP=ZzWJs~rDCyIPdxF&cfRwTfq{V!Km2X7+S|8px3sj7B*|v8F${y9 z%F4={{v<)r&UfB<$7nP{4H+33OQ8B!TerLbu=%Zm%YP(u)4REUe*TnY}*!}w{ z&9DD1sD4?QN9tMxl`4Bd-^-7zioa#A^)-L)6)Vdq=eXa3Vqug;V@GD>GAsw2roGvCyn z*RFrM@LG;Wqwybqii~u0yoOY-Z%kA>9u?B$554xNo=ivX&`Vc(a?#P!m;P{Vi?VRF zCqLu!ky7{V+xOq}i^P&F$r7mko}71O4hrLk!=;yE zr4UokE&wL?V)kPyj9Tyl+i?!{vwO^!vn+{jOf_X;(59q9%<=zrV zP0C`=MJHU_%z4Jetj=~HxFMpidYpTKixt+JViXrM<&E~^T?Zf=?{y5aPjMDoY^hp zo!$5c8_8RL+wr+=IMD0DKJ3;8a^8Q{{2u(AEBKe|8FSn5JATjB+nWg#j_C+}eFNtX z(Cz{J_I~Q-Hu7o`@8(AG&JKKT4>r4*d~h7UvzK$#%YVl$C>Dt8Igukm9l$~xiL`9M z0xv6~M#Z{*zWEhZ)Y)+P+Gk>$2*;#IUxC?x7AskQ-U?=7L1^O3aj~^jL^oeG>QCYW z3-A0;@6llI*(hBn?KmyfjEeLFd}AYS+r8468*Dom=q+N}asn)Q!KNOL1^r?mGz^J# zo#y@hVcsUf-p@A-@eM7sc}QStChfIsPc_@yjH9@(Xos+GSsn|hyQq+Aqs=o?O($(1 z66#QY)>NUkCrnmHM_!Cjo(@wF@b!R-B~0i3AeH-RvVla}aKOMu+@k(LP&M08g~1SO z7S)KygOeL^7u>FeaP3+ZRYJs#p(s7ZHqw4HD7jx`Z=sxkB!0J0XA9xX+op}^jm~~acJR`6u8v@9oR-XN*E~QPK_wz(#Bk% z*ApSycCN0RZ8#ZfS~LTml&Olj;>@5(AJ0A_G7k&%?Gfu<*|x8bXMRx;-ODqKcnFEReLQ`{_n(RTeu#S+E9SA~H5~P&n8;#y_CU4nF>XC>Y(Y6mz15U| zLq)_?V4ew)zK?4yVY zHP;j77CNzCzIi6bJSNrwws&)Nb=>fOUa|K7{l|aF4NWLx!NhaqF=CSf=*y0b4hmU8 z*I~|63`3({<{Go?uFA;liZV6I*0m*nWcCQ0 z7orrkWKvE1o^@<(+RDgIVbYLdV;2WTHZdo3Lx;dNAvN|2?7)@%9OyT<`ai-?hN53H zDp{WHsP(<6C$DuT26$RbA{I4DDU0?#jz0d zb6K-Ld|5HmUdFQ4uu-UI0NVzC+)?Ha%G7|n;e9M-nsx<<&q%Zu@|Ssed2q*L$Bz9TsDARvCuh!_2?+^FPEP*SuYLu8CD*K3gX1_< z3u`}M*zMc5pE`Bw{rBI8ht1B;27vuC@31BL?~_;j>{sx@mxAiMQ%D(_Qv12T>RY); z)0qN5`8lY5d6`F`T6THSl40><$}5Xuh376qDOTplXUJUes3jl0l_UF>z2Nd^ORKXo zq>X*yv&&h1Z+-NcO1IX3ANc9)-y^72YXB^(Z+-gdOVx{hsAOho$52P92JL3Nv2bgs zG&ci%aAfA>U%2|wYaJPWzRYdxsLpiw%lG{9k+16_dOA`|hkp4bwZR>)=KC2{lbPSx zSeokJ&*)fU)!&zqk&%D;r+->x)sH{^_;X6#vuDrO8t5fik|j`o{qyDjd^%{|1#nc0 z+Y8wGF~4nUD{b2oBzayQc1EU#l_ada&%hR@2Ar7&hLWgC2u%maG#n3kR`#IVk+m z{8p4c=H71X?jG!a)>dM6C$J|mn@Qa~LIRe4R7rkV02GO%Br-ek*=@w#Z0yEn^5zC| z;Rtqn4{>iF1{`|TE126u-rhl9OXmJ2nTG->WstYG6F0XKclTmHUd_F>nggu*8?WFO zUcsH6IGmkbhqAK1w}vyHg~9FKN#(!e;eW7>x|+=WnOXXOmRryhCNE@~cCL!;=hU{1cr7ABjDO`5egF9fVoeEBtf$q30DPfY#;yy zLHfRI`JwLpp-Ldi7Qd>rnY02HLGu8~OPQWV(sg#t;SN5ae}`>Kr0?finsDclz~mFb zNi8TwlW8VQeO{*a(RRS+Qg-U;q`ldUh;FXFf|Xc{I|qgOA))?k1oD}Mh7E}f4J2}e z9O9eKglQUaH*{|i(^biKSFt^PJWId8RFB(JmWP!vTto5e8zQ&vSYgf$Ho=5!AsoOj ztCuB|Fdd@;e`6A`M$6lfTd1p>YZ(#idilr!^SpNTNJ9Edn5LJDQqwk| z__vAE)vf(eo>x_oZ)K*xSz7nJEvXdKaN3Y%$v1R69TNTSYE-+3B4e(X)@}cS>_4bLFq>CxLiWqKx?jiSg{_$UP z0+j8v&BxOhvF!&!*Nr*$)e~Mo%jx8Ur{g@we;M)S$HnDrS1E^A?oYB)La6c>ica)X z3ChH}SkExu9R2;3obNncPpCU6%ie&9V@z=e%5daqCY(U5$3mPf-0%sJVcfi{oLtjF z+PgT`I#S&x61bjb11VpyZ*CAU3pQ0%zm$?WIbCq%{p?~xkOIspGE`|fWF zf2c-AzZ4Vq^|n?%fNIcJ_fdtLj*X4|9;gC}W@Tk9Tej?{KmF+wZt((~RF%E(8FiL@0ht$GzdTZw zn`u`)vj0_m4yvr&FF^Ip0v3YUn}3I(iU3oCf+@Y`N6Y+~M_#B`CvxD#6~FW98;!{H z7g6R%Z>0Ls^rO!&_kVu-qeq}xedW=z^UG?xI)hZM8I3P})_}M3HJ>x=lKhUqfA`q8 zzx{2PbwNQvi_>q%jvZfjpqFGxmO%B-mif1@UAC`n=UC20$p^){KEx@`R?>M!rkoaQ zyJ#z{(*5?FwhJ;9ta9PhutYs9Ru2k{{d`jkZE5FPXQY~Tt~`AO*)NWHO%-`HgMN65 znA=MMjXpSnLjK;(CFf2FKiEj2f3&J)^^LvfSTWf z-`mtg+uK7`>_WnF%&>)AId&+b31t}le)cwxVD!5xm$EU zmq5nDTS=(!S_=2Qbo%`@^n0u6>*@5(y*M%n-i3Xzm3(gqg-t$Jz%_#xZOOOvnnfZeO83!HR^cfK6ISM;-10Q0?ae+Q2DAEoKG|@@I$9m$6($ zOlRgQ*ZzP+z`#MFaZIeM#a*Yv6lG-iRG6}w?FJ4?UlyPAv zz(cyfDXC^cssUon4qQDXGynwv>Ov0yL^KkP!qAj%+BzfA0z?c8P()d{3Z_k`z}n9@ zp35xh3`>T~QTK8UyMp3;91~R4K&jTRB#OzX0*3KYlzbS)<^}R~0hK_9yr4AvD1BWM zH>#DgOvzM3B1;YKe+JBHBklb>3m`2#aw!8S%r+|07c*`4Cq;#n=EC|z`+`-cLLI}v zVti-1;-RK z^(R8?&L_g*l6DeBh=Q&F_5^Y-_xnDNh^(iWiWbrUXjZ}U9tld$4NfgZ+D0wPpNq)U z+834H6TQBfviI@K(6Ni!?N-v>%QrTYj$&5ojC*%G-&xA^^l~hK`J+Na)=ju`&#L$l zq2~E$<%HOHe>zNeE?QO1_MQq&Zlyf^63+o<%n_-vLTa`?i8qqAjOCF{I7)-t%{7;^ zo%Pan7p-f?q)2^ViX}}bk_Y4&Ewpz`WB^VdD#)Y(QNPuMD!ds3d-7LiuQvUiBQlg`~x`IXIwn>dL;->~JA8;TVN>M&O==9vlC zHVnHFGj|^6chjTw*L}Pee12alu9Kmg+KZ%wZ`4McMS$ZOiaw%Z@)c1KVMN% z0Zpy1uaAq1Ga8ME`NuDSf9kt_h3vOvDVb%>eP>6?eg{;)^}C=d z`yT+RDE{wDp8?~-Yt?Y#rTInb)Bvc$?!p_5kF=&5Bo2pW(E#|${BP^|3{?McZT{n$ z3ttG{^vj+MbmaQdOYjE-zWx63AOCTYQa5kj{GS-;C0UXsQ2n#z=aVm9F*?S>q6dWu zf0v^ZUPy?p#w{(hb}CkOE;8X_l>9hD-X)AmS;iliXs0DwVA56!c~I71t}>>#)$jH- zF4P0&3<}j}WQq%s${Cq@AY6544{}7E-%DIw&70px+&_Z9yPEr92|2fqzP+8A-ALa* zgaN27))Nky=?3?r+6+0pWlNLv)(<3eVC7u z-OTU7W;5s;o9Oq~ac*zN?`%bhS!dT%bGwKe>*?#8Id`&&*PT*Sc`i1ejTrX*6zKGV8m zrK*XrB9Bpt4%X7pSN%NwpM zb31Ly4sdqR$N(GlD$g_`)K_8Ze`Y#vS{6Sg(E+e@b4>k0O*>@*@+xMTTDb|We8gqv z!qgXJ>T}_$2HaM~@*uJnYKs^y0Kg%Ep_#NE473%6qKu-*NSJS$mT2-BuFmL;VTrwz zZEWVp6*5rh+Ch|O6Dbhe2xkk4Qlp-csjei%G?BLb0VyK_LmOppq3pnGf76l5VUezc zk$fdC9$>Sbwl$HuEQ=`lwUTRS990PY(WXxsSFor0)7o)Owm!Ey}VHmlYz&e^|-w!oC}NfZ$C=e`pICC~s*M%ju(SFqzBP@?*ie3e@4wb260a6>7c|tvwsA@1&p^ zj!u7;p9{OoeLOFU^#u6L)31J3U(Ak}6zO_6(E0j{TaNc9WV~M5KC0dX_nj0OM)=64 z{cvb%0V}DL<*lVtN?Eq!A@11!2$cT&^6U_P561@8LVuPqf1NXX>)NHM$;%}vPlu0* zP0uBm&udp-h%t|9H+ooMMGQkVp4<$W%ujl~W2T9d)J!V|1*-FgwU>|A=Z9)bna*m= z-6UGmFSPW9C%;kFHX7$yw^G$eCY>+nYKh!ZL#9@dwi7IOi(>DC4`#m!pn4%9=EdlQ zueY`EMC21sf9~D8x91D;=9_Q+S)lskAOBb&5NNg9&x?KX$tTIl$vhtK_19mA{rS&i z$@KTHDIfhJ(+`DxzxaY`ZQ=DyKHx@>xJ_pq=FY~)(`qe;n zaVO*R+OCbTkmB`~&p=f*b?vu2%<>og8+20rvqAMUe}tU>a!_?-=2usjE=qM{V|8`U z+Y88qII{F}J?WR$=GU}7Qq(?DsSafV`OaKjiq-Uo#pm<=!$17P`t|Goa|693OR@y2 zf400bbg4ShGae-!lE$=(#N}i}AI~re|QXAIE>%hj{}y@@4@fwL&1(_*HO2(qF_qbp>Q^F z{}^%i0Dfl&em4udwUvYlXE#%`Tgdq={O*42f959g9pKir)YV+_+BWR^div&O5+$|S zfl}VQlg7Vy5QP+;-ALZsi_P!EuL7c`aercvy}z0>yOnq|oquO9`A#bLiacgAQrS*h z%UJF@IyNH^FJM@6g7iacvMVTOH&@%o)7RmyYTQ~*%1?zRp+ujUxrL+gaf~IHyjv78 ze}qC6xjXrWeSx+nS`VxDKCZckV@04rI%?UT?JJb|40$QbJS0kJ=jkR=cb*B;_HZo- z_xLF9D$wPSSYN_K&ZoIS&=Oq}rRwC%j|O}Dc%~X$SHx6Lhs(#r`U`63s|8J?nhbx+ z$i!l%vw;9?v{mB9Jpq<3r2jPo4UGs5f31|&pXk%t!cY8Zar1Pzwnw1q;pu>Pkg2fH zFd;%s9g0qApxuQ`Mw)56iuL?u*WmTIrjolcGgI-~)2<`cTCP)!Zn+wON0?m#Z079g)lWL9l&L%yyS z0M!Yxu7qU*;H|+d6aEOsU9=tQIUZ`<7vQd=;(Peo++fq8V11i3Dwk#t@bqW57IzB0 zjfAb00#r1%5w1=@sdb4xy%JL=e^1i~v`bn`n1(7merkJBkH}laMxl7J1Jvyt=h?)) zwL}u|V=HN{U^&W|NzmrQ!2pjQ;J!(Py+YvJ5v1smxJua80g?Prh-OTp?2@MTo3*T9CL2tE zE{+xDcx8H!>n`PfVa<+u$}ud|1O2u05{IOYm$LV(A7|#1DI-D?U?$9g0iLNIcLAOk zW08%xqmbduTIJ~AXrWsgNlic3l(x*Au_AuQ3Z45&br}^`&2~fY_3|u;Lpe5>IVio3 zU&9MPU4uDG>2#R?d7%~ACu~fOXBqn7@7T3+S!Z*)>5aGsW6Hegknz*h;5^&yHhq=0W zw$rM#UaqZAlBj=*z46&t=!Y84nm%1-t|EO?Kx~=F{=F)f{%UGPN& zT?9n6q+lIp&?c$`D^V?cAS@mS{sZjgYmEpE01a-1C@1K8Z2~__isA7-(AUHTU z<_j`8Ir(RS>Ps)Z1WanT+rL6KUBc;k)F6|YP37nW<63l=p; znFYSfFQ7cCi!pgqe|)bml5B?mV@5&q$cQh;z8K8t@~2-6ru3y{{v1$!;Ss1l3Ph~R z>^pmT%2)6xBydXYTMM6uX0kVrOihh6FGd-zef@9IdiB2+R6kvK4LCD0XXXp~(A?C_ z#_N7xSIt)dRX>)JIYV!MR`3=oNT$BFWcvH%^8EA9|H)s^f0jUXNtQtMzg*s(IyV@X zJS9_Ij*C1_a1I3Nfj%xqDu7(hg{ixF+N{8cMpAnU3oB&DPf9d3xNRa_aV0jsOBmC_ zi5nAZTg3c6p$b;Q07QT-GvSKS@VIs<|3!K9{Q_bkkGOXjSd~C|XR@&SIoS10)UOf+ z@2#cp>_Wi!f8Z#}L9=iIsa)^x$8K*Y=67Rv_hNvt^O^YE4*bJ>l#=x>)Ucblv4x!T z2S=LQL%g@0dT$-)4pf_iJuIj09l~#JApm20HPri?5YNs6-tNTb_mQ_Ylef3xvl%4t z@BA)QIo#sC6z)5#Ij`9z?_^N3JBS;bNWkYG=^~I*eJRi{D|Plcvr2AX@qBkE}Fuq5GJba-B{x0|+}m8p6K`fi>P zSZr8e?B!a|pqRZV^J68;R>IWQ<4zxKso+JIiCmLmx*x{IL(fBj4$3wu)&U>@w$$Q| z5~gj-fAZKeJhp(X&RUgH!*&A@4e(9PNcm-}4qN+b?O+jiZQCLklKM)N!P5=A(|}u> zDbui6GcDCrW6n;Fby}i@F&&gR+7fp5Nc86-l;X8c71-t_^T~9ctWyo|KT2%&U&$Wz*bomTJ3Da7| z@&L#Ke@#eq&qXJ+(bhcyv4C}jOl<>UXs2xes(`wKeDm2bwU4#|_&^^{Np!QcLz$%gKUFgh+85yb=tBk+2%t*e{LUbE@zqcuCg=}wk}E1j!@;Um6o;7#8(sQ z24(ia5c#Q4TZ_PR#no|% zeWtz8+J2$AH!8ITPu#dX>O=^dKbI8=SKQ+4AZZ83{9Nkp0g8hX{@h9D6|P}V&i0k@0JGTvo+H8Pi0_8(T&1e?=ML@>*n4EF8~kCJTM1_a=0+pS zwG@UXH=^KO+C3rk{$NcN+uFr3pO$K&lgpTi70kqpXJd{A8)05uHh6w|xWLD?0;mo} zrL_wIHZ4q1+#&EM+E2vWe7WVTPYI4wYgktWzCfDhRa};_l}7O>d7~{w9Fxx$xK@e?}#Iy{(BW z<}Q1tprGKzFUSWUeDG(1>Z`B5%IEWqM&swjV9A%3md53BfBfSgFD)4UwpjHApZ!q? z-bZ0|3qH$1gU0vT<+7i5EyTO2-1paU?&jcgy9lV~)@EcCd>!a`2YzQ8 zace92Ymea9YdAM{;jeiGz^cDW<^I?znhsMpQMN&U+~Wfw;l)f#2RszlGAJ;#bM-Zt zsYjyB4i0am5(-%fgVJ#5sG}j~5wU7tsQ4IDS&dsx%akWWe-N`E1*KRw9;O)*8ZSo5 zdw9k^QB*CdfK`1h=B{LUq0FezFeWm<${CpJOqga^q^`x0$uY3%xI}e=8C8c{kA)cO zaeE7G84A-k#B2plL}7Wj78ru;Rqidpnp4~jz_SgMVJ1x7&QTpjNWOgMZbFf^EV6+#o?@v7xRzHH z(Zx(RU<*_ZY*L52;BTKlb4>$jsw0f!GI%QO{CZxxYR zFI+bht_HGhz}?lrdcjdOxV92AHj{{a0mDZH#W*^Y+9 z^m3tXf98`6T^mnXgSp_P=;fn)pxahiikQYm!qkJ3mZH#7#SCXV>1f2A8&`;df2U$x zHC)?54EMf3O9dIxADcWPe{}-l4e-n`Jz59{Fjqb1>WfIL;iL?N zc_yOW-CXOr2xU17g(E&3tgFR!PIofHdW+n_aZ8>jEYuK7@Lsla{t)1tYP_2Ql zk+CpM2L(`>K4jeE6Q^|0Hkb^jnBHx)JuWb^F3Q@iaTnnB8nzqd!{WHRm6=_}1GW6M zFn_Apo^jRsUd#SMh8NfwsnlsrEp9-Oe~_OR7BRfuCsp;hE&N%0SBT*hdrb+E1`H0x zV2pOGlJ;^9?X<3lVLTpUt|ZMvF>9JgXB~I-fY{nZSbF3e`qi1g{w9FxKQDr+{OfH1 zs*?Y-kLoXf`OBD?7_nIV@y8!OB9Vm!tJNAF9{xwHh?nHAxrVuU?Oi0-{-Ba=e_`$> z$ig4hdw-QOUse2d%`GN)#QT@KKP$u^Yixts%7HMf6avBQcOYx<^b3PI33`d&PX*c#>c`U^M%;>3*pLh zGS#I>c_-g^PNp1@sB2IV7<~hjsMA5e&Bb`>=<{vAc(eg+tiFXQrg7i2i9cA&xqXNW&A77_zqy`z*Ta8vEw_}f z%MLZ3kCHzZA2A}j4=sW}>M9RSb=kZ$Hcmk!bH9&`t$Q-@#e{0V~DBApnl+C!S zoaH_cm|V$V@Qa8U;!dN9GC*=+Un2A zTgG%(Fx`sWaMGWd`jRUBQN(&CTi^7f2SksMC;pWcOzl#b9`- zA64}Or{@x}G5^7?zznUV-S4XGt-@1ItJijNT$iHc4TNb*mT)#)(M212_@ALS@wB)?QS)UDVK&^p97PsBnAcJzXc=bT}}rn32>Mnf83yz?eh>k9HwK2|e7w(VSpt>j~}gkhD@V zy@u8)e-M2%*gW7qJQ4-3gQuL8I4&@B&@ke9Abn(<&-NfKyiDcen#v=0_Q#|jWJ^kL zTX)2|x4r?O`s6?Vud}ka=Og7`Z)@a;B?13ge^7=0?CaOBU$J7vJMX-+Xg>GWTW>{1 zMmijhTeog4Et8hyYb>(-(S^%y{yntyzl&cM=Hd0ZHUH6nvVw&rL;EFA{boydcXvQQ z!1urZ{U7{MdF-*rzWd$prl+UR&d&Z1cv^(pm%S^BDPiTj__D)WR|RVKrxN7fOwaEPiu{x$Vff7cg^v2R^qI zhmZFU;d5EUYz8^E4_`Qp-P%Rn+)BT@f0}#m82PXOzk3LK%_W)7!55CB0(Z6}6JHdw zH-iG~MVDt|4^N^PO>?_(Al&(V1PT{?1ljt|?ZRg>sOuTjJF7YKnfSXd!Mk4mwRP0H zNxbJ0Vk))?jv|e{>F4 z`n^7F-5fLUMH6YC4pUBuHT|$WrcDz<{c}1`L)`XiHp;Zph|Gy~10r1!rq(?k1w7@W zt!=b1(UOq*Q(+G^UBvAxmSPxszk<;#z@Z*9Fo|9CZoX0xSPI+yT%%EYwt!Kxgg&p?OlK zI|F>d)sG1E(-Q5VKv%_fR$$KQxbPA@rk`sb5$axuiF@P7sdMRv8*w*MUkVMCn7xSU zm`i>Elw(Dw0lowRij(3NXyCT%_b0lZR z3k*ktlkyn)29E9|Tax+=S%WzaFk)&k_le+?I>O%0RaD|}!0bo~i@6&ptKX&3-h%<>2_JcYZhSU=cYvw_cVq|0SJP4O9Wo+9 zzdr!xw{i?sJavUI2F2haTs3UZhu%6|mee zqiWcWTA20%T_-{w@C> z`7Z+1|9v(r?n;FGN`&HTY+oHzKmPdRg@pxJ_xAPm{oB9&o6qOFdGqFj2M<2^u!6pOh`66e+{onKKTbS6MF5uG+Dv>@PCPh> z41i}he~`B_;W&2pApYS=5&Pm0JzNQSE!{7@=TR%=dNIRG23(skFKYqe|M~s9te(iJT30wX)i`9YYE-9<+_t0 zDMg{lu);qQVm!c1ILTCPeAZaT^1y0;M67!*QZXzrX07t%1t*S(fCQ1h-la(SOR=%V ztoSw0h=)b-Gg8gC$Z$!fx)`n+6B?e6lot@ZAz92NXgua>qs_@rDb_v{U4z*Uhbo#W ze-w##Or-DQnyR@x!{fy607Z5%e^{UDi^^yv9Zi(En&s`|S`P*#s2?K^2kXbhij6Cx z>w!1|bf=~ACdv*2`dozKqD(a`&>vz+x_J8Y8F>ZthH@5AhGkHouss#DCs5W!o8U(9 z6oW!T4Q|;JDz3vkFe_k^)UdtP{vb#|e_Md+l`Np7lr1Y_%2?*3A)0Ps%xJiwSd;GK z0ycWHR@rky)IcS5grkRN2J))M-2hWQ%2v&GHIcR-#-VsSr^UKzBD!0sLRoc0x>KPj zfbgWyFo;Oa0zC=MfZ7T}Q%-~=?F)=7V|sTiPt97jx-?;bXXJXoNubd-5>Y>}eTYLlBjr6BluZ8Ha@$i(co*sj=O{`} zWIQ9$j-y;cwl0okkZ10ob%{^Y8PCQRGSF{36)blb&(wfGH6lAOriE~{#d)*2>kkB^ z)ylT`;x=E3lD`-mKOL^h2}x+@f9Pw-xN^3(gyGI*3KN&%rA+&!__$FiQo;`KP$Pl4 zd>qS>VB?Mz_WaPqdcsl4Ozh{I&qy@G{`4#365Wfjapz>JZl2l4wH7kn7b29IK|C1c zb`+-DylsWvM_Y!N<}2^j$IeFBt(cZ6>Oo{jsSIE>=X zKKD`|$2Jq80KoUr&aKE9(re$&*p@?-Rd%oRq< zKO#8 zim$gda3o(5RNsI9{p{>)yl%^SsLgi`726SSC?EafBEH?7yhWg|FZP-^o)#*C5`G|3{-!8 z=9QjEPY>4wR8ojV)pL~3MJJ4l^qm~r8L6g+YZ*rRCf&GLJ0Z~yi}gMpO5J!dS`KUM zUY@ZJFpcFnNwN2^e;74fK`oDWK3sJ{rn(TW92DvSeuo8yZl0x%v{$e_eSAy5SpTau z&i%vKtu5re1K7ht;=^+C!Ex-~5$wT9eBm&A;UG4bO@6SAynh&9D4=FD$Onh9hsW3t z;cPC3!u)QauCJ!=?jvvRA{LI~xBXFk-$~^z9Aw|#O1!^;fBKnIbZuatm&*rRH|v^V!5tT%vQ4${~@q5?7vJ=mC7jC2Ckg7cpHx zOr>o5p-_E4&vIHOFUBQEsYf{X1$eqR2%~CIvP=D$Naa+RW+h=5ke`%?vonr%>^ihrhzHT@oVKPiL zD$*4(k<#rrQ@-IDbrXr4XU~RdrbPO7>6Y4AQ#5x>h|6J7WwGiey+}?~r8<~dr z#?ulFz-&2g>l5ky`a5?eCO-h|NtwI+X-R>DfFCbrm0n0N16e~SPf4}YvC1}%t(A0* zOOaWoe?M`mtCe&@OJ*e6T7SUXRs!`2;3ps<6zJ9N7?36QaLq@9-FEat_85JoauqisbPE4 zf1im9{LWJo_C4jS!~vcexd02~Ny{j}Js-+MV;|z1cLpl5Lc_hwcx@8v`Mu?(EEHoZ zFVuA*LJp{2kGWd~sZ-{y)r64bD2s+`%=Cz+|9p zM}uwu_K*MTXpp;tnb;&*H|5#Yy5Gsro(j4+0zD4iXulb!@D;iwu~45@}Y|UwESF5-_5s8NG%PNrif`Me`dHk zXyYk{qJW{?vr1XTM(TL@@+rm>%kkucfobU1p_tVz+HENu#n9&CZ+|09fB*N4H2!k9 z^6PE&w1j%{>71OL5x?BOfB(yF2miYd95~=`IBYf>&?x+ceL&Ym7VO9QBVUW!T>7wX}{Q8ChPf3#CJSalx{ z^-RgsuQ{b3Y^3Hg@r48U{bTr@Jtz$C`{|s81MGWQ*!*t%!!qJQKK}k%-t1QDZq8zm zUi|hR#I`7Y?>1uoAbsaBb$cuMbFbjNz0}PeC|nZo={sIN@aa3r{P}GB)-K{^Ch=}6 z@7KwKTia0v)mxj$H`BOqf8^#S>gFEy2_8Kr0T{Qgc_yrgsT`0*{Y)>rjI_hb5wY$_ zu%?)$o0KV=X=@Y5Qjc3+R796By*pMq8VK8IsRqyey!O?^C*kAq^aBK+anXA*OKJU3v)598u$xMJ&*>@FHb z8}8(4x2%ZI36vMJe=TrRU<9atSQb^nLK!?at>hgg@aZs3726Bs2($}8)QD_oEv+0y z{C_a^hw6WpnK>#kPKlv^3>BE%@f1nvh;8wlt5sDy5wX;@_F z7RLEF26)UFnYtG}pe<{aZPQ9VLT}13Bvd3Xqq9TIryaW{f2F!6Zb~hlSj+?-0jRXq zkx7@go$MD_ikTYdkXEj{U#M>&ZI|J>Fl#O5s$zR!m|(oR_zAklnLeJejOm?0L4)l> z0&S<%abZtI9cDiiDz3sTn^zITVimG$<(V(WB(xANnECLGRcuQo+X)>Aqi{Y>I~cRh z$Fad%gHr#9fAk%Iw_HafH@Tdd+$cz|7q6d?S*InsGCZn^iW-r{!o&6pH1J#l0(fOq zy*zy}(;D{g!O%;^c(_lP&?nJM$rMxJao%P0_LT_(T=T&0q7IS18nfkv=n9#!(0jc+ zGxT{uXmUBr+d?`jF=HX7JR4<(E&?_m0+QwFTS!wAe>d^D{k1SagFJH+r8~|rwb05+ z!c#+~HWSWT6qLygl-fc#THxj7J6lAn3s{b7o~xO(w3D`W%7Nl*QTApW*#>6^xSLQi zAkCOaKOxnYGGW}ERb+U3If9TRj8#`4SI$b%HEL#Ja*zo_e_ny&lU01&6hwjy@r(b`VnfLnHPl;j#P^fV0 zrm9;x=bUck0Dxd7MTwL|Q4~oriWw$7g z<(Yj-V=up+o?bI*kC!diUUzX73w7^3XPxU35IWk_thUw)Vrgaz96dw?1{9vM zz3bG$$CyrG@~+W7XxTija39=gJyRNN;#a_PF(!4l;kJ`yrWT=XR2IsLV)a|7ah5^wDp1CqDb^GvM6!-+v#n z0(b%cEhb1sEAmUxiUVD=q7^~)-vHHL{_>|&L$mq>a0d`dR^)zmgC;BT#>m(&KhvcwXsQe^%SFw0BYIxnr=+%KVTy_fp{zm3`DK0xr0% zw=P0*EB6A6o#n)b#6dWH0Bwf#+%(u9`nCVKUG&jW;U{OYpPr`vaj z7g5pG4_-z<`r*sOPxhlSsUIH@etcB;@k#Q(Zxj7fCG(>rvX2fE@a7M8Qtu|De;*#i z;WM9{7XF}8{F7bePj-_Z9T2|1m-z8>#QQs_pB)x{_!9B)as1;~u>Wlv{mn|c-pqO6 z(C1}#q_m^(Gzo)!w7XZPd)uvDRymKCvE4-Uc&YU?$8wY-&ua_|g$2(;412t!`kEk- z6}yHR=Ze~i)H6**3G%qb4VP8G3uc`hf3A20S$3IfHu&t7Q%6Oll^F^XQjrmH zpigY=6vl?=P@44gid@iNfTmh*<*^di&UKcy)mBo#3brmC+ZgBmtjwz`>-p@f8{=I# zqWB&%JRtVHZZ(ce{X?Qq9za{_8Q z7VpH_ek!=Ec8xMYcyXvqdsY(4>bLc%pP5!8xmp0;UQzHBwR>1$xNb4RAhrMmNdjq6 zWk$KP8*Rl!4@j?a^X<@%ev#*uO@WH101Z4N6EgQDe=b`m2&9SVMWVV_6zh{!*U`x%o9r`%dFn=9<=L|Mgwp=N<+-ur za0`|gpu+uRWOm!ResQV?k988!DOE71*j&%6g5hq*lKVGGvm!g7BEZ_HB(hj_s6nuK zRRg>n?IpvP%Fzbf0os3})Y&eKr15CGFgC%kK)z^qCm&p$e;oH8IL3I9<}l7e_(2#f zDLupbU8AyaBfp|WRM{Ut-cD~Gi9YjkiMD|s17BSvwr<~G$k=vu;Jzk)3Yswl=x1hgrB(HFTePpCpk-$yf^trU6JAU2ddUvYR4Bl+9@Toc70o0 z+Ybs>tZ-Viq80h2XvKm4vf8hI{p&}M9{tll{nLBzf4%qjzhmG1?sq@@@WUdg{z1p$ z(?=iVIv32roH#fm_YN?w7dHfZ$lz7XysUAI%MCfPGhYz1&C%fzU^l+&n^%jy+%GdgG7KoJ}CV8A>q&9-;?+UFH#>J253b^RR84^ z_KTy!AMc@lx*z|^9`d8(#K$iQe{l#yGqA59S>O*3;h&tsKHQK0^jYGccT(>ItG*=s z*#Y5?x6!{ij(@Zd|K}I*pB$jx4yn>&>m{BIe=urZ?wgVMZ|iNSVu;AwCw1NSYUh=% zOMKH+feyOUFR~sJ2!UsT!UpNkHG!j+7tc`9oYZxJX9OlXRmzS@14xHT?Rvwm2fByX zQ*!UJ+Brl6D|v^dt~T7+LAU^a&hiv9a$i?L`ZYrZJ4wK_Xfx)re?{0Nh<8%1yu{x} ze}#Jp_E?$bLb-pKaV)8w=ef=%L3B_QY{D(Ted97$6K0!K8)vk-D|}D*NogW)W!vRrKNL`tTf3@(@ zgzSXg*DOi4V8I-a<0i{F4iH}~P5E01(+$1-p3!pKWN8$H@-k01qiUn{`!-7334bRZ zeSV`RCkkZA7@EV?+6E-vZW6i{spW@{l=ySBe@W#AXZF&r{hOp?k!NpiKQv{oUUkJs zB`lEdvc~*!ndCC5S~i*iFp-)Te--H$SIkzQ0sQHueG_ueiY2^aO%5rdua&X;HfkpI zo5xJmd0E8w74qg^|ncE5;{AfPt^%3(Hy!u zIT1S4BnTfVQ(ohv5qV~q@hKreTqOo9fR)ol94fqA3TG!k;TDIB7Tf;Kf6&`!*jJ@ zVYHZ;N_EM$?O$&?ut7g4LpZw1e>o9rm+pSM@6Te7 z>Vm?0Q|-Lct&)$Fk{ah}WN~O$Zv+j4y?RMY1 zd9w(rf6(Fh^waNkXP3>v7Ti6hvaA>lBT^?|&Vt%`Q)?e$*j2T2S?z*^uvw5oTC8Y3 zE<7dmUoRA_xv6yke-1zb3^Z{96ZVPx_ni7S9Qq6$MAbv29ss~J?N~AzCS-o#jzN(# zxrRT?1SS-&WutmT>IO8MQh8>K&bxlo5BJkQJwg8Li13rwFf`5j0`ZGih3~&iz<)oj zA%I~YofiD!ES&>mon6>%aEFa;G&UPHwv9Vz?8c4N*mfE;wr$&P&VJtS{E4;Z z9P=7uz&!jBBG$f7O-0U^p{+5@#P)Z_e0~1%c36B30KC+1%W_YXXvjcE7L>$$YT{DZ zByu-i^2ZVNH9A8YcUD`qmz#;~W_i&A(A`<~Au=xd!hjlaWMM(^no!4;InMghqQP+dc}1D#&~qLXYThK^lxlXqn#> zmyjlq0Dd>SHhCN8CM+2A7Ycf!Xu}=vK%J^gpTezXj_`ueTz6_!Xjtix=C6a-Jz=&G z!n+KPzE&`GQ?ha)|I`5?Pz9AWe^pt|Wd>pR|752#_pm27V01Gju%IPPPkDCcSfy+* z)LOmWQ8qp`YY4uoz_<0H2|wscw#WaiQd_NI2~_X%XTW}HF{vlN9;11&?|r;rMeb{Y=~4WZmxg;WQT|@nSIn3!!H3yt`J|C* z3c!m0nlZH+$bXpK?s%zgQo!ojB#=~)PY^_6@`f5T6ybauz2Y5`s;k~cv;P|sBp@PL zbq!)plEzYsjJ5xM>WRZk6%J#xZ%Z*RNNKbxvQc9vdMs2o3@gq~)7XR+dr~~?K9j0q zdtqei*8l{F`8Yt@8iH;ckf+PE$Vt{Wfor0tz%QYa3_hHHUG$_44CfV>ZD12JsaOkK zt1XEa=O;SSI`s?$4RQ|{2|_%NM3Y^E4tYsOwbtLU+pQyjSKsp*mW{wyIEjeW)i_2Q z0Sqf9{LFAJ{fFsmn&B$nfe0607eTUlT3rr_i=5-Mn)73dpVh)ZT~t|Gd` zJoW6xh6Gc+Cj2Q^daJeP>OY^TGmu;fP{5GptT$E@l!psaKpT+8Q>`QiPDu?c&a(SO zT2>Ezp}#J=mY_|6d9dB0t#V!t@^&Q74*ACS8o82;Lw&$>L_uQi5%o_F7)Fd`Q-Fia zq}9ka=>O9D1f|eC+A$1mlGRN+-vLnZ5t^Ik)3HX35U` zAmxMw<9_RHZi>F|@aQ7G)#F_$og4xFDKA&#|85JO3gn&&82SsMEQ?PDrD4d(2K*oL zuLk*t9cm-J3eHKw(5B2qw}&H^bs>EQjSS|O6nEqc$RWSNR`6B3a&7&gVf0tC$Vn1; zh`j@pk7ZT>x4_d2=$;?{2yJyhNs@`9e?Eo!S+a@e3sF8O=H-`XXAWi2P?Gfa2hd%~ z^8P#H+ih4&&dZ!XFfaYNt5)=#= zc6F3EXg8@tk%LMdEzd>01!*Z_!wEwlbXa{+81}0Kf|iC=H?`Is0p9OS8wvw>m}IY-xQ zmx!^nS^*vq#5`4S>| z6q!#uFv__(VsS+W%2wv3tj`RY_`lg}PuXk&vG~?*@WwUZM=k8Arv~9I=cIpkJ-@8O zR>JFyscm>I3G;MM530&1h)xtzz$thiYS5!qV4D6%9^!cU`~BbbNqbc{l`7G{ z!o{v&D_BzhW?<1)00f-3^_B+L4G1!!>L!1h7WVfCsQhq{)WG)jU++nCH75(bK12=B zBhlP|*28c`u~wCeGF}F4)pv{aGvKuREwM-?K-y6bT6mcvy0vl9ly!e8Ku`eh=OTet0phztGJzP)k2j-~MEm*NOI2;EfH>7MeX zR>c`+w&pKovtqmFeW-rUA0)x37g2jacga-v+@rZN_rS%OnQQ7O!-<#1RiTnBl%Pb1 zLfVsWI)`d}N`B)zI03Wp_xE0(+-xmKACG5IGOTT|u#}k@0FnSwqb87Ks5G@yW9_b=AI@oNaa2#01UZi3;P(nu_nhk{@~d z^OR1Phx%Et1#65n@`%Z>y>VS!_`Gu>xE?ng@gPk(tOQiBiB96MGibQ7YM>M;u#Th0|oU(EI*} zO3B$XHQYRJ>v`LV+b%LmrNk#dJxa5IvKzaSXUfq3^}?h3^xE@#?GiZ9_XcdxA`>q8 zcQRdk>4wsEDvb@zyPd?rTJEYeBDmPt1lx(qHZSz)TU_m;+X8)v#n&Qyo!x7dpw38zGW^3Y}am`A{w zI`a@$wM|wOD4<1|J2uG(vN1lXd@M(+wb-=l6!*3nv(CXGr9+?MBMj-_5Te*;SgGn~ z9P@5Y<{u$%(vLmLe~E(qVPT~}*>@o!s<&sSv*2J)QH->wZRYK`M+}GBvQ?q;%`hAX zZw?o0coFI?A|pi>oX$L;S#hM2)^i6o*~Y*Eej)TR@0DQ0t!fRXu%^OkV~VFf--v9B zG-;Bq9pfjv_RQ#5#EC>^6R2%F+vx=>aMfZ*D54*(_jvlRnIo?-f5Ksuh zu0e!Y@hd;R^eb};9jB}<*h`yRRLYCYQGha%Qnx6Mi;iY588M~(6h_*(buo)MfsUqO zw@OEtpbIa-=(sEn6q}14TkX)sC0R=0l#tVlU|~!Jtu%&n6e#N?3Z5n(KHZ=kr*r@9 za@vz%DDx#`SmQ_#b-Bi|)3#1S69u-jr2Hj6ryOCu8sGVRddQzCKgTZ~SLVL9>1Fv9Xy>Fw>oDU+iT^^ru(d0J zx;d}VkJk{}F$YxHy5Pdvz4651o9a2XZwIaB;gM*wF`$i?tg$;g5Sew3nXJN=25mVK zceo~4_?ma_<%{srqe7@$=vQA-_f1x%y6yU3@wPO_enZR|`)N7ogw>s|pGF+w8SgXU z1j;p>TBhIwI!s79eLC}Dk(&_mUl+?$$(yJHooFDoS__>Uw_<0D7;Da_6-x0IXr=ql zpc7$@YO=}J8#Vp2i#z|ufk$Ai5eD!K*tj;L=txqHnaRrV7>h?!LG+Z2H@dr;jk~yY zq6kx%JZ^bvUlw9GZFodazE?NG2{Ip~3WNlQzK8(xE*XXFkyn*jv|4vxZQ4|}cvZ~D zSr^PvGI7ffH5Q!9jiL|sNdtJO{3SyM2@DOetq-(ZMO=pk#q+l^{YF>sp#!e6zEU!- zNJ~f~q02#&DY`CRt8%V^EGfK8Z$12+d3Rs$N%Dek$;XmwLjH+``O$(xnrQmul&@qe z0Z1;(N_M})3Y;j^LBPku zaF71wEOVi&%&9|Lwo^5qD4_-!`PXUEwha-b-05x__){^5 zzV|w1O{}I{wT%SP1{s>A(t5!cEeASGn&}Ksw^@=bvM{(19Kfoy91{^?&>d{(<)?mZ z+?_TK***QT>;X!@y!^fWWT1Mpdp?Kmp}HA6()~%b*J-obi=X24wWI?P8SCSAO+ zIrdi!w$(3)uT_SAi?+uYG-2r?0PQ}|IJQPn2dyAKesTdK`79pKR!y zLTb`i{U)M$$BHo-zvg=gWJ^_NBoQfM@Iel)bf^n8lF+`QQ@O`X8#`zMh>cu2Gy9!0E_(VndQm_^)jJ zFj7cY_s*pc@>U%HYwfioj9$ zOQnlo!_jN0Bl`g-;MNCxie3#KwDv5;{Xwd6$QvF)Yxa+sQmFdwZp$*?PJRa(#*(%( zwKal~Bukx_8DqzQ(z%UeiJ>-jRM72hD0hilq`+@P&05Rgz+u2-UA-jnj(B+wo(fU| zc7}K0OZK)*2J33AstJ0Q?utJji)f=>pgUyOFVAEv0fWi7YHJbzBYi4bk#bs2nj+uc zn)qF!16FR0D{T-Tw+12BU;T)71tbq4b)Wd@>5Y?0D}xX>jC3XXQ6XhH$nnb?U3r!W&8rkNE=0V-p@LVAva7&bX^eu8E64vQ(dL=oO+S zSbPQ5gWJN!1G>IfIrD;KXTI*SfPmY^b*x5X3_*y6^C$|a_DLGng64mZLwu-qF+5Oj zMgrZ0RQ}14I}@`YOB;VL`8jGH(C-gg5T}AbEG`NpB18wsg&Vqcj!J!1ecCwKM5J){ zHi*ky2)&FrHaUOIntJLTWGoPXuLg_^BqICzKk6abA62q#bVu)3%<&%~8!G1!x;R65o~SGqB+KBDAx5JR16ELMe0#{Z*bYEpAJHRvwNtaoi+^$uee)VmI&l zY;E&RmO=rTlaaw$p2Rp-`T2I91E-q1md3FB(O-kfuY3^=7;5zC%G>%&ZTm16Tau?H z2-3UN@GtvSb)epBk^TAex`&l(Q3%2|O)wxJ${1d&xm5VQBc8lst3wYxBTR;Ez5GRp z1LH$KK{{|;Ggx~~tGT|(p_j#dD1BIInj31gbuR(aLFG~ZJv}&;mXfbCtAk{~+SC*V zS{QI0W%%|I=TzJ1{+fw zGlv?kFsgf)IkT?dU47Nz^%vUfzL3iCn?-wpw3&v_FrDMRQQq9=j(@(w2W8VpC7dAR zRKTt28{92w<89Tn_oQX3#g}!?jP14FDtSX_^Ni$YTn%?B*aAm|Atr(Z#2y&TORr>~ za73uO&ixsMaxgHmnk(pS7`OuV>`n!3!o% zvW?hI=ieyQnLmBhp(I2#6o1*7ZWoba)(h=qPsog+#(%g;nHf$k(Wt-J*S3X5friG0 zJKjz2QYO$W6KPDce)#CoPK?Y|hJf`1v6kcTrFC+;A?Acy#8N+5BrdhlfS+f~&8cWKtV{YzI5!F3z9MCjkVy)ZFtIx!2w*=)$X__=S-s}U$vvY z#Rv)Kn`5{0YKs^Anho6f2dW2Ft#RwauO822qL5iUq*=G)B?oN7uu+V4JHW%o$$?6;@v?AIr_0uVzF7C#s6keCr*mG@j3nZwfzT@hjDwM+uda{--_zpZy`S6mEdZSV4W0{#hPIT~%!_)S?NW`z?jpNmI26oQUCZ}uP(&s<1}%lW=dBEx4FDk4G$ zUuEXYJZq;sG#gKALT2uercxH2qI}xukP;}2xi9hXh-gAveH5<|hIz~{>{a3sLu>$ilf4)FG%u4u1BQk^5u~daoWTCq;L(d4CzmL^kjw1_-kCYkf zGY%x??DECAl-HZ0#FP2cLvAz`tXG%P>+hY%mKqAae6Eam0A8Wy2}(^QxBq>I53qg) zo{>^V-}RJtZu3jPg3@%PW<$Q;Fj)E)dfj;JdR%jv9N4{ZL#Q{yxb|ba&_rq*0(((QD`eB>hWTKYFVN!vvaabRQeP4F1%*Mq@jD$^Z<*K=94vY!uCx>^%dmC^itTp(!IQjO*U0S$!*jeVywjcbfD z*;W@UgT7rVYpf6N^7S#tnASljnd!iXQM=K zBg7E}M$3+sY0V-lmO1EZgBYr8NM@bM%KT&?>7HFM2mfK-Sn_(U2BfI=(er-s*|eRA zN-)JL+^N*gCmR0&Md)ehaRk|8sGTZyN;{qXXX&{Pd`4+0-5SPa{8b=s*DC^D{rSjP{{nj)fC9(aDMn6u%EkaiD zNDUcuSTY9nhf6FBVs?u$yvNHC7V{0U&bjcokMKGG9!=7A;b)>PpfkJi0?x2OL)f#^=U+CZS)9(HvOtkSKw z8r0_2_0d5W=PUxuK@QqZuLyEkA0vExMj?;{d9bkmh9t0B_-A+?$mu2buwc~gYB`BOhv z&0Rtzwha5?8jWhb^Sl<@rqY<78$00*m=$7&cGb#wP)r*PltlrZ<~u^Va(M`b_dLIgj!w#4{17lI3pSW(nq@H} z1d3I41!(^8){I%|O<_(%K;7lo;egdOzQb-$3gBurk* z{RuaqC7LItQIfx?%q7ipnUSA?H3#&lIHboNvyjLO@7`&>LUDUxsWOVDlbERv{UmI~4oJ9Vr1vNI;ZF5~-6W!2We+(Q zG<9dAB`K0St!l>0$GGng1h6tSmuD$Yr`e8wjA^kTJYpm`wHC*qR2-f0szA(aMP+_9 zFm`@xuA3ErTLOwDF?^f^%a&%CO=+pRyc!(8Ky*QEL8)f{%!~044l(t|W)gFE$8g`O zM!{*5jl5NTY@vccNRhPWn%Fh_ty5$iP&-j(SML3)Utp$tFv-5@B(RjNJ0YJd@UBogjqrqoZr9AzZK${Lv zgPqHwcdHp;jWk68e$w%oZDxTDis*v#Fp&#q!(T|~ z?Eehdka*bXu9fK4kqKX~e_G;^@~c>nP6z5#x~OhTwyTvQ_}WSxoQvCNs=aa@8SK*k z(J!}NtO5F)^PO;ib1vIMku$)NiUdn~hMGMPv=U87>S{zc$C90idv_SCJBEqnOMz`F zaWa0L-+j1032B&zOg13;1yepoj`;s3p6_Zcb@C=V%v_`jO?IM!|1oInI~(%6CK^$# zgdLOzxdumU-xnNZeTcA2kn)SqYL*9jimqjO^8xDhEQYKge*^BUd1vz`5T%D zkX?5SJn1mDK0oU@aFbq;3mo!Jt9bgZePc&zib7~YQdMKyL=A4uxHAiaAGBMwkr=l5 z4Gm;f6)bwnaA>n_LKjf8G-iWh^yoL&!hU~;UjN~<>TPAP({($RU?6kGwm2L8tmr~~ zt4n*=9H_+$3OtJ8yxnCAy5hk~3uPYaSWmJWde`f=UOjDp9M33-d5b*tZU}$>J<;^N z0WDm)HqWXQ&^ey?Su5jruV9m#db8-LA_=5HHkfeCp)X>Kc*6Kx;iKrFAD3>2wnq%5 zjqw*X+>LxT`E`}q8+CGzQA@=4+AzZY`SH(XpgSYtc#EC^XR(O4UaMG5qe+DOnxCmj zi=uL)X`KF^Mv)VT0?IXd%w$BbpQ~p8THGm!Hu)0=KV$TLX?gd2w#|-~`>4mGG7ez! zolCr~QX8N2mNy-p7K@GMWsZC-STHw{G%f;=qHu;@%G!&wLKHp=|tz1|EMrk`` z_*aUd|BW<~VK<9%)=$0^Fue&{)z*9Y_W$>|pR3>$A;+_&+Mhpvf-R5kuCAv3gW!<% z?%S-(H~&0*W*#A-jrsZH(S4xnI>zDcMC&82Js#|gOl;opwsCZa$jwmx~?{P=hI z?{2z4+OZT|VlgqH_*CbA+4=Zy^G)Vi$t2EN?O!OT+FunL4SovK|&p^+$B_FA^4`= zI+#Xo+AV16DY_4Lk*x;gmQo+#fxR^i&i zkHo&O3LFT_&Up21dIZdGL+F=}iJt-nza-bn3h0N*b2Q&Kfzb$s29rg=zvkTk}WK5=<4|@xeb>0t5s7n z1ew%}#D!C7H7xR>1fw1?0>B+MyQqipsRK>M2g1c{toi_O*0d4rj2&7&YKPf;YU_OJ@eupz zJZo2FFR;YxE5}gZDvp0jxmKM-mw_k_E&N3!q~4WEL5d|=3u=cGA=ArbenWNM<#ZfX z%p;f_s&7t)Z?hLUzgfgF8L;*UnBze;u0KK!ZI7o)%Ya0~)^v$_hJ z{n->AsPxMewU0>LjtLGIJ-Z5Tk)xR)OIi*eZQzHyU9f{8V?x$0)%HR_ZE!v-%-D}H zm%KH{?NICZAyc zl?DbV!XILT_|zCuIvlu2R!mz*V$8xVHS7JyK8BXd7D7meJr-386fpKqJLHQ}yNh^?Mqdh49Qt!UQQr6bHc=L9^2NaCLMu+_y)L*6OW<}O_Ag}#ZYA&^<23yb<*a@4y=ruy&vC1#yDz$%l&zn>azcKLm)Uc7zweWHrp1!q+FeY`&kgXwe$m+lvw zOnjsePXW?5Y$0gE7gV86TWefzZR*NzsBj__UV!pCxP zfB!dcx`%d<=CY`6cIwj%6>>lT0<2Y}6nJxMek-GhF;*>?CNFS@nnGo-vL~)vxN5=f zSr#n6lK<-K5uK8u%TJZV)VoChC|c?r7)LVFEm3>j2e zmgNzBKtyBG9v?DlK24m%G6^$CosHAzCUg8ta_4XCr}XNu8~vRSh_##OasqKIpl6FW zy)*1iTo*0T5daNLSt8j&vyngX|nYXAw$uw)09#10{k`Lt#S==$<&=QBwU7%7=nJ=&o zJ$3f|`)Z)-Z53*ekK(%mP`{ryaM$x43cnjx9m+1zhb%1yeA$T{oQy|n>c~C(f#E6j*;^H3?kOYE`@wZDs~)SdvFrhY#kRHD>JI;m1R@_$#=$r z=xW6+JKWG|T-#7s^0vQ~ZJ-iGX#?xRhFw`3)av{wcd~<_zf>1?Hj=cwBSI^xlTpnk z!&YWTZS)AAc>X?3x-2OQsP>t}rSg#&e#$L11ufBCiLe7zjsYR;BZM~oDkL4Wswi+kLPKurH2Y{vA&IM$ur z=1q6VL~KIn9WM67^W5I0F3ClSUP+^xVv2Ufie)au{L4&djPcn{LZjXDHl8?u4^FXV z$jy)u{SPN#1CtWH)KD+c5Ej00H7)T5gC!A7U*>=6Yr{<%OvF^4#o7`RbXDYRNWv1I zNVUPE+1*mz6liKel9zrYC;r`C^<-2v$HBznR^G^9``pa8QrlC+R$rN4MgKtcb(Cnw zLY9HOu8f+&RbaYDZhel&s6XRNoLyFp&8VDKYn~z?u*|qIqf?>>-3^~xY^UuTfP^9! zB=<4|5p!TVE76h_zNoCBYGrYQoYB(3Z989{y?SM=QniV zsSg}k0VWjc%F2)oK1zd6ScJVeJX^cU`knGQglMie7Wg2f2%ixH3an&u$vv<_*Sc_` ziieF1PWbvvCNSSlz2ECbS}Q#6zxGxF5~hm#ZKcf$C6yM>|4<0Ble|(jVy)7d+T7m} zcHt?5@BB5l$K}p_xTkt(T)y7+^H0Fo6WEsPN`u2y8Bn-g7q}}!nFS15HM@XdE+cQ@f6Z8rK}?M#Y2meo?s!Pr$-3Hrn!WUfXxoR{;b`1cYt7SQ= zEf>EkxKTpQ#o`v2W&K8FA4%$|X=}50#ZB0%%IaJM*MoD7oVJ{psCSp zSHqj*|H9>2AQI}O#gEIpS%FxYZpX?py-ESu3)m`otXeQRmCu=5TMgn6kTov$+IOL4&M4Qz=kgDTYl?w@M>H$}_#&#@uB*SYVqensQ zMhlC-#@UH+3gO~h2&ogZ!wEd~zVyfujrV_!;XMDQ(a52jm?C;UM;L1Bp#?(&<6^(!-aWxA0$!zK> zvLiGqkh-wLF7%E-@N6NywbdzrJL%{zJ)@yicvBZG zM3C8u&Nb`IBPRKk@^ly07W=6qJ%>-Njrv)F>KSHLP703h2bT-m$0=a$!h*x6V|~#xO{}K4 z=OL`gM&FE%HtSjF+lIA=w@57`YF68hX>siE1e$)B$y_aTPu4;KoK*Klch z6?}7*<(k^a6z9bOuZE++c80hja!;qdB}rw_o}^-a$ehR(bWU$B%FL%DD+RCl7W`yV zIP_!Qu*h|;Y?mi!J9Upc!S2idgL2pKnY&_WLrKe+`gdt|54>vfaU<9aSu z2TTRwT?Gb-IhVjf!zmFj|0pcnHemn#G;*9GgKPH&voI=GFs^OJ#G*4A^7lveHh-80 zw>;fv$3}s^SUKgaRGoAd@qVyCNx;U&Iw;SmD6+YK;`mFo!fW$_gbFC-3 zSFqewG%hsP>wCbOBQ*Ma^>Hq!3gb_`m|3V)IdVX?u{KzmiKd}~v{Yr%^cxK?W9ihy zBK^Az%85b{KzV(7_9Lbc$?G6#=+75aG=_L6_+h5e0mkAAfU|HC`~d)b8H zq3?oO_(jCXHJ_l~&wz%_R5Vt-!*81}3%@vR&`9|1T7|a3M?^g}wOcLVUJKmUd(i!B zEW{iI4Nd4_$)up5;EHeq5(*4A5OLeTy#Z_B2~Gw3evEzct;wsp>jmU^+S}Wk!}mY% zYSWtNBtguYmQ?*~l?^cgrEAJ%n`+lHQ^t0N{rL}7pM+COT7hcBaF_kq3Od(O%jJ5- zbvjeS%{r5nHZ#$4TUw~amTOG`xG|n0N3x}(GCV$K%iS`c0JMA%JKLsP<>xq{-#i#z zHd9>n6;_^)-a||bt=M!RTZ>E58u5_Y-w0~F(i39mVE=+XU3d`2Ax$0+CYIu_Fr|5F z!-Ob}W1B0x^5MYE97&>AJlZB_2AOuW<3jw92O8d^T0-;MiVOC2TaMRgp5Z)?&#*R8 z$_WO4u3b-kyc?m?$EXyh$k=Gh6c;$Xs3E8IT`PRz9U_R;ey@2g77e;wBctqz$&8w&xI!=GP zzLQc(lQ>+Mx)e(nmve%*$U<`8nhLuS>h=$2n@W#6Lc+=kSgN;J(2WIBez9!76zsbi zSf?{p3}i`K4{s0(srC}!gwWu-%bcH3im}+Ux+3jbUV;dC4Xo|{3TA!n1aVOzX3{N3 zFI>yMi^C>p2dwFoI_Mq{B|JkOPTn?nrF$uxclL`jo*sYB&i3|Rv3q+lBY*mg$JQUL2>e(Xph45=*$LW2~9q>f<=ycL_Kk4{t8 zM*1!kFrAwNgXlRM#5AggfAW1#soBqSp}#c1I6u6?V>>3 z0k_nF`RQchHVVV|EjCgY!CWjhB=;Rw^rrJ-a0AQ&^tNQdgrz_%PZF91Qn|PT z_CH%F#R>L*^bss_`NMw*iY(-N-9M@Ph<9y)XQGtM?aX(N2^YtR0TaplVu*Q@^ZB|p zL&-NI;QgO77HE&f^R+5?fYEyEv7MM29u3s*bVU()Vq>ZED0qOPotso=qBXF@D7@Lg zbKqOz#hF3PkV39`uj~y!EZ>3ihnW|Ey3=g!zL-Y|@AZ>F3BX3Uuzo%$->E!YYwsz? z8)f*dZtq#2V7N^46{?$TsVDNIsxbJWV-TblS1mk=2;_r?e?qw8BJvP1RVROgD-j|4 zB1Y#U>9=i~MJnNuKML0Wxr#K6L5?o5n%#aV3bN&Z2VTS;Gw)7Y6%$ zz=X-y=oUsmt>pXusG8|y_D)S}j*&DCaWPBh9cI8`Ul=-ooYvUbDAMTA{mzxSG&LoHAwiS)d`_>XrUslY zRGyxkygUxSC_$-rZ?HKlwzwr-M~}pOTS(Tb%zG`l3hHGqzXS8zSk6ipw`@slli_p- zu1zIwnFptuW50-`q=iZBdcR*j&1GSt2W%V~ErC>Htmhx?{u0n*Dvz*R?lVpGC&_Mx zd(oP0NG6w)pchM~$P`_pMp>!YlmG^wgC8N=ag(Z?TANeI?D}+aqd5o!nB(uKE)-{S zuwLOLw`taV3*{FAB*}wAOmy~tiAvh7IpRVbL=w`UK-4uN70e<%61n$fFxwgI!U*W8 zww*j(Gq2R=x--%-Nw+%pWOl6a_vc3J;xeL@a8fj%FNb%lf{1>Sw`R0!&H`y`{B)0| z5)_UDpcSu?hlB+8wRy3V!KpKCXZ4*+3`i&+P0ojJ-lK&hjV10y$mJNwgiQf*8$zHd zD%0&OMjRa&nBCI)B!>Vb{at=OC#7cAjYvuJy(+}g$FAX)iY9JkLE6#Gsce~2pG_%m zO?$wyp~Gwu8UwQDV8FI|323iq-Z$G|Cw^dCgjaxahEeM6JV>^8MA(|QON52MsI0@y zgKB|xt;s@I4>`3t-~F|8Ugqc4A+a@FM^NN+s=Gt1#7=URpFC8{RxoQ@emps+2 zOGB0@m6{Kq!qFvTm8;)s(cfkv1viG!vJE!cV#I98<0o)e{1sYhcE}>4#JcdAwbj*Z z4`|8TjUu$5{bch;6-ZcJw-_F`Z_H(Yf92w7Zz!-Mc96|RpNKckW?O5svF+5CMk7*lbxAnC*i3b*pRTl zv8eEy7-v{H59QPO=RUBDqi_z0`BrPwS(GZGDyN~e`dMkj8hGA{v1BlS6-dURpoNBl z4ucx@XHM-b;ha?0iaGTS+3B#~I?5A+O%dYQjnnK{MC`3jDh;@wNU^i;`^@e3;1mjr zAs(e`^?=FErA;TVmIhZj_OoP%DW1pmS>DP`cq>nDk?G3;RhLYJgUYrwt^}9>e0H7; z$3KU?z@87^Lp)M(MV;!QfU$k*}3^toEEp*kILBlb+7FYZ#` z#^Ezqg|0xYhEax<$ciPt$Zd8vDn;>>Iw;@QP@scC2biV?jpA6dRW8zQh56|%2KOwT zSUBo5Fnk)-T||vCRA9G9FrcjjQfTtCdg+YZf~T}U&mJ(g$0g_TF2fm63uHswH}+P( z*F6y!AC0FBvv_&^>i)Ot^p}(67Cg6+&fAH5{zyzM#sJ8(cF=DDiY{1EcKqa%!wrTY1wb2_K{ zc9=FNIxg;G!0>HgZ;$HjZYoclC$_qx;_V^H=kcP_u=`(c2r@+L$H_vo{W{@G%>Bc| ziY-^m6Pb(GuS*XLpQ8Er0`u@8jNK8rX;XlXYBB(4u@UX-q11q_Vsgj1EJ{T0EQq_X z{WIp`hJrf(HgsW#`c>#3=g4Z=*+2GdZ9mF}c?cap+=9KL5!YDM>FuyzRYk)&325gfvYh18BH8FNZedp+s*NF0o3&}=Q5Q7RzWYp_yiAc7m9Si^25jOkV8D0NG<*KnCE>WpMS-dVH)O|wqMGs6Z_PZgI1^7%pb#WM6e^pJ5)m{G^^iU7 ztG1h_=83!`cLqLR6x~(Y3$CyzieUIo|kuV-*YVaacURye6|d($>JwFjxYxET4$o!nKnKbvinuDH|+ z%!K+BBU@`V%cltO-SDp6PhX7c;nH!&3`(a#czS~8GmNiVv@xz>ssKqZ>lA@+uH+G) zruj*)$<#QU|2{bm32sO=k-X!A?ftO9c@;+jp%I8BMGNYjnNFWpuCH;;Q5dJQsu5aj zV{R4P@}-M0gI@W&H_7#AOUe$}epIdlY`A1sTc_ECwOt*mZgJqGhyW2n-o%g$-frNv zg)hOZ=n!NHsbOu90~a*$5=@vks%_*Fv!)HmIHai2qk8N}7U%?#!g)*A4eqiBf#1Z> zP;pcGKew`4LG(OJSdq7drc(F?OkNd`3S?u!27U`Pr7g(m1Y>RQiy zWNit+Tfz20ZmmUYtot3ya%;dsveLW@FZ*1QOHZ6mJ(9I&1ECW{&tvKZgw`;sN+|RR`XlCi<@T4zSA~-qLrcldtRPZ zn-BE8PdxY4(!~#%q~dmo)A(vwUB`V>ZtT3tp=0#*9O(GPd~z)GeBm#^QyE@md1mvk zt)UPO&a0^Gg0G$Cb7YU6@55~O`;Jz3kzePBg2+7)a22Lj=#y{*v`VuZ#tAmZ+*J*45pd;u#+T zchUghdbK4=z5sAg#SIpygNz~24I$rtphEsPU;2X)Tw-2l7?JypPM_|Ly)2InNF*Vb z1C)-}I5fYfE92b{+!(2Pv(Xe~y1Q@ZD(9eR(8;eB#2WNPw^)_*Vub)YH;wa^Dc*%f zw1AL&A^%l*r9W7$Wb$j&MeQQIsf`QG=Rjz(D)$V1vYpB~41%sk`=Uk_n0r;UA<;~e zmiZB*Gc)rU$@B^%01-qP`8}YI9dwF+ES->I3LzS{+@g#$=R2y|XG1rf-w{+ju~i>z6h$tXK4=*JoSc5YkT(L#HT+_Y^?cn z3d%w?f8m`B32!HJAGl?DB30XQJwCGtNKqbM{_N!sAK)vhB~|ei-Gwq^E?+Z|z-X~G zxX4ME=9PIOq}7>}X}a$0OtY)plV}HT=E!{;e6WGILeQRQSdh8R=5v$fX8^5^`khmS z8pZ^cd}z&{Srj1|R-xFeP1cf>ZmurZLoXK_~<9ZDY&K13?$kZQEV$PP< zQkUrXK&h@`Lt8<8GrNP=o1arKpIY+VCPq}Q*egnKh1MtHOs}_=K~ovRF<)kp7BgpD zQp`><+5#gWHd58ID_%s3c@VEw|3;x1ZHJ+T{)JqU3#pVc8>V;LLjf2ZV@Sv_C5;m$ zTT}g$uzaF}ymI1SR-c{lS6M$1GB>USmcupv`y+l>RuTMt6yXnqkP;~0<4vY#*oxZP zDFb(4F#hn1KrZi+*m-*oT5hJL6Hj$`_D%qe-2PAvUCB}C#6OVSG{xPRbp;j@3;9*s zhVI-kntfB;@LJyv1_;>uc4DC}k?h~+*DJx!%|{)ka|PvQetm?Eqg#7PnDPVi2W>^z z0($mk{5+TA`?!E%YPdZf%ud{FwT8rt#I(!^e7|7z-MD3W$z-9LX$ng-7LzXGoOy$HzpKvL@uaD?2<91vUPZnp0OM-}n^csj@M zINPvWCz;r`8mqC52A$YeqsBHSY;32ojmEZZCymqC#-8{4_TGPIj(L8~aX;5}ueHu4 zHu2eqYWsVnzVK>4-kgH9d!+ZPv)*93Sb4Q7wpSw%q-r98P@c~l#TPA(4JDcWDXtFD z06k5+e~lwy)PFWr=GJ`M0T4Y7G?m&t!I(wKbO6xKOe*$8^%F|*P)EH=?_UdJ6QL7O zO4!5g1y$2Z-}ibZw}W)?TLzq#>ymP|I<6(@FZURc%M%N|#U2jC)UWPo@4VgRW< zu^xz{r9i*M?z0|7Y2HL@Sle>1AhgVirpAdy{3inE)`RKIajJ!x)Z(5$Cn_MLvNSzu z%#f{yN*n{fgO+XDjQ=42jen&XZ(Dk9nhfhGNt0BwV0^X7x47vzHy!H1$fy(!?F3wha6*hkW^~mG;N6$@H z1vL2m3>}QOvFMOSr7%SnDL0vBn(hH7=(7R=yfg=*83EwyinS>S{2eg6Kg2@n!cbh^ zT=_GV8S(}_t4hul;a|r@XMQuDktTx$!UV^_azG1vpH2(Y$UqFD8{9- zRG$NWF3Un|Xqf?p&+*C_h6>^#+G@RH1J33ZQF@L(Okv#jKJ(bM%Tw~aYfPb+w75t7 zu(<8%`;(6XaXJlvwXkEsAnxT5dyA{HKo?t3-3*oj_H1ltR?zqolON6z_V5S9;3@?O z;+wpuX|=PUY|I@b1Zsgd(v+-?S1`mox#H<5@ndT_`ClKMw6u~pj-gGY#aUE8%m-F_ z$()=*rMYWf;A=E?(FFE^?p*F~T5YBj3GJQ_XYuQ6L|Z(OYu0}_Ni$z$?%?+vS_A`L zf~RECiObt@{I4fQ-#M^PtieVyi0v;Rl(7D*M?`^}H3c#T9Y$BQq?0>bh%042c5ef# zt|`dQJoE3iTko%f%$d{WeOyYBMV>-WL9hj_TRnRDx3!ZIz0h6jvWX0q4KtqzB1 zO=BF(N`kB9LRlLyy{cuyGU_L2rsYBnZBx(ujN7kGle+`(x<<@saAJ_f49#glJ9@al zNH?7e7zjhIU+eJh3V{sl(cc4uT3+?c8lppw{j@Mo5=2%dNRDyy(U18;(C`VCOqFrg zWjg)G!jwP6lpEr)z&4j7?1x)o{mz+L!}8@#MwtdD>p6TOhDHkq5E9EQV}#t;q`h{z zW`jbD8!+3^5LI1V!R5xvz+@D(2K|B10_Lj^U-SoV`38Q2jhs^Un{oKpB+AKRoDiE> z5c~-(yIONK;T3CoMdt&)yH|7^s8`GywR$ie++m(@E$;(q>_53_?o{aCgVkA`%w8lz@?xM%n(BN+11YL z<7K~0wLxcu@ygTFQw@){fx%XrtF?v2k;t~`kvoO-egD?1@V|@i^qu)mH7DmrpMaR; z7qp>ay3;^JYNHrcP_;MryKnt-%xoaPP9Lp$=?T(GoFrIIzuA~whxl`GVmn?G$U4vd zsb6qVy~!%YhqpKtMU?~~SNDRY?uA0!F|i}~%7>t;#-FO}R^lA^?W;6oqsBzUKDSla zRem2k;j(RFD;d)M;FqVKKchY+`(LvXyfav*E9W-pqZ*M+K=A2YO_dW~AtY9Z&%b%O zU@-ZroPs$N`2*;B@ePzbXz8~7S2n1fvX8WeWImIkwCDIPw4)ucYc*53reI04XgA#D zaTf?wf8?mG!Ce^%(WX%U1r(f;cHM+{5lj4S!U~lD58h3At-5(zYn_; zh7RNj(2Rp2fCgip(0gPtH%?~zh!waFjpP#gOs|r8!tw5i#`Hqf+Z{q$t+J!mVGE$1ODyYlq$)4m3?FfVUb??HV z3gSb4o-~Qsj+kc^m_uD1I0%nWe^@XqVfAR?P?nfb3F`TE!1(VlsWKDeHFmNT?{U(G zSG2tx$V4Vof|p_3xnvE|YrL;RcD5=?!@wm@G(soN8&O3Q7p+IwxV2B*YA1xHF8@{s z@9Gen0D?1Ul^8qk>~AJ7XU!cp5Fwi&yykmPp`*DBF>EfZI@!8$wkrAZ6&;4o%=!yk z@U&=>tP@$K4?e?$jTE85T&S@EWY(V%`S2$%5Hwe%Sj;$bz8ZFcfP%+w=q10*e|SSL zA>lX+5hDN&_@JDmRyc>t!U?XhL5MGq1rgXn)VG`tS<8I!%#aLNoYc}Di?OqsD_!76 z;!1i!U)za6ai>dakr=48>PkLXi^IryK}jy#{dH-iR?X;u`JZ9>jK zMUG}S^w>UBY2d}CC4oM98YzbUGy)Zf`x6M+9ugThi7ncz2qroA2^hO4%L3zA|Ex2K*bP=1Q0G^pBzesOw z0efu3jiq$rYN>6Buf%~Srw6I9B>VIvZfN-L59NVBKb~|VId7tU`)0`Hs0q?Qi_lIt z9!T*%0-bMfvitL6`@Q~VKIh}^c(!0T zhUE2bUJ;bo?|VInhej&6(qM_jde}erUF7q5I`r4CkH2Ui5cs$C32$c>BHsAj(8K2^ zCu@JqkUH+s<9bcfcP zk4Y*pN^K?2p(-#}9OMraBJ)LYw}#!2tw%T&O6qI(TsfSUo7+;O6MULbNZDU>O|s8!QeNO`Bd zFNT>xh%$j(^!N`*tU1528z&{#MJN3+8Bw3?Fu(-mI~3T^1YwcE$912Xu_sVqZN68_ zyE1~3S)I$_QI=WR+f>{bi~ivnL;&j`ZBHiAsTWUKL-*Ke%-wvWB1+&d)1#Wpvrq*n zAtRr7+~mmMQ4($BlT9;EDyB}ZFvN$egh21o{?YG9@0$lI$CWw%HO0q#`-q5{TWYxw z!`)DMV>*DrI==o?r(VdZ##f??J~?9DcFrOvYdN!GoqTbt4&i=HYK+a@kyp>-w0HF# z;z4-gW5R9mA4AER_3xMq2Y|H8jcTq{T7hK|W3<;K6-_vK`B0@Bq>VzJK~Y%Ap{#2h zY~fg2mHI6RxSllOXoM6#=S{uC#=g=gyJ&||qq9#WH7`%X8hA;=Ac(`@y1+F#VtY;@ zT`{9VZe$<8EcT?QE+0zns4W9Sieq3x`(PKp#r1EAQvtuHl+!>hco?HdDg|g3KpXZ~ zvgs3B;7|GO^te9W>X4n7Y0?!=kxMM=+=OJwHf0p3`*b1pySPx`H(C+TXnl^a7ItZw zmn-FDT5_cp6})jneS0ILY&RMDvmAIkG?)voeQ;NNoP^Aho;-y#>1Dmpv z+ifd={dUpkda5YmMWhofDMV)No>c%$?iu9ZQ8abI`T|mb+sDRqw~3(PHCOx~hQn`tzt{ zNQovs=}^BmlUMkp3)Yx{U~Qf&ZWWyOfGa=?I>s-3&(Bi&7$wqCi4bhmCFS(|UYZz- z>(kE4?(g;DF{Qr5<)m5^F>sBlyf0N2aM=$^DbUnzq_*c8`$dWqy7Qfpg;yGKlOqy$ z8M6NTaE0m0Mg$l31y-NS!OCD=n@6&B`L0c@?vfp3h*V>zePE#3{>Q@u-a?A%1DO=| zqjReI6lY0XR-E3F(!UcU{F^^ zOLYX3V2QXn7jT(lpa#pwufW>BtHgFUrsm3igC9@pL-J1Mn8 zr3jGn9rFh4{Z%QMw`^Pke*#tE2QKwgC{d-tg!Jxf2m4N%4ScQ#cXoC@)t$Qi?q;RI zhLX*Ci)pYtVd&2WLAi7L-0pVnbqw_Zru)dwH%Ju(xEpJNlMRpG6F7f^CjT1-FZoOT zuAePLri$#-xGS8NG45}ZN6T;!z}2q zdKU3DQ^RA6^S8Y9_6p{}ymkvr8PJN`mzj7xX>uOYVy=LVlh`g{&hln}#r^$-*hr2!;vXliwQr8;$I@^#LW$aF#W= zhxeJNY)1+-VzIOQy^T~)kXYxece>1+Tcv1tMA)@`qpE$Qj&ako0^GoKO+^Mls73-G zp$XEYg!Ix(1Z-rjh{$);HRRz$gvD6Lomg^-%hL+46hOIGYQ@Qy6`S8osoef{xn`ND zp9Xg}UL}ltr7PHBqrJTkhnlv#&$iI4v8pUebTv4VmOgl>Olav@g1ql1)a9hT6!H84 z6^Dx!l|&deG3G1n&O1f-aCir|#5F~vBXGrn7?}LZUijY1uvH1{_J6s2dVvn7FCr@T z69=-eyMk&)ACfn`H$~Yd=|ruZqFzKSTvXS1g&!&`$=}FuVPtIf zmLTwI=r=q2pnJ{|hLU?Jt2U@gT_ktTv1ov(^PuBgIuqWlzx z3Uv9;wxm_dVAp?ftX@#* zx#iO__i1>RFvK%k9~u^P3B-DF-Bm4>n$l9elmI17A;0-s>mM2si7G$U4@Gr+jc6RL z#%l54o0ENByzN1E$#9EoeFBVTT^j{?$mRc68mQqc{V&Au*}47Nx&4_6f))n5KyH5r zF^p8{Hv7wgH&80f`0)eqR5r4(u+U#Q_wS!&fan!C`Th>-co@W+oSf8cvQcJ8&QmJ= z^9OV59gOKGlX~cDPfSb{B#rIg=~?+(HTj$8bM5`59kpD9nx-1xP{p&$vQ7x65ElKjPBa!QmER|r(%uwDO+2NQNpb0+%7RHK9s)E)}-i?x~+|q zg7z%tp#=bkXslkYulBT(nhq=NkE~uw#9fDz{s`v77GH@cMH7qt@l(vZ?kyZ z0Fsuk4~g_s<5umiZoVQFx0xIK$TaQw0oQWT3)TE}WDqtMgPj$yB#d$Pmv&9^p+I0l z(cZBcaRV#qBif2FZ4!n61^5%!QrFXk6ei@C{pr_6-HMvpgki=gq2Len_I$BIsO)oG z_IaxMY9}6(h0J2m%h%u6#iI#dIyn#xg|_D=BzlnETJqh#{_e0R<#&tk^u8=Usf70E z4e{C?0n#^sr`#yv-s&#nQdo7gF#YA$iHNn$DOrQ+@`|IO9w1x==>jTe60JBOAOG0G zU`IFUwe4Het&Pc@-Q4|8@Gem)uwS6J|co`%tQU21W+KFwJh_A<)lP}HEPd5mj}8g+DWhwznC=HhU$`0?O7Va!K)wtaZeU0% z&g(ksBo}V3Je0g2&mOy%q(x5Nu`!cQ(lhfP3B1)_oMgC^3*R7|fMjw%({^Uc z2joco=}V=qHVz1TNF?xb6+~%4%h?Vqc@4?LU4{x$lvV&oLwAO+Ox6KeqSqa2NX@X| zu0%ILS#P<2*+hJdl$^5YVnxT5y+(0H9G`M+0B>f00iU2xGFGdSHXJYw?9nK)9g?!vBpdPNVIHQ1s2yaIXbqiK;YI=b zG}1bWyUilX#)7(rZ4LP>V^mFPmNU>jmK9WoDdhHD={I#;H-0U~7D+s-#R}{^sOAi} zk0L;Fe1Mdr;kqEm!%4`|21p`2JAVJ=GRs_mv%qj zfXyZJ0p<2mgilVfFYNz+hHC>~uDOGIl&-<)2p)UC|AGxPjfDQ+yTQeChAj@p;ICM^ z-)?@}cOldWp832ytb^>y_+99-6h2@2|65v@mzQJ7M7r#^yBIaAeQri+KUqKTQoG*{ zye~W5Z}vyQGhz457~^Hv>jeu~9tCxUpM1WMj4Jy!*VpQhWNUi$80j*Hr1{O8XQsXu zkBBNC_zjnJGZnrJ#5mGBPyZYnRe#TCRZ_%_Wv1&mEvn7}0d~pXyd^AtC*()aO>5NA zBro>=@K=3dC?3IZ!6U`bXG#s;|1-2e#VW+Q0^x9|o(+e4tDk6QU@zR4fARa?f_KbX zPc`5Vb4BkBn*Y5(sGuV!e#$0qeQ|Tn(MyI$FR8MJ)W3{`=UzhT0}JY%{EhB%$IV6^ znu8ts^okHN5HmxjBz0%ueRckT)OK)Edcx~k@Dh^EXXYALd2O~apROlY&v@du+E_LD z(MgV^W_{Bu-yi{cGj@C+a%SF}EW>g*BICO&=!9({tVA~73b&=LsLiZ%r>V|M?~s%d zFzHhqVDD?RxXrGW!W9EYgXHjoUVlLV=oQd+h&>VlYR-4l+bfn@?9Bwf0oPJ01Sx;E zlW;_j$_3?L$uccgZtVHEcX3I`+QN^9m8TPh*Wiu#MCbtCzZ<us-%p8!^*)Xl`jvos(>5)S++?eKwL2Guf<^FvEG7R&kE9Ph3UMmT54(MW0~u?F zM$G3C_j{re8+jCDs@Xs(#XM&O4{EPq^+_fgsIr)+qfMFOt`Bunb$t*CsF(^d1vQw2 z3nVCm=$l8hN5hqm1PnLny4zB~u@WvBYwQwGFroOoBMI!AV1n>O{Q7OOmD+AGX&6z# z$95`^#3RyaMgkF5yYP+CYC4TmnD+5LuJ}tCVCIi5x`=8WoP%p|!wPT{bnF;N4}1p^ z5gy4$b3{stMIS4KQFR#C_J8Y-lM3sBW+=vP{|BrLjx~=f;hO0~;*JkY)!xmRe5xF4 z%WHm&^hpt+$yxi+t#6y9-WOg_+`uX(-!agDsa}^YcAqJ25-u#h2WoH% zb~toY6GV&?Q3bwc#Y?|9PFtp2QwV@&j(9!j zeM_H8C zgXbq#Rmls5FPr0gI`U$*pxl^cjXuw^GB-={AAk$YtL>Ev>r-d?{HA{A{Qkb_6KAi92exoPFpN^wD zDWhp%nfY2R6||vs!LCCMIUfYbpCt-M#$2xXk%igdy*&r?z~YzlSsipzI$%f@WO$)G z&6Oh7_&*!!*o}I!;rodu=&=Tud;rAw8}i|yKIi>RTI6L`5%e+-g71dNz8dSlTLi&3 zT~YYpb3d1;Cm7u-io9dn`~rLGXs_l!YY28OMPp7ZazO6n>#`SM{$8l&-2-1MNdKIW zQe2jB`PWiwp7RE0ndaSE)JhIks5!kMp5+#624vEfi<+YH2e+S(!39{GT#9P4_ik(k zi-Bu{4sEkZX*G6jnuC-)|7SkGlsW(K`mt0ObJ z``VQp3^;p`hA!U16z4CU25eKKb+|Q8QLQ>-e>?*Avw#6H%`4_Og=|skU;Izuvg+;p z9;3pLH;ujBqNc3B42(Ne@dHLDcXz1yB6Kfspb$gapm!hz(^563%Saw4iyKvxw-MM| zO0S{|#$>`>tLlkv&6HiU_S2|XnI0f&qkj7KQ(656A%!hd%WyiVmMYY&B}*Jcb&$Nt zh~OUM@~y!<=q@fkmRIo!c2r6|3LVms0U0$~3`>>dftHUvEqE&rmSd}-G*jN$lHDCa zkO?qj{v@b-rSEi6#xlfHvK{aFMgh6QRHgI|q!Ug>|JaAud%iy)VqLPHH0!+(SuJM_ zdFhaYAPl-}Yatt>^UWK>GkKw2EcX`<2jeY6UIPYs10raprNhZPx^f-dktjDQ+?^70 zrNi``SVugQ-90qlVIJ)Me&g+B<}?TQitwp1GzJr5VR1=ds{Lt+$MUiaZTxQZJ@RK- zqwvILA5!D(E@h!WbY7`4e%}1|f4q8-R(lR}zH6#@a0g)x9)%Ai6IBO5F^K5kiG?}o#vGs_- z7$=hw28uHI1>3}fu2HBnw{@dVYgg=KIZ76nB$nUe%|CyjWQtmHvHOn#Mx=@PG{Y%u zK#?jmk#M@L;q}R1-pMp`|ExnvOPyIAvQ>5PB3CBEEtAg&@%`c5?KPMn@(Ns}s4Z3| zbj4h(qR^i&eo{NW66~~}%n)~1-uIjNM0W})Xt=ZUWB*z`evHOKfN7s&MXEU<`ZbXX zkh+sb#VhMM^7*GxF*p!fX^^26jd?=W2DDzGK6Vs6`<;4i8k!gnmxxyVh1=-w8rduf zuTq(ahScjbQ(>%n*pNhTtEeKEHVZcV>}*c-2V3CF!#k3LY*!1H5GdC)J*B? z|GLkT4l1a-u?Ca;(nvCA2Q?a|EF&(^wSU1smI`*5R%p+AKu8VIEhqK8rBs2u3f3ZC zbTkSy$n967E(oFTcu@(zF6UZac&q-rY!YCn*W*~nS^!>i?b3B zW;d6LF>y1S9dZsij%kp`pSpeD>9pXUrt7RAJgUbT(ui-w1Lz?_LKqyj5I%QR^1^$= zhQR_F{pV)-ARJRynGe}|Wtl+QzgW$wx&MZFR@uo|$w!_~zKzr_c>WpN9zcUshqQy3 z?44q9A`bE}(mS!lYlAHu3fx#>;KVT{U0H{&O*nEA!9Xpipri4nV}|5YCdL$`4ojlkiCf^9*k}ipZ^VNTnLT zJQW!ipA>(G1G_WNHSouD?P5E(2{`){A_5?+Vd&?nWnzF(S#KV2WDtVT zyb#B0lwqi{D9(tAF)mS~8`fS6q;x@{xCefJTk0!kaD?Ron!z5jc!jii4KdfJ@G-VB zXGwL2RVo>|GUfE2X=1r~++DZ#|7{#j@#ln0%I6tlLjIB(V9K=T!X#YC&%QQ78aep7oLFe%%rIQCZ}$prUMcIa-lb7P%;(_;C}&i8bIauI0fn zbM36(pC5+5XF!etwiztK9<~k%%|GUOk|4fP*2r`rOYp<;Rww6E}`52Tz|o3iI@3pwqCblGWIg>bm~>p3%2JAvf&@%6BO&x*c)K<7Gb}OXj}V4DPJQob zm-6kF6d=c+Ql$Q?1n95Q*yZ$9zFU91N3&0Qc1{CZnSc+n`B)ik>%%9~gFD{|%0)5< z3vz>nm61ic7!@8$V>eb^ePkN#B~PUvBR8g*@Rj;5d3!TWEx`&I>4tAVmbS3N53+IB zR~P3PmwV-KJB+!9T)HL7uudI}uW@<8+ekz#ji7z(c6KTzWWrxA`4mv)7rV3qPoo3` zD6GQ9o7*&1L<^)Z(-7sJb)X1%zt&-{nD0%U|NkoMPms!HAyeDAH>RUFw z@lQQF(6mVh*)~Y^)aqc6*`cyoe(|!^Mb>Mb^Pt<}59iH4>Y~@C(LaSwIE5dUpjMvH zHeL!ppUYllf=fNSw1X7hOUi@ zhVng4Sg@hm9Rk+8aLJ&~UFHOBW`>9}uxAc?W<*pPY5 zZCB>o3Af40xy9ZRj$mJfkd_v@TLAX{=u_!=Iuewn*iOrog%fll?jYPZN9=Z);1j;^ zTPDR6huH7>B^8wtYLl;J-{#Uzjg8fN64}@x5D7F_;2emqj8K&n#yGD7Z7G(M z#u9NtMJ=0UNAs!zdm?cz-27^jFZndSkPKu^YZyff%IaX#<-KG zq|P{|?~#ggMyS9<=JK%5Fh+4*_sRRHyJz8}BVh9Yx`mT^+rdmu!z9}Ce3z|(Sis^SG6~Ph-JZenpOh?) z;Uqr~`ptI5vhB?7Q20IOhrupGPl?@MU+W4{4iGN+V%!4Zp>pMuGOGLNE9pA+f-grj zRFQZ*;}0zNs7r8!A&xS6|CHC`(Yfmc=hxIAxkT$>SD~yIgX;dyo)3vJ`TUFou(nG4 zCBvNO;XD>bJL6zMMU&kaex9OXhuqKsbHq0Cfa4yfQadsBG*gc1n`zETcfF|6R6D{8 zCnM`aCF@}hp^w@v`^K2B!K2T|6=eIVb1D7Nf@pdp&WMlR)hCvF7YN$;A0c1z;B7r^ zY(Jl=57Sc_K$GWzBQUtP3+B@GKOgyK{j@SmH4>xvqu zOD=qO=A)LKo^sO^FSPXPA>Ww!{=&QBia>nFu2+2LA zB!Na8vf}cfn+2~TC)}d#%kk3w{4iHL^fh9uD$_sWt!A`=T`|=n%y1*oo6W_R^-nT4 zXwby|c_@|9QfAo-lDbgDl53|!)M_Yq^c^oDjq?~j0CzVu8`o}f>6k-&S*+#?auwV2 zTQ^Qq704;Wq-nC99&x>FcR{mRgfOgk+6HmOG>0q3j_El&DT2yiMw{{PE7xi(>!5fc zVvhzm@y|>BDybk$Ii=Vgq((!$~??=-o2a-H2W5EP_~ zz@^G#!quOFU7qMw2LO)Ss@+_Xf;I!S7+GfMMTIwn_c=|ajAinl;$B7xK(00hsdPWx zU2pcZ!`tDSx9_D6<*O~fc8Wf?u@&6MpAR#r@$nI|o}AI&Pcv-ZB0e@Opd`-GN9mgu zX&|R~M!zG{cDOSxQm%sxs7T_UnbEyN)ju%i;37?1)MQ%GBreuEs2uc-yxrhJp!8a~ zej3Y)_y1X|@Bt}UW#kExfZkYHZMs?6=psad(ra!2T#7RMPjd7ILaZUIDb=g_yu&|U z>R1KgZ1<^ppK!GmqHY*>paT$%;~!-M2?RSZd3iNR2$HBZQA($k(IQNxs@$Zo8zoGg z(A^tv^iz3f?M5%WVnE`Dmnmnq*dgs9AIKQ|v_eYLT>Xe-G&cHypb<{(!A-HM0r6LZ6oi`z`fONl@2TFpnpxlato4lVi9+j*V`8lfi%R@EpAbcJR1* zwp6eS)2CRm>62kORzd05*G~FaO;Wxj*IcjJJ^^`BH?hRi)q(+2|EU^vw3FOYu&wULf)MZufl0(jAOFBHUTBUiXi1$@>Mzwv<4?coq~SVItz9g6!M zQ?5-8*6SW+Hf1QM#4u_Xty9g4_-J~r)b)t&%{>C-it?vch(*N;@*O?u46{tgcZm6u zf@-!li$+5F7(SLIZZr40>TmQj4zcJ%ill4IAxIsOIb&g<-Sams1Co28fb(@baOb%n z=jV`S`w5G`6{-adbso!O%NTe4=M!7BR3g*pwBJMh&87GM^OBk=y+6V%PK&%MGYjcP z=M(obcb2(Eq4#14{wcm8$HKr-12^cb|L5lVki~a1{mp*^?G69v`XkRc#9GQyK(99l ztpH>jeW+dJY;a-OFJDqFcMC3d5%FoG*y@v2Q2F3Il;1;LS?}P!*;@SIIh)Fd!k_V# zuph;Ufkg#8oOD!U>)X`gDe<6eN303S!EQg4eKJt{t`~f4kzO0p7J*1oeMP>!`vG76 z8PCR|{oRgMz8VXSI)Q7aCWA?`pDlm%u>u*LvyJ)48`)qz51CGBhrm_N)3U_DjsG9105fgkxO}rtJwpb>=(N(9H$-fG~oCfv=TwFvu}~;Hf9-vL39@ z_WSkvz9*zp1tqfEYnbcK>MoU6ad^$s9ni%oeDZiSiR=IrVleYyLRcsr@#uLRHbCP7 zyYuWKtO6_h9N6WK!75OLV2s{D$`rpfh516$o)tWG%L}`S_aOe<~mRPLe*_-x5}?3^*mDBF58l^k-qcF|H6c zF2pepfEOHQZ``R9Q${xTRFit#jR#qutwCXEDSMb3Lndj_L`$a1h7@|mr$*4DbLPU? z2vpT7$aHSfLDtgf_tlXit7CTc#XOD)wKt7;g@Drt0%2Zfzv_2;{zYsOEf(u`WvDw> z=EhF(f?20tTEtTTUzv2a^K3XxSnp&-1@vA)((0oMh*YDDxE!6nJ48$f7SKIdZ9eHw zsT_g%4$JRRH=o?3?Dz!!%NgX_4W^~h0Q?yo_)m3SA&S~YA{rg7GkD8XST;q4me(c~ z-SQsTM!gge;Va_t7|M?|&Ueh21ACp-XY19w*vd%I?~8F4(S@g-4hvcPlu$QuWsr^8 zw9rU87V`UECvP_`|Jlu)fLyCz@5hV)?Wl2Z!mN89Uf_iyIP4K|=eE{~B9Wb65n540 z=Y^`+k)ET*DW_}&MhBdNH#oeM2quz7F&x0)JxCOAH>@mg7rn3|ce8N7E{oy6D&J&% z1uS|yN9?aMJX#BU#e3dq+_PoH*sFzgQOv=BIg1UeHs;bEzjgKpRTsJJ;o40GN7)q} zF9jV{*C$#E>P&CJgdrj_jr}ASn~|%bn+aH!V+hpl?{a*cZSYa7p=z`VpQa1i=6C#B zuyDE6*FM1}Y)Jn*Db&72MdbAX&Uw1ob;s4Ac<&p!IXb#WV1!(I&L|ceZ;f^3g1Xxc z!^3{QD-SUe{?%d@h;(|HdfGX&KjN>rtHb+Zw&Ow*moP)5#egGkFVU1fnS5o;x$tAk zs#;urI|ZF=Dl+znQBGJFLoQf*tBnIwLs+Fb7z}wxFZ&YrVkjX#SjGBzg;d*oq^Ni3 z=eB7Y4l>%Sfp4A&R_)G6A&5^?>b;sN1=%FP0_>XwYa2sQB5On86*FBXV9v-OB~3+Y z{ugZxrlR4YRHx5*$@cSamX8ljLt7=7P8_PdaPXqs$35OuKc3h9|Lg=!VDl4R_se3< z$EU$(33b$1?#m?u=yP?ubCJ7IhXm|Sw!q#}Pxe;-mz_LoG%LiaqY0Gsy(F4!F0ZnN zT?e5ARRv&yd5Cyw7q7S+qGR$|dnonK#`{~98_SGN3RX!Zn7Wbv1gS5>^q1o}hhj_+ zDSY_*n%3~r0Z!k4^fKNzHy0I&$3_5D73hI_Dj-aTX zj^+l1zcnff6i&a*>yEWX_xNwqC2elH)>RPJ~PJC!o(9 zCrzN$1MYYjO<;kWBAQ9rG}B;H87;h5Iakg)qw(#|HK8hOrZ^0_1&t>n41zWzQROPYk-kLA$SeY zth#Y?B^6QAc4fAEG{*g*kkytLRs{1b;-B2kd!FBG)A5jnfc#__obbtvRsuHb^fEm+ zX_{W#aw+4LYYGV+&UbGSpf6BBE!B3U(kJzXa8(|f5E7~R(tS1TrIWCvu7QaDFKZ!n zUj#S4fUJb>DG>cry%g0}ATZ%-M=Au2a1(0dq{4e#-BA3&v)$~FY#y+Q>gLNsGVvc1 z6)!QEy9{3SofDjA3)3E#IyZkYiYHS^Nvv%Iqm@xvsNn1^ZGa3sXr6~WLV?l8)ABE& zw9E)9O?o9p*lEPkr|)iG?LOdg)9>+XC<(5L6tr_h z8&px92!x5*l`U+tK}CMj~GM$&|*DnKHC^ z!}Q$`4R44;wpeMeZ_Lw_V;Xi=n1c*(^K@YpJ`$IDN;9R>ICzJ3xLvrvuAbBlXbR|AOXTwsqYm06#w%0Y?8cl}XF4cgg3hrQdP2RwDPK~0P=?y& zq2d`H+o}koy=-^3zF1bgE{&%SWwP7}7<5f+aaD>u9Sy#APj*v&YUE~o4LC{l)?*H` z`rmozKqSBiyrn%}Y`(tTPJhmxg7bi@?O>%IoR|6Uq6k+_1k`MjpC0!0-x*JZt#eW3 z5UKGlNTcx_9QqKC__N>UDA7EUI7CSx=(YRj*B zQN%w$Q`vvC9&HxnH(C*K{rAC61?T^++I(T_eJ>qlCBNr2ZU>>@GhLRW;en`Pu7BF1 zr7l2$x?R@P6kcQvD|9mQ{droQ2F+fTrF?_YYG2mZu6>tN)}ZjMAjw_jL}c<0vQaN7 zNK7y~4}YAAG`-O0t6-7=4~$wQzhAxqRqD!4JHJ4tE0Wz$WKt&Oh;3|NRwxw8X*BZtDl7cPx(?BHSxW@ zoaOC6s+5k$P}VGcS_Z`A%#5hb4yrZkTFyUsjFbgxign}k3g77XGjdMigCo4WW8fQZ zDQh&f1LDDAWQ=TQw4NHtBVonGpl!SJF8M8;i2Kz^IbUt*6;v}SK>3H<6`L4HfGnA$ zt51P+_2eJA2e|x<6SoZj3sssXI8W0$z(Z5B;8PGLdc>le3eYurIU8|ev}0l z9YXthRNVXEFw_I~q2PlydUt1VmYDqyaBzSwlIh7R#n8*)7R^f#Jy7@kzpzvk3uNl@ zuQ(CZO$yy}7f$zAPzzqH&r(56B~#97&Oi$hQt_g~Yj9+Su&-d5HykT@2$uP;12Qb1 z7SNqUJlWpl@qzRd^RiV5Cqk&$=HNA>CGX^urfaA=WN@Z8)@(4I+YgcVnoz*%#iZ+z zD3hS5Q5HWmeq!t`H$}m~s#5J8|5rRcP6-L-AW(R9fR(fjOPIANXx@EeQwkiJS&bcbF({QR^2vi+VOgZq&nnVq`?%=hKWG|-i(y) zgxo{cwxw32B`l^i&PiyY@X9fRv^<3T?zWznD0O`|`xeNvkMV}sca?IUL+tMBN%A*Y z?@97A=m}5&uzogBRG_3wZN9m*)S;Zs!*pqoG_@R{{ZMVN%Ws%bC}wY&Yr6D<@!<^h zeCSqlD2pX(csh1b|I$6@<>%oR2v&)tFU?Wwi{Xhf?Bf5#mg&bquwcNwA~EXle>jEz zNcd}wFQCm!zsKFd$RBkrT1+Y6V@k#Ee)VXZXrfvz^de)DjM`L|@Ce$hyQirE;jG{r zIpgB=NrU|wvb!A3zHw6C)!*;*0CM(-9YH%>>$~Vecg$#4YQl$^+DD1OdB*5l zyy3f}=rdc@M@1Mh_h*ypCtCp&yD#|uU_9(iLh3$18o+{!bLdxxGV&t|exJ&Zd=jY= z8l=@xqfT!UE6bum&GP5WU(g6PRyL4Dqh$>`fY}c-YKx8CA&V%x*r%Wr*V+c2FI)*@ zmZ=P z#JwAAEqU#`YCNy1^75A}?ayHMw!V@VLceITQ>>!3 z7SXaYX5-3eq$l(&QG)nczvnHCe%1HB0U!DcmyDb2DmnA;9`VMH)+{yH$c9@9X;71; z_qPDQ$$$+#C{I$N1e3xb@#Vf63>H%%EGFntyKtAYq`%%o1TwR}B{r>yj|1-Mp+wX_gRJSK|BdFc)fvHz*@ka*s`@KH1;|#9} zef5QR=IXD1ruOC^BpwwWyF?mX9@X4q0s|xsYw~MuxuW&#g@`uET84mq86W~|$sJQT z$l;OBaTe~VF(JtixW?q(A118G%3$*T(r4oDlV6VeQP~OXnx1P<1-~?#E?bAHf2T-$ zhm?_?lwGe?+`kFkpY3`vL&`{+PljkOHPy2_>|-M3UgARHs7WL1QQL*$9Ls& zAY5q(F{F)LQ6du0`}8f9-*$XqlUB>Gnr`7x?6_sl17m3E`i@XyZh{C_vQTu+~<4FmB3Qs z6V0snrYncVoU(39k3O+?Lz`UhGxP`Euuo2oWT0y1*nz)2aZ!DR(5sE_g9RPTI;5!} zd9-;MjRtKC31(Ek(u3TbCLYJ^Q|;Ak$QREJ^e9N=-SC)AI!KRZGo{P`ymmhgfn}r4jisXom;;O#jwe}?Q@q;eC&1Y?BC(S*v%nE3MCduqYd z()eoT6UrY`EA5u**hj%^qp2P~8#xCjE6pVilcQZ;4o5+r>NnSI7jq_Tn?QA;1BMBl zJ;)x8@wVm)S(02bNhyp_SB-n%+JpGMJUcU!Hfb31jitT)0X){V!|NzjzXIODwl|sk znuXGq%Ub$!fb)7{_S(lR8zc+s;@puW#He;Hl7`S<<)P<|a4k$lYI9EiJ@TB23ybLF zs3*#^C1J=!)rvO@BcR6I2l`3q7dy`K3xznL%_+m?*a{uO20L0j-nq5E8D zZ_ok}!F)r}_KTR^qmY+yfL7Mqp#PpR>D=_)pFy$J1mSxZo~YccgPLqYsm#yIWdPI9 zOQkgw$y9Y{Q&Z(>*KrBgrf(3AQ8@t>K}RdLCa6T8Zdy^ulmeZtx`13<-3>FRCFnV& z!knNn&5x^!_`L)Sce?z0{e185pQ1C`#&&KjE9>cXiH8t}?R*Wi@ogPcnmlQ-s$7%q ztL_=uypSC-`b?m5{X9e?Pqb_9lH0#1NDr?zB<7n&W}Eur#+9paVRHyR8k^&b1DS4h zwdD3@MJ&xmbsk(-48V9=HLkmSM@wXR6i~O^V(=nU{O`ewVy=mW#J~G8=@Y$S5ufpF zqaxsy4zw~ek#!UJjnW{2Fn;8VN9u(RsfaDd_%BWsA5U-GihVkbbB?X|$k8&wXmKz1Ob6SbYQ?Gp+FSa+`p1d4YC z;5x-@0-O!+BCphfn?R_gC0oDvqepOQsz?-an2t<-^l^81=M<;+g!0TGN;xQgorL*$ z7oKuSi)(0c0^KT)+67DvfGk~`iZ^)3FQO_B7fbA_9Ts!o=9cl&>vqYUrd(6|b zu!hDzah45Z%#tq2In(ic2?TuohU`7Jsq{?dlU{A_tR#`;^BY5Vkx3_xAg$xUve0?!MC3%Y!`l#tNlk-^7!6=n(Jt#-5KMV{qbuTyGnELgMM zrXaSs1s;dip-qTQjFb1Y^jCIV8D{?jl)tsF*1Se|iF-Szia07B`C8DFkKR#BYTvme zIuG)0=;iN3Q$#x>wcf?7< zWR#uOmbT`nYeZ1k4c%M@-8%jX`u5`J&$Ny*gOfRkza|75M&cLMxC+0B7Y4IL33%eM z2^xpws@HJpV%;s%-jLX-yP-;ygeJF7aE<-^XArZ@m=UmzFv2xnKNS8(X9d@0r2QiH zBk+K2noHF~{pvEZbV=53kZbvU2;v9n8{a3#vpQx}cbLuc-d~1Jw8;+WeL?=fTibOM z5Gh|3DJ?VWWXeUHN(1WSU3g>Mmt)=4)jfyipxeC1UEt#Y$pS9Q>uk`>LLz{?G6ro0k(8V0&X@(c+Pt&?g%kAS1PY*+&s>?hD?6xmRHDA=T^C;Hm&PHnX>3xo}<68yX|aQCd0cWUzq7yGh-~MI8kHull6!QyCi;<%~mhMu4A~>K$Y1Gkur zZ<|Sfo$=D3p#ZzD2)ZX}JKVLp-L=dzNjO26=ZMDvl}gX=%*&E4E#c4xITzar202#V z(W3JujgX%l^d6P7XMbjo#!HKPt+=zFj58K&VC3>SV%` zn6Jy-{|(4EE4kprpvNE##4uh0hI4bw&d*wT!D{Es;+-Upj`90DWEU%CWAzX^joZ%4 zjdGfBn9}L@y&rbXpd!K322AO!+x)}?UKW+s@m67M>0FN%mCh-})ygwt)4%Yb`69ih zq-Uk7Gw%j5@@NF09Ko|*1)h5r%k>u{63O`(W$$|p{k0-I(Bu8eZL;!##)Wnq^s-&D z(x5T|gbTv`JP3Mt{@ydjneC#M%6i8zKi2H-EAbMM31jF>lG7>eS6`RBwm+vDLVWi` zaOw%^ZnB z|Fi-CW=psEyS!8&`QL9z1)1i;3K`WRVdYd+S;6`V-#Gdx9tM92QlMD+4hos^W*xfV zIXqvS+k~+N6Gyo2nlNQSLpreRcX5|>P?9*g)YWgHM8!>Fy`J3D0y4LncB96BJ|y-< z$eod?n^bUVx|*^EZ0N)^eULUnX|A+tOt^?uKtJuiM-NQ~2Ak+H?e~_Pjf{5+ea3ad z+FY}o!_*Q|#r%U$Y_-rdk|-BdXHgjxXZ?ww)i!EZqJj1mtx-L5Lt_|$ACXMQ3CdK? zY4JTXi|fAW0wYNi7v#sYG1CiRG#c&bufCH<+zfjx^U z>v8{(*VWw=43$t8M^|TZ^`VP9h(z1=-Nx5#$T09Kb1RI@p$yKfApRtZ{vKER!c6*! zkd**%AhyIM|5H(ySFq8qVx;c_Xjcv5h=x_=`MwXhMBC+IK+Xhvke>?kvp7W!gf9;F z*JsEdZO<2Sn+Bx#i_^cvuoQPwedk<-=WY3{`|S~T-w&9$bfR=A!1ExUa;*hkVbV8~ zueUDn&t|N`5I-J1N^TWxCvKv4HY29Y?h&msv~-J*FT(Ny$_uAIi58KeT=F~-f=>1F z>OhhaF}f3-7{}=HoWjDfM71Y3jU7Rq89;?IcS@ogu3n(YNH+taCSIKR(LkZP&M$S} ztwE9760!+Fvl$=KUsN7>dZioRlqGlnAfyHzF(FEz%stG=ykbu|y!n%o^2Q8kk>7m_ z{`{m=@bAdcs4Rbe>pz*MXXmWtd>&+L!xDhG6VuV1|Wna;&J@d69r`43VGlt ztHwt+k&IYZGpYF0@XjGLbW-iuY2IGbnXaJ;-iyjj82)V&w9CY+oW8}T-8KcPN-p!n z)U*Gv7{Y}vc`2flr4h?>$x%zswQ(Re;F>hUj~f-ksQh_{;(1) z42WfXcwl9-8;8H(nCITO2Vd2$r7gn^MK|vxI%-Id%G4XO<9)&ojE+9JNiI_mT2Un| zehOYH-|Db{c8>V(UWQM{T}J>>bmuYGxCd3dI#pZK)43TrvI~UsehLX42@Uv{7249C zeDtV;*JGmCi3AIHS?ES`!QLnGH~6T064KzqMtURny&#o(zH6^)Rb`Z`&N=ED=h z*~g1`4cdNm-p_JEslpTX&I^2_8)2g;){RmNCOBL$(k7?=Vdv!4N9@$g(L&8V4oxdT zQ>jvchh_HnR-YGQJw1EH&B^z6*b9ACxA?`CFrIYr*+2XoldZ(~WiaaY#-sfj# z9Dw)KhaLfCH#xg5Jjhkd-L<;Q1Ha<%X<3AYe6NnQ2a_Fo;V~MkWsH>xJvkM`xm9mz z?K{`^M?@3B&QiQnXC=?HO-u&-yOZ@Iy=uBJVt%k96*=8WYDSCzkgH&?VxpZMMZb@h#u*P!<|rV=+5GYQxv#kMub zqYgG)%x|<#G5Gp&!CSEqV-$27S9wUxo5kr8aD4|TFEHG`)0cg~ zj{akpNsxSLX>JClWoBkVAdr-l@LqFYvGtLWx90QzaRN$~jJ=$M9)2cN9yTkI{;p1k z{EVpXr%D|S2H|z=bQuc4Cz#s;dPq!9V4B81ZmPRL#y^d*{~9BajXofFsxwIlas#S^u!rUpA7?b4VVeI|fB8ap zgR=o2bIX@Sfeg9E`{~G^Q`fs#ZQtUG&GJVT(CwYj`~tyU%oD0cK9w_9PcsRzq{4@tHGjA= z0F3w=UENx<1Alp@RxKmG#j>I@opC1eu_xUGDmjR**2&BwPbs+eeUK++NPiiOG3~I9 zhgQYhq23}*U_(D8`5p<#Hcl=c3cQ^}wH%w7tKV#5V-OPgUeBTJ70k!FjX-OU<>En( zPdSDBQRJExq2+{m;#-lod3_7NjQ9BLF|htIMi}}Kx_Jqu2gYEwz8}YB1K3Au#RHac z^Q;8=XKf*I+VM50C&x@rsXWW>@pT1qrcq^+%J>2dSs``~I17FrcJ;)2q`G=$%|w+K zkTvEfY8X+mtxFo}lPf7ggGbDvnGGrGRH|8FBNg4o<^gdjEGRjjvYJ$?Y!U$($k-x@ z>GH;CnQL7rrk42qk8}bZ8&AFZJ_z;ld{i@gt-OiaJl}MS^5Qi$gjde4&QrC{fx;n+ zwwxAuhfIAX^t^$=|McVa^%hSAcf5TF3ZXHHrIT7+^5C!n%AlZCF$>hjAaALRYM+Q$ zE_%v%0&PuF!!_O<5Yr}0(l1{K{O7Emhf-1zesK48(rJX3v*Q_E=T9jx+ZzgiN08W;@GeVPKQXBv+C; z?SM)*73`Vr73Z*h=B7FdV3*hpXKZ7x25j&1tyZf}vGB1PxnzlDhI>EJ?II(l=YKr6HYwNHnsiwzbM(&qD#TIL?HB$25pWX4Sx8ZQK z!_V*GKe72Fr7t&Lx|W}yWvQiyq)_M7a=%g~gs8S*pbnteq<~fb;1W%{O=(Xu`D#}Q zMwB^nf$bF!O{W=FCD_NAy>EV)@oMvqVjhi2ax6x3c}owFm2weN;X0E(;zMZ)-4|}N zGNFEupt{4N)?z}TW}=>=x(%K9CxUagLVGNDQ22T8Pq+7v+^BZKQztJ*0 zc^8-jl+bt2wOiWoRsL*fuNgOH%lI?t4Ys%-50z3F91lxlgxQL`6G901rAv7PU({sf z4|y@3bCm9DX?J8v&obg~qIq_{EBVsN-)gaSuoAANp`Be0Xnurb$w&h#sQL``nMLe& z$R=hIk%j+;p>OH4@yh69Sx}@2jo1VgT_sik$!tJ6A4Bc70VCdTVJy)}HT8t*!|}>> z?r{w5G?qnFvP4w6*V{89ZjP^bp20nulBH*1S>LqnZ-x_)<6 zp>zu(^PteQ{)o4R?!4%60|2%<`hmn|7dsyktTRb*Wu|nS_Fi=|l6Yd6cem_Oo`*2r zgUmg=&e=YpIq8`lEzwOhxMjxjP@tuN$YOn4Rmw{f52S0w&$k11M9cdW=X%GrV2rih zhC`EPH!>nembZ&iClFQ(GG{+=^}zx51=94Q;TQzo`?5Y1Bw`Y^F5g zBqI}iSk?}4i>;!NYSS-mQ-y<~u-{-S7gg^&+D}ihs0cMn(zK|x5&)I$<5g?R9Yjvc zxay1|sflK%;VuN5X(2%uPQCW=>518tXQiZ9)3sD#|1ijU!fg{xNB>6`^hF@DiVewI zm#<_nLm4{{$rUYqNdZX06msD3*~@9WZ@ z@R^vr##K+0;+bvW4O#>3L^n{12aby-`Cf?)@JPD?1Sseq5v)T)5S94DYO81F0Fi>N z<+w)py;-m!i95V61Tn($cr&jTQAd>CC?Ni*CPhM9SZR>f84XBWrOAM*JkNAbMFS-+W(xwqp?QE@)bs5r=wF5G z{1aLdMI4X}ky+&cgS4T-!5;Ex3R9l4BrAmLJj0x;9H*VeL=?R%F#8FNabu-lTjf@`Py}YNu_}rkoH6Jf8FEr#YHa3iJ%7KBxT=!gNZX8Csv4q*mn~wEF z!7t9}19?8CzR9UUQHDvSq`ig+%V8I=HmhkyS?_Gt_VFaP=@gpE14hj@C0&=F$w!#; ze8WJJJ|UZ7Sk_beRgPB2=#Mxp1}c($fD9Z7dp%Mfy9?U7BSk(Z#$|0#@Yz~az_il9VTJA~FGZ~yF^ zfy!YCU`iDe7Ca)|{Q4>25pBU3@63$;2o6&+!@53juBH^#aO*K)KPhrGU0RafC@(mx zjWA2U5wga&C6zJ(U^UWxWO1SQ%Krseii!VyivH^^94eAr$T+j?()mr1Lq7zX}d0znX`2fK{^%fy@q~MdkxR*m){~eWVQO0A=;WYuoJ(_2~60 zuEq;MK8-Rw;3`=mPP{&)Qj{{SIEc3q=O9dG@C)F=Z)AHs4~uOYFq2tRGUToMckRhc zlXuqxslhQ3bhO%lUbkD8d8Nd*YAzGe6RbiVS!A_HVU*>Dtoqy?kHR$qWa;n%ShERb zx=Zvfrtg1NcX?0eZ>vnLtnXUNzci14N`Le?`mNtD|Lm*6j+sXIEA`?Hhec>nsao+J zExW4BMks_}Q`Y}Sj!_7DvXvy`xKE-Rf(@WG9qOCvSu%K6P5b8f#LlX*`jyPdz`#@u=!ugwdzLb1s$R1{=-a-TV_&M{S+RA@9^QRk%5arv8B-WZ zhE7;NjM!qIU5>OuvMxk7`FYE~8C0@RnIb(gjD{V<@m8WU5a@P<$>cB}m>&zi)8oSJ zGX@l4L&vk3{dhyV``jdibz2>)I3#vk0^Fc+y81|05kGI+*Q?<#g=R{K1}ntl-9p(fUms4A<&v?<^;vo3_45M%*4!xeo%W|UC-|GRRP(0D%Bxj z1Tui=QGfhY{OcAlvnD9I9LJKvz~iXc=zv_!DcQ>Y`_Yfry%icbbZ`JyH1m$CpbGg3 zckaUBC7fKBjSsW_BX|w0ACCAfcahiK5sC*oE>0_WN#$wn6Ya8ztQgsJzt79O5;2W|`1Z5t4xpq;*t+SYOtj-?*@YNqeG~ z|9nflth=cvRZi8J}hhfu@q z>P2HLS;lS~nQ-f&#IcbJ{Xj{FkL-E2>x+2C|3c5wgHj(CfzOMY5)Xgxx?i7PeNxZ5 zpI5q{M}gh{Mz;qOsKmb!BF%Sqz2nXF_KRRB_l_%TVZj|w!Xl8fJpDl!Yz~kgynxYE z7H6sD=CKseZzG}H@fb9z%zpYagfIqY*0zxYiD%wPtvF*0004I_m!qE^ICN2_T+*uc z`|E1n>ULj)gN6p56XowYvhU*}ki-XMrR zjSkb~rvQ||_r(PIkSE$dPF;TmG~cFQ|40TJFn0~41yJLOX}eL4`rd_Yk(b%0>Ck&A z1B*3U_S7IuA%g5+th^N*uAi7ErxT}kkt-F`L-I`|$C8ws6`CQ8;Wkt@dIRkyV5fhA zx>x6Vo>+EyN9pzM;Ne|`AckeA+WT750cAttIY?U56WZz4%@<%UlhwM6rAP}y- zB?Qm#2YXH?sRe6R5IB}>L&k@jEI7;&)pcl$LkEQP#8A}vK85coa|?VlG=A}J}7I21YWVb-?h%OPHA{wgIqz#G_f+oTI|4L&7D7F1>OtCj^79Djm))Bm%-cx8 z)~R;b7B@}JM1p=`*6O6-7lr8Zr09lBD>E!L4;pwOZ<6o&5ARuz5 z&~s0kXM_ffDSiJsAARkh5~qK^fOrq`EkB7_*%Ao+aAGEzRQFhR5t3UsORW~%Upiw> z^_l{szZe%DqAE3Itj1e35d3rvgf3jOenl(!RCpLMRV~p_gJJyXfI^kM?XzG5+iU`u z&*S4@RmdaP1UJaT=L-*F<+Y9Fbhw-c+TN+G|70)3RLLJ;iSeaM8sw3j2PA&wWsGV% z;Ym>?TnlnFv@6>c84Xx6oesZlpji`TyWvo+ADq9ofDl_~3~-j&CipE9zTmA#YeOtk zY#_9TNcY#&Bdu}*YWQO}Xx{Spet?QD+Ii>J$$9#saR{2wmglpdI^E1{9_dL#%J!QoRz+}sK$MksveapAYo8O+==iYTVOlYB;iiOupd_;#S=S6+m z{1a%^7}VV0d1UpRUe<(uvSI$gcBqLv#2<28s(FL@bDcjETdWn{dBs;6<92pl)&Gb= zQ|W+jTNUa@OTYbuvg2PJ!!_KTrbkR8lsbD!v5= zJRLt%kU?jtDrY1xt_E~%I$7$uudcdY8hG@&T0)RnpcoD?+FiO`kbCxe5F)iY4fDCC z$-e8)DqtCu&N`N90j8D}qtRKe`Cr7V@k%$a>tM2qEw)`)iT8Dc3?FciaUb20Tjkm%MO3 zynN>oZjR*`$%IaLM?u3G|YZ zfJRF7ptNDT-F@?;t6?T+34PNz}7Q_H~xb@l$zn%_rQ_5Lr$D zge)D13u~kCFLDw4JE@NO^C~>&L2mrP@W*4u_lNJaH@aB9+3v!6w`oGuYsgz9vGD8$Ku~fI-U)49=pO`Ey!^4j{Fga&0>y!#PDi{ zY>A}~mN5RK>Tc*97s)ke6*^>Bb1kBR>h&}LX&|ILRSZYBa&2pTcYNB!GAsUg)o9X! z@q#zh6rpyO@*!ROrB>gqeBT*i{k-faAqTv5oqr=MuE^a1EWS_!gM0`j%h|umMl-U2 ziBeBb%a$!V2&P6vRJoOBkZwr_jYROYjuY@eYmWl39uVv?}X_*A^UJ8BT99Rmg9NpPlAx1cHG!K(84IFGtPSOjT^AK0hEw?wtm3KgQv}%`|ZFHnJw4Ouf*$PBvRnW7>(tagJoP8GC>xoTd7ee{Kh~61T`h z#v&<$(*&t?c~-oKrGW7hKSH&zq3R}{SS=4cD*`c#V@aL`hEF%;`JDQk-RUc2f{+?@ zz6SFfEO@$kV@|;+s&vT@tBw)k znpysA=6)cpUcK6UHP_6emT}KFUAgDf^q1DGdrOW}a;gIp$qQA~o5rNeW$A|*ESeA0 zBk)E?s=5pFS3$FVWY=X@CX^{=p%ZeP0}rI_#;kwt8=H5v5l^(M=KS$(`GLtxtrV|?4U;3oMGfEYC^tQXJ01vZ7wfB)#;ZdS*srK)Yx#7m8~VX zRRTD?rdaE3nM{PHE;%6q;zvC%2g^O8gdEYT2q`W=LX9%PC%V3)6v}%+igTIA)oNVv zc!Y2n8Cpf9CQqEXQc<)FM4gS$KojPz2K1=Y z_scPA@}c4HOasqGU!0~i+;GRXB_4Q1FL(5lZM4HMxVD4T^lVkZf@&%_u_FpmUAQoa zUzGDpidA%Rv^#H!jtA4h?bmcDt+auw+|rxHZyOdz8&J$Vw!Dy3qj;2JhiJzz$IK`w zE^Hx`>yBo;-%gPV)_7V&Dc3Fqv|e+BkiAQ8V)AeQ@#X|UhvV3nb(JXpakr;Y%q92- z!IWwGcs17kgxpX(xBf20q9h~B^)Gbe=|`*|z@#z>lmgF9% z9B}cv9Qi7ezlPBn@ehx*c(h&h4r~ey*Qamc;GgWEZ6h<;h8+tN4c5I^YRxif$kyHX zAR^AeVZ>vgS*GIt6RZJl1Y-Sh)VRD&x>68YXRIv7;EXG+2wjDi6sS7PtXgYN#8gs` zsrhuMyD0JLGcbp+v}!j22_2Bij0-acb+2q2iPGF-Ba)Z49nY+R)`ET9YMvV(oH*6A zFs1Q;ju^{zOV^K+)$1=W!^GogNjIkU{Im|zUWW=6y1%qMI9t|ZfUeb~Dueg(2q8CW z5GXG@CoOCAi01hD<*rV>kC?TfM@)YuNIL|TuL`%fIcMn;%`N6-EGlw|z{iK!g+rr< zi<(n$(`JLo%d4hOdwcvl9%Tp3^%MV&j=Jq9AArPK&pW_Jd0gu^IGdU)U(I#g9pnCw z8jX8E>ZYdp2q@Z~pR5Kb*RG=h)pKYyjyet#DoZNPb86j;@}01mQ?!*!3?KVuQOaeZ za@FDL*AAzxnr%E>v1s^i1a;x(>P4N?0O$#;b>%alV7mnC-5u~??kFo-P95@fM zJZa6x&H{ebto>bl;!ytF%3NcbJUI?}ChacVd%}HO1@=7lsl2|0Amz==yv}F@+JAwc zh%_qvJUQeUnhnQ;#uFGw1jhjuOFobDb@`=yA5LX!Hv`KyzssGMy?I;o_yhb@o9Um# ziSP+i>sl9!eDg!zTo&SRVC{L6)<46HOT*#7WZ09`2x@8jpiUPP;f9(z#@6iH_)D^+ zW1@@OW1!V&jEsni7B+46GqdigMNsdbhS|YNc4du8(MyR!xZV`YoK2R5Jg=1nT1(`7 zOZ9h-@k4J0Q8XA2f|qEDRzmrU6)sXW#heef^1yN5*h6*5r6w6124lFQx4iPm&teP0 zZO|M=zjv7rV}$%w!Aws-p%@lNVWJvjP@+*B$C}N zHmL0N1OC;Y_>bOR6$r`tQPiN8;ry9HBH>jsByq@QIx4U_;SW8tP~YI|O}|x@v+gKB z{qsQOpvv+WxKJ z=iNcyy!_sPu=YCrnqZye)|(Ngk#RG1w_~@zKAnEr(m|XP_*{!#1v6O$fhF7F{LBh? zAhI6P)G;QQ+d>dM;UQnJ`-wj;LR;EjN+4oSHI=2UrZD+n*#z_O&k_75oZ5P9_iP3{?li$}9Q8oT${F-|WIs^Vz zjZ}uRc$lH+P*4jsXX^zoifneZ{>v#XrA{=~O07In__|B2>SUXkBMAAng*daCXcY~% z=Kc7G@Ncdol33TT3oPEtwlZOU#6@IfVcB|9PG{`e%T(Wk1-h_H!r4afgecQt-xF^? zsy3iD|Ia3%S5VD^pE0w2v)Bmgh6r?_q_!qzu!4jXg?`B;{=3%7#TRwO;T|a6COLM^ zx$F?i>`y)eQJqzr`5VeYD)@~U&{@4dlKUA5EG+Ic$es_L5;UJ>nokjz)AfVzmdBqs zkJmi1*Kxm<<958yyt)`#{-*2#qj4izH%=Y;Jt5ItHiR;6kLeK0#q%C{u?zUS)1z_I z5%=tqmB^Fw6`A@9>sEZ}l;RKO zN%(SHKr*QLd!m2lOCH&OoB{u_2WUOx9H5OKy=6jc^DF-vSGK%81gJZy+wo_qqb&ZK z-u*~C)S6cwv6dIrvCdf-ZGXqe{j)A_D(nYAm-BG-=SWqL>00W)dSca*z7z|jg=oVsJDh<}jHQI;Yn3B`=lKfnsNobtI zp=Fr|HMem^Eega^`<2OWVqCtQ;;(*1)L z3HPx}?)846U`^e;Wm#8arALu6nA#Wv z%>m6ab4x&z=X%j)i`KO98~)$%ugjjM3sP0y5ac? zv^m;_oGkgO)jd%e4!fzva?|CC0pGyNOKfcBrCXg}qSbN#5HAidUa#M2v_JM>gP7i#ob-|QUTgK8JQf^Qb=gJ7-(F=K_NQnF(=->k4!Mu)ZwwCDl zvs>MxtDka!RP=}UGs3`u+$e+@h-_(EJo+}iaG{5<@fyO@@+GHo?GK3o@(T;ttsswX zBqYKC^`eVocbKL@SWZ7^MqDIGzax+1toWT=OKSmeMpvA9lnbD#V1_y~n|U1X${V>< zUCOnWTJRI&;H@qX8Q95GNE7|jj?ma?-~L3BCmvjSVwr0x0<~w*&a{jwtY_ky_$3@0 ze~F-N7WM$x3}ZQP2)U+)O;6q;g*Ye+G%_BIZWTF^T;*`P1RDs93Fr8KoQd)J9F`?3 zwgCn1TA9=ZqMaCTwKVJb&3^RaRUr70jQ!)EmK7=3tv%=-ae+%w-{t3c8gi3$yc31X zn0WF+q8&NRFg8B34(Gf6A5w;gCXn@P$3F>BYv?gHSY4L>iB{4fCWSl7djqGEb2wIE zNPiT;oyyody2?&PBbRvBlO{VAX|5dE9#8=MoIi?yhI3ZqyXK)c_H`n@&V401XZE5T zx7SV8RupHHWMEli@E|tf@D2L9e9*2KM$DE-i3op`W{vc3O=w-($eT%0UUEFBQSn`B zg`J-NrC6Vl?1WL;t`r)`UEw^HAznQAO0AR?ru#Oc%m`0o;(5LTuklGpL1<(=)8-zi zpE4*I?_209KYTb(Q2JEgw@L%K+n&DR_xIvl;m;T8(wj4O z80%OO5`b2o+7g?E`9Gbnb4~Mxd27tf`eOr2)rCbI=wm z23AKWD^Wl((Dpk9f}_lAsMB1U_aQIkQAX->Ur)eEAwU8p@kwsnPm}otzD9lQhpS^z zHXmwZFeX}4GH;dMs9y(uhPBh-i-Su-9C~wzn*If{$kpA+LvgG-BJpX4MrF%3|GXF; zzLjmv`Vg%%=kGXxujdoa>LC9+#bri!BkvvM^j$s!@E=fx8Kmn8^$gZRWVQ{2Hgin# zhjCkVWa*`tui;)yGNykZxRzH0*>}t3#1SJV)&#p%p%Se8IOLMnb^o;ztt^=Y9ijW0 zS<4c-|J|5wLoXD{-sPWHP-@>dv|At4Vy4?j1mM3BJ<&=qHK5~^fCygD2E^NudNz|cV# z%qn-Q854U5_Jni6)XNA$gn3^`9M&uJg?}5 z{gBDHTGj3UG9X*9ZRWQU2P!9D=#xnn#<2MG*BVZ*jYoG$go*Zi$V_?{48yhdEwCTJ zX@hE;h;Qx_rFy+}G0H!@6}ogYhJ{uyIase*@=5NDTPqhh zJLz#sS7TbPrN5qru7^`E^8@K5TJ?ShdO3C_d?jP@H)t%X(XRnb*J})_epJ(r?5w`F zQy^w}bv~O3+x&$qY>8`m)b~5}VS<^{Ha+Fl&$BVX_}tg-p!Z-m?MSd+ruzlZgmRjl z@7J7?fmdf~u$wz$P}9oMvD$UDQo^aI6Dyjizq8Wt?b{!4JGK~OdnOPBCn8Uu2010N zm+>h3=M(1zRodU_l>lClv`h(iUQZt?Y%2u&KoIV4yNw~m-56TW8$sMre39Jo|BpN1 zKWG?L5x@UD?m8(=dRkcovL6x9TX5Jswu3QINVpTcnsUn}0UALD{Go&q2<`NNxWlk^pvu#&w4b zfhUZz`5!&bKMS(}R3&-2d)~V)W6)i(54&B zTUFkc+_*DB?0A3=x3M1NmPfhKhZ%)Hdc4(lK&ADxx2Ge%35~}UVh36loywIeN+tyr zK<5hv1ED%DjXwdApGaMD3RbFrtM(Z#hFdN1DT~JN;w094$ND2Oqe^9I6!IxCtctkV zsP0qrsj6-XTlzZC@r*uTyA*ZUGL>A&K|M8iR}=`~OT%eq_yF#47zB=0XtH|;v#cR?%wSjN`@kF?Qn9KWAS zxrv|NFY@9so6tTG>K{>PR=AG{m!9-4M|j37qE_^Pf>Q@IhSP*vB}wd+NCU#X>uBsG%-utbMHi321tZG&pPO^N+I^~3wg&*bVXpNh!)NuJOagrz;@ zqTe|3xnY~tY)=@&l|5#`7yq%zIh=eqZyVj?+cxPtn#7-LgKPK zcXkuUM-5mGyorKa66P#vS0n=kw>g+bMEw2C*ozHX~5d6l`> zeZc#$Vr}Kj6!UC(^49YCX!kO^W5K@8GQ$zj@LsBYQQQk5f}I^0J>54-Zb7-hj^k~~ z>ymw9;r>mw-sd_l$lzRI$=FnUD3YQ=C=Pg^m$66v0%@XBB-OrtW zQTLv5u3rdk$*p`f-%Gkx@wDugeco;p_?5vLk3j=^{-DSm^1bd>TmD259?q}!>TPuH z^6LM01LGrVVk#apFlt_Nshq&7u;Bc^idsTl%#W{+k7+m(9k$*zynI(5*Rb+kW2=5! zu^O;E`n>_h54Q~`Y3TCpMDq+wZol2uEucT)kN;;A`^8nM5N93!f%&)*Hvs=qN40mcH#cLShG ze#O?nVhgzWy{4p492dRjoMAD1D~ope=6PxK?1I4u1?*2d&GhXSbtE~`J^;`}rSc%C zJG&0tR`zLePYiOMTuE#O2c*$;XMgCNNC|DW=qO_to{!`cUVpdH8*n8z%LQv2OZK95 z61P)zgOp)8pU4?5fUMy&CA-*^o*eK7JD*})Ip=G-IibS^RYS@^Mx^U9O3YV89H9YB zm78xG>;>&aEIXT!QI{6-Q5C*;O_3hT@LO9f;$9vcemhk?wzTcx-b9he%sak_3G8< zaINXY(bi_p+-W)HpP|Jiqns-%`yo9VP%cgM zTeoAUHcY(gmB?|Ej1}Da_V)<~_kIkqiTg8W!rWeHU>$QVmw( zJ^AVQ+2uL4$W?KylfWB@ga~;_hClwM-PCqMUY?71yP}Rpd>+i;&o_bV)8C!(!!p@B zhmIkbgt=C$T3yYM*2DISS2$}|4)m@=E{`@AGO0z)!|I$8O)#N@ViS969c}~Fd!)b> z@JjeIlpiO<KT~GHQW%TdHiaNU9iSI{zioaG1O?yL#XK#1yMyoL2RZUL$}ZH|M0-t34Jn44 zSs;@zZN7Mu`gVFeu1p0BeVmazo&qh2I1P8%4Li$#F_@wCvt4x$yxI zVP}=S7cZJ7q#k}}51*CZd_9)=?fa2W0(^S77_K^u;@d!sKdPvU ztn6Yq9Bx;ejaG*fIc`UP6g0M!W?Xj9Gpye!%p~ZvYW3+w7GHST^R3V>V`d<=K(^c! zr)0%uY1Q53$koL!VTqo~=}hH(5jRYH_#dxE9|w-scH-V$u!s0!IzWmFXeaL4n)a!Q z%1S0IcZN|}ugT#)Eu?k#)ao<#6p4yM#tz@i;!dy1S8m8kpb&sNp46e2Nqty^v$kzF ziXQwFyl~GM_5O3*@HR!Uf+B5{oULX(SYX*D)@%Bm!Zd4yj-`MLG=sXTbqmQDE$~S?45e*pdkP0!!U|mu6HY8Sg4x@D`G_oA7Tdiy zXg#h8g0u6$kv|Zc?-PV;<}azSNY{6W1kVK2H_c%;j3axLAG@5KE$doRpTEOD2ZQOh z7jY0Ck0eizzMaxjoh3#*ElPJ%>;emmfVKrcldkTd1DQmCmcn&U^Yeh#O@*Va-Lfrt z%r9U385I0WjkhrG1XbA0sO*F@C#W$l4d9>1`{pvNG|&TegzLCf2cN`k&eRva$nXWR z#+t+^(5Asxd+6!#h_WD&LY(oQCh2#x*rDAxDliQGh0$6TOv;ycw*a0ak}0r@KcMx` zQH?Z`U{nYJLo6?r(ulYiw_^)JA+)&qkSro|-Ud=8Ah8DX>)(V-G*br|tv8`G)m*hx zyb^?drYr3@G(vTA&l3I4EV&Z-c70-Xa?2QI4lp}a#)&gy1lZ^qOHRIybx_)+*lw}G z(Da5k?;hlOk4Bnnyu9w4IsbAdDg4@RV0p}E5(ixf#7|fy?Z>Aor*`S6HV+{9R>Yta z^I{;Y6XXJ8mm{1Vo|u+~b%)l!2<;)+zM|IkWoA}SUBV)1=MTD^{R!} zd8;HsaGAC7*dUTrM`X(whTYUoV9V3qf{Mr5S|+}Mwz?1xWp7=nlomVW`ENB#jZo}I z_XAuN5Ymz`P|vhSg=R>kqzpd|fAEA!uB0^;Bxe&9P58S+{X-|sGraOr+&hc(5jxGx zP_rY`cHP2`4yE%O+#=f8BH*A!_}L`L$xsD-FjG=_duQW!1`tonBd8PmAa@^UN!WmM zbP+krJ-U)V+p^c@nh^~-8EOq~Z0wEHCWt8;NReIEP)aj97Xu>s*E#SY69<9wAdbBBKK?ZX3|PkAG-Wa3cGo4E{O{Cq5F73uY2@G2Qx%(h@}I)8j*ApFosD6 z^nr2N#Qq7Uix)aT#jx26ig5CcjTG+FGMYXljkx?fl#Bc_P1Dg))16gC@>_J1|7aSo zJr5g@{h#@D-14e;*S4k5}H}$@svo8~BLN zjy*7*jEfcvhwKv%cZS{caGE_x8eVzZ&H`BJ|1iPd#W$O|`J(rD9R1!)8*TQUg zRo)u}OZ}tG)+VoXm(s%{KfY$z1AZaTyMB#n-rD?euW>dyzkkb}o_D_Qsdy_#acYLA zeZoLtMtDUy%=hhjYWatwQ-&s*A zT?VnW^uZ78LT~KH7Vwi~+Aa(DJNp7brB_TX*J`wdHwZTAZ@BCu?o_?JhT%?><8_FZ znnZegVPj0jNpYk6GgXT_h7-W~dmMIXeGXH(O*+LhE6$x8)1e*T$uuvna8W*fMW8^h z3nrj7z~oop{q$stlEPmnLP|7P=a*=&zgPSrOIMHi0ej?vYK?%jq4RIR%yNJkgh7uo z$W#uvWpJDM^HDp^SBv!DoT6`qsesm>(N7vbN&G%+i${&y%gB#}Pb=h4d@Mku5+ zWeAUE@K2uKKM{s%i zO!dA<8xPQA)8Q6GIqMG;J`X0qaZfGNP9;*dqgUq?n^7=sszLLcM6Y@mTl`@k+tk1% z6Yo#LCTwosIHx(^G|<%7sSv%W?FQetYCQxO$|a#_C(YU_DsN`)#N7W^dL;RWIMtgF zZ7l5zG{|8GX|L*GmRbr9{YFc6N&E2mSPEv+M0@%s&$Na0Ml$c^ZcRxrCtVB-37>pQ&B zyt^my%CcM{Y@`BZK2F8ercCs7qPV4E&6&mLzA= zpj{M6rZx~#7O_)cAX}n!le+Ge>p9G@^TGpkQH%{5MsL3$Rs_{pHdTzOc^eq(n zBKviWr}*yNEW=$-am8MZ*NxgI2NB}k9$43>ZU#G zJXQJu`3hEH8$;0JjKF5i5*Ovz|I}OHqKl{eqsG1J@g6s?RTLfaOD?qy_11;NMsejK zT*t>UN6rqu6k)b`artG0&$#&oibA`DmN@(i7)isJ&i_OA4Su!E_a%O1StuP?0Lc6( zL3=l|v^RXv9qMFws=lNyeAG#JkS)XDMt>*=)FcHPSi7gnt57JlsG-9*!aR@cN^JQw zd9oW$K@C)cY)T?dSB25MzBK@wcuJ$P8Qw4{7bP`w$W-ozYt})g#WVv{e?a>Ulf8yA zuSL}+i>gz`QhHaa|1M>}BxvXcs)4-JvFscw$8&?aJLnpc^NH;)?nCQeMQ&^oZblTp z_%6{cI;UtX&(1SIxKdA>qCxGFE_2G6&&4Xc=Jnp33)setqtYwILRa)M(0RX`J%Z|%m@wKm*{k~aww;G z3#=6yLK7EhHtWYzq+D2ad7VZGsAx7`XGL;K@>ABbcJunQJ$2sT6j>Pg@ zouA09IIh2Kv2~K+$JzKy+SF5AsVzU9Pul*vy@mxVb7)o?5^Nx97?Y>13Z$a73|+AcPJuLZWmibFr2;W2XSlH*7gQSpygmK=7y z{^ek|OGxo=G;>_j19tjb%4)Rh&upT4P3<9rB{)bv61~x*_B!P8n*6y``rMS>i95XRiVQa2<31ddPc!B ziJ{}B(5F`t>8VC_NBICJ**cV9bP(B6PS+7muH~NRoC>NelNkd zC6rxuDnw^HBm)n3;btcV;9nfsMLAA($%0$l5<#pxLzJSZfVXMbD5Ta#0i!U|zB*m*oP=uu*ts65%eI6k+ZPLy5BO zEGb7N$0fMhCfIfi_3Simxf0`t7|k8wX1(;^AYwd`%mJFaOiF5+GGtpAuZp1ErIR-g zm^xIdGbwzcaMdDj;9gwqe%FXAuX1D6XzsV;PLo>J7=JOpCU7R_l7p13cu1INK~fwv z^&Orw2jp38>2Y6BV>Z{rJk%3HA%w@SHJN+NCQw#D7w0-$m9_D1(G#dzEmX0S1H-;m!)}F zVa^|1Vo!y9#?zBvzHbes*h!XX7TT;ia4I0-!_nm)IWd<)W3_C7&}I%Xc>xwX|0EMA z3Ox$DLpT^^AVr^lw7k||Z~h4O*v9pm5MhtPBL)L>GFsTgMUx<}umgC=KLhxyzlOLZ zp1+F;#Bxs7gFK^sgW&v7CwODIJ?A-y;HKTH$zM#m%(7CO$r+DB`C!mJe_z?GqTam2 ziSdz}E$IoxG=-x-dI=hWFDGFB5YZnBs|v_1_HXrA0(J>|HL+FK`mZNPg0bhtr-pm+ zB;O?iUTRt$EbPfy{q3JtE{73K{1L9rBB^`wN2z=7XP^nKUlkA`-6*--QH>HeFDfx_ z94hG8>Gm37zn7P9Im6beU!NBRi}8_?K$K1`oyK7&Ylj_{5s!Exmr$cz!}pWfw#+F{ zpKosuKqc<04Ljm&b4w+&*gGhHHBcw)DX~~K?54mQ%chq^x=USYFVSw^Z#=Kt4$EAP z&4G$}o(Hytu5&wJvp+S1Ao_ylwCs3#$)KJ58veKs)8524MoUWvB#VVk8lFg-Kv0YQDB{u|AJ(ll>DRnh z_Y|zg1f&;#IFszs=Pmm!Ymc-X%FIjHqE@%N^iE4%5MMgy@VA+-Gus2_g^Grw9-Xf; z21^;`GtfIfMTND|4>u~#4K>o^)!0nc=0-Q^hlBT^mc9%$l8$uFvpuXqEErl7s_#Y7 z1OIP5^_f)g@|>(>iR}a6pJui2Lwe?rX;Vz!CoY}9IM8bAXDq$;MsSIyxR8`tBTJKr zvQ4HU9;hV8-J{WLmQ_Xl6&s&gebx1kgw3U4bUw!GG2p!||89o#HkRZwGnQ~bl>jgB zG#;;w(`tHfbhexJwxEU)24%t|AV913BAC3?leA( z@n}XkKK7X)sRBAGrJz;=v0R&xHcfm8=jgXP2*ma9mHhlU_zHh`>ug{i?2 zyw`D5=NFL)D`X9SW`T>$pm*Uk-#FT>f^z1vsJgrPr{gFB{aK4NEYb@E9YmnF`4Lji{z2S_>oEEs**Zx0F$e_L1w|>$3?R4A=ZOdUSPol|fLX=&I z`F}u2ECyH@MDbsd^0^858ESaSU}l(Grjbcx^eWlNvvPmygh30uk{^)PlL)HEE`*d{ zg=hb=dK#i5sd8u*E>J^zxk>?yGi+eu%8}z7?ZM1%@aDK6m}L%SAfmd+V$hgbtC@kiQ4f#9==tWp*hO{u zbogaf8i8KCDy{n z*rX(O<6CEythF*|sA=CNl{m&-cGym9CzQ)&C zzIQiBCR0k5hzIfJHDRHm=g z-eD{e3Yjr(v{Ky0gWPZs*Yw&K(ru~jA|x)*sN4KP_7PMe(W_}AoW+;h?@Bw$-Ege(rkCWy3A?WDTqZW{a%CLtj10xD#OnIK(CGwxTXE%A zVGW$lDFk{;vBV87fBIAxT$v7a%s%=UJ~GU9(82MeGJmdVeL{b*eO`T8ATGD~Pd&9G z9)v{#yYT;V_o(30E$PqO!$!WTb%QL|=t3AmoIlt7))&NbzPuVd)8^C3R9f0|8cC(3 z=u5CmbqO4M;wu$c7Pu4@vMO=EVmIL434jDQ!+=Lbz7yt>awqs6ptT^VYIiBsk;(3o<~7LS9LLMBhFk?IzZ5{}SGm33?F3Cl~ z2p|1}I<>zz%c=k!2Q)u|KhF0Fog`>fk|cWNk#ocf3Ho~xW}cSHX)^K?lLuHse<8Ws zAK5h{@Sj9<79pzkia3^}uohrPfemXa>d&zJ@i=wo?Ny?bSAcb0_dbJ6W0WRfKtoc7(IumV* z8Z>(1WZdoFuikcIUg)+ZKnYmxZYsq^@FEOZ;!pwVL;gKuqLd+%32% z0?}1Ol(x0&pP?~BXmfwz=L7v71{`=_6^NX7@FjTVX7Vi}Pr(w~vGuZF2V6ghjVDx6 zpu3)*iZ)DsH@JlwIDi$?`PMC{5HFcQ(!*GjEx*PD@^$z`M+pP@25{e5WH8As6)|!U z#SL)JY{ELej#O&&hz64%04YiROj<nT4bn}4;L=fN2ZoN4@a^79Ni(ZlcJCM5@P zwU5zhmK(=W(2)qX=*;S8E%wrk|hizA$=+6^=Y&jAV4t^KWV470oLOY$O|aV zNaE#L7`-Y1nS0w@EL|fnbjb0&R42VAE@gs9V>pb27X4=RUn~#i3R~!8Jp@oCwT{!q zYoj{vtjXQy}udl zdhG*o%00zuf}M}*5Qj0%Gu}rNrT6o7IDS-@;}Um z{Vym3_P)LG;@qX?-kYI3@-ct#aqsvsf9T=t$id!#11vZ82UsDd!^WZb&pAmLAjiw1 zuwO|D(5Cc9X_^1Wcz}igGT`K>mq)Q#l{mtO8JnT6ObPqkPnD@pBjM<0!jtG!K!q`+ zseg$@momuECS$s|VtPL(9D~Vtr;~gW*)c}=X&EEoR=5ucPovS-I{-BtP8P zMaUoFjV}fp{x30QPASl@h>e_qsf^(Ci_cOEFvJ%=7wbxZ5%UB$yrcSiY3Lo-leFLO6S zqmaB%R@@?@z$ue80r`ix%@;t$4urarTDF~sM2|w|_?Q)&>Y#iDcrO5@^j@~ZBqK~P zs@4iC$+h=*hTJ(70@kv*Bix5_5_XXQ_SvfI>^%PVwgeUg1IyU2NwV`_YC_i0V|<{> zNdDAQu%=UedkUWt457kZa{@~#4CcewweASMCwz2JO7Z={7G2BUzJ$|k6`r|rDWOhw z$0NB5S000Ca{yezkpqBX*$}Ef{X&%=S%z3cTba?26-F;jnsgqilRo@iN%Vyx>KSGk zm!hWtwdX;0u!)ZuY8aY}7o{ULwS(9jkzjj|h{_Hh294l8;m}wWDbLx*ei8i1J1e_d zng+-f&7_8h;epJ@%db!&>--JMQ4LhI&r(J%LMXXPJrlMEFAG$jJQWXp7SqL9=b)}z z);Qc4t>{tH<_o-a#D1)4ytwn;!x~zTS55*-H34Z53hfb3c&mPVvS{i!OKT>Zw_YV5 z5~699@dl^F_&82=9P9(ukDnuS5=e=>TDX7dqjxcJt)7f=R$Atk=Ks+yyMIv8y0bCg z{xMXcB$;;UH3f_-1iL_%7SwN0)OutW181N;T1C3SzIhgmA1>9~yka!4$BF2whfU|+ zLSuJ>yN__4*T*I+6%>`eSvC23=3C5HVI88Rz@(%0f~e?i6#BSHBdg^n#aTE`aCX_QFGCs%??Xbbnb>Xah_$ zwa%yw^SikfZi2#dw)ZFL$8pryiF2$C%(R(#=rpZgpp!}k2VL2^i=*=hBnkA;k|fsf zMql?0KW%W-ad$GDw4NB{qC_~CCaIs6J7~L1!i?9=#`)?q_rk*Hq%{fnDRMLe8tra0 ze^*3{-T^ljN2jMY)^4~JFmto96i6nw2AGYuEtyB+TPV8Hy*ms_Ewh}A>a2AREvL2_ zf^n&>FC@bJz&-@$N+SKuX=hlJ8&^#E_~2*?@lS?cXZR-gDIO^|K>TJX)(eI8S7hs%EAq0n?9s()DFuum8u$A}9vPWYJ zpL5_!^t~ebc|K~GVLao<{r-a!f_i7cB19YezpDNQD4j8qr|ikYFt7i5eg0kf{b#WF zpXs8=!)MON(x)$Lk82#Q5hd>7b(japGns75bhPw()uwQlPDvSdHn{akAPlK~69s6{ zELUY0x=O?iPybyh|=ftuMy@?|;yjz#FG2%>gKztqy~Gbi+YNa9Tp5-eHN z~!7mXA-d{=S0u=x;)7a9rPN71Sf>09%;ecGA5PigKb8*`%`jp#dvKCbqqWvh` zm}>U^sW^?FvEp5i`_}Nf3Yghu5=x|LBJAIqrp=?s0;r%Ase8WcIacTx-U!rrRCL8YskYjlm|F5rxi z(%g`5k(Y*d1r@O9wHv1GFO%=rY*~%G>kwph;cZ(BW&2Gg4=l$27L=SP-;8q5LMu3f zMKl3bWRYGGQwl?@#VJ%%u0wTJmBhBXgNOMB@&KNJs=ejYmf+RALS2%500wdL;$!EKi)Oh{BkAq*&N|*IMv zt~4jF7S`cSPkM9m?qc(^{$n{ohZbO1;ymaw*20uIF(oy3lhfaZ2!q>A=}N z705TYQkVQRob?4S$T7IEXA0Y3CrXp{Q~`9@oOaVKBv~N@Q-AgKCF%2vHYdSdZuWI- z@V}DOx02j@cw-p>uqN>#HtqwMnu-MG<7OU0qo7A_^sMa1=|-OQiP_`sRR_O>0#3Ua z(YjPwds)s_tupI%(4FVzS$5By>%*7xLcTv4q0rZOVtv4sJ}+xkHBF)o`*E7?cz zEE1ff^<=>Id8X3U$eTWpHb2mI(6i0ctSLi6IF01FbTLLW?GtlE3Zij{q~@|5WSWbS ztm|f1>wL2TQ&Mn}+>zjYX45sHLmpIVQEC50kzIi58Z5VxDL8Wue(}F2jXPYAw+&k^ zi+m*2)$-Kl3Fn^J1tKLcXAG{gHaVi1pinSEN^4-|75$!V#Mp224jg#Yj8J?eJL1t4 znrfKXO*LSdHk1KUNob}_pzO`ZQPXD6Od;!hFbK9_HFC);1#@_jx|gCxLc&2BSFtQE zK(}&IcG6+~SeU8a8$lWnT*qCViGIBA%iXhw!(@V|nl^S=7Fe(}%g>G| zBPe+!eSXw`f$(kKso?2Fn^~Oh2sGl`xrM0xkXy_)O}HHX%uf-+XF!>IS~ljlf6Te~ zYifu8x!Mag&ok99=GM%L{r4#jY?iS4adF3S#6N&t!rQR}h61eAOp-`sbF@+<%JY!3 zEFqk%rCIGB?JRAG13dzlbdApiLtMYs#i}v@jMJ-u&3jN@?0?q8Xme)r;n{BwBTDIQ z#)xACo_mRo`>(~U=dosaC7qW{-wxdkxao>eb0Lh`xk95YE7c7w??lF6Vd`aE*E1S?`c~1DL2dCa7j|rp4{SdF_*zM3-lC^sAJu2 zi^*tUR3RwJF~deTXDzHDZnwG{PKmR_SW$;Ho}25JTTs^=aThQr_w{6Ku#Raxa&Enm zXOFYlE6w&iY$X_XjaL45Qibop5>{$Ttg${>;ZxRTXF2l;4lGQlkJ@e&v=_mJzc#!0 zLil}1{iZ~zl~Q6e-PD?Z;O(^0hx4y$ugDW1n9>@C+jNKnm*ch}7F@;NriVp|wH_{0 zM{7$Yarv=PvSqk)n*U+6Gy7MWNh-LJ7#~=?J$n}n(@#Q^kjN>sJd_-x&w^G zuk1yu-3^FAwVQSqHK?Jj#SU|btK^AN2@g5YN~s0DejFkH{Io2%byXQoPbdD*-wM+7 zBD_7opqz(c;0K}63&DS>F7TuLo_!(|@OC1za>H5(B9my8otsGBpL#zwbk~KdA|5`D z|Ax-gSb{3vr5AXc0fMgdjt5eq6e$G$6MnJMyv=uG6|yh`BK#3$AnyBe4Fv%>^fG)) zfBf7kyi#h%6)xx{J=MB;oB9Ec#nOMiu8Y5mE4}v11{9S+Y`#s1zxRtnr+2Zb=1ZHg z7n2@Q=$xhl>=!1O&-cL$nBU0{G=LL$z_@vOqGVCQj0G^B2V@E+0voTQy`SdhiN|%G zHu3boIKOOf+XVAHlYyMlKdnI2_@ zpYc$#)Hzu(uWZB9He*Ztpq%*uBkPrXk`+(m4%URG>&ObklDtVX5t@`kQv0@X$A^FE z38buBR0V-0o+$n>3$UYu0z8-l58iNvwROqj95XxsCi+EDwn-Yuw2NaBJI9!Xen6`0AVh!owS7>; zJOV@-;@$4+fz7bBUuqhp|DL-%AX46eliU$HUFNe3sZ%LsF2K1}Xe~k#T};$_J`~FX zfN*^SB99Et3&}))-TjI-;`6-W*SM>n1t=h|An)McO9nKePwoSnpAglj?w&d5zxIj?T0=3;Z z1|?b3nW1O~(gslLKzbhYjNf)*G{Z;>ZgMu8nujrEsX0!W_@+F;SkrsIQlaCVGOP6z?qX%>aUK@# zcIUuG`Gc%TJ`Mlu-E+82S8|Hx8ZC+-shc9^jfK~lx2?@^<|}&Y6<4h3$4;LF zu>DS7XDg_}Q(IFY0#JOSub#h5N0Mi1vB7YqznB9)8W`6Y9G>|b&-0`*I&Ig&-yvam(el@N&!U2@;q7KECb=hbL$e&_;&ce zrKuy=;dHouE?j|p?$k#)YvDq`bMtJnY-)O(kyC-v`%==2a6 zfm`8AXyzACH`kmglMTnjYk$))NL~03z{cq0xFBH|?;_+S_6 zvBpSmKehq(^_7h2F~SJG@THl}DP!JsPvEEiR6EL)tAr9|g%?=mRZ)0m(~oFRTRyU& zj&8hQSFwA>zheR38k9q*1;(xj51oW3l&VEuVuO5Pta64<4kIdAV_Z_o*?^>8rP5un zxeJk-E-^MRb+9KJ%6k4uE3HOpZo=y*II#sDYT9Z-Uz}?_BFoQ0*MgPT_M0Ft6HV~)afce)`p~xsy+HuT3 zO~5}MHu0z!`UU0eqiHfZm+ndJsRp2|75%JYA(&ZIbV4(pHCFS>u8tpHouJRzWhZqP zwd7q~zyC_J#dQk)20pHlX8j^j$P~m00b?I#+qu1q*8g4NX^AYh+ZlYWiD!6@MB#7C z!2Z&yRJKf}20W`SAy7P{Dh^k2wnZn*DHQ4S>>O~6V2xwxD8m|8piqN0fHc{x2tJe* zLxFT8pT$Q$dVvWAGlQ{Z;z=RC9l5DN5vP=$SrHU-g48m(XNE?1!xOtfg*-7g$Gg%Ng0JtXbW$$NHu}+bW=KFC-%0WO8f_W*LUpMV-USS1A6T zTV_apP_N6>mO+^^hK(P|`Gr+O_oJ@pD6bSR2Yjg_EME0&U)1U16(4s9^|gy@6N7T% zV06;a`<}d%19S=eE<4#~K+s`1*=at0W(WSODh;DIoyun=rr|^1fl~BA$->J*noS9v)2zA+8Tihy>D*~)9b$ksYU@HO{torT z!c2`w@vm6GdqHP$oF)p!w@w3fa<95BwcdDDmsnKy zE7h~yT#}9M5bi8D84rG!o0d0eqx+;K2_+%) zhNJWJ+KaBfrfT1SdH) zGe`8oyXB1f9@F%t32)#yoHb0N@<&wpzoGEYBl5rTnad<>&O$f^z4gGv-n(50xsUCE zPhK2Ij9w4So|fdEr(KaZJ3u{ge>&Ig5vkbMM|y(i*t8qn0q>$B;00-r9SOv>dV?vS zYHU-TLvic(@Bh5TNF&-aW@opCVgQYsS*F?AM%Edv^Uu?%tafq$6%p?WOTm=u%VNaK zsCLAO`!Y5ZV{Jf7>p$Sh_PLtPDVSH4t@KX+)i#O4pIB;WJ_gAABG}!JZghlr2?yo% zFUTS57N0t-Dt&oQj^PAFfi-lVo3e_#Vh#nWRZv1bk;Y!S1&hSJ?=vnz1}R6;rB$>V z)BEAO!72i#`|rOVGM8j2Q}<+ycccNhMS0}1{v-qdJ%!y8u>X39x66{y0RsJK_>b9W zR%2R}N{oN71K1m>YdogX{4|_$FyJ zUqyy2;>y`Vdx3K4waJ{AxN<`4o5)L5n*&JXlS`{b7v5WNt2|=vQ1Bn@v}vU44Lf#u z##VpL+$=MDbaDc|)Wy&IfMn&4esq+#M6)}Upb^9JfE{j-ox3NW_cQ*=62-(~fv&l| za{fGQrkAX}_gyAAo76g-erfd7O?K2oUUgn|wYiIDkcG zJz^7JIU-f%rex}7ZSYIdlYWK0XPM(7W3UVMkyMKo<=H}0UCJPL3g;Ux9t^H1X?E74 z7{e^=%$fr&YM(l2?BG(c3{KY#^MUU>vFKiHF@ycaA#1|)$9q-@KFDcD`L21OO)`)BtD|(8H+}r| z>)hSY%pscLT*UO1@V_&)zctc(l{8NC&OhLG0J%W6D9{51Sa7AFo;XWi*R{yPt2nv- z%Vu%pl(o`-)WbK$Xmyx2qnbeHf^d`G+CjXW$(lir?TD1()AHiFwt+)@+DIiOR>fe_ zT82?|_9wD^%474adN&+$!HK1~B>|h8rZ!JBJ6Qa!Cjq(SATceqAZ&DMi_jPwz;C8tFEuTrt7`o>;A&fPOFxa-pvVO z$8COo_d9ZsE$ZL*GtvJNUjGHWP%43L?+P-TMC2|!5g&cw7H z`9=N1C>SvD*JP1co;`&3m;uVRIiWYdKCFHolKaO?@~-xk%Tkh-}%uxACB2{(hwXk$`g<)fbbsmhCU*v zyZPxx^QHE}GS?}_pW78#K6$jADRe!Pn42z6WM>S@fL%4#iBb~Yb_GCX0nqn0V-D^mQB`4bIr3~ALQBF)9q+vnogIHWwg zAMfx6Mj5}{b%)FicMsR}YfRD)oYUdBqC3A4AEnZ%0I!=NgX^0xb~ zs+Y$>uJ|%|$+7XvaA`>;#9?iC#uO=`N)D~ObE_JVP1Kv(`V@}(DLJwkJMBO{sf2TI z0oLoD96Olu?jo%M+2#XlviCPAOl8WAd;n&NFl6m4iJt=ZXmDcHqs1X<-=Ks*tGrSM zbS9#-zxyZaL~IPu{}*CjVJ2oC3)4D5BkQBGpDn6IAz7aYPT+##O?>JGZi7Tr=MM?R zK>0FIs}1(zr09@D%pA4gJob3qt;Bx~>78ZntHq1sS8gQMrt|njqYM4aK3*_mDtDOW zY^$gd#3?36`NA4E8=v{Hy*sQmTi?ap zp9`KDPf@8V?;ekujyHLCp6?_%0iYi{TRpEQtuU1}v@O6( zBg9IJ|Ea8M9=3pQT;iYdAq7Z~HM}!kvSACe`fTj=JzJN3GA4l;Gr>GG66AbkvPm)rfLozWA zYW_#!4>kXXt8f15JnZ|-=2VmI$+nwp+nj9o$xXIxTa#UrYqB-jp1j|CchA}T*)9O=47N^VZUv}o1=#za^E+M^6%e?Vu zc4JaeZo4>UO)yHoIWoK_q(2EKyJwJtAAl*ni%f{&E%%h)6RRuY6G~_bzOnb;IkY(KatjcW?k?r*r+~+VEK1S~GJ>S(OnY}-* z3fdIdiNXPGP=?4UnZrUG`&5h6T665wJkbQNDn~dg?Oq+-W*=-oCB1L%LhPv@xkdW1 zQe0AK140ID)W4ZCr2c~W?;@HG6tzCZu?V5h&S55bEJ$#Hg!2)LY^4Y!62&WXEHw@S z;uv6CE`^!NFxMz!%@CM`ph+(pLcsvo)yd^-nLE#TnXv$t3&+8}S zZr}Dh#)$`U4nJAZo0u~wzmm8om;m;BO(TV3swuvnJmG|Y-@XqTDbc0<>ACFp2#UsM{1?u*f-B{4_U~JlE%v5&Ul2Fb@#GZUG z9AHD+!9BzjR|*q!-!+2i;nc_xrj-bj)^$@Oz9;14c1*RKW{tt zz@{~bqyg}T_6!*1n9^}VZFxEM;|X0m0NWqGvQHhPT3f{Ab*-n(O&6!edvJpUBDv&@ zClNjOe^gTMRgUu)63Z~)ORV<$m5rsA{#^m^zy6gJ5&}FV)Hb3X<>NQStR&$skaoMk ze!(#JVEG;7p52p8wOa^ur_Fzr;DMQ&7EHH6A@=!4Xm=Af>!wPRO_>?21&C|w18zfG ziF@DyUG&pY&a6~7t0_Q*JRpr*V*pwTakWaODETfAL zmP`sL1HyIjq0G+&^+9vDfR*&CKd1lar0M8SNLG%?;~zo&EA`O>7=lm(!vfNvE&a zuC_zdpq@}xOznzEHFXP}@wmI}ZTM}gOk&FCuisBxM#E%TBUSd4=PUPS!j{|Sb$>Lh z?z~qg#c)OGw9-kY>5hhD0ousr3lYsdLZAQ2K52WCKCANAl8?^=p8Z$VFhhT^&xvEm zgPwvH&3NGD@f9oVE1Y?1b>}xZm`2@#<1nWY!D1Is*{g+B>Pe<7!LUHYzgBU6#V{EC z?&-Ambcug!-=7(U-$+xgYvPc8Kbum0guA|Vg2DTq(NRC}F+Gn0Xy`v~&I-G>0Na<8 zl*g7Bm>!7u9wnEao5byBX|UpW_08lom?c?^yIS!#Va9;W^U8MN?Y@T!r1*m6W5H+CyJUREnkf4kIWmvoPyjx$6 z(G;kwKGle*UzhPN-%d->`*6NquMYE0Dl0DSI)_QXl;kv-ktv3F(7}c z#c>*e!8{PKf)VlvGP?FFhN{mgJ4Q53nn%rOMCFq;L2B}}!I;#{+W{HaOe}I-atQkH zc+tNO`>c?HtY;S?m0wK>Tn5hFtTkXaKy)D#>dVVq>(}H)RMT?f+;jmBzL1vMdG=9L zBri#AG0%fmDm&Fo6!y(vN2V)}T}oMxwt{N*X{5r zoTs)jeA)Z~jeaU~-R45jv5-60-&Q>}(;MaI{aU)*7I!iZSAFPLWzFW{MtH*9g8Wd5 za*TMH-2D@MejqsD4|9`SVS5f<5G+P=uEaIzC7tG_{muJ{l``t0n;5{d88b9FL3!~6 zp$(wwQe*#4)eo!1uQ-vY)WCcWJ`Wqz6svVksb9J zg@SHr-cty%47GqO+E|`eP@q$|S8CGSumoPOEARtL!J9iN#}NIk5GT13olT;%@Fl#% z9DCL|1|61|97;ku(1b_ruW`v=gV$^ECU_gH(}K!sOVsJ5Ma6KAAV5x(7BwndJz`}= zYMK}2Y5z!$#Kq?I#@l?$8($|+>Ta);qrAS=f=?O}*t~~ngTMHEXt@&JBlV5VxWFOd za0SN|wY!xH0-+7$9# z>Ir7*zKi5_`{VlcQ=~WkKj$g^_%z@dSXFbSKv=XYjG)Q{J)#f2LcsHUUfz&K>j8=4FK58jP61+g#D5^oxx?ma;c?$Gc; zNIx`8G3DnK0;QtbMj9Y-C{S^X(eO7x4h+pZim7`nN#BC5ABC&p1@;vyVA)FNdXCXC zIqhE~zAtV*%fAyN)a9pTJ+d>pq~!1LBk+Y(M?W7ts}Xmc@ElOc^{GuEMo>8{6UMr> zm7U|tA;Nz$NLlYHA8-=l8BxCftS73aiNvyOYl#V z=#x1#`%wK5_N}9Ia1V7tvkyumsaZ_q7*++PFW;p`jMUO?%6G2Mhtlh}=P#sW1$3dN5 zy(8B^Fl|hdeduZG19ez^Ku1LuRuW-IwefJpSCdEF^hy{7aAM22oJKiz2J`|lS@deV zBzv4eNRd}>bcG{uq7~}d11!It&C8T59*!94txPC$mqeh6WelS~%RM?HYR?ud=Dpwd zp+IXKPMJW0rxUGKxyv-m4t#IjO2@0w+f6N*C#>n=3#8A%;1ew82z)#!Hw&PyZHK$g z1WaX|8c=}sm?jx__x;H;J?8YhR8(w<+uJx&J$n*Ay&sJ3pb&#qZPQ)`8eDw)RhksI z435T_oB=hywYO1n-KM?hJ5h7K$;~+Df2gddUoOxk4juEWi6~D7p>6hpv2XcCfA=tk zlwn_#2W9X%U7jplDhy|+I^L+c`=_liQ;b0~!t8D3;}NHD%`}MGF&nDumB+c*>Sm%` zyY+e%hGwsa-|AzH5o3S7P*)T!q=1m&TT%;^r3Jh;kBv~ZL>uc^=}{rI&)DzUG==mV z)Su=WYx9UQz8*dm`C%vlmc&Yq_#62Bys*qf^=7d~gp@C%(mi&vPE4Rm)Pr107>(xd zqbA7c**-}>R*Ew?2}a4N*5BJx7-SR9NCfob^X||7eX%Hyjko6!zUreHrTzHsF=)Rk zMGWxR1e$g4Gk6O0Kpi7Up>(w`bI<22b6wU{Dkxp11-qjZ=vjWrzj1e1QrNoG&r-?D zrq+?X&PA>S=XOf5=%jx-5B-svF&#C^OE%QUzt~MR1@nd2!s6nfO>YM;Yd26N*;L-= zZL9CFee#eFT0Tx7cN8}x=XYPt{)H;0p*)bdh%^m7Fc%B27q4w_wZR|C8p7kHSt+5o zgJi;8qnqB6v5MaR>*M|b)%0}yMI6X022s73{aQ@$_uB^DpI4u6bwIFEjiPIyO&#*# zC-i&+jat$FIZ9Lri@h-AAJ2KYZ6TIYwN&Xgxz(M0DpMHp{yoJxLyWly7OpqS7m zvAqSbf_J0Jf$jSgC;@@uD8tgM0W} z=$nqIG%WLyNOTQ!!I>ystLGj^$D>@3O+y)j|VMZwPjW4vgkTgeR(r0f!Q@w%oa&J^Fk=f`56(+Mb zdM7bmG9ay>6ue@40h$YGc-?n2oBQ?TdJS!jBdBFrC9WlZ(-Na#mm_@6h`Qr+=&we4 zXH@c%!b9G7KA4J2oyc{{nH<2uzE;5g^J;bYR`{?0M~7_HmY2|iQRyJL`sB$v?GUHN<6@D7__bo% zt8zGYD%xoCtTZt?^Vl=uE$fJB&`#H%z%q4T5 zD_{Rq5dDs$Pd(5g#VH&!sQoDK_Bg%TgBRkBW_LE4G1I3$y4&jSwmMP6$7i0v=IG-T z-9w43a<7%g9=s!t%-D#ENf--av{kaTWtSuBxOhQI9-PPy6&Gn+~2J+ zZng=u!rixEV$R0MuEsSur0B;Tfi8n@T_44h&;qn~4pO>OJCXO3%$}Ir@`(>JN`Fz~ zRus8T;5v_#?UuNN1&vS`LQ)+lZ0}VT-Ogtq7FFKT-ZWIL^>whnZdw|42?CZ}Elw0X zz@($ecm4YP8r-j#@Bhy244rubK0_zNj$DpP?+@~<&4B0qypKDfk2?qC%HGxRA9Rz; z2*BNE(8&rq#|IqQ|M*RDeZG8t+}W=GLt1SaP|A~VKB5H+DAaD;%N2E0rPnU9wu~qh zXf**Vs+0ZG+Q%`-t=+HuTq%5O2UmIgs`_pBm3`pJOUXmcDnN~RA@d2J>mViu1?+Xu zf6TBPyAp)*5D8ue{ZW?yO_(JcjQvjb0Z1(3_(vNqXl4w#ItC=887_?%IyT5}Ud3n| zUuE+f`&4$ZYTp7ey>VWo`g^Hlyh?ZV)*Y5!2ZnqrEVq+>8sccRB_$c+W+%)iU=&fs53aqLQi^Smgi8?PMBP%!#ARIadK$r$NfQ)LW2E#dY#H7 z+XvUhpl-v=nvX_I9bF?6R}INfP1-r>D?{Gb#}GeZAN~`Hs6O<}7r*sYVh-Ln@Q^%b zU)b3on?lr?YcTk|`b}HpkQtoS8Fm9#A}e4+(y`WDd5u#Sz%DJ(B)!-}y^isGiriaK zPXQ3Fw2a%!Ru2htO@eG^2`F2?U`?3KQ>hD$Dd=N#N~{Fl7T+67SRvK@j-#|7{?ket zlf&&m_yul)GpvncSGCG03{TF8tlcOxN055_m;FTMkQn59bE1oGg_j@H6@0NnK;lxk zYiogCRmKGdfa!x{o?^>Tyt0NoS3#6TOVvHNIRKj67uy|LDbp;k15LAC$A?j zX$k4vYA7nB%jO+>IrIbf*Glcp_~Se-4Mu#0*rYBcKWbk`4V{gM+sOnu$_CmPkYYy4 z9N6-dzflvtK~(G^XRsyd>PF%ki?j8!)sc#FChG73D9mB2UQp<=2CKp;lpcnA;nB4g zsypV_?3G}tj*szqJV#6+Pa1>PO`IiJBjg`C|GtKo6wN@hkICjHhDk8W`>K3NTj>yW zbv)9c^9+sd{`j+J&sh3}wzH>=Io)%ZnX<1v_ge0h@u2jNYJ!_l>f2!puV0ubXG#;HKD-kyy39O^fJTBR@2#Xt{v4 zK&7KtZfD~Au9v*ekE_q7kJvX&kru}O&CI`_ z=Bgr?mH(HR!U#Pz6#2N={&){}=rL53#;4*=J&x2!_RK6lr<~=~s&p&$hH$tL!__Q5 z)lMv>&s`2*!W@=bi%%5b`K*b$1;pb2y&}CmiR|$OETQe{V&m4|zk=Q5D3< z*c3gRK>3SlJeHG1wgD=!00TOKE2-gw0lfIS|04{#MY_eW+yteV&QM(6XOpZ(^c z2hq+0R(BCvH#iF0@n)da#RFpZsrZNaSsa#H`(nG41lDMGh3h6gNj08uH#cT6SRMUP zGjWL$!^g(R1&@QUUEx6_oZjDWVGw?mQ5te`(daH?A z?3U<+_r;rzzR|)L3QM{Tmha6B6_Fm?Ym&ReJmv<7lN&Hx;M|b*ZT(aFa5a}SE#X!x zCNwWBnND36fo4PlD@)lNi0q>X>ewUCN4AzaXr;J?toXH+fqXK1lZ4!2sB|qE+1{*6 z)Gs9FgMKDq=b32$c8u~Ho2M+4>BV<##Zezgxrc|}3-&*j6vl+9H|7Ix^eS+=TpI0S zanlFZ`zkVya9kWqmy+k_*KT3B`|@o-;D^L#26~z?O4VmBu|r%{XuP#wX$CDOi+@=` z0#tk7qOhDD`Or4Ne@C(ZWsE(hEoNu)$ZeG_>=r%S5)%?Y-eZ%K?bTnYC!JY)%*7pg zS(;ya(bBe~IA|2!j994o!(d}BpXP$^5%j=@`9w3l5|NrCig(2>7sk>=b44F$ zLbWq?fzM2-$l0<^F*gu?m6P9{UM`XZ_Mt{^qTjHACt|}h?d-X1?il$xX~ymyfo|Gs z+HLBb{ueyu9_iQB&UgI5pmU;VUu72)nRuY6+JTP}j*;IHXFXxd6z3vr|L^lgt9q+X z#=+Xuh39NrvlM&F;Je+%qAYI#<-`j5Glo)C2{WkE|y9Pv_idSwEKpW7_>88HuxQwgi`&q8M=yGr}9v z@>GDtHc)*ue+25f=u+Ks<7+w3nt1w@D0u1psO9Y6%>L`}{9V=me_SZZk9{VFZoJ!Hflu;ALbTG6kwG@n{G+d3;zX>A@@C^ z1ojKN?h^7Vd#yd0KfCkp!|6BL3~tx`0wI)x7X1;>^HC}_)@BgFb+&(%Uu~Ej!&k>V zvMKa3vu>|g?@+G%op?9tooUYYQ7MmST0!uAV&nM~LAd|&^R^}91`r*5UiuDx-IYh? z4V7H^7dR*k(BJ$jEtrJZrzxycFPLs0Ng+gjA1LmsNdX?#O_vJREh-<&5Ir%Fj6aZk z#(xZdPT6{!E9V(nwNhx~T~B-FiuLQAsDCYOEDXBPE7!>%XTk?Z)02e9tBC)9KohV8#S7 z5g#2;hQ#A6QjS-}9PT9fCcQD-b{qq&(QI)>)ejM|k)GStJ#V7QNA!!(DE`jH}%j0sZ+JfqAhBBGGlphSWb= zN228nqRUvr4Hoc+)`?yk=^Voor^8U}SIR1=POnOjROxKd4ahFeyl5W{fA=xYCrO+4 z&9dkHrIzAa`AkA7omxc<^@-=2q*$kukc~mH4R5?NWb(~HEjxVHc4!Ohu+`CqRMKdf zxP4F43rMYZfO}XVL;E7&2A0;EL3{>@$u8j#!VHoERtU4J+akRP*19g*B`?C`31glb z7p&kBCE8y(yTh73*Ybthu~jI`jdenxhF>stImm5o zC)fCS3_a2z#=4sXRp1BCxtN!`3dFmW;)k&VA7?!&fIu%2`ZI@4Z4igcFMEfG5*Fs> z1Iz!~X?}+z_(;b12x+XPm?j(BlHocy?@&|En9gJ65TE+hU@DK;+%kCThgTti^Q zt>uR+Eu{z45m8ZDnlnRzShPsB2QB59nqEEsw7}0+F_bMfvm8%R%_X{LU1T69UmA14Gug7o|&N{oR(A6Ky+@_Ij(6 zd$cmhl$-Z=w4{oD8$a*2p4t-wuP%LC z_bcqhaZiVFLAwP8;;GBON1VERzqOTOo#7`Y^XGOt-<_|}kHNfg5B>gVwlSVj{}a2A zN}=Ojp>6uISJPZ-y>aMYeh&MyC}@(avn`FG3|6{=E^{BdOa1ev?(?w?ez6JuvXtVJ zDXUN^=6^HgRGBntpE~(34xb;szBUoSMK7}Ykh(1kR=3sY_gLpRL}YtsLsA?{_(kG9 za52U^Gd}iB^Hygl2T$XYcQg{wMZfuiKRek&Cu$g?s`^cz@e3)0&u9)m= z1*U=Z)T8Ff_ZxdZq>;PfrZdKh!2e>3l=l+2c~;WX*;%sbkkm5+3EC#121 zq!yhtE>?8my!4WKB)_zt3&jH!P6-Fsy?%q?&V0ykm+lDr|4T6 z>2y zka?)RVX+qYUrVXkRa^Llu}S)G2jJ8A}>qi?H-j+Du^bw}HEw z1A^Zm&M3|nPhK{UWMl9?bN^W8fw}n44>-Cq)RS*fTtRhFT?@#vES_vd+;;?v{9`iP z#Uh_fEJIR;9_leW(O_$A6r%?AXHESjq&kNb)BYlG*9U}To--vJj1`f54O>LTHcHJGBcCvxoK&uUM^Ne8iB*{Z!gKo8G{;`le~fdlb~EfK zpmR(#b}4qGg@+7B@qZ!=wv){m?u1B4e^3?oATtr~A3W@f87KQh?w$9&D(+Nc$jNez zu!yTeS0!eXEb6GRWL4uJ5pI3k0Qk4MvXo1CkF#pK88Wj*K8$eOSX!PZiw`ZP{9lUD2BQ|~dA>A}|KuA|L4a}QeKigMM&R_SDP z_gmuS&el^2pK4!iy$9vKfhI+@8H!){7?AS4R^tF)b%ZF#ey1>)Hil{US zcSlH`$ocG`26w1L=?-sDr_rbykVv0PnbC**2^tQoJ<}+Ev1_f2ne3`6{X`>s6U6vb zrTWknI(b_4+*$IlA8%7Q2B(`ni>rVFTXY~ub`bdMVSh^pT7o5fjS2mzNqbWpeE#zr z@U1um5$HY6D*Z%T&(Z-6!qpB03n0CYj_)EP_FZ(;zj7Ze#@{$>{IiFZ<#8SI4ydiX z7aeS8jPKqeHhgH$g{F9A{(dh^=3Trq^MxL@B;E|TOz@T^+1#ISKrB}L8#F<1Kv}!T zi|YLxAq63Y_~sK@^ov}IXGY0ze}WNk!sK(EB2b=q3lCPM(8g9-j!=u;ZGo2Du!a=? zOH_q&Nf#ChRtjO+n!j24yUkj5vqYKcjNq{U3FH55S}Ui#)sG_KBe-g(+!f8vTIzn8 z+S>=MmMEk_1_Rjzs_D{C)EEMf8CkVuote{teBK-*!hsIFFPl|nVs=4w$5M`%mbk;~X)WKIPA+hX zVMiTHy?=2ZkPqR>c1gk9yVT9Q%7R+y*E|xcLU9yW;?M}r)GjFcJA@mA1lIl9c==@> zO9=PyQ0wR8*1Tu&Heb(0!+LY#m*O5FW*-V|2R%1oKop%<0K2A{_FyBBXiuSqvfu!H zidNIA0v0lZEg3AK!BE zcLA2@n~TgS$(vl|YEv|z@~e3|>FI<~fq-nk$&c{&ct^}KLo(cnJ@#jo4GnQe7>8cH zh4->Lz*kA7U1YwdaZ@#{@~gNb+JV7bio&ee#K403B1`@HcUE@$Irjd>Zxfl8&?C&# z-$h<(+3Uqy^ryM`q#ZeESwp1$RI>rn*@D8zcImP+Y|Sn&DsGPAbPdWoDSRYw3fnjkM>5RIIGxl*@+r9scFcup#@Kv(=>FgrKq~om}={Y z6SB#MEan-?DCgMZO1-8!6%^I?_AJrm8}5uFax5*c$ovLk9$y}%``^WNV!W^?1!+0t zpKlLsiZ+>bJW-E8Hnb-F$}E&plSWf&Ty2y2SLCmkUnm@2bqgwv^iKo zL1u^XaH#jWp$Xq95{9$Gu^w>03mi)3NEbcns^{IUyY3wzLnH|G*gthot2pa$EY(Tl z@Hyx*^l#T^1R(iwmVXMa^lq;DKd_u4h(iCoE2Q#FC|NVEdV$N1CNCbLST?ON$|^V+ z)`GbXLk@fSqWB>-rCWH09RbRKv}4I*`8&CG&ati8-EfE0OG!ylpLrrfIbZO`8hgbP=`6n$FEs9o?IFMs;H zYfXXDzrC$<0YA2NP83tR(sVeBb@1O^AkRX-7Sd_mwG)|KxgZ}Q(!EzIc`K5I5v70o z7x#4bB1))Cxz|ZHh825TD(nr&lR)EjkE??r_Rcm2{s=Sxmo0dag;`SXag8bMW{j^@ zLK2VyWtU45glBu1kO^EDDS3loLr=n?{AjYy^8dV{+kx5jQlobt6XvS@O&O(A@t3uc zbH3d!dLXe2jEiWOEbgRDjXGKMvl2Me{PzQ=8`aL@JyQ#_2!9AiaflAcH11*i)yXW; zHIWM1_ha*%KpSy}+3m&r_CzdyEU9hb*ec7>z5inw&cKaT!O)e0J**|d|EyZtk$r#w z*-;g$?CQJsi_%sNn~R(4S%$bQ4s?vdpSYzz{-IyrC9>UqZ^C=jDBq{)kJb@h{Yti7 zuOi4J@tkHUDBU#Gl4R2Z^uJPLy=5XuamTv3l7d|B@3qe>By@FHm)3zipe1^aNT*bz zEOM>Xlu%=LjkVDM`;bo56P+>~4XILVd4rSo8~NxyH}3bU1czv)K&NWbZ&!9U22X&15!_5<5;}usXjF9rgc{o zM@U8l*sJ64U2d^vmEZq_IlWk7=&tkV@3^#(PkKo{mo)61LTxHY&y;sGBJSoC!p@kt z1jXqQG1ctbWJ#X@72!h%CPyi%g8^+>)0NhVP3%<3FAc=m@5a%laHg=tKj1D5Nbo%} zPH_v*Jqb($Ot$14aQn0ZGP8EaK`Lyl)ulK$w$_%NK00@0lejKM=ikIN*zA?`zbDk* z)1i1UO1V7d+W4eyqsqQx>3${o<_bD1G1ubEN{W-{NbG&UCHJ&{C{ypa@-#+G68Ac% zJePc;d!dTE87`CM%u^BnESq^WVpkqGrdpmC+(l*|PhamieD%K0;i}-x*q`);$X`2{ zOiu=P_g}{Dkvawr?BHHER!f-L9H!u14C)MshP}Q@FHwh5+uPiyb(bhox#vw9b}u#0 z1|p=4;JI7_<0{_M@XpgF&h^ZxSX9bH9T|L_AF@$2ko=&oB%`%M~6mG*;L(l$H+iW$SQNIps>;n@@HL*_% z)G&DdbIC4J!F&Y&ZQEQ=g!R?cq6vgb_***3Ad91BVFy1koC=QsqEt3h+} z3@Q&v;)BfJyN6Zy7n*w9#QfC2g?gVbKysRcUGp|*CKL(1*Gbht_e98i2lzegcUI^N zG8UYbcHPBqdyVB)cpCCmY(q;a&8P~nXP(lr?Z1-T*iav|gx;u3Jj+pmt&4IbyPh*K z++V4{gOs{uPiL^nHup6)WZ)@K4UQ9PP2aryiaH8hfp|RMTgC|H*MkTG`_EHVtgD8^ zPbo$)dT1I6RKFTH$8-qD%|Bu0(m`zVDW37S zfNJz0pR^R`2Tw_2K{vJ{FNtFoU*T_2i}z%k@}SM)WWV4E2ALgmf7@J=V-N{MHy)3d zrjzp*XD|!QvkX2p3gCA#?+s9y0X378n+IJ7)kzP!!X-D82d3#+NN4D$ zaD{xcju1sly7Q8%ilx=z9@K_5l=?e3zno+A-X=a+7t$1eKL8=@EnBTuuo}5fnF8Ol4#V?mta57kpz`<14emO?+)Rh+mswL%QlV?1lf^@;i-*t5@|FU z%)OlxIc*;3ka(V9Ra`^Np(1{mP@YbY@*IoI zqrOp9+X_{Eo^o_iWX`gL83UOkV%r^Ts7{ zUatWqe!+p2rGB9grVTW#BV5s!PsksbXIJDmL?VhOhpk^mO2mwP>%nNM!)oT?aAiM5pH z1X$Vh2Jnfx$T)3f*e?HSFd@vB9tYB?oH6roM?1Arc$GqB@GT9v*?o|-Z-b6 z!&uno5xzFNc@L^M33fXr{6I0?j53=*8g^DL25`&3Y!CH~DsrRk1hO_(UGp-E|4G(A zx@Ri@KXq%7Q%KC}d->w=sP$bJg$TB`TJi|i9YnVy5VE5Y-AVoKTxaAnPHM$_q&eii z$zCmfUrKqlx$VM|<|KLE=2gRh=&S5Ciu`YYS2d0u<+E<`B(FUFWw>4(SlUj$wv^tf zRq-MZ1@uXBs53m$PYFSd=_Xo5rz1Ska0YE7v;X-K1+TsDZ9PlXG2DCL{>y8;7ApQi z66rk#O!k8Z_HeR+scm~nE3HzZvb&!?&1!KjysFG0H~cNheIM_88~6>C1u5FI1w6i# zz@K)$WF$VxO+j~hgAV~6pIr~3xewwK;7WeAhoUh)2SMSqWF%9Pto<02SFDQQTc2)$ z=M(RLP$CCC1L2V0ai$&u0(Ih8FYny*+ zE*Rd{tR+g&jN$n9)f#-%IP8(68?{E7PX=@jZ=Z*eR{-|>Cdxvu1S?!ozOtXKU}L{V zW({#OuQ2~I>3qW;&d`Trs^0?p<9DL=Ni)0{_9En?p7xKn#iwf2Zs0$kzYP z?3h0C!2$FT+d&m(m*5fMKbOIWy1@tD$8}pKsuWA!$nsbo{i_(36o{g5vkS7x&C`&* zxo7S&?aEfnq^?_MbpIlB4!r6Ta6ZS zZ+rK7Dq`z?l&uhVBG-DUp@8Sd<*-eX+PdL3Z<=j4rK)}+uS7)wT$@qsaeCkC%iOd` zvJHYIEcQAY4Bq`wczE8Y>($sY-*R4z9esLb4{(3#fLmF%FR;^C_xWA*kres-9awpM zeDryJP6M9Pj<=uw%TLY%d>oEany!M4aEmSInb6I!u!B@PZspb~wc5FswD#NYk-Myh z?)u5BVw~sjp+!*pn9^>l(kM@8laF!AIDoo~YZYDYvfm|K#+|SSe_2ZrnYcmazXzUsEBg>TjLJsfIWqO!({Hh*MqvxqyXNaG1(`(5iJSOx4w&wkdT8#3ZB$(A+hE7TVXALYv(> z=}u?EFyK2ZieEglPu03=$PE0yiRgJQ@W?Mb<(n^|RuqUOGZwdUOHlhLV*k@h_YhY_ z*8EPhaW6*ZIAfT1TrKPBN+LI?wNJssRw!VAHkkjmEt!>+JwdV0sLP|sS~JffKttzv z#xA`U?8=J@P;-$ckD7)yZli;=D&=ao+;16V71TF}jh^<`rXMGsmLsDd7U`Y1hw$Y3 z-BLDeWbKd@K{Csk<1jb;W3UUEP+6}5yq-$BSVw08>tNwNEPJ}OeL>s$vGGVot}XC8 z-Op=ATLpi+sERvq?axJ4C4Pn(XV(z!!c17+EWxb-bLoHW1KYz`VvVzXl2dgu^VjOr z;^tLnsPM)yR4jh38CUm^G5#{ElN*%bb%fa=tXF57U{AsYD#5I@xIVK|aPKsd9=zh#c|J$ZaSzu^c{c??jm+b$~Y9)rTlQ=PPD~59a1n z?H-8@tThq}!7sOwPqB%!f!Q+6+E1^lm%5={WE(?$tzLx8KHuD%Mw77m_nWm(G4H@~ z64Y|1_g!5NOsbb`iMW(Ek|m6jp4-IUQEme^f`R!ey}6lPL^BI6#)X%hXGsx6g_TAd z2ktR+ewoRvb^M8kBe71dwOj`Cz&nLgx`qV{++4s3{7YwJm(+K5)WF$b!D3Hp;!1kQ z7H>6A^^=KblXvV|?QE->;b*Ex&gV$EsT}9N;~aFIQ*SNg=cMCVnwYc==UX$nye-}d zs;*gns+}t z*9yVJ6YYGFE+CTDmUOnZ?rPK9U%S=-^ib3o$Kz_g-MQ;~O{pzIPuxgCo?+ZC5QSI< zr1U0dH;63a==}XsK4se%weef|1-dV@U|GLNOa9j6xURH9faNT+BRJ6}Nw-NDv zT`8zZT)Lx#eBxp>$kU!0xRbn&G|qO9J#1Iw;iaC$r4+u%J1T%3*Ki!GQGG}PJkJ&f z9{Gl+*4OT_zK<*p!~*ZY$FsxN%H9t{KojezLLTm;k@hT}>Z2|E+1G!>|KlX@gZAY~ z;Qw*vS5wq>E)%}G0xBz!U-b4sn(5;i#0i9Yv$(oke4^xarFEfw1Z|!4we6o4Y@SFI zBp^58&AC_a4=CsYC|ZXQL&l4Ns{wM9AeTW8B3htUzem3)*y2@y8RTq0rC}$HLyhZ> zYPkTjaBb3UOEALE7tskXI}=~KGXH~oh!H_ev66so-U_4L?!RVWD$IcgLYgYxb{3#S z-lgnN-kG)`PKM&*29tcWVu=zu97sUk#%k@su3J8CnV+QcQsBX z6z;(&x%a0a7@*CHpNuAN#(?i)>2eZHH4JwPjjgvyautBnbnCL*QsS26h%>Hni@3Be zmVPFpe`f|wMBU$$@h`XEA`|su8UGeEqvbB- zA#{-D8xkNqD)~6I;*%luzH$^HXu#~p)4&ERU8DxQgC&PDB&Ay-IwH9xaZYT5y;5mk z+|zw95tZN{f(S(U`j2u3bTf^5tevLa%RzI*dI|Y<0cS5tsn9_c^dqZr&I+F6)HE={ zzXgk{i0$$y&lHC%bd4@YC}eTW^;0ZsRx0~yEB7HmoV`)_9sOO%tfs8{FVx?W`^g!; z!kmDJU!v*@--fmBlEJmBz(!~O)C|u6t)dZf;e$S$%NDwqeqjy1@m#ketbcC_Yb~p- zF2Q;{#Ue(PAp$!xvvX9Q1RXbF4YLjEI2$?B`AB6|eP+zUi<{jX&B$D+ zd#-utniNmXPb1X(zBP{VF|XN9_Am~a&p-ewpEtw_?1P`)&T|c?M{Sm6YzEr$2Z7D@ z@A4cDY&VkXoa3Fus>|V}97HTXWBXI@a;HIe=YFq3LgPxYpMzF2Q~ei|ftF!Lf>=y5 zy!0@m?r>#x39H!8A8y+2Yysc?{F-#0x?^+CPMIiJ(y(_Y-u7>31*G*^$)~r+&a8mo z=f3Z^KR!05RLa?B?Je%?8(jj;CI!Yh{e`pV4p8Wvr}ODoZ>r@Lcbh(*-5jLx1^o2% z>Q8t#>G&4YkI%rU2OJAgnFvN!sLDV5?cG1ndAPL^Ddu^H>$CT?<*OplHs5JHgc!LQ z#yeFw9Vt6+bS6ZZXc?lN8D_KnCKmu1F~|P-=96mPs0a4}yM4@0mGYXnT-DfdX8(Y^ zc_PEoHS+W3lIEsSlaP;Jf2nsvb-!EUGhd1pyVO}fDqQ@AnrpG;bz9VLq(@jJwLJ+p zC(qnNXzUj3Ux&NPX-m^%KiDcK@@MUCOPNDqJkQ3FE}~&06X2m_$W<=oOtJ;aFwDBe zXG*%3eC*~Y*7j8?mLcZ-L=q6H5r#U%Ss#iBb3n4tv<8kO;VyJf_s21C%(VMSR{oJU z&V98Svcr_cifX+}JoNDR*s}s^HNE}+eo`Dp`e-BbA6-ExEd2Hp=DO?l&*rR&m2@~X%z zFJuH2Epg~9VoEq7Krrf?zp7Xf{VpjI&%u$8p=*xEH%DSRAp^BE0W_^ATVi+~$-Ew^d5bcad&H!`gzQfgFLEyTH0sYX zww+vwnxt%%O6+)~uIQGI-`MvMCV0cWepAd1TE+xVf_v55<@6g99Xd2g*Jhl_6Kr^pxU9`$khZtRH~z%(V!6%8qlk4h6SDU21$ zKf)^7?6++)wFtd3+sINZr>1DMDfP)pVk=_1Q<(E{k&ueJ6kc`9Uj6>(q%EzaJ8s^N zPk6$)1@j%Mv1Z0#T(zk##bne5*wE`~rK4DmVU4BO8D4$$Go)J)Q*FNI`e)yCy;^!Yd+V!nQ|+mBbBsF(POZi%{2}RV$?9_u{zau+>D^VFCnNHJ^|!#B zSJE7BWvi&Ej%xXF!Fc2e86uWh_rEYI|FDNeMpb?kDDR{5kC_fCmF*gV06b@WMJjyT z@ZJ2K(n)oP(LOF{?v0wion_Y(^4I4cwG+1YOUhxyCITY-wG8Yc>#w}%n>+H_=G*``ZM&ELa1#(0Xs z8r}qI0N3V?(m1JN2jp5S6J6By0pSE3*B+yob!tTyr4j-4VHZ2sdqU)!6z_Tb@*gru zHTZe4-OWyP3`ng)Mg_EEJ~a^p7DMa(nwkvX}+}gmH-A zMN}bUXST;0c;Qpz;?5bz$vb6Ky_cQ<%D0THD)Zlmm9hegZ{~dWT zxyhR(EOBeA#P6{1}m+bL}f@?Q$mO6d_s3H51DEL%cU~bm8RI_Cuu{Sy>?Lj!)D~eM0GEO4eJtCya9TIw)gHVu0 za^xwEw5KyD$@}|p<|e+q7ZnS?RnocMW=68da7;hJBO4oaW<(< zSi%fTgwQU*#9T@z#DiH@f@wa$fTFbfCeK;1-t$U}tRvc-1h*&FTX7wi#8pg>$~=>A z+@hYNk15`?*w}5y8ir#jTtdmpBw!#eH!1iGZ_@iCe^@bI-F0j1#JK�yj zp6yMZ|9iRG%I-4Gc;W0wN+3O)or@KkxWB$v;W}j?Y!#WDYbdD7+m(x0DsewPwn^#| zHC;5p$Db!Au#qd(uc6-+R&-G&CVD*B_~=s`o_6|-PwZKFz1;}3pmFcR<&?+oDtCv# z*04afg%qbtcTzWaNV`%)KH)idE*cNsA6%ufB|y&OdAyVg=-tyfIPvtm2zJ#WMh2f4 z9ITS*%!9ph2ZkZZ$jqxsS9!L4>yJAJrfXtkz`^E`vk3r<1AZBJE5ZvOvV*rHi9P07 z{+X7(R<2c}?SSSss8X9{qvK|`WA0AH?XgWRpPKo1;Q5Z!w@wZdyL?a$YP=`l-IFS! z<`cXP%hP2*{5al{SJu4oUcdmZ_%nIP39Nk(tFL=EQWHrf;?Ku>vNPOM!Ac4FO3RrT zrDR2kMeyr=%%Zs7Tj6J$_OCci;cVeq$8y5M&BBVuEI^A(LatOVjiB_+(|6dH(mk}; z81FFsF+w@yszUFhB>7=3HugO*+6^Ew4=`2v=){C`4%!1dv8y9Gk1pm{ZabYE#VRn+F@kUH<#`3b{L^UD`n9G!!y2)j6&q^QRYuX58(?(N)am6oX|un z{h$vOH|U84dGYs@J6+(gl;eqnCcx-gy`|Pg}{Gl|7OdFHU&y?;eV7(Q$lVs1E8E zV9V%Avi@eKb6wT~1N%;`>0VMa%VNa|Z`7b%W>mxY@%IqS8mOC-=GTOX(C?J4bx4=i zUcPFV@gKso*s}sC+2}Uq_6>@Vv$W=o$=~ys>d@8Hl-jU8kfd7OXM=`XDtEPN1O}MM zc=FGSVV>plb_7;Naw}AdD(fMZ+YC3l0p^oLSi`G4uK;!xShPEuqb$o7N{D%ev>gqJ zOC(VQ=JrCA`{A`}=@ZIH5c7g@vK=dCf28Z}N`O0hKVF%@qK^)9CHop=$|BtoFi1$a z(}3<<@x-8^s2nOT*IPWA;+v|1)@DY#N0 z=lw7aH-i^_y!5#E!yVAl%{S};nBpv#;>VG?VQ8HaMP_Rl0Z@_#E}cJ~I#oVf_4w}l zm>l)2Sr39litCCabyAXMoaFDie|jVF*ssra3ZLbzf$VTWyu{)s0(^ox8uRD3FEtaBwr{n{amFbBvv zB2^W4QqwT=&As&wNMm6Dh98F*e~8KRU~O01ocu{f{dCagR>ll`O+M zZ-Ci}-bI=aKOLuXwu&(SytkA^+W=pUE3>822AzBJhvo;#Q-cH#oeyj6ZJ8sE5U1L> z^#A{Tpy%^9v;%H-j(bXHefEh>Kh*S-3Is~=5!gqCRb9yeumYbR>Y`aZ$+u>U#Zlcj z#45bx51Y0z&Jm>U2456VRr;p(O&xpcI!YPB<+(-s@^|D-Ai-Np{N3C)g8OE32a4`iA6p!)=`pi#mgb;g5o8p;wX)P#Lhj+4{VZ5+Z79JZ)Dbt0zU}t zi9O)uWXWIW?wtbRjLLTvp@##l$Un0fP}gZN?0N5xUxT$f|GyKL`OdHsH( zn5Ron=9WmB8YTDBf}gR>%*33T-lN{bVMT z(OcxsXMzy-EORkavj>h`yiuaEjC)AXi8SDa@N4R$;x^QBBjf27q0iO03brCk^P=(_ z_5ngb!6{_vS=!Vw z(fKw!P_O4x*14;zHL7^YKJJTI`}}^TyBKO4`RklvG_yQVIU;u#vGim=uav^e>ihoZ zY2v_D#f7G=uu7;Moy3_tM$5X>xw{Hk2zs+-(xQ{vkI@ei@o5$i3-Ul;mz_LBRsWEl zr!np4=i#`ML3q-f*x0@r^{ldN3zj?yk|^$i6i8j6i~ z2Rkeipimrow{3(Ab@t!KTkU)6kE#Ki>FWxexB(D%;LXy@&Q9CHryDoQgnKQKuFV{bfm>^gZOB=5Oaofqsr={p_efT{-NfGs_ zkYZ^=>MpF}hkK=9j$Ap=;0}ZyL3Rl)JeIa3RWx32vWL@}dFN>IKpG&A3&~1JRMt>u z$Lrfa|K)K$!FJYJARe0Tk4BrDnoBR4U|S^n$3OSxab^N_%~D^DPAL0+6bTH87K;dd@XQ-zG8=+ zMadxKymab3FH!zYVz4Xe?h-F|rjHhin$QV7myTojETPk4)2;G^49l|HE6{1DX%Uk|;wb&pS=B4@ zl=G<+@(YKoD-V|AI&%=&ush{oASqb}?$inoBg56ayvtJN8gLF_fe zSN>sO%Fcv2!_qLAYGRAh*lMG^o$~C*B~6Zhw0XSdX`q!Yw#Gd&PBkUg1>Vy*%o+Az zvsYcSu#m>@S=fmg1rO7a2f1OrGAm?Al5dIBr}2{O$pW3UIiDb0Vr`*_GfIVQ@Vg_L zsFiC2anLT$P_^u_K@*Bn!Mk$Ty~ejQvN-^dGgfF!iYl>RyWd}p)xvQ(eVP#k+0pVhHl$c5~ti=^oy zvdq5kmy}&YGyTZ&r7Y2ch=YuK>l!-@uRFRc-;nF?pyr4{*=W8(!t z#Yx+s)0uVd(#Fjk0R*L@0vZe3KDO)cEGe485Si*jaj<)Y2O+OAbfQVtg<*Udgons) zLkPiTc20e%=$=w^Lz@b7^~2u;M-AG1{UMQs9fKlqt`O&}t%f&?6I2kt` zcm|`0H(bB>tJQS1-cH1272nU;o}_enUoWDW5X-V3e)USiMZgm_^&-|m#qAB4Ac2jQ zR){8ZVkw{A4v&RBH^JQY$@Hh#Afjm#TJrac#e-Kw^TrHr8x6LV`|_n>>B-C`NKZpM z+qRthk3^4we958;U0ULf;!2>M`D4fm@1$g@K%8}+YsR@s=0tmoi)JdFd?lJ^QXlkE zu&pT(!@of$Lq6aAQ%@qvoltQ=WaKjD*H_g@v|b>2O&LkaO_+(;KCtuDqSH5Ki(f{K zJNfshk$uu0+rW>e`@E%Jt#f4+BwMLyZcLgoJn^gp#kZI9;%{Q2AEMCO5cA0bJq^Ak zcVc!-lj1yBnM41Bf>5-8v@7S2%fW+e?}fcB{nEf_JEG7j{Xz$ABOsvm5A`@Zo9h@+ zfMuvt?!i|}trw`(EDQZ~m{y{1S*Rgffl^z|p9aY8r8d&10bP}k`iT3vwhn6Lj4NY= z?DXf~k#CtY2zt-oe!K)^*TjDk1rK1V7&hYeS|g+2g|bb<)wSC0pOX*{sNdopL%r)@ zJ{L_ohQ=#x(}~w2d;sOi@S9I{(pQj}eN-~%le$%-d>t3FREmzF8 zd_PR*zEIJIo-jpVt?R@CHIs7RtQ zyQ}9llU%T_GQj3!2G?tUK6s0qn4VIAgFgK!JvVqT>*T~^kPomDe4nN>_dh8vqyj`I;S^$g45@EnpOZKirNi zWC{$68hqu!`kPfLl$aSuh%$9hM*ut$t8Mi8pAo*eX(N#7UW3U{IfY$l=XBrD`L*bbDvJ?#UYj zDPn0oU@o@Ps?(4UY828LxN)oS+{;WDcqK)e_x&su3{SsLn&vm&kmB@AP`V+0Gb|G- zn~zM=!b^Bx4!HOR#VzYKIJ{o(_zMco0+#%lbst{Nj=sPz<&>z%uT_Em8R>;`f>VAr zruSa16PQZw&lV}Qe8yw&_rlS(#ko&j>l>T0nqH5ciGbN{W#ssq=zidGj+^sgly`u# zOt$kZmw7Is@P)7G(4e=lIfiU9HO) zi;oIb+2+zUev3G zCB#WxPP(ft@<;gIoI8-k!%N)z)+De!o|Iq*HeEZFs{*@K-c=Q2s`<~CsT z^nA4dNuN>R1IM4r;H}vk;H1+aMuT9q2!zWW=26eDQCDT0DVQ)INe{0>BK_&glhC(Q zQfsBWnut7JT`sxsQf8zw#Te)H0lt8&V$&IVjO^Yb zDz%fX%#s0MkyI+C*gsHN_m-gLysH`d#ZhppK1yb@RJ4RNyGWU1|UC&R6iwxKjItyq>Ncl3M% zd(UC6KqOlCsfsK)MJ1X9oZr_!oy(#YC$87I;Z*4O{Xl=Wl5Tz|NU|V*J1ac5!>X@` zS(|Sdk`VxpfC9=~7=Vm@I@9Q9{4R`KHPWq!)(Zk^ruCBlaGFWd>a({@i4b=+j6c~j zl8+Dyn4>L7IOqB~Gr9|+U!GO?do9sVAv86P6Z-o{IEq?TlkU}?{y((PX4=*0&d(PX z%PJTNHnPh_trjumqM2-2Hd$qQO;nH3$>C}#p=c6Kh)rK%-~bF+UTSb9Q~46ZNfG^5 z_aB6=vJaI5E5vU!Ih|ovN0ga8sS`iIknv@^C9a=xG@7%0Q`9fd;*i#l$=i_VJBYTZ ziY&?WCx4||E-L>HJ{!BydVz1IJ9%YYJ%pi#ZNf2sg7H5YPN*hsY#4a@8d%?c&&4f* zwBM108SZ2kOThVCj_vBYnD14`UkxQAUl%?%hKzwPgglj3Oa;yDvP` zYRT1KsR(N~6Gw~!;{!GzcAasaWnpj_B%X49G8_1=^fG6bp9rV1k=0+Q&KTJ}b>2aD zFsvmmts}n?JD?mR>?)}lErvhSSj)tiu4!Q$7sAlp(gAQ3i%$WTM5Jr+Y>gK-59+sl z7)a;+>&77SA&ws8@gc@Cfpwa*&X;+-8vU>5r_Sv=zgo=^l!q$)_6Bv(n$egl;lRa) z0?{f(bc|IkK~T`nF~>wWDY=8Im7vq=+ipZsK?H)??M=P2)J4??@YcFWbx`&*70Y9g zdhL^CI53zZ2T$L5hFE>CZ|InX2UgCV9|nPdQuaAjL{^yWbP`X?f9&j*F(^xM+&iI~ z+e618O%z9Yh)#86NE62uqX_+b;P{m7=!K*qiL}COyVEkiI4Qy9TK*2|RfG-h3x0Mg zguiw@{Ylr}hLK{Qnb!pt<_D_@Kc%1^sm3Z+0HkxCllJIipGVs06W{o?%PzWO-o-H` zU+NR@dn}C(AcU5v>QJK;HFLxbOlD)^19<%djSO(G7L>A7jG4OHzX-a`dt2el>INL- zJG5VQz3+)V7%&2?zZPu5HlRzy9GL>gbN+V~15?q$JElR8Z*NrNw%1zf(ZE)Ow5Mii zjzzW(Y%5E>SEgkP>s)g(v-=V#FG9*U6fy12BE&z@UVo2hR_TO$Hb}J;eDnM0%({;Z zoI=OBygB3Unhanr7`>p3IS_@=xOZoJ0dqrAIA^{IPc6om-@+c4yZ!d}1EMa;3}Gi< z9ST;!M71sMR^)1!Pra}ru&NX2@F~a!7jnrdek~O!NDi`K4$#%SefLTSs}zYww$Wqs z=$L&DjO)sOh|Ve0RrLlp;(qeEiO}lk<@tW-s zkYizxjN-|rtdpl5AiQW1pkLvu?oEyC*xka4m5}^Ia|b)Y(He*W^fui*HJKy@qBI#} z9qJ;}sLQ8X{5rYH(Ql%GY|%imL?%6=6G}?plJ)e&647p(l1X$kFcKaIsZ8Z2dsyY1 z>#@!8Vn51#OXZ>|>ASu*(OXoV<-;0N2Z_K6wLLB1_n~+x){&43dncAT(|q06U%+1D zhO<2By47S(cU_exnSp{?Y41nU-_ z24v#yz&vXY*EopTHJVAGfBztE+EK)6lzx0UREo%TpJPdIEFo<6F0maC$>@yQ8X0_m zuGHr_YYS{Ii$B%hhjc0~K+#OwL5^F2)Y&DbnUT~|;Wz_0qTR#cM5Sx}KY==wNFt|$ zlK4Q1fr;eE=bOZ1GZm(r{TX@LA;~`+P6Rc0nLyQFdlhS>0)ywJP3fjR)2P?55AP4y zPp+}Spwi##CLKAj>nN{NoZTZC^$g}=59)*_jz#@YvHO}^b5Yf+pJG?VZq2VQ==a|) zQel8(c>_>Hy2W^7z|Un_ZYWsJ-;SKzgY{PkA|F{i@z3VxafERe+7x4H*V-1yo8;+= zvHx3%ekwcSow0)W1qF#(U{BNIfWC@sUuMRd#aL!OckB{owm}2)oErARM1_Wj?!uTD zZl7=~9o77;KTTi%DPqVC0Q#8Sn!+$3rl1{B{sH!zJ)efOTa(=(CP_7QmAMjF5?Lkg zettRRKP4^`pfmF*WPg>g{DAYbFeWh2hT9o4V(I}j6Nrh}vlUHsMn7#Np-#E)E_5|N3bft385eSXs)!(1XK)B^6_@~RG{V%R7dX=` z%m661BW}ECQwD#$QOi4yMR*wL*Un?^(Gmjvy+)F^T6wGyQW*O^_@bx0I1BuigIc}5 zhfN@f97$fJa4*R)2&7i}`}j~4alExRH@Oau?Ah_v~g6)ONvQyYr?tPcJ zxl-OeOkZ68=XSd4rlsoEz9zjv&c$v=9}6VC#k0~`RH@xLEq`k73{!{A@*wM9FxnIw zuZnS{0xz-yz7{!03U+9@<4kXdpD)rDyuNLo6{f2SvaOvNwfp*3L>@o$3w$^OulXO# zz{7h>fuFFDk6`mDSO)f=@CSLm>tnDDPfp{XS=N!>c2@JxiZ*~IT0hM*DzXIKk6iO! zLlL*-n18&nTh}C=@ugfoI)vG69GQ3&X)!>zqLW5bgsBW@j=X<4^ZXk0PwIuY` zwGdPB_wDa|SYo8A=Rk&q@#k`xM@NFU7dJunQ>-5tryt4*h$i5kyN=={^I7$?*U7qY zc}iy8y5yH7Mi?Mcc-h@8>Dog zp+1VwOTGGQNp>5JW(;Q)azG%}dZC|!R$iph-zN5WwNN#56V-;) zY{|10DD1g0jN+wxB(3zFEHk|j_sM-&A%*)-O92hit<+N+Nfmhf5h|2~H2wp6G<^v- zvWcEqmL9eoDx1n6Q#`Fx%=?6DO$T4HCK;!aOG#ZpMonrY%+)F`M6n- z#yJxZTbU-lH)1)y&189bQP*Yr|2zDHQ;vFOMmF(DdFITUI;*@_oXz_pCt#A+&qB7N zD-ytl_`HUVkGI^!kk=L2R+fw#r!J0)e;{BZ-Y&tvG+9Atrdv{?t&r6a=^(FG9irO- z@BNabHTV-kzw!@=fxQI(*empaxO^LvLwKCmn4-Y3Q7uM&f$g7Ws^)^~HM1M@je{cJ z^aqjk@UQDj>_xmXAHS&gpg#^88ayb4oB6;dZD>A&*}P}DeFwjb;?FkPxv=eOyN7#M zCQJ`q`2N)G7rt+PYQ|vB5S<0H?8!E~$A2)plzK>e_5HV*6kc2D4`N~#0sgXIc{T=k z0?+1Il|-zn;wBfBuQtMjma^xoQ1$~e6j^5x(j6ll@mwD7Q1_sJoIO`4cnc6{rfq=m za$m*gVRVr{8SOi3i{rI~g)PZr@-fH7Z{w`qomR3oWIrjhza8!@XE$q4*rmCDc8CJ4 zfqg$VD)jwV@iRspF3Tbh>w{NOzdAS#@JW--^EI^{{8W^V><9aCW{I&C`)SdB#(M6| z9RIZWNE+f`WhB{6p`*`pU8?d+B;}lf6TM!zsbP4zrLCK0#H7q5t!BuH>O^N zfHlUhM7Jsqw8H-7_&uUprEP#qgqb1J+T1;8C*j>H4myAjB*m}5*X3E^FL9d9#%i46 z|6H)$VC9q2XSz+O!Hw4~leC|i60zU_zj77goA*Rj>5^u7T&y?Zh0VM3&vhuk*n%`z z%_R(IqN`~w#lKf6LeHroIH(>+GX;k;@A)T(UPcisGOY{AyEc6?Mu*o0cLuCcd&F6{ zGES|hRp414+k`Sf3e=q0ugpmoS?R(X`QBN%#cbskSXNe<4CrTF4pq^!Tk@|f-zsyS zUZm?NMZIz{D-xx$y<49%ZnS^XQmy;9^iK-Nsr5^*Ne@?!%Kb^TW~Gg;4PvY}PF`|G zK(#lzLFrqNxa8if9t1%nvniE;bUI zb`$P95@2h$vYOjYonyMQ)&#jx1_BYY~#Ve+Y6oNt+LShmQ@f&B@` z)lrQ2*Em`Z8+ds_XN4i^VX^P|W&pT|7T7T>a#6s*2&#B{sZ%Y&3{2`?IKrw{6{W^{ z1R4&%!@yKbH1zPTb+G5)%Iz;L2o!$wr5(OS@0{$hEUMBbRUwe`{uymxe(N-%AD2Eq zwI?+95kg#NErS0gFoJMuO?ZE*g(fj!P5vd#G0V<$kI4Bu%B;ibjQD7~)+UhOlxrXr zXO=%HNh`2EUvcmLvxAWtKE2f~y*#&~O~=ZZmn;XgXqv9)oNr&9{1mr$$lBL4KI3jr zxhrA32*c;n=SuJSs3GQXT9$r3dgbv6s^J*=fei)v1wA3~$909_pdXnGUbUok&Q`__ z|3K!K7~G8QC#)*aJhCNALM@QKn`^Q1GEA!GUqGXKnsSTTQPAz2a|E4~yA_--YHmPH zWc4js3+(IhlfYHslrmS*Cs#>EQ zGRCa~(tFL6m!%0{e=Fc@KOpWB(yk|DQW(5)ZKTe2p>l~feSdEhXMB8CD}5fLhl>Pk zaG-$bARDY82j@C(%MsaEUZ8PO#w(aSBo`-8dBw4e*17W@~PFWUtCjl3m zTN3;(f^^&v!d>#Kt_!3CIg=iVa{XrWuO=0RtKsnSHUDJruGvz+2KQ&N9oecQ1Kq z_=_V1>)BG;;2ZI22(^M9R;U7`blt@ym}n~iVWlk1wiju5xy9eV=bOq4MMQQc(8}6O zr!Brw^5TU@BTyv@D#IZ=r4V|s7J6oggG~#}+JczppKP40JJnSB`^0(T`~e)}wHhb+ z>)OB_t<%I2q?luSfz^ZHs~5%{@nF;6-zm20h6q^-t(GJryk>2}eJ)iuJ$X$yc`acM zqPhifn(f62LZ9zL&Wt(}KYoNFKkX-OU*AA!BTI;Ub~o<%wp~{g&}?RG*=lH#9{z6= zWAm0Zw6>6(U($U7H_b`g$OynJco;bzII5Yuzg(+?auDYI16~Ml^f2f8z@Gq_FD0LJ ztA5j&XY6^?#n9Si)cAENe=)bhl^J63_b=m43eYN|k`3rnyV`Ak3qJRtazG=!)UvNG9cIAQVau3}-Y|!>{iu?p2=K+C87xC$3Wjfs z3i0yeFO3yu)}WziOx`4tP|YjyHQW^8n~V!+x*y1DevfYR`+kox1z7-dDH7N z;#ZSRyn>BiMj#KR*n4V}4o+fsczIoD+vE32`kKXBk<(19Qt_3n@n>zJoVbwDK~^pD zogO*^8f=$_AR?q%C2;nrMz;KB^*$iHSYbsWBS1YJ^z7T(H2J6FdDRy_8;_4)s7f@We|502Mq_hnld7Sv6W#D z)f-EuMUU)+$zSFM-%nz512`JQ5O6e-duMqD8JV6IpW zzHWKyjvks8v`?PBf@vOiGTyMe@*giHVGnsG*NNJXi3+c&SlNG(tey*Xp22r5zGwim z?qHGrAu!pcNKMCd(@#+yG*&-{mmw(>+hIl5trBhRL@W66D+02@GsXOj+%F4pLAD6R z$34nkSW)Xitt!^XmWZHX47J|t`~E4#Gb_#?`0{hoA~HS8T<3PnS+{Z=VHR;fRuQ$CHikeO!!d6tD)Fi$L=qBY4%Ds}rU)vGGV}xolu$60 zpTc>c{=lc%dI_gXVKfEtg&l#B=Ky0mMA*qo2#@sd#1m{oAtbF0zG-L{mp0?6_*@u~ zIem3C9(dKcKS@KXZ^VB*t%r;>yvP?7w*-8s$l_68Q27f*IYG>Lga}3gj#n+ zAGb%Eb)QN163WJlXCQ~lu4G6#qH{;W1-Kn2$6)A#s@qpAw>>LjHNwMj`pD zym3@&{6d8^K7~6JsdMw8QXc@a^wnEqo>f6A#69@9opx@pTz(l%^u23eA?SBo@|PAp zh_4xKWVqG%_fTG_8aZ4_tHi3VXr|am=;D;fJ>lanu6nQtC_+B3dl0n9NfHW7Vo z`Yw2<(rMWb;`HO4T#(XkQdbO#5d0p&np7US3&m5{TmO$uy(~N|RD>V? zQ(kK{ePO(}N~V>Qw+tLL_}u2kS>@=?%Uzd!seuI5rfz2aTutMTpoz0fv|qzMfs}#l zWVe|~&akEBttypsh9Ya@k zcOk2Cf?%m2KI~kKJ-GkFN3+IYJ4?d&F8OWn`oTe~$t*BYYXg6r2eG&~!9FEokK4ZQ z#b1H6PWzl0^CSKh`AJ?#6rnwUUy+PPs4eQ9B4~MSw7mIc|2zT>x`AwL#v8*J;z(Df z^(X%y2Z=#~Jg|HZ<#EkGXoO8DqeSy81?5DQ)rGkhkE!N57AW@6C8LL{eDyMRNYLgT zce6JwBAJ|yZ1{srGgK|bA~n`c&cb~n43sVLk2Z!m3Tb+n1@H5oV^3UjFJbo834Oj| zHH=$7&lak>jOQYDS6USw#Vz|&hOZ}R?=srW0>^`LzSy^NU%3!yzoi%p6KRR(nnAE$ z<&>>O)@shY0bnfqZC<*V-|ZZoY^LKprly7*e~?ws{T~G(7LcgcU-e9;dQiL0r9g4L zkLXosDj{J!j>KVzXvwW2DyDLjHoRk1eR6V#R=_PehAYR%ho{iGXVTf!e&O%a0`k#O zP86nd?tIU23Y#Ep#gc0?%vXAva=CGGe=i!dG}ioRREY3JkPJb7W;lc)iPA{m$urkR zz&H(LI2SQ0UMQhnf9A*o3DO?Go@~dJJSx1*1-GkHERk(P! zlnxco>BrN9JAyyXq*X0LnsF|^0*sgab-R@i*>Mu3HriERsC*zg8QntZZUWw{RQaY? zWjsiR-Kf|QL#C53vi37o@qE~D|8#F5^1BGR9dojJh;DSzXpXtZidPM~8&lPB_1t22 zipOdyLu14L%7^qaM_E|Y#a-MB&q4~#4eu`hr`GH7)%g5^oS$u{WR!R(3+QGCvzJS_ z5Dj|)?d9!-J0a+yU z8R9Nc2}zd-NlPUZrbeg8u z+)bsLu3WSD8Djf^H-@8iZj{EuY_nmkgpSBvq7*V{o0#PKT^V=c6OwX5BTq4G2Wnkr z`+MQM)~q5bWCx~Au3$qv{YAx8=uSrj6iuTIxng_EZ`$f0Tc4K?B?w7d{2|UkP6;W< z5IOx;809YJ`gZ*dU{wa8De;u50L921eSWsEDw~hgBr(I24au|1#uLl9`Qf+HkKVpI z+pH59ym>tgh^!zFS2J}&{T5XEC-oe?vLB^@?r(VkjTEBGN1JYr`n8g6lJ%^q(Ll_xa-E>gn`%Dquk- zu7fn1vlC!!0_x^6Vbh7>sFOP+poPjCHdHtc8hRFwy3<`}Wo>1gyOlbYke%jV%d*k4 z(cfp_ef*lelkN1mJGt6Y;-{~fS)eBDhnn(BXUe;A#?{#1yD`n{*h`sKw*$naE$O{C z#lADu5+%=O?g8WipZWeG>jc;v0od2YlZ}$Tj*UOfk-v{o1{`mjNd;7g);7r@16G(F zg;wln2CO$?V_!TYz@+Spm{eifHJ{Bvln*M z6Bw8b<=I4rh__a?u7Sn8AvOmZ1G>yK+|ZkDr^Q5KeX)L?ao3GIGJRZw^gjcmup#*U z4I}l;?sp+1+cUYLI>NjiuIgV7OA5>)Iq**u&nR0CmeN?0nzK)hw)J#;O5J@sd87Yy ziub(8td|SZEG!OlqKXSX0F?__xmz6g1mPqnlq7!=xL4gc`TimKM>HQb5AdN)PtoRF zK&>M>?QxI#g{WbcK}`v;Zk@$S&tk0k5YvfdhV8vV?jBLKS$I4sQ2Kphi$ArB@4I)6 z+vZ#sm~5)TE^;Qd&pXhw&{ECbo;um;u?CwlU=J1=Pn#q*p_iykJjy zZmECOXtu0eqPfz2A}Atim8XYzZ&h1W<@rg#8;o60$ls5O)H22s--G5-zgeuZUlDI( z-#WBUPn~aR@G^9dn{(om24vXy?pWPKl>0?F!hVL;=Bp?-o;fpBJ05H~Mhj(&^L!vG zBZ!L#xCpN_{}=Q(2^jy9_B`IQ!q95@-6rZ3qxq8&V$)U15U+_IM;|Zoq&nZ$T`@Z+ z+$yfmu>^uXmH}U-3YZp$#=fB+Ux>M(DX&prZPg2Wa&Y>Sf12GbizYOf2z|mSByJzG z{gvK@Y+QEo0JdgxjRod~7%zAGMRV1%oo#d1E)7?!U)p@n4?yI_c+OK2knj%o(hyP@ zK$9$p--X3hSz^6Qc-2&@vMX6$SRtN$g4$!oYGnPHXqL@Krs_6YN+6$g4s&@y^`yZr zIM^5~$?75}egccbKQ2r6BmuF-3c|`k<4)2qbxhl7udFk|vV-*ZSGc!-S;hNVNKLhb z3V%W3G?2zx0{B=2M}tJT_LE(s;a}C}PSe7WiOYm^z}aUwxf%=Y)10CcsI)z~Mc_o5 zl7?;hBvJ^WN$iNS+m{pbgM+^E#_}fK4Ik!J4|<}Up@xxWmKGIL3cHB#L?ODOouX)Z z;ufW9JwY+>I2g>>v-G%#=ycPL*0y2m7h_@VXlb?v*4z$*9A6qM_V2giVAZx}x`kK0 ze%E^%IK-^#=e$gv#RuVSG7!5VPqv$tWFhAzR~)e{=T>fn5)8YbX4BpTOk31*MU-|o^wF&I;(DiX# zRijXErSfew3nAG;Fon?AljQRvqX17_ot6UQA1l?EZKG{M1B4pf&@=46r)4L8kDWI^ zi?~NK3Mh7nFQT!zju84d!Ir{3d^t1Y=>5M)QBlJk5K0s<)&sH#rfeLwqiVqg^vkQ^ z?naE_4;MNQYK>B3Ngc~FWj8F5ZUSr6x^6;8_F3j+MFJO}=iQkNq2}NQ{Q&Oxz;C}) zIH4Qm>EM53*&Uj*@^ArD` zN!pQWgQNEzO^rCv${u?u(;+{2T1dk)!fx@uuF`d4|5VakEZ1G4Zn}5 z3i_pj==PT(2TpfRby*Z$ASmF3fQ>{rJX!K@mm!?upwjOh)pdVt8X^k?nsZr!g?VLZ zYVSZ!mH=xa7bUjDP!q?Xz&!c{;z=|qx@Sr(`w;@=Bi<~xx8erx7>oQeQx2!{OwhA; znP0Hw=I^{bv+i*tH@S#9A7#fEBa`52h=lOU8{SbivGFuP!^3RRC87fvYQ(7nq!-@d z7SeBPY)8Re92|B6+*Uf80*o7|z}}G+1LlD+3;;We{mZqIRh&O}pZ}@T+ezQ7_f(@T zR{Eyb?!CdmCgBYFR#u4JvCdwcXQd{a{Oo&#I*6~WbROFL@o;f-asvLCUI8D>?cU{`jX&Pfi%rkY+e%Pbna z0$WgVYF~M39BXPX=CD+bpSU*fAZKfmVzJ$EiR@!#@MmfC8<^)cl>Vgt3ALp~`=UUD zO8aCQedZnT1UfX_)MCDA23&%9ndOsEin{NMY|)_$9x+9s zwtV^5_-9wYHa}r7&Up7&g&6;+NHekx!)7SYXwzx4PBVvAvn{8E$r!zs^gL(Y==?H; zwB@EyW3X?{jIBMM(PjLTZ%A#7?5%5{VT@z6qE4)<55yUrQIdJ8z1rIi{ecN7Dlf7j z1jmODPZb}RpPP85hU6M^0T|FfuBK`16Io+acJSsBX-VFdUPMt_5Ua8eG>2SS7jtU| z8W3b9srDI1SOB&=7}UWH$c0hvCvkX;DAhI88v6LQG6%|{8wDq$?Iq__(@!>*CZ@|T zemn~Tpy~O?rRdAwHU3pUVvM2kd&oFzT$uK(L3&wr)@4|v4g}DzT-L^#+_izEmt>ve znQhtVGmw=CPV6&HPwLxG-hpUc@HuF*t{E16K`*&;;CD$tyI7?z3KW4X+1ZDml_*(1 z((E&gGt<3aF?T#T=QhXHz@VR^7bObbn2{a=NUv#$8_sr+1`?X4fl)0ESx+&DWYA9O zu@%Et5qi)fsM8JSjgmMIEegfrvR*|J$9a~FKPg0CwW&P)DoXYG(5)oaD9=2b22kBu zX5Dvtk(Z`Z#s#0f897Vc(+**2M`nZLT}74GC_Lwyd8U1maVyVRu+F2PEZBukkQj0T z@&@No+Nc_5?~@JKCbJ^gob$K2Rr*w`bdxPZVtpZ{A$vj6y4g-7*ciPDMk+>X*Dk=@zs@$U4$;Kq#OMkL`%)5%0pSG65BcH{19LIMMe(@3wgp3Wg(;EX zlV=V|Xvo+^1O1bC3XfXOu0BD{1{8w@A}pgY{dx&CyePMtJE2}~WQOU2ytv%1SysEa zRNO!z--t4NqBESxxh3?IRyceKNkyLxfgjG=pgsb!9xJscfFv+h)SCmzPK}0ljeQ*b zRBJTDe_l9UvaVZqKutyhf?LoF-6-v*LwsJ!W5H1#DcKj4a<#ST`L_#Qk$ol{^l-kU zzX2WOt=&U2(*&vSNOTL{2tn`~oDzsZ0+8|xOfP$tSQ9iqH`XM4(h?*v!n!>E?dp}o zejwRXDsKfe0~l#4&ZNlenZM^S!}ohq{i~?4FsO)9pE+dZpORb*8p!aPBVB5aP&{u9 z$Og}n0-w`LybL|Veu+3+t6pV;hNXEkOfhX^zH!#@vm3T}M&QV?Heea}&=!^^HBrt8 zD6Jtc*l~!Ts&yQ{DECc(*F7N@f&brrdE`64#^c!5 zV925xV0lOjZLpV72agPX?<7N?d5*ORlyKIpAldN$qbwQ+!fZaOlY}Q0PVYRStk(W_ z`3|MfM2_BHo-C}EvOSV!CiP1Nv!9B^TU}Lfc&WEK-PaClmp-vSoGFU_-#o4Vg(*l~ z3}iT|oov(RKvzw*a1z>7O-?GdCb*_@FK!rP6DeNi zko6diQE&%LyucAe|zf zu4uZm?$VT!s9`qh?vV@902ugAWzoDlxCR2U=>e18AOqE;0z3)@ z*6pY*K9?)qEVbWSpRNRcU1Z@S%|4#rEWwtG{P}o&QIEkuGD;bfd!2#X0M2elIvJ+_ z?)5T&U0ek4;J{>F4pTgQ*$B`kFsgG%F?}}zJsgUa5vUXBVz~a)#;~{))tQ4P7)VG9 z;qSWR4=56Dq5I2QiDyhmao*;Y6V3YXi-CvU(3a7}8j8|pWE1oJF$3cUI^@M6lHz*Y zqR+yKYLnrm$O3(7(AKqZpdO*$iN zP#EqQ+$(d6UzVA+`9!zMs&!Ev={icn1;28SxO)77BC=ETgSI5E0E~B=I0s^K(0U=O3FQvEx(5jo-DIQaYEYrA6t1r7o{QCm zF~Xej0i|58f?M+Y8>Did@5tM`% zwH>YgT;PrYrHDAR9hzo{w0fK~AFtY?j%kZXh%mmaplBx{x;t8MSP*Pa%TTZbVoLJ` zqAKB1?^FL_X6c6kek!|XL8o@Y?v>+La% z)<6an+{v@f%;rYm4Q6U(Ah2#qc*VZKf%Bpic!#Wmbm}-`9xo9Ae`kTQklGAJTgExe zC$tuc)O!3sYkP)N;tpylG}dxK8Oin;XWSt-;&7gcMNh^xMkepP@TlVMnHCd2SjO5U zH8H~)gk<&&W9m}V{kz>wQm{CpI9>`14FiI4es&?(dCTX1j9$Nd&gM~w;8f%ZUQF;4 ze=bEWp;r0-Jx>1)K44e+(S$zs4jI}W;hW$GbV+9Qfma!UtNE{JJ)IyJX8lN`oug=& z#x&Td2$U3LM)hHlgbMnYN_}KNKty)z-qr8UV5lc{36E47Vk+E$CXXPi4rZXkZ}Q1uum|TQ zK#WU4)vnQeDJQ~1up0zlM?!Okof*|_0MS}B{Ho0Rk;o602 zO>|!t)+vmvXEi!#u|Qw^j;6B7J4r+u)d_FZanua!uDeZt=i+wz0d4I$elgR3t zUa{7TXg6j#7vAJsXyz6$jz6Q8Qo~P^6zbh2mw_%Y86Vh0odR-+rQ0}?8)yiSe{D!J z&hbuSoI)7vXE3oRH1Dz$>2CPPzin z^5iR$`_gjjo>l^@@3Ci9rHnM-=oAvHeaVQn*MKi-<)2_4R+LR<`|Hp5&%+IjNt6&K z5p8?#WIma1D}^BPZ+Hj;&`Xj|D{dT=E99CS3M+AFPXRk^e2d&AUFm=Vwarj22q5lo z=3MAQJ7o@E6n2X*uH~Jv9fjlrzTRqBfQMw9L|lQ2Q>~uw0#=?Az_9~ZV=FNUVKpuD zJ1jDai~kI>7O{atZY?K8w5 zkzyazV++;|BRrdCI76244Hrzx=gWB9bfP=JWA(gh2X2F2a|tHANCSBP-M~nOXEsCK`U@T@^Z|js$x?EI(8G#S~;y zpW|d^87EmM6_L7|G|y^c{0hQw&(MfHdMqla`l0$flTpOx!FV=H z%XHzeHBCE#)ZrLpw2mbQL)TSvs0zuugl+)gu!Yt2r3GSJ=1_8paRsi_8yN@r5DDOt zZIoCG8(1iPC(RoBhU%gkxQMKiIfD~4y%A{Ugo+|+>}7DOH1aJ(x|K}dNc@Wm6H;0} zyb5Ukldgkbe<`|YHnEj}5gPaJyQnwDG@H+FN0NYNBH3|936XQ=2NQ#WO}rxiv=Y40 z%TwAcF~*eoaw20AGHn>=Hsc=Suo4Kb?%4!o^sm`&E5}7y*m6i`F24dHU9BU^nYVYs z8x33Y-*1Y+Da}GM{>&uH6)Kh!JWeMmmzsQqv*byC}=^5Eol}^ zvmf>1J^*J0r8J);Ss|FdbYzr+tbQ!CHL2`cgh^5pUp zvnk`usAzCG?Enq6VlDDejq4W7yX|zqCWFCk0CK&Os(Sd)JtM#nKzjg`Ek|1y*NJ%k zSX5|G1U9jzltM-!7$m5R>d4on%l>-&MYDAx$v|{S(J>V85Bg{w&|JHysRdo68dU%@ zQ6uC0)|fy-y|s6 zg1m=X;3zs%pzCCYxb1-#^{p0it&YInUIH-EhH8Q|xu$Y0tFA;^j93bL4P^jGHqNdD z{1KD_J7e3|(%QZRQVcRK08n`0LXOvCrZ0;GFzXkZzLcs5VBC#)gkWsb@o=ufyZWN0 z%skVSa;}3wJ((xi7bF>T=S;pt7IHLj3b1v5FS%809d=eg7gE!psS>j*eU= z)S6@OK>RaJ6$@I%yODZe^8;5;0P3ntDy)d49@Y|%CYk|cgr+Vz3|Q?MPWyEb>7%lG zb;uU$1dE&V4|0k+!!dK*ea2~tclT=8YBp!@@o<^}i7G?H$Y}7V#*nuk@6Rtj+$opM zA>u*M0Yo5na4jbIMMak=;Sd}mMm)`v6yq#n zYG5mxMh}q|C}4hPspd>Xb0|r}4dUZ6S_#a*+JeYuk@0L(sUQ=+RLm#<^+TM?t%j(| zkZQu;oNQL~!Yyclxv?aF?1P$X*f3o+tZ5cANXCRn%nU3lJiLY&$Zyyc`9{%^fGwU> z+nQkr0sBOOz~9t>9I~87Fb2+6Kgra0Mnw0LCd(?b;$|9?wYJh2o}=h=3Z>(zIFwCk z4I(QlvDR(OVL}0gQxH*3SXLPI*7gI+xr-%DDK&+_5$KwZlComT@VAmtyu~n>Avec+d=U@DHrIYyh@8#&pzh z^I^Y`yKI7)?)GCafNumv@j&^#N3ohd5Typ1H||#aiq`_Ss0X4M(*QW=sgGH(3B|%H zsCw`Zskv?Nl21b(<{JkD>S(t*{T z6G`>1lBQ;(n5sUp3>!uj1Bp`mi{Dym2m+_spicPVj&{Z~}*53gy_5AO6w^kP(lMQ+5|a225a$HH?hoSZSQ z)+2sj@Xvhn30+ki7U|vC7Ky$}PLMlSR0`owC?}{aelZQm-J0-D4~mi($)HR52Q@P^ z(KYijbd?Jru6I=#DkAR`TtWk~aV=6fFV0tm`4R@gb97|iodZa1N!DoZRO#Q` zXAWr81I%q)Q1N#}R5=GZgqGnBXs1_X85h;!p{)eExF?!2=ht>;Y0t+xyBFK3QwkL* zvCa&<_YYz~)7}EsV=r3oz;_9;rTn`!> zrNEu(_%mcHG*kz2MemL?HCi5qkk>skC5}ly(WU1o6)nY%YWC%&uz)5y2o<7{ESZf& zfr-#+&J}P&`npojh6U**wruQ%iZ6f74{gCX$*%luM_7+<0xH7}ghyqQg?7T0l=C## z0MSFdO%xCZ%c>H#f$c?^Vbn}1l(DFQv~n7K`Nm@SD)!V5Q&lM=SRMzi4JMzlDEt4b zKEyr$`xE{vPZ6Xy+DC@zVPx*A@poBl7q7vAu-NJ$h>-`Au)*OM+QS>%!L-qhW}sD6 z83brtA`U#)hI=(G>O!^6A+KK5xzBdFu`dKN&Nc_1jpCYo1sG?Q^iQUWFX&n|$yHg! zRppS=>jAsOa_R_`^a|((n!K}04EUUw`X*poth7ri^?+s0MQwO9$^BBa!LCP+q+=1A z#4T6}7T@4()5u|GE+Jc@8?Wy}wV=ftdO-aYr}{VugGmHNCxn=@qlwPj!t#O7szG5) zjb<}&Z;VpKzR72!3K;PiWfOo_PFIa5B+Z@RB@{G`VWec};zM<-gHwG=+TDyU7h z=T5&s^I7-jhUf#mo*HcXw@@(xafq(CJuU^#b5^M&w`IZEBc^#X1+-Ouc{l3}qllU~ zVQPmUK7L?Ge{8{`cg`d z=C=w;*&m7)|DFm|Q-^>JP}tq3VT^l>m0hrm2L+L>+X}wKN)YQ?!=`ai7dWx7FnU{& z0gq-K9fhDAs%%Pa7~KF_x{~0y0@>BGs6ccufrZBa`ZtD4F%`a#YMgXPCH?j)63=pI z_DMw;Ri2+zHn)5WWW_~ zeVZhb(54Na1>YQH7E#rTZ_+t~@VtQj8*F}i={Li;I95f@MI~qsV5%wHxy?MR3ga9K zx0^gpH=!KK=qeb5OADvX!&I4^?~*s9h$zX_INi?D_OiEqC}}RB_6wms`0WE5(2?B&f&~tyhZ#5qHTy2aN7jochN(3`@?vx_Wgt_Z9k6Te8W-X zqx+rXtvTRAe%X#Bo7cWw_M1GQY>5yU-a= zSfG7;aWMdFDsu=D3xV7(Cetgj?il(4ir?0TIIn51aTlCYX?Bh1M1`il9;c~vl_fgj zxpkv#1f+e0BObj>jpV!23)?08Ef4*bAi3>k1MM$4&yr;Q0bQjCGakGbMm*96wpC;A zEW>ka_SmzzM%K}zLTc3IQ;H25#5%Gr#XZm)UkJyPqB&ejXLctfFjx=_d9aff;n(FC zi}@gh|LzhFs@C*+orYHxnbpR&fk5;J;G6O;;m!(%v@Q>EHHII5;2zSC^N+j6B)hfl zgW7%$*N_#F3yCg;wZyR&!A_`3@S0Al>IqD;D{7_>tY6atbh@xhjDt#UL^rYNx}>T+ za=!3xaz=zEC0#jD?p+bdDj0Ow#ugG%!NbB8IakrLgdo6_@Ne(`P)GO6;Fd{dQ7DF) za3I-4_-PebbS=HXy$nCK={C@;qCy>21%jc=NYt*sKQ@dhMYV-tIv3AY5KlGrG8I?^ z%r1tuc#;t{bIxE&twp!yjYax2rfHfVkh9pN5eUh7wviK-$H_S2qnCNbDX^Xc*Oq3K zXpz|42Mjcg>!tyQJP7jtzL5TiDyfs9hk*W$fQI*r6lvehD9F8l6A%$5djON+07{z3 zEvEzE^9;F54OYQ)6rou#Af(|yck2Sjo~}0Cwf>d7YcS9i;#k&T=h}^T2{eWY_w0^i zDkBgkqb&?e{?x)lVzhD<8AIselXcr&)rL7^W0Qe@+CR~Be^(1}&Sij>-9n1CgY$eT zsFf1K7F{xh!Yb&r=%{61)*v{^0PXXYFXis5k3XscXo{YMqmFCh~ak#UP zRb}M}j<{)xSB5SphF2mn%YXW*9av@RF-p28c5Z@rLod6x-W!K0yug z1}ur)c}ds}Q$D0|xhh`i07t(5WOo%$=8s^@9qH(DI>p7imxa9&MAO@r0Xex9#+b`4 z(C*-RBCW+aaSmSx)DsxRLF8CNZBp6SA#kjcb|CLR9{|TO6@_AWV&`|XTG)oQ89LH; z!Xry%Piyv*R0c+k#8<6244~36pZOzGhJwV2q z5Sc%4RnV=rIaavFqouITpr!aFJ=|3)xpz_ufBp1)h6KN^w%*UHP7;kzf`TmH5!ZVw z-!Wx+Zjp-D|Bf@$!T+p29#q%gQd{os$#G{)=E7N%tg&B~0;GNB`3Ev` zz4!ou&P6>4Vz=Yj7L`@R_{M?EunJ(anG5nD@0AiA%PGeQP{0SGmV_6wQ7KhcO=f@y&JYQO{3+fS zl5ZQ}#Tdr%HSGlEAgkOesu7cb{`t_L;WA$naljnhf(l_#eqp4gmHYtahxP-EMC(`e z_F_AgKk9g%pp+UbNx3%YckY%pB6BET-Qbi~3`s+J(=fV>eObp1Zyv$}fy~MJo*))W z&hN};{W=_eJ{!LevhM%-Elo`o;k0Y8IR5-@fZf+a?(MDE)jkSpW!Tj-xtUwYM^^pZ zoO`$BxU0`?ab#f4H=DoB)=?~pAns`*D4ygmWI_qs1J#k(8km7^x&vHshApL(BRcq1 zL?ifP75ejoRZiA7@KUft8<8Hf599>Fy`087w+{-udHKyQ65O_ z(3=n{%LNpUN1EKmF}bqc@q|3&lNBhjP-ZDOd&Hr@UEZOHt_V5YGT!ou%`Db-9P?@v z*P|RK(BJtqv>L3O7qyBTlZZ2uib_c1eDZS^W6HzT9^IN&7^)XlQ*bKificBi-?xxf z#N)HU&T-sCfG>0CeKp|s;~oONL550!vm z{c70f4SyFm61K_k#yWN^16;k-GdGN(-rOw@P;Y~+Zg!IIveP|pJLPiM$xmA`saV(K z)q^QmeXLV>_}=G53neA4ZMZ#r)_=g+9$78TuuH1?eO=%tOhz9b%r!UBX!ei!P2rpp z-WWZgQf~2N_I@0;ogJ}mI{Fwfxok0tDo5Og%=wK#s6EN__iVny8L1Mmsfb=DQGsnL zDCIG?rU^DyD8BrgG#~tNVOK#=#HsG&H+1n+CrQts?sxQ0$r4^ z)Am1q63eThj_t;H=B7)(%ok^)b^RH>SfU|+Jfe z!YpjUjZs+-#Zf$13|WIGlxKH-k0CA@phC(KD3~^q>LtRVQ3TVb4dNjYSWU3B)%IrD z<)@R~kgemFEhw%gKkv4_@ogzhH6o^x*`+)0{jsnW9AAg*ifZGE{}UbuD3_kl7=06M z4)={%9t&q+0`&k@&D>DYWs%L9dr@<+<(4|%kzx#7vi)#v2__8#R3D8rz^wy>IHZbg zVOPw{qr6g=t<0T(Jj#2?ms4zzE%G%ghZ-M-ZV{=pkl>uKXtYa{o6 z>zOC)_xke6^K1#ZG7Qkb@Ye-3_WkcmOoqQ#>&s)ZvSsH9bd^JHUDiN$fd)%c1aceD z>5^MvHTdw+D0GQ(22+PmDsgu&5EKoS!X;~WM;T<9A)cTe=_;cs>SIN_FA4dH}H z+dhs=Kbs`$an7o$8z~sXfrWd;=Pi&jAX(*ANR0uHtu4Q7Pcd#V>Uc_#UJT)KQ$SI% zieU^TVFW1)1!fo0Rt+;T$v)xk@&<50Jf2DDjm!O*uR<;}38gxxu>!OqB}-yZ&ftoP zC@scf#8f9Nm7({1x1=qrxPVFNA};)H8OFm($b=&Iv@1j^_ zXF(7I8h^ZMJX}fpO*OEXjUZaa;z*w_)YR*x2Mc^!i91^6>z53xPM$$MzA|c&2d= z*{7t2UxvV&mzh#QCyIr=R7Us0W)rJAi!`6as&ey{dq5|xoW%CBd=(e^Sf+aUTG*Bz z$S5&k0`(TJ=to%y9f7xjB5U_4Yi(Tqws=GzuANOl=4nOQe<;eLT+@yE$R`53zg;wr zF~>LJo3_TUa$i!A+<>OJXe0IG`WMnVQNx5-XJ=6fXJJmBA{54Q`MQJbQ{OEk{3Dfx z>0w|w2gvI&AE&pNV`!VP8R;BfW`uP>U8%6mp2b(SPI{^xJ{iWOk-~mKax)Q#1pR{We#bN;d?k2*(jBl4%&+RtETMd#HNkK)yLg6gyAcr4wtk_ ztP1i&<_d+^L)u8|04oilxrGrI&y;U-QpWMp=z|Krb!iZ0&g0SE9T4QZ0QZoZ z>(T5@wi8?QXP{~W!#)m-fG5-txLpTReYd3FoPRA+Q2~|vr;_zfVklxfUBjuXHZ&4D z7eN!17e}IKL)G)nb<5KJ}TEBuMoXcsAq zPK)jffs1)YBbr4$qAT(NVY7E1r^fv#tFoeYNjx^kn4*J}%m%9Mq(m`4tE#Qej9<}L zM@bOB=+vu|B_g4`sxCJAMy!^H@zc!uStds=Rbkxdbd{o3Tl{GZALSH3_D&?{>JX+W zFUMYGluCF!+NC+ATd~_~@krXTf~GOC$^*ILTC}Pq@hMMO_tsuq6sxIUhabT9H}Mf` zuDSFs-Su^9E|Ew23&xdjPc4jt2JFL{O&ACkiYD7AjVz`W!`$9d(tWB~m$mUpR@pkD z8p5I;PP3iDZgep3+gCTDG5<89tLjUa9H;ifoR#&EZ!HgYUei*8om4yL*AF|F`hFPO z&didRUQ>od7LLQ+V-Et8$mXYCiuHcqy@YcMcR&0|uFcM`Gt6H!gJ6gDBN@;R^QHqC z+V~0#9goUfpKvjkYI&Fvg^DFU?bkWfSjxKJd|MO0T8O|jFk@IK_F>poh_M=%ZaXYK zh}Vt^F80$_Mcm#Db(px#7=-Rsaatni*Q~v= z<%+uz1%!ZOosN9yP4##b}N*TlpdNTfH!ZAxK6l6QD zrzM%VX8VTU5h*nNILGbq+3@l*tq4XysEMCTh+>rmvVLPk9V74Df%xdLqm_xyZrA;< z|7X+N{bl8JPC;P`Bo9}_oKlKvdOfZU;piaqvrQ+8tOraS-I*{75S~*jH_fUjp||`c zE0RJm)734m27s8@z%iXgcui$^@p{ISU2;9bIsSoVokOXA=G%0-dZ6J;#{hsWxONBE z(J4Z@fcZ@)E66=;1>qo%h=%{RMKi>YipUzZq_jMadYr8 z2`m+SQtbVcQ!#KG<(B|oplfvxBg-qJq`KbmWtwKy^p7KXI)`ciyNv2RQ&=pE8p1K= zF-BRGwy!!NuwxN(St-AE8-+f2Z#I%E%1I=J{0{t`m0zypj-q{D(|IuK>*QbByjbex zzV9YLSowk6rI2W!RaJEj}|qO--o=6_GdCyNkxeD z;}3$GpPSV@X5Bg2 zlA-IXR~&V#h72g6nsF{SWx?;Gb+$r1UeuB;F4A5N@X`@Cm#h=*Ggn@0!Yvg4qQ0fI z>z`gU&d!e9`%AkK=nnhkrs32Pcxa`BjBY>G*5-=84fqNS55uIlIfN-iTJzsA-|chOyhB=Z4bLXpp*(B(GxfahF+D9hdzX|nPfZ+QQ04p}v^sd} z6D`O7&xW2StT%3QupJha@K(~VpWoD})*SmiTJTIa+E{k{X zstNz@tWVqGbfqm_j`J-n)g7S8j2A%XKb|fgMxT%yZNse2VBF+ZT80d=k<5jr zn}$@jwVZ_6=UE>9oQg|Hc+pb-hEZso(U?|WHjJ@OE!;ej*F~#y?%ED-Jb_6*Jud>Y zmoR4jSl^5rb0s&~)qO9ZTtg@gEGE98xYTT?yIMqsah2W2sWc3NQ+Lsk5MiyAwXCwR z$^>6&Yhi0Mi>>N^j|%5_XVyIyUSG?;(W-96m?NW0_Nolc|D?-uiK>E_-U?=`o7XUG zX(avW&z90Ht&W2JmjX(WEk*}c3k9h7qIUFammBm(xxWE<*&MzK)<1x7;Sbi6V|y$w zzq_{mmAXI2OjH5iKvonN)Gwp=48B9Vs>pMuek~hR|*YN3J2b_G%IfJ6Xv25=j4G~)N0ZRoMeoRVW~RA z2j^n^^y1{%dj;wiJ`tNt+*}yQG%M*2ZC~RWh1RCt>M`9;K+w*#pO_x}+AiE0x`=2M zz3?|3m_rHh#C(>DOEJA!G&|dl+>tMly8}}E|+8x<(+(B(@<~iQN zGx1FY33BI8yRna;V>TI{Q7nUz(H|&x7^s(TY;AZ|_Eg242#1sKW(Ej}%Y$yFEftDZhJOYFl%#i@9e?=i$ZjZA%# zZV}&M*O)joidFiE)zh!_d+FbXD_i-T?ZB+aO-M5(<)T7NmnNH2GpKrLqd`}Q!>8(o z^IJNe*>@N0ueylz`_AB`z2}Wd#+7KzphUPMTGuX ziKjLjG2l{4qZkn#_KXOO62*6w-D*B=W6IT!UpMJzB_ed%Hrg z^&d-t>WyTcyv6MaSucNQdppmfAdWjDr#CU9eh71aS{Qz)+3fVr{?+;=+^f&ME&J6f z(^C{Z{41=^wSey3d{Mg z0B9%ruD zL08>{3)0CPsK-&hhnV~@fE6JW=I8J7EC7-GtMjY<_%Gvf`3dXyykR*yI!cKSA1FF9 zGP2$6dE0;I^>NdE8x|HONv^7`ouNUWo0s=*&7K!5(Qf^O^B1f_28{*>2W?t^SX-Zi z%w~SyLTP}ONpAW;;|H5TH5FqHG1lP}b|Xn)bTwF6?=Z@~cnIjW+J$tUok<{D!gEt5 z3|4E@N%jB^yQU*8-X!S^*Ay#&?`9ObVuINYZs{qlaYRM;^l>FBQC=bZCE5vg%OGN@ z*~*++tGc8R0F1m85SU(#*n~NUIrp50iMpk-z?9?C*bF2Ndo5|!xn(nflRvXbFWc9f z*peLJEYHTXEDB2!E@bGRaY3s6qp5@?-Yed0Y35lj!E}E`$8o97!Y8^k`&twSL8nE3 z=GqOEMHD}8JkOOy;vkRzLM}ac&M4=5J+F4M)K7iiUg_&%+}1l4y>+Aq|B%?yaHJie zsc-w^L$KXzjvZ3r%K7v5WqdJs%U1ff-L#K{-1k@bmZL;}mDr7^5y)_**zjB7Gk(GS zyWqVPn@c_XM-AZb6W-A&jjA4Y&_0vGfvUv%r$6OiTvA&^+;Hb4|B#|w(n<-#-;-Ma4w>RuVck z!`mv`^gT<_&QFQO)U!`n@f8HTma}BYu{k9cMGueg4ov#s{jX`^cH)c3eNafKHtW@{9OM2_sX+H4lQ<-i-O zgS@(EKG(F=EG)vcVR?f6^4O*W{tRbiuPdnC2IrK@Cf_D@)=#kE|oYM3R~N%5@*F( z8TD+C_SVPyO>)mb2ljp^p@t0?#}4ig16HR<)|UOCG)@uv+j*U;m@f%cS8mp(q*5D^ znkB5)7-e}@!`(;9*L=+c?1;hJ=YjG9;tl#&)nxgMfizrX#pPa+$rm~Cu$HeBNnPGFeo50F z66f#dv!L-QPm#`7FQIBM#)qoA8`$7ed54&GWnuEzBK&6TJZib+iCuH5RTL$n)62yy z?-(G}x`zS!e1=^)PW9r<^QCpmA<}}2whNQthId&qnz)qu@WdaJDJdWCgcp#bTFP1X zuX&Ic^Gtt#|E9arT2e%(DP6W)hDue_#gU$a1InVS9A(wiXSEF2d;K`>-kE-+4rz`_ zYDv-fcU-LeDJ1w44D80feZp1!Gm`(WX8QZYan1tz8$D`5h9243*}1Z^LWlwjyiBH1 z9#DVl_wrRxKqQX$?A}pSR744fY`EUr+nY*PdHpjpqu8lWOhkn2zp}kuvtlD5ApwF| z`RAFA{8=aZw9<@&TDHcood;cZUzWl%oZub#ZVuxZS=C1kWL8@V*0#3++=1B+INQuZ zx>a&B!xs09g71+)k3!7^vKXp*iHLAnv}lcEIMt0%&DaFZUZ@SI;H{vv=Y6*Tn{wGM zv>@ZuLR}+T{>FPQ=6*=?8!0`}573mGH%lb9qUNrLkoy+9H zRN3oci?2k*VScIRSclea@5@*32SI0%H~=SNC)dyPzx*>+i1l{`)RF7U9({`p*6(w2S5Q`$hupp(Gt&JwW4^BV508TP=g`ZinLnY487Ne0|Fy|~r3|PeoI4YG>R*+oX#l=c% z%nRdwm>hidee#$xf#jm#*{WuChY29%WR8WZIEYW`uh#DN^R=;I$!vI~=n+n@HcdQ0IvlpbIHYU9Vm zUMKP6-*D=dL7NTD*oNw|o2lF1;KnB%#nm{5w{M2m>Fp$bf_<9`Pe*F%#D+dEqu=xW z9=2F!!>seS{Wyt0TDl~Oy5kYICgaHSrgI0%29#x9q36(lDz<^A8v*MNWbmEKS0Y01 zUSl~1vvVLp&nFN6ne-QtKU0qV@7J@zdNa+g@a~3+swBIe=6t|aaXS#dOZVQv66IZC~m8L-@@of?k-^WvtPw%3lQ}Pv%U%3P39=KJ$T{kl9O>sl4x(`fJbcYTnj zb~ab4MW|;UsIIQAfq{XVnwsBz??%_YgL)eq(Fh5BpRYC?`#+w45x;L(<_{XN zHsE?ao}rO$!=e&LNRlIj-p}y-3i##!emA~W{~dNb;MV_T#}k!Ac*Ka+SD3`89*hg9 z`@Q~Y=99Qbk`f*V&Mayec+rmC!brdmI0b%g*`m1m2CiKP;gZ=ldu9-l2({ z+jSKLS@}I19z}0u;k>xbk!=1)hjrBcXk~ywdV4Q4b<9O9&D%H<`?k!5B3T(d-D}SM z*!2VW)jF_IL@exp4jHY0wSQ;b55(e74~;ykVk6aGCDmUe-CHGd+iL9JQt`#g&oIbW zC(73!?Qae6X-8*y&3gS;7rby+171Bn{8Ef$nwtW5LqcZBlT%Wa{!QMpHDA3c2XEkPewLwROg<8p#y?m6$GZn3q|m( z4hhFsiusmiqg$YzhA017>-^_tuD)5b=3@5j_ubFluN9odjY9Hu zEn7Fk(ZSz;I=8!}^{sIUJ!oqlM#OU=Q?o(o^!kbsJ&{v(r6WS8GA}c38-B3?gcA*r_|r3Zf}-FET+@6iVC{_W5_s z^?%Uy%z5?97&4>j$55Q_6~CqNV8pf#7H-QD4eb30^UkAX822r=+~k?#6Jqa-*L%pR zFydtbgnV0nWMre0SBY>mA^J2~!4waMD-DqC<(iJcr^%)8^her;w54s`-|nmeLA}9c zlY<6IvQ^x5^6sWwbuIW8RJq1kF)bYA6WU?b_zC;885ejHMAkc5mcQHDDZNN9W-Sc> zB}Eq&X;s1bLVc0={+ri|T?g6G>%UpF3C_a~_cJ3G(u1;5l1$=P^Oj;|G4ZQ(!zU^j z^u@DuI>*b$8a&nGt-P(Qb`yNS-#>SQN)&e+qTQ5{N4USp~AvQn28AihP9gY*HS4NH6@=sfV# zD^_NUO2dot(04_JKeezYSrg`0)DxBc3Fs$srXe^hOQ|}?d28!Yl@WmeX%<3u@%czd z_UcK-`%8bXIARmlH%lxX(fs+iv*S_^wW$meADY(7t3%0=q3OS~%hcyBwk}hWwiC^D zhqM|S((*6oPrbk47P5(aKfMYrwt%zN_zLJQnUuJrOo;RVu&`sJpsz1UtMm7|}ag#9)9F+HK9-I!|7gA_L~9o&Nfb>ji6iWM%??+ zhx!}0jlz>#v&H`mesa6!cy1A3-KUe=-g@loh3C)3{{JN^{`k)KH?K=|agtbeyY-i= zZ+_*Pm6$ODz}=kM`#mQgE9+hQ#tTgQo4FA5iU0mSun#yhw zF_{zVZv0*wciRNL5lu)87bSYDGo9__pK}m^GpUYz|B4c|zG~M#*sVBsFD)K{d_R>3 zGxO(}*$xdZcSw5|Anr@5`~ZsX^QBkj;;Zc!s4{}Z4%OQT%iD6#*$Bnma?Qg#QO0Xg zPK59>XZU|*XrAvj^vBg^@&I4d)5oG)1j{I{+;TWm5%e$P>Rd@238KoiDr9E2eA+M| zWG!3|UKxy;j#BDG>Np}%yiCf32bIb=aJF8Mrs?Rt4!`g_r-b=4p>WEZw6-pfh8y+h zs@dqNvB*UIziEhO=CWPIX1b`;)2$+zfd$vx+)pit=tx&Yv40&rkY3`8h3QDCSZyjw z0`#p&$(G8cC%S%^60tXx)^U-+w+P|_47$7AYgsW-QM~jOUzknwd8G&t$0{nsN%4FV z)R*xn_wn$TPI|s%okWzoMF?jECQXkD)E(H1sA=~fuwSgTd2&;5`TQjD=+|^c>*nx~ z_M%!;KsRP@x2*&J<%w|~YaS^AX$}W1WlCVY7#Z4mJZKLs{!sEN_Aw15;Qn<7e3{{y zaX!eoH0EF47hMAN7_~m)d`hFoLXozZ&aeZm+DSP5qPjV{gDjvV;(#f(>oy;$$?_C3 zj6MEx-f)=}mxQ8fi&8p%HZSe#`#faoErB&&r@2euqT4#h(~_XMASAndsjW_b>C@~` zE$AZ_U|4-8O`mPsp~GM6(pa7jWHVMsp2QWiI4Th#SK2MtX>G>dSSSAol|SZG>KX+D3gP9^&nn(ha311W*1nZkd#kNr|YgXvDNdceZl}!q1Z%#!WF^ zwzfigqkB99+E8uXh!in@b6d8wL^qwf4SeKvcusVW+7#?2#!bO0Ed*;YF72+mVcESO zUD9w2yk=FqKM*F|5t{w=E3a_i{LVrA&I--j8Gt>+!;Xc+HxxGOi zmmkF_JKh}aO9B$$X^tkRPOo`I`zBZ89>-kvs@szXKF_B%e(%@E_=ydVi@GKv-O6(} z)W5>R?IW2=EufM;rMrpFr-+Y6NYCH$Rx2y0_lm#rP;aIi>`?`8XDg8zL2+4t^PMMGmL>>EXuPTPHT_G+`k4*yHY`{c^X zbN1h@_m8)AzTRuGrH|?VB;@tHwUc|jThM!dd!O>U=)l6kv8Y>m%k-n3907YjNWAxj z%VYU`Ne3|WCr}35h;xa%79R7;Arw$_RX!hp=?;`hXFqx%bRAw%7Fq??8T2{o7+qLq zw(h7KKVHZqUDFB}0#6zrPt%3oaD_QV&>M3+gaN2Au^?;g>I;!{HJoshv||F3J{BF; zP__GQvKiyOA5ka0rAdczzMw;v%*O-SH@6E>ejl{Eoub(bJ}Iv!h0_~Y)4{q2g2AbW ze@26?2!+xerQUB{5QTCb^nrQL5Ry6vrY*zZ!nY zWx%TU)XU-7=*QuJ>fqXg2IrFr!LbUfv5=2ysJBLxr|;K05Y*Kz{v*^C2;pu)`ZgP_ z7JP%6l_|_OChnUW&|=h&g93X1ZN>cvzwl(HV;AlOfu9(P+a%V58&;5{W-rVgD}Gb+YC4SSL-S#$}@j-a&YOY z9oO(LhmMz7a!@fYc~ziB`X<{_b-^Rh-ABY+NTBkAFu6R&aVLhU9XpUG)R%rV&Arb< z)&Aa4M0NCQ`3t4)x1tICJvYhmNRW2s^^E9OPK@2rVm;rPiC>l@v=K;C${|{?biiLQ z@E+exnn5pSNkvA(JIF-o$eZ>AUi7-iX}so{YO*Z0EMNC(HH(BF4kLC{ z7C=KFMkW5?FYhBaeLT+k>d*B_d&zt=<9@$;a0I3dL*CC|FjpHE3P zq(d|^n`-)9)zdfVM+gx$ghuPB4(fcOLveC!S zv+a3;kI#!gX(cshchUf33Xn#zV?nzwo-M|OPKbSp1Vd_Ms@eRVW>Ti&V~>=I4L}do z$`>u68|2X(0gDYZ%+nfk6cwQnHEOSLFHLo%Y%E@+{7k2?L7^UGx+@Bx?5323m;(4zQ>a-x>Ig;q*kVbDMJNd6!aW<~o=RrIV}LR7JQ@$M;i2grOa`Y8d$$QpsI zCJ}`%RbpX4F$cRaDogiJlkb^1ou=+^hMCLx<3c-53s9E;<*g|exvwr;4KwfAg3SNy zb8f{iS>ZAE#1NnrVc@_N9|n(M)Vn!-8=edx{1yV6IU@?w{q64>iR!R%dvp9L^H;61 z(mdCdDVu3JU-^_yO@QCA#z~%FMjlmT_7_TZvDoT|*xc%_%a;Qu!c&3sO1NGRZ$~g? z=*t{;2V+Ua$AJq_8yF0}$^Nu@w>N?%pp1cm0T0zPQ!EGgqT7eb$;iC6fuFerbl!`T zB*n$WJ3Bk6si_eW5rKv&@fgC-6vYJvFDqaqzn!j|g}FH(lhX;tolU^^eP`w4A)^-> zVn74NCKcdG);d!ix~V)ERP-rxmYj`*7PetjEK2%3EC`aq17-ca>D~_A2eL zzOj@eHBxM+elcNB^1$Vw&oYiwgIwoHM}O$6#52>%!>fbiS7xz|&~Mlw=e!CxfX0dQ8#N5Pyq~-%_ zRCyo~fK@1aj?L*+SLsssZ}|4<=@4@L3KHxpatag3_s{=1Dw1Z-9dhdLJob)ds0w#5 zZZL2e&KOOv;&x8T8PfuN{Gx#eBW7P^j@4sxbue3UP#?~+Y9-B^XNNHC{;!&-^K#$o zU)iuGVd8h3RYaaUe&L4qpj&YG$QJB@22Ai~M(6wU1qarzm+T7RYKJXP`zV%! zHw*2PVqX_Hk@+>Bb@olm7VGFWwkx{uzzo!Yi z{Q8B$nR4i@9VfduoA|1%XP~(;j|a&nXPzVTFdTf=h-sC2GJ! z+4W!hzYpxOF<{0!{-?yhfJRU;ha8mH*(rq^CcE^3^k9UtbPvFs0R zUo565pGU&qO9}ekxSZM(G38Px5^Gakm*zbJOAV{2fZVXc!KwR4usPbaQ*AxX8zxYUDyUImfm2}>B~o*(a<*fDjN~Ar#hji_poAu= zj+Df{nRM&y>eFB~zt<|rIxBe-u-*W`wCI9p=dLU+%a?(N7WuLKFJzQ3PCK^t&EfOz zqLs=iE;RF1=zX?5&jmO&@qgwU$U7Al2-+FAO-m5if|JMsDm>d4?DLGR+yRGHtKCzg ziF&4&U~EE{Q30UL1{ATN=&Z}Cci&hp9eBYiSAWH9dc9(0t=RXZyApU~$Kv>@tGeu@%v<9XEKD z-{@|0=p4N0S50ayeOpAYcP z4A^b(5oT<7y#xZA2!F*B48^%Gfs- z#39b5&oUn^5Sx`?tB_vi!!+Y$=+4q*dVG5&sWAz`CBw6(RAEk=WT*R`idDMITB`Ky z4FB31WXfuZGaGajs2KoJt(7?)n%7|Q=ea&KQxkN$!DnL#aHlnzTQ(b8E+V#*`DpVG z>{?(!PEL1FRBqe_M}zy{F}JEWvnNfJ%awjnHgKbxMij9f!n4 z7l3c#_ps9ih*J^k6Nm-Mg1RX*axw)ji$4t-keKrexiCQ06IHf;L-0KJa~~IOcL>FPCJZ?1YCF5Wbz9DytJhM$VUgOn- zf)ng101{hxy*+Fe>a`%&%&@^ezWt{ADUW5Q=X`IT)hI=&YU&LA-7wG(p~MCZ(*bXB zZ??|KuE^aJ`mM+Uv^J@9 ze;5L52Z3*oSGp&1-$L<8@IJNEP2y6gTIM4^01BjQXKMDZm*SGh2--RwFI+i+$EBC) z#`va?hbep@q;p|Sw$hh=pDMYEE;{g-t{Pc~jRoaFolE|V$*vNsG&JsAduu-lZqCF| z%H2;0L%i7i&7ZB4O?!$w08?C^f>?drziu2%&2fF{s-f={W}+SAlaYWeUv!ok<4h<8 z#IBE@sneU&Ghaq2upqQnO~8ITxY4}WZA$9Ght0DpHX7Evd;C{sy+wB5j4?pydYON8 z*IEOTN3H%uie3kyzR+;K+obFWa+DDcdAW|etsH^KPu>m}G4IZQxpqVc&(XiRI@*BM zT0h+@s(3z$s95i+LD!8a)H2LH08E{r zIqnB*OPf*BGu^dGv7Jk8-SWOtVhk!;sljR~x?y3i33O*Z%J};wQCrCn^3xYW43!R? zOu`ZCO5;9Aq1S&)ZD%VFeFc|jsBP;!&If`oiQ!84;;fuq0vi=C;BU8FZ)ubi$9^VdU%Ra#-%EJF=@X2D949nFY^!Wk|T zTa$S@4@V}Og~_IS(vy`^Nwp6J@^;N-{2cLO?O^>Gh2Wn3^q!ClV%@W*AL0dlF%hF= zJcWQ>5oNx@#A<2V9l?zWC_u4}DTW7~>Mfzp*|C6je~F1jIqB{0)uw zytP2uuE%%P{2Y&C)!l?UCp74gMonBs;qfQ`$D}UhA+aJRKW```*y;CKNC4k+0RKO~ zjTT{kcj5b9L873^7~MZ>0+Vc5cl~(n-GV=;r)8@f4{e!?!xVP=#kV74EmxS8gL(;ayUl_ZL1W>ZQ~Odf=* zU?h+U*4EiN0H4N)oMnBvSonWP>y;i`IgU#D!Cg?8@LL^M%{JAx3Q*1*uy3~?FIof& z7CJ4(IlO0l>@mJp;rIk3n0g9CBJjn3eX)P)b_a=+S&ct`js4PK=Q85q;&$SGK@7b= zg`uunL4LYR-qHDNPhM`p#^RQ-vw^FgT0t~*7{|XE3#b&>NU6+ouXAf3>dEH+z%=M6 zWV=di?O`LZjSzK@LAH8WN}r2ufZGYWc8{&EFB+lp5nTm90EhYTYqK|)p*)|o;qEoi zZ0D*$4=i)UwYP*pj>hP{ztu=40q4%A&g*nH&sKCn0 z)#rT;IGE|(Q9J9X_6jL}3V95_{Hg_n6$xYZl`fH7@61PhG<8{oncm(n)KXz;WV9t=F65ysF(gqcsz9#%FQJ{O6q->ral(j<*&M&IdOO48@KLuO@lJ zoD)v%n|<%1BQIVpCBq*o@}q{mv--jNK3)P_b3o7Y!^OvqE&Vi1OiXhYPZN{91Mv=@ z=cJK6-4@3^elAk`&R;)T?YDX^FE1yMKh)>O>gtzJOFKJ;OGo}}NOM}WFcD%@D=RC% z`Zu@rW4p@KX|U7W41*WLMl|l^XBuf`5T)QY*X)=k<9<9$QE%&`Mu09-+@njcYQrTm@7MocU25?X2Q$sD{3jFm0)<=~6aL2G?EN^?Fj zXU)eZ)ih=DcNTFjoJmMp6-)(!S^l$WE<$$BvndGLJNH5P zq;oBpXT_MO>CiWlfAbO&P|s4#g+dy2dR=n<+!s;B~?xa8@j zo_`S5(3Cf2_b>|E-%>iK13om5%s%|j5DQ_$vg) zMz*lA{MSbHEb*_rz15Q{Pl@g&RUyA=2v;umQ$ zS1exp>GgMAg&oz2Nc00B9@4N>mluZr$&$os~9lsX77@ zQnfaR&hq0UrQFs4lZ%(*`Of}K)N<#-%>&{6m`S=Agevz@c3s`8=QKn4mosHkY>wkp zMl=OROx=5DLl36byaC3-RrS$TGN2)F3-c=;V4xv8=7?NLE>1In6+ z$GxVZ;qGS0?P9&d{mRhU`St^z^&|DWgiu8+Ik`EQ0IJ+GQ&YRQ?EOk)rKK~n-rU{` zfp;xT6~CGM9ig<9X2uqYF%CTI#R}7`a>JQI+fF~`47Q(V^2M%3GE(|5cfTZgGnUE? zkU2`xEf`Bo6r-m8=zmH3gXsb{@?m}jKom=5o_b=$mKehg9{FMB!kKCY7O0Zade(}R zw)$cvO%}=?&vqS@EjN}cNp@9y)$t}u0+a)Ps2Sb%nQLcJmuqEeeq#D2I69nzsiUr4 z$7L%LQloFUSS*9j_H#|T=WKQF+y>rwt~3V93x(s^idLg;!>jT6gzdTO95T8hdphlI zt7%qGe<-gcUknt>(i;pqm*|B7wa(gB&S1J|5H~1&TlBS1h~IlsC6SfV*DL#44D8u! zpcFDKN+2EoKyi#idGlZ!lc0y=aL+*I8%n%;P8`b*`%F+Ih+-(%rhqD-_8=rkqr zXvet};XwO3CM#Vym6T$ExDJ(e$F@7a&;rDHjlMi%C5o(dd5KQLus$aS1ODrqFAz5L zdl?RF0W-L|f;{ELPcaM2h{prM5mGhu{*p<8!;Q=>bd2`JlX#7LjYCwZ(S55{v>*S& z5+^PbrDFEMJ;Tqh5p6renMds`dE#wu4p6IL7A9CP*}3;{kIt}n>zkZZ%tE?S(<%!? zreeVhG$`*kQzd)N^yQk^q;)ZvmX0xq@@QJIM8uwNaM+W9rgD(UOH%hW7NLA!|poV@g5BQi!b zl`|;C>^-zT*JC7Ur*Yy+Kiu%1pKt=^URwW#`^IMJRZ-iK$h1x|0gPRjHZ^d@U)v=g zsVpcB#M?`)xAc<82N=4DVoELzmAeRc;f*UbR*SA+TD6Aw^DI|F7W5M`r^;X?gnDM< zONdFpr+xR=z(9T72e^t?7j1EdaC$4h5e6Fs{%)9azrY;{a&(l&U|zm1>wIG!q~!j& zK;rU~)@5+MEfKRFHR(oRb=_x@wjM`!4TRqKHv2*bPeLq!aAbad3zlI1Bs7K|+A{~&?J)X;@y!$1F6U0|wGM_JdKJ$Y$*PJ9&g(^tl3rw^Y z3n|?)-q)BJyBLhktUce&x~3u&4gO%wdyB=L9hy( zP$b9|5EHPx^1+_vqE*I{i9^PCs$bfa#`>$LsdkLKIlvvq1~)yi3t^sE9|#P{=Co)3r}F3 z#Z9R(O3*VL{yaZAmXZ34oUm`6!q4-7-1+Q;z-o=%GJDG!dRF_Dt4mO2R%$oMloa|7 zs;2Ol`e5&*wuWpe`Ff#cl?ibh{vV(3q|OOMTW({^7^Zk%9wZbW%HYQF8Su0dB7>HK zMblvx(xK7w2xhue*Y#(t3D)%m9B=?$g#!f5S8j}8!pgMtgxqt@uexI5HzPg~YIx#^ zNcfB4&Deh`-W9)vtBgy>sgo(={)^%iy=yUHL2%5sGj4qwp=*v1qFMq6hPQaAV5CwM0!=E$@oYc5KxSsr3u!+)bSRH;nD)OplA=5 z3yaifH#eafdyq2qAQcnRHv?!A-s+|BZZVe?Tp3?P<}yqo<-()o(Fpclj>bgRy&a)~ zDk_!8O?;CGS{8Ak%Lk~Ir~`IsvE)iM=TUSQUIN|6m&d=a<42aJ*V2Lu<%t7`TSt`~ z#j*o^6df}ds4M0vYwB^vELA{J9Qr)vXapl10rk-lLS-3xFj-AUx%!n+EXD|#%?Pv% zT7pe=iy9R<213PPLdk*|FyTijn z4lb@v?|;_^jZz;}KOB^hg2Go0+sEq3quaeblaJ3xj(jqaK|54|>rbhwfV8h}^Qsf3a0W3b>JA23`e=2QPVj{G=6y5Y5&pU5de74)0_L_kW z-T8}$uoIvg7ZG*NM?5qT=Y@s7g~nF&WL3Bq3G z^rDA;JQi?Fp{H@N5%_BoPi>JxKzT>d%OFQ?9r%NCKKYO}DfhNX09@MsJPf4RZQ-?? zQ8ensOof|Le9w=|%@a!%6?t@Nox||ib;%b=Sf~UPuR5h0T0a@-1&LE`_Ml7jFHFWF zG&|NbT#D-s%e0ZORQK_c!5VJ#L?eZ8_Po1~Ad&qNtFdIohDUuy^D)S3tUPhqVVlTc z0#sX{S^56ub=+smR8G{Tn2qJz)kr$?SSh&Pnfgmj#~KC~Ablr(;dWSHoZ4se;|H#D_U@37|BFQ}?(2Tl+ztt6pf{4=T}7mDgClfCWvq z`iI*iL@^=4L$+|xw0sWNu}Gw3yFGFp8}@50pmMBJZq|T<1xkpO*2*VH-6%U+!V^84 zeCXl!t0E?k3jWC|*Uw*}dGgjt#Uqpi&mv5Kc)+Xd5mwo%^Wr4s0h{+j$1k`yz$M#6 zf|*=4t47N}0Cv|LQbv)KD#OpCiERV``_uM!whW5I`EOH zrW~XFiHRlfq>0)$4ehu+;Zaj*HzqO@=howe3vTj|#C9zC`FtDR z?{|uyWA zdti@@E@TP9=JaIBG=(Ln&LHKodEJPVmcdTjU_jll!#zSRSooJP`;@%@)zF*K--An6 zF725&fpwaA-l>#z&6f(g{n0DXDaO-||0J8s{pM}yrEIcqdLkN(o(|Rprq<2lSx7>& zzfe71UjCi#iTlyfJUmJY+0z=Y;RbTMG~5zwld?tR{&%&R`GB{=V5-`Lbq>zZ@nK~H z7#enUXBPJ#J5bUm_L*=U!`>dWg4by)Ci;^eS`M6_(S6)6D+E>;B2TkzGpE05lQl?W zNG9R8Z~Pnc{r#qyXXzCU3~*lby^2QM639sWzuG%4o5<$RPET+9;8OSZ_rWqtJ`d+> z)6>%*l?u%J-W!7A=OrsETUAkUdVcZ|)IPpWr~S9g10sD4agq8*_~M>HAs#b^-2g zN_tX*yeUHxk9nDfKijD)JJI~d9V7{tt_TuZGwDcMytL5|+ZQM0_9PulWOl~;hx6$C zWb;)VfJiN@TJb$8*sXc)bGe9R)~|p)X%uHRg{2vdSICcNG}3^$e2XR)4W+wC)=OL`x_Gd^kf^sasil`Q8BJd7Unb&Ou#UK;jDOA}}R;`wyzwK~Meq`QYqx!58ks3j)HXQ-)(U^hZi})D~ z5Ds0;-4j}QyiYbC=He<*YH#48U%4mRT?kC)zY2sa)kurBg-@Q+HzoY*v@kPi{j?Rz zFZ_B%q%4*1#3cm!7alNpa!)1MZXYQJSSNz>hzX9c!|v{bTPCvrr=5vHDOu!bF^(;?x=jeAiyA9yIq2vhw2WLa>_*44uco%qm3(^3o-7Tz z{o@{toz7sVqOkP!9X&3ZW39_b0KdWBZoe?vtU)EW8L4$Vv3`--c04evg>Ye1)pgt5 z*XcWB^C(A61c9Cz)`1N=r#kDRbv6QR7bTvP)##T?H!iR2##=T+bwt{?nOJT+RicT= zQHpEBm5jOrDX$;Fx+}eIl4Ga1N1Z6#d%9vX5*T)oj%JcO?jt0N@sy@y;ut|7BRkB^+nh^gNU6vae@9iAV8?l?2Cg6N<3 z*-=|mG2Lj&(QW_6!@l{8S&=ugKZZyf>{tL1U{d6;5VU0jP!VC{=(hZpgQ28Fn>n7LDg( z)L9Y=Fm|^3L-V}?*~OAsk}b|9OaEt4Ot~5 zS|=h9qdbsxeoLo+o&3Q(+MDMiCp7nm)r%BAA@gTf6FT6tLM99ESq~w*d4{vT99ZKx zS+h?M0w^`?oA6f_kn%rEwtMw8sY1Y~4SZYOS7Y-eC!oetj7Q-dhZ<1?;spn~hCjWM zmEab&?!d0Y2Mjv;`E+-6yFomf5na+yJX*0Y9-v-Q$PMCseu*vYN0X|Qn~8M!Z0Fh^ z>YAk)niKZ*wmE%XgWA2iJV;p>teV~9oM2X907&cEE}UikHFQ-ZTH;*zG5bmpy_s~T z*gJR?67!of`L6YCE!hsm^&XSUb1iX>{{5>4RO3U-DEnJ?n&UjV$lv@?5=Q);`wxzk zXmoe43;+}&dEg1e{oL=0BZx2C96#9_dtB$rR{d zpYT1-JQG)sDCz1a2c07DT+kU1TB7K2_a6KfmhvcO< zoh)by)eMO`dZg`I7-{h*DVLr&cmnRU)Akq9HW_%@6%!UqxZ3VqZgz#O@0Y#f>51Ya zDn2XB4^o%0Ex($`Z7su$*bdvIELsVDO#{${7L6_JLUj68ekTUTw80WRWL4UzF&P$v z()`z+b?OLSZUY~<{bCqY@33a#(;ThHV)y97vo!9Z_x5W~qVic=3GYn1M}U^Q5s$kI zw#FFOd$k|EYv-I7guL&!FJs140#^f#s=)z%30sitd~O71y8;uD}}!>4Ok-`qw|^CKr}5CtqYv=R@CMW7|(p2s$ zOP#r`qy5dtW2JZaLdqPBDZtot$f;)OkhI$0+VS)s0L}6x!`3!D{S++`SPOsKt)J}x zX}F#T6JbS9w)(!=cozp|T={lEy?>5-5A)a^R=ZYC$=FM`k)cTf`Uj=((DYfjW+X_o zP9?IBsS&ClzH=C*orH4gZsRob1a-fN+VO9NaX*=L0)z>l){~=t-e-eUhlms4?{~$8 z4nEo@fEJWD%SCooWK#vwVI3`sCQOBPs0d+>VAWx6VRY3Ox^!{cGHKt8b0~^aNievz z-rKY;awcg|kVdxaQFl&x9uQvpk=x+#B#4vN11pS3AwCe-*Yl-$q|7;wQzEDt+G(p< z86F`*;Ph-8RMGsH)CXFh+{T71R^7O5eFT*PxBakZN(8BEvE<%6H|jbV=}GRT9F3G4 z^j!x@>t{k1RJ^6bOjLOL)EK+cMG~Tve7%3_d7RudneHrimJAId;D*1g6v&Xx$%rS6 zl7%fe_2uu6D@mAG3x_9%ESQI@8=fjb?C+LcGTCzOe#bY;+gZ`%CX5+xN=FE(`2g|& zGQ|E1N9n`bm@@H|$VB!Hob;uV(*(Cv|NpbkSHTG z3q%ov$%AXeoZ-ujGXZ4`&n8TVC2cSH5$U{c?+lZcy1m-xS)+^Eh>DQuB>e*!ID6rw zC$DTeJc%0{_2Vs_h*vK*khY$H+QBa-wajAt7+eCml#DNUgW)RTQN|`^y)YDzt)NJ~ zE_FP{VmeFE$I$zZNsX7@&!lf265K%Jxj1_kSBlMwKM9Vmd#53mmz=A!!Te^08cx17Ju)ywZGyx!KO>mYxT zVbImFLfe3oL4Ocewn<@AUGDr^-kjxpRJcI{qg(u(>Z#ItU_uP-uU3ivCYb80FmaS- z)npZ*KJoVq0IAF(wf#_eR%|*P#6wmPb0{S?1)-ITOso)*&9?guhG?ulna$xR8`sgW z-Scb4Pv9862idm|)^zAkjYdm6NK7j#N{Q9|P9B9{81+2OYx6;f2!`e%g)#-kS%6mHJwrwxhXz z!)`Fq*1>)Kry^&}zE`pgt+OYQgGm*B?=kF}N?b+yD}_FEM8tusg0wEN8Ev9o#o@$W zR+s z4LatFHxJU#Vzblx)DyGZO;Ggh{!vervWlQTAgqv>+l0NN9*E+(%Id&R?OWG+e-nao zLCE971ahwSd2*Gt%B0VB!jYP1qZwuJ-~h>2Ug$vA9(BPNLdCGX7x+FzUfu4u#Et*n zj^?vn&9fU#Un(qYeM?>Zs38xQ)u;M3E~LzjW8|RJWJgDLZ6*4w>a#P0;MtQ_R|F@3 z+%Y{qA@g9wGkaq7`SJ3f>3dIwyK}zVmb=^g-0IrYWRGKg&IV2X7;o-izn7JZ(ZStw zX7a@iY83{X1q%5BA1}ZizvK)ydRn^eQ2c4eQ&GRh=+oGopGs?vELk<GWh0acTBnhUY`3r0+S~U5rgjR%K4mj@PKglZc_hI!8X& znyUQ#7zt@06t2$?$Q*vfyn;~*CeO5-wPiid!OYc2pA4-(R4$fI18@@sOWzh)y&9y2 zRb2LEBA0)f5-hj&!oc9jM`^1(g(82RTtQ~N@q|K}T>MPif-1rg5ck11_o^#aH#&gH zOEE;N#i#mj?Rzx~d?Am|i7nhlJPvdo$DOJ>DCj}z$HL+o#}}mjql#)Nun+2f^@Q|V zpZXEZkGAml%==H>fi!#fkf-EzaMRVmPCrG*vbYjdYPPH8up+?CYNBLOkTN57D?#^E zaIOVWgY7^fn627njO05b@B#nr2w@W!!#Zs4NMB0$TU#U9dr_#*uRU;xWByu0geK?< zxbIbYAXVY_5aRO?yzdp@{=8WX(MLgaDeiVC&M@dx)bE509OqN)vZ7o~D(>(Rv`Nq7 zuujV;rz?LhAbe=J4ExIQ{0hLme3YPB(0d>D_S52y!qO4(R(r_;&(}H$geeZEBN(} zbj`m%{|{AP85CE*EQ`Cl6WpD}-QC??7AIJ+MS{D#y9alN5FogFaCi5|ckiqB?)|fW zPSw^{?U|XL>F${p)AAp3*~^6Me+Y}4^l_@?B~re}UnED8#MyU7EpHaa>NqItSFfm; zns?&Y#U3$;g#Jx=M14foRl^h1B(@dR#gUkF^*5(tY9SJ3f>Fh-;&&`dsf+9+L^il! zsjaTrSj+8NJ5B`Y?#4GR@N;0OJlR|+m9etuQaJmV?YoS4RTapiax|s>Lyt8R)>}Sd z-Fe<{%d8~a!ZVazfM?Y5WayXPqhIqJ=A;zOVJsL5x_atApSD+3HSK>`TMv} zx8{$RwJlJ2R)IW3*?)CE<2`AufIi!YxYYhe0BN36$$o%RfDbtqdF?u?Mee@s1t1E# zqy4*+{w!2fekYcNIHpv$7qN{o&YYH28X*DS4;x>1=I&Y+#?C3GnmHlUiZ;K)l{MTb z)JA|`QoK;j$G+1N$zz+<9{!VLr3;3_*L$JO#=>fl(8|`<#Ma)YF>;9Uo>uu%w)|0t z16Bb-wECzqWV0 ziFWg?bb<51IVcH$^_M@bFeR5O59ZVVivntFdVctr8|-!}szQy8eMIfe&K~RK{SQMu zvh}`s0-Jlz`vpF({wMh0o*3N*ZQqX0sKHerD~@XcDy4VnxAz>GeE%@HM!~e>Q)Lyc z25^xs47vk%Iyn__qGMJ$N7Z3U)upHhJD|{$H)DpI%QNorfq(JSxyX-)(e$trbr4!? zmcCUdxZy-cuhmnEc!f1Z^r_2EC*we3UG@1Za=?f3lw0DsVQRvp2yRD%>PHErA5A8- za3uYXJ6|pWL|Aq7UiiJ z&pRH9R{?_bP&}5SFKiUla5Ddnmr+7OHTvd8gVcaaZdc)kSM%~4xrGp66&?z77tn>% zCk!2ww_+yLHn7<-u*uVJ?5tAv{{VdxGO-45sEv2Pk zYSL0%XsfYG2>1Ppyd9^if$3fb9xqC*&AnSQ|5y>}?UDOQxPEOAF}u!HBAT`{Yw}B{ z2f$N8oDnZSS+mFF-ryAtWfwOgnHcEOa9^^x6?sLJx=5>j>flmH*97BFue7aww}vDH z@ZENqPHT1w5R-yPq7O?XBId93h%;}OuIrR*m}78b0E#90!z%`h*J@-I4E67|XxX3! z#c5>X=;|)*nH3-|NPC^QO2*b>Y9fSJav;Rzt$cr!{}y}0Nc*mfIVreS57vl-PGnWP zlL}VsJhI6^IuVHMKdne1aVX;86WlN^BML6%FIcaMjsPO6P@c5;bk^3^_W$)qafDwa zX6`&yFh|cAWocJmaY-Hrk)j+ zH1q2DC8-OG{<~FDz3;eB2T-?V=2>f)k&w!hv++e9jV#%+>O2r=M!R38M%x$J~*u4O{mACuJ z-*Qbt&%CI9L{8R+pUJDDp-xIUy$<)v%YOfUcF;eqi8Cj@rib?*#fiHD9>RE!k57SA zd>Yhu++7G`CP$&{j!q#~?u^x6n_Sz7jYvOr-LF6xxszMHYg|bYI5!|px0e~#6KX^s z^aEsE1<&X@<#pS~F-8%@F}nJSRvso2$;RjNFjCJnsv^bgChhUK9{+dmw;z}1v+pDF zr>&ii+E7|jc2G<*zdejWzPC^3InR>WB>shd&V_~CKle5m5?@$}An4xoyhTFf&6@pO zyT60_8!Hy3vXnnZoLrG6J{?spKRz)R^#6C7*uF6G^ODL!2kE2{Rg|Y747i!agx$x` zM8^!vh(RXK6j*K6$X?8_$%5H(o(yEMHIWIvr3=+!02fM>Y(?j)Ozx!I-)#+jIWqO& z8YW@qfao}o-Y=L^e7hZ>CttW4V)65o5UmPGzM&r+f_+n*b)0QlBh?m9u%pT*mSaAoQ1uQvjdGl{17tlZF%- zZ>-~EQq`ip$FHNIcnf@EuE#0Zb`@X|IPZAYO419YAs@1>`dtCS`=J*M)j|V3oy4C0 zMfB!YtKGBWH<5z#O+Isp0tg#Ok%gi^7j@|LxLDk|HBzq;!z=A$f#vqqCyw#et+Qod zSJF;@?4*Za$?k#)@7`PQ^#Z)iqJF$GaX(SPHk;MvppZY)&EEcn2zJu-kX%fsQ)9xS z6{0o$whWk?7uEyy4}50E)C8F(N~&=F`F)NN;}M(eKhFLSf#ZQ%(ph#(IwaMR=pfjW zRqV+7>oyB>M!^z(8wdSfqxa$=+ZhHu&<0J#kYB@PqL(vCi+iijkly4}`! zwvEfA)?}jvTw`;0BYxEpnhnNGkGbdq#RM-4D-*vQ=2hxVi&=lxKiZ~pfc6TTH4#fG z^z^jw>l!#vg#uK26XGmG^c#aB#D$yER+jPU!&IsSRud;DDG5pJux82tFEZ3;J>GS= zyc%!xS{eSQGyH#bVhY^UeRW6cKHa!+S1>q(&Ov}T#=k%cLOYSR)4`+b4X-HPW za$*0_X^mS6e|wDnwZ<2L`t`R@kl^QB zmwcs=2Uc3AJ+ykfooxn<0Zp7GPy z{{!U6TE#p((74Gbr{Lk_Dpy|edjGnw$c=gfcph&1hCbQ2PA9a*+D68hR%m7uJ=>}aVR%IqKKJu}vEu8rtf@R4>>gpkA&p&z_WT`1l#U|%q>@nU z6Qldb!tFV2H|a|p%K^tp%5;kI_y%ik#{$xB*}=Oo%3Rz{khCjAVPl~|xtOy+2iRaf z+^-q1^7hu2>wWZ@=eV2Yyiy_lKNqJob7e1hkN@*ad5d49h?6FV?d)`K%pB3&aBGz+ zd*2Br%x^{7sIMs`akMT{%hBSJql6yPF*-p)^p}I}9?yVbwTr}*w^}k2#KB5Dl<2)c zr$`HoL+QbdsuD*-)Nr7ZLAY9`!`wx8FyjxU4&;zDA^f-f|alnrTo0& z`_hp1S3aA^kjD%4?N*)2rA?gAeJnl>KrZ8R~t_D`*r60%||jHIIwoyy=6+3#;~> z`}CC&EaCeaNP1-}X;%KtsU4{{*yAC8E9)f7N9~Cp)cB*?QN3Ts*hf&(LCPFe-h(UV z8A$l?F9&Q|o$Cb~^|>GNWd`@=XAC$>k4I3io5&ZbYTVu@72bgj!ivLaq}^6byKndL zzqp=0l^9TV+tD;YON@K7=DdZNi`m|`*~zTg4|!F}`jL=%LWPFKl}A z#f);L*!=VFTsbjQHiK3aI@#(G zGqc8wJg9zWy9o_jOlX}A`dEgiin#7zj#OvIYmP}eW$`cKeTYwonb?-#k2!U|w&b;M zT-R5_&@66Bb+L@4s+iwr2AIRr!-8A!PpG+;uGrAZY_Jc}K*7td4ybdNHoS0+8fX+? zri4YuYK8mQwdh}NWh-Q%qvN~o(W@N+vAdj97vlmayYF`TQiD-pYn^qQ6C)9s?oZuk ze`rqQ_`4b^x6g?5=C3{{HuYfuEp?|onva7*kL%r2Ms`!}TFR#@Vu(suo}O^F{$g_&z>pu zly6DU%xwJMvk+4qU`3L}~54!#STzc!u<{t%QO1j#eRkdBa#pV%j^x7FCUJ0K{M ze>|)?J^t-%+^zFL)L*+jEx}K@jP|{lVun#El~3sgH2qSeyH$f!PW&mVuGEYnapHS= zW#Q^#?p(0Uh3Umy5#6_W*CC+Wsk9W`*epn>ZpUxQ!17a(96}I1yPKoy*D{Ysi$ANz z3b!ivGAKb`I<+j1$pKjpCM|<-;Plv5@wO{c%Q)AQtSDuz; z&Bw>f)!oYxBle}PJ+`4ura%jI(aKz8;I?(e{NT1Mx@>EL2GJ0-wz8`j9n2y;JM!2*75<7u_`ku2fpJTOJ2cTx>`Yc&;{U znt|#(R4{pa9&;z#3>`VM?pF+NlHH~q5{2Z8;?3n9tT#E8opWf zZF!+Dh1>+ynf%Ptpj$bpzA#_g=wI|n24OZfayN3oFEbMn!?potL({`p=YL-3;GM1^ zhCJYiM=-i4Uw`DX!QPPCQxx*eEVKtON@rl~T!pIT7$dJjuSN-eW7uz2nBb=#NE+_5 znBj(a^Nxx)3oE(eIOt$jMiMVn+~z}I4~>LkgS0q$=su|Uj59>@1rh<`c~tl_j%LVu ztez*$Ml!1B*E$4SBlFsFe_y#7ek1@l_=;midhthve;fZVN_4Xi(SVbe)#(FXk{2uz zQna{0n`_~uytPWImiV>lV*s60z}ZVA$=LXn zw>-*T>Ar~V4Jh!nTT=37=0;*BaQ!!zfwv|(Oa@xzmcBTDd2K7)Czte z1N`6hT%Ff-fscCM@^vnE`np>iTOVsT(|TJA+NzbW4MzE$s1Jg55qv!>T*Wav-SHc& z>TA~KPq7bb0MX?G^&eZnah;kUZ!>SyuNVHLZXSg=$8C}WwiM7c)`Vd(2lX=zBq2?| zXu&zm%atk%=X_OP-DF$yK*iR-+Qt&S0>r zU*m2xTFN7H%qcy7ur=Fm4I4Snwe@L`tWG@~>8dSRX}+G}eYl_SaL_KDe=SLk;HosH zp8p0Xhm_iSFF~MCGJp1{JTaVdaj&e*>1H}Va{;_mOBUoKPDB|=1D!P!XYL@5aAYA+ zO(0M@uv-!lZk0@Mqwq%YVuxwPa3Xoh>((MO|0gFkI+*8BHM_uo*D&Mf*@fP4cBRuC z;*OO0G*)d~;6Kx*!I{b>1fCwR3SIfq>{PK+p1p-^?lW{&bNYS((ewyL+NAo`9G#6^ z1LI?3JlS$1hddq7@iSH#&M)C+4}o4?$(TRGp)EfbE!1{7uyPF8O)AhwFZTj<2~$q^_MeqxK%H zRi2>v2Tki#YaXUmQ4_$oKYd>ab3U6c#0#4L6*Sovc@UoXke}#LCO}Up2YJ<~_ZLhc za(7G;>BZt6C=p(hc!WczP*LuY5N_7o=0Tw5uA*9IEbF7CUm=HO%m4&4IirR5Yc%ui zzVzz099*yO-Td*j4|^eS?mqVX+?xLT1{UXsVR2wMpLEyz!HW-nRBzU7@1-_08aC*k zx<}lNcq3z{;dYOF#75Q4GVS{`{rH6j6t@mPHc91hf5AKk`m|<+%2U?kWvlE0``0Cb zJ->Bso|w>vx$QGf9tNUy`R=%&UmX8Xk4cqO4v`j7LAB@dnSUQG&W-VN0*6WS zCFU^!}4(Fa8_!NPGfu=Ek9@fZkO0L#1|~-SN`c8FGV2ebk4vRSg57w zz+oT=7YdGdhg;yu(+dvheG}f=#lG%mZ4{#{k(^>5EXwEpCQN8LYm#N~&5;B&IufpN zP1h_N6`-dax?eM70X1-bYmzJht_M|TDwJ(NBX^W4I)a#3De01-B1e|3230nMsB&&> zI{WX42ORiM-#ZZuvaNeT-nSTx3s#gKdvF91j|L8pP-sE&vs{HjmWBLD^z-i4%g4A=V?Qh?#R5AXTGOXc-nDz~xNttWJ!U_a?%tXn$DjiyGX42^ z3YW%uaOGV0qCyfz6dvu%eOJYv*0w*kdHri$B^_E-N&2dDDLrrauPG3J^@6uNKQZwCQAOQ|)k0 zM%>bnn;Ds2piA#Q^aZHB4gZBBt|#6*AW=Kl@M3px_xxECo6e+Q*bwT=RlAyu*)+JuA-kf&Ceav)2 ztOxQ53R8I*v=i3@Y194Z!xNl9?qJ1&*2tY2aNfd5I!Dv2r}h&xNNh)4`ZRub0F%*Cb4#v21RRa=e;)|aEB?pQLR0n<~demU8 z8jCb&$kl7YfRbQK%EXV%fhX{2!RUZ{U#JQtq^)m(%DC*+7=x`cr`CN)?Ei|5G$*9+ z74UjfkL3%v@D=L1YKQG|%}md|T?|TC*63qQE|Ab}>&_ho3$oVeXVXN$%iybq=X*!7ZQ#e! z-SzftZ2N3dg@}Ex%#TrnY|B9ip#KH-+@!TbX8eSnKTnF4fKzvGUBMV;Hd)AcT2;5SOMePqF|=P*A2wN+yQC#6fhEq7u+tIR!i2&qz8!i z1LLi>u7%NWyxuFFeB$@giFVghSgRa*&Ru+wTk=rytH_oMV;~m12|KIT0U%G|9>w!U zzNSg_0&MMNo7$CQebB)XsdHPN<+bp5yDcFV4CrSh*^u8K99tDV9$^5X5@RYi@=Q}B zC z@sQ62BH0&@3NiBDt0?tbp9~sn}+LF{E zK8Q`DkJfONITD@fIp@sy!RX}eiAEv=j!(S5dY!6PxV(Ih-rmRe_i?v+x07hi4~5KfY!TnnbId$g zt8g`m%}dG-gjagbY{V3zS8+MzrH8UH7|`Z5zhW`>B+et36gL+Zz?RNdYh(}N&E3!A zn8joXTTj;!tx1iWlSpluScBbo_TAa%v31LzFuKmkeH2RM-t6;qgDGml40Q1>pvEPD zVW?VizHUy;WqRq;(Q@rP)sznL)3IpIB!L8~f`RkbNFQ}bHL7Cx`V$1LO17xvq z!o!{Q^RTKNyc#x<;`HM>w_8WJVOHqb>(ja2PlMdi8|2ryHQm212;~SC0Q?!^Q$$%J zwVM9Jmuo}#M5$rbzyMn0;Nv3K&*$@g&O6P?qt$cK*L#1dUUzXA09N_zJm?GM$6jRH zctFAH%M*OVo11(ySAFQGsw>qHQ>a}?K(~QRKCOzkyr7y zI}e2`Ht_IIM~`5xejdX~Di&5uOzawwu9Bt)>1=^Ad|Q-ScxCf0zMj?#IKQ zdexl(`v2+}{yPbLn$_1j{w|!W9BS^cyg#A5`a=BjI_=cDIh1f@AZ;jpCMy*tu`|t? zm-5OPvfx_WL0k%2`kO_1xdbC9kkYau>M!IL3g`@tK{c1pJug?Qms(+R$pjQ{r zVOY8~5tQ1?J#LZ-`bq`Qjszo_v#^FKBA3Q~i&vKwoCGG1PGu0C($76wu^Uw{6HnR+ z8#P0YDL#Ltg%)K57G;AfIFI2xaBd1D&bTnZJLs|Dfm@xZfM)~|#2FF3Qsdfkbck=Sx0j#$J`=_kS7NIO!m|HBHe^S?R zSLU{TxsX{c9!3zF=-zEUbT;=()S}JGQU~Vtj!$%eT5Z(4!rJ3>?nL5tL}w0*BUv1b ztX#O6PGO;!rL2g*?biauxt#3imnXK}stnegMJJ;X75$ z-0-yotH&5AkMA5RIyF!?-Ov+>@`=8 zr(r#>-y|C*@w)}2tF@_NLg7%pPGuXztm)DD#!{f`--Ran3vi!26!^rOY`#Ioy zTR|gd71CQB`YDOY)NofR!P! zFOdD{HNIa?Ib~dCr%zte(}a~FWbDZ-Pii97dMG?TA2KbWI1ku-)aFON&m>(~ zi==9ca=|LM+sO#%f~bzi-gM_KiVFm)VmXv821s)?eCe4f|rp@Bd&G&eiqdP>d7kZ)Os9?q3 z?yWPBzD1wNf@}Q1Jgn8+I!#~S&rAg6HdoC#NlL)Ywl()VYGf;3BN`Mhxa8e~VINJ2<61+b!j^|Y?3n{`++$A5!#Wl@w z+P&~DyY>c0)>~A&LQ;=EKz}Vze*BfGc5s?mZ)oz|{xxsN&yd zl>y4oy!;34^#1P^z_hc6^;iSd;71l@cYh3dwAskCX4b${D7p5oCs3Ynh#2z5Q;jd0 z61rGvfv;EEQaTb|J3|2v2GEE(RyJ6L{Y$|}W`H9Gz%NYsCNUbM_T6-zoQDckssD7Mr(B4-+*bZr9oyrG`RpR3jVwZB}CtC7r)Z~aa%^<%WcQJ^&!lg3q-oLfg z$;~X3Y1j#nBd5|!tH13cL?=9CtJDb@D8^ICNwUltpkGK-XJZAyC80Y$LRN*+V6AbJ zI0RdA1xGF0wMN&(Z;K)<`)6TRPI4<6CiRKUt#9qjh3IHVtuI(ItY6DI89J?vr?fjt z$D21g%Qtc52|=i5VdwYV6AK%4Sz)ptE)2nqGH0>mT?!+r z95S0<0zxXQQS9iWqU+)Dn0L|EWR%D3ic&TP_e%ykS97_kS8?-Z?hf5TrF;w$^MnfZV|A7+mqPr6i*tAxbLt{IhLs6NzENP9ixWL1qvUE(#tbP+iIvnra)bU5+t#nJmg3 zzPn~QZ4M;ZaOIn5&=YL%cF2!O^cPZNL8+WAD4(UOT4Ji(pe)+>RVLG zu18;KTo%BmnB2?fW_rOJaM5FD1y%xq$XWohTG;b`6qKo!zssT`z{}o;rG~BT>@BHC4G+Mq5CIR@gO#dikRR?N`4{b! zoQbeQ&w%pav&F)bPXKEv*$<{=IXvJP)c-!$iTX7;OyNJHMjN|>#!X}Xg$VnU0(%FV zCH8oj&_Di*?_tl>OTmj~25d6@+yK;( ztjsOMdp^GQs>GtQ z*rT)Qe@eml6LTBXBd_%U7sT(?UBC{?l`Zfe!Xi5&_HGFwms(Mw7s&x%Z;}xL2E{8S z2PjdJQXq;!(gGmCbnxg1m1r@fEGbxdS?MpVy>O7!BPmP8WiIMOz;MohG zY__}ZX#IiTP`Tm>laQ%~1N3W)MU0}c(~9TpHarb9W?5j2>S8vGGkCwx1pfeCw;5xJ zKRY9U7TmP!zt%`!#MWl~bzFIGVqfNn#v#)v=nk7*J?Ow?r=6);evFYSu+{s}C0E;$3|)Dm!h22BaCtTz{UPeotU)@Dcqese5z%DXTVP$JZIvxO^m2Bx zRFfq2*&z2?9T7f2{uUM|iwt`nOmnKAcPLECa+$KnwaMx;KQq;q&zO%<;htWYmP!roZ9xnHMhcB@sc%z=>tt5%}98h{)b_%O)TpP>pU6;C)R`nwM zd&xt3iG-Q-?Q016MVH8{ZWfiCn`7rtz`MsiqFQJDqkxL7Wz=VH)#vP*#s4A8MR{#dGRSBo$>7D)aQ%$d!jRHvE z2P9}#JJPaMh{EE+{VFjd+EM5*SZ@3l%~2AX{rQ^sg8IyKIiy1z|M33#-$-Gl$D-BzyxCs|Usc|Y2pWqgf0caPF&-T4zF=EF92mu@5~sNX zR`@}p2Kl9Fl4%$pUg4E-4h9fD$3uhuNH)x&RUbK>_e5NEqQ-Z!9x1Zg-1-orbiQ-t zBjnT05lU#FX>9ZnFUU(jr7*};TVJ9ZZ&I`%4}-YN6Mc|e@;z)4rKQYhtjO(j+L;>W z%X@zI*U9W~*z!p*{2t|&372`1Y#v}UN!$#A3a zX%^8P1e19MxNbD1S`2DH_%?%NI6j&;N^&NnL^M_(Rv&H8x_7@ovRir2@pob$W~P

AwD)K-;Z`r5N@+@nRIbqOl1+$ z93U6wAQM{s6?)!$V3t-#PomSxJCVVEKk$GDQ4LWp?GgDWb(#JQM0{qL$`?%ZH2z#v=vt}d!gUzyldkusyPB$H@YSBY?cn$uXH z?W5{^mw!H|a9qQT8COR9;7{NKOrzjn%M09xiaK1G>ga{0<7=iJE>Rc9Hr`|HWvv>< z?dP=Yg*W?c0Cn=wss(dj$Oa~M9hkaX7tnAk-`S5i)4_e7U8s{nHkxU|Jz;K)IhSJb zBJw21vST>%*`Y!<=88KPXQw8AZ{TsGynWPXx0;jq}Cu&#p}t`qA>Pm{J8HATm>$CW@4QNnpA!6u_5yJ$c!m4eCZFec zbJjH3N}yUkqZ7xRBWQ}GeXJ7uBz+rQ+TMVoyD+1tnT>(docO7>BJFw6il%X91fN@r zppKrOz;2M^Hlb0r`Kh*le?dE=U&N=T-|FV!rYr)j#UzC}ZKu5HEp zYc`V780|SU7puA_pglq9tJU1GL`7Zw79s~2F%J<0xVt^==3eOq;*@l4g0Ijq)JNDo zmpcnahl$yxAA#D0iYU}EtNibCk$ zUCoR-d?g=P&BeTf0_t>-^R0h-+$AVu-jfkdKY!2>%VP6H5ALz^P-fJ4I7Fg{ZSgMx z8c0Fy)x}$z#g~9gFDY9a{q}Y2(;5n47}DoNn4AgJa_$I!w^5YrF4GB3!n)Fv(6ZH# zt>yDiHRUDqkye0z1Z8M6AX>%3E1e(>2I-~SzW2i$5su}C=3Z%=#GDtKg(k*UN5=H< zyUCvv=d9Un$2fi{NNHJG;*$f23@mdP}@a z!!hVAtI#@s#%JU^>T~*RuqqAvA`&1a!29_k9|~R-!Nakz_Qcy+)-X|S!LOv9gd;D_+Idr@I0m()02%HqR@|#gO__H-l&h0Re0F;$DIbSpqIb?g4B{D}avG zw>mX(YSr;qx+r$b#YC#dzYX-X-V!_$1C0XsFSw6)_;&Q*6vAAUu{A2mcv3I&je-Shh_;&Wx7gx=j+V63>=qO7 z%!BBELCAuN-(=s6V!X<3N$sFW*gIstBFPddY7Vb^7$Fs8YKIt4-Fd(HpHP!y%Pz>6 zDzG50R`_pi0I1|=YSm&Z>1#o6Z4SPfQJ2mL%B4;2QL2_!Sp3bD8`Y90(+F!^lL7SK zsUJF?oPWY~I@4lU)tcPwu+<$ldK4SWI)=u7W8JGtf7IcIDsvgbdk)@<63_^jzmJr| zq-jR1l7})sJC!xPG8La;EEIsx1snNpi!wH1030RGT0z_rK628#@d(gu!%l-LTl=oe znBu^ecYJV+CHGjAh&2nAHZSh#J8%a2Oc||r>07JasW|${ZU8)be!jlIp;BN#F%}qq zG>AMV8&6690lyb++!zzJBy#1BRl+-86&!b;GIc3C#-@{WK%XBXW-4orGK)T~5z=qX zZ$@5=U2CTWR(L^6H65@`lG3(#1~GA4{tq&CVyDgBeG{;Y+t zKW*}|+?ZKWYBhHAj=?HRX$IV4P@LQ%vq-TPj`_63!-!?D;-`k+njEdQOhZspU%x3G z$qFN@Pi{{o&(m!pM-C%LS2^FXE&aYSxnIQIhD{=Yv~WFvpv@lm8@mwGVYgX-Cx)^( zS5>C!9D-*oRSre+IoWz}tS|TQwOI$=-P=u!+?z$`K6Ftg!UFzp@>p>QZ1teGr7(%D z0hfk=j{=4&+#AQ-(jYtKzLEMt3g9(Gq`Ph+0IgO0*>k=I`E2IE_NyR(eVqHU{ z&FxvTTL->&>QRAM#sa)Mu4vvgTXbPHl%wNCjtYjX&&As~!u8wAQh=12d@djfjyf^= zHU*&@D)X1U!s9agWXlA;#E{=n^Z;$<){w82t*eqcXBDYC;=m8hDlURkx#oxUuKQE& zq%S6^ZxG$XXCWx$jzjBzK54oiKo8;f(|T0VXG?J0yO%(g<~)H(^pzFQ;H=$kiOjhS z7{O}pzHFh!`Fcxd$}`tAl$XjRcYiSPqvW79yI-{|pD>z#;(NTMXx3`6g+<2s z-33w=3`zvZDKe~@M&lM((yRAWvY$wOO=O-44(`OJotCH$Hlt^~8}6?@4Hmbg@D%Uw zS8>xy{RPZ_{Iv=0lAInwTCFcj$FxdSlVgUF0Wa7%6f4pnMh!BI?#_(kj8iU$ZTyG; z*5iPSdwZm2)8f_I!R01R@j99mk^fs3jFF$)Wy`j~T}#2R?61b2OnCRwkdpYos_XI3 z$dk%~jGm^)N+K8Dr6xn2Faz_qJ`39pHHXBNAJ|%dUNR?RZ(5>E6?1JHPW(FLrfKyl z>5`F7*$o(%H9XB0MhDLZ8N(-2k47x^YgD|aUQeV$J>VxDLn3DDcOo|DEU;mV)@pn_ z(qujDg>=D`r_9KxBe^}~RitHC-3cu8GkU)FeupEq>{K zxmUA$b3t+DdF864L#rJj{Vm775stQLQxN`tY}?v~Zrwu8M$A+S!5Y3uS%R=q4YIse z3#pQ`JM~^Z7`rI2Qf@nn^+1Wrf{V0{W9)XDBlm-fvC$CRY=q%-b zb@LEJ`!>f^Tt@=W4G$h`f~^95US8VGUZLiCqd+1y|Kv+JaejHsCm!>Qw~r_bc~XZY z*o_GT40ZbjKIKN+(=*`fuj@4;h9De-6VBm&%6e_s+OAOpAo&*)M4uMlSflL&8I76J zW3?=gkW28}oX8>h^pKoeIw`;e=+qp4b|1ouzy5i@eA9S4H>4AameEQ$YtjefgGcZk z{azM)yFAnn4NP5#fCKNiLG z{APCMiX-7;wAG|ds+{YtChre;uR+9)`|QT^HCG%K(v~4^ui=SS_OT+6||RG0GbN+Y^%om97y0RPPa6s=&vhU5(g0$J>aPRd7rBGzGU!+aqQ zkr*FMT7$jhc4bnD9U=7|C%p*KH50`4T4LBaCciBjf9G|mWshs49qg)rx@3r7th;rfmi)ZzPL<{7(#D3~%v-*(LVjUIvbZ6Fxl;m}s8H)?wU4H))D_gZ=z* z5*)k-(m-o5ILNfJQYuDgfB9%`TNLE~O`NwT7LRo%*|&~Io6ueM}5~ZoYla{ zU!G|cV&zfXIhK3??Uik@dnLe{iX_clj#pafOZux+iQ;#m|x<&x} zH0$GHjgR$-C7g0DeZFtQwnK~L&tu2LrSPR^?ZVx%5(Y@U*DgKm9A4sjOf%{cz%Q>f zQyodn604OE)@A=8o%K+UKBQhoz{kR~K&_X;mPEP(lgUuss}6SCugNEsGYg#uO?YD6 zoL~~OIw(`g@O{tMq-0FCX^_BwTOoQ zF=3MklZU|vJVsPz7JPWcHbA>zf+yG2$nC227%Px}_&KOsgV8#nd#IxiKS^w(mD%YG z3qu6kMGuZOQf~H~R-gTDVf@Z4qqm*7R>fCpLsqr106XB3#XW%D3~ zsKUj8r)~3d`1Q}NW{;Ry{N_W2ogZ~g)+ntL$E=z5RJ00&Ebv9wQ9&v5*VM;pdKgdP zj);kWk)M+x!I7zDjja4r<@9x|FdO|wzXksS?qIb;5`E0=@n+mx*2IP$bbYYeW+V{~ zukeO~r}|#6;^MTIaM`P`E@WMD0Nf?7IMb_aqNmrB4<5jnJFAaH)ZnuF@=MQJHjCn= zto8&ff70*BFjqg5Lya*L8}2RF!8oQtiWcMn~E zL7wF2znu+mLs0ChXCZY6QQ+!YF+b<}7_uHS^V_YT0FTQpo=j|2$NG;_C>HcKI$)%A z241UHbq@Rl`#UH|#W~HlVfDGv>Ura%z=K>Tp+U6S^o3RpZNk|mKhj*#&-izQi=ks# z>^48?kYHn7;aJQA`zn*Gm&QSkmVvK-Y)l`~%LM|EugeYR=WR1`(I(?$^=CohDX1av z3V{=gz{>tF`w-IG&`MWQjyhJ?H(~Bl0bxWQ&*N)uJ&THE3ffrP@?u)p&JSNOJ_%|(d7-s>C<9 z3IFs>d#P1R05XT zh2ZaSA6u7(PS^Ii2ju{)wL|@X$S?wY&{BDKBhGz&Y1y+VWT8#6JLW!Zqg1jJ5-mKaajth`bumO7k7Np`@T$lHI(} zy`@Y1B9c@Iv-Y_(ZcxjHx$5@%gxcIP3(DX=!h-sqhzE-MkvqDHoh+<>K^4aP`}x{y zyw%QFtXL^{7;mc}gPRspF=no;iNU*2oR4wL$w6cbX?0^sC`6-(ju&~0ro+}-_&J8# z5=z_BR-QasiX!@gTzWKTa5t3Icgua3+(f`_f(#cp$d4@b630r8M0xB%xvZ(gqbaNI zVUQLPDlf_)iL)&h__FPPT66%`F)S42M{|o4mZSAx$2t-rPGZaS{Y7@PiW9#mxSVS4 z4hus{9IjPf zm>1DL7eh4P`SF9}s*rpYJFp55M4CY8SzQ42!WVN@87+V7E7=!+(H84hz5!D~7r{D3 zgu&m(NkLi*3!a=>z8@(C_2~7G1P-d)YktiX154v})X6q{DU*vUj!z(i+U@W~ui3=& zeEQq9v8`)$W=UV_6eHi7Yio_)PRaaVm2r=?@_7wHK^7)<%eQT0f?o@{6*Yy??Y&xa*2)76c)j-!D(aFSf4C{HtD+=9?ULyou= zIiqsYp>vJkaHFW;j<|8&PFV{PzUpRyBl&@UBkqc+NOW0^ zS_2&xBdK10Jv@1pVM(Nd_x@vtp;IyT2BKhIPEvTJP`&fW9a({pzcnKQkb^weB!=Vi zII+AvHqyE*cd%msMJE;frGl61@)px2o(mZ&g+_<+lj9TEVx+n~YS49;iPCyDeMy3V z#ry!7WcaSwVeYab#=h@LHvzrz=TP^MEbiOmHW1u@ZKq~0Pq@E-g(2aD%^vWJgwD^x zF)`Ytl0G+nGN(Pw2i{qPo?bk{)kJb2N4Z{w@AUQsT|tVh^~M=}>v{Zu|LcgLz&Blw zFTnLvPS)FXm%h$xYTN_=$<(}oAs4`4@_J@cwvti|&N4!CrfYW<(6JobRW?t%+vA;! zAKEN`k^2_GTbK(jFe&G&0(nT6dCylVU52Y^*qw2=R5lFjfNoARI^$hl%s4BX4n0us z#8vx>%Bdxp#dewA=qb<`b&F6ivUU;NNPW{e;L6s#LnKK*J*$VSNmX{>AQB3HCf5XE z=;YhXo+}wQ;TbAaBTRob`O*=2ZDJmB0xHmCiKi`2>kL$Eyz@r zosE`0eb2%gzlZfu^E-FXxu)6P1Y25;BAbLpBIiz%9^P(#BARQexNqwD;YaYndn5#! zdVI1+P-dC7X|>}A>P1JE5dhlY?_9qvUC!{O98!OxAA^4Cq%r`{c=n3c(#G;K&$|27 zr^PdtiQ}ziH;qlQS&@pWDPCAy%A^v1jFKj8hT*J`aO)M#?viUD(jZiM#`vI53FmOu zSx*jj))|}bb5~5}ZQ)6{Xn-^jGYM?;m=&FMDprCq4gqnBRr=BD>cK(sV=E(NXKk7Wv z2iPOWmVuXD!IInb(~J6rk^3G}MamuG?j+(^@S)_qqZs zPieSrqFlMb9zO)GnNMth1LrC}>}m?|e>4;?^*P(=*g~GKUJ+uo&pVe4oF}*pgctLP zGpX%s`r0j{(@+&($=4mCh`&hSms@rBIJ282;pVRN_`&)Y3O?W$q3(}=MeOSl5q?wL zSShIvC)n>SE|C|<1Nhrtinl(9^nJZPeAdUA5}?a^v)pbRsq!!^xc89fvI#Q*;v$$? zVT$T~Qy7FCVrgHFGme7bgG;4u^5ws;{IntL^-KXBtp5`={`NvoGoE?tD$C;OQ;~YU z82FMvY^2;OT??(r78PcHLbS;@XKrNy?*7kX84@a0?By}#YC)%_>XpTd(bRhjhBPG* zEZg!Kl|P2#!8Djw(G|3vODDvU6zj5@eF*F+Waj7NGvF#n^N~! zr!0b{ZM6t5k{rHd&BPEoqTAS;C~3|MO^v=p%Y;&9@7}14SOwUBbaxYBJwWI5_8{vc z3+VsAA%97Oj4I~3XTUoOhI80$??f}H?lLn^fd+7q=-L9=e)qQNxM6OMB3W}Hk zlVeGE^*SckBqeRs6y2_Fb3Avfp!ztWI4zl2^nP4pe?W-Cz7-G8(>w@x#d)FwY9gMF z`^&xo%zf}zQ?9yyVHjkjz8{=dAh`vOkca+Y$+cIzf3#_NP0Q5Y4=8)Knh{ zM1K`sc|!c9qVGft!xBYF$Ht{Gm;h-y3$Npc^h}w}(<1*-2O>$nY=w9hGQM5;7)-ei zj^d~MWR|9K*a_k&2~BZ?1Or|^z+yH9WwU7_f!?$WuyFT(9c2&+jE620E9K_W@%xo2 z`nW;T53%50;uTA>T5$3Iqx=?(Lqtlnh8unKbgJ#fukmi$!K1f$4>G;paYxPICO}A+PnA@w`egEd1yC@jv!-*XPV&G7g)N_4Folt= z=9c)b6icmXIjxA)6XJ>f34OW^lW~6)KH6Wz$@#O%{7ib4ub#e^i5GYyB(7AO-q{=E zk-dGFDh2BW1W{QL%W`OL8V{|CTv)VRsj3>DgE((e2|qN=)uSgS<0aqYA(xsaR{ejv zh(I)dSeP-)EVB4A70w%!3VWbY!%xbk_U0lwlxsZH$P~hRS>A_9s%G@8_BGBm{amd0 z9Z4OLEI>|3qA+cVq+_3}EAK2zmJSUs8P0raJZr-w6|_OimKL#$iSP-!QsXe-{78v( zlP3Zu$B5?wC#1`aL-wAsSt8(dpz;(=oh-$FdHvP28sgGFtQzFwy<-VZ)8;(*=qDRy zOjS_aP53Pd&WX8s_>DwgbM(t0)g%_3k(||(`@$Ca>hg6>z^)}{!?p0o?rgdE1H_*M zufqH;6$O1MkXAM*+&J?jzZQALF))88t)5}Oi3k*dvR$2|yY4Xji)={Yi@!m)#iW#f zkWa1zsYt*NapWIA;_>2hs}=#(Fs%iAM{?$ukd#!uj?lEG3lDM_;>{Ft$oasnERM*o zP~yR?mUz=UoSP><@wcakY@l`?QK(0b#Z<>U(2No%w?M6fmw5H-o0OaOaWzR+PhM=d z9H;4k4(Wi@HBBe^1l<5cv8S@Bd?=59#ZVZy9;EW2e7`w-zx=cOix7?kVQU|%jnAR% zHN4Q}85*)B(__B9BaF2M+Dn2}xi7B7Uu_o@Do{( zq>*yM-Lu16+17lj@5h4C>O;ezwh2A*ft{ZGFlg6WrA}?aL9Ph0IT3l|RWDqnp9MAv zi9Sn&LHy2`C8QyNm}lY$QRD0p+p5d1%L^xqNLxcu8vF)ZSZN($ zmg0ht9iela;JF^C!fMx6tzd0`fk%VggeF1R!?1yi7b+Tg1GySO1zz7hvN3e1M#Ty< zo!&k){SnT=v^XQ}G6~Gydir#GU;lHf8=|~`y%Q$4UVqw!+w;BOq$-}o{YOCs8EB!O z9iO6x%BVRSg3g^f^FoNyaz9LeCI4`){^Q}%-Gj4I`jlv%LYbS1A%-n~YG&F2=jN=8 zXtu7&+0ex+AzTNOEOCMZ=Jb>y#RlOOp3g2T(GJEsobJHsbQD1$=GBbU#{SeJc%noA z8Z{a4Xr!3H!>^ZyMMbQcP5YvB_8mtHHZ<5$)MAVfVg5{Ua4~8EIctxW?du!Sl9S!e zU}GHDju4c_a2EeAqrN+T^0Jssdy$rq1HUgzu|^3@hMFeU$QXy^!AeW1#PS*clx~7} z*$QCK}*JaBTC+g*zJ&va!^g!&%wA~EW!w6n3Ap%F$p|3?fezOWCJD2gR*QBpa!XepwPKv~43SWOGt-*7Px5SMI z`S(lbuF^_r=9H6^N$ku7jyvh6&hDPZLt`_g96JFZb&r-nycY+$5qYgW^ZSO=C&@QsPL(HRChdMcs>?O-^yU*WowxE|u zph*=}kd~aUgrzC}6rbj0#5q<~FWQ$u*k*x0C>0rh44rHcBJcMVWr%IOt-YD4$&M%U z%Xi!onSxdo_M_l26Up>RakR@56NZJacoaD`+M|H)F!Ujqy6xd~g>eF?J1yWi>#VM{ ztYj}S6OO9biTiMul3$R&ni6zQ27<92v%t3^YFb{2?i4J#z#l)s8p96EeKqT9^(tSW z9k>{OPA%)DfarO_M>xaB=fa0aiCaKs@7u#A9ck&9Ye=g<&ht=D` zK*E;QdOTQ;eza>UX`;vAEfKd0z8Xc=J*+M_jUmj;nSp7uPAYP;vP*k7M)icV$Z+Zl zu#4d}6sY%q+nTwTuMPdRMs1D2WNMR+2;#r-ZHkyc8@@EVWjK50j0+U$S6fvFun^W zRNr#iJ|Zyit(Kgd3s_gC;4oJ|o;>L^`1)_&Phwp;spL;{r<}-be9uHx?qr`JtV~W3 zva`XGI>&gV5f9@8;?woY0g)CBF-qWnzjDBS4MDyJ|KX|1w(wBE&hH^5PN2&#-fUL2 zl}>mm;nkCIs&L)cjwHD5(JmjU)K@v4;lCT2N5xyHpM%Gs1*+y4Arf_43;z~41zkASW6{xdQNSBI11o2 zx6~+HKT}qV{(RWDvr63R-#GXwd?cCIuOT1$FjPKFY8xB1Usg4Ydo;X3_{bCMs@gf{ zQ3p{7g1ya_A9<7?RXgcZmsl&GcDk@vDz9Ci5i1U;_5Qnh8nP;Nloz5_&>=kcg-1Rd zVIGboM2sVnOW7eAbN*gRXcant(e~cr(1!oAh=h?;Jd}wGuBk$vvkF!J`P~XQ+yi3v z+qyH;{aW|Fo{9n?TqP3`a-lSn;-Zn^&k*JrLJ5y?1 zjm?g4@pm>~{Pirg=NBHQ7t<%svETW41_Q?`g zPX77Fo4Nr92jF+5EuJwd|(d%yZL~)5OoA0vxp{$8+<8d&5jT|N0#Q@WH##Aob z)PkU^D|iJ6mn4%48^8D#cxEqfibMI2xQxM zcmg3C@QQt)2DaCK1DF>nWb38SW?~-2)(h&bI)3KfLyTx6cYdn&YpjKVA{%fJUItXZ%hvTnmn_Kh5r6}d_@|~Ss zEOY+kwxeOfDgB)WZ$wnw_V^j?~z%0wgsvnwLHe zQs(Ppj4}1cobpA;w(QLB;nu-hcCUFPocw8HUq5<^$$Vl+!)l$oebU{(cVw@QPZ^sk6qUx`JTA?3Z!?iXkHa`%(!{@f|9RO6ltQ>xPz()YHtaH^)9 zoJSOYK*O0Ghr{-ejaCUF7JSn*@8XWZHpxe^H*4SVi7$R=b+R|Lp@)Ua1S^MF9G8nf z)r?N!Wt|&&^p^kFqvHJwRTZ1E!YW9{3*>VS2yD18H-DJ2CjTCx(ZG5$b0mTC*PMiNL4VUyQ?%}I*l3*_M!1iqW}U!KI~-xwIJ1o$45 zGwr6(WIws-j3=e0uzVp`TCv5n=zp%Ht6@x#beSn4UBE_P>Roay_4>vIC+t;xd#LUmCi9 z_FSPte5a%X$De3l5*vpL04zUb!PFfzNIehE6XNf@9j99*~lmyic5MBm!_fxX254SY)tLlnI-&_Fy$n z@!nP{=J4t8^5S7Jl5{~~!x>`>m+t3(Eb@5r$x}liBpT8xEu{wJ8Q=sS`vamp`_{Fw z{dktByk=!TFR3psP~(2%X!@E50q=pf7@Y+wIv4C(;rf2=pqq?Z#Tj(1%LM)7AZ%3+ zv14ygcV&u%-|*5J^Or9^i?srIRsPSUj(w7hvtw99!MpaM5+aqn1?CU-c1Q<*#&WIn zk$o5ufC(TW!4YsTci!wf?Sq-%w_ai&1Y5S#)&6)Z4i;pD#1E$~R`yh{Z5r5uJPJac zlJjGq_h-eC&UIR-{PhxwrqL#~9woUN1RQz|J7>^F*g=?|#&kJmDZr^zMqUjMmCf<| zf1XNe;T1;ZMMB5Q)fYrX4)d&k+I~k4TYD}ot~50OApQ7;9gKS2y>{X9D?;!z7dV%*#+!`~@I2VFH@$j}n++lq2*TV<{XcXc zCDXiC7O8k^6kx#6dezo{shT;eRr!7x3wZ)&GOxzvsw;A(@WPbX_t^#^c7Jpss=%*t zsp|YJN14xM??n{!X{jAuj+7vY_HXDc%u>`BVx%-?zl|gK9 zoz`LZMbRU^s+ln=#=M7fzrnC>a{8<*NmnG7X|QYZ_(Jd7@q(X!f`%!jd*^IPme4Dm z-jxcOM1@MbKl|@3=hO3Vsh9fE9|YU$zQO<@=0tv+e2VM=fA!ngh+s-uj4zNzZd1@&j9Il|}&Hu!F&3M7=T5rhic_BD=dr;2||>7#eY zQd2kUJ5eQsTmH3wQQbPZO{TLB)j07f9KU@0a|U$geT;LWdXM4}{kK&*g2(jRM~VjN z4hu}x$-cYvmQEoEk6t&b@y^^#2j0&l%)Xh;UVy%SB`YOPW2!1>fRN`|lJ zQ1NT8u6R=$U$p#ULj>Y?$^iFW7a46Jo+3j8DIf8gN}z^+pms8UbqTixv#%QPs0_Sm z1wjg3gVY~@ys26M$8o!h?@S`7h#sfWU}Ww4Ni;>A$Ax|XXgZ4J!{Wt!$LmKlB%^f+ ztcfpQjWZ*qz?`o^TiX$y%j+10V+><*pK@F8x+3)MxDjLnH>Al^0D8?B-(zZ{uaD{h9j$s-|8hM2!Lw9OL~>-iPH}VW?hDp- z%hBn!U*Z~1hjaLWK!+Z^(u;v=T?>-Qh52pFu#{ZVd(_?J9Q$z!cVjY z*D3gHSlD8@zK7UH2kTiy62}}Maj$=95fv)<-PnKJT20giyD5x{njBm}wTD=2$NzoEs65 zRJq`ZD;BWt*44FQG@cDDcNdP$4vMT97+6)_Rw{Df!ywp&?~cr{N1h#Gn0DcBE1#)i zDeV)j>gQi3WdP2^4AL%$vA)V*3dzN2j=9u-P92C0F;`i+^w~-F#dBjFY8UWN33yze zNuv}2QS|dF)$XMaQ$k~k;F_fGJb3wQ0yxgJn+tD#lH{7d*}IuHoYb47Q%DoTKW{SJ z=#~|FF@lE@J$;nHNNd{zoO6Psm2BaY1_r(`3kwI@&z#sj(UTj*E_7_;&%9lKi?L>Ubn0L5n@!=VJ3Tq9T7{V8>QZ7(47_>(t6z$-u4zy?k8+NZp$qp*yp~s}%=n1qMSg%cV!aNa-Nc|VjCR|m2Ay}tG zs9M~PjZ`O#`{mPcBNp6k!VWPDc-2aP+I^VQa~u|?E*i1)af408EI$Xk(lqUH)F$Q4 z!~{;ux|VQ)LQxZ>B=Gq_46JP8-Ih_C6p;3GNSI1W5Y-Pf`sXGH#c^!8#;_?5OPYm}4Fw7% zs-#7P7>S$k(mkFYVEXOad*H>+2b}T3+LhaTLlP*|uL;Y|(UwasvP7v_biS+GT7wAe zYZ{F)t5(mO81-jvj+-UY`Kesy6lM)qB4Zp(JZ2?=(edHX8?9>QPU*vcE!Gga_-B9)Y>xlUlkTSF!H+SGNzZq^UpGky>OVO)$gJjGO(yK5OJu zp>%WL+-cUAwCf0Wy24N(h#W$&(1n4(pkkrgbEovIZhs8lS&9O}6mw$MSzt-Ff`6*B z%*c$yaY6BuJUI=Kn@#yrq)u<4 zqaC7R)ssA09?Ys9@Q%jaK}+QnJ5oRQ1`?>;W+-X#C_6 zE)`b|7p*9r#W7t*Yk-%6WQ zQJ+x6tnTJj8$!kHG-|Zm%rv9;0>-Rq#Fdh$D;z^dxqXk~ON(YFfYi0bnE--Wo&I3m zwhd(gjFv)w;z?U}tVNXRQOB~P_S8lng(@#1&*FqFA0$W-C4EpedfTC83q5kY#D`@D zb-Fa@_K=0+RwtY+U*DrLbO>G~g~oDKqvZ(+U9*&J0Zs#fE(0O3X8Rmt=HRG_zqE}k znYUz~jKjj{{au^+`pHLM2f{zspCtvfTD3Gi%?O;jZCS_wK&L?XB zU#Cn0M=EA6l4Bm5kIfnGCD%#;7dI*j1U6i>H(CQ=l8j$}B^qE@@`>r8!W+-HEiXLzYFc$- ze4(6wOxx}I#bzIP{^siDH^t>EHbf}L*I~W?Q+{cRN6nsyE@M@3+62b_jFst03gR3e zSO*q4Cy^&vH0D2tf;FbIY&JToj(OE#!qPZXy*kkIR!=}5hh=#x%%u9751KTZv_f9; zrg+W3qEW%p(U<_1ByW!Dgo;Qfnlz(#>fW<|f90cfZWq?z2k{kz)U?n4KLJSuw)++G z2u6i~ldE1W4aYyBBD>Q%tI%qPzv^!Qcl(-vF#+S;z+AjX*yS)KO~#{_w7eAl_3awj z6D0_T;1|%ZO+LlKx@(@#-ge?Q>)hXAODoc807davdVs@Z$;PGQQpN}zbTH&nhnEL` zJ01so+K1t{Bn@7BzGdt`h-94)<7h!ewk-_TX?8q_kv9P4&A)ob4UcWb!xQ#D>Y=Wx zLJk`s*%s~vO4%X|4^o(luocE(cmWbiKhe_J;Fjx^Za)q4?k$C+5?6`Z5^&1f-kf!D z3&Uk=wXz1(S<8x?P5jX^aIx0VWXb-2=E0uyAxd=gmG047a^aF0n?oEE*+ zX*`8Idu}$E&YSMT!O3P~GwkD}vnmeVE3B6HD(OhdX69+ZqSL;%bAq6Z@woMW*5{yC z0n+(^gc`2R7WB_#0qd9RIl_qYG^_Ug3^xVsTsPXAvMC&Z?bmoWa3vvYSL*Bb|9a^{ zMwob;go3AJL-bg_Vt@D7H9k4;|L?J=5P)YR4FA|Ig)H^b5_>>XqM&@#d60R}IA(`i zQ#aL9e*6(ieTYSM2Sn1I+IvcWUVG^|aErV%x|15>3@GsFGjR7PAR~5@d1t73EeSK1?6V9AR8@@M95X)p9U?zG=QGURy zQ$f%(PO)u`t=^y(n`$`r=+^h*ZFI#lqoI5nEn%tHQXs4Hu@$M9BrQ1ZSyzlD4|2h~ zbP%IqA(SHgrZn|4!qjPhKpq5qm3km}K=aF++GITi0^pQLjXJcM{CPoLpRz}V?_mPC zmgfC#0X!}0z3J;}VWA0BJ}=SDi9de9aa5XAK#y6-yxy1Jiob)+ z&bxS-Qy&TQR%cohY_*n8+9tOL=yTjC3bqI+&5T!CPGD$CyL zY~erjRgvG!iS$z|>v~K!*o8SW4GbI9Zm0k#;$*MhGKb#DB!$p1mp?!t4&pp3XR zWONcY=?KwO+RxaWUwC9Tq)_DEWo~41baG{3Z3<;>WN%_>3NtYvlL8SZ6EZV5G$1cb zWo~D5Xfhx%IW{vhldpdje=#sJHXuGe3UhRFWnpa!c-oA&18}74);1h_Vo%VqZQC{{ z?%3wU&cqYj$;6o0wrwX9V`6;SXP@`XKJWimeP4A|_j4^?Yu#(zPc<2lq6(dmiJcKp z+|JgSj)|U;8z3U5%)|&_WMrXdWMqaTBU80-wg&!N3`eF8bab+?f3xNOhk=MA(9roq zCTi&XVJBy23y^lP1~9PznAo|QIJg-Z0nChyT>oQe=g18ZHFUKw0m#t~Q7G~zoA8G#Q5kP571z_Uh;-LMPJ3z<==xAYVXbX@tbT$Xtd}K5>v<9fy8Cw9I zJ^m{MC9k=&vpqKhe}kKw8@-{86TO|I89x;*z|F$h9H0zz0y??^O#put43Iap0sdVX zJscT8)!f4AZ@G${sk57*BM|T*u(mJ;+B$uBxY(Ki9RVN70V-0m00n!X?cc_-e;d#O z{@oh@6Ft*^!u{L(uRs>I|8h1oHny{|H?;Mzur&jiT37=Ce+uHV^v>?iv;ad}lfMiN zt)1*X{0&_VEvyZVJ`DcF+z=oxqy#YhDDdCqIT<@z*gHGXJ6Tx&RU*S*VLrMnW@{p1 zXJZ4jb#{XLi=U{4BhdJx?H&w&pRARwotv%Kzk#WRt%>PhMVPqQGpN~GIJf|%ME`B_ zA%goOGXpvUf7loq89BIE06+%-(B0Ua;ji$j9`?Y0DVhEfe^lV(Wp8H>F#RY3=wo3D z{P=xj<)8xmcPx3kkEsO$DE|z( zE+ZSG@y8d_|MRH-%jN%X!vBi$e;e}uO-S6u+WKE=%75wqKWal83u}*m8+;6{i}S|< z$k~0Ye}V1)Hq`+By|i*b6AKrc|E-mBHvCuwAzL%+|FqGVi4=zT3&_}gKj)uloz>hbEsq-H>%YWp5PyK%sALNbygV;WT8QWQZocRApSXuv) z*x39@_}3^fnEV5Nqy+wH{$I$!~X!Qro#W{=?zJ#OxpN zgM#@#;76k@{sBL_Vf7FAQNcfRf0SqQe+PbCJ`A@1fFES-{*?M*`|&dThx&t={U7y* zul>gh$@ae*%gXd`>3_GC<%5+y(DCEN^AA(@f5|ND{xpx}qcjH>J7=JYk@bHEU}E}E z{i7#LA5}a3>DdQWC!meRf1efGUp7Ej;6EfEL7YA=>;F*rpygz3==6_vGJUZ6f0Op( z7G!WXcLe_9cs|N@cC-73!$%C4f54B1yZ!@yFmw9@nLoVU{{cV3d;9}_G}!YGxsOPm zK*zsR{nt%m?Be**VdsC{^&i*F|KNYUxq(1;pfTL?f}Jr>kY#O9+e5X`XE(b23BFmf zeT@_!QN1FS6H;bA*fB8-*9Y+J_ zbNY>?&`W!ZIr?$lbG=-Z*{KVM6h|8yAN)7!*fhD9@KKU9)}mKQ;o88Gdoyn#VfH85 zF;U`?CodQNiZBEEu z&@sGowjA%PXrGFPOZkqiIg~|fH`FhI?}6;{??#=;mzM=N<}6|ce;FZ^x#?ov;kg?z z6iPg`z=pZNGKR~o3QT&@QV&Ae_#L*Tt3lF2Rw;?z{l&`R2;Be=%SWz!`g8RPwbod+ zd?lj2(@47UqXz#W;lSWNt~-;Xox2}Dg!M3v?bIJHE8N0_hoiSuIf8P-JCyyhyPOnK zC4?fuitcykdtr@8f6i2eU5RWOV~{jd`JQ&iyNX`iXv?HT$tVh!<@#lgc|*OIzbuIs z_Tp6g31Wu-ZuDcWZC7}p1VP9^UXLcrI9LTI(QhAaRKI$|75=QE`jAKBxdqa@I5WOW zG&;RY>SbM_Tg=+m1mIzdN(Hx$BPUwi^-H_iDKa)>3u(~b7ZS28cRVu%p9o``_$r-rYd6q;^9KLm)9um% zCEXMi2vhq7J9Y5F{ylrfT_RV>cJRmNv2(#4Mu4X*gMC5Ud)VtTdF{-9ld~ zqA1f~%>WqVeY5XVWi$w z@BVg5yc35L$?)*g248>jW)d(lmU_dazVo&o+g#K)e?Bf{Yz&)UZsY`QRvi1mG&EFK zrwa_@7zo^OB%NTw>yPC?>U{6G;dEEzWo4Sjzu|M9e2@fLLHfkQp4!~x<0#|8bj!SJ3Z@j=YdVI@b=Z1fJ}GO;lfY1rR9KCfz_2rCtd$uswJ=bqOR%% zW8lCze-f8*6aUAxob;nywiaXgSd6O|`zChcg6=~v0L(GlVK|ML1&8k*JTX&sMoWf% zO$PhdFjY4#mc)pRmtmNQwy;E2I~)PN$0{XagbYPUFS7#Uta@@KyObg+srB>mQ+X3z z0@jvJ7xu{(ccUl!Zl7(TR8QR6 z6As!)b4=uQMVitJCRP;g7A6G?HJIHAk2oEOWKCu&cR$;meBEPGXNVdS<`b;BeL5pz ze~j#OLT9>#Fn-q>dTVprC?38>V66_7F?MRGaH6}CAShr;4+ zU_yjhN-}{d9r9qm59nIi0N{&%Dha}twPjPeb|WvPJDIJn%98MWDB=2r%{N35zehRt z+9vg4F8@@&;I*fK3P4O@0+)3)p0~k(f3#>Q>LMQ^mOK4r(cTM^!gxN1>Qu21Ybryl7C5xI z7ycW?7s{xZO_+u4t>WJX!OPkee>3Ti+GQc8{oEfQim>%{CN$N6Ya`kE&^H6^%UUd0AQ8PHgJ;lkVlmF^c}^#x6_*jaETHx&(C zr#*4h#xeA(v&Yc~w0|%WP?zluenYK_k)s(jviA$&@men%gY~aaV!=F8e^=*O%557D zn??MDTB$&v^ON!ESpc4Z%dF^eCtU@{6RI>=s6{>L)|~xn$p^= zvO9CdXr|)ZI#JV6*?iLcsP6Xbqamvj6IS)uSHKUh9S8NorsAA(x7> zOayzONqQaDe3d0;Bez5vV}NsM!MQvT7uy_9bgXtAzMnXih~Vqq4;~s0d))#zcN|o$ z9SJzSbvCie@wKA_3{<>q{k7&KiH7^_%VR%E0wDzJMzra3CWAFj7y26)n)BUd;-?#a zo=aL^&*A!MGB~@|f2z$Kckm&`6sG``g&`bN4JL8-$@96R8ef6@vPs<*!8=ft z`+c_`EeNd)+^MUGi?=}{=97q+L9qI9p7~b$a32|lQo@9Ip`BuT-_A5jpf71zY&-EZ z3rpL*BG)3(Pp6J68jsxaiG`;_PP4xU6B`Kyp-cl2GW75@)`Q8J zS=~@etv%rne@N$;H7?L<-PVH#P8GO}-t+f~6^gRaM#eRIsl`#htTPlDc$7sc)xd@g zC+aGF@A)iFUAAVSih1?zNKYPcXQH1kXAoErqC%!xC*LB&5mN<2qnx^Ms^eIg{xYQX zyC3aL%K_-qRs zB(=QdOqRd*o|Mt0Q$oejN8a(0V?JSjWhMvv{Uub5{BvQ_zCU{(za)N(9ZG_&>oxY>@4BTAXYHxy5r?&Ey-j6u_zO+k6 zHxl%U^H_j~ArcWGjP$}XhN0K+)&6;UL2$r`WedM$WFKtiq?lqtN;j>0S2Z!0PAqR9x7kHUIk}^rB*yz+X*im zmnXmyCS|%3F+LtOMu;Z{AgpgbotKJj8tQ}vm_8`Fv-(K}=U{mMg4TGc=UJ5?SU^YC ze?lW>5x!+xzIi!#*p}2Kp8cT%^}v)gk$Ps#CjY=yX3x*eA>Atcdeh*<0Dd0v(~R=A z)Ez^K7SWksr*emLJVC;#zsaAQP??nL3p+Y_*prP%C6z@3PK4|5v1QMlMoFY>pR%wX zzOt~Pb?1qDoqo=uRwj2Xn_O`f#OA^Ie=7P#1Tchse+0&Sl^*}`eiM=E5RjOj316k$ojXZwrl=9 zFrPXUUUr>@+J#|(hBOJPMf5{H) z``NulSQXa<$Dep)-Kk_B7lQjE&v%xpE97V9V?*IJ!#5si6&wl#z2@KCd(IHjHI{8t}bmDMo1=AY-u;oRp?hErCK;156W* zCTV>?{RQ$!GzTgLGpDs*GMkMfLw00bC|1>UO7NV{C%il+_2sjl3KY{le}Lp>wgtr; zaZE=kMAp1ai*7&QtBT{Bhanq4PEkvubbgA5fD7Uq-WQ0{X)G-e%*bFtHoy4w&1p(p zxQC25e)!DZz{X)wNz2eYp15baLE~Vfe?Z=@lre~)iX?dw?>l5${5b^B)fR*k%|BB-08e*Uy{3$% z|HiOFh{(gEZI}CMmIgh`m?+=<5;7^kXj1NNA$*&`)Q4p=Dg9)$XmFQUqBIGm;*i2r z&S@HYj!;uW?bYYyuA#9>tFPgk9=zY&BAMm*AdzIpMWlk{JIwHSe>9=~UQgF;I>mjm0FZ28&a+T3(i`1}xszV6OO;1}zj));X`fTQx-c z^)I=wl`Skgr>l9IqwgR-nIfv@Nf?M)Br$ZsQZaXC&hm%=?DEHcp>*_u%tKBEFp8p z!}bHJz-{oP6=F}y(cwa7JX}aKcZ8K%E^h_sGumK@D6U1i^57S2d0=rZYZ!!u>SH-l zeK;)moFB38)9>q!ba0{Z6B0Ug-!{}KI)%}e8qo`}%346X)bl3t`v__zf72o78KFI$ z>@@jM{xkT6i~&EupuU8x#~>;1e7$qnsZ5~7e|5BVKu`B2oH`z3;ZNc<;v%7az z0ZryFJ+Z7Ml4;|4>5JECdfihFvOv4qj1;xAo39A>h4JxI9Q>zL0|hs!lD4r~U@avT ze?lC@$6lf#%DfEB&aZO)gSU@P`$c}wR$Nk=xACU=r5V%UJMWXP&opSuMVex##YxCR z^uM-=x~6)Gsijv{I1sy5vQLVcF?Yu&tZVD=mDO zwtSNq#*_%?ZPh)z7W_A5NMM6!&)nT5OWTYt+|MQFv$r>`Z8n1#Eb*`Uf9dYs-vYta zvb-ZHG~*ivLxUs)k<=ED*`?rh2~&d(*Y5aVxQEsCpTUOt=Zml}U1J)bu3-DU zJR*5RjXHN&GEEPp3mrPXMPO8RO;^6*j7hup(8>^cgTh|d2Ty)if8U6W&45dJNmmN0 z*IC=(RqNK|#)Al0Srss*xg*=EfjyINT@zMe;|h5Q?5+d-R+dHFyU>?WXLh7|+_t`_ zXH=@u4+FJISxZd{h;oA}e>kGTh=@wq4c0@KCvvRl)$%OlEes*Ya!lqCGLaJbY`_ra z?*m6?2>@mH)E%|He?}U6jmVH;#ibtim!ZR1T-PX6*;kAluM{eipa|^4>|1-ns+*b_ z6T4tunvzuH=*FrdIMdqG7^bTgA4V0Ei(CAXHY6OrlTC^W^5u$|j901oVCU-rxVhdo z!S3~nRePmEd1amAh#X%_A+{tf$a)hL88OOauow~>ja3G1#X8?j4O%0<0^Dami*#aD74s_Viv>(^U#wPr z$itM3)&Yq3e-Z4fpy2BDj&amRybBHul(O<>gPGRJAI`(SEEOUpBy0s!&Ma8f9vEO_ zq~0Z68SXleoEX&Bh|7C%^kM}YH@c3Rgx+36{K`*W?Tf~h=30{>=A}jxzRs@k^WUJY z*uJRERw4hCfQ~A%ZHoRC#Rsj8cduAJ?kE`#y*z}!e`Mqu{X@sjomYw@u@hC19^yqA zO5S)1@)}&4z|uL%$IJt^)x$@PleUnzg+jxt3~(SYAw#8BI`|#YUS!b)$}BN&1(7)L za#9h?eC@hnJhFCR?%ugg_pF^#Iwp90U!H3gP%lq;fOf*zasbaZYLkZ0^I=+gH z^qL}We?f^~fc2f3XPnvljwWpWJfbZY+n=iq>LLz$jTTJgZ26!168A#V!-mQ@b+ZiF zVNh;|?mEn zI6{bG#EE$yJdOG*^EGF@TD26i`lSU+BaXuIf6d;n+i9^~_~k0B?1iRH729g<(a0+- ziyMuwuS#LLD}br&DOL z1sT_-p1we2?2B60=LakpjUud5{jHG0lVCRt_aK{<$QHL$aYIqSyLKf9isv#_XH62$Y-_cLc$HDjZ9XE3HYm+w=<` zU1m(n1}+#X3u9QVG%yXGLI19-Um)ayX?OIKTIN?}5Y8mAQqVrDJsp*d1bUaJqiwwE z1yK7OJjt%r#PEU)Mp7xG?M3yzirnUGNA(uamxiwTUv>$GUQa=#*aV1_!se^Wo^ z4;xS3+%ll(KW^oHPCM(Ip6N2k;rS{d23^4w~hV=75*!Sef#22`3vavJVRZH%=!zx7yn z`E~BpcjRGwSxx~7w+9M~&)xk_yjaN>$=PNd_^r z5!#kFlM*ATXNTm`JE&B-~JwYFt}w?(7kb4PUR(Oo|$dLW60qCk|OfS~EpONV2Tg zKpG!sfNFTe)4W&sdV^)5?va+Cs+u9iE5VI;zFyU})f%udv2q!mMLLmZ*A#3R&F_%v zUeC6pfkp$@`R%hkzjXT&5KuS;IuSA?QUpp84KOFGVHh_knyL@ z!Bc{j(~TUW0sK9RG<7R(B2SH`I^s&Xyg0@RpNC)Z6p!1c!@gil^2La?i;ngW%|?P+ zeX>}L;!v%pfT|o{t}NCh^<{zE)^4n!ox&N($j^aYJyY_Fa&#B0e=%W^N6f2Y(YUmW zv}6^}QS@QEjDOOs4R!N9D?3!IfgT&|=E&MaheQ|Wm%e)d@MwxTcJ3b*bP|zuCC=>Y zS$it?4%&9DK}+1AHgLzA$D7D*J*G7@`+-|h^LW=NIyKx@JW>~3f}M(&1J@`I znyy;Gn)IdeS_yAFf9Tj(w`14o1}Jd>G_|n+BG;Bl>)?-&UR`O;Gc1Ye9|Y4y+`)k^ z9Em(t8am}Yh7=!y;N`6iK!!*5x~%%&S+r5NisEfkLwo$*uDbw#5Bii)5scGL`ZMks zrAU}7GBC|TO;_^qHGSH^u=HDfQM{4d=TEC?2hk&6l+}&3e>?Z^Q$f(m2b{IO`ELyL zJzR)M!%a#&jYOsw4(oe!#4k0@)^gjTO{ECB0(nv5tKlM34_V4gs(BhN`94bx^o4l7 z42rfHmnTDp)UvAC@pw)gVfvcT+;8^p_&wk*2suMV@OruI$;a5@y@2Y1!EMMKtSsJo zq0Gy_YdlxRzxIIA*`Y|M3Gxs9~7;GMD)HCwB%5naIDnX!4 z!UAqx22#gYy&D-8;M$<1&#QqCGveafJy_B2keA@of0zZ=kV5_AI&}FVnqT5F$Vr> z9H^oxZc=nl7&P?rVplttBCdmrA~BSMVhEGYp&zO4VXZ z8oa|{VI6QtXol|USc>CSLS!?iCJ2QF*$rhUO@P~Xc-g0X;;p$wQ1_il%64x}3td(0 zgjAqyWgDS!zjXhq5XQH9O(e893Z6Ckn7D*@zC$ zM(zgEg3yP6lx@bBte)~}ofuywuT2G3^Z}yO7Lne}hawXeeY58EU7HpU{=u)BsoP2k zfBwtZ=zX4WJf1uaOS?bv!H4Q#8-SaIW_#^rDG%3=9LY!6+#P03Ugw>e%si?YbW7_} zHO^QtP-FgPjPb=9x&snT0enQ#@2p8(_JTj_X+OiUvg6|GXy`o^J+11HP@0=wuEqs5 z-0pk5zcE5oHz!T)hlz^J=lCn-yB3Uqe}knKm}Lvz=r4YkQ-~kB`>|FJioDiR^2is` zowH(9=&%*EB17n3Nc5V?eW!vUFizu+X787Zd6ae0eVu*ZqKLI zQF6`|5xK5w*X1*@I66DbA#HgGOpnYBBER;U_TpLA5Df?^sbJ;8B$_+-(^5Lkf6g^E zuO}3Rj<(09l`mV^J&`O(26^BHVPGMXD=wcd?wjTS=y;)Fg)V0&>*XaY`ni$L^WW%neEZn^{wX6vI?RTFa?w;;pU3d}l4blAc~ zZ}_0lpwHC8;(VVClKKohuQZ{?f5a?PH*7F<9>po~iOsvNL_eaN)anVh=jw3xWS$W6 zc*bVDKBGddOW-VOXBKOn|FK#C3rn2kD}5@SPs5xt|B{DVyK#gDX<&6;`p(&}Kkin& z9tPL(`-JY5rS)kyS4S5A>K3`C{%7)T`7l{j9@GzQWM}S*Nl7XLp7!wte?1Xw_5FHd zlPt*SQy6{tZFzC4rp|2xYLC80hQ!flauv{oll=U}pChm5N%`#_*=!0#ueTf~J;&7) zUyJUX&h%NYx@X`G(lF>ZCiBd{f@~wsNl^S`pxj!@We0vu7yYWzzVXVFI2>FeSk&-h za{<2-zM6aF(PQ36)d8K_e-`2+qzE@L-h|>aU7$-1!M5Z6@++@Y-=u=>0EUm|6c}h0 z>bydhAPqgu&68pI3nMzn+m_z4!>MeS=j;OPD5?I2EXZ2Vc^~YTaXIA1ZxjD6F1>Kp zkn?M;egC{@hAxg^NCeeikx%dZolBV-NIlbJO%(~2N}KVeGGRDvf0JdgK0l}nC;2PO zeEnUhbaqWR?Yv-OUG8iPqK6T|(Qa9-dEC$PcyO8-I=FCi6UHGdQ~IUOe;r@95%GlO z0xOctoTR5oV7AC9ta#b$%YM!(h?&fUw?ilc8!x~12TKW=^@Z$jQZ1AoFAr{%&(4T?pSO*>Rw7b!?R=gu@*-{H zwPy0jBTj^+Pk!HW$yYW_teO)(HX|pDc)R$FUW{A}W+;Ab+5fh76n0$TUqVyj-hYI3Pv^WDx8_ z809neaN!3^%UUQsb(yAX^5egT6Ng7-?}Sg=4f+<&eJmtsO#p+dfR&!n01;y z*E`J>aj`p@=Qr=@h7T;(U#gNQLYdQR8~FD24&8Thq~#Qi>6kJjVA+?e`Bf~tzp zdcz_vYkWrCFAVM#t^t0nX=MnreNNL*kiPROe*$dgPNAxz2vKUu_-=451MKKc+w84c zU%$*MO)u>&b3vm}#s>EG{k(jHjVNc+Ah5Zy*8MiqoA(0 zuMX*0sS#x}@muYY^HS~gv*(?`x%;grY;J;i1?yl^ngIQ3WM@|~7zrAkewjTUau+cSvQq;)6GA9rd{FPPJ zI9qF)e9v%ogC59{T4=fA@1m9Ov@Pb>e{=qlCSF9sTab`JEA5DLsXh}a!hDR!`^s`1 zUr?N|>_Sm+7j{nE*r3^BiWn3E2yJak!mTLr`t|t;?eS9bDLRIpU@bc*wLvR81iQ6l)(E|+p$N_o)b;*vO8g;E|!jBFA&qne~nND z^8Pk~HJMTjGuz_^U=dD#veH7I?}Dy~mYO#x+)Cl5pw^0VMch$(+{CMq{&9a5Bc zc-I-iZ+*zQAv{LILA?HEoid00%hA)IO4X)+VxaEFH}B)2A6axg-@a>_Dzl`HA+UQ| zHs;>1PERbawuXVlRJe#(8J1ACe(H+f}AqqD*(DcLGff0K7egw*Vm zETfLmWIC$5Q=&V)48Dnj)R;&)s)YVLpty~`$WirGJw082f35zjNoMX%O zCdshCIU3+5$nnJN8m)~@f45dgN?;<`LTlMHg>JzF)XdMZ3l)IiQ?e|Y44QTO{2TA&qS zL<3{7-ezx|!)H^baDa{44K0uIM4)Q`F0|FE*^1~(nz3iuDYy0;hpre=z&8moJ8>T+f<`hxsm4^J^!t9kE#R{r-m9f{T#l_}lWp5Ju=< zX7|joE#DZB6A>^XSq_Uo8O&Z5o&I(%02+)l2pRLBrw0j*MjfrLzR?6)ft{%n~@&dh%GZ*j6f71a6ufF!qOsHi=oK{g* zb>z6z^^wot_NAEDmoG`iI=cB3)rk*C%7SPZdil+Ez0qn>efQ>IFhJ1W;!P;@!Lv(>(gHE``p+`(z?irR&mh`{Mu zgdD^+*Y%>Rf36S$2>wH8lxLA5uu_}T7a^U6#_7aL8Q7%#C5Ef|gd|aR`^V}D9G#eV zE9M_oSXM@lQYpdQ;rG*5(1Bf9DD8d@8slN&JuSMXQ{BsT#4q#@@=MB&?CbWXnv(IA zGGQX`&I9^hm^0JSOmg922Uvn+ecNg{Cg8GP>^?(=f5US38@LQ~LPsf7JU4YjKuFsg zj~=}ipdm2z!w!ek3re8Y*;lk6vnA=h&;cwncwKFj(nW+AvFA&(YBrTt${& z31y~Oy3Byx5{ObkyG++B>Fz%mm$h`|uKJYmzB<`;5@4I{bG$b+A0n}G?+c&Yj5p;2 z{MnKKf0o=;lFr~?O8J;WQ>L+IL%WG4w*qN@*^{;#;&RSMP))UP#eU3TVtUDKGXG(cg^Ijc?;MDAQKP>UUZ$aMk1vLPYjsD>HQ}BY6kj z@vbnZEhgX;X=KaJn|)7+o41i?c~uk2h}7;Lf6GpY`evl-RZk;{X1175WW6VA%ZB4d z^rFUuf0Z8icCAOR^lccHIaNtXIRpDLx#S{I%z{UX=}Ch7F$4|;m&}$vBPOfkNQQ$D zh5J)ym}9LpJG^WFhXr>&S)9ENX>g38!VprU4m ze`=t5bR^5OYR_>~de3-y@^>N~!H=<@{G@DlBnAFK#5zG8B%0uW6;H}QnMJiY4gB>W zbh9IYXqL>dR^1wy&l0n3Z2ox&pvqtPxbr%~$dd?ZRd(D-$A>_(3UCe-q%@GvXbhDxaA}`r^OdSMn&~_KR!evFSkP z$eMr`0`a+Np*&sLn0}7?+l-m#!H;TVCWu9N{zRJ!vtj%;-(yme-jsX7KX2| zl5z&KR}2UkkYT8^Vp}k67wzO1e)^dFzNvNoTru4n*QD_Wt$yPa8-e7_>?Du_>~ZnG z#k*mx+ZUcE-M`*=Iw3%>M02nPA`;6Ly{p6{50XB^fX$S=azE$J^nyY^?A6TF<1RTk zSufd?4n_DZ4=Rqf1;>}&9O*BOIoJqsPPj`H5#{NQ6T`| z4w~)2baW*^eCdA3r*~tbJqtnJKDau)iow~E1}Kkl*}BJ!*pVUhO7&m-sKOneY6dmH zN+wAK8G`u^&3-tO{I)=*^*WfcD28y!7T`7<14_7AyH{Ds$?r0-e=vF6=E{8N-*V;R zKS|mio;|@ygG6eD!rW##oW;}ic?;igf@M+ z2sOR;lk_czpxlgTf6-!^fbv>;_BKcsI{h;ww_oyrtV(9s%O*8{wd^nJYjmTwm!)b;*hReM*H2h#P(JeIj~ASWgRR5P2`fy5>ij;)K)5Ca4?ge$rO z!E;e8hIRJxY+I*9_v2bN!bl4f6V$ZKc6R8tmmuenw*_Fla16e;`#KO3+|^V=^Bddw1HtGVjJ~8 z?=D(U(5RWeu;*J&Reo!JPmY+)KZxZ6Tz`JN{Z zWNE=;&6FhQ2{P^OfFOmXK`_%M#WYT4ms=}DtVHg0&mzkiS?(pi)eAV0e(juHlxZtI zHW*?I}quqT+0t$!8_Y`|nuIc@mF+FX{A0jo)!le&D> zGPBaPlC!LSCMoh8`Hs>8TE#)9V!er+G7?~^e148q2ehS2f*d@`yN;m|fa&Pqr+BB@ ze^x9>rCmCOhsIOq4&7hfWEB4XB_(RU@~rXOlp8%m4o1+Z00fMqN?unSR|Dmfk~ z93Wap4(=~0v`l-oDR-1qm%NDL6Tqh@G`LS>^Cq#YYs)e48=8MbP(`{z4i{V~47ys4 zM^r-~L`d~@_lq%{^Ww?t_S`rk6u|^Je@SSaiq@rlHWSoDWusEbh%uxuz8Z-4v1-V% zR{H*r-lEvLTcsK1|2m&vvgB!%t`axb= zquGAe)P1Vw(_qyzo0_+;Zz?agO{dMVRJ%K5I6w7S;@-etUN?Vj@ID^>3J*=Uf6a+b zgor{~<>^6Pt`0Cmr{u~dmWSHR4-xQmckWqJvA2#9%BEz(gvWY~K}#!-ZsjKIvhFK* z8KdGfQr*~jJE^o;n9zKyeDoQyOf%vn%QfsyOzYX1aJ?I;gLL+1?Po-#Vw+7ap0@3S z=*<{3UzN%8LAnv-8+p2u?1WP|f9LRFbOOsfu8=A2%P$o@OOf0~I0bXb)P zTAYnuWxGtBe)v{GEk|+XJI~49j{-W0$fq|UDRnQWhdi260}B@sAKc~U_;*G&-|n;UVkF?d67}RM_$gZGu@qgQ?Fb(w0=0*|C5v*mhukD?t2cK ztTFNTZ_9nI`i)l7Z4Lt(e+Zm8Hl|XxMZZT-yyMoNqUL>crZG9V<~#jcm6<*SVFqrUYLv3r`4k%qeze3}o0-Rb=9 z9*UQibFflyEHbWSLnK7zPgL)BH^_dXIRQI~GuDkGczWDdVX^P2f6-@$Tm#@-bJ%Eg zWbgKUeVRO;;z?0@k-(Nzpx0FL3f;x4OVK(65A&?la}i#x>eUp=_R@*p)lijYkq3Qm zy!H0DQ%lxSaCuIt7Y756gh4$YbN21k@hKmkTUWjJ9og`g(jb&BR+WULjgcXtP)SB zd6W!xMxfo)K&bVCI8J!z?wH<9c&o{NP>1Fd8pR{wfv`fH9#Q=od7DuH{PMQN$_73D za;=FAgE4eNyasZ_1R@1efL6U)5juK`hyA6PKDoq@RN%sWDmCY`1HA@srbz9p{GIkE zC%F^m{U>)?f8B@D)-IV|`$@-Ot)ViPI9E~RA0^pA!HVHkB?GYF``|HPSg|^%>i!3K z*`P?gNag`lI?@I>$x<(60^>^utX2Gq3(T6)hC2NaWLFv*HgcX8Lcemj>d8o zdJ=gHe-a#FkcNwwwGm8Y!X?-ve}%yA{#I-m5~x;5`0cQ@;pfu!(k}M8N^oA=BEfA_ zFdjU_+u&UmOAWhLr3W=TL&O4PzY>)J#CJ=c*naal!hk*XCRSo&Lsry7%Bha>Zr5x% zb}L++*J?Bt-f;Yws))`W^LvZ67v11<0x}yOe?hUc0wqpsvvv2lnpQT0K@DvQrv zeTp3iGzP#;9s)+kFWB)UG{Z|T^m=+gxO-$mFswXcakG_YUtbTnYK)7M?K3{_Y3JLU1PMl?Cqa3CR%KZTau>@~4 zDEk$;ewpHi(&y-ly}leg{0&(M!EUBW<507?DG1}GP@bTo_^-%;H14aTu_8k2r{*^6 zJfv6l+18y={9|Pv9M?hsnm}d0EQ?_bjW@|4#3PJ0zf7L;?fNd^4*-n6#$}v#OXSl) z(SKDli0c7&anZ%nwIgo7dhM{ZcXEiI`RLUTI*{nmJaAm2$ce@cKolmxz+WSA~RVaQH&bHQXu%7lb$2y}c^c%`xNq%wbMR<$tO( zUu?@vgWf1vbP_)Llyl~V7m}nC#$H6;lQ&VWAX>lR8a!>}ITRn`7VA*q)eOwtwbuxS1~O&!1_?p3P2>o7YA6(E9B;A*!%Q9bHK>NiX8&^6ZD|mqs&>FrrWeyRw-Lx!N!iM+!Dg-H{=| zZvNz9JzmERy^+sQr~|X>w10;c7T};&Hu5;=z2TJ)k(MEG7@x&)99p_2z8zHEKbj+v zy{or|A1CUqz(Q2B7V#Srl^s<4KLK?Ritp3`qNR$~ErY%06+wq<$_|I$#lGLssMU5N zb|dl_ykVqFHfm%S}waxBMq zDMh}TZQIJEb5URfP)$xRc%{>3z*##gVfYQ8A6z3dI&v_owS~VJceIf4+KfOwdVxr0#S{OE<(#u%*Lg zBp4CzS3NXJs{a2L%~Ze?_~K==e9{2LtI}zTUE|{N#Mku4C2Rz=@ZI$JCgChoBXwE) zf$R~#PB%Ls_Uf&^&uqg1Zto&nz$5-06&5BPH-OGZ!KK}HIzIk+ z`${rQq>2DVma?4GCOQK{FZOD)_r_vqBuq{FjkYjJv6cN9!FW52S?p~WA9Z&_`8}_V z$QO$?5Pv2|$N5mcH}d$ zmjKy6PPg%(iCI!?uUkh_zU7u=NIpjSJSUd+jemZTH+dmVRw&qX9vPOgy_;4*cg}o? zZT|m3kr_qyn@o%3nkO#VndkH1-zr~{+7+^#p+d)-a80d|FQ?+78pT+gP!>m9&j|LX z{h7GBsl_?f5+ozL}Z}_NhdC}JF&j)Z%*`@lPghSIfhUMt$}3@ zIr~ka=oVyKqciH|0jhbW9jQ3`ib*(x@TV_H4_(zdI^2UI+`(}GtNjs-JLTCNsS zMuB{dy7x8ZMmPmyd3;zxHW$uxG>T^-723_uL*A0Oz98qRO0)<{kR-3tVZ=1i)X(Gb zu7$*&wp?p49%ZhczxH4{Hz+ss(bG@{WW-ongxn43 zmKEW~NnGCGOY=7)z8@idhfCF4c6l^c3gT{HR=?Qwd zwaq1H3OYC5)JgoM9Vr{gWIe6MvVV2%IEQDptfxC3N9D{PzvC`rpN|f{EK;IF#FJHv!pN-?g z3?5Lz!;6G|lkjQP04N10RX7}g1a_jK7;Yr6e=;F)kxMm!LtoJEPVINM6x^`c9$J*XtYDtH z1iZsDy~}AFL_aEl6VRZ2s~!C2Q61wW3^3CH~j#O*y!H}!XCx2GXI{^0`-JQy(Mh9&r1lRvZETv zgC&HykxE_xJxzQ_QlKUIH+Hg_de;Y5$YGQctFf2`Qj{s|iF%x6WLA?a2=|#S;V3y7 z9saMMsAWn0Vn7-KoLLXSEYO>H^tg+zkAyjwOjlhgh_OQ3Q-5mKGFG^KBf^nJr`<=; z5}H>-+1Sh$VVZBB@rY-+KiBs#76qxj@vAKb=enu6nrgME#S?muG4diKLi-qD^jl7q z(2&jljsO}f|53zY5!6N^=c%Y5lQ82^L8BB1L3lEFyNzCkV9#`s)z_bqO7+0?32f&e zU#$IJ*5U^n0)NIMUg3RrexR4sw~L?bD4z3QRnq-&9^;!E8IP#u)6#T0r_kjpDwx!l~j2F>tb+jfcS0oqmwhR1oR>n_W5st%aGFpT>dkuM16! z+F#XWX6f<1d3}$Hn#Wcs@JE(GHOKUh*9!7u_tieJ`AgbJ5_Mh5RNcs!M;l>GX)$i{w;GA`|sbk z%a(x=IK{Q@iM~7@L>JrS?k`e&RqdahXy+i5c=hqMp=K#pxUUv0NJZLak_Omf@Da1? z;24p@Ab$&_@RBhF-vcH-!o@MC?|M45oBni1iNM!JDk;Qqq&VA9sDSN;UIPD7Dn%2lSurqEJ`(<%Cl;b%^-{$1Hs2j7a%@zWD zs<{x_1%SwHw=|Jv+l-^@Bwn7pjP3?WXZa_X8h_`@81Re; zC#yo8zu>-4weBBg3w-zzqKFf^jXgdxAM3?+isPkd>u;y3fv-Jy`gWnz#+~m-a$3ig z@?p&x{QsEV&qN_)*F(|;CJcH5Q;Nc}k@uDca=i_G!4k$xB8|v_>Dm1oF*n99jYtX6 z@qa$N^RtsSlViQl*sGnLG11A-_>i){@(AzR&Rg>!8t)5A1#Ova>O$9-ujdOf@&to# zdfcXpJov;}X&9J>16en%ojO4Q1GvX>@Lz#3h%D+|of3_?Ox`^vJUopx=Qf$_ESYzS zZ`Hez0sWMii#BJya<%?TdF?8ARsnE9Mt@TX?ZL#prl0@?D^no88ln@|!41(mg&Mz{ z9fs_&<{$scO;VCgYm(;iIT_)Jm2+Y}t5khrdH#naCMo}`<;{B+*M4YA6N<4&H`C|8 z>Y<;^{zYgVVbCoou_YQuv|@omk%`01XQ#u7wi%ma%JQAE=Oe1c#mAE)TTyeT9Dg`x z6r|>w4?EYAO)0EyK4QMp{Yph0k~PdFoF>bOMmM-qmFV(_bU5TuWNJ}W^X}Eow-HZR z?VYM3c%lQ-Gag*K>{05Atqjhw)TTY}pPIzv1C^S#7Qw(9qBzfVzQ#pZ<~4Tfj2Oyn z^s|w_xp*rcIqFeBX}^fsDbRqv1b>9XK`smB)|0XB-r-o0LlcqOW-y_y2g z^(NQ0+5qs^II}plHTl7nIg+ztb^4E_CKJEH4y|}8jwT*^>ZyB3MKv!jv~ggAG`iKFdl@c1@7d~2M}I2b^TK;T z6?sD|+GRs5A%#|o3K!%IL|*QyQdJX%M>w0!$Z{O-*#oQ)?O(I0xysu@)7VdoPQY(? z*XbWHL6c{0zrMWdHy6##-J~X4 z6w$|FVJGZjcOed7?cuzBWq-113me?}NLsMtW#YQGSavzj*eGm8XE=5esNu+-k76mc zWGZHo2yI4=_zL7dW+_tD+J72z*)yXS)B&LkR2}l3KMg`(MngkCZHrmr`fAr<@l`0t zq>X%{EtEhgymbR^!6(Q|&M+CZS%Gsb=aL6+UZw44*k9Bmt`IWjJb&AG{zC+KvZ=Fv zp$L>ps!%q)Y@UW^&|E|X7$E&JlJk=nh2UdTCKFhk?T6^6-$@G!NfuD{A=!=wpSw9d zJzK^GOgd$=hC#xudtq=eRTwkxqP#@b@@Pv{cO+>hzO85K6QJG@^Abb+qbc<5osa=u z_OS^QW*?o6!e|lccYpjOxaT6&y`@5=EOfihA7n|KMF#|5OVQ3_n<=t@oUHdHcmiAt z3$kCX>}xc@^M@XDXAwU1i%R~`{?u1is@I`E=R&M$%)|chjUS(hyZSNrt4AQfcSi?^ zaSZ56JG@(JwnQER&;~pT69rRmGAymA7my4}E2b4WpUieyE_zsUYxBM-W-sgo&H=B?RATK^~ zUl*N(g6?U}FBK)E$Vq}QUQq!eW(Wmg;*QaMMKfeXobR~2lC$vGCVCQ~Sn0fco%RR7 zSLR#Xgf%}4uYWzsoh$Qu2l(RPX};Ps-7I8#+k zAN->B(aI%C!6#}O3R*m;8nhye2)}~7$$U25B~HRNtbdg7ah1};1Py1G$Lovhqjg9M z7RurFE)6Ug#MyUCNtdSrQQ0~OT423icr7`WDH zr!-&>%4c-XT7MMFst&u5G`YDyE&B8AXXpZ_Y@g3Ng~As)-FPd}!E+~$d0{?m;@aiO z8_h4tHh;#5D<%M>hb#jiy*l+1WS@7}M?k%B!e=N$OGs$0QMf9XI}C5vw>hD@=j_hj zABS>gx~lN#M;k1bI^|+VHfbo3yofQ4V5aBrQT+u@#NJq;^38NzZ?k(7St ztWyWWMzhy(Mft*4c|_yH^!Bs_mA-E#f0z9)O<&TNJ01J+oA?W=y7(>U%~_W*rs^TO zaxw2^+?-@n;x!K;Dp19@xCO4I3ff<}iYDLbVOq{vq6=>GUm=KQYWMrzG78`|1}eO^ zPj>pnARmS1;Yv?cXxLuxHazX?ykXIgS!(T zxVsY^0)gPJkA3#JC;Qz0tKO@wqI*oAW6il1Rxdzb5+0x#Qf9D?tqE0{~mk*hkk;{jjyuBSj#?=PE z%nD%U;9=(EVPXQXFfnoekD{*qlu9XK-J#F66oUjUm>XYEL>b1co-So zf8E^~jBK45?48U7sObRimM#_m6`(WF$qi@<_^V-nf{`uo@6H%t$pLB>md=06Rqf4O z+>M-ofDeI=m6ii2IsondHkSL_fDZ6)ZUD>-%>N1ZZ|}bX zS=#-}*~rAi-qyj$&ePJ)9AIW?0|Y2af5T|8CFO#L3dZ#hJm`(&n!g8UG6N!LqoWsi?iJEzr)z8TPOG#4MeF zCLgqWGX8zC)^_&pcHaL6W|nrQW`8wd>gvF#ZfEJ}3X~T6x5lNy#v7PqY0p|r5W(!3)b7&$PEZ^adHLv zdjC`L-w2kO8DMH@;sP)Rnp@hz{)zq}2AchiKMvo?(gUEw^f7zP0H(h_|M{i&FQ-1jPmj#vRbONe|P*Jf1QYky$8UXo|O$i&%(|O;O622aI!N2eE&O&l9A=V zt6=)$Ds5+G58(d0*bkQer(m~#pFh>VcY_-6-?0?zKZX_vp!zf8x=id$CLe#8|DPxQ zUoQWD1O8W(|J#iJ?}8*;ZEXIfruvuu|D!gtwY2g4x53BEy1IPKzr6j&e-_yNZ&OX+ z-#aT0G_`cK{oh(?7o(3o5VkY7`45ej&Jva$KvN}47ZZ!Whvjd%`d>?CV`&FevUj%p z>sA5KGcz&$FWtvxnOJ|^9L^sT`7aglV{!gFrMR7mz3E>Y#=_14FmiG-@`Ppj7$g>U zc7QkY$10ivJ^nSr07eEoe|wh?7r;k*z5p|OC)mGEl!G0>DEyb`Z^Qv$6#0WV0gR%5 z5Ep<^><{7wFpB>NaWVlICH^300Hfp|!~$TH`h!>jjM9G)8-P*f5BjJ@_7D1~MeYy! zs73w{`lvC^1t`vKZ=jgCjUWf9|eBgp|*d* z|1~0vrvHE+34s5B9}~a`{I7V-OdtK5{ed6mX8(YHDJ}oFv;GC${={ScOJMUy|ChPF ztJ6QCe;Anm1Af$NfAOdK4?-7&f2U5H*BESaBu=gomG3(Ip_}i5Ha{`54}RY;$675I-e^Wr5HvEIzH~P6)b#b z(iKy3W`{>?6E%ECCL->QDy;BYv-iqLeeR}y^f#U|*$x^=pEC*AppbX({z$-DctFLHINcUb?z3YT7?wb{6_b9N$H|ul z<-s>ft^VWR{>Pz_U6wfTqr5nt+M`OhE^QEdgA(Or{@X2}_R9ktX`Kha4|-kI$WwIo~<(T3Hq7epw^kTJ#ouycX0kIJTc*+m$9$84^r(gB=_@+im_GmP ztMYT&eE5LduXg6x<=9633B!xHLXR@sN$^>a#*Ap|!6#wyZkDQ0{6?~Gf2cj?OJEo!hx@lK$Bb5ABWrcpSLI(I6)GF)c>2CB0PJ(EB^vY-DI((^nPoBbBU zA?2b?B~Sgn?Fx-zn5nCy94#S;@(cZT*4G9uwA5J_>33ldnu#K^9pVjhA{B6KsQ^_F z{7PPxJ`IrH>e~UQg2XnZf3fnbRkJMSXo^Sc4CtY11Dwg&Pc81#$^O)W?cgP%pSJS9 zXc(h&>hD@-<$k@D;jJ=3fK}*Cp}9s_jg`djEiK+&^~p+F=qHR&FMc>*K8wR2a)K(3CrtCXyDyhdk4g@F6kJqz=l*+xc|ttHn9|BAIM;leyijS+Za#d!IiMFLSNDZnVjZ=@Vgz$o92(@n9QpXNCeVLoML2W99Yh~AJ0zip4N>Dz1fBB-9+=on?`LtbclXzpmfpJaw z1?Oajb;Hn_Mh(7&s^+U+Za)$SyUGf^P9K$c^{KE7F{?8VB#=h9@YhDs1U#hnTg8aD zbCbesjBS(2OvNPw!}_BDeE9c>`KxRJ<(_bgcDygc9yJFi6YXAh>4-fMVb-GMb!Lv5 z^sA|_f59A%k@nCu=?=6Ecji_$+WAg|7A|=4Q-Z8KEF~_hm#dx>coG@J?tFKSMCXXV z>pCSEBqK{Sm7@&e&jOG#U zqfM+oi1f`}+-TXXe(r3v)zbDoJC=sSS>2Py<#1SqzRMRjUki3%;--{B zgwudjwR8!cVk@`vkBM_J|MYY^d8VB^9RIS7^ z&8^zsJhir9y32|6YQ2^>gq9gv0=_+ibcdpl`CNe-X_wgvunYJ>)_+@`{dzLtSNg2M+WHC=xYR&*!n* zp_JlTa*43N(HstiqqtvYgs-VkAaIsW)ba(#+-ff(uqI{gk6zJd9K^ z(z%iad27&6AY;uOQNs{8f8pr}e8IE@4PTw^01w$7xhqzI(%*<7 zN{3pUP=JyOJz5G5!jWItpwyl9jCsuyK?!5&<#>L^+%sZSt<_98pc$=v`Gmx?H^c1l zIGl1dvTv9OrO}&uNg*x{mKP}4VuFl~xb%PyFS?#KoWaT2KyNs_e@X^XTP^Rl1^tWQ z7p6~RD24Mt%oKbLhZgaGIjNoLbhu8kJIa1YpdD3+>1te>{enHweVIY%X^K4y;vV0R z&I%Z?hjWgum|ab7Psa^Z(Y=_n4fZg7gS%8hBsJ7568s>sxc- z!b0{{$h%pRjuRUTNl8kN?5WHwA?hIxOu!xm+k^}t(enjuf001%8SG756<0%J8L?Hd z2g`*%_spO`(b5t%0`$QUkSa@QzS{xIIwT%$Sy;X#yLF zaKN0r!k*`u$km9)2;Z>;rO~lhTXwTr*4}>=7?gudqc7o$OGGLNuY`9P*A_qz^>Xg_ z1=qIU&*~y2e>>@ugd4ub5P&FB_F{zr8CsX}bK%`k+>LfnR32I^L1e^|&mk%|1$1`z zAmXN(6DQJ6OMr5hpIs|GK#o098TH^dqfQi9H$Jvba!`PxiYu@T>qX!|a$p*+#0%u9 z)=Fu-md;A^XJ87Z%36&pXOknsY3GBLtqp8gR3>X4fAPiz4!2WM$O&$&CCo9hq3Zw_ zaRWOUZleiA`J=je#*5+@ub=OFIZ_+SgQ-AB)ClgUF~o^4j|fEO9p9iKL2cAu?A=OU zqw;7`8cCGNz4!;n%GE(YUHMuuWH?kL)9%KaHYUQ|Y&Z8CvB+;9`#bX*=g{@4_?1L` zLtZuve^@q#7pz}z(a|VQhQQ#Cd4ctkoXbg&CDLCWV!D}>&H5NS67OK5o{4a_&a-lX z#HzbKEOE&aGrX}&33eC(tUR}pRte$v)PB~fnG>t>l)}+v>nZ}G_#IpF`o2$kVWx5- zu5DEA=_7*_fJI3e8l>}uZ>q6OKIliH9z*s$eeMlc|^@lvXyW~|K=KR{T&ieA3jpZZtb_o^VXds=I%gJ$!m34 zCk*ja4Krn^s-oNS83M7MVa{D)8|ziHKGFKX6Rpy3(^ZP}n2HN=T7k0>;D)rtD2+u3 ze`n5nl*}Y=hU>kO^en+j0FxXWtm-ah=in<=&-5Gm>Ey=qcHhXXI5?m@TbNZ){4S0` z1vyUy5p)akATSNmWLn)v@v5A*U7die$!V5l7Moy!m^~cC3JAr)_r!Oe|cJ%1HX6JyaCck2GfGnqyW`;ldER;e2JG& zmfA$qo`$siUac9;R#6DYcMRwWlbCM=ScoVv^osF*qs+>V@PLmz$Dqwjf*r@=JL7X% zPU2R`T0wotr2O7O%Gcv(okC8tAcB}+?ckg{B5BWFXg zLoY%rrm4_RY8Ab{cMHKa9otX`LDEx?qBJHt2=_xld#}c;tk#WB(z~t-B2q|{r=X1& zaae;IniUu^#9AB+z)Y>qYes)x=LgTpoXp=;>%QE~k-xi{diR}I(<26;f9_o&BM)z| ze%3h;7fB*`M(7q}iC)Qo0~OOk8m~h*sqn$(5m& z$cVHv-QJw$G0EsVcVE> z30p(&7N81@F6D*pG!yx@e+WewOt&`dy+eMz)5P?s6A^h{fTMK+qi za%gFg@l_H1jAsY?`4C%Vha*`0CyS^f4{vvq2(}c-Mfum@r(&wfu}iSR+Hl2_MJ3NYix4 zg3X;N)?-}o`Th>FonMUCK6COaPp$NZF?idx@Lzd34&|SG2J`yO{jLJ;KLcDVbn0!c zsO-B|-=P))&2ckqf5eea-IH6}`j$dy17iFgZcNu2wQSJi#k5?B&(Zh z)d&ZXG{EKMhb>E$buACBcHyHmaXVGiR9zK}0;qh?H1YWzq`<82;2Gb8@vNp_)VP_k z&y|wPoN8NEZ}ilB24-EEGQ74m<)c)8^4BFKgJ0X>f&Rb^f1b0>ddzwoi2Vdyh^0G< z9awxI5-wVj$XT&&Vl>vh-8*VA;qr8+7Vi(At;%qf21U(fye^i$k4r#a5NDW^MNmc-XFhkaf z+14z=Spo+X_`&)OKaOxzyk_~$P$G}NP(PSk3I9l@^awW=Q8MML-7C?bi=&$-M(Qtc zTRgB`fs-Lltf%3tsb^Ge02}!Z#xFm??W;wgv#!Fr^CZkds}O8@LbB@yBEbP8ew(Co z&VW=fe>JbIpb#X6N3i$(Cy@m!AJuwYuYPR~W5 za*R#LoVXd0#WS7HL~UIuw=h)%^oB1eF{zO$iI3>ogO5L|kbVGXe_NBkple~<2(;_a9ZEC5J$UbE{!m7MJWQoBdn zee_MmII8iD@yqLC2Io($IgJYGD&OJg@_ zOm?MOg-coY1HNS?BUC`BB>Gmmk$PmEyE+DdN4> z7Iq9DcDk(sWFPr)Unu?~Ee4V~V)RN$hqur+Ixr*I@3!M=U=n9|k~*JT#+e%uExJw$ z6e{AOW$c&ebbM|Je1r@}9{G*;f47{u^sAJdGF20*)e-R&&qBWOXLgu6iVQSffzV^H zQ*oce*w6$}sF|XJ8vovDxj2Q`V&9N<_g-8A_p2+)Wc9I^6>!4x8X&@ZU9^H!)W;Ov z1Ccm#Q8wkD02@F6Q}A6QX*F}2u&W_3K42ie@$u5N+uww zTpkhls;BSM;R0tRqbBS**!m3?d@0{d&DPhlDm|mX8B$l?X-an!jwcKlS=W(SM8d!lYJ$tXy4yzy zR+IwgDDC*fOl;VnoN_7=e+2Q3JlRcA;}1TA1md-I_$`YJbysJYw3@ymmOW7UxoUD$ zqtSvxYxDyg#YOI0clr&V8;W(cw;X%)D$3>5K^BZ^$f%8?{3Q7}*}ht``XMuyL(P!G z5vnpm+CB>8`v?ll#E}?~blk4iO9BV^Rk;>51l0vLJilj9|tLg7LkhN9%+ zAUBT3678U4*svE%Pk)Ux#o^l18nuc+?5JcV&=oa7Kr4*8ttZJy@I{TjpE0Q9`@xgz zZP?qjo=r%~B zt5c~=l<#2hT%5{C{43SI12?O~pdVWTB-)G4%Fs7af7!ZTf{P0Wc{r7EeN-z&@!c4E3s>1N2N3K z-Z`{e(xeBVRc5&0@+Y}o2^xvbe2bFb=H|cewFPo~=OKvx#1oB}JB4KevWQP;E6CJX z=MwIz7m)b6J@&i|6D?czIRr}ffPG4sz?lzSpO6OCe|XZ6PU(mbI*{PcBn zeXi~H4bMI=HPHR7T?ZE1N0x^PRYQNelMvALFsR~#(9DVo#fsSXrrczI(cQ)lic7T` zx_8k5;^elXN4sBri5HkrD^RqZv&1?7un%u!Ij2!nLIR2aa_XBt^eREOppxeV_Gs$2 zEx6~!f45pdC5**W6b6(=9fJ_$+|^P;y7MP_Fy&Aa3LhY+4?C~=BnKZNf_nk=FdhdJ zF7}n6 zhXaHWZ}!Kt0PM>$2*z&Ny@ma!4k zII70}d5lN6N3cj|mo8S4huCNxi{v0&neln{jFz{Ccmo`bD`P16l`5MKZTqCFqK+BV zZ89{?zXgqZGw7R-#+^N3kB1Ds261D?TYG;LmiFg?8Q6(vS|T|aElyQfqWk$85nvEM zf3*wMy?l>)3i!TixcL~brgf4+xyWUG8&wg_fWd2*6O)4)W5CRPvvcko&0?bXw<+(b zE@!@JF3Lz!P8IOg4E$p5AIohjJhl4x0ba;D%y=a1pq`HVqMmMG>X_vhY z{}NO542BpKgCy%Vofx$@P?YltHB}FLe{-Cnu4aZ@U5Be}oD)=Wy{|#~jw3uR)aWQD z5ai2DaW9dXr zJ>~CAAX>VM;lIkGPemwjyg&^ZCoKtYM_$(fxO|>T5j+8BvpPzXtFvZ5kK7DAe-l5fsbNU*-PeI zX)_u|aC-g04}-CttzD?Ssw8M$AQAQwYzOMYm&Ok=GoY7 zKjHRCk$e^;m(MLeYu~Y?{2+3?e>8xa_BM?QXFH)D(LgQ=$1=p*|9YIWCro1nS(9F~ zO(#EVtTY#16v@o$ICrNMdNeQ%u@>r~FWrL?Y-~jWS|3JZ(e;I-PMa`%7 zD_L4uz|5zftiDfon901)^0l7G3dkbxg62B2DspH{X}(B7lka%+V{2;wXjgphl7?TN z!Ra?&E%;>f@0<2o2qNBxr&kCd7YCSj){p31eqT6?E{>Bd^C4xmyDjnM##bHw5Fj`+ zJ^Za1T%RJar%@5?gDdW`f0)K|s2tb{Hzpg8%NW_OaU=-uMSH?yZz);liw}DR&UiO5 zaHkfcFD5uqsC_^BDrLoRHkR(^l~UIF-tJS&)+UNEmJXOa@-)-e{nkm%urr9dskhLp zCO65+96Uz?CUf9qN@R?k%X>sNgzFiFF;*+F-E9LGWzdAOpJBO0f5x`=%)qzE)nyF# zjb!{eqB4`UU@-x1tuni>c$=b(lff-8zWmo&xVEZM)01G^V+e0Hv%__C8cbs`6AgHjUXF=uPTRE(ZYdk&pz*I{Z zTZxPD3xrlg`q-|ee_^k01iQ>wGe7CrS;dE#1ZHoOCW^XW9R#C#I5J6W{T$8h#Hs0poSGND zt`a({8*w^e+dP$mou2dj+DVHf{8L5iMaGnk(A`(-=?7~NW!g_3vN;rsXdK=F`gLwj z+TTuM@34Ezf8~u$zZA>5<;?Oe)?D1*RJoQNYkpAdDR?$2BHefWym)54>8p%8%Z&HMFY`AR69gL| zJ{8e4Gmf}XcCN64FceuIxn-N4z>Z^HCuvzg&j5cgiWfzO=+Ym%Ukw$fLr^CB>y z4K&6jl#ZIhX&|ZVzRW;*8<_$nFRgJ7KV4>Tk)pR>yh}{BzyW^oDz*^Mb$ms0Za=2? z3~={QU-DZe2;-FL*L-fHPnsj(Y*cNp8DvqHdv$4gn}dMoW(Rg2>4Io$b}=B1{J!9d ze;^FTp}Y;(uj4Qm<~I;)m|FM^8Zc4WW`gjLuo+o-LI7S1>5R9wH`Oanc`a^WKuxlr z7XK4-SA2EGVT99r{Y?(k z#)W^X5g^bo{5xR>V|IT&S=Mzkog^Wce{yrS@^~Z5toqH|ENkb%o2TPfrUE5(NItbp_3AN}n~tkIYnx?0{Oe3E+&bU{-Ps zQdw|cq`B5w`isG2*9?=YFf`pgATQieN}rryQnNNw)Zg}S+Y`s5W3BVJv@>Wx|4?6oK zk6XoaAmhj_3ON+tkfr=pPBrc!e=1Q~L}T|?y~>+fW81)bw8LixG4%INQTQ0j6I8u! zguwPnL1A0qC!iNiYGo1V;TNd=Xb7j~`)J!!g4Fa!{aOuHOi*ELNBonE5H*7PFqht6 z@c0@MwrcwWI64qB6#xWr1F1jEjqotQ$|BqwEp(EN*>b%@b&&jiDD+eVf6nBj3Mf#} z*D<$yBbF4WN79#})p@=`_SMopi=5lK<&2a})|TZiQbpJsa?6bNL`W{A1(Ut2{#Kc> zJCQPq?JedEXM(DF$>AuhLS`C+U>g56s0bXB&%vJz+oR7(812m=jpP75cpzOe@@Quhjp=al^ zmZt(l*R>?)3Yz>gH+(gi=1+KLWSg^JIP1EUlPwbwjS8*z72Y1vMa7g)=xQnYxIZ~(4n#K z&x(aNx+22Ft6x66DTwAg!TPCRJis#wD$>@e>?R~TF(a-i&-s8I2SkVQX(1Hy3?&fs z%*}Rp!gXkSjs@-8e-s#Ll1a?kd7_M(kBw?uaDNf?_f`>_Pup^?R`P3;($K1hxHsZm zuCc4yX|Y+Qa+lx>W9hOISFQDhGwjIz!MGv$j9Q2ZKZOQ<)v;J@oX!`uB{206J8De9med& zX8DmrNY?A)Ik?&l-+`)l)15*cgwZU6GeFA0uKg2moZHr#+Oa@edkzDvd!q?0t~Wna z?BUyw>?^2(e?8|}nH)0@+b~#EkcY25d(_(eK(_bc_EB&~AH;xmXDmT{$hTx`=M4KGW7B~Y6!*`8!o*hTQ5+4a0 zh~1yE-|{&r3l}QG6S^@pXU@(po-1VCV{m0(^e*a-ZQJhHww;b`+upHl+fF*RZQJhH z&dKk8?!9$So&90dnpLaT{sSoh#V0GMh2uyfc^=xI(m`_r6B!%0VT>L4);vg84I;48N*7;x4{FJ~sA!Z*Hunb10L3_BVAJ z1QCUgLLPwHM=ii@#x^U~Lk$C%l4-%ARUJ`QS(}udY^t|PGSOwE{l6Dr`g&v?e9Pai z2r$2OLrRwo|N6ec7C+I~d~hfbmHxA`y+B>3wz|Cpo~nds2hqTxgu&y_vJ$#PO{lwd zx%0LC_oAn#>qG(pG$@vT$qG@>;|V{(XJR0Gci#z+hkSq;da=#QSx-^l7~<=SjxoV1 zee{y8tK1LOq#43b0c#&?GGag{=yLbXrOND3Hui*h=x#hG2O_Gjl0*88p2ZAuk>TbY zD_GnB4v=V$3^|dAbGD%pvQDC>n$?y$DO-HYcItOmV#DdKFlEOiT?;s_z+CBwZ|0cH zlOY5wh3h&`)=oe9RDkHz!{3xSToR|SA1|0kgMsWum!ihQ8fo&Sh zgv{Nt>ZHncFiyk)sLM?=z&~)9;4#ao{*9)~P-7`_)0T)&CTeXMJq@JgaN~4X*>)0u zm}}N9laD-GvGy4;5G^&3GS18k6`iWHA=wA`&7r4+=0oWROdBG53G>|Z>paoY7gNx0 zmz1(=RL=I^S|*3Oa|&Rb8>@o3iVcU2DbM+gAE4w zBe{|%u&X=C{BgXm96KWY?s;J{0!wDG98Qk3sl*&zGLItZ6vN}Umt>`hT6kd zHsDV+)d6mPLtHPPi)o7eS2_T)vV9AmbY&nEaPu7eSzD)2(4W|7qZM^6x;bZB#!LSK z|G0Wg27Q(8%V}E@J{J=rI-S(ag%ktmq^KhfGeeTZL6_G(ukd9P&s$5F$Q3YWZE31T zob{8`^m&R{m|Gb6t#4X~rwaW00Ezw3;YmsQ1(z!(sm#>TaOt00T|*4&;L~pg%E$x- z@7gkJ-*MG=6JNcmIxUpqh3yS`U#yH`*-k3aC{AV>R z@IbFzd{(Tbwaf^tw^|J7v|gtRfp+DK_iv0Xc61q&+A_xNM+|mptl+KH@z&bbdmlEQ zh#h>_iClUQ>^Toc^=nLn@{mV>IS=Zl=oa)~cK0boPuKS^ivxclQZGiu9Of1I%aJ$9 zBsd~W6u$)nt@Aw%r9fU!hrN_G>RZie*`*iSE*id-lsqQ`dKHr#b!@!xx{!r_!VD;D z=@EF2z@ozyFFGEvXc&7bSE6rUu1*#2fT+Y0fNWB%Z6(zCM3ql9p{YCIjFFqz&LxhG z+77&(FtaIy_8giL^dwB4*`vxn{+D3?rSmA1X~AX?iph4kYUs1pP6C6zhjWL9*dP05 z&AY=xCfoU|I_o!!+=|DBQcyDO7^S-$rK)f;PJpmz5#l&5Bdelxi2LdV#+RYKE_IW> zXP-&{H8zi_#zLye)(^plKqaPt<|!`!iV7i`f$F~vk^!f+vy9MNr9a(c92%RNDeIR( zi(sVvNN}#KK?8!1q1Ei%o}|+lIqAQ`Mq6IPE8Q?4>0;8%M#jY@g6X~+Q1@UkPPR=6%kl!zi}c9 ze-bc6xQFAi^a&cTq# zeVs}obUH+6&3b*YMxnq=^9Fg6?xFxEUdMOP@qr~z{OS9?-0e3Y*gaK2HVLxE?>f&> z*}q7BP{h^^Umhm(%GVv>REDVF7*oM$SbG|q`DrB4S97vkyibZgh5MsNu3L(DJxDrt68ZU4{*00-1Da zD2|OUD2@!Ee3==9HEJl9fy?k;4ZpR(4{MGUITmjvb#Uo@oGuubGdYkX51Ci+p+Cay zb~o_9CDJ@b^DSF@%vHpn1L5l^0*Tu^bBlSms-3&|2wGV}$A`KQU5rypser`^sQUdz zi5>8uQHkwFOopQ)@%WIyGP~_0vB2ziLf+q=dU^mb$PcP*=gXZr#u8{ogR%?Z$Q+W- zTM1Y`M=FT%WwkRI&7Jb@nR!MF*1bJk;Yo-dz@IZXeA`BW%kK%@k!E??WbUUIB+cl< z74fWGI~Gf^4>l&+Ty3|fdvL;HGkGJ9a%4p{>IG=brqN#byz8Po+C%l>v8}YdY9-;a| zw`HY$ZPpRm1d&H4UA32KKj&UUIr|h{|NFiGB?W8Qb;*VZ+#xTo2=zQk+l^66S60?y zWvo;0{(eTUU*d?Ng%Q%m2rlEeWN9{hAzD}O5E?pDgI@k#t1$WcCnX*loyb@E8SWWi zRjo7%&&DthF+OTxA$bt!(kbD!~M9p*yaBE)&|p2%qyKGl_gk zzj; zSc7RLgEG_$T;*uQzlsT=@THatxAtSa84+;F4iEa)xkSl*dLhSs=I2U!g0i^%^fQXp zLMPXL;Xxn`C$SlA@Zc&rH%Qux5js-tu`ZPFI3J5zv(?tq9lwFq52BI6IWGZX8wIM3pyCbPAe5 z8GAb%Xt%5g)W%m>yd82Gid6ckJ8%JJXTc<#HK|4HV{qZJ^4?iS-Vvwp*5mEC;fE>%X^xemlv>`O@jqFlbMGdyD*>6b-mjFu!{V zE1jbb;92C32V+<{SEM?BIKU8_pd$EPjvFy{^Rn?P$n0K+un4C>|2ioB8J>q-BPL^F5X#5?7GGkj(pS_%fAu^f=j^axa?99mVmdVrQD} z8m}@Bl3({p^nD2kLKzyjJOKMWXfsj}%Czyz6+N()-McN)NHqYE{Qa*9SR-xa)(EYt zXCNW2I6E%ILu@cihtm<-=lXYsQ2NT7kFf!!y!1(8Zmg-L zHqiH4kgT}?c{Jc^*6c9vUuC;pTxQ(~RB{b^t-fynu?$A%-53vDKpMBGH>w8Jb=-TO3DPAf3gkJpHGMoHMwHPk5C}o`$R`*T>^JV7viS2-=*$ zAk$n4jKdqLiH)6;9I8`PvCG)&jJ|tSEJCu{)_O_y`2!gMF&i`XB{xB0jK8WkNP+%q zC{WtjC;}|g@Fo`cTf?_QZ&#wgQD5@!_CJABLLb!*!=sNVDvCaU~GCK#0@5dub z%m!gS#De+qy~gs6c}R8iw{`(K0vyncG8bX>9qaH~#Z+~ULrg18^y0+6Kdl-@1pOpY zhd3I9|436DEYvfeeYq}~5;vMsY|+*>VbgteX99i|s%^(^49!GjBe`|*>LsK(b;~M5 zqi*!J9bhjEkiO+#RI*jr9S(Br1JHGp8(J_p78D!8%0UG86-Jb;M-ls)4Df zi~z`m`g7@kd(gxIV>!gC4#LSN4{sZ$g$8Vv3(C4fpbV^NrY)iC(bpFzJ2*t~VqVb* zVGB(e2@?96`X0$0vV(pqf)`@RyK0Xik*1d# zm1!t-Meg>)!E^aDv>Vn&^)xP-DoM?0W~f2aKAiq*Wo6nKYv4|fu1mjcv3h$(4zA}rh=W}lk-cY5%B z(h?YE^1*1GqGzZTxGbow+u>#P`Np8*=sxDJ%&PNe0UZh|n0n}fhmv;ryu{!$J~q}N zE6tyjN^3tGqtPqL~A znZ(=IKO<7JH8La`aNRVR{D5ROGa(^Kiw5@!t;00B6A9!Fnj?Z$uH&-2jF7~X++v^G z77yJTAux$^a>k-_2`)ZX@!RnIGi!UyoM(x7?Sn8EiisQlTY2SO8F&8B2kh177zFec zYxD;uSkdR=cj^24uCr>CC-&j{Q?3>l_4`P)!jJi8IJD&=z20ZHcz|8cTIGhEM|lOg z>v_}k5Si>RcgO@0^q`0+=(XN>nKWT8sm7!CEu7gmg&4;|u6Xf<-^n&NV5t|p5dB1> zYP-^EcRCk`)+}G^)4gTLDlKDQlXp&bsY80#L#tu$3*hy_jyLAvW?n=? zKK-3{i@es{DnKnBB!F2?p`2u&6tzlOxFeSZ!Vw-|zT>KuIE~tAVuT_3q2&lUbdX>~ zp*OY84a2a5lsrE>re$Hij^-8K#AD1?d=dO|XTChJ}IPLx5Wu4R1m35bt_R)sI1w}?$3{L_rH0-BGh6Q_YhTxuJ5*V%_qB8rd~ zC5h&I8W$C#y$e)PJ3Xt(8=4FJMkh!T#@>DO%@a3o_4qHxDdjt>ufUASoSo`)8l3FY z%gp0er#=8{e+7VJw&d)jC7<IzLL=q-#^hiP2Adq8=EH1s z3!N{8(VkF|^2Jr~p=uAxo``MjrTHij0h+))9DG_6$=c02^|lsZHgZi)Km09PcOwg% zJHKY<-XVF&sXVwO6`+2y=sRRwP8kk+m1*<1XQfnvFhMg~HjpT9q@2i^+3Ro#Be%0s z0Wr*J2L?dkEpan@;H#fOi>=(gu)+w9i#fT!5GmRW5Km~a%{+6EsXGUM=d1ZtY}kcg zm$ueV_%A)3<^L|E}=a$IwVG)7Ac8(FT&9;|yUP4P#_c!fM}IH@#yk;RdI1x3D5_OKXx@sO(Lyw6wF5HR7?@PQ4-rrfcf;k2{Z`)^MW0^wyTd8(;SF4iFb^j2D)fy>K&+*W541Ma zZ*%I)Z%|eiZ;EiY6Gvaz$23~vvh0%OeGAde8Q6YL+i=$IRo-mze3mc-AkI-l#zX$*Y zlY$BKo&ePI05~gKu+eGO;TinATRXS)&++-+E&YaujTU$kEB2#Q!qmg(zu`Sj*B@@v z^-p2N)kZ8Fe*1PsH<--_r-QGs?D5TnD}QFHDe_8#^PeF>v;r8Td*M#VWXG02`GH#y z66Tz#Vp|3}J$cBw0)}xZf(l5%$w>hsF`FAn3?XzO($czmfY3sf@o2TgH?eQCd!V9s?WdgvVg^slv?tM+v<2^+` z=|}6XbD#+yI_283oUshhS&xaQ-5#}4V_Ley^0VNc8r}w$X-JX4h}=cvHG9dWRJ9+s zGE)LzA# zQ?{W_^O@bkE61;*W*J+;O$hJhZ=%&1wE$}C6(Ab)=Ib!uWq0H44-bU#y+?ILv6k}e znhq-grEL0D5tu&(Cs~;JsTekYYovK?xz_fmGNQ!fVSlaOAY9(U+VUEf*r=vKl;{-= z64ET+Ji+4gMc)=7szv~MBh=|&UeddDL`u5~HS_h0G~&qH8i75^oQ^EDzUC?k*8`};@KjWKVU0Q)Il z*if<2{p4@+(dc!6#s=xZ&>mOGh#fDIay5$|a32L7iY9}b+Q|w4I~C^&7QnJg-vz^u z6`U|5WB1lO)n;L65iv^C4fo?N{$l!Urb!RbP3D%(bL<>+2GkARvL49_$-W7>+Ev(Q z){@0ROCe*l*o3$#GvGi7PVDb~y7sV=+8)vkV3+2Y*tKNlH@zua$Stf9B~8-Msg!ns zXg5Rsl7H(7r-%SNfTe;&{5}y>SXD5ha~D|rySB>N5Yh?21*_=Lker-UpJ|TbLf|$jl8N*Mp6Lz&McalyW^*8}YyL#D4a#U)vR4 z5nQ^=N6qbY>bNXa_NK6Aj6&Srj};;&_v0K+BWBke2hDUM66AMG-CP5nlvFU5B@Cg1 z2m%rT&0TE*TV#1i4+M@bn@Y|s-BA*gXpCWuXEZI6MpGUfGho868N}FAMVrxzxx2Z% zWAXW@v!4MF(=c*YAmnwA`b7Ns8^{TCW}5#*d*zD9JLs>IaDxPEGPkJV97m-^oNRvP za2%q1YfR$GEve}8SDBs}QqsW%Ku5OVkDE;x&tedeq&*r`qyzl?mK2cTO*hnEnSm6# zYe_gWPKpM!+6W@?y?1O*X@M-qjFr{|-Q2(Tlt}*w)a2y)Dse_9_cw3xaQLsp)=0ddviO?*2i--|Dh z$)gXLH=_e|3Z}cHw&?HsXA({x8c+NSJbzKfT1g%2r)GK?8=@r|+UrJ3#*=K5*ea-(x+pag&`&T&7UaD#034-)PUKtu? zgCVfxz*EWIxocv-8$AyQ>J3zI&IGQCMVSPE@h+1Yc5`Xvi#??|PRJ?c8UZE}zTlN` zA_9-$a?F4zeDmSwblxrO707Ui)GQ0SM^fsHKwBUJT^|&E+KO=#WMmS^{aR(N18wgB zFM)=*^_23yqYl4p>8AuH@*OZ>2HMrMCJq8rppKpit|;5HdhDt(3e;&!8~fd7&yokQ zdr5GJCZnLG`n`i7wlw9Zq$i3NV~-_`A5~U0h!LGB9V6>C>Cf!y(I>x9irZl~E<1VOD0vAL7D;u)#Em0t#Hcb1j5 zi{XtIR!}`SdWhG-vZp}ZNOFjvp`JD_tYwM}M>RaQAN#-%=h5#v5wt^d2fV3c=9$n} z1RVtk*E;-kN_~$&O_4MAL4mKI1BaD-wHov?-y1seIA!Xj6iHAKepewSW`V&Hw>Ejb zAkhv(1jhb$WyRVV#A2)lKNM+T`!M6ZTklxG`2=*nmsQa80!r02#h8k$8Ahfp)|Na2 z?v-?Gx$%H`9Gj?`1uU5YiOW2>M&T?9!Q zIyQ&Y#BxImwS!<6+91NdBN+?EoA2(^$SX*ihp0a&ecVxTXJ@?>5QYtS;tFnox52wS zjR)S%wu@wuOGfQl{*~XR;-dNqr|JhD5;EJw=4~DR(ADhLh{_%;C;$3Yg$wjnl%qsT z*j2zEuwS3uBk4|!O0%N?Y|1K4j&rc*j&~+?=cH1|TSU)s0^RrLHmG8!8RWre&k(faJ{iM)Osf^2moX@o8GkB- zlU)<5iLV)G3#J_g8>12!%DV1;2}|M??KVYylh1(!*q?ZovSN?|xa7QuI=nQBh2jGb z?$9FtNs;CDH^QDN@bk9^hF(1U!HnTI!3Ux+d590Rqg3O)7OfYgaTa@rI$k1Y@MnE7 z`cCnk3P$(UW%h~clGysVW|N`tnLoZc1)Vq8v1%?0Vn_U2i87xym?JX|k=m4hSg@e* zbw{KjdlFwO5nAX3P(&OL$(;$IdDa|T0%jdBTpG2t!c*k51*vD*%DR0GykN-_HaSBK zPpFRcltA`i`HOx`cE`N^Np$rj!VK*vNw_myM?P$YagEx%U4WN&*FEn8(+HWOokLF0 zubarqtxyraS3w<1ElH;uFR1M4eD1V7odc_#=(HG>76`itfJrmBC{}#?(Bg=24B3|n zh_-ZT6b^r)@HCu`O@C9)0Yag&ul{Cg_&_kj1z8aeWoucyh&0C$7b7T&4gD8U55&WH z$&ULbiO7tKxLb9J`_4|NS>M9u(H6JB8n_|ai3D^{xl7_BP`Yb$RW!PN%bp^N1K1?V z_3HgPvk~S7c)kqj<9Kqdi{@0wI@NKP+%_N6@W)N<00r~|TqX5exvHz<$COB^EX)(# z<>JvGx5uWjcgPzECL@Wef^LmS!H^mkb>-|`r7W5Dw#cR<1rF9vgBDhge{w$Hld^1z zu1Pp3qM3&{&u-3~QDLVF7BHYCXk{a(Vs3?nj2(~wO4j3RpsQp^Uz!EnVbqkrJZxZ# zp4@_+j(U5XQ-^6gIas#d%|VR4{w0XxY*VHVh2`aLpcMLVnV0+>zMb{(qcfYw7}|DM$RL{C-ArMEeKTuc-`@qv2x!q z5p^%}bENWlLSD0t5_@ckmv58QoRHo&{p^g9!y4u9df+nsCyeB~Zw@>IOV&pD6GbgV zgBDNI-9eM5AmjdM_=mSJr22&zW2P+38LIv~py_I(H07OtjQ%Z_BcwhhXj<;P9A&sg zRq6mqvIlqCasK?n2xky@UW2;*=k+`)qZ@f5JAYf3)(w)HEnEGUDH`dg(%;|G^cC>^ zu~`{QNY#DovT;h-x0MdAI1^Yg|DwX$7v7MJSsB%mETfFMZF7@CY)x$l-I(_^*5m30 z@G8;gS0u;A5#cS^62w#B(&;Kz_>f69W7vF&RrPd42MBQ0w?Rx~8_!aCgwy}#Ok^A6 z7Zbv*B@|i4jK6vdqpCc#`GDFJ2Ou}v#t)E_3{?NMfzmNccT?JnmHq!DLg=3>J3~uo zW@bVL!v8LKcnImmEUcXq5s|Q4=4gP7h*19Tn^_Wpkf;EhoUH#pxR8~Bjrspw{`W9? z853JGXLCYEHYN^+{{u3Neg;#>+GrSo1L@n+0Y~WD`uSxGg8ztyP>9+>_HLoO*gu>h zci)~#uG7`p`}TF^PaFufsqa>o=cgC%);}sr$z?GNRAl<_xtPIaDMGsaB zQ}kabC^R4_C@?%^#n`h$%O8M?n{u}K67qzWF!azNnu9^ z_fJneb6{6u@h>>MUc6I7Fa<_8HaACRc90JhCV{@y=@0&5#@;``i&cKp->zlrTCJ@( z-02{Eu+0L0oZ{|Bkk#VS+fa6m-25sUaRmT#eYg+T`fUJ+S)eZ`j$fwW$KNIIGv__X zK!V?z*4CDmb|?CZ|{Lj(8fe8|78kkBRs8 z6ybo71|R0omb!PC+$UsK^y21rii>3a(0d#7lRE~K z5S(0%z2t^kfi$>5czh#h{1P-p2P7LD|B#08z+CMa(vhDO#{;0>EmQNGV7=3WgM&l; za13ssX{Z5i*L z-wU@rP&q%OAvlW*P+FQ6u;2~A>>I$4sr8Y`pVNaf3z9eSFz5TfO~cRP?>Ph0Cqk{6 zo`LVjFsz{=<0j)qi|;>ofNWyoC;VS_o~rP_cwxAi{nFFJ(R#s>^IyJ%lGr? zcxEP$&gECF+WOFo5q6MZ3IU$%%;a$I;FBHqtOoF@fo%z>Gh@@6+semA&DToj8nEE8 z)YEitk8N74ij2(n$TNV^xP*TAN}i&6O7OV1&$ylYKw;D2yKS4XC&AhWkq z%Kry9RL)5E`lw6?ih?EdN{uD+i^cW- zMwr+@%NeCSm>&sC6moh;kx`1J4R5+1MG%UzxPzWgnhcVd<=Z%PwWu@ zUWg`c34Y4if93VRa@6xOXBtI!_4I8I$g2Lwe+o;=+i_S8e5SVb^!)_u~}<`!fT3uwF(B`w?7y4a}K)84|gD=}xAxfiQMwOndOs zCfbM-w*ox!kyobyEg(u4^(uWM)^}5c-{AFj+qy7#%GjuGFA-@fuxoJ^$i$#Q_=Gun z`rCQ`_sMtz{l-?c(I7O_-@$HkMJ(4Iw2b1ue5cO!_iPu^G4UlO7d;CXAmJ_NaX&~# zEF8GNiJ_qgNThkHtR)RHB^n;?6*Ad9Z(0_Q6d6*7hcrfpVL*R3Z>zQ#1pMYWAqStB zV_er17rF%h#X)Z>YX_j%Vd{n5vhT%J3r#lS zA>q)tD2~(3BlVdeyZey3vlmlsWJ$)>&j)djW2EeL<~G|B0r8xNm*dPMGWE6#?`Sk< zG1dFA=6fU^LV(UKM)^?+B3Mj=T{h8k6m<2!0GNNx15UR*U26T;HC7l?uHw0S-B%*` zPA=?*8R+`oNZfyp@_=A!Q~X-@&zGm*8BZwdM9y=lUL`dNQ?Tq2v&$zE!5=$lT*0KK zQt0duL`j$HB@CU|p{K}oP)iirm0ZMTskgA03VCQB838x5mUrgq7&Uo5GGs)52}QX9AiTeC61gs(^~SzVqm5^cPg!}2`eqnPK*!PU zf?{}bL5|E&Pb@NgDD`hY!=!j`B#lCXICb)Q`4F1aqss@S#b2NSh>`>Lu|w@r1nfvOC|J z&xw#EuMxoU|3wy3znEHdSDP$(_ZT_y$W{wv_w||R6Cg$cLK@@KaH^Wo4Rs`3?I7F2 zcKmiV2O_H9grCKyby=;F{f(pC%v>p|Oj&HjF96SB;$}2V!FHu_eIy;~q!}kov21Xp zhx6lZ2AiDHrl7?qoR9dK@ccJojYuZziGNJi?R(LFCethOGKRmr`8fPlQb(W}QqZ*Q z&8hpsR08&%iCWax#joNwmUg{{5{X)RN(7fUyNynP3Ki&K-lE=wE5rD4dsGr~?Bu3< zu>idaom^cst-@D9&<~6KxkFbI%6+?<9q;qU3LN3#_FX#_N~BV|Z`tdff9yR~-u_wG z6k;~sIwLci&}ku~-C~N4a7qL-{$q!F`!$_l-$a047aP&t*zcJ9;&_S-M%`N{a_uNr zw^P^7S>Fl6MxVE^e75XlAfio>6_=i>!4H7CrWvlSGxeyXG7s#WE5QHIK3s}ITY6~@ zGz$ZF6!azr)dVJ9z{^LBR5uRe-E0NB!GFyGXV$S)lDfyJI(DdDQNVIBUo`9ETFg^} zv6X>xk`t1OFmGLgX9+v|JC?U65eEe&$N&J+ z`fGF>8=g&Uv7e9lIlc zXI)L-3Ww`!_UyZ<HL zzIO)H_DgIuj0_E#j;_}Vh+p~-xdib^o!hVgZQwtTC@r6@D^5TNNzdAC4bjxx!y+i zW(NlHYU2sebi6Vu?;i4-ljnytRNKZ0=<;@n45l#$Rn|Q!)jxc?I0>|V+c0Y_eG_be z-!EKDS9P5`ahGu!#91cW>s&QNz|n7kALXhvvOj<4zI3=%2@@@81i*miw+(%vXuJ7s zqgks02k$~2NIp4xch18_hybjA;A|U4uNaGjgh#Z$x_%>n_HOdFMi%^EM;;l_M&dkfE6bw3MuF_)hnR-29Pcb5J zz}rlz^NT~=`&0In?{M!^;8Pk?bxfi87+Pdg zq()?Qa*5@*JZgoRW%8=;7B5&o+a4?nEX{5amb5ryOMn^SqrM68@1vTp0QJv@HUC4C zJ34#hH5Yr>{Hc_#&=uk%WG0zv*Dt4}!`#;)k(`IR=LV{9ggd1S9ZlwvAOiDy> z?(CLd9dH(8ziIW=)sNi*uiM71MUrs(IS-V?rCFlFbVHFWCxRb{c`}o-4*g0mhYnYA z_0r+1N5dT`Iu2?edIu2rquBOAtqY3Pm~J;{^JqK_KxpWi8^AUPAQ=Ou%f&TpcW zlVK?PtKOAvw?%kj4Il_!s(rU*_ArDV#uRR-4A@aLE79pI2z@L<`xh;dG;<>C)^+LG zgm6w*nPf*)T_<=JihQpI7TQ-ej~ju5RwNfAdx$&uHJd`7+(zI0>vq=?{rnsM#gh5Q z>bZ_=Cg+YohC*?Gan{nj%Du8rZcSC*EfyEg{)?BI4J!fW>zdQ_NE?@6-C(wjmwdmD z0~mi=>ryU$WblVxcNqRQoX()=W$wO#Vx|XI5dvy+Vo>U8&7*=HhVTCRtik@1gnfTl0Q$wm_m$_Uf=P219YkLSeclQ1Sg=` zf8WWO-}0HP012|7QbHf1D1qD-(`o`p5D-M|;8_b-@soF|$o0c<>6O;JxhlOqltm6* zq4Sn+nUDhEgDxp14T-Q8H;k zx@FpTF&`j8wCDX*^xZ9az3m&t7j4v{<@qo|+ZNG*4;6Ge+j3wt5=nvlw|e5_9Z*N_ z%X0LF!F9{3zd813DG6c{InnvrX6TWb{&nmx*!Q7$NF9h~oxvYz+fD%neboP;7mx~J zYZpYaCUt z7OtHQm-mP(Vk`@rJc0RL(3f+z4e&eISt^Ea5};POo!VXjKpq4ttX@qHJVoTfe{=~5 z`wkzj^0=E z-RoL%WJ09Ha*4lei~RC~NLKeopJ(wJhqK*w9IC~KTBv`-Ux;_hr`)0iUnB?NgHas* z(6UwZt|1$&MTC)@8J!1D1Ey$y2AzxqK~uUdO=~o<*Kf2`va^6h_WNc`y;$X04H14t z-EE{I;8_$o*HK>=3f!7tiFlPX@pCgG)w|hljOKg>6Y#8qQonO(PNPh{Nfr`-?$NmF;+q-^Wtu=w%m~>YiAUmiMqz=uw#|#`h?@MtnM7 zx*or)guYhI=d~Gmfk@9jEH%Qu4GDvui-{}1zc^xAEWDPL1>2*8FAC13tOxTZco)p@ zk-^$|Rf=y=KJJ+1pZ)eUWxK0*^AKic38T450~iv8X@|Ai;Kz)|7WxdidlT&YcB{+r zEqXJ)!z_P3@cFUVa9m-#gdx&!&*Fy&uc>aPXOj^Q7>KuU6U;pX>@R{={8qIn@Fi>y zYnphCe|OIIxSCAeUyrwzwjg)BLww8}Q#15h-+@B0LuS04wte`^Ei~e3O>>^_f_8&haM0u2~VwsD5;RX)sadq8uiuB=+9bkdnhJnBV_8PatseDqamL><*{ zqqbOCgM^!BTNApL}1o$7N8(L0J2r1Kv`$k+ZJ__69_hP&Llj=$*xu|)ZqFSDz?t8 z>^L7O$I$2I!g-q+2Lro<3E7E8FB4`L5^re}SO9hI+aj09HWNMFWIq zvIIJv9(O98E@$_3-?@cD`x@H1k5r*z-Iyp)Wjxn#54YHnNHFe+htfiaO^P3(2#5`u zlaJ>IZ!4C=d^B#L3^o#vvpgXRFnwNGULpn%f}Y`|O1z-!C_FrH?^)Gv*@?7xAzL!r z8eI6Uv_X5!TZE}0qyhO=z-=8L9ff7-*nFO+rpBTcy1aTd>JAN5A!v1Vnvz>tLfOHr zF!`Hza@F+_w%n5eE-8uabv#8vbyU+?GPppI@$NGR5FD_thgM?PZS^e|C@V|wlUJ7p zOl%y5XVT&gKEa!^Zb2N5D7?Z-`<1CUDrBUdkfiA%(y<@n>JyJJpz23PCa3UTJFbfK z^ICvGT4N#ZZ}u@`7s?_=AX`%%%$a-ACk7!$58SBsd>?_*=FlTkQFK&K^!!UbvTp=T z{7qTKo?$V^>W)$e1@@;rl_?3H(P&NSh|*=8xN1_3(rbfOp(iMlPXJuyz(%p1>wtSt z-(IFEeq}Sx@CY3g@Tuw+XvR^15n;OmOV*xIhQjV-y#TTD^0g#YoY2>AUClPVJs-XV zGUG~iO!oFw&Uv+nwBeCw;gr0&dJoC-SPtvnJPNL5bwWpht}Iy$$HzB9-Z+B00@(X9 z5xBK+De?Lh64Mji4C2x>;liSTXXJFI*uxMpG){{>6+1HtD3Fk1j1?Ql@2Fie9r3;^X=jF*G&Yl-QzNDT{FV=lTweuF_{0^Z3eDO)<0=YRcSxHwY` zx>K%Agd7iyE<)?~`8Ep#Y4BDJoB@QK8nKQt)OJno8Ip0H2Q^`^`3qj*Mq#LmKIaNO zP5(Y$dA4E!gf@Eb8?LDpv$QKQ^BU+!AxUSWT2ruwW+OxKR60`#@1k83$?Qyhp`k%p zW3FC~n_9?DQpOZk!#4oQ6i50#S zt#dIoA~rC~4OSKK2N&y?eI&;tHh;&;C-u#zE@#>te+;4S+-#{EcDH=8^38MQ))7;+ zC5|rx7HD|wH$k(9TvG=^m~lp{A47@2A_Ywy#&`KPb#2V7$4ovdn;gYi z;m}@*9G<|d4!lNlAv3P*e8`))MXrgSWl4QcLU)NaYhT1mWz*kTRqpy!gT%CLn6PaI zo7`S-^1=2y4n~N{U-{}e4vMSK;UtHdQ9}3tyE~ph(iGaiWH@`q(@o(VVx6AL#Gd`( zQE~D_i7+BeY<_NrnwH zo0K>soywAIz4H?LZdVh@9Q~2gr?M_eV!s15JVrbTaUR>+E8th-6x&PQz5Ae{2x{nh z63#1Kj#1QMVy?3qAzL`9%x5pv>DIgf=jAGk0J!_iwBNU3{w3ZOIy3J!VJT+ie#^08 zS>!OB6b3$OuoLJ0LvThy*V+Lhs4uiA6yIm9p&YGjuBD~2WSgBJqlx0E(X|BqH({~t zdF+;5+sM^j)va2Vc=t7I)5zNQ+@2LCQU@c07agyhexdyr?ZG>U5hnh)ZOI3hbd*WlA}+kewTtDt~e78NuDf7&Ozd z-ombg*!w$;y#u9iG5u}#J;^^Jk`Gry?v4ld^gN1@K4RS4xfhY!YAA=URKYuDzRxyb z)GFvnF-I0USG@d+U2(iy1~wM}#AmhXW^4(&@H(H9Y4Qg2rrC^a$l(KlwQU78SATNL zV6+orjOeARxD0tQ-pG>r+Ru3;2>usi-w@;r^8`888{4*R+w;b@ZR0n#ZQHhO+qUhu z-+ym=+e;s+yDB=W4;|T^ky$3j%z_SS5HS$4z|%}2Dpc3;&Q$!>d-`hm(olYWR@^7r zPIBkUnAP5lnJ+a(TtWS?nD6o5S9w|RMw1kHa%7ln=g`DR1ps5qF{};;L%&%ns7lt~=_IlY zt=Y7DRXRj3`sTF(UaO)vfma+MEB3*Ky1)|ztVzEfe%eEyBK9C~OCQz6da0gaYG6de zJn=rA8!2*Jef6kEQ#+&llyW>EFTY5+UqKT?>N z9_>>2IAvpItpkM>J%_(QfM!)NBXkkRSsBuduRSl5H`Evb9()U{h<7N_!f>+YYXUIA zv@=jDKY?$LL@{Jtl)21T@d4 zsK8kUAeWmy9LB+{C<~n5Dznzt4WRqnk%-mN0;Yc=VIacidOe2T^6w6udZh_Z(%F1^ z4j29a2zRQ?@n{SJiYMF!l6?KLa?zmGskgb(wjy}&0unBYJkOZMVLge<^-SYU<2A(# z?~#6wGcpm^9!FfumGC+`F!{;a7e*&He2|D~#CED1DZ0263eT*2@AvBuZhHH8tRV&* ziI>mo86PM(9%dan$Qq(Lc$0=|%Un~#Mjqb)i?MHtg$*=;47tiV`K2y&{=ps=-)ZvM zI1^;0`Uh{P6Z4*RcqKWE2j#Q9Bi^D0J4TO48^AUGbHzfo;a4;QWdA*($Z=Ya^31Tf zy^ZEQ{f`fyLH}WH4D&pVzX=j zsu%WPp3pVe(DvR973F4j<$8VEE zUM^XlsxvfBwYq$}r5+qzvyGExy65UVBISGDdQ;DEX6iSvN`b%8^7-{u>DZ~3-aFZ$ z)5yPT1?#0he|V3##fq}NHyF?RH}T93Fbvc5OLx5I*yMahyItwZXgE{S6%^T^fH2H3 z=V<@=p5-K;^dgVAxwHp~pxyF%f@y%B=YufZF%B9FzbK4U-PY+)+Y1MF9c4zn6#{dv z${B1qVKGjn<`-q0YYfPTV<8mV9N{Vr6+u<(M4%En%K-zX;NP0djwQl2jmql;WEcDG z>A6X$^x@L3x0TU?S*`@6?S2yJXVJD=j>nmg3y7)U$6jn?7Yob6&5 zh%QBZlZ1gh#HuN~I>-s@g%w+B|s|OAEC8 z8iAm>zkKfBXFnP4ItEHME*Vt&Q3Fid#&m!h`lknh;=2$L_;7d^9U%OXFKJkP(;;*P zqJjy;AT~8DwnU`IDK~vdhCw(L8-=J%ioj*(34XEMMj6gVVOuu9b~Vut(sbBrhpb&x zz$1&a+b;yQsmED|lgwmD+weY#nGJ!t6kaKt<9+MPv!OG@+?C}ovg^}~pnJgW#=#6$ zU@_~=QCk2+>noL6p?^{=|5ztn2@}jJYIaR=s8p4H>$j>xM`qt}G_57}s%mzqz4pEg zTge-O2VoaiPd^GEIpdZ?GGl;%mBH^@ByOra;u29a<6g}`=RFEvRb6U|%Z?6j{0QAS26E<_HHsjh-6?x&m^*fm7}hn#5#jQ~Go?qsp>bch|g z?nUu9#N_3})&?9F_yP8i2Pcjs9$UbyY44ccwt46YASK|f^l0~%@o=D5g5u)0n8h|vesHl7wJ&zL!*2#^aT2n|1eHDR> zc5ihk%?drjf{G*^DZ=lG#&|)RQIH|_hSv}B?<=T8&=kBFP=^+7Z(N`7l>lU_R3o z!=d8NLPwUBF9X*}L@qPmB7&h;#^g8JPFlM5n%`0O*+b>T3j?9REQ>w9)s*`*(7q}@ zeCi0_u{CH=Eb$y^R;9YDR~3*x?rX-RgM(LGP|M)j%_-O`8gvMjq+M_x?R+EE^e2#E z%tZ^}X_@^!Y{aKsAO`pZnJzy=s zn-MVCmlpZZWGQ)xu=T(jZ^9%=xZihRfs`}^{<{28e`RVunwVVc(1agfyLA9SJh%7|*sV%yz_RUJYdi2(V#)QGI~G1!#Vt&j&1vXm z;2gq#yFWN;?#)FcX1 zhV`zADJ$+EGwY4-Nfe!wz_VHHr)Ye)-PC)tyT~z6!0x@;l%J6dNg3(MCfKJhW4Wa2 zsQ-Ges7Zt4qEj`FrE0^^mB#&SN3*z6g8RDNQFzYH^fc-WPsP1|F~6B;)d?_%t322x z`o;|GILI^r9(5Pw@G=8n-ZYUD5ynG~2;g>yBbad}%eWil)1^d0RR@l`1{0GL|Gkn8 zeAcRWAp?P|=U0_CWklFLdxMjjfa72R6@?CplWHjYuvGIP#0a7xa7->y-P(wgR*swXJDJeC5p>*B8){r(u`dg7?ieH{XE3{=V z5~rllxUn4WkJ0KInT9}uq?jYUP%`XS96Kce@=nAQWY}Y$sR)};Zw+L%rQPjq!U+>u z3C1<1(>9VNzy5&95i8n%v6vhT+}Q1#Ebm{%e0C4Em!Xb=68tYq-#(t%VC+zM7Yz*9 zv-OuY;F~2lg{KyEJw~;PGC7qH)A@bdRbRygkkm|hHam`M{pQAUYiQM>+1i~#XIEy9 zy}ejR``hz0(nm+uVzAeQXXpb!&?i#EuyN)M$d4GyDmeYWp_8h?M*{3O5@ z_wfSM*^2;4P$}yHVrbDhsVPt(jbUUAgQxjTyx)?N6iks4S&c&p3=(NWxPRBfV}n&r zPt=)aH@-ocpVQeoZ(MQoI#DuaIb5?vHT1=d)E8vK!o0Q5-Ls8J5uD=+7M0S8vTXz4>$X}Gu@T?ssG}}>;F_^jwdh}6 zr&Fa4%U??>$5?GHzQ{KeYj?Khn5qpW_eO?(2BodOGFw1eEu;_jI3^CWz0L5(ERLdD zi{>ifXYO8L`8Q8J@)oHk4ijqx7|$;NLn+As3+0f_DQ4b5tuv234ry$+uUCNjuyTxp z$jb$c2KWIw194pL4SphrQ_v>4p}U6TP2n7WbG{;6KAfLl>~ek+)heXM-FwPahF|wM zw%fHps0@uXcu?Ujwlz>%4gV$>q4_!8Wb)Q`JwLTnig>_xHI6#~qn#6;xPMTe>#_$V zy@f_Z4z+6cXy#d5=PExus|u&+l<96zb+`hc$p{vbbxZJ0hBOZK733R;T=nw`ld){^ zdw*YBZHTK#fHV2PE+~Y_gUPEnHiS+cJEG7w?tqa3^uemhL;&X@*s={zSTD5P(L%JD zD-no}iHp&k3aa1u8_ZJ@nAm;2DMMUHi1kK)|3>*}zI`ys<20_C`Ra+wN+4PJ3?>5> z4^mSr>2mLRqY7dC=;!Tvr%E$B&?-u_qj?rs*{W;H*Zd&}j2hDfn!2wOQT+iM%Z*~+ zQAbZ^=C_+*SQw(q$KpDdj5=|4Z4n2}^O}%dCPCNg-2%fIo$WbNhEQ}zS)z^>ySXs* zBp?DPH?VqAF0yZ>mrU+djUI+E8DkQ1pW=9Ge$REdAgi z24{%LXjXVWd7+sc{2}aHmxg*!em08prt6fgMK4bpB6FZW90JKPSzO`PljSNE*Xx^3HmVFrdxpQf6FO% zHNxbiL};y!Vf$`lF9zeP-wC8h*xcjmhF+W)a4l`s2a9vQtB{s+Q^HN>Fs0Hb>cDUe4gUqsxw%4>T2t9u?pJQ>ERpfH{mON+wpz*=$0Q3KdWH|EDOY< zj8pZ9+w9mQtvd)c?3B|zDxUx<6F62nZ(hnNbk0KA!*v-C$ft@m$=i$*E$3<;quqId zZ(aur25%G{*i<|YiI|x}L8prDD>#uvO;4TI+-kNdQw!(royRaF8fK~C;bknaGSEk1 z25|X%oK}MQyaO1H=OuL>rB(nJ2a++v^uiqjlUu~Rd_gcVT_n65y-f3E` zEY($jWBM);#HXD!Ha3w1P~WzjS*rJu37pW5(R@P`S%kEpbX6&+RajZJFG28-ISLHeTdzW;Ytk4dQP3%X!U z&o;?sw|p<9zubxgRI}%n7*b_j&~KvG@lDI>`G%&_9TKNQ0FtN~8I)E{WFBtMJrEFZZ$uMq7+DIh(7Xpi zacJiy89%I*vcVk-!6@i1m7D*&owja41Pdno73TYZY%R=BlgQ|^cn%V5KQ^><*o$^Y zy|`VJ97tW#mtggA6WpGE@x@HiTu02+pR5{c)5rgSyMk*V{qY$|#CdR74QYwUX=yM( ze3Ly}6q$4_`v7RT;9(1!*f!_U5fH(eXR&gg{E5tu*#3)CDXlx&O zloyde%E6q8BT@~z+MB2m#}74jY=i;E>@{I{s|jM}i`-xjmx>ebMkpIM?87=J2EXW~ zlP2>jf*PFBfx+=re8W!W-6~5t9&48u#F@M{xY;SwJ_J}orOl`br<@quMxw=h{HR3R z6~1@i-NwNaYLw4n>#)Hr%1_i{#t;vTJHGT%ma!|J-J9^|EQ~_4jA%^3vMJ}mx=lX# zuUg;L9HgXOb~zl4yseuX0G{tLhpk{v(;Kz)vXoTUIs2`*axt>@i)V<`H|KSUUfJ_y zio5g;9RUdzmcnD-crrp76Ah?pKi&bQRGD4@Y6hL=C-W86+&9#;Z~g4h`3Zjl~u*(Sj;u{mPtwE<$tZOo&?Jn_L4_MUaDqHWuf6 zG&XX+WNU8kIin71a=vlp&?w8mW^rrdFmg2sPyoFrn7g|nAhmKn#CvHij@lY@uk5~8 z`t&8LRn~L+@5lGQjj|x{Gr*V?nKgfM@wO3q8{j{OHgm5g*fJ+4e6M+8pV}m2`xs<0 zQ(?{Wv|nYv?)f#5Bz8wM*XzhtgzR|x1!}iO)`BE6$K?T z+%*gBj&-=|nDIKG?!BFRnS1v=Ggz_1J^+2()HIwfubKN$PjMDo{iwZI)r}JUY@|(# zk{`@p<_5F)6Lf79MA&A%>((Uj>DU}K7uICpbL`iCbMZH{#H+-YT1kk5CFQKrcIc9F z0IpdmvJyAgiQy59kWlV|6|YNR9plSnjT$!+m67Rnta?;)#dYlvPCG@aM_D;k6F>zz zkm`c1WtovONg|mVZU}K@&_vzfrIKaOW;J`wDjJ(IkCr0c4dp~4bPDyd*k$_KBt{$S zg7@|rj;;lwYj+mitppKWp<7CA%e=r~ob3ubX+cAny%!$}@V za(rx3vNXnNJ6s=ezy6VhzOmUC?l)TV7o zFisl(o3X7sJ8r<-3`B|;Mkv*J?NH^)d0q-qrfRLze}k>9kEg`w5BkDu21p?#GQd?r zWF}_}v9awh%r@GEON73$BgQ{m=r8f3D(3vd-Rn@{GG@;UkDlug(;gSE7i4FROboBE zyDcbOCsO-sI%dF`W)125ZE*liOY|e9$0;dMLQ6xyChIO1eu9L8Q9TG3ioCRE?dYX~ zejS5Vu+UuNfT<6utjOYF1CV_U3Lgqq4XV_Lb}UpLP~=_bg~WgsVmq$s8nd;FweUB1Vx&`YeDM?Zar=)D1Qxm693tkI>hXN9 zs@ZaAT6TMRrqhOEw(}9A?93%Nr}qnWg@I!2+PSX-Py%%B8hR3HSn~HE+ZjTG3$@($G$HSjj{%vf7oGNKunkg=lPH^)U=ET16*vHam6#bT_q7Xed@5T- zvvtD$);(^nFV{ahAA2r->xZmhn@5!ydn=cs(y~}rWI*Bd;LAjE=b;dFr@g4Q*u0q@ z`wPj*AO)K`U6w|v9$*@G-1TcjvtP#dlkC;7q|BOo!K05D*8WU?@a{%w`4%4h1+skLp~@1hBH zQ(1z08ldyZF;=aX6l*NHO8Lf5UcfjCxmB=i2*UF2!gBE!x&dPb9=>HWc%x`gxUG15Uw z^w6XHo1)i!pnN#+_YL=t7xl%l@tM9zH=>HY1Hd=>#Cx@unFuB1MCW=J#Qz z-gMkXXAwSh1_oUuE%~)2jgRF%;g3a}ho<|L9f)sB%BeNGTR)EIywJBOMYyAq+vvz> z6`+8UfM!_OL*-ADKRa|1MXDs+ait>=si2>`01-3*cBgB_)J31u;kvt5!s2rS8%!-E zXl@Ru_3rV!HC~k);wWEKy#1>+`hwqrMZQ`+_9eEBhk9rA)5J0h%07~9W!#K&_bxl1 zkOk-$>nC;-y7&n(>mhQ%>5#*pahc?;@i7U_3=SGSmh9f00%e*d6>YQCO0998V+0Elc$ zgSO_!2tVmy;1I29%*C~lPS=~!>eQ2|mNb;%?t31X@M&7K{K$wTY>juiVE=3HNd%4o zM(~L88{=D`B=v!P$D=%z7pQ`y=ds0F1~{J?XQIe0Z3nyZbC&hiD@tY^K;`TGLN}_qm^Nir z^hu{~j%O9ftO$a?7yT+i4^&F&>M9}d(|nwq>Ok`}tdEl)V01Uf*x7=4-^EYxnF)NF zZNsk?{&Q^fsR9pdO@uZ0eo0VbL<)+2P7rt(o%(N{DFF|fdA;I!u??EI zo6v+{;yKv+2-A^No}wp00idyJZ^|WZ%pgC~-z4BqeY(!c3}?ct-jq425>%lRppnF+ z#PyU~DeRwbdA9ef%+I`W>x_?*A%XNZw6a~-qD+4>k(I|($1QRKlHh=&*gKXu(iM%6 z>vZ981>liI!#(ZpS&5Mn665d^=U4aJTA@yd!XaQ!d&kJ2;e+OR0JO=~y*ae1Mxqg5 zR=GMtUXjiZnzZ@r{G|}{iz=*lz^39!g$i0EVWvFBM1!B7zlvZBG@< z^>_ujPd~yQrhESiqgOkOk2I3_hOEg%fx7EV$&yV}7je!l(?!lmAU?S=rTm*`fI1=$ z8X+Pe3CD=Es@*BXrxdmT2azY3&|bmw@`*=-)pWz2$P_eYnyVK!VXX_?k5LAaP=hi* z2>N6BA4t0N1)%dsn*QNp*u-+T&8|&QCmHtUnXD~TCWU*?2Q8`=zZ8iMY-(!U0zn2w zeC4GuF!RYpI{b7WeqJ(weq-MgyjVd{cW`+=&FPmBRORErg&9_m*~AMKrBFh4lr8Pl zV}};h-^_Bpdi{*M)e0()-ZSkMD{81O+?1UX)sm>O0(>t6N1h0+4rN#9hB5S2;_HBn zuA4}#zxb8$Gz%g?r`=Xhp*bCN#vIQ6Cs=Q}S>YTeQ!-n@g9x`dyKV!Y!%##1uehj^ zh^0p#A`Cr#)M$4oM>931*?91hZQwTo2vNyvw@>zitbj22pAY>P8@5~gAFn{7$iU{% z6Y^`wG63IdbnynJWpPhmYEKu}+VO|Vr%^|Nm}w%6lE#|%O{<-Z?gC~FrpD7;5L~Rq zw>~@lL(UT=xKZ7UajN&YFl&&VYWwL&O)~r+yPIaMS@{|uTv~?cYmT1subx9XlgrKk zx4`%SRJq_P6>_jsZHca2MXzogX-fIw;B-IiS@}W-JK#!Vq}JOzce;6S|9W)zI%VTH zbuD@bIteIGD_h#Yy&6vTFSfytKb&;sR<73l3;F9MTk#NllJv|4P0QsdamecCA@%P*PWk~V-2 zf}1vO4NL)G;o{)>f7AtTbYz@yI*@w5)a#wF)oSWJ1mL|TE8Uu;RN*H&sUhnSj2%fE z+$60g5=_t5$_Ox>LJRR(EixbpNO{dl7vNktu=^n=CtgJ5e}BdK6MsL%g{Ud4kYgmd zE!n2N$x8?p5AM642h1lm!;e)dG=)(@vKXKPC$zD?6$l#-Je#R zK7Vfn_P)Pgf!r5`aei61KTJZ}VmrQcsk?T80ODVjdir~GnPkiv)_!U7wE(+>w$6}l zkld2wl~V1ww6%_V$4got?mB^HN+-z(2Kel*9!sjFr)UKmm6n8sfw-S8_I-Ku zio?t>3sJ>7NYMA<73CDotiqqfBuo2bDXONViSz#z!3&lb6EBTH8O6xxY=!7{Nl36P z3s!E37Dc8{aXbL^(JIxtx2zW#mLl+rPFNvv{ zv5In4j88@{2!}D#({`IrbuJC6lt$U?a5C5&;W+|=x_)r8~zxcEf^{N+(g6pwA zCqE)|0_7KV#6nj2R9ii3S6zPh`)>4$5R6o6eR`ZSFXirvn_mSDepR3+}F4wWZ5v+j)=> zj|g7R8M_();E)#^l5zpEae<3}7Zaaejp|Q%1LPZjcJX2mTq=T~HOQlkgIp~P8PlBF z6jo=BVIYn$KfBx;V*j0w=pyYF9)twAAZ`a5^`CozUJ(d5A~JuKw=1K*36{PeF*t&t zpRx7Sk$MDzA)L!$ih-A|IxNOWrxi`2QRFiqYN>+&kkk4_8S;Tdm8#7URx}cRv5n|Q z%a%2Q)})Nd@R@EHe_4&G>?<_Q4Ee?xDEI#M;v6TqT3UuNScgZgcZYjQx`~}%OmzJ@ z@p(y8ROkN}5tCoDt|dnYDE1NgaEsSh`ptaAJF$0fmA# zy1YgMJa=FT_ET-=41$Cj<(7c=;{rY9EXH;sk@s_@)pjK3xsECO=HG61T|y#C;WV?9 z@J7Z-O-ST!G4>gBGZpmF_m)LXyu-yoRs zJ_^4qa*jSn5qJ-b&U39X-SMHYPZy%xJ{J&wcFx!GykaJ;Z`3w`Z8%fHMIj?!8&~!j z{^nCacwixf>YDyo4acvlp50tDDMRn7lj&?ZQUY2wBrah%U=sN|y&9ne; zsyJ9olwnIl|7jxWI?f8Sk^fUOM`7YDFPg#ubluT`dj?Lct#IHRYUJn6t-o+V3B@MK z1FKoNPz|Nw#W>47P@e7)=*X@F6TUNgQbir5%Pru8E|Z?#~t^bsX_Xce6z` zm0s5UB96x6fJV9F5am2H$8gnp;>(+kv|LYiBB3Vr26srkQ-%7K~{CJUb4^MX#7H=YJooz(AhbcbyGIZ~n>pAAp!BIQVWAwP0`m{^3 zPOTDQI3g$4utF8jc+ew%F^SPNHFf3tC#jt!liq4`zao&T^RI4dkK0eebobi992e%R zTWEzBrRM3XiU$*g7}tUo!Brn1ODy_U_{)L_KYqZ^5BsU2N?Mf_i-Rdg~q5Vpj9)^yOB)dVFy!ToBf?D0tVYN9m zlFptKD~ zhgiVUguM=21JTuB-GS>+&x}CJk-}rt%Yiy{fQeBpvkLrFd zHRG1dtHo&la=v87O0GegKkodEmBS!^lpLm4K}L5;3I9RM*|!PB4$OdvqQv|dr3&MD zKQ;y!Ns%oQtyvc)bv5uBHg^e zq}?N8IpV-d-o61DV9tfo6o+&Du+{?<{E#whla~^}=O5P{K)%0-d%vdVPqq{Tq~@-l z$nRXQuy%Ld{=-M}cTlhBQIZx22}RVzh6asrwc)`l#OcgJ{raL6Q<9=cz8Qp=f&*n_ zq#(kjQ(zI|l4ntpq-4p|C}6nZkz#=s&@2sf$f7h*8>WB+LTq9AZ891n!{qu>S;QpK z1UoB@Kb-pHq0Yf7G(-n6_ohQg$xySY3I2bjQYMgs!W+gN4{LQA#R4(Y!yGCUg@rAN zL=p%gj?|UO!()X@n1x_P3wmV{HOvRRy2FE)T#zb*gToYZ=t+PR0{+`Upch6Y?TTo3 zlm@wE;5a}KolBnPfnJsRf74V>Iq0iVOexTXM9h>$28aMX@-S7Gi-vG8FbJ_uOT1z5 zN?G{3V0bZQe>g-8R8Kw}BHH*6QUk-2sbfh*%yiB3n~}3AuZa-9GCBqfz*@A`Z5-U|TIv>tgD;+I-%v25;)0qd z4xm04_9F^PpEqo#RXpoy(9C|Vqg__E)PaT20!AYm$EXSE=RX)Q4cD;Ip>X(n0CRBi zrNF|A)6^~|av|r}iZD0YiJu$u0XsK(ZPqfL!f8W7{pIi=BHb`#H@3ZJ=)Ve4Sofbz z_~;ON)pAEaKBI;LRWG?pmLbF>SSd0*C_$j)BCt31;4E`}3i{?qLw?6WXp)S)mOQil z)o)5zx6n9BkN~*-{yGu}%i+xtKhEZ5U38*rrk5x+HeJPqjoxAaRH_y|+ke-W?RbcB zcAZIj_%vB)yrlS#@Z*O^XXC2{qAxd8VH<-x!h;89xuH&ppOMPORSpR>;Ya@jAV857 znN@ZJC7Ss5(W;9h(%P>5)MRwRXL#$>;~=)X^Egyej_hfLEaI)uT|JGkj?$j;pI7X> z#liK*e{SP-M3-w|2?Qrl0er^t$XIaTd@&@nXEpA@BD=jjgADG$1Bry0Bz%&HX$bO% zsWNmFY!qqPtl6~hGdfyMi!Um%0J9^F01s$?Dk&dHv(JHG*ekL#DdqzTB#t~ z3m+ra@0-$Jw*(%6HLz>Grz>OzSGoVSC-cAd=q|;#-PK-9=_)gO_Hd1IjZ*5|o;Ct6 zF+NXRQ=!D7!Xi;evt`$R1uQmrOH1{wS9E~N!=cv*5WS)X!gl9|w2cCKj?QQBIz46= zvfSQN5-YsIQWEKNWSG@xJ?T3x#8_A6w1FN3V|vKb$i36^lMxsq{Ij+UtN8GMhyWAH z+2dVLfP%1cQ*)&kopc;qW^G{sINi?$ssIk7fAePU7UhhOjQjbR zl?WL`g7~~@I|65ibW$rj)u}(`KhOjiPg_|y{HT+nrysWb$-#igR&rQc6}G&~5juUP z1tNW}#7an=x%ZME8u7obaghEZ3y%|8zF7+mFJ4hW1O(x)8g`>296kiWdK*ClpJ4({ z#a{$m+*I-S=9lr`QvT19Q!k%ir1AJXFp)Eli21uz^~*~Rq2pXf1P<(Xr>;Ez^qq05 z@g8y{uc7}F-_-}0Wpl?+2yZ`pSWU*iAr<@fL!@xPM%*17eCZVusITb95B*U`FAUl4 z$|q~mQJ!n%l250bUSOip8?@zjY8>$wxr|$YrgB9U+{N;G+l!x-%Wg&w(R8DVTLW(_x7#hhg33UpzFTMRiYjk(9f{u?f>#c}^^h*z z|BX^u&rAG+By@OePTTPQ|Hb=k|HJz@X}UhZQ~*xK{}=Ah;OaVWao+ay4LU14%GNx7 z8Qa|!^vJn)u4V1oHu+w>3bmw&HvNuEI|;n55eQ1g9*;+;l5;7Pk&7u30wn@L`5Pup zL1%q`N4J<>z7+o;B|SPdu03A0_X7Bj=F{Zfha)3QsZ}@SPOHq?4JbOyS&16>SuF$-KkE6%JwxG+4{24vL#IZu`(HpNlzok#)D;fvw#gD zpNCC3pUW7iA1)cJr+eaO9a(doPSUc%TfQ0Z7#!-!3t5l6;-w5!?uq<`^5ahRW0mR( z4KSVAS)T2q(Xz!)|0cj+7|r(wlq}l)69&QZXS+u>7hO5gOFZJP>~2Uuh)eHb4e;fA z{ueR(@6(D~J~j^q?-;<%JjN(RAInU54AnHVK~ksLsU5zdFgby_PS&wKUo62x1iXzA zcm9N%0vTGGM*8uWWI6fASUE%XFxL`i8~F#f6XR*P#NVWd{y2bs_h}^$*JA1Prd!3& zY&tHJD4w*3Q`O>qTf#=1wTtCzc&#z7# zY4a$vr6K?WVSqJOi#JSa6}~r=_!{>2=vgX>+m0Zde?sTa z#ZdCrG2d@El{;W!W4%IcVsFfsm~(IIHHNl*Ca>pl#QFe7jwn7hqnTD!S}>#x1Of`| z$NRT;wi5VaLT)lU3)4Ct#a&7PF;?lV#2jEkuQ3?{TVI_J^R1)KHcoV+**JMcg9x8k zROmpc-#FsWi!oRRpS&kxKw2!zcV31s{xoyRZP1{3b_JkHe&PF0=^oR!^8n&L;z!$N z`-W?_3@w(Tq-Q5n^&d6z-B_;BIMc6S9z#IHp#{pw%)F9Q);m#w=H0G!!}BxOp?eaS z+@yE1VMgI@DI|Ky3s5nPP@%kn!6$R*oz9vxN?<7OtN|(1fFm(B_4^~Z)H_`Xv)l^u z@@Uud-3xfrjM42ooD0Q9JZh}m8em9BuWo&0ggg&dCRSRa#26lno9 zkZ%k$=F2>{y8O&#u-UC|JGfNXUjQ00-#&fW4fYP~oSNO%kNzRns>^=gE6aBNe8OIL zZkjIb(}3eGRez?bYm?c~^b*LOlGVA?-I2cQY2#A0rE9~n0b?%3y0T9lA^ECA8{H??58~P4YUD971^cO$wMDxpYq*ULTxv|_0k$c5#ivv2QK8OF0$Sah6TdFH}PC*)dyis<8{I9c8% zT4hcoJFlf#`<4c1y{*bMr{)W3iMaaqhx7%+)L^F`tzJwA@Nw2q;<2Rr7u2Yn zJi*;gZ;8+}NArk0?aaFY&WDx=NLvIKG7z3r>KzK(gUb538QgJieBh#=FEOF=53}+8 z_gUqIz<>}K_8BpO16Xvhh~dG~Etn(WX9LoRBhzr3E6)@W`%xYFW3wX5W=9-R*a00Z zj@!%ZuH3O%;$`&kfnpOFV{(w&$Bx@B{4I{&(cU=ACSXtlf=io}P&%b*5{}AHxmsk0 zfe!t8(0KqlILP|M(K@sh)b#=- zVt#0HlrhCQk?DUCFUbr}w?KTQ|1Atljy5U-;Vbq)ZmnWFLtJ(miLHYf*CBh&tG0_n~18cY?;%?B4M&*^_f#dO9RP*jl8{%?3}`GG%- zr<=2WIhsOYa;gGlf@`!?cs}$>ZuMP1RZJC-oX6-grm^@gRT-F_uWOI}$e6FVGoAlNY6z%?` zpDH)|hcySw^jUYw=_r+4ecf!UbHuG_Fw9JBkL&sd;E>2Vz*0S5^q&j_tK*2EbOn%% z6&I^QK(qIESdM4siHJ)LNnH-b(sWXZCkXXcMdOW12992+CNqdy!bVmJeyTX**Ljtt z0S(&&Vm}UqbL!5O6(6geud0gsmqAt4j9W*$V{OtFRwO+hOUyp9lqA8Dk`SsZ>JX%q07bTprG`ulaCTpmgF+y2$^8I{_dDei8^Buv6jogU z7s^!7ql+bcA^(i1H!nZ5Db}H>7>0chha^~n0HTAQH&qQwO+SpO`$(;CM~RKi{Wl*a zY_~d7>z7Vjm*L4OJloA&4cu*GqLO^|xgX2&iv}(hzFzRVg0w{HLZtluB5_gJ1RKmB zAWnGj);g$c5eK#ni>Z$^VQvw&$wz%=xGwju8?tw$8#N$HgyYmxZFeadZXB0wYu1nK z@7NCaVfq(UQTY&Bp_f&?eSYfcw0jl7K(4(kL8I{j9;gG`_<5 z(!{N_zM?UEwVJab2fBUW;TD+PENwgqu$_+H3=>VFvY$3Tk(w(_eX4SNRKWi*3T8)f zhomVIj7dCh9s3%s1Cq9>@Dr!0sToJ&Nlcmi#9{>dWnd>Ce)n0&2>k3oTBq$gipf!1QtW znBvs&0kXlSQzf_5^ynVdzlyJnxX6etz656bK%O7S8?0V}ddpma<(Gr{au$7?i0!V2 zrhNTx1HQt$Kc-R~^^w>k%cQK(pl-YdnxUcy6X|vf+(+*NZCYp<2s}Gqs{Ud>85$Ov zzE}H-iVuOpB@xk_Vx@OztSXrxAbN;hbwYyHWbpnHs$^=<3t7cylT9mXbMUz(Y} zg^}Pq3!b3mZaUjXTj%s?j5Fq6s>{&f>IVm-VC+6@C;CJgqlSz}lND&&AEsYS&Bj1hDLGTv2p3jLz!GS}|Z))KpO74uMEPo|yzeGQ@;TitmhXs;H z)EES!^U0zTYi~8U3c-LkKn}K*P4+?nm15&ustmTfj0Wm+bAB0-32kZP6{O&3=Q7r= zL}}qc8lTB!1MiB0?Hbg?;09XiRAOXcq!(|th&U*B%z}JM>T8x9{eNc?a3yi5=~DVl zf)9sdys>LfOVfRPaD)*FB4^Ni$&ie~l0u;AN{L}|Ur`P}qkQuM_=y#OJ`}%E;ZN`8 zP47;W)$@#=n3~{(C$EDhuj2uRgdQ)gou~?x)%)@1=hzPrEGM?0L3&=hgQ=L!Sr$7kYgld#~4r`+x_~(IpiS5&xVhVhzgEY?$?3Y;}1*V zX~yl5r6GyP>9%bOFakcK<&EGSHZ=++`#?&IsGBNu&T^l#X{)G(hSxkV2%A$-@< zM0Iuu?wk~PfMlN_Cj-%6?2+R^4XG=?BOY_{XA9kKARxy9xbP=?bPwx9ez>6_I}Mh} zv7@|JVbjt#CVqwyegTn2w}1v)Pfn+=&Co6Wq=b!)m-X4sVKPzm)2j%5&@~Y;T31y#+uNYD?Sh?eo%XQ*1po_ zsA)&Ca2uli*=+NL8N08Hleq8o6v!r{WX9;6#pW*|vs2n3oav&WH985OFt9ZloxwSL zISpA?Y`}vYaN7qF;A!*3SKW^>i77;z#qj_!0vHof=>hR2b!PG*dC)Fyn_e+4`wy)1 z{&QupBE~a1;myFnx8?&{u5Xg)4GOn6@aGX74dv<<|3QI1hhkv9fD_Cw1WAh(DclL= zOG}>b^^zYfXRD7u8CpSK-W|A>5dRG2>-6zt+qPy_UuEO?e(sn}d3CKEXOJXZCvXaa ztb?y|rLh>?zh~MUKi%h(Ej-iZBH%y+E4-6OGcE|-tQFXhCILW$7iMUy80)E z0kdb#pI!HQ>dxb8BphpHiz$8{%BE5zzgC5A)`hq!1rex_4p6C@q@`nJ&YF$! zg#ydaF!bl$42I3B_#6dPwfXx83C6Q@Y+pym$cslj(Y9bghtH$4ko>A(TvK}YK)n}z zs=qQRVXX*wtJOSGsX_%=7TD{j@KUYeej0i7{}w}Y{Wpd#i3ZRB*;!cG|C2K(n20-Q zyW2JoA4n z)u9y9U|0^ez?$Ibn6Y^tz}gA~;u&}S95Ecmb(Xtx@J++Z!Lx%)p(9XkRQ|)96t7s1 z5A-Aca&zbJetW?RMzI~<#ZWA3?q*M8%Mvj1dsAqn<@iiiCI4se{8|&AL7_q8m1Rv* z`^m~db&$-$^ae3gp{XA4SXB7Od`*BsiaY3NVJ_B^&p2huHHt?&#O^0{6pv>J-%6=X zgO`Cf9k!-!EEqD{9tGNmf&`Cz$U2#sE^ra*wy^5&s$0CtPA5iH^m&-;mGc&hGzGV6 zOHOSRxjs}tha{0vK+jZFJ4z_!GmYKX#>rz9ps;09^~*4}Bd#A}e)1mgWCdZ%)Oq>vmg&%l%hQ7mAVj&tj5(QMc19%D ze&Ts#Q$kazm#4xRx?x`5L|aplqW0#@Bm9y)P%eDJAIuV%57Tk5k9H7_W}pSiMiaHN zlUX(o#!s;1qd>Uqu;e5jszu4{_G?lQI+#;xyq0i|%^`_e^E_{F)oG7aN10m$5Gf*bl8WLG(`w4*#cujWAYpy?1_=B?uSQze&uJ>$thPtB-?BFE zidu%m7+;5(Ie&L3Jr=jV;xG6Se=z!OD)QJrW0-GxoGpI8ne5F&*9$i3)d9X`m^(HH15Qm|$MU>fF;)gEV)Qk4ELT0JZ6+ zWZph&a%$H&UGlh*t<6KR7dVSGX|j49%NjMuyapuQ`FFV917wsA%0nQRdfg)}zPp}o zQP66c#0L4P)H58mT?%kzN1^*qq^ePzfp-o-2Sx=ZK;amkh7YZBlMIsXx78o_&EJ;V zEefcWx|PYE(v!_Iu8PU4zW(PQP%}OIYpB}z6Au|crN51LPbj6|e7W2wbUvwjkKL5! z5-~GT!Lh+mpxymI>9IgT-ATEV)wi|uqYZsSnQRvlILzirF=rskxeat_y0QW_SC#zQN z7=Dp{R2lPALJP%@Uj$Q7KRDL=DxeHn>k7dl*7u!8M4fi*?UjJi-N1jW>;l^VJ%05C zcj@$Al5UrF5gJ;Y`OWDh-aIo9&dCtG@Ww68F3Bhznp0;J9wL^}nNVS?7c2he`~q zlH3hny3bi4W2D)WzFZ-x2U>hokwT%UB6jm1cVD=sH8{E=)Ndnw?n+`CciLAQX~LBV z3wa2KylBX4cEm1AVsclG{vsxKfm(70IH;#O3H-c)dr2{vsVXB(M-<=sZkt$Z&sgj+ zo~^ftEv@r4pjg~$0=o=*?IH*DNQL(d3K^YRS;zm>5wYOhW2n~ z0p&d0rRu3D)24S;H8aJUxL(-*wHB~r!vZ6NBpPavahzgcytQrBK za8UPa!h$1eRH1$zA<7%7nT)_-f{3;b*auKEosp2zsjLmyvTJ8Fc3mQ+Zo-j>`KRiG% z>&Y|=lNO6V)~~(e9|NN>k$ZRSLfiZ10%}xW|7$Iz5hh@*<_=rN#FW6%2BWTQ*$=Km7iw z2Av_;q32*pnxR=$2LOtvD-;R6__tUiZjGuOF`qkk6v;VmD)G3#D3+SbL$0-*KXK~? zN|4<~R}Vu>5{kMQe%#DaBV3~1jOmZ~8gX2OK3AxW!tEz}4OD!z3LnG2tmcD_fI>1r=38K}tCyC0! z=Kra?aXZh7r#muuD-yfs8vaw`Gt|dTr6&4Zi0e;ao+UN)M6(Bq;sxs3I_l-Bk`DTu zMi&5jz*J_`kcC=eE`(Vu1d$Hdg4O^K-#PT|6P17uO^VK7+&U^WpQ>Cta4=fj@=aHA zSu4odnyKKzgLc(5gPthZwwe}L5X`6C6G6j4N3IQj@QyJ1P|=E?by8AUKIo4wjRPPa zi8c30rNXGOF8-#|mZqq{+dS%ZoIPoRu}zJ_u)8FyV8qP^3(gO-8Sn=Fw42xI$|{An zrt;xYt}c#)??<+tBT^=E1+6Z_qZF0@Nv`8kRAiavvbEdL81O?sJ1Si3`eU<$Pqe;N zfFv11Zw3+g?{Tc5;om@e-qA0C*}8AJW&&L?UUo;xaf0Cz1q< z2AGut5bM;~snl6m#`l1?W{D~+PVw&e(5sZYZW%#A=Gf}^SZzuHZ>4z&Aex~>6_Ymz z<)rcki4Km8Aak2}7F@X8lCedX{d768z22F6TQ+y6xOrK&p&`O1`hVJqkh2u|yFpF| zi7K$rr7SsN;3!VAVn^s8*)$4`8cbCx#j;(%1qakg7}|gvK0Hu5MiHZebMTxazo3#d zF@%nW2ZKYl%&C_&5_dLQog68YQs6s3rWnR`q6Hnrs}q%MiOGr6xSU>7NQsjSw=E5W zs%;fZrcE}LI(;OXE!z+VyJBWUQ98@OyowIbIQ1Cj%>a#ZA}zxg#dmygU%Vs=wMqD0 zwc>myiMpaEDLP;bRneUoJ-K_P%$_>syo4RzT;%z8qB$1O@4cS6H$6tpb9-FBE17P_+hc%Q8xp@f9)_R!&ftO5w;DOh7tueTUj#s1TKIm0{0or>Xe>mc^AY z=-e_{c_AavwiAFu{`{CCR;L8l;fq|nkW`PCLpW&rd$q1SBB49gm;aCjIS+$5d|E`= zhkLR3B)Kx*H39WUSUZJpujx+woj1)U+Lr%Ud#l7J@IAVO=PK3ari&#^zN~K%2&EK* zCl?R?{E3q>WCQpg-d)_JENN|d0Gj_@r!Dt?qXwG%|6<)4LgALCNc+Ml3oU~$l!7K!TLt{b{lg0@8*F5)XuvYPNXP}br%w2C2O4o$!jUTYR?YALH*!s^6W0ax` zU>6=DSvj=0W$=wQaC1^Bdd|Du08z-`^W$>g1;))_0JnwU)M0kg4kQ0P7QwIsbTGj()A_NT#$i7rl1qQUMDuaPag*%Zf16v4kHV%QO6pc-(E>FxGc2h-xZ^G3vpft3Z zHOoiDGJ&zv4ueO~t3rfDkW)y_@7F!{!ows^PG=UE1f$d{8sLB-DlyQ-2@E7NSPTUd z#Ew$Qr#!81_(`K;-d=@(WLFiV*bIFV^KUT$#IBNIP-UXK^*}ZQo>}t>L>wa)>T#z% z(O-Yq3?Nl3T3~U)g2@*o+gNtfU35bbzKJHK;DMw9sa&t!RvrU-P>MsK(Bt_r6EtTacR=(Bs06QwE#xRVBdX|ggbiStsJie-bU!K%v?X0dh$+$ zzZtReVQI(W6`4>xH+^Q2R{?MSs^D&X>9_Qvd=0&QO5;ioHiueZCjIe?8O;k2af6}x z6@VVt7X;*zn|}okS`a1iLD+%1vW6}2l7`MOW}Kl?;J*dTW^?|1NnaHjNs&ouVK(pg z=sIBia{GHJTZF>)rrBX0AoopRh0IpM_JPkOC^Ea}uIe zk^&<$iP>7YH4xTwst`sOdZ#H4AnffNf>ObYqgg5S|N0J&AHAtFsFqGFaSVOtv*;=4 zWj9YofA@(PfJ9ti%ip_Sz+B9HY#~G5EQ`Q0E@{-AWSkrQBalFi0$v4_?2P66(Au3$og2SSQG8`m6EDi=Z?o8c|&ln>Mz z*WESbT(0Zb-V|5qBuZ`J%l^Ki>U)JkhbZ8|;2)E@ooo9k#xDyW>5+)Gx_xQ!J)gHx z3d5;)Thb%ZN-W$r(;VMZc7|6lknI;WO^;1q%PN9t9ch~;460n*R4b{k{DINz0~WCF zIp{v^(N}iHIEzabDm(i3p=oym#2`(=kk}8^Q@nKfc{>)jxWQ&&tQ9r8A}PQ=N$C-X z!XM&9K(sO`W3Oiu3LU>@Y_vReci#el;SyoEre?whJ=GVzz4kwGlD%sa%J% zLxH<-$8AF^N<3zX+@WkCI4ZBJO%KRT{Pm{ZESL4!I`;$z&}oq zV@t0To)!3c0Tc&0?xr|KR_99R_S?P5iz~V;*Fn)rP~!NAN-uRvNR!;~Pe2+^%TtQk z&*;GASyW;X;pw1vC@Z=%XaJ;~5D57+BalHVZIVEdlB}$V=;wF6yp<9`mcD3!j=V5p z=ULCdCc$J^|0Z*K$KdAB0z)Ch1_Nk@j}Ij-Edqf8rM3`bO0J+2oUFU(pJ6v0XEi;= zK{{9#57PKM5%zZnJ9Bk{Ea3X;;&o!H8qcv9q_VfFnU4vnRfRo~_iA^<6-vH2|p*a!H zk4wXzvF&xNPc@v;`^ZAPg)=UvBi$zTQ;Jg$eA@teiZ!cwZrI{Ah))b`tVAf$VGV~aC$XB zw|uLc>~^(|e{zJxi8-zcbeAiOBY?ih7T3SrK%`vh{K8PnjaiqFVr7a~)gR zqRYl8r)+HoUvb{#15y>H`%a7Kj~vpUVa^@rB{(N+Oo=v3i9+*^Ua6A|ioSZBN{m8o zD={NDSh!e5vla?kBS%~jTPY=YN$utbAg7M?vO!(An8e-HcSnZzi00(s*dDEoVr(ui zenvX{JPHVaLOuESt(Bf&Vyyg3-7kT1W_8^_K>ir$+b*TE};@Giyf>3o#7r#$RH@Eh(!f{Pd-+gA4c7gXA zCj6{*gV#W%0Jctt@M;7cJ)b*ggA)#Vtp#c)1ir6$LmegAZ3a20QMW@G5X}qsx}ntL zdL54`o3QqI3bBFGq{H%BI-Ouv{hUgrU`T0IT93Rq4A|-W{RDFMC1^%M&dfApu}xtA z5N4`(M)*;iHz6(F$x@pqLv8YGjE&)5%JXY`v6Uc105g+V@gzz?F=vnwZfsTr5kGw% zOZjjyxYJ3+VN75n+^bdzUB^by{k!qSmTl5r#r!%W-9_=`6 zryqvjLh#PsFRH`Bk)a1nv@ZfrN2VlZm*A3_SIv^S4ymw=AdEDUO4rl|LSOhmvG6B} zwwAf~KoGo+89m2LouHxIjB-J1+V`H>WODwD@1Y;L>Hdi=Z$jN?oZ>#FbPD$2wWai z)-nL`Fhi;otFAR84(o3r)4{^Md#PVg1!lA0z{DBda!0v%)|Qea3zOaj1u{{YHYx@Y z+hy<4F}s67;`E{~%{#*ifjeIWV#}Yqz7yt^2tWE}1+%`B;_)nuIBa>AGF5%^43L(y z*W#ZS*r^s`Nv-7o*!x93vzQbGI;T!~6aFikTM#E@!LGAGRNJM<7#*NZsUJ4~)cE;b z1UOD-97kyj1)-X4eug;sv~XX(z);r6dQtQ+Df8g8ie9*!g_L>{Oy)!&kgW~l_G_y+ zdQ;F4GE>|tbKq)$(9^}p+GX3q#s8s(@x-0#WGWQ|yp(Jm#XtE5s!B#d=M)M?Ru z03xbvcjup60GQ@`^f|u@PN0@X1c+0ffgi7=#IP_#7YjEojl3?7G462&cSepeg%j@ zE8qnFEN6J~Q8O`8L#asW6?i_1@#kUrD$c3#tZoG#%=@zgP>3)nH9%hQ8cF91_(|W6 zw?L!P%SD1A-rs2Fu7_#lB`SCo2kftH`6p98tqAE)m}Iqzn_|rMm9ALvNc|=>Y^d$YyK>)8r0d5?_8izm>G}_*vs`txg zI>LP8tE(xRknS9(60)aK0#d%2MMch0sXdPDjAFbt8{<~`eY;^Z8W<>iJ(wf63gD%Y zCZj$(AadP-4Uu)=P>hw1ruJWG?E>!aA# zNj#SmT6G=_n|XoR`ls;2kzKa4E1O!H_Jv*jU!r^~V7=+nBhs#_A27SYJ*B&F^RjS1 z?6}P6goK8e@j5c1gK<*1Fwh46pu}>J?pVmNdqIJSLnpS_>cutOt)lWm9}H8Er;9Sn z%rLnq;Ku=Y&80Y_xsX_d2XX*-z>ZRd4s^sx{n!;<0eE#@$wm+LsQJdu83Kf{EriER zE5!Bn4=#%Wy^dzL?_~4E_DKYUQ)ZMC;sLL7s>o(&7SIpdH}^P!hF>rWl0gP(WOV?+ z{~fO8`G0I&9e@tV#lrcYWE|m|eBO1%>~`~@?5ngMH;2R!(3 z*SBH}n?1L-vG=(&p)x;k__*d&^ppu#90^YMjWTZ}fd`gRb4P&6$%O4SFrc;+XSwg` zCu#VNQg_F#fmZZcs7j4pece(_6eX7azlInNYCN^*bL?Gb^(75AUHed|I4pfZEXC); zV+yZc&_Sm}NDYOe;rybd1WZ(16fi6YlpA)6&D9sW083bN;boW&-t@JO`#N`DJ*gkPCe?g;3`S{tE> z4iS~uD%)bs1s3E_$LVo4zjgW0$;LYbhP+Jndz0#7CL9gu5~7-KR)Tt?1u!uaI#BI_IGUwe4?f{!5?K-RM&u=nC^A_N3K zm#IyE<|~~BK|8```PWMN--w@NMzQwbbZXWf!l`K3OqGlQtq@=#T0<1=D2vo8OME7( z9<0v==JB-lSI!U#YIS$74T|#a%CM4%(f8{xAN6w6_#ITT@SV8^-BR&5%P{{m_*(8M z)me+fSDH2=`4%HTr15k*u<9+t*J`ck7qu*eOZ;sy6dyPS*gj$UXNP@)a*Wymu1>Np=E> zY2eKjJ>0-6ZJi1^3t)qJVE>zQN-_k*n{UW(=mIc3itx!V!{R z5wjsQ0Ivviu&CN{T=x_P*Ug*&KAL$D4zK$$hm$x^GPgNFD+ndqo=!?UBn;1F(FHRF zaq?c8X1d`{TVvBIo6&S#plRP?duWm0AO?dJpJp?YY#jwNO7gGBpv?S1Co{Ftps8#8 z%O}Rs1+#?=x%&PGvq~;0fGOE*yjW$**lOqb$;u)e0pT6}beiZ@8fGco${+)D{by9n zB_Rq(*WX|0x_)p~0@HBOTdBFQ1ExJ_Kvn1J;J(86#tKy{g5>lQ9aNM$Nt<@y)@;Zm z9oC$fv8%*hHKbBUNH*lL)TB--3UqQ76^?XJm7GN*)kr6f2?3J+Z z5`BuH}(H%D~qhGN@N|0RxBDKAHnk*uZCA^$kIKO4 zpN#}Bc3aiw{`HP)(L4cqd$hSiX)@VihIWq+ybD3>)1JBubD8(aBzTcME18!6UR1yj z3s}-FQRqMC$TJrPi*PCoWvAu1zvO18f|k*=wG&ZkM5a#@l;5Jlw$$ngqtJpCSicX! zCG>8=QQZikM?x}UWyO$g5eISEy~zNJ|KfNT)xcbH6IOEua^A%x`xLboaDi9FsTpR% zn2@`oFNM}YvK%&6RBp6z^}7a#3dUHr(?RU zM>8pD+g2zpZ@Hpcps4TGt!kN|flZqJ&6k(zGNsjeCKZmt`L~4tx~yYWbLRxeqTM*v z1`UCaYuZZ@`nSM01HQ3W$7F((ftxU6`l4H@tn)9clI`-3VJut+bzeV;K-;}%ES<}{ z(X=xo4Q?GkqS9U@k#0S6d2!c?KmtSt-}BURB~}8vsF=5&eLbtmX|ekBQk4(seUJzE81bQ*{|j|KOOxC+nc zBepIKZ5ytQ68>n8Y$Dy7TR7vXw1*P=(gHDa#4#_j-w~szoEU6R4G;vtqnwziY?&wY$o}G+d5p^?e7&%>yJ1o0r zZueYC z-yYOP^DhSeSHxFnZg_(A3cDB=38?#bj!TVpQ#$VAd75x@GP+Rg8`Tc+Rr7<7Z<%As zmvx{}k=e2;NLkPGCD;dNfLukMm{IEmkjE`kst9ze>XE70R#yL~<>;6-r=H-^vfXlu z{Y_#DYgn_4vUr4shj@OlFthcLi@L`Z$=VwClz!Im_&;to@iLinh7C0G~boNZJ0KeMkP+E zY?x;a#tB|*(8yLloyX$m=$TV9cXw$_J_|OJ_zh9#GDaTRFQkx}IUU4@cpHbZC3WDO zB~4A)k_B@fAr}?YB-j!Uqtcw5(!zd|1}HV^oh-PxSW9u}oQ#{M7rsZ?1&`sjzT7f7 z7RyYH+z(DB7f~#phgd_1k7`Uu{qMD8&`y7#)$Xx_N88Dr`nL7gIec)B!PWC?hBr}rhReK2F)`zbW`$_S#~4;9?EbYX-QuIIj}3HdJ-mikVWJ5*J{dk`h?T zf#;ab^jZ2Gp|EBP@)Pl*Wv9Q05jc-s;zn{>LQLCQ!?uH(cP~buEJr^}k1h?(cik}X z^ky-$Itlh4Lq-PoWljRb<6xLk!_+&cGZ#m`5y>d3ug~5x=o|6V!jLuGin-L`oVy&H zw5;;JTof^?w88`kjt>GAv0p%NQ&wg4%TXB}2T6#`aQ>#5 zz_jv*6=hoQ^RW+0KXkz>b!wHDgGj?lmTE2AVagKdz$c{XtBdrkK!1p0$dev%Z) ztS_Wx^#FwaKd6(F<$vfV@%}gJB9V5 zTV`-bkF*Ewx;s0~OW0wW;*A?jLWZBdcLzs=^#%}f?{b6dc^OM#5r1u?-H@JIeng0o zuGkoUW+60ILX!eD^mG)oV@Y^VEJ2Msn~X&xLjSte4sY9oj(Rs#I5(_(#Ql)miSmP> zAo}FiEO^Q9f1?)>axkKfzw;%dq%%j8uY%CSTIA_21XJXhs~5MzUGOgTC>jFEsZk!>2_@^OB! zA}zIc?~ljJ330m@5AgMZXR%$FMf~0rqNOAnO9HmS$pF+?8f|Ojn&+8{@&6S|*d^YS z!bZ3uM~&cRCQvl=L+h`~6Z>kY#dsu-PS{C(@Es>m{as*)HpDV>gVrn&o5<^TdAR-} zt!fR9JaYlO5T#6kF@*9XKBR29PJ*`_>KK-aDD-jFgx`Z!q`AqimP82jb%N~~?0Ps~ zMfl#4lm3FZ1lV^>3Y$VwQGL~Me~576u+`XJ9qZYC9Eu4x z#bXj5V=CD-?FY(1V^HI;v`LE!W$7^nSG&dSR46)^%Bq(g2DajpI(;5^(lkI39#c}V z)GZNeb~-ZusdeeK+VZs9klxILMqGao?hmr^&>7tf~Lx=fbyCi$FQy zt#r(Y0j3aq$-nm?kbA74Lu88gtG^7`;lbTGIiN$5uRw?>CQDobW4=R0?Yf++KLUdK zn?$&I(zur&^xb(uQ}GO~SHIXVWT@|$=+DFHN{xT{+)Q=Y<2I#mtK#>Sy_0j(bLc+h z=O@sPei-W9ua}3AYnXL8xCYTr7~iM4HkXNoQ0N|cyQs2XYPDg+4E5LzAKD8ok9T&6MR!p9Hn;gt ze2f6`kR2RaxBeRlQ2N3`+%Vx#sclzBTqi?_5R)3GbBlS=@|9i@Boc8aaY8Tl0svar z-M!~WWZ^0aCF-eXf3ompM~xDY42R`2Q0lVf;NK09A>t4x@62xOsKRFHL05dkv^*6% zM9RV8$iW+?JKqCw*r~6-#m)bE^N68sq1D@Xd3x$Dj?WrNQlGKnynBqu!?ZDhommI3 z&0sm_tq1#rIYA%=C^g8&W?gL&3&tWGKT-{O3&iXz!iT+EJE|q{@Js>e3XLOq069kV z~F1PJu2;h@Vymt8@sM@STZ20L>Ci!}n zO;_EhVqR+@`Ff5?L~?1yrn*~7X<`n-wV$bGw#DhAY7Es-5)R}DVkT_%?6DB7|DIeI zyG$z9@p7(g#01Lw0325=MPVoJ8I+($swPws29W;EXi56{_%E{1O{+0{gBTp*wKK&G zsbG_4jA@CnrcGtdgnQq2djH4{MRemA=e^vTGCS);jHd)cK5VUOUDDJq)hEN%aG!GO zu+?&tovp2C$tjs@OE}WWZ{rJ2@A3lDvS>sS9&kTB^Qq zybjXt%b1K>5se9VFI7S{o*`W-TR(PBz_0r=%PHDk?l?a*oln^3U6b%KMTM2DqLs7C zRvz0sRj2dliJc5KuPAjC+QcX@1WuQXSc z(cPm2vIrIFGvr4Io#r#J#qm}^@Z!@>Xz04M?ME@Ih5;1t*;9N@agT(|B8G@zZ9D7& zE&swDo9E1wi7Px0)BmmqS^KCf%To=zq)jFUwIFMXzeNiFBs5TTve|?2> z)D1d>H`C?*q7&n5DPdXet++?{6pWhw^@1*{P@nmyj@U&wV^6T40z zAWK~8rR`WZ$eC9zm|;v?hdwMZ{Vj{ZL)weqZh3K0I@?jnAo&5&VVHjQupW7AdY

;wjO|BXj)V2=8X*65p@TZvc}!>;g)}%4f;zMp!F+13X{-gUO^ z5qVb^zlU#~mA>abd6xmldf99LLRFvPTje(YLZ@lKe?DFUBF{F_pToEKqCaQai*JCF zY93S87wE2R^yBVlf3aU**4Y9`SIV+qI|ino!`TlEt}hZn-RDhHNM8|v$IC6UuZF`T zvTw4(C$jId(F?LKw(-NinDGa6>UQGFd+GZ(>$|P^ubOU|`VWS>PU!W|*cZQYcVOZQ z7`xaS-h3poxchuHZTN!ja`+(XOWAI|d@g=BfN%!=FcG=BjJZM{{ZjYb&dJA|xgk1D z-H!U?I(-U9&QC}MKPD=EshSyGd?W(B;>!36y!yNUFP-G$*VuCJSob&Ru40dWtByZC z<9}J`M`sceY;9`;0!rKAF9PpRv}gc?GdONP-P9`H9fX!DbmNu=>~8zqRm_cC!j(0d z%DfLfcLSFIi4dit#wU!XM+>Gj&bheODpr0QsxFE54X=G!D3V=_hPBu2{{uZh!oPYp zh*O^2ZGl^u!0H>%I~Jm(LVs?YB2y z!MFt$qiiRgE>EBv;z>IM$Nh!(__%}(Ooq<2s@4g=>I4|UASrN&*^D@o=cD0Ce}=|D zUj^EmB|kWR@z+TR8H(U(_NN>O7Gmeb|1(x)A_Z|chAU5XhRd=0(7EDTXK$Fp_ z7TnTZHju+IPZ6XnDmhg;-;aCKg^kbzM#|*C18jq;IVy{Qz`Vrp97?>#&@b18cZ!7E zW3`jTQ(^FjCY8b_-@GQJN+wQ&e7}e1@wuJh3?ma)9nuU~ z?DG{fguKbBxN?KPN$U869B`;`%j5(4F*6bowgO4h_#3n>x^B&K2J2{()m~jI-!8V{ zo@>cscYaN5>27MsGl=9-$c9^4<<#RSGj-Cye8W0^@%x>;doQc#g z^u}puB!cSfoPpb+FB?}{Dhv8%)lF*^v|LWDH8Im+;T64ThN zxdbcM1t+Nlk190)jaQpDe}a7>^|Q?KOll4IG_A)oszh5h6F7CJuY*=ud<6G=CB~p} z4mg%DVsSQyl=`gy3)I|hmd0CCnz9~Z-4CuFC~fUDLTfK$Y}=sFpRxXf0aCiwA@X1$ zJ~k=ek9JQGZnJQiba7uyWf9UGAQ$E!6I%Thdft3smR3hkqSMMdf04mI@PG$V4N)%b z5&0)|nf?q!d}hoy)<_BzP40ieE#d?Z9C}plqtZn#3Thrh&w=b&oa#t@CbK(7k0+iW zAzZoQs)b@I`w1#@4>1}1hLn7UgR&~Pi?*^fBW z!F`@xsFOlAnrXs4VQ!2$mtyfE@+8NyV>t5Jp+Yw1iaQr)f2SsI;Blk8ebi^;)i?`n zUd|A4S>4=0gq1g`FsoNsnO=L_0nc`Z0;+zBSf5)qL+^ES(w5 z;b%he@9SQEf9=xKku`zw=uyrsMQw2FgV>Lx)*w;E>&eujF!pBrxbF{K1ulGMVx0z> zRDJHTA@cXh&{SM_h5OhhpXYdU)->5lpjtko6UUq*Xo{qLtP=YqeH&fc-hiUJFr%lL zje*mg_^Gxc?Rn9Prg3HjpIeKdj-H>uZjj?Pp;5N^f2p>AK|7;g#HXg;>gM65ECQ{? zB!xL|l$+825%7hW4x=BgZN>X*Hj>g9?Kw0TtGXwkJwfTK)!eZ}MP2U5Cvt$%ymB`9OwlMzlof6x)j zV)H}~?y>VwX4H5%M52dn@h<`zNI~t@#ao-jmw-$!DO(%;_I2#j8VX?;(&t2&oC(x& z?g)RkQIza1(+N$&y3&)-vel5S80Dg_rn_z zj^&2tUTK@eoEMvgCdO7r#`N&J$)6PGtl4eHIDRNdZ<3JpTU5w5Q62$cC_2@p({>IxFk^T16hb!U zf8|@NaPdwXK~@A4$zO+=qKWWw6q--^Z7S18dtJ^<>|g%1FkZ#xA+LAahxDtj0V++1 z9$`kEuK77J=7aR8`Hvy{;bd!RfJ_a*v@I*lokryW9Lf7O++0GP-4)mXj=f1{T^-`W zi{hcJgs(3vhOT0|OG3YF-f6zL{XXHETbNXzsDh>N05+EhO`}rat3SJe# z!?CdT#M@ccFi~#7ucV!XBSWTr8veuS-G0mEPRJ^!y8)$v!lD0a)nwDMbce15koV!hvp@lWVdf0o~I zf#m+r?xMPKwWumwk_+cbUt4F>9Zat!3iY3LKYtEQAl+Vc!PE)X8n30s+{cpHQOVaQ zsP(aFN-3Aa(|n@iq{!s}BKDb(y(Xq4!)UDm(B>vrA_Wp zs+Lw*{LPdb)siRE2y0xE0rcOgA3C0#f5LS-(_&cFn%wNL)g3l^6dTJre}=|m-K$D} z)ZvCIa~Z>X4&I9r&xEG;=q=7d~l2<_gIvOH4BzDFYf9)a0dEJ8LfBeTdUov zIQq$M06cnrzP`YrQeZ$ae-;=th&(16Pf7m)zZY)Y7!$Q5a^;Ry!aH9T9Cx2GbtyZ> zrjv9)pC2M-Dr=51i$1Lp(r?XgMf|?qRZc-Qwo=qlI(b+Lzq$6YE6@`f_Q}6Zb*;VO znx#S=H?Bh7aeXTK=@Qwuom@C@$t>z}nT%kbZu5#ib1xL{%Jxtue`$$CGJU)fX$Cn9 z&{)bcCX7;~Hp)RM{gbNxtc9>YZSu0*m|0P3HFook!758>2Hav$oZKR_NU;`<`LxBu zh-I+ir-t8}9IdrXLr_y+zbPHb3L~peZcio8(`_P04kJfbIp44?{k}4}U&P*qO(KD` za6N&b%^vt0yAac1f45mDhO#(URi^43f@dsM4n^`g*?MrSFZb}ZSqI+T+f9tzn?>h7 zbWtY40{(CESaAq!^`N(;5%}=wld+>5cZyxj@b%vd0cm5)jM;AKI)Xe<3{Kh3T4UPz z1zK@HErOyezE~Ys;mtUid`r+0Z_Z26TNsIjCRB^29exWBnQO5 zX-siw(}=;&-haeE>1X$5Jx7|1rFW5=(JKliAR}p+++oS{NPcQI;34_l0*pWs# zjg0Z@5*;-wf206O#XH?%T|=YI?OC#02flXdQGr;-0=zq}Xx=nibYV4=qvJ)63WluD z#oIW-_1nr)fRvhiE+7exIx+e-1)&=%^OwEC<1+hX%LKl}kl#`C0Bz>hkgt`ktCBir z6{$Pozz@wTE`n3J=7;sJ`%~_uFD9vP5Z%LPAt>aIe?#j&X}TXk58?OIdQ{P8OK{w~ zmq3>0Jb_8{l@-t6tle#i%()C0!D{ZlY^$=zUPs^_=fPsTMDvt-glWsQG-_-1O8asC zh!i-lVbf_ey};>>9uNK1G1f;3ZxymnKre*5OHtim~O5 zeA-OpJ&}!J&ZEmb<}5W!YQl2Lw;eLl6GZlhNzd0anCH^{t%`bGahDsl-x`GQ9e!4) ze{ke(P&!{~XHZUpE!chX(L~^9Fjq*vebcwJ5~)6OM{ZsrCwL{Io*=iW*O(Rmp}+`+ zA%~LUUhX@HF|+S;rETAKQoKZDE|nAPPgamAGOU_L;}%%btM^p0pGbX8WS$8Q?!=~@ zmZ%Okqi4Mv?yo)#7PqAE6z}g>annlue+A6^wF&N$oE}12tuIT*v`STzV}_9dFW5K~ zE7BiE4Kj@G&Wz)XQ!a;X{D=V7&0I+_%b|63M}k)PXT%eKK? zOTn=0ug0ECc=ytflK8-?>+#RXlgfgOo~Fl2A{XAJCPSSt1M{~&3)>Dghs2d1f7n`H zGACniTB1x9b8Q<={5s^OY4s`Tl95i?4H%a-Jk1tH2hRo>!zWXZMlAMgRJ^BNPozUV z;3pkJB4+D%A~xqNuwjeVYJ5D>WIgSLbitIT%*d!Cxjp1nq-9s#2`uz8dcOC6Bdi0D z?IZX^J*7I~Ga;k>K?w6vkqIg$f8e9EB9;#ozYo_I#jpG|m#!`SHxigYsCMeMP|eT# z_SF?L_L2>4J<*KAZs~sWzEyunQj<#u2e-Qp`+uDY1 z-9pYr%v1`&8oo$bg0NBzvbop>VARL4f&f$K_dTrR+ zu2BOZ`4jOmq$77KfM#^uyqA>?i@>Zgn~nKX6?# zo`Nzb0#)Tsatt}nF45njxv=5#a>1Td#f|t*totiVmwzanFSkI?UT2d-+^&=#+H)fmX)^x!U&j zf>nlC;W!u~kyWR3NbI;vUYBaP2h}<({l%X5jU&5zp4SF7e*_Wl&25$5s?$kzle{8U zwjCV%gQ8Z3n1RXZkh&~C7RB`ZW_IR^BjIDT)uc_Toa?S8?+zRvGm-6sRBf4&#RJW1<|IGmutzf~1 zRf67N9)?seLd?5~z7#~eqgT3T-Wm1V9A@v?7y$I1Y6U6pfV%Rw*zbzVn z=XI!Mk87hH?5cp|D*WS82d&AIf@=AQs?2)wt4Z81FkqJhcxsvyW}{*3u?q_A`&W+} zGa6$oKlPVz?qk7`JR~Ylo&o0aSyN-BFE8$Xtk?)|%2seb+IZ)xgMKo@o?f*HdLkM)TqoN_LGzHh^}LyP3kW5>j$@TF(%!rihG z21vcvEt6# zSn&;tW-8EFV|z<3O)sfxx#l(CoTWHRXSM8l`gh;YrAB_Wmc<7;BL~x@D)V-&UvAZt zf1GhMd^q+QOSy-kD1QoBtW$;k4kn8)&s8Jg!$%7oYXfF8KF)`djOPS`wJXa<8tE4kJDJ4~{ibZuXp3pZ#uO{LU<+x1G3F#aC)WR<*GJ zJK&MUJ%HW}1|7O&rjnrsGEC2?!o`87ZS!;Z_0O$lkC<5e=0k;@A9YRED6JF6teN&y zvOh7*FAje~5{ZpOYcMk*Q^kto&2u^mVK-8~sMV1^)u>V6{UM zea!9gX53rW#D*SpeX!bQBoPj;@P>k?`d+W%;AD8tB*z0;IjMjOV3(1i{hoM_5>_{((lMHS3i?OjWS&%+%8nY-{;q`e-B+jp5*7hoegk9Q0%H_A$15*;Obg2Kj-=wvK}+@+pV7f zkIOBdOl(!h`j1j57W6hcV5D^hUaMAh4*UfBJ19uSInB3W^|{jOdE=wNgIp(}LA2TQ zg;ou1!r3N2(p=Eb_;-Yhp<`L>Hb3c*U}Ih3Sj+?aDwC_1#zBsje}S)TOdrw91p<(- z%MIt}Z8LJwCgWuFXF=g9s3GtQffI|s%Kk6=5YpSwN>@^jI#$;=VeV1^VMHF!<7;j` zi;86m+F0B2Vp`bF4_`1o3O#>}+HgwJBbePsge27BcR4#J;cF@@fNtdp`XMXi`%sC) zbYap4Z5puJ>W^b;e^Z@+gny4lz=$hEu0C~|rL~kNb1`KwU+>YGKd6YvXAH2=V)!P} z#5cDI|MX3JuCG_Ag&PkZ?Rl^x+5YV9(WPGS848eX@Te-; z?`jeZbj{@Dslh2^gD6H+0+!l^;O}rBTbG7T*Y>#wk--KLByUHRjBWwgZ$u zkG@ohyc*C-^BudPq@Y=n-MrAfrAz!Gl2i$^_PI1}P|Jq7>h}7C+T1b=%HTf2g8H6_ z2a5ZVJGzOTe=Mv)6~_Df`Pyr|)y`O~SSffIZ>u1Kn-)_sX0EJ>!MjkLk8#Y&L1YVQ zbz?~=M5Bm~7kP`O!`55)IfmO3O54&_o;+HLBKm?{dNgNnHP@a zk1X{P$4ZVwdF(;Ctf|DKDXZ>bkQNatFUlZ^vn>|*f3odbbO6>dEEMHObBhy}qxE3N zIuapHV$1aXMRv4`6Tc|9oNDe43qwjAu4P+&SEcp0(6Yw>sp@Q#MY+?V=hBm4-n|os z$@wp|q?AI;bXDmO6At22GQ^3P7tuZ!Lp0y{@q^>4kbD(8unG@Enn37TT>$mM7jsn^ zEr07Pf7ut&7VB5O0aHO2!8%2R!QaP8L0St7o}5~~A1MX(==G2U4yxR1e$5mEOXGIb z$u@i`lZz{kPauQZ?eImf*~IgF`rEa!t!s5=Nnh#|Bj1{9YmMJd$^2iHagVj~c@08A z7AAJfw{2vCUkkYvHHFdbz8Ci6eZ%sC{~Ap8e~aXC&JV{+f-q-k5b19}1y|Jc21s3klhb1u6)s44~ zqk%ebl3b)HPcvfNg3v=lj<^*$qjJ)rbB*9|qp0BIgL%aBp=hFxxN+W2Sql-q>Slo> zfBAtU?ux19LV0Y0!}yJx+W~oIDKk#eF_x8hnlm{4;o z2tWXr2KXRUBEBR-{UHU&7de_dEv&S|5V`x4P7ThoZ%p4k_4&=j=CtpZQclnSU3u-3 z#?0hIVNyt>n#{rSlgau>bXkpB105D4f2m$QJb9I2Nu+}J{$q!sQ!(}iqF`Q5Qh20L zz4OQ&S%HwhH6sF$gFM$HhU4-$vAjJt(z+~nuwwv4Cl&mqf|u*^7Sko33mGbfMu+l~ z;}h6oq`Ez7&~=xI(t0+1NrHgI`~aC`_^#Mt?y@4rzVAvm0lo3(Q1_55?%U%we-PYl zr)DotxW9jeA>oA09`K8V&dxiJhH(ie}!1Ys3*4uTLzRqiE+yno~)VzTq7rAKb`ji2ebYJM%GSI? zBuPI#tB0#eRd(PY5(#9TEQ!mS{s~klhtahwv*NT>%vBg$#z( zVBLb#C)Zjg9%2Wy*0d^ljZLyyk&3D*URYepf20zOk|u42;jEBw z>lMxJl4~H+AXItA_@GY-=Wy0pPY!n08Jq5NS4`$@;Yqk@UzbKPyQp}jbiz4kR7@M> zFC$tWzUMUh8-eE8R|(usSE5>%XDMheyZ*#I=lcZ8ID7rcLFwTOla)C80G#vo){oqQ z>g9GmmNq8LU9scre|YMef!ZY#gj8}sp?L~b!Oqf>6_yQ~7h(Hqpg`p4s)F{Qpn6Dz zns?c!o+LJQ{*l7w$o9`a>O9g1*dxc5ftOvulH>8)w9xQ;(vWov>(gPTIp*e*7G`F+ zuS+MV6FWnqV*wc{UP_)Q5>h9pLEoICeOyiG60$L?R%pt}f4iDrH3-?UMSg&p*PR3u zpzmHZ)Qa)0+hwcMS}i{Jx&kauX}E5pT)Dv>KLoCsPi%k#=PEwzY6|dwG!!rOIos*j zLY}W)5n{E^JC_WcC%6oR7xRfTsqJg}+AX8gP!(Uv*BzpWzewPhTXpw1vzsO1=C1Vk z!TJ{pKHwLjf9{V(?CTK`epB37DX9)8*zYVZkr&4U_}gEKw?2sUeZ4+>*2kF=pv!u* z+-@AH@-Qs8_mJnZ2{QrWBA8iWit2q+7=#>RXrj)LHWOQmk|<-f1|v?1*EOaUFN z{}VO-_CilHo_Xsk%i`%%k$S!u_>w?uq}(c93$4i(e-&mzw8=MTZe;=P{?B6>5-L^f z&Wu;)~CcMVc$}@ z8+!`z41AQ@{4D}VEGVLzQukP=EP|zNwFobg9KK}D#1J~7+t`~ZY0e8xjlM+7gi>bj z-l&XNe+AfdcN1YfKNbWe@TOkD(1Rpz&i?tbJ%U~L^G-GGBZzs25^z+ z+5*{r_qOTeXnP$*u1$3cikJbDV@Y`RIwsd7C2iCc-L7tPJa??1`Z%FDEty#Keq3XJ zK#0S>6%WtTJP3Hjd7=YqBA$->%f123eehRPf3CV=7-XcrADmYpxdp#zK*N>lK;;wL z5($JlL3v8{r#qDp&Ae^YR38aMe-&MMLj0wo??em35=BYJ#-%Zs0BJf4uj7aGOqtEo zBL7hbB1yh%g?JV+zFqkkOt}t@;-~y%mZoyp3F0UTO>u+-171GBVm1Y3vuPrM-n0v_ ze{lC5We^FBhb|K<<>u1y`;{sBxIz9VWEJOc={W?8#b-mYP%zDK3imw=w>71(?{#fz zmGa-WwZOk#crl9-($O$Wldu(wV&JIuQVfa@b^DK4MCQ?Q?j^kHYt!-(=BvX3%}*7ru?X1~=W~6*9A^f9el~6O0L{+d^ns4K5{PvZe!5ifCRvDkB~L zJ@g|a3Qk)vMU9V%Vi~7n$O*+kdFI?U!bWeDRuC0xYrmye2p(?K=w*Rkaeoy)+F!)U`LoIV zOnQ~Cp1zie7kDEiu2h@e*&F1My?vJ|1?vR_QCShoa%gTE53Pz^ShQTJsv4eyIB!x3 zKQztNqbDZgCEw#AmzpM4{eQZMe?T-?m@&*OviLF;&Kr~pd!SLnPs*kC<{~V+l^v<~;c5CmUu=RZ!eb_$>*}iMe_BjYMB_^vfaDBo>{KoYj>3!WQ}J z@^wwXt|e!~weZL8Y`ORY#GeGO!u&231$`-yRyHWyIP)aG7J0=nFn=elo?*X<2o!;` zU7e)6?lAm|Y)IjYzd^Uff25RxW1;=!zzc+)$an)RL4Bfj1nie zK&^w9c=hX>l$-W(HAz-aUTn744NVO(*#T-2gZOM+FoFRsL2Z5I?OP))Ls zw2KpslvQF7aaEkNqA1IFqW9b%M&ZO@NeOMLX+#apVcrDOV$SW)E_j>WzO~E`m+3nz<6TSHMA{03WCX&qsf;)0MJp>v$zxgMy(YS&h+e_(BaM}ysjCPCT5uz`yg zDjInMxf($QUf(^kF?6U##R@Z>-aa(_5zfK1I3w*c3C!Ml`gD6=|8uJwqP&2;6DGG_ zf7*rH^S$4sDxSpsM?nP{XrZ4SpQ47!s5u&f&Ye2*LWt6GKTLlm|8TDUl@LMliki>V;t9x5R}Gn7XL1zf4)2NvY1VKk(Q7Hzb{L%MhQ%Y znkLrB7>DJ-N=vE4@)`e>Zi0B(Vl=oR5nM#vzRhf6ioP;CB_g6jWQ&bog zXOt&) z=ZZUbpJ>J1Pc=FwQjs79_4=UXVUHT|^D3{pf2Ld@goS+k< zm6M!87JzX}tu&MPsExkVFTB@AS*uI5-3->l2wpBB0!P)MuSGq6vkE0Um+`CDq_0iF zA=!LRio|9LUw6{3I}~SZ zf3IpjM%Z(!g|_QjSb5Oy-Ag@KUg1>Y;!T3->sS=0hDTd$V5DtpR@04G2bN6mjfuC> z85(A<*$`eWb=5|lk55l6?x!Rycu@jfo()z^ur(DfN|P@Spz0S)saSYuY?8{Pp0D=I zuPJ4Rt0Q&X0^29DqV$Wa1v_5Rgy0Kn%ld$gd6eUsswqu?TWa61xof1p!Rti$^z z_cQ8R^DXJFL>^BsTHM9=;nznzFF`ZE!qZR{`>(%hA)QaX+jCycWyH;5dlDIqrDEB< zzkK8HW+_LtzEi9X$Q;RO+x0B3QrNZRcvVfTPA^LNNSpm->iM(sk07oqc2Qafx_TQk z`d`XF;)wecN#y`mG-8_ee|`>*6NprW_%8AG)$B9&VWDbt!V)|y>*OEV=L=}wGPcQf zk3e!^r0cx_rN;%xC`DK>z6&N)-*VbMA~5i+mYkalSXZXtFjqgGJn1y}`fuJ(VqH0@ z590*l)Ah;$kroXxe@fuLa=?BKLB0n6 z;i<~D@KC_c?;#~lpvy1bY*w|EPIxKd)su0maNXCAB)IO;E+47XS2>>KD-5CUx{yQv z8xcM}t_pK&#+FeZosWe&q#g2Glq3^?eWZUMbA%Y|0>u*t5iy-M#XEzj6%QH=)vdn_ zmNX~~f;yI1OC@r8e@<;U3g9%i)F@m(Q&x-qeAu|NO5Ez-IQS`iB$?N*As_lMR6a~< z8ymG>RyB-!G`vCh$P??T+BxS@2T=%uz0H;%d6XYjJLyxGSSz1)y0BL&uU(%JD-Njj z{=0e_vMP0y7ot|sAw2hmM?M^39*!hLj3bgu*&!Ko{$5IGe-%2>_TJ*qhX1mNgppJ{ zl!*(jsY0H!3RVC4-3mC|17h~ux---LTKB%5iUJ{AB@+>Hp)`}?qLJax5at;~1vX~n z$92jLfloX1=e4xX?2yb~a*@X0WSgNo)y!GDB2MnDWA(7VC?Ab^Gd(3o3gY{HbY?lI zz^ZdSsWf+@pR1AazgkVS+^cLQ)*p}&5m#JcQ#-A_){f>LEm%lzUnuQb(li@-!f$bKa`Db zE1>6=BV?4GsN2wh@isi!I&;cU;F;3!XpAwc+l6!ze@UYN<$W@+oU1G~W$k@p^U&4? zgf?@_(dB`u&Z$afvRQ@3Q=% ztch;pe{nF493|Vu0MmEIR4&`pf}pD_cm)WTB$EmozxW_SODMI2e(CY2-y}6)i8ANY zG?G(@1T}%wI!}H>ttUCr*|zw=ve`-oFSAn9x-a(BhVpTb5}rC*kcc+^?#XkzP%5rF zn@yQZZN_%RZ$!F*F|4u(WZQUn0wEjlihZC4f40{Hm=`Hz>!r|UVjjiT3+k;pe&*go zjA$d{+rXjydum*m=QmCv*|)xDToa<%zK5!{&2-dikWN!dLvkQ75kmu@Ryfo9$+2j4{D3HQ`mZ(Jg91ytYU4Ro6~~pOD;T zG>n5Zg%_V#*fzN0S&yEb8ERo?U`~yN8j#mzTLf5{&s?7?cZR^eWADMKCkK2}DIXU( z9&bz#bg9RiTl2)FDCO|-ot<4QbN=MFe_%pO7C8d)Yz{ABsDXdmp%6mvNh3+pRJiLHA@d%$N`syBuZUbcu=&bdZ#Z% zG4wTT@gnwP?c2iYfOW7aeHHo-dc{pCB?T{9vJ$Q_{y;jGY74hU5=ahVf0NhENs8hN zklB~1yi{HY6`P|(@frfhJ_zT%kgIr=$bNpJ-na8;1)3EI(wy)EzWPJrB+k;_tj2 zu5zkDUF3(mE@f=Gk0J7QA?1QB>U%RQe(03q{C4l7$Ht;QS&J-SZ~5sSkdm3aPn>Ne z0&qRJ$P0H^WUx|{37fO_U^P$i-c~B+@agdK;$bn8bU|Um8Dk5Vf9~fj@_6#eQ$ryn z8qz8)r3T~~-~=A~1EM_p*0r(yc$TQVW@SGwsV^>2<9_34`kDs;?}4@$odqg77wlT$ z`hM=9n~Yk;8Fa171pVV6Y*i1jV{cG*Wr~E~@X{LdmoGkxwE}rn{?DY2eUgl`V^~DN zyY`_HB9*)a<`4FEe@F+$a;@}{eHamd2_PZC5pXYe-t0T=gPGvBUSb~vTej2H{&*`6 z7G#9P52r3x_EfKJ8rXt73PPQd^JAa)XT_1uby}$W^%9Dv(I&MXCAk^|9C{5qXV6C2 zL71P$bU9`zz^PP5UJVbG&GGzyo=R%r6-MPnLdVM07eqx4fAg%`en$>ldoC@mG&KMq z{rH9*jC$R@cH#0XLhwL>m|@v1QhZG2 z*_%w`1UP85F=rtVs)7 zJ`K;uKW{OKLP{3en$(fub-{IsTB7NP2d7=zn+cbQZSrZhmIUk}T>8WpIG3}=n~e|f zJlL~0y?TzD4I&f>!rV;#KXe}@)4Wy|sd#G?V8GCNf7RBhnmMXf`F-oKug2x7 zD{`gq!j#ze*#;qYe{>ijH6na^eKMHKXDsU2O8lpwHXtde29v!$%5xJwFk zS-ovG8;BCI1gpKd`>M zB$TfagbLgCHI8hjihoP#qj$$rQ#b27Q6+?1fBv;m-8#8Vrn3&!IPobQzkK|226X0q zjB}!TkKz&iw^cfV$MoAriU#Qp3ry9?zPt36P9X@7UN@@o&fH7~-p?e=zM0MB&20XJ zuo=+36HVM|tx@g3`P4Q_hOg&P@oTTHcvBl+wESX21mbtf0QX%N8Eqh*B0~fzAMu(> zf1rk-b~1l;3AY8auNv^E47_OtK?+@i)E|JnsagQXal4D}Od_a=9;eY@WbOM&G)0`p zg?<2NI*R4P;>CQ&>qj&sqjd?ai7#J`Gb5$IoUcJ!+Yz42>llS&3}bSia$E1ZBJ}RK z5o7~5q{&kNddxbFd4kYk9hWgkgz2L`f5>t=ekbJSfnt^x=^mHgV``(XkLm#(t$J7g zayh!+T$M0r6u-<#6 zUEik+eNiTf01Zn&a}^ntGRn$WsKA6Ee~$ylT32fM=a((@0^N+ zP`7xxj}xt!X%?U6ST7`;8xfIIx!{Q_7O?Nu)wNArIL@@23vYgs zX1i_y0#len8>0d@Dwu>Aremcz|q7j|XR7e6+t>Wwe?D^SAu zg9z+v8jUflR?nLl^=EF5nj-zc!cZWH973?rg@M4JVxih|r}V6D ze+=JQiUPtEb7Iz6U`e)uf2y<0$c)5sLGhD3ISrAUe@*?al@p@Hj#qCHg)1l}2~5e<%K`g?VOgVY+L}%BjuSB3M8DtSJ zOT<@de*>2K%C72H^p<~9fVx5Vkx6RZT$Y}e12pWop zlzvrc`VE$oyPno*AD{j8C-3vttYF&`L}_H^v;=q_d?k%=Ju7k9#ziz?n)()4I6}6{ zf1U_ZvcGLq_1V(w0Wm0O{NxcX6;}-xttg$vF;)E?9 zBuEh@eNZ)e+o5F(J#xInhh+wJx-{takcHz`C!8!_-=i{g2wo(G#&T7opHE6dd+eVzSkT6JQ4f1#XA+wJ?sW*>O|=IZ7*#pNqDL@3ACVZHxTerbwF z&7O!ZV^wk51jhc1mFYTdvd`EcH%ed+}~kKE7EBIMe$d9 zfWu_T#--y@#t0mAFyvB)f0qY49tV8dhvBy*4PJY`W$ZtQWStM=XhB7`EezLbc07oY zHvr|$zk0_Fk8Q=n6ZSvqp{}Yz4jUlZ7VZT~*&+-NQkaUc6~oON*v!)0r=vIf*y%Zi*${LwOSvDVOJf64yl!JhOXN_6y< z?$MpV)Ru_t6!d(h)r!sTTACA;LHG-E_j(k_wLSvWpGVQ0HHSsb?=U7iwep|I?M$Sg zHeTj~puia(z)N{>k4adZ7QNMJJcT@aZZ??Co9@HG$!20R?Bk@fDh}N%td{pG=}5|E z=4rvA)4sNIf}o7?f4KG5=b%>s()oad8m`S2^v`4g>zC^}!ie%TtM>g2HwEonH`<%B zDI9?9*LXK@B_V59>g)FZdg($&n0T9nf~RCd^jN-PfA`llJ~{CJ@3E*5fM+8N|JW^s zEcMb7dq7j7pnTMMka^EIW`|o-H`P;q{1Hlhh(&b=MADwxe|t(^d+9lFi@Yp?|Fh2z6%$fi$DB@oY)=SeO;C-C)W(Dn42WF5Tjuslp_45H1#vWf7EF}9t3=qdLVc}^UIssWIY7} z;FL&>I<%Smc|l#DvPXsQVFI|8=KXE~JT2Fa7?p$SwzFVW43KYqb+RGL&kk6FmP z;0iMTkD@(zdpw-}4JV+_7`hvw74+~!{$OXzO9Qf;$3fm|8G$4D_LzQ9-u(G9p;B|r z227f6f8$DSS$?Phd_aT0U4zZeyLg#X9|`kTXIc|%wU$rZeH8zo@m(QCLd?t^ z`-^R-PUE%mc24_TB3+WgC~gaNzqam8F$2P9H_iT8Shr2qa4P&=1@G`G=Yu-4V^e?} zjf%LcYL0~r<@%if&VAXT^iwPAdQ3Lhg*h|htxbk=$m9s9&)A$_cw{!DP~_faZe(+Ga%Ev{3T19& zZ(?c+Gna8p0VxtPGdDCKFHB`_XLM*XATc>MGnc{50Tq8TF)%VVAU-|{b98cLVQmU{ z+KjgYaHQ+jHXM6mPtdV#+cqce*yhB}#1q@e#F*H&Z6_0BVtmKFtGrb*twZFxEUD%%#4g&|6^$9 z$PExRbhR)6$k79&?QDTgaAYEO_8yKFX6DWxY5wOCKxs?`VB+H9p#7ISK*$E@Xklz< z3y?E(HV4{#WHdIk2B_E>TL7Is{wo9}uer0cJvV;?gPWThy`ha0y`7^OKNT&&&BECn zpbT^ZI=TW)0Dlz>kT+`{Q^xr&{svzwtK5bzM!*qQ(x z0UyZ$DpIll1$&_F-^Q|k8_)v&-5UTCJ=1@}{oDJmKo++DayB$JwzIJ}wDqvCH3OJh zSOb3n3gWW#&hE~%07F}ozYGnno$NmR4P6Z_tPPDm4F1L35Fjq31Tg$4@ZaS*89Q3o zJ3G-kSy=y7BEw%{KDsPsYa(K2V*|8xc7pqhpQwc+(DvNg2>aQ)5pqfP(A*!AB7 zK>6?GpaT4NEP1<+sRaTk{|vbUqJIz8p{eKi6 z*gk?8+gX2{`2R>)S^tvQ*!)TO*C;TU`~!ZZ1paCMU&z7bV_E(feDuKdPl^vF zrWUS$JlOtH+qpRY!{Nik>>u!hg84t-N24tM0YAE7^$++_!9R0*t zG>_$@GzS+uXP}9Z^?wIoV){`1qbE!sRXhFZ*#}i8ppC_UpB39*Hb7V4KO`SPoIWn= z|4{g#^pAEjeXxJ}llJ2lWNv-^j`M+}#Lz>kKz{sVq6bNd6C zKfK-l0YAcf`~!Y8*z*s$k4TCRI$szzm(0;eN&6l^)H?y%QecJ$0mkyro)G! zM!j@Ln)`h>i<*Bu`A#SuM+4_``i-T~OM8ns`f=WKye?y`1lWAd1feXnP4Y zrH$zNj>HNWRjvAwXwEe(RzUot4pZUvwmbE1Q_Ez$6|R4ox_7|bCoS_6zou@l=X!_r z;gJEl`;g?8hvCMN-EJR^Vu5}EJTo^YYB6)2h_zMjbo^wvzr< zNW)-WuYfDzCtRkT0!Bt{PRL%+F}!oO9Pg`WpNfV{`HrnQltpVd)GvYWf$Z|{MxDu* zmjyWHEMk8K86lLp>0;gCxf?MQN<6i|hPl8phRdxAOnT8$4?@}a9k!*bLDE82DT&_w z#meCb-2e~EN3MMObM*?f)>yWDC8E94NV@T(2LB=9z~DZvJCmcGyB|M<^)Qa@)E_S^ z+`@#1qqkK#f^x$M^1oD@S5`elxJL%o;3EQuEO;#B(yVut^2^kc4VS9qWVLC8Q}k0#4FSOq81Zy#<{ zzk0(J{;Z<}+E8;7s$apYNuL`4Zk`T}K?svTx3e&!^G}>g0t!kgGB#ujY0%#n60$6JJTnEK z2xFS~DxGv|H_(6c2LIsG?a~4z-4qoFQ~L!wb@0OeJ$uGoB3H?F@W5Adc&l?^R^z_T-1Lz zJ}zZ!44YqW5J2;6WaonXT2kL5t>eDAp7bXVkMWtzvo;d7pR zkOWyl`ozPY+T7&hDC5F(%<`P3CISL!k%n0>>0D7eJ?nGlflaXR_SKkxOn1}a!cVuQ z<$zUz)s;vmUH@LHC9nFTuIdG2;J|-45|?ok|HrkQ^rKw17GwEXjH?&>CU)Y2?n5sC z%rV-l zCzaO4?yFomb04U@3(a? z&9a><$OTGwqbK`rpKYO3Pu$uQ4%$d_OyqS%n$im0 zKii#r-D6T`h#C^+6Rf#?IwOB#jPKUUwex%=J$szGAM_*ZtLU5_#&Fx-*k=A>SJt}; zsMLQIkTM@dayiNswmBDv!s2dVLWEgLGJz=_@?gIY=vvtT;ER7M3Bs1OWmCC!BQK>p znXRtMlJI;e;rfNmH$)M?M>+P|CiP-2|5U%=wWojzKulo*mvuFsx50mav}h>mA|E1_ zJN;$TC)lVlA5wu`P+_xXM8>$B0!jU3kahyymz%Jez+n2jH`BVEOi_$EmzzLch)P9R zmf?W64D*}~txP0KD1Y-l)0(H!YqSfVlB8ux6Vg^3DxMf75+nsAh|^1X$u1tHyH6F1 za!+6563j^G%~!_TP7Z%wA8lbaSp#MB4KJ?!lgFOi(L1}}kDMC4_IpF;EJ7GT1*Vf+ zhD;FgE5gK|EFJ_Tsk_EVa&n7P68+k*>pI{z+sVctzb`8vVgaeMy#@oNG;08MSnkPIpCAeT-#Rf$g&{%un z!rTLu?iXV91x>NoS#Tvc6%AddJ#o~=G4!jm$I%D0e=reHm+cLHL#>LDqZu@^_Y2|i zS}z-e^{-H3!90IbSLa#EZ5t1pMf`+XsX(ugwPiuu#>x3(fgtd-Hze3Bn@^W-OORN6 z>q$oZK{eOtIVG+`-9Orz(%P)DJ9EWorsCT=QPWY`eA4`=?)K}WA*&J-R`u9dzz?n+ z2lc|H;;}+Nypx{QS)P+gbh<5~XIwW7bVdGQ0rvu)Y?gl~&X;JE%Q8p!h{C+GKv#Lu zjz~EP4lYtDS&KLF1feCf&)c@v>>i+@(y%e&3Jur1GO+t6isJv zdE|!;4_f<+^%Tn!AQ~%E`+?+Ld5r!tfHxeBGzJS;i{%*?Sfec59uYXs!9GtR$-?<; z7Em}3`fGok9QWp(b!R3amx{7X1bd-LdL7n$l_h2)w?rCafOBcVxjYaT+Z<1Htacr~ zpE#9>;OpKG9vTjN-2yjv98|3x2{^rVHnGa_wW9NcNFFdC&jRB z(h{iYM|^Lz#xUxECxN!=E~J5ZGSeYYPi2(1ju=;VH`BwXI9~p*H z!i0FConm|6&NND(FKJn9JMlCNOWVC7*CN-c_BSW4P*4hk-3o$Fr;aNckKFQ!g{MPK zv%d!u8wmxWOal=z^zb#-gUOj$-B3%dJ>h>3NavU}F3@V-)`JI56}XJv^Y@7rin7s0 z#x;7W#ZkYkGZYzkltn4kz=jPc>MDKj`7BOdwq~J>6{`4j3pXJSswS3qdh>r4 zbvY{&*fozN8AVaszz?deBshU2wY=p_mcRF&l+mSALdDTX-tm%SK4F`QP=j-y4U}o3`JJp}m@*hWSLCIP(QIa7nA7*k*3aM9^?B4;=gA zuv&s1Dqp@{1!se$RyVyTDJ}A1g z`bh@oV0iz6)_AGsS(PAIKu3SpLL+7ozGYj!c{zC4meeJl{h zWi7lb!6jRaAC5`L`nRXHYyLejpE?v?cAbUfA?aj4*(OCM3qa~`VCv}yubQF9H+;>) z9EjohW~-G9^ticvC3jPOjfV5}-RfJK)MCR(XdG+$;R^JMYH zI()WW+H>)Dww4uPO3>^Bu#Mv;!#Tt)_BqTH`U~tuPI)qksL+3O;pHnb^?oG)4uh#M zkHfS4kWP|Y843DsO?frjKng?90vuM_XRxuCXOrOo)p!L)cvJPRE^Qb_NG4TmX*bVS zvATRy^XcsGJM6tJfkIaUOcRYJX?;Ka1@cHV2Py?Kr?p=)n~ftwc4S;AR@HP$@SM&k zygVlL<+Gm(6w`k_faGSj1;re3Oh+k1*1SxMZa?6wisPGyAsawWQA?t9eu{^H3*sBz z7l_hnEG-bs$Y4P>zxegdX-ZtUhm1IW_{`qG#$i!O%g{XJT_+4ji~#qwB)9|m9{!c7 zg{rFDNvq__73)48@}w#f-our&>T6&umFe`JxM#XS<6wWIK;EvDF^HgwBzY3=J7in@ zIRwzv7K9VcKT|vaPj^?nri`Wk#;`(&$it&;m-}j#20hD|DBt}OGAY1lQtoXbe4D}4 zhh;M<{baOgaFyx-g+ndSH(kz~h3 zq=Mu-%-?$y=Cf8iVTK_L=Bygn5&}B%g6e8vV{%ondK`Pj< z_^oH7)!kQu2^H9xuxWvvt#U!f+i&M5*UY4r{ zEZ){&uK1M(EfiALIj_E3HAMUMFS);G6?;Zby%K-(pv0`Kj(ErB*0bm{m9OuAW?pnH6a-9<^k zwOD`C$-q~uCT04Q^xveB}FR@gtEGh}~xOg|eKUgn|}4SkBxshWsDHkj!c6U)l)al`F~ zJT)ZvjF9VjU~w&L7=(rDV>wcNI4t;_AF=P#@9U0qaG~)N5;}F?Hq>p*@}KH2F~eGx&v!0YAW?zJ#pDASv&By>r;9OrU?ob+mOr zPxmF9Iv!);RcU0qMBd0Wm}a%DV=~Uic zG|eZE^`^4&DX=H%Hn1VHyLVOrP3A8>v8*MMY2$h6i`Qv--BS*-K)c$E6t%OPuL$>r z@$pj}{HIg{1vjaZwy{}YEhT>yLL9`$UZNq&ybR3FuX6o^w~tQyMSjm#TvD31@uvBu z8Pni9?~||3G-%63nqsHLNytO=zqX0Grh18~rB_ur5W7~i2&!Q4jvy~AS3lvC&nyca zNh8qwI0)-(ZiPWzLFN0MB%ixa%I;dLf~%^95>B#;T`8OV&N@+iekgyC4l+q`cY5FZ z=qrw8qAnr3KudFo>4Z@(@m8><$Iw*jP~QtNdMV%Bat}mJ zOV2)%TN32Aq~g^uH`tSF3*&!Z%o~3Hx((bqQx}z<_fBqU(M0l@E*5c&7{VG*9TFNk zf;Yu}1xv|~PgL~bfsB73o^6x4n<^Dn_UO8&SCD9I1hg^tvq=N1)4=^gl>(z zQn%E#(t((s)Eqs`^e3KZ)lnCf;)jhlx{5NGtV1sAR+}$Nh+l(&U&n4%x zw>PbAHiH-}@vndS>F(X%0>Ra?ydx6; z!G`(gi@2zz7=18j8+3`imM~y0SkzWL2d;))_QW$x!N-;hf`2P+mW)t|#fEVr1-z&g zW<0r3RbHB*MT}xN%yDm-SdtVrSFK@$nL|4a!WU+=IoW@GqH7k6hm!%9;E35JuJBfx z3I#hTd)fzRUwb-v2M74%_sP!JtDr>`a{HN<&D*pU_Xx3E#4KE@z%%#p;lwTI)R{Cc zCA>&y=&sda5>((_V;Y~XVEes1B6&lNI(JwyO%J3C9Xh^6U{rQZSH9tlNxSyY$`E>k z!d}-0Pkw(_--wOPfJ=EvR|=}vS=-=M>(=DPg9unz6)>i`BipKhJ(F);6INm43V8_Z zt^@s6mPOpV(3eqXcBFdTw!WulRI1Sr1GP$7OHB%ha)T;=IHJOch)UQE)16=j#Eux!yLx?(x`ZwQv3)$;zOYNs+zVbPzs>#goM^LOU2P$Aob; zFI#`lQ6F}dFE@OO`nzYC{^1R(fHoynd!<5oWu4-Pdj-3KR}BUBGJ2DN?Fw8$qQk}H zBOyK9N~}W}_{uerMjkTfwXucZRtCre6`CfE0V5sUI$^7@7!n(eRR(RvI^RtVS|h#! z+-EM15$vm=;Og~`anwe<3l0sGvhrqwnbyf4 z&cnYf6(S`hYz0%!ELhbZ7+_VH zi^i4aT9YB>rA8CJ&aUzE-=MA7zNpPsA^((sjw-TkivAVF2d#~FuUJ0rC>amEJcNJ0 zWaJwCL&wgYSBfLC6IGEO;zb!s-gpY~8eE#d(mBb;%mcR7!$*yiwve}lLc^;Ja3C-t zL#0+a_#M$+WYGo6EHQ5dkvQ<<-*Q95UDVqsER%qSST&8zPb6fYL#=_fRQGVfhtpBZ z`|=q~G*nNiV!2#H3C%P*zKV_Xnj(L0L5W|0^_`h#oZ0)1CT#vZqAeENpQ{b(A`W_u z7EI)9`Jeg{_d?RchRQf~vkci`P;Q6g$)k84_=X3vAAequLzLd=eCgczRq?uG6R4FH z9*Op2{E(T1q%JRq8vZ8iC|$ldLWp9-iFqG9jruF|HD|n9wG^`Yr3FhPj>3QP&EBuu zX|Y}SPT(dLGytwBs<^mo|`99_F(!MjuC$@e=$NR6|q}FtzR==XrDifq-2?3=aC?A#~JQXhb_oz zdS^5Xxc_B^ubx7bg6Z53(@2l`RRO~(AFuTrwek(|n3x7im!)|}a9oklV>k*3Qg8Wl zlY?FeSYm*?r8}9nckFcbp3kU!hyxG2WD+~w-d7myveTGn?r4mn*ZO}+>Vl!h?3=a- zl$;iK1i^kP97~TYtx34s^a~$dW=zWlE*L5cV_2;;Fb$qT|E{cGAmoB+cl485=2vA9 z&Lpu?&_1g@9hHm(dY7l8ZM^CQQ2QJ_$*$GJ@PZ6RQYoYDMfJXl+~#aY^%l^VhOYWw zb_s^hsVO3Izan~IhB|-0Q$OYp8&BTcGN9-`ZsmPWJL{aD=`zUS`6?mgv#mST&7KbU zELS{1>hQKYH85f z3|GB|`b$-bm(JcwRpLQO1~Ie|+Lkwy5+kW+jJM=BI(U$4ogJq%ak(QsTnjyt2!HsynUe&eL z8n7|3av7aPI+17B6l@sH?~v+V&$gq1Mg!OR?Xx|vRI7bP_3tcsvKXgEY>9TWr5q)Zmgl5!WqfP&w*V% zQ}T;)bQgcDF=3HM%&TJ2xU`G3WEIa*^kKVK3m zzIy=hXo@*@?jII(5|MQ!&g|=1dn)%1+IFo#>WlpBY+k1}aL1d+o5*fGrZqJCfm>4Z zc-JU8HQZJ_QWsrSecHgV^jm#Vypi1JPpfGM(Ia1! z)s26(JNNKYLD0$voVC9BZw&N3T!=}-O-ekCM5Y%G>w9y=FE!5Aa@(R!r3ktLc~Ro4 z;UZHHS;|bRc^WSHK1&Vsg?PRUinbY-CqstRvZ~qfcupK)`kK((Z}#u_J>V_~IYUM8 zdb#Y$$JpY%fa-$5ZO9y~EZ%yd%*(&!A#i^^ePY0SqPK`IVhX*F@LVXhp(RlBl^5EJ zR{7cDUNZST@|eEm#^Yxn-8V&<;d*w=ZL#+IY=05WEVC#*qQrfB7cSAbJwXooF(h3x z_ag=vY#wUVGxEC1asGiSL7+{-0&ZOfQpZ=l8yObh+MuM*tAP(Q;^NvpSkdp0m*9WX zm<896LjB`9bon8gU*a<5RmUu8Ajvr+5ZW%2jT&>Wql7*`)f*7xkKuc+wGNJ|`n^~B zZjz#E+IxQaYvs=Y&Q&Grwio6csG=!uQglxkH1zXgS38#?u7isrF_eR12$RmCAF4B< z=kWeaEUlNLI1!3?>#+&TN zFEyIwUMI8lLSRd&gc~O5gVBx}yu)E(9dJl!hVJTEisMy6WHYBG2!#gO4P_@yfZKO? z*{6Kst+_=|_nk?~c5h7!T~+MlwjV2+TH%^PfCb5J%%nX$fkl_?9Ycpy48DJ4<&2l8 zR_~WM=kUHU!*M_&Y!xv{T>i`UD~CWDgh-j%*I&-6mOB>jplw1RQ zA`=#Uv*z_(n-&lL!LORB+e&{4{>#|teV%YUo;(dpyFc>5hw5M(fSZM8d+lW@57&at0}@REd_>aktVvz=f#GF-M&3@zsM} z=?doC0!=Y)R8PPGdQ!}8&!^T=a?TYIxvp#1kt|3CdEf?NU?Gz$E}t&$o8|!M zc%fm1E@vm}!Vgx6LTB4Aj8)R%sNPP*uq3__@L0B&(y-=e4h=H`V2g;G@*aS#4J-cY%p~m#VPTL z&AYBdKcbt|>It{!>TvgDo)GeQ#%8=eqe87q;4Erq7HggVv04BNOPu8^eJY+$!<;hz zl80KmafAkGV0B*l&e^X&?pD1X2G{ZXgzlB4^=UU(M;8C;7P+SWXYy|OFj-U{)DLZB zXYPtgNh$-L_VIrOJrQj6{d!}QEXe3n7=8F{d2y?z&TRu~kG@BS#L;JR70`r}{QSkA zBd_O4`RyLrYzjoLw;U!t$JG>Hi|(Ax^jWXEXW$LeFz7cX^US}3Y$MJ|Q2b<|+*-;mj4ss4s6 z$Xd^NAMBTLIpoG~6aOwQy>Ql$^J}er|Ga31E{w#X^0c-iaAe$Fb0naqUcFC$#g)*Q?? zQAQO*r$ZI;wR8|#+q&<_2dJfKe(#^|^D?7eoyC8GpLw(}G@3u%826?UFf2nx4Mx^4 zC>iD38EB>5yu=4RslVl;Ak@M1u(Hh_cSE~qc|8~sXs+3jKZ>b^F0Vdaf6qg9hu;Eu z?M5b3K;D9)b5-^5qC6zv%K!~e_}2bp=-c?2!$$h10Bqo-a17os_l~gg($5IKIF|y9 zMK*s%Y%T~5W@l_k%k?sXH5XmW8!uVHxp4@$Lns3qFTeH&O9`3vh3s!qEtDQF4{nst z&WL)Sw~f12B2shhe4a1zB5mWfX7b1*PK2ntFlE^#e|XkFvpzwzudEkmj@HN6c#r9f zC#JCVh!8?ts#|$=XuQwJaqc|JeU5BDZ0~=p$4*I@Ry8;+nYZ14+M(0gqcX)opTeq? zt98YzJu`uTr-a&5b?WMjp7tgO|dj8_p2?86REQoQ(u@%B1DwJm+f1s0w z44cu&G)*eJT&rC;AVvjb5bQ%3*mUO+j|$7b(%icJIxhwu{)XPH}B|%4=mPSs*+c%0_}*hT%qYY?J#v+ zPAs$8e#5X_O32WL!p|*nV8o^u%PsMIxgC8`XwT7G(hZGqAzyB1?MnxroBSDD?+A}k zH1TtlLCWaejIGh=vWv=H8F`*?$JBpJM0~Kr9PD?U(6u59psZ?c9?fd*Jd#-&Q-hc2 zDYw5T=gCZ<{wGqUt9&Z&C56iKzZi0CQ>tIrv z0R3uYXIC-gA*9kB2rTQt{JMWBlI3#eNAAzq;4rPuNqMA9f5FhpQY(jnj%st4 zoLS&5UbQWdj?R*Z-qxlAXf+UX6WEs*%q;Mzf*aN0^5#lMxxj8~V z9{f_U(KUfm)X2axClC|-l~vU^TWgwp&v12v9>|eeXu0C=qLuHoE#`mMbN-ShUPQuM zkdQ$u?TB-!J`*Xze2mBY%5oiFP@J&rLQ!xRc23;bpxI)I7!(2sZEZ`!ttj#O_4x?x z@lx_BI)U{*k4xRcu|#KfNSKH^HINAOGW^-^@YYU?7KzulXaK5-K>!njR{wNJZtdBBo4 zd1XnXv%)DU*(ym`FLQg#J9BxQ)Ka&f3GC zy=|^7I0J(S8`*!zkrGfa%VJDf=J$*{mV8sH|#@x<&Jt&M+8w^m0=U?SK;YuPk~Zovf9 z%+Ik477y`orgM-&22xJ}Me)}HnpxV5xYz{45OITJCZUKPKUV)hWWO<@q}E zdFn{iK+bEsyd?1|pDJcgMe#d`@F#EBWFNUaG&zgyc`7TuRYbUTB zu~_r{{)XCui;(5`+w#B=M(AH=_sp>^-x!b+5ilZI4vRk-%w86q{&p?^8jLdt8S|j0 z4-8OxL~fu0WV8@v*I=|dOb>P@Ah`Actx|!3giLenw<{9<|(*XyszV^;csAWZ*R#8@U3FG}JD%Vy}bUDGZ z)xL~1aP3Om!D;S_+J%~k!0B3q9K<%)^`d{Ot`GtU{zGV#XOSYXQk&BkA)STB>BLGI z*rfd>hO7F7BvE$z$La|jotSqk<{wsARz{CfDZ$*~_tRI-MIalJS)?VIuF&1NvT=Gt<#ba^YbISb}7I+iEx_;Id!rK0|+o z!*cfZ0%?EQleQb; za@|QIXMt}(H|$spxj?R7=VnK``JbUz?}Q^>NYPLVXv{PzFZLGE-;C3ZZ{sy6(^kgn zcUmrR)#MIBMD}AVGj%E>c?aI{t}v%9Cg2olWXsN*eNTv+w~=RgRTIjH)b4*C%T9>; zW~A#?Pa}zDwwO<3y(eqShT}%`qQ-=Ol^*zZtw*o)Z5Wn0RY^%X1N$<$o%Nb_B+IjE&v8?F&v<$AcOo6ZkFlTpq-=I11^z+A zIzb&In&5yHPs%`b={&@(X%3t`n^E$%FlL%>5 zcZi5esK^P8e-|;k9Bat0At@6#v<&!N{E7lifP`Us-{%1<6C#!PK`DPz6X4l1;vJ$Y zpP5Da;=kTk@+jf)$$&wHIUy8^r9G@hU%=jE-z&7LvTLhm!FSS zx#k1S@NGY}Mct_%E-`-_ajeksB$#nO)>Gabp=nE;hJVF$$jo8;eAPK2A)iPAqGku% z?^&$xBH{FGy>G778Om<-)#fzQm%B&bDPfEfLT?X2?iEu<$2WNOct65DX)&tI=!8(& zN){O4jr-oYo#T<&+m}8uEHu~pwj@`N%|E*g;TQ+k&{^203LLqUkn z!q8!5P=6#PxR8)Cd9iRP-^@bhK&?vdyWCLWg41Hqw!&{*b;iD%!5q#rbcXKYU?R$t ztb4dOT{rk@fo_Z-PEG#%pKWTcnJ#%7a;InKt0Ex~N8S;P(VGKqvlC4$(S6+ad`fDL z$_~`Q(Xgo~9DaYo6Ble&ZAyf#l8XB#;B_aq+*!yJ4-{7oI2GzutH{AwaK0bFc;?63Z36tHdJ@l0L(L z&6K=yKj+T$f|n;Btk6VZQ+qNs??u}DKpTBhf!u`l=d zf^*1i&yXMLNA=P*8n3+zkcVnVG3qjsKxH`Rx!P$}qD35X3 zy2p&zksPbN!lKsJ;6zXL~4b?+-5nP#nbiV!hEbKZO;cPHAY$w z>$@FFC3*$_Tk;*``=nOpJHtU$$?t&Lu!EJe@~7DfN9T;B$Qu4vfBs2H$ zRP<+$Pbr$gxf(p`$8ZURHhs7VHNE$f^eu;=+>C!{(PEl_@>+WKHb@pa{WB!DU-E#g zN@m#0CN+Px>@VwUbh0qJg-b*3n^i7tRuGfwaTUze_5NX1dsmYO()GwZmbr2uCnf__ zGn?0e#3mJvt&7nR0|YgME4l;0b5SgYb@uXXTc{ z1z>;H1myhEA%PHy#q6w?15(fT5u}e26r;47$6Rm1NCCB}qt{l$C7^(~f?FJSSsfe- z=xF36edVJh@S$*|S{4_nY03S~b1Smp?#h}e&OUESD#@{S#S>=#Z)5amj_fS*Cvn#? zEFd*!OyJD38@chZn_GSjnp#Y z`ShC$?x!f}8j9_-fng(J8}&c$E?Q8~sF}a8=UYxyertYDj+oN0K^~0pBQjf>WNqe8 z{xYM#cr?!Z={g7|@kgaFuCCLd^!G+V9W;=7zU-XtzV*1|;I)2RddkU(`9PA^?1_Ic zKdh?dfHp_dJrAw8+d^jfo+l1uX~AR7lqBd0GVShwAcdttFw-W*G)`uhTPsAYMDBIZ zBFhHV28J#ES#A~nsz zsH+09EXv;Spl#FzkRcq<2%|{kxJG{}ba}G675K=E)T@z4ohJi<)}5iQUI;mRaNNhg zmvHr-wE!4V^@WgFOW{7vKl6z?k;i02kmRmD{xn?q6OIy`zN?)%oNaC2PX4T0+>I@N zmogoMoIy4BPI;v^qGez8L}v#itSt2h+kg#i741*9X4M{bBCMWb>FD66c&C5bRxC-ST{?w_##84G-Cx~g6#o7tC2GF%tnvlKM@`uq zN{j0SuvJQcWh^?d3sIUXIUXn+AX-Nb?k_2{OnbE{ca&6@yollxz^5lPxKCvBCb6q) z%Q5g9ntw%5MY=)`7hEU|x>}7#R6`&{NcDC1i!q$@;>qjw+&Cf>!32LfNobvl)}?(m z6Vyayqf*I;F{CfP8i@C?YRIux`u>mJqS(6QyBP&q(Shd^2q;gWnO>_Jw2{z84!)Dxb zy&I{6boOWMXGEo9n@ujBw(W!H%@{OamC5r#x)J0XdAgJAgj0Vw=kQ^40?~J6Iy|F2 zY=eP+Q?_$W!f1$Xm0yTQ2l75k2Sic0cw}G2k5Ity7K$uAPR=Pewx=&kYRRZjqs`Z6 zVG{9Z*kO6VmyP<<>NY*_8Q9J@cYQg&o&T()OSeJC0SFp!zEAZCmOi8xE+Dll$@(Pg zS$&%3oL-E`{yTranu!N=Sd|P~oQ+;(yG)&a_*OzKM{(sl&&l480y>Gvr#B%fbuXuf zJepDi3l|X|+~wx@cSbhf@kZA1=Hic=ATA$Q$(!A3(2Rp#eE zEFSQvypF`>i5VvNM4IYArF6sj;l-(3+YKh1Z#R7E#M*@&D^XC5Y_~$!xs|u&I$OT$ zPT={mdzz7vhPxDenh%8C>HO{IP?ctp2Yqk6_4c?^OV&|vc}}Sp2Lq3UK|LRH_U+a2DIcC&SH1Tg z+3=UrAe1gvm4u{?l>GXDblOT$p)z5LL2{Wz`a^%9&6Jij2fmf1FsTiS2x4!wUKl(! zi7xtn42A~LNF^v88%xQ{YNEa~4oci3^F5p4G%8VZ!z^#aTOPmLrmMZwz%eUf4^P4u zcAZd*879YonsKssb2@RPyTdRR7!jkN9G&TR`hB{w7Ym6IR)9oH?;Gi@gTi?rL+Tv` zJu!b^#@Y9`0$(tZf8>Cy5>Kajlni!8pxx9!sP%$4PI&0bxx|oE z;KF?>HRrPfy#{ZlNbRfqo%SauxfAC7CwG5Z-G|cFE}35YNylKVp)!{^S5f32CD}p2 zis4ly1F+!x;4xrWu{x*f{s(y3ph(*%+n6hX+BLm3(45>z=~mDRTZ5cl&O>7$fyJYS zb1x`ozv~dYEy3m0?efv_$bkhFCus+sXZO$=Ow`|_Kt<_UjHBNCzwJAsu-q&KVkUnJ zyvvO8E*Ut#f37OwQ9Efgs??qIa41d-K&=C!sdBO|!vTpHVLk~UX8C?~4vSAgdkFq5 z#)-tUkbI9_AzX?&np(OFD;EwLp{IdesFwH|e`-vU?Sr`Mxir2Kv(CA&L=U#1?tM+w zCxk$8Fx+L=Q@@KDtt{t`#&Q*U5_x|M5*%TWhKrZA5lm#lCDg~0CqR%{s(s8&h% z?Xb1s=hF7lF7~=ga9-OY!EIA89z4X`;9V9=4ZBvQ2Q@oG!~$f$5|shOcT1kwe)BoP zfIamlR$^mAR@6hvsgCk)*K9d^gTWq^p0wY%{g9mzY`?iTwG@ zo(alWv9_})O~q9)v6R2e-ljIw(Dk@O<~Wx!r3!1VX}~CfQHNSKpQ(S~w=pS3#!iMg zX8rj`A{^RKWIG)G8xB#i1aCAb`xUur**8e98?x>y;!*+;?Ks6PU=b6!b!OClw=b8{EW7MD(!h$h+Vi z>RTBuW^ijnBs(|6cY~zbYKwn@VCXZ$?Us1k)<>wr2KC4;j$WC#~Ke+ zFtF?r?40Vo83TVm!>rL;*J;gJ`F^>l!@flWjv2(c-rY^J zJk5OgK4qjJ4LGh~HL#hK3*4d7azPPzOL9I5#!M(e9nlxtN#s8XKv{swr(#V)pm5P;?JW2tsMgX>E5 zr25$EQXyT#x=*05ZwgC-DN+F84Q#EDczECYgZJfhBa}F-#*_}F9k5}J|pEz6< zbB#SJ`VTj?1jEE2IcKMaH1>AW=iaWki7V=)@b#owq!|xR?k_{nQzckqnF^G^I~&sB z+c%g{Bw;w@x8sTX?Y@qT`1MEOyW?k-%0L@008OFj7<+l@9QRy*yZ4h3<5P$ov2uqU z@w7WAdhpe@1v5zFyDM8m2r192`$W_lG460tlJV6(1c6(WbhYUl1vM86Q3HQnWfg z4DLq%zPuEk_t;~=Q@N8QC`XKV7L;y{8j&MKDlVV@Of2R}Qt=EqJTbM!tEss+^{axbdI;z{6st=Rk(O(-a(-Dej+w&u_F7M$$#NUg!1_!oV10v z7EzZX{l(jEJOW>y?=mcMMG-*aDGgam6g;4!j8DHCpGS->$>ikUqg$Ay>ytmR`#pH0 zv@UHi30>VqU-@gJ$1o#*!m%hMM_-kCIPYKPBK4Rs38$vQ7_s{x*h)CZ!dWEpG+r@j z34Y=d;wQ6~+8(^ERcgJ2Sm_B$<_a~tm_PeS8f8t!qH7stAiPE|rHWE+cBojt2;laP zY%mp@MDx598B5SyEFy~8|V#L`68p44)WFUjHL$! zIK!G*N*Izlvrtc^pLt&=EYmhan1;VNwtA*MSZPJ_uC@5#JR$8mee}=uxMNQzd#zE( zEY^j^(d9`YKfwaX0Ey@;H7!6Qi#_s|F4JUcWZWRBfYCz>G1Gi-X-bAB-uj*^dxgi0 zL|SDd?hqx2YJW2X?sxh8zZj-Eg{@^jfmuyX?~~hmy}6+qtzz zJ7K-3D;1ZArGFj=(dk@p&Z56y;aoUnvBOqqo~U&3p0jp}s(y~5g?lZx|k zeo+a+bVyS>Xbb)<1$}=+T6bqp_JNbMhoEe(98L*=bxfr)r|8$ooVFapC9@iWAE>Sb znhj%F;D~3{8MIe>^EA073=ikdlJrM0J~i%`DS!0{puzQ;E7YQ;s+5;N@_34{_mIIP zHx{9XPNm?Fbi4N)ZADz3qru7#RQWIHdli{Pt~K_#Sv5!~ev~xa{I((r@ zMoiL*(O~F2H~Mf8jzDQ(FfzzD@z!b?hzguaoeR$o%&j0F%Z{uLz(VX8FU#&PYA|g#07+e|sXOyPwzk61g4=JHUq6#f!6XZA(6@BHH z;TSTDNTc3V|VY5Sl*0Q`r_G`Ezqoq!j*d~ z+E(2^B2#NG>R5ubC672d*$+l!+y4;sv|@Gr@V2P0xR z0Gdk;dAiW|{&ENax`X;KYCxq5QV(leq*i2H9!3>i1DIaX-ZL+RU)aKck#3V0YKl3(T}E`IUvm`=d`eQkv~iZg#xfRn zN^fVQBHQ$WsAT6u(B=HQav*$K;=HpI;1gnO(k!pU`3V%g_IDR@fMB?eN*?(ur&~k1*D9pOm{Af+WqlgBN)q*DxL1~$ zsYW6#)N?xhJ{31M{#R{onVIybu@DYOmKI_^-CU-}V_RfRY!G*<+%G-quzHbAfa>oR z7LB$)qyzC1rQ4EoC>g&**Vm>nj56$V@4_tF1y`S$Fu=>Z?<(oRPdm!nGk!Oh4WoL+ zGT)Psio9bPJ?bbV&&5rD#{l8bek%_dAus&|+Lf0PB{Cf<3m2k6345@3bVlok7|y!H zFR$jt%lzy62W@joWKi{~zj6SH3ji4*)!+Z)?wgmo)Eb$4NtN?ppuX_wNN|{miyd2b zvbf;FQ#yA{Lra#8iHF)#RdnNPocIq+)n#zSf1vyTirJwdD>}4qDcd)0Q4Q(rBU6tD zv^qFFHFw1SwiZ@Ca>HQR%>3-G$Ma8YM8@P|dr!`|&tO2S|7Ag^Irk*86yV)sb;_{c z&?5;ehCNnqXn>?ByHMM7e7xNuv|_b%kma}7X_)doPd%l>jsRR`5U;w!5>gD4MSqVh z4J$Yv{TID6`uojp>tu>QGS_hPb$AaSff(lI(KVxrkNQ<^w&f{NlE=Th=6rMNUv0G* zbW-9Q<_QpM#<$3g7kgOo0{|k}qT2*!@Lf;}fq`M>(i<BAgpo8F1Tl z+jEiC)Y?;6=6kR}d#|mM2)>sgEi0_F5Kt}7>TDiiV9>Tvr&|Mm<}kW*y=;`|cDWsX z3O>GQ_EV1ZOS*LTaQo%Xc;L^Zv`7w%Zl~riSP zWz*lv>JQh;Gp)#qnpfEsBpwBzi>w5?otMhzk=1ZB^-CrEH@O)@N1(|WEg1cMxCLCZ zEf1l;G!LRP(D>(q08JpizvL16~iz#egcrmDA zMy=zMTyJa! zft&Snd4MF%&clGW5W1%*?S`2s9dWQm1Pta8oS6P~g^D_Ah$L6$^q3Rg%{pim(v?AD zdHcks$l{t}q(Yy)$Lbj&lW?MiUGI?kxDvU)i4@vg7iBzOWL@`_)2<4zfN~Hq)+raN zShs^=8YkxT^mY-24%+;vkrCyku{$w>;njYZFTkw93Kn{psyv|yPu>_nCr-px@BM2{IAR#I$ zXd9_@@b-Jv=uVw#v?$uAfIdlxs>>DBuAg#Dc7_SNSJLLXO9*F+_Nv+S|y1Nga#zrl3n~<=#?O-JQ&eqNm#895rtT z=>bLbqmcUXDmxBX|EV4t)toRpdcYF-4B-Aj)^zD< z8S!7*fGP{9R8MJ6JID`6fmJ3X{=D?$jxYi_+pa+dy{eoBycLxQ8vPe--4}#dj@A$Q z#GTV%SaZiiMUsHLMU-zG8! zJ}=%JtL^)g29+-&V}A&{dkKd4iU4(XySLC!`RaLw5em%hCv;>m+Tx*9P={u zv;jq5>W9#V8^dZ_u_|RVM4Yg2nbiiMO;#Xu#<8`x3(~(mTv_}DDYeO+<+#90zcWgwav}6@}7)5_R+ZLp9BHUzHTG zN#%vJUv1^i?>N1j*&z&dGViFk{VRz}m%?*wEXiR-71tHU9Bo+g7fi&qsBGoe_4np} zju}5ZEf@BHlWKgD?`f4P zY(>Wl{pqw;Ds#y>afcK0joDU~sp_)`_^~mPGwDjw_L8tbUVh;kW9tnK*`gH5VSXd7t_lef`Y)WtP6$})-OCf**`oS zJS9tadSMvi#h#h29b#^LePJi&ln|moL5MUJF+DAQGBmrZ8((N-8KQ3r#_(j%=;X-A z7^IGg+3`CzzZ(@%XliVF0gY%DD6YO0lxHv@a)Z}{M=L|8&8O%!Hy4No^*0bJC+AOn zz!orIphbvM7L}COuPZ(heC~;~FgzY!XnAJ{43^WK@7;~FP+Z=GzrQA0QTZ3cE_bsOrYeN$=%NNtjuVV=yXd^Sf zdC9=j@rC~3^#1jQlUfYyZNLn=Ab{Grw}44 z>`3oGr6&*2cd_Z0?8m%+ZEIjRXy0WabY5*S_U$3;%I5kQJd}f@6Zo6gx9Z(4R7yIw z;cu%05GIHWosIsl@GoMBjL&F6gxzt#0%+dgBeVAuP)V=A_iOPpvwq2w8%GXc>f5y^ z>i(XjLA#>qXE!Fy4h!ps?90qah8LP0n1S0nIRJ5JUBF88_z;@s}mqg@JyU_j-)u^x8FUCL1q0@A*7DL)Muz5xKxuU|>u zn^E640c5&A6+^`(Z>eA3g&YmdO?Mxy{i9PI9X?aNU7w>EYoGS2@_W0yw1{lYF3q32 z+E$o_vHVCatgWwz(J3=1DFi~QAR7A`^N$(yYR&UC+UWKGU{64CW)W7yW7$(|(7-rP}!7!CC5f31kBEBIV zS%9&~zlh9%3XcefKn#=K0yTl7763@Ne#$>EW|{cYf890W8=y@5>%Zatf8Cv6*hL{m z@sEtzIq^ei>izp6G;5w9|Cs*z{vk50KYoZz_V2t{pWGiOQ_$r<9MfzBFb9b`q98%B z(idAgJartK^-u7=_xVsTB6g1ATiAvW+;=O#1u*c@c!WuV1+y}%@$=WAC#H&Ng zH{(A^Rs_HjVLzV0j&SEU4+X~wK=%7R4xlOM#0``!u+s@hbNY}qxB8A9e2o+s71Sp@ z;_BGw1d@-o{o*BHeF!}#tYQJg9etEG_9D$)5z;jP(s%)U2mm~RgrBABIL^|c$p!q) zj7hlN-nRKYxL*jm3g|;D*#4Pfo74AboR7yhDfXnK$L!Bvg6^-mTjX)rzmEX-itmmx zIo)i5FqhX=)qBUtPsFd)Z*ZYJ$T=`K*YTYo&Y=q8qKkY5tl1yBJ_3;QA;g-UvE#j5 zzWEOtnJ2k}gV%EMOo7Ywk@tQihikcd4rjjdS=t-b#Y3{e>9lb+Qn+B^Qke2`0`6qa znC` zZB)FLQ2jUEOgEP)*Tx#yUTYa@Bias$q=9K&O82B}OBTff26HE+yA41!%{Hd23js}y zASW@D8XhjEHQ7*iGjnkg|DcVYco3g3@wpv7u}W%cU^t2 z4e>4K9;Z7dubc^|$#OuQj!6YK{PJym5L)N~hZ>1A0%0oDz_^~nHB{a=>Ql(x?ofga zjneW4VU2y(&H<6{D<2@i*Rjt`((OQf$d0-1)+K2Y=<8^bU?#Za%ynk-JF*ZlLuO|S zZwR2a8lOQ4AsLAoy`Cnz=QX+=0~wAhn~{;7zB{u~1;%NUx9Z>kBAKo3y~O<&;T?(j z#Tv0&r29axt%WC-7PlBn0)|K6x*na*$6^6p)yX_m(gu~?M-o6mave=mb*tU@_Wtjv z^}@NE#EU{81jbn%nal$`6OHXkcNnbw;WdEEjqlHOiSHw44$C?Mj#Mry^jcn=`^}eB zpSFk4a01shhQf8D2_{yGP%C<(Z^r0&D#UR=r%d(N;qKRHe!N}^*KJ`JSI$PEOe=#e zl6SCS8pzE*T3i5vAapvYI{UfMpTkg38E;P7s2cfnI*63+&(BwzdFLP{cPDCj^jptf<&g`kx>Rq(jcncQ5~pSanwnT;ipsQWUuoLQ`njn7Me0x0X;m zMwi&x>;&#z?ptjG;i>8}atciDOkt-y>E)V9(f5xkE@;4_wZKI>u_QZ>)>lXvk4?6H z6Z^^3mAcgqiCmPsQ9z_c5T8!5 z%x}br(rynJ3VU8O!OxpojkUL=bdG^#*z97m(XAB9 zL`Z8uW$JC}v`|RsOA03ITc#v83>HfSAH`yN^Ja;m5Gd1Au{~R|U{g7!&Tm>ZutbJ; zolMLdSn+g979d7_68#^`f=|zAdA8C7zAr29oi_kJFMgY~ZYOKUYZ9N(gOP0_u`FBC zw_0%{QI;3|lty=UDHTc|5)Jlcl28q(1j92tld~64FW&UO>!j`!@&L|?6r3f>T(Lav zG~Fz^7C;acjWGO)Li`Q6-{=bud>EOZ7=y&e1@h#IpFLMF(Z*@zm4$fp#9{ZapKdFw z5Db8(B`wS|cO%4%aFPc619)c=bO)PqAa$e<8U17d__*EkP2kdiA&%nu`%3jjx)aL? z$qTr@`M*K4#@BxGZx_eEmIAK!$P02??t3k<3Z2hyv@MQ(yOZ~;S%m%6|H|jLOK3(X z58cqy@96&}vZ(%Sx=GcHR+wy@)- z+B?40e5P_wT)Ki~C))HQ%+yQ~3yB|>{$&aH)C%?_MP0qgA}|(GVw;ak0zSh&?TxrN ztVU78nq;0!;!UAQz?iin{}T&~ABIlAlrWPJ^1fjiMDVI2f$*KfFfqeS_q#hvA0TI#GiANALFhNVe$Kuv=2p)Nc1IQ6z!ty>N4e~3W?6o zxSiD2n;VMDtE7$G8vvC#h<@5U zO75+RQdI`%}M0?S#urp0y6}E%sQv?8Wl-BHH zbOEhDr*A9GsV1CyF4P%6@?ql!ees0+6jRMIo>a~!3ah_QaCYsM4j=uPI7{q-4(nmi zez(%?>}%I+8z>x7lyXZ;TZs&|<`5F{%inP1hKX5;NLLjsrh)LU6S=g732LrYpUf^L zt64jNpRn^hOtN3k!Meuy%>w{qFgJ-q{G$4b@ryF3X1gtwQ3UQk>6vZ9wlu-kW~;wJ zgu=OGlmz~~7Nl;4%4NPb>DecGnDqHO%D;l2nufRz&Sglz_XJm*RO;IaqCj>|z;r7R zCVTuVuY+T*WJM&4lW4nLm6!+PD|*ry4r_Bx9I%P9O&pgSCI=mSD+Kykf6rmBl{Ub~ zISvtSU5tYS?2weGSNd*eVf@HOD+R}{<}n$MmF2blcro!$b8Ke_O>pif8XOz13PBhQ z9(Sq%ReW^h43(*sIcOdz*hAMo?lC_{qrDeA{tn2*Pl*>>Z@OghU z(h8ELaW^W(agXxGD0u*7w;1=C2a2>Z8r>xBwp)jzTF0(7HJkgp5ns|3Ryr}efh*Q-?c`t-HCytjL{}>h*3^zsHI!KtCr26?{)3gF~c6>j8X9b>(1X6xa=cQ3+ z{F4#1OJLU8P8>OQ&>V*%;}(=%)?dV#)e2!X-4MqriBsYV=ACkDVBqG1zg7Rx%^PPN(vBu zSw1pl`cq}nk#~FCc!pSkgp;!c`L3xt7&ahc^h!y77?%cM^6ESox;@m!3?t)TI7t{I z#&wRE_cZj>W?z`cG;vdH(!vpU#Cie?@^WR5q|74Zu;bs#_JCN*i-qMvHAN`UN*ARB z8*4&Uv%Pm@iqx}~nZ=oxjz9o68DyX+2*Hnh?Ud7U1ce7?*S%EF4K9bEj!h&)cNb(Lf{Z92&E>>J9Fro@b04z!%Y>w4$$5Q2+5Z8lwDk^hAY28L62 z!@3-Sj?Wd_uPXlAywvcH-V^u*Wyptyrk!ZF+6D`F;(okg>sF+A?!9hfJ2gb9dPc!z z0_`|~l*`8HlGT^nPkj2Da2izeX!%PUrL$0MHNI=Z{z|EfI3`_9VcFWtl+on&j0yvE zHRdkt+{H1p0+r**0w(?V$9OAMmNt9B70P7vs@;8K+=Rlbt4m{|0RBs)s-4eLMit(W zwc!LXCX)~^=QIypm^yw5fYo65Oe)mni&A4=Xiot5w4PHUGMUCx9z^2WKZEk=Zvuxm z$i4CT2iL!K7L<4v6}x zWAH;@?8xEB>K|VhvghiOfl$_=zi9#gjNHR4Q8b|neh`{M^MMb=xbx#K&pvZ$Q)u9w z@RiELR}VY;t()-~z(4;dUHGq61V8Kn!EWpf3|3v3*N0J%02$MO1L7;#8Nr{m>&)K( zd=^#aW`hmcvDjPZPYuxOP2uqrfe1Lk;r8ul^?sf#Nb$UG6t@%>$&9c}R;?+X>reEF<}@QvCPRCdR7N`~}IVcvC-D-=*O=r=U+GiLOlpFPOg zB)#$Bdu8c4Eh{hJ5y}R~!(bBqnX(FSq2s(iAo8R>)~S^cgNh3)EiDs!Sw2Nad`^rY z*GB-p83ac({{U_qFLZ-_DX)wEOVk9rUcLV4C(!qL=y%XKn-7bWoMlTUn-ADJc5#M$ ze)xX1e=C>@XtUjIjFNvFztYN7T1vhZ2yU1|Usl&Z&T0DCa@Z);ZarA>eElzgj$5Pl z$_@Y>D=AQ}ka0g!R*VL!Hpm@o6+;N|pVRd-_-f1U>^TWJ?^$9HZqEpkAC=0JaWF8p zcIv(J{3hqQ; zxscQn)O9KIP&i{Ol-LRWZXU6)?UKRewv2w^y`?gabkcbD3*^|uvak?9?^T=GluM0l z@p>eKgJNLYhVvP>e$1Zmo%aFfbnaipOS0G>QGE_LO^y)EDg*oZc`AjFzP%Vv|9=Tt zlhSeI3kC$n9qCEaKL#YqjbTAfxI@cKqm%zoMW+Cr<2VXySG_E>8y0XCUu%K}^#1db z?@D<(YUO>>z`WT74M+jt1z+d>tw+(zsKkk+##Zh6j5H9 zf#?%Ic?t|OaDxbp$Qd)`-?L})X3%#*fsmSG>zd`8*1FZLUG`w8K2Ah-vWv6G15d2Iqb!Oy8>prNRR+{Iye<&Rr| zr*;}>ulrgT@PZV?V!%?-54xIIY5wdJo~oF#A-0$k()6KUjXkZQ3^nQw_ZK=bm)-i! z$7-GCGSTkwnw<^uUW)b(Id;_`EszaHcAtI_{24aTRBQ?$^5E#C0Hr3=pGV*QTr8Ej zMz>ccBK&YS1^L-w*xobGI86TybCn~8>6LfSKRw_Z&Nrks8KM%Hs5ptBTv3C_!so6T zM#c0Papzk&H4$^`7t1%AH!T-{KYGA>=&Yr1pfRR3%G_8tH@l- z_Ur3-U^EA$q*uJipmyr6KBy~D7P=Cxq>l`JXjl%n2@{t}$s#VS#|OW(2k< zbqUDa4k3AHN%fGIidvJ)%KnaP&^05q5Um$w6rn9CpHuve-reI4+s}@_sRSv!pc-4i zM!^I1EGq0>J5pJ-60NwLe7q7 zP3@{(^lVMV_jaaxJ!k(~B!$Sk)*~iGw6F7B;YP%iCh?H?i(wM3Kkj#=3aMiAZ(~9- z;ZXSUSn*NF;#>sk`EgoK*O4bo;}~;1IX`7Atci7dCx6Sl{DmK5y~p_$VpM&wjrvNZ zQ2M8E>=K{KD3O#s?JRzjwgc>Kw3YDEXfw?fT1WH-BM&Bu;W+r34fVAJN*qhBmE*Eo z)VF&@tn@`o0bcrzs~Jxz6}$0KPRCE2BcspB(kkvwoosXx{$LBqK=IK-b2jLSipYVZ zgtQ1cfx_dmzWqdqAhx`l_Oi!N%iZY+e!>?JX8Fl;z0o2H`b4W2o}sYHt~P(3pghKX zoTs|A(Ym}s?YrR+zK*ej5k&iHG`s(merRVq&wRD5hbEYDmn~JINB|>=rR^ColU)BqI>)Lh0u^~5Vb1cd{3iT{TKpZ z_SkH`HSpv{IL`HfczB!stO2i1iQf{bVDJ3bDjm;HHqjacKhU&!XjtG=YB zhaLq|<}=H7_ljTCS9P<8y&HH}Rbl{GYD=%5O-`81`mLj3|G4A>VXl|X($&I#T&M=P zUnM6CG}zqt|LTL!X`Jzz^1==K1k(*G=8eGD^dUlF&`ucBs<$&{Tj}2B{q2zWQL=Gdk$-)#>>s5-U`d?pKyusM!L5a9QT2cse?U+Fj6s> z$5V%=CWa4@n>`8`*sBBBj| zW8dJ2!~WS)SJ}mHKi8CqELGNIge|S9N%_QVw1Wx622p3tx0D3b1yRLy6r#97n*Z~1 zj$&_x34=xFkj2wrj(VF-OPD(7v^fB*xy}qmL=F#datjfL^W5pK=%MD}(Phz)ir!*g z1(Ffu-zXeeavb`bIC-K{Y(!MlHr=<-baw4u9sgYtv$9vuE6{{D<9PLf_+?It!;N-4 zI0vCnn`N|qL&ygR59Tpobo5t{RTns}5{(+)l`6(>HaPk=1%J&pa^2CoLfyFOb4BhL zQhdA)BjH*_k64*tWQc*v0>)fB9!rLQWH)Jd;gnfoMM0`dz_P7I{1YfYDPQT~dJSWn z4s6vK5H5q`|MgT5k2IYFxAMuS&(|kw!f7SvR;+#aw0Qt9%M$RLbavv)_w78sii-Ol zSn%xT3>gcj2}Rz=3j-SvFGrsLD#E889U4z24)te}Lyt#c=#^2KPtC$uBDN@IUS2Zc zOux&TD+AU#y{CUw-Z)DoT;@zZXtJX|=w88agClh7s0J}5e04OS`XZ%=NZ>Ypl#vc? zo#WtPB3%dEv>g66M6vKl;K|h)NykN@?@)k2qdCYoyG;G-;$sKx69gwg@EZNxn$`YT znUuw%j#{yde1|qG(sO6wmc|nS$ENQ;XHuu?m^-*O2c}e(UJ!`$y<^qR6})D=8|U_{ zuM6^ANjqWsuRaysVc;HzXuw;qDL`#$6m1(cp6jPfm*Y71NPbtNCML*tuqWoTi>8kI zOo#ajwe%cTh2$3tlsv&E4DxSfd8-*23Zimd0_2y9(woJ75DW4`ic9XbH+T#m>Rmf_ z6g1;#3DsUrLg#3IOMDZsDK!mjf|5E_mUj-0*m*+;Hn zhysCN2hFZ8^pS9`zbw+4GI~f-_?2GUe>7i(l)wzrp9?Mz}V&;(0&P zOdKx>V?_NPD~m4pAbaIn@6m2}BW6t%osJs>AXl)6YzV*{y+grF4#i`|xop*}$bvw= zs<&gXgDrz|@by~6iCE>FuoZ=i?2F)s6dWB8amI|IT;-Xp)nUpi0;1W5_cs=Cnj?fS z%S_4V(AkBBXrnr+DaWO5#iM(2nahse`x7s0*EXATM8o^M22Qo`+ta^jg!E+Crj@<` z4H>m=wI%%h#vUK9w7;$gq&O+gYfrA7@5d;qKR06r$S=e4#Ig;>qRw*E!O6agWqcx% z)>To$F#B)D8utg#-_(`H;CQoE`2ilCZ8bUf9|{iiNmSl_L@SWCG7wo3=5H6niDZzdws@kPCKnVL=Xi zpb}}zvbs*Rc9bj2GS(rPhxYH4+qF>s<&Y|@R4tcFx-q=f&6<$xo44)VQ?~0v zob=u_gFE@05{G>ap+=|i2AhEZ8p0GUX~&i{Pf@PRG2>o3_@BDqQ0aA^xWQze{Qk(K z^`#@~<;FoQdo08$oP{Cs)Ty%4n}F(mJi5C4skwTBpA}$apZl!VgT&aBObLZn7X@@A zBF+6{Dmw_An~H!Lj#zsx*)j#pZ;v2E$Ts72xX%M09JLfkb{hN%$4pZO&?+@$Hx6-s z*CE=Qa+fNriGV}^Ih|(;Jkkia<|UkhJz1W&(zl%sw`vQKM-8i@K_p4w2O=G9Evtxj zJWzTv9V?;25E7Ll^47kQK@yS#cmw}qB7j6?_~%2v!~h4FinYRce;SyO=K`T@;~o5F z()1V%d(WmiY=;{q*-oScoXItHQqh;Yt>}nzhk^zn+dqvq0$onBKwTxI3W`ZUq^iSc zcha|Wh8y_a;GN@)%80L6=@HKBS^G1`19aOHq?_F*($Xg;TuKu5iSG^Es*SjBO9xkQz_{Inq3{y z+c_)0#ymtN)SE>^6F-vfjN~ zM{n_%Gy=PMfEK|W$f*B7TXUx^r*%Td#L4=at>FHXbi5A+S?Vmkfc0*D(Fc)J7n@(k z6Gt?R1#dpVybuG-D9h01w^vpprJM=4R-%5Ryw<06{@XyuwoB;w6@^cA@(gjC-RY|l zX#A~IXS#e4{R_u=D^?~l-cH=;Mz%hN8N^5EXlOYaAnW#JXknyELdP%ptcj_ff>PT4 zP8zx?szQl1>65ie7f|BR!du}Z>lt>sz=d1ZMrC7sz*vV@y6rP#M&Cj@|VwbLWn_5{~4zN{fp_tP3Ds}6v<9#=`ScEOvp61 zmDslGaj7G4y70cj1*kTWq$sZ4&%3J3u0Ti6$<9K|MAQaAfrZT2c*^}O496=Y@ z!OR-8_1m_fm}YZ94Y@|`;v+53Q+=&t%Vu!T(WW2V1uTiphRncr)hwO09+?GEiT(6U zJs+!DZ7mhbi;0GtCQ$Yqjf1W(hchy$^(TlFxzYL09z0r4`0|5Mib;753}p1i*VnH# z09yv0Q1>iPQlhfDA`9W;T^;VKC~H3cmp(OFES>PkJJ=u%vA4CFVxwAnu+Aw>R>8A1 zt(obN4DJIoEh!jD&jW26jxJEZ!x`JYXy^7LP;oVqoS8H>xP+(ve5>zXk8v4m^44v@ zp-aRSk)*yXllJ9QZ1$SXX^sah-NI}sfO55T9Q`cBzoJ!Va{A4DrUw)Sxvwvep{q+@ zdon9-R3T#@;F+)7j3fRc